Pour chaque vecteur directeur de droite, déterminez un autre vecteur directeur ayant des coordonnées entières les plus petites possibles et avec au maximum une coordonnée négative.

 $\overrightarrow{u_1}$ $\begin{pmatrix} 2,5\\1,5 \end{pmatrix}$

 $\overrightarrow{u_2} \left(egin{array}{c} 1,2 \ -3,6 \end{array}
ight) \;\; \overrightarrow{s}$

 $\overrightarrow{u_3} \left(egin{matrix} 1 \ rac{1}{2} \end{matrix}
ight)$

 $\overrightarrow{u_4} \begin{pmatrix} -\frac{3}{4} \\ -\frac{1}{8} \end{pmatrix}$

Propriété : Soit d une droite d'équation cartésienne ax+by+c=0 avec a, b et c des réels. Alors $\overrightarrow{u}\begin{pmatrix}b\\-a\end{pmatrix}$ est un vecteur directeur de d.

Considérons les équations cartésiennes de droites suivantes :

a.
$$x - 7 = 0$$

b.
$$-2x + 5y + 10 = 0$$

c.
$$x + 3y - 9 = 0$$

$$d. -y + 5 = 0$$

$$-3x + 4y = 0$$

f.
$$2x - y + 2 = 0$$

En extrayant de chaque équation un vecteur directeur, déduire la droite associée.

Équation réduite d'une droite

Propriété : Soit d une droite non parallèle à l'axe des ordonnées. Alors d admet une équation appelée *équation réduite* de la forme

$$y = mx + p$$

où m et p sont deux réels.

Déterminez m et p pour chacune des équations suivantes.

a.
$$y = 2x + 5$$

b.
$$y = \frac{x}{2} - 3$$

$$\mathbf{c.}\ y = -3x + 1$$

d.
$$y = -x + 4$$

$$\mathbf{e.}\ y=5$$

f.
$$y=9x$$

E4 Pour chaque équation cartésienne de droite, donnez l'équation réduite si possible.

a.
$$5x + 2y - 6 = 0$$

b.
$$-3x + 4y + 12 = 0$$

c.
$$-3x - 3y + 8 = 0$$

d.
$$5x + 7 = 0$$

$$-2y+3=0$$

f.
$$4x - 2y - 6 = 0$$

Définition : Soit une droite d'équation réduite y=mx+p.

- ullet Le réel m est appelé \emph{pente} de la droite.
- ullet Le réel p est appelé ordonnée à l'origine.

E5 Déterminez une équation réduite pour chacune des droites suivantes.

a. d_1 est la droite de pente -3 et d'ordonnée à l'origine 4.

b. d_2 est la droite de pente 2 et passant par le point A(3,5).

c. d_3 est la droite passant par le point B(2,1) et d'ordonnée à l'origine -3.

Propriété : Soit d une droite passant par les points $A(x_A,y_A)$ et $B(x_B,y_B)$ tel que $x_A \neq x_B$. Alors la pente m de d est donnée par

$$m=rac{y_B-y_A}{x_B-x_A}.$$

Déterminez la pente des droites formées par les points $A,\ B,\ C$ et D.

Propriété : Soit d une droite de pente m. Alors $\overrightarrow{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur de d.

F7

a. Tracez la droite d_1 d'ordonnée à l'origine -2 et de pente 3.

b. Tracez la droite d_2 d'équation réduite y=-2x+5 .

c. Tracez la droite d_3 de pente $-\frac{1}{3}$ passant par le point A(2,3).

