INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4008B MSI

4-bit binary full adder

Product specification
File under Integrated Circuits, IC04

January 1995

4-bit binary full adder

HEF4008B MSI

DESCRIPTION

The HEF4008B is a 4-bit binary full adder with two 4-bit data inputs (A_0 to A_3 , B_0 to B_3), a carry input (C_{IN}), four sum outputs (S_0 to S_3), and a carry

output (C_{OUT}). The IC uses full look-ahead across 4-bits to generate C_{OUT} . This minimizes the necessity for extensive look-ahead and carry-cascading circuits.

PINNING

 $\begin{array}{lll} A_0 \text{ to } A_3 & \text{data inputs} \\ B_0 \text{ to } B_3 & \text{data inputs} \\ S_0 \text{ to } S_3 & \text{sum outputs} \\ C_{\text{IN}} & \text{carry input} \\ C_{\text{OUT}} & \text{carry output} \end{array}$

TRUTH TABLE (one adder)

C _{IN}	Α	B C _{OUT}		S
L	L	L	L	L
L	L	Н	L	Н
L	Н	L	L	Н
L	Н	Н	н н	
Н	L	L	L	Н
Н	L	Н	Н	L
Н	Н	L H		L
Н	Н	н н		Η

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4008BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4008BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4008BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

4-bit binary full adder

HEF4008B MSI

Philips Semiconductors Product specification

4-bit binary full adder

HEF4008B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$\text{sum in} \rightarrow \text{sum out}$	5			150	300	ns	123 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			135	270	ns	108 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$\text{sum in} \to C_{OUT}$	5			125	250	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$C_{IN} \rightarrow sum \ out$	5			130	260	ns	103 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$C_{\text{IN}} ightarrow C_{\text{OUT}}$	5			90	180	ns	63 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

4-bit binary full adder

HEF4008B MSI

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	6 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	13 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

