

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 şi 11 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997 <u>link</u>
- capitolul 1 din C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006 <u>link</u>
- capitolul 1 din S. Guido, A. C. Müller, Introduction to Machine Learning with Python, O'Reilly Media, 2016 link
- capitolele 1 și 2 din A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, 2019 <u>link</u>

Conținut

Sisteme inteligente

- Sisteme care învaţă singure (SIS)
 - Instruire (învăţare) automata (Machine Learning ML)
 - Problematică
 - Proiectarea unui sistem de învăţare automată
 - Tipologie
 - Învăţare supervizată
 - Învăţare nesupervizată
 - Învăţare cu întărire
 - Teoria învăţării
 - Exemple de sisteme

Sisteme inteligente

Problematica

"How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?"

Aplicaţii

- Recunoaştere de imagini şi semnal vocal
 - Recunoaşterea scrisului de mână
 - Detecţia feţelor
 - Înţelegerea limbajului vorbit
- Computer vision
 - Detecţia obstacolelor
 - Recunoaşterea amprentelor
- Supraveghere bio
- Controlul roboţilor
- Predicţia vremii
- Diagnosticare medicală
- Detecţia fraudelor

Definire

- Arthur Samuel (1959)
 - "field of study that gives computers the ability to learn without being explicity programmed"
 - Înzestrarea computerelor cu abilitatea de a învăţa pe baza experienţei
- Herbert Simon (1970)
 - "Learning is any process by which a system improves performance from experience."
- Tom Mitchell (1998)
 - "a well-posed learning problem is defined as follows: He says that a computer program is set to learn from an experience E with respect to some task T and some performance measure P if its performance on T as measured by P improves with experience E"
- Ethem Alpaydin (2010)
 - Programming computers to optimize a performance criterion using example data or past experience.
- John L. Hennessy, President of Stanford (2000–2016)
 - Machine learning is the hot new thing
- Bill Gates (Microsoft co-founder)
 - A breakthrough in machine learning would be worth ten Microsofts

Necesitate

- Sisteme computaţionale mai bune
 - Sisteme dificil sau prea costisitor de construit manual
 - Sisteme care se adaptează automat
 - Filtre de span
 - Sisteme care descoperă informaţii în baze de date mari → data mining
 - Analize financiare
 - Analize de text/imagini
- Înţelegerea organismelor biologice

□ Persoane importante şi/sau interesante

- Peter Norvig
- Stuart Russell
- Michael Jordan (Bayesian Nets), Andrew Ng
- Elon Musk, Andrej Karpathy (TESLA)
- Fei Fei Li (AI for social good)
- Richard Sutton (Reinforcement Learning)
- Jurgen Schmidhuber (LSTM)
- Geoffrey Hinton , Yann LeCun, and Yoshua Bengio (CNN and deep CNN)
- John Koza (Genetic Programming)
- Rana el Kaliouby (Affectiva)
- UBB: Anca Andreica, Camelia Chira, Gabriela Czibula, Horia Pop
- ...alţii...

□ Programarea tradiţională

Analyze errors

Projectare

- Îmbunătăţirea task-ului T
 - Stabilirea scopului (ceea ce trebuie învăţat) funcţiei obiectiv şi reprezentarea sa
 - Alegerea unui algoritm de învăţare care să realizeze inferenţa (previziunea) scopului pe baza experienţei
- respectând o metrică de performanţă P
 - Evaluarea performanţelor algortimului ales
- bazându-se pe experienţa E
 - Alegerea bazei de experienţă
- Exemplu
 - T: jucarea jocului de dame
 - P: procentul de jocuri câştigate împotriva unui oponent oarecare
 - E: exersarea jocului împotriva lui însuși
 - T: recunoaşterea scrisului de mână
 - P: procentul de cuvinte recunoscute corect
 - E: baze de date cu imagini cu cuvinte corect adnotate
 - T: separarea spam-urilor de mesajele obişnuite
 - P: procentul de email-uri corect clasificate (spam sau normal)
 - E: baze de date cu email-uri adnotate

Stabilirea scopului (ceea ce trebuie învăţat)

SI pentru predicţii / regresii

- Scop: predicţia ieşirii pentru o intrare nouă folosind un model învăţat anterior
- Ex.: predicția vânzărilor dintr-un produs pentru un moment de timp viitor în funcție de preț, lună calendaristică, regiune, venit mediu pe economie

- Scop: estimarea formei unei funcţii uni sau multivariată folosind un model învăţat anterior
- Ex.: estimarea funcției care modelează conturul unei suprafețe

SI pentru clasificare

- Scop: clasificarea unui obiect într-una sau mai multe categorii (clase) cunoscute anterior sau nu pe baza caracteristicilor (atributelor, proprietăților) lui
- Ex.: sistem de diagnoză pentru un pacient cu tumoare: nevasculară, vasvculară, angiogenă

SI pentru planificare

- Scop: generarea unei succesiuni optime de acţiuni pentru efectuarea unei sarcini
- Ex.: planificarea deplasării unui robot de la o poziție dată până la o sursă de energie (pentru alimentare)

Stabilirea scopului (ceea ce trebuie învăţat)

- Probleme de predicție / regresie
 - Se dau date (de intrare şi ieşire) trecute
 - Numărul de persoane infectate cu SARS-CoV-2 pentru ultimele 3 luni
 - Se cer predicții viitoare (pentru anumite date de intrare)
 - Numărul de persoane care se vor infecta cu SARS-CoV-2 in urmatoarele 7 zile / 4 saptamani / 2 luni

Stabilirea scopului (ceea ce trebuie învăţat)

- Probleme de clasificare
 - Se dau date (de intrare şi ieşire) trecute
 - Imagini RMN de la pacienți infectați cu SARS-C0V-2 și de la martori (sănătoși)
 - Se cer predicții viitoare (pentru anumite date de intrare)
 - Să se prezică, pe baza RMN-ului, dacă o persoană este infectată sau nu cu SARS-CoV-2

Stabilirea scopului (ceea ce trebuie învăţat)

- Probleme de clusterizare
 - Se dau date (de intrare)
 - Localizarea geografică a unor persoane infectate cu SARS-CoV-2
 - Se cere identificarea anumitor structuri în aceste date
 - Modul de grupare a celor infectați pe regiuni (Densitatea acestor regiuni)

□ Proiectare → Alegerea funcţiei obiectiv

- Care este funcţia care trebuie învăţată?
 - □ Ex.: pentru jocul de dame → funcţie care:
 - alege următoarea mutare
 - evaluează o mutare
 - obiectivul fiind alegerea celei mai bune mutări

Reprezentarea funcţiei obiectiv

- Diferite reprezentări
 - Tablou (tabel)
 - Reguli simbolice
 - Funcţie numerică
 - Funcţii probabilistice
- Ex. Jocul de dame
 - Combinaţie liniară a nr. de piese albe, nr. de piese negre, nr. de piese albe compromise la următoarea mutare, r. de piese albe compromise la următoarea mutare
- Există un compromis între
 - expresivitatea reprezentării şi
 - uşurinţa învăţării
- Calculul funcţiei obiectiv
 - Timp polinomial
 - Timp non-polinomial

- 🗖 Proiectare 🔿 Alegerea unui algoritm de învățare
 - Algoritmul
 - folosind datele de antrenament
 - induce definirea unor ipoteze care
 - să se potirvească cu acestea şi
 - să generalizeze cât mai bine datele ne-văzute (datele de test)
 - Principiul de lucru de bază
 - Minimizarea unei erori (funcţie de cost loss function)
 - Tipuri de algoritmi după metodologia de învățare automată
 - Învățare supervizată
 - Ex. regresie, clasificare
 - Învățare nesupervizată
 - Ex. clusterizare, reducerea numărului de dimensiuni
 - Învățare prin întărire
 - Ex. planning, gaming

- □ Proiectare → Alegerea unui algoritm de învăţare → Tipuri de algoritmi după metodologia de învăţare automată
 - Învăţare supervizată
 - Ex. regresie, clasificare
 - Caracteristici
 - Date etichetate (se cunosc o parte din datele de intrare şi ieşire *)
 - Feedback direct în timpul învățării algoritmul se adaptează la datele de intrare și ieșire
 - Predicție a datelor de ieșire (fiind cunoscute niște date de intrare diferite de cele din *)

Inteligență artificială - sisteme inteligente

- □ Proiectare → Alegerea unui algoritm de învăţare → Tipuri de algoritmi după metodologia de învăţare automată
 - Învăţare supervizată
 - Învățare nesupervizată
 - Ex. clusterizare, reducerea numărului de dimensiuni
 - Carcteristici
 - Date neetichetate (se cunosc o parte din datele de intrare**)
 - Fără feedback direct în timpul învățării pentru că nu se cunosc datele de ieșire
 - Identificarea unor structuri în date (generarea de date de ieşire pentru datele de intrare din **)

- □ Proiectare → Alegerea unui algoritm de învăţare → Tipuri de algoritmi după metodologia de învăţare automată
 - Învăţare supervizată
 - Învățare nesupervizată
 - Învăţare prin întărire
 - Ex.
 - Caracteristici
 - Predicția unor secvențe de decizii / de acțiuni
 - Sistem de recompense (pentru fiecare decizie / acţiune)
 - Se învață un model de acțiune (o serie de acțiuni care trebuie efectuate)

□ Proiectare → Alegerea unui algoritm de învăţare

- Algoritmul
 - folosind datele de antrenament
 - induce definirea unor ipoteze care
 - să se potirvească cu acestea şi
 - să generalizeze cât mai bine datele ne-văzute (datele de test)
- Principiul de lucru de bază
 - Minimizarea unei erori (funcție de cost loss function) pentru datele de antrenament
 - Eroarea de predicție (cât de departe sunt valorile prezise față de valorile reale)
 - Eroarea de clasificare (câte exemple au fost clasificate corect)
 - Eroarea creării unor structuri (cât de ne-omogene sunt structurile produse)

□ Proiectare → Evaluarea unui sistem de învăţare

- Experimental
 - Compararea diferitelor metode pe diferite date (cross-validare)
 - Colectarea datelor pe baza performanţei
 - Acurateţe, timp antrenare, timp testare
 - Aprecierea diferenţelor dpdv statistic
- Teoretic
 - Analiza matematică a algoritmilor şi demonstrarea de teoreme
 - Complexitatea computaţională
 - Abilitatea de a se potrivi cu datele de antrenament
 - Complexitatea eşantionului relevant pentru o învăţare corectă

□ Proiectare → Evaluarea unui sistem de învăţare

- Compararea performanţelor a 2 algoritmi în rezolvarea unei probleme
 - Indicatori de performanţă
 - Parametrii ai unei serii statistice (ex. media)
 - Proporţie calculată pentru serie statistică (ex. acurateţea)

Comparare pe baza intervalelor de încredere

- Pp o problemă şi 2 algoritmi care o rezolvă
- Performanţele algoritmilor: p₁ şi p₂
- Intervalele de încredere corespunzătoare celor 2 performanțe $I_1 = [p_1 \Delta_1, p_1 + \Delta_1]$ și $I_2 = [p_2 \Delta_2, p_2 + \Delta_2]$
- Dacă $I_1 \cap I_2 = \emptyset$ → algoritmul 1 este mai bun decât algoritmul 2 (pt problema dată)
- Dacă $I_1 \cap I_2 \neq \emptyset$ → nu se poate spune care algoritm este mai bun

Interval de încredere pentru medie

- Pentru o serie statistică de volum n, cu media (calculată) m și dispersia σ să se determine intervalul de încredere al valorii medii μ
- $P(-z \le (m-\mu)/(\sigma/\sqrt{n}) \le z) = 1 a \rightarrow \mu \in [m-z\sigma/\sqrt{n}, m+z\sigma/\sqrt{n}]$
- $P = 95\% \rightarrow z = 1.96$
- Ex. Problema rucsacului rezolvată cu ajutorul algoritmilor evolutivi

Interval de încredere pentru acuratețe

- Pentru o performanţă p (acurateţe) calculată pentru n date să se determine intervalul de încredere
- $P \in [p-z(p(1-p)/n)^{1/2}, p+z(p(1-p)/n)^{1/2}]$
- $P = 95\% \rightarrow z = 1.96$
- Ex. Problemă de clasificare rezolvată cu ajutorul Maşinilor cu suport vectorial

-	_
P=1-α	Z
99.9%	3.3
99.0%	2.577
98.5%	2.43
97.5%	2.243
95.0%	1.96
90.0%	1.645
85.0%	1.439
75.0%	1.151
7 2 1 0 7 0	

□ Proiectare → Alegerea bazei de experienţă

- Bazată pe
 - Experienţă directă
 - Perechi (intrare, ieşire) utile pt. funcţia obiectiv
 - Ex. Jocul de dame → table de joc etichetată cu mutare corectă sau incorectă
 - Experienţă indirectă
 - Feedback util (diferit de perechile I/O) pt funcţia obiectiv
 - Ex. Jocul de dame → secvenţe de mutări şi scorul final asociat jocului

Surse de date

- Exemple generate aleator
 - Exemple pozitive şi negative
- Exemple pozitive colectate de un "învăţător" benevol
- Exemple reale
- Compoziție
 - Date de antrenament
 - Date de test
- Caracteristici
 - Date independente
 - Dacă nu → clasificare colectivă
 - Datele de antrenament şi de test trebuie să urmeze aceeaşi lege de distribuţie
 - Dacă nu → învăţare prin transfer (transfer learning/inductive transfer)
 - recunoaşterea maşinilor → recunoaşterea camioanelor
 - analiza textelor
 - filtre de spam

□ Proiectare → Alegerea bazei de experienţă

- Tipuri de atribute ale datelor
 - □ Cantitative → scară nominală sau raţională
 - Valori continue → greutatea
 - Valori discrete → numărul de computere
 - Valori de tip interval → durata unor evenimente
 - Calitative
 - Nominale → culoarea
 - Ordinale → intensitatea sunetului (joasă, medie, înaltă)
 - Structurate
 - Arbori rădăcina e o generalizare a copiilor (vehicol → maşină, autobus, tractor, camion)
- Transformări asupra datelor
 - Standardizare → atribute numerice
 - Înlăturarea efectelor de scară (scări şi unităţi de măsură diferite)
 - Valorile brute se transformă în scoruri z
 - $Z_{ij} = (x_{ij} \mu_j)/\sigma_j$, unde x_{ij} valoarea atributului al j-lea al instanței i, μ_j (σ_j) este media (abaterea) atributelor j pt. toate instanțele
 - Selectarea anumitor atribute

- Definire
- Exemple
- Proces
- Calitatea învăţării
 - Metode de evaluare
 - Măsuri de performanţă
- Tipologie

Învățare supervizată

- Scop
 - Furnizarea unei ieşiri corecte pentru o nouă intrare

Definire

- Se dă un set de date (exemple, instanţe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_datai, ieşirei), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k − nr de clase) → problemă de clasificare
 - un număr real → problemă de regresie
 - date de test sub forma (atribute_datai), i =1,n (n = nr datelor de test).

Să se determine

- o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
- ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcția învățată pe datele de antrenament

Alte denumiri

Clasificare (regresie), învăţare inductivă

- □ Proces \rightarrow 2 etape
 - Antrenarea
 - Învăţarea, cu ajutorul unui algoritm, a modelului de predicţie
 - Testarea
 - Testarea modelului folosind date de test noi (unseen data)

- Caracteristic
 - BD experimentală adnotată (pt. învăţare)

Învățare supervizată

■ Tip de probleme

- regresie
 - Scop: predicţia output-ului pentru un input nou
 - Output continuu (nr real)
 - Ex.: predicţia ratei şomajului în funcţie de produsul intern brut şi rata inflaţiei
- clasificare
 - Scop: clasificarea (etichetarea) unui nou input
 - Output discret (etichetă dintr-o mulţime predefinită)
 - Ex.: detectarea tumorilor maligne în imagini RMN

Exemple de probleme

- Recunoaşterea scrisului de mână
- Recunoaşterea pietonilor în imagini
- Previziunea vremii
- Detecţia spam-urilor

- Terminologie e.g. Problema predicției consumului de înghețată pe baza temperaturii de afară și a sumei de bani avută la dispoziție
 - Exemplu (example, observation, instance, record)
 - o observație a datelor care trebuie procesate
 - dacă datele de intrare sunt tabelare, un exemplu este asociat cu o linie din tabel
 - format din proprietăți a datelor care trebuie procesate (de intrare și de ieșire)
 - Caracteristică (feature, property, attribute)
 - Proprietate cunoscută a unui exemplu, folosită drept dată de intrare pentru algoritmul de ML (variabilele independente din modelul de predicție)
 - dacă datele de intrare sunt tabelare, un o proprietate are asociate valorile dintr-o coloana a tabelului (pentru toate exemplele)
 - E.g. Temperatura, banii
 - Valoare tintă (target or real value/label, ground-truth)
 - Proprietate a unui exemplu folosită ca variabilă dependentă
 - Cunoscută pentru exemplele de antrenament
 - Ne-cunoscută pentru exemplele de testare
 - E.g. Nr de inghetate
 - Valoare calculată (computed value/label)
 - Proprietate a unui exemplu estimată cu ajutorul algoritmului de ML
 - Se dorește a fi cât mai aproape de valoarea target

Exemplu	Temperatura	Banii	Nr de inghetate
Ex1	30	25	2
Ex2	5	100	0
Ex3	19	55	2
Ex4	35	75	4

- Calitatea învăţării
 - Definire
 - o măsură de performanță a algoritmului de ML
 - ex. acurateţea (Acc = nr de exemple corect clasificate / nr total de exemple)
 - Posibile măsuri:
 - Măsuri statistice
 - Eroarea de predicție
 - acurateţea
 - Precizia
 - Rapelul
 - Scorul F1

Învățare supervizată

- □ Calitatea învăţării → Măsuri de performanţă → Măsuri statistice
 - Eroarea de predicție
 - Suma diferențelor absolute între valorile reale și cele calculate

$$Err = \frac{1}{noSamples} \sum_{i=1}^{noSamples} abs(real_i - computed_i)$$

Suma pătratelor diferențelor între valorile reale și cele calculate

$$Err = \sqrt{\frac{1}{noSamples} \sum_{i=1}^{noSamples} (real_i - computed_i)^2}$$

Învățare supervizată

- □ Calitatea învăţării → Măsuri de performanţă → Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Opusul erorii
 - Calculată pe
 - Setul de validare
 - Setul de test
 - Uneori
 - Analiză de text
 - Detectarea intruşilor într-o reţea
 - Analize financiare

este importantă doar o singură clasă (clasă pozitivă) \rightarrow restul claselor sunt negative

- Precizia (P)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
 - probabilitatea ca un exemplu clasificat pozitiv să fie relevant
 - TP / (TP + FP)
- Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozitiv să fie identificat corect de către clasificator
 - \square TP/ (TP +FN)
 - Matrice de confuzie → rezultate reale vs. rezultate calculat
- Scorul F1
 - Combină precizia şi rapelul, facilitând compararea a 2 algoritmi
 - Media armonică a preciziei şi rapelului
 - \square 2PR/(P+R)

		Rezultate reale	
		Clasa pozitivă	Clasa(ele) negativă(e)
Rezultate calculate	Clasa pozitivă	True positiv (TP)	False positiv (FP)
	Clasa(ele) negativă(e)	False negative (FN)	True negative (TN)

- □ Calitatea învăţării → Măsuri de performanţă → Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Precizia (P)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
 - probabilitatea ca un exemplu clasificat pozitiv să fie relevant
 - \Box TP / (TP + FP)
 - Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozitiv să fie identificat corect de către clasificator
 - □ TP/ (TP +FN)
 - Matrice de confuzie → rezultate reale vs. rezultate calculat
 - Scorul F1
 - Combină precizia şi rapelul, facilitând compararea a 2 algoritmi
 - Media armonică a preciziei şi rapelului
 - □ 2PR/(P+R)

		Rezultate reale	
		Clasa pozitivă	Clasa(ele) negativă(e)
Rezultate calculate	Clasa pozitivă	True positiv (TP)	False positiv (FP)
	Clasa(ele) negativă(e)	False negative (FN)	True negative (TN)

- □ Calitatea învăţării → Măsuri de performanţă → Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Precizia (P)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
 - probabilitatea ca un exemplu clasificat pozitiv să fie relevant
 - TP / (TP + FP)
 - Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozi True positive
 - □ *TP/* (*TP* +*FN*)
 - Matrice de confuzie → rezultate re
 - Scorul F1
 - Combină precizia şi rapelul, facilit a 2 algoritmi
 - Media armonică a preciziei şi rape
 - □ 2PR/(P+R)

		Rezultate reale	
		Clasa pozitivă	Clasa(ele) negativă(e)
Rezultate calculate	Clasa pozitivă	True positiv (TP)	False positiv (FP)
	Clasa(ele) negativă(e)	False negative (FN)	True negative (TN)

- Calitatea învăţării
 - Definire
 - o măsură de performanță a algoritmului
 - ex. acurateţea (Acc = nr de exemple corect clasificate / nr total de exemple)
 - Posibile măsuri:
 - Măsuri statistice
 - acurateţea
 - Precizia
 - Rapelul
 - Scorul F1
 - Eficienţa
 - În construirea modelului
 - în testarea modelului
 - Robusteţea
 - Tratarea zgomotelor şi a valorilor lipsă
 - Scalabilitatea
 - Eficiența gestionării seturilor mari de date
 - Interpretabilitatea
 - Modelului de clasificare
 - Proprietatea modelului de a fi compact
 - Scoruri

Învățare supervizată

- Calitatea învăţării
 - Definire
 - o măsură de performanță a algoritmului
 - ex. acurateţea (Acc = nr de exemple corect clasificate / nr total de exemple)
 - calculată în
 - faza de antrenare
 - faza de testare

Metode de evaluare

- Seturi disjuncte de antrenare şi testare
 - setul de antrenare poate fi împărțit în date de învățare și date de validare
 - setul de antrenare este folosit pentru estimarea parametrilor modelului (cei mai buni parametri obţinuţi pe validare vor fi folosiţi pentru construcţia modelului final)
 - pentru date numeroase
- Validare încrucişată cu mai multe (h) sub-seturi egale ale datelor (de antrenament)
 - separararea datelor de h ori în (h-1 sub-seturi pentru învățare și 1 sub-set pt validare)
 - dimensiunea unui sub-set = dimensiunea setului / h
 - performanţa este dată de media pe cele h rulări (ex. h = 5 sau h = 10)
 - pentru date puţine
- Leave-one-out cross-validation
 - similar validării încrucişate, dar h = nr de date → un sub-set conţine un singur exemplu
 - pentru date foarte puţine
- Dificultăți
 - □ Învăţare pe derost (overfitting) → performanţă bună pe datele de antrenament, dar foarte slabă pe datele de test

- □ Învăţare ne-supervizată
 - Definire
 - Exemple
 - Proces
 - Metode de evaluare şi măsuri de performanţă
 - Tipologie

- Scop
 - Găsirea unui model sau a unei structuri utile a datelor
 - Împărţirea unor exemple neetichetate în submulţimi disjuncte (clusteri) astfel încât:
 - exemplele din acelaşi cluster sunt foarte similare
 - exemplele din clusteri diferiți sunt foarte diferite
- Definire
 - Se dă un set de date (exemple, instanţe, cazuri)
 - Date de antrenament sub forma atribute_data_i, unde
 - i = 1, N (N = nr datelor de antrenament)
 - **atribute_data** $_i$ = (atr_{i1} , atr_{i2} , ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăților) unei date
 - Date de test sub forma ($atribute_data_i$), i = 1, n (n = nr datelor de test)
 - Se determină
 - o funcție (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase
 - Nr de clase poate fi pre-definit (k) sau necunoscut
 - Datele dintr-o clasă sunt asemănătoare
 - clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament
 - Învăţare supervizată vs. învăţare ne-supervizată

- Distanţe între 2 elemente p şi q ε Rm
 - Euclideana \rightarrow d(p,q)=sqrt($\Sigma j=1,2,...,m(pj-qj)2$)
 - Manhattan \rightarrow d(p,q)= Σ j=1,2,...,m|pj-qj|
 - Mahalanobis \rightarrow d(p,q)=sqrt(p-q)S-1(p-q)), unde S este matricea de variație și covariație (S= E[(p-E[p])(q-E[q])])
 - □ Produsul intern \rightarrow d(p,q)= Σ j=1,2,...,mpjqj
 - □ Cosine \rightarrow d(p,q)= Σ j=1,2,...,mpjqj / (sqrt(Σ j=1,2,...,mpj2) * sqrt(Σ j=1,2,...,mqj2))
 - □ Hamming → numărul de diferenţe între p şi q
 - □ Levenshtein → numărul minim de operaţii necesare pentru a-l transforma pe p în q
- Distanţă vs. Similaritate
 - Distanţa → min
 - □ Similaritatea → max

- Alte denumiri
 - Clustering
- Procesul → 2 paşi
 - Antrenarea → Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi
 - Testarea → Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament
- Caracteristic
 - Datele nu sunt adnotate (etichetate)
- Tip de probleme
 - Identificara unor grupuri (clusteri)
 - Analiza genelor
 - Procesarea imaginilor
 - Analiza reţelelor sociale
 - Segmentarea pieţei
 - Analiza datelor astronomice
 - Clusteri de calculatoare
 - Reducerea dimensiunii
 - Identificarea unor cauze (explicaţii) ale datelor
 - Modelarea densităţii datelor
- Exemple de probleme
 - Gruparea genelor
 - Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei)
 - news.google.com

- Calitatea învăţării (validarea clusterizări):
 - Criterii interne → Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri
 - Distanţa în interiorul clusterului
 - Distanţa între clusteri
 - Indexul Davies-Bouldin
 - Indexul Dunn
 - Criteri externe → Folosirea unor benchmark-uri formate din date pregrupate
 - Compararea cu date cunoscute în practică este imposibil
 - Precizia
 - Rapelul
 - F-measure

- Calitatea învăţării > Criterii interne
 - Distanța în interiorul clusterului c_i care conține n_i instanțe
 - Distanța medie între instanțe (average distance) $D_a(c_i) = \sum_{x_i, x_i \ge c_i} ||x_{i1} x_{i2}|| / (n_i(n_i-1))$
 - Distanţa între cei mai apropiaţi vecini $D_{nn}(c_j) = \sum_{xi1ecj} min_{xi2ecj} ||x_{i1} x_{i2}|| / n_j$
 - Distanța între centroizi $D_c(c_j) = \sum_{x_i, \epsilon c_j} ||x_i \mu_j|| / n_j$, unde $\mu_j = 1 / n_j \sum_{x_i \epsilon c_j} x_i$
 - Distanţa între 2 clusteri c_{j1} şi c_{j2}
 - Legătură simplă $d_s(c_{j1}, c_{j2}) = \min_{xi1ecj1, xi2ecj2} \{||x_{i1} x_{i2}||\}$
 - Legătură completă $d_{co}(c_{j1}, c_{j2}) = \max_{x_{i1} \in c_{j1}, x_{i2} \in c_{j2}} \{||x_{i1} x_{i2}||\}$
 - □ Legătură medie $d_a(c_{j1}, c_{j2}) = \sum_{x_{i1} \in c_{j1}, x_{i2} \in c_{j2}} \{||x_{i1} x_{i2}||\} / (n_{j1} * n_{j2})$
 - Legătură între centroizi $d_{ce}(c_{j1}, c_{j2}) = ||\mu_{j1} \mu_{j2}||$
 - Indexul Davies-Bouldin → min → clusteri compacţi
 - □ $DB = 1/nc*\sum_{i=1,2,...,nc} max_{j=1,2,...,nc,j\neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_j))$, unde:
 - nc numărul de clusteri
 - μ_i centroidul clusterului i
 - σ_i media distanțelor între elementele din clusterul i și centroidul μ_i
 - $d(\mu_i, \mu_j)$ distanța între centroidul μ_i și centroidul μ_j
 - Indexul Dunn
 - Identifică clusterii denşi şi bine separaţi
 - $D=d_{min}/d_{max}$ unde:
 - d_{min} distanța minimă între 2 obiecte din clusteri diferiți distanța intra-cluster
 - d_{max} distanța maximă între 2 obiecte din același cluster distanța inter-cluster

- Tipologie
 - După modul de formare al clusterilor
 - Ierarhic
 - se crează un arbore taxonomic (dendogramă)
 - crearea clusterilor → recursiv
 - nu se cunoaște k (nr de clusteri)
 - aglomerativ (de jos în sus) → clusteri mici spre clusteri mari
 - diviziv (de sus în jos) → clusteri mari spre clusteri mici
 - Ex. Clustering ierarhic aglomrativ
 - Ne-ierarhic
 - Partiţional → se determină o împărţire a datelor → toţi clusterii deodată
 - Optimizează o funcție obiectiv definită local (doar pe anumite atribute) sau global (pe toate atributele) care poate fi:
 - Pătratul erorii suma patratelor distanțelor între date şi centroizii clusterilor → min (ex. K-means)
 - Bazată pe grafuri (ex. Clusterizare bazată pe arborele minim de acoperire)
 - Pe modele probabilistice (ex. Identificarea distribuţiei datelor → Maximizarea aşteptărilor)
 - Pe cel mai apropiat vecin
 - Necesită fixarea apriori a lui k → fixarea clusterilor iniţiali
 - · Algoritmii se rulează de mai multe ori cu diferiți parametri și se alege versiunea cea mai eficientă
 - Ex. K-means, ACO
 - bazat pe densitatea datelor
 - Densitatea şi conectivitatea datelor
 - Formarea clusterilor de bazează pe densitatea datelor într-o anumită regiune
 - Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune
 - Funcţia de densitate a datelor
 - Se încearcă modelarea legii de distribuţie a datelor
 - Avantaj:
 - Modelarea unor clusteri de orice formă
 - Bazat pe un grid
 - Nu e chiar o metodă nouă de lucru
 - Poate fi ierarhic, partițional sau bazat pe densitate
 - Pp segmentarea spaţiului de date în zone regulate
 - Obiectele se plasează pe un grid multi-dimensional
 - Ex. ACO

- Tipologie
 - După modul de lucru al algoritmului
 - Aglomerativ
 - 1. Fiecare instanță formează inițial un cluster
 - 2. Se calculează distanțele între oricare 2 clusteri
 - Se reunesc cei mai apropiaţi 2 clusteri
 - 4. Se repetă paşii 2 şi 3 până se ajunge la un singur cluster sau la un alt criteriu de stop
 - Diviziv
 - 1. Se stabileşte numărul de clusteri (k)
 - 2. Se iniţializează centrii fiecărui cluster
 - 3. Se determină o împărţire a datelor
 - 4. Se recalculează centrii clusterilor
 - 5. Se reptă pasul 3 și 4 până partiționarea nu se mai schimbă (algoritmul a convers)
 - După atributele considerate
 - Monotetic atributele se consideră pe rând
 - Politetic atributele se consideră simultan
 - După tipul de apartenenţă al datelor la clusteri
 - Clustering exact (hard clustering)
 - Asociază fiecarei intrări x_i o etichetă (clasă) c_i
 - Clustering fuzzy
 - Asociază fiecarei intrări x_i un grad (probabilitate) de apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță x_i poate aparține mai multor clusteri

Tipologie

- În funcție de experiența acumulată în timpul învățării
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcţie de modelul învăţat (algoritmul de învăţare)
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Algoritmi evolutivi
 - Maşini cu suport vectorial
 - Modele Markov ascunse

□ Învăţare activă

- Algoritmul de învăţare poate primi informaţii suplimentare în timpul învăţării pentru a-şi îmbunătăţi performanţa
 - Ex. pe care din datele de antrenament este mai uşor să se înveţe modelul de decizie

Tipologie

- În funcție de experiența acumulată în timpul învățării
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcţie de modelul învăţat (algoritmul de învăţare)
 - Metoda celor mai mici pătrate
 - Metoda gradient descent
 - Algoritmi evolutivi
 - Logisitc regression
 - kNN
 - Arbori de decizie
 - Maşini cu suport vectorial
 - Reţele neuronale artificiale
 - Programare genetică
 - Modele Markov ascunse

Recapitulare

□ Sisteme care învață singure (SIS)

- Instruire (învăţare) automata (Machine Learning ML)
 - Învăţare supervizată → datele de antrenament sunt deja etichetate cu elemente din E, iar datele de test trebuie etichetate cu una dintre etichetele din E pe baza unui model (învăţat pe datele de antrenament) care face corespondenţa date-etichete
 - Învăţare nesupervizată → datele de antrenament NU sunt etichetate, trebuie învăţat un model de etichetare, iar apoi datele de test trebuie etichetate cu una dintre etichetele identificate de model

Sisteme

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Metoda celor mai mici patrate, Gradient Descent, Logistic regression
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- Capitolul VI (19) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 8 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 12 și 13 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- Capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- Capitolul 4 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop