§ 2 样本空间

- 1 313
- § 2 样本空间 (sample space) § 3 概率测度
- 概率计算:计数方法
- 5条件概率
- 6 独立性

随机试验与粹本空间

試验 科学实验 或者对某一事物的某一特征进行观察

 \bowtie E_1 : 抛一枚硬币, 观察正面H, 反面T 出现的情况

 E_2 :将一枚硬币连抛三次,观察正面 H出现的次数

 E_3 : 掷一颗骰子,观察出现的点数

 E_4 :从一批产品中抽取n件,观察次品出现的数量

 $E_5:$ 对某厂生产的电子产品进行寿命测试

 E_6 :观察某地区的日平均气温和日平均降水量

试验前无法预知结果

随机试验与释本空间

試验 科学实验 或者对某一事物的某一特征进行观察

试验的特征

- ●试验可以在相同的条件下重复进行
- 试验的结果可能不止一个,但试验前知道所有可能的全部结果
 - ●在每次试验前无法确定会出现哪个结果 具有上述特征的试验称为随机试验,简称试验.
 - 侧 E:掷一颗骰子, 观察出现的点数.

分析 E的结果

"1点"、"2点"、...、 出现的点数不超过3 至少出现4点

复合结果(可分解)

简单结果(不可分) 也称"基本结果"

"6点"

随机试验与释本空间

试验 { 基本结果 (不可分) — 称为 **样本点、基本事件** 复合结果 (可分解)

定义 称试验的全部样本点构成的集合为样本空间.

树 掷一颗骰子,观察出现的点数,其样本空间为

 $\Omega = \{1, 2, 3, 4, 5, 6\}$ **离散样本空间** 抛两枚硬币,观察正、反两面出现的情况,此样木

空间为

 $\Omega = \{ (反, 反), (反, \mathbb{E}), (\mathbb{E}, \wp), (\mathbb{E}, \mathbb{E}) \}$

刨 记录深圳地区的日平均气温,其样本空间为

描象的点集 \longrightarrow $\Omega = (-60, 60) \longleftarrow$ 连续样本空间

刨 飞机对位置为 (x_0,y_0) 的目标投掷一枚炸弹,观察 其弹着点(太y),其样本空间为

$$\Omega = \{(x, y) \mid (x - x_0)^2 + (y - y_0)^2 < +\infty\}$$

随机试验与样本空间

试验 { 基本结果 (不可分) — 称为 **样本点、基本事件** 复合结果 (可分解) — 称为 **随机事件 简称 事件**

从 集 合 看 事件是样本空间的子集 事件 从 试验 看事件的复合

随机事件

定义 满足一定条件的样本点的集合称为随机事件,简称为事件,事件用大写字母A、B、C、...表示.

例 掷一颗骰子,观察出现的点数,其样本空间为 $\Omega = \{1, 2, 3, 4, 5, 6\}$

事件A:"至少出现3点",则A={3, 4, 5, 6}⊂Ω

B:"出现最小或最大的点",则 $B = \{1, 6\}$

C:"出现较大的点",则C= 模糊数学研究的内容

几个特殊事件

基本事件 一个样本点构成的单点集 $\{\omega\}$ 必然事件 每次试验都总发生的事件 $\Omega \subset \Omega$ 不可能事件 每次试验都不会发生的事件 Φ (空集 $\Phi \subset \Omega$)

记

$$\mathcal{A} = \{A \mid A \subset \Omega, A \in \mathbb{A}\}$$

称 A为试验的事件域,即试验产生的所有事件为元素构成的集合.

事件间的关系与运算

设 $A, B, A_k (k = 1, 2, \cdots)$ 为事件

特别有 $A = B \iff A \subset B, B \subset A$

② $A \cup B = \{\omega \mid \omega \in A.\text{or.} \omega \in B\} \longleftrightarrow A$ 发生或 B 发生即 A,B至少有一个发生, 称为事件 A,B的和.

 \mathcal{O} $A \cap B = \{\omega \mid \omega \in A, \omega \in B\} \longleftrightarrow A, B$ 同时发生 称为事件 A, B的 积.

类似地可定义 n 个事件及可列个事件的积

$$\bigcap_{i=1}^{n} A_i = \{ \omega \mid \omega \in A_i, i = 1, 2, \dots, n \}$$

$$\bigcap_{i=1}^{\infty} A_i = \{ \omega \mid \omega \in A_i, i = 1, 2, \dots \}$$

 $\bigcirc A - B = \{\omega \mid \omega \in A, \omega \notin B\} \longleftrightarrow A 发生 B 不发生 称为事件A,B的差. 若A⊃B,则称 A-B为真差.$

⑤ 若 $A \cap B = \Phi$,则称 A, B 互不相容(互斥).

A,B 不能同时发生

⑥ 若 $A \cup B = \Omega$ 且 $A \cap B = \Phi$,则称 A, B 互为逆事件 或称为对立事件,记为

$$A = \Omega - B = \overline{B} = B^{c}$$

$$B = \Omega - A = \overline{A} = A^{c}$$

符号	集合含义	事件含义
Ω	全集	样本空间,必然事件
Φ	空集	不可能事件
$\omega \in \Omega$	集合的元素	样本点
$\{ \ \omega \ \}$	单点集	基本事件
$A \subseteq \Omega$	一个集合	一个事件
$A \subseteq B$	A的元素在 B 中	A发生导致 B 发生
A=B	集合A与B相等	事件A与B相等
$A \cup B$	A与 B 的所有元素	A与 B 至少有一个发生
$A \cap B$	A与 B 的共同元素	A与 B 同时发生
$ar{A}$ (或 A^c)	A的补集	A的对立事件
A- B	在 A 中而不在 B 中的元素	A发生而 B 不发生
$A \cap B = \emptyset$	A与 B 无公共元素	A与 B 互斥

事件的运算定律

$$\Sigma$$

第音律
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

分配律
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$\underline{\overline{A \cup B}} = \overline{A} \cap \overline{B}, \ \underline{\overline{A \cap B}} = \overline{A} \cup \overline{B}$$

$$\underline{\bigcup_{k=1}^{n} B_{k}} = \bigcap_{k=1}^{n} \overline{B}_{k}, \ \underline{\bigcap_{k=1}^{n} B_{k}} = \bigcup_{k=1}^{n} \overline{B}_{k}$$

分配律图 示

$A \cup (BC) =$

$(A \cup B)(A \cup C)$

AU(BAC) =(AUB)A(AUC)

注:可列 (countable)

- 可列集:
 - 是指一个无穷集S,其元素可与自然数形成一一对应,因此可表为 $S=\{s_1,s_2,...\}$
- 至多可列:
 - 指可列或有限
- 可以证明:
 - 可列是"最小的"无穷,即任何一个无穷集合 均含有可列子集

课后作业

P20: 5, 6