Essential Stability Theory

Steven Buechler

December 11, 2021

Contents

1	Preliminaries and Notations		1
2	2.1	Astructing Models with Special Properties Prime and Atomic Models	
1	Pr	eliminaries and Notations	

Exercise 1.0.1. Let \mathcal{M} be a finite model in a language L. Show that

$$\mathcal{N} \equiv \mathcal{M} \Rightarrow \mathcal{N} \cong \mathcal{M}$$

2 Constructing Models with Special Properties

2.1 Prime and Atomic Models

Proposition 2.1. *T complete countable theory*

- 1. A countable $\mathcal{M} \models T$ is prime iff \mathcal{M} is atomic
- 2. If \mathcal{M} and \mathcal{N} are both countable atomic models of T, then $\mathcal{M} \cong \mathcal{N}$

Then our question is: does every complete theory have a prime model, or can we find a meaningful characterization of those which do?

Example 2.1 (A countable complete theory with no atomic model). Let $L = \{P_i : i < \omega\}$ where each P_i is a unary relation symbol. Let $X = 2^{<\omega}$. The theory T is defined so that for any model $\mathcal{M} \models T$ and $s \in X$, the intersection

of the family of sets $\{P_i(\mathcal{M}): s(i)=0\} \cup \{M \setminus P_i(\mathcal{M}): s(i)=1\}$ is nonempty. Let $P_i^0(v)$ denote the formula $P_i(v)$, and $P_i^1(v)$ the formula $\neg P_i(v)$.

For $s \in X$, let $\varphi_s(v) := \bigwedge_{i < lh(s)} P_i^{s(i)}(v)$ where lh is the length function, $\sigma_s := \exists v \varphi_s(v)$ and $T = \{\sigma_s : s \in X\}$. T is a complete quantifier-eliminable theory.

Thus, if $\mathcal{M} \vDash T$ and $a \in M$, $\operatorname{tp}(a)$ is implied by $\{P_i^j(v) : \mathcal{M} \vDash P_i^j(a), i < \omega, j = 0, 1\}$. We claim that every complete 1-type in T is nonisolated. If, to the contrary, p is an isolated 1-type, then by the characterization of types just mentioned p is isolated by some $\varphi_s \in p$. However, if j = lh(s), both $\exists v(\varphi_s(v) \land P_j(v))$ and $\exists v(\varphi_s(v) \land \neg P_j(v))$ are in T, proving that φ_s does not isolate a complete type in T. Since T has no isolated 1-types over \emptyset , no model of T can be atomic

Proposition 2.2. Let T be a countable complete theory. Then T has a countable atomic model iff the isolated types of T are dense

Lemma 2.3. If T is a complete theory with $|S(\emptyset)| < 2^{\aleph_0}$ then the isolated types of T are dense

Thus, for a countable complete theory, having fewer than continuum many complete types is sufficient to guarantee the existence of a prime model.

But this condition is not necessary. Consider $\operatorname{Th}(\mathbb{Z},+,1)$. $|S_1(\emptyset)|=2^{\aleph_0}$. However, since every element of the model $(\mathbb{Z},+,1)$ interprets a term of the language, it is an elementary submodel of any model of T

Remark. An algebraic formula is contained in only finitely many complete types in T, each of which is isolated

Proof.
$$\varphi$$
 algebraic and $\varphi \in p$. Then $p(\mathcal{M})$ is finite $p=q \Leftrightarrow p(\mathcal{M})=q(\mathcal{M})$

If $\mathcal M$ is a model and $A\subset M$, $\mathcal M$ is called a **prime model over** A if $\mathcal M_A$ is a prime model over $\mathrm{Th}(\mathcal M_A)$. Note that $\mathcal N \vDash \mathrm{Th}(\mathcal M_A)$ iff $\mathcal N \equiv \mathcal M$ and there is a elementary map $f:A\to \mathcal N$

Exercise 2.1.1. Let T be a complete theory and φ a formula in n variables which is contained in only finitely many complete n-types of T. Show that every complete n-types containing φ is isolated

Proof. If there are p_1,\ldots,p_n , then there is ϕ_1,\ldots,ϕ_n s.t. for any $\varphi\in q$, $\phi_i\in q\Leftrightarrow q=p_i$. Thus $[\phi_i]=\{p_i\}$. Thus for any φ , either $[\phi_i\wedge\varphi]$ or $[\phi_i\vee\neg\varphi]$ is empty. Hence ϕ_i is complete

Exercise 2.1.2. Suppose \bar{a} and \bar{b} are sequences from a model $\mathcal M$ which have the same complete types in $\mathcal M$ and $\varphi(v,\bar{a})$ isolates a complete type over \bar{a} . Show that $\varphi(v,\bar{b})$ isolates a complete type over \bar{b}			
<i>Proof.</i> If $\varphi(v,\bar{a})$ isolates $p(v)=\{\varphi(v,\bar{a})\}$. First, $q(v)=\{\varphi(v,\bar{b})\}$ is a complete type of			
type. Then $\varphi(v,\bar{b})$ isolates it			
<i>Exercise</i> 2.1.3. Suppose that \bar{a} and \bar{b} be finite sequences from the universe of the model \mathcal{M} . Prove that $\operatorname{tp}_{\mathcal{M}}(\bar{a}\bar{b})$ is isolated iff $\operatorname{tp}_{\mathcal{M}}(\bar{a}/\bar{b})$ and $\operatorname{tp}(\bar{b})$ are both isolated. Using this fact show that when \mathcal{M} is an atomic model and \bar{a} is a finite sequence from M , then \mathcal{M} is atomic over \bar{a} . Conversely, if \mathcal{M} is atomic over \bar{a} and $\operatorname{tp}_{\mathcal{M}}(\bar{a})$ is isolated, then \mathcal{M} is atomic			
<i>Proof.</i> If $\varphi(\bar{x},\bar{y})$ isolates $\operatorname{tp}_{\mathcal{M}}(\bar{a}\bar{b})$, then $\varphi(\bar{x},\bar{b})$ isolates $\operatorname{tp}_{\mathcal{M}}(\bar{a}/\bar{b})$ and $\exists \bar{x} \varphi(\bar{x},\bar{y})$ isolates $\operatorname{tp}_{\mathcal{M}}(\bar{b})$ If $\varphi(\bar{x},\bar{b})$ isolates $\operatorname{tp}_{\mathcal{M}}(\bar{a}/\bar{b})$ and $\psi(\bar{y})$ isolates $\operatorname{tp}(\bar{b})$. Then $\psi(\bar{y}) \wedge \varphi(\bar{x},\bar{y})$ isolates $\operatorname{tp}(\bar{a}\bar{b})$.			
For any $\theta(\bar{x}, \bar{y}) \in \operatorname{tp}(\bar{a}\bar{b})$. $\mathcal{M} \models \forall \bar{x}(\varphi(\bar{x}, \bar{b}) \rightarrow \theta(\bar{x}, \bar{b}))$. Hence $\mathcal{M} \models \forall \bar{y}(\psi(\bar{y}) \rightarrow \forall \bar{x}(\varphi(\bar{x}, \bar{y}) \rightarrow \theta(\bar{x}, \bar{y})))$			
<i>Exercise</i> 2.1.4. Show that the complete type realized by 1 in $(\mathbb{Z},+)$ is non-isolated			
<i>Proof.</i> $tp(1/2)$ is isolated by $x + x = 2$.			
<i>Exercise</i> 2.1.5. Show that $\mathrm{Th}(\mathbb{Z},+e)$ has continuum many complete 1-types over \emptyset			
<i>Exercise</i> 2.1.6. Given an example of a model $\mathcal M$ containing an element a which is the only realization of $\operatorname{tp}_{\mathcal M}(a)$ in $\mathcal M$, although this type is not even isolated			
<i>Proof.</i> Not isolated means there is no minimum element under \subseteq in $\{\varphi(\mathcal{M}): \varphi \in tp(a)\}$			
<i>Exercise</i> 2.1.7. Let $\mathcal M$ be a model s.t. the type in $\mathcal M$ of each tuple from M is algebraic. Prove that $\mathcal M$ is a prime and minimal model of its theory			
Proof.			

2.2 Saturated and Homogeneous Models

Proposition 2.4. A countable complete theory T has a saturated countable model iff it is small

Let T be a countable complete theory. We proved that T has a countable atomic model when $|S(\emptyset)| < 2^{\aleph_0}$ and T has a countable saturated model when when $S(\emptyset)$ is countable. It is natural to ask if there is a countable complete theory with $|S(\emptyset)|$ strictly between \aleph_0 and 2^{\aleph_0}

The Cantor-Bendixson Theorem from point-set topology quickly gives a negative answer: $S_n(\emptyset)$ is strictly between \aleph_0 and 2^{\aleph_0}

First, we prove Cantor-Bendixson theorem first from here

Definition 2.5. $a \in X$ is **isolatd in** X iff $\{a\}$ is open. Otherwise a is a limit point

Definition 2.6. *X* is a **perfect set** iff *X* is closed and has no isolated points

Cantor set is perfect since each point of it is a limit point

Lemma 2.7. If P is a perfect set and I is an open interval on \mathbb{R} s.t. $I \cap P \neq \emptyset$, then there exist disjoint closed intervals $J_0, J_1 \subset I$ s.t. $int(J_0) \cap P \neq \emptyset$ and $int(J_1) \cap P \neq \emptyset$. Moreover, we can pick J_0 and J_1 s.t. their lengths are both less than any $\epsilon > 0$

Proof. Since P has no isolated points, there must be at least two points $a_0, a_1 \in I \cap P$. Then pick $J_0 \ni a_0$ and $J_1 \ni a_1$ to be small enough

Lemma 2.8. If P is a nonempty perfect set, then $|P| = \mathfrak{c}$

Proof. We exhibit a one-to-one mapping $G: 2^{\omega} \to P$ We build a binary tree. For each $s \in 2^{<\omega}$, we associate an interval I_s s.t.

- I_s is closed
- $I_s \cap P \neq \emptyset$
- $I_{s,b} \subset I_s$
- $I_{s,0} \cap I_{s,1} = \emptyset$
- $|I_s| < 1/(|s|+1)$

where |I| denotes the length of interval I and |s| denotes the length of sequence s

Let $\langle \rangle$ denotes the emptyset sequence, let $I_{\langle \rangle}$ be the closure of $I \cap P$ for some open interval I with length at most 1 whose intersection with P is nonempty. Then by 2.7 choose appropriate $I_{s,0}$ and $I_{s,1}$

Now for all $f \in 2^{\omega}$, define

$$G(f)=\bigcap_{i\in\omega}I_{f\upharpoonright i}$$

If we pick elements from each $I_{f \upharpoonright i}$, then G(f) is their limit, which is contained in P since P is closed

Suppose
$$f, f' \in 2^{\omega}$$
 and $f \neq f'$. Let $n \in \omega$ be the smallest index s.t. $f(n) \neq f'(n)$. Then $I_{f \upharpoonright n} \cap I_{f' \upharpoonright n} = \emptyset$

Theorem 2.9 (Cantor-Bendixson). *If* $C \subseteq \mathbb{R}$ *is closed and uncountable, then there exists some perfect, nonempty* $P \subseteq C$.

Proof. Let $C \subseteq \mathbb{R}$ be closed. Define the **Cantor-Bendixson derivative**

$$C' = \{a \in C \mid a \text{ is a limit point of } C\}$$

This operation maps closed sets to closed sets, since closed sets in \mathbb{R} are those which contain all their limit points, and the derivative is monotone and retains all limit points. Then define

$$\begin{split} C_0 &= C \\ C_{\alpha+1} &= (C_\alpha)' \\ C_\lambda' &= \bigcap_{\beta < \lambda} C_\beta \end{split}$$

Note that C_{β} is closed for all β by induction

Claim: $C_{\gamma} = C_{\gamma+1}$ for some γ . For if not, $C_{\alpha} \neq C_{\beta}$ for any $\alpha \neq \beta$, since C is monotone, then C_{-} would be an injection $Ord \to \mathcal{P}(C)$, which is absurd

Note that C_{γ} is perfect, since it consists solely of limit points and is closed. If $C_{\gamma} \neq \emptyset$, we are done

We claim that C_{γ} cannot be \emptyset since this would imply that C is countable. Consider $C_{\beta}-C_{\beta+1}$, which contains all the isolated points in C_{β} . That is, if $a\in C_{\beta}-C_{\beta+1}$, there exists an open interval $I_a\ni a$ s.t. $C_{\beta}\cap I_a=\{a\}$. In particular, we may choose I_a to be an open interval with rational endpoints

Note that I_a is distinct; otherwise, at the earliest stage when I_a arose, it would have contained more than one point. Therefore we have an injection from C into the set of intervals with rational endpoints, which is countable

Remark. The above proof shows that every closed set can be decomposed into a perfect subset and a countable subset.

Definition 2.10. The smallest γ in the above proof for which $C_{\gamma}=C_{\gamma+1}$ is called the **Cantor-Bendixson rank** of C, and the above proofs shows that $\gamma<\aleph_1$

It can be shown that for every $\gamma<\aleph_1$, there exists a closed $C\subseteq\mathbb{R}$ with Cantor-Bendixson rank γ

Lemma 2.11. There are 2^{\aleph_0} perfect sets

Proof. There is an injection from $\mathcal{P}(\mathbb{N})$ to the set of all perfect sets: for each set of naturals, identify each natural with a small closed interval containing it, and take the union. There are at most 2^{\aleph_0} perfect sets since there are 2^{\aleph_0} closed sets

Theorem 2.12. There exists a set X with $|X| = 2^{\aleph_0} = |\mathbb{R} - X|$ s.t. for every perfect set $P, P \nsubseteq X$ and $P \nsubseteq \mathbb{R} - X$

Proof. Let $(P_\alpha: \alpha < 2^{\aleph_0})$ be an enumeration of the perfects sets. Also let x_α be an enumeration of $\mathbb R$. Now define r_γ

Now we come back to book

Definition 2.13. Let T be a complete theory. φ a formula in n variables

- 1. $CB(\varphi) = -1$ if φ is inconsistent
- 2. Let $\Psi_{\alpha} = \{\psi : CB(\psi) = \beta < \alpha\}$ $CB(\varphi) = \alpha \text{ if } \{p \in S_n(\emptyset) : \varphi \in p \land \forall \psi \in \Psi_{\alpha}(\neg \psi \in p)\} \text{ is nonempty and finite}$

For $p \in S_n(T)$, CB(p) is

$$\inf\{CB(\varphi): p \vDash \varphi\}$$

When $CB(p)=\alpha$ we say that the **Cantor-Bendixson rank** of p is α . If there is no such α , $CB(p)=\infty$ and say that the Cantor-Bendixson rank of p does not exist