QCTRANSPILATION

Quantum Circuit Transpilation: Experimental Analysis and Subarchitecture Selection

Zeynep Erdogan
Advisor: Emmanouil Giortamis, Francisco Romão
Chair of Computer Systems
https://dse.in.tum.de/

Quantum Computing

- Enable simultaneous tests in multidimensional spaces.
 - Optimization in logistics, finance; challenges in cryptography; healthcare breakthroughs.
- Qubits: Represent information in quantum computers; susceptible to errors.
- Superposition: Qubits exist in multiple states simultaneously.
- Entanglement: Correlation between qubits regardless of distance.
- Quantum Operations

Noisy Intermediate-Scale Quantum (NISQ) Computers

- Up to 1000 Physical Qubits
- Limited Connectivity
- Errors Due To Their Noisy Nature

IBM Kolkata

IBM Torino

Quantum Circuit Transpilation

- Initialization Stage, Mapping Stage, Routing Stage, Translation Stage, Optimization Stage, Scheduling Stage

State-of-the-art

- Many papers on Qubit Mapping and Routing Problem specially within last 5 years
- No surveys doing experimental analysis
- No fidelity-based subarchitecture selection

Analysis of Qiskit's Transpiler

Average Runtime vs Circuit Size

Qiskit's Transpilation Process Breakdown

 Focusing on Mapping and Routing Stages as it takes the most time (SabreLayout)

Qubit Mapping and Routing Algorithms

- Constrained-Based Approaches
 - Common Constraints
 - Mapping Constraints
 - Unique Assignment of Logical to Physical Qubits
 - Adjacency Requirement for Two-Qubit Gates
 - Routing Constraints
 - Preservation of Gate Execution Order
 - Use of SWAP Gates for Non-Adjacent Qubits
 - Considerate Insertion of SWAP Gates
 - Objective
 - Reducing the number of SWAP operations
 - Satisfiability Modulo Theories (SMT)
 - **OLSQ2:** optimal, uses <u>Z3 Solver</u>
 - TB-OLSQ2: near-optimal, transition-based
 - Maximum Satisfiability (MAXSAT)
 - **SATMap:** near-optimal, uses <u>MAXSAT Solver</u>
 - Binary Integer Program (BIP)
 - optimal, uses <u>IBM CPLEX</u>

Qubit Mapping and Routing Algorithms

Heuristic Approaches

- Implemented In Qiskit
 - SABRE
 - Utilizes bidirectional search for efficient quantum circuit mapping.
 - Tailored heuristics minimize SWAP gates, reducing circuit complexity.

Noise-Adaptive

- Utilizes real-time calibration data for optimized qubit mappings and gate schedules.
- Prioritizes reliability by minimizing qubit movement and placing qubits in low-error-rate locations.
- Dense
- Trivial

Others

- Time Optimal Qubit Mapping (TOQM)
 - Utilizes a heuristic function to minimize circuit execution time instead of number of swap gates.
- QMAP
 - Utilizes layer-based partitioning to meet CNOT-constraints and minimize remapping frequency.
 - A*-search algorithm, guided by heuristics, minimizes additional operations by keeping mappings close between layers.

Benchmark Circuits, formatted as <Circuit_name, Circuit_size*>

^{*}Circuit_size refers to total number of qubit gates.

- QMap is way faster than SABRE in terms of transpilation time but It adds ~15x more swap gates in smaller circuits.
- Only in one circuit named alu-bdd_288, TB-OLSQ2 adds two less swap gates then SABRE and in one circuit named alu-v4_37 SABRE adds one less swap gate then TB-OLSQ2.

- QMAP adds ~1.5x more swap gates than SABRE in average

Transpilation with a Subarchitecture

- Identify sub-architecture.
- Calculate fidelity scores for each subarchitecture based on backend's qubit coupling graph.
- Higher score indicates higher fidelity, considering qubit and link errors.
- Choose sub-architecture closest in qubit count with highest fidelity for a given quantum circuit.
- Evaluate effectiveness using SABRE and Satmap layout algorithms.

Subarchitecture Evaluation for SABRE

- For a heuristic approach SABRE:

- Using subarchitecture is 1.25x faster than using the full architecture on average
- almost maintain the quality of circuits with only %3 increase in added swap gates on average

Subarchitecture Evaluation for SATMap

- For a constraint-based approach SATMap:
 - using subarchitecture improves runtime 10x in average
 - subarchitectures maintains circuit quality

Summary

- Transpilation is costly, takes ~25 min to transpile a circuit with 60 qubits and 1000 depth
- Comparison of Quantum Mapping and Routing Algorithms:
 - Between constraint based methods, TB-OLSQ2 is the fastest and adds the least amount of swap gates.
 - Between heuristic methods, QMAP is the fastest and SABRE adds the least amount of swap gates.
 - Comparing heuristic and constraint based methods, SABRE is 80x faster than TB-OLSQ2 and on average adds same amount of swap gates.
- Transpilation with Subarchitectures:
 - Using subarchitectures improve transpilation runtime for both SABRE and SATMap.
 - Slight increase in swap gates, but overall circuit quality is maintained.
- All experiments' code is at github