Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 2: Curvas y superficies en \mathbb{R}^2 y \mathbb{R}^3 - Funciones

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

1. Graficar las siguientes curvas de \mathbb{R}^2 dadas de forma paramétrica y decidir si son el gráfico de una función de la forma y = f(x).

(a)
$$x = 3 - 4t$$
, $y = 2 - 3t$,

(b)
$$x = 1 - t^2$$
, $y = t - 2, -2 \le t \le 2$,

(c)
$$x = t^2 + t$$
, $y = t^2 - t$, $-2 \le t \le 2$, (d) $x = t^2$, $y = t^3 - 4t$, $-3 \le t \le 3$.

(d)
$$x = t^2$$
, $y = t^3 - 4t$, $-3 \le t \le 3$

2. En cada uno de los siguientes casos, describir de forma paramétrica la circunferencia de radio r y centro p.

(a)
$$r = 2$$
, $p = (0,0)$, (b) $r = 1$, $p = (1,3)$, (c) $r = 3$, $p = (0,2)$.

(b)
$$r = 1, p = (1,3)$$

(c)
$$r = 3, p = (0, 2)$$

3. Graficar la región del plano que consiste en todos los puntos cuyas coordenadas polares verifican las siguientes condiciones.

(a)
$$r > 1$$
,

(b)
$$0 \le r < 2, \ \pi \le \theta \le 3\pi/2,$$
 (c) $\pi/6 \le \theta \le 5\pi/6.$

(c)
$$\pi/6 \le \theta \le 5\pi/6$$
.

4. Graficar las curvas dadas por las siguientes ecuaciones en coordenadas polares.

(a)
$$r = -2\sin(\theta)$$
,

(a)
$$r = -2\sin(\theta)$$
, (b) $r = 1 - \cos(\theta)$.

(a) Graficar las siguientes curvas de \mathbb{R}^2 .

i.
$$x^2 + y^2 = 4$$
,

ii.
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

i.
$$x^2 + y^2 = 4$$
, ii. $\frac{x^2}{4} + \frac{y^2}{9} = 1$, iii. $\frac{x^2}{4} - \frac{y^2}{9} = 1$,

iv.
$$x = y^2$$
.

(b) Para $a, b \in \mathbb{R}$, dar una descripción geométrica de las siguientes ecuaciones utilizando deslizadores en GeoGebra.

i.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
,

i.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, ii. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, iii. $x = ay^2$.

iii.
$$x = ay^2$$

6. Graficar las siguientes superficies de \mathbb{R}^3 .

(a)
$$y = 2x + 1$$
,

(b)
$$y = x^2$$

(b)
$$y = x^2$$
, (c) $x^2 + y^2 = 1$,

(d)
$$4x^2 + y^2 = 4$$
.

(a) Dibujar las curvas de nivel de z = -1, z = 0, z = 1, x = 0 de las siguientes superficies. Luego utilizando trazas, graficar las superficies en \mathbb{R}^3 .

i.
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$
, ii. $z = x^2 + y^2$, iii. $z = y^2 + 4z^2$,

ii.
$$z = x^2 + y^2$$
,

iii.
$$x = y^2 + 4z^2$$

iv.
$$z^2 = x^2 + y^2$$
, v. $x^2 = y^2 + 4z^2$, vi. $z = x^2 - y^2$,

v.
$$x^2 = y^2 + 4z^2$$

vi.
$$z = x^2 - y^2$$
,

vii.
$$x^2 + y^2 - z^2 = 1$$

vii.
$$x^2 + y^2 - z^2 = 1$$
, viii. $-x^2 - y^2 + z^2 = 1$, ix. $4x^2 + 9y^2 + z = 0$.

ix.
$$4x^2 + 9y^2 + z = 0$$
.

(b) Para $a, b, c \in \mathbb{R}$, dar una descripción geométrica de las siguientes ecuaciones utilizando deslizadores en GeoGebra.

i.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, ii. $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$, iii. $z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

ii.
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
,

iii.
$$z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

iv.
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
,

v.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

iv.
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
, v. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$, vi. $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

- 8. Graficar la región de \mathbb{R}^3 acotada por las superficies $x^2+y^2=1$ y $z=\sqrt{x^2+y^2}$ para $1 \le z \le 2$.
- 9. Hallar el dominio de cada una de las siguientes funciones.

(a)
$$\mathbf{r}(t) = \left(\sqrt{4 - t^2}, 5t + 1, \ln(t + 1)\right),$$
 (b) $\mathbf{r}(t) = \left(4t, \frac{3t}{t - 2}, e^t\right).$

(b)
$$\mathbf{r}(t) = \left(4t, \frac{3t}{t-2}, e^t\right)$$

10. Graficar la curva imagen de las siguientes funciones.

(a)
$$\mathbf{r}(t) = (\cos(t), \sin(t), 1),$$

(b)
$$\mathbf{r}(t) = (t, t^2, t - t^2),$$

(c)
$$\mathbf{r}(t) = (t^2 + t, t^2 - t, (t^2 - t)^2).$$

- 11. Hallar una función $\mathbf{r} \colon I \subset \mathbb{R} \to \mathbb{R}^2$ cuya imagen describa los siguientes conjuntos.
 - (a) el rectángulo de vértices (0,2), (0,-2), (1,2) y (1,-2),
 - (b) el triángulo de vértices (1,0), (-1,0) y (0,1).
- (a) Graficar la curva intersección de las siguientes superficies.

i.
$$x^2 + y^2 = 4$$
 y $z = xy$, ii. $x^2 + y^2 = 1$ y $y + z = 2$,

ii.
$$x^2 + y^2 = 1$$
 y $y + z = 2$

iii.
$$z = \sqrt{x^2 + y^2}$$
 y $z = 1 + y$.

(b) Hallar una función $\mathbf{r} \colon I \subset \mathbb{R} \to \mathbb{R}^3$ cuya imagen describa las curvas graficadas en el item anterior.

13. Sea \mathcal{C} la curva que se obtiene al intersecar las superficies:

$$(x-y)^2 + z^2 = 2$$
 y $z = x + y$.

Dar una parametrización de \mathcal{C} .

14. Graficar el dominio de las siguientes funciones.

(a)
$$f(x,y) = \sqrt{2x - y}$$
,

(b)
$$f(x,y) = \sqrt{x^2 - y^2}$$
,

(c)
$$f(x, y, z) = \ln(1 - x^2 - y^2 - z^2)$$
.

15. Para cada una de las siguientes funciones, calcular dominio, graficar las curvas de nivel y usarlas para graficar la función.

(a)
$$f(x,y) = 3y$$
,

(b)
$$f(x,y) = \frac{1}{x}$$
,

(a)
$$f(x,y) = 3y$$
, (b) $f(x,y) = \frac{1}{x}$, (c) $f(x,y) = x^2 + y^2$,

(d)
$$f(x,y) = -x^2 - y^2$$
,

(e)
$$f(x,y) = \sqrt{x^2 + y^2}$$
,

(d)
$$f(x,y) = -x^2 - y^2$$
, (e) $f(x,y) = \sqrt{x^2 + y^2}$, (f) $f(x,y) = \sqrt{4 - x^2 - y^2}$.