Homework Exercise #3

Developing a Differential Photocell Sensor

1. Measure the resistance of both photocells in the light using a *bright* flashlight and in the dark (ambient light) and record their results. Calculate the sensor voltage and then *predict* the Handyboard analog readout for the following cases:

Left Sensor (Ohms)	Right Sensor (Ohms)	V _{sensor} (Volts)	Predicted analog() Value (0 – 255)
Dark:	Dark:		
Light:	Dark:		
Light:	Light:		
Dark:	Light:		

- 2. Construct the differential photocell sensor for use on your robot. Draw a diagram showing how the photocells are connected (clearly defining the left and right sensors in accordance to the left (driver's side) and right (passenger's side) of your robot.
- 3. Measure the values of the analog port while moving a bright source (e.g., a flashlight) from left (-90°) to right (+90°) repeating 10 times (see sample table below).

Readings	-90°	-80°	•••	80°	90°	
1						
2						
•••						
10						

4. Average the first 2, 5 and then 10 measurements using a table (e.g., the Excel spreadsheet provided) for each set of averages. Provide a graph for each average (2, 5 and 10) showing error bars (standard deviation). Note: The Excel Spreadsheet provided does all this for you after you enter the data under the "measurements" tab.

of Average Measurements: 2 (or 5 or 10)

Angle	-90	-80	•••	80	90
Mean	127	125		123	125
Std Dev	5	3		4	7

- 5. Explain any discrepancies between your predicted values and the actual values.
- 6. What values would you select for the upper limit and lower limit to locate the light source?
- 7. What value would you select for the setpoint?

