中山大学本科生期末考试

考试科目:《数字电路》(A卷)答案

学年学期: 2017 学年第二学期	姓	名:	
学 院/系: 电子与信息工程学院	学	号:	
考试方式: 闭卷	年级专	专业:	
考试时长: 120 分钟	班	别:	
警示《中山大学授予学士学位工作细则》以下为试题,共2道大题,总分1 一、填空题(共 25 小题,每个答案 2 分)	00 分,考	生请在	
1. 10101010 2. 0.0101000 3. 011011 4. 11011 5. 1 6. $X = \overline{AB} + A\overline{B}$ 7. $X = (\overline{A} + B + C)(\overline{A} + B + \overline{C})(A + B + C)$ 8. AND 9. NAND 10. COMP A		, ,,,	

- 14. 2Hz
- 15. 8
- 16. 1000
- 17. Faster speed 速度快

12. 不可重复触发

11. Propagation delay 传输延迟时间

13. Astable multivibrator 振荡器

- 18. EEPROM
- 19. word length 字长
- 20. 255
- 21. Dual slope ADC
- 22. R-2R Ladder DAC
- 23. NOT
- 24. ON OFF

二、分析设计题(共 4 小题, 共 50 分)

1. Write the output expression for the circuit shown below, obtain the truth table according to the expression, and determine the logic function. (写出所示逻辑电路的输出表达式, 列出真值表,并确定其逻辑功能) (8 points)

答案:

 $Y = A\overline{B} + B\overline{C} + \overline{A}C$ (2 points)

Input			
A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

(4 points)

Logic function: The output is high when the inputs are different.

(2 points)

- 2. Design a 1 bit full subtractor (设计一个一位全减器来计算 A-B-C), which computes A-B-C, where C is the borrow from the next less significant digit (其中 C 是来自低位的借位). It produce a difference D and a borrow from the next more significant bit P. (它将得到差 D 和对高位的借位)
- (a) Implement the full subtractor by gates(write down the logic functions for the D and P, don't draw the circuit diagram) (采用逻辑门实现这个全减器,只需写出 D 和 P 的逻辑表达式,不需要画出电路图) (8 points)
- (b) Implement the full subtractor by 74LS153 multiplexer and some gates (draw the circuit diagram). 74HC153 has two identical 4-input multiplexers which select two bits of data from up to four sources according to common data select inputs. (采用 74LS153 和逻辑 门来实现这个全减器,需画出具体电路图,其中 74HC153 包含两个四输入多路复用器) (4 points)

答案:

The truth table for the full subtractor is as follows:

a	b	c	р	d
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(4 points)

$$d = \overline{ab} c + \overline{ab} c + \overline{ab} c + \overline{ab} c + \overline{ab} c$$

$$-\overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} = \overline{bc} + \overline{ac} + \overline{ab} c$$
(4 points)

(4 points)

3. Determine the logic function of the circuit sketched below. (确定下图所示电路的逻辑功能) The detailed procedure is required. (需给出具体过程) (14 points)

(Question. 3)

答案:

Excitation expression:

$$\begin{cases} J_0 = K_0 = X \\ J_1 = K_1 = XQ_0^n \end{cases}$$

State expression:

$$\begin{cases} Q_0^{n+1} = X \cdot \overline{Q_0^n} + \overline{X} \cdot Q_0^n \\ Q_1^{n+1} = X \cdot Q_0^n \cdot \overline{Q_1^n} + \overline{X} \cdot \overline{Q_0^n} \cdot Q_1^n \end{cases}$$

Output expression:

 $\mathbf{Z} = \mathbf{X} \cdot \mathbf{Q}_0^{\mathbf{R}} \cdot \mathbf{Q}_1^{\mathbf{R}} \tag{6 points}$

	X=0	X=1
00	00 / 0	01 / 0
01	01 / 0	10 / 0
10	10 / 0	11 / 0
11	11 / 0	00 / 1

(4 points)

Logic function:

When X=0, the circuit remains unchanged.

When X=1, the circuit is a four bits synchronous binary counter. (4 points)

4. Design a synchronous modulus-5 counter using D flip-flops and necessary gates(用 D 触 发器和必要逻辑门设计一个同步模-5 计数器). The counter is required to go through the following sequence: 0->2->4->1->3->0->.... (要求计数器产生以下时序: 0, 2, 4, 1, 3, 0,...) The detailed procedure is required. (需给出具体过程). (16 points)

答案:

Q ⁿ Q ⁿ Q ⁿ	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	Z
000	010	0
010	100	0
100	001	0
001	011	0
011	000	1

(6 points)

$$Q_2^{n+1} = D_2, Q_1^{n+1} = D_1, Q_0^{n+1} = D_0$$

The K-map

(4 points)

Excitation expression.

$$D_2 = Q_1 \cdot \overline{Q_0} \quad , \quad D_1 = \overline{Q_2} \cdot \overline{Q_1} \quad , \quad D_0 = Q_2 + \overline{Q_1} \cdot Q_0 \quad , \quad Z = Q_1 Q_0 \quad (4 \text{ points})$$

Check self boot

Q2Q1Q2	Q2n+1Q1n+1Qn+1	Z
--------	----------------	---

中山大学本科生期末考试试卷

000	010	0
010	100	0
100	001	0
001	011	0
011	000	1
101	001	0
110	101	0
111	001	1

The circuit can self boot.

(2 points)