

GEOMETRÍA

Capítulo 5

2st SECONDARY

<u>Triángulo</u>

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales, que nos permite comprender las demás figuras geométricas que estudiaremos posteriormente., aplicando los axiomas, postulados, lemas, teoremas y corolarios, estudiados en los capítulos anteriores, en nuestra vida cotidiana podemos encontrar muchos objetos de forma de triángulo como podemos

NO RIGIDA

NO RIGIDA

NO RIGIDA

TRIÁNGULO

Dado los puntos A, B y C no colineales, se denomina triángulo a la reunión de los segmentos \overline{AB} , \overline{BC} y \overline{AC} .

NOTACIÓN: AABC

ΔABC: Se lee triángulo ABC

ELEMENTOS

VÉRTICES: A, B y C

• LADOS: AB, BC y CA

Medida de los ángulos:

- INTERNOS: α , β y θ
- EXTERNOS: δ , ω y φ

PERÍMETRO DE UN TRIÁNGULO

Es la suma de las longitudes de los lados del triángulo y se denota por 2p.

$$2p_{(ABC)} = a + b + c$$

CLASIFICACIÓN DE LOS TRIÁNGULOS

Por la longitud de sus lados.

Por las medidas de sus ángulos.

$$a \neq b \neq c$$

∆Isósceles

AEquilátero

TEOREMAS FUNDAMENTALES EN EL TRIÁNGULO

La suma de las medidas de los ángulos internos de un triángulo es igual a 180°.

En todo triángulo, la suma de las medidas de los ángulos externos considerados uno por vértice es igual a 360°.

La medida de un ángulo externo de un triángulo es igual a la suma de las medidas de los ángulos internos no adyacentes al ángulo externo.

En todo triángulo, la longitud de un lado es menor que la suma y mayor que la diferencia de las longitudes de los otros dos lados.

Si: a > b

Entonces:
$$a - b < x < a + b$$

En todo triángulo, al lado de mayor longitud se opone el ángulo interno de mayor medida y viceversa.

Si: a > b

Entonces:

$$\alpha > \beta$$

TEOREMAS ADICIONALES

$$\alpha + \beta = 180^{\circ} + x$$

1. En la figura, AB = BC y PQ = QC. Halle el valor de x.

Resolución

- Piden: x
- El
 \(\Delta \) ABC: Isósceles

$$m \triangleleft BAC = m \triangleleft BCA = 75^{\circ}$$

El A CPQ: Isósceles

$$m \not\sim PCQ = m \not\sim CPQ = 80^{\circ}$$

En el vértice C:

$$75^{\circ} + x + 80^{\circ} = 180^{\circ}$$

 $x + 155^{\circ} = 180^{\circ}$

$$x = 25^{\circ}$$

2. Calcule la suma de los valores enteros que puede tomar x.

Resolución:

- Piden: la suma de valores enteros de x.
- Aplicando el teorema

Resolución

Piden: x

 $x = \alpha + \beta$

2β+θ

 β +2 θ

En el ∆ABC:

$$3\theta + 3\beta + 45^{\circ} = 180^{\circ}$$

 $3\theta + 3\beta = 135^{\circ}$

$$\theta + \beta = 45^{\circ}$$

• En el ∆ABD:

45°

$$x = \theta + \beta$$

$$x = 45^{\circ}$$

4. El triángulo ABC es equilátero, AB = CD y m∢ADC = m∢BCD = x. Halle el valor de x.

Resolución

- Dato: AB = CD = $m \not ADC = m \not BCD = x$
- Piden: x
- El ADC: Isósceles $m \triangleleft ADC = m \triangleleft DAC = x$
- Aplicando el teorema

5. En la figura, halle el valor de x.

Resolución

- Piden: x
- En ∆ABC: Teorema

$$100^{\circ} + 4\phi + 4\omega = 360^{\circ}$$

 $4\phi + 4\omega = 260^{\circ}$
 $\phi + \omega = 65^{\circ}$

6. Se desea instalar un cable Resolución sujeto a un poste, si la escalera y el cable forman 80°. ¿Que ángulo forma la escalera con el poste?

- Piden: m∢ABH=β
- En ∆ABC:

$$x+80^{\circ}+3x=180^{\circ}$$
 $4x=100^{\circ}$
 $x=25^{\circ}$

$$x + \beta = 90^{\circ}$$

25°+ $\beta = 90^{\circ}$

$$\beta = 65^{\circ}$$

7. Se Tiene una varilla de plástico en la que se marcan los puntos P, Q, R y S (figura 1), luego se dobla dicha varilla uniendo P y S para formar un triángulo (figura 2). Si PR = 8 cm y QS = 9 cm, halle el máximo valor entero de QR.

Resolución

- Piden: X_{máx}
- Aplicando el teorema de la existencia:

