

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
1. Abend	RaspberryPi mit Sense-Hat in Be- trieb nehmen	Vorstellung (Wer bin ich? Problem-Based Learning)		10'	
	und erstes «Hello.py» zur Ausführung bringen. Ablaufstrukturen im Programm gezielt und richtig verwenden, print() und in- put() Funktionen sicher anwenden.	Installieren der Entwicklungsumgebung VNC / Notepad++ / PuTTY / FTP Client Nano auf RPi, die wichtigsten Befehle 1.Progrogramm File erstellen und editieren (Console, Nano) print(), #! /usr/bin/pyhton3 LINUX Befehle: cd, ls -al, pwd, rm, mv, cp, mkdir, LINUX file-system (chmod, filepath) Execution Fehlermeldungen interpretieren können und Lösungen implementieren Notepad++, Putty Programm erweitern (Print(), String-Operationen, Input())	Nach Anleitung installieren und konfigurieren	60'	
	Umrechner.py (ohne eigene functions und ohne Bild- schirmsteuerung)	 Aufgabe 1a (Umrechner.py) Menu User-Input (Wähle:) If-then-elif-else Struktur Loop mit 0 beenden Behandlung von falsch Eingaben Formeln implementieren (Variablen, Float-Input, Math-Operationen) format() Methode 	Selber versuchen, Vormachen, Nach- machen mit theo- retischen kurzen Einschüben	130'	Umrechner.py alle Formeln im- plementieren und alle Menu- Punkte vollstän- dig implementie- ren.

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
2. Abend	Eigenen Funktion unter dem Aspekt der Re-Usability implementieren können.	Aufgabe 1b (Umrechner.py) Bildschirmsteuerung (cls(), halt()) implementieren import math Formeln in Funktionen implementieren Funktionen abwärtskompatible erweitern Exception Handling mit Pre-Checks und try-catch	Test-Driven Approach mit theoretischen Einschüben	100'	
	Den Unterschied zwischen positional und named Parameters bei den Functions-Interfaces wie beim Aufruf sicher und gezielt anwenden können.	 Aufgabe 1c (Umrechner.py, xxLibrary.py) Funktion in eigene Library auslagern Refactoring Umrechner.py verwendet eigene Library Weitere Functionen readInt(), readFloat() implementieren, testen, anwenden und in eigene Library übernehmen. Neuer Menu-Punkt: Quadratische Gleichung 		100'	
	Exception-Hand- ling in Python si- cher anwenden und den Unter- schied zwischen pre-condition check and exception sicher anwenden kön- nen.				Neue Funktionen entwickeln, tes- ten und in eigene Lib übernehmen.

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
3. Abend	LINUX Basics	Leistungskontrolle 1	Moodle Test	15'	
	Alle Methoden im SenseHat Mo- dule (gemäss API doc) erfolg- reich selbst ge- testet.	Aufgabe 2a (LED_Matrix.py) 1. setPixel(), setPixels(), clear(), sleep(), showMessage() 2. Eventhandling (Joystick) 3. IMU- und Meteo-Sensoren	Test-Driven Approach mit theoretischen Einschüben	60'	
	Methoden Sense-Hat und Sense Klasse (API) mit LED Matrix verwen- den.	Aufgabe 2b (xx_SenseHat_Librarie.py) 1. setPixel() mit clipping 2. drawLine(), drawRecantgle(), drawCircle() 3. Functions erweitern mit fillColor und borderColor 4. drawCompassNeedle(azimutInGrad)	Test-Driven Approach mit theoretischen Einschüben	140'	Design und Implementation eines analogen Kompasses (mit Nadel)

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
4. Abend	Containers in Python kennen und in eigenen Applikationen anwenden können.	Elemete in den verschiedenen Containers zugreifen (lesen), zufügen/ändern und löschen. Listen[], Tupels(), Dictonaries{} Sub-Listen mit [1:-1] ranges lesen resp verarbeiten/ändern.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	90'	
		for – Loops Listen und Tuples Dictonaries (keys()) Comprehensions mit Filter und ZIP für eigene Anwendungen einsetzen können.			Meteo-App oder einer Snake-App oder Linien Aufgaben

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
5. Abend	Containers	Leistungskontrolle 2	Formativer Test	40'	
	Algorithmen in Funktionen um- setzen	 Fakultät Primzahlen Rechner Primzahlen und Teiler Listen Filter-Berechnungen 	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	160'	
	Parameterüber- gaben * (listen) ** (dictonaries)				

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
6. Abend	REST-Service mit JSON Response nut- zen	Open-Weather REST Service mit eigenem Token (AppID) aus Python aufrufen (requesten) und response als JSON Struktur verarbeiten.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	40'	
	Filehandling und direct EXCEL Zugriff erfolg- reich anwenden	Filehandling open() for read, write and append (inkl UTF and ASCII)		40 [°]	Design und Implementation einer Meteo-Logger (Wetterstation), welche Metoe-Daten von einem Ort / Lokation optimiert und ohne «Löcher» loggen.

7. Abend	Klassenkonzept in Python in einer konkreten An- wendung kennen lernen und an- wenden können.	Eine eigene, allgemein einsetzbare Logger-Klasse gemäss Spezifikation entwickeln und testen. Anschliessend eigene Logger-Klasse in Meteo-App einsetzen.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	200'	
8. Abend	Multi-Treathing und Timer- Events in Python kennen lernen.		Konzept anhand einiger Beispiele erklären (Walk- Through)	10'	
	Eine Wrapper- Class für einen Wetterdienst all- gemein und nach OO Ansätzen de- signen und im- plementieren.	Leistungsnachweis (Modullernzielkontrolle MILZ): Eine allgemeine Weather-Class designen und implementieren, welche eine Wetterstation an einem bestimmten Ort kapselt.	Selbststänges programmieren und individuelle Reviews durch Dozenz.	190'	

	bestehende- REST Services	Selecta-Automat steuern Rolladensteuerung anhand Wettervorhersagen	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	200'	
		PiPlates			
		Shellys			

Bemerkungen:

- Jeder Abend dauert 4 Lektionen.
- Der Unterrichtsplan kann bei Bedarf dem vorhandenen Wissen der Klasse angepasst werden.
- Die Studierenden lösen die Übungen auf ihren privaten Notebooks.
- Der Leistungsnachweis am 8. Abend ist in Einzelarbeit in der vorgegebenen Zeit zu erstellen