Calculus I

Homework Review: Function Basics Lecture 0

1. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.
 (d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(d)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^4$

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(e)
$$\frac{f(x)-f(a)}{x-a}$$
, where $f(x)=rac{1}{x}$.

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$. (f) $\frac{f(x)-f(1)}{x-1}$, where $f(x)=\frac{x-1}{x+1}$.

 $\frac{1+x}{1-x}$:::awsue

2. Write down a formula for a function whose graphs is given below. The graphs are up to scale. Please note that there is more than one way to write down a correct answer.

(c)

(d)

(a)

(b)

$$\begin{cases} 1 - > x \ge 2 - 1i & b - x & \\ 0 > x \ge 1 - 1i & 1 + x \\ 1 > x \ge 0 & 1 + x & \\ 1 > x \ge 0 & 1 + x & \\ 2 \ge x \ge 1 & b - x & \\ \end{cases} = y \text{ given}$$

3. Write down formulas for function whose graphs are as follows. The graphs are up to scale. All arcs are parts of circles.

1

4. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$. (d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(e) $\frac{f(x) - f(a)}{x - a}$, where $f(x) = \frac{1}{x}$.

(c) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^3$.

(f) $\frac{f(x) - f(1)}{x - 1}$, where $f(x) = \frac{x - 1}{x + 1}$. Subsect: $V_5 + 3\sigma_5 + 3\sigma_V$

answer: $\frac{1}{x+1}$

5. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

(e)
$$h(x) = \frac{1}{x^2 + 1}$$

$$(e) \ \ h(x) = \frac{1}{\sqrt[6]{x^2 - 2}} \text{ (e)} \ \ h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}.$$

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
. (c) $f(t) = \sqrt[3]{3t - 1}$. (d) $f(t) = \sqrt[3]{3t - 1}$. (e) $f(t) = \sqrt[3]{3t - 1}$. (f) $f(t) = \sqrt[3]{3t - 1}$.

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

answer:
$$u \neq -1, -2$$
 or $(-2, -1) \cup (1, \infty)$.

(c)
$$f(t) = \sqrt[3]{3t - 1}$$

(Standmun least lie si uliemop adi)
$$\exists (x) \in \mathbb{R}$$
 (the domain is all test numbers) (g) $F(x) = \sqrt{10 - \sqrt{x}}$.

answer: x ∈ [0, 100]