Blatt 8 Abgabe: Mo 18.12.2017, 10:00 Uhr

▶ In der Vorlesung wird Ihnen der Gebrauch der freien Software Sage zur Lösung mathematischer Probleme nahegebracht. Diese Software lässt sich hier www.sagemath.org/download kostenlos herunterladen. Auf den folgenden Übungsblättern befindet sich nun jeweils eine Sage-Aufgabe. Diese Aufgabe lösen Sie indem Sie Ihren Programmcode und Ihre Berechnungen ausdrucken und an Ihre Abgabe heften.

Aufgabe 8.1 4 Punkte

Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine lineare Abbildung. Beweisen Sie mit Hilfe Ihres Wissens über den Kern und das Bild von der Darstellungsmatrix M(f) folgende Aussagen.

- a) Zeigen Sie, dass $m \leq n$ ist, wenn f surjektiv ist.
- b) Zeigen Sie, dass $m \ge n$ ist, wenn f injektiv ist.
- c) Zeigen Sie, dass m = n ist, wenn f ein Isomorphismus ist.
- d) Zeigen Sie, dass die Aussage aus c) keine Äquivalenz sondern eine Implikation ist (umgangssprachlich: "Die Rückrichtung nicht gilt").

Aufgabe 8.2 4 Punkte

Es sei $g: \mathbb{R}^3 \to \mathbb{R}^2$ eine lineare Abbildung mit der Darstellungsmatrix $M(g) = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 10 \end{pmatrix}$. Außerdem bildet die Menge

$$\mathcal{A} = \left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\2 \end{pmatrix} \right\}$$

eine Basis des \mathbb{R}^3 und die Menge

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 14 \end{pmatrix} \right\}$$

eine Basis des \mathbb{R}^2 . Berechnen Sie die Darstellungsmatrix von g bezüglich der Basen \mathcal{A} und \mathcal{B} , also die Matrix $M_{\mathcal{AB}}(g)$.

Aufgabe 8.3 4 Punkte

Es seien $A:=\begin{pmatrix}1&1&1\\2&5&3\\3&7&9\\4&10&8\end{pmatrix}$ und $b:=\begin{pmatrix}7\\16\\28\\c\end{pmatrix}$ mit $c\in\mathbb{R}$. Bestimmen Sie mit dem Gauss-Verfahren:

- a) Für welche Zahlen $c \in \mathbb{R}$ ist $A \cdot x = b$ lösbar?
- b) Wie lauten die Lösungen x für dieses c?

Aufgabe 8.4 4 Punkte

Seien $A, B, C \in \mathbb{R}^{2 \times 2}$ Matrizen, welche Ziffern als Einträge haben, also

$$A_{i,j}, B_{i,j}, C_{i,j} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 für alle $i, j \in \{1, 2\}$.

Es gibt 10^4 unterschiedliche Matrizen dieser Form und demnach 10^{12} mögliche Dreiertupel (A, B, C) insgesamt. Für wie viele dieser 10^{12} Dreiertupel ist das Produkt

$$A \cdot B \cdot C$$

Homepage der Veranstaltung: http://tinygu.de/MatheInfo1718

invertierbar? Zum Überprüfen der Invertierbarkeit einer Matrix A können Sie die Funktion A.is_invertible() verwenden oder Sie benutzen das Invertierbarkeitskriterium für 2×2 -Matrizen

$$A \text{ invertierbar } \iff A_{1,1} \cdot A_{2,2} - A_{1,2} \cdot A_{2,1} \neq 0.$$

Hinweis: Versuchen sie nicht alle 10^{12} Möglichkeiten durchzuprobieren. Das Produkt von Matrizen ist invertierbar, wenn die einzelnen Matrizen invertierbar sind.