Problem 1. Give an example of fields $F \subset E \subset K$ such that K is a root extension of F but E is not a root extension of F. (Hint: Look at $K = \mathbb{Q}(\zeta)$ where ζ is the primitive 7th root of unity).

Problem 2. Let $F = \mathbb{Q}$, $E = \mathbb{Q}(\sqrt{3})$, $K = \mathbb{Q}(\sqrt{\sqrt{3}+1})$. Show that E/F and K/E are Galois extensions, but that K/F is not Galois. Find the minimal polynomial of $\sqrt{\sqrt{3}+1}$ and find its Galois group.

We can see that E/F and K/E are Galois since they are both splitting fields of separable polynomials $x^2 - 3$ and $x^2 - (\sqrt{3} + 1)$ respectively.

Now we will show that the K/F is not Galois. First note that the minimal polynomial of $\sqrt{\sqrt{3}+1}$ is x^4-2x^2-2 . If it was Galois then it would contain all of the roots which are $\pm\sqrt{1\pm\sqrt{3}}$. However then it would contain the product

$$\sqrt{1+\sqrt{3}}\sqrt{1-\sqrt{3}} = i\sqrt{2}$$

However $i \notin K$ which shows that K/E is not Galois.

To find the Galois group of $f(x) = x^4 - 2x^2 - 2$ we will follow the procedure in Dummit and Foote beginning on page 615. The resolvent cubic for f is $h(x) = x^3 + 4x^2 + 12x$. Since h is reducible into a linear term and a quadratic the Galois group is either \mathbb{Z}_4 or D_8 . However since the discriminant of f is -4608 which is negative. As such the Galois group cannot be cyclic. Therefore $\operatorname{Gal}(x^4 - 2x^2 - 2) \cong D_8$.

Problem 3. Find a root extension of \mathbb{Q} containing the splitting fields of each of the following polynomials.

- (a) $x^4 + 1$
- (b) $x^4 + 3x^2 + 1$
- (c) $x^5 + 4x^3 + x$
- (d) $(x^3-2)(x^7-5)$
- (a) The roots of $x^4 + 1$ are $e^{\pi i/4}$, $e^{3\pi i/4}$, $e^{5\pi i/4}$, and $e^{7\pi i/4}$. Since these are all roots of $x^4 (-1)$ the field $\mathbb{Q}[e^{\pi i/4}, e^{3\pi i/4}, e^{5\pi i/4}, e^{7\pi i/4}]$ has a root tower from adjoining each one in turn.
- (b) The roots of $x^4 + 3x^2 + 1$ are $\pm \sqrt{\frac{-3 \pm \sqrt{5}}{2}}$. The splitting field will then be contained in the root tower where we adjoint $\sqrt{5}$ followed by $\sqrt{3 + \sqrt{5}}$ and finally *i*.
- (c) The roots of $x^5 + 4x^3 + x$ are $0, \pm \sqrt{-2 \pm \sqrt{3}}$. Similar to part (b) we can get a root tower containing the splitting field by adjoining $\sqrt{3}$, $\sqrt{2 + \sqrt{3}}$, and i in order.
- (d) The roots of $(x^3 2)(x^7 5)$ are $\sqrt{2}\zeta_3^i$, $\sqrt{5}\zeta_7^j$ for $0 \le i < 3$ and $0 \le j < 7$. We can then obtain a root extension containing the splitting field by adjoining each of the roots in turn.

Problem 4. Give an example of a polynomial $\mathbb{Q}[x]$ which is solvable by radicals, but whose splitting field is not a root extension of \mathbb{Q} .

Problem 5. For r a positive integer, define $f_r(x) \in \mathbb{Q}[x]$ by

$$f_r(x) = (x^2 + 4)x(x^2 - 4)(x^2 - 16) \cdots (x^2 - 4r^2)$$

- (a) Give a (rough) sketch of the graph of $f_r(x)$
- (b) Show that if k is an odd integer, then $|f_r(k)| \geq 5$.
- (c) Show that $g_r(x) = f_r(x) 2$ is irreducible over \mathbb{Q} and determine its Galois group when 2r + 3 = p is prime.

Proof. (a) Will have roots at $\pm 2r$ then go off on its own.

- (b)
- (c) First note that for $f_r(x)$ is monic and that the coefficient for every other term will be divisible by 2 as $4r^2$ is even. Moreover as we multiply by x in the product form the polynomial has no constant term. Thus $g_r(x) = f_r(x) 2$ is irreducible by Eisenstein's criterion with 2.

Since $|f_r(k)| \geq 5$ for odd k we know that g_r will have the same number of roots as f_r . We also know that there are two complex roots. As such one of the automorphisms in our Galois group will be a transposition supplied by complex conjugation. In addition since g_r is irreducible the action of the Galois group on the roots is transitive. Since the degree of g_r is prime we have that $\operatorname{Gal}(g_r) \cong S_p$ as the group is transitive and contains a transposition.

Г