

Data Collection and Preprocessing Phase

Date	23 September 2024
Team ID	LTVIP2024TMID24967
Project Title	SmartLender - Applicant Credibility Prediction for Loan Approval
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description					
	Dimension: 614 rows × 13 columns Descriptive statistics: ApplicantIncome CoapplicantIncome Loan Amount Loan Amount Term Credit History					
	count	614.000000	614.000000	592.000000	600.00000	564.000000
	mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
	std	6109.041673	2926.248369	85.587325	65.12041	0.364878
	min	150.000000	0.000000	9.000000	12.00000	0.000000
	25%	2877.500000	0.000000	100.000000	360.00000	1.000000
	50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
	75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
	max	81000.000000	41667.000000	700.000000	480.00000	1.000000
Univariate Analysis						

Outliers and Anomalies	-					
Data Preprocessing Code Screenshots						
Loading Data	#importing the dataset which is in csv file data = pd.read_csv('/content/Dataset/loan_prediction.csv') data Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome 0					
Handling Missing Data	<pre>data['Gender'] = data['Gender'].fillna(data['Gender'].mode()[0]) data['Married'] = data['Married'].fillna(data['Married'].mode()[0]) #replacing + with space for filling the nan values data['Dependents']=data['Dependents'].str.replace('+','') <ipython-input-71-6ac39c248773>:2: FutureWarning: The default value of regex will change from 'data['Dependents']=data['Dependents'].str.replace('+','') data['Dependents'] = data['Dependents'].fillna(data['Dependents'].mode()[0]) data['Self_Employed'] = data['Self_Employed'].fillna(data['Self_Employed'].mode()[0]) data['LoanAmount'] = data['LoanAmount'].fillna(data['LoanAmount'].mode()[0]) data['Loan_Amount_Term'] = data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0])</ipython-input-71-6ac39c248773></pre>					
Data Transformation	data['Gender']=data['Gender'].map({'Female':1,'Male':0}) data['Property_Area']=data['Property_Area'].map({'Urban':2,'Semiurban': 1,'Rural':0}) data['Married']=data['Married'].map({'Yes':1,'No':0}) data['Education']=data['Education'].map({'Graduate':1,'Not Graduate':0}) data['Loan_Status']=data['Loan_Status'].map({'Y':1,'N':0})) # perfroming feature Scaling op[eration using standard scaller on X part of the dataset because # there different type of values in the columns sc=StandardScaler() x_bal=sc.fit_transform(x_bal)					
Feature Engineering	Attached the codes in final submission.					
Save Processed Data	-					