Lösung Einführung in die Mathematik Übung 5 Semester 1

Paul Wolf

December 3, 2019

Contents

	Α1		1
	1.1	i	-
	1.2	ii]
	1.3	iii	4
	1.4	iv	4
	A 2		2
		i	
		ii	
	2.3	iii	
3	А3		3

1 A1

K geordneter Körper und $x, y \in K$

1.1 i

Zu zeigen: $\begin{aligned} &(x<0 \land y<0) \text{ oder} \\ &x^{'}>0 \land y>0 \text{ , so folgt } 0< x^{'}*y \end{aligned}$

Beweis

(*) $a, b \in K, a < b, c > 0 \Rightarrow ac < bc$ Mnotonie bzgl. "*".

Fall 1

$$x > 0 \land y > 0 \stackrel{(*)}{\Rightarrow} xy > 0y = 0; [a = 0, b = x, c = y]$$

Fall 2

$$x < 0 \land y < 0$$

 $\Rightarrow xy = (-x)(-y) > 0(-y) = 0$ (Fall 1 mit $-x > 0 \land -y > 0$)

1.2 ii

Zu zeigen:

$$0 < x^2 \iff x \neq 0$$

Beweis "⇒" Kontraposition

Sei
$$x = 0$$
, dann: $x^2 = xx = 0 * 0 = 0 > 0$

Anmerkung

$$"A \Rightarrow B" \iff (\neg B \Rightarrow \neg A)$$

Beweis "⇐"

Sei $x \neq 0$ Dann gibt es 2 Fälle: (Trichotomie):

- (1) x > 0
- (2) x < 0

Im Fall 1: $x^2 = xx > 0$

Im Fall 2:
$$x^2 = (-x)(-y) > 0$$

1.3 iii

Zu zeigen: 0 < 1:

Nach Definition eines Körpers ist $1 \neq 0$, deshalb:

$$1=1*1=1^2\stackrel{(ii\Rightarrow)}{>}0$$

1.4 iv

Zu zeigen: 0 < x < y, so folgt $0 < y^{-1} < x^{-1}$

Beweis

Sei
$$0 < x < y, x \neq 0 \land y \neq 0$$
 (Tansitivität $\Rightarrow 0 < y$) $\Rightarrow \exists x^{-1} \land y^{-1} \in K: x * x^{-1} = y * y^{-1}$ Damit:

$$\Rightarrow \exists x \land y \vdash \in K \colon x * x \vdash = y * y \vdash Damit:$$

$$(**)\ y^{-1} = y^{-1} * (y * y^{-1}) \stackrel{asso}{=} (y^{-1} * y^{-1}) * y \stackrel{(i)}{>} 0$$

Weiter gilt:

 $y^{-1} = y^{-1} * (x * x^{-1}) \overset{kommu}{=} x(y^{-1} * x^{-1}) < y(y^{-1} * x^{-1}) \overset{asso,kommu}{=} (y * y^{-1})x^{-1} = x^{-1}$ Damit ist die Aussage gezeigt.

2 A2

2.1 i

Zu zeigen: $\forall n, m \in \mathbb{N}: \sum_{k=1}^{n} {m+k-1 \choose m} = {m+n \choose m+1}$

Beweis

IA n=1

$$\sum_{k=1}^{1} {m+k-1 \choose m} = {m \choose m} = 1 = {m+1 \choose m+1} \text{ (stimmt)}$$

IV $n \curvearrowright n+1$

Es gelte (*) für ein $n \in \mathbb{N}$

ıs

$$\sum_{k=1}^{n+1} {m+k-1 \choose m} = \sum_{k=1}^{n} {m+k-1 \choose m} + {m+n \choose m} \stackrel{IV}{=} {m+n \choose m+1} + {m+n \choose m} = {m+(n+1) \choose m+1}$$

Anmerkung

Aus Vorlesung bekannt: für $n\in\mathbb{N}, k\in\{1,\dots,n\}$: $nchoosek+\binom{n}{k+1}=\binom{n+1}{k+1}$

2.2 ii

2.3 iii

Zu zeigen:

$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3} \left(k(k+1) = 2 * {k+1 \choose 2} \right)$$

Beweis

(ii) für
$$m=2$$
:

3 A3

$$M := \bigcup_{k \in \mathbb{N}} \{ x \in \mathbb{Q} : \frac{1}{2k} \le x < \frac{1}{2k-1} \}$$

Zu zeigen: $supM = 1 \notin M$ Beweis

-
$$1 \notin M$$
, da für $x \in M$ gilt: $\exists k \in \mathbb{N}: x < \frac{1}{2k-1} < 1$.

- supM = 1, da 1 obere Schranke für M ist. (siehe eine Zeile drüber)

und zwar die kleinst, da (Beweisstruktur. Nehme an, es gäbe eine kleinere und zeige.dass das dies dann keine obere Schranke mehr ist).

für
$$\varepsilon \in (0, \frac{1}{2}) = \{x \in \mathbb{R} : 0 < x < \frac{1}{2}\} \text{ und } \varepsilon \in \mathbb{Q}:$$

$$1 - \varepsilon \in \{ x \in \mathbb{Q} : \frac{1}{2} < x < 1 \}$$

 $\subseteq M$, da \uparrow die Menge für k=1 aus der Vereinigung ist, über die M definiert ist. Also ist $1 - \varepsilon$ keine obere Schranke mehr.

Zusammenfassung sup/max:

supM = 1 und maxM existiert nicht, da $supM \neq M$

Anmerkung1

 $a, b \in \mathbb{R}$:

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

 $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$

Anmerkung2

Für $\varepsilon_2>\frac12$ ist das erst Recht keine obere Schranke mehr, da $1-\varepsilon_2\le 1-\frac12=\frac12\le 1-\varepsilon$

Zu zeigen: $infM = 0 \notin M$ Beweis

 $0\notin M,$ da $\frac{1}{2k}\nleq 0\;\forall k\in\mathbb{N}$ und für $x\in M\colon\, 0<\frac{1}{2k}\leq x$ für ein $k\in\mathbb{N}.$ (Für alle $x\in M$ folgt $0< x\Rightarrow 0\notin M.)$

$$infM = 0$$

Da 0 untere Schranke für M ist und zwar die größte, denn füt $\varepsilon \in \mathbb{Q}$ mit $\varepsilon > 0$: $\exists k_O \in \mathbb{N} \colon \frac{1}{2k_O} \leq \varepsilon = 0 + \varepsilon$ $\Rightarrow \exists x \in M \colon x < \frac{1}{2(k_O + 1) - 1} = \frac{1}{2k_O + 1} \leq \frac{1}{2k_O} \leq 0 + \varepsilon$, also ist $0 + \varepsilon$ keine untere Schranke für M.

Zusammenfassung

infM=0 und minM existiert nicht, da $infM\notin M$