Congratulations! You passed!

Grade received 85.71% Latest Submission Grade 85.71% To pass 75% or higher

Go to next item

1.	What is the difference between sample mean and population mean?	1 / 1 point
	Sample mean is the average of a subset of the population, while population mean is the average of the entire population.	
	Sample mean is always smaller than population mean.	
	There is no difference between sample mean and population mean.	
	Correct Correct! Sample mean is the average of a subset of the population, while population mean is the average of the entire population.	
2.	Which of the following method can be used to estimate the variance, mean, and proportion of a population?	1 / 1 point
	O Sample mean	
	O Sample variance	
	Point estimation	
	Regression analysis	
	 Correct Correct! Point estimation is a statistical method that estimates population parameters such as mean, variance, and proportion based on a sample. 	

3. Which of the following statements best describes the law of large numbers?

1/1 point

- The law of large numbers states that as the sample size increases, the sample mean becomes more variable.
- The law of large numbers states that as the sample size increases, the sample mean approaches the population mean with increasing accuracy.
- The law of large numbers states that as the sample size increases, the sample variance approaches the population variance.
- O The law of large numbers states that as the sample size increases, the sample becomes more biased.
 - ✓ Correct

Correct! The law of large numbers states that as the sample size increases, the sample mean approaches the population mean with increasing accuracy.

4. Suppose you flip a coin 10 times and obtain 6 heads and 4 tails. What function needs to be maximized to find the maximum likelihood estimate of the probability of getting heads on a single coin toss? Let p be the probability of the coin being heads.

1/1 point

- $igcup L(p) = p^{1/6} (1-p)^{1/4}$
- $\bigcirc \ L(p) = p^4(1-p)^6$
- $\bigcap L(p) = p^{10}(1-p)^0$
 - ✓ Correct

Correct! The likelihood function for this problem is $L(p) = p^6*(1-p)^4$.

5. What is the purpose of regularization in machine learning?

1/1 point

Regularization is used to make a model more complex and flexible, which can lead to better performance on the training data.

	Regularization is used to prevent overfitting and reduce the complexity of a model, by adding a penalty term to the loss function that encourages smaller parameter values.	
	Regularization is used to increase the training error of a model, which can improve its generalization performance.	
	Regularization is used to improve the interpretability of a model by reducing its complexity.	
	Correct! Regularization is used to prevent overfitting and reduce the complexity of a model, by adding a penalty term to the loss function that encourages smaller parameter values.	
6.	Consider the following population: $[-2,-1,0,1,2]$ and the following sample $[-1,0,2].$	1 / 1 point
	What is the population mean?	
	0	
7.	Consider the following population: $[-2,-1,0,1,2]$ and the following sample $[-1,0,2].$	0 / 1 point
	What is the sample variance? (Use two decimal places in your answer)	
	1.67	
	$ig\otimes$ Incorrect Incorrect! Please review your calculations! Remember that the **sample** variance is divided $n-1$ instead of n , where n is the sample size.	