EXAMEN PARCIAL D'EC 2 de novembre de 2023

- L'examen consta de 6 preguntes, que s'han de contestar als mateixos fulls de l'enunciat. No oblidis posar el teu nom i cognoms a tots els fulls.
- La durada de l'examen és de 1:30 hores (90 minuts)
- Les notes i la solució es publicaran al Racó el 13 de novembre. La revisió es farà presencialment el 14 de novembre a les 10h a 11h a la sala C6-E101.

Pregunta 1 (1,5 punts)

Donades les següents declaracions de dades globals en assemblador del MIPS, que s'ubiquen a memòria a partir de l'adreça 0x10010000:

```
.data
a: .byte -1, 1, -5, 5
b: .dword 0x02
c: .byte 0x0A
d: .word a
```

a) Omple la següent taula amb el contingut de la memòria **EN HEXADECIMAL** (sense el prefix 0x). Les posicions de memòria no ocupades per cap dada es deixen **EN BLANC**.

@Memòria	Dada	@Memòria	Dada	@Memòria	Dada
0x10010000		0x1001000A		0x10010014	
0x10010001		0x1001000B		0x10010015	
0x10010002		0x1001000C		0x10010016	
0x10010003		0x1001000D		0x10010017	
0x10010004		0x1001000E		0x10010018	
0x10010005		0x1001000F		0x10010019	
0x10010006		0x10010010		0x1001001A	
0x10010007		0x10010011		0x1001001B	
0x10010008		0x10010012		0x1001001C	
0x10010009		0x10010013		0x1001001D	·

b) Quin és el valor final de \$t0 en hexadecimal després d'executar el següent fragment de codi?

c) Quin és el valor final de \$t0 en hexadecimal després d'executar el següent fragment de codi?

Pregunta 2 (1,5 punts)

Un programa està compost de dos mòduls que es compilen i assemblen separadament per generar sengles fitxers objecte. Per a generar l'executable cal enllaçar-los després amb el muntador. El codi en C de les funcions main() i func() dels dos mòduls és el següent:

```
MÒDUL 1: int main() { sum(W,4); } MÒDUL 2: void sum(int *p,int n) { if (n>=0) {V[i]=*p+X; sum(p+1,n-1);}}
```

Les variables W, V, X són globals de tipus int. W i V estan definides en el MODUL 1. X està definida al MODUL 2. Hem traduït els dos fitxers a MIPS amb el següent resultat (hem afegit a l'esquerra els números de línia per facilitar les respostes posteriors).

MÒDUI	L 1				MÒDU	L 2				
1		.data			1		.data			
2					2					
3					3					
4	W:	.word	-1,), -2, 0, -3	4	X:	.word	7		
5	V:	.word	0,0), 0, 0, 0	5					
6					6		.text			
7		.text			7					
8		.globl	L mair	1	8	sum:	blt	\$a1,	\$zero	, fi
9					9		la	\$t0,	Χ	
10	main:	addiu	\$sp,	\$sp, -4	10		lw	\$t0,	0(\$t())
11		SW	\$ra,	0(\$sp)	11		lw	\$t1,	0(\$a0))
12		la	\$a0,	W	12		addu	\$t0,	\$t0,	\$t1
13		move	\$a1,	4	13		la	\$t2,	VEC	
14		jal	sum		14		sll	\$t3,	\$a1,	2
15		lw	\$ra,	0(\$sp)	15		addu	\$t2,	\$t2,	\$t3
16		addiu	\$sp,	\$sp, 4	16		SW	\$t0,	0(\$t2	2)
17		jr	\$ra		17		addiu	\$a0,	\$a0,	4
18					18		addiu	\$a1,	\$a1,	-1
19					19		jal	sum		
20					20	fi:	jr	\$ra		

a) Quan hem intentat enllaçar els dos fitxers objecte generats per l'assemblador, l'enllaçador ha detectat diversos errors del tipus "referència no-resolta". ¿Com caldrà corregir o completar el codi MIPS perquè no torni a fallar? (fes servir tantes files de la taula com necessitis)

MÒDUL	LÍNIA	LÍNIA DE CODI CORRECTA

b) Contesta les següents preguntes suposant que s'han tornat a assemblar els dos fitxers després de corregir els errors i que totes les instruccions conserven la numeració de línies original:

Pregunta	MÒDUL 1	MÒDUL 2
Quines etiquetes conté la Taula de Símbols Globals en cada		
fitxer objecte?		
Quines instruccions en cada fitxer objecte (sols el número de		
línia) requereixen adreces absolutes (de dades o de codi)?		
Quines instruccions en cada fitxer objecte (sols el número de		
línia) contenen referències no-resoltes (a dades o a codi		
definits en l'altre mòdul)?		

Cognoms:	 Nom:
DNI.	

Pregunta 3 (2 punts)

Donades les següents declaracions en C:

a) Tradueix la sentència 1: y = *(q + 3);

b) Tradueix la sentència 2: p[7] = x;

c) Completa els calaixos buits del següent codi MIPS per tal que sigui la traducció correcta de la sentència 3.

```
$t3, $a0, 100
et1:
                                $t3, $zero,
et2:
       bne
et3:
                                $t4, $a0, 7
                                $t4, $zero, et7
et4:
et5:
                                $v0, $a0, 3
et6:
                                et8
                                $v0,
et7:
      subu
et8:
```

Pregunta 4 (1,5 punts)

El processador FIBEC disposa de 4 tipus d'instruccions diferents: A, B, C i D. La següent taula mostra quin és el número d'instruccions executades per a un programa sota consideració i el CPI de cada tipus d'instrucció. La freqüència de rellotge de el processador és de 4GHz y la potencia dissipada és P=350W.

	Nombre d'instr.	СРІ
Α	5·10 ⁹	1
В	4·10 ⁹	3
С	1·10 ⁹	1
D	2·10 ⁹	3

a) Calcula el CPI mitjà del programa sota considera	a)	Calcula el	CPI mitià	del	programa	sota	consider	aci
---	----	------------	-----------	-----	----------	------	----------	-----

CPI =		
-------	--	--

b)	Indica	quin e	és el	temps	ď	execució ((en	segons	del (programa
----	--------	--------	-------	-------	---	------------	-----	--------	-------	----------

T _{exe} =		
--------------------	--	--

c) Calcula l'energia consumida en Joules durant l'execució del p
--

E =	
-----	--

Pregunta 5 (2 punts)

Donades les declaracions de funcions en C:

```
void f(char v[], int *q);
int g(char a, int b);

void exam(int *p, int k) {
    char V[10];
    int n;
    f(V, &n);
    *(p+1) = g(V[k], n);
}
```

epíleg on s'allibera la pila i es restauren registres segurs
SE SUPOSA JA PROGRAMAT, NO ESCRIURE RES

Pregunta 6 (1,5 punts)

Considera les següents declaracions en C:

```
int Q[64][64];

void func(int mat[][256], int i, int j) {
    int k;
    for (k=0; k<64: k++) {
        mat[i+k][j+k] = Q[k][63-k];
    }
}</pre>
```

El següent fragment de codi conté la traducció de la funció func, aplicant-li l'optimització d'accés seqüencial i d'eliminació de la variable d'inducció. En concret, s'han usat els registres \$t0 i \$t1 com a punters per a recórrer les matrius **Q** i **mat** respectivament, i s'ha usat el registre \$t2 per a l'adreça final del punter \$t0. Completa les instruccions que falten als requadres per tal que la traducció sigui correcta:

