Logica e Reti Logiche

(Episodio 4: Sistemi assiomatici per la logica proposizionale)

Francesco Pasquale

29 marzo 2021

Negli episodi precedenti abbiamo introdotto la logica proposizionale e abbiamo studiato il *metodo dei tableaux*. In questo episodio introduciamo i sistemi assiomatici con i relativi concetti di "teorema", "dimostrazione" e "derivazione".

1 Sistemi assiomatici: pronti, partenza, ...

Una sistema formale consiste in schemi di assiomi e regole di inferenza, oltre che dell'insieme dei simboli che vengono usati e delle definizioni che stabiliscono quali sequenze di simboli sono "formula". Nel caso della logica proposizionale gli schemi di assiomi sono un insieme di formule ben formate e le regole di inferenza sono relazioni di formule di questo tipo: "Dalle formule X_1, \ldots, X_n segue la formula Y". Vediamo subito un esempio. Consideriamo i due assiomi seguenti¹

$$A_1: X \Rightarrow (Y \Rightarrow X)$$

 $A_2: (X \Rightarrow (Y \Rightarrow Z)) \Rightarrow ((X \Rightarrow Y) \Rightarrow (X \Rightarrow Z))$

Esercizio 1. Verficare che A_1 e A_2 sono tautologie.

La regola di inferenza che usiamo si chiama Modus Ponens: "Dalle formule X e $X \Rightarrow Y$ segue la foruma Y". In simboli la scriviamo così

$$X, X \Rightarrow Y$$

In questi episodio chiamerò S_0 il sistema assiomatico costituito dagli assiomi in A_1 e A_2 e dalla regola di inferenza Modus Ponens.

¹Per essere rigoroso dovrei chiamare questi "schemi di assiomi", ma per il momento la considero sottigliezza e mettiamola da parte

Esercizio 2. Date due formule X e Y, verificare che se X e $X \Rightarrow Y$ sono tautologie, allora anche Y è una tautologia.

Diciamo che una formula \mathcal{F} è un'istanza di un assioma, se si ottiene da uno schema di assioma, sostituendo ad ogni lettera dello schema una formula. Per esempio, la formula $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ è un'istanza dell'assioma A_1 , perché si ottiene da A_1 sostituendo $(q \Rightarrow r)$ alla lettera X e p alla lettera Y.

Esercizio 3. Verificare che la formula $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ è una tautologia.

Esercizio 4. Osservare che se un certo assioma A è una tautologia, allora ogni istanza dell'assioma A è una tautologia.

2 Teoremi e dimostrazioni

Abbiamo iniziato questo corso ponendoci la domanda "Cos'è una dimostrazione?". Nell'ambito di un sistema assiomatico, possiamo darne una definizione precisa.

Definizione 2.1 (Dimostrazione). In un sistema assiomatico \mathcal{S} , una dimostrazione è una sequenza di formule $\mathcal{F}_1, \ldots, \mathcal{F}_n$ tale che ogni formula \mathcal{F}_i o è un'istanza di un assioma, oppure si ottiene dalle formule precedenti della sequenza tramite una regola di inferenza.

Esempio. Consideriamo il nostro sistema S_0 . Nel seguito la indicheremo con M.P. la regola di inferenza Modus Ponens.

(1)
$$p \Rightarrow (q \Rightarrow p)$$
 $[A_1 \operatorname{con} X = p, Y = q]$

(1)
$$p \Rightarrow (q \Rightarrow p)$$
 [$A_1 \operatorname{con} X = p, Y = q$]
(2) $(p \Rightarrow (q \Rightarrow p)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow p))$ [$A_2 \operatorname{con} X = p, Y = q, Z = p$]

(3)
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow p)$$
 $[(1), (2) \in M.P.]$

La sequenza di formule (1), (2) e (3) qui sopra è una dimostrazione secondo la Definizione 2.1. Infatti, le formule (1) e (2) sono istanze di assiomi, e la formula (3) si ottiene dalle due formule precedenti usando la regola di inferenza Modus Ponens, dove abbiamo posto $X = (p \Rightarrow (q \Rightarrow p))$ e $Y = (p \Rightarrow q) \Rightarrow (p \Rightarrow p)$.

A questo punto possiamo anche dire cos'è un teorema in un sistema assiomatico.

Definizione 2.2 (Teorema). In un sistema assiomatico, un teorema è l'ultima formula di una dimostrazione.

Esercizio 5. La formula $p \Rightarrow p$ è un teorema del sistema S_0 . (Suggerimento: Instanziare l'assioma A_1 con X=p e $Y=(p\Rightarrow p)$, l'assioma A_2 con X=p, $Y=(p\Rightarrow p)$ $p), \ e \ Z = p \ e \ usare \ Modus \ Ponens. \ Poi \ instanziare \ A_1 \ con \dots)$

3 Derivazioni e il Teorema di Deduzione

Un concetto che estende quello di dimostrazione è quello che chiamiamo derivazione.

Definizione 3.1 (Derivazione). Sia \mathcal{S} un sistema assiomatico, sia \mathcal{F} una formula e sia Γ un insieme di formule. Diciamo che \mathcal{F} deriva da Γ nel sistema \mathcal{S} se esiste una sequenza di formule $\mathcal{F}_1, \ldots, \mathcal{F}_n$ tali che $\mathcal{F}_n = \mathcal{F}$ e ognuna delle \mathcal{F}_i , per $i = 1, \ldots, n$, o è un'istanza di un assioma, o si ottiene dalle formule precedenti della sequenza tramite una regola di inferenza, oppure è una delle formule dell'insieme Γ . La sequenza $\mathcal{F}_1, \ldots, \mathcal{F}_n$ si chiama derivazione di \mathcal{F} da Γ . Le formule in Γ sono le ipotesi della derivazione.

Introduciamo anche un po' di simboli. Quando una formula \mathcal{F} deriva da un insieme Γ in un sistema assiomatico \mathcal{S} scriviamo $\Gamma \vdash_{\mathcal{S}} \mathcal{F}$. Quando il sistema \mathcal{S} di cui stiamo parlando è chiaro dal contesto lo omettiamo e scriviamo semplicemente $\Gamma \vdash \mathcal{F}$.

Esempio. Consideriamo sempre il nostro sistema S_0 e facciamo vedere che la formula $p \Rightarrow r$ deriva dalle formule $p \Rightarrow q$ e $q \Rightarrow r$. In simboli

$$p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$$
.

Chiamiamo $p \Rightarrow q \in q \Rightarrow r$ rispettivamente Ipotesi 1 e Ipotesi 2.

(1)
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$
 $[A_2 \text{ con } X = p, Y = q, Z = r]$

(2)
$$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$
 $[A_1 \text{ con } X = (q \Rightarrow r), Y = p]$

(3)
$$q \Rightarrow r$$
 [Ipotesi 2]

$$(4) \quad p \Rightarrow (q \Rightarrow r) \tag{3}, (2) \in M.P.$$

(5)
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$
 [(4), (1) e M.P.]

(6)
$$p \Rightarrow q$$
 [Ipotesi 1]

(7)
$$p \Rightarrow r$$
 [(6), (5) e $M.P.$]

La sequenza di formule $(1), \ldots, (7)$ qui sopra è una derivazione della formula $p \Rightarrow r$ dall'insieme di formule $\{p \Rightarrow q, q \Rightarrow r\}$. Le formule (1) e (2) sono istanze di assiomi, (3) e (6) sono le ipotesi, (4), (5) e (7) seguono da formule precedenti tramite Modus Ponens.

Adesso, direi che tocca a voi fare un po' di pratica...

Esercizio 6. Dimostrare che nel sistema S_0

$$p \Rightarrow (q \Rightarrow r), q \vdash p \Rightarrow r$$

Se confrontate le definizioni di dimostrazione e teorema con quella di derivazione, potete osservare che una dimostrazione di \mathcal{F} è una derivazione di \mathcal{F} con $\Gamma = \emptyset$. Per indicare che una formula \mathcal{F} è un teorema nel sistema \mathcal{S} perciò scriveremo $\vdash \mathcal{F}$.

Esercizio 7. Sia $\mathcal F$ una formula qualunque. Dimostrare che nel sistema $\mathcal S_0$

$$\vdash \mathcal{F} \Rightarrow \mathcal{F}$$

E adesso qualcosa di più impegnativo.

Esercizio 8. Siano $\mathcal{F} \in \mathcal{G}$ due formule. Dimostrare che se in \mathcal{S}_0 si può derivare \mathcal{G} da \mathcal{F} , allora $\mathcal{F} \Rightarrow \mathcal{G}$ è un teorema. In simboli, se $\mathcal{F} \vdash \mathcal{G}$ allora $\vdash \mathcal{F} \Rightarrow \mathcal{G}$. (Suggerimento: Sia $\mathcal{F}_1, \ldots, \mathcal{F}_n$ una derivazione di \mathcal{G} da \mathcal{F} . Dimostrare, per induzione su i, che $\vdash \mathcal{F} \Rightarrow \mathcal{F}_i$ per ogni $i = 1, \ldots, n$)

L'esercizio precedente si può generalizzare un po', ottenendo quello che si chiama Teorema di deduzione.

Teorema 3.2 (Teorema di deduzione). Sia Γ un insieme di formule e siano \mathcal{F} e \mathcal{G} due formule. Nel sistema \mathcal{S}_0 se $\Gamma \cup \{\mathcal{F}\} \vdash \mathcal{G}$ allora $\Gamma \vdash \mathcal{F} \Rightarrow \mathcal{G}$.

Esercizio 9. Dimostrare il teorema di deduzione.

4 Conclusioni

In questo episodio abbiamo introdotto i sistemi assiomatici per la logica proposizionale. Osservate che dall'Esercizio 2 segue che in un qualunque sistema assiomatico in cui gli schemi di assiomi sono tautologie e la regola di inferenza è Modus Ponens, tutti i teoremi sono tautologie. Il nostro sistema S_0 quindi è corretto. Sarà anche completo? Così com'è adesso, no, non è completo. Ma è sufficiente aggiungere uno schema di assioma per rendelo completo, per esempio questo:

$$A_3: (\sim X \Rightarrow \sim Y) \Rightarrow ((\sim X \Rightarrow Y) \Rightarrow X)$$

Se chiamiamo S_1 il sistema assiomatico formato dagli assiomi A_1 , A_2 , e A_3 e dalla regola di inferenza Modus Ponens, si può infatti dimostrare che ogni tautologia è un teorema nel sistema S_1 . Ma per il momento non ci addentriamo in questo discorso.

Per finire, un paio di esercizi sul sistema S_1 .

Esercizio 10. Siano \mathcal{F} e \mathcal{G} due formule. Dimostrare che nel sistema \mathcal{S}_1

1.
$$\sim \mathcal{F} \Rightarrow (\mathcal{F} \Rightarrow \mathcal{G})$$

2.
$$(\sim \mathcal{G} \Rightarrow \sim \mathcal{F}) \Rightarrow (\mathcal{F} \Rightarrow \mathcal{G})$$

Suggerimento: Es 1. Dimostrare prima che $\sim \mathcal{F}, \mathcal{F} \vdash \mathcal{G}$, quindi dal Teorema di deduzione seguirà che $\sim \mathcal{F} \vdash \mathcal{F} \Rightarrow \mathcal{G}$ e poi, usando ancora il Teorema di deduzione, ...

Es.2. Dimostrare prima che $\sim \mathcal{G} \Rightarrow \sim \mathcal{F}$, $\mathcal{F} \vdash \mathcal{G}$ e poi usare due volte il Teorema di deduzione