FEUILLE DE T.D. 9

Les notations sont celles du cours.

Exercice 1.

Calculer la transformée de Laplace et préciser le domaine de sommabilité dans les cas suivants :

- 1. $f(t) = \cos(\omega t) \chi_{[0,+\infty[}(t); g(t) = \sin(\omega t) \chi_{[0,+\infty[}(t); \omega \in \mathbb{R}$
- 2. $f(t) = e^{-\alpha t} \chi_{[0,+\infty[}(t) ; \alpha \in \mathbb{R}$
- 3. $\Pi(t) = \chi_{[0, T]}(t)$; T > 0; $f(t) = t\Pi(t)$; $g(t) = t^2\Pi(t)$.

Exercice 2.

- 1. Montrer que : si $\mathcal{L}f(x) = F(x)$ alors $\mathcal{L}(tf(t))(x) = -F'(x)$ où $x \in \mathbb{R}$, $x > x_s$.
- 2. Calculer alors les transformées de Laplace de :

$$g(t) = te^{-2t} \chi_{[0,+\infty[}(t) ; h(t) = (at+b)\cos(\omega t) \chi_{[0,+\infty[}(t)$$

Exercice 3.

Résoudre les problèmes (P1) et (P2) suivants, en utilisant la transformée de Laplace :

(P1)
$$\begin{cases} y''(t) + y'(t) = t; \ t \ge 0 \\ y(0) = 1; y'(0) = 0 \end{cases}$$

$$(P2) \ \begin{cases} ay'(t) + y(t) = \cos(\omega t) \, \chi_{[0, +\infty[}(t) \; \; ; \; \; a \neq 0 \; ; \; t \geq 0 \\ y(0) = 1 \end{cases}$$

FEUILLE DE T.D. 9 B

Les notations sont celles du cours.

Exercice 4.

Résoudre le problème suivant en utilisant la transformée de Laplace :

$$\begin{cases} y''(t) - 3y'(t) + 2y(t) = e^{-t} \;\; ; \;\; t \geq 0 \\ y(0) = 0 \;\; ; \;\; y'(0) = 1 \end{cases}$$