Bezpečnosť WiFi sietí

Ing. Matej Kačic

BIS

Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno ikacic@fit.vutbr.cz

Bezpečnostné ciele

- Autentifikácia
 - Musíme overovať identitu
- Dôvernosť
 - Autentifikovaní ľudia sú schopní interpretovať obsah rámcov
 - Je to dostatočne bezpečné?
- Integrita
 - Zaistiť, aby prenášané dáta boli chránené pred akoukoľvek modifikáciou
- Spoľahlivosť / Dostupnosť

- Radio band 2,4 GHz
 - 802.11 (1997) 2 Mb/s
 - 802.11b (1999) 11 Mb/s (DSSS)
 - 802.11g (2003) 54 Mb/s (OFDM)
- Radio band 5GHz
 - 802.11a (1999) 54 Mb/s (OFDM)
- 802.11n
 - 2,4 GHz, 5 GHz, 600 Mb/s (MIMO)
- 802.11ac
 - 5 GHz, 1.69 Gbit/s (MIMO 2+2)

IEEE 802.11 - štandard

- IEEE 802.11 The original 2 Mbit/s, 2.4 GHz standard
- IEEE 802.11a 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
- IEEE 802.11ac Enhancements for very high throughput (2013)
- IEEE 802.11b Enhancements to 802.11 to support 5.5 and 11 Mbit/s (1999)
- IEEE 802.11d International (country-to-country) roaming extensions
- IEEE 802.11e Enhancements: QoS, including packet bursting
- IEEE 802.11f Inter-Access Point Protocol (IAPP)
- IEEE 802.11g 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11h 5 GHz spectrum, Dynamic Channel/Frequency Selection (DCS/DFS) and Transmit Power Control
- (TPC) for European compatibility
- IEEE 802.11i Enhanced security (ratied 24 June 2004)
- IEEE 802.11j Extensions for Japan: 4.9 GHz 5 GHz Operation
- IEEE 802.11k Radio resource measurement enhancements
- IEEE 802.11n Higher throughput improvements: 100+ Mbit/s, based on multiple-input, multiple-output (mimo)
- IEEE 802.11p WAVE Wireless Access for the Vehicular Environment (such as passenger cars)
- IEEE 802.11r Fast Roaming/Fast BSS Transition, makes it easier to use wireless VoIP and other real-time interactive
- applications
- IEEE 802.11s ESS Mesh Networking, extends WLAN range by allowing data to pass through wireless nodes bringing
- coverage beyond the typical WLAN connectivity limit
- IEEE 802.11t Wireless Performance Prediction (WPP) test methods and metrics
- IEEE 802.11u Interworking with non-802 networks (e.g., cellular)
- IEEE 802.11v Wireless network management
- IEEE 802.11w Protected Management Frames

Bezpečnostné mechanizmy WiFi

WEP

- Wired Equivalent Privacy
- založené na RC4 stream cipher (bez šifrovania, 40-bit klíč, 128-bit klíč)
- stream cipher: data sú xorována pseudonáhodným streamom
- znovupoužití stejného pseudonáhodného streamu
- Zaisťuje (zaisťoval) Dôvernosť, Integritu a dostupnosť

Schéma systému WEP

Autentifikácia WEP – Open system

- Open system
 - Bez autentifikácie, po pripojení je komunikácia šifrovaná
 - Stanica sa identifikuje 48bit MAC adresou
- Používané techniky "zabezpečenia":
 - MAC filtering
 - SSID hidding
- Potreba použiť vyššiu formu zabezpečenia! Ipsec, SSP, VPN

- Autentifikácia na základe MAC adresy
- Náročná administrácia každý klient musí byť pridaný do systému
- MAC adresa je prenášaná ako cleartext
- Útočník dokáže zachytiť paket s MAC adresou a nastaviť svojej wifi kartu túto adresu

```
1024 15.962919
                                 Cisco-Li 98:9f:13
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Authentication, SN=220, FN=0, Flags=...
 1026 15.964180
                                 Cisco-Li 98:9f:13
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Authentication, SN=220, FN=0, Flags=...
                                 Cisco-Li 4c:7d:61
 1135 17.308974
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=2828, FN=0, Flags=...
                                 Cisco-Li 98:9f:13
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=241, FN=0, Flags=...
 1141 17.356810
                                 Cisco-Li 4c:7d:61
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=2830, FN=0, Flags=...
 1143 17.368444
                                 Cisco-Li 98:9f:13
1147 17.416049
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=243, FN=0, Flags=...
1152 17.424360
                                 Cisco-Li 53:35:3d
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=795, FN=0, Flags=...
1154 17.428072
                                 Cisco-Li 53:35:3d
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=795, FN=0, Flags=...
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=795, FN=0, Flags=...
 1156 17.431759
                                 Cisco-Li 53:35:3d
 1158 17.434207
                                 Cisco-Li 4c:7d:61
                                                        Apple 12:2e:b8
                                                                               IEEE 802 Probe Response, SN=2831, FN=0, Flags=...
                                 Cisco-Li 98:9f:13
 1163 17.469261
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=245, FN=0, Flags=...
 1165 17.478377
                                 Cisco-Li 4c:7d:61
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=2833, FN=0, Flags=...
 1169 17.528180
                                 Cisco-Li 98:9f:13
                                                        Apple 12:2e:b8
                                                                              IEEE 802 Probe Response, SN=247, FN=0, Flags=...
  Destination address: Apple 12:2e:b8 (θθ:23:32:12:2e:b8)
  Source address: Cisco-Li 98:9f:13 (00:1c:10:98:9f:13)
  BSS Id: Cisco-Li 98:9f:13 (00:1c:10:98:9f:13)
  Fragment number: 0
  Sequence number: 220
IEEE 802.11 wireless LAN management frame
w Eivad narameters (6 bytes)
```

SSID Hiding

- AP nevysiela SSID siete v beacon rámcoch v snahe skryť svoju sieť
- Sieť sa neukazuje len v zozname dostupných sietí
- Je možné ho zistiť odchytením komunikácie na sieti
 - PROBE request/response, ASSOCIATION request...
- Neefektívna forma ochrany

```
1960 28.836870
                                  Apple 12:2e:b8
                                                                             IEEE 802 Probe Request, SN=550, FN=0, Flags=....., SSID="HiddenSecret"
                                                       Broadcast
  1961 28.848702
                                  Apple d9:9c:75
                                                       Broadcast
                                                                             IEEE 802 Probe Request, SN=2107, FN=0, Flags=...., SSID="UNLV"
                                                       Broadcast
  1962 28.871038
                                  Apple d9:9c:75
                                                                             IEEE 802 Probe Request, SN=2109, FN=0, Flags=...., SSID="UNLV"
  1963 28.876995
                                  Apple 99:8e:33
                                                       Broadcast
                                                                             IEEE 802 Beacon frame, SN=494, FN=0, Flags=....., BI=100, SSID="Taylor Rile
                                 Apple d9:9c:75
                                                       Broadcast
                                                                             IEEE 802 Probe Request, SN=2110, FN=0, Flags=....., SSID="UNLV"
  1964 28.879717
                                                                            IEEE 802 Probe Request, SN=551, FN=0, Flags=....., SSID="HiddenSecret"
  1965 28.890850
                                 Apple 12:2e:b8
                                                       Broadcast
  1966 28.903045
                                 Cisco-Li 4c:7d:61
                                                       Broadcast
                                                                             IEEE 802 Beacon frame, SN=43, FN=0, Flags=....., BI=100, SSID="Samurai"
                                  Cisco-Li 53:35:3d
                                                                            IEEE 802 Beacon frame, SN=1461, FN=0, Flags=....., BI=100, SSID="Bullet Pro
  1967 28.935361
                                                       Broadcast
                                 Cisco 26:3e:01
                                                       Broadcast
                                                                             IEEE 802 Beacon frame, SN=3148, FN=0, Flags=....., BI=100, SSID="UNLV-Guest
  1968 28.938937
  1969 28.943453
                                  D-Link 2c:84:ba
                                                       Broadcast
                                                                             IEEE 802 Beacon frame, SN=2292, FN=0, Flags=....., BI=100, SSID="Radar"
▼ IEEE 802.11 wireless LAN management frame
 ▼ Tagged parameters (41 bytes)
    Tag Number: 0 (SSID parameter set)
        Tag length: 12
        Tag interpretation: HiddenSecret: "HiddenSecret"

▼ Supported Rates: 1.0 2.0 5.5 11.0

        Tag Number: 1 (Cupperted Dates)
```

Autentifikácia WEP – Shared key

- Je použitý WEP pre autetifikáciu
- 4-way handshake
 - 1. Klient posiela AP ziadosť o autentifikáciu (48bit MAC adresu a transaction sequence number of 1)
 - 2. AP posiela späť (transaction sequence number of 2, chalenge text)
 - 3. Klient posiela
 - transaction sequence number of 3
 - IV pre WEP
 - chalenge text zašifrovaný IV a zdieľaným kľúčom WEP
 - ICV (integrity check value) generované a zašifrované WEPom
 - 4. AP dešifruje a porovná s výzvou, ktorú poslal, a kontroluje ICV.
 - transaction sequence number of 4
 - Výsledok autentikifácie uspech/neúspech
 - 5. Klient používa WEP k šifrovaniu rámcov

Zranitelnosť autentifikácie zdielaného kľúča

Nedostatky WEPu 1/4

- Slabý ICV používa CRC-32 ako hašovací alg
 - CRC je kryptograficky slabý alg. (lineárna funkcia)
 - Útočník dokáže zmeniť ktorýkoľvek bit v šifrovanom texte a správne nastaviť šifrovaný haš
 - $C'=C\bigoplus(\Delta,c(\Delta))$
- Key-stream discovery
 - RC4 sa stáva zranitelným, ak 2 správy sú šifrované rovnakým key-streamom
 - IEEE implementovalo 24bit IV
 - Ale IV sa začne opakovať po približne 5000 správach narodeninový paradox
 - Ak nastane kolízia, útočník dokáže použiť rovnicu C1⊕C2=P1⊕P2 a získava xor plaintextov
 - Ak útočník odhalil plaintext dokáže najst key-stream C⊕P=K -> vie dešifrovať všetky pakety s rovnakým IV
 - Pre dešifrovanie všetkých paketov, útočník potrebuje najmenej
 2*2^24 IV = 33.5 mil. framov

Nedostatky WEPu 2/4

- Frame injection
 - Útok sa spolieha na to, že štandard nepožaduje, aby sa IV menil pre každý paket
 - 1. Útočník dokáže znovu použiť IV a key-stream a generuje nekonečno validných paketov
 - 2. Útočník zachytáva rámce od validných klientov a posiela ich do siete neobmedzený počet krát DoS

Nedostatky WEPu 3/4

- Shared key recovery
 - Publikovaných niekoľko možných útokov (2001 2007)
 - Najlepší útok (2007), redukuje uhádnutie 104bit kľúča na 60 sekúnd.
 - 95% úspešnosť pri 85 000 rámcoch
 - Princíp štatistického ohodnotenia všetkých možných kľúčov -> veľké množstvo dát
 - Kľúč získava "hlas" ak produkuje rovnaký čiastočný keystream v zachytených rámcoch

Nedostatky WEPu 4/4

- Caffe Latte attack
 - Využíva slabosť klientov pripojovať sa automicky na známe sieť
 - Útočník sleduje probe žiadosti od klienta a vytvára falošný AP
 - Klient sa automaticky snaží autentifikovať do tohoto AP
 - Kľúč dokáže odhaliť behom 20 min.

Postup:

- 1. Klient posiela auth. Žiadosť
- 2. Útočník odpovedá chalenge textom
- 3. Klient vracia IV a zašifrovaný chalenge text
- Útočník zistuje key-stream pre IV a posiela info o uspešnej autentifikácii

Caffe Latte attack

- 5. Klient sa asociuje a posiela š zašifrované DHCP žiadosti
- 6. Čas požiavky vyprší a útočník sa nakonfiguruje sám v bloku adries 169.254.0.0/16
- 7. Útočník posiela ARP žiadosť zašifrovanú IV a key-stream pre každú adresu v bloku 169.254... (15 min)
- Útočník potom opakuje ARP žiadosť pre každú známu adresu približne 1000 krát za minutu
- Proces pokračuje pokiaľ útočník nezíska dostatok paketov k štatistickému útoku.

Nedostatky WEPu - sumár

- Znovupoužitie inicializačného vektora a kľúčov
 - Kľúč sa mení zriedka alebo vôbec
 - Nie je definovaný spôsob voľby IV
 - Malý stavový priestor
- Používa CRC
- Autentifikácia pomocou zdielaného kľúča

WiFi Protected Access

- Implementuje časť štandardu 802.11i
- Dočasné riešenie (dokončenie štandardu, kompabilita)
- Data šifruje pomocou RC4 (128b key, 48b IV)
- TKIP Temporal Key Integrity Protocol
 - Key Mixing kombinuje tajný root kľúč + IV pred vstupom do RC4
 - Sequence counter pakety menšie ako aktuálne číslo sú zahodené (replay attack)
 - MIC Message integrity check 64bit
 - Slabina algoritmu Michael TKIP blokuje prevádzku po dobu 1 min v prípade detekcie 2 rámcou, ktoré neprešli testom integrity, sieť sa reštartuje a generujú sa nové kľúče a znovu prebehne autentifikácia

- Plná implementácia štandardu 802.11i
- Používa CCMP Counter Mode with Cipher Block Chaining Message Authentication Code Protocol
 - Založený na blokovej šifre AES
- Autetifikácia v WPA/WPA2
 - Pre-Shared Key (PSK) Authentication
 - Navrhnuté pre domácnosť a malé firmy
 - Všetko čo používa zdieľané heslo bezpečné nie je!!
 - Enterprise Authentication
 - Pužíva 802.1x
 - Poskytuje per-user or per-system authentication
- Považujeme ho za bezpečný, ale..

Hierarchia kľúčov - kľúče

- PMK Pairwise Master key
- PTK Pairwise Transient Key
- EAPOL key -
 - KCK Key confirmation key
 - KEK Key Encryption key
- TK Temporal key
- GMK Group Master key
- GTK- Group Transient Key
- MSK Master session key

Odvodenie kľúčov pre unicast komunikáciu

- PTK kľúč (384bit alebo 512bit) je odvodený pomocou generátora pseudonáhodných čísiel so vstupom:
 - 1. PMK
 - 1. = PSK
 - 2. Prvých 256bit MSK z 802.1x
 - 2. MAC adresa klienta a AP
 - Náhodné číslo generované klientom a druhé AP
- PTK je rozdelený do troch kľúčov:
 - EAPOL-Key KCK prvých 128bit, používa sa pre integritu eapol rámcov
 - EAPOL-Key KEK druhých 128 bits, používa sa pre šifrovanie eapol...
 - TK ostávajúce bity (CCMP 128, TKIP 256), šifrovanie bežnej komunikácie

Odvodenie kľúčov pre broadcast komunikáciu

- AP náhodne generuje GMK
- GMK je vstupom pre generovanie GTK
- GTK sa mení vždy pri každom prihlásení a odhlásení klienta

EAPOL rámce

- Vytvorenie bezpečnej komunikácie, distribúcia kľúčov
- Sú chránené kľúčom iným od TK
 - 128-bit key confirmation key(KCK)
 - 128-bit key encryption key(KEK)
- Komunikácia prebieha pomocou skupiny bezpečnostných protokolov – distribúcia kľúčov nezávisle k normálnej komunikácii
- Útočník dokáže získať dostatok dátových rámcov a objaveniu TK, ale nedokáže čítat EAPOL rámce
- Útočník začína od začiatku

Dĺžky kľúčov

	TKIP TK	ССМР ТК	кск	KEK	Total Bits Required
TKIP PTK	256		128	128	512
ССМР РТК		128	128	128	384
TKIP GTK	256				256
ССМР GTK		128			128

WiFi rámec?

Odkial - kam môžu "cestovať" rámce

- ToDS=1, rámec je určený pre distribučný systém
- FromDS=1, rámec pochádza z distribučného systému
- ToDS=1, FromDS=1, komunikácia medzi dvoma AP distribučného systému
- ToDS=0, FromDS=0, komunikácia v Ad-Hoc sieti posiela len prístupový bod klientom.

Frame Path	Address 1	Address 2	Address 3	Address 4
Frame between two wireless clients	Destination MAC	Source MAC	BSSID	N/A
Frame from network through AP to Client	Destination MAC	AP's MAC	Source MAC	N/A
Frame from client to network through AP	BSSID	Source MAC	Destination MAC	N/A
Frame traveling between two APs in a WDS	Receiving AP's MAC	Transmitting AP's MAC	Destination MAC	Source MAC

Typy WiFi rámcov

Control Frame:

- RTS, CTS, ACK
- Data Frame
- 3. Management Frame:
 - Beacon
 - Probe Req, Probe Resp
 - Assoc Req, Assoc Resp
 - Reassoc Req, Reassoc Resp
 - Disassociation
 - Authentication
 - Deauthentication

Probe Request Payload

SSID	Supported Rated	Extended Supported Rates
22ID	Бирроглей Калей	Extended Supported Rates

Probe Response Payload

Timestamp	Be ac on Interval	CapabilityInfo	SSID	Supported Rates	DSPS	ERP Info	Extended Supported Rates
					21		

CCMP

- PN číslo paketu
- Nonce unikátne číslo každého rámca
- MIC Message Integrity Code
- AAD additional authentication data

WPA2 Enterprise (802.1x)

- Poskytuje autentifikáciu na sieťovej vrstve
 - EAP zabezpečuje autentifikáciu
 - Access point zabezpečuje šifrovanie (TKIP/CCMP)
- Pozostáva z:
 - Supplicant (Client)
 - Authenticator (AP)
 - Authentication Server (RADIUS or IAS server)
- Extensible Authentication Protocol (EAP)
 - 802.1X používa niekoľko typov EAP pre autentifikáciu klientov
 - Typy EAP: PEAP, LEAP, EAP-MD5, EAP-TLS, EAP-TTLS
 - Správny výber typu EAP má veľký vplyv na bezpečnosť siete

WPA2 Enterprise

• 802.1X + RADIUS

Filter:	eap		Expression	Clear	Apply		
No.	Time	Source	Destination	Protocol	Length	Info	
	2 2011	L-00:4f:62:26:f3:df	IntelCor_73:0d:f4	EAP	73	Request,	Identity [RFC3748]
	3 2011	L-IntelCor_73:0d:f4	00:4f:62:26:f3:df	EAP	78	Response,	, Identity [RFC3748]
	4 2011	L-00:4f:62:26:f3:df	IntelCor_73:0d:f4	EAP	88	Request,	MD5-Challenge [RFC3748]
	5 2013	L·IntelCor_73:0d:f4	00:4f:62:26:f3:df	EAP	88	Response,	, MD5-Challenge [RFC3748]
	6 2011	L-00:4f:62:26:f3:df	<pre>IntelCor_73:0d:f4</pre>	EAP	71	Success	

- Pôvodne iba pre LAN
- Autentizácia typu challenge-response
 - response = md5(user_id+password+challenge_request)
- Postup útoku:
 - Odchytenie komunikácie
 - "crack" md5 hashe
 - eapmd5pass
 - eapmd5crack.py
 - cca 350tis k/s (WPA-PSK cca 1500 k/s)

LEAP (Lightweight EAP)

- CISCO proprietárny protokol
- Nepoužívá certifikáty
- Challenge-response autentizace
- Postup útoku:
 - Odchytenie komunikácie
 - crack challenge-response tokenu
 - asleap

- EAP pôvodne navrhnutý pre drôtové siete pre odpočúvanie bol nutný fyzický prístup
- Protected EAP (PEAP) and Tunneled Transport Layer
 Security (TTLS) používajú TLS k ochrane
 autentifikačných protokolov v bezdrôtovom prostredí
- Nutnosť certifikátu pre overenie RADIUS servera
- PEAP podporuje MS-CHAPv2 ako vnútornú autentifikačnú metódu.
- TTLS podporuje MS-CHAPv2, CHAP, PAP, ...

PEAP a MS-CHAPv2

Dôležitosť validácie certifikátu

- SSID môže byť ľahko podvrhnuté
- TLS poskytuje metódu pre validáciu access point (Authenticator) resp. siete
- Až keď je certifikát overený, klient posiela autentifikačné informácie
- Autentifikačný prenos je chránený pred odposluchom TLS tunelom

- Mnoho nasadení vypína validáciu certifikátom
- PEAP následne dôveruje každému RADIUS serveru

PEAP (Protected EAP)

- PEAPv0 with EAP-MSCHAPv2
- Autentizácia serveru voči klientovi (certifikát)
- Postup útoku:
 - Rogue AP (hostapd)
 - Vlastný radius server (freeradius-wpe)
 - Deautentizácia klienta (airdrop-ng)
 - Crack challenge (asleap)

FreeRADIUS-WPE

- Wireless Pwnage Edition (WPE) patch pre FreeRADIUS 2.0.2
 - Returns success for any authentication requests
 - Logs all authentication credentials
 - Challenge/response
 - Password
 - Username
- Performs credential logging on PEAP, TTLS, LEAP, EAP-MD5, EAP-MSCHAPv2, PAP, CHAP, and others

- Mnoho nasadení vypína validáciu certifikátom
- PEAP následne dôveruje každému RADIUS serveru

- Validácia certifikátu servera je povoľená
- Štandardné nastavenie
 Wireless Zero Configuration
 (WZC)
- Užívateľ potvrdzuje validitu certifikátu
- Minimum informácií v dialog boxe
- Útok rovnaký ako predtým, ale nutnosť potvrdiť certifikát

- Validácia certifikátu servera je povolená
- Dôveryhodná koreňová certifikačná autorita je vybraná
- Nevaliduje sa CN!
- Útok:
 - Odchytenie platného loginu a zistenie CA TLS certifikátu
 - Kúpa certifikátu od dôveryhodnej CA
 - Každé CN môže byť použité
 - Nastavenie RADIUS k použitiu tohto certifikátu

PEAP a mobilné zariadenia

WPA2: Hole 196 [8/2010]

- Používa GTK kľúč
 - Rovnaký pre AP aj všetkých pripojených klientov
 - Posiela upravené rámce klientom
 - Klienti tieto rámce považujú za validné rámca poslané pristupovým bodom
- **Stealth** ARP poisoning, DoS attack, ...
- Náročná detekcia, obzvlášť na mobilných zariadeniach

Man in the middle

Stealth ARP cache poisoning

Falošné AP

- Neautorizovaný prístupový bod Rogue AP
 - Inštalovaný zamestnancom
 - Inštalovaný útočníkom
 - Pripojený do LAN siete backdoor
 - Mimo LAN siete -
 - Ako detekovať rogue AP?

Zabezpečovanie bezdrôtových sietí

- Použiť CCMP pre šifrovanie
 - Migrovať z TKIP
 - Nikdy nepoužívať WEP
- Použiť PEAP, TTLS, TLS pre autentifikáciu
 - TLS vyžaduje PKI
 - Vyhnúť sa použitiu Pre-Shared Keys (PSK)
 - Všetko čo je zdieľané nie je bezpečné
 - Ak musíte použiť PSK, zvoľte unikátne SSID and použite komplexný kľuč o dĺžke viac ako 14 znakov

Zabezpečenie infraštruktúry

- "Harden and patch" infraštruktúry :
 - Access points
 - Wireless controllers
 - Authentication servers
- Nepoužívať skryté AP
- Vypnúť nebezpečné typu EAPu (md5)
- Zabrániť nezabezpečeným klientom používať bezdrôtovú sieť
- Použiť Firewall a izolovať bezdrôtovú sieť od vnútornej siete

Wireless IDS

- Zvážiť nasadenie Wireless IDS
- Detekuje:
 - De-auth attacks
 - RTS and CTS denial of service attacks
 - Rogue APs
- IDS je iba detekcia a nie prevencia
- POZOR na wireless IPS

Zabezpečenie klientov

- Používanie dlhých a zložitých hesiel
- Aplikovanie všetkých aktualizácií rýchlo
 - Vrátane aktualizácie firmwaru pre wireless karty
- Posilnenie bezpečnosti systému (hardening)
- Zakázať ad-hoc sieťe
- Zabrániť premosteniu siete
- Zaistiť, že klient je správne nakonfigurovaný

Zabezpečenie PEAP konfigurácie

Zaistiť:

- "Validate server certificate"
- "Connect to these servers" and specify the CN of the RADIUS server
- "Trusted Root Certificate
 Authorities" Povoliť len CA,
 ktorá odpovedá certifikátu
 servera
- "Do not prompt user to authorize new servers
- Vynútiť pomocou zásad politiky systému

Wi-Fish Finder Security Assessment Tool for WiFi Clients (c)2009 Md Sohail Ahmad, Prabhash Dhyani, Air⊤ight Networks

CH 6 [Elapsed: 5 mins][2009-07-30 11:47]

STATION	AUTH	ENC	Security-Posture	MODE	Probed SSID
00:1C:BF:01:E8:99	WPA2-802.1x	CCMP	Vuln .	Infra	Test-PEAP-Vulnerable
::::	WPA2-802.1x	CCMP	Secure	Infra	Test-WPA2-1X-AES
::::	WPA2-802.1x	TKIP	Secure	Infra	Test-WPA2-1X-TKIP
::::	WPA2-PSK	CCMP	Secure	Infra	Test-WPA2-PSK-AES
::::	WPA2-PSK	TKIP	Secure	Infra	Test-WPA2-PSK-TKIP
::::	WPA1-802.1x	CCMP	Secure	Infra	Test-WPA1-1X-AES
::::	WPA1-802.1x	TKIP	Secure	Infra	Test-WPA1-1X-TKIP
::::	WPA1-PSK	CCMP	Secure	Infra	Test-WPA1-PSK-AES
::::	WPA1-PSK	TKIP	Secure	Infra	Test-WPA1-PSK-TKIP
::::	WEP -Open	WEP	Vuln (WEP Cracking)	Infra	Test-WEP-Open
::::	-Open	OPEN	Vuln (Unencrypted)	Infra	Test-Open
:::	WEP -SKA	WEP	Vuln (WEP Cracking)	Infra	WEP_Shared

Nástroje pre audit wifi sietí – aircrack-ng

- http://www.aircrack-ng.org/
- <u>airbase-ng</u> -- Multi-purpose tool aimed at attacking clients as opposed to the AP itself.
- <u>aircrack-ng</u> -- 802.11 WEP and WPA/WPA2-PSK key cracking program.
- airdecap-ng -- Decrypt WEP/WPA/WPA2 capture files.
- airdecloak-ng -- Remove WEP Cloaking™ from a packet capture file.
- <u>airdriver-ng</u> -- Script providing information and allowing installation of wireless drivers.
- airdrop-ng -- A rule based wireless deauthication tool.
- <u>aireplay-ng</u> -- Inject and replay wireless frames.
- <u>airgraph-ng</u> -- Graph wireless networks.
- <u>airmon-ng</u> -- Enable and disable monitor mode on wireless interfaces.
- <u>airodump-ng</u> -- Capture raw 802.11 frames.
- <u>airolib-ng</u> -- Precompute WPA/WPA2 passphrases in a database to use it later with aircrack-ng.
- <u>airserv-ng</u> -- Wireless card TCP/IP server which allows multiple application to use a wireless card.
- <u>airtun-ng</u> -- Virtual tunnel interface creator.
- <u>easside-ng</u> -- Auto-magic tool which allows you to communicate to an WEP AP without knowing the key.
- <u>packetforge-ng</u> -- Create various type of encrypted packets that can be used for injection.
- <u>tkiptun-ng</u> -- Proof-of-concept implementation the WPA/TKIP attack: inject a few frames into a WPA TKIP network with QoS
- wesside-ng -- Auto-magic tool which incorporates a number of techniques to seamlessly obtain a WEP key in minutes.

Nástroje pre audit wifi sietí – backtrack

http://www.backtrack-linux.org/

- Používať
 - WPA2 v režime AES/CCMP
 - Silné a dostatočne dlhé heslá
 - Certifikáty
 - "Správnu konfiguráciu"
- V prípade nezabepečenej siete použit vpn, ipsec,...
- Nespoliehať sa slepo na mechanizmy nižších vrstiev
 - Používať https, scp a podobne
- Zvážiť použitie Wireless IDS/IPS

Rôzne

- Vzorová architektúra pre WiFi
- DNS tunneling
- Krádež vzdialenej relácie

Ďakujem za pozornosť