5.1 MATHEMATICAL INDUCTION 5.2 STRONG INDUCTION

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

MATHEMATICAL INDUCTION

- A powerful, rigorous technique for proving that a predicate P(n) is true for all positive integers.
- Essentially a "domino effect" principle.
 - **Premise #1:** Domino #1 falls.
 - **Premise** #2: For every $k \in \mathbb{N}$, if domino #k falls, then so does domino #k+1.
 - Conclusion: All of the dominoes fall down!

this works even if there are infinitely many dominoes!

MATHEMATICAL INDUCTION

Based on a predicate-logic inference rule:

$$P(1)$$

$$\forall k \geq 1 \ (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n \geq 1 \ P(n)$$

"The First Principle of Mathematical Induction"

VALIDITY OF INDUCTION(1)

- **Proof** that $\forall n \geq 1$ P(n) is a valid consequent:
 - Given any $k \ge 1$, the 2^{nd} antecedent $\forall k \ge 1$ ($P(k) \rightarrow P(k+1)$) trivially implies that $\forall k \ge 1$ (k < n) $\rightarrow (P(k) \rightarrow P(k+1))$, *i.e.*, that $(P(1) \rightarrow P(2)) \land (P(2) \rightarrow P(3)) \land \dots \land (P(n-1) \rightarrow P(n))$.
 - Repeatedly applying the **hypothetical syllogism** rule to adjacent implications in this list n-1 times, then gives us $P(1) \rightarrow P(n)$
 - Together with P(1) (antecedent #1) and modus ponens gives us P(n).
 - Thus $\forall n \geq 1 P(n)$.

THE WELL-ORDERING PROPERTY

- Another way to prove the validity of the inductive inference rule is by using the well-ordering property (良序性), which says that:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.

 $\forall \varnothing \subset S \subseteq \mathbb{N} : \exists m \in S : \forall n \in S : m \leq n$

The well-ordering property can be used directly in proofs.

■ This implies that $\{n|\neg P(n)\}$ (if non-empty) has a min element m, but then the assumption that $P(m-1)\rightarrow P((m-1)+1)$ would be contradicted.

VALIDITY OF INDUCTION(2)

Proof (contradiction):

- Suppose that P(1) holds and $P(k) \rightarrow P(k+1)$ is true for all positive integers k.
- Assume there is at least one positive integer n for which P(n) is false. Then the set S of positive integers for which P(n) is false is nonempty.
- By the well-ordering property, S has a least element, say m.
- We know that m can not be 1 since P(1) holds.
- Since m is positive and greater than 1, m-1 must be a positive integer. Since m-1 < m, it is not in S, so P(m-1) must be true.
- But then, since the conditional $P(k) \rightarrow P(k+1)$ for every positive integer k holds, P(m) must also be true.
- This contradicts P(m) being false.
- Hence, P(n) must be true for every positive integer n.

OUTLINE OF AN INDUCTIVE PROOF

Method:

- Let us say we want to prove $\forall nP(n)$.
- Do the *base case* (or *basis step*): Prove P(1).
- Do the *inductive step*: Prove $\forall k(P(k) \rightarrow P(k+1))$.
 - *E.g.* you could use a direct proof, as follows:
 - Let $k \in \mathbb{N}$, assume P(k). (inductive hypothesis)
 - Now, under this assumption, prove P(k+1).
- By mathematical induction, $\forall nP(n)$ is true.

GENERALIZING INDUCTION

Generalizing 1:

- Rule can also be used to prove $\forall n \geq c P(n)$ for a given constant $c \in \mathbb{Z}$, where maybe $c \neq 1$.
- In this circumstance, the *basis step* is to prove P(c) rather than P(1), and the *inductive step* is to prove

$$\forall k \geq c (P(k) \rightarrow P(k+1))$$

Can reduce these to the form already shown.

Generalizing 2:

■ Induction can also be used to prove $\forall n \geq c P(a_n)$ for any arbitrary series $\{a_n\}$.

SECOND PRINCIPLE OF INDUCTION

Characterized by another inference rule:

```
P(1)
\forall k \geq 1: (\forall 1 \leq j \leq k \ P(j)) \rightarrow P(k+1)
\therefore \forall n \geq 1: P(n)
P \text{ is true in } all \text{ previous cases}
(P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k+1)
```

- The only difference between this and the 1st principle is that:
 - the inductive step here makes use of the stronger hypothesis that P(k+1) is true for *all* smaller numbers j < k+1, not just for j=k.

A.k.a. "Strong Induction"

Example 2:

Prove that the sum of the first n odd positive integers is n^2 . That is, prove: $\forall n \ge 1 : \sum_{i=1}^{n} (2i-1) = n^2$

Proof by induction:

P(n)

- **Basis step**: Let n=1. The sum of the first 1 odd positive integer is 1 which equals 1^2 .
- Inductive step: Prove $\forall n \geq 1$: $P(n) \rightarrow P(n+1)$.

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + (2(n+1)-1)$$

$$= n^{2} + 2n + 1 \quad By \ inductive \ hypothesis \ P(n)$$

$$= (n+1)^{2}$$

■ By mathematical induction, $\forall n \geq 1 P(n)$ is true.

- Example 5 (Proving Inequalities):
 - Prove that $\forall n > 0, n < 2^n$.
- Proof:
 - Let P(n): $(\forall n>0 \ n<2^n)$
 - **Basis step:** P(1): $(1<2^1)=(1<2)=T$.
 - Inductive step: For k>0, prove $P(k) \rightarrow P(k+1)$.
 - Assuming $k < 2^k$, prove $k+1 < 2^{k+1}$.
 - Note $k + 1 < 2^k + 1$ (by inductive hypothesis) $< 2^k + 2^k$ (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{n-1} = 2^n$) $= 2^{k+1}$
 - So $k+1 < 2^{k+1}$, and by mathematical induction, $n < 2^n$ is true.

- **Example 6 (Proving Inequalities):**
 - Use mathematical induction to prove that $2^n < n!$, $\forall n \ge 4$.
- Solution:
 - Let $P(n) : \forall n \ge 4, 2^n < n!$.
 - **Basis Step**: P(4) is true since $2^4 = 16 < 4! = 24$.
 - Inductive Step: Assume P(k) holds, i.e., $2^k < k!$ for an arbitrary integer $k \ge 4$. To show that P(k+1) holds:

$$2^{k+1} = 2 \cdot 2^k$$

 $< 2 \cdot k!$ (by the inductive hypothesis)
 $< (k+1)k! = (k+1)!$

■ Therefore, $2^n < n!$ Holds for every integer $n \ge 4$ by mathematical induction.

Note that here the basis step is P(4), since P(0), P(1), P(2) and P(3) are all false.

Example 8: Proving divisibility results

• Use mathematical induction to prove that n^3 -n is divisible by 3 whenever n is a positive integer.

Solution:

- Let P(n) be the proposition that $n^3 n$ is divisible by 3.
- **Basis step**: P(1) is true since $1^3 1 = 0$, which is divisible by 3.
- Inductive step: Assume P(k) holds, i.e., $k^3 k$ is divisible by 3, for an arbitrary positive integer k. To show that P(k + 1) follows:

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$
$$= (k^3 - k) + 3(k^2 + k)$$

By the inductive hypothesis, the first term $(k^3 - k)$ is divisible by 3 and the second term is divisible by 3. So by part (i) of Theorem 1 in Section 4.1, $(k + 1)^3 - (k + 1)$ is divisible by 3.

By mathematical induction, $n^3 - n$ is divisible by 3, for every integer positive integer n.

INDUCTION EXAMPLE (1ST PRINC.)

Example 10: Number of Subsets of a Finite Set

• Use mathematical induction to show that if S is a finite set with n elements, where n is a **nonnegative integer**, then S has 2^n subsets. (Chapter 6 uses combinatorial methods to prove this result.)

Solution:

- Let P(n) be the proposition that a set with n elements has 2^n subsets.
- Basis Step: P(0) is true, because the empty set has only itself as a subset and $2^0 = 1$.
- Inductive Step: Assume P(k) is true for an arbitrary nonnegative integer k which has 2^k subsets.

Solution(Cont):

- Inductive Hypothesis: For an arbitrary nonnegative integer k, every set with k elements has 2^k subsets.
- Let T be a set with k+1 elements. Then $T=S\cup\{a\}$, where $a\in T$ and $S=T-\{a\}$. Hence |S|=k, |T|=k+1.
- For each subset X of S, there are exactly two subsets of T, i.e., X and $X \cup \{a\}$.

By the inductive hypothesis S has 2^k subsets. Since there are two subsets of T for each subset of S, the number of subsets of T is $2 \cdot 2^k = 2^{k+1}$. By mathematical induction, $\forall nP(n)$ is true.

INDUCTION EXAMPLE (1ST PRINC.)

Example 13: Odd pie fights

- An odd number of people stand in a yard at mutually distinct distances.
- At the same time each person throws a pie at their nearest neighbor, hitting this person.
- Use mathematical induction to show that there is at least one survivor, that is, at least one person who is not hit by a pie.

Proof:

- Let P(n) be the statement that there is a survivor whenever 2n + 1 people stand in a yard at mutually distinct distances and each person throws a pie at their nearest neighbor.
- Basis Step: When n = 1, there are 2n + 1 = 3 people in the pie fight. It's true.
- Inductive Step: assume that P(k) is true for an arbitrary integer k with $k \ge 1$ (2k+1). To show 2k+3 is true.
 - Let A and B be the closest pair of people in this group of 2k + 3 people.
 - when no one else throws a pie at either A or B.
 - when someone else throws a pie at either A or B
- By mathematical induction, $\forall n \geq 1 \ P(n)$ is true.

Example 2: Fundamental Theorem of Arithmetic

• Show that if n is an integer greater than 1, then n can be written as the product of primes (uniqueness is proved in Section 4.3).

Solution:

- Let P(n) be the proposition that n can be written as a product of primes.
- **Basis Step:** P(2) is true since 2 itself is prime.
- Inductive Step: The inductive hypothesis is P(j) is true for all integers j with $2 \le j \le k$. To show that P(k+1) must be true under this assumption, two cases need to be considered:
 - If k + 1 is prime, then P(k + 1) is true.
 - Otherwise, k+1 is composite and can be written as the product of two positive integers a and b with $2 \le a \le b < k+1$.
 - By the inductive hypothesis a and b can be written as the product of primes and therefore k + 1 can also be written as the product of those primes.
 - Hence, by mathematical induction, it has been shown that every integer greater than 1 can be written as the product of primes.

Example 4:

 Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Proof 1:

- P(n): "n can be..."
- Basis step: 12=3(4), 13=2(4)+1(5), 14=1(4)+2(5), 15=3(5), so $\forall 12 \le k \le 15$, P(k).
- Inductive step: Let $k \ge 15$, assume $\forall 12 \le j \le k$ P(j), to show P(k+1) is true. Note $k-3 \ge 12$, so P(k-3) is true.
- Add a 4-cent stamp to get postage for k+1, thus P(k+1).
- By mathematical induction, $\forall n \ge 12 P(n)$ is true.

Proof 2:

- Basis Step: Postage of 12 cents can be formed using three 4cent stamps.
- Inductive Step: The inductive hypothesis P(k) for any positive integer $k \ge 12$ is that postage of k cents can be formed using 4-cent and 5-cent stamps. To show P(k+1) hold where $k \ge 12$, we consider two cases:
 - If at least one 4-cent stamp has been used, then a 4-cent stamp can be replaced with a 5-cent stamp to yield a total of k+1 cents.
 - Otherwise, no 4-cent stamp have been used and at least three 5-cent stamps were used. Three 5-cent stamps can be replaced by four 4-cent stamps to yield a total of k+1 cents.
- Hence, P(n) holds for all $n \ge 12$.

INDUCTION EXAMPLE (2ND PRINC.)

Strong induction in computational geometry

- Polygon
- Vertex
- Simple
- Interior
- Exterior
- Diagonal
- Convex
- Triangulation

Computational geometry is widely used in computer graphics, computer games, robotics, scientific calculations

■ Theorem 1: Computational geometry

- A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.
- **Lemma:** Every simple polygon with at least four sides has an interior diagonal. (which is difficult to prove.)

Proof:

- Let T(n) is the statement.
- **Basis Step:** T(3) is true.
- Inductive Step: Assume all T(j) is true when $3 \le j \le k$, that is a simple polygon with j sides can be triangulated into j-2 triangles. To show T(k+1) is also true, a simple polygon P with k+1 sides can be triangulated into k-1 triangles.

INDUCTION EXAMPLE (2ND PRINC.)

Proof (cont):

- An interior diagonal ab splits P (with k+1 sides) into two simple polygons with s and t sides respectively (according to lemma).
- \blacksquare Sides: s+t-2=k+1
- We now use the inductive hypothesis. Because both $3 \le s \le k$ and $3 \le t \le k$, by the inductive hypothesis we can triangulate the two polygons into s-2 and t-2 triangles, respectively. Thus the total triangles are s+t-4.
- *Triangles:* s+t-4=s+t-2-2=k+1-2=k-1
- Hence, for all $n \ge 3$ T(n) is true.

U

USES OF THE WELL-ORDERING PROPERTY

Example 6: Round-robin tournament

- In a round-robin tournament every player **plays every other** player exactly once and each match has a winner and a loser. We say that the players p_1, p_2, \ldots, p_m form a **cycle** if p_1 beats p_2, p_2 beats p_3, \ldots, p_{m-1} beats p_m , and p_m beats p_1 .
- Use the well-ordering principle to show that if there is a cycle of length m ($m \ge 3$) among the players in a roundrobin tournament, there must be a cycle of three of these players.

USES OF THE WELL-ORDERING PROPERTY

Solution (contradiction):

- We assume that there is no cycle of three players.
- Because there is at least one cycle in the round-robin tournament, the set of all positive integers n for which there is a cycle of length n is nonempty. By the well-ordering property, this set of positive integers has a least element k, which must be greater than three. Consequently, there exists a cycle of players $p_1, p_2, p_3, \ldots, p_k$ and no shorter cycle exists.
- Because there is no cycle of three players, we know that k > 3.
- Consider the first three elements of this cycle, p_1 , p_2 , and p_3 . There are two possible outcomes of the match between p_1 and p_3 .
 - If p_3 beats p_1 , it follows that p_1 , p_2 , p_3 is a cycle of length three, contradicting our assumption that there is no cycle of three players. Consequently, it must be the case that p_1 beats p_3 .
 - This means that we can omit p_2 from the cycle $p_1, p_2, p_3, \ldots, p_k$ to obtain the cycle $p_1, p_3, p_4, \ldots, p_k$ of length k 1, contradicting the assumption that the smallest cycle has length k.
- We conclude that there must be a cycle of length three.

THE METHOD OF INFINITE DESCENT

- Method of Infinite Descent (无限递降法/费马递降法)
 - A way to prove that P(n) is false for all $n \in \mathbb{N}$. Sort of a converse to the principle of induction.
 - We use method of contradiction, assume P(n) is true.
 - Firstly, by the well-ordering property of N, we know that $\exists P(m)$: $\forall P(n)$: $m \le n$
 - Basically, "If there is a P, there is a smallest P."
 - Then prove that $\forall P(n)$: $\exists k < n$: P(k).
 - Basically, "For every P there is a smaller P."
 - Note that these are contradictory
 - that is, P(n) is false.

THE METHOD OF INFINITE DESCENT

Example:

■ **Theorem:** $2^{1/2}$ is irrational.

Proof:

- Suppose $2^{1/2}$ is rational, then $\exists m,n \in \mathbb{Z}^+$: $2^{1/2}=m/n$.
- Let M,N be the m,n with the least n.

$$\sqrt{2} = \frac{M}{N} \therefore 2 = \frac{M^2}{N^2} \therefore 2N^2 = M^2.$$

$$\frac{M}{N} = \frac{M(M-N)}{N(M-N)} = \frac{M^2 - MN}{N(M-N)} = \frac{2N^2 - MN}{N(M-N)} = \frac{N(2N-M)}{N(M-N)} = \frac{2N-M}{M-N}$$

$$1 < \sqrt{2} < 2 : 1 < \frac{M}{N} < 2 : N < M < 2N : 0 < M - N < N$$

■ So $\exists k < N$, $\exists j$: $2^{1/2} = j/k$ (let j=2N-M, k=M-N). Contradiction.

WHICH INDUCTION SHOULD BE USED?

- We can always use strong induction instead of mathematical induction. But there is no reason to use it if it is simpler to use mathematical induction.
- In fact, the principles of mathematical induction, strong induction, and the well-ordering property are all *equivalent*. (*Exercises* 41-43)
- Sometimes it is clear how to proceed using one of the three methods, but not the other two.

HOMEWORK

- § 5.1
 - **32**, 44, 54

- **§** 5.2
 - **4**, 26

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

DEFINITIONS

- In *induction* (归纳), we *prove* all members of an infinite set satisfy some predicate *P* by:
 - proving the truth of the predicate for larger members in terms of that of smaller members.
- In *recursive definitions* (递归定义), we similarly *define* a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by:
 - defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.
- In *structural induction* (*结构归纳*), we inductively *prove* properties of recursively-defined objects in a way that parallels the objects' own recursive definitions. (用对象自己的递归定义来归纳地证明递归定义对象的属性)

RECURSION

Definition:

- **Recursion** is the general term for the practice of defining an object in terms of *itself* or of *part of itself*. (This may seem circular, but it isn't necessarily.)
- An *inductive proof* establishes the truth of P(n+1) recursively in terms of P(n).
- There are also recursive *algorithms*, *functions*, *sequences*, *sets*, and other structures.

RECURSIVELY DEFINED FUNCTIONS

Simplest case:

- One way to define a function $f: \mathbb{N} \to S$ (for any set S) or series $a_n = f(n)$ is to:
 - Define f(0).
 - For n>0, define f(n) in terms of $f(0), \dots, f(n-1)$.

Example:

- Define the series $a_n := 2^n$ recursively:
 - Let $a_0 := 1$.
 - For n>0, let $a_n := 2a_{n-1}$.

RECURSIVELY DEFINED FUNCTIONS

Another Example:

- Suppose we define f(n) for all $n \in \mathbb{N}$ recursively by:
 - Let f(0)=3
 - For all $n \in \mathbb{N}$, let f(n+1)=2f(n)+3
- What are the values of the following?

$$f(1) =$$

$$f(2) =$$

$$f(3) = f(4) =$$

$$f(4) =$$

RECURSIVE DEFINITION OF FACTORIAL

• Give an inductive (recursive) definition of the factorial function,

$$F(n) :\equiv n! :\equiv \prod_{1 \leq i \leq n} i = 1 \cdot 2 \cdot \dots \cdot n.$$

- Base case: F(0) := 1
- Recursive part: $F(n) := n \cdot F(n-1)$.
 - F(1)=
 - F(2)=
 - F(3)=

OTHER RECURSIVE DEFINITIONS

- Write down recursive definitions for:
 - $a \cdot n$ (a real, n natural) using only addition
 - a^n (a real, n natural) using only multiplication
 - $\sum_{0 \le i \le n} a_i$ (for an arbitrary series of numbers $\{a_i\}$)
 - $\prod_{0 \le i \le n} a_i$ (for an arbitrary series of numbers $\{a_i\}$)
 - $\bigcap_{0 \le i \le n} S_i$ (for an arbitrary series of sets $\{S_i\}$)

THE FIBONACCI SERIES

■ The *Fibonacci series* $f_{n\geq 0}$ is a famous series defined by:

$$f_0 :\equiv 0$$
, $f_1 :\equiv 1$, $f_{n \geq 2} :\equiv f_{n-1} + f_{n-2}$

Leonardo Fibonacci 1170-1250

INDUCTIVE PROOF ABOUT FIB. SERIES

- Theorem: $f_n < 2^n$.
- Proof: By induction.
 - **Basis step**: $f_0 = 0 < 2^0 = 1$ $f_1 = 1 < 2^1 = 2$
 - **Inductive step**: Use 2nd principle of induction (strong induction).
 - Assume $\forall k < n, f_k < 2^k$.
 - Then $f_n = f_{n-1} + f_{n-2}$ is

$$< 2^{n-1} + 2^{n-2} < 2^{n-1} + 2^{n-1} = 2^n$$
.

INDUCTIVE PROOF ABOUT FIB. SERIES

Theorem

- For all integers $n \ge 3$, $f_n > \alpha^{n-2}$, where $\alpha = (1+5^{1/2})/2 \approx 1.61803$.
- Proof. (Using strong induction.)
 - Let $P(n): (f_n > \alpha^{n-2})$.
 - **Basis step:** For n=3, note that $f_3 = 2 > \alpha$.

For
$$n=4$$
, $f_4=3>\alpha^2=(1+2\cdot 5^{1/2}+5)/4=(3+5^{1/2})/2\approx 2.61803$

Inductive step:

- For $k \ge 4$, assume P(j) is true for $3 \le j \le k$, prove P(k+1).
- By strong inductive hypothesis, $f_k > \alpha^{k-2}$ and $f_{k-1} > \alpha^{k-3}$.
- Note $\alpha^2 = \alpha + 1$. Thus, $\alpha^{k-1} = (\alpha + 1)\alpha^{k-3} = \alpha^{k-2} + \alpha^{k-3}$.
- So, $f_{k+1} = f_k + f_{k-1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-1}$. Thus P(k+1).

LAMÉ'S THEOREM (拉梅定理)

Theorem:

■ $\forall a,b \in \mathbb{N}$, $a \ge b > 0$, the number of steps in Euclid's algorithm to find $\gcd(a,b)$ is $\le 5k$, where $k = \lfloor \log_{10} b \rfloor + 1$ is the number of decimal digits in b.

Thus, Euclid's algorithm is linear-time in the number of

digits in b.

Proof:

Uses the Fibonacci sequence!

Gabriel Lamé (1795-1870) French

LAMÉ'S THEOREM (拉梅定理)

Proof (Cont):

Consider the sequence of division-algorithm equations used in Euclid's alg.:

Where

$$r_0 = r_1 q_1 + r_2$$
 with $0 \le r_2 < r_1$ $a = r_0$, $a = r_0$, $b = r_1$, and $c = r_0$, $c = r_$

• The number of divisions (iterations) is n.

下一步证明 $n \leq 5k$,其中 $k = \lfloor \log_{10} b \rfloor + 1$

4

LAMÉ'S THEOREM (拉梅定理)

Proof (Cont):

- Since $r_0 \ge r_1 > r_2 > \dots > r_n$, each quotient $q_i = \lfloor r_{i-1}/r_i \rfloor \ge 1$.
- Since $r_{n-1} = r_n q_n$ and $r_{n-1} > r_n$, $q_n \ge 2$.
- So we have the following relations between r_n and f_n :

$$r_n \ge 1 = f_2$$

 $r_{n-1} \ge 2r_n \ge f_2 + f_2 = 2 = f_3$
 $r_{n-2} \ge r_{n-1} + r_n \ge f_2 + f_3 = f_4$
...
 $r_2 \ge r_3 + r_4 \ge f_{n-2} + f_{n-1} = f_n$
 $b = r_1 \ge r_2 + r_3 \ge f_{n-1} + f_n = f_{n+1}$.

 $k = \lfloor \log_{10} b \rfloor + 1$

- Thus, if n>2 divisions are used, then $b \ge f_{n+1} > \alpha^{n-1}$. (why?)
- Thus, $\log_{10} b > \log_{10}(\alpha^{n-1}) = (n-1)\log_{10} \alpha \approx (n-1)0.208 > (n-1)/5$.
- If b has k decimal digits, then $\log_{10} b < k$, (n-1)/5 < k, so $n \le 5k$.

 $\Theta(log(min(a,b)))$

RECURSIVELY DEFINED SETS

Definition:

- An *infinite set S* may be defined recursively, by giving:
 - A small finite set of *base* elements of *S*.
 - A rule for constructing new elements of *S* from previously-established elements.
 - Implicitly, S has no other elements but these.

Example 5:

Let $3 \in S$, if $x,y \in S$, then $x+y \in S$. What is S?

RECURSIVELY DEFINED SETS

Definition: (the set of all strings)

• Given an alphabet Σ , the set Σ^* of all strings over Σ can be recursively defined by:

$$\varepsilon \in \Sigma^*$$
 ($\varepsilon := ```'$, the empty string)
 $w \in \Sigma^* \land x \in \Sigma \rightarrow wx \in \Sigma^*$

Exercise:

Prove that this definition is equivalent to our old one:

$$\Sigma^* := \bigcup_{n \in \mathbf{N}} \Sigma^n$$

OTHER STRING EXAMPLES

- Give recursive definitions for:
 - The concatenation of strings $w_1 \cdot w_2$. (see Definition 2)
 - The length $\ell(w)$ of a string w. (see Example 7)
 - Well-formed formulae of propositional logic involving **T**, **F**, propositional variables, and operators in $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$. (see Example 8)
 - Well-formed arithmetic formulae involving variables, numerals, and ops in $\{+, -, *, \uparrow\}$. (see Example 9)

RECURSIVELY DEFINED ROOTED TREES

- **Trees** will be covered in more depth in chapter 11.
 - Briefly, a tree is a graph in which there is exactly one undirected path between each pair of nodes.
- **Definition** of the set of rooted trees:
 - Any single node *r* is a rooted tree.
 - If $T_1, ..., T_n$ are disjoint rooted trees with respective roots $r_1, ..., r_n$, and r is a node not in any of the T_i 's, then another rooted tree is $\{\{r,r_1\},...,\{r,r_n\}\}\cup T_1\cup...\cup T_n$.

EXTENDED BINARY TREES

- A special case of rooted trees.
- Recursive definition of EBTs:
 - Basis Step: The empty set \emptyset is an extended binary tree.
 - Recursive Step: If T_1, T_2 are disjoint EBTs, there is an extended binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 when these trees are nonempty.

EXTENDED BINARY TREES

FIGURE 3 Building Up Extended Binary Trees.

FULL BINARY TREES

- A special case of extended binary trees.
- Recursive definition of FBTs:
 - Basis Step: A single node r is a full binary tree.
 - Note this is different from the EBT base case.
 - Recursive Step: If T_1, T_2 are disjoint FBTs, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 .
 - Note this is the same as the EBT recursive case!

FULL BINARY TREES

FIGURE 4 Building Up Full Binary Trees.

STRUCTURAL INDUCTION

Definition:

■ Proving something about a recursively defined object using an inductive proof whose structure mirrors the object's definition. (利用对象的递归定义来归纳地证明该对象的属性)

Example problem:

- Let $3 \in S$, and if $x, y \in S$ then $x+y \in S$.
- Show *S* is the set of positive multiples of 3.
- Let $A = \{n \in \mathbb{Z}^+ | (3|n)\}.$
- Theorem: A=S.

STRUCTURAL INDUCTION

■ **Proof:** Let $3 \in S$, if $x,y \in S$ then $x+y \in S$

$$A = \{n \in \mathbb{Z}^+ | (3|n)\}.$$

- We show that $A \subseteq S$ and $S \subseteq A$.
- To show $A \subseteq S$, show $(n \in \mathbb{Z}^+ \land (3|n)) \rightarrow n \in S$.
 - Inductive proof. Let $P(m) := 3m \in S$.
 - Basis step: m=1, thus $3*1 \in S$ by def'n. of S.
 - Inductive step: Assume P(k) holds $(3k \in S)$, prove P(k+1). By inductive hyp., $3k \in S$, $3 \in S$, so by def'n of S, $3k+3=3(k+1) \in S$.
- To show $S \subseteq A$: let $n \in S$, show $n \in A$.
 - Structural inductive proof. Let $P(n) :\equiv n \in A$.
 - **Basis step:** by recursive definition of S, n=3, which is in A.
 - Recursive step: by the second part of recursive definition of S, x, y < n, x, $y \in S$, then $n = x + y \in S$. By strong inductive hypothesis, assume the element of S x and y are also in A ($3 \le x$, y < n), it follows that 3|x and 3|y. We have 3|(x+y), thus $x+y \in A$.

GENERALIZED INDUCTION

Example 13

■ Suppose that $a_{m,n}$ is defined recursively for $(m,n) \in N*N$ by $a_{0,0}=0$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0. \end{cases}$$

Show that $a_{m,n}=m+n(n+1)/2$ for all $(m,n) \in N*N$, that is for all pairs of nonnegative integers.

Solution:

• We can prove that $a_{m,n} = m + n(n+1)/2$ using a generalized version of mathematical induction. If the formula holds for all pairs smaller than (m, n) in the lexicographic ordering of $N \times N$, then it also holds for (m, n).

GENERALIZED INDUCTION

Proof:

- **Basis step:** Let (m, n) = (0, 0). Then by the basis case of the recursive definition of $a_{m,n}$ we have $a_{0,0} = 0$. Furthermore, when $m=n=0, m+n(n+1)/2 = 0+(0\cdot 1)/2=0$.
- Induction step: Suppose that $a_{m',n'} = m' + n'(n'+1)/2$ whenever (m', n') is less than (m, n) in the lexicographic ordering of N×N.
- By the recursive definition, if **n=0**, then $a_{m,n} = a_{m-1,n} + 1$. Because (m-1, n) is smaller than (m, n), the inductive hypothesis tells us that $a_{m-1,n} = m-1+n(n+1)/2$, so that $a_{m,n} = m-1+n(n+1)/2+1 = m+n(n+1)/2$, giving us the desired equality.
- Now suppose that n>0, so $a_{m,n}=a_{m,n-1}+n$. Because (m, n-1) is smaller than (m, n), the inductive hypothesis tells us that $a_{m,n-1}=m+(n-1)n/2$, so $a_{m,n}=m+(n-1)n/2+n=m+n(n+1)/2$.
- This finishes the inductive step.

Homework

- § 5.3
 - **20,** 48

