Homework 8

BIOS 7731

Due 11/10 10:30am through Canvas.

Students may work together on homework assignments, but the assignment handed in must represent your own work. Problems based on a later lecture are labeled with *.

Update: 3 Nov 2020: Everyone has decided to complete problem 0 as part of this assignment so as a result this assignment is quite long. I have decided to shorten it as follows:

- Question 1: You do not need to answer part (c).
- Question 6: This problem is now optional. I have left it on the assignment for extra credit. I have also added a hint.
- 0. BD 5.3.28 part (a), pg 354 This is problem number 5 from assignment 7. You do not have to resubmit it if you already included your solution in your submission of assignment 7.
- 1. BD 5.3.8 parts (a),(b) ,(c) , pg 349
- 2. BD 5.3.18, pg 352*
- 3. BD 5.3.20, pg 352*

Hint: Use the multivariate version of the delta method.

- 4. BD 5.4.1 part (c), pg 352* 356*
- 5. Suppose that $k_n[\delta_n g(\theta)]$ converges in distribution to a continuous limit distribution H. Prove that:
 - (a) If $k'_n/k_n \to d \neq 0$ then $k'_n[\delta_n g(\theta)]$ also converges to a continuous limit distribution.
 - (b) If $k'_n/k_n \to 0$ or ∞ , then $k'_n[\delta_n g(\theta)]$ converges in probability to zero or infinity, respectively.
 - (c) If $k_n \to \infty$, then $\delta_n \to_p g(\theta)$.
- 6. Extra Credit. Suppose $\rho(x)$ is an even function, nondecreasing and non-negative for $x \geq 0$ and positive for x > 0. Then, $E\{\rho[\delta_n g(\theta)]\} \to 0$ for all θ implies that δ_n is consistent for estimating $g(\theta)$.

Hint: Prove the following proposition and then use this lemma to show consistency of δ_n .

Prop: Let $g \ge 0$ be an even function (i.e., g(-x) = g(x)) which is increasing on $[0, \infty)$. Then for all random variables X and all $\epsilon > 0$,

$$P(|X| \ge \epsilon) \le \frac{Eg(X)}{g(\epsilon)}$$