

Pruebas de Acceso a las Universidades de Castilla y León

MATEMÁTICAS II

Texto para los Alumnos

Nº páginas 2

CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

DATOS O TABLAS (SI HA LUGAR): Podrá utilizarse una calculadora "de una línea". No se admitirá el uso de memoria para texto, ni de las prestaciones gráficas.

OPTATIVIDAD: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas, PR-1 y PR-2, y cuatro cuestiones, C-1, C-2, C-3 y C-4. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. EL ALUMNO DEBERÁ ESCOGER UNA DE LAS PRUEBAS, A ó B, Y DESARROLLAR LAS PREGUNTAS DE LA MISMA EN EL ORDEN QUE DESEE.

PRUEBA A

PROBLEMAS

PR-1.- a) Hállese el valor de *a* para el que la recta $r = \begin{cases} x - y + 2z = 1 \\ 2x + y - 5z = 2 \end{cases}$ y el plano

 $\mathbf{p} \equiv ax - y + z + 1 = 0$ son paralelos.

b) Para a = 2, calcúlese la ecuación del plano que contiene a r y es perpendicular a \mathbf{p} , y hállese la distancia entre r y \boldsymbol{p} . (2 puntos)

PR-2.- a) Estúdiense los intervalos de crecimiento y decrecimiento de $f(x) = xe^{-x}$, sus máximos y mínimos relativos, asíntotas y puntos de inflexión. Demuéstrese que para

todo x se tiene que $f(x) \le \frac{1}{e}$. (2 puntos)

b) Pruébese que la ecuación $3x = e^x$ tiene alguna solución en $(-\infty,1]$. (1 punto)

CUESTIONES

C-1.- Sea m un número real. Discútase, en función de m, el sistema de ecuaciones

lineales homogéneo cuya matriz de coeficientes es $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 2 & m+1 & 2 \end{pmatrix}$. (1 punto C-2.- Hállense las ecuaciones de la recta r que pasa por P(2,1,-1), está contenida en el (1 punto)

plano $\mathbf{p} \equiv x + 2y + 3z = 1$, y es perpendicular a la recta $s \equiv \begin{cases} x = 2z - 3 \\ y = z + 4 \end{cases}$. (1 punto)

C-3.- Calcúlese $\lim_{x\to 0} \frac{\ln(\cos(x)) - 1 + \cos(x)}{x^2}$. (1 punto)

C-4.- Calcúlese el área del recinto limitado por la curva de ecuación $y = x^3 - 3x^2 + 2x$ y por la recta tangente a dicha curva en el punto x = 0. (1 punto)

PRUEBA B

PROBLEMAS

PR-1.- Discútase, en función del parámetro real k, el siguiente sistema de ecuaciones lineales:

$$\begin{cases} kx + 3y = 0 \\ 3x + 2y = k \\ 3x + ky = 0 \end{cases}$$

Resuélvase el sistema cuando sea posible

(3 puntos)

PR-2.- Sea
$$f(x) = \frac{4 - 2x^2}{x}$$
.

a) Determínese el dominio de f, sus asíntotas, simetrías y máximos y mínimos relativos. Esbócese su gráfica. (1,75 puntos)

b) Calcúlese
$$\int_{1}^{\sqrt{2}} f(x) \ln(x) dx$$
. (1,25 puntos)

CUESTIONES

C-1.- ¿Existen máximo y mínimo absolutos de la función $f(x) = \cos(x) + 1$ en el intervalo $[0, \mathbf{p}]$? Justifíquese su existencia y calcúlense. (1 **punto**)

C-2.- Dada la matriz $P = \begin{pmatrix} 1 & 2 & a \\ 2 & a+1 & 0 \\ 3 & 4 & 5 \end{pmatrix}$, determínense los valores del número real a

para los cuales existe la matriz inversa de *P*. (1 punto)

C-3.- Calcúlense las ecuaciones de las rectas tangente y normal a la gráfica de la función $f(x) = \frac{x^2}{x^2 + 1}$ en el punto x = 0. (1 punto)

C-4.- El triángulo ABC es rectángulo en A, siendo A(3,0,-1), B(6,-4,5), C(5,3,z). Calcúlese el valor de z y hállese el área del triángulo. (1 punto)