LING572 Hw3 (Naive Bayes) Due: 11:45pm on Jan 28, 2010

The example files are under dropbox/09-10/572/hw3/examples/.

Q1 (5 points): Run the Mallet NB learner (i.e., the trainer's name is NaiveBayes) with train.vectors.txt as the training data and test.vectors.txt as the test data. In your note file, write down the training accuracy and the test accuracy.

Q2 (30 points): Write a script, build_NB1.sh, that implements the Multi-variate Bernoulli NB model. It builds a NB model from the training data, classifies the training and test data, and calculates the accuracy.

- The learner should treat all features as binary; that is, the feature is considered present iff its value is nonzero.
- The format is: build_NB1.sh training_data test_data prior_delta cond_prob_delta model_file sys_output > acc_file
- training_data and test_data are the vector files in the text format (cf. train.vectors.txt).
- prior_delta is the δ used in add- δ smoothing when calculating the prior P(c); cond_prob_delta is the δ used in add- δ smoothing when calculating the conditional probability $P(f \mid c)$.
- model_file stores the values of P(c) and P(f | c) (cf. model1).
 The line for P(c) has the format "classname P(c) logprob", where logprob is 10-based log of P(c).
 The line for P(f | c) has the format "featname classname P(f|c) logprob", where logprob is 10-based log of P(f | c).
- sys_output is the classification result on the training and test data (cf. sys1). Except for the comment lines that start with %, all the other lines have the following format: instanceName true_class_label c1 p1 c2 p2 ..., where $p_i = P(c_i \mid x) = \frac{P(c_i,x)}{P(x)}$. The (c_i,p_i) pairs should be sorted according to the value of p_i in descending order.
- acc_file shows the confusion matrix and the accuracy for the training and the test data (cf. acc1). It has the same format as acc_file in Hw2.
- As always, **model1**, **sys1**, and **acc1** are NOT gold standard. These files were created with a much smaller training dataset.

Q3 (10 points): Run build_NB1.sh with train.vectors.txt as the training data, test.vectors.txt as the test data, and class_delta set to 0. Fill out Table 1 with different values of cond_prob_delta.

Q4 (30 points): Write a script, build_NB2.sh, that implements the multinomial NB model. Other than the modeling (e.g., the features in the multinomial NB model are real-valued), everything else (e.g., the input/output files) is the same as in Q2. Fill out Table 2.

Table 1: Results of your **Bernoulli** NB model

cond_prob_delta	Training accuracy	Test accuracy
0.1		
0.5		
1.0		
2.0		

Table 2: Results of your multinomial NB model

cond_prob_delta	Training accuracy	Test accuracy
0.1		
0.5		
1.0		
2.0		

Q5 (10 points): Binarize features first and then run build_NB2.sh for training and testing. You can use the tool created for Q2 in Hw2 to binarize features. Fill out Table 3.

Table 3: Results of your multinomial NB model with binary features

cond_prob_delta	Training accuracy	Test accuracy
0.1		
0.5		
1.0		
2.0		

Q6 (15 points):

- (a): What conclusion can you draw from Tables 1-3?
- (b): From the value of $P(f \mid c)$ in the model produced by the Bernoulli NB model, can you tell whether or not a feature is important? Why or why not?
- (c): Answer Question (b) for the multinomial NB model.
- (d): Between the two models, does one runs faster at the test time than the other one? If so, why?

Submission: Submit a tar file via CollectIt. The tar file should include the following.

- If your team has two people, please submit only one copy. In your note file, please list the names of team members.
- In your note file hw3.*, include your answers to Q1-Q6, and any notes that you want the TA to read.
- Shell scripts for Q2 and Q4, and related source and binary code.