Gruppenavn: Scenarie	
----------------------	--

1: SEISMISK ANALYSE & BEREGNINGER

TRIN 1: AFLÆSNING AF SEISMOGRAMMER

Station	STATION A	STATION B	STATION C
Stationsnavn			
Breddegrad (°)			
(negativ er syd)			
Længdegrad (°)			
(negativ er vest)			
P-ankomst (s)			
S-ankomst (s)			
Beregn: S-P tid (s)			
Maks. amplitude			
(mm)			

2: BEREGNING AF AFSTAND TIL EPICENTER

Afstand til epicenter:

Afstand (km) \approx S-P tid (sek) \times 8

Mere præcis formel:

$$d = \frac{t_S - t_P}{\frac{1}{v_S} - \frac{1}{v_P}}$$

hvor $v_P = 6.0 \text{ km/s og } v_S = 3.5 \text{ km/s}$

Beregn afstanden fra hver station til epicenteret:

Station	S-P tid (s)	Beregning	Afstand (km)
Station A			
Station B			
Station C			

TRIN 3: EPICENTER LOKALISERING

Brug online værktøj: https://geovidenskab.github.io/epicenter/ til at bestemme epicenter og yderligere vurderinger.

Resultat:		
Epicenter koordinater: (,)	
Vurderet usikkerhede af bestemmelse:		

TRIN 4: MAGNITUDE BEREGNING

Magnitude beregning (Ms):

$$M_s = \log(A_{\text{max}}) + 1.66 \cdot \log(X) + 1.6$$

hvor:

 $A_{max} = \text{maksimal amplitude (mm)}$

X = afstand til epicenter (km)

Eksempel: $A_{max} = 50 \text{ mm}, X = 200 \text{ km}$

$$M_s = \log(50) + 1.66 \cdot \log(200) + 1.6$$

 $M_s = 7.12$

Station	Amplitude (mm)	Afstand (km)	Magnitude (Ms)
Station A			
Station B			
Station C			

Gennemsnitlig magnitude:		

ARK 2: TSUNAMIRISIKO VURDERING

TSUNAMIRISIKO TJEKLISTE

Gå gennem alle punkter systematisk og sæt kryds hvor det passer:

1.	MAGNITUDE VURDERING
	□ MEGET HØJ RISIKO: Magnitude over 7.9 (+5 point)
	□ HØJ RISIKO: Magnitude 7.5-7.9 (+3 point)
	□ MODERAT RISIKO: Magnitude 7.0-7.4 (+1 point)
	\square LAV RISIKO: Magnitude 6.5-6.9 (0 point)
	\square MEGET LAV: Magnitude ; 6.5 (-2 point)
2.	DYBDE VURDERING
	$\hfill \Box$ MEGET LAVT (0-10 km): Maksimal energioverførsel (+3 point)
	\Box LAVT (10-30 km): Høj energioverførsel (+2 point)
	□ MELLEM (30-70 km): Moderat energioverførsel (+1 point)
	\square DYBT (70-150 km): Lav energioverførsel (0 point)
	$\hfill \square$ MEGET DYBT (¿150 km): Minimal energioverførsel (-1 point)
3.	PLACERING VURDERING
	$\hfill \Box$ UNDER HAVBUND: Direkte vandforskydning mulig (+3 point)
	\square KYSTNÆR (;50 km fra kyst): Hurtig tsunamiankomst (+2 point)
	\square OCEANISK (50-200 km fra kyst): Moderat risiko (+1 point)
	\Box FJERNT (¿200 km fra kyst): Længere varslingstid (0 point)
	\square LANDBASERET: Ingen direkte tsunami (-3 point)
4.	FORKASTNINGSTYPE
	☐ THRUST/SUBDUKTION: Vertikal havbundsforskydning (+3 point)
	□ NORMAL FORKASTNING: Moderat vertikal bevægelse (+1 point)
	\square STREJKE-SLIP: Minimal vertikal bevægelse (-1 point)
	□ VULKANSK: Uforudsigelig, kan være farlig (+2 point)

SAMLET SCORE BEREGNING

Kategori	Point	Begrundelse
Magnitude		
Dybde		
Placering		
Forkastningstype		
TOTAL SCORE		

BESLUTNINGSMATRIX

Baseret på jeres totale score:

Over 9 point: RØDT ALARM - Øjeblikkelig regional tsunamivarsel

7-9 point: ORANGE ALARM - Lokal tsunamivarsel og overvågning

4-6 point: GUL ADVARSEL - Øget overvågning, ingen varsel endnu

1-3 point: GRØN OVERVÅGNING - Fortsæt normal overvågning

0 point: INGEN RISIKO - Ingen tsunamirisiko

JERES ENDELIGE BESLUTNING

Varselsniveau:	
Begrundelse (3-5 linjer):	

Særlige overvejelser:

- Befolkede kystområder i nærheden?
- Tidspunkt på dagen (nat = værre evakuering)?
- Særlige begivenheder (festivaler, feriesæson)?
- Tidligere tsunamihistorik i området?

3: FAGLIG OVERSIGT

MAGNITUDE SKALA OG RISIKO (RICHTER/Ms)

Magnitude	Klassifikation	Tsunamirisiko	
Over 6.0	Moderat	Ingen tsunamirisiko	
6.0-6.9	Stærkt	Meget lille risiko, kun lokalt	
7.0-7.4	Større	Moderat risiko, lokal tsunami mulig	
7.5-7.9	Stort	Høj risiko, regional tsunami	
over 8.0	Meget stort	Meget høj risiko, ocean-bred tsunami	

FORKASTNINGSTYPER

Type	Tsunami potentiale
Subduktion	Højest - vertikal bevægelse af havbund skaber store vandforskydninger
Normal-	Moderat - kan skabe vertikale forskydninger
forkastning	
Strike-slip	Lavest - hovedsageligt horisontal bevægelse
Vulkansk	Variabel - kan være meget farlig hvis store landmasser kollapser

Figur 1: Til venstre ses den type forskydninger og forkastninger, der opstår når plader trækker sig fra hinanden (konstruktiv pladegrænse). Det foregår som regel uden voldsomme jordskælv - men gennem mange små ryk. I midten ses den type forskydninger, som opstår når to plader støder mod hinanden (destruktiv pladegrænse). Her opbygges spændinger gennem lang tid inden kraftige jordskælv og volsomme ryk. Disse ser ved bjergkædedannelse, eller i tilfældet men oceanbundsskorpe via en subduktion. Det er denne type bevægelse som er særlig farlig i forhold til dannelse af tsunami. Der er meget energi og en vertikal bevægelse. Til højre ses den bevægelse som sker nå plader forskydes langs hinanden (bevarende pladegrænse). Ligesom to hænder der gnider mod hinanden. Der kan opbygges energi til stor jordskælv, men der sker ikke vertikale forskydninger. Derfor sker der som udgangspunkt ikke tsunami - men der kan stadig ske kraftige og ødelæggende jordskælv.

JORDSKÆLVETS DYBDE OG TSUNAMIRISIKO

0-10 km (meget lavt): Maksimal energioverførsel til vandet

10-30 km (lavt): Høj energioverførsel, stort tsunamipotentiale

30-70 km (mellem): Moderat energioverførsel

70-150 km (dybt): Lav energioverførsel til overfladen

Over 150 km (meget dybt): Minimal tsunamirisiko

HISTORISKE EKSEMPLER

Tsunami	Magnitude	Dybde	Type	Resultat
Indiske Ocean 2004	9.1	30 km	Thrust	230.000 døde
Japan 2011	9.0	32 km	Thrust	20.000 døde
Chile 1960	9.5	$35~\mathrm{km}$	Thrust	Pacific-bred tsunami
Alaska 1964	9.2	25 km	Thrust	Lokal ødelæggelse

TSUNAMIBØLGE HASTIGHEDER

Dybhav (4000m): $\approx 700 \text{ km/t}$

Kontinentalsokkel (200m): $\approx 160 \text{ km/t}$

Kystnært (10m): $\approx 36 \text{ km/t}$

Ankomstider eksempel:

500 km væk: ≈ 45 minutter 1000 km væk: $\approx 1,5$ timer 5000 km væk: ≈ 7 timer