Probability and Statistics

Lecture 10.1: Multiple random variables

Sangryul Jeon
School of Computer Science and Engineering
srjeonn@pusan.ac.kr

Notice

Some feedbacks

- No further assignments on exam period
- Fully annotated pdf after classes

Further feedbacks

- Please provide any feedbacks you would like
- https://docs.google.com/forms/d/e/1FAIpQLScHgW58HTo6CjoNdE8O cpDEDRJEQgEgnE-vwx1cpzpoXr2nKw/viewform?usp=sharing

Agenda

- 1. Intro
- 2. Cartesian Products of Sets
- 3. Joint PMFs
- 4. Marginal PMFs
- 5. Independence

So far

- We've handled both discrete and continuous random variables

Discrete Distributions				
Distribution	Parameters	Possible Description		
Uniform (disc)	$X \sim \mathrm{Unif}(a,b) \ ext{for } a,b \in \mathbb{Z} \ ext{and } a \leq b$	Equally likely to be any $integer$ in $[a, b]$		
Bernoulli	$X \sim \mathrm{Ber}(p)$ for $p \in [0, 1]$	Takes value 1 with prob p and 0 with prob $1-p$		
Binomial	$X \sim \operatorname{Bin}(n,p)$ for $n \in \mathbb{N},$ and $p \in [0,1]$	Sum of n iid Ber (p) rvs. # of heads in n independent coin flips with $P(\text{head}) = p$.		
Poisson	$X \sim \text{Poi}(\lambda)$ for $\lambda > 0$	# of events that occur in one unit of time independently with rate λ per unit time		
Geometric	$X \sim \mathrm{Geo}(p)$ for $p \in [0, 1]$	# of independent Bernoulli trials with parameter p up to and including first success		

Continuous Distributions				
Distribution	Parameters	Possible Description		
Uniform	$X \sim \text{Unif}(a, b)$ for $a < b$	Equally likely to be any real number in $[a, b]$		
Exponential	$X \sim \operatorname{Exp}(\lambda)$ for $\lambda > 0$	Time until first event in Poisson process		
Normal	$X \sim \mathcal{N}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}$, and $\sigma^2 > 0$	Standard bell curve		

- What happens if we want to model more than one at a time?
- How do we model and work with several RV simultaneously?

- What happens if we want to model more than one at a time?
- How do we model and work with several RV simultaneously?
- Let's say we have two normal distributions of MMR score

리그 오브 레젼드	MMR 등급표
플래티넘 1 단계	2100
플래티넘 2 단계	2050
플래티넘 3 단계	2000
플래티넘 4 단계	1950
플래티넘 5 단계	1850
골 드 1 단계	1750
골 드 2 단계	1700
골 드 3 단계	1650
골 드 4 단계	1600
골 드 5 단계	1500

- What happens if we want to model more than one at a time?
- How do we model and work with several RV simultaneously?
- Let's say we have two normal distributions of MMR score
- What is the probability gold tier gamer win the match?

$P(Gold\ tier\ win) = P(MMR_G > MMR_T)$

```
import scipy.stats as st
Gold MMR = 1657
Silver MMR = 1470
STDFV = 200
NTRIALS = 10000
nSuccess = 0
for i in range(NTRIALS):
    g = st.norm.rvs(Gold MMR, STDEV)
    t = st.norm.rvs(Silver MMR, STDEV)
   if g > t:
        nSuccess += 1
print("Win fraction", float(nSuccess) / NTRIALS)
```

≈0.7468 calculated by sampling

Cartesian product of sets

Definition: Cartesian Product of Sets

Let A, B be sets. The Cartesian product of A and B is denoted as

$$\mathbf{A} \times \mathbf{B} = \{(\mathbf{a}, \mathbf{b}) : \mathbf{a} \in \mathbf{A}, \mathbf{b} \in \mathbf{B}\}\$$

If A,B are finite sets, then $|A\times B|=|A|\cdot|B|$ by the product rule of counting

Example

- {1,2,3}×{4,5}?

Cartesian product of sets

Definition: Cartesian Product of Sets

Let A, B be sets. The Cartesian product of A and B is denoted as

$$\mathbf{A} \times \mathbf{B} = \{(\mathbf{a}, \mathbf{b}) : \mathbf{a} \in \mathbf{A}, \mathbf{b} \in \mathbf{B}\}\$$

If A,B are finite sets, then $|A\times B|=|A|\cdot|B|$ by the product rule of counting

Example

 $- \{1,2,3\} \times \{4,5\} = \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$

Suppose we roll two fair 4-sided die independently, one blue and one red. Let X be the value of the blue die and Y be the value of the red die.

$$\Omega_X = \{1,2,3,4\}$$
 $\Omega_Y = \{1,2,3,4\}$

What would be joint range of X & Y and corresponding pmfs?

$$\Omega_{X\times Y}=\Omega_X\times\Omega_Y$$

Suppose we roll two fair 4-sided die independently, one blue and one red. Let X be the value of the blue die and Y be the value of the red die.

If we want to write it as a formula

$$p_{X,Y}(x,y) = P(X=x,Y=y)$$

for $x, y \in \Omega_{X,Y}$

$$p_{X,Y}(x,y) = \begin{cases} \frac{1}{16}, & x,y \in \Omega_{X,Y} \\ 0, & otherwise \end{cases}$$

X\Y	1	2	3	4
1	1/16	1/16	1/16	1/16
2	1/16	1/16	1/16	1/16
3	1/16	1/16	1/16	1/16
4	1/16	1/16	1/16	1/16

Definition: Joint PMF (결합확률질량함수)

Let X,Y be discrete random variable. The joint PMF of X and Y is

$$p_{X,Y}(x,y) = P(X = x, Y = y)$$

The joint range is

$$\Omega_{X\times Y} = \{(c,d): p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

- Note that the probabilities in the table must sum to 1

$$\sum_{(s,t)\in\Omega_{X\vee Y}} p_{X,Y}(s,t) = 1$$

- If $g: \mathbb{R}^2 \to \mathbb{R}$ is a function, then

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \cdot p_{X,Y}(x,y)$$

The joint range $\Omega_{X,Y}$ was always a subset of $\ \Omega_X \times \Omega_Y$, but they are not necessarily equal.

$$\Omega_{U\times V} = \{(u, v) \in \Omega_U \times \Omega_V\} \neq \Omega_U \times \Omega_V$$

Suppose I roll two 4-sided die independently. Let $U=\min\{X,Y\}$ (the smaller of the two die rolls) and $V=\max\{X,Y\}$ (the larger of the two die rolls).

$$\Omega_U = \{1,2,3,4\}$$
 $\Omega_V = \{1,2,3,4\}$

What would be joint range of X & Y and corresponding pmfs?

 \rightarrow Any pair (u,v) with u>v has zero probability

Suppose I roll two 4-sided die independently. Let $U=\min\{X,Y\}$ (the smaller of the two die rolls) and $V=\max\{X,Y\}$ (the larger of the two die rolls).

$$p_{U,V}(u,v) = P(U=u,V=v)$$
for $u,v \in \Omega_{U,V}$

$$p_{U,V}(u,v) = \begin{cases} \frac{2}{16}, & u,v \in \Omega_{U} \times \Omega_{V}, & v > u \\ \frac{1}{16}, & u,v \in \Omega_{U} \times \Omega_{V}, & v = u \\ 0, & otherwise \end{cases}$$

UNV	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Suppose I roll two 4-sided die independently. Let $U=\min\{X,Y\}$ (the smaller of the two die rolls) and $V=\max\{X,Y\}$ (the larger of the two die rolls).

What if we didn't care about both U and V, just U (the minimum value)?

 \rightarrow What is the PMF $p_U(u) = \mathbb{P}(U=u)$ for $u \in \Omega_U$?

Suppose I roll two 4-sided die independently. Let $U=\min\{X,Y\}$ (the smaller of the two die rolls) and $V=\max\{X,Y\}$ (the larger of the two die rolls). $p_U(u)=\mathbb{P}\left(U=u\right)$ for $u\in\Omega_U$?

$$\mathbb{P}(U=1) = \mathbb{P}(U=1, V=1) + \mathbb{P}(U=1, V=2) \quad \text{UV}$$

$$+ \mathbb{P}(U=1, V=3) + \mathbb{P}(U=1, V=4) \quad \text{1}$$

$$= \frac{1}{16} + \frac{2}{16} + \frac{2}{16} + \frac{2}{16} = \frac{7}{16}$$

$$\frac{1}{3}$$

U\V	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Suppose I roll two 4-sided die independently. Let $U=\min\{X,Y\}$ (the smaller of the two die rolls) and $V=\max\{X,Y\}$ (the larger of the two die rolls). $p_U(u)=\mathbb{P}\left(U=u\right)$ for $u\in\Omega_U$?

	$\begin{pmatrix} 7 \\ 16 \end{pmatrix}$	u = 1
$p_U(u) =$	$\frac{5}{16}$	u = 2
$p_{U}(u) =$	$\frac{3}{16}$	u = 3
	$\frac{1}{16}$	u = 4

UVV	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Definition: Marginal PMF (주변확률질량함수)

Let X,Y be discrete random variable. The marginal PMF of X is

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, the marginal PMF of Y is

$$p_{Y}(d) = \sum_{c \in \Omega_{Y}} p_{X,Y}(c,d)$$

Use marginal distributions to get a 1-D RV from a joint PMF.

Example

Suppose X, Y are jointly distributed with joint PMF:

$X \setminus Y$	6	9	Row Total
0	3/12	5/12	?
2	1/12	2/12	?
3	0	1/12	?
Col Total	?	?	1

- 1. Find the marginal probability mass functions $p_X(x)$ and $p_Y(y)$.
- 2. Find $\mathbb{E}[Y]$.
- 3. Are X and Y independent?
- 4. Find $\mathbb{E}[X^Y]$.

Example

$X \setminus Y$	6	9	Row Total $p_X(x)$
0	3/12	5/12	8/12
2	1/12	2/12	3/12
3	0	1/12	1/12
Col Total $p_Y(y)$	4/12	8/12	1

1. Marginal probability

$$p_X(x) = \begin{cases} 8/12 & x = 0\\ 3/12 & x = 2\\ 1/12 & x = 3 \end{cases} \qquad p_Y(y) = \begin{cases} 4/12 & y = 6\\ 8/12 & y = 9 \end{cases}$$

Example

2. Expectation of Y

$$\mathbb{E}[Y] = \sum y p_Y(y) = 6 \cdot \frac{4}{12} + 9 \cdot \frac{8}{12} = 8$$

3. Independence \rightarrow Check whether we have $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

$$p_{X,Y}(3,6) = 0$$
 but $p_X(3) > 0$ and $p_Y(6) > 0$

4. $\mathbb{E}\left[X^Y\right] = \sum \sum x^y p_{X,Y}(x,y) = 0^6 \cdot \frac{3}{12} + 0^9 \cdot \frac{5}{12} + 2^6 \cdot \frac{1}{12} + 2^9 \cdot \frac{2}{12} + 3^6 \cdot 0 + 3^9 \cdot \frac{1}{12}$

- Redefine independence of RVs in terms of the joint PMF, which is completely the same as the earlier definition but with new notation

Definition: Independence

Discrete random variables X,Y are independent, $X \perp Y$, if for all $x \in \Omega_X$ and $y \in \Omega_Y$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

Let's prove that if X and Y are independent random variables, we have

$$Var(X + Y) = Var(X) + Var(Y)$$

Which leads to

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y)$$

$$Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - (E[X])^{2} - 2E[X]E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2E[XY] - 2E[X]E[Y]$$

idependence
$$E[XY] = \sum_{x} \sum_{y} xyp_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} xyp_{X}(x)p_{Y}(y)$$

$$= \sum_{x} \sum_{y} xyp_{X}(x)p_{Y}(y)$$

$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

$$= E[X]E[Y]$$

$$= E[X]E[Y]$$

$$= E[X]E[Y]$$

$$Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - (E[X])^{2} - 2E[X]E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2E[XY] - 2E[X]E[Y]$$

$$Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - (E[X])^{2} - 2E[X]E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2E[XY] - 2E[X]E[Y]$$

$$= Var(X) + Var(Y)$$

$$= 0 \text{ since } X \perp Y$$