Instituto Tecnológico de Buenos Aires

22.85 - Sistemas de Control

Trabajo de Laboratorio $N^{\circ}4$: Control de Carrito mediante controlador PID

Grupo 1

Máspero, Martina	57120
Mestanza, Joaquín Matías	58288
Nowik, Ariel Santiago	58309
Panaggio Venerandi, Guido Martin	56214
Parra, Rocío	57669
Regueira, Marcelo Daniel	58300

 $\begin{array}{c} Profesor \\ {\rm Nasini,\ V\'ictor\ Gustavo} \end{array}$

Presentado: 13/11/2019

,					
Т		J	:	_	_
	п	a		(:	\leftarrow

1.	PID: Introducción teórica	2
2.	Control PID y Carrito	2
3.	Obtención de datos con carrito	3
4.	Modelo del carrito	3
5.	Método manual de ajuste	4
6.	Código	5
7.	Resultados	6

1. PID: Introducción teórica

Los controladores PID (proporcional, integrador y derivativo) proveen un control de lazo empleando feedback que es utilizado en la industria del control. Un controlador PID calcula el error e(t) como la diferencia entre el setpoint(deseada) y una variable medida del proceso (la salida de la planta).

Figura 1: Controlador PID: Esquema

Como se puede observar en la figura 1 en los controladores PID se dispone de 3 constantes.

- lacksquare K_p : constante que acompaña al error
- lacktriangle K_i : constante que acompaña a la integral del error
- lacktriangle K_d : constante que acompaña a la derivada del error

2. Obtención de datos con carrito

Figura 2: Carrito

Se dispone del carrito de la Figura 2, el cual posee un fototransistor y un par de leds en frente. Los leds generan radiación infraroja que se ve reflejada en la superficie que se encuentre enfrentada. Esta reflexión le da información al fototransistor sobre a qué distancia está el frente del carrito de la superficie.

El fototransistor se encuentra encerrado en un housing con una película oscura para reducir la perturbación de la luz visible. El fototransistor se encuentra encerrado en un housing con una película oscura para reducir la perturbación de la luz visible, siendo esta película transparente a la radiación infrarroja.

El carrito posee un motor de corriente continua que le permite desplazarse en una sola dirección pero en ambos sentidos dependiendo de la polaridad de la tensión entregada al motor.

Se utilizó un microcontrolador tipo ARDUINO como ADC para la lectura del fototransistor. Luego de la lectura se pasa el valor a PWM y un pin es necesario para asignar el sentido. Estas dos señales van al puente H

3. Modelo del carrito

4. Control PID y Carrito

5. Método manual de ajuste

Se ajustaron las constantes mediante el método manual:

- \blacksquare Primero establecer $K_i=0$ y $K_d=0.$
- \blacksquare Incrementar la K_p hasta que la salida oscile
- \blacksquare Establecer K_p a aproximadamente la mitad del valor configurado previamente
- Incrementar K_i hasta que el proceso se ajuste en el tiempo requerido (precaución: subir mucho I puede causar inestabilidad)
- Finalmente, incrementar K_d si se necesita hasta que el lazo sea lo suficientemente rápido para alcanzar su referencia tras una variación brusca de la carga.

6. Código

7. Resultados