

Compare
$$\overline{X^2}$$
 = power of the noward energy $\overline{X^2}$ = $\frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{12}} \Delta = \frac{1}{2\Delta} \left(\frac{\lambda^3}{2} + \frac{\lambda^3}{2} \right) = \sqrt{\frac{\Delta^2}{1$