JLab E12-10-002: Cross Section Extractions from H(e,e') and D(e,e')

Debaditya Biswas (Hampton University)

Outline:

- Physics Motivations
 - Constrain PDFs
 - Resonance / DIS Modelling
 - Moments
 - Quark Hadron Duality
- Timing Cuts
- Detectors Calibration
- Detectors Efficiencies

- Charge Symmetric Background
- Acceptance Study
- Radiative Correction
- Cross-section calculation

Physics Motivation: Constraints for PDFs

• CTEQ-JLab (CJ) performs global QCD fits of PDFs from data including deep-inelastic lepton-nucleon scattering, proton-proton collisions (lepton pair creation, W-boson and jet production), etc., with particular focus on the large-x region

Physics Motivation: Constraints for PDFs

- We measured both H and D cross sections (free protons and bound neutrons)
- We not only push to larger x but we also cover the low x kinematic region
 - this should help with constraining the nuclear corrections and the dquark at the same time

Physics Motivation: Resonance / DIS Modelling

- Provides constraints to larger Q² up to 16 GeV² for both proton and deuteron fit
- Provides a complete data set (proton and deuteron) for a precise neutron extraction

Hall C Spectrometers

SHMS: Super High Momentum Spectrometer

E12-10-002: Measurements

•Run in Spring 2018

•Beam Energy: 10.6 GeV

•Targets: LH2, LD2, A1

29

33

39

2.0, 2.4, 3.0, 3.7

1.7, 2.1, 2.6, 3.2

1.3, 1.6, 2.0, 2.5

We will extract H,D(e,e') cross sections.

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

Analysis status:

- Set timing cuts (√)
- Calibrated detectors (✓)
- Efficiency studies in progress
- Spectrometers acceptance generated via Monte Carlo
- Radiative effects calculated using existing model
- Preliminary cross section extracted

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

Beam Current Monitors Calibration

Beam Current Monitors Calibration

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

SHMS Hodoscope

SHMS Hodoscope

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

Drift Chamber Calibration

Drift Time Distribution

Drift Chamber Calibration

Drift Distance Distribution

Drift Chamber Calibration

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

Calorimeter Calibration

Calorimeter Calibration

Calorimeter Calibration

Analysis Flow

- Timing Cuts
- Calibration
 - BCM
 - Hodoscope
 - Drift Chamber
 - Calorimeter
 - Cerenkov
- Efficiency Study
 - Trigger Efficiency
 - Computer dead time
 - Calorimeter and Cerenkov
 Cut Efficiency
 - Pion Contamination
 - Tracking Efficiency Study

- Charge Symmetric Background
- Acceptance Study
- Radiation Correction
- Cross Section Calculation

Efficiency Study: Tracking

Event Display:Typical single track trough the detectors

Important tracking parameters

X stub	25 (cm)
Xp stub	0.7 (rad)
Y stub	7 (cm)
Yp stub	0.2 (rad)
pmax_pr_hits	25,25
pmin_combos	4,4
Space point criterion	1.2, 1.2 (cm)
pmin_hit	5,5

Efficiency Study: Tracking

Important tracking parameters

Efficiency Study: Tracking

Important tracking parameters

Summary

- Reached 100% statistical goal in data collection
- Good progress with the analysis over the past year
- We are at the point where we can extract the prelim cross sections and D/H ratios
- See Next Talk For more results and Cross Section!

Thank You!

*This work is supported by National Science Foundation grant PHY-1508272 and Jefferson Science Associates

Backup Slides

Noble Gas Cerenkov efficiency

Calorimeter Efficiency

