

The future in Pharma Development is simulation

APM Forum,

April 2-3, 2014 London, Royal Garden Hotel

Dr. Dieter Becker

Overview

- Pharma Market
- Product Development Pharma
- How can Simulation (gCOAS) optimize Product Development
- Example of a Simulation Workflow using Atenolol as a Model Drug

Pharma Market

2011 world-wide sales 855.5 bn UDS

Note: Europe includes non-EU members and CIS markets

Source: IMS MIDAS, 2012 (data relate to the 2011 audited market at ex-factory

prices)

R&D spending in industry

London April 2-3, 2014

Vivo Drug Delivery

Pharma Consulting

Pharma Market

ALLOCATION OF R&D INVESTMENTS BY FUNCTION (%)

- R&D cost 1 drug product 2005:
- Main cost driver Dev. Clinical Ph 3

1.3 bn USD

~ 0.4 bn USD

Drug Development Overview

EFPIA report 2012: The pharmaceutical industry in figures

Big Pharma - Novartis

- 57.9 bn\$ Sales
- ~120'000 Co workers
- ~350 drug substances in marketed products (only pharmaceuticals)
- ~ 150 Products in Development (only pharmaceuticals)

OTC = Over The Counter (non-prescription drugs

Product development Pharma **Novartis**

Pharma Consulting

Product development Pharma

Know-how transfer hindered by:

- many project teams with high workload
- Unfocused because report based data exchange
- Reports of each department comprises all data but typically only a few data are important for the **other** departments (key data)

Product development Pharma

Document database

- Example:
 Registration dossier*
 for 1 product
 consists of
 100 folders
 - = 80'000 pages
 - = 20 mio. words

Numerical key data to foster inter disciplinary or inter departmental knowledge exchange (1 product)

- ~150 data sets with
 - ~30'000 data points
 - → 0.15 % of registration dossier content

^{*} Compiled by the Pharma company and submitted to ~ 40 health authorities to get marketing allowance in the country / region

Product development Pharma

- ~150 product developments in parallel at Novartis
- Involved main departments: clinics toxicology chemistry – pharmacy - regulatory
- Project teams: 30-40 at Novartis
- Reports clinic: ~1500 pages or more
- Report filing in document database

BUT

 Structured inter-disciplinary numerical product database missing to preserve expert knowledge which is easily and quickly available

What data is needed to make development more efficient

Inter-departmental data exchange is key!

Numerical data that one department is generating and another department needs. This is data on:

- Human clinical trials, animal trial (time drug plasma concentration, number participants, study no.,..)
- Drug product properties (dissolution profile,..)
- Drug substance properties (solubility, particle size distribution, log P, ...)

How many numerical data?

Numerical data	no data sets	no data points per set	no. data total
Drug substance			100
Drug product	15	25	375
Dissolution	100	10	1.000
animal trials PK mean	10	50	500
human trials PK mean	10	50	500
animal trials PK ind	10	1250	12.500
human trials PK ind.	10	1250	12.500
Total no. of data	155		27.475

 All data are already used in simulation software (gCOAS) to predict a products performance in men

Example Simulation using Gastro+

Drug	Atenolol
Drug Product	oral solution
Dose mg	50
Indication	Anit-hypertensive drug
Mode of action	beta-blocker
Metabolism	no metabolism

Simulation workflow

- 1. Enter basic data like MW, water solubility
- 2. Fit measured iv PK data to set up a 1, 2 or 3 compartmental model
- 3. Enter physiological data e.g. body weight
- 4. Select physiology (e.g. human fasted)
- 5. Enter time plasma drug conc. data
- 6. Simulate
- 7. If the simulation fit observed data well
 - model can be used

W.D. Mason, N. Winer, G. Kochak, I. Cohen, R. Bell, Kinetics and absolute bioavailability of atenolol, Clin. Pharmacol. Ther. 25 (1979) 408.

Example: Atenolol pKa

Base pKa 9.6

Example: Atenolol iv human

R^2=0.972

3-compartment model calculated from iv data:

CL 0.1211 K₁₂ 2.7111 K₂₁ 0.84467 V₂ 0.597 K₁₃ 0.15234 K₃₁ 0.02578 V₃ 1.0991

Body weight kg 70 Blood/ Plasma ratio 1.0 F up 5

Obs. Values:

 Cmax
 0.282

 Tmax
 3.3

 AUC
 2650

Human – Physiological -Fasted

Sim length 24

Calculated:

65,168 Fa%

FDp% 65.168

65.168 F%

361.38 Cmax

2.32 Tmax

AUC 0-inf 3459.5

AUC 0-t 3167.2

Cmax liver 457.9

Observed
Simulated -

Red Dissolved Green Systemic Circulation

Absorption of the drug Atenolol in the different segments of the gastro-intestinal tract

 Entry of measured data in the above example = 51 values only!

Conclusion

- Prize pressure on Pharmaceutical Products increase
- Pharma R&D cost very high
- Attrition rate 90% in Product Development
- → Need to Cut Cost in R&D
- Reduce staff (70% of R&D cost)
- Use simulation (gCOAS) to more accurately predict product performance in men thereby detect un-successful projects earlier in product development and use the saved capacity to faster drive the successful projects
- Foster successful product composition and process selection by predicting performance in humans *earlier* using simulation (gCOAS)
- Encourage inter-departmental know-how exchange by using the same key data that are already integrated in simulation (gCOAS) software

Vivo Drug Delivery

Pharma Consulting

Annex

Classification of Pharmaceutical Formulations

Route of Administration	Conventional Dosage Forms	
Oral	Tablets, capsules, solutions	
Parenteral	Sterile s.c., i.m., i.v. injectables	
Inhalation	Pressurized multidose inhalers	
Topical	Creams, ointments, gels	

Passive patches

Transdermal