Osciladores sinusoidales Trabajo Práctico 4

Problema 1

Cátedra: CIRCUITOS ELECTRÓNICOS II

Problema Nº 1:

En el oscilador Puente de Wien de la figura se implementó un lazo de control automático, que corrige la ganancia del sistema cuando detecta que se sale del rango lineal de trabajo. Explicar el funcionamiento del mismo.

Problema
$$\sqrt{1 - G(s)} = \frac{G(s)}{1 - G(s) \cdot H(s)}$$

En el oscilador Puente de Wien de la figura se implementó un lazo de control automático, que corrige la ganancia del sistema cuando detecta que se sale del rango lineal de trabajo. Explicar el funcionamiento del mismo.

$$T(s) = \frac{G(s)}{1 - G(s) \cdot H(s)}$$

$$H(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{Z_1(s)}{Z_1(s) + Z_2(s)}$$

$$G(s) = 1 + \frac{R_4}{R_3 + R_{FET}} = K$$

$$T(s) = \frac{K}{1 - \frac{K \cdot Z_1(s)}{Z_1(s) + Z_2(s)}} = \frac{K \cdot [Z_1(s) + Z_2(s)]}{Z_1(s) + Z_2(s) - K \cdot Z_1(s)} = \frac{K \cdot [Z_1(s) + Z_2(s)] \div Z_1(s)}{1 + [Z_2(s) \div Z_1(s)] - K}$$

$$T(s) = \frac{G(s)}{1 - G(s) \cdot H(s)}$$

$$H(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{Z_1(s)}{Z_1(s) + Z_2(s)}$$

$$G(s) = 1 + \frac{R_4}{R_3 + R_{FET}} = K$$

$$T(s) = \frac{K}{1 - \frac{K \cdot Z_1(s)}{Z_1(s) + Z_2(s)}} = \frac{K \cdot [Z_1(s) + Z_2(s)]}{Z_1(s) + Z_2(s) - K \cdot Z_1(s)} = \frac{K \cdot [Z_1(s) + Z_2(s)] \div Z_1(s)}{1 + [Z_2(s) \div Z_1(s)] - K}$$

$$si: R_1 = R_2 \ y \ C_1 = C_2$$

$$Z_1(s) = \frac{1}{\frac{1}{R} + s C} = \frac{R}{1 + s CR}$$

$$Z_2(s) = R + \frac{1}{sC} = \frac{sRC + 1}{sC}$$

$$D_{T(s)} = 1 + (Z_2(s) \div Z_1(s)) - K$$

$$D_{T(s)} = 1 + \left(\frac{s RC + 1}{s C} \div \frac{R}{1 + s CR}\right) - K$$

$$D_{T(s)} = s^2 + s \left(\frac{3}{RC} - \frac{K}{RC}\right) + \frac{1}{(RC)^2}$$

$$D_{T(s)} = s^2 + s \frac{2}{RC} \left(\frac{3 - K}{2} \right) + \frac{1}{(RC)^2}$$

$$T(s) = \frac{K}{1 - \frac{K \cdot Z_1(s)}{Z_1(s) + Z_2(s)}} = \frac{K \cdot [Z_1(s) + Z_2(s)]}{Z_1(s) + Z_2(s) - K \cdot Z_1(s)} = \frac{K \cdot [Z_1(s) + Z_2(s)] \div Z_1(s)}{1 + [Z_2(s) \div Z_1(s)] - K}$$

$$si: R_1 = R_2 \ y \ C_1 = C_2$$

$$Z_1(s) = \frac{1}{\frac{1}{R} + s C} = \frac{R}{1 + s CR}$$

$$Z_2(s) = R + \frac{1}{sC} = \frac{sRC + 1}{sC}$$

$$D_{T(s)} = 1 + (Z_2(s) \div Z_1(s)) - K$$

$$D_{T(s)} = 1 + \left(\frac{s RC + 1}{s C} \div \frac{R}{1 + s CR}\right) - K$$

$$D_{T(s)} = s^2 + s \left(\frac{3}{RC} - \frac{K}{RC}\right) + \frac{1}{(RC)^2}$$

$$D_{T(s)} = s^2 + s \frac{2}{RC} \left(\frac{3 - K}{2} \right) + \frac{1}{(RC)^2}$$

$$s^{2} + s \frac{1}{RC} 2 \left(\frac{3 - K}{2} \right) + \frac{1}{(RC)^{2}} = s^{2} + s w_{0} 2\xi + w_{0}^{2}$$

$$w_0 = \frac{1}{RC}$$

$$w_0 = \frac{1}{RC} \qquad \xi = \left(\frac{3-K}{2}\right)$$

LM2902,LM324/LM324A,LM224/LM224A

Schematic Diagram

(One Section Only)

1/4 *LM* 324

Absolute Maximum Ratings

Parameter	Symbol	LM224/LM224A	LM324/LM324A	LM2902	Unit
Power Supply Voltage	Vcc	±16 or 32	±16 or 32	±13 or 26	V
Differential Input Voltage	V _I (DIFF)	32	32	26	٧
Input Voltage	VI	-0.3 to +32	-0.3 to +32	-0.3 to +26	٧
Output Short Circuit to GND Vcc≤15V, T _A =25°C(one Amp)	-	Continuous	Continuous	Continuous	-
Power Dissipation, T _A =25°C 14-DIP 14-SOP	PD	1310 640	1310 640	1310 640	mW
Operating Temperature Range	T _{OPR}	-25 ~ +85	0 ~ +70	-40 ~ +85	°C
Storage Temperature Range	Tstg	-65 ~ +150	-65 ~ +150	-65 ~ +150	°C

Respuesta del oscilador con dos valores distintos de R2

Respuesta del oscilador con dos valores distintos de R2

Respuesta del oscilador con dos valores distintos de R1

Respuesta del oscilador con dos valores distintos de R1

1N746 thru 1N759A, -1 and 1N4370 thru 1N4372A, -1 DO-35

Silicon 500 mW Zener Diodes

ELECTRICAL CHARACTERISTICS* @ 25°C													
	JEDEC TYPE NO.	NOMINAL ZENER VOLTAGE	ZENER TEST CURRENT	MAXIMUM ZENER IMPEDANCE	MAXIMUM REVERSE CURRENT I_R @ $V_R = 1$ VOLT		MAXIMUM ZENER CURRENT	TYPICAL TEMP COEFF. OF ZENER					
	(NOTE1)	V _Z @ I _{ZT} (NOTE 2)	I _{ZT}	Z _{ZT} @ I _{ZT} (NOTE 3)	@25°C	@+150°C	I _{ZM} (NOTE 4)	VOLTAGE ανz					
		VOLTS	mA	OHMS	μ Α	μ Α	mA	%/°C					
	1N4370	2.4	20	30	100	200	150	085					
	1N4371	2.7	20	30	75	150	135	080					
	1N4372	3.0	20	29	50	100	120	075					
	1N746	3.3	20	28	10	30	110	066					
	1N747	3.6	20	24	10	30	100	058					
	1N748	3.9	20	23	10	30	95	046					
	1N749	4.3	20	22	2	30	85	033					
١.	1N750	4.7	20	19	2	30	75	015					
	1N751	5.1	20	17	1	20	70	+/010					
	1N752	5.6	20	11	1	20	65	+.030					
	1N753	6.2	20	7	.1	20	60	+.049					
	1N754	6.8	20	5	.1	20	55	+.053					
	1N755	7.5	20	6	.1	20	50	+.057					
	1N756	8.2	20	8	.1	20	45	+.060					
	1N757	9.1	20	10	.1	20	40	+.061					
	1N758	10.0	20	17	.1	20	35	+.062					
	1N759	12.0	20	30	.1	20	30	+.062					

^{*} JEDEC Registered Data

- NOTE 1: Standard tolerance on JEDEC types shown is +/- 10%. Suffix letter A denotes +/- 5% tolerance; suffix letter C denotes +/- 2%; and suffix letter D denotes +/- 1% tolerance.
- NOTE 2: Voltage measurements to be performed 20 seconds after application of dc test current.
- NOTE 3: Zener impedance derived by superimposing on I_{ZT}, a 60 cps, rms ac current equal to 10% I_{ZT} (2mA ac). See MicroNote 202 for typical zener Impedance variation with different operating currents.
- **NOTE 4:** Allowance has been made for the increase in V_Z due to Z_Z and for the increase in junction temperature as the unit approaches thermal equilibrium at the power dissipation of 400 mW.

Respuesta del oscilador con la ganancia controlada con zeners

Respuesta del oscilador con la ganancia controlada con zeners

Output characteristics for BF245B:

After pinch-off: $I_D \neq f(V_D)$; $I_D = f(V_G)$ - current source

V_G controls the channel width → V_G control I_d

Medición de la resistencia del canal del JFET con Vg fija y Vc sinusoidal

Medición de la resistencia del canal del JFET con Vg rampa y Vc sinusoidal

Medición de la resistencia del canal del JFET con Vg rampa y Vc sinusoidal

Obtención de la tensión Vg necesaria para obtener 300Ω en la resistencia del canal

Obtención de la tensión Vg necesaria para obtener 300Ω en la resistencia del canal

Respuesta del oscilador con la ganancia controlada con JFET

Respuesta del oscilador con la ganancia controlada con JFET

Respuesta del oscilador con la ganancia controlada con JFET ampliada

Respuesta del oscilador con la ganancia controlada con JFET ampliada