

Рис. 1.3. Конструкция маршевого РДТТ второй ступени ракеты РСМ-45 баллистической ракеты: 1 - крышка; 2 - корпус; 3 - стыковочный шпангоут; 4 - заряд; 5 - разрезное управляющее сопло; 6 - фланец; 7 - управляющие двигатели; 8 - система управления соплом; 9 — воспламенитель; 10 - пиропатрон

Конструктивные особенности двигателей второй ступени РСМ-45

- тип топлива

- заряд	канальный
- корпус	органопластиковый
- количество сопел	1
- управление РДТТ	разрезное управляющее сопло, 2
	автономных РДТТ управления по крену

CPTT

Рис. 1.5. Конструктивная схема маршевого РДТТ третьей ступени межконтинентальной баллистической ракеты МХ (США):

1 - воспламенитель; 2 - корпус; 3 - заряд; 4 - сопловой блок;

5, 6 - выдвигающиеся насадки

Рис. 1.19 Элементы конструкции корпуса двигателя [2]: 1 - передний фланец; 2 - наружный герметизирующий слой переднего днища; 3 - бортовая кабельная сеть; 4 - передний шпангоут; 5 - второй кокон, 6 - слой для защиты от влаги и других внешних воздействий; 7 - лакокрасочное покрытие; 8 - задний шпангоут; 9 - ДУЗ; 10 – наружный герметизирующий слой заднего днища; 11 – наружный покрытие из ТЗМ, 12 - разъем бортовой кабельной сети; 13 - силовая оболочка (первый кокон); 14 - задний (сопловой) фланец; 15 - клин, 16 - анти адгезионная пленка; 17 – внутреннее покрытие из ТЗМ; 18 - манжеты; 19 - ЗКС; 20 - герметизирующий слой;

21 - эластичный клин

Рис. 1.20. Конструктивная схема корпуса РДТТ из композиционного материала: 1 - передний стыковочный фланец; 2 - передний шпангоут; 3 - передний узел стыка; 4 - зона соединения (намотки) узлов стыка с силовой оболочкой; 5 - кольцевые слои силовой оболочки; 6 - задний стыковочный узел; 7 - задний шпангоут; 8 — задний (сопловой) стыковочный фланец; 9 - заднее днище силовой оболочки; 10 - цилиндрическая часть силовой оболочки; 11 - переднее днище силовой оболочки

Рис. 1.22. Конструкция корпуса типа кокона в зоне полярных отверстий: 1 - передний стыковочный фланец; 2 - манжета; 3 - переднее днище силовой оболочки; 4 - заднее днище силовой оболочки; 5 - задний стыковочный фланец

Рис. 1.32. Принципиальные схемы составных сопловых блоков с теплоизоляционными вкладышами (а) и абляционной вставкой (б):

1 - вкладыш; 2 – теплоизоляция; 3 – теплозащитные элементы;

4 - абляционные вставки

Рис. 1.35. ПУС со сферическим шарниром (карданный подвес условно не показан): 1 - основание сопла; 2 - подпятник; 3 - сферический наконечник; 4 - вкладыш; 5 - теплоизолирующий слой; 6 - сверхзвуковая часть сопла

Рис. 1.36. Конструкция ПУС с сильфонным уплотнением: 1 – сопло; 2 – газоотбойник (первичное уплотнение); 3 – сферический шарнир; 4 – заднее днище; 5 – сильфон; 6 – кожух

Рис. 1.37. ПУС с ЭОШ: 1 – днище; 2 – чехол; 3 – ЭОШ; 4 – сопла; 5 – элементы из ТЗМ; 6 – несущая оболочка сопла; 7 – рулевая машинка

Рис. 1.39 Конструктивные схемы раздвижных сопел: с выдвигаемыми насадками (а); с легкодеформируемыми раструбами (б); с лепестковыми элементами (в): 1 – исходное положение; 2 – положение насадка после выдвижения

Рис. 1.40. Устройство фиксации и герметизации насадка сопла (а) и внешний вид сопла в процессе раздвижки (б): 1 – неподвижный раструб сопла; 2 – фиксатор; 3 – прокладка; 4 - герметизирующая манжета; 5 – сдвижной насадок

Рис. 1.42. Пример конструкции соплового блока (разрез): 1 — фланец; 2 — заднее днище; 3 — ЭОШ; 4 — теплозащитный чехол ЭОШ; 5 — утопленная часть сопла («воротник»); 6 — теплоизоляция; 7 — сопловой вкладыш; 8 — опоры рулевых машин; 9 — раструб сопла

 Таблица 2.1. Основные характеристики металлических материалов,

 применяемых в РДТТ

Материал	Плотность	Предел	Удельная	Модуль
	ρ, $κΓ/M3$	прочности $\sigma_{\scriptscriptstyle B}$,	прочность	упругости
		ГПа	$\sigma_{\rm B}/\rho,{\rm m}^2/{\rm c}^2$	Е, ГПа
Конструкционные стали				
Ст45	7800	0,6	$0,75 \cdot 10^5$	200
60C2A	7700	1,6	$2,1\cdot10^{5}$	210
28Х3СНМВФА-Ш	7800	1,2	$1,5\cdot10^{5}$	200
Алюминиевые сплавы				
Д16	2780	0,45	$1,6\cdot10^{5}$	75
АМг6	2640	0,29	$1,2\cdot10^{5}$	70
Титановые сплавы				
BT3-1	4500	1,1	$2,0\cdot10^{5}$	120
BT23	4600	1,4	$3,0\cdot10^{5}$	110

Значительное улучшение массовых характеристик РДТТ может быть достигнуто благодаря использованию композиционных материалов [18].

 Таблица 2.2. Основные характеристики композиционных

 материалов, применяемых в РДТТ [18]

Материал	Плотность	Предел	Удельная	Модуль		
	ρ, κ г/ м ³	прочности	прочность	упругости		
		σ₃, ГПа	$\sigma_{\rm B}/\rho$, ${\rm M}^2/{\rm c}^2$	Е, ГПа		
	Арамиді	ные волокна				
СВМ (РФ)	1450	4,2	28,9·10 ⁵	125–135		
ВНИИВЛОН (РФ)	1430	2,6	18,1·10 ⁵	110-130		
Русар-С (РФ)	1440	4,2	29,0·10 ⁵	160		
Армос (РФ)	1400	4,5	$32,0\cdot10^5$	275		
Кевлар 29 (США)	1410	2,9	21,0.105	235		
	Углеродные волокна					
ВМН-4 (РФ)	1710	2,2	12,8·10 ⁵	270		
УКН-5000 (РФ)	1750	2,5	14,2·10 ⁵	210		
КЭНС-П (РФ)	1740	2,4	14,0·10 ⁵	230		
ЛУ-4 (РФ)	1700	3,5	$20,5\cdot10^5$	250		
Торнелл 800 (США)	1800	5,5	$30,5\cdot10^5$	273		
Целион СТ (США)	1800	4,3	24,0·10 ⁵	235		
Стеклянные волокна						
ВМ-1 (РФ)	2580	4,2	16,2·10 ⁵	95		
ВМПС (РФ)	2580	4,5	17,4·10 ⁵	93		
Е-стекло (США)	2600	3,3	13,0·10 ⁵	72		
М-стекло (США)	2500	4,5	17,2·10 ⁵	85		
Некоторые композиционные материалы						
ВМ-1 + эпоксидное	2200	2,1	9,5·10 ⁵	70		
связующее (РФ)						
Армос +эпоксидное	1350	2,352,5	$17,4\cdot10^5$	93100		
связующее (РФ)						
Кевлар 29	1360	2,0	$14,7\cdot10^{5}$	90		
+эпоксидное						
связующее (США)						
Торнелл-800	1,55	1,4	$9,0.10^{5}$	142		
+ эпоксидное						
связующее (США)						

По интенсивности воздействия газового потока с полной температурой $T^* = 2500...3500 \; \mathrm{K}$ и скоростью u_c , теплонапряженные участки проточного

1) переднего днища и корпуса ($u_z = 0...150$ м/с);

тракта РДТТ можно разделить на следующие зоны:

- 2) заднего днища ($u_c = 150...350 \text{ м/c}$);
- 3) сужающегося (дозвуковой) части сопла ($u_c = 350...1000 \text{ м/c}$);
- 4) трансзвукового участка сопла ($u_z \sim 1000 \text{ м/c}$):
- 5) расширяющейся (сверхзвуковой) части сопла ($u_c = 1000...2800 \text{ м/c}$).

Таблица 2.3. Основные характеристики ТЗМ

0,24...0,27

1,72

Материал	Плотность ρ , $\kappa \Gamma / M^3$	Коэффициент	Удельная		
		теплопроводности	теплоёмкость		
		λ, Bτ/(M ·K)	С, кДж/(кг·К)		
Стеклопластики					
ЕРДМ, П-5-7,	9401100	0,210,23	1.69		
П-5-2 (РФ)	9401100	0,210,23	1,68		
SBP(США)	1170	0,200,22	1,42		
Каучуковые соединения					
Р-864, Р-998 (РФ)	10401300	0.210.27	1.68		

1220...1270

NBP (США)

 Таблица 2.4. Основные теплофизические свойства

 ТЗМ сопловых вкладышей

Материал Плотность ρ , $\kappa \Gamma/M^3$		Коэффициент теплопроводности λ , $\text{Bt/}(\text{M}\cdot\text{K})$		Удельная теплоёмкость	Максимальная рабочая температура Т _{раб} , К
		вдоль волокна	поперек волокна	С, кДж/(кг-К)	
Графит	1700	2395		0,250,6	2070*
Силицированный графит	2000	98120		0,7	2150
Пиролитический графит	18002200	89370	0,453,59	0,220,5	2500*
Углерод-углерод	14001500	110180		0,30,6	2800*
Вольфрам	19200	89142		0,17	3680* (температура плавления)
Молибден	10200	70130		0,25	2890* (температура плавления)

^{* -} в инертной или восстановительной среде