STORYTELLING CASE STUDY: AIRBNB, NYC BY

RAGUL | POOJA KUMARI | NEELANJAN ROY

Methodology Document: Presentation I

For Airbnb storytelling case study, we have used Python Jupyter notebook for data cleaning and data processing.

 Importing the dataset: Necessary libraries has been imported and further, dataset has been imported: AB_NYC_2019.csv

```
# importing necessary Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# importing warnings
import warnings
warnings.filterwarnings('ignore')

# Reading the dataset
airbnb_df = pd.read_csv("AB_NYC_2019.csv")
airbnb_df.head() # Checking the head of the dataset
```

- Checked the shape of the dateframe: Dataset has 48,895 rows and 16 columns.
- Checked the overview of the dataframe: We could see that there are 16 columns.
 Presence of missing values could be seen.

```
# Checking the overview of the dataset
airbnb_df.info()
# We could see that there are 16 columns. Presence of missing values could be seen.
<class 'pandas.core.frame.DataFrame'</pre>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
# Column
                                                Non-Null Count Dtype
                                                 48895 non-null int64
      name
                                                 48879 non-null object
      host_id
host_name
neighbourhood_group
neighbourhood
latitude
longitude
                                                 48895 non-null int64
                                                 48874 non-null object
                                                 48895 non-null object
                                                 48895 non-null object
                                                 48895 non-null float64
      longitude
                                                 48895 non-null object
      room_type
      price
                                                 48895 non-null int64
48895 non-null int64
 10 minimum_nights
 11 number_of_reviews
12 last_review
                                                 48895 non-null int64
13 reviews_per_month 38843 non-null object
14 calculated_host_listings_count 48895 non-null int64
15 availability_365 48895 non-null int64
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
                                                 38843 non-null float64
```

Checking the statistical summary of the dataframe with describe() function: Presence
of outliers could be seen in price column.

	id	host_id	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings
count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	38843.000000	48895.
mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687	7.029962	23.274466	1.373221	7.
std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170	20.510550	44.550582	1.680442	32.
min	2.539000e+03	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	0.000000	0.010000	1.
50%	1.967728e+07	3.079382e+07	40.723070	-73.955680	106.000000	3.000000	5.000000	0.720000	1.
60%	2.250310e+07	4.868555e+07	40.738420	-73.948890	130.000000	3.000000	9.000000	1.060000	1.
70%	2.714074e+07	8.082452e+07	40.756030	-73.941290	155.000000	4.000000	17.000000	1.690000	2.
80%	3.053027e+07	1.371296e+08	40.770982	-73.927698	200.000000	6.000000	33.000000	2.470000	3.
90%	3.399094e+07	2.128114e+08	40.804890	-73.907810	269.000000	28.000000	70.000000	3.630000	5.
95%	3.525910e+07	2.417646e+08	40.825643	-73.865771	355.000000	30.000000	114.000000	4.640000	15.
99%	3.623888e+07	2.677118e+08	40.864661	-73.776920	799.000000	45.000000	214.000000	7.195800	232.
max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000	1250.000000	629.000000	58.500000	327.
4									•

Checked the missing values in the dataset: airbnb_df.isna().sum()

```
# Checking the missing values in the dataset
airbnb_df.isna().sum()
id
                                       a
name
                                      16
host_id
                                       0
host_name
                                      21
neighbourhood_group
                                       0
neighbourhood
latitude
                                       0
                                       0
longitude
                                       0
room_type
price
                                       0
minimum_nights
                                       0
number_of_reviews
                                       0
last_review
                                   10052
reviews_per_month
                                   10052
calculated_host_listings_count
                                       0
availability 365
                                       0
dtype: int64
```

Checking the missing values in reviews_per_month column: airbnb_df[airbnb_df['reviews_per_month'].isna()].head()

- Upon checking, missing values in reviews_per_month column is associated with number_of_reviews column. Properties which have not received any reviews has been filled as NaN in reviews per month. Hence, missing values in reviews per month is replaced with 0.
- last_review column does not add any value to analysis. Hence, the column has been dropped.

```
#last_review column does not add any value to analysis. Hence, dropping the column
airbnb_df.drop(['last_review'],axis=1,inplace=True)
```

Checked for outliers in price column: sns.boxplot(data = airbnb df, x = "price")

- Spread of prices could be justified with varying amounts of rates fixed by the stay places.
- Checked the distribution of neighbourhood_group: airbnb df['neighbourhood group'].value counts(normalize=True)

Created a column by binning the price column:
 pd.cut(x=airbnb_df['price'], bins = [0, 50, 100, 200, 300, 500, 700, 1000, 10000],
 labels = ['<50', '50-100', '100-200', '200-300', '300-500', '500-700', '700-1000', '1000-10000'])

Created a new column by binning the minimum_nights column:
 pd.cut(x=airbnb_df['minimum_nights'], bins = [0,1,2,3,4,5,10,30,1000],
 labels=['1N','2Ns','3Ns','4Ns','5Ns','5-10Ns','10-30Ns','>30Ns'])

• Saved the updated dataframe to CSV.

```
# Saving the updated dataframe to CSV
airbnb_df.to_csv(r'D:\Data Science\Airbnb, NYC Case Study\airbnb_data.csv', index=False, header=True)
```

Data Analysis & Visualization with Tableau:

- 1. Top neighbourhood groups based on bookings:
 - Created a pie chart to check the share of bookings across the neighbourhood groups.
 - Additionally, bar chart has been created to check top neighbourhood based on number of bookings.
- 2. Bookings based on room types:
 - Created a donut chart with total count of bookings in the centre of the donut and share of bookings among the room types.
 - Created a pie chart for 5 neighbourhood groups to display the share of bookings based on the different room types.
- 3. Distribution of price among neighbourhood groups:
 - Created a box plot to check the distribution of price across different neighbourhood groups.

- 4. Price distribution based on room types:
 - Created a bar chart to check the distribution of bookings across different price buckets created. Eg: 50-100, 100-200 etc.,
 - Additionally, bar chart has been created for different room types to visualize the distribution of bookings across different price ranges.
- 5. Bookings based on minimum nights:
 - Created a bar chart to check the distribution of bookings across the different minimum nights buckets for the different price bins.
- 6. Availability based on price and minimum nights:
 - Created a bar chart to check the average availability of properties among the different price ranges for the different minimum nights bins.
- 7. Price & availability based on neighbourhood group:
 - Created a tree maps for different neighbourhood groups and added two dimensions: Size for average price and colour intensity for average availability.
 - Further, created a highlight table for average price across the different neighbourhood group for the different room types.

Methodology Document: Presentation II

CSV file: airbnb data.csv is connected as data source for visualization tableau

- 1. Top hosts based on room type:
 - Created a packed bubble chart with hosts based on the number of bookings
 - Additionally, created a bar chart to check the distribution of bookings among the top 5 hosts for different room types.
- 2. Bookings based on room type:
 - Created a donut chart with total count of bookings in the centre of the donut and share of bookings among the room types.
 - Further, created dual axis chart with bar chart representing the bookings based on different room types and line graph representing the average price based on different room types.
- 3. Price based on neighbourhood group:
 - Created a pie chart to check the share of bookings across the neighbourhood groups.
 - Further, created a highlight table for average price across the different neighbourhood group for the different room types.
- 4. Focusing on 50 –200 USD rooms for higher revenue:
 - Created a bar chart to check the distribution of bookings across different price buckets created. Eg: 50-100, 100-200 etc.,
 - Created a bar chart to check the distribution of bookings across different price buckets for the different neighbourhood groups.
- 5. Availability of minimum one night listings needed to be increased:
 - Created a bar chart to check the distribution of bookings across different minimum nights buckets.

- Created a bar chart to check the average availability of properties across different price buckets for the different minimum nights buckets.
- 6. Top neighbourhood and availability:
 - Bar chart has been created to check top neighbourhood based on number of bookings.
 - Additionally, a bar chart has been created to check the average price of listings among the different neighbourhoods with dual axis line graph for availability.
- 7. Availability based on neighbourhood group:
 - Created a tree map for different neighbourhood groups and added two dimensions: Size for average price and colour intensity for average availability.
 - Created a bar chart to check the distribution of bookings across different minimum nights buckets for the different neighbourhood groups.
- 8. Reviews based on neighbourhood:
 - Created a bar chart to check the distribution of reviews across different neighbourhood with dual axis line graph for average price.
 - o Created a bar chart to check the distribution of reviews for price bins.

