Abstract

Das Erkennen von dreidimensionalen Objekten ist Kern aktueller Forschungsbereiche wie dem autonomen Fahren, der Entwicklung von hochpräzisen medizinische Navigationssystemen oder der Landvermessung mittels Drohnen. Ziel ist es mit Hilfe weniger Kamerabilder einer Szene eine möglichst präzise, dreidimensionale Rekonstruktion dieser zu erhalten. Kamerabilder mit gleicher Auflösung werden in vielen Rekonstruktionsalgorithmen vorausgesetzt, obwohl bestimmte Maschinen wie Drohnen oft mit verschiedenen Kameras, wie zum Beispiel einer RGB-Kamera und einer Infrarotkamera mit unterschiedlichen Auflösungen, ausgestattet sind.

In dieser Arbeit wurde ein Szenenrekonstuktionsalgorithmen für stereoskopische Bildaufnahmen mit unterschiedlichen Kameraauflösungen implementiert und analysiert. Der entwickelte Algorithmus besitzt eine eingebaute Kamerakalibrierung, welche die extrinsischen Kameraparameter bestimmt und gemeinsam mit den zuvor bestimmten intrinsischen Kameraparametern eine genaue Rekonstruktion der Szene durchführt. Mit bekannten intrinsischen Kameraparameter, welche die Auflösung der Kameras berücksichtigt, kann der Algorithmus durch Triangulation eine dreidimensionale Szene bis zu einer Skaleninvarianz genau rekonstruieren. Der Algorithmus wurde an einem synthetischen Beispiel überprüft und erweitert um somit mit realen Bilddaten eine Szene zu rekonstruieren. Der entstandene Algorithmus kann eine Szene bis auf eine Skaleninvarianz genau wiederherstellen. Jedoch ist die Rekonstruktion durch Triangulation anfällig auf Bildfehler und muss mit Näherungsverfahren korrigiert werden.

Viele kommerzielle Szenenrekonstruktions-Applikationen verwenden einen effizienteren Ansatz zur Szenenrekonstruktion. Dieser bestimmt die Bildtiefe näherungsweise durch Rektifizierung. Jedoch werden meist gleiche Kameraauflösungen vorausgesetzt. Aus diesem Grund wurden die ersten Schritte für einen zweiten Algorithmus basierend auf einem Rektifizierungsverfahren implementiert. In den ersten Analysen wurde die Funktionsweise der Rektifizierung überprüft und es konnte festgestellt werden, dass der implementierte Algorithmus für Bildquellen mit unterschiedlicher Auflösungen und gleicher Pixelproportionen geeignet ist.

In einem zusätzlichen Projekt dieser Masterarbeit wurde ein Ansatz zur Sortierung von detektierten Eckpunkten in stereoskopischen Bildern von stark optisch verzerrten Schachbrettern entwickelt. Es wurde ein Algorithmus implementiert, welcher alle zuvor detektierten Eckpunkte eines Schachbrettes sortiert und eindeutig identifiziert. Der Algorithmus kann bei Stereoaufnahmen von zweidimensionalen Schachbrettern genutzt werden um Punktekorrespondenzen zu ermitteln. Der Algorithmus kann zudem auch für Kamerakalibierungsalgorithmen zur Bestimmung von intrinsischen Kameraparametern verwendet werden um Bildverzerrungen zu korrigieren.