Rangkuman Materi Aljabar 1

Yassin Dwi Cahyo MEX

Daftar Isi

0.1	Teorema Fundamental Homomorfisma Grup	2
0.2	How to show two groups are isomorphic	4

Note:

- 1. Maaf kalau file ini banyak typo atau salah ngitungnya
- 2. Semoga file ini bisa bermanfaat buat kita semua. Doain juga semoga yang nulis makin banyak rezekinya dan hidupnya nyaman. Aamiin
- 3. Semangat UAS nyaaaa

0.1 Teorema Fundamental Homomorfisma Grup

Misalkan G dan S masing-masing adalah grup dan $f:G\to S$ adalah homomorfisma grup. Dari materi sebelumnya, telah diketahui bahwa Ker(f) merupakan subgrup normal di G. Dengan demikian, dapat dibentuk suatu grup faktor G/Ker(f). Selain itu, telah diketahui pula bahwa Im(f) merupakan subgrup dari S. Pada subbab ini, akan dilihat hubungan antara grup faktor G/Ker(f) dengan Im(f). Perhatikan diagram di bawah ini.

Telah diketahui $f:G\to G$ adalah homomorfisma grup. Pengaitan $\pi:G\to G/Ker(f)$ pada diagram di atas didefinisikan sebagai homomorfisma natural. Selanjutnya, pengaitan $h:G/Ker(f)\to S$ didefinisikan sebagai berikut.

$$h: G/Ker(f) \to S$$
 $aKer(f) \mapsto h(aKer(f)) \stackrel{def.}{=} f(a)$

Lebih lanjut, untuk memudahkan notasi saja, misalkan Ker(f) = K. Sehingga pengaitan $h: G/K \to S$ didefinisikan sebagai berikut.

$$h: G/K \to S$$

 $aK \mapsto h(aK) \stackrel{def.}{=} f(a)$

Akan dibuktikan bahwa h merupakan pemetaan/fungsi. Diambil sebarang $aK, bK \in G/K$ dengan aK = bK. Akan dibuktikan bahwa h(aK) = h(bK).Dari hubungan aK = bK, didapat $ab^{-1} \in K = Ker(f)$ atau $f(ab^{-1}) = e'$. Perhatikan bahwa:

$$f\left(ab^{-1}\right) = e'$$

$$f(a)f\left(b^{-1}\right) = e'$$
 [Definisi homomorfisma f]
$$f(a)\left[f(b)\right]^{-1} = e'$$

$$f(a)\underbrace{\left[f(b)\right]^{-1}f(b)}_{e'} = e'f(b)$$

$$f(a) = f(b)$$

$$\varphi(aK) = \varphi(bK)$$

Jadi, h adalah pemetaan.

Akan dibuktikan bahwa h merupakan homomorfisma grup. Diambil sebarang $aK, bK \in G/K$. Akan dibuktikan bahwa h((aK)(bK)) = h(aK)h(bK). Perhatikan bahwa

$$h((aK)(bK)) = h((ab)K) \stackrel{def.}{=} f(ab)$$

= $f(a)f(b)$ [Definisi homomorfisma f]
 $\stackrel{def.}{=} \varphi(aK)\varphi(bK)$

Jadi, h adalah homomorfisma grup.

Setelah memahami definisi-definisi homomorfisma di atas, sekarang kita bisa dengan mudah memahami diagram di bawah ini.

yakni berlaku $f = h \circ \pi$.

Selanjutnya, dapat diperlihatkan bahwa image dari homomorfisma h sama dengan image dari homomorfisma f

$$Im(h) = \{h(aK) \mid aK \in G/K\}$$

$$\stackrel{def.}{=} \{f(a) \mid a \in G\}$$

$$= Im(f).$$

Dengan demikian, dengan mengambil kodomain dari f hanya himpunan $Im(f) \subseteq S$ saja, maka didapatkan

Akan dibuktikan bahwa h bersifat injektif.

Diambil sebarang $aK, bK \in G/K$ dengan h(aK) = h(bK). Akan dibuktikan bahwa aK = bK. Dari kesamaan h(aK) = h(bK) didapatkan bahwa f(a) = f(b). Perhatikan bahwa

$$f(a) = f(b) \Rightarrow fa[f(b)]^{-1} = f(b)[f(b)]^{-1}$$

 $\Rightarrow f(a)f(b^{-1}) = e_S$ [Eksistensi elemen netral $e_S \in S$]
 $\Rightarrow f(ab^{-1}) = e_S$ [Definisi homomorfisma f]
 $\Rightarrow ab^{-1} \in K = Ker(f)$ [Definisi kernel]
 $aK = bK$

Jadi, h bersifat injektif.

Akan dibuktikan bahwa h bersifat surjektif.

Diambil sebarang $y\in Im(f)$, maka akan selalu terdapat $x\in G$ sedemikian sehingga y=f(x). Oleh karena $x\in G$, maka terdapat $xK\in G/K$ dan $\varphi(xK)=f(x)$. Ini berarti $y=f(x)=\varphi(xK)$ dengan $xK\in G/K$. Jadi h bersifat surjektif.

Dapat disimpulkan bahwa, $h:G/K\to Im(f)=Im(h)$ merupakan isomorfisma grup. Dengan demikian, diperoleh bahwa

$$G/K \cong Im(f)$$

atau

$$G/Ker(f) \cong Im(f)$$

Selanjutnya, hasil di atas dikemas secara ringkas dalam teorema di bawah ini, yang selanjutnya dinamakan **Teorema Fundamental Homomorfisma Grup (TUHG)**.

Teorema 0.1. Teorema Fundamental Homomorfisma Grup (TUHG)

Jika $f:G\to S$ adalah homomorfisma grup, maka berlaku

$$G/Ker(f) \cong Im(f)$$
.

Contoh. Diperhatikan homomorfisma $\beta: \mathbb{Z} \to \mathbb{Z}_5$, yakni dengan definisi $\beta(n) = \bar{n}$ untuk setiap $n \in \mathbb{Z}$. Mudah dipahami bahwa β bersifat surjektif dan juga mudah diketahui bahwa $Ker(f) = 5\mathbb{Z}$.

Berdasarkan TFHG, diperoleh $\mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}_5$.

Akibat 0.2. Jika $f:G\to S$ adalah epimorfisma grup, maka

$$G \cong S$$
.

0.2 How to show two groups are isomorphic

The standard way to show $G\cong H$ is to construct an isomorphism $\phi:G\to H$. When the domain is a quotient, there is another method, due to the **Fundamental Homomorphism Theorem**. Suppose we want to show that $G/N\cong H$. There are two approaches:

- 1. Define a map $\phi: G/N \to H$ and prove that it is **well-defined**, a **homomorphism**, and a **bijection**.
- 2. Define a map $\phi:G\to H$ and prove that it is a **homomorphism**, a **surjection (onto)**, and that $Ker(\phi)=N$