B3

(19) 世界知的所有権機関 国際事務局

. | 1900 | 1904 | 1904 | 1904 | 1904 | 1904 | 1904 | 1905 | 1904 | 1905 | 1906 | 1906 | 1906 | 1906 | 1906 | 1

(43) 国際公開日 2002 年8 月15 日 (15.08.2002)

PCT

(10) 国際公開番号 WO 02/062829 A1

(51) 国際特許分類⁷: C07K 5/062, 5/065, 5/078, 14/745, G01N 33/15, 33/68, G06F 17/50

(21) 国際出願番号:

PCT/JP02/00883

(22) 国際出願日:

2002年2月4日 (04.02.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-27474

2001年2月2日(02.02.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 中 外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間 5 丁 目 5 番 1 号 Tokyo (JP).

(72) 発明者; および

内 Shizuoka (JP). 古賀 隆樹 (KOGA,Takaki) [JP/JP]: 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5番地 中外製薬株式会社内 Shizuoka (JP). 坂本 昭久(SAKAMOTO,Akihisa) [JP/JP]: 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5番地 中外製薬株式会社内Shizuoka (JP).

- (74) 代理人: 社本一夫、外(SHAMOTO,Ichio et al.); 〒100-0004 東京都千代田区 大手町二丁目 2番 1 号新大手町ビル2 0 6区 ユアサハラ法律特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: PEPTIDE DERIVATIVES

(54) 発明の名称: ペプチド誘導体

02/062829 A

(57) Abstract: Compounds represented by the following general formula (1): (1) wherein R_1 represents amidinophenyl, etc.; R_2 represents hydrogen, etc.; R_3 represents carbamoylalkyl, etc.; R_4 represents hydrogen, etc.; R_5 represents benzyl, etc.; R_6 represents hydrogen, etc.; and R_7 represents alkylsulfonyl, etc. Crystals of a complex of VIIa

factor/human soluble tissue factor with a low-molecular weight reversible VIIa factor inhibitor. A medium carrying the whole or a part of the coordinate data of the stereostructure of the complex of human VIIa factor/human soluble tissue factor with a low-molecular weight reversible VIIa factor inhibitor obtained by X-ray crystal structure analysis of the above crystals recorded thereon. A method of designing a low-molecular weight reversible VIIa factor inhibitor by using the above data.

[続葉有]

BEST AVAILABLE COPY

(57) 要約:

一般式(1)

(式中、 R_1 は、Pミジノフェニル基など、 R_2 は、水素原子など、 R_3 は、カルバモイルアルキル基など、 R_4 は、水素原子など、 R_5 は、ベンジル基など、 R_6 は、水素原子など、 R_7 は、Pルキルスルホニル基など、を表す。)で示される化合物。V I I a 因子/ヒト可溶型組織因子と低分子可逆的 V I I a 因子阻害剤との複合体の結晶。当該結晶を X 線結晶構造解析することにより得られるヒト V I I a 因子/ヒト可溶型組織因子と低分子可逆的 V I I a 因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体。前記データを利用してコンピュータ上で低分子可逆的 V I I a 因子阻害剤をデザインする方法。

明 細 書ペプチド誘導体

技術分野

5 本発明は、血液凝固 VIIa 因子に対して阻害活性を有するペプチド誘導体に 関する。

背景技術

血液凝固反応は、血管損傷や異物刺激に応答して惹起される生体防御反応である。血液凝固反応には、血漿中の12種のタンパク質性の凝固因子、それにカルシウムイオン、組織因子、リン脂質(血小板由来)を加えて15種の因子が関与している。この反応は、損傷部位で凝集する血小板や損傷内皮細胞の膜上で、プロテアーゼの活性化の連鎖反応が次々に起こるカスケード機構からなる。

血液凝固カスケードは、内因系と外因系に分けられる。血液凝固が起こる際に、 15 組織中の組織因子の関与がある場合を外因系血液凝固とよび、関与のない場合を 内因系の血液凝固とよぶ。

内因系の血液凝固は、血漿中の血液凝固 X I I 因子が陰性荷電を有する固相などの表面に接触することによって始まる。 X I I 因子は表面に吸着されると限定分解され活性型プロテアーゼである活性化 X I I 因子 (X I I a) になる。 X I 20 I a は X I 因子を限定分解して、活性型プロテアーゼである活性化 X I 因子 (X I a) にする。 このようなプロテアーゼの活性化が次々に起こって、最終的に生成したトロンビンが、フィブリノーゲンを限定分解してフィブリンにして血液凝固が終了する。 X I 因子の活性化以降の反応では、複数の凝固因子が複合体を形成することにより、止血局所への凝固因子の濃縮と、効率の高い活性化反応が進行する。即ち、リン脂質、V I I I a 因子、 I X a 因子、 X 因子、 C a 2+からなるテンナーゼ複合体、さらにリン脂質、 V a 因子、 X a 因子、 プロトロンビン、 C a 2+からなるプロトロンビナーゼ複合体が形成され、プロトロンビンの活性化反応を著しく促進する。

外因系の血液凝固は、VIIa因子が組織因子と複合体を形成することにより

開始する。このVIIaと組織因子の複合体は、X因子、およびIX因子を活性化する段階で内因系と合流する。

病態時の凝固亢進や生理的凝固においては、一般に、外因系の血液凝固が重要であるといわれている。

5 抗凝固薬としては、ヘパリンなどのトロンビン阻害剤や、ワーファリンなどが知られている。しかし、トロンビン阻害剤は、血液凝固カスケードの下流に作用するため、過剰の凝固抑制が起こるとトロンビン生成に至る凝固因子の消費を抑制しないので、臨床では出血傾向があることが問題となっている。また、ワーファリンは、多くの血液凝固因子の産生を阻害するため、臨床においては、トロンビン阻害剤と同様、出血傾向があることが問題となっている。

VIIa因子は、前述のように外因系経路の上流に位置するため、VIIa因子に対する阻害剤は、内因系凝固の経路の機能を残すことができる、即ち、出血に対する抵抗性を残すことができると考えられる。このことから、VIIa因子阻害剤は、既存の抗凝固薬の副作用である出血傾向を軽減することが期待される。

- 15 したがって、VIIa因子阻害剤は、外因系の凝固反応が関与する病態の予防または治療、例えば、慢性の血栓症(さらに具体的には、術後深部静脈血栓症、PTCA後の再狭窄、DIC(播種性血管内凝固症候群:disseminatedintravascular coagulation)、心由来血栓塞栓、心筋梗塞、脳梗塞)などの予防または治療に有用であることが期待される。
- 20これまで、VIIa因子阻害剤として、いくつかの化合物が報告されている
(WO00/41531号公報、 WO00/35886号公報、 WO99/4
1231号公報、 EP921116A号公開公報、WO00/15658号公
報、WO00/30646号公報、WO00/58346号公報など)。

しかし、これらは、いずれもVIIa因子に対する阻害活性、または、外因系 25 血液凝固に対する選択的な阻害活性において十分とはいえず、さらに優れた前記 阻害活性または選択的な阻害活性を有する薬剤の創製が望まれる。

最近の酵素阻害薬研究においては、X線結晶構造解析等に基づく酵素の三次元モデルをコンピュータを用いて画面上に表示し、阻害作用を有すると考えられる化合物を考案したり、あるいはコンピュータ上で仮想スクリーニングをするなど

5

10

15

20

25

の手法が活用されている。VII a 因子(以下、「FVII a」とも称す。)についても、単独の形や可溶型組織因子との複合体(以下、VII a 因子と可溶型組織因子との複合体を「VII a 因子/可溶型組織因子」、または「FVII a /sTF」とも称す。)、および蛋白質阻害剤との複合体の形で立体構造がX線構造解析により決定されている(Nature 380巻、41-46、1996年; J. Mol. Biol 285巻、2089-2104、1999年; Proc Natl Acad Sci U S A. 96巻、8925-8930; J Struct Biol. 127巻、213-223、1999年; Nature 404巻、465-470、2000年)。

しかしながら、現状のコンピュータによる仮想的なドッキングの予測は完全で はなく(Guidebook on Molecular Modeling Drug Design、129-133、1996年、 ACADEMIC PRESS)、また、阻害剤の結合により誘導適合と呼ばれる酵素側の 構造変化もしばしば見られることから(Guidebook on Molecular Modeling Drug Design、133-134、1996年、ACADEMIC PRESS)、コンピュータを使って阻害 剤をデザインするにあたっては、個々の阻害剤もしくはこれらと構造的に類似し た阻害剤について酵素との複合体の形でX線構造解析を行い、その結合様式の詳 細を原子レベルで解明することが最も望ましい。しかし、これまで報告されたV II a因子を含む結晶ではいずれも阻害剤の結合サイトとなりうる活性部位に不 可逆的阻害剤や蛋白質阻害剤が占めており、低分子、例えば分子量1000以下の 可逆的阻害剤との複合体のX線結晶構造解析には使用できない。一般に蛋白質の 結晶化にあたっては高い純度が必要だが、このような高純度の蛋白を精製するに あたっては混在するプロテアーゼによる分解が問題となることが多い (Crystallization of Nucleic Acids and Proteins A practical Approach, 34, 1992年、IRL PRESS)。特にVIIa因子のようなプロテアーゼの精製および結 晶化にあたっては自分自身による自己分解が問題となる。このため精製および結 晶化の際に不可逆的阻害剤が使われるケースが見られる。不可逆的阻害剤は一度 結合すると離れることがなく、精製や結晶化中の自己分解を完全に避けることが できるためである。しかしながら、低分子の可逆的阻害剤との複合体の結晶化の 場合には、自己分解が完全に抑えられる保証は無く、技術的困難を伴う。実際、 VII a因子と低分子可逆的 VII a因子阻害剤との複合体の結晶ならびにその 立体構造についてこれまでに報告された例はない。

発明の開示

本発明の目的は、血液凝固VIIa因子に対する阻害活性を有し、または、外因系血液凝固に対する選択的阻害作用に優れた、医薬として有用なペプチド誘導体を提供することである。

5 さらに、本発明の目的は、VIIa因子/可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造解明のため、X線結晶解析に用いることができる結晶を提供すること、およびその結晶を作製する方法を提供することである。また、該複合体結晶の立体構造情報を用いてVIIa因子に対して優れた特異的または選択的阻害活性を有する新たな低分子可逆的VIIa因子阻害剤をデザインする方法、及びその方法によりデザインされた低分子可逆的VIIa因子阻害剤を提供することも目的とする。

本発明者らは、鋭意研究を重ねた結果、一般式(1)によって示されるペプチド誘導体が、VIIa因子に対する阻害活性を有し、または、外因系血液凝固に 選択的な阻害作用を示し得ることを見出し、本発明を完成するに至った。

15 すなわち、本発明は、一般式 (1)

(式中、

20 R₁は、下記式:

から選択される基

(上記式中、R₈は、アミノ基、アミノメチル基、または、

5

、を表す。

R。は、水素原子、アミノ基、水酸基、アシル基、アルキル部分が置換基を有 10 していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルであるアルコキ キシカルボニル基を表す。 R₁₀は、アミノ基を表す。 X、Yは、いずれか一方 が=CHーを表し、他方が=Nーを表す。)を表す。

 R_2 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

15 R₃は、

、または

・ $-(CH_2)_m-R_{11}$ 、を表す。 ここで、mは、 $1\sim6$ の整数を表す。 R_{11} は、

 $5 - CONH_2$

(ここで、 R_{12} は、水素原子または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のア 10 ルキル基を表す。)、または、

、を表す。

15 R_4 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_5 は、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、または、

 $-CH_2-R_{13}$ (ここで、 R_{13} は、置換基を有していてもよいアリール基、または、置換基を有していてもよい複素環基を表す。)

20 を表す。

 R_6 は、水素原子、または炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_7 は、置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-SO_2-R_{14}$ (ここで、 R_{14} は、置換基を有していてもよい炭素数 $1\sim8$ の直鎖もしくは分枝鎖状のアルキル基を表す。) を表す。)で示される化合物、その互変異性体、光学異性体、またはこれらの水和物もしくは薬学的に許容し得る塩を提供するものである。

5

10

また、本発明は、一般式(1)で示される化合物を含有する医薬組成物を提供する。さらに、本発明は、上記化合物を含有する抗血栓剤を提供する。また、本発明は、上記化合物を含有する血液凝固 VIIa 因子阻害剤を提供する。

また、本発明は、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VI Ia因子阻害剤との複合体の結晶を提供する。また、低分子可逆的VIIa因子 阻害剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表 す。)で示される化合物である前記複合体の結晶も提供する。

さらに、本発明は、以下の工程(i)~(iii)を含む、ヒトVIIa因子 /ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶を製 造する方法を提供する:

- (i)低分子可逆的VIIa因子阻害剤との結晶化が可能なヒトVIIa因子/ヒト可溶型組織因子を調製する工程、
- (ii) 低分子可逆的VII a 因子阻害剤を加え、結晶化用濃縮試料を調製する工程、
- 15 (i i i) 低分子不可逆的VII a 因子阻害剤又は低分子可逆的VII a 因子阻害剤とヒトVII a 因子/ヒト可溶型組織因子との複合体の結晶を種として添加し、(i i) で得られた結晶化用濃縮試料からヒトVII a 因子/ヒト可溶型組織因子と低分子可逆的VII a 因子阻害剤との複合体の結晶を得る工程。さらに、低分子可逆的VII a 因子阻害剤が一般式(1)(式中の置換基の定義は、前記20 におけると同じ意味を表す。)で示される化合物である、前記複合体製造方法も提供する。

また、本発明は、前記のヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶をX線結晶構造解析することにより得られるヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体を提供する。

さらに前記座標データを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインする方法を提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のAsp60側鎖、Tyr94側鎖及びThr98主鎖の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子

阻害剤である、前記デザイン方法を提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のLys192側鎖と相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のVal170E、Gly170F、Asp170G、Ser170H、Pro170IおよびGln217の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のS4サイトからS4サブサイトに通じる孔を通してS4サブサイトと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のS4サイトからS4サブサイトに通じる孔を通してS4サブサイトと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。

さらに、上記デザイン方法によりデザインされた低分子可逆的VIIa因子阻害剤を提供する。また、ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有する、前記低分子可逆的VIIa因子阻害剤も提供する。

15 [A-1]群:

5

10

$$H_2N$$
 H_2N X_1 H_2N X_1 X_2 X_3 X_4 X_2 X_3 X_4

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

20 [A-2]群:

$$\xi$$
 -----R₂₃---NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

さらに、ヒトVIIa因子のS1サブサイトと相互作用する部分構造として下記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有する、前記低分子可逆的VIIa因子阻害剤も提供する。

[B-1]群:

[B-2]群:

[B-3]群:

5

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6 10 員環、5員環を示す。)

[B-4]群:

(ここで、 R_{27} は、炭素数 $1\sim3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同してある。 R_{26} は、 [B-3] 群と同一である。)

また、ヒトVIIa因子のS4サイトと相互作用する部分構造として下記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、前記低分 子可逆的VIIa因子阻害剤も提供する。

[C-1]群:

$$R_{28}$$
 X_3
 R_{28}
 X_3
 R_{28}
 X_3
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}

(ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香 族6員環もしくは5員環を示す。)

[C-2]群:

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 , X_7 、 X_8 、 X_9 、 X_{10} は、独立して、NまたはCHを示す。)

10 さらに、ヒトVIIa因子のS2サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S4サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造 のいずれかを含有する、低分子可逆的VIIa因子阻害剤である。

図面の簡単な説明

図1は、ヒトVIIa因子と化合物(1)との結合部分の立体構造を示す図である。

20図2は、ヒトVIIa因子と化合物(1)との結合部分の模式図である。図3は、D-Phe-Phe-Arg-cmk結合時のヒトVIIa因子のS

4サイト部分の様子(左) および化合物(1) 結合時のヒトVIIa因子のS4サイト部分の様子(右)を示す図である。

発明を実施するための最良の形態

5 一般式(1)で示される化合物の定義において、

R₁における、基

としては、

10 が好ましい。

ここで、R₈としては、

が好ましい。

上記Rgにおける、基

15

20

のR。の定義中のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、カプロイル基、フェニルアセチル基などのアルキルカルボニル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基などのアルケニルカルボニル基、ベンゾイル基などのアリールカルボニル基などが挙げられ、アルキル部分が炭素数1~6の直鎖もしくは分枝鎖状のアルキルカルボニル基が好ましく、なかでも、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基が好ましい。

上記R。における、基

5

10

のR。の定義中の、アルキル部分が置換基を有していてもよい炭素数 1~6 直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基としては、アルキル部分が置換基を有していてもよい炭素数 1~4 直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基が好ましく(ここで、置換基としては、フェニル基などが挙げられる。)、なかでも、メトキシカルボニル基、エトキシカルボニル基、ナーブトキシカルボニル基、ベンジルオキシカルボニル基が好ましい。

なお、本発明において、「置換基を有していてもよい」という場合、あるいは、 複数個の置換が可能な場合は、全て1個もしくは2個以上の置換基で置換されて いてもよいことを意味する。

上記R。における、基

のR。としては、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、 t - ブトキシカルボニル基、ベンジルオキシカルボニル基が好ましい。

R₁における、基

としては、

が好ましい。

R₁における、基

としては、

が好ましい。

R₁における、基

5

としては、

が好ましい。

R₁における、基

10

としては、

が好ましい。

R₁における、基

が好ましい。

R1における、基

としては、

5

が好ましい。

 R_2 における炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、なかでも、メチル基が好ましい。

10 R₃における基

としては、

が好ましい。

15 R₃における基

 $-(CH_2)_m-R_{11}$ のmとしては、 $1\sim3$ の整数が好ましく、特に2 であることが好ましい。

R₃における基

 $-(CH_2)_m-R_{11}のR_{11}としては、-CONH_2、$

が好ましい。ここで、 R_{12} としては、水素原子または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であり、特にメチル基が好ましい。

 R_4 における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、メチル基が特に好ましい。

 R_5 における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、

置換基を有していてもよいアリール基としては、

10

15

5

(ここで、R₁₅としては、水素原子、置換基を有していてもよいアリール基 (ここで、アリール基としてはフェニル基、ナフチル基などが挙げられ、フェニ ル基が好ましい。また、置換基としては、炭素数1~3の直鎖もしくは分枝鎖状 のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数1~3の直鎖もし くは分枝鎖状のアルキル基、ニトロ基、アミノ基などが挙げられる)

のアルコーン基、ハロケン原子で直換されていてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルキル基、ニトロ基、アミノ基などが挙げられる)、 ハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3の直鎖もしくは分枝鎖状のアルコキシ基、ハロゲン原子、アリールカルボニル基(ここでアリール基としてはフェニル基、ナフチル基などが挙げられ、フェニル基が好ましい。)、アルキル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキル基

20 であるアルキルカルボニル基、ニトロ基、または、アミノ基、が好ましく、なかでも、水素原子、tープチル基、メトキシ基、臭素原子、塩素原子、ベンゾイル基、または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基が好ましい)、および、

25 (ここで、 R_{16} としては、水素原子、または炭素数 $1\sim6$ の直鎖もしくは分枝 鎖状のアルキル基が好ましく、特に好ましくは水素原子である。)、 が好ましい。 5

10

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、置換基を有していてもよい複素環基の複素環には、環構成原子として少なくとも1つの窒素原子、酸素原子、および/または硫黄原子を含む $5\sim1$ 0員の単環もしくは縮合環が含まれ、例えば、フラン、チオフェン、ピラン、ピロール、ピリジン、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾピラン、ベンゾチオピランなどが挙げられる。置換基を有していてもよい複素環基の置換基としては、例えば、下記の R_{17} 、 R_{18} に例示される基などが挙げられる。

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、置換基を有していてもよい複素環基としては、

が好ましい。ここで、

 R_{17} としては、水素原子:水酸基;炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルコキシ基; $-O-(CH_2)$ $_{n}-OH(CCTC, nは <math>1\sim5$ の整数を表す。); $-O-(CH_2)$ $_{n}-COTCCTC, pは <math>1\sim5$ の整数を表す。); $-O-(CH_2)$ $_{q}-NH_2$ (ここで、10 で、11 $1\sim5$ の整数を表す。);12 で、13 13 14 15 の整数を表す。);15 の整数を表す。);15 の整数を表す。);

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim6$ の直鎖 もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim6$ の直鎖もしくは 分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは 分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)が好ましい。

整数を表す。)、 $-O-(CH_2)_q-NH_2$ (ここで、 $pは1\sim3$ の整数を表す。)、 $-OSO_2-R_{20}$ (ここで、 R_{20} としては、特に、エチル基、n-プロピル基、i-プロピル基またはベンジル基が好ましい。)、ベンジルオキシ基、3-もしくは4-ヒドロキシベンジルオキシ基、または、3-もしくは4-カルボキシベンジルオキシ基、が好ましい。

R₁₈としては、水素原子、炭素数 1~6の直鎖もしくは分枝鎖状のアルキル基、炭素数 1~6の直鎖もしくは分枝鎖状のアルキルスルホニル基、置換基を有していてもよいアリールスルホニル基(ここで、アリール基としてはフェニル基が好ましい。また、置換基としては、炭素数 1~3の直鎖もしくは分枝鎖状のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基、ニトロ基、アミノ基などが挙げられる。)が好ましく、なかでも、水素原子、メチル基、メタンスルホニル基、ベンゼンスルホニル基が特に好ましい。

 R_6 における、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_7 における、置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖 状のアルキル基の置換基としては、カルボキシル基、アミノ基、アルキル部分が 炭素数 $1\sim6$ のアルキルであるモノーもしくはジー置換アルキルアミノ基、アルキル部分が炭素数 $1\sim6$ のアルキルであるアルキルカルボニルアミノ基などが挙 げられる。

 R_7 における、置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基のアルキル部分としては、炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_{τ} における、置換基を有していてもよい炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖 25 状のアルキル基としては、炭素数 $1 \sim 4$ の直鎖もしくは分枝鎖状のアルキル基、

(ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。

10

15

 R_{22} は、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキルであるアルキルカルボニル基である。)、が好ましい。

特に、基

5

においては、特に、kは0~2の整数であることが好ましい。また、 R_{21} は、水素原子、 $-NHR_{22}$ (ここで、 R_{22} は、メチル基、アセチル基である)が好ましい。

 R_7 の定義における、 $-SO_2-R_{14}$ の R_{14} の置換基を有していてもよい炭素 20 数 $1\sim 8$ の直鎖もしくは分枝鎖状のアルキル基の置換基としては、 (a) カルボキシル基、 (b) アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基、 (c) カルボキシル基などで置換されていてもよいフェニル基などが挙げられる。

 R_{14} の定義における置換基を有していてもよい炭素数 $1\sim 8$ の直鎖もしくは 15 分枝鎖状のアルキル基のアルキル部分としては、炭素数 $1\sim 6$ の直鎖もしくは分 枝鎖状のアルキル基が好ましい。

 R_{14} の定義における置換基を有していてもよい炭素数 $1\sim 8$ の直鎖もしくは分枝鎖状のアルキル基としては、(a) 置換基を有していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基(アルキル基の置換基としては、カルボキシル基、アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基であるアルコキシカルボニル基である。)、および、(b) $-CH_2-R_{23}$ (ここで、 R_{23} は、置換基を有していてもよいフェニル基である。ここで、置換基としては、カルボキシル基などである。)が好ましい。

 R_{14} としては、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、 25 または、置換基を有していてもよい炭素数1-4の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置換基としては、カルボキシル基、または、アルキル部分が炭素数1-3の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である)が特に好ましい。

R₁としては、下記式:

から選択される基(上記式中、R。は、

5 である(ここで、R₉は、水素原子、アミノ基、水酸基、アシル基、または、ア ルキル部分が置換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖状の アルキルであるアルコキシカルボニル基である。))が好ましい。

なかでも、R,としては、特に、下記式:

10 から選択される基(上記式中、R₈は、

、である。ここで、R。は、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、 t ープトキシカルボニル基、またはベンジルオキシカルボニル基である。)であることが好ましい。

R₂としては、水素原子、または炭素数1~3の直鎖もしくは分枝鎖状のアルキル基が好ましく、特に、水素原子またはメチル基が好ましい。

R₃としては、

 $-(CH_2)_m-R_{11}$ (ここで、mは $1\sim3$ の整数であり、 R_{11} は、 $-CONH_2$ 、

$$R_{12}$$
 —N—CONH₂ (ここで、 R_{12} は水素原子またはメチル基である。)、または、

5 、である。)、が好ましい。

また、 R_3 が、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-(CH_2)_m-R_{11}$ (ここで、mおよび R_{11} は、前記と同じ意味を表す。)、である化合物が好ましい。

また、R₃が、

であり、かつ、 R_7 が、 $-SO_2-R_{14}$ (ここで、 R_{14} は前記と同じ意味を表す。)である化合物が好ましい。

R₃としては、特に、

- (CH₂)₂CONH₂,

、または、

- 、が好ましい。
- 20 R_4 としては、水素原子、または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、なかでも水素原子、メチル基が好ましい。

 R_5 としては、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、または、

5

15

20

25

-CH₂-R₁₃(ここで、R₁₃は、下記式

から選択される基である。上記式中、

 R_{15} は、水素原子;置換基を有していてもよいアリール基; ハロゲン原子で置換されていてもよい炭素数 $1\sim3$ のアルキル基;炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルコキシ基;ハロゲン原子;アリールカルボニル基;アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基;ニトロ基;または、アミノ基、を表す。

 R_{16} は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル 10 基を表す。

 R_{17} は、水素原子;水酸基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基、 $-O-(CH_2)_n$ $-OH(CCCT, nは <math>1\sim 5$ の整数を表す。); $-O-(CH_2)_p-COOH(CCTT, pは <math>1\sim 5$ の整数を表す。); $-O-(CH_2)_q-NH_2$ (ここで、q は $1\sim 5$ の整数を表す。):

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim6$ の直鎖 もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim6$ の直鎖もしくは 分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは 分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)を表す。

 R_{18} は、水素原子、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、または、置換基を有していてもよいアリールスルホニル基を表す。)が好ましい。

R₅としては、特に、炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、ま

たは、 $-CH_2-R_{13}$ が好ましい(ここで、 R_{13} は、下記式

から選択される基である。上記式中、

R₁₅は、水素原子; t - ブチル基;メトキシ基;臭素原子;塩素原子;ベン ゾイル基;または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基 もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1\sim3$ の直鎖もしくは分枝状のアルコキシ基、 $-O-(CH_2)_n-OH(CCTC,n$ は $1\sim3$ の整数を表す。)、 $-O-(CH_2)_p-COOH(CCTC,p$ は $1\sim3$ の整数を表す。)、

10 $-O-(CH_2)_q-NH_2$ (ここで、qは $1\sim3$ の整数を表す。)、 $-OSO_2-R_{20}$ (ここで、 R_{20} はエチル基、n-プロピル基、i-プロピル基またはベンジル基である。)、ベンジルオキシ基、3-もしくは4-ヒドロキシベンジルオキシ基、または、3-もしくは4-カルボキシベンジルオキシ基、である。

 R_{18} は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスル 15 ホニル基である。)。

 R_6 としては、水素原子、または炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、特に、水素原子、メチル基が好ましい。

 R_7 としては、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、

20 (ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基である。)、または

$$\cdot - SO_2 - R_{14}$$

25 (ここで、R₁₄は、

①置換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖状のアルキル

WO 02/062829 PCT/JP02/00883

基(アルキル基の置換基としては、カルボキシル基、アルキル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキル基であるアルコキシカルボニル基である。)、または、

② $-CH_2-R_{23}$ である。 R_{23} は、置換基を有していてもよいフェニル基である。)、

が好ましい。

5

なかでも、R₇としては、特に、

・炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、

10 (ここで、kは、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、メチル基、または、アセチル基である。)、または

・ $-SO_2-R_{14}$ (ここで、 R_{14} は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数 1-4の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置換基としては、カルボキシ

15 ル基、または、アルキル部分が炭素数 1 ~ 3 の直鎖もしくは分枝鎖状のアルキル であるアルコキシカルボニル基である。) である。)、 が好ましい。

一般式(1)の定義の各置換基は以上のような定義を有するが、一般式(1)で表される化合物としては、

20 R₁が、下記式:

から選択される基であり(上記式中、 R_8 は、

、である。ここで、R。は、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、t - ブトキシカルボニル基、またはベンジルオキシカルボニル基である。);

5 R_2 が、水素原子またはメチル基であり; R_3 が、

R₄が、水素原子またはメチル基であり;

 R_5 が、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-CH_2-R_{13}$ であり(ここで、 R_{13} は、下記式

15 から選択される基である。上記式中、

 R_{15} は、水素原子; t ープチル基; メトキシ基; 臭素原子; 塩素原子; ベンゾイル基; または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1\sim3$ の直鎖もしくは分枝状 20 のアルコキシ基、 $-O-(CH_2)_n-OH(CCTC,nは <math>1\sim3$ の整数を表す。)、 $-O-(CH_2)_p-COOH(CCTC,pは <math>1\sim3$ の整数を表す。)、 $-O-(CH_2)_q-NH_2$ (CCCTC、qは $1\sim3$ の整数を表す。)、 $-OSO_2-R_{20}$ (CCCTC、 R_{20} はエチル基、n-プロピル基、i-プロピル基またはベンジル基である。)、ベンジルオキシ基、3-もしくは 4- ヒドロキシベンジルオ

キシ基、または、3-もしくは4-カルボキシベンジルオキシ基、である。

 R_{18} は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスルホニル基である。);

R₆が、水素原子またはメチル基であり;

- 5 R₇が、
 - ・炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基、

(ここで、k は、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、メチル基、または、アセチル基である。)、または

- 10 ・-SO₂-R₁₄(ここで、R₁₄は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数1~4の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置換基としては、カルボキシル基、または、アルキル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。)である。)、
- 15 である化合物が好ましい。

なかでも、下記化合物群

から選択される化合物が好ましい。

一般式(1)で示される化合物には、光学異性体が存在するが、それぞれの光 5 学異性体、およびそれらの混合物は全て本発明に含まれる。なかでも、一般式 (1)において、 R_3 の結合する炭素原子についてS配置、 R_5 の結合する炭素 原についてR配置である化合物が好ましい。

本発明の化合物は水和物として得ることもできる。

5

塩を形成する酸としては、たとえば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、 燐酸などの無機酸、および酢酸、シュウ酸、マレイン酸、フマル酸、クエン酸、 酒石酸、メタンスルホン酸、トロフルオロ酢酸などの有機酸が挙げられる。

一般式(1)で示される化合物は、1種もしくはそれ以上の薬学的に許容し得る希釈剤、湿潤剤、乳化剤、分散剤、補助剤、防腐剤、緩衝剤、結合剤、安定剤等を含む薬学的組成物として、目的とする投与経路に応じ、適当な任意の形態にして投与することができる。投与経路は非経口的経路であっても経口的経路であってもよい。

本発明化合物の投与量は、患者の体型、年齢、体調、疾患の度合い、発症後の 10 経過時間等により、適宜選択することができるが、例えば、経口投与の場合には、 一般に1~1000mg/day/personの用量で使用され、非経口投与(静注、 筋注、皮下注)の場合には、一般に0.1~100mg/day/personの用量で 使用される。

一般式(1)で示される化合物は、下記反応スキーム1~6に図示されている 15 方法によって製造することができる。

反応スキーム1

28 差 替 え 用 紙 (規則26)

反応スキーム2

$$R_{12}$$
 R_{13} or R_{3} R_{4} R_{5} or R_{5} R_{5}

31 差 替 え 用 紙 (規則26)

<u> 反応スキーム 5</u>

5

反応スキーム5

5

15 また、Pはそれぞれ通常使われる保護基を示し、たとえば、ペプチド合成の基礎と実験(1985年、丸善発行)などの他、PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991)などに記載されている保護基である。

また、Xはクロライド、ブロマイドまたはヨージドなどのハロゲン原子を表わす。

各反応工程式中の出発原料は、それ自体公知であるか、または公知の方法により製造することができる。

5 各反応工程中の反応はすべて公知の方法により行なうことができる。 また、本発明における他の出発物質および各試薬は、それ自体公知であるかまた は公知の方法により製造することができる。

以下に本発明化合物の製造方法を上記反応スキームに沿ってより具体的に説明する。

10 反応スキーム1

中間体(3)は、出発原料(1)及び試薬2(表A-1~表A-34に例示される。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能である。)の縮合反応を行うことにより得られる。

ここで用いられる縮合反応としては、例えば通常用いられる活性エステル法、

- 15 酸無水物法、アジド法、酸クロライド法、各種縮合剤等、ペプチド合成の基礎と実験(1985年、丸善発行)に示された方法が挙げられる。用いられる縮合剤としては、N, N'ージシクロヘキシルカルボジイミド(DCC)、水溶性カルボジイミド(WSCI)、カルボニルジイミダゾール(CDI)、ジフェニルホスホリルアジド(DPPA), Bop試薬、Pybop試薬、2-(1Hーベンゾト
- 20 リアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロフォスフェート(HBTU), 2-(1Hーベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム テトラフルオロボーレート(TBTU)、2-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロフォスフェート(HATU)等、ペプチドシンセシスハンドブック(1998年、ノババイオケム発行)等に記載
- 25 される通常用いられる試薬があげられる。反応は常法に従い、適当な溶媒、たと えばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温な いし加温して行われる。

中間体(4)は、中間体(3)に適当なアミノ脱保護反応を行うことにより得られる。例えば、ペプチド合成の基礎と実験(1985年、丸善発行)に示され

10

15

20

た方法が挙げられる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(6)は、中間体(4)及び試薬5(表A-1~表A-34に例示される。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能である。)の、上記に示したような縮合反応を行うことにより得られる。中間体(7)は、中間体(6)に上記に示したようなアミノ脱保護反応を行なうことにより得られる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(9)は、中間体(7)に試薬8(表A-1~表A-34に例示される。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能である。)を用い、通常用いられうるアルキル化反応、アシル化反応、スルホニル化反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たとえばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温ないし加温して行われる。

化合物 (10) および中間体 (11) は、中間体 (9) を、たとえば、日本特許公表公報平 9-509937、ザ ケミストリー オブ アミジンズ アンドイミデーツ (1991年、ジョン ワイリー アンド サンズ発行)等に記載されている一般に知られている方法により導くことができる。

たとえば、化合物(10)は、中間体(9)を強酸に付した後、アンモニウム 塩類またはアンモニアを反応させることによって得られる。反応は常法に従い、 適当な溶媒、たとえばメタノール、エタノールなどを用い、冷却下あるいは室温 ないし加温して行われる。

25 化合物(10)は、中間体(11)に適当な脱保護反応を行なうことにより得られる。例えば、ペプチド合成の基礎と実験(1985年、丸善発行)に示された方法が挙げられる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミド、水、エタノールなどを用い、冷却下あるいは室温ないし加温して行われる。

<u> 反応スキーム2</u>

5

中間体(14)は、出発原料(12)に試薬13(本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能な、アルキルハライド、アシルクロライド、スルホニルクロライドである。)を用い、通常用いられうるアルキル化反応、アシル化反応、スルホニル化反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たとえばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(16)は、中間体(14)、及び試薬15(本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能な、天然アミノ酸ま10 たは非天然アミノ酸である。)の、上記に示したような縮合反応を行うことにより得られる。

中間体(17)は、中間体(16)に適当な脱保護反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たとえば水、メタノール、エタノールなどを用い、冷却下あるいは室温ないし加温して行われる。

15 中間体(19)は、中間体(17)に試薬18(表A-27に例示される。本 試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可 能である。)を用い、および化合物(20)は、中間体(17)に試薬18を用 い、上記に示したような縮合反応を行なうことにより得られる。

化合物(20)は、中間体(19)に適当な脱保護反応を行なうことにより得られる。

反応スキーム3

化合物(21)は、中間体(9)に適当な脱保護反応を行なうことにより得られる。

化合物(23)は、中間体(21)に試薬22(表A-28~29に例示され 25 る。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に 合成可能である。)を反応させることにより得られる。反応は常法に従い、適当 な溶媒、たとえば、ジクロロメタン、ジメチルホルムアミド、水、テトラヒドロ フランなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(24)および化合物(25)は上記に示したようなアミジノ化を行な

20

.

うことにより得られる。

中間体(25)は、中間体(24)に適当な脱保護反応を行なうことにより得られる。

反応スキーム4

10

5 中間体(26)は中間体(9)を用いて公知の方法、たとえばLeeらの方法 (Bioorg. Med. Chem. Lett. 869-876, 6, 1998)に従い得られる。

中間体(28)は中間体(26)と試薬27(本試薬は、一般式 NH_2-R_9 (R_9 は前述の定義のとおり)で示される化合物であり、商業的に入手可能であるか、公知の合成法により容易に合成可能である。)より公知の方法、たとえば Leeらの方法(Bioorg. Med. Chem. Lett. 869-876, 6, 1998)に従い得られる。

中間体(30)は中間体(9)と試薬29(本試薬は、一般式 NH_2-R_9 (R_9 は前述の定義のとおり)で示される化合物であり、商業的に入手可能であるか、公知の合成法により容易に合成可能である。)より公知の方法、たとえば Truckerらの方法(Bioorg. Med. Chem. 601-616, 8, 2000)に従い得られる。

- 中間体(32)は中間体(11)と試薬31(本試薬は、Boc基、Cbz基などのアミン保護基を表す。)よりペプチド合成の基礎と実験(1985年、丸善発行)などのほかPROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991)などに記載されている方法に従い得られる。ここで試薬(31)とは、例えばターシャリーブチルオ20 キシカルボニル基、ベンジルオキシカルボニル基、アセチル基、9ーフルオレニルメチルオキシカルボニル基などが挙げられる。反応は常法に従い、適当な溶媒、たとえば、ジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ないし加温して行われる。
- 化合物 (33) は中間体 (28)、中間体 (30)、中間体 (32) に適当な 25 脱保護反応を行なうことにより得られる。

反応スキーム5

中間体(34)は上記の中間体(9)と同様にして得られる。

中間体(36)は中間体(34)と試薬35(表A-30~31に例示される。 本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成

10

20

可能である。)より、例えばEllmanらの方法(J. Am. Chem. Soc. 11171-11172, 161, 1994)に従い、パラジウムを触媒とする、Suzuki反応により得ることが出来る。本反応に用いられる溶媒としては通常のSuzuki反応に用いられる溶媒、例えばエーテル系の溶媒や芳香族炭化水素系の溶媒、アセトニトリル、ジメチルホムアミドまたはこれらの溶媒と水との混合溶媒が用いられ、好ましくはテトラヒドロフランさらに好ましくはテトラヒドロフランと水との混合溶媒があげられる。用いられる試薬としてはパラジウム試薬としてテトラキス(トリフェニルホスフィン)パラジウム、酢酸パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムなどがあげられ、好ましくはテトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムがあげられる。

化合物(37)は中間体(36)に上記で示したアミジノ化反応を行なうことにより得られる。

反応スキーム6

15 中間体(38)は、上述の反応スキーム1により得られる。

中間体(40)は中間体(38)に試薬39(表A-32~34に例示される。)を用い、通常用いられうるアルキル化反応を行うことにより得られる。反応は常法に従い、適当な塩基、たとえば水素化ナトリウム、炭酸セシウム、炭酸カリウム、水酸化ナトリウムなどを用い、適当な溶媒、たとえばジメチルホルムアミド、テトラヒドロフランなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(41)は中間体(40)に上記に示したような脱保護反応を行なうことにより得られる。

中間体(42)は中間体(41)に試薬(8)を用い、上記に示したようなア 25 ルキル化反応、アシル化反応、スルホニル化反応を行うことにより得られる。

中間体(43)は中間体(42)に上記に示したようなアミジノ化を行なうことにより得られる。

化合物(44)は、中間体(43)に適当な脱保護反応を行なうことにより得られる。

10

15

20

25

本発明において、低分子VIIa因子阻害剤とは、VIIa因子に対して阻害活性を有する薬剤をいい、かかる性質を有するあらゆる化合物が含まれるが、特に、分子量1000以下の合成または天然の低分子化合物やペプチド誘導体などが挙げられる。VIIa因子に対する阻害活性は、例えば、本願明細書の試験例に記載の方法により測定することができる。

不可逆的VIIa因子阻害剤とは、VIIa因子と反応する基を有し、VIIa因子と共有結合することにより結合するVIIa因子阻害剤のうち、一度形成された共有結合が解離しないものをいう。VIIa因子のようなセリンプロテアーゼの場合、これと反応する基としてクロロメチルケトンなどの基が使われ、酵素中の活性中心となるSer残基と共有結合を形成することで不可逆的に阻害をする。可逆的VIIa因子阻害剤とは、VIIa因子との結合が不可逆的でないVIIa因子阻害剤をいう。低分子可逆的VIIa因子阻害剤とは、VIIa因子との結合が不可逆的でない低分子VIIa因子阻害剤をいう。

本発明者らは、課題解決のため低分子可逆的VIIa因子阻害剤とヒトVII a因子/ヒト可溶型組織因子との複合体の結晶を作成する方法を確立した。得られた結晶を用いてX線結晶構造解析を行うことにより低分子可逆的VIIa因子阻害剤とヒトVIIa因子の結合状態についての正確な立体構造情報を得ることができる。この立体構造情報から、コンピュータを用いて低分子可逆的阻害剤とVIIa因子との結合の様子を視覚的、数値的に表現することが可能となる。これはVIIa因子との結合に重要な相互作用の評価を行うにあたり有用である。

さらにX線構造解析により得られた低分子可逆的VIIa阻害剤とVIIa因子との複合体の構造を出発とし、仮想的に阻害剤分子に修飾を施すことでVII a因子に対する特異性に優れた低分子可逆的阻害剤を設計することが可能となる。 コンピュータを使った仮想的な評価は、現実の化合物合成に較べはるかに短時間で済むため、低分子可逆的阻害剤の分子設計の効率化に有用である。

また、低分子可逆的VIIa阻害剤とVIIa因子との結合様式とVIIa因子阻害活性、選択性との関係を分析することでVIIa因子への特異性を向上させるのに重要な相互作用が得られるサイトを正確に特定できる。このようにして確かめられたVIIa因子との特異性に重要な相互作用の情報を基にすることで、

X線結晶構造解析やコンピュータモデリングによりVIIa因子または構造的に類似したthrombin、trypsin、Xa因子等のセリンプロテアーゼとの結合様式が解明または推測された低分子可逆的阻害剤分子に対し、VIIa因子との特異性に重要な相互作用を持たせるようコンピュータ上で分子を修飾することが可能となる。阻害剤と酵素の相互作用は非常に複雑な過程であり、現在利用可能なコンピュータでの仮想的な評価単独ではその精度に限界があるが、このように実験的に有効性が確認された相互作用を使うことで、さらに効率の良い分子設計が可能となる。

10 [ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤と の複合体の結晶]

これは、ヒトVIIa因子/ヒト可溶型組織因子および低分子可逆的VIIa因子阻害剤から構成される結晶で、斜方晶系に属し、空間群 $P2_12_12_1$ 、格子定数 a=71.4Å ± 5 %、b=82.5Å ± 5 %、c=123.3Å ± 5 %, $\alpha=\beta=\gamma=90$ ° で非対称単位 にヒトVIIa因子/ヒト可溶型組織因子および可逆的VIIa因子阻害剤1個を含むものをさす。

このような複合体結晶としては、低分子可逆的VIIa因子阻害剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表す。)で示される化合物である複合体結晶が好ましい。

20

15

5

[ヒトVIIa因子/ヒト可溶型組織因子と可逆的VIIa因子阻害剤との複合体を結晶化する方法]

結晶化のためのヒトVIIa因子については、ヒトVII因子をコードするベクターを組み込んだ細胞を使ってヒトVII因子として発現させ、カラムクロマ25 トグラフィー法による精製後、活性体のVIIa因子に変換し、再度カラムクロマトグラフィー法により精製したものを用いることができる。この代わりにヒトFVIIa製剤(NovoSeven、Novo Nordisk Pharma Ltd.)をカラムクロマトグラフィー法により精製したものも使用できる。

結晶化のためのヒト可溶型組織因子については、ヒト組織因子の細胞外ドメイ

ンをコードするベクターを組み込んだ適当な細胞、菌体、特に大腸菌をつかって 発現後、カラムクロマトグラフィー法により精製したものが使用できる。

調製したヒトVIIa因子とヒト可溶型組織因子をヒト可溶型組織因子が過剰になるようベンズアミジン存在下で混ぜ合わせた後、ベンズアミジン無しの緩衝液を使いゲル濾過カラムクロマトグラフィー法により精製することでヒトVIIa因子/ヒト可溶型組織因子複合体を得ることができる。これに構造解析を目的とする低分子可逆的VIIa因子阻害剤を0.5mM程度になるよう、溶解性が低い場合は飽和濃度になるよう加え、限外濾過法により濃縮、結晶化用濃縮試料とする。

結晶は、結晶化用濃縮試料に対し、温度25度、100mM カコジル酸ナトリウ 10 ム緩衝液 pH5.0、6-7.5% PEG4000、5mM CaCl₂、5% グリセロール溶液 を使った蒸気拡散法(Crystallization of Nucleic Acids and Proteins practical Approach、82-90、1992年、IRL PRESS)を適用することで得られる。 その際、低分子不可逆的VIIa因子阻害剤または低分子可逆的VIIa因子阻 害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶を100mM カ 15 コジル酸ナトリウム緩衝液 pH5.0、9% PEG4000、5mM CaCl2中でホモジ ナイザーにより砕き希釈した種溶液を添加する必要がある。約1か月ほどで最大 で長さ1.0mm×太さ0.05mm程度の柱状の低分子可逆的VIIa因子阻害剤とヒ トVIIa因子/ヒト可溶型組織因子との複合体の結晶を得る。なお、結晶化方 法や溶液条件については上の条件に限定されるわけではない。例えば、結晶化方 20 法としては、蒸気拡散法以外にも、静置バッチ法、自由界面拡散法、透析法など の方法なども用いることができる。

また、このような複合体結晶化方法としては、低分子可逆的VIIa因子阻害 剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表す。) で示される化合物である方法が好ましい。

[ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標全体およびその一部を保存した媒体]

低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子と

25

10

の複合体の座標は、この複合体の結晶の立体構造を、立体構造決定方法の一つであるX線結晶構造解析を用いて解析することにより得られる。結晶に単色化されたX線に当てることにより得られる回折斑点の強度データを測定し、そのデータを使って結晶単位中での電子密度を計算することで各原子の位置を特定する。作成した構造から計算される回折強度データFcと観測した回折強度データFoの差が小さくなるよう各原子の3次元上の位置ならびに温度因子とよばれる原子の熱振動を表す変数を修正し、最終的な座標データが得られる。上記手法を本明細書中に開示されている低分子可逆的VIIa因子阻害剤の例である以下の化合物について適用することにより、これら化合物とVIIa因子/ヒト可溶型組織因子との複合体の結晶を得、X線結晶構造解析により化合物とVIIa因子との結合様式を明らかにした例を示す。

15 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の座標を本分野で一般に用いられる蛋白質の3次元の構造座標の表記方法であるPDBフォーマットに従って示したものを表36に示す。表36中、最初の行は結晶の格子形状や対称性を示したものである。第2行目以降は構造座標データを示し、左から順に、原子番号、原子名、アミノ酸残基名、chainID、アミノ酸残基番号、X、Y、20 Z、占有率、温度因子、segmentID(ここではchainIDと同じ)、原子の種類を示す。座標の単位はÅ。なお、アミノ酸残基番号については、Nature 380巻、41-46項、1996年の記載に従って対応するキモトリプシンのアミノ酸残基番号を基準にしている。また、VIIa因子は2つのポリペプチド鎖からなり、ここでは、

長い方をH鎖、短い方をL鎖と呼ぶ。表36中、chain IDは、H; VI I a因子H鎖、L; VII a因子L鎖、T; 可溶型組織因子、C; カルシウムイオン、W; 水分子、I: 低分子可逆的VII a因子阻害剤を示す。

本発明において、座標データの一部とは、X線結晶構造解析より得られた構造 座標の一部、特に低分子可逆的VIIa因子阻害剤およびその周囲の残基、を3 次元表記で表現したものである。表37は、化合物(2)とヒトVIIa因子/ヒト 可溶型組織因子との複合体のX線結晶構造解析により得られた座標のうち、化合物(2)から特に10Å以内の残基についてPDBフォーマットに従って示したものである。

10 座標データの全部又は一部を含む媒体とは、PDBフォーマットに従って示された座標データの全部又は一部或いはこれらと同等な内容を含む情報を保存したコンピュータのメモリーや各種ディスク装置をいう。

[解析された座標データを利用してコンピュータ上で新たな低分子可逆的VII a 因子阻害剤をデザインする方法]

蛋白質等の分子の3次元構造を表示するコンピュータプログラムは多数存在しており、これらのソフトとX線結晶構造解析により得られた構造座標を用いることで、低分子可逆的VIIa阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体構造、特に低分子可逆的VIIa因子阻害剤の周囲の構造をコンピュータ上で視覚的に表現することができる。これにより低分子可逆的VIIa因子阻害剤とヒトF.VIIaとの間でどのような相互作用が働いているか視覚的に認識できる。図1はヒトVIIa因子の活性部位ポケットに化合物(1)が結合した様子を立体的に表現したものである。残基化合物(1)を含む本件発明のペプチド化合物はヒトVIIa因子と4つのサイトで結合しており、ここではそれぞれ、

25 S1サイト、S2サイト、S4サイト、S1サブサイトと名付ける。なお、活性部位ポケットはいずれもヒトVIIa因子H鎖のアミノ酸残基で構成されている。以後、活性部位を構成するアミノ酸残基の特定にあたっては、H鎖であることは特に示さない。図2はその結合様式を模式的に表し、各サイトを構成する主なヒトVIIa 因子のアミノ酸残基を示したものである。化合物(1)を含む本件発明のペプチド

20

10

化合物は、これら残基と水素結合、イオン結合、ならびにファンデルワールス相互作用を形成することにより結合している。ここで水素結合とはX-H基(Xは電気陰性基)と非共有電子対を有する他の電気陰性基Yとの間で水素を間にはさむ形X-H....Yで生じる電気双極子・電気双極子間相互作用である。また、生理学的pHで一方が正または負電荷をもつようなイオン・双極子相互作用も含む。典型的にはX、YがN、Oのときに生じる。イオン結合とはカルボン酸のように生理学的pHで負電荷を有する基とアミジノ基やアミン基のように正電荷を有する基との間で生じる静電相互作用のことをいう。ファンデルワールス相互作用とは任意の原子の間に生じる相互作用で適当な距離では弱い引力として働くが、ある距離を越えて近づくと逆に強い斥力として働く。各原子種ごとにファンデルワールス半径と呼ばれる値があり、2つの原子間の距離がファンデルワールス半径の和であるときにもっとも強い引力が働く。

また、これらのソフトにおいては、阻害剤分子の構造を仮想的に修正することが可能であり、また、分子力場エネルギーと呼ばれる値を計算することで阻害剤分子に修正を加えた際の結合に対する影響をエネルギーの形で粗く見積もることもできる。X線結晶構造解析により決定された構造座標を出発とし、このようなプログラムを使って阻害剤に仮想的に修正を加えていくことで、ヒトVIIa因子との結合が強くなるように新たな阻害剤を設計できる。この方法は、現実に化合物を合成するのに較べ、はるかに短時間で評価できるので、VIIa因子に特異的な低分子可逆的阻害剤を設計するうえで有用である。これらのコンピュータプログラムとしては、QUANTA、InsightII、CHARMM、Disover、Ludi(以上Accelrys Inc)、Sybyl(Tripos Inc)等が目的にあったプログラムの例であるが、これらのプログラムに限定されるわけではない。

上述の方法により、立体構造を使用して阻害剤を仮想的に修正し評価することが可能であるが、阻害剤と酵素の結合は複雑な過程であり、現在おこなわれている仮想的な評価ではその精度に限界がある。そこで複数の低分子可逆的VIIa因子阻害剤についてX線結晶構造解析で決定された結合様式とヒトVIIa因子阻害活性や特異性との相関を探ることでヒトVIIa因子との結合や特異性に重要なサイトならびに相互作用を特定することができる。また、コンピュータ上で

25

それらのサイトおよび相互作用を利用したヒトVIIa因子に特異的な低分子可逆的阻害剤の設計をすることもできる。このように実験的に確かめられた結合様式に関する情報を利用することでコンピュータ上での仮想的な結合活性評価における精度の問題を解決できる。

- 表41は、化合物(1)とヒトVIIa因子S2サイト部分との水素結合を示したものである。化合物(1)は、S2サイトと結合する位置にアミド基を持ち、そのアミノ基はAsp60側鎖カルボン酸、Tyr94側鎖水酸基、Thr98主鎖カルボニル酸素と水素結合を形成している。さらに表38のデータから、S2サイトにおいてこれらのアミノ酸残基と水素結合を形成しうる低分子可逆的VIIa因子阻害剤は、水素結合を形成しえないVIIa因子阻害剤にくらべthrombinとの選択性に優れていることがわかる。以上により、かかる水素結合の獲得はヒトVIIa因子に対する特異性を獲得するのに有用であることがわかる。また、Asp60は生理的条件で負電荷を持つことからイオン結合の獲得もVIIa因子に対する特異性を獲得するのに有用である。
- 以上からAsp60側鎖カルボン酸、Tyr94側鎖水酸基、Thr98主鎖カルボニル酸 15 素の全て若しくはその一部、特にAsp60側鎖と水素結合またはイオン結合を形成 しうる位置にアミド基、アミジノ基、グアニジノ基、アニリン、アミン等の水素 を有する窒素原子、水酸基等の水素を有する酸素原子が来るように阻害剤構造を 修正することでヒトVIIa因子への特異性が高い阻害剤を効率よくデザインす ることが可能となる。分子設計にあたっては、導入する置換基の水素結合可能な 20 原子がAsp60側鎖の酸素原子、Tyr94側鎖の酸素原子、Thr98主鎖酸素原子の少 なくとも一つから2.5-3.5Åの位置に来るようにするとよい。イオン結合の導入に あたっては導入する置換基の正電荷を持つ原子とAsp60側鎖酸素原子との距離が 2.5-4.5Åの位置にくるようにするとよい。また、修正したい分子と、VIIa因 子もしくはこれに構造的に類似したthrombin、trypsin、Xa因子等のセリンプロ 25 テアーゼとの結合モデルの座標ならびにX線結晶構造座標に対し、化合物(1)また は(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の構造座標をVII a 因子部分が最も良く重なるよう動かした後、化合物(1)または(2)のアミド基と

水素結合可能な原子が重なるよう修正したい分子に置換基を導入してもよい。

表 4 2 および 4 3 は、それぞれ、化合物(1)および(2)とヒトVIIa因子S1サブサイト部分との水素結合、イオン結合の様子を示したものである。これらの阻害剤はS1サブサイトと結合する位置にスルフォンアミド基やカルボン酸を持ち、いずれもLys192側鎖アミン基と水素結合もしくはイオン結合を形成している。

- 5 さらに表39のデータから、S1サブサイトにおいてこれらアミノ酸残基と水素 結合またはイオン結合を形成しうるVIIa因子阻害剤、特にカルボン酸を有す るVIIa因子阻害剤はthrombinとの選択性に優れていることがわかる。以上 より、かかる水素結合またはイオン結合の獲得はヒトVIIa因子に対する特異 性を獲得するのに有用であることがわかる。
- 10 以上からLys192側鎖アミノ基と水素結合またはイオン結合を形成しうる位置にカルボン酸または、スルフォン酸、スルフォンアミド、スルフォンウレア、テトラゾール等のカルボン酸の生物学的等価体が来るように阻害剤構造を修正することでヒトVIIa因子への特異性が高い阻害剤を効率よくデザインすることが可能となる。分子設計にあたっては、導入する置換基の水素結合可能な原子として15 Lys192側鎖の窒素原子との距離が2.5-3.5 Åの位置に来るようにするように
- Lys192側鎖の窒素原子との距離が2.5-3.5Åの位置に来るようにするとよい。イオン結合の導入にあたっては導入する置換基の負電荷を持つ原子とLys192側鎖窒素原子との距離が2.5-4.5Åの位置にくるようにするとよい。また、修正したい分子と、VIIa因子もしくはこれに構造的に類似したthrombin、trypsin、Xa因子等のセリンプロテアーゼとの結合モデルの座標ならびにX線結晶構造座標に
- 20 対し、化合物(1)または(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体 の構造座標をVIIa因子部分が最も良く重なるように動かした後、化合物(2) のスルフォンアミド基や化合物(1)のカルボン酸部分と水素結合またはイオン結 合可能な原子が重なるよう修正したい分子に置換基を導入してもよい。また、
- Lys192の位置は結合する化合物の構造により変化することから、化合物(1)また は(2)の構造を重ね合わせたときのLys192の位置に対し、水素結合やイオン結合 を形成するように分子を修正してもよい。さらにLys192の可動性を考慮し、その側鎖位置を分子力場エネルギーで見て無理の無い位置に動かした構造について 上の方法を利用してもよい。

表44および45は、それぞれ、化合物(1)および(2)とヒトVIIa因子S4サ

10

イト部分とのファンデルワールス相互作用を示したものである。これらの化合物はS4サイトのうち、Trp215側鎖、Gly216主鎖、Gln217側鎖、Val170E側鎖、Gly170F主鎖、Asp170G主鎖、Ser170H主鎖及び側鎖、Pro170I側鎖とファンデルワールス相互作用および疎水相互作用を形成している。さらに表40データから、化合物(1)および(2)は、上記アミノ酸残基と相互作用する部分を小さくした化合物と比較してthrombinとの選択性に優れていることがわかる。以上から、かかるアミノ酸残基、特にVal170E、Gly170F、Asp170G、Ser170H、Pro170I、Gln217とのファンデルワールス相互作用および疎水相互作用の獲得はヒトVIIa因子に対する特異性の獲得に有用であることがわかる。ここで、疎水相互作用とは、水中においてアルキル基、ベンゼン環などの非極性基が会合する現象を指す。非極性基の周りの水分子はエントロピーの低い状態に置かれるため、エネルギー的に不安定となる。このため非極性基同士が会合し、水との接触表面積が小さくなるよう相互作用が働く。

以上から、これらのアミノ酸残基とファンデルワールス相互作用および疎水相 互作用を形成しうる位置にBi-Phe基、Napthyl基、インドール基等の疎水性の高い基が来るように阻害剤構造を修正することでヒトVIIa因子に対する特異性が高い阻害剤を効率よくデザインすることが可能となる。分子設計にあたっては、導入する置換基の原子と上述のアミノ酸残基中の原子との距離が3.5-4.2Åの位置に来るようにするとよい。また、修正したい分子と、VIIa因子もしくはこれに構造的に類似したthrombin、trypsin、Xa因子等のセリンプロテアーゼとの結合モデルの座標ならびにX線結晶構造座標に対し、化合物(1)または(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の構造座標をVIIa因子部分が最も良く重なるように動かした後、化合物(1)のインドール部分や、化合物(2)のビフェニル部分と疎水性原子が重なるよう修正したい分子に置換基を導入してもよい。

図 3 は、D-Phe-Phe-Argクロロメチルケトンが結合した際のVIIa因子のS 4 サイト部分の分子表面の様子(Nature 380巻、41-46、1996、PDB=1DAN)、および化合物(1)が結合した際のVIIa因子のS 4 サイト部分の分子表面の様子を示したものである。化合物(1)の結合の際には、D-Phe-Phe-Argクロロメチル

10

20

25

ケトンの結合時には無いS4サイト下の空間まで到達可能な孔が生じることがわ かる。かかる孔が生じること、およびかかる孔を生じさせる化合物は、これまで 報告された例はない。この動きは、化合物(1)のインドール環部分がS4サイトの 特定の位置に結合し、その際、Gln217の側鎖が位置を変えることにより起こる。 この孔の下には、Cys168側鎖、Ser170B側鎖、Ile176側鎖、Cys182側鎖、Trp 215側鎖、Gly 216主鎖、Gln 217主鎖、側鎖、His 224主鎖、側鎖、Phe225主鎖、 側鎖、Gly~226主鎖、Val227側鎖からなる空間が存在しており、以下S4サブサイ トという。この孔を使い、S4サイトとの結合部分から置換基を出すことで、こ れらS4サブサイトの残基と水素結合、ファンデルワールス相互作用および疎水 相互作用を獲得できる。既知のthrombinを含む血液凝固に関連したセリンプロ テアーゼの立体構造と比較するとS4サブサイトに相当する空隙をもつものは無 く、S4サブサイトとの相互作用の獲得はヒトVIIa因子に対する特異性の獲 得に有用である。例えば、化合物(1)を分子設計の初期モデルとするのであれば、 インドール部分の5位から置換基を出すことで、この孔を通してS4サブサイト 15 の方向に置換基を出すことができる。

以上から、化合物(1)のインドール環に相当する位置にベンゼン環等の疎水性 基が来るように化合物の構造を修正し、S4サブサイトへ通じる孔を開かせるこ とが可能である。さらにこの孔を通るように置換基を導入することで、S4サブ サイトと水素結合、ファンデルワールス相互作用および疎水相互作用を形成でき る。これによりヒトVIIa因子への特異性が高い阻害剤をデザインすることが 可能となる。

以上より、ヒトV I I a 因子のS2サイト、S1サブサイト、S4サイト、および S4サブサイトのいずれか1つ以上のサイトと相互作用する低分子可逆的VII a因子阻害剤が好ましいが、具体的には、下記群 [A-1] 、 [A-2] 、 [B-1] 、 [B-2] 、 [B-3] 、 [B-4] 、 [C-1] または [C-2] 中に示される部分構造の少 なくとも一つ以上を有する低分子可逆的VIIa因子阻害剤が好ましい。

(A) S2サイトと相互作用する部分構造としては下記 [A-1] または [A-2] 群 に示される部分構造が好ましい。

[A-1]群:

$$H_2N$$
 H_2N X_1 H_2N X_1 X_2 X_3

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示 5 す。)

[A-2]群:

$$\frac{2}{5}$$
 ——R₂₃—NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

- 10 [A-2群] においては、特に、 R_{23} がベンゼン環、ピリジン環、イミダゾール環である場合が好ましい。
 - (B) S1サブサイトと相互作用する部分構造としては下記 [B-1] 、 [B-2] 、 [B-3] または [B-4] 群に示される部分構造が好ましい。

15 [B-1]群:

[B-2]群:

[B-3]群:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

5 (ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6 員環、5員環を示す。)

 R_{25} としては、ベンゼン環が好ましい。

[B-4]群:

10

(ここで、 R_{27} は、炭素数 $1\sim3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。)

(C) S4サイトと相互作用する部分構造としては下記 [C-1] または [C-2] 群に 15 示される部分構造が好ましい。

[C-1]群:

$$R_{28}$$
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}
 R_{28}

(ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。)

[C-1] 群としては、 R_{28} がベンゼン環である部分構造が好ましい。

5 [C-2]群:

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 , X_7 、 X_8 、 X_9 、 X_{10} は、独立して、NまたはCHを示す。)

具体的には、(1) S 2 サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S 1 サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有する低分子可逆的V I I a 因子阻害剤、(2) S 2 サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S 4 サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的V I I a 因子阻害剤、(3) S 1 サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S 4 サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有し、かつ、S 4 サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有

また、特に好適には、S2サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S4サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的VI [a 因子阻害剤である。

25

<u>実施例</u>

以下、本発明を実施例を挙げてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、本発明化合物の有用性を説明するために、本発明化合物の代表的化合物のFVIIa阻害作用等に関する試験結果を試験例に示す。

なお、以下の実施例においては次に示すような慣用略号を用いる: DMF=N, N-ジメチルホルムアミド、HOBt=1-ヒドロキシベンゾトリアゾール、 $EDC\ HCl=1$ -(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 塩酸塩、Boc=第3ブトキシカルボニル、Ac=アセチル、Fmoc=9-フルオレニルメトキシ

10 カルボニル、

5

HPLC=高速液体クロマトグラフィー。

また、物性値におけるNMRは核磁気共鳴スペクトルを意味し、数字は通常化学シフトを表示するのに用いられる δ (デルタ)値であり単位はppmである。内部標準物質は未使用または、TMS(テトラメチルシラン)を用いた。なお、 δ 値の次に表示したカッコ内の数字は水素原子の数であり、それに続く表示はsが単一線、dが二重線、tが三重線、qが四重線、mが多重線、brが巾広い吸収ピークを意味する。また、Jはカップリング定数を表わす。

MSは質量分析を表わし、FAB、ESIはそれぞれ、イオン化法を表わし、FAB は高速原子衝突イオン化法、ESIはエレクトロスプレーイオン化法を表わす。

20

15

<u>実施例1</u>

N^1 -4-シアノベンジル- N^2 -t-ブトキシカルボニル-L-グルタマミド

4-シアノベンジルアミン1.6 g (12.2 mmol)のDMF(20 ml)溶液に、t-ブトキシカルボニル-L-グルタミン2.0 g (8.1 mmol)、HOBt 1.4 g (8.9 mmol)、EDC HCl 1.7 g (8.9 mmol)を加え、窒素気流下、 室温にて攪拌する。12時間後、反応液に水を加え酢酸エチルにて抽出する。酢酸エチル層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮してN¹-4-シアノベンジル-N²-t-ブトキシカルボニル-L-グルタマミド2.9 g (8.1 mmol: 収率100%)

を得た。

H-NMR (CDCl₃) δ : 1.42 (9H, s), 1.87-2.55 (4H, m), 4.14-4.27 (1H, m), 4.49 (2H, d, \mathcal{F} =6 Hz), 5.47-6.02 (2H, m), 7.38 (2H, d, \mathcal{F} =8 Hz), 7.60 (2H, d, \mathcal{F} =8 Hz)

5 実施例2

 N^1 -4-シアノベンジル-L-グルタマミド

N¹-4-シアノベンジル-N²-*t*-ブトキシカルボニル-L-グルタマミド2.9 g (8.1 mmol)に、4N塩酸-酢酸エチル溶液(20 ml)を加え、窒素気流下、室温にて攪拌する。1時間後、減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士 シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:1)に付し、N¹-4-シアノベンジル-L-グルタマミド2.1 g (8.1 mmol:収率100%)を得た。H-NMR (CD₈OD) δ: 1.77-2.12 (2H, m), 2.32 (3H, t, *J*=7 Hz), 3.29-3.45 (4H, m), 4.49 (2H, s), 7.50 (2H, d, *J*=8 Hz), 7.71 (2H, d, *J*=8 Hz)

15 実施例3

<u>1-(たプトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマ</u> ミド

N¹-4-シアノベンジル-L-グルタマミド300 mg (1.2 mmol)、N-(9-フルオレニルメトキシカルボニル)-1-(t-ブトキシカルボニル)-D-トリプトファン606 mg (1.2 mmol)のDMF (5 ml)溶液にHOBt 176 mg (1.2 mmol)、EDC HCl 221 mg (1.2 mmol)を加え、窒素気流下、 室温にて攪拌する。12時間後、反応液に水を加え析出するN-(9-フルオレニルメトキシカルボニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミドを適取し、水洗乾燥する。得られたN-(9-フルオレニルメトキシカルボニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミドをジクロロメタン(40 ml)に溶解し、ピペリジン(10 ml)を加え、窒素気流下、室温にて攪拌した。5分後、減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:0,10:1)に付し、1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド

650 mg (1.2 mmol: 収率100%)を得た。

H-NMR (CDCl₃) δ : 1.67 (9H, s), 1.80-2.49 (4H, m), 3.13-3.33 (2H, m), 3.70-3.79 (1H, dd, J=4, 9 Hz), 4.40 (2H, d, J=6 Hz), 4.39-4.55 (1H, m), 5.62 (1H, brs), 6.14 (1H, brs), 7.20-7.67 (9H, m), 8.07-8.17 (2H, m)

5

実施例4

N-(エチルスルホニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル $-N^1-($ 4-シアノベンジル)-L-グルタマミド

1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタ マミド300 mg (0.55 mmol)のDMF(10 ml)溶液に、トリエチルアミン162 mg (1.6 mmol)、エタンスルホニルクロライド206 mg (1.6 mmol)を加え、窒素気流下、室温にて攪拌した。12時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-(エチルスルホニル)-1-(たブトキシカルボニル)-D-

15 トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド135 mg (0.21 mmol:収率38%)を得た。

H-NMR (CD₃OD) δ : 1.08 (3H, t, J=7 Hz), 1.70 (9H, s), 1.60-2.12 (4H, m), 2.75-3.34 (4H, m), 4.13-4.55 (4H, m), 7.24-7.78 (9H, m)

20 <u>実施例5</u>

 $N-(エチルスルホニル)-D-トリプトフィル-<math>N^1-(4-アミジノベンジル)-L-グルタマミ$ ド

25

N-(エチルスルホニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド135 mg (0.21 mmol)を飽和塩化水素ーエタノール溶液10 mlに溶解し、室温にて20時間放置する。減圧下で溶媒を除去し、得られたN-(エチルスルホニル)-D-トリプトフィル-N¹-(4-エトキシイミノカルボニルベンジル)-L-グルタマミドをエタノール(8 ml)に溶解し酢酸アンモニウム500 mg (6.4 mmol)、飽和アンモニアーエタノール溶液1.3 mlに溶解し加熱還流した。1時間後減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:1)に付し、4-アミジノ-[(S)-N-[(R)-N²-エチルスルホニルトリプトフィル]グルタミニル]アミノメチルベンゼン94 mg (0.17 mmol: 収率81%)を得た。

 $ESI + 556 (M^+ + 1)$

H-NMR (DMSO-d6) δ: 0.85 (3H, t, *J*=7 Hz), 1.65-2.03 (2H, m), 2.48-3.54 (6H, m), 4.12-4.43 (4H, m), 6.70-7.75 (9H, m), 7.95 (1H, brs), 8.43 (2H, brs)

15 実施例6

5

10

 $N-\{[3-(X + + y) + y] + [3-(X + y) + y] + [3-($

1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド350 mg (0.64 mmol)のDMF(10 ml)溶液に、トリエチルアミン194 mg (1.9 mmol)、[3-(メトキシカルボニル)ベンジル]スルホニルクロライド477 mg (1.9 mmol)を加え、窒素気流下、室温にて攪拌した。12時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-{[3-(メトキシカルボニル)ベンジル]スルホニル}-1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド407 mg (0.21 mmol:収率84%)を得た。

H-NMR (CD₃OD) δ : 1.70 (9H, s), 1.75-2.15 (4H, m), 2.65-3.42 (2H, m), 3.92 (3H, s), 3.88-4.54 (6H,m), 7.23-8.21 (13H, m)

実施例7

<u>N-[(3-(カルボキシベンジル)スルホニル]-D-トリプトフィル-N¹-(4-アミジノベンジル)-L-グルタマミド</u>

5

N-{[3-(メトキシカルボニル)ベンジル]スルホニル}-1-(t-ブトキシカルボニル)-D-10 トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド407 mg (0.21 mmol)を飽 和塩化水素-エタノール溶液15 mlに溶解し、室温にて20時間放置した。減圧下 で溶媒を除去し、得られた粗生成物をエタノール(16 ml)に溶解し酢酸アンモニ ウム1 g (12.8 mmol)、飽和アンモニアーエタノール溶液2.4 mlに溶解し加熱還流 した。1時間後減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富 15 士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=4:1, 1:1) に付し、N-{[3-(メトキシカルボニル)ベンジル]スルホニル}-D-トリプトフィル- N^1 -(4-アミジノベンジル)-L-グルタマミド及び、N-{[3-(エトキシカルボニル)ベン ジル]スルホニル}-D-トリプトフィル-N¹-(4-アミジノベンジル)-L-グルタマミドを 混合物として得た。上記混合物をエタノール(2 ml)に溶解し、2N水酸化ナトリウ 20 ム水溶液(2 ml)を加え、室温にて攪拌する。1時間後、反応液を1N塩化水素水溶 液でpH=6とした後、沈殿物を濾取した。得られた粗生成物を分取用 HPLC(YMC-pack ODS: gradient of 95% A/B to 45% A/B over 25 min, A=0.1% TFA- H_2O , B=0.1% TFA- CH_3CN)に付し、N-[(3-(カルボキシベンジル)スルホニ

25 ル]-D-トリプトフィル-N¹-(4-アミジノベンジル)-L-グルタマミド トリフルオロ酢酸塩68 mg (0.088 mmol: 収率16%)を得た。

 $ESI + 662 (M^+ + 1)$

H-NMR (DMSO-d6) δ : 1.64-2.02 (4H, m), 2.90-3.21 (2H, m), 3.89-4.41 (6H,m),6.75-7.95 (13H, m)

実施例8

5

10

<u>N-(ベンジルスルホニル)-D-イソロイシン</u>

D-イソロイシン3 g (22.9 mmol)のジオキサン(184 ml)溶液に、1N水酸化ナトリウム水溶液(23 ml)を加え、ついで、ベンジルスルホニルクロライド6 g (34.4 mmol)を加え、室温にて攪拌した。3時間後、反応液を2N塩化水素水溶液でpH=2とした後、酢酸エチルにて抽出した。酢酸エチル層を無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮して残渣をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1,4:1)に付し、N-(ベンジルスルホニル)-D-イソロイシン6.3 g (22.2 mmol: 収率97%)を得た。

H-NMR (CDCl₃) δ : 0.78-1.02 (6H, m), 1.05-1.60 (2H, m), 1.68-1.92 (1H, m), 3.85 (1H, dd, \mathcal{L} =4, 7 Hz), 4.22-4.38 (2H, m), 5.17 (1H, d, \mathcal{L} =9 Hz), 5.97 (1H, brs), 7.26-7.48 (5H, m)

15 実施例 9

<u>N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン</u> メチルエステル

N-(ベンジルスルホニル)-D-イソロイシン6.3 g (22.2 mmol)、L-メチオニン メ チルエステル塩酸塩6.7 g (33.3 mmol)のジクロロメタン(100 ml)溶液にHOBt 4.1 g (26.6 mmol)、EDC HCl 5.1 g (1.2 mmol)、N-メチルモルホリン3.4 g (33.3 mmol)を加え、窒素気流下、 室温にて攪拌した。12時間後、反応液に水を加え 酢酸エチルにて抽出した。酢酸エチル層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮して残渣をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン)に付し、

25 N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン メチルエステル6.4 g (14.9 mmol: 収率67%)を得た。

H-NMR (CD₃OD) δ : 0.92-1.02 (6H, m), 1.18-1.36 (1H, m), 1.62-1.88 (2H, m), 2.00-2.28 (2H, m), 2.12 (3H, s), 2.51-2.77 (2H, m), 3.71 (3H, s), 3.83 (1H, d, \mathcal{L} =8 Hz), 4.32 (2H, q, \mathcal{L} = 13 Hz), 4.68 (1H, dd, \mathcal{L} =5, 9 Hz), 7.32-7.51 (5H, m)

<u>実施例10</u>

 $N-(ベンジルスルホニル)-D-トリプトフィル-<math>N^1-(4-アミノベンジル)-L-メチオニナ$ ミド

5

10 N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン メチルエステル6.4 g (14.9 mmol)のエタノール(30 ml)溶液に、2N水酸化ナトリウム水溶液(30 ml)を加え、室温にて攪拌した。1時間後、反応液を2N塩化水素水溶液にてpH=2とした後、酢酸エチルにて抽出した。酢酸エチル層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮してN-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン6.2 g (14.9 mmol:収率100%)を得た。

N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン100 mg (0.24 mmol)、4-アミノベンジルアミン59 mg (0.48 mmol)のジクロロメタン(5 ml)溶液にHOBt 44 mg (0.29 mmol)、EDC HCl 56 mg (0.29 mmol)を加え、窒素気流下、 室温 にて攪拌した。12時間後、反応液を減圧下に濃縮し、残渣に水を加え沈殿物を濾取し、水洗乾燥した。得られた粗生成物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=10:1)に付し、N-(ベンジルスルホニル)-D-トリプトフィル-N¹-(4-アミノベンジル)-L-メチオニナミド108 mg (0.21 mmol:収率86%)を得た。

25 ESI+ 521 (M⁺+1)

H-NMR (CD₃OD) δ : 0.87-1.00 (6H, m), 1.09-1.28 (1H, m), 1.57-1.83 (2H, m), 1.86-2.26 (2H, m), 2.09 (3H, s), 2.43-2.69 (2H, m), 3.71 (3H, s), 4.13-4.32 (4H, m), 4.50-4.68 (2H, m), 6.64 (2H, d, J=8 Hz), 7.01 (2H, d, J=8 Hz), 7.32-7.49 (5H, m)

実施例11

5

<u>N-(プロピルスルホニル)-D-イソロイシル-3-(メチルアミノ)-N¹-(4-シアノベンジル)-L-アラニナミド</u>

N-(プロピルスルホニル)-D-イソロイシル-3-[(t-ブトキシカルボニル)(メチル)アミノ]- N^1 -(4-シアノベンジル)-L-アラニナミド1.6g (3 mmol)に、トリフルオロ酢酸(10 ml)を加え、窒素気流下、 室温にて攪拌した。1時間後、反応液を減圧下に濃縮し残渣をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:0、4:1)に付し、N-(プロピルスルホニル)-D-イソロイシル-3-(メチルアミノ)- N^1 -(4-シアノベンジル)-L-アラニナミド1.3

10 g (2.9 mmol: 収率 9 6 %)を得た。

ESI+ 452 (M++1)

H-NMR (CDCl₃) δ : 0.79-1.23 (10H, m), 1.46-1.95 (4H, m), 2.41 (3H, s), 2.52-3.81 (4H,m), 4.33-4.52 (4H, m), 7.36 (2H, d, J=8 Hz), 7.59 (2H, d, J=8 Hz)

15 実施例12

 $N-(\mathcal{T}_{D}\mathcal{L}_{N}$

20

N-(プロピルスルホニル)-D-イソロイシル-3-(メチルアミノ)-N¹-(4-シアノベンジル)-L-アラニナミド500 mg (1.0 mmol)の水(1.3 ml)-テトラヒドロフラン(3 ml) 溶液に、50℃攪拌下にて、シアン酸カリウム243 mg (3 mmol)を加えそのまま攪拌した。3時間攪拌後、反応液に水を加え、酢酸エチルにて抽出した。酢酸エチル層を無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮してN-(プロピルスルホニル)-D-イソロイシル-3-[(アミノカルボニ

ル)(メチル)アミノ]- N^1 -(4-シアノベンジル)-L-アラニナミド430 mg (0.87 mmol: 収率87%)を得た。

得られた生成物を飽和塩化水素ーエタノール溶液10 mlに溶解し、室温にて20時間放置した。減圧下で溶媒を除去し、得られた粗生成物を飽和アンモニア-エタノール(10 ml)に溶解し室温にて20時間放置した。減圧下で溶媒を留去し、残留物を分取用HPLC(YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A=0.1% TFA- H_2O , B=0.1% TFA- CH_3CN)に付し、N-(プロピルスルホニル)-D-イソロイシル-3-[(アミノカルボニル)(メチル)アミノ]- N^1 -(4-アミジノベンジル)-L-アラニナミド トリフルオロ酢酸塩27 mg (0.004 mmol: 収率5%)を得た。

10 ESI+ 512 (M^+ +1)

5

H-NMR (CD3OD) δ : 0.87-1.10 (9H, m), 1.12-1.88(5H, m), 2.92 (3H, s), 2.87-3.12 (2H,m), 3.52 (1H, dd, J=4, 15 Hz), 3.65 (1H, d, J=8 Hz), 3.82 (1H, dd, J=9, 14 Hz), 4.43-4.67 (3H, m), 7.54 (2H, d, J=8 Hz), 7.76 (2H, d, J=8 Hz)

15 実施例13

ESI+ 579 (M++1)

 $N-(^{\gamma})^{-1}$ N^{-1} $N^$

N-(ベンジルスルホニル)-D-イソロイシル- N¹-(4-シアノベンジル)-L-メチオニナミド100mg(0.19mmol)をピリジン5 ml、トリエチルアミン0.5mlに溶解し、5 分間硫化水素ガスを通気下後、2 4時間攪拌した。反応混合物に酢酸エチルを加え、0.5N塩酸、飽和炭酸水素水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残留物をアセトニトリルに溶解しヨウ化メチル0.14ml(0.94mmol)を加え2時間、窒素雰囲気下で加熱還流した。減圧下で溶媒を留去し、残留物をシリカゲルカラム(ジクロロメタン:メタノール=10:1)で精製し、N-(ベンジルスルホニル)-D-イソロイシル- N¹-{4-[イミノ(メチルチオ)メチル]ベンジル}-L-メチオニナミド109mg (0.19 mmol: 収率100%)を得た。

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 2.03 (3H, s), 2.40 (3H, s), 3.69 (1H, t, J=6 Hz), 4.50-4.60 (1H, m), 7.21-7.39 (8H, m), 7.60-7.64 (1H, m)

実施例14

 $N-(ベンジルスルホニル)-D-イソロイシル-<math>N^1-\{4-[ヒドラジノ(イミノ)メチル]$ ベンジル}-L-メチオニナミド

5

 $N-(ペンジルスルホニル)-D-イソロイシル-<math>N^1-(4-[1])$ (メチルチオ) メチル]ペンジル}-L-メチオニナミド49mg(0.084mmol)をジクロロメタン2mlおよびメタノール2mlに溶解しヒドラジン0.020ml(0.624mmol)を加え18時間攪拌した。

10 減圧下で溶媒を留去し、残留物を分取用HPLCで精製し、N-(ベンジルスルホニル)-D-イソロイシル- N^1 -{4-[ヒドラジノ(イミノ)メチル]ベンジル}-L-メチオニナミド29mg (0.051 mmol: 収率61%)を得た。

ESI+ 563 (M++1)

H-NMR (CD₈OD) δ : 0.85-0.90 (6H, m), 1.58-1.78 (2H, m), 2.42-2.58 (2H, m), 3.63 (1H, d, \mathcal{F} =7 Hz), 4.21 (2H, s), 4.53 (1H, brs), 7.25-7.57 (9H, m)

実施例15

20

25

 $N-(ベンジルスルホニル)-D-イソロイシル- <math>N^1-(4- \nu r)$ -(ベンジル)-L-メチオニナミド100mg(0.19mmol)をエタノール6 mlおよびピリジン0.6 mlに溶解しハイドロキシアミン塩酸塩 $1\ 2\ 0$ mgを加え $1\ 6$ 時間攪拌した。減圧下で溶媒を留去し、残留物をエタノールに溶解しろ過後、分取用HPLCで精製し、 $N-(ベンジルスルホニル)-D-イソロイシル- <math>N^1-[4-(E)-r]$ -(ハイドロキシイミノ) メチル]ベンジル]-L-メチオニナミド1.6 mg (0.00003 mmol: 収率1.5%)を得た。

 $ESI+564 (M^++1)$

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.50-1.70 (2H, m), 2.05 (3H, s), 2.43-2.60 (2H, m), 3.60 (1H, d, J=8 Hz), 4.20 (1H, s), 7.25-7.45 (9H, m)

10

5

実施例16

 $N-(^{\checkmark})$ $N^{1}-[4-((E)-P]]$ $N^{1}-[4-((E)-P]]$

15

20

25

N-(ベンジルスルホニル)-D-イソロイシル- N¹-{4- [アミノ (イミノ) メチル] ベンジル}-L-メチオニナミド20mg(0.032mmol)をジメチルホルムアミド0.5mlに溶解しトリエチルアミン0.018ml(0.13mmol)およびジ-ターシャリーブチルカルボナート14mg(0.065mmol)を加え 1 6 時間攪拌した。反応混合物に酢酸エチルを加え水で洗浄後、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残留物をプレパラティブTLC(ジクロロメタン: メタノール=10:1)で精製しN-(ベンジルスルホニル)-D-イソロイシル- N¹-[4-((E)-アミノ [[(t-ブチルオキシ)カルボニル]イミノ] メチル)ベンジル]-L-メチオニナミド 1 6 mg (0.024 mmol: 収率

76%)を得た。

 $ESI + 648 (M^{+}+1)$

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.50 (9H, s), 2.03 (3H, s), 3.68 (1H, d, J=8 Hz), 4.20 (2H, s), 7.20-7.38 (7H, m), 7.64-7.70 (2H, m)

5

実施例17

4-プロモ-N-(エチルスルホニル)-D-フェニルアラニル-N¹-(4-シアノベンジル)-L-グルタマミド30 mg (0.052 mmol)をテトラヒドロフラン4 mlおよび水0.4 mlに溶解し、次いで3,5-ビストリフルオロメチルフェニルボロン酸40.2 mg (0.156 mmol)、炭酸ナトリウム50 mg、テトラキス(トリフェニルホスフィン)パラジウム30 mg (0.026 mmol)を加え、窒素雰囲気下、2 時間加熱還流した。反応混合物に酢酸エチルを加え、水で洗浄した後、有機層を硫酸ナトリウムで乾燥した。

15 減圧下で溶媒を留去し、残留物をプレパラティブTLC(ジクロロメタン: メタノール=10:1)で精製した後、分取用HPLCで精製しN-(エチルスルホニル)-3,5-ビス(トリフルオロメチル)-D-フェニルアラニル- N^1 -(4-シアノベンジル)-L-グルタマミド 24 mg (0.034 mmol: 収率65%)を得た。

ESI+ 712 (M++1)

20 H-NMR (CD₃OD) δ : 1.10 (3H, t, J=7 Hz), 1.75-1.87 (2H, m), 1.88-2.07 (2H, m), 2.82-3.10 (4H, m), 4.10-4.30 (2H, m), 4.40-4.50 (2H, m), 7.10-7.62 (9H, m), 8.10(1H, s)

実施例18

25 $N-(x_{N-1})-3,5-$ ビス(トリフルオロメチル)-D-フェニルアラニル- $N^{1}-$ (4-アミジノベンジル)-L-グルタマミド

出発物質としてN-(エチルスルホニル)-3, 5-ビス(トリフルオロメチル)-D-フェニルアラニル-N'-(4-シアノベンジル)-L-グルタマミドを用いて実施例 5 と同様にして目的化合物を得た。

 $ESI+729 (M^++1)$

10 H-NMR (CD₃OD) δ : 1.05 (3H, t, J=7 Hz), 1.75-1.85 (2H, m), 1.97-2.05 (2H, m), 2.82-3.10 (4H, m), 4.15-4.22 (2H, m), 4.45 (1H, s), 7.40-7.51 (4H, m), 7.62-7.70 (3H, m), 7.90 (1H, s), 8.13 (2H, s)

<u>実施例19</u>

N-(たブトキシカルボニル)- 5-ヒドロキシ-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド 327 mg (0.58 mmol)のアセトン (4 ml)溶液に 3-(メトキシカルボニル)ベンジルブロマイド 267 mg (1.2 mmol)、炭酸セシウム 378 mg (1.2 mmol)を加え、窒素気流下、加熱還流にて攪拌する。4時間後、反応液をろ過し濾液を減圧下に濃縮した。残留物をフラッシュカラムクロマトグラフィー (Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-(たブトキシカルボニル)-5-{[3-(メトキシカルボニル)ペンジル]オキシ}-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド347 mg (0.5 mmol:収率 84%)を得た。

 $ESI+711 (M^{+}+1)$

H-NMR (CD₃OD) δ : 1.30 (9H, s), 1.50-2.08 (4H, m), 3.02-3.22 (2H, m), 3.93 (3H, s), 4.02-4.27 (2H, m), 4.39-4.55 (1H, m), 5.20 (2H, s), 6.88 (1H, dd, \cancel{L} =2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, \cancel{L} =2 Hz), 7.26 (1H, d, \cancel{L} =9 Hz), 7.42 (2H, d, \cancel{L} =8

Hz), 7.51 (1H, t, Æ7 Hz), 7.66 (2H, d, Æ8 Hz), 7.75 (1H, d, Æ6 Hz), 7.97 (1H, d, Æ6 Hz), 8.17 (1H, s)

実施例20

5 $\frac{5-\{[3-(X++))\pi/\pi^2-\mu/\pi^2$

N-(t-)トキシカルボニル)- $5-\{[3-(メトキシカルボニル)(ベンジル]オキシ\}-D-トリプトフィル-<math>N^1$ -(4-シアノベンジル)-L-グルタマミド347 mg (0.5 mmol)のジクロロメタン (10 ml)溶液に、トリフルオロ酢酸 (10 ml)を加え、窒素気流下、室10 温にて攪拌した。1時間後、減圧下で溶媒を留去した。残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020: 移動相;ジクロロメタン:メタノール=1:1)に付し、 $5-\{[3-(メトキシカルボニル)(ベンジル]オキシ\}-D-トリプトフィル-<math>N^1$ -(4-シアノベンジル)-L-グルタマミド277 mg (0.45 mmol: 収率93%)を得た。

5-{[3-(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド (0.45 mmol) のDMF(10 ml)溶液に、トリエチルアミン137 mg (1.4 mmol)、エタンスルホニルクロライド174 mg (1.4 mmol)を加え、窒素気流下、室温にて攪拌した。2時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=8:1)に付し、5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド158 mg (0.22 mmol:収率50%)を得た。

 $ESI+703 (M^++1)$

H-NMR (CD₃OD) δ: 0.94 (3H, t, *J*=7 Hz), 1.60-2.08 (4H, m), 2.58-3.30 (4H, m), 3.91 (3H, s), 4.02-4.27 (2H, m), 4.35-4.48 (2H, m), 5.20 (2H, s), 6.89 (1H, dd, *J*=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, *J*=2 Hz), 7.27 (1H, d, *J*=9 Hz), 7.42-7.53 (3H, m), 7.65 (2H, d, *J*=8 Hz), 7.73 (1H, d, *J*=6 Hz), 7.98 (1H, d, *J*=6 Hz), 8.16 (1H, s)

実施例21

5

10

 $5 - \{[3 - (X + + y) + (X + y) - ($

5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド 158 mg (0.22 mmol)のピリジン(10 ml)、トリエチルアミン(2 ml)溶液に硫化水素ガスを吹き込んだ。30分後ガスの吹込みをやめ、そのまま放置した。12時間後反応液に水-酢酸エチルを加え、水層を2N塩化水素水溶液にてPH=4とした後、抽出した。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮した。

残留物をアセトン(10 ml)に溶解し、ヨウ化メチル312 mg (2.2 mmol)を加え 5 0 ℃にて、窒素気流下撹拌した。 1 時間後反応液を減圧下に濃縮した。

残留物のメタノール(10 ml)溶液に酢酸アンモニウム170 mg (2.2 mmol)を加え 窒素気流下に加熱還流した。 4 時間後減圧下で溶媒を留去し、残留物をカラムク

15 ロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=4:1、2:1)に付し、5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-{4-[アミノ(イミノ)メチル]ベンジル}-L-グルタマミド124 mg (0.17 mmol:収率78%)を得た。 ESI+720 (M*+1)

20 H-NMR (CD₃OD) δ : 0.94 (3H, t, J=7 Hz), 1.64-2.10 (4H, m), 2.55-3.30 (4H, m), 3.89 (3H, s), 4.08-4.42 (4H, m), 5.18 (2H, s), 6.87 (1H, dd, J=2, 9 Hz), 7.15 (1H, s), 7.20-7.76 (8H, m), 7.95 (1H, d, J=6 Hz), 8.14 (1H, s)

実施例22

25 $\underline{5}$ -[(3- π) $\underline{3}$ - π) $\underline{5}$ -[(3- π) $\underline{5}$

 $5-\{[3-(メトキシカルボニル) ベンジル]オキシ\}-N-(エチルスルホニル)-D-トリプトフィル-N¹-{4-[アミノ(イミノ)メチル]ベンジル}-L-グルタマミド124 mg (0.17 mmol)のエタノール(3 ml)溶液に1N水酸化ナトリウム水溶液(3 ml)を加え、室温にて撹拌した。 2 時間後、反応液に1N塩化水素水溶液を加えて、PH=6とした後、減圧下に濃縮した。残留物を分取用HPLC(YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, <math>A=0.1\%$ TFA- H_2O , B=0.1% TFA- CH_3CN)に付し、 $5-[(3-カルボキシベンジル)オキシ]-N-(エチルスルホニル)-D-トリプトフィル-N¹-{4-[アミノ(イミノ)メチル]ベンジル}-L-グルタマミド85 mg (0.1 mmol: 収率61%)を得た。$

ESI+ 706 (M+1)

5

10

H-NMR (CD₃OD) δ : 0.97 (3H, t, \mathcal{F} 7 Hz), 1.59-2.07 (4H, m), 2.55-3.28 (4H, m), 3.89 (3H, s), 4.10-4.54 (4H, m), 5.19 (2H, s), 6.90 (1H, dd, \mathcal{F} 2, 9 Hz), 7.16 (1H, s), 7.23 (1H, d, \mathcal{F} 2 Hz), 7.27 (1H, d, \mathcal{F} 9 Hz), 7.50-8.00 (7H, m), 8.16 (1H, s)

実施例23~実施例182

上記実施例1~22に記載の製法、および前記反応スキームに記載の製法にし 20 たがい、実施例化合物23~182を得た。これら化合物の構造式および機器データを表1~34に示した。表中、試薬2、試薬5、中間体9、などは、前記反応スキームに示した試薬、中間体に相当する。

<u>表 1</u>

実施例	試薬 2	試薬 5	試薬8	Structure MS
23	S NHBoc	HO ₂ C NHBoc		H NH ₂ HN NH ₂ ESI+ 394 (M ⁺ +1)
24	CO ₂ Et HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	CI, S	CO ₂ Et H NH NH O HN NH O HN FAB+ 560 (M ⁺ +1)
25	OAc HO ₂ C' NHBoc	HO ₂ C NHBoc	Cl. S.	OH N N NH NH NH NH S O HN NH FAB+ 532 (M*+1)
26	OAc HO ₂ C ^N NHBoc	НО₂С №НВос	G-S	H
27	OAc HO ₂ C" NHBoc	HO ₂ C NHBoc	CI, S.	OH NH ₂ O HN SO HN NH ₂ O FAB+ 518 (M*+1)

表2

実施例	試薬 2	試薬 5	試薬8	Structure MS
28	HO₂C [™] NHBoc	HO ₂ C NHFmoc		H NH OH O NH ₂ HN NH ₂ FAB+ 364 (M ⁺ +1)
29	OH HO ₂ C" NHBoc	HO ₂ C NHBoc		OH N N N N N N N N N N N N N
30	HO ₂ C' NHBoc	HO ₂ C NHFmoc	Cl-S O	H NH OH O NH O S-O HN NH ₂ ESI+ 554 (M ⁺ +1)
31	HO₂C° NHBoc	HO ₂ C NHFmoc	G-O-S-O-S-O-S-O-S-O-S-O-S-O-S-O-S-O-S-O-	HN NH OH O NH O S-O HN NH ₂ Br ESI+ 583 (M*+1)
32	HO₂C ^{v. NHB} oc	HO ₂ C NHFmoc	CI-S	H NH OH OH NH O'S

表3

				Character
実施例	試薬2	試薬 5	試薬 8	Structure MS
33	HO ₂ C" NHBoc	HO ₂ C NHFmoc	G O	HN NH ₂ OH OH ONH ON SHO
34	НО₂С" НВос	HO ₂ C NHFmoc	G S	H NH OH O NH O \$=0 HN NH ₂
			· ·	ESI+ 504 (M+1)
35	HO ₂ C NHBoc	HO ₂ C NHFmoc	Ci OS NH	H NH OH O NH O SS=0 HN NH ₂ HN O ESI+ 561 (M ⁺ +1)
36	HO ₂ C'' NHBoc	HO ₂ C NHFmoc	0. 0.s. V	H NH OH O NH O \$50 HN NH ₂ ESI+ 470 (M ⁺ +1)
37	HO ₂ C" NHBoc	HO₂C NHFmoc	0.9 0.9	HN NH OH NH O'S=O HN NH ₂ ESI+ 456 (M*+1)

<u>表 4</u>

ch the real	5.http.o			Shundan -
実施例	試薬 2	試薬5	試薬8	Structure MS
38	HO ₂ C ¹ . NHBoc	HO ₂ C NHFmoc	C O	H NH OH O NH O \$-0 HN NH ₂ ESI+ 442 (M*+1)
39	HO ₂ C ^{v.} NHBoc	HO ₂ C NHBoc	0.9 0.9	H NH NH O'S O NH O'S O HN NH2 FAB+ 500 (M*+1)
40	HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	GO O	H NH NH 0:50 HN NH2 FAB+ 548 (M*+1)
41	HO₂C [™] NHBoc	HO ₂ C NHBoc		HN NH ₂ FAB+ 394 (M ⁺ +1)
42	HO ₂ C ^{v.} NHBoc	HO ₂ C NHBoc		H NH ₂ HN NH ₂ HN NH ₂ FAB+ 391 (M*+1)

<u>表 5</u>

実施例	試薬 2	5-4-34T C	= hutto a	Structure
- XMEDI	叫架 2	試薬 5	試薬8	MS
43	HO ₂ C. NHBoc	HO ₂ C NHBoc	CI\S	CONH ₂ H NH O HN S O HN S FAB+ 483 (M ⁺ +1)
44	HO ₂ C [*] NHBoc	HO ₂ C NHBoc	a.s. O	FAB+ 531 (M ⁺ +1)
45	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc		HN NH ₂ ESI+ 377 (M*+1)
46	OH HO ₂ C' NHBoc	HO₂C NHBoc		OH H NH NH O NH HN NH FAB+ 412 (M*+1)
47	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CI-O-S	CONH ₂ H N N NH O HN NH ₂ FAB+ 497 (M ⁺ +1)

	T	T	T	
実施例	試薬 2	試薬 5	8 薬塩	Structure MS
48	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	cl-g	FAB+ 526 (M*+1)
49	OH HO ₂ C' NHBoc	HO₂C NHBoc	G S	OH HN NH SO HN NH₂ O HN NH₂ O FAB+ 566 (M*+1)
50	OH HO ₂ C: NHBoc	. HO₂C NHBoc	CO.S.	OH N NH O HN S O HN S ESI+ 518 (M*+1)
51	S NHBoc	HO₂C NHBoc	CIÒS OSS CO₂H	S' NH NH ₂ O HN-S' CO ₂ H ESI+ 578 (M*+1)
52	HO ₂ C" NHBoc	HO ₂ C NHBoc		H NH NH2 FAB+ 428 (M+1)

<u>表 7</u>

実施例	a thirt o	, , , , , ,		Structure
夫旭例	試薬2	試薬 5	試薬8	MS
53	HO ₂ C° NHBoc	HO ₂ C NHBoc	C 0.55	FAB+ 497 (M ⁺ +1)
54	HO ₂ C [*] NHBoc	HO ₂ C NHBoc	CI O	H NH NH O HN SO HN NH 2 FAB+ 582 (M*+1)
55	HO ₂ C ⁻ NHBoc	HO ₂ C NHBoc	C O O	FAB+ 534 (M*+1)
56	HO ₂ C∵ NHBoc	HO ₂ C NHBoc	CL S O S CO ₂ H	HN NH ₂ CO ₂ Et
57	S HO₂C'' NHBoc	HO₂C NHBoc	CO ₂ H	HN NH ₂ CO ₂ H ESI+ 612 (M*+1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
58	HO ₂ C [*] NHBoc	HO ₂ C NHFmoc	CI-S CO ₂ H	HN NH2 CO ₂ Et
59	HO ₂ C ^{, NHBoc}	HO ₂ C NHFmoc	CI-S O-S CO₂H	S O O HN S O CO ₂ H ESI+ 566 (M*+1)
60	S HO₂C' NHBoc	HO₂C NHFmoc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HN NH ₂ OH
61	HO ₂ C' NHBoc	HO₂C NHFmoc	G O	HN NH2 OH OH NH2 O
62	O NMe ₂ HO ₂ C' NHBoc	HO ₂ C NHFmoc	CI O	O_NMe ₂ H NH OH O HN.sO O HN NH ₂ FAB+ 513 (M ⁺ +1)

		T	T	
実施例	試薬2	試薬 5	試薬8	Structure MS
63	O_NMe ₂ HO ₂ C ^{*, _} NHBoc	HO ₂ C NHFmoc	CL O	O NMe ₂ H NH OH O HN 5 HN NH ₂ FAB+ 561 (M ⁺ +1)
64	HN O HO ₂ C NHBoc	HO ₂ C NHFmoc	O G O	HN OH OH OH OH NH₂ S SI+ 512 (M ⁺ +1)
65	CONH₂ HO₂C' NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N NH NH NH NH S ESI+ 593 (M ⁺ +1)
66	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc		CONH ₂ H NH NH NH SSI+ 501 (M*+1)
67	S- HO ₂ C NHBoc	HO ₂ C NHBoc	G OS	HN NH ₂ ESI+ 596 (M ⁺ +1)

1					<u> </u>
	実施例	試薬 2	試薬 5	試薬8	Structure MS
	68	HO ₂ C NHBoc	HO ₂ C NHBoc	CI -S	HN NH ₂
-					ESI+ 610 (M ⁺ +1)
	69	HO ₂ C" NHBoc	HO ₂ C NBoc		NH OH NH
-					ESI+ 438 (M*+1)
	70	CONH ₂ HO ₂ C ⁻ NHBoc	HO ₂ C NHBoc	G O o	CONH ₂ HN NH SO HN NH ₂
L					ESI+ 579 (M ⁺ +1)
	71	CONH ₂	HO ₂ C NHBoc	G	HN NH ₂
-					ESI+ 567 (M ⁺ +1)
	72	CONH ₂ HO ₂ C ⁻ NHBoc	HO ₂ C NHBoc	Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONH ₂ H N N H N H N H N H N H N H N H N H N
L					ESI+ 567 (M++1)

実施例	試薬2	試薬 5	試薬8	Structure
73	CONH ₂ HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	C O	MS CONH ₂ H NH O HN NH O HN NH ₂ ESI+ 547 (M ⁺ +1)
74	CONH ₂ HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	G OS	CONH2 H NH O HN SO O O O
75	CONH ₂ HO ₂ C ¹ NBoc	HO ₂ C NHFmoc	CIO	ESI+ 561 (M*+1) CONH ₂ H N N O O HN N O O HN N O O HN N O O O HN N O O O HN N O O O O
76	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	CI-S	ESI+ 599 (M*+1) CONH ₂ H N O HN NH O HN SO HN SO HN NH ₂ ESI+ 595 (M*+1)
77	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N N N N N N N N N N N N N N N N N N

表12

実施例	試薬2	試薬 5	試薬8	Structure MS
78	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O HN SO HN SO ESI+ 573 (M ⁴ +1)
79	CONH ₂ HO ₂ C" NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H N N N N N N N N N S O H N N N S O H N N N N N N N N N N N N N N N N N N
80	CONH ₂ HO ₂ C NHBoc	N- HO₂C NHBoc	O Civis	CONH ₂ H NH NH O HN O HN O HN NH ₂ ESI+ 570 (M ⁺ +1)
81	CONH ₂ HO ₂ C [*] NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N NH NH O HN.5 O HN NH ₂ ESI+ 621 (M ⁺ +1)
82	CONH ₂ HO ₂ C ¹ NHBoc	NH HO ₂ C NHBoc	0 0 0	CONH ₂ HN NH NH CSI+ 570 (M ⁺ +1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
83	CONH ₂ HO ₂ C NHBoc	O NH HO ₂ C NHBoc	Ci O	CONH ₂ H NH NH NH O HN NH ₂ ESI+ 614 (M ⁺ +1)
84	CONH ₂ HO ₂ C NHBoc	N-S	CI OS	CONH ₂ H N NH NH N-S-O HN NH ₂ ESI+ 696 (M*+1)
85	CO ₂ Et	HO₂C NHBoc	G S	CO ₂ H H NH O O HN NH ₂ O FAB+ 532 (M*+1)
86	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI~S O CO₂H	H NH OH OH O HN SO CO ₂ H
87	HO ₂ C ¹ NHBoc	HO ₂ C NHFmoc	CI-O O CO₂H	HN NH OH O HN O CO ₂ H HN NH ₂ FAB+ 548 (M*+1)

表14

実施例	試薬 2	試薬 5	試薬8	Structure
88	NBoc HO ₂ C: NHFmoc	HO ₂ C NHFmoc	Clos	MS H NH NH NH NH NH S ESI+ 469 (M*+1)
89	BocN HO ₂ C ^{**} NHFmoc	HO ₂ C NHFmoc	CIO	HN NH OH O HN SO O HN NH2 ESI+ 471 (M+1)
90	HO ₂ C ^{°, NHB} oc	HO ₂ C NHFmoc	O-P	H NH OH OH OH NH₂ O HN NH₂ O ESI+ 550 (M ⁺ +1)
91	HO ₂ C [*] NHBoc	HO ₂ C NHFmoc	O.S.	HN NH2 OH HN NH2 OH ESI+ 550 (M*+1)
92	S HO ₂ C ^{, N} HBoc	HO ₂ C NHFmoc	000	HN NH ₂ OH

-	ctate mi	5 11-44-0	T	-	Structure
	実施例	試薬 2	試薬 5	試薬8	MS
,	93	HO ₂ C√NHB∞c	HO ₂ C NHFmoc	CI O CO₂Me	HN NH ₂ O CO ₂ Et
	94	HO ₂ C ^V NHBoc	HO ₂ C NHFmoc	CI S O CO ₂ Me	NH OH O O HN SO HN NH2 CO ₂ Me ESI+ 594 (M*+1)
	95	S NHBoc	HO ₂ C NHFmoc	Cl. S O∵S CO₂Me	HN NH ₂ OH O HN. _S O CO ₂ H ESI+ 580 (M*+1)
	96	HO ₂ C ^{, _} NHBoc	HO ₂ C NHFmoc	O.g O.g	HN NH ₂ OH OH OH NH ₂ O OHN SO OHN
	97	HO ₂ C [°] NHBoc	HO₂C NHFmoc	CI S O CO ₂ Me	H NH NH ₂ O HN SO CO ₂ H ESI+ 592 (M ⁺ +1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
98	CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHFmoc	Closs O'S CO ₂ Me	CONH ₂ H NH OH OHN SO HN NH ₂ CO ₂ H ESI+ 577 (M*+1)
99	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CI-S CO ₂ Me	CONH ₂ H NH O O HN NH CO ₂ H ESI+ 699 (M ⁺ +1)
100	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CO₂Me	CO ₂ H ESI+ 673 (M+1)
101	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G-S OS CO₂Me	CONH ₂ H N NH O O HN S CO ₂ H ESI+ 673 (M ⁺ +1)
102	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	Cl. O. O.S. CO₂Et	CONH ₂ H NH O O HN NH ₂ O CO ₂ H ESI+ 589 (M*+1)

	T	1		T
実施例	試薬2	試薬 5	8 薬塩	Structure MS
103	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHFmoc	CI OS	CONH ₂ H NH OH OHN SO HN NH ₂ ESI+ 471 (M ⁺ +1)
104	CONH ₂ HO ₂ C ⁿ NHBoc	HO₂C NHBoc	Cl. S CO ₂ Et	CONH ₂ H NH O O HN NH ₂ O HO ₂ C ESI+ 589 (M ⁺ +1)
105	S ⁻ HO ₂ C' NHBoc	HO ₂ C NHBoc	Cl OS CO₂Me	HN NH ₂ O HN SO CO ₂ H ESI+ 702 (M ⁺ +1)
106	OS- HO ₂ C NHBoc	HO ₂ C NHFmoc	CI-OS CO₂Me	OS NH OH OH OH O HN-50 HN NH2 CO ₂ H ESI+ 596 (M ⁺ +1)
107	O ₂ S HO ₂ C [*] NHBoc	O HO₂C NHFmoc	Cl S CO ₂ Me	O ₂ S H NH O O HN SO CO ₂ H ESI+ 612 (M ⁺ +1)

表18

実施例	試薬 2	試薬 5	試薬8	Structure MS
108	HO ₂ C" NHBoc	HO ₂ C NHBoc	Clos O CO₂Me	H NH NH O HN SO CO ₂ H ESI+ 574 (M*+1)
109	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	Ci-O O O CO₂Me	CONH ₂ H N N N N O H N S CO ₂ H ESI+ 589 (M ⁺ +1)
110	CONH₂ HO₂C ^{···} NHBoc	HO ₂ C NHBoc	G 0	CONH ₂ H NH NH O HN O
111	CONH ₂ HO ₂ C [*] NHBoc	HO₂C NHBoc	O S	ESI+ 503 (M ⁺ +1) CONH ₂ H NH O HN S O ESI+ 517 (M ⁺ +1)
112	CONH ₂ HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	CI-CS	NH ₂ OC H NH NH ₂ ESI+ 593 (M*+1)

	T		T	
実施例	試薬 2	試薬 5	試薬8	Structure MS
113	HO ₂ C ¹ NHBoc	HO ₂ C ✓ NHBoc	G O	HN NH ₂ O O HN SO O O O O O O O O O O O O O O O O O O
114	HO ₂ C ^v NHBoc	HO ₂ C NHBoc	O-SO	HN NH ₂ O HN SO HN NH ₂ O HN N
115	HO ₂ C NHBoc	HO ₂ C NHBoc	0.00	H NH O O HN SO O HN NH2 ESI+ 658 (M*+1)
116	S NHBoc	HO ₂ C NHBoc	Ci O	HN NH ₂ O HN-SO O HN NH ₂ ESI+ 472 (M ⁺ +1)
117	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	0 0 0 0	HN NH ₂ ESI+ 486 (M*+1)

実施例	試薬 2	試業 5	試薬8	Structure MS
118	HO ₂ C [™] NHBoc	HO ₂ C NHBoc	G O	H NH NH₂ O HN NH₂ ESI+ 500 (M*+1)
119	HO ₂ C' NHBoc	HO ₂ C NHBoc	G O	HN NH₂ O HN 50 O HN SO O O HN 50 O O O O O O O O O O O O O O O O O O
120	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	G O	H NH NH SO O HN SO O O HN SO O O O O O O O O O O O O O O O O O O
121	HO ₂ C [*] NHBoc	HO₂C NHBoc	G O	HN NH ₂ ESI+ 472(M ⁺ +1)
122	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	C O	H NH OH OH O HN S O O O O O O O O O O O O O O O O O O

challe mi				Oteriotis.
実施例	試薬 2	試薬 5	8 薬塩	Structure MS
123	HO ₂ C'' NHBoc	HO ₂ C NHBoc	0.00	HN NH ₂ ESI+ 486 (M ⁺ +1)
<u> </u>				LOIT 400 (WI +1)
124	HO ₂ C [°] NHBoc	HO ₂ C NHBac	O S	HN NH2
				ESi+ 506 (M++1)
125	S HO₂C NHBoc	HO ₂ C NHBoc	O CO	HN NH ₂
				ESI+ 520 (M ⁺ +1)
126	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	C O	HN NH ₂
				ESI+ 596 (M++1)
127	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	G O	CONH ₂ H NH O HN O HN S ESI+ 503 (M ⁺ +1)

武薬 5 HO₂C NHBoc HO₂C NHBoc	試薬 8 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	ESI+ 531 (M ⁺ +1)
· ·	0.50	ESI+ 531 (M*+1) ESI+ 531 (M*+1) CONH ₂
HO₂C NHBoc	G O O	CONH ₂ H NH NH O HN-SO HN NH ₂ ESI+ 531 (M ⁺ +1)
<i>\</i>		ÇONH₂
+		l J l
HO ₂ C NHFmoc	000	HN NH ₂ OH
		ESI+ 533 (M ⁺ +1)
HO ₂ C NHBoc	O.S. O.S.	HN NH ₂
		ESI+ 545 (M+1)
HO. C. NHBac	C O	CONH ₂ H N NH O HN NH NH
	Φ	C C C C C C C C C C C C C C C C C C C

実施例	試薬 2	5-4 tht C	= 10440 0	Structure
7,00,17	叫架 2	試薬 5	試薬8	MS
133	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	O U	CONH ₂ H NH NH O HN NH ₂ ESI+ 579 (M ⁺ +1)
134	CONH ₂ HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	CIO	CONH ₂ H N O O HN NH O O HN O O HN NH O O HN O O H O O H O O O H O O O H O O O O
135	CONH ₂ HO ₂ C' NHBoc	HO ₂ C NHBoc	CI CO	ESI+ 655 (M*+1) NH ₂ OC H N
136	CONH ₂ HO ₂ C' NHBoc	HO₂C NHBoc	O.S.	CONH ₂ H NH O HN S O HN NH ₂ ESi+ 455 (M ⁺ +1)
137	CONH2 HO2C [™] NHBoc	HO₂C NHBoc	CI OS	CONH ₂ H N NH O HN S O HN NH ₂ O ESI+ 469 (M ⁺ +1)

表24

実施例	試薬2	試薬5	試薬8	Structure MS
138	CONH ₂ HO ₂ C" NHBoc	HO ₂ C NHFmoc	G S	CONH ₂ H N N N N N N N N N N N N N N N N N N
				ESI+ 485 (M ⁺ +1)
139	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G S	HN NH ₂
				ESI+ 497 (M ⁺ +1)
140	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	G O	CONH ₂ H NH
				ESI+ 531 (M++1)
· 141	CONH ₂	HO ₂ C NHBoc	0.00	CONH ₂ H NH O HN NH NH
				ESI+ 607 (M ⁺ +1)
142	CONH ₂	HO₂C NHBoc	G O O O O O	NH ₂ OC HN NH ₂ OC HN NH ₂ O
				HN NH ₂ ESI+ 607 (M+1)

				•
実施例	試薬2	試薬 5	試薬8	Structure MS
143	CONH ₂ HO ₂ C' NHBoc	но₂с √ Nнвос	0-49 G-0	CONH ₂ H NH O HN-S O HN NH ₂ ESI+ 455 (M ⁺ +1)
144	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O HN NH ₂ ESI+ 469 (M ⁺ +1)
145	CONH ₂ HO ₂ C ¹ NHBoc	NH HO₂C NHBoc	CI-S O CO ₂ Me	CONH ₂ H NH NH NH NH SO HN NH ₂ Et0 ₂ C ESI+ 614 (M ⁺ +1)
146	CONH₂ HO₂C' NHBoc	NH HO ₂ C NHBoc	O CI√S CO₂Me	HN NH ₂ HO ₂ C ESI+ 586 (M ⁺ +1)
147	CN HO ₂ Ci NHBoc	HO₂C NHBoc	Cl. S O CO₂Me	H ₂ N NH H NH O HN S O HN NH ₂ CO ₂ H ESI+ 588 (M ⁺ +1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
148	CONH ₂ HO ₂ C NHBoc	O NH HO₂C NHBoc	G OS	CONH ₂ H NH NH NH NH SO HN NH ₂ ESI+ 586 (M ⁺ +1)
149	CONH₂ HO₂C NHBoc	NH HO₂C NHBoc	O.S.	CONH ₂ H N NH NH NH NH NH S O HN NH ₂ ESI+ 570 (M ⁺ +1)
150	CONH ₂ HO ₂ C' NHBoc	NH HO₂C NHBac	Br⊶, CO₂Et	CONH ₂ H NH NH CO ₂ Et HN NH ₂ ESI+ 550 (M*+1)
151	CONH2 HO2C NHBoc	NH HO ₂ C NHBoc	Br— CO₂Et	CONH ₂ H NH NH CO ₂ H HN NH ₂ ESI+ 522 (M ⁺ +1)
152	CONH₂ HO₂C ^{··· N} HBoc	NH HO₂C NHBoc	Cl ⊃S O S CO₂Me	CONH ₂ H NH NH NH NH NH ₂ MeO ₂ C ESI+ 600 (M ⁺ +1)

実施例	中間体17	5.b-t-t 0	Ctry. nd
大旭列	中间417	試薬 18	Structure MS
153	HO NH NH O	NH ₂	H ₂ N NH O O HN 6 O O O O O O O O O O O O O O O O O O
154	HO NH SO	NH ₂ N NH ₂	N NH ₂ O NH ₂ O NH ₂ O O NH ₂ O O NH ₂ O O O O O O O O O O O O O O O O O O O
			,
			·
		·	
			·
	,		

実施例	中間体 9	試薬 2 2	Structure MS
155	H NHBoc N NH NH O HN SO	KNCO	O NH ₂ H NH NH O HN SO O HN SO
			ESI+ 498 (M++1)
156	H NBoc NH NH O O HN S O	KNCO	H ₂ N NH
			ESI+ 608 (M ⁺ +1)
157	H NBoc NH O O HN GO	снзсосі	H NH NH SO H2N NH ESI+ 511 (M*+1)
158	H NBoc V NH O O HN SO	KNCO	O NH ₂ H NH OH O HN S H ₂ N NH ESI+ 500 (M*+1)
159	H NBOC V NH O O HN-S O CN	KNCO	O NH ₂ H NH OH O HN S H ₂ N NH FAB+ 548 (M*+1)

麦29

実施例	中間体 9	試薬22	Structure MS
160	Bock H NH O HN-50	KNCO	NH ₂ NH O NH OH O HN SO O H ₂ N NH ESI+ 514 (M ⁺ +1)
161	H NBOC NH NH SO CN O	KNCO	O NH ₂ H N NH O HN SO O NH ESI+ 498 (M*+1)
162	NBoc. NH NBoc. NH NBoc.	кисо	O NH₂ H NH NH O HN SO O HN SO O HN SO O HN SO
163	H NBoc. NH S.O	KNCO	O NH ₂ H NH NH O HN 5 O H

ete	the hal	de BB the A	T	
英	施例	中間体34	試薬35	Strücture MS
1	64	CONH ₂ H NH O HN SO CN	(HO) ₂ B	CONH ₂ H NH O HN S O O O O O O O O O O O O O O O O O O
1(65	CONH ₂ H NH SO O HN SO CN	(HO) ₂ B	CONH ₂ H NH O HN-SO O O O O O O O O O O O O O O O O O O
-				E31+ 623 (IVI +1)
16	66	CNH2 Br	(HO)₂B	CONH ₂ H NH O H ₂ N NH
			•	ESI+ 623 (M ⁺ +1)
16	7	CNH ₂ CONH ₂ CONH ₂ Br CN	(HO) ₂ B	CONH ₂ H N NH NH NH NH NH NH
				ESI+ 593 (M++1)
168	3	CN CONH2 CONH2 H N N N N N N N N N N N N N N N N N	(HO) ₂ B NH ₂	CONH ₂ H N NH O O H N O O H N O O O NH 2 NH 2

実施例	中間体34	2544	Structure
	I INITY O 4	試薬 3 5	MS
169	CONH ₂ H N NH Br O HN S O O O	(HO) ₂ B	CONH ₂ H NH NH NO ₂ H ₂ N NH ESI+ 638 (M*+1)
	·		

表32

実施例	中間体38	試薬39	試薬8	Structure MS
170	H CONH2 NH NH NHBoc OH	Br	CI S	CONH ₂ H NH NH O O HN NH ₂ ESI+ 662 (M ⁺ +1)
171	CONH₂ NH NH NH NHBoc OH		O S	CONH ₂ H NH NH O HN NH S OH HN NH ₂ ESI+ 572 (M ⁴ +1)
172	CONH ₂ NH N NH N NHBoc OH	Br	0.00 0.00	CONH ₂ H NH NH NH NH SO HN NH ₂ ESI+ 676 (M*+1)
173	CONH ₂ NH		C O	CONH ₂ H NH NH NH NH NH SO OH HN NH ₂ ESI+ 586 (M ⁺ +1)
174	CONH ₂ NH	Br OAc	CI-S	CONH ₂ H NH NH O HN SO O HN NH ₂ OH ESI+ 629 (M*+1)

d=+- [c]			T	Otal i
実施例	中間体 3.8	試薬39	試薬8	Structure MS
175	CONH₂ NH NH NH NH NH NHBoc OH	Br CO₂€t	G O	CONH ₂ H NH NH O HN NH ₂ CO ₂ H ESI+ 657 (M ⁺ +1)
176	CONH ₂ H NH N	Br AcO	C C S	CONH ₂ H NH O HN NH NH
177	CONH2 NH N NH N NHBoc OH	AcO	0.45 0.05	CONH ₂ H NH NH O HN NH O HN NH HO ESI+ 615 (M ⁺ +1)
178	H NH	Br CO₂Et	CI-S	CONH ₂ H NH NH O HN NH ₂ O CO ₂ H ESI+ 630 (M ⁺ +1)
179	CONH ₂ H NH NH NH NHBoc OH CN	Br CO₂Et	CI S	CONH ₂ H NH O O HN S CO ₂ Et ESI+ 658 (M ⁺ +1)

表34

実施例	中間体38	० वर्षा	- + + + - ·	Structure
天旭初	中国4438	試薬39	試薬8	MS
180	CONH₂ NH NH NH N	Br EtO ₂ C	CI O	CONH ₂ H NH NH NH O HN S O HO ₂ C ESI+ 671 (M ⁺ +1)
181	CONH2 NH NH NHB0C OH	Br OAc	O C O	CONH ₂ H NH NH NH O HN S O HN NH ESI+ 678 (M*+1)
182	CONH ₂ NH NH NHBoc OH	Br	CI O	CONH ₂ H N N N N N N N N N N N N N N N N N N
		·		
·				·

<u>実施例183</u>

[ヒトVIIa因子の発現と精製]

ヒトVII因子のcDNAについてはヒト肝臓cDNAライブラリー(CLONTECH)より PCRにより得た。使用したプライマー配列は、以下の通り。

5 GTCTGGATCCACCATGGTCTCCCAGGCCCTCAG TGTTGAATTCTACTAGGGAAATGGGGCTCGCA ヒトVII因子遺伝子をDouble One発現ベクター(IDEC社)に組み込み、サブクローニング後、制限酵素SspIで消化し、直鎖状にしたものをCHO細胞株DG44 細胞にエレクトロポレーションにより導入、ヒトVII因子発現細胞株を作成した。さらに5nM Methotrexate(Sigma)中で培養をおこなうことで遺伝子増幅をおこない、得られたMethotrexate耐性ヒトVII因子発現細胞株を5nmol/L Methotrexate、0.5μg/ml vitamine K(Sigma)を含むCHO-S-SFMII培地(GIBCO BRL)で培養しヒトVII因子を発現させた。

ヒトVII因子発現CHO細胞株の培養上清を中空糸型人工腎臓(PAN-130F、旭メ ディカル(株))により濃縮し、終濃度5 mMベンズアミジンを添加し凍結保存した。 15 ヒトVIIa因子の精製にあたってはこの凍結保存した培養上清を適宜用いた。精製 にあたってはMethods Enzymol. 80巻、228-237項、1981年およびBiochemistry 27巻、7785-7793項、1988年を参考にした。培養上清の濃縮液を5 mM ベンズ アミジン及び5 mM EDTAを含む 20 mM トリス-塩酸緩衝液, pH 8.0で10倍希釈 し、同緩衝液で平衡化したQ Sepharose Fast Flowカラムに添加し、同緩衝液中 20 NaCl濃度を段階的(0.1、0.2、0.3 M)に上げてカラムに吸着した蛋白を溶出した。 ヒトVII因子を含む0.3 M NaCl画分を限外濾過により濃縮し、これを5 mM ベン ズアミジン及び5 mM EDTAを含む20 mM トリス-塩酸緩衝液, pH 8.0で10倍希 釈し、同緩衝液で平衡化したQ Sepharose Fast Flowカラムに添加した。同緩衝 液でカラムを洗浄後、 $CaCl_2$ 濃度を50 mMまで直線的に上げてヒトVII因子をカ 25 ラムから溶出した。得られた画分をSDS/PAGEで分析し、ヒトVII因子を含む画 分を集め、室温で2日間放置することにより自己消化によるヒトVIIa因子への活 性化を行った。反応液を20 mM トリス-塩酸緩衝液, pH 7.0で10倍希釈し、同緩 衝液で平衡化したQ Sepharose Fast Flowカラムに添加した。同緩衝液中NaCl濃

No. of Lot

度を150 mMから350 mMまで直線的に上げてヒトVIIa因子を溶出し、得られた画分をSDS/PAGEで分析し、ヒトVIIa因子を含む画分を集め、ヒトVIIa精製画分を得た。

5 実施例184

10

[ヒト可溶型組織因子の発現と精製]

ヒト可溶型組織因子(1-218アミノ酸)をコードする遺伝子断片をtacプロモーターとM13シグナルペプチドシークエンスの下流に挿入した分泌発現型ベクターを大腸菌JM109にトランスフォームした。得られたトランスフォーマントを培養し、ヒト可溶型組織因子の培養上清への発現をおこなった。

精製にあたってはBiochemistry 31巻、3998-4003項、1992年を参考に改良を加えた方法でおこなった。培養上清を限外濾過で濃縮後、65%飽和濃度硫酸アンモニウムにより目的蛋白を沈殿させた。遠心操作(18000 g, 10分)により得た沈殿物をPBSで溶解し、25 mM 酢酸緩衝液, pH 5.2を外液に用いて透析した。透析した溶液を遠心操作(8000 g, 20分)により不溶物を除去した後、その上清を25 mM 酢酸緩衝液, pH 5.2で平衡化したSP Sepharose Fast Flowカラムに添加し、同緩衝液中NaCl濃度を500 mMまで直線的に上げてヒト可溶型組織因子をカラムから溶出した。得られた画分をSDS/PAGEで分析し、ヒト可溶型組織因子を含む画分を集め、25 mM トリス-塩酸緩衝液, pH 7.5で平衡化したQ Sepharose Fast Flowカラムに添加し、同緩衝液中NaCl濃度を500 mMまで直線的に上げてヒト可溶型組織因子を含む面分を25 mM トリス-塩酸緩衝液, pH 7.5で平衡化したQ Sepharose Fast Flowカラムに添加し、同緩衝液中NaCl濃度を500 mMまで直線的に上げてヒト可溶型組織因子をカラムから溶出し、ヒト可溶型組織因子の精製画分を得た。

実施例185

25 [ヒトVIIa因子/ヒト可溶型組織因子の種結晶の作製]

Proteins 22巻、419-425項、1995年の方法を参考にD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVIIa因子とヒト可溶型組織因子複合体の結晶化を行った。本結晶は可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子複合体の結晶を得る際の種結晶として必要である。精製したヒトVIIa因

5

10

子に10倍のモル比のD-Phe-Phe-Argクロロメチルケトン(BACHEM社)を加え、4度にて3時間静置した。これに過剰量の精製したヒト可溶型組織因子を加え、37度にて30分間静置後、限外濾過により濃縮した。濃縮した画分を5 mM $CaCl_2$ 及び100 mM NaClを含む50 mM トリス-塩酸緩衝液,pH 7.5で平衡化したゲル濾過カラム(Superdex 75)に添加し、同緩衝液によりD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子複合体の精製画分をカラムから溶出した。結晶化のために限外濾過により濃縮し、蛋白濃度10 mg/ml、50 mM トリス-塩酸緩衝液,pH 7.5, 100 mM NaCl、5 mM $CaCl_2$ のサンプルを作製し、これをハンギングドロップ蒸気拡散法を使ってリザーバー条件 100mM カコジル酸ナトリウム緩衝液,pH 5.0、24% PEG4000、5 mM $CaCl_2$ とし、温度20度に静置したところ、針状結晶多数が得られた。

<u>実施例186</u>

[ヒトVIIa因子/ヒト可溶型組織因子結晶化サンプルの作製]

- 15 精製したヒトVIIa因子に1/10容量の1 M ベンズアミジンを添加後、精製したヒト可溶型組織因子をモル比で過剰になるよう加えた。これを限外濾過により濃縮し、5 mM CaCl₂及び100 mM NaClを含む50 mM トリス-塩酸緩衝液, pH 7.5で平衡化したゲル濾過カラム(Superdex 75)に添加した。同緩衝液によりヒトVIIa因子/ヒト可溶型組織因子複合体をカラムから溶出し、ヒトVIIa因子/ヒ
 - <u>実施例187</u>

[低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶化]

25 精製したヒトVIIa因子/ヒト可溶型組織因子に化合物(1)または(2)を加え、結晶作成のために限外濾過により濃縮、蛋白濃度12-13mg/ml、50 mM トリス-塩酸緩衝液, pH 7.5, 100 mM NaCl, 5mM CaCl₂のサンプルを作製した。この際、化合物(1)~(2)の添加濃度は表 35 の通りであった。

<u>表35</u>

5

10

	(1)	(2)
添加濃度	0.5mM	0.5 mM未満

低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体については自発的には結晶を形成しないので結晶化を行う際に種結晶を加える必要がある。種結晶は以下の方法で用意した。100mM カコジル酸ナトリウム緩衝液、pH5.0、9% PEG4000、5mM CaCl2の溶液を使い、D-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子の複合体結晶をマイクロホモジナイザーで砕き、これを希釈、×10~×106希釈溶液(×10刻み)を作製した。なお、低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶も種結晶として使用できた。

結晶化はハンギングドロップ蒸気拡散法によりおこなった。温度は25℃、リザーバー条件は、100mM カコジル酸ナトリウム緩衝液,pH5.0、6% - 7.5% PEG4000、5mM CaCl₂、5% グリセロールを使用した。低分子可逆的VIIa 因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体サンプル:リザーバー:種母液希釈溶液= $1.5\,\mu$ l: $1.5\,\mu$ l: $0.5\,\mu$ lで混ぜ合わせ結晶化ドロップとした。約1ヶ月ほどで最大で長さ1.0mm×太さ0.05mm程度の柱状の低分子可逆阻害剤とヒトVIIa因子/ヒト可溶型組織因子の複合体の結晶を得ることができた。

20

実施例188

[X線回折データの測定]

 (A) 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 結晶を100mM カコジル酸ナトリウム緩衝液, pH5.0、9% PEG4000、5mM
 CaCl₂、10% グリセロール溶液に漬し、グリセロール濃度を順次5%ずつ上げ、 最終的に30%までグリセロール濃度を上げた溶液に漬けた。この結晶をナイロン 性のループ(cryo-loop, Hampton research社)で外液ごとすくいとり、-170℃の窒素気流中で凍結させた。なお、測定中は常に-170℃の窒素気流中に置いた。X線 5

10

回折データの測定はR-axisIVイメージングプレートディテクター(リガク)により収集した。X線は出力44kV×100mA、ファインフォーカスフィラメントを使用した回転対陰極型X線発生装置(Ultrax18、リガク)により発生させたCuK α 線をOSMIC X線集光ミラー(リガク)で集光し、使用した。格子定数、結晶方位の決定、ならびに回折斑点の指数付け、および回折データの処理には、プログラムDENZO/SCALEPACK(マックサイエンス社)を使用し、2.2Åまでの回折強度データを得た。本結晶は、プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVII a 因子/ヒト可溶型組織因子複合体(PDB code:1DAN)と同型で、空間群P2₁2₁2₁、格子定数a=71.40Å、b=82.22Å、c=123.47Å、 α =90.0°、 β =90.0° であった。

(B) 化合物(2)とヒトVII a 因子/ヒト可溶型組織因子との複合体の結晶 結晶を100mM カコジル酸ナトリウム緩衝液, pH5.0、9% PEG4000、5mM CaCl₂、10% グリセロール溶液に漬し、グリセロール濃度を順次5%ずつ上げ、 最終的に30%までグリセロール濃度を上げた溶液に漬けた。この結晶をナイロン 性のループ(cryo-loop, Hampton research社)で外液ごとすくいとり、-170℃の窒 15 素気流中で凍結させた。なお、測定中は常に-170℃の窒素気流中に置いた。X線 回折データの測定はR-axisIVイメージングプレートディテクター(リガク)により 収集した。X線は出力40kV imes 100mA、ファインフォーカスフィラメントを使用 した回転対陰極型X線発生装置(Ultrax18、リガク)により発生させた $CuK\alpha$ 線を エールミラー(リガク)で集光し、使用した。格子定数、結晶方位の決定、ならび 20 に回折斑点の指数付け、および回折データの処理には、プログラム DENZO/SCALEPACK(マックサイエンス社)を使用し、2.2Åまでの回折強度デ ータを得た。本結晶は、プロテインデータバンクのD-Phe-Phe-Argクロロメチル ケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子複合体 (PDB code:1DAN)と同型で、空間群P2₁2₁2₁、格子定数a=71.28Å、b=82.32Å、 25 c=123.38Å、 $\alpha=90.0$ °、 $\beta=90.0$ °、 $\gamma=90.0$ °であった。

<u>実施例189</u>

[構造解析]

(A) 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的 に阻害したVII a 因子/組織因子複合体(PDB code:1DAN)から水分子、D-Phe-Phe-Argクロロメチルケトン除いたモデルを初期モデルとし、プログラム CNX2000.1 (Accerlys Inc)を用いて構造の精密化をおこなった。まず剛体精密化 5 およびエネルギー最小化による精密化を実施、実験的に決定された構造因子Fo と構造から計算された構造因子Fcに対し2Fo-Fc、Fo-Fcを係数とするフーリエマ ップを計算、QUANTA上で表示したところVIIa因子の触媒活性付近に連続 的な電子密度ピークを与えた。この電子密度ピークに化合物(1)の原子モデルを 適合させ、シミュレイティッドアニーリングおよびエネルギー最小化による精密 10 化を数度おこなった。その後、2Fo-Fc、Fo-Fcを係数とするフーリエマップをも とにした水分子の位置決定とシミュレイティッドアニーリングおよびエネルギー 最小化による精密化を繰り返し、最終的な構造座標を得た。精密化したパラメー タは各原子のxyz座標ならびに等方的温度因子で各原子の占有率はすべて1.0とし た。最終的に分解能30.0-2.2Åの反射、34775個を用い、5142原子(内蛋白4688 15 原子、イオン9原子、水分子404原子、阻害剤41原子)に対し、結晶学的信頼度因 子R値は22.59%に低下した。また、このときFree R値は26.72% (2627個の反射 データを使用)となった。

(B) 化合物(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的 に阻害したVIIa因子/組織因子複合体(PDB code:1DAN)から水分子、D-Phe-Phe-Argクロロメチルケトン除いたモデルを初期モデルとし、プログラム CNX2000.1 を用いて構造の精密化をおこなった。まず剛体精密化およびエネルギー最小化による精密化を実施、実験的に決定された構造因子Foと構造から計算された構造因子Fcに対し2Fo-Fc、Fo-Fcを係数とするフーリエマップを計算、QUANTA上で表示したところVIIa因子の触媒活性付近に連続的な電子密度ピークを与えた。この電子密度ピークに化合物(2)の原子モデルを適合させ、シミュレイティッドアニーリングおよびエネルギー最小化による精密化を数度おこなった。その後、2Fo-Fc、Fo-Fcを係数とするフーリエマップをもとにした水分

子の位置決定とシミュレイティッドアニーリングおよびエネルギー最小化による精密化を繰り返し、最終的な構造座標を得た。精密化したパラメータは各原子のxyz座標ならびに等方的温度因子で各原子の占有率はすべて1.0とした。最終的に分解能30.0-2.2Åの反射、33708個を用い、5193原子(内蛋白4688原子、イオン9原子、水分子454原子、阻害剤42原子)に対し、結晶学的信頼度因子R値は21.13%に低下した。また、このときFree R値は25.08% (2530個の反射データを使用)となった。

<u>実施例190</u>

10 [構造座標]

5

(A) 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 構造座標

全原子の座標をPDBフォーマットで表36 (明細書末尾に掲載) に示した。

(B) 化合物(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 15 構造座標

化合物(2)および化合物(2)から10 Å以内のアミノ酸残基の座標をPDBフォーマットで表37 (明細書末尾に掲載) に示した。

表38 S2サイト結合部分とヒトVIIa因子特異性の関係

20

化合物	実施例	IC50 FactorVIIa (nM)	IC50 thrombin (nM)	thrombin 選択性
(2)	65	93	9415	101
(3)	67	341	2275	7

表39 S1サブサイト結合部分とヒトVIIa因子特異性の関係

化合物	実施例	IC50 FactorVIIa (nM)	IC50 thrombin (nM)	thrombin 選択性
(2)	65	93	9415	101
(4)	66	2945	59051	20
(5)	5	62	5880	95
(6)	7	37	17870	483
(1)	146	153	80175	524

5 麦40 S4サイト結合部分とヒトVIIa因子特異性の関係

化合物	実施例	IC50 FactorVIIa (nM)	IC50 thrombin (nM)	thrombin 選択性
(2)	65	93	9415	101
(5)	5	62	5880	95
(7)	73	81	397	5

表 4 1 化合物(1)とヒト VIIa 因子 S2 サイトとの水素結合

5 水素結合

阻害剤		
<u> </u>	VIIa因子	距離
N6	Asp60_OD2	3.0Å
N6	Tyr94_OH	3.0 Å
N6	Thr98_O	2.8Å
<u> </u>	Asp60_OD2	3.2 Å

<u>表42</u> 化合物(1)とヒトVIIa因子S1サブサイトとの水素結合、イオン結合

10

水素結合

阻害剤	VIIa因子	距離
N5	Gly216_O	2.9Å
04	Gly219_N	2.8Å

イオン結合

阻害剤	VIIa因子	距離
07	Lys192_NZ	4.2Å

表43 化合物(2)とヒトF.VIIa因子S1サブサイトとの水素結合

5

水素結合

阻害剤	VIIa因子	距離
N5	Gly216_O	2.8Å
O3	Gly219_N	2.8Å
<u>O4</u>	Lys192_NZ	3.2Å

10

表 44 化合物(1)とヒトF.VIIa因子S4サイトとのファンデルワールス相互作用

リガンド原子	VIIa	最短距離	VIIa	最短距離	VIIa	最短距離
	因子		因子		因子	以处理的
C16	Pro170I	3.9Å			pul J	
C17	Pro170I	3.7Å				
C18	Pro170I	3.4Å				
C19	Pro170I	3.5Å				
C20	Gln217	3.8Å	Val170E	4.2Å	Ser170H	4.1Å
C20	Pro170I	4.0Å			20111011	4.17
C21	Val_170E	4.0Å	Asp170G	4.2Å	Ser170H	3.8Å
C22	Asp170G	3.5Å	Ser170H	4.1Å	2011/011	9.0A
C23	Asp170G	3.8Å	Pro170I	3.8Å		
C24	Pro170I	4.1Å				
N7	Asp170G	4.0Å				

^{*}ヒトVIIa因子のアミノ酸残基との最小距離が4.2A以内のものを提示

5 <u>表45</u> 化合物(2)とヒトF.VIIa因子S4サイトとのファンデルワールス相互作用

リガンド原子	VIIa	最短距離	VIIa	最短距離	VIIa	最短距離
	因子		因子		因子	
C16	Trp215	3.9Å	Gly216	4.2Å	Pro170I	4.0Å
C17	Pro170I	3.6Å				
C18	Pro170I	3.6Å	Trp215	4.2Å	Gln217	4.2Å
C19	Ser170H	3.8Å	Pro170I	3.6Å	Gln217	3.9Å
C20	Ser170H	3.9Å	Pro170I	3.7Å		
C21	Pro170I	3.7Å				
C22	Pro170I	3.7Å				
C23	Ser170H	3.7Å				
C24	Ser170H	4.2Å	Gln217	3.9Å		
C25	Gln217	4.2Å			· · · · · · · · · · · · · · · · · · ·	
C26	Gly170F	4.2Å		-		<u></u>
C27	Asp170G	3.9Å	Ser170H	3.9Å		
C28	Asp170G	3.8Å	Ser170H	3.6Å		

^{*}ヒトVIIa因子のアミノ酸残基との最小距離が4.2A以内のものを提示

5

試験例:生物活性試験

方法

1. FVIIa阻害活性測定

反応には96穴のマイクロプレート (Falcon、No. 3072) を使用し、すべて室温 10 で行った。

本発明化合物の10vol% DMS0溶液20μLに、40μL Thromborel®S(50 mg/mL、Dade Behring, GTS-200A)、20μL Spectrozyme®f V I I a(5 mmol/L、American Diagnostica Inc., #217L)、20μLトリス緩衝液(500 mmol/L Tris/HCl, pH 7.5, 1500 mmol/L NaCl, 50 mmol/L CaCl₂)、80μL蒸留水を加え、15 攪拌した。20μL FV I I a(20 nmol/L、Enzyme Research Laboratories, HF V I I a)を加え反応を開始し、マイクロプレートリーダー(Biorad, Model 3550)を用いて405 nmの吸光度を経時的に測定し反応初速度を求めた。本発明化合物の代わりに10vol% DMS0のみを加えたときの反応初速度を100%として、本発明化合物によるFV I I a 阻害作用の濃度反応曲線を作成し、反応初速度を50%抑20 制する検体濃度を算出してIC50値とした。

2. Thrombin阻害活性測定

反応には96穴のマイクロプレート (Falcon、No. 3072) を使用し、すべて室温で行った。

本発明化合物の10vol% DMS0溶液20 μ Lに、 40μ Lトリス緩衝液(200 nmol/L Tris/HCl, pH 8.0)、 20μ L NaCl溶液(1 mol/L)、 20μ L FVR-pNa(2 nmol/L、SIGMA, B 7632)、 80μ L蒸留水を加え、攪拌した。 20μ Lヒトthrombin(5 U/mL、SIGMA, T 1063)を加え反応を開始し、マイクロプレートリーダー(Biorad, Model 3550)を用いて405 nmの吸光度を経時的に測定し反応初速度を求めた。本発明化合物のIC50値の算出はFVI I a 阻害活性測定の場合と同様にして行った。

10 結果

結果を表46に示す。

表46

実施例番号	IC50 Factor VIIa	IC50 Thrombin (nM)
	(nM)	1C50 Thrombin (nM)
5	62	5880
7	37	17870
65	93	9415
81	177	5691
82	131	12544
170	37	9422
22	39	17544
146	153	80175
148	65	8325
83	-55	14374

15

20

産業上の利用の可能性

本発明の化合物は、優れたFVIIa阻害活性、または、外因系血液凝固に対する選択的な阻害活性を示し得る。このことから、出血傾向などの副作用の少ない、安全性に優れた抗血栓剤などの医薬として有用性が期待される。特に、外因系の凝固反応が関与する病態の予防または治療に有用性が期待される。具体的には例えば、術後深部静脈血栓症、PTCA術後再狭窄、慢性DICなどの慢性の

血栓症、心由来血栓塞栓、心筋梗塞、脳梗塞などの治療剤または予防剤として有 用であることが期待される。

また、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造解析のため、X線結晶構造解析に用いることができる結晶を提供することが可能になるとともに、X線結晶構造解析によって得られるデータを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインすることが可能となった。したがって、かかるデザインの手法によって低分子可逆的VIIa因子阻害剤を提供することが可能となった。

表36 化合物(1)とヒトVIIa因子/可溶型組織因子との複合体の座標(全体)

5	CRYST1	71	. 400	82	.220	123	.470 90	.00 90.6	00 9 0 00	P212121		
	ATOM	1	N	ALA	L	1	43.00			1.00 26.90		11
	ATOM	2	CA	ALA	L	1	44.06			1.00 26.90		N
	ATOM	3	C	ALA		1	44.489			1.00 27.37	L	C
	ATOM	4	0	ALA	L	1	43.80			1.00 28.56	. L	C
10	ATOM	5	CB	ALA	L	1	43.527	_	_	1.00 27.03	L	0
	ATOM	6	N	ASN		2	45.618			1.00 27.26	L	C
	ATOM	7	CA	ASN		2	46.105	·=		1.00 29.16	L	N
	ATOM	8	С	ASN		2	46.263		_		L	C
	ATOM	9	0	ASN		2	46.985			1.00 30.42	L	C
15	ATOM	10	CB	ASN		2	47.444			1.00 32.56 1.00 27.10	L	0
	ATOM	11	CG	ASN		2	47.320	-		1.00 27.10	L	C
	MOTA	12	0D1	ASN		2	46.579			1.00 27.19	L	С
	ATOM	13		ASN		2	48.049				L	0
	ATOM	14	N	ALA		3	45.565			1.00 27.22 1.00 31.86	L	N
20	ATOM	15	CA	ALA		3	45.652			1.00 31.86	L	N
	ATOM	16	С	ALA		3	46.428			1.00 31.70	L	C
	ATOM	17	0	ALA		3	46.627			1.00 32.24	L	C
	ATOM	18	CB	ALA		3	44.266			1.00 31.48	L	0
	ATOM	19	N	PHE		4	46.864			1.00 31.84	L	C
25	ATOM	20	CA	PHE	L	4	47.636			1.00 32.19	L	N
	ATOM	21	С	PHE		4	46.917			1.00 31.33	L	C
	ATOM	22	0	PHE	L	4	45.798			1.00 29.19	L	C
	ATOM	23	CB	PHE	L .	4	48.003	-		1.00 30.82	L L	0
	ATOM	24	CG	PHE	L .	4	48.900	34.574		1.00 35.32	L	C
30	ATOM	25	CD1	PHE	L .	4	50.180	34.067	98.506	1.00 36.15	L	C C
	ATOM	26	CD2	PHE	L .	4	48.464		100.021	1.00 36.15	L	C
	ATOM	27	CE1	PHE	L 4	1	51.012	33.759	99.580	1.00 38.17	L	C
	ATOM	28	CE2	PHE	L 4	1	49.289		101.103	1.00 38.45	L	C
	MOTA	29	CZ	PHE	L 4	1	50.567		100.881	1.00 37.74	L	С
35	MOTA	30	N	LEU	և ։	5	47.569	31.519	97.796	1.00 27.82	L	N
	MOTA	31	CA	LEU	L s	5	47.044	30.442	98.640	1.00 26.01	L	C
	ATOM	32	C	LEU	L 5	;	45.864	29.624	98.122	1.00 26.56	L ·	· C
	ATOM	33	0	LEU	L 5	;	45.505	28.619	98.730	1.00 27.40	L	0
40	ATOM	34		LEU .		;	46.682	30.985	100.027	1.00 24.14	L	C .
40	ATOM	35		LEU I		i	47.816		100.891	1.00 24.48	L	C
	ATOM	36		LEU			47.248	31.998	102.231	1.00 22.64	L	C
	ATOM	37	CD2	LEU I	L 5		48.886		101.102	1.00 21.31	L	C
	ATOM	38	N	CGU I	6		45.252	30.027	97.016	1.00 26.55	L	N
4 ==	ATOM	39		CGU I			44.120	29.256	96.516	1.00 26.75	L	C
4 5	ATOM	40		CGU I			43.497	29.921	95.289	1.00 26.18	L	C
	ATOM	41		CGU 1			42.283	29.117	94.819	1.00 25.49	L	C
	ATOM	42	CD1				42.608	28.386		1.00 23.72	L	C
	ATOM	43	CD2				41.068	30.027	94.667	1.00 26.90	L	C
5 A	ATOM	44	0E1				43.364	28.939		1.00 19.08	L	0
50	ATOM	45	0E2				42.108	27.273		1.00 22.25	L	0
	ATOM	46	0E3				40.524	30.434	95.688	1.00 27.43	L	0
	ATOM	47	0E4 (CGU L	6		40.690	30.308	93.557	1.00 26.50	L	0

	MOTA	48	3 C	CGU	L (6 44.499	9 27.819	96.178	1 00 25 52	,	_
•	ATOM	49		CGU		43.666				L	С
	MOTA	50		CGU		7 45.760				L	0
	MOTA	51				7 46.245				L	N
5	MOTA	52				7 47.622				L	C
	MOTA	53				7 47.330	· -			L	С
	NOTA	54		1 CGU						L	С
	NOTA	55		2 CGU					= = =	L	С
	ATOM	56		1 CGU						L	С
10	ATOM	57		2 CGU					1.00 24.48	L	0
	MOTA	58		3 CGU		- 1		92.591	1.00 23.44	L	0
	ATOM	59		4 CGU					1.00 28.58	L	0
	ATOM	60		CGU				91.922	1.00 28.37	L	0
	ATOM	61	0	CGU				96.672	1.00 23.79	L	С
15	MOTA	62		LEU				96.529	1.00 25.13	L	0
10	MOTA	63		LEU				97.848	1.00 24.29	L	N
	MOTA	64						99.049		L	С
	ATOM	65	0	LEU			24.235	98.963	1.00 25.54	L	С
	MOTA	66		LEU			23.180	99.565	1.00 26.65	L	0
20	ATOM	67	CB	LEU				100.311	1.00 23.41	Ĺ	С
20	ATOM		CG	LEU		= = -		100.968	1.00 24.22	L	С
		. 68		LEU			26.938	99.969	1.00 19.80	L	С
	ATOM	69 70		LEU		46.817		102.148	1.00 23.24	L	С
	ATOM	70	N C A	ARG		43.520	24.798	98.203	1.00 27.13	L	N
25	MOTA	71	CA	ARG		42.198	24.213	98.027	1.00 27.75	L	C
. 20	MOTA	72	C	ARG		42.226	23.132	96.949	1.00 27.08	L	С
	ATOM	73	0	ARG		42.930	23.255	95.948	1.00 27.06	L	0
	MOTA	74	CB	ARGI		41.192	25.300	97.625	1.00 29.68	L	C
	ATOM	75	CG	ARGI		41.292	26.593	98.427	1.00 33.48	L	С
30	ATOM	76	CD	ARGI		40.264	27.619	97.964	1.00 34.05	L	C
30 .	ATOM	77	NE	ARGI		38.914	27.246	98.370	1.00 37.69	L	N
	ATOM	78	CZ	ARGI		38.254	27.781	99.395	1.00 38.57	L	C
	ATOM	79		ARG I		38.806		100.136	1.00 38.38	L	N
	MOTA	80		ARG L		37.037	27.349	99.689	1.00 40.53	L	N
25	ATOM	81	N	PRO L		41.465	22.050	97.144	1.00 27.28	L	N
35	MOTA	82	CA	PRO L		41.446	20.985	96.137	1.00 27.55	L	C
	MOTA	83	C	PRO L		41.008	21.551	94.780	1.00 27.58	L	C
	ATOM	84	0	PRO L		40.388	22.615	94.713	1.00 27.34	L	0
	ATOM	85	CB	PRO L		40.433	19.999	96.708	1.00 29.14	L	С
40	MOTA	86	CG	PRO L		40.613	20.160	98.191	1.00 27.86	L	C
40	ATOM	87	CD	PRO L			21.665	98.333	1.00 28.70	L	С
	ATOM	88	N	GLY L		41.334	20.848	93.702	1.00 26.59	L	N
	MOTA	89	CA	GLY L		40.950	21.321	92.383	1.00 28.67	L	C
	ATOM	90	C	GLY L		39.445	21.370	92.164	1.00 29.12	L	ε
4 =	MOTA	91	0	GLY L		38.709	20.499	92.628	1.00 30.35	L	0
45	ATOM	92	N	SER L		38.985	22.398	91.459	1.00 29.23	L	N
	ATOM	93	CA	SER L		37.567	22.560	91.159	1.00 29.12	L	С
	ATOM	94	С	SER L	12	37.393	23.085	89.740	1.00 29.51	L	С
	ATOM	95	0	SER L	12	37.797	24.206	89.425	1.00 28.38	L	0
	MOTA	96	CB	SER L	12	36.916	23.531	92.143	1.00 30.52	L	С
50	MOTA	97	0 G	SER L	12	35.555	23.749	91.803	1.00 31.56	L	0
	ATOM	98	N	LEU L	13	36.788	22.271	88.884	1.00 29.17	L	N
	MOTA	99	CA	LEU L	13	36.575	22.660	87.497	1.00 30.18	L	C
	ATOM	100	C	LEU L	13	35.779	23.953	87.383	1.00 30.11	. L	C
	MOTA	101	0	LEU L	13	36.128	24.844	86.611	1.00 32.23	Ĺ	0
55	ATOM	102	CB	LEU L	13	35.842	21.549	86.745	1.00 30.30	L	C

	ATOM	103	3 CG LEU	L 13	35.630	21.832	85.260	1.00 31.24	L	C
	ATOM	104	4 CD1 LEU	L 13	36.982				L	C
	ATOM	105	5 CD2 LEU	L 13	34.743				L	C
_	ATOM	106	S N. CGU	L 14	34.703	24.051		1.00 29.30	L	N
5	MOTA	107	7 CA CGU	L 14	33.851	25.230		1.00 29.52	L	C
	ATOM	108	3 CB CGU	L 14	32.668			1.00 31.22	L	С
	ATOM	109	e cg cgu	L 14	31.651			1.00 35.34	L	C
	ATOM	110	CD1 CGU	L 14	30.495			1.00 36.63	L	C
	ATOM	111	L CD2 CGU .	L 14	31.135			1.00 36.12	L	C
10	ATOM	112	OE1 CGU	L 14	29.836			1.00 37.62	L	0
	ATOM	113	B OE2 CGU	L 14	30.285			1.00 40.38	L	0
	ATOM	114	e oes cgu i	L 14	31.048	27.567	87.288	1.00 37.34	L	
	ATOM	115	0E4 CGU	l 14	30.838	25.432	86.992	1.00 37.34	L	0
	A T O M	116	C CGU I	L 14	34.585	26.515	88.502	1.00 37.27	L L	0
15	ATOM	117			34.616	27.463	87.725	1.00 28.45		C
	ATOM	118	N ARGI	L 15	35.177	26.540	89.691	1.00 27.46	L	0
	ATOM	119			35.894	27.718	90.175	1.00 27.40	L	N
	ATOM	120	C ARG I		37.132	28.064	89.356	1.00 27.31	L	C
	MOTA	121			37.465	29.237	89.182	1.00 27.23	L	C
20	ATOM	122			36.313	27.508	91.637	1.00 27.70	L	0
	ATOM	123			37.003	28.707	92.288	1.00 27.70	L	C
	ATOM	124			37.615	28.338	93.650	1.00 28.99	L	C
	MOTA	125			38.708	27.374	93.512	1.00 27.72	L	£
	MOTA	126			38.726	26.161	94.058	1.00 23.84	L	N
25	ATOM	127	NH1 ARG L		37.710	25.737	94.798	1.00 24.64	L	C
	ATOM	128	NH2 ARG L		39.759	25.358	93.848		L	N
	ATOM	129	N CGU L		37.792	27.036	88.835	1.00 23.56 1.00 27.33	L	N
	ATOM	130	CA CGU L		39.032	27.205	88.085		L	N
	ATOM	131	CB CGU L		39.967	26.045		1.00 27.34	L	С
30	ATOM	132	CG CGU L		40.198	25.989	88.431	1.00 27.36	L	С
	ATOM	133	CD1 CGU L		40.616	27.379	89.937	1.00 23.86	L	C
	ATOM	134	CD2 CGU L		41.304	24.995	90.373	1.00 24.51	L	С
	ATOM	135	OE1 CGU L		41.440	27.927	90.253	1.00 23.35	L	C
	ATOM	136	OE2 CGU L		40.095	27.883	89.699 91.340	1.00 27.27	L	0
35	ATOM	137	OE3 CGU L	16	42.407	25.416	90.385	1.00 24.69	L	0
	ATOM	138	OE4 CGU L	16	41.023	23.818	90.349	1.00 20.19	L	0
	ATOM	139	C CGU L	16	38.982	27.363	86.574	1.00 22.98	L	0
	ATOM	140	O CGU L	16	39.739	28.159	86.011	1.00 29.25 1.00 29.12	L	C
	ATOM	141	N CYS L	17	38.113	26.607		1.00 29.12	L	0
40	ATOM	142	CA CYS L		38.020	26.672	84.460	1.00 29.27	L	N
	ATOM	143	C CYS L		36.760	27.339	83.910	1.00 30.38	L	C
	ATOM	144	O CYS L		36.767	27.841	82.789	1.00 30.90	L	С
	ATOM	145	CB CA2 F	17	38.143	25.268	83.870	1.00 31.41	L	0
	ATOM	146	SG CYS L	17	39.683	24.375	84.273	1.00 29.03	L	C
45	ATOM	147	N LYS L	18	35.682	27.337	84.686		L	S
	ATOM	148	CA LYS L	18	34.428	27.953	84.254	1.00 33.15 1.00 33.15	L	N
	MOTA	149	C LYS L	18	34.376	29.423		1.00 33.15	L	С
	ATOM	150	0 LYS L	18	34.202	30.299	84.649		L	С
	ATOM	151	CB LYS L	18	33.229	27.210	83.804	1.00 33.01	L	0
50	ATOM	152	CG LYS L	18	32.773	25.998		1.00 33.20	L	C
-	ATOM	153	CD LYS L	18	33.805		84.049	1.00 35.52	L	С
	ATOM	154	CE LYS L	18	34.139	24.888 24.448	84.034	1.00 38.86	L	С
	ATOM	155	NZ LYS L	18	32.971		82.610	1.00 39.72	L	C
	ATOM	156	N CGU L	19	34.525	23.879	81.874	1.00 40.07	L	N
55	ATOM	157	CA CGU L	19	34.525			1.00 33.87	L	N
			500 L		0.1.010	31.048	86.459	1.00 33.17	L	С

	ATOM	158	3 CI	3 C1	GU I	. 19	34.259	31.030	87.963	1 00 24 02		
	ATOM	159			3U 1	-	32.874		· -		L	C
	MOTA	160)1 C			31.834				L	C
	ATOM	161		2 00			32.836				L	C
5	ATOM	162		1 60			30.658				L	C
	ATOM	163		2 CG			32.229				L	0
	ATOM	164		3 CG			32.22				L	0
	MOTA	165		4 CG			32.092				L	0
	ATOM	166			U L						L	0
10	ATOM	167			UL		35.826				L	C
	MOTA	168			UL		35.934			_	L	0
	MOTA	169			UL		36.824				L	N
	MOTA	170					38.128			1.00 30.77	L	С
	ATOM				UL		39.045			1.00 28.99	L	C
15	ATOM	171			υL		38,620			1.00 30.59	L	С
10		172		1 CG			38.770			1.00 31.48	L	C
	MOTA	173		2 CG		20	39.521		89.047	1.00 30.25	L	C
	ATOM	174		1 CG		20	38.025		88.882	1.00 33.25	L	0
	ATOM	175		2 CG		20	39.634		87.461	1.00 33.62	L	0
20	ATOM	176		3 CG		20	39.282		90.226	1.00 29.48	L	0
20	MOTA	177		4 CGI		20	40.453		88.629	1.00 30.41	L	0
	MOTA	178	С		UL	20	38.791	30.857	84.283	1.00 29.55	Ĺ	C
	ATOM	179	0		U L	20	38.328	29.796	83.875	1.00 29.94	L	0
	MOTA	180	N		N L	21	39.891	31.419	83.795	1.00 30.03	L	N
0.5	MOTA	181	CA		N L	21	40.680	30.808	82.739	1.00 30.36	L	C
25	ATOM	182	С		N L	21	41.690	29.913	83.454	1.00 29.74	L	С
	ATOM	183	0		N L	21	42.484	30.388	84.276	1.00 27.73	Ĺ	0
	ATOM	184	CB	GLI	N L	21	41.425	31.879	81.944	1.00 33.78	L	С
	ATOM	185	CG	GL		21	40.535	32.812	81.134	1.00 40.75	. L	С
00	ATOM	186	CD	GLM		21	39.865	32.115	79.966	1.00 44.61	Ĺ	С
30	MOTA	187		GLN	N L	21	39.029	31.228	80.150	1.00 48.21	L	0
	MOTA	188	NE2	GL N	4 L	21	40.235	32.510	78.752	1.00 45.88	L	N
	ATOM	189	N	CYS	S L	22	41.659	28.621	83.159	1.00 27.02	L	N
	MOTA	190	C A	CYS	L	22	42.584	27.704	83.798	1.00 26.53	Ĺ	C
~	MOTA	191	C	CYS	L	22	43.607	27.197	82.795	1.00 28.06	L	C
35	ATOM	192	0	CYS	L	22	43.285	26.959	81.630	1.00 29.00	L	0
	MOTA	193	CB	CYS	i	22	41.824	26.529	84.417	1.00 26.03	L	c
	MOTA	194	SG	CYS	L	22	41.127	25.347	83.224	1.00 24.58	Ĺ	S
	ATOM	195	N	SER	L	23	44.846	27.044	83.251	1.00 28.01	L	N
	MOTA	196	CA	SER	L	23	45.919	26.564	82.395	1.00 29.36	Ĺ	C
40	ATOM	197	C	SER	L	23	45.856	25.046	82.316	1.00 29.53	L	Č
	ATOM	198	0	SER	L	23	45.041	24.409		1.00 28.50	L	0
	ATOM	199	CB	SER	L	23	47.278	26.991	82.954	1.00 30.24	L	C
	MOTA	200	0 G	SER	L	23	47.547	26.328		1.00 32.90	L	0
	ATOM	201	N	PHE	L	24	46.729	24.471	81.496	1.00 28.75	L	N
45	ATOM	202	CA	PHE	L	24	46.774	23.030	81.325	1.00 28.22	Ĺ	C
	MOTA	203	С	PHE	L	24	47.044	22.340	82.659	1.00 28.31	L	C
	ATOM	204	0	PHE		24	46.373	21.370	83.019	1.00 26.88	L	
	ATOM	205	СВ	PHE		24	47.871	22.644	80.328	1.00 27.99	L	0
	MOTA	206	CG	PHE		24	47.906	21.179	80.019	1.00 27.32	L	C
50	ATOM	207		PHE		24	47.014	20.626	79.106	1.00 27.03	L	C
	MOTA	208		PHE		24	48.791	20.338	80.684	1.00 27.03		C
	ATOM	209		PHE		24	47.000	19.256	78.864	1.00 27.00	L	C
	ATOM	210		PHE		24	48.784	18.964	80.449	1.00 25.25	L	C
	MOTA	211	CZ	PHE		24	47.887	18.423	79.540		L	C
55	MOTA	212	N	CGU		25	48.031	22.850	83.388	1.00 25.69	L	C
					-		40.031	20.000	00.500	1.00 27.44	L	N

					•					
	ATOM		A CGU		48.405	5 22.282	84.673	1.00 28.71	L	С
	ATOM	214 C		_	49.570	23.068	85.262		L	C
	ATOM	215 C			50.357	22.364	86.358	1.00 38.45	L	C
_	ATOM		D1 CGU		51.791	. 22.882	86.348	1.00 40.65	L	C
5	ATOM		D2 CGU		50.357	20.859	86.100	1.00 40.80	Ĺ	C
	ATOM		E1 CGU		52.101	`23.772	87.138	1.00 41.24	L	0
	ATOM		E2 CGU		52.571	22.386	85.537	1.00 43.46	L	0
	ATOM		E3 CGU		50.854	20.453		1.00 41.65	L	0
7.0	ATOM		E4 CGU		49.853	20.120	86.950	1.00 42.95	L	0
10	ATOM	222 C	CGU	L 25	47.233	22.264		1.00 26.61	L	C
	ATOM	223 0	CGU	L 25	46.958	21.246	86.271	1.00 25.98	L	. 0
	ATOM	224 N	CGU 1	L 26	46.541	23.391	85.765	1.00 25.93	L	N
	ATOM	225 C/	A CGU 1	L 26	45.389	23.474	86.652	1.00 26.06	L	C
	ATOM	226 CI	B CGU I	2 6	44.770		86.576	1.00 24.81	L	
15	ATOM	227 C	G CGU I	26	45.740		86.948	1.00 26.07	L	С
	ATOM	228 CI	O1 CGU I	26	46.302		88.351	1.00 26.84	L	C
	ATOM	229 CE	2 CGU 1	. 26	45.038	27.349	86.880	1.00 26.66		C
	ATOM	230 OE	E1 CGU L	26	45.548	25.374	89.218	1.00 24.86	L L	C
	ATOM	231 OE	2 CGU L	26	47.480	25.942	88.538	1.00 24.80		0
20	MOTA	232 OE	3 CGU L	. 26	44.976	27.925	85.801	1.00 28.65	L L	0
	ATOM	233 OE	4 CGU L	. 26	44.567	27.805	87.890	1.00 26.86		0
	ATOM	234 C	CGU L	26	44.360	22.416	86.254	1.00 26.09	L	0
	ATOM	235 0	CGU L		43.830	21.696	87.099	1.00 26.09	L	С
	ATOM	236 N	ALA L		44.090	22.319	84.957	1.00 26.77	L	0
25	ATOM	237 CA			43.139	21.341	84.449		L	N
	ATOM	238 C	ALA L		43.590	19.927	84.797	1.00 26.84 1.00 26.93	L	С
	ATOM	239 0	ALA L		42.775	19.085	85.171		L	С
	ATOM	240 CB			42.999	21.486	82.938	1.00 27.45	L	0
	ATOM	241 N	ARG L	28	44.891	19.669	84.678	1.00 24.94	L	С
30	ATOM	242 CA		28	45.434	18.347	84.977	1.00 27.54	L	N
	ATOM	243 C	ARG L	28	45.275	17.976	86.451	1.00 29.15	L	С
	ATOM	244 0	ARG L	28	45.145	16.804	86.785	1.00 29.86	L	C
	ATOM	245 CB	ARG L	28	46.911	18.278		1.00 31.18	L	0
	ATOM	246 CG	ARG L	28	47.457	16.859	84.600	1.00 30.06	L	С
35	ATOM	247 CD	ARG L	28	48.977	16.856	84.531	1.00 32.65	L	С
	ATOM	248 NE	ARG L	28	49.441	17.365	84.601	1.00 36.00	L	С
	ATOM	249 CZ	ARG L	28	49.284		85.890	1.00 37.93	L	N
	ATOM		L ARG L	28	48.682	16.735 15.552	87.053	1.00 38.70	L	С
	ATOM		2 ARG L	28	49.706	17.308	87.109 88.171	1.00 38.86	L	N
40	MOTA	252 N	CGU L	29	45.302	18.969		1.00 39.29	L	N
	ATOM	253 CA	CGU L	29	45.131	18.714	87.333		L	N
	ATOM	254 CB	CGU L	29	45.529	19.947	88.761	1.00 29.34	L	С
	ATOM	255 CG	CGU L	29	47.033	20.154	89.559	1.00 28.96	L	С
	ATOM		. CGU L	29	47.709	19.275	89.530	1.00 30.94	L	С
45	ATOM		CGU L	29				1.00 33.97	L	С
	ATOM		CGU L	29	47.360	21.610		1.00 29.62	L	С
	ATOM		CGU L	29	48.900	19.048		1.00 37.46	Ĺ	0
	ATOM		CGU L	29	47.028	18.834		1.00 36.82	L	0
	ATOM		CGU L	29	48.486	21.975		1.00 27.06	L	0
50	ATOM	262 C	CGU L	29	46.476	22.332		1.00 28.53	L	0
	ATOM	263 0	CGU L	29 29	43.688	18.343		1.00 28.66	L	С
	ATOM	264 N	ILE L	30	43.401			1.00 29.88	L	0
	ATOM	265 CA	ILE L	30	42.783			1.00 27.56	L	N
	ATOM	266 C	ILE L	30				1.00 27.41	L	С
55	ATOM	267 0	ILE L	30				1.00 28.29	L	C
- 3		20. 0	100 6	30	40.605	16.138	88.503	1.00 28.57	L	0

		•									
	MOTA	26.8				40.493	19.428	87.570	1.00 26.20	L	С
•	MOTA	269		1 ILE	L 30	40.685	20.830	88.156	1.00 25.87		C
	ATOM	270) CG	2 ILE	L 30	39.035		87.626	1.00 23.37		Ċ.
_	ATOM	271	. CD	1 ILE	L 30	39.890	21.910	87.444	1.00 25.78	L	C
. 5	ATOM	272		PHE	L 31	41.454	16.794	86.525	1.00 28.80	L	N
	ATOM	273		PHE	L 31	41.237	15.512	85.855	1.00 32.23		C
	ATOM	274	C	PHE	L 31	42.260	14.420	86.195	1.00 34.25	L	C
	MOTA	275	0	PHE	L 31	41.958	13.230	86.097			0
	MOTA	276	CB	PHE	L 31	41.188	15.739	84.341			Ċ
10	MOTA	277	CG	PHE	L 31	40.039	16.608	83.900	1.00 28.90		C
	MOTA	278	CD	1 PHE	L 31	38.737	16.111	83.893			C
	MOTA	279		2 PHE 1	և 31	40.254	17.926	83.512	1.00 25.49		C
	ATOM	280	CE	1 PHE I	L 31	37.664	16.918	83.503	1.00 27.09	L	Ċ
	ATOM	281	CE	2 PHE I	L 31	39.194	18.740	83.123	1.00 25.64	Ĺ	Ċ
15	ATOM	282	CZ	PHE I	31	37.896	18.237	83.118	1.00 26.07	L	Ċ
	ATOM	283	N	LYSI	32	43.463	14.832	86.586	1.00 36.51	Ĺ	N
	ATOM	284	CA	LYS I	. 32	44.544	13.919	86.967	1.00 39.51	L	C
	MOTA	285	C	LYSI	. 32	45.132	13.120	85.800	1.00 40.53	L	Ċ
	ATOM	286	0	LYSI	. 32	46.265	13.362	85.386	1.00 41.25	L	0
20	ATOM	287	CB	LYSL	. 32	44.064	12.958	88.064	1.00 40.66	Ĺ	Č
	ATOM	288	CG	LYS L	. 32	43.132	13.599	89.088	1.00 43.75	L	C
	ATOM	289	CD	LYS L	. 32	43.294	13.002	90.473	1.00 45.44	L	C
	MOTA	290	CE	LYS L	. 32	44.566	13.514	91.136	1.00 48.55	Ĺ	Ċ
	MOTA	291	NZ	LYS L	32	44.556	15.002	91.284	1.00 49.03	L	N
25	ATOM	292	N	ASP L	33	44.366	12.167	85.278	1.00 41.87	L	N.
	MOTA	293	CA	ASP L	33	44.811	11.343	84.161	1.00 43.56	L	C
	ATOM	294	С	ASP L	33	45.103	12.193	82.922	1.00 44.09	L	C
	MOTA	295	0	ASP L	33	44.322	13.073	82.562	1.00 44.53	L	0
	MOTA	296	CB	ASP L	33	43.747	10.290	83.849	1.00 45.31	L	C
30	MOTA	297	CG	ASP L	33	44.088	9.458	82.635	1.00 47.36	L	C
	ATOM	298	0D1	ASP L	33	43.843	9.923	81.525	1.00 45.97	Ĺ	0
	ATOM	299	0D2	ASP L	33	44.606	8.347	82.809	1.00 49.11	L	0.
	ATOM	300	N	ALA L	34	46.235	11.920	82.279	1.00 44.21	L	N
	ATOM	301	CA	ALA L	34	46.666	12.657	81.092	1.00 44.90	L	C
35	MOTA	302	C	ALA L	34	45.679	12.572	79.932	1.00 45.63	L	C
	ATOM	303	0	ALA L	34	45.350	13.583	79.309	1.00 46.43	Ĺ	0
	MOTA	304	CB	ALA L	34	48.034	12.155	80.643	1.00 45.30	L	Ċ
	ATOM	305	N	CGU L	35	45.225	11.360	79.637	1.00 45.00	L	N
	MOTA	306	CA	CGU L	35	44.274	11.132		1.00 44.45	I.	C
40	ATOM	307	CB	CGU L	35	43.892	9.646	78.502	1.00 47.50	L	C
	MOTA	308	CG	CGU L	35	45.001	8.586	78.399	1.00 52.62	L	C
	ATOM	309	CD1	CGU L	35	46.080	9.012	77.405	1.00 54.39	Ĺ	C
	ATOM	310	CD2	CGU L	35	45.632	8.287	79.763	1.00 53.62	L	C
	ATOM	311	0E1	CGU L	35	47.263	8.886	77.743	1.00 55.86	Ĺ	0
45	ATOM	312	0E2	CGU L	35	45.722	9.460	76.313	1.00 56.24	L	0
	ATOM	313		CGU L	35	46.606	8.955	80.122	1.00 53.37	Ĺ	0
	ATOM	314	0E4	CGU L	35	45.140	7.379	80.445	1.00 54.53	L	0
	ATOM	315	С	ÇGU L	35	43.019	11.992	78.756	1.00 42.91	L	C
	MOTA	316	0	CGU L	35	42.540	12.632	77.819	1.00 42.31	L	0
50	ATOM	317	N	ARG L	36	42.494	12.009	79.978	1.00 40.60	L	N
	ATOM	318	CA	ARG L	36	41.304	12.795	80.294	1.00 40.00	L	C
	ATOM	319	С	ARG L	35	41.572	14.296	80.212	1.00 36.95	L	
	ATOM	320		ARG L	36	40.728	15.061	79.747	1.00 36.95	L	C
	ATOM	321		ARG L	36			81.696	1.00 36.47	L L	0
55	MOTA	322		ARG L	36		11.017	81.844	1.00 41.08		C
-						.0.200		~1.077	1.00 43.40	L	С

	ATOM	32	3 CI) AR	L	36	39.	891	10.718	83.278	1.0	0 45.24		L	c
	ATOM	324	4 NE	E ARO	L	36	39.		9.337			0 47.54		L	C N
	ATOM	329	5 C 2	ZARO	L	36	39.	133	8.776			0 48.41		L	C
_	ATOM	326	5 NF	ii arc	L	36	39.	225	9.471			0 46.77		L	N
5	ATOM	327	7 NF	12 ARG	L	36	38.1	728	7.512			0 50.53		L	
	ATOM	328	3 N	THR	L	37	42.7		14.716			0 34.62		L	N N
	ATOM	329) CA	THE	L	37	43.3	109	16.126			0 32.74		L	C
	ATOM	330) C	THE	L	37	43.2	201	16.637			0 31.75		L	C
	ATOM	331	. 0	THR	L	37	42.6	594	17.714			0 30.68		L	0
10	ATOM	332	C B	THR	L	37	44.4	155	16.369	81.351		0 32.46		L	C
	ATOM	333		1 THR	L	37	44.3	393	15.839	82.681		0 32.01		L	0
	ATOM	334		2 THR	L	37	44.7	759	17.861	81.427		0 31.14		L	C
	ATOM	335	N	LYS	L	38	43.8	344	15.860	78.336		0 31.24		L	N
	ATOM	336		LYS	L	38	43.9	989	16.239	76.934		32.20		L	C
15	ATOM	337		LYS	L	38	42.6	30	16.318	76.233		30.65		L	С
	ATOM	338		LYS	L	38	42.3	90	17.231	75.446		31.32		L	0
	MOTA	339		LYS	L	38	44.8	91	15.241	76.197		34.59		L	C
	MOTA	340		LYS	L	38	46.3	32	15.182	76.711		37.74		L	C
0.0	MOTA	341		LYS	L	38	47.0	30	16.539	76.640		39.00		L	C
20	ATOM	342	CE	LYS	L	38	47.2	16	17.009	75.204		41.05		L	C
	ATOM	343		LYS	L	38	47.8	24	18.365	75.130		38.92		L	N
	ATOM	344	N	LEU		39	41.7	49	15.362	76.519		28.80		L	N
	ATOM	345	CA	LEU		39	40.4	17	15.345	75.919		28.45		L	c
0.5	ATOM	346	С	LEU		39	39.6	65	16.624	76.275	1.00	27.55		L	Č
25	ATOM	347	0	LEU		39	38.9	27	17.170	75.458	1.00	27.44		L	0
	ATOM	348	СВ	LEU		39	39.6	19	14.134	76.410	1.00	28.33		L	C
	ATOM	349		LEU		39	38.19	90	14.034	75.866		30.67		L	C
	ATOM	350		LEU		39	38.2	28	13.988	74.342		30.91	•	L	C
20	ATOM	351		LEU		39	37.50	04]	2.791	76.422		30.33		L	C
30	ATOM	352	N	PHE		40	39.85	50]	7.091	77.505	1.00	26.66		L	N
	ATOM	353	CA	PHE		40	39.21	13 1	8.315	77.968	1.00	26.79		L	С
	ATOM	354	C	PHE		40	39.86		9.531	77.319	1.00	26.64		L	С
	ATOM	355	0	PHE		40	39.18		0.429	76.821	1.00	27.35		L	0
35	ATOM	356	CB	PHE		40	39.34		8.438	79.491	1.00	25.08		L	С
33	ATOM	357	CG	PHE		40	39.02	28 1	9.810	80.020	1.00	25.21		Ĺ	С
	ATOM	358		PHE		40	37.70	07 2	0.208	80.225	1.00	24.16			С
	MOTA	359		PHE		40	40.05		0.718	80.291	1.00	24.18]	,	C
٢	ATOM	360		PHE		40	37.41		1.488	80.692		25.10	1	,	С
40	ATOM ATOM	361		PHE		40	39.76	_	2.003			24.75	i	,	C
40	ATOM	362	CZ	PHE		40	38.44		2.389	80.959		25.22	1	,	C
	ATOM	363	N	TRP		41	41.19		9.539	77.324		25.96	1		N
	ATOM	364	CA	TRP .		41	41.99		0.648	76.795		26.28	I	,	C
	ATOM	365 366	C	TRP :		41	41.86		0.970	75.301		27.29	I	,	C
4 5	MOTA		0 CB	TRP 1		41	41.98		2.131	74.906		26.04	I	,	0
10	ATOM	367	CB	TRP 1		41	43.46		0.425	77.144		24.26	L		С
	ATOM	368	CG	TRP		41	44.30		1.652	77.027		25.36	L		C
	ATOM	369		TRP I		41	45.25		1.906	76.086		25.02	L		C
	ATOM	370 371		TRP I		41	44.27			77.883		25.54	L		C
50	ATOM	371 372		TRP I		41	45.81					27.28	L		N
50	ATOM	372		TRP [41	45.23					26.01	L		С
	ATOM	374		TRP L		41	43.513					26.85	, L		С
	ATOM	374		TRP L		41	45.464					24.01	Ł		С
•	MOTA	376		TRP L		41	43.747					25.86	L		C
55	ATOM	377		ILE L		41	44.715					26.46	L		С
- •		U.,	41	יייי נ		42	41.629	9 15	9.968	74.463	1.00	28.66	. L	•	N

	ATOM	37.8			E L	42	41.523	20.237	73.033	1.00 30.71	L	С
	ATOM	379	C	IL	EL	42	40.370	21.171	72.666	1.00 29.53	Ĺ	C
	ATOM	380	0	ΙL	EL	42	40.469	21.936	71.705	1.00 30.98	L	0
_	ATOM	381	CB	ΙL	E L	42	41.429	18.925	72.209	1.00 32.87	L	C
5	ATOM	382	CG	l IL	E L	42	40.350	18.004	72.771	1.00 33.91	L	C
	MOTA	383	CG	2 IL	E L	42	42.769	18.217	72.217	1.00 36.59	L	C
	ATOM	384	CD.	l IL	E L	42	38.982	18.321	72.269	1.00 36.99	L	C
	ATOM	385	N	SE	R L	43	39.289	21.127	73.437	1.00 28.62	L	N
	ATOM	386	C A	SE	R L	43	38.136	21.985	73.185	1.00 28.31	L	C
10	ATOM	387	С	SE	R L	43	38.213	23.262	74.009	1.00 27.84	L	C
	ATOM	388	0	SE	R L	43	37.980	24.356	73.499	1.00 27.48	L	0
	ATOM	389	CB	SE	R L	43	36.839	21.247	73.517	1.00 26.23	Ĺ	C
	ATOM	390	0 G	SE	R L	43	36.679	20.123	72.671	1.00 27.51	L	0
	MOTA	391	N	TY.	R L	44	38.541	23.115	75.289	1.00 27.54	L	N
15	ATOM	392	CA	TY	R L	44	38.640	24.257	76.188	1.00 27.08	L	C
	ATOM	393	C	TY	R L	44	39.581	25.329	75.650	1.00 27.23	L	С
	ATOM	394	0	TY	R L	44	39.241	26.510	75.650	1.00 27.59	L	0
	ATOM.	395	СВ	TY	R L	44	39.136	23.805	77.567	1.00 26.19	L	С
	ATOM	396	CG	TY	R L	44	39.140	24.898	78.614	1.00 24.94	L	C
20	ATOM	397		TY	R L	44	37.949	25.366	79.164	1.00 23.63	L	C
	ATOM	398	C D 2	TY	R L	44	40.337	25.457	79.064	1.00 26.53	L	С
	MOTA	399		TYI		44	37.949	26.362	80.142	1.00 26.54	L	C
	ATOM	400		TYI		44	40.348	26.455	80.043	1.00 26.05	L L	C
	ATOM	401	CZ	TYF		44	39.151	26.899	80.577	1.00 26.97	L	C
25	ATOM	402	0 H	TYE		44	39.150	27.865	81.560	1.00 28.80	L	
	MOTA	403	N	SEE		45	40.757	24.911	75.192	1.00 28.80		0
	ATOM	404	CA	SEE		45	41.768	25.839	74.686	1.00 27.72	L	N
	MOTA	405	C	SEE		45	41.744	26.104	73.182	1.00 30.13	L	C
	ATOM	406	0	SEE		45	42.604	26.820	73.182		L	С
30	ATOM	407	СВ	SER		45	43.165	25.340		1.00 30.63	L	0
	ATOM	408	0 G	SER		45	43.103	24.166	75.061	1.00 30.16	L	C
	MOTA	409	N	ASP		46	40.771	25.543	74.339	1.00 29.88	L	0
	ATOM	410	C A	ASP		46	40.771	25.745	72.472	1.00 31.14	L	N
	ATOM	411	C	ASP		46	40.703	27.189	71.027	1.00 31.20	L	C
35	ATOM	412	0	ASP		46	40.411	27.169	70.627	1.00 30.32	L	C
	ATOM	413	СВ	ASP		46	39.646		69.594	1.00 32.57	L	0
	ATOM	414	CG	ASP		46	39.742	24.833	70.405	1.00 31.05	L	С
	ATOM	415		ASP		46	40.634	24.784	68.892	1.00 32.56	L	С
	ATOM	416		ASP		46	38.941	24.106 25.428	68.375	1.00 33.28	L	0
40	ATOM	417	N N	GLY		47	39.636		68.242	1.00 29.30	L	0
	MOTA	418	CA	GLY		47	39.030	27.899	71.442	1.00 29.23	L	N
	ATOM	419	C	GLY		47	38.100	29.276	71.131	1.00 28.60	L	С
	ATOM	420	0	GLY		47		29.318	70.202	1.00 31.30	L	C
	MOTA	421	N	ASP		48	37.926	28.417	69.392	1.00 30.95	L	0
45	MOTA	422	CA				37.273	30.355	70.308	1.00 31.54	L	N
10	MOTA	423	C	ASP		48	36.090	30.472	69.462	1.00 32.74	L	С
	ATOM	424	0	ASP		48	36.378	31.223	68.165	1.00 33.54	L	С
	ATOM	425	C B	ASP		48	36.498	32.452	68.159	1.00 32.67	L	0
	MOTA			ASP		48	34.970	31.168	70.240	1.00 34.96	L	С
50	ATOM	426 427	CG	ASP		48	33.809	31.573	69.358	1.00 36.81	L	С
00			0D1			48	33.501	30.848	68.425	1.00 36.52	L	0
	ATOM	428	0D2			48	33.208	32.615		1.00 39.87	L	0
	ATOM	429	N	GLN		49	36.485	30.481		1.00 33.17	L	N
	MOTA	430	CA	GLN		49	36.767	31.089		1.00 33.44	. r	С
55	MOTA	431	C	GLN		49	35.666	32.022		1.00 33.32	L	С
55	ATOM	432	0	GLN	L·	49	35.871	32.774	64.305	1.00 34.51	L	0

	ATOM	43	3 C B	GLN	L 49	37.04	6 30.009	64.713	3 1.00 32.45	L	r
	ATOM	43	4 C G	GLN	L 49	38.44			-	L	C C
	ATOM	43	5 C D	GLN	Լ 49	38.70				L	C
_	ATOM	436	5 0 E	1 GLN 1	L 49	37.91	5 27.822			L	0
. 5	MOTA	437	7 NE	2 GLN I	L 49	39.823	1 28:978		_ -	L	
	MOTA	438	3 N	CYSI	L 50	34.500	31.973			L	N N
	ATOM	439	O CA	CYSI	50	33.391	32.840			L	C
	ATOM	440) C	CYS I	50	. 33.533				L	C
	ATOM	441	. 0	CYSI	50	32.803				L	0.
10	ATOM	442	C B	CYS L	50	32.062				L	C
	ATOM	443	3 S G	CYS L	. 50	31.419			· =	L	S
	MOTA	444	N	ALA L	51	34.466	34.398			L	N N
	ATOM	445	CA	ALA L	51	34.698	35.681	67.712		L	C
	MOTA	446	C	ALA L	51	34.967		66.727		L	C
15	ATOM	447	0	ALA L	51	34.554		66.952		L	
	ATOM	448	CB	ALA L	51	35.861		68.695	1.00 37.84	Ĺ	0
	ATOM	449	N	GSERL	52	35.657		65.636	1.00 39.50	L	C
	ATOM	450	CA	GSERL	52	35.974		64.619	1.00 39.27	L	N
	ATOM	451	CB	GSERL		37.114		63.737	1.00 40.23	L L	C
20	ATOM	452	0 G	GSERL	52	36.756		62.365	1.00 45.10	L	C
	MOTA	453	С	GSERL	52	34.756		63.760	1.00 43.10	L	0
	ATOM	454	0	GSERL		34.854		62.835	1.00 38.00		C
	ATOM	455	C1	GSERL	52	37.197		61.707	1.00 38.29	L	0
	ATOM	456	C2	GSERL	52	38.111	36.101	60.515	1.00 45.99	L	С
25	MOTA	457	C3	GSERL	52	38.477		59.788	1.00 46.11	L	C
	ATOM	458	C4	GSERL	52	39.100	33.808	60.777	1.00 46.16	L	C
	ATOM	459	C5	GSERL	52	38.180	33.615	62.004	1.00 46.88	L ,	C
	ATOM	460	C6	GSERL	52	38.849	32.688	63.024	1.00 48.42	L ,	С
	ATOM	461	02	GSERL	- 52	37.438	36.988	59.614	1.00 48.42	L	C
30	ATOM	462	03	GSERL	52	39.406	35.079	58.734	1.00 47.32	L	0
	ATOM	463	04	GSERL	52	39.302	32.549	60.123	1.00 46.42	L	0
	MOTA	464	05	GSERL	52	37.851	34.874	62.616	1.00 47.23	L	0
	ATOM	465	06	GSERL	52	39.251	31.462	62.431	1.00 47.23	L	0.
	ATOM	466	N	SER L	53	33.610	37.263	64.085	1.00 36.60	L	0
35	ATOM	467	CA	SER L	53	32.367	37.488	63.354	1.00 35.81	L L	N
	ATOM	468	C	SER L	53	32.602	37.463	61.845	1.00 33.81		C
	ATOM	469	0	SER L	53	32.395	38.460	61.162	1.00 33.73	L L	С
	ATOM	470	CB	SER L	53	31.765	38.831	63.764	1.00 37.62	L	0 C
	ATOM	471	0 G	SER L	53	32.684	39.879		1.00 40.28	· L	_
40	ATOM	472	N	PRO L	54	33.026	36.310	61.303	1.00 32.42	L	0 N
	ATOM	473	CA	PRO L	54	33.285	36.192	59.865	1.00 31.65	L	N
	ATOM	474	C	PRO L	54	32.069	36.078	58.940	1.00 30.67	L	C
	MOTA	475	0	PRO L	54	32.156	36.424	57.761	1.00 30.19	L	С
	ATOM	476	CB	PRO L	54	34.172	34.956	59.788	1.00 31.82	L	0 C
45	ATOM	477	CG	PRO L	54	33.578	34.084	60.841	1.00 30.71	L	
	ATOM	478	CD	PRO L	54	33.366	35.051	61.994	1.00 30.98	L	C
	ATOM	479	N	CYS L	55	30.946	35.594	59.461	1.00 29.86	L	C
	ATOM	480	CA	CYS L	55	29.752	35.422	58.635	1.00 30.36	L	N C
	ATOM	481	C	CYSL	55	29.033	36.733	58.343	1.00 31.54	L	C
50	ATOM	482	0	CYS L	55	28.455	37.358	59.230	1.00 32.38		
	ATOM	483	CB	CYS L	55	28.794	34.430	59.290	1.00 32.38	L	0
	ATOM	484	SG	CYS L	55	29.586	32.875	59.818	1.00 28.02	L	C
	ATOM	485	N	GLN L	56	29.060		57.074	1.00 28.74	L	S N
	ATOM	486	CA	GLN L	56	28.456		56.607	1.00 31.32	L	N
55	MOTA	487		GLN L	56	26.983		56.217	1.00 30.45	Ĺ	C
							J 1 I		UV 23.38	L	С

	ATOM	488	0	GLN L	56	26.387	37.195	56.205	1.00 30.14		•
	ATOM	489		GLN L		29.239	38.873	_		L ·	
	ATOM	490		GLN L	56	30.731	38.996		1.00 29.51	L	
	ATOM	491	CD	GLN L					1.00 27.82	L	
5	ATOM				56	31.463	39.252		1.00 28.65	L	
U		492		GLN L	56	31.054	40.098		1.00 31.65	L	-
	ATOM	493		GLN L	56	32.551	38.526		1.00 29.31	L	N
	MOTA	494	N	ASN L	57	26.415	39.429	55.897	1.00 30.03	L	N
	ATOM	495	C A	ASN L	57	25.030	39.559	55.453	1.00 29.58	Ĺ	C
	ATOM	496	С	ASN L	57	23.952	38.887	56.296	1.00 29.62	L	С
10	MOTA	497	0	ASN L	57	23.024	38.276	55.764	1.00 29.77	L	0
	ATOM	498	CB	ASN L	57	24.921	39.085	53.999	1.00 29.04	L	
	ATOM	499	CG	ASN L	57	25.762	39.924	53.054	1.00 29.56	L	
	ATOM	500	0D1	ASN L	57	25.568	41.134	52.945	1.00 32.62	L	
	ATOM	501	ND2	ASN L	57	26.702	39.287	52.367	1.00 29.28	L	
15	ATOM	502	N	GLY L	58	24.059	39.019	57.610	1.00 30.01	L	
	MOTA	503	CA	GLY L	58	23.061	38.432	58.485	1.00 30.78	L	
	ATOM	504	C	GLY L	58	23.145	36.931	58.670	1.00 30.82	L	
	ATOM	505	0	GLY L	58	22.166	36.299	59.066	1.00 31.08		
	ATOM	506	N	GLY L	59	24.305	36.351	58.388	1.00 31.08	L	
20	ATOM	507	CA	GLY L	59	24.453	34.919			L	
20	ATOM		C					58.557	1.00 31.81	L	C
		508		GLY L	59	24.692	34.578	60.015	1.00 31.05	L	
	MOTA	509	0	GLY L	59	24.845	35.466	60.853	1.00 31.54	L	
	MOTA	510	N	FSERL	60	24.723	33.289	60.326	1.00 30.80	L	
0.5	ATOM	511	CA	FSERL	60	24.959	32.852	61.690	1.00 30.86	L	С
25	MOTA	512	CB	FSERL	60	23.724	32.128	62.227	1.00 31.58	. L	С
	MOTA	513	0 G	FSERL	60	22.643	33.041	62.308	1.00 32.58	L	0
	ATOM	514	C	FSERL	60	26.184	31.953	61.743	1.00 30.82	L	C
	MOTA	515	0	FSERL	60	26.297	30.990	60.984	1.00 29.56	L	0
	MOTA	516	C1	FSERL	60	21.375	32.378	62.268	1.00 35.22	L	С
30	ATOM	517	C2	FSERL	60	20.246	33.387	62.560	1.00 36.79	L	C
	ATOM	518	C3	FSERL	60	20.174	34.428	61.430	1.00 37.43	L	С
	ATOM	519	C4	FSERL	60	20.031	33.715	60.084	1.00 36.10	L	C
	MOTA	520	C5	FSERL	60	21.164	32.683	59.913	1.00 35.80	L	C
	ATOM	521	С6	FSERL	60	21.036	31.969	58.566	1.00 35.30	L	C
35	ATOM	522	02	FSERL	60	20.509	34.051	63.802	1.00 39.97	L	0
	ATOM	523	03	FSERL	60	19.049	35.291	61.638	1.00 39.35	L	0
	ATOM	524	04	FSERL	60	18.764	33.048	60.034	1.00 33.33	L	0
	ATOM	525	05	FSERL	60	21.172	31.739	60.996	1.00 35.11		
	ATOM	526	N	CYS L	61	27.103	32.284	62.644	1.00 33.11	L	0
40	ATOM	527	CA		61	28.340				L	N
10	ATOM	528	C	CYS L			31.532	62.803	1.00 30.26	L	Ĵ,
	MOTA	529			61	28.205	30.412	63.825	1.00 30.72	L	C
				CYS L	61	27.616	30.591	64.895	1.00 29.55	L	0
	MOTA	530		CYS L	61	29.468	32.474	63.227	1.00 29.48	L	С
15	ATOM	531		CYS L	61	31.145	31.764	63.150	1.00 30.89	L	S
45	ATOM	532		LYS L	62	28.754	29.254	63.477	1.00 30.27	L	N
	ATOM	533		LYS L	62	28.729	28.090	64.347	1.00 29.64	L	C
	ATOM	534		LYS L	62	30.183	27.688	64.543	1.00 29.26	L	C
	ATOM	535		LYS L	62	30.870	27.312	63.595	1.00 28.28	L	0
	ATOM	536	CB	LYSL	62	27.943	26.952	63.696	1.00 30.78	L	С
50	MOTA	537	CG	LYS L	62	27.561	25.826	64.642	1.00 33.70	L	С
	MOTA	538	CD	LYS L	62	28.780	25.112	65.204	1.00 35.68	L	C
	ATOM	539	CE	LYS L	62	28.392	23.957	66.122	1.00 34.05	L	C
	ATOM	540		LYS L	62	27.581	24.389	67.286	1.00 32.19	L.	N
	ATOM	541		ASP L	63	30.645	27.781	65.782	1.00 29.03	L	N
55	MOTA	542		ASP L	63	32.018	27.455	66.120	1.00 28.45	L	Č
				-		-			_		•

	MOTA	54		ASP	L 63	32.31	7 25.970	65.961	1.00 27.88	L	c
	ATOM	54		ASP	L 63	31.48	9 25.120			Ĺ	0
	ATOM	54	5 CB	ASP	L 63	32.31				L	
-	ATOM	54		ASP		33.762				L	C
5	MOTA	54		1 ASP		34.59	28.171			L	C
	ATOM	54	8 OD:	2 ASP	L 63	34.057			1.00 31.88	L	0
	ATOM	54	9 N	GLN	L 64	33.511			1.00 27.71	L	0
	MOTA	55	D CA	GLN	L 64	33.934			1.00 29.46	Ĺ	N
10	MOTA	55	1 C	GLN	L 64	35.354			1.00 29.86	L	C
10	MOTA	55	0 S	GLN	L 64	35.988			1.00 29.22	L	C
	MOTA	55	3 CB	GLN	L 64	33.894		63.715	1.00 30.77	L	0
	ATOM	554	4 CG	GLN	L 64	33.597		63.346	1.00 33.56		C
	MOTA	555	5 CD	GLN	L 64	32.157		63.621	1.00 33.54	L	C
	ATOM	556	0E1	GLN .	L 64	31.840		63.568	1.00 35.34	L	C
15	MOTA	557	NE2	GLN	L 64	31.284		63.904	1.00 30.28	L	0
	ATOM	558	B N	LEU I	L 65	35.862		65.740	1.00 32.40	L	N
	ATOM	559	CA	LEU !	L 65	37.206		66.242	1.00 32.40	L	N
	ATOM	560	С С	LEU I	L 65	38.292		65.332	1.00 35.87	L	C
	ATOM	561	. 0	LEU I		38.688		64.349	1.00 35.15	L	C
20	MOTA	562	СВ	LEU I		37.410		66.422	1.00 35.47	L	0
	MOTA	563	CG	LEU I		38.554	20.679	67.337		L	C
	ATOM	564	CD1	LEU 1		38.435	21.372	68.687	1.00 36.14	L	C
	ATOM	565		LEU I		38.503	19.172	67.517	1.00 36.95	L	C
	ATOM	566		GLN L		38.767	24.401	65.666	1.00 35.86	L	C
25	ATOM	567	CA	GLN L		39.820	25.072		1.00 35.72	L	N
	ATOM	568	С	GLN L		39.293	25.586	64.903	1.00 35.89	L	C
	ATOM	569	0	GLN L		39.998	25.562	63.561	1.00 35.00	L	С
	MOTA	570	· CB	GLN L		40.986	24.101	62.547	1.00 33.68	L	0
	ATOM	571	CG	GLN L		42.288	24.748	64.674	1.00 37.22	L	С
30	ATOM	572	CD	GLN L		43.040		64.232	1.00 40.93	L __	С
	ATOM	573		GLN L		44.109	25.456	65.356	1.00 40.68	L	C
	ATOM	574		GLN L		42.488	26.017	65.128	1.00 41.86	L	0
	ATOM	575	N	SER L			25.431	66.566	1.00 40.50	L	N
	ATOM	576	CA	SER L	67	38.051 37.412	26.059	63.568	1.00 31.83	L	N
35	ATOM	577	C	SER L	67	35.991	26.568	62.365	1.00 31.03	L	С
	ATOM	578	0	SER L	67	35.613	27.036	62.667	1.00 31.16	L	C
	ATOM	579	CB	SER L	67	37.389	27.197	63.829	1.00 31.27	L	0
	ATOM	580		SER L	67	36.946	25.477	61.288	1.00 30.23	L	C
	MOTA	581	N	TYR L	68	35.210	24.239	61.817	1.00 30.96	L	0
40	ATOM	582		TYR L	68	33.835	27.265		1.00 29.96	L	N
	ATOM	583		TYR L	68	32.987	27.707	61.785	1.00 28.95	L	С
	ATOM	584		TYR L	68	33.500	27.358	60.573	1.00 28.08	L	C
	ATOM	585		TYR L	68	33.769	26.977	59.516	1.00 27.87	L	0
	ATOM	586		TYR L	68	34.288	29.221		1.00 30.00	L	С
45	ATOM	587		TYR L	68	35.650	30.061		1.00 29.99	L	С
_	ATOM	588		TYR L	68	33.417	30.332		1.00 30.22	L	С
	ATOM	589		TYR L	68		30.574		1.00 30.26	L	С
	MOTA	590		TYR L	68	36.135	31.090		1.00 29.23	L	С
	MOTA	591		TYR L		33.892			1.00 29.58	L	C
50	ATOM	592		TYR L	68	35.251			1.00 29.30	L	C
- •	ATOM	593		ILE L	68 60	35.733			1.00 28.26	L	0
	MOTA	594		LE L	69	31.680			1.00 25.46	L	N
	ATOM	595		ILE L	69	30.720			1.00 24.21	L	C
	ATOM	596			69	29.732	_		1.00 23.58	L	C
55	MOTA	597		LEL	69	29.233			1.00 21.31	L	0
	+ #1	551	ן עט	LE L	69	29.947	25.908	59.974	1.00 24.42	L	C

•	ATOM	598	3 C G	1 ILE	L 69	30.904	94 717	7 50 014	1 00 04 57		
	ATOM	599		2 ILE		28.818				L	С
	ATOM	600		1 ILE			-	-		L	C
	ATOM	601		CYS		30.243				L	C
5	ATOM	602		CYS		29.466				L	N
Ū	ATOM	603		CYS		28.517				L	C
	ATOM	604		CYSI	_	27.195			· - 	L	С
	MOTA	605				27.174			-	L	0
	ATOM			CYSI		29.084				L	C
10	ATOM	606 607		CYSI		30.424				L	S
10	ATOM			PHE		26.096				L	N
	ATOM	608 609		PHE		24.765			· · -	. L	C
	ATOM			PHE		24.305				L	C
	MOTA	610		PHE		24.271				L	0
15		611		PHE L		23.840			1.00 23.72	L	C
10	MOTA	612		PHE L		24.079			1.00 23.26	L	C
	ATOM	613		PHE L		25.220	27.448	60.300	1.00 20.48	L	C
	MOTA	614		PHE L		23.170	26.737	59.286	1.00 21.74	L	C
	MOTA	615		. PHE L		25.453	26.157	60.751	1.00 19.84	L	С
20	ATOM	616		PHE L		23.395	25.440	59.733	1.00 22.58	L	C
20	ATOM	617	CZ	PHE L		24.537	25.149	60.467	1.00 21.41	L	C
	ATOM	618	N	CYS L		23.964	30.838	56.004	1.00 27.38	L	N
	ATOM	619	CA	CYS L		23.561	32.060	55.322	1.00 28.04	L	C
	ATOM	620	C	CYS L		22.067	32.210	55.147	1.00 29.09	L	C
25	ATOM	621	0	CYS L		21.315	31.236	55.240	1.00 30.40	L	0
20	ATOM	622	CB	CYS L		24.216	32.125	53.941	1.00 27.64	L	С
	ATOM	623	SG	CYS L		25.997	31.758	53.929	1.00 27.84	L	S
	ATOM	624	N	LEU L	73	21.645	33.446	54.896	1.00 29.28	L	N
	ATOM	625	CA	LEU L	73	20.243	33.736	54.640	1.00 29.11	L	C
30	ATOM	626	C	LEU L	73	20.018	33.294	53.201	1.00 29.05	L	C
<i>3</i> 0 .	ATOM	627	0	LEU L	73	20.964	33.228	52.419	1.00 29.21	L	0
	ATOM	628	CB	LEU L	73	19.963	35.233	54.786	1.00 29.61	L	C
	ATOM	629	CG	LEU L	73	19.999	35.764	56.221	1.00 31.06	L	C
	ATOM	630		LEU L	73	19.802	37274	56.220	1.00 32.08	L	C
35	ATOM	631		LEU L	73	18.913	35.075	57.043	1.00 30.65	L	C
50	ATOM	632	N	PRO L	74	18.766	32.991	52.833	1.00 29.36	L	N
	MOTA	633	CA	PRO L	74	18.384	32.543	51.492	1.00 29.38	L	C
	ATOM	634	C	PRO L	74	19.120	33.149	50.298	1.00 29.43	L	C
	MOTA	635	0 CD	PRO L	74	19.630	32.420	49.449	1.00 29.02	L	0
40	MOTA MOTA	636 6 3 7	CB	PRO L	74	16.888	32.828	51.461	1.00 30.46	L	C
40	ATOM		CG	PRO L	74	16.486	32.477	52.854	1.00 29.08	L	, C
	MOTA	638	CD	PRO L	74	17.570	33.151	53.682	1.00 29.95	L	С
	MOTA	639 640	N	ALA L	75 75	19.190	34.473	50.229	1.00 28.84	L	N
	ATOM		CA	ALA L	75 75	19.849	35.124	49.100	1.00 28.32	L	C
45	ATOM	641 642		ALA L	75 	21.368	35.226	49.194	1.00 27.93	L	С
70	ATOM			ALA L	75 	21.978	36.020	48.481	1.00 29.61	L	0
	MOTA	643 644		ALA L	75 5.2	19.257	36.508	48.893	1.00 27.56	Ĺ	С
				PHE L	76 ~~	21.987	34.418	50.047	1.00 26.68	L	N
	MOTA MOTA	645 646		PHE L	76 76	23.433	34.480	50.205	1.00 25.92	L	C
50	ATOM	646 647		PHE L		24.105	33.108	50.253	1.00 25.21	L	С
00	ATOM	648		PHE L	76	23.484	32.103	50.606	1.00 24.64	L	0
	ATOM	649		PHE L	76	23.770	35.269	51.479	1.00 26.98	L	C
	ATOM	650		PHE L	76	23.308	36.705	51.447	1.00 26.03	L	С
	ATOM	651		PHE L	76	24.009	37.660	50.717	1.00 26.24	L	С
55	ATOM	652		PHE L	76 76	22.161	37.094	52.128	1.00 25.56	L	С
00	11 1 V PI	002	CEI	PHE L	76	23.570	38.986	50.665	1.00 27.46	L	С

									•		
	ATOM	653		E2 PHE	L 76	21.71	3 38.416	52.08	3 1.00 28.29	L	С
	MOTA	654				22.42	39.363			L	C
	ATOM	655			L 77	25.38	33.082			L	N
_	MOTA	656		A GLU	L 77	26.17	31.861			L	C
5	ATOM	657	7 C	GLU	L 77	27.636				L	
	ATOM	658	3 0	GLU	L 77	27.947	33.446				C
	ATOM	659	CI	3 GLU	L 77	25.931				L	0
	MOTA	660) C(G GLU	L 77	26.369				L	C
	ATOM	661	CI	GLU C	L 77	25.929				L	С
10	MOTA	662	0 E	E1 GLU	L 77	26.332				L	С
	ATOM	663	0 E	2 GLU		25.177				L	0
	MOTA	664	N	GLY		28.525				L	0
	ATOM	665	CA			29.944				L	N
	MOTA	666		GLY		30.414				L	С
15	ATOM	667		GLY		29.613	_		-	L	С
	MOTA	668	N	ARG		31.711				L	0
	ATOM	669	CA							L	N
	ATOM	670	C	ARG		32.299		53.014	1.00 26.44	L	C
	ATOM	671	0	ARG I		31.847		54.146	1.00 27.39	L	C
20	MOTA	672	СВ			31.503		55.236	1.00 27.00	L	0
	ATOM	673	CG			33.827		52.894	1.00 25.97	L	C
	MOTA	674	CD			34.596	30.145	54.138	1.00 25.27	L	С
	ATOM	675	NE			36.018	29.745	53.756	1.00 27.07	L	C
	ATOM	676	CZ	ARG I		36.352	28.422	54.279	1.00 29.92	L	· N
25	ATOM	677		ARG L		37.168	27.553	53.689	1.00 31.71	L	C
	ATOM		NH:			37.754	27.849	52.536	1.00 34.10	L	N
	ATOM	678	NH:			37.394	26.375	54.254	1.00 34.56	L	N
		679	N	ASN L		31.845	32.728	53.875	1.00 28.14	L	N
	ATOM	680	CA	ASN L		31.440	33.727	54.858	1.00 27.10	L	С
30	ATOM	681	C	ASN L		30.171	34.446	54.415	1.00 27.35	L	С
50	ATOM	682	0	ASN L		29.950	35.598	54.785	1.00 27.84	L	0
	ATOM	683	CB	ASN L		32.561	34.750	55.038	1.00 27.74	L	C
	ATOM	684	CG	ASN L	80	33.868	34.110	55.442	1.00 29.02	L	C
	ATOM	685		ASN L	80	33.952	33.449	56.473	1.00 31.37	L	0
25	ATOM	686	ND2		80	34.897	34.301	54.629	1.00 31.80	L	N
35	MOTA	687	N	CA2 r	81	29.348	33.771	53.616	1.00 26.38	L	N
	MOTA	688	CA	CA2 r	81	28.103	34.353	53.113	1.00 26.94	L	C
	MOTA	689	С	CYS L	81	28.341	35.691	52.395	1.00 27.16	Ĺ	C
	ATOM	690	0	CA2 F	81	27.474	36.566	52.392	1.00 26.50	L	0
40	ATOM	691	CB	CYS L	81	27.115	34.563	54.263	1.00 26.45	ī.	Č
40	MOTA	692	SG	CYS L	81	26.764	33.080	55.267	1.00 28.68	L	S
	ATOM	693	N	GLU L	82	29.510	35.834	51.777	1.00 26.64	L	N
	ATOM	694	CA	GLU L	82	29.875	37.058	51.077	1.00 27.18	· L	c
	MOTA	695	С	GLU L	82	29.314	37.153	49.654	1.00 27.98	L	C
4 ~	ATOM	696	0	GLU L	82	29.364	38.216	49.031	1.00 28.25	Ĺ	0
45	A T O M	697	CB	GLU L	82	31.408	37.199	51.028	1.00 27.27	L	C
	ATOM	698	CG	GLU L	82	32.116	36.245	50.057	1.00 25.93	L	C
	ATOM	699	CD,	GLU L	82	32.435	34.881	50.658	1.00 27.71	Ĺ	C
	MOTA	700		GLU L	82	31.618	34.339	51.391	1.00 26.78	L	0
- -	ATOM	701	0E2	GLU L	82	33.503	34.356	50.371	1.00 29.60	L	
50	MOTA	702	N	THR L	83	28.776	36.052	49.140	1.00 28.28	L	0 N
	MOTA	703	CA	THR L	83	28.238		47.784	1.00 28.62	L L	N
	ATOM	704	C	THR L	83	26.762		47.698	1.00 28.02		C
	ATOM	705	0	THR L	83	25.910		48.284	1.00 29.44	L.	C
	ATOM	706	CB	THR L	83	28.442			1.00 26.44	L	0
55	MOTA	707	0G1	THR L	83	29.836			1.00 25.44	L	C
									2.00 23.30	L	0

	MOTA	708	G C G	2 TH	RL	. 83	27.941	34.692	45.675	1.00 26.81	L	С
	ATOM	709	N	ΗI	SI	84	26.475	37.472	46.958	1.00 31.51	· L	N
	MOTA	710) CA	HI	SI	84	25.109	37.939	46.759	1.00 34.54	Ĺ	C
_	MOTA	711	. C·	HI	SL	84	24.514	37.169	45.588	1.00 35.95	L	C
. 5	ATOM	712	0	H I	SL	84	24.914	37.372	44.442	1.00 36.09	Ĺ	0
	ATOM	713	CB	H I	SL	84	25.085	39.434	46.424		L	c
	ATOM	714	CG	HI	SL	84	25.439	40.328	47.572	1.00 38.81	L	C
	ATOM	715	ND	1 HI	SL	84	26.701	40.373			L	N
	ATOM	716	CD	2 HI	SL	84	24.697	41.231	48.256		L	C
10	ATOM	717	CE	1 H I	S L	84	26.721	41.264			L	Č
	ATOM	718	NE	2 H I	Sι	84	25.518			1.00 41.56	l	N
	ATOM	719	N	LY	S L	85	23.561	36.290		1.00 37.90	L	N
	ATOM	720	CA	LY	SL	85	22.931	35.504		1.00 39.99	L	C
	ATOM	721	С	LY	S L	85	22.179			1.00 41.95	L	c
15	ATOM	722	0	LY	SL	85	21.997	35.988	42.659	1.00 42.20	L	0
	ATOM	723	CB	LY	SL	85	21.983	34.471	45.432	1.00 40.09	L	C
	MOTA	724	CG	LY.	SL	85	22.673	33.492	46.380	1.00 41.01	L	C
	MOTA	725	CD	LY.		85	21.699	32.493	46.987	1.00 40.74	L	С
	ATOM	726	CE	•	S L	85	21.202	31.494	45.958	1.00 42.61	L	C
20	ATOM	727	NZ		SL	85	22.296	30.609	45.462	1.00 43.27	L	N
	ATOM	728	N		PL	86	21.758	37.567	44.235	1.00 44.88	Ĺ	N
	ATOM	729	CA		PL	86	21.030	38.487	43.361	1.00 47.56	L	C
	ATOM	730	С		PL	86	21.941	39.324	42.455	1.00 47.92	L	С
	ATOM	731	0	ASI		86	21.456	40.131	41.663	1.00 48.41	L	0
25	ATOM	732	СВ	ASI		86	20.159	39.433	44.196	1.00 49.53	L	С
	ATOM	733	CG	ASI		86	19.237	38.694	45.147	1.00 52.38	L	С
	ATOM	734		ASI		86	18.537	37.783	44.701	1.00 53.34	L	0
	ATOM	735		SASI		86	19.217	39.037	46.334	1.00 53.54	. L	0
	MOTA	736	N	ASI		87	23.252	39.132	42.568	1.00 48.29	L	
30	MOTA	737	CA	ASF		87	24.213	39.883	41.762	1.00 48.43	L	N C
	MOTA	738	C	ASF		87	24.938	39.017	40.736	1.00 48.45	L	C
	ATOM	739	0	ASF		87	26.108	39.250	40.431	1.00 48.78	L	0
	MOTA	740	CB	ASF		87	25.244	40.550	42.673	1.00 49.27	L	C
	ATOM	741	CG	ASF		87	24.639	41.629	43.545	1.00 49.65	L	С
35	ATOM	742		ASF		87	25.271	41.998	44.528	1.00 50.02	L	0
	ATOM	743		ASP		87	23.541	42.101	43.231	1.00 50.02	L	0
	ATOM	744	N	GLN		88	24.239	38.024	40.199	1.00 48.76	L	N
	ATOM	745	CA	GLN		88	24.834	37.130	39.216	1.00 48.54	L	C
	ATOM	746	C	GLN		88	24.028	37.101	37.921	1.00 47.25	L	_
40	ATOM	747	0	GLN		88	23.989	36.081	37.238	1.00 47.52	L	. O
	MOTA	748	СВ	GLN		88	24.925	35.716	39.796	1.00 50.51	L	
	ATOM	749	CG	GLN		88	25.663	35.632	41.129	1.00 53.34	L	C
	MOTA	750	CD	GLN		88	27.134	35.973	41.006	1.00 54.62	L	C C
	ATOM	751		GLN		88	27.499	37.016	40.461	1.00 55.79	L	
45	ATOM	752		GLN		88	27.990	35.094	41.518	1.00 55.48		0
	ATOM	753	N	LEU		89	23.399	38.221	37.575	1.00 35.48	L	N
	ATOM	754	C A	LEU		89	22.587	38.221	36.363	1.00 43.19	L	N
	ATOM	755	C.	LEU		89	23.431	38.485	35.105	1.00 42.20	L	C
	ATOM	756	0	LEU		89	23.313	39.493	34.407		L	C
50	ATOM	757	CB	LEU		89	21.564			1.00 39.00	L	0
- •	MOTA	758	CG	LEU		89	20.458	39.429 39.493	36.487 35.430	1.00 42.79 1.00 43.04	L	C
	ATOM	759		LEU		89	20.458 19.678				L	C
	ATOM	760		LEU		89	19.678	38.187	35.421	1.00 43.31	L	C
	ATOM	761	N N	ILE		90		40.662	35.729	1.00 43.24	L	C
55	ATOM	762	C A	ILE		90	24.284	37.504	34.825	1.00 37.21	L	N
50	AION	102	υA	נוענו	L	90	25.151	37.532	33.654	1.00 34.54	L	С

•	ATOM	763		ILE		90	24.83	2 36.32	5 32.778	3 1.00	33.42		L c
	ATOM	764		ILE	L S	90	24.290	35.32	7 33.253		34.00		L O
	MOTA	765				90	26.643				34.63		L C
~	ATOM	766	CG	1 ILE	L 9	90	26.934	36.263			33.21		i c
5	MOTA	767	CG	2 ILE	L 9	90	26.997				32.30		L C
	MOTA	768	CD	1 ILE	L 9	90	28.372				36.32	I	_
	MOTA	769	N	CYS	L S	91	25.181				31.20	1	
	ATOM	770	CA	CYS	LS	1	24.885				30.45	ı	-
10	ATOM	771	C	CYS	L S	1	25.471				30.35	I I	•
10	ATOM	772	0	CYS	L S	1	24.778				29.92		
	ATOM	773	CB	CYS	L 9	1	25.261				26.98	I	•
	MOTA	774	SG	CYS	L 9	1	24.204				26.22	. I	_
	MOTA	775	N	VAL	L 9	2	26.732				29.06	I	-
	MOTA	776	CA	VAL	L 9	2	27.333				28.75	I.	
15	ATOM	777	C	VAL	L 9	2	26.693				27.72	L	_
	ATOM	778	0	VAL		2	26.940				28.52	L	_
	ATOM	779	СВ	VAL		2	28.866	32.709			31.07	L	•
	MOTA	780	CG	1 VAL			29.529				29.69	L	-
	ATOM	781		2 VAL			29.190	33.717				L	-
20	ATOM	782	N	ASN			25.865	32.622			31.06	L	-
	ATOM	783	CA	ASN			25.174	32.050			25.61	L	N
	ATOM	784	С	ASN			23.753	31.651	34.213		24.28	L	C
	ATOM	785	0	ASN			22.850	32.487	34.213		23.30	L	С
	ATOM	786	CB	ASN			25.123	33.047			22.74	L	0
25	ATOM	787	CG	ASN			24.294	32.533	35.767		23.78	L	C
	ATOM	788		. ASN 1			24.175	31.326	36.930	1.00		L	С
	ATOM	789		ASN I			23.725	33.442	37.128	1.00		L	0
	ATOM	790	N	GLU I			23.723	30.370	37.710	1.00		L	N
	ATOM	791	CA	GLU I			22.257		33.907	1.00		L	N
30	ATOM	792	С	GLU I			21.654	29.862	33.511	1.00		L	С
	ATOM	793	0	GLU L			20.472	30.701	32.383	1.00		L	C
	ATOM	794	СВ	GLU L			21.302	31.047 29.856	32.412	1.00		L	0
	ATOM	795	CG	GLU L			21.714		34.711	1.00		L	С
	ATOM	796	CD	GLU L			21.714	28.934 27.462	35.863	1.00		L	С
35	ATOM	797		GLU L			22.593		35.488	1.00		L	С
	M O T A	798		GLU L			20.741	26.997	34.794	1.00		L	0
	ATOM	799	N	ASN L			22.482	26.783	35.891	1.00		L	0
	MOTA	800	CA	ASN L			22.462	31.035 31.810	31.400	1.00 2		Ĺ	N
	ATOM		C	ASN L	95		21.375	33.134	30.240	1.00 2		L	C
40	ATOM		0	ASN L	95		20.567	33.656	30.603	1.00 2		L	C
	ATOM		CB	ASN L	95		21.108	30.963	29.829	1.00 2		L	0
	ATOM		CG	ASN L	95		21.028	31.451	29.381	1.00 1		L	C
	ATOM			ASN L	95		22.040		27.956	1.00 1		L	С
	MOTA			ASN L	95		19.827	31.546	27.270	1.00 2		L	0
45	ATOM		N	GLY L	96		21.716	31.757	27.499	1.00 1		L	N
	MOTA		CA	GLY L	96			33.674	31.773	1.00 2		L	N
	ATOM		C	GLY L	96		21.140	34.928	32.227	1.00 2		L	С
	MOTA			GLY L	96		19.645	34.875	32.494	1.00 2		L	С
	ATOM			GLY L	97		19.002	35.911	32.650	1.00 2		. L	0
50	MOTA			GLY L	97		19.084	33.674	32.566	1.00 2		L	N
	ATOM			GLY L			17.654	33.558	32.789	1.00 2		L	С
	MOTA	_		GLY L	97 97		16.871	33.760	31.501	1.00 2		L	С
	MOTA			CYS L	97			33.740	31.510	1.00 2		L	0
	ATOM			CA2 F	98			33.959	30.393	1.00 1		L	N
55	ATOM			CYS L	98			34.161	29.086	1.00 2		L	C
		, (•	CIO L	98		16.477	32.833	28.508	1.00 2	0.61	L	C

	ATOM	818	. 0	CYS			17.165	31.818	28.623	1.00	20.27	Ĺ	0
	ATOM	819	CB	CYS	S L	98	17.955	34.764	28.105	1.00	19.41	L	
	ATOM	820	SG	CYS	S L	98	18.601	36.419	28.485	1.00	22.10	L	
-	ATOM	821		GLU			15.314	32.839	27.867.	1.00	20.33	L	
5	MCTA	822					14.794	31.611	27.277	1.00	20.72	L	
	ATOM	823		GLU	J L	99	15.625	31.164	26.076	1.00	19.15	L	
	ATOM	824	0	GLU	L	99	15.827	29.974	25.877	1.00	17.11	L	
	ATOM	825	CB	GLU	I L	99	13.336	31.779	26.850	1.00	22.59	L	C
	MOTA	826	CG	GLU	L	99	12.682	30.457	26.467	1.00	29.91	L	C
10	MOTA	827	CD	GLU	L	99	11.178	30.564	26.302	1.00	32.54	L	С
	MOTA	828	0 E			99	10.738	31.204	25.370	1.00	33.67	L	0
	ATOM	829		2 GLU		99	10.458	29.999	27.122	1.00	37.34	L	0
	ATOM	830	N			100	16.101	32.114	25.274	1.00	18.04	L	N
	ATOM	831	CA	GLN	L	100	16.911	31.763	24.112	1.00	18.31	L	С
15	ATOM	832	С	GLN	L	100	18.281	32.459	24.118	1.00	19.20	L	C
	ATOM	833	0	GLN	L	100	19.223	31.951	24.724	1.00	19.26	L	0
	MOTA	834	CB	GLN	L	100	16.145	32.056	22.805	1.00	16.04	L	С
	ATOM	835	CG	GLN	L	100	14.789	31.342	22.716	1.00	15.13	L	C
	ATOM	836	CD	GLN	L	100	14.182	31.366	21.321	1.00	16.10	L	C
20	ATOM	837	0 E :	L GLN	Ĺ	100	14.478	32.245	20.520	1.00	16.54	L	0
	MOTA	838	NE:			100	13.314	30.403	21.034	1.00	17.14	L	N
	ATOM	839	N			101	18.408	33.610	23.465	1.00	19.40	L	N
	ATOM	840	CA	TYR	L	101	19.705	34.282	23.429	1.00	20.26	L	С
o -	MOTA	841	С	TYR	L	101	19.895	35.307	24.540	1.00	22.37	L	C
25	MOTA	842	0	TYR	L	101	18.956	36.002	24.935	1.00	22.47	L	0
	ATOM	843	CB	TYR	L	101	19.934	34.955	22.071	1.00	18.52	L	C
	MOTA	844	CG			101	19.838	34.017	20.880	1.00	20.18	L	С
	MOTA	845		. TYR			20.215	32.673	20.982	1.00	17.62	L	С
0.0	ATOM	846	CD2	TYR	L	101	19.387	34.481	19.643	1.00	19.56	L	С
30	MOTA	847		TYR			20.140	31.822	19.884	1.00	19.81	L	C.
	ATOM	848	CE2	TYR	L	101	19.315	33.640	18.541	1.00	19.48	L	С
	ATOM	849	CZ	TYR			19.693	32.313	18.666	1.00	18.80	L	С
	ATOM	850	OH	TYR			19.641	31.489	17.564	1.00	19.13	L	0
0.5	ATOM	851	N	CYS			21.127	35.387	25.032	1.00	22.05	L	N
35	MOTA	852	CA	CYS			21.500	36.300	26.102	1.00	23.17	L	С
	ATOM	853	С	CYS			22.680	37.168	25.657	1.00	24.83	L	С
	MOTA	854	0	CYS			23.617	36.686	25.020	1.00	25.16	L	0
	ATOM	855	CB	CYS			21.897	35.494	27.343	1.00	22.80	L	С
40	ATOM	856	SG	CYS			22.308	36.468	28.827	1.00	24.11	Ĺ	S
40	MOTA	857	N	SER			22.628		25.995	1.00	26.62	L	. N
•	ATOM	858	CA	SER			23.695			1.00	28.86	L	С
	ATOM	859	C	SER			24.115		26.889		29.38	L	C
	ATOM	860	0	SER			23.277		27.558	1.00	31.61	L	0
45	ATOM	861	CB	SER			23.225		24.584		27.37	L	C
45	ATOM	862	0 G	SER			22.975		23.350		29.37	L	0
	ATOM	863	N	ASP			25.405		27.205		30.25	L	N
	ATOM	864	CA	ASP			25.915	40.865	28.352		31.60	L	С
	ATOM	865	C	ASP			26.112		27.899	1.00		L	С
= 0	ATOM	866	0	ASP			26.323		26.714	1.00		L	0
50	ATOM	867	CB	ASP				40.303	28.820	1.00		L	C
	ATOM	868	CG	ASP				38.978	29.537	1.00		L	C
	ATOM	869		ASP				38.909	30.503	1.00		L	0
	ATOM	870		ASP				38.022		1.00		L	0
==	MOTA	871	N	HIS				43.241		1.00		L	N
55	MOTA	872	CA	HIS	L]	105	26.226	44.642	28.486	1.00	40.26	L	C

	4.50											
	ATOM	873		HIS L		27.048	45.418	3 29.505	5 1.0	0 43.18	L	С
	ATOM	874		HIS L		26.942	45.197	30.714		0 42.14	L	0
	ATOM	875		HIS L		24.866	45.317	28.288		0 38.90	L	C
_	MOTA	876		. HIZ F		24.151	44.878	27.048		0 38.94	Ĺ	C
5	ATOM	877		HIS L		24.678	45.051			0 38.12	L	N
	ATOM	878		HIS L		22.955	44.267			0 37.83	L	C
	ATOM	879	CEI	HIS L	105	23.838	44.565	24.890		0 38.48	L	С
	MOTA	880	NE2	HIS L	105	22.785	44.083			0 37.45	L	N
• •	ATOM	881	N	THR L	106	27.875				0 46.90	L	N
10	ATOM	882	CA	THR L	106	28.731	47.171			0 49.56	L	C
	MOTA	883	C	THR L	106	27.995	48.481			0 49.91	L	C
	ATOM	884	0	THR L	106	27.876	49.319			0 51.77	L	0
	ATOM	885	CB	THR L	106	30.061	47.482			50.44	L	C
	ATOM	886	0G1	THR L	106	30.719	46.256			52.50	L	0
15	ATOM	887	CG2	THR L	106	30.977	48.310			51.29	L	
	ATOM	888	N	GLY L	107	27.499	48.650			50.05	L	C
	ATOM	889	CA	GLY L	107	26.772	49.862	31.637		50.24	L	N
	MOTA	890	C	GLY L		25.265	49.664	31.683		50.24	L	C
	ATOM	891	0	GLY L	107	24.524	50.566	32.076		51.47	L	C
20	ATOM	892	N	THR L	108	24.812	48.480	31.276		50.46	L	0
	ATOM	893	CA	THR L		23.394	48.138	31.269		48.90		N
	ATOM	894	C	THR L		23.244	46.633	31.482		47.11	L	C
	ATOM	895	0	THR L		24.024	45.847	30.948		47.64	L	C
	ATOM	896	CB	THR L		22.733	48.524	29.929		50.40	L	0
25	MOTA	897	0G1	THR L		23.506	47.998	28.842		51.52	L	C
	ATOM	898		THR L		22.639	50.038	29.793		51.52	L	0
	ATOM	899	N	LYS L		22.244	46.238	32.266		44.24	L •	C
	MOTA	900	CA	LYS L		22.005	44.825	32.558			L	N
	ATOM	901	С	LYS L		21.909	43.997	31.280		41.00	L	C
30	ATOM	902	0	LYS L		21.642	44.531	30.201		37.67	L	C
	ATOM	903	CB	LYS L		20.716	44.663	33.367		37.06	L	0
	ATOM	904	CG	LYS L 1		19.450	44.860	32.555		42.02	L	C
	ATOM	905		LYS L 1		18.219	44.906	33.444		44.84	L	C
	ATOM	906		LYS L 1		18.148	46.209	34.230		47.58	L	C
35	ATOM	907		LYS L 1		18.009	47.398	33.338		49.04	L	C
	MOTA	908		ARG L 1		22.125	42.691	31.409		48.86	L .	N
	ATOM	909		ARG L 1		22.063	41.786	30.264		33.89	L	N
	ATOM	910		ARG L 1		20.696	41.861	29.596		31.44 28.77	L	C
	ATOM	911		ARG L 1		19.690	42.107	30.253			L	C
40	ATOM	912		ARG L 1		22.334	40.346			29.16	L	0
	ATOM	913		ARG L 1		21.206	39.704	31.515		26.40	L	С
	MOTA	914		ARG L 1		20.133	39.072	30.617			L	C
	ATOM	915		ARG L 1		19.049	38.500	31.409		23.55	L	C
	ATOM	916		ARG L 1		18.083	39.206			23.99	L	N -
45	ATOM			ARG L 1		18.045		31.993		26.90	L	C
	ATOM			ARG L 1		17.163	38.592	31.871		25.76	L	N
	ATOM			SER L 1		20.666	41.652	32.726		23.93	L	N
	ATOM			SER L 1			41.683	28.287		27.46	L	N
	ATOM			SER L 1				27.545		26.40	L	С
50	MOTA			SER L 1:			40.310	26.925		25.75	L	C
- •	MOTA	_		SER L 1:			39.578	26.624		25.72	L	0
	ATOM			SER L 1			42.732	26.442		23.78	L	С
	MOTA			YS L 1				25.447		28.02	L	0
	ATOM			YS L 1				26.745		24.32	L	N
55	ATOM			YS L 1						24.98	L	C
- J				ויס דן	. 4	17.024	38.891	24.742	1.00	24.93	L	С

	ATOM	928	0	CYS	L 112	16.341	. 39.879	24.470	1 1 0	0 26.51			^
	ATOM	929			L 112	16.480			•	0 23.15		L ,	0
	ATOM	930			L 112	16.932				0 25.15		L ·	C
	ATOM	931			L 113	17.341						L ·	\$
. 5	ATOM	932			L 113	16.884				0 24.52		L ·	N
	ATOM	933			L 113	16.292	_			0 23.03		L ·	С
	ATOM	934			L 113	16.260				0 22.44		L	C
	MOTA	935			L 113	18.038				0 20.23		L	0
	ATOM	936			L 113	18.470				0 23.44		L .	С
10	ATOM	937	CD		L 113	19.706				0 25.76		L	С
	ATOM	938	NE		L 113	20.882			_	0 25.39		L	С
	ATOM	939	CZ		L 113					0 26.05		L	N
	ATOM	940	NH.		L 113	21.361				0 22.82		L	С
	ATOM	941	NH:			20.775				0 19.33			N
15	ATOM	942	N III		L 113	22.421		21.190		0 19.90		_	N
-0	ATOM	943	C A		L 114	15.810		20.783		0 21.91	J		N
					L 114	15.208	35.439	20.268		21.36	1	•	C
	MOTA MOTA	944	C		L 114	15.653	35.122	18.847		20.52	1		C
	ATOM	945	0 CD		L 114	16.153	35.979	18.120		19.97	I	,	0
20		946	CB		L 114	13.677	35.542	20.296		20.90	I	,	C
20	MOTA	947	SG		L 114	12.941	36.040	21.885		22.52	L	,	S
	ATOM	948	N		L 115	15.453	33.868	18.469		20.76	L	,	N
	ATOM	949	CA		L 115	15.786	33.367	17.147	1.00	20.81	L	,	C
	ATOM	950	С		L 115	14.684	33.850	16.199	1.00	21.18	L		C
95	ATOM	951	0		L 115	13.556	34.098	16.627	1.00	21.61	L		0
25	ATOM	952	CB		L 115	15.827	31.832	17.207	1.00	20.46	L	1	C
	MOTA	953	CG		L 115	16.269	31.172	15.938	1.00	19.99	L		С
	ATOM	954		HIS		15.455	31.057	14.832	1.00	19.51	L]	N
	ATOM	955		HIS		17.442	30.586	15.602	1.00	18.82	L	(С
0.0	MOTA	956		HIS		16.107	30.432	13.870	1.00	17.84	L	(С
30	ATOM	957		RIS		17.315	30.134	14.311	1.00	19.44	L]	N
	ATOM	958	N		L 116	15.020	34.012	14.925	1.00	21.79	L	ı	N
	ATOM	959	CA		L 116	14.050	34.429	13.924	1.00	21.88	L	(C •
	ATOM	960	C	GLU	L 116	12.845	33.503	14.053	1.00	20.86	L	(2
~ ~	ATOM	961	0		L 116	13.002	32.306	14.288	1.00	20.19	L	()
35	ATOM	962	CB		L 116	14.655	34.300	12.522	1.00	25.33	L	(2
	MOTA	963	CG		L 116	13.663	34.559	11.391	1.00	32.50	L		2
	MOTA	964	CD		L 116	14.201	34.154	10.027		36.87	L		5
	ATOM	965		GLU I		13.412	34.107	9.075	1.00	39.33	L	Ċ	
	ATOM	966	0E2	GLU I		15.405	33.890	9.916	1.00	38.85	L	C	
40	ATOM	967	N	GLY I	L 117	11.646	34.051	13.900		20.27	L	Α.	
	ATOM	968	CA	GLY 1	117	10.451	33.236	14.020		18.99	L	C	
	MOTA	969	C	GLY I	117	9.860	33.299	15.417		19.27	L	C	
	ATOM	970	0	GLY I	. 117	8.820	32.694	15.688		19.43	L	0	
	MOTA	971	N	TYRI	. 118	10.543	34.018	16.305		19.01	L	N	
45	ATOM	972	CA	TYRI	118	10.116	34.206	17.689		19.23	L		
	ATOM	973	C	TYRL	118	10.278	35.692	18.018		20.14	Ĺ	C	
	MOTA	974	0	TYR L		11.012	36.409	17.344		19.66	L	0	
	ATOM	975	CB	TYR L		10.999	33.417	18.671		18.12	L	C	
	MOTA	976	CG	TYR L		10.916	31.905	18.602		15.33	L	C	
50	ATOM	977		TYR L		11.650	31.187	17.658		15.05	L	C	
	ATOM	978		TYR L		10.116	31.192	19.499		13.29	Ĺ	C	
	MOTA			TYR L		11.590	29.791	17.607		14.73	Ĺ	C	
	ATOM			TYR L		10.049	29.803	19.457		14.73	L		
	ATOM		CZ	TYR L		10.790	29.109	18.507		15.35		C	
55	ATOM.		0 H	TYR L		10.736	27.735	18.466		15.58	L L	C	
-		-				-0.700		_30	00	~0.00	L	0	

	ATOM	983	3 N	SER L 119	9.595	36.150	19.058	1.00 21.39	L	N
	ATOM	984	4 CA	SER L 119	9.710	37.538		1.00 23.14	L	C
	ATOM	985	5 C	SER L 119	9.746	37.524	21.002	1.00 21.88	L	C
_	ATOM	986	-	SER L 119	9.189	36.629	21.632		L	0
5	ATOM	987		SER L 119	8.522	38.364	18.979	1.00 23.84	L	C
	ATOM	988	3 O G	SER L 119	7.312	37.905	19.556	1.00 31.34	L	0
٠,٠.	ATOM	989	N .	LEU L 120	10.413	38.510	21.585	1.00 23.21	Ĺ	N
	ATOM	990) CA	LEU L 120	10.544	38.606		1.00 24.38	L	C
10	ATOM	991	. С	LEU L 120	9.253	39.096		1.00 26.18	L	C
10	ATOM	992	0	LEU L 120	8.667	40.081	23.236	1.00 27.69	L	0
	ATOM	993		LEU L 120	11.683	39.565	23.389	1.00 23.36	L	C
	ATOM	994	CG	LEU L 120	12.119	39.619	24.855	1.00 25.06	L	C
	MOTA	995		L LEU L 120	12.801	38.311	25.230	1.00 24.68	L	C
٠	ATOM	996	CD2	2 LEU L 120	13.080	40.789	25.063	1.00 24.21	L	C
15	ATOM	997	N	LEU L 121	8.817	38.410	24.736	1.00 26.79	L	N
	ATOM	998	CA	LEU L 121	7.600	38.790	25.450	1.00 28.18	L	C
	ATOM	999	С	LEU L 121	7.885	39.949	26.402	1.00 29.35	L	C
	ATOM	1000	0	LEU L 121	9.039	40.320	26.614	1.00 28.95	L	0
0.0	ATOM	1001	CB	LEU L 121	7.042	37.595	26.235	1.00 26.70	L	C
20	MOTA	1002	CG	LEU L 121	6.491	36.417	25.418	1.00 27.20	L	C
	ATOM	1003	CD1	LEU L 121	6.025	35.310	26.348	1.00 27.89	Ĺ	С
	ATOM	1004	CD2	LEU L 121	5.335	36.891	24.554	1.00 28.46	L	C
	ATOM	1005	N	ALA L 122	6.825	40.512	26.979	1.00 30.71	L	N
	ATOM	1006	CA	ALA L 122	6.948	41.638	27.903	1.00 30.91	L	C
25	ATOM	1007	C	ALA L 122	7.865	41.379	29.097	1.00 30.79	L	С
	ATOM	1008	0	ALA L 122	8.492	42.307	29.607	1.00 32.36	L	
	ATOM	1009	CB	ALA L 122	5.566	42.058	28.397	1.00 32.30		0
	ATOM	1010	N	ASP L 123	7.953	40.131	29.550	1.00 33.12	L	C
	ATOM	1011	CA	ASP L 123	8.811	39.826	30.687	1.00 27.44	L	N
30	ATOM	1012	C	ASP L 123	10.301	40.040	30.405	1.00 27.44	L	C
	ATOM	1013	0	ASP L 123	11.123	39.955	31.314	1.00 27.39	L	C
	ATOM	1014	СB	ASP L 123	8.571	38.392	31.189	1.00 27.26	L L	0
	ATOM	1015	CG	ASP L 123	8.951	37.324	30.168	1:00 27.20		C
	ATOM	1016	0 D 1	ASP L 123	9.602	37.634	29.173	1.00 25.66	L	C
35	ATOM	1017		ASP L 123	8.595	36.173	30.389	1.00 25.85	L	0
	ATOM	1018	N	GLY L 124	10.645	40.318	29.150	1.00 23.85	L	0
	ATOM	1019	CA	GLY L 124	12.033	40.551	28.789	1.00 27.73	L	N
,	ATOM	1020	С	GLY L 124	12.937	39.329	28.721	1.00 27.23	L	C
	ATOM	1021	0	GLY L 124	14.135	39.465		1.00 28.17	L	C
40	ATOM	1022	N	VAL L 125	12.389	38.137	28.943	1.00 27.43	L	0
	ATOM	1023		VAL L 125	13.205	36.920	28.899	1.00 28.24	L	N
	ATOM	1024		VAL L 125	12.626	35.779	28.057	1.00 27.90	L ,	C
	ATOM	1025		VAL L 125	13.373	34.954	27.533	1.00 25.92	L	C
	ATOM	1026		VAL L 125	13.476	36.367	30.326	1.00 28.91	L	0
45	ATOM	1027		VAL L 125	14.182	37.421	31.173	1.00 28.91	L	C
	ATOM	1028		VAL L 125	12.173	35.930	30.980	1.00 29.31	L	C
	ATOM	1029		SER L 126	11.304	35.734	27.927	1.00 27.68	L	C
	ATOM	1030		SER L 126	10.639	34.677			L	N
	ATOM	1031		SER L 126	10.639	34.989	27.175 25.696	1.00 23.57	L	C
50	ATOM	1032		SER L 126				1.00 23.79	L	С
	ATOM	1033		SER L 126	10.427 9.266	36.157		1.00 21.55	L	0
	MOTA	1034		SER L 126		34.393		1.00 23.48	L	С
	ATOM	1035		CYS L 127		34.047		1.00 24.08	L	0
	ATOM	1036		CYS L 127		33.932		1.00 21.77	L	N
55	ATOM	1037		CYS L 127				1.00 22.08	L	С
		2001	U	0.0 L 14/	8.966	33.324	23.020	1.00 22.86	L	С

	ATOM	1038	3 0	CYS L 12	7 8.698	32.214	23.482	1.00 23.36	L	0
	ATOM	1039	Э СВ	•		33.516	22.700	1.00 21.97	L	C
	MOTA .	1040) S G	CYS L 12'	7 13.006	34.368	23.044	1.00 21.79	L	S
_	ATOM	1041	L N	THR L 128	8 8.197	33.947	22.136	1.00 21.95	L	N
5	ATOM	1042				33.353	21.645	1.00 21.10	L	С
	MOTA	1043	3 C	THR L 128	B 7.041	33.249	20.126	1.00 20.42	L	C
	MOTA	1044	1 0	THR L 128		34.126	19.458	1.00 18.28	L	0
	ATOM	1045				34.210	22.063	1.00 21.74	L	C
	ATOM	1046		1 THR L 128		33.513	21.732	1.00 22.91	L	0
10	MOTA	1047		2 THR L 128		35.554	21.353	1.00 18.95	L	C
	MOTA	1048		PRO L 129	6.497	32.162	19.559	1.00 21.27	L	N
	MOTA	1049	CA			31.960	18.107	1.00 22.20	L	С
	ATOM	1050	C	PRO L 129		33.026	17.363	1.00 23.45	L	С
	A T O M	1051	0	PRO L 129		33.394	17.786	1.00 25.63	L	0
15	ATOM	1052	CB	PRO L 129		30.572	17.943	1.00 22.20	L	С
	ATOM	1053	CG	PRO L 129		29.888	19.247	1.00 21.77	L	С
	ATOM	1054	CD	PRO L 129	5.938	30.984	20.243	1.00 20.67	L	С
	ATOM	1055	N	THR L 130	6.260	33.528	16.262	1.00 23.88	L	N
	MOTA	1056	CA	THR L 130	5.556	34.525	15.465	1.00 25.00	L	С
20	ATOM	1057	C,	THR L 130	5.164	33.923	14.122	1.00 26.32	L	C
	. ATOM	1058	0	THR L 130	4.762	34.639	13.206	1.00 27.47	L	0
	ATOM	1059	CB	THR L 130	6.411	35.774	15.205	1.00 25.51	L	C
	ATOM	1060	0 G I	L THR L 130	7.591	35.404	14.486	1.00 27.07	L	0
	ATOM	1061	C G 2	2 THR L 130	6.789	36.443	16.513	1.00 27.60	L	C
25	ATOM	1062	N	VAL L 131	5.299	32.601	14.014	1.00 24.93	. <u>L</u>	N
	ATOM	1063	CA	VAL L 131	4.942	31.870	12.807	1.00 23.51	L	С
	MOTA	1064	С	VAL L 131	4.271	30.565	13.218	1.00 24.02	L	C
	ATOM	1065	0	VAL L 131	4.369	30.139	14.372	1.00 22.94	Ĺ	0
	ATOM	1066	CB	VAL L 131	6.178	31.541	11.930	1.00 25.15	L	C
30	ATOM	1067	CG1	VAL L 131	6.844	32.831	11:469	1.00 24.40	L	C
	MOTA	1068	CG2	VAL L 131	7.163	30.673	12.705	1.00 23.42	L	Č
	ATOM	1069	N	GLU L 132	3.589	29.937	12.268	1.00 22.59	L	N
	ATOM	1070	CA	GLU L 132	2.888	28.690	12.518	1.00 22.16	L	C
	MOTA	1071	С	GLU L 132	3.840	27.537	12.828	1.00 20.71	L	c
35	ATOM	1072	0	GLU L 132	3.567	26.720	13.711	1.00 20.40	L	0
	MOTA	1073	CB	GLU L 132	2.004	28.340	11.308	1.00 22.29	L	C
	ATOM	1074	CG	GLU L 132	1.352	26.972	11.390	1.00 27.79	L	C
	ATOM	1075	CD	GLU L 132	0.327	26.730	10.286	1.00 29.81	L	C
	ATOM	1076	0E1	GLU L 132	0.498	27.265	9.196	1.00 30.53	L	0
40	MOTA	1077	0E2	GLU L 132	-0.636	25.985	10.526	1.00 30.39	L	. 0
	MOTA	1078	N	TYR L 133	4.955	27.473	12.109	1.00 19.60	Ĺ	N
	MOTA	1079	CA	TYR L 133	5.930	26.404	12.317	1.00 17.97	L	С
	MOTA	1080	C	TYR L 133	7.320	26.925	12.654	1.00 16.71	L	С
	ATOM	1081	0	TYR L 133	8.236	26.860	11.834	1.00 16.11	L	0
45	ATOM	1082	CB	TYR L 133	5.998	25.511	11.077	1.00 17.19	Ĺ	С
	ATOM	1083	CG	TYR L 133	4.737	24.717	10.874	1.00 19.02	L	С
	ATOM	1084	CDI	TYR L 133	4.412	23.673	11.735	1.00 16.92	L	£
	ATOM	1085		TYR L 133	3.833	25.049	9.862	1.00 19.13	L	С
	MOTA	1086	CEI	TYR L 133	3.220	22.978	11.602	1.00 18.85	L	С
50	MOTA	1087	CE2	TYR L 133	2.632	24.358	9.719	1.00 18.71	L	С
	ATOM	1088	CZ	TYR L 133	2.335	23.327	10.594	1.00 19.77	L	С
	MOTA	1089	OH	TYR L 133	1.159	22.640	10.467	1.00 20.62	L	0
	ATOM	1090	N	PRO L 134	7.499	27.440	13.878	1.00 15.85	· L	N
	ATOM	1091	CA	PRO L 134	8.804	27.963	14.291	1.00 15.14	L	. C
55	MOTA	1092	С	PRO L 134	9.807	26.814	14.412	1.00 15.88	L	С

			_										
	ATOM				L 134	9.419	25.67	7 14.677	1.0	0 17.59)	L	0
	ATOM				L 134	8.497	7 28.62	3 15.630		0 13.01		L	C
	ATOM		5 C	G PRO	L 134	7.444	27.73			0 13.89		L	
_	ATOM	109	6 C	D PRO	L 134	6.543	3 27.45			0 15.08			С.
. 5	ATOM	1091	7 N	CYS	L 135	11.086				0 15.52		L	C
	ATOM	1098	8 C		L 135	12.125				0 13.52 0 14.64		L	N
	MOTA	1099	€ C		L 135	12.228						L	С
	ATOM	1100			L 135	11.874				0 14:59	A Tariffer	L	С
	ATOM	1101			L 135	13.486				0 12.74		L	0
10	ATOM	1102			L 135	14.133				0 13.94		L	С
	ATOM	1103			L 136	12.709				0 16.77		L	S
	ATOM	1104			L 136					0 14.02		L	N
	ATOM	1105			L 136	12.902				14.41		L	C
	ATOM	1106				11.682				15.69		L	C
15	ATOM				L 136	11.810				16.17		L	0
10		1107			L 137	10.501			1.00	15.50		L	N
	ATOM	1108			L 137	9.284		18.036	1.00	17.12		L	С
	MOTA	1109			L 137	8.701	21.730	17.309	1.00	17.03		L	C
	ATOM	1110			L 137	8.709	21.669	16.077		17.59		L	0
00	ATOM	1111			L 137	8.248	24.063	18.058		16.09		L	C
20	ATOM	1112	CG		L 137	8.085	24.783	19.382		20.53		L	C
	ATOM	1113	€D	LYS	L 137	9.354	25.441			23.98		L	C
	MOTA	1114	CE	LYS	L 137	9.056	26.486			26.98		L	
	ATOM	1115	NZ	LYS	L 137	8.408	25.912			27.12			C
	ATOM	1116	N	ILE	L 138	8.191	20.780			16.47		L	N
25	ATOM	1117	CA		L 138	7.598	19.568			16.51		L	N
	ATOM	1118	С		L 138	6.072	19.699					L	C
	ATOM	1119	0		L 138	5.479	19.442			17.05		L	С
	ATOM	1120	СВ		L 138	8.091		18.665		17.09		L	0
	ATOM	1121		1 ILE			18.340	18.332		16.51		L	С
30	ATOM	1122		2 ILE		9.630	18.329	18.335		14.34		L	C
	ATOM	1123		I ILE		7.534	17.048	17.713		15.08	j	L	С
	ATOM	1124	N N			10.268	17.188	19.119		12.57	1	L	С
	ATOM	1125	CA		L 139	5.421	20.096	16.514		18.81]	L	N -
	MOTA				L 139	3.963	20.284	16.436		19.59	I	Ĺ	C
35		1126	C		L 139	3.016	19.231	17.016	1.00	19.28		L	€.
00	MOTA MOTA	1127	0		L 139	2.065	19.588	17.708	1.00	20.94	J	Ĺ	0
		1128	CB		L 139	3.718	20.548	14.943	1.00	19.14	1	L	С
	ATOM	1129	CG		L 139	4.902	19.948	14.273	1.00	22.59	I	,	C
	ATOM	1130	CD		L 139	6.034	20.304	15.195	1.00	18.46	1	,	С
40	ATOM	1131	N		L 140	3.249	17.948	16.764	1.00	18.16	1	,	N
40	ATOM	1132	CA		L 140 .	2.334	16.952	17.317	1.00	19.99	L		C
	ATOM	1133	С		L 140	2.398	16.843	18.844	1.00	21.32	L		Č
	ATOM	1134	0		140	1.550	16.194	19.454		21.50	l		0
	ATOM	1135	CB	ILE L	140	2.549	15.544	16.711		20.09	L		C
	ATOM	1136	CGI	ILE L	140	3.953	15.034	17.030		18.72	L		C
45	ATOM	1137	CG2	ILE L	140	2.294	15.586	15.197		21.80	L		C
	ATOM	1138	CD1	ILE L	140	4.178	13.596	16.611		20.33	L		C
	ATOM	1139	N	LEU L		3.397	17.475	19.458		21.36			
	MOTA	1140	CA	LEU L		3.531	17.458			23.29	L		N
	ATOM	1141	С	LEU L		3.115	18.806			25.29 25.19	L		C
50	ATOM	1142	0	LEU L		2.965	18.942	22.716			L		C
	ATOM	1143		LEU L		4.975	17.144			25.84	L		0
	ATOM	1144		LEU L		5.601		21.315		21.25	L		С
	ATOM	1145		LEU L		6.998		20.705	1.00		L		С
	ATOM	1146		LEU L				21.268	1.00		L		С
55	ATOM'	1147	N N	GLU L		4.732	14.665		1.00		L		С
J J	0.4	1	11	aro F	142	2.936	19.804	20.648	1.00	29.07	L		N

	ATOM	1140		CI	F1 f	1.40	0.504					
		1148				142	2.534				L	С
•	MOTA	1149				142	1.011			1.00 35.09	L	C
	ATOM	1150				142	0.514			1.00 37.74	L	0
5	ATOM	1151				142	3.067			1.00 32.55	L	C
J	ATOM	1152				142	4.577			1.00 35.63	L	C
	ATOM	1153				142	5.062			1.00 37.38	L	C
	ATOM	1154				142	4.494			1.00 39.09	L	0
	ATOM	1155				142	6.008	22.486	22.053	1.00 36.36	L	0
10	MOTA	1156				142	0.349	20.913	20.180	1.00 36.04	L	0
10	ATOM	1157			E H		21.992	3.783	14.153	1.00 14.10	H	N
	ATOM	1158			E H		21.860	4.032	15.614	1.00 13.89	H	С
	ATOM	1159	C		E H		21.875	2.706	16.373	1.00 14.85	H	С
	ATOM	1160	0	ΙL	E H	16	21.043	1.834	16.132	1.00 14.89	H	0
	ATOM	1161	CB	ΙL	E H	16	20.534	4.767	15.944	1.00 13.63	H	С
15	MOTA	1162	C G	1 IL	E H	16	20.451	6.095	15.183	1.00 12.69	H	C
	ATOM	1163	CG			16	20.436	4.989	17.450	1.00 11.22	Ħ	C
	MOTA	1164	CD:	1 IL.	E H	16	21.567	7.092	15.493	1.00 10.60	H	C
	MOTA	1165	N	VA	L H	17	22.830	2.564	17.285	1.00 16.19	H	N
	ATOM	1166	CA	VAI	LH	17	22.967	1.358	18.092	1.00 16.46	H	C
20	ATOM	1167	С	VA	LH	17	22.445	1.593	19.504	1.00 15.78	H	C
	MOTA	1168	0	VAI	LH	17	22.861	2.536	20.178	1.00 14.50	Н	0
	ATOM	1169	CB	VAI	LH	17	24.451	0.918	18.195	1.00 17.79	H	C
	ATOM	1170	CG1	LVAI	Н	17	24.581	-0.259	19.145	1.00 19.06	H	С
	ATOM	1171	C G 2	LAV S	Н	17	24.977	0.529	16.826	1.00 19.20	H	C
25	ATOM	1172	N	GLY	7 н	18	21.532	0.735	19.950	1.00 15.38	H	N
	ATOM	1173	CA			18	20.990	0.876	21.292	1.00 13.01	H	C
	MOTA	1174	С	GLY		18	19.982	1.998	21.472	1.00 12.80	H	С
	ATOM	1175	0	GLY		18	19.768	2.468	22.583	1.00 12.80	H	
	MOTA	1176	N	GLY		19	19.365	2.436	20.384	1.00 11.70	H	0 M
30	ATOM	1177	CA	GLY		19	18.368	3.487	20.483	1.00 11.70	и Н	N
	MOTA	1178	С	GLY		19	16.964	2.926	20.333	1.00 13.29	л Н	C
	ATOM	1179	0	GLY		19	16.731	1.736	20.540	1.00 13.92		C
	ATOM	1180	N	LYS		20	16.016	3.783	19.977	1.00 15.45	H	0
	ATOM	1181	CA	LYS		20	14.644	3.341	19.788	1.00 13.81	H	N
35	ATOM	1182	С	LYS		20	14.064	4.033	18.567		H	C
	ATOM	1183	0	LYS		20	14.683	4.935	18.009	1.00 16.64 1.00 13.94	H	С
	ATOM	1184	СВ	LYS		20	13.794	3.668	21.024		H	0
	ATOM	1185	CG	LYS		20	14.312	3.043	22.317	1.00 19.44 1.00 26.17	H	C
	ATOM	1186	CD	LYS		20	13.307	3.186	23.450	1.00 29.52	Н	C
40	ATOM	1187	CE	LYS		20	13.918	2.824	24.806		H	C
	ATOM	1188	N Z	LYS		20	14.426	1.423		1.00 32.88	H	. C
	MOTA	1189	N	VAL		21	12.881		24.867	1.00 33.23	H	N
	ATOM	1190	CA	VAL		21	12.228	3.601	18.148	1.00 13.39	H	N
	ATOM	1191	C	VAL		21		4.213	17.007	1.00 14.10	H	С
45	ATOM	1192	0	VAL		21	11.729	5.610	17.393	1.00 15.28	H	C
10	MOTA	1193	CB	VAL			11.136	5.796	18.459	1.00 15.43	H	0
	MOTA	1194		VAL		21	11.022	3.356	16.530	1.00 14.85	H	С
	MOTA	1195				21	10.233	4.104	15.446	1.00 15.73	H	C
	ATOM	1195		VAL		21	11.517	2.018	15.982	1.00 13.11	H	С
50	ATOM		N C A	CYS		22	11.992	6.595	16.542	1.00 14.61	Η.	N
50	ATOM	1197	CA	CYS		22	11.518	7.944	16.805	1.00 15.34	H	С
		1198	C	CYS		22	10.063	7.948	16.362	1.00 15.49	H	С
	ATOM ATOM	1199	0	CYS		22	9.779	7.785	15.176	1.00 16.18	Н.	0
	MOTA	1200	CB	CYS		22	12.279	8.984	15.976	1.00 13.94	H	С
55	ATOM	1201	SG	CYS		22	11.768	10.666	16.438	1.00 14.65	H	S
55	ATOM	1202	М	PRO	H	23	9.120	8.127	17.301	1.00 16.39	H	N

	ATOM	1203	B CA	PF	RO 1	H 23	7.710	8.134	16.898	1.00 16.45	Н	C
	ATOM	1204	4 C	PE	20 1	1 23	7.49		_		H	C C
	ATOM	1205	5 0	PR	RO 1	1 23	7.995	10.220		-	H	0
_	ATOM	1206	S CB	PE	1 0 E	1 23	6.993	8.577			H	C
5	ATOM	1207	7 CG	PR	10 I	1 23	7.863	7.993		_	Н	С
	ATOM	1208	3 CD	PR	1 01	23	9.251			=	H	C
	ATOM	1209	Ŋ	LY	S	24	6.746				Н	N
	ATOM	1210	CA	LY	S	24	6.464				H	C
	ATOM	1211	. С	LY	SH	24	6.117				H	C
10	ATOM	1212	0	LY	SH	24	5.211				H	0
	ATOM	1213	CB	LY	SH	24	5.314				H	C
	ATOM	1214	CG	LY	SH	24	5.122		11.369	1.00 19.08	H	C
	ATOM	1215	CD	LY	SH	24	3.979		10.648	1.00 19.14	H	C
	ATOM	1216	CE	LY	SH	24	4.144		9.143	1.00 23.91	Н	C
15	ATOM	1217	ΝZ	LY	SH	24	4.196		8.631	1.00 20.21	H	
	MOTA	1218	N	GL	Y H	25	6.845		13.340	1.00 14.95	H	N
	MOTA	1219	CA	GL	y H	25	6.586		13.638	1.00 14.04	H	N C
	MOTA	1220	С	GL	Y H	25	7.403		14.769	1.00 13.80	К	C
	ATOM	1221	0	GL	Y H	25	7.427		14.909	1.00 13.20	n H	0
20	ATOM	1222	N	GL	U H	26	8.076	13.026	15.573	1.00 13.01	n H	
	ATOM	1223	CA	GLI	U H	26	8.874	13.560	16.683	1.00 15.70	n H	N
	ATOM	1224	C	GLI	U H	26	10.331	13.897	16.348	1.00 15.14	Н	C C
	ATOM	1225	0	GLI	U H	26	11.078	14.380	17.196	1.00 15.40	Н	0
	ATOM	1226	CB	GLI	U H	26	8.789	12.625	17.898	1.00 15.76	H	С
25	ATOM	1227	CG	GL	U H	26	7.483	12.816	18.668	1.00 19.10	Н	
	MOTA	1228	CD	GLU	JH	26	7.346	11.908	19.874	1.00 21.34	H	C C
	ATOM	1229	0E1	. GL	J H	26	8.322	11.730	20.591	1.00 22.66	H "	0
	MOTA	1230	0E2	GLU	JH	26	6.249	11.395	20.097	1.00 22.32	H.	0
	ATOM	1231	N	CYS	Н	27	10.716	13.641	15.103	1.00 15.31	H	N
30	ATOM	1232	CA	CYS	H	27	12.048	13.958	14.582	1.00 14.35	Н	C
	ATOM	1233	С	CYS	H	27 .	11.749	14.611	13.217	1.00 14.44	л Н	C
	ATOM	1234	0	CYS	Н	27	12.256	14.170	12.188	1.00 15.00	H	0
	ATOM	1235	CB	CYS	H	27	12.873	12.663	14.404	1.00 16.45	H	C
	MOTA	1236	SG	CYS	H	27	13.342	11.868	15.982	1.00 16.62	H	S
35	ATOM	1237	N	PRO	H	28	10.935	15.693	13.204	1.00 12.78	Н	N
	ATOM	1238	CA	PRO	H	28	10.550	16.393	11.972	1.00 12.72	H	C
	ATOM	1239	C	PRO	H	28	11.596	17.135	11.142	1.00 13.51	Н	C
	ATOM	1240	0	PRO	H	28	11.334	17.470	9.989	1.00 14.79	Н	0
4.0	ATOM	1241	CB	PRO	H	28	9.414	17.300		1.00 10.56	H	C
40	ATOM	1242	CG	PRO	H	28	9.872	17.708		1.00 12.39	H	C
	ATOM	1243	CD	PRO	H	28	10.409	16.411	14.382	1.00 13.71	н	C
	MOTA	1244	N	TRP	H	29	12.763	17.403	11.715	1.00 13.66	H	N
	ATOM	1245	CA	TRP	H	29	13.837	18.072	10.981	1.00 12.45	H	C
	ATOM	1246	C	TRP	H	29	14.801	17.058	10.344	1.00 13.04	н	c
45	ATOM	1247	0	TRP	Ħ	29	15.741		9.651	1.00 12.14	Н	0
	ATOM	1248	CB	TRP	H	29	14.622	19.019	11.905	1.00 10.27	н	C
	ATOM	1249	CG	TRP	H	29	14.719	18.544	13.333	1.00 10.51	H	C
	ATOM	1250	CDI	TRP	H	29	15.510	17.540	13.818	1.00 9.50	H	C
	ATOM	1251	CD2	TRP	H	29	13.935	19.009	14.441	1.00 9.92	H	C
50	MOTA	1252	NE1	TRP	Ħ	29	15.261	17.347	15.159	1.00 9.49	. Н	N
	ATOM	1253	CE2	TRP	H	29	14.299	18.235	15.566	1.00 9.72	H	C
	ATOM	1254		TRP		29	12.961		14.590	1.00 8.87	H	C
	MOTA	1255		TRP		29	13.717		16.824	1.00 9.39	.Н	c ·
	MOTA	1256	CZ3	TRP	H	29	12.381		15.842	1.00 9.88	H	C
55	ATOM	1257	CH2	TRP	H	29	12.763			1.00 9.90	Н	C
												-

	ATOM	1258	N	GL	N H	30	14.566	15.765	10.573	1.00 12.37		H	N
	ATOM	1259	CA	GL	N H	30	15.427	14.723	10.011	1.00 11.48		H	С
	ATOM	1260	С	GL	N H	30	15.253	14.653	8.496	1.00 11.76		H	С
_	ATOM	1261	0	GL	N H	30	14.128	14.696	7.987	1.00 10.36		H	0
5	MOTA	1262	CB	GL	H M	30	15.090	13.363	10.622	1.00 12.28		H	· C
	ATOM	1263	CG	GLI	N H	30	15.832	12.180	9.982	1.00 13.59		H	Č
	ATOM	1264	CD	GLI	N H	30	17.291	12.090	10.401	1.00 11.47		H	C
	MOTA	1265	0 E 3	1 GLI	и н	30	18.171	11.810	9.587	1.00 15.48		H	0
	MOTA	1266	NE	2 GL	H K	30	17.548	12.306	11.675	1.00 9.74		Н	N
10	ATOM	1267	N	VAI	LH	31	16.372	14.542	7.785	1.00 10.70		Н	N
	MOTA	1268	CA	IAV	H	31	16.369	14.468	6.327	1.00 7.92		Н	C
	ATOM	1269	С	VAI	H	31	16.999	13.155	5.865	1.00 9.83	•	Н	c
	ATOM	1270	0	VAI	H	31	17.922	12.641	6.501	1.00 12.57		H	0
	ATOM	1271	CB	VAL	. Н	31	17.194	15.635	5.698	1.00 11.09		H	Ċ
15	ATOM	1272	CG1	L VAL	. H	31	17.177	15.534	4.167	1.00 9.42		H	Č
	MOTA	1273	C G 2	NAL	. H	31	16.641	16.996	6.142	1.00 7.29		H	Č
	MOTA	1274	N	LEU	J H	32	16.481	12.600	4.773	1.00 10.90		H	N
	MOTA	1275	CA	LEU	H	32	17.034	11.384	4.193	1.00 10.82		H	C
	MOTA	1276	С	LEU	H	32	17.618	11.785	2.847	1.00 12.58	•	H	C
20	MOTA	1277	0	LEU	Н	32	16.902	12.294	1.984	1.00 13.53		H	Õ
	MOTA	1278	CB	LEU	Н	32	15.951	10.330	3.967	1.00 10.99		H	C
	ATOM	1279	CG	LEU	H	32	16.394	9.157	3.082	1.00 12.15		H	C
	MOTA	1280	CD1	LEU		32	17.496	8.366	3.774	1.00 10.81		H	C
	ATOM	1281	CD2	LEU	H	32	15.200	8.251	2.796	1.00 12.95		H	C
25	MOTA	1282	N	LEU		33	18.916	11.575	2.669	1.00 11.95		Ħ	N
	ATOM	1283	CA	LEU		33	19.566	11.921	1.411	1.00 13.59		H	C
	MOTA	1284	С	LEU		33	19.777	10.668	0.585	1.00 14.19		H	C
	ATOM	1285	0	LEU		33	20.252	9.649	1.090	1.00 13.59		H	0
	ATOM	1286	СВ	LEU		33	20.915	12.611	1.663	1.00 13.43	·	H	C
30	MOTA	1287	CG	LEU		33	20.843	13.953	2.401	1.00 13.16		H	C
	MOTA	1288		LEU		33	22.246	14.429	2.718	1.00 11.72		H	C
	MOTA	1289		LEU		33	20.103	14.981	1.546	1.00 14.08		H	C
	ATOM	1290	N	LEU		34	19.423	10.757	-0.691	1.00 16.19		H	N
	MOTA	1291	CA	LEU		34	19.553	9.636	-1.611	1.00 17.59		H	C
35	MOTA	1292	С	LEU		34	20.384	10.026	-2.826	1.00 18.00		H	С
	ATOM	1293	0	LEU		34	20.372	11.177	-3.261	1.00 18.90		H	0
	MOTA	1294	CB	LEU		34	18.165	9.184	-2.086	1.00 19.63		Ħ	C
	ATOM	1295	CG	LEU		34	17.092	8.859	-1.033	1.00 21.00		H	С
	ATOM	1296		LEU		34	15.741	8.708	-1.712	1.00 22.40		H	C
40	ATOM	1297		LEU		34	17.457		-0.288	1.00 21.37		H	. C
	MOTA	1298	N	VAL		35	21.126	9.066	-3.357	1.00 19.10		H	N N
	ATOM	1299	CA	VAL		35	21.915	9.294	-4.553	1.00 20.91		H	C
	ATOM	1300	C	VAL		35	21.484	8.174	-5.494	1.00 21.66		H	C
	MOTA	1301	0	VAL		35	21.512		-5.124	1.00 22.02		H	
45	ATOM	1302	СВ	VAL		35	23.438	9.229	-4.275	1.00 21.22		H	0
	MOTA	1303		VAL		35	23.846	7.837	-3.828	1.00 23.40		H	C C
	ATOM	1304		VAL		35	24.201	9.641	-5.516	1.00 23.40		H	
	MOTA	1305	N	ASN		37	21.049	8.539	-6.694	1.00 23.37		H	C
	MOTA	1306	CA	ASN		37	20.575	7.557	-7.668	1.00 24.27			N
50	ATOM	1307	C	ASN		37	19.473	6.695	-7.049	1.00 24.27		H	C
	MOTA	1308	0	ASN		37	19.475	5.502	-7.333	1.00 24.89		H	C
	ATOM	1309	СВ	ASN		37	21.721	6.650	-8.130	1.00 25.83		H H	0
	MOTA	1310	CG	ASN		37	22.904	7.428	-8.674	1.00 25.18		n H	C
	ATOM	1311		ASN		37	22.757	8.269	-9.563	1.00 27.92		n H	C
55	ATOM	1312		ASN		37	24.090	7.144	-9.363 -8.142	1.00 28.24		H H	0
					**	91	44.030	1.144	0.142	1.00 63.19		п	N

										•					
	ATOM			GLY	H	38		18.64	7.30	0 -6.19	3 1.0	0 25.00)	H	N
	ATOM			GLY	H.	38		17.56	6.57	5 -5.54		0 23.40		H	C
	ATOM			GLY	H	38		17.97	5.67	8 -4.386		0 23.72		H	C
_	ATOM		5 0	GLY	H	38		17.126	5.03	3 -3.77		25.41		Н	0
5	ATOM	1317	7 N	ALA	H	39		19.268	5.63			22.78		H	N
	ATOM	1318	3 CA	ALA	H	39		19.757	4.79			22.39		Н	C
	ATOM	1319	Ç	ALA	H	39		20.050	5.60			22.79		H	C
	ATOM	1320	0 (ALA	H	39		20.450	6.76			23.53		H	0
10	ATOM	1321		ALA	H	39		21.014				20.94		H	C
10	ATOM	1322	e n	GLN	H	40		19.848				22.25		H	
	ATOM	1323	CA	GLN	H	40		20.098				22.23		H	N
	MOTA	1324	C	GLN	H	40		21.574				22.41		. п Н	C
	ATOM	1325	0	GLN	H	40		22.456				22.51			C
	MOTA	1326	СВ	GLN	H	40		19.720				22.59		H H	0
15	ATOM	1327	CG	GLN	H	40.		19.763				25.18			C
	MOTA	1328	CD	GLN	H	40		19.409				26.21		H	C
	ATOM	1329	0E1	GLN	H	40		18.430				26.38		H	C
	MOTA	1330	NE2	GLN		40		20.198				26.47		H	0
	MOTA	1331		LEU		41		21.837				21.11		H	N
20	MOTA	1332	CA	LEU		41		23.206						H	N
	ATOM	1333	C	LEU !		41		23.585	8.285			19.35		H	C
	MOTA	1334	0	LEU		41		24.552	7.800			18.35		H	C
	ATOM	1335	СВ	LEU		41		23.419	8.978			18.12		H	0
	MOTA	1336	CG	LEU I		41		24.745	9.744			19.30		H	C
25	ATOM	1337		LEU I		41		25.890	8.880			17.33		H	C
	ATOM	1338		LEU 1		41		24.641	11.016	_		14.99		H	C
	ATOM	1339	N	CYS		42		22.816	9.226			16.13		H	C
	ATOM	1340	CA	CYS		42		23.108	9.796	3.110		16.56		H	N
	ATOM	1341	С	CYS I		42		21.907	10.492	4.421		15.14		H	С
30	ATOM	1342	0	CYS		42		20.851	10.492	5.033		13.30		H	C
	ATOM	1343	СВ	CYS E		42		34.226	10.844	4.418		12.64		H	0
	ATOM	1344	SG	CYS E		42		25.929		4.291		15.11		Ħ	С
	ATOM	1345	N	GLY H		43		2.101	10.216	4.342		18.96		H	S
	ATOM	1346	CA	GLY H		43		1.064	10.988	6.251		11.79		H	N
35	ATOM	1347	C	GLY H		43			11.728	6.932	1.00	9.99		H	Ç
	ATOM	1348	0	GLY H		43		2.362	13.209	6.753		10.90		H	С
	MOTA	1349	N	GLY H		43 44		0.491	13.580	6.138		12.00		H	0
	ATOM	1350	C A	GLY H		44		0.690	14.058	7.281		11.43		H	N
	ATOM	1351	C	GLY H		44		9.747	15.493 16.195	7.183	1.00	9.27		H	С
40	ATOM	1352		GLY H		44		8.884		8.143		9.66		H	С
	ATOM	1353	N	THR H		45		9.908	15.553	8.741		8.35		H	0
	MOTA	1354	CA	THR H		45		9.062	17.507	8.293		10.40		H	N
	ATOM	1355		THR H		45		8.500	18.286	9.186		10.32		H	С
	ATOM	1356		THR H		45		9.247	19.512	8.470		12.51		H	С
45	ATOM	1357		THR H		15		9.856	20.315	7.914		12.61		H	0
	ATOM	1358		THR H		15 15			18.781	10.420		11.05		H	C
	MOTA	1359		THR H		±5 15		0.468	17.667	11.084		11.48		H	0
	ATOM	1360		LEU H		16		8.934	19.491	11.399	1.00			H	С
	ATOM	1361		LEU H		16		7.185 5.572	19.662	8.475	1.00			H	N
50	ATOM	1362		LEU H					20.824	7.840	1.00			Н	С
	ATOM	1363		LEU H		6		6.689	21.980	8.829	1.00			H	C
	ATOM	1364		LEU H		: 0 :6		5.377	21.818		1.00			H	0
	ATOM	1365		LEU H				5.090	20.553		1.00			Η.	С
	ATOM	1366		LEU H		6		1.273	21.611	6.805	1.00			H	С
55	ATOM	1367	CD2 I			6		1.639	21.570	5.321	1.00			H	С
	0 44	1001	UUZ [LU H	4	6	12	2.783	21.326	6.973	1.00	12.25		H	С

	MOTA	1368	N		E		17.163	23.135	8.377	1.00 12.00	Н	N
	MOTA	1369	CA	ΙL	E F	47	17.252	24.288	9.275	1.00 13.26	H	C
	ATOM	1370	C	ΙL	E	47	16.475	25.470	8.686	1.00 15.67	H	Ċ
_	ATOM	1371	0.	ΙL	EH	47	16.356	26.523	9.312		Н	0
. 5	ATOM	1372	CB	IL	E H	47	18.727	24.714	9.552		Н	C
	MOTA	1373	CG	1 IL	E H	47	19.427	25.098	8.249	1.00 12.91	H	C
	ATOM	1374	CG	2 IL	E H	47	19.476	23.575	10.248	1.00 10.11	H.	С
	ATOM	1375	CD:	l IL	E H	47	20.815	25.683	8.455	1.00 13.22	н	C
	ATOM	1376	N	AS	N H	48	15.944	25.264	7.481	1.00 17.72	H	N
10	ATOM	1377	CA		N H		15.158	26.245	6.738	1.00 21.07	Н	C
	MOTA	1378	С		N H		14.312	25.485	5.728	1.00 20.14	H	C
	MOTA	1379	0		N H		14.506	24.288	5.536	1.00 20.62	Н	0
	ATOM	1380	CB		N H		16.071	27.199	5.965	1.00 27.12	H	C
	ATOM	1381	CG		N H		16.437	28.416	6.759	1.00 32.69	H	C
15	ATOM	1382	0 D I	L AS			15.566	29.193	7.156	1.00 32.03	H	0
	ATOM	1383	ND2		N H	48	17.729	28.600	6.998	1.00 37.93	л Н	
	ATOM	1384	N		RH	49	13.387	26.176	5.069	1.00 18.81		N
	ATOM	1385	CA	TH		49	12.562	25.521	4.055	1.00 19.09	H	N
	ATOM	1386	С		RH	49	13.421	25.187	2.838	1.00 19.09	H	C
20	ATOM	1387	Ō		RH	49	13.065	24.315	2.044	1.00 18.19	H	C
	MOTA	1388	СВ		R H	49	11.400	26.419	3.570	1.00 16.92	H	0
	ATOM	1389		THI		49	11.932	27.615	2.989		Ħ	C
	ATOM	1390		THI		49	10.485	26.780		1.00 18.22	H	0
	ATOM	1391	N N	ILI		50	14.559	25.871	4.716	1.00 17.02	H	C
25	ATOM	1392	CA	ILI		50		25.674	2.707	1.00 18.59	H	N
	ATOM	1393	C	ILE		50	15.469		1.576	1.00 18.42	H	С
	MOTA	1394	0	ILE		50	16.841	25.067	1.907	1.00 18.14	H	C
	ATOM	1395	CB				17.499	24.507	1.025	1.00 17.04	H	0
	ATOM	1396		ILE		50	15.694	27.030	0.841	1.00 22.10	H	С
30	ATOM	1397		ILE		50	14.481	27.357	-0.030	1.00 21.65	H	С
50	ATOM	1398				50	16.953	26.987	-0.022	1.00 23.17	H	С
	ATOM			ILE		50	14.338	26.454	-1.235	1.00 23.27	H	С
	ATOM	1399	N	TRP		51	17.274	25.160	3.161	1.00 16.05	H	N
	ATOM	1400	CA	TRP		51	18.592	24.655	3.528	1.00 15.56	H	C
35		1401	C	TRP		51	18.659	23.436	4.438	1.00 15.82	H	С
JJ	MOTA	1402	0	TRP		51	17.932	23.321	5.424	1.00 16.64	H	0
	MOTA	1403	CB	TRP		51	19.423	25.775	4.149	1.00 16.33	H	С
	MOTA	1404	CG	TRP		51	19.593	26.967	3.254	1.00 15.89	H	С
	ATOM	1405		TRP		51	18.847	28.111	3.261	1.00 15.94	H	C
40	MOTA	1406		TRP		51	20.576	27.134	2.224	1.00 15.03	H	С
40	ATOM	1407	NE1			51	19.306	28.982	2.302	1.00 16.22	Ħ	·N
	ATOM	1408	CE2			51	20.367	28.40 9	1.651	1.00 16.38	H	С
	ATOM	1409	CE3			51	21.615	26.330	1.730	1.00 16.52	H	С
	ATOM	1410	C Z 2			51		28.904	0.606	1.00 16.04	H	C
45	ATOM	1411	CZ3			51		26.822	0.690	1.00 16.73	H	C
4 5	ATOM	1412	CH2			51		28.100	0.142	1.00 16.02	H	С
	MOTA	1413	N	VAL		52	19.571	22.536	4.091	1.00 14.41	H	N
	ATOM	1414	CA	VAL		52	19.794	21.306	4.831	1.00 12.34	H	С
	MOTA	1415	С	VAL		52	21.270	21.211	5.218	1.00 11.65	H	С
~ ^	MOTA	1416		VAL		52	22.136	21.461	4.391	1.00 9.66	H	0
50	ATOM	1417		VAL		52	19.440	20.073	3.957	1.00 11.76	H	C
	MOTA	1418	CG1			52	19.909	18.800	4.632	1.00 8.59	H	C ·
	MOTA	1419	CG2			52	17.935	20.022	3.700	1.00 12.24	Ħ	С
	MOTA	1420		VAL		53	21.549	20.869	6.474	1.00 11.58	H	N
	ATOM	1421	CA	VAL	H	53	22.925	20.706	6.944	1.00 11.42	H	С
55	MOTA	1422	С	VAL	H	53	23.198	19.206	7.023	1.00 11.69	H	C

	ATOM	1423	3 0	V.	AL I	H 53	22.43	18.470	7 600				
	ATOM				AL I		23.141			· · · · · ·		H	0
	ATOM	1425		1 V			24.522					H	С
	ATOM	1426		2 V			23.037					H	С
5	ATOM	1427			ER I		24.280				٠	H	С
	ATOM	1428			ER I		24.230					H	N
	ATOM	1429			ER I							H	С
	ATOM	1430			R		26.150			- · - -		H	С
10	ATOM	1431			R		26.770					H	0
	MOTA	1432			RH		24.256					H	С
	ATOM	1433			AE		24.369					H.	0
	ATOM	1434			AH		26.740					H	N
15	ATOM	1435	_		AH		28.178					H	С
	ATOM	1436	0				28.911		-			H	C
	ATOM	1437	CB		A H		28.422			_		H	0
	ATOM	1438	N		A H		28.440					H	С
	ATOM	1439			A H		30.087		=			H	N
20	ATOM	1440	CA		A H		30.880			1.00 12.72	i	H	С
	ATOM		C		A H		31.315			1.00 13.03	1	H	C
	MOTA	1441	0		A H		31.283		2.172	1.00 13.79	1	H	0
		1442	CB		A H		32.122		4.156	1.00 12.20	1	H	C
	MOTA	1443	N C A		SH		31.720		4.266	1.00 12.47	1	H	N
	MOTA	1444	CA		SH	57	32.187	13.025	3.791	1.00 14.60	1	H	С
25	ATOM	1445	C		SH	57	31.136	12.203	3.039	1.00 16.39	1	3	С
	MOTA	1446	0		S H	57	31.470	11.252	2.332	1.00 16.35	ŀ	ł	0
	ATOM	1447	CB		S H	57	32.798	12.200	4.937	1.00 13.36	F	I	С
	ATOM	1448	CG		S H	57	31.807	11.425	5.749	1.00 11.86	F	I	С
	ATOM	1449		HI		57	31.362	11.849	6.983	1.00 8.73		Į	N
30	MOTA	1450		HIS		57	31.219	10.222	5.530	1.00 9.58	·	i	C
	ATOM	1451		HIS		57	30.547	10.941	7.491	1.00 9.27	H		C
	ATOM	1452		HIS		57	30.443	9.945	6.630	1.00 9.58	Н		N
	MOTA	1453	N	CYS		58	29.869	12.581	3.175	1.00 16.13	H		N
	MOTA	1454	CA	CYS		58	28.789	11.887	2.485	1.00 16.63	H		C
35	ATOM	1455	С	CYS		58	28.880	12.061	0.967	1.00 15.55	Н		C
	ATOM	1456	0	CYS		58	28.248	11.329	0.208	1.00 14.79	Н		0
	MOTA	1457	CB	CYS	H	58	27.443	12.426	2.979	1.00 17.08	H		Č
	MOTA	1458	SG	CYS	H	58	27.023	11.898	4.670	1.00 18.19	Н		S
	ATOM	1459	N	PHE	H	59	29.675	13.030	0.532	1.00 15.81	H		N
40	ATOM	1460	CA	PHE	H	59	29.826	13.327	-0.883	1.00 14.61	H		C
	ATOM	1461	C	PHE	H	59	31.191	12.959	-1.475	1.00 14.54	H		C
	ATOM	1462	0	PHE	H	59	31.504	13.349	-2.602	1.00 13.82	H		0
	ATOM	1463	CB	PHE	H	59	29.517	14.816	-1.094	1.00 14.40	H		C
	ATOM	1464	CG	PHE	H	59	28.188	15.231	-0.517	1.00 15.03	H		С
45	ATOM	1465		PHE		59	27.008	14.984	-1.210	1.00 14.65	H		C
	MOTA	1466	CD2	PHE	H	59	28.109	15.765	0.770	1.00 14.34	H		C
	ATOM	1467	CE1	PHE	H	59	25.768	15.252	-0.629	1.00 15.30	Н		C
	ATOM	1468	CE2	PHE	H	59	26.875	16.033	1.358	1.00 14.77	H		C
	MOTA	1469	CZ	PHE	H	59	25.703	15.774	0.657	1.00 16.63	Н		C
	ATOM	1470	N	ASP	H	60	31.986	12.195	-0.727	1.00 14.66	H		
	MOTA	1471	CA	ASP	H	60	33.313	11.761	-1.179	1.00 16.60			N
50	ATOM	1472	С	ASP		60	33.310	10.997	-2.509	1.00 18.45	H H		C
	ATOM	1473	0	ASP		60	34.172	11.216	-3.358	1.00 17.09			C
	ATOM -	1474	CB	ASP		60	33.979	10.872	-0.117	1.00 17.09	H		0
	ATOM	1475		ASP		60	34.633	11.668	0.998	1.00 15.71	H		C
	ATOM	1476	0D1			60	34.520	12.897	1.005	1.00 13.68	Н		C
55	ATOM	1477	0D2			60	35.262	11.049	1.855	1.00 15.88	H		0
*				-	-			-1.030	1.000	1.00 13.21	H	(0

	ATOM	1478			S H		32.357	7 10.089	-2.687	1.00 21.04	Н	N
	ATOM	1479			SH		32.303	9.306	-3.918	1.00 23.97	H	C
	ATOM	1480			S H		31.110	9.568	-4.830	1.00 24.27	Н	C
بع	ATOM	1481		LY.			30.675	8.678	~5.558	1.00 24.87	H	0
5	MOTA	1482		-			32.372	7.813	-3.599	1.00 26.20	Н	C
	MOTA	1483					33.775	7.323	-3.279		Н	C
	ATOM	1484			S H	60 A	34.039	7.276	-1.794		Н	C
	MOTA	1485			S H	60 A	33.231	6.169	-1.128		Н	C
10	ATOM	1486	N Z	LY:	S H	60A	33.565	6.052	0.323		Н	N
10	ATOM	1487	N	ILI	E H	60B	30.583	10.785	-4.796		H	N
	ATOM	1488	CA	ILE	H	60B	29.454	11.132	-5.642		H	C
	ATOM	1489	C	ILE	H	60B	29.979	11.394	-7.049	1.00 28.48	Н	C
	ATOM	1490	0	ILE	H	60B	30.919	12.168	-7.232	1.00 28.70	Н	0
	MOTA	1491	CB	ILE	Н	60B	28.736	12.409	-5.143	1.00 24.23	H	C
15	ATOM	1492	CG	1 ILE	H	60B	28.147	12.180	-3.746	1.00 22.79	H	Č
	ATOM	1493	C G	2 ILE	H	60B	27.647	12.807	-6.132	1.00 24.21	H	C
	MOTA	1494	CD.	1 ILE	H	60B	27.036	11.148	-3.688	1.00 19.86	H	C
	MOTA	1495	N	LYS	H	60C	29.378	10.734	-8.034	1.00 29.76	Н	N
	MOTA	1496	CA	LYS	Н	60C	29.764	10.902		1.00 31.95	H	C
20	MOTA	1497	С	LYS	H	60C	28.665	11.665	-10.169	1.00 31.45	н	C
	MOTA	1498	0	LYS	H	60C	28.942		-11.015	1.00 32.26	H	0
	ATOM	1.499	CB	LYS	H	60C	29.974		-10.091	1.00 35.12	H	C
	MOTA	1500	CG	LYS	H	60C	31.059		-9.440	1.00 38.59	R	C
	ATOM	1501	€ D	LYS	H	60C	32.462		-9.753	1.00 41.77	H	C
25	ATOM	1502	CE	LYS	H	60C	33.034		-11.024	1.00 43.81	Н	C
	ATOM	1503	ΝZ	LYS	H	60C	32.241		-12.257	1.00 46.15	H	N
	MOTA	1504	N	ASN		60D	27.415		-9.834	1.00 30.75	H	N
	MOTA	1505	CA	ASN		60D	26.272		-10.464	1.00 29.53	H H	С
	MOTA	1506	С	ASN		60D	25.675		-9.549	1.00 28.25	п Н	C
30	MOTA	1507	0	ASN		60D	24.678	12.833		1.00 26.25	n Ħ	
	MOTA	1508	СВ	ASN		60D	25.203		-10.803	1.00 20.07	n H	0
	MOTA	1509	СG	ASN		60D	25.726		-11.700	1.00 35.77		C
	ATOM	1510		ASN		60D	26.355		-12.727	1.00 33.73	H	C
	ATOM	1511		ASN		60D	25.454		-11.320	1.00 37.73	H	0
35	ATOM	1512	N	TRP		61	26.279	14.256	-9.567	1.00 37.39	H	N
	ATOM	1513	CA	TRP		61	25.834	15.365	-8.734	1.00 25.37	H	N
	MOTA	1514	С	TRP		61	24.422	15.863	-9.016	1.00 26.09	Н	C
	MOTA	1515	0	TRP		61	23.849	16.582	-8.203	1.00 25.00	H	C
	ATOM	1516	CB	TRP		61	26.822	16.532		1.00 23.00	H H	0
40	MOTA	1517	CG	TRP		61	28.179	16.178	-8.321	1.00 24.50		C
	ATOM	1518		TRP		61	29.211	15.634		1.00 21.92	Н.	C
	ATOM	1519		TRP		61	28.615	16.247	-6.961	1.00 21.98	H	C
	ATOM	1520		TRP		61	30.262	15.355	-8.189	1.00 20.82	H	C
	MOTA	1521		TRP		61		15.722	-6.912		H	N
45	ATOM	1522		TRP		61	28.025	16.703	-5.772	1.00 20.71	H	C
- •	ATOM	1523		TRP		61	30.651	15.634		1.00 19.10	H	C
	ATOM	1524		TRP		61	28.749	16.616	-5.724	1.00 17.70	H	С
	ATOM	1525		TRP		61	30.050	16.084	-4.593	1.00 17.89	H	C
	MOTA	1526	N	ARG		62				1.00 17.22	H	C
50	MOTA	1527	CA	ARG			23.858	15.492		1.00 26.23	H	N
J J	ATOM	1528	C	ARG		62 62	22.503	15.919		1.00 28.01	H	С
	ATOM	1529	0	ARG		62	21.432	14.938		1.00 26.66	H	С
	ATOM	1530	СВ	ARG			20.240	15.216 -		1.00 25.99	H	0
	ATOM	1531	CG	ARG :		62	22.365	16.136 -		1.00 31.33	H	С
55	MOTA	1532	CD			62	22.965	17.448 -		1.00 36.27	H	С
.	WALV	1002	U	ARG	ri	62	22.697	17.657 -	-13.997	1.00 40.57	H	С

	MOTA	153	3 N	E AI	RG :	H 62	23.530	16.804	-14.844	1 1 0	0 44.43	1	ı .,
	ATOM	153	4 C	Z AI	? G	H 62	24.787		-15.190		0 46.30	ŀ	
	ATOM	153	5 N	HI AF	≀G Ì	H 62	25.374		-14.770		0 46.47	F	•
	ATOM	1536	5 N	H2 AF	G I	H 62	25.462		-15.954		3 40.47 3 45.81	H	•
5	ATOM	1533			N I		21.854					H	
	ATOM	1538	3 C/		N I		20.917				25.42	H	
	ATOM	1539	Э С		N I		20.829				25.01	H	_
	ATOM	1540			N F		20.573				24.39	Н	_
	ATOM	1541			N E		21.296				24.25	H	
10	ATOM	1542			N E				-9.468		27.47	H	С
	ATOM	1543)1 AS			21.396		-10.976		31.32	H	C
	MOTA	1544		2 AS			20.715		-11.686		31.92	H	0
	ATOM	1545					22.238		-11.476		32.46	H	N
	ATOM	1546			U H		21.047		-6.767	1.00	21.76	H	N
15	ATOM				U H		20.966		-5.309	1.00	20.28	H	С
10		1547			U H		19.568		-4.862	1.00	19.50	H	
	ATOM	1548			UH		19.071	15.395	-5.268	1.00	18.78	Н	
	ATOM	1549			U H		22.018	14.865	-4.744	1.00	19.05	H	C
	ATOM	1550			U H	64	23.464	14.363	-4.771	1.00	20.72	н	C
90	MOTA	1551		1 LE		64	24.424	15.537	-4.548	1.00	20.72	Н	c
20	ATOM	1552		2 LE	JH	64	23.654	13.282	-3.702		18.65	Н	Č
	ATOM	1553	N	IL	H	65	18.938	13.520	-4.027		17.67	H	N
	ATOM	1554	CA		H	65	17.589	13.810	-3.539		18.01	H	C
	ATOM	1555	С	ILI	H	65	17.541	13.931	-2.015		16.76	H	С
	ATOM	1556	0	ILI	H	65	18.200	13.172	-1.303		14.51	H	
25	ATOM	1557	CB	ILI	H	65	16.592	12.692	-3.980		18.70	Н	0
	MOTA	1558	CG	1 ILE	Н	65	16.468	12.671	-5.508		19.21		C
	ATOM	1559	CG	2 ILE	H	65	15.215	12.918	-3.352		19.44	H	C
	ATOM	1560	CD:	LILE	Н	65	15.788	13.897	-6.089		17.74	H	C
	MOTA	1561	N	ALA		- 66	16.774	14.903	-1.527		15.47	H	С
30	ATOM	1562	CA	ALA		66	16.603	15.111	-0.097			H	N
	ATOM	1563	С	ALA		66	15.125	14.876	0.196		15.47	H	С
	ATOM	1564	0	ALA		66	14.254	15.513	-0.405		16.47	H	С
	MOTA	1565	СВ	ALA		66	16.995	16.531			16.85	H	0
	ATOM	1566	N	VAL		67	14.844	13.954	0.290		12.74	H	С
35	MOTA	1567	CA	VAL		67	13.469		1.108		14.86	H	N
	ATOM	1568	C	VAL		67		13.643	1.459		16.12	H	С
	MOTA	1569	0	VAL		67	13.169	14.082	2.894		16.69	H	С
	ATOM	1570	СВ	VAL		67	13.895	13.732	3.832		14.62	H	0
	ATOM	1571		VAL		67	13.184	12.123	1.323	1.00		H	C
40	ATOM	1572		VAL		67	11.695	11.856	1.492	1.00		H	C
	ATOM	1573	N	LEU		68			-0.045	1.00		H	C
	ATOM	1574	CA	LEU		68		14.875	3.042	1.00		H	N
	ATOM	1575	c	LEU				15.368	4.341	1.00		H	С
	ATOM	1576	0	LEU		68	*	14.648	4.744	1.00		H	C
45	ATOM	1577	CB			68		14.144	3.888	1.00		H	0
10	MOTA	1578	CG	LEU		68		16.881	4.282	1.00		H	С
	ATOM	1579		LEU		68	12.589	17.836	4.542	1.00		H	C
				LEU		68		17.495	5.901	1.00		H	С
	ATOM	1580		LEU		68		17.729	3.445	1.00		H	С
50	ATOM	1581	N	GLY		69		14.593	6.047	1.00		H	N
50	ATOM	1582	CA	GLY		69		13.951	6.547	1.00		H	С
	MOTA	1583	C	GLY		69		12.438	6.465	1.00	17.11	Н	С
	ATOM	1584	0	GLY		69		11.774	6.637	1.00	17.76	H	0
	ATOM	1585	N	GLU		70	10.096	11.889	6.211	1.00 1		H	N
E	ATOM	1586	CA	GLU		70	10.275	10.454	6.101	1.00 1		Н	C
55	ATOM	1587	С	GLU	H	70	10.245	9.800	7.491	1.00 1		H	Č
													-

	ATOM	1588	0	GLU	H	70	10.567	10.437	8.494	1.00 15.98	Н	0
	ATOM	1589	CB	GLU	H	70	11.602	10.174	5.387	1.00 19.03	H	C
	ATOM	1590	CG	GLU	H	70	11.865	8.726	5.080	1.00 22.67	Н	C
_	ATOM	1591	CD	GLU	H	70	10.684	8.066	4.398	. 1.00 25.35	H	C
5	MOTA	1592	0E1	GLU	H	70	10.563	8.141	3.189	1.00 24.42	Н	0
	ATOM	1593	0E2	GLU	H	70	9.892	7.495	5.098	1.00 23.25	Н	0
	ATOM	1594	N	RIS	H	71	9.813	8.544	7.546	1.00 12.74	Н	N
	ATOM	1595	CA	HIS	K	71	9.761	7.801	8.799	1.00 13.45	H	C
	MOTA	1596	C	RIS	H	71	10.080	6.321	8.586	1.00 12.69	H	C
10	ATOM	1597	0	HIS	H	71	11.080	5.815	9.091	1.00 11.97	H	0
	ATOM	1598	CB	HIS	H	71	8.380	7.919	9.455	1.00 12.65	Н	C
	ATOM	1599	CG	HIS	H	71	8.219	7.045	10.659	1.00 14.72	H	C
	ATOM	1600	ND1	HIS	H	71	8.933	7.245	11.821	1.00 15.86	H	N
	MOTA	1601	CD2	HIS	H	71	7.488	5.922	10.857	1.00 15.60	H	C
15	ATOM	1602	CE1	HIS	H	71	8.652	6.281	12.680	1.00 15.50	H	C
	ATOM	1603	NE2	HIS	H	71	7.778	5.465		1.00 16.25	H	N
	ATOM	1604	N	ASP	H	72	9.214	5.642	7.836	1.00 12.78	H	N
	ATOM	1605	CA.	ASP	H	72	9.340	4.213	7.543	1.00 14.80	Н	C
	ATOM	1606	C	ASP	H	72	9.726	4.058	6.078	1.00 14.88	H	Č
20	MOTA	1607	0	ASP	H	72	8.931	4.350	5.200	1.00 14.21	H	0
	MOTA	1608	CB	ASP	H	72	7.988	3.539	7.798	1.00 17.28	H	C
	ATOM	1609	CG	ASP	H	72	8.012	2.046	7.555	1.00 20.88	H	C
	MOTA	1610	0D1	ASP	H	72	8.887	1.559	6.837	1.00 18.95	H	0
	ATOM	1611	0D2	ASP	H	72	7.134	1.377	8.082	1.00 22.75	н	0
25	ATOM	1612	N	LEU	H	73	10.936	3.587	5.805	1.00 16.56	. Н	N
	ATOM	1613	CA	LEU	H	73	11.385	3.443	4.423	1.00 16.35	Н	C
	A T O M	1614	C	LEU	H	73	10.650	2.377	3.596	1.00 18.34	H	C
	MOTA	1615	0	LEU	H	73	10.858	2.282	2.385	1.00 19.52	Н	0
	MOTA	1616	CB	LEU	H	73	12.895	3.171	4.397	1.00 16.77	H	Č
30	ATOM	1617	CG	LEU	H	73	13.769	4.110	5:247	1.00 17.81	Н	Č
	ATOM	1618	CD1	LEU	H	73	15.230	3.720	5.100	1.00 15.70	H	C
	ATOM	1619	CD2	LEU	H	73	13.555	5.549	4.823	1.00 16.14	Н	C
	ATOM	1620	N	SER	Ħ	74	9.790	1.590	4.234	1.00 19.10	H	N
	MOTA	1621	CA	SER	H	74	9.043	0.548	3.531	1.00 21.62	Н	C
35	MOTA	1622	C	SER	H	74	7.575	0.880	3.242	1.00 23.33	H	С
	ATOM	1623	0	SER	H	74	6.867	0.078	2.625	1.00 22.33	H	0
	MOTA	1624	CB	SERI	Ħ	74	9.114	-0.769	4.308	1.00 20.45	Н	С
	MOTA	1625	0 G	SER I	H	74	8.439	-0.675	5.547	1.00 22.87	H	0
	ATOM	1626	N	GLU I	H	75	7.117	2.053	3.677	1.00 22.57	H	N
40	MOTA	1627		GLU I		75	5.732	2.466	3.449	1.00 24.78	H	C
	ATOM	1628	C	GLU I	H	75	5.688	3.934	3.040	1.00 25.10	H	C
	ATOM	1629	0	GLU F	Ŧ	75	6.318	4.749	3.678	1.00 25.82	H	0
	ATOM	1630		GLU H		75	4.911	2.301	4.730	1.00 26.53	H	С
	ATOM	1631	CG	GLU F	í	75	4.714	0.873	5.205	1.00 31.89	Н	C
45	ATOM	1632	CD	GLU H	•	75	3.839	0.065	4.270	1.00 33.67	H	C
	MOTA	1633	0E1	GLU H	•	75	2.831	0.603	3.814	1.00 35.97	H	0
	ATOM	1634	0E2	GLU H	۱ '	75	4.162	-1.102	4.013	1.00 36.04	H	0
	ATOM	1635		HIS H		76	4.934	4.275	2.000	1.00 24.98	H	N
	MOTA	1636	C A	HIS H	!	76	4.830	5.668	1.558	1.00 24.23	Н	C
50	ATOM	1637	C	HIS H	1	76	3.569	6.338	2.106	1.00 23.39	H	С
	ATOM	1638		HIS H		76	2.514	5.706	2.166	1.00 23.35	H	0
	MOTA	1639		HIS H		76	4.760	5.749	0.026	1.00 25.80	H	C
	ATOM	1640		H ZIH		76	6.056	5.469	-0.671	1.00 29.25	H	C
	ATOM	1641		HIS H		76	7.159	6.288	-0.554	1.00 28.58	H	N
55	MOTA	1642	CD2	HIS H	7	76	6.408	4.488	-1.538	1.00 28.86	H	С

	MOTA	1643	CE	1 HIS	F	i 76	8.132	5.827	-1.321	1.00 29.52	Н	С
	ATOM	1644	NE:	2 H1S	F	i 76	7.701			1.00 28.15	н	
	MOTA	1645	N	ASP	H	1 77	3.677			1.00 20.79	H	N
	ATOM	1646	CA	ASP	H		2.509		-	1.00 20.79		N
5	ATOM	1647	С	ASP			2.621				H	C
	ATOM	1648		ASP			3.651			1.00 18.66	H	С
	ATOM	1649		ASP						1.00 21.60	H	0
	ATOM	1650		ASP			2.299			1.00 18.12	H	С
							3.384		_	1.00 19.27	H	С
10	ATOM	1651		LASP			3.954			1.00 19.03	H	0
10	ATOM	1652		2 ASP			3.635			1.00 17.06	H .	0
	ATOM	1653	N	GLY			1.566			1.00 18.19	H	N
	ATOM	1654	CA	GLY			1.545	11.980	2.326	1.00 18.10	H	С
	ATOM	1655	С	GLY			2.371	13.025	3.054	1.00 18.55	H	С
	MOTA	1656	0	GLY	H	78	2.352	14.197	2.675	1.00 16.08	H	0
15	ATOM	1657	N	ASP	H	79	3.095	12.625	4.091	1.00 19.01	H	N
	ATOM	1658	CA	ASP	H	79	3.910	13.580		1.00 18.79	H	C
	ATOM	1659	С	ASP	H	79	5.297	13.730		1.00 18.30	Н	C
	ATOM	1660	0	ASP	H	79	6.014	14.676		1.00 18.65	H	
	ATOM	1661	CB	ASP			4.034	13.164	· ·	1.00 19.58		0
20	ATOM	1662	CG	ASP			2.696	13.111	6.996	1.00 21.14	H	C
	ATOM	1663		ASP			1.909	14.047	6.832		H	C
	ATOM	1664		ASP		79	2.450	12.148	7.704	1.00 22.87	H	0
	MOTA	1665	N	GLU			5.685	12.799		1.00 20.28	H	0
	ATOM	1666	CA	GLU					3.364	1.00 19.12	H	N
25	ATOM	1667	C	GLU			7.003	12.873	2.758	1.00 20.29	H	С
	ATOM	1668	_			80	7.062	13.811	1.563	1:00 19.63	H	С
			0	GLU		80	6.185	13.815	0.699	1.00 19.10	H	0
	ATOM	1669	CB	GLU		80	7.491	11.472	2.380	1.00 22.03	H	С
	ATOM	1670	CG	GLU		80	6.528	10.659	1.571	1.00 29.30	H	С
20	ATOM	1671	CD	GLU		80	6.895	9.188	1.567	1.00 29.90	H	C
30	MOTA	1672		GLU		80	6.763	8.547	2.597	1.00 27.84	H	0
	ATOM	1673		GLU		80	7.315	8.707	0.544	1.00 32.19	Ħ	0
	ATOM	1674	N	GLN	H	81	8.110	14.625	1.541	1.00 18.82	H	N
	ATOM	1675	CA	GLN	H	81	8.324	15.592	0.482	1.00 17.15	H	С
	ATOM	1676	C	GLN	H	81	9.723	15.373	-0.065	1.00 18.57	H	С
35	MOTA	1677	0	GLN	H	81	10.689	15.277	0.691	1.00 18.79	H '	0
	MOTA	1678	CB	GLN	H	81	8.202	17.004	1.037	1.00 16.07	Н	Ċ
	MOTA	1679	CG	GLN	H	81	6.873	17.277	1.709	1.00 15.69	Н	c
	MOTA	1680	CD	GLN	H	81	6.792	18.684	2.237	1.00 13.45	Н	c
	ATOM	1681	0E1	GLN	H	81	6.982	19.630	1.493	1.00 12.22	H	0
40	MOTA	1682	NE2	GLN	H	81	6.516	18.828	3.530	1.00 12.50	Н	N
	ATOM	1683	N	SER		82	9.829	15.313	-1.384	1.00 17.31	H	
	ATOM	1684	CA	SER		82	11.105	15.072	-2.029	1.00 17.31		N
	MOTA	1685	С	SER		82	11.576	16.299	-2.799	1.00 18.12	H	C
	ATOM	1686	0	SER		82	10.778	16.996	-3.428		H	С
45	ATOM	1687	СВ	SER		82	10.778			1.00 17.54	H	0
	MOTA	1688	0 G	SER				13.867	-2.960	1.00 16.29	H	С
	MOTA	1689	N			82	12.222	13 446	-3.436	1.00 28.10	H	0
	MOTA			ARG		83	12.878	16.563	-2.750	1.00 18.40	Ħ	N
	MOTA	1690 1691		ARG		83	13.447	17.717	-3.443	1.00 18.45	H	С
50				ARG		83	14.830	17.401	-3.998	1.00 20.13	H	С
50	MOTA	1692		ARG		83	15.629	16.715	-3.354	1.00 21.06	H	0
		1693		ARG		83	13.572	18.906	-2.486	1.00 18.69	Н	С
	MOTA	1694		ARG		83	12.253	19.439	-1.927	1.00 19.20	H	С
	MOTA	1695		ARG		83	11.544	20.319	-2.947	1.00 17.18	H	C
~ ~	ATOM	1696		ARG		83	10.393	21.010	-2.378	1.00 14.55	H	N
55	ATOM	1697	CZ	ARG	H	83	9.214	20.444	-2.131	1.00 16.58	Н	С
												-

	MOTA		8 NH	11 ARG	Н	83	9.00	19.159	-2.401	1.00 13.28	H	N
	ATOM	169	9 NH	12 ARG	Н	83	8.24			-	Н	N
	ATOM	170	O N	ARG	H	84	15.116				H	
_	ATOM	170	1 CA	ARG	H	84	16.426				H	N
5	ATOM	170	2 C	ARG	H	84	17.392				H	C
	ATOM	170:	3 0	ARG	H	84	17.015		-		H	C
	ATOM	1704	4 CB	ARG	H	84	16.414				H	0
	ATOM	1705	5 CG	ARG	H	84	15.483				л Н	C
	ATOM	1706	5 CD	ARG	H	84	15.845			1.00 34.52	n H	C
10	MOTA	1707	7 NE	ARG	H	84	14.872		-10.451	1.00 40.99		C
	ATOM	1708	S CZ	ARG		84	15.065		-11.733	1.00 40.99	H	N
	MOTA	1709	NH:	1 ARG		84	16.206		-12.337	1.00 46.58	H	C
	ATOM	1710		2 ARG		84	14.110		-12.417	1.00 46.99	H	N
	ATOM	1711		VAL		85	18.629		-4.888	1.00 40.99	H	N
15	MOTA	1712	CA	VAL		85	19.622		-4.243	1.00 16.85	H	N
	MOTA	1713	C	VAL		85	20.229	19.920	-5.341	1.00 10.83	H	C
	MOTA	1714	0	VAL	H	85	20.877	19.416	-6.259	1.00 17.39	H	C
	MOTA	1715	CB	VAL		85	20.732	18.207	-3.557	1.00 17.19	H	0
	ATOM	1716	CGI	LVAL		85	21.763	19.123	-2.907	1.00 14.96	H	C
20	MOTA	1717		2 VAL		85	20.117	17.289	-2.507	1.00 13.28	H	C
	ATOM	1718		ALA		86	19.992	21.227	-5.251		H	0
	ATOM	1719	CA	ALA		86	20.504	22.181	-6.231	1.00 18.63	H	N
	MOTA	1720	С	ALA		86	21.974	22.513	-6.000	1.00 18.54	H	C
	ATOM	1721	0	ALA		86	22.692	22.847	-6.942	1.00 19.52	H	C
25	ATOM	1722	СВ	ALA		86	19.671	23.471	-6.193	1.00 20.09	H	0
	ATOM	1723	N	GLN		87	22.424	22.426	-4.752	1.00 16.39	H	C
	ATOM	1724	CA	GLN		87	23.812	22.739	-4.443	1.00 18.48	H	N
	ATOM	1725	C	GLN		87	24.330	22.107		1.00 19.14	H	С
	ATOM	1726	0	GLN		87	23.620	22.107	-3.149 -2.149	1.00 17.00	H	С
30	MOTA	1727	СВ	GLN		87	23.986	24.259		1.00 17.11	H	0
	ATOM	1728	CG	GLN		87	25.425	24.729	-4.376 -4.330	1.00 20.74	H	С
	MOTA	1729	CD	GLN		87	25.587	26.134	-4.886	1.00 23.25	H	C
	ATOM	1730		GLN		87	25.068	27:099	-4.328	1.00 28.67	H	С
	ATOM	1731		GLN		87	26.305	26.250	-5.999	1.00 31.99	H	0
35	ATOM	1732	N	VAL		88	25.574	21.645	-3.196	1.00 30.93	H	N
	ATOM	1733	CA	VAL		88	26.239	21.043	-2.047	1.00 14.74	H	N
	ATOM	1734	C	VAL		88	27.465	21.920	-1.772	1.00 14.64	H	C
	ATOM	1735	0	VAL I		88	28.404	21.946	-2.562	1.00 15.48 1.00 17.00	H	С
	ATOM	1736	СВ	VAL H		88	26.705			1.00 17.00	H	0
40	ATOM	1737	CG1	VAL H	-	88	27.474		-1.155	1.00 14.89	H	C
	ATOM	1738		VAL F		88	25.506		-2.680		H	C
	ATON	1739	N	ILE H		89	27.443		-0.662	1.00 14.41	H	C
	ATOM	1740	CA	ILE H		89	28.545		-0.300	1.00 15.46 1.00 14.42	H	N
	ATOM	1741	С	ILE H		89	29.390	22.884	0.794		H	С
45	MOTA	1742	0	ILE H		89	28.897	22.549	1.876	1.00 15.81 1.00 16.16	H	C
	ATOM	1743	CB	ILE H		89	28.030	24.884	0.190		H	0
	ATOM	1744		ILE H		89	27.072		-0.847	1.00 13.77	H	C
	ATOM	1745		ILE H		89	29.209	25.829		1.00 14.85	H	C
	MOTA	1746		ILE H		89	26.360			1.00 14.01	H	C
50	ATOM	1747		ILE H		90	30.674	22.724		1.00 13.34	H	C
-	MOTA	1748		ILE H		90	31.619	22.724		1.00 15.61	H	N
	ATOM	1749		ILE H		90		23.066		1.00 15.21	H	C
	ATOM	1750		ILE H		90		23.804		1.00 15.60	H	C
	ATOM	1751		ILE H		90		20.789		1.00 16.74	H	0
55	MOTA	1752		ILE H		90				1.00 15.99	H	С
-			_	*1	•		31.010	19.759	0.760	1.00 15.68	H	C

	ATOM	1753	3 CG	2 ILE	H 90	33.339	20.254	1.590	1.00 17.02	Н	С
•	ATOM	1754		1 ILE		31.365	18.486	0.005	1.00 19.51	Н	C
	ATOM	1755		PRO	H 91	33.297	23.081	2.931	1.00 16.87	Н	N
_	MOTA	1756	C A	PRO	Н 91	34.415	23.971	3.259	1.00 14.80	Н	C
. 5	ATOM	1757		PRO	H 91	35.627	23.649	2.384	1.00 15.40	H	C
	ATOM	1758		PRO	H 91	35.917	22.480	2.120	1.00 12.85	н	0
	MOTA	1759	CB	PRO	H 91	34.692	23.657	4.728	1.00 15.20	H	C
	MOTA	1760	CG	PRO	H 91	33.360	23.185		1.00 16.50	н	C
	ATOM	1761	CD	PRO	H 91	32.867	22.319	4.118	1.00 15.23	н	C
10	MOTA	1762	N	SER	H 92	36.336	24.681	1.939	1.00 14.94	H	N
	ATOM	1763	CA	SER	H 92	37.521	24.471	1.114	1.00 15.06	H	C
	ATOM	1764	C	SER	H 92	38.598	23.704		1.00 14.20	н	C
	MOTA	1765	0	SER	H 92	39.489	23.117	1.289	1.00 15.42	H	0
	MOTA	1766	CB	SER	H 92	38.084		0.643	1.00 14.89	н	С
15	MOTA	1767	0 G	SER	H 92			-0.166	1.00 15.02	H	0
	ATOM	1768	N	THR	H 93	38.497		3.214	1.00 12.98	H	
	MOTA	1769	CA	THR	H 93	39.461	23.020	4.072	1.00 13.34	H	N C
	ATOM	1770	C	THR	Н 93	39.182	21.531	4.309	1.00 14.82	H	C
	MOTA	1771	0	THR	Н 93	39.994	20.840	4.916	1.00 15.40	H	0
20	MOTA	1772	СВ	THR	Н 93	39.556	23.716	5.448	1.00 14.87	H	C
	ATOM	1773	0 G I	THR	H 93	38.249	23.788	6.033	1.00 11.15	Н	
	MOTA	1774	C G 2			40.133	25.140	5.302	1.00 11.13	н Н	0 C
	MOTA	1775	N	TYR		38.040	21.033	3.847	1.00 14.91	л Н	
	ATOM	1776	CA	TYR		37.724	19.618	4.024	1.00 14.51		N
25	ATOM	1777	С	TYR		38.482	18.783	2.989	1.00 14.10	. Н	С
	ATOM	1778	0	TYR		38.558	19.151	1.822	1.00 14.17	H	C
	ATOM	1779	CB	TYR		36.220	19.366	3.862	1.00 14.20	H	0
	ATOM	1780	CG	TYR		35.874	17.888	3.785	1.00 12.83	H	C
	MOTA	1781		TYR		35.851	17.101	4.931		H	C
30	ATOM	1782	CD2			35.656	17.264	2.552	1.00 9.72	H	С
	ATOM	1783		TYR			15.728	4.858	1.00 11.67	H	С
	ATOM	1784		TYR		35.433	15.888		1.00 8.62	H	С
	ATOM	1785	CZ	TYR		35.424	15.130	2.467	1.00 8.29	H	C٠
	ATOM	1786	0 H	TYR		35.222	13.773	3.631	1.00 9.43	H	C
35	ATOM	1787	N	VAL		39.048	17.664	3.574	1.00 11.83	Н	0
	ATOM	1788	CA	VAL		39.771	16.775	3.423	1.00 13.98	H	N
	ATOM	1789	C	VAL		39.041	15.431	2.519 2.436	1.00 13.14	H	C
	ATOM	1790	0	VAL I		38.845	14.761		1.00 12.82	H	C
	ATOM	1791	СВ	VAL I			16.517	3.444	1.00 13.46	H	0
40	ATOM	1792		VAL I		41.922	15.540	3.006		Н	C
	ATOM	1793		VAL I		41.992	17.826	2.062	1.00 10.92	H 	С
	ATOM	1794	N	PRO F		38.624		3.065	1.00 11.07	H	С
	ATOM	1795	CA	PRO E		37.922	15.025 13.749	1.229	1.00 12.92	H	N
	ATOM	1796	C	PRO H		38.730		1.062	1.00 11.72	H	С
45	ATOM	1797	0	PRO H	_	39.957	12.604	1.675	1.00 13.96	H	С
	ATOM	1798	CB	PRO H			12.548	1.525	1.00 15.05	H	0
	ATOM	1799	CG	PRO H		37.809	13.620		1.00 9.89	H	С
	ATOM	1800	CD	PRO H		37.671	15.048	-0.885	1.00 12.78	H	С
	ATOM	1801	N	GLY H		38.742	15.730		1.00 12.59	H	С
50	MOTA	1802	CA	GLY H		38.038	11.697	2.354	1.00 12.86	H	N
	MOTA	1802	C	GLY H		38.698	10.574		1.00 13.45	H	C
	MOTA	1804	0	GLY H		39.107	10.871		1.00 15.29	H	С
	ATOM	1805	N	THE H			9.967		1.00 15.13	H	0
	MOTA	1806	CA			38.972	12.127		1.00 15.09	Н	N
55	ATOM '	1807	C	THR H		39.356	12.509		1.00 15.44	H	С
00	VION	1001	L	THR H	98	38.173	12.924	7.082	1.00 15.39	· H	С

	ATOM				R F		37.01	4 12.798	6.679	1.00 15.40	1	. O
	ATOM				R F		40.41	7 13.631	6.185	1.00 16.79	I	•
	ATOM	1810	00	1 TH	R E	98	39.86	4 14.813	5.605	1.00 16.68	I	-
_	ATOM	1811	CG	2 TH	R H	98	41.63	1 13.193	5.375	1.00 17.03	ŀ	
5	ATOM	1812		TH	R H	99	38.46	9 13.433	8.275		E	-
	ATOM	1813	CA	TH	R H	99	37.42	9 13.783	9.236		H	•
	ATOM	1814		TH	R H	99	37.20	5 15.251	9.633		H	-
	ATOM	1815	0	TH.	R H	99	36.11	15.605	10.086		H	-
	ATOM	1816	CB	TH	R H	99	37.643	3 12.963	10.532		H	-
10	ATOM	1817	0 G	1 TH	R H	99	38.973	3 13.187	11.022		H	-
	ATOM	1818	CG	2 TH	R H	99	37.468	11.465	10.265		11	_
	ATOM	1819	N	ASI	N H	100	38.219		9.473	=	н	-
	MOTA	1820	CA	ASI	И И	100	38.097		9.859	1.00 11.57	н	
	ATOM	1821	C	ASI	И Н	100	37.189		8.927	1.00 9.66	. н	•
15	ATOM	1822	0	ASP	H	100	37.165		7.719	1.00 11.07	н	
	MOTA	1823	CB	ASN	H	100	39.485		9.911	1.00 9.81	я	
	MOTA	1824	CG	ASA	H	100	39.576		10.966	1.00 12.61	Н	_
	ATOM	1825	0 D :	1 ASN	H	100	40.498		10.939	1.00 15.96	H	_
	MOTA	1826		2 ASN			38.633		11.908	1.00 7.34	H	N
20	MOTA	1827	N	HIS	Н	101	36.455		9.500	1.00 9.02	H	
	ATOM	1828	CA			101	35.552		8.738	1.00 10.03	H	N C
	MOTA	1829	C			101	34.503		8.017	1.00 9.38	H	C
	ATOM	1830	0			101	34.188		6.857	1.00 8.47	H	
	ATOM	1831	СВ			101	36.347	· -	7.724	1.00 8.47	Н	0
25	ATOM	1832	CG			101	37.353		8.352	1.00 11.39	n H	C
	ATOM	1833	ND1	HIS			36.997	22.895	9.200	1.00 18.05		C
	ATOM	1834		S HIS			38.705	21.882	8.293	1.00 18.03	H	N
	MOTA	1835		HIS			38.086	23.501	9.639	1.00 17.22	. и	C
	ATOM	1836		HIS			39.137	22.906	9.103	1.00 18.13	. Н	C
30	ATOM	1837	N			102	33.958	18.305	8.720	1.00 17.47	H	N
	ATOM	1838	CA	ASP			32.967	17.407	8.148	1.00 8.97	H	N
	ATOM	1839	С	ASP			31.567	18.022	8.153	1.00 10.99	H	C
	ATOM	1840	0	ASP			30.699	17.621	8.935	1.00 10.41	H . 17	С
	ATOM	1841	СВ	ASP			32.971	16.092	8.928	1.00 10.41	. Н	0
35	ATOM	1842	CG	ASP		102	32.360	14.959	8.147	1.00 12.94	H	C
	ATOM	1843				102	32.039	15.173	6.976	1.00 12.94	H	С
	ATOM	1844		ASP			32.216	13.173	8.703	1.00 11.04	H	0
	ATOM	1845	N	ILE			31.351	18.993	7.271	1.00 12.25	H	0
	MOTA	1846	CA	ILE			30.061	19.672	7.192	1.00 10.37	H	N
40	ATOM	1847	С	ILE			29.730	20.071	5.760	1.00 9.30	H	, C
	ATOM	1848	0	ILE			30.621	20.374	4.962	1.00 9.30	H	C
	ATOM	1849	CB	ILE			30.058	20.941	8.084	1.00 10.09	H	0
	ATOM	1850		ILE			28.677	21.607	8.072	1.00 10.09	Н	C
	ATOM	1851		ILE			31.120	21.923	7.591		H	C
45	ATOM	1852		ILE			28.502	22.665			H	C
	MOTA	1853	N	ALA			28.442	20.055	9.152	1.00 11.15	H	C
	ATOM	1854		ALA			27.970	20.035	5.437	1.00 9.70	Ħ	N
	ATOM	1855	C	ALA					4.114	1.00 10.78	H	С
	ATOM	1856	0	ALA			26.639 25.789	21.173 20.804	4.248	1.00 12.66	. H	С
50	ATOM	1857		ALA			27.807		5.063	1.00 11.86	. н	0
	ATOM	1858		LEU				19.217	3.216	1.00 7.13	H	C
	ATOM	1859		LEU			26.482 25.258	22.226	3.454	1.00 14.56	H	N
	ATOM	1860		LEU			25.258 24.640	23.016	3.426	1.00 12.91	Н.	C
	ATOM	1861		LEU			24.640	22.753	2.057	1.00 12.76	H	C
55	MOTA	1862		LEU			25.243	23.065	1.029	1.00 12.63	H	0
50	JA	1004	J D	UEU	1	.00	25.580	24.504	3.57 6	1.00 12.35	H	C

	ATOM	-				105		24.389	25.4	66 3.4	94 1.0	0 12.0	9	H	С
	ATOM			DI LEU				23.413	3 25.19	97 4.6				H	C
	. ATOM			2 LEU				24.903	26.89	92 3.5	60 1.0			H	C
-	MOTA	1866				106		23.445	22.1	72 2.0	46 1.0	0 12.3		H	, N
5	ATOM					106		22.758	21.83	37 0.8		0 11.43		Н	C
	MOTA	1868				106		21.564	22.74			0 12.98		H	C
	MOTA	1869	9 0	LEU	H	106		20.726	22.97	78 1.3		0 12.54		H	0
	ATOM	1870) CE	LEU	H	106		22.285	20.38			0 12.53		H	C
10	MOTA	1871				106		23.263				0 14.01		H	C
10	MOTA	1872	C C C	1 LEU	H	106		24.503	19.32			0 12.26		H	С
	ATOM.	1873	C D	2 LEU	H	106		22.519	17.90			0 12.82		H	C
	ATOM	1874	N	ARG	H	107		21.492				0 14.02		H	N
	MOTA	1875	CA	ARG	H	107		20.370				0 16.64		H	C
	MOTA	1876	C	ARG	H	107		19.397				0 16.72		H	
15	MOTA	1877	0	ARG	H	107		19.791				0 18.56		H	C
	MOTA	1878	СВ	ARG	H	107		20.822				0 18.34			0
	ATOM	1879	CG	ARG	H	107		19.754				0 20.80		H	C
	ATOM	1880	CD			107		19.992				0 26.37		H	C
	ATOM	1881	NE	ARG	H	107		21.234				0 20.37		H	C
20	ATOM	1882	СZ	ARG	H	107		21.321	29.33			0 30.69		H	N
	ATOM	1883	NH	1 ARG				20.233				30.09		H	C,
	MOTA	1884		2 ARG				22.503	29.94	_		29.68		H	N
	ATOM	1885		LEU				18.131	23.28			16.62		H	N
	ATOM	1886	CA	LEU				17.114	22.50			17.28		H	N
25	ATOM	1887	С	LEU				16.608	23.28			18.87		H	C
	ATOM	1888	0	LEU				16.532	24.51					H	C
	MOTA	1889	СВ	LEU				15.962	22.18			18.26		H	0
	ATOM	1890	CG	LEU				16.352	21.39			15.65		H	C
	ATOM	1891		LEU				15.134	21.19			14.18		H	C
30	ATOM	1892		LEU				16.942	20.04	-		10.37		H	C
	ATOM	1893	N	HIS				16.273	22.568			11.86		H	С
	MOTA	1894	CA	HIS				15.790	23.209			20.64		H	N
	ATOM	1895	С	HIS				14.546	24.054			22.07		H	С
	MOTA	1896	0	HIS				14.399	25.139			21.71		H	С
35	MOTA	1897	СВ	HIS				15.467				21.72		H 	0
	ATOM	1898	CG	HIS				15.022	22.155 22.742		_	24.90		H	С
	ATOM	1899		HIS				13.921	22.742			28.69		H	С
	ATOM	1900		HIS				15.525	23.762			31.80		H	N
	ATOM	1901		HIS				13.766	22.989			30.89		H	C
40	ATOM	1902		HIS				14.726				31.18		H	C
	ATOM	1903	N	GLN				13.647				30.63		H 	N
	ATOM	1904	CA	GLN				12.430	24.252			19.28		H	N
	MOTA	1905	С	GLN				12.219				21.37		H	С
	ATOM	1906	0	GLN				12.566	23.014			19.91		H	С
45	MOTA	1907	CB	GLN I				11.230				19.14		H	0
	ATOM	1908	CG	GLN i				11.230				24.70		H	С
	ATOM	1909	CD	GLN I				11.188				33.11		H	С
	ATOM	1910		GLN F								37.50		H ·	C
	ATOM	1911		GLN H				11.434 10.772	25.505 26.168			42.27		H	0
50	ATOM	1912	N	PRO H								40.37		H	N
	ATOM	1913	CA	PRO H				11.643	25.062			17.61		H	N
	ATOM	1914	C	PRO H					24.959 23.869			18.39		H	С
	ATOM	1915	0	PRO H								18.13		H	C
	ATOM	1916	СВ	PRO H					23.615			18.29		Ħ	0
55	ATOM	1917	CG	PRO H				10.882	26.348			18.48		H	С
5.0		1	- u	. 17 O. H	1	T T	1	10.127	26.733	-1.540	1.00	17.21		H	C

	ATOM	1918	C D	PRO) · H	111		11.09	1 26.31	9 -2.63	2 1.0	0 15.77		H	С
	MOTA	1919	N	1 A V	. H	112		10.62	4 23.21	5 0.83		0 17.13		Н	N
	MOTA	1920	C A	VAL	H	112		9.70	0 22.18	9 1.286		0 17.69		 H	c
	MOTA	1921	. С	VAI	. н	112	•	8.57	3 22.91	5 2.013		0 16.47		H	C
5	ATOM	1922	0	VAL	. н	112		8.70				0 15.80		H	.0
	ATOM	1923	CB	VAL	H	112		10.37	21.19			0 17.46		H	С
	ATOM	1924	CG	1 VAL	, н	112		11.412				0 19.26		H	C
	MOTA	1925	CG	2 VAL	, н	112		10.996				0 15.83		H	C
	ATOM	1926				113		7.463				0 15.47		H	N
10	MOTA	1927	CA			113	•	6.316				0 13.75		H	C
	MOTA	1928	C			113		6.395				0 14.36		H	C
	MOTA	1929	0			113		6.542				0 12.82	•	H	0
	MOTA	1930	CB	VAL	H	113		4.983				0 13.88		H	C
	MOTA	1931	CG	L VAL				3.808				0 10.56		H	С
15	ATOM	1932		2 VAL				4.951				0 12.19		H	С
	MOTA	1933	N			114		6.305				0 13.94		H	N
	ATOM	1934	CA			114		6.363				0 15.06		H	C
	ATOM	1935	C			114		5.017				0 15.96		H	C
	ATOM	1936	0			114		3.968				0 15.97		H	0
20	MOTA	1937	CB			114		6.710				0 13.15		H	C
	MOTA	1938	C G	LEU	H	114		8.090	_			0 15.88		H	C
	MOTA	1939	CDI	LEU				8.406				13.86		H	C
	MOTA	1940		LEU				9.173				11.78		H	C
	ATOM	1941	N			115		5.057				14.58		H	N
25	ATOM	1942	CA	THR				3.846				15.14		H	C
	MOTA	1943	C	THR				4.087				14.81		H	C
	ATOM	1944	0	THR				5.158		_		15.34		H	0
	MOTA	1945	CB	THR				3.462				14.99		H	C
	MOTA	1946	0G1					4.431	18.580			15.74		Ħ	0
30	MOTA	1947	CG2	THR				3.419				13.98		H	C
	MOTA	1948	N	ASP				3.094	19.523			15.45		H	N
	MOTA	1949	CA	ASP				3.244	18.904			16.55		H	C
	ATOM	1950	С	ASP				4.359	17.849			17.00		H	С
	ATOM	1951	0	ASP	H	116		4.913	17.519			16.90		H	0
35	MOTA	1952	CB	ASP				1.934	18.244	11.883		18.41		H	C
	ATOM	1953	CG	ASP				0.866	19.254	12.283		20.47		H	C
	ATOM	1954	0D1	ASP	H .	116		1.166	20.431	12.388		20.75		H	0
	ATOM	1955		ASP				-0.270	18.844	12.496		23.70		H	0
	MOTA	1956	N	HIS				4.687	17.326	10.233		15.90	,		N
40	MOTA	1957	CA	RIS	Н ;	117		5.733	16.307	10.105		16.55		H.	C
	ATOM	1958	С	HIS	H :	117		7.041	16.802	9.492		16.30		H.	C
	ATOM	1959	0	HIS	Н :	117		8.001	16.040			15.70		H	Õ
	ATOM	1960	CB	HIS	Н 3	117		5.217	15.115			16.16		H	C
	ATOM	1961	CG	HIS				4.102	14.384	9.970		19.31		Ħ	C
4 5	ATOM	1962	ND1	RIH				2.808	14.857	9.986		18.50		H	N
	ATOM	1963	CD2	HIS	H]	117		4.103	13.259	10.723		17.50		H	C
	ATOM	1964		HIS				2.059	14.056	10.723		21.07		1	C
	ATOM	1965		HIS				2.821	13.080	11.182		20.92		ł	N
	MOTA	1966	N	VAL				7.078	18.072	9.103		15.64	ì		N
50	ATOM	1967	CA	VAL				8.276	18.655	8.511		14.14	ŀ		C
	MOTA	1968	С	VAL				8.493	20.041	9.095		14.78	ŀ		,C
	MOTA	1969	0	VAL				7.784	20.984	8.762		14.27	I		0
	ATOM	1970	СВ	VAL				8.148	18.761	6.990		14.64	I I		C
	MOTA	1971		VAL				9.381	19.463	6.413		12.73	H		C
55	ATOM	1972		VAL I				7.983	17.367	6.393		12.56	H		C
												• •	1.	,	•

	ATOM	1973	3 N	٧.	ΑL	H 119	9.	486	20.14	47	9.970	1.	00 15.2	25	H	M
	MOTA	1974	L C	A V	ΑL	H. 119	9.	808	21.39		10.653		00 13.8		H	N C
	ATOM	1975	C	V.	AL	H 119	11.	329	21.50		10.766		00 14.3		H	
	ATOM	1976	0	٧.	ΑL	H 119		017	20.49		10.956		00 13.5			С
5	ATOM	1977	CI	B V	A L	H 119		177	21.39		12.081		00 15.7		H	0
	ATOM	1978	C			H 119		570	22.64		12.856		00 16.3		H	C
	ATOM	1979				H 119		656	21.28		11.974		00 16.1		H	C
	ATOM	1980				H 120	11.		22.71		10.644		00 13.6		H	C
	ATOM	1981	C A			H 120		325	22.88		10.746		00 12.5		H	N
10	ATOM	1982	С			H 120	13.		22.96		12.189		00 12.5		H	C
	ATOM	1983	0			H 120	13.		23.39		13.086				H	C
	ATOM	1984				H 120	13.		24.17		9.981		00 11.7		H	0
	ATOM	1985	CG			H 120	12.		24.97		10.315		0 12.1		H	C
	ATOM	1986				H 120	11.2		23.97				0 15.1		H	C
15	ATOM	1987				H 121	15.0		22.52		10.203		0 14.5		H	C
	ATOM	1988				H 121	15.6		22.57		12.403		0 12.2		H	N
	ATOM	1989				H 121	16.3		23.94		13.713		0 11.4		H	C
	ATOM	1990	0			H 121	16.8		24.39		13.719		0 12.9		H	С
	ATOM	1991	СВ			H 121	16.7				12.676		0 12.8		H	0
20	ATOM	1992	CG			H 121			21.472		13.838		0 10.8		H	С
	ATOM	1993				H 121	17.5		21.380		15.124	1.0			H	С
	ATOM	1994				H 121	16.6		21.104		16.320	1.0			H	C
	ATOM	1995	N			H 122	18.6		20.259		14.978	1.0			H	C
	ATOM	1996	CA			H 122	16.4		24.610		14.867		0 13.2		H	N
25	ATOM	1997	C			H 122	17.0		25.932		14.925		0 15.0		H	C
	ATOM	1998	0			H 122	18.5		25.919		14.874		0 15.3		H	C
	ATOM	1999	CB			H 122	19.2		25.139		15.571		0 16.5		H	0
	ATOM	2000	SG			1 122	16.6		26.684		16.205		0 15.0		H	С
	ATOM	2001	N N				14.8		26.918	_	16.573		16.60		H	S
30	ATOM	2001				1 123	19.1		26.793		14.046		14.53		H	N
00	ATOM	2002	C A			1 123	20.5		26.955		13.970		12.48		H	C
	ATOM	2003				123	20.7		28.048		15.018		12.30		H	£
	ATOM	2004	0 CB			1 123	20.2		29.149		14.876	1.00	13.28	3	H	0
	ATOM	2006	CB			1 123	20.9		27.466		12.590		11.93		H	C
35	MOTA	2007	CG			123	22.5		27.606		12.445	1.00	12.58	3	H	С
00	ATOM					123	23.1		26.211		12.479	1.00	9.53	3	H	C
		2008				123	22.8		28.312		11.147		10.47		H	С
	A T O M A T O M	2009	N			124	21.4		27.762		16.093		12.74		H	N
	ATOM	2010	CA			124	21.7		28.760		17.149		12.16		H	C
40	ATOM	2011	C			124	22.8		29.747		16.881				H	С
40	ATOM	2012	0			124	23.6		29.535		15.984				H	0
		2013	CB			124	22.0		27.897		8.356	1.00	10.72	:	H	С
	ATOM	2014	CG			124	22.9		26.839		7.730	1.00	12.77		H	С
	ATOM	2015	CD			124	22.2		26.505		6.408	1.00	10.59	ı	H	С
45	ATOM	2016	N			125	22.86		30.831		7.657	1.00	13.81		H	N
4 5	ATOM	2017	CA			125	23.94		31.800	1	7.533	1.00	14.83		H	С
	MOTA	2018	С			125	25.14	45	31.082	1	8.149	1.00	14.18		H	C
	ATOM	2019	0			125	24.97		30.182	1	8.972	1.00	13.59		H	0
	ATOM	2020	CB			125	23.65		33.085	1	8.319	1.00	15.94		H	С
50	ATOM	2021	CG			125	22.52		33.918	1	7.745	1.00	20.23	•	H	С
50	ATOM	2022	CD			125	22.42		35.292	1	8.380		23.56		H	C
	ATOM	2023		GLU			22.85		35.449		9.526	1.00	21.49		H	0
	ATOM	2024		GLU			21.91	12 :	36.198	1	7.728		25.49		H	0
	ATOM	2025	N			126	26.35	50 ;	31.477	1	7.759		15.26		H	N
FF	ATOM	2026	CA			126	27.55		30.836	1	8.258		16.72		H	С
55	MOTA	2027	С	ARG	H	126	27.79	3 3	30.894	1	9.772		16.72		H	С

	MOTA	202	8 0	ARG	H 126	28.01:	2 29.854	20.397	7 1.00 15.77	. ,	•
	A T O M	2029	9 C E		H 126					•	0
	ATOM	203	0 0		H 126						C
	ATOM				H 126		=				C
. 5	ATOM	2032	2 NE		H 126						C
	ATOM	203			H 126					••	N
	ATOM	2034			H 126					•	C
	ATOM	2035			H 126						N
	ATOM	2036			H 127						N
10	MOTA	2037			H 127						N
	ATOM	2038			H 127	26.976					C
	MOTA	2039	-		H 127	27.320					C
	ATOM	2040			H 127	28.124				H	0
	ATOM	2041			H 127					H	С
15	ATOM	2042			H 127	26.860				H	0
	ATOM	2043			H 128	29.175				H	С
	MOTA	2044			H 128	25.710				H	N
	ATOM	2045				24.650				H	С
	MOTA	2045			H 128	25.006				H	С
20	ATOM	2040			H 128	24.971			1.00 11.84	H	0
20	ATOM	2047			H 128	23.300		22.232	1.00 11.78	H	С
	ATOM	2048			H 128	22.186	30.092	22.694	1.00 11.98	H	С
	MOTA				H 128	21.783	30.057	24.026	1.00 13.78	H	С
	ATOM	2050 2051		2 PHE		21.498	29.306	21.773	1.00 9.96	H	С
25				PHE		20.704	29.256	24.437	1.00 12.05	H	С
20	ATOM	2052		PHE S		20.423	28.504	22.163	1.00 10.60	H	С
	ATOM	2053	CZ		H 128	20.021	28.480	23.503	1.00 12.84	H	С
	ATOM	2054	N		H 129	25.364	28.792	21.757	1.00 11.50	H	N
	ATOM	2055	CA		H 129	25.712	27.383	21.622	1.00 12.61	H	С
20	ATOM	2056	С		H 129	26.962	26.998	22.417	1.00 12.76	H	С
30	MOTA	2057	0		H 129	27.008	25.929	23.023	1.00 12.80	H	0
	ATOM	2058	CB		H 129	25.908	27.029	20.145	1.00 12.21	H	С
	ATOM	2059	0 G		H 129	26.052	25.624	19.977	1.00 17.13	H	0
	MOTA	2060	N		H 129A	27.969	27.868	22.420	1.00 13.31	H	N
0~	MOTA	2061	CA		H 129A	29.217	27.603	23.136	1.00 14.09	H	С
35	MOTA	2062	С		H 129A	29.128	27.730	24.657	1.00 14.85	H	С
	MOTA	2063	0		H 129A	29.707	26.921	25.382	1.00 14.98	H	0
	MOTA	2064	CB		H 129A	30.328	28.542	22.639	1.00 14.74	H	С
	ATOM	2065	CG	GLU I	129A	30.715	28.369	21.172	1.00 14.19	H	C
4.0	ATOM	2066	CD	GLU I	1 129A	31.780	29.367	20.745	1.00 16.54	H	Ċ
40	ATOM	2067			129A	31.941	30.368	21.432	1.00 16.37	Н	0
	ATOM	2068	0E2	GLU F	129A	32.431	29.146	19.728	1.00 17.94	H	0
	MOTA	2069	N	ARG F	129B	28.410	28.739	25.145	1.00 15.04	H	N
	MOTA	2070	CA	ARG H	129B	28.310	28.957	26.589	1.00 16.21	Н	C
	ATOM	2071	C	ARG H	129B	27.114	28.309	27.267	1.00 14.62	H	C
45	ATOM	2072	0	ARG H	129B	27.124	28.110	28.479	1.00 14.82	H	0
	ATOM	2073	CB	ARG H	129B	28.296	30.460	26.904	1.00 19.47	H	C
	MOTA	2074	CG		129B	27.031	31.161	26.451	1.00 28.02	Н	C
	MOTA	2075	CD		129B	26.919	32.605	26.946	1.00 33.00	H	C
	MOTA	2076	NE		129B	27.978	33.478	26.447	1.00 36.47	H	N
50	ATOM	2077	CZ		129B	27.822	34.777	26.197	1.00 38.35	H	
	MOTA	2078		ARG H		26.645	35.360	26.391	1.00 38.64	H	C
	ATOM	2079		ARG H		28.845	35.500	25.757	1.00 36.71	H	N N
	ATOM	2080	N	THR H		26.079	27.984	26.503	1.00 38.71	Н	N N
	MOTA	2081	CA	THR H		24.897	27.378	27.094	1.00 13.48	H	N
55	MOTA	2082	C	THR H		24.611	25.974	26.574			C
-				11			20.074	20.3/4	1.00 12.22	H	С

0

•	ATOM					1290	24.63	1 25.02	27.34	4 1.0	0 12.56		H	
	ATOM					1290	23.64	3 28.26	3 26.87		0 13.41		H	
	ATOM	_		LTHR			23.84				0 12.83		Н	,
5	ATOM			THR			22.41		4 27.47		0 13.85		H	Ì
J	ATOM					129D	24.35	8 25.83	9 25.27				H	ì
	MOTA					1290	24.04	3 24.53	3 24.70	6 1.0			Н	
	MOTA					129D	25.12	23.46	6 24.90	3 1.0	0 10.51		H	·
	MOTA					129D	24.802		2 25.09				H	(
10	ATOM ATOM	209				129D	23.717	· -		-	0 9.11		H	Ċ
10	ATOM	2092				129D	22.473	_		1.0	0 10.88		H	0
	ATOM	2093 2094		LEU			22.268				7.76		H	C
	ATOM	2095		LEU			21.249				8.60		H	C
	ATOM	2096		ALA		129E	26.388						H	N
15	MOTA	2097		ALA			27.495				11.11		H	C
	ATOM	2098		ALA			27.527	_			12.05		H	С
	ATOM	2099		ALA			28.209 28.828				14.06		H	0
	ATOM	2100		PHE			26.794						H	C
	MOTA	2101		PHE			26.793				11.37		H	N
20	ATOM	2102		PHE			25.513				11.44		H	C
	MOTA	2103	0	PHE			25.328				11.62		H	C
	MOTA	2104	CB	PHE			27.180				10.42		H 	0
	ATOM	2105	CG	PHE			28.562				12.82		H	C
	ATOM	2106	CD1	PHE			29.669				13.92		H	C
25	MOTA	2107		PHE			28.749	25.275			13.92		H T	C
	MOTA	2108	CE1	PHE F	1 1	29F	30.944	23.567			15.14	I	H	C
	ATOM	2109	CE2	PHE H			30.017	25.765			13.32	F		C
	ATOM	2110	CZ	PHE F			31.118	24.911			14.84	F		С
20	ATOM	2111	N	VAL F			24.633	21.380			11.71	F		N
30	ATOM	2112		VAL			23.418	20.617	28.339		10.87	H		C
	ATOM	2113		VAL H			23.969	19.201	28.125		12.85	H		C
	ATOM	2114	0	VAL H			24.514	18.886	27.062		12.09	H		0
	ATOM	2115		VAL H			22.344	20.956	27.271	1.00	10.74	Н		C
35	ATOM	2116		VAL H			21.203	19.946	27.329	1.00	8.96	H		Č
00	ATOM ATOM	2117 2118		VAL H			21.806	22.372	27.510	1.00	9.81	H		С
	ATOM	2119		ARG H			23.847	18.367	29.147		12.84	H		N
	ATOM	2120		ARG H ARG H			24.368	17.008	29.114		14.10	H		C
	ATOM	2121		ARG H			23.977	16.147	27.909		14.87	H		С
40	ATOM	2122	_	ARG H			24.831	15.767				H		0
	ATOM	2123		ARG H			23.960 24.450	16.281	30.400		14.36	H		С
	ATOM	2124		ARG H			25.916	14.840	30.485		17.60	H		C
	ATOM	2125		ARG H			26.154	14.769 15.328	30.854		20.10	H		С
	ATOM	2126		ARG H			27.311	15.262	32.182 32.832		21.14	H		N
45	ATOM	2127	NH1				28.356	14.659	32.832		19.89	H		С
	ATOM	2128	NH2				27.419	15.795	34.035	1.00		H		N
	ATOM	2129		HE H			22.687	15.844	27.801			H		N
	MOTA	2130		HE H			22.164	14.986	26.745	1.00		H		N
	ATOM	2131	C F	HE H	13	5	21.591	15.697	25.521	1.00		H H		C
50	MOTA	2132		HE H			21.053	16.799	25.609	1.00		n H		C
	MOTA	2133		HE H			21.089	14.054	27.340	1.00		H		0 C
	ATOM	2134	CG P	HE H	13	5	21.640	12.996	28.259	1.00		H		C
	ATOM	2135	CD1 P				22.119	11.794	27.752	1.00		H		C
EF	ATOM	2136	CD2 P				21.694	13.205	29.631	1.00		H		С
55	MOTA	2137	CE1 P	HE H	13	5	22.648	10.812		1.00		 H		С

	MOTA	2138	CE:	2 PHE	H 135	22.219	12.235	30.485	1.00 13.43	Н	С
	MOTA	2139	CZ	PHE	H 135	22.699	11.035	29.966	1.00 10.85	Н	C
	ATOM	2140) N	SER	H 136	21.718	15.030	24.378	1.00 13.39	Н	N
	ATOM	2141	. CA	SER	H 136	21.209	15.499		1.00 13.57	H	C
5	ATOM	2142	C C	SER	H 136	20.797	14.259	22.305	1.00 13.47	Н	C
	ATOM	2143	3 0	SER	H 136	21.293	13.160	22.559	1.00 11.08	Н	0
	MOTA	2144	CB	SER	H 136	22.285	16.249		1.00 13.40	H	C
	MOTA	2145	0 G	SER	H 136	22.576	17.513	22.881	1.00 14.55	H	0
	ATOM	2146	N	LEU	H 137	19.903	14.441		1.00 12.22	H	N.
10	MOTA	2147	CA	LEU	H 137	19.429	13.331		1.00 13.36	н	C
	ATOM	2148		LEU	H 137	20.157	13.217		1.00 13.34	H	C
	ATOM	2149	0	LEU	H 137	20.391	14.216		1.00 12.33	н	0
	ATOM	2150	CB	LEU	H 137	17.938	13.486		1.00 13.15	H	C
	ATOM	2151	CG	LEU	H 137		13.480		1.00 15.66	Н	C
15	MOTA	2152	CD1	LEU	H 137	15.532	13.692		1.00 14.08	Н	C
	MOTA	2153	CD2	LEU	H 137	17.026	12.158		1.00 14.11	H	C
	ATOM	2154			H 138	20.524	11.991		1.00 12.73	H	N
	MOTA	2155	CA		H 138	21.170	11.715		1.00 12.09	H	C
	ATOM	2156	С		H 138	20.216	10.733		1.00 12.01	н	C
20	MOTA	2157	0		H 138	19.675	9.836		1.00 12.12	н	0
	ATOM	2158	CB		H 138	22.585	11.077		1.00 13.28	н	С
	MOTA	2159	CG1		H 138	23.551	12.094	18.330	1.00 8.61	H	С
	ATOM	2160	CG2			22.506	9.842	18.600	1.00 11.66	н	C
	ATOM	2161	N		H 139	20.002	10.897	15.573	1.00 12.22	H	N
25	ATOM	2162	CA		H 139	19.061	10.041	14.869	1.00 11.00	. Н	C
	ATOM	2163	C		H 139	19.462	9.715	13.437	1.00 10.54	. н	С
	ATOM	2164	0		139	20.324	10.378	12.856	1.00 10.34	H	0
	ATOM	2165	СВ		139	17.693	10.722	14.870	1.00 11.74	H	C
	ATOM	2166	0 G		139	17.823	12.060	14.405	1.00 11.30	H	
30	ATOM	2167	N		I 140	18.818	8.690	12.881	1.00 9.32	н	0
	ATOM	2168	CA		140	19.084	8.269	11.516	1.00 9.70		N
	ATOM	2169	C		1 140	18.579	6.864	11.200	1.00 9.94	H	C
	ATOM	2170	0	GLY I		18.082	6.147	12.076		H	C
	ATOM	2171	N	TRP I		18.698	6.479	9.935	1.00 9.85 1.00 10.84	H	0
35	ATOM	2172	CA	TRP I		18.299	5.149	9.471	1.00 10.84	H	N
	ATOM	2173	C	TRP I		19.547	4.284	9.307	1.00 13.37	H	C
	ATOM	2174	0	TRP H		19.559	3.338	8.518	1.00 14.42	H	C
	ATOM	2175	СВ	TRP H		17.585	5.251	8.119	1.00 14.11	H H	0
	ATOM	2176	CG	TRP E		16.213	5.852	8.198	1.00 11.02		C
40	ATOM	2177		TRP E		15.042	5.194	8.451	1.00 7.95	H.	C
_	ATOM	2178		TRP H		15.868	7.227	7.992	1.00 7.93	H H	C
	ATOM	2179		TRP H		13.987	6.076	8.407	1.00 10.35	н Н	C
	ATOM	2180		TRP H		14.465	7.330	8.131	1.00 10.33		N
	ATOM	2181		TRP H		16.609	8.381	7.700	1.00 9.30	H	C
45	ATOM	2182		TRP H		13.784	8.547	7.700		H	C
	ATOM	2183		TRP H		15.934				H	C
	ATOM	2184		TRP H		14.531	9.590 9.662	7.559	_	H	C
	ATOM	2185	N	GLY H				7.707	1.00 9.90	H	C
	MOTA	2186	C A	GLY H		20.591 21.848	4.623	10.059	1.00 16.02	H	N
50	ATOM	2187	C	GLY H		21.848	3.898	9.988	1.00 15.99	H	C
0.0	ATOM	2188	0	GLY H		20.767	2.514	10.589	1.00 15.07	H	C
	ATOM	2189	N	GLN H		23.006	2.010	10.972	1.00 15.13	H	0
	ATOM	2190	C A	GLN H			1.904	10.672	1.00 16.63	H	N
	ATOM	2191	C	GLN H		23.162	0.556	11.212	1.00 17.93	H	C
55	MOTA	2191				22.665	0.409		1.00 20.58	H	C
00	A. OM	2232	U	GLN H	143	22.882	1.278	13.489	1.00 18.31	H	0

	ATOM	219	3 C	B GL	N H 1	13	24.628	0 0 110					
	ATOM				NHI		25.228				00 18.10	H	•
	ATOM				N H 1		25.525				00 19.46	H	C C
	ATOM			E1 GL			25.523				00 21.99	H	C
5	ATOM	2197		E2 GLI							00 20.13	H	0
	ATOM	2198			JHI		25.588				00 20.26	Н	N
	ATOM	2199			, п <u>т</u> ЈН 1		22.003				00 21.01	H	N
	ATOM	2200			, n 1 J H 1		21.481				00 23.46	Н	C
	ATOM	2201			, n 1 J H 1		22.573		-		00 25.89	H	С
10	ATOM	2202					22.507				0 25.66	H	0
	ATOM	2202			H 1		20.269				00 21.41	H	C
	ATOM	2204) LEU			19.080				0 19.40	H	C
	ATOM	2205)2 LEU			17.980				0 21.44	H	C
	ATOM	2206					18.551			-	0 14.43	H	С
15	ATOM	2207			H 1		23.574				0 27.35	H	N
10	ATOM	2207			H 1		24.700				0 32.19	H	C
	ATOM	2208			H 1		25.976				0 32.79	H	C
	ATOM	2210			H 14		25.916				0 33.17	H	0
	ATOM				H 14		24.470		15.186		0 33.26	H	С
20	ATOM	2211	CG		H 14		23.588				0 35.26	H	С
0 د		2212		1 LEU			22.133		16.123		0 37.31	H	C
	ATOM	2213		2 LEU			23.704		16.313	1.0	0 36.17	H	С
	ATOM	2214	N		H 14		27.124		14.934	1.0	0 33.83	H	N
	ATOM	2215	CA		H 14		28.404		14.266		0 35.01	Н	С
25	ATOM	2216	С		H 14		28.493	-3.449	13.091	1.00	36.95	H	С
20	ATOM	2217	0		H 14		28.380	-4.661	13.268	1.00	36.80	H	0
	ATOM	2218	CB		H 14		29.562	-2.750	15.232	1.00	35.30	H	C
	ATOM	2219	CG		H 14		30.922	-2.459	14.612	1.00	35.18	H	С
	ATOM	2220		1 ASP			31.245	-1.297	14.431	1.00	33.00	Н	0
20	ATOM	2221		2 ASP			31.652	-3.406	14.310	1.00	36.91	H	0
30	ATOM	2222	N		H 14		28.679	-2.906	11.893	1.00	38.24	н	N
	ATOM	2223	C A		H 14		28.782	-3.719	10.686	1.00	40.29	H	C
	ATOM	2224	С		H 14		27.507	-4.535	10.434		39.24	.H	C
	ATOM	2225	0		H 14		27.550	-5.613	9.842		40.33	Н	0
0.5	ATOM	2226	СВ		H 14		29.995	-4.651	10.797		43.36	H	Ċ
35	MOTA	2227	CG		H 14		30.348	-5.385	9.516		48.53	H	C
	ATOM	2228	CD		H 14		31.593	-6.237	9.698		54.02	Н	c
	ATOM	2229	NE		H 14		31.930	-6.977	8.484		56.36	H	N
	ATOM	2230	CZ		H 14		32.980	-7.784	8.361		58.31	H	C
40	ATOM	2231		ARG			33.811	-7.965	9.381		58.01	Н	N
40	ATOM	2232	NH2	ARG			33.199	-8.414	7.215		58.04	H	N
	ATOM	2233	N		H 149		26.372	-4.009	10.883		36.85	H	N
	ATOM	2234	CA	GLY	H 149	€	25.109	-4.696	10.697		33.07	Н	C
	MOTA	2235	С		H 149		24.277	-4.049	9.610		30.38	Н	c
4 ~	ATOM	2236	0		H 149		24.782	-3.246	8.826		29.52	Н	0
45	ATOM	2237	N		H 150		22.997	-4.398	9.562		28.41	Н	N
	ATOM	2238	CA	ALA	H 150)	22.091	-3.846	8.561		26.03	H	C
	MOTA	2239	С	ALA	H 150)	21.468	-2.542	9.048		23.50	H	C
	ATOM	2240	0	ALA	H 150)	21.415	-2.283	10.249		21.67	H	0
	ATOM	2241	CB		1 150		21.005	-4.850	8.248		27.18	H	С
50	ATOM	2242	N	THR	H 151		20.986	-1.732	8.112		22.99	Н.	N
	ATOM	2243	CA	THR	i 151		20.374	-0.455	8.458		22.82	Н	C
	ATOM	2244	C	THR	l 151		18.923	-0.593	8.925		22.79	H	C
	ATOM	2245	0	THR F	151		18.302	-1.651	8.783		21.21	H	0
	ATOM	2246	CB	THR F	151		20.450	0.538	7.278		23.93	H	C
55	ATOM	2247	0G1	THR F			19.822	-0.027	6.122		22.56	H	0
								<u> </u>		00	-2.50	п	U

	ATOM	2248	•	2 THR	H	151	21.903	0.865	6.956	1.0	0 22.44]	H	С
	MOTA	2249		ALA	H	152	18.389	0.484	9.493	1.0	0 20.52		i	N
	ATOM	2250				152	17.025	0.474	10.005	1.0	0 18.60		ł	C
_	ATOM	2251		ALA	H	152	15.979	0.962	9.011	. 1.0	0 16.25	ĭ	i	C
5	ATOM	2252				152	16.218	1.883	8.237	1.0	0 16:12	I		0
	ATOM	2253	CB	ALA	H	152	16.951	1.303	11.280		0 18.25	ŀ		Č
	ATOM	2254	N	LEU	H	153	14.811	0.332	9.045		0 15.23	ŀ		N
	ATOM	2255	CA	LEU	H	153	13.713	0.707	8.169		0 15.57	ŀ		C
	MOTA	2256	C	LEU	H	153	12.954	1.881	8.754		0 14.76	ŀ		C
10	MOTA	2257	0	LEU	H	153	12.443	2.720	8.021		0 17.16	F		0
	ATOM	2258	CB	LEU	H	153	12.770	-0.479	7.962		0 15.57	F		C
	ATOM	2259	CG	LEU	H	153	13.349	-1.531	7.015		16.60	H		C
	ATOM	2260	CD.	1 LEU	H	153	12.575	-2.847	7.125		16.63	F		C
	ATOM	2261	CD:	2 LEU	H	153	13.302	-0.978	5.602		15.24	H		C
15	ATOM	2262	N	GLU	H	154	12.871	1.933			15.00	H		N
	ATOM	2263	CA	GLU	H	154	12.182	3.025	10.755		15.61	H		C
	ATOM	2264	C	GLU	Ħ	154	13.198	3.936	11.431		14.97	н		С
	ATOM	2265	0	GLU	H	154	14.143	3.465	12.070		15.21	H		0
	ATOM	2266	CB	GLU	H	154	11.201	2.482	11.789		14.17	H		C
20	ATOM	2267	CG	GLU			9.877	2.027	11.206		20.51	H		C
	ATOM	2268	CD	GLU			8.914	1.551	12.274		23.96	H		С
	MOTA	2269	0E1	GLU	H	154	9.164	0.504	12.851		23.53	H		0
	ATOM	2270		GLU			7.919	2.249	12.535		27.22	H		0
	ATOM	2271	N	LEU			13.000	5.241	11.279		14.72	Н		N
25	ATOM	2272	CA	LEU			13.900	6.234	11.864		13.82	H		C
	ATOM	2273	С	LEU			14.157	5.954	13.336		12.35			
	ATOM	2274	0	LEU			13.223	5.883	14.127		13.95	Н.		C
	ATOM	2275	СВ	LEU			13.304	7.635	11.725		14.43	H		0
	MOTA	2276	CG	LEU			14.144	8.775	12.315		13.63	H		C
30	ATOM	2277		LEU			15.464	8.868	11.565		13.84	H		C
	ATOM	2278		LEU			13.380	10.088	12.210			H		C
	ATOM	2279	N	MET			15.424	5.805	13.701		13.06	H		C
	ATOM	2280	CA	MET			15.798	5.542			12.83	H		N
	ATOM	2281	C	MET			16.366		15.087		12.93	H		C
35	ATOM	2282	0	MET			16.871	6.812	15.739		12.73	H		C
	ATOM	2283	СВ	MET			16.841	7.700	15.054		13.04	H		0
	ATOM	2284	CG	MET I				4.421	15.150		12.00	H		C
	ATOM	2285	SD	MET			16.461	3.125	14.429		12.49	Н		C
	ATOM	2286	CE	MET I			15.054	2.200	15.133		13.73	H		S
40	ATOM	2287	N	VAL I			15.766	1.648	16.690		12.82	H		C
10	ATOM	2288	CA	VAL I			16.292	6.883	17.066		12.85	H		N
	ATOM	2289	C	VAL I			16.779	8.037			11.88	H		С
	ATOM	2290	0	VAL E			17.463	7.558	19.098		13.44	H		C
	ATOM	2291	CB	VAL E			17.127	6.499	19.642		12.26	H		0
45	ATOM	2292		VAL H			15.606	9.020	18.126		9.61	H		C
10	ATOM	2293		VAL H			14.621	8.382	19.074	1.00		H		С
	ATOM	2294	N N				16.142	10.337			11.73	H		С
				LEU H			18.425	8.343			12.79	H		N
	MOTA	2295	CA	LEU H			19.202	7.999			11.41	H		C
50	ATOM	2296	C	LEU H			19.660	9.223	21.545		13.56	H		С
00	ATOM	2297	0 CB	LEU H			20.119		20.963		10.13	H		0
	MOTA	2298	CB	LEU H			20.444		20.331		12.58	H		C
	MOTA	2299	CG	LEU H			21.465		21.414		11.97	H		C
•	ATOM	2300		LEU H			20.871		22.360		11.50	H		С
55	MOTA	2301		LEU H			22.740		20.770		11.54	H		С
55	MOTA	2302	N	ASN H	1	59	19.547	9.138	22.869	1.00	11.48	H		N

								•						
	ATOM	230	3 CA	ASN	H 159	19.	973	10.216	23.74	9 1.0	0 13.66		H	С
	ATOM	230	4 C	ASN	H 159	21.	419	9.908			0 12.37		H	C
	MOTA	230	5 0	ASN	H 159		701	8.835			0 13.12		H	
	MOTA	230	6 CB	ASN	H 159		092	10.254			0 15.32		Н	0
5	ATOM	2301	7 CG	ASN	H 159		000	11.643			18.58		H	C
	ATOM	2308	B 0D	1 ASN	H 159		609	11.791			19.52			C
	MOTA	2309	:מא פ		H 159		341	12.668			17.35		H	0
	MOTA	2310			H 160		331	10.835			11.23		H	N
	ATOM	2311	L CA		H 160		741	10.644			10.26		H	N
10	ATOM	2312	2 C		H 160		309	11.844			11.62		H	C
	ATOM	2313	3 0		H 160	23.		12.989			11.62		H	C
	ATOM	2314	C B		H 160	24.		10.425) 11.37		H	0
	ATOM	2315	CGI		H 160	24.		9.147					H	C
	ATOM	2316			H 160	24.		11.650					H	C
15	ATOM	2317			H 161	25.		11.590			7.47		H	C
	ATOM	2318			H 161	25.		12.652					H .	N
	ATOM	2319			H 161	27.		13.199			11.11		H	C
	MOTA	2320			H 161	27.8		12.458	25.445		10.16		H	C
	ATOM	2321			H 161	26.		11.944					H	0
20	ATOM	2322			H 161	26.		10.594	28.058		10.26		H	C
	ATOM	2323			H 161	25.		10.354	27.575		10.20		H	C
	MOTA	2324	N		H 162	27.2		14.499	26.511		11.31		H	C
	ATOM	2325	CA		H 162	28.4		15.145	26.185		10.55		H	N
	ATOM	2326	C		H 162	29.6			25.560		10.54		H	С
25	ATOM	2327	0		H 162			15.171	26.474		11.25		H	С
	ATOM	2328	CB		H 162	29.5		15.158	27.701		13.29		H	0
	ATOM	2329	CG		H 162	28.0		16.564	25.152		11.25		H	С
	MOTA	2330	CD		H 162	29.0		17.391	24.464		12.83		H	С
	ATOM	2331	NE		H 162	28.4		18.669	23.889	1.00	9.42		H	С
30	ATOM	2332	CZ					19.534	23.303	1.00	9.59		H	N
	MOTA	2333	NH1		H 162	29.2		20.576	22.520		11.68	1	Ħ	С
	ATOM	2334			H 162 H 162	27.9		20.886	22.217		11.81	i	Ħ	N
	ATOM	2335				30.2		21.318	22.047		12.43	l	H	N
	MOTA	2336	N C A		H 163	30.8		15.178	25.872	1.00	9.08	l	H	N
35	MOTA	2337	CA		H 163	32.0		15.230	26.636		10.57	1	Ħ	С
00	MOTA	2338	C		H 163	32.9		16.323	26.127		11.95	1	Ĭ	С
	ATOM		0		H 163	33.0		16.570	24.923	1.00	10.27	l	1	0
	MOTA	2339 2340	CB		H 163	32.8		13.907	26.548	1.00	12.13	i	1	C
	ATOM	2341	CG		H 163	32.3		2.650	27.278	1.00	12.88	ŀ	i	C
40	ATOM	2342		LEU I		31.1		.2.034	26.547		12.78	F	Ī	C
10	ATOM			LEU I		33.5		1.658	27.336		14.29	F	Ī	C
	ATOM	2343	N		164	33.6		6.990	27.047		11.82	H	l	N
	ATOM	2344	CA	MET I		34.6		7.980	26.633		12.80	H	ļ.	C
	ATOM	2345	C	MET I		35.7		7.109	26.081		12.63	H	Ī	C
45		2346	0	MET H		35.98		5.977	26.532	1.00	10.67	H	[0
40	ATOM	2347		MET I		35.10		8.825	27.822	1.00	14.08	H		C
	ATOM	2348		MET H		34.02		9.805	28.259	1.00	18.16	H		С
	ATOM	2349		MET H		34.56		1.069	29.400	1.00	22.97	Н		S
	ATOM	2350		MET H		35.40		2.150	28.252	1.00	19.99	H		С
F 0	ATOM	2351		THR H		36.50)4 1	7.621	25.095	1.00	12.59	H		N
50	ATOM	2352		THR H		37.55	54 1	6.849	24.451	1.00		H		С
	ATOM	2353		THR H		38.62	29 1	6.275	25.375	1.00	16.25	H		C
	ATOM	2354		THR H		39.06	64 1	5.143	25.186	1.00		H		0
	ATOM	2355		THR H		38.17	2 1	7.679	23.320	1.00	17.38	H		C
<i>-</i> -	ATOM	2356		THR H		37.11	.2 1	8.103	22.452	1.00		Н		0
55	ATOM	2357	CG2	THR H	165	39.17	5 1	6.855	22.510	1.00	14.61	H		C

	MOTA	2358				166	39.048			1.00 16.53	H	N
	ATOM	2359	CA	GL	N H	166	40.055	16.541	27.310	1.00 17.06	H	C
	ATOM	2360	C	GL	N H	166	39.549	15.231	27.923	1.00 17.05	H	C
	ATOM	2361	0			166	40.284	14.250	28.008	1.00 16.97	Н	0
• 5	MOTA	2362	CB			166	40.316	17:585	28.400	1.00 16.34	Н	С
	ATOM	2363	CG	GL	N H	166	41.362	17.196	29.432	1.00 18.36	H	C
	MOTA	2364	CD	GL	N H	166	41.681	18.350	30.373	1.00 18.67	Н	C
	ATOM	2365	0 E	1 GL	N H	166	42.310	19.329	29.973	1.00 22.60	H	0
	ATOM	2366	NE:	2 GL	N H	166	41.228	18.249	31.618	1.00 14.45	H	N
10	MOTA	2367	N	ASI	P H	167	38.290	15.217	28.347	1.00 17.30	н .	N
	MOTA	2368	CA	ASI	P H	167	37.707	14.010	28.916	1.00 17.76	н	C
	MOTA	2369	С	ASI	P H	167	37.628	12.893	27.876	1.00 17.98	н	C
	ATOM	2370	0	ASI	P H	167	37.922	11.739	28.182	1.00 18.09	H	0
	MOTA	2371	CB	ASI	H	167	36.302	14.282	29.456	1.00 18.74	н	C
15	ATOM	2372	CG	ASI	H	167	36.313	15.086	30.729	1.00 18.60	H	C
	ATOM	2373	0 D 1	LASE	H	167	37.056	14.726	31.625	1.00 19.37	H	0
	MOTA	2374	0 D 2	2 ASE		167	35.569	16.071	30.818	1.00 20.49	H	0.
	MOTA	2375	N	CYS		168	37.226	13.227	26.651	1.00 17.56	H	N
	ATOM	2376	CA			168	37.114	12.210	25.608	1.00 18.06	H	C
20	MOTA	2377	С			168	38.449	11.496	25.398	1.00 18.33	H	C
	MOTA	2378	0	CYS		168	38.508	10.270	25.404	1.00 17.46	H	
	ATOM	2379	СВ			168	36.658	12.829	24.281	1.00 17.54	n H	0 C
	MOTA	2380	SG			168	36.253	11.592	23.003	1.00 17.34	H	S
	ATOM	2381	N			169	39.511	12.271	25.202	1.00 18.38		
25	ATOM	2382	CA			169	40.843	11.711	24.990	1.00 18.38	H	N
	ATOM	2383	C			169	41.294	10.864	26.175		H	C
	ATOM	2384	0			169	41.797	9.757	25.995	1.00 23.09	H	C
	ATOM	2385	СВ			169	41.861			1.00 23.96	H	0
	ATOM	2386	CG			169	41.665	12.830	24.748	1.00 22.08	· H	C
30	ATOM	2387		LEU			42.705	13.649	23.471	1.00 24.49	H	C
•	MOTA	2388		LEU				14.766	23.403	1.00 24.94	H	C
	MOTA	2389	N N			170	41.779	12.733	22.260	1.00 23.41	H	С
	MOTA	2390	CA				41.103	11.377	27.386	1.00 22.94	H	Ν.
	ATOM	2390	C	GLN		170	41.508	10.651	28.584	1.00 24.75	H	С
35	ATOM	2392	0				40.732	9.350	28.756	1.00 26.16	H	C
00	ATOM	2392	СВ	GLN			41.298	8.337	29.161	1.00 26.39	H	0
	ATOM	2394	CG	GLN			41.333	11.532	29.837	1.00 21.09	H	С
	ATOM	2395	CD	GLN			42.137	12.840	29.793	1.00 20.61	H	С
	ATOM	2396	0E1	GLN GLN			42.114	13.623	31.103	1.00 19.91	H	С
40	ATOM	2397		GLN			41.153	13.560	31.874	1.00 19.12	H	0
10	ATOM	2398	N E Z			170 170 A	43.174	14.382	31.348	1.00 16.44	H	N
	ATOM	2399	CA				39.442	9.379	28.432	1.00 26.53	H	N
	MOTA					170A	38.576	8.210	28.572	1.00 26.34	H	С
	ATOM	2400	C			170A	38.536	7.266	27.371	1.00 26.09	H	С
45		2401	0			170A	37.795	6.288	27.386	1.00 26.50	Н	0
40	MOTA	2402	CB			170A	37.146	8.655	28.884	1.00 28.29	Н	Ç
	ATOM	2403	CG			170A	36.957	9.298	30.236	1.00 30.52	H	С
	ATOM	2404	CD			170A	35.513	9.682	30.478	1.00 34.79	H	С
	ATOM	2405		GLN			34.602	8.867	30.290	1.00 37.17	H	0
50	ATOM	2406		GLN			35.290	10.921	30.904	1.00 34.78	H	N
50	ATOM	2407	N			170B	39.317	7.549	26.336	1.00 26.18	H	N
	ATOM	2408	CA			170B	39.317	6.696	25.159	1.00 28.66	H	C
	MOTA	2409	C	SER			40.585	5.848	25.055	1.00 31.18	H	C
	MOTA	2410	0	SER			41.643	6.231	25.552	1.00 29.81	H	0
==	ATOM		CB	SER			39.153	7.544	23.890	1.00 27.91	H	C
55	ATOM	2412	0 G	SER	H :	170B	37.912	8.239	23.886	1.00 24.13	H	0

N C C

	MOTA		3 N	ARG H 170C		9 4.688	3 24.41	7 1.00 33.34	Н	
	ATOM		4 C	A ARG H 170C	41.57	9 3.777			H	
	ATOM	241	5 C	ARG H 170C					Н	,
-	ATOM	241	6 0	ARG H 170C	42.07				H	,
5	ATOM	241	7 CI	ARG H 170C	41.059	2.395			Н	,
	ATOM	241	8 C(ARG H 170C					Н	
	ATOM	241	9 (1	ARG H 170C					n H	(
	ATOM	242	O NE	ARG H 170C	42.369				Н	
10	ATOM	242	1 C Z	ARG H 170C	41.864		_		Н	r
10	ATOM	242	2 NH	1 ARG H 170C	40.684			_	H.	,
	ATOM	2423	3 N H	2 ARG H 170C	42.540					1
	ATOM	2424	4 N	LYS H 170D	43.670				H	N
	ATOM	2425	5 CA	LYS H 170D	44.605				H	N
	ATOM	2426	5 C	LYS H 170D	44.971				H	0
15	ATOM	2427	7 0	LYS H 170D	45.314				H	. 0
	ATOM	2428	3 СВ	LYS H 170D	45.876				H	0
	ATOM	2429	CG	LYS H 170D	45.660				H	C
	MOTA	2430	C D	LYS H 170D	45.336		23.320		H	C
	MOTA	2431	. CE	LYS H 170D	44.179		23.957		H	C
20	MOTA	2432	N Z	LYS H 170D	42.919		23.891		H	C
	ATOM	2433	N	VAL H 170E	44.897		20.141	1.00 44.55	Н	N
	ATOM	2434	CA	VAL H 170E	45.229		19.050	1.00 45.92	H	N
	MOTA	2435	С	VAL H 170E	46.174	4.403	18.038	1.00 47.38	H	С
	MOTA	2436		VAL H 170E	46.307	5.628	18.008	1.00 48.37	H	C
25	ATOM	2437		VAL H 170E	43.955	3.028		1.00 48.59	H	0
	ATOM	2438	CGI		43.053	2.478	18.317	1.00 48.27	H	C
	ATOM	2439		VAL H 170E	43.195	4.398	19.283	1.00 48.47	H	С
	ATOM	2440		GLY H 170F	46.828	3.580	17.721	1.00 50.40	H	C
	ATOM	2441	CA	GLY H 170F	47.778		17.220	1.00 49.26	H	N
30	ATOM	2442	С	GLY H 170F	47.778	4.055	16.227	1.00 49.68	H	С
	ATOM	2443	0	GLY H 170F	47.430	5.293	15.409	1.00 49.19	Н	С
	ATOM	2444	N	ASP H 170G	46.988	6.420	15.869	1.00 49.83	H	0
	ATOM	2445	CA	ASP H 170G	46.666	5.081	14.181	1.00 49.28	Н	N
	MOTA	2446	C	ASP H 170G	45.293	6.176	13.262	1.00 48.00	H	C
35	MOTA	2447	0	ASP H 170G	44.613	6.803	13.484	1.00 44.35	H	C
	ATOM	2448	СВ	ASP H 170G		7.177	12.527	1.00 44.28	H	0
	ATOM	2449	CG	ASP H 170G	46.771	5.684	11.815	1.00 52.87	H	С
	MOTA	2450		ASP H 170G	48,206 48,987	5.571	11.341	1.00 56.19	H	С
	ATOM	2451		ASP H 170G	48.545	4.862	11.981	1.00 59.14	H	0
40	ATOM	2452	N	SER H 170H	44.899	6.193	10.325	1.00 58.70	H	0
	MOTA	2453	CA	SER H 170H	43.613	6.933 7.524	14.745	1.00 39.99	H	N
	ATOM	2454	С	SER H 170H	43.583	9.003	15.084	1.00 36.53	H	С
	ATOM	2455	0	SER H 170H	44.501	9.747	14.727	1.00 32.15	Ħ	C
	ATOM	2456	СВ	SER H 170H	43.337		15.056	1.00 31.87	H	0
45	ATOM	2457	0 G	SER H 170H	42.120	7.364	16.579	1.00 37.95	H	С
	ATOM	2458	N	PRO H 1701	42.529	7.987	16.949	1.00 42.60	H	0
	MOTA	2459	CA	PRO H 1701	42.433	9.442	14.026	1.00 28.54	H	N
	MOTA	2460	C	PRO H 1701	42.435	10.856	13.660	1.00 26.44	H	C
	ATOM	2461	0	PRO H 1701		11.701	14.931	1.00 25.04	H	С
50	ATOM	2462	CB	PRO H 1701	41.964 41.112	11.239	15.981	1.00 24.79	H	0
-	ATOM	2463	CG	PRO H 1701	41.112	10.921	12.900	1.00 24.88	H	С
	ATOM	2464	CD	PRO H 1701	41.032	9.575	12.255	1.00 26.28	H	C
_	ATOM	2465	N	ASN H 175	42.890		13.376	1.00 26.49	H	С
	MOTA	2466		ASN H 175	42.890		14.842	1.00 24.55	H	N
55	ATOM	2467		ASN H 175	41.484			1.00 24.55	H	С
		• •	J	10H H 1/0	41.404	14.376	16.174	1.00 21.18	H	С

	ATOM		3 . 0			H 175	40.73	3 14.50	9 15.21	1 1.0	00 19.35		Н	0
	MOTA					H 175	43.839	15.00	4 15.78		00 26.79		H	Č
	ATOM	2470				H 175	45.269	14.57	6 15.576	5 1.(00 30.83		H	Č
_	ATOM	2471)1 AS	SN	H 175	45.829	13.82	3 16.370	1.0	00 32.43		H	0
5	ATOM	2472				H 175	45.876	15.06	4 14.499	9 1.0	00 33.68		Н	N
	ATOM	2473	N			H 176	41.140	14.69	5 17.414		00 18.30	•	H	N
	ATOM	2474	C A	. H	E	H 176	39.852	15.290	17.716	1.0	00 17.01		H	C
	ATOM	2475	C	11	ĿΕ	H 176	40.181	16.773	3 17.786		0 17.25		H	С
	ATOM	2476	0	H	. E	H 176	40.800	17.232	18.740		0 18.43		H	0
10	ATOM	2477	CB	II	E	H 176	39.306	14.807	7 19.077		0 16.65		Н	С
	ATOM	2478	CG	1 IL	E	H 176	39.186	13.277	7 19.073		0 15.60		H	Č
	MOTA	2479	CG	2 IL	E	H 176	37.935	15.437			0 13.67		H	C
	ATOM	2480	CD	1 IL	E	H 176	38.827	12.685	20.411		0 17.27		H	C
	ATOM	2481	N	TH	R	H 177	39.784	17.521			0 16.30		H	N
15	MOTA	2482	CA	TH	R	H 177	40.094	18.945			0 15.04		H	C
	MOTA	2483	C	TH	R	H 177	39.060	19.829			0 14.07		H	C
	MOTA	2484	0	TH	RI	177	38.107	19.344			0 13.41		H	0
	ATOM	2485	CB			177	40.227				0 16.10		H	С
	ATOM	2486	0 G	1 TH	R	177	38.926				0 16.94		H	0
20	MOTA	2487	CG	2 TH	RI	i 177	41.149				0 12.71		H	C
	ATOM	2488	N	GL	U E	178	39.266	21.138			0 13.19		H	N
	ATOM	2489	CA			1 178	38.351	22.106			0 14.78		H	C
	MOTA	2490	C			178	37.062	22.188			0 13.86		H	C
	ATOM	2491	0			178	36.104	22.847			0 12.84		H	0
25	MOTA	2492	СВ			178	39.009	23.490	_		0 18.37		H	
	ATOM	2493	CG			178	39.254	24.129			20.75			C
	MOTA	2494	CD			178	40.674	23.943			27.62		H	C
	ATOM	2495				178	41.148	22.778	16.008		27.52		H	C
	MOTA	2496				178	41.317	24.969	15.785		30.43		H	0
30	ATOM	2497	N			179	37.044	21.524	15.783		12.57		H	0
	ATOM	2498	CA			179	35.868	21.517	15.056		12.57		H	N
	ATOM	2499	С			179	35.042	20.248	15.265		11.09		H	C
	ATOM	2500	0			179	34.189	19.910	14.444				H	C
	MOTA	2501	СВ			179	36.317	21.637	13.594		11.12		H	0
35	ATOM	2502	CG			179	37.076	22.924	13.342		12.21		H	C
	ATOM	2503				179	36.406	24.148	13.342		15.01		H	C
	ATOM	2504				179	38.466	22.927			13.28		H	C
	MOTA	2505				179	37.090	25.344	13.211		13.16		H	C
	ATOM	2506		TYR			39.169		13.163 13.062		15.33		H	С
40	ATOM	2507	CZ			179	38.468	25.329	13.002				H	C
	ATOM	2508	ОН			179	39.134	26.519			17.14		H.	C
	ATOM	2509	N			180	35.289	19.567			17.38		1	0
	MOTA	2510	CA			180	34.607	18.319	16.383		11.28		1	N
	ATOM	2511	C			180	34.345		16.711		10.08		·	C
45	ATOM	2512	0			180	34.873	18.230	18.210		10.42		I	C
	ATOM	2513	СВ			180		19.014	18.992		11.63		i -	0
	MOTA	2514	CG			180	35.498	17.122	16.359		10.13		Ī	С
	ATOM	2515	SD	MET			36.249	17.191	15.046		11.90	ŀ		С
	MOTA	2516	CE	MET			37.417	15.806	14.948		13.02	E		S
50	ATOM	2517	N				38.056	16.055	13.327		10.31	F		C
50	MOTA	2518	CA	PHE PHE			33.544	17.246	18.603		10.40	H		N
	MOTA	2519	C				33.276	16.987	20.012		10.41	H		C
	MOTA	2520	0	PHE			32.745	15.564	20.107		11.92	H		C
	ATOM	2521	CB	PHE			32.119	15.070	19.167		11.21	H		0
55	MOTA	2522	CG	PHE			32.293	18.010			10.04	H		С
00	итом	2322	CU	PHE	п	191	30.857	17.822	20.179	1.00	11.23	H		C

	ATOM	_		D1 PHE H 181		7 16.852	20.784	1.00 9.00	Н	С	
-	ATOM			D2 PHE H 181	30.292	2 18.650	19.210		Н	C	
	ATOM	2525		E1 PHE # 181	28.712	2 16.711	20.434		H	C	
=	ATOM	2526		E2 PHE H 181	28.941	18.518	18.848		Н	C	•
. 5	MOTA	2527	CZ		28.152	17:548	19.464		H	C	
	ATOM	2528		CYS H 182	33.030	14.892	21.217		H	N	
	ATOM	2529			32.576	13.525			H	C	
	ATOM	2530	C	CYS H 182	31.306	13.494	22.220		н	C	
3.0	ATOM	2531		CYS H 182	31.047	14.379			н	0	
10	ATOM	2532	CB		33.605	12.685	22.166		н .	C	
	MOTA	2533		CYS H 182	35.315	12.691	21.563		н	S	
	MOTA	2534		ALA H 183	30.530	12.445	22.005		н	N	
	MOTA	2535	CA	ALA H 183	29.290	12.254	22.731		H	C	
	ATOM	2536	C	ALA H 183	28.980	10.769	22.670		Н	C	
15	ATOM	2537	0	ALA H 183	29.325	10.102	21.696		H	0	
	ATOM	2538	CB	ALA H 183	28.166	13.066			H	C	
	ATOM	2539	N	GLY H 184A	28.352	10.244	23.714		н	N	
	ATOM	2540	C A	GLY H 184A	28.016	8.835	23.712	1.00 12.38	н	C	
~ ^	ATOM	2541	C	GLY H 184A	28.474	8.038	24.916	1.00 13.73	H	C	
20	ATOM	2542	0	GLY H 184A	28.543	8.545	26.041	1.00 13.45	H	0	
	ATOM	2543	N	TYR H 184	28.793		24.667	1.00 14.78	H	N	
	ATOM	2544	CA	TYR H 184	29.217	5.864	25.720	1.00 14.94	H	C	
	ATOM	2545	C	TYR H 184	30.395	5.029	25.250	1.00 15.46	H		
	ATOM	2546	0	TYR H 184	30.509	4.702	24.070	1.00 16.06	Н	C 0	
25	ATOM	2547	CB	TYR H 184	28.065	4.935	26.112	1.00 16.53	H	C	
	ATOM	2548	CG	TYR H 184	26.792	5.637	26.533	1.00 18.74	H	C	
	MOTA	2549	CDI	L TYR H 184	25.937	6.206	25.589	1.00 18.37	H	C	
	ATOM	2550	CD2	2 TYR H 184	26.443	5.731	27.878	1.00 20.30	. Н	C	
	MOTA	2551	CE1	TYR H 184	24.772	6.847	25.973	1.00 19.02	Н	C	
30	ATOM	255 2	CE2	2 TYR H 184	25.277	6.371	28.273	1.00 19.18	H	C	
	ATOM	2553	CZ	TYR H 184	24.448	6.925	27.317	1.00 19.19	H	C	
	ATOM	2554	0 H	TYR H 184	23.285	7.542	27.699	1.00 21.68	H	0.	
	ATOM	2555	N	SER H 185	31.267	4.681	26.185	1.00 15.70	H		
	MOTA	2556	CA	SER H 185	32.450	3.891	25.882	1.00 15.49	H	N C	
35	ATOM	2557	C	SER H 185	32.314	2.426	26.309	1.00 16.42	H	C	
	ATOM	2558	0	SER H 185	33.294	1.680	26.293	1.00 16.49	H		
	ATOM	2559	CB	SER H 185	33.655	4.506	26.579	1.00 15.34	Н	0 C	
	MOTA	2560	0 G	SER H 185	33.478	4.459	27.984	1.00 15.56	H	0	
	ATOM	2561	N	ASP H 186	31.110	2.013		1.00 17.79	Н	N	
4 0	ATOM	2562	CA	ASP H 186	30.898	0.633			H		
	MOTA	2563	C	ASP H 186	30.358	-0.274	26.006		H	C	
	ATOM	2564	0	ASP H 186	29.934	-1.397			H	C	
	ATOM	2565	CB	ASP H 186	29.962	0.589	28.330	1.00 20.43	H	0	
	ATOM	2566	CG	ASP H 186	28.576	1.098	28.019		n H	C	
45	ATOM	2567	0D1	ASP H 186	28.330	1.483	26.884	1.00 21.60		C	
	ATOM	2568		ASP H 186	27.750	1.103	28.921	1.00 21.42	H	0	
	MOTA	2569	N	GLY H 187	30.373	0.230	24.773	1.00 21.14	H	0	
	ATOM	2570	CA	GLY H 187	29.914	-0.531	23.625	1.00 21.14	H	N	
	ATOM	2571	С	GLY H 187	28.424	-0.780	23.493	1.00 20.04	H	C	
50	ATOM	2572	0	GLY H 187		-1.702	22.789	1.00 21.04	H	C	
	MOTA	2573	N	SER H 188A	27.597		24.126		H	0	
	ATOM	2574	CA	SER H 188A	26.153		24.126	1.00 20.16	H	N	
	ATOM	2575		SER H 188A	25.337			1.00 18.78	H	C	
	ATOM	2576		SER H 188A				1.00 17.55	Н	C	
55	ATOM'	2577		SER H 188A	25.582			1.00 18.92	H	0	
					20.002	U. 14/	20.402	1.00 18.59	H	С	

	ATOM	2578	3 00	G SER H 188A	25.675	1.186	26.011	1.00 20.17	Н	0
	ATOM	2579	N	LYS H 188	25.786				н	N
	ATOM	2580	C	LYS H 188	25.020		-		H	
	ATOM	2581		LYS H 188	25.889				H	C
5	MOTA	2582	0	LYS H 188	26.883		_	· -		C
	ATOM	2583			24.140				H	.0
	ATOM	2584			23.127				H	С
,	ATOM	2585							H	С
	ATOM	2586			22.386				H	C
10	ATOM	2587		· -	23.253				H	С
10	ATOM	2588			23.548				H	N
				ASP H 189	25.487				. н	N
	ATOM	2589			26.254				H	С
	ATOM	2590		ASP H 189	25.516				H	C
15	ATOM	2591		ASP H 189	24.557	4.698	17.911	1.00 12.95	H	0
15	MOTA	2592			27.639	4.640	19.305	1.00 15.17	H	С
	ATOM	2593			28.650	5.548	18.606	1.00 14.51	H	С
	ATOM	2594		1 ASP H 189	28.434	6.750	18.465	1.00 13.62	H	0
	ATOM	2595	0 D	2 ASP H 189	29.685	5.019	18.219	1.00 13.36	H	0
	ATOM	2596	N	SER H 190	25.930	6.393	17.363	1.00 12.60	H	N
20	MOTA	2597	CA	SER H 190	25.358	6.542	16.036	1.00 12.63	H	c
	MOTA	2598	C	SER H 190	26.323	5.715	15.176	1.00 14.47	H	Č
	ATOM	2599	0	SER H 190	27.309	5.184	15.697	1.00 14.59	н.	0
	ATOM	2600	CB	SER H 190	25.337	8.012	15.595	1.00 12.32	H	Ç.
	ATOM	2601	0 G	SER H 190	26.590	8.641	15.775	1.00 16.00	H	
25	ATOM	2602	N	CYS H 191	26.063	5.592	13.879	1.00 16.70		0
	ATOM	2603	CA	CYS H 191	26.932	4.786	13.023	1.00 18.01	H	N
	ATOM	2604	C	CYS H 191	27.094	5.424	11.651		H	C
	ATOM	2605	0	CYS H 191	26.502	6.469	11.374	1.00 18.15	H	С
	ATOM	2606	СВ	CYS H 191	26.336			1.00 18.84	H	0
30	ATOM	2607	SG	CYS H 191		3.376	12.898	1.00 21.90	H	С
	MOTA	2608	N	LYS H 191	27.470	2.046	12.380	1.00 30.15	H	S
	ATOM	2609	CA	LYS H 192	27.898	4.791	10.800	1.00 16.09	H	N
	ATOM	2610	C		28.172	5.271	9.446	1.00 17.53	H	C
	MOTA			LYS H 192	26.934	5.717	8.668	1.00 15.62	H	С
35		2611	0	LYS H 192	26.914	6.803	8.097	1.00 13.65	Ħ	0
00	ATOM	2612	CB	LYS H 192	28.898	4.186	8.638	1.00 21.05	H	C
	ATOM	2613	CG	LYS H 192	30.199	3.698	9.262	1.00 26.03	H	C
	ATOM	2614	CD	LYS H 192	30.964	2.766	8.330	1.00 30.74	Ħ	C
	ATOM	2615	CE	LYS H 192	30.199	1.481	8.048	1.00 35.28	H	C
40	ATOM	2616	NZ	LYS H 192	30.941	0.599	7.093	1.00 36.87	H	N
4 0	MOTA	2617	N	GLY H 193	25.910	4.872	8.635	1.00 15.41	Ħ	N
	ATOM	2618	CA	GLY H 193	24.698	5.207	7.912	1.00 14.29	H	C
	ATOM	2619	C	GLY H 193	23.928	6.392	8.471	1.00 14.66	H	C
	ATOM	2620	Ð	GLY H 193	23.014	6.898	7.822	1.00 13.96	H	0
	ATOM	2621	N	ASP H 194	24.287	6.836	9.673	1.00 13.02	H	N
45	ATOM	2622	CA	ASP H 194	23.627	7.976	10.304	1.00 11.92	H	C
	ATOM	2623	С	ASP H 194	24.319	9.299	9.972	1.00 11.87	H	C
	ATOM	2624	0	ASP H 194	23.795	10.379	10.273	1.00 10.97	H	0
	MOTA	2625	CB	ASP H 194	23.585	7.780	11.821	1.00 11.84	Н	C
	ATOM	2626	CG	ASP H 194	22.824		12.223	1.00 12.55	H	C
50	ATOM	2627	OD1	ASP H 194	21.676	6.411	11.836	1.00 11.16	H	0
	MOTA	2628		ASP H 194	23.389	5.684	12.923	1.00 10.92	Н	
	ATOM	2629	N	SER H 195	25.492	9.201	9.348	1.00 10.92	n H	0 N
	ATOM	2630	CA	SER H 195		10.359	8.945	1.00 10.97		N
	ATOM	2631	C	SER H 195		11.500	8.379	1.00 11.04	H	C
55	ATOM	2632	0	SER H 195					H	C
	J M		Ū	n 130	44.5/1	11.285	7.545	1.00 10.28	H	0

	ATOM	262	י רו			11 105										
	ATOM					H 195		27.316			7.890	1.0	0 9.93		H	C
		2634				H.195		28.260		39	8.425	1.0	0 14.11		H	0
	ATOM	2635				H 196		25.753			8.824	1.0	00 12.35		H	N
5	MOTA	2636				H 196		25.028			8.348	1.0	0 12.23		H	С
0	ATOM	2637	-			H 196		23.805	_	82	9.189	1.0	0 13.45		H	С
	MOTA	2638				H 196		23.259			9.146	1.0	0 13.77		H	0
	ATOM	2639				H 197		23.383	13.18	87	9.962	1.0	0 13.04		H	N
	ATOM	2640				H 197		22.222	13.33	34	10.807	1.0	0 13.77		H	C
10	ATOM	2641				H 197		22.427	14.32	22	11.934	1.0	0 14.43		H	C
10	ATOM	2642				H 197		23.558	14.64	45	12.302	1.0	0 15.21		H	0
	ATOM	2643				H 198		21.327		06	12.516	1.0	0 13.56		H	N
	ATOM	2644				H 198		21.315			13.615	1.0	0 13.40		H	С
	ATOM	2645				H 198		21.761	15.26	33	14.981	1.0	0 11.88		H	С
15	ATOM	2646				H 198		21.559	14.10)2	15.330	1.0	0 11.73		H	0
13	ATOM	2647	_			H 198		19.847	16.22	20	13.688	1.0	0 12.32		H	С
	MOTA	2648				H 198		19.183	15.62	24	12.464	1.0	0 16.84		H	C
	ATOM	2649				H 198		19.960		96	12.164	1.0	0 14.30		H	C
	ATOM	2650	N			H 199		22.378	16.16	6	15.730		0 10.39		H	N
20	ATOM	2651	CA			H 199		22.775	15.95	4	17.116		0 10.13		H	C
20	ATOM	2652	С			H 199		22.028	17.18	9	17.599		10.86		H	Č
	ATOM	2653	0			H 199		22.509	18.31	.2	17.426		10.19		H	0
	ATOM	2654	CB			H 199		24.284	16.12	:1	17.322		11.26		H	Č
	MOTA	2655	CG			H 199		24.698	16.13	4	18.765	1.00			H	C
0.5	ATOM	2656				H 199		24.605	17.25	8	19.556	1.00			H	N
25	ATOM	2657				H 199		25.174	15.15	1	19.567	1.00			H	C
	ATOM	2658				H 199		25.006	16.97	0	20.782	1.00			H	Č
	ATOM	2659				H 199		25.356	15.69	8	20.816	1.00	10.16		H	N
	ATOM	2660	N	AL	1	H 200		20.826	16.97	9	18.140		11.28		H	N
0.0	MOTA	2661	CA			H 200		19.964	18.07	6	18.578		11.42		H	C
30	ATOM	2662	С	AL	1	H 200		19.879	18.24	3	20.085		10.13		H	Č
	ATOM	2663	0	ALA	. 1	H 200		19.714	17.28	1	20.319	1.00			H	0
	MOTA	2664	CB			1 200		18.567	17.893	3	17.991	1.00			H	C
	ATOM	2665	N			I 201		19.968	19.488	8	20.531	1.00	10.27		H	N
0.5	ATOM	2666	CA			i 201		19.943	19.795	5	21.950		11.65		H	C
35	ATOM	2667	С			ł 201		18.690	20.573	3	22.350		12.35		H	Č
	MOTA	2668	0	THR	F	201		18.358	21.590	0	21.753		12.80		H	0
	ATOM	2669	CB			201		21.189	20.616		22.322		10.77		H	Č
	ATOM	2670				201		22.354	19.955	5	21.814	1.00	9.62		H	0
40	ATOM	2671				201		21.307	20.769	•	23.823	1.00	5.98		H	С
40	ATOM	2672	N			202		18.012	20.084		23.379	1.00	12.93		H	N
	ATOM	2673	CA			202		16.799	20.709		23.889	1.00	14.16		H	С
	ATOM	2674	C			202		17.182	21.718	3 :	24.972		13.17		H	C
	MOTA	2675	0			202		17.953	21.406	5 :	25.877		11.26		H	0
4	ATOM	2676	CB	HIS	H	202		15.883	19.630) :	24.487	1.00	15.77		H	C
45	ATOM	2677	CG			202		14.461	20.062	: :	24.661		19.01		H	Ċ
	MOTA	2678				202		13.551	19.330) 2	25.399		20.89		H	N
•	MOTA	2679				202		13.778	21.124	. 2	24.172		17.67		H	C
	ATOM	2680				202		12.374	19.925	2	25.356		18.13		H	C
50	ATOM	2681	NE2			202		12.484	21.016		24.617		20.03		H	N
50	ATOM	2682	N			203		16.654	22.932		24.878		13.14		i. I	N
	ATOM	2683	CA			203		16.949	23.947		25.882		14.38			C
	ATOM	2684	C			203		15.762	24.872		26.070		15.63	i		C
	MOTA	2685	0			203		15.399	25.617		25.160		17.55	1		0
	ATOM	2686	CB	TYR	H	203		18.170	24.788		25.495		11.34	i		С
55	ATOM	2687	CG	TYR	H	203	•	18.555	25.767		6.587		13.03			C
														•	-	•

	ATOM	2688	C C	1 TY	R I	H 203	19.202	25.328	27.741	1.00	1.89		H	С
	ATOM	2689	CD	2 TY	R	H 203	18.224	27.118	26.494				Н	C
	MOTA	2690	CE	1 TY	2	H 203	19.510	26.208	28.775	1.00 1			H	C
_	ATOM	2691	. CE	2 TY	? 1	H 203	18.520	28.006		1.00 1			H	C
5	MOTA	2692	CZ	TYI	3 1	1. 203	19.163	27.544	28.660	1.00 1			H	C
	ATOM	2693	ОН	TYE	3 1	1 203	19.449	28.406	29.689	1.00 1			 H	0
	ATOM	2694	N	ARO	; [i 204	15.162	24.817		1.00 1			H	N
	ATOM	2695	CA	ARC	; I	204	14.019	25.654		1.00 1			H	C
	ATOM	2696	С	ARC	; ;	1 204	12.928	25.702		1.00 1			H	c
10	ATOM	2697	0	ARC	; ;	1 204	12.544	26.774		1.00 1			H	0
	MOTA	2698	CB	ARC	i	I 204	14.507	27.068		1.00 1			H	C
	ATOM	2699	CG	ARG	E	204	15.268	27.102		1.00 2			H	C
	ATOM	2700	CD	ARG	H	204	15.852	28.461		1.00 2			H	С
	MOTA	2701	NE			204	16.460	28.378		1.00 2			H	N
15	MOTA	2702	CZ			204	17.208	29.320		1.00 2			H	C
	MOTA	2703				204	17.473	30.455	30.906	1.00 2			H	N
	MOTA	2704		2 ARG			17.698	29.120	32.753	1.00 3			H	
	MOTA	2705	N			205	12.437	24.528	26.135	1.00 1			H	N
	MOTA	2706	CA			205	11.366	24.455	25.158	1.00 1			H	N C
20	ATOM	2707	С			205	11.688	24.465	23.672	1.00 1			n H	
	MOTA	2708	0			205	10.773	24.325	22.859	1.00 2			n H	C
	ATOM	2709	N			206	12.957	24.613	23.302	1.00 2				0
	MOTA	2710	CA			206	13.334	24.651	21.889	1.00 1			H	N
	ATOM	2711	C			206	14.556	23.786	21.587	1.00 1			H	C
25	MOTA	2712	0			206	15.485	23.715	22.389	1.00 1			H	C
	ATOM	2713	СВ			206	13.608	26.111	21.451	1.00 10		•	H	0
	ATOM	2714		L THR			12.396	26.859	21.558	1.00 10			H	C
	ATOM	2715		THR			14.112	26.181	20.008				H	0.
	ATOM	2716	N N	TRP		207	14.544	23.136	20.008	1.00 15			H	C
30	ATOM	2717	CA	TRP		207	15.639	22.270		1.00 14			H	N
	ATOM	2718	C	TRP		207	16.582	23.008	19.995	1.00 11			H	C
	MOTA	2719	0	TRP		207	16.138	23.745	19.051 18.174	1.00 11			H	C
	ATOM	2720	CB			207	15.089	21.025	19.297	1.00 10			H	0
	ATOM	2721	CG	TRP		207	14.342	20.115	20.205	1.00 10			H	C
35	ATOM	2722		TRP		207	13.032	20.210	20.203	1.00 12			H	C
	MOTA	2723	CD2			207	14.871	18.974	20.873	1.00 11			H	C
	ATOM	2724		TRP		207	12.711	19.197	21.446	1.00 12			H	C
	ATOM	2725		TRP		207	13.821	18.425	21.440	1.00 10			H	N
	ATOM	2726		TRP			16.130	18.362	20.927	1.00 10			R	C
40	ATOM	2727		TRP			13.994	17.292	22.460	1.00 10			H	C
	MOTA	2728		TRP			16.303	17.232	21.722	1.00 12			H H	C C
	ATOM	2729		TRP			15.239	16.710	22.478	1.00 13			n H	
	ATOM	2730	N	TYR			17.881	22.785	19.226	1.00 12				C
	ATOM	2731	CA	TYR			18.909	23.446	18.421	1.00 11			H	N
45	MOTA	2732	C	TYR			19.912		17.832				H	C
	MOTA	2733	0	TYR			20.175	21.413	18.422	1.00 12			H .	C
	ATOM	2734	СВ	TYR			19.679	24.457	19.281				H	0
	ATOM	2735	CG	TYR			18.818	25.521	19.927	1.00 10			H	C
	ATOM	2736		TYR			18.192	25.297	21.155	1.00 11 1.00 10			H	C
50	ATOM	2737		TYR					19.302				H	C
- 0	ATOM	2738		TYR			17.391	26.756 26.279	21.746	1.00 9 1.00 9			H	C
	MOTA	2739		TYR				27.739	19.881				H	C
	MOTA	2740	CZ	TYR				27.739	21.102	1.00 11			H	C
	ATOM	2741	OH	TYR				28.471	21.102	1.00 11			H	C
55	MOTA	2742	N	LEU						1.00 14			H	0
00	11 1 V PI	J. 10	41	220	**	203	20.479	22.803	16.676	1.00 11	. 60	1	H	N

	ATOM	2743	B CA	1.00	U 200	0.1						
	ATOM	2744			H 209	21.473			9 1.0	00 10.61	Н	С
	ATOM				H 209	22.838			5 1.0	00 11.52	H	
		2745			H 209	23.372			2 1.0	00 9.17	H	
5	ATOM	2746	_		H 209	21.538	22.275	14.519	1.(00 11.62	H	
J	ATOM				H 209	22.533	21.438	3 13.703	3 1.0	00 10.56	Н	Ċ
	ATOM	2748			H 209	22.154	19.964	13.799		0 9.75	Н	C
	MOTA	2749			H 209	22.530	21.888	12.253		0 11.64	н	C
	ATOM	2750	N	THR	H 210	23.401	21.203			0 11.36	H	
	ATOM	2751	CA	THR	H 210	24.703				0 12.32	Н	N
10	ATOM	2752	C	THR	H 210	25.788				0 11.28		C
	ATOM	2753	0		H 210	26.970				0 11.28	H	C
	MOTA	2754	CB	THR	H 210	24.631				0 11.33	. н	0
	ATOM	2755	0 G :	LTHR		23.797			_		H	C
	MOTA	2756		2 THR		24.069				0 12.24	H	0
15	ATOM	2757	N		H 211	25.392				0 11.51	H	С
	ATOM	2758	CA		H 211	26.385				0 11.49	Н	N
	ATOM	2759	C		H 211					0 12.62	H	С
	MOTA	2760	0		H 211	25.899	17.781			0 12.53	H	С
	ATOM	2761	N		H 211	24.709	-			0 10.55	H	0
20	ATOM	2762	CA			26.842	17.147	14.174		0 12.70	H	N
	ATOM	2763			H 212	26.545	16.371	12.976		0 11.37	H	С
	ATOM	2764	С		H 212	27.240	15.016	13.116	1.0	12.64	H	С
			0		H 212	28.424	14.961	13.451	1.0	11.86	H	0
	ATOM	2765	CB		1 212	27.094	17.076	11.716	1.00	10.36	H	С
25	ATOM	2766	CG1			26.527	18.498	11.619	1.00	9.87	H	C
20	ATOM	2767	CG2			26.758	16.270	10.485	1.00		H	Č
	ATOM	2768	CD1	ILE I		27.194	19.343	10.538	1.00	10.68	H	C
	ATOM	2769	N	VAL	213	26.503	13.930	12.890		11.61	н	N
	ATOM	2770	CA	VAL	I 213	27.086	12.591	12.969		10.63	Н	C
•	ATOM	2771	C	VAL I	213	28.248	12.608	11.976		10.32	Н	
30	MOTA	2772	0	VAL	213	28.032	12.764	10.773		10.80		C
	ATOM	2773	CB	VAL H	213	26.054	11.512	12.562	1.00		H	0
	ATOM	2774	CG1	VAL H		26.686	10.123	12.627	1.00		H	C
	ATOM	2775		VAL H		24.850	11.575	13.486	1.00		H	C
	ATOM	2776	N	SER H		29.476	12.465	12.473			H	C
35	ATOM	2777	CA	SER H		30.654	12.533			10.48	H	N
	ATOM	2778	C	SER H		31.527		11.601		10.02	H	C.
	ATOM	2779	0	SER H		31.662	11.288	11.510		10.29	H	С
	ATOM	2780	CB	SER H		31.525	10.694	10.436		10.45	H	0
	ATOM	2781	0 G	SER H		32.650	13.725	12.015		10.33	H	C
40	MOTA	2782	N	TRP H			13.856	11.166		14.56	H	0
	ATOM	2783	CA	TRP H		32.144	10.894	12.616		9.38	H	N
	MOTA	2784	C			32.996	9.715	12.571		9.84	H	С
	ATOM	2785		TRP H		33.186	9.044	13.919		11.40	H	C
	ATOM	2786	0	TRP H		32.595	9.440	14.925	1.00	10.83	H	0
45	ATOM			TRP H		34.372	10.077	11.979		11.73	H	С
40	ATOM	2787		TRP H		35.189	11.045	12.802	1.00	11.28	H	С
		2788		TRP H		35.054	12.405	12.851	1.00	12.73	H	C
	ATOM	2789		TRP H		36.286	10.720	13.670	1.00	12.20	H	С
	MOTA			TRP H		36.002	12.949	13.690	1.00	12.73	H	N
ΕO	ATOM			TRP H		36.770	11.937	14.206		13.66	H	C
50	ATOM			TRP H		36.907	9.520	14.044		11.80	н	C
	ATOM			TRP H		37.852	11.986	15.100		11.52	H	C
	ATOM			TRP H		37.986	9.569	14.936		11.59	H	C
	MOTA			TRP H		38.445	_	15.451		12.21	H	C
	ATOM			GLY H		34.029		13.928		12.15	H	N
55	ATOM	2797	CA	GLY H	216	34.308				14.20	n H	N C
								- · - 			п	U

	ATOM	2798	3 C	GLY H 2	216	34.988	6.002	14.792	1.00 15.78	Н	С
	ATOM		9 0	_		35.124	5.684			H	0
	ATOM		И (GLN H 2	17	35.435	5.255	15.792		H	N
	ATOM		. C	A GLN H 2	17	36.081	3.982			н	C
5	ATOM		c C	GLN H 2	17	34.986	2.937			н	C
	ATOM	2803	3 0	GLN H 2	17	34.486	2.579		_	H	0
	ATOM	2804	C.	BGLN H2	17	37.136	3.683		· · · · ·	Н	C
	ATOM	2805	C	G GLN H 2	17	37.813	2.342			H	C
	ATOM	2806	C	O GLN H 2	17	39.254	2.360			н	C
10	ATOM	2807	01	E1 GLN H 2	17	39.613	3.063			Н	0
	ATOM	2808	N I	22 GLN H 2	17	40.092	1.576			H	N
	ATOM	2809	N	GLY H 2	19	34.606	2.458			H	N
	ATOM	2810	C A	GLY H 2	19	33.539	1.482			H	C
	ATOM	2811	С	GLY H 2	19	32.283	2.125			H	C
15	MOTA	2812	0	GLY H 2	19	32.135	3.347	-		H	
	ATOM	2813	N	CYS H 2	20	31.381	1.311	15.372	1.00 21.24	Н	0
	ATOM	2814	CA	CYS H 2	20	30.145	1.824	15.943	1.00 23.06	H	N
	ATOM	2815	С	CYS H 2		29.893	1.193	17.310	1.00 23.00		C
	MOTA	2816	0	CYS H 2		29.765	-0.028	17.432	1.00 22.01	H	C
20	MOTA	2817	СВ			28.981	1.549	14.983	1.00 22.67	H H	0
	ATOM	2818	SG			29.194	2.422	13.398	1.00 28.32	n H	C
	MOTA	2819	N	ALA H 2		29.830	2.039	18.333	1.00 28.32	H.	S
	ATOM	2820	CA			29.613	1.586	19.704	1.00 21.07	n H	N
	ATOM	2821	С	ALA H 22		30.719	0.615	20.102	1.00 21.19		C
25	ATOM	2822	0	ALA H 22		30.463	-0.454	20.660	1.00 20.40	H	C
	ATOM	2823	СВ	ALA H 22		28.245	0.916	19.833		H	0
	ATOM	2824	N	THR H 22		31.953	0.992	19.797	1.00 20.81	H	C
	ATOM	2825	CA	THR H 22		33.109	0.173	20.121	1.00 20.10	H	N
	ATOM	2826	С	THR H 22		33.530	0.484	21.551	1.00 19.79	H	С
30	ATOM	2827	0	THR H 22		33.610	1.647	21.551	1.00 18.64	H	C
	ATOM	2828	СВ	THR H 22		34.273	0.467	19.151	1.00 17.97	H	0
	ATOM	2829	0 G :	THR H 22		33.854	0.169	17.815	1.00 20.35	H	С
	ATOM	2830		2 THR H 22		35.492	-0:386	19.485	1.00 22.66	H	0
	ATOM	2831	N	VAL H 22		33.776	-0.560		1.00 22.20	H	C
35	MOTA	2832	CA	VAL H 22		34.186	-0.402	22.332 23.721	1.00 16.93	H	N
	ATOM	2833	С	VAL H 22		35.458	0.437		1.00 16.22	H	С
	MOTA	2834	0	VAL H 22		36.424	0.173	23.788 23.077	1.00 16.60	H	С
	ATOM	2835	СВ	VAL H 22		34.444	-1.783	24.388	1.00 16.78	H	0
	ATOM	2836		VAL H 22		34.994			1.00 15.57	H	C
40	MOTA	2837		VAL H 22		33.147			1.00 15.54	H	C
	MOTA	2838	N	GLY H 22:		35.444	1.458	24.433	1.00 12.31	H	C
	ATOM	2839	CA	GLY H 22:		36.603	2.322	24.639	1.00 18.10	H	N
	ATOM	2840	C	GLY H 22:		36.607	3.503	24.785	1.00 17.10	H	C
	ATOM	2841	0	GLY H 223		37.602	4.221	23.834	1.00 16.65	H	C
45	ATOM	2842	N	HIS H 224		35.501		23.749	1.00 16.09	H	0
	ATOM	2843	CA	HIS H 224		35.418	3.716	23.122	1.00 14.21	H	N
	ATOM	2844	C	HIS H 224		34.054	4.817 5.490	22.172	1.00 14.13	H	C
	MOTA	2845	0	HIS H 224		33.043		22.169	1.00 13.03	H	C
	MOTA	2846	СВ	HIS H 224		35.772	4.883	22.523	1.00 12.79	H	0
50	MOTA	2847	CG	HIS H 224			4.324	20.768	1.00 14.15	Н	С
	MOTA	2848		HIS H 224		37.163 38.273	3.786	20.665	1.00 18.68	H	С
	ATOM	2849		HIS H 224			4.602	20.632	1.00 22.89	H	N
	MOTA	2850		HIS H 224		37.630		20.690	1.00 18.87	H	С
	ATOM	2851		HIS H 224		39.365		20.645	1.00 20.95	H	С
55	ATOM	2852	N EZ	PHE H 225		39.002			1.00 24.07	H	N
00		2002	41	тпе п ∠25		34.059	6.758	21.772	1.00 12.58	H	N

	ATOM	285	3 C	A PHE	H 225	32.87	0 7.59	7 21.709	a 1 n	0 13.20	,,	_
	ATOM	285	4 C		H 225	32.63				0 14.27	H	_
	MOTA	285	5 0	PHE	H 225	33.56				0 13.13	H	-
_	MOTA	2856	3 C	B PHE	H 225	33.07				0 12.36	H	•
5	MOTA	2857	7 C	G PHE	H. 225	33.17				0 13.26	H	•
	ATOM	2858	3 C.	D1 PHE	H 225	32.03				0 10.55	Н	-
	ATOM	2859) C	D2 PHE	H 225	34.422				0 12.18	H	_
	ATOM	2860) C	E1 PHE	H 225	32.132				0 12.18	Н	C
	MOTA	2861	C	E2 PHE	H 225	34.528				0 11.34	Н	C
10	ATOM	2862	C 2	Z PHE	H 225	33.383				0 11.26	H	C
	ATOM	2863	B N	GLY	H 226	31.401				0 11.86	Н	C
	ATOM	2864	C A	A GLY	H 226	31.141				0 11.14	H	N ·
	ATOM	2865	C	GLY 1	1 226	31.706				0 11.14	H	C
	ATOM	2866	0	GLY I	1 226	31.783				9.76	Н	C
15	MOTA	2867	N		1 227	32.124				0 10.30	H	0
	ATOM	2868	C A		1 227	32.564	_			11.99	H	N
	ATOM	2869	C		1 227	31.711				12.30	Н	C
	MOTA	2870	0		1 227	31.308				11.88	H	C
	ATOM-	2871	CB			34.096				13.42	H	0
20	MOTA	2872	CG	1 VAL H		34.725				10.66	H	C
	ATOM	2873		2 VAL H		34.977		17.304		11.39	H	C
	ATOM	2874	N	TYRH		31.360		16.651		11.39	H	C
	ATOM	2875	CA			30.424		15.868		11.76	H	N
	ATOM	2876	С	TYR H		31.040		15.458			Н	C -
25	MOTA	2877	0	TYR H		31.870	-	16.176		11.78	H	C
	ATOM	2878	СВ			29.147	15.158	16.692		12.87	H	0
	MOTA	2879	CG			28.446	13.883	17.159		12.02	H	C
	ATOM	2880	CD	1 TYR H		28.956	13.112			13.58	H	С
	ATOM	2881		2 TYR H		27.302	13.425	18.211 16.515		15.38	H	C
30	MOTA	2882		1 TYR H		28.334	11.908	18.599		12.87	H	С
	ATOM	2883		2 TYR H		26.680	12.235	16.894		13.68	H	С
	ATOM	2884	CZ	TYR H		27.198	11.484	17.931		11.86	Н	C
	ATOM	2885	0 H	TYR H		26.570	10.310	18.293		13.33	H	С
	MOTA	2886	N	THR H		30.649	16.767	14.296		13.39	H	0
35	MOTA	2887	CA	THR H		31.158	18.056	13.840		10.21	H	N
	ATOM	2888	С	THR H		30.612	19.105		1.00	9.23	H	С
	ATOM	2889	0	THR H		29.422	19.093	14.817	1.00	9.22	H	С
	MOTA	2890	СВ	THR H		30.656	18.383	15.133 12.420	1.00	9.33	H	0
	ATOM	2891	0 G 1	THR H			17.334			11.04	H	С
40	ATOM	2892	C G 2	THR H	229	31.246	19.712	11.935	1.00	10.26	H	0
	MOTA	2893	N	ARG H		31.473	19.993	15.309			H	C
	MOTA	2894	CA	ARG H		31.051	21.026	16.257	1.00	7.76	H	N
	ATOM	2895	C	ARG H		30.444	22.197	15.487	1.00	7.07	H	C
	MOTA	2896	0	ARG H		31.150	23.158	15.134	1.00	7.98	H	C
45	MOTA	2897	CB	ARG H		32.251	21.505	17.093	1.00		H	0
	ATOM	2898	CG	ARG H		31.885	22.461	18.238	1.00		H	C
	MOTA	2899	CD			33.104	22.903			11.66	H	С
	ATOM	2900	NE	ARG H		33.846	21.777	19.054		14.39	H	C
	ATOM	2901	CZ	ARG H		33.986	21.777	19.631		14.90	H	N
50	ATOM	2902		ARG H		33.434	22.355	20.937	1.00		H	£
	MOTA	2903		ARG H		34.694	20.503	21.835	1.00		H	N
	ATOM	2904	N	VAL H		29.134	22.115	21.356	1.00		H	N
	ATOM	2905	CA	VAL H		28.396	23.132	15.243	1.00		H	N
	ATOM	2906	C	VAL H		28.582	24.590	14.485	1.00		Н	C
55	ATOM	2907	0	VAL H		28.522		14.906	1.00		Н	C
-			-	· · · · · · · · · · · · · · · · · · ·		20.522	25.478	14.063	1.00	11.15	H	0

C

	ATOM	-	•	VAL			26.86	9 22.81	3 14.453	3 1.00	8.34		H	
	ATOM			1 VAL			26.09	1 23.963		-			H	
	ATOM			2 VAL			26.63	1 21.536	3 13.663				Н	
5	ATOM			SER			28.81	2 24.846	6 16.191	. 1.00	9.98		H	1
J	ATOM			SER			28.999	9 26.216	16.665	1.00	10.61		H	
	ATOM			SER			30.14	1 26.942	15.951	1.00	11.51		H	
	ATOM			SER			30.116		15.815	1.00	13.83		H	
	ATOM			SER			29.253			1.00	9.74		H	(
10	ATOM			SER			30.328			1.00	9.99		H	(
10	ATOM ATOM	2913 2918		GLN			31.138			_	10.91		H	1
	ATOM	2919		GLN			32.282				12.68		H	(
	MOTA	2920		GLN GLN			31.957				12.56		H	(
	ATOM	2921					32.715				10.39		H	(
15	MOTA	2922		GLN GLN			33.410				14.26		H	C
	MOTA	2923		GLN			33.859				17.78		H	C
	ATOM	2924		GLN			34.180 35.120				23.92		H	C
	ATOM	2925		GLN			33.383				22.25		H	0
	ATOM	2926		TYR			30.815		-		25.97		Ħ	N
20	ATOM	2927		TYR			30.401		12.851 11.485		10.53		H	N
	MOTA	2928	С	TYR			29.164		11.338		10.91		H	C
•	MOTA	2929	0	TYR			28.663	_	10.232		11.10 12.26		H	C
•	ATOM	2930	CB	TYR			30.145		10.752		11.97		H	0
	MOTA	2931	CG	TYR	H 2	34	31.359	24.833	10.717		10.28		H H	C
25	MOTA	2932	CD1	TYR	H 2	34	32.363	25.018	9.765	1.00	9.58		Н	C
	ATOM	2933	CD2	TYR	H 2	34	31.526	23.826	11.661	1.00	8.26		H	C
	MOTA	2934		TYR			33.501	24.231	9.756	1.00			H	C
	ATOM	2935	CE2	TYR	H 2	34	32.673	23.022	11.665	1.00			H	C
0.0	ATOM	2936	CZ	TYR			33.653	23.236	10.707	1.00		•	H	C
30	MOTA	2937	OH	TYR			34.782	22.464	10.691	1.00			H	0
	ATON	2938	N	ILE			28.670	28.549	12.428	1.00			H	N
	MOTA	2939	CA	ILE I			27.473	29.389	12.341	1.00			H	C
	ATOM	2940	C	ILE I			27.624	30.539	11.343	1.00			Ħ	C
35	ATOM	2941	0	ILE F			26.790	30.710	10.455	1.00	13.67		H	0
33	ATOM	2942		ILE F			27.076	29.971	13.725	1.00	12.39		H	С
	ATOM	2943		ILE H			26.910	28.842	14.746	1.00			H	C
	MOTA MOTA	2944 2945		ILE H			25.759	30.764	13.601	1.00 1	4.14		H	C
	ATOM	2945		ILE H			25.923	27.750	14.319	1.00 1	11.48		H	C
40	MOTA	2947		GLU H GLU H			28.680	31.331	11.493	1.00 1			H	N
	MOTA	2948		GLU H			28.931	32.449	10.582	1.00 1			H	C
	ATOM	2949		GLU H			29.116 28.608		9.143	1.00 1			H	С
	ATOM	2950		GLU H			30.178	32.575	8.199	1.00 1			H	0
	ATOM	2951		GLU H			30.178	33.222 34.066	11.023	1.00 2			H	C
45	ATOM	2952		GLU H			29.769	33.243	12.278 13.535	1.00 2			H	С
	ATOM	2953		GLU H			30.614	32.384	13.848	1.00 3 1.00 3			H	С
	MOTA	2954	0E2 (28.742	33.466	14.205	1.00 3			H	0
	ATOM	2955		RP H			29.848	30.873	8.979				H	0
	MOTA	2956		RP H			30.098	30.298	7.660	1.00 1 1.00 1			H H	N
50	ATOM	2957		RP H			28.759	29.950	7.000	1.00 1			n H	C
	MOTA	2958		RP H			28.524	30.268		1.00 1			a F	C
	MOTA	2959	CB T	RP H	23	7		29.023	7.807				n H	0 C
٠.	MOTA	2960	C G T	RP H	23	7	31.424	28.400		1.00 1			ı H	C
	MOTA	2961	CD1 T	RP H	237	7		28.860		1.00 1			I	C
55	ATOM	2962	CD2 T	RP H	237	7		27.196		1.00 1			I	С
												•	-	-

							•				
	ATOM	2963			H 237	32.577	28.019	4.612	1.00 11.23	Н	N
	ATOM	2964			H 237	31.675	26.993	4.711		Н	C
	ATOM	2965	CES	3 TRP	H 237	29.922	26.276	6.232	1.00 11.81	Н	c
_	ATOM	2966	CZZ	TRP	H 237	31.448	25.903	3.856		H	C
5	ATOM	2967		TRP		29.695	25.186	5.379		H	C
	MOTA	2968	CH2	TRP	H 237	30.459	25.013	4.202		н	C
	MOTA	2969	N	LEU	H 238	27.890	29.289	7.762	1.00 11.93	н	N
	ATOM	2970	CA	LEU	H 238	26.577	28.876	7.272	1.00 13.74	н	C
	ATOM	2971	C	LEU	H 238	25.660	30.064	6.976	1.00 14.26	Н	С
10	MOTA	2972	0	LEU	H 238	25.006	30.106	5.937	1.00 15.47	н.	0
	MOTA	2973	CB	LEU	H 238	25.906	27.948	8.296	1.00 11.48	н	ε
	MOTA	2974	CG	LEU	H 238	26.619	26.607	8.530	1.00 12.33	н	С
	MOTA	2975	CD1	LEU	H 238	26.127	25.955	9.816	1.00 9.88	H	С
	ATOM	2976	CD2	LEU	H 238	26.393	25.696	7.330	1.00 11.54	H	C
15	ATOM	2977	N	GLN I	H 239	25.614	31.029	7.887	1.00 16.12	H	N
	ATOM	2978	CA	GLN I	H 239	24.761	32.202	7.696	1.00 18.31	H	C
	ATOM	2979	C	GLN I	1 239	25.149	33.011	6.463	1.00 17.63	H	C
	ATOM	2980	0	GLN I	1 239	24.289	33.448	5.705	1.00 17.31	H	0
	MOTA	2981	CB		1 239	24.809	33.099	8.930	1.00 16.56	H	C
20	ATOM	2982	CG	GLN I	1 239	24.263	32.442	10.176	1.00 22.50	Н	C
	ATOM	2983	CD.	GLN I	1 239	24.217	33.393	11.348	1.00 24.81	Н	C
	ATOM	2984	0E1	GLN F		25.143	34.179	11.563	1.00 28.05	H	0
	ATOM	2985		GLN F		23.144	33.321	12.124	1.00 28.34	H	N
	ATOM	2986	N		240	26.446	33.205	6.268	1.00 28.34	n H	
25	ATOM	2987	CA	LYS F		26.944	33.958	5.125	1.00 19.23	n H	N
	ATOM	2988	C		240	26.544	33.269	3.816	1.00 20.75		C
	ATOM	2989	0		240	26.068	33.915	2.884	1.00 20.97	H	C
	ATOM	2990	СВ	LYS H		28.467	34.072	5.218	1.00 20.97	H	0
	ATOM	2991	CG	LYS H		29.082	35.190	4.391	1.00 23.48	H	C
30	ATOM	2992	CD	LYS H		29.016	34.913	2.900	1.00 34.65	H	C
	ATOM	2993	CE	LYS H		29.606	36.071	2.101	1.00 34.65	H	C
	ATOM	2994	NZ	LYS H		31.028	36.326	2.469	1.00 39.99	H	C
	ATOM	2995	N	LEU H		26.733	31.954	3.754	1.00 39.99	H	N
	ATOM	2996	CA	LEU H		26.398	31.187	2.560	1.00 20.03	H	N
35	ATOM	2997	С	LEU H		24.900	31.140	2.256	1.00 19.49	H	C
	ATOM	2998	0	LEU H		24.508	31.126	1.094		H	С
	ATOM	2999	CB	LEU H		26.948	29.763	2.680	1.00 19.02	H H	0
	MOTA	3000	CG	LEU H		28.473	29.630	2.647	1.00 19.62	n H	C C
	ATOM	3001		LEU H		28.870	28.191	2.990	1.00 19.02	л Н	
40	ATOM	3002		LEU H		29.001	30.032	1.273	1.00 14.59	. H	C
	ATOM	3003	N	MET H		24.058	31.106	3.287	1.00 14.33	n H	C
	MOTA	3004		MET H		22.615	31.081	3.051	1.00 21.52	л Н	N C
	ATOM	3005		MET H		22.142	32.421	2.477	1.00 24.55	n H	
	ATOM	3006		MET H		21.097	32.497	1.834	1.00 27.62	н Н	C
45	ATOM	3007		MET H		21.854	30.746	4.341	1.00 27.02		0
	ATOM	3008		MET H		22.003	29.283	4.768	1.00 21.21	H	C
	ATOM	3009		MET H		21.011	28.815	6.206	1.00 20.37	H	C
	ATOM	3010		мет н		21.948	29.603	7.540	1.00 14.65	H	S
	ATOM	3011		ARG H		22.924	33.472	2.703	1.00 14.03	Н	C
50	ATOM	3012		ARG H		22.595	34.795	2.703	1.00 30.45	H	N
-	ATOM	3013		ARG H		23.270	35.048	0.840	1.00 34.75	Н	C
	ATOM	3014		ARG H		23.277	36.176	0.351	1.00 37.34	H	C
	ATOM	3015		ARG H		23.217	35.868	3.170	1.00 35.24	H	0
	ATOM	3016		ARG H		22.216	35.976	4.429	1.00 35.66	H	C
55	ATOM	3017		ARG H		23.094	36.381	5.600	1.00 37.39	H	C
				11		20.034	00.001	3.000	1.00 42.39	H	С

	ATOU	2010	N F	100	٠,				_					
	NOTA	3018				1 243	24.090				0 45.18		H	N
	MOTA	3019				243	25.137			1.00	46.96		H	C
	MOTA	3020				243	25.335			1.00	45.77		H	N
5	MOTA	3021				1 243	25.997		1 5.519	1.00	47.07		H	N
. 5	MOTA	3022				244	23.836	34:00	2 0.245	1.00	39.09		H	N
	MOTA	3023		SER	E	244	24.522	34.13	0 -1.034	1.00	40.99		H	C
	MOTA	3024	С	SER	H	244	23.684	33.64	4 -2.208	1.00	42.62		H	Č
	MOTA	3025	0	SER	H	244	22.743	32.86	7 -2.042		41.83		Н	0
	MOTA	3026	CB	SER	H	244	25.845				41.34		H	C
10	MOTA	3027	0 G	SER	H	244	26.705	33.89			43.40		H	0
	ATOM	3028	N	GLU	H	245	24.038	34.11			44.75		H	
	ATOM	3029	CA			245	23.330	33.73			46.58		H	N
	MOTA	3030	С			245	23.882	32.43			46.31			C
	MOTA	3031	0			245	25.076	32.15			46.57		H	C
15	MOTA	3032	СВ			245	23.470	34.833					H	0
	MOTA	3033	CG			245	22.851				49.32		H	C
	MOTA	3034	CD			245		36.164			53.68		H	С
	ATOM	3035	0E1			245	22.994	37.212			56.49		H	C
	ATOM	3036	0E1			245	22.529	38.339			58.31		H	0
20	ATOM						23.571	36.900			57.52		H	0
20		3037	N			246	23.013	31.605			46.06		H	N
	MOTA	3038	CA			246	23.430	30.323		1.00	46.49		H	C
	ATOM	3039	C			246	24.612	30.488			46.82		H	C
	ATOM	3040	0			246	24.884	31.588	-7.770	1.00	47.98		H	0
o r	ATOM	3041	CB			246	22.174	29.846	-7.055	1.00	46.60		H	C
25	ATOM	3042	CG			246	21.081	30.401	-6.206	1.00	46.59		H	С
	MOTA	3043	CD	PRO	H	246	21.563	31.803	-5.932	1.00	45.49		H	С
	ATOM	3044	N	ARG	H	247	25.316	29.393	-7.545	1.00	45.68		H	N
	ATOM	3045	CA	ARG	H	247	26.455	29.420	-8.449	1.00	45.13		H	С
	ATOM	3046	C	ARG	H	247	26.391	28.204	-9.360		43.90		H	C
30	MOTA	3047	0	ARG	H	247	26.012	27.114			43.91		H	0
	MOTA	3048	CB	ARG	H	247	27.772	29.416			46.78		H	С
	ATOM	3049	CG	ARG	H	247	27.999	30.655			48.61		H	ς.
	ATOM	3050	CD	ARG			29.351	30.585			50.94		H	C.
	ATOM	3051	NE	ARG			29.547	31.650	-5.121		52.94		H	N
35	MOTA	3052	CZ	ARG			28.897	31.748	-3.962		53.90		H	
	MOTA	3053	NH1	ARG			27.988	30.846	-3.611		53.30		n H	C
	ATOM	3054		ARG			29.164	32.756	-3.142		54.90			N
	ATOM	3055	N	PRO			26.754	•					H	N
	MOTA	3056	CA	PRO			26.725		-11.595		42.02		H	N
40	MOTA	3057	C	PRO			27.396		-10.999		40.10		H 	C
	MOTA	3058	0	PRO			28.348				36.76		H	С
	ATOM	3059	CB	PRO					-10.238		37.56		H	0
	MOTA	3060	CG	PRO			27.495		-12.786		40.68		Ħ	С
	MOTA	3061	CD				27.146		-12.741		43.23		H	C
45	ATOM	3062		PRO			27.282		-11.269		41.68		H	C
40	ATOM		N	GLY			26.897		-11.341		33.94	I	H	N
		3063	CA	GLY			27.483		-10.818		30.93	I	H	С
	MOTA	3064	C	GLY				23.304		1.00	27.97	Ŧ	ł	С
	ATOM	3065	0	GLY			26.983	24.164			28.75	ŀ	i	0
~ ^	ATOM	3066	N	VAL .			26.627	22.047	-9.210	1.00	25.90	ŀ	ł	N
50	MOTA	3067	_	VAL :			26.137	21.584	-7.916	1.00	22.51	F	ī	C
	MOTA	3068		VAL			27.154	21.751	-6.785	1.00	20.73	H	i	С
	MOTA	3069	0	VAL	H :	250	26.866	22.406	-5.783	1.00	19.56	H	I	0
	MOTA	3070		VAL			25.708	20.091		1.00		H		C
	MOTA	3071		VAL 1			25.243	19.603		1.00		H		C
55	MOTA	3072	CG2	VAL 1	H 2	250	24.588	19.924		1.00		H		C
												••		-

	ATOM	3073	3 N	LEU	H 251	28.33	7 21.165	-6.950	1.00	18.48		Н	RI.
	ATOM	3074	1 C/	LEU	H 251	29.380				18.83			N
	ATOM	3075	5 C		H 251	30.070				19.13		H	C
	ATOM	3076	5 0		H 251	30.520						H	C
5	ATOM	3077	CE		H 251	30.431				18.06		H	0
	ATOM	3078			H 251	31.581				16:90		H	C
	ATOM	3079		1 LEU						17.64		H	С
	ATOM	3080		2 LEU		31.029				15.90		H	С
	MOTA					32.504				16.46		H	С
10		3081			H 252	30.151				19.09		H	N
10	ATOM	3082			H 252	30.808		-4.342	1.00	18.91		H	С
	ATOM	3083			H 252	31.699		-3.109	1.00	19.51		H	C
	ATOM	3084		LEU 1		31.261	23.835	-2.054	100	20.28		H	0
	MOTA	3085		LEU I	1 252	29.777	25.476	-4.129	1.00	19.71		H	C
	ATOM	3086		LEU I		30.362	26.831	-3.726		21.00		H	C
15	MOTA	3087	CD	1 LEU I	1 252	31.252	27.360	-4.845		21.46		H	C
	MOTA	3088	CD	2 LEU I	1 252	29.237		-3.431		21.39		H	C
	MOTA	3089		ARG I		32.951		-3.247		17.62			
	ATOM	3090	CA	ARG I		33.869		-2.119		17.02		H	N
	ATOM	3091	С	ARG I		34.015						H	С
20	ATOM	3092	0	ARG H		34.559		-1.688		17.05		H	С
	MOTA	3093	CB	ARG H			26.970	-2.426		15.25		H	0
	ATOM	3094	CG	ARG H		35.230		-2.511		18.44		H	С
	ATOM	3095	CD			35.358	22.635	-2.232		20.42		H	С
	ATOM			ARG H		34.282	21.846	-2.952	1.00	21.21		H	С
25		3096	NE	ARG H		34.476	21.856	-4.397	1.00	21.18		H.	N
20	ATOM	3097	CZ	ARG H		35.307	21.047	-5.047	1.00	22.46	1	H	C
•	ATOM	3098	NH:			36.028	20.152	-4.380	1.00	23.51]	H	N
	ATOM	3099	NH:			35.414	21.126	-6.367		19.08		Ħ	N
	MOTA	3100	N	ALA H	254	33.499	26.458	-0.501		16.11		Ħ	N
	ATOM	3101	CA	ALA H	254	33.542	27.815	0.028		15.47		H	C
30	ATOM	3102	С	ALA H	254	34.658	27.919	1.047		16.28		H	C
	ATOM	3103	0	ALA H	254	34.879	27.003	1.843		15.62			
	ATOM	3104	СВ	ALA H		32.205	28.179	0.664		13.69		1	0
	MOTA	3105	N	PRO H		35.381	29.044	1.039		15.40	ŀ		C
	ATOM	3106	CA	PRO H		36.475	29.191	1.994			F		N
35	ATOM	3107	C	PRO H		36.048				14.78	F		С
	ATOM	3108	0	PRO H			29.162	3.445		14.38	F		С
	ATOM	3109	СВ	PRO H		34.935	29.556	3.798	1.00		H		0
	ATOM	3110	CG	PRO H		37.116	30.526	1.594		15.88	H		C
	ATOM	3111	CD			35.987	31.294	0.995	1.00	15.99	H	[С
40	ATOM	3112		PRO H		35.233	30.249	0.200	1.00	16.40	H	Ī	C
40	ATOM		N	PHE H			28.663	4.281	1.00		. Н	[N
		3113	CA	PHE H			28.616	5.706	1.00		H	[C
	ATOM	3114	C	PHE H			28.945	6.408	1.00	17.50	Н		С
	ATOM	3115	0	PHE H		39.049	28.394	6.067	1.00	18.45	Н		0
4	ATOM	3116	CB	PHE H		36.243	27.240	6.174	1.00	14.38	H		С
45	ATOM	3117	CG	PHE H		35.955	27.201	7.641	1.00		H		C
	ATOM	3118		PHE H		34.773	27.744	8.141	1.00		H		C
	ATOM	3119	CD2	PHE H	256	36.909	26.729	8.538	1.00		Н		C
	ATOM	3120		PHE H		34.546	27.828	9.509	1.00		H		C
	ATOM	3121		PHE H		36.692	26.809	9.911	1.00				
50	ATOM	3122	CZ	PHE H		35.510	27.362	10.398	1.00		H		C
	ATOM	3123	N	PRO H		37.960	29.830	7.413			H		C
	ATOM	3124	CA	PRO H		36.765			1.00		H		N
	ATOM	3125	C	PRO H			30.512	7.921	1.00		H		С
•	ATOM	3126	0	PRO H		36.095	31.426	6.893	1.00 2		Н		С
55	ATOM	3127	CB			34.888	31.666	7.011	1.00 2		H		0
00	41 I O PI	0101	C D	PRO H	457	37.299	31.268	9.136	1.00 2	20.14	H		C

	ATOM	3128	B CG	PRO	H	257	38.684	31.608	8.721	1 1 0	0 20.11		H	_
	ATOM	3129	O CD	PRO	H	257	39.167				0 18.62		Н	C
	. ATOM	3130	T 0	PRO	H	257	36.786				0 26.65		H	C 0
_	ATOM	3131	L N	THR	T	6	48.678				0 39.18		T	Ŋ
5	ATOM	3132	C A	THR	T	. 6	47.791	29.559			0 38.59		Ť	C
	ATOM	3133	3 C	THR	T	6	47.976	28.083	32.299		0 36.71		T	С
	ATOM	3134		THR	T	6	48.275	27.290	31.410	1.0	0 37.09		T	0
	ATOM	3135		THR		6	46.308	29.771	31.656	1.0	0 40.14		T	C
10	ATOM	3136		LTHR		6	45.930	28.877	30.600	1.0	0 41.93		T	0
10	ATOM	3137		THR		6	46.064	31.202	31.212	1.0	0 42.09		T	C
	ATOM	3138		VAL		7	47.790				0 35.02		Ţ	N
	MOTA	3139		VAL		7	47.919				0 33.21		T	C
	MOTA	3140		VAL		7	46.611				0 31.57		T	C
15	ATOM	3141		VAL		7	45.876				0 31.61		T	0
10	MOTA	3142		VAL		7	49.054		35.019		32.59		T	C
	ATOM	3143 3144		VAL VAL		7	50.380		34.422		31.03		T	C
	ATOM	3145	N N	ALA		7	48.731		36.288		31.27		T	C
	ATOM	3146	C A	ALA		8	46.320	24.587	34.468		29.98		T	N
20	ATOM	3147	C	ALA		8 8	45.101	24.023	35.023		29.21		Ţ	С
	MOTA	3148	0	ALA		8	45.239 46.342	23.892 23.743	36.531		28.58		T	C
	MOTA	3149	СВ	ALA		8	44.828	22.660	37.055		28.70		Ī	0
	ATOM	3150	N	ALA		9	44.115	23.964	34.402 37.230		28.98		7	C
	MOTA	3151	CA	ALA		9	44.121	23.828	38.673		25.62 25.80		[-	N
25	ATOM	3152	C	ALA		9	44.490	22.387	39.016		25.80			C
	ATOM	3153	0	ALA		9	44.425	21.501	38.161		25.18		•	C
	ATOM	3154	CB	ALA		9	42.744	24.162	39.233		23.07		•	0
	MOTA	3155	N	TYR		10	44.886	22.157	40.263		24.93	,		C N
	MOTA	3156	CA	TYR		10	45.240	20.815	40.701		25.50	3		C
30	ATOM	3157	C	TYR		10	44.978	20.661	42.186		25.20	1		C
	ATOM	3158	0	TYR	T	10	44.754	21.641	42.896		23.18	1		0
	MOTA	3159	CB	TYR	T	10	46.706	20.493	40.367		27.61	1		C
	MOTA	3160	CG	TYR	Ť	10	47.724	21.429	40.975		27.41	7		C
	MOTA	3161	CD1	TYR	T	10	48.245	21.199	42.248		28.54	7		C
35	ATOM	3162	CD2	TYR	T	10	48.160	22.554	40.277		28.91	1		C
	ATOM	3163		TYR		10	49.183	22.072	42.810		28.45	ī		C
	MOTA	3164	CE2	TYR	T	10	49.090	23.429	40.827	1.00	29.62	7		C
	ATOM	3165	CZ	TYR		10	49.595	23.184	42.088	1.00	29.24	T		С
40	MOTA	3166	OH	TYR		10	50.506	24.061	42.626	1.00	33.96	T		0
40	ATOM	3167		ASN :		11	44.992	19.418	42.647	1.00	25.50	T		N
	ATOM	3168		ASN 1		11	44.729	19.119	44.045		25.22	Ţ		C
	ATOM	3169		ASN 1		11		19.624	44.466		23.78	T		C
	MOTA	3170		ASN 1		11	43.197	20.179	45.553		20.92	T		0
45	MOTA Mota	3171		ASN T		11	45.812	19.735	44.944		29.09	T		C
40	ATOM	3172 3173		ASN 1		11	47.105	18.924	44.954		31.48	. T		C
	ATOM	3174		ASN 1		11		19.321	45.578		34.70	T		0
	ATOM	3175		LEU 1		11	47.105	17.784	44.270		32.60	T		N
	ATOM	3176		LEU 1		12 12	42.356	19.441	43.602		23.43	Ţ		N
50	MOTA	3177		LEU T		12	41.003 40.594	19.868 19.011	43.939		22.96	Ţ		C
- •	ATOM	3178		LEU T		12	40.594	17.792	45.126 45.084		22.88	Ĩ		C
	ATOM	3179		LEU T		12	40.728	19.652	42.763		24.43 21.46	T		0
	ATOM	3180		LEU T		12	40.003	20.731	42.703		20.61	T T		C
	MOTA	3181		LEU T		12	41.321	20.784	40.921		19.28	T		C C
55	ATOM	3182		LEU T		12	38.859	20.437	40.712		17.88	T		C
											J UU			·

	ATOM	3183		THR	T	13	4(0.097	19.65	1 46.1	78 1	.00 22.	51	T	N
	ATOM	3184		THR	T	13	39	9.719	18.94			.00 22.		T	C
	ATOM	3185	C	THR	T	13	38	3.387	19.43	4 47.9		00 21.		T	C
-	ATOM	3186	0	THR	T	13	38	3.106	20.622	2 47.9		00 22.		T	0
.5	ATOM	3187	CB	THR	T	13	40	786				00 24.		T	
	ATOM	3188	0 G	1 THR	T	13	42	2.087				00 28.		T	C
	ATOM	3189	CG	2 THR	T	13		.524				00 25.		T	0
	ATOM	3190	N	TRP	T	14		7.570				00 20.			C
	ATOM	3191	C A	TRP	T	14		. 290	18.896			00 21.		Ť	N
10	ATOM	3192	С	TRP	T	14		.445	19.101			00 21.		T	C
	ATOM	3193	0	TRP	T	14		.003	18.250			00 21.		T	C
	ATOM	3194	CB	TRP	T	14		.233	17.816			00 22.0		T	0
	ATOM	3195	CG			14		.895	17.603			00 20.9		T	C
	ATOM	3196	CD			14		.525	16.769			00 19.		Ţ	C
15	ATOM	3197		2 TRP		14		.843	18.238			00 19.		T	C
	ATOM	3198	NE.			14		.925	16.845			00 18.		Ĩ	C
	ATOM	3199	CE			14		.889	17.741			00 20.4		T	N
	ATOM	3200		3 TRP		14		.863	19.180				-	Ţ	C
	ATOM	3201		2 TRP		14		.989	18.155			00 20.8		T	C
20	ATOM	3202		3 TRP		14		.964	19.592			00 20.3		T	С
	ATOM	3203	CH			14		.037	19.077			00 20.5		Ţ	С
	ATOM	3204	N			15		.968	20.240			00 20.3		Ţ	C
	ATOM	3205	CA	LYS		15		.005	20.568			00 21.0		Ţ	N
	ATOM	3206	С	LYS		15		.534	20.558			00 20.1		T	С
25	ATOM	3207	0	LYS		15		.862		52.81		00 19.4		T	С
	ATOM	3208	СВ	LYS		15		.700	21.632	52.51		00 20.8		T	0
	ATOM	3209	CG	LYS		15		.162	21.918	52.66		00 21.4		T	С
	MOTA	3210	CD	LYS		15			21.933	52.22		00 23.2		T	С
	ATOM	3211	CE	LYS		15		.990	20.995	53.09		00 28.6		T	С
30	ATOM	3212	NZ	LYS		15		. 296	20.589	52.42		0 31.7		T	С
	ATOM	3213	N Z	SER				.190	21.741	52.15		00 36.8		T	N
	ATOM	3214	CA	SER		16		.035	19613	53.47		0 17.5		T	N
	ATOM	3215	C	SER		6		628	19.556	53.83		0 17.1		T.	€.
	ATOM	3216	0			6		363	19.073	55.25		00 18.0		T	С
35	ATOM	3217	CB	SER		6		859	18.021	55.67		0 16.1		T	0
00	MOTA	3218	0 G	SER		.6		906	18.639	52.83		0 17.4		T	С
	MOTA	3219	N	SER		.6		500	18.633	53.03		0 16.1		T	0
	ATOM	3220	C A	THR		.7		572	19.851	55.98		0 17.3		T	N
	ATOM	3221	C	THR		7		199	19.523	57.36		0 17.8		T	С
40	ATOM	3222	0	THR		7			19.890	57.52		0 17.6		T	C
10	ATOM	3223		THR		7		345	21.033	57.29		0 17.6		T	0
	ATOM	3224	CB	THR		7		031		58.38		0 16.36		T	C
	ATOM	3225		THR 1		7		414	19.996	58.23		0 18.93		T	0
	ATOM	3225		THR				596	19.990	59.799		0 17.3		1	C
45	ATOM	3227	N	ASN 1					18.922	57.93		0 18.02		T	N
40			CA	ASN 1					19.160	58.103		0 19.26	5	T	C
	ATOM	3228	C	ASN 1			26.		19.764	56.837		0 18.10		T	С
	ATOM	3229	0	ASN 7					20.643	56.886	1.0	0 18.37	7	T	0
	MOTA	3230	CB	ASN 1					20.073	59.301		0 20.54	ļ	T	C
50	ATOM	3231	CG	ASN T			27.		19.494	60.579	1.0	0 23.12	2	T	C
50	MOTA	3232		ASN T			27.		18.288	60.804	1.0	22.01		T	0
	MOTA	3233		ASN T			28.		20.346	61.423		26.13	3	T	N
	ATOM	3234	N	PHE T			27.		19.269	55.706		18.27		T	N
	ATOM	3235	CA	PHE T			26.9		19.672	54.383	1.0	19.15		T .	С
55	MOTA	3236	C	PHE T			27.4		21.022	53.869	1.00	20.26		T	C
55	ATOM '	3237	0	PHE T	19	7	27.2	200	21.369	52.715	1.00	20.39		T	0

					_							
	MOTA	3238					25.441	19.539	54.305	1.00 20.26	Ţ	C
	MOTA	3239	CG	PH	E 1	19	24.965	18.124	54.530	1.00 21.59	T	С
•	ATOM	3240	CD	1 PH	E 7	19	25.184	17.144	53.565	1.00 21.66	T	C
	ATOM	3241	CD	2 PH	E 1	19	24.371	17.755	55.731	1.00 22.37	Ţ	C
5	ATOM	3242	CE	1 PH	E T	19	24.823	15.819	53.790	1.00 21.75	T	C
	MOTA	3243	CE	2 PH	E T	19	24.003			1.00 24.36	T	C
	MOTA	3244					24.232			1.00 22.96		
	ATOM	3245	N		ST		28.162			1.00 22.90	T	C
	ATOM	3246	CA		ST		28.737		54.252	1.00 19.77	T	N
10	ATOM	3247	C	LY			29.855				T -	C
	ATOM	3248	0	LY			30.848		53.362	1.00 18.12	T	C
	MOTA	3249	CB	LY					53.853	1.00 19.69	T	0
	MOTA	3250	CG				29.326	23.831	55.414	1.00 20.11	Ť	С
				LY.			28.777	25.232	55.535	1.00 22.19	Ť	C
15	ATOM	3251	CD	LY			29.115	26.090	54.338	1.00 21.31	T	C
10	ATOM	3252	CE	LY			28.434	27.437	54.474	1.00 21.39	T	C
	ATOM	3253	NZ	LY		20	28.973	28.453	53.548	1.00 23.07	T	N
	MOTA	3254	N	TH		21	29.692	22.684	52.056	1.00 16.64	T	N
	MOTA	3255	CA		R T	21	30.643	22.143	51.100	1.00 16.45	T	C
0.0	ATOM	3256	C		R T	21	31.364	23.167	50.243	1.00 18.19	T	C
20	ATOM	3257	0	THI	R T	21	30.749	23.879	49.453	1.00 17.44	Ţ	0
	ATOM	3258	CB		R T	21	29.911	21.151	50.192	1.00 15.26	T	С
	MOTA	3259	0 G 1	LTHI	R T	21	29.179	20.236	51.016	1.00 16.35	T	0
	ATOM	3260	C G 2	THE	R T	21	30.885	20.380	49.320	1.00 16.11	T	С
	A T O M	3261	N	ILE	T	22	32.682	23.215	50.394	1.00 19.00	Ţ	N
25	ATOM	3262	CA	ILE	T	22	33.511	24.146	49.648	1.00 19.12	T	C
	ATOM	3263	C	ILE	T	22	34.603	23.396	48.896	1.00 18.47	Ť	C
	ATOM	3264	0	ILE	T	22	35.326	22.588	49.477	1.00 18.08	Ť	0
	MOTA	3265	СВ	ILE		22	34.180	25.169	50.597	1.00 20.41	T	C
	ATOM	3266		ILE		- 22	. 33.108	25.959	51.353	1.00 20.41	Ť	C
30	ATOM	3267		LLE		22	35.075	26.121	49.804	1.00 19.96	T	C
	ATOM	3268		ILE		22	33.673	26.948	52.352	1.00 13.30	Ī	
	ATOM	3269	N	LEU		23	34.711	23.658	47.599	1.00 21.24		C
	ATOM	3270	CA	LEU		23	35.738	23.029	46.783		T	N
	ATOM	3271	.C	LEU		23	36.967	23.925	46.847	1.00 18.70	T	C
35	ATOM	3272	0	LEU		23	36.859		46.691	1.00 17.68	Ţ	С
	ATOM.	3273	СВ	LEU		23	35.275	25.141		1.00 18.29	Ţ	0
	MOTA	3274	CG	LEU		23		22.905	45.329	1.00 19.42	Ť	C
	ATOM	3275		LEU		23	36.258	22.183	44.399	1.00 21.43	T	C
	ATOM	3276		LEU			36.325	20.714	44.790	1.00 19.69	Ţ	C
40						23	35.820	22.334	42.944	1.00 17.72	Ť	С
40	ATOM ATOM	3277	N	GLU		24	38.129	23.334	47.093	1.00 16.78	T	N
		3278	CA	GLU		24	39.367	24.102	47.165	1.00 18.87	Ţ	С
	ATOM	3279	C	GLU		24	40.354	23.566	46.146	1.00 20.20	T	С
	MOTA	3280	0	GLU		24		22.411	45.735	1.00 20.83	T	0
15	MOTA	3281	CB	GLU		24	39.968	24.025	48.575	1.00 18.72	T	С
45	ATOM	3282	CG	GLU		24		25.019	49.553	1.00 21.38	T	С
	ATOM	3283	CD	GLU		24	39.7 77	24.789	50.988	1.00 23.65	T	C
	ATOM:	3284		GLU		24	40.878	24.291	51.202	1.00 25.81	T	0
	MOTA	3285	0E2	GLU	T	24	39.008	25.125	51.887	1.00 26.26	T	0
	ATOM	3286	N	TRP	T	25	41.300	24.401	45.735	1.00 19.89 .	Ţ	N
50	ATOM	3287	CA	TRP	T	25	42.280	23.965	44.759	1.00 20.95	T	С
	MOTA	3288	C	TRP	T	25	43.524	24.843	44.721	1.00 22.24	Ţ	Ċ
	ATOM	3289	0	TRP	T	25	43.635	25.829	45.451	1.00 23.01	Ţ	0
	MOTA	3290	CB	TRP	Ţ	25	41.629	23.912	43.366	1.00 18.38	Ť.	C
	ATOM	3291	CG	TRP	T	25	41.213	25.252	42.815	1.00 16.29	Ť	C
55	MOTA	3292		TRP		25	41.994	26.133		1.00 16.76	Ţ	C
								 -				~

			_											
	ATOM			2 TRP		25	39.91	7 25.856	6 42.911	1.0	00 14.79		T	С
	ATOM	329	4 NE	1 TRP	T	25	41.26	0 27.246			00 13.11		T	
	ATOM	329	5 CE	2 TRP	T	25	39.98	4 27.102			00 14.48		T	N
_	ATOM	329	6 CE	3 TRP	T	25	38.704	4 25.466			00 15.24			C
5	ATOM	3291	7 C Z	2 TRP	T	25	38.882				00 13.24		T	C
	ATOM	3298	s cz	3 TRP	T	25	37.606						Ţ	С
	ATOM	3299				25	37.705				00 14.21		Ť	С
	ATOM	3300		GLU		26					0 15.19		T	C
	ATOM	3301					44.455				0 24.44		T	N
10	ATOM	3302		GLU		26 26	45.713	-			0 27.06		T	C
	ATOM	3302				26	45.713				0 28.34		T	С
				GLU		26	44.953		_		0 26.89		T	0
	ATOM	3304		GLU		26	46.889			1.0	0 28.64		T	С
	ATOM	3305		GLU		26	46.993	23.741	45.376	1.0	0 34.94		T	С
7.5	ATOM	3306		GLU		26	47.761	24.705	46.253		0 39.39		Ť	C
15	ATOM	3307		1 GLU		26	47.870	24.444	47.440		0 42.73		Ť	. 0
	ATOM	3308	0 E	2 GLU	T	26	48.255	25.713			0 42.24		T	. 0
	MOTA	3309	N	PRO	T	27	46.567				0 30.61		ī	
	ATOM	3310	CA	PRO	T	27	47.516				0 33.08			N
	ATOM	3311	С	PRO	T	27	47.039		42.694		0 36.39		Ť	С
20	MOTA	3312	0	PRO	T	27	45.969		42.204				T	C
	ATOM	3313	СВ	PRO		27	48.781				0 37.38		T	0
	ATOM	3314	CG	PRO		27	48.232		41.722		0 31.05		T	С
	ATOM	3315	CD	PRO		27		27.369	40.350		0 29.94		T	C
	ATOM	3316	N	LYS			46.943	_	40.312		29.62		T	C
25	ATOM	3317	CA			28	47.844	29.469	43.354		0 40.49		T	N
	ATOM			LYS		28	47.509	30.874	43.534		44.79		T	C
		3318	C	LYS		28	47.525	31.555	42.169	1.00	46.88		Ţ	C
	ATOM	3319	0	LYS		28	48.585	31.737	41.566	1.00	47.96		Ť	0
	ATOM	3320	CB	LYS		28	48.518	31.537	44.472	1.00	45.11		T	С
20	ATOM	3321	CG	LYS		28	48.533	30.923	45.859	1.00	46.65		T	С
30	ATOM	3322	CD	LYS		28	47.146	30.969	46.483	1.00	47.76		T	C
	ATOM	3323	CE	LYS	T	28	47.120	30.295	47.843		49.21		T	C
	ATOM	3324	ΝZ	LYS	T	28	45.769	30.375	48.468		50.84		T	N
	ATOM	3325	N	PRO	ľ	29	46.342	31.942	41.667		47.94		T	N
	ATOM	3326	CA	PRO :	Γ	29	46.170	32.602	40.371		48.83		r T	
35	MOTA	3327	С	PRO '	r	29	47.026	33.841	40.130		49.78			C
	ATOM	3328	0	PRO 1	ſ	29	46.997	34.802	40.899		49.58		T	C
	ATOM	3329	CB	PRO :		29	44.677	32.914	40.339		48.24		ī	0
	ATOM	3330	CG	PRO 1		29	44.346	33.102	41.778				T -	C
	MOTA	3331	CD	PRO 1		29	45.074	31.952			47.36		Γ	C
40	ATOM	3332	N	VAL 1		30			42.417		48.57		Γ	С
	ATOM	3333	CA	VAL 1		30		33.795	39.044		50.46		[N
	ATOM	3334	C	VAL 1		30		34.894	38.640		51.62	,	Γ	C
	ATOM	3335	0	VAL T			48.245		37.210		51.40		ľ	C
	MOTA	3336				30	48.602		36.283		51.31	1	Γ	0
45	ATOM		CB	VAL T		30	50.138		38.664	1.00	51.98	1	ſ	С
10	ATOM	3337		VAL T		30	51.002		38.258	1.00	52.42	1	•	C
		3338		VAL T		30	50.523	33.993	40.055	1.00	51.87	1	•	C
	ATOM	3339	N	ASN T		31	47.491	36.291	37.033	1.00	50.80	1		N
	ATOM	3340		ASN T		31	46.994	36.652	35.709		49.64	1		C
	MOTA	3341	С	ASN T	3	31	46.213	35.437	35.222	1.00	46.82	T		C
50	ATOM	3342	0	ASN T	3	31		35.007	34.077		46.96	T		0
	ATOM	3343	CB	ASN T	3	31		36.952	34.760		52.08	T		C
	ATOM	3344	CG	ASN T	3	1		38.249	35.095		54.19	T		C
	ATOM	3345	0D1	ASN T	3	1		39.322	35.032		56.94			
	ATOM	3346		ASN T	3	1		38.160	35.457		54.94	Ĩ		0
55	ATOM	3347		GLN T		2		34.897	36.118		44.02	T		N
				-	-		000	0 1 1 0 0 1	20.110	1.00	44.02	T		N

	ATOM	3348	3 C	A G	LN	T 32	44.591	7 33.71	1 35.845	1.00 39.84	7	
	ATOM	3349	C	G	LN	T 32	43.356				T T	C
	ATOM	3350	0	GI	N	T 32	43.450				T	C
	ATOM	3351	. CE	3 G1	N	T 32	45.457				T	0
5	MOTA	3352	C	G G I	N	T 32	44.756				T	C
	ATOM	3353	C) GI	N '	T 32	45.743				T	
	ATOM	3354	0.6	E1 G1	N :	T 32	46.616				T	C
	MOTA	3355	NE	2 GL	N	T 32	45.614					0
	ATOM	3356			L 1		42.192				T	N
10	ATOM	3357	CA		L 1		40.930			1.00 26.24	T T	N
	MOTA	3358	С	V A	L 1	33	40.280					C
	ATOM	3359	0	V A	L 1		40,698			1.00 23.37	, T T	C
	A TO M	3360	СВ	VA	L 1	33	39.986			1.00 25.12	T	0
	MOTA	3361	CG	1 VA	L I		40.676			1.00 23.86	T	C
15	ATOM	3362		2 V A			39.603			1.00 25.80	T	C
	MOTA	3363	N		R T		39.260			1.00 20.27	T	C
	MOTA	3364	CA		R 1		38.589			1.00 19.35	T	N
	ATOM	3365	C		R T		37.070			1.00 18.92	T T	C
	ATOM	3366	0		R T		36.454		- -	1.00 18.52	T	C
20	MOTA	3367	СВ		R T		38.947			1.00 18.40		0
	ATOM	3368	CG		R T		40.416	_		1.00 18.40	T	C
	MOTA	3369	CD:	1 TY			41.125			1.00 20.44	T	C
	ATOM	3370		2 TY		34	41.096		39.971	1.00 19.10	T	C
	ATOM	3371		l TY		34	42.475	28.424	38.412	1.00 19.10	Ī	C
25	ATOM	3372		TYI		34	42.447	30.021	40.207	1.00 20.05	T	C
	ATOM	3373	CZ		R T	34	43.126	29.102	39.426	1.00 20.00	T	C
	ATOM	3374	OH	TYI		34	44.454	28.848	39.669	1.00 24.65	T	C
	MOTA	3375	N	THE		35	36.478	29.581	36.974	1.00 16.56	T	0
	ATOM	3376	CA	THE		35	35.034	29.429	36.956	1.00 16.37	T	N
30	ATOM	3377	С	THE		35	34.831	27.950	37.233	1.00 10.37	T	C
•	ATOM	3378	0	THE		35	35.490	27.103	36.634	1.00 18.13	T	C
	ATOM	3379	СВ	THE		35	34.390	29.799	35.608	1.00 15.13	T	0
	ATOM	3380	0G1	THE		35	34.409	31.222	35.438	1.00 15.23	T	C
	MOTA	3381		THE		35	32.941	29.336	35.581	1.00 15.18	T T	0
35	ATOM	3382	N	VAL		36	33.940	27.647	38.163	1.00 15.22	i T	C
	MOTA	3383	CA	VAL		36	33.669	26.271	38.543	1.00 13.22	T	N
	MOTA	3384	C	VAL		36	32.340	25.787	37.974	1.00 14.03	T	C
	ATOM	3385	0	VAL		36	31.405	26.568	37.816	1.00 15.99	T	C 0
	ATOM	3386	CB	VAL		36	33.638	26.153	40.086	1.00 12.56	Ť	C
40	ATOM	3387	CG1	VAL	Ţ	36	33.230	24.751	40.517	1.00 14.14	T	C
	ATOM	3388		VAL		36	35.019	26.496	40.652	1.00 13.80	T	
	ATOM	3389	N	GLN		37	32.278	24.507	37.624	1.00 14.43	T	C
	MOTA	3390	CA	GLN		37	31.045	23.903	37.136	1.00 14.45	T	N
	ATOM	3391	C	GLN		37	30.796	22.668	37.990	1.00 14.47	T	C
45	ATOM	3392	0	GLN		37	31.733	21.976	38.381	1.00 14.12	Ť	C
	MOTA	3393	СВ	GLN		37	31.152	23.468	35.671	1.00 14.12	T	0
	ATOM	3394	CG	GLN		37	31.085	24.583	34.637	1.00 14.48		C
	ATOM	3395	CD	GLN		37	30.857	24.037	33.234	1.00 13.74	Ţ	C
	ATOM	3396		GLN		37	31.300	22.940	32.912	1.00 13.74	T	C
50	MOTA	3397	NE2			37	30.175	24.807			T	0
	MOTA	3398	N	ILE		38	29.533	22.399	32.393 38.287	1.00 10.80 1.00 14.90	T	N
	ATOM	3399	CA	ILE		38	29.176	21.231			T	N
	ATOM	3400	C	ILE		38	27.965			1.00 14.60	T	C
	ATOM	3401		ILE		38	27.150	21.252		1.00 16.38	T	C
55	ATOM	3402		ILE		38	28.829	21.617		1.00 17.10	T	0
					•		_5.000	-1.011	40.521	1.00 15.19	Ţ	C

	ATOM	3403		1 IL			28.607	20.351	41.358	1.00 14.88	Ţ	С
	ATOM	3404	C G	2 IL	E T	. 38	27.601	22.530	40.539	1.00 10.78	Ţ	Č
	ATOM	3405	CD	1 IL	E T	38	28.402	20.620	42.845		T	c
	ATOM	3406	N	SE	R T	39	27.857	19.260	38.557		T	N
5	ATOM	3407	CA	SE	R T	39	26.737	18.529		1.00 15.27	T	C
	ATOM	3408	С	SE	r t	39	26.642			1.00 15.45	Ţ	C
	ATOM	3409	0	SE	R T	39	27.511	16.748		1.00 16.91	T	0
	ATOM	3410	CB	SE	R T	39	26.948	18.327		1.00 12.90	T	£
	MOTA	3411	0 G	SE	R T	39	27.999	17.389		1.60 12.71	Ţ	0
10	ATOM	3412	N	THI	R T	40	25.569	16.453		1.00 17.91	T	N
	ATOM	3413	CA	THI	R T	40	25.381	15.088	38.745	1.00 18.74	T	C
	ATOM	3414	С	THI	R T	40	25.637	14.283	37.480	1.00 21.10	Ť	С
	ATOM	3415	0	THI	T	40	25.606	14.839	36.378	1.00 20.86	Ť	0
	ATOM	3416	CB	THE	R T	40	23.947	14.834	39.245	1.00 19.11	T	C
15	ATOM	3417	0 G I	L THE	T	40	23.002	15.399	38.325	1.00 17.75	Ť	0
	ATOM	3418	CG2	THE	T	40	23.755	15.448	40.620	1.00 17.44	T	c
	ATOM	3419	N	LYS	T	41	25.896	12.989	37.639	1.00 24.75	T	N
	ATOM	3420	CA	LYS	T	41	26.183	12.079	36.527	1.00 26.61	T	C
	ATOM	3421	C	LYS	T	41	25.427	12.345	35.224	1.00 26.89	T	C
20	ATOM	3422	0	LYS	T	41	26.032	12.422	34.154	1.00 27.99	Ť	0
	MOTA	3423	CB	LYS	T	41	25.922	10.637	36.970	1.00 31.82	T	C
	MOTA	3424	CG	LYS	T	41	26.089	9.598	35.873	1.00 37.07	Ť	C
	ATOM	3425	CD	LYS	T	41	25.717	8.204	36.371	1.00 39.57	Ť	C
	ATOM	3426	CE	LYS	T	41	25.812	7.175	35.253	1.00 40.27	Ť	c
25	ATOM	3427	ΝZ	LYS	T	41	25.454	5.808	35.729	1.00 43.52	Ť	N
	MOTA	3428	N	SER	T	42	24.108	12.473	35.303	1.00 24.42	Ť	N
	ATOM	3429	CA	SER	T	42	23.324	12.711	34.105	1.00 24.61	T	C
	ATOM	3430	С	SER	T	42	22.618	14.066	34.081	1.00 22.94	Ť	C
	ATOM	3431	0	SER	T	42	21.641	14.244	33.360	1.00 25.38	Ţ	0
30	ATOM	3432	СВ	SER	T	42	22.299	11.588	33.926	1.00 26.04	Ť	c
	ATOM	3433	0 G	SER	T	42	21.442	11.505	35.048	1.00 31.07	T	0
	MOTA	3434	N	GLY	T	43	23.114	15.017	34.866	1.00 19.49	Ť	N
	MOTA	3435	CA	GLY	T	43	22.513	16.338	34.898	1.00 18.07	T	C,
	ATOM	3436	C	GLY	T	43	23.352	17.340	34.125	1.00 15.78	T	Ċ,
35	ATOM	3437	0	GLY	T	43	24.494	17.058	33.774	1.00 15.61	T	0
	ATOM	3438	N	ASP	T	44	22.787	18.508	33.852	1.00 15.33	T	N
	MOTA	3439	CA	ASP	T	44	23.500	19.543	33.119	1.00 15.18	T	C
	MOTA	3440	C	ASP	T	44	24.586	20.168	33.991	1.00 15.75	T	С
	ATOM	3441	0	ASP		44	24.536	20.085	35.220	1.00 14.67	Ť	0
40	MOTA	3442	СB	ASP	T	44	22.532	20.645	32.664	1.00 14.49	T	С
	ATOM	3443	CG	ASP	T	44	21.512	20.163	31.635	1.00 15.31	T	С
	ATOM	3444	0D1	ASP	Ţ	44	21.724	19.121	31.012	1.00 11.39	Ť	0
	ATOM	3445	0D2	ASP	T	44	20.500	20.857	31.448	1.00 16.14	T	0
	ATOM	3446	N	TRP	T	45	25.570	20.794	33.356	1.00 15.26	T	N
45	ATOM	3447	CA	TRP	T	45	26.632	21.449	34.104	1.00 16.12	T	С
	MOTA	3448	С	TRP	T	45	26.155	22.832	34.532	1.00 16.65	Ŧ	C
	MOTA	3449	0	TRP		45	25.592	23.575	33.738	1.00 17.64	T	0
	ATOM	3450	CB	TRP		45	27.895	21.576	33.259	1.00 14.65	T	С
	MOTA	3451	CG	TRP		45	28.542	20.254	32.967	1.00 16.11	T	С
50	MOTA	3452		TRP		45	28.359	19.476	31.859	1.00 14.82	T	С
	MOTA	3453		TRP		45	29.469	19.550	33.804	1.00 15.28	T	С
	ATOM	3454		TRP		45	29.119	18.332	31.951	1.00 14.03	T	N
	MOTA	3455		TRP		45	29.812	18.352	33.135	1.00 15.34	Τ.	С
	ATOM	3456		TRP		45	30.044	19.814	35.056	1.00 17.68	T	С
55	ATOM	3457	CZ2	TRP	T	45	30.708	17.420		1.00 14.08	T	С

								•				
	MOTA			3 TR		45	30.938	18.884	35.595	1.00 15.15	T	С
	ATOM			2 TR			31.260	17.703	34.899	1.00 15.49	T	C
	ATOM	3460			SI		26.374	23.165	35.795	1.00 16.58	T	N
_	ATOM	3461			SI		25.960	24.455	36.323	1.00 17.49	T	С
5	ATOM	3462		LY			27.218	25.240	36.702	1.00 16.41	T	С
	MOTA	3463		LY			28.109	24.704	37.358	1.00 17.90	T	0
	ATOM	3464					25.070	24.223	37.545	1.00 18.63	T	С
	ATOM	3465					24.011	25.285	37.794	1.00 25.36	Ť	C
10	ATOM	3466	CD				24.421	26.245	38.886	1.00 27.44	T	С
10	ATOM	3467					23.245			1.00 30.02	T .	С
	ATOM	3468	NZ		S T		22.215			1.00 30.73	Ţ	N
	ATOM	3469	N	SE			27.299			1.00 16.11	Ť	N
	ATOM	3470	CA		R T		28.460			1.00 14.72	T	С
15	ATOM	3471	C		R T	47	28.330	28.031	37.928	1.00 13.96	T	C
15	ATOM	3472	0		R T	47	27.244		38.319	1.00 13.03	T	0
	ATOM	3473	CB		R T	47	28.678	28.386	35.488	1.00 11.64	T	С
	ATOM	3474	0 G		R T	47	29.306	27.819	34.350	1.00 15.92	T	0
	MOTA	3475	N	LYS		48	29.456	28.163	38.619	1.00 13.74	T	N
90	MOTA	3476	CA	LYS		48	29.503	28.794	39.935	1.00 15.63	T	С
20	ATOM	3477	С	LYS		48	30.801	29.581	40.095	1.00 15.18	Ť	C
	ATOM	3478	0	LYS		48	31.774	29.346	39.376	1.00 14.77	T	0
_	ATOM	3479	CB	LYS		48	29.447	27.724	41.033	1.00 13.97	T	C
	ATOM	3480	CG	LYS		48	28.293	26.747	40.906	1.00 15.98	T	C
95	MOTA	3481	CD	LYS		48	27.363	26.832	42.093	1.00 19.94	T	C
25	MOTA	3482	CE	LYS		48	26.789	28.221	42.253	1.00 19.83	T	C
	MOTA	3483	NZ	LYS		48	25.892	28.306	43.425	1.00 18.63	T	N
	MOTA	3484	N	CYS		49	30.806	30.508	41.046	1.00 16.26	Ť	N
	ATOM	3485	CA	CYS		49	31.993	31.308	41.339	1.00 17.07	T	C
30	ATOM	3486	С	CYS		49	32.635	31.844	40.058	1.00 17.80	T	C
30	ATOM	3487	0	CYS		49	33.815	31.627	39.784	1.00 17.68	T	0
	ATOM	3488	CB	CYS		49	32.975	30.448	42.144	1.00 15.94	Ţ	С
	MOTA	3489	SG	CYS		49	32.249	29.824	43.705	1.00 18.32	T	S
	ATOM	3490	N	PHE		50	31.826	32.568	39.293	1.00 19.09	T	N
35	ATOM	3491 3492	CA	PHE		50	32.208	33.145	38.006	1.00 19.69	T	С
55	MOTA MOTA	3492	C	PHE		50	33.438	34.046	38.020	1.00 18.93	Ţ	С
	ATOM	3494	O CB	PHE		50	33.462	35.073	38.687	1.00 19.65	T	0
	ATOM	3495	CG	PHE PHE		50	31.018	33.925	37.437	1.00 21.03	T	С
	ATOM	3496		PHE		50 50	29.705	33.212	37.598	1.00 22.82	T	С
40	ATOM	3497		PHE		50 50	29.410 28.791	32.090	36.834	1.00 23.21	T	С
	ATOM	3498		PHE		50	28.225	33.626 31.388	38.562	1.00 24.00	Ţ	C
	ATOM	3499		PHE		50			37.031	1.00 22.86	Ť	С
	ATOM	3500	CZ	PHE		50	27.604 27.324	32.929	38.768	1.00 24.77	T	C
	ATOM	3501	N	TYR		51	34.454	31.808 33.646	38.000	1.00 24.10	T	C
45	ATOM	3502	CA	TYR		51	35.694	34.404	37.264	1.00 19.61	Ţ	N
	ATOM	3503	C	TYR		51	36.262	34.886	37.135	1.00 19.80	T	C
	ATOM	3504	0	TYR		51	36.662	36.043	38.459 38.590	1.00 20.72	T	C
	ATOM	3505	CB	TYR		51	35.470	35.601	36.212	1.00 20.88	T	0
	ATOM	3506	CG	TYR		51	34.778	35.245	34.915	1.00 20.21	T	C
50	ATOM	3507		TYR		51	35.358	34.354		1.00 21.19	Ĩ	C
	MOTA	3508		TYR		51	33.536	35.795	34.011 34.596	1.00 20.94 1.00 22.01	T	C
	MOTA	3509		TYR		51	34.717	34.021	32.820	1.00 22.01	T	C
	MOTA	3510		TYR		51	32.888	35.471	33.409	1.00 23.16	T	C
	MOTA	3511	CZ	TYR		51	33.481	34.586	32.527	1.00 25.31	T	C
55	ATOM	3512	OH	TYR		51	32.835	34.271	31.353	1.00 25.31	T T	C
					-			·		2.00 55.05	1	0

	ATOM	3513	N	THI	R :	r 52	36.300	33.989	39.436	1.00 20.20	T	N
	MOTA	3514		THE	R 1	T 52	36.828	34.301			T	C
	ATOM	3515	C	THI	? 7	52	38.348	34.188	40.741		Ť	С
_	ATOM	3516	0 -	THE	? ?	r 52	38.916	33.409	39.970		T	0
. 5	ATOM	3517	CB	THE	? 7	r. 52	36.283	33.317	41.816	1.00 19.38	T	С
	ATOM	3518	0 G	1 THE	? 1	52	36.848	33.631	43.094	1.00 18.27	Ţ	0
	MOTA	3519	C G	2 THE	7	52	36.651			1.00 20.27	Ţ	C
	MOTA	3520	N	THE	1	53	39.007	34.973		1.00 20.41	T	N
	ATOM	3521	CA	THE	1	53	40.460			1.00 22.43	Ţ	C
10	ATOM	3522	С	THE	1	` 53	40.862			1.00 23.31	T.	С
	ATOM	3523	0	THE	T	53	42.042			1.00 24.50	Ţ	0
	ATOM	3524	CB	THE	T	53	41.094	36.318		1.00 21.43	ī	C
	MOTA	3525	0 G 1	I THR	T	53	40.475	37.077	42.793	1.00 23.60	T	0
	ATOM	3526	C G 2	2 THR	T	53	40.919	37.039	40.423	1.00 20.43	Ţ	С
15	MOTA	3527	N	ASP	T	54	39.878	33.701	43.727	1.00 24.66	T	N
	MOTA	3528	CA	ASP	T	54	40.170	32.907	44.910	1.00 24.86	Ť	С
	ATOM	3529	C	ASP	T	54	40.341	31.467		1.00 24.57	T	C
	ATOM	3530	0	ASP	T	54	39.991	31.124	43.311	1.00 23.26	T	
	ATOM	3531	CB	ASP	T	54	39.027	32.991	45.920	1.00 28.59	I T	0
20	ATOM	3532	CG	ASP			38.695	34.418	46.307	1.00 28.33	T	C
	ATOM	3533	0 D 1				39.607	35.179	46.642	1.00 35.02	T	C
	ATOM	3534	0 D 2			54	37.529	34.759	46.279	1.00 35.02	Ţ	0
	ATOM	3535	N	THR		55	40.888	30.625	45.316	1.00 20.61		0
	ATOM	3536	CA	THR		55	41.088	29.230	44.969	1.00 20.01	T	N
25	ATOM	3537	С	THR		55	40.114	28.339	45.741	1.00 18.26	T	C
	ATOM	3538	0	THR		55	40.483	27.264	46.222	1.00 16.66	T	С
	ATOM	3539	СВ	THR		55	42.526	28.806	45.266	1.00 17.06	T	0
	ATOM	3540	0 G 1			55	42.852	29.159	46.612		T	С
	ATOM	3541		THR		55	43.488	29.500	44.321	1.00 17.45	T	0
30	ATOM	3542	N	GLU		56	38.871	28.804	45.857	1.00 19.50	T	C
	ATOM	3543	CA	GLU		56	37.822	28.072		1.00 15.86	Ī	N
	ATOM	3544	С	GLU		56	36.462	28.477	46.553 45.999	1.00 17.50	T	C
	ATOM	3545	0	GLU		56	36.294	29.576		1.00 16.59	T -	С
	ATOM	3546	СВ	GLÜ		56	37.837	28.387	45.475 48.053	1.00 15.56	T	0
35	ATOM	3547	CG	GLU		56	37.396	29.809	48.374	1.00 17.92	Ţ	C
	ATOM	3548	CD	GLU		56	37.390	30.061		1.00 20.51	T	C
	ATOM	3549		GLU		56	38.221	29.802	49.859 50.582	1.00 24.03	ī	C
	ATOM	3550		GLU		56	36.205	30.518	50.382	1.00 26.81	Ţ	0
	MOTA	3551	N	CYS		57	35.490		46.129	1.00 26.27	T	0
40	ATOM	3552	CA	CYS		57	34.147		45.665	1.00 16.04	Ť	N
	ATOM	3553	С	CYS		57	33.140		46.552	1.00 16.17	Ţ	C
	MOTA	3554	0	CYS		57	33.225	25.954	46.754	1.00 15.98	Ţ	C
	ATOM	3555	CB	CYS		57	33.963	27.403	44.219	1.00 14.72	T	0
	ATOM	3556	SG	CYS		57	32.314	27.793	43.557	1.00 17.24	T	С
45	ATOM	3557	N	ASP		58	32.187	27.918	47.084	1.00 17.97	T	S
	ATOM	3558	C A	ASP		58		27.326	47.084	1.00 14.99	T .	N
	ATOM	3559	С	ASP		58		26.677		1.00 15.94	T	С
	ATOM	3560	0	ASP		58	29.477		47.061	1.00 16.95	Ť	C
	ATOM	3561	CB	ASP		58		27.340	46.244	1.00 17.86	T	0
50	MOTA	3562	CG	ASP				28.385	48.829	1.00 16.18	T	С
	MOTA	3563		ASP		58 58			49.715	1.00 17.55	T	С
	MOTA	3564		ASP		58			50.053	1.00 15.23	T	0
	ATOM	3565		LEU		5 6 59		28.531	50.073	1.00 18.41	Ţ	0
	ATOM	3566		LEU		59 59		25.373	47.227	1.00 16.87	T	N
55	ATOM	3567		LEU				24.643	46.449	1.00 16.97	Ť	С
00	11 1 V PI	5507	U	D E ()	1	59	27.832	24.092	47.331	1.00 17.59	Ţ	С

	MOTA	3568	0	LE	U 1	r 59		27.077	7 23.218	46.916	1.00 19.55		T	0
	ATOM	3569	CB	LEI	J 1	59		29.638	3 23.513	45.682	1.00 14.54		T	C
	ATOM	3570	CG	LEU	J 🤈	59		30.694	24.010	44.686	1.00 16.18		T	C
_	ATOM	3571	C D :	1 LE	J 1	59		31.435	22.828	44.072	1.00 13.02		Ţ	C
. 5	ATOM	3572	CD:	2 LEU	J 1	59		30.019	24.850	43.606	1.00 14.07		T	C
	ATOM	3573	N	THE	? 1	60		27.718	24.630	48.541	1.00 18.48		T	N
	ATOM	3574	CA	THE	? 1	60		26.701	24.199	49.495	1.00 20.05		T	C
	ATOM	3575	C	THE	7	60		25.274	24.228	48.952	1.00 20.61		Ť	c
	ATOM	3576	0	THE	? 1	60		24.558	23.230		1.00 20.04		T	0
10	MOTA	3577	CB	THE	1	60		26.748			1.00 20.92		T	C
	ATOM	3578	0 G I	LTHE	T	60		28.024	24.909	51.415	1.00 21.02		T	0
	ATOM	3579	C G 2	THE	T	60		25.654	24.647		1.00 19.78		T	C
	MOTA	3580	N	ASP	T	61		24.859	25.368	48.405	1.00 20.95		T	N
	ATOM	3581	CA	ASP	T	61		23.500	25.507	47.884	1.00 22.33		T	C
15	MOTA	3582	C	ASP	T	61		23.142	24.529	46.778	1.00 21.88		T	C
	ATOM	3583	0	ASP	T	61		21.967	24.220	46.574	1.00 23.89		T	0
	ATOM	3584	CB	ASP	T	61		23.252			1.00 23.16		Ť	C
	ATOM	3585	CG	ASP	T	61		23.321	27.947		1.00 26.60		Ţ	C
	ATOM	3586	0D1	ASP	T	61		23.175	27.550		1.00 28.12		T.	0
20	KOTA	3587	0 D 2	ASP	T	61		23.511	29.127		1.00 31.54		T	0
	ATOM	3588	N	GLU	7	62		24.146	24.042		1.00 20.11		T	N
	ATOM	3589	CA	GLU	T	62		23.890	23.102		1.00 21.57		T	C
	MOTA	3590	С	GLU	T	62		23.774	21.671	45.504	1.00 21.37		T	C
	ATOM	3591	0	GLU	T	62		22.848	20.950	45.130	1.00 22.03		T	0
25	ATOM	3592	CB	GLU	T	62		24.996	23.179	43.925	1.00 20.82		Ť	С
	MOTA	3593	CG	GLU	T	62		25.211	24.565	43.313	1.00 22.54	•	T	C
•	ATOM	3594	CD	GLU		62		23.923	25.198	42.794	1.00 26.23		T	С
	ATOM	3595	0E1	GLU	T	62		23.135	24.492	42.164	1.00 25.97		T	0
	ATOM	3596	0E2	GLU	T	62		23.717	26.403	43.012	1.00 24.60		T	0
30	ATOM	3597	N			63	•	24.693	21.257	46.375	1.00 19.96		T	N
	ATOM	3598	CA	ILE		63		24.656	19.887	46.878	1.00 20.43		Ť	C
	ATOM	3599	С	ILE		63		23.529	19.576	47.870	1.00 20.80		T	Ç.
	ATOM	3600	0	ILE		63		23.082	18.434	47.951	1.00 19.50		T	0
	ATOM	3601	CB	ILE	T	63		26.035	19.460	47.477	1.00 20.40		Ť	C
35	ATOM	3602	CG1		Ţ	63		26.424	20.356	48.654	1.00 19.56		T	С
	ATOM	3603	CG2		T	63		27.105	19.513	46.398	1.00 18.09		T	C
	ATOM	3604	CD1	ILE	Ţ	63		25.877	19.894	49.986	1.00 19.86		T	C
	ATOM	3605	N	VAL	T	64		23.047	20.576	48.603	1.00 20.09		T	N
	ATOM	3606	CA	VAL		64		21.967	20.334	49.558	1.00 20.98		T	C
40	ATOM	3607	С	VAL	T	64	,	20.614	20.092	48.875	1.00 23.72		T	C
	ATOM	3608	0	VAL		64		19.638	19.736	49.537	1.00 21.27		T	0
	ATOM	3609	CB	VAL		64		21.804	21.501	50.568	1.00 20.02		T	C
	ATOM	3610	CG1	VAL		64		23.093	21.690	51.358	1.00 20.46		T	C
	MOTA	3611	CG2	VAL	T	64		21.405	22.775	49.842	1.00 20.60		T	C
45	MOTA	3612	N	LYS		65		20.553	20.294	47.559	1.00 25.22		T	N
	ATOM	3613	CA	LYS		65		19.318	20.065	46.809	1.00 28.22		T	C
	ATOM	3614		LYS		65		18.978	18.574	46.822	1.00 27.08		Ţ	C
	ATOM	3615		LYS		65		17.812	18.194	46.764	1.00 28.54		T	0
	ATOM	3616		LYS		65		19.466	20.565	45.366	1.00 30.57		r	ũ
50	ATOM	3617		LYS		65		19.579	22.081	45.256	1.00 32.86		T	C
	ATOM	3618		LYS		65		19.681	22.544	43.811	1.00 35.41		T	C
	MOTA	3619		LYS		65		19.767	24.064	43.735	1.00 33.41		T	C
	MOTA	3620		LYS		65		9.813	24.564	42.334	1.00 37.64		T	N
	MOTA	3621		ASP		66		0.014	17.742	46.879	1.00 26.86		T	N
55	ATOM'	3622		ASP		66		9.877	16.291	46.956	1.00 24.78		ı T	C
						-								U

	ATOM	362		AS:	P 7	66	21.205	15.780	47.494	1.00 23.00	T	С
	MOTA	3624		AS	P 7	66	22.125	15.490				0
	ATOM	3625			P 1	66	19.609	15.669	45.586	1.00 26.36	T	C
-	ATOM	3626					19.251	14.188	45.680	. 1.00 29.40	T	C
5	ATOM	3627		1 ASI	P 1	66	19.538	13.568			T	0
	ATOM	3628	3 O D	2 ASI	P 1	66	18.695	13.648	44.717		Ţ	0
	ATOM	3629) N	VAI	Ī	67	21.300	15.672	48.814		Ť	N
	ATOM	3630) CA	VAI	. 1	67	22.530	15.221	49.452		T	C
٦.	MOTA	3631	. С	VAL	. 1	67	22.927	13.783	49.125	1.00 24.63	T	C
10	MOTA	3632	0	VAI	. 1	67	24.071	13.390		1.00 24.10	T ·	0
	MOTA	3633	СВ	VAL	. T	67	22.449	15.384	50.992	1.00 22.47	T	C
	ATOM	3634	CG	1 VAL	T	67	22.180	16.846	51.350	1.00 17.69	T	C
	ATOM	3635	CG	2 VAL	T	67	21.364	14.488		1.00 19.93	Ť	C
	MOTA	3636	N	LYS	T	68	21.998	13.003		1.00 26.06	T	N
15	ATOM	3637	CA	LYS	T	68	22.284	11.608		1.00 27.04	T	C
	ATOM	3638	C	LYS	T	68	22.873	11.395		1.00 26.31	Ţ	C
	ATOM	3639	0	LYS	T	68	23.342	10.304		1.00 24.28	Ī	0
	MOTA	3640	СB	LYS	T	68	21.024	10.759		1.00 28.46	T	C
	ATOM	3641	CG	LYS	T	68	20.634	10.547	49.850	1.00 30.19	T	C
20	ATOM	3642	CD	LYS	T	68	19.389	9.699	49.975	1.00 32.33	T	
	ATOM	3643	CE	LYS	T	68	19.115	9.356	51.425	1.00 34.80	T T	C
	ATOM	3644	NZ	LYS	Ţ	68	20.235	8.569	52.002	1.00 38.91	Ť	C
	ATOM	3645	N	GLN	T	69	22.848	12.436	46.025	1.00 26.68		N
	ATOM	3646	CA	GLN		69	23.404	12.351	44.681	1.00 24.77	T	N
25	ATOM	3647	С	GLN		69	24.924	12.389	44.739	1.00 23.29	Ī	С
	ATOM	3648	0	GLN		69	25.501	12.750	45.762	1.00 23.29	Ţ	C
	ATOM	3649	СВ	GLN		69	22.901	13.519	43.702	1.00 22.51	T	0
	ATOM	3650	CG	GLN		69	21.556	13.274	43.173		Ţ	C
	ATOM	3651	CD	GLN		69	21.628	12.171	42.135	1.00 32.96 1.00 35.85	T .	С
30	ATOM	3652		. GLN		69	22.338	12.292	41.138		T	C
	ATOM	3653		GLN		69	20.901	11.084	42.369	1.00 37.60	T	0
	MOTA	3654	N	THR		70	25.562	11.995	43.640	1.00 39.16	T	N
	ATOM	3655	CA	THR		70	27.013	12.016	43.531	1.00 21.11	T	N
	ATOM	3656	С	THR		70	27.345	13.152	42.570	1.00 20.59	T	С
35	ATOM	3657	0	THR		70	26.917	13.149	41.414	1.00 20.22	T	С
	ATOM	3658	СВ	THR		70	27.570	10.687	42.978	1.00 19.62	Ť	0
	ATOM	3659	0G1			70	27.344	9.643	43.931	1.00 19.99	T	С
	ATOM	3660	CG2			70	29.067	10.802	42.728	1.00 21.36	T	0
	ATOM	3661	N	TYR		71	28.102	14.127		1.00 18.95	T	C
40	ATOM	3662	CA	TYR		71	28.462	15.292	42.271	1.00 18.76 1.00 17.58	T	N
	MOTA	3663	С	TYR		71	29.885	15.284	41.752		T	C
	ATOM	3664	0	TYR		71	30.786	14.721	42.366	1.00 17.20	T	C
	MOTA	3665	СВ	TYR		71	28.263	16.572	43.095	1.00 17.10	T	0
	ATOM	3666	CG	TYR		71	26.852	16.779	43.587	1.00 15.82	Ţ	С
45	MOTA	3667		TYR		71	26.381	16.119		1.00 15.19	T	С
	ATOM	3668		TYR		71	25.967	17.598	44.729	1.00 15.57	T	С
	ATOM	3669		TYR		71	25.065	16.268	42.887	1.00 14.29	T	С
	ATOM	3670		TYR		71	24.649		45.155	1.00 14.24	T	С
	MOTA	3671	CZ	TYR		71	24.045	17.752 17.083	43.302	1.00 14.12	Ţ	С
50	MOTA	3672	OH	TYR		71	22.901		44.435	1.00 15.17	T	C
- -	ATOM	3673	N	LEU		72		17.226 15.926	44.844	1.00 13.94	Ţ	0
	ATOM	3674	CA	LEU		72		16.052	40.609	1.00 17.96	Ţ	N
	MOTA	3675	C	LEU		72			40.017	1.00 18.23	T	С
	MOTA	3676	0	LEU 1		72 72		17.536		1.00 17.51	T	С
55	MOTA	3677	CB	LEU :		72		18.179		1.00 17.06	T	0
			0.5	, טטע	ı	14	31.500	15.256	38.712	1.00 22.12	T	C

	MOTA	367	8 C(G LEU	T 72	. ;	32.895	14.97	2 38.119	1 0	0 26.17		T C	
	ATOM	367	9 CI	O1 LEU	T 72	;	33.519				0 28.99		T C	
	. ATOM	368	0 CI	D2 LEU	T 72	;	33.792				0 25.19		T C	
_	ATOM	368		ALA	T 73	3	32.686	18.089			0 17.91		r c	
5	MOTA	368		A A L A	T 73	3	32.928	19.496	6 39.751		0 16.95		. C	
	MOTA	368		ALA	T 73	3	34.197	19.592	2 38.922		0 16.12		r c	
	ATOM	368		ALA	T 73	3	34.947	18.624	4 38.809		18.51		0	
	ATOM	368		ALA	T 73	3	33.092	20.240	41.065		15.74		-	
10	MOTA	3686		ARG		3	34.415	20.746	38.312		15.02	7	_	
10	ATOM	3687					35.613		37.524	1.00	14.43	1		
	MOTA	3688		ARG			35.926		37.535	1.00	14.10	7		
	ATOM	3689		ARG			5.024			1.00	13.27	1		
	ATOM	3690					5.444	-		1.00	13.57	1	, с	
15	MOTA	3691					4.246	20.969		1.00	15.95	1	. с	
10	MOTA MOTA	3692					4.070	20.161			15.26	7	C	
	MOTA	3693 3694		ARG			2.983	20.658			11.15	T	N	
	MOTA	3695		ARG 1 ARG			2.545	20.051			13.10	T	С	
	ATOM	3696		2 ARG			3.093	18.910		1.00		T	N	
20	ATOM	3697		VAL '			1.562	20.594			10.82	T	N	
	MOTA	3698		VAL 1			7.211	22.767			14.14	T	-	
	MOTA	3699		VAL 1			7.672 8.307	24.147			15.10	T	_	
	ATOM	3700		VAL :			9.301	24.589 24.016			16.01	. 1	_	
	ATOM	3701	СВ	VAL 1			8.708	24.016			14.34	T	0	
25	ATOM	3702		L VAL 1			9.280	25.747			15.28	7	C	
	ATOM	3703		VAL 1			8.058	24.065	40.122		13.98	Ţ	С	
	MOTA	3704	N	PHE 1			7.722	25.604	35.708		14.39 18.72	T	C	
	ATOM	3705	CA	PHE 7			3.247	26.140	34.460			T	N	
	ATOM	3706	С	PHE T			9.211	27.272	34.780		21.14 22.66	ī	C	
30	ATOM	3707	0	PHE 1			3.992	28.035	35.723		23.68	T T	C	
•	ATOM	3708	CB	PHE T			7.112	26.668	33.583		23.60	T	0 C	
	ATOM	3709	CG	PHE T	76		3.199	25.596	33.062		28.84	T	C	
	ATOM	3710	CD1	PHE T	76		6.660	24654	32.152		31.44	T	C	
	ATOM	3711	CD2	PHE T	76	34	.880	25.521	33.486		31.69	Ţ	C	
35	MOTA	3712		PHE T		35	.818	23.652	31.671		33.34	T	Č	
	ATOM	3713	CE2	PHE T	76	34	.034	24.522	33.008		34.41	T	C	
	ATOM	3714	CZ	PHE T		34	. 505	23.589	32.101		30.45	T	Č	
	ATOM	3715	N	SER T		40	.282	27.369	34.000		24.37	Ţ	N	
40	ATOM	3716	CA	SER T	77		.287	28.410	34.182		25.59	T	C	
40	ATOM	3717	C	SER T			. 337	29.303	32.953	1.00	27.03	T	С	
	ATOM	3718	0	SER T			.322	28.817	31.823	1.00	25.41	T	0	
	MOTA	3719	CB	SER T			.668	27.793	34.401	1.00	26.08	T	С	
	ATOM	3720	0 G	SER T	77		.714	27.056	35.604	1.00		T	0	
45	MOTA MOTA	3721	N	TYR T	78		. 398	30.610	33.188	1.00		T	N	
40	ATOM	3722	C A C	TYR T	78			31.601	32.119	1.00		T	C	
	MOTA	3723 3724	0	TYR T	78 70			32.537	32.414	1.00		T	С	
	ATOM	3725	CB	TYR T	78			32.726	33.572	1.00		T	0	
	ATOM	3726	CG	TYR T	78 78			32.413	32.073	1.00		T	C	
50	ATOM	3727		TYR T	78 78			31.579	31.943	1.00		Ţ	С	
Ų U	ATOM	3728		TYR T	78			31.093	30.706	1.00		T	C	
	ATOM	3729		TYR T	78			31.274	33.062	1.00		T	C	
	ATOM	3730		TYRT	78			30.331	30.587	1.00		Ť	C	
•	ATOM	3731		TYR T	78			30.512 30.044	32.955	1.00 3		Ţ	C	
55	MOTA	3732		TYRT	78			30.044 29.296		1.00 3		T	C	
	•	-		•	. •	JJ.	150	20.230	01.007	1.00 3	1.28	Ţ	0	

	ATOM	3733	N	DI	20 1	. 70	40.000					
	MOTA	3734				. •	43.236		_		T	N
	ATOM				0 1		44.365		-		T	C
		3735			0 1	_	43.914				Ţ	С
-5	ATOM	3736			0 1		43.932	35.611	33.352	1.00 37.66	T	0
- 0	ATOM	3737					44.949	34:178	30.173	1.00 35.23	T	С
	ATOM	3738			0 T		43.723	34.105	29.313	1.00 35.61	T	C
	ATOM	3739	CD	PR	0 T	79	42.960	32.951	29.935	1.00 35.09	T	c
	MOTA	3740	N	GL	UT	91	38.161	24.891	23.662	1.00 26.53	Ť	N
	ATOM	3741	CA	GL	U T	91	37.694	24.757		1.00 26.00	Ť	
10	ATOM	3742	C	GL	U T		38.810	25.160		1.00 26.45		C
	ATOM	3743	0		UŢ		39.991	24.986			Ī	C
	ATOM	3744	СВ		UT		37.238	23.315	25.331	1.00 24.05	Ţ	0
	ATOM	3745	CG		UT		36.117			1.00 24.69	T	С
	ATOM	3746	CD		UT	91		22.857		1.00 22.94	T	C
15	ATOM	3747	0 E :				35.711	21.405	24.588	1.00 20.53	T	C
-0	ATOM				U T	91	36.581	20.582	24.780	1.00 21.42	Ţ	0
		3748	0 E 2			91	34.525	21.111	24.538	1.00 21.55	T	0
	ATOM	3749	N		0 T	92	38.443	25.714	27.212	1.00 27.49	Ţ	N
	ATOM	3750	CA		0 T	92	39.402	26.153	28.232	1.00 28.13	T	С
90	MOTA	3751	C	PR	0 T	92	40.087	25.028	28.998	1.00 27.90	T	С
20	ATOM	3752	0	PR	0 T	92	39.618	23.893	29.012	1.00 28.67	Ţ	0
	ATOM	3753	CB	PR	T O	92	38.545	27.016	29.148	1.00 29.05	Ť	С
	ATOM	3754	CG	PR	O T	92	37.243	26.282	29.135	1.00 30.13	T	C
	ATOM	3755	CD	PR	T	92	37.063	25.993	27.650	1.00 28.84	Ť	
	ATOM	3756	N	LEI		93	41.199	25.361	29.642			C
25	ATOM	3757	CA	LEI		93	41.944	24.392		1.00 28.40	Ť	N
	ATOM	3758	C	LE		93			30.435	1.00 27.14	T	С
	ATOM	3759	Ö	LE			41.152	24.159	31.710	1.00 24.86	Ţ	С
	ATOM	3760				93	40.576	25.094	32.268	1.00 23.66	Ţ	0
			CB	LEU		93	43.327	24.936	30.797	1.00 29.29	T	С
30	ATOM	3761	CG	LEI		93	44.208	25.476	29.665	1.00 33.20	Ŧ	C
30	ATOM	3762		LEU		93	45.541	25.928	30.247	1.00 34.70	T	C
	MOTA	3763		LEU		93	44.426	24.412	28.604	1.00 34.85	T	С
	ATOM	3764	N	TYE	T	94	41.108	22.912	32.162	1.00 23.07	T	Ν.
	ATOM	3765	CA	TYR	T	94	40.379	22.584	33.379	1.00 20.97	T	С
_	ATOM	3766	С	TYR	T	94	40.878	21.296	34.007	1.00 19.78	Ţ	Ċ
35	MOTA	3767	0	TYR	T	94	41.676	20.562	33.422	1.00 18.62	Ţ	0
	ATOM	3768	CB	TYR	T	94	38.875	22.454	33.104	1.00 20.47	T	С
	MOTA	3769	CG	TYR		94	38.496	21.246	32.272	1.00 20.47		
	ATOM	3770		TYR		94	38.595	21.268	30.877	1.00 21.39	Ţ	С
	ATOM	3771		TYR		94	38.054	20.071			Ţ	С
40	ATOM	3772		TYR		94			32.883	1.00 19.95	T	С
	ATOM	3773		TYR			38.266	20.149	30.113	1.00 20.60	T	С
	ATOM	3774				94	37.719	18.947	32.128	1.00 20.65	T	С
	ATOM		CZ	TYR		94	37.828	18.993	30.747	1.00 21.30	T	C
		3775	OH	TYR		94	37.508	17.881	30.004	1.00 21.41	T	0
4 =	ATOM	3776	N	GLU		95	40.380	21.035	35.207	1.00 18.35	T	N
45	ATOM	3777	CA	GLU		95	40.733	19.857	35.976	1.00 19.30	T	C
	ATOM	3778	С	GLU	T	95	39.452	19.393	36.660	1.00 18.34	T	С
	ATOM	3779	0	GLU	T	95	38.667	20.216	37.133	1.00 17.95	T	0
	ATOM	3780	CB	GLU	T	95		20.231	37.028	1.00 22.02	Ť	C
	MOTA	3781	CG	GLU	Ť	95		19.097	37.936	1.00 28.22	Ţ	
50	ATOM	3782	CD	GLU		95		18.024	37.189	1.00 28.22		C
	ATOM	3783	0E1			95		18.269	36.044		T	С
-	ATOM	3784	0E2			95				1.00 34.07	T	0
	MOTA	3785	N	ASN		95 96		16.957	37.753	1.00 31.49	T	0
	MOTA	3786		ASN				18.084	36.697	1.00 15.73	T	N
55	MOTA					96		17.537	37.348	1.00 16.84	T	С
00	VION	3787	С	ASN	I	96	38.375	17.281	38.815	1.00 16.63	T	C

	ATOM	3788		ASN	Ť	96	39.52	6 17.045	39.172	1.0	0 17.38		T	0
	MOTA	3789	C B	ASN	T.	96	37.62	3 16.211	36.703	1.0	0 15.17		T	C
	ATOM	3790	_		Ţ	96	37.11	16.381	35.279		0 18.47		T	C
_	MOTA	3791	. OD	1 ASN	T	96	36.458	3 17.371	34.957	1.0	0 16.54		T	0
5	MOTA	3792	N D	2 ASN	Ţ	96	37.384	15.394	34.425		0 16.63		Ţ	N
	ATOM	3793	N	SER	Ţ	97	37.355	17.335	39.660		0 15.24		T	N
	ATOM	3794	CA	SER	T	97	37.523	17.068	41.082	1.0	0 17.45		Ţ	C
	MOTA	3795	С	SER	T	97	37.125	15.613	41.313		0 18.06		Ţ	C
	ATOM	3796	0	SER	T	97	36.594	14.958	40.419		0 18.60		T	0
10	MOTA	3797	CB	SER	T	97	36.575	17.935	41.893		0 16.21		T	C
	ATOM	3798	0 G	SER	T	97	35.238	17.519	41.660		15.25		T	0
	MOTA	3799	N	PRO		98	37.402	15.076	42.508		19.40		T	N
	ATOM	3800	CA	PRO	T	98	36.991	13.686			19.93		T	C
	MOTA	3801	С	PRO	Ţ	98	35.478	13.714	42.878		19.53		Ť	C
15	ATOM	3802	0	PRO	T	98	34.907	14.767			20.13		T	0
	ATOM	3803	CB	PRO	T	98	37.716	13.289			22.25		Ī	Č
	MOTA	3804	CG	PRO	T	98	37.885	14.595	44.720		22.51		T	C
	ATOM	3805	CD	PRO	T	98	38.269	15.537	43.606		21.78		T	C
	ATOM	3806	N	GLU	T	99	34.819		42.708		19.80		T	N
20	MOTA	3807	CA	GLU	T	99	33.378		42.872		20.54		T	C
	ATOM	3808	C	GLU	T	99	33.076		44.334		20.49		Ţ	C
	ATOM	3809	. 0	GLU	T	99	33.882		45.210		20.71		Ť	0
	MOTA	3810	CB	GLU	Ť	99	32.819	11.198	42.464		23.90		T	C
	ATOM	3811	CG	GLU	T	99	33.062	10.850	41.009		30.24		Ť	C
25	ATOM	3812	CD	GLU	T	99	32.382	9.561	40.609		34.08		T	C
	ATOM	3813	0E1	GLU	T	99	32.625	8.547	41.256	•	39.49		ī	0
	MOTA	3814	0E2	GLU	T	99	31.619	9.578	39.661		37.57		T	0
	ATOM	3815	N	PHE		00	31.921	13.422	44.603		19.39		T	N
	MOTA	3816	CA	PHE			31.552	13.723	45.974		20.04	•	T	C
30	ATOM	3817	С	PHE			30.099	13.404	46.279		19.86		Ť	C
	ATOM	3818	0	PHE			29.195	13.977	45.684		22.07		T	0
	ATOM	3819	СВ	PHE '			31.810	15.202	46.285		18.94		Ť	C
	ATOM	3820	CG	PHE 1			31.554	15.570	47.721		17.26		T	C
	ATOM	3821	CD1	PHE :			32.348	15.051	48.734		17.16		T	C
35	ATOM	3822		PHE 1			30.506	16.417	48.063		17.80		T	C
	MOTA	3823		PHE 1			32.102	15.369	50.072		18.82		T	C
	ATOM	3824		PHE 1			30.252	16.739	49.402		18.00		T	C
	ATOM	3825	CZ		10		31.053	16.212	50.405		14.11		Ţ	C
	M O T A	3826	N	THR 1			29.880	12.486	47.213		19.96		T	N
40	MOTA	3827	CA	THR T			28.529	12.125	47.618		19.19		Ī	C
	ATOM	3828	С	THR T	10)1	28.359	12.669	49.032		19.73		ľ	C
	ATOM	3829	0	THR T			28.774	12.041	50.005		19.00		r T	0
	ATOM	3830	CB	THR T	10	1	28.339	10.602	47.616		19.88			C
	MOTA	3831	0G1	THR T			28.767	10.075	46.353		19.78		r	0
45	ATOM	3832		THR T			26.869	10.252	47.842		16.06		ľ	C
	MOTA	3833	N	PRO T			27.740	13.851	49.159		20.90		r T	
	ATOM	3834	CA	PRO T			27.512	14.514			20.65	1		N
	ATOM	3835	C	PRO T			27.112	13.595	51.599		21.85	1		C
	ATOM	3836	0	PRO T			27.826	13.483	52.594		22.55			C
50	ATOM	3837	СВ	PRO T			26.426	15.539	50.126		20.56	1		0
-	ATOM	3838	CG	PRO T			26.710	15.892	48.691		19.84	7		C
	ATOM	3839		PRO T			27.008	14.540	48.079		20.33	1		C
	ATOM	3840	N	TYR T			25.964		51.458		20.33	7		C
	ATOM	3841		TYR T			25.441	12.946	52.484		21.87	7		N
55	ATOM	3842		TYR T			26.464					1		C
			•	11	-0	-	20.404	11.034	53.003	1.00	22.95	1		C

	ATOM	3843	3 0	TYR	T 103	26.534	10.774	54.200	1.00 23.24	T	0
	ATOM	3844	4 CB	. TYR	T 103	24.222	11.308			. T	C
	MOTA -	3845	5 CG	TYR	T 103	23.404				T	C
_	MOTA	3846	C D	1 TYR	T 103	22.458				Ţ	C
5	MOTA	3847	CD.	2 TYR	T 103	23.559				T	C
	ATOM	3848	C E	1 TYR	T 103	21.684				Ť	
	ATOM	3849	CE	2 TYR	1 103	22.785				T	C
	MOTA	3850	CZ	TYR	T 103	21.852		_		T	C
	ATOM	3851	OH	TYR	T 103	21.089				T	C
10	ATOM	3852	N		T 104	27.256			1.00 23.67	T.	0
	ATOM	3853	CA		T 104	28.250					Ŋ
•	MOTA	3854	С		T 104	29.579			1.00 23.88	T T	C
	ATOM	3855	0		T 104	30.272	-		1.00 23.44	T	C
	MOTA	3856	CB		T 104	28.546		_	1.00 23.44		0
15	ATOM	3857	CG		T 104	27.414			1.00 23.01	T	C
	ATOM	3858	CD1		T 104	27.973		49.531	1.00 20.25	T T	C
	ATOM	3859			T 104	26.797		51.747	1.00 20.23	Ĩ	C
	ATOM	3860	N		T 105	29.957		52.627	1.00 23.91	Ţ	C
	ATOM	3861	CA		T 105	31.243		53.092	1.00 25.61	Ţ	N
20	ATOM	3862	С		T 105	31.364	13.110	53.752	1.00 24.53	Î	C
	ATOM	3863	0		T 105	32.473	13.529	54.080	1.00 24.53	T	C
	ATOM	3864	CB		T 105	32.281	11.599	51.967	1.00 24.54	Ţ	0
	MOTA	3865	CG		T 105	31.867	12.121	50.611	1.00 28.41	T	C
	ATOM	3866	CD		T 105	32.602	11.421	49.471		T	C
25	ATOM	3867	0E1		T 105	33.821	11.326	49.516	1.00 27.99 1.00 27.95	T	C
	ATOM	3868	0 E 2	GLU		31.950	10.979	48.543	1.00 27.95	Ţ	0
	ATOM	3869	N		T 106	30.258	13.813	53.973	1.00 27.09	Ť.	0
	ATOM	3870	CA		T 106	30.367	15.112	54.632		Ť	N
	ATOM	3871	С		T 106	30.738	14.856	56.091	1.00 22.92	T	C
30	ATOM	3872	0		T 106	30.143	14.002	56.752	1.00 24.04	T	C
	ATOM	3873	CB		T 106	29.052	15.919	54.586	1.00 22.58	Ť	0
	ATOM	3874	0G1		T 106	29.308	17.265		1.00 21.63	T	C
	ATOM	3875	CG2			28.009	15.312	55.010	1.00 21.19	Ţ	0
	ATOM	3876	N		T 107	31.728	15.512	55.506	1.00 21.52	Ť	C
35	ATOM	3877	CA		T 107	32.171	15.417	56.588	1.00 22.90	T	N
	ATOM	3878	C		107	31.108	15.795	57.965 58.978	1.00 24.07	T	C
	ATOM	3879	0	ASN :		30.380	16.773	58.799	1.00 24.33	T	С
	MOTA	3880	CB	ASN 1		33.424	16.252		1.00 24.71	T	0
	ATOM	3881	CG	ASN 1		34.633	15.725		1.00 24.30 1.00 25.25	T	C
40	ATOM	3882		ASN 1		35.037	14.582	57.707		Ţ	С
	ATOM	3883		ASN 1		35.223	16.553	56.657	1.00 29.41	T	0
	ATOM	3884	N	LEU 1		31.017	15.006	60.041	1.00 28.39	Ţ	N
	ATOM	3885	CA	LEU 1		30.068	15.279		1.00 24.30	T	N
	ATOM	3886	С	LEU 1		30.744	16.309	61.110	1.00 24.22	Ţ	C
45	ATOM	3887	0	LEU T		31.870	16.105	62.007	1.00 22.82	T	C
	ATOM	3888	СB	LEU T		29.772	13.998	62.452	1.00 21.51	T	0
	ATOM	3889	CG	LEU T		29.094	12.904	61.890	1.00 25.35	T	C
	ATOM	3890		LEU T		29.156			1.00 27.74	T	C
	MOTA	3891		LEU T		27.659	11.562	61.786	1.00 27.60	T	C
50	MOTA	3892	N	GLY T		30.066	13.318		1.00 28.49	T	C
- •	ATOM	3893	CA	GLY T		30.648	17.425		1.00 23.68	T	N
	MOTA	3894	C	GLY T		30.829	18.461		1.00 22.92	T	C
	ATOM	3895		GLY T		30.829	18.004		1.00 23.12	T	C
	ATOM	3896		GLN T		31.656	17.003		1.00 21.62	T	0
55	ATOM	3897		GLN T		31.869	18.718		1.00 21.54	T	N
			~	Jun 1	110	31.009	18.378	66.683	1.00 21.94	T	С

	ATOM	3898	s c	GLN	T 110	30.527	18.570	67.381	1.00 21.65	Ţ	С
	ATOM	3899	0		T 110	29.916				T	0
	ATOM	3900	СВ		T 110	32.919			1.00 21.36	T	С
	ATOM	3901	CG	GLN	T 110	33.166	19.045		1.00 21.01	Ţ	C
5	ATOM	3902	CD	GLN	T 110	34.203			1.00 21.94	Ť	Ċ
	MOTA	3903	0E1	GLN	T 110	34.139	21.189	69.207	1.00 24.10	T	0
	MOTA	3904	NE2	GLN	T 110	35.162	19.419	70.132	1.00 21.56	T	N
	MOTA	3905	N	PRO	T 111	30.045	17.542	68.094	1.00 23.09	Ī	N
7.0	MOTA	3906			T 111	28.762	17.651	68.790	1.00 22.88	Ţ	C
10	MOTA	3907			T 111	28.920	18.496	70.043	1.00 24.37	T	C
	MOTA	3908			T 111	30.032		70.408	1.00 24.44	. T	0
	MOTA	3909			T 111	28.418	16.198	69.141	1.00 23.56	T	C
	MOTA	3910	CG		T 111	29.425			1.00 23.39	T	C
15	ATOM	3911	CD		T 111	30.641	16.217		1.00 22.94	T	С
15	ATOM	3912	N		T 112	27.797	18.769		1.00 25.07	T	N
	MOTA	3913	CA		T 112	27.762	19.552		1.00 25.43	T	C
	ATOM	3914	C		T 112	26.764	18.915		1.00 26.70	T	C
	MOTA	3915 3916	0		T 112	25.616	18.681	72.512	1.00 26.69	Ţ	0
20	MOTA	3917	CB		T 112	27.295	21.001		1.00 27.11	T	С
20	ATOM	3918			T 112 T 112	28.261	21.673		1.00 29.22	7	0
	ATOM	3919	N N		T 113	27.114	21.765		1.00 26.39	Ţ	C
	ATOM	3920	CA		T 113	27.202 26.314	18.626	74.102	1.00 26.55	Ţ	N
	ATOM	3921	C		T 113	25.371	18.057 19.181	75.111 75.536	1.00 27.02	T	C
25	ATOM	3922	0		T 113	25.811	20.228	76.010	1.00 28.66	Ť	C
	ATOM	3923	СВ		7 113	27.117	17.541	76.337	1.00 29.26 1.00 26.73	Î	0
	MOTA	3924			T 113	27.926	16.305	75.935	1.00 24.38	T T	C
	ATOM	3925			T 113	26.179	17.208	77.490	1.00 24.38	T	C C
	MOTA	3926			T 113	28.821	15.766	77.021	1.00 23.10	Ţ	C
30	ATOM	3927	N		T 114	24.073	18.967	75.347	1.00 30.54	T	N
	MOTA	3928	CA		T 114	23.069	19.967	75.690	1.00 31.98	Ť	C
	ATOM	3929	С		7 114	22.772	20.033	77.185	1.00 33.02	T	С
	ATOM	3930	0		T 114	22.588	21.119	77.739	1.00 33.20	Ť	0
	ATOM	3931	CB	GLN	T 114	21.773	19.688	74.926	1.00 32.72	Ţ	C
35	ATOM	3932	CG	GLN	T 114	20.714	20.773	75.070	1.00 34.48	ī	C
	ATOM	3933	CD		T 114	19.499	20.516	74.199	1.00 36.97	T	C
	ATOM	3934			T 114	18.648	19.686	74.523	1.00 39.79	T	0
	ATOM	3935			T 114	19.421	21.218	73.077	1.00 37.84	Ť	N
4.0	MOTA	3936			1115	22.721	18.873	77.833	1.00 34.02	T	N
40	ATOM	3937			T 115	22.442	18.810	79.262	1.00 34.71	T	С
	MOTA	3938			1115	22.528	17.392	79.811	1.00 36.31	T	C
	ATOM	3939			115	22.729	16.429	79.072	1.00 34.54	T	0
	ATOM	3940			115	21.041	19.350	79.544	1.00 34.16	1	C
45	MOTA	3941			115	20.056	18.493	78.989	1.00 34.47	T	0
45	MOTA	3942			116	22.384	17.286	81.126	1.00 39.39	T	N
	ATOM			PHE 1		22.391	16.006	81.814	1.00 43.50	T	С
	MOTA	3944		PHE 1		21.700	16.155	83.160	1.00 45.33	T	С
	MOTA Mota	3945 3946		PHE 1		22.130	16.930	84.013	1.00 46.10	Ţ	0
50	ATOM	3946		PHE T		23.816	15.449	81.990	1.00 43.81	Ţ	C
00	MOTA	3948		PHE 1		24.829		82.449	1.00 44.31	Ť	C
	ATOM	3949		PHE T		25.669 24.976	17.079	81.532	1.00 46.06	Ť	C
	ATOM	3950		PHE T		24.976	16.753	83.797	1.00 45.66	Ť	C
	ATOM	3951	CE2 I			26.643 25.946	17.977 17.651	81.949 84.227	1.00 45.84	ī	C
55	ATOM	3952		PHE T		26.783	18.264	83.299	1.00 46.21	T	C
			•	1		20.703	10.204	JJ.433	1.00 47.39	Ţ	С

	ATOM	395	3 N	GLI	T 117	20.60	9 15.416	83.331	1.00 47.44	T	N.
	ATOM	3954	4 CA	GLU	T.117	19.83	2 15.465			T	N C
•	ATOM	395	5 C	GLL	T 117	19.90				T	C
_	MOTA	3956	5 0	GLU	T 117	19.85		_		T	
5	ATOM	3957	7 CB	GLU	T 117	18.368				T	0
	ATOM	3958	3 CG	GLU	T 117	17.499					C
	ATOM	3959	O CD		T 117	16.035				T	C
	ATOM	3960) OE:		T 117	15.263				T	С
	ATOM	3961	0E:		T 117	15.67			-	T	0
10	ATOM	3962	e n		T 118	20.026				T	0
	ATOM	3963	CA		T 118	20.091				T	N
	ATOM	3964	C		T 118	18.790			1.00 53.52	T	C
	ATOM	3965	0		T 118	18.292			1.00 53.74	T	С
	ATOM	3966	СВ		T 118	21.268			1.00 55.69	T	0
15	ATOM	3967	CG		T 118	21.248			1.00 58.28	T	С
	ATOM	3968	CD		T 118	22.398		90.341	1.00 58.28	T	C
	ATOM	3969	0E1		T 118	22.559		91.038	1.00 59.98	T	С
	ATOM	3970			T 118	23.198		90.417		T	0
	ATOM	3971			T 119	18.236		88.336	1.00 59.89	T	N
20	ATOM	3972			Ť 119	16.999		89.064	1.00 54.32	Ţ	N
	ATOM	3973			T 119	17.342		90.400	1.00 55.20	T	C
	ATOM	3974	0		T 119	17.050		91.465	1.00 55.28	T	C
	ATOM	3975	CB		T 119	16.056		88.270	1.00 55.61	T	0
	ATOM	3976			T 119	14.808			1.00 55.27	T	C
25	ATOM	3977			T 119	15.675	11.239	89.089 86.948	1.00 55.95	Ī	С
	ATOM	3978	N		T 120	17.968	9.705		1.00 55.25	T	C
	ATOM	3979	C A		T 120	18.357		90.330	1.00 54.96	T	N
	ATOM	3980	C		T 120	19.681		91.531	1.00 55.01	T	С
	ATOM	3981	0		T 120	20.739	8.294	91.305	1.00 55.06	T	С
30	ATOM	3982	N		T 121	19.622	8.802	91.681	1.00 54.95	T	0
	ATOM	3983	C A		T 121	20.824	7.124 6.356	90.680	1.00 54.66	T	N
	ATOM	3984	C		T 121	21.039		90.388	1.00 54.74	T	С
	ATOM	3985	0		T 121	21.706	6.232	88.876	1.00 53.59	T	С
	ATOM	3986	CB		T 121	20.743	5.311	88.406	1.00 53.56	T	0
35	ATOM	3987			T 121	21.985	4.945	91.010	1.00 55.32	T	С
	ATOM	3988			T 121	19.607	4.259	90.805	1.00 56.26	T	0
	ATOM	3989	N		T 122	20.474	4.145	90.379	1.00 55.25	T	С
	ATOM	3990	C A		T 122	20.599	7.171 7.178	88.122	1.00 52.48	T	N
	ATOM	3991	C		T 122	20.720		86.669	1.00 51.79	T	С
40	ATOM	3992	0		T 122	20.121	9.532	86.155 86.713		T -	C
	ATOM	3993	СВ		T 122	19.385	6.493		1.00 50.69	T	0
	ATOM	3994	CG		T 122	19.206	5.042	86.038	1.00 52.21	T	С
	ATOM .				T 122	17.813	4.797		1.00 53.53	Ţ	С
	ATOM	3996			T 122	17.508	5.721	87.036	1.00 55.85	T	С
45	ATOM	3997			T 122	16.108	5.721	88.216	1.00 57.36	T	C
	ATOM	3998			T 123	21.498		88.713	1.00 55.80	Ť	N
	ATOM	3999			T 123	21.712	8.792 10.111	85.091	1.00 48.62	T	N
	ATOM	4000			T 123	21.712		84.504	1.00 46.58	T	С
	MOTA	4001			123		10.170	83.040	1.00 44.65	T	C
50	ATOM	4002			123	23.207	9.248	82.267	1.00 45.12	T	0
	ATOM	4003			123	23.439	10.519	84.597	1.00 46.69	Ţ	C
	ATOM	4004			123	23.439	11.859	83.907	1.00 46.11	T	C
	ATOM	4005			123	20.622	10.599	86.055	1.00 46.67	Ť.	С
	ATOM	4006			124	20.622	11.261	82.670	1.00 42.65	T	N
55	MOTA	4007			124	21.069	11.456	81.301	1.00 41.30	T	С
		-00.		non l	124	41.009	12.470	80.604	1.00 38.83	T	C

	MOTA	4008				Γ 124	21.026	3 13.655	80.915	1.0	0 38.66		Ţ	0
	MOTA	4009				124	18.729	11.957	81.282	1.0	0 42.92		T	Č
	MOTA	4010) CG	ASN	1 7	124	18.287	7 12.420	79.904	1.0	0 45.20		T	Č
_	MOTA	4011	0.0	1 ASN	1 3	124	18.444	11.703	78.917		0 47.86		T	0
5	MOTA	4012	e nd	2 ASN	1 1	124	17.728	3 13.623	79.833		0 46.71		T	N
	MOTA	4013	N N	VAL	. 1	125	21.892	11.999			0 35.58		T	N
	MOTA	4014	CA	VAL	. 1	125	22.779	12.890			0 34.22		T	C
	ATOM	4015	C	VAL	. 1	125	22.150				0 32.94		r T	С
	MOTA	4016	0	VAL	. 1	125	21.938				0 32.50		i T	0
10	ATOM	4017	CB	VAL	. 1	125	24.180				0 33.64		T	C
	ATOM	4018	CG	1 VAL	T	125	25.051				0 33.24		T	С
	MOTA	4019	CG	2 VAL	7	125	24.840				31.46		r T	C
	ATOM	4020	N	THR	T	126	21.835				31.93		T	N
	MOTA	4021	CA	THR	T	126	21.225				31.44		ľ	C
15	ATOM	4022	С			126	22.246				30.53		r T	С
	MOTA	4023	0			126	22.995				30.92		ľ	0
	MOTA	4024	CB			126	20.035		76.333		32.80		r	С
	MOTA	4025	0 G :	1 THR			19.046		77.123		34.45	1		
	MOTA	4026		2 THR			19.404		75.018		33.11	1		0 C
20	MOTA	4027	N			127	22.273		73.915		28.54	7		
	ATOM	4028	CA			127	23.181	15.720	72.931		28.68	1		N
	ATOM	4029	С			127	22.381	16.700	72.074		29.29	1		C
	ATOM	4030	0			127	21.293	16.376	71.596		28.57	1		0
	ATOM	4031	СВ			127	23.776	14.631	72.009		27.25	1		C
25	MOTA	4032	CGI	VAL			24.740	15.260	71.013		28.11	1		
	ATOM	4033		VAL			24.478	13.567	72.837		26.11			C
	MOTA	4034	N	GLU			22.923	17.896	71.880		30.12	T		C
	MOTA	4035	CA	GLU			22.248	18.920	71.094			T		N
	ATOM	4036	C	GLU			22.060	18.489	69.642		32.79	Î		C
30	MOTA	4037	0	GLU			23.005	18.051	68.987		33.25	T		С
	ATOM	4038	СВ	GLU			23.049	20.222	71.146		32.52	T		0
	MOTA	4039	CG	GLU			22.327	21.419			35.07	T		C
-	MOTA	4040	CD	GLU			23.162	22.681	70.558		39.25	Ţ		С
	ATOM	4041	0E1				24.132	22.785	70.624		42.60	Ţ		С
35	ATOM	4042	0E2				22.842	23.549	69.872 71.436		42.38	T		0
	ATOM	4043	N			129	20.834	18.602			44.49	T		0
	ATOM	4044	CA			129	20.543	18.234	69.146		34.87	T		N
	MOTA	4045	C			129	21.016	19.404	67.765 66.908		38.67	T		C
	MOTA	4046	0			129	20.271	20.355	66.684		39.15	ī		C
40	MOTA	4047	СВ	ASP			19.038	18.020	67.571		40.95	Ţ		0
	ATOM	4048	CG	ASP			18.721	17.167	66.354		41.05	Ţ		C
	ATOM	4049		ASP			19.421	17.107			44.26	T		C
	MOTA	4050		ASP			17.768	16.387	65.355		45.06	T		0
	ATOM	4051	N	GLU			22.259				46.55	Ţ		0
45	MOTA	4052	CA	GLU				19.328	66.442		39.21	T		N
-0	ATOM	4053	C	GLU			22.859	20.388	65.639		39.23	T		С
	ATOM	4054	0	GLU			22.242	20.531	64.257		37.36	Ţ		C
	ATOM	4055	СВ	GLU			21.867	19.548	63.627		35.82	Ţ		0
	ATOM	4056	CG	GLU '			24.362	20.145	65.485		43.16	T		C
50	ATOM	4057	CD	GLU .			25.175	21.419	65.294		46.75	Ţ		С
50	MOTA	4057		GFA .			26.607	21.139	64.891		48.44	T		C
	MOTA	4059		GLU 1			26.819	20.722	63.766		52.82	Ţ		0
	MOTA	4060	N N	ARG :			27.496	21.331	65.701		49.66	T		0
	ATOM	4061		ARG 1			22.151	21.768	63.785		36.07	Ţ		N
55	MOTA	4062	C				21.590	22.024	62.473		34.72	Ţ		C
50	VIAM	4002	C	ARG	ı J	.31	22.631	21.836	61.377	1.00	32.32	T		C

	ATOM	4063	3 0	AR	G '	131	23.	838	21.925	5 61.6	512 1	. 00	30.97	•	T	0
	ATOM	4064	L CB	AR	G :	131	21.	000	23.436	62.4			37.34		Ť	C
	ATOM	4065	CG	AR	G ?	131	21.		24.547				41.83		T	C
_	ATOM	4066	CD	AR	G 7	131	21.	330	25.901				43.91		T	C
5	ATOM	4067	NE	AR	G 3	131	22.	022	26.999				45.56		Ţ	N
	ATOM	4068	CZ	AR	; 1	131	21.		28.280				45.22		Ť	C
	ATOM	4069	NH.	1 AR	; 1	131	20.		28.634				44.75		T	
	MOTA	4070	NH	2 AR(3 1	131	22.		29.208				46.22		T	N
	ATOM	4071	N	THE	1	132	22.		21.556				29.36		ı T	N
10	ATOM	4072	CA	THE	1	132	22.9		21.343				25.98		T	N
	ATOM	4073	С	THE	7	132	22.		22.438				26.04		Ţ	C
	ATOM	4074	0			132	21.1		23.236				25.67		T	C
	ATOM	4075	СВ	THE	T	132	22.6		19.986				24.12		T	0
	ATOM	4076	0 G 1			132	21.4		20.061				19.80		T	C
15	ATOM	4077	C G 2			132	22.6		18.874				22.09			0
	MOTA	4078	N			133	23.4		22.471				26.23		T	C
	ATOM	4079	CA			133	23.1		23.459				28.66		T T	N
	ATOM	4080	С			133	22.0		23.029						T	С
	ATOM	4081	0			133	21.6		23.788				31.07 31.66		T	C
20	ATOM	4082	СВ			133	24.4		23.700						T	0
	ATOM	4083	CG			133	25.4		33.700 34.719				25.94		T	C
	ATOM	4084		LEU			24.8		26.095				24.82		T	C
	ATOM	4085		LEU			25.8		24.336				23.33		T	C
	ATOM	4086	N			134	21.5		1.812				23.50		T	C
25	MOTA	4087	CA			134	20.4		1.309				32.72		Ţ	N
	MOTA	4088	C			134	19.2						35.27		T	C
	ATOM	4089	0			134	18.6		2.086	54.59			37.69		T	С
	ATOM	4090	СВ			134			2.045	55.67			37.30		T	0
	MOTA	4091		VAL			20.2		9.803	54.50			33.94		T	С
30	MOTA	4092		VAL			19.0 21.4		9.335	53.69			31.92		T	C
- 0	MOTA	4093	N N			135			8.992	54.18			30.88		T	C
	ATOM	4094	CA			135	18.7		2.803	53.55			42.86		T	N
	ATOM	4095	C			135	17.4		3.587	53.72			48.17		T	С
	ATOM	4096	0	ARG			16.2		2.895	53.12			51.28		T	C
35	ATOM	4097	СВ	ARG			16.3		2.333	52.03			52.30		T	0
•	MOTA	4098	CG	ARG			17.6		4.960	53.06			48.77		T	C
	ATOM	4099	CD	ARG			17.8		6.107	54.03			51.28		T	С
	ATOM	4100	NE	ARG			17.1		7.366	53.52			53.42		T	С
	ATOM	4101	CZ	ARG			17.3	_	8.513	54.40			54.39		T	N
40	MOTA	4102		ARG			18.4		9.260	54.45			54.74		T	С
-0	ATOM	4103		ARG			19.4		8.995	53.65			53.86		T	N
	MOTA	4104	N II Z				18.5		0.276	55.30			55.25		T	N
	ATOM	4105	CA	ARG			15.16		2.938	53.85			55.32		T	N
	ATOM	4106	C	ARG			13.90		2.355	53.40			59.86		T	C
45	ATOM	4107		ARG			12.76		3.218	53.91			60.84		Ţ	C
10	ATOM		0	ARG			12.68		3.514	55.10			60.73		T	0
	MOTA	4108	CB	ARG			13.74		0.917	53.90			62.06		T	C
	MOTA	4109	CG	ARG			14.70		9.926	53.26			65.96		T	С
		4110		ARG			14.06	-	3.552	53.07			68.51		T	С
50	MOTA	4111		ARG			13.51		3.011	54.32			71.12		T	N
50	ATOM ATOM	4112	CZ	ARG			13.01		.784	54.45		0 1	72.57		T	C
	ATOM	4113		ARG			12.99		.951	53.42			73.26		T ·	N
	ATOM	4114		ARG			12.54		3.387	55.62	5 1.0	0 3	73.03		T	N
	MOTA	4115		ASN			11.88		623	52.99	3 1.0	0 6	52.35		T	N
55	ATOM	4116		ASN			10.75		.473	53.330	1.0	0 6	53.21		T	С
55	ATOM	4117	С	ASN	T :	137	11.25	4 25	. 391	53.602	2 1.0	0 6	32.33	4	T	C

	ATOM	4118				137		11.409	26.68	5 52.674	1.0	00 63.22		T	0
	ATOM	4119	СВ			137		10.001		4 54.552	1.0	00 65.32		T	Ċ
	MOTA	4120				137		9.422	22.542	2 54.311		0 67.61		T	Ċ
_	ATOM	4121	. OD	1 ASN	T	137		10.147	21.596	54.002	1.0	0 69.63		T	0
5	ATOM	4122	N D	2 ASN	T	137		8.108	22.419	54.456		0 69.48		T	N
	ATOM	4123	N	ASN	T	138		11.518	26.205	54.867		0 60.71		T	N
	ATOM	4124	CA	ASN	T	138		12.003	27.531	55.234		0 58.80		T	C
	ATOM	4125	C	ASN	T	138		12.940	27.486			0 56.17		T	C
	ATOM	4126	0	ASN	T	138		13.061	28.467	57.179		0 56.57		T	0
10	ATOM	4127	CB	ASN	T	138		10.823	28.464	55.542		0 60.66		T	C
	ATOM	4128	CG	ASN	T	138		9.842	28.582	54.381		0 62.38		Ť	Ċ
	ATOM	4129	0 D	1 ASN	Ŧ	138		9.132				0 62.68		T	0
	ATOM	4130	N D	2 ASN	T	138		9.801				0 63.11		T	N
	ATOM	4131	N	THR	T	139		13.606	26.352			0 52.17		ī	N
15	ATOM	4132	CA	THR	T	139		14.520	26.197			0 48.11		T	C
	ATOM	4133	C	THR	T	139		15.641	25.203			0 43.77		T	C
	MOTA	4134	0	THR	T	139		15.649	24.548			0 43.95		T	0
	MOTA	4135	CB	THR	Ţ	139		13.772	25.709			0 49.28		T	C
	MOTA	4136	0 G I	THR	T	139		13.085	24.486			0 48.22		T	0
20	MOTA	4137	CG2	THR	T	139		12.771	26.755			0 49.39		T	C
	MOTA	4138	N	PHE	Ţ	140		16.586	25.102			0 39.50		T	N
	ATOM	4139	CA	PHE	T	140		17.713	24.184			0 34.81		T	C
	MOTA	4140	C	PHE	T	140		17.369	22.876	58.987		33.69		T	c
	ATOM	4141	0	PHE	T	140		16.857	22.884	60.107		33.95		T	0
25	ATOM	4142	CB	PHE	T	140		18.968	24.782	58.924		31.68		r T	Č
	MOTA	4143	CG	PHE	T	140		19.538	25.956	58.177		29.78		T	C
	ATOM	4144	CD1	PHE	T	140		20.222	25.772	56.980		28.87		T	C
	ATOM	4145	CD2	PHE	T	140		19.404	27.247	58.679		29.29		T	C
	ATOM	4146		PHE				20.770	26.856	56.293		27.26		Ī	C
30	ATOM	4147	CE2	PHE	T.	140	•	19.948	28.341	57.999		28.58		Γ	C
	ATOM	4148	CZ	PHE	T	140		20.634	28.142	56.803		26.93		ľ	C
	ATOM	4149	N	LEU				17.648	21.758	58.325		31.02		[N
	MOTA	4150	CA	LEU	T :	141		17.374	20.446	58.890		29.31			C
	MOTA	4151	С	LEU				18.484	20.056	59.849		28.67		[C
35	ATOM	4152	0	LEU	Т :	141		19.654	20.369	59.623		27.90		· [0
	MOTA	4153	CB	LEU				17.285	19.389	57.788		28.83	1		C
	ATOM	4154	CG	LEU				16.220	19.545	56.706		29.79	1		C
	ATOM	4155	CD1	LEU '	T 1	141		16.308	18.356	55.761		27.88	1		C
	MOTA	4156	CD2	LEU :	T]	41		14.836	19.634	57.340		29.65		•	C
40	KOTA	4157	N	SER	1	.42		18.116	19.359	60.916		26.59	1		N
	KOTA	4158	CA	SER	r 1	.42		19.095	18.930	61.900		25.72	1		C
	ATON	4159	C	SER 1	r 1	42		19.815	17.689			25.43	Ţ		C
	ATOM	4160	0	SER 7	1	42		19.422	17.099			24.69	ī		0
	MOTA	4161	CB	SER 1	۲ 1	42		18.405	18.617			24.53	T		Č
45	ATOM	4162	0 G	SER 1				17.693	17.393	63.142		27.31	T		0
	ATOM	4163	N	LEU 1	1	43		20.866	17.287	62.095		25.42	T		N
	ATON	4164	CA	LEU T				21.632	16.117	61.700		26.13	T		C
	ATOM	4165	С	LEU T				20.765	14.862	61.714		27.25	T		C
	MOTA	4166	0	LEU T	` 1	43		20.931	13.973	60.875		27.17	T		0
50	ATOM ·	4167	CB	LEU T				22.830	15.936	62.630		28.10	T		C
	ATOM	4168	CG	LEU T				23.975	15.082			29.38	Ţ		C
	MOTA	4169	CD1	LEU T				24.572	15.759			30.74	T		C
	ATOM	4170		LEU T				25.041	14.903			33.30	T		C
	ATOM	4171	N	ARG T				19.837	14.778	62.662		28.42	Ī		N
55	MOTA	4172	CA	ARG T	1	44		18.973	13.609	62.721		29.34	Ī		C
															-

	ATOM	417	3 C	ARG 1	144	17.850	13.700	61.687	1 00	29.34		T	c
	ATOM	417	4 0	ARG 1	144	17.338				30.63		T	C
	ATOM	4175	5 CB	ARG 7	144	18.403				28.19		Ť	0
	ATOM	4176	6 C6	ARG 1	144	17.727				29.87		T	C
5	MOTA	4177	7 CD	ARG 1	144	17.594				29.47		Ť	С
	ATOM	4178	B NE	ARG T		18.861				29.59		T	
	ATOM	4179	CZ	ARG T	144	19.587				28.70		T	N C
	ATOM	4180) NH1	L ARG T		19.195				28.70		T	
	ATOM	4181	NH2	ARG T	144	20.699				27.54		T	N
10	ATOM	4182		ASP T		17.469				29.51		T	N
	ATOM	4183	CA	ASP T		16.438				30.78		T	N C
	ATOM	4184	С	ASP T	145	16.940				29.67		T	C
	ATOM	4185	0	ASP T		16.195		-		30.38		T	
	ATOM	4186	CB	ASP T		16.147		_		31.56		T	0
15	ATOM	4187	CG	ASP T		15.239				33.74		T	C
	ATOM	4188	0D1	ASP T		14.327		_		37.12			C
	ATOM	4189		ASP T		15.430				31.92		T	0
	ATOM	4190		VAL T		18.215				27.99		T	0
	ATOM	4191	CA	VAL T		18.871		57.459		25.95		T	N
20	MOTA	4192	С	VAL T		19.245		57.474		26.46		T	C
	ATOM	4193		VAL T		18.922		56.541		27.73		Ţ	C
	ATOM	4194		VAL T		20.168	15.048	57.164		24.95		T	0
	ATOM	4195	CG1	VAL T		20.901	14.461	55.960		20.92		T	C
	ATOM	4196		VAL T		19.823	16.519	56.916				T	C
25	ATOM	4197	N	PHE T		19.929	12.305	58.524		20.74 26.36		T T	C
	ATOM	4198	ÇA	PHE T		20.369	10.912	58.619		25.98		T T	N
	ATOM	4199	C	PHE T		19.379	9.919	59.236				T -	C
	ATOM	4200	0	PHE T		19.536	8.708	59.084		27.12		T	C
	ATOM	4201	СВ	PHE T		21.689	10.844	59.389		25.23		T	0
30	ATOM	4202	CG	PHE T		22.844	11.465			24.48		T	С
	ATOM	4203		PHE T		23.388	10.848	58.662 57.546		25.86		T	C
	ATOM	4204		PHE T		23.377	12.681	59.082		25.81		1	С
	ATOM	4205		PHE T		24.450	11.429	56.852		26.68		T	C
	ATOM	4206		PHE T		24.435	13.267	58.398		27.09		Ī	С
35	MOTA	4207	CZ	PHE T		24.972	12.639	57.280		26.05		[-	С
	ATOM	4208	N	GLY T		18.368	10.421	59.930		25.43 27.07		[C
	MOTA	4209	CA	GLY T		17.406	9.526	60.542		30.74		[•	N
	ATOM	4210	С	GLY T		18.079	8.427	61.347		31.38]		C
	ATOM	4211	0	GLY T		18.894		62.227				•	C
40	ATOM	4212	N	LYS T		17.757	7.174						0
	ATOM	4213		LYS T		18.319				30.48	1		N
	ATOM	4214		LYS T		19.784	5.707			29.20	1		C
	ATOM	4215		LYS T		20.391	4.894	62.143		28.53			C
	ATOM	4216		LYS T		17.480	4.771		1.00		1 1		0
45	ATOM	4217		LYS T		17.526	4.284	60.036		34.68	1		C
	ATOM	4218		LYS T		16.654	3.045	59.849		38.94	I T		C
	ATOM	4219		LYS T		16.596	2.617	58.390	1.00				C
	ATOM	4220		LYS T		17.943	2.260	57.865	1.00		Ţ		C
	ATOM	4221		ASP T		20.356	6.318	60.416	1.00		T		N
50	ATOM	4222		ASP T		21.763	6.060	60.103	1.00		7		N
	ATOM	4223		ASP T		22.698	6.678	61.142	1.00		T		C
	ATOM	4224		ASP T		23.859	6.283	61.257	1.00		T		C
	ATOM	4225		ASP T		22.137	6.620	58.727	1.00		Ī		0
	ATOM	4226		ASP T		21.631	5.765				T		C
55	ATOM	4227		ASP T		21.557	4.547		1.00		Ţ		C
		· ·			-50	21.337	4.34/	31.700	1.00	30.37	T		0

	ATOM	4228				150	21.3	30 6.3	19 56.53	1.0	0 31.25		T	0
	MOTA	4229				151	22.18	36 7.6	45 61.89	7 1.0	0 24.20		Ţ	N
	ATOM	4230				151	22.91	78 8.34	42 62.90	1.0	0 24.32		T	C
_	ATOM	4231				151	22.80	00 7.84	47 64.333		0 23.19		T	C
5		4232				151	21.68	7.65	54 64.80		0 23.35		T	0
	ATOM	4233				151	22.65	9.83	39 62.858		0 23.48		Ţ	C
	ATOM	4234				151	23.29	9 10.74	1 63.916		24.55		T	C
	MOTA	4235		1 LE			24.79	1 10.86			21.55		T	С
	ATOM	4236	CD	2 LEI	JT	151	22.63	8 12.11	.7 63.885		24.04		Ţ	C
10	ATOM	4237	N	ILI	T	152	23.91	7 7.63	9 65.020		23.69		T	N
	ATOM	4238	CA	ILE	T	152	23.88	2 7.23			23.13		T	C
	ATOM	4239	С	ILE	T	152	24.88	6 8.11	1 67.154		23.28		T	C
	ATOM	4240	0	ILE	T	152	25.73	6 8.75	2 66.537		24.54		ī	0
	ATOM	4241	CB	ILE	T	152	24.28				22.81		ī	C
15	ATOM	4242	CG	1 ILE	T	152	25.79	9 5.58			22.58		Ţ	C
	MOTA	4243	C G	2 ILE	T	152	23.53				23.41		T	С
	MOTA	4244	C D	1 ILE	T	152	26.32				22.76		T	С
	ATOM	4245	N			153	24.77				23.49		T	N
	ATOM	4246	CA			153	25.71				24.51		T	
20	MOTA	4247	С			153	26.35				24.18		T	C C
	ATOM	4248	0			153	25.71				24.71		T	
	ATOM	4249	CB			153	24.99				23.68			0
	ATOM	4250	CG			153	24.74				23.64		T T	C
	ATOM	4251	CDI	LTYR			25.80				23.71		T T	C
25	ATOM	4252		TYR		_	23.45				22.84		T T	C
	MOTA	4253		TYR			25.59						T	C
	ATOM	4254		TYR			23.22				21.55		T -	С
	ATOM	4255	CZ			153	24.30				22.98		T	C
	ATOM	4256	0 H			153	24.092				22.00		T	C
30	MOTA	4257	N N	THR			27.647				21.50		T -	0
	ATOM	4258	CA	THR			28.403				23.44		Γ	N
	ATOM	4259	C	THR			28.830				23.84		Γ -	C
	ATOM	4260	0	THR			29.260				25.48		1	С
	ATOM	4261	CB	THR					=		25.59		Γ -	0
35	ATOM	4252	0 G 1				29.640				24.28		ſ	С
	ATOM	4263	CG2				29.212				24.66		Γ	0
	ATOM	4264	N N	LEU			30.540				27.90		1	С
	ATOM	4265	CA	LEU			28.685				26.46		Γ	N
	ATOM	4266	C	LEU			29.056 30.286				29.00	1		С
40	MOTA	4267	0	LEU						-	31.35			С
	ATOM	4268	CB	LEU			30.356				33.70	1		0
	ATOM	4269	CG	LEU			27.894				26.23	1		C
	ATOM	4270		LEU			28.112				26.86	7		С
	ATOM	4271		LEU			28.263			1.00		1		С
45	MOTA	4272	N				26.941	8.851			24.97	1		С
10	MOTA	4273	CA	TYR			31.254				33.72	T		N
	ATOM	4274	C	TYR			32.494			1.00		T		C
	MOTA	4275		TYR			32.466			1.00		T		С
	ATOM	4275	0 CB	TYR			32.747	10.061		1.00		T		0
50	ATOM	4276	CB	TYR			33.690	8.703		1.00		T		C
50	ATOM		CG	TYR			35.056	8.392		1.00		T		C
	ATOM	4278 4279		TYR			35.633	7.130		1.00		Ţ		С
	ATOM			TYR			35.787	9.374	77.085	1.00		T		C
		4280		TYR :			36.908	6.856	76.762	1.00		T		C
55	ATOM ATOM	4281		TYR			37.060	9.110	77.590	1.00		7		C
U U	MULT	4282	CZ	TYR	1 1	56	37.614	7.851	77.424	1.00	47.92	T		С

	KOTA	4283		TY	R 1	156	38.8	75	7.593	77.914	1.00	48.85	T	0
	ATOM	4284				157	32.0	98	8.113	79.047	1.00	38.10	T	N
	ATOM	4285	CA	TYI	2 1	157	32.0	17	8.650	80.404		39.51	T	C
_	ATOM	4286	C	TYI	3	157	32.9	11	7.927	81.407		41.43	Ţ	С
5	ATOM	4287	0	TYI	1	157	33.1	53	6.729			41.55	T	
	ATOM	4288	CB	TYI	2 1	157	30.5	66	8.627			37.07		0
	MOTA	4289	CG			157	29.9		7.255			36.59	T	C
	ATOM	4290	CD	1 TYE			29.5		6.520			36.61	T	C
	ATOM	4291		2 TYF			29.62		6.712			36.44	T	C
10	ATOM	4292				157	28.94		5.282				T	С
	ATOM	4293				157	28.98		5.478	-		36.96	Ţ	C
	ATOM	4294				157	28.64		4.768			36.19	Ţ	C
	ATOM	4295				157	28.01		3.554			37.43	T	С
	ATOM	4296	N N			158	33.39					35.29	T	0
15	ATOM	4297				158			8.666			44.59	T	N
	ATOM	4298	C			158	34.26		8.101	83.423		48.36	T	C
	ATOM	4299	0			158	33.94		8.612	84.822		50.71	T	С
	ATOM	4300	CB			158	33.38		9.700	84.989		50.01	T	0
	ATOM	4301	CG				35.72		8.414	83.092		48.77	Ţ	C
20	ATOM	4302				158	36.07		9.873	83.156		50.02	T	С
	ATOM	4302		l TRP			36.24		10.631	84.281		50.16	T	C
	ATOM.	4304		2 TRP			36.29		10.752	82.045		50.25	T	С
	ATOM	4305		L TRP			36.55		11.924	83.940		50.45	T	N
				Z TRP			36.59		12.027	82.574	1.00	49.97	T	C
25	MOTA	4306		3 TRP			36.26		10.585	80.653		50.09	T	C
20	KOTA	4307		TRP			36.86		13.131	81.760	1.00	49.43	T	C
	ATOM	4308		TRP			36.53		11.685	79.843	1.00	50.00	T	C
	MOTA	4309		TRP			36.83		2.941	80.402	1.00	50.53	T	С
	MOTA	4310	N			159	34.29		7.815	85.826	1.00	54.36	T	N
30	ATOM	4311	CA			159	34.05		8.167	87.220	1.00	57.78	T	С
30	ATOM	4312	С	LYS			35.21		9.024	87.735	1.00	58.65	T	С
	ATOM	4313	0	LYS			35.37		0.173	87.325	1.00	60.01	T	0
	MOTA	4314	CB	LYS			33.91	1	6.887	88.053	1.00	59.26	Ţ	С
	ATOM	4315	CG	LYS			33.26	6	7.081	89.416	1.00	61.42	T	С
25	ATOM	4316	CD	LYS			33.50	3	5.877	90.322	1.00	63.98	T	C
35	ATOM	4317	CE	LYS			32.97		4.584	89.712	1.00	65.42	T	С
	ATOM	4318	ΝZ	LYS			31.50	1	4.599	89.542	1.00	67.11	T	N
	MOTA	4319	N	SER			36.03		8.460	88.622	1.00	60.77	T	N
	ATOM	4320	CA	SER			37.188	8	9.152	89.198	1.00	62.01	T	С
40	ATOM	4321	С	SER			37.933	3	8.228	90.157	1.00	62.68	T	C.
40	ATOM	4322	0	SER			37.520)	8.043	91.303	1.00	63.75	T	0
	ATOM	4323	CB	SER			36.75	1	0.413	89.952	1.00	62.64	T	С
	MOTA	4324	0 G	SER			36.348	3 1	1.441	89.063	1.00	63.25	T	0
	MOTA	4325	N	GLY			39.552	2	4.169	84.389	1.00	46.65	T	N
4 ==	ATOM	4326	CA	GLY			38.188	3 :	3.681	84.302		46.62	T	С
45	ATOM	4327	С	GLY			37.414		4.314	83.161		45.68	T	C
	ATOM	4328	0	GLY			36.884	. :	5.415	83.296		45.48	Ţ	0
	MOTA	4329	N	LYS			37.347	' :	3.611	82.036		45.62	T	N
	MOTA	4330	CA	LYS			36.635		4.100	80.859	1.00		T	C
.	ATOM	4331	С	LYS			35.296			80.697	1.00		T	Č
50	MOTA	4332	0	LYS			35.198		2.178	80.921	1.00		Ţ	0
	ATOM	4333	CB	LYS	T	165	37.480	3	3.885	79.593	1.00		T	С
	ATOM	4334	CG	LYS	T :	165	38.658		1.851	79.404	1.00		T	C
	MOTA	4335	CD	LYS	T :	165	39.77 7		1.652	80.424	1.00		T	C
	ATOM	4336	CE	LYS			40.370		3.252	80.348	1.00		T	С
55	MOTA	4337	NZ	LYS	T :	165	40.940		2.954	79.005	1.00		Ť	N

	ATOM		s n			T 166	34.26	9 4.13	5 80.309	1.0	0 40.32	T	N
*	MOTA		9 C	A L	Y S	T 166	32.93	7 3.57	80.103	1.0	0 38.29	T	•
	ATOM	4340) C	L	YS	T 166	32.32	5 4.13	78.818		0 36.09	T	•
_	ATOM	434]	L 0	L'	YS	T 166	32.609	5.268			0 32.41	T	
. 5	ATOM	4342	2 C	B L'	Y S	T 166	32.03				0 40.50	T	_
	ATOM	4343	3 C			T 166	32.510				0 43.96		C
	MOTA	4344	L C			T 166	31.622					Ť	
	MOTA	4345				T 166	32.151				0 45.60	T	С
	MOTA	4346				T 166					0 47.87	T	C
10	ATOM	4347				T 167	31.334				0 49.02	T	N
	MOTA	4348				T 167	31.475				33.24	Ţ	N
	MOTA	4349					30.851		_		32.13	T	C
						T 167	29.386			1.00	30.44	T	, C
	ATOM	4350				T 167	28.969		77.316	1.00	29.24	T	0
15	ATOM	4351				T 167	31.623	3.205	75.719	1.00	33.05	T	С
15	MOTA	4352				T 167	31.000	3.632	74.502	1.00	34.90	T	0
	MOTA	4353	CG	-		T 167	31.633	1.686	75.767	1.00	34.83	T	Ċ
	ATOM	4354	N	AL	A	T 168	28.616	4.184	76.102		27.66	T	N
	MOTA	4355	CA	AL	A	T 168	27.201	3.934			27.24	T	Č
	ATOM	4356	C	AL	A	T 168	26.887				26.54	T	
20	MOTA	4357	0			T 168	27.614				26.79		C
	ATOM	4358				T 168	26.356		76.847		25.11	T	0
	ATOM	4359				T 169	25.815		73.864			1	C
	ATOM	4360	CA			T 169	25.421				25.71	T	N
	ATOM	4361	C			T 169	23.912		72.503		24.30	Ţ	С
25	MOTA	4362	0			T 169			72.416		23.34	Ţ	С
-0	ATOM	4363	CB				23.165	3.613	73.056		25.30	Ţ	0
	MOTA					T 169	25.898	3.108	71.519		25.23	T	С
		4364	CG			169	27.401	2.925	71.531	1.00	24.44	T	C
	ATOM	4365	CD			169	27.864	1.937	70.489		25.08	· T	C
20	MOTA	4366	CE			169	29.368	1.780	70.552	1.00	22.30	T	C
30	MOTA	4367	NZ			169	29.879	1.009	69.398	1.00	25.32	T	N
	ATOM	4368	N			170	23.467	5.309	71.625	1.00	24.63	T	N
	ATOM	4369	CA			170	22.040	5.574	71.475	1.00	24.26	Ţ	C·
	MOTA	4370	С	THE	? 1	170	21.680	5.871	70.023		26.19	T	Č
_	MOTA	4371	0	THE	1	170	22.491	6.408	69.269		26.16	Ť	0
35	MOTA	4372	CB	THE	1	170	21.607	6.783	72.335		22.44	Ţ	C
	ATOM	4373	0 G 1	. THE	1	170	20.202	7.008	72.178		21.98	T	0
	ATOM	4374				170	22.361	8.040	71.907		20.38	Ţ	C
	MOTA	4375	N			171	20.463	5.518	69.631		27.31	T	
	ATOM	4376	CA			171	20.018	5.777			29.89		N
40	ATOM	4377	С			171	19.207	7.071	68.202			T	C
	ATOM	4378	Ō			171	18.659	7.416	67.158		28.86	Ţ	C
	ATOM	4379	СВ			171		4.596			30.77	Ţ	0
	ATOM	4380	CG			171	19.201		67.744		34.19	T	C
	ATOM	4381				171	17.917	4.401	68.497		38.11	T	C
45	MOTA	4382					17.919	4.219	69.714		43.07	T	0
40						171	16.803	4.433	67.778	1.00	42.28	T	N
	MOTA	4383	N			172	19.129	7.781	69.324	1.00	27.79	T	N
	ATOM	4384	CA			172	18.432	9.063	69.385	1.00	27.05	T	С
	MOTA	4385	C			172	19.487	10.072	69.863	1.00	26.35	T	С
	MOTA	4386	0			172	20.678	9.898	69.593	1.00	24.98	T	0
50	MOTA	4387	CB			172	17.242	9.030	70.381		26.35	T	C
	MOTA	4388	0G1	THR	Ţ	172	17.732	8.790	71.704		29.03	T	0
	MOTA	4389		THR			16.258	7.930	70.009		26.97	T	C
	ATOM	4390	N			173	19.065	11.119		1.00		T .	N
	MOTA	4391	CA			173	20.008	12.112		1.00		T	
55	ATOM '	4392	С			173	20.147	12.074		1.00			C
-					•		20.147		. 2.310	1.00	20.30	T	C

	ATOM				T 173	20.741	12.97	4 73.16	7 1.0	0 26.63		T	0
	ATOM				T 173	19.583	13.517	7 70.632	2 1.0	0 27.09		T	C
	ATOM	4395			T 173	19.974	13.829	69.206		0 27.88		T	С
5	ATOM	4396			T 173	19.682	13.064	68.291	1.0	0 28.96		T	0
J	ATOM	4397			T 173	20.642	14.960	69.009	1.0	0 29.78		T	N
	ATOM	4398			T 174	19.617	11.028	73.206		0 26.96		T	N
	ATOM	4399			T 174	19.680	10.906	74.659		0 28.12		T	C
	MOTA	4400	_		T 174	20.340	9.619	75.143		0 26.22		T	C
10	ATOM	4401			T 174	20.215	8.569	74.523		0 26.38		T	0
10	ATOM	4402			T 174	18.268	11.012			0 32.01		T	C
	ATOM	4403			T 174	17.604	12.365	74.996		0 39.60		ī	С
	ATOM	4404			T 174	16.095	12.313	75.150		0 45.20		T	C
	MOTA	4405			T 174	15.439	11.627	74.350		0 47.98		T	0
	MOTA	4406			T 174	15.57 5	12.951			0 49.78		Ţ	0
15	ATOM	4407			T 175	21.047	9.722			0 26.73		T	N
	ATOM	4408	CA PI	ΙE	T 175	21.730	8.591			0 26.52		T	C
	ATOM	4409	C PI	E :	T 175	21.161	8.402			0 29.29		r	С
	ATOM	4410	0 P F	E :	175	21.052	9.367			29.51		ľ	0
	MOTA	4411	CB PI	E :	175	23.228	8.873			23.85		r	С
20	ATOM	4412	CG PF	E 1	175	23.968	8.919	75.710		23.33		,	C
	ATOM	4413	CD1 PH	E 1	l 175	24.315	7.743	75.051		22.59			C
	MOTA	4414	CD2 PH	E 7	175	24.345	10.139	75.154		21.95		•	C
	MOTA	4415	CE1 PH	E 1	175	25.034	7.780	73.851		24.26	1		
	ATOM	4416	CE2 PH	E 1	175	25.063	10.189	73.956		23.03	1		C
25	ATOM	4417	CZ PH	E 1	175	25.408	9.006	73.304		22.27	1		C
	MOTA	4418			176	20.791	7.171	78.622		31.93			C
	ATOM	4419	CA LE	Ū I	176	20.276	6.873	79.959		34.35	7		N
	MOTA	4420			176	21.250	5.879	80.574		35.33	1		C
	ATOM	4421			176	21.255	4.705	80.211		36.35	T		C
30	MOTA	4422			176	18.876	6.254	79.890		34.93	Ţ		0
	ATOM	4423			176	18.220	5.937	81.243		36.34	T		C
	MOTA	4424	CD1 LE			18.026	7.218	82.039		36.74	T		C
	ATOM	4425	CD2 LE			16.876	5.250	81.022		37.90	T		C
	MOTA	4426			177	22.083	6.355	81.494		36.14	T		C
35	ATOM	4427			177	23.080	5.500	82.125		38.18	Ţ		N
	MOTA	4428			177	22.968	5.430	83.643			Ţ		C
	ATOM	4429			177	22.350	6.284	84.274		39.89	Ţ		C
	MOTA	4430			177	24.510	5.974	81.795		38.85	Ť		0
	ATOM	4431			177	24.750	7.358	82.407		38.42	Ţ		С
40	MOTA	4432	CG2 ILI			24.712	6.009			38.52	Ţ		C
	ATOM	4433	CD1 ILI			26.208	7.791	82.420		39.58	T		C
	ATOM	4434			178	23.589	4.403	84.215			Ī		C
	ATOM	4435			178	23.602	4.192	85.657		42.03	Ţ		N
	ATOM	4436			178	24.802	4.914	86.259		45.50	Ī		C
45	ATOM	4437			178	25.866	4.984			47.95	T		C
	MOTA	4438			178	23.704	2.699	85.645		48.69	T		0
	ATOM	4439			178	22.462	1.935	85.969		45.09	Ţ		С
	MOTA	4440	OD1 ASP			22.561	0.737	85.572		45.52	T		C
	ATOM	4441	OD2 ASP			21.402		85.367		46.53	7		0
50	MOTA	4442			179	21.402	2.543	85.480		47.77	Ţ		0
-	ATOM	4443	CA VAL				5.447	87.463		51.00	T		N
	MOTA	4444			179	25.709 25.607	6.158	88.138		54.37	Ţ		С
	MOTA	4445			179	25.697	5.894	89.638		57.41	T		С
	ATOM	4446	CB VAL			24.634	5.808	90.257		58.33	Ť		0
55	ATOM	4447	CG1 VAL			25.610	7.684	87.912		53.68	T		С
	• • • •		OUT IVE	1	113	25.755	8.002	86.434	1.00	54.55	T		С

	MOTA	4440		9 VAI	T 170	04 005					
		4448			T 179			_	1.00 53.15	Ţ	C
	MOTA	4449			T. 180			90.218	1.00 60.20	T	N
	MOTA	4450				27.008	5.526	91.649	1.00 63.22	T	С
	ATOM	4451			T 180	26.787	6.854	92.363	1.00 64.55	Ţ	С
5	MOTA	4452	0	ASP	T 180	27.554	7.800	92.178	1.00 64.55	T	0
	ATOM	4453	C B	ASP	T 180	28.398	4.974	91.981	1.00 65.14	T	C
	ATOM	4454	CG	ASP	T 180	28.659	3.620		1.00 67.56	T	C
	ATOM	4455	00		T 180	28.706			1.00 69.02	T	
	ATOM	4456			T 180	28.812					0
10	MOTA	4457			T 181	25.730			1.00 69.35	T	0
	ATOM	4458			Ť 181	25.400			1.00 66.14	T	N
	MOTA	4459			T 181				1.00 66.70	T	C
	ATOM	4460			T 181	26.589			1.00 66.19	T	С
						27.464			1.00 66.44	T	0
15	MOTA	4461			T 181	24.230		94.858	1.00 68.20	T	C
10	ATOM	4462			T 181	22.910			1.00 70.66	T	C
	MOTA	4463			T 181	21.747	7.534	95:154	1.00 71.98	T	С
	MOTA	4464			T 181	21.915	6.434	96.194	1.00 73.05	T	C
	MOTA	4465	ΝZ		T 181	21.906	5.071	95.589	1.00 74.30	T	N
	MOTA	4466	N	GLY	T 182	26.613	10.011	94.851	1.00 65.88	T	N
20	MOTA	4467	CA	GLY	T 182	27.698	10.647	95.578	1.00 65.07	Ť	C
	MOTA	4468	С	GLY	T 182	29.030	10.580	94.856	1.00 64.52	Ţ	C
	MOTA	4469	0	GLY	T 182	30.085	10.552	95.488	1.00 64.76	Ť	ō
	ATOM	4470	N		T 183	28.985	10.558	93.528	1.00 63.96	Ţ	N
	MOTA	4471	CA		T 183	30.197	10.496	92.722	1.00 63.00	Ţ	
25	MOTA	4472	С		T 183	30.012	11.349	91.471	1.00 60.60		C
	ATOM	4473	Ō		T 183	28.948	11.336	90.854		Ţ	C
	ATOM	4474	CB		T 183				1.00 60.74	T	0
	ATOM	4475	CG		T 183	30.493	9.047	92.333	1.00 65.51	T	C
	MOTA	4476	CD		T 183	31.877	8.829	91.749	1.00 69.10	T	С
30	MOTA					32.986	9.080	92.755	1.00 70.99	T	С
30		4477	-		T 183	33.103	10.209	93.234	1.00 72.19	T	0
	MOTA	4478	0 E 2		T 183	33.730	8.143	93.056	1.00 71.72	T	0
	ATOM	4479	N		T 184	31.052	12.089	91.100	1.00 57.69	T	N
	ATOM	4480	CA		T 184	30.987	12.959	89.933	1.00 54.65	T	C
0~	MOTA	4481	C		T 184	31.475	12.282	88.654	1.00 51.10	T	С
35	MOTA	4482	0		T 184	32.494	11.589	88.647	1.00 49.50	T	0
	MOTA	4483	CB	ASN	T 184	31.797	14.236	90.185	1.00 57.28	T	С
	ATOM	4484	CG	ASN	T 184	31.324	14.996	91.415	1.00 59.82	T	С
	MOTA	4485	0D1	ASN	T 184	31.448	14.517	92.545	1.00 62.30	T	0
	ATOM	4486	ND2	ASN	T 184	30.775	16.187	91.200	1.00 60.42	T	N
40	MOTA	4487	N	TYR	T 185	30.733	12.492	87.572	1.00 46.87	Ť	N
	ATOM	4488	CA		T 185	31.072	11.919	86.276	1.00 43.13	Ţ	C
	MOTA	4489	С		T 185	31.282	13.009	85.232	1.00 40.25	Ť	C
	MOTA	4490	0		T 185	30.614	14.042	85.257	1.00 38.63	Ť	
	ATOM	4491	CB		T 185	29.955	10.999	85.772			0
45	ATOM	4492	CG		T 185	29.806	9.679		1.00 42.93	Ţ	С
	ATOM	4493			T 185	29.313		86.491	1.00 43.09	T	С
	ATOM	4494			T 185		9.618	87.794	1.00 43.56	Ţ	С
	ATOM	4495				30.126	8.483	85.852	1.00 42.77	T	С
					1 185	29.137	8.400	88.441	1.00 44.38	T	С
50	MOTA	4496			1 185	29.955	7.260	86.489	1.00 44.41 '	T	С
50	ATOM	4497	CZ		185	29.459	7.225	87.784	1.00 44.61	T	С
	ATOM	4498	OH		T 185	29.273	6.016	88.413	1.00 46.20	T	0
	ATOM	4499	N		186	32.215	12.773	84.318	1.00 37.22	T	N
	ATOM	4500			186	32.469	13.711	83.233	1.00 35.28	Ť	C
	MOTA	4501	С		186	32.033	12.986	81.964	1.00 33.69	T	С
55	ATOM	4502	0	CYS 1	186	32.113	11.757	81.884	1.00 33.01	T	0

	ATOM		C E	CY:	S 1	186	33.948	14.084	83.145	5 1.0	0 34.62		T	С
	ATOM	4504	50	CYS	S 1	186	34.609	15.088			0 35.26		T	S
	ATOM	4505	N N	PHI	E 1	187	31.579				0 31.82		T	N
_	ATOM	4506	C A	PHE	E T	187	31.085				0 29.80		Ī	. C
5	ATOM	4507	C	PHI	T	187	31.657				0 28.26		T	
	ATOM	4508	0	PHE	E T	187	32.121				0 25.87			C
	ATOM	4509	СВ	PHE	T	187	29.559		-		0 31.70		T	0
	ATOM	4510	CG			187	28.892		_		0 32.92		T	C
	ATOM	4511	CD	1 PHE			28.783				0 32.92		T	C
10	ATOM	4512		2 PHE			28.401				0 34.37		T	C
	ATOM	4513		1 PHE			28.196				0 34.37		T	C
	ATOM	4514		2 PHE			27.812				0 33.58		T	C
	ATOM	4515				187	27.711				0 33.38		T T	C
	ATOM	4516	N			188	31.612		77.397		0 27.99			C
15	ATOM	4517	CA			188	32.079		76.083		0 26.65		T T	N
	ATOM	4518	С			188	31.324		75.071		0 26.06		T	C
	ATOM	4519	0			188	31.268		75.203		0 25.10		T	С
	ATOM	4520	СВ			188	33.580	13.165	75.941		0 25.10		T	0
	ATOM	4521	0 G			188	34.034	13.597	74.670		0 28.63		T	C
20	ATON	4522	N			189	30.737	13.200	74.068		25.94		Ī	0
	ATOM	4523	CA			189	29.977	12.476	73.056				r	N
	ATOM	4524	С			189	30.585	12.579	71.667		25.53 26.44		Γ.	С
	ATOM	4525	0			189	31.397	13.462	71.381				ſ	С
	ATOM	4526	CB			189	28.510	12.967	72.986		27.25 26.62		1	0
25	ATOM	4527	CGI	LVAL			27.850	12.822	74.353				[С
	ATOM	4528		2 VAL			28.459	14.412	72.503		23.61		1	С
	ATOM	4529	Ŋ			190	30.160	11.677	70.794		25.43		1	С
	ATOM	4530	CA	GLN			30.670	11.627	69.438		26.03	1		N
	ATOM	4531	C	GLN			29.562	11.173	68.495		25.75	1		C
30	ATOM	4532	0	GLN			28.825	10.238	68.803		24.90	1		С
	ATOM	4533	СВ	GLN			31.845	10.256	69.415		24.21	1		0
	ATOM	4534	CG	GLN			32.563	10.466	68.103		29.40	1		С
	ATOM	4535	CD	GLN			33.803	9.605	68.276			1		С
	ATOM	4536	0E1				33.738	8.525	68.864		31.44	7		C
35	MOTA	4537	NE2				34.937	10.079	67.770		32.92	7		0
	ATOM	4538	N	ALA			29.428	11.854	67.361		29.76	1		N
	ATOM	4539	CA	ALA			28.415	11.496	66.374		23.85	T		N
	ATOM	4540	С	ALA			29.016	10.401	65.504		22.47	T		С
	ATOM	4541	0	ALA			30.212	10.424	65.214		22.81	T		C
40	ATOM	4542	CB	ALA			28.051	12.702	65.529		22.19 20.37	Ţ		0
	ATOM	4543	N	VAL			28.195	9.438	65.099			Ī		C
	MOTA	4544	CA	VAL			28.684	8.332	64.286		22.78	Ţ		N
	MOTA	4545	C	VAL			27.636	7.854	63.285		23.06	7		C
	MOTA	4546	0	VAL			26.435	7.834	63.549		25.12	T		С
45	ATOM	4547	СВ	VAL			29.080	7.124			25.90	T		0
	MOTA	4548		VAL			29.694	6.023	65.182		24.31	T		C
	ATOM	4549		VAL			30.051	7.564	64.347 66.272		23.66	Ť		C
	ATOM	4550	N	ILE			28.102				23.45	Ĩ		С
	ATOM	4551	CA	ILE			27.233	7.409	62.125 61.098		25.32	Ţ		N
50	ATON	4552	C	ILE			27.233	6.856 5.519			27.61	Ţ		C
	MOTA	4553	0	ILE			28.734	5.519	60.772		29.11	Ţ		C
	ATOM	4554	СВ	ILE			27.188		59.887		31.58	T		0
	ATOM	4555		ILE '			26.516	7.746	59.845		28.18	Ţ		C
	ATOM	4556		ILE '			26.420	9.078	60.190		27.35	T		C
55	MOTA	4557		ILE '				7.039	58.734		26.33	T		С
		,					26.511	10.072	59.058	T - 00	31.00	T		C

	ATOM	4558			T 194	27.496		2 61.506	1.00 29.13	T	N
	ATOM	4559			T 194	28.006				T	С
	ATOM	4560			T 194	28.153		7 59.940	1.00 29.68	T	C
5	ATOM	4561			T 194	29.168		59.605	1.00 30.22	T	0
J	ATOM	4562			T 194	27.020	2.268	62.187	1.00 29.86	T	Ċ
	ATOM	4563			T 194	26.631	3.224	63.273	1.00 30.63	T	С
	ATOM	4564			T 194	26.402	4.501	62.493	1.00 28.23	T	C
	ATOM	4565			T 195	27.142		59.109	1.00 31.11	T	N
10	ATOM	4566			T 195	27.172		57.732	1.00 33.61	T	С
10	ATOM	4567			T 195	28.304		56.894	1.00 36.37	T	С
	ATOM	4568			T 195	28.653		-	1.00 37.68	. Т	0
	ATOM	4569			T 195	25.841	2.594	57.049	1.00 33.34	T	С
	ATOM	4570			T 195	25.592	3.987		1.00 33.89	T	0
15	ATOM	4571	N		T 196	28.876	3.994	57.350	1.00 37.43	T	N
10	MOTA	4572	CA		T 196	29.956	4.654	56.626	1.00 38.17	T	C
	ATOM	4573	С		T 196	31.279	3.915	56.617	1.00 40.14	Ţ	С
	ATOM	4574	0		7 196	31.567	3.104	57.497	1.00 39.73	T	0
	ATOM	4575	CB		T 196	30.201	6.055	57.181	1.00 36.13	T	С
90	ATOM	4576	CG		T 196	29.241	7.107	56.686	1.00 34.25	T	C
20	ATOM	4577	CD		T 196	29.764	8.479	57.042	1.00 33.30	T	С
	ATOM	4578	NE		T 196	28.936	9.540	56.486	1.00 32.53	T	N
	ATOM	4579	CZ		T 196	29.210	10.835	56.592	1.00 33.06	T	С
	ATOM	4580		LARG		30.299	11.234	57.238	1.00 30.86	T	N
95	ATOM	4581		2 ARG		28.397	11.730	56.048	1.00 29.51	T	N
25	MOTA	4582	N		T 197	32.082	4.227	55.604	1.00 42.50	T	N
	MOTA	4583	CA		T 197	33.405	3.645	55.435	1.00 43.94	T	С
	ATOM	4584	C		T 197	34.437	4.714	55.802	1.00 43.45	Ť	C
	ATOM	4585	0		T 197	35.368	4.458	56.567	1.00 43.73	T	0
30	ATOM	4586	CB		T 197	33.623	3.181	53.976	1.00 45.61	Ť	C
30	ATOM	4587		THR		33, 452	4.291	53.086	1.00 48.03	T	0
	ATOM	4588		THR		32.618	2.094	53.608	1.00 46.03	T	C
	MOTA	4589	N		T 198	34.254	5.917	55.263	1.00 42.98	T	N
	ATOM	4590	CA		T 198	35.149	7.039	55.546	1.00 41.57	T	С
35	ATOM	4591	C		T 198	34.383	8.062	56.371	1.00 38.54	T	C
30	ATOM	4592	0		T 198	33.159	8.109	56.308	1.00 38.93	T	0
	ATOM	4593	CB		T 198	35.641	7.720	54.250	1.00 42.24	T	C
	ATOM	4594		VAL		36.388	6.713	53.390	1.00 43.81	T	C
	ATOM ATOM	4595		VAL		34.461	8.318	53.490	1.00 41.73	T	C
40	ATOM	4596	N		T 199	35.104	8.882	57.133	1.00 36.53	T	N
40	ATOM	4597 4598	CA		T 199	34.483	9.898	57.985	1.00 34.68	T	C
	ATOM	4599	C	ASN :		33.289	9.315	58.741	1.00 32.52	T	C
	ATOM	4600	0	ASN 1		32.201	9.884	58.732	1.00 31.11	Ť	0
	ATOM	4601	CB	ASN		34.016	11.092	57.147	1.00 36.34	T	C
45	MOTA	4602	CG	ASN 1		35.137	11.723	56.352	1.00 38.20	T	C
40	ATOM	4603		ASN 1		36.227	11.962	56.872	1.00 39.82	T	0
	MOTA			ASN 1		34.871	12.012	55.083	1.00 38.88	T	N
	ATOM	4604 4605	N	ARG T		33.497	8.183	59.404	1.00 32.29	T	N
	MOTA		CA	ARG T		32.422	7.528	60.137	1.00 32.10	T	C ,
50	ATOM	4606 4607	C 0	ARG T		32.098	8.205	61.459	1.00 29.78	T	С
5 0	ATOM	4608		ARG T		30.988	8.077	61.968	1.00 29.26	T	0
	ATOM	4609	CB CG	ARG T		32.769			1.00 34.20	T	C
	ATOM	4610	CD	ARG T		33.974	5.832		1.00 40.10	T	C
	MOTA		NE	ARG T		34.403	4.361		1.00 44.11	T	С
55	ATOM		CZ	ARG T		33.484	3.524		1.00 46.39	T	N
J J	71 1 V PI	7012	C L	ARG T	200	32.419	2.896	61.665	1.00 46.92	T	C

	A T O M	4613	B N	H1 ARG	T 200	32.11	3 2.992	2 60.378	1.00 46.68	Ť	M
	ATOM		ı N	H2 ARG	Ť 200	31.65	3 2.16			T	N N
	ATOM	4615	5 N	LYS	T 201	33.05	8.942	62.008		Ť	N
_	ATOM		S C	A LYS	T 201	32.83	9.589			T	C
5	MOTA		' C	LYS	T 201	33.27				T	C
	ATOM		0	LYS	T 201					T	0
	ATOM	4619	CI	3 LYS	T 201	33.576	8.814			T	C
	ATOM	4620	C	FA2	T 201	33.328				T	C
	A T O M	4621	CI	LYS	T 201	34.438				T	C
10	ATOM	4622	CE	LYS	T 201	34.446				T	C
	ATOM	4623	N 2	LYS	T 201	33.187				T	
	MOTA	4624	N	SER	T 202	32.614			1.00 25.68	T	N
	ATOM	4625	CA	SER	T 202	32.967			1.00 26.09	T	N
	ATOM	4626	С	SER	T 202	34.038			1.00 25.74		C
15	ATOM	4627	0	SER	T 202	34.424			1.00 25.74	T	C
	ATOM	4628	CB		T 202	31.754			1.00 25.44	T	0
	ATOM	4629	0 G	SER	T 202	31.439			1.00 24.76	T	C
	MOTA	4630	N	THR	T 203	34.523			1.00 25.64	ī	0
	MOTA	4631	CA		T 203	35.507			1.00 25.04	T	N
20	MOTA	4632	С		T 203	34.734			1.00 26.56	T	С
	ATOM	4633	0		T 203	33.542		68.170	1.00 26.32	T	C
	ATOM	4634	СВ		T 203	36.333	15.839	66.709	1.00 20.32	T	0
	ATOM	4635	0 G	1 THR		35.447		66.678	1.00 27.27	Ţ	. C
	ATOM	4636	C G		T 203	37.178	15.821	65.441	1.00 25.25	Ť	0
25	ATOM	4637	N		T 204	35.407	14.244	69.247	1.00 26.74	Ţ	C
	MOTA	4638	CA		T 204	34.775	14.245	70.561		Ţ	N
	ATOM	4639	С		T 204	34.287	15.648	70.904	1.00 25.07	T	C
	ATOM	4640	0		Γ 204	34.926	16.638	70.557	1.00 23.20	T	C
	ATOM	4641	CB		204	35.774	13.781	71.629	1.00 22.85	T	0
30	ATOM	4642	CG		204	36.322	12.384	71.360	1.00 26.47	T	C
	ATOM	4643	0 D I		204		11.414		1.00 28.96	T	С
	ATOM	4644		ASP 1		37.515	12.269	71.438	1.00 28.17	Ť	0
	ATOM	4645	N	SER 1		33.147	15.728	71.071	1.00 31.64	T	0
	ATOM	4646	CA	SER 7		32.580	17.009	71.580 71.994	1.00 22.21	T	N
35	ATOM	4647	С	SER 1		33.383	17.532		1.00 21.13	T	С
	ATOM	4648	0	SER 1		34.233	16.828	73.179 73.720	1.00 20.53	T -	С
	ATOM	4649	СВ	SER 1		31.136	16.818	73.720	1.00 21.01	T	0
	MOTA	4650	0 G	SER T		31.104	16.109	72.456	1.00 24.15	T	C
	ATOM	4651	N	PRO T			18.786		1.00 22.18	T	0
40	ATOM	4652	CA	PRO T	_		19.294	74.733	1.00 20.24	Ţ	N
	MOTA	4653	С	PRO T			18.464	75.947	1.00 21.58	T	С
	ATOM	4654	0	PRO T		32.334		75.947	1.00 23.90	T	С
	ATOM	4655	СВ	PRO T		33.426	20.740	74.840	1.00 23.99	T	0
	ATOM	4656	CG	PRO T		33.146	21.107		1.00 19.27	T	C
45	MOTA	4657	CD	PRO T		32.434	19.875	73.403	1.00 20.23	T	C
	ATOM	4658	N	VAL T		34.360	18.302	72.884	1.00 18.56	T	С
	ATOM	4659		VAL T		34.052	17.528	76.912 78.109	1.00 24.52	T	N
	MOTA	4660	С	VAL T		33.169			1.00 26.63	Ť	С
	ATOM	4661	0	VAL T		33.402		79.072	1.00 28.46	T	C
50	ATOM	4662	CB	VAL T			17.108	79.320	1.00 29.61	T	0
	ATOM	4663		VAL T			16.306	78.851	1.00 25.30	Ţ	С
	ATOM			VAL T			16.306	80.105	1.00 25.46	T	C
	MOTA	4665	N	GLU T			17.660		1.00 23.54	Τ.	C
	ATOM	4666	CA	GLU T				79.598	1.00 31.26	T	N
55	MOTA		C	GLU T		31.231			1.00 32.65	T	С
		* *	-	-20 1	200	31.114	11.311	81.785	1.00 34.52	T	С

	ATOM					7 208	31.032	16.16	1 81.662	1.00 33.84	T	0
	ATOM					T 208	29.832	18.407	7 79.953	1.00 33.49	T	C
	MOTA	4670				1 208	29.728	19.482	2 78.893	1.00 37.75	T	Ċ
-	ATOM	4671				T 208	30.128	20.844	4 79.422	1.00 40.28	T	Č
5	ATOM	4672	2 01	ll GL	Ü	T 208	29.501	21.309	80.373		T	0
	ATOM	4673	3 O E	2 GL	U '	208	31.067	21.435	78.887		T	0
	ATOM	4674	1 N	CY	\$ '	209	31.296	17.957	82.970		Ť	N
	ATOM	4675	C A	CY	S	209	31.252	17.170			T	Ċ
• •	ATOM	4676	C	C Y	S 1	209	30.084	17.510	85.068		T	С
10	MOTA	4677	0			209	29.734	18.790			Ť	
	ATOM	4678	C B	CY	S 1	209	32.555	17.323			T	C
	MOTA	4679	SG	CY	S 1	209	34.098	17.006		_ -	T	S
	MOTA	4680	N	ME	T 1	210	29.481	16.656			T	N
	ATOM	4681	CA	ME	T I	210	28.354	16.964		1.00 44.92	T	C
15	MUTA	4682	C	ME	T T	210	28.859	17.451		1.00 46.67	Ţ	C
	ATOM	4683	0	ME	T T	210	28.359	18.480		1.00 48.11	T	0
	MOTA	4684	СВ	ME	T T	210	27.463	15.730		1.00 46.14	Ţ	С
	MOTA	4685	CG	ME	T T	210	28.119	14.558		1.00 48.38	T	
	MOTA	4686	SD	ME	T T	210	27.134	13.050		1.00 51.31	T	C
20	MOTA	4687	CE			210	25.678	13.526	88.260	1.00 50.81		S
	MOTA	4688	0 T			210	29.743	16.798	88.541	1.00 47.67	T T	C
	MOTA	4689	CA	CA	C	1	8.112	6.415	3.761	1.00 33.86	C	0
	ATOM	4690	CA	CA	С	2	36.518	26.475	68.287	1.00 30.83		C
	MOTA	4691	CA	CA		3	48.458	24.377	90.635	1.00 30.83	C	C
25	ATOM	4692	CA	CA	С	4	44.635	23.829	91.244	1.00 32.15	C	C
	ATOM	4693	CA	CA	C	5	43.916	27.507	90.375	1.00 25.14	. C	C
	ATOM	4694	CA	CA	C	6	41.663	30.293	91.119		C	C
	ATOM	4695	CA	CA	C	7	29.812	29.126	89.307	1.00 31.82	C	C
	MOTA	4696	CA	CA	Č	8	37.684	33.223	91.461	1.00 52.40	C	C
30	ATOM	4697	CA	CA	С	9	50.866	20.912		1.00 43.18	C	C
	ATOM	4698		267		1	35.873		89.468	1.00 40.17	C	C
	ATOM	4699	02	267		1 .	35.030	7.021	10.051	1.00 13.34	I	С
	ATOM	4700	N4	267		1	35.755	7.274	10.906	1.00 12.12	I	0
	ATOM	4701		267		1	34.583	7.412	8.778	1.00 14.34	I	N
35	ATOM	4702		267		1		8.190	8.382	1.00 15.61	Ī	С
	ATOM	4703		267		1	34.631	8.529	6.895	1.00 13.61	I	С
	ATOM	4704	(9	267		1	35.845	9.376	6.522	1.00 13.67	I	С
	ATOM	4705	01	267		1	33.296	7.419	8.715	1.00 14.50	I	С
	MOTA	4706	N3	267		1	33.219	6.200	8.578	1.00 14.69	I	0
40	ATOM	4707	C8	267		1	32.293	8.206	9.171	1.00 12.44	I	N
	MOTA	4708	C6	267		1	31.028	7.571	9.430	1.00 10.00	Ι.	C
	ATOM	4709	C7	267		1	31.561	6.344		1.00 10.55	I	С
	ATOM	4710	C2	267		1	31.365	6.163	12.955	1.00 12.08	I	С
	ATOM	4711	C3	267			30.416	6.941	13.646	1.00 12.47	I	С
45	ATOM	4712	C4			1	29.621	7.867	12.916	1.00 12.14	I	С
10	MOTA	4712	C5	267		1	29.820	8.053	11.556	1.00 10.96	1	C
	ATOM	4714	C1	267		1	30.798	7.306	10.882	1.00 12.08	I	С
	ATOM	4715		267		1	30.241	6.805	15.109	1.00 12.72	I	C
	ATOM			.267			30.857	5.861	15.820	1.00 11.13	I	N
50		4716		267		1	35.718	9.758	5.051	1.00 12.95	I	С
<i>3</i> 0	A T O M	4717		267		1	35.473	8.916	4.192	1.00 17.02	I	0
	ATOM	4718		267		1		11.064	4.801	1.00 14.07	I	N
	ATOM	4719		267		1	38.333		10.843	1.00 14.85	I	С
	ATOM ATOM	4720		267		1	36.894		11.391	1.00 13.27	- I	N
55	MOTA	4721	C12			1	37.171			1.00 15.61	1	С
JJ	ATOM	4722	\$1	267	1	1	36.148	3.708	10.947	1.00 18.24	I	S

•	ATOM		3 04	267	I 1	36.273	3 2.919	12.112	1.00 17.08	I	0
	ATOM	4724		267		36.874	3.315			I	
	MOTA	4725	5 C25	267	I 1	34.41]				I	0
_	ATOM	4726	6 C26	267	I 1	33.721					C
5	ATOM	4727	7 N2	267	I 1	29.433				. I	C
	ATOM	4728	06	267	I 1	32.719				I	N
	ATOM	4729	07	267		34.205			0.00 16.69	I	0
	ATOM	4730	C21	267		41.910				I	0
	ATOM	4731		267		42.331			0.00 15.00	I	С
10	ATOM	4732		267		41.530			0.06 14.96	I	С
	ATOM	4733		267		40.239			0.00 14.93	I	С
	ATOM	4734		267		39.817			0.00 14.96	. I	С
	ATOM	4735		267					0.00 14.96	I	С
	ATOM	4736		267		40.627	_	_	0.00 14.99	I	С
15	ATOM	4737		267	_	41.683		10.332	0.00 14.91	I	N
	MOTA	4738				40.585		9.888	0.00 14.90	I	С
	MOTA	4739		267		39.655	_	10.924	0.00 15.02	I	С
	MOTA			WAT		9.820		12.743	1.00 14.47	W	0
	ATOM	4740		WAT		21.093	10.398	10.275	1.00 7.31	¥	0
20		4741		WAT		32.300	19.309	24.267	1.00 9.92	W	0
20	ATOM	4742		WAT		24.662	17.645	24.602	1.00 12.63	W	0
	ATOM	4743		WAT		10.321	9.426	13.052	1.00 13.81	W	0
	ATOM	4744		WAT		12.733	19.635	-6.440	1.00 7.53	¥	0
	MOTA	4745		WAT		33.048	14.954	0.011	1.00 12.00	W	ō
25	MOTA	4746		WAT		27.807	23.167	18.401	1.00 6.67	W	0
20	MOTA	4747		WAT		29.296	10.590	15.340	1.00 10.47	W	0
	ATOM	4748		WAT		6.543	11.732	8.949	1.00 8.19	W	0
	ATOM	4749		WAT		34.705	16.831	33.297	1.00 18.07	W	0
	MOTA	4750		WAT		27.522	23.545	21.120	1.00 12.95	₩	0
0.0	ATOM	4751		WAT N		41.017	11.884	9.347	1.00 16.81	₩	0
30	ATOM	4752	0H2	WAT W	1 14	29.276	13.613	29.743	1.00 19.27	₩	0
	MOTA	4753		WAT W		40.567	16.246	35.000	1.00 18.02	W	0
	ATOM	4754	0H2	WAT W	16	25.516	15.164	23.686	1.00 10.81	W	0
	ATOM	4755	0H2	WAT W	17	41.029	15.604	9.020	1.00 16.62	¥	0
o =	ATOM	4756	0H2	WAT W	18	8.271	20.932	21.125	1.00 20.96	7	0
35	ATOM	4757	0H2	WAT W	19	34.181	16.292	63.608	1.00 25.92	H H	0
	ATOM	4758	0H2	WAT W	20	34.774	18.566	11.988	1.00 9.54	W	
	ATOM	4759	0112	WAT W	21	14.232	27.939	10.813	1.00 20.22	W	0
	MOTA	4760	0H2	WAT W	22	25.655	24.820	17.299	1.00 8.83	₩	0
	ATOM	4761	0H2	WAT W	23	33.138	16.360	29.823	1.00 14.28	₩	0 0
40	ATOM	4762	0H2	WAT W	24	7.284	23.996	14.905	1.00 15.88		·
	ATOM	4763	0H2	WAT W	25	22.950	17.820	10.222	1.00 11.07	W	0
	A T O M	4764		WAT W	26	6.303	9.578	6.184	1.00 13.56	V	0
	ATOM	4765	0H2	WAT W	27	20.934	2.177	72.570	1.00 20.66	W	0
	ATOM	4766		W TAW	28 ·	5.602	17.093	14.953		¥	0
45	MOTA	4767		WAT W	29	25.530	19.981		1.00 13.98 1.00 11.61	#	0
	MOTA	4768		WAT W	30	36.724	8.439			¥	0
	ATOM	4769	0H2 Y		31	5.701	26.405		1.00 16.21	¥	0
	ATOM	4770	0H2 F		32		19.147	4.405 -1.275	1.00 23.01	77	0
	ATOM	4771	0H2 P		33				1.00 25.93	W	0
50	ATOM	4772	0H2 W		34				1.00 12.95	₩	0
	ATOM	4773	0H2 W		35				1.00 20.89	¥	0
	ATOM	4774	0H2 N		36				1.00 12.31	₩	0
	ATOM	4775	0H2 W		37				1.00 12.95	₩	0
	ATOM		0H2 W		38				1.00 11.97	W	0
55	ATOM		0H2 W		39				1.00 7.27	¥	0
		•	II	11	39	28.905	6.346	21.635	1.00 15.10	77	0

								•				
	MOTA	4778	3 OH2	S WA	TW	40	19.368	3.656	6 12.781	1.00 8.09	₩	0
	ATOM	4779		2 WAS			29.48	L 7.328	6.028		₩	0
	ATOM	4780		Z WA'		42	31.853	30.028	3 11.019		W	0
_	ATOM	4781		Z WA:		43	30.815	5 5.845			₩	0
5	ATOM	4782		2 WAT		44	7.816	13.593	3 10.596		₩	0
	ATOM	4783		RAW S		45	20.264	8.396	8.487		 W	0
	MOTA	4784	0 H 2	RAT	r W	46	12.987	12.795	6.319		 W	0
	ATOM	4785		CAW S		47	23.619	18.649	37.291		₩	0
	MOTA	4786	0 H 2	WAT	W	48	18.254				 W	0
10	MOTA	4787	0 H 2	WAI	W	49	25.729	5.521	54.904		₩	0
	ATOM	4788		WAT		50	33.846	31.445	49.694		₩	0
	ATOM	4789	0 H 2	WAT	₩.	51	1.203	22.687	6.517		₩	0
	MOTA	4790	0H2	WAT	, A	52	18.931	1.545	17.773		 R/	0
	ATOM	4791	0H2	WAT	W	53	39.260				₩	0
15	ATOM	4792	0H2	WAT	₩	54	11.858	29.857	13.454	1.00 17.79	₩	0
	ATOM	4793	0H2	WAT	W	55	39.076	22.410		1.00 9.18	₩	0
	ATOM	4794	0H2	WAT	W	56	26.485			1.00 19.67	w	0
	ATOM	4795	0H2	WAT	W	57	37.050	20.790		1.00 15.14	7	0
0.0	ATOM	4796	0H2	WAT	₩	58	27.797	26.672		1.00 28.03	₩	0
20	ATOM	4797	0H2	WAT	W	59	18.324	13.670	16.592	1.00 14.91	 ¥	0
	ATOM	4798	0H2	WAT	W	60	17.408	28.124	11.960	1.00 22.12	 ¥	0
	ATOM	4799	0H2	WAT	W	61	30.927	20.411	26.562	1.00 11.62	 W	0
	ATOM	4800	0H2	WAT	W	62	9.546	29.554	23.251	1.00 25.92	 W	0
	ATOM	4801	0H2	WAT	¥	63	19.679	15.880	80.100	1.00 32.98	₩	0
25	MOTA	4802	0H2	WAT	₩	64	32.325	25.087	22.495	1.00 35.63	 W	0
	MOTA	4803	0H2	WAT	₩	65	30.276	24.296	21.082	1.00 13.13	 W	0
	ATOM	4804	0H2	WAT	W	66	13.503	-0.011	12.178	1.00 16.78	₩	0
	MOTA	4805	0H2	WAT	Ħ	67	32.301	3.759	18.886	1.00 15.31	17	0
	ATOM	4806	0H2	WAT	W	68	17.841	15.087	24.535	1.00 17.04	₩	0
30	ATOM	4807	0H2	WAT	¥	69	32.212	-1.864	17.231	1.00 33.57	₩	0
	MOTA	4808	0H2	WAT	₩.	70	31.942	25.422	24.949	1.00 14.32	₩	0
	MOTA	4809	0H2	TAW	₩	71	41.741	24.676	35.656	1.00 25.77	₩	0
	MOTA	4810	0H2	WAT	₩	72	7.065	7.005	6.381	1.00 22.12	₩	0
	ATOM	4811	0H2	WAT	W	73	30.082	19.209	75.060	1.00 21.78	 W	0
35	ATOM	4812	0H2	WAT	W	74	4.031	12.254	-0.177	1.00 19.44	₩	0
	ATOM	4813	0H2	WAT	W	75	35.845	17.333	53.696	1.00 21.03	W	0
	ATOM	4814	0H2	WAT	W	76	36.526	20.255	76.854	1.00 17.50	₩	0
	ATOM	4815	0 H 2	WAT	W	77	31.251	2.379	23.047	1.00 17.45	W	0
	ATOM	4816	0H2	WAT	W	78	21.143	15.514	65.628	1.00 35.20	₩	0
40	ATOM	4817	0H2	WAT	¥	79	25.623	18.283	68.925	1.00 23.69	W	0
	MOTA	4818	0 H 2	WAT	W	80	31.465	30.948	-2.078	1.00 41.37	7	0
	ATOM	4819	0 H 2			81	24.891	29.425	38.535	1.00 32.19	 W	0
	ATOM	4820	0H2			82	26.966	27.373		1.00 31.18	₩	0
	ATOM	4821	0H2	T A W	₩	83	29.620	34.079	-0.291	1.00 38.61	W	0
45	ATOM	4822	0 112			84	33.991	16.748	-1.768	1.00 21.41	W	0
	ATOM	4823	0H2 Y	WAT	¥	85	36.100	19.081	-1.640	1.00 18.06	₩	0
	ATOM	4824	0H2 Y	WAT	₩	86	37.135	37.881	40.383	1.00 20.11	₩	0
	ATOM	4825	0H2 W			87	11.337		8.469	1.00 15.10	W	0
~ ^	ATOM	4826	0H2 7	TAR	N .	88	38.668	19.971		1.00 15.24	19	0
50	MOTA	4827	0H2 P			89	34.405	15.814	12.156	1.00 10.82	₩	0
	ATOM	4828	0 H 2	TAY	¥	90	27.246	34.729	18.461	1.00 22.71	₩	0
	ATOM	4829	0H2 W	AT P	V	91	27.552			1.00 13.91	 W	0
	ATOM	4830	0H2 W			92	18.593		27.671	1.00 20.14	₩	0
	ATOM	4831	0H2 W			93	36.799		73.777	1.00 30.67	 W	0
55	MOTA	4832	OH2 W	AT R	7	94	9.790	29.242	2.101	1.00 22.36	₩	0

	ATOM		3 OH2 WA	T W 95	24.239	29.55	1 51.184	1.00 26.73	W	•
	ATOM	483	4 OH2 WA	T ₩ 96	29.03	29.710				0
	ATOM	483	5 OH2 WA	T W 97	34.661				₩ R	0
	ATOM	483	6 OH2 WA	T W 98	21.314				77	0
5	ATOM	483			30.880				W	0
	ATOM	483		T W 100	28.850				W	0
	ATOM	4839		T W 101	42.030				W	0
	ATOM	4840		T W 102				1.00 26.15	W	0
	ATOM	484			3.956		_	1.00 27.96	W	0
10	ATOM	4842			16.051		_	1.00 14.41	₩	0
	ATOM	4843			27.365		· -	1.00 38.96	W	0
	ATOM	4844			17.747		_	1.00 23.60	W	0
	ATOM				37.627			1.00 24.96	W	0
		4845			24.719			1.00 32.55	W	0
15	ATOM	4846			17.686	33.626	13.933	1.00 20.39	₩	0
15	ATOM	4847			-0.184	23.823	13.296	1.00 46.49	W	0
	ATOM	4848	· · · · · · ·		15.373	35.019	25.333	1.00 21.46	₩	0
	ATOM	4849			30.768	14.093	34.177	1.00 33.90	₩	0
	ATOM	4850	OH2 WAT	W 112	25.218	27.843	34.700	1.00 33.99	₩	0
0.0	MOTA	4851	OH2 WAT	W 113	7.403	26.902	1.736	1.00 32.04		
20	ATOM	4852	OH2 WAT	W 114	20.038	32.869	15.272	1.00 23.28	₩	0
	ATOM	4853	OH2 WAT	W 115	15.360	28.092	24.066	1.00 16.94	₩	0
	ATOM	4854			19.926	37.657	60.577		W	0
	ATOM	4855			32.502	22.719	25.889	1.00 40.46	₩	0
	ATOM	4856	OH2 WAT		30.616	31.722		1.00 19.53	W	0
25	ATOM	4857	OH2 WAT		26.479	8.176	4.387	1.00 18.60	77	0
	ATOM	4858	OH2 WAT		22.372		55.645	1.00 36.63	W	0
	MOTA	4859	OH2 WAT			22.465	40.919	1.00 40.52	W	0
	ATOM	4860	OH2 WAT		39.623	15.685	32.220	1.00 28.34	. W	0
	MOTA	4861	OH2 WAT		48.066	29.461	95.001	1.00 27.75	77	0
30	ATOM	4862			31.897	32.419	0.487	1.00 30.32	W	0
	ATOM	4863	OH2 WAT		20.734	-1.804	18.413	1.00 26.72	W	0
	ATOM		OH2 WAT		31.094	6.561	53.456	1.00 25.11	W	0
	ATOM	4864	OH2 WAT		45.312	37.218	40.612	1.00 33.55	W	0
		4865	OH2 WAT		1.538	17.016	8.474	1.00 19.86	W	0
35	ATOM	4866	OH2 WAT		29.731	9.406	-1.174	1.00 20.25	W	0
33	ATOM	4867	OH2 WAT		27.305	38.491	25.414	1.00 28.22	. 17	0
	ATOM	4868	OH2 WAT		28.077	29.238	30.743	1.00 23.73	W	0
	ATOM	4869	OH2 WAT		26.574	28.140	51.775	1.00 15.37	W	0
	MOTA	4870	OH2 WAT		19.946	5.062	76.332	1.00 36.71	W	0
4.0	ATOM	4871	OH2 WAT		10.627	12.756	10.004	1.00 22.21	W	0
40	ATOM	4872	OH2 WAT		11.190	-1.258	13.067	1.00 23.85	W	0
	MOTA	4873	OH2 WAT		3.651	9.620		1.00 29.13	 W	0
	ATOM	4874	OH2 WAT	₩ 136	24.584	34.295		1.00 23.76	 W	
	ATOM	4875	OH2 WAT	₩ 137	24.301	30.242		1.00 33.00	₩	0
	ATOM	4876	OH2 WAT	₩ 138	19.879	15.502		1.00 24.77	W	0
45	MOTA	4877	OH2 WAT					1.00 20.53		0
	MOTA	4878	OH2 WAT		15.743	41.487			¥	0
	ATOM	4879	OH2 WAT			22.703		1.00 25.39	₩	0
	ATOM	4880	OH2 WAT			24.131		1.00 41.76	₩	0
	ATOM	4881	OH2 WAT			25.294		1.00 24.16	W	0
50	ATOM	4882	OH2 WAT					1.00 36.17	¥	0
-	ATOM	4883	OH2 WAT			28.800		1.00 26.61	197	0
	ATOM	4884	OH2 WAT			_		1.00 34.12	W	0
	ATOM	4885	OH2 WAT			_		1.00 16.55	W	0
	ATOM	4886			25.461	_		1.00 31.87	₩	0
55	ATOM	4887	OH2 WAT		29.591			1.00 38.76	W	0
00	UH	±00/	OH2 WAT P	1 149	38.299	31.491	93.878	1.00 37.57	W	0

	ATOM	4888				₩ 150	16.33	8 23.326	5 29.568	1.00 28.12	W	0
	ATOM	4889		₩A			50.13	8 29.04	96.866	1.00 27.78	W	0
	ATOM	4890	0 H 2	W A	T	₩ 152	22.91	0 21.458	38.404		W	0
	MOTA	4891	0H2	. ₩A	T	W 153	21.56	3 31.334			₩	0
5	ATOM	4892	0H2	W A	T	₩ 154	47.34	5 32.238			17	
•	ATOM	4893	0H2			W 155	33.64					0
	ATOM	4894	0H2			W 156	21.86				₩	0
	ATOM	4895				W 157	31.60				¥	0
	ATOM	4896				W 158	22.47			•	₩	0
10	ATOM	4897				W 159					W	0
	ATOM	4898				W 160	8.57				W	0
	ATOM	4899					40.89			1.00 23.15	₩	0
	ATOM					W 161	29.00		-	1.00 30.48	W	0
		4900				W 162	22.507			1.00 33.53	Ħ	0
15	ATOM	4901				W 163	44.106			1.00 48.32	W	0
19	ATOM	4902				W 164	26.450			1.00 28.13	W	0
	ATOM	4903				W 165	4.723	30.331		1.00 44.11	W	0
	ATOM	4904				W 166	35.185	27.903	-4.961	1.00 27.15	₩	0
	ATOM	4905	0H2	WAI	1	W 167	18.473	10.311	-5.754	1.00 31.75	W	0
0.0	ATOM	4906				168	31.008	4.482	21.032	1.00 44.53	₩	0
20	ATOM	4907	0H2	WA7	7	V 169	38.894	15.944	48.372	1.00 38.35	¥	0
	ATOM	4908	0H2	WAI		170	34.331	25.697	20.938	1.00 21.61	W	0
	MOTA	4909	0H2	WAT	1	7 171	49.199	26.268	86.643	1.00 30.58	₩	0
	ATOM	4910	0H2	WAT	. 1	172	5.127	9.693		1.00 34.66	₩	0
	ATOM	4911	0H2	WAT	. 1	173	-0.373			1.00 34.97	W	0
25	ATOM	4912	0H2	WAT	. 1	174	16.470		3.800	1.00 32.29	7	0
	MOTA	4913				175	18.074			1.00 34.23	₩	0
	ATOM	4914				176	38.094			1.00 29.70		
	ATOM	4915				177	40.881			1.00 29.70	W	0
	ATOM	4916				178	33.053				. W	0
30	ATOM	4917				179	. 5.567		3.076	1.00 21.18	7	0
	ATOM	4918				180			-1.815	1.00 30.86	7	0
	ATOM	4919				181	31.429		46.073	1.00 34.20	₩	0
	ATOM	4920					11.917		8.565	1.00 16.99	₩	0
	ATOM	4921				182	36.688	10.228	42.234	1.00 32.93	₩	0
35						183	3.251	31.546	9.757	1.00 29.65	W	0
00	ATOM	4922				184	18.321	2.574	-0.484	1.00 32.80	¥	0
	ATOM	4923	0H2				5.637	5.762	14.955	1.00 32.54	W	0
	ATOM	4924	0H2				15.673	14.210	25.757	1.00 34.67	¥	0
	ATOM	4925				187	40.626	21.784	27.626	1.00 32.36	¥	0
40	ATOM	4926	0H2				42.987	22.261	89.602	1.00 27.87	₩	0
40	ATOM	4927	0H2				14.638	39.203	19.516	1.00 32.86	W	0
	ATOM	4928	0H2				11.036	30.934	11.072	1.00 31.17	W	0
	ATOM	4929	0H2				33.710	31.642	9.747	1.00 31.14	W	0
	MOTA	4930	0H2				20.870	6.918	26.506	1.00 33.93	₩	0
	ATOM	4931	0H2	WAT	W	193	28.954	1.020	74.566	1.00 34.78	¥	0
45	ATOM	4932	0H2	WAT	W	194	37.700	14.002	57.999	1.00 52.48	₩	0
	ATOM	4933	0 H2				2.310	11.077	13.236	1.00 36.20	₩	0
	ATOM	4934	0H2				29.084	-0.199	11.021	1.00 39.14	₩	0
	ATOM	4935	0H2				41.032	19.200	6.700	1.00 29.69	17 14	
	ATOM	4936	0H2				12.343	28.516	23.498	1.00 25.52	η W	0
50	ATOM	4937	0H2 1				28.735	31.233	43.028	1.00 25.52		0
	ATOM	4938	0H2 N				44.326	3.129	25.867	1.00 25.87	77	0
	ATOM	4939	0H2 N				28.603	7.431			W	0
	ATOM	4940	0H2 W						-2.611 56.602	1.00 30.58	W	0
•	ATOM	4941	0H2 F				33.156	26.217	56.692	1.00 26.48	¥	0
55	ATOM	4942	0H2 F				36.278	15.450	-4.311	1.00 26.09	₩	0
50	MUL	7,710	0112	1	n	204	38.154	8.018	19.062	1.00 37.43	₩	0

	ATOM	494	3 OH2 WAT W	205	9.837	28.610	10.272	1.00 31.67	₩	۸
	ATOM	494	4 OH2 WAT W	206	14.373	16.403			₩	0
	MOTA	494	5 OH2 WAT W	207	37.593					0
	MOTA	494			0.132				¥	0
5	ATOM	4941			25.144				¥	0
	ATOM	4948			7.440				¥	0
	ATOM	4949			7.530				¥	0
	ATOM	4950			21.589				₩	0
	ATOM	4951			42.227				¥	0
10	ATOM	4952			18.081				W	0
	ATOM	4953							₩	0
	ATOM	4954			28.604			1.00 35.94	₩	0
	ATOM	4955			21.979			1.00 45.57	₩	0
	ATOM	4956			37.628			1.00 35.13	₩	0
15	ATOM	4957			13.553		18.167	1.00 30.54	₩	0
	ATOM	4958			32.654		47.076	1.00 25.26	₩	0
	· ATOM	4959			-2.842		8.115	1.00 33.07	W	0
	ATOM.	4960			18.483	15.571	-7.984	1.00 30.86	W	0
	ATOM		-		3.270	25.714	5.665	1.00 26.54	₩	0
20	ATOM	4961			50.144	24.757	82.596	1.00 34.50	W	0
20		4962			26.242	11.203	31.526	1.00 30.44	W	0
	ATOM ATOM	4963			18.073	-1.159	18.149	1.00 34.58	W	0
		4964			47.321	29.376	85.710	1.00 34.51	W	0
	ATOM	4965			22.195	20.381	42.496	1.00 30.12	¥	0
25	ATOM	4966	OH2 WAT W 2		3.659	2.259	0.190	1.00 34.67	W	0
40	ATOM	4967	OH2 WAT W 2		40.557	0.237	20.769	1.00 28.72	W	0
	ATOM	4968	OH2 WAT W 2		21.900	26.386	53.079	1.00 26.13	W	0
	ATOM	4969	OH2 WAT W 2		7.647	31.085	26.330	1.00 35.78	W	0
	ATOM	4970	OH2 WAT W 2		13.007	21.995	27.742	1.00 38.60	¥	0
30	ATOM	4971	OH2 WAT W 2		45.245	0.872	24.555	1.00 46.33	₩	0
30	ATOM	4972	OH2 WAT W 2		18.696	16.785	50.319	1.00 37.87	W	0
	ATOM	4973	OH2 WAT W 2		31.471	4.379	68.498	1.00 43.22	W	0
	ATOM	4974	OH2 WAT W 2		44.018	19.076	33.450	1.00 32.66	W	0
	ATOM	4975	OH2 WAT W 2		23.071	24.930	30.360	1.00 23.93	W	0
35	ATOM	4976	OH2 WAT W 2		35.628	33.217	93.628	1.00 33.30	W	0
00	ATOM	4977	OH2 WAT W 2		35.847	25.095	70.900	1.00 44.01	W	0
	ATOM	4978	OH2 WAT W 2		22.701	20.328	82.692	1.00 39.98	W	0
	ATOM	4979	OH2 WAT W 2		7.838	12.303	-1.787	1.00 34.86	₩	0
	ATOM	4980	OH2 WAT W 2		28.268	21.326	68.248	1.00 31.86	W	0
40	ATOM	4981	OH2 WAT W 2		-0.770	24.146	8.061	1.00 34.90	¥	0
40	ATOM	4982	OH2 WAT W 2		38.119	6.075	7.064	1.00 31.06	W	0
	ATOM	4983	OH2 WAT W 2		23.502	28.608	54.003	1.00 28.10	₩	0
	ATOM	4984	OH2 WAT W 2		34.476	12.129	8.573	1.00 22.78	W	0
	ATOM	4985	OH2 WAT W 24		11.730	40.646	20.091	1.00 43.62	W	0
45	ATOM	4986	OH2 WAT W 24		20.358	23.090	67.179	1.00 43.07	W	0
45	ATOM	4987	OH2 WAT W 24			30.859	32.765	1.00 29.52	₩	0
	ATOM	4988	OH2 WAT W 25			29.300	13.451	1.00 24.97	₩	0
	ATOM	4989	OH2 WAT W 25		21.456	30.121	50.897	1.00 51.79	¥	0
	ATOM	4990	OH2 WAT W 25			11.736	55.327	1.00 41.69	W	0
50	ATOM	4991	OH2 WAT W 25			23.969	9.558	1.00 58.78	W	0
50	ATOM	4992	OH2 WAT W 25			27.469	47.916	1.00 33.81	W	0
	ATOM	4993	OH2 WAT W 25			39.746	60.424	1.00 51.82	W	0
	ATOM	4994	OH2 WAT W 25				23.225	1.00 47.38	₩ .	0
	ATOM	4995	OH2 WAT W 25				13.444	1.00 45.19	₩ .	0
55	ATOM	4996	OH2 WAT W 25				16.611	1.00 35.12	W	0
55	ATOM	4997	0H2 WAT W 25	9	30.634	7.333	46.566	1.00 64.60	₩	0

	MOTA	4998		2 WA1	r W	260	41.04	3 28.449	49.954	1.0	0 34.29	,	V	0
	MOTA	4999		2 WA7	r w	261	27.83	3 42.178	3 56.031	1.0	0 38.43	P		0
	ATOM	5000		2 WA1			36.007	7 23.861	20.102		0 26.54	P		0
_	ATOM	5001	. OH:			263	47.752	24.361	74.233	3 1.0	0 52.97	9		0
. 5	MOTA	5002	0 H:	2 WA1	T W	264	20.405	5 19°. 480	9.352		0 39.53	R		0
	MOTA	5003				265	27.553	31.025	88.317		0 52.14	 R		0
	MOTA	5004	0 H 2	2 WA1	W	266	27.439	6.871	2.671		0 33.49	7		0
	ATOM	5005	0 H 2	2 WAT	. M	267	28,522	39.164	45.564		0 34.68	 W		0
	ATOM	5006	0 H 2	TAW S	` #	268	43.870	22.301			0 40.78	 W		0
10	ATOM	5007	0 H 2	TAW S	₩	269	35.079	36.340	52.168		0 44.82	₩		0
	MOTA	5008	0H2	TAW S	W	270	23.451				0 27.05	79		0
	ATOM	5009	0H2	TAW S	W	271	30.957	22.554			0 42.91	. 1		0
	ATOM	5010	0 H 2	TAW	Ħ	272	38.744				0 40.95	₩		0
	ATOM	5011	0 H 2	TAW	₩	273	13.936				0 41.06	₩		0
15	MOTA	5012	0 H 2	WAT	W	274	23.419				0 59.87	₩		0
	MOTA	5013	0 H 2	WAT	W	275	21.017				0 50.07	, W		0
	ATOM	5014	0H2	WAT	W	276	21.549	22.757			0 45.15	77		0
	ATOM	5015	0H2	WAT	₩	277	37.355				0 34.74	₩		0
	ATOM	5016	0 H 2	WAT	W	278	2.783		15.169		0 48.05	97		0
20	ATOM	5017	0 H 2	TAW	₩	279	32.292		41.347		0 45.51	¥		0
	MOTA	5018	0 H 2	WAT	W	280	24.285		48.241		36.55	₩		0
	MOTA	5019	0H2	WAT	W	281	9.135		-0.985		36.77	₩		0
	ATOM	5020	0H2	WAT	W	282	9.648	4.536	20.435		35.26	7		0
	ATOM	5021	0H2	WAT	¥	283	37.143	14.114	86.099		40.95	7		0
25	ATOM	5022	0H2				9.020	35.287	33.571		41.52	7		0
	ATOM	5023	0H2	WAT	W	285	-1.612	10.514	3.421		51.78	W		
	ATOM	5024	0 H 2				42.982	17.337	41.377		38.67			0
	ATOM	5025	0 H 2				34.957	31.854	45.389		25.75	₩		0
	ATOM	5026	0 H2				3.170	28.704	16.548		47.39	₩		0
30	ATOM	5027	0 H2				4.236	26.437	18.194		40.60	₩		0
	ATOM	5028	0H2	WAT			11.780	0.909	19.173		31.13	₩		0
	ATOM	5029	0H2	WAT			35.076	18.990	60.316		38.09	7		0
	MOTA	5030	0H2	WAT			-0.662	15.295	21.926		52.48	77		0.
	ATOM	5031	0 H2	WAT			42.355	22.441	69.467		43.05	₩		0
35	ATOM	5032	0 H2	WAT			36.115	8.550	0.838		34.86	W		0
	ATOM	5033	0H2	WAT			5.539	38.578	29.277		41.01	W		0
	ATOM	5034		WAT			-0.774	16.342	12.374		44.15	W		0
	ATOM	5035		WAT			20.248	19.074	34.881		32.08	E1		0
	ATOM	5036		WAT			22.485	11.810	37.890		40.55	77		0
40	ATOM	5037		WAT			42.707	16.687	11.459			W		0
	MOTA	5038		WAT			40.839	15.634	41.011		42.38 38.21	₩		0
	ATOM	5039		WAT			20.094	24.068	71.878			77		0
	ATOM	5040		WAT			31.865	-0.414	10.192		70.09	₩		0
	ATOM	5041		WAT			20.743	26.537	50.189		41.10	₩		0
45	MOTA	5042		WAT			44.143	13.662	12.378		45.73	W		0
	MOTA	5043		WAT			40.498	25.176	54.332		40.41	V		0 .
	MOTA	5044		WAT			35.746	6.890	18.386		46.48	¥		0
	ATOM	5045		WAT			14.855	41.757	31.970		32.88	W		0
	MOTA	5046		WAT			18.143	-0.909			44.75	W	(
50	ATOM	5047		WAT			27.593	7.517	20.903		45.80	₩	(
- •	MOTA	5048		WAT					-5.357		51.75	₩	(
	ATOM	5049		WAT			29.441 33.031	20.038 8.376	-9.566 2.020		48.48	₩	0	
	MOTA	5050		WAT			28.826	12.995			37.72	FV	0	
	MOTA	5051	0H2								28.46	W	0	
55	MOTA	5052	0H2				19.453	26.455			49.37	₩	0	
				A T		-7	32.900	12.710	60.296	1.00	43.04	₩	0	j

	ATOM	5053	3 O H	12 W	A T	W 315	35	.171	34.0	93 47.16	6 1.0	0 46.97	,	W	0
	ATOM	5054	01	12 W	T	₩ 316	42	. 577	27.0	86 48.23		0 40.03		W	0
	ATOM	5055				₩ 317	8	.900	30.3			0 36.15		W	0
_	MOTA	5056				₩ 318	30	.817	33.98	85 69.07		0 46.39		₩	0
5	ATOM	5057	0 H	2 1/	T	₩ 319	19	. 929	3.2	44 55.86		0 64.48		₩	0
	ATOM	5058	ОН	2 W A	T	₩ 320	23	.376	1.98			0 39.58		17	0
	ATOM	5059	0 H	2 W A	T	₩ 321	40	.437	5.73			0 39.03		W	
	MOTA	5060	0 H	2 WA	T	₩ 322		.640	35.99			0 42.42		n ₩	0 0
	ATOM	5061	0 H	2 WA	T	W 323		.153	42.34			0 34.97		71 14	0
10	ATOM	5062				₩ 324		. 436	19.67			57.86		W	0
	ATOM	5063	0 H	2 WA	T	₩ 325	4	918	16.94			0 10.46		W	0
	ATOM	5064	0 H	2 WA	T	W 326	18	. 390	21.27			31.50		W	0
	ATOM	5065	0 H	2 W A	T	₩ 327	1	490	16.46			20.84		₩	0
	ATOM	5066	0 H	2 W A	T	₩ 328	2.	997	16.77			19.39		W	0
15	ATOM	5067	0 H	2 WA	T	W 329	6.	139	1.05			48.96		₩	0
	ATOM	5068	0 H	2 WA	T	W 330	35.	510	12.68			31.05		W	
•	ATOM	5069	0 H	2 WA	T	W 331	27.	536	5.61			54.07		₩	0
	ATOM	5070	0 H	2 W A	T	7 332		643	19.82			59.51		W	0
	ATOM	5071				333		184	30.07	=		46.29		W	0
20	MOTA	5072				334		305	28.91			37.09			0
	ATOM	5073				335		970	0.90			48.94		17 191	0
	ATOM	5074				336		603	21.45			46.05		W	0
	ATOM	5075				337		589	37.35			50.70		W	0
	MOTA	5076				338		211	15.27			45.46		₩	0
25	MOTA	5077				339		566	4.77			38.08		W	0
	ATOM	5078				340		583		8 -12.370		38.31		A	0
	MOTA	5079				341		377	15.44			42.95		₩	0
	MOTA	5080				342		584	22.71					₩	0
	ATOM	5081				343	37.		-1.80			50.39		₩	0
30	ATOM	5082				344	19.		0.63			43.11		₩	0
	ATOM	5083				345	20.		23.50			42.68		₩	0
	ATOM	5084				346		215	28.84			41.44		₩	0
	ATOM	5085				347	-1.		17.43			27.51		W	0
	ATOM	5086				348	37.		11.90			44.39 31.25		W	0
35	MOTA	5087	0 H 2			349	21.		34.57					W	0
	ATOM	5088				350	19.		24.919			39.86		W	0
	ATOM	5089				351	34.		35.726			51.89 60.97		7	0
	MOTA	5090	0H2			352	37.		17.622			43.91		₩	0
	ATOM	5091	0 H 2			353	29.3		35.815					W	0
40	MOTA	5092	0H2			354	34.0		37.937			31.53		₩	0
	ATOM	5093				355			-1.487			49.21		₩	0
	ATOM	5094				356	45.8		16.661			45.52		W	0
	MOTA	5095				357	46.6		36.386			51.76		W	0
	ATOM	5096				358	25.3		25.538			43.63		77	0
45	ATOM	5097				359			5.802			38.77		W	0
	ATOM	5098				360	33.3		12.245					W.	0
	ATOM	5099				361	13.4		36.615			38.52		7 	0
	ATOM	5100	0 H 2				29.0		14.217			60.27		X	0
	ATOM	5101	0H2				43.7					43.15			0
50	ATOM	5102	0H2				24.5		18.992 4.764			43.98	7		0
-	ATOM	5103	0H2				43.2		4.764 13.919			50.16	Ä		0
	ATOM	5104	0H2				10.2					58.10	9		0
	ATOM	5105	0H2				17.4		33.407			50.53	7		0
-	ATOM	5106	0H2				28.5		19.604		1.00		7		0
55	ATOM	5107	0H2						31.651			58.48	*		0
			٠.,٠	11 1	11	503	39.9	12	9.085	8.229	1.00	51.34	Ħ	1	0

	MOTA	5108	ΛUC) 117 A	T 10	370	00 01-					
	ATOM	5100	0 H 2				37.715	6.403	1.728	1.00 49.76	W	0
	ATOM	5110	0 H 2				45.177	11.389	17.053	1.00 38.62	W	0
	MOTA					372	-1.495	16.407	5.919	1.00 24.58	¥	0
5		5111	0 H 2			373	17.928	10.777	-8.990	1.00 48.78	W	0
U	ATOM	5112	0 H 2			374	49.671	41.399	35.418	1.00 39.49	W	0
	ATOM	5113	0 H 2				-2.896	22.960	9.444	1.00 64.43	A	0
	ATOM	5114	0 H 2				44.242	20.119	13.114	1.00 43.91	W	0
	ATOM	5115	0 H 2			377	45.998	27.498	65.911	1.00 52.62	W	0
10	ATOM	5116		WAT			54.712	25.922	87.283	1.00 44.48	W	0
10	ATOM	5117		WAT			9.336	21.221	24.256	1.00 39.28	W	0
	ATOM	5118	0H2				5.711	10.622	25.188	1.00 45.01	W	0
	ATOM	5119				381	22.065	36.408	12.747	1.00 59.06	W	0
	ATOM	5120		WAT			16.957	10.821	43.808	1.00 40.75	W	0
	ATOM	5121				383	39.595	1.633	12.436	1.00 49.31	W	0
15	ATOM	5122				384	11.084	30.834	0.209	1.00 39.09	₩	0
	ATOM	5123		WAT			16.720	27.264	-4.002	1.00 41.06	7	0
	ATOM	5124				386	31.056	0.281	79.010	1.00 38.99	w	0
	ATOM	5125	0H2	WAT	₩	387	19.887	9.930	45.039	1.00 49.86	W	0
	ATOM	5126	0H2	WAT	W	388	36.655	37.162	45.509	1.00 47.87	W	0
20	ATOM	5127	0H2	WAT	W	389	27.630	7.903	30.948	1.00 41.08	W	0
	MOTA	5128		WAT		390	22.128	23.087	-9.666	1.00 41.60	W	0
	ATOM	5129	0H2	WAT	W	391	16.596	34.405	7.509	1.00 52.09	W	0
	ATOM	5130	0H2	WAT	W	392	18.187	37.051	16.426	1.00 58.25	W	0
	ATOM	5131	0H2	WAT	W	393	20.557	35.471	15.670	1.00 30.35	7	Ō
25	ATOM	5132	0H2	WAT	W	394	38.852	10.942	68.815	1.00 56.37	W	0
	ATOM	5133	0H2	WAT	W	395	14.789	20.103	63.603	1.00 69.08	W	0
	ATOM	5134	0H2	WAT	W	396	35.781	9.917	61.122	1.00 45.92	₩	ō
	ATOM	5135	0H2	WAT	W	397	32.425	7.986	44.362	1.00 50.04	¥	0
	ATOM	5136	0H2	WAT	¥	398	39.173	29.239	58.940	1.00 46.65	¥	0
30	MOTA	5137	0H2	WAT	W	399	33.925	28.356	71.709	1.00 46.27	¥	0
	MOTA	5138	0H2	WAT	¥	400	26.195	11.085	39.837	1.00 37.48	19	0
	ATOM	5139	0H2	WAT	¥	401	40.425	2.450	9.983	1.00 44.75	77	0
	MOTA	5140	0H2	WAT	W	402	28.452	-1.394	7.667	1.00 56.86	W	0
	ATOM	5141	0H2	WAT	₩	403	22.460	2.393	0.537	1.00 46.38	7	0
35	ATOM	5142	0H2	WAT		404	20.613	0.672	-0.814	1.00 61.12	7	0
	END										н	Ü

表37 化合物(2)とヒトVIIa因子/可溶型組織因子との複合体の座標(阻害剤付近)

5	CRYSTI	71	. 280	8	2.:	320	123.	. 380 90.	0.0	90 00	90 00	P2121	9.1			
	ATOM	1			E I			22.05		3.893	14.020				**	
	ATOM	2	CA		E			21.95		4.124	15.491	1.00			H	N
	ATOM	3	С	ΙL	E I			22.00		2.782	16.220				H	C
	ATOM	4	0		E F			21.209		1.883	15.942	1.00			H	C
10	ATOM	5	CB		E F			20.628		4.834	15.856	1.00			H	0
	ATOM	6	CG	1 IL				20.51		6.174	15.119	1.00			H	C
	ATOM	7		2 IL				20.545		5.036	17.365	1.00			H	C
	MOTA	8		1 IL				21.554		7.217	15.521	1.00			H	C
	ATOM	9			LH			22.947		2.646	17.144	1.00			H	C
15	ATOM	10	CA		LH			23.087		1.417	17. 916	1.00			H	N
	ATOM	11	С		LH			22.570		1.634	19.338	1.00			H	C
	ATOM	12	0		LH			23.002		2.553	20.026		9.85 10.72		H	C
	ATOM	13	СВ		LH			24.566		0.964	18.008	1.00			H	0
	MOTA	14	CG	VA				24.659		0.327	18.813		10.27		H	C
20	ATOM	15		2 VAI				25.148		0.754	16.613	1.00			H	C
	ATOM	16	N		U H			22.072		7.406	1.097		9.47 11.66		H	C
	ATOM	17	CA	LEI				23.440		7.899	1.213		11.08		H	N
	ATOM	18	С	LEU				23.808		8.36 6	2.624		10.34		H	C
	ATOM	19	0	LEU				24.765		7.871	3. 224		10.54		H	C
25	ATOM	20	CB	LEU				23.657		9.058	0.226		10.87		H H	0
	ATOM	21	CG	LEU				25.000		9.801	0.273		11.44			C
	MOTA	22	CD1	LEU		41		26.115			-0.221		11.44		H H	C
	ATOM	23		LEU		41	•	24.921			-0.582		11.04		n. H	C
	ATOM	24	N	CYS		42		23.032		3.307	3.153	1.00	8.47		n H	C.
30	ATOM	25	CA	CYS	Н	42		23.314		9.885	4.457	1.00	6.60		H H	N C
	ATOM	26	C	CYS	H	42		22.102). 577	5.061	1.00	6.35		H.	C
	ATOM	27	0	CYS	Н	42		21.038		0.660	4.448	1.00	8.58		n H	0
	ATOM	28	CB	CYS	Н	42		24.421		935	4.309	1.00	6.00		i	C
	ATOM	29	SG	CYS	Н	42		26.138		338	4.348	1.00	7.26		ł	S
35	ATOM	30	N	GLY	H	43		22.291		. 087	6.272	1.00	4.57	I		N
	ATOM	31	CA	GLY	H	43		21.248		. 827	6.949	1.00	3.67	F		C
	ATOM	32	C	GLY	H	43		21.549		. 308	6.764	1.00	3.89	ŀ		С
	ATOM	33	0	GLY	H	43		22.525		. 686	6.104	1.00	3.28	ŀ		0
	ATOM	34	N	ALA	H	55		26.992	16	. 158	6.411	1.00	5.39	F		N
40	ATOM	35	CA	ALA	H	55		28.424		. 958	6.611	1.00	5.45	H		C
	ATOM	36	C	ALA	H	55		29.160	15	. 980	5.277	1.00	6.95	H		C
	ATOM	37	0	ALA	H	55		28.674		. 441	4.279	1.00	6.34	H		0
	ATOM	38	CB	ALA	H	55		28.681	14	. 624	7.326		4.19	H		C
	ATOM	39	N	ALA	Н	56		30.333		. 606	5.265	1.00	6.14	Н		Ņ
4 5	ATOM	40	CA	${\tt ALA}$	H	56		31.142		. 694	4.053	1.00	7.74	Н		C
	ATOM	41	С	${\tt ALA}$	H	56		31.552		. 332	3.488	1.00	6.96	H		C
	ATOM	42	0	ALA		56		31.487		118	2.276	1.00	8.41	Н		0
	ATOM	43	CB	ALA		56		32.399		. 532	4.319	1.00	6.48	H		C
- ^	ATOM	44	N	HIS		57		31.971		. 412	4.355	1.00	5.95			N
50	ATOM	45		HIS		57		32.419		. 103	3.889	1.00	6.77	H		C
	ATOM·	46	С	HIS	H	57		31.358				1.00	8.28	H		C

	ATOM	4.7			SH			31.685		2.476	1.00	8.26		H	0
	ATOM	48			SH			33.021				5.22		H	С
	ATOM	49			SH			32.022		5.846	1.00	4.67		H	C
_	ATOM	50		1 HI				31.558	11.936	7.074	1.00	2.15		H	N
5	ATOM	5 1		2 H I				31.432	10.314	5.613	1.00	3.66		H	C
	ATOM	5 2		I H I				30.730	11.032	7.564	1.00	2.30		H	C
	ATOM	53		2 HI				30.636	10.038	6.698	1.00	3.94		H	N
	ATOM	54			SH			30.096	12.686	3.267	1.00	7.28		H	N
	ATOM	55			S H			+29.008	11.999	2.584	1.00	8.91		H	C
10	MOTA	56	С		S H			29.128	12.140	1.069	1.00			H	C
	MOTA	57	0		S H			28.496	11.407	0.317	1.00	7.76		H	0
	ATOM	58	CB	CY	SH	58		27.660	12.578	3.035	1.00	7.86		H	Č
	ATOM	59	SG	CY	SH	58		27.176	12.043	4.706	1.00	6.38		H	S
	ATOM	60	N	PH	ЕН	59		29.962	13.074	0.628	1.00			H	N
15	ATOM	61	CA	PHI	E H	59		30.114	13.347	-0.790	1.00	9.91		H	C
	ATOM	62	С	PHI	E H	59		31.481	12.971	-1.364	1.00	9.71		H	C
	ATOM	63	0	PHI	E H	59		31.804	13.337	-2.496	1.00	8.14		H	0
	ATOM	64	CB	PHI	E H	59		29.804	14.832	-1.020	1.00	9.77		H	C
	ATOM	65	CG	PHI	ЕН	59		28.484	15.267	-0.422		10.32		Ī	c
20	ATOM	66	CD1	PHE	ΞН	59		27.287	15.011	-1.083		7.39	ŀ		C
	ATOM	67	CD2	PHE	Н	59		28.436	15.845	0.846		11.05		I	c
	ATOM	68	CEI	PHE	Н	59		26.061	15.314	-0.493	1.00	9.49	F		C
	ATOM	69	CE2	PHE	Н	59		27.214	16.151	1.447		11.89	Ē		C
	ATOM	70	CZ	PHE	Н	59		26.023	15.884	0.776		10.25	H		C
25	ATOM	71	N	ASF	Н	60		32.273	12.230	-0.591	1.00	8.71	. E		N
	ATOM	72	CA	ASF	H	60		33.596	11.796	-1.041		11.41	· .		C
	ATOM	73	С	ASP		60		33.570	11.036	-2.370		13.85	E		C
	ATOM	74	0	ASP		60		34.394	11.286	-3.250		13.33	H		0
	ATOM	75	CB	ASP		60		34.255	10.904	0.016	1.00	9.72	H		C
30	ATOM	76	CG	ASP		60	•	34.855	11.694	1.157		10.46	Н		C
	ATOM	77		ASP		60		34.672	12.930	1.191	1.00	8.35	H		0
	ATOM	78		ASP		60		35.514	11.074	2.020	1.00	9.24	Н		0
	MOTA	79	N			60A		32.634	10.105	-2.522		15.64	Н		N
	ATOM	80	CA			60A		32.579	9.330	-3.755		19.34	H		C
35	ATOM	81	С			60A		31.407	9.614	-4.690		19.44	Н		C
	MOTA	82	0			60A		30.971	8.728	-5.420		19.48	H		0
	ATOM	83	СВ			60A		32.624	7.830	-3.441		21.25	H		C
	ATOM	84	CG			60A		34.024	7.315	-3.136	1.00		H		C
	ATOM	85	CD	LYS				34.292	7.216	-1.650			H		C
40	ATOM	86	CE	LYS				33.594	6.006	-1.041			H		C
	ATOM	87		LYS				33.915	5.848	0.412	1.00		Н		
	ATOM	88	N	ILE		90		30.977	22.763	0.695	1.00	7.99	Н		N N
	ATOM	89		ILE		90		31.915	22.141	1.623	1.00	7.65	H		C
•	ATOM	90		ILE		90		33.092	23.074	1.866	1.00	7. 29	Н		C
45	ATOM	91		ILE		90		33.544	23.761	0.953	1.00	9.45	H		
	ATOM	92		ILE		90		32.422	20.804	1.016	1.00	7.65	n H		0
	ATOM	93	CG1			90			19.767	1.061	1.00	8.19	H		C
	ATOM	94	CG2			90		33.667	20.313	1.732	1.00	8. 25			С
	ATOM	95	CD1			90			18.477	0.319	1.00		. н		C
50	ATOM	96		TYR		94		38.317	21.049	3.982			**		C
- 0	ATOM	97		TYR		94		37.972	19.637	4.148	1.00	8.73	H		N
	ATOM	98		TYR		94			18.785		1.00	7.55	H		C
	ATOM	99		TYR		94			19.138	3.130 1.959	1.00	7.26 6.40	Н.		C
	MOTA	100		TYR		94			19.136	3.969	1.00		H		0
55	ATOM	101		TYR		94			17.927	3.909	1.00	5.85 4.50	H		C
50	···				**	J T			11.361	3. J L V	1.00	4.59	H		С

	ATOM	102 CD1 TYR H 94	36.088 17.157 5.082 1.00 4.45	11
	ATOM	103 CD2 TYR H 94	35.884 17.281 2.700 1.00 4.26	н с
	ATOM	104 CE1 TYR H 94	0.5 0.50	н с
	ATOM	105 CE2 TYR H 94	00 000 10 000 0	H C
5	ATOM	106 CZ TYR H 94	25 646 45 460	н с
	ATOM	107 OH TYR H 94	95 400 10 500 0	н с
	ATOM	108 N VAL H 95	20 004 15 050 0	H 0
	ATOM	109 CA VAL H 95	00 000 10 710	H N
	ATOM	110 C VAL H 95	20 000 15 000 0 000	H C
10	ATOM	111 O VAL H 95	00	H C
	ATOM	112 CB VAL H 95	11	H 0
	ATOM	113 CG1 VAL H 95		H C
	ATOM	114 CG2 VAL H 95	40 170 17 040 0 0	н с
	ATOM	115 N PRO H 96	***	н с
15	ATOM	116 CA PRO H 96		H N
	ATOM	117 C PRO H 96	90 000 10 000 1 000	Н С
	ATOM	118 O PRO H 96	3.11	H C
	ATOM	119 CB PRO H 96	00 101 10 000 0 000	H 0
	ATOM	120 CG PRO H 96	00.000	н с
20	ATOM	121 CD PRO H 96	20 000 15 050	н с
	ATOM	122 N GLY H 97		н с
	ATOM	123 CA GLY H 97	00 000	H N
	ATOM	124 C GLY H 97	80 000	н с
	ATOM	125 O GLY H 97	0.0 455	H C
25	ATOM	126 N THR H 98	20 107 10 110	Н 0
	ATOM	127 CA THR H 98	00 540 40 404	H N
	ATOM	128 C THR H 98	90 947 10 001	H C
	ATOM	129 O THR H 98	97 107 10 700	H C
	ATOM	130 CB THR H 98		Н О
30	ATOM	131 OG1 THR H 98	40.639 13.572 6.474 1.00 10.03	н с
	ATOM	132 CG2 THR H 98	40.118 14.798 5.939 1.00 9.30 41.841 13.123 5.636 1.00 7.92	Н 0
	ATOM	133 N THR H 99	20 000 10 100 0 100	H C
	ATOM	134 CA THR H 99	97 576 10 050	H N
	ATOM	135 C THR H 99	97 971 15 999	H C
35	ATOM	136 O THR H 99	20 007 15 504 15 504	н с
	ATOM	137 CB THR H 99	27 771 10 000	Н 0
	ATOM	138 OG1 THR H 99	00 100 10 100	H C
	ATOM	139 CG2 THR H 99	05 404	Н 0
	ATOM	140 N ASN H 100	11 1.00 0.22	н с
40	ATOM	141 CA ASN H 100	38.405 16.163 9.703 1.00 4.83 38.280 17.573 10.093 1.00 6.56	H N.
	ATOM	142 C ASN H 100	00 000 10 000	Н С
	ATOM	143 0 ASN H 100	27 000 10 100	. Н С
	ATOM	144 CB ASN H 100	20 660 10 044 44 47	H 0
	ATOM	145 CG ASN H 100	20 700 10 00=	Н С
45	ATOM	146 OD1 ASN H 100	10 000 00 100	Н С
	ATOM	147 ND2 ASN H 100	20 000 10 040 45	Н 0
	ATOM	148 N HIS H 101	00 000 10 000	H N
	ATOM	149 CA HIS H 101	05 505	H N
	ATOM	150 C HIS H 101	24 505 10 007	H C
50	ATOM	151 0 HIS H 101	0.100	H C
	ATOM	152 CB HIS H 101	20 510 21 22	Н 0
	ATOM	153 CG HIS H 101	0.7 500 0: 0.7	H C
	ATOM	154 ND1 HIS H 101	3,14	Н С
	ATOM	155 CD2 HIS H 101	50 005	H N
55	ATOM	156 CE1 HIS H 101	20 420 00 404	н с
		A 101	38.470 23.401 9.839 1.00 9.36	H C

	ATOM	157	NE2 HIS H 101	39.458	3 22.795	9.206	1.00 5.86	H	N
	ATOM	158	N ASP H 102	. 34.136					N
	ATOM	159	CA ASP H 102	33.170			1.00 4.62		Č
	ATOM	160	C · ASP H 102	31.773			1.00 5.36		C
5	ATOM	161	0 ASP H 102	30.936			1.00 5.27		
	ATOM	162	CB ASP H 102	33.188					0
	ATOM	163	CG ASP H 102	32.509					С
	ATOM	164	OD1 ASP H 102				1.00 3.93		С
	ATOM	165	OD2 ASP H 102	32.142			1.00 5.39	Н	0
10	ATOM	166		32.352		8.794	1.00 2.41	H	0
10			-	31.529			1.00 5.02	H	N
	ATOM	167	CA ILE H 103	30.248		7.309	1.00 3.77	Ή	С
	ATOM		C ILE H 103	29.945		5.874	1.00 4.55	H	C
	ATOM		0 ILE H 103	30.851		5.094	1.00 4.54	H	0
٠	ATOM		CB ILE H 103	30.266		8.201	1.00 4.83	H	С
15	ATOM		CG1 ILE H 103	28.873	21.570	8.259	1.00 2.69	H	С
	ATOM	172	CG2 ILE H 103	31.288	21.931	7.664	1.00 2.18	H	Č
	ATOM	173	CD1 ILE H 103	28.770		9.246	1.00 1.00	H	Č
	ATOM	174	N VAL H 138	20.653		18.785	1.00 5.55	H	N
	ATOM	175	CA VAL H 138	21.298		17.509	1.00 6.30	H	C
20	ATOM	176	C VAL H 138	20.336	10.842	16.823	1.00 6.56	H	C
	ATOM		0 VAL H 138	19.741	9.990	17.479			
	ATOM		CB VAL H 138	22.704	11.165	17.677		H	0
	ATOM		CG1 VAL H 138	23.664	12.166		1.00 6.77	H	C
	ATOM		CG2 VAL H 138	22.614		18.324	1.00 3.97	H	C
25	ATOM		N SER H 139		9.906	18.515	1.00 5.04	H	С
20	ATOM			20.172	10.967	15.512	1.00 6.69	H	N
			CA SER H 139	19.227	10.114	14.805	1.00 5.72	H	С
	ATOM		C SER H 139	19.611	9.790	13.370	1.00 6.17	H	C
	ATOM		O SER H 139	20.485	10.431	12.787	1.00 5.98	H	0
20	ATOM		CB SER H 139	17.850	10.786	14.815	1.00 6.76	H	C
30	ATOM		OG SER H 139	17.944	12.120	14.327	1.00 4.59	H	0
	ATOM		N GLY H 142	20.741	4.754	9.987	1.00 8.09	H	N
	ATOM		CA GLY H 142	21.997	4.032	9.902	1.00 6.84	H	C
	ATOM	189 (C GLY H 142	21.957	2.626	10.456	1.00 7.70	H	С
	ATOM	190 (O GLY H 142	20.900	2.125	10.850	1.00 7.86	H	0
35	ATOM	191	N GLN H 143	23.126	1.993	10.480	1.00 9.91	H	N
	ATOM	192 (CA GLN H 143	23.278	0.628	10.976	1.00 11.50	H	C
	MOTA	193 (22.843	0.499	12.425	1.00 11.62	H	Č
	ATOM	194 0		23.133	1.360	13.255	1.00 10.73	H	0
	ATOM	195 C	CB GLN H 143	24.737	0.158		1.00 10.78	H	C
40	ATOM	196 0	CG GLN H 143	25.309	0.056	9.452	1.00 13.60	Н	
	ATOM		CD GLN H 143	25.651	1.411	8.850	1.00 15.00		C
	ATOM		E1 GLN H 143	25.652	2.430			H	C
	ATOM		NE2 GLN H 143	25.952		9.542	1.00 13.61	H	0
	ATOM	200 N			1.425	7.555	1.00 15.87	H	N
45	ATOM				-2.024	14.132	1.00 17.85	H	N
40	ATOM				-2.630	14.718	1.00 21.26	H	С
					-2.317	13.805	1.00 22.23	Н	С
	ATOM	203 0			-2.080	12.610	1.00 20.28	H .	0
	ATOM		B LEU H 145	24.848	-4.149	14.816	1.00 21.41	H	С
= 0	ATOM		G LEU H 145	23.756	-4.748	15.699	1.00 24.05	Н	С
50	ATOM		D1 LEU H 145	23.709	-6.251	15.465	1.00 22.91	H	С
	ATOM		D2 LEU H 145	24.029	-4.437	17.166	1.00 24.83	Н	С
	ATOM	208 N		27.371	-2.314		1.00 24.68	Н	N
	MOTA	209 C.	A ASP H 146	28.569	-2.054		1.00 28.79	H	C
	ATOM	210 C	ASP H 146	28.701			1.00 30.65	H	Č
55	ATOM	211 0		28.649			1.00 29.72	 Н	0
								**	J

	ATOM	212	CB ASP H 146	00 =0.					
	ATOM	213	CB ASP H 146 CG ASP H 146					H	C
	ATOM	214						H	C
	ATOM	214	OD1 ASP H 146			12.767	1.00 32.57	Н	0
5	ATOM		OD2 ASP H 146				· -	H	0
U	ATOM	216	N ARG H 147				1.00 34.10	Н	Ń
	ATOM	217	CA ARG H 147	28.968		_	1.00 37.74	H	С
		218	C ARG H 147	27.620			1.00 36.36	Н	Č
	ATOM	219	0 ARG H 147	27.580	-5.856	9.805	1.00 38.70	H	0
10	ATOM	220	CB ARG H 147	30.023	-4.977		1.00 41.63	Н	Ċ
10	ATOM	221	CG ARG H 147	30.984	-5.462	9.731	1.00 48.94	Н	Č
	ATOM	222	CD ARG H 147	32.085	-6.279	10.395	1.00 55.34	. н	Ċ
	ATOM	223	NE ARG H 147	33.126	-6.706	9.465	1.00 60.79	H	N
	ATOM		CZ ARG H 147	34.228	-7.360	9.826	1.00 63.32	Н	C
15	ATOM		NH1 ARG H 147	34.439	-7.667	11.100	1.00 64.90	Н	N
10	ATOM		NH2 ARG H 147	35.122	-7.708	8.912	1.00 64.23	Н	N
	ATOM		N LEU H 158	18.599	8.382	19.520	1.00 8.74	H	N
	ATOM		CA LEU H 158	19.340	8.024	20.727	1.00 7.23	H	C
	ATOM		C LEU H 158	19.751	9.261	21.527	1.00 8.93	Н	Ċ
20	ATOM		0 LEU H 158	20.116	10.290	20.953	1.00 8.07	H	0
20	ATOM		CB LEU H 158	20.603	7.253	20.336	1.00 6.49	Н	Č
	ATOM		CG LEU H 158	21.572	6.875	21.454	1.00 6.44	Н	Č
	ATOM		CD1 LEU H 158	20.931	5.804	22.334	1.00 7.20	H	Č
	ATOM		CD2 LEU H 158	22.88 6	6.374	20.853	1.00 6.24	Н	Č
o =	ATOM		N VAL H 160	22.440	10.884	23.870	1.00 6.69	H	N
25	ATOM		CA VAL H 160	23.841	10.699	24.231	1.00 5.16	H	Ċ
	ATOM		C VAL H 160	24.363	11.899	25.015	1.00 6.46	H	Č
	ATOM		O VAL H 160	23.972	13.038	24.761	1.00 6.24	H	0
	ATOM		CB VAL H 160	24.748	10.493	22.977	1.00 4.79	. Н	C
20	ATOM		CG1 VAL H 160	24.364	9.202	22.248	1.00 2.87	н	C
30	ATOM		CG2 VAL H 160	24.636	11.690	22.033	1.00 4.14	H	c
	ATOM		N ARG H170C	40.277	4.649	25.092	1.00 26.96	H	N
	ATOM		CA ARG H170C	41.408	3.742	25.040	1.00 30.88	H	C
	ATOM	244 (42.455	4.322	24.096	1.00 33.02	H	Č
25	ATOM		ARG H170C	42.180	4.560	22.920	1.00 32.09	H	0
35	ATOM		CB ARG H170C	40.952	2.368	24.546	1.00 32.33	H	Č
	ATOM		CG ARG H170C	42.066	1.343	24.417	1.00 36.16	H	Č
	ATOM		CD ARG H170C	41.510	-0.012	24.014	1.00 39.39	H	Č
	ATOM		IE ARG H170C	42.563	-0.955	23.649	1.00 41.61	H	N
40	ATOM		Z ARG H170C	42.345	-2.177	23.169	1.00 44.13	H	C
4 0	ATOM		H1 ARG H170C	41.105	-2.617	22.992	1.00 45.02	H	N
	ATOM		H2 ARG H170C	43.370	-2.959	22.859	1.00 45.11	H	N
	ATOM	253 N	· - -	43.650	4.565	24.622	1.00 36.30	H	N
	ATOM	254 C		44.737	5.114	23.820	1.00 39.96	H	C
4 =	ATOM	255 C		45.045	4.165	22.667	1.00 39.79	H	Č
4 5	ATOM	256 0		45.328	2.986	22.881	1.00 39.51	H	0
	ATOM	257 C		45.986	5.302	24.685	1.00 43.00	H	C
	ATOM	258 C		47.201	5.802	23.921	1.00 47.37	H	Č
	ATOM	259 C		48.433	5.842	24.812	1.00 51.67	H	C
E 0	ATOM	260 CI		49.673	6.249		1.00 54.05	H	C
50	ATOM	261 N	_	49.975	5.293		1.00 55.60	Н	N
	ATOM	262 N		44.983			1.00 39.89	H	N
	ATOM	263 CA		45.250			1.00 40.30	H	C
	ATOM	264 C		46.447			1.00 41.06	H	C
==	ATOM	265 0		47.128	5.312		1.00 41.71	H	0
55	ATOM	266 CE	3 VAL H170E	44.015	3.799		1.00 40.64	H	C
								-	-

1.11.83

	ATOM	267	, ,,	1 VA	I U170C	49 076				_		
	ATOM	268			L H170E L H170E	42.876						H C
	ATOM	269				43.582		•				H C
					Y H170F	46.700				0.52	ì	H N
5	ATOM	270			Y H170F	47.814			1.00 3	9.24	1	H C
J	ATOM	271			Y H170F	47.649			1.00 3	8.47	1	H C
	ATOM	272			Y H170F	47.270	6.468	17.630	1.00 3	8.87	1	Н 0
	ATOM	273			P H170G	47.932	5.672	15.629	1.00 3	6.20	J	H N
	ATOM	274	CA	AS	P H170G	47.823	6.955	14.951	1.00 3	4.41		H C
	ATOM	275	С	AS:	P H170G	46.433	7.192	14.370	1.00 3			H C
10	ATOM	276	0	AS:	P H170G	46.265	7.306		1.00 3			0 E
	ATOM	277	CB	AS	P H170G	48.869			1.00 3			. C
	ATOM	278	CG	AS	P H170G	50.282			1.00 4			i C
	ATOM	279	0D	1 ASI	P H170G	50.595			1.00 4		ŀ	
	ATOM	280	0D:	2 ASI	H170G	51.080			1.00 4		F	
15	ATOM	281			R H170H	45.438			1.00 2			
	ATOM	282			R H170H	44.066			1.00 2		F	
	ATOM	283			R H170H	43.830	9.008				H	
	ATOM	284			R H170H	44.628	9.817		1.00 2		H	
	ATOM	285	CB		H170H	43.096	6.902		1.00 1		H	_
20	ATOM	286	0G		R H170H				1.00 2		H	
20	ATOM	287	N		H170I	43.323	7.430		1.00 2		H	_
	MOTA	288	CA			42.733	9.403	14.013	1.00 1		Н	
	ATOM				H1701	42.432	10.826	13.826	1.00 1		H	
		289	C		H170I	42.402	11.597	15.146	1.00 1		H	C
25	ATOM	290	0		H1701	41.933	11.090	16.162	1.00 1		Н	-
20	ATOM	291	CB		H170I	41.066	10.798	13.142	1.00 1	4.13	H	С
	ATOM	292	CG		H1701		9.519	12.359	1.00 1	5.60	H	C
	ATOM	293	CD		H170I	41.716	8.562	13.358	1.00 1	5.03	H	С
	MOTA	294	N		H 175	42.918	12.819	15.137	1.00 13	3.26	. Н	N
0.0	ATOM	295	CA		H 175	42.911	13.627	i 6.347	1.00 18	5.22	H	
30	ATOM	296	C	ASN	H 175	41.540	14.261	16.497	1.00 12	2.70	H	
	ATOM	297	0		H 175	40.813	14.420	15.520	1.00 9	75	Н	
	MOTA	298	CB	ASN	H 175	43.964	14.744	16.280	1.00 19	1.16	Н	
	ATOM	299	CG	ASN	H 175	45.367	14.217	16.081	1.00 22		H	
	ATOM	300	0D1	ASN	H 175	45.726	13.159	16.597	1.00 28		Н	
35	MOTA	301	ND2	ASN	H 175	46.178	14.963	15.338	1.00 26		H	
	ATOM	302	N	ILE	H 176	41.190	14.609	17.729	1.00 12		H	
	ATOM	303	CA		H 176	39.922	15.270	18.015	1.00 10		Н	
	ATOM	304	C		H 176	40.253	16.759	18.040		. 92	H	
	ATOM	305	0		H 176	40.856	17.248	18.992		. 78	Н	0
40	ATOM	306	СВ		H 176	39.373	14.856	19.391	1.00 10		Н	-
	ATOM	307			H 176	39.207	13.335	19.451	1.00 11		H	C
	ATOM	308			H 176	38.032	15.533	19.636		. 09		C
	ATOM	309			H 176	38.867	12.816	20.830	1.00 15		Н	C
	ATOM	310	N		H 180	35.459	19.555				H	C
45	ATOM	311	CA		H 180			16.502		. 00	H	N
	ATOM	312	C		H 180	34.757 34.487	18.321	16.843		. 79	H	C
	ATOM	313	0		H 180		18.263	18.344		. 77	H	C
	ATOM					35.007	19.075	19.114		. 30	H	0
	ATOM	314	CB		H 180	35.625	17.105	16.499		. 93	H	С
50		315	CG		H 180	36.365	17.162	15.169		. 58	H	C
JU	ATOM	316	SD		H 180	37.565	15.805	15.057		. 35	H	S
	ATOM	317	CE		H 180	38.175	16.035	13.399		. 33	H	С
	ATOM	318	N		H 181	33.677	17.288	18.745		. 48	H	N
	ATOM	319	CA		H 181	33.379	17034	20.151		. 80	H	С
	ATOM	320	С		H 181	32.851	15.608	20.242		. 05	H	С
55	MOTA	321	0	PHE	H 181	32.219	15.111	19.304	1.00 3	. 48	H	0

	ATOM	322 (CB PHE H 181	32.371	18.051	20.719	1.00	4.63	77	
	ATOM	323 (CG PHE H 181	30.939				6.12	H H	C
	ATOM	324 (D1 PHE H 181	30.134				3.60		C
_	ATOM	325 (D2 PHE H 181	30.370		-		4.58	Н	C
5	ATOM	326 C	E1 PHE H 181	28.777	16.767			4.70	H	C
	ATOM	327 C	E2 PHE H 181	29.018	18.601			2.41	Н	C
	ATOM	328 C	2 PHE H 181	28.220	17.634				Н	C
	ATOM	329 N	CYS H 182	33.142	14.938			4.06	H	C
	ATOM	330 C	A CYS H 182	32.684	13.571			3.27	H	N
10	ATOM	331 C		31.373	13.550			4.42	H	C
	ATOM	332 0		31.061	14.473		1.00	3.93	H	C
	ATOM	333 C		33.685	12.758		1.00	4.77	H	0
	ATOM	334 S		35.402	12.734		1.00	5.96	H	C
	ATOM	335 N		30.619	12.476	22.112		5.85	H	S
15	ATOM	336 C.		29.356	12.290	22. 112	1.00	3.91	H	N
	ATOM	337 C		29.000	10.813	22.723	1.00	5.23	H	C
	ATOM	338 0		29.318	10.150	21.740	1.00	5.27	H	C
	ATOM	339 C		28.254	13.152	22.178	1.00	7.26	H	0
	ATOM	340 N	-	28.361	10. 289	23.760	1.00	2.74	H	C
20	ATOM	341 C		27.986	8.890	23.741	1.00	7.33	H	N
	ATOM	342 C	GLY H184A	28.482	8. 101	24.936	1.00	6.69	H 	C
•	ATOM	343 0	GLY H184A	28.615	8.634	26.042	1.00	8.17	H	C
	ATOM	344 N	TYR H 184	28.771	6.825	24.699	1.00	6.87	H	0
	ATOM	345 CA		29.224	5.921		1.00	7.70	H	N
25	ATOM	346 C	TYR H 184	30.406	5.068	25.750 25.288	1.00	8.19	H	C
	ATOM	347 0	TYR H 184	30.506	4.712		1.00	7.75	H	C
	ATOM	348 CF		28.074	5.004	24.114	1.00	6.46	H	0
	ATOM	349 CG		26.813	5.725	26.176	1.00	8.95	H	C
	ATOM		1 TYR H 184	25.924	6.256	26.615	1.00		H	C
30	ATOM		2 TYR H 184	26.515		25.681	1.00		H	С
	ATOM		1 TYR H 184	24.771	5.881	27.967	1.00		H	С
	ATOM		2 TYR H 184	25.369	6.923	26.080	1.00 1		H	C
	ATOM	354 CZ		24.500	6.542	28.378	1.00 1		H	C
	ATOM	355 OH		23.357	7.061	27.429	1.00 1		H	C
35	ATOM	356 N	LYS H 188	25.832	7.705	27.829	1.00 1		H	0
	ATOM	357 CA		25.079	2.110	23.136	1.00	8.03	H	N
	ATOM	358 C	LYS H 188	25.079	3.077	22.349	1.00	7.40	H	С
	ATOM	359 0	LYS H 188	26.946	4.081	21.605	1.00	9.19	H	С
	ATOM	360 CB		24.123	4.585	22.147	1.00	7.00	H	0
40	ATOM	361 CG		23.123	3.820	23.283		8.96	H	С
	ATOM	362 CD		22.325		24.006	1.00		Н	С
	ATOM	363 CE		23.157	3.672	25.051	1.00 1		H	C
	ATOM	364 NZ	LYS H 188	23.137	3.965	26.292	1.00 1		Н	C
	ATOM	365 N	ASP H 189		2.721	27.048	1.00 1		H	N
45	ATOM	366 CA	ASP H 189	25.570	4.397	20.373		6.80	H	N
_	ATOM	367 C	ASP H 189	26.350	5.319	19.560		8.44	H	С
	ATOM	368 0	ASP H 189	25.650	5.465			8.51	H	С
	ATOM	369 CB	ASP H 189	24.752	4.686			7.47	H	0
	ATOM	370 CG	ASP H 189	27.755	4.705			9.61	H	C
50	ATOM		ASP H 189	28.738	5.610			8.64	H	C
- 0	ATOM		ASP H 189	28.457	6.811			9.82	Н	0
	ATOM	372 0D2	SER H 190	29.819				5.31	H	0
	ATOM	374 CA	SER H 190	26.013				5.24	H	N
	ATOM	375 C	SER H 190	25.450				5.22	H	С
55	ATOM	376 0	SER H 190	26.395				7.07	H	C
	····	3,0 0	DEK II 130	27.367	5.221	15.775	1.00 5	5.91	H	0

	ATOM	377		SER	H 190	25.450	8.101	15.658	1.00	0 4.21	H	С
	MOTA	378	° OG	SER	H 190	26.703					Н	0
	ATOM	379	N	CYS	H 191	26.128					H	N
_	ATOM	380	CA	CYS	H 191	26.992					H	C
5	ATOM	381	C	CYS	H 191	27.131					H	C
	ATOM	382	0	CYS	H 191	26.507					H	0
	ATOM	383	CB	CYS	H 191	26.446					H	C
	ATOM	384	SG	CYS	H 191	27.624		12.512		11.48	H	S
	ATOM	385	N	LYS	H 192	27.955			1.00		Н	N
10	ATOM	386	CA	LYS	H 192	28.232		9.508		10.49	Н	C
	ATOM	387	С	LYS	H 192	27.042			1.00		Н	C
	ATOM	388	0	LYS	H 192	27.089		8.131	1.00		H	0
	ATOM	389	CB	LYS	H 192	28.996		8.720		12.99	H	C
	MOTA	390	CG	LYS	H 192	30.288		9.406		17.47	H	č
15	ATOM	391	CD	LYS	H 192	31.180	2.948	8.509		21.20	Н	c
	ATOM	392	CE	LYS	H 192	32.448	2.535	9.258		25.68	H	Č
	ATOM	393	ΝZ	LYS	H 192	33.427		8.395		28.01	Ħ	N
	ATOM	394	N	GLY	H 193	25.983	4.989	8.623	1.00		H	N
	ATOM	395	CA	GLY :	H 193	24.806	5.380	7.863	1.00		H	Ċ
20	ATOM	396	C	GLY	H 193	24.059	6.573	8.433		10.62	H	c
	ATOM	397	0	GLY	H 193	23.188	7.141	7.774		12.70	H	0
	ATOM	398	N	ASP	H 194	24.386	6.959	9.662	1.00	8.84	H	N
	ATOM	399	CA	ASP 1	H 194	23.744	8.108	10.289	1.00	7.33	H	C
	ATOM	400	C	ASP I	H 194	24.475	9.412	9.972	1.00	7.03	Н	Č
25	ATOM	401	0	ASP 1	H 194	23.989	10.492	10.312	1.00	7.04	H	Ö
	ATOM	402	CB	ASP I	H 194	23.688	7.917	11.802	1.00	5.37	H	Ċ
	MOTA	403	CG	ASP I	194	22.927	6.671	12.195	1.00	7.85	H	Ċ
	ATOM	404		ASP F		21.737	6.572	11.833	1.00	6.73	H	0
	ATOM	405	0D2	ASP I	I 194	23.519	5.794	12.857	1.00	4.09	H	Õ
30	ATOM	406	N	SER E	I 195	25.634	9.301	9.324	1.00	5.06	H	N
	ATOM	407	CA	SER F	I 195	26.449	10.454	8.960	1.00	5.57	H	C
	ATOM	408	C	SER E	I 195	25.629	11.601	8.387	1.00	6.98	H	Ċ
	ATOM	409	0	SER E		24.730	11.391	7.573	1.00	4.66	H	0
~-	MOTA	410	CB	SER H	195	27.521	10.050	7.939	1.00	4.83	H	C
35	ATOM	411	0G	SER H		28.461	9.156	8.509	1.00	2.83	H	0
	ATOM	412	N	GLY H	196	25.958	12.817	8.816	1.00	7.56	H	N
	ATOM	413	CA	GLY H		25.253	13.994	8.337	1.00	7.44	H	С
	ATOM	414	С	GLY H	196	24.032	14.324	9.174	1.00	7.23	H	С
40	ATOM	415	0	GLY H		23.564	15.460	9.178	1.00	7.34	Н	0
40	ATOM	416	N	GLY H		23.520	13.325	9.888	1.00	7.25	H	N
	ATOM	417	CA	GLY H		22.351	13.517	10.721	1.00	5.90	H	С
	ATOM	418	C	GLY H		22.572	14.494	11.858	1.00	6.34	H	C
	MOTA	419	0	GLY H		23.707	14.824	12.195	1.00	7.23	H	0
4 =	ATOM	420	N	HIS H		22.592	16.228	15.752	1.00	4.66	H	N
45	ATOM	421		HIS H		22.920	16.007	17.151	1.00	2.68	H	С
	ATOM	422	С	HIS H		22.168	17.243	17.628	1.00	3.98	H	С
	ATOM	423	0	HIS H		22.668	18.366	17.497	1.00	4.27	H	0
	MOTA	424		HIS H		24.424	16.155	17.391	1.00	4.75	H	C
F0	ATOM	425		HIS H		24.812	16.159	18.838	1.00	3.77	H	С
50	ATOM	426		HIS H		24.693	17.275	19.636	1.00	1.00	H	N
	ATOM	427		HIS H		25.308	15.179	19.633	1.00	4.02	H	С
	ATOM	428		HIS H		25.103	16.987	20.858	1.00	2.26	H	С
	ATOM			HIS H		25.481	15.721	20.883	1.00	2.92	Н	N
==	MOTA			ILE H		26.974		14.214	1.00	5.45	H	N
55	ATOM	431	CA	ILE H	212	26.692	16.454	13.021	1.00	5.68	H	С

	ATOM	43	2 C	ILE	H 212		27.372	15.09	2 13.160	1.00	6.39		H	_
	ATOM	43	3 0	ILE	H 212		28.561						H	C 0
	ATOM	43			H 212		27.265						H	C
_	MOTA	43		31 ILE			26.699	18.545					H	C
5	ATOM	43		2 ILE			26.943	16.296					H	C
	ATOM	43	7 CI	1 ILE	H 212		27.426	19.368		1.00			H	C
	ATOM	43		VAL	H 213		26.620						H	N
	ATOM	439	9 CA	VAL	H 213		27.187						H	C
	ATOM	44() C	VAL	H 213		28.340	12.692					H	C
10	ATOM	44	0	VAL	H 213		28.130	12.905		1.00	_		H	0
	ATOM	442	CB	VAL	H 213		26.149	11.581		1.00			H	C
	ATOM	443	3 CG	1 VAL	H 213		26.792	10.194		1.00	1.00		H	C
	ATOM	444	e CG	2 VAL	H 213		24.959	11.599		1.00	1.00		H	C
	ATOM	445			H 214		29.557	12.491		1.00	4.04			
15	ATOM	446	CA		H 214		30.728	12.582		1.00	5.26		H	N
	ATOM	447	C		H 214		31.619	11.349		1.00	3.67		H	C
	ATOM	448	0		H 214		31.766	10.778		1.00	3.00		H	C
	ATOM	449	СВ		H 214		31.561	13.794		1.00	4.06		H	0
	ATOM	450	0G		H 214		32.746	13.898		1.00			H	C
20	ATOM	451	N		H 215		32.225	10.946		1.00	7.47		H	0
	ATOM	452	CA		H 215		33.094	9.779	12.667	1.00	2.06		H	N
	ATOM	453	С		H 215		33.247	9.099	14.018	1.00	4.11		H	C
	ATOM	454	0		H 215		32.628	9.491	15.007	1.00	5.89		H	C
	ATOM	455	СВ		H 215		34.489	10.148	12.120		5.44		H	0
25	ATOM	456	CG		H 215		35.298	11.099	12.120	1.00	5.71		H	C
	ATOM	457		TRP			35.174	12.459	13.046	1.00	6.60		H	C
	ATOM	458		2 TRP			36.374	10.755	13.046	1.00	8.26		H.	C
	ATOM	459		TRP			36.106	12.985		1.00	7.17		H	С
	ATOM	460		TRP			36.855	11.962	13.910	1.00	6.83		ł	N
30	ATOM	461		TRP 1			36.979		14.433	1.00	7.22	ŀ		C
	ATOM	462		TRP			37.912	9.546	14.244	1.00	6.60	F		C
	ATOM	463		TRP			38.035	11.996	15.351	1.00	4.55	H		C
	ATOM	464		TRP			38.488	9.578	15.161	1.00	7.36	H		C
	ATOM	465	N	GLY F				10.799	15.703	1.00	6.87	H		С
35	ATOM	466	CA	GLY F			34.086	8.070	14.043	1.00	6.33	H		N
	ATOM	467	C	GLY F			34.336 35.004	7.332	15.265	1.00	8.66	H		C
	ATOM	468	0	GLY H			34.914	6.017	14.932	1.00	9.66	H		C
	ATOM	469	N	GLN H			35.684	5.543	13.795	1.00	9.71	H		0
	ATOM	470	CA	GLN H			36.346	5.422	15.906	1.00		H		N
40	ATOM	471	C	GLN H			35.284		15.669			H		C
	ATOM	472	0	GLN H			34.858	3.065	15.765	1.00		H		С
	ATOM	473	CB	GLN H			37.449	2.695	16.858	1.00		H		0
	ATOM	474	CG	GLN H				3.919	16.701	1.00		H		C
	ATOM	475	CD	GLN H			38.205	2.612	16.498	1.00		H		С
45	ATOM	476		GLN H			39.564 40.134	2.605	17.171	1.00 1		H		С
	ATOM	477		GLN H				1.540	17.427	1.00 1		H		0
	ATOM	478	N	GLY H			40.103	3.794	17.443	1.00 1		H		N
	ATOM	479	CA	GLY H		•	34.854	2.563	14.612	1.00 1		H		N
	ATOM	480	C	GLY H			33.803	1.563	14.596	1.00 1		H		C
50	MOTA	481	0	GLY H			32.536	2. 218	15.126	1.00 1		H		С
- 0	ATOM	482	N	CYS H			32.436	3.446	15.163	1.00 1		H		0
	ATOM	483	CA	CYS H			31.569	1.410	15.542	1.00 1		H		N
	ATOM	484	C	CYS H			30.317	1.934	16.077	1.00 1		H		С
	ATOM	485	0				30.052	1.266	17.420	1.00 1		H		C
55	ATOM	486	CB	CYS H			29.975	0.037		1.00 1		H		0
00	71 I O III	Ŧ00	CD	CYS H	220		29.170	1.658	15.099	1.00 1	1.56	Н		C

ATOM 488 N ALA H221A 29.916 2.084 18.462 1.00 10.74 H ATOM 489 CA ALA H221A 29.691 1.588 19.817 1.00 10.47 H ATOM 490 C ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 491 O ALA H221A 30.547 -0.493 20.677 1.00 11.08 H ATOM 492 CB ALA H221A 28.336 0.901 19.914 1.00 11.15 H ATOM 493 N THR H 221 32.046 1.045 19.968 1.00 9.44 H												
ATOM 488 N. ALA H221A 29.916 2.084 18.462 1.00 10.74 H ATOM 489 C. ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 490 C. ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 491 O. ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 493 N. THR H 221 33.236 0.901 19.914 1.00 11.15 H ATOM 493 N. THR H 221 32.046 1.045 19.968 1.00 9.44 H ATOM 493 N. THR H 221 33.237 0.249 20.274 1.00 8.06 H ATOM 495 C. THR H 221 33.378 0.543 21.695 1.00 8.00 H ATOM 496 O. THR H 221 33.859 1.706 22.075 1.00 8.00 H ATOM 497 CB THR H 221 33.839 0.955 17.951 1.00 8.20 H ATOM 498 CC THR H 221 33.983 0.265 17.951 1.00 8.20 H ATOM 498 CC THR H 221 33.983 0.265 17.951 1.00 11.25 H ATOM 498 CC THR H 221 33.937 0.249 19.289 1.00 8.20 H ATOM 498 CC THR H 221 33.938 0.265 17.951 1.00 11.22 H ATOM 499 CC THR H 221 33.938 0.265 17.951 1.00 11.25 H ATOM 500 N VAL H 222 33.637 0.508 22.480 1.00 7.75 H ATOM 501 CA VAL H 222 33.926 -0.508 22.480 1.00 7.765 H ATOM 503 O VAL H 222 35.637 0.508 23.904 1.00 7.565 H ATOM 504 CB VAL H 222 35.637 0.508 23.904 1.00 7.565 H ATOM 505 CG VAL H 222 35.637 0.508 23.904 1.00 7.565 H ATOM 506 CC VAL H 222 35.637 0.508 22.480 1.00 7.565 H ATOM 506 CG VAL H 222 35.632 3.718 23.321 1.00 6.63 H ATOM 507 N HIS H 224 35.632 3.718 23.231 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 23.231 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 20.22 1.00 10.98 H ATOM 510 CG HIS H 224 35.484 5.250 22.251 1.00 10.98 H ATOM 510 CG HIS H 224 33.487 2.564 24.629 1.00 6.83 H ATOM 510 CG HIS H 224 33.487 2.564 24.629 1.00 6.63 H ATOM 507 CH IS H 224 33.487 2.564 24.629 1.00 6.63 H ATOM 508 CC HIS H 224 33.487 2.564 24.629 1.00 6.03 H ATOM 508 CC HIS H 224 33.487 2.564 24.629 1.00 6.03 H ATOM 509 CF		ATOM			CYS H 22	29.346	2.521	13.505	1.00	8.67	Н	S
ATOM 489 CA ALA H221A 29.691 1.588 19.817 1.00 10.47 H ATOM 491 C ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 492 CB ALA H221A 30.806 0.616 20.198 1.00 10.93 H ATOM 492 CB ALA H221A 30.807 -0.493 20.677 1.00 11.03 H ATOM 493 N THR H 221 32.336 0.901 19.914 1.00 11.15 H ATOM 494 CA THR H 221 33.237 0.249 20.274 1.00 8.66 H ATOM 495 C THR H 221 33.237 0.249 20.274 1.00 8.66 H ATOM 495 C THR H 221 33.237 0.549 20.274 1.00 8.66 H ATOM 496 C THR H 221 33.378 0.543 21.695 1.00 8.04 H ATOM 497 CB THR H 221 33.385 1.00 6.22 0.75 1.00 10.25 H ATOM 498 GCI THR H 221 33.385 1.706 12.075 1.00 10.25 H ATOM 499 CG2 THR H 221 33.838 0.265 1.7.951 1.00 10.25 H ATOM 499 CG2 THR H 221 33.938 0.265 1.7.951 1.00 10.25 H ATOM 500 N VALH 222 33.926 -0.508 22.480 1.00 7.75 H ATOM 501 CA VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 502 C VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 503 O VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 505 CG2 VAL H 222 35.637 0.508 23.904 1.00 7.56 H ATOM 506 CG2 VAL H 222 35.632 3.718 23.12 1.00 7.65 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 501 C M HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 501 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 503 ND HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.512 4.808 22.269 1.00 7.59 H ATOM 510 C M HIS H 224 33.513 8.00 1.00 8.00 8.00 H ATOM 510 C M HIS H 224 33.513 8.00 8.00 8.00 8.00 8.00 H ATOM 510 C M H 15 H 225 33.51 8.00 8.00 1.00 8.00 8.00 H ATOM 510 C M H 15 H 225 33.55 8.280 28.080 1.00 5.51 H ATOM 510 C M H 15 H 225 33.55 8.280 28.080 1.00 5.51 H ATOM 520 C M H 1225 33.55 8.		ATOM	488	S N	ALA H221	A 29.916	2.084	18.462	1.00	10.74		
ATOM		ATOM	489) CA	ALA H221	A 29.691	1.588					C
ATOM		ATOM	490	C								
ATOM 492 CB ALA N221A 28.336 0.901 19.914 1.00 11.15 H ATOM 493 N THER 221 32.046 1.045 19.988 1.00 9.44 H ATOM 494 CA THER 221 32.046 1.045 19.988 1.00 9.44 H ATOM 495 C THER 221 33.737 0.249 20.274 1.00 8.66 H ATOM 495 C THER 221 33.708 0.543 21.695 1.00 8.04 H ATOM 496 O THER 221 33.708 0.543 21.695 1.00 8.20 H ATOM 497 CB THER 221 33.859 1.706 22.075 1.00 7.03 H ATOM 498 GC THER 221 33.836 1.706 22.075 1.00 7.03 H ATOM 498 GC THER 221 33.938 0.265 17.951 1.00 10.25 H ATOM 499 CG2 THER 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 499 CG2 THER 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 490 CG2 THE 221 35.634 -0.255 19.623 1.00 7.755 H ATOM 501 CA VALH 222 33.926 -0.508 22.480 1.00 7.75 H ATOM 502 C VALH 222 36.567 0.304 23.132 1.00 7.65 H ATOM 503 O VALH 222 36.567 0.304 23.132 1.00 7.65 H ATOM 505 CG1 VALH 222 36.567 0.304 23.132 1.00 7.65 H ATOM 505 CG1 VALH 222 33.426 -2.564 24.629 1.00 7.56 H ATOM 505 CG1 VALH 222 33.523 -1.558 25.893 1.00 6.03 H ATOM 506 CG2 VALH 222 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.25 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.25 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.25 H ATOM 509 C HIS H 224 35.817 4.906 22.618 1.00 8.49 H ATOM 510 O HIS H 224 35.827 4.881 20.572 1.00 10.97 H ATOM 510 O HIS H 224 35.840 4.300 20.862 1.00 10.98 H ATOM 510 CHIS H 224 35.840 4.300 20.862 1.00 10.98 H ATOM 510 CHIS H 224 33.827 4.984 20.572 1.00 10.97 H ATOM 510 CHIS H 224 33.837 4.996 22.618 1.00 1.00 11.73 H ATOM 510 CHIS H 224 33.837 4.996 22.618 1.00 0.11.73 H ATOM 510 CHIS H 224 33.151 8.870 22.618 1.00 10.97 H ATOM 510 CHIS H 224 33.151 8.870 22.618 1.00 10.97 H ATOM 510 CHIS H 224 33.151 8.870 22.618 1.00 0.14.76 H ATOM 510 CHIS H 224 33.151 8.870 22.618 1.00 0.14.76 H ATOM 520 CHIS H 225 32.718 8.831 1.00 5.42 H ATOM 520 CHIS H 225 32.718 8.831 1.00 5.42 H ATOM 520 CHIS H 225 32.718 8.831 1.00 5.42 H ATOM 520 CHIS H 225 33.653 8.280 20.801 1.00 5.44 H ATOM 525 CG PHE 225 32.633 1.00	. 5											C
ATOM 494 CA THR H 221 32.046 1.045 19.868 1.00 9.44 H ATOM 495 C THR H 221 33.237 0.249 20.774 1.00 8.66 H ATOM 495 C THR H 221 33.237 0.249 20.774 1.00 8.66 H ATOM 497 CB THR H 221 33.859 1.706 22.075 1.00 7.03 H ATOM 497 CB THR H 221 33.983 0.255 17.951 1.00 10.25 H ATOM 498 OGI THR H 221 33.983 0.255 17.951 1.00 10.25 H ATOM 499 CG2 THR H 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 500 N VAL H 222 33.926 -0.508 22.480 1.00 7.75 H ATOM 501 CA VAL H 222 34.386 -0.361 23.862 1.00 7.14 H ATOM 502 C VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 504 CB VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 505 CC VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 505 CC VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 505 CC VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 507 N HIS H 224 34.705 -1.745 24.507 1.00 6.51 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.632 3.718 23.226 1.00 7.22 H ATOM 510 O HIS H 224 35.802 2.269 1.00 7.22 H ATOM 510 C HIS H 224 35.802 2.269 1.00 7.29 H ATOM 510 C HIS H 224 35.802 2.618 1.00 10.93 H ATOM 513 NDI HIS H 224 38.127 4.906 22.618 1.00 10.93 H ATOM 513 NDI HIS H 224 37.279 3.936 20.682 1.00 10.93 H ATOM 513 NDI HIS H 224 38.276 4.881 20.572 1.00 10.93 H ATOM 510 C HIS H 224 37.279 3.936 20.682 1.00 10.93 H ATOM 513 NDI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 510 O PIE H 225 32.755 8.038 20.381 1.00 7.09 H ATOM 510 O PIE H 225 32.755 8.038 20.381 1.00 7.09 H ATOM 510 C PIE H 225 32.755 8.038 20.381 1.00 7.09 H ATOM 510 C PIE H 225 32.755 8.038 20.381 1.00 5.47 H ATOM 510 C PIE H 225 32.755 8.038 20.381 1.00 5.47 H ATOM 510 C PIE H 225 32.755 8.038 20.381 1.00 5.47 H ATOM 510 C PIE H 225 32.755 8.038 20.381 1.00 5.47 H ATOM 510 C PIE H 225 32.151 10.760 17.479 1.00 3.76 H ATOM 526 C PIE H 225 32.151 10.760 17.479 1.00 3.76 H ATOM 530 C A VAL H 227 33.600 11.126 17.576 1.00 3.89 H ATOM 530 C A VAL H 227 33.600 11.126 17.576 1.00 3.76 H ATOM 530 C	_											0
ATOM 494 CA THR H 221 33.237 0.249 20.274 1.00 8.66 H ATOM 495 C THR H 221 33.708 0.543 1.00 8.04 H ATOM 496 O THR H 221 33.708 0.543 1.00 10.25 H ATOM 497 CB THR H 221 34.391 0.576 19.289 1.00 8.20 H ATOM 498 OGI THR H 221 35.634 -0.255 19.623 1.00 10.25 H ATOM 499 CGZ THR H 221 35.634 -0.255 19.623 1.00 11.22 H ATOM 500 N VAL H 222 35.637 0.508 22.480 1.00 7.75 H ATOM 501 CA VAL H 222 34.386 -0.508 22.480 1.00 7.75 H ATOM 502 C VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 503 O VAL H 222 35.657 0.304 23.132 1.00 7.65 H ATOM 504 CB VAL H 222 35.637 0.508 23.904 1.00 7.55 H ATOM 505 CGI VAL H 222 35.637 0.508 23.904 1.00 7.65 H ATOM 505 CGI VAL H 222 35.637 0.508 23.904 1.00 7.65 H ATOM 505 CGI VAL H 222 35.637 0.508 23.904 1.00 7.65 H ATOM 505 CGI VAL H 222 35.637 0.508 23.904 1.00 7.65 H ATOM 505 CGI VAL H 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 505 CGI VAL H 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 507 N HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 508 CA HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 501 CB HIS H 224 35.840 4.300 20.862 1.00 8.81 H ATOM 511 CB HIS H 224 37.899 2.731 20.668 1.00 10.97 H ATOM 512 CB HIS H 224 37.899 2.731 20.668 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 10.97 H ATOM 515 CB HIS H 224 37.899 2.731 20.668 1.00 10.97 H ATOM 516 NE2 HIS H 224 37.899 2.731 20.668 1.00 10.97 H ATOM 517 N PHE H 225 32.960 7.596 21.822 1.00 0.0 4.73 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 0.0 5.81 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 0.0 5.81 H ATOM 510 O PHE H 225 32.960 7.596 21.822 1.00 0.0 5.47 H ATOM 520 CB PHE H 225 32.960 7.596 21.822 1.00 0.0 5.57 H ATOM 530 C C PHE H 225 32.960 7.596 21.822 1.00 0.0 5.81 H ATOM 530 C C PHE H 225 32.960 7.596 21.822 1.00 0.0 5.81 H ATOM 530 C C PHE H 225 32.960 7.596 21.822 1.00 0.0 5.55 H ATOM 530 C C PHE H 225 32.303 8.397 20.333 1.00 5.42 H ATOM 530 C C PHE H 225 32.303 8.397 20.333 1.00 5.52 H ATOM 530 C C											H	C
ATOM											H	N
ATOM							0.249	20.274	1.00	8.66	H	C
ATOM					THR H 22	1 33.708	0.543	21.695	1.00	8.04	Н	С
ATOM 497 CB THR H 221 34.391 0.578 19.289 1.00 8.20 H ATOM 498 CG1 THR H 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 499 CG2 THR H 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 500 N VALH 222 33.926 -0.508 22.480 1.00 7.75 H ATOM 501 CA VALH 222 35.637 0.508 23.904 1.00 7.75 H ATOM 503 0 VALH 222 35.637 0.508 23.904 1.00 7.75 H ATOM 503 C VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 505 CG1 VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 505 CG1 VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 505 CG1 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 506 CG2 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 507 N HISH 224 35.632 3.718 23.234 1.00 7.65 H ATOM 508 CA HISH 224 35.632 3.718 23.234 1.00 7.22 H ATOM 509 C HISH 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HISH 224 33.127 4.906 22.618 1.00 8.49 H ATOM 511 CB HISH 224 35.840 4.300 20.682 1.00 8.31 H ATOM 512 CG HISH 224 37.279 3.936 20.682 1.00 8.31 H ATOM 514 CD2 HISH 224 37.279 3.936 20.682 1.00 10.98 H ATOM 515 CEI HISH 224 37.299 3.936 20.682 1.00 10.98 H ATOM 516 CB HISH 224 37.299 3.936 20.682 1.00 10.97 H ATOM 517 N PHE H 225 32.960 7.596 21.822 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 510 CP HE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 510 CP HE H 225 33.657 8.075 19.573 1.00 14.76 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.44 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.44 H ATOM 520 CP HE H 225 33.565 8.280 20.682 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.44 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.48 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.55 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.55 H ATOM 520 CP HE H 225 33.657 8.075 19.573 1.00 5.55 H ATOM 520 CP HE H 225 33.657 8.075 19.575 1.00 5.55 H ATOM 520 CP HE	10	ATOM	496	0	THR H 22	1 33.859	1.706	22.075	1.00	7.03		0
ATOM 498 CG1 THR H 221 33.983 0.265 17.951 1.00 10.25 H ATOM 499 CG2 THR H 221 35.634 -0.225 19.623 1.00 11.22 H ATOM 500 N VALH 222 34.386 -0.361 23.862 1.00 7.15 H ATOM 501 CA VALH 222 35.637 0.508 22.480 1.00 7.15 H ATOM 502 C VALH 222 35.637 0.508 23.904 1.00 7.15 H ATOM 503 0 VALH 222 35.637 0.508 23.904 1.00 7.16 H ATOM 505 CG VALH 222 35.637 0.508 23.904 1.00 7.16 H ATOM 505 CG1 VALH 222 35.637 0.508 23.904 1.00 7.16 H ATOM 505 CG1 VALH 222 35.637 0.508 23.904 1.00 6.51 H ATOM 505 CG1 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 505 CG2 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 506 CG2 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 508 CA HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 510 0 HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 511 CB HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 512 CG HIS H 224 37.899 2.731 20.668 1.00 10.98 H ATOM 513 ND1 HIS H 224 37.899 2.731 20.668 1.00 10.98 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 517 N PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.515 8.870 22.559 1.00 5.47 H ATOM 520 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.557 8.075 19.573 1.00 14.76 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.47 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE H 225 33.272 31.800 12.883 1.00 5.55 H ATOM 520 C PHE H 225 33.256 1.00 10.00 5.42 H ATOM 520 C PHE H 225 33.256 1.00 10.00 5.55 H ATOM 520 C PHE H 225 33.558 8.392 20.065 1.00 5.55 H ATOM 520 C PHE		ATOM	497	CB	THR H 22	1 34.391	0.578					Č
ATOM 500 N VALH 222 33.926 -0.508 22.480 1.00 7.75 H ATOM 501 CA VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 502 C VALH 222 35.637 0.508 23.904 1.00 7.56 H ATOM 503 O VALH 222 36.567 0.304 23.132 1.00 7.56 H ATOM 505 CG1 VALH 222 36.567 0.304 23.132 1.00 7.56 H ATOM 506 CG2 VALH 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.03 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 6.03 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 4.73 H ATOM 509 C HIS H 224 33.127 4.906 22.618 1.00 7.22 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 8.31 H ATOM 510 O HIS H 224 37.279 3.936 20.682 1.00 8.31 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 NDI HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 515 CEI HIS H 224 37.899 2.731 20.668 1.00 1.73 H ATOM 516 NEZ HIS H 224 37.899 2.731 20.668 1.00 1.73 H ATOM 517 N PHE H 225 32.960 7.596 21.822 1.00 1.07 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 O PHE H 225 33.657 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 32.752 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 32.752 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.657 8.075 19.573 1.00 6.04 H ATOM 520 C PHE H 225 32.752 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.657 8.075 19.573 1.00 6.04 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.09 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.59 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.59 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.59 H ATOM 520 C PHE H 225 33.657 8.038 20.381 1.00 7.59 H ATOM 520 C PHE H 225 34.554 8.511 24.716 1.00 6.44 H ATOM 526 CEI PHE H 225 34.554 8.511 24.716 1.00 6.54 H ATOM 527 CZ PHE H 225 34.569 1.038 8.39 1.00 6.03 H ATOM 530 C GLY H 226 31.137 10.09 19.695 1.00 5.42 H ATOM 530 C GLY H 226 31.137 10.09 19.695 1.00 5.55 H ATOM 531 C G VAL H 227 34.426 31.197 17.312 1.00 5.55 H ATOM 530 C GLY H		ATOM	498	0G	1 THR H 22							0
ATOM SOI		ATOM										
ATOM												C
ATOM 502 C VAL H 222 35.637 0.508 23.904 1.00 7.56 H ATOM 503 O VAL H 222 36.667 0.304 23.132 1.00 7.65 H ATOM 504 CB VAL H 222 34.705 -1.745 24.507 1.00 6.51 H ATOM 505 CGI VAL H 222 33.426 -2.564 24.629 1.00 4.73 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.03 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 7.22 H ATOM 509 C HIS H 224 35.632 3.718 23.234 1.00 7.59 H ATOM 500 O HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 510 O HIS H 224 37.279 3.936 20.682 1.00 8.31 H ATOM 511 CB HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.99 H ATOM 514 CD2 HIS H 224 38.276 4.881 20.572 1.00 10.97 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 O PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 10.709 H ATOM 522 CG PHE H 225 33.253 8.038 20.381 1.00 7.09 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 520 CP PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 520 CD PHE H 225 33.555 8.280 26.689 1.00 5.49 H ATOM 521 CB PHE H 225 33.551 8.871 24.716 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.551 8.871 24.716 1.00 5.47 H ATOM 527 CZ PHE H 225 33.555 8.280 26.990 1.00 5.48 H ATOM 520 CG PHE H 225 33.655 8.280 26.089 1.00 5.48 H ATOM 520 CG PHE H 225 33.655 8.280 26.089 1.00 5.48 H ATOM 520 CG VAL H 227 31.880 12.07 17.312 1.00 5.55 H ATOM 531 O GLY H 226 31.485 8.392 20.065 1.00 5.48 H ATOM 533 CA VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 533 CA VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 536 CB VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 537 CGI VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 538 CG VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 537 CGI VAL H 227 31.880 12.177 17.312 1.00 5.55 H ATOM 538 CG VAL H 227 31.486 12.883 16.347 1.00 5.56 H ATOM 537 CGI VAL H 227 31.880 12.17	15											N
ATOM 504 CB VAL H 222 36.567 0.304 23.132 1.00 7.65 H ATOM 505 CGI VAL H 222 34.705 -1.745 24.507 1.00 6.51 H ATOM 506 CGI VAL H 222 33.329 -1.558 25.893 1.00 6.03 H ATOM 506 CGI VAL H 222 33.426 -2.564 24.629 1.00 4.73 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 35.632 3.718 23.234 1.00 7.59 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 510 C HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 511 CB HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 ND1 HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 515 CEI HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 515 CEI HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 10.97 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 29.73 20.557 1.00 10.476 H ATOM 517 N PHE H 225 32.960 7.596 21.821 1.00 6.04 H ATOM 518 CA PHE H 225 32.960 7.596 21.821 1.00 6.04 H ATOM 520 C PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 520 C PHE H 225 33.293 8.634 24.166 1.00 5.47 H ATOM 520 C PHE H 225 33.293 8.634 24.166 1.00 5.47 H ATOM 520 C PHE H 225 33.293 8.634 24.166 1.00 5.47 H ATOM 520 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 C PHE H 225 33.551 8.870 22.659 1.00 5.47 H ATOM 520 C PHE H 225 33.555 8.200 26.990 1.00 5.47 H ATOM 520 C PHE H 225 33.555 8.200 26.990 1.00 5.47 H ATOM 520 C PHE H 225 33.555 8.200 26.990 1.00 5.51 H ATOM 520 C C PHE H 225 33.555 8.200 26.990 1.00 5.51 H ATOM 520 C C PHE H 225 33.555 8.200 26.990 1.00 5.51 H ATOM 520 C C PHE H 225 33.555 8.200 26.990 1.00 5.52 H ATOM 520 C C PHE H 225 33.555 8.200 26.990 1.00 5.52 H ATOM 520 C C C PHE H 225 33.555 8.200 26.990 1.00 5.51 H ATOM 530 C C C C PHE 225 33.555 8.200 26.990 1.00 5.52 H ATOM 530 C C C C PHE 225 33.555 8.200 26.990 1.00 5.52 H ATOM 530 C C C C PHE 225 33.555 8.200 26.990 1.00 5.52 H ATOM 530 C C C C C C C C C C C C C C C C C C C	10											С
ATOM 504 CB VAL H 222 34.705 -1.745 24.507 1.00 6.51 H ATOM 505 CG1 VAL H 222 35.329 -1.558 25.833 1.00 6.03 H ATOM 506 CG2 VAL H 222 33.426 -2.564 24.629 1.00 4.73 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 509 C HIS H 224 34.148 5.500 22.271 1.00 7.22 H ATOM 509 C HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 512 CG HIS H 224 33.27 4.906 22.618 1.00 8.49 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 ND1 HIS H 224 38.276 4.881 20.572 1.00 10.98 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 6.04 H ATOM 520 O PHE H 225 33.554 8.597 19.573 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 6.44 H ATOM 520 CO PHE H 225 33.554 8.591 24.716 1.00 5.47 H ATOM 520 CO PHE H 225 33.555 8.280 26.900 1.00 5.47 H ATOM 520 CO PHE H 225 33.556 8.280 26.900 1.00 5.42 H ATOM 520 CO PHE H 225 33.565 8.280 26.900 1.00 5.42 H ATOM 520 CO PHE H 225 33.565 8.280 26.900 1.00 5.42 H ATOM 520 CO PHE H 225 33.565 8.280 26.900 1.00 5.55 H ATOM 520 CO PHE H 225 33.565 8.280 26.900 1.00 5.55 H ATOM 520 CO PHE H 225 33.565 8.280 26.900 1.00 5.55 H ATOM 530 CO CG H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 CA VAL H 227 31.800 12.883 16.347									1.00	7.56	H	С
ATOM 505 CG1 VAL H 222 35.329 -1.558 25.893 1.00 6.03 H ATOM 506 CG2 VAL H 222 33.426 -2.564 24.629 1.00 4.73 H ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.632 3.718 23.234 1.00 7.22 H ATOM 509 C HIS H 224 35.512 4.808 22.269 1.00 7.59 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 7.59 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 8.31 H ATOM 511 CB HIS H 224 37.279 3.936 20.682 1.00 8.31 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 515 CE1 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 516 NE2 HIS H 224 39.448 4.277 20.501 1.00 10.97 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 10.97 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.558 8.038 10.00 5.47 H ATOM 522 CG PHE H 225 33.557 8.038 20.381 1.00 7.09 H ATOM 522 CG PHE H 225 33.557 8.038 20.381 1.00 7.09 H ATOM 522 CG PHE H 225 33.557 8.038 20.381 1.00 5.47 H ATOM 522 CG PHE H 225 33.557 8.038 20.381 1.00 5.47 H ATOM 526 CE2 PHE H 225 33.555 8.038 20.381 1.00 5.47 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.42 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.42 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.42 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 531 O GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.53 H ATOM 535 O VAL H 227 31.800 12.883 16.674 1.00 5.30 H ATOM 535 O VAL H 227 31.406 12.889 15.277							0.304	23.132	1.00	7.65	H	0
ATOM 505 CG1 VAL H 222			504				-1.745	24.507	1.00	6.51	H	С
ATOM		ATOM	505	CG	1 VAL H 22	2 35.329	-1.558	25.893	1.00			Č
ATOM 507 N HIS H 224 35.632 3.718 23.234 1.00 6.63 H ATOM 508 CA HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HIS H 224 33.157 4.906 22.271 1.00 7.59 H ATOM 510 O HIS H 224 33.127 4.906 22.271 1.00 8.49 H ATOM 511 CB HIS H 224 37.279 3.936 20.682 1.00 8.31 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 514 CD2 HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 514 CD2 HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.279 3.936 20.572 1.00 10.97 H ATOM 514 CD2 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 520 C PHE H 225 33.557 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.272 8.038 20.381 1.00 7.09 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 525 CEI PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 526 CE2 PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 520 C GLY H 226 31.187 8.893 18.734 1.00 5.42 H ATOM 530 C GLY H 226 31.187 8.893 18.734 1.00 5.42 H ATOM 530 C GLY H 226 31.187 10.900 19.905 1.00 3.76 H ATOM 530 C GLY H 226 31.1837 10.900 19.905 1.00 3.76 H ATOM 531 C GLY H 226 31.1837 10.900 19.905 1.00 3.76 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.56 H ATOM 537 CGI VAL H 227 31.406 12.389 15.777 1.00 3.89 H ATOM 538 CA VAL H 227 31.406	20	ATOM	506	CG	2 VAL H 22	2 33.426	-2.564					Č
ATOM 508 CA HIS H 224 35.512 4.808 22.269 1.00 7.22 H ATOM 509 C HIS H 224 34.148 5.500 22.271 1.00 7.59 H ATOM 510 O HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 511 CB HIS H 224 35.840 4.300 20.862 1.00 10.98 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 ND1 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CEI HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 516 NEZ HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NEZ HIS H 224 39.447 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 524 CD2 PHE H 225 33.454 8.870 22.659 1.00 5.47 H ATOM 524 CD2 PHE H 225 34.554 8.870 22.659 1.00 5.47 H ATOM 525 CEI PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CEI PHE H 225 33.565 8.280 26.090 1.00 3.44 H ATOM 526 CE2 PHE H 225 33.565 8.280 26.090 1.00 3.44 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.773 8.870 10.090 10.00 3.44 H ATOM 530 C GLY H 226 31.783 10.313 18.667 1.00 5.55 H ATOM 531 O GLY H 226 31.783 10.313 18.667 1.00 5.55 H ATOM 532 CO VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 533 CA VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 534 C VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 537 CGI VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 538 CG2 VAL H 227 31.800 12.883 16.374 1.00 5.56 H ATOM 538 CG2 VAL H 227 31.800 11.126 17.576 1.00 1.00 H ATOM 538 CG2 VAL H 227 31.800 11.126 17.576 1.00 1.00 H ATOM 538 CG2 VAL H 227 31.800 11.126 17.576 1.00 1.00 H		ATOM	507									N N
ATOM 510 0 HIS H 224 34.148 5.500 22.271 1.00 7.59 H ATOM 510 0 HIS H 224 33.127 4.906 22.618 1.00 8.49 H ATOM 511 CB HIS H 224 35.840 4.300 20.862 1.00 10.98 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 513 ND1 HIS H 224 38.276 4.881 20.572 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 11.73 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.09 H ATOM 519 C PHE H 225 32.765 21.822 1.00 6.04 H ATOM 520 O PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 521 CB PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.657 8.075 19.573 1.00 6.44 H ATOM 522 CG PHE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.657 8.075 19.573 1.00 6.44 H ATOM 524 CD2 PHE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 525 CEI PHE H 225 33.657 8.075 19.573 1.00 6.44 H ATOM 524 CD2 PHE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 525 CEI PHE H 225 33.657 8.075 19.573 1.00 5.47 H ATOM 526 CE2 PHE H 225 33.657 8.075 19.60 6.44 H ATOM 526 CE2 PHE H 225 33.657 8.075 19.60 6.44 H ATOM 526 CE2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 526 CE2 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 527 CZ PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.48 H ATOM 531 C GLY H 226 31.753 10.313 18.667 1.00 5.55 H ATOM 533 CA VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 533 CA VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 533 CG VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 533 CG VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 533 CG VAL H 227 31.800 12.883 16.374 1.00 5.55 H ATOM 533 CG VAL H 227 31.436 12.389 15.777 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.466 12.389 15.777 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.476 12.088 16.364 1.00 5.76 H ATOM 538 CG2 VAL H 227 31.476 11.4168 16.7												
ATOM 510 O HIS H 224 33.127 4.966 22.618 1.00 8.49 H ATOM 511 CB HIS H 224 35.840 4.300 20.862 1.00 8.31 H ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 ND1 HIS H 224 37.279 3.936 20.682 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 523 CD1 PHE H 225 33.151 8.870 22.659 1.00 6.44 H ATOM 523 CD1 PHE H 225 33.151 8.870 22.659 1.00 6.44 H ATOM 523 CD1 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 524 CD2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 526 CE2 PHE H 225 33.151 8.870 22.659 1.00 5.42 H ATOM 526 CE2 PHE H 225 33.151 8.870 22.659 1.00 5.42 H ATOM 528 N GLY H 226 31.485 8.391 26.089 1.00 5.42 H ATOM 528 N GLY H 226 31.485 8.392 26.000 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 530 C GLY H 226 31.797 8.893 18.734 1.00 5.48 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 537 CG1 VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 537 CG1 VAL H 227 31.436 12.088 16.764 1.00 5.53 H ATOM 537 CG1 VAL H 227 31.436 12.088 16.764 1.00 5.50 H ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 31.436 12.088 16.764 1.00 5.56 H ATOM 538 CG2 VAL H 227 31.436 12.088 16.764 1.00 5.53 H ATOM 537 CG1 VAL H 227 31.436 12.088 16.764 1.00 5.53 H ATOM 538 CG2 VAL												C
ATOM 511 CB HIS H 224 35.840 4.300 20.862 1.00 8.31 H												C
ATOM 512 CG HIS H 224 37.279 3.936 20.682 1.00 10.98 H ATOM 513 ND1 HIS H 224 38.276 4.881 20.572 1.00 10.97 H ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CEI HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 524 CD2 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 525 CEI PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 527 CZ PHE H 225 33.656 8.280 26.900 1.00 3.44 H ATOM 527 CZ PHE H 225 33.656 8.280 26.900 1.00 5.44 H ATOM 527 CZ PHE H 225 33.656 8.280 26.900 1.00 5.42 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 520 C GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 531 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 532 N VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 CB VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 537 CGI VAL H 227 32.693 12.107 17.512 1.00 5.52 H ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 31.436 12.389 15.277 1.00 3.89 H 51 ATOM 537 CGI VAL H 227 31.436 12.389 15.277 1.00 3.89 H 52 ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H 53 ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H	25										H	0
ATOM 513 ND1 H1S H 224 38.276 4.881 20.572 1.00 10.97 ATOM 514 CD2 H1S H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CE1 H1S H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 H1S H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 523 CD1 PHE H 225 33.554 8.511 24.716 1.00 6.44 H ATOM 524 CD2 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 525 CE1 PHE H 225 33.3554 8.511 24.716 1.00 4.55 H ATOM 526 CE2 PHE H 225 33.3565 8.280 26.900 1.00 5.42 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 5.49 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 520 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 520 CA GLY H 226 31.837 10.990 19.695 1.00 5.48 H ATOM 530 C GLY H 226 31.837 10.990 19.695 1.00 5.58 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 535 CB VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 537 CG1 VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 537 CG1 VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 538 CG2 VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 5.76 H ATOM 538 CG2 VAL H 227 34.725 13.500 16.812 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H	20								1.00	8.31	H	С
ATOM 514 CD2 HIS H 224 37.899 2.731 20.668 1.00 12.41 H ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 5.47 H ATOM 523 CD1 PHE H 225 32.171 8.870 22.659 1.00 5.47 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 527 CZ PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 531 O GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 532 N VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.53 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 535 O VAL H 227 32.693 12.107 17.312 1.00 5.53 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 34.142 12.088 16.764 1.00 5.53 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.53 H ATOM 538 CG2 VAL H 227 34.142 12.088 16.764 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H								20.682	1.00	10.98	H	С
ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 7.09 H ATOM 521 CB PHE H 225 33.557 8.075 19.573 1.00 7.09 H ATOM 522 CG PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 523 CD1 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 524 CD2 PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 525 CE1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 526 CE2 PHE H 225 33.356 8.389 26.383 1.00 5.42 H ATOM 527 CZ PHE H 225 33.356 8.389 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.090 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 530 C GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 531 O GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 CG1 VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H			513				4.881	20.572	1.00	10.97	H	N
30 ATOM 515 CE1 HIS H 224 39.448 4.277 20.501 1.00 11.73 H ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.151 8.280 26.59 1.00 5.42 H		ATOM	514	CD	2 HIS H 224	37.899	2.731	20.668	1.00	12.41	H	C
30 ATOM 516 NE2 HIS H 224 39.247 2.973 20.557 1.00 14.76 H ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 32.303 8.634 24.136 1.00 2.41 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H 40 ATOM <		ATOM	515	CE	HIS H 224	39.448	4.277	20.501				Ċ
ATOM 517 N PHE H 225 34.157 6.770 21.881 1.00 7.18 H ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 524 CD2 PHE H 225 32.771 8.572 24.954 1.00 2.41 H ATOM 525 CE1 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 5.55 H ATOM 532 N VAL H 227 32.693 12.107 17.312 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 535 CB VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 537 CG1 VAL H 227 31.800 12.883 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.462 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.462 12.088 16.764 1.00 5.30 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H	30	ATOM	516									N
ATOM 518 CA PHE H 225 32.960 7.596 21.822 1.00 6.04 H ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 O PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 5.51 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 537 CG1 VAL H 227 31.800 12.883 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H		ATOM				•						N
ATOM 519 C PHE H 225 32.725 8.038 20.381 1.00 7.09 H ATOM 520 0 PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.485 8.392 20.065 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 531 0 GLY H 226 31.837 10.990 19.695 1.00 5.81 H ATOM 531 0 GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.55 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.50 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 537 CG1 VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 538 CG2 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												
ATOM 520 0 PHE H 225 33.657 8.075 19.573 1.00 9.02 H ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 527 CZ PHE H 225 33.565 8.280 26.990 1.00 5.19 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 533 CA VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 32.693 12.107 17.312 1.00 5.55 H ATOM 536 CB VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												C.
ATOM 521 CB PHE H 225 33.151 8.870 22.659 1.00 5.47 H ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 536 CB VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												C
ATOM 522 CG PHE H 225 33.293 8.634 24.136 1.00 6.44 H ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H	25											0
ATOM 523 CD1 PHE H 225 32.171 8.572 24.954 1.00 2.41 H ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 CB VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H	33								1.00	5.47	H	С
ATOM 524 CD2 PHE H 225 34.554 8.511 24.716 1.00 4.55 H ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 536 CB VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H							8.634	24.136	1.00	6.44	H	С
ATOM 525 CE1 PHE H 225 32.303 8.397 26.333 1.00 5.42 H ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 535 O VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 538 CG2 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H							8.572	24.954	1.00	2.41	H	С
40 ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H 45 ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.693 12.107 17.479 1.00 3.76 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53		ATOM	524				8.511	24.716	1.00	4.55	H	С
40 ATOM 526 CE2 PHE H 225 34.694 8.335 26.089 1.00 5.19 H ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H 45 ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 31.800 12.883 16.347 1.00 5.52 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H		MOTA	525	CE 1	PHE H 225	32.303	8.397	26.333	1.00	5.42	Н	С
ATOM 527 CZ PHE H 225 33.565 8.280 26.900 1.00 3.44 H ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H	40	ATOM	526	CE 2	PHE H 225	34.694	8.335	26.089	1.00		H	C
ATOM 528 N GLY H 226 31.485 8.392 20.065 1.00 5.55 H ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 0 GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 0 VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H		ATOM	527									Č
ATOM 529 CA GLY H 226 31.197 8.893 18.734 1.00 5.48 H ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H 45 ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												
ATOM 530 C GLY H 226 31.753 10.313 18.667 1.00 5.81 H ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H												N
45 ATOM 531 O GLY H 226 31.837 10.990 19.695 1.00 4.00 H ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H												C
ATOM 532 N VAL H 227 32.151 10.760 17.479 1.00 3.76 H ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H	45											С
ATOM 533 CA VAL H 227 32.693 12.107 17.312 1.00 5.52 H ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 539 N TYR H 228 30.566 14.947 15.959 1.00 5.23 H	40											0
ATOM 534 C VAL H 227 31.800 12.883 16.347 1.00 5.53 H ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H										3.76	H	N
ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H						32.693	12.107	17.312	1.00	5.52	H	С
ATOM 535 O VAL H 227 31.436 12.389 15.277 1.00 3.89 H 50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H				С	VAL H 227	31.800	12.883	16.347	1.00	5.53	H	С
50 ATOM 536 CB VAL H 227 34.142 12.088 16.764 1.00 5.30 H ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H		ATOM	535	0	VAL H 227	31.436	12.389	15.277	1.00			0
ATOM 537 CG1 VAL H 227 34.725 13.500 16.812 1.00 3.32 H ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H	50	ATOM	536	CB								Č
ATOM 538 CG2 VAL H 227 35.000 11.126 17.576 1.00 1.00 H ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												
ATOM 539 N TYR H 228 31.467 14.108 16.734 1.00 5.76 H ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												C
ATOM 540 CA TYR H 228 30.566 14.947 15.959 1.00 5.23 H												C
EE 'ATOM' 541 0 TUD												N
אויה פס אויה פס מייה פס אויה אויה אויה פס מייה פס מייה פס מייה פס מייה אויה פס מייה פס מייה פס מייה פס מייה פס	55 '											C
	υū	VIOW	041	C	11K H ZZ8	31.190	16.277	15.556	1.00	4.97	H	С

	ATOM	542		ΤY	R H	228	32.007	16.833	16.282	1.00	4.90	H	0
	ATOM	543	CB	TY	R H	228	29.291	15.203	16.781		6.48	H	-
	ATOM	544	CG	TY:	RH	228	28.564	13.935			7.32	H	_
_	ATOM	545	CD1	TY	RH	228	29.046	13.138			8.15	H	-
5	ATOM	546	CD2	TY:	RH	228	27.432	13.500			6.35	H	C
	MOTA	547	CEI	TY	R H	228	28.408	11.929			9.05	H	C
	ATOM	548	CE2	TY	R H	228	26.801	12.316		1.00	7.95	Н	C
	ATOM	549	CZ	TY	RH	228	27.287	11.532			8.70	H	C
	ATOM	550	OH	TY	RH	228	26.647	10.347			8.64	H	0
10	ATOM	551	N	THI	RH	229	30.807	16.784		1.00	4.04	H	N
	ATOM	552	CA	THE	RH	229	31.329	18.067			4.70	Н	C
	ATOM	553	C	THE	R H	229	30.782	19.121	14.900		3.38	Н	C
	ATOM	554	0	THE	R H	229	29.590	19.133	15.181		3.30	H	0
	ATOM	555	CB			229	30.836	18.381	12.504		5.34	H	C
15	ATOM	556	0G1			229	31.188	17.301	11.627		6.83	Н	0
	ATOM	557	CG2	THE	Н	229	31.461	19.668	11.998		2.01	Н	C
	ATOM	558	C11	142	i	1	35.781	7.018	10.285	1.00 1		i	
	ATOM	559	02	142	I	1	34.889	7. 239	11.100	1.00 1		I	C
	ATOM	560	N 4	142	1	1	35.803	7.455	9.001	1.00 1		I	0 N
20	ATOM	561	C10	142	I	1	34.710	8.250	8.481		9.56	I	N C
	ATOM	562	C13	142	I	1	34.848	8.535	6.994		8.40	I	C
	ATOM	563		142		1	36.165	9.222	6.602		6.40	I	C
	ATOM	564	C 9	142		1	33.397	7.494	8.773	1.00		Ī	C
	ATOM	565	01	142		1	33.289	6.279	8.607		B. 42	I	
25	ATOM	566	N 3	142		1	32.427	8.295	9.230		3.42 3.14	. I	0 N
	ATOM	567	C8	142		1	31.166	7.668	9.494		7.12		N
	MOTA	568	C6	142		1	31.799	6.529	11.670		3.93	I ,	C
	ATOM	569	C 7	142		1	31.539	6.286	13.035		5. 62	I	C
	ATOM	570	C 2	142		i	30.475	6.947	13.697			I	C
30	ATOM	571	C3	142		1	29.626	7.773	12.954		1.23	I	C
	ATOM	572	C4	142		1		7.994	11.603		3.55	I	C
	ATOM	573	C5	142		1	30.952	7.384	10.951		96	I	C
	ATOM	574	C1	142		1	30.247	6.782	15.131		. 87 . 86	I I	C
	ATOM	575	N 1	142		1	30.808	5.783	15.789			_	C
35	ATOM	576	C15			1	36.036	9.591	5.142		2.27	I	N
	ATOM	577	05	142		1	35.840	8.729	4. 291	1.00 1	7.71	I	C
	ATOM	578	N 6	142		i	36.066	10.898	4.897			I	0
	MOTA	579	C16			1	37.992	7.122	11.404	1.00 6	. 65	I	N
	ATOM	580	N5			1	36.563		11.541			I	C
40	ATOM	581	C 1 2	142	ī	1	37.009	6.187	10.696			l	N ·
	ATOM	582		142		1	36.372	3.520		1.00 13		I	C
	ATOM	583		142		ī	35.680	3.703	9.668	1.00 19		I	S
	ATOM	584		142		1	35.734	2.849	11.987	1.00 20		I	0
	ATOM	585	C 2 9			1	37.958	2.804	10.578	1.00 18		I	0
45	ATOM	586	C30			i	38.640	3.369	9.320	1.00 19		I	C
	ATOM	587		142		1	29.435	7.589		1.00 26		I	C
	ATOM	588	C 2 2			1	40.253	6.007	15.802		. 52	I	N
	ATOM	589	C17			1	39.172	6.378	11.120	1.00 13		I	С
	ATOM	590	C18			1	39.260	5.996	11.945	1.00 12		I	C
50	ATOM	591	C19			1	40.362		13.297	1.00 13		I	C
	ATOM	592	C20			1		5.257	13.785	1.00 14		I	C
	ATOM	593	C21			1	41.430 41.350	4.868 5.273	12.954	1.00 14		1	C
	ATOM	594	C 2 7			1	45.001		11.615	1.00 12		I	C
	ATOM	595	C28			1		3.681	13.710	1.00 18		I	C
55	ATOM	596	C23			1	43.904	4.357	13.114	1.00 16		I	C
J J	014	550	- LO 1	. 76	1	Ţ	42.573	4.077	13.477	1.00 15	. 00	I	С

	ATOM	5 9.7	C 2 4	142	I 1	42.38	35 3.03	8 14.411	1 00 17 61		_
	ATOM	598							_	I	C
	ATOM	599		142				_		I	C
	ATOM	600		WAT	_					I	C
5	ATOM	601		WAT						₩	0
	ATOM	602		WAT						₩	0
	ATOM	603								₩	0
	ATOM	604							1.00 8.07	W	0
	ATOM	605							1.00 8.16	₩	0
10	ATOM	606		AT					1.00 10.69	W	0
	ATOM	607		∦AT					1.00 12.88	₩	0
	ATOM	608		VAT		20.47			1.00 2.92	W	0
	ATOM	609			w 43	33.35			1.00 4.35	₩	0
	ATOM	610		VAT		41.06			1.00 11.25	₩	0
15	ATOM	611			₩ 73	31.07			1.00 19.21	₩	0
	ATOM	612			₩ 90	31.42			1.00 16.83	₩	0
	ATOM	613				34.29			1.00 8.85	W	0
	ATOM	614			W 92	34.70			1.00 4.39	₩	0
	ATOM	615			₩ 97	32.60		_	1.00 10.06	W	0
20	ATOM				W 113	29.86			1.00 13.89	W	0
20	ATOM	616			W 115	27.59			1.00 6.50	¥	0
	ATOM	617			W 119	35.74		18.640	1.00 13.65	₩	0
	ATOM	618	OH2 W			38.20		19.316	1.00 21.67	₩	0
	MOTA	619	OH2 W			39.823		17.466	1.00 16.74	¥	0
25	ATOM	620	OH2 W			45.149		24.578	1.00 31.52	₩	0
20	ATOM	621			W 169	26.773		5.750	1.00 20.71	· ₩	0
	ATOM	622			7 179	33.910		-3.886	1.00 26.31	₩	0
		623	OH2 W			22.630		5.218	1.00 17.19	₩.	0
	ATOM ATOM	624	OH2 W			41.408		17.609	1.00 38.16	₩	0
30	MOTA	625		AT I		28.879		-2.728	1.00 25.34	W	0
30	ATOM	626		AT Y		40.187		20.906	1.00 29.06	¥	0
	ATOM	627		AT F		41.040		12.781	1.00 21.90	₩	0
	ATOM	628		AT P		28.609		19.633	1.00 16.06	W	0
	ATOM	629			287	27.925		17.100	1.00 28.20	₩	0
35	ATOM	630			292	29.248		15.460	1.00 4.55	₩	0
55	ATOM	631 632			294	34.711		8.259	1.00 18.60	₩	0
	ATOM				296	36.499		1.251	1.00 16.68	W	0
		633	OH2 W			33.346		3.104	1.00 31.25	W	0
	ATOM	634	OH2 WA			38.929		19.839	1.00 27.36	₩	0
40	ATOM ATOM	635 636	OH2 WA			24.988	4.849	4.100	1.00 39.67	¥	0
1 0	ATOM		OH2 WA			38.601	-1.114	16.775	1.00 24.51	₩	0
		637	OH2 WA			39.896	8.788	8.314	1.00 40.66	₩	0
	ATOM ATOM	638	OH2 WA			44.187		12.663	1.00 29.57	₩	0
		639	OH2 WA			27.275	6.739	2.616	1.00 23.30	₩	0
45	ATOM	640	OH2 WA			34.463	4.647	6.797	1.00 34.65	¥	0
40	ATOM ATOM	641	OH2 WA			35.750	-0.120	8.819	1.00 35.63	W	0
		642	OH2 WA			38.235	6.328	7.390	1.00 28.92	₩	0
	ATOM	643	OH2 WA			42.864	7.185	8.805	1.00 39.53	₩	0
	ATOM		OH2 WA			31.573	8.191	0.869	1.00 38.78	¥	0
5 0	ATOM		OH2 WA			41.353	4.533		1.00 36.07	₩	0
50	ATOM		OH2 WA			29.643	-0.022		1.00 38.02	¥	0
	ATOM		OH2 WA			44.330	8.280		1.00 43.93	W	0
	ATOM		OH2 WA			29.301	-0.100		1.00 43.24	₩	0
	ATOM		OH2 WA			38.570	9.454		1.00 41.14	W	0
==	ATOM		OH2 WA			42.864	11.302		1.00 29.17	¥	0
55	ATOM	651	OH2 WA	I. W	448	44.322	12.556	8.806	1.00 50.64	₩	0

WO 02/062829 PCT/JP02/00883

ATOM 652 OH2 WAT W 452 41.748 10.947 19.697 1.00 41.61 W 0 ATOM 653 OH2 WAT W 454 38.170 6.670 2.158 1.00 38.30 W 0

請 求 の 範 囲

1. 一般式(1)

5

(式中、

R₁は、下記式:

から選択される基

(上記式中、R₈は、アミノ基、アミノメチル基、または、

R。は、水素原子、アミノ基、水酸基、アシル基、アルキル部分が置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキ

10

ルであるアルコキシカルボニル基を表す。 R_{10} は、アミノ基を表す。X、Yは、いずれか一方が=CH-を表し、他方が=N-を表す。)を表す。

 R_2 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のア ルキル基を表す。

Raは、

·-(CH₂)_m-R₁₁、を表す。

10 ここで、mは、 $1 \sim 6$ の整数を表す。

R1,は、

-CONH2.

-N— $CONH_2$ (ここで、 R_{12} は、水素原子または炭素数 $1\sim3$ の直鎖も

15 しくは分枝鎖状のアルキル基を表す。)、また は、

 R_4 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

20 R_5 は、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-CH_2-R_{13}$ (ここで、 R_{13} は、置換基を有していてもよいアリール基、または、置換基を有していてもよい複素環基を表す。)を表す。

 R_6 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のア 25 ルキル基を表す。

R,は、置換基を有していてもよい炭素数1~6の直鎖もしくは分枝

WO 02/062829 PCT/JP02/00883

鎖状のアルキル基、または、 $-SO_2-R_{14}$ (ここで、 R_{14} は、置換基を有していてもよい炭素数 $1\sim 8$ の直鎖もしくは分枝鎖状のアルキル基を表す。) を表す。)

で示される化合物、その互変異性体、光学異性体、またはこれらの水和 5 物もしくは薬学的に許容し得る塩。

2. 一般式(1)において、

R₅が、

- ・炭素数1~6の直鎖もしくは分枝鎖状のアルキル基、または、
- \cdot C H₂ R₁₃,
- 10 である請求項1記載の化合物(ここで、R₁₃は、下記式

から選択される基である。上記式中、

- 15 R_{15} は、水素原子;置換基を有していてもよいアリール基; ハロゲン原子で置換されていてもよい炭素数 $1 \sim 3$ のアルキル基;炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルコキシ基;ハロゲン原子;アリールカルボニル基;アルキル部分が炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基;ニトロ基;または、アミノ基、
- 20 を表す。

 R_{16} は、水素原子、または炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_{17} は、水素原子;水酸基、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルコキシ基、 -

25 $O-(CH_2)_n-OH(CCTC, nは1~5の整数を表す。);-O-(CH_2)_p-COOH(CCTC, pは1~5の整数を表す。);-O-(CH_2)_q-NH_2(CCTC, qは1~5の整数を表す。);$

5

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)を表す。

10 R_{18} は、水素原子、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、 ル基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、 または、置換基を有していてもよいアリールスルホニル基を表す。)。 3. 一般式(1)において、 R_7 が、

15 ・炭素数1~6の直鎖もしくは分枝鎖状のアルキル基、

(ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{2}$ 2 である。 R_{22} は、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、アルキル部分が炭素数 $1\sim3$ の直鎖を 1<1 は分井端料のスルカ

20 または、アルキル部分が炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基である。)、または

$$\cdot$$
 - SO₂ - R₁₄

(ここで、 R_{14} は、

①置換基を有していてもよい炭素数 1 ~ 6 の直鎖もしくは分枝鎖状の 25 アルキル基 (アルキル基の置換基としては、カルボキシル基、アルキル 部分が炭素数 1 ~ 3 の直鎖もしくは分枝鎖状のアルキル基であるアルコ キシカルボニル基である。)、または、

② $-CH_2-R_2$ 3である。 R_2 3は、置換基を有していてもよいフェニル基である。)、

である、請求項1または2に記載の化合物。

4. 一般式(1)において、

5 R₃が、

 \cdot - (CH₂)_m-R₁₁

(ここで、mは1~3の整数であり、 R_{11} は、 $-CONH_2$ 、

 F_{12} —N—CONH₂(ここで、 R_{12} は水素原子またはメチル基である。)、

10 または、

である。)

である、請求項1~3のいずれか1項に記載の化合物。

5. 一般式(1)において、

15 R₁が、下記式:

から選択される基である、請求項 $1\sim4$ のいずれか1項に記載の化合物 20 (上記式中、 R_8 は、

である(ここで、R。は、水素原子、アミノ基、水酸基、アシル基、または、アルキル部分が置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。))。

- 6. 一般式(1)において、 R_2 が、水素原子、または炭素数 $1\sim$ 3の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1\sim5$ のいずれか 1 項に記載の化合物。
- 7. 一般式(1)において、 R_4 が、水素原子、または炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1\sim 6$ のいずれ 10 か 1 項に記載の化合物。
 - 8. 一般式 (1) において、 R_6 が、水素原子、または炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1\sim 6$ のいずれか 1 項に記載の化合物。
 - 9. 一般式(1)において、
- 15 R_3 が、 $-(CH_2)_m R_{11}$ (ここで、mおよび R_{11} は、請求項1における定義と同じ意味を表す。)、である請求項1に記載の化合物。
 - 10. 一般式(1)において、

R₃が、

20

であり、かつ、

 R_7 が、 $-SO_2-R_{14}$ (ここで、 R_{14} は請求項1における定義と同じ意味を表す。)である、請求項1記載の化合物。

- 11. 一般式(1)において、
- 25 R₁が、下記式:

から選択される基であり(上記式中、R。は、

5

である。ここで、R。は、水素原子、アミノ基、水酸基、アセチル基、 プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メト キシカルボニル基、エトキシカルボニル基、 t ーブトキシカルボニル基、 またはベンジルオキシカルボニル基である。);

10 R_2 が、水素原子またはメチル基であり; R_3 が、

15

、または、

 R_4 が、水素原子またはメチル基であり;

20 R_5 が、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-CH_2-R_{13}$ であり(ここで、 R_{13} は、下記式

から選択される基である。上記式中、

R₁₅は、水素原子; tーブチル基;メトキシ基;臭素原子;塩素原子;ベンゾイル基;または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1 \sim 3$ の直鎖もしくは分枝状のアルコキシ基、 $-O-(CH_2)_n-OH(CCTC,n$ は $1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_n-COOH(CCTC,p$ は $1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_n-NH_2$ (CCCTC、Qは $1 \sim 3$ の整数を表す。)、 $-OSO_2-R_{20}$ (CCCTC、 R_{20} はエチル基、 $n-\mathcal{I}$ ロピル基、 $i-\mathcal{I}$ ロピル基またはベンジル基である。)、ベンジルオキシ基、3-もしくは 4-ヒドロキシベンジルオキシ基、または、3-もしくは 4-カルボキシベンジルオキシ基、である。

15 R₁₈は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスルホニル基である。);
R₂が、水素原子またはメチル基であり。

 R_6 が、水素原子またはメチル基であり; R_7 が、

・炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、

20

5

(ここで、kは、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{2}$ 2である。 R_{22} は、メチル基、または、アセチル基である。)、または $-SO_2-R_{14}$ (ここで、 R_{14} は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置

換基としては、カルボキシル基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。)である。)

である、請求項1記載の化合物。

5 12. 化合物が、

から選択される、請求項1記載の化合物。

- 13. 請求項1に記載の化合物を含有する医薬組成物。
- 14. 請求項1に記載の化合物を含有する抗血栓剤。
- 15. 請求項1に記載の化合物を含有する血液凝固VIIa因子阻 5 害剤。
 - 16. ヒトVII a 因子/ヒト可溶型組織因子と低分子可逆的VI I a 因子阻害剤との複合体の結晶。
 - 17. 低分子可逆的VIIa因子阻害剤が一般式 (1)

(式中の置換基の定義は、請求項1におけると同じ意味を表す。)

- 10 で示される化合物である、請求項16に記載の結晶。
 - 18. 以下の工程 (i) ~ (i i i) を含む、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶を製造する方法:
- (i)低分子可逆的VIIa因子阻害剤との結晶化が可能なヒトVII 15 a因子/ヒト可溶型組織因子を調製する工程、
 - (ii)低分子可逆的VIIa因子阻害剤を加え、結晶化用濃縮試料を調製する工程、
 - (iii)低分子不可逆的VIIa因子阻害剤又は低分子可逆的VII a因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結果を種として活物し、(ii)で限るわたは胃(は尿)物はないに
- 20 晶を種として添加し、(i i)で得られた結晶化用濃縮試料からヒトV IIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤と の複合体の結晶を得る工程。
 - 19. 低分子可逆的 VII a 因子阻害剤が一般式 (1) (式中の置換基の定義は、請求項1におけると同じ意味を表す。)
- 25 で示される化合物である、請求項18に記載の方法。
 - 20. 請求項16または17に記載の結晶をX線結晶構造解析することにより得られるヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体。

21. 請求項20に記載のデータを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインする方法。

- 22. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のAsp60側鎖、Tyr94側鎖及びThr98主鎖の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 23. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のLys192側鎖と相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 10 24. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のVal170E、Gly170F、Asp170G、Ser170H、Pro170IおよびGln217の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 25. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトV 15 IIa因子H鎖のS4サイトからS4サブサイトに通じる孔を通してS 4サブサイトと相互作用する置換基を有する低分子可逆的VIIa因子 阻害剤である、請求項21に記載の方法。
 - 26. 請求項21~25のいずれか1項に記載の方法によりデザインされた低分子可逆的VIIa因子阻害剤。
- 20 27. ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有する、請求項26に記載の低分子可逆的VIIa因子阻害剤。

[A-1]群:

5

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3

25 (ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

[A-2]群:

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

28. ヒトVIIa因子のS1サブサイトと相互作用する部分構造 5 として下記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される 部分構造のいずれかを含有する、請求項26に記載の低分子可逆的VI Ia因子阻害剤。

[B-1]群:

10 [B-2]群:

[B-3]群:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有す 15 る芳香族6員環、5員環を示す。)

[B-4]群:

$$S = \frac{1}{N} \frac{1}{N}$$

(ここで、 R_{27} は、炭素数 $1\sim3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。)

5 29. ヒトVIIa因子のS4サイトと相互作用する部分構造として下記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子請求項26に記載の低分子可逆的VIIa因子阻害剤。 [C-1]群:

10 (ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。) [C-2]群:

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 , X_7 、 X_8 、 X_9 、 15 X_{10} は、独立して、NまたはCHを示す。)

30. ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として下記群

[B-1]、[B-2]、[B-3] または[B-4] 中に示される部分構造のいずれかを含有し、かつ、S4 サイトと相互作用する部分構造として下記群 [C-1] または[C-2] 中に示される部分構造のいずれかを含有する、低分子請求項 26 に記載の低分子可逆的VII a因子阻害剤。

5 [A-1]群:

$$H_2N$$
 H_2N X_1 H_2N X_2 X_3

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

[A-2]群:

$$\xi$$
 ——R₂₃—NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

[B-1]群:

10

[B-2]群:

[B-3]群:

15

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

[B-4]群:

5

(ここで、 R_{27} は、炭素数 $1 \sim 3$ のアルキレン基を示す。 R_{24} は、 [B2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。) [C-1]群:

$$R_{28}$$
 R_{28}
 R_{28}
 R_{28}
 R_{28}

10 (ここで、 X_8 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。) [C-2]群:

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 、 X_7 、 X_8 、 X_9 、15 X_{10} は、独立して、NまたはCHを示す。)

図 1

図 2

図 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07K5/062, C07K5/065, C07K5/078, C07K14/745, G01N33/15,	
CO1127/CO CO CT 7/CO CO (RI4/ /45, GOINS5/15,	
G01N33/68, G06F17/50	,
According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols)	
Int.Cl ⁷ C07K5/062, C07K5/065, C07K5/078, C07K14/745, G01N33/15,	
G01N33/68, G06F17/50	
Documentation searched other than airing described in the search of the	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields	s searched
Flectronic data base consulted during the internal of the state of the	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms us REGISTRY (STN), CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)	sed)
REGISTATION, CAISIN, MEDITALISTAN, WPI (DIALOG), BIOSIS (DIALOG)	G)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
	to claim No.
A WO 00/75172 A2 (Aventis Pharma Deut GmbH.),	-30
14 December, 2000 (14.12.00),	
& EP 1059302 A1	
& CZ 200104357 A3 & NO 200106005 A & BR 200011461 A & EP 1189929 A2	
2 DN 200011401 R & EF 1109929 A2	
A WO 00/58346 Al (Sanofi-Synthelabo),	-30
05 October, 2000 (05.10.00),	30
& FR 2791683 A1 & AU 200033017 A	
	•
A WO 00/41531 A2 (Genentech),	-30
20 July, 2000 (20.07.00),	
& EP 1144373 A2	
a no 200103402 A a CZ 200102508 A3	
Further documents are lived in the set of th	
Further documents are listed in the continuation of Box C. See patent family annex.	
Special categories of cited documents: "T" later document published after the international filing document defining the general state of the art which is not	g date or
considered to be of particular relevance	but cited to
"E" earlier document but published on or after the international filing "X" document of particular relevance; the claimed invent	tion cannot be
"L" document which may throw doubts on priority claim(s) or which is	an inventive
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invent	tion cannot be
special leason (as specified) considered to involve an inventive step when the doc	cument is
means combination being obvious to a person skilled in the	art
"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed	
Date of the actual completion of the international search Date of mailing of the international search report	
10 May, 2002 (10.05.02) 21 May, 2002 (21.05.02)	
Name and mailing address of the ISA/ Authorized officer	
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer	
Facsimile No. Telephone No.	
Form PCT/ISA/210 (second sheet) (July 1998)	

BNSDOCID. <WO____02062829A1_I_>

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/00883

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No			PC1/UI	202/00883
A WO 00/15658 Al (Aventis Pharma Deut GmbH.), 23 March, 2000 (23.03.00), & EP 987274 Al & AU 9959723 A & NO 200101293 A & BR 9913742 A & CZ 200100914 A3 & EP 1114061 Al & US 6287794 Bl & KR 2001075130 A & ZA 200101861 A A DENNIS, M. S. et al., Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470 A PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA	C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
23 March, 2000 (23.03.00), & EP 987274 A1 & AU 9959723 A & NO 200101293 A & BR 9913742 A & CZ 200100914 A3 & EP 1114061 A1 & US 6287794 B1 & KR 2001075130 A & ZA 200101861 A A DENNIS, M. S. et al., Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470 A PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA	Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim No.
factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470 A PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA	A	23 March, 2000 (23.03.00), & EP 987274 A1		
VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA	A	factor VIIa as anticoagulants. Nature 2000	bitors of	1-30
	A	VIIa and its implications for the triggeriblood coagulation. Proc. Natl. Acad. Sci.	ing of	1-30
			·	
				·

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int. C1' C07K 5/062, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C07K 5/062, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

1	C SBM La										
	ると認められる文献	•									
引用文献の	関連する										
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号									
A	WO 00/75172 A2 (AVENTIS PHARMA DEUT GMBH) 2000.12.14	1-30									
i :	& EP 1059302 A1 & AU 200053976 A & CZ 200104357 A3	1 00									
	& NO 200106005 A & BR 200011461 A & EP 1189929 A2										
A	WO 00/58346 A1 (SANOFI-SYNTHELABO) 2000. 10. 05	1-30									
	& FR 2791683 A1 & AU 200033017 A										
A	WO 00/41531 A2 (GENENTECH) 2000.07.20 & EP 1144373 A2	1-30									
	& AU 200033451 A & NO 200103462 A & CZ 200102508 A3	1 00									

× C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの ●
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

様式PCT/ISA/210 (第2ページ) (1998年7月)

	lear.	小山映番号 アしェノ リアリ	
C(続き).	関連すると認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、	その関連する箇所の表示	請求の範囲の番号
Ä	WO 00/15658 A1 (AVENTIS PHARMA DEUT GMBH) & EP 987274 A1 & AU 9959723 A & NO 200101 & BR 9913742 A & CZ 200100914 A3 & EP 111 & US 6287794 B1 & KR 2001075130 A & ZA 20	293 A 4061 A1	1-30
A	DENNIS, M. S. et al. Peptide exosite inhibit as anticoagulants. Nature 2000, Vol. 404, No	ors of factor VIIa .6777, p.465-470	1-30
A	PIKE, A. C. et al. Structure of human factor implications for the triggering of blood Proc. Natl. Acad. Sci. USA. 1999, Vol. 96, No. 16,	coagulation.	1-30
		,	
			-
			•
			•
		·	-
·		·.	
	·		
			i
	•		
İ			
,			
			•

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)