some background need for ml

zhangyifeng

2018年10月31日

目录

Mat	trix	2
1.1	notation	2
1.2	Basic calculate	2
com	nmon distribution	2
2.1	gamma distribution	2
Mat	trix Differentiation	3
3.1	Matrix Differentiation-from functional analysis points \dots .	3
Lag	range duality	10
4.1	application	10
4.2	primal problem	10
4.3	generalized Lagrange function	10
4.4	dual problem	11
4.5	$KKT(Karush-Kuhn-Tucker) condition \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	11
	1.1 1.2 com 2.1 Mat 3.1 Lag 4.1 4.2 4.3 4.4	1.2 Basic calculate

1 MATRIX 2

1 Matrix

1.1 notation

 $\pmb{lpha} \in \mathbb{R}^n$

 $oldsymbol{x} \in \mathbb{R}^n$

 $A \in \mathbb{R}^{m \times n}$

$$(A)_{ij} = a_{ij}$$

 A^T : transpose of A

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

 $det(A) = \sum_{\sigma \in S_n} par(\sigma) a_{1\sigma_1} a_{2\sigma_2} \dots a_{1\sigma_n}$, where S_n is all set of n - order permutation. $par(\sigma)$ can be -1 or +1.

also, $det(A) = \sum_{i=1}^{n} a_{ki} A_{ki} (k = 1, 2, ..., n) = \sum_{j=1}^{n} a_{jl} A_{jl} (l = 1, 2, ..., n)$ Frobenius norm of A:

$$||A||_F = (tr(A^T A))^{1/2} = (\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2)^{1/2}$$

it can be regarded as L_2 norm when metrix was extended to vectors

1.2 Basic calculate

$$tr(AB) = tr(BA)$$

 $tr(ABC) = tr(BCA) = tr(CAB)$

2 common distribution

2.1 gamma distribution

gamma function

$$\Gamma(a) = \int_0^\infty x^{a-1} \exp^{-x} dx$$
, where $a > 0$

3 Matrix Differentiation

3.1 Matrix Differentiation-from functional analysis points

假设 X 和 Y 为赋范向量空间, $F: X \to Y$ 是一个映射,那么 F 在 $x_0 \in X$ 可导的意思是说存在一个有界线性算子 $L \in \mathcal{L}(X,Y)$,使得对于任意的 $\epsilon > 0$ 都存在 $\delta > 0$,对于满足 $x \in X \setminus \{x_0\}, \|x - x_0\| < \delta$ 的 x 都有 $\frac{\|F(x) - F(x_0) - L(x - x_0)\|}{\|x - x_0\|} < \epsilon$. 我们称 $L(\|x - x_0\|)$ 为 F 在 x_0 点的微分。

以上定义有一个等价的表述,往往计算起来更方便:对于距离 x_0 足够近的点 x,即 $\lim_{x\to x_0}\frac{o(\|x-x_0\|)}{\|x-x_0\|}=0$,有 $F(x)=F(x_0)+L(x-x_0)+o(\|x-x_0\|)$. (注:此处 $L(x-x_0)$ 应该理解为线性算子 L 在 $x-x_0$ 这个点的值,而不是 L 乘以 $x-x_0$ 。不过在有限维空间所有线性算子都可以用矩阵表述,L 在 $x-x_0$,这个值便正好可以表述为矩阵与向量的乘积 (Riesz 表示定理))

例子 1: 假设 $F(X)=X^TX$ 是一个 $\mathbb{R}^{m\times n}\to\mathbb{S}^n$ 的映射, 其中 \mathbb{S}^n 为 n 维对称阵的空间。

$$F(X + \Delta X) - F(X)$$

$$= (X + \Delta X)^{T} (X + \Delta X) - X^{T} X$$

$$= X^{T} \Delta X + \Delta X^{T} X + o(\|\Delta X\|)$$

所以我们有 $L(\Delta X) = 2X^T \Delta X$,这个就是 F 在 X 点的微分。 例子 2:最小二乘问题 $f(x) = \frac{1}{2} ||Ax - b||_2^2 f$ 是一个 $\mathbb{R}^n \to \mathbb{R}$ 的映射。

$$f(x + \Delta x) - f(x)$$

$$= \frac{1}{2} ||A(x + \Delta x) - b||^2 - \frac{1}{2} ||Ax - b||^2$$

$$= \frac{1}{2} ||Ax - b + A\Delta x||^2 - \frac{1}{2} ||Ax - b||^2$$

$$= (Ax - b)^T A\Delta x + o(||\Delta x||)$$

所以我们有 $L(\Delta x) = (Ax - b)^T A \Delta x$,这个就是 f 在 x 点的微分。在这种情况下,L 这个有界线性算子 (梯度) 可以用矩阵来表述 (Riesz 表示定理): $L(\Delta x) = \langle \nabla f(x), \Delta x \rangle = (Ax - b)^T A \Delta x$,所以梯度 $\nabla f(x) = A^T (Ax - b)$

总结: 在有限维的情况下,我们可以先求 F 的微分 $L(\Delta x)$,利用 Riesz 表示定理,得 $L(\Delta x) = \langle f'(x), \Delta x \rangle$,可求得对应的 gradient vector 或者

jacobi 矩阵 f'(x),也就是导数,显然,这里可以看出,导数和微分差一个转置。

标量 f 对矩阵 X 的导数

核心思想

函数的微分 = 函数的导数和自变量的微分的内积 = $\operatorname{tr}\left(\frac{\partial f}{\partial X}^T dX\right)$

矩阵微分运算法则

加减法: $d(X \pm Y) = dX \pm dY$

矩阵乘法: d(XY) = (dX)Y + XdY

转置: $d(X^T) = (dX)^T$

迹: $d\operatorname{tr}(X) = \operatorname{tr}(dX)$

逆: $dX^{-1} = -X^{-1}dXX^{-1}$ 。此式可在 $XX^{-1} = I$ 两侧求微分来证明

行列式: $d|X| = \operatorname{tr}(X^\# dX)$,其中 $X^\#$ 表示 X 的伴随矩阵,在 X 可逆时又可以写作 $d|X| = |X|\operatorname{tr}(X^{-1}dX)$ 。此式可用 Laplace 展开来证明,详见张贤达《矩阵分析与应用》第 279 页

逐元素乘法: $d(X\odot Y)=dX\odot Y+X\odot dY\odot$ 表示尺寸相同的矩阵 X,Y 逐元素相乘

逐元素函数: $d\sigma(X)=\sigma'(X)\odot dX$, $\sigma(X)=[\sigma(X_{ij})]$ 是逐元素标量函数运算, $\sigma'(X)=[\sigma'(X_{ij})]$ 是逐元素求导数。

举个例子,
$$X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
, $d\sin(X) = \begin{bmatrix} \cos x_{11} dx_{11} & \cos x_{12} dx_{12} \\ \cos x_{21} dx_{21} & \cos x_{22} dx_{22} \end{bmatrix} = \cos(X) \odot dX$ 。

迹技巧 (trace trick)

标量套上迹: a = tr(a)

转置: $tr(A^T) = tr(A)$

线性: $tr(A \pm B) = tr(A) \pm tr(B)$

矩阵乘法交换: $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, 其中 $A \subseteq B^T$ 尺寸相同。两侧都等于 $\sum_{i,j} A_{ij} B_{ji}$

矩阵乘法/逐元素乘法交换: $\operatorname{tr}(A^T(B \odot C)) = \operatorname{tr}((A \odot B)^T C)$, 其中 A, B, C 尺寸相同。两侧都等于 $\sum_{i,j} A_{ij} B_{ij} C_{ij}$

复合法则

假设已求得 $\frac{\partial f}{\partial Y}$,而 Y 是 X 的函数,如何求 $\frac{\partial f}{\partial X}$ 呢?在微积分中有标量求导的链式法则 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$,但这里我们不能沿用链式法则,因为矩阵对矩阵的导数 $\frac{\partial Y}{\partial X}$ 截至目前仍是未定义的。于是我们继续追本溯源,链式法则是从何而来?源头仍然是微分。我们直接从微分入手建立复合法则:先写出 $df = \operatorname{tr}\left(\frac{\partial f}{\partial Y}^T dY\right)$,再将 dY 用 dX 表示出来代入 (这个是矩阵对矩阵的导数,在下一节我们会了解到),并使用迹技巧将其他项交换至 dX 左侧,即可得到 $\frac{\partial f}{\partial X}$ 。

标量对矩阵的一般求导步骤

- 1. 对标量函数 f 两端作微分, 利用微分运算法则化简
- 2. 对两端作迹运算,利用迹运算法则化简,将 dx 移到最右端
- 3. 利用微分和矩阵的联系 $df = \operatorname{tr}\left(\frac{\partial f}{\partial X}^T dX\right)$, 求 $\frac{\partial f}{\partial X}$

一些例子

例 1: $f = \mathbf{a}^T X \mathbf{b}$, 求 $\frac{\partial f}{\partial X}$ 。其中 \mathbf{a} 是 $m \times 1$ 列向量, X 是 $m \times n$ 矩阵, \mathbf{b} 是 $n \times 1$ 列向量, f 是标量。

解: 1. 作微分: 这里的 $\boldsymbol{a}, \boldsymbol{b}$ 是常量, $d\boldsymbol{a} = \boldsymbol{0}, d\boldsymbol{b} = \boldsymbol{0}$,得: $d\boldsymbol{f} = \boldsymbol{a}^T dX \boldsymbol{b}$

- 2. 作迹运算: $df = tr(\boldsymbol{a}^T dX \boldsymbol{b}) = tr(\boldsymbol{b} \boldsymbol{a}^T dX)$,注意这里我们根据 tr(AB) = tr(BA) $\boldsymbol{a}^T dX \boldsymbol{b}$
- 3. 对照导数与微分的联系 $df = \operatorname{tr}\left(\frac{\partial f}{\partial X}^T dX\right)$, 得到 $\frac{\partial f}{\partial X} = (\boldsymbol{b}\boldsymbol{a}^T)^T = \boldsymbol{a}\boldsymbol{b}^T$ 。

例 2: $f = \mathbf{a}^T \exp(X\mathbf{b})$, 求 $\frac{\partial f}{\partial X}$ 。其中 \mathbf{a} 是 $m \times 1$ 列向量, X 是 $m \times n$ 矩阵, \mathbf{b} 是 $n \times 1$ 列向量, exp 表示逐元素求指数, f 是标量。

解: 1. 作微分: $df = \mathbf{a}^T(\exp(X\mathbf{b}) \odot (dX\mathbf{b}))$

- 2. 作迹运算: $df = \operatorname{tr}(\boldsymbol{a}^T(\exp(X\boldsymbol{b})\odot(dX\boldsymbol{b}))) = \operatorname{tr}((\boldsymbol{a}\odot\exp(X\boldsymbol{b}))^TdX\boldsymbol{b}) = \operatorname{tr}(\boldsymbol{b}(\boldsymbol{a}\odot\exp(X\boldsymbol{b}))^TdX)$
- 3. 对照导数与微分的联系 $df = \operatorname{tr}\left(\frac{\partial f}{\partial X}^T dX\right)$, 得到 $\frac{\partial f}{\partial X} = (\boldsymbol{b}(\boldsymbol{a} \odot \exp(X\boldsymbol{b}))^T)^T = (\boldsymbol{a} \odot \exp(X\boldsymbol{b}))\boldsymbol{b}^T$ 。

例 3【线性回归】: $l = \|X\boldsymbol{w} - \boldsymbol{y}\|^2$,求 \boldsymbol{w} 的最小二乘估计,即求 $\frac{\partial l}{\partial \boldsymbol{w}}$ 的零点。其中 \boldsymbol{y} 是 $m \times 1$ 列向量,X 是 $m \times n$ 矩阵, \boldsymbol{w} 是 $n \times 1$ 列向量,l 是标量。

解:严格来说这是标量对向量的导数,不过可以把向量看做矩阵的特例(此时可以省略第二步:作迹运算)。

先将向量模平方改写成向量与自身的内积: $l = (Xw - y)^T(Xw - y)$

- 1. 求微分: $dl = (Xd\mathbf{w})^T(X\mathbf{w} \mathbf{y}) + (X\mathbf{w} \mathbf{y})^T(Xd\mathbf{w}) = 2(X\mathbf{w} \mathbf{y})^TXd\mathbf{w}$ 。
- 2. 对照导数与微分的联系 $dl = \frac{\partial l}{\partial \boldsymbol{w}}^T d\boldsymbol{w}$, 得到 $\frac{\partial l}{\partial \boldsymbol{w}} = (2(X\boldsymbol{w} \boldsymbol{y})^T X)^T = 2X^T (X\boldsymbol{w} \boldsymbol{y})$ 。 $\frac{\partial l}{\partial \boldsymbol{w}}$ 的零点即 \boldsymbol{w} 的最小二乘估计为 $\boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{y}$ 。
- 例 4【方差的最大似然估计】: 样本 $\mathbf{x}_1, \dots, \mathbf{x}_n \sim N(\boldsymbol{\mu}, \Sigma)$,求方差 Σ 的最大似然估计。写成数学式是: $l = \log |\Sigma| + \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \bar{\mathbf{x}})^T \Sigma^{-1} (\mathbf{x}_i \bar{\mathbf{x}})$,求 $\frac{\partial l}{\partial \Sigma}$ 的零点。其中 \mathbf{x}_i 是 $m \times 1$ 列向量, $\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$ 是样本均值, Σ 是 $m \times m$ 对称正定矩阵,l 是标量。
- 解: 1. 作微分: 第一项是 $d\log |\Sigma| = |\Sigma|^{-1} d|\Sigma| = \operatorname{tr}(\Sigma^{-1} d\Sigma)$,第二项是 $\frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i \bar{\boldsymbol{x}})^T d\Sigma^{-1} (\boldsymbol{x}_i \bar{\boldsymbol{x}}) = -\frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i \bar{\boldsymbol{x}})^T \Sigma^{-1} d\Sigma \Sigma^{-1} (\boldsymbol{x}_i \bar{\boldsymbol{x}})$ 。
- 2. 作迹运算: $\operatorname{tr}\left(\frac{1}{n}\sum_{i=1}^{n}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})^{T}\Sigma^{-1}d\Sigma\Sigma^{-1}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})\right)=\frac{1}{n}\sum_{i=1}^{n}\operatorname{tr}((\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})^{T}\Sigma^{-1}d\Sigma\Sigma^{-1}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}}))=\frac{1}{n}\sum_{i=1}^{n}\operatorname{tr}\left(\Sigma^{-1}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})^{T}\Sigma^{-1}d\Sigma\right)$ $=\operatorname{tr}(\Sigma^{-1}S\Sigma^{-1}d\Sigma), \; \boldsymbol{\Xi}\boldsymbol{\times} S = \frac{1}{n}\sum_{i=1}^{n}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})^{T} \; \boldsymbol{\Sigma}$ 得到 $dl = \operatorname{tr}\left((\Sigma^{-1}-\Sigma^{-1}S\Sigma^{-1})d\Sigma\right)$ 。
- 3. 对照导数与微分的联系,有 $\frac{\partial l}{\partial \Sigma}=(\Sigma^{-1}-\Sigma^{-1}S\Sigma^{-1})^T$,其零点即 Σ 的最大似然估计为 $\Sigma=S$ 。

矩阵 F 对矩阵 X 的导数

一般而言,标量就是 1×1 的矩阵,如果我们能推导出矩阵对矩阵的导数,标量对矩阵的导数不是自然的么,不应该可以统一进来么,那为啥还要大费周章地先写标量对矩阵的导数。原因是这两者不完全相同,并不能很简单地统一起来。

应该怎么定义矩阵对矩阵的导数。回答这个问题不是随意的,为了满足两个要求,我们对矩阵对矩阵的定义有严格的要求。我们的两个要求是:

1. 矩阵 $F \in \mathbb{R}^{p \times q}$ 对矩阵 $X \in \mathbb{R}^{m \times n}$ 的导数应包含所有 mnpq 个偏导数 $\frac{\partial F_{kl}}{\partial X_{ij}}$,从而不损失信息。

2. 在标量对矩阵求导的地方, 我们发现导数与微分有简明的联系。这里 我们仍希望他们之间存在某种联系。

为此,我们先定义向量 $f(p \times 1)$ 对向量 $x(m \times 1)$ 的导数

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_p}{\partial x_1} \\
\frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_p}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1}{\partial x_m} & \frac{\partial f_2}{\partial x_m} & \dots & \frac{\partial f_p}{\partial x_m}
\end{bmatrix} (m \times p)$$

此时,可以证明, $d\mathbf{f} = \sum_{i,j} \frac{\partial f_i}{\partial x_j} dx_j = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}^T d\mathbf{x}$,这个定义满足我们的两个要求, 所以我们现在作好了了向量对向量的导数。

再定义矩阵的(按列优先)向量化:

$$vec(X) = [X_{11}, \dots, X_{m1}, X_{12}, \dots, X_{m2}, \dots, X_{1n}, \dots, X_{mn}]^T (mn \times 1)$$

并定义矩阵 F 对矩阵 X 的导数 $\frac{\partial F}{\partial X} = \frac{\partial vec(F)}{\partial vec(X)}(mn \times pq)$ 。此时,可以证明,导数与微分有联系 $vec(dF) = \frac{\partial F}{\partial X}^T vec(dX)$,这样,我们作好了满足要求的矩阵关于矩阵的导数。

列向量化运算法则

- 1. 线性: vec(A+B) = vec(A) + vec(B)。
- 2.矩阵乘法: $vec(AXB) = (B^T \otimes A)vec(X)$, 其中 \otimes 表示 Kronecker 积, $A(m \times n) B(p \times q)$ 的 Kronecker 积是 $A \otimes B = [A_{ij}B](mp \times nq)$ 。此式证明见张贤达《矩阵分析与应用》第 107-108 页。
- 3. 转置: $vec(A^T) = K_{mn}vec(A)$, $A \neq m \times n$ 矩阵, 其中 $K_{mn}(mn \times mn)$ 是换位矩阵 (commutation matrix)(就是一些初等换位矩阵的乘积)。
- 4. 逐元素乘法: $vec(A \odot X) = diag(A)vec(X)$, 其中 $diag(A)(mn \times mn)$ 是用 A 的元素(按列优先)排成的对角阵。

一些 Kronecker 积和交换矩阵相关的恒等式

- $1.(A \otimes B)^T = A^T \otimes B^T$.
- $2.vec(\boldsymbol{a}\boldsymbol{b}^T) = \boldsymbol{b} \otimes \boldsymbol{a}_{\circ}$
- $3.(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ 。可以对 $F = D^T B^T X A C$ 求导来证明,一方面,直接求导得到 $\frac{\partial F}{\partial X} = (AC) \otimes (BD)$;另一方面,引入 $Y = B^T X A$,有 $\frac{\partial F}{\partial Y} = C \otimes D$, $\frac{\partial Y}{\partial X} = A \otimes B$,用链式法则得到 $\frac{\partial F}{\partial X} = (A \otimes B)(C \otimes D)$ 。

 $4.K_{mn} = K_{nm}^T, K_{mn}K_{nm} = I$,所以换位矩阵是正交矩阵。

 $5.K_{pm}(A \otimes B)K_{nq} = B \otimes A$, A 是 $m \times n$ 矩阵,B 是 $p \times q$ 矩阵。可以对 AXB^T 做向量化来证明,一方面, $vec(AXB^T) = (B \otimes A)vec(X)$;另一方面, $vec(AXB^T) = K_{pm}vec(BX^TA^T) = K_{pm}(A \otimes B)vec(X^T) = K_{pm}(A \otimes B)K_{nq}vec(X)$ 。

复合法则

假设已求得 $\frac{\partial F}{\partial Y}$, 而 Y 是 X 的函数,如何求 $\frac{\partial F}{\partial X}$ 呢? 从导数与微分的联系入手, $vec(dF) = \frac{\partial F}{\partial Y}^T vec(dY) = \frac{\partial F}{\partial Y}^T \frac{\partial Y}{\partial X}^T vec(dX)$,可以推出链式法则 $\frac{\partial F}{\partial X} = \frac{\partial Y}{\partial X} \frac{\partial F}{\partial Y}$

矩阵对矩阵的一般求导步骤

- 1. 对矩阵值函数 F 两端作微分, 利用微分运算法则化简
- 2. 对两端作列向量化运算,利用列向量化法则化简,注意看列向量里面是什么形式,就用什么公式,如列向量里面是两个矩阵相乘,就想办法凑进去一个单位矩阵,并使得 *vecx* 在中间,然后利用 vec 的矩阵乘法公式
 - 3. 利用微分和矩阵的联系 $vec(dF) = \frac{\partial F}{\partial X}^T vec(dX)$, 求 $\frac{\partial f}{\partial X}$

一些例子

例 1: F = AX, $X \in m \times n$ 矩阵, 求 $\frac{\partial F}{\partial X}$ 。

解: 1. 作微分: dF = AdX

- 2. 列向量化,使用矩阵乘法的技巧,注意在 dX 右侧添加单位阵: $vec(dF) = vec(AdX) = (I_n \otimes A)vec(dX)$
 - 3. 对照导数与微分的联系得到 $\frac{\partial F}{\partial X} = I_n \otimes A^T$ 。

特例: 如果 X 退化为向量,即 f = Ax,则根据向量的导数与微分的 关系 d $f = \frac{\partial f}{\partial x}^T dx$,得到 $\frac{\partial f}{\partial x} = A^T$

$$df(\mathbf{X}, \mathbf{Y}) = tr(\frac{\partial f}{\partial \mathbf{X}}^T d\mathbf{X}) + tr(\frac{\partial f}{\partial \mathbf{Y}}^T d\mathbf{Y})$$

例 2: $f = \log |X|$, X 是 n×n 矩阵, 求 $\nabla_X^2 f$ 。

解: 1. 求微分: $d\nabla_X f = -(X^{-1}dXX^{-1})^T$

2. 列向量化, $vec(d\nabla_X f) = -K_{nn}vec(X^{-1}dXX^{-1}) = -K_{nn}(X^{-T} \otimes X^{-1})vec(dX)$,

- 3. 对照导数与微分的联系,得到 $\nabla_X^2 f = -K_{nn}(X^{-T} \otimes X^{-1})$,注意它是对称矩阵。
- 例 3: $F = A \exp(XB)$ $A \neq l \times m$ 矩阵, $X \neq m \times n$ 矩阵, $B \neq n \times p$ 矩阵, exp 为逐元素函数, 求 $\frac{\partial F}{\partial X}$ 。
- 解: 1. 求微分: $dF = A(\exp(XB) \odot (dXB))$
 - 2. 列向量化: $vec(dF) = (I_p \otimes A)vec(\exp(XB) \odot (dXB)) =$
- $(I_p \otimes A) diag(\exp(XB)) vec(dXB) = (I_p \otimes A) diag(\exp(XB)) (B^T \otimes I_m) vec(dX)$ 。 3. 对照导数与微分的联系得到 $\frac{\partial F}{\partial X} = (B \otimes I_m) diag(\exp(XB)) (I_p \otimes A^T)$ 。

注解

- 1. 一般而言,这套方法就是为了矩阵对矩阵求导而引入的,由于这里是利用列向量定义的导数,所以直接应用在标量对矩阵 $X \in \mathbb{R}^{m \times n}$ 的导数上,会得到一个 $mn \times 1$ 的列向量,这与我们一般定义的标量对矩阵的导数相悖,所以一般标量对矩阵的导数,我们还是利用上一节的方法。当然,若将上一节定义的标量 $f(X) \in \mathbb{R}^1$ 对矩阵 $X \in \mathbb{R}^{m \times n}$ 的导数用记号 $\nabla_X f \in \mathbb{R}^{m \times n}$ 来表示,则这里定义的 $\frac{\partial f}{\partial X} = vec(\nabla_X f)$,在牢记这一条的情况下,我们可以用本节的方法来解决标量对矩阵求导,只是没有上一节的方法方便。为了满足读者的好奇心,我们给出标量对矩阵求导的一个例子,并且用两种方法来解决。
- 2. 标量对矩阵的二阶导数,又称 Hessian 矩阵,定义为 $\nabla_X^2 f = \frac{\partial^2 f}{\partial X^2} = \frac{\partial \nabla_X f}{\partial X} (mn \times mn)$ 是对称矩阵,这个二阶导数分两次进行,第一次是标量对矩阵求导,第二次是矩阵对矩阵求导。
- 3. 如何理解 $K_{mn}(mn\times mn)$,它是一个换位矩阵,根据 $vec(A^T)=K_{mn}$ vec(A),它的作用是使的 $vec(A^T)$ 和 vec(A) 的若干行对换位置。由 $[A]_{i,j}=[A]_{j,i}=[vec(A^T)]_{(i-1)n+j}=[vec(A)]_{(j-1)n+i}$,这里 $A\in\mathbb{R}^{m\times n},1\leq i\leq m,1\leq j\leq n$,所以 K_{mn} 就是单位矩阵 $(mn\times mn)$ 交换 (i-1)n+j 和 (j-1)n+i 行得到的一个矩阵。

对两节内容的总结

我们发展了从整体出发的矩阵求导的技术,导数与微分的联系是计算 的枢纽。

10

上一节中,我们了解了,标量对矩阵的导数与微分的联系是 $df=tr((\nabla_X f)^T dX)$,先对 f 求微分,再使用迹技巧可求得导数,特别地,标量对向量的导数与微分的联系是 $df=(\nabla_x f)^T dx$

下一节中,我们了解了,矩阵对矩阵的导数与微分的联系是 $vec(dF) = \frac{\partial F}{\partial X}^T vec(dX)$,先对 F 求微分,再使用列向量化的技巧可求得导数,特别地,向量对向量的导数与微分的联系是 $d \pmb{f} = \frac{\partial \pmb{f}}{\partial \pmb{x}}^T d \pmb{x}$ 。

reference

如何理解矩阵对矩阵求导?-知乎-猪猪专业户 矩阵求导术(上)-知乎-长躯鬼侠 矩阵求导术(下)-知乎-长躯鬼侠

4 Lagrange duality

4.1 application

applied on:

- 最大熵模型
- SVM(support vector machine)

4.2 primal problem

Set $f(\boldsymbol{x}), c_i(\boldsymbol{x}), h_j(\boldsymbol{x})$ are continuously differentiable function over bmRn, consider optimization problem with constraints

$$\min_{\boldsymbol{x} \in \boldsymbol{R}^n} f(\boldsymbol{x})$$
s.t. $c_i(\boldsymbol{x}) \le 0, \ i = 1, 2, \dots, k$

$$h_j(\boldsymbol{x}) = 0, \ j = 1, 2, \dots, l$$

4.3 generalized Lagrange function

$$L(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\boldsymbol{x}) + \sum_{i=1}^{k} a_i c_i(\boldsymbol{x}) + \sum_{j=1}^{l} \beta_j h_j(\boldsymbol{x})$$

where, $\mathbf{x} = (x^1, x^2, \dots, x^n)^T \in \mathbf{R}^n, \alpha_i, \beta_j$ are Lagrange multiplier, $\alpha_i \geq 0$ After introduced generalized Lagrange function, primal problem is equal to

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} L(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$
s.t. $\alpha_i \ge 0, i = 1, 2, \dots, k$

4.4 dual problem

$$\max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \min_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$
s.t. $\alpha_i \ge 0, i = 1, 2, ..., k$

4.5 KKT(Karush-Kuhn-Tucker)condition

$$\nabla_{x}L(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) = 0$$

$$\nabla_{\alpha}L(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) = 0$$

$$\nabla_{\beta}L(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) = 0$$

$$\alpha_{i}c_{i}(\boldsymbol{x}) = 0, \ i = 1, 2, \dots, k$$

$$c_{i}(\boldsymbol{x}) \leq 0, \ i = 1, 2, \dots, k$$

$$\alpha_{i} \geq 0, i = 1, 2, \dots, k$$

$$h_{i}(\boldsymbol{x}) = 0, j = 1, 2, \dots, l$$

Theorem 1 if $f(\mathbf{x})$ and $c_i(\mathbf{x})$ are convex function, $h_j(\mathbf{x})$ are affine function¹, and inequation constrains $c_i(\mathbf{x})$ strictly hold, that is, exist \mathbf{x} , s.t. for any i, hold $c_i(\mathbf{x}) < 0$, then, there must be $\mathbf{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*$ are the optimal solution of primal problem as well as dual problem and satisfy KKT condition at $\mathbf{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*$.

Remark: so, when the prerequisites are satisfied, we can use KKT condition to find the optimal solution x^*, α^*, β^* .

 $^{^{1}}f(x)$ is called affine function, when it holds that $f(x) = \boldsymbol{a} \cdot \boldsymbol{x} + b, \boldsymbol{a} \in \boldsymbol{R}^{n}, b \in \boldsymbol{R}, \boldsymbol{x} \in \boldsymbol{R}^{n}$