# Решение задачи многомерной регрессии методом Gradient Boosting (CatBoost)



Матвеев И. Ю.

#### Постановка задачи

#### Необходимо выполнить следующие пункты:

- Провести предварительный анализ данных;
- Построить регрессионную модель. Обосновать выбор модели;
- Сравнить ошибки на тестовых и тренировочных данных. Использовать метрику  $\mathbb{R}^2$ ;
- Построить зависимости ошибок на тестовых и тренировочных данных.

Dataset состоит из матриц признаков X и значений Y:

$$X = \{s_{mt}, s_{mq}, d, h_p\}$$
 и  $Y = \{QW, DP\}$ 

• где каждый объект матриц это вектор  $\bar{v}_i$ ,  $\in \mathbb{R}^{500 \times 1}$ 

Диапазон значений входных данных представлен в таблице:

|     | $s_{mt}$ | $S_{mq}$ | d   | $h_p$ |
|-----|----------|----------|-----|-------|
| Min | 0.8      | 0.8      | 1.0 | 4.0   |
| Max | 2.7      | 2.1      | 3.0 | 10.0  |

- Среди генеральной совокупности не обнаружены пустые ячейки значений переменных и ложные типы данных;
- Ниже продемонстрированы зависимости целевых переменных от признаков  $X = \{s_{mt}, s_{mq}, d, h_p\}$  и  $Y = \{QW, DP\}$ :







- Зависимости наблюдается у пар переменных:  $(h_p, QW)$ ,  $(h_p, DP)$ , (d, QW);
- Далее необходимо построить матрицу корреляций переменных для вычисления коэффициентов Пирсона.



- Как видно из матрицы корреляций линейная зависимость наблюдается у группы признаков:  $(h_p,QW),(h_p,DP),(QW,DP)$ . При этом влияние признака  $h_p$  уменьшает значения целевых переменных QW,DP. Признак d имеет слабую линейную зависимость с целевой переменной QW;
- Входные признаки между собой никак не коррелирует и следовательно они либо зависят нелинейно, либо связь полностью отсутствует.

#### Выбор и построение модели

На основе предварительного анализа данных можно сделать вывод о применимости регрессионных моделей. Примеры моделей представлены ниже:

- Линейная регрессия
- Регрессия LASSO
- Гребневая регрессия
- Нейросетевая модель

Необходимо много данных для качественного обучения

Только для данных, которые сильно коррелируют

Деревья решений/Gradient Boosting

Отлично могут описать любую форму зависимости данных

#### Выбор и построение модели

Перед обучением модели **Gradient Boosting** необходимо задать следующие гиперпараметры: **iterations = 100, learning rate = 0.1, Loss function = 'MultiRMSE'** 



Оптимизация функционала ошибки на train, test

- В результате рассчитана метрика  $R^2$  для тренировочного и тестового набора данных:  $R^2_{train}=0.975,\; R^2_{test}=0.924;$
- Определены максимальные и минимальные относительные ошибки предсказаний  $\widehat{QW},\widehat{DP}$  для каждой выходной переменной QW,DP:

| Max Relative Error (%) | Train  | Test   |
|------------------------|--------|--------|
| QW                     | 6.798  | 11.428 |
| DP                     | 14.618 | 18.750 |

| Min Relative Error (%) | Train | Test  |
|------------------------|-------|-------|
| QW                     | 0.004 | 0.001 |
| DP                     | 0.011 | 0.009 |

Характер изменения относительных ошибок для величин QW,DP на тренировочных и тестовых данных.

- По оси абсцисс указаны номера объектов в train/test data;
- По оси ординат распределена относительная ошибка (%) для каждого объекта в указанной выборке.









#### Аппроксимация на тренировочных данных для величин QW, DP



#### Аппроксимация на тестовых данных для величин QW, DP



- Выполнен предварительный анализ данных;
- Построена модель регрессии **Gradient Boosting**;
- Определены и построены относительные ошибки на тестовых и тренировочных данных;
- Рассчитаны метрики  $R_{train}^2 = 0.975, \; R_{test}^2 = 0.924;$
- Построены графики аппроксимации данных на базе **Gradient Boosting**.