03 – Funkce polynomické a racionální

- √ 1) Reálná funkce f s reálnou proměnnou x je dána předpisem: $f(x) = 1 \frac{1}{x+3}$. Určete průsečíky X, Y grafu funkce f s osami soustavy souřadnic. Sestrojte graf funkce f.
 - 2) V R × R je dána funkce $f: y = 5 8x 4x^2$. a) V intervalu (-2;1) určete minimum funkce f. b) Určete maximum funkce f v jejím definičním oboru.
- / 3) V prvním kvadrantu isou zobrazeny grafy mocninných funkcí s předpisem $y = x^q$. U které z funkcí f_1 až f_4 má exponent q hodnotu z intervalu (0;1)? (obr.)
- (2,4) Jsou dány funkce f a g s reálnou proměnnou x a reálným koeficientem b:

Určete všechny hodnoty koeficientu b, pro něž mají grafy obou funkcí právě jeden společný bod.

(tabulka) 6) Jsou dány funkce f a g s reálnou proměnnou x a nenulovým reálným koeficientem b:

f: y = b - x

Určete všechny hodnoty koeficientu b, pro něž mají grafy obou funkcí právě jeden společný bod.

7) Funkce s předpisem $f: y = \frac{1}{16}(x+4)^2$ je definována pro $x \in <-4; \infty$). Doplňte tabulku.

<i>x</i> ≥ −4	0		4	
у	1	1/16		16

8) Určete obory hodnot funkcí: f_1 : $y = |x + 6| + x + 3\sqrt{2}$ $f_2: y = |x+3| - |x+6|$

 f_3 : y = 3 - |x + 6|

9) V kartézské soustavě souřadnic Oxy je umístěn graf funkce f, jejíž definiční obor je \mathcal{R} . Hodnoty funkce g jsou druhými mocninami hodnot funkce f, tedy platí: $g: y = f^2(x)$. Jaký předpis má funkce g?

- A) $y = x^2 + |4x 4|$
- B) $y = x^2 4|x| + 4$
- C) y = |x 2|(x + 2)
- D) y = |x + 2|(x 2)
- E) $v = |x^2 4x| + 4$

10) V kartézské soustavě souřadnic *Oxy* je sestrojen graf funkce f. Hodnoty funkce g jsou převrácenými hodnotami funkce f, tedy platí: g: $y = \frac{1}{f(x)}$. Sestrojte graf funkce g.

11) Předpis lineární lomené funkce je možné vyjádřit ve tvaru: $f: y = \frac{k}{x-m} + n$, kde k, m, n jsou reálná čísla a $k \neq 0$. Určete ke každé funkci odpovídající konstantu k.

- $f_1: y = 1 \frac{3}{x}$; $f_2: y = \frac{x-1}{x}$; $f_3: y = \frac{x-3}{x-1}$. 12) Pro kvadratickou funkci f platí:
- 12) Pro kvadratickou funkci f platí: definiční obor je $D_f = \mathcal{R}$; obor hodnot je $H_f = (-\infty; 4)$; $f_x \ge 0 \Leftrightarrow x \in (0; 4)$. Sestrojte graf funkce f. Zapište souřadnice vrcholu V grafu funkce f. Uved'te předpis funkce f.
- 13) V kartézské soustavě souřadnic Oxy jsou sestrojeny grafy funkcí f, g, h, které jsou definovány pro všechna $x \in \mathcal{R}$. Který z následujících vztahů platí pro všechna $x \in \mathcal{R}$? $f(x) = g(x) \cdot h(x)$, f(x) = g(x) + h(x), $f(x) = g^2(x) h(x)$, f(x) = |h(x) + 1| 1, f(x) = |g(x) 1| 1.

14) V kartézské soustavě souřadnic Oxy je sestrojen graf funkce $f: y = (x-1)^2$ pro $x \in \mathcal{R}$. Posunutím grafu funkce f nebo posunutím a sjednocením jeho částí byly vytvořeny grafy funkcí f_1 a f_2 . Zapište předpisy funkcí f_1 a f_2 . Sestrojte graf funkce $f_3: y = |(x+2)^2 - 1|, x \in \mathcal{R}$.

- 15) Kvadratická funkce f je sudá, f(1) = 1 a graf funkce f má právě jeden společný bod s grafem funkce g: y = cos x 2. Zapište předpis funkce f.
 - 16) Zakreslete do soustavy souřadnic grafy funkcí: $f: y = \sqrt{x^2}$, $g: y = \frac{x^2 + 4x + 4}{x + 2}$, $h: y = (x + 1)^2 (x 2)^2$, $k: y = \frac{x^2 4}{x 2}$, $l: y = \sqrt{(x + 2)^2}$, $m: y = 3 + \sqrt{x^2}$, $n: y = \left(\frac{\sqrt{x} x}{1 \sqrt{x}}\right)^2$
 - 17) Načrtněte graf funkce $f: y = 2|x 3| |x + 1|, x \in \langle 1; 5 \rangle$.
 - 18) Určete kvadratickou funkci, jejíž graf prochází body A, B, C: A[1, 4], B[2, 10], C[-1, -2].

- 19) Sestrojte grafy funkcí: $f: y = |-x^2 + 2x + 3|$, $g: y = -x^2 + 2|x| + 3$, $h: y = x^2 + 3|x| + 1$, $j: y = -2x + |1 x^2|$, $k: y = |x^2 5|x| + 6|$. Popište jejich vlastnosti.
- 20) Určete D_f, H_f a všechny vlastnosti funkce $f: y = \frac{3x+5}{x+1}$, $g: y = \frac{x^2-2x}{x^2-x-2}$, $h: y = \frac{2}{|x+1|}$, $j: y = \frac{(x+1)^2}{x^2+x}$, $k: y = \left|\frac{3}{x-3} + 2\right|$, $l: y = \frac{1}{|x|-3}$, $m: y = \frac{|x|+3}{x+3}$, $n: y = |x| + \frac{x+1}{|x+1|}$, $o: y = |x + 2| + \frac{|x|}{x}$, $p: y = \frac{2+x}{2-|x|}$. Sestrojte graf funkce.
 - 21) Určete definiční obory funkcí a sestrojte jejich grafy: $f: y = \sqrt{-x}$, $g: y = \sqrt{2-x} 3$.
 - 22) Určete definiční obory funkcí a sestrojte jejich grafy: $f: y = \frac{1}{(x+2)^2} 1$,

$$g: y = 1 + \sqrt{x - 4}, h: y = \frac{1}{\sqrt{x^2 - 2x + 1}}, j: y = \frac{1}{(|x| - 1)^2} + 1,$$

$$k: y = \sqrt{\frac{x + 3}{x^2 + 5x + 6}}, l: y = \left(\frac{\sqrt[3]{x^2}}{x \cdot \sqrt{x} \cdot \sqrt[6]{x}}\right)^3, m: y = \left(\frac{\sqrt[3]{x^5} \cdot x}{\sqrt[3]{\sqrt[3]{x^4}}}\right)^{\frac{1}{2}}, n: y = \sqrt[4]{\left(\frac{\sqrt[6]{x}}{\sqrt{x^3}}\right)^3},$$

$$o: y = \left(\frac{\sqrt[4]{x^5}}{\sqrt[3]{x^5}}\right)^2, p: y = \sqrt{2x - |2x - 4|}.$$

- 23) Určete definiční obor funkce: $y = \frac{3x-2}{x^2-3x-10} + \sqrt{2x-6}$.
- 24) K dané funkci sestavte předpis pro funkci inverzní. Grafy obou funkcí zakreslete do téže soustavy souřadnic: $f: y = 2x 4, x \in (0; 6), g: y = -\frac{3}{x}, x \neq 0$,

$$h: y = x^2, x \in (0; \infty), j: y = 1 - \sqrt{x - 2}, k: y = 2^x - 3.$$

- 25) Řešte graficky v R: 3 |x 1| = m, $|x + 2| |x 1| \le 4$.
- 26) Na obrázku je graf funkce: a)y = |x| x + 1, b)y = x |x|, c)y = x + |x| + 1, d)y = 2x + |x| 1, e)y = 2x |x|.
- 27) Vrchol paraboly, která je grafem funkce $f: y = -2x^2 8x + 7$, je středem úsečky, jejímž jedním krajním bodem je počátek soustavy souřadnic a druhým krajním bodem bod:
 - A[-4; 25], B[30; -4], C[-2; 15], D[15; -2], E[-4; 30].
- 28) Jestliže funkce $f: y = \frac{1}{1-x}, x \in R \{0; 1\}$, potom funkce g: y = f(f(x)) je dána předpisem: A) $y = \frac{1}{1-x}$, B) $y = \frac{x}{1-x}$, C) $y = \frac{x-1}{x}$, D) y = 1 x, E) y = 1 + x.
- 29) Oborem hodnot funkce $f: y = \frac{x^3 2x^2 x + 2}{2 x}$ je množina: A) $\langle -1; \infty \rangle$, B) $\langle 1; \infty \rangle$, C) $(-\infty; 0)$, D) $(-\infty; 1)$, E) $(-\infty; -1)$.
- 30) Jsou dány funkce $f: y = \frac{1}{2}x + 1$ a g: y = 3x + 6. Sestavte předpisy pro funkce f^{-1} a g^{-1} inverzní k funkcím f, g a v téže soustavě souřadnic Oxy sestrojte grafy všech čtyř funkcí. Vypočtěte délky úhlopříček čtyřúhelníku, který je ohraničen grafy funkcí f, g, f^{-1} , g^{-1} .
- 31) Je dána funkce $f: y = \frac{2(x^2 x)}{x^2 + 2x 3}$. Určete definiční obor a obor hodnot funkce f a sestrojte její graf. Napište předpis pro inverzní funkci f^{-1} , určete její definiční obor a obor hodnot.
- 32)Pěší lávka nad dálnicí má tvar části paraboly znázorněné na obrázku tučnou čarou. Její vrchol je 8 m nad povrchem dálnice. Oblouk podpírající lávku má rovněž tvar paraboly. Tato parabola je grafem funkce $y = -\frac{1}{4}x^2 + 8$ v soustavě souřadnic Oxy, vyznačené v obrázku s jednotkami délky 1 m

na obou osách. Vrchol podpěrného oblouku je 16 m nad povrchem dálnice. Vstupy na lávku V, V' jsou od pat oblouku P, P' vzdáleny 8 m. Určete funkci, jejímž grafem v uvažované soustavě souřadnic je část paraboly znázorňující lávku.

33)Pro nepřímou úměrnost f platí f(3) = f(2) - 3. Určete její

předpis. 34) Vyberte předpis kvadratické funkce, jejíž graf je na obrázku:

d) $v = x^2 - 4$.

35) Určete, ve kterém bodě nabývá funkce $y = x^2 - 6x + 2$ extrému. O jaký extrém se jedná, jakou má hodnotu? Určete obor hodnot.

36)Graf kvadratické funkce je klesající v intervalu (-∞; 0) a rostoucí v (0; ∞), prochází body [-2; 6] a [1; 0]. Určete předpis funkce.

37) Jirka má k dispozici 100 metrů pletiva a jeho úkolem je oplotit 3 strany obdélníku. Čtvrtá strana bude tvořena částí sousedova plotu, který je dostatečně dlouhý. Napište, jak závisí obsah S na délce jedné ze dvou stran x, které přiléhají k sousedově parcele. Určete, pro které x bude obsah S maximální. Tento maximální obsah vypočtěte.

38) Honza plánuje vyrábět určité výrobky. Chce je prodávat za 52 Kč za kus, tedy za x výrobků získá příjmy p = 52 x. Honza odhaduje, že náklady lze popsat funkcí $n = 1000 + 2x + 0.1x^2$, kde x je počet výrobků. Zisk z určíme jako rozdíl příjmů a nákladů. Napište funkci pro zisk. Při jakém počtu výrobků dosáhne Honza maximálního zisku? Jaký bude tento maximální zisk? Předpokládáme, že prodá vše, co vyrobí.

39) Načrtněte graf funkce $f: y = x^2$. sgn(x+2), g: y = (x-2). sgn(x-1)

Reálné signum je definováno následujícím způsobem:

Libovolné číslo lze tedy vyjádřit jako součin znaménka a absolutní hodnoty:

$$x = \operatorname{sgn}(x) \cdot |x|$$

40) Zjistěte, zda číslo je celé a) $\frac{[\pi] + \left[-\frac{10}{11}\right] + \left[10^{-5}\right]}{[\sqrt{5}]}$, b) $\frac{\left[\sqrt[3]{10}\right] + \left[-\frac{22}{7}\right]}{[20^{-2}] - [\pi^2]}$

41) Vyšetřete průběh funkcí $f: y = \frac{x^4}{8} - \frac{x^3}{2} + 2$, $g: y = \frac{x^2}{2x+4}$. Zakreslete graf.

03 – Funkce polynomické a racionální

- 1) $[-2;0], [0;\frac{2}{3}],$
- 2) a) [1;-7] b) [-1;9]
- 3) f₂
- 4) b = -1
- 5) $\frac{9}{5}, \frac{9}{16}, 0$
- 6) b = 0, b = 4
- 7) -3, 4, 12
- 8) $\langle -3; \infty \rangle$, $\langle -3; 3 \rangle$, $(-\infty; 3)$
- 9) B
- 10)

- 11)-3,-1,-2
- 12) $V[2;4], y = -x^2 + 4x$
- 13) A
- 14) f_1 : $y = x^2 2x$, $f_2 = x^2 2|x| + 1$
- 15) $y = 2x^2 1$
- 18) $y = x^2 + 3x$
- 23) $D = (3; 5) \cup (5; \infty)$
- 24) $y = \frac{x}{2} + 2, x \in \langle -4; 8 \rangle, y = -\frac{3}{x}, y = \sqrt{x}, x \in \langle 0; \infty \rangle, y = (1 x)^2 + 2, x \in (-\infty; 1),$ $y = \log_2(x + 3), x \in (-3; \infty).$
- 25) m > 3, 0 řešení, m = 3, x = 1, m < 3, $x_1 = 4 m$, $x_2 = m 2$; R
- 26) C, 27) E, 28) C, 29) D
- 30) $f^{-1} = 2x 2$, $g^{-1} = \frac{x}{3} 2$, $\sqrt{50}$, $\sqrt{8}$
- 31) $y = \frac{3x}{2-x}$, $D = R \{-3; 1\}$, $H = R \{\frac{1}{2}; 2\}$
- 32) $y = -\frac{1}{32}x^2, x \in \langle -16; 16 \rangle$
- 33) $y = \frac{18}{x}$
- 34) A
- 35) min [3;-7], $(-7; \infty)$
- 36) $y = 2x^2 2$
- $37) x = 25 m, S = 1250 m^2$
- 38) 250, 5 250
- 39)
- 40) Ano, ne

