AL/2018/01/S-I හිතලු ම හිමිකම් ඇව්ථිණි / ω ලාලා් பதிப்புநிமையுடையது $All\ Rights\ Reserved$ ම ලංකා විතාශ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්ත**ල් අවු දැනි ලේකා විතාශ දෙපාර්තමේන්තුව**කාන දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இருங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Larka Department of **Bodina St. I.S. I.B. 186** දැන් සැති **නම්නේ සහිති** S. Sri Larka Department of Examinations, Sr අධායන පෞදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු <u>கல்னிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந்</u> General Certificate of Education (Adv. Level) Examination, August 2018 2018.08.10 / 0830 - 1030 භෞතික විදනව පැය දෙකයි பௌதிகவியல் இரண்டு மணித்தியாலம் **Physics** Two hours උපදෙස් : 🔆 මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 12 ක අඩංගු වේ.

- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- ※ පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි** හෝ **ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය, **පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින්** (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{N\,kg^{-1}}$)

1. පීඩනයෙහි ඒකකය වනුයේ,

- (1) $kg m s^{-2}$
- (2) $kg m^2 s^{-2}$

- (3) $kg m^{-1} s^{-2}$ (4) $kg m^2 s^{-3}$ (5) $kg m^{-2} s^{-2} A^{-1}$

 ${f 2.}$ ${f X, Y}$ සහ ${f Z, }$ වෙනස් මාන සහිත භෞතික රාශි තුනක් නිරූපණය කරයි. මේවා,

P = AX + BY + CZ

මගින් දැක්වෙන ආකාරයේ P නම් තවත් භෞතික රාශියක් සකස් කිරීම සඳහා සම්බන්ධ කළ හැකි ය. පහත පුකාශනවලින් අනෙක් ඒවාට වඩා වෙනස් මාන ඇත්තේ කුමකට ද?

- (1) AX
- (2) AX CZ
- (AX)(CZ)
- (5) (BY) (CZ)

පහත පුකාශවලින් කුමක් සතා නොවේ ද?

- (1) ලේසර් ආලෝකය තීර්යක් තරංගවලින් සමන්විත වේ.
- (2) ගැමා කිරණ තීර්යක් තරංග වේ.
- (3) පෘථිවි කබොළ තුළිත් ගමන් කරන පුාථමික තරංග (P-තරංග) අන්වායාම තරංග වේ.
- (4) අතිධ්වති කරංග අන්වායාම කරංග වේ.
- (5) FM තරංග අන්වායාම තරංග වේ.
- $oldsymbol{4}$. පරිපූර්ණ වායුවක් තුළ ධවති වේගය v පිළිබඳ ව කර ඇති පහත පුකාශ සලකන්න.
 - (A) v, වායුවේ නිරපේක්ෂ උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - (B) v, වායුවේ මවුලික ස්කන්ධයට පුතිලෝමව සමානුපාතික වේ.
 - (C) v, වායුවේ මවුලික තාප ධාරිතා අතර අනුපාතය γ මත රඳා පවතී.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) C පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 5. සාමානා සීරුමාරුවේ ඇති පුකාශ උපකරණ සම්බන්ධයෙන් කර ඇති පහත පුකාශවලින් කුමක් සතා නෙවේ ද?
 - සරල අණ්වීක්ෂයක, වස්තුවෙහි පුතිබිම්බය අතාත්වික වේ.
 - (2) සරල අණ්වීක්ෂයක් භාවිතයෙන් කුඩා අකුරු කියවීමේ දී අවිදුර දෘෂ්ටිකත්වයෙන් පෙළෙන පුද්ගලයකුට දුර දෘෂ්ටිකත්වයෙන් පෙළෙන පුද්ගලයකුට වඩා වැඩි වාසියක් අත් වේ.
 - (3) සංයුක්ත අණ්වීක්ෂයක උපනෙත සරල අණ්වීක්ෂයක් ලෙස කිුිිිියා කරයි.
 - (4) සංයුක්ත අණ්වීක්ෂයක, අවසාන පුතිබිම්බය යටිකුරු වේ.
 - (5) නක්ෂතු දුරේක්ෂයක, වස්තු දුර හා පුතිබිම්බ දුර යන දෙකම ඉතා විශාල බව සලකනු ලැබේ.

- 6. පරිපූර්ණ වායුවක් යොදා ගනිමින් කෙරෙන එක්තරා කාපගතික කිුයාවලියක දී වායුවෙහි අභාාන්තර ශක්තියේ වැඩිවීම වායුවට සපයන ලද කාප පුමාණයට සමාන වේ. මෙම කිුිිියාවලිය,
 - (1) චකුීය කුියාවලියකි.

(2) ස්ථීරතාපී කිුයාවලියකි.

- (3) නියත පීඩන කිුයාවලියකි.
- (4) නියත පරිමා කියාවලියකි.
- (5) සමෝෂ්ණ කියාවලියකි.
- 7. ලෝහ දණ්ඩක උෂ්ණත්වය $100~{}^{\circ}{
 m C}$ කින් වැඩි කරන විට එහි දිගෙහි භාගික වෙනස්වීම $2.4 imes 10^{-5}$ වේ. දණ්ඩ සාදා ඇති දුවායෙහි රේඛීය පුසාරණතාව වනුයේ,
 - (1) $2.4 \times 10^{-3} \, {}^{\circ}\text{C}^{-1}$

- (2) $2.4 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$
- (3) $2.4 \times 10^{-5} \, ^{\circ}\text{C}^{-1}$

(4) $2.4 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$

- (5) $2.4 \times 10^{-7} \, ^{\circ}\text{C}^{-1}$
- 8. එක්තරා පරිණාමකයක පුාථමික දඟරයේ වට 900 ක් ඇති අතර ද්විතීයික දඟරයේ වට 30 ක් ඇත. පුාථමික දඟරය හරහා $240~\mathrm{V}$ පුතාහවර්තක චෝල්ටීයතාවක් යෙදූ විට ද්විතීයික ද ω රය හරහා චෝල්ටීයතාව වනුයේ,
 - (1) 0 V
- (2) 8 V
- (3) 12 V
- (4) 72 V
- (5) 7.2 kV

- පහත ඒවායින් කුමක් වී.ගා.බ. පුභවයක් නොවේ ද?
 - (1) විද්යුත් රසායනික කෝෂය
- (2) පුකාශ දියෝඩය
- (3) පීඩවිද්යුත් ස්ඵටිකය
- (4) තාප විද්යුත් යුග්මය
- (5) ආරෝපිත ධාරිතුකය
- 10. (a) රූපයේ පෙන්වා ඇති තාර්කික පරිපථය සමක වනුයේ,

- 11. අරය R_A වූ ඒකාකාර, ගෝලාකාර A නම් ගුහයකුගේ සහ අරය R_B වූ ඒකාකාර, ගෝලාකාර B නම් ගුහයකුගේ පෘෂ්ඨ මත ගුරුත්වජ ත්වරණ සමාන වේ. A හි ස්කන්ධය B හි ස්කන්ධය මෙන් දෙගුණයක් වේ නම්,
- (1) $R_A = \sqrt{2}R_B$ (2) $R_A = 2R_B$ (3) $R_A = \frac{R_B}{\sqrt{2}}$ (4) $R_A = \frac{R_B}{2}$ (5) $R_A = R_B$
- විශාලත්වයෙන් සමාන ඒකතල බල පහකි. මෙම බලවල සම්පුයුක්තයේ දිශාව වඩාත් ම හොඳින් නිරූපණය වන්නේ පහත කුමන රූපයෙන් ද?

13. ති්රස් සුමට පටියක් මත එහි දාරයේ නිශ්වලව සිටින ස්කන්ධය $2 imes 10^{-6}~{
m kg}$ (2 මිලිගුෑම්) වූ කුහුඹුවකු කටින් පිඹ $0.2\,\mathrm{s}$ කාලයක දී ඉවත් කරනු ලැබේ. පිඹින දිශාව රූපයේ ඊතල මගින් පෙන්වා ඇති පරිදි තිරස් වේ. කුහුඹුවා $0.5~\mathrm{m\,s^{-1}}$ තිරස් පුවේගයකින් පිඹින දිශාවට විසි වේ නම්, පිඹීම මගින් කුහුඹුවා මත ඇති කරන බලයේ සාමානා අගය වනුයේ,

- (1) $5 \times 10^{-6} \,\mathrm{N}$
- (2) 1×10^{-5} N
- (3) 2×10^{-5} N
- (4) $1 \times 10^{-3} \text{ N}$
- (5) $5 \times 10^{-3} \text{ N}$

- 14. මිදුණු පොකුණක තිරස් පෘෂ්ඨය මත තබා ඇති m ස්කන්ධයෙන් යුත් කුඩා වස්තුවකට තිරස් දිශාවට v_0 ආරම්භක වේගයක් ලැබෙන පරිදි පයින් පහරක් දෙනු ලැබේ. වස්තුව පෘෂ්ඨය මත තිරස් සරල රේඛාවක භුමණය වීමකින් තොරව චලනය වේ. වස්තුව සහ පෘෂ්ඨය අතර ගතික ඝර්ෂණ සංගුණකය μ වේ. වාතයේ පුතිරෝධය නොසලකා හැරිය හැකි නම්, වස්තුව නැවතීමට පෙර ගමන් කරන දුර වනුයේ,
 - $(1) \quad \frac{v_0^2}{2\mu g}$
- $(2) \quad \frac{v_0^2}{\mu g}$
- $(3) \quad \frac{2v_0^2}{\mu g}$
- (4) $\frac{v_0^2}{2g}$
- $(5) \quad \frac{2v_0^2}{g}$

15. සැහැල්ලු සර්වසම දඬු දහයක් භාවිත කරමින් එක එකෙහි ස්කන්ධය m වූ සර්වසම ගෝල එකොළහක් සම්බන්ධ කර රූපයේ පෙන්වා ඇති පරිදි ඒකතල වුහුහයක් සාදා ඇත. වුහුහයේ ගුරුත්ව කේන්දය පිහිටීමට වඩාත් ම ඉඩ ඇති ලක්ෂාය වනුයේ,

- (2) A
- (3) B
- (4) C
- (5) D

16. ස්කන්ධය 2 kg වූ කුට්ටියක් තිරස් පෘෂ්ඨයක් දිගේ තල්ලු කරනු ලැබේ. කුට්ටියෙහි විස්ථාපනය x, කාලය t සමග විචලනය රූපයේ පෙන්වා ඇත. කුට්ටිය මත එහි චලිත දිශාවට කිුයාකරන F සම්පුයුක්ත බලයේ අගයයන් 0 < t < 2, 2 < t < 4 සහ 4 < t < 5 යන කාල අන්තර එක එකක් තුළ දී නොවෙනස්ව පවතී. පහත කුමක් මගින් කාලාන්තර එක එකක් තුළ දී F හි විශාලත්වය නිවැරදි ව දැක්වෙයි ද?

	F(N)	F(N)	F(N)
	(0 < t < 2)	(2 < t < 4)	(4 < t < 5)
(1)	0	0	0
(2)	0	1.5	. 0
(3)	0	2	0
(4)	1	0	0
(5)	2	1.5	1

More Past Papers at

tamilguru.lk

17. සරල අනුවර්තී චලිතයක යෙදෙන වස්තුවක විස්ථාපන (x) – කාල (t) වකුය රූපයේ පෙන්වයි. මෙම චලිතය සඳහා කාලාවර්තය T, සංඛානතය f, කෝණික වේගය ω , උපරිම වේගය v_{\max} සහ උපරිම ත්වරණය a_{\max} යන ඒවායේ විශාලත්වයන් දෙනු ලබන්නේ,

x(10 ⁻² m)			
0 -2	0.5	1.5 2	2.5	→ t(s)

	T(s)	f(Hz)	ω (s ⁻¹)	$v_{\rm max} \times 10^{-2} ({\rm m \ s^{-1}})$	$a_{\rm max} \times 10^{-2} ({\rm m \ s^{-2}})$
(1)	0.5	2	4π	4	16
(2)	1	1	2π	4π	8π ²
(3)	1	2π	2	4π	8
(4)	1	1	2π	8π	16π ²
(5)	1	1	4π	8	16

- 18. පුද්ගලයෙක්, තමා සිටින ස්ථානයේ සිට 1 km දුරින් නිශ්චලව සිටින අලියකු නිරීක්ෂණය කරයි. පුද්ගලයාට ඇසෙන අලියාගේ කුංච නාදයේ ධ්වනි තීවුතාව $10^{-10}~{
 m W\,m^{-2}}$ වේ. ධ්වනිය පැමිණෙන්නේ ලක්ෂාාකාර පුභවයකින් යයි උපකල්පනය කරන්න. පුද්ගලයාගේ ශුවාතා දේහලීය $10^{-12}\,\mathrm{W\,m^{-2}}$ නම්, ඔහුට මෙම කුංච නාදය ඇසිය හැක්කේ කුමන උපරිම දුරක සිට ද?
 - (1) 1 km
- (2) 2 km
- (3) 4.5 km
- (4) 10 km
- (5) 20 km
- ${f 19}.~~P$ සහ Q යන රසදිය-වීදුරු උෂ්ණත්වමාන දෙකක් P හි රසදිය බල්බය Q හි රසදිය බල්බයට වඩා විශාල වන පරිදි නිර්මාණය කර ඒ දෙකම $0\,^{\circ}\mathrm{C}-100\,^{\circ}\mathrm{C}$ පරාසයේ දී කුමාංකනය කළ යුතුව ඇත. බල්බ දෙකෙහි ම බිත්තිවලට එකම ඝනකම ඇති බව උපකල්පනය කරන්න. පහත පුකාශ සලකා බලන්න. සුදුසු ඒකාකාර සිදුරු අරයයන් සහිත කේශික නළ භාවිත කරමින් උෂ්ණත්වමාන දෙකු.
 - (A) $0\,^{\circ}\mathrm{C}$ සහ $100\,^{\circ}\mathrm{C}$ සලකුණු අතර එකම කේශික දිග ලැබෙන පරිදි නිර්මාණය කළ හැකි ය.
 - (B) මනින උෂ්ණත්වයේ ශීසු වෙනස්වීම් සඳහා එකම පුතිචාර කාලය ලැබෙන පරිදි නිර්මාණය කළ හැකි ය.
 - (C) P උෂ්ණත්වමානයේ සංවේදීතාව Q උෂ්ණත්වමානයේ සංවේදීතාවට වඩා වැඩි වන පරිදි නිර්මාණය කළ හැකි ය.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) B සහ C පමණක් සතා වේ.
- (4) A සහ C පමණක් සතා වේ.
- (5) A,B සහ C සියල්ල ම සතා වේ.
- ${f 20}$. ගිල්ලුම් කාපකයක් සවි කර ඇති සම්පූර්ණයෙන් පරිවරණය කරන ලද බොයිලේරුවකට $1 imes 10^{-2}~{
 m kg~s^{-1}}$ නියත ශීසුතාවකින් $0\,^{\circ}\mathrm{C}$ හි ඇති ජලය නොකඩවා සපයනු ලැබේ. ජලයේ විශිෂ්ට තාප ධාරිතාව සහ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය පිළිවෙළින් $4.2 \times 10^3~{
 m J\,kg^{-1}}$ $^{\circ}{
 m C}^{-1}$ සහ $2.25 \times 10^6~{
 m J\,kg^{-1}}$ වේ. ජලය සපයන ශීඝුතාවයෙන්ම $100\,^{\circ}\mathrm{C}$ හි ඇති හුමාලය නිපදවීමට නම්, ගිල්ලුම් තාපකයේ ක්ෂමතාව විය යුත්තේ,
 - (1) 4.2 kW
- (2) 22.5 kW
- (3) 26.7 kW
- (4) 42.0 kW
- (5) 267.0 kW

- 21. පෙන්වා ඇති පරිපථයෙහි ධාරිතුක එක එකෙහි අගය 1 μF වේ. ධාරිතුක සම්පූර්ණයෙන් ම ආරෝපණය වූ විට ධාරිතුකවල ගබඩා වී ඇති මුළු ආරෝපණය වනුයේ,
 - (1) $2 \mu C$
- (2) $4 \mu C$
- (3) 5 μ C

- (4) $8 \mu C$
- (5) $10 \,\mu\text{C}$

22. රූපවල පෙන්වා ඇත්තේ ශිෂාායකු විසින් අඳින ලද වාතයේ ඇති සබන් පෙණ බුබුළු කැටි පහකි. එක් එක් කැටියේ බුබුළුවල කේන්දු ඒකතල නම්, භෞතිකව තිබිය හැකි නිවැරදි හැඩය සහිත කැටිය පහත ඒවායින් කුමක් මගින් දැක්වේ ද?

(1)

(2)

23. රූපයේ පෙන්වා ඇති පරිදි, සඵල ආරෝපණය ධන වූ ආරෝපණ වාාාප්තියක් ඇතුළත් වන පරිදි S නම් ගවුසියානු පෘෂ්ඨයක් ඇඳ ඇත. A ලෙස සලකුණු කර ඇති පෘෂ්ඨ කොටස හරහා විද්යුත් සුාවය $-\psi~(\psi>0)$ නම්, ගවුසියානු පෘෂ්ඨයේ ඉතිරි කොටස හරහා විද්යුත් සුාවය ψ_R පිළිබඳ ව පහත කුමක් සතා වේ ද?

- (3) $\psi_R < -\psi$
- (4) $\psi_R < +\psi$ (5) $\psi_R > +\psi$

 ${f 24}.~~({
m A}), ({
m B})$ සහ $({
m C})$ පරිපථවල ඇති සර්වසම වෝල්ටීයකා පුභව කුනට නොගිණිය හැකි අභෳන්තර පුතිරෝධයක් ඇත. (B) පරිපථයෙහි (V) මගින් r අභාහන්තර පුතිරෝධයක් සහිත චෝල්ට්මීටරයක් නිරූපණය කෙරේ. $R_3=rac{R_1r}{R_1+r}$ නම්, පරිපථවල පෙන්වා ඇති I_1,I_2 සහ I_3 පිළිබඳ ව පහත කුමක් සතා වේ ද?

(1) $I_1 = I_2 = I_3$ (4) $I_2 = I_3 > I_1$

- (2) $I_1 > I_2 > I_3$ (5) $I_3 > I_2 > I_1$

- (3) $I_1 > I_2 = I_3$
- ${f 25}$. පෙන්වා ඇති රූපයේ, ${f \overline{Z}}$ මගින් නොදන්නා අගයයන්වලින් සමන්විත පුතිරෝධක ජාලයක් දැක්වේ. වෝල්ටීයතා පුභවයේ අභාාන්තර පුතිරෝධය නොගිණිය හැකි නම්, ජාලය මගින් විසර්ජනය කෙරෙන ක්ෂමතාව වනුයේ,
 - (1) 60 mW
- (2) 90 mW
- (3) 120 mW

- (4) 150 mW
- (5) 180 mW

- 26. රූපයේ පෙන්වා ඇති 1,2,3,4,5 සහ 6, සර්වසම විදුලි බල්බ හයක් නිරූපණය කරයි. පහත දී ඇති (A), (B) සහ (C) තත්ත්ව යටතේ දී පරිපථයෙහි කිුයාකාරිත්වය සලකන්න.
 - (A) 2 බල්බය දැවී ඇති විට.
 - (B) 2 සහ 5 බල්බ දැවී ඇති විට.
 - (C) බල්බ කිසිවක් දැවී **නොමැති** විට.

පරිපථයේ දැවී නොමැති බල්බ එකම දීප්තියකින් දැල්වෙනු දැකිය හැක්කේ,

(1) B හි දී පමණි.

- (2) C හි දී පමණි.
- (3) A සහ C හි දී පමණි.
- (4) B සහ C හි දී පමණි.
- (5) A, B සහ C සියල්ලෙහි දී ම ය.

- 27. දී ඇති පරිපථයේ 🕕, ② සහ ③ යන 741 කාරකාත්මක වර්ධක තුන පිළිවෙළින් ±15 V, ±10 V සහ ±8 V ජව සැපයුම් මගින් කිුයාත්මක වේ. $V_1,\,V_2$ සහ V_3 යන පුතිදාන වෝල්ටීයතාවල ආසන්න අගයයන් පිළිවෙළින් දෙනු ලබන්නේ,

- (2) + 15 V, -10 V, -8 V
- (3) + 2V, +4V, -4V
- (4) -15 V, +10 V, +8 V
- (5) + 15 V, + 10 V, + 8 V

- + 15 V 1) - 15 V
- ${f 28}$. දිග ${f 5l}$ සහ ස්කන්ධය ${f 5m}$ වූ ඒකාකාර සෘජු බර ලෑල්ලක් 2l පරතරයෙන් පිහිටි ආධාරක දෙකක් මත රූපයේ පෙන්වා ඇති පරිදි තිරස් ව තබා ඇත. ස්කන්ධය m වූ පින්තාරුකරුවකුට තමාගේ තීන්ත බාල්දිය රැගෙන සම්පූර්ණ ලෑල්ල දිගේම ඇවිදීමට අවශා වේ. ලෑල්ල නොපෙරළෙන පරිදි පින්තාරුකරුට රැගෙන යා හැකි තීන්ත බාල්දියේ උපරිම ස්කන්ධය කුමක් ද?

- (3) $\frac{5m}{4}$
- (4) m
- (5) $\frac{m}{4}$

29. ඉහළින් විවෘතව පවතින A,B සහ C ටැංකි තුනක් ආරම්භයේ දී රූපයේ පෙන්වා ඇති මට්ටම්වලට ජලයෙන් පුරවා ඇත. ඒවා ස්ථිතික තත්ත්ව යෙදිය හැකි, බිහිදොරකට ඉතා අඩු වේගයකින් ජලය සපයයි. V_1 සහ V_2 කපාට දෙක, කපාටයට ඉහළින් පවතින පීඩනය කපාටයට පහළින් පවතින පීඩනයට වඩා වැඩි වූ විට පහළට පමණක් ජලය ගලා යාමට ඉඩ දෙයි. රූපයේ දක්වා ඇති ආරම්භක තත්ත්ව සහිත ව පද්ධතිය කිුයාකරවීමට සැලැස්වූ විට පද්ධතියේ ඉනික්බිති කිුයාකාරිත්වය වඩාත් ම හොඳින් විස්තර කෙරෙන්නේ පහත කුමන පුකාශයෙන් ද?

- (1) බිහිදොර තුළින් ජලය ගැලීමට C පමණක් දායක වේ.
- (2) බිහිදොර තුළින් ජලය ගැලීමට, ආරම්භයේ දී C දායකවීම පටන් ගන්නා අතර ඉන්පසු B ද ඊටත් පසුව A ද දායක වේ.
- (3) බිහිදොර තුළින් ජලය ගැලීමට, ආරම්භයේ දී A දායකවීම පටන් ගන්නා අතර ඉන්පසු B ද ඊටත් පසුව C දායක වේ.
- (4) ටැංකි තුන කිසිම විටක එක්වර බිහිදොර තුළින් ජලය ගැලීමට, දායකත්වය නොදක්වයි.
- (5) ආරම්භයේ දී ටැංකි තුනම බිහිදොර තුළින් ජලය ගැලීමට දායකවන අතර වැඩිම දායකත්වය C ගෙන් ලැබේ.
- ${f 30}.$ යං මාපාංකය සෙවීමේ පරීක්ෂණයක දී එකම දුවායෙන් සාදන ලද W_1,W_2 සහ W_3 වෙනස් කම්බි තුනක් භාවිත කර විතතිය ΔL සමග යොදන ලද ආතනා බලය F අතර පුස්තාරය සඳහා රූපයේ පෙන්වා ඇති පරිදි පිළිවෙළින් G_1,G_2 සහ G_3 වකු තුනක් ලබාගන්නා ලදී. වෙනස් පුස්තාර ලැබීමට හේතුව පිළිබඳ ව කර ඇති පහත පුකාශවලින් කුමක් සතා වේ ද?

- (1) W_1 කම්බිය W_2 ට වඩා වැඩි දිගකින් හා අඩු හරස්කඩ වර්ගඵලයකින් සමන්විත විය හැකි ය.
- (2) W_1 කම්බියට W_2 ට සමාන දිගක් තිබිය හැකි නමුත් හරස්කඩ වර්ගඵලය W_2 ට වඩා අඩු ය.
- (3) W_3 කම්බියට W_1 ට සමාන හරස්කඩ වර්ගඵලයක් තිබිය හැකි නමුත් දිග W_1 ට වඩා වැඩි ය.
- (4) W_2 කම්බියට W_3 ට වඩා අඩු හරස්කඩ වර්ගඵලයක් තිබිය හැකි නමුත් දිග \hat{W}_3 ට වඩා වැඩි ය.
- W_3 කම්බියෙහි $\frac{1}{8}$ හරස්කඩ වර්ගඵලය අනුපාතයේ අගය W_1 හි එම අගයට වඩා වැඩි විය හැකි ය.
- 31. තුනී, පැතලි Z නම් තහඩුවක් X හා Y නම් විශාල තිරස් තහඩු දෙකක් අතර හරිමැද තබා අවකාශය දුස්සුාවී තෙලකින් රූපයේ දක්වා ඇති පරිදි පුරවා ඇත. දැන්, X නිශ්චලව තබා ගනිමින් Z තහඩුව තිරස් ව v නියත වේගයකින් දකුණු දෙසට ද Y තහඩුව තිරස් ව $\frac{v}{2}$ නියත වේගයකින් වම් දෙසට ද අදිනු ලබන අවස්ථාවක් සලකන්න. X සහ Y තහඩු අතර තුනී තෙල් ස්තරවල පුවේග දෛශික වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 32. $^A_Z X$ නම් විකිරණශීලි මූලදුවාස එක දිගට සිදුවන ක්ෂයවීම් මගින් lpha අංශූන් අටක් සහ eta^- අංශූන් හයක් විමෝචනය කිරීමෙන් පසු ස්ථායී $^{206}_{82} {
 m Pb}$ බවට පත්වේ. X මූලදුවායේ ඇති පෝටෝන සහ නියුටෝන සංඛාා වන්නේ පිළිවෙළින්,
 - (1) 92, 130
- (2) 92, 146
- (3) 92,238
- (4) 104, 148
- (5) 146,92

33. සිරස් තලයක වූ ඒකාකාර නොවන හරස්කඩ වර්ගඵලයක් සහිත නළයක් තුළින් අනවරත හා අනාකූල ලෙස ගලන දුස්සුාවී නොවන හා අසම්පීඩා තරල පුවාහයක් සලකන්න. නළයේ සිරස් හරස්කඩ රූපයේ පෙන්වයි. අනාකූල රේඛාවක පිහිටීම් තුනක් X, Y සහ Z මගින් දැක්වේ. X හි දී නළයේ හරස්කඩ වර්ගඵලය හා Z හි දී එම අගය සමාන වේ. X, Y සහ Z ස්ථානවල දී පිළිවෙළින්

ඒකක පරිමාවක චාලක ශක්ති (KE_X , KE_Y , KE_Z), ඒකක පරිමාවක විභව ශක්ති (PE_X , PE_Y , PE_Z) හා තරල පීඩන (PE_X , PE_Y) යන රාශිවල සාපේක්ෂ විශාලත්ව සඳහා පහත දී ඇති අසමානතා සලකා බලන්න.

- $(A) \quad KE_Z < KE_X < KE_Y$
- (B) $PE_X < PE_Z < PE_Y$
- (C) $P_Y < P_Z < P_X$

- ඉහත අසමානතාවලින්, (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A,B සහ C සියල්ල ම සතා වේ.
- 34. තැටියක්, කේන්දුය හරහා යන තැටියට ලම්බක අචල සිරස් අක්ෂයක් වටා සර්ෂණයෙන් තොරව එක්තරා කෝණික වේගයකින් නිදහසේ හුමණය වේ. රූපයේ පෙන්වා ඇති පරිදි කාලය t=0 දී හුමණය වන තැටියේ ගැටිය මතට නොගිණිය හැකි වේගයකින් මකුළුවෙක් සිරස් ව පහත් වී නිශ්චලතාවට පත්වෙයි. කාලය (t) සමග **නැටියේ පමණක්** කෝණික ගමාතාව (L) සහ කෝණික වේගය (ω) හි විශාලත්වවල විචලනයවීම වඩාත් හොඳින් පෙන්නුම් කරනුයේ,

35. ස්කන්ධ සර්වසම වූ A, B සහ C යන ඒකාකාර වස්තු තුනක සිරස් හරස්කඩවල් රූපයේ දැක්වේ. A යනු අරය r වූ ඝන ගෝලයකි. C යනු අරය r වූ ඝන ගෝලයකි. C යනු අරය r වූ තුනී විත්ති සහිත කුහර ගෝලයකි. ගෝල ඒවායේ අදාළ කේන්දු හරහා යන සිරස් අක්ෂ වටා භුමණය කළ හැකි ය. B යනු අරය r වූ තැටියක් වන අතර එය තැටියේ කේන්දුය හරහා යන තැටියේ තලයට ලම්බක අක්ෂයක් වටා භුමණය කළ හැකි ය. සියලුම රූප එකම

පරිමාණයට ඇඳ ඇත. A,B සහ C වස්තූන්වලට, සමාන කෝණික වේගයන් අත්කර දීමට ලබාදිය යුතු හුමණ චාලක ශක්තීන් පිළිවෙළින් KE_A , KE_B සහ KE_C නම්, පහත පුකාශනවලින් කුමක් සතාා වේ ද?

- $(1) \quad KE_A < KE_B < KE_C$
- $(2) \quad KE_C < KE_A < KE_B$
- $(3) \quad KE_C < KE_B < KE_A$

- $(4) \quad KE_A < KE_C < KE_B$
- $(5) \quad KE_A = KE_B = KE_C$

- 36. සුනඛයකු පුහුණු කිරීමට භාවිත කරන නළාවක් 22 kHz සංඛාාතයක් ඇති කරන අතර එය මිනිසාගේ ශුවාතා දේහලීයට වඩා වැඩි ය. සුනබයාගේ පුහුණුකරුට නළාව වැඩ කරන බව තහවුරු කර ගනීමට අවශා වේ. පුහුණුකරු, තමා දිගු සෘජු මාර්ගයක් අයිතේ සිටගෙන සිටින අතරතුර එම මාර්ගයේම ගමන් කරන මෝටර් රථයක සිට මෙම නළාව පිඹින ලෙසට මිතුරකුට පවසයි. පුහුණුකරුට ඔහුගේ ශුවාතා දේහලීය වූ $20\,\mathrm{kHz}$ වල දී නළාවේ හඬ ඇසීම සඳහා මෝටර් රථයට තිබිය යුතු වේගය සහ එහි චලිත දිශාව වනුයේ, (වාකයේ ධ්වති වේගය $340~{
 m m\,s^{-1}}$ වේ.)

 - (1) $31 \,\mathrm{m\,s^{-1}}$, පුහුණුකරුගෙන් ඉවතට. (2) $32 \,\mathrm{m\,s^{-1}}$, පුහුණුකරුගෙන් ඉවතට.
 - (3) $34 \,\mathrm{m}\,\mathrm{s}^{-1}$, පුහුණුකරුගෙන් ඉවතට.
- (4) $32~{
 m m}\,{
 m s}^{-1}$, පුහුණුකරු දෙසට.
- (5) $34 \, {\rm m \, s^{-1}}$, පුහුණුකරු දෙසට.
- 37. මේසයක සමතල ති්රස් පෘෂ්ඨය මත තබා ඇති කඩදාසි කැබැල්ලක 23 අංකය ලියා ඇත. තුනී උත්තල කාචයක් අංකයට යම්තමින් ඉහළින් තබා ඉන්පසු එය තුළින් අංකයේ පුතිබිම්බය දෙස බලමින් පුකාශ අක්ෂය සිරස් ව තබා ගනිමින් එය සිරස් ව ඉහළට හෙමින් ගෙන යනු ලැබේ. කාචය 23 අංකයෙන් කුමයෙන් ඉහළට ගෙන යන විට එහි පුතිබිම්බයේ විශාලත්වයේ හා හැඩයේ වෙනස්වීම පහත කුමක් මගින් වඩාත් හොඳින් දැක්වෙයි ද?
 - (1)

- 23.23.....23.23 (5)
- 38. රූපයේ පෙන්වා ඇති ඝන බිත්ති සහිත කුහර වීදුරු පිුස්මය වර්තන අංකය μ_{σ} වූ දුවාංයකින් සාදා ඇත. වාතය තුළ ගමන් කරන PQ ඒකවර්ණ අාලෝක කිරණයක් රූපයේ පෙන්වා ඇති පරිදි වීදුරු පෘෂ්ඨය මත පතනය වේ. නිර්ගත කිරණය $X,\,Y$ සහ Z දිශා ඔස්සේ පිළිවෙළින් ගමන් කරවීමට නම්, μ වර්තන අංකයක් සහිත පාරදෘශා තරල මගින් පිළිවෙළින් පුස්මයේ කුහරය **වෙන වෙනම** පිරවිය යුත්තේ

- (2) $\mu > \mu_{\rm g}$, $\mu < \mu_{\rm g}$ සහ $\mu = 1$ ිලෙසට ය.
- (3) $\mu=1$, $\mu=\mu_{\rm g}$ සහ $\mu<\mu_{\rm g}$ ඉලසට ය.
- (4) $\mu = 1$, $\mu < \mu_{\rm g}$ සහ $\mu > \mu_{\rm g}$ ලෙසට ය.
- (5) $\mu = \mu_g$, $\mu = 1$ සහ $\mu = \mu_g$ ලෙසට ය.

- 39. අලුතින් විවෘත කරන ලද බිස්කට් පැකට්ටුවක ඇති බිස්කට්, භාජනයක් තුළට දමන ලද අතර එයට වාතය ඇතුළු වීමට හෝ පිටවීමට නොහැකි වන පරිදි පියනකින් තදින් වසන ලදී. භාජනය තුළ ආරම්භක සාපේක්ෂ ආර්දුතාව 80% ක් බව ද සොයා ගන්නා ලදී. දින කීපයකට පසුව භාජනය තුළ සාපේක්ෂ ආර්දුතාව 30% දක්වා අඩු වී ඇති බව ද බිස්කට්වල ස්කන්ධය m පුමාණයකින් වැඩි වී ඇති බව ද සොයා ගන්නා ලදී. භාජනය තුළ උෂ්ණත්වය දිගටම තියතව පැවතියේ නම්, ආරම්භයේ දී භාජනය තුළ තිබූ ජල වාෂ්පවල ස්කන්ධය වූයේ
 - (1)

- $oldsymbol{40}$. සමාන දිගවල් හා සමාන හරස්කඩ වර්ගඵලවලින් යුක්ත තාප පරිවරණය කරන ලද තාප සන්නායක දඬු හතරක් උෂ්ණත්ව $100~^{\circ}\mathrm{C}$ හි හා $0~^{\circ}\mathrm{C}$ හි පවත්වාගෙන ඇති තාප කටාර දෙකක් අතර සම්බන්ධ කර ඇත්තේ කෙසේදැයි රූපයේ පෙන්වා ඇත. A යනු සෑම විටම නියත heta උෂ්ණත්වයක පවතින තාප පරිවරණය කරන ලද තාප කටාරයකි. දඬුවල k_1,k_2 හා k_3 තාප සන්නායකතා පිළිවෙළින් 10,30 සහ $50\,\mathrm{W\,m^{-1}\,K^{-1}}$ වේ. නොසැලෙන අවස්ථාවේ දී Aකටාරයේ heta උෂ්ණත්වය වනුයේ,

- (1) 90 °C
- (2) 85 °C
- (3) 80 °C
- (4) 75 °C
- (5) 65 °C

41. රූපයේ පෙන්වා ඇති සිරස් හරස්කඩකින් යුත් විශේෂ හැඩයක් සහිත වීදුරු බෝතලයක් විශාල කුහරයකින් ද අරය r වූ කුඩා ගෝලාකාර කුහරයකින් ද කුමයෙන් අරය කුඩා වන දිග l වූ පටු නළයකින් ද සමන්විත වේ. පෙන්වා ඇති පරිදි විශාල කුහරයේ සම්පූර්ණ පරිමාව ද කුඩා කුහරයේ පරිමාවෙන් අර්ධයක් ද ආරම්භයේ දී 0 °C ඇති ජලයෙන් පුරවා ඇත. බෝතලයේ පුසාරණය නොගිණීය හැකි නම්, XY මට්ටමේ සිට ජල පෘෂ්ඨයට මනින ලද උස (h), ජලයේ උෂ්ණත්වය (θ) සමග වෙනස්වීම වඩාත් ම හොඳින් නිරුපණය කරනු ලබන්නේ,

42. (a) රූපයේ පෙන්වා ඇති පරිපථයේ කඩ ඉරි සහිත කොටුව තුළ පුතිරෝධක ජාලයක් අන්තර්ගත වී ඇත. 2V බැටරියට නොගිණිය හැකි අභාාන්තර පුතිරෝධයක් ඇත. ab හරහා සම්බන්ධ කළ පරිපූර්ණ චෝල්ට්මීටරයක් 1V පාඨාංකයක් ලබාදෙයි. චෝල්ට්මීටරය පරිපූර්ණ ඇමීටරයකින් පුතිස්ථාපනය කළ විට එය 2 mA අගයක් දක්වයි. කඩ ඉරි මගින් සලකුණු කර ඇති කොටුව තුළ ඇති පුතිරෝධක ජාලය වනුයේ,

43. පෙන්වා ඇති පරිපථයෙහි, X සහ Y මගින් කඩ ඉරි සහිත කොටුව තුළ පිහිටි විචලා වෝල්ටියතා පුභවයක අගු නිරූපණය කෙරේ. P යනු විචලා පුතිරෝධකයකි. D යනු පරිපූර්ණ දියෝඩයකි. X ලක්ෂායේ වෝල්ටියතාව V_X හි අගය 0 සිට $15\,\mathrm{V}$ දක්වා කුමයෙන් වැඩි කරන විට, පහත පුස්තාර අතුරෙන් කුමක් මගින්, XYට දකුණු පැත්තේ පරිපථ කොටසෙහි සමස්ත පුතිරෝධය R හි වෙනස්වීම නිවැරදි ව දක්වයි ද?

44. (a) රූපයේ පෙන්වා ඇති පරිදි සිදුරේ අරය ඒකාකාර වූ දිගු කේශික නළයක් ඝනත්වය $d_{\rm w}$ වූ ජලය සහිත බිකරයක සිරස් ව ගිල්වූ විට කේශික නළය තුළ ජල කඳ h_0 උසකට නගී. දැන් (b) රූපයේ පෙන්වා ඇති පරිදි බීකරයේ ජලය කැලඹීමක් නොවන පරිදි ජල පෘෂ්ඨය මතට ඝනත්වය d_0 ($< d_{\rm w}$) වූ තෙලක් සෙමෙන් වත් කරනු ලැබේ. ජලය සහ තෙල් එකිනෙක මිශු නොවන දුව බව උපකල්පනය කරන්න. ජල පෘෂ්ඨයේ සිට මනිනු ලබන කේශික නළය තුළ ජල කඳේ උස H, තෙල් තට්ටුවේ උස h සමග විචලනයවීම වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

 ${f 45.}$ ${}+q$ ලක්ෂාාකාර ආරෝපණ තුනක ඒකලින වාාප්තියක ආරෝපණ O ලක්ෂායක සිට ${f 2\,cm}, {f 3\,cm}$ හා ${f 6\,cm}$ දුරවල් වලින් පිහිටා ඇත. ලක්ෂාාකාර -q ආරෝපණයක් O ලක්ෂායේ සිට r දුරකින් තැබූ පසුව වෙනත් ආරෝපණයක් අනන්තයේ සිට කිසිම කාර්යයක් නොකර O ලක්ෂායට ගෙන ආ හැකි ය. r හි අගය වනුයේ,

(1) 1 cm

46. ඒකාකාර සවිශක්තියකින් යුත් කඹයක් යොදා ගනිමින් කණ්ඩායම් දෙකක් රූපයේ පෙනෙන පරිදි තද තිරස් සමතල පෘෂ්ඨයක් මත කඹ ඇදීමේ තරගයක් ආරම්භ කරති. කණ්ඩායම් දෙකම සමාන බල යොදන අතර එහි පුතිඵලයක් ලෙස කඹය මත වූ O ලක්ෂාය **චලිත නොවේ**. මෙම අවස්ථාව පිළිබඳ ව කර ඇති පහත පුකාශ සලකන්න.

- (A) කණ්ඩායම් දෙකේ එක් එක් සාමාජිකයා කඹය මත සමාන බල යොදනු ලබන්නේ නම්, කඹයේ හැම තැනම ආතතියේ විශාලත්වය සමාන වේ.
- (B) කඹය මත ආතතියේ විශාලත්වය එහි භේදක ආතතිය ඉක්මවා යයි නම්, කඹය කැඩෙනුයේ P සහ Qඅතර පිහිටි ලක්ෂායකින් පමණි.
- (C) පුද්ගලයකු විසින් කඹය මත යෙදිය හැකි උපරිම බලයේ විශාලත්වය පුද්ගලයාගේ පාද සහ පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය මත රඳා පවතී.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 47. රූපයේ පෙන්වා ඇත්තේ එකම දුවායෙන් සාදන ලද සර්වසම මාන සහිත ඒකාකාර ලී ඝනක තුනක් සහ සර්වසම ඒකාකාර ලෝහ ඝනක තුනක් යොදා ගනිමින් සාදන ලද (A), (B) සහ (C) වස්තු තුනකි. (A) සහ (B) හි ලෝහ ඝනක පිළිවෙළින් ලී ඝනකවල උඩට සහ යටට අලවා ඇත. (C) හි ලෝහ ඝනකය රූපයේ පෙනෙන පරිදි ලී ඝනකය තුළ ඔබ්බවා ඇත.

 $(A),\,(B)$ සහ (C) වස්තු තුන දැන් ඒවායේ දිශානතිය චෙනස් නොවන සේ සෙමින් පහත් කර ජල තටාකයක සිරස් ව පාවීමට සලස්වනු ලැබේ. **ලී ඝනක** ජලය තුළට ගිලී ඇති ගැඹුරු පිළිවෙළින් H_A, H_B සහ H_C නම්, පහත සම්බන්ධතාවලින් කුමක් සතා වේ ද?

(2) $H_A = H_B > H_C$ (4) $H_C > H_B > H_A$

 $\begin{array}{ll} (1) & H_A > H_B > H_C \\ (3) & H_A = H_B = H_C \\ (5) & H_A > H_C > H_B \end{array}$

- $oldsymbol{48}$. රූපයේ පෙනෙන පරිදි කඩදාසියේ තලයට ලම්බකව O ලක්ෂායේ රඳවා තබා ඇති අනන්ත දිගකින් යුත් සිහින් සෘජු කම්බියක් කඩදාසිය තුළට I ධාරාවක් ගෙන යයි. කේන්දුය O ලක්ෂාය වූ ද අරය r වූ ද වෘත්තයක පරිධිය මත රඳවා තබා ඇති ඉහත කම්බියට සමාන්තර වූ තවත් අනන්ත දිගැති සමාන කම්බි නවයක් එක එකක් කඩදාසිය තුළට I ධාරාවක් ගෙන යයි. A සහ B කම්බි සඳහා හැර, එක ළඟ පිහිටි ඕනෑම කම්බි දෙකක් අතර කෝණික පරතරය පෙන්වා ඇති පරිදි 30° කි. අනෙකුත් කම්බි නිසා O කේන්දුයෙහි රඳවා ඇති කම්බියෙහි ඒකක දිගක් මත චුම්බක බලයෙහි විශාලත්වය සහ දිශාව වනුයේ,

 $(\cos 30^\circ = \frac{\sqrt{3}}{2}$ ලෙස ගන්න.)

- $(1) \quad \frac{\mu_0 I^2}{2\pi r} \left(1 + \sqrt{3}\right)$, YO දිශාව ඔස්සේ ය. $\qquad (2) \quad \frac{\mu_0 I^2}{2\pi r} \left(1 + \sqrt{3}\right)$, OY දිශාව ඔස්සේ ය.
- (3) $\frac{\mu_0 I^2}{\pi r} (1 + \sqrt{3})$, OY දිශාව ඔස්සේ ය. (4) $\frac{\mu_0 I^2}{2r} (1 + \sqrt{3})$, OX දිශාව ඔස්සේ ය.
- (5) $\frac{3\mu_0 I^2}{2\pi r}$, YO දිශාව ඔස්සේ ය.

49. (a) රූපයේ පෙන්වා ඇති PQ ඒකලිත ලෝහ අක්ෂ දණ්ඩකින් සමන්විත සෙල්ලම් කාරයක් නියත v වේගයකින්, සිරස් හරස්කඩ zx තලයේ වූ සයිනාකාර මාර්ගයක් දිගේ (b) රූපයේ පෙන්වා ඇති පරිදි ගමන් කරයි. කාලය t=0 දී PQ අක්ෂ දණ්ඩ y අක්ෂය හා සමපාත වේ. සාව සනත්වය B වූ ඒකාකාර චුම්බක ක්ෂේතුයක් xy තලයට ලම්බකව +z දිශාවට පුදේශය පුරාම පවතී නම්, කාලය (t) සමග දණ්ඩෙහි Q කෙළවරට සාපේක්ෂව P කෙළවරෙහි පේරිත වි.ගා.බ. (e) හි වෙනස්වීම වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ, (පෘථිවී චුම්බක ක්ෂේතුයේ බලපෑම නොසලකා හරින්න.)

(5)

(a) රූපය

		V_B	V_C	V_D
(1)	-3 kV	+ 2.6 kV	0 V
(2)	+ 2.5 kV	- 2.6 kV	+ 3 kV
(3)	+2.5 kV	+ 2.4 kV	+ 200 V
(4)	+ 3 kV	+ 2.6 kV	-2.8 kV
(5)	+ 3 kV	+ 3.2 kV	– 2.2 kV

සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලි ලංකා විගත දෙපාර්තමේන්තුව ලි ලංකා විශාල දෙපාර්ත**ල් ලබා සිතුල් ලියා විශාල දෙපාර්තමේන්තුව** ලි ලංකා විශාල දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம்இண்டுக்கு பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கைய் Sri Linka Spirit Sinka Spirit Spiri**

> අධායන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August 2018

<mark>භෞතික විදනව II</mark> ධෙளதிகவியல் II Physics II

01 S II

2018.08.13 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

වැදගත් :

- 🔆 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- * මෙම ප්‍රශ්න පත්‍රය A සහ B යන කොටස් දෙකකින් යුක්ත වේ. කොටස් දෙකට ම නියමිත කාලය පැය තුනකි.
- 🗱 ගණක යන්නු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - ව<u>ප</u>ුහගත රචනා (පිටු 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- ** සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පස්‍ර A සහ B කොටස් එක් පිළිතුරු පත්‍රයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

විභාග	අංකය :		• • • • •				
peg)ක්ෂක ව	<u></u>	രൻ	മര	രവ	P4 00	3/3
<u> </u>		ーいい	Y.	T.	w	-	w

සඳහා පමණි දෙවැනි පතුය සඳහා කොටස පුශ්න අංක ලැඩු ලකුණු 1 2 A 3 4 5 6 7 8 В 9 (A) 9 (B) 10 (A) 10 (B)

අවසාන ලකුණු

ඉලක්කමෙන් අකුරින්

එකතුව

සංකෙත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

A කොටස- වනුහගත රචනා පුශ්න හතරට ම පිළිතුරු මෙම පතුයේ ම සපයන්න.

(ගුරුත්වජ ක්වරණය, $g = 10 \,\mathrm{N} \,\mathrm{kg}^{-1}$)

කීරයේ කිසිවක් නො ලියන්න

 $oldsymbol{1}$. පාසල් විදාහගාරයක භාවිත කෙරෙන හෙයාර් උපකරණයේ පරීක්ෂණාත්මක ඇටවුමක් (1) රූපයේ පෙන්වා ඇත. පෙන්වා ඇති පරිදි x_w සහ x_l අදාළ සූචකවල M සලකුණට පිළිවෙළින්, බීකරවල ජල සහ දුව මට්ටම්වල සිට උසවල් නිරූපණය කරයි.

(a) (i) හෙයාර් උපකරණයේ ක්ලිපයක් (clip) භාවිත කිරීමේ අරමුණ කුමක් ද?

(ii)	ජලයේ සහ දුවයේ ඝනත්ව පිළිවෙළින් d_w සහ d_l වේ. h_w සහ h_l පිළිවෙළින් අදාළ සූචකවල M සලකුණේ සිට මනින ලද වීදුරු නළ තුළ ජල කඳේ සහ දුව කඳේ උසවල් නිරූපණය කරයි නම්, h_l සඳහා පුකාශනයක් h_w , d_w , x_w , d_l සහ x_l ඇසුරෙන් වුයුත්පන්න කරන්න.
(iii)	පාඨාංක කට්ටලයක් ලබාගෙන පුස්තාරයක් ඇඳීමට පරීක්ෂණය සැලසුම් කරන විට, බලාපොරොත්තු වන දුව කඳේ සහ ජල කඳේ උසවල් එකිනෙකට සැලකිය යුතු තරම් වෙනස් නම්, එක් උසකට වඩා අනෙක් උසට වැඩි අවධානයක් යොමු කළ යුතු ය. ඔබ වැඩි අවධානයක් යොමු කරන උස (වඩා අඩු උසක් ඇති එක ද නැතභොත් වඩා වැඩි උසක් ඇති එක ද) කුමක් ද? හේතු දක්වමින් ඔබේ පිළිතුර පැහැදිලි කරන්න.
(iv)	සෑම අවස්ථාවක දී ම නළ තුළ ජල සහ දුව කඳන්වල උසවල් වෙනස් කර ක්ලිපය වැසීමෙන් පසු, නව උසවල්වල පාඨාංක ලබාගැනීමට පෙර තවත් සීරුමාරුවක් කිරීමට ඔබට අවශා වේ. මෙම සීරුමාරුව කිරීමට ඔබ විසින් අනුගමනය කරනු ලබන පරීක්ෂණාත්මක කුමවේදය ලියන්න.

මෙම තීරයේ කිසිවක්

(b) (2) රූපයේ පෙන්වා ඇති උපකරණය, හෙයාර් උපකරණයේ නළ තුළ වායු පීඩනය වෙනස් කිරීමට භාවිත කළ හැකි ය. මෙම පද්ධතිය බ'නූලි මූලධර්මයට අනුව කියාකරයි. උපකරණයේ X නම් පුදේශය හරහා ගමන් කරන පටු ජල පිහිරේ වේගය කරාමය ආධාරයෙන් සීරුමාරු කිරීම මගින් T නළය තුළ වායු පීඩනය වෙනස් කළ හැකි ය. හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරයක් සෑදීමට, (2) රූපයේ පෙන්වා ඇති උපකරණයේ A ස්ථානය (1) රූපයේ පෙන්වා ඇති රබර් නළයේ A ස්ථානයට සම්බන්ධ කළ හැකි ය.

පාසලේ ඇති හෙයාර් උපකරණය :

හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරය :

(ii) සාමානාායෙන් පාසල් විදාාාගාරයේ ඇති උපකරණයට වඩා (b) හි සඳහන් කළ වැඩිදියුණු කළ ඇටවුම භාවිත කිරීමේ පුධාන **වාසියක්** දෙන්න.

(c) ඉහත (b) හි සඳහන් කළ වැඩිදියුණු කළ උපකරණය භාවිතයෙන් ලබාගන්නා ලද පාඨාංක කට්ටලයක් උපයෝගී කරගෙන අදින ලද පුස්තාරයක් පහත පෙන්වා ඇත. පුස්තාරය, පිළිවෙළින් ජලය සහ සල්ෆියුරික් අම්ලය සඳහා දුව කඳන්වල උසවල් වන $h_{_{l}}$ සහ $h_{_{l}}$ අතර විචලනය පෙන්වයි. $h_{_{l}}(imes 10^{-3}~\mathrm{m})_{f \downarrow}$

(i) මෙම පරීක්ෂණයේ දී $1~{
m mm}$ නිරවදානාවකින් දිග මැනිය හැකි පරිමාණයක් ඔබට සපයා ඇත. මෙම පරීක්ෂණයේ දී ලබාගත් $h_{_{W}}$ මිනුම් හා බැඳුණු උපරිම **හාශික** දෝෂය කුමක් ද?

(ii) පුස්තාරය මත වූ P සහ Q ලක්ෂා දෙක භාවිත කරමින්, සල්ෆියුරික් අම්ලයේ සාපේක්ෂ ඝනත්වය ගණනය කරන්න.

			1
2.		්ස් නියමය සතාාපනය කිරීම සඳහා භාවිත කළ හැකි පරීක්ෂණාත්මක වවුමක අසම්පූර්ණ රූපසටහනක් (1) රූපයේ පෙන්වයි.	මෙම නීරයේ කිසිවක් නො ලියන්
	(a)	පරීක්ෂණය නිවැරදි ව කිරීම සඳහා සරාව තුළ A,B,C,D වලින් කුමන මට්ටම දක්වා ජලය පිරවිය යුතු ද?	
	(b)	ජලයට අමතරව මෙම පරීක්ෂණයේ දී ඔබට අවශා, එහෙත් අසම්පූර්ණ රූපසටහනේ දක්නට නොමැති වැදගත් අයිතමය (නිසි පුමාණයට) (1) රූපයේ අඳින්න.	
	(c)	මෙම පරීක්ෂණයේ දී ජල කෙන්දකට වඩා රසදිය කෙන්දක් භාවිත කිරීමෙන් ලැබෙන වාසි දෙකක් දෙන්න.	
		(i)	
	(<i>a</i>)		
	(4)	උෂ්ණත්වය වැඩි කරනු ලබන විට රසදිය කෙන්ද ද පුසාරණය වේ. සිර කර ඇති වා කඳේ පීඩනය කෙරෙහි මෙම පුසාරණය බල නොපාන්නේ ඇයි දැයි පැහැදිලි කරන්න.	
	(e)	මෙම පරීක්ෂණයේ දී සිර වී ඇති වා කඳෙහි දිග $(l_{ heta})$ සහ එහි උෂ්ණත්වය $(heta$ $^{\circ}$ C) මැනීමට ඔබට කියා ඇත. (i) උෂ්ණත්වමාන කියවීම මගින් සිර වී ඇති වායු කඳේ උෂ්ණත්වය ම ලබාදෙන බවට ද (ii) $l_{ heta}$ හි දිග $ heta$ $^{\circ}$ C ට අදාළ නියම දිග ම වන බවට ද සහතික කිරීමට ඔබ අනුගමනය කළ යුතු පරීක්ෂණාත්මක කුමවේදවල පුධාන පියවර ලියා දක්වන්න.	
		(i) පරීක්ෂණාත්මක පියවර	
		•••••	
		(ii) පරීක්ෂණාත්මක පියවර	
	(ƒ)	සිදුරේ විෂ්කම්භය ඒකාකාර වූ කේශික නළයේ සිරවී ඇති වියළි වා කඳෙහි 0 °C සහ θ °C හි දී දිගවල් පිළිවෙළින් l_0 සහ l_θ නම්, l_θ සඳහා පුකාශනයක් γ_p, l_0 සහ θ ඇසුරෙන් ලියන්න. γ_p යනු වියළි වානය සඳහා නියත පීඩනයේ දී පරිමා පුසාරණතාව වේ.	
	(g)	y -අක්ෂය මත $l_ heta$ සහ x -අක්ෂය මත ${}^{f o}$ C වලින් $ heta$ වන පරිදි, අපේක්ෂිත පුස්තාරයේ දළ සටහනක් අඳින්න.	
		0 θ (°C)	

	(h)	වෙනුවර කළේ ය) (2)(a) රූපයේ . පාඨාංක කට්ට	ක්ෂණයේ දී (2 ් පෙන්වා ඇති (වලයක් ලබාගැනි ඔළිතුර පැහැදිලි	කේශික නළ¢ ශ්මේ දී මෙය	ාවිත කිරී	්මට තීරණය	2(a) රූපය	2(b) රූපය	කිරයේ කිසිවක් නො ලියන්න
	<i>(i)</i>			වට විද්යුත් උදු කිරීමට හැකි ගේ				ාවිත කිරීමෙන	, ,	
3.	සහ වීදුර ඔබට කුඩු පුමා කැබ කඩ අකුර පරීක චල	චල අණ ැවල වර් ා කියා අ ස්වල්පය ණයට ක ැල්ලක් දාසි කැ රක් සලක අණ්වීක අණ්වීක	ආකාර වීදුරු කු බ්වික්ෂයක් භාවි තත අංකය ෙ දැත. ලයිකොහේ කේ ද වීදුරු කු පෙන ලද සුදු ෑ ද සපයා ඇත බැල්ලෙහි මැ ඉණු කර ඇත දෙහා භාවිත ක පෙන්වා ඇත.	ති කර සේවීමට ප්ට්ටියේ තඩදාසි ත. සුදු (ද 'X' . මෙම ළ හැකි	D D	Language Marian Community	F C Ozea		E	
		A,B,C ස කරන්න.	සහ D මගින් ස(ුකුණු කර ඇති	කොටස් හඳු:	ත්වා දෙමිත්	්, ඒවායේ කා	ර්යයන් කෙටි	යෙන් සඳහන්	
		කොටස	හඳුන්	වා දීම			කාර්යය	3		
		$^{\prime}A$	***************************************		******	•••••	•••••		***********	
		В			•••••	•••••	••••••			
		C			*****	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
		D			*****					

(b)	පරීක්ෂණය ආරම්භ කිරීමට පෙර චල අණ්වීක්ෂයක් හුරුපුරුදු කර ගැනීමක් කරන අතරතුර, තිරස් ගමන් කරවීමට අදාළ සියුම් සැකැසුම් ඇණය කරකැවීමේ දී අනුරූප ව'නියර් පරිමාණය ගමන් නොකළ බව ශිෂායෙක් නිරීක්ෂණය කළේ ය. මෙයට හේතුව දෙන්න.	තීර කිසිව නො
(c)	චල අණ්වීක්ෂයක පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ විශාල කළ රූපයක් පෙන්වා ඇත. මෙම චල අණ්වීක්ෂයේ කුඩා ම මිනුම සෙන්ට්මීටර වලින් ගණනය කරන්න.	
	0 1 2 cm	
(<i>d</i>)	පරීක්ෂණය ඇරඹීමට පෙර ඔබ උපනෙතෙහි සිදු කරන සීරුමාරුව කුමක් ද?	
	දැන්, දී ඇති කඩදාසි කැබැල්ල චල අණ්වීක්ෂයේ G වේදිකාව (stage) මත තබා වීදුරු කුට්ටිය තැබීමට පෙර, 'X' සලකුණ භාවිත කර අණ්වීක්ෂය මගින් පළමු මිනුම ගැනීමට ඔබට කියා ඇත. මෙය සාක්ෂාත් කරගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක කුමවේදයේ පුධාන පියවරවල් ලියා දක්වන්න.	
	ඉහත (e) හි සඳහන් කළ මිනුමට අනුරූප පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ අදාළ පිහිටුම් පහත දක්වා ඇත. මිනුමට අනුරූප පාඨාංකය සෙන්ට්මීටර වලින් ලියා දක්වන්න.	
	5 6 7 cm 0 10 20 30 40 50 40 50	
(g)	ඉහත (e) හි සඳහන් කළ පළමු මිනුම ගත් පසු ඔබ විසින් සිදු කළ යුතු අනෙක් මිනුම දෙකට අදාළ පරීක්ෂණාත්මක කුමවේදවල වැදගත් පියවරවල් ලියා දක්වන්න.	
	(i)	
	(ii)	

(h	t) වෙනත් ශිෂාං දී ඇත.	යකු විසින් මෙම පැ	රීක්ෂණය සිදු කිරීමේ දී ලබාගත් අදාළ මිනුම් තුළුනයි. පොථයක පෙන 🎏	තීරයේ කිසිවක් නො ලියන
	4.606 cm,	5.496 cm,	7.206 cm	
	මෙම මිනුම භා	විතයෙන් වීදුරුවල	වර්තන අංකය ගණනය කරන්න.	
	••••••	•••••••	/	
		• • • • • • • • • • • • • • • • • • • •		
	*************	•••••		
4 14	****			$\overline{}$
ඇ? මේ සිදු	ත. (B) රූපයේ වා්ටරයේ අක්ෂයේ ුරු හරහා ගොස	පෙන්වා ඇති ආක ට ලම්බකව සවි කර i <i>P</i> පුකාශ දියෝඩර	මගින් dc මෝටරයක් කියාත්මක කරන ආකාරය (A) රූපයේ පෙන්වා කාරයට සමදුරින් විදින ලද සිදුරු කට්ටලයක් සහිත Y නැටියක් dc ර ඇත. තැටිය භුමණය වන විට LED ය මගින් නිපදවෙන ආලෝකය ය මතට පතිත වේ. (C) රූපය බලන්න. (D) රූපයෙහි පෙන්වා ඇති හාවක් ජනනය කරයි.	
	+	dc @ loca	LED P P P V V (D) Ozeas	
	ا.5 V ا.5 V ا (A) رود		(B) රූපය (C) රූපය	
(a)	X සංරචකය හ			

(b)	<i>Y</i> තැටියේ භුම	ණ වේගය ඔබ වෙ:	නස් කරන්නේ කෙසේ ද?	

(c)	සමාන්තරගතව) 1.5 V කෝෂ හතා	රක් තිබීමේ වාසිය කුමක් ද?	
(<i>d</i>)	තැටියෙහි සිදුර කදම්බය (C) ර	ැ 20 ක් ඇත්තේ න ෑපයේ පෙන්වා ඇෑ	තම් සහ එය තත්පරයකට භුමණ 5 ක් ඇති කරන්නේ නම්, ආලෝක හි <i>P</i> මත වදින සංඛ්යාතය කුමක් ද?	
	************	•••••		
		•••••	•••••	
(e)	ඉහත (D) හි සෙමග වෙනස් උපකල්පනය ස	වන්නේ කෙසේ දැරි	ි දියෝඩ පරිපථය මගින් ඇති කරන චෝල්ටීයතාව (V) කාලය (t) යි පෙන්වීමට දළ සටහනක් අඳින්න. V හි උපරිම අගය $3~{ m V}$ යැයි	
			t	

තීරයේ කිසිවක් තො ලියන්න

(f) ඉහත (D) රුපයේ පුකාශ දියෝඩ පරිපථයෙහි පුතිදානය, දැන් පහත පෙන්වා ඇති පරිපථයෙහි පුදානයට සම්බන්ධ කරනු ලැබේ. පරිණාමකයේ පුාථමිකයෙහි සහ ද්විතීයිකයෙහි වට සංඛාාව පිළිවෙළින් 25 සහ 750 ක් වේ. C ධාරිතාවයේ අගය ඉතා විශාල බව උපකල්පනය කරන්න. සෙනර් වෝල්ටීයතාව, $V_{_{7}}$ = 75 V ලෙස ගන්න.

(i)	ඉහත	පරිපථයෙහි	භාවිත	කර	ඇත්තේ	කුමන	වර්ගයේ	පරිණාමකයක්	ę'
-----	-----	-----------	-------	----	-------	------	--------	------------	----

(ii) සෙනර් දියෝඩය හරහා බලාපොරොත්තු විය හැකි වෝල්ටීයතාවෙහි අගය කුමක් ද?

(iii) කාලය t සමග V_0 පුතිදාන චෝල්ටීයතාව වෙනස් වන ආකාරය පෙන්වීමට දළ සටහනක් අඳින්න. පුතිදාන චෝල්ටීයතාවෙහි විශාලත්වය, V_0 අක්ෂය මත දක්වන්න.

(g)	ඉහත ප	සත0 ක	၁၀ ဗက္ဘား	පටක්ෂණය	මගන (ac වලද	ss ac	o (ac	to ac)	ෳවාලට	යතා ප	ා ටවටතකය	3ක	ಹ್ಮಾರ್ಧಿ
	කුමයක්	සපයා	ඇතැයි	ශිෂාගෙක්	තර්ක	කරයි.	ඔබ	<u>මෙම</u>	තර්කය	සමග	එකඟ	වන්නේ	ę?	පිළිතුර
	පැහැදිලි	, කරන්:	ත.											

 •	 	 *************	

* *

More Past Papers at tamilguru.lk

සියලු ම හිමිකම් ඇව්රිණි / (மුழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$

தே குறை විභාග දෙපාර්තමේන්තුව தே குறை විභාග දෙපාර්තමේන**தே குறை.එකාන දෙපාර්තමේන්තුව**න් විභාග දෙපාර්තමේන්තුව தே குறை විභාග දෙපාර්තමේන්තුව இலங்கைப் ப**ர்ட்**சைத் திணைக்களம் இலங்கைப் ப**ர்ட்**தைத் புகிறுகளும் பூடியில் இலங்கைப் பூட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka

අධ්යයන පොදු සහතික පහු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>භෞතික විදනව II</mark> ධെණුනිසඛ්|யல් **II** Physics II

B කොටස – රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, $g=10~{
m N~kg}^{-1})$

- 5. (a) තරල පුවාහයක් සඳහා බ'නූලි සමීකරණය $P+rac{1}{2}dv^2+hdg=$ නියතයක්, යන්නෙන් ලිවිය හැකි අතර මෙහි සියලු ම සංකේතවලට සුපුරුදු තේරුම ඇත. $rac{1}{2}dv^2$ පදයට, ඒකක පරිමාවක ශක්තියේ **ඒකකය** ඇති බව පෙන්වන්න.
 - (b) ලොව ඇති උසස් වාරිමාර්ග පද්ධතිවලින් එකක් ශීු ලංකාවේ පවතී. ගොවීන්ට හා ගැමීයන්ට ජලය සපයන එවැනි වාරිමාර්ග පද්ධතියක් (1) රූපයේ පෙන්වා ඇති පරිදි පුධාන අංග තුනකින් සමන්විත ය.

අංගය 1 : වැව හෝ ජලාශය සහ වැව් බැම්ම.

අංශය 2 : වායුගෝලයට නිරාවරණය වී ඇති වැවේ සිට පිටතට ජලය ගෙන යන ඇළ මාර්ගය.

අංශය 3 : බිසෝකොටුව, බිත්ති කළුගල් හෝ ගඩොලින් සාදා ඇති ඍජුකෝණාසුාකාර ටැඹක හැඩැති සිරස් කුටීරය ((1) රූපය බලන්න). වැවෙන් ජලය පිට කිරීමට අවශා වූ විට, ජලය පළමුව බිසෝකොටුවට ඇතුළු වීමට ඉඩහරින අතර එය තුළ දී ජල පුවාහයේ වේගය විශාල

ලෙස අඩු වේ. බිසෝකොටුව තුළ දී එක්වරම ජල පුවාහයේ හරස්කඩ වර්ගඵලය වැඩිවීම මෙසේ අඩුවීමට එක් හේතුවකි. ඊට අමතරව, ජලය බිසෝකොටුවේ ගල් බිත්ති සමග ගැටීම නිසා ජල පුවාහයේ ශක්තියෙන් සැලකිය යුතු පුමාණයක් ද බිසෝකොටුව තුළ දී හානි වේ.

ඔබේ ගණනය කිරීම් සඳහා, රුපවල පෙන්වා ඇති තිත් ඉරි මාර්ග දිගේ අනවරත සහ අනාකූල පුවාහ තත්ත්වයන් යෙදිය හැකි බව ද වැව තුළ ජල මට්ටමේ උස නොවෙනස්ව පවතින බව ද උපකල්පනය කරන්න.

- (2) රූපයේ පෙන්වා ඇති පරිදි 1 සහ 2 අංගවලින් **පමණක්** සමන්විත වාරිමාර්ග පද්ධතියක් සලකන්න.
 - (i) වැව තුළ ජල මට්ටමේ උස h නම්, Q ලක්ෂායේ දී පිටවන ජලයේ වේගය v_1 සඳහා පුකාශනයක්, h සහ g ඇසුරෙන් වුයුත්පන්න කරන්න.
- (ii) h=12.8 m නම්, v_1 හි අගය ගණනය කරන්න.
- (iii) Q ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්තිය ගණනය කරන්න. ජලයේ ඝනත්වය $1000~{
 m kg}~{
 m m}^{-3}$ වේ.
- (c) පිටවන ජලයේ විනාශකාරී බලය පාලනය කිරීමට, (1) රූපයේ පෙන්වා

ඇති පරිදි, පුරාතන ඉංජිනේරුවරුන් විසින්, 3 වන අංගය වන බිසෝකොටුව වැවට එක් කරන ලදී.

- (i) (1) රූපයේ පෙන්වා ඇති පරිදි වැවේ සිට බිසෝකොටුවට උමගක් හරහා ජලය ඇතුළු වේ. උමග කුමයෙන් සිහින් වන අතර, ඇත්දොර සහ බිහිදොරෙහි දී උමගේ හරස්කඩ වර්ගඵලයන් පිළිවෙළින් A සහ 0.6A බව උපකල්පනය කරන්න. උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ වේගය v_B ගණනය කරන්න. උමගේ E ඇත්දොරේ දී ජල පුවාහයේ වේගය a0 ගණනය කරන්න. උමගේ a1 ලෙස ගන්න.
- (ii) උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_B ගණනය කරන්න. වායුගෝලීය පීඩනය $1 imes 10^5~\mathrm{N~m^{-2}}$ වේ.
- (iii) ජල පුවාහයේ පීඩනය සහ වේගය පිළිවෙළින් $P_B^{\ \ \ }$ වලින් 75% සහ $v_B^{\ \ \ \ }$ වලින් 65% ක් වන අගයන්වල ඇති, පිටතට ජලය ගෙන යන ඇළ මාර්ගය තුළ වූ, C නම් ලක්ෂාය සලකන්න.
 - (1) C ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_C හි අගය **ලියන්න**.
 - (2) C ලක්ෂායේ දී ජල පුවාහයේ චේගය $v_{_C}$ හි අගය **ලිගන්න**.
- (iv) (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී, පිටවන ජලයේ චේගය v_2 ගණනය කරන්න.
- (v) ඉහත (b) (iii) හි ගණනය කළ අගයට සාපේක්ෂව (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්ති **හානියේ පුතිශතය** ගණනය කරන්න.
- (vi) වාරිමාර්ග පද්ධතියට බිසෝකොටුව එක් කිරීමෙන්, පිටතට යන ජල පුවාහයේ විනාශකාරී බලය පාලනය කිරීමට ආදී ඉංජිනේරුවන්ට හැකි වූයේ කෙසේ දැයි සැකෙවින් පැහැදිලි කරන්න.

6. පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

සාමානාශයන් සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති කරයි. සුනාමි තරංග සහ උදම් රළ මෙන්ම, සුළඟ මගින් සාගරයේ ඇති වන තරංග, ගුරුත්ව තරංග සඳහා උදාහරණ කිහිපයක් වේ. සාගර පාෂ්ඨය හරහා සුළඟ හමන විට සුළඟ මගින් සාගරයේ ජල පෘෂ්ඨය අඛණ්ඩව කළඹයි. මෙම තත්ත්වය යටතේ දී ජල-වාත අතුරු මුහුණතේ සමතුලිතතාව යළි ඇති කිරීමට ගුරුත්ව බලය උත්සාහ කරයි. මෙහි පුතිඵලයක් ලෙස සාගර තරංග නිර්මාණය වේ. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග වශයෙන් සාගර තරංග පුධාන ආකාර දෙකකට වර්ග කළ හැකි ය. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග යන **පද** සාගරයේ නියම ගැඹුර හා කිසි සම්බන්ධයක් නොමැත. සාගරයේ ගැඹුර (h), තරංගයේ (λ) තරංග ආයාමයෙන් අඩකට වඩා වැඩි, සාගරයේ ඇති තරංග ගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ ගැඹුර (h) තරංගයේ (λ) තරංග ආයාමයෙන් අඩකට වඩා අඩු වන විට ඒවා නොගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ දී ගැඹුරු-ජල තරංගවල තරංග ආයාම 1 m- 1 km පරාසයක පවතින අතර නොගැඹුරු-ජල තරංගවල තරංග ආයාම 10 km- 500 km පරාසයේ පවතී. ගැඹුර 10 km 20 km පරාසයේ පවතී. ගැඹුර 10 km 20 km පරාසයේ සමනනාග ගැඹුර 10 km 20 km පරාසයේ සමතිනා ගැඹුර 10 km 20 km පරාසයේ සාගරයේ සාමානා ගැඹුර 10 km 20 km පරාසයේ සාමානා ගැඹුර 10 km 20 km පමණ වේ.

ජලය යට සිදුවන භූ කම්පන, සාගර පත්ලේ හෝ ඊට යට සිදුවන ගිනිකඳු පිපිරීම, සහ විශාල උල්කාශ්මයක් සාගරය හා සට්ටනය වීම වැනි සාගරයේ මහා පරිමාණ කැළඹීම් හේතුකොට ගෙන පුබල සුනාමි ඇති වේ. සුනාමියක් යනු ගැඹුරු සාගරයේ දී 10 km-500 km පරාසයේ ඉතා දිගු තරංග ආයාම සහිත සාගර තරංග මාලාවක් වේ. වෙරළේ සිට ඉතා දුරින් ගැඹුරු සාගරයේ දී සුනාමි තරංගයේ හැඩය සයිනාකාර තරංගයකට ආසන්න කළ හැකි වුව ද 1 (a) රූපයේ දැක්වෙන පරිදි එය වෙරළ ආසන්නයේ නොගැඹුරු ජලයට ළඟා වන විට කුමයෙන් සංකීර්ණ ස්වරූපයක් අත්කර ගනී. සුනාමි තරංගයේ වෙරළට ළඟා වන පළමු කොටස ශීර්ෂයක් ද

නැතහොත් නිම්නයක් ද යන්න මත එය උදම් රළෙහි ශීඝු නැග්මක් හෝ බැස්මක් ලෙස දිස් විය හැකි ය. සමහර අවස්ථාවල දී වෙරළ තී්රයේ ඉමේ හි දී තරංගයේ හැඩයේ ඉදිරිපස 1 (b) රූපයේ පෙන්වා ඇති පරිදි ඉතා සංකීර්ණ හැඩයක් ගත හැකි අතර එය වෙරළ තී්රයේ ඉම ශීඝුයෙන් පසුපසට යන ලෙස හා ඉන්පසුව පැමිණෙන මීටර කිහිපයක් දක්වා වර්ධනය වූ දැවැන්ත තරංග උසක් ලෙස දිස් විය හැකි ය. තරංග වේගය සහ තරංග උස යන දෙක ම මත රඳා පවතින, සාගර පෘෂ්ඨය හරහා සුනාමි තරංග ශක්තිය සම්පේෂණය කිරීමේ ශීඝුතාව ආසන්න වශයෙන් නියත වේ. නොගැඹුරු ජලයට තරංග ඇතුළු වන විට සුනාමි තරංගයේ $H_{\rm c}$ උසෙහි අගය

වෙරළ තී්රයේ ඉම මධානා සාගර මට්ටම සුනාමි තරංගය විකුදු පතුල 1 (a) රූපය

10 m

5 m

සාමානායෙන් $H_{_{S}}\!=\!H_{_{d}}\left(rac{h_{_{d}}}{h_{_{c}}}
ight)^{\!\!\!\!-1}$ මගින් දෙනු ලැබේ.

මෙහි H_d යනු ගැඹුරු ජලයේ දී තරංග උස වන අතර, h_d සහ h_s යනු පිළිවෙළින් ගැඹුරු සහ නොගැඹුරු ජලයේ ගැඹුරවල් ය. සාගරය හරහා සුනාමි තරංග පුචාරණය වන විට, තරංගයේ ශීර්ෂ වර්තනයට ලක්විය හැකි ය. එය ඇති වන්නේ තරංග

ශීර්ෂය දිගේ ජලයේ ගැඹුර වෙනස් වන නිසා තරංගයේ කොටස් වෙනස් වේගවලින් ගමන් කරන බැවින් ය. එයට අමතරව, සුනාමි තරංගයේ ගමන් මගෙහි ඇති කුඩා දූපත්, ගල්පර වැනි බාධක සහ වෙරළ තීරයට ආසන්නයේ සාගර පතුලේ උස්මිටි වෙනස්කම් නිසා මෙම තරංග නිරෝධනයට සහ විවර්තනයට භාජනය වේ. 2004 දෙසැම්බර් මස 26 වන දින සිදු වූ විනාශකාරී සුනාමියෙන් පසු විදාහඥයින් කණ්ඩායමක් විසින් ශ්‍රී ලංකාවේ මුහුදු තීරයේ සුනාමි තරංග උසවල් නිමානය කර ඇත. (2) රූපයේ ඇති රේඛාවල දිගෙන් මුහුදු තීරයේ සුනාමි තරංගයේ ශීර්ෂවල උසවල් පෙන්වයි. පුාථමික පුභවයේ සහ බාධකවලින් පරාවර්තික සහ විවර්තික තරංග මගින් අධිස්ථාපනය වූ තරංග, මුහුදු තීරයේ තරංග උසවල්වල විෂම රටාවට සහ හාතියේ විචලනයට හේතු පාදක වී ඇත.

- (a) සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති වන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.
- (b) සාගරයේ පවතින ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග අතර වෙනස කුමක් ද?
- (c) ඡේදයේ සඳහන් කර ඇති, සුනාමි කරංග ඇති වන හේතු **තුන** මොනවා ද?
- (d) සාගරයේ ඇති විය හැකි සුනාමි තරංගවල ආකාරය (ගැඹුරු-ජල තරංග හෝ නොගැඹුරු-ජල තරංග) හඳුන්වා, $4~{
 m km}$ සාමානා ගැඹුරක් ඇති සාගරයේ සුනාමි තරංගවල වේගය ${
 m m~s^{-1}}$ වලින් නිමානය කරන්න.

(f) සාගරයේ, ජලයේ ගැඹුර $6250~\mathrm{m}$ වූ ස්ථානයක සුනාමි තරංගයක උස ගණනය කරන්න. ජලයේ ගැඹුර $10~\mathrm{m}$ වූ ස්ථානයක තරංගයේ උස $5~\mathrm{m}$ ලෙස ගන්න. සුනාමියෙහි තරංග ආයාමය සැලකිල්ලට ගනිමින් ගැඹුරු සාගරයේ සුනාමි තරංග අනාවරණය කිරීමට අපහසු ඇයි දැයි පැහැදිලි කරන්න.

(2) රූපය

- (g) වෙරළ තී්රයේ ඉමේ දී සුනාමි තරංගයක් $1\ (b)$ රූපයේ පෙන්වා ඇති හැඩය ගන්නේ යැයි උපකල්පනය කරමින්, දැවැන්ත ජල කඳක් පැමිණීමට පෙර වෙරළ තී්රයේ ඉම ගොඩබිමින් ඉවතට යන්නේ ඇයි දැයි කෙටියෙන් පැහැදිලි
- (h) ඉහත (g) පුශ්නයෙහි සඳහන් කළ සුනාමි තරංග ආකෘතිය (3) රූපයේ පෙන්වා ඇති පරිදි සයිනාකාර තරංග කොටසකට ආසන්න කළ හැකි නම්, වෙරළ තී්රයේ ඉම පසුපසට සාගරය දෙසට යාම ආරම්භ කළ මොහොත සහ ජල කඳ පෙර වෙරළ තී්රයේ ඉමට ළඟා වීම අතර පවතින කාලය **මිනිත්තු** වලින් ගණනය කරන්න. සයිනාකාර තරංග කොටස සඳහා $v=10~{
 m m~s^{-1}}$ සහ $\lambda=18~{
 m km}$ ලෙස ගන්න.

- (i) යාබදව පිහිටි ඉතා අඩු තරංග උසවල් සහිත පුදේශ හා සන්සන්දනය කළ විට තරංග උස ඉතා විශාල වන සමහර ස්ථාන (2) රූපයේ පෙන්වයි. කුමන සංසිද්ධිය මේ සඳහා හේතුපාදක විය හැකි ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- (j) (2) රූපයේ පෙන්වා ඇති පරිදි 2004 දී සුනාමි තරංග දිවයිනේ බටහිර වෙරළට පවා ළඟා වීමට හේතුව ඇයි දැයි සැකෙවින් පැහැදිලි කරන්න.
- 7. (a) කොන්කී්ට් යනු සිමෙන්ති, වැලි, ගල් සහ ජලයෙහි තද බවට පත් වූ මිශුණයකි. වෙරගැන්වූ කොන්කී්ට් (Reinforced concrete) වවුහයන් යනු කොන්කි්ට් සහ වාතේ කම්බි කුරුවලින් සමන්විත වවුහයන් ය. වාතේ සහ කොන්කි්ට් වැනි සියලු ම දෘඪ වස්තූන් යම්තාක් දුරකට පුතාහස්ථ වේ. කොන්කී්ට් සම්පීඩනය යටතේ දී ශක්තිමත් වුවත් විතතිය යටතේ දී **දූර්වල** වන අතර, වානේ මෙම අවස්ථා දෙකම යටතේ දී ශක්තිමත් ය. සංයුක්තයක් ලෙස පුධාන වශයෙන් කොන්කී්ට් සම්පීඩනයට පුතිරෝධී වන අතර පුධාන වශයෙන් වානේ කම්බි කුරු ආතතිය දරාගනී.
 - 1 (a) රූපයේ පෙන්වා ඇති පරිදි W භාරයකට යටත්ව, ආධාරක දෙකක් මත තබා ඇති වානේ කම්බි කුරු **නොමැති** සෘජුකෝණාසුාකාර හරස්කඩකින් යුත් සාමානාෳ කොන්කී්ට් බාල්කයක් සලකන්න. මෙම තත්ත්වය යටතේ තිත් ඉරි මගින් පෙන්වා ඇති පරිදි බාල්කයේ පහළ කොටස විතතියක් අත්දකින අතර ඉහළ කොටස සම්පීඩනයක් අත්දකී.

- (i) W භාරය යටතේ, සාමානා කොන්කීට් බාල්කයේ ඉරිතැලීමට වඩාත්ම ඉඩ ඇත්තේ කුමන (උඩ හෝ යට) පැත්ත ද?
- (ii) 1 (a) රූපයේ පෙන්වා ඇති තත්ත්වය වැඩිදියුණු කිරීම සඳහා 1 (b) රූපයේ පෙන්වා ඇති පරිදි, කොන්කීුට් නිෂ්පාදන අවස්ථාවේ දී වානේ කම්බි කුරු කොන්කී්ට් බාල්කයේ පතුලට ආසන්නයෙන් ඇතුළත් කරනු ලබයි. මෙමගින් කොන්කී්ට් බාල්කයේ භාර දරාගැනීමේ හැකියාව වැඩිදියුණු වී ඉරිතැලීම වැළැක්වෙනුයේ කෙසේ දැයි මෙම පුශ්නය ආරම්භයේ දී ඇති තොරතුරු උපයෝගී කරගනිමින් පැහැදිලි කරන්න.

(b) මෘදු වානේ (S) සඳහා ආතනා පුතාහබලය $\left(rac{F}{A}
ight)_S$ - විකිුයාව $\left(rac{\Delta l}{l}
ight)_S$ අතර සම්බන්ධය 2 (a) රූපයේ පෙන්වා ඇති පරිදි ආදර්ශනය කළ හැකි ය. කොන්කීට් පහසුවෙන් කැඩෙන සුළු (භංගුර) දුවායයක් වුව ද, **ආතනෳ බලයක් යටතේ** කොන්කී්ට්වල (C) ආතනාා පුතාාබලය $\left(rac{F}{A}
ight)_C$ - විකිුයාව $\left(rac{\Delta l}{l}
ight)_C$ අතර සම්බන්ධය $2\,(\mathrm{b})$ රූපයේ පෙන්වා ඇති පරිදි අාදර්ශනය කළ හැකි ය. වෙරගැන්වූ කොන්කීුට්වල වානේ කම්බි කුරු කොන්කීුට්වලට ඉතා හොඳින් බැඳී ඇති අතර, කොන්කී්ට් පඑදු වන තුරු ඒවා එකට බැඳී බාහිර භාරයන්වලට පුතිරෝධය දක්වයි. 2 (b) රූපයේ පෙන්වා ඇති වකුය P ලක්ෂායට පැමිණි විට **කොන්කිුට් පළුද වේ**.

- 2 (a) සහ 2 (b) රූප භාවිත කරමින්
- (i) මෘදු වානේවල යංමාපාංකය $E_{\scriptscriptstyle S}$ ගණනය කරන්න.
- $(ext{ii})$ කොන්කීුට්වල යංමාපාංකය E_{C} ගණනය කරන්න.

(c) දෘඪ ති්රස් පෘෂ්ඨයක් මත තබා ඇති දිග l වූ වෙරගැන්වූ ඒකාකාර කොන්කීට් බාල්කයක් (3) රූපයේ පෙන්වා ඇත. එක එකෙහි දිග l වූ ඒකාකාර සිලින්ඩරාකාර සර්වසම, මෘදු වානේ කම්බි කූරු හතරකින් සහ කොන්කීට්වලින් බාල්කය වෙරගන්වා ඇත. භාවිත කළ කොන්කීට් සහ වානේවලට අදාළ පුතාාබලය-විකිුයාව සම්බන්ධතා පිළිවෙළින් 2 (a) සහ 2 (b) රූපවල දී ඇත. බාල්කය එහි හරස්කඩ වර්ගඵලය පුරාම ඒකාකාරව යොදා ඇති F_t සමස්ත ආතනා බලයකට යටත්ව තබා ඇති අතර ආතනා බලය යටතේ කොන්කීට් සහ මෘදු වානේ කම්බි කූරු Δl එකම විතතියක් ඇති කරන බව උපකල්පනය කරන්න.

- (i) කොන්කීට් මත ආතනය බලය (F_{C}) සඳහා පුකාශනයක්, E_{C} කොන්කීට්වල හරස්කඩ වර්ගඵලය A_{C} , l සහ Δl ඇසුරෙන් ලියන්න.
- (ii) මෘදු වාතේ කම්බි කුරු **හතරම මත** ආනතා බලය ($F_{
 m S}$) සඳහා පුකාශනයක්, $E_{
 m S}$ මෘදු වාතේ කම්බි කුරු **හතරෙහිම** මුළු හරස්කඩ වර්ගඵලය $A_{
 m S}$ l සහ Δl ඇසුරෙන් ලියන්න.
- (iii) කොන්කීට් පඑදු වීමට පෙර, සමස්ත ආතනා බලය (F_i) කොන්කීට් සහ වානේ යන දෙකම මගින් දරා සිටියි නම්, වෙරගැන්වූ කොන්කීට් බාල්කය මත **සමස්ත** ආතනා බලය F_i සඳහා පුකාශනයක් ලබාගන්න.
- (iv) වෙරගැන්වූ කොන්කුීට් බාල්කයේ A හරස්කඩ වර්ගඵලය dh වේ. (3) රූපය බලන්න. බාල්කය සඳහා $l=2000~{
 m mm}$, සිලින්ඩරාකාර මෘදු වානේ කම්බි කූරක අරය $r=6~{
 m mm}$, $\Delta l=0.1~{
 m mm}$, $d=150~{
 m mm}$ සහ $h=250~{
 m mm}$ වේ.
 - (1) ඉහත (c) (iii) හි ලබාගත් පුකාශනය භෞතිකව වලංගු වන්නේ කුමන තත්ත්වයක් යටතේ ද? වෙරගැන්වූ කොන්කීට් බාල්කය සඳහා ඉහත දී ඇති දත්ත භාවිත කර (c) (iii) හි ලබාගත් පුකාශනය, බාල්කය සඳහා භෞතිකව වලංගු වන බව පෙන්වන්න.
 - (2) F_t හි අගය ගණනය කරන්න. (ඔබගේ ගණනය කිරීම සඳහා, $\frac{A_S}{A} \leq 3\%$ නම් $A_C = dh$ ලෙස ගන්න. එසේ නැතහොත් $A_C = dh A_S$ ලෙස ගන්න. $\pi = 3$ ලෙස ගන්න.)
- (v) මවරගැන්වූ කොන්කී්ට් බාල්කය පළුදු කරන අවම ආතනා බලය ගණනය කරන්න.
- 8. 1 (a) රූපයේ පෙන්වා ඇති පරිදි පළල d සහ සනකම t වූ, තඹ පටියක් ඉහළ සිට පහළට I ධාරාවක් රැගෙන යයි. පටියේ තලයට ලම්බක දිශාවට සහ එය තුළට පිහිටි සුාව සනත්වය B වූ ඒකාකාර චුම්බක ක්ෂේතුයක පටිය තබා ඇත. එම සැකසුමේ හරස්කඩ පෙනුම ද 1 (b) රූපයේ පෙන්වා ඇත. ආරෝපණ වාහක ඉලෙක්ටුෝන වන අතර ඒවා v_d ප්ලාවිත වේගයකින් ප්ලවනය වේ.

- (a) (i) 1(b) රූපයේ පෙන්වා ඇති ඉලෙක්ටෝනය (e) මත කියාකරන චුම්බක බලයේ දිශාව කුමක් ද? 1(b) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන මෙම බලයේ දිශාව පෙන්වීමට, ඉලෙක්ටෝනය මත ඊතලයක් පැහැදිලි ව අඳින්න.
 - (ii) දැන් ඔබ, 1 (b) රූපයේ පෙන්වා ඇති තඹ පටිය, ධන ලෙස ආරෝපිත වූ වාහක සහිත වෙනත් පටියකින් පුතිස්ථාපනය කරන්නේ නම්, ධන ලෙස ආරෝපිත වාහකයක් මත කිුිිියාකරන චුම්බක බලයේ දිශාව කුමක් ද?
- (b) (i) කාලය ගෙවීයන විට ඉහත (a)(i) හි විස්තර කළ තඹ තහඩුවෙහි පවතින ආරෝපණ සැලකු විට නව සමතුලිත තත්ත්වයක් ඇති වේ. (2) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන ධන ආරෝපණ නිරූපණය කිරීමට '+' ද ඍණ ආරෝපණ නිරූපණය කිරීමට '–' ද භාවිත කරමින් මෙම නව සමතුලිත තත්ත්වය විදහා දක්වන්න.

- (ii) (b) (i) හි සඳහන් කළ සමතුලික තත්ත්වය ඇති වීමට හේතුව පැහැදිලි කරන්න.
- (iii) p-වර්ගයේ අර්ධ සන්නායකයක ඇති කුහර ධන ලෙස ආරෝපිත වාහක බව සතාපාපනය කිරීමට, ඔබ මෙම ආචරණය භාවිත කරන ආකාරය සැකෙවින් විස්තර කරන්න.
- (c) (i) හෝල් චෝල්ටීයතාව V_H සඳහා පුකාශනයක් v_d B සහ d ඇසුරෙන් වනුත්පන්න කරන්න.
 - (ii) තඹ වැනි සන්නායකයක් තුළින් ගමන් කරන I ධාරාව, $I=neAv_d$ ලෙස ලිවිය හැකි අතර මෙහි සියලු ම සංකේත සඳහා ඒවායේ සුපුරුදු තේරුම ඇත.
- (2) රූපය

- (1) $I=neAv_J$ සමීකරණය වහුත්පන්න කරන්න.
- (2) තඹ පටිය සඳහා n,e,t,I සහ B ඇසුරෙන් V_H සඳහා පුකාශනයක් ලබාගන්න.
- (3) ඒකාකාර $0.5~{\rm T}$ වූම්බක ක්ෂේතුයක ඇති ඝනකම $1\times 10^{-3}~{\rm m}$ වූ තඹ පටියක් සලකන්න. $I=48~{\rm A}$ සහ $V_H=1.5\times 10^{-6}~{\rm V}$ නම්, තඹවල ඒකක පරිමාවක ආරෝපණ වාහක සංඛ්‍යාව ගණනය කරන්න. $e=1.6\times 10^{-19}~{\rm C}$ ලෙස ගන්න.

(d) හෘදරෝග වෛදxවරු විද්යුත් චුම්බක පුවාහ මීටර භාවිත කරමින් ධමනි තුළ රුධිරයේ පුවාහ වේගය අධීක්ෂණය කරති. එවැනි පුවාහ මීටරයක අදාළ කොටස්වල දළ සටහනක් (3) රූපයේ පෙන්වා ඇත.

ධමනි තුළ රුධිරය සමග රුධිර පුවාහ වේගය වන v වලින්ම එම දිශාවටම ගමන් කරන $\mathrm{Na^+}$ සහ $\mathrm{Cl^-}$ විශාල අයන සාන්දුණයක් රුධිර ප්ලාස්මාවල අන්තර්ගත වේ. රුධිරයේ ඇති අයන, ආරෝපණ වාහක ලෙස හැසිරෙන බව උපකල්පනය කරන්න.

- (i) (3) රූපයේ පෙන්වා ඇති ධමනිය තුළින් රුධිරය ගලන විට, P ඉලෙක්ටෝඩයේ ධුැවීයතාව කුමක් ද? ඔබේ පිළිතුරට හේතුව දෙන්න.
- $({
 m ii})$ පද්ධතියට යෙදූ ඒකාකාර චුම්බක ක්ෂේතුයේ සුාව ඝනත්වය B ද ධමනියේ විෂ්කම්භය D ද නම්, P සහ Qඉලෙක්ටුෝඩ දෙක හරහා වෝල්ටීයතාව V_{PO} හි විශාලත්වය සඳහා පුකාශනයක් v, B සහ D ඇසුරෙන් ලියන්න.
- (iii) $V_{PO} = 160 \, \mu {
 m V}, \; D = 5 \, {
 m mm}$ සහ $B = 2 \times 10^3 \,$ ගවුස් $(1 \,$ ගවුස් $= 10^{-4} \, {
 m T})$ නම්, ධමනිය තුළ රුධිරයේ චේගය v හි අගය ගණනය කරන්න.

9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- $({f A})$ (1) රූපයේ පෙන්වා ඇති පරිපථයේ $5\,{
 m V}$ කෝෂයට ඇත්තේ නොගිණිය හැකි අභාාන්තර පුතිරෝධයකි. Z යනු පුතිරෝධකයකි.

(1) රූපය

- (a) S ස්විච්චිය වැසූ පසු Z පුතිරෝධකයේ අගය 1 k Ω වන විට එහි ක්ෂමතා හානිය ගණනය කරන්න. (b) (2) රූපයේ පෙන්වා ඇති සෘජුකෝණාසුාකාර ABCD චෝල්ටීයතා ස්පන්දය ඇති කිරීම සඳහා
- දැන් ස්විච්චිය වරක් සංවෘත කර විවෘත කරනු ලැබේ. වෝල්ටීයතා ස්පන්දයේ විස්තාරය සහ පළල පිළිවෙළින් 5 V සහ 10 ms වේ. ස්පන්දය ඇති කළ විට එය පරිපථය තුළින් $2 imes 10^6~{
 m m~s^{-1}}$ වේගයක් සහිත ව ගමන් කරයි. පරිපථය තුළින් ගමන් කරන විට ස්පන්දයේ ඍජුකෝණාසුාකාර

හැඩය නොවෙනස්ව පවතින බව උපකල්පනය කරන්න.

- (i) $2\,\mathrm{cm}$ දිගක් සහිත Z පුතිරෝධකයේ දිග හරහා ගමන් කිරීමට වෝල්ටීයතා ස්පන්දයේ AB බෑවුමට කොපමණ කාලයක් ගත වේ ද?
- (ii) Z පුතිරෝධකයේ සම්පූර්ණ දිග හරහාම $5 \ {
 m V}$ මුළු චෝල්ටීයතාව ආසන්න වශයෙන් කොපමණ කාලයක් පවතී ද?
- $({
 m iii})$ Zපුතිරෝධකයේ අගය 1 ${
 m k}\,\Omega$ ලෙස උපකල්පනය කරමින් පුතිරෝධකය තුළ චෝල්ටීයතා ස්පන්දය මගින් හානි කරනු ලබන ශක්තිය ගණනය කරන්න.
- (c) (3) රූපයේ පෙන්වා ඇති ඍජුකෝණාසුාකාර වෝල්ටීයතා තරංග ආකෘතිය ලබාගැනීම සඳහා දැන් S ස්විච්චිය අඛණ්ඩව සංවෘත සහ විවෘත කරනු ලැබේ.

(3) රූපයේ පෙන්වා ඇති පරිදි ස්පන්දයක පළල 1 ms සහ වෝල්ටීයතා තරංග ආකෘතියේ ආවර්ත කාලය 5 ms වේ. මෙම තත්ත්වය යටතේ Z පුතිරෝධකයේ අගය $1 \ \mathrm{k} \ \Omega$ වන විට එය තුළ ක්ෂමතා හානිය ගණනය කරන්න.

(d) Y ස්පන්දන ධාරා පුභවයක් මගින් නිපදවන ලද විස්තාරය I_0 සහ පළල T_0 වූ සෘජුකෝණාසුාකාර ධාරා ස්පන්දයක් (4) රූපයේ පෙන්වා ඇති පරිදි දිග $l_{\scriptscriptstyle 1}$ සහ l_{γ} වන පුතිරෝධක කම්බි දෙකක් තුළට ගමන් කරයි. පරිපථයේ ඇති අනෙක් සෑම සම්බන්ධක කම්බියකම නොගිණිය හැකි පුතිරෝධ ඇතැයි උපකල්පනය කරන්න. දිග l_1 සහ l_2 ද එක එකෙහි හරස්කඩ ක්ෂේතුඵලය A ද වූ පුතිරෝධක කම්බි දෙක සාදා ඇත්තේ පුතිරෝධකතාව ho

(i) R_1 සහ R_2 යනු පිළිවෙළින් දිග l_1 සහ l_2 වන කම්බීවල පුතිරෝධ නම්, R_1 සහ R_2 සඳහා පුකාශන ලියන්න.

 $({
m ii})$ දිග l_1 සහ l_2 වන කම්බි හරහා පිළිවෙළින් ගමන් කරන ධාරා ස්පන්දයන්ගේ I_1 සහ I_2 විස්තාර සඳහා පුකාශන, I_0 l_1 සහ l_2 ඇසුරින් වනුත්පන්න කරන්න.

(e) (5) රූපයේ පෙන්වා ඇති පරිදි වායුමය X-කිරණ අනාවරකයක් සුදුසු වායුවකින් වට වී ඇති දිග L වූ PQ පුතිරෝධක ඇතෝඩ කම්බියකින් සමන්විත ය. (5) රූපයේ පෙන්වා ඇති පරිදි පටු ඉලෙක්ටුෝන ස්පන්දයක් ඇනෝඩ කම්බියෙහි S ලක්ෂායට ආසන්නව **වායුව තුළ** ඇති කරමින් X-කිරණ ෆෝටෝනයක් වායුව මගින් අවශෝෂණය කරගත්තේ යැයි සිතමු. මෙම ඉලෙක්ටෝන ස්පන්දය වායුවෙන් $m{p}$ ඇදගෙන PQ ඇනෝඩ කම්බිය මත S ලක්ෂායේ දී ඉලෙක්ටෝන ධාරා ස්පන්දයක් ඇති කිරීමේ හැකියාවක් ඇනෝඩ කම්බියට ඇත. අනතුරුව ඉලෙක්ටුෝන ධාරා ස්පන්දය දෙකට බෙදී v වේගයෙන් කම්බියේ දෙපැත්තට ගමන් කරයි.

 Δt යනු ඉලෙක්ටුෝන ධාරා ස්පන්ද දෙක ඇනෝඩ කම්බියේ Pසහ Q දෙකෙළවරට ළඟා වීමට ගන්නා කාලයන් අතර **පරහරය** නම්, X-කිරණ ෆෝටෝනය අවශෝෂණය කරගත් S ලක්ෂාායට P ලක්ෂාායේ සිට දුර වන x සඳහා පුකාශනයක් $\Delta t,\ v$ සහ L මගින් වනුත්පන්න කරන්න.

 $({f B})(a)$ (1) රූපයේ පෙන්වා ඇති පරිපථය සාදා ඇත්තේ ධාරා ලාභය 100 ක් වූ සිලිකන් ටුාන්සිස්ටරයක් භාවිත කිරීමෙනි. ටුාන්සිස්ටරයේ පාදම-විමෝචක සන්ධිය ඉදිරි නැඹුරු කිරීමට 0.7~
m V අවශා බව උපකල්පනය කරන්න.

(ii) $V_{_{R}}=5~\mathrm{V}$ සඳහා ඉහත (i) හි තත්ත්වය සහතික වන $R_{_{R}}$ සඳහා උපරිම අගය ගණනය කරන්න.

- (b) ස්වකීය කොටු සටහන (block diagram) (2) රූපයේ දී ඇති, සංඛාහංක පරිපථය කිුයාත්මක වන්නේ පහත පරිදි ය. A සහ B පුදාන එක එකක් ද්විමය 1 හෝ 0 භාර ගනී. $F_1,\ F_2$ සහ F_3 පුතිදාන වන

A=B වන විට පමණක් $F_{\gamma}=1$ වේ, නැතහොත් $F_{\gamma}=0$ වේ.

A>B වන විට පමණක් $F_{_3}=1$ වේ, නැතභොත් $F_{_3}=0$ වේ.

(iii) ඉහත දී ඇති තත්ත්වයන්ට අනුව කුියාත්මක වන තාර්කික පරිපථයක්, තාර්කික ද්වාර භාවිත කර අඳින්න.

(2) රූපය

${f 10.}$ (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) බැදීම යනු ආහාර සකස් කිරීමේ කුමවේදයක් වන අතර එය ආහාර පිළියෙල කිරීමට රත් වූ තෙල් තාපන මාධායක් ලෙස භාවිත කිරීම හා සම්බන්ධ වේ. බැදීය යුතු ආහාර දුවා පුමාණයට සාපේක්ෂව විශාල තෙල් පුමාණයක් භාවිත කර බැදීම සිදුකරන්නේ නම්, එය ගැඹුරු තෙලෙහි බැදීම (deep frying) ලෙස හැඳින්වේ. බැදීම සිදුකරන්නේ සාපේක්ෂව කුඩා තෙල් පුමාණයක් භාවිත කර නම්, එය කලතා බැදීම (stir frying) ලෙස හැඳින්වේ. සාමානාෂයෙන් ගැඹුරු තෙලෙහි බැදීම සිදුවන්නේ 190 °C 140 °C උෂ්ණත්ව පරාසයේ දී වන අතර කලතා බැදීම සිදුවන්නේ 115 °C 100 °C උෂ්ණත්ව පරාසයේ දී ය. තෙල් විශාල පුමාණයක් අඛණ්ඩව පුතිස්ථාපනය කළ යුතු නිසා ගැඹුරු තෙලෙහි බැදීම මිල අධික වන නමුත් බොහෝ අවස්ථාවල ගැඹුරු තෙලෙහි බැදීම මගින් වඩා රසවත් ආහාර ලබාදෙයි.
 - ශිෂායකු විසින් කුඩා තෙල් පුමාණයක් භාවිත කර වඩා වැඩි උෂ්ණත්ව සාක්ෂාත් කරගැනීමේ උත්සාහයක් සඳහා කරන ලද විමර්ශනයක පුතිඵල පහත දී ඇත. පද්ධතියේ තාප ධාරිතාව වැඩි කර එමගින් වඩා වැඩි උෂ්ණත්වයන් ලබාගැනීමට ඔහු කුඩා තෙල් පුමාණයක මිශු කරන ලද, නැවත භාවිත කළ හැකි කුඩා ඝන පෝසිලේන් ගෝල පුමාණයක් භාවිත කළේ ය.
 - (a) පුථම පියවර ලෙස ශිෂායා බාහිර පෘෂ්ඨ පරිචාරක දුවායකින් ආවරණය කර ඇති සුදුසු බඳුනකට $0.2~{
 m kg}$ තෙල් පුමාණයක් දමා කුඩා ගිල්ලුම් තාපකයක් මගින් $200~{
 m c}$ දක්වා රත් කළේ ය. ඉන්පසු තාපකය ඉවත් කර ක්ෂණිකව වියළි ආහාර දුවායක $0.2~{
 m kg}$ පුමාණයක් එයට එකතු කර තෙල් සමග මිශු කරන ලදී. තෙලෙහි සහ ආහාර දුවායේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $1650~{
 m J~kg^{-1}~cC^{-1}}$ සහ $1600~{
 m J~kg^{-1}~cC^{-1}}$ ද නම් සහ ආහාර දුවායේ ආරම්භක උෂ්ණත්වය $30~{
 m c}$ ද නම් මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව, තෙල්හි තාප ධාරිතාව හා සසඳන විට නොගිණිය හැකි යයි ද පරිසරයට වන තාප හාතිය නොසලකා හැරිය හැකි යයි ද උපකල්පනය කරන්න.
 - (b) ශිෂායා විසින් ඊළඟට බඳුන හිස් කර අලුත් තෙල් ඉහත (a) හි පුමාණය ම (0.2 kg) දමා කුඩා ඒකාකාර සන පෝසිලේන් ගෝල එක්තරා පුමාණයක් ද එකතු කරන ලදී. එකතු කරන ලද ගෝල (1) රූපයේ පෙන්වා ඇති පරිදි විධිමත් ලෙස ඇසිරී ඇතැයි (විධිමත් ඇසිරීමක්) උපකල්පනය කරන්න. ගෝල එකතු කරන ලද්දේ ගෝල ඇසිරෙන විට ඇති කරන ලද හිදැස් තුළට බඳුනේ ඇති තෙල් පරිමාවෙන් අර්ධයක් පිරී යන ආකාරයට ය. ((1) රූපය බලන්න.)
 - (i) ගෝල විධිමත් ලෙස ඇසිරී ඇති නිසා (2) රූපයේ දක්වා ඇති පරිදි ගෝල මගින් අයත් කරගෙන ඇති ඒකක සනක සැලකීමට ගෙන ගෝලවල මුළු පරිමාව හිදැස් කුළ අඩංගු කෙල් පරිමාවට සමාන බව පෙන්වන්න. (π = 3 ලෙස ගන්න.)
 - (ii) තෙල්හි සහ පෝසිලේන්හි ඝනත්ව පිළිවෙළින් $900~{
 m kg}~{
 m m}^{-3}$ සහ $2500~{
 m kg}~{
 m m}^{-3}$ නම්, පෝසිලේන් ගෝලවල ස්කන්ධය ගණනය කරන්න.
 - (iii) ශිෂායා විසින් ඉන්පසු පෝසිලේන් ගෝල සහිත තෙල් බඳුන $200\,^{\circ}\mathrm{C}$ දක්වා රත් කර, ඉහත (a) හි සඳහන් කළ ආකාරයට නැවතත් $30\,^{\circ}\mathrm{C}$ හි (2) රූපය ඇති එම ආහාර දුවායෙන් එම පුමාණය ම $(0.2~\mathrm{kg})$ එකතු කර මිශු කරන ලදී. පෝසිලේන් හි විශිෂ්ට තාප ධාරිතාව $1000~\mathrm{J}~\mathrm{kg}^{-1}\,^{\circ}\mathrm{C}^{-1}$ නම්, මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව සහ පරිසරයට වන තාප හානිය නොසලකා හරින්න.
 - (c) ඉහත විමර්ශනයේ දී භාවිත කළ ඒවාට වඩා කුඩා පෝසිලේන් ගෝල භාවිත කළහොත් ලැබෙන වාසිය කුමක් ද?
- $(\mathbf{B})(a)$ (1) රූපයේ පෙන්වා ඇත්තේ, පුකාශ විද්යුත් ආචරණ පරීක්ෂණය සිදුකිරීමට අවශා ඇටවුමක අතාාවශා කොටස් වේ.
 - (i) D ලෙස ලකුණු කර ඇති කොටස චෝල්ටීයතා සැපයුමකි. පුකාශ විද්යුත් ධාරාව (I) විභව අන්තරය (V) අතර ලාක්ෂණිකය ලබාගැනීම සඳහා D ට තිබිය යුතු වැදගත් ම ලක්ෂණ **දෙක** මොනවා ද?
 - (ii) A සහ B ලෙස ලකුණු කර ඇති කොටස් නම් කරන්න.
 - (iii) $m W \, m^{-2}$ වලින් මනින ලද **එකම** තීවුතාවයන් ඇති කොළ [තරංග ආයාමය $m \lambda_{\it g}(> \lambda_{\it g})$] ඒකවර්ණ ආලෝක කදම්බ දෙකක් වරකට එක් කදම්බය බැගින් m A මතට පතනය වීමට

ආලෝක කදම්බය

තෙල් පරිමාවෙන් අර්ධය

සිදුරු තුළ පවතී

(1) රූපය

- සලස්වනු ලැබේ. ආලෝක කදම්බවල සංඛාාතයන් A සාදා ඇති දුවායේ දේහලී සංඛාාතයට වඩා වැඩි ය. (1) කොළ සහ රතු වර්ණ සඳහා, V සමග I හි විචලනය **එකම** පුස්තාරයක දැක්වීමට දළ සටහනක් අඳින්න. කොළ
 - සහ රතු වර්ණ සඳහා වන වකු පිළිවෙළින් G සහ R ලෙස පැහැදිලි ව සලකුණු කළ යුතු ය. කොළ සහ රතු වර්ණ සඳහා, පතනය වන ෆෝටෝනවලින් එකම පුතිශතයක් පුකාශ ඉලෙක්ටුෝන විමෝචනය කරන්නේ යැයි උපකල්පනය කරන්න.
- (2) කොළ සහ රතු වර්ණ සඳහා, නැවතුම් විභවයන් අතර පරතරය ΔV ද සංඛාාතයන් අතර පරතරය Δf ද නම්, අයින්ස්ටයින්ගේ පුකාශ විදයුත් ආචරණ සමීකරණය භාවිතයෙන්, $\frac{\Delta f}{\Delta V}$ අනුපාතය සඳහා පුකාශනයක්, ප්ලාන්ක් නියතය h සහ ඉලෙක්ටුෝනයක ආරෝපණයේ විශාලත්වය e ඇසුරෙන් ලබාගන්න.

පෝසිලේන්

ඒකක ඝනකය

(b) 2 (a) රූපයේ පෙන්වා ඇති පරිදි එක්තරා පුකාශ විද්යුත් දුමාර අනතුරු අඟවන පද්ධතියක් (smoke alarm system) පුධාන වශයෙන් ඒකවර්ණ ආලෝක විමෝචක දියෝඩයක් (LED) සවි කර ඇති T-හැඩැති කුටීරයක්, පුකාශ කැතෝඩයක් සහ ඉලෙක්ටොනික අනතුරු ඇඟවීමේ උපකරණයකින් (alarm) සමන්විත ය.

දුමාර-නොමැති සාමානා තත්ත්වය යටතේ දී 2 (a) රූපයේ පෙන්වා ඇති පරිදි LED ආලෝක කදම්බයේ ෆෝටෝන පුකාශ කැතෝඩයේ ගැටීමකින් තොරව කුටීරය තුළින් ඉවතට ගමන් කරයි. දුමාරය කුටීරය කුළට ඇතුළු වන විට ෆෝටෝනවලින් යම් පුමාණයක් දුම් අංශූන් සමග ගැටී 2 (b) රූපයේ පෙන්වා ඇති පරිදි ඒවායේ තරංග ආයාම වෙනස් නොවී විවිධ දිශා ඔස්සේ ගමන් කරයි. එසේ ගැටුණු ෆෝටෝන සංඛ්‍යාව කුටීරය තුළ ඇති දුම් අංශූන් සංඛ්‍යාවට සමානුපාතික වේ. ගැටුණු ෆෝටෝනවලින් එක්තරා සංඛ්‍යාවට සමානුපාතික වේ. ගැටුණු ෆෝටෝනවලින් එක්තරා සංඛ්‍යාවක් පකාශ කැතෝඩය සමත පතනය වන අතර එමගින් කුඩා පකාශ විදුහුත් ධාරාවක් ඇති කරයි. පුමාණවත් තරම් ෆෝටෝන සංඛ්‍යාවක් පකාශ කැතෝඩය මත පතනය වූ විට එය ඉලෙක්ටොනික අනතුරු ඇඟවීමේ උපකරණය නාද කිරීමට තරම් පුමාණවත් ධාරාවක් ඇති කරයි.

- $h=6.6 \times 10^{-34} \, \mathrm{J}$ s, රික්තයක් තුළ ආලෝකයේ වේගය $c=3 \times 10^8 \, \mathrm{m \ s^{-1}}$ සහ $\mathrm{leV}=1.6 \times 10^{-19} \, \mathrm{J}$ ලෙස ගන්න.
- (ii) කාර්ය ශිතයන් පිළිවෙළින් $1.4\,\mathrm{eV}$ සහ $1.6\,\mathrm{eV}$ වූ දවාවෙලින් සාදන ලද X සහ Y පුකාශ කැතෝඩ දෙකක් ඔබට ලබා දී ඇත. ඉහත (b) (i) හි සඳහන් කළ LED ය සහිත දුමාර අනතුරු අඟවන පද්ධතියක් නිපදවීම සඳහා සුදුසු පුකාශ කැතෝඩය $(X\,\mathrm{evi}\ Y)$ කුමක් ද? ඔබේ පිළිතුර සනාථ කරන්න.
- (iii) LED හි ක්ෂමතාව $10\,\mathrm{mW}$ වේ. ශක්තියෙන් 3% ක් පමණක් තරංග ආයාමය $825\,\mathrm{nm}$ වූ ආලෝකය නිපදවීමට වැය වේ නම්, LED ය මගින් තත්පරයක දී පිට කළ ෆෝටෝන සංඛ්‍යාව ගණනය කරන්න.
- (iv) අනතුරු ඇඟවීමේ උපකරණය කිුයාකරවීමට, LED ය මගින් තත්පරයකට විමෝචනය කළ ෆෝටෝනවලින් යටත් පිරිසෙයින් 20% ක් පුකාශ කැතෝඩය ලබාගත යුතු ය. අනතුරු ඇඟවීමේ උපකරණය කිුියාකරවීමට තත්පරයක් තුළ දී පුකාශ කැතෝඩය මතට පතිත විය යුතු අවම ෆෝටෝන සංඛ්‍යාව ගණනය කරන්න.
- (v) පුකාශ කැතෝඩය මත ෆෝටෝන පතනය වන විට, පතනය වන ෆෝටෝනවලින් කොටසක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනයට දායකත්වය දක්වයි. පතිත ෆෝටෝනවලින් 10% ක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනය කරන බව උපකල්පනය කරමින්, අනතුරු ඇඟවීමේ උපකරණය කිුිියාකරවීමට පුකාශ කැතෝඩය මගින් නිපදවිය යුතු අවම පුකාශ විද්යුත් ධාරාව ගණනය කරන්න. $e=1.6\times10^{-19}$ C ලෙස ගන්න.

* * *

More Past Papers at tamilguru.lk