CSC263 Week 10

Larry Zhang

Announcement

PS8 out soon, due next Tuesday

Minimum Spanning Tree

The Graph of interest today

A connected undirected weighted graph

G = (V, E) with weights w(e) for each $e \in E$

It has the **smallest** total weight

It covers all vertices in G

Minimum Spanning Tree

of graph G

It's a **connected**, **acyclic** subgraph

A Minimum Spanning Tree

May NOT be unique

Applications of MST

Build a road network that connects all towns and with the minimum cost.

Applications of MST

Connect all components with the least amount of wiring.

Other applications

- → Cluster analysis
- → Approximation algorithms for the "travelling salesman problem"
- **→** ...

In order to understand minimum spanning tree we need to first understand tree

Tree: undirected connected acyclic graph

The MST of a connected graph G = (V, E) has vertices.

because "spanning"

The MST of a connected graph G = (V, E) has V - 1 edges.

because "tree"

Now we are ready to talk about algorithms

Idea #1

Start with **T = G.E**, then keep deleting edges until an MST remains.

Which sounds more efficient in terms of worst-case runtime?

Idea #2

Start with **empty** T, then keep adding edges until an MST is built.

Hint

A undirected simple graph G withn vertices can have at mostedges.

$$\binom{n}{2} = \frac{n(n-1)}{2} \in \mathcal{O}(n^2)$$

Note: Here T is an edge set

Idea #1

Start with T = G.E, then keep deleting edges until an MST remains.

In worst-case, need to delete $O(|V|^2)$ edges (n choose 2) - (n-1)

Idea #2

In worst-case, need to add O(|V|) edges

Start with **empty** T, then keep adding edges until an MST is built.

This is more efficient!

So, let's explore more of **Idea #2**, i.e., building an MST by **adding** edges one by one

i.e., we **"grow"** a tree

The generic growing algorithm

```
GENERIC-MST(G=(V, E, w)):
                                         |T| < |V|-1
    \mathsf{T} \leftarrow \varnothing
    while T is not a spanning tree:
        find a "safe" edge e
        T \leftarrow T \cup \{e\}
    return T
```

What is a "safe" edge?

"Safe" means it keeps the **hope** of T growing into an MST.

"Safe" edge e for T

Assuming **before** adding e, $T \subseteq some MST$, edge e is safe if **after** adding e, still $T \subseteq some MST$

If we make sure T is always a subset of some MST while we grow it, then eventually T will become an MST!

```
GENERIC-MST(G=(V, E, w)):
    T ← ∅
    while T is not a spanning tree:
        find a "safe" edge e
        T ← T ∪ {e}
    return T
```


Intuition

If we make sure the pieces we put together is always a subset of the real picture while we grow it, then eventually it will become the real picture!

The generic growing algorithm

```
GENERIC-MST(G=(V, E, w)):
                                  |T| < |V|-1
   while T is not a spanning tree:
       find a "safe" edge e
      T \leftarrow T \cup \{e\}
   return T
```

How to find a "safe" edge?

Two major algorithms we'll learn

→ Kruskal's algorithm

→ Prim's algorithm

They are both based on one theorem...

Note: Here T includes both vertices and edges

The Theorem

Let **G** be a connected undirected weighted graph, and **T** be a **subgraph** of **G** which is a **subset** of some MST of **G**.

Let edge **e** be the **minimum** weighted edge among all edges that **cross** different **connected components** of **T**.

Then **e** is **safe** for **T**.

Initially, **T** (red) is a subgraph with no edge, **each vertex** is a connected component, all edges are **crossing** components, and the minimum weighted one is ...

Now **b** and **c** in one connected component, each of the other vertices is a component, i. e., 4 components.

All gray edges are crossing components.

Now **b**, **c** and **d** are in one connected component, **a** and **e** each is a component. **(c, d)** is **NOT** crossing components!

Now **b**, **c**, **d** and **e** are in one connected component, **a** is a component.

(a, e) and (a, b) are crossing components.

MST grown!

Two things that need to be worried about when actually implementing the algorithm

- → How to keep track of the connected components?
- → How to efficiently find the **minimum** weighted edge?

Kruskal's and Prim's basically use different data structures to do these two things.

to be continued...

CSC263 Week 10

Thursday

Recap: Generic MST growing algorithm

```
GENERIC-MST(G=(V, E, w)):
    \mathsf{T} \leftarrow \varnothing
    while T is not a spanning tree:
        find a "safe" edge e
        T \leftarrow T \cup \{e\}
    return T
```

Recap: Finding safe edge

Let **G** be a connected undirected weighted graph, and **T** be a **subgraph** of **G** which is a **subset** of some MST of **G**.

Let edge **e** be the **minimum** weighted edge among all edges that **cross** different **connected components** of **T**.

Then **e** is **safe** for **T**.

Recap

Two things that need to be worried about when actually implementing the algorithm

- → How to keep track of the connected components?
- → How to efficiently find the **minimum** weighted edge?

Kruskal's and Prim's basically use different data structures to do these two things.

Overview: Prim's and Kruskal's

	Keep track of connected components	Find minimum weight edge
Prim's	Keep "one tree plus isolated vertices"	use priority queue ADT
Kruskal's	use "disjoint set" ADT	Sort all edges according to weight

Prim's

Kruskal's

www.combinatorica.com

https://trendsofcode.files.wordpress.com/2014/09/dijkstra.gif

Prim's MST algorithm

Prim's algorithm: Idea

- → Start from an arbitrary vertex as root
- → Focus on growing one tree, add one edge at a time. The tree is one component, each of the other (isolated) vertices is a component.
- → Add which edge? Among all edges that are incident to the current tree (edges crossing components), pick one with the minimum weight.
- → How to get that minimum? Store all candidate vertices in a **Min-Priority Queue** whose key is the weight of the **crossing** edge (incident to tree).

```
PRIM-MST(G=(V, E, w)):
                                 key[v] keeps the "shortest distance"
      T \leftarrow \{\}
                                   between v and the current tree
      for all v in V:
           \text{key}[v] \leftarrow \infty
 3
                                  pi[v] keeps who, in the tree, is v
                                   connected to via lightest edge.
           pi[v] ← NIL-
      Initialize priority queue Q with all v in V
 5
      pick arbitrary vertex r as root
 6
      \text{key}[r] \leftarrow 0
                                           u is the next vertex to add to
 8
      while Q is not empty:
                                                  current tree
           u \leftarrow EXTRACT-MIN(Q)
 9
                                              add edge, pi[u] is lightest
           if pi[u] != NIL:
10
                                             vertex to connect to, "safe"
               T \leftarrow T \cup \{(pi[u], u)\}
11
           for each neighbour v of u:
12
               if v in Q and w(u, v) < key[v]:
13
                   DECREASE-KEY(Q, v, w(u, v))
14
                                       all u's neighbours' distances to the
                   pi[v] \leftarrow u
15
                                           current tree need update
```

Trace an example!

Next, ExtractMin!

Q	key	pi
а	0	NIL
b	8	NIL
С	∞	NIL
d	∞	NIL
е	∞	NIL

ExtractMin (#1) then update neighbours' keys

a: 0, NIL

Q	key	pi
b	∞ →8	NIL →a
С	∞	NIL
d	∞	NIL
е	∞ →3	NIL

ExtractMin (#2) then update neighbours' keys

e: 3, a

ExtractMin (#3) then update neighbours' keys

b: 5, e key pi 8 $\infty \longrightarrow 2$ 10 5 e 12 Could also have extracted d since its key is also 5 (min)

ExtractMin (#4) then update neighbours' keys

c: 2, b

ExtractMin (#4) then update neighbours' keys

Correctness of Prim's

The added edge is always a "**safe**" edge, i.e., the **minimum** weight edge crossing different components (because **ExtractMin**).

Runtime analysis: Prim's

- → Assume we use **binary min heap** to implement the priority queue.
- → Each ExtractMin take O(log V)
- → In total **V** ExtractMin's
- → In total, check at most O(E) neighbours, each check neighbour could lead to a DecreaseKey which takes O(log V)

 \rightarrow TOTAL: O((V+E)log V) = O(E log V)

In a connected graph G = (V, E)

|V| is in **O(|E|)** because... |E| has to be at least |**V|-1**

Also, log | E | is in O(log | V |) because ... E is at most V^2 , so log E is at most $log V^2 = 2 log V$, which is in O(log V)

Kruskal's MST algorithm

Kruskal's algorithm: idea

- → **Sort** all edges according to **weight**, then start adding to MST from the **lightest** one.
 - This is "greedy"!
- → Constraint: added edge must NOT cause a cycle
 - In other words, the two endpoints of the edge must belong to two different trees (components).
- → The whole process is like unioning small trees into a big tree.

Pseudocode

m = |E|

```
KRUSKAL-MST(G(V, E, w)):
1   T ← {}
2   sort edges so that w(e1)≤w(e2)≤...≤w(em)
3   for i ← 1 to m:
4    # let (ui, vi) = ei
5    if ui and vi in different components:
6    T ← T ∪ {ei}
```

Example

Add (b, c), the lightest edge

Add (a, e), the 2nd lightest

Add (b, e), the 3rd lightest

Add (a, b), the 4th lightest ... No! a, b are in the same component

Add (d, e) instead!

MST grown!

Add (d, e) ...

Correctness of Kruskal's

The added edge is always a "**safe**" edge, because it is the **minimum** weight edge among all edges that **cross** components

Runtime ...

```
m = |E|
```

sorting takes O(E log E)

```
KRUSKAL-MST(G(V, E, w)):
1  T ← {}
2  sort edges so that w(e1)≤w(e2)≤...≤w(em)
3  for i ← 1 to m:
4  # let (ui, vi) = ei
5  if ui and vi in different components:
6  T ← T ∪ {ei}
```

How **exactly** do we do this two lines?

We need the Disjoint Set ADT

which stores a collections of nonempty disjoint sets **S1**, **S2**, ..., **Sk**, each has a "representative".

and supports the following operations

- → MakeSet(x): create a new set {x}
- → **FindSet(x)**: return the representative of the set that x belongs to
- → Union(x, y): union the two sets that contain x and y, if different

Real Pseudocode

m = |E|

```
KRUSKAL-MST(G(V, E, w)):
  T ← {}
  sort edges so that w(e1)≤w(e2)≤...≤w(em)
    for each v in V:
       MakeSet(v)
    for i \leftarrow 1 to m:
       # let (ui, vi) = ei
       if FindSet(ui) != FindSet(vi):
           Union(ui, vi)
           T \leftarrow T \cup \{ei\}
```

Next week

→ More on Disjoint Set

http://goo.gl/forms/S9yie3597B