

November 2009

FDD8782/FDU8782 N-Channel PowerTrench[®] MOSFET 25V, 35A, $11m\Omega$

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{on})}$ and fast switching speed.

Application

- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

Features

- Max $r_{DS(on)} = 11.0 m\Omega$ at $V_{GS} = 10 V$, $I_D = 35 A$
- Max $r_{DS(on)}$ = 14.0m Ω at V_{GS} = 4.5V, I_D = 35A
- Low gate charge: $Q_{g(10)} = 18nC(Typ)$, $V_{GS} = 10V$
- Low gate resistance
- Avalanche rated and 100% tested
- RoHS Compliant

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		25	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous (Package Limited)		35	
I _D	-Continuous (Die Limited)		54	Α
	-Pulsed (N	lote 1)	321	
E _{AS}	Single Pulse Avalanche Energy (N	lote 2)	72	mJ
P_{D}	Power Dissipation		50	W
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case TO-252,TO-251	3.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO-252,TO-251	100	°C/W
$R_{\theta,JA}$	Thermal Resistance, Junction to Ambient TO-252,1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8782	FDD8782	TO-252AA	13"	12mm	2500 units
FDU8782	FDU8782	TO-251AA	N/A(Tube)	N/A	75 units
FDU8782	FDU8782_F071	TO-251AA	N/A(Tube)	N/A	75 units

Electrical	Characteristic	$T_J = 25^{\circ}C$ unless otherwise noted
------------	----------------	--

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	25			V
$\frac{\Delta B_{VDSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		14.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20V, V _{GS} = 0V			1 250	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V			±100	nA

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.2	1.7	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-6.5		mV/°C
r _{DS(on)}		V _{GS} = 10V, I _D = 35A		8.5	11.0	
	Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 35A$		11.0	14.0	mΩ
	Drain to Source On Resistance	V_{GS} = 10V, I_{D} = 35A T_{J} = 175°C		12.1	18.0	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	101/11/101/		920	1220	pF
Coss	Output Capacitance	V _{DS} = 13V, V _{GS} = 0V, f = 1MHz		230	310	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		160	240	pF
R _g	Gate Resistance	f = 1MHz		1.4		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		7	14	ns
t _r	Rise Time	$V_{DD} = 13V, I_{D} = 35A$ $V_{GS} = 10V, R_{GS} = 9\Omega$	9	18	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, R _{GS} = 9Ω	22	36	ns
t _f	Fall Time		14	25	ns
Q_g	Total Gate Charge	V _{GS} = 0V to 10V	18	25	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 13V$ $I_{D} = 35A$	9.4	13	nC
Q_{gs}	Gate to Source Gate Charge	$I_{\rm D} = 35A$ $I_{\rm a} = 1.0 {\rm mA}$	3.1		nC
Q _{gd}	Gate to Drain "Miller" Charge		4.0		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 35A	0.96	1.25	V	
٧s	D	Source to Drain Diode 1 of ward voltage	V _{GS} = 0V, I _S = 15A	0.86	1.2	V
t _{rr}		Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs	25	38	ns
Q_{ri}	r	Reverse Recovery Charge	$I_F = 35A$, di/dt = 100A/ μ s	17	26	nC

Notes:
1: Pulse time < 300us, Duty cycle = 2%.
2: Starting T_J = 25°C, L = 1.0mH, I_{AS} = 12A, V_{DD} = 23V, V_{GS} = 10V.

Figure 1. On Region Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

Figure 13. Transient Thermal Response Curve

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOL™
CTL™

Current Transfer Logic™
DEUXPEED®
EcoSPARK®
EfficientMax™
EZSWITCHT™*

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®

FAST[®]
FastvCore[™]
FETBench[™]

FlashWriter® FPS™ F-PFS™ FRFET®

 $\mathsf{GTO}^{\mathsf{TM}}$

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ G*max*™

IntelliMAXTM
ISOPLANARTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM
MillerDriveTM
MotionMaxTM
Motion-SPMTM
OPTOLOGIC®

PDP SPM™

OPTOPLANAR®

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT[®]
QS™
Quiet Series™
RapidConfigure™

J™ aving our world.

Saving our world, 1mW/W/kW at a time[™] SignalWise[™]

SmartMaxTM
SMART STARTTM
SPM®
STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6
SuperSOTTM-8
SuperBOSTM
SyncFETTM

Sync-Lock™

The Power Franchise® the power Franchise Franchise TinyBoost™
TinyBuck™
TinyCalc™
TinyCalc™
TinyPower™
TinyPower™
TinyPower™
TinyWire™
TriFault Detect™
TRUECURRENT™*

µSerDes™

SerDes UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms	chilidati di Territa					
Datasheet Identification Product Status		Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 144

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.