GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019

Subject Code: 2160704 Date: 09/12/2019

Subject Name: Theory of Computation

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Q.1 (a) Define bijection function. Check whether the function $f: Z \to Z$ defined by f(x) = 2x is a bijection function or not. Justify your answer.
 - (b) Draw an FA that recognizes the language of all strings containing even no of 0's and even no of 1's over $\Sigma = \{0,1\}$. Also write a regular expression for the same language.
 - (c) Write the principle of Mathematical Induction. Prove using mathematical induction that for every $n \ge 0$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

(Consider the sum on the left is 0 for n = 0)

- Q.2 (a) Find regular expression and also derive the words corresponding to the language defined recursively below over $\Sigma = \{a, b\}$.
 - i. $a \in L$
 - ii. For any $x \in L$, xa and xb are elements of L
 - (b) Define Equivalence relation. A relation on the set {1,2,3} is given as R = {(a, b) | a b is an even no}. Check whether R is equivalence relation or not. Give reasons.
 - (c) Give transition table for PDA recognizing the following language and trace the move of the machine for input string abcba:
 L = {xcx^r | x ∈ {a, b}*}

OR

- (c) Give transition table for PDA accepting the language of all odd-length strings over {a, b} with middle symbol a. Also draw a PDA for the same.
- Q.3 (a) Let FA_1 and FA_2 be the FA_3 as shown in the figure recognizing the languages L_1 and L_2 respectively. Draw an FA recognizing the language, $L_1 \cup L_2$.

Old state	After input a	After input b	Output
	New state	New state	
$-q_0$	q_1	q_2	0
q_1	q_3	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_3	1

(c) Convert the following NFA - Λ into its equivalent DFA that accepts the same language:

Q.3 (a) Prove that – "If there is a CFG for the language L that has no Λ-productions, then there is a CFG for L with no Λ-productions and no unit productions". Support your answer with the help of the following CFG:

$$S \rightarrow A \mid bb$$

 $A \rightarrow B \mid b$

$$B \rightarrow S \mid a$$

(b) Write CFG for the following languages :

i.
$$\{a^ib^jc^k \mid i = j + k\}$$

ii.
$$\{a^ib^jc^k \mid j = i \text{ or } j = k\}$$

(c) Define – ambiguous grammar, leftmost derivation. Check whether the following grammars are ambiguous or not. Justify your answer with proper reason.

i.
$$S \rightarrow ABA$$

 $A \rightarrow aA \mid \Lambda$
 $B \rightarrow bB \mid \Lambda$

ii.
$$S \rightarrow A \mid B$$

 $A \rightarrow aAb \mid aabb$
 $B \rightarrow abB \mid \Lambda$

Q.4 (a) Describe the language generated by the following grammars:

i.
$$S \rightarrow aA \mid bC \mid b$$

 $A \rightarrow aS \mid bB$
 $B \rightarrow aC \mid bA \mid a$
 $C \rightarrow aB \mid bS$
ii. $S \rightarrow aT \mid bT \mid \Lambda$
 $T \rightarrow aS \mid bS$

(b) Discuss – Nondeterministic Turing Machines and Universal Turing Machines

04

07

03

(c) Find a minimum-state FA for the following FA that recognizes the same language using the minimization algorithm:

OR

Q.4 (a) Find the CFG for the regular expression: $(011 + 1)^* (01)^*$

- (b) Prove that the language $L = \{a^nb^nab^{n+1} \mid n = 1, 2, 3, ...\}$ is nonregular using pumping lemma.
- (c) Convert the following CFG into its equivalent CNF:

 $S \rightarrow TU \mid V$

 $T \rightarrow aTb \mid \Lambda$

 $U \rightarrow cU \mid \Lambda$

 $V \rightarrow aVc \mid W$

 $W \rightarrow bW \mid \Lambda$

Q.5 (a) Convert the following CFG into its equivalent PDA.

 $S \rightarrow AB$

 $A \rightarrow BB$

 $B \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow a \mid b$

- (b) Show using the pumping lemma that the following language is not a CFL. $L = \{a^i b^j c^k \ \big| \ i < j < k \}$
- (c) Draw a Turing Machine that accepts the language $\{a^nb^na^n \mid n \ge 0\}$ over $\{a,b\}^*$. Also trace the TM on input string aaabbbaaa.

OR

Q.5 (a) Define Context Sensitive Language and Context Sensitive Grammar. Write CSG for $L = \{a^n b^n c^n | n \ge 1\}$.

- (b) Define Primitive recursive functions and also give complete primitive recursive derivations for the function, $f: N \to N$ defined by Add(x, y) = x + y.
- (c) Draw a Turing Machine that accepts the language $\{xx \mid x \in \{a, b\}^*\}$. Also trace the TM on input string aa.

07