

Surrogate models and novel discretisations

Mark Blyth

Last meeting

The challenges of working with spiking signals

Surrogate methods to overcome these

$$\bigvee$$
 Given $y_i = f(x_i) + \varepsilon$, estimate $f(x)$

Splines and Gaussian processes are good methods for estimation

$$\ensuremath{\mathbb{K}}$$
 Given $y_i = f(x_i) + \varepsilon$, estimate $f(x)$

- Splines and Gaussian processes are good methods for estimation
 - \blacktriangleright Gaussian point estimate: $y \sim \mathcal{N}(f(x), \sigma_{\varepsilon}^2)$

$$\ensuremath{\mathbb{K}}$$
 Given $y_i = f(x_i) + \varepsilon$, estimate $f(x)$

- Splines and Gaussian processes are good methods for estimation
 - Gaussian point estimate: $y \sim \mathcal{N}(f(x), \sigma_{\varepsilon}^2)$
 - Gaussian function estimate: $f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))$

$$\bigvee$$
 Given $y_i = f(x_i) + \varepsilon$, estimate $f(x)$

- Splines and Gaussian processes are good methods for estimation
 - Gaussian point estimate: $y \sim \mathcal{N}(f(x), \sigma_{\varepsilon}^2)$
 - Gaussian function estimate: $f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))$
 - ▶ Splines estimate: $f_i(x) = a_0 + \cdots + a_3 x^3$, for $x \in [\xi_i, \xi_{i+1})$

Developments since last time

Surrogates tested and working

Time (a.u.)

Developments since last time

Testing novel discretisations

Discretisations

$$\bigvee$$
 For $f(x) = \sum \beta_i b_i(x)$, coefficients $\{\beta_i\}$ discretise signal

 $m{k}$ Choose basis functions $b_i(x)$ to minimise dimensionality

Splines discretisation

 $\normalfont{\begin{tabular}{l} \end{table} } \normalfont{\begin{tabular}{l} \end{tabular} } Find a set of basis functions to initial signal } f_0(x)$

Find ξ to optimise $\{b_i(x)\}_{\xi}$ for $f_0(x)$

lacksquare Discretisation of $f_i(x)$ given by basis coefficients

Splines demo

Splines vs Fourier

Goodness-of-fit

Method usage cases

Two approaches to CBC of periodic orbits:

- Harmonically forced:
 - Lump control action with bifurcation parameter; efficiently iterate Fourier harmonics to zero
- Non-harmonically forced:
 - Use Newton iterations to solve for noninvasive control action

In-silico CBC

Test it on a variety of toy models

Use it to demonstrate new discretisation

CBC method

- Non-adaptive mesh
- Use Newton-iterations to solve for input = output

Discretisors

Discretisors implemented and lightly tested

```
discretisation, period = discretisor.discretise(signal)
control_target = discretisor.undiscretise(
    discretisation, period
)
```


Controllers

Controllers implemented and lightly tested

```
controller = Controller(
    "PD", B_matrix, control_target,
    C_matrix=C_matrix, kp=10, kd=10
model = Model(
    fitzhugh_nagumo_neuron, ["I"], False, controller
solution = model.run model(
    [0, 25], [-1, -1], I=1, rtol=1e-6
```


Control

Continuation

In progress; code written, but not tested

Simulation summary

- Discretisation: implemented, lightly tested
- Model-continuation interface: unimplemented
- Continuation: implemented, untested
- Results handling: unimplemented

Open questions

- Will splines discretisation work?
- Stationary or adaptive mesh?
- Efficient solving methods?
- Can we interface the code with Simulink?

Next steps

- Finish CBC simulation
- Start conference paper
- Finish continuation review paper