Université de Paris LIPADE

Algorithmic Complexity

Examples of Problems and their Proof of Complexity

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

Outline

Independent Set

Clique

3-SAT

Definition

- k-CNF: a CNF formula such that each clause contains at most k literals
- ▶ 3-SAT= $\{\phi \mid \phi \text{ is a 3-CNF formula and } \phi \text{ is satisfiable}\}$

Theorem

3-SAT is NP-complete.

Independent Set

Definition

Given a non directed graph $G = \langle N, E \rangle$, an independent set is a set of nodes $I \subseteq N$ such that $\forall x, y \in I$, $\{x, y\} \notin E$

The Decision Problem

 $IS = \{(G, k) \mid G \text{ has at least one independent set of size } \geq k\}$

We will prove that IS is NP-complete

IS ∈ NP?

- ▶ To prove that IS \in NP, we need to prove that verifying a positive certificate for IS is \in P
- ▶ What is a positive certificate for IS?

$IS \in NP$?

- ▶ To prove that IS \in NP, we need to prove that verifying a positive certificate for IS is \in P
- What is a positive certificate for IS?
- ► A positive certificate is an independent set of size $\geq k$

$IS \in NP$?

- To prove that IS ∈ NP, we need to prove that verifying a positive certificate for IS is ∈ P
- ▶ What is a positive certificate for IS?
- ► A positive certificate is an independent set of size $\geq k$
- Exercise: find a polynomial algorithm for it

IS ∈ NP: Proof


```
Algorithm 1 Verifiy IS Certificate

Input: G = \langle N, E \rangle, k, l \subseteq N

if |I| < k then

return NO

else

for x \in I do

if \{x, y\} \in E then

return NO

end if
```

end for end for return YES

end if

IS is NP-hard?

- ▶ We need to prove that $\mathcal{P} \leq_f^{\mathsf{P}} IS$, with \mathcal{P} a NP-hard problem
- ▶ We use $\mathcal{P} = 3\text{-SAT}$
- ▶ We have to find $f: 3\text{-SAT} \rightarrow IS$ such that ϕ is a satisfiable 3-SAT formula iff $f(\phi) = (G, k)$ with
 - ► *G* is a non-directed graph
 - ► *G* has at least one independent set of size $\geq k$

- We consider a 3-CNF formula ϕ on variables $X = \{x_1, \dots, x_n\}$
- \blacktriangleright ϕ is a set of clauses $\{cl_1, \ldots, cl_m\}$, with each clauses made of (at most) 3 literals
- ► For every clause *cl_i* we make a "triangle" of nodes: *e.g.* $\phi = (X_1 \vee \neg X_2 \vee X_3) \wedge (X_2 \vee \neg X_3 \vee X_4)$

*X*3

▶ if the same literal appears in several clauses, we duplicate the node (not the case on this example)

- We add an edge between nodes into a same clause

- We add an edge between nodes into a same clause
- We add an edge between pairs of contradictory nodes

- We add an edge between nodes into a same clause
- We add an edge between pairs of contradictory nodes

► These steps define G_{ϕ} ; we choose k = m (number of clauses/triangles)

- Computing is polynomial: at most $3 \times m$ nodes in the graph (m = number of clauses)
- ▶ If ϕ is satisfiable, let ω be a model of ϕ . For each clause $cl_i \in \phi$, we choose a literal l_i in cl_i that is satisfied. The set of all l_i is an IS of G_{ϕ} , with size k. E.g. $\omega = \{x_1, x_2, x_3, x_4\} \models \phi$. Pour $cl_1 : x_1$, pour $cl_2 : x_2$

- Computing is polynomial: at most $3 \times m$ nodes in the graph (m = number of clauses)
- ▶ If ϕ is satisfiable, let ω be a model of ϕ . For each clause $cl_i \in \phi$, we choose a literal l_i in cl_i that is satisfied. The set of all l_i is an IS of G_{ϕ} , with size k. E.g. $\omega = \{x_1, x_2, x_3, x_4\} \models \phi$. Pour $cl_1 : x_1$, pour $cl_2 : x_2$

- ► Computing is polynomial: at most $3 \times m$ nodes in the graph (m = number of clauses)
- ▶ If ϕ is satisfiable, let ω be a model of ϕ . For each clause $cl_i \in \phi$, we choose a literal l_i in cl_i that is satisfied. The set of all l_i is an IS of G_{ϕ} , with size k. E.g. $\omega = \{x_1, x_2, x_3, x_4\} \models \phi$. Pour $cl_1 : x_1$, pour $cl_2 : x_2$

▶ $\phi \in 3\text{-SAT} \Rightarrow (G_{\phi}, k) \in IS$

- ▶ Suppose that $(G_{\phi}, k) \in IS$, let *I* be an IS of size $\geq k$
- ► For each triangle, there is exactly one node in *I*
- Nodes x_i and \bar{x}_i are not together in I (since there is an edge between them)
- ▶ The nodes in *I* make a satisfying interpretation of ϕ

- ▶ Suppose that $(G_{\phi}, k) \in IS$, let *I* be an IS of size $\geq k$
- ► For each triangle, there is exactly one node in *I*
- Nodes x_i and \bar{x}_i are not together in I (since there is an edge between them)
- ▶ The nodes in *I* make a satisfying interpretation of ϕ
- $ightharpoonup (G_{\phi}, k) \in \mathit{IS} \Rightarrow \phi \in \operatorname{3-SAT}$

- ▶ Suppose that $(G_{\phi}, k) \in IS$, let *I* be an IS of size $\geq k$
- ► For each triangle, there is exactly one node in *I*
- Nodes x_i and \bar{x}_i are not together in I (since there is an edge between them)
- lacktriangle The nodes in I make a satisfying interpretation of ϕ
- $ightharpoonup (G_{\phi}, k) \in \mathit{IS} \Rightarrow \phi \in \operatorname{3-SAT}$
- ► $3-SAT \le_f^P IS$: IS is NP-hard

- ▶ Suppose that $(G_{\phi}, k) \in IS$, let I be an IS of size $\geq k$
- ► For each triangle, there is exactly one node in *I*
- Nodes x_i and \bar{x}_i are not together in I (since there is an edge between them)
- ▶ The nodes in *I* make a satisfying interpretation of ϕ
- ▶ $(G_{\phi}, k) \in IS \Rightarrow \phi \in 3\text{-SAT}$
- ▶ $3-SAT \leq_f^P IS$: IS is NP-hard
- ► We conclude that *IS* is NP-complete

Outline

Independent Set

Clique

Clique

Definition

Given a non directed graph $G = \langle N, E \rangle$, a clique is a set of nodes $C \subseteq N$ such that $\forall x, y \in C$, $\{x, y\} \in E$

The Decision Problem

Clique = {(G, k) | G has at least one clique of size ≥ k}

We will prove that Clique is NP-complete

Clique ∈ NP?

- To prove that Clique ∈ NP, we need to prove that verifying a positive certificate for Clique is ∈ P
- ► What is a positive certificate for Clique?

Clique ∈ NP?

- To prove that Clique ∈ NP, we need to prove that verifying a positive certificate for Clique is ∈ P
- ► What is a positive certificate for Clique?
- ► A positive certificate is a clique of size $\geq k$

Clique ∈ NP?

- ➤ To prove that Clique ∈ NP, we need to prove that verifying a positive certificate for Clique is ∈ P
- ► What is a positive certificate for Clique?
- ► A positive certificate is a clique of size $\geq k$
- Exercise: find a polynomial algorithm for it

Clique ∈ NP: Proof

Algorithm 2 Verifiy Clique Certificate

```
Input: G = \langle N, E \rangle, k, C \subseteq N
  if |C| < k then
      return NO
  else
      for x \in C do
          for y \in C do
             if \{x, y\} \notin E then
                 return NO
             end if
          end for
      end for
      return YES
  end if
```

Clique is NP-hard?

- ▶ We will prove that $IS \leq_f^P Clique$
- ► Exercise: prove it

Clique is NP-hard: Intuition

► From $(G = \langle N, E \rangle, k)$ an instance of *IS*, make $(G' = \langle N', E' \rangle, k')$ an instance of *Clique*:

Clique is NP-hard: Intuition

- ▶ From $(G = \langle N, E \rangle, k)$ an instance of *IS*, make $(G' = \langle N', E' \rangle, k')$ an instance of *Clique*:
 - k' = k
 - ► *N'* = *N*
 - ► $E' = Pairs(N) \setminus E$, where $Pairs(N) = \{\{x, y\} \mid x, y \in N\}$

Clique is NP-hard: Intuition

- ▶ From $(G = \langle N, E \rangle, k)$ an instance of *IS*, make $(G' = \langle N', E' \rangle, k')$ an instance of *Clique*:
 - k' = k
 - ► *N'* = *N*
 - ► $E' = Pairs(N) \setminus E$, where $Pairs(N) = \{\{x, y\} \mid x, y \in N\}$
- ▶ $S \subseteq N$ is an IS of size k in G iff S is a clique of size k in G'