7.6 Performance Analysis of Discrete-Time Systems

> Stability

> Dynamic Performance

> Steady-state Errors

we' ve learned three methods to determine the stability of a discrete-time systems.

Summary

s-Domain to z-Domain Mapping

Necessary and Sufficient Condition for Stability of Linear Discrete-Time Systems

— All poles of $\Phi(z)$ lie in the unit circle of z plane

Routh criterion in w domain (Generalized Routh Criterion)

7.6.3 Steady-state error of discrete systems

(1) General method: obtain system response

(2) Final value theorem
$$\begin{cases} G(z) \to \Phi_e(z) \\ D(z) \to \text{Stability} \\ e(\infty) = \lim_{z \to 1} (z - 1) R(z) \Phi_e(z) \end{cases}$$

(3) Static error constant $\begin{cases} G(z) \to v, K_p, K_v, K_a \\ \text{Obtain } e(\infty) \end{cases}$

Chapter 7 Analysis and Design of Linear Discrete-Time System (Sampled-data System)

- 7.1 Introduction
- 7.2 The Sampling Process and Sampling Theorem
- 7.3 Signal Recovery and Zero-Order Hold
- 7.4 Z-Transform and Inverse Z Transform
- 7.5 Mathematical Models of Discrete-Time Systems
- 7.6 Performance Analysis of Discrete-Time Systems
- 7.7 Digital Control Design for Discrete-Time Systems

Design for discrete-time systems can be done in s-domain, z-domain and w-domain, respectively.

7.7.1 The Impulse Transfer Function for the Digital Controller

$$\Phi(z) = \frac{D(z) \cdot G(z)}{1 + D(z) \cdot G(z)}$$

$$\Phi_e(z) = \frac{1}{1 + G(z) \cdot D(z)} = 1 - \Phi(z)$$

$$D(z) \cdot G(z) = \frac{\Phi(z)}{1 - \Phi(z)} = \frac{\Phi(z)}{\Phi_{e}(z)}$$

$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)} \qquad \Phi_e(z) = 1 - \Phi(z), E(z) = \Phi_e(z)R(z)$$

7.7.2 Deadbeat Control Design 最少拍控制

Deadbeat Control Systems: Matching a particular test input within a number of steps. —— No steady-state error on the sampling point.

(典型输入作用下, 能在有限拍內结束响应过程且在采样点上无稳态误差的系统。)

1. A unified description of typical test inputs

$$r(t) = \begin{cases} 1(t) & v & A(z) \\ t & R(z) = \begin{cases} \frac{z}{z-1} = \frac{1}{1-z^{-1}} \\ \frac{Tz}{(z-1)^2} = \frac{Tz^{-1}}{(1-z^{-1})^2} \\ \frac{T^2z(z+1)}{2(z-1)^3} = \frac{T^2z^{-1}(1+z^{-1})}{2(1-z^{-1})^3} \end{cases}$$

$$\frac{V}{1} \quad \frac{A(z)}{1} \quad 1$$

$$\frac{A(z)}{(1-z^{-1})^{\nu}} \quad 2 \quad Tz^{-1}$$

$$\frac{T^2z^{-1}(1+z^{-1})}{2(z-1)^3} \quad \frac{T^2z^{-1}(1+z^{-1})}{2}$$

$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)}$$

Design Idea: Obtain D(z) by constructing $\Phi(z)$ so that the output can match the typical test signal within the minimum steps.

IF there is No { Zeros of G(z) on or beyond the unit circle, except for (1, j0)

$$R(z) = \frac{A(z)}{(1-z^{-1})^{\nu}}$$

$$E(z) = \Phi_e(z)R(z), \quad \Phi_e(z) = 1 - \Phi(z)$$

$$R(z) = \frac{A(z)}{(1-z^{-1})^{\nu}}$$

$$E(z) = \Phi_{e}(z)R(z), \quad \Phi_{e}(z) = 1-\Phi(z)$$

$$E(z) = \Phi_{e}(z) \cdot R(z) = \frac{A(z)}{(1-z^{-1})^{\nu}} \Phi_{e}(z)$$

$$e(\infty T) = \lim_{z \to 1} (1 - z^{-1}) \frac{A(z)}{(1 - z^{-1})^{\nu}} \Phi_e(z) = 0 \quad \Rightarrow \Phi_e(z) = (1 - z^{-1})^{\nu} F(z^{-1})$$

To make the D(z) simplest and of the lowest-order, we can choose $F(z^{-1})$ as 1.

$$\Phi(z) = 1 - \Phi_e(z) = 1 - (1 - z^{-1})^{\nu}$$

From the design idea, we know that $e(\infty T) = 0$

$$E(z) = \Phi_e(z) \cdot R(z) = \frac{A(z)}{(1 - z^{-1})^{\nu}} \Phi_e(z)$$

$$e(\infty T) = \lim_{z \to 1} (1 - z^{-1}) \frac{A(z)}{(1 - z^{-1})^{\nu}} \Phi_e(z) = 0$$

$$\Phi_e(z) = (1-z^{-1})^{\nu} F(z) = (1-z^{-1})^{\nu}$$

Hence:

$$\Phi(z) = 1 - \Phi_e(z) = 1 - (1 - z^{-1})^v = b_1 z^{-1} + b_2 z^{-2} + \dots + b_v z^{-v}$$

$$= \frac{b_1 z^{v-1} + b_2 z^{v-2} + \dots + b_v}{z^v}$$

$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)}$$

The rule to construct $\Phi(z)$: All poles of $\Phi(z)$ are located on the origin of z-plane.

2. $\Phi(z)$ for typical test inputs

(1) for
$$r(t) = 1(t)$$

$$\Phi_e(z) = 1 - \Phi(z), E(z) = \Phi_e(z)R(z)$$

• The C.L. impulse transfer function:

$$\nu = 1 \qquad \Phi(z) = z - 1$$

$$E(z) = 1$$

The system can track the input by 1 step only.

(2) for $r(t) = t \cdot 1(t)$

 $\Phi_e(z) = 1 - \Phi(z), E(z) = \Phi_e(z)R(z)$

$$R(z) = \frac{Tz}{(z-1)^2} = \frac{Tz^{-1}}{(1-z^{-1})^2}$$

• The C. L. impulse transfer function:

$$v = 2$$
 $\Phi(z) = 2z^{-1} - z^{-2}$

$$E(z) = Tz^{-1}$$

The system can track the input by 2 step.

$$r(t) = \frac{1}{2}t^2 \cdot 1(t)$$

The C.L.impulse transfer function:

$$\nu = 3$$
 $\Phi(z) = 3z^{-1} - 3z^{-2} + z^{-3}$

$$E(z) = \frac{1}{2}T^2z^{-1} + \frac{1}{2}T^2z^{-2}$$

The system can track the input by 3 step.

$$D(z) = \frac{\Phi(z)}{\Phi_{e}(z) \cdot G(z)}$$

Deadbeat Control Design Table

r(t)	R(z)	$\Phi_e(z) = (1 - z^{-1})^v$	$\Phi(z) = 1 - \Phi_e(z)$	D(z)	t_s
1 (t)	$\frac{1}{1-z^{-1}}$	$1-z^{-1}$	z^{-1}	$\frac{z^{-1}}{(1-z^{-1})\cdot G(z)}$	T
t	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	$(1-z^{-1})^2$	$2z^{-1}-z^{-2}$	$\frac{z^{-1}(2-z^{-1})}{(1-z^{-1})^2G(z)}$	2 T
$\frac{t^2}{2}$	$\frac{T^2z^{-1}(1+z^{-1})}{2(1-z^{-1})^3}$	$(1-z^{-1})^3$	$3z^{-1} - 3z^{-2} + z^{-3}$	$\frac{z^{-1}(3-3z^{-1}+z^{-2})}{(1-z^{-1})^3G(z)}$	3 <i>T</i>

3. Algorithm for Deadbeat Control Design

- \bigcirc Obtain G(z) Suppose there are no poles and zeros of G(z) on or beyond the unit circle.
- ② Determine $\Phi_e(z)$ for the particular test input

$$r(t) \Rightarrow R(z) = \frac{A(z)}{(1-z^{-1})^{\nu}} \Rightarrow \Phi_e(z) = (1-z^{-1})^{\nu}$$

3 Obtain $\Phi(z) = 1 - \Phi_e(z)$

4 Achieve
$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)}$$

Example 1. Consider the system shown in the above figure (T=1). Design

deadbeat controllers D(z) for r(t)=1(t), t.

Solution.

$$G(z) = Z \left[\frac{1 - e^{-Ts}}{s} \cdot \frac{2}{(s+1)(s+2)} \right] = 2(1 - z^{-1}) \cdot Z \left[\frac{C_0}{s} - \frac{C_1}{s+1} + \frac{C_2}{s+2} \right]$$

$$= 2 \cdot \frac{z-1}{z} \cdot Z \left[\frac{1}{2} \cdot \frac{1}{s} - \frac{1}{s+1} + \frac{1}{2} \cdot \frac{1}{s+2} \right]$$

$$= \frac{z-1}{z} \left[\frac{z}{z-1} - \frac{2z}{z-e^{-T}} + \frac{z}{z-e^{-2T}} \right] = 1 - \frac{2(z-1)}{z-e^{-T}} + \frac{z-1}{z-e^{-2T}}$$

$$= \frac{(1 + e^{-2T} - 2e^{-T})z + (e^{-3T} + e^{-T} - 2e^{-2T})}{(z-e^{-T})(z-e^{-2T})} \stackrel{T=1}{=} \frac{0.4(z+0.365)}{(z-0.368)(z-0.136)}$$

Referring to the result for r(t) = 1(t) in the Design Table

$$R(z) = \frac{z}{z-1}$$
 Choose
$$\begin{cases} \Phi_e(z) = 1 - z^{-1} \\ \Phi(z) = 1 - \Phi_e(z) = z^{-1} \end{cases}$$

$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)} = \frac{z^{-1}}{1 - z^{-1}} \cdot \frac{(z - 0.368)(z - 0.136)}{0.4(z + 0.365)}$$
$$= \frac{2.5(z - 0.368)(z - 0.136)}{(z - 1)(z + 0.365)}$$

$$C(z) = \Phi(z)R(z) = z^{-1} \cdot \frac{1}{1-z^{-1}} = z^{-1}[1+z^{-1}+z^{-2}+\cdots] = z^{-1}+z^{-2}+z^{-3}+\cdots$$

$$E(z) = \Phi_e(z)R(z) = (1-z^{-1}) \cdot \frac{1}{1-z^{-1}} = 1$$

For r(t) = t

$$R(z) = \frac{Tz^{-1}}{(1-z^{-1})^2} \quad \text{Choose } \begin{cases} \Phi_e(z) = (1-z^{-1})^2 \\ \Phi(z) = 1 - \Phi_e(z) = 2z^{-1} - z^{-2} \end{cases}$$

$$D(z) = \frac{\Phi(z)}{\Phi_e(z) \cdot G(z)} = \frac{2z^{-1} - z^{-2}}{(1-z^{-1})^2} \cdot \frac{(z - 0.368)(z - 0.136)}{0.4(z + 0.365)}$$

$$= \frac{5(z - 0.5)(z - 0.368)(z - 0.136)}{(z - 1)^2(z + 0.365)}$$

$$E(z) = \Phi_e(z) \cdot R(z) = Tz^{-1}$$

$$C(z) = \Phi(z)R(z) = (2z^{-1} - z^{-2}) \cdot \frac{Tz^{-1}}{(1-z^{-1})^2}$$

$$= R(z) - E(z) = 2Tz^{-2} + 3Tz^{-3} + 4Tz^{-4} + \cdots$$

4. G(**z**) has poles or zeros on or beyond the unit circle suppose

$$G(z) = \frac{z^{-\nu} \prod_{i=1}^{L} (1 - z_i z^{-1})}{\prod_{i=1}^{n} (1 - p_i z^{-1})}$$

where Z_i is the zero of G(z); P_i is the pole of G(z).

Then

$$D(z) = \frac{\Phi(z)}{\Phi_e(z)G(z)} = \frac{z^{\nu} \prod_{i=1}^{n} (1 - p_i z^{-1})\Phi(z)}{\prod_{i=1}^{L} (1 - z_i z^{-1})\Phi(z)}$$

(1)D(z) is stable realizable; (2) $\Phi(z)$ is stable and realizable.

$$D(z) = \frac{\Phi(z)}{\Phi_e(z)G(z)} = \frac{z^{\nu} \prod_{i=1}^{n} (1 - p_i z^{-1}) \Phi(z)}{\prod_{i=1}^{L} (1 - z_i z^{-1}) \Phi_e(z)}$$

(1)D(z) is stable realizable; (2) Φ (z) is stable and realizable.

- 1) If there is z^{ν} in D(z), D(z) is un-realizable. Thus, we have to ensure that there exists $z^{-\nu}$ in $\Phi(z)$, which promises D(z) is realizable.
 - ② If there is z_i on or beyond the unit circle, D(z) is unstable. Then, those z_i will be designed as the zeros of $\Phi(z)$.

3 Note that

$$\Phi(z) = D(z)G(z)\Phi_e(z)$$

If there are p_i on or beyond the unit circle,

 $\Phi(z)$ will be unstable,

Then those p_i will be designed as the zeros of $\Phi_e(z)$.

(1)D(z) is stable realizable; (2) Φ (z) is stable and realizable.

Example Given the discrete system described as in the following figure, where

$$G_0(s) = \frac{10}{s(0.1s+1)(0.05s+1)}, \quad G_h(s) = \frac{1-e^{-Ts}}{s}$$

with

$$T = 0.2s$$

Design a deadbeat controller for r(t) = 1(t)

Solution: the O. L. impulse transfer function is

$$G(z) = Z[G_h(z)G_0(z)] = \frac{0.76z^{-1}(1+0.05z^{-1})(1+1.065z^{-1})}{(1-z^{-1})(1-0.135z^{-1})(1-0.0185z^{-1})}$$

For r(t) = 1(t), we can design

$$\varphi_e(z) = 1 - z^{-1} \tag{1}$$

$$\varphi(z) = z^{-1} \tag{2}$$

Because there exists z = -1.065 (beyond the unit circle),

Thus, z should also be the zero of $\Phi(z)$

There exist z^{-1} in G(z), z^{-1} should be in $\Phi(z)$, thus

$$\varphi(z) = z^{-1}(1+1.065z^{-1}) \tag{3}$$

Because that

$$\varphi(z) = 1 - \varphi_e(z) \tag{4}$$

from (3), $\varphi(z)$ is now a polynomial on z^{-1} of order 2, To satisfy (4), $\varphi_e(z)$ must be a polynomial on z^{-1} of order 2, thus based on (1), we redesign:

$$\varphi_e(z) = (1 - z^{-1}) (1 + a_1 z^{-1})$$
(5)

Where a_1 is a constant to be chosen later.

Thus multiplied by a constant b_1 to be designed later, we get

$$\varphi(z) = b_1 z^{-1} (1 + 1.065 z^{-1}) \tag{6}$$

From (4-6), we get:

$$a_1 = 0.516$$
 $b_1 = 0.484$

Thus,

$$\varphi_e(z) = (1 - z^{-1}) (1 + 0.516z^{-1}) \tag{7}$$

$$\varphi(z) = 0.484z^{-1}(1 + 1.065z^{-1}) \tag{8}$$

Then the deadbeat controller is

$$D(z) = \frac{1 - \varphi_e(z)}{G(z)\varphi_e(z)}$$

$$= \frac{1 - (1 - z^{-1}) (1 + 0.516z^{-1})}{\frac{0.76z^{-1}(1 + 0.05z^{-1}) (1 + 0.065z^{-1})}{(1 - z^{-1}) (1 - 0.135z^{-1}) (1 - 0.0185z^{-1})} (1 - z^{-1}) (1 + 0.516z^{-1})}$$

$$D(z) = \frac{0.637(1 - 0.0185z^{-1}) (1 - 0.135z^{-1})}{(1 + 0.05z^{-1}) (1 + 0.516z^{-1})}$$

Then the Z-transform is

$$C(z) = \varphi(z)R(z) = 0.484z^{-1}(1+1.085z^{-1})\frac{1}{1-z^{-1}}$$
$$= 0.484z^{-1} + z^{-2} + z^{-3} + \dots + z^{-4} + \dots$$

System can follow the input at the 2nd step.

Although the deadbeat control system tracks a particular test input accurately within a number of steps, it has the following disadvantages:

- (1) It is designed only for a particular input.
- (2) The output has ripples (纹波) although there are no errors on the sampling points.
- (3) The control input changes drastically.

5. Ripple-free (无纹波) deadbeat control design

Ripple: though the system outputs are stable at the sampling time, they are varying between two sampling time, See p230, Fig. 7-50.

Objective: Not only tracking the input at the sampling time, the outputs are ripplefree.

$$E_2(z) = D(z)E(z)$$

虽然可设计无稳态误差最少拍系统,即E(z)可在有限拍为零,但因为D(z) 不是有限多项式 $\rightarrow E_2(z)$ 不能在有限拍为零 \rightarrow 作用在零阶保持器上,输出有纹波 \rightarrow 系统输出有纹波。

解决方案: 使 $E_2(z)$ 为 z^{-1} 的有限多项式。

$$E_2(z) = D(z)E(z)$$

solution: ensure E₂(z) being a polynomial on z⁻¹ of a finite order.

Condition: $E_2(z)$ is a polynomial on z^{-1} of finite order.

$$E_2(z) = D(z)E(z) = D(z)\Phi_e(z)R(z), \qquad D(z)\Phi_e(z) = \frac{\Phi(z)}{G(z)}$$

 \rightarrow D(z) $\Phi_e(z)=$ (*) /z^r, that is the zero of G(z) must be a zero of $\Phi(z)$

最少拍设计中, $\Phi(z)$ 和 $\Phi_{c}(z)$ 选取时应遵循的原则:

- 1. D(z)零点的数目不能大于极点的数目; (因果性)
- 2. $\Phi_{c}(z)$ 应把G(z) 在单位圆上及单位圆外的极点作为自己的零点;(稳定性)
- 3. $\Phi(z)$ 应把G(z)在单位圆上及单位圆外的零点作为自己的零点; (稳定性)
- 4. 当G(z)含有 z^{-1} 因子时,要求 $\Phi(z)$ 也含有 z^{-1} 的因子;(因果性,可实现性)
- 5. 因为 $\Phi(z)=1-\Phi_e(z)$,他们应该是关于 z^{-1} 同样阶次的多项式,而且 $\Phi_e(z)$ 还应包含常数项1。(脉冲传函间的关系)
- **6.** 当最小拍系统还有无纹波要求时,闭环脉冲传函 $\Phi(z)$ 的零点应抵消G(z)的全部零点(因为最少拍系统设计中G(z)单位圆上及单位圆外的零极点已经被补偿,因此在无纹波的设计中只需抵消G(z)单位圆内的零点)。

Homework:

p238 7-15, 7-16

7-15. Consider the system as shown in Fig 7-69, T=1s, design deadbeat controller D(z) for r(t)=t.

Draw $r^*(t), e_1^*(t), e_2^*(t), x(t), y(t) and y^*(t).$

7-16. Furthermore, design a ripple-free deadbeat controller for the system in 7-15.