CS 321: Assignment 4

Jared Wasinger

October 21, 2016

1. Give a regular expression R such that $\overline{L(R)} = L((ab + aab) * b)$ Want a regular expression: $(\Sigma^* \setminus \{ab, aab\})^*a$ Let C be the language described by $\Sigma^* \setminus \{ab, aab\} =$

Reduce to regular expression

Regular Expression that describes C: $a(b(a+b)a)^* + (a(b(a+b)a)^*a(a+b)a)^*$

$$b(a+b)))^*+b*$$
 Complement of $L(R)=C*b=(a(b(a+b)a)^*+(a(b(a+b)a)^*a(a+b(a+b)))^*+b*)*a$

2. Give a DFA equivalent to the following regular expression: $\epsilon + a(ba^*b + ba)^*b$

DFA Transition table

State	a	b	ϵ
$\{q_0\}$	$\{q_1\}$	$\{\emptyset\}$	$\{q_0\}$
$\{q_1\}$	$\{\emptyset\}$	$\{q_0, q_4\}$	$\{\emptyset\}$
$\{q_0,q_4\}$	$\{q_1,q_5\}$	$\{\emptyset\}$	$\{\emptyset\}$
$\{q_1,q_5\}$	$\{q_5\}$	$\{q_1,q_4\}$	$\{\emptyset\}$
$\{q_1, q_4\}$	$\{q_{5}\}$	$\{q_0, q_4\}$	{Ø}

Convert NFA to DFA

3. $A=\{w\in\{a,b\}^*|10$ th character from the end of w is $b\}$. Prove that if DFA M has L(M), then M has at least 1024 states.

Solution:

$$letX=\{\delta^*(s,w)|w\in\{a,b\}^*|len(w)=10\}$$

- (a) First character is 'b'
- (b) Each subsequent character is 'a' or 'b'
- (c) Total number of states in $X = \sum_{i=0} i < 92^i + 1 = 1024$

Contrapositive

- (a) Suppose M has fewer than 1024 states.
- (b) In order for M to have L(A), there must be repeated states in M
- (c) However, if states are repeated, then by the Pigeonhole principle, there must be cycles in M.
- (d) By the definition of a cycle, two strings of differing length will end up in the same final state. A DFA with less than 1024 states will 'forget' where it is at in the string it is reading in.
- (e) Let j be an integer greater than 10.
- (f) $\delta(s,b(a+b)^{j-1}) \in F(M)$ a string where b is not the 10th to the last character will be accepted by M, and rejected by A.