

Pattern Recognition (CSE4213)

Faisal Muhammad Shah Associate Professor, Dept Of CSE, AUST

☐ Linear Discriminant Analysis (LDA)

Outline

- LDA objective
- Recall ... PCA
- Now ... LDA
- LDA ... Two Classes
 - Counter example
- LDA ... C Classes
 - Illustrative Example
- LDA vs PCA Example
- Limitations of LDA

LDA Objective

- The objective of LDA is to perform dimensionality reduction ...
 - So what, PCA does this ...
- However, we want to preserve as much of the class discriminatory information as possible.
 - OK, that's new, let dwell deeper ◎ ...

Recall ... PCA

- In PCA, the main idea to re-express the available dataset to extract the relevant information by reducing the redundancy and minimize the noise.
- We didn't care about whether this dataset represent features from one or more classes, i.e. the discrimination power was not taken into consideration while we were talking about PCA.
- In PCA, we had a dataset matrix **X** with dimensions *mxn*, where columns represent different data samples.
- We first started by subtracting the mean to have a zero mean dataset, then we computed the covariance matrix $S_x = XX^T$.
- Eigen values and eigen vectors were then computed for S_x . Hence the new basis vectors are those eigen vectors with highest eigen values, where the number of those vectors was our choice.
- Thus, using the new basis, we can project the dataset onto a less dimensional space with more powerful data representation.

Now ... LDA

- Consider a pattern classification problem, where we have C-classes, e.g. seabass, tuna, salmon ...
- Each class has N_i *m*-dimensional samples, where i = 1, 2, ..., C.
- Hence we have a set of *m*-dimensional samples $\{x^1, x^2, ..., x^{Ni}\}$ belong to class ω_i .
- Stacking these samples from different classes into one big fat matrix **X** such that each column represents one sample.
- We seek to obtain a transformation of X to Y through projecting the samples in X onto a hyperplane with dimension C-1.
- Let's see what does this mean?

This line succeeded in separating the two classes and in the meantime reducing the dimensionality of our problem from two features (**x**₁,**x**₂) to only a scalar value **y**.

Assume we have *m*-dimensional samples $\{\mathbf{x^1}, \mathbf{x^2}, \dots, \mathbf{x^N}\}$, N_1 of which belong to ω_1 and N_2 belong to ω_2 .

We seek to obtain a scalar y by projecting the samples x onto a line (C-1 space, C = 2).

$$y = w^{T}x$$
 where $x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}$ and $w = \begin{bmatrix} w_{1} \\ \vdots \\ w_{m} \end{bmatrix}$

Of all the possible lines we would like to select the one that maximizes the separability of the scalars.

Goals top cook class minimize -M, = W/4 WEIN + WEIN # el2 = WTHO W (02+12) TW J= dimension of mean after projection = d+1 - Covamance [wtw = w2] mim] 五= WTZIW 52 = WZOW is enough restall more woll dimension à covariance after projection = d+d - Goal 1: Maximize the distance of projected mean → (NTeg - wTro) (WTreg - WTreo) + (M-MO) WWT (M-MO) → wT(14-16)(14-16) TW SB = between class covamance - max wtsBw objective func

Goal 2: For each class minimize the variance: => WTZIW + WTZOW → WT(≤1+≤0) W Sw = within class covamance - [Min wish w Objective fonce - Now, from Fisher linear diseminant, max wishw - objective force - max wtspw

subject to wtsww = 1 -> objective fore

with constraint w (() = - 1 ×) () () = - 1 ×) For 4= From Lagrange L(w, a) = wtsBw -a(wtsww-i) Now, partial derivative, DL = 2SBW - 2ASWW = O => SBW = ASWW

Multiply both side by Switch & another miles Sw-Ispw = AW Here, wis a eigenvector of swiss.

- In order to find a good projection vector, we need to define a measure of separation between the projections.
- The mean vector of each class in **x** and **y** feature space is:

$$\mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x \quad and \quad \widetilde{\mu}_{i} = \frac{1}{N_{i}} \sum_{y \in \omega_{i}} y = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} w^{T} x$$

$$= w^{T} \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x = w^{T} \mu_{i}$$

 We could then choose the distance between the projected means as our objective function

$$J(w) = |\widetilde{\mu}_{1} - \widetilde{\mu}_{2}| = |w^{T} \mu_{1} - w^{T} \mu_{2}| = |w^{T} (\mu_{1} - \mu_{2})|$$

• However, the distance between the projected means is not a very good measure since it does not take into account the standard deviation within the classes.

This axis yields better class separability

This axis has a larger distance between means

- The solution proposed by Fisher is to maximize a function that represents the difference between the means, normalized by a measure of the within-class variability, or the so-called *scatter*.
- For each class we define the scatter, an equivalent of the variance, as;

$$\widetilde{s}_i^2 = \sum_{y \in \omega_i} (y - \widetilde{\mu}_i)^2$$

- \tilde{S}_i^2 measures the variability within class ω after projecting it on the y-space.
- Thus $\tilde{s}_1^2 + \tilde{s}_2^2$ measures the variability within the two classes at hand after projection, hence it is called *within-class scatter* of the projected samples.

• The Fisher linear discriminant is defined as the linear function $\mathbf{w}^{T}\mathbf{x}$ that maximizes the criterion function:

$$J(w) = \frac{\left|\widetilde{\mu_{1}} - \widetilde{\mu_{2}}\right|^{2}}{\widetilde{s_{1}}^{2} + \widetilde{s_{2}}^{2}}$$

Therefore, we will be looking for a projection where examples from the same class are projected very close to each other and, at the same time, the projected means are as farther apart as possible

- In order to find the optimum projection \mathbf{w}^* , we need to express J(w) as an explicit function of \mathbf{w} .
- We will define a measure of the scatter in multivariate feature space **x** which are denoted as *scatter matrices*;

$$S_i = \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$$

$$S_w = S_1 + S_2$$

• Where S_i is the covariance matrix of class ω_i , and S_w is called the within-class scatter matrix.

• Now, the scatter of the projection y can then be expressed as a function of the scatter matrix in feature space x.

$$\widetilde{s}_{i}^{2} = \sum_{y \in \omega_{i}} (y - \widetilde{\mu}_{i})^{2} = \sum_{x \in \omega_{i}} (w^{T}x - w^{T}\mu_{i})^{2}$$

$$= \sum_{x \in \omega_{i}} w^{T}(x - \mu_{i})(x - \mu_{i})^{T}w$$

$$= w^{T}Sw$$

$$\widetilde{S}_{1}^{2} + \widetilde{S}_{2}^{2} = w^{T} S_{1} w + w^{T} S_{2} w = w^{T} (S_{1} + S_{2}) w = w^{T} S_{W} w = \widetilde{S}_{W}$$

Where $\tilde{\mathbf{S}}_{w}$ is the within-class scatter matrix of the projected samples \mathbf{y} .

• Similarly, the difference between the projected means (in y-space) can be expressed in terms of the means in the original feature space (x-space).

$$(\widetilde{\mu}_{1} - \widetilde{\mu}_{2})^{2} = (w^{T} \mu_{1} - w^{T} \mu_{2})^{2}$$

$$= w^{T} (\underline{\mu}_{1} - \underline{\mu}_{2})(\underline{\mu}_{1} - \underline{\mu}_{2})^{T} w$$

$$= w^{T} S_{B} w = \widetilde{S}_{B}$$

- The matrix S_B is called the *between-class scatter* of the original samples/feature vectors, while \tilde{S}_B is the between-class scatter of the projected samples y.
- Since S_B is the outer product of two vectors, its rank is at most one.

 We can finally express the Fisher criterion in terms of S_W and S_B as:

$$J(w) = \frac{\left| \widetilde{\mu}_{1}^{T} - \widetilde{\mu}_{2} \right|^{2}}{\widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2}} = \frac{w^{T} S_{B} w}{w^{T} S_{W} w}$$

• Hence J(w) is a measure of the difference between class means (encoded in the between-class scatter matrix) normalized by a measure of the within-class scatter matrix.

• To find the maximum of J(w), we differentiate and equate to zero.

$$\frac{d}{dw}J(w) = \frac{d}{dw} \left(\frac{w^T S_B w}{w^T S_W w} \right) = 0$$

$$\Rightarrow \left(w^T S_W w \right) \frac{d}{dw} \left(w^T S_B w \right) - \left(w^T S_B w \right) \frac{d}{dw} \left(w^T S_W w \right) = 0$$

$$\Rightarrow \left(w^T S_W w \right) 2S_B w - \left(w^T S_B w \right) 2S_W w = 0$$
Divide the 2 of Theorem 1.

Dividing by $2w^T S_w w$:

$$\Rightarrow \left(\frac{w^T S_W w}{w^T S_W w}\right) S_B w - \left(\frac{w^T S_B w}{w^T S_W w}\right) S_W w = 0$$

$$\Rightarrow S_B w - J(w) S_W w = 0$$

$$\Rightarrow S_W^{-1} S_B w - J(w) w = 0$$

• Solving the generalized eigen value problem

$$S_W^{-1}S_Bw = \lambda w$$
 where $\lambda = J(w) = scalar$ yields
$$w^* = \arg\max_{w} J(w) = \arg\max_{w} \left(\frac{w^T S_B w}{w^T S_W w}\right) = S_W^{-1}(\mu_1 - \mu_2)$$

- This is known as Fisher's Linear Discriminant, although it is not a discriminant but rather a specific choice of direction for the projection of the data down to one dimension.
- Using the same notation as PCA, the solution will be the eigen vector(s) of $S_{v} = S_{w}^{-1} S_{R}$

- Compute the Linear Discriminant projection for the following twodimensional dataset.
 - Samples for class ω_1 : $X_1 = (x_1, x_2) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
 - Sample for class ω_2 : $X_2 = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

The classes mean are:

$$\mu_{1} = \frac{1}{N_{1}} \sum_{x \in \omega_{1}} x = \frac{1}{5} \left[\binom{4}{2} + \binom{2}{4} + \binom{2}{3} + \binom{3}{6} + \binom{4}{4} \right] = \binom{3}{3.8}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{x \in \omega_{2}} x = \frac{1}{5} \left[\binom{9}{10} + \binom{6}{8} + \binom{9}{5} + \binom{8}{7} + \binom{10}{8} \right] = \binom{8.4}{7.6}$$

```
% class means
Mu1 = mean(X1)';
Mu2 = mean(X2)';
```

• Covariance matrix of the first class:

$$S_{1} = \sum_{x \in \omega_{1}} (x - \mu_{1})(x - \mu_{1})^{T} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix}$$

% covariance matrix of the first class S1 = cov(X1);

• Covariance matrix of the second class:

$$S_{2} = \sum_{x \in \omega_{2}} (x - \mu_{2})(x - \mu_{2})^{T} = \begin{bmatrix} 9 \\ 10 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 6 \\ 8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 9 \\ 5 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 8 \\ 7 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 10 \\ 8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 10 \\ 8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{2} + \begin{bmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{bmatrix}$$

% covariance matrix of the first class S2 = cov(X2);

• Within-class scatter matrix:

$$S_{w} = S_{1} + S_{2} = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$
$$= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}$$

% within-class scatter matrix Sw = S1 + S2 ;

Between-class scatter matrix:

$$S_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix} \begin{bmatrix} 3 \\ 3.8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}^{T}$$

$$= \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix} (-5.4 - 3.8)$$

$$= \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix}$$
* between-class scatter matrix SB = (Mu1-Mu2) * (Mu1-Mu2) ';

• The LDA projection is then obtained as the solution of the generalized eigen value problem $S_w^{-1}S_w w = \lambda w$

$$S_{B}w = \lambda w$$

$$\Rightarrow |S_{W}^{-1}S_{B} - \lambda I| = 0$$

$$\Rightarrow \begin{vmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{vmatrix}^{-1} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{vmatrix} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 9.2213 - \lambda & 6.489 \\ 4.2339 & 2.9794 - \lambda \end{vmatrix}$$

$$= (9.2213 - \lambda)(2.9794 - \lambda) - 6.489 \times 4.2339 = 0$$

$$\Rightarrow \lambda^{2} - 12.2007\lambda = 0 \Rightarrow \lambda(\lambda - 12.2007) = 0$$

$$\Rightarrow \lambda_{1} = 0, \lambda_{2} = 12.2007$$

Hence

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_1 = \underbrace{0}_{\lambda_1} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_2 = \underbrace{12.2007}_{\lambda_2} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

```
computing the LDA projection
\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_1 = 0 \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}
and
\begin{pmatrix} 0.2212 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_1 = 0 \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}
\begin{cases} w_1 \\ w_2 \end{pmatrix}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_2 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_3 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_3 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_3 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_3 \\ w_3 \end{cases}
\begin{cases} w_1 \\ w_3 \end{cases}
\begin{cases} w_2 \\ w_3 \end{cases}
\begin{cases} w_3 \\ w_3
```

Thus;

$$w_1 = \begin{pmatrix} -0.5755 \\ 0.8178 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix} = w^*$

$$w_2 = \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix} = w^*$$

The optimal projection is the one that given maximum $\lambda = J(w)$

LDA - Projection

LDA - Projection

PCA vs LDA

0.2

0.1

Limitations of LDA

LDA produces at most C-1 feature projections

If the classification error estimates establish that more features are needed, some other method must be employed to provide those additional features

LDA is a parametric method since it assumes unimodal Gaussian likelihoods

If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any complex structure of the data, which may be needed for classification.

Limitations of LDA

LDA will fail when the discriminatory information is not in the mean but rather in the variance of the data

Thank You