Advanced Operating Systems EbbRT: A Framework for Building Per-Application Library Operating Systems

Presented by **BARALLON Lucas and SID-LAKHDAR Riyane** (M2 MoSIG: ENSIMAG / UGA)

DEFINE THE PROBLEM

- ► **General purpose OS** ⇒ mechanisms for safe interaction between heterogeneous applications
- ▶ But this "generality" is a drawback for optimizing the performance of a specific application.

EXISTING SOLUTIONS

- ► Different approaches to link the bridge between generality and custom performance
 - 1. Kernel bypass
 - 2. Hardware virtualization
 - 3. ...
- ► Limitation: all of them require a lot of engineering effort

THE EBBRT SOLUTION

- ► The Elastic Building Block Runtime (EbbRT)
- Framework to build application-specific OS
- ► How does the built OS adapts to the specifications of a user application?
- ► How does it manages to be compatible with the main stream user application requirements?

SPECIFICATION OF THE EBBRT FRAMEWORK AND RESULTING OS

CUSTOM OS TO OPTIMIZE THE APPLICATION-SPECIFIC PERFORMANCE

A FRAMEWORK BUILD FOR A LARGE SET OF APPLICATION

EBBRT: BUILDING LIBRARY OS

EBBRT: BUILDING LIBRARY OS

- ► Lightweight software stack
- ► Reduce engineering effort (reuse host os functionality).

EBBRT: BUILDING LIBRARY OS

- ► Lightweight software stack
- Reduce engineering effort (reuse host os functionality).
- Unikernel OS (avoid generality mechanism performance footprint)

EBBRT: SOFTWARE ARCHITECTURE

- Choose the implementation that most fits the application
- Allow adding custom implementations

EBBRT: THE ELASTIC BUILDING BLOCK

Figure: High Level EbbRT architecture

- ► EbbRT applications are composed of Ebbs
- ► It provide a C++ class interface
- ► Encapsulate data and functionnalities
- ► Customizable by the user of the framework

EBBRT: HETEROGENOUS STRUCTURE

Figure: High Level EbbRT architecture

- ► Native Runtime : part of the OS
- ► Hosted Runtime : user-level library

EBBRT: EVENT ORIENTED PROGRAMMING

- ▶ non preemptive event model
- ► Cooperative threading

SPECIFICATION OF THE EBBRT FRAMEWORK AND RESULTING OS

CUSTOM OS TO OPTIMIZE THE APPLICATION-SPECIFIC PERFORMANCE

A FRAMEWORK BUILD FOR A LARGE SET OF APPLICATION

REDUCE THE OS FOOTPRINT

► Non-preemptive environment (event-driven)

REDUCE THE OS FOOTPRINT

► Non-preemptive environment (event-driven)

► Unikernel architecture: Remove address translation footprint (time/space)

DISTRIBUTED USER APP WITH LIGHTWEIGHT COMMUNICATION

► Distributed OS architecture

DISTRIBUTED USER APP WITH LIGHTWEIGHT COMMUNICATION

▶ Distributed OS architecture

- Single application distributed on different hardware platforms
- Minimal distribution overhead (shared address space)

SPECIFICATION OF THE EBBRT FRAMEWORK AND RESULTING OS

CUSTOM OS TO OPTIMIZE THE APPLICATION-SPECIFIC PERFORMANCE

A FRAMEWORK BUILD FOR A LARGE SET OF APPLICATION

HETEROGENEOUS STRUCTURE: DETAILS

- ► Native runtime :
 - ▶ Dont bother about interface and protection mechanism.
 - ► Single address space and provide functionalities like timers and memory allocation.
- ► Hosted runtime:
 - ▶ Decrease the interface compatibility requirement
 - ► Part of the work offload to the library
- ► Elastic Building Block :
 - ► Component of EbbRT application
 - ▶ Provide an interface from a standard C++ class

EVENT-DRIVEN EXECUTION MODEL: DETAILS

- ► Non-preemptive environment :
 - ► Low overhead abstraction
 - ► Map directly to device interrupt
 - Avoid the cost of scheduling
- ► Cooperative Threading
 - ► Event explicitly save and restore control state
 - Facilitate the implementation of library using blocking system calls

PERFORMANCE

- ► Different evaluation about memory allocation or network performance
- ► Benchmark with Memcached
- ► Node.js:
 - ► Javascript benchmark
 - webserver workload
- ► EbbRT provide better result in all the test

CONCLUSION

- ► Performance specialization
- ► Broad applicability
- ► Ease of development

REFERENCES

https://en.wikipedia.org/wiki/Unikernel# Library_operating_systems.

D. Schatzberg, J. Appavoo, J. Cadden, and O. Krieger. Multilibos: An os architecture for cloud computing. Technical report, Computer Science Department, Boston University, 2012.

D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo. Ebbrt: A framework for building per-application library operating systems.

2016.