Računarstvo i automatika, Matematička analiza 2, Predispitne obaveze 2 21. januar 2023.

Student:

Sve odgovore obrazložiti.

- 1. (4 poena) Da li je funkcija $f(z) = i|z|^2$ diferencijabilna u tački z = 0? Da li je analitička u istoj tački?
- 2. (2 poena) Izračunati Ln(-1).
- 3. (3 poena) Preslikavanjem $w=e^z$ preslikati skup $G=\{z=x+iy\in\mathbb{C}:y=\pi/2,x>0\}.$

4. (3 poena) Izračunati $\int\limits_L i|z|^2dz$ ako je $L=\{z=x+iy\in\mathbb{C}:x^2+y^2=3,x\geq 0\}$ orijentisana od tačke $A(0,\sqrt{3})$.

5. (3 poena) Izračunati $\int\limits_L iz^2dz$ ako je putanja $L=\{z=x+iy\in\mathbb{C}:y=\sin x,0\leq x\leq 2\pi\}$ orijentisana od tačke O(0,0).

7. (3 poena) Funkciju $f(z) = \frac{z^2+1}{z}$ razviti u Loranov red u tački $\alpha = 0$. Gde dobijeni red konvergira? Odrediti Res[f(z), 0].

8. (3 poena) Ako je $f(x) = \begin{cases} 1 & x \in [-\pi/2, \pi/2] \\ 0 & x \in [-\pi, -\pi/2) \cup (\pi/2, \pi] \end{cases}$, i ako je s razvoj funkcije f u Furijeov red, odrediti

$$s(\pi/2) =$$

$$s(\pi) =$$

Napisati integral pomoću kojeg se računa koeficijent a_2 u Furijeovom razvoju ove funkcije (uvrstiti f, ne rešavati integral).

$$a_2 =$$

9. (4 poena) Napisati integral kojim se definiše $\mathcal{L}^{-1}(\frac{1}{s^2-5})$. Odrediti $\mathcal{L}^{-1}(\frac{1}{s^2-5})$ koristeći teoremu o reziduumu.