Object Recognition

in images

Image: two-dimensional matrix of pixels

Contains information, objects represented in it

Image: two-dimensional matrix of pixels

Contains information, objects represented in it

Extract this information? Automate the process?

Machine Learning

Machine Learning

In particular, Neural Networks

Neural network

Supervised learning

Neural network

Mimics the brain

Supervised learning

⇒ Interconnected layers of neurons

To learn more:

- https://www.forbes.com/sites/bernardmarr/2018/09/24/what-are-artific ial-neural-networks-a-simple-explanation-for-absolutely-anyone/#3c290 e7a1245
- <u>https://www.techradar.com/news/what-is-a-neural-network</u>

https://www.datascience.com/blog/convolutional-neural-network

 A lot of training material (>1000 per class)

 A lot of training material (>1000 per class)

A good neural network

 A lot of training material (>1000 per class)

- A good neural network
 - Many parameters

 A lot of training material (>1000 per class)

- A good neural network
 - Many parameters
 - lots of tweaking

 A lot of training material (>1000 per class) Computational power

- A good neural network
 - Many parameters
 - lots of tweaking

 A lot of training material (>1000 per class)

- Computational power
 - **GPUs**

- A good neural network
 - Many parameters
 - lots of tweaking

 A lot of training material (>1000 per class)

- A good neural network
 - Many parameters
 - lots of tweaking

Computational powerGPUs

A lot of time

 A lot of training material (>1000 per class)

- A good neural network
 - Many parameters
 - lots of tweaking

- Computational power
 - GPUs

- A lot of time
 - Retraining if the model isn't optimal

Lots of training datasets online

Lots of training datasets online

Pretrained models available for them

persian_cat

bat

persian_cat

bat

persian_cat

toothbrush

14m+ labeled images

14m+ labeled images 20k+ classes

ImageNet Large Scale Visual Recognition Competition

ImageNet Large Scale Visual Recognition Competition

Yearly competition

ImageNet Large Scale Visual Recognition Competition

Yearly competition

2015 winner: ResNet50 -- available online

Label:	Score:
platypus	0.31578568
puffer	0.25567934
scuba_diver	0.1726397
tree_frog	0.049659904
electric_ray	0.036546305

Label:	Score:
platypus	0.31578568
puffer	0.25567934
scuba_diver	0.1726397
tree_frog	0.049659904
electric_ray	0.036546305

Label:	Score:
swimming_trunks	0.855407178401947
maillot	0.03095098026096821
miniskirt	0.008445939049124718
bathing_cap	0.0081565510481596
maillot (again)	0.007052644621580839

But...

But...

But...

Huge dataset, many classes

Huge dataset, many classes

BUT

Huge dataset, many classes

BUT

Made for single-label classification

Object detection

Image segmentation

VS

VS

⇒ multi-label classification

200k+ labeled images

200k+ labeled images ~80 classes

Mask-RCNN pretrained model

https://github.com/matterport/Mask_RCNN

Mask-RCNN pretrained model

https://github.com/matterport/Mask_RCNN

Good results...

Good results...

Good results...

... mostly

... mostly

... mostly

cat (wrong classification)

sink (false positive)

Multi-label classification

Multi-label classification

BUT

Multi-label classification

BUT

Harder to create a good dataset

What's left to do

What's left to do

Look into other datasets

Look into other datasets

Find additional models

Look into other datasets

Find additional models

Investigate model retraining

A recent dataset (V1 in 2016!)

A recent dataset (V1 in 2016!)

Models harder to find

A recent dataset (V1 in 2016!)

Models harder to find

Looks like our best option so far

