```
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
```

```
x = np.arange(-1, 1.1, .1, dtype=float)
y = np.array([1-i for i in x], dtype=float)
stock_a = 0.1
stock_a_risk = 0.1
stock_b = 0.14
stock_b_risk = 0.14
riskfree_p = 0.04
```

[4] market_df

	stock_A	stock_B	risk_A	risk_B
0	0.1	0.14	0.1	0.14

```
#set number of runs of random portfolio weights
num_portfolios = 250

#set up array to hold results
results = np.zeros((num_portfolios,4))

corr = 0.4

for i in range(num_portfolios):
    #select random weights for portfolio holdings
    weights = np.random.random(2)

#rebalance weights to sum to 1
    weights /= np.sum(weights)

#calculate portfolio return and volatility
    portfolio_return = weights[0]*stock_a + weights[1]*stock_b
```

```
results_frame = pd.DataFrame(results, columns=["weight_A", "weight_B", "combined_return", "combined_volatility"])
```

```
plt.scatter(results_frame.combined_volatility,results_frame.combi
ned_return,c=results_frame.weight_A,cmap='RdYlBu')
plt.colorbar()
```

<matplotlib.colorbar.Colorbar at 0x1a1e9cc470>


```
results_frame.loc[(results_frame.weight_A <= 0.51) & (results_frame.weight_B <= 0.51)]
```

	weight_A	weight_B	combined_return	combined_volatility
36	0.503404	0.496596	0.119864	0.100834
46	0.509897	0.490103	0.119604	0.100533
	weight_A	weight_B	combined_return	combined_volatility
52	0 506987	0 493013	ი 119721	0 100667

J_	0.500501	0.155015	V.113121	0.100001
90	0.494195	0.505805	0.120232	0.101274

```
plt.scatter(results_frame.weight_A, results_frame.weight_B, c=results_frame.combined_return,cmap='RdYlBu')
plt.colorbar()
```

<matplotlib.colorbar.Colorbar at 0x1a1ea9cd30>


```
tangent_p = pd.DataFrame({"market_weight": y, "riskfree_weight":
x})
```

```
tangent_p["riskfree_rate"] = riskfree_p
```

```
tangent_p["market_rate"] = 0.120025
tangent_p["market_risk"] = 0.101025
```

```
tangent_p["combined_return"] = tangent_p.apply(lambda row:
row.market_rate * row.market_weight + row.riskfree_weight *
row.riskfree_rate, axis=1)
```

```
tangent_p["combined_risk"] = tangent_p.apply(lambda row:
    math.sqrt(row.market_weight**2*row.market_risk**2), axis=1)
```

[15] tangent_p

	market_weight	riskfree_weight	riskfree_rate	market_rate	ma
0	2.000000e+00	-1.000000e+00	0.04	0.120025	0.10
1	1.900000e+00	-9.000000e-01	0.04	0.120025	0.10
2	1.800000e+00	-8.000000e-01	0.04	0.120025	0.10
3	1.700000e+00	-7.000000e-01	0.04	0.120025	0.10
4	1.600000e+00	-6.000000e-01	0.04	0.120025	0.10
5	1.500000e+00	-5.000000e-01	0.04	0.120025	0.10
6	1.400000e+00	-4.000000e-01	0.04	0.120025	0.10
7	1.300000e+00	-3.000000e-01	0.04	0.120025	0.10
8	1.200000e+00	-2.000000e-01	0.04	0.120025	0.10
9	1.100000e+00	-1.000000e-01	0.04	0.120025	0.10
10	1.000000e+00	-2.220446e-16	0.04	0.120025	0.10
11	9.000000e-01	1.000000e-01	0.04	0.120025	0.10
12	8.000000e-01	2.000000e-01	0.04	0.120025	0.10
13	7.000000e-01	3.000000e-01	0.04	0.120025	0.10
14	6.000000e-01 4.000000e-01		0.04	0.120025	0.10
15	5.000000e-01	5.000000e-01	0.04	0.120025	0.10
16	4.000000e-01	6.000000e-01	0.04	0.120025	0.10
17	3.000000e-01	7.000000e-01	0.04	0.120025	0.10
18	2.000000e-01	8.000000e-01	0.04	0.120025	0.10
19	1.000000e-01	9.000000e-01	0.04	0.120025	0.10
20	4.440892e-16	1.000000e+00	0.04	0.120025	0.10

```
plt.figure(figsize=(16,10))
plt.plot(tangent_p.combined_risk,tangent_p.combined_return)

plt.scatter(results_frame.combined_volatility,results_frame.combined_return,c=results_frame.weight_A,cmap='RdYlBu')

plt.colorbar()
```

<matplotlib.colorbar.Colorbar at 0x1a1ec431d0>

F171