16.317: Microprocessor Systems Design I

Summer 2013

Lecture 7: Solutions to Key Questions July 30, 2013

Assume an x86 processor is running in protected mode with the state given below (all values in hex); note that each memory location shown contains a descriptor about a particular segment:

 $\begin{array}{lll} \text{GDTR} = 00200000001\text{F} & \text{DS} = 0017 \\ \text{LDTR} = 000\text{B} & \text{SS} = 0018 \\ & \text{ESI} = 00001000 \\ & \text{EBX} = 0001120 \\ \end{array}$

Memory	Address	Memory	Address
Base = 030010F0	00200000	Base = 01000010	00200028
Limit = 020F		Limit = 1127	
Base = 00200020	00200008	Base = 03170200	00200030
Limit = 0017		Limit = 03F7	
Base = 00200038	00200010	Base = 1A000000	00200038
Limit = 0010		Limit = 01FF	
Base = 1200C000	00200018	Base = 06B01000	00200040
Limit = FFFF		Limit = 0F07	
Base = 12340000	00200020	Base = 05000120	00200048
Limit = 00FF		Limit = 000F	

a. What is the base address and limit of the global descriptor table? How many descriptors does this table contain?

Solution: The base address and limit of the GDT are stored in the GDTR—the upper 4 bytes contain the base address (00200000H); the lower 2 bytes contain the limit (001FH).

To determine the number of descriptors, recall that:

- Each descriptor uses 8 bytes
- The size of the table, in bytes, is (limit + 1) = 001FH + 1 = 0020H = 32 bytes

Therefore, this table contains 32 / 8 = 4 descriptors

M. Geiger Lecture 7: Key Questions

b. What is the base address and limit of the current local descriptor table? How many descriptors does this table contain?

Solution: The base address and limit of the current LDT are stored in the LDT cache, which must be loaded from the appropriate descriptor in the GDT. The LDTR is a selector that points to the correct descriptor. Recall that, in a selector:

- The lowest 2 bits give the requested priority level
- The next bit (table indicator) indicates either global (0) or local (1) memory access
- The upper 13 bits index into the appropriate descriptor table to choose a descriptor.

 $LDTR = 000BH = 0000 0000 0000 1011_2$

- \rightarrow Priority = 11₂, table indicator = 0, index = 0000 0000 0000 1₂ = 1
- → GDT descriptor 1 (the second descriptor in the GDT) describes current LDT

Therefore, the *LDT base address* = 00200020H, its *limit* = 0017H, and the number of descriptors = (0017H+1) / 8 = 0018H / 8 = 24 / 8 = 3 descriptors.

c. What are the starting and ending addresses for the current data and stack segments?

Solution: In protected mode, the segment registers are selectors pointing either to the GDT or current LDT, as shown in (b). Therefore, the starting (base) and ending (base + limit) addresses for each segment can be determined after finding the right descriptor.

```
DS = 0017H = 0000\ 0000\ 0001\ 0111_2
```

- \rightarrow Priority = 11₂, table indicator = 1, index = 0000 0000 0001 0 = 2
- → Descriptor #2 (3rd descriptor) in LDT describes data segment
- \rightarrow DS base address = 03170200H, ending address = 03170200 + 03F7 = 031705F7H

```
SS = 0018H = 0000\ 0000\ 0001\ 1000_2
```

- → Priority = 00_2 , table indicator = 0, index = $0000\ 0000\ 0001\ 1 = 3$
- → Descriptor #3 (4th descriptor) in GDT describes stack segment
- \rightarrow SS base address = 1200C000H, ending address = 1200C000 + FFFF = 1201BFFFH

M. Geiger

Lecture 7: Key Questions

d. What address is accessed by each of the following instructions?

Recall that protected mode addresses are calculated by adding the base address of the requested segment to the effective address calculated from the instruction. Part (c) of this problem helped you determine the starting address of each segment used.

i. MOV AX, [0100H]

Solution: Address = DS:0100H = 03170200H + 0100H = **03170300H**

ii. ADD DX, [SI]

Solution: Address = DS:SI = DS:1000H = 03170200H + 1000H = **03171200H**

iii. MOV AX, SS:[SI+EF00]

Solution: Address = SS:SI+EF00 = SS:1000H+EF00H

= 1200C000H + 1000H + EF00H = 1201BF00H

iv. SUB SS:[A200], CX

Solution: Address = SS:A200 = 1200C000H + A200H = **12016200H**

v. MOV DX, [BX+SI]

Solution: Address = DS:BX+SI = DS:1120H+1000H

= 03170200H + 1120H + 1000H = 03172320H

vi. MOV CX, [BX+SI+1EH]

Solution: Address = DS:BX+SI+1EH = DS:1120H+1000H +1EH

= 03170200H + 1120H + 1000H + 1EH = 0317233EH