

System Nawadniania Arduino

Opracowane przez Danmar Computers

A Trainers Toolkit To Foster STEM Skills Using Microcontroller Applications

System Nawadniania Arduino

Cel Opis Cele kształcenia Metodologia nauczania Grupa docelowa Schemat nauczania Rozwiązanie Objęte obszary naukowe Ocena Bibliografia

Cel

Użyj systemu nawadniania roślin Arduino, aby wyjaśnić i pomóc uczniom zautomatyzować najbardziej istotny proces w przyrodzie.

Project No. 2019-1-RO01-KA202-063965

Opis

 Rośliny potrzebują wody do przeprowadzenia procesu fotolisy, w którym woda jest rozszczepiana przy użyciu energii świetlnej. Fotoliza jest jednym z etapów fotosyntezy, w którym roślina uzyskuje energię.

Źródło: Freepik

- System nawadniania roślin Arduino składa się z mikrokontrolera, przekaźnika, czujnika wilgotności, pompy i źródła zasilania.
- Z tych komponentów można łatwo zbudować system nawadniający zasilany przez Arduino. W połączeniu z czujnikiem, dozownik reaguje na suchą glebę i dostarcza życiodajną wodę do roślin.
- W ten prosty sposób uczniowie dowiedzą się, jak mikrokontrolery mogą być wykorzystywane w codziennym życiu. Kiedy wyjadą na wakacje lub obóz naukowy, nie będą musieli się martwić, że zostawią za sobą rośliny.

Źródło: Unsplash

Microcontroller Applications

A Trainers Toolkit To Foster STEM Skills Using

<u>Źródło: Freepik</u>

Cele kształcenia

- Uczeń rozumie podstawowe zasady elektroniki i biologii.
- Uczniowie rozumieją rolę wody we wzroście roślin
- Uczniowie rozumieją w jaki sposób elektronika może zautomatyzować codzienne czynności

Źródło: Freepik

Metodologia nauczania

- Uczniowie odkrywają, w jaki sposób rośliny reagują na deficyt, nadmiar lub optymalną ilość dostarczanej wody.
- Nauczyciel przydziela grupy do opieki nad kilkoma roślinami. Dla porównania, jedna z roślin jest pielęgnowana przez automatyczny system nawadniania.
- Na koniec projektu uczniowie wyciągają wnioski, która forma bardziej im odpowiada i która roślina osiągnęła najlepszy wzrost.

Source: Freepik

Grupa docelowa

Uczniowie szkół podstawowych i średnich

Project No. 2019-1-RO01-KA202-063965

Schemat nauczania

<u> Źródło: Instructables - Arduino Plant Watering System</u>

- Poznaj strukturę i wymagania rośliny.
- Znajdź optymalne nasłonecznienie.
- Zainstaluj automatyczny system nawadniania

Źródło: lastminuteengineers

Rozwiązanie

Wilgotność gleby jest mierzona za pomocą prądu elektrycznego przepływającego od jednej sondy do drugiej.

Mierzona jest rezystancja gleby, którą system przelicza na wilgotność gleby.

Im bardziej wilgotna gleba, tym lepiej przepływa prąd elektryczny i tym mniejszy jest opór.

Jednakże, gdy gleba jest sucha, przewodność maleje. Gleba potrzebuje nawadniania!

Interpreter wysyła sygnał do pompy, która wtłacza wodę.

Rozwiązanie

Do przygotowania potrzebne są następujące komponenty:

- ARDUINO UNO
- Przekaźnik
- Czujnik wilgotności gleby .

- Przewody łączące
- Źródło zasilania 12V

Źródło: Store.arduino.cc

Rozwiązanie

< Schemat połączeń wszystkich elementów obwodu.

Oprogramowanie do sterowania układem można łatwo napisać samemu, czytając instrukcję, lub poszukać gotowego projektu w Internecie.

Źródło: Github

Objęte obszary naukowe

Biologia / Nauka

Project No. 2019-1-RO01-KA202-063965

Ocena

- Ocena powinna być osiągnięta poprzez długotrwałe zaangażowanie uczniów.
- W trakcie dyskusji uczniowie mogą być informowani o podstawowych zagadnieniach.
- Uczeń powinien być w stanie zidentyfikować podstawowe zależności.

Źródło: Freepik

Bibliografia

- 1. How to Make a Watering System, https://lastminuteengineers.com/soil-moisture-sensor-arduino-tutorial/
- 2. Arduino Watering system, https://github.com/wojtii/arduino/blob/master/plant-watering-system/contribution
- 3. Tutorial on building Arduino Watering system https://www.youtube.com/watch?v=Y73twlAdcLs
- 4. The importance of water for plants https://www.preservearticles.com/chemistry/importance-of-water-for-plants/652
- 5. Elecrow Smart Plant Watering System Using Arduino Uno Review and Tutorial https://laptrinhx.com/elecrow-smart-plant-watering-system-using-arduino-uno-review-and-tutorial-852910531/
- 6. Automated Plant Watering System https://duino4projects.com/automated-plant-watering-system/
- 7. Arduino Plant Watering System , https://www.youtube.com/watch?v=JdvnfENodak

