lycee.hachette-education.com/pc/tle

L'expression simplifiée du produit ionique de l'eau est :

 $K_e = [H_3O^+]_{\acute{e}q} \times [HO^-]_{\acute{e}q}$ où la concentration standard c° n'est pas écrite. Les concentrations sont en mol·L-1 et K, n'a pas d'unité. Cette écriture simplifiée sera souvent utilisée dans les exercices.

Produit ionique de l'eau à différentes températures

Température (°C)	K _e
0	1,1×10 ⁻¹⁵
25	1,0×10 ⁻¹⁴
37	2,4×10 ⁻¹⁴
40	3,0×10 ⁻¹⁴
60	9,6×10 ⁻¹⁴

pH du sang

> Le pH du sang est compris entre 7,35 et 7,45. Or, à 37 °C, pK_e = 13,7 donc pH_{neutre} = 6,85; le sang est une solution aqueuse légèrement basique.

Solutions d'acide et de base faibles

	рН	τ
Acide méthanoïque HCO ₂ H (aq)	2,9	0,13
Ammoniac NH ₃ (aq)	10,6	0,04

> Valeurs de pH et de τ à 25 °C pour des solutions de même concentration en solutés apportés $C = 1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$.

La réaction d'un acide ou d'une base avec l'eau

a. Produit ionique de l'eau, K_{a}

• L'eau appartient à deux couples acide-base : $H_3O^+(aq) / H_2O(\ell)$ et $H_2O(\ell)$ / $HO^-(aq)$ (chapitre 1), il peut donc se produire une réaction entre l'acide $H_2O(\ell)$ et la base $H_2O(\ell)$, nommée autoprotolyse de l'eau.

Soit les réactions opposées d'équation :

$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$$

La constante d'équilibre associée à cette équation, nommée produit ionique de l'eau Ke, est :

$$K_e = \frac{[H_3O^+]_{\acute{e}q}}{c^\circ} \times \frac{[HO^-]_{\acute{e}q}}{c^\circ}$$
 où $c^\circ = 1 \text{ mol} \cdot L^{-1}$.

Ke ne dépend que de la température (doc. A).

On définit aussi le pK_e:

$$pK_e = -log K_e$$
 soit $K_e = 10^{-pK_e}$
à 25 °C $pK_e = 14$ et $K_e = 1.0 \times 10^{-14}$

- L'autoprotolyse de l'eau a lieu dans toutes les solutions aqueuses. Ainsi, toute solution aqueuse contient des ions H₃O⁺(aq) et HO⁻(aq).
- Dans l'eau « pure » et dans toute solution neutre, [H₃O⁺]_{éq} = [HO⁻]_{éq} donc $K_e = [H_3O^+]_{\text{éq}}^2$, d'où p $H_{\text{neutre}} = \frac{1}{2} pK_e$ (doc. B):

$$[H_3O^+]_{\acute{e}q} > [HO^-]_{\acute{e}q} \qquad [H_3O^+]_{\acute{e}q} = [HO^-]_{\acute{e}q} \qquad [H_3O^+]_{\acute{e}q} < [HO^-]_{\acute{e}q} \qquad pH$$

$$1/2 \ pK_e \qquad pK_e$$
Solution acide Solution neutre Solution basique

Ainsi pH = $7.0 \text{ à } 25 ^{\circ}\text{C}$.

b. Acides et bases faibles

Acide faible

La transformation modélisée par la réaction entre l'acide et l'eau n'est pas totale : $\tau < 1$ (doc. \square).

$$AH(aq) + H_2O(\ell)$$

$$AH(aq) + H_3O^+(aq)$$

Donc $[H_3O^+]_f < C$ où C est la concentration en acide apporté.

Base faible

La transformation modélisée par la réaction entre la base et l'eau n'est pas totale : $\tau < 1$ (doc. \square). $A^-(aq) + H_2O(\ell)$ \rightleftharpoons AH(aq) + HO⁻(aq)

Donc $[HO^-]_{\epsilon} < C$ où C est la concentration en base apportée.

Exemples

Un acide faible : l'acide méthanoïque

Une solution aqueuse d'acide méthanoïque HCO_2H (aq) de volume V=100,0 mL et de concentration $C = 1.0 \times 10^{-2}$ mol·L⁻¹ en soluté apporté a un pH égal à 2,9.

Équation	HCO ₂ H(aq) +	$H_2O(\ell)$	\rightleftharpoons HCO ₂ (aq) +	$H_3O^+(aq)$
État initial $(x = 0 \text{ mol})$	$n_i = C \times V$	Solvant	0	0
État final (x_f)	$n_i - x_f$	Solvant	Xq	$\chi_{\rm f}$

 $\begin{aligned} x_f &= n_f(H_3O^+) = [H_3O^+]_f \times V = 10^{-pH} \times V = 10^{-2.9} \times 100, 0 \times 10^{-3} = 1,3 \times 10^{-4} \, \text{mol.} \\ x_{max} &= C \times V = 1,0 \times 10^{-2} \times 100, 0 \times 10^{-3} = 1,0 \times 10^{-3} \, \text{mol.} \\ x_f &< x_{max} \, \text{donc la transformation n'est pas totale et } \tau = \frac{x_f}{x_{max}} = \frac{1,3 \times 10^{-4}}{1,0 \times 10^{-3}} = 0,13. \end{aligned}$ Les réactifs et les produits coexistent dans l'état final d'équilibre :

État final (x_i) $8.7 \times 10^{-4} \text{ mol}$ Solvant 1.3 × 10⁻⁴ mol 1.3 × 10⁻⁴ mol

RAPPEL DU CHAPITRE 7

Dans le cas d'une transformation non totale, à l'état final, les quantités des espèces ne varient plus : tous les réactifs et tous les produits coexistent. L'état final est appelé état d'équilibre chimique.

Solutions d'acides et de bases fortes

	рН	τ
Acide chlorhydrique $H_3O^+(aq) + C\ell^-(aq)$	2,0	1,00
Ion éthanolate C₂H₅O⁻(aq)	12,0	1,00

> Valeurs de pH et de τ à 25 °C pour des solutions de même concentration en solutés apportés $C = 1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$.

Démonstration

Pour une solution de concentration apportée en base forte C, on a : $[HO^{-}] = C.$

Or
$$K_e = [H_3O^+] \times [HO^-]$$
;

donc
$$[H_3O^+] = \frac{K_e}{[HO^-]} = \frac{K_e}{C}$$
;

soit pH =
$$-\log \frac{K_e}{C} = -\log K_e + \log C$$

d'où $pH = pK_a + \log C$.

Une base faible: l'ammoniac

Une solution aqueuse d'ammoniac de volume V = 100,0 mL et de concentration $C = 1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ en soluté apporté a un pH égal à 10,6.

Équation	NH ₃ (aq) +	$H_2O(\ell)$	\rightleftharpoons NH ₄ ⁺ (aq)	+	HO ⁻ (aq)
État initial $(x = 0 \text{ mol})$	$n_i = C \times V$	Solvant	0		0
État final (x _f)	$n_i - x_f$	Solvant	$\chi_{\rm f}$		X_{f}

$$x_f = n_f(HO^-) = [HO^-]_f \times V = \frac{K_e}{[H_3O^+]_f} \times V = 10^{pH-pK_e} \times V.$$

$$x_f = 10^{-3,4} \times 100,0 \times 10^{-3} = 4,0 \times 10^{-5}$$
 mol.

$$x_{\text{max}} = C \times V = 1.0 \times 10^{-2} \times 100.0 \times 10^{-3} = 1.0 \times 10^{-3} \text{ mol.}$$

$$\begin{split} x_f &= 10^{-3,4} \times 100,0 \times 10^{-3} = 4,0 \times 10^{-5} \text{ mol.} \\ x_{\text{max}} &= C \times V = 1,0 \times 10^{-2} \times 100,0 \times 10^{-3} = 1,0 \times 10^{-3} \text{ mol.} \\ x_f &< x_{\text{max}} \text{ donc la transformation n'est pas totale et } \tau = \frac{x_f}{x_{\text{max}}} = \frac{4,0 \times 10^{-5}}{1,0 \times 10^{-3}} = 0,040. \end{split}$$

État final (x_f)	9,6 × 10 ⁻⁴ mol	Solvant	$4.0 \times 10^{-5} \text{ mol}$	4,0×10 ⁻⁵ mol
--------------------	----------------------------	---------	----------------------------------	--------------------------

Cas limite des acides et des bases fortes

Acide fort

La transformation modélisée par la réaction entre l'acide et l'eau est totale: $\tau = 1$ (doc. \square).

$$AH(aq) + H_2O(\ell)$$

$$\rightarrow A^-(aq) + H_3O^+(aq)$$

Donc $[H_3O^+]_f = C$ où C est la concentration en acide apporté et pH = -log C.

Base forte

La transformation modélisée par la réaction entre la base et l'eau est totale: $\tau = 1$ (doc. \square).

$$A^{-}(aq) + H_2O(\ell)$$

 $\rightarrow AH(aq) + HO^{-}(aq)$

Donc $[HO^-]_f = C$ où C est la concentration en base apportée et $pH = pK_p + \log C$ (Démonstration)

Exemples

• Équation de réaction d'un acide fort avec l'eau :

$$HC\ell(g) + H_2O(\ell) \rightarrow H_3O^+(aq) + C\ell^-(aq)$$

• Équation de réaction d'une base forte avec l'eau :

$$C_2H_5O^-(aq) + H_2O(\ell) \rightarrow C_2H_5OH(aq) + HO^-(aq)$$

2 La constante d'acidité d'un couple acide-base

a. Constante d'acidité K_{Δ} et p K_{Δ}

La constante d'acidité K_A d'un couple acide-base $AH(aq) / A^-(aq)$ est la constante d'équilibre associée à l'équation :

$$AH(aq) + H_2O(\ell) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

$$K_{A} = \frac{\frac{[A^{-}]_{\acute{e}q}}{c^{\circ}} \times \frac{[H_{3}O^{+}]_{\acute{e}q}}{c^{\circ}}}{\frac{[AH]_{\acute{e}q}}{c^{\circ}}} \text{ où } c^{\circ} = 1 \text{ mol} \cdot L^{-1}.$$

On definit aussi: $pK_A = -\log K_A$ soit $K_A = 10^{-pK_A}$

L'expression simplifiée de la constante d'acidité est : $K_A = \frac{[A^-]_{\acute{eq}} \times [H_3 O^+]_{\acute{eq}}}{[AH]_{\acute{eq}}}$

Les concentrations sont en mol· L^{-1} et K_A n'a pas d'unité. Cette écriture simplifiée sera souvent utilisée dans les exercices.

Exemple:
$$HCO_2H(aq) + H_2O(\ell) \rightleftharpoons HCO_2^-(aq) + H_3O^+(aq)$$

 $K_A = \frac{[HCO_2^-]_{\acute{e}q} \times [H_3O^+]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}} = 1,6 \times 10^{-4} \text{ soit p } K_A = 3,8 \text{ à } 25 \text{ °C}.$

PK_A à 25 °C de quelques couples acide-base PK_A Force croissante de la base H₂0-14,0-H0 CH₃NH⁺₃-10,7-CH₃NH₂ NH⁺₄-9,2-NH₃ HCℓ0-7,5-Cℓ0 Bases CH₃CO₂H-4,8-CH₃CO₂ HCO₂H-3,8-HCO₂ +NH₃CH₂CO₂H-2,4-+NH₃CH₂CO₂ H₃0+-0,0-H₂0 Force croissante de l'acide

lycee.hachette-education.com/pc/tle

Diagramme de distribution du couple $NH_4^+(aq) / NH_3(aq)$ (%) NH4 (%) NH3 100 90 80 70 60 50 40 30 20 pH 8 9,210 À l'intersection des deux courbes, $pH = pK_A = 9,2.$

b. Forces comparées des acides et des bases dans l'eau

L'acide le plus fort dans l'eau est l'ion $H_3O^+(aq)$. La base la plus forte dans l'eau est l'ion $HO^-(aq)$. Les pK_A des couples acide-base sont compris entre ceux des deux couples de l'eau (doc. \blacksquare).

- Un acide AH (aq) est d'autant plus fort dans l'eau que le pK_A du couple auquel il appartient est petit.
- Une base A^- (aq) est d'autant plus forte dans l'eau que le pK_A du couple auquel elle appartient est grand.

Exemples

 $pK_A(HCO_2H(aq)/HCO_2^-(aq)) < pK_A(CH_3CO_2H(aq)/CH_3CO_2^-(aq)),$ donc l'acide méthanoïque $HCO_2H(aq)$ est plus fort que l'acide éthanoïque $CH_3CO_2H(aq)$.

L'ion éthanolate $CH_3CO_2^-$ (aq) est une base plus forte que l'ion méthanolate HCO_2^- (aq).

c. Espèce prédominante d'un couple

Pour tout couple acide-base AH(aq) / A⁻(aq), on peut écrire :

$$\begin{aligned} pK_A &= -log\,K_A = -log\left(\frac{\left[A^-\right]_{\acute{e}q} \times \left[H_3O^+\right]_{\acute{e}q}}{\left[AH\right]_{\acute{e}q}}\right) = -log\left(\frac{\left[A^-\right]_{\acute{e}q}}{\left[AH\right]_{\acute{e}q}}\right) \underbrace{-log\left[H_3O^+\right]_{\acute{e}q}}_{+pH} \\ Donc: \qquad pH &= pK_A + log\left(\frac{\left[A^-\right]_{\acute{e}q}}{\left[AH\right]_{\acute{e}q}}\right) \end{aligned}$$

 Le diagramme de distribution représente les pourcentages des espèces acide et basique d'un même couple dans une solution en fonction du pH de la solution.

Exemple

Diagramme de distribution du couple NH₄ (aq) / NH₃ (aq) : (doc. **E**)

• Le diagramme de prédominance d'un couple AH (aq) / A⁻ (aq) représente les domaines de prédominance de l'espèce acide et de l'espèce basique conjuguée en fonction du pH de la solution.

$$[AH]_{\acute{eq}} > [A^{-}]_{\acute{eq}} \qquad [AH]_{\acute{eq}} = [A^{-}]_{\acute{eq}} \qquad [AH]_{\acute{eq}} < [A^{-}]_{\acute{eq}} \qquad pH$$

$$0 \qquad AH \ pr\acute{e}domine \qquad DK_A \qquad A^{-} \ pr\acute{e}domine \qquad 14$$

Indicateur coloré et équivalence d'un titrage acido-basique

Un indicateur coloré acido-basique est un couple acide-base, noté IndH / Ind⁻, dont les espèces conjuguées n'ont pas la même teinte.

Titrage acido-basique avec un indicateur coloré ApH Zone de virage Teinte basique PHE NE VE Vittrant(mL) Le BBT est un indicateur coloré adapté pour ce titrage, car le pH à l'équivalence pHE appartient à la zone de virage de l'indicateur [6,0 – 7,6].

pK_A de quelques acides α-aminés

Acide α-aminé	pK _{A1} cation/ amphion	pK _{A2} amphion/ anion
Glycine	2,4	9,8
Alanine	2,4	9,9
Valine	2,3	9,4

J Diagramme de prédominance de la glycine

Après l'ajout de quelques gouttes d'un indicateur coloré dans une solution initialement incolore, celle-ci peut prendre différentes teintes selon son pH:

* La teinte sensible est un mélange des teintes des formes acide et basique du couple IndH / Ind-.

La zone de virage est le domaine de pH pour lequel la solution prend la teinte sensible de l'indicateur coloré.

I Exemple: La zone de virage du BBT est le domaine de pH [6,0-7,6] (doc. G).

Un **indicateur coloré acido-basique** est adapté à un titrage si la zone de virage de l'indicateur coloré contient le pH à l'équivalence pH_E du titrage.

L'utilisation d'un indicateur coloré permet de répérer visuellement l'équivalence d'un titrage acido-basique grâce au changement de teinte de la solution (graphique 11).

d. Solution tampon et contrôle du pH

Une **solution tampon** est une solution dont le pH varie peu par dilution ou par ajout de petites quantités de solutions acides ou basiques.

Exemple: De nombreux processus biologiques ne peuvent se produire que dans des milieux de pH bien déterminé. Ainsi, le pH du sang doit rester compris entre 7,35 et 7,45. Le couple CO₂, H₂O (aq) / HCO₃(aq), appelé « tampon bicarbonate » contribue à cette régulation.

e. Cas des acides α-aminés

• Un acide α -aminé est une molécule qui contient un groupe carboxyle $-CO_2H$ et un groupe amine $-NH_2$ portés par le même atome de carbone. La formule générale d'un acide α -aminé (R est un groupe d'atomes) est :

• En solution aqueuse, un acide α-aminé existe essentiellement sous la forme d'un amphion (ou zwitterion), qui résulte d'un transfert interne de l'ion hydrogène H⁺ du groupe carboxyle vers le groupe amine. La formule générale de l'amphion correspondant est :

L'amphion est une espèce amphotère. Il peut se comporter comme :

- l'acide du couple amphion / anion, capable de céder un ion hydrogène H+:

 H_3N^+ -CHR-CO $_2^-$ (aq) \rightleftharpoons H_2N -CHR-CO $_2^-$ (aq) + H^+

- la base du couple cation / amphion, capable de capter un ion hydrogène H⁺: $H_3N^+-CHR-CO_2H(aq) \rightleftharpoons H_3N^+-CHR-CO_7(aq) + H^+$
- Un acide α -aminé est caractérisé par deux p K_A (doc. \blacksquare). Le diagramme de prédominance d'un acide α -aminé présente trois domaines de prédominance.

Exemple: Le diagramme de prédominance de la glycine $H_2N-CH_2-CO_2H$, montre la présence prédominante de l'amphion $H_3N^+-CH_2-CO_2^-$ entre p K_{A1} et p K_{A2} (doc. 1).

L'essentiel

lycee.hachette-education.com/pc/tle

- VIDÉOS DE COURS
 - Les acides et les bases • Diagramme de prédominance
- OCM. Version interactive
- La réaction d'un acide ou d'une base avec l'eau

Produit ionique de l'eau K.

Réaction d'autoprotolyse de l'eau
$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$$

À 25 °C,
$$K_e = 10^{-14,0}$$
.
À 25 °C, $pK_e = 14,0$.

$$[H_3O^+]_{\acute{e}q} > [HO^-]_{\acute{e}q}$$
 $[H_3O^+]_{\acute{e}q} = [HO^-]_{\acute{e}q}$ $[H_3O^+]_{\acute{e}q} < [HO^-]_{\acute{e}q}$

Solution acide

Solution neutre

Solution basique

Acide faible

AH(aq) +
$$H_2O(\ell) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

Transformation non totale: $\tau < 1$.

Acide fort

 $AH(aq) + H_2O(\ell) \rightarrow A^-(aq) + H_3O^+(aq)$

Transformation totale: $\tau = 1$.

Base faible

 $A^{-}(aq) + H_2O(\ell) \rightleftharpoons AH(aq) + HO^{-}(aq)$ Transformation non totale: $\tau < 1$.

Base forte

 $A^{-}(aq) + H_2O(\ell) \rightarrow AH(aq) + HO^{-}(aq)$ Transformation totale: $\tau = 1$.

La constante d'acidité d'un couple acide-base

Constante d'acidité KA

$$K_{A} = \frac{AH(aq) + H_{2}O(\ell) \rightleftharpoons A^{-}(aq) + H_{3}O^{+}(aq)}{[AH]_{\acute{e}q}} \text{ et } pK_{A} = -\log K_{A} \Leftrightarrow K_{A} = 10^{-pK_{A}}$$

Force d'un acide et d'une base

Diagrammes de distribution et de prédominance

- Diagramme de distribution : il représente les pourcentages des espèces acide et basique d'un même couple dans une solution en fonction du pH de la solution.
- Diagramme de prédominance :

Solution tampon

Une solution tampon est une solution dont le pH varie peu par dilution ou par ajout de petites quantités d'acide ou de base.

Indicateur coloré acido-basique

- Un indicateur coloré est un couple acidebase dont les espèces conjuguées n'ont pas la même teinte.
- Un indicateur coloré est adapté à un titrage si sa zone de virage contient le pH à l'équivalence pH_E.