SUPPORT VECTOR MACHINES

Dr. Brian Mc Ginley

SVM - TWO KEY IDEAS

- Assuming linearly separable classes, learn separating hyperplane with maximum margin (SVC)
- But what if data is not linearly separable

SVM - TWO KEY IDEAS

- Assuming linearly separable classes, learn separating hyperplane with maximum margin (SVC)
- Expand input into high-dimensional space to deal with linearly non-separable cases

SUPPORT VECTOR CLASSIFIER: HARD MARGIN

 Finally, formulate our optimization problem: Find a decision boundary that maximises the distance to both classes – i.e. maximises the margin, M, while maintaining zero misclassifications

$$\begin{cases} \max_{w} \frac{2}{\|w\|} \\ such that y^{(i)} (w^{T} x^{(i)} + w_0) \ge 1, \end{cases} \forall i$$

• Maximising $\frac{2}{\|w\|}$ is the same as minimizing $\|w\|$. However L2 optimisations are more stable. Therefore:

$$\begin{cases} \min_{w} ||w||^2 \\ such that y^{(i)} (w^T x^{(i)} + w_0) \ge 1, \end{cases} \forall i$$

- This is a quadratic optimisation problem, has linear constraints and there is a unique solution.
- Calculus again! (Lagrange multipliers if you want to look up the maths)

SOFT MARGIN SOLUTION

• To relax the constraints, our problem is re framed as

$$\begin{cases} \min_{w} ||w||^{2} + C \sum_{i=1}^{N} \xi_{i} \\ such that \ y^{(i)} (w^{T} x^{(i)} + w_{0}) \ge 1 - \xi_{i} \ and \ \xi_{i} \ge 0, \end{cases} \quad \forall i$$

- C is a regularisation parameter: (some notes will use λ instead of C, sklearn uses C)
 - Small C allows constraints to be easily ignored → large margin
 - Large C makes constraints hard to ignore → narrow margin
 - $C \rightarrow \infty$ enforces all constraints: hard margin
- This is still a quadratic optimization problem and there is a unique minimum. Note: there is only one parameter, C (that you choose/cross-validation).
- In general, the best C parameter depends on the situation. Experiment (Cross-Validation). One note: larger C takes more computation to train.

SLACK VARIABLES

- We can add a variable $\xi_i \ge 0$ (must be bigger than 0) for each point/sample.
 - For $0 < \xi \le 1$ point is between margin and correct side of hyperplane. This is called a margin violation
 - For $\xi \ge 1$ point is misclassified
 - For $\xi = 0$ point is the correct side of the margin.

SLACK VARIABLES

- We can add a variable $\xi_i \ge 0$ (must be bigger than 0) for each point/sample.
 - For $0 < \xi \le 1$ point is between margin and correct side of hyperplane. This is called a margin violation
 - For $\xi \ge 1$ point is misclassified
 - For $\xi = 0$ point is the correct side of the margin.

HINGE LOSS

• The hinge loss function for a single data point is defined as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}f(x^{(i)}))$$

• And in the case of SVM as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}(w^T x^{(i)} + b))$$

HINGE LOSS

• The hinge loss function for a single data point is defined as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}f(x^{(i)}))$$

• And in the case of SVM as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}(w^T x^{(i)} + b))$$

$y^{(i)}$	$\left(w^T x^{(i)} + b\right)$	$1 - y^{(i)} \left(w^T x^{(i)} + b \right)$	$\max(0, 1 - y^{(i)}(w^T x^{(i)} + b))$
1	1	0	0
1	2	-1	0
-1	-0.5	0.5	0.5
-1	4	5	5

HINGE LOSS

• The hinge loss function for a single data point is defined as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}f(x^{(i)}))$$

• And in the case of SVM as:

$$L(y^{(i)}, f(x^{(i)})) = \max(0, 1 - y^{(i)}(w^T x^{(i)} + b))$$

• Rewriting the above:

$$\xi_i \ge 1 - y^{(i)} (w^T x^{(i)} + b) \text{ and } \xi_i \ge 0$$

$$y^{(i)}(w^Tx^{(i)} + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0$$

PRIMAL FORM

• Here's the classifier:

$$f(x) = w^T x + b$$

• Here's the optimisation problem:

$$\begin{cases} \min_{w} ||w||^{2} + C \sum_{i=1}^{N} \xi_{i} \\ such that \ y^{(i)} (w^{T} x^{(i)} + w_{0}) \ge 1 - \xi_{i} \ and \ \xi_{i} \ge 0, \end{cases} \quad \forall i$$

However, it can be written another way (it has loads of ways of being written). This
next way should be the "most" useful way.

DUAL FORM

• If you formulate the linear classifier instead as (instead of $^{(i)}$, I am going to write it as a subscript α_i for a particular sample):

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i (x_i^T x) + b$$

Remember (Primal) $f(x) = w^T x + b$

• we now solve an optimisation problem over α_i . i.e.

$$max_w W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

Subject to $0 \le \alpha_i \le C$ for all i and $\sum_i \alpha_i y_i = 0$

DUAL FORM

- To classify a new point/sample:
 - Primal version of classifier:

$$f(x) = w^T x + b$$

Dual version of classifier

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i (x_i^T x) + b$$

and take the sign as before as the classification output.

DUAL FORM

- To classify a new point/sample:
 - Primal version of classifier:

$$f(x) = w^T x + b$$

Dual version of classifier

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i (x_i^T x) + b$$

- and take the sign as before as the classification output.
- The dual form appears to have the disadvantage of a kNN classifier it requires the training data points x_i . However, many of the α_i 's are zero. The ones that are non-zero define the support vectors x_i . You could write it as

$$f(x) = \sum_{x_i \text{ is a support vector}} \alpha_i y_i(x_i^T x) + b$$

then we classify a point by finding the sign of the above.

NON LINEARLY SEPARABLE DATA

• How do we deal with this?

NON LINEARLY SEPARABLE DATA

• It is not possible to find a hyperplane or a linear decision boundary for some classification problems. If we project the data into a higher dimension from the original space, we may get a hyperplane in the projected dimension that helps to classify the data.

A SOLUTION - MAP TO HIGHER DIMENSION

Data is linearly separable in 3D

$$\Phi(x) = \begin{pmatrix} x_1 \\ \chi_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ \chi_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad R^2 \to R^3$$

The problem can still be solved by a linear classifier

A SOLUTION - MAP TO HIGHER DIMENSION

- Data is linearly separable in 2D
- The problem can still be solved by a linear classifier

$$\Phi(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad R^2 \to R^3$$

SVM IN A TRANSFORMED FEATURE SPACE

• Task: Learn linear classifier **w** for R^D:

$$f(x) = w^T \Phi(x) + b$$

• Where $\Phi(x)$ is a feature map

EXAMPLE: THE XOR PROBLEM

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

SVM NON-LINEAR DECISION BOUNDARIES

- The idea: instead of tweaking the definition of SVC to accommodate non-linear decision boundaries, we map the data into a feature space in which the classes are linearly separable (or nearly separable):
 - Transform $x \rightarrow \varphi(x)$
 - The linear algorithm depends only on x^Tx_i , hence transformed algorithm depends only on $\phi(x)^T \phi(x_i)$
 - Use kernel function $K(x, x_i)$ such that $K(x, x_i) = \phi(x)^T \phi(x_i)$

COMPLEXITY

- After projecting the data into a higher dimension, we could find the hyperplane which classifies the data.
- Usually, the computational cost will increase, if the dimension of the data increases.
- Kernel helps to find a hyperplane in the higher dimensional space without increasing the computational cost much.

$$\Phi(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad R^2 \to R^3$$

- Φ is a function that transforms x from 2D to 3D.
- We can now have a decision boundary in this 3D space:

$$w_0 + w_1 x_1^2 + w_2 x_2^2 + w_3 \sqrt{2} x_1 x_2 = 0$$

Project x into high dim space and calculate dot product

$$\phi(x_i).\,\phi(x_j) = (x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2})(x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2})$$

$$\phi(x_i).\phi(x_j) = x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{i2} x_{j1} x_{j2}$$

- The Kernel Trick:
 - The kernel is defined as: $K(x_i, x_j) = (x_i^T, x_j)^2$

$$(x_i^T.x_j)^2 = \{(x_{i1},x_{i2})^T.(x_{j1},x_{j2})\} = (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$(x_i^T.x_j)^2 = x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{i2} x_{j1} x_{j2}$$

KERNEL TRICK EXAMPLE

- Let's say we have two features $x_i = (x_{i1}, x_{i2})$, i.e. $\in \mathbb{R}^2$.
- Assume we have some transformation to convert to a four-dimensional feature space $(x_{i1}^2, x_{i1}x_{i2}, x_{i2}x_{i1}, x_{i2}^2)$. It requires $O(n^2)$ time to calculate n data points in the 4-dimensional space.
- If we want to calculate the dot product in the 4-dim space the standard way it's:
 - 1. Convert each point from $R^2 \rightarrow R^4$ by applying the transformation

$$\phi(x_i) = (x_{i1}^2, x_{i1}x_{i2}, x_{i2}x_{i1}, x_{i2}^2) \qquad \phi(x_j) = (x_{j1}^2, x_{j1}x_{j2}, x_{j2}x_{j1}, x_{j2}^2)$$

2. Dot product the two vectors $\phi(x_i). \phi(x_i)$

KERNEL TRICK EXAMPLE

- Example, say $x_i = (1, 2)$ and $x_j = (3, 5)$
- Transform them through ϕ to get:

$$\phi(x_i) = (1, 2, 2, 4)$$
 $\phi(x_j) = (9, 15, 15, 25)$

Get the dot product:

$$\phi(x_i).\phi(x_i) = (1, 2, 2, 4).(9, 15, 15, 25) = 169$$

• But, the kernel of our function is actually:

$$k(x_i, x_j) = (x_i^T x_j)^2$$

So, we can calculate with our example directly as:

$$k(x_i, x_j) = ((1, 2). (3, 5))^2 = (3 + 10)^2 = 169$$

• The standard method of calculating this requires O(n²) but kernel requires just O(n)

- Kernel helps to find a hyperplane in the higher dimensional space without increasing the computational cost much.
 - https://www.quora.com/What-is-the-kernel-trick/answer/Chitta-Ranjan-2 I think is a really good detailed answer about this "Kernel Trick".
- Since the feature space R^D is extremely high dimensional, computing Φ explicitly can be costly. This is because if D >> d then there are many more parameters to learn for w.
 - Instead, we note that computing Φ is unnecessary.
- Classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i (x_i^T x) + b$$

$$\to f(x) = \sum_{i=1}^{N} \alpha_i y_i (\phi(x_i)^T \phi(x)) + b$$

Optimisation:

$$max_w W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

$$\rightarrow max_w \ W(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{j=1}^N \sum_{k=1}^N \alpha_j \alpha_k y_j y_k \left(\phi(x_j)^T \phi(x_k) \right)$$

Subject to $0 \le \alpha_i \le C$ for all i and $\sum_i \alpha_i y_i = 0$

- Note that $\Phi(x)$ only appears in pairs $\Phi(x_i)^T\Phi(x_i)$. So we only need to compute these.
- Once these products are computed (dot product, scalar product), only the N dimensional vector α needs to be learnt.
- Write $\Phi(x_i)^T \Phi(x_i) = k(x_i, x_i)$. This is known as the Kernel

Classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b$$

Optimisation:

$$max_w W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \alpha_j \alpha_k y_j y_k \, k(x_j, x_k)$$

Subject to $0 \le \alpha_i \le C$ for all i and $\sum_i \alpha_i y_i = 0$

KERNEL TRICK SUMMARY

Now: $\Phi(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad R^2 \rightarrow R^3$

Can calculate

$$\phi(x)^T.\phi(z) = \dots = (x^t z)^2$$

- Classifier can be learnt and applied without explicitly computing $\Phi(x)$.
- All that is required is the kernel $k(x, z) = (x^Tz)^2$
- Complexity of learning depends on N (the size of the training set) not on D (the higher dimension). This is a lot faster.

SVM KERNELS

- Linear kernels (kernel='linear') $k(x_1, x_2) = x_1^T x_2$
- Sigmoid Kernel (kernel='sigmoid') $k(x_1, x_2) = tanh(\kappa x_1^T x_2 + \theta)$
 - κ and θ are hyperparameters.

SVM POLYNOMIAL KERNEL

- Polynomial kernels (kernel='poly') $k(x_1, x_2) = (x_1^T x_2 + c)^d$ for any d > 0
 - Contains all polynomials terms up to degree d .
 - d is a hyperparameter.
 - c is also a hyperparameter that varies the importance of the non-linear terms
- c (called coef0 in sklearn) default is 0

c Value	Expanded Polynomial Terms	
c = 0	$(x_1y_1)^2+(x_2y_2)^2+2(x_1y_1)(x_2y_2)$	
c = 1	$(x_1y_1)^2+(x_2y_2)^2+1+2(x_1y_1)(x_2y_2)+2(x_1y_1)+2(x_2y_2)$	
c = 10	$(x_1y_1)^2 + (x_2y_2)^2 + 100 + 2(x_1y_1)(x_2y_2) + 20(x_1y_1) + 20(x_2y_2)$	

- As c increases, the constant term dominates more, thereby smoothing the decision boundary.
- The linear terms $(x_1y_1 \text{ and } x_2y_2)$ grow proportionally to c, overshadowing higher-order interactions for large c.

SVM RBF KERNEL

$$f(x) = a \exp \Biggl(-rac{(x-b)^2}{2c^2} \Biggr)$$

- Gaussian kernels (kernel='rbf') $k(x_1, x_2) = exp\left(-\frac{\|x_1 x_2\|^2}{2\sigma^2}\right)$ for $\sigma > 0$.
 - Infinite dimensional feature space for Radial Basis Function kernel
 - σ is a hyperparameter.
- In sklearn, the RBF kernel is expressed in terms of γ instead of σ :

•
$$k(\mathbf{x}_1, \mathbf{x}_2) = exp(-\gamma ||x_1 - x_2||^2)$$
 where $\gamma = \frac{1}{2\sigma^2}$

• This can be expanded using Taylor series into an infinite series:

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

$$\exp\left(-\gamma \|\mathbf{x} - \mathbf{y}\|^2\right) = 1 - \gamma \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\left(\gamma \|\mathbf{x} - \mathbf{y}\|^2\right)^2}{2!} - \frac{\left(\gamma \|\mathbf{x} - \mathbf{y}\|^2\right)^3}{3!} + \cdots$$

RADIAL BASIS FUNCTION (RBF) SVM

Classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i \exp(-\gamma ||x_1 - x_2||^2) + b$$

- In sklearn we choose our γ (related to σ) and C (margin softness) when building our model. There are default values.
- Data is not linearly separable in the original feature space.

• $\sigma = 1$, large C, $\gamma = 0.5$


```
len(clf.support_vectors_)
6
clf.score(X,y)
1.0
```


- $\sigma = 1$, C = 0.1, $\gamma = 0.5$
- Number of support vectors 171

- C = 0.1, $\gamma = 3$
- The bigger γ gets, the closer towards nearest neighbour classifier the rbf kernel looks.

• C = infinity, $\gamma = 0.5$

• $C = 10, \gamma = 0.5$

- $C = 10, \gamma = 8$
- The bigger γ gets, the closer towards nearest neighbour classifier the rbf kernel looks.

KERNEL SUMMARY

Decision boundaries of rbf kernel in SVC

Classes

O

O

-1

-2

-3

KERNEL TRICK - SUMMARY

- Classifiers can be learnt for high dimensional features spaces, without actually having to map the points into the high dimensional space
- Data may be linearly separable in the high dimensional space, but not linearly separable in the original feature space

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

SVM TIPS AND TRICKS

- SVMs are not scale invariant
- Check if your library normalizes by default
- Normalize your data
 - mean: 0, stddev: 1
 - map to [0,1] or [-1,1]
 - StandardScaler, MinMaxScaler
- Normalize test set in same way

PARAMETER TUNING

- Given a classification task
 - Which kernel?
 - Which kernel parameter values (γ)?
 - Which value for C?
- GridSearchCV can be used for trying the different combinations
- By default, GridSearchCV does a 5-Fold Cross Validation test

