

Designing Smarter, Safer Cars with Embedded Vision Using Synopsys EV Processor Cores

Fergus Casey, R&D Director May 23, 2018

Processor Applications in a Car

Source: http://www.chipsetc.com/com puter-chips-inside-the-car.html

Automotive Safety Integrity Level (ASIL)

Probability of Exposure

Controllability by Driver

ASIL

E0	Combination of Very low Probabilities
E1	Very Low Probability (less often than once a year for the great majority of drivers)
E2	Low Probability (a few times a year for the great majority of drivers)
E 3	Medium Probability (once a month or more often for an average driver)
E4	High Probability (almost every drive on average)

C0	Controllable in general
C1	Simply controllable (99% or more of all drivers are usually able to avoid a harm)
C2	Normally controllable (90% or more of all drivers are usually able to avoid a harm)
С3	Difficult to control or Uncontrollable (Less than 90% of all drivers are usually able or barely able to avoid a harm)

S0	No injuries
S1	Light and moderate injuries
S2	Severe and life- threatening injuries (survival possible)
S 3	Life threatening injuries (survival uncertain), fatal injuries

		C1	C2	СЗ
	E1	QM		
S1	E2			
31	E3			Α
	E4		Α	В
\$2	E1			
	E2			Α
	E3		Α	В
	E4	Α	В	O
S 3	E1			Α
	E2		Α	В
	E3	Α	В	C
	E4	В	С	D

QM

ASIL A

ASIL B

ASIL C

ASIL D

Automotive ASIL Requirements

Near Future: Driver + Semi-autonomous Capability

ASIL B/C

Driver Assist

Radar Acc ASIL C

Front View Camera **ASIL B**

Smart Rear View Camera **ASIL B**

ASIL D

Driver safety-critical

Braking (inadvertent)

ASIL D

Radar Acc ASIL D Airbag (inadvertent)

ASIL D

Front View Camera **ASIL D**

Electric Power Steering **ASIL D**

Smart Rear View Camera **ASIL D**

Design Challenges for Automotive Devices

- Auto electronics increasingly complex Vision, Radar, Lidar
- Increasing safety requirements (ASIL-B -> ASIL-D)

Trend	10 years ago	Now	+10 years
Electronics content	<20%	35%	50%
Lines of code	<10M	100M	>300M
User role in safety	Monitor	Driver Assisted	Driver Independent
Connectivity	None	Down- stream	2 way

Source: PWC 2015 auto trends, IEEE Spectrum, and Synopsys

REQUIRED: Safety Ready Vision Processor and SoC Architectures

Automotive SoCs Require ISO 26262 Functional Safety Compliance

Safety Relevant

- Goal is to minimize the susceptibility to random hardware failures by:
 - Defining the functional requirements
 - Taking necessary design measures
 - Applying rigor to the development process
 - Applying systematic analysis methods

DesignWare ARC Processor IP

Unrivaled Efficiency for Embedded Applications

EM Family

- Optimized for ultra low power IoT
- 3-stage pipeline w/ high efficiency DSP
- Power as low as 3uW/MHz
- Area as small as 0.01mm² in 28HPM

SEM Family

- Security processors for IoT and mobile
- Protection against HW, SW, and side channel attacks
- SecureShield enables Trusted Execution Environments

HS Family

- Highest performance ARC cores to date
- High speed 10- stage pipeline
- SMP Linux support
- Single, dual, quad core configurations

EV Family

- Heterogeneous multicore for vision processing
- State-of-the-art convolutional neural network (CNN)
- High productivity, standards-based tool suite

DesignWare IP Embedded Vision for Automotive

Scalable Hardware-Software Solution for High Accuracy Vision Processing

Wide Vector DSP Processing Up to 256MACs/cycle

High-performance CNN Engine

- Up to 3520 MACs/cycle
- Supports 8 or 12 bit processing

Shared Memory

 Low latency access from all EV cores

EV6x Processor for Safety

ASIL D Ready Embedded Vision Processing Architecture

EV Safety Features

- Integrated ECC memories (Address + Data) protection – ASIL-D ready
- Dedicated Safety Monitor and Watchdog timer
- Dual Core Lock Step Scalar Processor Cores
- Optional ASIL D Safety Island
 - Responsible for EV Processor "safety" bring-up
 - Boot-time LBIST & MBIST control
 - Monitors and executes Safety escalations
- State-of-the-Art Safety Bus Architecture
- MetaWare EV for Safety

Effectiveness of Diagnostics

ISO 26262 Guideline for Safety Mechanism to Detect Failures of Elements

Diagnostic Type	Effectiveness	Notes
HW Redundancy	High - 99%	5.D.2.3.6
Configuration Register Test	High - 99%	5.D.2.3.7
Parity Bit - per Word	Medium - 90%	5.D.2.5.2
EDC on Memory	High - 99%	5.D.2.4.1
Multi-bit HW redundancy	Medium - 90%	5.D.2.7.2
Timeout monitoring	Medium - 90%	5.D.2.7.8
Frame Counter	Medium - 90%	5.D.2.7.7
Information Redundancy	Medium - 90%	5.D.2.7.6, 5.D.2.7.5
Combination of Timeout monitoring, Frame Counter and information Redundancy	High - 99%	5.D.2.7.5 to 5.D.2.7.8
Self-test supported by Hardware	High - 99%	5.D.2.3.2

Source: ISO 26262-5 Annex D

ISO26262 Compliant ADAS SoC Safety Architecture

Scaling the Safety Architecture across the ADAS SoC

MetaWare EV for Safety

MetaWare EV for Safety

- All three code generator components will be safety certified according to ISO 26262-8, clause 11
 - C/C++ Compiler
 - OpenCL C compiler toolchain
 - EV CNN SDK mapping tool (code generator) part only
- Includes EV runtime software implementation based on OpenVX SC
 - Based on OpenVX 1.1 specification
 - OpenVX SC defines modifications to OpenVX targeted at safety critical systems
 - Leverages OpenVX 1.2 import/export extension to define a run-time-only "deployment feature set" exported as verified graph in binary format

Adapting SoC Design Development to ISO26262

VISION SUMMIT 2018

Synopsys ARC Processor Presence in Automotive

EV6x Customer Case Study: Automotive Radar SoCS

Advanced Driver Assistance System (ADAS) for Vision

- Product: 4D high-resolution automotive radar SoC for autonomous vehicles
- Requirements:
 - High level of processing capabilities
 - Integrated safety features to detect & prevent system failures
- Chose Synopsys due to high performance & ASIL D Ready safety features
 - ASIL D Ready EV62 Embedded Vision Processor & ARC EM6 Safety Island
 - Support lockstep operation to enable the highest automotive safety level
 - ASIL D Ready ARC MetaWare EV Development Toolkit for Safety
- Comprehensive safety documentation, including FMEDA reports, facilitate chip- & system-level ISO 26262 ASIL D & B compliance

Summary

- ADAS: Fastest growing automotive application: 25% CAGR '14-21
- Synopsys provides ISO 26262 Safety Features integrated into Automotive IP
 - Embedded Vision for Automotive Processors
 - ARC EM & HS ARC Safety Ready Processors
- Synopsys Provides Comprehensive Portfolio of Development and Verification Tools
 - Tailored for Automotive SoC Development
- Quality & Safety Culture
 - 30 years of Quality culture
 - Safety council including >20 safety managers

www.synopsys.com/designware

Resources

- Visit www.synopsys.com/EV
- Visit the Synopsys booth to check out demos:
 - Accelerating Android Neural Network Performance with DesignWare EV6x
 - Real-Time Object Classification & Tracking with DesignWare EV6x
 - AI, 3D Imaging & SLAM on-a-Single Chip for Embedded Markets (by Inuitive)
 - Face Recognition for Driver Monitoring System (by PathPartner)
- Limited space available for tomorrow's Synopsys Workshop –
 See me to sign up!

Thank You

Fergus Casey, R&D Director