Li Ding | Curriculum Vitae

77 Massachusetts Ave. – Cambridge, MA – 02139

☑ liding@mit.edu • ② www.mit.edu/~liding

Education

University of RochesterRochester, NYM.S. in Data Science, Half-Tuition ScholarshipJun. 2016 - May 2017

Central University of Finance and Economics

B.S. in Statistics, Excellent Youth 2014 - 2015 (Top 2%)

Sep. 2012 - Jun. 2016

Experiences

Massachusetts Institute of Technology

Cambridge, MA

Beijing, China

Research Engineer, Center for Transportation and Logistics

Sep. 2017 - present

- Human-centered autonomous vehicle research, supervised by Dr. Lex Fridman and Dr. Bryan Reimer.
- Working on deep learning for scene perception and vision-based control of autonomous vehicles.
- Working on video motion estimation and optical flow tracking for dynamic driving scene understanding.
- TA for MIT 6.S094: Deep Learning for Self-Driving Cars & MIT 6.S099: Artificial General Intelligence.

University of Rochester

Rochester, NY

Research Associate, Dept. of Computer Science

Jun. 2017 - Sep. 2017

- Computer vision and video understanding research, supervised by Dr. Chenliang Xu.
- Worked on deep learning for temporal modeling and human action recognition in video sequences.

VisualDX Inc. Rochester, NY

Intern, Master Degree Practicum

Mar. 2017 - May 2017

Intrusion detection: designed a real-time website monitoring system using deep learning and sequence modeling.

PricewaterhouseCoopers Information Technologies Co., Ltd.

Shanghai, China

Intern, Big Data Group

Jan. 2016 - Apr. 2016

Statistical data analysis and machine learning for insurance prediction, backend software development.

Skills

o Deep Learning: 2 years | various frameworks such as Tensorflow, PyTorch, Caffe, Keras.

o Computer Vision: 2 years | image and video processing, machine vision, using FFmpeg, OpenCV.

o **Python:** 4 years | machine learning and data processing, using Numpy, Pandas, sklearn.

o Others: Unix (Bash), Git, R, LATEX, Docker, JavaScript, ROSPy, MTurk, MySQL.

Competitions

Kaggle - Statoil/C-CORE Iceberg Classifier Challenge: Bronze Medal (Top 6%)

Jan. 2018

Kaggle - Data Science Bowl 2017 (Lung Cancer Detection): Bronze Medal (Top 6%)

May 2017

Mathematical Contest In Modeling (MCM/ICM) 2015: Meritorious Winner (Top 5%)

Apr. 2015

Publications

Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment

Li Ding & Chenliang Xu, CVPR '18

Mar. 2018

Nov. 2017

- We propose a novel action modeling framework, which consists of Temporal Convolutional Feature Pyramid Network (TCFPN), a new temporal convolutional neural network architecture, and Iterative Soft Boundary Assignment (ISBA), a novel training strategy for weakly-supervised sequence modeling.
- The proposed framework is evaluated on two benchmark datasets, extensive experimental results show that our methods achieve competitive or superior performance to state-of-the-art methods.

MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interaction with Automation

Lex Fridman et al., arXiv

- The MIT Autonomous Vehicle Technology (MIT-AVT) study seeks to collect and analyze large-scale naturalistic semi-autonomous driving data, in order to characterize the state of current technology use, and extract insight on how automation-enabled technologies impact human-machine interaction across a range of environments.
- We use both 1) AI algorithms to analyze the entirety of the driving experience in large-scale data, and 2) human expertise and qualitative analysis to dive deep into the data to gain case-specific understanding.

TricorNet: A Hybrid Temporal Convolutional and Recurrent Network for Video Action Segmentation

Li Ding & Chenliang Xu, arXiv

May 2017

- We introduce a novel hybrid temporal convolutional and recurrent network (TricorNet), which consists of a hierarchy of temporal convolutional kernels that capture the local motion changes, and a hierarchy of recurrent neural networks that are able to learn and memorize long-term action dependencies after the encoding stage.
- Experimental results on three public action segmentation datasets have shown that the proposed model achieves superior performance over the state of the art.

Services

Journal Reviewer

IEEE Transactions on Circuits and Systems for Video Technology

2018

IEEE Access

2018

Teaching Assistant

MIT 6.S094: Deep Learning for Self-Driving Cars

Jan. 2018

MIT 6.S099: Artificial General Intelligence

Feb. 2018