REPRESENTING PROCEDURAL MUSICAL STRUCTURES WITH AN ENCODED FUNCTIONAL GRAMMAR OPTIMIZED FOR METAPROGRAMMING AND MACHINE LEARNING

A Preprint

José López-Montes* University of Granada lopezmontes@correo.ugr.es

July 21, 2019

ABSTRACT

We present GenoMus, a new model for artificial musical creativity based on a procedural approach, able to represent and learn the compositional techniques behind a musical score. The aim of this model is to build a framework for automatic creativity, easily adaptable to other domains beyond music. The core of GenoMus is a functional grammar designed to cover a wide range of styles, integrating traditional and contemporary composing techniques. Musical genotypes are defined as functional trees, able to generate musical scores described as phenotypes. To enable the maximal diversity of outputs, each process uses the same generic functional structure, no matter what time scale, polyphonic structure or additional characteristics are being employed. The goal of this highly homogeneous and modular approach is to simplify metaprogramming of genotypes, as well as maximize search space. Genotypes and phenotypes are encoded as normalized numeric vectors. This abstract representation of musical knowledge as pure numeric arrays is convenient for the application of different machine learning paradigms. The user interface developed for GenoMus is oriented to the exploration of augmented creativity, regardless of user expertise. However, a composer can create and alter manually genotypes and algorithms to modify automatic results. The system allows the implementation of user-defined processes, which will expand the procedures library.

 $\textbf{\textit{Keywords:}} \quad \text{automatic musical composition} \cdot \text{metaprogramming} \cdot \text{procedural representation of music} \cdot \text{artificial creativity} \cdot \text{GenoMus}$

1 Introduction

Many approaches to artificial intelligence applied to the automatic composition of music are modeled using scores as its data source.

- Complejidad del diseno de lenguajes de representacion musical en la composicion asistida por ordenador
- Muchos analisis automaticos de musica se basan en la partituras, y no tanto en los procedimientos compositivos que la originan. Desde la perspectiva procedimental pasamos a un paradigma funcional de representacion, que permite modularidad.
- El sistema de representacion limita los resultados de la creatividad artificial y son al fin decisiones artisticas y no solo tecnicas, por lo que idear una gramatica que sea lo mas amplia posible respecto de los estilos que pueda representar requiere de un diseno meditado.

^{*}https://www.lopezmontes.es

- Necesidad de encontrar un medio de representacion adecuado a la automatizacion de analisis, a la flexibilidad de estilos, y a conjugar la programacion manual con la modularidad necesaria para las tareas automatizadas
- Reflexiones sobre metacomposicion, el concepto de autoria y consideraciones pedagogicas y humanas de fondo

2 A functional grammar to represent musical procedures

2.1 Musical genotypes and phenotypes

- Marco conceptual basico del paradigma genotipo-fenotipo (
- Procedimientos compositivos como funciones (referencias a Haskell y LISP en la tradicion)
- Similitud con la programacion funcional: la pieza como funcion de funciones

2.2 Function structure

- Estructuras musicales (partitura, voz, acorde, note, parametros finales) (figura ilustrativa)
- Inputs
- Outputs (genotipo, fenotipo, informacion analitica de armonia, ritmica, etc)
- Examples of functions (using different input types)

3 Encoding of genotypes and phenotypes

- Proposito de la codificacion en el marco del machine learning
- Codificacion como vectores unidimensionales normalizados
- Modularidad y posibilidad de manipulacion manual

4 Integrating traditional and contemporary techniques

- Entorno de trabajo con Max
- Ejemplo de pieza completa basado en Clapping music (La importancia de la autorreferencia)
- Un ejemplo clasico con varias voces y conteniendo armonia, dinamica y articulacion
- Modularidad y posibilidad de manipulacion manual
- Ejemplos basicos de tecnicas habituales en CAC (movimiento browniano,
- Handling of recursive techniques (fibonacci, y extension del modelo a expresiones matematicas complejas)
- Puentes entra la notacion tradicional, la sintesis de sonido y la espacializacion
- Multimedia

5 Scalability

- Como conjugar universalidad de las expresiones con optimizacion para tener los vectores codificados con mayores diferencias entre si.
- Estrategias de caracterizacion de perfiles estilisticos
- El problema del mapeo de funciones y su extensibilidad
- Como establecer una base de datos de conocimiento
- Metricas automatizadas de ciertos resultados

6 Strategies for evaluation of musical quality

7 Conclusions and future work

Cuestiones interesantes:

- ?Cuantas funciones primitivas son necesarias para generar musica en un determinado estilo? Hay innumerables expresiones funcionales diferentes que pueden generar la misma musica. Se puede deducir que la expresion funcional mas breve es el mejor analisis. Se pueden ver diferentes paradigmas de ensenanza/aprendizaje de la musica con estos modelos.
- ?Como puede hacerse ingenieria inversa automatizada para extraer estructuras desde la musica?

8 Headings: first level

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

See Section 8.

8.1 Headings: second level

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

$$\xi_{ij}(t) = P(x_t = i, x_{t+1} = j | y, v, w; \theta) = \frac{\alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}$$
(1)

8.1.1 Headings: third level

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Paragraph Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

9 Examples of citations, figures, tables, references

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus.

Figure 1: Sample figure caption.

Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

[1, 2] and see [3].

The documentation for natbib may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Of note is the command \citet, which produces citations appropriate for use in inline text. For example,

\citet{hasselmo} investigated\dots

produces

Hasselmo, et al. (1995) investigated...

https://www.ctan.org/pkg/booktabs

9.1 Figures

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

See Figure 1. Here is how you add footnotes. ² Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

9.2 Tables

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

See awesome Table 1.

²Sample of the first footnote.

Table 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	$^{\sim 100}_{\sim 10}$ up to 10^6

9.3 Lists

- Lorem ipsum dolor sit amet
- consectetur adipiscing elit.
- Aliquam dignissim blandit est, in dictum tortor gravida eget. In ac rutrum magna.

References

- [1] George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on, pages 417–422. IEEE, 2014.
- [2] George Kour and Raid Saabne. Fast classification of handwritten on-line arabic characters. In Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of, pages 312–318. IEEE, 2014.
- [3] Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. Estimate and replace: A novel approach to integrating deep neural networks with existing applications. arXiv preprint arXiv:1804.09028, 2018.