

COMPOSITIONS AND METHODS FOR THE TREATMENT OF RHEUMATOID ARTHRITIS

5

Field of the Invention

The present invention relates to compositions and methods useful for the diagnosis and treatment of immune related diseases.

Background of the Invention

10 Immune related and inflammatory diseases are the manifestation or consequence of fairly complex, often multiple interconnected biological pathways which in normal physiology are critical to respond to insult or injury, initiate repair from insult or injury, and mount innate and acquired defense against foreign organisms. Disease or pathology occurs when these normal physiological pathways cause additional insult or injury either as directly related to the intensity of the response, as a consequence of abnormal regulation 15 or excessive stimulation, as a reaction to self, or as a combination of these.

Though the genesis of these diseases often involves multistep pathways and often multiple different biological systems/pathways, intervention at critical points in one or more of these pathways can have an ameliorative or therapeutic effect. Therapeutic intervention can occur by either antagonism of a detrimental process/pathway or stimulation of a beneficial process/pathway.

20 Many immune related diseases are known and have been extensively studied. Such diseases include immune-mediated inflammatory diseases, non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc.

25 Immune related diseases could be treated by suppressing the immune response. Using neutralizing antibodies that inhibit molecules having immune stimulatory activity would be beneficial in the treatment of immune-mediated and inflammatory diseases. Molecules which inhibit the immune response can be utilized (proteins directly or via the use of antibody agonists) to inhibit the immune response and thus ameliorate immune related disease.

30 Rheumatoid Arthritis (RA) is an autoimmune disease characterized by chronic relapsing inflammation of various tissue sites, primarily bone and joint, which result in tissue destruction. RA is more common in women and genetic susceptibility is thought to contribute to the dysregulation of the immune system. Animal studies as well as human clinical experience have also demonstrated that environmental factors also contribute to these diseases. While the etiology and pathogenesis of RA is still poorly understood, B-cells, T-cells and monocytes have all been implicated as playing critical roles in disease progression. Therapeutics known to target these cell types have been shown to impact disease progression in 35 human as well as animal studies. Analysis of the gene expression patterns of white blood cells from healthy individuals compared to RA patients was carried out using DNA microarrays. The identification of genes that are differentially expressed in disease vs healthy cells is likely to provide important information as to the role of these gene products in the pathogenesis of disease. These disease associated genes may be used as targets or therapies for the treatment of RA and other autoimmune mediated inflammatory diseases and may 40 include the gene products themselves as well as antibody or small molecule antagonists.

Summary of the InventionA. Embodiments

The present invention concerns compositions and methods useful for the diagnosis and treatment of immune related disease in mammals, including humans. The present invention is based on the identification of proteins (including agonist and antagonist antibodies) which are a result of stimulation of the immune response in mammals. Immune related diseases can be treated by suppressing or enhancing the immune response. Molecules that enhance the immune response stimulate or potentiate the immune response to an antigen. Molecules which stimulate the immune response can be used therapeutically where enhancement of the immune response would be beneficial. Alternatively, molecules that suppress the immune response attenuate or reduce the immune response to an antigen (e.g., neutralizing antibodies) can be used therapeutically where attenuation of the immune response would be beneficial (e.g., inflammation). Accordingly, the PRO polypeptides, agonists and antagonists thereof are also useful to prepare medicines and medicaments for the treatment of immune-related and inflammatory diseases. In a specific aspect, such medicines and medicaments comprise a therapeutically effective amount of a PRO polypeptide, agonist or antagonist thereof with a pharmaceutically acceptable carrier. Preferably, the admixture is sterile.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprises contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native sequence PRO polypeptide. In a specific aspect, the PRO agonist or antagonist is an anti-PRO antibody.

In another embodiment, the invention concerns a composition of matter comprising a PRO polypeptide or an agonist or antagonist antibody which binds the polypeptide in admixture with a carrier or excipient. In one aspect, the composition comprises a therapeutically effective amount of the polypeptide or antibody. In another aspect, when the composition comprises an immune stimulating molecule, the composition is useful for: (a) increasing infiltration of inflammatory cells into a tissue of a mammal in need thereof, (b) stimulating or enhancing an immune response in a mammal in need thereof, (c) increasing the proliferation of immune cells in a mammal in need thereof in response to an antigen, (d) stimulating the activity of immune cells or (e) increasing the vascular permeability. In a further aspect, when the composition comprises an immune inhibiting molecule, the composition is useful for: (a) decreasing infiltration of inflammatory cells into a tissue of a mammal in need thereof, (b) inhibiting or reducing an immune response in a mammal in need thereof, (c) decreasing the activity of immune cells or (d) decreasing the proliferation of immune cells in a mammal in need thereof in response to an antigen. In another aspect, the composition comprises a further active ingredient, which may, for example, be a further antibody or a cytotoxic or chemotherapeutic agent. Preferably, the composition is sterile.

In another embodiment, the invention concerns a method of treating an immune related disorder in a mammal in need thereof, comprising administering to the mammal an effective amount of a PRO polypeptide, an agonist thereof, or an antagonist thereto. In a preferred aspect, the immune related disorder is selected from the group consisting of: rheumatoid arthritis, osteoarthritis, juvenile chronic arthritis, systemic lupus erythematosus, spondyloarthropathies, systemic sclerosis, idiopathic inflammatory

myopathies, Sjögren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, lymphadenopathy, splenomegaly and leukopenia. In another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody. In one aspect, the present invention concerns an isolated antibody which binds a PRO polypeptide. In another aspect, the antibody mimics the activity of a PRO polypeptide (an agonist antibody) or conversely the antibody inhibits or neutralizes the activity of a PRO polypeptide (an antagonist antibody). In another aspect, the antibody is a monoclonal antibody, which preferably has nonhuman complementarity determining region (CDR) residues and human framework region (FR) residues. The antibody may be labeled and may be immobilized on a solid support. In a further aspect, the antibody is an antibody fragment, a monoclonal antibody, a single-chain antibody, or an anti-idiotypic antibody.

In yet another embodiment, the present invention provides a composition comprising an anti-PRO antibody in admixture with a pharmaceutically acceptable carrier. In one aspect, the composition comprises a therapeutically effective amount of the antibody. Preferably, the composition is sterile. The composition may be administered in the form of a liquid pharmaceutical formulation, which may be preserved to achieve extended storage stability. Alternatively, the antibody is a monoclonal antibody, an antibody fragment, a humanized antibody, or a single-chain antibody.

In a further embodiment, the invention concerns an article of manufacture, comprising:

- 20 (a) a composition of matter comprising a PRO polypeptide or agonist or antagonist thereof;
- (b) a container containing said composition; and
- (c) a label affixed to said container, or a package insert included in said container referring to the use of said PRO polypeptide or agonist or antagonist thereof in the treatment of an immune related disease. The composition may comprise a therapeutically effective amount of the PRO polypeptide or the agonist or antagonist thereof.

In yet another embodiment, the present invention concerns a method of diagnosing an immune related disease in a mammal, comprising detecting the level of expression of a gene encoding a PRO polypeptide (a) in a test sample of tissue cells obtained from the mammal, and (b) in a control sample of known normal tissue cells of the same cell type, wherein a higher or lower expression level in the test sample as compared to the control sample indicates the presence of immune related disease in the mammal from which the test tissue cells were obtained.

In another embodiment, the present invention concerns a method of diagnosing an immune disease in a mammal, comprising (a) contacting an anti-PRO antibody with a test sample of tissue cells obtained from the mammal, and (b) detecting the formation of a complex between the antibody and a PRO polypeptide, in the test sample; wherein the formation of said complex is indicative of the presence or absence of said disease. The detection may be qualitative or quantitative, and may be performed in comparison with monitoring the complex formation in a control sample of known normal tissue cells of the same cell type. A larger quantity of complexes formed in the test sample indicates the presence or absence of an immune disease in the mammal from which the test tissue cells were obtained. The antibody preferably carries a detectable label. Complex formation can be monitored, for example, by light

microscopy, flow cytometry, fluorimetry, or other techniques known in the art. The test sample is usually obtained from an individual suspected of having a deficiency or abnormality of the immune system.

In another embodiment, the invention provides a method for determining the presence of a PRO polypeptide in a sample comprising exposing a test sample of cells suspected of containing the PRO polypeptide to an anti-PRO antibody and determining the binding of said antibody to said cell sample. In a specific aspect, the sample comprises a cell suspected of containing the PRO polypeptide and the antibody binds to the cell. The antibody is preferably detectably labeled and/or bound to a solid support.

In another embodiment, the present invention concerns an immune-related disease diagnostic kit, comprising an anti-PRO antibody and a carrier in suitable packaging. The kit preferably contains instructions for using the antibody to detect the presence of the PRO polypeptide. Preferably the carrier is pharmaceutically acceptable.

In another embodiment, the present invention concerns a diagnostic kit, containing an anti-PRO antibody in suitable packaging. The kit preferably contains instructions for using the antibody to detect the PRO polypeptide.

In another embodiment, the invention provides a method of diagnosing an immune-related disease in a mammal which comprises detecting the presence or absence or a PRO polypeptide in a test sample of tissue cells obtained from said mammal, wherein the presence or absence of the PRO polypeptide in said test sample is indicative of the presence of an immune-related disease in said mammal.

In another embodiment, the present invention concerns a method for identifying an agonist of a PRO polypeptide comprising:

- (a) contacting cells and a test compound to be screened under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and
- (b) determining the induction of said cellular response to determine if the test compound is an effective agonist, wherein the induction of said cellular response is indicative of said test compound being an effective agonist.

In another embodiment, the invention concerns a method for identifying a compound capable of inhibiting the activity of a PRO polypeptide comprising contacting a candidate compound with a PRO polypeptide under conditions and for a time sufficient to allow these two components to interact and determining whether the activity of the PRO polypeptide is inhibited. In a specific aspect, either the candidate compound or the PRO polypeptide is immobilized on a solid support. In another aspect, the non-immobilized component carries a detectable label. In a preferred aspect, this method comprises the steps of:

- (a) contacting cells and a test compound to be screened in the presence of a PRO polypeptide under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and
- (b) determining the induction of said cellular response to determine if the test compound is an effective antagonist.

In another embodiment, the invention provides a method for identifying a compound that inhibits the expression of a PRO polypeptide in cells that normally express the polypeptide, wherein the method comprises contacting the cells with a test compound and determining whether the expression of the PRO polypeptide is inhibited. In a preferred aspect, this method comprises the steps of:

- (a) contacting cells and a test compound to be screened under conditions suitable for allowing

expression of the PRO polypeptide; and

(b) determining the inhibition of expression of said polypeptide.

5 In yet another embodiment, the present invention concerns a method for treating an immune-related disorder in a mammal that suffers therefrom comprising administering to the mammal a nucleic acid molecule that codes for either (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide or (c) an antagonist of a PRO polypeptide, wherein said agonist or antagonist may be an anti-PRO antibody. In a preferred embodiment, the mammal is human. In another preferred embodiment, the nucleic acid is administered via *ex vivo* gene therapy. In a further preferred embodiment, the nucleic acid is comprised within a vector, more preferably an adenoviral, adeno-associated viral, lentiviral or retroviral vector.

10 In yet another aspect, the invention provides a recombinant viral particle comprising a viral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide, or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein the viral vector is in association with viral structural proteins. Preferably, the signal sequence is from a mammal, such as from a native PRO polypeptide.

15 In a still further embodiment, the invention concerns an *ex vivo* producer cell comprising a nucleic acid construct that expresses retroviral structural proteins and also comprises a retroviral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein said producer cell packages the retroviral vector in association with the structural proteins to produce recombinant retroviral particles.

20 In a still further embodiment, the invention provides a method of alleviating rheumatoid arthritis in a mammal comprising administering to said mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein rheumatoid arthritis in the mammal is alleviated.

25 **B. Additional Embodiments**

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli*, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

30 In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.

35 In another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.

In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences.

5 In other embodiments, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.

In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences.

In other embodiments, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.

In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

It is noted that novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody.

In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences herein above identified.

10 In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity,

20 alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein.

25

30 In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an

35 amino acid sequence encoded by any of the human protein cDNAs as disclosed herein.

40

In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as herein before described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide.

In a still further embodiment, the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as herein before described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO37544 cDNA, wherein SEQ ID NO:1 is a clone designated herein as "DNA227081".

Figure 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in Figure 1.

Figure 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO69493 cDNA, wherein SEQ ID NO:3 is a clone designated herein as "DNA327804".

Figure 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in Figure 3.

Figure 5A-B shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO87327 cDNA, wherein SEQ ID NO:5 is a clone designated herein as "DNA332506".

Figure 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in Figure 5.

In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as herein before described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide.

In a still further embodiment, the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as herein before described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO37544 cDNA, wherein SEQ ID NO:1 is a clone designated herein as "DNA227081".

Figure 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in Figure 1.

Figure 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO69493 cDNA, wherein SEQ ID NO:3 is a clone designated herein as "DNA327804".

Figure 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in Figure 3.

Figure 5A-B shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO87327 cDNA, wherein SEQ ID NO:5 is a clone designated herein as "DNA332506".

Figure 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in Figure 5.

Figure 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence cDNA, wherein SEQ ID NO:7 is a clone designated herein as "DNA258885".

Figure 8 shows a nucleotide sequence (SEQ ID NO:8) of a native sequence PRO86014 cDNA, wherein SEQ ID NO:8 is a clone designated herein as "DNA330851".

5 Figure 9 shows the amino acid sequence (SEQ ID NO:9) derived from the coding sequence of SEQ ID NO:8 shown in Figure 8.

Figure 10 shows a nucleotide sequence (SEQ ID NO:10) of a native sequence cDNA, wherein SEQ ID NO:10 is a clone designated herein as "DNA328037".

10 Figure 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO83625 cDNA, wherein SEQ ID NO:11 is a clone designated herein as "DNA327617".

Figure 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in Figure 11.

Figure 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO87328 cDNA, wherein SEQ ID NO:13 is a clone designated herein as "DNA332507".

15 Figure 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in Figure 13.

Figure 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO49699 cDNA, wherein SEQ ID NO:15 is a clone designated herein as "DNA254596".

20 Figure 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in Figure 15.

Figure 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO34252 cDNA, wherein SEQ ID NO:17 is a clone designated herein as "DNA216500".

Figure 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in Figure 17.

25 Figure 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO87329 cDNA, wherein SEQ ID NO:19 is a clone designated herein as "DNA332508".

Figure 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in Figure 19.

30 Figure 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO87330 cDNA, wherein SEQ ID NO:21 is a clone designated herein as "DNA332509".

Figure 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in Figure 21.

Figure 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO12489 cDNA, wherein SEQ ID NO:23 is a clone designated herein as "DNA150830".

35 Figure 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in Figure 23.

Figure 25A-B shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO36533 cDNA, wherein SEQ ID NO:25 is a clone designated herein as "DNA226070".

40 Figure 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in Figure 25.

Figure 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO58498 cDNA, wherein SEQ ID NO:27 is a clone designated herein as "DNA270107".

Figure 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in Figure 27.

5 Figure 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO37335 cDNA, wherein SEQ ID NO:29 is a clone designated herein as "DNA226872".

Figure 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in Figure 29.

10 Figure 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO87331 cDNA, wherein SEQ ID NO:31 is a clone designated herein as "DNA332510".

Figure 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in Figure 31.

Figure 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO69467 cDNA, wherein SEQ ID NO:33 is a clone designated herein as "DNA287178".

15 Figure 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in Figure 33.

Figure 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO59911 cDNA, wherein SEQ ID NO:35 is a clone designated herein as "DNA271624".

20 Figure 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in Figure 35.

Figure 37A-B shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO87332 cDNA, wherein SEQ ID NO:37 is a clone designated herein as "DNA332511".

Figure 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in Figure 37.

25 Figure 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO84001 cDNA, wherein SEQ ID NO:39 is a clone designated herein as "DNA328090".

Figure 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in Figure 39.

Figure 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO1269 cDNA, 30 wherein SEQ ID NO:41 is a clone designated herein as "DNA332512".

Figure 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in Figure 41.

Figure 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO87333 cDNA, wherein SEQ ID NO:43 is a clone designated herein as "DNA332513".

35 Figure 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in Figure 43.

Figure 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO34252 cDNA, wherein SEQ ID NO:45 is a clone designated herein as "DNA216500".

Figure 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of 40 SEQ ID NO:45 shown in Figure 45.

Figure 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO58230 cDNA, wherein SEQ ID NO:47 is a clone designated herein as "DNA269828".

Figure 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in Figure 47.

5 Figure 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO52268 cDNA, wherein SEQ ID NO:49 is a clone designated herein as "DNA257714".

Figure 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in Figure 49.

10 Figure 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO84763 cDNA, wherein SEQ ID NO:51 is a clone designated herein as "DNA329121".

Figure 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in Figure 51.

Figure 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO57922 cDNA, wherein SEQ ID NO:53 is a clone designated herein as "DNA327568".

15 Figure 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in Figure 53.

Figure 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO69503 cDNA, wherein SEQ ID NO:55 is a clone designated herein as "DNA287224".

20 Figure 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in Figure 55.

Figure 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO11582 cDNA, wherein SEQ ID NO:57 is a clone designated herein as "DNA324005".

Figure 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in Figure 57.

25 Figure 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO28691 cDNA, wherein SEQ ID NO:59 is a clone designated herein as "DNA332514".

Figure 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in Figure 59.

Figure 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO2279 cDNA, 30 wherein SEQ ID NO:61 is a clone designated herein as "DNA88306".

Figure 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in Figure 61.

Figure 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO87334 cDNA, wherein SEQ ID NO:63 is a clone designated herein as "DNA332515".

35 Figure 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in Figure 63.

Figure 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO61763 cDNA, wherein SEQ ID NO:65 is a clone designated herein as "DNA273802".

40 Figure 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in Figure 65.

Figure 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO83773 cDNA, wherein SEQ ID NO:67 is a clone designated herein as "DNA327812".

Figure 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in Figure 67.

5 Figure 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO83991 cDNA, wherein SEQ ID NO:69 is a clone designated herein as "DNA328079".

Figure 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in Figure 69.

10 Figure 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO83942 cDNA, wherein SEQ ID NO:71 is a clone designated herein as "DNA328025".

Figure 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in Figure 71.

Figure 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO84700 cDNA, wherein SEQ ID NO:73 is a clone designated herein as "DNA329033".

15 Figure 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in Figure 73.

Figure 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO51934 cDNA, wherein SEQ ID NO:75 is a clone designated herein as "DNA332516".

20 Figure 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in Figure 75.

Figure 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO87335 cDNA, wherein SEQ ID NO:77 is a clone designated herein as "DNA332517".

Figure 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in Figure 77.

25 Figure 79A-B shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO52514 cDNA, wherein SEQ ID NO:79 is a clone designated herein as "DNA332518".

Figure 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in Figure 79.

30 Figure 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO83928 cDNA, wherein SEQ ID NO:81 is a clone designated herein as "DNA328010".

Figure 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in Figure 81.

Figure 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO87336 cDNA, wherein SEQ ID NO:83 is a clone designated herein as "DNA332519".

35 Figure 84 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in Figure 83.

Figure 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO49741 cDNA, wherein SEQ ID NO:85 is a clone designated herein as "DNA254640".

40 Figure 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in Figure 85.

Figure 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO83966 cDNA, wherein SEQ ID NO:87 is a clone designated herein as "DNA328052".

Figure 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in Figure 87.

5 Figure 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO61763 cDNA, wherein SEQ ID NO:89 is a clone designated herein as "DNA273802".

Figure 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in Figure 89.

10 Figure 91A-D shows a nucleotide sequence (SEQ ID NO:91) of a native sequence cDNA, wherein SEQ ID NO:91 is a clone designated herein as "DNA327777".

Figure 92 shows a nucleotide sequence (SEQ ID NO:92) of a native sequence PRO2862 cDNA, wherein SEQ ID NO:92 is a clone designated herein as "DNA88606".

15 Figure 93 shows the amino acid sequence (SEQ ID NO:93) derived from the coding sequence of SEQ ID NO:92 shown in Figure 92.

Figure 94 shows a nucleotide sequence (SEQ ID NO:94) of a native sequence PRO83879 cDNA, wherein SEQ ID NO:94 is a clone designated herein as "DNA327954".

Figure 95 shows the amino acid sequence (SEQ ID NO:95) derived from the coding sequence of SEQ ID NO:94 shown in Figure 94.

20 Figure 96A-B shows a nucleotide sequence (SEQ ID NO:96) of a native sequence PRO83909 cDNA, wherein SEQ ID NO:96 is a clone designated herein as "DNA327989".

Figure 97 shows the amino acid sequence (SEQ ID NO:97) derived from the coding sequence of SEQ ID NO:96 shown in Figure 96.

Figure 98 shows a nucleotide sequence (SEQ ID NO:98) of a native sequence PRO84460 cDNA, wherein SEQ ID NO:98 is a clone designated herein as "DNA328693".

25 Figure 99 shows the amino acid sequence (SEQ ID NO:99) derived from the coding sequence of SEQ ID NO:98 shown in Figure 98.

Figure 100 shows a nucleotide sequence (SEQ ID NO:100) of a native sequence PRO87337 cDNA, wherein SEQ ID NO:100 is a clone designated herein as "DNA332520".

30 Figure 101 shows the amino acid sequence (SEQ ID NO:101) derived from the coding sequence of SEQ ID NO:100 shown in Figure 100.

Figure 102 shows a nucleotide sequence (SEQ ID NO:102) of a native sequence PRO87338 cDNA, wherein SEQ ID NO:102 is a clone designated herein as "DNA332521".

Figure 103 shows the amino acid sequence (SEQ ID NO:103) derived from the coding sequence of SEQ ID NO:102 shown in Figure 102.

35 Figure 104 shows a nucleotide sequence (SEQ ID NO:104) of a native sequence PRO34253 cDNA, wherein SEQ ID NO:104 is a clone designated herein as "DNA216501".

Figure 105 shows the amino acid sequence (SEQ ID NO:105) derived from the coding sequence of SEQ ID NO:104 shown in Figure 104.

40 Figure 106 shows a nucleotide sequence (SEQ ID NO:106) of a native sequence PRO86001 cDNA, wherein SEQ ID NO:106 is a clone designated herein as "DNA330837".

Figure 107 shows the amino acid sequence (SEQ ID NO:107) derived from the coding sequence of SEQ ID NO:106 shown in Figure 106.

Figure 108 shows a nucleotide sequence (SEQ ID NO:108) of a native sequence PRO87339 cDNA, wherein SEQ ID NO:108 is a clone designated herein as "DNA332522".

5 Figure 109 shows the amino acid sequence (SEQ ID NO:109) derived from the coding sequence of SEQ ID NO:108 shown in Figure 108.

Figure 110 shows a nucleotide sequence (SEQ ID NO:110) of a native sequence PRO87340 cDNA, wherein SEQ ID NO:110 is a clone designated herein as "DNA332523".

10 Figure 111 shows the amino acid sequence (SEQ ID NO:111) derived from the coding sequence of SEQ ID NO:110 shown in Figure 110.

Figure 112A-C shows a nucleotide sequence (SEQ ID NO:112) of a native sequence PRO87341 cDNA, wherein SEQ ID NO:112 is a clone designated herein as "DNA332524".

Figure 113 shows the amino acid sequence (SEQ ID NO:113) derived from the coding sequence of SEQ ID NO:112 shown in Figure 112.

15 Figure 114 shows a nucleotide sequence (SEQ ID NO:114) of a native sequence PRO86002 cDNA, wherein SEQ ID NO:114 is a clone designated herein as "DNA330839".

Figure 115 shows the amino acid sequence (SEQ ID NO:115) derived from the coding sequence of SEQ ID NO:114 shown in Figure 114.

20 Figure 116 shows a nucleotide sequence (SEQ ID NO:116) of a native sequence PRO84408 cDNA, wherein SEQ ID NO:116 is a clone designated herein as "DNA328630".

Figure 117 shows the amino acid sequence (SEQ ID NO:117) derived from the coding sequence of SEQ ID NO:116 shown in Figure 116.

Figure 118 shows a nucleotide sequence (SEQ ID NO:118) of a native sequence PRO2065 cDNA, wherein SEQ ID NO:118 is a clone designated herein as "DNA326839".

25 Figure 119 shows the amino acid sequence (SEQ ID NO:119) derived from the coding sequence of SEQ ID NO:118 shown in Figure 118.

Figure 120 shows a nucleotide sequence (SEQ ID NO:120) of a native sequence PRO86021 cDNA, wherein SEQ ID NO:120 is a clone designated herein as "DNA330858".

30 Figure 121 shows the amino acid sequence (SEQ ID NO:121) derived from the coding sequence of SEQ ID NO:120 shown in Figure 120.

Figure 122 shows a nucleotide sequence (SEQ ID NO:122) of a native sequence cDNA, wherein SEQ ID NO:122 is a clone designated herein as "DNA332525".

Figure 123 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO87343 cDNA, wherein SEQ ID NO:123 is a clone designated herein as "DNA332526".

35 Figure 124 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in Figure 123.

Figure 125 shows a nucleotide sequence (SEQ ID NO:125) of a native sequence PRO87344 cDNA, wherein SEQ ID NO:125 is a clone designated herein as "DNA332527".

40 Figure 126 shows the amino acid sequence (SEQ ID NO:126) derived from the coding sequence of SEQ ID NO:125 shown in Figure 125.

Figure 127 shows a nucleotide sequence (SEQ ID NO:127) of a native sequence PRO87345 cDNA, wherein SEQ ID NO:127 is a clone designated herein as "DNA332528".

Figure 128 shows the amino acid sequence (SEQ ID NO:128) derived from the coding sequence of SEQ ID NO:127 shown in Figure 127.

5 Figure 129 shows a nucleotide sequence (SEQ ID NO:129) of a native sequence PRO6492 cDNA, wherein SEQ ID NO:129 is a clone designated herein as "DNA332529".

Figure 130 shows the amino acid sequence (SEQ ID NO:130) derived from the coding sequence of SEQ ID NO:129 shown in Figure 129.

10 Figure 131 shows a nucleotide sequence (SEQ ID NO:131) of a native sequence PRO86211 cDNA, wherein SEQ ID NO:131 is a clone designated herein as "DNA331053".

Figure 132 shows the amino acid sequence (SEQ ID NO:132) derived from the coding sequence of SEQ ID NO:131 shown in Figure 131.

Figure 133 shows a nucleotide sequence (SEQ ID NO:133) of a native sequence PRO244 cDNA, wherein SEQ ID NO:133 is a clone designated herein as "DNA332530".

15 Figure 134 shows the amino acid sequence (SEQ ID NO:134) derived from the coding sequence of SEQ ID NO:133 shown in Figure 133.

Figure 135 shows a nucleotide sequence (SEQ ID NO:135) of a native sequence PRO86188 cDNA, wherein SEQ ID NO:135 is a clone designated herein as "DNA331030".

20 Figure 136 shows the amino acid sequence (SEQ ID NO:136) derived from the coding sequence of SEQ ID NO:135 shown in Figure 135.

Figure 137A-B shows a nucleotide sequence (SEQ ID NO:137) of a native sequence PRO69478 cDNA, wherein SEQ ID NO:137 is a clone designated herein as "DNA287192".

Figure 138 shows the amino acid sequence (SEQ ID NO:138) derived from the coding sequence of SEQ ID NO:137 shown in Figure 137.

25 Figure 139 shows a nucleotide sequence (SEQ ID NO:139) of a native sequence PRO1773 cDNA, wherein SEQ ID NO:139 is a clone designated herein as "DNA332531".

Figure 140 shows the amino acid sequence (SEQ ID NO:140) derived from the coding sequence of SEQ ID NO:139 shown in Figure 139.

30 Figure 141 shows a nucleotide sequence (SEQ ID NO:141) of a native sequence PRO37843 cDNA, wherein SEQ ID NO:141 is a clone designated herein as "DNA328570".

Figure 142 shows the amino acid sequence (SEQ ID NO:142) derived from the coding sequence of SEQ ID NO:141 shown in Figure 141.

Figure 143 shows a nucleotide sequence (SEQ ID NO:143) of a native sequence PRO87346 cDNA, wherein SEQ ID NO:143 is a clone designated herein as "DNA332532".

35 Figure 144 shows the amino acid sequence (SEQ ID NO:144) derived from the coding sequence of SEQ ID NO:143 shown in Figure 143.

Figure 145A-C shows a nucleotide sequence (SEQ ID NO:145) of a native sequence PRO87347 cDNA, wherein SEQ ID NO:145 is a clone designated herein as "DNA332533".

40 Figure 146 shows the amino acid sequence (SEQ ID NO:146) derived from the coding sequence of SEQ ID NO:145 shown in Figure 145.

Figure 147 shows a nucleotide sequence (SEQ ID NO:147) of a native sequence PRO311 cDNA, wherein SEQ ID NO:147 is a clone designated herein as "DNA332534".

Figure 148 shows the amino acid sequence (SEQ ID NO:148) derived from the coding sequence of SEQ ID NO:147 shown in Figure 147.

5 Figure 149 shows a nucleotide sequence (SEQ ID NO:149) of a native sequence PRO12586 cDNA, wherein SEQ ID NO:149 is a clone designated herein as "DNA151037".

Figure 150 shows the amino acid sequence (SEQ ID NO:150) derived from the coding sequence of SEQ ID NO:149 shown in Figure 149.

10 Figure 151 shows a nucleotide sequence (SEQ ID NO:151) of a native sequence cDNA, wherein SEQ ID NO:151 is a clone designated herein as "DNA332535".

Figure 152 shows a nucleotide sequence (SEQ ID NO:152) of a native sequence PRO87349 cDNA, wherein SEQ ID NO:152 is a clone designated herein as "DNA332536".

15 Figure 153 shows the amino acid sequence (SEQ ID NO:153) derived from the coding sequence of SEQ ID NO:152 shown in Figure 152.

15 Figure 154 shows a nucleotide sequence (SEQ ID NO:154) of a native sequence PRO83690 cDNA, wherein SEQ ID NO:154 is a clone designated herein as "DNA327709".

Figure 155 shows the amino acid sequence (SEQ ID NO:155) derived from the coding sequence of SEQ ID NO:154 shown in Figure 154.

20 Figure 156 shows a nucleotide sequence (SEQ ID NO:156) of a native sequence PRO1725 cDNA, wherein SEQ ID NO:156 is a clone designated herein as "DNA82378".

Figure 157 shows the amino acid sequence (SEQ ID NO:157) derived from the coding sequence of SEQ ID NO:156 shown in Figure 156.

Figure 158 shows a nucleotide sequence (SEQ ID NO:158) of a native sequence cDNA, wherein SEQ ID NO:158 is a clone designated herein as "DNA332537".

25 Figure 159A-B shows a nucleotide sequence (SEQ ID NO:159) of a native sequence PRO58676 cDNA, wherein SEQ ID NO:159 is a clone designated herein as "DNA270289".

Figure 160 shows the amino acid sequence (SEQ ID NO:160) derived from the coding sequence of SEQ ID NO:159 shown in Figure 159.

30 Figure 161 shows a nucleotide sequence (SEQ ID NO:161) of a native sequence PRO3629 cDNA, wherein SEQ ID NO:161 is a clone designated herein as "DNA326089".

Figure 162 shows the amino acid sequence (SEQ ID NO:162) derived from the coding sequence of SEQ ID NO:161 shown in Figure 161.

Figure 163 shows a nucleotide sequence (SEQ ID NO:163) of a native sequence PRO87350 cDNA, wherein SEQ ID NO:163 is a clone designated herein as "DNA332538".

35 Figure 164 shows the amino acid sequence (SEQ ID NO:164) derived from the coding sequence of SEQ ID NO:163 shown in Figure 163.

Figure 165 shows a nucleotide sequence (SEQ ID NO:165) of a native sequence PRO83690 cDNA, wherein SEQ ID NO:165 is a clone designated herein as "DNA327709".

40 Figure 166 shows the amino acid sequence (SEQ ID NO:166) derived from the coding sequence of SEQ ID NO:165 shown in Figure 165.

Figure 167 shows a nucleotide sequence (SEQ ID NO:167) of a native sequence PRO2120 cDNA, wherein SEQ ID NO:167 is a clone designated herein as "DNA83172".

Figure 168 shows the amino acid sequence (SEQ ID NO:168) derived from the coding sequence of SEQ ID NO:167 shown in Figure 167.

5 Figure 169 shows a nucleotide sequence (SEQ ID NO:169) of a native sequence PRO87351 cDNA, wherein SEQ ID NO:169 is a clone designated herein as "DNA332539".

Figure 170 shows the amino acid sequence (SEQ ID NO:170) derived from the coding sequence of SEQ ID NO:169 shown in Figure 169.

10 Figure 171 shows a nucleotide sequence (SEQ ID NO:171) of a native sequence PRO112 cDNA, wherein SEQ ID NO:171 is a clone designated herein as "DNA52746".

Figure 172 shows the amino acid sequence (SEQ ID NO:172) derived from the coding sequence of SEQ ID NO:171 shown in Figure 171.

Figure 173 shows a nucleotide sequence (SEQ ID NO:173) of a native sequence PRO87352 cDNA, wherein SEQ ID NO:173 is a clone designated herein as "DNA332540".

15 Figure 174 shows the amino acid sequence (SEQ ID NO:174) derived from the coding sequence of SEQ ID NO:173 shown in Figure 173.

Figure 175 shows a nucleotide sequence (SEQ ID NO:175) of a native sequence PRO60257 cDNA, wherein SEQ ID NO:175 is a clone designated herein as "DNA271982".

20 Figure 176 shows the amino acid sequence (SEQ ID NO:176) derived from the coding sequence of SEQ ID NO:175 shown in Figure 175.

Figure 177 shows a nucleotide sequence (SEQ ID NO:177) of a native sequence PRO87353 cDNA, wherein SEQ ID NO:177 is a clone designated herein as "DNA332541".

Figure 178 shows the amino acid sequence (SEQ ID NO:178) derived from the coding sequence of SEQ ID NO:177 shown in Figure 177.

25 Figure 179 shows a nucleotide sequence (SEQ ID NO:179) of a native sequence PRO51335 cDNA, wherein SEQ ID NO:179 is a clone designated herein as "DNA256291".

Figure 180 shows the amino acid sequence (SEQ ID NO:180) derived from the coding sequence of SEQ ID NO:179 shown in Figure 179.

30 Figure 181 shows a nucleotide sequence (SEQ ID NO:181) of a native sequence PRO87354 cDNA, wherein SEQ ID NO:181 is a clone designated herein as "DNA332542".

Figure 182 shows the amino acid sequence (SEQ ID NO:182) derived from the coding sequence of SEQ ID NO:181 shown in Figure 181.

Figure 183 shows a nucleotide sequence (SEQ ID NO:183) of a native sequence PRO60730 cDNA, wherein SEQ ID NO:183 is a clone designated herein as "DNA332543".

35 Figure 184 shows the amino acid sequence (SEQ ID NO:184) derived from the coding sequence of SEQ ID NO:183 shown in Figure 183.

Figure 185 shows a nucleotide sequence (SEQ ID NO:185) of a native sequence PRO81947 cDNA, wherein SEQ ID NO:185 is a clone designated herein as "DNA325421".

40 Figure 186 shows the amino acid sequence (SEQ ID NO:186) derived from the coding sequence of SEQ ID NO:185 shown in Figure 185.

Figure 207 shows the amino acid sequence (SEQ ID NO:207) derived from the coding sequence of SEQ ID NO:206 shown in Figure 206.

Figure 208 shows a nucleotide sequence (SEQ ID NO:208) of a native sequence PRO81946 cDNA, wherein SEQ ID NO:208 is a clone designated herein as "DNA325420".

5 Figure 209 shows the amino acid sequence (SEQ ID NO:209) derived from the coding sequence of SEQ ID NO:208 shown in Figure 208.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Definitions

10 The terms "PRO polypeptide" and "PRO" as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms "PRO/number polypeptide" and "PRO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The
15 PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "PRO polypeptide" refers to each individual PRO/number polypeptide disclosed herein. All disclosures in this specification which refer to the "PRO polypeptide" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of
20 antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term "PRO polypeptide" also includes variants of the PRO/number polypeptides disclosed herein.

A "native sequence PRO polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or
30 full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the
35 figures may be employed as the starting amino acid residue for the PRO polypeptides.

The PRO polypeptide "extracellular domain" or "ECD" refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the
40 PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for

identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein.

Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the

5 Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.

The approximate location of the "signal peptides" of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on

10 either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., *Prot. Eng.* 10:1-6 (1997) and von Heinje et al., *Nucl. Acids. Res.* 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one
15 secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

"PRO polypeptide variant" means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence
20 as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO
25 polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity,
30 alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about
35 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined
40 fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant

polypeptides are at least about 10 amino acids in length, alternatively at least about 20 amino acids in length, alternatively at least about 30 amino acids in length, alternatively at least about 40 amino acids in length, alternatively at least about 50 amino acids in length, alternatively at least about 60 amino acids in length, alternatively at least about 70 amino acids in length, alternatively at least about 80 amino acids in length, 5 alternatively at least about 90 amino acids in length, alternatively at least about 100 amino acids in length, alternatively at least about 150 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 300 amino acids in length, or more.

"Percent (%) amino acid sequence identity" with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are 10 identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or 15 Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer 20 program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX 25 V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

30

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment 35 program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "PRO", wherein "PRO" 40 represents the amino acid sequence of a hypothetical PRO polypeptide of interest, "Comparison Protein"

represents the amino acid sequence of a polypeptide against which the "PRO" polypeptide of interest is being compared, and "X," "Y" and "Z" each represent different hypothetical amino acid residues.

Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.

5 However, % amino acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement "a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B", the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.

Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from <http://www.ncbi.nlm.nih.gov> or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

$$100 \text{ times the fraction } X/Y$$

where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

"PRO variant polynucleotide" or "PRO variant nucleic acid sequence" means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80%

nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as

5 disclosed herein. Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about

10 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid

15 sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO

20 polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least

25 about 180 nucleotides in length, alternatively at least about 210 nucleotides in length, alternatively at least about 240 nucleotides in length, alternatively at least about 270 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 900 nucleotides in length, or more.

"Percent (%) nucleic acid sequence identity" with respect to PRO-encoding nucleic acid sequences

30 identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or

35 Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S.

40 Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech,

Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

$$100 \text{ times the fraction } W/Z$$

10

where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "PRO-DNA", wherein "PRO-DNA" represents a hypothetical PRO-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "PRO-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides.

Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., *Methods in Enzymology* 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement "an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B", the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest.

Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., *Nucleic Acids Res.* 25:3389-3402 (1997)). The NCBI-BLAST2

sequence comparison program may be downloaded from <http://www.ncbi.nlm.nih.gov> or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

5 In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

10

$$100 \text{ times the fraction } W/Z$$

where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.

15 In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide.

20 "Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with 25 diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide *in situ* within 30 recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An 35 isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in 40 a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5 Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate
10 translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-
15 PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor
20 amounts.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to
25 reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular
30 Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum
15 albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a
0 high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.