Date: April 13 Made by Eric

Problem A.

Notice that $\forall x \in Q_8, |x^{Q_8}| = \frac{|Q_8|}{|C_{Q_8}(x)|} = \frac{8}{|C_{Q_8}(x)|}$ and $\langle x \rangle \leq C_{Q_8}(x) \leq Q_8$ and $|\langle i \rangle| = |\langle j \rangle| = |\langle k \rangle| = 4$.

From the above fact, we can deduce $(|C_{Q_8}(i)| = 4$ and $|i^{Q_8}| = 2)$ or $(|C_{Q_8}(i)| = 8$ and or $|i^{Q_8}| = 1)$.

Notice that $jij^{-1}=(-k)(-j)=-i$, so $-i\in i^{Q_8}$, which enable us to deduce $i^{Q_8}=\{\pm i\}$.

From the above fact, we can deduce $(|C_{Q_8}(j)| = 4$ and $|j^{Q_8}| = 2)$ or $(|C_{Q_8}(j)| = 8$ and or $|j^{Q_8}| = 1)$.

Notice that $iji^{-1}=k(-i)=-j$, so $-j\in i^{Q_8}$, which enable us to deduce $j^{Q_8}=\{\pm j\}$

From the above fact, we can deduce $(|C_{Q_8}(k)| = 4$ and $|k^{Q_8}| = 2)$ or $(|C_{Q_8}(k)| = 8$ and or $|k^{Q_8}| = 1)$.

Notice that $jkj^{-1}=i(-j)=-k$, so $-k\in k^{Q_8}$, which enable us to deduce $k^{Q_8}=\{\pm k\}$

$$Q_8 \setminus (i^{Q_8} \cup j^{Q_8} \cup k^{Q_8}) = \{ \pm e \}$$

Notice $\{e\}$ is a conjuacy class.

So the conjuacy classes of Q_8 is $Q_8 = \{\pm i\} \cup \{\pm j\} \cup \{\pm k\} \cup \{e\} \cup \{-e\}$

Problem B

In this problem, we use $\langle a,b|ab=ba,a^2=b^2=e\rangle$ as our notation for $V_4\simeq \mathbb{Z}_2\times \mathbb{Z}_2$

We first decompose the regular $\mathbb{C}V_4$ -module (from now denoted V) into product of irreducible submodules.

Notice that V_4 is abelian, so we know all irreducible $\mathbb{C}G$ -submodules are one-dimensional. In other word, we will see $V = \operatorname{span}(v_1) \oplus \operatorname{span}(v_2) \oplus \operatorname{span}(v_3) \oplus \operatorname{span}(v_4)$, where $\operatorname{span}(v_i)$ are submodule for $1 \leq i \leq 4$

Notice that we only have to show that $av_i = \lambda_1 v_i$ and $bv_i = \lambda_2 v_i$, $\exists \lambda_1, \lambda_2 \in \mathbb{C}$, then the fact that $ab(v_i) = \lambda_1 \lambda_2 v_i$ and $\mathrm{span}(v_i)$ is a submodule follow immediately.

Obseve the following

$$a(e + a + b + ab) = e + a + b + ab$$
 (1)

$$b(e + a + b + ab) = e + a + b + ab$$
 (2)

So we know span(e + a + b + ab) is a submodule of $\mathbb{C}G$.

Observe the following

$$a(e - a + b - ab) = -(e - a + b - ab)$$
(3)

$$b(e - a + b - ab) = e - a + b - ab \tag{4}$$

So we know span(e - a + b - ab) is a submodule of $\mathbb{C}G$.

Observe the following

$$a(e + a - b - ab) = e + a - b - ab$$
 (5)

$$b(e + a - b - ab) = -(e + a - b - ab)$$
(6)

So we know span(e + a - b - ab) is a submodule of $\mathbb{C}G$.

Observe the following

$$a(e - a - b + ab) = -(e - a - b + ab)$$
(7)

$$b(e - a - b + ab) = -(e - a - b + ab)$$
(8)

So we know span(e - a - b + ab) is a submodule of $\mathbb{C}G$.

Let $v_1=e+a+b+ab$ and $v_2=e-a+b-ab$ and $v_3=e+a-b-ab$ and $v_4=e-a-b+ab$.

The four vector v_1, v_2, v_3, v_4 are linearly independent because the matrix $[v_1, v_2, v_3, v_4]_E$ where $E = \{e, a, b, ab\}$

have determinant 16.

So we can write $V = \operatorname{span}(v_1) \oplus \operatorname{span}(v_2) \oplus \operatorname{span}(v_3) \oplus \operatorname{span}(v_4)$.

We know $\{v_i\}$ is a basis of span (v_i) , and we denote $\alpha_i = \{v_i\}$.

(11)

Notice that if $\frac{av_i}{v_i} = 1 \neq -1 = \frac{av_j}{v_j}$, then we see that $T : \operatorname{span}(v_i) \to \operatorname{span}(v_j)$ defined by $v_i \mapsto \lambda v_j$ is **never** an $\mathbb{C}V_4$ -isomorphism, since $T(av_i) = \lambda v_j \neq -\lambda v_j = aT(v_i)$. Combined with the same argument on b, we see none of $\operatorname{span}(v_i)$ are isomorphic to any of each other. Because all of them are of one-dimensional, we can observe the equation (1) to (8) and write the following table

Problem C

1.

Let $n = \dim(V)$.

Find a basis α for V such that $[g]_{\alpha}$ is a diagonal matrix, and denote

$$[g]_{\alpha} = \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_n \end{bmatrix}$$

Because $[gx]_{\alpha}=[xg]_{\alpha}$, we see $\forall i,j,\omega_i([x]_{\alpha})_{i,j}=\omega_j([x]_{\alpha})_{i,j}$. Then $\forall i,j,\omega_i=\omega_j$

So we can write $[g]_{\alpha} = \omega_i I_n, \exists i$

Then $|\chi(g)| = |n\omega_i| = n$

2.

Because χ is an irreducible character, we know $\langle \chi, \chi \rangle = 1$. That is $1 = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\chi(g)}$.

$$1 = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\chi(g)} \implies 1 = \frac{1}{|G|} \sum_{g \in G \setminus Z(G)} \chi(g) \overline{\chi(g)} + \frac{1}{|G|} \sum_{g \in Z(G)} \chi(g) \overline{\chi(g)}$$

$$\tag{10}$$

Then

$$|G| = \sum_{g \in G \backslash Z(G)} \chi(g) \overline{\chi(g)} + \sum_{g \in Z(G)} \chi(g) \overline{\chi(g)} = \sum_{g \in G \backslash Z(G)} \chi(g) \overline{\chi(g)} + |Z(G)| n^2$$

$$|G| \ge |Z(G)|n^2 \implies n^2 \le \frac{|G|}{|Z(G)|} \tag{12}$$

Problem D

Notice that the rows of the character table form an orthonormal basis of space of class functions, so we deduce the following equations

$$\frac{\alpha_1^2 + \alpha_2^2}{12} + \frac{\alpha_3^2 + \alpha_4^2}{6} + \frac{\alpha_5^2 + \alpha_6^2}{4} = 1 \tag{13}$$

$$\frac{\beta_1^2 + \beta_2^2}{12} + \frac{\beta_3^2 + \beta_4^2}{6} + \frac{\beta_5^2 + \beta_6^2}{4} = 1 \tag{14}$$

$$\frac{\alpha_1\beta_1 + \alpha_2\beta_2}{12} + \frac{\alpha_3\beta_3 + \alpha_4\beta_4}{6} + \frac{\alpha_5\beta_5 + \alpha_6\beta_6}{4} = 0 \tag{15}$$

$$(\alpha_1 + \alpha_2) + 2(\alpha_3 + \alpha_4) + 3(\alpha_5 + \alpha_6) = 0 \tag{16}$$

$$(\alpha_1 - \alpha_2) + 2(-\alpha_3 + \alpha_4) + 3i(\alpha_5 - \alpha_6) = 0$$
(17)

$$(\alpha_1 + \alpha_2) + 2(\alpha_3 + \alpha_4) + 3(-\alpha_5 - \alpha_6) = 0$$
(18)

$$(\alpha_1 - \alpha_2) + 2(-\alpha_3 + \alpha_4) + 3i(-\alpha_5 + \alpha_6) = 0$$
(19)

$$(\beta_1 + \beta_2) + 2(\beta_3 + \beta_4) + 3(\beta_5 + \beta_6) = 0$$
 (20)

$$(\beta_1 - \beta_2) + 2(-\beta_3 + \beta_4) + 3i(\beta_5 - \beta_6) = 0$$
(21)

$$(\beta_1 + \beta_2) + 2(\beta_3 + \beta_4) + 3(-\beta_5 - \beta_6) = 0$$
 (22)

$$(\beta_1 - \beta_2) + 2(-\beta_3 + \beta_4) + 3i(-\beta_5 + \beta_6) = 0$$
(23)

From equation (16)—(18), we can tell $\alpha_6=-\alpha_5$, and from equation (17)—(19), we can tell $\alpha_6=\alpha_5$. So we know $\alpha_5=\alpha_6=0$

Then from equation (16)—(17), we know $\alpha_2 = -2\alpha_3$ and from equation (16)+(17), we know $\alpha_1 = -2\alpha_4$.

Then from equation (13), we know $\frac{\alpha_3^2 + \alpha_4^2}{2} = 1$.

From equation (20)—(22), we can tell $\beta_6=-\beta_5$, and from equation (21)—(23), we can tell $\beta_6=\beta_5$. So we know $\beta_5=\beta_6=0$

Then from equation (20)–(21), we know $\beta_2=-2\beta_3$ and from equation ()+(17), we know $\beta_1=-2\beta_4$.

Then from equation (14), we know $\frac{\beta_3^2 + \beta_4^2}{2} = 1$.

Then from equation (15), we know $\frac{\alpha_3\beta_3+\alpha_4\beta_4}{2}=0$.

To solve the quadratic equation $\begin{cases} \alpha_3^2+\alpha_4^2=2\\ \beta_3^2+\beta_4^2=2\\ \alpha_3\beta_3+\alpha_4\beta_4=0 \end{cases}$

We simply transfer it to the language of $\|(\alpha_3,\alpha_4)\|=\sqrt{2}=\|(\beta_3,\beta_4)\|$ and $(\alpha_3,\alpha_4)\perp(\beta_3,\beta_4)$ and realize that χ_5 and χ_6 are linearly independent and $\alpha_1,\alpha_2\in$

$$(\alpha_3, \alpha_4) \perp (\beta_3, \beta_4)$$
 and Γ

$$\mathbb{R}^+$$
, to have $\chi_5 = \begin{bmatrix} 2 \\ 2 \\ -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}^t$

$$\chi_6 = \begin{bmatrix} 2 \\ -2 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$

$$\chi_6 = \begin{bmatrix} 2 \\ -2 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}^t$$