Number Theory Algorithms

Ervin Gegprifti gegprifti.ervin@gmail.com

Abstract

This paper is the documentation for the Linear Diophantine Equation In Two Variables module in Number Theory Algorithms mobile application.

Linear Diophantine Equation In Two Variables

The equation ax + by = c where $a, b, x, y \in \mathbb{Z}$ with $a, b \neq 0$ has no integer solution if $GCD(a, b) \nmid c$ and many integer solutions if $GCD(a, b) \mid c$. The implementation of this algorithm is based on ([1] pg. 137, [2] pg. 183).

Algorithm 1: Linear Diophantine Equation In Two Variables

Input: $a, b, c, x, y \in \mathbb{Z}$ with $a, b \neq 0$

Output: x, y solutions if any

- 1 Set g = GCD(a, b)
- **2** if $g \nmid c$ then there is no integer solution. Stop.
- **3 if** $q \mid b$ then there are infinitely many integer solutions. Continue...
- 4 Use Extended Euclidean Algorithm to find x_{ee} and y_{ee} from

|a|x + |b|y = GCD(|a|, |b|) = g

- 5 Set $x_{ee} = sign(a)x_{ee}$ and $y_{ee} = sign(b)y_{ee}$
- 6 A particular first initial solution is $x_0 = x_{ee}(c/g)$ and $y_0 = y_{ee}(c/g)$
- 7 For $r \in \mathbb{Z}$, any integer $x = x_0 + (b/g)r$ and $y = y_0 (a/g)r$ is a solution
- s return solutions

References

- [1] Rosen, Kenneth H. Elementary Number Theory and Its Applications. 6th ed. Pearson Education London, 2011.
- [2] Tattersall, James J. Elementary number theory in nine chapters. 2nd ed. Cambridge University Press, 1999.