Math 74: Algebraic Topology

Sair Shaikh

June 2, 2025

Problem 1.

Def. 1. A topological group G is a group with a topology such that the maps $G \times G \to G$ given $(g,h) \mapsto g * h$ where * is the group operation and $G \to G$ given by $g \mapsto g^{-1}$ are continuous.

Let G be a topological group with identity element x_0 .

- 1. Let C be the connected component of G containing the identity element x_0 . Show that C is a normal subgroup and every other connected component is homemorphic to C. (*Hint:* Show that if $g \in G$, then gC is the component of G containing g.)
- 2. Let $\Omega(G, x_0)$ be the set of all loops in G based at x_0 . Define an operation $f \times g$ for $f, g \in \Omega(G, x_0)$ by

$$(f \times q)(s) = f(s) * q(s).$$

Show that the operation \times makes $\Omega(G, x_0)$ into a group.

- 3. Show that \times induces a group operation on $\pi_1(G, x_0)$.
- 4. Show that \times agrees with the usual concatenation group operation \cdot on $\pi_1(G, x_0)$. (*Hint:* Compute $(f \cdot e_{x_0}) * (e_{x_0} \cdot g)$.)
- 5. Show that $\pi_1(G, x_0)$ is an abelian group.
- 6. Let A be a (possibly empty) finite set of points in \mathbb{R}^2 . For what values of |A| can $\mathbb{R}^2 \setminus A$ be given the structure of a topological group?

Problem 2.(50 points)

Def. 2. The real Grassmannian Gr(k,n) is the space of k-dimensional subspaces of \mathbb{R}^n . More precisely, let $M^*(k,n)$ be the set of $k \times n$ matrices of rank k with the subspace topology in the space of all $k \times n$ matrices $M(k,n) \cong \mathbb{R}^{kn}$. Then, we define $Gr(k,n) = M^*(k,n)/\sim$ where $A \sim B$ if and only if A and B have the same row space.

Note that $Gr(1, n) = \mathbb{RP}^{n-1}$.

- 1. Show that Gr(k, n) is homeomorphic to Gr(n k, n) for all $0 \le k \le n$.
- 2. Show that Gr(2,4) is homeomorphic to $S^2 \times S^2/\sim$ where $(x,y)\sim (-x,-y)$ for all $(x,y)\in S^2\times S^2$.
- 3. Describe a CW complex structure on Gr(2,4). (*Hint:* You may wish to use the previous part.)
- 4. Compute $\pi_1(Gr(2,4))$.
- 5. Compute the homology of Gr(2,4).

Problem 3.(50 points)

Def. 3. Let C, D be (locally small) categories and let $F, G : C \to D$ be functors.

- A natural transformation η from F to G is the data of a morphism $\eta_X \in \text{hom}_{\mathcal{D}}(F(X), G(X))$ for every object X in \mathcal{C} such that for every $f \in \text{hom}_{\mathcal{C}}(X, Y)$, $\eta_Y \circ F(f) = G(f) \circ \eta_X$.
- A natural isomorphism η from F to G is a natural transformation such that η_X is an isomorphism for every object X of C. If such an η exists, the functors F and G are said to be naturally isomorphic.
- The functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if there is a functor $F': \mathcal{D} \to \mathcal{C}$ such that $F' \circ F$ is naturally isomorphic to the identity functor on \mathcal{C} and $F \circ F'$ is naturally isomorphic to the identity functor on \mathcal{D} . If such a functor exists, \mathcal{C} and \mathcal{D} are said to be equivalent.

For a topological space X, let $\Pi(X)$ be the fundamental groupoid of X.

- 1. Show that if $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories and X and Y are objects of \mathcal{C} such that F(X) and F(Y) are isomorphic, then X and Y are isomorphic. Deduce that the forgetful functor $F: \text{Top} \to \text{Sets}$ and the fundamental group functor $\pi_1: \text{Top} \to \text{Groups}$ are not equivalences of categories.
- 2. Show that if X is path connected, the inclusion $\pi_1(X, x) = \hom_{\Pi(X)}(x, x) \to \Pi(X)$ is an equivalence of categories for every $x \in X$.
- 3. Show that any continuous function $f: X \to Y$ induces a functor $\Pi(f): \Pi(X) \to \Pi(Y)$.
- 4. Show that if $f: X \to Y$ and $g: X \to Y$ are continuous and homotopic, then the functors $\Pi(f)$ and $\Pi(g)$ are naturally isomorphic.
- 5. Deduce that if X and Y are homotopy equivalent, then $\Pi(X)$ and $\Pi(Y)$ are equivalent. Use this to reprove the fact from class that if $f: X \to Y$ is a homotopy equivalence, then $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is an isomorphism.
- 6. Give an example of homotopic continuous functions f and g such that $\Pi(f)$ and $\Pi(g)$ are not equal.

Problem 4.(50 points)

Def. 4. Given an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of a topological space X, we define the Čech complex as

$$\check{C}^k(X,\mathcal{U}) = \prod_{(i_0,\dots,i_k)\in I^{k+1}} \mathcal{F}(U_{i_0}\cap\dots\cap U_{i_k})$$

where $\mathcal{F}(Y) = \{f : Y \to \mathbb{Z} : f \text{ is continuous}\}$ where \mathbb{Z} has the discrete topology. For $f \in \check{C}^k(X,\mathcal{U})$, denote by f_{i_0,\dots,i_k} the component in $\mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k})$. Then, define

$$d \colon \check{C}^k(X, \mathcal{U}) \to \check{C}^{k+1}(X, \mathcal{U})$$

by

$$(df)_{i_0,\dots,i_{k+1}} = \sum_{j=0}^{k+1} (-1)^j f_{i_0,\dots,\hat{i_j},\dots i_k} |_{U_{i_0} \cap \dots \cap U_{i_k}}$$

- 1. Verify that the Čech complex is a cochain complex for any X, \mathcal{U} .
- 2. Denoting the cohomology groups of the Čech complex by $\check{H}^k(X,\mathcal{U})$, describe $\check{H}^0(X,\mathcal{U})$ for any X,\mathcal{U} .
- 3. Find two covers of S^1 whose Čech cohomology groups do not coincide.
- 4. A cover $\mathcal{V} = \{V_j\}_{j \in J}$ is a refinement of $\mathcal{U} = \{U_i\}_{i \in I}$ if for every $j \in J$, there is an $i \in I$ such that $V_j \subseteq U_i$. Show that if \mathcal{V} is a refinement of \mathcal{U} , then there is a chain map $\check{C}^{\bullet}(X,\mathcal{U}) \to \check{C}^{\bullet}(X,\mathcal{V})$ given by restriction.

We say that \mathcal{U} is a good cover if every non-empty intersection $U_{i_0} \cap \ldots \cap U_{i_k}$ is contractible. Here is a theorem that can be proved using a similar argument that we deployed for barycentric subdivision in singular homology once one proves that the Čech cohomology of a contractible space with respect to any cover agrees with the Čech cohomology of point, e.g., by proving homotopy invariance.

Theorem 0.1. If \mathcal{U} is a good cover of X and the \mathcal{V} is a refinement of \mathcal{U} , the chain map from the previous part induces an isomorphism on Čech cohomology. Moreover, $\check{H}^k(X,\mathcal{U}) \cong H^k(X)$ for all k.

5. Find good covers and explicitly compute the cohomology of a sphere Sⁿ and an orientable genus g surface M_g using the previous theorem. (Remark/challenge: These computations give you explicit generators. There is a natural way to phrase the cup product in Čech cohomology – can you compute it in these examples? To be clear, I'm not grading you on this remark, but just leaving something to think about.)