Painel / Meus cursos / SC26EL / 16-Projeto de Controlador com Observador de Estados - Parte 1

/ Questionário sobre Projeto de Controlador com Observador de Estados - Parte 1

Iniciado em quinta, 13 mai 2021, 16:44

Estado Finalizada

Concluída em terça, 18 mai 2021, 00:42

Tempo empregado

Notas 2,8/3,0

Avaliar 9,5 de um máximo de 10,0(95%)

Questão **1** Correto

Atingiu 1,0 de 1,0

Considere o sistema representado por:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Assinale as alternativas verdadeiras.

- a. Para que o sistema siga uma referência do tipo degrau e tenha maior rejeição à variações paramétricas e à perturbações nos sestados, utilizamos uma estrutura de controle baseada em realimentação de estados contento a integral do erro de rastreamento da referência.
- \square c. Considerando os polos dominantes de malha fechada em $s_{1,2} = -2 \pm j2$, uma possível escolha para os autovalores de um \checkmark observador de estados para esse sistema é $\$\$
- d. Como a planta não tem polo na origem não é possível projetar um controlador baseado em realimentação de estados de forma que a saída siga uma referência do tipo degrau com erro nulo sem a inserção de um integrador.

As respostas corretas são:

Para que o sistema siga uma referência do tipo degrau e tenha maior rejeição à variações paramétricas e à perturbações nos estados, utilizamos uma estrutura de controle baseada em realimentação de estados contento a integral do erro de rastreamento da referência.,

Considerando os polos dominantes de malha fechada em $(s_{1,2}=-2\pm j2)$, uma possível escolha para os autovalores de um observador de estados para esse sistema é $\frac{1,2}{-2}$

Questão 2 Parcialmente correto

Atingiu 0,9 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Projete um controlador por realimentação de estados para que o sistema em malha fechada tenha polos em $s_{1,2}=-2$ e $s_{3,4}=-20$, rastreie uma referência do tipo degrau com erro nulo e tenha maior capacidade de rejeitar variações paramétricas e perturbações nos estados.

Na sequência, projete um observador de estados para este sistema. Os autovalores do observador devem ser $\mu_{1,2}=-20\,$ e $\mu_3=-200\,$

A soma dos elementos da matriz de controlabilidade do sistema a ser controlado vale:

-146

✓ .

O posto da matriz de controlabilidade é:

4

O vetor de ganhos do controlador é dado por $\bar{K} = \begin{bmatrix} K & \vdots & -k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 & -k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

 $k_1 =$ 948

 \checkmark , $k_2 =$ 545

 \checkmark , $k_3 =$ 36

 \checkmark , $k_I =$ 800

A soma dos elementos da matriz de observabilidade do sistema vale:

-31

O posto da matriz de observabilidade é:

3

Portanto, o sistema é: Observável

O vetor de ganhos do observador é dado por $K_e = \begin{bmatrix} k_{e1} & k_{e2} & k_{e3} \end{bmatrix}^T$. Assim, os ganhos do observador são:

 $k_{e1} =$ 32077

 $k_{e2} =$ -63922

 $k_{e3} =$

134369

O sistema controlado juntamente com o observador de estados pode ser representado por:

$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \\ \dot{x} \end{bmatrix} = A_{MFO} \begin{bmatrix} x \\ \xi \\ \ddot{x} \end{bmatrix} + B_{MFO} ref$$

$$y = C_{MFO} \begin{bmatrix} x \\ \xi \\ \tilde{x} \end{bmatrix}$$

onde $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ é o vetor de estados do sistema, ξ representa a integral do erro de rastreamento da referência e $\tilde{x} = \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \end{bmatrix}^T$ é o vetor de estados estimados.

 a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} . Assim, os elementos da matriz A_{MFO} são: a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} A matriz A_{MFO} tem a forma $A_{MFO}=$ a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a₇₆ a₇₇

- ✓ , a₁₇ =

- **~** ,
- $a_{31} = 0$
- \mathbf{x} , $a_{32} = 0$
- $x , a_{33} = 0$
- **x** , **a**₃₄ =
- **✓** , **a**₃₅ =
- **✓** , **a**₃₆ =
- **✓** , **a**₃₇ =
- **v**,
- *a*₄₁ = −2
- ✓ , a₄₂ =-1
- ✓ , a₄₃ =0
- \checkmark , $a_{44} = 0$
- \checkmark , $a_{45} = 0$
- ✓ , a₄₆ =0
- \checkmark , $a_{47} = 0$
- **~** ,
- $a_{51} = 0$
- \mathbf{x} , $a_{52} = 0$
- $x , a_{53} = 0$
- ✓ , a₅₄ =

 0
- ✓ , a₅₅ =
 -64154
- ✓ , a₅₆ =
 -32076
- \checkmark , $a_{57} = 0$
- **~** ,
- **a**₆₁ =

x , $a_{62} =$

 \mathbf{x} , $\mathbf{a}_{62} = 0$

x , **a**₆₃ =

✓ , a₆₄ =

0

✓ , **a**₆₅ =

√ , a₆₆ = 63922

✓ , **a**₆₇ =

v

 $a_{71} = 0$

 \mathbf{x} , $\mathbf{a}_{72} = 0$

x, $a_{73} = 0$

✓ , a₇₄ =0

× , a_{75} = -268750

✓ , a₇₆ =-134388

✓ , a₇₇ =0

×

A matriz B_{MFO} tem a forma $B_{MFO}=egin{bmatrix} b_{11} \ b_{21} \ b_{31} \ b_{41} \ b_{51} \ b_{61} \ \end{pmatrix}$

 $\lfloor b_{71} \rfloor$

 b_{41} . Assim, os elementos da matriz B_{MFO} são:

 $b_{11} = 0$

~ ,

 $b_{21} = 0$

v

 $b_{31} = 0$

~ ,

 $b_{41} =$

ı	
	_

 $m{arphi}$, $b_{51}=$

~ .

$$b_{61} = 0$$

$$b_{71} =$$

~ .

A matriz C_{MFO} tem a forma $C_{MFO} = [c_{11} \quad c_{12} \quad c_{13} \quad c_{14} \quad c_{15} \quad c_{16} \quad c_{17}]$. Assim, os elementos da matriz C_{MFO} são:

 $c_{11} =$

2

$$\checkmark$$
 , $c_{12} =$

~

Questão **3**Parcialmente correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Projete um controlador por realimentação de estados sem a integral do erro de rastreamento da referência para que o sistema em malha fechada tenha polos em $s_{1,2}=-2$ e $s_3=-20$ e rastreie uma referência do tipo degrau com erro nulo.

Na sequência, projete um observador de estados para este sistema. Os autovalores do observador devem ser $\mu_{1,2}=-20\,$ e $\mu_3=-200\,$

A soma dos elementos da matriz de controlabilidade do sistema a ser controlado vale:

32

V

O posto da matriz de controlabilidade é:

3

V

Portanto, o sistema é: Controlável 🗢 🗸 .

O vetor de ganhos do controlador é dado por $K = [k_1 \quad k_2 \quad k_3]$. Assim, os ganhos do controlador são:

 $k_1 = 68$

 \checkmark , $k_2 = 65$

 \checkmark , $k_3 =$

~

A soma dos elementos da matriz de observabilidade do sistema vale:

-31

~ .

O posto da matriz de observabilidade é:

3

~ .

Portanto, o sistema é: Observável 💠 🗸 .

O vetor de ganhos do observador é dado por $K_{\rm e} = \left[egin{array}{cc} k_{\rm e1} & k_{\rm e2} & k_{\rm e3} \end{array}
ight]^T$. Assim, os ganhos do observador são:

 $k_{e1} = 32077$

~ ,

 $k_{e2} =$ -63922

~

 $k_{e3} =$ 134369

✓.

O sistema controlado juntamente com o observador de estados pode ser representado por:

$$\begin{bmatrix} \dot{x} \\ \vdots \\ \ddot{x} \end{bmatrix} = A_{MFO} \begin{bmatrix} x \\ \ddot{x} \end{bmatrix} + B_{MFO}ref$$

$$y = C_{MFO} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}$$

onde $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ é o vetor de estados do sistema e $\tilde{x} = \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \end{bmatrix}^T$ é o vetor de estados estimados.

 $A \text{ matriz } A_{MFO} \text{ tem a forma } A_{MFO} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ a_{71} & a_{72} & a_{73} & a_{74} & a_{77} & a_{77} \end{bmatrix}$

. Assim, os elementos da matriz A_{MFO} são:

- $a_{11} = 0$
- ✓ , a₁₂ =

 1
- \checkmark , $a_{13} = 0$
- , a₁₄ =
- ✓ , a₁₅ =
- ✓ , a₁₆ =

 0
- ~
- $a_{21} = 0$
- √ , a₂₂ =
 0
- ✓ , a₂₃ =

 1
- \checkmark , $a_{24} = 0$
- \checkmark , $a_{25} = 0$
- ✓ , a₂₆ =0
- ~
- **a**₃₁ =
- **✓** , **a**₃₂ =
- **✓** , **a**₃₃ =
- **✓** , **a**₃₄ =
- \checkmark , $a_{35}=$

✓ ,
$$a_{36} =$$

~ ,

$$a_{41} =$$

32077

$$\checkmark$$
, $a_{43} = 0$

$$\checkmark$$
 , $a_{56} = 0$

~ ,

✓ ,
$$a_{54} =$$
127844

~ ,

$$\checkmark$$
 , $a_{63} = 0$

✔ .

b ₁₁ = 0 \$\frac{1}{2}\$ = 0 \$\frac{1}{2}	A matriz B_{MFO} tem a forma $B_{MFO}=egin{bmatrix} b_{11}\b_{21}\b_{31}\b_{41}\b_{51}\b_{61} \end{bmatrix}$. Assim, os elementos da matriz B_{MFO} são:	
A matriz C_{MFO} tem a forma $C_{MFO} = [c_{11} c_{12} c_{13} c_{14} c_{15} c_{16}]$. Assim, os elementos da matriz C_{MFO} são: $c_{11} = $	$b_{21} = 0$ v , $b_{21} = 0$ v , $b_{31} = 0$ v ,	
C ₁₁ =		
Seguir para \$	$c_{11} = 2$ \checkmark , $c_{12} = 1$ \checkmark , $c_{13} = 0$ \checkmark , $c_{14} = 0$ \checkmark , $c_{15} = 0$ \checkmark , $c_{16} = 0$	
	Seguir para	Prova 2 CP ►