CommerceGuard AB CG-CFR03

December 12, 2006

Report No. SUPR0062 Rev. 1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2006 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: December 12, 2006 CommerceGuard AB Model: CG-CFR03

Emissions					
Test Description	Specification	Test Method	Pass	Fail	
AC Powerline Conducted Emissions	FCC 15.207:2006	ANSI C63.4:2003	\boxtimes		
Conducted Emissions	FCC 15.107:2006	ANSI C63.4:2003	\boxtimes		
Radiated Emissions	FCC 15.109:2006	ANSI C63.4:2003	\boxtimes		
Band Edge Compliance	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074	\boxtimes		
Occupied Bandwidth	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074	\boxtimes		
Output Power	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074	\boxtimes		
Power Spectral Density	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074	\boxtimes		
Spurious Conducted Emissions	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074	\boxtimes		
Spurious Radiated Emissions	FCC 15.247:2006 DTS	ANSI C63.4:2003, KDB No. 558074			

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Description	Date	Page Number
----------------------	------	-------------

01	Changed report number on cover page	12/19/06	Cover Page
01	Changed company information from Supra Products, Inc. to CommerceGuard AB.	12/19/06	Cover Page, 2, 7, 8, 9, 12, 16, 17, 20, 24, 28, 31, 35, 39, 43, 44

Accreditations and Authorizations

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TUV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: C-2094 and R-1943, Sultan: R-871, C-1784 and R-1761).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	CommerceGuard AB
Address:	Gustavslundsvägen 151A
City, State, Zip:	S-167 51 Bromma Sweden
Test Requested By:	Adam Purdue
Model:	CG-CFR03
First Date of Test:	December 4, 2006
Last Date of Test:	December 7, 2006
Receipt Date of Samples:	December 4, 2006
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Proprietary Data spread spectrum (DTS) radio operating at 2.4 GHz.

Testing Objective:

These tests were selected to satisfy the EMC requirements for the FCC.

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 SUPR0062

Software/Firmware Running during test	
Description	Version
TNT Mobile	3.0.10.27560

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	CommerceGuard AB	CG-CFR03	TST0040

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Host System	TDS	Recon	None	
AC Adapter	CUI, Inc.	41-5-550D	EIA3630534S	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.85m	No	AC Adapter	Host System
PA = Cable	is permanently	attached to the device	e. Shielding ar	nd/or presence of ferrite m	ay be unknown.

CONFIGURATION 2 SUPR0062

Software/Firmware Running during test	
Description	Version
TNT Mobile	3.0.10.27560

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	CommerceGuard AB	CG-CFR03	TST0036

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Host System	TDS	Recon	None	
AC Adapter	CUI, Inc.	41-5-550D	EIA3630534S	
AC Adapter	Stancor	STA-4130	None	
Extender card	Elan	Unknown	Unknown	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.85m	No	AC Adapter	Host System
DC Power	No	1.85m	No	AC Adapter	Extender card
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 9/21/05

CONFIGURATION 3 SUPR0062

Software/Firmware Running during test	
Description	Version
TNT Mobile	3.0.10.27560

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	CommerceGuard AB	CG-CFR03	TST0036

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Host System	TDS	Recon	None	
AC Adapter	CUI, Inc.	41-5-550D	EIA3630534S	
AC Adapter	Stancor	STA-4130	None	
Extender card	Elan	Unknown	Unknown	
Extender card	Unknown	Unknown	Unknown	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.85m	No	AC Adapter	Host System
DC Power	No	1.85m	No	AC Adapter	Extender card
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 4 SUPR0062

Software/Firmware Running during test	
Description	Version
CF Test Tool	1.0.0.14474

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	CommerceGuard AB	CG-CFR03	TST0036

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Host System	TDS	Recon	None		
AC Adapter	CUI, Inc.	41-5-550D	EIA3630534S		
AC Adapter	Stancor	STA-4130	None		
Extender card	Elan	Unknown	Unknown		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.85m	No	AC Adapter	Host System
DC Power	No	1.85m	No	AC Adapter	Extender card
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	12/4/2006	Radiated Emissions from Digital Portion	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	12/4/2006	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	12/5/2006	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	12/5/2006	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	12/5/2006	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	12/5/2006	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	12/5/2006	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
8	12/7/2006	Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
9	12/7/2006	AC Power Line Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

PSA 2006.10.30

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Normal Operating Mode

MODE USED FOR FINAL DATA

Normal Operating Mode

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED Start Frequency 30MHz Stop Frequency 1000MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Biconilog	EMCO	3142	AXB	1/6/2005	24
Pre-Amplifier	Miteq	AM-1551	AOY	4/5/2006	13
Spectrum Analyzer	Agilent	E4443A	AAS	1/8/2006	12

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made usir	ng the bandwidths and dete	ectors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

RADIATED EMISSIONS DATA SHEET EMI 2006.11.29 **EMC** EUT: CG-CFR03 Work Order: SUPR0062 Serial Number: TST0040 Date: 12/04/06 Customer: CommerceGuard AB Temperature: 23 Attendees: None **Humidity: 25%** Project: None Tested by: Travis Rychener Barometric Pres.: 29.95 Power: 120VAC/60Hz Job Site: EV11 TEST SPECIFICATIONS Test Method FCC 15.109:2006 ANSI C63.4:2003 EN 55022:1998 (Amended by A1:2000 and A2:2003): CISPR 22:2006: CISPR 22:2006: CISPR 22:2006: TEST PARAMETERS Antenna Height(s) (m) Test Distance (m) COMMENTS Running TNT Mobile App **EUT OPERATING MODES** Normal Operating Mode DEVIATIONS FROM TEST STANDARD No deviations. Run# Configuration # 1 Results Pass Signature 80.0 70.0 60.0 50.0 dBuV/m 40.0 30.0 • • • 20.0 • 10.0 0.0 100.000 10.000 1000.000 MHz External Amplitude Factor Azimuth Height Distance Polarity Adjustment Adjusted Spec. Limit Freq Attenuation Detector Spec. (dB) dBuV/m dBuV/m (dB) (MHz) (dBuV) (degrees) (meters) (meters) (dB) (dB) H-Bilog 120.021 54.6 -26.9197.0 3.9 10.0 0.0 ΩP 0.0 27 7 30.0 -2.3 696.720 43.5 -11.1 142.0 3.5 10.0 0.0 H-Bilog QP 0.0 32.4 37.0 -4.6 760.030 41.3 -10.7 113.0 1.0 10.0 0.0 H-Bilog QP 0.0 30.6 37.0 -6.4 47.0 H-Bilog QΡ 37.0 380.024 -16.8 54.0 2.5 10.0 0.0 0.0 30.2 -6.8 120.018 -26.9 118.0 V-Bilog QP 48.3 1.4 10.0 0.0 0.0 21.4 30.0 -8.6 H-Bilog ΩP 520.025 -14 0 135.0 1.5 10.0 28.3 37.0 -87 423 0.0 0.0 QP H-Bilog 600.028 39.5 -12.7333.0 2.0 10.0 0.0 0.0 26.8 37.0 -10.2800.033 37.2 -10.8 1.0 1.0 10.0 0.0 H-Bilog QΡ 0.0 26.4 37.0 -10.6 340.024 43.8 -18.1 291.0 2.8 0.0 H-Bilog QP 0.0 25.7 37.0 -11.3 10.0 132.731 43.4 -26.6 221.0 3.6 10.0 0.0 H-Bilog QΡ 0.0 16.8 30.0 -13.2 H-Bilog QP 160 020 40.8 -24 6 246.0 1.0 10.0 0.0 0.0 16.2 30.0 -138 H-Bilog -14.5 43 698 37.2 -21.7 241.0 3.1 10.0 0.0 ΩP 0.0 15.5 30.0

42.861

31.5

-21.4

241.0

3.1

10.0

0.0

H-Bilog

QP

0.0

10.1

30.0

-19.9

Radiated Emissions

Radiated Emissions

CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

TNT Mobile Scan

POWER SETTINGS INVESTIGATED

120V/60Hz

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	T.T.E.	7766	HFG	12/19/2005	13
Attenuator	Coaxicom	66702 2910-20	AUA	5/2/2006	13
Receiver	Rohde & Schwartz	ESCI	ARG	6/22/2006	13
LISN	Solar	9252-50-R-24-BNC	LIP	12/13/2005	13

MEASUREMENT BANDWIDTHS								
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				
M	easurements were made usi	ng the bandwidths and dete	ctors specified. No video filt	er was used.				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

NORTHWEST **CONDUCTED EMISSIONS** NVLAP Lab Code 200630-0 Work Order: SUPR0062 12/07/06 None Temperature: 22 Project Humidity Job Site: EV07 31 Tested by: David DiVergigelis Serial Number: TST0040 Barometric Pres. 29.93 EUT: CG-CFR03 Configuration: Customer: CommerceGuard AB Attendees None **EUT Power:** 120V/60Hz TNT Mobile Scan **Operating Mode** No deviations **Deviations** Host system TDS Recon Comments Test Specifications Class B Test Method FCC 15.107:2006 ANSI C63.4:2003 Line: High Line Ext. Attenuation: Results Run# Pass 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 90 90 70 70 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0 0.10 100.00 10.00 0.10 MHz MHz Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit Compared to Compared to Freq Amplitude Adjusted Spec. Freq Amplitude Factor Adjusted Spec. Limit Spec. (MHz) (dBuV) (dB) dBuV dBuV (dB) (MHz) (dBuV) (dB) dBuV dBuV (dB) 0.167 52.6 -12.5 0.167 45.1 -10.0 30.9 1.7 65.1 23.4 1.7 55.1 0.198 25.5 1.0 46.5 63.7 -17.2 0.198 17.2 53.7 -15.5 1.0 38.2 0.233 20.4 62.3 -21.0 0.736 29.0 46.0 -17.0 1.0 41.4 8.3 0.7

0.736

0.434

0.264

0.567

13.1

13.0

16.5

0.7

0.9

1.0

33.8

33.9

37.5

31.6

56.0

57.2

61.3

56.0

-22.2

-23.3

-23.8

0.233

0.434

0.264

0.567

13.2

7.0

10.1

4.9

1.0

0.9

1.0

34.2

27.9

31.1

52.3

47.2

51.3

-18.2

-19.3

-20.2

-20.3

CONDUCTED EMISSIONS

PSA 2006.10.30

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmit mode

MODE USED FOR FINAL DATA

Transmit mode

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency 30MHz Stop Frequency 26500MHz

CLOCKS AND OSCILLATORS

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	3/23/2006	13
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	5/12/2006	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	HPM50108	HFV	11/28/2005	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	4/4/2006	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/6/2006	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/6/2006	13
Spectrum Analyzer	Agilent	E4446A	AAT	4/4/2006	12

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

Spurious Radiated Emissions

Spurious Radiated Emissions

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Attenuator	Pasternack	PE7005-20	AUN	2/14/2006	13				
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to the only transmit frequency. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST EMC		Occupied Ban	dwidth			XMit 2006.08.24
EUT:	CG-CFR03			Work Order	r: SUPR0062	
Serial Number:	: TST0036			Date	e: 12/05/06	
Customer:	CommerceGuard AB			Temperature		
Attendees:				Humidity		
Project:				Barometric Pres		
	Holly Ashkannejhad	Po	wer: 120V/60Hz	Job Site	:: EV06	
TEST SPECIFICAT	TONS		Test Method			
FCC 15.247:2006 D	DTS		ANSI C63.4:2003, KD	B No. 558074		
COMMENTS						
DEVIATIONS FROI	M TEST STANDARD					
Configuration #	4	Signature Holy Ali	N			
	·		·	Value	Limit	Results
Single Channel - 24	40MHz	·		14.05 MHz	≥ 500 kHz	Pass

Occupied Bandwidth

Single Channel - 2440MHz

Result: Pass Value: 14.05 MHz Limit: ≥ 500 kHz

Occupied Bandwidth

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
RF Detector	RLC Electronics	CR-133-R	ZZA	NCR	0
Attenuator		93459 3330A-6	AUF	1/3/2006	13
Attenuator	Pasternack	PE7005-20	AUN	2/14/2006	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Oscilloscope	Tektronix	TDS 3052	TOF	12/8/2005	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was transmitting at its maximum output power. The data rate of the radio was varied to determine the level that produced the highest output power.

The measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The DC output of the diode was measured with the oscilloscope. The signal generator, tuned to the transmit frequency, was then substituted for the EUT. The CW output of the signal generator was adjusted until the DC output of the RF detector diode match the peak level produced when connected to the EUT. To further reduce measurement error, the power meter and sensor were then used to measure the output power level of the signal generator.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST		0 (XMit 2006.08.24
EMC		Output Power		
EUT:	CG-CFR03		Work Order:	SUPR0062
Serial Number:	TST0036		Date:	12/05/06
Customer:	CommerceGuard AB		Temperature:	23°C
Attendees:			Humidity:	27%
Project:			Barometric Pres.:	30.33
	Holly Ashkannejhad	Power: 120V/60Hz		EV06
TEST SPECIFICAT	IONS	Test Method	d	
FCC 15.247:2006 D	TS	ANSI C63.4	1:2003, KDB No. 558074	
COMMENTS				
Transmitting				
DEVIATIONS FROM	M TEST STANDARD			
Configuration #	4	1/ a. A. lind		
oomiga allom	·	Signature Holy Saling		
			Value	
			dBm mW	Limit Results
Single Channel		·	-0.5 0.92	1 Watt Pass

Bandedge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Attenuator	Pasternack	PE7005-20	AUN	2/14/2006	13				
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST		Bandedge	Compl	iance			XMit 2006.08.24
EMC		24.14.54.95	ор.	10.1100			
	CG-CFR03				Work Order:		
Serial Number:						12/05/06	
Customer:	CommerceGuard AB				Temperature:		
Attendees:	None				Humidity:		
Project:	None				Barometric Pres.:	30.33	
	Holly Ashkannejhad		Power:	120V/60Hz	Job Site:	EV06	
TEST SPECIFICATI	IONS			Test Method			
FCC 15.247:2006 D	TS			ANSI C63.4:2003, KDB No	o. 558074		
COMMENTS							
DEVIATIONS FROM	M TEST STANDARD						
Configuration #	4	Signature Holy	Solings	\mathcal{Q}			
					Value	Limit	Results
Single channel - 244							
	Lower bandedge				≤ -25 dBc	≤ -20 dBc	Pass
	Upper bandedge				≤ -30 dBc	≤ -20 dBc	Pass

Bandedge Compliance

Single channel - 2440MHz, Lower bandedge

Result: Pass Value: ≤ -25 dBc Limit: ≤ -20 dBc

Single channel - 2440MHz, Upper bandedge

Result: Pass Value: ≤ -30 dBc Limit: ≤ -20 dBc

Bandedge Compliance

Spurious Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Pasternack	PE7005-20	AUN	2/14/2006	13
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to transmit mode. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST Spurious Conducted Emissions								
EUT:	CG-CFR03	Work Ord	er: SUPR0062	2				
Serial Number:			te: 12/05/06					
Customer:	CommerceGuard AB	Temperatu	re: 23°C					
Attendees:	None	Humid	ity: 27%					
Project:	None	Barometric Pro	s.: 30.33					
Tested by:	Holly Ashkannejhad		te: EV06					
TEST SPECIFICATI	IONS	Test Method						
FCC 15.247:2006 D	TS	ANSI C63.4:2003, KDB No. 558074						
COMMENTS								
DEVIATIONS FROM	M TEST STANDARD							
Configuration #	4	Signature Holy Aling						
		Value	Limit	Results				
Single Channel - 244								
	0 Hz - 3.0GHz	≤ -25 dBc		Pass				
	2.99GHz - 26 GHz	≤ -40 dBd	≤ -20 dBc	Pass				

Spurious Conducted Emissions

Single Channel - 2440MHz, 3 GHz - 26 GHz

Result: Pass Value: ≤ -40 dBc Limit: ≤ -20 dBc

Spurious Conducted Emissions

Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Attenuator	Pasternack	PE7005-20	AUN	2/14/2006	13				
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to transmit mode. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure can be used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

NORTHWEST EMC		Power Spectra	al Density			XMit 2006.08.24
EUT	: CG-CFR03			Work Order:	SUPR0062	2
Serial Number	: TST0036			Date	12/05/06	
Customer	: CommerceGuard AB			Temperature:	23°C	
Attendees	: None			Humidity:	27%	
Project	: None			Barometric Pres.:	30.33	
	: Holly Ashkannejhad		Power: 120V/60Hz	Job Site:	EV06	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.247:2006 [DTS		ANSI C63.4:2003, KD	B No. 558074		
COMMENTS						
DEVIATIONS FRO	M TEST STANDARD					
Configuration #	4	Signature Holy A	light			
				Value	Limit	Results
Single Channel - 24	440MHz	_		-15.06 dBm	≤ 8 dBm	Pass

Power Spectral Density

Single Channel - 2440MHz

Result: Pass Value: -15.06 dBm Limit: ≤ 8 dBm

Power Spectral Density

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmit mode

POWER SETTINGS INVESTIGATED

120V/60Hz

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT										
Description	Manufacturer	Model	ID	Last Cal.	Interval					
High Pass Filter	T.T.E.	7766	HFG	12/19/2005	13					
Attenuator	Coaxicom	66702 2910-20	AUA	5/2/2006	13					
Receiver	Rohde & Schwartz	ESCI	ARG	6/22/2006	13					
LISN	Solar	9252-50-R-24-BNC	LIQ	12/13/2005	13					
LISN	Solar	9252-50-R-24-BNC	LIP	12/13/2005	13					

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
Measurements were made using the bandwidths and detectors specified. No video filter was used.									

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

AC POWERLINE CONDUCTED EMISSIONS NVLAP Lab Code 200630-0 SUPR0062 12/07/06 Temperature: 22 Project None Job Site EV07 Humidity 31 TST0036 **Barometric Pres.** 29.93 Tested by: David DiVergigelis Serial Number: EUT: CG-CFR03 Configuration: Customer: CommerceGuard AB Attendees None EUT Power: 120V/60Hz Transmit mode **Operating Mode** No deviations **Deviations** Host system TDS Recon Comments Test Specifications Class B Test Method FCC 15.207:2006 ANSI C63.4:2003 Ext. Attenuation: Run# Line: High Line Results Pass Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit 100 90 90 70 70 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 100.00 0.10 MHz MHz Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit Compared to Compared to Freq Amplitude Adjusted Freq Amplitude Factor Adjusted Spec. (dBuV) (dB) dBuV (dB) (dBuV) (dB) (dB) (MHz) (MHz) 0.164 0.164 48.2 26.5 1.7 48.2 65.3 -17.1 26.5 1.7 55.3 -7.1 0.174 26.1 -17.2 0.174 47.6 54.8 -7.2 1.5 47.6 64.8 26.1 1.5 65.6 0.157 55.6 -7.3 0.157 26.5 1.9 48.4 -17.3 26.5 48.4 1.9 0.182 24.9 1.4 46.3 -18.1 0.182 46.3 54.4 -8.1 64.4 24.9 1.4 0.473 15.9 0.8 36.7 56.5 -19.7 0.473 15.9 0.8 36.7 46.5 -9.7 0.444 15.4 8.0 36.2 57.0 -20.7 0.444 15.4 0.8 36.2 47.0 -10.7 0.196 21.7 1.1 42.8 63.8 -21.0 0.196 21.7 42.8 53.8 -11.0 1.1 0.543 14.1 0.8 34.9 56.0 -21.1 0.543 14.1 0.8 34.9 46.0 -11.1 0.177 21.6 43.1 0.177 21.6 43.1 1.5 29.500 17.4 38.0 60.0 -22.0 29.500 17.4 38.0 50.0 -12.0 0.815 13.2 0.6 33.8 56.0 -22.2 0.815 13.2 33.8 46.0 -12.2 0.677 12.6 0.7 33.3 56.0 -22.7 0.677 12.6 0.7 33.3 46.0 -12.7 0.900 12.7 0.6 33.3 56.0 -22.7 0.900 12.7 0.6 33.3 46.0 -12.7 0.833 12.5 0.6 33.1 56.0 -22.9 0.833 12.5 0.6 33.1 46.0 -12.9 0.609 122 0.7 32.9 56.0 -23.1 0.609 12.2 0.7 32 9 46.0 -13.1 1.648 12.4 0.5 32.9 56.0 -23.1 1.648 12.4 0.5 32.9 46.0 -13.1 0.859 12.3 0.6 32.9 56.0 -23.10.859 12.3 0.6 32.9 46.0 -13.1 0.767 12.2 0.6 32.8 56.0 -23.2 0.767 12.2 0.6 32.8 46.0 -13.2

0.626

0.203

12.1

193

0.7

1.0

32.8

40.3

56.0

63.5

-23.2

-23 2

0.626

0.203

12.1

193

0.7

1.0

32.8

40.3

46.0

53.5

-13.2

-13 2

AC POWERLINE CONDUCTED EMISSIONS NVLAP Lab Code 200630-0 SUPR0062 12/07/06 Temperature: 22 Project None Job Site EV07 Humidity 31 TST0036 **Barometric Pres.** 29.93 Tested by: David DiVergigelis Serial Number: EUT: CG-CFR03 Configuration: Customer: CommerceGuard AB Attendees None EUT Power: 120V/60Hz Transmit mode **Operating Mode** No deviations **Deviations** Host system TDS Recon Comments Test Specifications Class B Test Method FCC 15.207:2006 ANSI C63.4:2003 Ext. Attenuation: Run# Line: Neutral Results Pass Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit 100 90 90 70 70 60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 0.10 100.00 0.10 MHz MHz Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit Compared to Compared to Freq Amplitude Adjusted Freq Amplitude Factor Adjusted Spec. (dBuV) (dB) dBuV (dBuV) (dB) (dB) (MHz) (MHz) 0.152 0.152 49.4 27.4 2.0 49.4 65.9 -16.5 27.4 2.0 55.9 -6.5 0.160 27.1 -16.6 0.160 27.1 48.9 55.5 -6.6 1.8 48.9 65.5 1.8 -17.7 0.172 54.9 -7.7 0.172 25.6 1.6 47.2 64.9 25.6 1.6 47.2 0.179 24.3 45.7 64.5 -18.8 0.179 24.3 45.7 54.5 -8.8 1.4 1.4 0.488 15.7 0.8 36.5 56.2 -19.7 0.488 15.7 0.8 36.5 46.2 -9.7 0.451 15.7 0.8 36.5 56.9 -20.3 0.451 15.7 36.5 46.9 -10.3 0.8 0.538 0.538 14.3 8.0 35.1 56.0 -20.9 14.3 0.8 35.1 46.0 -10.9 0.186 21.8 1.3 43.1 64.2 -21.1 0.186 21.8 43.1 54.2 -11.1 1.3 0.827 0.6 34.1 0.827 0.803 13.3 33.9 56.0 -22.1 0.803 13.3 0.6 33.9 46.0 -12.1 0.592 13.1 33.9 56.0 -22.1 0.592 13.1 33.9 -12.1 29.500 17.1 0.6 37.7 60.0 -22.3 29.500 17.1 0.6 37.7 50.0 -12.3 0.585 12.9 0.8 33.7 56.0 -22.3 0.585 12.9 0.8 33.7 46.0 -12.3 0.196 20.2 1.1 41.3 63.8 -22.5 0.196 20.2 41.3 53.8 -12.5 0.611 12 7 0.7 33.4 56.0 -22.6 0.611 12.7 0.7 33.4 46.0 -12.6 0.672 12.6 0.7 33.3 56.0 -22.7 0.672 12.6 0.7 33.3 46.0 -12.7 1.120 12.7 0.5 33.2 56.0 -22.8 1.120 12.7 0.5 33.2 46.0 -12.82.704 12.7 0.5 33.2 56.0 -22.8 2.704 12.7 0.5 33.2 46.0 -12.8

1.936

3 784

12.6

12.5

0.5

0.5

33.1

33.0

56.0

56.0

-22.9

-23.0

1.936

3 784

12.6

125

0.5

0.5

33.1

33.0

46.0

46.0

-12.9

-13.0

AC POWERLINE CONDUCTED EMISSIONS

