AKHIL.S
2021MT12054

ADVANCED STATISTICAL TECHNIQUES FOR ANALYTICS ASSIGNMENT

\mathbb{Q}	1
	_

Null Hypothesis > Ho: The course feedback Alternate Hypothesis > H1: Atleast one mean is averages given by the professors are equal different from the rost $(\mu_A = \mu_B = \mu_c = \mu_D)$

 $\eta = 12$ $\eta = 12$ $\eta = 3$

	A	В	C	D
X	4.5	4-2	3.3	3.6
У	3-8	4.1	2.7	4
Z	4	3.4	3.4	3
\leq	12.3	11.7	9.4	10.6

$$S = T = 44$$

Cossection Factor $CF = \frac{T^2}{m} = \frac{44^2}{17} = \frac{161.333}{17}$

$$SST = \sum_{i=0}^{3} \sum_{j=0}^{2} x_{ij} - CF = (4.5^{2} + 3.8^{2} + \dots + 4^{2} + 3^{2}) - 161.333$$

$$= 3.0667$$

$$SSTR = \frac{3}{100} \left(\sum_{j=0}^{2} x_{ij} \right)^{2} - CF = 12.3^{2} + 11.7^{2} + 9.4^{2} + 10.6^{2} - 161.333$$

$$= 1.6334$$

$$SSE = SST - SSTR = 3.0667 - 1.6334$$

= 1.4333

$$MSTR = SSTR = 1.6334 = 0.5445$$

 $9-1$

$$MSE = SSE = 1.4333 = 0.1792$$
 $n-r$
8

$$F = \frac{MSTR}{MSE} = \frac{0.5445}{0.1792} = \frac{3.0385}{0.1792}$$

01	
CONT.	•

<u>HNNOYA SUMMARY</u>				
SOURCE OF VARIATION	SUM OF SQUARES	d.o.f	MEAN SQUARES	F-VALUE
Between Sample (COURSE)	SSTR = 1.6334	- 0	MSTR = 0.5445	3.0385
Within Sample (ERROR)	SSE = 1.4333	ท–ภ= 8	MSE = 0.1792	
TOTAL	SST = 3.0667	$\eta - 1 = 11$	<u> </u>	
	,	г		

Table Value F(0.01 confidence, d.0, f3,8) = 7.591 [From F Table for $\alpha = 0.01$]

3.0385 < 7.591 => Null hypothesis is accepted at 1% level of Significance since calculated F value is less than Fralue from table. We can conclude that course feedback of professors is statistically similar for all courses

Q2

PROCESS	SAMPLE SIZE	MEAN LIFE	STD DEVIATION	dof = 20+25-2
A	20	20400	100	= 43
В	25	21800	100	<u> </u>

We are given two means and the samples dof > 30, hence To test the hypothesis we will employ the Z-test. We will use two tailed since we are checking if the samples are statistically different Null hypothesis Ho: The two sample mean lives are similar

Alternate hypothesis Hi: The two sample means are significantly statistically different.

 $\overline{x}_{A} = 20400$ $\overline{x}_{B} = 21800$ $n_{A} = 20$ $n_{B} = 25$ $S_{A} = S_{B} = 100$

$$\frac{7}{\sqrt{\frac{S_{A}^{2} + \frac{S_{B}^{2}}{\eta_{A}}}} - \frac{20400 - 21800}{100} - \frac{-14}{3/10} - \frac{-46.667}{3/10}$$

AKHIL.S 2021MT12054

Q2 CONT.,

For the two tail test at 5% significance the Z value is 1.960. The region of acceptance for the null hypothesis is between '-1.96 to 1.96. The calculated Z (-46.667)

-1.960

is lesser than-1.96 hence we can reject the null hypothesis

ACCEPTANCE REGION

1.960

REJECTION

Q3	x(QUIZ)	Y (ASSIGNMENT)	X= α- - \ \tau	X	Y= y- y	7	XY	
	5	8.5	0.425	0.1806	-0.525	0.2756	-O·2231	
	4.5	9	-0.075	0.0056	-0.025	0.0006	0.0019	
	3	5-5	-1.575	2.4806	-3.525	12.4256	5.5519	
	5	9.5	0.425	0.1806	0.475	0.2256	0-2019	
	4.5	9	-0.075	0.0056	-0.025	0.0006	0.0019	
	4.5	9.5	-0.075	0.0056	0.475	0.1256	-0.0356	
	4.5	10	-0.075	0.0056	0.975	0.9506	-0.0731	
	5	9.5	0.425	0.1806	0.475	0.2256	0.2019	
	5	9	0.425	0.1806	-0.025	0.0006	-0.0106	
	4.5	9	-0.075	0.0056	-0.025	0•0006	0.0019	
	4.5	10	-0.075	0.0056	0-975	0.9506	- 0·6731	
	4.5	10	-0.075	0.005	0.975	0.9506	-0.073]	
	5	8.5	0.425	0.1806	-0.525	0.2756	-0.2231	
	3.5	9	-1.075	1.1556	-0.025	0-0006	0.0269	
	4.5	7.5	-0.075	0.0036	-1.525	2:3256	0.1144	
	S	9.5	0.425	0.1806	0.475	0.2256	0.2019	
	5	9.5	0.425	0.1806	0.475	0.2256	0.2019	
	4.5	9.5	-0.075	0.0056	0.475	0.2256	-0.0356	
	5	9	0.425	0.1806	-0.025	0.0006	-0.0106	
	4.5	9.5	-0.075	0-0056	0.475	0.2256	-0.0356	
\sum	91.5	180.5		5.1375		19.7375	5.7125	
	~ - 4.67	- 4- a.075						

 $\chi = 4.575$ y = 9.025

AKHIL.S 2021MT12054

Q3
$$\eta = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}} = \frac{5.7125}{5.1375 \times 19.7375} = 0.5673$$
 (0< \gamma < 1)

The I value lies between 0 and 1, so this means that the two variables show a positive partial correlation

<u>Q4</u>

Null Hypothesis \rightarrow Ho: The selling abilities of the three salesmen (X,YkZ) are same Alternate Hypothesis $\rightarrow H_1$: Atleast one salesman's selling ability is different from the rest

	X	Y	Z	X	ر ا	Z
	5	3	5	25	9	25
	4	7	3	16	49	9
	7	4	5	49	16	25
	8	6	4	64	36	16
	6	1	3	36	1	9
Σ	30	20	20	190	110	84

$$T = 30 + 20 + 20 = 70$$
 $T^2 = 4900$
 $90 = 3$
 $10 = 14$

$$SST = (Zx^2 + ZY^2 + ZZ^2) - CF = 190 + 110 + 84 - 350 = 34$$

$$SSTR = \frac{(ZX)^2 + (ZY)^2 + (ZZ)^2 - CF}{n_X} = \frac{900}{5} + \frac{400}{4} + \frac{400}{5} = \frac{10}{5}$$

$$SSE = SST - SSTR = 34-10 = 24$$

$$MSTR = \frac{SSTR}{9-1} = \frac{10}{2} = \frac{5}{2}$$

$$MSE = \frac{SSE}{n-9} = \frac{24}{11} = \frac{2.1818}{11}$$

$$F = \frac{MSTR}{MSE} = \frac{5}{2.1818} = \frac{2.2917}{1.1818}$$

AKHIL.S 2021MT12054

Q4 CONT..

ANNOYA SUMMARY

_					
	SOURCE OF VARIATION	SUM OF SQUARES	d.o.f	MEAN SQUARES	F-VALUE
	Between Sample (PROFESSOR)		, v	MSTR = S	2.2917
	Within Sample (ERROR)	SSE = 24		MSE = 2.1818	
	TOTAL	SST = 34	n-1 = 13		
	,	,			

Table Value $F(0.01 \text{ confidence}, d.0f_{2,11}) = 7.206$ Table Value $F(0.05 \text{ confidence}, dof_{2,11}) = 3.9823$ Table Value $F(0.1 \text{ confidence}, dof_{2,11}) = 2.8595$

Since the Fvalue (2.2917) is less than the table values for 1.1., 51. x 10% level of significance we can accept Ho and say that all 3 sales men have similar selling abilities at these levels of significance