

CS 325 I - Computer Networking I: Email and DNS

Professor Patrick Traynor Lecture 05 9/3/2013

Review

- Last week we talked about design principles, and the application protocols HTTP and FTP
 - Text commands sent over a port (recall telnet example)
 - Difference in statefullness
 - HTTP and FTP are primarily pull protocols

Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
- 2.5 DNS
- 2.6 P2P Applications

Electronic Mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

Electronic Mail: mail servers

Mail Servers

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction
 - commands: ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCII

Scenario: Alice sends message to Bob

- I) Alice uses UA to compose message and "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) Client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

```
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection
```

Try SMTP interaction for yourself:

- telnet servername 25
- see 220 reply from server
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

SMTP: final words

- SMTP uses persistent connections
 - Just like...?
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

Comparison with HTTP:

- HTTP: pull
- SMTP: push
- both have ASCII command/ response interaction, status codes
- HTTP: each object encapsulated in its own response msg
- SMTP: multiple objects sent in multipart msg

Mail message format

SMTP: protocol for exchanging email msgs

RFC 822: standard for text message format:

- header lines, e.g.,
 - ▶ To:
 - From:
 - Subject:

different from SMTP commands!

- body
 - the "message", ASCII characters only

Message format: multimedia extensions

- MIME: multimedia mail extension, RFC 2045, 2056
- additional lines in msg header declare MIME content type

Mail access protocols

- SMTP: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]
 - authorization (agent <-->server) and download
 - IMAP: Internet Mail Access Protocol [RFC 1730]
 - more features (more complex)
 - manipulation of stored msgs on server
 - ▶ HTTP: Gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase

- client commands:
 - user: declare username
 - pass: password
- server responses
 - → +OK
 - → ERR

transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- dele: delete
- quit

```
S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on
C: list
S: 1 498
S: 2 912
S:
C: retr 1
S: <message 1 contents>
C: dele 1
C: retr 2
S: <message 1 contents>
S:
C: dele 2
C: quit
```

S: +OK POP3 server signing off

POP3 (more) and IMAP

More about POP3

- Previous example uses "download and delete" mode.
- Bob cannot re-read email if he changes client
- "Download-and-keep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP

- Keep all messages in one place: the server
- Allows user to organize messages in folders
- IMAP keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name

Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
- 2.5 DNS
- 2.6 P2P Applications

DNS: Domain Name System

People: many identifiers:

SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., ww.yahoo.com used by humans

Q: map between IP addresses and name ?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network's "edge"

DNS

DNS services

- Hostname to IP address translation
- Host aliasing
 - Canonical and alias names
- Mail server aliasing
- Load distribution
 - Replicated Web servers: set of IP addresses for one canonical name

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

In summary, it doesn't scale!

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; Ist approx:

- Client queries a root server to find com DNS server
- Client queries com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD and Authoritative Servers

- Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
 - Network solutions maintains servers for com TLD
 - Educause for edu TLD
- Authoritative DNS servers: organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web and

mail).

 Can be maintained by organization or service provider

Local Name Server

- Does not strictly belong to hierarchy
- Each ISP (residential ISP, company, university) has one.
 - Also called "default name server"
- When a host makes a DNS query, query is sent to its local DNS server
 - Acts as a proxy, forwards query into hierarchy.

Example

- Host at cis.poly.edu wants IP address for gaia.cs.umass.edu
- iterated query:
 - contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

Recursive queries

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

DNS: caching and updating records

- once (any) name server learns mapping, it caches the mapping
 - cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- update/notify mechanisms under design by IETF
 - RFC 2136
 - http://www.ietf.org/html.charters/dnsind-charter.html

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g.
 foo.com)
 - value is hostname of authoritative name server for this domain

- Type=CNAME
 - name is alias name for some
 "canonical" (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com
 - value is canonical name
- Type=MX
 - value is name of mailserver associated with name

DNS protocol, messages

DNS protocol: query and reply messages, both with same message format

msg header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

← 2 bytes ← 2 bytes ←	
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
answers (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	

DNS protocol, messages

Name, type fields for a query

RRs in response to query

records for authoritative servers

additional "helpful" info that may be used

Inserting records into DNS

- Example: just created startup "Network Utopia"
- Register name networkuptopia.com at a registrar (e.g., Network Solutions)
 - Need to provide registrar with names and IP addresses of your authoritative name server (primary and secondary)
 - Registrar inserts two RRs into the com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

- Put in authoritative server Type A record for www.networkuptopia.com and Type MX record for networkutopia.com
- How do people get the IP address of your Web site?

DNS Security Issues

- Given that so many different servers can respond to your request, how do you know that what you get back is correct?
 - Are you sure that you spoke to the resolver you think you spoke to?
- What happens if you manage to give a resolver false look-up information?

DNS Cache Poisoning

DNS Attacks - Real?

- Golden Shield Project
- Kaminsky Attack
- Others?
 - Why is it difficult to know?

Same Bat Time...

- Peer-to-Peer architectures/applications
 - Read Section 2.6
- Socket Programming
 - The book uses Java, we are going to use C
 - If you haven't looked at the Pocket Sockets Guide.

