

transdim: Machine Learning for Transportation Data Imputation and Prediction

Reproducible Research Workshop
TRB 103rd Annual Meeting · Washington, D.C., USA

Xinyu Chen

January 11, 2024

Open-source & reproducible research:

- GitHub: https://github.com/xinychen
- 2 Slides: https://xinychen.github.io/slides/transdim.pdf

ML algorithms

transdim
(1.1k stars)

Visualization tools

Storytelling with Data

• Uber (hourly) movement speed data

NYC movement

- Seattle movement
- {road segment, time step (hour), average speed}
- ullet $Y \in \mathbb{R}^{N imes T}$ with N spatial locations imes T time steps
- Computing hourly speed: Road segments have 5+ unique trips.

Issue: Insufficient sampling of ridesharing vehicles on the road network!

Storytelling with Data

- Data
- Quality
- Sparsity
- Estimation
- Imputation
- Interpolation
- Forecasting

Storytelling with Data

Source: Twitter

Traffic Data Processing

Computing with numpy (numerical computing in Python)

- Data format: .npz (compressed format of .npy)
- Example
- Easy to connect with numpy (in CPU environment) & cupy (in GPU environment)

Reformulate Traffic Data Imputation

• Represent traffic data as tensors

Tensorization:
$$\boldsymbol{Y} \in \mathbb{R}^{m \times t} \to \boldsymbol{\mathcal{Y}} \in \mathbb{R}^{m \times n \times f}$$

w/m locations, n days, and f time intervals per day.

• Tensor completion (Observed index set Ω)

Reformulate Traffic Forecasting

Forecasting urban traffic states with sparse data

Problem definition (δ-step ahead forecasting)

$$\underbrace{\{ \boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_T \}}_{\text{Current traffic states}} \quad \underbrace{\{ \hat{\boldsymbol{y}}_{T+1}, \hat{\boldsymbol{y}}_{T+2}, \dots, \hat{\boldsymbol{y}}_{T+\delta} \}}_{\text{Future traffic states}}$$

Reformulate Traffic Forecasting

(Rolling) Forecasting urban traffic states with sparse data

1st rolling step: $\{oldsymbol{y}_1,oldsymbol{y}_2,oldsymbol{y}_3\} o \{oldsymbol{y}_4,oldsymbol{y}_5\}$

2nd rolling step: $\{ {m y}_1, {m y}_2, {m y}_3, {m y}_4, {m y}_5 \} o \{ {m y}_6, {m y}_7 \}$

3rd rolling step: $\{{m y}_1,{m y}_2,{m y}_3,{m y}_4,{m y}_5,{m y}_6,{m y}_7\} o \{{m y}_8,{m y}_9\}$

Switch from CPU to GPU

Python implementation of algorithms with the numpy package Easy to convert the codes from CPU to GPU

import numpy as np \Rightarrow import cupy as np

Why?

Academic:

- Sustainable research environment (w.r.t. us & followers)
- Interact with researchers from different fields
- Provide platform and benchmark for comparison
- Stimulate new algorithmic ideas

Industry:

Solution to ...

Next-step plan:

 Spatiotemporal data modeling: https://spatiotemporal-data.github.io

Thanks for your attention!

Any Questions?

About me:

★ Homepage: https://xinychen.github.io

GitHub: https://github.com/xinychen