Sicurezza delle Reti

Prof. Stefano Bregni

II Appello d'Esame 2022-23 – 20 luglio 2023

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

NB: In ogni esercizio, ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo.

Domanda 1

(svolgere su questo foglio nello spazio assegnato) (6 punti)

Bob adotta il sistema di cifratura a chiave pubblica di El Gamal e pubblica p = 293, $\alpha = 3$, $\beta = \alpha^a \mod p$, tenendo segreto l'esponente a = 45.

- a) Verificare la correttezza dei dati forniti, in base alle ipotesi del metodo di El Gamal. Se $\alpha = 3$ non risultasse una scelta valida, Bob userà invece un valore valido scelto nell'insieme $\alpha = \{9, 10\}$. Se nessuna di queste scelte risultasse valida. Bob rinuncerà a proseguire (e l'esercizio termina qui). Calcolare B.
- b) Alice estrae il numero casuale segreto (nonce) k = 16 e spedisce il messaggio $P_1 = 12$. Calcolare il messaggio cifrato $C_1 = (r_1, t_1).$
- c) Alice estrae un nuovo numero casuale segreto (nonce) k e, usando sempre questo stesso valore, spedisce i messaggi P_2 , P_3 , P_4 . Oscar intercetta i messaggi cifrati $C_2 = (r_2, t_2) = (111, 4)$, $C_3 = (r_3, t_3) = (111, 40)$, $C_4 = (r_4, t_4) = (111, 77)$

P₃, P₃, P₄, Dosar intercetta i messaggi citrat
$$C_2 = (P_1, E_2) = (111, 4)$$
, $C_3 = (P_3, E_3) = (111, 40)$, $C_4 = (P_4, E_3) = (111, 7)$
e, per altra via, viene a sapere che $P_2 = \mathbb{R}$ Calcolare $P_3 \in P_4$.

Talt $90 \times 6 = 111, 70$

Talt $90 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$
 $0 \times 111, 10 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt $90 \times 6 \times 6 = 111, 70$

Talt

Sicurezza delle Reti

Prof. Stefano Bregni

II Appello d'Esame 2022-23 – 20 luglio 2023

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio nello spazio assegnato) (7 punti)

Bob adotta il sistema di firma elettronica di El Gamal e pubblica p = 101, $\alpha = 5$, $\beta = \alpha^a \mod p$, tenendo segreto l'esponente a = 90.

- a) Verificare la correttezza dei dati forniti, in base alle ipotesi del metodo di El Gamal. Se $\alpha = 5$ non risultasse una scelta valida, Bob userà invece un valore valido scelto nell'insieme $\alpha = \{6, 7\}$. Se nessuna di queste scelte risultasse valida, Bob rinuncerà a proseguire (e l'esercizio termina qui). Calcolare β .
- b) Bob estrae il numero casuale segreto (nonce) k = 89. Per questo valore di k, calcolare la firma di Bob A = (r, s) del messaggio P = 30.
- c) Verificare se anche la firma A' = (r', s') = (28, 90) è valida da Bob per lo stesso messaggio P = 30
- d) Se è valida, calcolare il valore di *k* per cui è stata calcolata da Bob, scegliendo il metodo più conveniente (non *Baby Step Giant Step*).

Step Giant Step).

a) P Prime
$$1 < 9 < p - 2$$
 $k \perp p - 1$

Test $p \in d$ $p = 2$. p

d) Invece di risolabre 7 = 28 (mod 101), mellis: SK=P-ar (mod (p-1)) 90 K= 30-90,28 (mod 1ss) 90K=10 (mod 100) Mcl) (90,100)=10=) 10 polisiani 9K=1 (max/10) 9-7=9 (med 10) K = 9 (mod 100) Ki = 9,79,29,39,49,59,69, fg, pg, gg (med 100) > K=70 Dei state pubblica? QK=1 (mulp) 2 K = 28 (mod 101)

Sicurezza delle Reti

Prof. Stefano Bregni

II Appello d'Esame 2022-23 – 20 luglio 2023

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 3

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Bob adotta il sistema di cifratura a chiave pubblica RSA. Pubblica il modulo n = 17063 e un esponente di cifratura scelto tra $e_1 = 1001$, $e_2 = 1003$, $e_3 = 1005$.

- a) Fattorizzare n con il metodo di Pollard. Verificare la correttezza dei dati forniti in base alle ipotesi del metodo RSA. Scegliere il valore corretto tra i tre esponenti e_1 , e_2 , e_3 .
- b) Alice trasmette a Bob il messaggio cifrato C = 15, calcolato utilizzando il valore corretto dell'esponente e. Decifrarlo e calcolare il corrispondente messaggio in chiaro P.

a)
$$m = 17063 = 113.151$$
 (Polland)
 $Q(m) = 112.150 = 2^5.3.5^2.7 = 16800$
 $Q[Q(m)] = 3840$
 $RCD(1001, 16800) = 7 NO$
 $RCD(1003, 16800) = 1 OK $= 1000$ (e) $= 1000$$

Con Enclide Estes:

ol = 67 (mod 16800)

$$P = C^{d} \mod m =$$
= 15⁶¹ m = 11063 =
= 3827

Pollond
$$(\alpha = 2)$$
 e^{-1} (mod $cp(m)$)

Enclose Entero:

 $b_1 = 2$ (mod 1763)

 $b_2 = 2^2 = 4$ (-) $ncn(3,m) = 1$
 $b_3 = 4^3 = 64$ (-) $ncn(63,m) = 1$
 $b_4 = 64^4 = 4287$ (-) $ncn(63,m) = 1$
 $b_5 = 4287^5 = 13138$ (-) $ncn(13177,m) = 1$
 $b_7 = 4287^5 = 13138$ (-) $ncn(13177,m) = 1$

Sicurezza	delle Reti	
Prof. Stefano Bregni		

II Appello d'Esame 2022-23 – 20 luglio 2023

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 4

(svolgere su questo foglio nello spazio assegnato) (Lepunti)

a) Spiegare cosa significa affermare che una generica funzione y = y(x) è invertibile, ma unidirezionale.

Dire che una funzione y=y(x) è invertibile significa che per ogni valore di output y, esiste un solo valore di input x che lo ha generato. Quindi, in teoria, è possibile tornare indietro da y a x.

Tuttavia, se la funzione è anche detta unidirezionale, significa che pur essendo invertibile in teoria, è molto difficile calcolarne l'inversa nella pratica. In altre parole, trovare x a partire da y richiede un tempo computazionale troppo alto per essere fattibile, anche con computer potenti.

Perciò, una funzione invertibile ma unidirezionale è una funzione che ha un'inversa, ma non è praticamente calcolabile: è facile andare da x a y, ma molto difficile tornare da y a x.

b) Spiegare cosa significa affermare che una <u>funzione di hash</u> h = h(x), necessariamente *non invertibile*, è *unidirezionale*.

Dire che una funzione di hash h=h(x) è unidirezionale significa che è facile calcolare l'hash a partire da un messaggio x, ma è praticamente impossibile risalire al messaggio x a partire da h(x).

Anche se la funzione non è invertibile in senso matematico (perché esistono infiniti valori di x che danno lo stesso hash), una funzione di hash unidirezionale è progettata in modo tale che, dato un valore di hash h, nessuno sia in grado di trovare un messaggio x che lo genera, se non provando tutti i possibili valori (cioè con un attacco a forza bruta).

In sintesi, "unidirezionale" significa che la funzione va facilmente da x a h(x), ma non riesce a tornare indietro da h(x) a x, anche se non è invertibile in senso stretto.

c) Si consideri una ipotetica funzione di *hash* definita come $h(m) = (r \cdot t) \mod p$, dove (r, t) è la cifratura a chiave pubblica di El Gamal $E_{p,\alpha,\beta,k}(P)$ di P = 1 con parametri pubblici p = primo grande e sicuro, $\alpha = 2$, $\beta = 2$, calcolata con il *nonce* k = m. Scrivere l'espressione $h(m) = (r \cdot t) \mod p$.

$$r = d^{k} mod \rho = 2^{m} mod \rho$$

$$t = (3^{k} p mod \rho = 2^{m} mod \rho)$$

$$t = (3^{k} p mod \rho = 2^{m} mod \rho)$$

$$t = (3^{k} p mod \rho = 2^{m} mod \rho)$$

Si dica se tale funzione h(m) è

- invertibile? (spiegare perché SI o perché NO)

Questo perché per invertire h(m) bisognerebbe risolvere il problema del logaritmo discreto modulo p, cioè dato h(m) trovare m tale che h(m) = 2^(2m) modulo p. Questo problema è computazionalmente difficile e non esistono metodi efficienti per risolverlo, quindi non è possibile calcolare m partendo da h(m).

- unidirezionale? (spiegare perché SI o perché NO)

Calcolare h(m) dato m è facile e veloce tramite esponenziazione modulare, mentre calcolare m dato h(m) richiede di risolvere il problema del logaritmo discreto, che è considerato difficile. Quindi, la funzione è facile da calcolare ma difficile da invertire.

- resistente alle collisioni? (spiegare perché SI o perché NO; se si risponde NO fornire un esempio di collisione)

$$NO m_2 = M_1 + k \frac{p-1}{2}$$

Infatti, a causa delle proprietà dell'esponenziazione modulo p, esistono infiniti valori diversi di m che producono lo stesso valore di h(m). In particolare, se si aggiunge a m un multiplo di (p-1)/2, si ottiene la stessa immagine h(m). Quindi, è semplice costruire collisioni, per esempio scegliendo due valori di m che differiscono di (p-1)/2.

Pag. 7/9

Domanda 5

(rispondere su questo foglio negli spazi assegnati) (12 punti) (NB: ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo).

1) Trovare i parametri (a, b) del Cifrario Affine (mod 26) che cifra "nyarlathotep" in "ryedlejzujqx".

Alfabeto E, (x) = QX+6 mod 26 0 "a" - "e" 4 = Q. O+6 (mos) 26) => 6=4 25=a7+4 (mod 26) Chalps "h" pade 7 [26)

7a=21 (mod 26) Q = 21.15 = 2 (mod 26)

=) a=3

1	b
2	С
3	d
4	е
5	f
6	g
7	h
8	i
9	j
10	k
11	1
12	m
13	n
14	0
15	р
16	q
17	r
18	s
19	t
20	u
21	٧
	W
23	Х
24	У
25	Z
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(3 punti)

Se la funzione di hash utilizzata non è unidirezionale, significa che è possibile invertire la funzione, cioè dato l'hash h(x) si può risalire facilmente al valore originale x (la password).

Di conseguenza, l'hacker sarà in grado di ricavare le password degli utenti partendo dagli hash memorizzati nel file, perché la funzione non protegge adequatamente le password.

In sintesi:

- Funzione non unidirezionale → facile inversione → password recuperabili dall'hash
- Questo rappresenta una grave vulnerabilità per la sicurezza del sistema.

²⁾ Un hacker è entrato in possesso del file di sistema dove sono memorizzati gli hash delle password degli utenti per l'accesso a un server. Sappiamo che la funzione di hash h = h(x) utilizzata non è unidirezionale. L'hacker sarà in grado di ricavare le password degli utenti? (2 punti)

Sicurezza	delle	Reti
Prof. Stefano Bregni		

II Appello d'Esame 2022-23 – 20 luglio 2023

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

3) Dopo laboriose ricerche, su Astalavista hai trovato un certificato emesso da DigiCert a nome SUBJECT: <www.whitehouse.gov>.

(3 punti)

- a) Che procedura segui per verificare l'autenticità del certificato?
- b) Qual è l'informazione più importante che apprendi dal certificato?
- c) Dopo la verifica a), il certificato risulta valido. Tuttavia, la Casa Bianca contattata in proposito dichiara di non avere nulla a che fare con questo certificato. Quale segreto potrebbe avere violato l'impostore che ha creato il certificato?

FATTO UGUALE CON LO STATO DEL VATICANO

4) Si consideri il protocollo di Diffie-Helman. A cosa serve? Definirne le variabili, i valori scambiati e il risultato finale, specificando quali di questi sono pubblici e quali segreti. (2 punti)

GIA FATTO

5) Si consideri un cifrario a blocchi concatenato secondo la modalità Cipher Block Chaining (CBC), in cui cifratura e decifratura sono svolte rispettivamente come $C_i = E_K(P_i \oplus C_{i-1})$ e $P_i = C_{i-1} \oplus D_K(C_i)$, C_0 è il vettore di inizializzazione, la dimensione dei blocchi P_i e C_i è 256 bit. Se il flusso cifrato $\{C_i\}$ subisce errori di trasmissione puramente casuali con tasso ε molto piccolo (ossia, gli errori sono rari e isolati), quale sarà il tasso di errore sul flusso decifrato $\{P_i\}$? Per rispondere, disegnare lo schema a blocchi del processo di decifrazione. (2 punti)

Pag. 9/9