matRiks

An R package for the automatic generation of Raven-like matrices

Ottavia M. Epifania, Andrea Brancaccio, Debora de Chiusole, Pasquale Anselmi, Luca Stefanutti

University of Padova

European Meeting of the Matemathical Psychology Group

1 Introduction

② Generating rules

The matRiks package

4 Why?

Introduction

Introduction

•0000

Raven and Raven-like matrices

Introduction 00000

Assessment of fluid intelligence or abstract reasoning

Job recruitment, clinical assessment

Introduction

Introduction

Introduction

Introduction

An example: The matrix

An example: The matrix

Introduction

An example: The matrix

Introduction

Introduction

00000

An example: The response options

Introduction

00000

An example: The response options

Repetition of a cell adjacent to the blank space

Repetition

Introduction

Repetition

Introduction

00000

Difference

Repetition of a cell **adjacent** to the blank space

Different in appearance from every element of the matrix

Repetition

Introduction

00000

Difference

Wrong Principle

Repetition of a cell **adjacent** to the blank space

Different in appearance from every element of the matrix

Copy of a cell or combination of cells

Repetition

Introduction

00000

Difference

Wrong Principle

Incomplete Correlate

Repetition of a cell **adjacent** to the blank space

Different in appearance from every element of the matrix

Copy of a cell or combination of cells

Almost the correct response

Generating rules

Ru	le

	Category Rule name		e	Definition
	Visuospatial	Object	addi-	Visually merge two elements
rules tion/subtraction		raction		
		Movement		With a steady background, the movement changing the position of an object across
		Rotation		The spatial orientation of the figure chan cells
		Mental tra	ansfor-	The third cell results from the application
		mation		teristics in the second cell to the figures in
		Complete	ness	????
		Numeric	pro-	Quantitative increase or decrease in the r
		gression		tures from cell to cell
		Changes	in	The figures change across cells
		shape		
		Changes shade	in	The shading of the figures changes across
		Changes i	n size	The size of the figures changes across cell

The matRiks package

matRiks

Generates 2×2 and 3×3 Rayen-like matrices and the related set of distractors

Allows for concatenating figures together

Allows for creating multi-layer matrices by combining concatenating single-layer matrices together

Allows for creating new figures from scratch

Visuo-spatial rules

Size

Shade

Shape

Rotate

. . .

Logical rules

$$XOR(\Delta)$$

The "workflow"

Qui farò un grafico con le frecce direzionate, ora non ho idea di come farlo

Choose a figure or a concatenation of figures

Choose the rule or a combination of rules to be applied vertically, horizontally, or diagonally.

Generate and draw the matrix

Generate the set of distractors

\$num

Γ1 1

\$nv

\$num[[1]]

\$nv[[1]]

Γ17 4

\$shade

[1] NA

figure

	,
\$sha	ape "sq
\$siz \$siz [1]	ze.x

```
uare"
[[1]]
```

\$size.y[[1]]

Γ17 0

[1] 0

\$theta.2

\$theta.2[[1]]

```
$size.y
```


\$pos.y[[1]] [1] 0

\$1wd

\$lwd[[1]] [1] 3

\$rotation

\$pos.x

Γ17 0

\$pos.y

\$pos.x[[1]]

\$rotation[[1]]

Γ17 0.7853982

\$tag

\$tag[[1]]

[1] "simple" "fill"

"d.ex

Built-in figures

cof()

```
concatenation of figures
single = FALSE
draw(cof(square(),
    size(ninja())))
```

```
single = TRUE
draw(cof(square(),
    size(ninja())),
    single = TRUE,
    name = "my figure")
```

cof()

```
concatenation of figures
single = FALSE
draw(cof(square(),
    size(ninja())))
```

```
single = TRUE
draw(cof(square(),
    size(ninja())),
    single = TRUE,
    name = "my figure")
```



```
List of 15
$ shape : chr [1:3] "square" "luck" "luck"
$ size.x :List of 3
  ..$: num 15
  ..$: num 5.56
  ..$: num 5.56
$ size.y :List of 3
  ..$: num 15
  ..$: num 8.33
  ..$: num 8.33
$ theta.1 :List of 3
  ..$ : nim 0
  ..$ : num 0
  ..$: num 1.57
 $ theta.2 :List of 3
  ..$ : num 0
  ..$ : nim 0
  ..$: num 1.57
$ rotation:List of 3
  ..$: num 0.785
. . . .
```

```
List of 15
 $ shape : chr "my figure"
 $ size.x :List of 2
  ..$: num [1:2] 15 5.56
  ..$: num [1:2] 15 5.56
 $ size.y :List of 2
  ..$: num [1:2] 15 8.33
  ..$: num [1:2] 15 8.33
 $ theta.1 :List of 2
  ..$: num [1:2] 0 0
  ..$: num [1:2] 0 1.57
 $ theta.2 :List of 2
  ..$: num [1:2] 0 0
  ... : num [1:2] 0 1.57
 $ rotation:List of 2
  ..$: num [1:2] 0.785 1.571
  ..$: num [1:2] 0.785 3.142
 $ pos.x :List of 2
  ..$: num [1:2] 0 0
  ..$: num [1:2] 0 0
. . . .
```

$mat_apply(): 2 \times 2$

mat_apply(Sq1, hrules, vrules, mat.type)

```
mat_apply(axe(),
          vrules = "rotate",
          hrules = "rotate",
          mat.type = 4)
```


$mat_apply(): 3 \times 3$

```
[,1] [,2] [,3]
[1,] "Sq1" "Sq2" "Sq3"
[2,] "Sq4" "Sq5" "Sq6"
[3,] "Sq7" "Sq8" "Sq9"
```


Single-layer vs. multi-layer matrices

draw(mat_apply(cof(square4()), hrules = "AND"), hide = TRUE)

Single-layer vs. multi-layer matrices

```
concatenation of matrices: com()
draw(com(mat_apply(square4(), hrules = "AND"),
        mat_apply(size(maxi(), 2), vrules = "OR", hrules = "OR")), hide = TRUE)
```

Single-layer vs. multi-layer matrices

```
concatenation of matrices: com()
draw(com(mat_apply(square4(), hrules = "AND"),
        mat_apply(size(maxi(), 2), vrules = "OR", hrules = "OR")), hide = TRUE)
```

The distractors

Distractors	Definition
R-Left	Sq8
R-Top	Sq6
R-diag	Sq5
Wp-Copy	One within SQ1, SQ2, SQ3, SQ4, SQ7
WP-Matrix	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of another cell.
Difference	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of a figure which is not
	manipulated in the matrix.

The distractors

Distractors	Definition	
R-Left	Sq8	
R-Top	Sq6	
R-diag	Sq5	
Wp-Copy	One within SQ1, SQ2, SQ3, SQ4, SQ7	
WP-Matrix	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of another cell.	
Difference	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of a figure which is not manipulated in the matrix.	
IC-Inc	Correct response with a missing element	
	Single-Layer: Not possible	
	Multi-layer:	
IC-Neg	Color inversion of the correct response	
	Single-layer matrix: Color inversion of the figure in the correct response	
	Multi-layer matrix:	
IC-Flip	Rotation of the correct response	
·	Single-layer matrix: Rotation of the figure in the correct response	
	Multi-layer matrix:	
IC-Scale	Resize of the correct response	
	Single-layer: Resize of the figure in the correct response	
	Multi-layer matrix:	

The distractors

Distractors	Definition	
R-Left	Sq8	
R-Top	Sq6	
R-diag	Sq5	
Wp-Copy	One within SQ1, SQ2, SQ3, SQ4, SQ7	
WP-Matrix	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of another cell.	
Difference	One within SQ1, SQ2, SQ3, SQ4, SQ7 with the superimposition of a figure which is not manipulated in the matrix.	
IC-Inc	Correct response with a missing element	
	Single-Layer: Not possible	
	Multi-layer: The most internal figure is removed from the correct response.	
IC-Neg	Color inversion of the correct response	
	Single-layer matrix: Color inversion of the figure in the correct response	
	Multi-layer matrix: Color inversion of the foreground figure of the correct response	
IC-Flip	Rotation of the correct response	
	Single-layer matrix: Rotation of the figure in the correct response	
	Multi-layer matrix: Rotation of the foreground figure of the correct response	
IC-Scale	C-Scale Resize of the correct response	
	Single-layer: Resize of the figure in the correct response	
	Multi-layer matrix: Resize of the foreground figure of the correct response	

response_list()

draw(response_list(my_mat), main = TRUE)

Don't like the difference distractor?

Change the random seed

A handful of distractors

The final result

Why?

PsycAssist

PsycAssist

Campione

le scuole

Come è andataa con rasch