EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015

INFORMATYKA POZIOM ROZSZERZONY

ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

GRUDZIEŃ 2013

Arkusz I

Zadanie 1. Test (0–5)

Wymagania ogólne	Wymagania szczegółowe
I. [] wykorzystanie sieci	1. [] korzystanie z sieci komputerowej.
komputerowej [].	Zdający:
II. Wyszukiwanie [] informacji z	5) prawidłowo posługuje się terminologią
różnych źródeł; opracowywanie za	sieciową
pomocą komputera: rysunków, danych	2. Wyszukiwanie [] informacji z różnych
liczbowych []	źródeł, współtworzenie zasobów w sieci. Zdający:
III. Rozwiązywanie problemów i	2) [] stosuje metody wyszukiwania i
podejmowanie decyzji z	przetwarzania informacji w [] bazie danych
wykorzystaniem komputera, z	(język SQL)
zastosowaniem podejścia	4. Opracowanie informacji za pomocą komputera,
algorytmicznego	w tym rysunków [] Zdający:
V. Ocena [] ograniczeń []	2) określa własności grafiki rastrowej
informatyki	5. Rozwiązywanie problemów [], stosowanie
	podejścia algorytmicznego. Zdający
	1) analizuje [] sytuacje problemowe []
	6) ocenia własności rozwiązania algorytmicznego
	[]
	11) [] stosuje
	a) algorytmy na liczbach całkowitych
	7. [] ocenia zagrożenia i ograniczenia []
	zastosowań informatyki. Zdający:
	3) stosuje normy etyczne i prawne związane z
	[] ochroną danych w Internecie

a) (0-1)

Poprawna odpowiedź:

F, F, P, F

Schemat punktowania:

1 pkt – poprawna ocena

0 pkt – inna odpowiedź lub brak odpowiedzi

b) (0–1)

Poprawna odpowiedź:

F, P, P, F

Schemat punktowania:

1 pkt – poprawna ocena

0 pkt – inna odpowiedź lub brak odpowiedzi

c) (0-1)

Poprawna odpowiedź:

F, P, P, P

Schemat punktowania:

1 pkt – poprawna ocena

d) (0–1)

Poprawna odpowiedź:

P, F, F, P

Schemat punktowania:

1 pkt – poprawna ocena

0 pkt – inna odpowiedź lub brak odpowiedzi

e) (0-1)

Poprawna odpowiedź:

F, P, F, F

Schemat punktowania:

1 pkt – poprawna ocena

0 pkt – inna odpowiedź lub brak odpowiedzi

Zadanie 2. Całkowity pierwiastek kwadratowy (0-6)

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji [], z zastosowaniem podejścia algorytmicznego	5. Rozwiązywanie problemów i [] stosowanie podejścia algorytmicznego. Zdający: 1) analizuje, modeluje i rozwiązuje sytuacje problemowe 2) stosuje podejście algorytmiczne do rozwiązania problemu 6) ocenia własność rozwiązania algorytmicznego [], np. zgodność ze specyfikacją [] 11. Opisuje podstawowe algorytmy i stosuje:[] c) algorytmy numeryczne, np.: - obliczanie wartości pierwiastka kwadratowego 16) opisuje własności algorytmów na podstawie ich analizy 18) oblicza liczbę operacji wykonywanych przez algorytm

a) (0-2)

Poprawna odpowiedź:

uzupełnienie luki (*k*:=*k*+1) uzupełnienie tabeli (5, 32)

Schemat punktowania:

2 pkt – poprawne uzupełnienie instrukcji i tabeli

1 pkt – poprawne uzupełnienie algorytmu lub tabeli

0 pkt – inna odpowiedź lub brak odpowiedzi

b) (0-2)

Poprawna odpowiedź:

uzupełnienie luki (k:=s)

Schemat punktowania:

2 pkt – poprawne uzupełnienie instrukcji

0 pkt – inna odpowiedź lub brak odpowiedzi

c) (0-2)

Poprawna odpowiedź:

uzupełnienie tabeli (6 dla *n*=32 oraz 6 dla *n*=1024)

Schemat punktowania:

2 pkt – poprawne uzupełnienie tabeli dla *n*=32 oraz dla *n*=1024

1 pkt – poprawne uzupełnienie tabeli dla *n*=32 lub dla *n*=1024

0 pkt – inna odpowiedź lub brak odpowiedzi

Zadanie 3. Progi i schody (0-9)

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji [] z	5. Rozwiązywanie problemów i [] stosowanie podejścia algorytmicznego. Zdający:
zastosowaniem podejścia	1) analizuje, modeluje i rozwiązuje sytuacje
algorytmicznego	problemowe
	2) stosuje podejście algorytmiczne do rozwiązania problemu
	4) dobiera efektywny algorytm do rozwiązania
	sytuacji problemowej i zapisuje go w wybranej notacji
	6) ocenia własność rozwiązania algorytmicznego
	[], np. efektywność działania []
	11) Opisuje podstawowe algorytmy i stosuje:[]
	a) algorytmy na liczbach całkowitych
	16) opisuje własności algorytmów na podstawie
	ich analizy
	18) oblicza liczbę operacji wykonywanych przez
	algorytm

a) (0-1)

Poprawna odpowiedź:

Wartości w kolejności:

schody do dołu, ich długość, liczba progów

2, 2, 2	3	0
3, 1, 1	3	1
3, 3, 1	3	1
11,7, 7, 6	4	2
7, 7	2	0
9, 9, 7	3	1

Schemat punktowania:

1 pkt – poprawne podanie wszystkich wartości

```
b) (0-2)
```

Przykład poprawnej odpowiedzi:

```
liczba_progów:=0;
for i:=1 to n-1 do
    if a[i] > a[i+1] then liczba progów := liczba progów + 1;
```

Schemat punktowania:

```
2 pkt – poprawne napisanie algorytmu
```

1 pkt – napisanie algorytmu nieuwzględniającego przypadków brzegowych

0 pkt – błędny algorytm lub brak odpowiedzi

c) (0-4)

Przykład poprawnej odpowiedzi:

```
najw_liczba_progów := 0;
liczba_progów_w_schodach := 0;
for i := 1 to n-1 do
    if a[i] < a[i+1] then
    {* a[i+1] może być początkiem nowych schodów *}
    begin
    if liczba_progów_w_schodach > najw_liczba_progów then
        najw_liczba_progów := liczba_progów_w_schodach;
    liczba_progów_w_schodach := 0
    end
    else
    if a[i] > a[i+1] then
        liczba_progów_w_schodach := liczba_progów_w_schodach+1;

if liczba_progów_w_schodach > najw_liczba_progów then
    najw_liczba_progów := liczba_progów w_schodach;
```

Schemat punktowania:

```
4 pkt – poprawne napisanie algorytmu
```

2 pkt – napisanie algorytmu, w którym nie uwzględniono progów w schodach do dołu kończacych sie ostatnim elementem ciagu

0 pkt – błędny algorytm lub brak odpowiedzi

d) (0–2)

Poprawna odpowiedź:

W pesymistycznym przypadku w każdym obrocie pętli wykonywane są dwa porównania: pierwsze służy do wykrycia nowych schodów, a drugie do identyfikacji progu. Zatem w pesymistycznym przypadku algorytm wykona dokładnie 2(n-1) porównań.

Schemat punktowania:

```
2 pkt – poprawne podanie liczby porównań i poprawne uzasadnienie
```

1 pkt – poprawne podanie liczby porównań i błędne uzasadnienie lub brak uzasadnienia

Arkusz II

Zadanie 4. Anagramy cyfrowe (0-10)

Wymagania ogólne	Wymagania szczegółowe
II. [] opracowywanie za pomocą	5. Rozwiązywanie problemów i [] stosowanie
komputera danych liczbowych	podejścia algorytmicznego. Zdający:
III. Rozwiązywanie problemów i podejmowanie decyzji [] z	1) analizuje, modeluje i rozwiązuje sytuacje problemowe
zastosowaniem podejścia algorytmicznego	2) stosuje podejście algorytmiczne do rozwiązania problemu
	4) dobiera efektywny algorytm do rozwiązania
	sytuacji problemowej i zapisuje go w wybranej notacji
	5) posługuje się podstawowymi technikami
	algorytmicznymi
	6) ocenia własność rozwiązania algorytmicznego
	[], np. efektywność działania []
	11) Opisuje podstawowe algorytmy i stosuje:[]
	b) algorytmy wyszukiwania i porządkowania (sortowania)
	12) projektuje rozwiązanie problemu (realizacja
	algorytmu) i dobiera odpowiednią strukturę
	danych
	21) przeprowadza komputerową realizację
	algorytmu i rozwiązania problemu
	22) sprawnie posługuje się zintegrowanym
	środowiskiem programistycznym przy pisaniu i
	uruchamianiu programów
	23) stosuje podstawowe konstrukcje
	programistyczne w wybranym języku
	programowania[]

a) (0-4)

Poprawna odpowiedź:

Liczba wierszy z anagramami: 258

Schemat punktowania:

4 pkt – poprawne sortowanie cyfr w liczbach i poprawnie obliczona liczba par anagramów

2 pkt – poprawne sortowanie cyfr w liczbach i błędnie obliczona liczba par anagramów

0 pkt – inna odpowiedź lub brak odpowiedzi

b) (0–6)

Poprawna odpowiedź:

Maksymalna liczba anagramów: 11

Schemat punktowania:

6 pkt – poprawne sortowanie cyfr w liczbach, zliczenie danych i obliczanie maksimum

4 pkt – poprawne sortowanie cyfr w liczbach, zliczenie danych i błędne obliczanie maksimum

- 2 pkt poprawne sortowanie cyfr w liczbach, błędnie zliczenie danych i obliczenie maksimum
- 0 pkt inna odpowiedź lub brak odpowiedzi

Przykładowa realizacja algorytmu w języku C++:

```
#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
 * zamiana dodatniej liczby calkowitej k na najwiekszy jej anagram cyfrowy
int najwiekszy_anagram(int k) {
    int cyfry[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
    while (k != 0)
    {
        int cyfra = k \% 10;
        cyfry[cyfra]++;
        k = k / 10;
    int wynik = 0;
    for (int i = 9; i >= 0; i--)
        for (int j = 0; j < cyfry[i]; j++)
            wynik = wynik * 10 + i;
    return wynik;
}
std::map<int, int> anagramy;
int wiersze_z_anagramami;
int maksimum;
int main() {
    int u, v;
    std∷ifstream liczba("dane_anagramy.txt");
    while (liczba >> u >> v)
        int anagram_u = najwiekszy_anagram(u);
        int anagram_v = najwiekszy_anagram(v);
        if (anagram_u == anagram_v)
            wiersze_z_anagramami++;
        anagramy[anagram_u]++;
        anagramy[anagram_v]++;
        maksimum = std::max(maksimum, anagramy[anagram_u]);
        maksimum = std::max(maksimum, anagramy[anagram_v]);
    std∷cout << "wiersze z anagramami: " << wiersze_z_anagramami <<
    std∷cout << "maksimum anagramow: " << maksimum << std∷endl;
    return 0;
```

Przykładowa realizacja algorytmu w języku Pascal:

```
program AnagramyCyfrowe;
{**
 * zamiana dodatniej liczby calkowitej k na najwiekszy jej anagram cyfrowy
function NajwiekszyAnagram(k: longint): longint;
  cyfry: array[0..9] of integer;
  cyfra, i, j: integer;
  wynik: longint;
begin
  for i := 0 to 9 do cyfry[i] := 0;
  while k \Leftrightarrow 0 do
  begin
    cyfra := k \mod 10;
    cyfry[cyfra] := cyfry[cyfra] + 1;
    k := k \operatorname{div} 10
  end;
  wynik := 0;
  for i := 9 downto 0 do
    for j := 1 to cyfry[i] do
      wynik := wynik * 10 + i;
  NajwiekszyAnagram := wynik
end;
{**
 * struktura danych umozliwiajaca obliczenie maksymalnej liczby liczb, ktore
 * wzajemnie sa swoimi anagramami
 * anagramy[1..2001] - tablica zawierająca dotychczas odkryte, rozne anagramy
 * liczba_anagramow - liczba dotychczas odkrytych roznych anagramow
 * liczba_wystapien[1..2000] - liczba_wystapien[i] = liczbie dotychczasowych
 * wystapien anagramu anagramy[i]
 *}
var
  anagramy: array [1..2001] of longint;
  liczba_wystapien: array [1..2000] of integer;
  liczba_anagramow: integer;
procedure Ini;
var
  i: integer;
begin
  for i := 1 to 2000 do
    liczba_wystapien[i] := 0;
  liczba_anagramow := 0;
end;
function Ile(a: longint): integer;
 * ile razy dotychczas pojawil sie anagram a
 *}
var
```

```
i: integer;
begin
  anagramy[liczba_anagramow + 1] := a; {* wartownik *}
  i := 1;
  while anagramy[i] ⇔ a do
    i := i + 1;
  liczba_wystapien[i] := liczba_wystapien[i] + 1;
  if i = liczba_anagramow + 1 then
    liczba_anagramow := i;
  Ile := liczba_wystapien[i]
end;
{**
 * program glowny
var
  u, v: longint;
  maksimum, wystapienia, wiersze_z_anagramami: integer;
  dane_anagramy: text;
begin
  maksimum := 0;
  wiersze_z_anagramami := 0;
  Ini;
  assign(dane_anagramy, 'dane_anagramy.txt');
  reset(dane_anagramy);
  while not eof(dane_anagramy) do
  begin
    readln(dane_anagramy, u, v);
    u := NajwiekszyAnagram(u);
    v := NajwiekszyAnagram(v);
    if u = v then
      wiersze_z_anagramami := wiersze_z_anagramami + 1;
    wystapienia := Ile(u);
    if wystapienia > maksimum then maksimum := wystapienia;
    wystapienia := Ile(v);
    {f if} wystapienia > maksimum {f then} maksimum := wystapienia
  end;
  close(dane_anagramy);
  writeln('wiersze z anagramami: ', wiersze_z_anagramami);
  writeln('maksimum anagramow: ', maksimum);
  readln;
end.
```

Zadanie 5. Rowery (10 punktów)

Wymagania ogólne	Wymagania szczegółowe
II. [] przetwarzanie informacji z	4. Opracowywanie informacji za pomocą
różnych źródeł; opracowywanie za	komputera w tym [] danych liczbowych.
pomocą komputera, danych	Zdający:
liczbowych []	4) wykorzystuje arkusz kalkulacyjny []
III. Rozwiązywanie problemów i	5. Rozwiązywanie problemów []. Zdający:
podejmowanie decyzji z	1) analizuje, modeluje i rozwiązuje sytuacje
wykorzystaniem komputera, []	problemowe z różnych dziedzin
	25) dobiera właściwy program użytkowy [] do
	rozwiązania zadania

a) (0–2) Poprawna odpowiedź:

1 opi a wila oapo wieazi	
Тур	Liczba
play-bike	14
rowerki_i_pojazdy	115
Miejski	200
szosowy_miejski	231
szosowy_wyczynowy	259
gorski_sportowy	289
Składany	290
Uniwersalny	291
gorski_rekreacyjny	311

Schemat punktowania:

- 2 pkt poprawne zestawienie liczby rowerów poszczególnych typów i posortowanie ze względu na liczby rowerów
- 1 pkt poprawne zestawienie liczby rowerów poszczególnych typów bez sortowania
- 0 pkt inna odpowiedź lub brak odpowiedzi

b) (0–4)

Poprawna odpowiedź:

Zestawienie zawierające informacje o liczbie sprzedanych rowerów

Miesiac	Liczba zakupów
1	45
2	105
3	180
4	227
5	274
6	266
7	241
8	223
9	175
10	161
11	74
12	29

Schemat punktowania:

- 2 pkt poprawne zestawienie liczby sprzedanych rowerów w każdym miesiącu
- 1 pkt zestawienie z co najmniej sześcioma poprawnymi wierszami
- 0 pkt inna odpowiedź lub brak odpowiedzi

Wykres przedstawiający zestawienie

Schemat punktowania:

- 2 pkt poprawne wykonanie wykresu (poprawny dobór danych i typu wykresu 1 pkt, czytelny opis wykresu 1 pkt)
- 0 pkt inna odpowiedź lub brak odpowiedzi

Zadanie 6. Serwis samochodowy (0-10)

Wymagania ogólne	Wymagania szczegółowe
II. [] przetwarzanie informacji z różnych źródeł; opracowywanie za pomocą komputera, danych liczbowych [] III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, []	2. [] selekcjonowanie, przetwarzanie [] informacji, korzystanie z różnych źródeł[] informacji. Zdający: 1) projektuje relacyjna bazę danych [] 2) stosuje metody wyszukiwania i przetwarzania informacji w relacyjnej bazie danych (język SQL) 5. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera []. Zdający: 1) analizuje, modeluje i rozwiązuje sytuacje problemowe z różnych dziedzin 25) dobiera właściwy program użytkowy [] do rozwiązania zadania

a) (0-2)

Poprawna odpowiedź:

data
2012-04-13
2012-11-06

Schemat punktowania:

- 2 pkt podanie poprawnej daty wiosennej i jesiennej wymiany opon
- 1 pkt podanie jednej poprawnej daty wymiany opon
- 0 pkt inna odpowiedź lub brak odpowiedzi

b) (0-2)

Poprawna odpowiedź:

nazwa	PoliczOfnr_rejestr
METALEX	30
FASAT	29
PETROLEUM	25
KONSBET	23
RENOWATOR	19
WERTIX	18
LUBEX	18
FERMILAB	18
FAMUR	17

Schemat punktowania:

2 pkt – podanie pełnego zestawienia i poprawne posortowanie

1 pkt – podanie pełnego zestawienia bez posortowania

0 pkt – inna odpowiedź lub brak odpowiedzi

c) (0-2)

Poprawna odpowiedź:

miesiac	SumaOfcena
1	15
2	100
3	476
4	1065
5	380
6	195
7	411
8	40
9	40
10	460
11	670
12	70

Schemat punktowania:

2 pkt – poprawne podanie pełnego zestawienia

0 pkt – inna odpowiedź lub brak odpowiedzi

d) (0-2)

Poprawna odpowiedź:

numer rejestracyjny: PO 60910

marka samochodu i nazwa firmy: Ford Transit, FERMILAB

Schemat punktowania:

2 pkt – poprawne podanie numeru rejestracyjnego i właściciela samochodu

1 pkt – poprawne podanie numeru rejestracyjnego lub właściciela samochodu

e) (0-2)

Poprawna odpowiedź:

nazwa	
FAN	I UR
KON	NSBET
LUB	BEX
REN	OWATOR

Schemat punktowania:

2 pkt – poprawne podanie nazw firm

1 pkt – poprawne podanie nazw firm z powtórzeniami

0 pkt – inna odpowiedź lub brak odpowiedzi

Przykładowa realizacja w PostgreSQL:

```
CREATE TABLE firma (id VARCHAR NOT NULL PRIMARY KEY,
    nazwa VARCHAR NOT NULL);
CREATE TABLE usluga (id INTEGER NOT NULL PRIMARY KEY,
    nazwa VARCHAR NOT NULL, cena INTEGER NOT NULL);
CREATE TABLE pojazd (nr_rejestr VARCHAR NOT NULL PRIMARY KEY,
    marka VARCHAR NOT NULL, rok_prod INTEGER NOT NULL,
    firma_id VARCHAR NOT NULL REFERENCES firma);
CREATE TABLE naprawa (id INTEGER NOT NULL PRIMARY KEY,
    data DATE NOT NULL, nr_rejestr VARCHAR NOT NULL REFERENCES pojazd,
    usluga_id INTEGER NOT NULL REFERENCES usluga);
-- część zależna od platformy
¥copy firma FROM firma.txt delimiter E'\t' csv header;
¥copy usluga FROM usluga.txt delimiter E'¥t' csv header;
¥copy pojazd FROM pojazd.txt delimiter E'\t' csv header;
¥copy naprawa FROM naprawa.txt delimiter E'\footnote{t}' csv header;
-- koniec części zależnej od platformy
SELECT data FROM naprawa JOIN usluga ON usluga_id = usluga.id
WHERE nazwa = 'wymiana opon' AND nr_rejestr = 'PO 3631H'
ORDER BY data;
SELECT nazwa, COUNT (nr_rejestr)
FROM firma LEFT JOIN pojazd ON firma.id = firma_id
GROUP BY nazwa ORDER BY COUNT(nr_rejestr) DESC, nazwa;
SELECT EXTRACT (MONTH FROM data) miesiac, SUM(cena) suma
FROM naprawa JOIN usluga ON usluga_id = usluga.id
JOIN pojazd ON naprawa.nr_rejestr = pojazd.nr_rejestr
JOIN firma ON firma_id = firma.id
WHERE firma. nazwa = 'LUBEX'
GROUP BY EXTRACT (MONTH FROM data)
ORDER BY EXTRACT (MONTH FROM data);
SELECT nr_rejestr, marka, nazwa
FROM pojazd JOIN firma ON firma_id = firma.id
WHERE nr_rejestr IN
```

```
(SELECT nr_rejestr FROM naprawa GROUP BY nr_rejestr
   HAVING COUNT(*) >= ALL(SELECT COUNT(*) FROM naprawa GROUP BY nr_rejestr));

SELECT nazwa FROM firma WHERE id IN

(SELECT firma_id FROM pojazd WHERE rok_prod < 2009 AND nr_rejestr IN

(SELECT nr_rejestr FROM usluga JOIN naprawa ON usluga.id = usluga_id
   WHERE nazwa = 'wymiana plynu chlodniczego'));</pre>
```