Devoir surveillé n°7 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Point fixe attractif ou répulsif.

PRÉLIMINAIRES

On se place dans le contexte suivant : f est une fonction continue, définie sur un intervalle réel I, à valeurs dans \mathbb{R} , et I est stable par f.

Pour $x_0 \in I$, on définit la suite récurrente $(x_n)_{n \in \mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, x_{n+1} = f(x_n).$$

On donne les définitions suivantes :

- On dira qu'un point fixe a de f est stable (ou attractif) si et seulement si il existe un intervalle J stable par f tel que a est à l'intérieur de J et que, pour toute condition initiale $x_0 \in J$, la suite $(x_n)_{n\in\mathbb{N}}$ converge vers a.
- On dira qu'un point fixe a de f est instable (ou répulsif) si et seulement si il existe un intervalle J tel que a est à l'intérieur de J et que, pour toute condition initiale $x_0 \in J$ différente de a, il existe un entier $N(x_0)$ tel que :

$$x_{N(x_0)} \notin J$$
 et $\forall k < N(x_0), x_k \in J$.

Soit a un point fixe de f et J un sous-intervalle de I contenant a dans son intérieur.

1) On suppose que sur J la distribution des signes de f – Id est comme dans le tableau suivant :

$$f(x)-x$$
 - 0 +

Montrer que a est instable.

2) On suppose que sur J la distribution des signes de f – Id est comme dans le tableau suivant et que f est croissante :

$$\begin{array}{c|cccc} & a & \\ \hline f(x) - x & + & 0 & - \\ \hline \end{array}$$

Montrer que a est stable.

- 3) On suppose maintenant que f est de classe \mathscr{C}^1 et que |f'(a)| > 1. Montrer que a est instable.
- 4) On suppose maintenant que f est de classe \mathscr{C}^1 et que |f'(a)| < 1. Montrer que a est stable.
- 5) Si f est de classe \mathscr{C}^1 et f'(a) = 1, que peut-il se passer?

Venons-en maintenant au problème proprement dit :

Soit $a \in]0,1[$, la fonction f_a est définie dans $[0,+\infty[$ par $f_a(x)=a^x.$ On considère des suites définies par récurrence par $x_0 \ge 0$ et $x_{n+1}=f_a(x_n)$.

Dans le problème, on pourra noter f au lieu de f_a pour alléger l'écriture.

PARTIE I

- **6)** a) Montrer que f_a est strictement décroissante et admet un unique point fixe noté c. Comme c dépend de a, on pourra le noter c_a en cas d'ambiguïté. Que peut-on en conclure pour les suites extraites $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$?
 - **b)** Montrer que c est un point fixe de $f \circ f$, exprimer $(f \circ f)'(c)$ en fonction de f'(c).
- 7) a) Montrer, en utilisant la stricte décroissance de f que

$$\frac{1}{\ln \frac{1}{a}} < \frac{1}{e} \Leftrightarrow |f'(c)| > 1.$$

b) Que peut-on dire du point fixe c de f_a lorsque $a < e^{-e}$ ou $a > e^{-e}$?

PARTIE II

On pose $g(x) = f \circ f(x) - x$ et h(x) = x + f(x) pour tout $x \ge 0$.

8) a) Montrer que pour tout $x \ge 0$

$$g'(x) = (\ln a)^2 a^{x+f(x)} - 1.$$

b) Montrer que h' est strictement croissante et que

$$h'(0) = 1 + \ln a$$
, $g'(0) = (\ln a)^2 a - 1$, $g(0) = a$.

- c) Préciser les limites en $+\infty$ de h', g et g'.
- d) Comparer les variations de g' avec celles de h.
- 9) a) Montrer que, si $a > \frac{1}{e}$, h' reste strictement positif dans $[0, +\infty[$.
 - b) Montrer que, si $a \leq \frac{1}{e}$, h' s'annule dans $[0, +\infty[$ seulement au point

$$b = \frac{\ln(\ln\frac{1}{a})}{\ln(\frac{1}{a})}.$$

- c) Montrer que $a < e^{-e}$ entraı̂ne g'(b) > 0, et que $a > e^{-e}$ entraı̂ne g'(b) < 0.
- 10) On suppose ici $a > \frac{1}{e}$. Préciser le tableau des signes de g. En déduire le comportement de $(x_n)_{n\in\mathbb{N}}$ suivant la valeur de x_0 .
- 11) On suppose ici e $^{-e} < a \leqslant \frac{1}{e}$. Préciser le tableau des signes de g. En déduire le comportement de $(x_n)_{n \in \mathbb{N}}$ suivant la valeur de x_0 .
- 12) On suppose $a < e^{-e}$.
 - a) Montrer que g'(0) < 0 et g'(b) > 0. En déduire la forme du tableau de variations de g. Combien g peut-elle avoir de zéros?
 - b) Montrer que g s'annule exactement trois fois en des points c_1 , c, c_2 avec $c_1 < c < c_2$. Montrer que $f(c_1) = c_2$ et que $f(c_2) = c_1$.
 - c) Préciser le comportement de $(x_n)_{n\in\mathbb{N}}$ suivant la valeur de x_0 .

II. Espace vectoriel de fonctions périodiques.

Dans tout ce problème, les espaces vectoriels considérés sont réels, et on se place dans l'espace vectoriel E des fonctions réelles $(E = \mathbb{R}^{\mathbb{R}})$.

Si $T \in \mathbb{R}_+^*$, on note \mathscr{P}_T l'ensemble des fonctions réelles T-périodiques, et \mathscr{P} l'ensemble des fonctions réelles périodiques.

On admet dans ce problème l'irrationnalité de $\pi: \pi \notin \mathbb{Q}$.

- 1) Soit $T \in \mathbb{R}_+^*$. Montrer que \mathscr{P}_T a une structure d'espace vectoriel.
- 2) Écrire ensemblistement \mathscr{P} en fonction des \mathscr{P}_T .
- 3) On considère la fonction $f: x \mapsto \cos(x) + \cos(2\pi x)$.
 - a) Justifier que $f \in \text{Vect}(\mathscr{P})$.
 - **b)** On suppose qu'il existe $T \in \mathbb{R}_+^*$ tel que $f \in \mathscr{P}_T$.
 - i) Montrer que pour tout $n \in \mathbb{Z}$: $\cos(2\pi T) 1 = 2\sin\left(\frac{T}{2}\right)\sin\left(n + \frac{T}{2}\right)$.
 - ii) En déduire que $\sin\left(\frac{T}{2}\right)=0$, puis que T est un multiple de 2π .
 - iii) Que vaut $\cos(2\pi T)$? Que dire de T? En déduire une contradiction.
 - c) Est-ce que $f \in \mathcal{P}$? Est-ce que \mathcal{P} a une structure d'espace vectoriel?
- **4)** a) Soit $n, m \in \mathbb{N}^*$ vérifiant $n \mid m$. De manière générale, a-t-on $\mathscr{P}_n \subset \mathscr{P}_m$? $\mathscr{P}_m \subset \mathscr{P}_n$?
 - b) Soit $n, m \in \mathbb{N}^*$. Déterminer un entier p vérifiant $\mathscr{P}_n \cup \mathscr{P}_m \subset \mathscr{P}_p$.
 - c) Montrer que $\bigcup_{n\in\mathbb{N}^*} \mathscr{P}_n$ a une structure d'espace vectoriel.
- 5) a) Montrer que $C = \bigcap_{T \in \mathbb{R}_+^*} \mathscr{P}_T$ est l'ensemble des fonctions constantes. Est-ce un espace vectoriel?
 - **b)** Soit $T \in \mathbb{R}_+^*$, on note $Z_T = \{ f \in \mathscr{P}_T \mid f(0) = 0 \}$.
 - i) Montrer que Z_T est un sous-espace vectoriel de \mathscr{P}_T .
 - ii) Montrer que Z_T et C sont supplémentaires dans \mathscr{P}_T .

— FIN —