SEQUENCE LISTING

×110×	Genencor International,	
<110>		inc.
	Fox, Judith A.	
	Harding, Fiona A.	
	Schellenberger, Volker	
-1005	01D W:11	
<120>	CAB Molecules	
×1205	GC822-PCT	
<130>	GC022=PC1	
<140>	PCT/US2004/041429	
<141>	2004-12-10	
	2001 22 20	
<150>	US 60/529,354	
<151>	US 60/529,354 2003-12-12	
<150>	US 60/577,255	
<151>	US 60/577,255 2004-04-06	
<160>	133	
<170>	PatentIn version 3.2	
<210>	1	
<210> <211>	231	
<212>		
	Artificial Sequence	
<220>		
<223>	CDRs of CAB1 protein	
	•	
<220>		
<221>	MISC_FEATURE	
<222>	(1)(25)	
<223>	(1)(25) X = any amino acid	
<220>		
<221>	MISC_FEATURE (36)(49)	
<222>	(36)(49)	
<223>	X = any amino acid	
<220>		
<221>	MISC_FEATURE	
<222>	(66)(98)	
<223>	X = any amino acid	
	-	
<220>		
<221>	MISC_FEATURE	
<222>	(110)(158)	
<223>	(110)(158) X = any amino acid	
<220>		
<221>	MISC_FEATURE	
<222>	(169)(183)	
<223>	X = any amino acid	

	91)(2		id									
<400> 1												
Xaa Xaa X		Xaa Xaa 5	Xaa >	Kaa :	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xaa
Xaa Xaa X	aa Xaa : 20	Xaa Xaa	Xaa >		Xaa 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr Met H	is Xaa :	Xaa Xaa		Kaa : 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Xaa	Xaa	Xaa
Xaa Trp I 50	le Asp	Pro Glu	Asn 0 55	Gly i	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln Xaa X 65	aa Xaa	Xaa Xaa 70	Xaa X	Kaa :	Xaa		Xaa 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
Xaa Xaa X		Xaa Xaa 85	Xaa X	Kaa :	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa Xaa G	ly Thr	Pro Thr	Gly E		Tyr 105	Tyr	Phe	Asp	Tyr	Xaa 110	Xaa	Xaa
Xaa Xaa X	aa Xaa : 15	Xaa Xaa		Kaa : 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa
Xaa Xaa X	aa Xaa :	Xaa Xaa	Xaa X 135	Xaa :	Xaa	Xaa	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa
Xaa Xaa X 145	aa Xaa	Xaa Xaa 150	Xaa >	Xaa :	Xaa	Xaa	Xaa 155	Xaa	Xaa	Xaa	Ser	Ala 160
Ser Ser S		Ser Tyr 165	Met F	His :		Xaa 170	Xaa	Xaa	Xaa	Xaa	Xaa 175	Xaa
Xaa Xaa X	aa Xaa 1	Xaa Xaa	Xaa S		Thr 185	Ser	Asn	Leu	Ala	Ser 190	Xaa	Xaa
Xaa Xaa X	aa Xaa	Xaa Xaa	Xaa X	Xaa :	Xaa							

195 200 205

Arg Ser Ser Tyr Pro Leu Thr 225 230

<210> 2

<211> 605 <212> PRT

<213> Artificial Sequence

<220>

<223> CAB1 protein

<400> 2

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr 1 $510151515151015151015101515101$

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140

Ile 145	Met	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Суз	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Trp	Ile	Tyr	Ser	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr	Asp	Asn	Ala	Ser	Leu	Leu	Arg	Phe	Tyr	Gln	Asn	Trp	Gln	Pro

370 375 380

Gln Trp Lys Pro Gly Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly 390 395 Leu Phe Gly Ala Leu Ala Val Lys Pro Ser Gly Met Pro Tyr Glu Gln 405 410 Ala Met Thr Thr Arg Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg 435 440 445 Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 455 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 470 475 480 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 505 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535 540 530 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln

600 605

595

	l> : 2> 1	3 361 PRT Arti:	ficia	al Se	equei	nce									
<220 <220		BLA p	prote	ein											
< 400)> :	3													
Thr 1	Pro	Val	Ser	Glu 5	Lys	Gln	Leu	Ala	Glu 10	Val	Val	Ala	Asn	Thr 15	Ile
Thr	Pro	Leu	Met 20	Lys	Ala	Gln	Ser	Val 25	Pro	Gly	Met	Ala	Val 30	Ala	Val
Ile	Tyr	Gln 35	Gly	Lys	Pro	His	Tyr 40	Tyr	Thr	Phe	Gly	Lys 45	Ala	Asp	Ile
Ala	Ala 50	Asn	Lys	Pro	Val	Thr 55	Pro	Gln	Thr	Leu	Phe 60	Glu	Leu	Gly	Ser
Ile 65	Ser	Lys	Thr	Phe	Thr 70	Gly	Val	Leu	Gly	Gly 75	Asp	Ala	Ile	Ala	Arg 80
Gly	Glu	Ile	Ser	Leu 85	Asp	Asp	Ala	Val	Thr 90	Arg	Tyr	Trp	Pro	Gln 95	Leu
Thr	Gly	Lys	Gln 100	Trp	Gln	Gly	Ile	Arg 105	Met	Leu	Asp	Leu	Ala 110	Thr	Tyr
Thr	Ala	Gly 115	Gly	Leu	Pro	Leu	Gln 120	Val	Pro	Asp	Glu	Val 125	Thr	Asp	Asn
Ala	Ser 130	Leu	Leu	Arg	Phe	Tyr 135	Gln	Asn	Trp	Gln	Pro 140	Gln	Trp	Lys	Pro
Gly 145		Thr	Arg	Leu	Tyr 150	Ala	Asn	Ala	Ser	Ile 155	Gly	Leu	Phe	Gly	Ala 160
Leu	Ala	Val	Lys	Pro 165	Ser	Gly	Met	Pro	Tyr 170	Glu	Gln	Ala	Met	Thr 175	Thr
	1703	T 0	T	Dwo	T 0	T	T 0	7.00	ni o	The se	Too	T10	3.00	7707	Dec

180 185 190

Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg Asp Gly Lys Ala 195 200 205

Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala Tyr Gly Val Lys 210 215 220

Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala Asn Met Ala Pro $225 \hspace{1.5cm} 230 \hspace{1.5cm} 235 \hspace{1.5cm} 240 \hspace{1.5cm}$

Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile Ala Leu Ala Gln 245 250 255

Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly Leu Gly Trp Glu $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe $275 \\ 280 \\ 285$

Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr Gly Ser Thr Gly 305 \$310\$

Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys Gln Ile Gly Ile 325 \$330\$

Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala Arg Val Glu Ala 340 345 350

Ala Tyr His Ile Leu Glu Ala Leu Gln 355 360

<210> 4

<211> 3 <212> PRT

<213> Unknown

12207 01

<220> <223> skipped

<400> 4

```
Ala Ala Ala
<210> 5
<211> 231
<212> PRT
<213> Artificial Sequence
<220>
<223> CDRs of CAB1.6 protein variant
<220>
<221> MISC_FEATURE
<222> (1)..(25)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 5
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
         20
35
                      40
                                      45
```

Xaa	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Xaa	Xaa	Хаа	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa	Xaa	Gly	Leu 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Xaa 110	Xaa	Xaa
Xaa	Xaa	Xaa 115	Xaa	Xaa	Xaa	Xaa	Xaa 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa
Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Xaa 135	Xaa	Xaa	Xaa	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa
Xaa 145	Xaa	Xaa	Xaa	Xaa	Xaa 150	Xaa	Xaa	Xaa	Xaa	Xaa 155	Xaa	Xaa	Xaa	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Xaa	Xaa 170	Xaa	Xaa	Xaa	Xaa	Xaa 175	Xaa
Xaa	Xaa	Xaa	Xaa 180	Xaa	Xaa	Xaa	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Xaa	Xaa
Xaa	Xaa	Xaa 195	Xaa	Xaa	Xaa	Xaa	Xaa 200	Xaa	Xaa	Xaa	Xaa	Xaa 205	Xaa	Xaa	Xaa
Xaa	Xaa 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Xaa 220	Xaa	Xaa	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr									

<210> 6 <211> 231 <212> PRT <213> Artificial Sequence

<220>

<223> CDRs of CAB1.7 protein variant

```
<220>
<221> MISC_FEATURE <222> (1)..(25)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 6
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Glv Phe Asn Ile Lvs Asp Ser
3.5
                  40
                               4.5
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
70 75
85 90 95
Xaa Xaa Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Xaa Xaa Xaa
```

100 105 110

Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa 180 \$185\$

Arg Asp Ser Tyr Pro Leu Thr 225 230

<210> 7 <211> 605 <212> PRT

<212> PRI <213> Artificial Sequence

<220>

<223> CAB 1.6 protein variant

<400> 7

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 1 $$ 15

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Leu 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195		Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225		Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala	Val	Ile	Tyr	Gln	Gly	Lys	Pro	His	Tyr	Tyr	Thr	Phe	Gly

275 280 285

Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly

Leu Glv Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 550 555 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 Gln Ile Glv Ile Val Met Leu Ala Asn Thr Ser Tvr Pro Asn Pro Ala Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln <210> 8 <211> 605 <212> PRT <213> Artificial Sequence <220> <223> CAB1.6i protein variant <400> 8 Gin Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 2.5 Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 40 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 55 Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tvr Tvr Cvs

85 90 95

Asn Glu Gly Leu Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 120 125 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140 Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 145 150 155 160 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 175 Ser Pro Lys Leu Val Ile Tyr Asp Thr Ser Asn Leu Ala Ser Gly Val 180 185 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200 205 Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg Asp Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 225 230 235 240 Lys Arg Ala Ala Thr Pro Val Ser Glu Lys Gln Leu Ala Glu Val Val 245 250 255 Ala Asn Thr Ile Thr Pro Leu Met Ala Ala Gln Ser Val Pro Gly Met 260 265 270 Ala Val Ala Val Ile Tyr Gln Gly Lys Pro His Tyr Tyr Thr Phe Gly 280 Lys Ala Asp Ile Ala Ala Asn Lys Pro Val Thr Pro Gln Thr Leu Phe 295 300

Glu Leu Gly Ser Ile Ser Lys Thr Phe Thr Gly Val Leu Gly Gly Asp

315

310

305

320

Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu

Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ala	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605			
<210 <211 <211 <211	l> 1 2> I	9 805 PRT Arti:	ficia	al Se	equei	nce									
<220 <220		CAB1	.7 p:	rote	in va	aria	nt								
<400)> !	9													
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Leu 100	Pro	Leu	Gly	Ala	Ile 105	Tyr	Asn	Asp	Tyr	Trp	Gly	Gln

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 \$120\$

Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ala	Val	Tyr 165	Ala	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Asp	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp

Leu	Ala	Thr	Tyr	Thr	Ala	Gly	Gly	Leu	Pro	Leu	Gln	Val	Pro	Asp	Glu
		355					360					365			

Val	Thr	Asp	Asn	Ala	Ser	Leu	Leu	Arg	Phe	Tyr	Gln	Asn	Trp	Gln	Pro
	370					375					380				

Gln	Trp	Lys	Pro	Gly	Thr	Thr	Arg	Leu	Tyr	Ala	Asn	Ala	Ser	Ile	Gly
385					390					395					400

Leu	Phe	Gly	Ala	Leu	Ala	Val	Lys	Pro	Ser	Gly	Met	Pro	Tyr	Glu	Gln
				405					410					415	

Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala
$$450$$
 460

Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465
$$470470475$$

Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495

Ala	Leu	Ala	Gln	Ser	Arg	Tyr	Trp	Arg	Ile	Gly	Ser	Met	Tyr	Gln	Gly
			500					505					510		

Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val $515 \\ 520 \\ 525$

Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr
$$545$$
 550 555 560

Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys
$$565 \hspace{1cm} 570 \hspace{1cm} 575$$

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 580 590

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605

<210> 10 <211> 605

<212> PRT <213> Artificial Sequence

<220>

<223> CAB1.7i protein variant

<400> 10

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 1 10

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 140

Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 145 150 155 160

Ser	Ser	Ala	Val	Tyr 165	Ala	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Lys	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330		Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro

Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ala	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605			

<211 <212 <213	>	244 PRT Arti!	Eicia	al Se	equer	nce									
<220 <223		CAB1	prot	ein	frag	gment	:								
<400)>	11													
Gln 1	Val	Lys	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Ser	Gly 15	Thr
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Leu	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Thr 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Met	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Trp	Ile	Tyr	Ser	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val

Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln

Arg Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 230 235

Lys Arg Ala Ala

- <210> 12
- <211> 5178
- <212> DNA
- <213> Artificial Sequence
- <220> <223> synthetic pME27.1 plasmid sequence

<400> 12 aggaattate atatgaaata cetgetgeeg accgetgetg etggtetget geteeteget 60 geocagoogg coatggeoca ggtgaaactg cagcagtotg gggcagaact tgtgaggtca 180 gggacctcag tcaagttgtc ctgcacagct tctggcttca acattaaaga ctcctatatg 240 cactggttga ggcaggggcc tgaacagggc ctggagtgga ttggatggat tgatcctgag aatggtgata ctgaatatgc cccgaagttc cagggcaagg ccacttttac tacagacaca 300 tectecaaca caqeetacet qeageteage ageetgacat etgaggacac tgeegtetat 360 tattgtaatg aggggactcc qactgggccg tactactttg actactgggg ccaagggcdc 420 acqqtcaccq tetectcaqq tqqaqqcqqt tcaqqcqqaq qtqqetctqq cqqtqqcqqa 480 tcagaaaatg tgctcaccca gtctccagca atcatgtctg catctccagg ggagaaggtc 540 accataacct gcagtgccag ctcaagtgta agttacatgc actggttcca gcagaagcca 600 ggcacttote ccaaactetq gatttatage acatecaace tggcttetgg agtecetget 660 coettcagtg geagtggate tgggacetet tactetetea caatcageeg aatggagget 720 gaagatgetg ccacttatta etgecageaa agatetagtt acceaeteae gtteggtget 780 ggcaccaagc tggagctgaa acgggcggcc acaccggtgt cagaaaaaca gctggcggag 840 gtggtcgcga atacgattac cccgctgatg aaagcccagt ctgttccagg catggcggtg 900 960 gccqttattt atcagggaaa accqcactat tacacatttg qcaagqccga tatcqcgqcq

aataaacccg	ttacgcctca	gaccctgttc	gagctgggtt	ctataagtaa	aaccttcacc	1020
ggcgttttag	gtggggatgc	cattgctcgc	ggtgaaattt	cgctggacga	tgeggtgace	1080
agatactggc	cacagetgae	gggcaagcag	tggcagggta	ttcgtatgct	ggatctcgcc	1140
acctacaccg	ctggcggcct	gccgctacag	gtaccggatg	aggtcacgga	taacgcctcc	1200
ctgctgcgct	tttatcaaaa	ctggcagccg	cagtggaagc	ctggcacaac	gcgtctttac	1260
gccaacgcca	gcatcggtct	ttttggtgcg	ctggcggtca	aaccttctgg	catgccctat	1320
gagcaggcca	tgacgacgcg	ggtccttaag	ccgctcaagc	tggaccatac	ctggattaac	1380
gtgccgaaag	cggaagaggc	gcattacgcc	tggggctatc	gtgacggtaa	ageggtgege	1440
gtttcgccgg	gtatgctgga	tgcacaagcc	tatggcgtga	aaaccaacgt	gcaggatatg	1500
gcgaactggg	tcatggcaaa	catggcgccg	gagaacgttg	ctgatgcctc	acttaagcag	1560
ggcatcgcgc	tggcgcagtc	gegetactgg	cgtatcgggt	caatgtatca	gggtctgggc	1620
tgggagatgc	tcaactggcc	cgtggaggcc	aacacggtgg	tcgagacgag	ttttggtaat	1680
gtagcactgg	cgccgttgcc	cgtggcagaa	gtgaatccac	cggctccccc	ggtcaaagcg	1740
teetgggtee	ataaaacggg	ctctactggc	gggtttggca	gctacgtggc	ctttattcct	1800
gaaaagcaga	teggtattgt	gatgetegeg	aatacaagct	atccgaaccc	ggcacgcgtt	1860
gaggeggeat	accatatect	egaggegeta	cagtaggaat	tegageteeg	tegacaaget	1920
tgeggeegea	ctcgagatca	aacgggctag	ccagccagaa	ctcgccccgg	aagaccccga	1980
ggatgtcgag	caccaccacc	accaccactg	agateegget	gctaacaaag	cccgaaagga	2040
agctgagttg	getgetgeea	cegetgagea	ataactagca	taaccccttg	gggcctctaa	2100
acgggtcttg	aggggtttt	gctgaaagga	ggaactatat	ceggattgge	gaatgggacg	2160
cgccctgtag	eggegeatta	agegeggegg	gtgtggtggt	tacgcgcagc	gtgaccgcta	2220
cacttgccag	egecetageg	cccgctcctt	tegetttett	cccttccttt	ctcgccacgt	2280
tegeeggett	teccegteaa	getetaaate	gggggeteee	tttagggttc	cgatttagtg	2340
ctttacggca	cetegacece	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	2400
cgccctgata	gacggtttt	egecetttga	cgttggagtc	cacgttcttt	aatagtggac	2460
tettgtteea	aactggaaca	acactcaacc	ctatctcggt	ctattctttt	gatttataag	2520
ggattttgcc	gattteggee	tattggttaa	aaaatgaget	gatttaacaa	aaatttaacg	2580
cgaattttaa	caaaatatta	acgettacaa	tttcctgatg	cggtattttc	teettaegea	2640
tctgtgcggt	atttcacacc	gcatatggtg	cactctcagt	acaatctgct	ctgatgccgc	2700

atagttaagc	cageceegae	accegecaae	accegetgae	gegeeetgae	gggcttgtct	2760
gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	gggagctgca	tgtgtcagag	2820
gttttcaccg	tcatcaccga	aacgcgcgag	acgaaagggc	ctcgtgatac	gcctattttt	2880
ataggttaat	gtcatgataa	taatggtttc	ttagacgtca	ggtggcactt	ttcggggaaa	2940
tgtgcgcgga	acccctattt	gtttatttt	ctaaatacat	tcaaatatgt	atccgctcat	3000
gagacaataa	ccctgtggca	gcatcacccg	acgcactttg	cgccgaataa	atacctgtga	3060
cggaagatca	cttcgcagaa	taaataaatc	ctggtgtccc	tgttgatacc	gggaageeet	3120
gggccaactt	ttggcgaaaa	tgagacgttg	atcggcacgt	aagaggttcc	aactttcacc	3180
ataatgaaat	aagatcacta	ccgggcgtat	tttttgagtt	atcgagattt	tcaggagcta	3240
aggaagctaa	aatggagaaa	aaaatcactg	gatataccac	cgttgatata	teccaatgge	3300
atcgtaaaga	acattttgag	gcatttcagt	cagttgctca	atgtacctat	aaccagaccg	3360
ttcagctgga	tattacggcc	tttttaaaga	ccgtaaagaa	aaataagcac	aagttttatc	3420
cggcctttat	tcacattctt	gcccgcctga	tgaatgctca	tccggaattc	cgtatggcaa	3480
tgaaagacgg	tgagctggtg	atatgggata	gtgttcaccc	ttgttacacc	gttttccatg	3540
agcaaactga	aacgttttca	tegetetgga	gtgaatacca	cgacgatttc	cggcagtttc	3600
tacacatata	ttcgcaagat	gtggcgtgtt	acggtgaaaa	cctggcctat	ttccctaaag	3660
ggtttattga	gaatatgttt	ttcgtctcag	ccaatccctg	ggtgagtttc	accagttttg	3720
atttaaacgt	ggccaatatg	gacaacttct	tegececegt	tttcacgatg	ggcaaatatt	3780
atacgcaagg	cgacaaggtg	ctgatgccgc	tggcgattca	ggttcatcat	gccgtctgtg	3840
atggetteca	tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	gagtggcagg	3900
geggggegta	aagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	3960
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	ttaatttaaa	4020
aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	4080
tegttecact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	4140
tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	4200
ttgccggatc	aagagctacc	aactctttt	ccgaaggtaa	ctggcttcag	cagagegeag	4260
ataccaaata	ctgttcttct	agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	4320
gcaccgccta	catacetege	tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	4380

aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	4440
ggctgaacgg	ggggttcgtg	cacacagece	agettggage	gaacgaccta	caccgaactg	4500
agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	4560
aggtatccgg	taagcggcag	ggtcggaaca	ggagagegea	cgagggagct	tccaggggga	4620
aacgcctggt	atctttatag	teetgteggg	tttegeeace	tetgaettga	gcgtcgattt	4680
ttgtgatgct	cgtcaggggg	geggageeta	tggaaaaacg	ccagcaacgc	ggccttttta	4740
cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	ttcctgcgtt	atcccctgat	4800
tctgtggata	accgtattac	cgcctttgag	tgagetgata	ccgctcgccg	cageegaaeg	4860
accgagcgca	gegagteagt	gagegaggaa	geggaagage	geceaataeg	caaaccgcct	4920
ctccccgcgc	gttggccgat	tcattaatgc	agetggeaeg	acaggtttcc	cgactggaaa	4980
gegggeagtg	agegeaaege	aattaatgtg	agttagetea	ctcattaggc	accccagget	5040
ttacacttta	tgetteegge	tegtatgttg	tgtggaattg	tgagcggata	acaatttcac	5100
acaggaaaca	getatgacea	tgattacgcc	aagctattta	ggtgacacta	tagaatactc	5160
aagctttcta	gattaagg					5178

<400> 13

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 70 75

<210> 13 <211> 120 <212> PRT

<213> Artificial Sequence

<220> <223> CAB1 heavy chain sequence

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tvr Tvr Cvs Gly Thr Thr Val Thr Val Ser Ser <210> 14 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> CAB1 linker sequence <400> 14 Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 $$ 10 $$ 15 <210> 15 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> CAB1 light chain sequence <400> 15 Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met 2.0 His Trp Phe Gln Gln Lys Pro Gly Thr Ser Pro Lys Leu Trp Ile Tyr 35 40 45Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu

300 310	ale The	T T	C (cla cla	3 C		T	Date	T	Th
Asp Ala i	Ala inr	85	cys (GIN GIN	90	ser	ıyr	PIO	95	ınr
Phe Gly	Ala Gly 100		Leu (Glu Leu 105		Ala	Ala	Thr 110		
<212> PI	60 RT	al Seque	nce							
<220> <223> B	LA prot	ein frag	ment							
<400> 1	6									
Pro Val :	Ser Glu	Lys Gln 5	Leu A	Ala Glu	Val Val 10	Ala	Asn	Thr	Ile 15	Thr
Pro Leu l	Met Lys 20	Ala Gln	Ser 7	Val Pro 25	Gly Met	Ala	Val	Ala 30	Val	Ile
Tyr Gln	Gly Lys 35	Pro His		Tyr Thr 40	Phe Gly	Lys	Ala 45	Asp	Ile	Ala
Ala Asn : 50	Lys Pro	Val Thr	Pro 0	Gln Thr	Leu Phe	Glu 60	Leu	Gly	Ser	Ile
Ser Lys : 65	Thr Phe	Thr Gly 70	Val 1	Leu Gly	Gly Asr 75	Ala	Ile	Ala	Arg	Gly 80
Glu Ile	Ser Leu	Asp Asp 85	Ala V	Val Thr	Arg Tyr 90	Trp	Pro	Gln	Leu 95	Thr
Gly Lys	Gln Trp 100	Gln Gly	Ile A	Arg Met 105		Leu	Ala	Thr 110	Tyr	Thr
Ala Gly	Gly Leu 115	Pro Leu		Val Pro 120	Asp Glu	Val	Thr 125	Asp	Asn	Ala
Ser Leu 1	Leu Arg	Phe Tyr	Gln 1 135	Asn Trp	Gln Pro	Gln 140	Trp	Lys	Pro	Gly

Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly Leu Phe Gly Ala Leu 145 \$150\$ 150 155 160

Ala Val Lys Pro Ser Gly Met Pro Tyr Glu Gln Ala Met Thr Thr Arg 165 170 175

Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp Ile Asn Val Pro Lys 180 185 190

Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg Asp Gly Lys Ala Val 195 $200\,$ 205

Asn Val Gln Asp Met Ala Asn Trp Val Met Ala Asn Met Ala Pro Glu 225 230225235

Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile Ala Leu Ala Gln Ser $245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly Leu Gly Trp Glu Met $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe Gly $275 \\ 280 \\ 285$

Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu Val Asn Pro Pro Ala 290 \$295\$

Pro Pro Val Lys Ala Ser Trp Val His Lys Thr Gly Ser Thr Gly Gly 305 \$310\$ \$315

Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys Gln Ile Gly Ile Val 325 330 335

Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala Arg Val Glu Ala Ala 340 345 350

Tyr His Ile Leu Glu Ala Leu Gln 355 360

<210> 17 <211> 60°

<211> 605 <212> PRT

<21	3> <i>i</i>	Arti:	Eicia	al Se	equei	nce									
<220 <220		SW14	9.5 p	prote	ein										
< 400)> :	17													
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Leu 100	Pro	Leu	Gly	Ala	Ile 105	Tyr	Asn	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ser	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605			
<210> 18 <211> 605 <212> PRT <213> Artificial Sequence															
<220> <223> CAB1.1 protein variant															
< 400)> :	18													
Gln 1	Val	Lys	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 707075

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln $100 \ \ \, 105 \ \ \, 110$

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 140

Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 145 \$150\$

Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr \$165\$

Ser Pro Lys Leu Val Ile Val Ser Thr Ser Asn Leu Ala Ser Gly Val

Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200 205

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 210 215 220

Arg Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 225 230 235 240

Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala

Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480	
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile	
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly	
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val	
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu	
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560	
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ser	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys	
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala	
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605				
<210 <211 <212 <213	 	19 1815 DNA Arti:	ficia	al Se	equer	nce										
<220> <223> CAB1.2 variant coding sequence																
<400 cag		19 agc 1	gca	gcagt	c to	gggg	cagaa	a cti	gtga	aaat	cag	gggg	etc :	agtca	aagttg	60
tect	gca	cag d	ette	gget	t ca	acat	taaa	a gao	eteci	ata	tgca	actg	ggt	gaggo	cagggg	120
cctç	gaaca	agg (geet	ggagt	g ga	attg	gatg	g att	gat	ectg	agaa	atggi	ga	tacto	gaatat	180
gcco	ccgaa	agt 1	cca	gggca	aa go	gcca	ettti	act	aca	gaca	cat	ecte	caa	cacaç	geetae	240
ctg	caget	tca (gcag	ectga	ac at	ctga	agga	e act	gee	gtct	atta	attgi	aa 1	tgag	gggact	300
ccga	actg	ggc o	egta	etaci	t tç	gacta	actg	g ggd	ccaa	ggga	cca	eggt	cac	egtet	cctca	360

ggtggaggcg	gttcaggcgg	aggtggctct	ggeggtggeg	gatcagaaaa	tgtcgtcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatcgggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 20 <211> 605 <212> PRT <213> Artificial Sequence

<223> CAB1.2 protein variant <400> 20 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 40 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 7.0 7.5 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 145 150 155

Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr
165 175

Ser Pro Lys Leu Val Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val
180 185 190

Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr $195 \hspace{1cm} 200 \hspace{1cm} 205 \hspace{1cm}$

Ile Ser Arq Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln

Arg 225	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg

Asp Glv Lvs Ala Val Arg Val Ser Pro Glv Met Leu Asp Ala Gln Ala 450 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 475 465 470 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 520 Glu Thr Ser Phe Glv Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 530 535 540 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 575 Gin Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 <210> 21 <211> 231 <212> PRT <213> Artificial Sequence <220>

<220> <221>

<221> MISC_FEATURE

<222> (1)..(25)

<223> X = any amino acid

<223> CDRs of CAB1.4 protein variant

-22A-

```
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 21
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
4.0
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
65
            70
                        7.5
Xaa Xaa Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Xaa Xaa Xaa
       100
115
                 120
                             125
```

Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Xaa 135	Xaa	Xaa	Xaa	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa
	100					133					140				
	Хаа	Xaa	Хаа	Xaa		Xaa	Хаа	Xaa	Xaa		Xaa	Xaa	Хаа	Ser	
145					150					155					160
Ser	Ser	Ser	Val	Ser	Tyr	Met	His	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Хаа
				165					170					175	
Yaa	Yaa	Xaa	Yaa	Yaa	Yaa	Yaa	Asn	Thr	Ser	Asn	Len	Ala	Ser	Yaa	Yaa
naa	Auc	naa	180		Auu	Auu	пор	185		non	шеш	nia	190		Auc
Xaa	Хаа	195		Xaa	Xaa	Xaa	200	Xaa	Xaa	Xaa	Xaa	Xaa 205	Xaa	Xaa	Xaa
		- 23					200					200			
Xaa		Xaa	Xaa	Xaa	Xaa		Xaa	Xaa	Xaa	Xaa		Xaa	Xaa	Gln	Glr
	210					215					220				
Arg	Asp	Ser	Tyr	Pro	Leu	Thr									
225					230										
<210)>	22													
<211															
<212															
<213	3>	Arti:	fici	al Se	eque	nce									
<220)>														
		sequ	ence	ence	odin	g CDI	Rs o	f CAI	31.4	var	iant				
<220															
		misc.	fea	ture											
		(1).													
		n = ;			g										
<220			e												
		misc. (184													
		n = :			c a										
			, -,	,	,										
<220															
		misc.													
		(274													
<223	5>	n = .	a, t,	c, o:	c g										
<220)>														
		misc.	_fea	ture											
		(406													
<223	3>	n = .	a. t	c. o:	c a										

```
<220>
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 22
60
120
                                             180
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg
240
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnnn nnnnnnnnn
                                              300
360
                                              420
nnnnnnnnn nngggactcc gactgggccg tactactttg actacnnnn nnnnnnnnn
480
540
nnnnnnnn nnagtgecag etcaagtgta agttacatge acnnnnnnn nnnnnnnnn
                                              600
nnnnnnnnn nnnnnnnnn nnnnnnnngat acatecaaec tggettetnn nnnnnnnnn
                                              660
720
                                              771
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
<210> 23
<211> 1815
<212> DNA
<213> Artificial Sequence
<223> sequence encoding CAB1.4 variant
<400> 23
                                              60
caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg
tcctgcacag cttctggctt caacattaaa gactcctata tgcactgggt gaggcagggg
                                              180
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat
qccccqaaqt tccaqqqcaa qqccactttt actacaqaca catcctccaa cacaqcctac
                                              240
ctgcagetca gcagectgae atetgaggae actgccgtet attattgtaa tgagggaet
                                             300
```

ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttatg	atacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tetgggaeet	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgc	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagetaegtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 24 <211> 605 <212> PRT

<213	3>	Arti:	Eicia	al Se	equei	nce									
<220 <223		CAB1	.4 p	cote:	in va	aria	nt								
<400)>	24													
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Thr 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 450 455 460

Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470475475

Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile \$485\$

Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly $500 \hspace{1cm} 505 \hspace{1cm} 510 \hspace{1cm}$

Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val $515 \\ 520 \\ 525$

Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 560

Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 Phe Ile Pro 51u Lys

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala $580 \hspace{1.5cm} 585 \hspace{1.5cm} 590$

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605

<210> 25

<211> 771

<212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding CDRs of CAB1.6 variant

<220>

<221> misc_feature

<222> (1)..(153)

```
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
\langle 223 \rangle n = a,t,c, or q
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or q
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or q
<220>
<221> misc feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 25
60
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg
                                          180
240
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnnn
360
nnnnnnnn nngggetece gaetgggeeg tactaetttg actaennnn nnnnnnnnn
480
540
nnnnnnnn nnaqtgccag ctcaagtgta agttacatgc acnnnnnnn nnnnnnnnn
                                           600
nnnnnnnn nnnnnnnn nnnnnnnn at acatecaace tggettetnn nnnnnnnnn
                                          660
720
                                          771
nnnnnnnn nnnnnnnn nnnncagcaa agagatagtt acccactcac g
```

<212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding CAB1.6 protein variant

<400> 26 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 teetgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 goccogaagt tocagggcaa ggccactttt actacagaca catootocaa cacagootac 240 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 300 ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca 360 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtcgtcacc 480 cagtotocag caatogtgto tgcatotoca ggggagaagg toaccataac otgcagtgco agotcaagtg taagttacat gcactggttc cagcagaagc caggcacttc tcccaaactc 540 gtgatttatg atacatccaa cotggottot ggagtccotg otcgottcag tggcagtgga 600 totgggacct ottactotot cacaatcago ogaatggagg otgaagatgo tgocacttat 660 720 tactgccage aaagagatag ttacccacte acgttcggtg ctggcaccaa gctggagctg 780 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt accccgctga tgaaagccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 840 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 900 cagaccctgt tcqaqctqqq ttctataaqt aaaaccttca ccqqcqtttt aqqtqqqqat 960 gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg acggcaage agtggcaggg tattcgtatg ctggateteg ccaectacae cgctggcgge 1080 ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa 1140 aactggcago cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt 1200 ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg 1260

cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag

gegeattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg

gatgcacaag cetatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca

aacatggcgc cggagaacgt tgctgatgcc tcacttaagc agggcatcgc gctggcgcag

1320

1380

tegegetact ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg 1560 cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg 1620 1680 cccgtggcag aagtgaatcc accggctccc ccggtcaaag cgtcctgggt ccataaaacg 1740 ggetetactg gegggtttgg eagetacgtg geetttatte etgaaaagea gateggtatt gtgatgctcg cqaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc 1800 1815 ctcgaggcgc tacag <210> 27 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CAB1.6i protein variant <400> 27 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 120 tcctgcacag cttctggctt caacattaaa gactcctata tgcactgggt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 240 gccccqaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 300 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 360 ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc cagtetecag caategtgte tgeateteca ggggagaagg teaccataac etgeagtgee 480 agotcaagtg taacttacat gcactggttc cagcagaagc caggcacttc tcccaaactc 540 gtgatttatg atacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga 600 totgggacct cttactctct cacaatcagc cgaatggagg ctgaagatgc tgccacttat 660 tactgccagc aaagagatag ttacccactc acgttcggtg ctggcaccaa gctggagctg 720 780 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 840 accccgctga tggcggccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 900 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 960 caqaccetqt tegagetqqq ttetataaqt aaaacettca ceggegtttt aggtqqqqat gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg 1020

acqqqcaaqc aqtqqcaqqq tattcqtatq ctqqatctcq ccacctacac cqctqqcqqc

```
1140
ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa
                                                                   1200
aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt
ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg
                                                                   1320
cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag
gegeattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg
                                                                   1380
gatgcacaag cctatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca
                                                                   1440
                                                                   1500
aacatggege eggagaacgt tgetgatgee teacttaage agggeatege getggegeag
tegegetact ggeqtategg qteaatgtat cagggtetgg getgggagat geteaactgg
                                                                   1560
                                                                   1620
cccqtqqaqq ccaacacqqt qqtcqaqacq aqttttqqta atqtaqcact qqcqccqttq
                                                                   1680
ccetgggcag aagtgaatcc accggctccc ccggtcaaag cgtcctgggt ccataaaacg
                                                                   1740
ggetetactg gegggtttgg egegtacgtg geetttatte etgaaaagca gateggtatt
gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc
                                                                   1800
ctcgaggcgc tacag
                                                                   1815
<210> 28
<211> 771
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CDRs of CAB1.7 protein variant
<220>
<221> misc feature
<222> (1)..(153)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or q
<220>
<221> misc feature
<222> (406)..(552)
<223> n = a,t,c, or g
```

```
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 28
60
120
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg
                                              180
240
                                              300
aatggtgata ctgaatatgc cccgaagttc cagnnnnnn nnnnnnnnn nnnnnnnnn
360
nnnnnnnn nngggeteee geteggggee atttacaaeg actaennnnn nnnnnnnnn
                                              420
480
540
nnnnnnnn nnagtgecag eteagetgta tatgecatge aennnnnnn nnnnnnnnn
                                              600
                                              660
nnnnnnnn nnnnnnnnn nnnnnnnngat acatecaace tggettetnn nnnnnnnnn
720
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
                                              771
<210> 29
<211> 1815
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CAB1.7 protein variant
<400> 29
caggiggage tgcagcagte tggggcagaa citgigaaat cagggggete agtcaagtig
                                               60
teetgeacag ettetggett caacattaaa gacteetata tgeactgggt gaggeagggg
                                              120
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat
                                              180
gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac
                                              240
ctgcagctca gcagcctgac atctgaggac actgccqtct attattgtaa tgaggggctc
                                              300
```

cegetegggg	ccatttacaa	cgactactgg	ggccaaggga	ccacggtcac	egteteetea	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcagctg	tatatgccat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttatg	atacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	togtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 30 <211> 1815 <212> DNA <213> Artificial Sequence

<220>
<223> sequence encoding CAB1.7i protein variant

<400> 30 caggtgcage tgcagcagte tggggcagaa ettgtgaaat cagggggete agtcaagttg 60 120 teetgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 goccogaagt tocagggcaa ggccactttt actacagaca catootocaa cacagoctac 240 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 300 cogctogggg ccatttacaa cqactactqq qqccaaqqqa ccacqqtcac cqtctcctca 360 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc cagtotocag caatogtgto tgcatotoca ggggagaagg toaccataac otgcagtgco 480 agetcagetg tatatgecat geactggtte cageagaage caggeactte teccaaacte 540 gtgatttatg atacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga 600 totgggacot ottactotot cacaatcago ogaatggagg otgaagatgo tgccacttat 660 tactgccagc aaagagatag ttacccactc acgttcggtg ctggcaccaa gctggagctg 720 780 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt accccgctga tggcggccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 840 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 900 cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt aggtggggat 960 gocattgote geggtgaaat ttegetggae gatgeggtga ceagatactg gecacagetg 1020 acqqqcaaqc aqtqqcaqqq tattcqtatq ctqqatctcq ccacctacac cqctqqcqqc ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa 1140 aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt 1200 ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg 1260 cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag 1320 gegcattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg 1380 1440 gatgcacaag cetatggegt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca aacatggege eggagaacgt tgetgatgee teaettaage agggeatege getggegeag tegegetact ggcgtategg gtcaatgtat cagggtetgg getgggagat getcaactgg 1560

```
cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg
                                                           1620
cccqtqqcaq aaqtqaatcc accqqctccc ccqqtcaaaq cqtcctqqqt ccataaaacq
                                                           1680
ggctctactg gcgqgtttqg cgcgtacgtg gcctttattc ctgaaaaqca gatcqgtatt
                                                           1740
                                                           1800
gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc
                                                           1815
ctegaggege tacag
<210> 31
<211> 771
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CDRs of CAB1 protein
<220>
<221> misc_feature
<222> (1)..(153)
<223> n = a,t,c, or q
<220>
<221> misc feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or q
<220>
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or q
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 31
60
120
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg 180
```

cacnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnntggat	tgatcctgag	240
aatggtgata	ctgaatatgc	cccgaagttc	cagnnnnnnn	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	360
nnnnnnnnn	nngggactcc	gactgggccg	tactactttg	actacnnnnn	nnnnnnnnn	420
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	480
nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	540
nnnnnnnnn	nnagtgccag	ctcaagtgta	agttacatgc	acnnnnnnn	nnnnnnnnn	600
nnnnnnnnn	nnnnnnnnn	nnnnnnagc	acatccaacc	tggcttctnn	nnnnnnnnn	660
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	720
nnnnnnnnn	nnnnnnnnn	nnnncagcaa	agatctagtt	acccactcac	g	771
<220>	ificial Sequ	dence	otein			
<400> 32 caggtgaaac	tgcagcagtc	tggggcagaa	cttqtqaqqt	cagggacete	agtcaagttg	60
tcctgcacag	cttctggctt	caacattaaa	gactcctata	tgcactggtt	gaggcagggg	120
cctgaacagg	gcctggagtg	gattggatgg	attgatcctg	agaatggtga	tactgaatat	180
gccccgaagt	tccagggcaa	ggccactttt	actacagaca	catcctccaa	cacagootac	240
ctgcagctca	gcagcctgac	atctgaggac	actgccgtct	attattgtaa	tgaggggact	300
ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcatgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	teccaaaete	540
tggatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcage	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccage	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagetggegg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840

```
900
aaaccqcact attacacatt tqqcaaqqcc qatatcqcqq cqaataaacc cqttacqcct
                                                                    960
caqaccctqt tcqaqctqqq ttctataaqt aaaaccttca ccqqcqtttt aqqtqqqqat
qccattgetc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg
                                                                    1080
acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc
ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa
                                                                    1140
aactggcage cgcagtggaa gcctggcaca acgcgtcttt acgccaacge cagcatcggt
                                                                    1200
                                                                    1260
ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg
egggteetta aqeeqeteaa qetqqaeeat acetqqatta aeqtqeeqaa aqeqqaaqaq
                                                                    1320
                                                                    1380
gegeattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg
                                                                    1440
gatgcacaag cetatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca
                                                                    1500
aacatggcgc cggagaacgt tgcggatgcc tcacttaagc agggcatcgc gctggcgcag
tegegetact ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg
                                                                    1560
cccqtqqaqq ccaacacqqt qqtcqaqacq aqttttqqta atqtaqcact qqcqccqttq
                                                                    1620
cccgtggcag aagtgaatcc accggctccc ccggtcaaag cgtcctgggt ccataaaacg
                                                                    1680
ggctctactg gcgggtttgg cagctacgtg gcctttattc ctgaaaagca gatcggtatt
                                                                    1740
gtgatgeteg egaatacaag etateegaac eeggeaegeg ttgaggegge ataccatate
                                                                    1800
ctcgaggcgc tacag
                                                                    1815
```

```
<210> 33
<211> 231
```

<212> PRT

<213> Artificial Sequence

<220> <223> CDRs of SW149.5 protein

<220>

<221> MISC_FEATURE

<222> (1)..(25)

<223> X = any amino acid

<220>

<221> MISC_FEATURE

<222> (36)..(49)

<223> X = any amino acid

<221> MISC FEATURE

```
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 33
5
                1.0
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
     20 25
35 40 45
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
8.5
                9.0
Xaa Xaa Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Xaa Xaa Xaa
     100
115 120 125
130 135 140
```

150 155 145 160

Ser Ser Ser Val Ser Tyr Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa 180 185 190

195 200 205

210 215 220

Arg Asp Ser Tyr Pro Leu Thr

<210> 34 <211> 771

<212> DNA <213> Artificial Sequence

<220> <223> sequence encoding CDRs of SW149.4 protein

<220>

<221> misc_feature

<222> (1)..(153)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (184)..(225)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (274)..(372)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (406)..(552)

<223> n = a,t,c, or q

<220>

<221> misc feature

<222> (583)..(627)

<223> n = a,t,c, or g

```
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 34
                                                    60
annanana annanana annananan annananan annananan annananan annananan
180
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg
                                                   240
300
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnnn
360
                                                   420
nnnnnnnnn nngggeteee getegggee atttacaaeg actaennnnn nnnnnnnnn
                                                   480
540
nnnnnnnnn nnagtgccag ctcaagtgta agttacatgc acnnnnnnn nnnnnnnnn
                                                    600
nnnnnnnn nnnnnnnnn nnnnnnnngat acatccaacc tggcttctnn nnnnnnnnn
                                                    660
                                                   720
771
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
<210> 35
<211> 1815
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding SW149.5 protein
<400> 35
caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg
                                                   60
tectgeacag ettetggett caacattaaa gacteetata tgeactgggt gaggeagggg
                                                    120
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat
                                                    180
                                                   240
gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac
                                                   300
ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc
ccqctcqqqq ccatttacaa cqactactqq qqccaaqqqa ccacqqtcac cqtctcctca
                                                   360
ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc
                                                   420
cagtetecag caategtgte tgcateteca ggggagaagg teaccataac etgcagtgee
                                                   480
```

agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttatg	atacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tetgggaeet	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccage	aaagagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagetggegg	aggtggtege	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gegeattacg	cctggggcta	tegtgaeggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
togogotact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 36 <211> 1083 <212> DNA <213> Artificial Sequence

<220>

<223> sequence encoding BLA protein

<400> 36

acaccggtgt c	agaaaaaca	gctggcggag	gtggtcgcga	atacgattac	cccgctgatg	60
aaageceagt e	tgttccagg	catggcggtg	gccgttattt	atcagggaaa	accgcactat	120
tacacatttg g	caaggccga	tategeggeg	aataaacccg	ttacgcctca	gaccctgttc	180
gagctgggtt c	tataagtaa	aaccttcacc	ggcgttttag	gtggggatgc	cattgctcgc	240
ggtgaaattt c	gctggacga	tgcggtgacc	agatactggc	cacagetgae	gggcaagcag	300
tggcagggta t	tegtatget	ggatetegee	acctacaccg	ctggcggcct	gccgctacag	360
gtaccggatg a	ggtcacgga	taacgcctcc	ctgctgcgct	tttatcaaaa	ctggcagccg	420
cagtggaage e	tggcacaac	gcgtctttac	gccaacgcca	gcatcggtct	ttttggtgcg	480
ctggcggtca a	accttctgg	catgccctat	gagcaggcca	tgacgacgcg	ggtccttaag	540
cegeteaage t	ggaccatac	ctggattaac	gtgccgaaag	eggaagagge	gcattacgcc	600
tggggctatc g	tgacggtaa	ageggtgege	gtttcgccgg	gtatgctgga	tgcacaagcc	660
tatggcgtga a	aaccaacgt	gcaggatatg	gcgaactggg	tcatggcaaa	catggcgccg	720
gagaacgttg c	tgatgcctc	acttaagcag	ggcatcgcgc	tggcgcagtc	gcgctactgg	780
egtategggt e	aatgtatca	gggtctgggc	tgggagatgc	tcaactggcc	cgtggaggcc	840
aacacggtgg t	egagaegag	ttttggtaat	gtagcactgg	egeegttgee	cgtggcagaa	900
gtgaatccac c	ggeteeece	ggtcaaagcg	teetgggtee	ataaaacggg	ctctactggc	960
gggtttggca g	ctacgtggc	ctttattcct	gaaaagcaga	teggtattgt	gatgctcgcg	1020
aatacaaget a	teegaaeee	ggcacgcgtt	gaggeggeat	accatateet	cgaggcgcta	1080
cag						1083
<220> <223> seque	icial Sequ		protein vari	iant		
<400> 37 caggtgaaac t	gcagcagtc	tggggcagaa	cttgtgaaat	cagggggctc	agtcaagttg	60
teetgeacag e	ttetggett	caacattaaa	gactcctata	tgcactggtt	gaggcagggg	120

cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat

geoccgaagt teeagggeaa ggeeaettt aetacagaea eateeteeaa eacageetae 240 etgeagetea geageetgae atetgaggae aetgeegtet attattgtaa tgaggggaet 300

ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcatgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
gagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatege	gctggcgcag	1500
tegegetact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagetaegtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 38 <211> 605 <212> PRT

<21	3> <i>I</i>	Arti:	ficia	al Se	equei	nce									
<220 <220		CAB1	.2i p	prote	ein v	varia	ant								
<400)> :	38													
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Thr 100	Pro	Thr	Gly	Pro	Tyr 105		Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Ser	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg	
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala	
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480	
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile	
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly	
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val	
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu	
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555		Val	His	Lys	Thr 560	
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ala	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys	
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala	
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605				
<210> 39 <211> 1815 <212> DNA <213> Artificial Sequence																
<220)>															
<223	3> :	seque	ence	ence	odin	g CAI	31.2	i pro	oteir	n va:	ciant	-				
<400		39		2020	. a . t .	aaac.		a ot 1	at a	aaa+	0200	aaac.	at a	at c	aatta	
		-					-								agttg	
tect	gca	cag	ettei	ggct	ct ca	aacat	taaa	a gad	etect	tata	tgca	actg	ggt q	gaggo	cagggg	

cctgaacagg	gcctggagtg	gattggatgg	attgatcctg	agaatggtga	tactgaatat	180
gccccgaagt	tecagggeaa	ggccactttt	actacagaca	catcctccaa	cacageetae	240
ctgcagetca	gcagcctgac	atctgaggac	actgccgtct	attattgtaa	tgaggggact	300
ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	toccaaacto	540
gtgatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacggggcg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tggcggccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	togagotggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttegetggae	gatgcggtga	ccagatactg	gccacagetg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tegtgaeggt	aaageggtge	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
togogotact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	gccgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gegggtttgg	cgcgtacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800

ctcgaggcgc tacag 1815

<210 <211 <212 <213	L> 2> :	40 605 PRT Arti:	ficia	al Se	equei	nce									
	<220> <223> CAB1.13i protein variant														
<400> 40															
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gl
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Se
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Il
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Ph
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Ту 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Су
Asn	Glu	Gly	Leu 100	Pro	Leu	Gly	Ala	Ile 105	Tyr	Asn	Asp	Tyr	Trp 110	Gly	Gl
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gl
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Al
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Al 16

Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200 205

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 210 215 220

Arg Asp Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 225 $$ 230 $$ 235 $$ 240

Lys Arg Ala Ala Thr Pro Val Ser Glu Lys Gln Leu Ala Glu Val Val 245 \$250\$

Ala Asn Thr Ile Thr Pro Leu Met Ala Ala Gln Ser Val Pro Gly Met 260 265 270

Ala Val Ala Val Ile Tyr Gln Gly Lys Pro His Tyr Tyr Thr Phe Gly 275 280 285

Lys Ala Asp Ile Ala Ala Asn Lys Pro Val Thr Pro Gln Thr Leu Phe 290 295 300

Glu Leu Gly Ser Ile Ser Lys Thr Phe Thr Gly Val Leu Gly Gly Asp $305 \hspace{1.5cm} 310 \hspace{1.5cm} 315 \hspace{1.5cm} 320$

Ala Ile Ala Arg Gly Glu Ile Ser Leu Asp Asp Ala Val Thr Arg Tyr \$325\$

Trp Pro Gln Leu Thr Gly Lys Gln Trp Gln Gly Ile Arg Met Leu Asp \$340\$ \$345\$ \$350

Leu Ala Thr Tyr Thr Ala Gly Gly Leu Pro Leu Gln Val Pro Asp Glu 355 360 365

Val Thr Asp Asn Ala Ser Leu Leu Arg Phe Tyr Gln Asn Trp Gln Pro 370 380

Gln Trp Lys Pro Gly Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly 385 \$390\$

Leu Phe Glv Ala Leu Ala Val Lvs Pro Ser Glv Met Pro Tvr Glu Gln

405 410 415

Ala Met Thr Thr Arg Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp 425

Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg 440 445 435

Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 450 455 460

Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 480

Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495

Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 505 510

Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 520 525

Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535

Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 560

Gly Ser Thr Gly Gly Phe Gly Ala Tyr Val Ala Phe Ile Pro Glu Lys 565 570 575

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 600

<210> 41 <211> 1814

<212> DNA

<213> Artificial Sequence

<220>

<400> 41 caggigage tgcagcagte tggggcagaa citgtgaaat cagggggete agtcaagtig 60 tcctgcacag cttctggctt caacattaaa gactcctata tgcactgggt gaggcagggg 180 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat goccogaagt tocagggcaa ggccactttt actacagaca catcotocaa cacagoctac 240 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 300 cogctogggg ccatttacaa cgactactgg ggccaaggga ccacggtcac cgtctcctca 360 ggtggaggcg gttcaggcqq aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc 420 cagtotocag caatogtgto tgcatotoca ggggagaagg tcaccataac ctgcagtgcc 480 540 agetcagetg tatatgecat geactggtte cageagaage caggeactte teccaaacte 600 qtqatttata qcacatccaa cctqqcttct qqaqtccctq ctcqcttcaq tqqcaqtqqa totgggacot ottactotot cacaatcago ogaatggagg otgaagatgo tgccacttat 660 tactgccage aaagagatag ttacccacte acqttcggtg ctggcaccaa gctggagetg 720 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 780 accccgctga tggcggccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 840 900 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt ggtggggatg 960 1020 ccattgctcg cqqtqaaatt tcqctqqacq atqcqqtqac caqatactqq ccacaqctqa egggeaagea gtggeagggt attegtatge tggatetege cacetacace getggeggee 1080 tgccgctaca ggtaccggat gaggtcacgg ataacgcctc cctgctgcgc ttttatcaaa 1140 actggcagcc gcagtggaag cctggcacaa cgcgtcttta cgccaacgcc agcatcggtc 1200 tttttggtgc gctggcggtc aaaccttctg gcatgcccta tgagcaggcc atgacgacgc 1260 gggtccttaa gccgctcaag ctggaccata cctggattaa cgtgccgaaa gcggaagagg 1320 cgcattacgc ctggggctat cgtgacggta aagcggtgcg cgtttcgccg ggtatgctgg 1380 atgcacaagc ctatggcgtg aaaaccaacg tgcaggatat ggcgaactgg gtcatggcaa 1440 acatggcgcc ggagaacgtt gctgatgcct cacttaagca gggcatcgcg ctggcgcagt 1500 egegetactg gegtateggg teaatgtate agggtetggg etgggagatg eteaaetgge 1560 1620 ccqtqqaqqc caacacqqtq qtcqaqacqa qttttqqtaa tqtaqcactq qcqccqttqc

ccgtggcaga agtgaatcca ccggctcccc cggtcaaagc gtcctgggtc cataaaacgg	1680
getetactgg egggtttgge gegtaegtgg eetttattee tgaaaagcag ateggtattg	1740
tgatgetege gaatacaage tateegaace eggeacgegt tgaggeggea taccatatee	1800
tcgaggcgct acag	1814
<210> 42 <211> 623 <212> PRT <213> Artificial Sequence	
<220> <223> CAB1.13i protein variant	
<400> 42	
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Leu Gly 1 $$\rm 10^{\circ}$ 15	
Gln Arg Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe $$20$$ $$25$$ $$30$$	
Gly Val Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 $$40$$ $$45$$	
Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val 50 60	
Arg Phe Ser Gly Thr Gly Ser Gly Thr Asp Phe Thr Leu Ile Ile Asp 65 70 75 80	
Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn $85 \hspace{1cm} 90 \hspace{1cm} 95$	
Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly 100 105 110	
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125	
Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln 130 135 140	
Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala Ser Val Lys 155 155	

Leu	Ser	Cys	Thr	Ala	Ser	Gly	Phe	Asn	Ile	Lys	Asp	Thr	Tyr	Met	His
				165					170					175	

Trp Val	Lys	Gln	Arg	Pro	Glu	Gln	Gly	Leu	Glu	Trp	Ile	Gly	Arg	Ile
		180					185					190		

Asp	Pro	Ala	Asn	Gly	Asn	Ser	Lys	Tyr	Val	Pro	Lys	Phe	Gln	Gly	Lys	
		195					200					205				

Ala	Thr	Ile	Thr	Ala	Asp	Thr	Ser	Ser	Asn	Thr	Ala	Tyr	Leu	Gln	Leu
	210					215					220				

Thr Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Pro Phe 225
$$$230$$$

Gly Tyr Tyr Val Ser Asp Tyr Ala Met Ala Tyr Trp Gly Gln Gly Thr
$$245$$
 250 255

Ser Val Thr Val Ser Ser Thr Pro Val Ser Glu Lys Gln Leu Ala Glu $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Gly Met Ala Val Ala Val Ile Tyr Gln Gly Lys Pro His Tyr Tyr Thr 290 295 300

Phe	Gly	Lys	Ala	Asp	Ile	Ala	Ala	Asn	Lys	Pro	Val	Thr	Pro	Gln	Thr
305					310					315					320

Leu Phe Glu Leu Gly Ser Ile Ser Lys Thr Phe Thr Gly Val Leu Gly
$$325$$
 330 335

Gly Asp Ala Ile Ala Arg Gly Glu Ile Ser Leu Asp Asp Ala Val Thr
$$340$$
 345 350

Val Val Ala Asn Thr Ile Thr Pro Leu Met Ala Ala Gln Ser Val Pro $275 \hspace{1cm} 280 \hspace{1cm} 285 \hspace{1cm}$

Leu Asp Leu Ala Thr Tyr Thr Ala Gly Gly Leu Pro Leu Gln Val Pro 370 375 380

Asp 385	Glu	Val	Thr	Asp	Asn 390	Ala	Ser	Leu	Leu	Arg 395	Phe	Tyr	Gln	Asn	Trp 400
Gln	Pro	Gln	Trp	Lys 405	Pro	Gly	Thr	Thr	Arg 410	Leu	Tyr	Ala	Asn	Ala 415	Ser
Ile	Gly	Leu	Phe 420	Gly	Ala	Leu	Ala	Val 425	Lys	Pro	Ser	Gly	Met 430	Pro	Tyr
Glu	Gln	Ala 435	Met	Thr	Thr	Arg	Val 440	Leu	Lys	Pro	Leu	Lys 445	Leu	Asp	His
Thr	Trp 450	Ile	Asn	Val	Pro	Lys 455	Ala	Glu	Glu	Ala	His 460	Tyr	Ala	Trp	Gly
Tyr 465	Arg	Asp	Gly	Lys	Ala 470	Val	Arg	Val	Ser	Pro 475	Gly	Met	Leu	Asp	Ala 480
Gln	Ala	Tyr	Gly	Val 485	Lys	Thr	Asn	Val	Gln 490	Asp	Met	Ala	Asn	Trp 495	Val
Met	Ala	Asn	Met 500	Ala	Pro	Glu	Asn	Val 505	Ala	Asp	Ala	Ser	Leu 510	Lys	Gln
Gly	Ile	Ala 515	Leu	Ala	Gln	Ser	Arg 520	Tyr	Trp	Arg	Ile	Gly 525	Ser	Met	Tyr
Gln	Gly 530	Leu	Gly	Trp	Glu	Met 535	Leu	Asn	Trp	Pro	Val 540	Glu	Ala	Asn	Thr
Val 545	Val	Glu	Thr	Ser	Phe 550	Gly	Asn	Val	Ala	Leu 555	Ala	Pro	Leu	Pro	Val 560
Ala	Glu	Val	Asn	Pro 565	Pro	Ala	Pro	Pro	Val 570	Lys	Ala	Ser	Trp	Val 575	His
Lys	Thr	Gly	Ser 580	Thr	Gly	Gly	Phe	Gly 585	Ala	Tyr	Val	Ala	Phe 590	Ile	Pro
Glu	Lys	Gln 595	Ile	Gly	Ile	Val	Met 600	Leu	Ala	Asn	Thr	Ser 605	Tyr	Pro	Asn

<210> 43 <211> 1869 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CAB1.11i protein variant <400> 43 gacategtee tgacceagag ceeggeaage etgtetgttt eeetgggeea gegtgeeact 60 atgteetgea qaqeqqqtqa qtetqttqac atttteqqtq teqqttttet qcaetqqtac 120 180 caacagaaac cqqqtcaqcc qccaaaactq ctqatctatc qtqcttctaa cctqqaqtcc ggcatcccgg tacgtttctc cggtactggc tctggtactg attttaccct gattatcgac 240 300 coggtggaag cagacgatgt tgccacctac tattgccagc agaccaacga ggatccgtac accttcggtg gcggtactaa actggagatc aaaggcggtg gtggttctgg tggtggtggt 360 aggggtggg gtggtaggg tggcggtggc aggggtggt gtggctctgg tggcggtggc 420 totgaagtgc agotgcagca gtooggtgcg gagotogttg aacogggcgc ttotgtgaaa 480 ctgtcttgca ctgcatctgg tttcaacatt aaggacacct acatgcactg ggtgaaacaa 540 600 cgcccggaac agggtctgga gtggatcggt cgcatcgatc cggctaacgg taacagcaaa tacgtgccaa aattccaggg taaagcaacc atcactgctg atacctcctc taacactgct 660 tacctgcage tqactteect qactaqeqaa qacaccqeqq tttattactq eqetecqtte 720 ggctactatg tcagcgatta cgcaatqqcc tactqqqqtc aqqqcacctc tqttaccqtt 780 totagoacac eggtgtcaga aaaacagetg geggaggtgg tegegaatac gattaceeeg 840 ctgatggcgg cccagtctgt tccaggcatg gcggtggccg ttatttatca gggaaaaccg 900 cactattaca catttqqcaa qqccqatatc qcqqcqaata aacccqttac qcctcaqacc 960 ctgttcgagc tgggttctat aagtaaaacc ttcaccggcg ttttaggtgg ggatgccatt 1020 getegeggtg aaattteget ggacgatgeg gtgaccagat actggccaca getgacggge 1080 aagcagtggc agggtattcg tatgctggat ctcgccacct acaccgctgg cggcctgccg 1140 ctacaggtac cggatgaggt cacggataac gcctccctgc tgcgctttta tcaaaactgg cagcogcagt ggaagcotgg cacaacgcgt ctttacgcca acgccagcat cggtcttttt 1260 qqtqqqtqq cqqtcaaacc ttctqqcatq ccctatqaqc aqqccatqac qacqcqqqtc 1320

cttaag	ccgc	tcaagctgga	ccatacctgg	attaacgtgc	cgaaagcgga	agaggegeat	1380
tacgcct	tggg	gctatcgtga	cggtaaagcg	gtgcgcgttt	cgccgggtat	gctggatgca	1440
caageet	tatg	gcgtgaaaac	caacgtgcag	gatatggcga	actgggtcat	ggcaaacatg	1500
gcgccg	gaga	acgttgctga	tgcctcactt	aagcagggca	tegegetgge	gcagtcgcgc	1560
tactgg	egta	tegggteaat	gtatcagggt	ctgggctggg	agatgeteaa	ctggcccgtg	1620
gaggee	aaca	cggtggtcga	gacgagtttt	ggtaatgtag	cactggcgcc	gttgcccgtg	1680
gcagaa	gtga	atccaccggc	tececeggte	aaagegteet	gggtccataa	aacgggctct	1740
actggc	gggt	ttggcgcgta	cgtggccttt	atteetgaaa	agcagatcgg	tattgtgatg	1800
ctcgcga	aata	caagetatee	gaacccggca	cgcgttgagg	eggeatacea	tatcctcgag	1860
gcgcta	cag						1869
<210> <211> <212> <213>	44 37 DNA Arti	ificial Sequ	jence				
<220> <223>	synt	hetic oligo	onucleotide				
<400> cggccat	44 tggc	ccaggtgcag	ctgcagcagt	ctggggc			37
<210> <211> <212> <213>	45 37 DNA Arti	ificial Sequ	ience				
<220> <223>	synt	hetic oligo	onucleotide				
<400> ctgggg	45 caga	acttgtgaaa	tcagggacct	cagtcaa			37
<210> <211> <212> <213>	46 37 DNA Arti	ificial Sequ	uence				
<220> <223>	synt	hetic oligo	onucleotide				
<400> gggcaga	46 aact	tgtgaggccg	gggacctcag	tcaagtt			37

```
<210> 47
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 47
                                                                        37
aacttgtgag gtcagggggc tcagtcaagt tgtcctg
<210> 48
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 48
gcacagette tggetteace attaaagaet cetatat
                                                                        37
<210> 49
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 49
                                                                        37
cagettetgg etteaaettt aaagaeteet atatgea
<210> 50
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 50
cttctggctt caacattagc gactcctata tgcactg
                                                                        37
<210> 51
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 51
```

actecta	atat gcactgggtg aggcaggggc ctgaaca	37
<210>	52	
	37	
	DNA	
	Artificial Sequence	
	•	
<220>		
<223>	synthetic oligonucleotide	
<400>	52	
	ggtt gaggcaggcg cctgaacagg gcctgga	37
-gouet,	gger gaggoaggog corganoagg goorgga	,
<210>	53	
	37	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
	-7	
<400>	53	
ggttga	ggca ggggcctggc cagggcctgg agtggat	37
<210>	54	
<211>		
	DNA	
	Artificial Sequence	
	•	
<220>		
<223>	synthetic oligonucleotide	
<400>	54	
	agtt ccagggccgt gccactttta ctacaga	37
ccccgui	aget coagggoogt goodceecta ceacaga	,
<210>	55	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<220> <223>	synthetic oligonucleotide	
~2237	synthetic offgonucleotide	
<400>	55	
cgaagti	toca gggcaagtto acttttacta cagacac	37
.010.		
<210>	56	
<211>	37 DN3	
	DNA	
\Z±3>	Artificial Sequence	

<223>	synthetic oligonucleotide	
<400> tccagg	56 gcaa ggccactatt actacagaca catcoto	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> gcaagg	57 ccac tittactogo gacacatoot ccaacac	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> ttacta	58 caga cacatecaaa aacacageet aeetgea	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> ctgccg	59 tota ttattgtgcg gaggggactc cgactgg	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> ccgtct	60 atta ttgtaatege gggaeteega etgggee	37
<210> <211> <212>	61 37 DNA	

<213>	Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> ctggc	61 ggtgg cggatcacag aatgtgetea eecagte	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> gcggt	62 ggogg atcagaaago gtgotcacco agtotoo	37
<210> <211> <212> <213>	38	
<220> <223>	synthetic oligonucleotide	
<400> gaaaat	63 gtgc toacccagco gccagoaato atgtotgo	38
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> tgctca	64 accoa gtotocaago atcatgtotg catotoc	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> cccagt	65 cotoc agcaatogtg totgoatoto cagggga	37

```
<210> 66
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 66
                                                                       37
tgtetgcate tecagggcag aaggtcacca taacetg
<210> 67
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 67
ctgcatctcc aggggagacc gtcaccataa cctgcag
                                                                       37
<210> 68
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 68
                                                                       37
taagttacat gcactggtac cagcagaagc caggcac
<210> 69
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 69
geacttetee caaactegtg atttatagea cateeaa
                                                                       37
<210> 70
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 70
```

tggctt	otgg agtocotgat ogottoagtg goagtgg	37
<210> <211> <212> <213>	71 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> ctcgct1	71 coag tggcagtaaa totgggacet ottacto	37
<210> <211> <212> <213>	72 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> gtggat	72 stgg gacctotgog tototoacaa toagoog	37
<210> <211> <212> <213>	73 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> ctctca	73 saat cageegactg gaggetgaag atgetge	37
<210> <211> <212> <213>	74 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> gaatgga	74 aggc tgaagatgaa gccacttatt actgcca	37
<210> <211> <212> <213>	75 37 DNA Artificial Sequence	

<223>	synthetic oligonucleotide	
	75 aaga tgotgoogat tattactgoo agcaaag	37
<210> <211> <212> <213>		
<220> <223>	synthetic oligonucleotide	
<400> acccac	76 toac gttoggtggo ggoaccaago tggagot	37
<211> <212>	77 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> cttctg	77 gott caacattsat gactootata tgoactg	37
<210> <211> <212> <213>		
<220> <223>	primer	
<400> ctggct	78 toaa cattaaasat tootatatgo actgggt	37
<211> <212>		
<220> <223>	primer	
<400> gcttca	79 acat taaagacsat tatatgcact gggtgag	37
<210> <211> <212>	80 37 DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 80
tcaacattaa agactccsat atgcactggg tgaggca
                                                                    37
<210> 81
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 81
ttaaaqactc ctatatgsat tgggtgaggc aggggcc
                                                                     37
<210> 82
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 82
gcctggagtg gattggasat attgatcctg agaatgg
                                                                     37
<210> 83
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 83
                                                                    37
agtggattgg atggattsat cctgagaatg gtgatac
<210> 84
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 84
```

ttggatggat tgatcctsat aatggtgata ctgaata

```
<210> 85
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 85
                                                                       37
gatggattga tcctgagsat ggtgatactg aatatgc
<210> 86
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 86
ttgatcctga gaatggtsat actgaatatg ccccgaa
                                                                        37
<210> 87
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 87
                                                                        37
atcctgagaa tggtgatsat gaatatgccc cgaagtt
<210> 88
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 88
ctgagaatgg tgatactsat tatgccccga agttcca
                                                                        37
<210> 89
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
```

<400> 89

gtgata	ctga atatgccsat aagttccagg gcaaggc	37
<210> <211> <212> <213>	90 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> atactg	90 aata tgcccgsat ttccagggca aggccac	37
	91 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> aatatg	91 cccc gaagttcsat ggcaaggcca cttttac	37
<210> <211> <212> <213>	92 37 DNA Artificial Sequence	
<220> <223>	primer	
	92 atta ttgtaatsat gggacteega etgggee	37
<210> <211> <212> <213>	93 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> 93 tctattattg taatgagsat actccgactg ggccgta 37		37
	94 37 DNA Artificial Sequence	
<220>		

<223>	primer	
<400> attatt	94 gtaa tgaggggsat ccgactgggc cgtacta	37
<211>	95 37 DNA Artificial Sequence	
<220> <223>	primer	
	95 atga ggggactsat actgggccgt actactt	37
	96 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> gtaatg	96 aggg gactoogsat gggoogtact actttga	37
<211>	97 37 DNA Artificial Sequence	
<220> <223>	primer	
	97 ggac toogactsat cogtactact ttgacta	37
	98 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> agggga	98 otoc gactgggsat tactactttg actactg	37
<210> <211> <212>	99 37 DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 99
cteegactgg geegtaesat tttgactaet ggggeea
                                                                    37
<210> 100
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 100
                                                                     37
taacctgcag tgccagcsat agtgtaagtt acatgca
<210> 101
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 101
cctgcagtgc cagctcasat gtaagttaca tgcactg
                                                                     37
<210> 102
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 102
                                                                    37
gcagtgccag ctcaagtsat agttacatgc actggtt
<210> 103
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 103
```

gtgccagctc aagtgtasat tacatgcact ggttcca

```
<210> 104
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 104
                                                                        37
ccageteaag tgtaagtsat atgeactggt tecagea
<210> 105
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 105
ctcccaaact cgtgattsat agcacatcca acctggc
                                                                         37
<210> 106
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 106
                                                                         37
ccaaactcgt gatttatsat acatccaacc tggcttc
<210> 107
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 107
aactcgtgat ttatagcsat tccaacctgg cttctgg
                                                                         37
<210> 108
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
```

<400> 108

togtgat	ttta tagcacasat aacetggett etggagt	37
<210>	109	
	37	
<212>		
<213>	Artificial Sequence	
<220>		
	primer	
<400>	109	
tgattta	atag cacatoosat otggottotg gagtooo	37
.0.0.0.		
	110	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	primer	
	<u></u>	
<400>	110	
atagca	cate caacetgsat tetggagtee etgeteg	37
<210>	111	
<211>		
<211>		
	Artificial Sequence	
~213/	Altilitial Sequence	
<220>		
<223>	primer	
<400>		
gcacat	ccaa cetggetsat ggagteeetg etegett	37
<210>	112	
<211>		
<212>		
	Artificial Sequence	
12107	Altilitat dequence	
<220>		
<223>	primer	
<400>	112	
cttatta	actg ccagcaasat tctagttacc cactcac	37
.010.	***	
<210>		
<211>		
<212>		
<zi3></zi3>	Artificial Sequence	

<223>	primer	
<400>	113 gcca gcaaagasat agttacccac tcacgt	36
<210> <211> <212> <213>	36	
<220>		
	primer	
<400> actgcc	114 agoa aagatotsat tacccactca cgttcg	36
<210>	115	
<211>		
<212> <213>	DNA Artificial Sequence	
<220>		
<223>	primer	
<400>		
gecage	aaag atctagtsat ccactcacgt teggtg	36
<210>	116	
<211>	37	
<212> <213>	DNA Artificial Sequence	
<220>	•	
	primer	
<400>	116	
aaagatctag ttacccasat acgttcggtg ctggcac 37		
<210>	117	
<211>		
<212>		
<213>	Artificial Sequence	
<220> <223>	primer	
<400>		
caggaaacag ctatgac 17		
<210>	118	
	22	
<212>	DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 118
ggaccacggt caccgtctcc to
                                                                      22
<210> 119
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<220>
<221> misc_feature
<222> (18)..(19)
<223> n = a,t,c, or q
<400> 119
attattgtaa tgaggggnns ccgactgggc cgtacta
                                                                      37
<210> 120
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<220>
<221> misc_feature
<222> (19)..(20)
<223> n = a,t,c, or g
<400> 120
                                                                    3.7
tagtacggcc cagtcggsnn cccctcatta caataat
<210> 121
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (18)..(19)
```

```
<223> n = a,t,c, or g
<400> 121
                                                                      37
gtaatgaggg getgeegnns gggeegtaet aetttga
<210> 122
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (19)..(20)
<223> n = a,t,c, or g
<400> 122
tcaaagtagt acggcccsnn cggcagcccc tcattac
                                                                      37
<210> 123
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (18)..(19)
<223> n = a,t,c, or q
<400> 123
egactgggee gtactaenns gactaetggg gecaagg
                                                                      37
<210> 124
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (19), (20)
<223> n = a,t,c, or g
<400> 124
```

```
ccttggcccc agtagtcsnn gtagtacggc ccagtcg
                                                                   37
<210> 125
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (22)..(22)
<223> n = a,t,c, or g
<400> 125
                                                                  47
gaggggetee egetegggrv entttacaac gactactggg gecaagg
<210> 126
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (26)..(26)
<223> n = a,t,c, or g
<400> 126
cettageece agtagtegtt gtaaangbye eegageggga geceete
                                                                  47
<210> 127
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 127
                                                                  37
cttctggctt caacattacc gactcctata tgcactg
<210> 128
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<223> primer
<400> 128
                                                                      36
gcctggagtg gattggattt attgatcctg agaatg
<210> 129
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (41)..(41)
<223> n = a,t,c, or g
<400> 129
gateetgaga atggtswtre tgaatatgee ebgaagtter neggeaagge caettttae 59
<210> 130
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 130
etgeagtgee ageteadetg taymtdeeat geactggtte eage
                                                                     44
<210> 131
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 131
egtgatttat gatacarvea acctggetrs tggagteect getegette
                                                                     49
<210> 132
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 132
```

gattac	cccg ctgatggcgg cccagtctgt tccag	35
<220> <223>	primer	
<100>	122	

ctactggcgg gtttggcgcg tacgtggcct ttattcctg