ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

ALGORITMI DI ORDINAMENTO: MergeSort

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

USIAMO la TECNICA DIVIDE&IMPERA

- **DIVIDE**: dividi l'array in due sequenze di n/2 elementi ciascuna
- IMPERA: ordina ciascuna sequenza ricorsivamente
- COMBINA: "fondi" le due metà ordinate in un'unica sequenza ordinata (MERGE)

CASO BASE: in quali condizioni il problema è facile da risolvere?

Risposta: quando la sequenza ha un solo elemento (e' già ordinata)

Scriviamo una procedura ricorsiva che ordini una porzione di un array A, compresa tra gli indici i (a sinistra) e j (a destra), estremi inclusi

```
MERGESORT(A,i,j)
  if i < j
  then
   k := [(i+j)/2]
   MERGESORT(A,i,k)
   MERGESORT(A,k+1,j)
   MERGE(A,i,k,j)</pre>
```


Chiamata principale
MERGESORT (A, 0, n-1)

ESEMPIO: chiamate ricorsive Mergesort

numero chiamata numero return

Immagina originale di A. Montresor

Scriviamo una procedura (Merge) che risolve il seguente problema:

INPUT: due porzioni ordinate dell'array A. La prima dall'indice i, all'indice k, inclusi gli estremi. La seconda dall'indice k+1 all'indice j, estremi inclusi.

OUTPUT: la porzione di A che va dall'indice i all'indice j ordinata.

IDEA per procedura Merge:

- Usiamo un array di appoggio **B[0..j-i]** con j-i+1 elementi
- Usiamo tre indici 1 (left), r (right) e t per scorrere, rispettivamente, la porzione di A di sinistra A[i..k], la porzione di A di destra A[k+1..j], e B

IDEA per procedura Merge:

- Usiamo un array di appoggio **B[0..j-i]** con j-i+1 elementi
- Usiamo tre indici 1 (left), r (right) e t per scorrere, rispettivamente, la porzione di A di sinistra A[i..k], la porzione di A di destra A[k+1..j], e B
- Ad ogni passo, confrontiamo A[1] e A[r] e copiamo il più piccolo in
 B[t], poi incrementiamo t e 1 o r, opportunamente

IDEA per procedura Merge:

- Usiamo un array di appoggio **B[0..j-i]** con j-i+1 elementi
- Usiamo tre indici 1 (left), r (right) e t per scorrere, rispettivamente, la porzione di A di sinistra A[i..k], la porzione di A di destra A[k+1..j], e B
- Ad ogni passo, confrontiamo A[1]e A[r] e copiamo il più piccolo in B[t], poi incrementiamo t e 1 o r, opportunamente
- Continuiamo fino a quando una delle due porzioni è stata completamente copiata in B

- Continuiamo fino a quando una delle due porzioni è stata completamente copiata in B
- Se è "esaurita" la porzione di sinistra, allora gli ultimi elementi di quella di destra (in A[r..j]) sono già al posto giusto

- Se è "esaurita" la porzione di destra, allora gli ultimi elementi di quella di sinistra (in A[1..k]) sono i più grandi e vengono copiati alla fine di A (in A[k-l+1..n-1])
- Copiamo gli elementi in B in A[i..i+t-1]

Quanti confronti?

```
Merge(A,i,k,j)
1 := i
r := k+1
t := 0
B[0..j-i] nuovo array
while (1 \le k \text{ AND } r \le j) do
 if A[l] \leq A[r]
  then B[t] := A[1]
       1 := 1+1
  else B[t] := A[r]
       r := r+1
 t := t+1
for h=k downto 1 do
 A[j] := A[h]
 j := j-1
for h = 0 to t-1 do
 A[i+h] := B[h]
```

Inizializzazione

Quanti confronti?

```
Merge(A,i,k,j)
1 := i
r := k+1
t := 0
B[0..j-i] nuovo array
while (1 \le k \text{ AND } r \le j) do
 if A[1] \leq A[r]
  then B[t] := A[1]
       1 := 1+1
  else B[t] := A[r]
       r := r+1
 t := t+1
for h=k downto 1 do
 A[j] := A[h]
 j := j-1
for h = 0 to t-1 do
 A[i+h] := B[h]
```

Inizializzazione

Riempimento di B

(j-i) nel caso peggiore

Riempimento di B

Quanti confronti?

al più (j-i) confronti

- Abbiamo un confronto per ogni iterazione del ciclo while
- Ogni iterazione può essere associata ad un avanzamento di uno (e solo uno) dei due indici le r
- Il massimo numero di iterazioni del ciclo while si ha quando entrambi gli indici 1 e r arrivano fino alle fine della rispettiva partizione e, nell'iterazione successiva, uno dei due "esce" dalla partizione
- L'indice 1 può avanzare dalla posizione i alla posizione k, per un totale di k-i avanzamenti; l'indice r può avanzare dalla posizione k+1 alla posizione j, per un totale di j-(k+1) avanzamenti; uno dei due indici avanza ancora di una posizione, per un totale di un avanzamento extra. In totale: (k-i)+j-(k+1)+1= j-i avanzamenti.


```
while (l ≤ k AND r ≤ j) do
  if A[l] ≤ A[r]
    then B[t] := A[l]
        l := l+1
    else B[t] := A[r]
        r := r+1
    t := t+1
```

Riempimento di B

Quanti confronti?

almeno (j-i) confronti nel caso peggiore

Esiste un'istanza che porta sia l'indice 1 a k che l'indice r a j prima di eseguire l'ultima iterazione del ciclo while?

SI: ce ne sono tante! per esempio quelle per cui

$$A[k-1] < A[k+1] \in A[k] > A[j]$$

ESEMPIO:
$$A[i..k] = \langle 2,3,4,5,6,14 \rangle e A[k+1..j] = \langle 7,8,9,10,11,12 \rangle$$

non sono le uniche, per esercizio trovarne altre

Quanti confronti?

```
Merge(A,i,k,j)
1 := i
r := k+1
t := 0
B[0..j-i] nuovo array
while (1 \le k \text{ AND } r \le j) do
 if A[1] \leq A[r]
  then B[t] := A[1]
       1 := 1+1
  else B[t] := A[r]
       r := r+1
 t := t+1
for h=k downto 1 do
 A[j] := A[h]
 j := j-1
for h = 0 to t-1 do
 A[i+h] := B[h]
```

Inizializzazione

(j-i)Riempimento nel caso peggiore di B

> Copia in A

Quanti confronti?

```
Merge(A,i,k,j)
1 := i
r := k+1
t := 0
B[0..j-i] nuovo array
while (1 \le k AND r \le j) do
 if A[1] \leq A[r]
  then B[t] := A[1]
       1 := 1+1
  else B[t] := A[r]
       r := r+1
 t := t+1
for h=k downto 1 do
 A[j] := A[h]
 j := j-1
for h = 0 to t-1 do
 A[i+h] := B[h]
```

Inizializzazione

Riempimento di B

(j-i)nel caso peggiore

Copia in A

Totale

(j-i)nel caso peggiore UNIMORE

ESEMPIO 1: esecuzione Merge

ESEMPIO 1: esecuzione Merge

ESEMPIO 1: esecuzione Merge

ESEMPIO 2: esecuzione Merge

Merge alternativo

In questa versione il numero di confronti è esattamente (j-i) per ogni istanza

```
MERGE (A, i, k, j)
 n1 := k-i+1
 n2 := j-k
 crea L[0..n1] e R[0..n2]
 for t = 0 to n1-1
  L[t] := A[i+t]
 for t = 0 to n2-1
  R[t] := A[k+1+t]
 L[n1] := \infty
 R[n2] := \infty
 1 := 0
 r := 0
 for t = i to j
  if L[1] \leq R[r]
    then
     A[t] := L[l]
     1:= 1 + 1
    else
     A[t] := R[r]
     r := r + 1
```


COSTO COMPUTAZIONALE

Usando il Master Theorem

$$a = 2, b = 2, d = 1 \implies \log_b a = \log_2 2 = 1 = d \implies T(n) \in O(n \log n)$$

COSTO COMPUTAZIONALE

$$T(n) = \begin{cases} 0 & \text{se } n = 1\\ 2 \cdot T(n/2) + O(n) & \text{altrimenti} \end{cases}$$

$$T(n) \in O(n \log n)$$

Siamo veramente contenti?

SI: nessun algoritmo che risolve il problema utilizzando confronti tra elementi dell'array può fare di meglio (nel caso peggiore)

TEOREMA

Un algoritmo di ordinamento per CONFRONTI deve effettuare almeno $\Omega(n\log n)$ confronti tra elementi della sequenza da ordinare per risolvere il problema

DIMOSTRAZIONE

OGNI algoritmo per l'ordinamento che procedere per confronti deve effettuare un certo numero di confronti che gli permetta di decidere quale è quella, tra le n! permutazioni degli elementi della sequenza, che permette di ordinarli

DIMOSTRAZIONE

 p_i = numero di permutazioni tra cui scegliere dopo il confronto i-esimo

Con un confronto tra A[i] e A[j]:

- si possono scartare tutte le permutazioni in cui A[i] e A[j] sono ordinati in ordine inverso rispetto al risultato del confronto (sia p_i_KO il loro numero)
- si devono continuare a tenere in considerazione tutte le altre (sia $p_i = OK$ il loro numero)

ESEMPIO: se A[i] < A[j], allora possiamo scartare tutte le permutazioni che mettono il valore in posizione i DOPO (a destra) del valore in posizione j. Per tutte le altre non possiamo ancora dire niente.

DIMOSTRAZIONE

 p_i = numero di permutazioni tra cui scegliere dopo il confronto i-esimo

Con il confronto i + 1 tra gli elementi A[i] e A[j]:

- si possono scartare tutte le permutazioni in cui A[i] e A[j] sono ordinati in ordine inverso rispetto al risultato del confronto (sia p_i_KO il loro numero)
- si devono continuare a tenere in considerazione tutte le altre (sia $p_i = OK$ il loro numero)

Abbiamo che
$$p_i$$
_ $KO + p_i$ _ $OK = p_i$

e che
$$p_{i+1} = p_i OK$$

DIMOSTRAZIONE

Abbiamo che

- $p_0 = n!$ perché non è ancora stato fatto nessun confronto
- $\bullet p_0 = p_0 KO + p_0 OK = n!$
- • $p_1 = p_0 OK = \max\{p_0 KO, p_0 OK\}$ nel caso peggiore (che rimanga il sottoinsieme più grande)
- Nel caso peggiore $p_1 = \max\{p_0 KO, p_0 OK\} \ge p_0/2 = n!/2$

DIMOSTRAZIONE

Analogamente

- $p_0 = n!$
- $p_1 \ge n!/2$
- $p_2 \ge n!/4$
- $p_3 \ge n!/8$

. . . .

• dopo il confronto i-esimo: $p_i \ge n!/2^i$

Per poter scegliere la permutazione è necessario che il numero di permutazioni tra cui scegliere sia UNA sola.

Dopo quanti confronti (quale i) abbiamo $1 = p_i \ge n!/2^i$?

per $i \ge \log n!$

DIMOSTRAZIONE

Studiamo log n!

$$n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 2 \cdot 1$$

$$\geq n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \left(\frac{n}{2} + 1\right)$$

limitiamo il prodotto ai primi n/2 fattori

$$> \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} = \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

ogni fattore è maggiore di n/2

quindi
$$i \ge \log n! \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \log \left(\frac{n}{2}\right) \in \Omega(n \log n)$$

TEOREMA

Un algoritmo di ordinamento per CONFRONTI deve effettuare almeno $\Omega(n\log n)$ confronti tra elementi della sequenza da ordinare per risolvere il problema

DIMOSTRAZIONE

vedremo una dimostrazione alternativa quando parleremo di alberi

COSTO COMPUTAZIONALE

```
MERGESORT (A, i, j)
  if i < j
  then
   k := [(i+j)/2]
   MERGESORT (A, i, k)
   MERGESORT (A, k+1, j)
   MERGE (A, i, k, j)</pre>
```

$$T(n) = \begin{cases} 0 & \text{se } n = 1\\ 2 \cdot T(n/2) + O(n) & \text{altrimenti} \end{cases}$$

$$T(n) \in O(n \log n)$$

Siamo veramente contenti?

NO: - usiamo spazio aggiuntivo $\Theta(n)$ —> altri algoritmi

 in pratica le chiamate riscorsive sono costose dal punto di vista del tempo di esecuzione —> riduciamo il numero di chiamate ricorsive

MergeSort + InsertionSort

Limitiamo il numero di chiamate ricorsive

- Il caso base diventa un po' più "grande"
 —> array con un numero di elementi costante s > 1
- Usiamo InsertionSort per risolvere il caso base

ESERCIZIO

Scrivere lo pseudocodice prima di guardare la slide successiva

MergeSort + InsertionSort

Limitiamo il numero di chiamate ricorsive

- Il caso base diventa un po' più "grande"
 —> array con un numero di elementi costante > 1
- Usiamo InsertionSort per risolvere il caso base

Versione
modificata di
MERGESORT che
prende in input
anche un valore
soglia per
decidere quando
chiamare
INSRETIONSORT
invece di una
chiamata ricorsiva

```
MERGESORT (A,i,j,s)
k := [(i+j)/2]
if k-i+1 \leq s
then
   INSERTIONSORT (A,i,k)
else
   MERGESORT (A,i,k,s)
if j-k \leq s
then
   INSERTIONSORT (A,k+1,j)
else
   MERGESORT (A,k+1,j,s)
MERGE (A,i,k,j)
```

Versione
modificata di
INSERTIONSORT
in cui in viene
ordinata la
sottosequenza
compresa tra gli
indici in input
(estremi inclusi)

Chiamata principale MERGESORT (A, 0, n-1, s)