Milestone Review Flysheet

Institution University of California Berkeley

Milestone	PDR

Vehicle Properties		
Total Length (in)	96	
Diameter (in)	6	
Gross Lift Off Weigh (lb)	29.25	
Airframe Material	Blue Tube	
Fin Material	Fiberglass	
Coupler Length (in)	6	

Motor Properties		
Motor Designation	L	
Max/Average Thrust (lb)	303/259	
Total Impulse (lbf-s)	791	
Mass Before/After Burn	8.1/3.9	
Liftoff Thrust (lb)	1262	
Motor Retention	Aft and fore closure screws	

Stability Analysis		
Center of Pressure (in from nose)	71.293	
Center of Gravity (in from nose)	57.236	
Static Stability Margin	2.34	
Static Stability Margin (off launch rail)	2.38	
Thrust-to-Weight Ratio	8.839	
Rail Size and Length (in)	96	
Rail Exit Velocity (ft/s)	67.4	

Ascent Analysis		
Maximum Velocity (ft/s)	747	
Maximum Mach Number	0.66	
Maximum Acceleration (ft/s^2)	300	
Target Apogee (From Simulations)	5697	
Stable Velocity (ft/s)	45.25	
Distance to Stable Velocity (ft)	4	

Recovery System Properties					
Dogue Parachute					
Manufactu	irer/Model		Fruity Chutes		
Si	ze		24" Elliptical		
Altitu	de at Deployme	ent (ft)	(ft) 5280		
Velocit	y at Deploymei	nt (ft/s)	(0	
Teri	minal Velocity (ft/s)	66.891		
Recovery Harness Material		aterial	Tubular Kevlar		
Harness Size/Thickne		ess (in) 1/2"		2''	
Recovery Harness Len		gth (ft) 20		0	
Harness/Airfra	ime Interfaces		-Bolt of Boosters, Top and Bottom Quicklinks of L2 Tender Descender		
Kinetic Energy	Section 1	Section 2			
of Each Section (Ft-	Booster	Avionics and P	ayload	_	
lbf)	798.463	943.72			

Recovery System Properties					
Main Parachute					
Manufacturer/Model Fruity Chutes; Iris Ultra Compact				Compact	
Si	ze		72" Toroidal		
Altitu	de at Deployme	ent (ft) 1000		00	
Velocit	y at Deploymei	nt (ft/s)	66.	891	
Teri	minal Velocity (ft/s)	13.988		
Recovery Harness Mate		iterial Tubular Kevlar		r Kevlar	
Harness Size/Thicknes		ess (in) 1/2"		2''	
Recovery Harness Len		ngth (ft) 20 (2x)		(2x)	
Harness/Airframe Interfaces			nics Bay, Botto Tender Descen		
Kinetic Energy	Section 1	Section 2			
of Each Section (Ft-	Booster	Avionics			
lbs)	34.918	12.416			

Recovery Electonics		
Altimeter(s)/Timer(s)	Perfectflite Stratologger CF	
(Make/Model)	Missileworks RRC3	
Redundancy Plan	Having two different altimeters that can both launch the drogue and main chutes	
Pad Stay Time (Launch Configuration)	2 hours	

Recovery Electonics		
Rocket Locators (Make/Model)	Eggfinder GPS System	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Drogue Chute (grams)	2.97 g	
Black Powder Mass Main Chute (grams)	0.2 g	

Milestone Review Flysheet

Institution	University of California Berkeley	Milestone	PDR

	Payload
	Overview
Payload 1	SAGITTA-VL is designed to execute a "Target Detection and Upright Landing" experiment using an onboard camera housed in the upper airframe and nose cone to identify and distinguish between three differently colored 40 ft. square tarps. The upper airframe section is then ejected, and landed under its own recovery system, deploying legs built into the airframe wall in order to land on the ground upright. The purpose of this experiment is to verify the capability to examine and differentiate features of the landing zone in order to verify safe landing sites or potential ground hazards, and perform an upright landing of a reusable payload.

	Test Plans, Status, and Results			
Ejection Charge Tests	Have not yet been scheduled. Planning is in progress and first test will occur 1-2 weeks before first sub-scale test flight.			
Sub-scale Test Flights	Scheduled for December 3rd at Livermore Unit NAR (LUNAR). Alternate/back-up launch date scheduled for December 17th at Fresno TRA.			
Full-scale Test Flights	Scheduled for February 4th at Livermore Unit NAR (LUNAR). Alternate/back-up launch date scheduled for February 18th at Fresno TRA.			

Additional Comments	