Implementación del Algoritmo de Back-Propagation Para una Red Neuronal de Clasificación Multi-Clase

Ricardo Cárdenes Pérez

Noviembre, 2023

1 Introduction

Supongamos que tenemos una red neuronal FC compuesta por l-1 capas ocultas. Cada una de las capas, ocultas o de salida, computará una combinación lineal de las salidas de la capa anterior, las cuales, para la capa k, se denotan con el vector $A^{[k-1]}$. De esta manera, cada neurona i de k cuenta con un vector de pesos $w_i = (w_1 \cdots w_{n(k-1)})$, donde n(k-1) es el número de neuronas de la capa anterior. Así, tenemos que la salida de la neurona en cuestión para la capa arbitraria escogida no es más que $A_i^{[k]}$, donde

$$z_i^{[k]} = w_i^{[k]} \cdot A^{[k-1]} + b_i^{[k]} \tag{1}$$

$$A_i^{[k]} = g_k \left(z_i^{[k]} \right) \tag{2}$$

Siendo $g_k: \mathbb{R} \to \mathbb{R}$ la función de activación definida para dicha capa y $z_i^{[k]}$ la combinación lineal descrita. La notación utilizada para los pesos, y que cobrará más importancia en las siguientes secciones, es $w_{ji}^{[k]}$, donde y los índices i y j indican que se trata del peso que se aplica a la salida de la neurona j de la capa k-1 para la neurona i de la capa k.

Podemos calcular así para una muestra cualquiera $x \in \mathbb{R}^n$ su salida en la red como

$$A^{[l]} = g_l(w^{[l]} \cdot (g_{l-1}(w^{[l-1]} \cdot (\cdots (g_1(w^{[1]}x^t + b^{[1]}))) + b^{[l-1]}) + b^{[l]})$$
 (3)

Hemos definido así el feedfoward de nuestra red. Ahora bien, ¿cómo podemos optimizar esta red para que la salida se ajuste correctamente a la realidad de los datos?

2 Back-Propagation

Usaremos una función de error de Cross-Entropy, la cual resulta ser de las mejores opciones a la hora de desarrollar redes de clasificación. Esta función se define, para una muestra $X \in \mathbb{R}^n$ y su etiqueta $Y \in \{0,1\}^C$ como

$$\mathcal{L}(X,Y) = -\sum_{i=1}^{C} y_i \cdot log(A_i^{[l]})$$
(4)

donde $A_i^{[l]}$ es la salida de la red para la i-ésima clase evaluada de la muestra X. Ante la posibilidad de trabajar en un espacio muestral con múltiples clases, usamos la función softmax como función de activación para la capa de salida. Esto es, sea $z^{[l]}$ el vector que contiene los cálculos lineales realizados en dicha capa, la salida de la misma se define como

$$A^{[l]} = \frac{e^{z^{[l]}}}{\sum_{i=1}^{C} e^{z_j^{[l]}}}$$
 (5)

Sustituyendo este vector de salida en la función de coste dada en la ecuacion [4], obtenemos que

$$\mathcal{L}(X,Y) = -\sum_{i=1}^{C} y_i \cdot \log \left(\frac{e^{z_i^{[l]}}}{\sum_{j=1}^{C} e^{z_j^{[l]}}} \right)$$
 (6)

Y al aplicar las propiedades básicas del logaritmo

$$\mathcal{L}(X,Y) = -\sum_{i=1}^{C} y_i \left(log\left(e^{z_i^{[l]}}\right) - log\left(\sum_{j=1}^{C} e^{z_j^{[l]}}\right) \right)$$
 (7)

El algoritmo de Back-Propagation se basa en el cálculo de las derivadas del error con respecto a los distintos pesos de la red para, mediante técnicas del descenso del gradiente, ir actualizándolos epoch a epoch. Procedamos, por tanto, a calcular las derivadas para los pesos de la capa de salida. Para ello, aplicaremos la regla de la cadena.

Empezamos derivando la función de error con respecto a $z_i^{[k]}$, donde lo primero será aplicar la derivada para la suma de funciones. Así

$$\frac{\partial \mathcal{L}}{\partial z_i^{[l]}} = -\frac{\partial}{\partial z_i^{[l]}} \left(y_i \cdot log\left(e^{z_i^{[l]}}\right) \right) + \sum_{k=1}^C \frac{\partial}{\partial z_i^{[l]}} \left(y_k \cdot log\left(\sum_{j=1}^C e^{z_j^{[l]}}\right) \right) \tag{8}$$

Centrandonos en la primera derivada, vemos que

$$-\frac{\partial}{\partial z_{i}^{[l]}} \left(y_{i} \cdot log \left(e^{z_{i}^{[l]}} \right) \right) = -\frac{\partial}{\partial z_{i}^{[l]}} \left(y_{i} z_{i}^{[l]} \right) = -y_{i}$$
 (9)

Por otra parte,

$$\sum_{k=1}^{C} \frac{\partial}{\partial z_{i}^{[l]}} \left(y_{k} \cdot log \left(\sum_{j=1}^{C} e^{z_{j}^{[l]}} \right) \right) = \sum_{k=1}^{C} y_{k} \frac{-e^{z_{i}^{[l]}}}{\sum_{j=1}^{C} e^{z_{j}^{[l]}}} = A_{i}^{[l]} \sum_{k=1}^{C} y_{k}$$
(10)

Teniendo en cuenta que las etiquetas de las muestras vienen dadas en codificación one-hot, y por tanto $\sum_k y_k = 1$, tenemos que

$$\frac{\partial \mathcal{L}}{\partial z_i^{[l]}} = A_i^{[l]} - y_i \tag{11}$$

Y expresado en forma matricial,

$$\frac{\partial \mathcal{L}}{\partial z^{[l]}} = A^{[l]} - Y \tag{12}$$

Teniendo esto claro, uno podría calcular las derivadas del error con respecto a los pesos de la última capa con tan solo aplicar la regla de la cadena, donde se tiene que, por definición de $z^{[l]}$,

$$\frac{\partial \mathcal{L}}{\partial w_{ji}^{[l]}} = \frac{\partial \mathcal{L}}{\partial z_i^{[l]}} \frac{\partial z_i^{[l]}}{\partial w_{ji}^{[l]}} \tag{13}$$

Teniendo en cuenta la ecuación [1], vemos que para una capa $k \in \{1, ..., l\}$,

$$\frac{\partial^{[]}}{\partial w_{ji}^{[l]}} = \frac{\partial}{\partial w_{ji}^{[l]}} \left(w_i^{[k]} \cdot A^{[k-1]} \right) = \frac{\partial}{\partial w_{ji}^{[l]}} \left(w_{ji}^{[k]} A_j^{[k-1]} \right) = A_j^{[k-1]} \tag{14}$$

Concluimos así que para un peso $w_{ji}^{[k]}$, la deriva de la función de error con respecto a dicho peso no es más que

$$\frac{\partial \mathcal{L}}{\partial w_{ii}^{[l]}} = \frac{\partial \mathcal{L}}{\partial z_i^{[l]}} \frac{\partial z_i^{[l]}}{\partial w_{ii}^{[l]}} = \left(A_i^{[l]} - y_i \right) A_j^{[l-1]} \tag{15}$$

2.1 Derivadas de parámetros en las capas ocultas

Veamos como se comportan las derivadas para la última capa oculta. Comenzaremos derivado con respecto a $z_i^{[l-1]}$ para luego aplicar la regla de la cadena y obtener la derivada de cada uno de sus pesos. Teniendo en cuenta que estamos tratando de derivar la ecuación [6], que consiste en un sumatorio de C términos todos dependientes de $z_i^{[l-1]}$, por tratarse de una red FC. Es por lo que, la derivada consistirá en un sumatorio, por la propiedad de la derivada de la suma de funciones, con las derivadas parciales con respecto a $z_i^{[l-1]}$ para cada uno de esos sumandos.

$$\frac{\partial \mathcal{L}}{\partial z_i^{[l-1]}} = \sum_{n_l=1}^{C} \frac{\partial \mathcal{L}}{\partial A_{n_l}^{[l]}} \frac{\partial A_{n_l}^{[l]}}{\partial z_{n_l}^{[l]}} \frac{\partial z_{n_l}^{[l]}}{\partial A_i^{[l-1]}} \frac{\partial A_i^{[l-1]}}{\partial z_i^{[l-1]}}$$
(16)

Para simplificar los cálculos, supondremos que todas las capas ocultas de la red utilizan una función de activación sigmoide, $\sigma: \mathbb{R} \to \mathbb{R}$, la cual es derivable $\forall x \in \mathbb{R}$ y cumple que $\sigma'(x) = \sigma(x)(1 - \sigma(x))$. Gracias a esta suposición, sea $k \in \{1, ..., l-1\}$, sabemos que

$$A_i^{[k]} = \sigma(z_i^{[k]}) \tag{17}$$

Y, consecuentemente,

$$\frac{\partial A_i^{[k]}}{\partial z_i^{[k]}} = \sigma(z_i^{[k]}) \left(1 - \sigma(z_i^{[k]}) \right) = A_i^{[k]} \left(1 - A_i^{[k]} \right) \tag{18}$$

Por tanto, al sustituir los resultados obtenidos en las ecuaciones [18] y [17] en la expresión [16], obtenemos

$$\frac{\partial \mathcal{L}}{\partial z_i^{[l-1]}} = \sum_{n_l=1}^C \left(A_{n_l}^{[l]} - y_{n_l} \right) w_{i,n_l}^{[l]} A_i^{[l-1]} \left(1 - A_i^{[l-1]} \right) \tag{19}$$

Si ahora queremos la derivada con respecto a los pesos de la neurona i de la capa l-1, obtenemos, aplicando [14], que

$$\frac{\partial \mathcal{L}}{\partial w_{ji}^{[l-1]}} = \sum_{n_l=1}^{C} \left(A_{n_l}^{[l]} - y_{n_l} \right) w_{i,n_l}^{[l]} A_i^{[l-1]} \left(1 - A_i^{[l-1]} \right) A_j^{[l-2]}$$
(20)

El conjunto MNIST puede ser clasificado con un alto accuracy con una única capa oculta, por lo que ya tendríamos los cálculos necesarios para desarrollar el algoritmo. No obstante, para generalizar este algoritmo a cualquier red FC, necesitamos saber que ocurre con los pesos más allá de la penúltima capa.

Veamos así que ocurre para la capa l-2. Para ello, hemos de tener en cuenta que, dado un peso $w_{ji}^{[l-2]}$, su valor únicamente pondera a la salidas de la neurona j de la capa l-3, para la neurona i de la capa l-2. Ahora bien, al tratarse de una red neuronal FC, todas las neuronas de la capa l-1 estarán conectadas con la capa l-2. Por tanto, el peso $w_{ji}^{[l-2]}$ afectará a todas las salidas de esta última. Es por esta razón por la que aparece un nuevo sumatorio en la expresión, ya que todas las $z_i^{[l]}$ no es más que una suma ponderada de las distintas coordenadas del vector $A^{[l-1]}$, las cuales dependen todas de dicho peso y, por tanto, actúa la regla para la suma de derivadas. Esto es,

$$\frac{\partial}{\partial w_{ji}^{[l-2]}} \left(w_i^{[l]} \cdot A^{[l-1]} \right) = \sum_{n_{l-1}=1}^{n(l-1)} \frac{\partial}{\partial w_{ji}^{[l-2]}} \left(w_{n_{l-1},i}^{[l]} A_{n_{l-1}}^{[l-1]} \right) \tag{21}$$

Así, cobra más sentido el siguiente resultado

$$\frac{\partial \mathcal{L}}{\partial z_{i}^{[l-2]}} = \sum_{n_{l}=1}^{C} \frac{\partial \mathcal{L}}{\partial A_{n_{l}}^{[l]}} \frac{\partial A_{n_{l}}^{[l]}}{\partial z_{n_{l}}^{[l]}} \sum_{n_{l-1}=1}^{n(l-1)} \frac{\partial z_{n_{l}}^{[l]}}{\partial A_{n_{l-1}}^{[l-1]}} \frac{\partial A_{n_{l-1}}^{[l-1]}}{\partial z_{n_{l-1}}^{[l-1]}} \frac{\partial z_{n_{l-1}}^{[l-1]}}{\partial A_{i}^{[l-2]}} \frac{\partial A_{i}^{[l-2]}}{\partial z_{i}^{[l-2]}}$$
(22)

pues no es más que

$$\frac{\partial \mathcal{L}}{\partial z_i^{[l-2]}} = \sum_{n_l=1}^C \frac{\partial \mathcal{L}}{\partial A_{n_l}^{[l]}} \frac{\partial A_{n_l}^{[l]}}{\partial z_{n_l}^{[l]}} \sum_{n_{l-1}=1}^{n_l(l-1)} \frac{\partial}{\partial w_{ji}^{[l-2]}} \left(w_{n_{l-1},i}^{[l]} A_{n_{l-1}}^{[l-1]} \right)$$
(23)

2.2 Generalización de las derivadas

Uno podría seguir calculando las derivadas para capas inferiores, y observaría un patrón que se repite. Existirían l-k sumatorios anidados en la expresión, uno por cada capa comprendida entre la capa k que se esté evaluando y la de salida, incluyendo a esta. Los l-k-1 sumatorios correspondientes a las capas $\{l,l-1,...,k+2\}$ computarían la derivada del cálculo lineal que hace cada una de las neuronas de dicha capa con respecto a la salida de la capa anterior, multiplicado por su sumatorio. Esto, en conjunto, supone la derivada de la función de error con respecto al cálculo lineal realizado en la capa k+1, es decir,

$$S_{l:(k+2)} = \sum_{j=1}^{C} \frac{\partial \mathcal{L}}{\partial A_{j}^{[l]}} \frac{\partial A_{j}^{[l]}}{\partial z_{j}^{[l]}} \sum_{n_{1}=1}^{n(l-1)} \frac{\partial z_{j}^{[l]}}{\partial A_{n_{1}}^{[l-1]}} \frac{\partial A_{n_{1}}^{[l-1]}}{\partial z_{n_{1}}^{[l-1]}} \cdots \sum_{n_{k+2}=1}^{n(k+2)} \frac{\partial z_{n_{k+3}}^{[k+3]}}{\partial A_{n_{k+2}}^{[k+2]}} \frac{\partial A_{n_{k+2}}^{[k+2]}}{\partial z_{n_{k+2}}^{[k+2]}}$$

$$(24)$$

El sumatorio de la capa k+1 calcula la derivada de cada $z_{n_{k+2}}^{[k+2]}$ con respecto al $z_i^{[k]}$ que utiliza el peso $w_{ji}^{[k]}$ que nos intersea, que se reduce ha lo siguiente

$$\frac{\partial \mathcal{L}}{\partial z_i^{[k]}} = S_{l:(k+2)} \cdot \sum_{n_{k+1}=1}^{n(k+1)} \frac{\partial z_{n_{k+2}}^{[k+2]}}{\partial A_{n_{k+1}}^{[k+1]}} \frac{\partial A_{n_{k+1}}^{[k+1]}}{\partial z_{n_{k+1}}^{[k+1]}} \frac{\partial z_{n_{k+1}}^{[k+1]}}{\partial A_i^{[k]}} \frac{\partial A_i^{[k]}}{\partial z_i^{[k]}}$$
(25)

Finalmente, sea la k la capa en la que se encuentra un peso del que queremos calcular la derivada,

$$\frac{\partial \mathcal{L}}{\partial z_i^{[k]}} = \sum_{j=1}^{C} \frac{\partial \mathcal{L}}{\partial A_j^{[l]}} \frac{\partial A_j^{[l]}}{\partial z_j^{[l]}} \sum_{n_1=1}^{n(l-1)} \left(\cdots \sum_{n_{k+1}=1}^{n(k+1)} \frac{\partial z_{n_{k+2}}^{[k+2]}}{\partial A_{n_{k+1}}^{[k+1]}} \frac{\partial A_{n_{k+1}}^{[k+1]}}{\partial z_{n_{k+1}}^{[k+1]}} \frac{\partial z_{n_{k+1}}^{[k+1]}}{\partial A_i^{[k]}} \frac{\partial A_i^{[k]}}{\partial z_i^{[k]}} \right)$$
(26)

Y la derivada del error con respecto a dicho peso no es más que

$$\frac{\partial \mathcal{L}}{\partial w_{ji}^{[k]}} = \sum_{j=1}^{C} \frac{\partial \mathcal{L}}{\partial A_{j}^{[l]}} \frac{\partial A_{j}^{[l]}}{\partial z_{j}^{[l]}} \sum_{n_{1}=1}^{n(l-1)} \left(\cdots \sum_{n_{k+1}=1}^{n(k+1)} \frac{\partial z_{n_{k+2}}^{[k+2]}}{\partial A_{n_{k+1}}^{[k+1]}} \frac{\partial A_{n_{k+1}}^{[k+1]}}{\partial z_{n_{k+1}}^{[k+1]}} \frac{\partial A_{i}^{[k]}}{\partial A_{i}^{[k]}} \frac{\partial A_{i}^{[k]}}{\partial z_{i}^{[k]}} A_{j}^{[k-1]} \right)$$
(27)