[목 차]

- 1. 요구규격
- 2. 설계제한 요소
- 3. 설계방법 및 동작 원리
- 4. 설계도
- 5. 부품
- 6. 구현 및 실험/평가
- 7. 프로젝트 소감

1. 요구규격

[그림 1] 작품 규격

구분	시스템 요소명	상세 요구 규격				
	IC	 NOT Gate Shift register BCD Counter BCD to 7-segment 4bit full adder 4bit latch 				
H/W	LED Matrix, 7-segment	 ▷ 시각적 출력을 위한 8x8(*2) LED Matrix와 7-segment ▷ LED Matrix : Arduino에서 생성된 신호를 Shift Register의 신호 분배에 따라 (X_n, Y_n)의 위치에 LED가 점멸함. ▷ 7-segment : 한 자릿수 당 0-9 까지의 숫자를 시각적으로 출력하며, 각 자릿수에 CLR값의 지연시간을 다르게 주어서 신호의 오류를 방지함. 				
	Bread board	▷ 회로 구성 및 IC 장착 과 연동				
	2-Axis Joystic	▷ 테트리스 블록의 이동(상, 하, 좌, 우)신호 값을 생성 하여 Arduino에 신호를 보내어 블록의 이동 및 회전(90˚)을 제어한다.				
S/W	Arduino	○ clock, latch, data 신호의 제어. ○ LED Matrix의 상태 제어 및 회로의 전체적인 신호를 받아들여 작동 (줄의 제거, LED 신호, Score신호, 위치제어의 연산, 블록의 랜덤 출력, 작동중지) [그림 2] 블록 모양				

[표 1] 작품 규격

2. 설계제한 요소

[경제성]	① IC의 사용 개수를 최소한으로 하며, 사용 IC 내에서 활용도를 극대화한다.				
	② IC의 사용 종류는 준비된 IC(실험 지원 IC)를 적극 활용하여 저예산으로 설계를 진행한다.				
	③ LED Matrix 구현을 위해 Module을 활용하였다.				
	④ 외관을 직접 제작한다.				
	① 다량의 LED를 병렬로 연결하여 원하는 x, y 축의 LED를 제어하며, 다른 LED들과 함께				
	빠른 속도로 점멸하여 원하는 모양을 시각적으로 나타나게 한다.				
	② Shift Register를 이용하여 Digital I/O 핀 수를 원하는 개수로 확장한다.				
[기소서]	③ counter와 full adder, latch를 설계 및 연동하여 7-segment를 통하여 원하는				
[기술성]	시간/점수를 시각적으로 표시 한다.				
	④ 2축 조이스틱 신호를 받아들여 블록의 위치를 x, y축에 변경을 줘서 블록 위치 제어 한다.				
	⑤ 최소 전압 5V를 준수하며, 안전성을 고려해 10V를 넘지 않는다.				
	⑥ 1차 출품과 2차 출품으로 나뉠 때, 2차 출품은 1차 출품의 발전 형태로 제작한다.				

[표 2] 설계제한 요소

3. 설계방법 및 동작 원리

[설계방법]

	병렬 Shift register IC 2개를 이용하여 1번째 Shift register에 clock, latch, data			
① Shift register	핀에 Arduino 코드에 따라 bit단위로 생성되고 보내진 신호를 받아들인 후에 출력되는			
	Serial OUT 출력 신호를 2번째 Shift register에 연동함으로써 필요한 Pin 확장			
	기술을 적용함.			
	Shift register에서 확장된 핀을 각 LED Matrix 1-24 pin(R/G color, used red			
② LED Matrix	color)에 연결하여 x축, y축에 해당하는 LED를 하나 ON한다. 이때, Arduino에서			
© LED Matrix	사람이 인식하기 힘든 빠르기(50ms)의 속도로 점멸함으로써 원하는 모양의 블록 모양을			
	출력하게 한다.			
	x축, y축 두 개의 신호 pin을 사용하여 위로 올릴 때 상태 값이 커지고, 아래로 내릴 때			
③ 2-Axis Joystic	상태 값이 작아지는 현상을 이용하여 움직인다는 신호를 받게 하여 블록의 위치를			
	제어한다.			
	JK플립플롭 4개를 사용하여 1자리수(0-9)를 비동기식으로 만들고, 이를 연결하여 두			
④ 99-Counter	자릿수(총 8개)로 만들고, NAND Gate를 사용하여 1010(= $10_{(10)}$)일 때, 전체 초기화를			
	하여 다시 0으로 순환하도록 설계함.			
	K플립플롭 4개를 사용하여 1자리수(0-9)를 비동기식으로 만들고, 이를 연결하여 세			
	자릿수(총 12개)로 만들고, NAND Gate를 사용하여 1010(= $10_{(10)}$)일 때, 전체 초기화를			
⑤ 999-Counter	하여 다시 0으로 순환하도록 설계함. 단, 99-Counter와는 다르게 4bit-latch와 4bit-full			
	adder를 사용하여 Arduino에서 줄이 소거되는 신호를 받아들여 adder하여 latch에			
	저장하는 방식으로 설계함.			

[표 3] 설계 방법

[동작원리]

조 건	과 정					
			<arduino></arduino>			
Tetris 시작 &	Arduino에서	Shift register로	LED Matrix로	999 Counter에서	99 Counter에서	정지
Joystic 제어	연산	신호 분배	출력	가산	정지신호	
	1단계	2단계	3단계	4단계	5단계	6단계
		<9	99-Counter>			
Tetris 시작	Reset	Arduino에서	latch에 저장	full	다음 자릿수	정지
16013 717		score 전달		adder연산	연산	
	1단계	2단계	3단계	4단계	5단계	6단계
	<99-Counter>					
Tetris 시작	Reset	1의 자리 Count	10의 자리 Count	90초 신호 출력	정지	
	1단계	2단계	3단계	4단계	5단계	

[표 4] 동작 원리

4. 설계도

·LED Matrix

[그림 3] LED Matrix

[그림 4] 99-Counter

[그림 5] 999-Counter

5. 부품

부 품	수 량 (EA)
Bread board	2 + 2(small) EA
8x8 LED Matrix (BVD-8518SG1)	2 EA
Analog 2-axis Joystic	1 EA
Shift register (74595)	2 EA
BCD Counter (7476)	2 * 2 EA
BCD to 7-segment (7447)	5 EA
Resistor(195 Ω)	7 * 5 EA
4bit binary full adder (7483)	3 EA
4bit latch (74379)	3 EA
7-segment (FND507)	5 EA

[그림 6] Arduino

[표 5] 부품

6. 구현 및 시험/평가

- ① Shift register를 이용한 LED Matrix 출력
- 50ms의 점멸속도로 지정된 블록 모양을 순차적으로 출력하기 때문에 형태가 유지되어 보이는 잔상효과를 적용한 출력기술이다.

[그림 7] LED Matrix 출력

[그림 8] LED Matrix 동작원리

[그림 10] 납땜 - 뒤

2 99-Counter (Timer)

- 작동 시작 시 초기화를 하게 되는데, 처음 설계 시에는 각 자릿수마다 동시에 초기화를 했었는데 테스트 도중에 신호가 뒤죽박죽 섞이는 경우가 생겨서, 최상위 자릿수는 바로 초기화를 하고 다음 자릿수부터 지연시간을 주어서 신호가 차례로 전달되어 초기화되도록 설계함.

[그림 11] 99-Counter 구현

3 999-Counter (Score)

- 작동 시작 시 99-Counter와 같이 초기화를 하고 score 신호를 받아 latch에 저장을 한 뒤에 줄을 없애는 신호가 들어왔을 시에 가산하여 latch에 다시 저장하여 카운트한다.

[그림 12] 999-Counter 구현

④ 최종 연동

- 1차로 출품한 Tetris 본체에 회로를 추가 및 연동함.

[그림 13] 완성 작품

·진리표 J-K Flip Flop 진리표

*J-K 플립플롭 (7476을 사용하여 UP Count 신호를 만들어서 Score와 Timer에 적용함), 비동기식으로 설계하였으며, 신호전달의 오류 때문에 지연시간을 주어서 신호를 재 정렬하였음.

입	력	출	력
J	K	Q_{t+1}	$\overline{Q_{t+1}}$
0	0	Q_{t+1}	$\overline{Q_{t+1}}$
0	1	1	0
1	0	0	1
1	1	$\overline{Q_{t+1}}$	Q_{t+1}

[표 6] J-K플립플롭 진리표

·UP Counter 진리표

- *Score 0~999 카운터 이므로, 100의 자리 1010과 10의 자리 1010과 1의 자리 1010 일 때 CLR 작동
- *Timer 0~90 카운터 이므로, 10의 자리가 9가 되는 1001 일 때 CLR 작동

보유 하고 있는 JK-Flip Flop IC의 CLR pin이 \overline{CLR} (0일 때 동작)이므로, NAND IC (7400)을 사용하여 CLR에 0을 주어야 작동을 한다.

논리식 : $CLR = \overline{DC}$

	입력				력	
PR	CLR	CLK	D	С	В	A
0	0	\downarrow	1	1	1	1
0	1	\downarrow	1	1	1	1
1	0	\downarrow	0	0	0	0
1	1	\downarrow	0	0	0	1
1	1	\downarrow	0	0	1	0
1	1	\downarrow	0	0	1	1
1	1	\downarrow	0	1	0	0
1	1	\downarrow	0	1	0	1
1	1	\downarrow	0	1	1	0
1	1	\downarrow	0	1	1	1
1	1	\downarrow	1	0	0	0
1	1	\downarrow	1	0	0	1
1	1	\downarrow	1	0	1	0

[표 7] Counter 진리표

7. 프로젝트 소감

	초기의 목적은 자신이 배운 지식을 이용하여 자신의 위치를 파악하고 최초의 실무 작업과 함
	께 포트폴리오에 실적 하나를 써보고자 무작정 참여한 것이었는데, 직접 계획하고 제작에 참
	여하면서 무척 힘든 하루하루를 보냈다. 더군다나 기숙사에서 생활하느라 11시 전에는 돌아
71 71 01	가야 했기 때문에 무척 초조했고 주말 시간을 투자해서 만들어야 했기 때문에 많이 지쳤었으
김 철 언	며, 납땜을 통해 연동을 할 때 만들었던 부품이 죽어버리는 사태가 발생하여 더욱 괴로웠었
	다. 하지만 막바지에 이르러 다들 연동하거나 출품 때 작동이 안 되는 와중에 우리 작품은 완
	벽하게 목표로 했던 작동이 되어 무척 기뻤었다. 조장을 맡게 되어 못난 조장의 닦달 속에 같
	이 함께 해준 조원들이 고맙다.
	팀원 간의 협동심이 얼마나 중요하고 우선시되어야 할 요소인지를 몸소 느끼게 되는 시간이
	된 듯하다. 구성원간의 커뮤니케이션과 끊임없는 자기개발을 이뤄내며 팀원 한사람의 낙오자
	없이 프로젝트 기간을 충실히 참여해야 하는 것의 의미를 다시금 되돌아보는 계기가 되었다.
11 Z =	프로젝트 기간이 기말시험 겹치는 바람에 팀원 간의 불화도 있었고 부품조달과 작품을 테스
신 중 혁	트하고 수정하는 단계에서도 애를 많이 먹었으며 작품이 완성된 마지막 순간에서까지 자잘한
	에러 요소를 보이는 등 긴장을 늦추지 못하게 만든 프로젝트였지만 내 일생에 처음이었던 프
	로젝트를 의지가 되는 동료들과 함께 마지막까지 최선을 다해 원하던 결과를 만들어 낸 것에
	대해 많은 보람과 즐거움이 되었던 시간이 되었다.
	기존에 배운 논리회로 지식과 컴퓨터 기초설계시간에 사용하는 Arduino를 다루는 기술 등을
오 연 중	이용하여 Term Project에서 참여 하였기에, 자신의 실력을 확인함과 향상의 기회를 가질 수
	있어서 좋은 경험이었다. 특히 주로 회로를 구성하는 역할을 맡았기에 조장의 요구에 맞춰 회
	로 작성함에 따라 회로도를 보는 능력과 회로 구성 능력이 향상되어서 만족스런 기간이었다.
	디지털 회로 설계시간에 이론 과 실습으로 배운 내용들을 직접 아이디어를 구상하여 작품을
	제작하는 총체적인 과정을 토대로 더 심화된 회로 설계를 이해하였으며, 직접 회로작품을 설
 정 회 현	계하는 작업 자체가 참신하고 재미있었다. 비록 여러 번 벽에 부딪히기도 했지만 실험을 완전
0 4 6	히 끝내고 되돌아보았을 때 이전보다 실력이 향상되었음을 실감할 수 있었다. 또한 Arduino
	를 이용하였기 때문에 소프트웨어적 요소뿐만 하드웨어와 연동하는 기술을 통해 실력을 향상
	시킬 수 있어서 좋은 기회였다.