Markov Chains and Descent Subalgebras

C.Y. Amy Pang

Department of Mathematics, HKBU

2018 HKBU-NCKU Joint Workshop on Mathematical Sciences

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

An example of one possibility (n = 4):

Let $X_t =$ the order of the files after t days (a random variable). $\{X_t\}$ is a Markov chain - i.e. it is memoryless, X_{t+1} depends only on X_t , not on X_1, \ldots, X_{t-1} .

As $t \to \infty$, the distribution of $X_t \to ??$

You have a stack of n files. Every day, you

- remove a file at random;
- replace this file at the top of the stack.

An example of one possibility (n = 4):

Let $X_t =$ the order of the files after t days (a random variable). $\{X_t\}$ is a Markov chain - i.e. it is memoryless, X_{t+1} depends only on X_t , not on X_1, \ldots, X_{t-1} .

As $t \to \infty$, $X_t \to$ uniform distribution over the n! possible orders. Aldous-Diaconis (1986): convergence rate $\sim n \log n$.

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

$$\sigma(1) = 1$$

$$\sigma(2) = 2$$

$$\sigma(3) = 3$$

$$\sigma(4) = 4$$

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

$$\sigma(1) = 1$$

$$\sigma(2) = 2$$

$$\sigma(3) = 3$$

$$\sigma(4) = 4$$

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

$$\sigma(1) = 1$$
 $\sigma(1) = 2$
 $\sigma(2) = 2$ $\sigma(2) = 1$
 $\sigma(3) = 3$ $\sigma(3) = 3$

 $\sigma(4) = 4 \qquad \sigma(4) = 4$

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

Let the symmetric group S_n act on {the n! possible orders of files} in this way: $\sigma \in S_n$ moves the file in position $\sigma(i)$ to position i.

E.g. for Tsetlin library:

describing the Tsetlin library moves are precisely the n permutations satisfying $\sigma(2)<\sigma(3)<\cdots<\sigma(n)$.

Definition: For $\sigma \in S_n$ and $i \in \{1, \ldots, n-1\}$, we say that i is a descent of σ if $\sigma(i) > \sigma(i+1)$.

Let $Des(\sigma) \subseteq \{1, \dots n-1\}$ be the set of descents of σ .

So the permutations describing the n Tsetlin library moves are precisely the σ satisfying $\mathrm{Des}(\sigma) \subseteq \{1\}$.

The permutations describing the Tsetlin library moves are precisely the n permutations satisfying $\sigma(2) < \sigma(3) < \cdots < \sigma(n)$.

Definition: For $\sigma \in S_n$ and $i \in \{1, ..., n-1\}$, we say that i is a descent of σ if $\sigma(i) > \sigma(i+1)$.

Let $Des(\sigma) \subseteq \{1, \dots n-1\}$ be the set of descents of σ .

So the permutations describing the n Tsetlin library moves are precisely the σ satisfying $\mathrm{Des}(\sigma) \subseteq \{1\}$.

Since these n moves occur with equal probability, take the sum of these n permutations with equal weights, i.e. in the group algebra $\mathbb{R}S_n$, define $Y_1:=\sum_{\sigma: \mathrm{Des}(\sigma) \subseteq \{1\}} \sigma$.

Then X_t , the order of files after t days, corresponds to Y_1^t .

Definition: For $\sigma \in S_n$ and $i \in \{1, ..., n-1\}$, we say that i is a descent of σ if $\sigma(i) > \sigma(i+1)$.

Let $Des(\sigma) \subseteq \{1, \dots n-1\}$ be the set of descents of σ .

So the permutations describing the n Tsetlin library moves are precisely the σ satisfying $\mathrm{Des}(\sigma) \subseteq \{1\}$.

Since these n moves occur with equal probability, take the sum of these n permutations with equal weights, i.e. in the group algebra $\mathbb{R}S_n$, define $Y_1:=\sum_{\sigma}\sigma$.

 σ :Des $(\sigma)\subseteq\{1\}$

Then X_t , the order of files after t days, corresponds to Y_1^t .

By analysing the subalgebra of $\mathbb{R}S_n$ generated by Y_1 (e.g. idempotents, Diaconis-Fill-Pitman, 1992)

Theorem: Prob(—is above — in X_t) = $\left(1 + \left(\frac{n-2}{n}\right)^t\right)\frac{1}{2}$.

Two directions to extend

More generally, for any $I \subseteq \{1, \ldots, n-1\}$, let

$$Y_I := \sum_{\sigma: \mathrm{Des}(\sigma) \subseteq I} \sigma.$$

Theorem (Solomon, 1976): The Y_I span a subalgebra of $\mathbb{R}S_n$. This is known as Solomon's descent algebra (in Coxeter type A), and is isomorphic to noncommutative symmetric functions. Any subalgebra of it is called a descent subalgebra.

Each descent subalgebra corresponds to a family of Markov chains describing different rearrangements of files.

Two directions to extend

More generally, for any $I \subseteq \{1, \ldots, n-1\}$, let

$$Y_I := \sum_{\sigma: \mathrm{Des}(\sigma) \subseteq I} \sigma.$$

Theorem (Solomon, 1976): The Y_I span a subalgebra of $\mathbb{R}S_n$. This is known as Solomon's descent algebra (in Coxeter type A), and is isomorphic to noncommutative symmetric functions. Any subalgebra of it is called a descent subalgebra.

Each descent subalgebra corresponds to a family of Markov chains describing different rearrangements of files.

Descent subalgebras induce Markov chains on many combinatorial objects (via a combinatorial Hopf algebra), even when there is no obvious S_n action. I have all eigenvalues and some eigenvectors of these chains, allowing a uniform analysis.

Two directions to extend

Descent subalgebras induce Markov chains on many combinatorial objects (via a combinatorial Hopf algebra), even when there is no obvious S_n action. I have all eigenvalues and some eigenvectors of these chains, allowing a uniform analysis.

e.g. for the Markov chain corresponding to $< Y_1 >$ on binary trees (Loday-Ronco algebra):

Theorem:

Prob(right subtree of
$$X_t$$
 is empty) $\leq \left(1 + \left(\frac{n-2}{n}\right)^t\right) \frac{1}{2}$.

Thank you

I am looking for collaborators, PhD students, and postdocs.

My interests:

- Markov chains from algebra actions / linear transformations
- new subalgebras of Solmon's descent algebra / Solomon-Tits algebra
- combinatorial Hopf algebras / monoids

My papers:

- Card-Shuffling via Convolutions of Projections on Combinatorial Hopf Algebras, FPSAC conference abstract, 2015
- Markov Chains from Descent Operators on Combinatorial Hopf Algebras, arXiv, 2016
- (with M. Josuat-Verges) Subalgebras of Solomon's descent algebra based on alternating runs, J. Combin. Theory. Ser. A., 2018

amypang.github.io/research.html

amypang@hkbu.edu.hk

Connecting Markov chains with descent algebra elements

For the Tsetlin library and other file-rearrangement chains: Let $\mathbb{R}\Omega$ be the set of formal linear combinations of "states" (possible values of X_t .)

Represent a probability distribution $\pi:\Omega\to\mathbb{R}$ on states by $\sum \pi(x)x\in\mathbb{R}\Omega.$

 $x \in \Omega$ Let $\mathbb{R}S_n$ act on $\mathbb{R}\Omega$ by linearity:

$$\left(\sum_{\sigma \in S_n} a_{\sigma}\sigma\right) \left(\sum_{x \in \Omega} \pi(x)x\right) = \sum_{\sigma,x} a_{\sigma}\pi(x)\sigma(x).$$

Then $\frac{1}{n}Y_1(X_t) = X_{t+1}$.

For chains on other combinatorial objects:

If $I = \{i_1, i_2, \dots, i_r\}$, then Y_I breaks an object randomly into r+1 pieces of sizes $i_1, i_2-i_1, i_3-i_2, \dots, i_r-i_{r-1}, n-i_r$ respectively, then reassembles these pieces randomly.