Analysis

• Theorem: can choose η so that, for any game ${\bf M}$ with ${\bf m}$ rows, and any opponent,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \Delta_{T}$$
actual average loss best average loss $(\leq v)$

where
$$\Delta_T = O\left(\sqrt{\frac{\ln m}{T}}\right) \to 0$$

- regret Δ_T is:
 - logarithmic in # rows m
 - independent of # columns
- therefore, can use when working with very large games