International Application No: PCT/

MICRO	ORGANISMS
Optional Sheet in connection with the microorganism	referred to on page <u>88</u> , lines <u>1-12</u> of the description'
A. IDENTIFICATION OF DEPOSIT	
Further deposits are identified on an additional she	et '
Name of depositary institution	
American Type Culture Collection	
Address of depositary institution (including post	al code and country) *
12301 Parklawn Drive	
Rockville, MD 20852 US	
Day of the city of	
Date of deposit * May 2, 1991 Accession Num	
B. ADDITIONAL INDICATIONS ' (leave blank if not applie	nable). This information is continued on a separate attached about
•	
C. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE * (if the indications was not all descriptions)
·	
	<u>.</u>
D. SEPARATE FURNISHING OF INDICATIONS • (a	eave blank if not amiliable)
The indications listed below will be submitted to the Internstional	
"Accession Number of Deposit")	
·	·
r DG	
E. ET This sheet was received with the International ap	plication when filed (to be checked by the receiving Office)
•	The D
	(Authorized Officer)
☐ The date of receipt (from the applicant) by the in	standing the same
— com or receipt (aroin me applicant) by the ti	metianoliai Bulesu
was	
Form PCT/RO/134 (January 1981)	(Authorized Officer)

:In: <Wn 940747441 I

- 88.2 -

International Application No: PCT/

Form PCT/RO/134 (cont.)

American Type Culture Collection

12301 Parklawn Drive Rockville, MD 20852 US

Accession No.

68609

68611

Date of Deposit

May 2, 1991

May 2, 1991

-89-

SEQUENCE LISTING

- (i) APPLICANT: Artavanis-Tsakonas, S. et al.
- (ii) TITLE OF INVENTION: Therapeutic And Diagnostic Methods And Compositions Based On Notch Proteins And Nucleic Acids
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pennie & Edmonds
 - (B) STREET: 1155 Avenue of the Americas
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 10036
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To be assigned
 - (B) FILING DATE: On even date
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Misrock, S. Leslie

 - (B) REGISTRATION NUMBER: 18,872 (C) REFERENCE/DOCKET NUMBER: 7326-018
 - (ix) TELECOMMUNICATION INFORMATION:

 - (A) TELEPHONE: 212 790-9090 (B) TELEFAX: 212 8698864/9741
 - (C) TELEX: 66141 PENNIE
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2892 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 142..2640
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAATTCGGAG GAATTATTCA AAACATAAAC ACAATAAACA ATTTGAGTAG TTGCCGCACA 60 CACACACA CACAGCCCGT GGATTATTAC ACTAAAAGCG ACACTCAATC CAAAAAATCA 120

GCAACAAAAA CATCAATAAA C ATG CAT TGG ATT AAA TGT TTA TTA ACA GCA 171

					-	Met		s Tr	, Ile	Lys	Cy:	s Leu	Lev	Thr	Ala 10		
TT(Pho	C AT	T TG	C TT(s Pho	C ACA Thr	. Val	ATC Ile	C GTC	G CAC	GTT Val 20	His	C AG	TCC Ser	GGC Gly	AGC Ser 25	TTT Phe	:	219
				Lys					Asp) Asn	GAG Glu		267
			Cys					Asp					Lys		CTG Leu		315
		Cys					Arc					His			GCC Ala	3	363
	: Ile					Gln					Asp				Pro 90	4	111
					Ser					Asp					CAG Gln	4	159
				Thr					Phe					Ser	TGG	5	507
			Phe	TCG Ser				Glu									55
		Asn		CGA Arg	Thr							Arg				6	03
	Gln			GAG Glu													51
				TCG Ser 175												6	99
AAC Asn	TAC Tyr	TAC Tyr	GGA Gly 190	TCC Ser	GGC Gly	TGT Cys	GCC Ala	AAG Lys 195	TTC Phe	TGC Cys	CGG Arg	CCC	CGC Arg 200	GAC Asp	GAT Asp	7	47
TCA Ser	TTT Phe	GGA Gly 205	CAC His	TCG Ser	ACT Thr	TGC Cys	TCG Ser 210	GAG Glu	ACG Thr	GGC Gly	GAA Glu	ATT Ile 215	ATC Ile	TGT Cys	TTG Leu	7 !	95
				GGC Gly												8	43
				CAT His							Cys					8	91
GGC Gly	TGG Trp	AAG Lys	GGA Gly	GCC Ala 255	TTG Leu	TGC Cys	AAC Asn	GAG Glu	TGC Cys 260	GTT Val	CTG Leu	GAA Glu	CCG Pro	AAC Asn 265	TGC Cys	9:	39

				Cys					Thi					Glu	GGT Gly	987
			, Le					Ası					Thr		CAC His	1035
		Cys					Thr					Gly			TTG Leu	1083
	Thi					Pro					Asp				AAT Asn 330	1131
					Asp					Pro					GGT	1179
ACC Thr	TGC Cys	ATC	GAT Asp 350	Glu	CCG	CAC His	ACA Thr	AAA Lys 355	ACC Thr	GGC	TAC Tyr	AAG Lys	TGT Cys 360	CAT	TGC Cys	1227
GCC Ala	AAC Asn	GGC Gly 365	Trp	AGC Ser	GGA Gly	AAG Lys	ATG Met 370	TGC Cys	GAG Glu	GAG Glu	AAA Lys	GTG Val 375	CTC Leu	ACG Thr	TGT Cys	1275
		Lys										GTT Val				1323
TTG Leu 395	Gly	AGC Ser	AAG Lys	GGT Gly	CAG Gln 400	GGC Gly	TAC Tyr	CAG Gln	TGC Cys	GAA Glu 405	TGT Cys	CCC Pro	ATT Ile	GGC Gly	TAC Tyr 410	1371
AGC Ser	GGA Gly	CCC Pro	AAC Asn	TGC Cys 415	GAT Asp	CTC Leu	CAG Gln	CTG Leu	GAC Asp 420	AAC Asn	TGC Cys	AGT Ser	CCG Pro	AAT Asn 425	CCA Pro	1419
TGC Cys	ATA Ile	AAC Asn	GGT Gly 430	GGA Gly	AGC Ser	TGT Cys	CAG Gln	CCG Pro 435	AGC Ser	GGA Gly	AAG Lys	TGT Cys	ATT Ile 440	TGC Cys	CCA Pro	1467
GCG Ala	GGA Gly	TTT Phe 445	TCG Ser	GGA Gly	ACG Thr	AGA Arg	TGC Cys 450	GAG Glu	ACC Thr	AAC Asn	ATT Ile	GAC Asp 455	GAT Asp	TGT Cys	CTT Leu	1515
GGC Gly	CAC His 460	CAG Gln	TGC Cys	GAG Glu	AAC Asn	GGA Gly 465	GGC Gly	ACC Thr	TGC Cys	ATA Ile	GAT Asp 470	ATG Met	GTC Val	AAC Asn	CAA Gln	1563
TAT Tyr 475	CGC Arg	TGC	CAA Gln	TGC Cys	GTT Val 480	CCC Pro	GGT Gly	TTC Phe	CAT His	GGC Gly 485	ACC Thr	CAC His	TGT Cys	AGT Ser	AGC Ser 490	1611
AAA Lys	GTT Val	GAC Asp	TTG Leu	TGC Cys 495	CTC Leu	ATC Ile	AGA Arg	CCG Pro	TGT Cys 500	GCC Ala	AAT Asn	GGA Gly	GGA Gly	ACC Thr 505	TGC Cys	1659
							Gln					GCG Ala				1707
						Asp						AGT Ser 535				1755

CAT His	AAC Asn 540	Gly	GGC	ACT Thr	TGC Cys	ATG Met 545	AAC Asn	CGC Arg	GTC Val	AAT Asn	TCG Ser 550	Phe	GAA Glu	TGC Cys	GTG Val	1803
TGT Cys 555	Ala	TAA neA	GGT Gly	TTC Phe	AGG Arg 560	GGC Gly	AAG Lys	CAG Gln	TGC Cys	GAT Asp 565	GAG Glu	GAG Glu	TCC Ser	TAC Tyr	GAT Asp 570	1851
TCG Ser	GTG Val	ACC	TTC Phe	GAT Asp 575	Ala	CAC His	CAA Gln	TAT Tyr	GGA Gly 580	GCG Ala	ACC Thr	ACA Thr	CAA Gln	GCG Ala 585	AGA Arg	1899
GCC Ala	GAT Asp	GGT Gly	TTG Leu 590	ACC Thr	AAT Asn	GCC Ala	CAG Gln	GTA Val 595	GTC Val	CTA Leu	ATT	GCT Ala	GTT Val 600	TTC Phe	TCC Ser	1947
GTT Val	GCG Ala	ATG Met 605	Pro	TTG Leu	GTG Val	GCG Ala	GTT Val 610	ATT Ile	GCG Ala	GCG Ala	TGC Cys	GTG Val 615	GTC Val	TTC Phe	TGC Cys	1995
ATG Met	AAG Lys 620	CGC Arg	AAG Lys	CGT	AAG Lys	CGT Arg 625	GCT Ala	CAG Gln	GAA Glu	AAG Lys	GAC Asp 630	GAC Asp	GCG Ala	GAG Glu	GCC Ala	2043
AGG Arg 635	AAG Lys	CAG Gln	AAC Asn	GAA Glu	CAG Gln 640	AAT Asn	GCG Ala	GTG Val	GCC Ala	ACA Thr 645	ATG Met	CAT His	CAC His	AAT Asn	GGC Gly 650	2091
AGT Ser	GGG Gly	GTG Val	GGT Gly	GTA Val 655	GCT Ala	TTG Leu	GCT Ala	TCA Ser	GCC Ala 660	TCT Ser	CTG Leu	GGC Gly	GGC Gly	AAA Lys 665	ACT Thr	2139
GGC Gly	AGC Ser	AAC Asn	AGC Ser 670	GGT Gly	CTC Leu	ACC Thr	TTC Phe	GAT Asp 675	GGC Gly	GGC Gly	AAC Asn	CCG Pro	AAT Asn 680	ATC Ile	ATC Ile	2187
AAA Lys	AAC Asn	ACC Thr 685	TGG Trp	GAC Asp	AAG Lys	TCG Ser	GTC Val 690	AAC Asn	AAC Asn	ATT Ile	TGT Cys	GCC Ala 695	TCA Ser	GCA Ala	GCA Ala	2235
GCA Ala	GCG Ala 700	GCG Ala	GCG Ala	GCG Ala	GCA Ala	GCA Ala 705	GCG Ala	GCG Ala	GAC Asp	GAG Glu	TGT Cys 710	CTC Leu	ATG Met	TAC Tyr	GGC Gly	2283
GGA Gly 715	TAT Tyr	GTG Val	GCC Ala	TCG Ser	GTG Val 720	GCG Ala	GAT Asp	AAC Asn	AAC Asn	AAT Asn 725	GCC Ala	AAC Asn	TCA Ser	GAC Asp	TTT Phe 730	2331
TGT Cys	GTG Val	GCT Ala	CCG Pro	CTA Leu 735	CAA Gln	AGA Arg	GCC Ala	AAG Lys	TCG Ser 740	CAA Gln	AAG Lys	CAA Gln	CTC Leu	AAC Asn 745	ACC Thr	2379
GAT Asp	CCC Pro	ACG Thr	CTC Leu 750	ATG Met	CAC His	CGC Arg	GGT Gly	TCG Ser 755	CCG Pro	GCA Ala	GGC Gly	AGC Ser	TCA Ser 760	GCC Ala	AAG Lys	2427
GGA Gly	GCG Ala	TCT Ser 765	GGC Gly	ĢGA Gly	GGA Gly	CCG Pro	GGA Gly 770	GCG Ala	GCG Ala	GAG Glu	GGC Gly	AAG Lys 775	AGG Arg	ATC Ile	TCT Ser	2475
GTT Val	TTA Leu 780	GGC Gly	GAG Glu	GGT Gly	TCC Ser	TAC Tyr 785	TGT Cys	AGC Ser	CAG Gln	CGT Arg	TGG Trp 790	CCC Pro	TCG Ser	TTG Leu	GCG Ala	2523
GCG Ala 795	GCG Ala	GGA Gly	GTG Val	GCC Ala	GGA Gly 800	GCC Ala	TGT Cys	TCA Ser	TCC Ser	CAG Gln 805	CTA Leu	ATG Met	GCT Ala	GCA Ala	GCT Ala 810	2571

-93-

														TCC Ser 825		261	9
			ACT Thr 830				TAAC	TCC	AAA	ATC	CGGAA	G GG	CTC	CTGGI	?	267	0
AAAT	ccgg	AG A	AATC	CGCA	T GO	AGGA	GCTG	ACA	GCAC	ATA	CACA	AAGA	AA i	AGACI	GGG	rT 273	0
GGGT	TCAA	LAA 1	GTGA	GAGA	G AC	CGCCA	TAAA	GTI	GTTG	TTG	ATTG	AAGC	AG !	TTAG	TCG	rc 279	0
ACGA	AAAA	TG A	AAAA	TCTG	T A	CAGG	CATA	ACI	CGTA	AAC	TCCC	TAAA	AA I	ATTTG	TAT	AG 285	0
TAAT	TAGC	AA A	GCTG	TGAC	C C	GCCG	TTTC	GAI	ccc	TAA	TC					289	2

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 amino acids
 - (B) TYPE: amino acid.
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Cys Ala Lys Phe Cys Arg Pro Arg Asp Asp Ser Phe Gly His Ser Thr

195

Cys Ser Glu Thr Gly Glu Ile Ile Cys Leu Thr Gly Trp Gln Gly Asp Tyr Cys His Ile Pro Lys Cys Ala Lys Gly Cys Glu His Gly His Cys Asp Lys Pro Asn Gln Cys Val Cys Gln Leu Gly Trp Lys Gly Ala Leu Cys Asn Glu Cys Val Leu Glu Pro Asn Cys Ile His Gly Thr Cys Asn Lys Pro Trp Thr Cys Ile Cys Asn Glu Gly Trp Gly Gly Leu Tyr Cys
285 Asn Gln Asp Leu Asn Tyr Cys Thr Asn His Arg Pro Cys Lys Asn Gly Gly Thr Cys Phe Asn Thr Gly Glu Gly Leu Tyr Thr Cys Lys Cys Ala Pro Gly Tyr Ser Gly Asp Asp Cys Glu Asn Glu Ile Tyr Ser Cys Asp Ala Asp Val Asn Pro Cys Gln Asn Gly Gly Thr Cys Ile Asp Glu Pro His Thr Lys Thr Gly Tyr Lys Cys His Cys Ala Asn Gly Trp Ser Gly Lys Met Cys Glu Glu Lys Val Leu Thr Cys Ser Asp Lys Pro Cys His Gln Gly Ile Cys Arg Asn Val Arg Pro Gly Leu Gly Ser Lys Gly Gln 385 Gly Tyr Gln Cys Glu Cys Pro Ile Gly Tyr Ser Gly Pro Asn Cys Asp 405 415 Leu Gln Leu Asp Asn Cys Ser Pro Asn Pro Cys Ile Asn Gly Gly Ser Cys Gln Pro Ser Gly Lys Cys Ile Cys Pro Ala Gly Phe Ser Gly Thr Arg Cys Glu Thr Asn Ile Asp Asp Cys Leu Gly His Gln Cys Glu Asn 450 455 460 Gly Gly Thr Cys Ile Asp Met Val Asn Gln Tyr Arg Cys Gln Cys Val 465 470 475 480 Pro Gly Phe His Gly Thr His Cys Ser Ser Lys Val Asp Leu Cys Leu Ile Arg Pro Cys Ala Asn Gly Gly Thr Cys Leu Asn Leu Asn Asn Asp 500 505 510 Tyr Gln Cys Thr Cys Arg Ala Gly Phe Thr Gly Lys Asp Cys Ser Val 520 Asp Ile Asp Glu Cys Ser Ser Gly Pro Cys His Asn Gly Gly Thr Cys Met Asn Arg Val Asn Ser Phe Glu Cys Val Cys Ala Asn Gly Phe Arg Gly Lys Gln Cys Asp Glu Glu Ser Tyr Asp Ser Val Thr Phe Asp Ala

-95-

565 570 575

His Gln Tyr Gly Ala Thr Thr Gln Ala Arg Ala Asp Gly Leu Thr Asn 580 585 590

Ala Gln Val Val Leu Ile Ala Val Phe Ser Val Ala Met Pro Leu Val 595 600 605

Ala Val Ile Ala Ala Cys Val Val Phe Cys Met Lys Arg Lys Arg Lys 610 620

Arg Ala Glu Glu Lys Asp Asp Ala Glu Ala Arg Lys Gln Asn Glu Gln 625 630 635 640

Asn Ala Val Ala Thr Met His His Asn Gly Ser Gly Val Gly Val Ala 645 650 655

Leu Ala Ser Ala Ser Leu Gly Gly Lys Thr Gly Ser Asn Ser Gly Leu 660 665 670

Thr Phe Asp Gly Gly Asn Pro Asn Ile Ile Lys Asn Thr Trp Asp Lys 675 680 685

Ser Val Asn Asn Ile Cys Ala Ser Ala Ala Ala Ala Ala Ala Ala Ala 690 695 700

Ala Ala Ala Asp Glu Cys Leu Met Tyr Gly Gly Tyr Val Ala Ser Val 705 710 715 720

Ala Asp Asn Asn Ala Asn Ser Asp Phe Cys Val Ala Pro Leu Gln
725 730 735

Arg Ala Lys Ser Gln Lys Gln Leu Asn Thr Asp Pro Thr Leu Met His 740 745 750

Arg Gly Ser Pro Ala Gly Ser Ser Ala Lys Gly Ala Ser Gly Gly Gly 755 760 765

Pro Gly Ala Ala Glu Gly Lys Arg Ile Ser Val Leu Gly Glu Gly Ser 770 775 780

Tyr Cys Ser Gln Arg Trp Pro Ser Leu Ala Ala Ala Gly Val Ala Gly 785 790 795 800

Ala Cys Ser Ser Gln Leu Met Ala Ala Ala Ser Ala Ala Gly Ser Gly 805 810 815

Ala Gly Thr Ala Gln Gln Gln Arg Ser Val Val Cys Gly Thr Pro His 820 825 830

Met

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1320 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 442..1320

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

((xi)	SEÇ	QUENC	E DE	SCRI	PTIC	JN: S	PEG 1	ואנ ענו							
CCGAG	TCG	AG (CGCCC	GTGC	r co	AGC	GTGF	TG!	AGCC	CCTT	TTCI	rgtc?	AAC (CTA	AAGATC	60
TACAR	AAAC	AT (CAGCO	CCT	AT C	AGTO	GAAG	TG1	CAAC	TGT	GAAC	CAAAI	ACA I	AAAAC	CGAGAG	120
AAGCA	ACAT	AC T	PAAGO	TCC	AT AT	CAAAT	TAA1	AA A	TAAT	ATT	GTGT	rgţgi	ATA A	ACAAC	CATTAT	180
CCAAP	ACAA	AA C	CAA	ACAA	AA CO	AAGO	CAA	GTO	GAG	AAA	TGA?	PACA	GCA :	rccac	GAGTAC	240
GGCCG	STTA	TT (CAGC	CATC	CA GA	AGCAI	AGTGI	AG?	rgtgo	CAA	AAT	AGAA	ACA A	AACAI	AAGGCA	300
CCAAP	AATC	TG (CATAC	CATGO	G C	TAAT	CAAGO	CTC	3CCC2	AGCG	AATT	TAC	ATT :	rgtgi	CGTGC	360
CAATO	CCAG	AG 1	rgaa:	rccg?	AA AC	CAAAC	CTCCF	TC	raga:	rcgc	CAAC	CAG	CAT	CACGO	CTCGCA	420
AACGC	ccc	CA (TAA	JTAC!	AA A	ATG Met 1	TTT Phe	AGG Arg	AAA Lys	CAT His 5	TTT Phe	CGG Arg	CGA Arg	AAA Lys	CCA Pro 10	471
GCT A	ACG Thr	TCG Ser	TCG Ser	TCG Ser 15	Leu	GAG Glu	TCA Ser	ACA Thr	ATA Ile 20	GAA Glu	TCA Ser	GCA Ala	GAC Asp	AGC Ser 25	CTG Leu	519
GGA A	ATG Met	TCC Ser	AAG Lys 30	AAG Lys	ACG Thr	GCG Ala	ACA Thr	AAA Lys 35	AGG Arg	CAG Gln	CGT Arg	CCG Pro	AGG Arg 40	CAT	CGG Arg	567
GTA C	CCC Pro	AAA Lys 45	ATC Ile	GCG Ala	ACC Thr	CTG Leu	CCA Pro 50	TCG Ser	ACG Thr	ATC Ile	CGC Arg	GAT Asp 55	TGT Cys	CGA Arg	TCA Ser	615
TTA A Leu L	AAG Lys 60	TCT Ser	GCC Ala	TGC Cys	AAC Asn	TTA Leu 65	ATT Ile	GCT Ala	TTA Leu	ATT Ile	TTA Leu 70	ATA Ile	CTG Leu	TTA Leu	GTC Val	663
CAT A His L 75	rys AAG	ATA Ile	TCC Ser	GCA Ala	GCT Ala 80	GGT Gly	AAC Asn	TTC Phe	GAG Glu	CTG Leu 85	GAA Glu	ATA Ile	TTA Leu	GAA Glu	ATC Ile 90	711
TCA A	TA! na!	ACC Thr	AAC Asn	AGC Ser 95	CAT His	CTA Leu	CTC Leu	AAC Asn	GGC Gly 100	TAT	TGC Cys	TGC Cys	GGC Gly	ATG Met 105	CCA Pro	759
GCG G Ala G	SAA Slu	CTT Leu	AGG Arg 110	GCC Ala	ACC Thr	AAG Lys	ACG Thr	ATA Ile 115	Gly	TGC Cys	TCG Ser	CCA Pro	TGC Cys 120	ACG Thr	ACG Thr	807
GCA T Ala P	TTC Phe	CGG Arg 125	CTG Leu	TGC Cys	CTG Leu	AAG Lys	GAG Glu 130	TAC Tyr	CAG Gln	ACC Thr	ACG Thr	GAG Glu 135	CAG Gln	GGT Gly	GCC Ala	855
Ser I	ATA (le	TCC Ser	ACG Thr	GGC Gly	TGT Cys	TCG Ser 145	TTT Phe	GGC Gly	AAC Asn	GCC Ala	ACC Thr 150	THE	AAG Lys	ATA Ile	CTG Leu	903
GGT G Gly G 155	ec Hy	TCC Ser	AGC S r	TTT Phe	GTG Val 160	CTC Leu	AGC Ser	GAT Asp	CCG Pro	GGT Gly 165	GTG Val	GGA Gly	GCC Ala	ATT Ile	GTG Val 170	951
CTG C	CCC Pro	TTT Phe	ACG Thr	TTT Phe 175	CGT Arg	TGG Trp	ACG Thr	AAG Lys	TCG Ser 180	TTT Phe	ACG Thr	CTG Leu	ATA Il	CTG Leu 185	CAG Gln	999
GCG T	TG	GAT	ATG	TAC	AAC	ACA	TCC	TAT	CCA	GAT	GCG	ĠAG	AGG	TTA	ATT	1047

WO 94/07474 PCT/US93/09338

-97-

Ala	Leu	Asp	Met 190	Tyr	Asn	Thr	Ser	Tyr 195	Pro	Asp	Ala	Glu	Arg 200	Leu	Ile		
											Ser	CCG Pro 215					1095
												TAC Tyr					1143
												ACG Thr					1191
												GGC Gly					1239
												TGC Cys				:	1287
						GAC Asp								٠		:	1320

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 293 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Phe Arg Lys His Phe Arg Arg Lys Pro Ala Thr Ser Ser Leu

Glu Ser Thr Ile Glu Ser Ala Asp Ser Leu Gly Met Ser Lys Lys Thr

Ala Thr Lys Arg Gln Arg Pro Arg His Arg Val Pro Lys Ile Ala Thr

Leu Pro Ser Thr Ile Arg Asp Cys Arg Ser Leu Lys Ser Ala Cys Asn

Leu Ile Ala Leu Ile Leu Ile Leu Leu Val His Lys Ile Ser Ala Ala

Gly Asn Phe Glu Leu Glu Ile Leu Glu Ile Ser Asn Thr Asn Ser His

Leu Leu Asn Gly Tyr Cys Cys Gly Met Pro Ala Glu Leu Arg Ala Thr

Lys Thr Ile Gly Cys Ser Pro Cys Thr Thr Ala Phe Arg Leu Cys Leu 115 120 125

Lys Glu Tyr Gln Thr Thr Glu Gln Gly Ala Ser Ile Ser Thr Gly Cys

Ser Phe Gly Asn Ala Thr Thr Lys Ile Leu Gly Gly Ser Ser Phe Val

145					150		-			155					160
	Ser	Asp	Pro	Gly 165	Val	Gly	Ala	Ile	Val 170	Leu	Pro	Phe	Thr	Phe 175	Arg
Trp	Thr	Lys	ser 180	Phe	Thr	Leu	Ile	Leu 185	Gln	Ala	Leu	Asp	Met 190	Tyr	Asn
Thr	Ser	Tyr 195	Pro	Asp	Ala	Glu	Arg 200	Leu	Ile	Glu	Glu	Thr 205	Ser	Tyr	Ser
Gly	Val 210	Ile	Leu	Pro 	Ser	Pro 215	Glu	Trp	Lys	Thr	Leu 220	Asp	His	Ile	Gly
Arg 225	Asn	Ala	Arg	Ile	Thr 230	Tyr	Arg	Val	Arg	Val 235	Gln	Cys	Ala	Val	Thr 240
Tyr	Tyr	Asn	Thr	Thr 245	Cys	Thr	Thr	Phe	Cys 250	Arg	Pro	Arg	Asp	Asp 255	Gln
Phe	Gly	His	Tyr 260	Ala	Суз	Gly	Ser	Glu 265	Gly	Gln	Lys	Leu	Cys 270	Ļeu	Asn
Gly	Trp	Gln 275	Gly	Val	Asn	Cys	Glu 280	Glu	Ala	Ile	Cys	Lys 285	Ala	Gly	Cys
Asp	Pro 290	Val	His	Gly								•			
(2)	INF	ORMA!	rion	FOR	SEQ	ID !	NO:5	:						•	
	(i)	() ()	A) L B) T C) S	CE C ENGT YPE: TRAN	H: 2 nuc DEDN	67 b leic ESS:	ase aci dou	paır d ble	s						

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGGTGGACTT CCTTCGTGTA TTGGTGGGAG CCCTCGGGAA CGGGGGGTAA CACTGAAAGG 60 TCGAGTACCC ATTTCCGTCA TAACGGGTTG GTCGCCCCCT AGGGGTCGGA GTCAGGTGGA 120 CGGGAGGTCG ACAACGCCCG GGGGACGGGT GGTACATGGT GTAAGGTCTT TACCGGACCG 180 GGCAAACGGG TCACACCGAA AGGGGTGAAC GGTAACTACG GGGTCGTCCT GCCCGTCCAT 240 267 CGAGTCTGGT AAGAGGGTCG CCTTAAG

(2) INFORMATION FOR SEQ ID NO:6:

(ii) MOLECULE TYPE: cDNA

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

. (:	xi) S	equence de	SCRIPTION: S	EQ ID NO:6:			
GAATT	CCTTC	CATTATACG	r gacttttctg	AAACTGTAGC	CACCCTAGTG	TCTCTAACTC	60
CCTCT	GGAGT	TTGTCAGCT	T TGGTCTTTTC	AAAGAGCAGG	CTCTCTTCAA	GCTCCTTAAT	120
GCGGG	CATGC	TCCAGTTTG	G TCTGCGTCTC	AAGATCACCT	TTGGTAATTG	ATTCTTCTTC	180
AACCC	GGAAC	TGAAGGCTG	CTCTCACCCT	CTAGGCAGAG	CAGGAATTCC	GAGGTGGATG	240
TGTTA	GATGT	GAATGTCCG	r ggcccagatg	GCTGCACCCC	ATTGATGTTG	GCTTCTCTCC	300
GAGGA	GCAG	CTCAGATTT	AGTGATGAAG	ATGAAGATGC	AGAGGACTGT	TCTGCTAACA	360
TCATC	ACAGA	CTTGGTCTA	CAGGGTGCCA	GCCTCCAGNC	CAGACAGACC	GGACTGGTGA	420
GATGG	CCTG	CACCTTGCAC	CCCGCTACTC	ACGGGCTGAT	GCTGCCAAGC	GTCTCCTGGA	480
TGCAGO	STGCA	GATGCCAATC	CCCAGGACAA	CATGGGCCGC	TGTCCACTCC	ATGCTGCAGT	540
GGCACG	STGAT	GCCAAGGTGT	ATTCAGATCT	GTTA			574

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 295 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCCAGATTCT GATTCGCAAC CGAGTAACTG ATCTAGATGC CAGGATGAAT GATGGTACTA 60 CACCCCTGAT CCTGGCTGCC CGCCTGGCTG TGGAGGGAAT GGTGGCAGAA CTGATCAACT 120 GCCAAGCGGA TGTGAATGCA GTGGATGACC ATGGAAAATC TGCTCTTCAC TGGGCAGCTG 180 CTGTCAATAA TGTGGAGGCA ACTCTTTTGT TGTTGAAAAA TGGGGCCAAC CGAGACATGC 240 AGGACAACAA GGAAGAGACA CCTCTGTTTC TTGCTGCCCG GGAGGAGCTA TAAGC 295

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GAATTCCATT CAGGAGGAAA GGGTGGGGAG AGAAGCAGGC ACCCACTTTC CCGTGGCTGG .60 ACTCGTTCCC AGGTGGCTCC ACCGGCAGCT GTGACCGCCG CAGGTGGGG CGGAGTGCCA 120 TTCAGAAAAT TCCAGAAAAG CCCTACCCCA ACTCGGACGG CAACGTCACA CCCGTGGGTA 180 -100-

GCAACTGGCA CACAAACAGC CAGCGTGTCT	GGGGCACGG	GGGATGGCAC	CCCCTGCAGG	240
CAGAGCTG			•	248
(2) INFORMATION FOR SEQ ID NO:9:				
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 323 base po (B) TYPE: nucleic acid (C) STRANDEDNESS: doub. (D) TOPOLOGY: unknown	airs			
(ii) MOLECULE TYPE: cDNA				
(xi) SEQUENCE DESCRIPTION: S				
TACGTATCTC GAGCACAGAC AGCTGACGTA				
ACCAGTACGA ACATTTAGGC TCAGTACGGT				
GAGCTACAGG TCCCGCTCGC TAAACTCGGA				
GCGAACAAGA GGGCCAGATC TTAGAGAAGG	TGTCGCGGC	G AGACTCGGGC	TCGGGTCAGG	240
CGGCCTTAAG GACGTCGGGC CCNNNAGGTG	ATCAAGATC	T CGNCNCGGCG	GGCGCCACCT	300
CGAGGNCGAA AACAAGGGAA ATC				323
(2) INFORMATION FOR SEQ ID NO:10 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 3234 base (B) TYPE: nucleic acid (C) STRANDEDNESS: doub (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: CDNA	S: pairs			
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 13234	SEO ID NO.1	0.		·
(xi) SEQUENCE DESCRIPTION: S			C AAC AAC	48
TGC CAG GAG GAC GCG GGC AAC AAG Cys Gln Glu Asp Ala Gly Asn Lys 1	10	i bed til o	15	
CAC GCG TGC GGC TGG GAC GGC GGT His Ala Cys Gly Trp Asp Gly Gly 20	25	. Dea non -	30	96
CCC TGG AAG AAC TGC ACG CAG TCT Pro Trp Lys Asn Cys Thr Gln Ser 35	CTG CAG TO Leu Gln Cy	C TGG AAG TAS TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL	AC TTC AGT yr Phe Ser	144
GAC GGC CAC TGT GAC AGC CAG TGC Asp Gly His Cys Asp Ser Gln Cys 50	AAC TCA GO Asn Ser Al	CC GGC TGC C a Gly Cys L 60	TC TTC GAC eu Phe Asp	192
GGC TTT GAC TGC CAG CGT GCG GAA	GGC CAG TO	C AAC CCC C	TG TAC GAC	240

G1 ₃ 6:		e Asp	Сув	Gln	Arg 70		Glu	Gly	Gln	Cys 75	Pro	Leu	Tyr	qaA 08	
					His					His		_	_	TGC	288
				Cys		TGG Trp			Leu				His	GTA Val	336
			Leu			GGC								CCG	384
		Gln				Ser 135								AGC Ser	432
_	Val					GTG Val	_				_		_	_	480
						TAC Tyr									528
						GAG Glu								CTG Leu	576
						CTG Leu									624
						CCC Pro 215									672
						CAG Gln									720
_						GCC Ala									768
						TAC Tyr									816 .
						GCG Ala									864
						TTC Phe 295				Cys					912
					_	CAT His	_	_				_			960
						AAG Lys									1008

																-
GAC Asp	TCC Ser	GTG Val	GGC Gly 340	CTC Leu	AAG Lys	CCC Pro	CTG Leu	AAG Lys 345	AAC Asn	GCT Ala	TCA Ser	GAC Asp	GGT Gly 350	GCC Ala	CTC Leu	1056
ATG Met	GAC Asp	GAC Asp 355	AAC Asn	CAG Gln	AAT Asn	GAG Glu	TGG Trp 360	GGG Gly	GAC Asp	GAG Glu	GAC Asp	CTG Leu 365	GAG Glu	ACC Thr	AAG Lys	1104
AAG Lys	TTC Phe 370	CGG Arg	TTC Phe	GAG Glu	GAG Glu	CCC Pro 375	GTG Val	GTT Val	CTG Leu	CCT Pro	GAC Asp 380	CTG Leu	GAC Asp	GAC Asp	CAG Gln	1152
ACA Thr 385	GAC Asp	CAC His	CGG Arg	CAG Gln	TGG Trp 390	ACT Thr	CAG Gln	CAG Gln	CAC His	CTG Leu 395	GAT Asp	GCC Ala	GCT Ala	veħ	CTG Leu 400	1200
CGC Arg	ATG Met	TCT Ser	GCC Ala	ATG Met 405	GCC Ala	CCC Pro	ACA Thr	CCG	CCC Pro 410	CAG Gln	GGT Gly	GAG Glu	GTT Val	GAC Asp 415	GCC Ala	1248
GAC Asp	TGC Cys	ATG Met	GAC Asp 420	GTC Val	AAT Asn	GTC Val	CGC Arg	GGG Gly 425	CCT Pro	GAT Asp	GGC Gly	TTC Phe	ACC Thr 430	CCG Pro	CTC Leu	1296
ATG Met	ATC Ile	GCC Ala 435	TCC Ser	TGC Cys	AGC Ser	GGG Gly	GGC Gly 440	Gly	CTG Leu	GAG Glu	ACG Thr	GGC Gly 445	AAC Asn	AGC Ser	GAG Glu	1344
GAA Glu	GAG Glu 450	GAG Glu	GAC Asp	GCG Ala	CCG Pro	GCC Ala 455	GTC Val	ATC	TCC Ser	GAC Asp	TTC Phe 460	TTE	TAC Tyr	CAG Gln	GGC Gly	1392
GCC Ala 465	AGC Ser	CTG Leu	CAC His	AAC Asn	CAG Gln 470	ACA Thr	GAC Asp	CGC Arg	ACG Thr	GGC Gly 475	GAG Glu	ACC Thr	GCC Ala	TTG Leu	CAC His 480	1440
CTG Leu	GCC Ala	GCC Ala	CGC Arg	TAC Tyr 485	TCA Ser	CGC Arg	TCT Ser	GAT Asp	GCC Ala 490	GCC. Ala	L ys	CGC Arg	CTG Leu	CTG Leu 495	GAG Glu	1488
GCC Ala	AGC Ser	GCA Ala	GAT Asp 500	GCC Ala	AAC Asn	ATC Ile	CAG Gln	GAC Asp 505	AAC Asn	ATG Met	GGC	CGC Arg	ACC Thr 510	CCG Pro	CTG Leu	1536
CAT His	GCG Ala	GCT Ala 515	GTG Val	TCT Ser	GCC Ala	GAC Asp	GCA Ala 520	CAA Gln	GGT Gly	GTC Val	Phe	CAG Gln 525	ATC Ile	CTG Leu	ATC Ile	1584
CGG Arg	AAC Asn 530	CGA Arg	GCC Ala	ACA Thr	GAC Asp	CTG Leu 535	GAT Asp	GCC Ala	CGC Arg	ATG Met	CAT His 540	GAT Asp	GGC Gly	ACG Thr	ACG Thr	1632
CCA Pro 545	CTG Leu	ATC Ile	CTG Leu	GCT Ala	GCC Ala 550	CGC Arg	CTG Leu	GCC Ala	GTG Val	GAG Glu 555	GGC Gly	ATG Met	CTG Leu	GAG Glu	GAC Asp 560 .	1680
CTC Leu	ATC Ile	AAC Asn	TCA Ser	CAC His 565	GCC Ala	GAC Asp	GTC Val	AAC Asn	GCC Ala 570	GTA Val	GAT Asp	GAC Asp	CTG Leu	GGC Gly 575	AAG Lys	1728
TCC	GCC Ala	CTG Leu	CAC His 580	TGG Trp	GCC Ala	GCC Ala	GCC Ala	GTG Val 585	AAC Asn	AAT Asn	GTG Val	GAT Asp	GCC Ala 590	GCA Ala	GTT Val	1776
GTG Val	CTC Leu	CTG L u 595	AAG Lys	AAC Asn	GGG Gly	GCT Ala	AAC Asn 600	AAA Lys	GAT Asp	ATG Met	CAG Gln	AAC Asn 605	AAC Asn	AGG Arg	GAG Glu	1824

	Pro					Ala				Tyr		GCC	-	1872
val					Phe				Ile	ACG Thr				1920
				Asp				Arg		CAT His		Ile		1968
			Asp				Val			CCG Pro	Leu			2016
		Leu								CCG Pro 685				2064
	Gly									CAG Gln				2112
Arg										AGC Ser				2160
										GGC Gly				2208
										TCC Ser				2256
										CTG Leu 765				2304
										CTG Leu			-	2352
										GCG Ala			•	2400
										TTT Phe				2448
										ACC Thr				2496
Gly										GTG Val 845				2544
										CTG Leu				2592
							Arg			GTG Val	Pro			2640

-104-

CCC	CTG Leu	AGC Ser	ACA Thr	CAG Gln 885	GCC Ala	CCC Pro	TCC Ser	CTG Leu	CAG Gln 890	CAT His	GGC Gly	ATG Met	GTA Val	GGC Gly 895	CCG Pro	2688
CTG Leu	CAC His	AGT Ser	AGC Ser 900	CTT Leu	GCT Ala	GCC Ala	AGC Ser	GCC Ala 905	CTG Leu	TCC Ser	CAG Gln	ATG Met	ATG Met 910	AGC Ser	TAC Tyr	2736
CAG Gln	GGC	CTG Leu 915	CCC Pro	AGC Ser	ACC Thr	CGG Arg	CTG Leu 920	GCC Ala	ACC Thr	CAG Gln	CCT Pro	CAC His 925	CTG Leú	GTG Val	CAG Gln	2784
ACC Thr	CAG Gln 930	Gln	GTG Val	CAG Gln	CCA Pro	CAA Gln 935	AAC Asn	TTA Leu	CAG Gln	ATG Met	CAG Gln 940	CAG Gln	CAG Gln	AAC Asn	CTG Leu	2832
CAG Gln 945	Pro	GCA Ala	AAC Asn	ATC Ile	CAG Gln 950	CAG Gln	CAG Gln	CAA Gln	AGC Ser	CTG Leu 955	CAG Gln	CCG Pro	CCA Pro	CCA Pro	CCA Pro 960	2880
CCA Pro	CCA Pro	CAG Gln	CCG Pro	CAC His 965	CTT Leu	GGC Gly	GTG Val	AGC Ser	TCA Ser 970	GCA Ala	GCC Ala	AGC Ser	GGC Gly	CAC His 975	CTG Leu	2928
GGC Gly	CGG Arg	AGC Ser	TTC Phe 980	CTG Leu	AGT Ser	GGA Gly	GAG Glu	CCG Pro 985	AGC Ser	CAG Gln	GCA Ala	GAC Asp	ĠTG Val 990	CAG Gln	CCA Pro	2976
			AGC Ser					His					Gln			3024
		Leu	CCC Pro				Pro					Pro				3072
	Ala		TTC Phe			Pro					Ser					3120
GTG Val	GAC Asp	AAC Asn	ACC Thr	CCC Pro 1045	ser	CAC His	CAG Gln	CTA Leu	CAG Gln 1050	Val	CCT Pro	GTT Val	CCT Pro	GTA Val 1055	Met	3168
GTA Val	ATG Met	ATC Ile	CGA Arg 1060	Ser	TCG Ser	GAT Asp	CCT Pro	TCT Ser 1065	Lys	GGC Gly	TCA Ser	TCA Ser	ATT Ile 1070	Leu	ATC Ile	3216
_	_		GAC Asp													3234 ,

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1078 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Cys Gln Glu Asp Ala Gly Asn Lys Val Cys Ser Leu Gln Cys Asn Asn 1 10 15

His Ala Cys Gly Trp Asp Gly Gly Asp Cys Ser Leu Asn Phe Asn Asp Pro Trp Lys Asn Cys Thr Gln Ser Leu Gln Cys Trp Lys Tyr Phe Ser 35 40 45 40 Asp Gly His Cys Asp Ser Gln Cys Asn Ser Ala Gly Cys Leu Phe Asp 50 55 60 Gly Phe Asp Cys Gln Arg Ala Glu Gly Gln Cys Asn Pro Leu Tyr Asp 65 70 75 80 Gln Tyr Cys Lys Asp His Phe Ser Asp Gly His Cys Asp Gln Gly Cys Asn Ser Ala Glu Cys Glu Trp Asp Gly Leu Asp Cys Ala Glu His Val Pro Glu Arg Leu Ala Ala Gly Thr Leu Val Val Val Leu Met Pro Pro Glu Gln Leu Arg Asn Ser Ser Phe His Phe Leu Arg Glu Leu Ser 135 Arg Val Leu His Thr Asn Val Val Phe Lys Arg Asp Ala His Gly Gln Gln Met Ile Phe Pro Tyr Tyr Gly Arg Glu Glu Leu Arg Lys His Pro Ile Lys Arg Ala Ala Glu Gly Trp Ala Ala Pro Asp Ala Leu Leu Gly Gln Val Lys Ala Ser Leu Leu Pro Gly Gly Ser Glu Gly Gly Arg Arg Arg Arg Glu Leu Asp Pro Met Asp Val Arg Gly Ser Ile Val Tyr 210 215 220 Leu Glu Ile Asp Asn Arg Gln Cys Val Gln Ala Ser Ser Gln Cys Phe 235 Gin Ser Ala Thr Asp Val Ala Ala Phe Leu Gly Ala Leu Ala Ser Leu Gly Ser Leu Asn Ile Pro Tyr Lys Ile Glu Ala Val Gln Ser Glu Thr Val Glu Pro Pro Pro Ala Gln Leu His Phe Met Tyr Val Ala Ala 280 Ala Ala Phe Val Leu Leu Phe Phe Val Gly Cys Gly Val Leu Leu Ser 295 Arg Lys Arg Arg Gln His Gly Gln Leu Trp Phe Pro Glu Gly Phe 310 Lys Val Ser Glu Ala Ser Lys Lys Lys Arg Arg Glu Pro Leu Gly Glu Asp Ser Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Asp Gly Ala Leu Met Asp Asp Asn Gln Asn Glu Trp Gly Asp Glu Asp Leu Glu Thr Lys Lys Phe Arg Phe Glu Glu Pro Val Val Leu Pro Asp Leu Asp Asp Gln

WO 94/07474 PCT/US93/09338

-106-

` 370 375 380 Thr Asp His Arg Gln Trp Thr Gln Gln His Leu Asp Ala Ala Asp Leu 390 395 Arg Met Ser Ala Met Ala Pro Thr Pro Pro Gln Gly Glu Val Asp Ala 405 410 Asp Cys Met Asp Val Asn Val Arg Gly Pro Asp Gly Phe Thr Pro Leu 425 Met Ile Ala Ser Cys Ser Gly Gly Gly Leu Glu Thr Gly Asn Ser Glu Glu Glu Asp Ala Pro Ala Val Ile Ser Asp Phe Ile Tyr Gln Gly Ala Ser Leu His Asn Gln Thr Asp Arg Thr Gly Glu Thr Ala Leu His 475 Leu Ala Ala Arg Tyr Ser Arg Ser Asp Ala Ala Lys Arg Leu Leu Glu Ala Ser Ala Asp Ala Asn Ile Gln Asp Asn Met Gly Arg Thr Pro Leu His Ala Ala Val Ser Ala Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Ala Thr Asp Leu Asp Ala Arg Met His Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg Leu Ala Val Glu Gly Met Leu Glu Asp Leu Ile Asn Ser His Ala Asp Val Asn Ala Val Asp Asp Leu Gly Lys 570 Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn Val Asp Ala Ala Val Val Leu Leu Lys Asn Gly Ala Asn Lys Asp Met Gln Asn Asn Arg Glu 600 Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Thr Ala 610 615 Lys Val Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp Ile Ala Gln Glu Arg Met His His Asp Ile 650 Val Arg Leu Leu Asp Glu Tyr Asn Leu Val Arg Ser Pro Gln Leu His Gly Ala Pro Leu Gly Gly Thr Pro Thr Leu Ser Pro Pro Leu Cys Ser 680 Pro Asn Gly Tyr Leu Gly Ser Leu Lys Pro Gly Val Gln Gly Lys Lys 695 Val Arg Lys Pro Ser Ser Lys Gly Leu Ala Cys Gly Ser Lys Glu Ala Lys Asp Leu Lys Ala Arg Arg Lys Lys Ser Gln Asp Gly Lys Gly Cys 730

Leu Leu Asp Ser Ser Gly Met Leu Ser Pro Val Asp Ser Leu Glu Ser 740 745 750 750

Pro His Gly Tyr Leu Ser Asp Val Ala Ser Pro Pro Leu Leu Pro Ser

755 760 765

Pro Phe Gln Gln Ser Pro Ser Val Pro Leu Asn His Leu Pro Gly Met 770 775 780

Pro Asp Thr His Leu Gly Ile Gly His Leu Asn Val Ala Ala Lys Pro 785 790 795 800

Glu Met Ala Ala Leu Gly Gly Gly Gly Arg Leu Ala Phe Glu Thr Gly 805 810 815

Pro Pro Arg Leu Ser His Leu Pro Val Ala Ser Gly Thr Ser Thr Val 820 825 830

Leu Gly Ser Ser Ser Gly Gly Ala Leu Asn Phe Thr Val Gly Gly Ser 835 840 845

Thr Ser Leu Asn Gly Gln Cys Glu Trp Leu Ser Arg Leu Gln Ser Gly 850 855 860

Met Val Pro Asn Gln Tyr Asn Pro Leu Arg Gly Ser Val Ala Pro Gly 865 870 875 880

Pro Leu Ser Thr Gln Ala Pro Ser Leu Gln His Gly Met Val Gly Pro 885 890 895

Leu His Ser Ser Leu Ala Ala Ser Ala Leu Ser Gln Met Met Ser Tyr 900 905 910

Gln Gly Leu Pro Ser Thr Arg Leu Ala Thr Gln Pro His Leu Val Gln 915 920 925

Thr Gln Gln Val Gln Pro Gln Asn Leu Gln Met Gln Gln Gln Asn Leu 930 935 940

Gln Pro Ala Asn Ile Gln Gln Gln Ser Leu Gln Pro Pro Pro 945 950 955 960

Pro Pro Gln Pro His Leu Gly Val Ser Ser Ala Ala Ser Gly His Leu 965 970 975

Gly Arg Ser Phe Leu Ser Gly Glu Pro Ser Gln Ala Asp Val Gln Pro 980 985 990

Leu Gly Pro Ser Ser Leu Ala Val His Thr Ile Leu Pro Gln Glu Ser 995 1000 1005

Pro Ala Leu Pro Thr Ser Leu Pro Ser Ser Leu Val Pro Pro Val Thr 1010 1015 1020

Ala Ala Gln Phe Leu Thr Pro Pro Ser Gln His Ser Tyr Ser Ser Pro 1025 1030 1035 1040

Val Asp Asn Thr Pro Ser His Gln Leu Gln Val Pro Val Pro Val Met 1045 1050 1055

Val Met Ile Arg Ser Ser Asp Pro Ser Lys Gly Ser Ser Ile Leu Ile 1060 1065 1070

Glu Ala Pro Asp Ser Trp 1075

(2) INFORMATION FOR SEQ ID NO:12:

PCT/US93/09338 WO 94/07474

-108-

(1)	SEQUI	ENCE CHAI	RACTE	RISTIC	cs:
	(A)	LENGTH:	4268	base	pairs
	(B)	TYPE: ni	icleic	acid	3

(C) STRANDEDNESS: double (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 2..1972

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
G GAG GTG GAT GTG TTA GAT GTG AAT GTC CGT GGC CCA GAT GGC TGC Glu Val Asp Val Leu Asp Val Asn Val Arg Gly Pro Asp Gly Cys 1 5 10 15	46
ACC CCA TTG ATG TTG GCT TCT CTC CGA GGA GGC AGC TCA GAT TTG AGT Thr Pro Leu Met Leu Ala Ser Leu Arg Gly Gly Ser Ser Asp Leu Ser 20 25 30	94
GAT GAA GAT GAA GAT GCA GAG GAC TCT TCT GCT AAC ATC ACA GAC Asp Glu Asp Ala Glu Asp Ser Ser Ala Asn Ile Ile Thr Asp 35 40 45	142
TTG GTC TAC CAG GGT GCC AGC CTC CAG GCC CAG ACA GAC CGG ACT GGT Leu Val Tyr Gln Gly Ala Ser Leu Gln Ala Gln Thr Asp Arg Thr Gly 50 55 60	190
GAG ATG GCC CTG CAC CTT GCA GCC CGC TAC TCA CGG GCT GAT GCT GCC Glu Met Ala Leu His Leu Ala Ala Arg Tyr Ser Arg Ala Asp Ala Ala 65 70 75	. 238
AAG CGT CTC CTG GAT GCA GGT GCA GAT GCC CAG GAC AAC ATG Lys Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn Ala Gln Asp Asn Met 80 85 90 95	286
GGC CGC TGT CCA CTC CAT GCT GCA GTG GCA GCT GAT GCC CAA GGT GTC Gly Arg Cys Pro Leu His Ala Ala Val Ala Ala Asp Ala Gln Gly Val 100 105 110	334
TTC CAG ATT CTG ATT CGC AAC CGA GTA ACT GAT CTA GAT GCC AGG ATG Phe Gln Ile Leu Ile Arg Asn Arg Val Thr Asp Leu Asp Ala Arg Met 115 120 125	382
AAT GAT GGT ACT ACA CCC CTG ATC CTG GCT GCC CGC CTG GCT GTG GAG Asn Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg Leu Ala Val Glu 130 135 140	430
GGA ATG GTG GCA GAA CTG ATC AAC TGC CAA GCG GAT GTG AAT GCA GTG Gly Met Val Ala Glu Leu Ile Asn Cys Gln Ala Asp Val Asn Ala Val 145 150 155	478
GAT GAC CAT GGA AAA TCT GCT CTT CAC TGG GCA GCT GCT GTC AAT AAT Asp Asp His Gly Lys Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn 160 175	526
GTG GAG GCA ACT CTT TTG TTG TTG AAA AAT GGG GCC AAC CGA GAC ATG Val Glu Ala Thr Leu Leu L u Leu Lys Asn Gly Ala Asn Arg Asp Met 180 185 190	574
CAG GAC AAC AAG GAA GAG ACA CCT CTG TTT CTT GCT GCC CGG GAG GGG Gln Asp Asn Lys Glu Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly 195 200 205	622

-109-

			ı Ala					Lev					Asr		A GAC J Asp	670
		Ası					Leu					Ala			CGC Arg	718
	: His					Arg					Tyr				CCA Pro 255	766
					· Val										TGT Cys	814
GGG	Pro	AAC Asn	AGA Arg 275	Ser	TTC	CTC Leu	AGC Ser	CTG Leu 280	Lys	CAC His	ACC	CCA Pro	ATG Met 285	Gly	AAG Lys	862
			Arg			GCC Ala							Ser			910
						AAG Lys 310										958
TCT Ser 320	Leu	AGT Ser	GAG Glu	AAG Lys	GTC Val 325	CAA Gln	CTG Leu	TCT Ser	GAG Glu	AGT Ser 330	TCA Ser	GTA Val	ACT	TTA	TCC Ser 335	1006
						TCT Ser										1054
						TCC										1102
						GCC Ala										1150
						CTT Leu 390										1198
						TCA Ser										1246
						GGC Gly										1294
						GAT Asp										1342
						TTT · Phe										1390
Thr						CCC Pro 470				Pro						1438

-110-

ATA ACC ACC CCT CGG GAG CCC TTG CCC CCC ATT GTG ACT TTC CAG CTC Ile Thr Thr Pro Arg Glu Pro Leu Pro Pro Ile Val Thr Phe Gln Leu 480 485 490 495	1486
ATC CCT AAA GGC AGT ATT GCC CAA CCA GCG GGG GCT CCC CAG CCT CAG Ile Pro Lys Gly Ser Ile Ala Gln Pro Ala Gly Ala Pro Gln Pro Gln 500 505 510	1534
TCC ACC TGC CCT CCA GCT GTT GCG GGC CCC CTG CCC ACC ATG TAC CAG Ser Thr Cys Pro Pro Ala Val Ala Gly Pro Leu Pro Thr Met Tyr Gln 515 520 525	1582
ATT CCA GAA ATG GCC CGT TTG CCC AGT GTG GCT TTC CCC ACT GCC ATG Ile Pro Glu Met Ala Arg Leu Pro Ser Val Ala Phe Pro Thr Ala Met 530 540	1630
ATG CCC CAG CAG GAC GGG CAG GTA GCT CAG ACC ATT CTC CCA GCC TAT Met Pro Gln Gln Asp Gly Gln Val Ala Gln Thr Ile Leu Pro Ala Tyr 545 550 555	1678
CAT CCT TTC CCA GCC TCT GTG GGC AAG TAC CCC ACA CCC CCT TCA CAG His Pro Phe Pro Ala Ser Val Gly Lys Tyr Pro Thr Pro Pro Ser Gln 560 575	1726
CAC AGT TAT GCT TCC TCA AAT GCT GCT GAG CGA ACA CCC AGT CAC AGT His Ser Tyr Ala Ser Ser Asn Ala Ala Glu Arg Thr Pro Ser His Ser 580 585 590	1774
GGT CAC CTC CAG GGT GAG CAT CCC TAC CTG ACA CCA TCC CCA GAG TCT Gly His Leu Gln Gly Glu His Pro Tyr Leu Thr Pro Ser Pro Glu Ser 595 600 605	1822
CCT GAC CAG TGG TCA AGT TCA TCA CCC CAC TCT GCT TCT GAC TGG TCA Pro Asp Gln Trp Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser 610 615 620	1870
GAT GTG ACC ACC CCT ACC CCT GGG GGT GCT GGA GGA GGT CAG CGG Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gln Arg 625 630 635	1918
GGA CCT GGG ACA CAC ATG TCT GAG CCA CCA CAC AAC AAC ATG CAG GTT Gly Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val 640 655	1966
TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT Tyr Ala	2022
GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC	2082
TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT	2142
TTCACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA ATGCAAGATG AATACAAGCC TTGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT	2202 2262
GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC	2322
TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA	2382
TTCTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG	2442
TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC	2502
CTTTGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT	2562
CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC	2622

	TTTCAAGTAT	GTTGTTTCTT	TGGAAAATGO	ACATACTGTA	TTGTGTTCTC	CTGCATATAT	2682
	CATTCCTGGA	GAGAGAAGGG	GAGAAGAATA	CTTTTCTTCA	ACAAATTTTG	GGGGCAGGAG	2742
	ATCCCTTCAA	GAGGCTGCAC	CTTAATTTTT	CTTGTCTGTG	TGCAGGTCTT	CATATAAACT	2802
	TTACCAGGAA	GAAGGGTGTG	AGTTTGTTG1	TTTTCTGTGT	ATGGGCCTGG	TCAGTGTAAA	2862
	GTTTTATCCT	TGATAGTCTA	GTTACTATGA	CCCTCCCCAC	TTTTTTAAAA	CCAGAAAAAG	2922
	GTTTGGAATG	TTGGAATGAC	CAAGAGACAA	GTTAACTCGT	GCAAGAGCCA	GTTACCCACC	2982
	CACAGGTCCC	CCTACTTCCT	GCCAAGCATT	CCATTGACTG	CCTGTATGGA	ACACATTTGT	3042
	CCCAGATCTG	AGCATTCTAG	GCCTGTTTCA	CTCACTCACC	CAGCATATGA	AACTAGTCTT	3102
	AACTGTTGAG	CCTTTCCTTT	CATATCCACA	GAAGACACTG	TCTCAAATGT	TGTACCCTTG	3162
	CCATTTAGGA	CTGAACTTTC	CTTAGCCCAA	GGGACCCAGT	GACAGTTGTC	TTCCGTTTGT	3222
	CAGATGATCA	GTCTCTACTG	ATTATCTTGC	TGCTTAAAGG	CCTGCTCACC	AATCTTTCTT	3282
	TCACACCGTG	TGGTCCGTGT	TACTGGTATA	CCCAGTATGT	TCTCACTGAA	GACATGGACT	3342
	TTATATGTTC	AAGTGCAGGA	ATTGGAAAGT	TGGACTTGTT	TTCTATGATC	CAAAACAGCC	3402
	CTATAAGAAG	GTTGGAAAAG	GAGGAACTAT	ATAGCAGCCT	TTGCTATTTT	CTGCTACCAT	3462
	TTCTTTTCCT	CTGAAGCGGC	CATGACATTC	CCTTTGGCAA	CTAACGTAGA	AACTCAACAG	3522
	AACATTTTCC	TTTCCTAGAG	TCACCTTTTA	GATGATAATG	GACAACTATA	GACTTGCTCA	3582
	TTGTTCAGAC	TGATTGCCCC	TCACCTGAAT	CCACTCTCTG	TATTCATGCT	CTTGGCAATT	3642
	TCTTTGACTT	TCTTTTAAGG	GCAGAAGCAT	TTTAGTTAAT	TGTAGATAAA	GAATAGTTTT	3702
	CTTCCTCTTC	TCCTTGGGCC	AGTTAATAAT	TGGTCCATGG	CTACACTGCA	ACTTCCGTCC	37,62
	agtgctgtga	TGCCCATGAC	ACCTGCAAAA	TAAGTTCTGC	CTGGGCATTT	TGTAGATATT	3822
	aacaggtgaa	TTCCCGACTC	TTTTGGTTTG	AATGACAGTT	CTCATTCCTT	CTATGGCTGC	3882
	AAGTATGCAT	CAGTGCTTCC	CACTTACCTG	ATTTGTCTGT	CGGTGGCCCC	ATATGGAAAC	3942
. 1	CCTGCGTGTC	TGTTGGCATA	ATAGTTTACA	AATGGTTTTT	TCAGTCCTAT	CCAAATTTAT	4002
•	TGAACCAACA	ATTAATAAAA	CTTCTGCCCT	GAGATAAGCA	GATTAAGTTT	GTTCATTCTC	4062
•	TGCTTTATTC	TCTCCATGTG	GCAACATTCT	GTCAGCCTCT	TTCATAGTGT	GCAAACATTT	4122
•	TATCATTCTA	AATGGTGACT	CTCTGCCCTT	GGACCCATTT	ATTATTCACA	GATGGGGAGA	4182
1	ACCTATCTGC	ATGGACCCTC	ACCATCCTCT	GTGCAGCACA	CACAGTGCAG	GGAGCCAGTG	4242
(CCATGCCGA	TGACTTTCTT	CCCCTG				4268

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 657 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Glu Val Asp Val Leu Asp Val Asn Val Arg Gly Pro Asp Gly Cys Thr Pro Leu Met Leu Ala Ser Leu Arg Gly Gly Ser Ser Asp Leu Ser Asp Glu Asp Glu Asp Ala Glu Asp Ser Ser Ala Asn Ile Ile Thr Asp Leu Val Tyr Gln Gly Ala Ser Leu Gln Ala Gln Thr Asp Arg Thr Gly Glu Met Ala Leu His Leu Ala Ala Arg Tyr Ser Arg Ala Asp Ala Ala Lys
65 70 75 80 Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn Ala Gln Asp Asn Met Gly Arg Cys Pro Leu His Ala Ala Val Ala Ala Asp Ala Gln Gly Val Phe 105 Gln Ile Leu Ile Arg Asn Arg Val Thr Asp Leu Asp Ala Arg Met Asn Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg Leu Ala Val Glu Gly Met Val Ala Glu Leu Ile Asn Cys Gln Ala Asp Val Asn Ala Val Asp Asp His Gly Lys Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn Val Glu Ala Thr Leu Leu Leu Lys Asn Gly Ala Asn Arg Asp Met Gln 185 Asp Asn Lys Glu Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly Ser 200 Tyr Glu Ala Ala Lys Ile Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp Val Ala Arg Asp Arg Met 230 His His Asp Ile Val Arg Leu Leu Asp Glu Tyr Asn Val Thr Pro Ser Pro Pro Gly Thr Val Leu Thr Ser Ala Leu Ser Pro Val Ile Cys Gly 265 Pro Asn Arg Ser Phe Leu Ser Leu Lys His Thr Pro Met Gly Lys Lys 280 Ser Arg Arg Pro Ser Ala Lys Ser Thr Met Pro Thr Ser Leu Pro Asn Leu Ala Lys Glu Ala Lys Asp Ala Lys Gly Ser Arg Arg Lys Lys Ser Leu Ser Glu Lys Val Gln Leu Ser Glu Ser Ser Val Thr Leu Ser Pro Val Asp Ser Leu Glu Ser Pro His Thr Tyr Val Ser Asp Thr Thr S r 345 Ser Pro Met Ile Thr Ser Pro Gly Ile Leu Gln Ala Ser Pro Asn Pro

365 355 360 Met Leu Ala Thr Ala Ala Pro Pro Ala Pro Val His Ala Gln His Ala 375 Leu Ser Phe Ser Asn Leu His Glu Met Gln Pro Leu Ala His Gly Ala 390 395 Ser Thr Val Leu Pro Ser Val Ser Gln Leu Leu Ser His His His Ile 410 405 Val Ser Pro Gly Ser Gly Ser Ala Gly Ser Leu Ser Arg Leu His Pro Val Pro Val Pro Ala Asp Trp Met Asn Arg Met Glu Val Asn Glu Thr Gln Tyr Asn Glu Met Phe Gly Met Val Leu Ala Pro Ala Glu Gly Thr 455 His Pro Gly Ile Ala Pro Gln Ser Arg Pro Pro Glu Gly Lys His Ile Thr Thr Pro Arg Glu Pro Leu Pro Pro Ile Val Thr Phe Gln Leu Ile Pro Lys Gly Ser Ile Ala Gln Pro Ala Gly Ala Pro Gln Pro Gln Ser 505 Thr Cys Pro Pro Ala Val Ala Gly Pro Leu Pro Thr Met Tyr Gln Ile Pro Glu Met Ala Arg Leu Pro Ser Val Ala Phe Pro Thr Ala Met Met 535 Pro Gln Gln Asp Gly Gln Val Ala Gln Thr Ile Leu Pro Ala Tyr His Pro Phe Pro Ala Ser Val Gly Lys Tyr Pro Thr Pro Pro Ser Gln His 570 Ser Tyr Ala Ser Ser Asn Ala Ala Glu Arg Thr Pro Ser His Ser Gly His Leu Gln Gly Glu His Pro Tyr Leu Thr Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gln Arg Gly 630 Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val Tyr 650

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 77 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

Ala

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Glu Asp Ile Asp Glu Cys Asp Gln Gly Ser Pro Cys Glu His Asn Gly

Ile Cys Val Asn Thr Pro Gly Ser Tyr Arg Cys Asn Cys Ser Gln Gly

Phe Thr Gly Pro Arg Cys Glu Thr Asn Ile Asn Glu Cys Glu Ser His 35 40 45

Pro Cys Gln Asn Glu Gly Ser Cys Leu Asp Asp Pro Gly Thr Phe Arg

Cys Val Cys Met Pro Gly Phe Thr Gly Thr Gln Cys Glu

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 78 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Asn Asp Val Asp Glu Cys Ser Leu Gly Ala Asn Pro Cys Glu His Gly

Gly Arg Cys Thr Asn Thr Leu Gly Ser Phe Gln Cys Asn Cys Pro Gln

Gly Tyr Ala Gly Pro Arg Cys Glu Ile Asp Val Asn Glu Cys Leu Ser

Asn Pro Cys Gln Asn Asp Ser Thr Cys Leu Asp Gln Ile Gly Glu Phe

Gln Cys Ile Cys Met Pro Gly Tyr Glu Gly Leu Tyr Cys Glu

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 654 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Pro Pro Gln Gly Glu Ile Glu Ala Asp Cys Met Asp Val Asn Val

1				5					10					15	
Arç	, Gly	Pro	Asp 20	Gly	Phe	Thr	Pro	Leu 25	Met	Ile	Ala	Ser	Cys 30	Ser	GÌ
Gly	Gly	Leu 35	Glu	Thr	Gly	Asn	Ser 40	Glu	Glu	Glu	Glu	Asp 45	Ala	ser	Ala
Asn	Met 50	Ile	Ser	Asp	Phe	Ile 55	Gly	Gln	Gly	Ala	Gln 60	Leu	His	Asn	Gl
Thr 65	Asp	Arg	Thr	Gly	Glu 70	Thr	Ala	Leu	His	Leu 75	Ala	Ala	Arg	Tyr	Ala 80
Arg	Ala	Asp	Ala	Ala 85	Lys	Arg	Leu	Leu	Glu 90	Ser	Ser	Ala	Asp	Ala 95	Ası
Val	Gln	Asp	Asn 100	Met	Gly	Arg	Thr	Pro 105	Leu	His	Ala	Ala	Val 110	Ala	Ala
	Ala	115	_				120					125			
Leu	Asp 130		Arg	Met	Phe	Asp 135	Gly	Thr	Thr	Pro	Leu 140	Ile	Leu	Ala	Ala
145					150					155					160
	Val			165					170					175	
	Ala		180					185					190		
		195					200					205			
	Ala 210					215					220				
225	Ala				230					235					240
	Ala			245					250					255	
	Asn		260					265					270		
•	Thr	275					280					285			
	Lys 290					295					300				
305	Asn	_			310					315					320
	Gln			325	r				330	•				335	
	Ser		340					345	•				350		
Vaïl	Ser _.	Ser 355	Pro	Pro	Leu	Met	Thr 360	Ser	Pro	Phe	Gln	Gln 365	s r	Pro	Ser

PCT/US93/09338 WO 94/07474

-116-

Met Pro Leu Asn His Leu Thr Ser Met Pro Glu Ser Gln Leu Gly Met Asn His Ile Asn Met Ala Thr Lys Gln Glu Met Ala Ala Gly Ser Asn Arg Met Ala Phe Asp Ala Met Val Pro Arg Leu Thr His Leu Asn Ala Ser Ser Pro Asn Thr Ile Met Ser Asn Gly Ser Met His Phe Thr Val Gly Gly Ala Pro Thr Met Asn Ser Gln Cys Asp Trp Leu Ala Arg Leu 435 Gln Asn Gly Met Val Gln Asn Gln Tyr Asp Pro Ile Arg Asn Gly Ile Gln Gln Gly Asn Ala Gln Gln Ala Gln Ala Leu Gln His Gly Leu Met Thr Ser Leu His Asn Gly Leu Pro Ala Thr Thr Leu Ser Gln Met Met Thr Tyr Gln Ala Met Pro Asn Thr Arg Leu Ala Asn Gln Pro His Leu Met Gln Ala Gln Gln Met Gln Gln Gln Asn Leu Gln Leu His Gln 520 Ser Met Gln Gln His His Asn Ser Ser Thr Thr Ser Thr His Ile 535 Asn Ser Pro Phe Cys Ser Ser Asp Ile Ser Gln Thr Asp Leu Gln Gln Met Ser Ser Asn Asn Ile His Ser Val Met Pro Gln Asp Thr Gln Ile 570 Phe Ala Ala Ser Leu Pro Ser Asn Leu Thr Gln Ser Met Thr Thr Ala Gln Phe Leu Thr Pro Pro Ser Gln His Ser Tyr Ser Ser Pro Met Asp 600 605 Asn Thr Pro Ser His Gln Leu Gln Val Pro Asp His Pro Phe Leu Thr Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser Ser Pro His Ser Asn Met Ser Asp Trp Ser Glu Gly Ile Ser Ser Pro Pro Thr 645

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 666 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Thr Pro Pro Gln Gly Glu Val Asp Ala Asp Cys Met Asp Val Asn Val Arg Gly Pro Asp Gly Phe Thr Pro Leu Met Ile Ala Ser Cys Ser Gly Gly Gly Leu Glu Thr Gly Asn Ser Glu Glu Glu Glu Asp Ala Pro Ala Val Ile Ser Asp Phe Ile Tyr Gln Gly Ala Ser Leu His Asn Gln Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu Ala Ala Arg Tyr Ser Arg 65 70 75 80 Ser Asp Ala Ala Lys Arg Leu Leu Glu Ala Ser Ala Asp Ala Asn Ile Gln Asp Asn Met Gly Arg Thr Pro Leu His Ala Ala Val Ser Ala Asp 105 Ala Cln Gly Val Phe Gln Ile Leu Leu Arg Asn Arg Ala Thr Asp Leu 120 Asp Ala Arg Met His Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg Leu Ala Val Glu Gly Met Leu Glu Asp Leu Ile Asn Ser His Ala Asp Val Asn Ala Val Asp Asp Leu Gly Lys Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn Val Asp Ala Ala Val Val Leu Leu Lys Asn Gly Ala Asn Lys Asp Met Gln Asn Asn Lys Glu Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Thr Ala Lys Val Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp Ile 235 Ala Gln Glu Arg Met His His Asp Ile Val Arg Leu Leu Asp Glu Tyr Asn Leu Val Arg Ser Pro Gln Leu His Gly Thr Ala Leu Gly Gly Thr 265 Pro Thr Leu Ser Pro Thr Leu Cys Ser Pro Asn Gly Tyr Leu Gly Asn 285 Leu Lys Ser Ala Thr Gln Gly Lys Lys Ala Arg Lys Pro Ser Thr Lys Gly Leu Ala Cys Ser Ser Lys Glu Ala Lys Asp Leu Lys Ala Arg Arg Lys Lys Ser Gln Asp Gly Lys Gly Cys Leu Leu Asp Ser Ser Ser Met Leu Ser Pro Val Asp Ser Leu Glu Ser Pro His Gly Tyr Leu Ser Asp Val Ala Ser Pro Pro Leu Pro S r Pro Phe Gln Gln Ser Pro Ser Met

-118-

		355	5				360)				365	5 .		
Pro	Jet 370		His	Leu	Pro	Gly 375		Pro	Asp	Thr	His 380		Gly	Ile	Ser
His 385		a Asr	n Val	. Ala	Ala 390		Pro	Glu	Met	Ala 395		Leu	Ala	Gly	Gly 400
Ser	Arç	J Leu	a Ala	Phe 405		Pro	Pro	Pro	Pro 410		Leu	Ser	His	Leu 415	
Val	. Ala	Ser	Ser 420		Ser	Thr	Val	Leu 425		Thr	Asn	Gly	Thr 430		Ala
Met	Asn	Phe 435	Thr	Val	Gly	Ala	Pro 440		Ser	Leu	Asn	Gly 445		Cys	Glu
Trp	Leu 450		Arg	Leu	Gln	Asn 455	Gly	Met	Val	Pro	Ser 460	Gln	Tyr	Asn	Pro
Leu 465		Pro	Gly	Val	Thr 470	Pro	Gly	Thr	Leu	Ser 475	Thr	Gln	Ala	Ala	Gly 480
Leu	Gln	His	Gly	Met 485	Met	Ser	Pro	Ile	His 490		Ser	Leu	Ser	Thr 495	Asn
Thr	Leu	Ser	Pro 500	Ile	Ile	Tyr	Gln	Gly 505	Leu	Pro	Asn	Thr	Arg 510	Leu	Ala
Thr	Gln	Pro 515	His	Leu	Val	Gln	Thr 520	Gln	Gln	Val		Pro 525	Gln	Asn	Leu
Gln	Ile 530	Gln	Pro	Gln	Asn	Leu 535	Gln	Pro	Pro	Ser	Gln 540	Pro	His	Leu	Ser
Val 545	Ser	Ser	Ala	Ala	Asn 550	Gly	His	Leu	Gly	Arg 555	Ser	Phe	Leu	Ser	Gly 560
Glu	Pro	Ser	Gln	Ala 565	Asp	Val	Gln 	Pro	Leu 570	Gly	Pro	Ser	Ser	Leu 575	Pro
Val	His	Thr	11e 580	Leu	Pro	Gln	Glu	Ser 585	Gln	Ala	Leu	Pro	Thr 590	Ser	Leu
Pro	Ser	Ser 595	Met	Val	Pro	Pro	Met 600	Thr	Thr	Thr	Gln	Phe 605	Leu	Thr	Pro '
	Ser 610	Gln	His	Ser	Tyr	Ser 615	Ser	Ser	Pro		Asp 620		Thr	Pro	Ser
lis 525	Gln	Leu	Gln	Val	Pro 630	Glu	His	Pro	Phe	Leu 635	Thr	Pro	Ser		Glu 640
Ser	Pro	Asp	Gln	Trp 645	Ser	Ser	Ser		Arg 650	His	Ser	Asn	Ile	Ser 655	Asp
rp	Ser	Glu	Gly 660	Ile	Ser	Ser		Pro 665	Thr		•				

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 681 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: Thr Pro Pro Gln Gly Glu Val Asp Ala Asp Cys Met Asp Val Asn Val Arg Gly Pro Asp Gly Phe Thr Pro Leu Met Ile Ala Ser Cys Ser Gly Gly Gly Leu Glu Thr Gly Asn Ser Glu Glu Glu Glu Asp Ala Pro Ala Val Ile Ser Asp Phe Ile Tyr Gln Gly Ala Ser Leu His Asn Gln Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu Ala Ala Arg Tyr Ser Arg Ser Asp Ala Ala Lys Arg Leu Leu Glu Ala Ser Ala Asp Ala Asn Ile Gln Asp Asn Met Gly Arg Thr Pro Leu His Ala Ala Val Ser Ala Asp 105 Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Ala Thr Asp Leu Asp Ala Arg Met His Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg 135 Leu Ala Val Glu Gly Met Leu Glu Asp Leu Ile Asn Ser His Ala Asp Val Asn Ala Val Asp Asp Leu Gly Lys Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn Val Asp Ala Ala Val Leu Leu Lys Asn Gly Ala 185 Asn Lys Asp Met Gln Asn Asn Arg Glu Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Thr Ala Lys Val Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp Ile 225 230 235 240 Ala Gln Glu Arg Met His His Asp Ile Val Arg Leu Leu Asp Glu Tyr 245 Asn Leu Val Arg Ser Pro Gln Leu His Gly Ala Pro Leu Gly Gly Thr Pro Thr Leu Ser Pro Pro Leu Cys Ser Pro Asn Gly Tyr Leu Gly Ser Leu Lys Pro Gly Val Gln Gly Lys Lys Val Arg Lys Pro Ser Ser Lys 290 . 295 300 Gly Leu Ala Cys Gly Ser Lys Glu Ala Lys Asp Leu Lys Ala Arg Arg Lys Lys Ser Gln Asp Gly Lys Gly Cys Leu Leu Asp Ser Ser Gly Met

				32	5				330)				339	5
Le	eu Se	r Pı	co Va 34		p Se	r Le	u Gl	u Se:		His	s Gly	у Туг	250 350		. Asp
Va	1 Al	a Se 35		o Pr	o Lei	ı Le	u Pro 360		r Pro	Phe	e Glr	Glr 365		Pro	Ser
Va	1 Pr 37		eu As	n Hi	s Le	37		y Met	t Pro) Asp	380		Leu	Gly	Ile
G1 38		s Le	u As	n Val	1 Ala 390		a Lys	s Pro	o Glu	Met 395		Ala	Leu	Gly	Gly 400
Gl	y G1	y Ar	g Le	u Ala 409		e Glu	ı Thi	Gly	/ Pro 410		Arg	Leu	Ser	His 415	Leu
Pr	o Va	l Al	a Se:		Thr	Ser	Thr	Val 425		Gly	Ser	Ser	Ser 430		Gly
Al	a Le	u As 43	n Phe 5	e Thr	Val	. Gly	7 Gly 440		Thr	Ser	Leu	Asn 445		Gln	CAa
Gl	450		u Sei	r Arg	Leu	Glr 455		Gly	Met	Val	Pro 460	Asn	Gln	Tyr	Asn
Pro 46!		a Ar	g Gly	y Ser	Val 470		Pro	Gly	Pro	Leu 475	Ser	Thr	Gln	Ala	Pro 480
Sei	. Le	ı Glı	n His	Gly 485		Val	Gly	Pro	Leu 490	His	Ser	Ser	Leu	Ala 495	Ala
Sei	Ala	Le:	Ser 500		Met	Met	Ser	Tyr 505	Gln	Gly	Leu	Pro	ser 510	Thr	Arg
		515		٠,			520					525			
Asn	530	Glr	n Met	Gln	Gln	Gln 535	Asn	Leu	Gln	Pro	Ala 540	Asn	Ile	Gln	Gln
Gln 545		Ser	Leu	Gln	Pro 550	Pro	Pro	Pro	Pro	Pro 555	Gln	Pro	His	Leu	Gly 560
			Ala	565					570					575	
			Gln 580					585					590		
Val	His	Thr 595	Ile	Leu	Pro	Gln	Glu 600	Ser	Pro	Ala		Pro 605	Thr	Ser	Leu
Pro	Ser 610	Ser	Leu	Val	Pro	Pro 615	Val	Thr	Ala		Gln 620	Phe	Leu	Thr	Pro
Pro 625	Ser	Gln	His	Ser	Tyr 630	Ser	Ser	Pro		Glu 635	Asn	Thr	Pro		His 640
Gln	Leu	Gln	Val	Pro 645	Glu	His	Pro	Phe	Leu 650	Thr	Pro	Ser		Glu 655	Ser
Pro	Asp	Gln	Trp 660	Ser	Ser	Ser	Ser	Pro 665	His :	Ser :	Asn '		Ser 670	Asp	Trp
Ser	Glu	Gly 675	Val	Ser	Ser		Pro 680	Thr							

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2471 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Pro Ala Leu Arg Pro Ala Leu Leu Trp Ala Leu Leu Ala Leu Trp 1 5 10 15

Leu Cys Cys Ala Ala Pro Ala His Ala Leu Gln Cys Arg Asp Gly Tyr
20 25 30

Glu Pro Cys Val Asn Glu Gly Met Cys Val Thr Tyr His Asn Gly Thr 35 40 45

Gly Tyr Cys Lys Cys Pro Glu Gly Phe Leu Gly Glu Tyr Cys Gln His 50 55 60

Arg Asp Pro Cys Glu Lys Asn Arg Cys Gln Asn Gly Gly Thr Cys Val 65 70 75 80

Ala Gln Ala Met Leu Gly Lys Ala Thr Cys Arg Cys Ala Ser Gly Phe 85 90 95

Thr Gly Glu Asp Cys Gln Tyr Ser Thr Ser His Pro Cys Phe Val Ser 100 105 110

Arg Pro Cys Leu Asn Gly Gly Thr Cys His Met Leu Ser Arg Asp Thr 115 120 125

Tyr Glu Cys Thr Cys Gln Val Gly Phe Thr Gly Lys Glu Cys Gln Trp 130 135 140

Thr Asp Ala Cys Leu Ser His Pro Cys Ala Asn Gly Ser Thr Cys Thr 145 150 155 160

Thr Val Ala Asn Gln Phe Ser Cys Lys Cys Leu Thr Gly Phe Thr Gly 165 170 175

Gln Lys Cys Glu Thr Asp Val Asn Glu Cys Asp Ile Pro Gly His Cys 180 185 190

Gln His Gly Gly Thr Cys Leu Asn Leu Pro Gly Ser Tyr Gln Cys Gln 195 200 205

Cys Pro Gln Gly Phe Thr Gly Gln Tyr Cys Asp Ser Leu Tyr Val Pro 210 215 220

Cys Ala Pro Ser Pro Cys Val Asn Gly Gly Thr Cys Arg Gln Thr Gly 225 230 235 240

Asp Phe Thr Phe Glu Cys Asn Cys Leu Pro Gly Phe Glu Gly Ser Thr 245 250 255

Cys Glu Arg Asn Ile Asp Asp Cys Pro Asn His Arg Cys Gln Asn Gly 260 265 270

Gly Val Cys Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro 275 280 285

Gln Trp Thr Gly Gln Phe Cys Thr Glu Asp Val Asp Glu Cys Leu Leu Gln Pro Asn Ala Cys Gln Asn Gly Gly Thr Cys Ala Asn Arg Asn Gly Gly Tyr Gly Cys Val Cys Val Asn Gly Trp Ser Gly Asp Asp Cys Ser Glu Asn Ile Asp Asp Cys Ala Phe Ala Ser Cys Thr Pro Gly Ser Thr Cys Ile Asp Arg Val Ala Ser Phe Ser Cys Met Cys Pro Glu Gly Lys Ala Gly Leu Leu Cys His Leu Asp Asp Ala Cys Ile Ser Asn Pro Cys His Lys Gly Ala Leu Cys Asp Thr Asn Pro Leu Asn Gly Gln Tyr Ile Cys Thr Cys Pro Gln Gly Tyr Lys Gly Ala Asp Cys Thr Glu Asp Val Asp Glu Cys Ala Met Ala Asn Ser Asn Pro Cys Glu His Ala Gly Lys 425 Cys Val Asn Thr Asp Gly Ala Phe His Cys Glu Cys Leu Lys Gly Tyr Ala Gly Pro Arg Cys Glu Met Asp Ile Asn Glu Cys His Ser Asp Pro 455 Cys Gln Asn Asp Ala Thr Cys Leu Asp Lys Ile Gly Gly Phe Thr Cys 465 Leu Cys Met Pro Gly Phe Lys Gly Val His Cys Glu Leu Glu Ile Asn Glu Cys Gln Ser Asn Pro Cys Val Asn Asn Gly Gln Cys Val Asp Lys 505 Val Asn Arg Phe Gln Cys Leu Cys Pro Pro Gly Phe Thr Gly Pro Val Cys Gln Ile Asp Ile Asp Asp Cys Ser Ser Thr Pro Cys Leu Asn Gly Ala Lys Cys Ile Asp His Pro Asn Gly Tyr Glu Cys Gln Cys Ala Thr Gly Phe Thr Gly Val Leu Cys Glu Glu Asn Ile Asp Asn Cys Asp Pro Asp Pro Cys His His Gly Gln Cys Gln Asp Gly Ile Asp Ser Tyr Thr 585 Cys Ile Cys Asn Pro Gly Tyr Met Gly Ala Ile Cys Ser Asp Gln Ile Asp Glu Cys Tyr Ser Ser Pro Cys Leu Asn Asp Gly Arg Cys Il Asp Leu Val Asn Gly Tyr Gln Cys Asn Cys Gln Pro Gly Thr Ser Gly Val Asn Cys Glu Ile Asn Phe Asp Asp Cys Ala Ser Asn Pro Cys Ile His

				645	5				650)				655	i
Gly	y Ile	е Су	660		Gly	, Ile	e Ası	665		c Ser	Cys	s Val	Cys 670		Pro
Gly	, Phe	e Thi		y Glr	Arç	Cy:	8 Asr 680		e Asp	, Ile	e Asp	685		Ala	Ser
Asr	690		a Arq	J Lys	Gly	Ala 695		Cys	Ile	e Asn	G1 ₃		. Asn	Gly	Phe
Arg 705		: Ile	e Cys	Pro	710		/ Pro	His	His	715		Сув	Tyr	Ser	Gln 720
Val	. Asr	ı Glu	2 Cys	Leu . 725		Asr	n Pro	Cys	730		Gly	Asn	Cys	Thr 735	
Gly	Leu	ı Ser	740	Tyr	Lys	Суя	Leu	Cys 745		Ala	Gly	Trp	Val 750		Ile
Asn	Сув	755		. Asp	Lys	Asn	760		Leu	Ser	Asn	765		Gln	Asn
Gly	Gly 770	Thr	Cys	Asp	Asn	Leu 775		Asn	Gly	Tyr	Arg 780		Thr	Cys	Lys
Lys 785			Lys	Gly	Tyr 790	Asn	Cys	Gln	Val	Asn 795	Ile	Asp	Glu	Cys	Ala 800
Ser	Asn	Pro	Cys	Leu 805	Asn	Gln	Gly	Thr	Cys 810		Asp	Asp	Ile	Ser 815	Gly
			820					825					830		
		835		Cys			840					845			
	850			Asn		855					860				
865				Arg	870					875					880
				His 885					890					895	
			900		_			905		-	-		910	_	
		915		Ala			920					925	7		
	Val 930	Asn	Thr	Phe	Ser	Cys 935	Leu	Cys	Leu	Pro	Gly 940	Phe	Thr	Gly	Asp
Lys 945	Cys	Gln	Thr	Asp	Met 950	Asn	Glu	Cys	Leu	Ser 955	Glu	Pro	Cys	Lys	Asn 960
3ly	Gly	Thr	Cys	Ser 965	Asp	Tyr	Val	Asn	Ser 970	Tyr	Thr	Cys		Cys 975	Gln
Ala	Gly	Phe	Asp 980	Gly	Val	His	-	Glu 985	Asn	Asn	Ile	Asn	Glu 990	Cys	Thr
Slu		Ser 995	Cys	Phe	Asn ·	Gly	Gly 1000		Cys	Val .	Asp	Gly 1005		Asn	Ser

- Phe Ser Cys Leu Cys Pro Val Gly Phe Thr Gly Ser Phe Cys Leu His 1010 1015 1020
- Glu Ile Asn Glu Cys Ser Ser His Pro Cys Leu Asn Glu Gly Thr Cys 1025 1030 1035 1040
- Val Asp Gly Leu Gly Thr Tyr Arg Cys Ser Cys Pro Leu Gly Tyr Thr 1045 1050 1055
- Gly Lys Asn Cys Gln Thr Leu Val Asn Leu Cys Ser Arg Ser Pro Cys 1060 1065 1070
- Lys Asn Lys Gly Thr Cys Val Gln Lys Lys Ala Glu Ser Gln Cys Leu 1075 1080 1085
- Cys Pro Ser Gly Trp Ala Gly Ala Tyr Cys Asp Val Pro Asn Val Ser 1090 1095 1100
- Cys Asp Ile Ala Ala Ser Arg Gly Val Leu Val Glu His Leu Cys 1105 1115 1120
- Gln His Ser Gly Val Cys Ile Asn Ala Gly Asn Thr His Tyr Cys Gln 1125 1130 1135
- Cys Pro Leu Gly Tyr Thr Gly Ser Tyr Cys Glu Glu Gln Leu Asp Glu 1140 1145 1150
- Cys Ala Ser Asn Pro Cys Gln His Gly Ala Thr Cys Ser Asp Phe Ile 1155 1160 1165
- Gly Gly Tyr Arg Cys Glu Cys Val Pro Gly Tyr Gln Gly Val Asn Cys 1170 1175 1180
- Glu Tyr Glu Val Asp Glu Cys Gln Asn Gln Pro Cys Gln Asn Gly Gly 1185 1190 1195 1200
- Thr Cys Ile Asp Leu Val Asn His Phe Lys Cys Ser Cys Pro Pro Gly 1205 1210 1215
- Thr Arg Gly Leu Cys Glu Glu Asn Ile Asp Asp Cys Ala Arg Gly 1220 1225 1230
- Pro His Cys Leu Asn Gly Gly Gln Cys Met Asp Arg Ile Gly Gly Tyr 1235 1240 1245
- Ser Cys Arg Cys Leu Pro Gly Phe Ala Gly Glu Arg Cys Glu Gly Asp 1250 1255 1260
- Ile Asn Glu Cys Leu Ser Asn Pro Cys Ser Ser Glu Gly Ser Leu Asp 1265 1270 1275 1280
- Cys Ile Gln Leu Thr Asn Asp Tyr Leu Cys Val Cys Arg Ser Ala Phe 1285 1290 1295
- Thr Gly Arg His Cys Glu Thr Phe Val Asp Val Cys Pro Gln Met Pro 1300 1305 1310
- Cys Leu Asn Gly Gly Thr Cys Ala Val Ala Ser Asn Met Pro Asp Gly 1315 1320 1325
- Phe Ile Cys Arg Cys Pro Pro Gly Phe Ser Gly Ala Arg Cys Gln Ser 1330 1335 1340
- Ser Cys Gly Gln Val Lys Cys Arg Lys Gly Glu Gln Cys Val His Thr 1345 1350 1355 1360
- Ala Ser Gly Pro Arg Cys Phe Cys Pro Ser Pro Arg Asp Cys Glu Ser

							-	.125-	-						
				136	55				137	0				137	5
Gl	y Cys	a Ala	ser 138		Pro	Cys	Gln	His 138		Gly	Ser	Cys	His 139		Glı
Arg	g Glr	139		Tyr	Tyr	Ser	Cys 140		Cys	Ala	Pro	Pro 140		Ser	Gly
Sei	Arc 141		G G L u	Leu	Tyr	Thr 141		Pro) Pro	Ser	Thr 142		Pro	Ala	Thi
Cys 142		Ser	Gln	Tyr	Cys 143		Asp	Lys	Ala	Arg 143		Gly	Val	Сув	Asp 144
Glu	ı Ala	Сув	: Asn	Ser 144	His 5	Ala	Cys	Gln	Trp 145		Gly	Gly	Asp	Сув 145	
Leu	Thr	Met	Glu 146		Pro	Trp	Ala	Asn 146		Ser	Ser	Pro	Leu 147		Сує
Trp) Asp	Tyr 147		Asn	Asn	Gln	Cys 148		Glu	Leu	Cys	Asn 148		Val	Glu
Cys	Leu 149		Asp	Asn	Phe	Glu 149		Gln	Gly	Asn	Ser 150		Thr	Cys	Lys
Туг 150		Lys	Tyr	Сув	Ala 1510		His	Phe	Lys	Asp 151		His	Cys		Gln 152
Gly	Cys	Asn	Ser	Glu 152	Glu 5	Cys	Gly	Trp	Asp 153		Leu	Asp	Cys	Ala 153	
Asp	Gln	Pro	Glu 1540		Leu	Ala	Glu	Gly 154		Leu	Val	Ile	Val 1550		Leu
Met	Pro	Pro 155		Gln	Leu	Leu	Gln 1560		Ala	Arg	Ser	Phe 156		Arg	Ala
Leu	Gly 15,70		Leu	Leu	His	Thr 1575		Leu	Arg	Ile	Lys 1580		Asp	Ser	Gln
Gly 158		Leu	Met	Val	Tyr 1590		Tyr	Tyr	Gly	Glu 1595		Ser	Ala	Ala	Met 160
Lys	Lys	Gln	Arg	Met 1605	Thr	Arg	Arg	Ser	Leu 1610		Gly	Glu	Gln	Glu 1615	
Glu	Val	Ala	Gly 1620		Lys	Val	Phe	Leu 1625		Ile	Asp	Asn	Arg 1630		Cys
Val	Gln	Asp 1635		Asp	His		Phe 1640		Asn	Thr	Asp	Ala 1645		Ala	Ala
	Leu 1650		Ser	His	Ala	Ile 1655		Gly	Thr	Leu	Ser 1660		Pro	Leu ·	Val
Ser 1669		Val	Ser	Glu	Ser 1670		Thr	Pro	Glu	Arg 1675		Gln	Leu	Leu	Tyr 168
Leu	Leu	Ala	Val	Ala 1685	Val '	Val	Ile	Ile	Leu 1690		Ile	Ile		Leu 1695	_
Val	Ile	Met	Ala 1700		Arg :	Lys		Lys 1705		Gly	Ser	Leu	Trp 1710		Pro
Glu	Gly	Phe 1715		Leu .	Arg i		Asp 1720		Ser	Asn		Lys 1725		Arg	Glu

- Pro Val Gly Gln Asp Ala Val Gly Leu Lys Asn Leu Ser Val Gln Val 1730 1735 1740
- Ser Glu Ala Asn Leu Ile Gly Thr Gly Thr Ser Glu His Trp Val Asp 1745 1750 1755 1760
- Asp Glu Gly Pro Gln Pro Lys Lys Val Lys Ala Glu Asp Glu Ala Leu 1765 1770 1775
- Leu Ser Glu Glu Asp Asp Pro Ile Asp Arg Arg Pro Trp Thr Gln Gln 1780 1785 1790
- His Leu Glu Ala Ala Asp Ile Arg Arg Thr Pro Ser Leu Ala Leu Thr 1795 1800 1805
- Pro Pro Gln Ala Glu Gln Glu Val Asp Val Leu Asp Val Asn Val Arg 1810 1815 1820
- Gly Pro Asp Gly Cys Thr Pro Leu Met Leu Ala Ser Leu Arg Gly Gly 1825 1830 1835 1840
- Ser Ser Asp Leu Ser Asp Glu Asp Glu Asp Ala Glu Asp Ser Ser Ala 1845 1850 1855
- Asn Ile Ile Thr Asp Leu Val Tyr Gln Gly Ala Ser Leu Gln Ala Gln 1860 1865 1870
- Thr Asp Arg Thr Gly Glu Met Ala Leu His Leu Ala Ala Arg Tyr Ser 1875 1880 1885
- Arg Ala Asp Ala Ala Lys Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn 1890 1895 1900
- Ala Gln Asp Asn Met Gly Arg Cys Pro Leu His Ala Ala Val Ala Ala 1905 1910 1915 1920
- Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Val Thr Asp 1925 1930 1935
- Leu Asp Ala Arg Met Asn Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala 1940 1945 1950
- Arg Leu Ala Val Glu Gly Met Val Ala Glu Leu Ile Asn Cys Gln Ala 1955 1960 1965
- Asp Val Asn Ala Val Asp Asp His Gly Lys Ser Ala Leu His Trp Ala 1970 1975 1980
- Ala Ala Val Asn Asn Val Glu Ala Thr Leu Leu Leu Leu Lys Asn Gly 1985 1990 1995 2000
- Ala Asn Arg Asp Met Gln Asp Asn Lys Glu Glu Thr Pro Leu Phe Leu 2005 2010 2015
- Ala Ala Arg Glu Gly Ser Tyr Glu Ala Ala Lys Ile Leu Leu Asp His 2020 2025 2030
- Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp 2035 2040 2045
- Val Ala Arg Asp Arg Met His His Asp Ile Val Arg Leu Leu Asp Glu 2050 2055 2060
- Tyr Asn Val Thr Pro Ser Pro Pro Gly Thr Val Leu Thr Ser Ala Leu 2065 2070 2075 2080
- Ser Pro Val Ile Cys Gly Pro Asn Arg Ser Phe Leu Ser Leu Lys His

	•						-	-127-	•						
			•	208	5				209	0				209	5
Thr	Pro	Met	Gly 210		Lys	Ser	Arg	Arg 210		Ser	Ala	Lys	Ser 211		Met
Pro	Thr	Ser 211	Leu 5	Pro	Asn	Leu	Ala 212		Glu	Ala	Lys	Asp 212		Lys	Gly
Ser	Arg 213		Lys	Lys	Ser	Leu 213		Glu	Lys	Val	Gln 214		Ser	Glu	Ser
Ser 214		Thr	Leu	Ser	Pro 215	Val	Asp	Ser	Leu	Glu 215		Pro	His	Thr	Tyr 2160
Val	Ser	Asp	Thr	Thr 216	Ser 5	Ser	Pro	Met	11e 217		Ser	Pro	Gly	Ile 217	
Gln	Ala	Ser	Pro 2180		Pro	Met	Leu	Ala 218		Ala	Ala	Pro	Pro 219		Pro
Val	His	Ala 219		His	Ala	Leu	Ser 220		Ser	Asn	Leu	His 220		Met	Gln
Pro	Leu 2210	Ala) ·	His	Gly	Ala	Ser 221	Thr 5	Val	Leu	Pro	Ser 2220		Ser	Gln	Leu
Leu 222!	Ser 5	His	His	His	lle 2230		Ser	Pro	Gly	Ser 223	Gly	Ser.	Ala	Gly	Ser 2240
Leu	Ser	Arg	Leu	His 2245	Pro	Val	Pro	Val	Pro 2250		Asp	Trp	Met	Asn 2255	
Met	Glu	Val	Asn 2260		Thr	Gln	Tyr	Asn 2265		Met	Phe	Gly	Met 2270		Leu
Ala		Ala 2275		Gly	Thr	His	Pro 2280		Ile	Ala	Pro	Gln 2285		Arg	Pro
Pro	Glu 2290	Gly	Lys	His	Ile	Thr 2295		Pro	Arg	Glu	Pro 2300		Pro	Pro	Ile
Val 2305	Thr	Phe	Gln		Ile 2310		Lys	Gly	Ser	Ile 2315		Gln	Pro	Ala	Gly 2320

Ala Pro Gln Pro Gln Ser Thr Cys Pro Pro Ala Val Ala Gly Pro Leu 2325 2330 2335

Pro Thr Met Tyr Gln Ile Pro Glu Met Ala Arg Leu Pro Ser Val Ala 2340 2345 2350

Phe Pro Thr Ala Met Met Pro Gln Gln Asp Gly Gln Val Ala Gln Thr 2355 2360 2365

Ile Leu Pro Ala Tyr His Pro Phe Pro Ala Ser Val Gly Lys Tyr Pro 2370 2375 2380 .

Thr Pro Pro Ser Gln His Ser Tyr Ala Ser Ser Asn Ala Ala Glu Arg 2385 2390 2395 2400

Thr Pro Ser His Ser Gly His Leu Gln Gly Glu His Pro Tyr Leu Thr 2405 2410 2415

Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser Ser Pro His Ser 2420 2425 2430

Ala Ser Asp Trp Ser Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala 2435 2440 2445

Gly Gly Gln Arg Gly Pro Gly Thr His Met Ser Glu Pro Pro His 2450 2455 2460

Asn Asn Met Gln Val Tyr Ala 2465 2470

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2556 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Pro Pro Leu Leu Ala Pro Leu Leu Cys Leu Ala Leu Leu Pro Ala 10 15

Leu Ala Ala Arg Gly Pro Arg Cys Ser Gln Pro Gly Glu Thr Cys Leu 20 25

Asn Gly Gly Lys Cys Glu Ala Ala Asn Gly Thr Glu Ala Cys Val Cys 35 40 45

Gly Gly Ala Phe Val Gly Pro Arg Cys Gln Asp Pro Asn Pro Cys Leu 50 60

Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp Arg Arg 65 70 75 80

Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser Gly Pro 85 90 95

Leu Cys Leu Thr Pro Leu Asp Asn Ala Cys Leu Thr Asn Pro Cys Arg 100 105 110

Asn Gly Gly Thr Cys Asp Leu Leu Thr Leu Thr Glu Tyr Lys Cys Arg 115 120 125

Cys Pro Pro Gly Trp Ser Gly Lys Ser Cys Gln Gln Ala Asp Pro Cys 130 135 140

Ala Ser Asn Pro Cys Ala Asn Gly Gly Gln Cys Leu Pro Phe Glu Ala 145 150 150 160

Ser Tyr Ile Cys His Cys Pro Pro Ser Phe His Gly Pro Thr Cys Arg 165 170 175

Gln Asp Val Asn Glu Cys Gly Gln Lys Pro Arg Leu Cys Arg His Gly 180 185 190

Gly Thr Cys His Asn Glu Val Gly Ser Tyr Arg Cys Val Cys Arg Ala 195 200 205

Thr His Thr Gly Pro Asn Cys Glu Arg Pro Tyr Val Pro Cys Ser Pro 210 215 220

Ser Pro Cys Gln Asn Gly Gly Thr Cys Arg Pro Thr Gly Asp Val Thr 225 230 235 240

His Glu Cys Ala Cys Leu Pro Gly Phe Thr Gly Gln Asn Cys Glu Glu 245 250 255

Asn Ile Asp Asp Cys Prc Gly Asn Asn Cys Lys Asn Gly Gly Ala Cys Val Asp Gly Val Asn Thr Tyr Asn Cys Pro Cys Pro Pro Glu Trp Thr Gly Gln Tyr Cys Thr Glu Asp Val Asp Glu Cys Gln Leu Met Pro Asn 300 Ala Cys Gln Asn Gly Gly Thr Cys His Asn Thr His Gly Gly Tyr Asn Cys Val Cys Val Asn Gly Trp Thr Gly Glu Asp Cys Ser Glu Asn Ile Asp Asp Cys Ala Ser Ala Ala Cys Phe His Gly Ala Thr Cys His Asp Arg Val Ala Ser Phe Tyr Cys Glu Cys Pro His Gly Arg Thr Gly Leu Leu Cys His Leu Asn Asp Ala Cys Ile Ser Asn Pro Cys Asn Glu Gly Ser Asn Cys Asp Thr Asn Pro Val Asn Gly Lys Ala Ile Cys Thr Cys Pro Ser Gly Tyr Thr Gly Pro Ala Cys Ser Gln Asp Val Asp Glu Cys Ser Leu Gly Ala Asn Pro Cys Glu His Ala Gly Lys Cys Ile Asn Thr Leu Gly Ser Phe Glu Cys Gln Cys Leu Gln Gly Tyr Thr Gly Pro Arg Cys Glu Ile Asp Val Asn Glu Cys Val Ser Asn Pro Cys Gln Asn Asp Ala Thr Cys Leu Asp Gln Ile Gly Glu Phe Gln Cys Met Cys Met Pro Gly Tyr Glu Gly Val His Cys Glu Val Asn Thr Asp Glu Cys Ala Ser 485 490 495 Ser Pro Cys Leu His Asn Gly Arg Cys Leu Asp Lys Ile Asn Glu Phe Gln Cys Glu Cys Pro Thr Gly Phe Thr Gly His Leu Cys Gln Tyr Asp Val Asp Glu Cys Ala Ser Thr Pro Cys Lys Asn Gly Ala Lys Cys Leu 535 Asp Gly Pro Asn Thr Tyr Thr Cys Val Cys Thr Glu Gly Tyr Thr Gly 550 555 Thr His Cys Glu Val Asp Ile Asp Glu Cys Asp Pro Asp Pro Cys His Tyr Gly Ser Cys Lys Asp Gly Val Ala Thr Phe Thr Cys Leu Cys Arg Pro Gly Tyr Thr Gly His His Cys Glu Thr Asn Ile Asn Glu Cys Ser 595 600 Ser Gln Pro Cys Arg Leu Arg Gly Thr Cys Gln Asp Pro Asp Asn Ala

615 620 610 Tyr Leu Cys Phe Cys Leu Lys Gly Thr Thr Gly Pro Asn Cys Glu Ile Asn Leu Asp Asp Cys Ala Ser Ser Pro Cys Asp Ser Gly Thr Cys Leu Asp Lys Ile Asp Gly Tyr Glu Cys Ala Cys Glu Pro Gly Tyr Thr Gly Ser Met Cys Asn Ser Asn Ile Asp Glu Cys Ala Gly Asn Pro Cys His Asn Gly Gly Thr Cys Glu Asp Gly Ile Asn Gly Phe Thr Cys Arg Cys Pro Glu Gly Tyr His Asp Pro Thr Cys Leu Ser Glu Val Asn Glu Cys 705 Asn Ser Asn Pro Cys Val His Gly Ala Cys Arg Asp Ser Leu Asn Gly
725 730 735 Tyr Lys Cys Asp Cys Asp Pro Gly Trp Ser Gly Thr Asn Cys Asp Ile 745 Asn Asn Asn Glu Cys Glu Ser Asn Pro Cys Val Asn Gly Gly Thr Cys
755 760 765 Lys Asp Met Thr Ser Gly Ile Val Cys Thr Cys Arg Glu Gly Phe Ser Gly Pro Asn Cys Gln Thr Asn Ile Asn Glu Cys Ala Ser Asn Pro Cys Leu Asn Lys Gly Thr Cys Ile Asp Asp Val Ala Gly Tyr Lys Cys Asn 805 Cys Leu Leu Pro Tyr Thr Gly Ala Thr Cys Glu Val Val Leu Ala Pro 825 Cys Ala Pro Ser Pro Cys Arg Asn Gly Gly Glu Cys Arg Gln Ser Glu Asp Tyr Glu Ser Phe Ser Cys Val Cys Pro Thr Ala Gly Ala Lys Gly 850 860 Gln Thr Cys Glu Val Asp Ile Asn Glu Cys Val Leu Ser Pro Cys Arg 870 His Gly Ala Ser Cys Gln Asn Thr His Gly Gly Tyr Arg Cys His Cys 885 890 895 Gln Ala Gly Tyr Ser Gly Arg Asn Cys Glu Thr Asp Ile Asp Asp Cys Arg Pro Asn Pro Cys His Asn Gly Gly Ser Cys Thr Asp Gly Ile Asn Thr Ala Phe Cys Asp Cys Leu Pro Gly Phe Arg Gly Thr Phe Cys Glu 935 Glu Asp Ile Asn Glu Cys Ala Ser Asp Pro Cys Arg Asn Gly Ala Asn 955 Cys Thr Asp Cys Val Asp Ser Tyr Thr Cys Thr Cys Pro Ala Gly Phe

WO 94/07474 PCT/US93/09338

Ser Gly Ile His Cys Glu Asn Asn Thr Pro Asp Cys Thr Glu Ser Ser 980 985 990

Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser Phe Thr Cys 995 1000 1005

Leu Cys Pro Pro Gly Phe Thr Gly Ser Tyr Cys Gln His Val Val Asn 1010 1015

Glu Cys Asp Ser Arg Pro Cys Leu Leu Gly Gly Thr Cys Gln Asp Gly 1025 1030 1035

Arg Gly Leu His Arg Cys Thr Cys Pro Gln Gly Tyr Thr Gly Pro Asn

Cys Gln Asn Leu Val His Trp Cys Asp Ser Ser Pro Cys Lys Asn Gly 1060 1065 1070

Gly Lys Cys Trp Gln Thr His Thr Gln Tyr Arg Cys Glu Cys Pro Ser 1075 1080 1085

Gly Trp Thr Gly Leu Tyr Cys Asp Val Pro Ser Val Ser Cys Glu Val 1090 1095 1100

Ala Ala Gln Arg Gln Gly Val Asp Val Ala Arg Leu Cys Gln His Gly
1105 1110 1115

Gly Leu Cys Val Asp Ala Gly Asn Thr His His Cys Arg Cys Gln Ala 1125 1130 1135

Gly Tyr Thr Gly Ser Tyr Cys Glu Asp Leu Val Asp Glu Cys Ser Pro 1140 1145 1150

Ser Pro Cys Gln Asn Gly Ala Thr Cys Thr Asp Tyr Leu Gly Gly Tyr 1155 1160 1165

Ser Cys Lys Cys Val Ala Gly Tyr His Gly Val Asn Cys Ser Glu Glu 1170 . 1175 1180

Ile Asp Glu Cys Leu Ser His Pro Cys Gln Asn Gly Gly Thr Cys Leu 1185 1190 1195 1200

Asp Leu Pro Asn Thr Tyr Lys Cys Ser Cys Pro Arg Gly Thr Gln Gly 1205 1210 1215

Val His Cys Glu Ile Asn Val Asp Asp Cys Asn Pro Pro Val Asp Pro 1220 1225 1230

Val Ser Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Val Asp Gln 1235 1240 1245

Val Gly Gly Tyr Ser Cys Thr Cys Pro Pro Gly Phe Val Gly Glu Arg 1250 1255 1260

Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Ala Arg 1265 1270 1275 1280

Gly Thr Gln Asn Cys Val Gln Arg Val Asn Asp Phe His Cys Glu Cys 1285 1290 1295

Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val Ile Asn Gly Cys 1300 1305 1310

Lys Gly Lys Pro Cys Lys Asn Gly Gly Thr Cys Ala Val Ala Ser Asn 1315 1320 1325

Thr Ala Arg Gly Phe Ile Cys Lys Cys Pro Ala Gly Phe Glu Gly Ala

1340 1335 1330 Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly Ser Leu Arg Cys Leu Asn 1355 1350 Gly Gly Thr Cys Ile Ser Gly Pro Arg Ser Pro Thr Cys Leu Cys Leu 1375 1370 1365 Gly Pro Phe Thr Gly Pro Glu Cys Gln Phe Pro Ala Ser Ser Pro Cys 1385 13B0 Leu Gly Gly Asn Pro Cys Tyr Asn Gln Gly Thr Cys Glu Pro Thr Ser Glu Ser Pro Phe Tyr Arg Cys Leu Cys Pro Ala Lys Phe Asn Gly Leu 1420 1415 Leu Cys His Ile Leu Asp Tyr Ser Phe Gly Gly Gly Ala Gly Arg Asp 1435 1430 Ile Pro Pro Pro Leu Ile Glu Glu Ala Cys Glu Leu Pro Glu Cys Gln 1450 Glu Asp Ala Gly Asn Lys Val Cys Ser Leu Gln Cys Asn Asn His Ala 1465 Cys Gly Trp Asp Gly Gly Asp Cys Ser Leu Asn Phe Asn Asp Pro Trp 1480 1485 Lys Asn Cys Thr Gln Ser Leu Gln Cys Trp Lys Tyr Phe Ser Asp Gly His Cys Asp Ser Gln Cys Asn Ser Ala Gly Cys Leu Phe Asp Gly Phe 1515 1510 Asp Cys Gln Arg Ala Glu Gly Gln Cys Asn Pro Leu Tyr Asp Gln Tyr 1530 Cys Lys Asp His Phe Ser Asp Gly His Cys Asp Gln Gly Cys Asn Ser 1545 Ala Glu Cys Glu Trp Asp Gly Leu Asp Cys Ala Glu His Val Pro Glu 1560 Arg Leu Ala Ala Gly Thr Leu Val Val Val Leu Met Pro Pro Glu 1575 Gln Leu Arg Asn Ser Ser Phe His Phe Leu Arg Glu Leu Ser Arg Val 1595 Leu His Thr Asn Val Val Phe Lys Arg Asp Ala His Gly Gln Gln Met Ile Phe Pro Tyr Tyr Gly Arg Glu Glu Leu Arg Lys His Pro Ile 1630 1625 1620 Lys Arg Ala Ala Glu Gly Trp Ala Ala Pro Asp Ala Leu Leu Gly Gln 1640 Val Lys Ala Ser Leu Leu Pro Gly Gly Ser Glu Gly Gly Arg Arg Arg Arg Glu Leu Asp Pro Met Asp Val Arg Gly Ser Ile Val Tyr Leu Glu 1675 1670 1665 Ile Asp Asn Arg Gln Cys Val Gln Ala Ser Ser Gln Cys Phe Gln Ser 1695 1690

WO 94/07474 PCT/US93/09338

Ala Thr Asp Val Ala Ala Phe Leu Gly Ala Leu Ala Ser Leu Gly Ser 1700 1705 1710

Leu Asn Ile Pro Tyr Lys Ile Glu Ala Val Gln Ser Glu Thr Val Glu 1715 1720 1725

Pro Pro Pro Ala Gln Leu His Phe Met Tyr Val Ala Ala Ala Ala 1730 1740

Phe Val Leu Leu Phe Phe Val Gly Cys Gly Val Leu Leu Ser Arg Lys 1745 1750 1755 1760

Arg Arg Gln His Gly Gln Leu Trp Phe Pro Glu Gly Phe Lys Val 1765 1770 1775

Ser Glu Ala Ser Lys Lys Lys Arg Arg Glu Glu Leu Gly Glu Asp Ser 1780 1785 1790

Val Gly Leu Lys Pro Leu Lys Asn Ala Ser Asp Gly Ala Leu Met Asp 1795 1800 1805

Asp Asn Gln Asn Glu Trp Gly Asp Glu Asp Leu Glu Thr Lys Lys Phe 1810... 1815 1820

Arg Phe Glu Glu Pro Val Val Leu Pro Asp Leu Asp Asp Gln Thr Asp 1825 1830 1835 1840

His Arg Gln Trp Thr Gln Gln His Leu Asp Ala Ala Asp Leu Arg Met 1845 1850 1855

Ser Ala Met Ala Pro Thr Pro Pro Gln Gly Glu Val Asp Ala Asp Cys 1860 1865 1870

Met Asp Val Asn Val Arg Gly Pro Asp Gly Phe Thr Pro Leu Met Ile 1875 1880 1885

Ala Ser Cys Ser Gly Gly Gly Leu Glu Thr Gly Asn Ser Glu Glu Glu 1890 1895 1900

Glu Asp Ala Pro Ala Val Ile Ser Asp Phe Ile Tyr Gln Gly Ala Ser 1905 1910 1915 1920

Leu His Asn Gln Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu Ala 1925 1930 1935

Ala Arg Tyr Ser Arg Ser Asp Ala Ala Lys Arg Leu Leu Glu Ala Ser 1940 1945 1950

Ala Asp Ala Asn Ile Gln Asp Asn Met Gly Arg Thr Pro Leu His Ala 1955 1960 1965

Ala Val Ser Ala Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn 1970 1975 1980

Arg Ala Thr Asp Leu Asp Ala Arg Met His Asp Gly Thr Thr Pro Leu 1985 1990 1995 2000

Ile Leu Ala Ala Arg Leu Ala Val Glu Gly Met Leu Glu Asp Leu Ile 2005 2010 2015

Asn Ser His Ala Asp Val Asn Ala Val Asp Asp Leu Gly Lys Ser Ala 2020 2025 2030

Leu His Trp Ala Ala Ala Val Asn Asn Val Asp Ala Ala Val Leu 2035 2040 2045

Leu Lys Asn Gly Ala Asn Lys Asp Met Gln Asn Asn Arg Glu Glu Thr

Pro Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Thr Ala Lys Val Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp Ile Ala Gln Glu Arg Met His His Asp Ile Val Arg Leu Leu Asp Glu Tyr Asn Leu Val Arg Ser Pro Gln Leu His Gly Ala Pro Leu Gly Gly Thr Pro Thr Leu Ser Pro Pro Leu Cys Ser Pro Asn Gly Tyr Leu Gly Ser Leu Lys Pro Gly Val Gln Gly Lys Lys Val Arg Lys Pro Ser Ser Lys Gly Leu Ala Cys Gly Ser Lys Glu Ala Lys Asp Leu Lys Ala Arg Arg Lys Lys Ser Gln Asp Gly Lys Gly Cys Leu Leu Asp Ser Ser Gly Met Leu Ser Pro Val Asp Ser Leu Glu Ser Pro His Gly Tyr Leu Ser Asp Val Ala Ser Pro Pro Leu Leu Pro Ser Pro Phe Gln Gln Ser Pro Ser Val Pro Leu Asn His Leu Pro Gly Met Pro Asp Thr His Leu Gly Ile Gly His Leu Asn Val Ala Ala Lys Pro Glu Met Ala Ala Leu Gly Gly Gly Gly Arg Leu Ala Phe Glu Thr Gly Pro Pro Arg Leu Ser His Leu Pro Val Ala Ser Gly Thr Ser Thr Val Leu Gly Ser Ser Ser Gly Gly Ala Leu Asn Phe Thr Val Gly Gly Ser Thr Ser Leu Asn Gly Gln Cys Glu Trp Leu Ser Arg Leu Gln Ser Gly Met Val Pro Asn Gln Tyr Asn Pro Leu Arg Gly Ser Val Ala Pro Gly Pro Leu Ser Thr Gln Ala Pro Ser Leu Gln His Gly Met Val Gly Pro Leu His Ser Ser Leu Ala Ala Ser Ala Leu Ser Gln Met Met Ser Tyr Gln Gly Leu Pro Ser Thr Arg Leu Ala Thr Gln Pro His Leu Val Gln Thr Gln Gln Val Gln Pro Gln Asn Leu Gln Met Gln Gln Gln Asn Leu Gln Pro

Ala Asn Ile Gln Gln Gln Ser Leu Gln Pro Pro Pro Pro Pro

2445

-135-

Gln	Pro	His	Leu 2420	_	Val	Ser	Ser	Ala 2429		Ser	Gly	His	Leu 2430		Arg
Ser	Phe	Leu	Ser	Glv	Glu	Pro	Ser	Gln	Ala	qzA	Val	Gln	Pro	Leu	Gly

Pro Ser Ser Leu Ala Val His Thr Ile Leu Pro Gln Glu Ser Pro Ala 2455

2440

Leu Pro Thr Ser Leu Pro Ser Ser Leu Val Pro Pro Val Thr Ala Ala 2470 2475

Gln Phe Leu Thr Pro Pro Ser Gln His Ser Tyr Ser Ser Pro Val Glu 2490 2485

Asn Thr Pro Ser His Gln Leu Gln Val Pro Glu His Pro Phe Leu Thr 2505

Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser Ser Pro His Ser . 2520

Asn Val Ser Asp Trp Ser Glu Gly Val Ser Ser Pro Pro Thr Ser Met

Gln Ser Gln Ile Ala Arg Ile Pro Glu Ala Phe Lys 2545 2550

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9723 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 10..7419
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

(,	•
GGAATTCCG CCC GCC CTG CGC CCC GCT CTG CTG GCG CTG CT	48
CTC TGG CTG TGC TGC GCG GCC CCC GCG CAT GCA TTG CAG TGT CGA GAT Leu Trp Leu Cys Cys Ala Ala Pro Ala His Ala Leu Gln Cys Arg Asp 15 20 25	96
GGC TAT GAA CCC TGT GTA AAT GAA GGA ATG TGT GTT ACC TAC CAC AAT Gly Tyr Glu Pro Cys Val Asn Glu Gly Met Cys Val Thr Tyr His Asn 30 40 45	144
GGC ACA GGA TAC TGC AAA TGT CCA GAA GGC TTC TTG GGG GAA TAT TGT Gly Thr Gly Tyr Cys Lys Cys Pro Glu Gly Phe Leu Gly Glu Tyr Cys 50 55 60	192
CAA CAT CGA GAC CCC TGT GAG AAG AAC CGC TGC CAG AAT GGT GGG ACT Gln His Arg Asp Pro Cys Glu Lys Asn Arg Cys Gln Asn Gly Gly Thr	240

TGT GTG GCC CAG GCC ATG CTG GGG AAA GCC ACG TGC CGA TGT GCC TCA

Cys Val Ala Gln Ala Met Leu Gly Lys Ala Thr Cys Arg Cys Ala Ser

		-80)				85					90					-
GGG Gly	TTT Phe 95	Thr	GGA Gly	GAG Glu	GAC Asp	TGC Cys 100	CAG Gln	TAC Tyr	TCA Ser	ACA Thr	TCT Ser 105	His	CCA Pro	TGC	TTT Phe		336
GTG Val 110	Ser	CGA Arg	Pro	TGC Cys	CTG Leu 115	AAT Asn	GGC Gly	GGC	ACA Thr	TGC Cys 120	His	ATG Met	CTC Leu	AGC Ser	CGG Arg 125		384
GAT Asp	ACC Thr	TAT Tyr	GAG Glu	TGC Cys 130	Thr	TGT Cys	CAA Gln	GTC Val	GGG Gly 135	TTT Phe	ACA Thr	GGT Gly	AAG Lys	GAG Glu 140	TGC Cys		432
CAA Gln	TGG Trp	ACG Thr	GAT Asp 145	GCC Ala	TGC Cys	CTG Leu	TCT Ser	CAT His 150	CCC Pro	TGT Cys	GCA Ala	Asn	GGA Gly 155	AGT Ser	ACC Thr		480
TGT Cys	ACC Thr	ACT Thr 160	GTG Val	GCC Ala	AAC Asn	CAG Gln	TTC Phe 165	TCC Ser	TGC Cys	AAA Lys	TGC Cys	CTC Leu 170	ACA Thr	GGC Gly	TTC Phe		528
ACA Thr	GGG Gly 175	CAG Gln	AAA Lys	TGT Cys	GAG Glu	ACT Thr 180	Asp	GTC Val	AAT Asn	GAG Glu	TGT Cys 185	GAC Asp	ATT	CCA Pro	GGA		576
CAC His 190	TGC Cys	CAG Gln	CAT His	GGT Gly	GGC Gly 195	ACC Thr	TGC Cys	CTC Leu	AAC Asn	CTG Leu 200	CCT Pro	GGT Gly	TCC	TAC	CAG Gln 205		624
TGC Cys	CAG Gln	TGC Cys	CCT Pro	CAG Gln 210	GGC Gly	TTC Phe	ACA Thr	GGC Gly	CAG Gln 215	TAC Tyr	TGT Cys	GAC	AGC Ser	CTG Leu 220	TAT Tyr		672
GTG Val	CCC Pro	TGT Cys	GCA Ala 225	CCC Pro	TCA Ser	CCT Pro	TGT	GTC Val 230	AAT Asn	GGA Gly	GGC	ACC Thr	TGT Cys 235	CGG Arg	CAG Gln		720
ACT Thr	GGT Gly	GAC Asp 240	TTC Phe	ACT	TTT Phe	GAG Glu	TGC Cys 245	AAC Asn	TGC Cys	CTT Leu	CCA Pro	GGT Gly 250	TTT Phe	GAA Glu	GGG Gly		768
AGC Ser	ACC Thr 255	TGT Cys	GAG Glu	AGG Arg	AAT Asn	ATT Ile 260	GAT Asp	GAC Asp	TGC Cys	CCT Pro	AAC Asn 265	CAC His	AGG Arg	TGT Cys	CAG Gln		816
AAT Asn 270	GGA Gly	GGG	GTT Val	TGT Cys	GTG Val 275	GAT Asp	GGG Gly	GTC Val	AAC Asn	ACT Thr 280	TAC Tyr	AAC Asn	TGC Cys	CGC Arg	TGT Cys 285		864
CCC	CCA Pro	CAA Gln	TGG Trp	ACA Thr 290	GGA Gly	CAG Gln	TTC Phe	TGC Cys	ACA Thr 295	GAG Glu	GAT Asp	GTG Val	GAT Asp	GAA Glu 300	TGC Cys		912
CTG Leu	CTG Leu	CAG Gln	CCC Pro 305	AAT Asn	GCC Ala	TGT Cys	CAA Gln	AAT Asn 310	GGG Gly	GGC Gly	ACC Thr	TGT Cys	GCC Ala 315	AAC Asn	CGC Arg		960
TAA Asn	GGA Gly	GGC Gly 320	TAT Tyr	GGC Gly	TGT Cys	GTA Val	TGT Cys 325	GTC Val	AAC Asn	GGC	TGG Trp	AGT Ser 330	GGA Gly	GAT Asp	GAC Asp	1	.008
TGC Cys	AGT Ser 335	GAG Glu	AAC Asn	ATT Ile	GAT Asp	GAT Asp 340	TGT Cys	GCC Ala	TTC Phe	GCC Ala	TCC Ser 345	TGT Cys	ACT Thr	CCA Pro	Gly	1	.056
TCC	ACC	TGC	ATC	GAC	CGT	GTG	GCC	TCC	TTC	TCT	TGC	ATG	TGC	CCA	GAG	1	104

Ser 350		Cys	Ile	Asp	Arg 355	Val	Ala	Ser	Phe	Ser 360		Met	Cys	Pro	Glu 365	
					Leu										AAT Asn	1152
CCT Pro	TGC Cys	CAC His	AAG Lys 385	Gly	GCA Ala	CTG Leu	TGT Cys	GAC Asp 390	Thr	AAC Asn	CCC	CTA Leu	AAT Asn 395	Gly	CAA Gln	1200
			Thr										Cys	ACA Thr	GAA Glu	1248
GAT Asp	GTG Val 415	Asp	GAA Glu	TGT Cys	GCC Ala	ATG Met 420	GCC Ala	AAT Asn	AGC Ser	AAT Asn	CCT Pro 425	TGT	GAG Glu	CAT	GCA Ala	1296
	Lys													CTG Leu		1344
														CAT His 460	TCA Ser	1392
														GGC		1440
														TTA Leu		1488
														TGT Cys		1536
														ACT Thr		1584
														TGT Cys 540		1632
														CAG Gln		1680
														AAC Asn		1728
														GAT Asp		1776
TAC Tyr 590	ACC Thr	TGC Cys	ATC Ile	TGC Cys	AAT Asn 595	CCC Pro	GGG	TAC Tyr	ATG Met	GGC Gly 600	GCC Ala	ATC Ile	TGC Cys	AGT Ser	GAC Asp 605	1824
CAG Gln	ATT Ile	GAT Asp	GAA Glu	TGT Cys 610	TAC Tyr	AGC Ser	AGC Ser	CCT Pro	TGC Cys 615	CTG Leu	AAC Asn	GAT Asp	GGT Gly	CGC Arg 620	TGC Cys	1872

-138-

				l As					s Ası					y Th	G TCA r Ser	
			n Cy					a Ası					As		T TGT O Cys	1968
		s Gl					Gly					s Sei			C TGC 1 Cys	2016
	r Pr					y Gln					Asp				G TGT L Cys 685	2064
					a Arc					Cys					G AAT L Asn O	2112
				s Ile					Pro					Cys	TAC Tyr	2160
			l Ası										Gly		Cys	2208
ACT Thr	GG/ Gl ₃ 735	/ Gly	r cro y Let	C AGI	GGA Gly	TAT Tyr 740	AAG Lys	TGT Cys	CTC Leu	TGT Cys	GAT Asp 745	GCA Ala	GGC	TGG	GTT Val	2256
GGC Gly 750	· Ile	AAC Asr	TG1	GAA Glu	GTG Val 755	GAC Asp	AAA Lys	AAT Asn	GAA Glu	TGC Cys 760	CTT Leu	TCG Ser	AAT Asn	CCA Pro	TGC Cys 765	2304
CAG Gln	AAT Asn	GGA Gly	GGA Gly	ACT Thr 770	Cys	GAC Asp	AAT Asn	CTG Leu	GTG Val 775	AAT Asn	GGA Gly	TAC Tyr	AGG Arg	TGT Cys 780	Thr	2352
TGC Cys	AAG Lys	Lys	GGC Gly 785	Phe	AAA Lys	GGC Gly	TAT Tyr	AAC Asn 790	TGC Cys	CAG Gln	GTG Val	AAT Asn	ATT Ile 795	GAT Asp	GAA Glu	2400
TGT Cys	GCC	TCA Ser 800	Asn	CCA Pro	TGC Cys	CTG Leu	AAC Asn 805	CAA Gln	GGA Gly	ACC Thr	TGC Cys	TTT Phe 810	GAT Asp	GAC Asp	ATA Ile	2448
AGT Ser	GGC Gly 815	TAC Tyr	ACT Thr	TGC Cys	CAC	TGT Cys 820	GTG Val	CTG Leu	CCA Pro	TAC Tyr	ACA Thr 825	GGC Gly	AAG Lys	AAT Asn	TGT Cys	2496
CAG Gln 830	ACA Thr	GTA Val	TTG Leu	GCT Ala	CCC Pro 835	TGT Cys	TCC Ser	CCA Pro	AAC Asn	CCT Pro 840	TGT Cys	GAG Glu	AAT Asn	GCT Ala	GCT Ala 845	2544
GTT Val	TGC Cys	AAA Lys	GAG Glu	TCA Ser 850	CCA Pro	AAT Asn	TTT Phe	GAG Glu	AGT Ser 855	TAT Tyr	ACT Thr	TGC Cys	TTG Leu	TGT Cys 860	GCT Ala	2592
CCT Pro	GGC Gly	TGG Trp	CAA Gln 865	GGT Gly	CAG Gln	CGG Arg	Cys	ACC Thr 870	ATT Ile	GAC . Asp	ATT Ile	Asp	GAG Glu 875	TGT Cys	ATC Ile	2640
						CAT (Asn					2688 .

	ATG Met 895	Cys					Gly					Asp				2736	,
	: ATT : Ile										Asn					2784	r
	GAT Asp				Thr											2832	
GGG Gly	Asp Asp	AAG Lys	TGC Cys 945	Gln	ACA Thr	GAC Asp	ATG Met	AAT Asn 950	GAG Glu	TGT Cys	CTG Leu	AGT Ser	GAA Glu 955	CCC Pro	TGT	2880	J
	AAT Asn		Gly													2928	
TGC Cys	CAG Gln 975	GCA Ala	GGA Gly	TTT Phe	GAT Asp	GGA Gly 980	GTC Val	CAT His	TGT Cys	GAG Glu	AAC Asn 985	AAC Asn	ATC Ile	AAT Asn	GAG Glu	2976	
	ACT Thr										Cys					3024	
	TCC Ser	-	-		Leu		_			Phe		_		_	Cys	.3072	
	CAT His			Asn					His					Glu		3120	
	TGT Cya		Asp					Tyr					Pro			3168	
	ACT Thr 1055	Gly					Thr					Cys				3216	
	TGT Cys O					Thr					Lys					3264	
TGC Cys	CTA Leu	TGT Cys	CCA Pro	TCT Ser 1090	Gly	TGG Trp	GCT Ala	GGT Gly	GCC Ala 1095	Tyr	TGT Cys	GAC Asp	GTG Val	ccc Pro 1100	Asn	3312	
GTC Val	TCT Ser	TGT Cys	GAC Asp 1105	Ile	GCA Ala	GCC Ala	TCC Ser	AGG Arg 1110	Arg	GGT Gly	GTG Val	CTT Leu	GTT Val 1115	Glu	CAC His	3360	
TTG Leu	TGC Cys	CAG Gln 1120	His	TCA Ser	GGT Gly	Val	TGC Cys 1125	Ile	AAT Asn	GCT Ala	GGC	AAC Asn 1130	Thr	CAT His	TAC Tyr	3408	
	CAG Gln 1135	Cys					Thr					Glu				3456	
GAT Asp 1150	GAG Glu	TGT Cys	GCG Ala	TCC Ser	AAC Asn 1155	Pro	TGC Cys	CAG Gln	His	GGG Gly 1160	Ala	ACA Thr	TGC Cys	AGT Ser	GAC Asp 1165	3504	

TTC Phe	: ATT	GGT Gly	GGA Gly	TAC Tyr 117	Arg	TGC Cys	GAG Glu	TGT Cys	GTC Val 117	Pro	GGC Gly	TAT Tyr	CAG Gln	GGT Gly 118	vai	3552
AAC Asn	TGT Cys	GAG Glu	TAT Tyr 118	Glu	GTG Val	GAT Asp	GAG Glu	TGC Cys 119	Gln	AAT Asn	CAG Gln	CCC	TGC Cys 119	Gln	AAT Asn	3600
GGA Gly	GGC Gly	ACC Thr 120	Cys	ATT Ile	GAC Asp	CTT Leu	GTG Val 120	Asn	CAT His	TTC Phe	AAG Lys	TGC Cys 121	Ser	TGC Cys	CCA Pro	3648
CCA Pro	GGC Gly 121	Thr	CGG Arg	GGC Gly	CTA Leu	CTC Leu 122	Cys	GAA Glu	GAG Glu	AAC Asn	ATT Ile 122	Asp	GAC Asp	TGT Cys	GCC Ala	3696
CGG Arg 123	GGT Gly O	CCC Pro	CAT His	TGC Cys	CTT Leu 123	Asn	GGT Gly	GGT Gly	CAG Gln	TGC Cys 1240	Met	GAT Asp	AGG Arg	ATT Ile	GGA Gly 1245	3744
GGC Gly	TAC Tyr	AGT Ser	TGT Cys	CGC Arg 1250	Cys	TTG Leu	CCT Pro	GGC	TTT Phe 125	Ala	GGG Gly	GAG Glu	CGT Arg	TGT Cys 126	Glu	3792
GGA Gly	GAC Asp	ATC Ile	AAC Asn 126	Glu	TGC Cys	CTC Leu	TCC Ser	AAC Asn 127	Pro	TGC Cys	AGC Ser	TCT Ser	GAG Glu 127	Gly	AGC Ser	3840
CTG Leu	GAC Asp	TGT Cys 128	Ile	CAG Gln	CTC	ACC Thr	AAT Asn 128	Asp	TAC Tyr	CTG Leu	TGT Cys	GTT Val 129	Cys	CGT Arg	AGT Ser	3888
GCC Ala	TTT Phe 129	Thr	GGC Gly	CGG Arg	CAC His	TGT Cys 1300	Glu	ACC Thr	TTC Phe	GTC Val	GAT Asp 130	Val	TGT Cys	CCC Pro	CAG Gln	3936
ATG Met 131	CCC Pro	TGC Cys	CTG Leu	AAT Asn	GGA Gly 131	Gly	ACT Thr	TGT Cys	GCT Ala	GTG Val 1320	Ala	AGT Ser	AAC Asn	ATG Met	CCT Pro 1325	3984
GAT Asp	GGT Gly	TTC Phe	ATT Ile	TGC Cys 1330	Arg	TGT Cys	CCC Pro	CCG Pro	GGA Gly 1335	Phe	TCC Ser	GGG Gly	GCA Ala	AGG Arg 1340	Cys	4032
CAG Gln	AGC Ser	AGC Ser	TGT Cys 1345	Gly	CAA Gln	GTG Val	AAA Lys	TGT Cys 1350	Arg	AAG Lys	GGG Gly	GAG Glu	CAG Gln 1355	Cys	GTG Val	40 80
CAC His	ACC Thr	GCC Ala 1360	Ser	GGA Gly	CCC Pro	CGC Arg	TGC Cys 1365	Phe	TGC Cys	CCC Pro	AGT Ser	CCC Pro 1370	Arg	GAC Asp	TGC Cys	4128
GAG Glu	TCA Ser 1375	Gly	TGT Cys	GCC Ala	AGT Ser	AGC Ser 1380	Pro	TGC Cys	CAG Gln	CAC His	GGG Gly 1385	Gly	AGC Ser	TGC Cys	CAC His	4176
CCT Pro 1390	CAG Gln	CGC Arg	CAG Gln	CCT Pro	CCT Pro 1395	Tyr	TAC Tyr	TCC Ser	TGC Cys	CAG Gln 1400	Cys	GCC Ala	CCA Pro	CCA Pro	TTC Phe 1405	4224
TCG Ser	GGT Gly	AGC Ser	CGC Arg	TGT Cys 1410	Glu	CTC Leu	TAC Tyr	ACG Thr	GCA Ala 1415	Pro	CCC Pro	AGC Ser	ACC Thr	CCT Pro 1420	Pro	4272
GCC Ala	ACC Thr	Cys	CTG Leu 1425	Ser	CAG Gln	TAT Tyr	TGT Cys	GCC Ala 1430	Asp	AAA Lys	GCT Ala	CGG Arg	GAT Asp 1435	Gly	GTC Val	4320

ŤGT Cys	GAT Asp	GAG Glu 144	Ala	TGC Cys	AAC Asn	AGC Ser	CAT His 144	Ala	TGC Cys	CAG Gln	TGG Trp	GAT Asp 145	GIA	GGT Gly	GAC Asp	4368
TGT	TCT Ser 145	Leu	ACC Thr	ATG Met	GAG Glu	AAC Asn 146	Pro	TGG Trp	GCC Ala	AAC Asn	TGC Cys 146	Ser	TCC Ser	CCA Pro	CTT Leu	4416
CCC Pro 147	Cys	TGG Trp	GAT Asp	TAT Tyr	ATC Ile 147	AAC Asn 5	AAC Asn	CAG Gln	TGT Cys	GAT Asp 1480	Glu	CTG Leu	TGC Cys	AAC Asn	ACG Thr 1485	4464
GTC Val	GAG Glu	TGC Cys	CTG Leu	TTT Phe 149	Asp	AAC Asn	TTT Phe	GAA Glu	TGC Cys 1495	Gln	GGG Gly	AAC Asn	AGC Ser	AAG Lys 1500	Thr	4512
TGC Cys	AAG Lys	TAT Tyr	GAC Asp 150	Lys	TAC Tyr	TGT Cys	GCA Ala	GAC Asp 1510	His	TTC Phe	AAA Lys	GAC Asp	AAC Asn 151	His	TGT Cys	4560
AAC Asn	CAG Gln	GGG Gly 1520	Cys	AAC Asn	AGT Ser	GAG Glu	GAG Glu 152	Cys	GGT Gly	TGG Trp	GAT Asp	GGG Gly 1530	Leu	GAC Asp	TGT Cys	4608
GCT Ala	GCT Ala 153	Asp	CAA Gln	CCT Pro	GAG Glu	AAC Asn 1540	Leu	GCA Ala	GAA Glu	GGT Gly	ACC Thr 1545	Leu	GTT Val	ATT Ile	GTG Val	4656
GTA Val 155	Leu	ATG Met	CCA Pro	CCT	GAA Glu 155	CAA Gln	CTG Leu	CTC Leu	CAG Gln	GAT Asp 1560	Ala	CGC Arg	AGC Ser	TTC Phe	TTG Leu 1565	4704
CGG Arg	GCA Ala	CTG Leu	GGT Gly	ACC Thr 1570	Leu	CTC Leu	CAC His	ACC Thr	AAC Asn 1575	Leu	CGC Arg	ATT Ile	AAG Lys	CGG Arg 1580	Asp	4752
TCC Ser	CAG Gln	GGG Gly	GAA Glu 158	Leu	ATG Met	GTG Val	TAC Tyr	CCC Pro 1590	Tyr	TAT Tyr	GGT Gly	GAG Glu	AAG Lys 1595	Ser	GCT Ala	4800
GCT Ala	ATG Met	AAG Lys 1600	Lys	CAG Gln	AGG Arg	ATG Met	ACA Thr 160	Arg	AGA Arg	TCC Ser	CTT Leu	CCT Pro 1610	Gly	GAA Glu	CAA Gln	4848
GAA Glu	CAG Gln 1615	Glu	GTG Val	GCT Ala	GGC Gly	TCT Ser 1620	Lys	GTC Val	TTT Phe	CTG Leu	GAA Glu 1625	Ile	GAC Asp	AAC Asn	CGC Arg	4896
CAG Gln 163	Cys	GTT Val	CAA Gln	GAC Asp	TCA Ser 1635	GAC Asp	CAC His	TGC Cys	TTC Phe	AAG Lys 1640	Asn	ACG Thr	GAT Asp	GCA Ala	GCA Ala 1645	4944
GCA Ala	GCT Ala	CTC Leu	CTG Leu	GCC Ala 1650	Ser	CAC His	GCC Ala	ATA Ile	CAG Gln 1655	Gly	ACC Thr	CTG Leu	TCA Ser	TAC Tyr 1660	Pro	4992
CTT Leu	GTG Val	TCT Ser	GTC Val 1669	Val	AGT Ser	GAA Glu	TCC Ser	CTG Leu 1670	Thr	CCA Pro	GAA Glu	CGC Arg	ACT Thr 167	GIn	CTC Leu	5040
CTC	TAT Tyr	CTC Leu 1680	Leu	GCT Ala	GTT Val	GCT Ala	GTT Val 1685	Val	ATC Ile	ATT Ile	CTG Leu	TTT Phe 1690	Ile	ATT Ile	CTG Leu	5088
CTG Leu	GGG Gly 1695	Val	ATC Ile	ATG Met	GCA Ala	AAA Lys 1700	Arg	AAG Lys	CGT Arg	AAG Lys	CAT His 1705	Gly	TCT Ser	CTC Leu	TGG Trp	5136

CTG CCT GAA GGT TTC ACT CTT CGC CGA GAT GCA AGC AAT CAC AAG CGT Leu Pro Glu Gly Phe Thr Leu Arg Arg Asp Ala Ser Asn His Lys Arg 1710 1725	5184
CGT GAG CCA GTG GGA CAG GAT GCT GTG GGG CTG AAA AAT CTC TCA GTG Arg Glu Pro Val Gly Gln Asp Ala Val Gly Leu Lys Asn Leu Ser Val 1730 1735 1740	5232
CAA GTC TCA GAA GCT AAC CTA ATT GGT ACT GGA ACA AGT GAA CAC TGG Gln Val Ser Glu Ala Asn Leu Ile Gly Thr Gly Thr Ser Glu His Trp 1745 1750 1755	5280
GTC GAT GAA GGG CCC CAG CCA AAG AAA GTA AAG GCT GAA GAT GAG Val Asp Asp Glu Gly Pro Gln Pro Lys Lys Val Lys Ala Glu Asp Glu 1760 1765 1770	5328
GCC TTA CTC TCA GAA GAA GAT GAC CCC ATT GAT CGA CGG CCA TGG ACA Ala Leu Leu Ser Glu Glu Asp Asp Pro Ile Asp Arg Arg Pro Trp Thr 1775 1780 1785	5376
CAG CAG CAC CTT GAA GCT GCA GAC ATC CGT AGG ACA CCA TCG CTG GCT Gln Gln His Leu Glu Ala Ala Asp Ile Arg Arg Thr Pro Ser Leu Ala 1790 1805	5424
CTC ACC CCT CAG GCA GAG CAG GAG GTG GAT GTG TTA GAT GTG AAT Leu Thr Pro Pro Gln Ala Glu Gln Glu Val Asp Val Leu Asp Val Asn 1810 1815 1820	5472
GTC CGT GGC CCA GAT GGC TGC ACC CCA TTG ATG TTG GCT TCT CTC CGA Val Arg Gly Pro Asp Gly Cys Thr Pro Leu Met Leu Ala Ser Leu Arg 1825 1830 1835	5520
GGA GGC AGC TCA GAT TTG AGT GAT GAA GAT GAA GAT GCA GAG GAC TCT Gly Gly Ser Ser Asp Leu Ser Asp Glu Asp Glu Asp Ala Glu Asp Ser 1840 1845 1850	5568
TCT GCT AAC ATC ACA GAC TTG GTC TAC CAG GGT GCC AGC CTC CAG Ser Ala Asn Ile Ile Thr Asp Leu Val Tyr Gln Gly Ala Ser Leu Gln 1855 1860 1865	5616
GCC CAG ACA GAC CGG ACT GGT GAG ATG GCC CTG CAC CTT GCA GCC CGC Ala Gln Thr Asp Arg Thr Gly Glu Met Ala Leu His Leu Ala Ala Arg 1870 1885	5664
TAC TCA CGG GCT GAT GCT GCC AAG CGT CTC CTG GAT GCA GGT GCA GAT Tyr Ser Arg Ala Asp Ala Ala Lys Arg Leu Leu Asp Ala Gly Ala Asp 1890 1895 1900	5712
GCC AAT GCC CAG GAC AAC ATG GGC CGC TGT CCA CTC CAT GCT GCA GTG Ala Asn Ala Gln Asp Asn Met Gly Arg Cys Pro Leu His Ala Ala Val 1905 1910 1915	5760
GCA GCT GAT GCC CAA GGT GTC TTC CAG ATT CTG ATT CGC AAC CGA GTA Ala Ala Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Val 1920 1925 1930	5808
ACT GAT CTA GAT GCC AGG ATG AAT GAT GGT ACT ACA CCC CTG ATC CTG Thr Asp Leu Asp Ala Arg Met Asn Asp Gly Thr Thr Pro Leu Ile Leu 1935 1940 1945	5856
GCT GCC CGC CTG GCT GTG GAG GGA ATG GTG GCA GAA CTG ATC AAC TGC Ala Ala Arg Leu Ala Val Glu Gly Met Val Ala Glu Leu Ile Asn Cys 1950 1955 1960 1965	5904
CAA GCG GAT GTG AAT GCA GTG GAT GAC CAT GGA AAA TCT GCT CTT CAC Gln Ala Asp Val Asn Ala Val Asp Asp His Gly Lys Ser Ala Leu His 1970 1975 1980	5952

TGG Trp	GCA Ala	GCT Ala	GCT Ala	GTC Val	AAT Asn	AAT Asn	GTG Val	GAG Glu	GCA Ala	ACT Thr	CTT Leu	TTG Leu	TTG Leu	TTG Leu	AAA Lys	6000
ד מ ג	ຄຄຄ	GCC	198	5 CGA	GAC	ATG	CAG	1990 GAC) AAC	AAG	GAA	GAG	199:	CCT	CTG	6048
8		200					200	5.	٠			2010	ט			6006
TTT Phe	CTT Leu 201	Ala	GCC Ala	CGG Arg	GAG Glu	GGG Gly 2020	Ser	TAT Tyr	GAA Glu	GCA Ala	GCC Ala 202	Lys	ATC	Leu	TTA Leu	6096
GAC Asp 2030	His	TTT Phe	GCC Ala	AAT Asn	CGA Arg 203	Asp	ATC Ile	ACA Thr	GAC Asp	CAT His 2040	Met	GAT Asp	CGT Arg	CTT Leu	CCC Pro 2045	6144
cgg Arg	GAT Asp	GTG Val	GCT Ala	CGG Arg 2050	Asp	CGC Arg	ATG Met	CAC His	CAT His 2055	Asp	ATT Ile	GTG Val	CGC Arg	CTT Leu 2060	Leu	6192
GAT Asp	GAA Glu	TAC Tyr	AAT Asn 206!	Val	ACC Thr	CCA Pro	Ser	CCT Pro 2070	Pro	GGC Gly	ACC Thr	GTG Val	TTG Leu 207	Thr	TCT Ser	6240
GCT Ala	CTC Leu	TCA Ser 208	CCT Pro	GTC Val	ATC Ile	TGT Cys	GGG Gly 2089	Pro	AAC Asn	AGĀ Arg	TCT Ser	TTC Phe 2090	Leu	AGC Ser	CTG Leu	6288
AAG Lys	CAC His 2095	Thr	CCA Pro	ATG Met	GGC Gly	AAG Lys 2100	Lys	TCT Ser	AGA Arg	CGG Arg	CCC Pro 210	Ser	GCC Ala	AAG Lys	AGT Ser	6336
ACC Thr 2110	Met	CCT Pro	ACT Thr	AGC Ser	CTC Leu 2115	Pro	AAC Asn	CTT Leu	GCC Ala	AAG Lys 2120	Glu	GCA Ala	AAG Lys	GAT Asp	GCC Ala 2125	6384
AAG Lys	GGT Gly	AGT Ser	AGG Arg	AGG Arg 2130	Lys	AAG Lys	TCT Ser	CTG Leu	AGT Ser 2135	Glu	AAG Lys	GTC Val	CAA Gln	CTG Leu 2140	Ser	6432
GAG Glu	AGT Ser	TCA Ser	GTA Val 2145	Thr	TTA Leu	TCC Ser	CCT Pro	GTT Val 2150	Asp	TCC Ser	CTA Leu	GAA Glu	TCT Ser 2155	Pro	CAC His	6480
ACG Thr	TAT Tyr	GTT Val 2160	TCC Ser	GAC Asp	ACC Thr	ACA Thr	TCC Ser 2165	Ser	CCA Pro	ATG Met	Ile	ACA Thr 2170	Ser	CCT Pro	GGG Gly	6528
Ile	TTA Leu 2175	Gln	GCC Ala	TCA Ser	CCC Pro	AAC Asn 2180	Pro	ATG Met	TTG Leu	GCC	ACT Thr 2185	Ala	GCC Ala	CCT Pro	CCT Pro	6576
GCC Ala 2190	Pro	GTC Val	CAT His	GCC Ala	CAG Gln 2195	His	GCA Ala	CTA Leu	TCT Ser	TTT Phe 2200	Ser	AAC Asn	CTT Leu	CAT His	GAA Glu 2205	6624
ATG Met	CAG Gln	CCT Pro	TTG Leu	GCA Ala 2210	His	GGG Gly	GCC Ala	Ser	ACT Thr 2215	Val	CTT Leu	CCC Pro	TCA Ser	GTG Val 2220	ser	6672
CAG Gln	TTG Leu	CTA Leu	TCC Ser 2225	His	CAC His	CAC His	Ile	GTG Val 2230	Ser	CCA Pro	GGC Gly	AGT Ser	GGC Gly 2235	Ser	GCT Ala	6720
GGA Gly	AGC Ser	TTG Leu 2240	AGT Ser	AGG Arg	CTC Leu	CAT His	CCA Pro 2245	Val	CCA Pro	GTC Val	CCA Pro	GCA Ala 2250	Asp	TGG Trp	ATG Met	6768

		Met				GAG Glu 226	Thr					Met			ATG Met	6816
	Leu					GGC Gly 5					Ile					6864
					Lys	CAC His				Pro					Pro	6912
CCC Pro	ATT Ile	GTG Val	ACT Thr 230	Phe	CAG Gln	CTC Leu	ATC Ile	CCT Pro 231	Lys	GGC Gly	AGT Ser	ATT Ile	GCC Ala 231	Gln	CCA Pro	6960
GCG Ala	GGG Gly	GCT Ala 232	Pro	CAG Gln	CCT Pro	CAG Gln	TCC Ser 2325	Thr	TGC Cys	CCT Pro	CCA Pro	GCT Ala 2330	Val	GCG Ala	GGC Gly	7008
CCC Pro	CTG Leu 2335	Pro	ACC Thr	ATG Met	TAC Tyr	CAG Gln 2340	Ile	CCA Pro	GAA Glu	ATG Met	GCC Ala 2345	Arg	TTG Leu	CCC Pro	AGT Ser	7056
GTG Val 2350	Ala	TTC Phe	CCC Pro	ACT Thr	GCC Ala 2355	ATG Met	ATG Met	CCC Pro	CAG Gln	CAG Gln 2360	Asp	GGG Gly	CAG Gln	GTA Val	GCT Ala 2365	7104
CAG Gln	ACC Thr	ATT Ile	CTC	CCA Pro 2370	Ala	TAT Tyr	CAT His	CCT Pro	TTC Phe 2375	Pro	GCC Ala	TCT Ser	GTG Val	GGC Gly 2380	Lys	7152
TAC Tyr	ccc Pro	ACA Thr	CCC Pro 2385	Pro	TCA Ser	CAG Gln	CAC His	AGT Ser 2390	Tyr	GCT Ala	TCC Ser	TCA Ser	AAT Asn 2395	Ala	GCT Ala	7200
GAG (Arg	ACA Thr 2400	Pro	AGT Ser	CAC His	Ser	GGT Gly 2405	His	CTC Leu	CAG Gln	Gly	GAG Glu 2410	His	CCC Pro	TAC Tyr	7248
CTG /	ACA Thr 2415	CCA Pro	TCC Ser	CCA Pro	Glu	TCT Ser 2420	CCT Pro	GAC Asp	CAG Gln	Trp	TCA Ser 2425	AGT Ser	TCA Ser	TCA Ser	CCC Pro	7296
CAC THIS S	CT (Ser)	GCT Ala	TCT Ser	Asp	TGG Trp 2435	TCA (Ser)	GAT (Asp)	GTG . Val	Thr	ACC Thr 2440	AGC (Ser :	CCT : Pro '	ACC (Pro (GGG Gly 2445	7344
GGT G	CT (GGA Gly	Gly (GGT Gly 2450	Gln A	CGG (Arg (GGA (Gly 1	Pro (GGG ; Gly : 2455	ACA (Thr)	CAC A	ATG :	Ser (GAG (Glu 1 2460	CCA Pro	7392
CCA C Pro H	AC F	Asn i	AAC A Asn 1 2465	ATG (CAG (Gln \	GTT 1 Val 1	ryr 2	GCG : Ala 2470	rgag:	AGAG'	rc ci	ACCT	CCAG:	r		7439
GTAGA	GACA	AT A	ACTG	ACTT:	r TGT	raaa1	CCT	GCT	SAGG	AAC A	AAATO	AAGO	T C	ATCCC	GGAG	7499
AGAAA	TGAA	G A	aatc:	rctg(a AGC	CAGC	TTC	TAG	GGT	AGG P	\AAG#	GAAC	A TO	TTCI	TTATT	. 7559
CAGAT	Aatg	C A	AGAG!	AAGCI	TA A	CGTC	AGT	TTC	CTGC	GT F	TCTG	CAAC	G CI	TATI	GATT	7619
ATTCT	AATC	T A	ATAAC	GACA	A GTI	TGTG	GAA	ATGC	AAGA	TG. A	ATAC	AAGC	C TI	GGGI	CCAT	7679
GTTTA	CTCT	C TI	CTAI	TTGG	AGA	ATAA	GAT	GGAI	GCTI	'AT I	'GAAG	CCCA	G AC	ATTC	TTGC	7739
AGCTT	GGAC	T GC	:ATTI	TAAG	ccc	TGCA	GGC	TTCT	GCCA	TA T	CCAT	GAGA	A GA	TTCT	ACAC	7799

TAGCGTCCTG	TTGGGAATTA	TGCCCTGGAA	TTCTGCCTGA	ATTGACCTAC	GCATCTCCTC	7859
CTCCTTGGAC	ATTCTTTTGT	CTTCATTTGG	TGCTTTTGGT	TTTGCACCTC	TCCGTGATTG	7919
TAGCCCTACC	AGCATGTTAT	AGGGCAAGAC	CTTTGTGCTT	TTGATCATTC	TGGCCCATGA	7979
AAGCAACTTT	GGTCTCCTTT	CCCCTCCTGT	CTTCCCGGTA	TCCCTTGGAG	TCTCACAAGG	8039
TTTACTTTGG	TATGGTTCTC	AGCACAAACC	TTTCAAGTAT	GTTGTTTCTT	TGGAAAATGG	8099
ACATACTGTA	TTGTGTTCTC	CTGCATATAT	CATTCCTGGA	GAGAGAAGGG	GAGAAGAATA	8159
CTTTTCTTCA	ACAAATTTTG	GGGGCAGGAG	ATCCCTTCAA	GAGGCTGCAC	CTTAATTTTT	8219
CTTGTCTGTG	TGCAGGTCTT	CATATAAACT	TTACCAGGAA	GAAGGGTGTG	AGTTTGTTGT	8279
TTTTCTGTGT	ATGGGCCTGG	TCAGTGTAAA	GTTTTATCCT	TGATAGTCTA	GTTACTATGA	8339
CCCTCCCCAC	TTTTTTAAAA	CCAGAAAAAG	GTTTGGAATG	TTGGAATGAC	CAAGAGACAA	8399
GTTAACTCGT	GCAAGAGCCA	GTTACCCACC	CACAGGTCCC	CCTACTTCCT	GCCAAGCATT	8459
CCATTGACTG	CCTGTATGGA	ACACATTTGT	CCCAGATCTG	AGCATTCTAG	GCCTGTTTCA	.8519
CTCACTCACC	CAGCATATGA	AACTAGTCTT	AACTGTTGAG	CCTTTCCTTT	CATATCCACA	8579
GAAGACACTG	TCTCAAATGT	TGTACCCTTG	CCATTTAGGA	CTGAACTTTC	CTTAGECCAA	8639
GGGACCCAGT	GACAGTTGTC	TTCCGTTTGT	CAGATGATCA	GTCTCTACTG	ATTATCTTGC	8699
TGCTTAAAGG	CCTGCTCACC	AATCTTTCTT	TCACACCGTG	TGGTCCGTGT	TACTGGTATA	8759
CCCAGTATGT	TCTCACTGAA	GACATGGACT	TTATATGTTC	AAGTGCAGGA	ATTGGAAAGT	8819
TGGACTTGTT	TTCTATGATC	CAAAACAGCC	CTATAAGAAG	GTTGGAAAAG	GAGGAACTAT	8879
ATAGCAGCCT	TTGCTATTTT	CTGCTACCAT	TTCTTTTCCT	CTGAAGCGGC	CATGACATTC	8939
CCTTTGGCAA	CTAACGTAGA	AACTCAACAG	AACATTTTCC	TTTCCTAGAG	TCACCTTTTA	8999
GATGATAATG	GACAACTATA	GACTTGCTCA	TTGTTCAGAC	TGATTGCCCC	TCACCTGAAT	9059
CCACTCTCTG	TATTCATGCT	CTTGGCAATT	TCTTTGACTT	TCTTTTAAGG	GCAGAAGCAT	9119
TTTAGTTAAT	TGTAGATAAA	GAATAGTTTT	CTTCCTCTTC	TCCTTGGGCC	AGTTAATAAT	9179
TGGTCCATGG	CTACACTGCA	ACTTCCGTCC	AGTGCTGTGA	TGCCCATGAC	ACCTGCAAAA	9239
TAAGTTCTGC	CTGGGCATTT	TGTAGATATT	AACAGGTGAA	TTCCCGACTC	TTTTGGTTTG	9299
AATGACAGTT	CTCATTCCTT	CTATGGCTGC	AAGTATGCAT	CAGTGCTTCC	CACTTACCTG	9359
ATTTGTÇTGT	CGGTGGCCCC	ATATGGAAAC	CCTGCGTGTC	TGTTGGCATA	ATAGTTTACA	9419
AATGGTTTTT	TCAGTCCTAT	CCAAATTTAT	TGAACCAACA	AAAATAATTA	CTTCTGCCCT	9479
GAGATAAGCA	GATTAAGTTT	GTTCATTCTC	TGCTTTATTC	TCTCCATGTG	GCAACATTCT	9539
GTCAGCCTCT	TTCATAGTGT	GCAAACATTT	TATCATTCTA	AATGGTGACT	CTCTGCCCTT .	9599
GGACCCATTT	ATTATTCACA	GATGGGGAGA	ACCTATCTGC	ATGGACCCTC	ACCATCCTCT	9659
GTGCAGCACA	CACAGTGCAG	GGAGCCAGTG	GCGATGGCGA	TGACTTTCTT	CCCTGGGAA	9719
ምምርር .						9723

WHAT IS CLAIMED IS:

1. A pharmaceutical composition comprising a therapeutically effective amount of a Notch protein; and a pharmaceutically acceptable carrier.

5

- 2. The composition of claim 1 in which the Notch protein is a human Notch protein.
- 3. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 8A (SEQ ID NO:5), 8B (SEQ ID NO:6), 8C (SEQ ID NO:7), 9A (SEQ ID NO:8), or 9B (SEQ ID NO:9), which is able to be bound by an antibody to a Notch protein; and a pharmaceutically acceptable carrier.

15

- A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a Notch amino acid sequence depicted in Figure 8A (SEQ ID NO:5), 8B (SEQ ID NO:6), 8C (SEQ ID NO:7), 9A (SEQ ID NO:8), or 9B (SEQ ID NO:9), which displays one or more functional activities associated with a full-length Notch protein; and a pharmaceutically acceptable carrier.
 - 5. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a fragment of a human Notch protein consisting essentially of the extracellular domain of the protein; and a pharmaceutically acceptable carrier.
- 6. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a region of a Notch protein containing the EGF homologous repeats of the protein; and a pharmaceutically acceptable carrier.

7. A pharmaceutical composition comprising a therapeutically effective amount of a fragment of a Notch protein lacking a portion of the EGF-homologous repeats of the protein, which fragment is able to be bound by an antibody to a Notch protein; and a pharmaceutically acceptable carrier.

5

15

- 8. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a functionally active portion of a Notch protein; and a pharmaceutically acceptable carrier.
- 9. The composition of claim 8 in which the Notch protein is a human Notch protein.
 - 10. A pharmaceutical composition comprising a therapeutically effective amount of a chimeric protein, said chimeric protein comprising a functionally active portion of a human Notch protein joined via a peptide bond to a sequence of a protein different from the Notch protein; and a pharmaceutically acceptable carrier.
- portion of the Notch protein is encoded by the human cDNA sequence contained in plasmid hN3k as deposited with the ATCC and assigned accession number 68609, or encoded by the human cDNA sequence contained in plasmid hN5k as deposited with the ATCC and assigned in plasmid hN5k as deposited with the ATCC and assigned accession number 68611.
- 25
 12. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising the amino acid sequence depicted in Figure 10 (SEQ ID NO:11); and a pharmaceutically acceptable carrier.
- 30 13. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising the amino acid sequence

ID: -WO

depicted in Figure 11 (SEQ ID NO:13); and a pharmaceutically acceptable carrier.

- 14. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising the portion of a human Notch protein with the greatest homology to the epidermal growth factor-like repeats 11 and 12 of the *Drosophila* Notch sequence as shown in Figure 4 (SEQ ID NO:14); and a pharmaceutically acceptable carrier.
- 15. A pharmaceutical composition comprising a therapeutically effective amount of a derivative or analog of a Notch protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.

15

16. A pharmaceutical composition comprising a therapeutically effective amount of a chimeric protein, said chimeric protein comprising a Notch protein joined via a peptide bond to a protein sequence of a protein different from the Notch protein; and a pharmaceutically acceptable carrier.

20

25

- 17. A pharmaceutical composition comprising a therapeutically effective amount of a fragment of a Notch protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
- 18. A pharmaceutical composition comprising a therapeutically effective amount of a chimeric protein, said chimeric protein comprising a fragment of a Notch protein joined via a peptide bond to a protein sequence of a protein different from the Notch protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Delta

protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.

- 19. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a derivative or analog of a Delta protein, which derivative or analog is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
- 20. A pharmaceutical composition comprising a therapeutically effective amount of a chimeric protein, said chimeric protein comprising a fragment of a Delta protein joined via a peptide bond to a protein sequence of a protein different from the Delta protein, which fragment is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
 - 21. A pharmaceutical composition comprising a therapeutically effective amount of a protein, said protein comprising a derivative or analog of a Serrate protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
- 25. A pharmaceutical composition comprising a therapeutically effective amount of a derivative or analog of a Notch protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a second protein expressed on the surface of a second cell, which second protein is selected from the group consisting of a Delta protein and a Serrate protein; and a pharmaceutically acceptable carrier.

- 23. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a Notch protein; and a pharmaceutically acceptable carrier.
- 5 24. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a functionally active portion of a human Notch protein; and a pharmaceutically acceptable carrier.
- 25. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding the amino acid sequence depicted in Figure 10 (SEQ ID NO:11); and a pharmaceutically acceptable carrier.
- 26. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding the amino acid sequence depicted in Figure 11 (SEQ ID NO:13); and a pharmaceutically acceptable carrier.
 - 27. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a fragment of a Notch protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
- 28. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a chimeric protein, said chimeric protein comprising a functionally active fragment of a human Notch protein joined via a peptide bond to a protein sequence of a protein different from the Notch protein; and a pharmaceutically acceptable carrier.
- 29. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a fragment of a Delta protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of

a first cell, to bind to a Notch protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.

- . 30. A pharmaceutical composition comprising a therapeutically effective amount of a nucleic acid encoding a fragment of a Serrate protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell; and a pharmaceutically acceptable carrier.
- 31. The composition of claim 24 in which the nucleic acid is a nucleic acid vector.
 - 32. A pharmaceutical composition comprising a therapeutically effective amount of an antibody which binds to a Notch protein; and a pharmaceutically acceptable carrier.
 - 33. A pharmaceutical composition comprising a therapeutically effective amount of a fragment or derivative of an antibody to a Notch protein containing the idiotype of the antibody; and a pharmaceutically acceptable carrier.

34. A method of treating or preventing a disease or disorder in a subject comprising administering to a subject in need of such treatment or prevention a therapeutically effective amount of a molecule which antagonizes the function of a Notch protein.

25

20

15

35. The method according to claim 34 in which the disease or disorder is a malignancy characterized by increased Notch activity or increased expression of a Notch protein or of a Notch derivative capable of being bound by an anti-Notch antibody, relative to said Notch activity or expression in an analogous non-malignant sample.

- 36. The method according to claim 34 in which the disease or
- 37. The method according to claim 34 in which the disease or5 disorder is breast cancer.

disorder is cervical cancer.

- 38. The method according to claim 34 in which the disease or disorder is colon cancer.
- 39. The method according to claim 35 in which the malignancy is selected from the group consisting of melanoma, seminoma, and lung cancer.
 - 40. The method according to claim 35 in which the subject is a human.

15.

- 41. The method according to claim 36, 37 or 38 in which the molecule is an antibody to Notch or a portion of said antibody containing the binding domain thereof.
- 42. The method according to claim 36, 37 or 38 in which the molecule is a protein consisting of at least the extracellular domain of a Notch protein or a portion thereof capable of binding to a Notch ligand.
- 43. The method according to claim 36, 37 or 38 in which the molecule is a protein consisting of at least the EGF homologous repeats of a Notch protein.
- 44. The method according to claim 36, 37 or 38 in which the molecule is a protein consisting of at least an adhesive fragment of a Notch30 protein.

45. The method according to claim 36, 37 or 38 in which the molecule is an oligonucleotide which (a) consists of at least six nucleotides; (b) comprises a sequence complementary to at least a portion of an RNA transcript of a Notch gene; and (c) is hybridizable to the RNA transcript.

5

46. A method of treating or preventing a disease or disorder in a subject in need of such treatment or prevention comprising administering to the subject a therapeutically effective amount of a molecule which promotes the function of a Notch protein.

10

47. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a Notch protein.

15

- 48. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a functionally active portion of a Notch protein.
- 49. The method according to claim 47 in which the Notch protein 20 is a human Notch protein.
 - 50. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a chimeric protein, said protein comprising a functionally active portion of a Notch protein joined via a peptide bond to a protein sequence of a protein different from the Notch protein.
- 51. The method according to claim 49 in which the human Notch protein comprises the amino acid sequence depicted in Figure 10 (SEQ ID NO:11) or Figure 11 (SEQ ID NO:13).

- 52. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a derivative or analog of a Notch protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a second protein expressed on the surface of a second cell, which second protein is selected from the group consisting of a Delta protein and a Serrate protein.
- 53. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a derivative or analog of a Delta protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell.
- 54. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a derivative or analog of a Serrate protein, which derivative or analog is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell.
 - 55. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a nucleic acid encoding a Notch protein.
- 56. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a nucleic acid encoding a functionally active portion of a Notch protein.
- 57. The method according to claim 55 in which the subject is human and the Notch protein is a human Notch protein.

- 58. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a nucleic acid encoding a fragment of a Notch protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a second protein expressed on the surface of a second cell, which second protein is selected from the group consisting of a Delta protein and a Serrate protein.
- 59. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a nucleic acid encoding a fragment of a Delta protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell.
- 60. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a nucleic acid encoding a fragment of a Serrate protein, which fragment is characterized by the ability *in vitro*, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell.
 - 61. A method of treating or preventing a malignancy in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of antibody to a Notch protein.
- 25 62. The method according to claim 58 in which the antibody is monoclonal.
- 63. A method for treating a patient with a tumor, of a tumor type characterized by expression of a Notch gene, comprising administering to the patient an effective amount of an oligonucleotide, which oligonucleotide (a) consists of at least six nucleotides; (b) comprises a sequence complementary to at

15

25

30

least a portion of an RNA transcript of the Notch gene; and (c) is hybridizable to the RNA transcript.

- 64. The method according to claim 60 in which the patient is ahuman, and the Notch gene is a human gene.
 - 65. An isolated oligonucleotide consisting of at least six nucleotides, and comprising a sequence complementary to at least a portion of an RNA transcript of a Notch gene, which oligonucleotide is hybridizable to the RNA transcript.
 - 66. A pharmaceutical composition comprising the oligonucleotide of claim 65; and a pharmaceutically acceptable carrier.
 - 67. A method of inhibiting the expression of a nucleic acid sequence encoding a Notch protein in a cell comprising providing the cell with an effective amount of the oligonucleotide of claim 65.
- an aberrant level of Notch protein or activity in a patient, comprising measuring the level of Notch protein expression or activity in a sample derived from the patient, in which an increase or decrease in Notch protein or activity in the patient sample relative to the level found in such a sample from a normal individual indicates the presence of the disease or disorder in the patient.
 - 69. A method of diagnosing a malignancy characterized by an increased amount of a Notch protein or of a Notch derivative capable of being bound by an anti-Notch antibody, comprising measuring the amount of a Notch protein or of a Notch derivative capable of being bound by an anti-Notch antibody, in a sample containing or suspected of containing malignant cells from a patient, in which an increase in the amount of the Notch protein or of the Notch

20

25

derivative capable of being bound by an anti-Notch antibody, in the sample, relative to said amount found in an analogous sample of non-malignant cells indicates the presence of the disease or disorder in the patient.

- 5 70. The method according to claim 69 in which the malignancy is cervical cancer.
 - 71. The method according to claim 69 in which the malignancy is breast cancer.
 - 72. The method according to claim 69 in which the malignancy is colon cancer.
- 73. The method according to claim 69 in which the malignancy is selected from the group consisting of melanoma, seminoma, and lung cancer.
 - 74. The method according to claim 69 in which the amount of the Notch protein or derivative is measured by a method comprising contacting the sample with an anti-Notch antibody such that immunospecific binding can occur, and measuring the amount of any immunospecific binding of the antibody that occurs.
 - 75. A method of treating or preventing a nervous system disorder in a subject comprising administering to a subject in need of such treatment or prevention an effective amount of a functionally active portion of a Notch protein.
 - 76. A method of promoting tissue regeneration or repair in a subject comprising administering to a subject an effective amount of a functionally active portion of a Notch protein.

- 77. A method of treating a benign dysproliferative disorder in a subject comprising administering to a subject in need of such treatment an effective amount of a functionally active portion of a Notch protein, in which the disorder is selected from the group consisting of cirrhosis of the liver, psoriasis, keloids, and baldness.
- 78. A substantially purified human Notch protein comprising the amino acid sequence encoded by the hN homolog as depicted in Figure 13 from amino acid numbers 1 through 2169 (SEQ ID NO:19).

- 79. A substantially purified human Notch protein comprising the amino acid sequence encoded by the hN homolog as depicted in Figure 13 from amino acid numbers about 26 through 2169 (as contained in SEQ ID NO:19).
- 15 80. A substantially purified protein comprising the extracellular domain of the mature human Notch protein encoded by the hN homolog, as depicted in Figure 13 from amino acid numbers about 26 through 1677 (as contained in SEQ ID NO:19).
- 20 81. A substantially purified protein comprising the EGF homologous repeats of the mature human Notch protein encoded by the hN homolog, as depicted in Figure 13 from amino acid numbers 26 through 1413 (as contained in SEQ ID NO:19).
- 25 82. A substantially purified protein comprising the EGF like repeats 11 and 12 of the mature human Notch protein encoded by the hN homolog, as depicted in Figure 13 (as contained in SEQ ID NO:19).
- 83. A substantially purified protein consisting essentially of the extracellular domain of the mature human Notch protein encoded by the hN

homolog, as depicted in Figure 13 from amino acid numbers about 26 through 1677 (as contained in SEQ ID NO:19).

- 84. A substantially purified nucleic acid encoding the protein of5 claim 78.
 - 85. A substantially purified nucleic acid encoding the protein of claim 79.
- 10 86. A substantially purified nucleic acid encoding the protein of claim 80.
 - 87. A substantially purified nucleic acid encoding the protein of claim 82.

88. The nucleic acid of claim 85 which is a DNA molecule comprising the sequence depicted in Figure 17 from nucleotide numbers 82 through 7419 (as contained in SEQ ID NO:21).

- 89. The nucleic acid of claim 80 in which the sequence encoding the extracellular domain is as presented in Figure 17 (as contained in SEQ ID NO:21).
- 90. A recombinant cell containing the nucleic acid of claim 84, 87 or 88.
 - 91. The composition of claim 2 in which the Notch protein comprises the amino acid sequence encoded by the hN homolog as depicted in Figure 13 from amino acid numbers 26 through 2169 (as contained in SEQ ID NO:19).

30

15

5

- 92. A composition comprising a therapeutically effective amount of a Notch protein or Notch derivative, said derivative being capable of being bound by an anti-Notch antibody, for use as a medicament.
- 93. A composition comprising a therapeutically effective amount of a molecule which antagonizes the function of a Notch protein, for use as a medicament.
- 94. Use of a composition comprising a molecule which

 10 antagonizes the function of a Notch protein, for the manufacture of a medicament for the treatment of cervical cancer, breast cancer, or colon cancer.

15

20

25

30

GAATTCGGAG GAATTATTCA AAACATAAAC ACAATAAACA ATTTGAGTAG TTGCCGCACA	60
CACACACAC CACAGCCCGT GGATTATTAC ACTAAAAGCG ACACTCAATC CAAAAAATCA	120
GCAACAAAAA CATCAATAAA C AIG CAT TGG ATT AAA TGT TTA TTA ACA GCA Met His Trp Ile Lys Cys Leu Leu Thr Ala 1 5 10	171
TIC ATT TGC TTC ACA GTC ATC GTG CAG GTT CAC AGT TCC GGC AGC TTT Phe Ile Cys Phe Thr Val Ile Val Gln Val His Ser Ser Gly Ser Phe 15 20 25	219
GAG TTG CGC CTG AAG TAC TTC AGC AAC GAT CAC GGG CGG GAC AAC GAG Glu Leu Arg Leu Lys Tyr Phe Ser Asn Asp His Gly Arg Asp Asn Glu 30 35 40	267
GGT CGC TGC TGC AGC GGG GAG TCG GAC GGA GCG ACG GGC AAG TGC CTG Gly Arg Cys Cys Ser Gly Glu Ser Asp Gly Ala Thr Gly Lys Cys Leu 45 50 55	315
GGC AGC TGC AAG ACG CGG TTT CGC GTC TGC CTA AAG CAC TAC CAG GCC Gly Ser Cys Lys Thr Arg Phe Arg Val Cys Leu Lys His Tyr Gln Ala 60 65 70	363
ACC ATC GAC ACC ACC TCC CAG TGC ACC TAC GGG GAC GTG ATC ACG CCC Thr Ile Asp Thr Thr Ser Gln Cys Thr Tyr Gly Asp Val Ile Thr Pro 75 80 85 90	411
ATT CTC GGC GAG AAC TCG GTC AAT CTG ACC GAC GCC CAG CGC TTC CAG Ile Leu Gly Glu Asn Ser Val Asn Leu Thr Asp Ala Gln Arg Phe Gln 95 100 105	459
AAC AAG GGC TTC ACG AAT CCC ATC CAG TTC CCC TTC TCG TTC TCA TGG Asn Lys Gly Phe Thr Asn Pro Ile Gln Phe Pro Phe Ser Phe Ser Trp	507

FIG.1A

CCG Pro	GGT Gly	ACC Thr 125	Phe	TCG Ser	CTG Leu	ATC I le	GTC Val 130	GAG Glu	GCC Ala	TGG Trp	CAT His	GAT Asp 135	ACG Thr	AAC Asn	AAT Asn	555
					ACC Thr											603
					GTG Val 160											651
TCG Ser	CAG Gln	TAC Tyr	ACG Thr	TCG Ser 175	CTG Leu	GAG Glu	TAC Tyr	GAT Asp	TTC Phe 180	CGT Arg	GTC Val	ACC Thr	TGC Cys	GAT Asp 185	CTC Leu	699
AAC Asn	TAC Tyr	TAC Tyr	GGA Gly 190	TCC Ser	GGC Gly	TGT Cys	GCC Ala	AAG Lys 195	TTC Phe	TGC Cys	CGG Arg	CCC Pro	CGC Arg 200	GAC Asp	GAT Asp	747
TCA Ser	TTT Phe	GGA Gly 205	CAC His	TCG Ser	ACT Thr	TGC Cys	TCG Ser 210	GAG Glu	ACG Thr	GGC Gly	GAA Glu	ATT I le 215	ATC Ile	TGT Cys	TTG Leu	795
ACC Thr	GGA Gly 220	TGG Trp	CAĢ Gln	GGC Gly	GAT Asp	TAC Tyr 225	TGT Cys	CAC His	ATA Ile	CCC Pro	AAA Lys 230	TGC Cys	GCC Ala	AAA Lys	GGC Gly	843
					TGC Cys 240											891
			Gly		TTG Leu											939

FIG.1B

3/68 ATC CAT GGC ACC TGC AAC AAA CCC TGG ACT TGC ATC TGC AAC GAG GGT Ile His Gly Thr Cys Asn Lys Pro Trp Thr Cys Ile Cys Asn Glu Gly TGG GGA GGC TTG TAC TGC AAC CAG GAT CTG AAC TAC TGC ACC AAC CAC Trp Gly Gly Leu Tyr Cys Asn Gln Asp Leu Asn Tyr Cys Thr Asn His AGA CCC TGC AAG AAT GGC GGA ACC TGC TTC AAC ACC GGC GAG GGA TTG Arg Pro Cys Lys Asn Gly Gly Thr Cys Phe Asn Thr Gly Glu Gly Leu TAC ACA TGC AAA TGC GCT CCA GGA TAC AGT GGT GAT GAT TGC GAA AAT Tyr Thr Cys Lys Cys Ala Pro Gly Tyr Ser Gly Asp Asp Cys Glu Asn GAG ATC TAC TCC TGC GAT GCC GAT GTC AAT CCC TGC CAG AAT GGT GGT Glu Ile Tyr Ser Cys Asp Ala Asp Val Asn Pro Cys Gln Asn Gly Gly ACC TGC ATC GAT GAG CCG CAC ACA AAA ACC GGC TAC AAG TGT CAT TGC Thr Cys 1le Asp Glu Pro His Thr Lys Thr Gly Tyr Lys Cys His Cys GCC AAC GGC TGG AGC GGA AAG ATG TGC GAG GAG AAA GTG CTC ACG TGT Ala Asn Gly Trp Ser Gly Lys Met Cys Glu Glu Lys Val Leu Thr Cys TCG GAC AAA CCC TGT CAT CAG GGA ATC TGC CGC AAC GTT CGT CCT GGC Ser Asp Lys Pro Cys His Gln Gly Ile Cys Arg Asn Val Arg Pro Gly TTG GGA AGC AAG GGT CAG GGC TAC CAG TGC GAA TGT CCC ATT GGC TAC Leu Gly Ser Lys Gly Gln Gly Tyr Gln Cys Glu Cys Pro Ile Gly Tyr

FIG.1C

AGC Ser	GGA Gly	CCC Pro	AAC Asn	TGC Cys 415	GAT Asp	CTC Leu	CAG Gln	CTG Leu	GAC Asp 420	AAC Asn	TGC Cys	AGT Ser	CCG Pro	AAT Asn 425	CCA Pro	1419
TGC Cys	ATA I le	AAC Asn	GGT Gly 430	GGA Gly	AGC Ser	TGT Cys	CAG Gln	CCG Pro 435	AGC Ser	GGA Gly	AAG Lys	TGT Cys	ATT Ile 440	TGC Cys	CCA Pro	1467
GCG	GGA Gly	TTT Phe 445	TCG Ser	GGA Gly	ACG Thr	AGA Arg	TGC Cys 450	GAG Glu	ACC Thr	AAC Asn	ATT	GAC Asp 455	GAT Asp	TGT Cys	CTT Leu	1515
Gly	CAC His 460	CAG Gln	TGC Cys	GAG Glu	AAC Asn	GGA Gly 465	GGC Gly	ACC Thr	TGC Cys	ATA Ile	GAT Asp 470	ATG Met	GTC Val	AAC Asn	CAA Gln	1563
TAT Tyr 475	CGC Arg	TGC Cys	CAA Gln	TGC Cys	GTT Val	CCC Pro 480	GGT Gly	TTC Phe	CAT His	GGC Gly 485	ACC Thr	CAC His	TGT Cys	AGT Ser	AGC Ser 490	1611
AAA Lys	GTT Val	GAC Asp	TTG Leu	TGC Cys 495	CTC Leu	ATC Ile	AGA Arg	CCG Pro	TGT Cys 500	GCC Ala	AAT Asn	GGA Gly	GGA Gly	ACC Thr 505	TGC Cys	1659
TTG Leu	AAT Asn	CTC Leu	AAC Asn 510	AAC Asn	GAT Asp	TAC Tyr	CAG Gln	TGC Cys 515	ACC Thr	TGT Cys	<u>CGT</u> Arg	GCG Ala	GGA Gly 520	TTT Phe	ACT Thr	1707
GGC Gly	AAG Lys	GAT Asp 525	TGC Cys	TCT Ser	GTG Val	GAC Asp	ATC Ile 530	GAT Asp	GAG Glu	TGC Cys	AGC Ser	AGT Ser 535	GGA Gly	CCC Pro	TGT Cys	1755
CAT His	AAC Asn 540	GGC Gly	GGC Gly	ACT Thr	TGC Cys	ATG Met 545	AAC Asn	CGC Arg	GTC Val	AAT Asn	TCG Ser 550	TTC Phe	GAA Glu	TGC Cys	GTG Val	1803

FIG.1D

				C GAT GAG GAG S Asp Glu Glu 565		
		Ala His Gl		GCG ACC ACA Ala Thr Thr		
				CTA ATT GCT Leu Ile Ala		
Val Ala M			l Ile Ala	GCG TGC GTG Ala Cys Val 615		
				AAG GAC GAC Lys Asp Asp 630		
	In Asn Glu			ACA ATG CAT Thr Met His 645	His Asm (
				TCT CTG GGC Ser Leu Gly		
GGC AGC AA Gly Ser As	AC AGC GGT (sn Ser Gly (670	CTC ACC TTC Leu Thr Phe	GAT GGC Asp Gly 675	GGC AAC CCG Gly Asn Pro	AAT ATC A Asn Ile I 680	NTC 2187 le
	r Trp Asp L			ATT TGT GCC Ile Cys Ala : 695		

FIG.1E

6/68 GCA GCG GCG GCG GCA GCA GCG GCG GAC GAG TGT CTC ATG TAC GGC Ala Ala Ala Ala Ala Ala Ala Ala Asp Glu Cys Leu Met Tyr Gly GGA TAT GTG GCC TCG GTG GCG GAT AAC AAC AAT GCC AAC TCA GAC TTT Gly Tyr Val Ala Ser Val Ala Asp Asn Asn Asn Ala Asn Ser Asp Phe TGT GTG GCT CCG CTA CAA AGA GCC AAG TCG CAA AAG CAA CTC AAC ACC Cys Val Ala Pro Leu Gln Arg Ala Lys Ser Gln Lys Gln Leu Asn Thr GAT CCC ACG CTC ATG CAC CGC GGT TCG CCG GCA GGC AGC TCA GCC AAG Asp Pro Thr Leu Met His Arg Gly Ser Pro Ala Gly Ser Ser Ala Lys GGA GCG TCT GGC GGA GGA CCG GGA GCG GCG GAG GGC AAG AGG ATC TCT Gly Ala Ser Gly Gly Gly Pro Gly Ala Ala Glu Gly Lys Arg Ile Ser GIT TTA GGC GAG GGT TCC TAC TGT AGC CAG CGT TGG CCC TCG TTG GCG Val Leu Gly Glu Gly Ser Tyr Cys Ser Gln Arg Trp Pro Ser Leu Ala GCG GCG GGA GTG GCC GGA GCC TGT TCA TCC CAG CTA ATG GCT GCA GCT Ala Ala Gly Val Ala Gly Ala Cys Ser Ser Gln Leu Met Ala Ala Ala Ser Ala Ala Gly Ser Gly Ala Gly Thr Ala Gln Gln Gln Arg Ser Val GTC TGC GGC ACT CCG CAT ATG TAACTCCAAA AATCCGGAAG GGCTCCTGGT Val Cys Gly Thr Pro His Met AAATCCGGAG AAATCCGCAT GGAGGAGCTG ACAGCACATA CACAAAGAAA AGACTGGGTT GGGTTCAAAA TGTGAGAGAG ACGCCAAAAT GTTGTTGTTG ATTGAAGCAG TTTAGTCGTC ACGAAAATG AAAAATCTGT AACAGGCATA ACTCGTAAAC TCCCTAAAAA ATTTGTATAG TAATTAGCAA AGCTGTGACC CAGCCGTTTC GATCCCGAAT TC

FIG.1F
SUBSTITUTE SHEET (RULE 26)

WO 94/07474 PCT/US93/09338

ACGTTTCGTTGGACGAAGTCGTTTACGCTGATACTGCAGGCGTTGGATATGTACAACACA ThrPheArgTrpThrLysSerPheThrLeuIleLeuGInAlaLeuAspMetTyrAsnThr TCGCCGGAGTGGAAGACGCTGGACCACATCGGGCGGAACGCGGGATCACCTACCGTGTC

961

AspAspGInPheGIyHisTyrAlaCysGIySerGIuGIyGInLysLeuCysLeuAsnGIy GACGATCAGTTCGGTCAdTACGCCTGCGGCTCCGAGGGTCAGAAGCTCTGCTGAATGGC 1201

SerProGluTrpLysThr|LeuAspHisIleGlyArgAsnAlaArgIleThrTyrArgVal

SUBSTITUTE SHEET (RULE 26)

721

<u>CGCGATTGTCGATCATTAAAGTCTGCCTGCAACTTAATTGCTTTAATTTTAATACTGTTA</u> ArgAspCysArgSerLeuLysSerAtaCysAsnLeuTteAtaLeuTteLeuTteLeuLeu

AACAGCCATCTACTCAACGGCTATTGCTGCGGCATGCCAGCGGAACTTAGGGCCACCAAG AsnSerHisLeuLeuAsnGlyTyrCysCysGlyMetProAlaGluLeuArgAlaThrLys ACCIGAGCAGGGTGCCAGCATATCCACGGGCTGTTCGTTTGGCAACIGCCACCACCAAGATA Thr|GluGinGlyAlaSerIleSerThrGlyCysSerPheGlyAsn|AlaThrLysIle

841

1CGTCGTTGGAGTCAACAATAGAATCAGCAGACAGCCTGGGAATGTCCAAGAAGACGGCG SerSerLeuGluSerThrIleGluSerAlaAspSerLeuGlyMetSerLysLysThrAla

481

601

241

CCGAGTCGAGCGCCGTGCTTCGAGCGGTGATGAGCCCCTTTTCTGTCAACGCTAAAGATC CAATCCAGAGTGAATCCGAAACAAACTCCATCTAGATCGCCAACCAGCATCACGCTCGCA

13 MetPheArgLysHisPheArgArgLysProAlaThrSer *ACAAAACATCAGCGCCTATCAAGTGGAAGTGTCAAGTGTGAAACAAAAAAGGAGAG AACGCCCCCAGAATGTACAAATGTTTAGGAAACATTTTCGGCGAAAACCAGCTACGTCG CCAAACAAAACCAAACAAAGGCAAGTGGAGAAATGATACAGCATCCAGAGTAC CCAAAATCTGCATACATGGGCTAATTAAGGCTGCCCAGCGAATTTACATTTGTGTGGTGC

53 ThrlysArgGinArgProArgHisArgVaiProLysIieAlaThrLeuProSerThrlie ACAAAAAGGCAGCGTCCGAGGCATCGGGTACCCAAAATCGCGACCCTGCCATCGACGATC

93 ValHisLysIleSerAlaAlaGlyAsnPheGluLeuGluIleLeuGluIleSerAsnThr <u>GTCCATAAGATATCCGCAGCTGGTAACTTCGAGCTGGAAATATTAGAAATCTCAAATACC</u>

133 Thr!leG!yCysSerProCysThrThrAldPheArgLeuCysLeuLysGluTyrGlnThr ACGATAGGCTGCTCGCCATGCACGGCGTTTCCGGCTGTGCCTGAAGGAGTACCAGACC

LeuGlyGlySerSerPheValLeuSerAspProGlyValGlyAlaIleValLeuProPhe CTGGGTGGCTCCAGQTTTGTGCTCAGCGATCCGGGTGTGGGAGCCATTGTGCTGCCCTTT

SerTyrProAspAlaGluArgLeuIleGluGluThrSerTyrSerGlyValIleLeuPro TCCTATCCAGATGCGGAGAGGTTAATTGAGGAAACATCATACTGGGGCGTGATACTGCCG

253 ArgValGinCysAlaValThrTyrTyrAsnThrThrCysThrThrPhqCysArgProArg CGGGTGCAATGCGCCGTTACCTACTACAACACGACCTGCACGACCTTQTGCCGTCCGCGG

293 TGGCAGGGCGTCAACTGCGAGGAGGCCATATGCAAGGCGGGCTGCGACCCCGTCCACGGC TrpGinGiyVaiAsnCysGiuGiuAiaIieCysLysAiaGiyCysAspProVaiHisGiy

-1G.5B

FIG. 6

GAATTCCGCT GGGAGAATGG TCTGAGCTAC CTGCCCGTCC TGCTGGGGCA TCAATGGCAA
GTGGGGAAAG CCACACTGGG CAAACGGGCC AGGCCATTTC TGGAATGTGG TACATGGTGG
121 GCAGGGGGCC CGCAACAGCT GGAGGGCAGG TGGACTGAGG CTGGGGGATCC CCCGCTGGTT
181 GGGCAATACT GCCTTTACCC ATGAGCTGGA AAGTCACAAT GGGGGGCAAG GGCTCCCGAG
241 GGTGGTTATG TGCTTCCTTC AGGTGGC

FIG.8A

GAATTCCTTC CATTATACGT GACTTTTCTG AAACTGTAGC CACCCTAGTG TCTCTAACTC
CCTCTGGAGT TTGTCAGCTT TGGTCTTTTC AAAGAGCAGG CTCTCTTCAA GCTCCTTAAT
CCGGGCATGC TCCAGTTTGG TCTGCGTCTC AAGATCACCT TTGGTAATTG ATTCTTCTTC
AACCCGGAAC TGAAGGCTGG CTCTCACCCT CTAGGCAGAG CAGGAATTCC GAGGTGGATG
CTTTAGATGT GAATGTCCGT GGCCCAGATG GCTGCACCCC ATTGATGTTG GCTTCTCTCC
GAGGAGGCAG CTCAGATTTG AGTGATGAAG ATGAAGATGC AGAGGACTGT TCTGCTAACA
TCATCACAGA CTTGGTCTAC CAGGGTGCCA GCCTCCAGAC CAGACAGACC GGACTGGTGA
CTTGGTCACA GATGCCCAATG CCCAGGACAA CATGGGCCGC TGTCCACTCC ATGCTGCAGT
GCCACGTGCA GATGCCAATG CCCAGGACAA CATGGGCCGC TGTCCACTCC ATGCTGCAGT
GCCACGTGAT GCCAAGGTGT ATTCAGATCT GTTA

FIG.8B

1 TCCAGATTCT GATTCGCAAC CGAGTAACTG ATCTAGATGC CAGGATGAAT GATGGTACTA
61 CACCCCTGAT CCTGGCTGCC CGCCTGGCTG TGGAGGGAAT GGTGGCAGAA CTGATCAACT
121 GCCAAGCGGA TGTGAATGCA GTGGATGACC ATGGAAAATC TGCTCTTCAC TGGGCAGCTG
181 CTGTCAATAA TGTGGAGGCA ACTCTTTTGT TGTTGAAAAA TGGGGCCAAC CGAGACATGC
241 AGGACAACAA GGAAGAGACA CCTCTGTTTC TTGCTGCCCG GGAGGAGCTA TAAGC

FIG.8C

GAATTCCATT CAGGAGGAAA GGGTGGGGAG AGAAGCAGGC ACCCACTTTC CCGTGGCTGG
ACTCGTTCCC AGGTGGCTCC ACCGGCAGCT GTGACCGCCG CAGGTGGGGG CGGAGTGCCA
TTCAGAAAAT TCCAGAAAAG CCCTACCCCA ACTCGGACGG CAACGTCACA CCCGTGGGTA
GCAACTGGCA CACAAACAGC CAGCGTGTCT GGGGCACGGG GGGATGGCAC CCCCTGCAGG
CAGAGCTG

FIG.9A

CTAAAGGAA CAAAAGCNGG AGCTCCACCG CGGGCGGCNC NGCTCTAGAA CTAGTGGANN
NCCCGGGCTG CAGGAATTCC GGCGGACTGG GCTCGGGCTC AGAGCGGCGC TGTGGAAGAG
ATTCTAGACC GGGAGAACAA GCGAATGGCT GACAGCTGGC CTCCAAAGTC ACCAGGCTCA
AATCGCTCGC CCTGGACATC GAGGGATGCA GAGGATCAGA ACCGGTACCT GGATGGCATG
ACTCGGATTT ACAAGCATGA CCAGCCTGCT TACAGGGAGC GTGANNTTTT CACATGCAGT
CGACAGACAC GAGCTCTATG CAT

FIG.9B

1	7	/	6	8
			u	u

	AAC	GAC	AGT S>	90 * GAC
	* AAC	AAT		190 * TTC GA
40	U			* CTC
	SAS O		AAG *	TGC
	CIG	CIC	30 * TGG	180 4 560 6
	AGC S	80 * TCC	130 * TGC TG(\$ CC
	TGC C	1 50	cag o	T S
4	GIC	•	CIG	70 ** N
	AAG	70 * GGT	120 * TCT S	170 * TGC AAC C N
20	AAC	ပ ္ပ	cag *	cag o
	ည္မမ	¢ GAC D	ACG	50 * AGC S
*	GCG A	TGG	110 * * TGC	160 4 GAC AGC D S
10	GAG GAC E D	09 * *	AAC	* TGT C
		* HG C	AAG K	CAC
*	O O	gcg *	100 * C TGG	150 4 GGC G
	79C C	50 CAC H	1(CCC	* GAC D

FIG. 10A

757 \$\sqrt{2}\$ 280 *
GAC CAG GGC
D Q G
330
*
GCG GAG CAT
A E H * TAC Y GGC TTT GAC TGC CAG CGT GCG GAA GC
G F D C Q R A E C
CAG TAC TGC AAG GAC CAC TTC AGC
Q Y C K D H F S I

250
AAC AGC GCG GAG TGC GAG TGG GAC GA
N S A E C E W D C

340
340
340
350
CCC GAG AGG CTG GCG GAC CTC
F M D C

CCC GAG AGG CTG GCG GAC CTC
F M D C

SCC GAG AGG CTG GCG GAC TCC
F M D C

SCC GAG AGG CTG GCG GCC GCC GCC ACG CTC
F R L A A G T I

F16.108

30	CTC AGC	480 4 ¢	SS &	+ 55 J
ব	CIC	္ ပ္ပ * ပ	AAG K	
	GAG E	CAC H	20 CGC	570 * GCC
	ට වි	470 * GCA	520 * CTG CGC AAC	GAC D
	CTG	GAC	* GAG	ECT CCT
4	TTC		GAG E	560 * GCA A
	CAC	160 * * AAG	510 + GAG E	900 4
410	TTC	46 TTC	* 00 K	7GG *
	TCC	* GTC V		550 * GAG GGC E G
*	AGC S	GTG V	500 * TAC	GAG E
00	AAC	450 * AAC N	TAC	* GCC
4	CGC AAC	* ACC	* 000	8 8
*	CTG	CAC H	490 * ATC TTC	540 * CGT R
	g O	440 * CTG L	ATC	* AAG
	0	GTG V	3 ATG 7	ATC AAG
*	D B	* 00 %	CAG	530 * CCC

FIG. 10C

G CGG G RS 670 V YS V YS TGC TTC C FS GAG GGT
E G
TCC ATC
S I
TCG CAG
S O
TCG CAG
S CTC CAG
L A GGC AGC O GGC GGC 77 R G 77 R G 77 A S A S A GGG O GGA GGG O CTC CCT GGT G L P G 650 ATG GAC GTC C M D V 700 * 700 C V Q C C V Q C C V Q C C N Q C S GCA TTC CTG 66C CAG 6 Q 630 * * * 630 THE SE

FIG. 10D

F16.10E

	GAG E>	* 55 7	AAG	SO CAG
4	× ၁၅၅	5 5 6 6 7	.00 * ACC	11! GAC D
00 +	CTC	1050 * : GGT	1100 ¢ GAG ACC E T	* ₹ D
1000	CCC	chc chc	CIG *	CTG
+	GAG	TCA	90 * GAC D	1140 * GAC
	CGG	1040 * AAC GCT N A	1090 * GAG GA E	* CCT
066 *	CGG		GAC D	CTG
*	AAG K	AAG K	999	1130 * GTG GTT V V
	AAG	30 * CTG L	1080 * TGG G	11 GTG V
980	AAG K	1030 ccc cre	GAG E	* D &
	AGC S	AAG K	AAT	20 GAG E
*	95C	CIC	07.0 0.4.0 0.00	1120 * GAG GP E
970	GAG	1020 * GGC G	A 10 GAC AAC D N	* FI ==
, O	TCT	* GTG >	GAC D	CGG R
*	AAA GTG TCT GAG K V S E	1020 * * TCC GTG GGC S V G	1060 * ATG GAC M D	11110 * TTC CGG F R
	AAA	1010 * GAC	1060 * ATG G	AAG K

FIG. 10F

55.7 * CTC 1340 1290 * TTC ACC CCG F T P 1190 CAG GGT 9 1280 * CCT GAT P D 1230 * CCC (CAG CAC * 55 5 , , , , , 1270 * AAT GTC CGC (1320 * * GGG GGC 1220 GCC CCC A P 1210 * * TCT GCC ATG G 1260 * ATG GAC GTC A M D V * CGC ATG R M

F16.106

0) *	9	6	440	+	CAC	仝			GAG	습		*	CTG	3
139) 	CAG	5 0	-	*	TTG	<u>수</u>		*	CTG	ı			SSS	بم
	*	rac	7			၁၁၅	A	000	*	CTG	្ន	530	*	ACC	-
		ATC	Н	130	*	ACC	H	148		S	R	•	- *	ည	K
380	*	TTC	ы	7		GAG ACC GCC	ជោ		*	AAG	×			9	S
	*	B	Ω		*	256	ن			၁၁၅	D A A	520	+ x	S AAC ATG	Σ
		TCC	ဟ	0	*	CGC ACG	Ę	470	*	ညည	K			AAC	z
1370	*	ATC	н	142		ည္သည	ĸ		*	GAT	Ω		*	GAC	Ω
		GTC	>	•	*	3AC	Ω			TCT	လ	0	*	\mathcal{O}	ø
	*	229	K	1410		ACA	Ę	160	*	\mathcal{G}	R.	1510		ATC	Н
20	*	SSS	Δı	1410	*	CAG	a	H	1460	T T	S			AAC	
1360		933	æ	-	*	AAC	Z		*	TAC	×			ည္ဟ	A
	*	GAC	Ω			S	H			292 229	œ	1500	*	GAT	Ω
1350		GAG GAG	ធា	1400	*	CTG		1450				• •	*	SCA	
	*	GAG	យ	ř		AGC	ഗ		*	ညည				AGC	
	+k	GAA	ហ		*	သည်	Æ			CIG	니	1490	*	၁၁၅	A

FIG. 10H

FIG. 10 I

1870 * * * * 7 TAC GAG ACC GCC Y E T A> 1920 * * CAT ATG H M> GAC D 1910 * * * * G GAC ATC ACG GAT C D I T D CAC 1860 * * GGC AGC 1 G S 1840

F L A A R E

1890

A TTT CTG GCC GCG GAG GA

3 GAC CAC TTT GCC AAC CGG G

D H F A N R

1950

A 1950

A 1950

A 1950

B GGC GAC ATC GCA GAG CAG

G CGC GAC ATC GCA GAG CAG

R D I A Q E 1800 * * T AAC AAA GAT N K D 1840

CTG TTT CTG

L F L

1890

CTG GAC CAC T

L D H CTG AAG AAC GGG L K N G 1790 1830 GAG ACA CCC (1880 * * AAG GTG CTG O 1780 GTG CTC V L

FIG. 10J

FIG. 10X

	ξ. Q	* 57 cs	TCC	× × × × × × × × × × × × × × × × × × ×
	* ეე ს	GAG		2350 \$ GGG AT G &
0	* AAG K	2250 * : CTG	2300 crg ccc	* CCT
2200	ည္ဟ	* 77 %	CIG *	CIG
	cat D	GAC	90 * CCA	2340 * CAC
	SAG O	.40 * GTG	2290 * CCG CC	AAC A
190	* TCC	22, CCC (* TCG	CTC
(7	AAG	. S) V	2330 GTG CCC V
	AAG		2280 • GTG	2. 616
.80	CGG AGG	2230 ATG C	GAC D D	* TCC
	_	* ပ္ပ	TCA	20 * CCG
4	* \$ 4	JCC S	CTG CTG	2320 * TCT CC S E
2 +	CIC AAG	2220 * : AGC	22 TAC Y	* CAG
2170	CIC	SAC *	* 00 0	CAG
4	G GAC (CIG	2260 * CCC CAT P H	2310 * TTC
,	AAG K	2210 * CTG L	2260 CCC C	* D d

FIG. 10L

2400	* CCC	<u> </u>	* GTC	TCC SV
	* AAG	ACT *	ACC O	გ. გ. გ. გ. გ.
	SCC	o O	2490 * : AGC S	2540 * GGC GGG G G
2390	* 900 4	2440 * TTT G	* ACC	* GTG V
2	GTG	* 90 K	ပ္ပ	30 * ACT T
	AAC N	CIG	2480 * GCC TCT A S	2530 * TTC A(
08	* CTG	2430 * CGG	24 9CC	* AAT N
2380	CAC	, O	GTG V	CIG
	* 99 o	ე	70 * CCT	2520 * GCC
	ATC	2420 * GGT GGG G G	2470 * CTG CC	, 56 66 66 7
2370	* 00 00		* CA.	4 99
	* CTG L	CTG	TCC	310 * AGC S
-	CAC	2410 * GCG GCG A A	2460 * CTC L	25 TCC AGC S S
2360	C ACC C	2410 * GCG GC A P	A R	+ TCC
23	A C	GAG ATG	CCT	ညီဗ ဗ
	* ОСС	GAG	450 CCA	2500 * CTG G

FIG. 10M

0	*	ည္ပ	Ġ	640	*	A GGC	Ġ			SSS	6		*	TAC	\}
259		AGC GG	တ		*	S	ф		*	ည္ဟ	ָט			3 AGC	Ś
	*	CAG	ø			F	K	000	*	GTA	>	2730	*	ATG	Σ
		CIG	ы	330	*	GTG	>	2680		ATG	Σ	(4	*	ATG	Σ
580	k	550 5	r.	26		AGT	> S		-k	ည္ပ	U			CAG	a
2	*	TCC	ഗ			999				CAT	Ħ	2720	ķ	ICC	လ
		TG	H	0:	-k	990	ሺ	670	*	CAG	a	27		CTG	니
970	*	16G	3	2620		CTG	u	(4	*	CIG	ы		*	ည္ဟ	A
2570		GAG	ы		*	CCI	ρı			TCC		01	*	AGC	တ
	*	795	ບຸ			AAC	z	999	*	SSS	വ	27.1		GCC AG	X
20	*	B	a	5610	*	A TAC	×	7(ညည	A		*	GCT	K
2560				(4	*	3	a		+k	CAG	a			CIT	ᆸ
	*	AAT	L S L			CCG AAC	Z	20	*	ACA	H	2700	*	AGC	ស
		TIG	H	2600	-k	SSS	Сц	2650		AGC	ഗ		*	AGT	ល
2550	*	AGT	တ	5(ATG GTG	>		*	CCC CTG AGC ACA	H			CAC	茁
()	*	ACC	H		*	ATG	Σ			ညည	വ	2690 2700	*	CIG	니

FIG. 10N

	CAG O	39 CH CH CH CH CH CH CH CH CH CH CH CH CH	2880 . CCA	87	* 5	7	
80	לי	28 AAC N	* & P	CAC H	CAG	Ø	
2780	CIG	* 6 0	र्धु ब	ပ္ပံ့ ဝ * ဗ	2970 * GTG	> .	
	CAC H	୍ଷ ପ		2920 AGC (¢ 2 GAC	۵	
0	* CCT	2820 * CAG	2870 * CAG CCG	* 00 K	Ţ	K	
2770	CAG O	Γ X	CTG L	<u> </u>	60 * CAG	a	
	ACC T	CAG A	\$0 * AGC S	2910 * TCA (29. AGC (S	0
	90 P		2860 CAA AC	* * & & & & & & & & & & & & & & & & & &	* 9 00	۵ ۵	
2760		2810 * AAC III	* & Q	P	回 5	FIG. 10	
	CGG 72	* & o	55.0	2900 TT GGC L G	2950 * GGA G	_U L	-
	ACC	00 * CCA	2850 * CAG	ciri L	* AGT	ဟ	
2750	AGC S	28 28 0	БH	CAC H	CTG	ı	
,7	CTG CCC A	* GTG C	A AAC A	2890 * CAG CCG Q P	2940 *	Ĺų	
•	CTG L	CAG	340 * * DA		* AGO	S	
	CAG GGC Q G	2790 * CAG	S m	* ប្តី ជ	9 90	æ	
2740	SAS O	* ACC	cag o	CCA P	930 * 660	o	

3000							
2990 AGC AGC CTG GCG GTG CAC ACT ATT CTG CCC CAG S S L A V H T I L P Q 3040 * 3050 * 3060 P T S L P S S L V P P 3090 TTC CTG ACG CCC CCC CAG CCC * 3090 TTC CTG ACG CCC CCC CAG CAC CAC CCC * 3090 TTC CTG ACG CCC CCC TCG CAC CAC TAC TCC TTC CTG ACG CCC CCC TCG CAC CAC TAC TCC			AGC S>	0 *	ACC TY	3120	CCT
2990 AGC AGC CTG GCG GTG CAC ACT ATT CTG CCC CAG S S L A V H T I L P Q 3040 * 3050 * 3060 P T S L P S S L V P P 3090 TTC CTG ACG CCC CCC CAG CCC * 3090 TTC CTG ACG CCC CCC CAG CAC CAC CCC * 3090 TTC CTG ACG CCC CCC TCG CAC CAC TAC TCC TTC CTG ACG CCC CCC TCG CAC CAC TAC TCC	3020	*	GAG	307	GTG	*	TCG
2990 AGC AGC CTG GCG GTG CAC ACT ATT CTG S S L A V H T I L 3040 * 3050 * 3060 * 3080 * 3080 * 3080 TC ACG TCG CTG CCA TCC TCG CTG GTC P T S L P S S L V 3100 TTC CTG ACG CCC CCC TCG CAC AGC			CAG Q	*	CCC		TCC
AGC AGC CTG GCG GTG CAC ACT ATT S L A V H T I I I I I I I I I I I I I I I I I I		*	CCC		S P	* 10	TAC
AGC AGC CTG GCG GTG CAC ACT ATT S L A V H T I 3040 * 3050 * 3040 * T S L P S S L 3090 TTC CTG ACG CCC CCC TCG CAC TTC CTG ACG CCC CCC TCG CAC * A A A A A A A A A A A A A A A A A A	0	*	CIG	3060		31	AGC S
2990 AGC AGC CTG GCG S S L A 3040 CCC ACG TCG CTG P T S L 3090 TTC CTG ACG CCC	301		AIT	*	CTG	*	CAC
2990 AGC AGC CTG GCG S S L A 3040 CCC ACG TCG CTG P T S L 3090 TTC CTG ACG CCC		*	ACT		TCG	0 *	CAG O
2990 AGC AGC CTG GCG S S L A 3040 CCC ACG TCG CTG P T S L 3090 TTC CTG ACG CCC			CAC)50 *	သင္သ	31(TCG
2990 AGC AGC CTG GCG S S L A 3040 CCC ACG TCG CTG P T S L 3090 TTC CTG ACG CCC	3000	*	GTG >	3(O P	*	CCC
AGC AGC S S SCC ACG P T TTC CTC	()	*	900 R	*	CIG		CCC PP
AGC AGC S S SCC ACG P T TTC CTC			CIG	0 *	TCG	3090	ACG C
2980 29 CTG GGC CCC AGC L G P S 3030 CCC GCC CTG CCC P A L P 3080 3080 3080 GCA GCC CAG TTC	980	*	AGC S	30,	ACG	*	CTG
2980 CTG GGC CCC L G P 3030 * 1080 P A L 3080 * 1080 *	2.		AGC S	*	CCC P		TTC
2980 cTG GGC L G 3030 * 3030 P A GCA GCC		*	000 P		CIG)80 *	CAG
29£ CHG	20	*	ပ္ပ် ဗ	3030	900 P	3(GCC A
	296		CIG	*	C) Pr	*	GCA

FIG. 10P

GTA ATG
V MY
TTG ATC
L I> 3160 GTT CCT V P 3210 * * * TCA ATT S I * CCT 3150 x CAG GTG Q V 3200 * AAA GGC K G cra cra rcr s 3140 AGC CAC CAG (S H Q 3190 * * * * TCG GAT CCT : GTG GAC V D 3170 * CTA ATG 1 V M 3220 GAA GCT C E A

FIG. 100

AAT GTC CGT GGC CCA GAT GGC TGC 46 Asn Val Arg Gly Pro Asp Gly Cys 10 15								
CGA GGA GGC AGC TCA GAT TTG AGT 94 Arg Gly Gly Ser Ser Asp Leu Ser 25 50				ı Ale				
Ser Ser Ala Asn Ile Ile Thr Asp 40 45	Ser				ı Asp			
CAG GCC CAG ACA GAC CGG ACT GGT 190 Gln Ala Gln Thr Asp Arg Thr Gly 60						Gln		
CGC TAC TCA CGG GCT GAT GCT GCC 238 Arg Tyr Ser Arg Ala Asp Ala Ala 75							Ala	
GAT GCC AAT GCC CAG GAC AAC ATG 286 Asp Ala Asn Ala Gln Asp Asn Met 90 95			Gly					
GTG GCA GCT GAT GCC CAA GGT GTC 334 Val Ala Ala Asp Ala Gln Gly Val 105 110	al							
GTA ACT GAT CTA GAT GCC AGG ATG 382 Val Thr Asp Leu Asp Ala Arg Met 120 125	al	Arg						
CTG GCT GCC CGC CTG GCT GTG GAG 430 Leu Ala Ala Arg Leu Ala Val Glu								

FIG.11A

							AAT Asn		478
							GTC Val		526
							CGA Arg		574
						Ala	CGG Arg 205		622
							AAT Asn		670
							CGG Arg		718
							GTG Val		766
	Gly						GTC Val		814
							ATG Met 285		862

FIG.11B

							•		0							
						GCC Ala										910
						AAG Lys 310										958
						CAA Gln										1006
						TCT Ser										1054
						TCC Ser										1102
CCT Pro	ATG Met	TTG Leu 370	GCC Ala	ACT Thr	GCC Ala	GCC Ala	CCT Pro 375	CCT Pro	GCC Ala	CCA Pro	GTC Val	CAT His 380	GCC Ala	CAG Gln	CAT His	1150
						CTT Leu 390										1198
						TCA Ser										1246
ATT I le	GTG Val	TCT Ser	CCA Pro	GGC Gly 420	AGT Ser	GGC Gly	AGT Ser	GCT Ala	GGA Gly 425	AGC Ser	TTG Leu	AGT Ser	AGG Arg	CTC Leu 430	CAT His	1294
CCA Pro	GTC Val	CCA Pro	GTC Val 435	CCA Pro	GCA Ala	GAT Asp	TGG Trp	ATG Met 440	AAC Asn	CGC Arg	ATG Met	GAG Glu	GTG Val 445	AAT Asn	GAG Glu	1342

FIG.11C

37/68 ACC CAG TAC AAT GAG ATG TTT GGT ATG GTC CTG GCT CCA GCT GAG GGC Thr Gln Tyr Asn Glu Met Phe Gly Met Val Leu Ala Pro Ala Glu Gly 450 ACC CAT CCT GGC ATA GCT CCC CAG AGC AGG CCA CCT GAA GGG AAG CAC Thr His Pro Gly Ile Ala Pro Gln Ser Arg Pro Pro Glu Gly Lys His 465 470 ATA ACC ACC CCT CGG GAG CCC TTG CCC CCC ATT GTG ACT TTC CAG CTC 1486 Ile Ihr Thr Pro Arg Glu Pro Leu Pro Pro Ile Val Thr Phe Gln Leu 480 485 490 ATC CCT AAA GGC AGT ATT GCC CAA CCA GCG GGG GCT CCC CAG CCT CAG Ite Pro Lys Gly Ser Ite Ala Gln Pro Ala Gly Ala Pro Gln Pro Gln 500 505 510 TCC ACC TGC CCT CCA GCT GTT GCG GGC CCC CTG CCC ACC ATG TAC CAG Ser Thr Cys Pro Pro Ala Val Ala Gly Pro Leu Pro Thr Met Tyr Gln 515 520 525 ATT CCA GAA ATG GCC CGT TTG CCC AGT GTG GCT TTC CCC ACT GCC ATG Ile Pro Glu Met Ala Arg Leu Pro Ser Val Ala Phe Pro Thr Ala Met 530 535 540 ATG CCC CAG CAG GAC GGG CAG GTA GCT CAG ACC ATT CTC CCA GCC TAT Met Pro Gin Gin Asp Gly Gin Val Ala Gin Thr Ile Leu Pro Ala Tyr 545 550 555 CAT CCT TTC CCA GCC TCT GTG GGC AAG TAC CCC ACA CCC CCT TCA CAG His Pro Phe Pro Ala Ser Val Gly Lys Tyr Pro Ihr Pro Pro Ser Gln 560 565 570 575 CAC AGT TAT GCT TCC TCA AAT GCT GCT GAG CGA ACA CCC AGT CAC AGT His Ser Tyr Ala Ser Ser Asn Ala Ala Glu Arg Thr Pro Ser His Ser 580 585 590 GGT CAC CTC CAG GGT GAG CAT CCC TAC CTG ACA CCA TCC CCA GAG TCT Gly His Leu Gln Gly Glu His Pro Tyr Leu Thr Pro Ser Pro Glu Ser

FIG.11D

595

600

605

WO 94/07474 PCT/US93/09338

38/68 CCT GAC CAG TGG TCA AGT TCA TCA CCC CAC TCT GCT TCT GAC TGG TCA 1870 Pro Asp Gln Trp Ser Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser 620 615 610 GAT GTG ACC ACC AGC CCT ACC CCT GGG GGT GCT GGA GGA GGT CAG CGG 1918 ASD Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gly Gln Arg 625 630 GGA CCT GGG ACA CAC ATG TCT GAG CCA CCA CAC AAC AAC ATG CAG GTT 1966 Gly Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val 650 640 645 TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT 5055 Tyr Ala GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC 2885 TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT 2142 TTCACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA 2202 ATGCAAGATG AATACAAGCC ITGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT 2952 GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC 5355 TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA 5385 TTCTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG 2442 TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC 2502 CTTTGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT 2562 CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC 2622 TITCAAGTAT GITGITICIT IGGAAAATGG ACATACIGTA TIGIGITCIC CIGCATATAT 2682 CATTCCTGGA GAGAGAAGGG GAGAAGAATA CITITCTTCA ACAAATTTTG GGGGCAGGAG 2742 ATCCCTTCAA GAGGCTGCAC CTTAATTTTT CTTGTCTGTG TGCAGGTCTT CATATAAACT 2802

FIG.11E

SUBSTITUTE SHEET (RULE 26)

TTACCAGGAA GAAGGGTGTG AGTTTGTTGT TTTTCTGTGT ATGGGCCTGG TCAGTGTAA	A 2868
GTTTTATCCT TGATAGTCTA GTTACTATGA CCCTCCCCAC TTTTTTAAAA CCAGAAAAA	G 2928
GTTTGGAATG TTGGAATGAC CAAGAGACAA GTTAACTCGT GCAAGAGCCA GTTACCCAC	2982
CACAGGTCCC CCTACTTCCT GCCAAGCATT CCATTGACTG CCTGTATGGA ACACATTTG	T 3042
CCCAGATCTG AGCATTCTAG GCCTGTTTCA CTCACTCACC CAGCATATGA AACTAGTCTT	3102
AACTGTTGAG CCTTTCCTTT CATATCCACA GAAGACACTG TCTCAAATGT TGTACCCTTC	3162
CCATTTAGGA CTGAACTTTC CTTAGCCCAA GGGACCCAGT GACAGTTGTC TTCCGTTTGT	3222
CAGATGATCA GTCTCTACTG ATTATCTTGC TGCTTAAAGG CCTGCTCACC AATCTTTCTT	3282
TCACACCGTG TGGTCCGTGT TACTGGTATA CCCAGTATGT TCTCACTGAA GACATGGACT	3342
TTATATGTTC AAGTGCAGGA ATTGGAAAGT TGGACTTGTT TTCTATGATC CAAAACAGCC	3402
CTATAAGAAG GTTGGAAAAG GAGGAACTAT ATAGCAGCCT TTGCTATTTT CTGCTACCAT	3462
TICTITICCI CIGAAGCGGC CATGACATIC CCTITGGCAA CTAACGTAGA AACTCAACAG	3522

FIG.11F

WO 94/07474 PCT/US93/09338

40/68

AACATTITCC TITCCTAGAG TCACCTITTA GATGATAATG GACAACTATA GACTTGCTCA 3582 TTGTTCAGAC TGATTGCCCC TCACCTGAAT CCACTCTCTG TATTCATGCT CTTGGCAATT 3642 TCTTTGACTT TCTTTTAAGG GCAGAAGCAT TTTAGTTAAT TGTAGATAAA GAATAGTTTT 3702 CTTCCTCTTC TCCTTGGGCC AGTTAATAAT TGGTCCATGG CTACACTGCA ACTTCCGTCC 3762 AGTGCTGTGA TGCCCATGAC ACCTGCAAAA TAAGTTCTGC CTGGGCATTT TGTAGATATT 3822 AACAGGTGAA TTCCCGACTC TTTTGGTTTG AATGACAGTT CTCATTCCTT CTATGGCTGC 3882 AAGTATGCAT CAGTGCTTCC CACTTACCTG ATTTGTCTGT CGGTGGCCCC ATATGGAAAC 3942 CCTGCGTGTC TGTTGGCATA ATAGTTTACA AATGGTTTTT TCAGTCCTAT CCAAATTTAT 4002 TGAACCAACA AAAATAATTA CTTCTGCCCT GAGATAAGCA GATTAAGTTT GTTCATTCTC 4062 TGCTTTATTC TCTCCATGTG GCAACATTCT GTCAGCCTCT TTCATAGTGT GCAAACATTT 4122 TATCATTCTA AATGGTGACT CTCTGCCCTT GGACCCATTT ATTATTCACA GATGGGGAGA 4182 ACCTATCTGC ATGGACCCTC ACCATCCTCT GTGCAGCACA CACAGTGCAG GGAGCCAGTG 4242 GCGATGGCGA TGACTTTCTT CCCCTG 4268

FIG. 11G

FIG.12A

SUBSTITUTE SHEET (RULE 26)

4	3	/	6	8
Ŧ	J	,	ν	U

PVGVGMGGNL PSPYDTSSMYSNAMAAPL ANGNPNTGAKQPRSYEDC I KNAQSMQSL QGNGL DM1KL DNYAYSMGSPR-DQSPSMPL HILL TSMPESQL GMNH I NMA	SNLHEMO	APOSRPPEGKYOGLPSTRLATOPHLVOTOQVOPONLOMODONLOPANIOOOOOSLOPPPPPPRANGFLPTMYOIPEMARL-P AASALSOMMSYOGLPSTRLATOPHLVOTOQVOPONLOMODONLOPANIOOOOOSLOPPPPPPPROPHLGVSSAASGHLGRSFLSGEPSQADVOPLGP STNTLSPIIYOGLPNTRLATOPHLVOTOQVOPONLOIOPONLOPPSOPHLSVSSAANGHLGRSFLSGEPSQADVOPLGP PATTLSOMMIYOAMPNIRLANOPHLMAAOOMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOHN-SSTISTHINSPFCSSDISOTDLOOM VGOGPONSPVSLGIISPTGSDMGIMLAPPOSSKNSAIMOTISPOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
2218	2250	2354
2209	2242	2344
2214	2247	2343
2285	2390	2495
hNSk	hNSk	hNSk
IAN-1	IAN-1	TAN-1
rat NDICH	rat NDICH	rat NDICH
XENDPUS NDICH	XENDPUS NDICH	XENDPUS NDICH
. DRDSDPH NDICH	DRUSOPH NDICH	DRUSOPH NOTCH
د_ل_ا	SUBSTITUTE SHE	ET (RULE 26)

PEST-CONTAINING REGION

S---10SSMSG-SSPSTNMLSPSSQHNQQAFYQYL|IPSSQHS-----GGHTPQHLVQTL-D-SYPIPSPESPGHVSSSSPRSN-SDVSEGVQSPAA

2423 2416 2599

> XENDPUS NOTCH DROSOPH NOTCH

hNSk TAN-1 rat NDICH

2448

SVAFPTAMMPQQDGQVAQTILPAYHPFPASVGKYHITPPSQHSYASSNAAERIPSHSGHLQGEHPYLTPSPESPDQVSSSSPHSA-SDVSDVTTSPTP

SSLAVHTILPO-ESPALPTSLPSSLVPPVTAAOFL|TPPSQHSY-SS-PVENTPSHOLOVP-EHPFLTPSPESPDOWSSSSPHSNVSDWSEGVSSPPT SSLPVHT IL PO-ESQAL PTSL PSSMVPPMTTTQFL|TPPSQHSY-SSSPVDNTPSHQLQVP-EHPFL TPSPESPDQWSSSSRHSNI SDWSEGI SSPPT SSNN I HSVMPQ-DTQIF AASLPSNL TQSMTTAQFL|TPPSQHSY-SS-PMDNTPSHQLQVP-DHPFLTPSPESPDQVSSSSPHSNMSDVSEGTSSPPT

FIG. 12C

			Potenti	al signal c	leavage sit	e. <u>]</u>	
hum N	MD		AI RDAI	EWALL ALWIC	CAAPA	Ψ	
TAN-1						RG-P	
Xen N	MD					QGL	
Dros N		RAPNTWICFW				RGTDTAL VA'A	
hum N						COVGFTGKEC	
Tan-1						CPPGWSGKSC	>
Xen N						CPPGWTGDSC	
Dros N	GRPG1SCKCP	LGFDESLCEI	AVPNAC-DHV	TCLNGGTCQL	KT-LEEYTCA	CANGYTGERC	.
-	NLPGSYQCQC						
TAN-1	NEVGSYRCVC						
Xen N	· NEFGSYRCTC						
Dros N	: NTHGSYQCMC	PTGYTGKDCD	TKYNPCSPSP	CQNAG I CRSN	G-LSYECKCP	KGFEGKNCEQ	İ
· · ·		<u> </u>	- 				
	EGF-like Re	epeats	- 			 	
			GTGYCKCPEG	FLGEYCOHRD	PCE-KNRCQN	GGTCVAQA	 83
	QCRDGYEPCV	NEGMCVTYHN				GGTCVAQA AGTCHVVDRR	83 80
	QCRDGYEPCV RCSQPGETCL	NEGMCVTYHN NGGKCEA-AN	GTEACVCGGA	FVGPRCQDPN	PCL-STPCKN		_
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG	GTEACVCGGA GTGVCLCGNL	FVGPRCQDPN YFGERCQFPN	PCL-STPCKN PCT1KNQCMN	AGTCHVVDRR	80
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE	PCL-STPCKN PCT1KNQCMN PCN-SMRCQN TDVNEC-DIP	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL	80 90 117
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGQCLPF	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC —EASYICHC	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR	PCL-STPCKN PCTIKNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH	80 90 117 199 196
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP QQADPCASNP	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGCLPF CANGGKCLPF	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC —EASYICHC —EIQYICKC	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR PPGFHGATCK	PCL-STPCKN PCTIKNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP QDINEC-S-Q	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH NPCKNGGQC1	80 90 117 199 196 195
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP QQADPCASNP	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGCLPF CANGGKCLPF	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC —EASYICHC —EIQYICKC	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR PPGFHGATCK	PCL-STPCKN PCTIKNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP QDINEC-S-Q	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH	80 90 117 199 196
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP QQADPCASNP ETKNLCASSP	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGQCLPF CANGGKCLPF CRNGATCTAL	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC —EASYICHC —EIQYICKC AGSSSFTCSC	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR PPGFHGATCK PPGFTGDTCS WTGQFCTEDV	PCL-STPCKN PCT1KNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP QDINEC-S-Q YDIEEC-Q-S DECLLQPNA-	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH NPCKNGGQC1 NPCKYGG1CV CQNGGTCANR	80 90 117 199 196 195 233 318
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP QQADPCASNP ETKNLCASSP NIDDCPNHRC NIDDCPGNNC	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGQCLPF CANGGKCLPF CRNGATCTAL QNGGVCVDGV KNGGACVDGV	GTEACVCGGA GTGVCLCGNL GKTYCACDSH —ANQFSCKC —EASYICHC —EIQYICKC AGSSSFTCSC NTYNCRCPPQ NTYNCPCPPE	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR PPGFHGATCK PPGFTGDTCS WTGQFCTEDV WTGQYCTEDV	PCL-STPCKN PCT1KNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP QDINEC-S-Q YDIEEC-Q-S DECLLQPNA- DECQLMPNA-	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH NPCKNGGQC1 NPCKYGG1CV CQNGGTCANR CQNGGTCHNT	80 90 117 199 196 195 233 318 315
	QCRDGYEPCV RCSQPGETCL RCTQTAEMCL SCTSVG—CQ QWTDACLSHP QQADPCASNP QQADPCASNP ETKNLCASSP NIDDCPNHRC NIDDCPSNNC	NEGMCVTYHN NGGKCEA-AN NGGRCEMTPG NGGTCVTQLN CANGSTCTTV CANGGCLPF CANGGKCLPF CRNGATCTAL QNGGVCVDGV KNGGACVDGV RNGGTCVDGV	GTEACVCGGA GTGVCLCGNL GKTYCACDSH ANQFSCKCEASYICHCEIQYICKC AGSSSFTCSC NTYNCRCPPQ NTYNCRCPPD	FVGPRCQDPN YFGERCQFPN YVGDYCEHRN LTGFTGQKCE PPSFHGPTCR PPGFHGATCK PPGFTGDTCS WTGQFCTEDV WTGQYCTEDV WTGQYCTEDV	PCL-STPCKN PCT1KNQCMN PCN-SMRCQN TDVNEC-DIP QDVNECGQKP QD1NEC-S-Q YD1EEC-Q-S DECLLQPNA- DECQLMPNA- DECQLMPNA-	AGTCHVVDRR FGTCEPVLQG GGTCQVTFRN GHCQHGGTCL RLCRHGGTCH NPCKNGGQC1 NPCKYGG1CV CQNGGTCANR	80 90 117 199 196 195 233 318

FIG.13A

hum N	NGGYGCVCVN	GWSGDDCSEN	IDDCAFASCT	PGSTCIDRVA	SFSCMCPEGK	AGLLCHLDDA
TAN-1	HGGYNCVCVN	GWTGEDCSEN	IDDCASAACF	HGATCHDRVA	SFYCECPHGR	TGLLCHLNDA
Xen N	YGGYNCVCVN	GWTGEDCSEN	IDDCANAACH	SCATCHDRVA	SFYCECPHGR	TGLLCHLDNA
Dros N	HGSYSCICVN	GWAGLDCSNN	TDDCKQAACF	YGATCIDGVG	SFYCQCTKGK	TGLLCHLDDA
hum N					TCLCMPGFKG	
TAN-1	SFECQCLQGY	TGPRCE IDVN	ECVSNPCQND	ATCLDQIGEF	QCMCMPGYEG	VHCEVNTDEC
Xen N	SFQCNCPQGY	AGPRCE IDVN	ECLSNPCQND	STCLDQIGEF	QCICMPGYEG	LYCETNIDEC
Dros N	SYRCNCSQGF	TGPRCETNIN	ECESHPCONE	GSCLDDPGTF	RCVCMPGFTG	TQCEIDIDEC
hum N	ATGFTGVLCE	ENIDNCOPDP	CHHCQCQDG I	DSYTCICNPG	YMGAICSDQI	DECYSSPCLN
TAN-1	TEGYTGTHCE	VDIDECDPDP	CHYGSCKDGV	ATFTCLCRPG	YTGHHCETNI	NECSSQPCRL
Xen N	TEGFTGRHCE	QDINECIPDP	CHYGTCKDGI	ATFTCLCRPG	YTGRLCDND1	NECLSKPCLN
Dros N	PPGYTGTSCE	ININDCDSNP	CHRGKCIDDV	NSFKCLCDPG	YTGYICQKQI	NECESNPCQF

CISNPCHKGA	LCDTNPLNGQ	YICTCPQGYK	GADCTEDVDE	CAMANSNPCE	HAGKCVNTDG	. 438
					HAGKCINTLG	
CISNPCNEGS	NCDTNPVNGK	AICTCPPGYT	GPACNNDVDE	CSLG-ANPCE	HGGRCTNTLG	433
CTSNPCHADA	ICDTSPINGS	YACSCATGYK	GVDCSEDIDE	CDQG—SPCE	HNG I CVNTPG	470
						-
QSNPCVNNGQ	CVDKVNRFQC	LCPPGF TGPV	COIDIDDCSS	TPCLNGAKC1	DHPNGYECQC	- 558
ASSPCLHNGR	CLDKINEFQC	ECPTGF TGHL	COYDVDECAS	TPCKNGAKCL	DGPNTYTCVC	554
ASNPCLHNGK	CIDKINEFRC	DCPTGFSGNL	CQHDFDECTS	TPCKNGAKCL	DGPNSYTCQC	553
QSNPCLNDGT	CHDKINGFKC	SCALGF TGAR	CQINIDDCQS	QPCRNRGICH	DSIAGYSCEC	. 590
						•
DGRCIDLVNG	YQCNCQPGTS	GVNCE I NFDD	CASNPC IHG-	ICMDG INRYS	CVCSPGF TGQ	677
				TCLDKIDGYE		673
GGQCTDRENG	YICTCPKGTT	GVNCETKIDD	CASNLCDNG-	KCIDKIDGYE	CTCEPGYTGK	672
DGHCQDRVGS	YYCQCQAGTS	GKNCEVNVNE	CHSNPCNNGA	TCIDGINSYK	CQCVPGFTGQ	710

FIG.13B

hum N TAN-1 Xen N Dros N	RCNIDIDECA SNPCRKGATC INGVNGFRCI CPEGPHHPSC YSQVNECLSN PCI-HGNCTG MCNSNIDECA GNPCHNGGTC EDGINGFTCR CPEGYHDPTC LSEVNECNSN PCV-HGACRD LCNININECD SNPCRNGGTC KDQINGFTCV CPDGYHDHMC LSEVNECNSN PCI-HGACHD HCEKNVDECI SSPCANNGVC IDQVNGYKCE CPRGFYDAHC LSDVDECASN PCVNEGRCED
hum N TAN-1 Xen N Dros N	DECASNPCLN QGTCFDDISG YTCHCVLPYT GKNCQTVLAP CSPNPCENAA VCKESPNFES NECASNPCLN KGTCIDDVAG YKCNCLLPYT GATCEVVLAP CAPSPCRNGG ECRQSEDYES NECSSNPCLN HGTCIDDVAG YKCNCMLPYT GAICEAVLAP CAGSPCKNGG RCKESEDFET DDCVTNPCGN GGTCIDKVNG YKCVCKVPFT GRDCESKMDP CASNRCKNEA KCTPSSNFLD
hum N TAN-1 Xen N Dros N	CLANPCONGG SCMDGVNTFS CLCLPGFTGD KCQTDNMECL SEPCKNGGTC SDYVNSYTCK CRPNPCHNGG SCTDGINTAF CDCLPGFRGT FCEEDINECA SDPCRNGANC TDCVDSYTCT CQPNPCHNGG SCSDGINMFF CNCPAGFRGP KCEEDINECA SNPCKNGANC TDCVNSYTCT CASFPCONGG TCLDGIGDYS CLCVDGFDGK HCETDINECL SQPCONGATC SQYVNSYTCT

_							
	GLSGYKCLCD	AGWVG INCEV	DKNECLSNPC	QNGGTCDNLV	NGYRCTCKKG	FKGYNCQVNI	796
	SLNGYKCDCD	PGWSGTNCDI	NNNECESNPC	VNGGTCKDMT	SGIVCTCREG	FSGPNCQTNI	792
	GVNGYKCDCE	AGWSGSNCDI	NNNECESNPC	MNGGTCKDMT	GAYICTCKAG	FSGPNCQTNI	791
	GINEFICHCP	PGYTGKRCEL	DIDECSSNPC	QHGGTCYDKL	NAFSCQCMPG	YTGQKCETNI	830
	YTCLCA-PGW	QGQRCTIDID	EC-ISKPCMN	HGLCHNTQGS	YMCECPPGFS	GMDCEEDIDD	914
	FSCVCPTAGA	KGQTCEVDIN	EC-VLSPCRH	GASCQNTHGG	YRCHCQAGYS	GRNCETDIDD	911
	FSCECP-PGW	QGQTCE IDMN	EC-VNRPCRN	GATCONTNGS	YKCNCKPGYT	GRNCEMDIDD	909
	FSCTCK-LGY	TGRYCDEDID	ECSLSSPCRN	GASCLNVPGS	YRCLCTKGYE	GRDCAINTDD	949
	CQAGFDGVHC	ENNINECTES	SCFNGGTCVD	GINSFSCLCP	VGFTGSFCLH	EINECSSHPC	1034
	CPAGFSG IHC	ENNTPDCTES	SCFNGGTCVD	GINSFTCLCP	PGFTGSYCQH	VVNECDSRPC'	1031
	COPGFSGIHC	ESNTPDCTES	SCFNGGTCID	GINTFTCQCP	PGFTGSYCQH	DINECDSKPC	1029
	CPLGFSG INC	QTNDEDCTES	SCLNGGSCID	GINGYNCSCL	AGYSGANCQY	KLNKCDSNPC	1069

FIG.13C

hum N	LNEGTCVDGL GTYRCSCPLG YTGKNCQTLV NLCSRSPCKN KGTCVQKKAE SQCLCPSGWA
TAN-1	LLGGTCQDGR GLHRCTCPQG YTGPNCQNLV HWCDSSPCKN GGKCWQTHTQ YRCECPSGWT
Xen N	LNGGTCQDSY GTYKCTCPQG YTGLNCQNLV RWCDSSPCKN GGKCWQTNNF YRCECKSGWT
Dros N	LNGATCHEON NEYTCHCPSG FTGKQCSEYV DWCGQSPCEN GATCSQMKHQ FSCKCSAGWT
hum N	ISNPCQHGATC SDFIGGYRCE CVPGYQGVNC EYEVDECQNQ PCQNGGTCID LVNHFKCSCP
TAN-1	PSPCQNGATC TDYLGGYSCK CVAGYHGVNC SEEIDECLSH PCQNGGTCLD LPNTYKCSCP
Xen N	PNPCQNGATC TDYLGGYSCE CVAGYHGVNC SEEINECLSH PCQNGGTCID LINTYKCSCP
Dros N	SQPCQNGGTC RDLIGAYECO CROGFOGONC ELNIDDCAPN PCQNGGTCHD RVMNFSCSCP
hum N	CLSNPCSSEG SLDCIQLTND YLCVCRSAFT GRHCETFVDV CPOMPCLNGG TCAVASNMPD
TAN-1	CLSNPCDARG TONCVORVND FHCECRAGHT GRRCESVING CKGKPCKNGG TCAVASNTAR
Xen N	CLSNPCDSRG TONCIQUEND YRCECROGFT GRRCESVVDG CKGMPCRNGG TCAVASNTER
Dros N	CLSNPCSNAG TLDCVQLVNN YHCNCRPGHM GRHCEHKVDF CAQSPCQNGG NCN 1-RQS

```
GAYCDVPNVS CDIAASRRGV LVEHLCQHSG VCINAGNTHY CQCPLGYTGS YCEEQLDECA 1154
GLYCDVPSVS CEVAAQRQGV DVARLCQHGG LCVDAGNTHH CRCQAGYTGS YCEDLVDECS 1151
GVYCDVPSVS CEVAAKQQGV DIVHLCRNSG MCVDTGNTHF CRCQAGYTGS YCEEQVDECS
GKLCDVQTIS CQDAADRKGL SLRQLC-NNG TCKDYGNSHV CYCSQGYAGS YCQKEIDECQ
PGTRGLLCEE NIDDCAR --- GPHCLN GGOCMDRIGG YSCRCLPGFA GERCEGDINE 1267
RGTQGVHCEI NVDDCNPPVD PVSRSPKCFN NGTCVDQVGG YSCTCPPGFV GERCEGDVNE
                                                                  1271
RGTQGVHCEI NVDDCTPFYD SFTLEPKCFN NGKCIDRVGG YNCICPPGFV GERCEGDVNE
                                                                  1269
PGTMG11CE1 NKDDCKP-----GACHN NGSCIDRVGG FECVCQPGFV GARCEGDINE
                                                                  1300
GFICRCPPGF SGARCQS—— SCGQVKCRKG EQCVHTAS— GPRCFCPSP——RDCES—
                                                                  1376
GFICKCPAGF EGATCENDAR TCGSLRCLNG GTCISGPR— SPTCLCLGPF TGPECQFPAS
                                                                 1389
GFICKCPPGF DGATCEYDSR TCSNLRCONG GTCISVLT- SSKCVCSEGY TGATCQYPVI
                                                                 1387
CHHCICNNGF YGKNCELSGQ DCDSNPCRVG -NCVVADEGF GYRCECPRGT LGEHCEIDTL
                                                                 1415
```

FIG. 13D

hum N	-GC-ASSPCQ HGGSCHPQRQ PPYYSCOCAP PFSGSRCELYTAPPSTPP
TAN-1	SPCLGGNPCY NOGTCEPTSE SPFYRCLCPA KFNGLLCHIL DYSFGG
Xen N	SPC-ASHPCY NGGTCOFFAE EPFFQCFCPK NFNGLFCHIL DYEFPG
Dros N	DEC-SPNPCA OGAACEDLLG D-YECLCPS KWKGKRCDIY DANYPGWNGG SGSGNDRYAA
hum N	NN-OCDELON TVECLEDNEE COGNSKTCKYDKYCADHE KDNHCNOGON SEECGWDGLD
TAN-1	SDGHCDSQCN SAGCLFDGFD CQRAEGQCNP LYDQYCKDHF SDGHCDQGCN SAECEWDGLD
Xen N	NDGKCDSQCN NTGCLYDGFD CQKVEVQCNP LYDQYCKDHF QDGHCDQGCN NAECEWDGLD
Dros N	KNGKCNEECN NAACHYDGHD CERKLKSCDS LFDAYCQKHY GDGFCDYGCN NAECSWDGLD
hum N	YYGEKSAAWK KQ—R——————————————————————————————————
TAN-1	WIRRSL POEU LEVAUSKYFL
	YYGREEELRK HPIKRAAEGW AAPDALLGQV KASLLPGGSE GGRRRRELDP MDVRGSIVYL
Xen N	YYGNEEELKK HHIKRSTDYW SDAPSAIFSTMKESIL LGRHRRELDE MEVRGSIVYL
Dros N	WKDNVRVPEI EDTDFARKNK ILYTQQVHQTGIQIYL

LNR (Notch/Lin-12 Repeats)

-	_						
	ATCL	SQYCADKARD	GVCDEACNSH	ACOWDGGDCS	LTMENPWANC	SSPLPCWDYI	1476
	LILE-ALE	LPECCEDAGN	KVCSLQCNNH	I ACGWDGGDCS	5 LNFNDPWKNC	TOSLOCWKYF	1501
	DNDDICE	NEQCSELADN	KVCNANCNNH	ACGWDGGDCS	LNFNDPWKNC	TOSLOCWKYF	1498
	DLEQQRAMCD	KRGCTEKQGN	GICDSDCNTY	ACNFDGNDCS	G LGI-NPWANC	TAN-EXWNKF	1531
	_						•
	CA'ADQPEN-L	AEGTLVIVVL	MPPEQLLQDA	R-SFLRALGT	LLHTNLRIKR	DSQGELMVYP	1591
	CAEHVPER-L	AAGTL-VVVV	LMPPEQLRNS	SFHFLRELSR	VLHTNVVFKR	DAHGQQMIFP	1619
	C-:ANMPEN-L	AEGTLVLVVL	MPPERLKNNS	V-NFLRELSR	VLHTNVVFKK	DSKGEYKTYP	1615
	CENKTQSPVL	aegamsvvml	MNVEAFREIQ	A-QFLRNMSH	MLRTTVRLKK	DALGHDIIIN	1650
						TM	
	EIDNRQCVQD	SDHCFKNTDA	AAALLASHAI	QGTLSYP	LVSVVSESLT	PERT-O-LLY	1680
	EIDNRQCVQA	SSQCFQSATD	VAAFLGALAS	LGSL-NIPYK	IEAVQSETVE	PPPPAO-1 HF	1737
	EIDNRQCYKS	SSQCFNSATD	VAAFLGALAS	LGSLDTLSYK	IEAVKSENME	TPKPST-LYP	1730
	EIDNRKCTEC	FTHAVEAAEF	LAATAAKHQL	RNDFQ-IHSV	RGIKNPGDED	NGEPPANVKY	1745
_							

FIG.13E

hum N	LLAVAVVIIL FIILLGVIMA KRKRK—HGS LWLPEGFTLR RDASNHKRRE	PVGODAVGI K
TAN-1	MYVAAAAFVL LFFVGCGVLL SRKRRRQHGQ LWFPEGFKV- SEASKKKRRE	ELGEDSVGLK
Xen N	IMLSMLVIPLL IIFVFMMVIV NKKRRREHDS FGSPTALFOK NPA-KRNGET I	PW-FDSVGLK
Dros N	VITCIILVII ALAFFOMVLI STORKRAHGV TWFPEGFRAP AAVMSRRRRD I	PHGOEMRNI N
	CDC-10/Ankyr	
hum N	PIDRRPWTQQ HLEAADIRRT PSLALTPPQA EQEVDVLDVN VRGPDGCTPL A	MLASLRGGSS
TAN-1	QTDHRQWTQQ HLDAADL-RM SAMAPTPPQG EVDADCMDVN VRGPDGFTPL A	MIASCSGGGL
Xen N	KTDPROWTRQ HLDAADL-RI SSMAPTPPQG EIEADCMDVN VRGPDGFTPL N	MIASCSGGGL
Dros N	EADQRVWSQA HLDVVDV-R- AIM-TPP-A HQDGGKHDVD ARGPCGLTPL N	AI AAVRGGGL
hum N	ANAQDNMGRC PLHAAVAADA QGVFQILIRN RVTDLDARMN DGTTPLILAA R	LAVEGMVAE
TAN-1	ANIQDNMGRT PLHAAVSADA QGVFQILIRN RATDLDARMH DGTTPLILAA R	LAVEGMLED
Xen N	: ANVQDNMGRT PLHAAVAADA QGVFQILIRN RATDLDARMF DGTTPLILAA R	LAVEGMVEF
Dros N	ANCODNIGRI PLHAAVAADA MGVFQILLRN RAINLNARMH DGIIPLILAA R	LAIEGMVED

```
NLSVQVSEAN LIGTGTSEHW VDDE-
                            -- G PQPKKVKAED EALLSE-EDD
                                                             1782
1837
                                                             1831
KQVAMQSQCV GQPGAH---W SDDESDMPLP KRQRSDPVSG VGLGNNGGYA SDHTMVSEYE
                                                             1861
DLSDEDEDAE DSSANIITDL VYQGASLQAQ TDRTGEMALH LAARYSRADA AKRLLDAGAD
                                                             1902
ETGNSEEE-E DAPA-VISDF IYQGASLHNQ TDRTGETALH LAARYSRSDA AKRLLEASAD
                                                             1954
ETGNSEEE-E DASANMISDF IGQGAQLHNQ TDRTGETALH LAARYARADA AKRLLESSAD
                                                             1949
DTGEDIENNE DSTAQVISDL LAQGAELNAT MDKTGETSLH LAARFARADA AKRLLDAGAD
                                                             1976
LINCOADVNA VDDHGKSALH WAAAVNNVEA TLLLLKNGAN RDMODNKEET PLFLAAREGS
                                                             2022
LINSHADVNA VDDLGKSALH WAAAVNNVDA AVVLLKNGAN KDMQNNREET PLFLAAREGS
                                                             2074
LINAHADVNA VDEFGKSALH WAAAVNNVDA AAVLLKNSAN KDMQNNKEET SLFLAAREGS
                                                            2069
LITADADINA ADNSGKTALH WAAAVNNTEA VNILLMHAN RDAQDDKDET PLFLAAREGS
                                                            2096
```

FIG. 13F

							1
hum N	YEAAKILLDH	FANRDITDHM	DRLPRDVARD	RMHHDIVRLL	DEYNVTPSPP	-GTVL-TS	
TAN-1	YETAKVLLDH						
	YETAKVLLDH						
	YEACKALLDN						
0,05 11	TENOIOREEDIN		DILLI NOTTISE	(CIDIO I VILL	<i>DE</i>	incom: qrui	
	NLS		רע וו	cdc2	cdc2		
hum N		אייטו כב ככ		SPHTYVSDTT			
TAN-1				SPHGYLSDVA			
Xen N				STHCYLSDVA			—
Dros N		1620KKKA22	KK I SAASKKA	ANLNGLNPGQ	LIGGVSGVPG	VPF INSAAQA	
	BNTS	•					
					0.101.0	40040141401	
hum N				ITSPGIL <u>OA</u> S		· · · · · · · · · · · · · · · · · · ·	
TAN-1				LPSPFQQS			
Xen N				MTSPF-QQS			
Dros N	YEDCIKNAQS	MQSLQGNGLD	MIKLDNYAYS	MGSPFOQE	LLNGQGLGMN	GNGQRNGVGP	
	CK II			cdc2			ノー
İ						NLAKEAKDAK	
						KEAKDLK	
1						KEAKELK	
	GSPPPGQQQP	QLITQPTVIS	AGNGGNNGNG	NASGKQSNQT	AKQKAA	KKAKL IE	2208
1							
1							2169
							2219
							2213
	ΑΔΑΔΑΔΑΛΑ	MSHFI FGSPV	GVGMGGNI PS	PYDISSMYSN	AMAAPLANGN	PNTGAKQPPS:	2327
						_	
	AI CECNI LIEM			-PLAHGASTV	I PSVSOLI SH	HHIVSPGS-	2235
				LPVASGTSTV			2306
1	FINAWALVLEW	WILDOODLIN	FLIGHTINESH	C1 147201314	LUJJJJUUNLII	. 1100313EN	2300

FIG.13G

INMAT-KQEM AA-GSNRMA FDAMVPRLTH L-NASSPNTI MS-NGSMH FTVGGAPTMN 2294 GVLPGGLCGM GGLSGAGNGN SHEQGLSPPY SNQSPPHSVQ SSLALSPHAY LGSPSPAKSR 2445

hum N	GSAGSLSRLH PVPVPADW MNRMEVNETQ YNEMFGMVLA PAEG-THPGI APOSRPPEGK
TAN-1	GQCEWLSRLQ SGMVPNQYNP LRGSVAPGPL STQAPSLQHG -MVGPLHSSL AASALSQMMS
Xen N	SQCDWLARLQ NGMVQNQYDP IRNGIQQGN- AQQAQALQHG LMTS-LHNGL PATTLSQMMT
Dros N	PSLPTSPTHI QAMRHATQQK QFGGSNLNSL LGGANGGGVV GGGGGGGGV GQGPQNSPVS
hum N	APOPOSTOPP AVAGPLPTMY QIPEM ARL-PSVAFP TAMMPQQDGQ VAQTILPAYH
TAN-1	PPQPHLGVSS AASGHLGRSF LSGEPSQADV QPLGPSSLAV HTILPQ-ESP ALPTSLPSSL
Xen N	MQQQHHN-SS TTSTHINSPF CSSDISQTDL QQM-SSNNI HSVMPQ-DTQ IFAASLPSNL
Dros N	QQQLGGLEFG SAGLDLNG-F CGSPDSFHSG QMNPPS I QSSMSG-SSP STNMLSPSSQ
hum N	SDWSDVTTSP TPGGAGGGQR GPGTHMSEPPHNN MQVYA
TAN-1	SDWSEGVSSP PTSMQ SQIARIPEAFK
Xen N	SDWSEGISSP PTSMQ PORTHIPEAFK
Dros N	SDWSEGVQSP AANNLYISGG HQANKGSEAIYI
	<u> </u>

```
-HITTPRE PLPP-IV-TF QLIPKGSIAQ PAG-
                                                                    2320
           -YQGLPSTRL ATQPHLVQTQ QVQPQNLQMQ QQNLQPANIQ QQQSLQPPPP
                                                                    2414
           -YQAMPNTRL ANQPHLMQAQ QMQQQQN----
                                                          -LQLHQS
                                                                    2384
LGIISPTGSD MGIMLAPPQS SKNSAIMQTI SPQQQQQQQQ QQQQQHQQQQ QQQQQQQQQ
                                                                    2565
           PEST -containing Region
PFPASVGKYP TPPSQHSYAS SNAAERTPSH SGHLQGEHPY LTPSPESPDQ WSSSSPHSA-
                                                                    2433
VPPVTAAQFL !TPPSQHSY-S S-PVENTPSH QLQVP-EGPF LTPSPESPDQ WSSSSPHSNV
                                                                    2530
TQSMTTAQFL | TPPSQHSY-S S-PMONTPSH QLQVP-DHPF LTPSPESPDQ WSSSSPHSNM
                                                                    2497
HNQQAFYQYL !TPSSQHS--- ---GCHTPQH LVQTL-D-SY PTPSPESPGH WSSSSPRSN-
                                                                    2671
                                                                    2471
                                                                    2556
                                                                    2523
                                                                    2703
```

FIG.13H

FIG.14

FIG. 15A

FIG. 15B

FIG. 16A

FIG. 16B

WO 94/07474 PCT/US93/09338

57/68 PALR PALL WALLAL WIC CAAPAHALOC> CGAGATGGCT ATGAACCCTG TGTAAATGAA GGAATGTGTG TTACCTACCA CAATGGCACA GGATACTGCA AATGTCCAGA AGGCTTCTTG RDG YEPC VNE GMC VIYH NGI GYC KCPE GFL> * . GGGGAATATT GTCAACATCC AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGAACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC GEY COHR DPC EKN RCON GGT CVA OAMI GKA> ACCIGCCGAT GIGCCTCAGG GITTACAGGA GAGGACTGCC AGTACTCAAC ATCICATCCA IGCTITGTGT CTCGACCCTG CCTGAATGCC TCR CASG FTG EDC QYST SHP CFV SRPC LNG> GGCACATGCC ATATGCTCAG COGGGATACC TATGAGTGCA CCTGTCAAGT CGGGTTTACA GGTAAGGAGT GCCAATGGAC GGATGCCTGC G T C H M L S R D T Y E C T C O V G F T G K E C O W T D A C> CTGTCTCATC CCTGTGCAAA TGGAAGTACC TGTACCACTG TGGCCAACCA GTTCTCCTGC AAATGCCTCA CAGGCTTCAC AGGGCAGAAA LSH P C A N G S T C T T V A N Q F S C K C L T G F T G Q K> TGTGAGACTG ATGTCAATGA GTGTGACATT CCAGGACACT GCCAGCATGG TGGCACCTGC CTCAACCTGC CTGGTTCCTA CCAGTGCCAG CET DVNE CDIPGH CQHG GTC LNL PGSY QCO> TGCCCTCAGG GCTTCACAGG CCAGTACTGT GACAGCCTGT ATGTGCCCTG TGCACCCTCA CCTTGTGTCA ATGGAGGCAC CTGTCGGCAG CPQ GFTG QYC DSL YVPC APS PCV NGGT CRO ACTIGGTIGACT TCACTITTIGA GTIGCAACTIC CTTCCAGGTT TIGAAGGGAG CACCTGTGAG ACGAATATTG ATGACTGCCC TAACCACAGG T C D F T F E C N C L P G F E G S T C E R N I D D C P N H R >

FIG.17A

SUBSTITUTE SHEET (RULE 26)

D I D D C S S>

58/68 IGTCAGAATG GAGGGGTTTG TGTGGATGGG GTCAACACTT ACAACTGCCC CTGTCCCCCA CAATGGACAG GACAGTTCTG CACAGAGGAT CONGGVC V D G V N T Y N C R C P P Q W T G Q F C CTGGATGAAT GCCTGCTGCA GCCCAATGCC TGTCAAAATG GGGGCACCTG TGCCAACCGC AATGGAGGCT ATGGCTGTGT ATGTGTCAAC V D E C L L Q P N A C Q N G G T C A N R N G G Y G C V C V N CGCTGGAGTG CAGATGACTG CAGTGAGAAC ATTGATGATT GTGCCTTCGC CTCCTGTACT CCAGGCTCCA CCTGCATCGA CCGTGTGGCC G W S G D D C S E N I D D C A F A S C T P G S T C I D R V A ICCTTCTCTT GCATGTGCCC AGAGGGGAAG GCAGGTCTCC TGTGTCATCT GGATGATGCA TGCATCAGCA ATCCTTGCCA CAAGGGGGCA SFS CMCPEGK AGL LCHL DDA CIS NPCH KG AD * CTGTGTGACA CCAACCCCCT AAATGGGCAA TATATTTGCA CCTGCCCACA AGGCTACAAA GGGGCTGACT GCACAGAAGA TGTGGATGAA L C D T N P L N G Q Y I C T C P Q G Y K G A D C T E D IGIGCCATCG CCAATAGCAA TCCTTGTGAG CATGCAGGAA AATGTGTGAA CACGGATGGC GCCTTCCACT GTGAGTGTCT GAACGGTTAT CAM ANSN PCE HAG KCVN TDG AFH CECL GCAGGACCTC GTTGTGAGAT GGACATCAAT GAGTGCCATT CAGACCCCTG CCAGAATGAT GCTACCTGTC TGGATAAGAT TGGAGGCTTC AGPRCEMDINECH SDPC QND ATC LDKI GGF> ACATGICIGI GCATGCCAGG TITCAAAGGI GIGCATIGIG AATTAGAAAT AAATGAATGI CAGAGCAACC CITGIGIGAA CAATGGGCAG TCL CMPG FKG VHC ELEINEC QSN PCVN NG Q> IGIGIGGATA AAGTCAATCG ITTCCAGTGC CIGIGICCIC CIGGTTICAC IGGGCCAGTT IGCCAGATTG ATATIGATGA CIGTTCCAGT

FIG.17B

C V D K V N R F Q C L C P P G F T G P V C Q I

59/68 ACTOCCTOTO TGAATGCGCC AAAGTGTATC GATCACCCCA ATGCCTATGA ATGCCAGTGT GCCACAGGTT TCACTGGTGT GTTGTGTGAG TPC LNG A KCI DHP NG Y E CQC A TG F TG V L C F> GAGAACATIC ACAACIGIGA CCCCGATCCT IGCCACCATG GICAGIGICA GGATGGTATT GATTCCTACA CCTGCATCTG CAATCCCGGG ENIDNOD PDP CHH GQCQ DGI DSY TCIC NPG> TACATGGGC CCATCTGCAG TGACCAGATT GATGAATGTT ACAGCAGCCC TTGCCTGAAC GATGGTCGCT GCATTGACCT GGTCAATGGC Y M G A I C S D Q I D E C Y S S P C L N D G R C I D L TACCAGTICA ACTICCAGCO AGGCACCTCA GGCGTTAATT GTGAAATTAA TTTTGATGAC TGTGCAAGTA ACCCTTGTAT CCATGGAATC Y Q C N C Q P G T S G V N C E I N F D D C A S N P C I H G I> IGTATOGATO GCATTAATOS CTACAGTIGT GTCTGCTCAC CAGGATTCAC ACCGCAGAGA TGTAACATTG ACATTGATGA GTGTGCCTCC CMD GINRYSC VCS PGFT GQR CNI DIDE CAS AATCCCTGTC GCAAGGGTGC AACATGTATC AACGGTGTGA ATGGTTTCCG CTGTATATGC CCCGAGGGAC CCCATCACCC CAGCTGCTAC N.P.C. RKGATCING VNGFRCIC PEG PHHPSCYS TCACAGGTGA ACGAATGCCT GAGCAATCCC TGCATCCATG GAAACTGTAC TGGAGGTCTC AGTGGATATA AGTGTCTCTG TGATGCAGGC S Q V N E C L S N P C I H G N C T G G L S G Y K C L C TGGGTTGGCA TCAACTGTGA AGTGGACAAA AATGAATGCC TTTCGAATCC ATGCCAGAAT GGAGGAACTT GTGACAATCT GGTGAATGGA W V G I N C E V D K N E C L S N P C Q N G G T C D N L V N G>

FIG.17C

TACAGGIGTA CTIGCAAGAA GGCCTITAAA GGCTATAACT GCCAGGIGAA TATIGATGAA TGTGCCTCAA ATCCATGCCT GAACCAAGGA Y R C T C K F G F K G Y N C Q V N T D E C A S N P C L N Q G>

WO 94/07474 PCT/US93/09338

60/68 ACCIGCTITG ATGACATAAG TOGCTACACT TGCCACTGTG TGCTGCCATA CACAGGCAAG AATTGTCAGA CAGTATTGGC TCCCTGTTCC T C F D D I S G Y T C H C V L P Y T G K N C O T V L A CCAAACCCTT GIGAGAATGC IGCTGTTIGC AAAGAGTCAC CAAATTTIGA GAGTTATACT IGCTIGTGTG CTCCTGGCTG GCAACGTCAG PNP CENAAVCKES PNFE SYT CLC APG W Q G Q> CGGTGTACCA TIGACATIGA CGAGTGTATC TCCAAGCCCT GCATGAACCA TGGTCTCTGC CATAACACCC AGGGCAGCTA CATGTGTGAA RCTIDIDECISKP CMNH GLC HNT OGSY MCE> TGTCCACCAG GCTTCAGTGG TATGGACTGT GAGGAGGACA TTGATGACTG CCTTGCCAAT CCTTGCCAGA ATGGAGGTTC CTGTATGGAT CPPGFSG MDCEED IDDC LAN PCQ NGGS CMD> GGAGTGAATA CITICICCTG CCICTGCCTT CCGGGTTTCA CTGGGGATAA GTGCCAGACA GACATGAATG AGTGTCTGAG TGAACCCTGT GVNTFSC L C L P G F T G D K C Q T D M N E C L S AAGAATGGAG GGACCTGCTC TGACTACGTC AACAGTTACA CTTGCAAGTG CCAGGCAGGA TTTGATGGAG TCCATTGTGA GAACAACATC KNG GTCS DYV NSY TCKC QAG FDG V H C E * AATGAGTGCA CIGAGAGCTC CTGTTTCAAT GGTGGCACAT GTGTTGATGG GATTAACTCC TTCTCTTGCT TGTGCCCTGT GGGTTTCACT NECTESS CFN GGT CVD G INS FSC L C P V G F T> CGATCCTTCT CCCTCCATGA GATCAATGAA IGCAGCTCTC ATCCATGCCT GAATGAGGGA ACGTGTGTTG ATCGCCTGCG TACCTACCGC G S F C L H E I N E C S S H P C L N E G T C V D G L G TGCAGCTGCC CCCTGGGCTA CACTGGGAAA AACTGTCAGA CCCTGGTGAA TCTCTGCAGT CGGTCTCCAT GTAAAAACAA AGGTACTTGT. CSCPLGYTGKNCQTLVNLCSRSPCKNKGTC>

FIG.17D

61/68								
3250	3260	3270			3300	3310	3320	3330
GTTCAGAAA	* AACCACACTC	CCACICCCIA	* ICICCATCIC	•	TGCCTATTGT G	* ACCTCCCCA A	TOTOTOTIC TO	* ACATACCA
	K A E S			G W A G				D i A>
								0 1 10
3340	3350	3360	3370	3380	3390	3400	3410	3420
CCCTCCACC	* CACCITOTOCT	TCTTCAACAC	TTCTCCC+CC	# #01040101	*	*	*	*
	R G V L				CTGCATCAAT GO			O C P>
,, J ,,		V C //	LUQ	11 3 0 1	0 1 11 7	n o ii i	. 11 1 6	Q C P
3430	3440	3450	3460	3470	3480	3490	3500	3510
0700007.7.				•		*		
					CAACCCCTGC CA			
LUT	TGSY	CEE	QLD	E C A S	N P C (OHG A	TCS	D F I>
3520	3530	3540	3550	3560	3570	3580	3590	3600
*		*	*	*	*	*	*	\$
					GTATGAAGTG GA	ATGAGTGCC AC	SAATCAGCC CT	GCCAGAAT
GGY	RCEC	V P G	Y Q G	V N C E	YEVD) E C Q	NQP	C O N>
3610	3620	3630	3640	3650	3660	3670	3680	3690
\$	3020	\$	JU7U ‡	* 2020	3000	3070	3000	2030
GGAGGCACCT	GTATTGACCT	TCTGAACCAT	TTCAAGTGCT	CTTGCCCACC	AGGCACTOGG GG	CCTACTCT GT		TTGATGAC
G G T	C I D L	V N H	F K C	S C P P	GTRG	LLC	EEN	I D D>
7700	7740	7700	7770	7740	7750	2700	2770	••••
3700	3710	3720	3730	3740	3750 •	3760	3770	3780
TGTGCCCGGG	GTCCCCATTG	CCTTAATGGT (GGTCAGTGCA	•	TGGAGGCTAC AG	TIGICACT CC	* יזומררזמג רדו	* TTCCTCCC
				M D R I				F A G>
_20.					•			
3790	3800	3810	3820	3830	3840	3850	3860	3870
* OLOTTODO	ACCCACACAT	* CAACCACTCC I	* CTCTCCAACC	* CCTCCACCTC 1	FGAGGGCAGC CTO	# COACTOTA TA	# CACCTCAC CAI	# ATCACTAC
					E G S L			
						5 0 . 1	4	1 0 17
3880	3890	3900	3910	3920	3930	3940	3950	3960
*	*	*	*		*		•	•
CIGIGIGITI	GUUGTAGTGC (CITIACIGGE (AGCACIGIG A	AAACCIICGI (CATGTGTGT CCC	CCAGATGC CC	IGCCTGAA TGG	SAGGGACT
	CNSA	1 1 0	ип с г		UVCP	ум Р	CLNG	6 6 15
3970	3980	3990	4000	4010	4020	4030	4040	4050
•				•		•		
					GGATTTTCC GGG			
CAV.	ASNM	PDG	HICF	R C P P	G F S G	AR C	QSSC	G Q>

FIG.17E

SUBSTITUTE SHEET (RULE 26)

62/68 GTGAAATGTA GGAAGGGGGA GCAGTGTGTG CACACCGCCT CTGGACCCCG CTGCTTCTGC CCCAGTCCCC GGGACTGCGA GTCAGGCTGT VKC RKGE QCV HTA SGPR CFC PSP RDCF SGC> GCCAGTAGCC CCTGCCAGCA CGGGGGCAGC TGCCACCCTC AGCGCCAGCC TCCTTATTAC TCCTGCCAGT GTGCCCCACC ATTCTCGGGT ASS PCQHGGS CHPQRQPPYY SCQ CAPPFS G> AGCCGCTGTG AACTCTACAC GGCACCCCCC AGCACCCCTC CTGCCACCTG TCTGAGCCAG TATTGTGCCG ACAAAGCTCG GGATGGCGTC SRC ELY TAPP STPPATCLSOY CADKARDG V> TGTGATGAGG CCTGCAACAG CCATGCCTGC CAGTGGGATG GGGGTGACTG TTCTCTCACC ATGGAGAACC CCTGGGCCAA CTGCTCCTCC CDEACNS HAC Q W D G G D C SITMENPWAN CCACTICCCT GCTGGGATTA TATCAACAAC CAGTGTGATG AGCTGTGCAA CACGGTCGAG TGCCTGTTTG ACAACTTTGA ATGCCAGGGG PLP CWDY INN QCD ELCN TVE CLF DNFE CQG> AACAGCAAGA CATGCAAGTA TGACAAATAC TGTGCAGACC ACTTCAAAGA CAACCACTGT AACCAGGGGT GCAACAGTGA GGAGTGTGGT NSK TCKY DKY CAD HFKD NHC NQG CNSE ECG> TGGGATGGGC TGGACTGTGC TGCTGACCAA CCTGAGAACC TGGCAGAAGG TACCCTGGTT ATTGTGGTAT TGATGCCACC TGAACAACTG W D G L D C A A D Q P E N L A E G T L V I V V L M P P CTCCAGGATG CTCGCAGCTT CTTGCGGGCA CTGGGTACCC TGCTCCACAC CAACCTGCGC ATTAAGCGGG ACTCCCAGGG GGAACTCATG L Q D A R S F L R A L G T L L H T N L R I K R D S Q G GTGTACCCCT ATTATGGTGA GAAGTCAGCT GCTATGAAGA AACAGAGGAT GACACGCAGA TCCCTTCCTG GTGAACAAGA ACAGGAGGTG V Y P Y Y G E K S A A M K K Q R M T R R S L P G E Q E Q E V>

FIG.17F

63/68 GCTGGCTCTA AAGTCTTTCT GGAAATTGAC AACCGCCAGT GTGTTCAAGA CTCAGACCAC TGCTTCAAGA ACACGGATGC AGCAGCAGCT AGS KVFLEID NRQ CVQD SDH CFK NIDA AAA CTCCTGGCCT CTCACGCCAT ACAGGGGACC CTGTCATACC CTCTTGTGTC TGTCGTCAGT GAATCCCTGA CTCCAGAACG CACTCAGCTC LLA SHAI QGT LSY PLVS VVS ESL TPER TO 1> CICTATCTCC TIGCTGTIGC IGTIGICATC ATICIGITIA TIATICIGCI GGGGGTAATC ATGGCAAAAC GAAAGCGTAA GCATGGCTCI LYLLAVA VVIILFIILL GVI MAKRKRK HGS CTCTGGCTGC CTGAAGGTTT CACTCTTCGC CGAGATGCAA GCAATCACAA GCGTCGTGAG CCAGTGCGAC ACGATGCTGT GGGGCTGAAA LWL PEGFTLR RDASNHK RRE PVG QDAV GLKS AATCTCTCAG TGCAAGTCTC AGAAGCTAAC CTAATTGGTA CTGGAACAAG TGAACACTGG GTCGATGATG AAGGGCCCCCA GCCAAAGAAA NLS VQVS EAN LIG TGTS EHW VDD EGPQ PKK GTAAAGGCTG AAGATGAGGC CTTACTCTCA GAAGAAGATG ACCCCATTGA TCGACGGCCA TGGACAGCA AGCACCTTGA AGCTGCAGAC V K A E D E A L L S E E D D P I D R R P W T Q Q H L E ATCCGTAGGA CACCATCGCT GCCTCTCACC CCTCCTCAGG CAGAGCAGGA GGTGGATGTG TTAGATGTGA ATGTCCGTGG CCCAGATGGC IRR TPS LALT PPQ A E Q E V D V L D V N V R G P D G> IGCACCCCAT IGATGTIGGC TICTCTCCGA GGAGGCAGCT CAGATTTGAG TGATGAAGAT GAAGATGCAG AGGACTCTTC TGCTAACATC CTPLMLASLR GGS SDLS DED E D A E D S S A N 1>

FIG.17G

SUBSTITUTE SHEET (RULE 26)

ATCACAGACT TGGTCTACCA GGGTGCCAGC CTCCAGGCCC AGACAGACCG GACTGGTGAG ATGGCCCTGC ACCTTGCAGC CCCCTACTCA ITD LVYQGAS LQAQTDR TGE MALHLAARYS>

64/68 CGGCCTGATG CTGCCAAGCG TCTCCTGGAT GCAGGTGCAG ATGCCAATGC CCAGGACAAC ATGGGCCGCT GTCCACTCCA TGCTGCAGTG RAD AAKR LLD AGA DANA Q DN MGR CPLH GCAGCTGATG CCCAACGTGT CTTCCAGATT CTGATTCGCA ACCGAGTAAC TGATCTAGAT GCCAGGATGA ATGATGGTAC TACACCCCTG AAD AQGV FQILIR N R V T D L D A R M N D G T T P L> ATCCTGGCTG CCCCCCTGGC TGTGGAGGGA ATGGTGGCAG AACTGATCAA CTGCCAAGCG GATGTGAATG CAGTGGATGA CCATGGAAAA ILAARLA VEG MVA ELIN CQA DVN AVDD HGK> TCTGCTCTTC ACTGGGCAGC TGCTGTCAAT AATGTGGAGG CAACTCTTTT GTTGTTGAAA AATGGGGCCCA ACCGAGACAT GCAGGACAAC SALHWAA AVN N VE ATLL LLK N G A N R D M Q D N> AAGGAAGAGA CACCTCTGTT TCTTGCTGCC CGGGAGGGGA GCTATGAAGC AGCCAAGATC CTGTTAGACC ATTTTGCCAA TCGAGACATC KEETPLF LAAREG SYEA AKILLD HFAN ACAGACCATA TOGATOGTOT TOCCOGGGAT GTGGCTCGGG ATCGCATGCA CCATGACATT GTGCCCCCTTC TGGATGAATA CAATGTGACC T D H M D R L P R D V A R D R M H H D I V R L L D E Y N V T> CCAAGCCCTC CAGGCACCGT GTTGACTTCT GCTCTCTCAC CTGTCATCTG TGGGCCCAAC AGATCTTTCC TCAGCCTGAA GCACACCCCA PSPPGTVLTS ALS PVIC GPN RSFLSLK HTP> ATGCCCAAGA AGTCTAGACG GCCCAGTGCC AAGAGTACCA TGCCTACTAG CCTCCCTAAC CTTGCCAAGG AGGCAAAGGA TGCCAAGGGT M G K K S R P S A K S T M P T S L P N L A K E A K D AGTAGGAGGA AGAAGTCTCT GAGTGAGAAG GTCCAACTGT CTGAGAGTTC AGTAACTTTA TCCCCTGTTG ATTCCCTAGA ATCTCCTCAC S R R K K S L S E K V Q L S E S S V T L S P V D S L E S P H>

FIG. 17H
SUBSTITUTE SHEET (RULE 26)

65/68 ACGTATGTTT CCGACACCAC ATCCTCTCCA ATGATTACAT CCCCTGCGAT CTTACAGGCC TCACCCAACC CTATGTTGGC CACTGCCGCC TYV SDII SSP MII SPGILQA SPN PMLA CCTCCTGCCC CAGTCCATGC CCAGCATGCA CTATCTTTT CTAACCTTCA TGAAATGCAG CCTTTGGCAC ATGGGGCCAG CACTGTGCTT PPAPVHAQHALSF SNLHEMQ PLAHGAS TVL> CCCTCAGTGA GCCAGTTGCT ATCCCACCAC CACATTGTGT CTCCAGGCAG TGGCAGTGCT GGAAGCTTGA GTAGGCTCCA TCCAGTCCCA PSV SQLL SHH HIV SPGS GSA GSL SREH PVP> GTCCCAGCAG ATTIGGATGAA CCGCATGGAG GTGAATGAGA CCCAGTACAA TGAGATGTTI GGTATGGTCC TGGCTCCAGC TGAGGGCACC VPADWMN RME VNE TQYN EMF GMV LAPAE.GT> CATCCTGGCA TAGCTCCCCA GAGCAGGCCA CCTGAAGGGA AGCACATAAC CACCCCTCGG GAGCCCTTGC CCCCCATTGT GACTTTCCAG HPG IAPQ SRPPEG KHIT TPR EPL PPIV CTCATCCCTA AAGGCAGTAT TGCCCAACCA GCGGGGCTC CCCAGCCTCA GTCCACCTGC CCTCCAGCTG TTGCCGGCCC CCTGCCCACC LIPKGSI AQPAGA PQPQ STC PPA VAGP ATGTACCAGA TICCAGAAAT GGCCCGTTTG CCCAGTGTGG CTTTCCCCAC TGCCATGATG CCCCAGCAGG ACGGGCAGGT AGCTCAGACC MYQ IPEM ARL PSV AFPT AMM PQQ DGQV AQT> ATTCTCCCAG CCTATCATCC TITCCCAGCC TCTGTGGGCA AGTACCCCAC ACCCCCTICA CAGCACAGTT ATGCTTCCTC AAATGCTGCT ILP AYHP FPA SVG KYPT PPS QHS YASS NA A> GAGCGAACAC CCAGTCACAG TGGTCACCTC CAGGGTGAGC ATCCCTACCT GACACCATCC CCAGAGTCTC CTGACCAGTG GTCAAGTTCA ERT PS H S G H L Q G E H P Y L T P S P E S P D Q W S S S>

FIG. 171

SUBSTITUTE SHEET (RULE 26)

7300	7300 7310 7320 7330		7340	7350		7370	7380	
	CTGCTTCTGA S A S D						AGCGGGGACC Q R G P	TGGGACACAC G T H>
7390	7400	7410	7420	7430	7440	7450	7460	7470
	CACCACACAA P P H N		GTTTATGCGT V Y A>	GAGAGAGTCC			ACTGACTTTT	GTAAATGCTG
7480	7490	7500	7510				7550	7560
* CTGAGGAACA	* AATGAAGGTC	ATCCGGGAGA	GAAATGAAGA		GCCAGCTTCT		AAGAGAAGAT	GTTCTTATTC
7570	7580	7590	7600	7610	7620	7630	7640	7650
AGATAATGCA	AGAGAAGCAA	TTCGTCAGTT	TCACTGGGTA	TCTGCAAGGC	TTATTGATTA	TICTAATCTA	ATAAGACAAG	TTTGTGGAAA
7660	7670	7680	7690			7720		7740
* TGCAAGATGA	ATACAAGCCT	TGGGTCCATG	TTTACTCTCT	* ICTATTICGA			GAAGCCCAGA	CATTCTTGCA
7750	7760	7770			7800		7820	7830
GCTTGGACTG	CATTTTAAGC	CCTGCAGGCT	TCTGCCATAT				TCCCAATTAT	GCCCTGGAAT
7840	7850	7860	7870	7880		7900	7910	7920
* TCTGCCTGAA	TIGACCTACG	CATCTCCTCC	* TCCTTGGACA	ITCITITGIC	TTCATTTGGT	GCTTTTGGTT	TIGCACCTCT	CCCTGATTGT
7930	7940	7950	7960	7970				8010
	GCATGTTATA					ACCAACTTIC	GICICCITIC	CCCTCCTGTC
8020							8090	8100
TICCCCGTAT				ATGGTTCTCA			TIGITICITI	GGAAAATGGA
8110	8120						8180	
CATACTGTAT	TGTGTTCTCC			*AGAGAAGGGG			CAAATTTTGG	
8200	8210	8220	8230	8240	8250	8260	8270	8280
TCCCTTCAAG	AGGCTGCACC						* AAGGGTGTGA	

FIG. 17J
SUBSTITUTE SHEET (RULE 26)

67/68								
829	0 830	8310					0 8360	8370
TTTCTGTGT	A TOGGCCTGG	T CAGTGTAAAG	TITTATCCTI		TTACTATGA(T TTTTTAAAAC	* CAGAAAAAGG
838	839	0 8400	8410			844	0 8450	8460
TTTGGAATG	TGGAATGAC	C AAGAGACAAG	TTAACTCGTG		TTACCCACCC	ACAGGTCCC	CTACTICCTG	CCAAGCATTC
8470							8540	8550
CATTGACTG		* * A CACATTIGIC	•				* C AGCATATGAA	*ACTAGTCTTA
8560	857	0 8580					8630	8640
ACTGTTGAGO	CITICCITIC	* * * C ATATCCACAG			GTACCCTTGC		TGAACTTTCC	TTAGCCCAAG
8650	8660	8670				8710	8720	8730
GGACCCAGTG	ACAGTTGTC	TCCGTTTGTC			TIATCTICCT	GCTTAAAGGC	CTGCTCACCA	ATCITICITY
8740	8750						8810	8820
• CACACÓGTGT	CGTCCGTGTT	ACTGGTATAC	CCAGTATGTT (AGTGCAGGAA	* TTGGAAAGTT
8830	8840	8850	8860					
GGACTIGTTT	TCTATGATCC	AAAACAGCCC	TATAAGAAGG 1		* AGGAACTATA		TGCTATTTTC	TGCTACCATT
8920	8930	8940	8950	8960	8970	8980	8990	9000
TCTTTTCCTC	TGAAGCGGCC	ATGACATTCC (CTTTGGCAAC T	AACGTAGAA	ACTCAACAGA	ACATTTTCCT	TTCCTAGAGT (CACCTTTTAG
9010	9020	9030					9080	9090
ATGATAATGG	ACAACTATAG	ACTIGCTCAT I	•	•			ATTCATGCTC 1	TGGCAATTT
9100	9110	9120	9130	9140	9150	9160	9170	9180
CTTTGACTTT	CTTTTAAGGG	CAGAAGCATT T	TAGTTAATT G	TAGATAAAG A	ATAGTTITC 1	TCCTCTTCT	CCTTGGGCCA G	* TTAATAATT
9190	9200	9210	9220	9230	9240	9250	9260	9270
GGTCCATGGC 1	FACACTGCAA	CTTCCGTCCA G	TGCTGTGAT GC	CCATGACA C	CTGCAAAAT A	AGTTCTGCC 1	GGGCATTTI G	* TAGATATTA

FIG.17K

SUBSTITUTE SHEET (RULE 26)

				68/68				
9280	9290	9300	9310	9320	9330	9340	9350	9360
3200					*		*	*
ACAGGTGAAT	TCCCGACTCT	TTTGGTTTGA	ATGACAGTTC	TCATTCCTTC	TATGGCTGCA	AGTATGCATC	AGTGCTTCCC	ACTTACCTGA
9370	9380	9390	9400	9410	9420	9430	9440	9450
		*			•			A TTT . TT
THIGTCIGIC	GGTGGCCCCA	TATCGAAACC	CTCCCTCTCT	GTTGGCATAA	TAGTTTACAA	ATCCTTTTTT	CAGTCCTATC	CAAAIIIAII
9460	9470	9480	9490	9500	9510	9520	9530	9540
-		-				*	•	•
GAACCAACAA	AAATÄATTAC	TTCTGCCCTG	AGATAAGCAG	ATTAAGTTTG	TTCATTCTCT	GCTTTATTCT	CTCCATGTGG	CAACATTCTG
9550	9560	9570	9580	9590	9600	9610	9620	9630
				*			*	*
TCAGCCTCTT	TCATAGTGTG	CAAACATTTT	ATCATTCTAA	ATGGTGACTC	TCTGCCCTTG	GACCCATTTA	TTATTCACAG	ATGGGGAGAA
9640	9650	9660	9670	9680	9690	9700	9710	9720
						•	•	•
CCTATCTGCA	TGGACCCTCA	CCATCCTCTG	TGCAGCACAC	ACAGTGCAGG	GAGCCAGTGG	CGATGGCGAT	GACTTICTTC	CCCTCGGAAT
TCC								

FIG.17L

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/09338

IPC(5) US CL	ASSIFICATION OF SUBJECT MATTER: Please See Extra Sheet.: 424/85.8; 435/6; 514/1, 2, 24 to International Patent Classification (IPC) or to bo	th national classification	and IPC						
	LDS SEARCHED								
Minimum d	documentation searched (classification system follow	ed by classification sym	bols)						
	U.S. : 424/85.8; 435/6; 514/1, 2, 24								
Documenta	ocumentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.								
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where	appropriate, of the relevant	ant passages	Relevant to claim No.					
Y	US, A, 5,115,096 (SHOYAB ET AL) lines 12-27, column 11, lines 39-6 columns 16-18, column 28, Table IV	1-18, 22-28, 31, 34-40, 42-52, 55-58, 63-67, 75-94							
A	US, A, 5,132,212 (KIRSCH ET AL) lines 25-36.	e column 7,	23-31, 45, 55-60, 63-67, 84-90						
A,E	US, A, 5,264,557 (SALOMON ET A column 1, lines 20-49.	1-18,22-28,31,34- 40,42-52,55- 58,63-67,75-94							
X Further	er documents are listed in the continuation of Box (See patent	family annex.						
	cial estegories of cited documents; ument defining the general state of the art which is not considered			mational filing date or priority tion but cited to understand the					
to b	e part of particular relevance	principle or theo	ry underlying the inve	ention					
'L' doca	ier document published on or after the international filing date ument which may throw doubts on priority claim(s) or which is	considered novel	or cannot be consider ent is taken alone	e claimed invention cannot be ed to involve an inventive step					
cited	I to establish the publication date of another citation or other ial resson (as specified)	"Y" document of par	ticular relevance; the	claimed invention cannot be					
O* docu	ament referring to an oral disclosure, use, exhibition or other	combined with or	a person skilled in the	step when the document is documents, such combination					
	ment published prior to the international filing date but later than priority date claimed		er of the same patent i						
Date of the a	ctual completion of the international search er 1993	Date of mailing of the infernational search report							
Commissions Box PCT	ailing address f the ISA/US er of Patents and Trademarks	Authorized officer STEPHEN WALSH S. Tuyza for							
Washington,	D.C. 20231 NOT APPLICABLE	STEPHEN WALSH							

Form PCT/ISA/210 (second sheet)(July 1992)*

YOUR -- WO 940747481 1 -

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/09338

A CELL, Volumelanogaste section brid		PC170333707330					
A CELL, Volumelanogaste section brid	MENTS CONSIDERED TO BE RELEVANT						
A THE NEW I Greenspan, In The Dross A CELL, Volu "Specific EC and Serrate: Receptor", FA,P PROCEEDI SCIENCES, "Genetic and Delta- and Serrate: A EUROPEAL issued May of a cellular melanogaste section brid A Biological A Robbins et the notch g page AB-46 A CELL, Volume TAN-1, the Broken by	f document, with indication, where appropriate, of the relev	vant passages	Relevant to claim No.				
A,P PROCEEDIT SCIENCES, "Genetic and Delta- and Secondary A EUROPEAL issued May of a cellular melanogaste section brid A Biological Arabbins et the notch general page AB-46 A CELL, Vol. "TAN-1, the Broken by	THE NEW BIOLOGIST, Volume 2, No.7, issued July 1990, R.J. Greenspan, "The Notch Gene, Adhesion, And Developmental Fate In The Drosophila Embryo", pages 595-600, see abstract. CELL, Volume 67, issued 15 November 1991, I. Rebay et al, "Specific EGF Repeats of Notch Mediate Interactions with Delta and Serrate: Implications for Notch as a Multifunctional Receptor", pages 687-699, see entire document.						
A CELL, Volume A CELL	DINGS OF THE NATIONAL ACADEMY (S., Volume 90, issued May 1993, J.F. De Cand molecular characterization of a Notch med Serrate-binding domain in Drosophila, page 4037, column 2, paragraph 2.	Celis et al, utation in its	21,54				
A CELL, Vol	AN JOURNAL OF BIOCHEMISTRY, Volume 1990, J.A. Campos-Ortega et al, "Molecular decision during embryonic development exter: epidermogenesis or neurogenesis", page ridging pages 4-5, page 8, column 2, paragra	of <u>Drosophila</u> es 1-10, see	1-20,22,34- 40,42-44,46- 53,75-83,91-94				
"TAN-1, the Broken by	ll Abstracts, Volume 93, No.11, issued 01 Junet al, "Mouse mammary tumor gene int-3: An gene family transforms mammary epithelial -465, abstract no. 122736, J. Virol., 66(4), 2	cells", see	23-28,31,45,55- 58,63-67,84-90				
	Volume 66, issued 23 August 1991, L.W. El, the Human Homolog of the Drosophila Not by Chromosomal Translocations in T Lymphoms", pages 649-661, see pages 657-658.	ich gene, 13	1-18,22- 28,31,34-40,42- 52,55-58,63- 67,75-94				
			<u>-</u>				

INTERNATIONAL SEARCH REPORT

Inte. .ional application No. PCT/US93/09338

A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):

A61K 31/00, 31/70, 37/02, 39/44, 39/395; C07H 21/04; G01N 33/53, 33/68

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, BIOSIS, CA, INPADOC, JICST-E, MEDLINE, search terms: notch protein or gene product, delta protein or gene product, serrate protein or gene product, disease, disorder, cancer, DNA, nucleic acid, anti-sense, therapy or treatment or pharmaceutical

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- I. Claims 1-18, 22, 34-40, 42-44, 46-52, 75-83 and 91-94, drawn to pharmaceutical compositions comprising a Notch protein, fragments, chimeras, derivatives or analogs of a Notch protein, methods of treating or preventing malignancy or nervous system disorder, a method of promoting tissue regeneration or repair, and a method of treating a benign dysproliferative disorder, classified in Class 514, subclass 2.
- II. Claims 19, 20 and 53, drawn to a pharmaceutical composition comprising a derivative or analog of a Delta protein and a method of treating or preventing a malignancy, classified in Class 514, subclass 2.
- III. Claims 21 and 54, drawn to a pharmaceutical composition comprising a derivative or analog of a Serrate protein, classified in Class 514, subclass 2.
- IV. Claims 23-28, 31, 45, 55-58, 63-67 and 84-90, drawn to a pharmaceutical composition comprising a nucleic acid encoding a Notch protein, fragments or chimeras of a Notch protein, a method of treating or preventing malignancy comprising administration of nucleic acid encoding a Notch protein, a method of treating a patient with a tumor, and a pharmaceutical composition comprising an isolated oligonucleotide consisting of at least six nucleotides and a recombinant cell, classified in Class 514, subclass 44.
- V. Claims 29 and 59, drawn to a pharmaceutical composition comprising nucleic acid encoding a fragment of a Delta protein, and a method of treating or preventing malignancy comprising administration of nucleic acid encoding a Delta protein, classified in Class 514, subclass 44.
- VI. Claims 30 and 60, drawn to a pharmaceutical composition comprising nucleic acid encoding a fragment of a Serrate protein, and a method of treating or preventing malignancy comprising administration of nucleic acid encoding a Serrate protein, classified in Class 514, subclass 44.
- VII. Claims 32, 33, 41, 61 and 62, drawn to a pharmaceutical composition comprising an antibody and a method of treating or preventing malignancy comprising administration of antibody, classified in Class 424, subclass 85.8.
 - VIII. Claim 68-74, drawn to a method of diagnosing a disease, classified in Class 435, subclass 6.

Form PCT/ISA/210 (extra sheet)(July 1992)*

		. L	* 2.5	A Section 1	% • ** ****						6	
MARIN	- (v.)	modelika iliya distrika ina iliya aya	ent of the twi	the supplementations and	entuis viin enem	Domination and	ri na su <mark>n più e</mark> litripi. Il est na est est est est est est est est est est	. ياست يورت		district	These states	e melipage
												n is n∰
												es in sulf
						,						
•		•										
								;	-			
	the Manager of the Second Second	الله الله الله الله الله الله الله الله		en San Leve	ģ 5: (-8 4 %,5	الاستعادات والمعادد	a make	volument (in the	(Y. * • *)	رماند الاستان	(
	-											
											•	
		•										
*												
							•					
•	The stop						- + ²	٠		, 3	er in v	. 3
<u>.</u>					•							
	9											
	,											
2 71												
đ											,	
	4 9	· · · · ·					•					E 4
Şe.												
\$70. A												
												.:
na nasila o g	t natural and a state of the st	ا فهای بیده شریا	ris grado i a em la de	prokazi w se t	. (15,45) 1 4 A N			440 2 40	The state of the s	~ » »	- Marin Santan S	100° 4740
											1	
	with the second		· · · · · · · · · · · · · · · · · · ·	or market the same	market and the second	olidar ye,	Care Maria	· Marie Core		er anarra	A second	
*		The train of the state of the										20.5
	»·	a realized ; c	en.	Andrew Company	2.7 1 14 1 2	, · · · · · · · · · · · · · ·	Typ 4:	.#1				
\$.		,										
						* **				٠		