Machine learning

השלמה - KNN

Lecture III

פיתוח: ד"ר יהונתן שלר משה פרידמן

השלמה – KNN

סילום (Scaling) של מאפיינים - תזכורת

:(Scaling) סילום

סילום מאפיינים - הוא שיטה המשמשת לנורמליזציה של טווח המאפיינים.

המטרה: סילום מחדש, כמו במעבר מאינץ' לס"מ

1) הופכת ל-0, וסטיית התקן, הופכת ל-1 (t-distribution) standardization

t משתמשים בהתפלגות

- minmax normalization – הסילום מתבצע כך שערך המינימום והמקסימום החדשים, הינם 0 ו-1 בהתאמה.

2KNN-מה הקשר בין סילום ל-

וסילום (Scaling) - מוטיבציה KNN

מוטיבציה <u>–</u>

- למאפיינים שונים פונקציית התפלגות שונה
- לא מניח איזשהם הנחות על התפלגות הנתונים *KNN
- ?שונה עלול להוביל לעיוות המרחק מדוע? (scale) סולם *
- סולם (scale) שונה עלול לתת משקל שונה למאפיינים שונים, רק בגלל הסולם
 השונה (במקרה של KNN, זה די דומה) מדוע?

(t-distribution) standardization-I KNN

מוטיבציה –

- למאפיינים שונים פונקציית התפלגות שונה
- לא מניח איזשהם הנחות על התפלגות הנתונים * KNN

:(t-distribution) standardization פתרון ע"י שיטת הסילום

- בסטטיסטיקה כל התפלגות ניתן להפוך להתפלגות t, אם ידועות הממוצע וסטיית התקן במדגם (התפלגות t, היא קירוב להתפלגות שהינה סוג של התפלגות נורמלית)
 - train set במקרה שלנו המדגם הוא ה- *
 - ב- KNN, מהווה תרומה למימדים השונים של פונקציית המרחק

minmax normalization - IKNN

מוטיבציה –

- ?שונה עלול להוביל לעיוות המרחק מדוע (scale) סולם ♦
- שונה עלול לתת משקל שונה למאפיינים שונים, רק בגלל הסולם (scale) סולם (scale) השונה (במקרה של KNN, זה די דומה) מדוע?

:minmax normalization פתרון ע"י שיטת הסילום

- * השוואה פשוטה של הסולם, ע"י קביעת סולם בטווח אחיד.
 - * מכונה גם נרמול מינימום ומקסימום.

מקובלים למשל הטווחים:

- 1-ט בתרגיל החדש הופך ל-0, והמקסימום ל-1 אונה לכם בתרגיל החדש הופך ל-0, והמקסימום ל-[0,1]
 - cosine לעיתים מסייע, בדומה למרחק + [-1,1] ♦

?איך נקבל החלטה לגבי דוגמה חדשה? – KNN

אלגוריתם הסיווג – KNN

Input:

⋄ k – the number nearest neighbors; the set of training examples.

The KNN Algorithm:

- * for test instance x_j in the test-set:
 - Calculate d(xj,xi)
 - Select the k closest training examples, d(x_j,x_i) sorted
 - Use majority voting to classify the test examples

Notations and Terms:

 x_i – example (number j) from the test-set x_i – example (number i) from the train-set $d(x_i,x_i)$ – distance function – measures distance between x_i and x_i .

רגיל – KNN

סימונים:

(x1,x2) כך: X1,X2 כך: מאפיינים (feature vector) נסמן וקטור (x1,x2) כך: (x1,x2 כך: (x1,x2 כך: (x1,x2

נתונים הווקטורים הבאים:

(0,0|1),(1,0|1),(1,1|-1),(4,2|1),(3,5|-1),(1,4|1),(3,1|-1)

מצאו באמצעות אלגוריתם KNN את הסיווג של הווקטור (3,2)

:הערות

- לפונקצית מרחק, השתמשו בשיטת מרחק אוקלידית
 - דלגו כרגע על שלב הסילום ♦
 - k=3,7 בחנו את הפתרון עבור *

רגיל – KNN

קודם כל, נחשב את המרחקים (לפי הוראות התרגיל משתמשים בפונקצית מרחק אוקלידי)

ווקטור	סיווג	מרחק מ-(3,2)	
(0,0)	1	$\sqrt{(3-0)^2 + (2-0)^2} = \sqrt{13}$	3.6
(1,0)	1	$\sqrt{(3-1)^2 + (2-0)^2} = \sqrt{8}$	2.8
(1,1)	-1	$\sqrt{(3-1)^2 + (2-1)^2} = \sqrt{5}$	2.2
(4,2)	1	$\sqrt{(3-4)^2 + (2-2)^2} = \sqrt{1}$	1
(3,5)	-1	$\sqrt{(3-3)^2 + (2-5)^2} = \sqrt{9}$	3
(1,4)	1	$\sqrt{(3-1)^2 + (2-4)^2} = \sqrt{8}$	2.8
(3,1)	-1	$\sqrt{(3-3)^2 + (2-1)^2} = \sqrt{1}$	1

2K=7 איזו קטגוריה נבחר עבור 2K=3 איזו קטגוריה נבחר עבור

1- עבור -k=3 – שני שכנים מצביעים -1, ושכן אחד מצביע -k=3 – עבור +1

 $\mathbf{1}$ עבור $-\mathbf{k}=7$ - הצבעת הרוב $+\mathbf{k}=7$

KNN – בחירת הקטגוריה בזמן סיווג כיצד נבחר את הקטגוריה עבור דוגמה חדשה?

- * 1-NN Given a new point x, we wish to find it's nearest point and return it's classification.
- * **K-NN** Given a new point x, we wish to find it's k nearest points and return their average classification.
- * Weighted Given a new point x, we assign weights to all the sample points according to the distance from x and classify x according to the weighted average.

משמעות של ערכי K שונים

- אוד אוד המשמעות של ערכי K מאוד קטנים, עלולה להיות החלטה המושפעת מאוד מרעש (מדוע?)
- המשמעות של ערכי K מאוד גדולים, משמעה, עליה משמעותית בסיבוכיות אלגוריתם אלגוריתם ארכז הכובד הוא בזמן אמת / בזמן הבדיקה.
 - שאלה: מה יקרה אם K שואף ל-n (כאשר n מסמנת את מספר הדוגמאות באימון)?
 - training-set- תשובה: התשובה בעצם תשאף להתפלגות הקטגוריות ב-training-set ↔ (מדוע?)

משמעות של ערכי K שונים (המשך)

- (?אי זוגי (מדוע?) אם מספר המחלקות הוא 2, נשאף למספר *
- שיעזור להכריע ולבחור את K באופן שיעזור להכריע ולבחור את המחלקה מבין \$\display\$ באופן השכנים הקרובים.
 - . אבל זה תלוי בבעיה. אחד מכללי האצבע הוא לבחור לבחור לבחור אוי בבעיה אחד מכללי האצבע הוא לבחור לבחור ל

שיפורים נוספים:

- א בהמשך הקורס, נלמד דרך לבחור את ערכו של &
- בחירת פונקצית המרחק (ברירת המחדל היא פונקצית מרחק אוקלידית) המיטבית לבעיה
 - * הכרעה, כאשר יש שיוויון בין המחלקות

משמעות של ערבי K שונים (המשך)

:דוגמה להשפעה של ערכי K שונים

?שאלה: האם לא נעדיף את הגרף עבור 1=K, הרי נראה שהוא יותר מתאים לנתונים

תשובה: יש חשש להתאמת יתר ל-overfitting) training), ורגישות גבוהה מידי לרעש (נרחיב על התאמת יתר עוד במהלך הקורס).

שאלות ביניים

:1 שאלה

?KNN-טסייע ל (t-distribution) standardization כיצד סילום ע"י

<u>:2 שאלה</u>

?KNN-טיעד סילום ע"י minmax normalization כיצד סילום ע"י

:3 שאלה

כיצד נקבל החלטה לגבי הקטגוריה של דוגמה חדשה ע"י KNN? מה פירוש 1-NN בעצם? מה ההבדל בין בחירה לפי הרוב, לבין בחירה ממושקלת?

<u>ישאלה 4</u>

מה המשמעות של ערכי K שונים (קטנים וגדולים)? מדוע נשאף לבחור K אי זוגי אם מספר הקטגוריות הוא 2?

רכונות – KNN

- הינו אלגוריתם עצלן עיבוד הנתונים מתבצע רק עם קבלת נקודה חדשה לסיווג
 - את רוב העבודה לזמן הסיווג 🌣
 - לא מניח איזשהם הנחות על התפלגות הנתונים * KNN
 - עובד מידית גם על "ריבוי מחלקות" (נדון על ריבוי מחלקות עוד במהלך * KNN) הקורס)

- סיכום השיטה – KNN

- modeling-ו הגדרת הבעיה כבעיית סיווג ו
 - vectorization, איסוף דוגמאות,
 - (validation-ו-train-test) הלוקה ל-s
- .data- ניקוי ה-cleansing ניקוי ה-data. וסילום הערכים האפשריים.
- אלגוריתם עצלן לא עושה (כמעט) כלום בשלב זה training ♦
 - שיערוך (משתמש בסיווג) בהמשך
 - (דוגמאות לא ידועות *

נתראה בשבוע הבא