プローブ (Probe) の原理

2014. 4. 4

オシロスコープ(OSC)は、主に電圧波形観測に用い、図1に示すプローブと呼ばれる専用の接続線を用いる.

図1 OSC 用プローブ

図2に等価回路を示す.

図2 プローブの等価回路

表1に記号と名称を示す.

表1 等価回路の記号と名称

次 1			
記号	名 称		
$V_{ m i}$	被測定電圧		
$V_{\rm O}$	OSC 入力電圧		
R_1 , R_2	減衰抵抗		
C_1 , C_2	位相補償容量		
	ただし、 $C_2 = C_{\rm T} + C_{\rm S}$		
SW	減衰比切替スイッチ		

 C_T は半固定型の可変容量とし、 C_S は接続ケーブルと OSC の漂遊容量や入力容量などを表し、 C_T と C_S の並 列容量をまとめて C_2 とする.

各回路定数を表1に示す. 値はいずれも代表値を示す.

表2 プローブの回路定数

抵抗	抵抗値[MΩ]	容量	容量值[pF]
R_1	9	C_1	16
R_2	1	C_{T}	60~100
		Cs	65

SW は減衰比切替用であり、以下に 10X の時の原理を示す。 R_1 、 C_1 の並列インピーダンスを Z_1 とし、 R_2 、 C_2 の並列インピーダンスを Z_2 として V_0 の式を求める。

$$Z_1 = \frac{R_1}{1+j\omega C_1 R_1}, \quad Z_2 = \frac{R_2}{1+j\omega C_2 R_2}$$

$$V_0 = \frac{L^2}{Z_1 + Z_2} V_i$$

$$= \frac{R_2}{\frac{(1+j\omega C_2R_2)R_1}{1+j\omega C_1R_1} + R_2} V_i$$
 (1)

j は虚数 $(\sqrt{-1})$, ω は信号源(V_i)の角周波数とする. ここで、特に R_1 C_1 = R_2 C_2 の時は(2)式が成立する.

$$V_O = V_i \frac{R_2}{R_1 + R_2} \tag{2}$$

通常 R_1 , R_2 は正の実数であり, V_0 は ω の関数でなくなる. したがって V_0 と V_i の位相差は零となり, V_0 は V_i の周波数に関係なく比例的に変化する. それ故に V_i を忠実に観測できる. これは波形観測器として最も必要な要素である. 大多数の OSC の入力インピーダンスは $1M\Omega$ だが, 10X 減衰設定とした場合 $10M\Omega$ へと増大する. 入力インピーダンスは大きい程, 被測定物への影響は少ない. この意味で理想へと近づく.

ただし、OSC への入力電圧は 10 分の 1 に減衰してしまい不利である.

1X の場合は位相補償機能は無効となり入力容量はおよそ 95pF, 直流抵抗は $1M\Omega$ となる. また OSC の帯域周波数は 10 分の 1 となるなど, 観測器としては不利な方向へ向かう.

実験データを解析する場合,これらの事情を心得ておくと良い.しかし,先進理工学科の磁気ヒステリシス特性データ解析において,プローブの電気的な入力特性を考慮する吟味は少ない.

容量補正には矩形波を用いる. 矩形波は多くの高調波成分を含んでおり, 綺麗な矩形波が表示された時に R_1 C_{1} = R_2 C_{2} = τ が成立している. τ は時定数と呼ばれ, 時間の次元を持つ.