Project - Recommender System

Project - Recommender System
Objective Examples
Datasets
Requirements
Scoring Rubric
Project Submission Notes
References
Objective
Develop a content-based movie recommender system.
Examples
get_movie_recomendation ('The Dark Knight')
The Dark Knight Rises
Batman Begins Batman Returns
Batman
Batman Forever
2. get_movie_recomendation ('The Shawshank Redemption')
Prison
Penitentiary
1982 Flying By
Buffalo '66
3. get_movie_recomendation ('Frozen')
Aladdin
Spirit: Stallion of the Cimarron Pocahontas
The Legend of Hercules
The Book of Life

CIS/STA 3920 NFA - Spring 2023

Datasets

- 1. tmdb_5000_credits.csv
 - o movie id A unique identifier for each movie
 - o title Title of the movie
 - cast The name of lead and supporting actors
 - o crew The name of Director, Editor, Composer, Writer etc.

2. tmdb_5000_movies.csv

- o budget The budget in which the movie was made
- o genres The genres of the movie, Action, Comedy , Thriller etc.
- o homepage A link to the homepage of the movie
- o id This is infact the movie id as in the first dataset
- o keywords The keywords or tags related to the movie
- o original language The language in which the movie was made
- o original title The title of the movie before translation or adaptation
- overview A brief description of the movie
- o popularity A numeric quantity specifying the movie popularity
- o production companies The production house of the movie
- o production countries The country in which it was produced
- o release date The date on which it was released
- o revenue The worldwide revenue generated by the movie
- o runtime The running time of the movie in minutes
- spoken languages The spoken languages in the movie
- o status "Released" or "Rumored"
- o tagline Movie's tagline
- o title Title of the movie
- vote average average ratings the movie recieved
- vote count the count of votes recieved

CIS/STA 3920 NFA - Spring 2023

Requirements

Implement a content-based movie recommender.

- 1. Given a movie title as input, return the 5 most "relevant" movie titles.
- From the movies dataset:
 - a. must use overview
 - b. must use **genres** since this is a "packed" field, you will need to create at least 1 new variable from this field
 - c. must use keywords
- 3. From the credits dataset:
 - a. must use **cast** or **crew** since these are "packed" fields, you will need to create at least 1 new variable from one of these fields
- 4. Can use any other field(s) from either dataset.
- 5. Must use at least 4 text mining preprocessing techniques (e.g. tokenization, case, punctuation, stop words, stemming, lemmatization, etc.).
- 6. Must use at least 1 vectorization technique (e.g. TfidfVectorizer, CountVectorizer, HashingVectorizer, etc.).
- 7. Must use at least 1 similarity measuring technique (e.g. cosine, euclidean, etc.).
- 8. The submitted movie recommender must display the output for the 3 movies listed in the examples on page 1.
- 9. The submitted movie recommender must be implemented with all 8 requirements listed above.

Scoring Rubric

Task	Points	Due Date
Form a team (4 people)	2	3/3/2023
Submit project proposal (1 paragraph)	2	3/24/2023
Meet with professor to show progress (Jupyter notebook) - All team members must be present to earn points	2	4/21/2023
Project (well-documented Jupyter notebook containing all the project code including all the output cells)	20	5/5/2023
Oral presentation (in class) - All team members must be present to earn points	4	5/5/2023
Total	30	

Project Submission Notes

- 1. Submit a well-documented Jupyter notebook containing all the project code including all the output cells.
 - Each project team must submit 1 Jupyter notebook by email prior to the project due date.
 - Prior to submission, do the following in the Jupyter notebook:
 - Kernel → Restart and run all
 - Use Markdown formatting to clearly explain code sections. In addition, add comments in each cell for further clarity.
 - After each cell that modifies data, display the first few rows of the resulting dataframe (i.e. df.head()).
- 2. Submitting a basic content-based movie recommendation system that works AND meets the minimum requirements listed above will earn an average grade of 80%.
- 3. The remaining 20% can be earned through a combination of the following steps:
 - Thorough data handling (i.e. additional preprocessing techniques, handling missing data, etc.)

CIS/STA 3920 NFA - Spring 2023

- Create and use additional innovative features
- Use an additional vectorization technique
 - Show difference in results with the additional vectorization technique used
- Use an additional similarity measuring technique
 - Show difference in results with the additional similarity measuring technique used
- Creativity
 - One possible idea is listed below:
 - Create a weighted rating for each movie and eliminate movies below a certain threshold. Students decide on a weighted rating formula and on the threshold.
 - It is up to the students to think about other creative solutions. Please feel free to discuss ideas with the professor.

References

- The Netflix Prize (ft. Anne-Marie Kermarrec) The Netflix prize is the most mythical data science competition in History. It lasted over 2 years, gathered over 20,000 teams and led to major progress in machine learning. This video features Anne-Marie Kermarrec, Director of Research at INRIA, Rennes, scientist of the IC School at EPFL, and CEO of Mediego.
- 2. <u>From the Labs: Winning the Netflix Prize</u> AT&T Labs researchers and million dollar Netflix Prize co-winners, Chris Volinsky and Robert Bell, describe their three-year quest to improve the collaborative filtering algorithm Netflix relies on to make millions of movie recommendations.