June 2, 2024

1 O04e Focal Length and Principal Planes of a Lens System

Group #13

NG Kuok Fung | #3797903

Edgar Harutyunyan | #3775171

Overview of Tasks

- 1. Determine the focal length and the position of the principal planes of a system consisting of two thin converging lenses for a given lens distance.
- 2. Determine the focal lengths of both lenses using Bessel's method. Measure the distance between the lenses and calculate the focal length of the lens system.
- 3. Draw a diagram to scale showing the positions of the principal planes and the focal points of the lens system; construct an image corresponding to one measured object distances from task 1. Determine the value of the linear magnification from the construction and compare to the experimental value.

1.1 Task 1

Task Definition

Determine the focal length of the system of 2 lenses f_{sys} and the position of the principal planes h and h' of a system consisting of two thin converging lenses for a given lens distance.

Theoretical Basis

Double lens system.

g' and b' denote the distances between the pointer A and the illuminated object Gor the image B, respectively.

h and h' denote the distances between the pointer A and the principal planes Hand H' of the lens system.

Figure 1.1: Double Lens System Diagram

(NEED TO JUSTIFY WHY B' is negative instead of postiive) (NEED to justify about position of h and h' using inequalities and refer to fig 1.1)

- b : Image distance
- g : Object distance

As h' = b' - b is negative then b' < b. Hence, H' principal axes lies on the left sight of A pointer.

As h = g' - g is positive, then g' > g. Hence, H principal axes lies on the left sight of the A pointer.

The fitting functions are given as follows:

$$g' = g + h = f_{sys} \left(1 + \frac{1}{\gamma} \right) + h$$

$$b' = b + h' = f_{sus}(1 + \gamma) + h'$$

Procedure

Figure 1.2: Double Lens System Experimental Setup

- 1. A double-lens system is picked with a fixed lens distance d_l , and correction values d_B and d_G
- 2. Adjust the lens system until a sharp image forms, then measure the object size (G) and the image size (B) using the micrometer labeled M in Fig 1.2.
- 3. Measure the distances d_1 and d_2 between pointers A_G and A_l and between A_B and A_l , respectively.
- 4. Calculate the object g' and image b' distances using the following formulas:
- $g' = |d_1| d_G$ $b' = |d_2| + d_B$

- 5. Calculate the linear magnification γ using Eq 1.1.
- 6. Repeat the procedure for 10 different values of g' and b'.
- 7. Perform linear regression using Eq 1.2 and Eq 1.3, and find the values of f_{sys} , h and h' from the fit.

Figure 1.1: Image Distance (b') against $1 + \gamma$ fit.

$$|f_{sys}| = (21.83 \pm 0.798) \ cm$$

$$h' = (-12.65 \pm 2.801)~cm$$

 $Figure\, 1.2 \colon$ Object Distance (g') against $(1+\frac{1}{\gamma})$ graph fit.

$$|f_{sys}| = (21.57 \pm 0.876) \ cm$$

$$h = (38.42 \pm 0.658) \ cm$$

1.2 Task 2

$Task\ Definition$

Determine the focal lengths of both lenses f_1 and f_2 using Bessel's method. Measure the distance (a) between the lenses and calculate the focal length f_{sys} of the double-lens system from task 1.

Theoretical Basis

Bessel's method. One lens is successively placed at two different locations 1 and 2.

Figure 2.1: Bessel Method Setup

The Lens Equation:

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$

 \bullet b: Image Distance

• g: Object Distance

From Fig 2.1:

$$s = b + g$$

By Substitution:

$$\frac{1}{f} = \frac{s}{g(s-g)}$$

This yields:

$$0 = g^2 - sg + sf$$

Solving for g:

$$g_{1,2}=\frac{s}{2}\pm\sqrt{\frac{s^2}{4}-sf}$$

Hence:

$$g_1-g_2=\sqrt{s^2-4sf}$$

It is observed that:

$$a = g_1 - g_2 (2.1)$$

Therefore:

$$f = \frac{s^2 - a^2}{4s} \tag{2.2}$$

Additionally, the focal length f_{sys} of a double-lens system is given by:

$$\frac{1}{f_{sys}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d_l}{f_1 f_2} \tag{2.3}$$

• f_1 : Focal length of first lens

• f_2 : Focal length of second lens

• d_l : Distance between lenses

Procedure

- 1. The distance (S) between the object (G) and the screen (B) is measured and kept constant during the experiment. A lens from task 1 with focal length f_1 is then placed in-between the object and screen **Fig 2.1**.
- 2. The lens is adjusted until a sharp image forms on the screen, at which point the object distance (g_1) and the image distance (b_1) are recorded.
- 3. The lens is moved again until another sharp image forms, and the new distances (g_2) and $(b_2$ are recorded.
- 4. The distance (a) between the two different lens positions is found using Eq 2.1, and f_1 is determined using Eq 2.2.
- 5. The previous steps are repeated for 5 different values of (s), and the average value of (f_1) is determined.
- 6. This procedure is repeated using the second lens from task 1 with focal length (f_2) .
- 7. The theoretical focal length f_{sys} of the double-lens system is determined using Eq 2.3.

Measurements

Lens 1

#	S (mm)	$g_1 \text{ (mm)}$	$b_1 \text{ (mm)}$	$g_2 \; (\mathrm{mm})$	$b_2 \text{ (mm)}$	a (mm)	$f_1 \text{ (mm)}$
1.0	650.0	98.0	552.0	545.0	105.0	447.0	85.65
2.0	750.0	96.0	654.0	647.0	103.0	551.0	86.30
3.0	850.0	94.0	756.0	749.0	101.0	655.0	86.32
4.0	550.0	102.0	448.0	441.0	109.0	339.0	85.26
5.0	450.0	110.0	340.0	330.0	120.0	220.0	85.61

Average value of $f_1=85.83mm$

Lens 2

#	S (mm)	$g_1 \text{ (mm)}$	$b_1 \text{ (mm)}$	$g_2 \; (\mathrm{mm})$	$b_2 \text{ (mm)}$	a (mm)	$f_2 \text{ (mm)}$
1.0	1290.0	525.0	765.0	790.0	500.0	265.0	308.89
2.0	1390.0	446.0	944.0	940.0	450.0	494.0	303.61
3.0	1490.0	430.0	1060.0	1059.0	431.0	629.0	306.12
4.0	1590.0	427.0	1163.0	1176.0	414.0	749.0	309.29
5.0	1690.0	404.0	1286.0	1288.0	402.0	884.0	306.90

Average value of $f_2=306.96mm$

During the experiment:

$$d_l=272mm$$

Therefore:

$$f_{sys} = 218.11mm$$

Analysis

1. It is observed that using Bessel's method yields the same value for f_{sys} as found in task 1.