In [1]:

In [2]:

```
#for classification
fruits=pd.read_table('fruit_data_with_colors.txt')

X_fruits=fruits[['height','width','mass','color_score']]
y_fruit=fruits['fruit_label']

X_fruits_2d=fruits[['height','width','mass','color_score']]
y_fruits_2d=fruits['fruit_label']
```

In [3]:

```
print(X_fruits_2d.shape)
```

(59, 4)

In [4]:

```
print(y_fruits_2d.shape)
```

(59,)

In [6]:

```
clfList=[]
clfTestList=[]
clfTrainingList=[]
```

In [9]:

```
#Logistic Regression
```

In [7]:

Accuracy of Logistic classifier on training set:0.82 Accuracy of Logistic classifier on test set:0.53

In []:

##Support Vector Machine

In [8]:

Accuracy of SVC classifier on training set:0.82 Accuracy of SVC classifier on test set:0.60

In [12]:

Decision Tree

In [9]:

Accuracy of DecisionTree classifier on training set:1.00 Accuracy of DecisionTree classifier on test set:0.80

In [10]:

##Random Forest

In [11]:

Accuracy of RandomForest classifier on training set:1.00 Accuracy of RandomForest classifier on test set:0.73

In [242]:

#1. 어떤 모델에서 테스트셋 구분에 가장 좋은 성능을 보이는지 간단한 그래프를 통해 구하세요.

In [12]:

```
plt.figure(figsize=(5,4))
x_axis=range(len(clfTestList))
scatters=plt.scatter(x_axis,clfTestList,marker='o',alpha=0.8,color='red')
```


SVC

In [13]:

0.5

Logistic Regression

```
names=['Logistic Regression','SVC','Decision Tree','Random Forest']
pos=np.arange(len(names))
plt.xticks(pos,names)
plt.ylabel('accurate score')
plt.title('results of Supervised Learning')
```

Decision Tree Random Forest

Out[13]:

Text(0.5, 1, 'results of Supervised Learning')

In [14]:

```
new_xvals=[]
for i in x_axis:
    new_xvals.append(i+0.3)
scatters2=plt.scatter(new_xvals,clfTrainingList,marker='o',alpha=0.8,color='blue')
```

In []:

```
#1. Decistion Tree에서 가장 좋은 성능을 보입니다.
```

```
In [ ]:
```

2. 그리고 그 때, [무게가 120, 너비가 6, 높이가 8, color_score가 0.7]인 과일은 무엇인지 #그 모델을 가지고 추정하세요.

In [19]:

show_fruit_name=dict(zip(fruits.fruit_label.unique(),fruits.fruit_name.unique()))

In [21]:

```
#X_fruits=fruits[['height', 'width', 'mass', 'color_score']]
#y_fruit=fruits['fruit_label']
prediction=clf.predict([[8,6,120,0.7]])
show_fruit_name[prediction[0]]
```

Out[21]:

'lemon'

In []:

2.lemon일니다.

In []: