1) Let $X_1, X_2, X_3 \sim f_{X_1X_2X_3}(t_1, t_2, t_3)$. Choose the correct options from the following.

$$\checkmark f_{X_1}(t_1) = \sum_{t_2' \in T_{X_2}, t_3' \in T_{X_3}} f_{X_1 X_2 X_3}(t_1, t_2', t_3')$$

$$extstyle f_{X_1X_2}(t_1,t_2) = \sum_{t_3' \in T_{X_3}} f_{X_1X_2X_3}(t_1,t_2,t_3')$$

$$\Box$$
 $f_{X_1X_2}(t_1,t_2) = \sum_{t_1,t_2} f_{X_1X_2X_3}(t_1,t_2,t_3')$

$$\Box$$
 $f_{X_2}(t_2) = \sum_{t_2' \in T_{X_2}} f_{X_1 X_2 X_3}(t_1, t_2', t_3)$

Sum over all the values encept the ones you want to find the PMF For.

Let $X_1, X_2, X_3 \sim f_{X_1 X_2 X_3}(t_1, t_2, t_3)$. Their joint PMF is given in Table 1.6.1.

t_1	t_2	t_3	$f_{X_1X_2X_3}(t_1, t_2, t_3)$
0	0	0	1/6
0	1	0	1/6
0	1	1	1/6
1	0	0	1/6
1	0	1	1/6
1	1	1	1/6

Table 1.6.1: Joint PMF of X_1, X_2 , and X_3 .

0) Find the PMF of X, and X2. => Sum over the values of t3.

O) find the PMF of X2 ord X3. => Sum over the values of X1.

$$\frac{x_{3}^{2}}{0}$$
 0 1 0 $\frac{2}{6}$ 0 $\frac{7}{6}$ 1 $\frac{7}$