Tétraède

Jérémie Barde* sous la supervision de Prof. Hélène Cossette et de Prof. Etienne Marceau École d'actuariat, Université Laval, Québec, Canada

14 août 2024

Résumé

Ce document présente une représentation géométrique d'une classe de Fréchet avec des marginales suivant une loi Bernoulli.

^{*}Corresponding author, jeremie.barde.1@ulaval.ca

1 Représentation géométrique de la classe de Fréchet : Bernoulli

- **Objectif**: Examiner les notions de dépendance dans un contexte où n = 2 et les valeurs possible que peut prendre (X_1, X_2) sont $\{0, 1\}^2$.
- Soit:

$$f_{X_1,X_2}(x_1,x_2) = \Pr(X_1 = 1, X_2 = 2), \quad (x_1,x_2) \in \{0,1\}^2$$

- On observe que $F_{X_1,X_2}(x_1,x_2)$ prend 4 valeur où $f_{X_1,X_2}(x_1,x_2) \geq 0$ et $\sum_{x_1,x_2} f_{X_1,X_2}(x_1,x_2) = 1$.
- On vise à représenter géométriquement la classe de Fréchet $\mathcal{CF}(F_1, F_2)$ où F_1 et F_2 sont des fonction de répartition de lois Bernoulli avec probabilité q_1 et q_2 .
- Pour y arriver on défini le couple $(x, y, z) \in [0, 1]^3$. On défini arbitrairement les paramètres suivant :

$$x = f_{X_1, X_2}(0, 0);$$
 $y = f_{X_1, X_2}(0, 1);$ $z = f_{X_1, X_2}(1, 0)$

Il faut que $x + y + z + f_{X_1, X_2}(1, 1) = 1$, $\forall (x, y, z)$. Ainsi on trouve les triplets suivant :

$$(1,0,0) = f_{X_1,X_2}(0,0) = 1 \Rightarrow f_{X_1,X_2}(0,1) = 0; \ f_{X_1,X_2}(1,0) = 0; \ f_{X_1,X_2}(1,1) = 0$$

$$(0,1,0) = f_{X_1,X_2}(0,1) = 1 \Rightarrow f_{X_1,X_2}(0,0) = 0; \ f_{X_1,X_2}(1,0) = 0; \ f_{X_1,X_2}(1,1) = 0$$

$$(0,0,1) = f_{X_1,X_2}(1,0) = 1 \Rightarrow f_{X_1,X_2}(0,0) = 0; \ f_{X_1,X_2}(0,1) = 0; \ f_{X_1,X_2}(1,1) = 0$$

$$(0,0,0) = f_{X_1,X_2}(1,1) = 1 \Rightarrow f_{X_1,X_2}(0,0) = 0; \ f_{X_1,X_2}(0,1) = 0; \ f_{X_1,X_2}(1,0) = 0$$

 ${\bf Rappel}:$

$$f_{X_1,X_2}(0,0) = \Pr(X_1 = 0, X_2 = 0)$$

$$f_{X_1,X_2}(0,1) = \Pr(X_1 = 0, X_2 = 1)$$

$$f_{X_1,X_2}(1,0) = \Pr(X_1 = 1, X_2 = 0)$$

$$f_{X_1,X_2}(1,1) = \Pr(X_1 = 1, X_2 = 1)$$

- Pour notre situation on pose $q_1=q_2=0.5.$ Ce qui implique :

$$Pr(X_1 = 1) = Pr(X_2 = 0) = 0.5 \Rightarrow Pr(X_1 = 1) = f_{X_1, X_2}(1, 0) + f_{X_1, X_2}(1, 1) = 0.5$$
$$Pr(X_2 = 1) = Pr(X_2 = 0) = 0.5 \Rightarrow Pr(X_2 = 1) = f_{X_1, X_2}(0, 1) + f_{X_1, X_2}(1, 1) = 0.5$$

- Soit X_1 et X_2 sont comonotone, on sais que les probabilité doivent être plus petite que 0.5:

$$\begin{split} f_{X_1,X_2}(0,0) &= 0.5 \\ f_{X_1,X_2}(0,1) &= 0 \\ f_{X_1,X_2}(1,0) &= 0 \\ f_{X_1,X_2}(1,1) &= 0.5 \end{split}$$

Les (x_1, x_2) vont dans le même sens.

- Soit X_1 et X_2 sont antimonotone, on sais que les probabilité doivent être plus petite que 0.5:

$$\begin{split} f_{X_1,X_2}(0,0) &= 0 \\ f_{X_1,X_2}(0,1) &= 0.5 \\ f_{X_1,X_2}(1,0) &= 0.5 \\ f_{X_1,X_2}(1,1) &= 0 \end{split}$$

Les (x_1, x_2) vont dans des sens opposé.

ILLUSTRATION 1 – Illustration géométrique

Le segment vert qui relie le cas comonotone et le cas antimonotone est la classe de Fréchet pour le cas $q_1 = q_2 = 0.5$. De plus le point milieux et le cas indépendant.

Résumons:

(1) On à fixé:

$$f_{X_1}(0) = 1 - q_1 = 0.5;$$
 $f_{X_1}(1) = q_1 = 0.5$
 $f_{X_2}(0) = 1 - q_2 = 0.5;$ $f_{X_2}(1) = q_2 = 0.5$

(2) Cela implique:

$$f_{X_1,X_2}(0,0) + f_{X_1,X_2}(0,1) = f_{X_1}(0) = 1 - q_1 = 0.5$$

Donc,

$$f_{X_1,X_2}(0,0) \le 1 - q_1; \ f_{X_1,X_2}(0,1) \le 1 - q_1$$

(3) Cela implique:

$$f_{X_1,X_2}(1,0) + f_{X_1,X_2}(1,1) = f_{X_1}(1) = q_1 = 0.5$$

Donc,

$$f_{X_1,X_2}(1,0) \le q_1; \ f_{X_1,X_2}(1,1) \le q_1$$

(4) Cela implique:

$$f_{X_1,X_2}(0,0) + f_{X_1,X_2}(1,0) = f_{X_2}(0) = 1 - q_2 = 0.5$$

Donc,

$$f_{X_1,X_2}(0,0) \le 1 - q_2; \ f_{X_1,X_2}(1,0) \le 1 - q_2$$

(5) Cela implique:

$$f_{X_1,X_2}(0,1) + f_{X_1,X_2}(1,1) = f_{X_2}(1) = q_2 = 0.5$$

Donc,

$$f_{X_1,X_2}(0,1) \le q_2$$
; $f_{X_1,X_2}(1,1) \le q_2$

(6) On observe que:

$$f_{X_1,X_2}(0,0) \le \min(1-q_1,1-q_2)$$

$$f_{X_1,X_2}(0,1) \le \min(1-q_1,q_2)$$

$$f_{X_1,X_2}(1,0) \le \min(q_1,1-q_2)$$

$$f_{X_1,X_2}(1,1) \le \min(q_1,q_2)$$

(7) On rappelle que : $f_{X_1}(1) = q_1$; $f_{X_2}(1) = q_2$, sont fixé tel que :

$$f_{X_1,X_2}(0,0) + f_{X_1,X_2}(0,1) + f_{X_1,X_2}(1,0) + f_{X_1,X_2}(1,1) = 1$$
(1)

(8) On réécrit (eq. 1) comme suit :

$$f_{X_1,X_2}(0,0) + (f_{x_1}(0) - f_{X_1,X_2}(0,0)) + (f_{x_2}(0) - f_{X_1,X_2}(0,0)) + f_{X_1,X_2}(1,1) = 1$$

$$f_{X_1,X_2}(0,0) + (1-q_1) - f_{X_1,X_2}(0,0) + (1-q_2) - f_{X_1,X_2}(0,0) + f_{X_1,X_2}(1,1) = 1$$

(9) Revenons à la distribution où (X_1, X_2) sont comonotone, on sait que :

$$F_{X_1,X_2}(x_1,x_2) = \min(F_{X_1}(x_1), F_{X_2}(x_2))$$

On peut donc calculer ces valeurs :

$$F_{X_1,X_2}(0,0) = \min(F_{X_1}(0), F_{X_2}(0)) = \min(1 - q_1, 1 - q_2) = \min(0.5, 0.5) = 0.5$$

$$F_{X_1,X_2}(0,1) = \min(F_{X_1}(0), F_{X_2}(1)) = \min(1 - q_1, 1) = \min(0.5, 1) = 0.5$$

$$F_{X_1,X_2}(1,0) = \min(F_{X_1}(1), F_{X_2}(0)) = \min(1, 1 - q_2) = \min(1, 0.5) = 0.5$$

$$F_{X_1,X_2}(1,1) = \min(F_{X_1}(1), F_{X_2}(1)) = \min(1, 1) = \min(0.5, 1) = 1$$

De ces 4 valeurs on déduit :

$$\begin{split} f_{X_1,X_2}(0,0) &= F_{X_1,X_2}(0,0) = 0.5 \\ f_{X_1,X_2}(0,1) &= F_{X_1,X_2}(0,1) - F_{X_1,X_2}(0,0) = 0.5 - 0.5 = 0 \\ f_{X_1,X_2}(1,0) &= F_{X_1,X_2}(1,0) - F_{X_1,X_2}(0,0) = 0.5 - 0.5 = 0 \\ f_{X_1,X_2}(1,1) &= F_{X_1,X_2}(1,1) - F_{X_1,X_2}(0,1) - F_{X_1,X_2}(0,1) + F_{X_1,X_2}(0,0) = 1 - 0.5 - 0.5 + 0.5 = 0.5 \end{split}$$

(10) Revenons à la distribution où (X_1, X_2) sont antimonotone :

$$\begin{split} F_{X_1,X_2}(0,0) &= \max(F_{X_1}(0) + F_{X_2}(0) - 1; 0) = \max(1 - q_1 + 1 - q_2 - 1) = 0 \\ F_{X_1,X_2}(0,1) &= \max(F_{X_1}(0) + F_{X_2}(1) - 1; 0) = \max(1 - q_1 + 1 - 1) = 0.5 \\ F_{X_1,X_2}(1,0) &= \max(F_{X_1}(1) + F_{X_2}(1) - 1; 0) = \max(1 + 1 - q_2 - 1) = 0.5 \\ F_{X_1,X_2}(1,1) &= \max(F_{X_1}(1) + F_{X_2}(1) - 1; 0) = \max(1 + 1 - 1) = 1 \end{split}$$

De ces 4 valeurs on déduit :

$$\begin{split} f_{X_1,X_2}(0,0) &= 0 \\ f_{X_1,X_2}(0,1) &= F_{X_1,X_2}(0,1) - F_{X_1,X_2}(0,0) = 0.5 - 0 = 0.5 \\ f_{X_1,X_2}(1,0) &= F_{X_1,X_2}(1,0) - F_{X_1,X_2}(0,0) = 0.5 - 0 = 0.5 \\ f_{X_1,X_2}(1,1) &= F_{X_1,X_2}(1,1) - F_{X_1,X_2}(0,1) - F_{X_1,X_2}(0,1) + F_{X_1,X_2}(0,0) = 1 - 0.5 - 0.5 + 0 = 0 \end{split}$$

(11) Quand (X_1, X_2) sont indépendante :

$$f_{X_1,X_2}(x_1,x_2) = f_{x_1}(x_1) \cdot f_{x_2}(x_2) = q_1^{\lambda_1} (1-q_1)^{1-\lambda_1} q_2^{\lambda_2} (1-q_2)^{1-\lambda_2}$$

- (12) On a identifier 3 distribution dont $f_{X_1,X_2}(x_1,x_2) \in CF(F_1,F_2)$ où $F_i \sim Bern(q_i), i = 1,2.$
- (13) Dans ce contexte précis, on peut identifier les autres distribution en fixant,

$$f_{X_1,X_2}(0,0) \in \{0; \min(1-q_1,1-q_2)\}.$$

Pour notre exemple on fixe,

$$f_{X_1,X_2}(0,0) = x \in [0,0.5].$$

Alors,

$$f_{X_1,X_2}(0,1) = y = f_{x_1}(0) - f_{X_1,X_2}(0,0) = 0.5 - x$$

$$f_{X_1,X_2}(1,0) = y = f_{x_2}(0) - f_{X_1,X_2}(0,0) = 0.5 - x$$

pour chaque valeur de x on a le point (x, y, z) = (x, 0.5 - x, 0.5 - x).

(14) L'expression de $E[X_1X_2]$:

$$E[X_1 X_2] = \sum x_1 x_2 F_{X_1, X_2}(x_1, x_2) = f_{X_1, X_2}(1, 1)$$

(15) Trouvons la covariance entre X_1 et X_2 :

$$Cov(X_1, X_2) = E[X_1X_2] - E[X_1]E[X_1] = f_{X_1, X_2}(1, 1) - q_1q_2 = f_{X_1, X_2}(1, 1) - 0.25$$

(16) Trouvons le coefficient de corrélation de Pearson :

$$\rho_p(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}} = \frac{f_{X_1, X_2}(1, 1) - 0.25}{\sqrt{q_1(1 - q_1)q_2(1 - q_2)}} = \frac{f_{X_1, X_2}(1, 1) - 0.25}{0.25} = 4f_{X_1, X_2}(1, 1) - 1$$

Donc,

$$-1 \le \rho_p(X_1, X_2) \le 1$$