点集拓扑作业(4)

Problem 1: 设集合 X 非空, d_1, d_2 是其上的两个度量, 证明 : d_1 诱导的拓扑细于 d_2 诱导的拓扑 $\Leftrightarrow \forall x \in X, \forall r > 0, \exists s > 0, B_{d_1}(x,s) \subseteq B_{d_2}(x,r)$.

我们记 $\mathcal{T}_1, \mathcal{T}_2$ 分别是 d_1, d_2 诱导的拓扑, $\mathcal{B}_i = \{B_{d_i}(x,\varepsilon) | x \in X, \varepsilon > 0\} (i=1,2)$ 是 \mathcal{T}_i 的基. $\Leftarrow: \forall B_0 = B_{d_2}(x,r) \in \mathcal{B}_2, \forall x_0 \in B_0, \exists r_{x_0} > 0, B_{d_2}(x_0,r_{x_0}) \subseteq B_0$. 于是根据题意, $\exists s_{x_0} > 0, B_{d_1}(x_0,s_{x_0}) \subseteq B_{d_2}(x_0,r_{x_0})$. 于是我们有:

$$B_0 = igcup_{x_0 \in B_0} \{x_0\} \subseteq igcup_{x_0 \in B_0} B_{d_1}(x_0, s_{x_0}) \subseteq igcup_{x_0 \in B_0} B_{d_2}(x_0, r_{x_0}) \subseteq B_0 \ \Rightarrow B_0 = igcup_{x_0 \in B_0} B_{d_1}(x_0, s_{x_0}).$$

这意味着 \mathcal{B}_2 中的基元素是 \mathcal{B}_1 中的若干基元素的并. 只需要注意到 \mathcal{T}_2 中的元素是 \mathcal{B}_2 中基元素的并, 进而是 \mathcal{B}_1 中基元素的并, 所以同样是 \mathcal{T}_1 中的元素. 所以 $\mathcal{T}_2 \subseteq \mathcal{T}_1$. 充分性成立.

$$\Rightarrow$$
: 由于 $\mathcal{T}_2\subseteq\mathcal{T}_1, orall x\in X, orall r>0, B_0=B_{d_2}(x,r)\in\mathcal{T}_2$,于是 $\exists J, orall \alpha\in J, B_\alpha\in\mathcal{B}_1, B_0=igcup_{\alpha\in J}B_\alpha$. 设 $x\in B_{\alpha_0}$,于是 $\exists s>0, B_{d_1}(x,s)\subseteq B_{\alpha_0}\subseteq igcup_{\alpha\in J}B_\alpha=B_0=B_{d_2}(x,r)$. 必要性得证.

Problem 2: 设 d_1, d_2 是集合 X 上的两个度量, 试问: $D(x, y) = \max\{d_1(x, y), d_2(x, y)\}$ 与 $d(x, y) = \min\{d_1(x, y), d_2(x, y)\}$ 是否也一定是度量?

先说结论, D是度量, d 不是度量.

对于 D 而言, $D(x,y) \ge 0$ 是显然的, $D(x,y) = 0 \Leftrightarrow d_1(x,y) = d_2(x,y) = 0 \Leftrightarrow x = y$. 对称性显然. 注意到 $d_1(x,z) \le \max\{d_1(x,z),d_2(x,z)\}$, 则有:

$$egin{aligned} D(x,y) &= \max\{d_1(x,y), d_2(x,y)\} \leq \max\{d_1(x,z) + d_1(z,y), d_2(x,z) + d_2(z,y)\} \ &\leq \max\{\max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\}, \ &\max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\}\} \ &= \max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\} \ &= D(x,z) + D(z,y). \end{aligned}$$

因此 $D \in X$ 的度量. 对于 d 而言, 反例如下: $X = \{x_1, x_2, x_3\}$, 定义度量如下, 容易验证是度量.

d_1	x_1	x_2	x_3	d_2	x_1	x_2	x-3
x_1	0	1	3	x_1	0	3	1
x_2	1	0	3	x_2	3	0	3
x_3	3	3	0	x_3	1	3	0

 $3 = d(x_2, x_3) \ge d(x_2, x_1) + d(x_1, x_3) = 2$ 显然违反三角不等式, 于是不是度量.

Problem 3: 证明离散拓扑是可度量化的.

只需证明:度量 $d(x,y)=\begin{cases} 1 & x\neq y \\ 0 & x=y \end{cases}$ 所诱导的拓扑 \mathcal{T} 是 X 的离散拓扑 $\mathscr{P}(X)$. 显然 $\mathcal{T}\subseteq\mathscr{P}(X)$. $\forall U\in\mathscr{P}(X)$, 即 $U\subseteq X$, 注意到 $\forall x\in X$, $B(x,1)=\{x\}$. 于是 $U=\bigcup_{x\in U}\{x\}=\bigcup_{x\in U}B(x,1)\in\mathcal{T}$. 于是 d 诱导的拓扑就是离散拓扑,即离散拓扑是可度量化的.

Problem 4: 设 (X,d) 是度量空间, A 是 X 的非空子集. 记 d 在 $A \times A$ 上的限制为 d_A . 证明: d_A 诱导的拓扑等于 A 上的子拓扑.

记 d 诱导的拓扑是 \mathcal{T}_0 , 在 A 上的子空间拓扑为 $\mathcal{T}_A = \{U \cap A | U \in \mathcal{T}_0\}$. d_A 诱导的拓扑记为 \mathcal{T} , 基为 \mathcal{B} .

 $orall U=igcup_{lpha\in J}B_lpha\in \mathcal{T},$ 其中 $orall lpha\in J,B_lpha\in \mathcal{B}\subseteq \mathcal{B}_0$. 又 $B_lpha\subseteq A$,于是

 $igcup_{lpha\in I} B_lpha\in \mathcal{T}_0, U=U\cap A\in \mathcal{T}_A, \mathcal{T}\subseteq \mathcal{T}_A.$

 $orall U \in \mathcal{T}_A$,记 $U = V \cap A, V \in \mathcal{T}_0$.于是 $\exists K, orall eta \in K, B_eta \in \mathcal{B}_0, V = igcup_{eta \in K} B_eta.$

注意到 $B_{d_A}(x,r)=B_d(x,r)\cap A$. 于是 $U=V\cap A=\bigcup_{eta\in K}(B_eta\cap A)\in\mathcal{T}$. 于是 $\mathcal{T}_A\subseteq\mathcal{T}$. 命题成立.