

Abbildung 1: Sketch of F

Nonlinear Optimization – Sheet 08

Exercise 1

We compute

$$g(x^*) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Therefore, the active indices are $\mathcal{A}(x^*) = \{1, 2, 3\}$. By taking a close look at the inequality constraints, we see

$$F = \overline{B_1(1) \cup B_1(3)} \times [-2, -1].$$

We first consider the tangent cone in the x_1x_2 -space. Consider the sequences

$$x_k = (1 + \cos(\alpha_k), \sin(\alpha_k); \quad t_k = \sin(\alpha_k)$$

for a zero sequence α_k . Then we compute

$$d := \lim_{k \to \infty} \frac{x_k - x}{t_k} = \lim_{k \to \infty} \left(\frac{\cos(\alpha_k) - 1}{\sin(\alpha_k)}, 1 \right)$$

As

$$\lim_{k \to \infty} \frac{-\sin(\alpha)}{\cos(\alpha)} = 0,$$

we conclude with L'Hospital that d = (0, 1). Considering the geometry of the problem (see 1), we see that the tangent cone is already all of \mathbb{R}^2 .

In the third dimension, the only active constraint is $x_3 \leq -1$. Therefore, the cone in x_3 -direction is given by $\mathbb{R}_{\leq 0}$.

$$\mathcal{T}_F(x^*) = \mathbb{R}^2 \times \mathbb{R}_{\leq 0}.$$

The normal cone is therefore given by

$$\mathcal{T}_F(x^*)^{\circ} = \{0\} \times \{0\} \times \mathbb{R}_{>0}.$$

We finally compute the linearizing cone,

$$\mathcal{T}_F^{\text{lin}}(x^*) = \{ d \in \mathbb{R}^3 : 2(x_1 - 1, x_2, 0) \cdot d \le 0, 2(x_1 - 3, x_2, 0) \cdot d \le 0, (0, 0, 1) \cdot d \le 0 \}$$

$$= \{ d \in \mathbb{R}^3 : (1, 0, 0) \cdot d \le 0, (-1, 0, 0) \cdot d \le 0, (0, 0, 1) \cdot d \le 0 \}$$

$$= \{ (d_1, d_2, d_3) \in \mathbb{R}^3 : d_1 \le 0, -d_1 \le 0, d_3 \le 0 \}$$

$$= \{ 0 \} \times \mathbb{R} \times \mathbb{R}_{<} 0$$

The three cones are easy to imagine and don't need a sketch.

Exercise 2

- (i) Prove Lemma 7.9 i.e. for arbitrary sets $M_1, M_2, M \subset \mathbb{R}^n$ the statements
 - (a) M° ist a closed convex cone.

Proof. The cone property is clear and closedness follows from continuity of the inner product on \mathbb{R}^n .

(b) $M_1 \subset M_2$ implies $M_2^{\circ} \subset M_1^{\circ}$.

Proof. Clear on inspection.

- (ii) Verify the claimed forms of the polar cones in Example 7.10, i.e.
 - (a) Suppose $A = U + \{\overline{x}\}$ with $U \subset \mathbb{R}^n$ linear subspace, then $A^{\circ} = \{\overline{x}\}^{\circ} \cap U^{\perp}$.

Proof. The inclusion " \supset " is immediate. Let $x \in A^{\circ}$. Thus,

$$\forall u \in U : x^t(\overline{x} + u) = x^t \overline{x} + x^t u \le 0$$

setting u=0 we see $x\in\{\overline{x}\}^{\circ}$. We note $x^tu\leq -x^t\overline{x}$ and $x^t(-u)\leq -x^t\overline{x}$ i.e. $x^tu\geq x^t\overline{x}$. As $\forall n\in\mathbb{N}$ we have $nu\in U$ we get

$$\frac{1}{n}x^t\overline{x} \le x^t u \le -\frac{1}{n}x^t\overline{x}$$

taking the limit as $n \to \infty$ we see $x^t u = 0$ i.e. $x \in U^{\perp}$.

(b) In the absence of inequality constraints the polar of the linearizing cone $\mathcal{T}_F^{\text{lin}}(x)$, $x \in F$ has the representation

$$\mathcal{T}_F^{\text{lin}}(x)^\circ = \text{range } h'(x)^t = \{s \in \mathbb{R}^n : s \text{ a linear combination of } h_j(x)^t, j = 1, \dots, n_{eq}\}$$

Proof. Directly from 7.13. \Box

(c) Let $N = (\mathbb{R}_{>0})^n$ denote the non-negative orthant. Then $N^{\circ} = (\mathbb{R}_{<0})^n$.

Proof. Let $x = (x_1, \dots, x_n) \in N^{\circ}$ then $x^t e_i = x_i \leq 0$ as $e_i \in N$. So $x \in (\mathbb{R}_{\leq 0})^n$. The other inclusion is clear.

Exercise 3

The optimization problems

Minimize
$$f(x), x \in \mathbb{R}$$
 s.t. $x = 0$ (P1)

and

Minimize
$$f(x), x \in \mathbb{R}$$
 s.t. $x^2 = 0$ (P2)

for any $f \in C^1(\mathbb{R})$ have their obvious solution $x^* = 0$. Show that ACQ and GCQ are fulfilled for (P1) at x^* but neither of them is fulfilled for (P2) at x^* .

Proof. (P1): It holds that

$$\mathcal{T}_F^{\text{lin}}(x^*) = \left\{ d \in \mathbb{R} \mid \frac{\mathrm{d}}{\mathrm{d}x}(x) \big|_{x=0} \cdot d = 0 \right\} = \{0\}$$

as $0 \in \mathcal{T}_F(x^*) \subset \mathcal{T}_F^{\text{lin}}(x^*) = \{0\}$ we have equality and thus ACQ and GCQ hold.

(P2): Similarly

$$\mathcal{T}_F^{\text{lin}}(x^*) = \left\{ d \in \mathbb{R} \mid \frac{\mathrm{d}}{\mathrm{d}x}(x^2) \big|_{x=0} \cdot d = 0 \right\} = \mathbb{R}$$

and $\mathcal{T}_F(x^*) = \{0\}$ because $F = \{0\}$. Thus, neither ACQ nor GCQ is fulfilled.

Exercise 4

Consider

$$F = \{x \in \mathbb{R}^n \mid g_i(x) \le 0, h_j(x) = 0, \forall 1 \le i \le n_{\text{ineq}}, 1 \le j \le n_{\text{eq}}\}$$

and

$$F^{\text{lin}}(x) = \left\{ y \in \mathbb{R}^n \mid g_i(x) + g'_i(y - x) \le 0, h_j(x) + h'_i(x)(y - x) = 0 \quad \forall i, j \right\}$$

for $x \in F$.

(i) Show that $\mathcal{T}_F^{\text{lin}}(x) = \mathcal{T}_{F^{\text{lin}}(x)}(x)$ for $x \in F$.

Proof. "C": $d \in \mathbb{R}^n$, $d \in \mathcal{T}_F^{\text{lin}}(x)$ i.e. $g_i'(x)d \leq 0$, $\forall i \in \mathscr{A}(x)$ and $h_j'(x)d = 0$, $\forall j$. Clearly $\frac{1}{n}d + x \in F^{\text{lin}}(x)$ and thus

$$\frac{\frac{1}{n}d + x - x}{\frac{1}{n}} = d \implies d \in \mathcal{T}_{F^{\text{lin}}(x)}(x).$$

"\rightharpoonup": $d \in \mathcal{T}_{F^{\text{lin}}(x)}(x)$ and $x^k \in F^{\text{lin}}(x)$, $t^k \searrow 0$ sequences s.t.

$$d = \lim_{k \to \infty} \frac{x^k - x}{t^k}.$$

For all $i \in \mathcal{A}(x)$ i.e. $g_i(x) = 0$ we get

$$g_i'(x)\frac{x^k - x}{t^k} = \frac{1}{t^k}(g_i'(x)(x^k - x) + g_i(x)) \le 0 \implies g_i'(x)d \le 0$$

similarly we see $h'_i(x)d = 0, \ \forall j$.

(ii) Show that $\mathcal{T}_F^{\text{lin}}(x)$ is a closed convex cone.

Proof. Nothing to prove.

(iii) Prove Thm. 8.9 by showing that ACQ holds at any feasible point of problems of the form

Minimize
$$f(x)$$
 where $x \in \mathbb{R}^n$
subject to $A_{\text{ineq}}x \leq b_{\text{ineq}}$
and $A_{\text{eq}}x = b_{\text{eq}}$.

Proof. As $(A_{\text{ineq}}x - b_{\text{ineq}} + A_{\text{ineq}}(y - x))_i = (A_{\text{ineq}}y - b_{\text{ineq}})_i$ for all y and all i and similarly for the equality constraint we see

$$F^{\mathrm{lin}}(x) = F.$$

Thus
$$\mathcal{T}_F^{\text{lin}}(x) = \mathcal{T}_{F^{\text{lin}}(x)}(x) = \mathcal{T}_F(x)$$
 i.e. ACQ holds.