where r_i is the smallest integer, such that, $\pi^{r_i}(i) = i$ and $2 \le r_i \le n$. If π is not the identity, then it can be written in a unique way (up to the order) as a composition $\pi = \sigma_1 \circ \ldots \circ \sigma_s$ of cyclic permutations with disjoint domains, where s is the number of orbits with at least two elements. Every permutation $\pi: [n] \to [n]$ can be written as a nonempty composition of transpositions.

Proof. Consider the relation R_{π} defined on [n] as follows: $iR_{\pi}j$ iff there is some $k \geq 1$ such that $j = \pi^k(i)$. We claim that R_{π} is an equivalence relation. Transitivity is obvious. We claim that for every $i \in [n]$, there is some least r $(1 \leq r \leq n)$ such that $\pi^r(i) = i$.

Indeed, consider the following sequence of n+1 elements:

$$\langle i, \pi(i), \pi^2(i), \dots, \pi^n(i) \rangle.$$

Since [n] only has n distinct elements, there are some h, k with $0 \le h < k \le n$ such that

$$\pi^h(i) = \pi^k(i),$$

and since π is a bijection, this implies $\pi^{k-h}(i) = i$, where $0 \le k - h \le n$. Thus, we proved that there is some integer $m \ge 1$ such that $\pi^m(i) = i$, so there is such a smallest integer r.

Consequently, R_{π} is reflexive. It is symmetric, since if $j = \pi^k(i)$, letting r be the least $r \geq 1$ such that $\pi^r(i) = i$, then

$$i = \pi^{kr}(i) = \pi^{k(r-1)}(\pi^k(i)) = \pi^{k(r-1)}(j).$$

Now, for every $i \in [n]$, the equivalence class (orbit) of i is a subset of [n], either the singleton $\{i\}$ or a set of the form

$$J = \{i, \pi(i), \pi^{2}(i), \dots, \pi^{r_{i}-1}(i)\},\$$

where r_i is the smallest integer such that $\pi^{r_i}(i) = i$ and $2 \le r_i \le n$, and in the second case, the restriction of π to J induces a cyclic permutation σ_i , and $\pi = \sigma_1 \circ \ldots \circ \sigma_s$, where s is the number of equivalence classes having at least two elements.

For the second part of the proposition, we proceed by induction on n. If n=2, there are exactly two permutations on [2], the transposition τ exchanging 1 and 2, and the identity. However, $\mathrm{id}_2 = \tau^2$. Now, let $n \geq 3$. If $\pi(n) = n$, since by the induction hypothesis, the restriction of π to [n-1] can be written as a product of transpositions, π itself can be written as a product of transpositions. If $\pi(n) = k \neq n$, letting τ be the transposition such that $\tau(n) = k$ and $\tau(k) = n$, it is clear that $\tau \circ \pi$ leaves n invariant, and by the induction hypothesis, we have $\tau \circ \pi = \tau_m \circ \ldots \circ \tau_1$ for some transpositions, and thus

$$\pi = \tau \circ \tau_m \circ \ldots \circ \tau_1$$

a product of transpositions (since $\tau \circ \tau = id_n$).