

FCC Part 15C Measurement and Test Report

For

Cyrus Technology GmbH

Hergelsbendenstrasse 49, 52080 Aachen, Germany

FCC ID: 2AI3KCS24SA2

FCC Rule(s): FCC Part 15.225

Product Description: Rugged Phone

Tested Model: <u>CS24SA</u>

Report No.: <u>STR18078270I-6</u>

Sample Receipt Date: 2018-07-24

Tested Date: <u>2018-07-25 to 2018-08-20</u>

Issued Date: <u>2018-08-20</u>

Tested By: <u>Jason Su / Engineer</u>

Reviewed By: Suan Su / Engineer

Approved & Authorized By: <u>Jandy so / PSQ Manager</u>

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Jason Su Susan Su Jumbyso

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM.Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 1.2 TEST STANDARDS 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 EUT SETUP AND TEST MODE 1.6 MEASUREMENT UNCERTAINTY 1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	7
3. ANTENNA REQUIREMENT	8
3.1 Standard Applicable	8
4. RADIATED EMISSIONS	
4.1 Standard Applicable 4.2 Test Procedure 4.3 Corrected Amplitude & Margin Calculation 4.4 Summary of Test Results/Plots	9 10
5. OUT OF BAND EMISSIONS	
5.1 Standard Applicable	14
6. FREQUENCY STABILITY	15
6.1 Standard Applicable	15
7. CONDUCTED EMISSIONS	
7.1 TEST PROCEDURE 7.2 BASIC TEST SETUP BLOCK DIAGRAM 7.3 TEST RECEIVER SETUP 7.4 SUMMARY OF TEST RESULTS/PLOTS	16 16
8. EMISSION BANDWIDTH	
8.1 APPLICABLE STANDARD	19

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Cyrus Technology GmbH

Address of applicant: Hergelsbendenstrasse 49, 52080 Aachen, Germany

Manufacturer: Cyrus Technology GmbH

Address of manufacturer: Hergelsbendenstrasse 49, 52080 Aachen, Germany

General Description of EUT	
Product Name:	Rugged Phone
Trade Name:	Cyrus
Model No.:	CS24SA
Rated Voltage:	/
	Model: Y733-20
Power Adapter Model:	Input:AC100-240V 50/60Hz 0.35A
	Output: DC5V 2000mA
	•
Note: The test data is gathered fro	m a production sample, provided by the manufacturer.

Technical Characteristics of EUT				
Support Standards:	NFC			
Frequency Range:	13.56MHz			
Max. Field Strength:	51.20dBuV/m (at 3m)			
Antenna Type:	Integral Antenna			
Lowest Internal frequency of EUT:	13.56MHz			

Report No.: STR18078270I-6 Page 3 of 20 RF Part 15.225

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013,

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: STR18078270I-6 Page 4 of 20 RF Part 15.225

1.5 EUT Setup and Test Mode

The EUT was operated in the continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List				
Test Mode	Description	Remark		
TM1	Transmitting	13.56MHz		

Test Conditions				
Temperature:	25 °C			
Relative humidity	45 %.			
ATM Pressure:	1019 mbar			

Special Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
/	/	/	/		

Auxiliary Equipment List and Details					
Description	Manufacturer	Model	Serial Number		
Notebook	Lenovo	E445	/		

1.6 Measurement Uncertainty

Measurement uncertainty					
Parameter	Conditions	Uncertainty			
Frequency Deviation	2.3%	±5%			
Conducted Emissions	Conducted	9-150kHz ±3.74dB			
Conducted Emissions	Conducted	$0.15-30 \text{MHz} \pm 3.34 \text{dB}$			
		$30-200 \text{MHz} \pm 4.52 \text{dB}$			
Transmitten Cavaiona Emissiona	Dadiated	0.2-1GHz ±5.56dB			
Transmitter Spurious Emissions	Radiated	1-6GHz ±3.84dB			
		6-18GHz ±3.92dB			

Report No.: STR18078270I-6 Page 5 of 20 RF Part 15.225

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2018-05-22	2019-05-21
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2018-05-22	2019-05-21
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2018-05-22	2019-05-21
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2018-05-22	2019-05-21
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2020-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2020-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2020-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2018-05-22	2019-05-21
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2018-05-22	2019-05-21
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2018-05-22	2019-05-21
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2018-05-22	2019-05-21
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2018-05-22	2019-05-21
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2018-03-19	2019-03-18
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2018-03-19	2019-03-18
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2018-03-19	2019-03-18
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2018-03-19	2019-03-18
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.209	Radiated Emission	Compliant
§15.225(a)	Field Strength	Compliant
§15.225(b)(c)	Out of Band Emission	Compliant
§15.225(e)	Frequency Stability	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.215(c)	Emission Bandwidth	Compliant

N/A: not applicable

3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an integral antenna, fulfill the requirement of this section.

4. Radiated Emissions

4.1 Standard Applicable

According to §15.225(a), The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

According to §15.225(d) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in §15.209.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

4.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.225(d) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Frequency:30MHz-1GHz Frequency:9kHz-30MHz Frequency : Above 1GHz RBW=10KHz, RBW=120KHz, RBW=1MHz, VBW = 30KHzVBW=300KHz VBW=3MHz(Peak), 10Hz(AV) Sweep time= Auto Sweep time= Auto Sweep time= Auto Trace = max holdTrace = max holdTrace = max holdDetector function = peak Detector function = peak, QP Detector function = peak, AV

4.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading – Corr. Factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15 Limit

Report No.: STR18078270I-6 Page 10 of 20 RF Part 15.225

4.4 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

➤ Below 30MHz

Frequency	Reading	Correction	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	Factor dB/m	dBuV/m	dBuV/m	dB	X/Y/Z	
13.5600	41.62	6.61	48.23	124.00	-75.77	X	Peak
27.1200	43.04	-6.61	36.43	69.50	-33.07	X	Peak
13.5600	40.12	6.61	46.73	124.00	-77.27	Y	Peak
27.1200	43.54	-6.61	36.93	69.50	-32.57	Y	Peak
13.5600	42.61	6.62	49.23	124.00	-64.77	Z	Peak
27.1200	44.54	-6.61	37.93	69.50	-31.57	Z	Peak

Above 30MHz

Test Mode TM1	Polarity:	Horizontal
---------------	-----------	------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	44.5868	35.29	-13.00	22.29	40.00	-17.71	236	100	peak
2	101.6443	33.12	-14.33	18.79	43.50	-24.71	165	100	peak
3	355.4273	31.39	-6.65	24.74	46.00	-21.26	96	100	peak
4	1000.0000	29.51	4.04	33.55	54.00	-20.45	347	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	45.2166	34.67	-12.96	21.71	40.00	-18.29	77	100	peak
2	108.2667	32.99	-13.96	19.03	43.50	-24.47	156	100	peak
3	394.8545	31.62	-6.64	24.98	46.00	-21.02	58	100	peak
4	989.5355	30.21	3.88	34.09	54.00	-19.91	94	100	peak

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

5. OUT OF BAND EMISSIONS

5.1 Standard Applicable

According to FCC 15.225 (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

5.2 Test Procedure

As the radiation test, set the RBW=10kHz VBW=30kHz, observed the outside band of 13.11MHz to 14.01MHz, than mark the higher-level emission for comparing with the FCC rules.

5.3 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Test Mode	TM1	Polarity:	/
			· ·

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	13.2468	76.24	-29.08	47.16	80.50	-33.34	267	100	peak
2	13.4932	80.27	-29.07	51.20	90.50	-39.30	311	100	peak
3	13.5600	97.09	-29.07	68.02	124.00	-55.98	57	100	peak
4	13.6174	80.56	-29.07	51.49	90.50	-39.01	144	100	peak
5	13.8118	76.80	-29.07	47.73	80.50	-32.77	283	100	peak

Report No.: STR18078270I-6 Page 14 of 20 RF Part 15.225

6. Frequency Stability

6.1 Standard Applicable

According to 15.225(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure.

6.3 Summary of Test Results/Plots

	Reference Frequency: 13.56MHz, Limit: 100ppm						
Environment Temperature (°C)	Power Supplied (VDC)	Frequent	Error (ppm)				
50	3.85	25	1.84				
40	3.85	54	3.98				
30	3.85	42	3.10				
20	3.85	0	0.00				
10	3.85	16	1.18				
0	3.85	14	1.03				
-10	3.85	23	1.70				
-20	3.85	25	1.84				

Report No.: STR18078270I-6 Page 15 of 20 RF Part 15.225

7. Conducted Emissions

7.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

7.2 Basic Test Setup Block Diagram

7.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

7.4 Summary of Test Results/Plots

Report No.: STR18078270I-6 Page 16 of 20 RF Part 15.225

	Test Mode	TM1(AC120V 60Hz)	Polarity:	Neutral
80.0	dBu∀			
				Limit1: — Limit2: —
70				
60	Mah			
50	and Allan	3 0		5
40	2	S. M. W.	h	
30	Mury 1	1 1 A A . c h. M. danne.	where we say many many many	6
	, M	White was property	May May be a supply of the sup	tr_1
20				htr_2
10				
0.0				
0.	150	0.5	5	30.0 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1660	44.15	10.11	54.26	65.16	-10.90	QP
2	0.1660	29.67	10.11	39.78	55.16	-15.38	AVG
3*	0.5420	40.17	10.31	50.48	56.00	-5.52	QP
4	0.5460	29.07	10.32	39.39	46.00	-6.61	AVG
5	16.7660	33.01	11.08	44.09	60.00	-15.91	QP
6	17.5820	19.06	11.10	30.16	50.00	-19.84	AVG

Test Mode	TM1(AC120V 60Hz)	Polarity:	Line
	,		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1540	28.94	10.10	39.04	55.78	-16.74	AVG
2	0.1620	45.04	10.10	55.14	65.36	-10.22	QP
3*	0.2140	45.25	10.13	55.38	63.05	-7.67	QP
4	0.2140	22.61	10.13	32.74	53.05	-20.31	AVG
5	0.5260	35.69	10.30	45.99	56.00	-10.01	QP
6	0.5460	23.16	10.32	33.48	46.00	-12.52	AVG

8. EMISSION BANDWIDTH

8.1 Applicable Standard

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.2 Test Procedure

According to the ANSI 63.10-2013, the emission bandwidth test method as follows.

Set span = 10kHz, centered on a transmitting channel RBW ≥1% 20dB Bandwidth, VBW ≥RBW Sweep = auto
Detector function = peak
Trace = max hold

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down of the emission.

8.3 Summary of Test Results/Plots

Tx Frequency	20dB Emission bandwidth(Hz)
13.56MHz	739.756

Report No.: STR18078270I-6 Page 19 of 20 RF Part 15.225

Please refer to the test plots as below:

***** END OF REPORT *****