DOCTORAL THESIS

Efficient Software Implementation of Pairing-Based Cryptographic Primitives for High-level Security for IoT

Author:
Md. Al-Amin Khandaker

Supervisor: Dr. Yasuyuki NOGAMI

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

Information Security Lab. Graduate School of Natural Science and Technology

OKAYAMA UNIVERSITY

November 25, 2018

Declaration of Authorship

This dissertation and the work presented here for doctoral studies were conducted under the supervision of Professor Yasuyuki Nogami. I, Md. Al-Amin Khandaker, declare that this thesis titled, "Efficient Software Implementation of Pairing-Based Cryptographic Primitives for High-level Security for IoT" and the work presented in it are my own. I confirm that:

- The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, while enrolled in the Faculty of Engineering at Okayama University as a candidate for the degree of Doctor of Philosophy in Engineering.
- This work has not been submitted for a degree or any other qualification at this University or any other institution.
- Some of the previously published works presented in this dissertation listed in "Research Activity". .
- The published work of others cited in this thesis is clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help to pursue this work.
- In all works my coauthors contribution is acknowledged.
- The experiments and results presented in this thesis and in the articles where I am the first author were conducted by the myself.

Signed:			
Date:			

 $"If we knew what it was we were doing, it would not be called {\it research}, would {\it it?}"$

Albert Einstein

Abstract

Md. Al-Amin KHANDAKER.

Efficient Software Implementation of Pairing-Based Cryptographic Primitives for High-level Security for IoT

Pairing-based cryptography over the elliptic curves is a relative new paradigm in public key cryptography (PKC). In general, pairing calculation involves certain elliptic curve named pairing-friendly curve defined over finite extension of prime field. It is typically defined as bilinear map from rational points of two additive groups to a multiplicative group. Two mathematical tool named as Miller's algorithm and final exponentiation is mostly involved in pairing calculation. However, most protocols also requires two more operation in pairing groups named scalar multiplication and exponentiation in multiplicative group. The above mentioned mathematical tools are the major bottleneck for the efficiency of pairing-based protocols.

Since, the inception at the advent of this century pairing-based cryptography brings monumental amount of research. The results of this vast amount of research brought some novel cryptographic application which was not possible before pairing-based cryptography. However, computation speed of pairing was very slow to consider them as a practical option. Years of research from the mathematicians, cryptographers and computer scientists improves the efficiency of pairing.

The security of pairing-based cryptography is not only rely on the intractability of elliptic curve discrete logarithm problem (ECDLP) of additive elliptic curve group but also discrete logarithm problem (DLP) on multiplicative group. It is known that key size in cryptography based of ECDLP requires fewer bits than cryptography based on DLP. Therefore, it is a crucial to maintain a balance in parameter sizes for both additive and multiplicative groups in pairing-based cryptography. In CRYPTO 2016, Kim and Barbulescu showed a more efficient version of number field sieve algorithm to solve DLP. This new attack makes all previous parameter settings to update.

This thesis presents several improvement technics for pairing-based cryptography over two ordinary pairing-friendly curves named KSS-16 and KSS-18. The motivation behind to work on these curves is, they not widely studied in literature compared to other pairing-friendly curves. After the extNFS algorithm, the security level of widely used pairing-friendly curves were challenged. The technics can also be applied on the ordinary pairing-friendly curves. We also present several improvements in extension field arithmetic operation. We implement the proposed improvements in for experimental purpose. All the sources are bundled in an installable library.

Acknowledgements

The last 3 and a half year was one of the best time of my life that I will cherish forever. I'm immensely blessed throughout this period for which I have many people to thank. I'm grateful to many people who have directly and indirectly helped me finish this work.

This work would not be possible without the unceasing supervision, innumerable counselling and unrelenting persuasion of my Ph.D. advisor Professor Yasuyuki Nogami. I am indebted to Nogami Sensei for having me in his lab (Information Security Lab.) as a doctoral student and mentoring me on this work. He taught me how to analyze complex problems from different perspectives and express the ideas from pen and papers to a fully publishable article. I enjoyed his insightful comments on the research topics during our discussions. Sometimes his in-depth queries bewildered me and influenced my ideas in this thesis. He guided me in different ways to approach a problem and the need to be persistent to accomplish my goal. His presence and off-work discussion make the lab more than a workplace.

I'm also very grateful for to my doctoral course co-supervisors Professor Nobuo Funabiki (Distributed Systems Design Lab.) and Professor Satoshi Denno (Multimedia Radio Systems Lab.) for having their time to read my thesis draft. Their insightful comments and helpful advice helped to shape the thesis into this state. I must recall my experience of taking the "Theory of Distributed Algorithm" course taught by Professor Nobuo Funabiki. His strong passion for algorithmic problem solving during the lectures was not only inspiring but also contagious.

I reminisce my encounters with Professor Satoshi Denno during my days at Secure Wireless System lab. He provided me with the deep-seated idea of the research works and Japan life. His questions and suggestions for the time of half yearly progress meetings were very intuitive.

I am very grateful to Associate Professor Nobumoto Yamane (*Information Transmission Lab.*) for provided important comments at progress meetings.

I would like to express my gratitude to Senior Assistant Professor Takuya Kusaka (*Information Security Lab.*) for the in-depth discussion of scientific topics. His strong work ethic and passion for research helped us to publish some of the remarkable collaborative works. He was always there to help while any difficulty arose from attending a conference to publishing a paper.

I express my gratitude to Senior Assistant Professor Hiroto Kagotani of (*Information System Design Lab.*) for employing me as a research assistant for a quarter. Since the Information System Design Lab and Information Security Lab. share space, we had encountered more often and share of research discussions. His comments during the progress report were enlightening.

I am also grateful to Assistant Professor Kengo Iokibe (*Optical and Electromagnetic Waves Lab.*) for the collaborative work we had on side-channel analysis of raspberry pi.

I would like to express my deep gratitude of Professor Sylvain Duquesne of Univ Rennes, France for having me at IRMAR as a short-term researcher and allowing me to present my work in front of some brightest audiences. Professor Duquesne's in-depth reviews on my works were not only helpful towards to final acceptability but also intriguing.

My sincere gratitude to post-doctoral fellow Dr. Loubna Ghammam at Normandie University, France for her persistent guidance. Our collaboration with Professor Duquesne and Dr. Loubna helps me to work on the diverse area of mathematical aspects of cryptography.

I am also thankful to Professor Howon Kim of Pusan National University, South Korea and his Ph.D. student Taehwan Park for a great research collaboration on IoT security.

My gratitude to one of the great IoT security expert Professor Hwajeong Seo of Hansung University, South Korea for being a co-author in my first major conference paper.

Thanks to MEXT, Japan for the scholarship which fulfilled my dream to pursue the doctoral study in Japan. I sincerely acknowledge all the funds that afforded me to join several international conferences and conduct research activities.

I am also grateful to all administrative officer of the Faculty of Engineering who directly or indirectly made an impact in my doctoral course studies. My special thanks to Ms. Yumiko Kurooka for her kind support in administrative works.

Special thanks also to my seniors, juniors, and friends in the laboratory for creating a great work atmosphere and their generous support. Thanks to pairing team members of my lab who are one of brightest minds I've worked with.

I can not thank enough to my wife for her sacrifices and generous supports to my bread and butter. I would like to take the opportunity to appreciate my parents Ms. Nasima Akter and Mr. Md. Ali-Azzam Khandaker for their understanding, and encouragements.

So far so general we all are standing on the shoulders of the giants for our works. My profound gratitude to all great cryptographer, cryptographic engineers and researchers whose works keep inspiring students like me. I'm indebted to all my research collaborator, co-authors and reviewers for making my doctoral voyage engaging.

Contents

Declaration of Authorship	iii
Abstract	vii
Acknowledgements	ix
Contents	xi
Research Activities	xix
Bibliography	1
Biography	1

List of Figures

List of Tables

xvii

List of Notations and Symbols

Notation Description $\begin{array}{ll} p & p>3 \text{ is an odd prime integer in this thesis.} \\ x \bmod p & \text{Modulo operation. the least nonnegative residue of } x \bmod p. \\ \mathbb{F}_p & \text{Prime field. The field of integers mod } p. \\ \mathbb{F}_p^* & \text{The multiplicative group of the field } \mathbb{F}_p. \text{ In other words, } \mathbb{F}_p^* = \{x \mid x \in \mathbb{F}_p \text{ and } x \neq 0\}. \\ \lfloor \cdot \rfloor & \text{The floor of } \cdot \text{ is the greatest integer less than or equal to } \cdot. \\ & \text{For example, } \lfloor 1 \rfloor = 1 \text{ and } \lfloor 6.3 \rfloor = 6. \end{array}$

Dedicated to the people I owe most. To my parents who brought me to this world and to my wife who sacrificed the most during my Ph.D. journey.

Research Activities

- Peer-Reviewed Journal Papers (First author)
 - Md. Al-Amin Khandaker and Yasuyuki Nogami. "An Improvement of Scalar Multiplication by Skew Frobenius Map with Multi-Scalar Multiplication for KSS Curve". In: *IEICE Transactions* 100-A.9 (2017), pp. 1838-1845. DOI: 10.1587/transfun.E100.A.1838.
 - Md. Al-Amin Khandaker, Taehwan Park, Yasuyuki Nogami, and Howon Kim. "A Comparative Study of Twist Property in KSS Curves of Embedding Degree 16 and 18 from the Implementation Perspective". In: J. Inform. and Commun. Convergence Engineering 15.2 (2017), pp. 97-103. DOI: 10.6109/jicce.2017.15.2.97.
- Peer-Reviewed International Conference Papers (First author)

 LNCS Proceedings:
 - Md. Al-Amin Khandaker, Yuki Nanjo, Loubna Ghammam, Sylvain Duquesne, Yasuyuki Nogami, and Yuta Kodera. "Efficient Optimal Ate Pairing at 128-Bit Security Level". In: INDOCRYPT 2017. Ed. by Arpita Patra and Nigel P. Smart. Vol. 10698. LNCS. Springer, Heidelberg, Dec. 2017, pp. 186–205. DOI: 10.1007/978-3-319-71667-1_10.
 - Md. Al-Amin Khandaker, Hirotaka Ono, Yasuyuki Nogami, Masaaki Shirase, and Sylvain Duquesne. "An Improvement of Optimal Ate Pairing on KSS Curve with Pseudo 12-Sparse Multiplication". In: ICISC 2016. Ed. by Seokhie Hong and Jong Hwan Park. Vol. 10157. LNCS. Springer, Heidelberg, 2017, pp. 208–219. DOI: 10.1007/978-3-319-53177-9_11.
 - 3. Md. Al-Amin Khandaker, Yasuyuki Nogami, Hwajeong Seo, and Sylvain Duquesne. "Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embedding Degree 18". In: WISA 2016. Ed. by Dooho Choi and Sylvain Guilley. Vol. 10144. LNCS. Springer, Heidelberg, Aug. 2016, pp. 221–232. DOI: 10.1007/978-3-319-56549-1_19.

IEEE Xplore indexed:

- Md. Al-Amin Khandaker, Yuki Nanjo, Takuya Kusaka, and Yasuyuki Nogami. "A Comparative Implementation of GLV Technique on KSS-16 Curve." In: Sixth International Symposium on Computing and Networking, CANDAR 2018, Gifu, Japan, November 27-30, 2016. 2018, pp. ?-?. DOI:
 ?. (Acceptance Ratio 28/77 ≈ 36%)
- Md. Al-Amin Khandaker and Yasuyuki Nogami. "Isomorphic Mapping for Ate-Based Pairing over KSS Curve of Embedding Degree 18". In: Fourth International Symposium on Computing and Networking, CANDAR 2016, Hiroshima, Japan, November 22-25, 2016. 2016, pp. 629–634. DOI: 10. 1109/CANDAR.2016.0113.

- Md. Al-Amin Khandaker and Yasuyuki Nogami. "A consideration of towering scheme for efficient arithmetic operation over extension field of degree 18". In: 19th International Conference on Computer and Information Technology (ICCIT) 2016. Dec. 2016, pp. 276–281. DOI: 10.1109/ICCITECHN.2016. 7860209::
- 7. Md. Al-Amin Khandaker and Yasuyuki Nogami. "An improvement of scalar multiplication on elliptic curve defined over extension field Fq2". In: *IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). 2016*, Nantou, Taiwan, May 27-29, 2016. 2016, pp. 1–2. DOI: 10.1109/ICCE-TW.2016.7520894.

IEICE/IEIE sponsored:

8. Md. Al-Amin Khandaker and Yasuyuki Nogami. "Frobenius Map and Skew Frobenius Map for Ate-based Pairing over KSS Curve of Embedding Degree 16". In: International Technical Conference on Circuits / Systems, Computers and Communications (ITC-CSCC), 2017, Busan, Korea, Jul. 2-5, 2017. IEIE.

• Peer-Reviewed Journal Papers (Co-author)

- 1. Yuki Nanjo, Md. Al-Amin Khandaker, Takuya Kusaka, and Yasuyuki Nogami. "Efficient Pairing-Based Cryptography on Raspberry Pi". In: *Journal of Communications (JCM)* 13.2 (2018), pp. 88–93. DOI: 10.12720/jcm.13.2.88-93.
- 2. Yuta Hashimoto, Md. Al-Amin Khandaker, Yuta Kodera, Taehwan Park, Takuya Kusaka, Howon Kim, and Yasuyuki Nogami. "An Implementation of ECC with Twisted Montgomery Curve over 32nd Degree Tower Field on Arduino Uno". In: *International Journal of Networking and Computing (IJNC)* 8.2 (2018), pp. 341–350. DOI: 10.15803/ijnc.8.2_341.
- 3. Yuta Kodera, Takeru Miyazaki, Md. Al-Amin Khandaker, Ali Md. Arshad, Takuya Kusaka, Yasuyuki Nogami, and Satoshi Uehara. "Distribution of Digit Patterns in Multi-Value Sequence over the Odd Characteristic Field". In: *IEICE Transactions* 101-A.9 (2018), pp. 1525–1536. DOI: 10.1587/transfun.E101.A.1525.
- 4. Shunsuke Ueda, Ken Ikuta, Takuya Kusaka, Md. Al-Amin Khandaker, Ali Md. Arshad, and Yasuyuki Nogami. "An Extended Generalized Minimum Distance Decoding for Binary Linear Codes on a 4-Level Quantization over an AWGN Channel". In: *IEICE Transactions* 101-A.8 (2018), pp. 1235–1244. DOI: 10.1587/transfun.E101.A.1235.
- Shoma Kajitani, Yasuyuki Nogami, Shunsuke Miyoshi, Thomas Austin, Md. Al-Amin Khandaker, Nasima Begum, and Sylvain Duquesne. "Web-based Volunteer Computing for Solving the Elliptic Curve Discrete Logarithm Problem". In: *International Journal of Networking and Computing (IJNC)* 6.2 (2016), pp. 181–194. DOI: 10.15803/ijnc.6.2_181.

- Peer-Reviewed International Conference Papers (Co-author) LNCS Proceedings:
 - 1. Yuki Nanjo, **Md. Al-Amin Khandaker**, Masaaki Shirase, Takuya Kusaka, and Yasuyuki Nogami. "Efficient Ate-Based Pairing over the Attractive Classes of BN Curves". In: *WISA 2018*. To appear LNCS. Springer, Heidelberg, Aug. 2018. pp. ?–?. DOI: ?. (Acceptance Ratio 22/44 = 50%)
 - Takuya Kusaka, Sho Joichi, Ken Ikuta, Md. Al-Amin Khandaker, Yasuyuki Nogami, Satoshi Uehara, Nariyoshi Yamai, and Sylvain Duquesne. "Solving 114-Bit ECDLP for a Barreto-Naehrig Curve". In: ICISC 2017. Ed. by Howon Kim and Dong-Chan Kim. Vol. 10779. LNCS. Springer, Heidelberg, Oct. 2017, pp. 231–244. DOI: 10.1007/978-3-319-78556-1_13.
 - 3. Taehwan Park, Hwajeong Seo, Garam Lee, Md. Al-Amin Khandaker, Yasuyuki Nogami, and Howon Kim. "Parallel Implementations of SIMON and SPECK, Revisited". In: WISA 2017. Ed. by Brent ByungHoon Kang and Taesoo Kim. Vol. 10763. LNCS. Springer, Heidelberg, Aug. 2017, pp. 283–294. DOI: 10.1007/978-3-319-93563-8_24.

IEEE Xplore indexed:

- 4. Yuki Nanjo, Md. Al-Amin Khandaker, Takuya Kusaka, and Yasuyuki Nogami. "Consideration of Efficient Pairing Applying Two Construction Methods of Extension Fields." In: Sixth International Symposium on Computing and Networking, CANDAR 2018, Gifu, Japan, November 27-30, 2016. 2018, pp. ?—?. DOI: ?.
- 5. Yuta Hashimoto, Md. Al-Amin Khandaker, Yuta Kodera, Taehwan Park, Takuya Kusaka, Howon Kim, and Yasuyuki Nogami. "An ECC Implementation with a Twisted Montgomery Curve over Fq32 on an 8-Bit Microcontroller". In: Fifth International Symposium on Computing and Networking, CANDAR 2017, Aomori, Japan, November 19-22, 2017. 2017, pp. 445–450. DOI: 10.1109/CANDAR.2017.90.
- Yuta Kodera, Takuya Kusaka, Takeru Miyazaki, Md. Al-Amin Khandaker, Yasuyuki Nogami, and Satoshi Uehara. "An Efficient Implementation of Trace Calculation over Finite Field for a Pseudorandom Sequence". In: Fifth International Symposium on Computing and Networking, CANDAR 2017, Aomori, Japan, November 19-22, 2017. 2017, pp. 451–455. DOI: 10.1109/CANDAR.2017.86.
- 7. Taehwan Park, Hwajeong Seo, Md. Al-Amin Khandaker, Yasuvuki Nogami, and Howon Kim. "Efficient Parallel Simeck Encryption with GPGPU and OpenCL". In: *IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). 2018*, Taichung, Taiwan, May 19-21, 2018. 2018, pp. 1–2. DOI: 10.1109/ICCE-China.2018.8448768.
- 8. Yuta Kodera, Takeru Miyazaki, Md. Al-Amin Khandaker, Ali Md Arshad, Yasuyuki Nogami, and Satoshi Uehara. "Distribution of bit patterns on multi-value sequence over odd characteristics field". In: *IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). 2017*, Taipei, Taiwan, June 12-14, 2017. 2017, pp. 137-138. DOI: 10.1109/ICCE-China.2017.7991033.

Akihiro Sanada, Yasuyuki Nogami, Kengo Iokibe, Md. Al-Amin Khandaker. "Security analysis of Raspberry Pi against Side-channel attack with RSA cryptography." In: IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). 2017, Taipei, Taiwan, June 12-14, 2017. 2017, pp. 287 - 288. DOI: 10.1109/ICCE-China.2017.7991108.

IEICE/IEIE sponsored:

- 10. Ken Ikuta, Sho Joichi, Kazuya Kobayashi, Md. Al-Amin Khandaker, Takuya Kusaka, and Yasuyuki Nogami. "A Study on the Parameter Size of the Montgomery Trick for ECDLP". In: International Symposium on Information Theory and its Applications (ISITA), 2018. IEICE. (To appear in IEEE Xplore).
- 11. Ken Ikuta, Sho Joichi, Kazuya Kobayashi, Md. Al-Amin Khandaker, Takuya Kusaka, and Yasuyuki Nogami. "A Study on the Parameter of the Distinguished Point Method in Pollard's Rho Method for ECDLP". In: International Symposium on Information Theory and its Applications (ISITA), 2018. IEICE. (To appear in IEEE Xplore).
- 12. Ken Ikuta, Takuya Kusaka, Md. Al-Amin Khandaker, Yasuyuki Nogami, and Thomas H. Austin. "Estimation of computational complexity of Pollard's rho method based attack for solving ECDLP over Barreto-Naehrig curves". In: 32nd International Technical Conference on Circuits / Systems, Computers and Communications (ITC-CSCC), 2017. IEIE.

• Domestic conferences (First author)

- Md. Al-Amin Khandaker, Hirotaka Ono, Yuki Nanjo, Takuya Kusaka and Yasuyuki Nogami. "Efficient Optimal-Ate Pairing on BLS-12 Curve Using Pseudo 8-Sparse Multiplication". In: Computer Security Symposium (CSS), 2017, CD-ROM (3E1-4).
- 2. Md. Al-Amin Khandaker and Yasuyuki Nogami. "Efficient Scalar Multiplication by Skew Frobenius Map with Multi-Scalar Multiplication for KSS Curve". In: Symposium on Cryptography and Information Security (SCIS), 2017, CD-ROM (B1-3).

• Domestic conferences (Co-author)

- Yuki Nanjo, Md. Al-Amin Khandaker, Takuya Kusaka, Yasuyuki Nogami. "A Study on a Construction Method of Degree 18 Extension Field for Efficient Pairing over KSS Curves". In: Computer Security Symposium (CSS), 2018, CD-ROM (??).
- 2. Hirotaka Ono, Md. Al-Amin Khandaker, Yuki Nanjo, Toshifumi Matsumoto, Takuya Kusaka and Yasuyuki Nogami. "An Implementation and Evaluation of ID-based Authentication on Raspberry Pi with Pairing Library". In: Symposium on Cryptography and Information Security (SCIS), 2018, CD-ROM (4D2-1).

- 3. Yuki Nanjo, Md. Al-Amin Khandaker, Yuta Kodera and Yasuyuki Nogami. "Implementation method of the pairing over BN curve using two type of extension fields". In: *Symposium on Cryptography and Information Security (SCIS)*, 2018, CD-ROM (4D2-3).
- 4. Yuki Nanjo, **Md. Al-Amin Khandaker**, Takuya Kusaka, and Yasuyuki Nogami. "The relation between the efficient sextic twist and constant of the modular polynomial for BN curve". In: *Computer Security Symposium (CSS)*, 2017, CD-ROM (3E1-3).
- 5. Norito Jitsui, Yuki Nanjo, **Md. Al-Amin Khandaker**, Takuya Kusaka and Yasuyuki Nogami. "Efficient Elliptic Scalar Multiplication for Pairing-Based Cryptography over BLS48". In: *Symposium on Cryptography and Information Security (SCIS)*, 2018, CD-ROM (3B4-1).

Bibliography

- [Kha+16] Md. Al-Amin Khandaker, Yasuyuki Nogami, Hwajeong Seo, and Sylvain Duquesne. "Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embedding Degree 18". In: WISA 16. Ed. by Dooho Choi and Sylvain Guilley. Vol. 10144. LNCS. Springer, Heidelberg, Aug. 2016, pp. 221–232. DOI: 10.1007/978-3-319-56549-1_19.
- [Kha+17a] Md. Al-Amin Khandaker, Hirotaka Ono, Yasuyuki Nogami, Masaaki Shirase, and Sylvain Duquesne. "An Improvement of Optimal Ate Pairing on KSS Curve with Pseudo 12-Sparse Multiplication". In: ICISC 16. Ed. by Seokhie Hong and Jong Hwan Park. Vol. 10157. LNCS. Springer, Heidelberg, 2017, pp. 208–219. DOI: 10.1007/978-3-319-53177-9_11.
- [Kha+17b] Md. Al-Amin Khandaker, Yuki Nanjo, Loubna Ghammam, Sylvain Duquesne, Yasuyuki Nogami, and Yuta Kodera. "Efficient Optimal Ate Pairing at 128-Bit Security Level". In: INDOCRYPT 2017. Ed. by Arpita Patra and Nigel P. Smart. Vol. 10698. LNCS. Springer, Heidelberg, Dec. 2017, pp. 186–205. DOI: 10.1007/978-3-319-71667-1_10.
- [Par+17] Taehwan Park, Hwajeong Seo, Garam Lee, Md. Al-Amin Khandaker, Yasuyuki Nogami, and Howon Kim. "Parallel Implementations of SIMON and SPECK, Revisited". In: WISA 17. Ed. by Brent ByungHoon Kang and Taesoo Kim. Vol. 10763. LNCS. Springer, Heidelberg, Aug. 2017, pp. 283–294. DOI: 10.1007/978-3-319-93563-8_24.

Biography

Md. Al-Amin Khandaker was born on September 11, 1990, in a beautiful village of Bangladesh. He completed his high school in 2007 and in 2008, admitted to Jahangirnagar University, Bangladesh. In 2012, he graduated majoring in Computer Science and Engineering. After that, he joined in a Holland-based off-shore software development company in Dhaka. In 2015 he awarded Japan Govt. Scholarship (MEXT) to pursue Doctor's course in the field of cryptography in Okayama University under the supervision of Professor Yasuyuki NOGAMI. His main fields of research are optimization and efficient implementation techniques for the elliptic curve, pairing-based cryptography and it's application for IoT security. He is a graduate student member of IEEE.