COMP20007 Design of Algorithms

Binary Search Trees and their Extensions

Daniel Beck

Lecture 14

Semester 1, 2020

Abstract Data Structure

- Abstract Data Structure
- Collection of (key, value) pairs

- Abstract Data Structure
- Collection of (key, value) pairs
 - Values are usually records, such as my videogames or the Unimelb students.

- Abstract Data Structure
- Collection of (key, value) pairs
 - Values are usually records, such as my videogames or the Unimelb students.
 - Keys are (unique) identifiers, such as the name of a game or the student ID.

- Abstract Data Structure
- Collection of (key, value) pairs
 - Values are usually records, such as my videogames or the Unimelb students.
 - Keys are (unique) identifiers, such as the name of a game or the student ID.
- Required operations:
 - Search for a value (given a key)
 - Insert a new pair
 - Delete an existent pair (given a key)

Unsorted array / Linked list

• Search: $\Theta(n)$ comparisons;

Unsorted array / Linked list

• Search: $\Theta(n)$ comparisons;

Sorted array

• Search: $\Theta(\log n)$ comparisons;

Unsorted array / Linked list

• Search: $\Theta(n)$ comparisons;

Sorted array

- Search: $\Theta(\log n)$ comparisons;
- Insert/Delete: $\Theta(n)$ record swaps;

Unsorted array / Linked list

• Search: $\Theta(n)$ comparisons;

Sorted array

- Search: $\Theta(\log n)$ comparisons;
- Insert/Delete: $\Theta(n)$ record swaps;

This lecture: a better data structure

Unsorted array / Linked list

• Search: $\Theta(n)$ comparisons;

Sorted array

- Search: $\Theta(\log n)$ comparisons;
- Insert/Delete: $\Theta(n)$ record swaps;

This lecture: a better data structure

- Search: $\Theta(\log n)$ comparisons;
- Insert/Delete: $\Theta(\log n)$ record swaps;

Binary Search Tree

Binary Search Tree - Worst Case

BST - How to avoid degeneracy?

Two options:

avoid it to be a linked list

BST - How to avoid degeneracy?

Two options:

- Self-balancing
 - AVL trees
 - Red-black trees
 - Splay trees

BST - How to avoid degeneracy?

Two options:

- Self-balancing
 - AVL trees
 - Red-black trees
 - Splay trees
- Change the representation → NODES to have >1 elements
 - 2-3 trees
 - 2-3-4 trees
 - B-trees

Named after Adelson-Velsky and Landis.

- Named after Adelson-Velsky and Landis.
- A BST where each node has a *balance factor*: the difference in height between the left and right subtrees.

- Named after Adelson-Velsky and Landis.
- A BST where each node has a balance factor: the difference in height between the left and right subtrees.
- When the balance factor becomes 2 or -2, *rotate* the tree to adjust them.

AVL Trees: Examples and Counter-Examples

AVL Trees - Rotations

Search is done as in BSTs.

AVL Trees - Rotations

- Search is done as in BSTs.
- Insertion and Deletion also done as in BSTs, with additional steps at the end.

AVL Trees - Rotations

- Search is done as in BSTs.
- Insertion and Deletion also done as in BSTs, with additional steps at the end.
 - Update balance factors.
 - If the tree becomes unbalanced, perform *rotations* to rebalance it.

AVL Trees: R-Rotation

AVL Trees: R-Rotation

AVL Trees: L-Rotation

AVL Trees: L-Rotation

AVL Trees: LR-Rotation

AVL Trees: LR-Rotation

AVL Trees: RL-Rotation

AVL Trees: RL-Rotation

AVL Trees: Where to Perform the Rotation

Along an unbalanced path, we may have several $% \left(1\right) =\left(1\right) \left(1\right)$

nodes with balance factor 2 (or -2):

It is always the lowest unbalanced subtree that is re-balanced.

AVL Trees: The Single Rotation, Generally

This shows an R-rotation; an L-rotation is similar.

AVL Trees: The Double Rotation, Generally

This shows an LR-rotation; an RL-rotation is similar.

Properties of AVL Trees

• Rotations ensure that an AVL tree is always balanced.

Properties of AVL Trees

- Rotations ensure that an AVL tree is always balanced.
- An AVL tree with n nodes has depth $\Theta(\log n)$.

Properties of AVL Trees

- Rotations ensure that an AVL tree is always balanced.
- An AVL tree with n nodes has depth $\Theta(\log n)$.
- This ensures all three operations are $\Theta(\log n)$.

Red-black Trees

- A red-black tree is another self-balancing BST.
- Its nodes are coloured red or black so that:

- No red node has a red child.
- 2. Every path from the root to the leaves has the same number of black nodes.

2 black valid Red-black

A worst-case red-black tree (the longest path is twice as long as the shortest path).

AVL trees vs. red-black trees

AVL trees vs. red-black trees

- AVL trees are "more balanced" but require more frequent rotations.
 - Better if searches are more frequent than insertions/deletions.

when we more statis structure

19

AVL trees vs. red-black trees

- AVL trees are "more balanced" but require more frequent rotations.
 - Better if searches are more frequent than insertions/deletions.
- Red-black trees are "less balanced" but require less rotations.
 - Better if insertions/deletions are more frequent than searches.

AVL trees vs. red-black trees

- AVL trees are "more balanced" but require more frequent rotations.
 - Better if searches are more frequent than insertions/deletions.
- Red-black trees are "less balanced" but require less rotations.
 - Better if insertions deletions are more frequent than searches.

Key property: rotations keep trees in a shape that guarantees $\Theta(\log n)$ operations.

• Goal is the same: keep the tree balanced.

- Goal is the same: keep the tree balanced.
- But instead of relying on rotations, we will allow multiple elements per node and multiple children per node.

- Goal is the same: keep the tree balanced.
- But instead of relying on rotations, we will allow multiple elements per node and multiple children per node.
- 2–3 trees: contains only 2-nodes and 3-nodes.

- Goal is the same: keep the tree balanced.
- But instead of relying on rotations, we will allow multiple elements per node and multiple children per node.
- 2-3 trees: contains only 2-nodes and 3-nodes.
 - A 2-node contains one element and at most two children (as in BSTs)
 - A 3-node contains two elements and at most three children.

- Goal is the same: keep the tree balanced.
- But instead of relying on rotations, we will allow multiple elements per node and multiple children per node.
- 2-3 trees: contains only 2-nodes and 3-nodes.
 - A 2-node contains one element and at most two children (as in BSTs)
 - A 3-node contains two elements and at most three children.
- Easy way to keep the tree balanced.

- Goal is the same: keep the tree balanced.
- But instead of relying on rotations, we will allow multiple elements per node and multiple children per node.
- 2-3 trees: contains only 2-nodes and 3-nodes.
 - A 2-node contains one element and at most two children (as in BSTs)
 - A 3-node contains two elements and at most three children.
- Easy way to keep the tree balanced.
- Can be extended in many ways: 2–3–4 trees, B-trees, etc.

2-Nodes and 3-Nodes

2-Nodes and 3-Nodes

2-Nodes and 3-Nodes

• As in a BST, pretend that we are searching for k.

- As in a BST, pretend that we are searching for k.
- If the leaf node is a 2-node, insert k, becoming a 3-node.

- As in a BST, pretend that we are searching for k.
- If the leaf node is a 2-node, insert k, becoming a 3-node.
- Otherwise, momentarily form a node with three elements:
 - In sorted order, call them k_1 , k_2 , and k_3 .

- As in a BST, pretend that we are searching for k.
- If the leaf node is a 2-node, insert *k*, becoming a 3-node.
- Otherwise, momentarily form a node with three elements:
 - In sorted order, call them k_1 , k_2 , and k_3 .
 - Split the node, so that k_1 and k_3 form their own individual 2-nodes, and k_2 is promoted to the parent node.

- As in a BST, pretend that we are searching for k.
- If the leaf node is a 2-node, insert *k*, becoming a 3-node.
- Otherwise, momentarily form a node with three elements:
 - In sorted order, call them k_1 , k_2 , and k_3 .
 - Split the node, so that k_1 and k_3 form their own individual 2-nodes, and k_2 is promoted to the parent node.
 - If the parent node was a 3-node, repeat.

- As in a BST, pretend that we are searching for k.
- If the leaf node is a 2-node, insert *k*, becoming a 3-node.
- Otherwise, momentarily form a node with three elements:
 - In sorted order, call them k_1 , k_2 , and k_3 .
 - Split the node, so that k_1 and k_3 form their own individual 2-nodes, and k_2 is promoted to the parent node.
 - If the parent node was a 3-node, repeat.

$$9 \Rightarrow \boxed{5,9} \Rightarrow \boxed{5,8,9}$$

Example: Build a 2–3 Tree from 9, 5, 8, 3, 2, 4, 7

Exercise: 2–3 Tree Construction

Build the 2-3 tree that results from inserting these keys, in the given order, into an initially empty tree:

C, O, M, P, U, T, I, N, G

■ 2-3-4 trees: includes 4-nodes.

- 2-3-4 trees: includes 4-nodes.
- B-trees: a generalisation. (2–3 trees are B-trees of order 3)

- 2-3-4 trees: includes 4-nodes.
- B-trees: a generalisation. (2–3 trees are B-trees of order
 3)
- B⁺-trees: internal nodes only contain keys, values are all in the leaves (plus a bunch of optimisations)

- 2-3-4 trees: includes 4-nodes.
- B-trees: a generalisation. (2–3 trees are B-trees of order
 3)
- B⁺-trees: internal nodes *only contain keys*, values are all in the leaves (plus a bunch of optimisations)

Key property: balance is achieved by allowing multiple elements per node.

P record

• Dictionaries store (key, value) pairs.

- Dictionaries store (key, value) pairs.
- BSTs provide $\Theta(\log n)$ search, insert and delete operations.

- Dictionaries store (key, value) pairs.
- BSTs provide $\Theta(\log n)$ search, insert and delete operations.
- Standard BSTs can degrade to linked lists and $\Theta(n)$ worst case performance.

- Dictionaries store (key, value) pairs.
- BSTs provide $\Theta(\log n)$ search, insert and delete operations.
- Standard BSTs can degrade to linked lists and $\Theta(n)$ worst case performance.
 - Self-balancing: AVL trees
 - Change of representation: 2–3 trees

 Self-balancing trees tend to be better when the dictionary is fully in memory.

- Self-balancing trees tend to be better when the dictionary is fully in memory.
 - C++ maps: implemented via Red-black trees.

insertion is the most frequent operation

- Self-balancing trees tend to be better when the dictionary is fully in memory.
 - C++ maps: implemented via Red-black trees.
- Multiple elements per node are a better choice when secondary memory is involved.

hard drive

- Self-balancing trees tend to be better when the dictionary is fully in memory.
 - C++ maps: implemented via Red-black trees.
- Multiple elements per node are a better choice when secondary memory is involved.
 - B-trees (and its wariants) are widely used in SQL databases (PostgreSQL, SQLite) and filesystems (Ext4, Reiser4).

27

- Self-balancing trees tend to be better when the dictionary is fully in memory.
 - C++ maps: implemented via Red-black trees.
- Multiple elements per node are a better choice when secondary memory is involved.
 - B-trees (and its invariants) are widely used in SQL databases (PostgreSQL, SQLite) and filesystems (Ext4, Reiser4).

Next week: C++ maps use BSTs. What about Python *dicts*, do they also use BSTs? (spoiler: no)