

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Práctica3

FECHA DE ENTREGA LÍMITE: 07/05/2025

ALUMNO: Sebastián Chicaiza

TEMA

Método de la bisección

OBJETIVOS

- Conocer como aplicar el método de la bisección para sacar soluciones aproximadas a ecuaciones no lineales.
- Analizar el comportamiento y la presición del método de la bisección.

MARCO TEÓRICO

El método de la bisección es un proceso iterativo que consiste en evaluar una funcion f(x) en el punto medio p de un intervalo de interés (x_1, x_2) . Dependiendo si su ordenada tiene el mismo signo que f(p) o no, se definirá que punto limite del intervalo tomará el valor p en la siguiente iteración. Este proceso se repetirá hasta que el intervalo esté dentro de un rango aceptable de error, es decir menor que una toleracia prefijada [1].

Para aplicar el método de la bisección se utilizan los siguientes teoremas:

Teorema del valor intermedio

Si $f \in C[a, b]$ y K es cualquier número entre f(a) y f(b), entonces existe un número c en (a, b) para el cual f(c) = K.

Búsqueda de cambio de signo

Un intervalo [a, b], la función f(x) toma valores de diferente signo en los extremos.

$$f(a) \cdot f(b) < 0$$

DESARROLLO

Ejercicios Aplicados

1. Un abrevadero de longitud L tiene una sección transversal en forma de semicírculo con radio r. (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia h a partir de la parte superior, el volumen V de agua es

$$V = L \left[0.5\pi r^2 - r^2 \arcsin\left(\frac{h}{r}\right) - h(r^2 - h^2)^{1/2} \right]$$

Suponga que $L=10cm,\,r=1cm$ y $V=12,4cm^3.$ Encuentre la profundidad del agua en el abrevadero dentro de 0,01cm.

$$L\left[0.5\pi r^2 - r^2 \arcsin\left(\frac{h}{r}\right) - h(r^2 - h^2)^{1/2}\right] - V = 0$$

$$10\left[0.5\pi 1^2 - 1^2 \arcsin\left(\frac{h}{1}\right) - h(1^2 - h^2)^{1/2}\right] - 12.4 = 0$$

Usando el método de bisección, con una tolerancia de 10^{-2} y un redondeo a 6 cifras significativas:

a	b	p	f(a)	f(b)	f(p)	TOL
0.0	1.0	0.5	3.307963	-12.4	2.402103	0.5
0.5	1.0	0.75	2.402103	-12.4	-0.211874	0.25
0.5	0.75	0.625	2.402103	-0.211874	1.435553	0.125
0.625	0.75	0.6875	1.435553	-0.211874	0.720073	0.0625
0.6875	0.75	0.71875	0.720073	-0.211874	0.285179	0.03125
0.71875	0.75	0.734375	0.285179	-0.211874	0.045035	0.015625
0.734375	0.75	0.742188	0.045035	-0.211874	-0.081246	0.007812

La raiz aproximada de la función

$$f(h) = 10 \left[0.5\pi 1^2 - 1^2 \arcsin\left(\frac{h}{1}\right) - h(1^2 - h^2)^{1/2} \right] - 12.4,$$

es $h \approx 0.734375 \, cm$

2. Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa m cae desde una altura s_0 y que la altura del objeto después de t segundos es

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m}),$$

donde $g=9.81\,m/s^2$ y k representa el coeficiente de la resistencia del aire en $\frac{Ns}{m}$. Suponga $s_0=300\,m,\,m=0.25\,kg$ y $k=0.1\frac{Ns}{m}$. Encuentre, dentro de $0.01\,segundos$, el tiempo que tarda un cuarto de kg en golpear el piso.

Interesa saber t cuando s(t) = 0

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2} \left(1 - e^{-kt/m}\right) = 0$$
$$300 - \frac{0.25 \cdot 9.81}{0.1}t + \frac{0.25^2 \cdot 9.81}{0.1^2} \left(1 - e^{-0.1t/0.25}\right) = 0$$

Usando el método de bisección para encontrar la raíz de la funcion s(t) con una tolerancia de 10^{-2} :

a	b	p	s(a)	s(b)	s(p)	TOL
0.0	25.0	12.5	300.0	-251.815284	54.33688	12.5
12.5	25.0	18.75	54.33688	-251.815284	-98.565161	6.25
12.5	18.75	15.625	54.33688	-98.565161	-22.008986	3.125
12.5	15.625	14.0625	54.33688	-22.008986	16.20856	1.5625
14.0625	15.625	14.84375	16.20856	-22.008986	-2.892249	0.78125
14.0625	14.84375	14.453125	16.20856	-2.892249	6.660469	0.390625
14.453125	14.84375	14.648438	6.660469	-2.892249	1.884632	0.195312
14.648438	14.84375	14.746094	1.884632	-2.892249	-0.50368	0.097656
14.648438	14.746094	14.697266	1.884632	-0.50368	0.690509	0.048828
14.697266	14.746094	14.72168	0.690509	-0.50368	0.093422	0.024414
14.72168	14.746094	14.733887	0.093422	-0.50368	-0.205127	0.012207
14.72168	14.733887	14.727783	0.093422	-0.205127	-0.05584	0.006104

El tiempo t que tarda el objeto en tocar el piso es $t\approx 14{,}733887\,segundos$

Ejercicios Teóricos

1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^{-4} para la solución de $x^3-x-1=0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

$$error_{abs} < 10^{-4}$$
 y $error_{abs} \le \frac{b-a}{2^n}$

entonces:

$$\frac{b-a}{2^n} < 10^{-4}$$

$$\frac{1}{2^n} < 10^{-4}$$

$$2^{-n} < 10^{-4}$$

$$\log_2(2^{-n}) < \log_2(10^{-4})$$

$$-n \cdot \log_2(2) < -4 \cdot \log_2(10)$$

$$n > 4 \cdot \log_2(10)$$

$$n > 13,2876$$

$$n \approx 14$$

Usando el método de bisección con una tolerancia de 10^{-4} para la función $f(x) = x^3 - x - 1$ con 14 intentos:

a	b	p	f(a)	f(b)	f(p)	TOL
1.0	2.0	1.5	-1.0	5.0	0.875	0.5
1.0	1.5	1.25	-1.0	0.875	-0.296875	0.25
1.25	1.5	1.375	-0.296875	0.875	0.224609	0.125
1.25	1.375	1.3125	-0.296875	0.224609	-0.051514	0.0625
1.3125	1.375	1.34375	-0.051514	0.224609	0.082611	0.03125
1.3125	1.34375	1.328125	-0.051514	0.082611	0.014576	0.015625
1.3125	1.328125	1.320312	-0.051514	0.014576	-0.018713	0.007812
1.320312	1.328125	1.324218	-0.018713	0.014576	-0.002131	0.003907
1.324218	1.328125	1.326172	-0.002131	0.014576	0.006209	0.001954
1.324218	1.326172	1.325195	-0.002131	0.006209	0.002035	0.000977
1.324218	1.325195	1.324707	-0.002131	0.002035	-0.000047	0.000489
1.324707	1.325195	1.324951	-0.000047	0.002035	0.000994	0.000244
1.324707	1.324951	1.324829	-0.000047	0.000994	0.000474	0.000122
1.324707	1.324829	1.324768	-0.000047	0.000474	0.000213	0.000061

Raíz aproximada de $f(x) = x^3 - x - 1$, dentro de la tolerancia 10^{-4} :

$$x \approx 1,324829$$

2. La función definida por $f(x) = \sin \pi x$ tiene ceros en cada entero. Muestre cuando -1 < a < 0 y 2 < b < 3, el método de bisección converge a

a.
$$0, si$$
 $a+b<2$
$$a=-0.75 \quad \text{y} \quad b=2.25$$

a	b	p	f(a)	f(b)	f(p)	TOL
-0.75	2.25	0.75	-0.707107	0.707107	0.707107	1.5
-0.75	0.75	0.0	-0.707107	0.707107	0.0	0.75

b.
$$2, si \quad a + b > 2$$

$$a = -0.25$$
 y $b = 2.75$

a	b	p	f(a)	f(b)	f(p)	TOL
-0.25	2.75	1.25	-0.707107	0.707107	-0.707107	1.5
1.25	2.75	2.0	-0.707107	0.707107	-0.0	0.75

c.
$$1, si$$
 $a + b = 2$

$$a = -0.5$$
 y $b = 2.5$

a	b	p	f(a)	f(b)	f(p)	TOL
-0.5	2.5	1.0	-1.0	1.0	0.0	1.5

CONCLUSIONES

- El método de bisección es una forma de encontrar raíces aproximadas de una función.
- El método de bisección es confiable ya que siempre converge.

RECOMENDACIONES

Usar herramientas que nos permitan gráficar funciones, ya que se puede apreciar má facilmente si es que el método ha sido bien aplicado.

REFERENCIAS

[1] J. Mathews and K. Fink, *Métodos Numéricos*. Madrid: Prentice Hall, 2000.