prashant.gupta@wsu.edu Ph: 509-339-9093

EXPERIENCE

Oak Ridge National Laboratory (ORNL) Research Intern

Knoxville, TN

May–Aug 2018, Jun–Dec 2017

- Created a *new formulation* for tool path planning to optimize 3D print quality and to reduce printing time and cost. Implemented in **Python** and **C++**.
- Created a *novel geometric subdivision approach*, Euler transformation (ET). It transforms any mesh into a new one that guarantees a continuous tool path. Reduced print time up to 50% and improved print quality on test example.
- Tested and integrated hexagonal mesh library, and developed ET module in C++ for ORNL slicing software.

Washington State University Graduate Researcher

Pullman, WA

May 2016-present

- Developed efficient and practical algorithms for continuous tool paths with no crossover using ET. Implemented system in **Python**.
- Created a novel and scalable domain partitioning approach to solve large instances of optimal tool path planning in 3D printing. Implement framework in **Python** using **Cplex** for optimization. Sample sizes: Buddha 799,716 nodes/169 layers, Bunny 812,733 nodes/360 layers. Improved mechanical strength of test sample up to 37%.
- First author on three manuscripts (see **PUBLICATIONS** below).
- Created a *novel topological data analysis (TDA) filtration approach* for high-dimensional data visualization and summarization to understand complex features. Implemented framework in **Python** using **SciPy**. Identified significant thin features in point cloud not observable in standard TDA.
- Taught 3 freshman/sophomore level mathematics classes to non-math majors.

Washington State University

Richland, WA

Graduate Researcher

Jan 2015-May 2016

Developed a **C++** module in lammps from scratch for nanoscale fluids using discretized Navier Stokes Equation, works for both shared and distributed memory systems.

NEi Software

Westminster, CA

Finite Element Analysis intern

May 2013-Aug 2013

Integrated nonlinear optimization solver IPOPT on NEi Nastran that gave better performance in specific cases.

EDUCATION

Washington State University

Ph.D. in Applied Mathematics

Jan 2015-present

Relevant Coursework: Advanced Matrix Computations, Structured Prediction, Artificial Neural Networks, Machine learning, Deep Learning, Bayesian Analysis, Distributed Systems Concepts and Programming, Parallel Computing

University of Colorado at Boulder

MS in Simulation based Mechanical Engineering Science

Aug 2012-Dec 2014

Relevant Coursework: Numerical Methods, Applied Mathematics I & II, Markov processes, Queues, and Monte Carlo Simulations.

TECHNICAL SKILLS

NumPy, SciPy, Pandas, AMPL, Cplex, TensorFlow.

PUBLICATIONS

- 1. Prashant Gupta, Bala Krishnamoorthy, Euler Transformation of Polyhedral Complexes, 2018, Accepted in International Journal of Computational Geometry and Applications (IJCGA), 2021, <u>arXiv: 1812.02412</u>.
- 2. Prashant Gupta, Bala Krishnamoorthy, and Gregory Dreifus. Continuous toolpath planning in a graphical framework for sparse infill additive manufacturing. Computer-Aided Design, 127:102880, 2020, SPM 2020, arXiv: 1908.07452.
- 3. Prashant Gupta, Yiran Guo, Bala Krishnamoorthy, Narasimha Boddeti, SFCDecomp: A Space-Filling Curve Based Domain Decomposition Method for Multicriteria Optimized Toolpath Planning in 3D Printing, 2021, submitted.