Algebra liniowa

 Z_4

- 1. Czy podany układ wektorów jest liniowo niezależny w przestrzeni $\mathbb{R}^{\mathbb{R}}$ (wszystkich funkcji $f : \mathbb{R} \to \mathbb{R}$) nad \mathbb{R} ?
 - (a) $\{x, \sin x, \cos x\}$,
 - (b) $\{\sin x, \cos x, \sin 2x, \cos 2x\},\$
 - (c) $\{\cos 2x, \sin^2 x, \cos^2 x\}$.
- 2. Czy układ wektorów $\{1+j, 1-j\}$ jest liniowo niezależny w przestrzeni $\mathbb C$ nad $\mathbb C$? A w przestrzeni $\mathbb C$ nad $\mathbb R$? Opisać w każdym przypadku podprzestrzeń generowaną przez ten układ tzn. $\operatorname{Lin}(1+j, 1-j)$.
- 3. Czy podany układ wielomianów jest liniowo niezależny w przestrzeni $\mathbb{R}[x]_3$ nad \mathbb{R} ?
 - (a) $\{x+3; (x-3)^3; \frac{4}{5}; 3x^2; x^3-4\}$
 - (b) $\{x+1; x^3+2x; x^2-5x+2; 7x^3+2x^2\}$
 - (c) $\left\{\frac{1}{3}x^2 + 5x; -x^3; 2x + 1; 5x\right\}$

Który z powyższych układów tworzy bazę przestrzeni $\mathbb{R}[x]_3$ nad \mathbb{R} ? Wyznaczyć wektor, który w tej bazie ma współrzędne (2,1,-2,-1). Jakie będzie miał współrzędne, gdy zmienimy kolejność wektorów w tej bazie?

- 4. Znaleźć bazę podprzestrzeni liniowej V przestrzeni $\mathbb{R}[x]$ nad \mathbb{R} . Wiadomo, że wektor $u \in V$ ma w znalezionej bazie współrzędne (1, -1, 2). Wyznaczyć ten wektor.
 - (a) $V = \{ w \in \mathbb{R}[x]_3 : w(1) = w'(0) \}$
 - (b) V to zbiór wielomianów z $\mathbb{R}[x]_4$, dla których liczba 1 jest pierwiastkiem co najmniej 2-krotnym.
- 5. Podać współrzędne wektora $v \in V$ w bazie $\mathcal{B} = (u_1 2u_2, u_1 2u_2 + u_3, u_2 u_1)$ przestrzeni liniowej V, jeżeli w bazie $\mathcal{C} = (u_1, u_2, u_3)$ tej przestrzeni ma on współrzędne (4, -1, 2).
- 6. Znaleźć bazę przestrzeni liniowej $V = \{(x-y,3y,2y-x,2x): x,y \in \mathbb{R}\}$. Znaleźć bazę tej przestrzeni, w której wszystkie współrzędne wektora (1,3,0,4) są równe 4.