225A: Model Theory

Nir Elber

Fall 2023

CONTENTS

How strange to actually have to see the path of your journey in order to make it.

—Neal Shusterman, [Shu16]

Contents				
1	Intro	oduction	3	
	1.1	August 24	3	
			3	
		1.1.2 Languages and Structures	3	
		1.1.3 Formulae	4	
	1.2	August 29	6	
		1.2.1 Theories	6	
		1.2.2 Definable Sets	7	
		1.2.3 The Compactness Theorem	7	
	1.3	August 31	ç	
		1.3.1 Proof of Compactness	ç	
	1.4	September 5	12	
		1.4.1 Completing the proof of Theorem 1.32	12	
	1.5	September 7	14	
		1.5.1 Ultrafilters	14	
		1.5.2 Compactness via Ultraproducts	16	
Bibliography				
Lis	List of Definitions			

THEME 1

INTRODUCTION

1.1 August 24

It begins.

1.1.1 Logistics

Here are some logistical notes.

- There is a bCourses.
- We will use [Mar02].
- Professor Montalbán and Scanlon will teach the course jointly.
- There will be a midterm (in-class on the 19th of October) and final exam (take-home over three days).
- There are suggested but technically ungraded exercises. They are helpful.
- We will assume basic first-order logic, and examples will be taken from a few other areas of mathematics.
- This is a graduate class. It will be pretty fast.

We are studying model theory, which is the study of models and theories. Our main two theorems are the Compactness theorems and results on admitting types. We will use these results again and again.

1.1.2 Languages and Structures

Let's review chapter 1 of [Mar02]. Here is a language.

Definition 1.1 (language). A language $\mathcal L$ consists of the sets $\mathcal F$, $\mathcal R$, and $\mathcal C$ of symbols. Here, $\mathcal F$ are functions, $\mathcal R$ are relations, and $\mathcal C$ are constants. Notably, there is an arity function $n\colon (\mathcal F\cup\mathcal R)\to\mathbb N$.

Concretely, fix a language $\mathcal{L}=(\mathcal{F},\mathcal{R},\mathcal{C})$. If $f\in\mathcal{F}$ and n(f)=3, then we say that f has arity three; the analogous statement holds for relations.

We will often abbreviate a language to just a long tuple. For example, the notation $(\mathbb{N}, 0, 1, +, \leq)$ has the domain \mathbb{N} and constants 0 and 1 and function + and relation \leq , even though the notation has not made it obvious what any of these things are.

So far we only have the prototype of data. Here is the data.

1.1. AUGUST 24 215A: MODEL THEORY

Definition 1.2 (structure). Fix a language \mathcal{L} . Then an \mathcal{L} -structure \mathcal{M} consists of the following data.

- Domain: a nonempty set M.
- Functions: for each $f \in \mathcal{F}$, there is a function $f^{\mathcal{M}} \colon M^{n(f)} \to M$.
- Relations: for each $R \in \mathcal{R}_{t}$ there is a relation $R^{\mathcal{M}} \subseteq M^{n(r)}$.
- Constants: for each $c \in \mathcal{C}$, there is a constant $c^{\mathcal{M}} \in M$.

The various $(-)^{\mathcal{M}}$ data are called *interpretations*.

Example 1.3. Consider the language \mathcal{L} with the constants 0 and 1 and operations + and \times . Then \mathbb{N} is an \mathcal{L} -structure, in the obvious way.

In general, algebra provides many examples of languages.

We would like to relate our structures.

Definition 1.4 (homomorphism, embedding, isomorphism). Fix a language \mathcal{L} . An \mathcal{L} -homomorphism $\eta \colon \mathcal{M} \to \mathcal{N}$ of \mathcal{L} -structures \mathcal{M} and \mathcal{N} is a one-to-one map $\eta \colon M \to N$ preserving the interpretations, as follows.

- Functions: for each $f \in \mathcal{F}$, we have $\eta \circ f^{\mathcal{M}} = f^{\mathcal{N}} \circ \eta^{n(f)}$.
- Relations: for each $R \in \mathcal{R}$, if $\overline{m} \in R^{\mathcal{M}}$, then $\eta^{n(R)}(m) \in R^{\mathcal{N}}$.
- Constants: for each $c \in \mathcal{C}$, we have $\eta\left(c^{\mathcal{M}}\right) = c^{\mathcal{N}}$.

If $\eta\colon M\to N$ is one-to-one and the relations condition is an equivalence, then η is an \mathcal{L} -embedding. If $\eta\colon M\to N$ is the identity $M\subseteq N$, then we say that \mathcal{M} is an \mathcal{L} -substructure. In addition, if η is onto, then η is an \mathcal{L} -isomorphism.

Explicitly, being a substructure means that the functions and relations are restricted appropriately, and the constants remain the same.

Example 1.5. In the language of groups, subgroups make substructures. A similar sentence holds for other algebraic structures.

1.1.3 Formulae

Thus far we have described a vocabulary: the language provides the data for us to manipulate. We now discuss how to "speak" in this language.

Definition 1.6 (term). Let \mathcal{L} be a language. The set of \mathcal{L} -terms is the smallest set \mathcal{T} satisfying the following.

- Constants: for each $c \in \mathcal{C}$, we have $c \in \mathcal{T}$.
- Variables: $x_i \in \mathcal{T}$ for each $i \in \mathbb{N}$. Notably, we have only countably many variables.
- Functions: if $t_1, \ldots, t_n \in \mathcal{T}$ where n = n(f) for some $f \in \mathcal{F}$, then $f(t_1, \ldots, t_n) \in \mathcal{T}$.

Given an \mathcal{L} -structure \mathcal{M} and term $t \in \mathcal{T}$ with variables x_1, \ldots, x_n and elements $a_1, \ldots, a_n \in M$, we define $t^{\mathcal{M}}(\overline{a})$ in the obvious way.

Terms are basically just nouns. We would now like to put them into sentences.

1.1. AUGUST 24 215A: MODEL THEORY

Definition 1.7 (atomic formula). The set of *atomic* \mathcal{L} -formulae is the set of expressions of one of the following forms.

- Equality: $t_1 = t_2$ for any \mathcal{L} -terms t_1 and t_2 .
- Relations: $R(t_1, \ldots, t_n)$ for any n-ary relation R and \mathcal{L} -terms t_1, \ldots, t_n .

Definition 1.8 (formula). The set of \mathcal{L} -formulae is the smallest set satisfying the following.

- Any atomic \mathcal{L} -formula φ is an \mathcal{L} -formula.
- For any \mathcal{L} -formulae φ and ψ , then $\neg \varphi$ and $\varphi \land \psi$ and $\varphi \lor \psi$ are \mathcal{L} -formulae.
- For any variable v_i for $i \in \mathbb{N}$, then $\exists v_i \varphi$ is an \mathcal{L} -formula.

One can then define the shorthand " $\varphi \to \psi$ " for $\neg \varphi \lor \psi$ and " $\forall v_i \varphi$ " for $\neg \exists v_i \neg \varphi$.

Now that we can talk about our structure, we would like to know if we are making sense.

Definition 1.9 (free variable). Fix a language \mathcal{L} . A variable v in a formula φ is *free* if and only if it is not bound to any quantifier $\exists v$ or $\forall v$. If φ has free variables contained in the variables x_1, \ldots, x_n , we write $\varphi(x_1, \ldots, x_n)$.

This definition is vague because we have not said what "bound" means, but it is rather obnoxious to explain what it is rigorously, so we will not bother.

Definition 1.10 (sentence). Fix a language \mathcal{L} . An \mathcal{L} -formula with no free variables is a sentence.

Definition 1.11 (truth). Fix an \mathcal{L} -structure \mathcal{M} . Further, fix an \mathcal{L} -formula $\varphi(x_1,\ldots,x_n)$ and a tuple $\overline{a}\in M^n$. Then we define truth as $\mathcal{M}\vDash\varphi(\overline{a})$ to mean that φ is true upon plugging in \overline{a} , where our definition is inductive on atomic formulae as follows.

- $\mathcal{M} \vDash (t_1 = t_2)(\overline{a})$ if and only if $t_1^{\mathcal{M}}(\overline{a}) = t_2^{\mathcal{M}}(\overline{a})$.
- $\mathcal{M} \models R(t_1, \dots, t_n)$ if and only if $(t_1^{\mathcal{M}}(\overline{a}), \dots, t_2^{\mathcal{M}}(\overline{a})) \in R^{\mathcal{M}}$.

We define truth inductively on formulae now as follows.

- $\mathcal{M} \vDash (\varphi \land \psi)(\overline{a})$ if and only if $\mathcal{M} \vDash \varphi(\overline{a})$ and $\mathcal{M} \vDash \psi(\overline{a})$.
- $\mathcal{M} \vDash (\varphi \lor \psi)(\overline{a})$ if and only if $\mathcal{M} \vDash \varphi(\overline{a})$ or $\mathcal{M} \vDash \psi(\overline{a})$.
- $\mathcal{M} \vDash \neg \varphi(\overline{a})$ if and only if we do not have $\mathcal{M} \vDash \varphi(\overline{a})$.
- $\mathcal{M} \vDash \exists v \varphi(\overline{a}, v)$ if and only if there exists $b \in M$ such that $\mathcal{M} \vDash \varphi(\overline{a}, b)$.

In this case, we say that \mathcal{M} satisfies, models, etc. $\varphi(\overline{a})$ and so on.

Here is our first result of substance.

Proposition 1.12. Fix a language $\mathcal L$ and an $\mathcal L$ -embedding $\eta\colon\mathcal M\to\mathcal N$. Further, fix a quantifier-free formula φ . Then $\mathcal M\models\varphi(\overline a)$ if and only if $\mathcal N\models\varphi$.

Proof. Induction on φ . Roughly speaking, the point is that the interpretations are the same before and after.

1.2. AUGUST 29 215A: MODEL THEORY

Remark 1.13. If we allow variables, the statement is false. For example, $(\mathbb{N}, 0, \leq)$ embeds into $(\mathbb{Z}, 0, \leq)$, but $\forall x (0 \leq x)$ is true in the first formula while false in the second.

In the case of isomorphism, we can say more.

Proposition 1.14. Fix a language \mathcal{L} and an \mathcal{L} -isomorphism $\eta \colon \mathcal{M} \to \mathcal{N}$. Further, fix any formula φ with free variables x_1, \ldots, x_n and a tuple $\overline{a} \in M^n$. Then $\mathcal{M} \vDash \varphi(\overline{a})$ if and only if $\mathcal{N} \vDash \varphi(f(\overline{a}))$.

Proof. Induction on φ . The point is that the definition of truth is the same before and after η .

1.2 August 29

We continue with the speed run of first-order logic. The goal for today is to state the Compactness theorem.

1.2.1 Theories

Now that we have a notion of truth, it will be helpful to keep track of which sentences exactly we want to be true

Definition 1.15 (theory). Fix an \mathcal{L} -structure \mathcal{M} . Then the *theory* $\mathrm{Th}(\mathcal{M})$ of \mathcal{M} is the set of all sentences φ such that $\mathcal{M} \vDash \varphi$.

The theory is essentially all that first-order logic can see.

Definition 1.16 (elementary equivalence). Fix \mathcal{L} -structures \mathcal{M} and \mathcal{N} . Then we say that \mathcal{M} and \mathcal{N} , written $\mathcal{M} \equiv \mathcal{N}$, are elementarily equivalent if and only if $\mathrm{Th}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$.

Example 1.17. It happens that $(\mathbb{Q}, +) \equiv (\mathbb{R}, +)$ but are not isomorphic because they have different cardinalities.

Example 1.18. Let s denote the successor function. It happens that $(\mathbb{Z}, s) \equiv (\mathbb{Q}, s)$, but one can show that they are not isomorphic.

This notion is different from isomorphism, but it is related.

Lemma 1.19. Fix \mathcal{L} -structures \mathcal{M} and \mathcal{N} . If $\mathcal{M} \cong \mathcal{N}$, then $\mathcal{M} \equiv \mathcal{N}$.

Proof. This is the content of Proposition 1.14 upon unraveling the definitions.

Going in the other direction, we might start with some sentences we want to be true and then look for the corresponding models.

Definition 1.20 (theory). Fix a language \mathcal{L} . Then an \mathcal{L} -theory T is a set of \mathcal{L} -sentences. For an \mathcal{L} -structure \mathcal{M} , we say that \mathcal{M} models T, written $\mathcal{M} \models T$, if and only if $\mathcal{M} \models \varphi$ for all $\varphi \in \mathcal{M}$. We let $\operatorname{Mod}(T)$ denote the class of all models \mathcal{M} of T, and we call it an elementary class.

Example 1.21. The class of all groups arises from the language $\{e, \cdot\}$ with some sentences to make a theory. However, the class of torsion groups is not an elementary class.

We want might want to understand what sentences follow from a given theory.

1.2. AUGUST 29 215A: MODEL THEORY

Definition 1.22. Fix a language \mathcal{L} and theory T. Then we say that T logically implies a sentence φ , written $T \models \varphi$, if and only if any \mathcal{L} -structure \mathcal{M} modelling T has $\mathcal{M} \models \varphi$.

Remark 1.23. Gödel's completeness theorem shows that $T \vDash \varphi$ if and only if there is a "proof" of φ from T. We will not use the notion of proof so much, though its proof is similar to the proof of compactness, which we will show.

1.2.2 Definable Sets

We will want the following notion.

Definition 1.24 (definable). Fix an \mathcal{L} -structure \mathcal{M} and subset $B\subseteq M$. Then a subset $X\subseteq M^n$ is B-definable if and only if there is a formula $\varphi(v_1,\ldots,v_n,w_1,\ldots,w_k)$ and tuple $\bar{b}\in B^k$ such that $\bar{a}\in X$ if and only if $\mathcal{M}\vDash \varphi(\bar{a},\bar{b})$. The tuple \bar{b} might be called the *parameters*. We may abbreviate M-definable to simply definable.

Example 1.25. Any finite set is definable by using the parameters to list out the elements.

Example 1.26. Work with $\mathcal{M} := (\mathbb{Z}, \leq)$. Then $X = \mathbb{N}$ is $\{0\}$ -definable by $\varphi(x, 0)$ where $\varphi(x, y)$ is given by $y \leq x$. However, \mathbb{N} is not \emptyset -definable, as shown by the following proposition.

Proposition 1.27. Fix an \mathcal{L} -structure \mathcal{M} and subset $A \subseteq M$. Further, suppose $X \subseteq M^n$ is A-definable. For any automorphism $\sigma \colon \mathcal{M} \to \mathcal{M}$ fixing A pointwise must fix X (not necessarily pointwise).

Proof. Suppose $\varphi(\overline{v}, \overline{w})$ defines X with the parameters $\overline{a} \in A^{\bullet}$. Then $\overline{x} \in X$ if and only if $\mathcal{M} \vDash \varphi(\overline{x}, \overline{a})$, but then $\mathcal{M} \vDash \varphi(\sigma(\overline{x}), \sigma(\overline{a}))$, so $\mathcal{M} \vDash \varphi(\sigma(\overline{x}), \overline{a})$ so $\sigma(\overline{x}) \in X$. For the converse, use the inverse automorphism σ^{-1} .

To further explain Example 1.26, we see that there are automorphisms of \mathbb{Z} (namely, by shifting) which do not fix \mathbb{N} , so \mathbb{N} cannot be \varnothing -definable.

Example 1.28. Work with $\mathcal{M} \coloneqq (\{1A, 1B, 2A, 2B\}, \leq)$ with partial ordering given by the number. The set $X \coloneqq \{1A, 1B\}$ is \varnothing -definable by $\varphi(x)$ given by $\exists y ((x \neq y) \land (x \leq y))$. However, there is an automorphism of our model swapping 1A with 1B and 2A with 2B, but this automorphism does not fix X pointwise.

1.2.3 The Compactness Theorem

To state compactness, we want a few definitions.

Definition 1.29 (satisfiable). Fix a language \mathcal{L} and theory T. Then T is *satisfiable* if and only if it has a model \mathcal{M} .

With a notion of proof, one can show that being satisfiable means that there is no proof of \bot , but we will avoid a discussion of proofs in this course.

1.2. AUGUST 29 215A: MODEL THEORY

Definition 1.30 (finitely satisfiable). Fix a language \mathcal{L} and theory T. Then T is *finitely satisfiable* if and only if any finite subset of T is satisfiable.

Of course, being satisfiable implies being finitely satisfiable; the converse will be true but is far from obvious. The following example explains why this is strange.

Example 1.31. Consider the natural numbers $\mathcal{N} = (\mathbb{N}, 0, 1, +, \times, \leq)$ and $\mathcal{N}_c \coloneqq (\mathbb{N}, 0, 1, +, \times, \leq, c)$, where c is some constant symbol, and set

$$T := \operatorname{Th}(\mathcal{N}) \cup \left\{ c \ge \underbrace{1 + 1 + \dots + 1}_{n} : n \in \mathbb{N} \right\}.$$

Then T is finitely satisfiable by $\mathcal N$ because, for any finite subset of T, the sentences $c \geq 1+1+\cdots+1$ will have to be bounded in length in our finite subset, so we simply find some c large enough in $\mathcal N$. However, $\mathcal N$ does not model T!

Anyway, here is our statement.

Theorem 1.32 (compactness). Fix a language \mathcal{L} and theory T. If T is finitely satisfiable, then T is satisfiable. Furthermore, T has a model \mathcal{M} with cardinality at most $|\mathcal{L}| + \aleph_0$.

Remark 1.33. In particular, the theory T of Example 1.31 has a model \mathcal{N}' , which is going to look very strange. To begin, there is a segment

$$0 < 1 < 2 < \cdots$$
.

But there is now an element c larger than any natural, which produces $c+1, c+2, c+3, \ldots$ But also any nonzero element has a predecessor, so we have elements $c-1, c-2, c-3, \ldots$ Further, any natural number is either odd or even, so there is also either (c-1)/2 or c/2 sitting between the initial piece of $\mathbb N$ and the c piece with $\mathbb Z$ added everywhere. In fact, a similar argument holds to produce an element approximately equal to qc for any rational $q \in \mathbb Q$.

Remark 1.34. One can of course always make our model larger. For example, suppose we have a theory T with an infinite model. If we want a model with cardinality at least \mathbb{R} , we add constants $\{c_r : r \in \mathbb{R}\}$ to our language and add in the sentences

$$\{c_r \neq c_s : \mathsf{distinct}\ r, s \in \mathbb{R}\}.$$

This remains finitely satisfiable: these constants merely ask for our model to be larger than any finite set. One can even require the new model to be elementarily equivalent to the previous one.

Here are some applications of compactness.

Corollary 1.35. The class of torsion groups is not elementarily definable in the language $\mathcal{L} = \{e, *\}$ of groups.

Notably, it is not okay to write something like

$$\bigvee_{n\in\mathbb{N}} (\forall g\, g^n = e)$$

to encode any torsion because this statement is infinitely long.

1.3. AUGUST 31 215A: MODEL THEORY

Proof. Suppose the class is elementarily definable. Then we have a theory T such that $\mathrm{Mod}(T)$ consists exactly of all torsion groups. Now the trick is to build a model of T which is not actually a torsion group. For this, we expand our language to $\mathcal{L} = \{e, *, c\}$, and let

$$S := T \cup \left\{ \underbrace{c * c * \cdots * c}_{n} \neq e : n \ge 2 \right\}.$$

For any finite subset of S, we can satisfy S by a torsion group containing an element which is not n-torsion for sufficiently large n; for example, $\mathbb{Z}/n\mathbb{Z}$ will do.

Thus, by Theorem 1.32, there is a model \mathcal{G} of S, so in particular, \mathcal{G} has an element $g \in G$ with

$$\underbrace{g * g * \cdots * g}_{n} \neq e$$

for all $n \geq 2$ (namely, g is the interpretation of the constant symbol c), so it follows that G is not torsion. However, \mathcal{G} is also a model of T and thus is supposed to be torsion, so we have a contradiction! This completes the proof.

1.3 August 31

Professor Scanlon is back. Let's prove the Compactness theorem. We are going to prove 2.5 times.

1.3.1 Proof of Compactness

Recall the statement.

Theorem 1.32 (compactness). Fix a language \mathcal{L} and theory T. If T is finitely satisfiable, then T is satisfiable. Furthermore, T has a model \mathcal{M} with cardinality at most $|\mathcal{L}| + \aleph_0$.

Remark 1.36. This result is special to first-order logic: in some sense, Theorem 1.32 combined with a corollary characterizes first-order logic among various logics. Roughly speaking, one wants to formalize what a logic is with its various structures and sentences should do.

Proof with completeness. We can prove this result fairly quickly given the Completeness theorem. Recall that the Completeness theorem says that any theory fails to be satisfiable if and only if there is a proof of contradiction \bot ; one writes that a theory T proves a sentence φ by $T \vdash \varphi$. We have not discussed how formal proofs work, and we won't discuss it further because this is not a proofs class. Approximately speaking, a formal proof is a list of steps one can use the sentence φ syntactically.

Now, suppose that T fails to be satisfiable. Then there is a proof of \bot . But then one can look at the proof, which is necessarily finite in length, and then we pick up any sentence φ occurring in the proof of \bot . But then we have a proof of \bot using only finitely many sentences in T, so T fails to be finitely satisfiable! This completes the proof.

Anyway, let's present an actual proof.

Definition 1.37 (witness). Fix a theory T of a language \mathcal{L} . Then T has witnesses (or Henkin constants) if and only if each formula $\varphi(x)$ in one free variable x has a constant symbol c such that $\exists x \varphi(x) \to \varphi(c)$ lives in T.

Remark 1.38. If T has witnesses, then $T' \supseteq T$ also has witnesses for any theory T' extending T.

Let's quickly sketch our proof.

1.3. AUGUST 31 215A: MODEL THEORY

1. We will show that if T is finitely satisfiable, then there is an expanded language $\mathcal{L}'\supseteq\mathcal{L}$ and expanded finitely satisfiable \mathcal{L}' -theory $T'\supseteq T$ of \mathcal{L}' such that $|\mathcal{L}'|\le |\mathcal{L}|+\aleph_0$, and T' has witnesses (as does any extended theory T'' of T').

- 2. Next, suppose T is a maximally finitely satisfiable theory (i.e., T is finitely satisfiable, and any proper extension $T' \supseteq T$ fails to be finitely satisfiable¹). Then we will show T is complete (i.e., each sentence φ has either $\varphi \in T$ or $\neg \varphi \in T$).
- 3. From here, we want to extend maintaining being complete: if T is finitely satisfiable, then there is an extended language $\mathcal{L}' \supseteq \mathcal{L}$ of size $|\mathcal{L}'| = |\mathcal{L}| + \aleph_0$ and extended theory T' of T which is complete, finitely satisfiable, and has witnesses. This essentially follows from a Zorn's lemma argument.
- 4. We are now ready to do our construction. At this point, we may assume that our theory T is finitely satisfiable, complete, and has witnesses. Then we claim that there is a model $\mathcal M$ such that $|M| \leq |\mathcal L|$. In fact, the model can be described somewhat explicitly. Take $M \coloneqq \mathcal C/\sim$ where $\mathcal C$ is our set of constants, and our equivalence relation \sim is given by $c \sim d$ if and only if $(c = d) \in T$. Notably, constants $c \in \mathcal C$ are interpreted as $c^{\mathcal M} \coloneqq [c]$. To interpret functions f, we have $f^{\mathcal M}([a_1], \dots [a_n]) = [d]$ if and only if $(f(a_1, \dots, a_n) = d) \in T$. Lastly, to interpret relations R, we have $R^{\mathcal M}([a_1], \dots, [a_n])$ if and only if $(R(a_1, \dots, a_n)) \in T$.

Let's start implementing the details.

Remark 1.39. In logic, the answer to a question is often the question. For example, in step 4, we see that T has a model because T says that it has a model.

Here is our first step.

Lemma 1.40. Fix a finitely satisfiable theory T of a language \mathcal{L} . Then there is an expanded language $\mathcal{L}'\supseteq\mathcal{L}$ and expanded finitely satisfiable \mathcal{L}' -theory $T'\supseteq T$ of \mathcal{L}' such that $|\mathcal{L}'|\le |\mathcal{L}|+\aleph_0$, and T' has witnesses.

Proof. We would like to just set T' to be T together with new constants providing witnesses for all formulae. But these new constants will make new formulae, so we need to do some kind of induction to go upwards. With this in mind, we will build an increasing sequence of languages

$$\mathcal{L}_0 \coloneqq \mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots$$

and theories

$$T_0 := T \subseteq T_1 \subseteq T_2 \subseteq \cdots$$

such that T_n is always a finitely satisfiable \mathcal{L}_n -theory, and each \mathcal{L}_n -formula φ with one free variable has a constant $c \in \mathcal{C}_{\mathcal{L}_n}$ such that $\exists x \varphi(x) \to \varphi(c)$ lives in T_n . We will then set \mathcal{L}' to be the union of the \mathcal{L}_{\bullet} and T' to be the union of the T_{\bullet} , and this will complete the proof.

We have already built the n=0 stage, as above. Then to build \mathcal{L}_{n+1} from \mathcal{L}_n , add in new constant symbols $c_{\varphi(x)}$ for each \mathcal{L}_n -formula $\varphi(x)$ with one free variable; all the functions and relations remain the same. Note \mathcal{L}_{n+1} is now the size of the formulae with one free variable in \mathcal{L}_n , so $|\mathcal{L}_{n+1}| = |\mathcal{L}_n| + \aleph_0$.

As for our theory, let T_{n+1} be T_n plus the sentences $\exists x \varphi(x) \to \varphi\left(c_{\varphi(x)}\right)$ for each \mathcal{L}_n -formula $\varphi(x)$ with one free variable. We are now ready to set

$$\mathcal{L}'\coloneqq igcup_{n\in\mathbb{N}} \mathcal{L}_n \qquad ext{and} \qquad T'\coloneqq igcup_{n\in\mathbb{N}} T_n.$$

We see that \mathcal{L}' then has the right size, and T' has witnesses: for any \mathcal{L}' -formula $\varphi(x)$ with one free variable, note that $\varphi(x)$ has only finitely many symbols, so we can find some fixed level \mathcal{L}_n containing all the symbols used in $\varphi(x)$. But then $\varphi(x)$ has a witness from $T_{n+1} \subseteq T'$, as needed.

 $^{^{1}}$ Such a thing exists by some sort of Zorn's lemma argument: note that there is a theory containing T which fails to be finitely satisfiable: take the set of all sentences!

1.3. AUGUST 31 215A: MODEL THEORY

It remains to show that T' is finitely satisfiable. It suffices to show that T_n is finitely satisfiable for any $n \in \mathbb{N}$ because any finite set will be contained in some T_n . We show this by induction. For n = 0, there is nothing to say. Now suppose T_n is finitely satisfiable, and we show that T_{n+1} is finitely satisfiable.

Fix some finite subset $\Delta \subseteq T_{n+1}$ which we would like to build a model for. Now, Δ will be built by some sentences in T_n plus some new sentences from T_{n+1} . Looking hard at $T_{n+1} \setminus T_n$, we see that we can enumerate $\Delta \setminus T_n$ as some sentences

$$\exists x \psi_k(x) \to \psi_k(c_k)$$

where $\{\psi_k\}_{k=1}^m$ is some \mathcal{L}_n -formulae in one free variable.

We now begin building our model. Note $\Delta \cap T_n$ is a finite subset of T_n , so it is satisfiable by some model \mathcal{M} . Now, for each k, if there is some $a \in M$ such that $\mathcal{M} \models \varphi_k(a)$, set $a \coloneqq a_k$; otherwise, set $a_k \coloneqq m$ for any chosen $m \in M$. (Note structures are nonempty.) We now let \mathcal{M}' be the \mathcal{L}_{n+1} -structure with universe M, interpretations of functions and relations the same as in \mathcal{M} , and all old constant symbols are also all still interpreted the same way. Then for each new constant symbol, we interpret $c_k^{\mathcal{M}} \coloneqq a_k$, and each other new constant symbol can also go to m. Now \mathcal{M}' is a model for Δ because it models everything in $\Delta \cap T_n$ for free, and it has satisfied $\Delta \setminus T_{n+1}$ by construction, so we are done.

To show the second step, we begin with the following lemma.

Lemma 1.41. Fix a finitely satisfiable theory T of a language \mathcal{L} . For any \mathcal{L} -sentence φ , then either $T \cup \{\varphi\}$ or $T \cup \{\neg \varphi\}$ is finitely satisfiable.

Proof. Suppose that both $T \cup \{\varphi\}$ and $T \cup \{\neg \varphi\}$ both fail to be finitely satisfiable. We will show that T fails to be finitely satisfiable.

Well, we are given finite subsets $\Delta_+ \subseteq T \cup \{\varphi\}$ and $\Delta_- \subseteq T \cup \{\neg\varphi\}$ which are not satisfiable. If Δ_+ fails to contain φ , then Δ_+ is a finite subset of T which is not satisfiable, so T fails to be satisfiable. Thus, we may assume that $\varphi \in \Delta_+$. Analogously, we may assume that $\neg \varphi \in \Delta_-$. Now, $(\Delta_+ \cup \Delta_-) \setminus \{\varphi\}$ and $(\Delta_+ \cup \Delta_-) \setminus \{\neg\varphi\}$ both fail to be satisfiable.

But now suppose for the sake of contradiction that T is finitely satisfiable. Then $(\Delta_+ \cup \Delta_-) \setminus \{\varphi, \neg \varphi\}$ has a model \mathcal{M} . But $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \neg \varphi$, so we see that \mathcal{M} will model at least one of $(\Delta_+ \cup \Delta_-) \setminus \{\varphi\}$ or $(\Delta_+ \cup \Delta_-) \setminus \{\neg \varphi\}$, which is the desired contradiction.

The second step now follows from a Zorn's lemma argument.

Lemma 1.42. Fix a maximally finitely satisfiable theory T of a language \mathcal{L} . Then T is complete.

Proof. Let φ be any \mathcal{L} -sentence. Then either $T \cup \{\varphi\}$ or $T \cup \{\neg \varphi\}$ is finitely satisfiable by Lemma 1.41, so by maximality, we may conclude that either $T = T \cup \{\varphi\}$ or $T = T \cup \{\neg \varphi\}$, so either $\varphi \in T$ or $\neg \varphi \in T$, which is what we wanted.

Combining the work so far completes the third step.

Lemma 1.43. Fix a finitely satisfiable theory T of a language \mathcal{L} . Then there is an extended language $\mathcal{L}'\supseteq\mathcal{L}$ of size $|\mathcal{L}'|\leq |\mathcal{L}|+\aleph_0$ and extended theory T' of T which is complete, finitely satisfiable, and has witnesses.

Proof. We can prove this using the previous two steps.

1. Lemma 1.40 provides an extended language \mathcal{L}' (of cardinality at most $|\mathcal{L}| + \aleph_0$) and extended theory T' which is finitely satisfiable and has witnesses.

2. We use Zorn's lemma to become maximally finitely satisfiable. Let $\mathcal P$ denote the set of finitely satisfiable $\mathcal L'$ -theories T'' extending T' which is finitely satisfiable. Containment shows that $\mathcal P$ is a partial order, and it's nonempty because $T' \in \mathcal P$. Next up, we note that any nonempty chain $\{T_\alpha\}_{\alpha \in \lambda}$ is upperbounded by

$$\bigcup_{\alpha \in \lambda} T_{\alpha},$$

which we can see continues to be finitely satisfiable (any finite set belongs to some fix T_{β} for β perhaps large) and thus lives in \mathcal{P} and succeeds to upper-bound our chain. Thus, Zorn's lemma provides a maximally finitely satisfiable theory T'' containing T', which will be complete by Lemma 1.42. Because T'' contains T', we continue to have witnesses.

1.4 September 5

In this lecture, we will complete our proof of Theorem 1.32.

1.4.1 Completing the proof of Theorem 1.32

Last class, we left off having shown Lemma 1.43, which was the third step of our outline. The last step of the proof is the following lemma.

Lemma 1.44. Fix a language \mathcal{L} with a theory T which is finitely satisfiable, complete, and has witnesses. Then T has a model \mathcal{M} with cardinality at most $|\mathcal{L}|$.

Proof. As we did last class, we go ahead and explicitly describe our model and then show that it makes sense. Take $M := \mathcal{C}/\sim$ where \mathcal{C} is our set of constants, and our equivalence relation \sim is given by $c \sim d$ if and only if $(c = d) \in T$. Notably, constants $c \in \mathcal{C}$ are interpreted as $c^{\mathcal{M}} := [c]$. To interpret functions f, we have $f^{\mathcal{M}}([a_1], \ldots [a_n]) = [d]$ if and only if $(f(a_1, \ldots, a_n) = d) \in T$. Lastly, to interpret relations R, we have $R^{\mathcal{M}}([a_1], \ldots, [a_n])$ if and only if $(R(a_1, \ldots, a_n)) \in T$.

We now check that this makes sense. Note that in the following checks, we are a bit sloppy in differentiating between constants and their equivalence classes in \mathcal{C} when there is unlikely to be problems from doing so.

- 1. We show that \sim is in fact an equivalence relation on \mathcal{C} . There are the following checks.
 - Reflexive: we must show c=c is a sentence in T. Because T is complete, one of c=c or $\neg(c=c)$ is in T. But T is finitely satisfiable, and the sentence $\neg(c=c)$ has no model, so it cannot live in T. So instead c=c lives in T.
 - Symmetric: suppose $c \sim c'$ so that c = c' is a sentence in T; we want to show that c' = c is a sentence in T. Well, by completeness one of c' = c or $\neg(c' = c)$ lives in T. But if we have $\neg(c' = c)$, then the finite theory $\{\neg(c' = c), c = c'\}$ will have no model (symmetry of equality will hold in the model), violating that T is finitely satisfiable. So we must have c' = c instead.
 - Transitive: suppose $c \sim c'$ and $c' \sim c''$ so that c = c' and c' = c'' are sentences in T. We want to show that $c \sim c''$, or equivalently that c = c'' lives in T. Well, by completeness, one of c = c'' or $\neg(c = c'')$ lives in T. However, if $\neg(c = c'')$ lives in T, then we note that $\{c = c', c' = c'', \neg(c = c'')\}$ is a subset of T with no model, which is a contradiction. So instead c = c'' lives in T.
- 2. We show that our interpretation of functions makes sense. Fix an n-ary function f. We need to show that $f(a_1, \ldots, a_n)$ has a unique interpretation in \mathcal{M} .
 - Existence: for constants a_1, \ldots, a_n , we show that there is a constant b such that $f(a_1, \ldots, a_n) = b$ in T. This holds by having witnesses: let $\varphi(x)$ be the formula $f(a_1, \ldots, a_n) = x$, and having witnesses tells us that T contains the sentence

$$\exists x \, \varphi(x) \to \varphi(b)$$

for some constant b. We show that T contains the sentence $\varphi(b)$. Otherwise, because T is complete, T will have the sentence $\neg \varphi(b)$, but being finitely satisfiable means that

$$\{\exists x \varphi(x) \to \varphi(b), \neg \varphi(b)\}\$$

must have a model; this is an issue because all models satisfy $\exists x \, f(a_1, \dots, a_n) = x$ and therefore must satisfy $\varphi(b)$, which is a contradiction to satisfying $\neg \varphi(b)$.

• Uniqueness: for constants a_1, \ldots, a_n and a'_1, \ldots, a'_n and b and b' such that $a_i \sim a'_i$ for all i and both $f(a_1, \ldots, a_n) = b$ and $f(a'_1, \ldots, a'_n) = b'$, we must show that actually $b \sim b'$. Well, by completeness, if $b \sim b'$ is not true, then $\neg (b = b')$ lives in T. Then the theory

$$\{a_1 = a'_1, \dots, a_n = a'_n, f(a_1, \dots, a_n) = b, f(a'_1, \dots, a'_n) = b', \neg (b = b')\}$$

is a subset of T but is not satisfiable (because of how functions work in set theory), which is a contradiction.

3. We show that our interpretation of relations makes sense. Fix an n-ary relation R. Essentially, if we have constants a_1,\ldots,a_n and a'_1,\ldots,a'_n such that $a_i\sim a'_i$ for each i, then we will have $R(a_1,\ldots,a_n)\in T$ if and only if $R(a'_1,\ldots,a'_n)\in T$. Because \sim is symmetric as shown above, it suffices to show that $R(a_1,\ldots,a_n)\in T$ implies $R(a'_1,\ldots,a'_n)\in T$.

Well, T is complete, so if T fails to contain $R(a'_1,\ldots,a'_n)$, then it must contain $\neg R(a'_1,\ldots,a'_n)$ instead. But then

$$\{a_1 = a'_1, \dots, a_n = a'_n, R(a_1, \dots, a_n), \neg R(a'_1, \dots, a'_n)\}\$$

is a finite subset of T with no model because of how relations work in set theory; this is a contradiction.

4. As an intermediate step, before going on to show that $\mathcal{M} \models T$, we show that terms behave: suppose $t(x_1,\ldots,x_n)$ is a term. For constants c_1,\ldots,c_n,c' , we show that $t(c_1,\ldots,c_n)=d$ is in T if and only if $t^{\mathcal{M}}([c_1],\ldots,[c_n])=[d]$.

Let T' be the subset of T with this property. Note that T' contains constants by our first check above. To show that T'=T, we suppose that $t_1,\ldots,t_m\in T'$ and that f is an m-ary function, and we want to show that $f(t_1,\ldots,t_m)$ is in T'. Fix enough constants c_1,\ldots,c_n (namely, more than the number of free variables of each t_{\bullet}). Then we note $t_i^{\mathcal{M}}([c_1],\ldots,[c_n])=[d_i]$ for some $[d]\in\mathcal{M}$, which then implies that

$$t_i(c_1,\ldots,c_n)=d_i$$

is a sentence in T for each t_i . Now, $f^{\mathcal{M}}\left(t_1^{\mathcal{M}},\ldots,t_m^{\mathcal{M}}\right)(\overline{c})$ is certainly equal to some constant [d], which is now equivalent to having

$$f(d_1,\ldots,d_m)=d$$

in T by the functions check above. Now, the finite satisfiable and completeness of T imply that having the above sentence in T is equivalent to having the sentence

$$f(t_1,\ldots,t_m)(\overline{c})=d$$

in T because T already contains $t_i(\overline{c})=d_i$ for each i. For example, if T fails to contain $f(t_1,\ldots,t_m)(\overline{c})$, then it will contain $\neg f(t_1,\ldots,t_m)(\overline{c})=d$ by completeness, but this contradicts $f(d_1,\ldots,d_m)=d$ and $t_i(\overline{c})=d_i$ for each i and therefore the finite subset with all these sentences is not satisfiable. The reverse implication is similar.

- 5. We show that \mathcal{M} actually satisfies all sentences in T; in fact, we will show $T \vDash \varphi(\overline{a})$ for any φ and \overline{a} if and only if $\mathcal{M} \vDash \varphi(\overline{a})$. We proceed by induction, starting with atomic formulae.
 - Our most basic cases are sentences of the form $c_1=c_2$ and $R(c_1,\ldots,c_n)$ where R is some n-ary relation and c_1,\ldots,c_n are constants. These are satisfied by $\mathcal M$ basically by construction: the definition of \sim establishes from $c_1=c_2$ that $c_1\sim c_2$ and thus $c_1^{\mathcal M}=[c_1]=[c_2]=c_2^{\mathcal M}$. And $R^{\mathcal M}\left(c_1^{\mathcal M},\ldots,c_n^{\mathcal M}\right)$ is equivalent to $R(c_1,\ldots,c_n)\in T$.

• For any terms t and s and enough constants \overline{a} and \overline{b} , we claim that having $(t=s)(\overline{a},\overline{b})$ in T implies $\mathcal{M} \vDash (t=s)(\overline{a},\overline{b})$. The previous step promises constants c and d such that $t(\overline{a}) = c$ and $s(\overline{b}) = d$ are in T and that this is equivalent to $t^{\mathcal{M}}(\overline{a}) = [c]$ and $s^{\mathcal{M}}(\overline{b}) = [d]$.

- Now, $(t=s)(\overline{a},\overline{b})$ being in T is thus equivalent to having c=d in T by the usual argument using the completeness and finite satisfiability of T. Then having c=d is equivalent to [c]=[d], which is equivalent to $t^{\mathcal{M}}(\overline{a})=s^{\mathcal{M}}(\overline{b})$, which is equivalent to $\mathcal{M}\vDash (t=s)(\overline{a},\overline{b})$.
- For any n-ary relation R and terms t_1, \ldots, t_n and enough constants \overline{a} , we claim $R(t_1, \ldots, t_n)(\overline{a})$ being in T implies $\mathcal{M} \vDash R(t_1, \ldots, t_n)(\overline{a})$. Well, for each term t_i , the previous step promises us a constant c_i such that $t_i(\overline{a}) = c_i$ is in T and has $t_i^{\mathcal{M}}(\overline{a}) = [c_i]$.

Now, having the sentences $t_i(\overline{a}) = c_i$ for each i implies that $R(t_1, \dots, t_n)(\overline{a})$ lives in T if and only if $R(c_1, \dots, c_n)$ lives in T by the usual argument using the completeness and finite satisfiability of T. But by our relations check, we know that $R(c_1, \dots, c_n)$ lives in T if and only if $R^{\mathcal{M}}([c_1], \dots, [c_n])$ is true, which is equivalent to $R^{\mathcal{M}}(t_1^{\mathcal{M}}(\overline{a}), \dots, t_n^{\mathcal{M}}(\overline{a}))$.

We now build up from atomic formulae. Let F' be the subset of formulae such that $\varphi(\overline{a})$ being in T for some constants \overline{a} if and only if $\mathcal{M} \vDash \varphi(\overline{a})$. The above checks show that F' contains atomic formulae.

- Suppose $\varphi \in F'$. We show $\neg \varphi \in F'$. Well, $\neg \varphi(\overline{a})$ fails to live in T if and only if $\varphi(\overline{a})$ lives in T (by completeness), which is equivalent to $\mathcal{M} \models \varphi(\overline{a})$, which is equivalent to \mathcal{M} not satisfying $\neg \varphi(\overline{a})$.
- Suppose $\varphi, \psi \in F'$. We show that $\varphi \wedge \psi$. Well, $(\varphi \wedge \psi)(\overline{a})$ lives in T if and only if both $\varphi(\overline{a})$ and $\psi(\overline{a})$ live in T (using the usual argument with the completeness and finite satisfiability of T), which is equivalent to $\mathcal{M} \vDash \varphi(\overline{a})$ and $\mathcal{M} \vDash \psi(\overline{a})$, which is equivalent to $\mathcal{M} \vDash (\varphi \wedge \psi)(\overline{a})$.
- Suppose $\varphi(x) \in F'$. We show that $\exists x \, \varphi(x) \in F'$. Well, $\mathcal{M} \models (\exists x \, \varphi(x))(\overline{a})$ if and only if there is $[b] \in M$ such that $\mathcal{M} \models \varphi(\overline{a}, b)$. By hypothesis, this is equivalent to having some constant b such that $\varphi(\overline{a}, b)$ is in T.

Now, if $\varphi(\overline{a},b)$ is in T for some constant b, then the usual argument with completeness and finite satisfiability requires $(\exists x\, \varphi(x))(\overline{a})$ to be in T. Conversely, if $(\exists x\, \varphi(x))(\overline{a})$ is in T, then the fact that T has witnesses implies that there is a constant c such that $\varphi(\overline{a},b)$ is in T from the usual argument. In particular, the sentence $\exists x\, \varphi(\overline{a})(x) \to \varphi(\overline{a})(b)$ belongs to T for some constant b.

The above checks complete the induction on formulae.

Theorem 1.32 now follows from combining Lemmas 1.43 and 1.44.

1.5 September 7

In this lecture, we will provide another proof of Theorem 1.32, using ultrafilters.

1.5.1 Ultrafilters

Unsurprisingly, the main character of our story will be ultrafilters.

Definition 1.45 (filter). Fix a set I. Then a filter \mathcal{F} on I is a subset of $\mathcal{P}(I)$ satisfying the following.

- (a) $I \in \mathcal{F}$.
- (b) Finite intersection: for $X, Y \in \mathcal{F}$, we have $X \cap Y \in \mathcal{F}$.
- (c) Containment: if $X \in \mathcal{F}$ and $Y \subseteq I$ contains X, then $Y \in \mathcal{F}$ also.

The intuition here is that filters contain "large" subsets of *I*.

Example 1.46. Fix a set I. Then $\{I\}$ is a filter.

Example 1.47. Fix a set I and a filter \mathcal{F} on I. If $\emptyset \in \mathcal{F}$, then we see that any subset $X \subseteq I$ contains \emptyset and thus must live in \mathcal{F} . Thus, $\mathcal{F} = \mathcal{P}(I)$, which is in fact a filter. We call $\mathcal{P}(I)$ the "trivial filter."

Example 1.48. More generally, fix any subset $X \subseteq I$. Then $\mathcal{F}_X := \{Y \subseteq I : X \subseteq Y\}$ is a filter.

- (a) Note $X \subseteq I$, so $I \in \mathcal{F}_X$.
- (b) Intersection: if $Y, Z \in \mathcal{F}_X$, then $X \subseteq Y$ and $X \subseteq Z$, so $X \subseteq Y \cap Z$, so $Y \cap Z \in \mathcal{F}_X$.
- (c) Containment: if $Y \in \mathcal{F}_a$, and $Z \subseteq I$ contains Y, then $X \subseteq Y \subseteq Z$, so $Z \in \mathcal{F}_a$.

Example 1.49. Fix a set I, and define $\mathcal{F} \subseteq \mathcal{P}(I)$ by $X \in \mathcal{F}$ if and only if $I \setminus X$ is finite. We check that \mathcal{F} is a filter.

- (a) Note $I \in \mathcal{F}$ because $I \setminus I = \emptyset$ is finite.
- (b) Intersection: if $X, Y \in \mathcal{F}$, then $I \setminus (X \cap Y) = (I \setminus X) \cup (I \setminus Y)$ is finite and thus $X \cap Y \in \mathcal{F}$.
- (c) Containment: if $X \in \mathcal{F}$ and $Y \subseteq I$ contains X, then $I \setminus Y \subseteq I \setminus X$ is finite, so $Y \in \mathcal{F}$.

Ultrafilters are the largest filters.

Definition 1.50 (ultrafilter). Fix a set I. Then an ultrafilter \mathcal{F} on I is a nontrivial filter on I such that each subset $X \subseteq I$ has one of $X \in \mathcal{F}$ or $I \setminus X \in \mathcal{F}$.

Example 1.51. Fix a set I and element $a \in I$. Define the "principal ultrafilter"

$$\mathcal{F}_a := \{X \subseteq I : a \in X\}.$$

We show that \mathcal{F}_a is an ultrafilter. Note \mathcal{F}_a is already a filter by Example 1.48. To be ultrafilter, for each $X \subseteq I$, either $a \in X$ or $a \in I \setminus X$, which imply $X \in \mathcal{F}_a$ or $I \setminus X \in \mathcal{F}_a$ respectively.

The following result rigorizes the notion that ultrafilters are the largest filters.

Lemma 1.52. Fix a set I and a filter \mathcal{U} on I. The following are equivalent.

- (a) \mathcal{U} is an ultrafilter.
- (b) \mathcal{U} is maximal among the partially ordered set of nontrivial filters on I, ordered by inclusion.

Proof. We have two implications to show.

• We show (a) implies (b). Suppose \mathcal{U}' is a filter properly containing \mathcal{U} , and we want to show that $\mathcal{U}' = \mathcal{P}(I)$. Well, \mathcal{U}' properly contains \mathcal{U} , so there is some $X \in \mathcal{U}' \setminus \mathcal{U}$. But $X \notin \mathcal{U}$ requires $I \setminus X \in \mathcal{U}$, so $I \setminus X \in \mathcal{U}'$ too, but then

$$\emptyset = X \cap (I \setminus X)$$

lives in \mathcal{U}' . It follows that $\mathcal{U}' = \mathcal{P}(I)$ by Example 1.47.

• We show (b) implies (a). Certainly \mathcal{U} is nontrivial. Now, fix any subset $X \subseteq I$. Suppose $I \setminus X \notin \mathcal{U}$, and we want to show that $X \in \mathcal{U}$. Indeed, consider the filter

$$\mathcal{U}' := \{ Y \subseteq I : Y \supseteq X \cap X' \text{ for some } X' \in \mathcal{U} \}.$$

Quickly, we check that \mathcal{U}' is a nontrivial filter containing \mathcal{U} .

- Note $I ⊇ X \cap I$, so I ∈ U'.
- Intersection: if $Y_1,Y_2\in\mathcal{U}'$, then find $X_1,X_2\in\mathcal{U}$ such that $Y_i\supseteq X\cap X_i$ for each i, so $X_1\cap X_2\in\mathcal{U}$ implies $Y_1\cap Y_2\supseteq X\cap (X_1\cap X_2)$ and so $Y_1\cap Y_2\in\mathcal{U}'$.
- Containment: if $Y \in \mathcal{U}'$ and $Z \subseteq I$ contains Y, then find $X' \in \mathcal{U}$ such that $Y \supseteq X \cap X'$, so $Z \supseteq X \cap X'$, so $Z \in \mathcal{U}'$.
- **–** Contains \mathcal{U} : for each $X' \in \mathcal{U}$, note $X' \supseteq X \cap X'$, so $X' \in \mathcal{U}'$.
- Nontrivial: having $\varnothing \in \mathcal{U}'$ would imply $\varnothing \supseteq X \cap X'$ for some $X' \in \mathcal{U}$, which is equivalent to $X' \subseteq I \setminus X$, so it would follow that $I \setminus X \in \mathcal{U}$, which is a contradiction.

We conclude that $\mathcal{U}=\mathcal{U}'$ by maximality of \mathcal{U} . However, $X\supseteq I\cap X$ forces $X\in\mathcal{U}'=\mathcal{U}$, so we are done.

It is important to know that it is relatively easy to build ultrafilters.

Proposition 1.53. Fix a nontrivial filter \mathcal{F} on a set I. Then there exists an ultrafilter \mathcal{U} containing \mathcal{F} .

Proof. Let \mathcal{P} be the set of nontrivial filters containing \mathcal{F} , which we turn into a partially ordered by set by inclusion; note $\mathcal{F} \in \mathcal{P}$, so \mathcal{P} is nonempty. Using Lemma 1.52, we would like to show that \mathcal{P} has a maximal element, for which we use Zorn's lemma. Fix a nonempty chain $\mathcal{C} \subseteq \mathcal{P}$, which we must upper-bound. We claim that

$$\mathcal{F}_u \coloneqq igcup_{\mathcal{F}' \in \mathcal{C}} \mathcal{F}'$$

is a filter containing $\mathcal F$ upper-bounding $\mathcal C$, which will complete the proof. Here are our checks.

- Upper-bounds: for any $\mathcal{F}' \in \mathcal{C}$, we see that $\mathcal{F}' \subseteq \mathcal{F}_u$ by construction.
- Any $\mathcal{F}' \in \mathcal{C}$ contains I, so $I \in \mathcal{F}_u$.
- Intersection: if $X,Y\in\mathcal{F}_u$, then we can find $\mathcal{F}_X',\mathcal{F}_Y'\in\mathcal{C}$ containing X and Y, respectively. Because \mathcal{C} is a chain, we may find $\mathcal{F}'\in\mathcal{C}$ containing both \mathcal{F}_X' and \mathcal{F}_Y' . Then $X,Y\in\mathcal{F}'$, so $X\cap Y\in\mathcal{F}'\subseteq\mathcal{F}_u$ because \mathcal{F}' is a filter.
- Containment: if $X \in \mathcal{F}_u$ and we have a subset $Y \subseteq I$ containing X, then we find $\mathcal{F}' \in \mathcal{C}$ containing X and find that $Y \in \mathcal{F}' \subseteq \mathcal{F}_u$ because \mathcal{F}' is a filter.

1.5.2 Compactness via Ultraproducts

For our application, we will want the notion of an ultraproduct.

Lemma 1.54. Fix a language \mathcal{L} and some \mathcal{L} -structures $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$. Now, define an \mathcal{L} -structure \mathcal{M} as follows.

• The universe M is $\prod_{\alpha \in I} M_{\alpha}$ modded out by the equivalence relation \sim given by $(a_{\alpha}) \sim (b_{\alpha})$ if and only if

$$\{\alpha \in I : a_{\alpha} = b_{\alpha}\} \in \mathcal{U}.$$

- Functions are interpreted component-wise.
- For an n-ary relation R, $R^{\mathcal{M}}((a_{1\alpha}), \ldots, (a_{n\alpha}))$ if and only if the set of α such that $R^{M_{\alpha}}(a_{1\alpha}, \ldots, a_{n\alpha})$ is in \mathcal{U} .

Then \mathcal{M} is a well-defined \mathcal{L} -structure.

Proof. Here are our various checks.

- We check that \sim is an equivalence relation.
 - Reflexive: note $(a_{\alpha}) \sim (a_{\alpha})$ because $\{\alpha \in I : a_{\alpha} = a_{\alpha}\} = I$ lives in \mathcal{U} .
 - Symmetric: if $(a_{\alpha}) \sim (b_{\alpha})$, then

$$\{\alpha \in I : b_{\alpha} = a_{\alpha}\} = \{\alpha \in I : a_{\alpha} = b_{\alpha}\},\$$

which is in \mathcal{U} by hypothesis.

- Transitive: if $(a_{\alpha}) \sim (b_{\alpha})$ and $(b_{\alpha}) \sim (c_{\alpha})$, then $\{\alpha \in I : a_{\alpha} = c_{\alpha}\}$ contains the set

$$\{\alpha \in I : a_{\alpha} = b_{\alpha} = c_{\alpha}\} = \{\alpha \in I : a_{\alpha} = b_{\alpha}\} \cap \{\alpha \in I : a_{\alpha} = c_{\alpha}\},\$$

which lives in \mathcal{U} because \mathcal{U} is a filter.

• We check that interpretation of functions makes sense. Fix an n-ary function f and some elements $(a_{1\alpha}), \ldots, (a_{n\alpha})$ and $(b_{1\alpha}), \ldots, (b_{n\alpha})$. We must show

$$(f^{\mathcal{M}}(a_{1\alpha},\ldots,a_{n\alpha})) \sim (f^{\mathcal{M}}(b_{1\alpha},\ldots,b_{n\alpha})).$$

Well, we note $\{\alpha \in I: f^{\mathcal{M}}(a_{1\alpha},\ldots,a_{n\alpha})=f^{\mathcal{M}}(b_{1\alpha},\ldots,b_{n\alpha})\}$ contains the set

$$\bigcap_{i=1}^{n} \{ \alpha \in I : a_{i\alpha} = b_{i\alpha} \},$$

which lives in \mathcal{U} because \mathcal{U} is a filter.

• We check that interpretation of relations makes sense. Fix an n-ary function R and some elements $(a_{1\alpha}), \ldots, (a_{n\alpha})$ and $(b_{1\alpha}), \ldots, (b_{n\alpha})$. We must show

$$R((a_{1\alpha}),\ldots,(a_{n\alpha})) \iff R((b_{1\alpha}),\ldots,(b_{n\alpha})).$$

Unwrapping the definition of $R^{\mathcal{M}}$, this is equivalent to

$$\{\alpha \in I : R^{M_{\alpha}}(a_{1\alpha}, \dots, a_{n\alpha})\} \in \mathcal{U} \iff \{\alpha \in I : R^{M_{\alpha}}(b_{1\alpha}, \dots, b_{n\alpha})\} \in \mathcal{U}.$$

By symmetry, it's enough to show the forward direction, for which we note that the right-hand set contains

$$\{\alpha \in I : R^{M_{\alpha}}(a_{1\alpha}, \dots, a_{n\alpha})\} \cap \bigcap_{i=1}^{n} \{\alpha \in I : a_{i\alpha} = b_{i\alpha}\},$$

which lives in $\mathcal U$ because $\mathcal U$ is a filter.

Definition 1.55 (ultraproduct). Fix a language $\mathcal L$ and some $\mathcal L$ -structures $\{\mathcal M_\alpha\}_{\alpha\in I}$. The ultraproduct is the $\mathcal L$ -structure defined in Lemma 1.54, denoted $\prod_{\alpha\in I}M_\alpha/\mathcal U$ or $\prod_{\mathcal U}M_\alpha$.

We are now ready to begin our proof of Theorem 1.32. We want the following definition.

Definition 1.56 (expansion). Fix a language \mathcal{L} and structure \mathcal{M} . Given a subset $A \subseteq M$, we define the expansion \mathcal{L}_A as having the same constants in addition to the constants in A but the same functions and relations.

Remark 1.57. Fix a language \mathcal{L} and structure \mathcal{M} and subset $A \subseteq M$. Then \mathcal{M} is in fact an \mathcal{L}_A -structure, where we interpret the new constants $a \in A$ by $a^{\mathcal{M}} := a$.

Compactness will follow from the result.

Theorem 1.58 (Łoś). Fix a language \mathcal{L} and \mathcal{L} -structures $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$. Expand \mathcal{L} to the language $\mathcal{L}':=\mathcal{L}_{\prod_{\alpha\in I}M_{\alpha}}$. Now, let \mathcal{U} be an ultrafilter on I so that $\mathcal{M}:=\prod_{\mathcal{U}}M_{\alpha}$ is an \mathcal{L}' -structure. Then for any \mathcal{L} -formula $\varphi(x_1,\ldots,x_n)$ has $\mathcal{M}\models\varphi\left(a_1^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\right)$ if and only if

$$\{\alpha \in I : \mathcal{M}_{\alpha} \vDash \varphi(a_1, \dots, a_n)\} \in \mathcal{U}.$$

Proof. To see that \mathcal{M} is in fact an \mathcal{L}' -structure, note \mathcal{M} is already an \mathcal{L} -structure, and we may interpret the constant (a_{α}) of \mathcal{L}' by the corresponding equivalence class in \mathcal{M} . Anyway, the content of the proof is to induct on φ .

- Let c_1 and c_2 be constants. Then $\mathcal{M} \vDash (c_1 = c_2)$ if and only if $c_1^{\mathcal{M}} = c_2^{\mathcal{M}}$ if and only if the set of α such that $c_1^{M_{\alpha}} = c_2^{M_{\alpha}}$ is in \mathcal{U} .
- Let $t(x_1,\ldots,x_n)$ be a term and c be a constant. We claim that $\mathcal{M}\vDash (t=c)(a_1,\ldots,a_n)$ if and only if

$$\{\alpha \in I : \mathcal{M}_{\alpha} \models (t = c)(a_1, \dots, a_n)\} \in \mathcal{U}.$$

This is done by induction on the term t. If t is a constant there is nothing to say. Otherwise, suppose that f is an m-ary function, and we have terms $t_1(x_1,\ldots,x_n),\ldots,t_m(x_1,\ldots,x_n)$. Now, $\mathcal{M} \models (f(t_1,\ldots,t_m)=c)(a_1,\ldots,a_n)$ if and only if $f^{\mathcal{M}}\left(t_1^{\mathcal{M}}(\overline{a}),\ldots,t_m^{\mathcal{M}}(\overline{a})\right)=c^{\mathcal{M}}$, which after taking enough intersection is equivalent to having $f^{\mathcal{M}}\left(c_1^{\mathcal{M}},\ldots,c_m^{\mathcal{M}}\right)=c^{\mathcal{M}}$ for suitable constants c_{\bullet} coming from the inductive hypothesis. One can then continue the argument backwards to complete.

• Let $t_1(x_1,\ldots,x_n)$ and $t_2(x_1,\ldots,x_n)$ be terms. Then $\mathcal{M} \vDash (t_1=t_2)\left(a_1^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\right)$ if and only if the set of α such that

$$t_1^{\mathcal{M}_{\alpha}}\left((a_1^{M_{\alpha}}),\ldots,(a_2^{M_{\alpha}})\right) = t_2^{\mathcal{M}_{\alpha}}\left((a_1^{M_{\alpha}}),\ldots,(a_2^{M_{\alpha}})\right)$$

is contained in \mathcal{U} . Choosing constants c_1 and c_2 suitably as above and using the filter property, this is equivalent to having $c_1^{\mathcal{M}} = c_2^{\mathcal{M}}$, from which we can go backwards to complete the argument.

• The same argument holds for atomic formulae of the form $R(t_1, \ldots, t_n)$ where R is an n-ary relation.

We now begin inducting on formulae. Let \mathcal{F}' be the set of desired \mathcal{L}' -formulae. The above checks show that \mathcal{F}' contains atomic formulae.

• Suppose $\varphi, \psi \in \mathcal{F}'$. Then $\mathcal{M} \vDash (\varphi \land \psi)(\overline{a})$ if and only if $\mathcal{M} \vDash \varphi(\overline{a})$ and $\mathcal{M} \vDash \psi(\overline{a})$ if and only if

$$\{\alpha \in I : \mathcal{M}_{\alpha} \vDash \varphi(\overline{a})\} \cap \{\alpha \in I : \mathcal{M}_{\alpha} \vDash \psi(\overline{a})\}$$

lives in \mathcal{U} , which is equivalent to

$$\{\alpha \in I : \mathcal{M}_{\alpha} \vDash (\varphi \wedge \psi)(\overline{a})\}\$$

by the intersection property of \mathcal{U} .

• Suppose $\varphi \in \mathcal{F}'$. Then $\mathcal{M} \models (\neg \varphi)(\overline{a})$ is false if and only if $\mathcal{M} \models \varphi(\overline{a})$ if and only if

$$\{\alpha \in I : \mathcal{M}_{\alpha} \vDash \varphi(\overline{a})\} \in \mathcal{U},$$

which because \mathcal{U} is an ultrafilter is equivalent to

$$I \setminus \{\alpha \in I : \mathcal{M}_{\alpha} \vDash \varphi(\overline{a})\} \notin \mathcal{U},$$

from which we can work backwards to complete the argument. (To see the last equivalence, note that each $X \subseteq I$ has exactly one of $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$: at least one is true because \mathcal{U} is an ultrafilter, and at most one is true because both being true requires $\varnothing \in \mathcal{U}$, making \mathcal{U} the trivial filter.)

• Suppose $\varphi(x, \overline{a}) \in \mathcal{F}'$. Then $\mathcal{M} \models (\exists x \, \varphi(x))(\overline{a})$ if and only if there is some $b \in M$ (i.e., b a constant because we expanded our language) such that $\mathcal{M} \models \varphi(b, \overline{a})$, which is equivalent to

$$\{\alpha \in I : \mathcal{M}_a \vDash \varphi(b, \overline{a})\} \in \mathcal{U}$$

for some constant b.

Corollary 1.59. Let T be a finitely satisfiable \mathcal{L} -theory. Then T is satisfiable.

Proof. We may suppose that T is nonempty. Let I be the set of finite subsets of T, and for each $\Delta \in I$, let \mathcal{M}_{Δ} be a model for Δ . We have two steps.

1. We define a filter. For each $\varphi \in T$, let $X_{\varphi} := \{ \Delta \in I : \mathcal{M}_{\Delta} \models \varphi \}$. Then we define

$$D := \{ A \in I : A \supseteq X_{\varphi} \text{ for some } \varphi \in T \}.$$

We show that D is a filter on I.

- Note any $\varphi \in T$ has $X_{\varphi} \subseteq I$, so $I \in D$.
- Intersection: if $A, B \in D$, then find $\varphi, \psi \in T$ such that $X_{\varphi} \subseteq A$ and $X_{\psi} \subseteq B$. Then $A \cap B$ contains $X_{\varphi} \cap X_{\psi}$, but $X_{\varphi} \cap X_{\psi}$ consists of Δ such that \mathcal{M}_{Δ} models both φ and ψ , which is equivalent to $\mathcal{M} \models \varphi \wedge \psi$, so $X_{\varphi} \cap X_{\psi} = X_{\varphi \wedge \psi}$.
- Containment: if $A \in D$ is contained in $B \subseteq I$, then find $\varphi \in T$ with $A \supseteq X_{\varphi}$ so that $B \supseteq X_{\varphi}$ as well.
- 2. Let \mathcal{U} be an ultrafilter containing D, and let \mathcal{M} be $\prod_{\mathcal{U}} \mathcal{M}_{\Delta}$. Then for each $\varphi \in T$, we see by Theorem 1.58 that $\mathcal{M} \models \varphi$ if and only if

$$\{\Delta \in I : \mathcal{M}_{\Delta} \vDash \varphi\} \in \mathcal{U},$$

which is true by construction of \mathcal{U} .

Remark 1.60. Theorem 1.32 was able to bound the size of the model, but the above proof does not. Indeed, the models \mathcal{M}_{Δ} are potentially large, and \mathcal{M} is approximately the size of all of them multiplied together.

BIBLIOGRAPHY

- [Mar02] D. Marker. *Model Theory: An Introduction*. Graduate Texts in Mathematics. Springer New York, 2002. ISBN: 9780387987606. URL: https://books.google.com/books?id=QieAHk--GCcC.
- [Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.

LIST OF DEFINITIONS

atomic formula, 5	language, 3
definable, 7 elementary equivalence, 6	satisfiable, 7 sentence, 5
embedding, 4	structure, 4
expansion, 17	term, 4
filter, 14 finitely satisfiable, 8 formula, 5	theory, 6, 6 truth, 5
free variable, 5	ultrafilter, 15
homomorphism, 4	ultraproduct, 17
isomorphism, 4	witness, 9