Podstawy fizyki kwantowej

Lista zadań 3 – Oscylator harmoniczny

Andrzej Więckowski

Hamiltonian oscylatora harmonicznego: $H=\frac{p^2}{2m}+\frac{kx^2}{2}, k=m\omega^2$. Dla układu opisanym następującym hamiltonianem rozwiązać zadania:

- 1. Pokazać, że energie własne $E_n > 0$ (podpowiedź: $[x, p] \neq 0$);
- 2. Zdefiniujmy operatory kreacji i anihilacji: $a^{\dagger}=-\frac{i}{\sqrt{2m\hbar\omega}}(p+im\omega x)$, $a=\frac{i}{\sqrt{2m\hbar\omega}}(p-im\omega x)$:
 - (a) wyrazić hamiltonian za pomocą $a,a^{\dagger}\colon H=(a^{\dagger}a+\frac{1}{2})\hbar\omega;$
 - (b) sprawdzić, że $[a, a^{\dagger}] = 1$;
 - (c) zdefiniujmy $N=a^{\dagger}a$ i pokażmy, że: $[N,a]=-a,[N,a^{\dagger}]=a^{\dagger},[H,a]=-\hbar\omega,[H,a^{\dagger}]=\hbar\omega;$
 - (d) $|n\rangle$ jest stanem własnym oscylatora, sprawdzić jakie jest działanie operatorów kreacji anihilacji na ten stan: $a|n\rangle$, $a^{\dagger}|n\rangle$;
- 3. Definiujemy stan podstawowy $|0\rangle$: $a|0\rangle$ =0, ile wynosi E_0 ? Ile wynosi E_n ?;
- 4. Przedstawić operatory a, a^{\dagger}, x, p w postaci macierzy;
- 5. Znaleźć funkcję falową dla stanu podstawowego, pokazać jak generować funkcje dla n-tego stanu;
- 6. Policzyć $\langle x \rangle$, $\langle p \rangle$ w stanie $|n \rangle$;
- 7. Policzyć $\langle x \rangle$ dla superpozycji stanów $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, jak to się zmienia w czasie? Policzyć średnią $\langle \bar{x} \rangle = \int\limits_0^{T=2\pi/\omega} \mathrm{d}t \, \langle x(t) \rangle$.