Introduction to Nonlinear Programming

Homework #6 – Due Thursday, May 23

- 1. We let [0, 5] be the initial interval of uncertainty and require the final length of uncertainty must be lower than 0.01. Find the minimum of $6e^{-2\lambda} + 2\lambda^2$ by the Dichotomous search method (let $\varepsilon = 0.001$).
- 2. Consider the function f defined by $f(x) = (x_1 + x_2^3)^2 + 2(x_1 x_2 4)^4$. Given a point x_1 and a nonzero vector \mathbf{d} , let $\theta(\lambda) = f(x_1 + \lambda \mathbf{d})$.
 - a. Obtain an explicit expression for $\theta(\lambda)$.
 - b. For $x^1 = (0, 0)^t$ and $\mathbf{d} = (1, 1)^t$, using the Fibonacci method, find the value of λ that solves the problem to minimize $\theta(\lambda)$ subject to $\lambda \in \mathbf{R}$. (We also let the final length of uncertainty ε be 0.01 and [0, 5] be the initial interval of uncertainty.)
 - c. For $x^1 = (5, 4)^l$ and $\mathbf{d} = (-2, 1)^l$, using the Golden section method, find the value of λ that solves the problem to minimize $\theta(\lambda)$ subject to $\lambda \in \mathbf{R}$. (We let $[a_1, b_1] = [-2, 2]$ and the length of uncertainty l is 0.01.)
- 3. We let [0, 5] be the initial interval of uncertainty and require the final length of uncertainty must be lower than 0.01. Find the minimum of $6e^{-2\lambda} + 2\lambda^2$ by each of the following procedures:
 - a. Newton's method ($\lambda_1 = 1$, $\varepsilon = 0.001$).
 - b. Bisection search method.
- 4. Consider the problem to minimize $(3-x_1)^2 + 7(x_2-x_1^2)^2$. Starting from the point (0, 0), solve the problem by the following procedures:
 - a. The cyclic coordinate method. ($\varepsilon = 0.2$)
 - b. The method of Davidon-Fletcher-Powell. ($\varepsilon = 0.2$)
 - c. The method of steepest descent. ($\varepsilon = 2$)