1ª Prueba de la evaluación continua de la asignatura Introducción a la Investigación Operativa

Grado en Estadística 4 de marzo de 2016

	I I DELL'ID OG		
NUMBER	Y APELLIDOS.		
NOMBRE	I AI ELLIDOS.	 	

INSTRUCCIONES: Las respuestas a las preguntas tienen que realizarse en el espacio disponible para ello en el propio enunciado de la prueba. Disponéis de una hoja adicional para cálculos y deducciones que en caso de utilizar podréis entregar junto al enunciado.

Para realizar el examen disponéis de 55 minutos, algo más de 5 minutos por pregunta, por lo que es preferible dejar para el final las que no tengáis claras. En total hay 8 preguntas que tienen la misma puntuación, 1,25 puntos cada una.

1. Sea la siguiente región factible que es ilimitada, es decir, las variables de decisión x e y pueden tomar valores tan grandes como se desee.

a. Si el objetivo es Max Z=-3x+y, analizad cuál es la solución óptima (valores de las variables de decisión y función objetivo).

RESPUESTA: Vértice
$$(0,20)$$
, es decir, $x=0$ e $y=20$, $Z^*=20$.

b. Si el objetivo es Min Z=-3x+y, analizad cuál es la solución óptima (valores de las variables de decisión y función objetivo).

RESPUESTA: Solución ilimitada

c. Si el objetivo es Min Z=2x+3y, analizad cuál es la solución óptima (valores de las variables de decisión y función objetivo).

RESPUESTA: Solución múltiple. Existen infinitas soluciones en el segmento cuyos extremos son los vértices (15,0) y (0,20), representadas por la combinación lineal convexa:

$$\alpha(15,0) + (1-\alpha)(0,20), \forall 0 \le \alpha \le 1$$

2. Sea el siguiente modelo de producción con tres productos A, B y C y tres restricciones de recursos, donde X₁ representa la producción de A, X₂ la de B y X₃ la de C.

Max z=90
$$X_1$$
+120 X_2 +150 X_3
Sujeto a:
 $2X_1$ +2 X_2 +1 X_3 ≤400
 $3X_1$ +4 X_2 +6 X_3 ≤240
 $4X_1$ +6 X_2 +5 X_3 ≤320
 X_1 , X_2 , X_3 ≥0

Añada al modelo de programación lineal anterior las restricciones necesarias para que se cumpla las siguientes exigencias:

a. La producción de A debe ser mayor que la de B.

$$X_1-X_2 \ge 0$$

b. La producción de C debe ser de al menos 10 unidades.

$$X_3 \ge 10$$

3. Sea el modelo de producción con tres variables de decisión dos restricciones de recursos y una exigencia de demanda:

Max
$$z=35X_1+40X_2+30X_3$$

Sujeto a:
 $X_2\ge300$
 $1X_1+3X_2+4X_3\le2000$
 $5X_1+4X_2+2X_3\le1500$
 $X_1,X_2,X_3\ge0$

Cuya solución obtenida con Solver de Excel es:

INFORME DE RESPUESTAS

Celda objetivo (Máx.)

Celda	Nombre	Valor original	Valor final
\$E\$5	Beneficio	0	16500

Celdas de variables

Celda	Nombre	Valor original	Valor final	Entero			
\$B\$4:\$D\$4							
\$B\$4	Nº Unidades A	0	0	Continuar			
\$C\$4	Nº Unidades B	0	300	Continuar			
\$D\$4	N° Unidades C	0	150	Continuar			

Restricciones

Celda	Nombre	Valor de la celda	Fórmula	Estado	Demora
\$E\$10	Valor	300	\$E\$10>=\$F\$10	Vinculante	0
\$E\$8	Valor	1500	\$E\$8<=\$F\$8	No vinculante	500
\$E\$9	Valor	1500	\$E\$9<=\$F\$9	Vinculante	0
\$B\$4:\$	5D\$4 >= 0				
\$B\$4	Nº Unidades A	0	\$B\$4>=0	Vinculante	0
\$C\$4	Nº Unidades B	300	\$C\$4>=0	No vinculante	300
\$D\$4	Nº Unidades C	150	\$D\$4>=0	No vinculante	150

INFORME DE CONFICENCIALIDAD

Celdas de variables

Celda	Nombre	Final Valor	Reducido Coste	Objetivo Coeficiente		Permisible Reducir
\$B\$4:\$D\$4						
\$B\$4	Nº Unidades A	0	-40	35	40	1E+30
\$C\$4	Nº Unidades B	300	0	40	20	1E+30
\$D\$4	Nº Unidades C	150	0	30	1E+30	10

Restricciones

		Final	Sombra	Restricción	Permisible	Permisible
Celda	Nombre	Valor	Precio	Lado derecho	Aumentar	Reducir
\$E\$10	Valor	300	-20	300	75	100
\$E\$8	Valor	1500	0	2000	1E+30	500
\$E\$9	Valor	1500	15	1500	250	300

a. ¿Cuáles serían las variables básicas y no básicas en la solución óptima obtenida con el algoritmo Simplex?

RESPUESTA:

$$X^B = \begin{pmatrix} X_2 \\ X_3 \\ H_2 \end{pmatrix}, X^B = \begin{pmatrix} X_1 \\ E_1 \\ A_1 \\ H_3 \end{pmatrix}$$

b. ¿Cuánto estaría dispuesto a pagar por una unidad más del recurso 2, del que actualmente dispone de 1500 unidades? ¿Por qué?

RESPUESTA: 15 unidades monetarias, esta cantidad equivale al precio sombra (criterio de optimalidad) asociado a la variable de holgura de la tercera restricción del modelo de programación lineal.

c. ¿Cuánto se vería reducido el objetivo si decidiera producir 1 unidad del producto A? ¿Por qué?

RESPUESTA: 40 unidades monetarias, esta cantidad equivale al coste reducido (criterio de optimalidad) asociado a la variable X_1 del modelo de programación lineal.