Sanity Check:

AV Behavior in same scenario without modifying friction before/after friction implementation

Testing Parameters for clear-sunset

```
• cloudiness = 100
```

- precipitation = 0
- precipitation_deposits = 0
- sun_altitude_angle = 5
- sun_azimuth_angle = 0
- wetness = 0
- fog_density = 0
- wind_intensity = 10
- ice_thickness = 0

```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import scipy.stats
from scipy.stats import norm, binom, poisson
from dtaidistance import dtw
import json
```

After Reducing Friction Setup

```
rel_path = "./Data/Ghost Cutin/Rain Reduced Friction Exponential/route_highway_epoch24
In [7]:
        os.path.isdir(rel path)
Out[7]:
In [8]: txt_lists_fric = []
        for root, dirs, files in os.walk(rel_path):
            for file in files:
                 if file.endswith(".txt"):
                      with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read_string = f.read()
                         json_object = json.loads(read_string)
                         txt lists fric.append(json object)
In [9]:
        count = 0
        for txt in txt_lists_fric:
            if txt['_checkpoint']['records'][0]['status'] == 'Completed':
                 count += 1
```

```
print("Average complete ratio:", count/100)
         Average complete ratio: 1.0
In [10]:
         count = 0
         for txt in txt_lists_fric:
              count += txt['_checkpoint']['records'][0]['scores']['score_route']
          print("Average score route:", count/100)
         Average score route: 100.0
         Setting up into list of DataFrames
         os.chdir("C:\\Senior Research & Thesis\\Simulations")
In [11]:
         os.path.isdir("./Data/Ghost Cutin/Rain Original/Simulations Rain PC/route_highway_epoc
In [12]:
         True
Out[12]:
In [13]:
         df array orig = np.empty(100, dtype=object)
         for i in range(len(df_array_orig)):
             df_array_orig[i] = pd.DataFrame()
In [14]: dir_path = rel_path
         # list to store files
          res = []
         # Iterate directory
          run index = 0
          for path in os.listdir(dir path):
             # check if current path is a file
             if not os.path.isfile(os.path.join(dir_path, path)):
                  df = pd.DataFrame()
                 for file in os.listdir(os.path.join(dir path, path)):
                     file path = os.path.join(dir path, os.path.join(path, file))
                        print("file_path", file_path)
                      if "_ctl.csv" in file_path:
                          df = pd.read_csv(file_path)
                      elif " cvip.csv" in file path:
                          temp = pd.read_csv(file_path)
                          df = pd.concat([df, temp], axis=1)
                      elif "_traj.csv" in file_path:
                          temp = pd.read csv(file path)
                          df = pd.concat([df, temp], axis=1)
                  df_array_orig[run_index] = df
                  run_index += 1
In [15]: df_array_orig[0]
```

Out[15]:		ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	С
	0	1439477	0	0.900000	-0.013041	0.0	1439477	0	500.491189	198.767441	-95.83
	1	1439478	0	0.900000	-0.000515	0.0	1439478	0	5.595580	195.567444	-90.83
	2	1439479	0	0.900000	-0.011084	0.0	1439479	0	5.592365	195.567444	-90.83
	3	1439480	0	0.900000	-0.004769	0.0	1439480	0	5.589578	195.567444	-90.83
	4	1439481	0	0.900000	0.000125	0.0	1439481	0	5.587154	195.567444	-90.83
	•••				•••				•••	•••	
	752	1440229	0	0.486201	-0.001529	0.0	1440229	0	54.770809	192.563019	97.78
	753	1440230	0	0.497011	-0.001434	0.0	1440230	0	54.870044	192.558350	98.11
	754	1440231	0	0.476958	-0.001659	0.0	1440231	0	54.968588	192.553375	98.44
	755	1440232	0	0.471986	-0.002172	0.0	1440232	0	55.066513	192.548126	98.77
	756	1440233	0	0.450362	-0.002484	0.0	1440233	0	55.163813	192.542572	99.11

757 rows × 17 columns

Original Friction Setup

```
txt_lists_orig = []
In [16]:
         for root, dirs, files in os.walk("./Data/Ghost Cutin/Rain Original/Simulations Rain PC
             for file in files:
                 if file.endswith(".txt"):
                       with open(os.path.join(root, file), encoding = 'utf-8') as f:
                          read_string = f.read()
                          json_object = json.loads(read_string)
                          txt_lists_orig.append(json_object)
In [17]:
         count = 0
         for txt in txt_lists_orig:
             if txt['_checkpoint']['records'][0]['status'] == 'Completed':
                 count += 1
          print("Average complete ratio:", count/100)
         Average complete ratio: 1.0
In [18]:
         count = 0
         for txt in txt_lists_orig:
              count += txt['_checkpoint']['records'][0]['scores']['score_route']
          print("Average score route:", count/100)
         Average score route: 100.0
```

Setting up into list of DataFrames

```
In [19]: df_array_fric = np.empty(100, dtype=object)

for i in range(len(df_array_orig)):
    df_array_fric[i] = pd.DataFrame()
```

```
os.path.isdir("./Data/Ghost Cutin/Rain Original/Simulations Rain PC/route_highway_epoc
In [21]:
         True
Out[21]:
In [22]: dir_path = './Data/Ghost Cutin/Rain Original/Simulations Rain PC/route_highway_epoch24
         # list to store files
         res = []
         # Iterate directory
          run index = 0
          for path in os.listdir(dir_path):
              # check if current path is a file
             if not os.path.isfile(os.path.join(dir_path, path)):
                 df = pd.DataFrame()
                 for file in os.listdir(os.path.join(dir_path, path)):
                     file_path = os.path.join(dir_path, os.path.join(path, file))
                       print(file_path)
                     if " ctl.csv" in file path:
                          df = pd.read csv(file path)
                     elif "_cvip.csv" in file_path:
                         temp = pd.read_csv(file_path)
                          df = pd.concat([df, temp], axis=1)
                      elif "_traj.csv" in file_path:
                          temp = pd.read csv(file path)
                          df = pd.concat([df, temp], axis=1)
                  df array fric[run index] = df
                 run_index += 1
In [23]: df_array_fric[0]
```

Out[23]:		ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	С
	0	1111515	0	0.900000	-0.010707	0.0	1111515	0	500.491189	198.767441	-95.83
	1	1111516	0	0.900000	-0.000900	0.0	1111516	0	5.595580	195.567444	-90.83
	2	1111517	0	0.900000	-0.011500	0.0	1111517	0	5.592365	195.567444	-90.83
	3	1111518	0	0.900000	-0.004868	0.0	1111518	0	5.589578	195.567444	-90.83
	4	1111519	0	0.900000	0.000147	0.0	1111519	0	5.587154	195.567444	-90.83
	•••				•••					•••	
	752	1112267	0	0.477660	-0.001647	0.0	1112267	0	54.731224	192.563019	97.78
	753	1112268	0	0.478471	-0.000942	0.0	1112268	0	54.830479	192.558350	98.11
	754	1112269	0	0.467884	-0.001690	0.0	1112269	0	54.929054	192.553375	98.44
	755	1112270	0	0.465332	-0.002328	0.0	1112270	0	55.027003	192.548126	98.77
	756	1112271	0	0.453689	-0.002363	0.0	1112271	0	55.124354	192.542572	99.11

757 rows × 17 columns

```
In [33]:
         df_array_orig[0]['x']
                 192.362411
Out[33]:
                 192.362411
         2
                 192.362411
                192.362411
         3
         4
                 192.362411
         752
                193.186905
         753
                 193.184387
         754
                 193.181885
         755
                 193.179367
         756
                 193.176895
         Name: x, Length: 757, dtype: float64
```

Comparison

```
plt.plot(median_orig_y, median_orig_x)
df_fric_x = pd.DataFrame()
df fric y = pd.DataFrame()
for i in range(0, len(df_array_fric)):
    if(df_array_fric[i]['x'].dtypes == 'object' or df_array_fric[i]['y'].dtypes == 'object'
        print(i)
    else:
        if not df_array_fric[i]['x'].isnull().values.any() and not df_array_fric[i]['y
            df_fric_x["Run"+str(i)] = df_array_fric[i]['x']
            df_fric_y["Run"+str(i)] = df_array_fric[i]['y']
median_fric_x = df_fric_x.median(axis=1)
median_fric_y = df_fric_y.median(axis=1)
plt.plot(median_fric_y, median_fric_x)
plt.axis('equal')
plt.xlabel("y")
plt.ylabel("x")
plt.title("AV Position Trajectory")
plt.legend(["trajectory with original implementation", "trajectory with friction imple
plt.show()
```


Since no accident, check cvip

```
In [74]: plt.figure(figsize=(15,8))

df_orig_cvip = pd.DataFrame()

for i in range(0, len(df_array_orig)):
    if(df_array_orig[i]['cvip'].dtypes == 'object'):
        print(i)
    else:
        if not df_array_orig[i]['cvip'].isnull().values.any():
            df_orig_cvip["Run"+str(i)] = df_array_orig[i]['cvip']

median_orig_cvip = df_orig_cvip.median(axis=1)

plt.plot(median_orig_cvip[200:])

df_fric_cvip = pd.DataFrame()

for i in range(0, len(df_array_fric)):
```



```
plt.figure(figsize=(15,8))
In [70]:
         df_avg_orig_cvip = df_array_orig[0]['cvip']
          count = 0
         for i in range(1, len(df_array_orig)):
              if(df_array_orig[i]['cvip'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_orig[i]['cvip'].isnull().values.any():
                      df_avg_orig_cvip+=df_array_orig[i]['cvip']
                      count+=1
          df_avg_orig_cvip.interpolate().dropna()/count
         df_avg_cvip = df_array_fric[0]['cvip']
         count = 0
         for i in range(1, len(df_array_fric)):
              if(df_array_fric[i]['cvip'].dtypes == 'object'):
```

```
print(i)
else:
    if not df_array_fric[i]['cvip'].isnull().values.any():
        df_avg_cvip+=df_array_fric[i]['cvip']
        count+=1

df_avg_cvip.interpolate().dropna()/count

df_avg_orig_cvip.iloc[100:].plot(title="cvip")
    df_avg_cvip.iloc[100:].plot(label='Reduced')

plt.legend(["cvip with original friction", "cvip with reduced friction"])
    plt.show()
```



```
plt.figure(figsize=(15,8))
In [69]:
         df avg orig steer = df array orig[0]['steer']
          count = 0
         for i in range(1, len(df_array_orig)):
              if(df_array_orig[i]['steer'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_orig[i]['steer'].isnull().values.any():
                      df_avg_orig_steer+=df_array_orig[i]['steer']
                      count+=1
          df avg orig steer.interpolate().dropna()/count
          df_avg_steer = df_array_fric[0]['steer']
          count = 0
          for i in range(1, len(df_array_fric)):
             if(df_array_fric[i]['steer'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_fric[i]['steer'].isnull().values.any():
                      df_avg_steer+=df_array_fric[i]['steer']
                      count+=1
```

```
df_avg_steer.interpolate().dropna()/count

df_avg_orig_steer.iloc[100:].plot(title="steer")

df_avg_steer.iloc[100:].plot(label='Reduced')

plt.legend(["steer with original friction", "steer with reduced friction"])
plt.show()
```



```
In [71]: plt.figure(figsize=(10,6))
         df_avg_orig_brake = df_array_orig[0]['brake']
          count = 0
         for i in range(1, len(df_array_orig)):
             if(df_array_orig[i]['brake'].dtypes == 'object'):
                  print(i)
             else:
                  if not df array orig[i]['brake'].isnull().values.any():
                     df_avg_orig_brake+=df_array_orig[i]['brake']
                      count+=1
          df avg orig brake.interpolate().dropna()/count
          df_avg_brake = df_array_fric[0]['brake']
          count = 0
          for i in range(1, len(df_array_fric)):
              if(df_array_fric[i]['brake'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_fric[i]['brake'].isnull().values.any():
                      df_avg_brake+=df_array_fric[i]['brake']
                      count+=1
          df_avg_brake.interpolate().dropna()/count
         df_avg_orig_brake.iloc[100:].plot(title="brake")
          df_avg_brake.iloc[100:].plot(label='Reduced')
```

```
plt.legend(["brake with original friction", "brake with reduced friction"])
plt.show()
```



```
plt.figure(figsize=(10,6))
In [72]:
         df_avg_orig_throttle = df_array_orig[0]['throttle']
          count = 0
         for i in range(1, len(df_array_orig)):
              if(df_array_orig[i]['throttle'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_orig[i]['throttle'].isnull().values.any():
                      df_avg_orig_throttle+=df_array_orig[i]['throttle']
                      count+=1
          df_avg_orig_throttle.interpolate().dropna()/count
         df_avg_throttle = df_array_fric[0]['throttle']
          count = 0
          for i in range(1, len(df_array_fric)):
              if(df_array_fric[i]['throttle'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_fric[i]['throttle'].isnull().values.any():
                      df_avg_throttle+=df_array_fric[i]['throttle']
                      count+=1
          df_avg_throttle.interpolate().dropna()/count
          df_avg_orig_throttle.iloc[100:].plot(title="throttle")
          df_avg_throttle.iloc[100:].plot(label='Reduced')
          plt.legend(["throttle with original friction", "throttle with reduced friction"])
          plt.show()
```



```
In [73]:
         plt.figure(figsize=(10,6))
         df_avg_orig_v = df_array_orig[0]['v']
          count = 0
         for i in range(1, len(df_array_orig)):
              if(df_array_orig[i]['v'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_orig[i]['v'].isnull().values.any():
                      df_avg_orig_v+=df_array_orig[i]['v']
                      count+=1
         df_avg_orig_v.interpolate().dropna()/count
         df_avg_v = df_array_fric[0]['v']
         count = 0
          for i in range(1, len(df_array_fric)):
             if(df_array_fric[i]['v'].dtypes == 'object'):
                  print(i)
             else:
                  if not df_array_fric[i]['v'].isnull().values.any():
                      df_avg_v+=df_array_fric[i]['v']
                      count+=1
         df_avg_v.interpolate().dropna()/count
         df_avg_orig_v.iloc[100:].plot(title="v")
         df_avg_v.iloc[100:].plot(label='Reduced')
         plt.legend(["v with original friction", "v with reduced friction"])
          plt.show()
```


Dynamic time warping (DTW) for cvip

measuring similarity between two temporal sequences

```
In [75]: distance = dtw.distance(median_orig_cvip, median_fric_cvip)
In [76]: distance
Out[76]: 0.08939207349725889
```

KS Test for cvip

```
In [78]: import scipy as sp
In [79]: sp.stats.ks_2samp(median_orig_cvip, median_fric_cvip)
Out[79]: KstestResult(statistic=0.005284015852047556, pvalue=1.0, statistic_location=7.9955622 84255972, statistic_sign=1)
```

You reject the null hypothesis that the two samples were drawn from the same distribution if the p-value is less than your significance level. **pvalue=4.2177381979173086e-06**