Homework 4

STA-360-602

Total points: 3 (reproducibility) + 6 (Q1) + 5 (Q2) = 14 points.

1. (6 points, 3 points each) Hoff, 3.10 (Change of variables). Let $\psi = g(\theta)$, where g is a monotone function of θ , and h be the inverse of g so that $\theta = h(\psi)$. If $p_{\theta}(\theta)$ is the probability density of θ , then the probability density of ψ induced by p_{θ} is given by

$$p_{\psi}(\psi) = p_{\theta}(h(\psi)) \times |\frac{dh}{d\psi}|.$$

(a) Let $\theta \sim \text{beta}(a, b)$ and let $\psi = \log[\theta/(1-\theta)]$. Obtain the form of p_{ψ} and plot is for the case that a = b = 1.

Hint: Show that

$$p_{\psi}(\psi) = \frac{1}{B(a,b)} \frac{e^{a\psi}}{(e^{\psi} + 1)^{(a+b)}} = \frac{e^{\psi}}{(e^{\psi} + 1)^2},$$

when a = b = 1.

(b) Let $\theta \sim \text{gamma}(a = shape, b = rate)$ and let $\psi = \log(\theta)$. Obtain the form of p_{ψ} and plot is for the case that a = b = 1.

Hint: Show that

$$p_{\psi}(\psi) = \frac{b^a}{\Gamma(a)} e^{a\psi - be^{\psi}} = e^{\psi - e^{\psi}},$$

when a = b = 1.

- 2. Lab component (5 points total) Please refer to lab 4 and complete tasks 4—5.
 - (a) (2 points) Task 4
 - (b) (3 points) Task 5