Chapitre 3: Suites des nombres réels

3.1 Raisonnement par récurrence

Théorème 3.1 (Propriété fondamentale de ℕ)

Toute partie non vide de $\mathbb N$ admet un plus petit élément (pour l'ordre naturel) et toute partie non vide et majorée de $\mathbb N$ admet un plus grand élément.

Cette propriété de \mathbb{N} entraine le théorème de la récurrence qui est utilisé lorsqu'on veut démontrer une propriété, P(n), dépendant de n pour tout entier naturel $n \ge n_0$ (fixé).

Théorème 3.2 Soit P(n) une propriété dépendant de l'entier naturel n

Si

- i) $P(n_0)$ est vraie
- ii) $P(n) \Rightarrow P(n+1)$ Vraie

Alors P(n) est vraie pour tout entier naturel $n \ge n_0$.

Exemple: montrer que
$$\forall n \ge 1$$
 $S_n = 1^3 + 3^3 + \dots + (2n-1)^3 = 2n^4 - n^2$ $P(n)$
 $S_1 = 1^3 = 1$; $2(1)^4 - 1^2 = 1$ $P(1)$ $vraie$.

Supposons P(n) vraie pour tout un certain $n \ge 1$, c.à.d. $S_n = 2n^4 - n^2$ et montrons que P(n+1) est vraie c.à.d. $S_{n+1} = 1^3 + 3^3 + \dots + (2n-1)^3 + (2n+1)^3 = 2(n+1)^4 - (n+1)^2$

$$S_{n+1} = S_n + (2n+1)^3$$

$$= 2n^4 - n^2 + (2n+1)^3$$

$$= 2n^4 - n^2 + (8n^3 + 12n^2 + 6n + 1)$$

$$= 2(n+1)^4 - (n+1)^2$$

P(n+1) est vraie donc P(n) est vraie pour tout $n \in \mathbb{N}^*$

3.2 Suites de nombres réels

3.2.1 Définitions

Définition 3.1 : une suite de nombres réels est une application u de \mathbb{N} dans \mathbb{R} ; c.à.d.

$$u: \mathbb{N} \to \mathbb{R}$$

$$n \mapsto u(n)$$

On la note $(u_n)_{n\in\mathbb{N}}$ ou $(u_n)_{n\geq 0}$. Pour chaque entier naturel n, u_n est appelé le $n^{\grave{e}me}$ terme de la suite.

Convergence, Divergence

Définition 3.2 : on dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ converge vers un réel l si à tout réel $\epsilon>0$, on peut associer un entier naturel n_ϵ tel que, pour tout entier naturel $n>n_\epsilon$ on ait $|u_n-l|<\epsilon$.

Le fait pour une suite d'être convergente vers *l* peut s'écrire :

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n > n_{\epsilon} \implies |u_n - l| < \epsilon)$$

Une suite qui ne converge pas est dite divergente.

Définition 3.3 : si $(u_n)_{n\in\mathbb{N}}$ converge vers l, l est appelé la limite de $(u_n)_{n\in\mathbb{N}}$ et est noté $\lim (u_n)$ ou $\lim_{n\to\infty} (u_n)$ ou $\lim_{n\to\infty} u_n$. On écrit $\lim_{n\to\infty} u_n = l$.

Exemple: la suite $\left(\frac{1}{n}\right)$ converge vers zéro.

En effet soit $\epsilon > 0$, existe-t-il $n_0 \in \mathbb{N}$ tel que $n > n_0 \Longrightarrow \frac{1}{n} < \epsilon$?

 $\frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}$ il suffit de prendre $n_0 = E\left(\frac{1}{\epsilon} + 1\right)$. (u_n) est donc convergente et a pour limite zéro.

Théorème 3.3 lorsqu'une suite (u_n) converge sa limite est unique.

Preuve: supposons que (u_n) converge vers 2 réels l_1 et l_2 avec $l_1 < l_2$.c.à.d.

$$\forall \epsilon > 0, \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n > n_1 \Longrightarrow |u_n - l_1| < \epsilon)$$

$$\forall \epsilon > 0, \exists n_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n > n_2 \Longrightarrow |u_n - l_2| < \epsilon)$$

Donc pour $n_0 = \max(n_1, n_2) \ \forall n \in \mathbb{N}, (n > n_0 \Longrightarrow |u_n - l_1| < \epsilon \ et |u_n - l_2| < \epsilon$)

D'autre part on a $0 < l_2 - l_1 = l_2 - u_n + u_n - l_1 \le |u_n - l_1| + |u_n - l_2| < 2\epsilon$.

Pour $\epsilon = \frac{1}{4}(l_2 - l_1)$, ce qui est absurde ; donc $l_2 = l_1$.

Définition 3.4

- i) Un réel A est un majorant(resp.minorant) d'une suite réelle (u_n) si $\forall n \in \mathbb{N}, u_n \leq A$ (Resp. $A \leq u_n$)
- ii) Une suite réelle est dite majorée (resp. Minorée) si elle admet un majorant (resp. minorant)

Définition 3.5: on dit qu'une suite réelle $(u_n)_{n\geq 0}$ tend vers $+\infty$ (resp. $-\infty$) si

$$\forall A > 0 \ \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n > N \Longrightarrow u_n \ge A(resp. u_n \le -A))$$

On note alors $u_n \to +\infty (resp. -\infty)$ ou $\lim_{n\to +\infty} u_n = +\infty (resp. -\infty)$

3.2.2 Propriétés d'ordre des suites réelles convergentes

Proposition 3.1: soient (u_n) une suite réelle convergente, l sa limite, $(a,b) \in \mathbb{R}^2$

- i) Si a < l, alors $\exists N_1 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N} (n \ge N_1 \Longrightarrow a < u_n)$
- ii) Si l < b, alors $\exists N_2 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N} (n \ge N_2 \Longrightarrow u_n < b)$
- iii) Si a < l < b, alors $\exists \ N \in \mathbb{N}$ tel que $\forall \ n \in \mathbb{N} \ (\ n \geq N \Longrightarrow a < u_n < b)$

Preuve:

i)
$$\forall \epsilon \exists n_0 \in \mathbb{N} (n \ge n_0 \Longrightarrow |u_n - l| < \epsilon).$$

Proposition 3.2 : (Théorème d'encadrement) Soient (u_n) , (v_n) , (w_n) trois suites réelles telles que

$$\begin{cases}
\exists N \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N} \ (n \ge N \Longrightarrow u_n < v_n < w_n \\
(u_n)_n \text{ et } (w_n)_n \text{ convergent vers une limite } l
\end{cases}$$
(3.1)

Alors $(v_n)_n$ converge aussi vers l.

Preuve:

$$\forall \ \epsilon > 0, \ \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n > n_1 \Longrightarrow |u_n - l_1| < \epsilon)$$

$$\forall \ \epsilon > 0$$
, $\exists n_2 \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $(n > n_2 \Longrightarrow |u_n - l_2| < \epsilon)$

Pour $N_0 = \max(N, n_1, n_2)$ on a

$$\forall \, n \in \, \mathbb{N} (n > n_0 \Longrightarrow -\epsilon < u_n - l < v_n - l < w_n - l < \epsilon \\ \Longrightarrow |u_n - l| < \epsilon. \, \text{Donc} \, (v_n)_n \, \text{converge vers} \, l.$$

Proposition 3.3 : Soient $(u_n)_i(v_n)_i$ deux suites réelles telles que si

$$\begin{cases}
\exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n > N \Longrightarrow u_n \le v_n (resp \ u_n \ge v_n) \\
\lim_{n \to +\infty} u_n = +\infty (resp. \lim_{n \to +\infty} u_n = -\infty)
\end{cases}$$
(3.2)

Proposition 3.4 : toute suite convergente est bornée.

Proposition 3.5: Soient $(u_n)_l(v_n)_l$ deux suites réelles, $l_1, l_1 \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$

- i) Si $\lim_{n\to+\infty} u_n = l_1$ alors $\lim_{n\to+\infty} |u_n| = |l_1|$
- ii) Si $\lim_{n\to +\infty}u_n=l_1$ et Si $\lim_{n\to +\infty}v_n=l_2$ alors $\lim_{n\to +\infty}(u_n+v_n)=l_1+l_2$
- iii) Si $\lim_{n\to +\infty} u_n = l_1$ alors Si $\lim_{n\to +\infty} (\lambda u_n) = \lambda l_1$

iv) Si
$$\left(\text{Si } \lim_{n \to +\infty} u_n = 0 \text{ et } (v_n)_n \text{ born\'ee} \right) \text{ alors } \lim_{n \to +\infty} (u_n v_n) = 0$$

- v) Si $\lim_{n\to +\infty}u_n=l_1$ et Si $\lim_{n\to +\infty}v_n=l_2$ alors $\lim_{n\to +\infty}(u_nv_n)=l_1l_2$
- vi) Si $\left(\lim_{n\to+\infty}v_n=l_2\ avec\ l_2\neq 0\right)$ alors $\left(\frac{1}{v_n}\right)$ est définie à partir d'un certain rang et $\lim_{n\to+\infty}\frac{1}{v_n}=\frac{1}{l_2}$
- vii) Si $\left(\lim_{n\to+\infty}u_n=l_1\ et\ \lim_{n\to+\infty}v_n=l_2\ avec\ l_2\neq 0\right)$ alors $\left(\frac{u_n}{v_n}\right)$ est définie à partir d'un certain rang et $\lim_{n\to+\infty}\frac{u_n}{v_n}=\frac{l_1}{l_2}$

Proposition 3.6 : soient $(u_n)_{,}(v_n)_{,}$ deux suites réelles,

- i) Si $\lim_{n\to +\infty} u_n = +\infty$ et si (v_n) est minorée, alors $\lim_{n\to +\infty} (u_n+v_n) = +\infty$ En particulier $\lim_{n\to +\infty} u_n = +\infty$ et $\lim_{n\to +\infty} v_n = +\infty \Rightarrow \lim_{n\to +\infty} (u_n+v_n) = +\infty$ $\lim_{n\to +\infty} u_n = +\infty$ et $\lim_{n\to +\infty} v_n = l \Rightarrow \lim_{n\to +\infty} (u_n+v_n) = +\infty$
- ii) Si $\lim_{n\to +\infty} u_n = +\infty$ et si $\bigg(\exists \ c\in \mathbb{R}_+^* \exists N\in \mathbb{N}, n\in \mathbb{N} (n\geq N\Longrightarrow v_n>c)\bigg)$ alors $\lim_{n\to +\infty} u_n v_n = +\infty$

En particulier

$$\lim_{n \to +\infty} u_n = +\infty$$
 et $\lim_{n \to +\infty} v_n = +\infty \Rightarrow \lim_{n \to +\infty} (u_n v_n) = +\infty$
 $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = l \Rightarrow \lim_{n \to +\infty} (u_n v_n) = +\infty$

iii) Si
$$\lim_{n\to+\infty} u_n = +\infty \implies \lim_{n\to+\infty} \frac{1}{u_n} = 0$$

iv) Si
$$\lim_{n\to+\infty}u_n=0$$
 et si $\left(\exists\ N\in\mathbb{N}\ \mathrm{tel}\ \mathrm{que}\ \forall\ n\in\mathbb{N}\ (\ n\geq N\Longrightarrow u_n>0)\right)$ alors $\lim_{n\to+\infty}\frac{1}{u_n}=+\infty$

3.2.3 Suites réelles monotones

Définition 3.6 : Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle

 $\begin{array}{l} \textbf{i)} \quad (u_n)_{n \in \mathbb{N}} \text{ est dite croissante (resp. Décroissante) si } \forall \, n \in \mathbb{N} \, u_n \leq u_{n+1} \text{(resp. } u_n \geq u_{n+1}) \\ \textbf{ii)} \quad (u_n)_{n \in \mathbb{N}} \text{ est dite-κcroissante (resp. Décroissante) si } \forall \, n \in \mathbb{N} \, u_n < u_{n+1} \text{(resp. } u_n > u_{n+1}) \\ \textbf{strictement} \\ \textbf{iii)} \quad (u_n)_{n \in \mathbb{N}} \text{ est dite monotone (resp.κMonotone) si elle est croissante ou décroissante} \\ \end{array}$

(resp. Strictement croissante ou strictement décroissante)

Preuve

Exemple : Etudier la suite (u_n) définie par :

$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$

3.2.4 Suites réelles adjacentes

Définition 3.7: Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si et seulement si

$$\begin{cases} (u_n)_{n\in\mathbb{N}} \text{ est croissante} \\ (v_n)_{n\in\mathbb{N}} \text{ est décroissante} \\ \lim_{n\to+\infty} (u_n-v_n) = 0 \end{cases}$$

Proposition 3.7 : si deux suites réelles $(u_n)_i(v_n)$ sont adjacentes alors elles convergentes et on la même limite.

De plus en notant l cette limite commune on a :

$$\forall n \in \mathbb{N}, u_n \leq u_{n+1} \leq l \leq v_{n+1} \leq v_n$$

Preuve

Exemple : montrer que les suites (u_n) et (v_n) définies par

$$u_n = \sum_{k=1}^n \frac{1}{k!} et v_n = u_n + \frac{1}{n! n}$$

Convergent et ont même limite

3.2.5 Suites réelles extraites

Définition 3.8: Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ; une suite extraite de (u_n) est une suite de la forme $\left(u_{\sigma_{(n)}}\right)$ où σ est une application croissante de \mathbb{N} dans \mathbb{N} .

Remarque 3.2.1 : si σ est une application strictement croissante de \mathbb{N} dans \mathbb{N} alors pour tout $n \in \mathbb{N}$, on a $\sigma(n) \geq n$.

Exemple

1./ $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont des suites extraites de la suite $(u_n)_{n\in\mathbb{N}}$

2./ $(u_{n^2})_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$

3./ $(u_{n^2-n})_{n\in\mathbb{N}}$ n'est pas une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ car $\sigma(0)=\sigma(1)$.

Proposition 3.8 : si une suite (u_n) converge vers un réel l, alors toute suite extraite de $(u_n)_n$ converge aussi vers l.

Proposition 3.9: $(u_n)_n$ une suite de réels, $l \in \mathbb{R}$. Pour que $(u_n)_n$ converge vers l il faut et il suffit que $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent toutes les deux vers l.

Théorème 3.5 (de Bolzano-Weierstrass) De toute suite réelle bornée on peut extraire une suite convergente.

3.2.6 Suites classiques

a/ Suite arithmétique

 u_0 donné dans \mathbb{R} et $u_{n+1}=u_n+r$, $r\in\mathbb{R}$ on a $\forall n\in\mathbb{N}$, $u_n=u_0+nr$.

b/ Suite géométrique

 u_0 donné dans $\mathbb R$ et $u_{n+1}=qu_n$, $q\in\mathbb R$ on a $\forall n\in\mathbb N$, $u_n=q^nu_0$.

Proposition 3.10 Soit $q \in \mathbb{R}$, la suite géométrique $(q^n)_n$ converge si et seulement si |q| < 1 ou q = 1. De plus

Si |q| < 1 alors $q^n \to 0$ quand $n \to +\infty$

Si $q \in]1; +\infty[$ alors $q^n \to +\infty$ quand $n \to +\infty$

Si q = 1 alors $q^n \to 1$ quand $n \to +\infty$

c/ <u>Suite arithmético-géométrique</u> : $\forall n \in \mathbb{N}, u_{n+1} = au_n + b, a, b, u_0$ données dans \mathbb{R} .

On a $\forall n \in \mathbb{N} \ u_n = a^n u_0 + b(1 + a + \cdots a^{n-1})$

d/ Suite récurrente linéaire d'ordre 2 à coefficient constant $\forall n \in \mathbb{N}$

 $u_{n+2}=au_{n+1}+bu_n$, a,b,u_0,u_1 données dans \mathbb{R} . On associe à cette suite l'équation caractéristique : $r^2=ar+b$ (E)

 $\underline{1^{\mathrm{er}}\ \mathrm{cas}\ }(E)$ possède deux racines réelles distinctes $r_1\ et\ r_2$ alors :

Il existe
$$(\lambda, \mu) \in \mathbb{R}^2$$
, $\forall n \in \mathbb{N}$, $u_n = \lambda r_1^n + \mu r_2^n$

 $2^{\text{ème}}$ cas (E) possède une racine

Il existe
$$(\lambda, \mu) \in \mathbb{R}^2$$
, $\forall n \in \mathbb{N}$, $u_n = (\lambda + \mu n)r^n$

 $\underline{3^{\text{ème}}}$ cas (E) possède deux racines complexes conjuguées $[\rho, \theta]$, $[\rho, -\theta]$ alors :

Il existe
$$(\lambda, \mu) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n = \rho^n(\lambda \cos n\theta + \mu \sin n\theta)$$

Dans tous les cas, λ et μ sont déterminer en résolvant le système obtenu en considérant les deux premiers termes de la suite .

Exemple : Etudier la suite $(u_n)_n$ définie par $u_{n+2}=u_{n+1}+u_n$, $u_0=u_1=1$

3.2.7 Suites de Cauchy

Définition 3.9 : une suite réelle $(u_n)_n$ est dite de Cauchy si elle possède la propriété suivante :

$$\forall \epsilon > 0 \ \exists n_{\epsilon}, \forall p, q \in \mathbb{N} \ (q > p > n_{\epsilon} \Longrightarrow |u_q - u_p| < \epsilon)$$

Théorème 3.6 : une suite réelle est convergente si et seulement si c'est une suite de Cauchy

3.3 Suites équivalentes

Définition 3.10 : Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles ; la suite $(v_n)_n$ est équivalente à la suite $(u_n)_n$ s'il existe une suite réelle $(\lambda_n)_n$ tendant vers I telle que pour n assez grand on ait $v_n = \lambda_n u_n$. On note $(v_n)_n \sim (u_n)_n$

Remarque 3.3.1: Si pour n assez grand on a $U_n \neq 0$ alors $(v_n)_n$ est équivalente à $(u_n)_n$ si $\left(\lambda_n = \frac{u_n}{(v_n)}\right)_n$ tend vers 1.

Théorème 3.7 Soient $(u_n)_n$ et $(v_n)_n$ deux suites équivalentes

i) $(u_n)_n$ et $(v_n)_n$ sont de même nature

ii) Si $\lim(u_n) = l$ alors $\lim(v_n) = l, l \in \mathbb{R} \cup \{-\infty, +\infty\}$