

TARGET: JEE (Advanced) 2015

Course : VIJETA & VIJAY (ADP & ADR) Date : 24-04-2015

TEST INFORMATION

DATE: 26.04.2015

CUMULATIVE TEST-02 (CT-02)

Syllabus : Function & Inverse Trigonometric Function, Limits, Continuity & Derivability, Quadratic Equation, Application of Derivatives, Straight Line, Circle

REVISION DPP OF SOLUTION OF TRIANGLE AND MATRICES & DETERMINANT

Total M	larks : 1	<u></u> 47						Max	x. Time : 116 min.
Single of Multiple Compressingle of	choice Ob choice of chension digit Type	ojective (objective (–1 nega (no neg	(–1 neg itive mai ative ma	tive marking) ative marking rking) Q.33 to arking) Q. 39 e marking) Q.4) Q. 12 to 32 38	2	(4 marks (3 marks (4 marks	s 2.5 min.) s, 3 min.) s 2.5 min.) s 2.5 min.) s, 8 min.)	[33, 27.5] [84, 63] [18, 15]
1.	If A, B a	nd C are	e the an	gles of a non	-right angle	d triangle AB0	C, then the	value of	
	tan A	1	1						
	1	tan B	1	is equal to					
	1	1	tan C						
	(A) 1			(B) 2		(C) -1		(D) –2	
2.	The nun (A) 1	nber of 2	2 × 2 ma	atrices X satis (B) 2	sfying the m	atrix equation (C) 3	$X^2 = I$ (I is	2 × 2 unit m (D) infinite	atrix) is
3.		f the equation $\sin x + \cos(k + x) + \cos(k - x) = 2$ has real solutions, then the complete set c is $(n \in I)$					te set of values of		
	(A) $\left[n\pi \right]$	$-\frac{\pi}{6}$, $n\pi$	$+\frac{\pi}{6}$			(B) $\int 2n\pi - \frac{\pi}{6}$	$-,2n\pi+\frac{\pi}{6}$		
	(C) 2n	π,2nπ+-	$\left[\frac{\pi}{6}\right] \cup \left[\frac{\pi}{2}\right]$	$2n\pi + \frac{11\pi}{6}$, 2r	$n\pi + \pi$	(D) None of	these		
4.			\angle ABC = 120°, AB = 3cm and BC = 4cm. If perpendicular constructed to AB at A and to BC at t D, then CD =						
	(A) 3			(B) $\frac{8\sqrt{3}}{3}$		(C) 5		(D) $\frac{10\sqrt{3}}{3}$	

5. In a triangle ABC, if $2015c^2 = a^2 + b^2$ and cot C = N(cot A + cot B), then the number of distinct prime factor of N is

(A) 0

(B) 1

(C) 2

(D) 4

6. If A is a square matrix and B is singular matrix of same order, then for any positive integer n, $(A^{-1}BA)^n$ equals

 $(A) A^{-n} B^n A^n$

(B) $A^n B^n A^{-n}$

(C) $A^{-1} B^n A$

(D) $n(A^{-1} B A)$

7. The number of right angle triangles of integer side lengths whose product of leg lengths is equal to three times the perimeter is

(A) 0

(B) 1

(C) 2

(D) 3

8. The internal bisector of $\angle A$ of triangle ABC meets sides BC at point P and b = 2c. If $9AP^2 + 2a^2 = k.c^2$, then k is equal to

(A) 8

(B) 3

(C) 19

(D) 18

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | cin: u80302RJ2007PTC024029

PAGE NO.-1

9. If
$$\begin{vmatrix} {}^{x}C_{r} & {}^{x+1}C_{r+1} & {}^{x+2}C_{r+2} \\ {}^{y}C_{r} & {}^{y+1}C_{r+1} & {}^{y+2}C_{r+2} \\ {}^{z}C_{r} & {}^{z+1}C_{r+1} & {}^{z+2}C_{r+2} \end{vmatrix} = \lambda \begin{vmatrix} {}^{x}C_{r} & {}^{x}C_{r+1} & {}^{x}C_{r+2} \\ {}^{y}C_{r} & {}^{y}C_{r+1} & {}^{y}C_{r+2} \\ {}^{z}C_{r} & {}^{z}C_{r+2} \end{vmatrix}$$
, then '\(\lambda'\) is equal to

(A) 1 (B) 2 (C) 3 (D) 4

- Number of solution(s) of the equation, $\tan 2x = \cot x$ in $0 \le x \le 2\pi$, is 10. (D) 8
- 11. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

(A)
$$\frac{9\sqrt{3}(1+\sqrt{3})}{\pi^2}$$
 (B) $\frac{9\sqrt{3}(\sqrt{3}-1)}{\pi^2}$ (C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$ (D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$

12. Consider the system of equations in x, y, z as $x \sin 3\theta - y + z = 0$ $x \cos 2\theta + 4y + 3z = 0$ 2x + 7y + 7z = 0.

Given system has a non-trivial solution, if $\theta \in$

$$(A) \ \pi \Bigg(n + \frac{(-1)^n}{3} \Bigg), \ n \ \in \ Z \ \ (B) \ \pi \Bigg(n + \frac{(-1)^n}{4} \Bigg), \ n \ \in \ Z \ \ (C) \ \pi \Bigg(n + \frac{(-1)^n}{6} \Bigg), \ n \ \in \ Z \ \ (D) \ n\pi, \ n \ \in \ Z$$

If a^2 + b^2 + c^2 + ab + bc + $ca \le 0 \ \forall \ a,\ b,\ c \in R$, then value of the determinant 13.

- (C) $a^2 + b^2 + c^2$ (D) 13
- If there are three square matrix A, B, C of same order satisfying the equation $A^2 = A^{-1}$ and let B = A^{2^n} 14. & C = $A^{2^{(n-2)}}$ then which of the following statements are true? (where $n \in N$) (B) (B + C)(B - C) = 0 (C) |B - C| = 1(D) None of these
- $tan |x| = |tan x| if x \in$ 15.
 - (A) $(\pi k \pi/2, \pi k]$ where $k \in I N$ (B) $[\pi k, \pi k + \pi/2)$ where $k \in W$
 - (C) $(\pi k \pi/2, \pi k]$ where $k \in I^-$ (D) $[\pi k, \pi k + \pi/2)$ where $k \in I$
- Let $\triangle ABC$ be such that $\angle BAC = \frac{2\pi}{3}$ and AB.AC = 1, then the possible length of the angle bisector AD 16. is (A) 2(C) 1/2
- If in a triangle whose circumcentre is origin, $a \le \sin A$, then for any point (a, b) lying inside the 17. circumcircle of $\triangle ABC$,
 - (D) $|a + b| < \frac{1}{\sqrt{2}}$ (B) 1/8 < |ab| < 1/2 (C) |ab| > 1/2(A) |ab| < 1/8
- 18. In a triangle ABC, If D is mid point of side BC and AD is perpendicular to AC, then the value of cosA.cosC is
 - (A) $\frac{2b^2}{ac}$ (B) $\frac{2(a^2-c^2)}{3bc}$ (C) $-\frac{2b^2}{ac}$ (D) $\frac{2(c^2-a^2)}{3ac}$
- Let $A = \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$. If AB is a scalar multiple of B, then 19.
 - (A) 4a + 7b + 5 = 0 (B) a + b + 2 = 0(D) a + 3b = 0

20.	Values of ' α ' for which system of equations $x + y + z = 1$, $x + 2y + 4z = \alpha$ and $x + 4y + 10z = \alpha^2$ is consistent, are										
	(A) 1 (B) 3	(C) 2	(D) 0								
	[3 4 0]										
21.	Consider a matrix M = $\begin{bmatrix} 3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & K \end{bmatrix}$ and the fo										
	Statement (S_1): Inverse of M exists. Statement (S_2): $K \neq 0$,										
	Which of the following in respect of the above (A) S_1 implies S_2 , but S_2 does not imply S_1 . (C) Neither S_1 implies S_2 nor S_2 implies S_1 .	does not imply S ₂ .									
22.	The product of all the values of t, for which the system of equations $(a - t)x + by + cz = 0$, $bx + (c - t)y + az = 0$, $cx + ay + (b - t)z = 0$ has non-trivial solution, is										
	a -c -b a b c	a c b	a a+b b+c								
	(A)	(C) b a c c c b a	$\begin{array}{c cccc} (D) & b & b+c & c+a \\ c & c+a & a+b \end{array}$								
23.	Let A and B are square matrices of same order										
	equal to (A) 2^{2015} (A ³ + B ³) (B) 2^{2016} (A ² + B ²)	(C) 2^{2016} (A ³ + B ³)	(D) 2 ²⁰¹⁵ (A + B)								
	If p, q, r are in A.P. then value of determinant	$a^2 + 2^{n+1} + 2p$ $b^2 + 2^{n+2}$	$+3q c^2+p$								
24.	If p, q, r are in A.P. then value of determinant	$2^{n} + p$ $2^{n+1} + e^{-1}$	q 2q is								
	(A) 0 (C) $a^2b^2c^2 - 2^n$	(B) Independent from a, b, c (D) Independent from n									
	$x^2 - 5x + 3$ $2x - 5$ 3										
25.	If $\begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 - 6x + 9 & 14x - 6 & 21 \end{vmatrix} = ax^3 + bx^2 + cx$	x + d, then which of the fo	ollowing are correct?								
	(A) $a = 0$ (B) $b = 0$	(C) c = 0	(D) $d = 0$								
	a b c										
26.	If $\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$, then which of the following are correct?										
			c^2 2ac – b^2								
	(A) $\Delta^2 = \begin{vmatrix} bc - a^2 & ca - b^2 & ab - c^2 \\ ca - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ac - b^2 \end{vmatrix}$	(B) $\Delta^2 = 2ab - c^2$	b ² a ²								
	$ab-c^2$ $bc-a^2$ $ac-b^2$	b ² 2b	$c-a^2$ c^2								
		(D) $a + b + c = 0 \Rightarrow \Delta$									
27.		(C) 1 + $\sqrt{3}$	(D) $1 - \sqrt{3}$								
28.	If 'A' is a square matrix of odd order such that A (A) A is non-singular	(B) A is singular									
	(C) A cannot be skew symmetric	(D) $A^{-1} = -\frac{1}{2}(A + I)$									
29.	f the elements of a 2 × 2 matrix A are positive and distinct such that $ A + A^T ^T = 0$, then A) $ A \le 0$ (B) $ A > 0$ (C) $ A - A^T > 0$ (D) $ AA^T > 0$										
30.	If M = {A : A is a 3 × 3 matrix whose entries are	-1 and 1}, then	V / I = 1 = -								
	(A) A lies from -6 to 6 (C) n(M) = 2^9	(B) $ A \in \{-4, 0, 4\}$ (D) $n(M) = 3^9$									
	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005										

