

Please do not copy without permission. © ALX 2024.

The importance of numeric functions in SQL

Numeric functions are **built-in functions that operate on numeric data types** (such as integers, decimals, and floating points) and perform various **mathematical and statistical operations** on them.

Introduction to numeric functions in SQL

Aggregate numeric functions

- MIN()
- MAX()
- AVG()
- SUM()
- COUNT()

Scalar numeric functions

- ROUND()
- SQRT()
- LOG()

Scalar numeric functions are not limited to the above. These will be discussed in this section.

General Household Survey (GHS) dataset

Province	Y_2018	Y_2019	Y_2020	Y_2021	Y_2022
Eastern_cape	23612.117	24218.898	25785.763	27074.594	28049.845
Free_state	25974.478	27897.917	29459.302	30932.342	48532.912
Gauteng	31748.937	33112.344	34966.168	36715.740	38378.338
KwaZulu-Natal	26188.484	27496.383	29141.264	30598.355	31914.132
Limpopo	30140.911	31726.672	33502.167	35178.147	36820.465
Mpumalanga	27321.994	28283.472	29867.734	31360.122	32963.496
Northwest	25522.502	27621.283	29168.121	30626.714	32500.753
Northern_cape	27833.420	29288.380	30929.224	32475.897	33222.342
Western_cape	30164.275	31863.417	33647.873	35329.837	36919.034

This dataset shows the average monthly salaries of public servants obtained from 2018 to 2022 by province.

We will use it to illustrate different numeric functions.

Name: Salaries.ghs_db

The MIN() function

The MIN() function returns the **smallest or lowest value** of the selected column. Suppose we want to calculate the **lowest average monthly salary** made in the year 2020.

The MAX() function

The MAX() function returns the **largest or highest value** of the selected column. Suppose we want to calculate the **highest average monthly salary** made in the same year, 2020.

The AVG() function

The AVG() function returns the **average value** of the selected numeric column. Suppose we want to calculate the **average monthly salary** made in the year 2022.

The SUM() function

The SUM() function returns the **total sum** of a specified numeric column. Suppose we want to find the sum of monthly salaries made in the year 2019.

The COUNT() function

The COUNT() function returns the **number of rows** of a specified column. Suppose we want to know how many provinces were used in this dataset.

Query

SELECT

COUNT(Province) AS Number_of_provinces

FROM

Salaries.ghs_db;

Output

Number_of_provinces

9

Province
eastern_cape
free_state
gauteng
kwazulu_natal
limpopo
mpumalanga
northwest
northern_cape
western_cape

The COUNT(DISTINCT column) function

The COUNT(DISTINCT column) function returns the distinct or unique **number of rows** of a specified column. Suppose we want to know how many unique provinces were used in this dataset.

Query

SELECT

COUNT(DISTINCT Province) AS Number_of_provinces

FROM

Salaries.ghs_db;

Output

Number_of_provinces

9

The unique number of provinces is equal to the number we got from the previous example. This is because there are no duplicate provinces in the Provinces column.

The ROUND() function

The ROUND() function **rounds a numerical value to a specified number of decimal places**. The syntax is as follows:

The ROUND() function

Suppose we want to round the **average monthly salary** made in the year 2022 we calculated before to the nearest cent.

The SQRT() function

The SQRT() function returns **the square root of a numerical value**. The syntax is as follows:

```
SELECT SQRT( numerical value )

This clause specifies the numerical value to be square rooted.
```


The SQRT() function

The SQRT() function returns **the square root of a numerical value**. The syntax is as follows:

The LOG() function

The LOG(base, numerical) function returns the **logarithm of a numeric value with a specified base**. The syntax is as follows:

```
SELECT LOG( numerical_value, base );

This clause specifies the numerical value to be logged.

This clause specifies the base of the logarithm of the numerical value.
```


The LOG() function

Suppose we want to find the log of the average salaries and then round it to 2 decimal places.

