

Projekt 1 – Jacobi- und Gauß-Seidel-Verfahren

Sarah Lutteropp und Johannes Sailer

Gliederung

Aufgabenstellung

Mathematischer Hintergrund

Parallelisierung

Experimentelle Auswertung

Fazit

Aufgabenstellung

Approximation von Stoffkonzentrationen

$$-\Delta u(x,y) = f(x,y) \quad \forall (x,y) \in (0,1)^2$$
 (1)

$$u(x, y) = 0$$
 $\forall (x, y) \in [0, 1]^2 \setminus (0, 1)^2$ (2)

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Approximation von Stoffkonzentrationen

Approximation mit Methode der Finiten Differenzen

$$u_{i,j} = \frac{1}{4} * \left(u_{i,j-1} + u_{i-1,j} + u_{i,j+1} + u_{i+1,j} + h^2 f(x_i, y_j) \right)$$
$$-u_{i,j-1} - u_{i-1,j} + 4u_{i,j} - u_{i,j+1} - u_{i+1,j} = h^2 f(x_i, y_j)$$

Für
$$h = \frac{1}{3}$$

Für
$$h = \frac{1}{3}$$

Für $h = \frac{1}{3}$

Für
$$h = \frac{1}{3}$$

$$y = \begin{bmatrix} 1 \\ v_{0,3}^{*} & v_{1,3}^{*} & v_{2,3}^{*} & v_{3,3}^{*} \\ v_{0,2}^{*} & v_{1,2}^{*} & v_{2,2}^{*} & v_{3,2}^{*} \\ v_{0,1}^{*} & v_{1,1}^{*} & v_{2,1}^{*} & v_{3,1}^{*} \\ 0 \\ v_{0,0}^{*} & v_{1,0}^{*} & v_{2,0}^{*} & v_{3,0}^{*} \\ \hline 0 & \chi & 1 \end{bmatrix}$$

$$-u_{i,j-1}-u_{i-1,j}+4u_{i,j}-u_{i,j+1}-u_{i+1,j}=h^2f(x_i,y_j)$$

$$\begin{pmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{pmatrix} * \begin{pmatrix} u_{1,1} \\ u_{1,2} \\ u_{2,1} \\ u_{2,2} \end{pmatrix} = \left(\frac{1}{3}\right)^2 * \begin{pmatrix} f(1/3, 1/3) \\ f(1/3, 2/3) \\ f(2/3, 1/3) \\ f(2/3, 2/3) \end{pmatrix}$$

 \Rightarrow Löse Au = b

Warum nicht einfach gaußen?

Das Gaußsche Eliminationsverfahren ist ...

- anfällig für Rechenfehler
- schlecht parallelisierbar
- langsam für viele Unbekannte
- schlechte Wahl bei dünn besetzter Matrix

Im Folgenden: Iterative Verfahren!

Herleitung der Verfahren

$$Au = b$$

$$\Leftrightarrow (D + L + R)u = b \Leftrightarrow \dots$$

- Jacobi-Verfahren: $u^{(k)} = D^{-1} \left(b (L+R)u^{(k-1)} \right)$
- Gauß-Seidel-Verfahren: $u^{(k)} = D^{-1} \left(b Lu^{(k)} Ru^{(k-1)} \right)$

Herleitung der Verfahren

Jacobi-Verfahren:

$$u_i^{(k)} = \frac{1}{a_{ii}} * \left(b_i - \sum_{j \neq i} a_{ij} u_j^{(k-1)} \right) \quad \forall i = 1, \dots, n^2$$

Gauß-Seidel-Verfahren:

$$u_i^{(k)} = \frac{1}{a_{ii}} * \left(b_i - \sum_{i=1}^{i-1} a_{ij} u_j^{(k)} - \sum_{i=i+1}^{n^2} a_{ij} * u_j^{(k-1)} \right) \quad \forall i = 1, \dots, n^2$$

Unsere Lösungsmatrix U

Für
$$h = \frac{1}{3}$$

Betrachte statt

$$u = \begin{pmatrix} u_{1,1} \\ u_{1,2} \\ u_{2,1} \\ u_{2,2} \end{pmatrix} \qquad U = \begin{pmatrix} u_{0,0} & u_{1,0} & u_{2,0} & u_{3,0} \\ u_{0,1} & u_{1,1} & u_{2,1} & u_{3,1} \\ u_{0,2} & u_{1,2} & u_{2,2} & u_{3,2} \\ u_{0,3} & u_{1,3} & u_{2,3} & u_{3,3} \end{pmatrix}$$

(Die Randeinträge sind hierbei 0)

Vorteil

- Jeder Eintrag in U entspricht einem Punkt im Gitter
- Parallelisierung intuitiver

Unser Abbruchkriterium

$$rac{\sum_{i,j}|u_{i,j}^{(k)}-u_{i,j}^{(k-1)}|}{\mathit{size}*\mathit{size}} \leq \mathtt{TOL}$$

Vorteile

- Sprunglos
- Implementierung mit #pragma omp reduce

Nachteile

 Maximum der Differenzen wäre exakter

Unser Abbruchkriterium

Beide Verfahren konvergieren.

Parallele Ansätze – Jacobi-Verfahren

Keine Abhängigkeiten innerhalb einer Iteration

```
#pragma omp parallel for private(j, i) reduction(+:diff) collapse(2)
for (j = 1; j < size - 1; j++)
    for (i = 1; i < size - 1; i++)
        a1[CO(i,j)] = a0[CO(i, j - 1)]
                      + a0[CO(i - 1, i)]
                      + a0[CO(i, j + 1)]
                      + a0[CO(i + 1, i)]
                      + functionTable[CO(i, j)];
        a1[CO(i,i)] *= 0.25;
        diff += fabsf(a1[CO(i,j)] - a0[CO(i,j)]);
```

15

Parallele Ansätze – Jacobi-Verfahren

Zusätzliche Optimierung: SSE-Vektorinstruktionen

Parallele Ansätze – Gauß-Seidel-Wavefront

Abhängigkeiten innerhalb einer Iteration:

$$u_{i,j}^{(k+1)} = \frac{1}{4}u_{i,j-1}^{(k+1)} + u_{i-1,j}^{(k+1)} + u_{i,j+1}^{(k)} + u_{i+1,j}^{(k)} + h^2f(x_i, y_j)$$

1. Möglichkeit: Wavefront

Parallele Ansätze – Gauß-Seidel-Wavefront

Nachteile Wavefront

Schlecht für Cache

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

0			
4	1		
8	5	2	
12	9	6	3
13	10	- 7	
14	11		
15			

- Aufwändige Berechnung der Indizes
- Geringe Parallelität bei kleinen Diagonalen
- Allgemein großer Overhead

Zweite Möglichkeit: Rot-Schwarz-Iteration

Färben der Matrixeinträge nach folgendem Schema:

- 1. Berechnen aller roten Einträge
- 2. Berechnen aller schwarzen Einträge

Optimierung: Rot-Matrix und Schwarz-Matrix separat

- Cache-Effizienz
- Sehr einfache Berechnung der Indizes
- Beschleunigung mit SSE-Vektorinstruktionen

Berechnung der Indizes, *size* ungerade für *size* = 7

21

Berechnung der Indizes, size gerade für size = 6

Loop-Unrolling vermeidet Modulo-Operation!

Auswertung ohne Abbruchkriterium

Für size = 1024 mit 4 Threads

	G	CC	ICC		
	Laufzeit	Speedup	Laufzeit	Speedup	
Jacobi sequentiell	70,5 s	-	72 s	-	
Jacobi	19 s	3,71	125 s	0,58	
Jacobi SSE	10,6 s	6,65	9,4 s	7,66	
Gauß-Seidel sequentiell	135 s	-	135 s	-	
Gauß-Seidel naiv	32,1 s	4,21	125 s	1,08	
Gauß-Seidel Rot-Schwarz	16,3 s	8,28	13 s	10,38	
Gauß-Seidel Rot-Schwarz SSE	13,4 s	10,07	12 s	11,25	
Gauß-Seidel Wave- front	98 s	1,38	116 s	1,16	
Gauß-Seidel Wave- front Cache	77 s	1,75	94 s	1,44	

Für *size* = 128

	1 Thread		4 Threads		8 Threads	
	Laufzeit	Speedup	Laufzeit	Speedup	Laufzeit	Speedup
Jacobi sequentiell	2,15 s	-	2,15 s	-	2,15 s	-
Jacobi	4 s	0,538	1,1 s	1,955	0,73 s	2,945
Jacobi SSE	2,15 s	1	0,67 s	3,209	0,550 s	3,909
Gauß-Seidel sequentiell	3,2 s	-	3,2 s	-	3,2 s	-
Gauß-Seidel naiv	3,2 s	1	0,9 s	3,556	3,55 s	5,818
Gauß-Seidel Rot-Schwarz	1,64 s	1,951	0,5 s	6,4	0,41 s	7,805
Gauß-Seidel Rot-Schwarz SSE	1,354 s	2,363	0,44 s	7,273	0,4 s	8
Gauß-Seidel Wave- front	2,6 s	1,231	11,5 s	0,278	22 s	0,145
Gauß-Seidel Wave- front Cache	2,47 s	1,296	12,5 s	0,256	27 s	0,119

Laufzeiten für size = 257

- → GS Rot-Schwarz OpenMP

17.02.2016

- → GS Rot-Schwarz OpenMP --- GS Rot-Schwarz OpenMP SSE

Jacobi-Verfahren für size = 257

	1 Thread		4 Threads		8 Threads	
	Laufzeit	Speedup	Laufzeit	Speedup	Laufzeit	Speedup
Sequentiell	25,765 s	-	24,8 s	-	26,605 s	-
OpenMP	43,427 s	0,593	10,714 s	2,315	6,867 s	3,874
OpenMP + SSE	22,424 s	1,149	5,655 s	4,385	3,593 s	7,405

Gauß-Seidel-Verfahren für size = 257

	1 Thread		4 Threads		8 Threads	
	Laufzeit	Speedup	Laufzeit	Speedup	Laufzeit	Speedup
Sequentiell	15,179 s	-	14,963 s	-	15,036 s	-
Rot-Schwarz OpenMP	7,371 s	2,059	1,973 s	7,584	1,118 s	13,449
Rot-Schwarz OpenMP + SSE	4,303 s	3,528	1,196 s	12,511	0,782 s	19,228

Fazit

- Jacobi leichter zu parallelisieren
- Gauß-Seidel konvergiert doppelt so schnell
- Rot-Schwarz-Iteration liefert den besten Speedup
- Vektorisierung lohnt sich