Analyzing categorical data

Chapter 13 of Rice

07/20/2021

In the previous lecture,

If F=G, every assignment of ranks to the pooled observations is <u>equally likely</u>,

Comparing two independent samples:

- Under Normal assumption, we can use *t* test.
- Without any distributional assumption, use Mann-Whitney test: $U_1 = mn + \frac{n(n+1)}{2} R_1$

$$egin{aligned} U_1 &= mn + rac{n(n+1)}{2} - R_1 \ U_2 &= mn + rac{m(m+1)}{2} - R_2 \end{aligned}$$

U statistic is $U=\min\{U_1, U_2\}$, and rejection region is $R=\{U \le c\}$.

Comparing paired samples:

• Under Normal assumption, we can use *t* test.

$$\mathrm{Under}\ H_0,\, T(\mathbf{X}_n) = rac{ar{D}_n}{\sqrt{rac{1}{n}S_D^2}} \sim t_{n-1}.$$

Without any distributional assumption, use <u>Wilcoxon ranked sum test</u>:

$$W_+=$$
 positive rank sum, $W_-=$ negative rank sum, ${
m R}\ =\{W_+\leq c\ {
m or}\ W_-\leq c\}\ {
m for\ two-sided\ hypothesis}.$

wilcox.test(x,y, paired=TRUE)

Randomly sort the cups and serve to Bristol, and let her choose 4 that were prepared by the second method.

He = Bristol does not know how to choose the cups prepared by the 2nd method,

4 prepared by first pouring the tea, then adding milk

4 prepared by first pouring the milk, then adding tea

$$\binom{8}{4} = 70 \text{ combinations}$$

 H_0 : Bristol has no skills in determining the order.

Hypergeometric distribution:

$$P(X=k) = rac{inom{n}{k}inom{m}{r-k}}{inom{n+m}{r}}, \ k=0, \ \ldots, \ r.$$

she has correct skill

She has a skill resulting in totally Bristol correctly selected out all 4 cups of

the second method.

$$p ext{-value} = P(ext{count} \geq 4 \,|\, H_0) \,+ P(ext{count} \leq 0 \,|\, H_0) = rac{2}{70} pprox 0.028.$$

< 0.05

Binomial distribution

- n coin flips
 n captures the fairness of t
- p captures the fairness of the coin

$$P(Y=k)=inom{n}{k}p^k(1-p)^{n-k}$$
 number of weads

Multinomial distribution

n tosses

 p_i is the probability that i comes up

$$P(Y_1=k_1,\ldots,Y_6=k_6)=rac{n!}{k_1!\cdots k_6!}p_1^{k_1}\cdots p_6^{k_6}, ext{ with } k_1+\cdots+k_6=n.$$
 with k_1

9.5 of Rice

07/20/2021

Example 1. Let $\theta=(p_1,\ldots,p_6)$, and X_1,\ldots,X_n are the results of n tosses. Consider testing $H_0:p_1=p_2,\ p_3=p_4=p_5=p_6$ versus $H_1:H_0$ is not true.

Solution. Denote
$$Y_{j} = \#$$
 of observations equal to j .

We know that $(Y_{1}, \dots Y_{6})$ ~ multinomial $(P_{1}, \dots P_{6})$

L($P_{1}, \dots P_{6}$) $Y_{1}, \dots Y_{6}$) = $\frac{n!}{Y_{1}! \dots Y_{6}!}$ $P_{1}! \dots P_{6}!$
 $P_{1} = P_{2}, P_{3} = P_{4} = P_{5} = P_{6}, P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{4} = P_{5} = P_{6}, P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{4} = P_{5} = P_{6}, P_{6}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2}, P_{3} = P_{1}! \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{1} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{1} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{2} \dots P_{6}!$
 $P_{n} = \{P_{1} = P_{1} \dots P_{6}!$
 $P_{n} = \{P_{1} = P$

Sup $L(P_1, --P_6) = Sup \frac{n!}{P_1 \cdot P_5} = Sup \frac{n!}{P_1 \cdot P_5} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_2}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_2}{lenote} = \frac{r_1}{lenote} = \frac{r_1}{lenote} = \frac{r_2}{lenote} = \frac{r_1}{lenote} = \frac{r_1}$

Solution contid. Take the derivatives with respect to
$$P_1$$
, $-P_5$:

$$\frac{\partial l_0}{\partial P_1} = \frac{\gamma_5}{P_1} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{1 - P_1 - - P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5} - \frac{\gamma_6}{P_5} = 0$$

$$\frac{\partial l_0}{\partial P_5} = \frac{\gamma_5}{P_5}$$

 $2 \stackrel{b}{=} \log \left(\frac{\widehat{p_i}}{\widehat{p_i}} \right)^{\widehat{r_i}} = 2 \stackrel{b}{=} \widehat{r_i} \log \frac{\widehat{p_i}}{\widehat{p_i}}$

$$\hat{\gamma}_{i} + \dots + \hat{\gamma}_{6} = n$$

$$\hat{\rho}_{i} = \frac{\hat{\gamma}_{i}}{\hat{\gamma}_{i} + \dots + \hat{\gamma}_{6}} = \frac{\hat{\gamma}_{i}}{n}$$

$$\Rightarrow n\hat{\rho}_{i} = \hat{\gamma}_{i} = 0;$$
observed count
$$\hat{\rho}_{i} = \frac{\hat{\gamma}_{i} + \dots + \hat{\gamma}_{6}}{n} = \hat{\gamma}_{i} + \dots + \hat{\gamma}_{6}$$

$$\Rightarrow n\hat{\rho}_{i} = \frac{\hat{\gamma}_{i} + \hat{\gamma}_{2}}{n} = E_{i} \quad \text{under Ho}$$

E, = E2 , E3 = - = E6

 $-2\log \lambda(8n) = 2\frac{5}{12} \text{ filling } \frac{\widehat{P_i}}{\widehat{P_i}} = 2\frac{5}{12} \text{ filling } \frac{\widehat{N_i}}{\widehat{N_i}} = 2\frac{5}{12} \text{ Oilling } \frac{\widehat{O_i}}{\widehat{E_i}}$

$$\lambda$$

Example 2. Let $\theta=(p_1,\ldots,p_4)$, and X_1,\ldots,X_n are the outcomes of n experiments. Consider testing $H_0: p_1=2\theta, p_2=\theta, p_3=3\theta, p_4=1-6\theta$ versus $H_1: H_0$ is not true. in which $\theta\in(0,1/6)$.

Solution. Denote
$$Y_{j} = \#$$
 of observations equal to j .

$$L(P_{1}, -P_{4}|Y_{1}, -Y_{4}) = \frac{n!}{Y_{1}! - Y_{4}!} P_{1}^{Y_{1}} - P_{4}^{Y_{4}}$$

$$\bigoplus_{0} = \begin{cases} P_{1} = \mathcal{W}, P_{2} = \theta, R = 3\theta, P_{4} = 1 - b\theta \end{cases}$$

$$\bigoplus_{0} = \begin{cases} P_{1} = \mathcal{W}, P_{2} = \theta, R = 3\theta, P_{4} = 1 - b\theta \end{cases}$$

$$\bigoplus_{0} = \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{0} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{0} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} \bigoplus_{1} U \bigoplus_{1} = \begin{cases} P_{1} = 1 \end{cases}$$

$$\lim_{0} U \bigoplus_{1} U \bigoplus_{1}$$

11

$$\frac{\partial l_0}{\partial \theta} = \frac{\Upsilon_1 + \Upsilon_2 + \Upsilon_3}{\theta} - b \frac{\Upsilon_4}{1 - 6\theta} = 0 \qquad \Rightarrow \hat{\theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} \leftarrow \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Upsilon_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{1}{1 - 6\theta}$$

$$\frac{\partial l_0}{\partial \theta} = \frac{(\Upsilon_1 + \Gamma_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Upsilon_1 + \Gamma_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Upsilon_1 + \Gamma_2 + \Upsilon_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Upsilon_1 + \Gamma_2 + \Gamma_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Gamma_1 + \Gamma_2 + \Gamma_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Gamma_1 + \Gamma_2 + \Gamma_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{(\Gamma_1 + \Gamma_3)/6}{(3\hat{\theta})^{\Upsilon_3}} + \frac{($$

Ei = n Pila)

(0(0) = log (00) = (Y, +Y2 + Y3) log (0) + (4 log (1-60)

Theorem A. Let X_1, \ldots, X_n be the results of n experiments. Each experiment has m possible outcomes. Consider testing

$$H_0: (p_1, \ldots, p_m) = (p_1(\theta), \ldots, p_m(\theta))$$
 versus $H_1: H_0$ is not true.

Then the likelihood ratio under the null hypothesis satisfies

$$-2\log\lambda(\mathbf{X}_n) = 2\sum_{i=1}^m O_i\lograc{O_i}{E_i} \stackrel{d}{ o} \chi^2_{m-\mathbf{Z}}, ext{ as } n o\infty.$$

$$O_j = \#$$
 of observations equal to j .

$$\hat{\theta} = \text{the MLE in } H_0.$$

$$E_i = np_i \Big(\hat{ heta} \Big)$$

$$\Theta = \left\{ \frac{\pi}{2} p_i = 1 \right\} \quad \text{den } \Theta = m-1$$

Corollary A. Let X_1, \ldots, X_n be the results of n experiments. Each experiment has m possible outcomes. Consider testing

$$H_0: (p_1, \ldots, p_m) = (p_1(\theta), \ldots, p_m(\theta))$$
 versus $H_1: H_0$ is not true.

Then the likelihood ratio under the null hypothesis satisfies $\rightarrow \chi^2$ Statistic

$$2\sum_{i=1}^{m}0$$
i log $\frac{0}{E_{i}}$ $\approx \sum_{i=1}^{m}\frac{\left(O_{i}-E_{i}
ight)^{2}}{E_{i}}$ $\stackrel{d}{ o}\chi_{m-2}^{2}$, as $n o\infty$.

$$O_{j} = \# \text{ of observations equal to } j. \qquad f(x) = \chi \log \frac{\chi}{\chi_{0}} \qquad f'(x) = l + \log \frac{\chi}{\chi_{0}} \qquad f''(x) = \frac{1}{\chi}$$

$$\hat{\theta} = \text{ the MLE in } H_{0}. \qquad f'(x) - f(x_{0}) \approx \frac{f'(\chi_{0})}{1} (\chi - \chi_{0}) + \frac{f''(\chi_{0})}{2} (\chi - \chi_{0})^{2}$$

$$E_{i} = np_{i}(\hat{\theta}) \qquad \Rightarrow f(0_{i}) - f(E_{i}) \approx (0_{i} - E_{i}) + \frac{1}{2E_{i}} (0_{i} - E_{i})^{2}$$

$$= h \sum_{i=1}^{m} p_{i}(\hat{\theta}) = l \qquad \Rightarrow 2\sum_{i=1}^{m} 0_{i} \log \frac{0_{i}}{E_{i}} \approx 2\sum_{i=1}^{m} (0_{i} - E_{i}) + 2\sum_{i=1}^{m} \frac{(0_{i} - E_{i})^{2}}{2E_{i}} \approx 2\sum_{i=1}^{m} \frac{(0_{i} - E_{i})^{2}}{2E_{i$$

0, 1, n, w all integers

Example 3. Researcher observed the number of emissions of α particles in many 10-sec intervals. If we fit the data using a Poisson(λ) model, what is the best parameter estimate for λ ? How good is the model assumption? Are the observations really Poisson distributed?

n	Observed	_	Average count $\overline{X}_n = 8.392$. $\widehat{\lambda}_n \in \overline{X}_n$
0-2	18	$ \frac{e^{-\lambda}\left(\frac{\lambda^0}{0!} + \frac{\lambda^1}{1!} + \frac{\lambda^2}{2!}\right)}{e^{-\lambda}\frac{\lambda^3}{3!}} \leftarrow \mathcal{P}_{\iota(\lambda)} $	Ho = Obs subject to Poisson(2) vs. HI= Ho
$\sim \frac{1}{3}$	28	$e^{-\lambda \frac{\lambda^3}{3!}} \leftarrow p_{\iota(\lambda)}$	Not
4	56		(P1,P16) = (P11), P164)
4 5	105	$e^{-\frac{\lambda}{4!}} \qquad P_{1}(\lambda)$	
6	126	/	$2\frac{16}{11} \text{ Oilog} \frac{\text{Oi}}{\text{Ei}} \frac{d}{d} \chi_{m-2}^2 = \chi_{14}^2$
7	146	•	$2 = 0; \log \frac{0}{5} \qquad \chi_{m-2} = \chi_{14}$
8	164	•	$\frac{2}{15} \left(\frac{1}{15} \right) \left(\frac{1}{15} \right) = \frac{1}{15} \left(\frac{1}{15} \right) = $
9	161		•
10	123		0i = in the table
11	101		•
12	74		1 0 (\$\frac{1}{2}\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13	53		$E_i = NP_i(\hat{\lambda}) = NP_i(X_n)$
14	23		, , , , , , , , , , , , , , , , , , , ,
15	15) \16	
16	9	$e^{-\lambda \frac{\lambda^{-1}}{16!}}$	
17+	5	$1 - e^{-\lambda} \left(\frac{\lambda^0}{0!} + \dots + \frac{\lambda^{16}}{16!} \right)$	

= pchisq (8.70854, Of=14 lower.tail **Example 3**. Researcher observed the number of emissions of α particles in many 10-sec intervals. If we fit the data using a Poisson(λ) model, what is the best parameter estimate for λ ? = 0.84926

How good is the model assumption? Are the observations really Poisson distributed?

n	Observed	$\sum_{\hat{y} \in \hat{y}^0 = \hat{y}^1 = \hat{y}^2} $ Expected
0–2	18	$Ne^{-\hat{\lambda}}\left(\frac{\hat{\lambda}^0}{0!} + \frac{\hat{\lambda}^1}{1!} + \frac{\hat{\lambda}^2}{2!}\right)$ $Ne^{-\hat{\lambda}}\frac{\hat{\lambda}^3}{3!}$ $ne^{-\hat{\lambda}}\frac{\hat{\lambda}^4}{4!}$ $Pe^{-\hat{\lambda}}\frac{\hat{\lambda}^4}{4!}$ $Pe^{-\hat{\lambda}}\frac{\hat{\lambda}^4}{4!}$ $Pe^{-\hat{\lambda}}\frac{\hat{\lambda}^4}{4!}$ $Pe^{-\hat{\lambda}}\frac{\hat{\lambda}^4}{4!}$
3	28	$ \mathcal{N} e^{-\hat{\lambda} \frac{\hat{\lambda}^3}{2!}} \longrightarrow 27.0 $
4	56	$\sim -\hat{\lambda} \hat{\lambda}^4 \longrightarrow 56.5$
5	105	10^{-10} 94.9
6	126	132.7
7	146	159.1
8	164	166.9
9	161	155.6
10	123	130.6
11	101	99.7
12	74	69.7
13	53	45.0
14	23	27.0
15	15	15.1
16		
17+	5	

Average count $\bar{X}_n = 8.392$.

 H_0 : Observations are Poisson distributed.

p-value = p(-21g/18n) > 8-70854

$$P = \begin{cases} -2\log \lambda(\mathbf{X}_n) = 2\sum_{i=1}^m O_i \log \frac{O_i}{E_i} = 8.70854. \end{cases}$$

$$P = \begin{cases} -2\log \lambda(\mathcal{S}_n) > \chi^2_{14}(\mathcal{A}) \end{cases}$$

$$Q \text{ whis } Q \text{ (a), df} = 14,$$

$$|Q \text{ wher } + \text{ (a)}| = FALS$$

$$= 23 \text{ when}$$

We fail to reject to => Poisson (1)

d=0.05

vs. H1: Ho is not true.

Example 4. If the gene frequencies are in equilibrium, the genotypes AA, Aa, aa occur in the population with probability θ^2 , $2\theta(1-\theta)$, $(1-\theta)^2$, according to the Hardy-Weinberg equilibrium model. ρ -value = ρ chisq H_0 : HW model is true. versus H_1 : HW model is not true.

We observed the phenotypes:

AA Aa aa
$$342 \quad 500 \quad 187$$

$$N(\hat{\theta}^{2}) \quad N(2\hat{\theta}(1-\hat{\theta})) \quad N(1-\hat{\theta})^{2} \leq \frac{1}{11}$$

$$N \hat{\theta}^{2} = N \cdot 2 \hat{\theta} (l - \hat{\theta}) + N (l - \hat{\theta})^{2} = SW + L (P_{1}, P_{2}, P_{3} | l + 0) = SW + \frac{N!}{||\cdot|| ||\cdot|| ||\cdot||}$$

$$= SW + \frac{N!}{||\cdot|| ||\cdot||}$$

$$= SW + \frac{N!}{||\cdot||}$$

$$= SW + \frac{N!}{||$$

We fail to reject Ho

$$\left(\theta^{2}\right)^{\gamma_{1}}\left(2\theta\left(1-\theta\right)^{\gamma_{2}}\right)$$

- 1. The population is a categorical variable so that the grouped cells subject to a multinomial distribution;
- 2. Tickets in each cell are independent;
- 3. Large sample size n so that no more than 20% of expected counts less than 5

Fisher's exact test

13.2 of Rice

07/20/2021

Example 5. During phase 3 trial, some vaccine recipients were asked to complete diaries of their symptoms during the 7 days after vaccination.

	Pfizer / BNT162b2	Placebo
Fever ≥ 38.0°C	331	10
No fever	1,767	2,093
Total	2,098	2,103

^{*} Systemic reactions in persons aged 18-55 years

Are occurrences of fever related to the vaccine/placebo treatment?

Could randomization result in such an imbalance?

 H_0 : There is no relation. Any imbalance is due to randomization.

Example 5. During phase 3 trial, some vaccine recipients were asked to complete diaries of their symptoms during the 7 days after vaccination.

	Treatment	Control		
Symptom	n_{11}	(n_{12})	$n_{1.}$	<
No symptom	n ₂₁	n ₂₂	$n_{2.}$	ح
	$n_{.1}$	(n _{.2})	n	

 H_0 : There is no relation. Any imbalance is due to randomization.

Hypergeometric distribution:

$$P(N_{11} = n_{11} | H_0) = rac{inom{n_{.1}}{n_{11}}inom{n_{.2}}{n_{1.}-n_{11}}}{inom{n_{.2}}{n_{1.}}}$$

$$P = \begin{cases} N_1 \leq C_1 & \text{or} \\ N_1 \geq C_2 \end{cases}$$

 H_0 : Bristol has no skills in determining the order.

	Milk first	Tea first		
Milk first	4	0	(4)	
Tea first	0	4	(4)	
	(4)	(4)	8	
	1	T		-

Hypergeometric distribution:

$$P(\underbrace{N_{11} = n_{11}}_{} | \, H_0) = \frac{\binom{4}{n_{11}}\binom{4}{4-n_{11}}}{\binom{8}{4}}$$

$$P\left(\begin{array}{c}N_{11} \leq 0 \quad \text{or} \quad N_{11} \geq 4 \mid H_{0}\right) = 1.014 \\ + 0.014 \\ \end{array}\right)$$

Example 6. A group of supervisors each examined a personnel file to decide whether to promote the employee or not. The files are identical except for the gender label.

 H_0 : There is no gender bias. Any imbalance is due to randomization.

	Male	Female	
Promote	21	14	35
Hold file	3	10	13
	24	24	

^{*} From 13.2 of Rice

Hypergeometric distribution:

$$P(N_{11}=n_{11}\,|\,H_0)=rac{inom{24}{n_{11}}inom{24}{35-n_{11}}}{inom{24+24}{35}}$$

dhyper(n11, m=24, n=24, k=35)

p-value = 2*phyper(21-1, m=24, n=24, k=35,
lower.tail = FALSE)

[1] 0.04899141

Example 5 *cont'd*. During phase 3 trial, some vaccine recipients were asked to complete diaries of their symptoms during the 7 days after vaccination.

 H_0 : There is no relation. Any imbalance is due to randomization.

	Pfizer / BNT162b2	Placebo	
Fever ≥ 38.0°C	331	10	341
No fever	1,767	2,093	3860
	2,098	2,103	

^{*} Systemic reactions in persons aged 18-55 years

Hypergeometric distribution:

$$P(N_{11}=n_{11}\,|\,H_0)=rac{inom{2098}{n_{11}}inom{2103}{341-n_{11}}}{inom{2098+2103}{341}}$$

dhyper(n11, m=2098, n=2103, k=341)

Benefits of more trials and repeated tests ⇒ More significant results

[1] 2.54884Ze-90

Example 7. Phase 3 trial was a large, randomized, double-blind, placebo-controlled clinical trial:

 H_0 : Infection rate is not related to vaccine/placebo treatment. \leftrightarrow H_1 : It is related.

	Pfizer / BNT162b2	Placebo	
SARS-CoV-2 infected	9	169	178
No infection	21,711	21,559	43,439
	21,720	21,728	

Hypergeometric distribution:

$$P(N_{11} = n_{11} \, | \, H_0) = rac{inom{21720}{n_{11}}inom{21728}{178-n_{11}}}{inom{21720+21728}{178}}$$

* Age ≥ 16, infections observed with onset at least 7 days after the second dose.

dhyper(n11, m=21720, n=21728, k=178)

p-value = 2*phyper(9, m=21720, n=21728, k=178, lower.tail = TRUE)

[1] 1.702187e-39

Example 7 *cont'd*. Phase 3 trial was a large, randomized, double-blind, placebo-controlled clinical trial:

 H_0 : Infection rate is not related to vaccine/placebo treatment. $\leftrightarrow H_1$: Infection rate is lower in the vaccine group.

	Pfizer / BNT162b2	Placebo	
SARS-CoV-2 infected	9	169	178
No infection	21,711	21,559	43,439
	21,720	21,728	

Hypergeometric distribution:

$$P(N_{11} = n_{11} \, | \, H_0) = rac{inom{21720}{n_{11}}inom{21728}{178-n_{11}}}{inom{21720+21728}{178}}$$

dhyper(n11, m=21720, n=21728, k=178)

^{*} Age ≥ 16, infections observed with onset at least 7 days after the second dose

Tomorrow ...

$I \times J$ table

- Chi-squared test of homogeneity
- Chi-squared test of independence