```
Bài 2
```

2.1 Đổi tiền

- + Bài toán yêu cầu số tờ tiền là ít nhất (tối ưu).
- + Ta xây dựng hàm F(M) để tính số lượng tờ tiền ít nhất tạo thành M đơn vị tiền :

$$F(0)=0$$

 $F(d) = 1 \text{ n\'eu} \quad d \in D$

 $F(M) = min(F(M-d)+1) \text{ v\'et} d \in D$

+ QHĐ:

F[j] là bảng phương án tính số lượng tờ tiền ít nhất tạo thành j
 đơn vị tiền :

Cơ sở QHĐ:

 $F[d] = 1 \text{ v\'eti} \quad d \in D$

Công thức tính : F[j] = min(F[j], F[j-d]+1) với $d \in D$

Kết quả F[M] (= 0 nếu không thể tạo thành M đơn vị tiền)

+ Độ phức tạp O(M*N)

2.2 Bố trí phòng họp

+ Sắp xếp lại mảng lịch trình, đưa bài toán về dạng bài dãy con tăng dài nhất ta thấy

F[j] là số cuộc họp sẽ được phục vụ nếu cuộc họp cuối bắt đầu lúc a_j và kết thúc lúc b_j .

Cơ sở QHĐ: $F[j] = 1 \quad \forall j \in [1, N]$

 $F[j] = min(F[j], F[i]+1) n\text{\'e}u \quad a_i \leq b_i \leq a_i \leq b_i \quad v\text{\'e}i \quad i \in [1, j]$

Bài 3

3.2 BANHCHUNG

- + Tham khảo: http://ntucoder.net/Problem/Details/5518
- + Phát biểu lại bài toán:

Cho N giá trị nguyên dương A_i , tìm tổng lớn nhất $S \le M$ với S là tổng của 1 tổ hợp bất kỳ trong A và M là giá trị nguyên dương cho trước.

- + Dễ thấy đây là 1 bài toán QHĐ tìm cách tạo thành 1 tổng M. Tuy nhiên bài toán này chỉ cho phép sử dụng 1 lần A_i mỗi loại nên cần thay đổi lại cách cài đặt sao cho mỗi giá trị A_i chỉ xuất được sử dụng tối đa 1 lần với mỗi tổng được tạo thành.
- + Độ phức tạp O(NM)