Introduction to Association Rules: Concept & the Apriori Algorithm

Dr. Vassilis S. Kontogiannis

Reader in Computational Intelligence

Email: V.Kodogiannis@westminster.ac.uk

https://scholar.google.co.uk/citations?user=meTTcLAAAAAJ&hl=en&oi=ao

Overview

- What is association rule mining?
- Frequent itemsets, support, and confidence
- Mining association rules
- The "Apriori" algorithm
- Rule generation

Question of the lecture

How can we mine interesting patterns and useful rules from data?

Motivational Example

You run an on-line store, and want to increase sales. You decide on **associative advertising**: show ads of relevant products **before** your users search for these

Easy, knowing the left-hand side. What if we don't?

Used in many recommender systems

Bound Away Last Train Home

Share your own customer images

List Price: \$16.98

Price: \$16.98 and eligible for FREE Super Saver Shipping on orders over \$25. See details.

Availability: Usually ships within 24 hours

Want it delivered Tomorrow? Order it in the next 4 hours and 9 minutes, and choose One-Day S checkout. See details.

41 used & new from \$6.99

See more product details

Based on customer purchases, this is the #82 Early Adopter Product in Alternative Rock.

801×612

Buy this title for only \$.01 when you get a new Amazon Visa® Card

Apply now and if you're approved instantly, save \$30 off your first purchase, earn 3% rewards, get a 0% APR,* and pay no

Amazon Visa discount: \$30.00 Find out how
Applied to this item:- \$16.97
Discount remaining: \$13.03 (Don't show again)

Customers who bought this title also bought:

- <u>Time and Water</u> ~ Last Train Home (♥ Why?)
- Cold Roses ~ Ryan Adams & the Cardinals (♥why?)
- Tambourine ~ Tift Merritt (♥ Why?)
- Last Train Home ~ Last Train Home (♥ why?)
- True North ~ Last Train Home (♥ why?)
- Universal United House of Prayer ~ Buddy Miller (♥ why?)
- Wicked Twisted Road [ENHANCED] ~ Reckless Kelly (♥ Why?)
- Hacienda Brothers ~ Hacienda Brothers (♥ why?)

Applications

- Market Basket Analysis: given a database of customer transactions, where each transaction is a set of items the goal is to find groups of items which are frequently purchased together.
- **Telecommunication** (each customer is a transaction containing the set of phone calls)
- Credit Cards/ Banking Services (each card/account is a transaction containing the set of customer's payments)
- Medical Treatments (each patient is represented as a transaction containing the ordered set of diseases)
- Basketball-Game Analysis (each game is represented as a transaction containing the ordered set of ball passes)

Market Basket Analysis

• Analysis of customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"

Market Basket Analysis

- Retail each customer purchases different set of products, different quantities, different times
- MBA uses this information to:
 - Identify who customers are (not by name)
 - Understand why they make certain purchases
 - Gain insight about its merchandise (products):
 - > Fast and slow movers
 - Products which are purchased together
 - Products which might benefit from promotion
 - Take action:
 - > Store layouts
 - Which products to put on specials, promote, coupons...
- Combining all of this with a customer loyalty card it becomes even more valuable

Example of market-basket transactions

What is association mining?

Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

Extract information on purchasing behaviour

"IF buys beer and sausage, THEN also buy mustard with high probability"

Useful:

"On Thursdays, grocery store consumers often purchase diapers and beer together."

Trivial:

"Customers who purchase maintenance agreements are very likely to purchase large appliances."

What is association rule mining?

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples $\{bread\} \Rightarrow \{milk\}$

 $\{soda\} \Rightarrow \{chips\}$ $\{bread\} \Rightarrow \{jam\}$

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Measures for Association Rules - I

Rule Evaluation Metrics

Support (s): Fraction of transactions that contain both X and Y

or

$$P(X \cup Y) = \frac{\# trans \ containing \ (X \cup Y)}{\# trans \ in \ D}$$

$$Support(A) = \frac{\text{number of transaction which contain A}}{\text{number of all transaction}}$$

Support calculates how often the product is purchased.

Confidence (c): Measures how often items in Y appear in transactions that contain X

$$P(X \mid Y) = \frac{\#trans\ containing\ (X \cup Y)}{\#trans\ containing\ X}$$

or

$$Confidence(A \to B) = \frac{Support(A \text{ and } B)}{Support(A)}$$

Measures for Association Rules - II

Confidence tells us what proportion of transactions which consist of product X, also contain product Y. It signifies the likelihood of item Y being purchased when item X is purchased. It can give some important insights, but it also has a major drawback. It only takes into account the popularity of the itemset X and not the popularity of Y.

As the last step, we calculate the "lift'. It is the value that tells us how likely item B is bought together with item A. Values greater than one indicate that the items are likely to be purchased together.

$$Lift(A \to B) = \frac{Support(A \text{ and } B)}{Support(A) \times Support(B)}$$

Measures for Association Rules - III

- How much better than chance is a rule?
- Lift (improvement) tells us how much better a rule is at predicting the result than just assuming the result in the first place
- Lift is the ratio of the records that support the entire rule to the number that would be expected, assuming there was no relationship between the products
- Calculating lift. When lift > 1 then the rule is better at predicting the result than guessing. When lift < 1, the rule is doing worse than informed guessing.

Definition: Frequent Itemset

- □ Itemset
 - A collection of one or more items, e.g., {milk, bread, jam}
 - k-itemset, an itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - σ({Milk, Bread}) = 3
 σ({Soda, Chips}) = 4
- Support
 - Fraction of transactions that contain an itemset
 - s({Milk, Bread}) = 3/8 s({Soda, Chips}) = 4/8
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

What is an association rule?

- \square Implication of the form $X \Rightarrow Y$, where X and Y are itemsets
- □ Example, $\{bread\} \Rightarrow \{milk\}$
- Rule Evaluation Metrics, Suppor & Confidence

- Support (s)
 - Fraction of transactions that contain both X and Y
- □ Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\# \text{ of transactions}} = 0.38$$

$$c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$$

What is the goal?

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- Brute-force approach is computationally prohibitive!

Mining Association Rules

```
{Bread, Jam} \Rightarrow {Milk} s=0.4 c=0.75 {Milk, Jam} \Rightarrow {Bread} s=0.4 c=0.75 {Bread} \Rightarrow {Milk, Jam} s=0.4 c=0.75 {Jam} \Rightarrow {Bread, Milk} s=0.4 c=0.6 {Milk} \Rightarrow {Bread, Jam} s=0.4 c=0.5
```

☐ All the above rules are binary partitions of the same itemset:

- Rules originating from the same itemset have identical support but can have different confidence
- We can decouple the support and confidence requirements!

How Good is an Association Rule?

Customer	Items Purchased	
1	Coca-Cola (CC), soda	← POS Transactions
2	Milk, CC, window cleaner	
3	CC, detergent	
4	CC, detergent, soda	/ Co-occurrence of
5	Window cleaner, soda	Products
		110000

	СС	Window cleaner	Milk	Soda	Detergent
CC	4	1	1	2	2
Window cleaner	1	2	1	1	0
Milk	1	1	1	0	0
Soda	2	1	0	3	1
Detergent	2	0	0	1	2

How Good is an Association Rule?

	CC	Window cleaner	Milk	Soda	Detergent
CC	4	1	1	2	2
Window cleaner	1	2	1	1	0
Milk	1	1	1	0	0
Soda	2	1	0	3	1
Detergent	2	0	0	1	2

Simple patterns:

- 1. CC and soda are more likely purchased together than any other two items
- 2. Detergent is never purchased with milk or window cleaner
- 3. Milk is never purchased with soda or detergent

How Good is an Association Rule?

Customer	Items Purchased
1	CC, soda
2	Milk, CC, window cleaner
3	CC, detergent
4	CC, detergent, soda
5	Window cleaner, soda

- What is the confidence for this rule:
 - If a customer purchases soda, then customer also purchases CC
 - 2 out of 3 soda purchases also include CC, so 67%
- What about the confidence of this rule reversed?
 - 2 out of 4 CC purchases also include soda, so 50%
- Confidence = Ratio of the number of transactions with all the items to the number of transactions with just the "if" items

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
 - ► Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If
$$d=6$$
, $R=602$ rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - ▶ Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing the Number of Candidates

- Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Anti-Monotone Property

- Any subset of a frequent itemset must be also frequent an anti-monotone property
 - Any transaction containing {beer, diaper, milk} also contains {beer, diaper}
 - {beer, diaper, milk} is frequent → {beer, diaper} must also be frequent
- In other words, any superset of an infrequent itemset must also be infrequent
 - No superset of any infrequent itemset should be generated or tested
 - Many item combinations can be pruned!

Terminology - I

```
k-itemset: a set of k items. E.g.{beer, cheese, eggs} is a 3-itemset{cheese} is a 1-itemset{honey, ice-cream} is a 2-itemset
```

- support: an itemset has support s% if s% of the records in the DB contain that itemset.
- minimum support: the Apriori algorithm starts with the specification of a minimum level of support, and will focus on itemsets with this level or above.

Terminology - II

large itemset: doesn't mean an itemset with many items. It means one whose support is at least minimum support.

 L_k : the set of all large k-itemsets in the DB.

 C_k : a set of candidate large k-itemsets. In the algorithm we will look at, it generates this set, which contains all the k-itemsets that might be large, and then eventually generates the set above.

The Apriori algorithm

```
1: Find all large 1-itemsets
2: For (k = 2); while L_{k-1} is non-empty; k++)
3
      \{C_k = apriori-gen(L_{k-1})\}
         For each c in C_{k}, initialise c.count to zero
5
        For all records r in the DB
         \{C_r = \text{subset}(C_k, r); \text{ For each } c \text{ in } C_r \}
    c.count++ }
           Set L_k:= all c in C_k whose count >= minsup
        \} /* end -- return all of the L_{k} sets.
```

The Apriori algorithm - steps

```
1: Find all large 1-itemsets
2: For (k = 2; while L<sub>k-1</sub> is non-empty; k++)
3 {C<sub>k</sub> = aprior Generate candidate 2-itemsets
4 For each c in C<sub>k</sub>, initialise c.count to zero
5 For all records r in the DB
6 {C<sub>r</sub> = subsertune; them to leave the valid ones
7 Set L<sub>k</sub> := althose with enough support)
8 } /* end -- return all of the L<sub>k</sub> sets.
```

The Apriori algorithm - steps

```
1: Find all large 1-itemsets
2: For (k = 2; while L_{k-1} is non-empty; k++)
     \{C_k = apricCenerate | candidate 3-itemsets
3
      For each c in C_k, initialise c.count to zero
      For all records r in the DB
     6
```

The Apriori algorithm - steps

```
1: Find all large 1-itemsets
2: For (k = 2 ; while L_{k-1} is non-empty; k++)
         \{C_k = aprioiGener(ate) candidate 4-itemsets
          For each c in C_k, initialise c.count to zero
          For all records r in the DB
           {C<sub>r</sub> = subsection; them to feave the valid ones
         Set L_k := \text{all } G \text{ in } C_k \text{ whose } count >= minsup \text{ (those with enough support)}} /* end -- return all of the L_k sets.
```

... etc ...

The Apriori algorithm - explained

Level-wise approach

C_k = candidate itemsets of size kL_k = frequent itemsets of size k

- 1. **k** = 1, **C**₁ = all items
- 2. While C_k not empty

Frequent itemset generation

 Scan the database to find which itemsets in C_k are frequent and put them into L_k

Candidate generation

Use L_k to generate a collection of candidate itemsets C_{k+1} of size k+1

5. k = k+1

Apriori: Generating Frequent Item Sets

For *k* products...

- 1. User sets a minimum support criterion
- 2. Next, generate list of one-item sets that meet the support criterion
- 3. Use the list of one-item sets to generate list of two-item sets that meet the support criterion
- Use list of two-item sets to generate list of threeitem sets
- 5. Continue up through *k*-item sets

The Apriori algorithm - Example

minsup = 3

Item	Count	Items (1-itemsets)
Bread	4	
Coke	2	
Milk	4	Itemset
Beer	3	{Bread,Milk}
Diaper	4	{Bread,Beer
Eggs	1	(Bread Dian

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3

{Beer,Diaper}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

(6) (6) (6) (7)	Item
$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 6 + 15 + 20 = 41$	{Bre
With support based pruping	

With support-based pruning,

If every subset is considered

$$\binom{6}{1} + \binom{4}{2} + 1 = 6 + 6 + 1 = 13$$

Itemset	Count
{Bread,Milk,Diaper}	2

Only this triplet has all subsets to be frequent But it is below the minsup threshold

The Apriori algorithm - Example

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
{B,C,D}	2
$\{A,B,C,D\}$	2

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is

Maximal: no superset has this property

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Example: Step-by-Step

Transaction	Items appearing in the transaction	
T1	{pasta, lemon, bread, orange}	
T2	{pasta, lemon}	
Т3	{pasta, orange, cake}	
T4	{pasta, lemon, orange, cake}	

This database contains four **transactions**. Each transaction is a set of items purchased by a customer (an **itemset**). For example, the first transaction contains the items pasta, lemon, bread and orange, while the second transaction contains the items pasta and lemon.

Example:

- Consider {bread, lemon}.
- If we know that {bread} is infrequent, then we can infer that {bread, lemon} is also infrequent.

Transaction	Items appearing in the transaction	
T1	{pasta, lemon, bread, orange}	
T2	{pasta, lemon}	
T3	{pasta, orange, cake}	
T4	{pasta, lemon, orange, cake}	

Step 1: scan the database to calculate the support of all itemsets of size 1.

e.g.

```
{pasta} support = 4

{lemon} support = 3

{bread} support = 1

{orange} support = 3

{cake} support = 2
```

After obtaining the support of single items, the second step is to **eliminate the infrequent** itemsets. Recall that the minsup parameter is set to 2 in this example. Thus we should eliminate all itemsets having a support that is less than 2. This is illustrated below:

Step 2: eliminate infrequent itemsets.

```
support = 4
{pasta}
                              {pasta}
                                        support = 4
          support = 3
{lemon}
                                        support = 3
                              {lemon}
                              {orange}
                                        support = 3
         support = 1
{bread}
                                        support = 2
                              {cake}
{orange} support = 3
{cake}
          support = 2
```

Next the Apriori algorithm will find the **frequent itemsets containing 2 items**. To do that, the Apriori algorithm combines each frequent itemsets of size 1 (each single item) to obtain a set of candidate itemsets of size 2 (containing 2 items). This is illustrated below:

```
Step 3: generate candidates of size 2 by combining pairs of frequent itemsets of size 1.
```

```
Candidates of size 2
{pasta, lemon}

Frequent items

{pasta, orange}

{pasta, cake}

{lemon}

{lemon, orange}

{orange}

{cake}

{orange, cake}
```

```
Step 4: Eliminate candidates of size 2 that have an infrequent subset (Property 2)

(none!)

Candidates of size 2
{pasta, lemon}
{pasta, orange}
{pasta, cake}
{lemon, orange}
{lemon, cake}
{orange, cake}
```

Step 5: scan the database to calculate the support of remaining candidate itemsets of size 2.

```
{pasta, lemon} support: 3
{pasta, orange} support: 3
{pasta, cake} support: 2
{lemon, orange} support: 2
{lemon, cake} support: 1
{orange, cake} support: 2
```

Based on these support values, the **Apriori** algorithm next eliminates the infrequent candidate itemsets of size 2. The result is shown below:

Step 6: eliminate infrequent candidates of size 2

```
\[
\text{{pasta, lemon}} \] \text{support: 3} \]
\{\text{pasta, orange} \text{ support: 3} \]
\{\text{pasta, orange} \text{ support: 3} \]
\{\text{pasta, cake} \text{ support: 2} \]
\{\text{lemon, orange} \text{ support: 2} \]
\{\text{lemon, orange} \text{ support: 2} \]
\{\text{lemon, orange, cake} \text{ support: 2} \]
\{\text{orange, cake} \text{ support: 2} \]
\{\text{orange, cake} \text{ support: 2} \]
```

Step 7: generate candidates of size 3 by combining frequent pairs of itemsets of size 2.

Thereafter, **Apriori** will determine if these candidates are frequent itemsets. This is done by first checking the **second property**, which says that the subsets of a frequent itemset must also be frequent. Based on this property, we can eliminate some candidates. The **Apriori** algorithm checks if there exists a subset of size 2 that is not frequent for each candidate itemset. Two candidates are eliminated as shown below.

Step 8: eliminate candidates of size 3 having a subset of size 2 that is infrequent.

```
Frequent itemsets of size 2
{pasta, lemon}

{pasta, orange}
{pasta, orange}
{pasta, cake}

{lemon, orange}
{lemon, orange}
{orange, cake}
```

For example, in the above illustration, the itemset {lemon, orange, cake} has been eliminated because one of its subset of size 2 is infrequent (the itemset {lemon cake}). Thus, after performing this step, only two candidate itemsets of size 3 are left.

Step 9: scan the database to calculate the support of the remaining candidates of size 3.

{pasta, lemon, orange} support: 2 {pasta, orange, cake} support: 2

Based on these support values, the **Apriori** algorithm next eliminates the infrequent candidate itemsets of size 3 o obtain the frequent itemset of size 3. The result is shown below:

Step 10: eliminate infrequent candidates (none!)

frequent itemsets of size 3

{pasta, lemon, orange} support: 2

{pasta, orange, cake} support: 2

There was no infrequent itemsets among the candidate itemsets of size 3, so no itemset was eliminated. The two candidate itemsets of size 3 are thus frequent and are output to the user.

Next, the **Apriori** algorithm will try to generate **candidate itemsets of size** 4. This is done by combining pairs of **frequent itemsets** of size 3. This is done as follows:

Step 11: generate candidates of size 4 by combining pairs of frequent itemsets of size 3.

```
Frequent itemsets of size 3

{pasta, lemon, orange}

{pasta, lemon, orange, cake}

{pasta, orange, cake}
```

Only one candidate itemset was generated, hereafter, **Apriori** will determine if this candidate is frequent. This is done by first checking the **second property**, which says that the subsets of a frequent itemset must also be frequent. The Apriori algorithm checks if there exist a subset of size 3 that is not frequent for the candidate itemset.

Step 12: eliminate candidates of size 4 having a subset of size 3 that is infrequent.

```
Frequent itemsets of size 3

{pasta, lemon, orange}

{pasta, orange, cake}

{pasta, orange, cake}
```

During the above step, the candidate itemset {pasta, lemon, orange, cake} is eliminated because it contains at least one subset of size 3 that is infrequent. For example, {pasta, lemon cake} is infrequent.

Now, since there is no more candidate left. The **Apriori algorithm** has to stop and do not need to consider larger itemsets (for example, itemsets containing five items).

The final result found by the algorithm is this set of frequent itemsets.

Final result

```
{pasta}
                           support = 4
                           support = 3
{lemon}
{orange}
                           support = 3
                           support = 2
{cake}
{pasta, lemon}
                           support: 3
{pasta, orange}
                           support: 3
{pasta, cake}
                           support: 2
{lemon, orange}
                           support: 2
                           support: 2
{orange, cake}
{pasta, lemon, orange}
                           support: 2
{pasta, orange, cake}
                           support: 2
```

Thus, the **Apriori algorithm** has found **11 frequent itemsets**. The **Apriori algorithm** is said to be a recursive algorithm as it recursively explores larger itemsets starting from itemsets of size 1.