28. **1. 2**00**5**

REC'D 17 FEB 2005

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月29日

出 願 番 号 Application Number:

特願2004-021045

[ST. 10/C]:

[JP2004-021045]

出 願 人
Applicant(s):

帝人デュポンフィルム株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2005年 1月 7日

ページ: 1/E

【書類名】

特許願

【整理番号】

P37407

【提出日】

平成16年 1月29日

【あて先】

特許庁長官殿

【国際特許分類】

B29B 27/36 H01G 4/18

【発明者】

【住所又は居所】

岐阜県安八郡安八町南條1357番地 帝人デュポンフィルム株

式会社内

【氏名】

吉田 哲男

【発明者】

【住所又は居所】

岐阜県安八郡安八町南條1357番地 帝人デュポンフィルム株

式会社内

【氏名】

橋本 勝之

【特許出願人】

【識別番号】

301020226

【氏名又は名称】

帝人デュポンフィルム株式会社

【代理人】

【識別番号】

100099678

【弁理士】

【氏名又は名称】

三原 秀子

【手数料の表示】

【予納台帳番号】

135162

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

0203438

【書類名】特許請求の範囲

【請求項1】

ポリエステル樹脂 (a) $50 \sim 95$ 重量%と誘電率が3.0未満および/または誘電損失が0.001未満である熱可塑性樹脂 (b) $5 \sim 50$ 重量%との混合体からなることを特徴とする2軸延伸ポリエステルフィルム。

【請求項2】

絶縁破壊電圧が $400 \text{ V}/\mu \text{ m}$ を超え、かつ耐熱温度が110 C以上である請求項1記載の2軸延伸ポリエステルフィルム。

【請求項3】

ポリエステル樹脂 (a) がポリエチレンー 2, 6ーナフタレンジカルボキシレートである請求項 1 または 2 記載の 2 軸延伸ポリエステルフィルム。

【請求項4】

熱可塑性樹脂(b)の融点が $230 \sim 280$ C である請求項 $1 \sim 3$ のいずれかに記載の 2 軸延伸ポリエステルフィルム。

【請求項5】

熱可塑性樹脂(b)がポリオレフィン樹脂である請求項 $1\sim 4$ のいずれかに記載の2軸延伸ポリエステルフィルム。

【請求項6】

熱可塑性樹脂(b)がシンジオタクチックポリスチレン樹脂である請求項5記載の2軸延伸ポリエステルフィルム。

【請求項7】

ポリエステルフィルムの少なくとも片面に酸素原子含有化合物を含む層をさらに有し、X線光電子分光法により測定した該表面の炭素原子に対する酸素原子の比率が10%以上である、請求項 $1\sim6$ のいずれかに記載の2軸延伸ポリエステルフィルム。

【請求項8】

請求項1~7のいずれかに記載のポリエステルフィルムがフィルムコンデンサーに用いられることを特徴とするフィルムコンデンサー用2軸延伸ポリエステルフィルム。

【請求項9】

請求項 $1 \sim 8$ のいずれかに記載のポリエステルフィルムの少なくとも片面に金属層が形成されてなるポリエステルフィルム複合体。

【請求項10】

請求項9記載のポリエステルフィルム複合体を用いてなるフィルムコンデンサー。

【書類名】明細書

【発明の名称】 2 軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサー 【技術分野】

[0001]

本発明はコンデンサー用に好適な2軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサーに関するものであり、さらに詳しくは、耐電圧特性、耐熱性に優れ、かつ製膜性などの取り扱い性に優れたコンデンサー用に好適な2軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサーに関するものである。

【背景技術】

[0002]

従来、フィルムコンデンサーは、二軸配向ポリエチレンテレフタレートフィルム、二軸配向ポリプロピレンフィルム等のフィルムとアルミニウム箔等の金属薄膜とを重ね合わせ、巻回または積層する方法により製造されている。近年、電気あるいは電子回路の小型化の要求に伴い、フィルムコンデンサーについても小型化や実装化が進んでおり、電気特性に加えて更なる耐熱性が要求されるようになってきた。また、自動車用途においては、運転室内での使用のみならず、エンジンルーム内にまで使用範囲が拡大しており、電気特性に加え、より高温高湿下の環境に適したフィルムコンデンサーが要求されている。

[0003]

耐熱性を解決する目的では、ポリエチレン-2, 6-ナフタレートフィルムを用いた方法が特開 2000-173855号公報に開示されており、その電気特性を改良する目的で結晶状態、極限粘度などを制御する方法が提案されている。また、電気特性に優れる熱可塑性樹脂として、特開平2-143851号公報、特開平3-124750号公報、特開平5-200858号公報にはシンジオタクチックポリスチレン系重合体を主成分とする樹脂組成物を二軸延伸して得られる耐熱性および電気特性に優れたフィルムが開示されている。しかしながら、前者の方法では、極性ポリマーであるが故、更なる電気特性の改良には限界があり、一方、後者の方法では、従来用いられているポリエステルフィルムに較べて製膜が難しく、また得られたフィルムも裂けやすいことから、コンデンサー製造時のハンドリング性の改良が求められている。

[0004]

また、シンジオタクチックポリスチレンとポリエステルフィルムとが 2 層に積層されたフィルムとして、特開平8-39741 号公報では耐湿性やセルフヒーリング性が改良されることが開示されており、また特開平8-195327 号公報には、耐熱性に優れ、かつ電気特性に優れる温度範囲をより広範囲とすることが開示されている。しかしながら、これら 2 層フィルムの構成ではフィルムがカールしやすく、また厚み比の設計が不適当な場合には電気特性のばらつきが大きいなどといった点から、耐熱性および電気特性のいずれにも優れ、かつ製膜性にも優れた、フィルムコンデンサー用途に好適なポリエステル系フィルムはいまだ提供されていないのが現状である。

[0005]

【特許文献1】特開2000-173855号公報

【特許文献2】特開平2-143851号公報

【特許文献3】特開平3-124750号公報

【特許文献4】特開平5-200858号公報

【特許文献5】特開平8-39741号公報

【特許文献6】特開平8-195327号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の目的は、耐熱性および耐電圧特性に優れ、しかもフィルムの製膜性にも優れる2軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサーを提供することにある。

【課題を解決するための手段】

[0007]

本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、ポリエステル樹脂(a)50~95重量%と誘電率が3.0未満および/または誘電損失が0.001未満である熱可塑性樹脂(b)5~50重量%との混合体からなる2軸延伸ポリエステルフィルムによって、該熱可塑性樹脂の配合量が少なくても、驚くべきことに該熱可塑性樹脂と同等の耐電圧特性を有し、同時に耐熱性および製膜性にも優れることを見出し、本発明の完成に至った。

[0008]

かくして本発明によれば、本発明の目的は、ポリエステル樹脂(a) $50 \sim 95$ 重量% と誘電率が 3.0 未満および/または誘電損失が 0.001 未満である熱可塑性樹脂(b) $5 \sim 50$ 重量%との混合体からなる 2 軸延伸ポリエステルフィルムによって達成される

[0009]

また、本発明の2軸延伸ポリエステルフィルムは、その好ましい態様として、絶縁破壊電圧が $400V/\mu$ mを超え、かつ耐熱温度が110 C以上であること、ポリエステル樹脂(a)がポリエチレンー2,6-ナフタレンジカルボキシレートであること、熱可塑性樹脂(b)の融点が $230\sim280$ Cであること、熱可塑性樹脂(b)がポリオレフィン樹脂であること、熱可塑性樹脂(b)がシンジオタクチックポリスチレン樹脂であること、ポリエステルフィルムの少なくとも片面に酸素原子含有化合物を含む層をさらに有し、X線光電子分光法により測定した該表面の炭素原子に対する酸素原子の比率が10%以上であること、の少なくともいずれか一つを具備するものも包含する。

[0010]

また、本発明によれば、本発明の2軸延伸ポリエステルフィルムは、フィルムコンデンサー用に用いられること、ポリエステルフィルムの少なくとも片面に金属層が形成されてなるポリエステルフィルム複合体、さらにポリエステルフィルム複合体を用いてなるフィルムコンデンサーの少なくともいずれかを具備するものを、やはり好ましい態様として包含するものである。

【発明の効果】

$\{0\ 0\ 1\ 1\}$

本発明によれば、ポリエステル樹脂と誘電率が3.0未満および/または誘電損失が0.001未満である熱可塑性樹脂とが特定の配合比率で混合された2軸延伸ポリエステルフィルムにすることによって、従来のポリエステルフィルム、シンジオタクチックポリスチレンフィルム、およびポリエステルとシンジオタクチックポリスチレンとからなるフィルムに比べ、極めて高い耐熱性と耐電圧特性とを兼ね備えると共に、優れた製膜性を有することから、フィルムコンデンサー用に好適な2軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサーを提供することができ、その工業的価値は極めて高い。

【発明を実施するための最良の形態】

[0012]

以下、本発明を詳しく説明する。

<ポリエステル樹脂>

本発明におけるポリエステル樹脂(a)は、ジオールとジカルボン酸との重縮合によって得られるポリマーである。かかるジカルボン酸として、例えばテレフタル酸、イソフタル酸、2,6ーナフタレンジカルボン酸、4,4'ージフェニルジカルボン酸、アジピン酸およびセバシン酸が挙げられ、またジオールとして、例えばエチレングリコール、1,4ーブタンジオール、1,4ーシクロヘキサンジメタノール、1,6ーヘキサンジオールが挙げられる。特に耐熱性の観点から、ポリエチレンー2,6ーナフタレンジカルボキシレートが好ましい。

[0013]

本発明におけるポリエステル樹脂は、単独でも他のポリエステルとの共重合体、2種以

上のポリエステルとの混合体のいずれであってもかまわない。共重合体または混合体における他の成分は、繰返し構造単位のモル数を基準として10モル%以下、さらに5モル%以下であることが好ましい。共重合成分としては、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、5ーナトリウムスルホイソフタル酸等のジカルボン酸成分が挙げられる。

[0014]

本発明におけるポリエステル樹脂の固有粘度は、o-クロロフェノール中、35 ℃において、0.40 以上であることが好ましく、0.40 ~0.80 であることがさらに好ましい。固有粘度が0.4 未満ではフィルム製膜時に切断が多発したり、成形加工後の製品の強度が不足することがある。一方固有粘度が0.8 を超える場合は重合時の生産性が低下する。

[0015]

本発明におけるポリエステル樹脂の融点は、200~300であることが好ましく、更には260~290であることが好ましい。融点が下限に満たないとポリエステルフィルムの耐熱性が不十分な場合がある。また融点が上限を超える場合は熱可塑性樹脂(b)と混合が難しくなることがある。

[0016]

本発明におけるポリエステル樹脂の誘電率は、23℃、1MHzの条件において2.7~3.4であることが好ましい。かかる誘電率はポリエステル樹脂に固有の特性である。

[0017]

本発明の2軸延伸ポリエステルフィルムに用いられるポリエステル樹脂の含有量は、フィルムの重量を基準として50~95重量%であり、好ましくは55~94重量%である。ポリエステル樹脂の含有量が下限に満たない場合、延伸製膜が充分に改良されないことがある。またポリエステル樹脂の含有量が上限を超えると耐電圧特性が難しくなる場合がある。

[0018]

<熱可塑性樹脂>

本発明における熱可塑性樹脂(b)としては、ポリー3ーメチルブテンー1、ポリー4ーメチルペンテンー1、ポリビニルーtーブタン、1,4ートランスーポリー2,3ージメチルブタジエン、ポリビニルシクロヘキサン、ポリスチレン、ポリメチルスチレン、ポリブチルスチレン、ポリアルキルスチレン、ポリフルオロエチレン、ポリクロロエチレン、ポリブロモスチレン、ポリー2ーメチルー4ーフルオロスチレンなどのポリハロゲン化スチレン、ポリビニルーtーブチルエーテル、セルローストリアセテート、セルローストリプロピオネート、ポリビニルフルオライド、およびポリクロロトリフルオロエチレンなどが挙げられる。本発明においては、前記熱可塑性樹脂の中でもポリオレフィン樹脂が好ましく、さらに耐熱性の観点から特にシンジオタクチックポリスチレンが好ましい。

[0019]

本発明におけるシンジオタクチックポリスチレンは、立体化学構造がシンジオタクチック構造を有するポリスチレンであり、核磁気共鳴法(13 C - NMR法)により測定されるタクティシティーが、ダイアッド(構成単位が 2 個)で 75% 以上、好ましくは 85% 上、ペンタッド(構成単位が 5 個)で 30% 以上、好ましくは 50% 以上である。

[0020]

かかるシンジオタクチックポリスチレンとしては、ポリスチレン、ポリ (アルキルスチレン)として、ポリ (メチルスチレン)、ポリ (エチルスチレン)、ポリ (プロピルスチレン)、ポリ (ブチルスチレン)、ポリ (フェニルスチレン)、ポリ (ビニルナフタレン)、ポリ (ビニルスチレン) およびポリ (アセナフチレン)、ポリ (ハロゲン化スチレン)としてポリ (クロロスチレン)、ポリ (ブロモスチレン) およびポリ (フルオロスチレン)、ポリ (アルコキシスチレン)としてポリ (メトキシスチレン)、ポリ (エトキシス

チレン)が挙げられ、これらのうち、ポリスチレン、ポリ(p-メチルスチレン)、ポリ (m-メチルスチレン)、ポリ(p-ターシャリーブチルスチレン)が好ましく例示され る。

[0021]

本発明におけるシンジオタクチックポリスチレンは、単体でも、シンジオタクティシティが前記範囲内であれば他のポリスチレンとの共重合体、2種以上のポリスチレンとの混合体のいずれであってもかまわない。

[0022]

また、本発明におけるシンジオタクチックポリスチレンは、重合平均分子量が10,00 以上、さらに50,000 以上であることが好ましい。重合平均分子量が下限に満たない場合、耐熱性や機械特性が不十分である。一方、重合平均分子量の上限は500,00 以下であることが好ましい。かかる上限を超える場合、製膜性に乏しくなる場合がある。

[0023]

本発明における熱可塑性樹脂は、必ずしも単一化合物である必要はなく、2種以上の熱可塑性樹脂の混合体であってもかまわない。混合体における他の成分は、熱可塑性樹脂の重量を基準として、10重量%以下、さらには5重量%以下であることが好ましい。

[0024]

本発明における熱可塑性樹脂の融点は、230 \mathbb{C} \mathbb{C} \mathbb{C} であることが好ましく、更には 240 \mathbb{C} \mathbb{C} であることが好ましい。融点が下限に満たないとポリエステルフィルムの耐熱性が不十分な場合がある。また融点が上限を超える場合はポリエステル樹脂と混合が難しくなることがある。

[0025]

本発明における熱可塑性樹脂の誘電率は、23 \mathbb{C} 、1 MH z の条件において 3.0 未満である。本発明における熱可塑性樹脂の誘電率は、好ましくは、2.2 ~ 2.9 である。誘電率が上限を超える場合、ポリエステルフィルムの耐電圧特性が充分に改良されない。また、誘電率が下限に満たない樹脂は加工性に乏しい場合がある。

[0026]

本発明における熱可塑性樹脂の誘電損失は、23 \mathbb{C} 、1 MHz の条件における誘電正接(t a n δ)で表され、0. 0 0 1 未満である。誘電損失が0. 0 0 1 以上の場合、絶縁性が低下し、得られるポリエステルフィルムの耐電圧特性が充分に改良されない。

[0027]

本発明の2軸延伸ポリエステルフィルムに用いられる熱可塑性樹脂の含有量は、フィルムの重量を基準として5~50重量%であり、好ましくは6~45重量%である。熱可塑性樹脂の含有量が下限に満たない場合、耐電圧特性が充分に改良されないことがある。また熱可塑性樹脂の含有量が上限を超えると延伸製膜が難しくなる場合がある。

[0028]

<不活性粒子>

本発明の2軸延伸ポリエステルフィルムは、製膜時の巻き取り性を付与する為に、不活性粒子を添加してもよい。かかる不活性粒子は、発明の効果を損なわない範囲において用いられるが、平均粒径が $0.001\sim5~\mu$ mの不活性粒子を、最終的に得られるポリエステルフィルム中に $0.01\sim10$ 重量%含有するように添加することが好ましい。添加する不活性粒子としては、例えば炭酸カルシウム、シリカ、タルク、クレーなどの無機粒子、シリコーン、熱可塑性樹脂および熱硬化性樹脂のいずれかからなる有機粒子、硫酸バリウム、酸化チタンなどの顔料を少なくとも1種用いることができる。

[0029]

これら不活性粒子をポリエステル樹脂へ添加する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行うことが好ましい。精製プロセスの工業的手段としては、粉砕手段として例えばジェットミル、ボールミルが挙げられ、また分級手段として例えば乾式もしくは湿式遠心分離機が挙げられる。なお、これらの手段は2種以上を組み合わせ、段階的

に精製してもよい。

[0030]

不活性粒子をポリエステル樹脂に含有させる方法としては、様々な方法を用いることが できるが、例えば下記の方法が挙げられる。

- (ア)ポリエステルの合成過程において、エステル交換反応もしくはエステル化反応が終了する前に添加、あるいは重縮合反応開始前に不活性粒子を添加する方法。
- (イ) 重縮合反応によって得られたポリエステル樹脂に不活性粒子を添加し、溶融混練する方法。
- (ウ)上記(ア)、(イ)の方法において不活性粒子を多量添加したマスターペレットを製造し、不活性粒子を含有しないポリエステル樹脂と混練して、所定濃度の不活性粒子を含有させる方法。

[0031]

なお、上記(ア)の方法を用いる場合には、不活性粒子をグリコールに分散したスラリーとして、反応系に添加することが好ましい。

[0032]

<添加剤>

本発明の2軸延伸ポリエステルフィルムは、必要に応じて少量の添加剤、例えば紫外線 吸収剤、酸化防止剤、帯電防止剤、光安定剤、熱安定剤を含んでいてもよい。

[0033]

また、ポリエステル樹脂と熱可塑性樹脂とを相溶させ、延伸特性を向上させる目的で相溶化剤を添加してもよい。かかる相溶化剤としては、例えばオキサゾリン基含有反応性ポリマーが挙げられる。

[0034]

さらに、本発明の2軸延伸ポリエステルフィルムは、リン化合物を含んでいてもよい。 かかるリン化合物としては、熱安定剤として作用するリン化合物であれば特に種類は限定 されないが、例えばリン酸、メチルフォスフェートやエチルホスフェート系といったリン 酸エステル、亜リン酸および亜リン酸エステルが例示され、かかるリン化合物の中でもト リエチルフォスフォノアセテートが特に好ましく挙げられる。

[0035]

リン化合物の好ましい含有量は、リン化合物中のリン元素のポリエステル全ジカルボン酸成分に対するモル濃度として、 $20\sim300$ p p m、さらに $30\sim250$ p p m、特に $50\sim200$ p p mである。リン化合物の含有量が20 p p m未満では、エステル交換反応触媒が完全に失活せず熱安定性が悪く、機械強度が低下する場合がある。一方、リン化合物の含有量が300 p p mを超えると、熱安定性が悪く、機械強度が低下する場合がある。

[0036]

<塗膜層>

本発明の2軸延伸ポリエステルフィルムは、最外層の少なくとも一方の面に塗膜層を有してもよい。かかる塗膜層は、バインダー樹脂および溶媒からなるコーティング塗剤を2軸延伸ポリエステルフィルムに塗布することによって得られる。バインダー樹脂としては、熱可塑性樹脂または熱硬化性樹脂の各種樹脂を用いることができ、例えばポリエステル、ポリイミド、ポリアミド、ポリエステルアミド、ポリオレフィン、ポリ塩化ビニル、ポリ(メタ)アクリル酸エステル、ポリウレタンおよびポリスチレン、ならびにこれらの共重合体や混合体が挙げられる。これらのバインダー樹脂の中でも、ポリエステル共重合体が特に好ましく例示される。溶媒としては、例えばトルエン、酢酸エチル、メチルエチルケトンなどの有機溶媒および混合物が挙げられ、更に水であってもよい。

[0037]

本発明の塗膜層は、塗膜を形成する成分として、さらに架橋剤、界面活性剤および不活性粒子を含んでいてもよい。かかる界面活性剤としてはポリアルキレンオキサイドが例示される。

[0038]

本発明の塗膜層は、上記成分以外にメラミン樹脂などの他樹脂、軟質重合体、フィラー、熱安定剤、耐候安定剤、老化防止剤、ラベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、染料、顔料、天然油、合成油、ワックス、乳化剤、硬化剤および難燃剤などをさらに含んでもよく、その配合割合は本発明の目的を損なわない範囲で適宜選択される。

[0039]

本発明の塗膜層は、ポリエステルフィルムに積層させる方法として、2軸延伸されたポリエステルフィルムの少なくとも片面に塗剤を塗布し乾燥する方法、延伸可能なポリエステルフィルムに塗剤を塗布した後、乾燥、延伸し、必要に応じて熱処理する方法のいずれでもよい。ここで、延伸可能なポリエステルフィルムとは、未延伸ポリエステルフィルム、一軸延伸ポリエステルフィルムまたは二軸延伸ポリエステルフィルムであり、これらの中でもフィルム押し出し方向(縦方向)に一軸延伸された縦延伸ポリエステルフィルムが特に好ましく例示される。

[0040]

また、ポリエステルフィルムに塗剤を塗布する場合、クリーンな雰囲気での塗布、すなわちフィルム製膜工程での塗布が好ましく、塗膜のポリエステルフィルムへの密着性が向上する。通常の塗工工程、すなわち二軸延伸後、熱固定したポリエステルフィルムに、該フィルムの製造工程と切り離した工程で行うと、埃、ちりなどを巻き込みやすい。

[0041]

ポリエステルフィルムに塗剤を塗布する方法としては、公知の任意の塗布方法を用いることができ、例えばロールコート法、グラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法およびカーテンコート法を単独または組み合わせて用いることができる。

[0042]

<製膜>

本発明の2軸延伸ポリエステルフィルムは、耐熱性、耐電圧特性とともに、優れた製膜性を付与する目的で、ポリエステル樹脂(a) $50\sim95$ 重量%と熱可塑性樹脂(b) $5\sim50$ 重量%との混合体からなる2軸延伸ポリエステルフィルムである必要がある。混合体であることによって、熱可塑性樹脂の配合量が少ないにもかかわらず、比較的耐電圧特性の低いポリエステル樹脂の特性が、耐電圧特性の良好な熱可塑性樹脂によって補完され、かつ優れた製膜性をも有する。

[0043]

なお、本発明の2軸延伸ポリエステルフィルムは、本発明の効果を損なわない範囲において、上述の混合体からなる層を少なくとも1層有する積層体であっても構わない。

[0044]

本発明の2軸延伸ポリエステルフィルムは、上述のポリエステル樹脂(a)と熱可塑性樹脂(b)とを原料とし、これを溶融状態でシート状に押出した後、テンター法、インフレーション法など公知の製膜方法を用いて製造することができ、例えばポリエステル樹脂(a)と熱可塑性樹脂(b)とを所定量混合し、乾燥後、300℃に加熱された押出機に供給して、Tダイよりシート状に成形する方法が挙げられる。

[0045]

ダイより押し出されたシート状成形物を表面温度 $10 \sim 60$ $\mathbb C$ の冷却ドラムで冷却固化し、この未延伸フィルムを例えばロール加熱または赤外線加熱によって加熱した後、縦方向に延伸して縦延伸フィルムを得る。かかる縦延伸は 2 個以上のロールの周速差を利用して行うのが好ましい。縦延伸温度は、ポリエステル樹脂のガラス転移点(Tg)より高い温度、更には Tg より $20 \sim 40$ $\mathbb C$ 高い温度とするのが好ましい。縦延伸倍率は、使用する用途の要求に応じて適宜調整すればよいが、好ましくは 2.5 倍以上 5.0 倍以下、更に好ましくは 2.8 倍以上 3.9 倍以下である。縦延伸倍率が 2.5 倍以下ではフィルムの厚み斑が悪くなり良好なフィルムが得られない場合がある。また縦延伸倍率が 5.0 倍

以上では製膜中に破断が発生しやすくなる。

[0046]

得られた縦延伸フィルムは、続いて横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、かかる処理はフィルムを走行させながら行う。横延伸処理は、ポリエステル樹脂のガラス転移点(Tg)より20℃高い温度から始め、ポリエステル樹脂の融点(Tma)より(120~30)℃低い温度まで昇温しながら行う。かかる横延伸開始温度は、好ましくは(Tg+40)℃以下である。また横延伸最高温度は、好ましくはTmaより(100~40)℃低い温度である。横延伸開始温度が低すぎるとフィルムに破れが生じやすい。また横延伸最高温度が(Tma-120)℃より低いと、得られたフィルムの熱収縮率が大きくなり、また幅方向の物性の均一性が低下しやすい。一方横延伸最高温度が(Tma-30)℃より高いと、フィルムが柔らかくなりすぎ、製膜中にフィルムの破れが起こり易い。

[0047]

横延伸過程の昇温は連続的でも段階的(逐次的)でもよいが、通常は段階的に昇温する。例えば、ステンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、各ゾーンごとに所定温度の加熱媒体を流すことで昇温する。

[0048]

横延伸倍率は、使用する用途の要求に応じて適宜調整すればよいが、好ましくは2.5倍以上5.0倍以下、更に好ましくは2.8倍以上4.0倍以下である。縦延伸倍率が2.5倍以下ではフィルムの厚み斑が悪くなり良好なフィルムが得られない場合がある。また縦延伸倍率が5.0倍以上では製膜中に破断が発生しやすくなる。

[0049]

なお、2軸延伸されたポリエステルフィルムは、その後熱固定処理が施される。熱固定 を施すことにより、得られたフィルムの高温条件下での寸法安定性が向上する。

[0050]

本発明の2軸延伸ポリエステルフィルムの200℃における熱収縮率の好ましい範囲は、 $-3\sim3\%$ 、更に $-2\sim2\%$ 、特に $-1\sim1\%$ である。200℃における熱収縮率が、上述の範囲を満たさない場合、フィルムに金属膜を蒸着してポリエステル複合体およびコンデンサーとした場合に、フィルムにしわが入ることがある。200℃における熱収縮率を上述の範囲内にするためには、熱固定処理を(Tma-100℃)以上、さらには(Tma-50) \mathbb{C} ~(Tma-20) \mathbb{C} 0 の範囲で行うことが好ましい。

[0051]

また、本発明の2軸延伸ポリエステルフィルムは、熱収縮を抑えるために、さらにオフライン工程において $150\sim220$ で $1\sim60$ 秒間熱処理した後、 $50\sim80$ で温度雰囲気下で徐冷するアニール処理を施しても構わない。

[0052]

このようにして得られた本発明の 2 軸延伸ポリエステルフィルムの総厚みは、 0 . $1\sim 20~\mu$ m、さらには 0 . $5\sim 15~\mu$ m、特に 1 . $0\sim 10~\mu$ mであることが好ましい。フィルム厚みが 0 . $1~\mu$ m未満では製膜が困難であり、また耐電圧特性が低下する場合がある。一方フィルム厚みが $20~\mu$ mを越えるとコンデンサーの小型化が難しい場合がある。

[0053]

本発明の 2 軸延伸ポリエステルフィルムの絶縁破壊電圧は、 $400 \text{ V}/\mu \text{ m}$ を超え、好ましくは $410 \text{ V}/\mu \text{ m}$ 以上、より好ましくは $460 \text{ V}/\mu \text{ m}$ 以上、特に好ましくは $470 \text{ V}/\mu \text{ m}$ 以上である。絶縁破壊電圧が $400 \text{ V}/\mu \text{ m}$ 以下だとコンデンサーに用いたときの電気特性が十分ではない。

[0054]

本発明の2軸延伸ポリエステルフィルムの耐熱性は、110 C以上、好ましくは115 C以上、より好ましくは120 C以上である。耐熱性が110 C未満だとコンデンサーに用いたときの耐熱性が十分ではない。ここで、耐熱性はIEC60216 の温度指数に準拠し、絶縁破壊電圧の半減期の時間と温度の関係をアレニウスプロットして、20000

時間に耐えうる温度で定義されるものである。

[0055]

本発明の2軸延伸ポリエステルフィルムは、少なくとも一方の面に、他の機能を付与する目的でさらに他の層を積層した積層体であってもよい。例えば、セルフヒーリング性を更に改善する目的で、ポリエステルフィルムの少なくとも片面に酸素原子含有化合物を含む層をさらに有してもよく、X線光電子分光法により測定した該表面の炭素原子に対する酸素原子の比率は10%以上、さらには15%以上であることが好ましい。酸素原子含有化合物としては、セルロース、 SiO_2 が例示される。 SiO_2 の場合は真空蒸着、イオンプレーティングまたはスパッタリングのいずれかの方法によって積層してもよい。

[0056]

本発明のポリエステルフィルム複合体は、前述の2軸延伸ポリエステルフィルムの少なくとも片面に金属層が形成されてなるものである。金属層の材質については、特に制限はないが、例えばアルミニウム、亜鉛、ニッケル、クロム、錫、銅およびこれらの合金が挙げられる。

[0057]

かかるポリエステルフィルム複合体は、フィルムコンデンサーに好適に用いることができる。

【実施例】

[0058]

以下に実施例を用いて本発明を詳細に説明するが、本発明の範囲はこれら実施例により限定されるものではない。なお、実施例中の融点、耐熱性、誘電率、および絶縁破壊電圧は、下記の方法により測定および評価した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。

[0059]

(1)融点

ポリエステル樹脂 (a) および熱可塑性樹脂 (b) それぞれ10 mgを、測定用のアルミニウム製パンに封入し、TAinstruments社製示差熱量計DSC2920を用いて25 \mathbb{C} から300 \mathbb{C} まで20 \mathbb{C} /minの昇温速度で測定し、それぞれの融点(Tma、Tmb)を求めた。

(2) 耐熱性

得られた2軸延伸ポリエステルフィルムを用い、IEC60216の温度指数に準拠し、絶縁破壊電圧の半減期の時間と温度の関係をアレニウスプロットして、2000時間に耐えうる温度を求めた。

(3)誘電率

熱可塑性樹脂を用い、JIS C2151に準拠して23 \mathbb{C} 、1MHzにおける誘電率を測定した。

(4) 誘電損失

熱可塑性樹脂を用い、JIS C 2 1 5 1 に準拠して 2 3 \mathbb{C} 、 $1\,\mathrm{MHz}$ における誘電損失を測定した。

(5) 絶縁破壊電圧

得られた 2 軸延伸ポリエステルフィルムを用い、J IS C 2 1 5 1 記載の平板電極法に準拠して、東京精電株式会社製 ITS-6003を用いて、直流電流 160 V/s によって絶縁破壊電圧を測定した。

[0060]

「実施例1]

ナフタレンー 2, 6 ージカルボン酸ジメチルおよびエチレングリコールを酢酸マンガンの存在下、常法によりエステル交換反応を行った後、トリエチルフォスフォノアセテートを添加した。次いで三酸化アンチモンを添加して、常法により重縮合させてポリエチレンー 2, 6 ーナフタレンジカルボキシレート樹脂を得た。本樹脂中の各元素の濃度を原子吸光法によって測定した結果、Mn=50pm、Sb=300ppm、P=50ppmで

あった。

[0061]

得られたポリエチレンー2,6ーナフタレンジカルボキシレート樹脂(固有粘度0.62)90重量%とシンジオタクチックポリスチレン(出光石油化学株式会社製、グレード;130ZC)10重量%を均一にブレンドし、180℃で6時間乾燥後、300℃に加熱された押出機に供給し、290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.6倍で延伸した後、60℃のロール群で冷却した

[0062]

続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、横延伸最高温度が150 \mathbb{C} に加熱された雰囲気中で長手方向に垂直な方向(横方向)に4.0 倍で延伸した。その後テンター内で220 \mathbb{C} で5 秒間熱固定を行い、さらに200 \mathbb{C} で1 % 熱弛緩を行った後、均一に除冷して、室温まで冷却し、 5μ m厚みの二軸延伸ポリエステルフィルムを得た。

[0063]

用いたポリエステル樹脂(a) および熱可塑性樹脂(b) の特性および得られた二軸延伸ポリエステルフィルムの特性を表1に示す。本実施例のポリエステルフィルムは、耐熱性および絶縁破壊電圧に優れ、同時に48時間一定条件で製膜を行うことができ、優れた製膜性であった。

[0064]

[実施例2]

実施例1と同様に作成して得られたポリエチレンー2,6ーナフタレンジカルボキシレート樹脂を70重量%用いシンジオタクチックポリスチレン(出光石油化学株式会社製、グレード;130ZC)を30重量%用いた以外は、実施例1と同様の操作を繰り返して、5μm厚みの二軸延伸ポリエステルフィルムを得た。

[0065]

用いたポリエステル樹脂(a)および熱可塑性樹脂(b)の特性および得られた二軸延伸ポリエステルフィルムの特性を表1に示す。本実施例のポリエステルフィルムは、耐熱性、絶縁破壊電圧に優れ、同時に48時間一定条件で製膜を行うことができ、優れた製膜性であった。

[0066]

[比較例1]

実施例 1 と同様に作成して得られたポリエチレン-2, 6 ーナフタレンジカルボキシレート樹脂を 1 0 0 重量%用い、シンジオタクチックポリスチレンを用いなかった以外は、実施例 1 と同様の操作を繰り返して、 5 μ m厚みの二軸延伸ポリエステルフィルムを得た

[0067]

用いたポリエステル樹脂 (a) の特性および得られた二軸延伸ポリエステルフィルムの特性を表 1 に示す。本比較例のポリエステルフィルムは、耐熱性に優れるものの、絶縁破壊電圧は満足のいくものではなかった。

[0068]

[比較例2]

比較例1のポリエチレンー2,6ーナフタレンジカルボキシレート樹脂のかわりに、ポリエチレンテレフタレート樹脂を用い、170で3時間乾燥後、280 に加熱された押出機に供給し、290 のダイスよりシート状に成形した。さらにこのシートを表面温度 20 の冷却ドラムで冷却固化した未延伸フィルムを 90 に加熱したロール群に導き、長手方向(縦方向)に 3.6 倍で延伸した後、20 のロール群で冷却した。

[0069]

続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、横延伸

[0070]

用いたポリエステル樹脂(a)の特性および得られた二軸延伸ポリエステルフィルムの特性を表1に示す。本実施例のポリエステルフィルムは、絶縁破壊電圧は満足するものの、耐熱性は満足のいくものではなかった。

[0071]

「比較例3]

実施例 1 と同様に作成して得られたポリエチレンー 2, 6 ーナフタレンジカルボキシレート樹脂を 1 0 重量%用いシンジオタクチックポリスチレン(出光石油化学株式会社製、グレード; 1 3 0 2 C)を 9 0 重量%用いた以外は、実施例 1 と同様の操作を繰り返して、 5 μ m厚みの二軸延伸ポリエステルフィルムを得た。

[0072]

用いたポリエステル樹脂(a)の特性および得られた二軸延伸ポリエステルフィルムの特性を表1に示す。本比較例のポリエステルフィルムは、耐熱性および絶縁破壊電圧に優れるものの、48時間製膜中数回破断が生じ、製膜性は満足のいくものではなかった。

[0073]

【表1】

	ホ゜リエステル	熱可塑性樹脂(b)			絶縁破壊	耐熱性
	樹脂(a)				電圧	
	点癌	点嬌	誘電率	誘電損失		
	(Tma)	(Tmb)				
	C	r			V/μ m	. °C
実施例1	270	270	2.6	0.0002	460	120
実施例2	270	270	2.6	0.0002	480	120
比較例1	270	-	_	-	400	120
比較例2	260		_		450	95
比較例3	270	270	2.6	0.0002	490	120

【産業上の利用可能性】

[0074]

本発明によって得られた2軸延伸ポリエステルフィルムは、耐熱性および絶縁破壊電圧で表される耐電圧特性に優れ、同時に製膜性にも優れることから、電気・電子製品用途あるいは自動車用途のフィルムコンデンサー用に好適に使用される。また本願発明の2軸延伸ポリエステルフィルムの少なくとも片面に金属層が形成されてなるポリエステルフィルム複合体は、同様にフィルムコンデンサーとして好適に使用される。

【書類名】要約書

【要約】

【課題】 耐熱性および絶縁破壊電圧で表される耐電圧特性に優れ、同時に製膜性に優れた 2 軸延伸ポリエステルフィルムおよびそれからなるフィルムコンデンサーを提供する。 【解決手段】 ポリエステル樹脂 (a) $50\sim95$ 重量%と誘電率が 3. 0未満および/または誘電損失が 0. 001未満である熱可塑性樹脂 (b) $5\sim50$ 重量%との混合体からなる 2 軸延伸ポリエステルフィルム。

【選択図】 なし

特願2004-021045

出願人履歴情報

識別番号

[301020226]

1. 変更年月日

2001年 3月19日

[変更理由]

新規登録

住 所 氏 名 東京都千代田区内幸町二丁目1番1号

帝人デュポンフィルム株式会社