A language L is regular if and only if the equivalence R_L has a finite number of equivalence classes of strings and the number of states in the smallest DFA recognizing L is equal to the number of equivalence classes in R_L.

For a language L, defined over an alphabet Σ , L partitions Σ^* into distinct classes. If L generates finite number of classes then L is regular.

Question:

Let the language L of all strings , ending with b, defined over \sum = $\{a,b\}$

It can be observed that L partitions \sum^* into the following classes:

C1 = set of all strings ending in a.
C2= set of all strings ending in b.

Since these are finite classes.. L is regular language

Example#2:

Suppose L is EVEN EVEN language where $\Sigma = \{a,b\}$ In how many classes does L may partition Σ^* , explain briefly. Also state whether this language is regular or not.

It can be observed that L partitions \sum^* into the following classes:

C1 - no. of a is even and no. of b is odd

C2 = no. of b is even and no. of a is odd

C3 = no. of a is odd and no. of b is odd

C4 = no. of a is even and no. of b is even

Example#2:

Suppose L is EVEN EVEN language where $\Sigma = \{a,b\}$ In how many classes does L may partition Σ^* , explain briefly. Also state whether this language is regular or not.

It can be observed that L partitions \sum^* into the following classes:

C1 - no. of a is even and no. of b is odd

C2 = no. of b i ven and no. of a is odd

C3 = no. of a it d and no. of b is odd

C4 = no. of a is even and no. of b is even

Example#2:

Suppose L is EVEN EVEN language where $\Sigma = \{a,b\}$ In how many classes does L may partition Σ^* , explain briefly. Also state whether this language is regular or not.

It can be observed that L partitions \sum^* into the following classes:

C1 - no. of a is even and no. of b is odd

C2 = no. of b is even and no. of a is odd

C3 = no. of a is odd and no. of b is odd

C4 = no. of a is even and no. of b is even

Example#2:

Suppose L is EVEN EVEN language where $\Sigma = \{a,b\}$ In how many classes does L may partition Σ^* , explain briefly. Also state whether this language is regular or not.

It can be observed that L partitions \sum^* into the following classes:

C1 - no. of a is even and no. of b is odd

C2 = no. of b is even and no. of a is odd

C3 = no. of a is odd and no. of b is odd

C4 = no. of a is even and no. of b is even

DFA Minimization Using MyHill Nerode Approach

Problem

Step 1: Draw a table for all pairs of state of Qi and Qj

Step 1 - We draw a table for all pair of states.

	a	b	С	d	е	f
a						
b						
С						
d						
e						
f						

Step 2: Mark or Tick all pairs where Qi € F and Qj € (Not A) F

Step 2 - We mark the state pairs.

	a	b	С	d	е	f
а						
b						
С	✓	✓				
d	✓	✓				
e	✓	✓				
f			✓	✓	✓	

mark [Qi, Qj]

...repeat the step until we cannot mark anymore.

	a	b	С	d	e	f
a						
b						
С	✓	✓				
d	✓	✓				
е	✓	✓				
f	✓	✓	✓	✓	✓	

mark [Qi, Qj]

Step 3: [a, b]

$$g(a, 1) = c$$

 $g(b, 1) = d$

C, d are not mark in previous table.

So no mark

Step 3: [a, b]

$$g(a, 0) = b$$

 $g(b, 0) = a$

A, b are not mark in previous table.

So no mark.

mark [Qi, Qj]

Step 3: [d, c]

$$g(d, 1) = f$$

 $g(c, 1) = f$

So no mark as no cell

Step 3: [d, c]

$$g(d, 0) = e$$

 $g(c, 0) = e$

So no mark as no cell

mark [Qi, Qj]

Step 3: [e, c]

$$g(e, 1) = f$$

 $g(c, 1) = f$

So no mark

Step 3: [e, c]

$$g(e, 0) = e$$

 $g(c, 0) = e$

So no mark

mark [Qi, Qj]

Step 3: [e, d]

$$g(e, 1) = f$$

 $g(d, 1) = f$

So no mark

Step 3: [e, d]

$$g(e, 0) = e$$

 $g(d, 0) = e$

So no mark

mark [Qi, Qj]

Step 3: [f, a]

$$g(f, 1) = f$$

 $g(a, 1) = c$

Step 3: [f, a]

$$g(f, 0) = f$$

 $g(a, 0) = b$

So MARK

So no mark

mark [Qi, Qj]

Step 3: [f, b]

$$g(f, 1) = f$$

 $g(b, 1) = b$

Step 3: [f,b]

$$g(f, 0) = g(a, 0) =$$

So MARK

No need...

Step: Repeat the steps until we cannot mark anymore ...

Step 4: Combine all the unmarked pairs (Qi, Qj) and make/them a

single state in reduce DFA.

Step 4: (a,b), (d, c), (e, c), (e, d)

	a	b	С	d	e	f
a						
b						
С	✓	✓				
d	✓	✓				
е	✓	✓				
f	✓	✓	✓	✓	✓	

Step 4: Combine all the unmarked pairs (Qi, Qj) and make them a

single state in reduce DFA.

Step 4: (a,b), (d, c), (e, c), (e, d)

