Let x and y be real variables, and let C(x,y) be a predicate involving x and y. Consider the two scenarios:

Scenerio 1: Input variable x. Assumption: For every $y \in \mathbb{R}$, C(x,y) is true.

Scenerio 2: Input variable y. Assumption: For every $x \in \mathbb{R}$, C(x,y) is false.

Observe that in the first scenario y is a bound variable, while in the second x is a bound variable. Consider the set S_1 of feasible instances to scenario 1 and S_2 of feasible instances to scenario 2. Can S_1 and S_2 both be nonempty? Explain.

If one negates S_2 , then you get the statement $\neg S_2(y) := \exists x \in \mathbb{R}, C(x,y)$ is true. The funny thing is this statement is roughly equivalent to S_1 if you let S_2 vary with regards to y. If you do, that means that S_1 is non-empty, there has to exist an element which satisfies. It gets even more interesting if you consider the double negation of S_2 , then there doesn't exist an element for which y makes C(x,y) true. This directly contradicts the first scenerio, in which for certain x ALL y make C(x,y) true. Therefore if one takes both to be true, then one must be empty.