

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
ОТЧЕТ
OT ILI
по лабораторной работе № <u>7</u>
по курсу: «Моделирование»
Тема <u>Моделирование работы информационного центра с</u> использованием GPSS
использованием СГ 55
Студент Якуба Д. В
Группа ИУ7-73Б
Оценка (баллы)
Прапонаваталь Рупамов И В

1. Задание

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй — запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

2. Теория

2.1 Концептуальная модель системы в терминах СМО

На рисунке 2.1 предоставлена концептуальная модель моделируемой системы в терминах СМО.

Рис. 2.1, концептуальная модель системы в терминах СМО

В процессе взаимодействия клиентов с информационным центром возможен:

- 1) Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
- 2) Режим отказа в обслуживании клиента, когда все операторы заняты

2.2 Переменные и уравнения имитационной модели

Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером.

Экзогенные переменные: число обслуженных клиентов и число клиентов, получивших отказ.

Вероятность отказа в обслуживании клиента:

$$P_{\text{отказа}} = \frac{C_{\text{отказанных}}}{C_{\text{отказанных}} + C_{\text{обслуженных}}}$$

где $C_{\text{отказанных}}$ — количество заявок, которым было отказано в обслуживании, $C_{\text{обслуженных}}$ — количество заявок, которые были обслужены.

3. Выполнение

На рисунках 3.1–3.2 предоставлены результаты выполнения написанной программы.

Рис. 3.1, сгенерированный отчет

Рис. 3.2, сгенерированный отчет

Из предоставленного отчета можно увидеть, что вероятность отказа составила 23.1% при факте того, что 300 заявок были обработаны успешно.

4. Листинг

```
; SIMULATE - "требование" исполнения программы
; !!! Данный оператор необходим, когда требуется выполнить прогон модели.
; Без него интерпретатор компонует модель, но прогонка не выполняется
SIMULATE
; Блок GENERATE генерирует поток танзактов, поступающих в систему
; Параметры: GENERATE A, B, C, D, E
; А - среднее время между поступлениями транзактов в систему (по умолчанию
1)
; В - модификатор времени. Может быть двух тупов: модификатор-интервал
(число) и модификатор-функция
; С - начальная задержка появления первого транзакта
; D - общее число транзактов, которое должно быть сгенерировано этим блоком
; У - приоритет транзакта (значение от 0 до 127) (по умолчанию 0)
; Генерация 1000 заявок с интервалом времени [10 - 2; 10 + 2]
GENERATE 10,2,,1000,
; Оператор №1
         ; GATE - блок изменения пути транзакта в зависимости от состояния
моделируемого оборудования
         ; Операнды и поле: GATE О А, В
          ; О - поле, которое задает проверяемое состояние оборудования в
виде мнемокода
          ; А - имя проверяемой единицы оборудования
          ; В - имя блока, к которому направляется транзакт, если
проверяемое условие ложно
         ; NU - мнемокод, который означает состояние "свободно" объекта
"Устройство"
          ; Переход ко второму оператору в случае, если первый занят
fOperator GATE NU FIRSTOPERATOR, sOperator
         ; SEIZE - блок "занять устройство"
          ; Операнд: SEIZE A
          ; А - имя занимаемого устройства
          ; Когда транзакт направляется из какого-нибудь блока в блок SEIZE,
симулятор проверяет, свободно ли
         ; соответствующее устройсство. Если оно занято, то транзакт не
может войти в этот блок, Он остается
         ; в предшествующем блоке до тех пор, пока заданное устройство не
освободится. В случае, если устройство
          ; свободно, транзакт передвигается в блок, занимает устройство и в
тот же момент направляется к следующему
          ; за SEIZE блоку
          ; Занятие первого оператора
         SEIZE FIRSTOPERATOR
         ; ADVANCE - блок задержки транзактов на определенные интервалы
модельного времени
         ; Операнды: ADVANCE A, В
          ; А - время задержки транзакта в блоке
          ; В - модификатор-функция или модификатор-интервал
          ; Задание задержки заявки на 20 +- 5 минут
          ADVANCE 20,5
```

```
; RELEASE - блок освобождения устройства
          ; Операнд: RELEASE A
          ; А - имя устройства
          ; При входе транзакта в блок RELEASE происходит освобождение
устройства
          ; !!! Освободить устройство может только тот транзакт, который его
занимает
          ; Освобождение занятого первого оператора
         RELEASE FIRSTOPERATOR
          ; TRANSFER - блок перехода
          ; Операнды: TRANSFER A, B, C, D
          ; А - тип перехода
          ; В - направление перехода
          ; С - направление перехода, используемое в случае, когда А -
десятичная дробь, означающая вероятность перехода в С
          ; D - направление условного перехода в случае, когда А - мнемокод
          ; Если блок, к которому направляется транзакт, в текущий момент
системного времени
          ; не может его принять, то транзакт остается в данном блоке и
повторяет попытку перехода
          ; при каждом пересчете системного времени симулятором
          ; Переход к блоку с меткой fComputer
                                    ; Передать заявку в блок proc1
          TRANSFER , fComputer
; Оператор №2
          ; Переход ко третьему оператору в случае, если второй занят
sOperator GATE NU SECONDOPERATOR, tOperator
          ; Занятие второго оператора
         SEIZE SECONDOPERATOR
          ; Задание задержки заявки на 40 +- 10 минут
         ADVANCE 40,10
          ; Освобождение занятого второго оператора
         RELEASE SECONDOPERATOR
          ; Переход к блоку с меткой fComputer
          TRANSFER ,fComputer
; Оператор №3
          ; Потеря заявки в случае, если третий оператор так же занят
tOperator GATE NU THIRDOPERATOR, reqSkipped
          ; Занятие третьего оператора
          SEIZE THIRDOPERATOR
          ; Задание задержки заявки на 40 +- 20 минут
         ADVANCE 40,20
          ; Освобождение занятого третьего оператора
          RELEASE THIRDOPERATOR
          ; Переход к блоку с меткой sComputer
          TRANSFER , sComputer
; Компьютер №1
         ; QUEUE - блок постановки в очередь
          ; Операнды: QUEUE A, В
          ; А - имя очереди
          ; В - значение увеличения длины очереди (по умолчанию 1)
          ; В начальный момент времени, когда очередь пуста, ее длина равна
нулю
          ; !!! Данный блок не влияет на реальное образование очередей
транзактов, а служит только для сбора статистики
          ; Постановка заявки в очередь на обработку первым компьютером
fComputer QUEUE FCOMPQUEUE
```

```
; Занятие первого компьютера
          SEIZE FIRSTCOMPUTER
          ; DEPART - блок извлечения из очереди
          ; Операнды: DEPART A, В
          ; А - имя очереди
          ; В - значение уменьшения длины очереди (по умолчанию 1)
          ; !!! Данный блок не влияет на реальное образование очередей
транзактов, а служит только для сбора статистики
          ; Изъятие заявки из очереди для обработки первым компьютером
          DEPART FCOMPQUEUE
          ; Задание задержки заявки на 15 минут
          ADVANCE 15
          ; Освобождение занятого первого компьютера
          RELEASE FIRSTCOMPUTER
          ; Переход к блоку с меткой reqSuccess
          TRANSFER , reqSuccess
; Компьютер №2
          ; Постановка заявки в очередь на обработку вторым компьютером
sComputer QUEUE SCOMPQUEUE
          ; Занятие второго компьютера
         SEIZE SECONDCOMPUTER
          ; Изъятие заявки из очереди для обработки вторым компьютером
         DEPART SCOMPQUEUE
          ; Задание задержки заявки на 30 минут
         ADVANCE 30
          ; Освобождение занятого второго компьютера
          RELEASE SECONDCOMPUTER
          ; Переход к блоку с меткой reqSuccess
          TRANSFER , reqSuccess
; Переход к блоку с меткой finalStatistics
                  TRANSFER , statisticsSkip
reqSkipped
; Переход к блоку с меткой finalStatistics
                    TRANSFER , statisticsSuc
reqSuccess
                    ; SAVEVALUE - блок работы с ячейками
                    ; Операнды: SAVEVALUE A, В
                    ; А - номер или имя ячейки, храняющей значение и вид вид
изменения этого значения (+ или -)
                    ; В - записываемое в ячейку значение
                    ; Запись количества обработанных заявок
statisticsSuc
                                    SUCCESPROCESSED, N$reqSuccess
                    SAVEVALUE
                    ; Запись количества заявок, которым было отказано в
осблуживании
                                     SKIPPEDREQUESTS, N$reqSkipped
                    SAVEVALUE
                    ; Запись вероятности отказа
                    SAVEVALUE
          PROBABILITYOFSKIP, ((N$reqSkipped) / (N$reqSkipped + N$reqSuccess))
                    ; TERMINATE - блок уничтожения транзактов. Транзакты,
попадающие в этот блок, уничтожются и больше не участвуют в процессе
моделирования
                    ; Операнд: TERMINATE A
                    ; А - операнд, значение которого вычитается из итогового
счетчика
                    ; Уменьшение счётчика на единицу
                    TERMINATE 1
```

```
; Запись количества обработанных заявок
statisticsSkip
                    SAVEVALUE
                                     SUCCESPROCESSED, N$reqSuccess
                    ; Запись количества заявок, которым было отказано в
осблуживании
                                     SKIPPEDREQUESTS, N$reqSkipped
                    SAVEVALUE
                    ; Запись вероятности отказа
                    SAVEVALUE
          PROBABILITYOFSKIP, ((N$reqSkipped) / (N$reqSkipped + N$reqSuccess))
                    ; Счетчик не изменяется, так как заявке было отказано в
предоставлении услуг
                    TERMINATE 0
; START - управляющий блок, устанавливает первоначальную величину счетчика
; Параметры: START A, B, C
; А - первоначальная величина счетчика
; В - признак подавления печати (NP - отмена стандартной печати в конце
моделирования)
; С - шаг вывода статистики на печать
; Через программу модели пропускается 300 «успешных» транзактов
START 300
```