The Impact of Non-Volatile Memory on Modern Computer Systems

Giulia Frascaria

Now THAT's a mouthful!

Let me start with some context...

Why are we even here?

- Lack of courses on storage technologies
- Storage is a fundamental part of Computer Systems
- Evolving hardware and software should not go unnoticed

What do we know?

- Traditionally, storage has been the outcast
- Avoid interaction at all costs
- Heavy performance penalty
- OS mechanisms to avoid it

So storage is just a necessary evil, right?

Storage technologies 101

The storage pyramid

Amazing, so the software will just work faster now!

Not at all!

Before

HDD	NAND Flash	Optane
Sector granularity R/W	Page granularity R Block granularity E/W	Byte granularity
Slow R/W	Fast R, Slow W	Fast R/W
No Garbage Collection	Garbage Collection	In-place updates
No wearout	Wearout	Wearout

HDD	NAND Flash	Optane
Sector granularity R/W	Page granularity R/W Block granularity E	Byte granularity
Slow R/W	Fast R, Slow W	Fast R/W
No Garbage Collection	Garbage Collection	In-place updates
No wearout	Wearout	Wearout

HDD	NAND Flash	Optane
Sector granularity R/W	Page granularity R Block granularity E/W	Byte granularity
Slow R/W	Fast R, Slow W	Fast R/W
No Garbage Collection	Garbage Collection	In-place updates
No wearout	Wearout	Wearout

HDD	NAND Flash	Optane
Sector granularity R/W	Page granularity R Block granularity E/W	Byte granularity
Slow R/W	Fast R, Slow W	Fast R/W
No Garbage Collection	Garbage Collection	In-place updates
No wearout	Wearout	Wearout

HDD	NAND Flash	Optane
Sector granularity R/W	Page granularity R Block granularity E/W	Byte granularity
Slow R/W	Fast R, Slow W	Fast R/W
No Garbage Collection	Garbage Collection	In-place updates
No wearout	Wearout	Wearout

Where do we even start?

The big picture

Optimizations & interfaces

- Revisit low level design decisions
- Old interface based on HDD internals
- Improve bandwidth
- Improve parallelism
- Reduce software overhead

Latency breakdown

Now I see...

What about file systems?

Log-based file systems

Paper spotlight: F2FS

- Log-based file system
- Mobile and server systems
- 90%+ sequential writes in mobile
- Included in Linux kernel (v3.8)

There's still the OS though

What the OS has to do

- Multiplexing
- Resource limits
- Protection
- I/O scheduling
- Access control
- Naming

What hardware can do

- Multiplexing
- Resource limits
- Protection
- I/O scheduling
- Access control
- Naming

Paper spotlight: Arrakis

Paper spotlight: Arrakis

Paper spotlight: Arrakis

What's next?

Heterogeneity

- New storage is not only an evolution, it is a diversification
- Specialized use cases demand for specialized infrastructure
- DRAM-NVM is not the same as DRAM-HDD

Paper spotlight: NOVA

- Traditional file systems do not work with hybrid memory systems
- Log-structured file system
- Hybrid volatile/non-volatile main memory
- Redesign consistency mechanisms

Programmability

- Push custom functionality to the storage
- Want to have multi-tenancy
- Still need to grant safety and isolation
- Can be done at different layers of abstraction

Programmable everything

My take

- Programmability is in line with the increase of use cases
- Embrace diversity, don't hide it
- Hardware-based specialization is costly
- Low-level is fun
- Why not do a thesis on this?

Lesson learned... There's a lot to research

With great storage technology comes great responsibility

Old solutions won't just "work faster" on new hardware

A note on methodology

- Tier 1 venues (Usenix ATC, FAST, HotStorage, OSDI, SOSP, Systor)
- Focus on the last 5 years
- Include references if relevant (background concepts, fundamental work, vision papers)

The problem with random writes

Garbage collection

