Állóhullám kötélen

Kalló Bernát – Mérés: 2012.04.25. – Leadás: 2012.05.02.

1. Különböző módusok frekvenciái

A mérés célja. Kötélen vizsgálunk állóhullámokat. A kötél egyik végét egy súly feszíti, a másik végén egy állítható frekvenciájú szinuszos rezgéskeltő van.

Az első kísérletünkben állandó súllyal különböző állóhullám-módusokat állítunk be a rezgéskeltő segítségével. Azt szeretnénk belátni, hogy az f frekvencia és a rezgő szakaszok n száma között a

$$f = \frac{c}{\lambda_n} = \frac{cn}{2L}$$

összefüggés áll fenn, ahol c a hullám terjedési sebessége (független n-től), L a rezgő kötél hossza, és $\lambda_n = \frac{2L}{n}$ az n-edik módushoz tartozó hullámhossz (a rezgő szakaszok hosszának duplája). Megmértem a kötél hosszát is: L=1,43 m.

A mérés menete. $n=2,\ldots,6$ szakaszból álló módusokat állítok be a rezgéskeltő frekvenciájának állításával. Minden módusra megnézem, hogy mennyi a legkisebb ill. a legnagyobb érték (f_{\min} és f_{\max}), amire még elég nagy amplitúdóval látszik az állóhullám.

Kiértékelés. f_{\min} és f_{\max} átlagával fogok számolni. Hibabecsléshez a különbségük (Δf) átlagát fogom venni, ami 0,2.

n	$f_{\min}\left(\mathrm{Hz}\right)$	$f_{ m max}\left({ m Hz}\right)$	$\Delta f \left(\mathrm{Hz} \right)$	f(Hz)
2	13,6	13,6	0	$13,6 \pm 0,20$
3	20,4	20,6	0,2	$20,5 \pm 0,20$
4	27,4	27,6	0,2	$27,5 \pm 0,20$
5	34,3	34,3	0	$34,3 \pm 0,20$
6	41,1	41,7	0,6	$41,4\pm 0,20$

1. táblázat. A mért adatok és számolt értékek

Ezután ábrázolom grafikonon f-et n függvényében:

1. ábra. A frkvencia és a módusszám közti összefüggés

A GNUPLOT-tal illesztett egyenes egyenlete f=-0,3+6,94*n, korrelációja 0,943, tehát jó közelítéssel origón átmenő egyenest kaptunk. Ez azt jelenti, hogy igazoltuk az $f=\frac{c}{2L}\cdot n$ összefüggést, ebből $c=6,94\,\mathrm{Hz}\cdot 2L=19,8\,\mathrm{m/s}$.

2. Különböző húzóerők

A mérés célja. A következő kísérletben egy másik kötéllel különböző húzóerőknél megmérjük egy állóhullám frekvenciáját. Ebből ki fogjuk számolni a hullám terjedési sebességét, abból pedig a szál lineáris sűrűségét.

A mérés menete. Különböző húzóerők mellett úgy állítjuk be a frekvenciát, hogy 3 szakaszos állóhullámok alakuljanak ki (n=3). Minden mérésnél úgy próbáljuk beállítani, hogy a maximális amplitúdót érjük el. Három mérést végzünk, és az átlagukat vesszük f-nek, a szórásuk háromszorosát pedig hibakorlátnak.

	$f_i\left(\mathrm{Hz} ight)$. ()
m(g)	1	2	3	f(Hz)
50	82,5	83,0	82,5	$83 \pm 0,9$
70	97,2	97,2	97,7	$97 \pm 0, 9$
90	110,7	110,9	110,6	$110,7 \pm 0,46$
110	122,3	122,4	122,2	$122, 3 \pm 0, 30$
130	133,2	133,0	133,1	$133, 1 \pm 0, 30$
150	143,1	143,1	143,0	$143, 1 \pm 0, 18$
170	152,5	152,5	152,4	$152, 5 \pm 0, 18$

2. táblázat. A mért adatok

Kiértékelés. A kötélen a terjedési sebesség függ a feszítőerőtől (F) és a kötél lineáris sűrűségétől (μ) :

$$v = \sqrt{\frac{F}{\mu}}$$

Mivel $F=mg,\,v=f\lambda$ és $\lambda=\frac{2L}{n},$ a frekvenciára a

$$f^2 = \frac{n^2 g}{4L^2 \mu} m = a \cdot m$$

kifejezést kapjuk.

Ábrázoljuk grafikonon f^2 -et m szerint, és illesszünk rá egyenest:

2. ábra. $f^2 - m$ függvény

Az egyenes meredeksége $a=136,9\,{}^{\rm Hz^2/\!g}\!,$ ebből

$$\mu = \frac{n^2 g}{4L^2 a} = 0,079 \,\frac{\text{g}}{\text{m}}.$$

Az eredményt ellenőrizendő, megmértük analitikai mérleggel a kötél egy $L_0=4,05$ méteres darabját, erre $m_0=0,3925\,{\rm g}$ -ot kaptunk. Így

$$\mu_0 = \frac{m_0}{L_0} = 0,0969 \,\frac{\text{g}}{\text{m}}.$$

Diszkusszió. A két eredmény nagyságrendben megegyezik, mégis van a hibahatárnál nagyobb eltérés. Erre nem találtam kielégítő magyarázatot.