પ્રશ્ન 1(અ) [3 ગુણ]

માઇક્રોકંટ્રોલર્સનાં સામાન્ય ફીચર્સની સૂચિ બનાવો.

જવાબ:

ફીચર	હેતુ
CPU કોર	સૂચનાઓ પ્રોસેસ કરવા
મેમરી (RAM/ROM)	પ્રોગ્રામ અને ડેટા સ્ટોર કરવા
I/O પોર્ટ્સ	બાહ્ય ડિવાઇસ સાથે ઇન્ટરફેસ
ટાઇમર/કાઉન્ટર	સમય અંતરાલ માપવા
ઇન્ટરપ્ટ	અસિંક્રોનસ ઘટનાઓ સંભાળવા
સીરિયલ કમ્યુનિકેશન	અન્ય ડિવાઇસ સાથે ડેટા ટ્રાન્સફર

યાદ રાખવા માટે: "CPU-TIS: CPU-RAM-I/O-ટાઇમર-ઇન્ટરપ્ટ-સીરિયલ"

પ્રશ્ન 1(બ) [4 ગુણ]

ALU ના કાર્યો સમજાવો.

જવાબ:

รเข้	વર્ણન
ગણિત ઓપરેશન્સ	સરવાળો, બાદબાકી, ઇન્ક્કિમેન્ટ, ડિક્કિમેન્ટ
લોજિકલ ઓપરેશન્સ	AND, OR, XOR, NOT, तुलना
ડેટા મૂવમેન્ટ	રજિસ્ટર અને મેમરી વચ્ચે ટ્રાન્સફર
ફ્લેગ સેટિંગ	ઓપરેશન પરિણામ પર આદ્યારિત સ્ટેટસ ફ્લેગ અપડેટ

ડાયાગ્રામ:

યાદ રાખવા માટે: "ALFS: અરિથમેટિક લોજિક ફ્લેંગ સ્ટેટસ"

પ્રશ્ન 1(ક) [7 ગુણ]

વ્યાખ્યાયિત કરો: મેમરી, ઓપરેન્ડ, ઈન્સ્ટ્રક્શન સાયકલ, ઓપકોડ, CU, મશીન સાયકલ, CISC

જવાબ:

કાલ્€	વ્યાખ્યા
મેમરી	ડેટા અને સૂચનાઓ સંગ્રહિત કરતું સ્ટોરેજ યુનિટ
ઓપરેન્ડ	ઓપરેશનમાં વપરાતી ડેટા વેલ્યુ અથવા એડ્રેસ
ઈન્સ્ટ્રક્શન સાયકલ	સૂચના ફેચ અને એક્ઝિક્યુટ કરવાની સંપૂર્ણ પ્રક્રિયા
ઓપકોડ	સૂચનાનો પ્રકાર દર્શાવતો ઓપરેશન કોડ
cu	પ્રોસેસર ઓપરેશન્સનું સંકલન કરતું કંટ્રોલ યુનિટ
મશીન સાયકલ	T-સ્ટેટ્સથી બનેલી મૂળભૂત ઓપરેશન સાયકલ
CISC	સમૃદ્ધ સૂચના સેટ સાથેનું કોમ્પ્લેક્સ ઇન્સ્ટ્રક્શન સેટ કમ્પ્યુટર

- મેમરી: યુનિક એડ્રેસ સાથે સ્ટોરેજ સેલનો વ્યવસ્થિત એરે
- ઓપરેન્ડ: સૂચનાઓ જેના પર ક્રિયા કરે છે તે ડેટા એલિમેન્ટ
- ઈન્સ્ટ્રક્શન સાયકલ: દરેક સૂચના માટે ફેચ-ડિકોડ-એક્ઝિક્યુટ સિક્વન્સ
- **ઓપકોડ**: પ્રોસેસરને કયું ઓપરેશન કરવાનું છે તે જણાવતો બાઇનરી કોડ

ડાયાગ્રામ:

```
Instruction Cycle:
+----+ +----+ +----+
| Fetch |---> | Decode |---> | Execute |
+----+ +-----+
```

યાદ રાખવા માટે: "MO-ICO-MC: મેમરી-ઓપરેન્ડ-ઈન્સ્ટ્રક્શન-કંટ્રોલ-ઓપરેશન-મશીન-કોમ્પ્લેક્સ"

પ્રશ્ન 1(ક OR) [7 ગુણ]

i) વ્યાખ્યાયિત કરો: માઇક્રોપ્રોસેસર ii) વોન-ન્યુમેન અને હાર્વર્ડ આર્કિટેક્ચરની તુલના કરો.

જવાબ:

i) માઇક્રોપ્રોસેસર વ્યાખ્યા:

એક ઇન્ટિગ્રેટેડ સર્કિટ કે જેમાં કમ્પ્યુટરના CPU ફંક્શનાલિટી સમાવિષ્ટ હોય છે, જે સૂચનાઓને ફેય, ડિકોડ અને એક્ઝિક્યુટ કરવા સક્ષમ છે અને ALU અને કંટ્રોલ સર્કિટરી એક જ ચિપ પર ધરાવે છે.

ii) વોન-ન્યુમેન vs હાર્વર્ડ આર્કિટેક્ચર:

લક્ષણ	વોન-ન્યુમેન	હાવંડે
મેમરી	એક શેર્ડ મેમરી	અલગ પ્રોગ્રામ અને ડેટા મેમરી
어관	ડેટા અને સૂચનાઓ માટે એક બસ	અલગ બસ
સ્પીડ	ધીમી (મેમરી બોટલનેક)	ઝડપી (પેરેલલ એક્સેસ)
જટિલતા	સરળ ડિઝાઇન	વધુ જટિલ
ઉપયોગ	જનરલ કમ્પ્યુટિંગ	રીયલ-ટાઇમ સિસ્ટમ

ડાયાગ્રામ:

ચાદ રાખવા માટે: "હાર્વર્ડ પાસે અલગ જગ્યાઓ છે"

પ્રશ્ન 2(અ) [3 ગુણ]

8085 માઇક્રોપ્રોસેસરના વિવિધ રજીસ્ટરો સમજાવો.

રજિસ્ટર	સાઇઝ	รเช้
એક્યુમુલેટર (A)	8-બિટ	ગાણિતિક અને લોજિક માટે મુખ્ય રજિસ્ટર
જનરલ પર્પેઝ (B,C,D,E,H,L)	8-બિટ	અસ્થાયી ડેટા સ્ટોરેજ
પ્રોગ્રામ કાઉન્ટર (PC)	16-બિટ	આગલી સૂચનાનું એડ્રેસ
સ્ટેક પોઇન્ટર (SP)	16-બિટ	સ્ટેકના ટોપને પોઇન્ટ કરે
ફ્લેગ રજિસ્ટર	8-બિટ	સ્ટેટસ ફ્લેંગ્સ (Z,S,P,CY,AC)

યાદ રાખવા માટે: "AGSF: એક્યુમુલેટર-જનરલ-સ્ટેક-ફ્લેગ્સ"

પ્રશ્ન 2(બ) [4 ગુણ]

ઈન્સ્ટ્રક્શનનું ફેચિંગ, ડીકોડિંગ અને એક્ઝેક્યુશન સમજાવો.

જવાબ:

ફેઝ	ਮੁਧੂਿ ਜ	સંબંધિત હાર્ડવેર
ફેચિંગ	PC માંના એડ્રેસથી મેમરીમાંથી સૂચના મેળવવી	PC, એડ્રેસ બસ, મેમરી
ડીકોડિંગ	ઓપરેશન પ્રકાર અને ઓપરેન્ડ ઓળખવા	ઈન્સ્ટ્રક્શન રજિસ્ટર, કંટ્રોલ યુનિટ
એક્ઝેક્યુશન	નિર્દિષ્ટ ઓપરેશન કરવું	ALU, રજિસ્ટર્સ, ડેટા બસ

ડાયાગ્રામ:

- ફેચિંગ: PC મેમરીને એડ્રેસ મોકલે, સૂચના IR માં લોડ થાય
- ડીકોડિંગ: કંટ્રોલ યુનિટ સૂચના ઓપકોડ અને એડ્રેસિંગ મોડ સમજે
- **એક્ઝેક્યુશન**: ALU ગાણિતિક/લોજિક કાર્ય કરે, રજિસ્ટર/મેમરી વચ્ચે ડેટા ફેરફાર થાય

યાદ રાખવા માટે: "FDE: પહેલા લે, પછી સમજે, અંતે કરે"

પ્રશ્ન 2(ક) [7 ગુણ] (ચાલુ)

આકૃતિની મદદથી 8085 માઇક્રોપ્રોસેસરના બ્લોક ડાયાગ્રામનું વર્ણન કરો.

Block	Function
ALU Arithmetic & logical operations	
Register Array	Temporary data storage
Instruction Register & Decoder	Hold & interpret instructions
Control & Timing Unit	Generate control signals
Address Buffer	Interface with address bus
Data Buffer	Interface with data bus
Serial I/O	Communication with SID/SOD
Interrupt Control	Handle interrupt requests

ડાયાગ્રામ:

- મુખ્ય કમ્પોનન્ટ્સ: ALU અને રજિસ્ટર્સ પ્રોસેસિંગ કોર બનાવે છે
- કંટ્રોલ પાથ: સૂચનાઓ રજિસ્ટર, ડિકોડર, કંટ્રોલ યુનિટ મારફતે વહે છે
- ડેટા પાથ: ડેટા બફર્સથી બાહ્ય બસ સુધી/થી ફેરફાર થાય છે
- ટાઇમિંગ: આંતરિક ક્લોક દ્વારા બધા ઓપરેશન્સનું સિંક્રોનાઇઝેશન

યાદ રાખવા માટે: "RAID: રજિસ્ટર્સ-ALU-ઈન્સ્ટ્રક્શન્સ-ડિકોડર્સ"

પ્રશ્ન 2(અ OR) [3 ગુણ]

માઇક્રોપ્રોસેસર અને માઇક્રોકંટ્રોલરની સરખામણી કરો.

જવાબ:

લક્ષણ	માઇક્રોપ્રોસેસર	માઇક્રોકંટ્રોલર
ડિઝાઇન	માત્ર CPU	CPU + પેરિફેરલ્સ
મેમરી	બા હ્ય	આંતરિક (RAM/ROM)
I/O પોર્ટ્સ	મર્યાદિત	બિલ્ટ-ઇન ઘણા
ઉપયોગ	જનરલ કમ્પ્યુટિંગ	એમ્બેડેડ સિસ્ટમ
કિંમત	વધારે	ઓછી
ઉદાહરણ	Intel 8085/8086	Intel 8051

યાદ રાખવા માટે: "માઇક્રો-P પ્રોસેસ કરે, માઇક્રો-C કંટ્રોલ કરે"

પ્રશ્ન 2(બ OR) [4 ગુણ]

8085 માઇક્રોપ્રોસેસર માટે એડ્રેસ અને ડેટા બસોનું ડી-મલ્ટીપ્લેક્સીંગ સમજાવો.

જવાબ:

સ્ટેપ	ક્રિયા
1	ALE સિગ્નલ હાઈ થાય
2	AD0-AD7 પર લોઅર એડ્રેસ (A0-A7) દેખાય
3	લેચ ALE નો ઉપયોગ કરી એડ્રેસ પકડે
4	ALE લો થાય, AD0-AD7 હવે ડેટા ટ્રાન્સફર કરે

ડાયાગ્રામ:

- **મલ્ટિપ્લેક્સિંગ**: AD0-AD7 પિન્સ અલગ-અલગ સમયે એડ્રેસ અને ડેટા ટ્રાન્સફર કરે છે
- **ALE સિગ્નલ**: એડ્રેસ લેચ એનેબલ એડ્રેસ ક્યારે પકડવું તે નિયંત્રિત કરે છે

- 8-બિટ લેચ: આખા મશીન સાયકલ દરમિયાન લોઅર એડ્રેસ બિટ્સ રાખે છે
- **ટાઇમિંગ**: ALE પત્સના હાઈ સ્ટેટ દરમિયાન જ એડ્રેસ માન્ય રહે છે

યાદ રાખવા માટે: "ALAD: ALE ડેટા પહેલા એડ્રેસ લેચ કરે"

પ્રશ્ન 2(ક OR) [7 ગુણ]

આકૃતિની મદદથી 8085 માઇક્રોપ્રોસેસરના પિન ડાયાગ્રામનું વર્ણન કરો.

જવાબ:

પિન ગ્રુપ	รเช้
એડ્રેસ/ડેટા	મલ્ટિપ્લેક્સ્ડ AD0-AD7, A8-A15
કંટ્રોલ	RD, WR, IO/M, S0, S1, ALE, CLK
ઇન્ટરપ્ટ	INTR, RST 5.5-7.5, TRAP
DMA	HOLD, HLDA
પાવર	Vcc, Vss
સીરિયલ I/O	SID, SOD
રીસેટ	RESET IN, RESET OUT

ડાયાગ્રામ:

```
X1 \longrightarrow |1  40 < -- Vcc
      X2 --> | 2 39 | <-- HOLD
RESET OUT-->|3 38|<-- HLDA
RESET IN --> | 4
                37 <-- CLK
   IO/M -->|5 36|<-- RESET IN
      S1 --> | 6
                35 <-- READY
     RD \longrightarrow |7  34 |<-- IO/M
     WR --> | 8 33 | <-- S1
    ALE --> | 9 32 | <-- RD
     S0 --> | 10
                 31 <-- WR
    A15 --> | 11
                 30 <-- ALE
    A14 --> | 12
                 29 <-- S0
    A13 --> | 13 28 | <-- A15
    A12 --> | 14
                 27 | <-- A14
    A11 --> | 15
                 26 <-- A13
    A10 --> | 16 25 | <-- A12
     A9 --> | 17
                 24 <-- A11
     A8 --> | 18
                 23 <-- A10
                 22 <-- A9
     AD7 --> | 19
     AD6 --> | 20 21 | <-- A8
            +----+
```

• **એડ્રેસ પિન્સ**: A8-A15 (8) અને મલ્ટિપ્લેક્સ્ડ AD0-AD7 (8) 16-બિટ એડ્રેસિંગ માટે

• કંટોલ પિન્સ: પેરિફેરલ ડિવાઇસ માટે ટાઇમિંગ અને કંટ્રોલ સિગ્નલ્સ જનરેટ કરે

• ઇન્ટરપ્ટ પિન્સ: પ્રાયોરિટી લેવલ સાથે હાર્ડવેર ઇન્ટરપ્ટ હેન્ડલિંગ

• ક્લોક: ક્રિસ્ટલ કનેક્શન માટે X1, X2, સિંક્રોનાઇઝેશન માટે CLK

• **પાવર**: Vcc (+5V) અને Vss (ગ્રાઉન્ડ) પાવર સપ્લાય માટે

યાદ રાખવા માટે: "ACID-PS: એડ્રેસ-કંટ્રોલ-ઇન્ટરપ્ટ-DMA-પાવર-સીરિયલ"

પ્રશ્ન 3(અ) [3 ગુણ]

8051 માઇક્રોકંટ્રોલરનાં ઇંટરપ્ટ્સ સમજાવો.

જવાબ:

ઇન્ટરપ્ટ	વેક્ટર	પ્રાયોરિટી	સ્ત્રોત
External 0	0003H	1 (IP.0)	Pin INT0 (P3.2)
Timer 0	000BH	2 (IP.1)	Timer 0 ઓવરફ્લો
External 1	0013H	3 (IP.2)	Pin INT1 (P3.3)
Timer 1	001BH	4 (IP.3)	Timer 1 ઓવરફ્લો
Serial	0023H	5 (IP.4)	સીરિયલ પોર્ટ ઇવેન્ટ્સ

ડાયાગ્રામ:

યાદ રાખવા માટે: "ETTES: External-Timer-Timer-External-Serial"

પ્રશ્ન 3(બ) [4 ગુણ]

8051 માઇક્રોકંટ્રોલરનો પિન ડાયાગ્રામ દોરો.

8051 Micr	ocontroller
	+
P1.0 1	40 VCC
P1.1 2	39 P0.0/AD0
P1.2 3	38 P0.1/AD1
P1.3 4	37 P0.2/AD2
P1.4 5	36 P0.3/AD3
P1.5 6	35 P0.4/AD4
P1.6 7	34 P0.5/AD5
P1.7 8	33 P0.6/AD6
RST 9	32 P0.7/AD7
P3.0/RXD 10	31 EA/VPP
P3.1/TXD 11	30 ALE/PROG
P3.2/INT0 12	29 PSEN
P3.3/INT1 13	28 P2.7/A15
P3.4/T0- 14	27 P2.6/A14
P3.5/T1- 15	26 P2.5/A13
P3.6/WR- 16	25 P2.4/A12
P3.7/RD- 17	24 P2.3/A11
XTAL2 18	23 P2.2/A10
XTAL1 19	22 P2.1/A9
VSS 20	21 P2.0/A8
·	+

પિન ગ્રુપ	รเช็
P0	પોર્ટ 0, એડ્રેસ/ડેટા સાથે મલ્ટિપ્લેક્સ્ડ
P1	પોર્ટ 1, જનરલ પર્પંઝ I/O
P2	પોર્ટ 2, અપર એડ્રેસ અને I/O
P3	પોર્ટ 3, સ્પેશિયલ ફંક્શન્સ અને I/O
XTAL	ક્રિસ્ટલ ઓસિલેટર કનેક્શન્સ
કંટ્રોલ	RST, EA, ALE, PSEN

યાદ રાખવા માટે: "PORT 0123: ડેટા-જનરલ-એડ્રેસ-સ્પેશિયલ"

પ્રશ્ન 3(ક) [7 ગુણ]

8051 માઇક્રોકંટ્રોલરનું આંતરિક રેમ ઓર્ગેનાઇઝેશન સમજાવો.

RAM એરિયા	એડ્રેસ રેન્જ	ઉપયોગ
રજિસ્ટર બેન્ ડ સ	00H-1FH	R0-R7 (4 બેન્ક્સ)
બિટ-એડ્રેસેબલ	20H-2FH	128 બિટ્સ (0-7FH)
સ્ક્રેય પેડ	30H-7FH	જનરલ પર્પંઝ
SFRs	80H-FFH	કંટ્રોલ રજિસ્ટર્સ

ડાયાગ્રામ:

- **રજિસ્ટર બેન્ક્સ**: 8 રજિસ્ટર્સ (R0-R7)ની 4 બેન્ક્સ PSW દ્વારા સિલેક્ટેબલ
- **બિટ-એડ્રેસેબલ**: 16 બાઇટ્સ (128 બિટ્સ) વ્યક્તિગત રીતે બિટ તરીકે એડ્રેસેબલ
- જનરલ પર્પંઝ: યુઝર વેરિએબલ્સ અને સ્ટેક સ્પેસ
- SFRs: ઉચ્ચ એડ્રેસ પર કંટ્રોલ અને સ્ટેટસ રજિસ્ટર્સ

યાદ રાખવા માટે: "RBBS: રજિસ્ટર્સ બિટ્સ બફર સ્પેશિયલ"

પ્રશ્ન 3(અ OR) [3 ગુણ]

SFRs ને તેમના એડ્રેસ સાથે સૂચિબદ્ધ કરો.

SFR	એડ્રેસ	ธเน้
P0	80H	นโร้ 0
SP	81H	સ્ટેક પોઇન્ટર
DPL	82H	ડેટા પોઇન્ટર લો
DPH	83H	ડેટા પોઇન્ટર હાઈ
PCON	87H	પાવર કંટ્રોલ
TCON	88H	ટાઇમર કંટ્રોલ
TMOD	89H	ટાઇમર મોડ
P1	90H	પોર્ટ 1
SCON	98H	સીરિયલ કંટ્રોલ
P2	АОН	પોર્ટ 2
IE	A8H	ઇન્ટરપ્ટ એનેબલ
P3	вон	પોર્ટ 3
IP	B8H	ઇન્ટરપ્ટ પ્રાયોરિટી
PSW	D0H	પ્રોગ્રામ સ્ટેટસ વર્ડ
ACC	ЕОН	એક્યુમુલેટર
В	FOH	B રજિસ્ટર

યાદ રાખવા માટે: "PDPT-SP: પોર્ટ્સ-ડેટા-પ્રોગ્રામ-ટાઇમર્સ-સીરિયલ-પ્રાયોરિટાઇઝ્ડ"

પ્રશ્ન 3(બ OR) [4 ગુણ]

8051 માઇક્રોકંટ્રોલરના ટાઇમર/કાઉન્ટર્સનો લોજિક ડાયાગ્રામ સમજાવો.

જવાબ:

ટાઇમર/કાઉન્ટર ડાયાગ્રામ:

કમ્પોનન્ટ	รเช่
TLx, THx	ટાઇમર લો અને હાઈ બાઇટ રજિસ્ટર્સ
С/Т	ટાઇમર (0) અથવા કાઉન્ટર (1) મોડ પસંદ કરે
GATE	બાહ્ય એનેબલ કંટ્રોલ
TRx	ટાઇમર રન કંટ્રોલ બિટ
મોડ કંટ્રોલ	ચાર ઓપરેશન મોડમાંથી એક પસંદ કરે

• ટાઇમર: આંતરિક ક્લોક વાપરે, મશીન સાયકલ ગણે

• **કાઉન્ટર**: T0/T1 પિન્સ પર બાહ્ય ઘટનાઓ ગણે

• **કંટ્રોલ બિટ્સ**: TMOD અને TCON રજિસ્ટર્સમાં સેટ થાય

• મોડ્સ: વિવિદ્ય ટાઇમર કોન્ફિગરેશન (13/16/8-બિટ)

યાદ રાખવા માટે: "TCG: ટાઇમર-કાઉન્ટર-ગેટ"

પ્રશ્ન 3(ક OR) [7 ગુણ]

8051 માઇક્રોકંટ્રોલરનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

કમ્પોનન્ટ	รเน้
CPU	8-બિટ પ્રોસેસર ALU સાથે
મેમરી	4K ROM, 128 બાઇટ્સ RAM
I/O પોર્ટ્સ	ચાર 8-બિટ પોર્ટ્સ (P0-P3)
ટાઇમર્સ	બે 16-બિટ ટાઇમર/કાઉન્ટર
સીરિયલ પોર્ટ	ફુલ-ડુપ્લેક્સ UART
ઇન્ટરપ્ટ	પાંચ ઇન્ટરપ્ટ સોર્સ
સ્પેશિયલ ફંક્શન રજિસ્ટર્સ	કંટ્રોલ રજિસ્ટર્સ

ડાયાગ્રામ:

- હાર્વર્ડ આર્કિટેક્ચર: અલગ પ્રોગ્રામ અને ડેટા મેમરી
- CISC ડિઝાઇન: સમૃદ્ધ ઇન્સ્ટ્રકશન સેટ (100થી વધુ સૂચનાઓ)
- બિલ્ટ-ઇન પેરિફેરલ્સ: બાહ્ય કમ્પોનન્ટ્સની જરૂર નથી
- સિંગલ-થિપ સોલ્યુશન: એક જ થિપ પર સંપૂર્ણ સિસ્ટમ

યાદ રાખવા માટે: "CAPITALS: CPU આર્કિટેક્ચર પોર્ટ્સ I/O ટાઇમર ALU ઇન્ટરફેસ સીરિયલ"

પ્રશ્ન 4(અ) [3 ગુણ] (ચાલુ)

ડેટાના બે બાઇટ ઉમેરીને પરિણામ R4 રજિસ્ટરમાં સંગ્રહિત કરવા માટે 8051 એસેમ્બલી લેંગ્વેજ પ્રોગ્રામ લખો.

જવાબ:

```
MOV A, #25H ; પ્રથમ મૂલ્ય (25H) એક્યુમુલેટરમાં લોડ કરો
MOV R3, #18H ; બીજું મૂલ્ય (18H) R3માં લોડ કરો
ADD A, R3 ; R3ને એક્યુમુલેટરમાં ઉમેરો
MOV R4, A ; પરિણામ R4 રજિસ્ટરમાં સ્ટોર કરો
```

મુખ્ય સ્ટેપ્સ:

- પ્રથમ ઓપરેન્ડ એક્યુમુલેટરમાં લોડ કરો
- બીજો ઓપરેન્ડ રજિસ્ટર R3માં લોડ કરો
- ADD સૂચનાનો ઉપયોગ કરી સરવાળો કરો

• એક્યુમુલેટરમાંથી પરિણામ R4માં સ્ટોર કરો

યાદ રાખવા માટે: "LLAS: લોડ-લોડ-એડ-સ્ટોર"

પ્રશ્ન 4(બ) [4 ગુણ]

પોર્ટ-1 અને પોર્ટ-2ના કન્ટેન્ટને OR કરીને પછી પરિણામને બાહ્ય RAM સ્થાન 0200H માં મૂકવા માટે 8051 એસેમ્બલી લેંગ્વેજ પ્રોગ્રામ લખો.

જવાબ:

```
MOV A, P1 ; પોર્ટ-1ની સામગ્રીને એક્યુમુલેટરમાં લોડ કરો
ORL A, P2 ; એક્યુમુલેટર સાથે પોર્ટ-2ની સામગ્રી OR કરો
MOV DPTR, #0200H ; બાહ્ય RAM એડ્રેસ સાથે DPTR લોડ કરો
MOVX @DPTR, A ; પરિણામ બાહ્ય RAM લોકેશન 0200H માં સ્ટોર કરો
```

મુખ્ય સ્ટેપ્સ:

- પોર્ટ-1 એક્યુમુલેટરમાં વાંચો
- પોર્ટ-2 સાથે OR ઓપરેશન કરો
- બાહ્ય RAM માટે ડેટા પોઇન્ટર (DPTR) સેટ કરો
- પરિણામ બાહ્ય મેમરીમાં લખો

યાદ રાખવા માટે: "PORT: પોર્ટ-OR-રજિસ્ટર-ટ્રાન્સફર"

પ્રશ્ન 4(ક) [7 ગુણ]

8051 માઇક્રોકંટ્રોલરના એડ્રેસિંગ મોડ્સની યાદી બનાવો અને ઓછામાં ઓછા એક ઉદાહરણ સાથે તેમને સમજાવો.

જવાબ:

એડ્રેસિંગ મોડ	ઉદાહરણ	વર્ણન
ઇમીડિયેટ	MOV A, #25H	ડેટા સૂચનામાં છે
રજિસ્ટર	MOV A, R0	ડેટા રજિસ્ટરમાં છે
ડાયરેક્ટ	MOV A, 30H	ડેટા RAM એડ્રેસ પર છે
ઇનડાયરેક્ટ	MOV A, @R0	R0/R1 એડ્રેસ ધરાવે છે
ઇન્ડેક્સ્ડ	MOVC A, @A+DPTR	પ્રોગ્રામ મેમરી એક્સેસ
બિટ	SETB P1.3	વ્યક્તિગત બિટ્સ એક્સેસ
રિલેટિવ	SJMP LABEL	8-બિટ ઑફસેટ સાથે જમ્પ

ઉદાહરણો:

• **ઇમીડિયેટ**: MOV A, #55H (A માં 55H લોડ કરો)

• **રજિસ્ટર**: ADD A, R3 (A માં R3 ઉમેરો)

• **ડાયરેક્ટ**: MOV 40H, A (A ને એડ્રેસ 40H પર સ્ટોર કરો)

• **ઇનડાયરેક્ટ**: MOV @RO, #5 (RO માં રહેલા એડ્રેસ પર 5 સ્ટોર કરો)

• ઇન્ડેક્સ્ડ: MOVC A, @A+DPTR (કોડ મેમરી વાંચો)

• **બિટ**: CLR C (કેરી ફ્લેંગ સાફ કરો)

• **રિલેટિવ**: Jz LOOP (જો A ઝીરો હોય તો જમ્પ કરો)

યાદ રાખવા માટે: "I'M DIRBI: ઇમીડિયેટ રજિસ્ટર ડાયરેક્ટ બિટ ઇન્ડેક્સ્ડ"

પ્રશ્ન 4(અ OR) [3 ગુણ]

નીચેની ઈન્સ્ટ્રક્શન્સ સમજાવો: (i) DJNZ (ii) POP (iii) CJNE.

જવાબ:

ઈન્સ્ટ્રક્શન	સિન્ટેક્સ	ઓપરેશન
DJNZ	DJNZ Rn, rel	રજિસ્ટર ડેક્રિમેન્ટ, જમ્પ ઇફ નોટ ઝીરો
POP	POP direct	સ્ટેકમાંથી ડેટા ડાયરેક્ટ એડ્રેસ પર પોપ કરો
CJNE	CJNE A, #data, rel	કમ્પેર એન્ડ જમ્પ ઇફ નોટ ઇક્વલ

ઉદાહરણો અને સમજૂતી:

• **DJNZ R7, LOOP**: R7 ઘટાડે અને જો R7≠0 તો LOOP પર જમ્પ કરે

૦ લૂપ કાઉન્ટર અને ડિલે માટે વપરાય છે

• POP 30H: સ્ટેકમાંથી ડેટા એડ્રેસ 30H પર કોપી કરે

o ડેટા રિટ્રીવલ પછી SP વધારે છે

• CJNE A, #25H, NOTEQUAL: A ને 25H સાથે સરખાવે, સમાન ન હોય તો જમ્પ કરે

૦ જો A < ડેટા હોય તો કેરી ક્લેગ પણ સેટ કરે

યાદ રાખવા માટે: "DPC: ડેક્રિમેન્ટ-પોપ-કમ્પેર"

પ્રશ્ન 4(બ OR) [4 ગુણ]

12 MHz ની ક્રિસ્ટલ ફ્રિકવન્સી સાથે 8051 માઇક્રોકંટ્રોલર માટે, 4ms નો ડિલેય જનરેટ કરો.

```
; કિસ્ટલ ફિકલન્સી = 12 MHz
; મશીન સાયકલ = 1 μs
; જરૂરી ડિલે = 4 ms = 4000 મશીન સાયકલ

MOV R7, #16 ; આઉટર લૂપ કાઉન્ટર (16 x 250 = 4000)

DELAY1: MOV R6, #250 ; ઇનર લૂપ કાઉન્ટર

DELAY2: NOP ; 1 મશીન સાયકલ

NOP ; 1 મશીન સાયકલ

DJNZ R6, DELAY2 ; 2 મશીન સાયકલ (250 x 4 = 1000 સાયકલ)

DJNZ R7, DELAY1 ; 16 x 250 = 4000 સાયકલ કુલ

RET ; સબરૂટીનમાંથી રિટર્ન
```

ગણતરી:

- દરેક ઇનર લૂપ: 4 સાયકલ × 250 ફેરા = 1000
- આઉટર લૂપ: 16 ફેરા × 1000 સાયકલ = 16,000 સાયકલ
- 12MHz પર, 1 મશીન સાયકલ = 1µs
- કૂલ ડિલે = 4ms (4000 સાયકલ)

યાદ રાખવા માટે: "LNDD: લોડ-NOP-ડેક્રિમેન્ટ-ડેક્રિમેન્ટ"

પ્રશ્ન 4(ક OR) [7 ગુણ]

8051 માઇક્રોકંટ્રોલર માટે કોઈપણ સાત લોજીકલ ઈન્સ્ટ્રક્શન ઉદાહરણ સાથે સમજાવો.

જવાબ:

ઈન્સ્ટ્રક્શન	ઉદાહરણ	ઓપરેશન
ANL	ANL A, #3FH	લોજિકલ AND
ORL	ORL P1, #80H	લોજિકલ OR
XRL	XRL A, RO	લોજિકલ XOR
CLR	CLR A	ક્લિયર (0 સેટ)
CPL	CPL P1.0	કોમ્પ્લિમેન્ટ (ઇન્વર્ટ)
RL	RL A	રોટેટ લેફ્ટ
RR	RR A	રોટેટ રાઇટ

ઉદાહરણો સાથે સમજૂતી:

- 1. **ANL A, #0FH**: હાઈ નિબલ માસ્ક કરે (A = A AND 0FH)
 - o પહેલાં: A = 95H, પછી: A = 05H
- 2. **ORL 20H, A**: મેમરીમાં બિટ્સ સેટ કરે (20H = 20H OR A)
 - o પહેલાં: 20H = 55H, A = 0AH, પછી: 20H = 5FH

- 3. **XRL A, #55H**: ચોક્કસ બિટ્સ ટોગલ કરે (A = A XOR 55H)
 - o પહેલાં: A = AAH, પછી: A = FFH
- 4. **CLR C**: કેરી ફ્લેગ સાફ કરે (C = 0)
 - ૦ સબટ્રેક્શન ઓપરેશન પહેલા વપરાય છે
- 5. **CPL A**: બધા બિટ્સ ઇન્વર્ટ કરે (A = NOT A)
 - o પહેલાં: A = 55H, પછી: A = AAH
- 6. **RL A**: એક્યુમુલેટરને એક બિટ ડાબી તરફ રોટેટ કરે
 - o પહેલાં: A = 85H (10000101), પછી: A = 0BH (00001011)
- 7. **RR A**: એક્યુમુલેટરને એક બિટ જમણી તરફ રોટેટ કરે
 - o પહેલાં: A = 85H (10000101), પછી: A = C2H (11000010)

યાદ રાખવા માટે: "A-OX-CCR: AND OR XOR ક્લિયર કોમ્પ્લિમેન્ટ રોટેટ"

પ્રશ્ન 5(અ) [3 ગુણ]

વિવિદ્ય ક્ષેત્રોમાં માઇક્રોકંટ્રોલરની એપ્લિકેશનોની સૂચિ બનાવો.

જવાબ:

ક્ષેત્ર	એપ્લિકેશન્સ
ઔદ્યોગિક	મોટર કંટ્રોલ, ઓટોમેશન, PLCs
મેડિકલ	પેશન્ટ મોનિટરિંગ, ડાયગ્નોસ્ટિક ઉપકરણો
કન્ઝ્યુમર	વોશિંગ મશીન, માઇક્રોવેવ, રમકડાં
ઓટોમોટિવ	એન્જિન કંટ્રોલ, ABS, એરબેગ સિસ્ટમ
કમ્યુનિકેશન	મોબાઇલ ફ્રોન, મોડેમ, રાઉટર
સિક્યુરિટી	એક્સેસ કંટ્રોલ, અલાર્મ સિસ્ટમ

યાદ રાખવા માટે: "I-MACS: ઇન્ડસ્ટ્રિયલ-મેડિકલ-ઓટોમોટિવ-કન્ઝ્યુમર-સિક્યુરિટી"

પ્રશ્ન 5(બ) [4 ગુણ]

8051 માઇક્રોકંટ્રોલર સાથે પુશ બટન સ્વિય અને LED ઇન્ટરફેસ કરો.

જવાલ:

સર્કિટ ડાયાગ્રામ:

પ્રોગ્રામ:

કમ્પોનન્ટ	કનેક્શન	હેતુ
પુરા બટન	P1.0 (ઇનપુટ)	યુઝર ઇનપુટ, એક્ટિવ-લો
પુલ-અપ રેસિસ્ટર	10K to Vcc	ફ્લોટિંગ ઇનપુટ અટકાવે
LED	P1.7 (આઉટપુટ)	વિઝ્યુઅલ ઇન્ડિકેટર
કરંટ-લિમિટિંગ રેસિસ્ટર	330Ω	LED ની સુરક્ષા

યાદ રાખવા માટે: "PLIC: પુશ-LED-ઇનપુટ-કંટ્રોલ"

પ્રશ્ન 5(ક) [7 ગુણ]

માઇક્રોકંટ્રોલર સાથે LCD ઇન્ટરફેસ કરો અને "HELLO" દર્શાવવા માટે પ્રોગ્રામ લખો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

પ્રોગ્રામ:

```
ORG 0000H
                        ; શરૂઆત એડ્રેસ
; LCD ઇનિશિયલાઇઝ
   MOV A, #38H
                       ; 8–બિટ, 2 લાઇન્સ, 5x7 ડોટ્સ
                       ; કમાન્ડ મોકલો
   ACALL COMMAND
                       ; ડિસ્પ્લે ૦૫, કર્સર ૦૫
   MOV A, #0EH
                       ; કમાન્ડ મોકલો
   ACALL COMMAND
   MOV A, #01H
                       ; ડિસ્પ્લે ક્લિયર
   ACALL COMMAND
                       ; કમાન્ડ મોકલો
                       ; કર્સર ઇન્ક્રિમેન્ટ
   MOV A, #06H
                       ; કમાન્ડ મોકલો
    ACALL COMMAND
                       ; પ્રથમ લાઇન, પ્રથમ પોઝિશન
    MOV A, #80H
    ACALL COMMAND
                       ; કમાન્ડ મોકલો
; "HELLO" દર્શાવો
                       ; 'મ' લોડ કરો
   MOV A, #'H'
   ACALL DISPLAY
                      ; દર્શાવો
   MOV A, #'E'
                       ; 'E' લોડ કરો
   ACALL DISPLAY
                       ; દર્શાવો
                       ; 'L' લોડ કરો
    MOV A, #'L'
                       ; દર્શાવો
   ACALL DISPLAY
   MOV A, #'L'
                       ; 'L' લોડ કરો
                       ; દર્શાવો
    ACALL DISPLAY
                       ; '૦' લોડ કરો
   MOV A, #'O'
    ACALL DISPLAY ; ERIÍA
                       ; અહીં રહો
    SJMP $
; કમાન્ડ સબરૂટીન
COMMAND:
                       ; ડેટા બસ પર કમાન્ડ મૂકો
   MOV P2, A
                       ; RS=0 કમાન્ડ માટે
   CLR P3.0
    CLR P3.1
                       ; R/W=0 લખવા માટે
                       ; E=1
    SETB P3.2
                       ; રાહ જુઓ
   ACALL DELAY
    CLR P3.2
                       ; E=0
                        ; રિટર્ન
    RET
; ડિસ્પ્લે સબરૂટીન
```

```
DISPLAY:
                        ; ડેટા બસ પર ડેટા મૂકો
   MOV P2, A
                       ; RS=1 ડેટા માટે
   SETB P3.0
                        ; R/W=0 લખવા માટે
    CLR P3.1
    SETB P3.2
                        ; E=1
    ACALL DELAY
                        ; રાહ જુઓ
   CLR P3.2
                        ; E=0
                        ; રિટર્ન
    RET
; ડિલે સબરૂટીન
DELAY:
                 ; કાઉન્ટર લોડ કરો
   MOV R7, #50
DELAY_LOOP:
   DJNZ R7, DELAY_LOOP ; R7=0 थाय त्यां सुधी तूप
                        ; રિટર્ન
    RET
                        ; પ્રોગ્રામનો અંત
END
```

કમ્પોનન્ટ	કનેક્શન	હેતુ
ડેટા પિન	P2.0-P2.7	ડેટા/કમાન્ડ ટ્રાન્સફર
RS (રજિસ્ટર સિલેક્ટ)	P3.0	કમાન્ડ (0) અથવા ડેટા (1) સિલેક્ટ
R/W (રીડ/રાઇટ)	P3.1	રાઇટ (0) અથવા રીડ (1) સિલેક્ટ
E (એનેબલ)	P3.2	ફોલિંગ એજ પર ડેટા લેથ

- **ઇનિશિયલાઇઝેશન**: 8-બિટ, 2 લાઇન, કર્સર ઓપ્શન માટે LCD કોન્ફિગર
- ડેટા ટ્રાન્સફર: RS=0 સાથે કમાન્ડ, RS=1 સાથે કેરેક્ટર મોકલાય
- **કેરેક્ટર્સ**: ASCII વેલ્યુ એક પછી એક મોકલી ટેક્સ્ટ દર્શાવાય
- ટાઇમિંગ: યોગ્ય સિગ્નલ ટાઇમિંગ માટે ડિલે રૂટીન

યાદ રાખવા માટે: "DICE: ડેટા-ઇન્સ્ટ્રક્શન-કંટ્રોલ-એનેબલ"

પ્રશ્ન 5(અ OR) [3 ગુણ]

8051 માઇક્રોકંટ્રોલર સાથે LM35 નું ઇન્ટરફેસિંગ દોરો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

Component	Function
LM35	Temperature sensor (10mV/°C)
ADC0804	Analog-to-Digital Converter
8051	Microcontroller to read temperature

મુખ્ય પોઇન્ટ્સ:

- LM35 તાપમાનના પ્રમાણમાં એનાલોગ વોલ્ટેજ ઉત્પન્ન કરે છે
- ADC0804 એનાલોગ વોલ્ટેજને ડિજિટલ વેલ્યુમાં રૂપાંતરિત કરે છે
- 8051 ADC નું નિયંત્રણ કરે છે અને તાપમાન ડેટા વાંચે છે
- રિઝોલ્યુશન: 10mV/°C → 8-બિટ ADC સાથે ~0.2°C રિઝોલ્યુશન

યાદ રાખવા માટે: "TAC: તાપમાન-એનાલોગ-કન્વર્ટ"

પ્રશ્ન 5(બ OR) [4 ગુણ]

8051 માઇક્રોકંટ્રોલર સાથે સ્ટેપર મોટર ઇન્ટરફેસ કરો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

પ્રોગ્રામ:

```
ORG 0000H
; ક્લોકવાઇઝ રોટેશન સિક્વન્સ
SEQ: DB 00001000B ; 224 1
      DB 00001100B ; ਦਟੇਪ 2
      DB 00000100B ; ਦੇਟੇਪ 3
      DB 00000110B ; ਦੇ2ਪ 4
      DB 00000010B ; स्टेप 5
      DB 00000011B ; સ્ટેપ 6
      DB 00000001B ; ਦੇਟੇਪ 7
      DB 00001001B ; સ્ટેપ 8
MAIN: MOV RO, #00H ; સિક્વન્સ પોઇન્ટર ઇનિશિયલાઇઝ
STEP: MOV A, RO; વર્તમાન સિક્વન્સ નંબર મેળવો
      ANL A, #07H ; 0-7 રેન્જમાં રાખો (8 સ્ટેપ્સ)
      MOV DPTR, #SEQ ; સિક્વન્સ ટેબલ પર પોઇન્ટ કરો
      MOVC A, @A+DPTR ; સિક્વન્સ પેટર્ન મેળવો
      MOV P1, A ; સ્ટેપર મોટરને આઉટપુટ
      ACALL DELAY ; સ્ટેપ્સ વચ્ચે રાહ જુઓ
      INC RO ; આગલો સિક્વન્સ
      SJMP STEP ; yazıqaa
DELAY: MOV R6, #250; Se qu
LOOP: MOV R7, #250
LOOP2: DJNZ R7, LOOP2
       DJNZ R6, LOOP
       RET
      END
```

કમ્પોનન્ટ	હેતુ
ULN2003	ડાર્લિંગટન એરે સાથે ડ્રાઇવર IC
પોર્ટ પિન	4 મોટર ફેઝ માટે P1.0-P1.3
પાવર સપ્લાય	મોટર માટે અલગ સપ્લાય

મુખ્ય પોઇન્ટ્સ:

- સ્ટેપર મોટરને ફેરવવા માટે ચોક્કસ પલ્સ સિક્વન્સની જરૂર પડે છે
- ULN2003 મોટર કોઇલ માટે કરંટ એમ્પ્લિફિકેશન પ્રદાન કરે છે
- 8-સ્ટેપ સિક્વન્સ સ્મૂધર રોટેશન આપે છે
- સ્ટેપ્સ વચ્ચેનો ડિલે રોટેશન સ્પીડ નિયંત્રિત કરે છે

યાદ રાખવા માટે: "PDCS: પોર્ટ-ડ્રાઇવર-કરંટ-સિક્વન્સ"

પ્રશ્ન 5(ક OR) [7 ગુણ]

8051 માઇક્રોકંટ્રોલર સાથે ADC0804 ઇન્ટરફેસ કરો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

પ્રોગ્રામ:

```
ORG 0000H

START: CLR P1.0 ; CS = 0 (ਹਿਪ ਦਿਰੇਤਟ ਐਂਡਿਟਰ)

CLR P1.1 ; RD = 0

CLR P1.2 ; WR = 0
```

```
SETB P1.2 ; WR = 1 (동대하 인종)
        JB P1.3, WAIT ; કન્વર્ઝન માટે રાહ જુઓ (INTR = 0)
WAIT:
        CLR P1.1 ; RD = 0 (Sेटा पांथों)
                      ; કન્વર્ટેડ ડેટાને A માં વાંચો
        MOV A, PO
        MOV 30H, A ; RAM मां परिणाम स्टोर डरो
        SETB P1.0 ; CS = 1 (ਹਿਪ ડਿસਿલેક્ટ)
PROCESS:
        ; ડેટા પ્રોસેસ કરો (દા.ત. ડિસ્પ્લે, કમ્પેર, વગેરે)
        ; ...
        ACALL DELAY ; આગલા કન્વર્ઝન પહેલા રાહ જુઓ
        SJMP START ; पुनरावर्तन
DELAY: MOV R7, #200 ; Sch 321ન
DLOOP: DJNZ R7, DLOOP
        RET
END
```

કનેક્શન	8051 นิศ	ADC0804 પિન
ડેટા બસ	P0.0-P0.7	D0-D7
CS	P1.0	CS
RD	P1.1	RD
WR	P1.2	WR
INTR	P1.3	INTR

ADC0804 ફીચર્સ:

- 8-બિટ રિઝોલ્યુશન (256 સ્ટેપ્સ)
- 0-5V ઇનપુટ રેન્જ
- સિંગલ-ચેનલ ઓપરેશન
- ~100µs કન્વર્ઝન ટાઇમ
- ઇન્ટરફેસ પ્રોટોકોલ:
 - 1. CS એક્ટિવ કરો, કન્વર્ઝન શરૂ કરવા WR પલ્સ કરો
 - 2. INTR લો થાય ત્યાં સુધી રાહ જુઓ (કન્વર્ઝન પૂર્ણ)
 - 3. ડેટા વાંચવા RD એક્ટિવ કરો
 - 4. કામ પૂરું થયા પછી CS ડિએક્ટિવ કરો

ચાદ રાખવા માટે: "CRIW: કંટ્રોલ-રીડ-ઇન્ટરપ્ટ-રાઇટ"