

WHAT ARE WE DOING TODAY?

We briefly revisit the contents from last week.

We talk about different data types and what we can do with them.

We do exciting things with R.

1. Statistics: what and why?

2. Refresher on RStudio

Poll on Zoom.

REVIEW FROM LAST SESSION

- 1. Statistics is the science of collecting, preparing, analyzing, and interpreting data.
- 2. Statistics allows us to:
 - (i) make sense of the world around us,
 - (ii) make decisions, and
 - (iii) make predictions.
- 3. The tool we will use to work with the data and perform calculations is going to be R-Studio.

- 1. Differentiate between the types of data
- 2. Determine how we can approach them

Please go to this link on your web browser and fill in the form:

www.t1p.de/do6x

clear definition of 0)

E.g. age, height, income

BASIC TYPES OF DATA IN STATISTICS

Qualitative Quantitative **Data Data** Falls on a Has clear spaces Nominal Discrete Continuous Ordinal Data **Binary Data** continuous between values Data Data Data and is generally sequence and is measurable. counted in whole E.g. height, numbers. weight, speed, Variables with an **Variables** E.g.: no. of Variables with time to finish a order or a rank students in a without an only two possible project. E.g. letter grades class, shoe sizes, order or a rank states (also called (A/B/C), star E.g. Gender, dichotomous data) etc. ratings religion, ZIP E.g. Yes/No, Codes (PLZ) Pass/Fail, Head/Tail **Interval Data** Interval Data Ratio Data Same as interval data, Ordinal data with constant but with a true zero (a

Statistics Tutorial Day 2

differences between observations

No true zero point

E.g. time, temperature

WHAT DATA LOOKS LIKE

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
1	7	0.27	0.36	20.7	0.045	45	170	1.001	3	0.45	8.8	6
2	6.3	0.3	0.34	1.6	0.049	14	132	0.994	3.3	0.49	9.5	6
3	8.1	0.28	0.4	6.9	0.05	30	97	0.9951	3.26	0.44	10.1	6
4	7.2	0.23	0.32	8.5	0.058	47	186	0.9956	3.19	0.4	9.9	6
5	7.2	0.23	0.32	8.5	0.058	47	186	0.9956	3.19	0.4	9.9	6
6	8.1	0.28	0.4	6.9	0.05	30	97	0.9951	3.26	0.44	10.1	6
7	6.2	0.32	0.16	7	0.045	30	136	0.9949	3.18	0.47	9.6	6
8	7	0.27	0.36	20.7	0.045	45	170	1.001	3	0.45	8.8	6
9	6.3	0.3	0.34	1.6	0.049	14	132	0.994	3.3	0.49	9.5	6
10	8.1	0.22	0.43	1.5	0.044	28	129	0.9938	3.22	0.45	11	6
11	8.1	0.27	0.41	1.45	0.033	11	63	0.9908	2.99	0.56	12	5
12	8.6	0.23	0.4	4.2	0.035	17	109	0.9947	3.14	0.53	9.7	5
13	7.9	0.18	0.37	1.2	0.04	16	75	0.992	3.18	0.63	10.8	5
14	6.6	0.16	0.4	1.5	0.044	48	143	0.9912	3.54	0.52	12.4	7
15	8.3	0.42	0.62	19.25	0.04	41	172	1.0002	2.98	0.67	9.7	5
16	6.6	0.17	0.38	1.5	0.032	28	112	0.9914	3.25	0.55	11.4	7
17	6.3	0.48	0.04	1.1	0.046	30	99	0.9928	3.24	0.36	9.6	6
18	6.2	0.66	0.48	1.2	0.029	29	75	0.9892	3.33	0.39	12.8	8
19	7.4	0.34	0.42	1.1	0.033	17	171	0.9917	3.12	0.53	11.3	6
20	6.5	0.31	0.14	7.5	0.044	34	133	0.9955	3.22	0.5	9.5	5
21	6.2	0.66	0.48	1.2	0.029	29	75	0.9892	3.33	0.39	12.8	8
22	6.4	0.31	0.38	2.9	0.038	19	102	0.9912	3.17	0.35	11	7
23	6.8	0.26	0.42	1.7	0.049	41	122	0.993	3.47	0.48	10.5	8
24	7.6	0.67	0.14	1.5	0.074	25	168	0.9937	3.05	0.51	9.3	5
25	6.6	0.27	0.41	1.3	0.052	16	142	0.9951	3.42	0.47	10	6

WHAT DATA LOOKS LIKE

*	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width [‡]	Species [‡]
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa

BASIC CALCULATIONS FOR DATA TYPES

	Nominal Data	Ordinal Data	Interval Data	Continuous Data
Frequency distribution				
Median, quartiles, percentiles				
Add or subtract	X	X		
Mean, standard deviation				
Ratio, coefficient of variation	×	×	×	

BASIC STATISTICAL TESTS

		Binary	Categorical	Ordinal	Continuous	
Predictor Variables	Binary	Chi-square, Fisher- Exact Tests	Chi-square Test	Wilcoxon	T-test/ Wilcoxon	
	Categorical	Chi-square, Fisher- Exact Tests	Chi-square Test	Kruskal-Wallis	ANOVA	
	Ordinal	Wilcoxon	Kruskal-Wallis	Spearman Correlation	ANOVA	
	Continuous	T-test/Wilcoxon/ Logistic Regression	ANOVA/ Class Prediction	Ordinal Regression	Correlation/ Linear Regression	

- 1. Basic data types in R
- 2. Basic data structures in R

BASIC DATA TYPES IN R

	Example	R Script
Character (or string)	'apple'	a <- 'apple'
Numeric	1.618	b <- 1.618
Integer	3L, -5L	c <- 3L
Booleans	TRUE, FALSE	d <- TRUE
Missing Values	NA	e <- NA

	Example	R Script
Vectors	c(1, 3, 4)	eg_vec <- c(1, 3, 4)

Run the following in R Studio:

- 1. $eg_{vec} \leftarrow c(1, 3, 4)$
- 2. class(eg_vec)
- 3. typeof(eg_vec)
- 4. eg_vec * 3
- 5. eg_vec * eg_vec
- 6. View(eg_vec)
- 7. eg_vec_1 <- eg_vec * 3
- 8. View(eg_vec_1)

GENERAL R TIPS

Here are some functions that you will find useful:

- help(x), builtins(), ?x
- typeof(x), class(x)
- str(x), summary(x)
- getwd(), setwd()
- list.files()
- length(x)

CHECKING DATA TYPES & STRUCTURES

- 1. Know the basic data types and data structures.
- 2. Check the structure of the data structure using: str()
- 3. Check the summary of the data structure using: summary()
- 4. Useful functions: help(), class(): when in doubt, use them both.

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- 1. Descriptive Statistics
- 2. Data Distribution

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de