Section 2.9—Linear Approximations and Differentials

1—Linear Approximations

Near the point of tangency, a tangent line looks very much like the curve. (See Desmos.com)

We can use the tangent line at (a, f(a)) as an approximation to the curve y = f(x) when x is near a. Write the

equation of this tangent line at the point (a, f(a)).

point-slope egn: y-y,=m(x-x,)

egn of tangent y - f(a) = f'(a)(x-a)

$$y = f(a) + f(a)(x-a)$$

If we use the tangent line to approximate f, then the equation will look like:

This equation is called the linear approximation or tangent line approximation of f at a.

Definition

Then the linear function whose graph is this tangent line,

$$f(x) \approx L(x) = f(a) + f'(a)(x - a)$$

Is called the **linearization** of f at a.

Example 1: a) Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1. L(x) = f(1) + f'(1) (x-1)

•
$$L(x) = 2 + 4(x-1)$$

= $2 + 4x - 4$
 $L(x) = 4 + 4x$

b) Use the linearization found in part (a) to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. That is, use it to approximate the function at x = .98 and at x = 1.05. Are these approximations overestimates or underestimates?

$$f(.98) \approx L(.98) = \frac{7}{4} + \frac{.98}{4} = 1.995 \implies \sqrt{3.98} \approx 1.995 \qquad \sqrt{3.98} = 1.994993$$

 $f(.05) \approx L(1.05) = \frac{7}{4} + \frac{1.05}{4} = 2.0125 \implies \sqrt{4.05} \approx 2.0125 \qquad \sqrt{4.05} = 2.012461180$

*Notice that the linear approximation gives an approximation over an entire interval.

The following table compares the estimates from the linear approximation in Example 1 with the true values. What do you notice about the accuracy of the estimates?

	VX+3		STATE OF THE STATE OF
x	f(x)	L(x)	Actual Value
0.9	√3.9	1.975	1.97484176
0.98	√3.98	1.995	1.99499373
(1)	$\sqrt{4}$	2	2.000000000
1.05	$\sqrt{4.05}$	2.0125	2.01246117
1.1	$\sqrt{4.1}$	2.025	2.02484567
2	√5	2.25	2.23606797
3	$\sqrt{6}$	2.5	2.44948974

We can determine what level of accuracy we want our approximation(s) to have. The following example shows how.

Example 2: For what values of x is the linear approximation $\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$ accurate to within 0.5? How about within 0.1?

This means the difference between the 2 functions Should be less than 0.5

OB

2-Differentials

Definition

If y = f(x) is a differentiable function, then the **differential** dx is an independent variable and the **differential** dy is a dependent variable (depends on x and dx) and is defined by the equation:

$$dy = f'(x)dx$$

Where $dx = \Delta x$, and $\Delta y = f(x + \Delta x) - f(x)$ is the change in y of the curve, and dy is the change in y of the tangent line, or the change in the linearization.

Let's examine the meaning of differentials geometrically:

· For a function y=f(x)
for some change in x, Δx,
the corresponding change
in y will be Δy.

• Notice $\Delta y = f(x+\Delta x) - f(x)$

The slope of the targent line dy = f'(x) dx.

o to find dy = the rise $m = \frac{rise}{run} = \frac{dy}{dx} = \frac{f'(x)}{dx}$

dy = f'(x) dx

Example 3: (See Figure 6, pg. 191 in text)

a) Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes from 2 to $2.\overline{05}$.

$$Ay = f(x+Ax) - f(x)$$

$$= f(2.05) - f(2)$$

$$= 9.717625 - 9$$

$$= .717625 \leftarrow Actual change$$
in y for the curve (function)

X=2 A:X=.05 X+A:X=2.6 A:Y=0.05 X+A:X=2.6

 $f(2.05) = (2.05)^3 + (2.05)^2 - 2(2.05) + 1 = 9.717625$ $f(2) = 2^3 + 2^2 - 2(2) + 1 = 8 + 4 - 4 + 1 = 9$ $f'(x) = 3x^{2} + 2x - 2$ $f'(2) = 3(2)^{2} + 2(2) - 2$ = 12 + 4 - 2 = 14

b) Compare the values of Δy and dy for the same function in part (a) if x changes from 2 to 2.01.

$$\Delta y = f(x + \Delta x) - f(x)$$

= $f(z_{101}) - f(z_{101})$
= $9.140701 - 9$
= 140701
Thise in the curve

$$f(2.01) = (2.01)^3 + (2.01)^2 - 2(2.01) + 1$$

= 9.140701

In some cases it may be impossible to compute Δy exactly. In that case, the approximation by differentials is very useful.

Homework: 1-4, 7, 9, 11-18, 23, 26, 28