Анализ данных. Домашнее задание

Задача состоит в работе с реальными данными о работе системы кондиционирования одного из распределительных центров крупной торговой сети.

Описание исходных данных

Система кондиционирования состоит множества практически одинаковых устройств, каждое из которых имеет определенный набор параметров.

Устройство	Тип	Контроллер
111 CT AG	Центральный холодильный агрегат	AK-PC551-0161
11CT G OVZ +5/+8	Холодильная горка	EKC202B-013x
12CT G GSR +2/+4	Холодильная горка	EKC202B-013x
13CT G PBP -1/+1	Холодильная горка	EKC202B-013x
15CT G MSO -1/+1	Холодильная горка	EKC202B-013x
16CT G MSO -1/+1	Холодильная горка	EKC202B-013x
17CT G GSR +2/+4	Холодильная горка	EKC202B-013x
18CT G PTO -1/+1	Холодильная горка	EKC202B-013x
19CT G GSR +2/+4	Холодильная горка	EKC202B-013x
20CT G GSR +2/+4	Холодильная горка	EKC202B-013x
21CT G GSR +2/+4	Холодильная горка	EKC202B-013x
22CT G GSR +2/+4	Холодильная горка	EKC202B-013x
23CT V MSO -1/+1	Холодильная горка	EKC202B-013x
24CT V GSR +2/+4	Холодильная горка	EKC202B-013x
25CT V GSR +2/+4	Холодильная горка	EKC202B-013x
26CT G MLK +2/+4	Холодильная горка	EKC202B-013x
27CT G MLK +2/+4	Холодильная горка	EKC202B-013x
28CT G MLK +2/+4	Холодильная горка	EKC202B-013x
29CT G MLK +2/+4	Холодильная горка	EKC202B-013x
30CT G GSR +2/+4	Холодильная горка	EKC202B-013x
34CT G TRT +2/+4	Холодильная горка	EKC202B-013x
52CT K PTO -1/+1	-	EKC202D-022x
53K VOP POD PTO	-	EKC202D-022x
54K VOP FAS GSR	-	EKC202D-022x
55CT K GSR +2/+4	-	EKC202D-022x
56CT K COF +5/+8	-	EKC202D-022x
57K VOP CXM	-	EKC202D-022x
Gazoanalyzator	Газоанализатор	

Параметры холодильных установок:

Параметр	Описание	Тип
ЕКС состояние	Состояние установки	Категориальная
u69 Sair Темп degc	Температура воздуха внутри установки	Непрерывная
u09 S5 Темп degc	Температура воздуха на входе в испаритель	Непрерывная

Параметры центрального холодильного агрегата:

Параметр	Описание	Тип
Cond Requested Cap %	Запрошенная производительность	Непрерывная
	вентиляторов конденсатора	
Cond Ctrl Status	Режим управления конденсатором	Категориальная
Cond Running Cap %	Текущая производительность вентиляторов	Непрерывная
	конденсатора	
Cond Ctrl Pressure Bar	Давление конденсации	Непрерывная
Cond Reference Bar	Уставка давления конденсации	Непрерывная
Comp A Ctrl Status	Режим управления компрессором	Категориальная
Comp A Pressure Bar	Давление на входе в компрессор	Непрерывная
Comp A Reference Bar	Уставка давления на входе в компрессор	Непрерывная
Comp A Capacity %	Производительность компрессоров	Непрерывная
Comp 1A Status	Статус компрессора 1	Категориальная
Comp 2A Status	Стасус компрессора 2	Категориальная
Peregrev u69 Sair Темп degc	Перегрев	Непрерывная
Датч нар воздуха degc	Температура наружного воздуха	Непрерывная

В холодильных установках хранятся продукты, центральный холодильный агрегат обеспечивает установки хладагентом. Внешний вид холодильной установки представлен ниже. Это там, где лежит колбаса и йогурты с ценниками.

Постановка задачи

Все визуализации должны быть подписаны, минимум заголовок и легенда (если требуется).

1. Загрузите исходный датасет

```
pd.read_csv()
```

2. Сделайте необходимые преобразования при загрузке датасета, чтобы данные выглядели корректно.

https://pandas.pydata.org/docs/reference/api/pandas.read csv.html, корректно обработайте разделители, NA значения, кодировку, исключите ненужные строки, определите заголовок, при необходимости игнорируйте ошибки в кодировке или подправьте исходный файл.

3. Очистите заголовки колонок от ненужной информации, оставьте только имя устройства и название параметра:

Если при загрузке датасета у вас получились многоуровневые заголовки, можно удалить незначащие уровни методом df.columns.droplevel():

Для переименования индексов можно использовать метод df.rename(columns={<исходное имя>: <новое имя>})

4. Выведите в консоль информацию о датасете: его размер, название колонок, их типы данных

df.info()

5. Как оптимизировать типы данных в колонках? Насколько меньше стал размер датафрейма после оптимизации?

Приведите к типу int колонки с категориальными и целыми значениями, df.astype().

6. Дайте табличное и графическое статистическое описание признакам, содержащим параметр «Sair» для устройств 21СТ, 22СТ,..., 30СТ.

```
df.describe(), sns.boxplot().
```


Можно создать отдельный список колонок, которые вы будете анализировать, например «col_Sair». Для его создания можно использования list comprehension

7. Преобразуйте колонку со временем в формат datetime, сделайте ее индексом и отсортируйте (даже если датасет уже отсортирован)

pd.to datetime(), df.index = df[<колонка>], df.sort index()

- 8. Посчитайте количество пропусков в каждой колонке и визуализируйте их df.isna().sum(), для визуализации можно использовать модуль missingno и метод matrix(df)
- 9. Ресемплируйте датасет по медианному значению за 4 минуты, отобразите на линейном графике значение признаков col_Sair. График должен быть читабельным, иметь заголовок и легенду.

Используйте любые модули (df.plot(), sns, plt, plotly). Ресемплированный датасет сохранять не нужно, просто отобразить.

10. Постройте для 2-3 признаков из col_Sair сглаженный график поведения признаков во времени, чтобы был виден тренд

df.rolling()

11. Постройте на одном графике три графика: оригинальный, ресемплированный и сглаженный.

Параметры ресемплирования и сглаживания выберите любые. Подберите временной интервал, чтобы разница была видна.

12. Отобразите гистограмму по количеству одновременно включенных устройств. Признак состояния представлены в виде «<устройство>: --- EKC состояние», если признак принимает значение 0, то считаем устройство включенным.

```
EKCstate_Map = data[[col for col in data.columns if col.find(________]].applymap(lambda x: 1 if x==0 else 0) ТУТ МОЖНО ПОКРАСИВЕЕ СДЕЛАТЬ

EKCstate_Map.sum(axis=1).value_counts().sort_index().plot.bar(figsize=(5,5),title='Количество одновременно включенных горок')
```


13. Постройте для нескольких признаков состояния устройств столбчатые диаграммы, которые покажут распределение этих устройств по состояниям.

Используйте любой способ отрисовки столбчатых диаграмм.

- Постройте матрицу корреляции для признаков col_Sair
 Получение таблицы с корреляцией: df.corr(), отрисовку удобно делать через sns.heatmap()
- 15. Творческое: сформулируйте гипотезу (вопрос) и проверьте ее (ответьте на него), подтвердив выводы визуализацией или статистиками.

Например, можно задаться вопросом, как ведет себя температура **u09 S5** в устройстве при разных состояниях устройства.

```
cols = ['11CT G OVZ +5/+8: u09 S5 Temn',
       '11CT G OVZ +5/+8: --- EKC состояние']
data['11CT G OVZ +5/+8: --- EKC состояние'].value_counts()
11СТ G OVZ +5/+8: --- ЕКС состояние
11.0
     19682
0.0
        5180
14.0
         909
         353
4.0
10.0
          19
Name: count, dtype: int64
states = data['11CT G OVZ +5/+8: --- EKC состояние'].value_counts()
```

Только на основании графиков сделать выводы сложно:

Но статистика говорит о том, что температура в режимах, отличных от 0.0 или растет или меняется незначительно.

