Κλειστότητες Σχέσεων

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Κλειστότητα Σχέσης

- Κλειστότητα σχέσης R ως προς ιδιότητα P: σχέση S που
 - (a) περιέχει την R (δηλ. R \subseteq S),
 - (β) έχει την ιδιότητα Ρ, και
 - (γ) είναι «ελάχιστη», δηλ. περιέχεται σε κάθε σχέση που έχει (α), (β).
- □ Κλειστότητα επεκτείνει R όσο χρειάζεται ώστε να έχει ιδιότητα P.
- Ανακλαστική, συμμετρική, μεταβατική κλειστότητα;

Ανακλαστική Κλειστότητα

- \square ... σχέσης $R \subseteq A \times A$: $R \cup \{(a, a): a \in A\}$.
 - Περιέχει R, είναι ανακλαστική, είναι ελάχιστη.
- Ανακλαστική κλειστότητα σχέσης $R = \{(a, \beta): a < \beta\};$
 - $\blacksquare R' = \{(\alpha, \beta) : \alpha \leq \beta\}.$

Συμμετρική Κλειστότητα

- \square ... σχέσης $R \subseteq A \times A$: $R \cup R^{-1}$.
 - $\blacksquare R \cup \{(\beta, \alpha): (\alpha, \beta) \in R\}$
 - Περιέχει R, είναι συμμετρική, είναι ελάχιστη.
- \square Συμμετρική κλειστότητα σχέσης $R = \{(a, \beta): a < \beta\};$
 - $\blacksquare R'' = \{(\alpha, \beta) \colon \alpha \neq \beta\}.$

Μεταβατική Κλειστότητα

- □ «Διαδρομή» μήκους $k \ge 0$ σε σχέση R: ακολουθία $a_0, ..., a_k \in A$ τ.ω. $(a_i, a_{i+1}) \in R$ για κάθε i < k.
- \square Rⁿ = {(a, β) : υπάρχει a − β διαδρομή μήκους n στην R}, n≥1.
- \square R μεταβατική ανν $R^n \subseteq R$, για κάθε $n \ge 1$.
- - Av R μεταβατική, τότε $R^* = R$ ($R \subseteq R^*$ και $R^* \subseteq R$).

Μεταβατική Κλειστότητα

- □ Μεταβατική κλειστότητα σχέσης R = R*.
 - $\mathbb{R} \subseteq \mathbb{R}^*$: ακμή (α, β) είναι διαδρομή μήκους 1.
 - R* μεταβατική: α β, β γ διαδρομές, α β γ διαδρομή.
 - \blacksquare R* ελάχιστη: έστω S μεταβατική σχέση με R \subseteq S. Θδο. R* \subseteq S.
 - \square S μεταβατική \Rightarrow S = S*.
 - \square R \subseteq S \Rightarrow R* \subseteq S* (κάθε διαδρομή στην R είναι διαδρομή στην S).
 - \square 'Apa $\mathbb{R}^* \subseteq \mathbb{S}$.

Υπολογισμός R*

- \Box α β διαδρομή στην R ανν ∃ α β διαδρομή μήκους ≤ |A| 1.
 - Αν συντομότερη α − β διαδρομή στην R έχει μήκος ≥ |A|:
 κάποια κορυφή επαναλαμβάνεται (διαδρομή περιέχει κύκλο).
 - Αφαίρεση κύκλου: α β διαδρομή με μικρότερο μήκος. Άτοπο!
- \square Υπολογισμός R^* : $R^* = R \cup R^2 \cup \cdots \cup R^n$
 - \blacksquare R^k με Boolean πολλαπλασιασμό πινάκων από R^{k-1} και R.
 - Ένωση με λογική διάζευξη πινάκων.
 - \blacksquare Χρόνος: O(n⁴), n = |A|.

Αλγόριθμος Warshall

- \square Για \mathbf{R}^* ισχύει ότι: $R^*(i,j) = R(i,j) \vee \exists k (R^*(i,k) \wedge R^*(k,j))$
 - Υπολογισμός με παραπάνω ιδέα μοιάζει με φαύλο κύκλο:
 R*(i, j) απαιτεί R*(i, k) και το R*(i, k) απαιτεί το R*(i, j).
- Όμως γίνεται προσεκτικά και συστηματικά (Warshall)!
 - Αυθαίρετη αρίθμηση στοιχείων (κορυφών) του A: {1, 2, ..., n}
 - $P^{[k]} = \{(i, j): \exists i j διαδρομή με εσωτερικές κορυφές μόνο από [k]\}$
 - Ισχύει ότι R* = P^[n].
 - $\qquad \mathbf{P}^{[0]} = \mathbf{R} \, \, \mathrm{Kal} \, \, P^{[k]}(i,j) = P^{[k-1]}(i,j) \vee (P^{[k-1]}(i,k) \wedge P^{[k-1]}(k,j))$

Αλγόριθμος Warshall

- \square $P^{[k]} = {(i, j): \exists i j διαδρομή με εσωτερικές κορυφές <math>\in [k]$ }
- $\qquad \qquad \mathsf{P}^{[0]} = \mathsf{R} \, \, \mathrm{kal} \, \, P^{[k]}(i,j) = P^{[k-1]}(i,j) \vee (P^{[k-1]}(i,k) \wedge P^{[k-1]}(k,j))$
 - Ισχύει ότι R* = P^[n].

$$\begin{array}{c|cccc}
P^{[1]} & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}$$

$$egin{array}{c|cccc} P^{[4]} & 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ \end{array}$$

Αλγόριθμος Warshall

- $P^{[k]} = \{(i, j): \exists i j \delta i a \delta \rho o \mu \dot{\eta} \mu \epsilon \epsilon \sigma \omega \tau \epsilon \rho i \kappa \dot{\epsilon} \varsigma κορυφ \dot{\epsilon} \varsigma \in [k]\}$
- $\mathsf{P}^{[0]} = \mathsf{R} \, \ker \, P^{[k]}(i,j) = P^{[k-1]}(i,j) \vee (P^{[k-1]}(i,k) \wedge P^{[k-1]}(k,j))$
- Για R^* υπολογίζουμε η πίνακες $P^{[1]}$, $P^{[2]}$, ..., $P^{[n]} = R^*$.
 - Πίνακας $P^{[k]}$ υπολογίζεται από $P^{[k-1]}$ σε χρόνο $O(n^2)$.
 - Χρόνος: O(n³). Υλοποίηση: τετριμμένη!
- Αλγόριθμος Floyd-Warshall:
 - Υπολογισμός συντομότερων μονοπατιών μεταξύ όλων των κορυφών.