# Verilog 实验 lab5 实验报告

PB19071405 王昊元

2022年05月25日

## 1 实验目的

• 通过实现矩阵乘法,学习并体会数据级并行的原理及效果

### 2 实验要求

- 在 CPU 平台实现基础矩阵乘法、AVX 矩阵乘法、AVX 分块矩阵乘法
- 在 GPU 平台实现基础矩阵乘法、分块矩阵乘法

### 3 实验环境

#### CPU

- MacBook Air(13-inch, 2017)
- macOS Big Sur 11.2.3
- 1.8 GHz Dual-Core Intel Core i5
- 8 GB 1600 MHz DDR3

#### **GPU**

• 学校 GPU 集群

## 4 实验核心实现

#### 4.1 CPU 部分

基础矩阵乘法 使用三层循环,按照矩阵乘法定义实现即可。

```
void gemm_baseline(float *A, float *B, float *C, int N)

for(int i = 0; i < N; i ++)

for(int j = 0; j < N; j++)</pre>
```

```
{
6
                 // C[i][j]
                 int idx = idxs2idx(i, j, N);
                 C[idx] = 0.0f;
                 for(int k = 0; k < N; k++)</pre>
10
                     C[idx] += A[idxs2idx(i, k, N)] + B[idxs2idx(k, j, N)];
12
                 }
13
            }
14
        }
15
        return;
   }
17
```

**AVX 矩阵乘法** 在实现 AVX 矩阵乘法时,进行了一定的优化,具体算法为: 用  $A_{ij}$  乘 B 的第 j 行的向量,结果加到 C 的第 i 行。

```
void gemm_avx(float *A, float *B, float *C, int N)
   {
2
       __m256 vecA, vecB, vecC;
3
       // 先假设 n >= 3 即 N >= 8, 向量不需要补0
       // 对于 n < 3的情况,因为会向量会初始化为0,所以不需要额外处理
       for(int i = 0; i < N; i++)</pre>
       {
           // init Matrix C
8
           for(int j = 0; j < N; j++)</pre>
10
               // cout << idxs2idx(i, j, N) << endl;
11
               C[idxs2idx(i, j, N)] = 0.0f;
12
           }
13
           for(int j = 0; j < N; j++)</pre>
14
15
               vecA = _mm256_set1_ps(A[idxs2idx(i, j, N)]);
16
               // 8 = 256 / 32
17
               for(int k = 0; k < N; k += 8)</pre>
18
19
                    vecB = _mm256_loadu_ps(B + idxs2idx(j, k, N));
20
                    vecC = _mm256_loadu_ps(C + idxs2idx(i, k, N));
21
                    vecC = _mm256_fmadd_ps(vecA, vecB, vecC);
22
                    _mm256_storeu_ps(C + idxs2idx(i, k, N), vecC);
23
               }
24
           }
25
       }
26
       return;
27
   }
28
```

**AVX** 分块矩阵乘法 在采用上述算法的基础(使用上述算法,可以避免矩阵转置,同时也能兼顾一定的局部性)上,进行矩阵分块运算,同时进行了一定的循环展开,在展开时,考虑数据 IO 的耗时,选择对

 $A_{ij}$  进行展开,可以多次复用 B 的行向量。

```
void block(
       float *A, float *B, float *C,
        int N, int si, int sj, int sk,
        int block_size
   )
5
   {
        for(int i = si; i < si + block_size; i += UNROLL)</pre>
            for(int j = sj; j < sj + block_size; j++)</pre>
            {
10
                // unroll a
11
                __m256 a[UNROLL];
                for(int x = 0; x < UNROLL; x++)</pre>
13
                {
14
                     // A 的一列元素各自对应的向量
15
                     a[x] = _{mm256\_set1\_ps(A[idxs2idx(i + x, j, N)]);}
17
                for(int k = sk; k < sk + block_size; k += 8)</pre>
18
                     __m256 b;
                     // b = [ B[j][k] ... B[j][k+7] ]
21
                     b = _{mm256}loadu_ps(B + idxs2idx(j, k, N));
                     // unroll c
                     __m256 c[UNROLL];
                     for(int x = 0; x < UNROLL; x++)</pre>
25
                     {
26
                         c[x] = _{mm256\_loadu\_ps}(C + idxs2idx(i + x, k, N));
                         c[x] = _mm256_fmadd_ps(a[x], b, c[x]);
28
                         _{mm256\_storeu\_ps(C + idxs2idx(i + x, k, N), c[x]);}
29
                    }
                }
31
            }
32
        }
33
        return;
```

#### 4.2 GPU 部分

基础矩阵乘法

```
1 __global__ void gemm_baseline(float *A, float *B, float *C, int N)
2 {
3    int x = threadIdx.x + blockIdx.x * blockDim.x;
4    int y = threadIdx.y + blockIdx.y * blockDim.y;
5    if(x >= N |  y >= N)
```

```
{
7
            return;
        }
        C[x * N + y] = 0.0f;
        float *pa = A + x * N;
10
        float *pb = B + y;
11
        for(int i = 0; i < N; i++, pa++, pb += N)</pre>
12
13
             C[x * N + y] += (*pa) * (*pb);
14
        }
15
        return;
   }
17
```

#### 分块矩阵乘法

```
__global__ void blocked_gemm_baseline(float *A, float *B, float *C, int N)
   {
2
       int x = threadIdx.x + blockIdx.x * blockDim.x;
       int y = threadIdx.y + blockIdx.y * blockDim.y;
       if(x >= N \mid \mid y >= N)
       {
            return;
       }
       int tmp_x = threadIdx.x;
10
       int tmp_y = threadIdx.y;
11
       int block_num = (N + blockDim.x - 1) / blockDim.x;
12
13
       // const int block_size = (1 << 3);
14
       const int block_size = size;
15
16
       __shared__ float blockA[block_size][block_size];
17
       __shared__ float blockB[block_size][block_size];
18
       int A_start = blockIdx.x * block_size * N;
19
       int B_start = blockIdx.y * block_size;
20
       int A_step = block_size;
       int B_step = block_size * N;
22
23
       // 使用tmp减少与数组的交互,提升速度
24
       // 矩阵规模为 2<sup>13</sup> 时,可以从2s+提升到1s+
       float tmp = 0.0f;
26
       for(int i = 0; i < block_num; i++)</pre>
27
28
            blockA[tmp_x][tmp_y] = A[A_start + i \star A_step + tmp_x \star N + tmp_y];
29
            blockB[tmp_x][tmp_y] = B[B_start + i \star B_step + tmp_x \star N + tmp_y];
30
            __syncthreads();
31
           for(int j = 0; j < blockDim.x; j++)</pre>
```

# 5 实验结果及分析

### 5.1 CPU 部分

结果展示

表 1: CPU 上不同规模的三种矩阵乘法的时间(其中 n 为指数,分块大小为 26)

| n  | 基础矩阵乘法/s | AVX 矩阵乘法/s | AVX 分块矩阵乘法/s |
|----|----------|------------|--------------|
| 0  | 5e-06    | 2.1e-05    | 0.000433     |
| 1  | 3e-06    | 1.3e-05    | 0.000293     |
| 2  | 3e-06    | 1.4e-05    | 0.000284     |
| 3  | 7e-06    | 1.2e-05    | 4.2e-05      |
| 4  | 3.8e-05  | 1.6e-05    | 2.9e-05      |
| 5  | 0.000283 | 2.2e-05    | 3.5e-05      |
| 6  | 0.002573 | 6.6e-05    | 3.4e-05      |
| 7  | 0.018028 | 0.000239   | 0.000202     |
| 8  | 0.206072 | 0.001937   | 0.001514     |
| 9  | 2.04034  | 0.018129   | 0.01266      |
| 10 | 42.2682  | 0.322516   | 0.14661      |

图1仅展示了 n 从 0 到 6 的三种矩阵乘法的时间变化趋势,因为 n 大于 6 时基础矩阵乘法时间较长,会导致图中 n 从 0 到 6 时的时间相对大小不明显。



图 1: n 从 0 到 6 的三种矩阵乘法的时间趋势图

表 2: 分块矩阵乘法不同块大小的时间(矩阵规模为 28)

| 块大小 | $2^3$     | $2^4$     | $2^5$     | $2^{6}$   |
|-----|-----------|-----------|-----------|-----------|
| 时间  | 0.002098s | 0.001625s | 0.001632s | 0.002396s |

#### 结果分析

- 从图1中可以看出,
  - 1. 起初分块矩阵乘法明显慢于其他两种,这是由于分块矩阵每次运算的块的大小是一定的,所以对于较小的矩阵规模会做一些无用的工作。
  - 2. 在 n 较小时 AVX 矩阵乘法与基础矩阵乘法速度相差不大,且在 n 小于 3 (矩阵规模小于 8) 时, AVX 矩阵乘法更慢,这是由于 AVX 每次执行是以向量为单位,而我在实现时使用 \_\_m256 存储大小为 32bytes 的 float,一个向量存储 8 个单精度浮点数,所以当 n 大于 3 时,能发现 AVX 矩阵乘法明显快于基础矩阵乘法。
  - 3. 从图中数据发现即使当 n 较大时,分块矩阵乘法与 AVX 矩阵乘法相差无几,这是由于程序中的分块大小恰好为 2<sup>6</sup> (属于无意之举,分析时才发现),从原理上讲确实应相差无几,甚至在 n 为 6 时应该时间几乎一致才对,但比较数据会发现,分块矩阵乘法时间约为 AVX 矩阵乘法 的一半,这是由于在分块矩阵乘法中进行了循环展开操作,一定程度上减少了数据 IO 的时间,比较 n 大于 6 时的数据,可以看到分块矩阵明显快于 AVX 矩阵,并且 n 越大效果更加明显。
- 从表2中可以看到,随着分块大小的增大,矩阵乘法先变快后变慢,这可能是由于开始分块大小小于 cache 大小,随着分块越来越大,局部性利用得越来越好,速度越来越快,但慢慢分块大小超过了 cache 大小,计算分块时仍需要不断进行数据 IO,且并行数越来越小,导致速度越来越慢。

- CPU 平台上矩阵乘法的优化手段还有一些优化的细节或技巧,
  - 1. 三层循环时,j(列索引)的循环放在外面,在矩阵较小时,可以利用 cache 来提高运算性能。
  - 2. 进行循环展开,同时对元素进行复用,可以大幅减少数据 IO 的次数,从而提高运算效率。
  - 3. 使用寄存器变量也可以在一定程度上提升矩阵乘法的性能。
  - 4. 使用指针代替数组索引可以在一定程度上提升性能。

### 5.2 GPU 部分

#### 结果展示

表 3: GPU 上不同规模的两种矩阵乘法的时间(其中 n 为指数,分块大小为 24)

| n  | 基础矩阵乘法/s  | 分块矩阵乘法/s  |
|----|-----------|-----------|
| 6  | 1.4400e-5 | 5.5680e-6 |
| 7  | 3.0016e-5 | 1.1999e-5 |
| 8  | 2.1897e-4 | 7.4143e-5 |
| 9  | 1.6277e-3 | 5.5228e-4 |
| 10 | 0.012601  | 4.2891e-3 |
| 11 | 0.10053   | 0.034157  |
| 12 | 0.62913   | 0.27016   |
| 13 | 5.14445   | 1.64694   |

表3中,blocksize 均为 8,gridsize 均为  $\lceil \frac{N}{blocksize} \rceil$ 。

表 4: GPU 上不同 gridsize、blocksize 的两种矩阵乘法的时间

| blocksize | gridsize | 基础矩阵乘法/ms | 分块矩阵乘法/ms |
|-----------|----------|-----------|-----------|
| $2^{3}$   | $2^{7}$  | 12.602    | 4.2901    |
| $2^4$     | $2^7$    | 24.327    | 8.8383    |
| $2^5$     | $2^7$    | 53.835    | 27.590    |
| $2^5$     | $2^6$    | 53.780    | 27.583    |
| $2^5$     | $2^5$    | 53.805    | 27.582    |

表4中,矩阵规模为 $2^{10}$ ,分块大小为 blocksize。

#### 结果分析

- 1. 从表3中可以看出,随着矩阵规模增大,矩阵乘法越来越慢,这是由于矩阵规模的增大带来的计算量增大,导致计算开销变多。
  - 2. 分块矩阵乘法明显快于基础矩阵乘法,这是由于分块矩阵乘法考虑了 Cache,利用了数据的局部性,减少了数据 IO 的时间,从而提高了效率。

- 从表4中可以看出,随着 blocksize 的增大,矩阵乘法速度变慢,这可能是由于块越大,并行度越低,同时每个块的计算时间越长,最后导致矩阵乘法速度越来越慢。
- 从表4中可以看出, gridsize 对矩阵乘法速度影响不大。
- 因为分块矩阵乘法需要约束分块大小与 blocksize 相同,故不单独分析分块大小对矩阵乘法的印象。

## 6 实验总结

- 1. 本次实验自己分别实现了 CPU 和 GPU 平台下的基础矩阵乘法和不同优化程度的矩阵乘法, 切实体会到了数据级并行的效果。
- 2. 在实验前的调研阶段让我大开眼界,对矩阵乘法方面的优化有了更深的了解。