Today: * The fast Fourier Transform

* Symmetric matrices and orthogonality

Fast time one talked about the Discrete Favier transform D_m , defined to

 $(D_m)_{ij} = \omega_m$) where $\omega_m = e^{\frac{2\pi i}{m}}$) (j,j=1,...,m)

We sow how this unitary matrix is extremely useful when analyzing 1-6 function (after discretizing them to a m-point grid).

Given a vector $\overline{x} \in \mathbb{C}^m$, computing $D_m \overline{x}$ in the usual way takes about $O(m^2)$ FLOP's (as an known for matrix-vector multiplication).

In the mid 20th-century it was observed that if $m=2^K$ for some $K \in \mathbb{N}$ then the multiplication $D_m \overline{x}$ could be reduced to two multiplications.

involving Dm repeating this procedure one can perform The multiplicat Dm 2 not in O(mosm) FLOP's. This is a by enough difference that for many application the only practical way of computer Dm X is in this manner. This is known as the Fast Disease Former Transfer algorith or yest fast Foorier Transfer

The fast Fourier Transform

Let's see how computs $D_m \times is$ The same as computs $D_m \times i''$, $D_m \times i''$ for some well chosen vector Z''', $Z''' \in \mathbb{C}^{m_Z}$.

Then, let $m \in \mathbb{N}$ be even, m = 2m'Here is the Key observation:

$$\omega_{2m'}^2 = \omega_{m'} \qquad \text{(24)}$$

(recall com = e m for every w FIN)

Why is Or one? It's elementary:

$$\omega_{2n'}^{2} = \left(e^{\frac{2\pi\sqrt{1}}{2n'}}\right)^{2} = e^{\frac{2\pi\sqrt{1}}{n'}} = \omega_{n'}^{2}$$

With this is had, what does the i-th component of Dm & look like?

$$(D_{m}x)_{i} = \sum_{j=1}^{m} (D_{m})_{ij} x_{j}$$

$$= \sum_{j=1}^{m} (\omega_{m}^{i})^{j} x_{j}$$

Observe that $\omega_{m}^{j} = \omega_{2m}^{j} = \begin{pmatrix} \omega_{m}^{j} & \text{if } j \text{ is even} \\ \omega_{m}^{j} & \omega_{m}^{j} & \text{if } j \text{ is} \\ \omega_{m}^{j} & \omega_{m}^{j} & \text{if } j \text{ is} \\ \omega_{m}^{j} & \omega_{m}^{j} & \text{if } j \text{ is} \end{pmatrix}$

Let's write $j=2\kappa$ is the first son, and $j=2\kappa-1$ in the second sun, where $\kappa=1,...,m'$. Then

We see that $D_{m}x$ is the sum of two vectors that look a lot like $D_{\frac{m}{2}}=D_{m}$, applied to something like.

First, local of $i=1,\dots, m'$ only, Define $\chi^{(1)} = \begin{pmatrix} \chi_2 \\ \chi_4 \\ \vdots \\ \chi_{2m'} \end{pmatrix}, \chi^{(2)} = \begin{pmatrix} \chi_1 \\ \chi_3 \\ \vdots \\ \chi_{2m'-1} \end{pmatrix}$

If we take only the part is composets of $D_m \times (E(\mathbb{Z}^{2m'}))$, but's duck this $PD_m \times$, We see ther

$$\begin{array}{cccc}
\bigcap_{\mathbf{M}} \mathbf{X} &=& \bigcap_{\mathbf{M}^{1}} \mathbf{Z}^{(1)} &+& \bigwedge_{\mathbf{m}^{1}} \bigcap_{\mathbf{m}^{1}} \mathbf{X}^{(2)} \\
& \left(\begin{array}{c} \sum_{\mathbf{M}^{1}} \mathbf{\omega}_{\mathbf{M}^{1}} \mathbf{X}_{2\mathbf{K}} \\ \mathbf{x}_{=1} \end{array} \right) & \left(\begin{array}{c} \mathbf{\omega}_{2\mathbf{M}^{1}} & \sum_{\mathbf{K}^{1}} \mathbf{\omega}_{\mathbf{M}^{1}} \mathbf{X}_{2\mathbf{K}^{-1}} \\ \mathbf{x}_{=1} & \mathbf{x}_{=1} \end{array} \right) \\
& i = (\gamma - \gamma^{M}) & i = (\gamma - \gamma^{M})
\end{array}$$

Notice that computing PDnx amonds to compute two nultiplications of Dmg and a nultiplication by a maximal diagonal metrix (this takes O(mg) FLOP'S). What about the other m' companies of Dmx?

Well, it is m's then i = m'+2, l=1,...,m'.

Then $\omega_{m'} = \omega_{m'} = (\omega_{m'})^* \omega_{n'}$ $= \omega_{m'}^{k} + \ell \kappa$ $= \omega_{m'}^{k} + \ell \kappa$

and likewise

$$\omega_{m'} = \omega_{m'} = \omega_{m'} = \omega_{m'} \omega_{m'}$$

$$= \omega_{m'} = \omega_{m'}$$

$$=$$
 $(D_{m}X)_{i} =$

 $= \sum_{\kappa=1}^{m'} \omega_{m'}^{\ell \kappa} \times_{\kappa} + \omega_{n'}^{1-2\lambda} \underbrace{\sum_{\kappa=1}^{m'} \omega_{m'}^{l \kappa} \times_{2\kappa-1}^{2\kappa-1}}_{\kappa=1}$

This shows the remains m' coordinates of Don't are the some as the first m'.

The above show bow coupling Dm is reduced to two complate of Dm/2, a williplicate by a singent of metrix, and some post processing.

If $M = 2^{K}$ for some $K \in \mathbb{N}$, we complete this K times. Reduces the complete of 2^{K} Complete of 2^{K} D2's, plus 2^{K} diagonal metric multiplicature

The 2^{κ} miliplican by 0_2 's takes $O(2^{\kappa}) = O(\kappa)$ FLOP's, whole the 2^{κ} diagonal near-ix multiplican take more time in modes metrics of the 2^{α} for $l=1,...,\kappa$. This takes $O(\kappa 2^{\kappa})$ Flop's. that is $O(\kappa \log m)$ FLOP's.