Analytic Geometry 2

Jo Ciucă Australian National University

comp36706670@anu.edu.au

Outline

- Updates
- Orthonormal basis & Orthogonal Complement
- Orthogonal Projections in 1D
- Orthogonal Projections in n-D
- Gram-Schmidt Orthogonalisation

Updates

- A big thank you to everyone who has applied to be a course rep.
- Please sign up for Ed using https://edstem.org/au/join/2C7AqM.
- Time for a little poll:

https://forms.office.com/r/GFMF5zHB6i

Updates

- Assignment 1 has been released with a deadline of the 28th of August.
 - (d) Let **A** be a square matrix and $f(\mathbf{X})$ and $g(\mathbf{X})$ be *n*-th order polynomials, defined by $\sum_{i=0}^{n} a_i \mathbf{X}^i$ where a_i are arbitrary real numbers. Show that the matrices $f(\mathbf{A})$ and $g(\mathbf{A})$ commute, i.e, $f(\mathbf{A})g(\mathbf{A}) = g(\mathbf{A})f(\mathbf{A})$ for arbitrary order n.
 - (e) Let **A** and **B** be rectangular matrices of orders $n \times k$ and $r \times s$, respectively. The matrix of order $nr \times ks$ represented in a block form as

$$\begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1k}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2k}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}\mathbf{B} & a_{n2}\mathbf{B} & \dots & a_{nk}\mathbf{B} \end{bmatrix}$$

is called the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of the matrices \mathbf{A} and \mathbf{B} .

 Self-assessment released also - solutions to be discussed with your tutors this week.

Orthonormal Basis & Orthogonal Complement

3.5 Orthonormal Basis

• Consider an *n*-dimensional vector space V and a basis $\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ of V. For all $i,j=1,\cdots,n$, if

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0 \quad \text{for} \quad i \neq j$$
 (1) $\langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1$

then the basis is called an orthonormal basis (ONB).

If only (1) is satisfied, the basis is called an orthogonal basis.

Example (Orthonormal Basis)

• The canonical/standard basis for a Euclidean vector space \mathbb{R}^n is an orthonormal basis, where the inner product is the dot product of vectors

For
$$\mathbb{R}^3$$
: $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

• In \mathbb{R}^2 , the vectors $\mathbf{b}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ form an orthonormal basis since $b_1^{\mathsf{T}} b_2 = 0$ and $\|b_1\| = 1 = \|b_2\|$

3.6 Orthogonal Complement

• A 2-dimensional subspace U in a three-dimensional vector space can be described by its normal vector, which spans its orthogonal complement U^{\perp} .

• Generally, normal vectors can be used to describe (n-1) dimensional **hyperplanes** in n-dimensional vector and affine spaces.

3.6 Orthogonal Complement

- We now look at vector spaces that are orthogonal to each other
- Consider a D-dimensional vector space V and an M-dimensional subspace $U \subseteq V$. The orthogonal complement U^{\perp} is a (D-M)-dimensional subspace of V and contains all vectors in V that are orthogonal to every vector in U.
- $U \cap U^{\perp} = \{0\}$ so that any vector $x \in V$ can be uniquely decomposed into

$$x = \sum_{m=1}^{M} \lambda_m \boldsymbol{b}_m + \sum_{j=1}^{D-M} \psi_j \boldsymbol{b}_j^{\perp}, \lambda_m, \psi_j \in \mathbb{R}$$

• Where $(\pmb{b}_1,...,\pmb{b}_M)$ is a basis of \pmb{U} and $(\pmb{b}_1^\perp,...,\pmb{b}_{D-M}^\perp)$ is a basis of \pmb{U}^\perp .

Orthogonal Projections

3.8 Orthogonal Projections

- High-dimensional data.
- only a few dimensions contain most information
- When we compress or visualize high-dimensional data, we will lose information.
- To minimize this compression loss, we want to find the most informative dimensions in the data.
- Orthogonal projections of high-dimensional data retain as much information as possible

Orthogonal projection (orange dots) of a two-dimensional dataset (blue dots) onto a one-dimensional subspace (straight line)

3.8 Orthogonal Projections

- Let V be a vector space and $U \subseteq V$ a subspace of V. A linear mapping $\pi: V \to V$ is called a projection if $\pi^2 = \pi \circ \pi = \pi$.
- Linear mappings can be expressed by transformation matrices.
- The projection matrices P_{π} has the property $P_{\pi}^2 = P_{\pi}$.

3.8.1 Projection onto One-Dimensional Subspaces (Lines)

- Assume we are given a line (one-dimensional subspace) through the origin with basis vector $b \in \mathbb{R}^n$.
- When we project $x \in \mathbb{R}^n$ onto U, we seek the vector $\pi_U(x)$ that is closest to x.

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \mathbf{b} .

- The projection $\pi_U(x)$ should be closest to x.
 - $\|x \pi_U(x)\|$ is minimal.
 - $\pi_{U}(x) x$ is orthogonal to U, which is spanned by b.
 - $\langle \pi_U(\mathbf{x}) \mathbf{x}, \mathbf{b} \rangle = 0$
- $\pi_U(x)$ is an element of U spanned by b.
 - $\pi_U(\mathbf{x}) = \lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \mathbf{b} .

How to determine λ , $\pi_U(x)$ and the projection matrix P_{π} ?

1. Finding the coordinate λ

The orthogonality condition

$$\langle \boldsymbol{x} - \boldsymbol{\pi}_{U}(\boldsymbol{x}), \boldsymbol{b} \rangle = 0 \iff \langle \boldsymbol{x} - \lambda \boldsymbol{b}, \boldsymbol{b} \rangle = 0$$

We use the bilinearity of inner product

If we choose (• , •) to be the dot product, we obtain

$$\lambda = \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\boldsymbol{b}^{\top} \boldsymbol{b}} = \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^{2}}$$

• If ||b|| = 1 then λ is given by $b^{\top}x$.

2. Finding the projection point $\pi_U(x) \in U$

• Since $\pi_{U}(x) = \lambda b$, we immediately obtain

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \frac{\langle \mathbf{x}, \mathbf{b} \rangle}{\|\mathbf{b}\|^2} \mathbf{b} = \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^2} \mathbf{b}$$
 Assuming dot product

We can also compute the length of $\pi_U(x)$ as

$$\|\pi_U(\mathbf{x})\| = \|\lambda \mathbf{b}\| = \|\lambda\| \|\mathbf{b}\|$$

Hence, our projection is of length $|\lambda|$ times the length of **b**.

Using the dot product as an inner product, we get

$$\pi_{U}(\mathbf{x}) = \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b} = \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\| \|\mathbf{x}\|} \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \mathbf{b} = \cos \omega \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \mathbf{b}$$
$$\|\pi_{U}(\mathbf{x})\| = \|\cos \omega \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \mathbf{b}\| = |\cos \omega| \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \|\mathbf{b}\| = |\cos \omega| \|\mathbf{x}\|$$

 ω is the angle between x and b. This equation should look familiar from trigonometry.

3. Finding the projection matrix P_{π}

- A projection is a linear mapping
- There exists a projection matrix P_{π} such that $\pi_U(x) = P_{\pi}x$
- With the dot product as inner product and

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \mathbf{b}\lambda = \mathbf{b}\frac{\mathbf{b}^{\mathsf{T}}\mathbf{x}}{\|\mathbf{b}\|^2} = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}}{\|\mathbf{b}\|^2}\mathbf{x}$$

we immediately see that

$$P_{\pi} = \frac{\boldsymbol{b}\boldsymbol{b}^{\top}}{\left\|\boldsymbol{b}\right\|^{2}}$$

• Note that $\boldsymbol{b} \ \boldsymbol{b}^{\top}$ (and, consequently, \boldsymbol{P}_{π}) is a symmetric matrix (of rank 1), and $\|\boldsymbol{b}\|^2 = \langle \boldsymbol{b}, \boldsymbol{b} \rangle$ is a scalar.

Example (Projection onto a Line)

• Find the projection matrix P_{π} onto the line through the origin spanned by $b = \begin{bmatrix} 1 & -1 \end{bmatrix}^{\top}$.

$$\boldsymbol{P}_{\pi} = \frac{\boldsymbol{b}\boldsymbol{b}^{\mathsf{T}}}{\|\boldsymbol{b}\|^2} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

• We choose a particular x and see whether its projection lies in the subspace spanned by b. For $x = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$, the projection is

$$\pi_{U}(\mathbf{x}) = \mathbf{P}_{\pi}\mathbf{x} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2 \\ 2 \end{bmatrix} \in span \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• Further application of P_{π} to $\pi_U(x)$ does not change anything, i.e., $P_{\pi}\pi_U(x) = \pi_U(x)$. This is expected because according to the definition of Projection, we know that a projection matrix P_{π} satisfies $P_{\pi}^2 x = P_{\pi} x$ for all x.

Projection on General Subspaces

3.8.2 Projection onto General Subspaces

• We look at orthogonal projections of vectors $\mathbf{x} \in \mathbb{R}^n$ onto lower-dimensional subspaces $\mathbf{U} \subseteq \mathbb{R}^n$ with $\dim(\mathbf{U}) = m \ge 1$.

Projecting $x \in \mathbb{R}^3$ onto a two-dimensional subspace

- Assume $(\boldsymbol{b}_1, \dots, \boldsymbol{b}_m)$ is a basis of \boldsymbol{U} .
- The projection $\pi_U(x)$ is a component of U.

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i$$

• How to determine λ_i , $\pi_U(x)$ and P_{π} ?

1. Find the coordinates $\lambda_i, \dots, \lambda_m$

The linear combination

$$\pi_{U}(\mathbf{x}) = \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} = \mathbf{B} \lambda$$

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i = \mathbf{B}\lambda$$
 $\mathbf{B} = \begin{bmatrix} \mathbf{b}_1, ..., \mathbf{b}_m \end{bmatrix} \in \mathbb{R}^{n \times m}, \lambda = \begin{bmatrix} \lambda_1, ..., \lambda_m \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^m$

should be closest to $x \in \mathbb{R}^n$,

the vector connecting $\pi_U(x) \in U$ and $x \in \mathbb{R}^n$ must be orthogonal to all basis vectors of *U*.

We obtain *m* simultaneous conditions (using the dot product)

$$\langle \boldsymbol{b}_{1}, \boldsymbol{x} - \pi_{U}(\boldsymbol{x}) \rangle = \boldsymbol{b}_{1}^{T} (\boldsymbol{x} - \pi_{U}(\boldsymbol{x})) = 0$$

$$\vdots$$

$$\langle \boldsymbol{b}_{m}, \boldsymbol{x} - \pi_{U}(\boldsymbol{x}) \rangle = \boldsymbol{b}_{m}^{T} (\boldsymbol{x} - \pi_{U}(\boldsymbol{x})) = 0$$

with $\pi_U(\mathbf{x}) = \mathbf{B}\lambda$, we re-write the above as

$$\mathbf{b}_{1}^{\mathrm{T}}(\mathbf{x} - \mathbf{B}\lambda) = 0$$

$$\vdots$$

$$\mathbf{b}_{m}^{\mathrm{T}}(\mathbf{x} - \mathbf{B}\lambda) = 0$$

such that we obtain a homogeneous linear equation system

$$\begin{bmatrix} \boldsymbol{b}_1^{\mathrm{T}} \\ \vdots \\ \boldsymbol{b}_m^{\mathrm{T}} \end{bmatrix} [\boldsymbol{x} - \boldsymbol{B}\boldsymbol{\lambda}] = 0 \iff \boldsymbol{B}^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{B}\boldsymbol{\lambda}) = 0 \iff \boldsymbol{B}^{\mathrm{T}}\boldsymbol{B}\boldsymbol{\lambda} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{x}.$$

1. Find the coordinates $\lambda_i, \dots, \lambda_m$

$$\mathbf{B}^{\mathrm{T}}\mathbf{B}\lambda = \mathbf{B}^{\mathrm{T}}\mathbf{x}$$
.

• b_1 , . . . , b_m are a basis of U, so they are linearly independent.

$$r(B^{\mathrm{T}}B) = r(B) = m$$

This allows us to solve λ

$$\lambda = (\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{x}$$

- Recall: the matrix $(\mathbf{B}^{\mathrm{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathrm{T}}$ is also called the pseudo-inverse of \mathbf{B} .
- 2. Find the projection $\pi_U(x) \in U$. We already established that $\pi_U(x) = B\lambda$. Therefore, we calculate $\pi_U(x)$ as

$$\pi_U(\mathbf{x}) = \mathbf{B}(\mathbf{B}^{\mathrm{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{x}$$

3. Find the projection matrix P_{π}

- We have $P_{\pi} x = \pi_U(x)$
- From step 2, we have

$$\pi_U(\mathbf{x}) = \mathbf{B}(\mathbf{B}^{\mathrm{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{x}$$

We can immediately see that

$$P_{\pi} = \boldsymbol{B}(\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{T}}$$

• If dim(U) = 1, i.e., projecting onto a 1-dim subspace, we have B^TB is a scalar. We can reduce

$$P_{\pi} = B(B^{T}B)^{-1}B^{T}$$
into
$$P_{\pi} = \frac{bb^{T}}{\|b\|^{2}}$$

which is exactly the projection matrix in the 1-D case.

Example - Projection onto a Two-dimensional Subspace

- For a subspace $U = \operatorname{span}\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\2 \end{bmatrix} \end{bmatrix} \subseteq \mathbb{R}^3$, and $\mathbf{x} = \begin{bmatrix} 6\\0\\0 \end{bmatrix} \in \mathbb{R}^3$, find the coordinates λ of $\pi_U(\mathbf{x})$ in terms of U, the projection point $\pi_U(\mathbf{x})$ and the projection matrix P_{π} .
- Solution
- First, the generating set of U is a basis (linear independence) and write the basis vectors of U into a matrix $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$.
- Second, we compute the matrix $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ and the vector $\mathbf{B}^{\mathrm{T}}\mathbf{x}$ as

$$\mathbf{B}^{\mathrm{T}}\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}, \mathbf{B}^{\mathrm{T}}\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

• Third, we solve the normal equation $B^TB\lambda = B^Tx$ to find λ :

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \iff \lambda = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Example - Projection onto a Two-dimensional Subspace

• Fourth, the projection point $\pi_U(x)$ of x onto U, i.e., into the column space of B, can be directly computed via

$$\pi_U(\mathbf{x}) = \mathbf{B}\lambda = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$

• The corresponding projection error is the norm of the difference between the original vector and its projection onto U, i.e.,

$$\|\mathbf{x} - \pi_U(\mathbf{x})\| = \|[1 \quad -2 \quad 1]^{\mathrm{T}}\| = \sqrt{6}$$

• Fifth, the projection matrix (for any $x \in \mathbb{R}^3$) is given by

$$\mathbf{P}_{\pi} = \mathbf{B}(\mathbf{B}^{\mathrm{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathrm{T}} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

Things to note

• $\pi_U(x)$ is still in \mathbb{R}^3 , although it lies in a 2-dim subspace $U \subseteq \mathbb{R}^3$

• For our case, if **B** columns are an orthonomal basis (ONB), i.e., $\mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I}$, we

have

 $\lambda = \mathbf{B}^{\mathrm{T}} \mathbf{x}$ $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for $i \neq j$ $\pi_U(\mathbf{x}) = \mathbf{B} \mathbf{B}^{\mathrm{T}} \mathbf{x}$ $\langle \mathbf{b}_i, \mathbf{b}_i \rangle = 1$

- We can find approximate solutions to unsolvable linear equation systems Au = v using projections.
- The idea is to find the vector in the subspace spanned by the columns of A that is closest to ν , i.e., we compute the orthogonal projection of ν onto the subspace spanned by the columns of A. --- least-squares solution

3.8.3 Gram-Schmidt Orthogonalization

3.8.3 Gram-Schmidt Orthogonalization

ullet Consider a basis of \mathbb{R}^2

$$\boldsymbol{b}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \qquad \boldsymbol{b}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Using the Gram-Schmidt method, we construct an orthogonal basis (u_1, u_2) of \mathbb{R}^2 as follows (using dot product).

$$\mathbf{u}_1 := \mathbf{b}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 := \mathbf{b}_2 - \pi_{\text{span}[\mathbf{u}_1]}(\mathbf{b}_2) = \mathbf{b}_2 - \frac{\mathbf{u}_1 \mathbf{u}_1^{\text{T}}}{\|\mathbf{u}_1\|^2} \mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• We immediately see that u_1, u_2 are orthogonal, i.e., $u_1^T u_2 = 0$

 u_1 .

(a) Original non-orthogonal (b) First new basis vector (c) Orthogonal basis vectors u_1 basis vectors b_1, b_2 . $u_1 = b_1$ and projection of b_2 and $u_2 = b_2 - \pi_{\text{span}[u_1]}(b_2)$. onto the subspace spanned by

3.8.3 Gram-Schmidt Orthogonalization

• Constructively transform basis $(\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ of an *n*-dim vector space V into an orthogonal/orthonormal basis $(\boldsymbol{u}_1, \dots, \boldsymbol{u}_n)$ of V.

$$\operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_n] = \operatorname{span}[\boldsymbol{u}_1, \dots, \boldsymbol{u}_n]$$

The process iterates as follows

$$u_1 := b_1$$

$$u_k := b_k - \pi_{\text{span}[u_1, \dots, u_{k-1}]}(b_k), \quad k = 2, \dots, n$$

- The kth basis vector \mathbf{b}_k is projected onto the subspace spanned by the first k-1 constructed orthogonal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{k-1}$.
- This projection is then subtracted from b_k and yields a vector u_k that is orthogonal to the (k-1)-dim subspace spanned by u_1, \dots, u_{k-1}
- If we normalize u_k , we obtain an ONB where $||u_k|| = 1$ for $k = 1, \dots, n$.

Check your understanding

- (A) Orthogonal projections are linear projections.
- (B) When applying orthogonal projection multiple times (>1), the result will no longer change.
- (C)Given a subspace to project on, orthogonal projection gives the minimum information loss (I₂).
- (D) Gram-Schmidt Orthogonalization outputs the same number of basis vectors as the input.
- (E) Projections allow us to visualize better and understand highdimensional data.