SINTETIZADOR SUBTRATIVO MONOFÔNICO DE ÁUDIO

Giovani Freitas, Guilherme Brandão, Igor Itsuo, João Henrique, Tiago Piai.

INTRODUÇÃO E OBJETIVOS

- Construir um sintetizador monofônico de áudio, implementado digitalmente utilizando o kit de desenvolvimento STM32f4-Discovery;
- Reproduzir o funcionamento do sintetizador Minimoog, utilizando um computador (MatLab para a interface), a placa de desenvolvimento e um módulo de áudio (UDA1380).

0 MINIMOOG

O Minimoog é um sintetizador analógico lançado em 1970. Basicamente, seu painel frontal pode ser dividido em três seções:

- Geradores de sinal;
- Filtro;
- Amplificador.

Minimoog D: R\$13.000,00

CARACTERÍSTICAS

- Mais robusto que os sintetizadores modulares;
- Controle dos módulos por sinais de tensão;
- 6 fontes sonoras (3 osciladores, um gerador de ruído e uma entrada externa).

DIAGRAMA DE BLOCOS DO SINTETIZADOR

INTERFACE NO MATLAB

OSCILADORES

Limite (Range)

Determina as notas de uma até cinco oitavas acima da tocada

Amplitude (Volume)

Controle da intensidade do som produzido pelo oscilador (0%-100%)

Forma de Onda (Waveform)

Quadrada, triangular, dente de serra, senoidal e distosine

Frequência (Frequency)

Afinada até 5 tons acima ou abaixo da nota tocada

LFO (AMPLITUDE)

Princípio

Opera uma modulação do volume do sinal de saída, utilizando um sinal modulante de baixa frequência

Controles

Frequência do sinal modulante e intensidade do LFO

Amplitude

Controle da intensidade do ruído adicionado ao sinal (White ou Pink)

LFO (FREQUÊNCIA)

Princípio

É possível escolher uma faixa de frequência de atuação do LFO, a qual vai de 0,05Hz até 200Hz. Além disso, se o botão estiver no mínimo, a onda utilizada é triangular, e se estiver próximo ao máximo, a onda é quadrada.

GERADOR DE ENVELOPE (AMP)

Attack

Tempo de disparo da nota após a tecla ser pressionada (1ms - 10s)

Decay

Tempo de passagem da amplitude máxima do attack o sustain (4ms - 35s)

Sustain

Nível de amplitude em que a nota é mantida enquanto a tecla mantém-se pressionada (0% - 100%)

GERADOR DE ENVELOPE

GERADOR DE ENVELOPE (FREQ)

Attack

Determina o tempo necessário para aumentar a frequência de corte do ajuste manual até o seu máximo (definida pelo AMOUNT OF CONTOUR) **Decay**

Define o tempo necessário para que abaixe a frequência de corte do nível alcançado pelo estágio de ATTACK até o definido pelo SUSTAIN LEVEL

Sustain

Após os estágios de ATTACK e DECAY estiverem sido concluídos, a frequência de corte se manterá no nível determinado pelo SUSTAIN LEVEL enquanto uma nota for mantida

FILTRO PASSA BAIXA (BIQUAD)

Fator Q (Emphasis)

Controla a ressonância do sinal filtrado, acrescentando distorções

Frequência de Corte

Sempre uma oitava acima da nota tocada, podendo ser ajustada para cinco tons abaixo ou acima

DIFICULDADES DE IMPLEMENTAÇÃO

- Entender o funcionamento dos módulos do Minimoog e projetar um mecanismo digital equivalente;
- Geração dos osciladores necessidade de guardar um período de cada sinal e implementar uma interpolação para gerar qualquer valor de frequência;
- Elaboração de uma interface para o controle de muitos parâmetros sem que a comunicação não congestionasse o microcontrolador;
- Interface com o MATLAB problemas com o uso da USART2 do microcontrolador com a UDA1380, ocasionando na migração para a USART3;
- Tentativas falhas em usar mecanismos bloqueados pela biblioteca UDA1380;
- Cabo MIDI;
- Necessidade de buscar alternativas para substituir o teclado MIDI.

CONCLUSÃO

DÚVIDAS?