福宁古五校教学联合体 2023-2024 学年第二学期期中质量监测

高二数学试题答案

一、选择题

1. C 2. D 3. B 4. C 5. A 6. D 7. B 8. B

8. 解析: $f'(x) = 3x^2 + 2ax - b$, 为二次函数, 其图像开口向上.

若 $\Delta \leq 0$,则 $f'(x) \geq 0$,函数 f(x)在 R 上单调递增,不符合题意;

若 $\Delta > 0$, 方程 $3x^2 + 2ax - b = 0$ 有两个不等实根 x_1, x_2 ,

不妨设 $x_1 < x_2$, 当 $x \in (-\infty, x_1)$, f'(x) > 0, f(x) 单调递增, $x \in (x_1, x_2)$, f'(x) < 0, 函数单调递减, $x \in (x_2, +\infty)$, f'(x) > 0, 函数单调递增, 若使 f(x) < 0 的解集为 $\{x \mid x < m, \exists x \neq n\}$, 则 f(x) 的大致图

像如图所示.

则 m,n 为函数 f(x) 的两个零点,且 n 为函数 f(x) 的极大值点,

所以
$$f(x) = (x-m)^2(x-n)$$
 或 $f(x) = (x-m)(x-n)^2$

$$\stackrel{\text{def}}{=} f(x) = (x-m)^2(x-n)$$
 pt , $f'(x) = 2(x-m)(x-n) + (x-m)^2$,

令
$$f'(x) = 0$$
, 则 $x = n$ 或 $x = \frac{n+2m}{3} = \frac{n+2(n+1)}{3} = n + \frac{2}{3}$, 所以 $x = n + \frac{2}{3}$ 为极小值点.

所以
$$f(x)$$
 的极小值为 $f(n+\frac{2}{3}) = (n+\frac{2}{3}-n-1)(n-\frac{2}{3}-n)^2 = -\frac{4}{27}$. 故选 B.

9. BC 10. ABD 11. AC

11. 解析:对于 A,以 D为坐标原点,建立如图所示的空间直角坐标系,

设
$$P(x,y,0)$$
,则 $D_1(0,0,1)$, $A(1,0,0)$, $\overline{D_1P}=(x,y,-1)$, $\overline{AD_1}=(-1,0,1)$;

若 $D_1P \perp AD_1$,则 $\overline{D_1P} \cdot \overline{AD_1} = 0$,即 x = -1,与题意矛盾,所以 A 正确;

对于 B, 取 BB, 中点 Q, 连接 D_1M , MQ, AQ, 因为 D_1A / MQ,

所以可得 $A \times M \times D_1 \times Q$ 四点共面,

所以过三点 A 、 M 、 D_1 的正方体 $ABCD - A_1B_1C_1D_1$ 的截面为以 MQ , AD_1 为

底的等腰梯形,

$$AD_1 = \sqrt{2}, MQ = \frac{\sqrt{2}}{2}, D_1M = \sqrt{D_1C_1^2 + C_1M^2} = \frac{\sqrt{5}}{2},$$

过点
$$Q$$
作 $QH \perp D_1A$,所以 $AH = \frac{AD_1 - MQ}{2} = \frac{\sqrt{2}}{4}$,

所以梯形的高为
$$QH = \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(\frac{\sqrt{2}}{4}\right)^2} = \frac{3\sqrt{2}}{4}$$

所以,
$$S = \frac{1}{2} \times \left(\frac{\sqrt{2}}{2} + \sqrt{2}\right) \times \frac{3\sqrt{2}}{4} = \frac{9}{8}$$
, 故 B 错误;

对于C,如下图知:四面体A,C,BD的体积为正方体体积减去四个三棱锥的体积,

可知四面体 A.C.BD 是棱长为 √2 的正四面体,

取 $\triangle A_1DC_1$ 的外心 O_1 ,连接 BO_1 ,则 BO_1 上平面 A_1DC_1 ,

则
$$2A_1O_1 = \frac{\sqrt{2}}{\sin 60^\circ}$$
 ,则 $A_1O_1 = \frac{\sqrt{6}}{3}$,所以 $BO_1 = \sqrt{\left(\sqrt{2}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2} = \frac{2\sqrt{3}}{3}$,

所以四面体 A_1C_1BD 的高 $BO_1 = h = \frac{2\sqrt{3}}{3}$,

设四面体 A_iC_iBD 的侧面积为 S , 其内切球的半径为 r , 球心为 O ,

$$\because V_{A_lC_lBD} = 4V_{O-A_lC_lB}, \therefore \frac{1}{3}Sh = 4 \times \frac{1}{3}Sr,$$

即
$$r = \frac{h}{4} = \frac{\sqrt{3}}{6}$$
, $S = 4\pi r^2 = \frac{\pi}{3}$, 所以 C 正确;

对于 D,
$$N\left(1,1,\frac{1}{5}\right)$$
, $\overrightarrow{NP} = \left(x-1,y-1,-\frac{1}{5}\right)$, $\therefore D_1P \perp NP$, $\therefore \overrightarrow{D_1P} \cdot \overrightarrow{NP} = 0$,

即
$$x(x-1)+y(y-1)+\frac{1}{5}=0$$
,可得轨迹为圆: $\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{3}{10}$,

所以,圆心
$$\left(\frac{1}{2},\frac{1}{2}\right)$$
, $r = \frac{\sqrt{30}}{10} > \frac{1}{2}|AB| = \frac{1}{2}$,又 $x, y \in [0,1]$,

所以,轨迹为圆: $(x-\frac{1}{2})^2 + (y-\frac{1}{2})^2 = \frac{3}{10}$ 被四边形 ABCD 截得的 4 段圆弧,

所以 D 错误; 故选: AC.

三、填空题

12.
$$\frac{10}{3}$$
 13. $\frac{5}{6}$ 14. $\sqrt{2}-1$

14. 设点 P 坐标为 (x_0, e^{x_0}) , F(1,0) 为曲线 C_2 的焦点.

点 N到 C_2 准线距离为 N_x+1 ,根据抛物线定义, $NF=x_N+1$,则 $N_x=|NF|-1$.

$$\text{ In } \left|MN\right|+N_{_{X}}=\left|MN\right|+\left|NF\right|-1\geq \left|MF\right|-1\text{ .}$$

有
$$|MF|^2 = (x_0 - 1)^2 + (e^{x_0} - 0)^2 = e^{2x_0} + x_0^2 - 2x_0 + 1$$
。

$$\stackrel{\text{in}}{\nabla} f(x) = e^{2x} + x^2 - 2x + 1$$
, $f'(x) = 2e^{2x} + 2x - 2$, $f''(x) = 4e^{2x} + 2 > 0$,

因此 f'(x) 是增函数,又 f'(0) = 0 ,故当 x > 0时,f'(x) > 0; x < 0时,f'(x) < 0 ,

因此 f(x) 在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增。

则
$$f(x) \ge f(0) = 2$$
 , 故 $|NF| = \sqrt{f(x_0)} \ge \sqrt{2}$, 则 $|NF| - 1 \ge \sqrt{2} - 1$ 。

因此 $|MN| + N_x \ge \sqrt{2} - 1$, $|MN| + N_x$ 的最小值为 $\sqrt{2} - 1$ 。

15. 【详解】

整理得 $5a-b+3=0$;
(2) 由 $l \perp \alpha$ 得 $\vec{u} / / \vec{n}$
所以 $\frac{3}{1} = \frac{a+b}{2} = \frac{a-b}{3}$, 10分
解得 $a = \frac{15}{2}$, $b = -\frac{3}{2}$.
16. 【详解】(1) $f'(x) = e^x - a$
设 $P(x_0,y_0)$ 为切点,依题意 $\begin{cases} y_0 = e^{x_0} - ax_0 \\ y_0 = x_0 \\ e^{x_0} - a = 1 \end{cases}$ 4分
解得 $a = e - 1$
(2) $f(x) \ge \frac{1}{2}x^2 + 1$, $x \ge 1$ \\$\text{\text{\text{\$\frac{1}{2}}\$}} x^2 + 1, $x \ge 1$,
等价于 $a \le \frac{2e^x - x^2 - 2}{2x}$, $x \ge 1$
设 $h(x) = 2xe^x - 2e^x - x^2 + 2$, $x \ge 1$,
$\iiint h'(x) = 2x \left(e^x - 1\right)$
$x \ge 1$ Fig. $h'(x) = 2x(e^x - 1) > 0$, $h(x) > h(1) = 1 > 0$
所以 $g'(x) > 0$, $g(x) \ge g(1) = \frac{2e-3}{2} = e - \frac{3}{2}$
所以,当 $a \le e - \frac{3}{2}$ 时, $f(x) \ge \frac{1}{2}x^2 + 1$ 在 $x \ge 1$ 时恒成立
17.
【答案】(1) 证明见解析; (2) $\frac{2}{5}$.
【解析】(1) 因为 PC 上平面 $ABCD$,
$AC \subset \overline{\ }^{\square} \overline{\ } ABCD$,
所以 PC ⊥ AC· 2 分
因为 $AB = 2AD = 2CD$,
所以 $AC = BC = \sqrt{2}AD = \sqrt{2}CD$, 所以 $AC^2 + BC^2 = AB^2$,
故 $AC \perp BC \cdot \nabla BC \cap PC = C$,所以 $AC \perp $ 平面 $PBC \cdot \dots $ 5 分
因为 AC \subset 平面 EAC ,所以平面 EAC \bot 平面 PBC
(2) 如图,以 C 为原点, \overrightarrow{CB} , \overrightarrow{CA} , \overrightarrow{CP} 分别为 x 轴, y 轴, z 轴的正半轴,建立空间直角坐标系,
·····································
设 $CB = 2$, $CP = 2a \ (a > 0)$,则 $C(0,0,0)$, $A(0,2,0)$, $B(2,0,0)$, $P(0,0,2a)$,

则
$$E(1,0,a)$$
, $\overrightarrow{CA} = (0,2,0)$, $\overrightarrow{CP} = (0,0,2a)$, $\overrightarrow{CE} = (1,0,a)$, 8 分

设 $\vec{n} = (x, y, z)$ 为平面EAC的一个法向量,

由
$$\begin{cases} \vec{n} \cdot \overrightarrow{CA} = 0 \\ \vec{n} \cdot \overrightarrow{CE} = 0 \end{cases}$$
,即 $\begin{cases} 2y = 0 \\ x + az = 0 \end{cases}$: $y = 0$,

依題意,
$$\left|\cos\left\langle \overrightarrow{m},\overrightarrow{n}\right\rangle\right| = \frac{\left|\overrightarrow{m}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{m}\right|\cdot\left|\overrightarrow{n}\right|} = \frac{a}{\sqrt{a^2+1}} = \frac{2\sqrt{5}}{5}$$
, 解得 $a=2$.

于是,
$$\vec{n} = (2,0,-1)$$
, $\vec{PA} = (0,2,-4)$ · ……13 分

則
$$\sin \theta = \left|\cos\left\langle \overrightarrow{PA}, \overrightarrow{n}\right\rangle\right| = \frac{\left|\overrightarrow{PA} \cdot \overrightarrow{n}\right|}{\left|\overrightarrow{PA}\right| \cdot \left|\overrightarrow{n}\right|} = \frac{2}{5}$$
.

18. **【**详解**】**(1)
$$d(M, N_1) = |x| + |y - 2| = |x| + \left|\frac{1}{2}x - 2\right| = \begin{cases} -\frac{3}{2}x + 2, x < 0\\ \frac{1}{2}x + 2, 0 \le x < 4 \end{cases}$$
,

则
$$d(M,N_1) \ge 2$$
, 即 $d(M,N_1)$ 的最小值为 2; ·················4 分

$$d(M, N_2) = |x| + |y - 2| = |x| + |2x - 2| = \begin{cases} 2 - 3x, x < 0 \\ 2 - x, 0 \le x < 1 \\ 3x - 2, x \ge 1 \end{cases}$$

(2)
$$f(x) = d(M, N) = |x - 1| + |y - 1| = |x - 1| + |\ln x - 1| = \begin{cases} 2 - x - \ln x, \frac{1}{e^6} \le x < 1 \\ x - \ln x, 1 \le x \le e \\ x + \ln x - 2, e < x \le e^2 \end{cases}$$
9 $\frac{1}{x^2}$

当
$$\frac{1}{e^6} \le x < 1$$
 时, $f(x) = 2 - x - \ln x$, $f'(x) = -1 - \frac{1}{x} < 0$, $f(x)$ 在 $\left[\frac{1}{e^6}, 1\right]$ 上单调递减,

当
$$1 \le x \le e$$
时, $f(x) = x - \ln x, f'(x) = 1 - \frac{1}{x} > 0, f(x)$ 在 $[1,e]$ 上单调递增,

当
$$e < x \le e^2$$
 时, $f(x) = x + \ln x - 2$, $f'(x) = 1 + \frac{1}{x} > 0$, $f(x)$ 在 $(e, e^2]$ 上单调递增,

19. 【详解】(1)解:因为 $f(x) = ax + (a-1)\ln x + \frac{1}{x}$,

①当 $a \le 0$ 时,f'(x) < 0,所以函数f(x)的减区间为 $(0,+\infty)$,无增区间; ············3 分

综上: 当 $a \le 0$ 时,函数f(x)的减区间为 $(0,+\infty)$,无增区间;

当
$$a>0$$
时,函数 $f(x)$ 的增区间为 $\left(\frac{1}{a},+\infty\right)$,减区间为 $\left(0,\frac{1}{a}\right)$6分

(2) 解: (i) 方程
$$xf(x) = x^2e^x - x \ln x + 1$$
 可化为 $xe^x = ax + a \ln x$, 即 $e^{x + \ln x} = a(x + \ln x)$.

易知函数
$$t(x)=x+\ln x$$
的值域为**R**, ……8分

结合题意,关于t的方程 $e^t = at$ (*)有两个不等的实根.

又因为t=0不是方程(*)的实根,所以方程(*)可化为 $\frac{e'}{t}=a$.

令
$$g(t) = \frac{e^t}{t}$$
, 其中 $t \neq 0$, 则 $g'(t) = \frac{e^t(t-1)}{t^2}$.

由g'(t) < 0可得t < 0或0 < t < 1,由g'(t) > 0可得t > 1,

且当
$$t < 0$$
时, $g(t) = \frac{e^t}{t} < 0$; 当 $t > 0$ 时,则 $g(t) = \frac{e^t}{t} > 0$.

作出函数 g(t) 和 y = a 的图象如图所示:

(ii) 要证
$$\frac{e^{x_1}}{x_2} + \frac{e^{x_2}}{x_1} > \frac{2a}{x_1x_2}$$
, 只需证 $x_1e^{x_1} + x_2e^{x_2} > 2a$, 即证 $e^{t_1} + e^{t_2} > 2a$.

因为 $e^t = at$, 所以只需证 $t_1 + t_2 > 2$.
由(i)知,不妨设 $0 < t_1 < 1 < t_2$.
因为 $e^t = at$,所以 $t = \ln a + \ln t$,即 $\begin{cases} t_1 = \ln a + \ln t_1 \\ t_2 = \ln a + \ln t_2 \end{cases}$ 作差可得 $t_2 - t_1 = \ln \frac{t_2}{t_1}$
所以只需证 $\frac{t_2+t_1}{t_2-t_1} > \frac{2}{\ln \frac{t_2}{t_1}}$,即只需证 $\frac{\frac{t_2}{t_1}+1}{\frac{t_2}{t_1}-1} > \frac{2}{\ln \frac{t_2}{t_1}}$.
令 $p = \frac{t_2}{t_1}(t > 1)$,只需证 $\ln p > \frac{2(p-1)}{p+1}$.
所以 $h(p)$ 在 $(1,+\infty)$ 上单调递增,故 $h(p)>h(1)=0$,即 $h(p)>0$ 在 $(1,+\infty)$ 上恒成立.
所以原不等式得证17 分