# of consections	input Mudeus Where is the	I dea of Annys	Happield Nets Hammy Nets (A	Jan 3) roll Artificial News Barary Aprils Supervised Unsur	ξη, η, = 0.1 π = π = 1
in " " = 104	Lase E	Axon Axon	(Respundent Resources) RAT Respundent Resources) RESTRUCTIONS RESTRUCTURES RESTRU	Neural Networks (ANNS) Aparts Continuous injurts Unsupervised Supervised U	1000 (back propagation we of 1000 of intrations in us
10" to 10"	WATER TO STATE OF THE STATE OF	(from other sections) Arbonal Arbonal	Som	ts Upserpernsed	ntion: we cont we only compite.) : usually 500 × (grid size)

	Machine learning is nothing but function approxime theorem (Minsky & papert +966 1969) The perceptron rule converges to weights that correctly classify all training examples provided the given data represents a function that is linearly separable.	ation
THE RESERVE OF PROPERTY.	Theorem (Minsky & Papert +966 1969)	
	The perception rule converges to weights that correctly	
	classify all training examples provided the given data	
	represents a function that is linearly separable.	
	1 0 7	