Section 3: Quantitative Theory & Math

Q5. Derive the optimal Kelly fraction for a strategy with Gaussian returns and autocorrelation. How does positive autocorrelation impact optimal leverage?

Proof:

To derive the **optimal Kelly fraction** for a strategy with **Gaussian returns and autocorrelation**, we must extend the classical Kelly Criterion to account for serial correlation in returns.

Step-1. Classical Kelly Criterion (No Autocorrelation)

For IID (independent and identically distributed) Gaussian returns:

Let:

- $ullet r_t \sim \mathcal{N}(\mu, \sigma^2)$
- f: fraction of wealth invested (Kelly fraction)
- Then the log wealth grows as:

$$\mathbb{E}[\log(1+fr_t)]pprox f\mu-rac{1}{2}f^2\sigma^2$$

Maximizing this over f, the optimal Kelly fraction is:

$$f^*=rac{\mu}{\sigma^2}$$

Step-2. Extending to Autocorrelated Gaussian Returns

Now suppose returns follow a **Gaussian AR(1)** process:

$$r_t = \mu +
ho(r_{t-1} - \mu) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2)$$

Or equivalently, the return process has mean μ , volatility σ , and autocorrelation coefficient $\rho \in [-1,1]$.

Step-3. Impact of Autocorrelation on Variance of Wealth

Over n periods, your compounded return depends not only on the mean and variance but also on the **autocovariance structure**.

The variance of cumulative returns becomes:

$$\operatorname{Var}\left(\sum_{t=1}^n r_t
ight) = n\sigma^2 + 2\sum_{1 \leq i < j \leq n} \operatorname{Cov}(r_i, r_j)$$

With AR(1) autocorrelation, the covariance between r_i and r_j is:

$$\mathrm{Cov}(r_i,r_j) = \sigma^2
ho^{|i-j|}$$

So the total variance of returns over n periods is higher when ho>0, which **increases** drawdown risk.

Step-4. Adjusted Kelly Fraction with Autocorrelation

The effective variance per unit time increases due to autocorrelation:

$$\sigma_{ ext{eff}}^2 = \sigma^2 \left(1 + 2 \sum_{k=1}^\infty
ho^k
ight) = \sigma^2 \left(rac{1 +
ho}{1 -
ho}
ight) \quad ext{(if } |
ho| < 1)$$

So the adjusted Kelly fraction becomes:

$$f^*=rac{\mu}{\sigma_{ ext{eff}}^2}=rac{\mu(1-
ho)}{\sigma^2(1+
ho)}$$

Conclusion: Impact of Positive Autocorrelation

- Positive autocorrelation ($\rho>0$) increases effective risk \rightarrow reduces optimal Kelly leverage.
- Negative autocorrelation (ho < 0) reduces risk ightarrow increases optimal leverage.
- When ho
 ightarrow 1, Kelly leverage goes to **zero**.
- When ho o -1, leverage increases sharply.

Final Formula:

$$f^*=rac{\mu(1-
ho)}{\sigma^2(1+
ho)}$$

This formula reflects how autocorrelation skews risk-adjusted return, hence modifying optimal Kelly leverage.

Q6. Given a multivariate time series $X_t \in \mathbb{R}^n$, derive the Granger causality test in matrix form and describe how you would adapt it for non-stationary financial time series.

Proof:

Step-1. VAR Model (Multivariate Setup)

Let $X_t \in \mathbb{R}^n$ be an n-dimensional time series.

The VAR(p) model is:

$$X_t = A_1X_{t-1} + A_2X_{t-2} + \cdots + A_pX_{t-p} + arepsilon_t$$

Where:

- ullet $A_k \in \mathbb{R}^{n imes n}$ are coefficient matrices
- ullet $arepsilon_t \sim \mathcal{N}(0,\Sigma)$ is multivariate white noise

We can write this compactly using lagged regressors:

Let:

$$Z_t = egin{bmatrix} X_{t-1} \ X_{t-2} \ dots \ X_{t-p} \end{bmatrix} \in \mathbb{R}^{np}, \quad \Phi = egin{bmatrix} A_1 & A_2 & \cdots & A_p \end{bmatrix} \in \mathbb{R}^{n imes np}$$

Then:

$$X_t = \Phi Z_t + \varepsilon_t$$

Step-2. Granger Causality Hypothesis in Matrix Form

We want to test if variable x_i Granger-causes variable x_i .

This means testing:

Does the past of x_i help predict x_i beyond the past of other variables?

Formally, in the i-th row of Φ , the coefficients corresponding to all lags of x_j should be zero under the **null hypothesis**:

$$H_0: R\Phi_i^{ op} = 0$$

Where:

- ullet $\Phi_i^ op$ is the transpose of the i-th row of Φ (i.e., the coefficient vector predicting x_i)
- ullet $R \in \mathbb{R}^{q imes np}$ is a **restriction matrix** that selects the coefficients on lagged values of x_j
- q=p if testing all lags of x_j

Step-3. F-Test in Matrix Form

Estimate two models:

- **Unrestricted**: full model
- **Restricted**: set lag coefficients of xjx_jxj in the equation for xix_ixi to zero

Let:

- ullet SSR_U : Sum of squared residuals from unrestricted model
- ullet SSR_R : Sum of squared residuals from restricted model
- q: number of restrictions (lags of x_i)
- T: number of observations
- ullet k: number of parameters in unrestricted model

Then the F-statistic is:

$$F = rac{(SSR_R - SSR_U)/q}{SSR_U/(T-k)}$$

If F is greater than the critical value from the F-distribution with q and T-k degrees of freedom, reject H_0 : x_i Granger-causes x_i .

Adapting Granger Causality to Non-Stationary Time Series

Case 1: Non-stationary but not cointegrated

Use first differences to make the series stationary:

$$\Delta X_t = A_1 \Delta X_{t-1} + \dots + A_p \Delta X_{t-p} + \varepsilon_t$$

Then run Granger causality on ΔX_t . This detects short-term causality only.

Case 2: Non-stationary and cointegrated

Use a Vector Error Correction Model (VECM):

$$\Delta X_t = \Pi X_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta X_{t-i} + arepsilon_t$$

Where:

- $\Pi = \alpha \beta^{\top}$
- ullet contains cointegration vectors (long-run relationships)
- ullet lpha contains adjustment coefficients

In this case:

- Short-term Granger causality is tested via coefficients Γ_i
- ullet Long-term causality is captured via the significance of lpha

So:

- ullet If $lpha_{ij}
 eq 0$: x_j affects x_i in the long run
- If $\Gamma_{ij}^{(k)}
 eq 0$: x_j Granger-causes x_i in the short run