Microorganism Population Analysis

Question: How can we conduct a census of the members of a

bacterial community when the overwhelming

number have never been sequenced?

Motivation: Global warming

Input: Sequence data from random samples of one or

more communities.

Output: What phylogenetic groups are there and how do

they change?

General Introduction

Basic Functions

During translation, the genetic code in mRNA is read and converted into protein by means of the protein synthesizing machinery, which consists of ribosomes, tRNA, amino acids, and a number of enzymes.

Presentation Overview

- General Introduction
- Sequence Analysis
 - k-mer classification
 - rRNA classification and population statistics
- Sequence Design
 - Novel sequence design
 - Gene overlapping
- Future Work
 - Sequence design tools
 - Classification and analysis framework

Introduction

Bacteria

- Single cell organisms.
- Millions can fit into the eye of a needle.
- Can be found virtually everywhere (air, soil, water, in us).
- Our mouth is home to more than 500 species of bacteria.
- A teaspoon of soil contains about a billion of bacterial cells, representing thousands of bacterial types.

Introduction

For our purposes, bacterial DNA is a string over a four letter alphabet, {A, C, G, T}. We will call the letters of this alphabet "bases".

- Typical bacterial DNA sequence length ranges between 500,000 10,000,000 base pairs (bp).
- More than 500 genomes are fully sequenced today, since 1995.
 Discovery rates increased, but total number still small, because...
- ... there are millions of different bacterial species in nature.
- Small percentage can grow in laboratory conditions (~1%).
- Environmental sample sequencing has only recently emerged.

Our problem: Given an environmental sample, which bacterial species can be identified in it?

- Probability that exact matching will reveal already sequenced organisms is too small.
- We will use *Genomic Signatures*, meaning the frequency distributions of oligonucleotides in a genomic sequence.

. . . TTGCAGTGTCGATCTAGCGTCGACTGATTTATCGCGGCGGATTGCGTACTACTAGCAGCTACGTA . . .

Dinucleotide Example

Identifying bacteria using genomic signatures

- Using a Naïve Bayesian Classifier, Sandberg et al. identified 400bp segments with 85% probability from a pool of 25 known unrelated fully sequenced microbes.
- A naïve bayesian classifier calculates the probability of finding a sequence S of length N in a genome G as the product of the individual probabilities of k-mers constituting S, in G.

Identifying bacteria using genomic signatures

 Based on segment ratings, a sequence fragment is scored against all known genome signatures. The origin is claimed as the highest scoring genome.

Our improvement

Since k-mers are not really *independent*, we calculate the conditional probability of a k-mer in a sequence as the probability of the last base appearing after the k-1 bases of the prefix.

Example:

After a GTATTCG, probability of a A : 2/7

C : 4/7

G : 1/7

 \mid T \mid : (

Our improvement

The resulting classifier using the conditional probabilities outperforms the naïve one.

Results

• Fragmentation of the sequence also results in more accurate classification (which seems counter-intuitive, since less kmers are produced)

• The optimal size fragment depends on the k-mer size

Results

The conditional classifier can also:

- Accurately identify phylotypes of sequence fragments from sequences resembling ones in database.
- Recognize accurately one of two bacteria in a equi-probable mixed sample or even both with 50% probability. Also identify the majority bacterium in a sample and approximate its frequency.

