CSE574 Introduction to Machine Learning Programming Assignment 3 Classification and Regression

Group 7

1. Karan Nisar (karankir)

2. Tejas Dhrangadharia (tejassha)

1.1 Implementation of Logistic Regression

Here we build a binary classifier for each of 10 categories using the one-vs-all strategy. The following is the overall accuracy obtained.

	Accuracy
Training Set	84.866%
Validation Set	83.7%
Testing Set	84.11%

To get a deeper insight about error in each category, we obtain the following confusion matrix.

For Train set

Actual Predicted											All	%
ΑĞ	0	1	2	3	4	5	6	7	8	9		
0	4833	1	13	8	10	18	27	7	2	4	4923	98.17
1	2	5652	31	11	3	20	4	11	1	7	5742	98.43
2	37	41	4585	73	53	28	54	68	1	18	4958	92.47
3	21	25	134	4658	10	150	19	45	0	69	5131	90.78
4	9	20	23	6	4568	13	24	12	0	167	4842	94.34
5	47	19	35	139	45	3965	87	19	7	58	4421	89.68
6	25	12	29	3	22	71	4747	4	2	3	4918	96.52
7	13	22	51	11	48	13	4	4965	0	138	5265	94.30
8	134	295	828	1024	191	1292	117	51	37	882	4851	0.76
9	30	24	16	89	166	46	1	154	0	4423	4949	89.37
All	5151	6111	5745	6022	5116	5616	5084	5336	50	5769	50000	
%	93.82	92.48	79.80	77.34	89.28	70.60	93.37	93.04	74	76.66		84.866

The heatmap of the above confusion matrix is

For Validation Set

Actual Predicted												%
Ac Pre	0	1	2	3	4	5	6	7	8	9	All	
0	979	0	1	3	1	8	6	1	0	1	1000	97.9
1	0	978	5	3	2	9	0	1	0	2	1000	97.8
2	11	16	896	22	13	4	14	15	1	8	1000	89.6
3	4	9	32	894	4	26	4	11	0	16	1000	89.4
4	1	5	7	2	942	2	7	0	0	34	1000	94.2
5	9	8	7	42	19	883	19	2	0	11	1000	88.3
6	7	4	6	0	6	14	960	2	0	1	1000	96
7	3	4	9	1	15	2	0	925	0	41	1000	92.5
8	32	75	192	224	35	244	42	6	9	141	1000	0.9
9	10	3	5	20	24	5	1	28	0	904	1000	90.4
All	1056	1102	1160	1211	1061	1197	1053	991	10	1159	10000	
%	92.70	88.74	77.24	73.82	88.78	73.76	91.16	93.34	90	77.99		83.7

For Test Set

Actual Predicted												%
A Pre	0	1	2	3	4	5	6	7	8	9	All	
0	962	0	1	2	1	4	5	4	1	0	980	98.16
1	0	1123	4	1	0	2	4	1	0	0	1135	98.94
2	9	10	944	21	12	4	14	13	0	5	1032	91.47
3	4	1	19	927	3	26	4	13	0	13	1010	91.78
4	1	3	6	2	913	0	11	2	1	43	982	92.97
5	11	4	4	41	10	782	21	9	0	10	892	87.66
6	9	4	8	2	4	21	909	1	0	0	958	94.88
7	2	9	22	5	9	2	1	951	0	27	1028	92.50
8	35	40	149	198	52	254	43	21	1	181	974	0.10
9	10	8	1	18	35	14	1	23	0	899	1009	89.09
All	1043	1202	1158	1217	1039	1109	1013	1038	3	1178	10000	
%	92.23	93.42	81.51	76.17	87.87	70.51	89.73	91.61	33.33	76.31		84.11

1.2 Multi-class Logistic Regression

Here we use only one classifier instead of 10 and compare the difference between 2 approaches. We get the following accuracies:

	Accuracy
Training Set	93.138%
Validation Set	92.54%
Testing Set	92.53%

The confusion matrix is:

For Train set

Actual Predicted	0	1	2	3	4	5	6	7	8	9	All	%
0	4777	1	14	6	12	32	34	8	34	5	4923	97.03
1	1	5598	29	14	6	20	2	12	51	9	5742	97.49
2	20	43	4512	72	56	23	61	52	102	17	4958	91.00
3	17	18	101	4652	4	142	17	38	96	46	5131	90.66
4	9	24	24	3	4542	7	45	13	27	148	4842	93.80
5	46	22	47	121	34	3929	70	16	95	41	4421	88.87
6	25	11	30	1	26	56	4744	2	21	2	4918	96.46
7	10	19	50	19	39	11	4	4956	13	144	5265	94.13
8	24	93	51	112	21	110	26	12	4341	61	4851	89.48
9	21	23	11	57	121	31	2	125	40	4518	4949	91.29
All	4950	5852	4869	5057	4861	4361	5005	5234	4820	4991	50000	
%	96.50	95.65	92.66	91.99	93.43	90.09	94.78	94.68	90.06	90.52		93.14

Following is the heatmap

For Validation Dataset

Actual Predicted	0	4	2	2		-		-	0	0	A.II.	%
	0	1	2	3	4	5	6	7	8	9	All	
0	977	0	1	3	1	6	3	2	6	1	1000	97.7
1	0	976	3	3	1	5	0	0	9	3	1000	97.6
2	8	14	901	15	10	5	14	9	17	7	1000	90.1
3	1	7	24	899	1	30	2	14	12	10	1000	89.9
4	1	4	8	2	940	1	10	2	7	25	1000	94
5	8	4	7	35	17	886	14	2	21	6	1000	88.6
6	8	1	4	1	7	11	961	1	5	1	1000	96.1
7	3	4	9	1	10	0	0	926	3	44	1000	92.6
8	11	21	18	26	10	24	19	3	863	5	1000	86.3
9	5	4	4	13	20	4	0	22	3	925	1000	92.5
All	1022	1035	979	998	1017	972	1023	981	946	1027	10000	
%	95.59	94.29	92.03	90.08	92.42	91.15	93.93	94.39	91.22	90.06		92.54

For Test Set

Actual Predicted												%
A Pr	0	1	2	3	4	5	6	7	8	9	All	
0	961	0	2	3	0	4	6	3	1	0	980	98.06
1	0	1110	3	2	0	1	4	2	13	0	1135	97.79
2	5	10	928	16	9	4	14	9	31	6	1032	89.92
3	4	1	19	918	0	22	4	10	23	9	1010	90.89
4	1	2	5	1	918	0	10	5	9	31	982	93.48
5	10	2	3	37	11	768	17	8	29	7	892	86.09
6	11	3	3	2	8	12	913	3	3	0	958	95.30
7	1	8	23	7	9	1	0	946	2	31	1028	92.02
8	8	9	6	24	9	24	11	8	863	12	974	88.60
9	11	8	1	9	25	5	0	14	8	928	1009	91.97
All	1012	1153	993	1019	989	841	979	1008	982	1024	10000	
%	94.96	96.27	93.45	90.08	92.82	91.31	93.25	93.84	87.88	90.62		92.53

On comparing the above two approaches we plot the following comparison bar plot.

The bar graph clearly shows that MLR performs better than BLR. The multi-class strategy compares the weights of all classes and updates them while in one-vs-all strategy the weights are calculated class wise without considering the weights of other classes.

1.3 Support Vector Machines (SVM)

Following is the output:

1. For Linear Kernel (all parameters kept to default)

We see that the linear method gives good accuracies on the entire dataset. Therefore, the data is linearly separable.

	Accuracy
Training Set	97.286%
Validation Set	93.64%
Testing Set	93.78%

2. For radial basis function with value of gamma setting to 1 (all other parameters are kept default) Gamma is the kernel co-efficient. A large gamma means a Gaussian function with a small variance. So SVM tries to find complex boundaries to distinguish between different categories. In doing this there is a high chance of over-fitting. Due to the complexity, it takes a very long time to run on the entire dataset, so we computed this on a subset of 10000 datasets. We can clearly see that it overfits giving a 100% accuracy on training and extremely low on validation and test dataset.

	Accuracy
Training Set	100.0%
Validation Set	15.03%
Testing Set	16.16%

3. <u>For radial basis function with value of gamma setting to default (all other parameters are kept default)</u>

When gamma is default, then only 1/n_features are used. This gives a good generalization leading to much lower runtime on the entire dataset and good accuracies compared to previous case.

	Accuracy
Training Set	94.294%
Validation Set	94.02%
Testing Set	94.42%

4. For radial basis function with value of gamma setting to default and varying value of C (1, 20, 30, ..., 100)

Here C is the penalty parameter of the error term. Following is the accuracies for different C's

C Value	Train Accuracy	Validation Accuracy	Test Accuracy
1	94.29 %	94.02 %	94.42 %
10	97.13 %	96.18 %	96.1 %
20	97.95 %	96.9 %	96.67 %
30	98.37 %	97.1 %	97.04 %
40	98.7 %	97.23 %	97.19 %
50	99 %	97.31 %	97.19 %
60	99.19 %	97.38 %	97.16 %
70	9.34 %	97.36 %	97.26 %
80	99.44 %	97.39 %	97.33 %
90	99.54 %	97.36 %	97.34 %
100	99.61 %	97.41 %	97.4 %

Following is the graph comparing the accuracies for different C Values

The accuracies obtained from SVM for C = 1 is comparable to MLR (Multi-class Logistic Regression).