- The assignment involves the task of identifying/recognizing handwritten digits as given in MNIST Dataset. The dataset is located at in inbuilt-tensorflow.keras.
- We implement various machine learning techniques eventually and see how they perform in contrast with each other.
- For this assignment, we select a csv dataset. The csv was taken from here: [Digit Recognizer | Kaggle]

- We perform a train-test split in the following options: 80:20, 50:50, 99:1,, 20:80. To achieve this, we use random.choice() from random module with test_size values incorporated in a list. In other words, we pick test_size values randomly and see how our model performs.
- We then define a function **fit_predict** wherein, we fit the model and evaluate its performance against various algorithms.
- The results are then compared.

For Decision Tree classifier, accuracy score is 83.57

For Random Forest, it is 95.71

For Logistic Regression, it is **90.57**

For Multinomial Naïve Bayes, it is **82.28**

For KNN, it is **95.96**

Note: The above observations change while code is run because test_sizes are picked and selected randomly from among the above-mentioned.

The trend change that was observed while performing several experimentations was that the Accuracy Scores and other performance metrics such as Precision, Recall etc values increased as test size was decreased and consequently, with the increase in train size

0	fit	_pr	edict	(lr,)	X_tra	in, y	_trai	n, X_	test,	y_te	st <mark>)</mark>		J., .	
글	Accuracy Score is: 0.9057619047619048													
	Cla	Classification Report:												
					ecisio		recal	ecall f1-so		re s	support			
			(a	0.9	94	0.9	97	0.9	95	2052			
				ĺ	0.9		0.9		0.9		2330			
				2	0.8		0.8		0.8		2096			
	3			0.88			0.87		37	2222				
	4			0.92			0.91		91	2053				
	5			0.86		0.84		0.8		1833				
	6			0.93		0.9		0.9		2079				
	7			0.93			0.92		92	2191				
			8	3	0.8		0.8		0.8		2062			
			g	9	0.8	37	0.8	39	0.8	88	2082			
	accuracy								0.9	91	21000			
	macro avg					0.90 0.			0.90		21000			
weighted avg					0.9	91	0.9	91	0.9	91	21000			
Confusion Matrix:														
	[[1982			9	. 2	4	21	15	5	8	6]			
	[0 2245	17	11	1	5	3	8	34	_			
	Ì	8		1863	41	26	17	31	29		9]			
	ì	12	6		1928	2	93	12	20	55	26]			
	ì	10	8	11		1872	3	25	4	19	95]			
	į	30	6		90		1535	42	6	63	22]			
	į	29	9	30	6	21		1949	2	6	1]			
	į	6	5	27	15		2		2018	12	91]			
	į	17	40	35	66		66	18	6	1774	27]			
	[13	4	7	27	63	13	0	77	23	1855]]			

Github link: pprj1010/deep_learning_assgnmnts at prj1010-patch-1 (github.com)

Colab:

 $https://colab.research.google.com/drive/1MOIjVnTotdjN42iIQCuvly3U3wB75-W6?usp=drive_link$