Special Problem 1b(i)

1b. Let
$$n = 2$$
, $\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Sketch $\ell(\vec{a}, \vec{b})$ and $f(\ell(\vec{a}, \vec{b}))$ if

i. $f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y^2 \end{bmatrix}$

Here, we compute the image of the line segment in \mathbb{R}^2 with endpoints at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ under the transformation f described above. The line segment

is
$$\ell \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \left\{ t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1-t) \begin{bmatrix} 2 \\ 3 \end{bmatrix} \mid 0 \le t \le 1 \right\} = \left\{ \begin{bmatrix} 2-t \\ 3-2t \end{bmatrix} \mid 0 \le t \le 1 \right\}$$
 and its

image under f is a segment of a curve described as follows.

$$f\left(\left\{\begin{bmatrix}2-t\\3-2t\end{bmatrix}|0\leq t\leq 1\right\}\right) = \left\{f\left(\begin{bmatrix}2-t\\3-2t\end{bmatrix}\right)|0\leq t\leq 1\right\} = \left\{\begin{bmatrix}2-t\\(3-2t)^2\end{bmatrix}|0\leq t\leq 1\right\}.$$

To identify this curve segment, simply let x = 2 - t and $y = (3 - 2t)^2$. Solving for t from the first equation and substituting into the second, we have $y = (3 - 2[2 - x])^2 = (2x - 1)^2$. This is the segment of a parabola with

vertex at (1/2, 0) opening upward from $f\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$ to $f\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}2\\9\end{bmatrix}$.

