Théorie du transport optimal

RACINE Florian

November 27, 2022

Théorie du transport optimal

2 Chapitre TABLE D	DES MATIÈRES		
--------------------	--------------	--	--

Table des matières

1	1 Introduction		
	1.1 Formulation du problème	3	
2	Modélisation	3	

1 Introduction

1.1 Formulation du problème

- Quelle est la façon optimal de transporter un tas de sable dans un trou ?
- Comment constuire un chateau de sable d'une forme données à partir d'un tas de sable ?

2 Modélisation

$$\nu \in \mathcal{P}(\mathbb{R}) ; \mu \in \mathcal{P}(\mathbb{R})$$

Définition : $\forall A \in \mathcal{P}(\mathbb{R}), \nu[A]$ décrit quelle quantité de sable est dans A.

Définition: Cout Infinitesimal

$$C: \left| \begin{array}{ccc} \mathcal{R} * \mathcal{R} & \longrightarrow & \mathcal{R} \\ (x,y) & \longmapsto & C(x,y) \end{array} \right|$$

Cout de transporter un grain de sable de x vers y.

Problème: Comment transporter un tas de sable avec un cout global minimal?

Définition : Un plan de transport entre les mesures μ et ν est une mesure de probabilité : $\Pi \in \mathcal{P}(\mathcal{R} * \mathcal{R})$ à pour marginale μ et ν .

Rappel: $\Pi \in \mathcal{P}(\mathcal{R} * \mathcal{R})$ à pour marginal μ et ν

$$\Leftrightarrow \forall A, B \text{ enssemble mesurable avec } A \subset \mathcal{R} \text{ et } B \subset \mathcal{R} \ \left\{ \begin{array}{l} \Pi[A \times \mathcal{R}] = \mu[A] \\ \Pi[\mathcal{R} \times B] = \mu[B] \end{array} \right.$$