

Д. С. Звягин

## МОДЕЛИРОВАНИЕ ПРОЦЕССА ПРОИЗВОДСТВА СУДЕБНОЙ ПОЧЕРКОВЕДЧЕСКОЙ ЭКСПЕРТИЗЫ С ИСПОЛЬЗОВАНИЕМ СТОХАСТИЧЕСКИХ СЕТЕЙ ПЕТРИ

# MODELING THE PRODUCTION PROCESS OF FORENSIC HANDWRITING EXPERTISE USING STOCHASTIC PETRI NETS

Рассматривается вероятностный метод моделирования процесса производства судебной почерковедческой экспертизы. В качестве инструмента моделирования предлагается использовать стохастические сети Петри. Определены значения маркировок всех позиций в моделирования процесса производства почерковедческой экспертизы с использованием языка сетей Петри.

A probabilistic method for modeling the process of forensic handwriting examination is considered. It is proposed to use stochastic Petri nets as a modeling tool. The values of marking all positions in the modeling process of handwriting expertise using the Petri net language are determined.

Введение. Построенная в [1] модель процесса производства судебнопочерковедческой экспертизы при помощи сети Петри позволила структурировать различные этапы исследования рукописных записей, что привело к упрощению действий
эксперта, необходимых для решения поставленных задач. Для того чтобы минимизировать действия эксперта, для упрощения и наглядности процесса производства почерковедческой экспертизы возможно применение вероятностного метода, основанного на
сочетании метода экспертных оценок и математического метода. Использование данного метода базируется на исследовании функционирования сложных динамических систем в неопределенных ситуациях. В качестве инструмента, позволившего определить
вероятность получения того или иного вывода, будем использовать стохастические сети Петри. В качестве метода экспертных оценок будем использовать статистику Экспертно-криминалистического центра (ЭКЦ) ГУ МВД России по Воронежской области
(ВО) за последние пять лет. В качестве математического метода будем использовать
количественное изучение по данным, полученным при экспертном опросе.

Постановка задачи. В процессе производства судебно-почерковедческой экспертизы у эксперта нередко возникают вопросы в правильности выбора тех или иных общих и частных признаков, в устойчивости и значимости совпадающих и/или различающихся признаков. Данные ситуации в математическом моделировании, а конкретно в модели [1], являются условиями неопределенности. Для решения данных условий предлагается использовать стохастические (вероятностные) сети Петри, позволившие определить наиболее точную вероятность нахождения фишек в необходимых эксперту позициях.

**Решение.** Стохастической сетью Петри называется пара  $M_s = \{C, \mu^s\}$ , где  $C = \{P, T, I, O\}$ , являющаяся описанием структуры сети Петри, а  $\mu^s$  является функцией, присваивающей определенной позиции  $P_i$  вектор вероятностей  $p \to V_s$  наличия фишек  $\mu^s(P_i)$  [2, 3, 4, 5].

Для того чтобы получить вероятность распределения фишек в выходной позиции, необходимо вычислить значение вектора диагональной свертки матрицы Грама.

Пусть даны два вектора,

$$a^{T} = \|a_{0} \quad a_{1} \quad \dots \quad a_{m}\|, \ b^{T} = \|b_{0} \quad b_{1} \quad \dots \quad b_{k}\|,$$

где индекс Т — знак транспонирования. Матрицей Грама G(a,b) в данном случае будет перемножение векторов a и b:

$$G(a,b) = a \times b^T = \begin{bmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{bmatrix} \times \|b_0 \quad b_1 \quad \dots \quad b_k\| = \begin{bmatrix} a_0 \times b_0 & a_0 \times b_1 & \dots & a_0 \times b_k \\ a_1 \times b_0 & a_1 \times b_1 & \dots & a_1 \times b_k \\ \dots & \dots & \dots & \dots \\ a_m \times b_0 & a_m \times b_1 & \dots & a_m \times b_k \end{bmatrix}.$$

Диагональной сверткой вышеописанной матрицы Грама векторов a и b будет являться сумма элементов матрицы по диагонали, начиная с позиции  $a_0 \times b_0$  и заканчивая позицией  $a_m \times b_k$ :

$$di(G(a,b)) = \begin{vmatrix} a_0 \times b_0 \\ a_1 \times b_0 + a_0 \times b_1 \\ a_2 \times b_0 + a_1 \times b_1 + a_0 \times b_2 \\ \dots \\ a_m \times b_k \end{vmatrix}.$$

Данный вектор диагональной свертки di(G(a,b)) и будет являться маркировкой выходной позиции после срабатывания необходимого перехода.

Рассмотрим изменения маркировки при срабатывании переходов в модели процесса производства судебно-почерковедческой экспертизы, построенной при помощи аппарата сети Петри [1] (рис. 1), но перед этим расставим значения  $\mu^s(P_i)$  для позиций, являющиеся условиями, используя метод экспертных оценок:

$$\mu^s(P_2) = \begin{pmatrix} 0,4 \\ 0,6 \end{pmatrix}, \mu^s(P_3) = \begin{pmatrix} 0,85 \\ 0,15 \end{pmatrix}, \mu^s(P_{19}) = \begin{pmatrix} 0,75 \\ 0,25 \end{pmatrix},$$
 
$$\mu^s(P_7) = \begin{pmatrix} 0,7 \\ 0,3 \end{pmatrix}, \mu^s(P_8) = \begin{pmatrix} 0,3 \\ 0,75 \end{pmatrix},$$
 
$$\mu^s(P_{10}) = \begin{pmatrix} 0,75 \\ 0,25 \end{pmatrix}, \mu^s(P_{11}) = \begin{pmatrix} 0,25 \\ 0,75 \end{pmatrix},$$
 
$$\mu^s(P_{14}) = \begin{pmatrix} 0,7 \\ 0,3 \end{pmatrix}, \mu^s(P_{15}) = \begin{pmatrix} 0,8 \\ 0,2 \end{pmatrix}, \mu^s(P_{16}) = \begin{pmatrix} 0,9 \\ 0,1 \end{pmatrix}, \mu^s(P_{17}) = \begin{pmatrix} 0,9 \\ 0,1 \end{pmatrix}, \mu^s(P_{18}) = \begin{pmatrix} 0,7 \\ 0,3 \end{pmatrix},$$
 где, к примеру,  $P_2$ ,  $P_3$  и  $P_{19}$  являются условиями для позиции  $P_1$ , а значение  $\mu^s(P_2)$  означает, что с вероятностью  $0,6$  в позиции  $P_2$  будет фишка, а с вероятностью  $0,4$  ее там не будет. То есть, исходя из проведенного анализа заключений ЭКЦ ГУ МВД России по ВО за последние пять лет, установлено, что в  $60$  % случаев на экспертизу предо-

ставляют исследуемые объекты, выполненные скорописью, в 15 % случаев — стилизованным шрифтом, латинскими буквами, печатными буквами и другое и в 25 % исследуемые рукописные записи являются технической подделкой. Аналогично объяснение и для остальных вышеописанных позиций.



Рис. 1. Модель процесса производства судебной почерковедческой экспертизы

При выполнении судебно-почерковедческой экспертизы эксперту в любом случае будет предоставлен объект исследования, что позволяет установить фишку на позицию  $P_1$ :

$$\mu^s(P_1) = \left\| \begin{matrix} 0 \\ 1 \end{matrix} \right\|.$$

Маркировки выходных позиций, таких как  $P_4$ ,  $P_5$ ,  $P_9$ ,  $P_{12}$ ,  $P_{13}$ ,  $P_{20}$ ,  $P_{21}$ ,  $P_{22}$ ,  $P_{23}$ ,  $P_{24}$ , будут определяться при помощи вычисления векторов диагональной свертки в зависимости от того, какой переход сработает.

Рассмотрим вероятности распределения фишек в выходных позициях на примере срабатывания переходов  $T_1, T_3, T_6, T_8$ . Для удобства вычисления маркировок выходных позиций перестроим вышеуказанную модель в упрощенный граф сети Петри, в котором будут присутствовать только разрешенные переходы (рис. 2).



Рис. 2. Модель процесса производства судебной почерковедческой экспертизы при разрешенных переходах  $T_1, T_3, T_6, T_8$ 

Для того чтобы определить маркировку позиции  $P_{20}$ , необходимо математическим методом определить маркировки позиций  $P_4$ ,  $P_9$ ,  $P_{12}$  при последовательном срабатывании переходов  $T_1$ ,  $T_3$ ,  $T_6$ ,  $T_8$ . Для наглядности решения задачи разобьем процесс вычисления на этапы.

Этап 1.



Рис. 3. Фрагмент модели процесса производства судебной почерковедческой экспертизы при разрешенных переходах  $T_1$ ,  $T_3$ ,  $T_6$ ,  $T_8$ 

Рассматривая первый фрагмент модели (рис. 3), опишем начальную маркировку:

$$\mu^{s}(P_{1}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mu^{s}(P_{2}) = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}, \mu^{s}(P_{4}) = \|1\|,$$

где  $\mu^s(P_4) = \|1\|$  означает, что в позиции  $P_4$  фишки нет.

Переход  $T_1$  разрешен, так как  $\mu_1^s(P_1) = 1$ ,  $\mu_1^s(P_2) = 0.6$ .

После срабатывания перехода  $T_1$  маркировка позиций  $P_1$  и  $P_2$  имеют следующий вид:

$$\overline{\mu}^{s}(P_{1}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{1}) = 0 + 1 = 1,$$

$$\overline{\mu}^{s}(P_{2}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{2}) = 0,4 + 0,6 = 1.$$

Маркировка выходной позиции  $\overline{\mu}^s(P_4)$  перехода  $T_1$  равна вектору диагональной свертки вектора  $\mu^s(P_4)$  и вектора

$$r^T = ||r_0 \quad r_1 \quad \dots \quad r_k||$$

где

$$k = \#(P_4, O(T_1)) = 1;$$

$$r_k = r_1 = \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_1)\right] \times \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_2)\right] = 1 \times 0.6 = 0.6;$$

$$r_0 = 1 - r_k = 1 - 0.6 = 0.4.$$

Окончательно:  $r^T = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$ . Определим матрицу Грама векторов  $\mu^s(P_4)$  и r.

$$G(\mu^{s}(P_4), r) = 1 \times \left\| {{0,4}\atop{0,6}} \right\| = \left\| {{0,4}\atop{0,6}} \right\|.$$

Вектор диагональной свертки  $di(G(\mu^s(P_4), r))$  в данном случае будет соответствовать матрице Грама, описанной выше.

Таким образом, маркировка позиции  $P_4$  после срабатывания перехода  $T_1$ :

$$\overline{\mu}^{s}(P_4) = di(G(\mu^{s}(P_4), r)) = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}.$$

Этап 2.



Рис. 4. Фрагмент модели процесса производства судебной почерковедческой экспертизы при разрешенных переходах  $T_1$ ,  $T_3$ ,  $T_6$ ,  $T_8$ 

Рассматривая второй фрагмент модели (рис. 4), опишем начальную маркировку:

$$\mu^{s}(P_4) = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}, \mu^{s}(P_6) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mu^{s}(P_9) = \|1\|.$$

Переход  $T_3$  разрешен, так как  $\mu_1^s(P_4)=0.6$ ,  $\mu_1^s(P_6)=1$ . После срабатывания перехода  $T_3$  маркировки позиций  $P_4$  и  $P_6$  имеют следующий вид:

$$\overline{\mu}^{S}(P_{4}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{S}(P_{4}) = 0.4 + 0.6 = 1,$$

$$\overline{\mu}^{S}(P_{6}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{S}(P_{6}) = 0 + 1 = 1.$$

Маркировка выходной позиции  $\overline{\mu}^s(P_9)$  перехода  $T_3$  равна вектору диагональной свертки вектора  $\mu^s(P_9)$  и вектора

$$r^T = ||r_0 \quad r_1 \quad \dots \quad r_k||,$$

где

$$k = \#(P_9, O(T_3)) = 1;$$

$$r_k = r_1 = \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_4)\right] \times \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_6)\right] = 0,6 \times 1 = 0,6;$$

$$r_0 = 1 - r_k = 1 - 0,6 = 0,4.$$

 $r_0 = 1 - r_k = 1 - 0.6 = 0.4.$  Окончательно:  $r^T = \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$ . Определим матрицу Грама векторов  $\mu^s(P_9)$  и r.

$$G(\mu^{s}(P_{9}), r) = 1 \times \left\| {{0,4}\atop{0,6}} \right\| = \left\| {{0,4}\atop{0,6}} \right\|.$$

Таким образом, маркировка позиции  $P_9$  после срабатывания перехода  $T_3$ :

$$\overline{\mu}^{s}(P_{9}) = di(G(\mu^{s}(P_{9}), r)) = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}.$$

Этап 3.



Рис. 5. Фрагмент модели процесса производства судебной почерковедческой экспертизы при разрешенных переходах  $T_1, T_3, T_6, T_8$ 

Рассматривая третий фрагмент модели (рис. 5), опишем начальную маркировку:

$$\mu^{s}(P_{9}) = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}, \mu^{s}(P_{10}) = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}, \mu^{s}(P_{12}) = \|1\|.$$

Переход  $T_6$  разрешен, так как  $\mu_1^s(P_9) = 0.6$ ,  $\mu_1^s(P_{10}) = 0.2$ .

После срабатывания перехода  $T_6$  маркировки позиций  $P_9$  и  $P_{10}$  имеют следующий вид:

$$\overline{\mu}^{s}(P_{9}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{9}) = 0.4 + 0.6 = 1,$$

$$\overline{\mu}^{s}(P_{10}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{10}) = 0.8 + 0.2 = 1.$$

Маркировка выходной позиции  $\overline{\mu}^s(P_{12})$  перехода  $T_6$  равна вектору диагональной свертки вектора  $\mu^s(P_{12})$  и вектора

$$r^T = \|r_0 \quad r_1 \quad \dots \quad r_k\|,$$

где

$$k = \#(P_{12}, O(T_6)) = 1;$$

$$r_k = r_1 = \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_9)\right] \times \left[\sum_{\alpha=1}^1 \mu_{\alpha}^s(P_{10})\right] = 0.6 \times 0.2 = 0.12;$$

$$r_0 = 1 - r_k = 1 - 0.12 = 0.88.$$

 $r_0=1-r_k=1-0.12=0.88.$  Окончательно:  $r^T=\left\|egin{array}{c} 0.88 \\ 0.12 \end{array}
ight\|.$  Определим матрицу Грама векторов  $\mu^s(P_{12})$  и r.

$$G(\mu^{s}(P_{12}), r) = 1 \times \begin{bmatrix} 0.88 \\ 0.12 \end{bmatrix} = \begin{bmatrix} 0.88 \\ 0.12 \end{bmatrix}.$$

Таким образом, маркировка позиции  $P_{12}$  после срабатывания перехода  $T_6$ :

$$\overline{\mu}^{s}(P_{12}) = di(G(\mu^{s}(P_{12}), r)) = \begin{bmatrix} 0.88 \\ 0.12 \end{bmatrix}.$$

Этап 4.

Рассматривая четвертый фрагмент модели (рис. 6), опишем начальную маркировку:

$$\mu^{s}(P_{14}) = \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}, \mu^{s}(P_{12}) = \begin{bmatrix} 0.88 \\ 0.12 \end{bmatrix}, \mu^{s}(P_{20}) = \|1\|.$$



Рис. 6. Фрагмент модели процесса производства судебной почерковедческой экспертизы при разрешенных переходах  $T_1, T_3, T_6, T_8$ 

Переход  $T_8$  разрешен, так как  $\mu_1^s(P_{14}) = 0.3$ ,  $\mu_1^s(P_{12}) = 0.12$ .

После срабатывания перехода  $T_8$  маркировки позиций  $P_{14}$  и  $P_{12}$  имеют следующий вид:

$$\overline{\mu}^{s}(P_{14}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{14}) = 0.7 + 0.3 = 1,$$

$$\overline{\mu}^{s}(P_{12}) = \sum_{\alpha=0}^{1} \mu_{\alpha}^{s}(P_{12}) = 0.88 + 0.12 = 1.$$

Маркировка выходной позиции  $\overline{\mu}^s(P_{20})$  перехода  $T_8$  равна вектору диагональной свертки вектора  $\mu^s(P_{20})$  и вектора

$$r^T = \|r_0 \quad r_1 \quad \dots \quad r_k\|,$$

где

$$k = \#(P_{20}, O(T_8)) = 1;$$

$$r_k = r_1 = \left[\sum_{\alpha=1}^{1} \mu_{\alpha}^{s}(P_{14})\right] \times \left[\sum_{\alpha=1}^{1} \mu_{\alpha}^{s}(P_{12})\right] = 0.3 \times 0.12 = 0.036;$$

$$r_0 = 1 - r_k = 1 - 0.036 = 0.964.$$

 $r_0=1-r_k=1-0.036=0.964.$  Окончательно:  $r^T=\left\|egin{array}{c} 0.964 \\ 0.036 \end{array}
ight\|$  . Определим матрицу Грама векторов  $\mu^s(P_{20})$  и r .

$$G(\mu^{s}(P_{20}), r) = 1 \times \left\| {{0,964}\atop{0,036}} \right\| = \left\| {{0,964}\atop{0,036}} \right\|.$$

Таким образом, маркировка позиции  $P_{20}$  после срабатывания перехода  $T_8$ :

$$\overline{\mu}^{s}(P_{20}) = di(G(\mu^{s}(P_{20}), r)) = \begin{bmatrix} 0.964 \\ 0.036 \end{bmatrix}.$$

Аналогичным образом вычисляем маркировки остальных позиций при срабатывании различных переходов (округление до сотых в сторону нахождения фишки и не до нуля):

Таблица 1 Данные маркировок позиций при срабатывании переходов

| Срабатываемые           | $\overline{\mu}^{s}(P_4)$                                           | $\overline{\mu}^{s}(P_9)$ | $\overline{\mu}^{s}(P_{12})$                 | $\overline{\mu}^s(P_{20})$ | $\overline{\mu}^s(P_{21})$                   | $\overline{\mu}^s(P_{22})$ | $\overline{\mu}^s(P_{23})$                   | $\overline{\mu}^{s}(P_{24})$                 |
|-------------------------|---------------------------------------------------------------------|---------------------------|----------------------------------------------|----------------------------|----------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|
| переходы                |                                                                     |                           |                                              |                            |                                              |                            |                                              |                                              |
| $T_1, T_3, T_6, T_8$    |                                                                     |                           |                                              | $\ _{0,04}^{0,96}\ $       | 1                                            | 1                          | 1                                            | 1                                            |
| $T_1, T_3, T_6, T_9$    |                                                                     |                           |                                              | 1                          | $\begin{vmatrix} 0.98 \\ 0.02 \end{vmatrix}$ | 1                          | 1                                            | 1                                            |
| $T_1, T_3, T_6, T_{10}$ | $\left\  \begin{smallmatrix} 0,4 \\ 0.6 \end{smallmatrix} \right\ $ | $\ _{0,6}^{0,4}\ $        | $\begin{vmatrix} 0,88 \\ 0,12 \end{vmatrix}$ | 1                          | 1                                            | $\ _{0,01}^{0,99}\ $       | 1                                            | 1                                            |
| $T_1, T_3, T_6, T_{11}$ | 6,6                                                                 |                           |                                              | 1                          | 1                                            | 1                          | $\begin{vmatrix} 0,99 \\ 0,01 \end{vmatrix}$ | 1                                            |
| $T_1, T_3, T_6, T_{12}$ |                                                                     | 1                         |                                              | 1                          | 1                                            | 1                          | 1                                            | $\begin{vmatrix} 0,96 \\ 0,04 \end{vmatrix}$ |

Таблица 2

Данные маркировок позиций при срабатывании переходов

| Срабатываемые<br>переходы | $\overline{\mu}^{s}(P_4)$ | $\overline{\mu}^{s}(P_9)$ | $\overline{\mu}^s(P_{13})$ | $\overline{\mu}^s(P_{20})$ | $\overline{\mu}^s(P_{21})$ | $\overline{\mu}^s(P_{22})$ | $\overline{\mu}^s(P_{23})$ | $\overline{\mu}^s(P_{24})$ |
|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $T_1, T_3, T_7, T_{13}$   | 0,4<br>0,6                | <sup>0,4</sup>            | 0,55  <br>  0,45           | $\ _{0,14}^{0,86}\ $       | 1                          | 1                          | 1                          | 1                          |
| $T_1, T_3, T_7, T_{14}$   |                           |                           |                            | 1                          | $\ _{0,09}^{0,91}\ $       | 1                          | 1                          | 1                          |
| $T_1, T_3, T_7, T_{15}$   |                           |                           |                            | 1                          | 1                          | 0,95  <br>  0,05           | 1                          | 1                          |
| $T_1, T_3, T_7, T_{16}$   |                           |                           |                            | 1                          | 1                          | 1                          | 0,95  <br>  0,05           | 1                          |
| $T_1, T_3, T_7, T_{17}$   |                           |                           |                            | 1                          | 1                          | 1                          | 1                          | $\ _{0,14}^{0,86}\ $       |

Таблица 3

Данные маркировок позиций при срабатывании переходов

| данные маркировок позиции при срабатывании переходов |                         |                         |                                       |                                                |                                                |                                                |                                                |                                                |
|------------------------------------------------------|-------------------------|-------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Срабатываемые<br>переходы                            | $\overline{\mu}^s(P_5)$ | $\overline{\mu}^s(P_9)$ | $\overline{\mu}^s(\overline{P_{12}})$ | $\overline{\mu}^s(P_{20})$                     | $\overline{\mu}^s(P_{21})$                     | $\overline{\mu}^s(P_{22})$                     | $\overline{\mu}^s(P_{23})$                     | $\overline{\mu}^s(P_{24})$                     |
| $T_2, T_4, T_6, T_8$                                 |                         | 0,95  <br>  0,05        | 0,99<br>  0,01                        | $\begin{vmatrix} 0,997 \\ 0,003 \end{vmatrix}$ | 1                                              | 1                                              | 1                                              | 1                                              |
| $T_2, T_4, T_6, T_9$                                 |                         |                         |                                       | 1                                              | $\begin{vmatrix} 0.998 \\ 0.002 \end{vmatrix}$ | 1                                              | 1                                              | 1                                              |
| $T_2, T_4, T_6, T_{10}$                              | 0,15                    |                         |                                       | 1                                              | 1                                              | $\begin{vmatrix} 0,999 \\ 0,001 \end{vmatrix}$ | 1                                              | 1                                              |
| $T_2, T_4, T_6, T_{11}$                              |                         |                         |                                       | 1                                              | 1                                              | 1                                              | $\begin{vmatrix} 0,999 \\ 0,001 \end{vmatrix}$ | 1                                              |
| $T_2, T_4, T_6, T_{12}$                              |                         |                         |                                       | 1                                              | 1                                              | 1                                              | 1                                              | $\begin{vmatrix} 0.997 \\ 0.003 \end{vmatrix}$ |

Таблица 4

Данные маркировок позиций при срабатывании переходов

| данные маркировок позиции при срабатывании переходов |                         |                         |                            |                                                |                            |                            |                            |                            |
|------------------------------------------------------|-------------------------|-------------------------|----------------------------|------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Срабатываемые<br>переходы                            | $\overline{\mu}^s(P_5)$ | $\overline{\mu}^s(P_9)$ | $\overline{\mu}^s(P_{13})$ | $\overline{\mu}^s(P_{20})$                     | $\overline{\mu}^s(P_{21})$ | $\overline{\mu}^s(P_{22})$ | $\overline{\mu}^s(P_{23})$ | $\overline{\mu}^s(P_{24})$ |
| $T_2, T_4, T_7, T_{13}$                              |                         | 0,95  <br>  0,05        | 0,96<br>  0,04             | $\begin{vmatrix} 0.988 \\ 0.012 \end{vmatrix}$ | 1                          | 1                          | 1                          | 1                          |
| $T_2, T_4, T_7, T_{14}$                              |                         |                         |                            | 1                                              | $\ _{0,008}^{0,992}\ $     | 1                          | 1                          | 1                          |
| $T_2, T_4, T_7, T_{15}$                              | 0,85                    |                         |                            | 1                                              | 1                          | $\ _{0,004}^{0,996}\ $     | 1                          | 1                          |
| $T_2, T_4, T_7, T_{16}$                              | 0,15                    |                         |                            | 1                                              | 1                          | 1                          | $\ _{0,004}^{0,996}\ $     | 1                          |
| $T_2, T_4, T_7, T_{17}$                              |                         |                         |                            | 1                                              | 1                          | 1                          | 1                          | $\ _{0,012}^{0,988}\ $     |

Таблица 5 Данные маркировок позиций при срабатывании переходов

| Срабатываемые<br>переходы | $\overline{\mu}^s(P_5)$ | $\overline{\mu}^s(P_{20})$ | $\overline{\mu}^s(P_{21})$ | $\overline{\mu}^s(P_{22})$ | $\overline{\mu}^s(P_{23})$ | $\overline{\mu}^s(P_{24})$ |
|---------------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $T_2, T_5$                | 0,85  <br>  0,15        | 1                          | 1                          | 1                          | 1                          | $\ _{0,1}^{0,9}\ $         |
| $T_{18}$                  | 1                       | 1                          | 1                          | 1                          | 1                          | 0,75  <br>  0,25           |

Вышеописанные данные показывают вероятность нахождения фишки в определенной позиции при срабатывании различных переходов. К примеру, при последовательном срабатывании переходов  $T_2$ ,  $T_4$ ,  $T_7$ ,  $T_{17}$  вероятность нахождения фишки в позиции  $P_{24}$  равна 0.012 (табл. 4).

Заключение. Применив вероятностный метод, инструментом которого стала стохастическая сеть Петри, эксперт в зависимости от предоставленного на исследование объекта может определить вероятность нахождения фишки в той или иной позиции. Это позволит наиболее или наименее вероятно в зависимости от значения маркировок позиций после срабатывания переходов, ответить на поставленный перед экспертом вопрос, и тем самым удостовериться в правильности вывода.

#### ЛИТЕРАТУРА

- 1. Пьянков О. В., Звягин Д. С. Моделирование процесса производства судебной почерковедческой экспертизы при помощи сетей Петри // Вестник Воронежского института МВД России, 2020. С. 2—4.
- 2. Питерсон Дж. Теория сетей Петри и моделирование систем / Дж. Питерсон. М.: Мир, 1984. 264 с.
- 3. Котов В. Е. Сети Петри. М. : Наука. Главная редакция физикоматематической литературы, 1984. 160 с.
- 4. Лескин А. А., Мальцев П. А., Спиридонов А. М. Сети Петри в моделировании и управлении. Л. : Наука, 1989. 133 с.
- 5. Самороковский А. Ф., Пьянков О. В. Обеспечение информационной безопасности действий органов внутренних дел при чрезвычайных обстоятельствах // Вестник Воронежского института МВД России. 2008. № 4. С. 2—4.

#### **REFERENCES**

- 1. Pyankov O. V., Zvyagin D. S. Modelirovanie protsessa proizvodstva sudebnoy pocherkovedcheskoy ekspertizyi pri pomoschi setey Petri // Vestnik Voronezhskogo instituta MVD Rossii, 2020. S. 2—4.
- 2. Piterson Dzh. Teoriya setey Petri i modelirovanie sistem / Dzh. Piterson. M. : Mir, 1984. 264 s.
- 3. Kotov V. E. Seti Petri. M. : Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literaturyi, 1984. 160 s.
- 4. Leskin A. A., Maltsev P. A., Spiridonov A. M. Seti Petri v modelirovanii i upravlenii. L.: Nauka, 1989. 133 s.

5. Samorokovskiy A. F., Pyankov O. V. Obespechenie informatsionnoy bezopasnosti deystviy organov vnutrennih del pri chrezvyichaynyih obstoyatelstvah // Vestnik Voronezhskogo instituta MVD Rossii. — 2008. — # 4. — S. 2—4.

#### СВЕДЕНИЯ ОБ АВТОРЕ

Звягин Данил Сергеевич. Преподаватель кафедры криминалистики.

Воронежский институт МВД России.

E-mail: danil exp@mail.ru

Россия, 394065, Воронеж, проспект Патриотов, 53. Тел. (473) 200-53-11.

Zvyagin Danil Sergeevich. Lecturer of the chair of Criminalistics.

Voronezh Institute of the Ministry of the Interior of Russia.

E-mail: danil exp@mail.ru

Work address: Russia, 394065, Voronezh, Prospect Patriotov, 53. Tel. (473) 200-53-11.

Ключевые слова: судебная экспертиза; моделирование; стохастические сети Петри.

Keywords: forensic analysis; modeling; stochastic Petri nets.

### ИЗДАНИЯ ВОРОНЕЖСКОГО ИНСТИТУТА МВД РОССИИ



#### Савицкий Н. М.

Участие подразделений НКВД СССР в битве за Воронеж в годы Великой Отечественной войны : учебно-наглядное пособие / Н. М. Савицкий, В. А. Григорова, Е. А. Зверков. — Воронеж : Воронежский институт МВД России, 2019. — 77 с.

В пособии рассматриваются основные факты, события и этапы участия подразделений НВКД в битве за Воронеж в годы Великой Отечественной войны.

Предназначено для курсантов и слушателей всех форм обучения.