

SEQUENCE LISTING

<110> Gurney, et al

<120> ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR, AND USES THEREOF

<130> 28341/6280NCP

<140> US 09/668,314
<141> 2000-09-22<150> US 60/169,232
<151> 1999-12-06<150> US 09/416,901
<151> 1999-10-13<150> US 60/155,493
<151> 1999-09-23<150> US 09/404,133
<151> 1999-09-23<150> PCT/US99/20881
<151> 1999-09-23<150> US 60/101,594
<151> 1998-09-24

<160> 84

<170> PatentIn version 3.1

<210> 1
<211> 1804
<212> DNA
<213> Homo sapiens

<400> 1	
atggcccgac tggcccgccc gctgctgctg cctctgctgg cccagtggct cctgcgcgccc	60
gccccggagc tggcccccgc gcccattcaag ctgcacccatcc gggtggccgc ggccacgaac	120
cgcgttgttg cgcccaccccc gggacccggg acccctgcgg agggccacgc cgacggcttg	180
gcgcctgcgcc tggagctgc cctggcgatcc ccgcggggcg ccgcacaactt cttggccatg	240
gttagacaacc tgcaggggga ctctggccgc ggctactacc tggagatgct gatggggacc	300

RECEIVED

OCT 30 2002

TECH CENTER 1600/2900

cccccgaga	agctacagat	tctcggtgac	actggaaagca	gtaactttgc	cgtggcagga	360
accccgca	cctacataga	cacgtacttt	gacacagaga	ggtctagcac	ataccgctcc	420
aaggggctt	tg acgtcacagt	gaagtacaca	caaggaagct	ggacgggctt	cgttggggaa	480
gacctcgta	ccatccccaa	aggcttaat	acttctttc	ttgtcaacat	tgccactatt	540
tttgaatcag	agaatttctt	tttgccctggg	attaaatgga	atggaatact	tggcctagct	600
tatgccacac	ttgccaagcc	atcaagtct	ctggagacct	tcttcgactc	cctggtgaca	660
caagcaaaca	tccccaaacgt	tttctccatg	cagatgtgtg	gagccggctt	gcccgttgct	720
ggatctggg	ccaacggagg	tagtcttgc	ttgggtggaa	ttgaaccaag	tttgtataaaa	780
ggagacatct	ggtataaccc	tattaaggaa	gagtggtact	accagataga	aattctgaaa	840
ttggaaattt	gaggccaaag	ccttaatctg	gactgcagag	agtataaacgc	agacaaggcc	900
atcgtaggaca	gtggcaccac	gctgctgcgc	ctgccccaga	aggtgttga	tgcgggtgg	960
gaagctgtgg	cccgccgcatc	tctgattcca	gaattctctg	atggtttctg	gactgggtcc	1020
cagctggcgt	gctggacgaa	ttcggaaaca	ccttggtctt	acttccctaa	aatctccatc	1080
tacctgagag	atgagaactc	cagcaggtca	ttccgtatca	caatcctgcc	tcagctttac	1140
attcagccca	tgatgggggc	cggcctgaat	tatgaatgtt	accgattcgg	catttccccca	1200
tccacaaatg	cgctggtgat	cggtgccacg	gtgatggagg	gcttctacgt	catcttcgac	1260
agagcccaga	agagggtggg	tttcgcagcg	agcccctgtg	cagaaattgc	aggtgctgca	1320
gtgtctgaaa	tttccggg	ccctcaaca	gaggatgtag	ccagcaactg	tgtccccgct	1380
cagtcttga	gcgagccat	tttgtggatt	gtgtcctatg	cgctcatgag	cgtctgtgga	1440
gccatcctcc	ttgtcttaat	cgtcctgctg	ctgctgccgt	tccggtgtca	gcgtcgcccc	1500
cgtgaccctg	aggtcgtcaa	tgatgagtcc	tctctggtca	gacatcgctg	gaaatgaata	1560
gccaggcctg	acctcaagca	accatgaact	cagctattaa	gaaaatcaca	tttccagggc	1620
agcagccgg	atcgatggtg	gcgctttctc	ctgtgcccac	ccgtcttcaa	tctctgttct	1680
gctcccgat	gccttctaga	ttcactgtct	tttgattctt	gattttcaag	ctttcaaatc	1740
ctccctactt	ccaagaaaaaa	taattaaaaaa	aaaaacttca	ttctaaacca	aaaaaaaaaa	1800
aaaa						1804

<210> 2
 <211> 518
 <212> PRT
 <213> Homo sapiens
 <400> 2

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
 1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys
515

<210> 3
<211> 2070
<212> DNA
<213> Homo sapiens

<400> 3
atggcccaag ccctccccgt gtcctgctg tggatggcg cgggagtgtc gcctgcccac 60
ggcacccagc acggcatccg gctccccctg cgcaagcgcc tggggggcgc cccccctgggg 120
ctgcggctgc cccggagac cgacgaagag cccgaggagc cccggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgccagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtc ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccctt ctttgactct 600
ctggtaaagc agaccacgt tcccaaccc tcctccctgc agctttgtgg tgctggcttc 660
ccccctcaacc agtctgaagt gctggcctct gtggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcggggaa gtggatttat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatggaa ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca acttcgttt gccaagaaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagccctt ccacggagaa gttccctgat 960
ggtttctggc taggagagca gctgggtgtc tggcaagcag gcaccacccc ttggaacatt 1020
ttccccagtca tctcactcta cctaattgggt gaggttacca accagtcctt ccgcattcacc 1080
atccttccgc agcaataacct gcggccagtg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagtttgc ccatctcaca gtcatccacg ggcactgtt tggagctgt tatcatggag 1200
ggcttctacg ttgtcttga tcggggccga aaacgaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaggcc cttttgtcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1380
gtcatggctg ccatctgcgc cctttcatg ctggcactct gcctcatggt gtgtcagtgg 1440
cgctgcctcc gctgcctgcg ccagcagcat gatgacttt ctgatgacat ctccctgctg 1500
aagtgaggag gcccattggc agaagataga gattccccctg gaccacaccc ctgtggttca 1560
ctttggtcac aagttaggaga cacagatggc acctgtggcc agagcaccc tcggaccctcc 1620
ccacccacca aatgcctctg cttgtatggaa gaaggaaaag gctggcaagg tgggttccag 1680
ggactgtacc tgttaggaaac agaaaagaga agaaagaagc actctgttgg cggaaatact 1740

cttggtcacc tcaaatttaa gtcggaaat tctgctgctt gaaacttcag ccctgaacct 1800
ttgtccacca ttcccttaaa ttctccaacc caaagtattc ttctttctt agtttcagaa 1860
gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaccct ggtagagaag 1920
agaccaagct tgttccctg ctggccaaag tcagtaggag aggatgcaca gtttgctatt 1980
tgcttagag acagggactg tataaacaag cctaacattg gtgcaaagat tgccctttga 2040
ataaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 2070

<210> 4
<211> 501
<212> PRT
<213> Homo sapiens

<400> 4

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 5
<211> 1977
<212> DNA
<213> Homo sapiens

<400> 5
atggcccaag ccctgccctg gtcctgtcg tggatggcgc cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgcccctg cgcaagcgcc tggggggcgc cccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagcttt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtcg tgccaaacatt 480
gctgccatca ctgaatcaga caagtttttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gttcccccct caaccagtct 600
gaagtgctgg cctctgtcg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctggataac acccatccgg cgggagtggt attatgaggt gatcattgtg 720
cgggtggaga tcaatggaca gatatcgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaaccc tggatggcgg attatgaggt gatcattgtg 840
gtcaaattcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggcttagga 900
gagcagctgg tgtgctggca agcaggcacc accccttggaa acatttccc agtcatctca 960
ctctaccta tgggtgaggt taccatccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgcac 1080
tcacagtcat ccacgggcac tggttatggaa gctgttatca tggagggctt ctacgttgtc 1140

tttgatcggg	cccgaaaacg	aattggctt	gctgtcagcg	cttgcacatgt	gcacgatgag	1200
ttcaggacgg	cagcgggtgga	aggcccttt	gtcacccctgg	acatggaaga	ctgtggctac	1260
aacattccac	agacagatga	gtcaaccctc	atgaccatag	cctatgtcat	ggctgccatc	1320
tgcgcctct	tcatgctgcc	actctgcctc	atggtgtgtc	agtggcgctg	cctccgctgc	1380
ctgcgccagc	agcatgatga	cttgctgtat	gacatctccc	tgctgaagtg	aggaggccca	1440
tgggcagaag	atagagattc	ccctggacca	cacccctgg	gttcactttg	gtcacaagta	1500
ggagacacag	atggcacctg	tggccagagc	acctcaggac	cctccccacc	caccaaatgc	1560
ctctgccttg	atggagaagg	aaaaggctgg	caaggtgggt	tccagggact	gtacctgttag	1620
gaaacagaaa	agagaagaaa	gaagcactct	gctggcgaaa	atactcttgg	tcacctcaaa	1680
tttaagtccgg	gaaattctgc	tgctgaaac	ttcagccctg	aacctttgtc	caccattcct	1740
ttaaattctc	caacccaaag	tattcttctt	ttcttagttt	cagaagtact	ggcatcacac	1800
gcaggttacc	ttggcgtgtg	tccctgtgg	accctggcag	agaagagacc	aagcttgg	1860
ccctgctggc	caaagtca	aggagaggat	gcacagttt	ctatttgctt	tagagacagg	1920
gactgtataa	acaagcctaa	cattggtgca	aagattgcct	cttgaaaaaa	aaaaaaaa	1977

<210> 6
 <211> 476
 <212> PRT
 <213> Homo sapiens

<400> 6

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
420 425 430

Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
435 440 445

Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
450 455 460

His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
465 470 475

<210> 7
<211> 2043
<212> DNA
<213> Mus musculus

<400> 7
atggcccccag cgctgcactg gtcctgcta tgggtggct cggaaatgct gcctgcccag 60
ggaacccatc tcggcatccg gctccccctt cgcagcggcc tggcaggggcc acccctggc 120
ctgaggctgc cccgggagac tgacgaggaa tcggaggagc ctggccggag aggcagcttt 180
gtggagatgg tggacaacct gaggggaaag tccggccagg gctactatgt ggagatgacc 240
gtaggcagcc ccccacagac gctcaacatc ctggtgaca cggcagtag taactttgca 300
gtggggctg ccccacaccc tttcctgcat cgctactacc agaggcagct gtccagcaca 360
tatcgagacc tccgaaaggg tgtgtatgtg ccctacaccc agggcaagtg ggagggggaa 420
ctgggcaccc acctggtgag catccctcat ggccccaacg tcactgtgc tgccaacatt 480
gctgccatca ctgaatcgga caagttcttc atcaatggtt ccaactggga gggcatccta 540
gggctggctt atgctgagat tgccaggccc gacgacttt tggagccctt cttgactcc 600
ctggtaagc agaccacat tcccaacatc tttccctgc agctctgtgg cgctggcttc 660
cccctcaacc agaccgaggc actggcctcg gtgggaggga gcatgatcat tgggtgtatc 720
gaccactcgc tatacacggg cagtctctgg tacacaccca tccggcggga gtggatttat 780
gaagtgatca ttgtacgtgt ggaaatcaat ggtcaagatc tcaagatgga ctgcaaggag 840
tacaactacg acaagagcat tgtggacagt gggaccacca accttcgctt gcccaagaaa 900

gtatttgaag	ctgcgtcaa	gtccatcaag	gcagcctcct	cgacggagaa	gttcccggat	960
ggctttggc	tagggagca	gctggtgtgc	tggcaagcag	gcacgacccc	ttgaaacatt	1020
ttcccagtca	tttcacttta	cctcatgggt	gaagtcacca	atcagtccctt	ccgcatcacc	1080
atccttcctc	agcaataacct	acggccggtg	gaggacgtgg	ccacgtccca	agacgactgt	1140
tacaagttcg	ctgtotcaca	gtcatccacg	ggcactgtta	tgggagccgt	catcatggaa	1200
ggtttctatg	tcgtttcga	tcgagccga	aagcgaattt	gctttgtgt	cagcgcttgc	1260
catgtgcacg	atgagtttag	gacggccggca	gtggaaaggc	cgtttgttac	ggcagacatg	1320
gaagactgtg	gctacaacat	tccccagaca	gatgagtcaa	cacttatgac	catagcctat	1380
gtcatggcgg	ccatctgcgc	cctttcatg	ttgccactct	gcctcatgg	atgtcagtgg	1440
cgctgcctgc	gttgcctgcg	ccaccagcac	gatgactttg	ctgatgacat	ctccctgctc	1500
aagtaaggag	gctcggtggc	agatgatgga	gacgcccctg	gaccacatct	gggtgggtcc	1560
ctttggtcac	atgagtttgg	gctatggatg	gtacctgtgg	ccagagcacc	tcaggaccct	1620
caccaacctg	ccaatgcttc	tggcgtgaca	gaacagaga	atcaggcaag	ctggattaca	1680
gggcttgcac	ctgtaggaca	caggagaggg	aaggaagcag	cgttctgg	gcaggaatat	1740
ccttaggcac	cacaaactt	agttggaaat	tttgctgctt	gaagcttcag	ccctgaccct	1800
ctgcccagca	tccttagag	tctccaacct	aaagtattct	ttatgtcctt	ccagaagttac	1860
tggcgtcata	ctcaggctac	ccggcatgtg	tccctgtgg	accctggcag	agaaaggccc	1920
aatctcattc	cctgctggcc	aaagtcagca	gaagaagg	aagttgcca	gttgctttag	1980
tgatagggac	tgcagactca	agcctacact	ggtacaaaga	ctgcgtcttg	agataaaca	2040
gaa						2043

<210> 8
 <211> 501
 <212> PRT
 <213> Mus musculus

 <400> 8

Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met
 1 5 10 15

Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser
 20 25 30

Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
 35 40 45

Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro
195 200 205

Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
 325 330 335

 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
 340 345 350

 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
 355 360 365

 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
 370 375 380

 Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
 385 390 395 400

 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
 405 410 415

 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
 420 425 430

 Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
 435 440 445

 Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
 450 455 460

 Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
 465 470 475 480

 Arg Cys Leu Arg Cys Leu Arg His Gln His Asp Asp Phe Ala Asp Asp
 485 490 495

 Ile Ser Leu Leu Lys
 500

<210> 9
 <211> 2088
 <212> DNA
 <213> Homo sapiens

<400> 9
 atgctgccccg gtttggcact gtcctgtcg gccgcctgga cggctcgccc gctggaggta 60
 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
 ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa 180
 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300

ggccgcaagc	agtgc	aagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttgg	360											
gagtttgtaa	gtgatgc	ccct	tctcg	tccct	gacaagt	gca	420											
atggatgttt	gcgaaactca	tctt	cactgg	cacaccgtcg	ccaa	agagac	atgc	480										
aagagtacca	acttgc	catga	ctacgg	catg	ttgctg	ccct	gcgg	attga	caagtt	ccga	540							
ggggtagagt	ttgtgtgtt	g	cccactgg	ct	gaagaa	agt	acaat	tg	gga	ttct	gctg	at	600					
gcggaggagg	atgactcg	ga	tgtctgg	tt	ggcgg	aggc	acac	aga	cta	tgc	agat	ggg	660					
agtgaagaca	aagt	tagt	aga	at	gtagc	agag	gagg	aa	gaga	tg	gctg	at	720					
gaagccgatg	atgac	cgag	ga	cgat	gagg	at	ggt	gat	gagg	tag	gaga	gg	780					
ccctacgaag	aagcc	acaga	gaga	accacc	agcatt	gcc	ccacc	accac	cacc	acc	cacc	caca	840					
gagtctgtgg	aagagg	gtt	tcg	agtt	cct	aca	acag	cag	cc	agt	acc	cc	900					
gacaagtatc	tcg	agac	acc	tgg	ggat	tg	aat	gaac	at	gat	cc	ccgt	tt					
gagaggcttg	agg	cca	agca	ccg	agag	aga	at	gtccc	agg	tca	tg	gagaga	at	960				
gcagaacgtc	aag	caa	agaa	ctt	gc	c	taaaa	gct	gata	aga	agg	catt	cc	1020				
caggagaaag	tgg	aat	ctt	ttt	gga	ac	agg	gaa	gc	cca	ac	gat	ttc	1080				
acacacatgg	cc	ag	agt	g	ga	ag	ccat	g	ct	gc	cc	tg	gaga	ac	1200			
tacatcac	cg	ct	ct	gc	agg	c	t	tt	c	c	tc	gt	tt	aa	1260			
aagtatgtcc	gc	gc	caga	aca	ga	agg	ac	aga	c	aa	cc	ttt	cc	1320				
cgcatgg	at	ccc	aa	ag	cc	gt	ct	ca	g	tt	at	tg	at	gt	1380			
gtgatttatg	ag	cg	cat	g	aa	t	ca	gt	t	c	t	cc	tg	at	gg	cc	1440	
gaggagattc	agg	at	g	ta	g	at	g	ct	g	aa	g	ca	aa	act	t	tc	ca	1500
gtcttg	cc	a	cat	g	at	ta	g	aa	g	at	gc	t	tc	at	g	cc	ca	1560
tctttg	acc	aa	ac	g	aa	ac	c	cc	tt	cc	cc	tg	aa	at	gg	g	aa	1620
gacgatctcc	ag	cc	gt	gg	ca	tt	ttt	gg	g	ct	g	ac	cc	cc	aa	ca	cac	1680
gaagttg	ag	ct	gt	at	gc	cc	cc	ct	g	cc	ac	cc	ac	cc	cc	gg	at	1740
tctgggtt	ga	ca	aa	at	at	ca	aa	g	ac	gg	gg	at	tg	ga	at	tt	cc	1800
cgacatgact	cagg	at	at	tg	at	ca	ca	aa	at	tt	gg	tt	tc	tt	tc	at	gt	1860
ggttcaaaca	aa	gg	tg	ca	at	tt	gg	ac	tc	tt	gg	cc	gt	cc	at	gt	tg	1920
atcg	tc	c	tt	gg	gt	at	g	tt	g	at	g	cc	at	gt	gt	at	tc	1980
gtggaggtt	ac	g	cc	g	ct	gt	cc	cc	at	cc	cc	cc	tg	cc	aa	at	gt	2040
ggctacgaaa	at	cc	aa	cc	tt	ca	ag	tt	ct	tt	g	ag	ca	at	g	tc	aa	2088

<210> 10
<211> 695
<212> PRT
<213> Homo sapiens

<400> 10

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 11
<211> 2088
<212> DNA
<213> Homo sapiens

<400> 11
atgctgcccg gtttggcact gtcctgctg gccgcctgga cggctcgccc gctggaggta 60

cccaactgatg	gtaatgctgg	cctgctggct	gaaccccaga	ttgccatgtt	ctgtggcaga	120
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	aggcacaaa	180
acctgcattg	ataccaagga	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240
cagatcacca	atgtggtaga	agccaaaccaa	ccagtgacca	tccagaactg	gtcaagcgg	300
ggccgcaagc	agtcaagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttgg	360
gagttttaa	gtgatgccct	tctcgttcct	gacaagtgca	aattcttaca	ccaggagagg	420
atggatgttt	gcaaaactca	tcttcactgg	cacaccgtcg	ccaaagagac	atgcagttag	480
aagagtagcca	acttgcata	ctacggcatg	ttgctgccct	gccaatttga	caagttccga	540
ggggtagagt	tttgtgtttg	cccactggct	gaagaaagtg	acaatgtgga	ttctgctgat	600
gcggaggagg	atgactcgga	tgtctgggg	ggcggagcag	acacagacta	tgcatgtgg	660
agtgaagaca	aagtagttaga	agtagcagag	gaggaagaag	tggctgaggt	ggaagaagaa	720
gaagccgatg	atgacgagga	cgatgaggat	ggtgatgagg	tagaggaaga	ggctgaggaa	780
ccctacgaag	aagccacaga	gagaaccacc	agcattgcc	ccaccaccac	caccaccaca	840
gagtctgtgg	aagaggtgg	tcgagttcct	acaacagcag	ccagtacccc	tgtgccgtt	900
gacaagtatc	tcgagacacc	tggggatgag	aatgaacatg	cccatttcca	gaaagccaaa	960
gagaggcttg	aggccaagca	ccgagagaga	atgtcccagg	tcatgagaga	atgggaagag	1020
gcagaacgtc	aagcaaagaa	cttgcctaaa	gctgataaga	aggcagttat	ccagcatttc	1080
caggagaaag	tggaatcttt	ggaacagggaa	gcagccaacg	agagacagca	gctgggtggag	1140
acacacatgg	ccagagtgg	agccatgctc	aatgaccgcc	gccgcctggc	cctggagaac	1200
tacatcaccc	ctctgcaggc	tgttcctcct	cggcctcg	acgtgttcaa	tatgctaaag	1260
aagtatgtcc	gcbcagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgtg	1320
cgcacatgg	atcccaagaa	agccgctcag	atccggccc	agtttatgac	acacccgt	1380
gtgatttatg	agcgcatgaa	tcagtctctc	tccctgctct	acaacgtgcc	tgcatgtggcc	1440
gaggagattc	aggatgaagt	tcatgagctg	tttcagaaag	agcaaaacta	ttcagatgac	1500
gtcttgccca	acatgattag	tgaaccaagg	atcagttacg	gaaacgatgc	tctcatgcc	1560
tctttgaccg	aaacgaaaac	caccgtggag	ctccctcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc	agccgtggca	ttctttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttcatgc	ccgcctgtct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga	caaatatcaa	gacggaggag	atctctgaag	tgaatctgga	tgcatgtgt	1800
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttcttgc	agaagatgtg	1860
ggttcaaaca	aaggtgcaat	cattggactc	atggtggcgg	gtgttgc	agcgacagt	1920
atcgcatca	ccttgggtat	gctgaagaag	aaacagtaca	catccattca	tcatgggtgt	1980

gtggaggttg acgcccgtgt caccccaagag gagcgccacc tgtccaagat gcagcagaac . 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactag 2088

<210> 12
<211> 695
<212> PRT
<213> Homo sapiens

<400> 12

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 13
 <211> 2088
 <212> DNA
 <213> Homo sapiens

<400> 13	
atgctgcccgtttggcaact gtcctgctggccgcctgga cggctcgggc gctggaggta	60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga	120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa	180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg	240
cagatcacca atgtggtaga agccaaccaa ccagtgcacca tccagaactg gtgcaagcgg	300
ggccgcaagc agtgcacagac ccataccccac ttttgattc cctaccgctg cttagttgg	360
gagtttgtaa gtgatgcct tctcggttcc gacaagtgc aattcttaca ccaggagagg	420
atggatgttt gcgaaactca ttttcactgg cacaccgtcg ccaaagagac atgcagtgag	480
aagagtacca acttgcacatga ctacggcatg ttgctgcct gcggattga caagttccga	540
ggggtagagt ttgtgtgttgcct ggccactggct gaagaaaagtg acaatgtggat ttctgctgat	600
gcggaggagg atgactcgga tgtctgggttgcggagcag acacagacta tgcatgtgg	660
agtgaagaca aagtagttaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca	840
gagtctgtgg aagagggttgcct acaacagcag ccagtacccc tgatgcgtt	900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatccca gaaagccaaa	960
gagaggcttgcggccaaagca ccgagagaga atgtcccagg tcatgagaga atgggaagag	1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcatgtt ccagcatttc	1080
caggagaaag tggaaatcttt ggaacagggaa gcagccaaacg agagacagca gctgggtggag	1140
acacacatgg ccagagtggaa agccatgctc aatgaccgcc gccgcctggc cctggagaac	1200
tacatcaccgc ctctgcaggc tggcctcct cggcctcgatc acgtgttcaa tatgctaaag	1260
aagtatgtcc ggcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg	1320
cgcattgtgg atcccaagaa agccgctcag atccggtccc agttatgac acaccccgat	1380
gtgatgtatg agcgcatgaa tcgtctctc tccctgctct acaacgtgcc tgcatggcc	1440
gaggagattc agatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac	1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgtatgc tctcatgcca	1560
tctttgaccg aaacgaaaac caccgtggag ctccttcccg tgaatggaga gttcagcctg	1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac	1680
gaagttgagc ctgttgatgc ccgcctgct gccgaccgag gactgaccac tcgaccaggt	1740

tctgggttga	caaatatcaa	gacggaggag	atctctgaag	tgaagatgga	tgcagaattc	1800
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttcttgc	agaagatgtg	1860
ggttcaaaca	aaggtaaat	cattggactc	atggtyggcg	gtgttgtcat	agcgacagtg	1920
atcttcata	ccttggtgat	gctgaagaag	aaacagtaca	catccattca	tcatggtg	1980
gtggagggtt	acgcccgtgt	cacccagag	gagcgcacc	tgtccaagat	gcagcagaac	2040
ggctacgaaa	atccaaccta	caagttctt	gagcagatgc	agaactag		2088

<210> 14
<211> 695
<212> PRT
<213> Homo sapiens

<400> 14

Met	Leu	Pro	Gly	Leu	Ala	Leu	Leu	Leu	Leu	Ala	Ala	Trp	Thr	Ala	Arg
1				5				10					15		

Ala	Leu	Glu	Val	Pro	Thr	Asp	Gly	Asn	Ala	Gly	Leu	Leu	Ala	Glu	Pro
			20					25					30		

Gln	Ile	Ala	Met	Phe	Cys	Gly	Arg	Leu	Asn	Met	His	Met	Asn	Val	Gln
			35				40					45			

Asn	Gly	Lys	Trp	Asp	Ser	Asp	Pro	Ser	Gly	Thr	Lys	Thr	Cys	Ile	Asp
			50				55				60				

Thr	Lys	Glu	Gly	Ile	Leu	Gln	Tyr	Cys	Gln	Glu	Val	Tyr	Pro	Glu	Leu
65				70					75			80			

Gln	Ile	Thr	Asn	Val	Val	Glu	Ala	Asn	Gln	Fro	Val	Thr	Ile	Gln	Asn
				85				90				95			

Trp	Cys	Lys	Arg	Gly	Arg	Lys	Gln	Cys	Lys	Thr	His	Pro	His	Phe	Val
				100				105				110			

Ile	Pro	Tyr	Arg	Cys	Leu	Val	Gly	Glu	Phe	Val	Ser	Asp	Ala	Leu	Leu
				115				120				125			

Val	Pro	Asp	Lys	Cys	Lys	Phe	Leu	His	Gln	Glu	Arg	Met	Asp	Val	Cys
					130					140					

Glu	Thr	His	Leu	His	Trp	His	Thr	Val	Ala	Lys	Glu	Thr	Cys	Ser	Glu
145					150					155			160		

Lys	Ser	Thr	Asn	Leu	His	Asp	Tyr	Gly	Met	Leu	Leu	Pro	Cys	Gly	Ile
				165					170				175		

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 15
<211> 2094
<212> DNA
<213> Homo sapiens

<400> 15
atgctgcccg gtttggcaact gtcctgctg gccgcctgga cggctcgccc gctggaggtta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatccctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtcaagac ccataccccac tttgtgattc cctaccgctg cttagttgg 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcattga ctacggcatg ttgctgccct gcggattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtgg ggccggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagttaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggtggt tcgagttcct acaacagcag ccagtacccc tgatgccgtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttg aggccaagca ccgagagaga atgtcccagg tcatgagaga atgggaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataga aggcaagttat ccagcatttc 1080
caggagaaag tggaaatctt ggaacaggaa gcagccaaacg agagacagca gctgggtggag 1140
acacacatgg ccagagtgg a gccatgtc aatgaccgccc gcccctggc cctggagaac 1200
tacatcaccc ctctgcaggc tggcctcct cggcctcgcc acgtgttcaa tatgctaaag 1260
aagtatgtcc ggcgagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatggtgg atcccaagaa agccgctcag atccggccc aggttatgac acacccctgt 1380
gtgattttatg agcgcattgaa tcagtctctc tccctgctct acaacgtgcc tgcaatggcc 1440
gaggagattc agatgaagt tcatgagctg cttcagaaag agcaaaaacta ttcagatgac 1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgtatgc tctcatgcc 1560
tctttgaccg aaacgaaaac caccgtggag ctcctcccg tgaatggaga gttcagccgt 1620

gacgatctcc	agccgtggca	ttctttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttcatgc	ccgcccgtct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga	caaatatcaa	gacggaggag	atctctgaag	tgaagatgga	tgcagaattc	1800
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttcttgc	agaagatgtg	1860
ggttcaaaca	aaggtgcaat	cattggactc	atggtggcg	gtgttgtcat	agcgacagtg	1920
atcgcatca	ccttgggtat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
gtggaggttg	acgcccgtgt	caccccagag	gagccacc	tgtccaagat	gcagcagaac	2040
ggctacgaaa	atccaaccta	caagttctt	gaggagatgc	agaacaagaa	gtag	2094

<210> 16
 <211> 697
 <212> PRT
 <213> Homo sapiens

<400> 16

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 17
<211> 2094
<212> DNA
<213> Homo sapiens

<400> 17
atgctgcccg gtttggcaact gctctgtctg gccgcctgga cggctcgggc gctggaggta 60
cccaactgtatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccataccccac tttgtgattc cctaccgctg ctttagttgg 360
gagtttgtaa gtgatgcctt tctcggttct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcacatca ctacggcatg ttgctgcctt gcggaaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtt ggccggacag acacagacta tgcaaatggg 660
agtgaagaca aagtagttaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcc ccaccaccac caccaccaca 840
gagtctgtgg aagaggtggc tcgagttctt acaacacgcg ccagtacccc tcatgccgtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttg aggccaaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcaatgtt ccacgtttc 1080
caggagaaag tggaaatctt ggaacagggaa gcagccaaacg agagacagca gctgggtggag 1140
acacacatgg ccagagtggc agccatgctc aatgaccgac gcccgcctggc cctggagaac 1200
tacatcaccc ctctgcaggc tggcctcctt cggcctcgat acgtgttcaa tatgctaaag 1260
aagtatgtcc ggcagaaca gaaggacaga cagcacaccc taaagcattt cgacatgtg 1320
cgcatgggtgg atcccaagaa agccgctcag atccggccccc aggttatgac acacccgtt 1380
gtgatttatg agcgcacatgaa tcagtccttc tccctgctct acaacgtgcc tgcaatggcc 1440
gaggagattc agatgaagt tgatgagctg cttcagaaag agcaaaaacta ttcagatgac 1500

gtcttgccca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca	1560
tctttgaccg aaacgaaaac caccgtggag ctccctcccg tgaatggaga gttcagcctg	1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac	1680
gaagttgagc ctgttcatgc ccgcctgct gccgaccgag gactgaccac tcgaccaggt	1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcagaattc	1800
cgacatgact caggatatga agttcatcat caaaaattgg ttttttttc agaagatgtg	1860
ggttcaaaca aaggtgcaat cattggactc atggtggcg gtgttgtcat agcgacagtg	1920
atcgcatca ctttgggtat gctgaagaag aaacagtaca catccattca tcatggtgtg	1980
gtggagggttgc acgcccgtgt caccccagag gagccacc tgtccaagat gcagcagaac	2040
ggctacgaaa atccaaccta caagttctt gaggagatgc agaacaagaa gtag	2094

<210> 18

<211> 697

<212> PRT

<213> Homo sapiens

<400> 18

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 19
<211> 2094
<212> DNA
<213> Homo sapiens

<400> 19
atgctggccg gtttggcaact gcttcctgtcg gccgcctgga cygctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggacaaa 180
acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcgaagc agtgcacagac ccataccccac tttgtgattc cctaccgctg ctttagttgg 360
gagttttaaa gtgatgcct tctcgtttct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcacatca ctacggcatg ttgctgcctt gggaaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtt ggcggagcag acacagacta tgccatgtgg 660
agtgaagaca aagttagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgtgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcc ccaccaccac caccaccaca 840
gagtctgtgg aagaggttgt tcgagttctt acaacagcag ccagtacccc tcatgcgtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttgc aggcacccca ccgagagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccacatgttc 1080
caggagaaag tggaaatctt ggaacaggaa gcagccaaacg agagacagca gctgggtggag 1140
acacacatgg ccagagtgga agccatgctc aatgaccgccc gccgcctggc cctggagaac 1200
tacatcacccg ctctgcaggc tggccctcctt cggcctcgct acgtgttcaa tatgctaaag 1260
aagtatgtcc ggcacacaaca gaaggacaga cagcacaccc taaagcattt cgacatgtg 1320
cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acaccccg 1380

gtgatttatg	agcgcatgaa	tca	gtctc	tcc	tcgtct	acaacgtgcc	tgcagtggcc	1440
gaggagattc	aggatgaagt	tga	ttagctg	ctt	cagaag	agcaaaacta	ttcagatgac	1500
gtcttgccca	acatgattag	tga	accaagg	atc	agttacg	gaaacgtgc	tctcatgcca	1560
tcttgcac	aaacgaaaac	caccgtggag	ctc	cttccc	tgaatggaga	gttcagcctg	1620	
gacgatctcc	agccgtggca	ttc	tttggg	gct	gactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgc	ccgc	ccctgt	gc	gcaggag	gactgaccac	tcgaccagg	1740
tctgggttga	caaataatcaa	gacggaggag	atc	tctgaag	tgaagatgga	tgcagaattc	1800	
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttcttgc	agaagatgtg	1860		
ggttcaaaca	aaggtgcaat	cattggactc	atggtggc	gtgttgtcat	agcgacagt	1920		
atcttcatca	ccttggtgat	gct	gaagaag	aaacagtaca	catccattca	tcatggtg	1980	
gtggaggttg	acgcccgtgt	caccccagag	gag	gccacc	tgtccaagat	gcagcagaac	2040	
ggctacgaaa	atccaaccta	caagttctt	gagcagatgc	agaacaagaa	gtag		2094	

<210> 20

<211> 697

<212> PRT

<213> Homo sapiens

<400> 20

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 21
<211> 1341
<212> DNA
<213> Homo sapiens

<400> 21
atggctagca tgactggtgg acagcaaatg ggtcgccgat ccacccagca cggcatccgg 60
ctgccccctgc gcagcggcct ggggggcgcc cccctggggc tgcggctgcc coggagacc 120
gacgaagagc ccgaggagcc cggccggagg ggcagcttg tggagatggt ggacaacctg 180
aggggcagaat cggggcaggg ctactacgtg gagatgaccg tgggcagccc cccgcagacg 240
ctcaacatcc tggtgatac aggtagcagt aactttgcag tgggtgctgc cccccacccc 300
ttcctgcattc gctactacca gaggcagctg tccagcacat accgggaccc coggaaagggt 360
gtgtatgtgc cttacaccca gggcaagtgg gaaggggagc tgggcaccga cctggtaagc 420
atccccatg gccccaacgt cactgtgcgt gccAACATTG ctgcacatcac tgaatcagac 480
aagttttca tcacggctc caactggaa ggcacccctgg ggctggctta tgctgagatt 540
gccaggcctg acgactccct ggagccttc tttgactctc tggtaaagca gacccacgtt 600
cccaacctct tctccctgca cctttgtggt gctggcttcc ccctcaacca gtctgaagtg 660
ctggcctctg tcggagggag catgatcatt ggaggtatcg accactcgct gtacacaggc 720
agtctctggt atacacccat cggcgggag tggattatg aggtcatcat tgtgcgggtg 780
gagatcaatg gacaggatct gaaaatggac tgcaaggagt acaactatga caagagcatt 840
gtggacagtg gcaccaccaa cttcggttg cccaaagaaag tggtaaagc tgcaagtcaaa 900
tccatcaagg cagccctc caccggaaag ttccctgtatg gtttctggct aggagagcag 960
ctgggtgtct ggcaagcagg caccacccct tggaaacattt tcccaactcat ctcactctac 1020
ctaattgggtg aggttaccaa ccaggccctc cgcacccatca tccttccgca gcaataccctg 1080
cggccaggatgg aagatgtggc cacgtcccaa gacgactgtt acaagttgc catctcacag 1140
tcatccacgg gcactgttat gggagctgtt atcatggagg gcttctacgt tgtctttgat 1200
cggggccgaa aacgaattgg ctttgctgtc agcgcttgcc atgtgcacga tgagttcagg 1260

acggcagcgg tggaaggccc ttttgtcacc ttggacatgg aagactgtgg ctacaacatt 1320
ccacagacag atgagtcatg a 1341

<210> 22
<211> 446
<212> PRT
<213> Homo sapiens

<400> 22

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Thr Gln
1 5 10 15

His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu
20 25 30

Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly
35 40 45

Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser
50 55 60

Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr
65 70 75 80

Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala
85 90 95

Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser
100 105 110

Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly
115 120 125

Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly
130 135 140

Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp
145 150 155 160

Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala
165 170 175

Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp
180 185 190

Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu
195 200 205

Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val
210 215 220

Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly
225 230 235 240

Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile
245 250 255

Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys
260 265 270

Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu
275 280 285

Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala
290 295 300

Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln
305 310 315 320

Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val
325 330 335

Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile
340 345 350

Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr
355 360 365

Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly
370 375 380

Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp
385 390 395 400

Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His
405 410 415

Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp
420 425 430

Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
435 440 445

<210> 23
 <211> 1380
 <212> DNA
 <213> Homo sapiens

<400> 23
 atggctagca tgactgggtgg acagcaaatg ggtcgccgat cgatgactat ctctgactct 60
 ccgcgtgaac aggacggatc cacccagcac ggcacccggc tgccccctgctg cagcggcctg 120
 gggggcgccc ccctggggct gcggctgccc cgggagaccg acgaagagcc cgaggagccc 180
 ggccggaggg gcagctttgt ggagatggtg gacaacctga ggggcaagtc ggggcaggc 240
 tactacgtgg agatgaccgt gggcagcccc ccgcacacgc tcaacatcct ggtggataca 300
 ggcacgcgta actttgcagt gggtgctgcc ccccacccct tcctgcacatcg ctactaccag 360
 aggccagctgt ccagcacata ccgggacccctc cggaagggtg tgtatgtgcc ctacacccqag 420
 ggcaagtggg aaggggagct gggcaccgac ctggtaagca tcccccatgg ccccaacqtc 480
 actgtgcgtg ccaacattgc tgccatcaact gaatcagaca agttcttcat caacggctcc 540
 aactggaaag gcatcctggg gctggcctat gctgagattg ccaggcctga cgactccctg 600
 gagcctttct ttgactctct ggtaaagcag acccacgttc ccaacctctt ctccctgcac 660
 ctttgtggtg ctggcttccc cctcaaccag tctgaagtgc tggcctctgt cggagggagc 720
 atgatcattg gaggtatcga ccactcgctg tacacaggca gtctctggta tacacccatc 780
 cggcgggagt ggtattatga ggtcatcatt gtgcgggtgg agatcaatgg acaggatctg 840
 aaaatggact gcaaggagta caactatgac aagagcattg tggacagtgg caccaccaac 900
 cttcgtttgc ccaagaaaagt gtttgaagct gcagtcaaat ccatcaaggc agccctcc 960
 acggagaagt tccctgatgg tttctggcta ggagagcagc tggtgtgctg gcaagcaggc 1020
 accacccctt ggaacatttt cccagtcata tcactctacc taatgggtga ggttaccaac 1080
 cagtccttcc gcatcaccat cttccgcag caatacctgc ggccagtgaa agatgtggcc 1140
 acgtcccaag acgactgtta caagttgcc atctcacagt catccacggg cactgttatg 1200
 ggagctgtta tcatggaggg cttctacgtt gtctttgatc gggcccgaaa acgaattggc 1260
 tttgctgtca ggccttgcca tgtgcacgt gagttcagga cggcagcggt ggaaggccct 1320
 tttgtcacct tggacatggaa agactgtggc tacaacattc cacagacaga tgagtcatga 1380

<210> 24
 <211> 459
 <212> PRT
 <213> Homo sapiens

<400> 24

Met	Ala	Ser	Met	Thr	Gly	Gly	Gln	Gln	Met	Gly	Arg	Gly	Ser	Met	Thr
1				5					10				15		

Ile Ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly Ile
20 25 30

Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg
35 40 45

Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly
50 55 60

Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly
65 70 75 80

Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile
85 90 95

Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His
100 105 110

Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg
115 120 125

Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu
130 135 140

Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val
145 150 155 160

Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe
165 170 175

Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu
180 185 190

Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val
195 200 205

Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala
210 215 220

Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser
225 230 235 240

Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp
245 250 255

Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg
260 265 270

Val Glu Ile Asn Gly Gln Asp Ile Lys Met Asp Cys Lys Glu Tyr Asn
275 280 285

Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro
290 295 300

Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser
305 310 315 320

Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys
325 330 335

Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu
340 345 350

Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu
355 360 365

Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp
370 375 380

Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met
385 390 395 400

Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg
405 410 415

Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe
420 425 430

Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp
435 440 445

Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
450 455

<210> 25

<211> 1302

<212> DNA

<213> Homo sapiens

<400> 25

atgactcagc atggatttcg tctgccactg cgtacggcgc tgggtgggtgc tccactgggt 60

ctgcgtctgc cccgggagac cgacgaagag cccgaggagc ccggccggag gggcagcttt 120

gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 180

gtgggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taacttgca 240

gtgggtgctg ccccccaccc cttcctgcat cgctactacc agagggcagct gtccagcaca 300

taccgggacc	tccggaaagg	tgttatgt	ccctacaccc	aggcaagt	ggaaggggag	360
ctggcaccc	acctggtaag	catccccat	ggccccaacg	tcactgtcg	tgccaaacatt	420
gctgccatca	ctgaatcaga	caagttcttc	atcaacggct	ccaaactgg	aggcatcctg	480
gggctggcct	atgctgagat	tgccaggcct	gacgactccc	tggagcc	tttgcact	540
ctggtaaagc	agaccacgt	tcccaaccc	ttctccctgc	acctt	gtgg	600
ccctcaacc	agtctgaagt	gctggcct	gtcggagg	gcatgatcat	tggaggtatc	660
gaccactcgc	tgtacacagg	cagtctctgg	tatacacc	tccggcgg	gtggattat	720
gaggtcatca	ttgtgcgg	ggagatcaat	ggacaggatc	taaaaatgg	ctgcaaggag	780
tacaactatg	acaagagcat	tgtggacagt	ggcaccacca	accc	tcgttt	840
gtgttgaag	ctgcagtcaa	atccatcaag	gcagcct	ccacggagaa	gttccctgat	900
ggtttctggc	taggagagca	gctgggtgtc	tggcaagcag	gcaccaccc	ttggaacatt	960
ttcccagtca	tctcactcta	cctaattgg	gagg	ttacca	accagtcc	1020
atccttccgc	agcaatacct	gcggccagt	gaagatgtgg	ccacgtcc	agacgactgt	1080
tacaaagttt	ccatctcaca	gtcatccac	ggca	ctgtt	accgtt	1140
ggcttctacg	ttgtcttga	tcgggcccga	aaacgaatt	gcttt	gtgt	1200
catgtgcac	atgagttcag	gacggcagcg	gtggaaagg	cc	tttgtcac	1260
gaagactgt	gctacaacat	tccacagaca	gatgagtc	at	ga	1302

<210> 26

<211> 433

<212> PRT

<213> Homo sapiens

<400> 26

Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly
 1 5 10 15

Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu
 20 25 30

Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg
 35 40 45

Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro
 50 55 60

Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala
 65 70 75 80

Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln
85 90 95

Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr
100 105 110

Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile
115 120 125

Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr
130 135 140

Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu
145 150 155 160

Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro
165 170 175

Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser
180 185 190

Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu
195 200 205

Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu
210 215 220

Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr
225 230 235 240

Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met
245 250 255

Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr
260 265 270

Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser
275 280 285

Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu
290 295 300

Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile
305 310 315 320

Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser
325 330 335

Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp
340 345 350

Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser
355 360 365

Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val
370 375 380

Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys
385 390 395 400

His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val
405 410 415

Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu
420 425 430

Ser

<210> 27
<211> 1278
<212> DNA
<213> Homo sapiens

<400> 27	
atggctagca tgactggtgg acagcaaatg ggtcgccgat cgatgactat ctctgactct	60
cccgctggact ctggtatcga aaccgacgga tcctttgtgg agatggtgg caaacctgagg	120
ggcaagtccgg ggcaggggcta ctacgtggag atgaccgtgg gcagcccccc gcagacgctc	180
aacatcctgg tggatacagg cagcagtaac tttgcagtgg gtgctgcccc ccaccccttc	240
ctgcatcgct actaccagag gcagctgtcc agcacatacc gggacctccg gaagggtgtg	300
tatgtgccct acaccaggg caagtggaa gggagctgg gcaccgacct ggtaagcatc	360
ccccatggcc ccaacgtcac tgtgcgtgcc aacattgctg ccatcactga atcagacaag	420
ttcttcatca acggctccaa ctgggaaggc atcctggggc tggcctatgc tgagattgcc	480
aggcctgacg actccctgga gcctttctt gactctctgg taaaggagac ccacgttccc	540
aacctttctt ccctgcacct ttgtggtgct ggctcccccc tcaaccagtc tgaagtgctg	600
gcctctgtcg gagggagcat gatcattgga ggtatcgacc actcgctgta cacaggcagt	660
ctctggata cacccatccg gcgggagtg tattatgagg tcatcattgt gcgggtggag	720
atcaatggac aggatctgaa aatggactgc aaggagtaca actatgacaa gagcattgtg	780
gacagtggca ccaccaacct tcgtttgcc aagaaaagtgt ttgaagctgc agtcaaatcc	840
atcaaggcag ctcctccac ggagaagttc cctgatggtt tctggcttags agagcagctg	900

gtgtgctggc aagcaggcac cacccttgg aacatccc cagtcatctc actctaccta	960
atgggtgagg ttaccaaacc gtcctccgc atcaccatcc ttccgcagca atacctgcgg	1020
ccagtggaaag atgtggccac gtcccaagac gactgttaca agtttgcct ctcacagtca	1080
tccacggca ctgttatggg agctgttatac atggaggcgt tctacgttgt ctttgatcg	1140
gccccaaaac gaattggctt tgctgtcagc gcttgcctg tgcacgatga gttcaggacg	1200
gcagcggtgg aaggccctt tgtcacctg gacatggaaag actgtggcta caacattcca	1260
cagacagatg agtcatga	1278

<210> 28
<211> 425
<212> PRT
<213> Homo sapiens

<400> 28

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr			
1	5	10	15

Ile Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe		
20	25	30

Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr		
35	40	45

Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val		
50	55	60

Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe			
65	70	75	80

Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu		
85	90	95

Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu		
100	105	110

Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val		
115	120	125

Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn		
130	135	140

Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala			
145	150	155	160

Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln
165 170 175

Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe
180 185 190

Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile
195 200 205

Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr
210 215 220

Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu
225 230 235 240

Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp
245 250 255

Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys
260 265 270

Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu
275 280 285

Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln
290 295 300

Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu
305 310 315 320

Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln
325 330 335

Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys
340 345 350

Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala
355 360 365

Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg
370 375 380

Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr
385 390 395 400

Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly
405 410 415

Tyr Asn Ile Pro Gln Thr Asp Glu Ser
420 425

<210> 29
<211> 1362
<212> DNA
<213> Homo sapiens

<400> 29
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgacgcggcc tggggggcgc cccctgggg 120
ctgcggctgc cccggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg cccccaccc ttccctgcat cgctactacc agaggcagct gtccagcaca 360
taccggacc tccgaaagg tgttatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtcg tgccaacatt 480
gctgccatca ctgaatcaga caagtttttc atcaacggct ccaactggga aggcatcctg 540
gggctggct atgctgagat tgccaggct gacgactccc tggagccctt ctttgactct 600
ctggtaaagc agaccacgt tcccaaccc tcctccctgc acctttgtgg tgctggcttc 660
ccccctcaacc agtctgaagt gctggctct gtcggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggggga gtggattat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatggc ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctct ccacggagaat gttccctgat 960
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020
ttcccagtca tctcactcta cctaattgggt gaggttacca accagtcctt ccgcacacc 1080
atccctccgc agcaataacct gcccggcagtg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagtttgc ccatotcaca gtcatccacg ggcactgtta tggagctgt tatcatggag 1200
ggcttctacg ttgttttgc tcggggccga aaacgaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaaggcc ctttgcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcata ga 1362

<210> 30
<211> 453
<212> PRT
<213> Homo sapiens

<400> 30

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser
450

<210> 31
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 31
 atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
 ggcacccagc acggcatccg gctgccctg cgacggcc tggggggcgc cccctgggg 120
 ctgcggctgc cccggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
 gtgggcagcc cccgcagac gctcaacatc ctggtgata cggcagcag taacttgca 300
 gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
 taccgggacc tccgaaaggg tgttatgtg ccctacaccc agggcaagtg ggaaggggag 420
 ctgggcaccc acctggtaag catccccat ggcccaacg tcactgtgc tgccaacatt 480
 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
 gggctggcct atgctgagat tgccaggct gacgactccc tggagcctt cttgactct 600
 ctggtaaagc agaccacgt tcccaaccc ttctccctgc acctttgtgg tgctggcttc 660
 cccctaacc agtctgaagt gctggctct gtcggaggga gcatgatcat tggaggtatc 720
 gaccactcgc tgtacacagg cagtctctgg tatacaccca tccgggggaa gtggattat 780
 gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
 tacaactatg acaagagcat tgtggacagt ggcaccacca acttcgctt gccaaagaaa 900
 gtgtttgaag ctgcagtcaa atccatcaag gcagccctt ccacggagaa gtccctgat 960
 gtttctggc taggagagca gctgggtgc tggcaagcag gcaccacccc ttggaacatt 1020
 ttcccagtca tctcactcta cctaattggg gaggttacca accagtccctt ccgcatcacc 1080
 atccttccgc agcaataacct gcccggcagtg gaagatgtgg ccacgtccca agacgactgt 1140
 tacaagtttgc ccatctcaca gtcatccacg ggcactgtt tggagctgt tatcatggag 1200
 ggcttctacg ttgtcttga tcggggccga aaacgaattt gctttgtgt cagcgcttgc 1260
 catgtgcacg atgagttcag gacggcagcg gtggaaaggcc cttttgtcac cttggacatg 1320
 gaagactgtg gctacaacat tccacagaca gatgagtcac agcagcagca gcagcagtga 1380

<210> 32

<211> 459

<212> PRT

<213> Homo sapiens

<400> 32

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser His His His His His His
450 455

<210> 33

<211> 25

<212> PRT

<213> Homo sapiens

<400> 33

Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu
1 5 10 15

Ser Ser Leu Val Arg His Arg Trp Lys
20 25

<210> 34

<211> 19

<212> PRT

<213> Homo sapiens

<400> 34

Ser Glu Gln Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser
1 5 10 15

Leu Leu Lys

<210> 35
<211> 29
<212> DNA
<213> Homo sapiens

<400> 35
gtggatccac ccagcacggc atccggctg 29

<210> 36
<211> 36
<212> DNA
<213> Homo sapiens

<400> 36
gaaagcttgc atgactcatc tgtctgtgga atgttg 36

<210> 37
<211> 39
<212> DNA
<213> Homo sapiens

<400> 37
gatcgatgac tatctctgac tctccgcgtg aacaggacg 39

<210> 38
<211> 39
<212> DNA
<213> Homo sapiens

<400> 38
gatccgtcct gttcacgcgg agagtcagag atagtcattc 39

<210> 39
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Hu-Asp2

<400> 39
cgccatccgg ctgccccctgc gtagcggtct gggtggtgct ccactgggtc tgcgcttgcc 60
ccgggagacc gagcaag 77

```

<210> 40
<211> 77
<212> DNA
<213> Artificial sequence

<220>
<223> Hu-Asp2

<400> 40
cttcgtcggt ctccccgggc agacgcagac ccagtggagc accaccaga ccgctacyca      60
ggggcagccg gatgccg                                         77

<210> 41
<211> 51
<212> DNA
<213> Artificial sequence

<220>
<223> Caspase-8 Cleavage Site

<400> 41
gatcgatgac tatctctgac tctccgctgg actctggat c gaaaccgac g      51

<210> 42
<211> 51
<212> DNA
<213> Artificial sequence

<220>
<223> Caspase-8 Cleavage Site

<400> 42
gatccgtcgg tttcgatacc agagtccagc ggagagtcag agatagtcat c      51

<210> 43
<211> 32
<212> DNA
<213> Homo sapiens

<400> 43
aaggatcct tgtggagatg gtggacaacc tg                                         32

<210> 44
<211> 36
<212> DNA
<213> Homo sapiens

<400> 44
gaaaagtttc atgactcatc tgtctgtgga atgttg                                         36

<210> 45
<211> 24
<212> DNA
<213> Artificial sequence

```

<220>		
<223>	6-His tag	
<400>	45	
	gatcgcatca tcaccatcac catg	24
<210>	46	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	6-His tag	
<400>	46	
	gatccatgg gatggtgatg atgc	24
<210>	47	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	47	
	gaactgaccac tcgaccaggt tc	22
<210>	48	
<211>	51	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	48	
	cgaattaaat tccagcacac tggctacttc ttgttctgca tctcaaagaa c	51
<210>	49	
<211>	26	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	49	
	cgaattaaat tccagcacac tggcta	26
<210>	50	
<211>	1287	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Hu-Asp2(b) delta TM	

<400> 50
 atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
 ggccaccgc acggcatccg gctgccctg cgccaggcc tcggggcgc cccccctgggg 120
 ctgcggctgc cccgggagac cgacgaagag cccgaggagc ccggccggag gggcagctt 180
 gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
 gtgggcagcc ccccgccagac gctcaacatc ctggtgata caggcagcag taactttgca 300
 gtgggtgctg ccccccaccc otccctgcat cgctactacc agaggcagct gtccagcaca 360
 taccgggacc tccggaaggg tgttatgtg ccctacaccc agggcaagtg ggaaggggag 420
 ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtcg tgccaacatt 480
 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
 gggctggcct atgctgagat tgccaggctt tgttgtgctg gcttccccct caaccagtct 600
 gaagtgctgg cctctgtcg aggagcatg atcattggag gtatcgacca ctcgctgtac 660
 acaggcagtc tctggatac acccatccgg cggagtggt attatgaggt catcattgtg 720
 cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
 agcattgtgg acagtggcac caccaaccc ttgtggccca agaaagtgtt tgaagctgca 840
 gtcaaatcca tcaaggcage otccctccacg gagaagttcc ctgatggttt ctggctagga 900
 gagcagctgg tgtgtggca agcaggcacc acccettgga acatttccc agtcatctea 960
 ctctacctaa tgggtgaggt taccaccag tccttccgca tcaccatcct tccgcagcaa 1020
 tacctgcggc cagtggaaata tggccacg tcccaagacg actgttacaa gttgcccattc 1080
 tcacagtcat ccacgggcac tggtatggta gctgttatca tggagggctt ctacgttgc 1140
 tttgatcgaa cccgaaaacg aattggctt gctgtcagcg ctggccatgt gcacgatgag 1200
 ttcaggacgg cagcggtgga aggcctttt gtcacccctgg acatggaaaga ctgtggctac 1260
 aacattccac agacagatga gtcatga 1287

<210> 51
 <211> 428
 <212> PRT
 <213> Artificial sequence

<220>
 <223> Hu-Asp2(b) delta TM

<400> 51

Met	Ala	Gln	Ala	Leu	Fro	Trp	Leu	Leu	Leu	Trp	Met	Gly	Ala	Gly	Val
1															

Leu	Pro	Ala	His	Gly	Thr	Gln	His	Gly	Ile	Arg	Leu	Pro	Leu	Arg	Ser
20															

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
420 425

<210> 52
<211> 1305
<212> DNA
<213> Artificial sequence

<220>
<223> Hu-Asp2(b) delta TM

<400> 52
atggcccaag ccctgccctg gtcctgtctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgacgcggcc tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540

gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct	600
gaagtgctgg cctctgtcg aggagcatg atcattggag gtatcgacca ctcgctgtac	660
acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt catcattgtg	720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag	780
agcattgtgg acagtggcac caccaacctt cgttgccca agaaagtgtt tgaagctgca	840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga	900
gagcagctgg tgtgctggca agcaggcacc accccttggaa acatttccc agtcatctca	960
ctctacctaa tgggtgaggt taccaaccoag tccttccgca tcaccatect tccgcagcaa	1020
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc	1080
tcacagtcac ccacgggcac tgttatgggaa gctgttatca tggagggctt ctacgttgc	1140
tttgatcggg cccgaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag	1200
ttcaggacgg cagcggtgga aggcccttt gtcacccctgg acatggaaaga ctgtggctac	1260
aacattccac agacagatga gtcacagcag cagcagcagc agtga	1305

<210> 53

<211> 434

<212> PRT

<213> Artificial sequence

<220>

<223> Hu-Asp2(b) delta TM

<400> 53

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val			
1	5	10	15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser			
20	25	30	

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp			
35	40	45	

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val			
50	55	60	

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr			
65	70	75	80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser			
85	90	95	

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr			
100	105	110	

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His His
420 425 430

His His

<210> 54
<211> 2310
<212> DNA
<213> Homo sapiens

<400> 54
atgctgcccg gtttggcaact gtcctgtgt gccgcctggaa cggctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccattccccac tttgtgattc cctaccgtg cttagtttgt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcacatca ctacggcatg ttgtgccct gcggattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtggaa ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtgg ggcggagcag acacagacta tgccatggg 660
agtgaagaca aagtagttaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcc aaccaccac caccaccaca 840
gagtctgtgg aagaggtggc tcgagaggtg tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080

cctgttaaac	ttcctacaac	agcagccagt	accctgatg	ccgttacaa	gtatctcgag	1140
acacctgggg	atgagaatga	acatgccat	ttccagaaag	ccaaagagag	gcttgggccc	1200
aaggcaccgag	agagaatgtc	ccaggtcatg	agagaatggg	aagaggcaga	acgtcaagca	1260
aagaacttgc	ctaaagctga	taagaaggca	gttatccagc	atttcagga	gaaagtggaa	1320
tcttgaaac	aggaagcagc	caacgagaga	cagcagctgg	tggagacaca	catggccaga	1380
gttggaaagcca	tgctcaatga	ccgcccgcgc	ctggccctgg	agaactacat	caccgctctg	1440
caggctgttc	ctcctcgcc	tcgtcacgtg	ttcaatatgc	taaagaagta	tgtccgcgca	1500
gaacagaagg	acagacagca	caccctaaag	cattcgagc	atgtgcgc	ggtggatccc	1560
aagaaaagccg	ctcagatccg	gtcccaggtt	atgacacacc	tccgtgtgat	ttatgagcgc	1620
atgaatcagt	ctctccct	gctctacaac	gtgcctgcag	tggccgagga	gattcaggat	1680
gaagttgatg	agctgcttca	gaaagagcaa	aactattcag	atgacgtctt	ggccaacatg	1740
attagtgaac	caaggatcag	ttacggaaac	gatgctctca	tgccatctt	gaccgaaacg	1800
aaaaccaccg	tggagctcct	tcccgtgaat	ggagagttca	gcctggacga	tctccagccg	1860
tggcattctt	ttggggctga	ctctgtgcca	gccaaacacag	aaaacgaagt	tgagcctgat	1920
gatgcccccc	ctgctgcccga	ccgaggactg	accactcgac	caggttctgg	gttgacaaat	1980
atcaagacgg	aggagatctc	tgaagtgaag	atggatgcag	aattccgaca	tgactcagga	2040
tatgaagttc	atcatcaaaa	atgggtgttc	tttgcagaag	atgtgggttc	aaacaaaggt	2100
gcaatcattg	gactcatggt	gggcggtgtt	gtcatagcga	cagtgatcgt	catcaccttg	2160
gtgatgctga	agaagaaaca	gtacacatcc	attcatcatg	gtgtggtgga	ggttgacgccc	2220
gctgtcaccc	cagaggagcg	ccacctgtcc	aagatgcagc	agaacggcta	cgaaaatcca	2280
acctacaagt	tcttgagca	gatgcagaac				2310

<210> 55
 <211> 770
 <212> PRT
 <213> Homo sapiens

<400> 55

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr
340 345 350

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala
355 360 365

Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp
370 375 380

Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala
385 390 395 400

Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala
405 410 415

Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile
420 425 430

Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn
435 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn
770

<210> 56
<211> 2253
<212> DNA
<213> Homo sapiens

<400> 56
 atgctgcccg gtttggcaact gctcctgctg gccgcctgga cggctcgccc gctggaggta 60
 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
 ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa 180
 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
 ggccgcaagc agtgcacagac ccataccccac tttgtgattc cctaccgctg cttagttgg 360
 gagtttgtaa gtgatgcct tctcggtcct gacaagtgc aattcttaca ccaggagagg 420
 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
 aagagtacca acttgcattga ctacggcatg ttgctgcct gcggaaattga caagttccga 540
 ggggttagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
 gcggaggagg atgactcgga tgtctgggtgg ggcggagcag acacagacta tgcaagatggg 660
 agtgaagaca aagttagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
 ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
 gagtctgtgg aagaggtggc tcgagaggtg tgctctgaac aagccgagac gggggccgtgc 900
 cgagcaatga tctcccgctg gtactttgtat gtgactgaag ggaagtgtgc ccattcttt 960
 tacggcggat gtggcggcaa ccggaacaaac tttgacacag aagagtactg catggccgtg 1020
 tgtggcagcg ccattcctac aacagcagcc agtaccctg atgccgttga caagtatctc 1080
 gagacacctg gggatgagaa tgaacatgcc catttccaga aagccaaaga gaggcttgag 1140
 gccaagcacc gagagagaat gtcccaggc atgagagaat gggaaagagc agaacgtcaa 1200
 gcaaagaact tgcctaaagc tgataagaag gcagttatcc agcatttcca ggagaaagtg 1260
 gaatcttgg aacaggaagc agccaaacgag agacagcagc tgggtggagac acacatggcc 1320
 agagtgaaag ccatgctcaa tgaccggccgc cgccctggccc tggagaacta catcaccgct 1380
 ctgcaggctg ttcctcctcg gcctcgac gtgttcaata tgctaaagaa gtatgtccgc 1440
 gcagaacaga aggacagaca gcacacccta aagcatttcg agcatgtgcg catggtgat 1500
 cccaagaaag ccgctcagat ccggtcccag gttatgacac acctccgtgt gatttatgag 1560
 cgcattgtatc agtctctctc cctgctctac aacgtgcctg cagtggccga ggagattcag 1620
 gatgaagttg atgagctgct tcagaaagag caaaaactatt cagatgacgt cttggccaac 1680
 atgatttagtg aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa 1740
 acgaaaacca ccgtggagct cttcccgctg aatggagagt tcagcctgga cgatctccag 1800
 ccgtggcatt cttttggggc tgactctgtg ccagccaaca cagaaaacga agttgagcst 1860

gttgatgccc	gcctgctgc	cgaccgagga	ctgaccactc	gaccaggttc	tggttgaca	1920
aatatcaaga	cggaggagat	ctctgaagt	aagatggatg	cagaattccg	acatgactca	1980
ggatatgaag	ttcatcatca	aaaattggtg	ttcttgcag	aagatgtgg	ttcaaacaaa	2040
ggtgcaatca	ttggactcat	ggtgggcgg	gttgcata	cgacagt	gtatcgacc	2100
ttgggtatgc	tgaagaagaa	acagtacaca	tccattcatc	atggtgtggt	ggaggttgac	2160
gccgctgtca	ccccagagga	gcccac	tccaagatgc	agcagaacgg	ctacgaaaat	2220
ccaacctaca	agttcttga	gcagatgcag	aac			2253

<210> 57
<211> 751
<212> PRT
<213> Homo sapiens

<400> 57

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gin Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Prc
565 570 575

Ser Leu Thr Glu Thr Lys Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Prc Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn
740 745 750

<210> 58
<211> 2316
<212> DNA
<213> Homo sapiens

<400> 58
atgctgcccg gtttggcact gtcctgtcg gcccgcctgga cggctcgccg gctggaggta 60,
ccccactgtatg gtaatgtcg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120,
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180,
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240,
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300,
ggccgcaagc agtgcacagac ccatccccac tttgtgatcc cctaccgctg cttagttgg 360,
gagtttgtaa gtgatgcct tctcgttcct gacaagtgc aattcttaca ccaggagagg 420,
atggatgttt gcgaaactca ttttcaactgg cacaccgtcg ccaaagagac atgcagtgag 480,
aagagtacca acttgcatac ctacggcatg ttgctgcct gcggattga caagttccga 540,
ggggtagagt ttgtgtgtt cccactggct gaagaaaatg acaatgtgga ttctgctgat 600,
gcggaggagg atgactcgga tgtctgggtt ggcggagcag acacagacta tgcagatggg 660,
agtgaagaca aagttagtata agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720,
gaagccgatg atgacgagga cgtgaggat ggtgatgagg tagaggaaga ggctgaggaa 780,
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840,
gagtctgtgg aagaggtggt tcgagaggtg tgctctgaac aagccgagac gggccgtgc 900,
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960,
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020,
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080,
cctgttaaac ttccctacaac agcagccagt acccctgatg ccgttgacaa gatatctcgag 1140

acacctgggg	atgagaatga	acatgccat	ttccagaaag	ccaaagagag	gcttgggcc	1200
aaggcaccgag	agagaatgtc	ccaggtcatg	agagaatggg	aagaggcaga	acgtcaagca	1260
aagaacttgc	ctaaagctga	taagaaggca	gttatccagc	atttccagga	gaaagtggaa	1320
tctttgaaac	aggaagcagc	caacgagaga	cagcagctgg	tggagacaca	catggccaga	1380
gtggaagcca	tgctcaatga	ccgcccgcgc	ctggccctgg	agaactacat	caccgctctg	1440
caggctgttc	ctcctcgcc	tcgtcacgt	ttcaatatgc	taaagaagta	tgtccgcgca	1500
gaacagaagg	acagacagca	caccctaaag	catttcgagc	atgtgcgcac	ggtggatccc	1560
aagaaaagccg	ctcagatccg	gtcccaggtt	atgacacacc	tccgtgtgat	ttatgagcgc	1620
atgaatcagt	ctctctccct	gctctacaac	gtgcctgcag	tggccgagga	gattcaggat	1680
gaagttgatg	agctgcttca	gaaagagcaa	aactattcag	atgacgtctt	ggccaaacatg	1740
attagtgaac	caaggatcag	ttacggaaac	gatgctctca	tgccatctt	gaccgaaacg	1800
aaaaccaccg	tggagctcct	tcccgtgaat	ggagagttca	gcctggacga	tctccagccg	1860
tggcattctt	ttggggctga	ctctgtgcca	gccaacacag	aaaacgaagt	tgagcctgtt	1920
gatgcccgc	ctgctgccga	ccgaggactg	accactcgac	caggttctgg	gttgacaaat	1980
atcaagacgg	aggagatctc	tgaagtgaag	atggatgcag	aattccgaca	tgactcagga	2040
tatgaagttc	atcatcaaaa	attgggtgttc	tttgcagaag	atgtgggttc	aaacaaaygt	2100
gcaatcattg	gactcatggt	ggcggtgtt	gtcatagcga	cagtgatcgt	catcaccttg	2160
gtgatgctga	agaagaaaaca	gtacacatcc	attcatcatg	gtgtggtgga	ggttgacgccc	2220
gctgtcaccc	cagaggagcg	ccacctgtcc	aagatgcagc	agaacggcta	cgaaaatcca	2280
acctacaagt	tcttgagca	gargcagaac	aagaag			2316

<210> 59

<211> 772

<212> PRT

<213> Homo sapiens

<400> 59

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Ala Trp Thr Ala Arg
 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr
340 345 350

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala
355 360 365

Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp
370 375 380

Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala
385 390 395 400

Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala
405 410 415

Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile
420 425 430

Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn
435 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn Lys Lys
770

<210> 60
<211> 2259
<212> DNA
<213> Homo sapiens

<400> 60
atgctgcccg gtttggcaact gtcctgtcg gccgcctgga cggctcgggc gctggaggtta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180

acctgcattt ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttgg 360
gagtttgtaa gtgatgccct tctcggtcct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcattga ctacggcatg ttgctgccct gcggatttga caagttccga 540
gggttagagt ttgtgtttg ccaactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggt ggccggagcag acacagacta tgcaagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc accattgc aaccaccat caccaccaca 840
gagtctgtgg aagaggtgg tcgagaggtg tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattctt 960
tacggcggat gtggcggcaa ccggaaacaac ttgtacacag aagagtacty catggccgtg 1020
tgtggcagcg ccattcctac aacagcagcc agtaccctg atgcccgttga caagtatetc 1080
gagacacctg gggatgagaa tgaacatgcc cattccaga aagccaaaga gaggctttag 1140
gccaaggcacc qaqagagaat gtcccaggc atgagagaat gggaaagagc agaacgtcaa 1200
gcaaagaact tgccctaaagc tgataagaag gcagttatcc accatttcca ggagaaagtq 1260
aatctttgg aacaggaagc agccaaacgag agacagcagc tggtgagac acacatggcc 1320
agagtggaaag ccatgctcaa tgaccgccc cgcctggccc tggagaacta catcaccyct 1380
ctgcaggctg ttccctctcg gcctcgac gtgttcaata tgctaaagaa gtatgtccgc 1440
gcagaacaga aggacagaca gcacacccta agcatttcg agcatgtgcg catggtgat 1500
cccaagaaag ccgctcagat ccggcccag gttatgacac acctccgtgt gatttatgag 1560
cgcatgaatc agtctctctc cctgctctac aacgtgcctg cagtggccga ggagattcag 1620
gatgaagttg atgagctgt tcagaaagag caaaactatt cagatgacgt ctggccaaac 1680
atgatttagt aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa 1740
acgaaaacca ccgtggagct ccttccgtg aatggagagt tcagccctgga cgatctccag 1800
ccgtggcatt ctttggggc tgactctgt ccagccaaca cagaaaacga agttgagcct 1860
gttcatgtccc gccctgctgc cgaccgagga ctgaccactc gaccaggttc tgggttgaca 1920
aatatcaaga cggaggagat ctctgaagtg aagatggatg cagaattccg acatgactca 1980
ggatatgaag ttcatcatca aaaattggtg ttctttgcag aagatgtggg ttcaaaacaaa 2040
ggtgcaatca ttggactcat ggtggggcggt gttgtcatag cgacagtgtat cgtcatcacc 2100

ttgggtgatgc tgaagaagaa acagtacaca tccattcatc atggtgtggt ggagggttgc 2160
gccgctgtca ccccagagga gcgccacctg tccaagatgc agcagaacgg ctacgaaaat 2220
ccaacacctaca agttcttga gcagatgcag aacaagaag 2259

<210> 61
<211> 753
<212> PRT
<213> Homo sapiens

<400> 61

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro
565 570 575

Ser Leu Thr Glu Thr Lys Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn Lys
740 745 750

Lys

<210> 62
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 62

Leu Glu Val Leu Phe Gln Gly Pro
1 5

<210> 63
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 63

Ser Glu Val Asn Leu Asp Ala Glu Phe Arg
1 5 10

<210> 64
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 64

Ser Glu Val Lys Met Asp Ala Glu Phe Arg
1 5 10

<210> 65
<211> 15
<212> PRT
<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 65

Arg Arg Gly Gly Val Val Ile Ala Thr Val Ile Val Gly Glu Arg
1 5 10 15

<210> 66

<211> 518

<212> PRT

<213> Homo sapiens

<400> 66

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys
515

<210> 67
<211> 475
<212> PRT
<213> Homo sapiens

<400> 67

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp His His His His His His
465 470 475

<210> 68
<211> 413
<212> PRT
<213> Homo sapiens

<400> 68

Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu
1 5 10 15

Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu
20 25 30

Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp
35 40 45

Thr Gly Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile
50 55 60

Asp Thr Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly
65 70 75 80

Phe Asp Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val
85 90 95

Gly Glu Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu
100 105 110

Val Asn Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly
115 120 125

Ile Lys Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys
130 135 140

Pro Ser Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala
145 150 155 160

Asn Ile Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro
165 170 175

Val Ala Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile
180 185 190

Glu Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu
195 200 205

Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln
210 215 220

Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val
225 230 235 240

Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala
245 250 255

Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp
260 265 270

Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr
275 280 285

Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn
290 295 300

Ser Ser Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln
305 310 315 320

Pro Met Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile
325 330 335

Ser Pro Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly
340 345 350

Phe Tyr Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala
355 360 365

Ser Pro Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly
370 375 380

Pro Phe Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser
385 390 395 400

Leu Ser Glu Pro Ile Leu Trp His His His His His His
405 410

<210> 69
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 69

Gly Leu Ala Leu Ala Leu Glu Pro
1 5

<210> 70
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 70

Glu Val Lys Met Asp Ala Glu Phe
1 5

<210> 71
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 71

Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 72
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 72

Leu Val Phe Phe Ala Glu Asp Val
1 5

<210> 73
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 73

Lys Leu Val Phe Phe Ala Glu Asp
1 5

<210> 74
<211> 39
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 74
cgctttaagc ttgccaccat gggcgactg gccccggcgcg

39

<210> 75
<211> 57
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 75
cgctttctcg agctaatttgtt gatgggttgtt gtgccacaaa atgggctcgc tcaaaaga

57

<210> 76
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 76

Asn Leu Asp Ala
1

<210> 77
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 77

Gly Arg Arg Gly Ser
1 5

<210> 78
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 78

Thr Gln His Gly Ile Arg
1 5

<210> 79
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 79

Glu Thr Asp Glu Glu Pro
1 5

<210> 80
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 80

Met Cys Ala Glu Val Lys Met Asp Ala Glu Phe Lys Asp Asn Pro
1 5 10 15

<210> 81
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 81

Asp Ala Glu Phe Arg
1 5

<210> 82
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 82

Ser Glu Val Asn Leu
1 5

<210> 83
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Peptide of Human APP

<220>
<221> misc_feature
<222> (1)
<223> Xaa = Lys or Asn

<220>
<221> misc_feature
<222> (2)
<223> Xaa = Met or Leu

<220>
<221> misc_feature
<222> (3)
<223> Xaa = Asp

<220>
<221> misc_feature
<222> (4)
<223> Xaa = Asp

<400> 83

Xaa Xaa Xaa Xaa
1

<210> 84
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 84
Leu Val Phe Phe Ala Glu Asp Phe
1 5