第十一次作业答案

P138 10.

为了达到3阶代数精度,取2个积分点

(1)

查表得积分点: $x_1 = -0.577350, x_2 = 0.577350, \alpha_1 = \alpha_2 = 1$,

$$G_2(x^5 - x + 1) = (x_1^5 - x_1 + 1) + (x_2^5 - x_2 + 1) = 2.0000$$

(2)

在[-1,1]上,
$$x_1^{(2)} = -0.577350, x_2^{(2)} = 0.577350$$

$$x_1 = -1 + 2x_1^{(2)} \approx -2.15470, x_2 = -1 + 2x_2^{(2)} \approx 0.15470$$

$$G_2(x^5+x) = 2[(x_1^5+x_1)+(x_2^5+x_2)] \approx -96.889$$

P162 1.

用(向前) Euler公式解初值问题

$$\begin{cases} \frac{dy}{dx} = x + y^2, \\ y(0) = 1, \end{cases} \quad 0.1 \le x \le 0.5, \quad h = 0.1$$

作出 y(x) 的在 $x = x_n$ 处的一阶向前差商

$$y'(x_n) \approx \frac{y(x_{n+1}) - y(x_n)}{h}$$

由微分方程 (7.1),

$$y'(x_n) = f(x_n, y(x_n))$$

于是

$$f(x_n, y(x_n)) \approx \frac{y(x_{n+1}) - y(x_n)}{h}$$

$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n))$$

得到计算 $y(x_{n+1})$ 近似值 y_{n+1} 的向前 Euler 公式:

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + h(x_n, y_n^2)$$

\overline{n}	x_n	y_n	$f(x_n, y_n)$
0	0	1	1
1	0.1	1.1	1.31
2	0.2	1.231	1.7154
3	0.3	1.4025	2.2671
4	0.4	1.6292	3.0544
5	0.5	1.9347	4.2430

用改进的 Euler 法解初值问题

$$\begin{cases} \frac{dy}{dx} = x^2 + y, \\ y(1.0) = 1, \end{cases} \quad 0 \le x \le 1, \quad h = 0.2$$

也可以用显式的 Euler 公式和隐式的梯形公式组成的预测-校正公式:

$$\begin{cases} \bar{y}_{n+1} = y_n + hf(x_n, y_n), \\ y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, \bar{y}_{n+1}) \right] \end{cases}$$

式 (7.8) 也称为改进的 Euler 公式,它可合并写成

$$y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n)) \right)$$

本题中:

$$\begin{cases} \bar{y}_n = y_{n+1} - hf(x_{n+1}, y_{n+1}), \\ y_n = y_{n+1} - \frac{h}{2} \left[f(x_n, \bar{y}_n) + f(x_{n+1}, \bar{y}_{n+1}) \right] \end{cases}$$

n	x_n	y_n
0	0	0.210456
1	0.2	0.260555
2	0.4	0.338238
3	0.6	0.46712
4	0.8	0.676
5	1.0	1
3	0.6	0.46712 0.676