Federated Reinforcement Learning

Hankz Hankui Zhuo, Wenfeng Feng, Qian Xu, Qiang Yang, Yufeng Lin Sun Yat-Sen University & Webank

Hankz Hankui Zhuo, Wenfeng Feng, Qian Xu, Qiang Yang, Yufeng Lin. Federated Reinforcement Learning. https://arxiv.org/abs/1901.08277. 2019

Multi-agent reinforcement learning

- Global state or sharing state
- Global reward or sharing reward

Configuration of base stations

Game!

Logistics

Transfer data instance?

Transfer feature space?

Transfer models?

- Instance is private!
- Feature space is private!
- Model is private!

Federated Machine Learning: Concept and Applications. Q Yang, Y Liu, T Chen, Y Tong. ACM Transactions on Intelligent Systems and Technology (TIST) 10 (2), 12, 2019

Why does RL need to be federated?

In the manufacturing industry, producing products may involve various factories which produce different components of the products. Factories' decision policies are private and will not be shared with each other. On the other hand, building individual decision policies of high-quality on their own is often difficult due to their limited businesses and lack of rewards

Problem setting

MDP:

 $\langle S, A, T, r \rangle$

Agent α

Agent β

Output of MDP:

policies π

Input:

$$\{\langle s_{\alpha}, a_{\alpha}, s'_{\alpha}, r_{\alpha} \rangle\}$$

$$\{\langle s_{\beta}, a_{\beta} \rangle\}$$

Output:

policies π_{α}^{*}

Policies π_{β}^*

A1: The feature spaces of states s_{α} and s_{β} are *different* between agents α and β .

A2: D_{α} and D_{β} cannot be shared directly between α and β

A3: The output of functions Q_{α} and Q_{β} can be shared with each other

FRL算法模型

如何利用分散的数据和特征来训练模型?

FRL方法

传统方法

缺点: 机密数据无法融合, 方法失效

The Q learning model:

两个网络之间传递 各自计算的加密Q值

基础Q网络

$$Q_f^{\alpha}(\cdot, C_{\beta}; \theta_{\alpha}, \theta_f) = MLP([\hat{Q}_{\alpha}(\cdot; \theta_{\alpha}); C_{\beta}]; \theta_f)$$
$$Q_f^{\beta}(\cdot, C_{\alpha}; \theta_{\beta}, \theta_f) = MLP([\hat{Q}_{\beta}(\cdot; \theta_{\beta}); C_{\alpha}]; \theta_f)$$

损失函数

$$L_{\alpha}(\theta_{\alpha}, \theta_{f}) = \mathbb{E}\{(y^{i} - Q_{f}^{\alpha}(s_{\alpha}^{i}, a^{i}, C_{\beta}; \theta_{\alpha}, \theta_{f}))^{2}\}$$
$$L_{\beta}(\theta_{\beta}, \theta_{f}) = \mathbb{E}\{(y^{i} - Q_{f}^{\beta}(s_{\beta}^{i}, a^{i}, C_{\alpha}; \theta_{\beta}, \theta_{f}))^{2}\}$$
$$y^{i} = r^{i} + \gamma \max_{a} Q_{f}^{\alpha}(s_{\alpha}^{i}, a, C_{\beta}; \theta_{\alpha}, \theta_{f})$$

Agents' local models

Gausian differential privacy

$Q_f = [q_1^f, \dots, q_{d_q}^f]$ $N(0,\sigma^2) \oplus$ $Q_{\alpha} = [q_1^{\alpha}, ..., q_{d_{\alpha}}^{\alpha}]$ θ_{α} Agent α

Constant output of agent β

Training procedure

Interaction between two agents sequentially or in parallel

Testing

- Need other agent's local output to make decisions
- Not necessarily making the same decisions

Algorithm 1: FRL-ALPHA	Algorithm 2: FRL-BETA				
Input: state space S_{α} , action space A_{α} , rewards r					
Output: $\theta_{\alpha}, \theta_{g}$	Output: $\theta_{\beta}, \theta_{g}$				
1: Initialize Q_{α} , Q_f with random values for θ_{α} , θ_g	1: function $Init()$				
2: Initialize replay memory D_{α}	2: Initialize Q_{β} with random values for θ_{β}				
3: Call FRL-BETA. Init()	3: Initialize replay memory D_{β}				
4: for episode = 1: M do	4: end function				
5: repeat	5: function ComputeQBeta()				
6: Observe s_{α}^t	6: Observe s_{β}				
7: Call C_{β} =FRL-BETA. $ComputeQBeta()$	7: Select $a_{\beta} \in A_{\beta}$ with probability ϵ				
8: Select action a^t with probability ϵ	8: Otherwise $a_{\beta} = \arg \max_{\beta} Q_{\beta}(s_{\beta}, a_{\beta}; \theta_{\beta})$				
9: Otherwise	a_{β}				
$a^t = \arg\max_{\alpha} Q_f^{\alpha}(s_{\alpha}^t, a, C_{\beta}; \theta_{\alpha}, \theta_g)$	9: Store (s_{β}, a_{β}) in D_{β}				
u ,	10: Let $C_{\beta} = \hat{Q}_{\beta}(s_{\beta}, a; \theta_{\beta})$				
10: Execute action a^t , obtain reward r^t and state s^{t+1}	11: return C_{β}				
	12: end function				
11: Observe s_{α}^{t+1} , store $(s_{\alpha}^{t}, a^{t}, r^{t}, s_{\alpha}^{t+1})$ in D_{α}	13: function $ComputeQBeta(j)$				
12: Sample $(s_{\alpha}^{j}, a^{j}, r^{j}, s_{\alpha}^{j+1})$ from D_{α}	14: Select (s_{β}, a_{β}) from D_{β} based on index j				
13: Call C_{β} =FRL-BETA. $ComputeQBeta(j)$	15: Let $C_{\beta} = \hat{Q}_{\beta}(s_{\beta}, a_{\beta}; \theta_{\beta})$				
14: $Y^{j} = r^{j} + \gamma \max_{a} Q_{f}^{\alpha}(s_{\alpha}^{j}, a, C_{\beta}; \theta_{\alpha}, \theta_{g})$	16: return C_{β}				
15: Update θ_{α} , θ_{q} according to Eq. (4), (6)	17: end function				
16: $C_{\alpha} = \hat{Q}_{\alpha}(s_{\alpha}^{j}, a; \theta_{\alpha})$	18: function $UpdateQ(Y^j, j, C_\alpha, \theta_g)$				
17: Call	19: Select $(o_{\beta}^{j}, a_{\beta}^{j})$ from D_{β} based on index j				
θ_g =FRL-BETA. $UpdateQ(Y^j, j, C_{\alpha}, \theta_g)$	20: Update θ_{β} , θ_{g} based on Eq. (5), (7)				
18: until terminal t	21: return θ_q				
19: end for	22: end function				
22. Chu function					

baselines

DQN-alpha

A deep Q-network trained with agent α 's data only. It takes observations s α as input and outputs actions corresponding to s_{α} .

DQN-full

A deep Q-network trained by directly putting data together from both agent α and β , i.e., neglecting data privacies between agents α and β .

CNN-alpha

A convolutional neural network trained with agent α 's data only, similar to DQN-alpha.

CNN-full

A convolutional neural network trained with all data of agent α and β put together directly, similar to DQN-full.

Domain: Grid-World

States: The domain is represented by a Ng × Ng

Actions: There are 4 actions for each agent, i.e. going towards 4 directions, denoted by {east, south, west, north}.

Rewards: The reward is composed of two parts, i.e., local reward r_l and global reward r_g

Dataset: We generated 8000 different maps (or matrices) for each size of 8×8 , 16×16 and 32×32

Domain 2: Text2Action

数据集

- 做菜教程 (Cooking Tutorials)
- WHS: 电脑指令 (Branavan et al. ACL 2009)
- WHG: 家庭和花园打理指南 (Malmaud et al., ACL 2014)

输入的一个指令性文本

评价指标

- 累积奖励
- F1分数

所有的动作序列输出

Add (oil) \rightarrow Use (spoon) \rightarrow

Work (oil, rice) $\rightarrow \cdots \rightarrow$ Work

Keep (rice, cold)→

算法

DepR

#Easc D

CMLF

DON

DON

How to Make Egg Fried Rice? (如何做蛋炒饭?)

Cook the rice the day before, or use leftover rice in the refrigerator. The important thing to remember is not to heat up the rice, but keep it cold. In a bowl, add 1 tablespoon of oil to rice. Use a spoon or your hands to work the oil into the rice, evenly coating the rice. Transfer the rice to a colander and drain. Combine eggs and salt in a small bowl LSTM and gently whisk until blended. Heat 1 tablespoon oil in a wok. Add whisked eggs and cumin seeds to wok. Stir frequently, working the eggs to a scramble. Heat the remaining oil in the wok. If desired, you can recycle some of the oil that drained from the rice. Add the garlic and onion to the wok. Stir-fry together over high heat for about 5 minutes or until the onion looks transparent, but is not soft. Add the rice, eggs, soy sauce, chili sauce, vinegar, and celery. Mix together, continuing to stir-fry over high heat for 1-2 minutes while stirring

frequently. Spoon onto a plate and serve.

动作名称 动作-

(Lindsay et al., I

Hovy, ACL 2016)

H et al., AAAI 201

的EASDRL模型

的EASDRL模型

 $(eggs) \rightarrow Heat (oil) \rightarrow \cdots$ Use (leftover rice) → Keep (rice. $cold) \rightarrow Add (oil) \rightarrow Use (spoon)$ \rightarrow Work (oil, rice) \rightarrow \cdots \rightarrow Work (eggs) → Heat (oil) →

→ Serve ()

● Cook (rice) →

- Use (leftover rice) → Keep (rice, $cold) \rightarrow Add (oil) \rightarrow Use (hands)$ \rightarrow Work (oil, rice) \rightarrow $\cdots \rightarrow$ Work (eggs) → Heat (oil) → $\cdots \rightarrow$ Serve ()
- Use (leftover rice) → Keep (rice, $cold) \rightarrow Add (oil) \rightarrow Use (hands)$ \rightarrow Work (oil. rice) \rightarrow $\cdots \rightarrow$ Work (eggs) \rightarrow Recycle (oil) \rightarrow Heat (oil) $\rightarrow \cdots \rightarrow$ Serve ()

Domain 2: Text2Action

States: $s_{\alpha} \in R^{Nw \times K1}$ is real-valued matrix that describes the part-of-speech of words, and $s_{\beta} \in R^{Nw \times K2}$ is real-valued matrix that describes the embedding of words.

Actions: There are two actions for each agent, i.e., {select, neglect}

Rewards: The instant reward include a basic reward and an additional reward

Criteria:
$$precision = \frac{\#TotalRight}{\#TotalSelected}$$

$$recall = \frac{\#TotalRight}{\#TotalTruth}$$

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

实验结果分析

评价标准	算法	动作名称			动作参数		
		WHS	CT	WHG	WHS	CT	WHG
F1 分数 (%)	DQN-alpha	92.11	75.64	66.37	54.13	59.46	61.09
	EASFRL-1	93.76	83.05	74.64	97.18	76.97	84.95
	EASFRL-2	94.11	83.72	74.85	97.27	77.75	85.44
	DQN-full	94.75	83.87	74.87	97.35	77.58	85.66
累积奖励 (×10 ⁴)	DQN-alpha	16.87	16.86	27.86	47.78	93.82	174.01
	EASFRL-1	17.13	17.56	29.01	57.55	99.69	186.13
	EASFRL-2	17.22	17.56	29.03	57.82	100.00	186.12
	DQN-full	17.31	17.65	29.04	57.88	100.19	186.42

结论:

- FRL模型在所有实验中表现都明显高于只有部分数据的模型,说明将数据联合起来训练能明显提高模型的性能
- FRL模型性能非常接近于直接融合全部数据来训练的模型,说明FRL算法能够保护数据隐私的同时,保证模型的性能几乎不降低

探究性实验结果分析

结论:

- 模型简单时FRL相对部分数据训练的模型的优势更大,说明联邦学习能够取得较好的效果。
- 模型复杂度变化的时,FRL模型的性能都能很好的逼近融合全部数据训练的模型的性能。

Thank You