MagLev Density Separation System

Operating Manual and Best Practices

Table of Contents

- 1. System Overview
- 2. Setup and Installation
- 3. Solution Preparation
- 4. Calibration Procedures
- 5. Operating Procedures
- 6. Troubleshooting
- 7. Safety Guidelines
- 8. Maintenance

System Overview

What is MagLev?

Magnetic Levitation (MagLev) is a density-based separation technique that uses permanent magnets and paramagnetic solutions to levitate and separate materials based on their density. The system can separate particles with density differences as small as 10^{-3} g/cm³.

Key Components

- **Permanent Magnets**: Two NdFeB magnets in like-poles-facing configuration
- **Sample Cell**: Container for paramagnetic solution and samples
- USB Microscope: For observation and measurement
- Paramagnetic Solution: Medium that enables levitation
- Peristaltic Pumps (optional): For automated sample handling

Applications

- Polymer identification and sorting
- Biological cell separation
- Quality control of manufactured parts
- Forensic analysis

Setup and Installation

Hardware Setup

1. Magnet Configuration

```
[N] ← 45mm gap → [N]
[S]
[S]
Bottom Magnet Top Magnet
```

Standard Configuration:

- Magnet size: 50mm × 50mm × 25mm NdFeB (N52 grade)
- Separation distance: 45mm (adjustable for different applications)
- Orientation: Like poles facing (N-N or S-S)
- Alignment: Central axes parallel to gravity vector

2. Sample Cell Placement

- Position cell at the center between magnets
- Ensure cell is transparent (glass or clear plastic)
- Typical cell dimensions: 10mm × 10mm × 45mm
- Fill cell completely to avoid air bubbles

3. Microscope Positioning

- Mount USB microscope for side-view observation
- Focus on the central region between magnets
- Ensure adequate lighting (LED ring light recommended)
- Set resolution to maximum for best particle detection

Software Installation

Python Environment

```
# Create virtual environment
python -m venv maglev_env
source maglev_env/bin/activate # Linux/Mac
# or
maglev_env\Scripts\activate # Windows

# Install dependencies
pip install opencv-python numpy pandas matplotlib scipy scikit-image pyserial
```

Camera Drivers

- Install manufacturer-specific USB microscope drivers
- Test camera connection: (python -c "import cv2; print(cv2.VideoCapture(0).isOpened())")

Solution Preparation

Common Paramagnetic Solutions

MnCl₂ Solutions (Most Common)

0.1M MnCl₂·4H₂O (High Sensitivity)

- Use: Biological samples, high-precision measurements
- Sensitivity: ~10⁻⁴ g/cm³
- Density range: 1.00-1.10 g/cm³

Preparation for 100ml:

- 1. Weigh 1.98g MnCl₂·4H₂O
- 2. Dissolve in 80ml distilled water
- 3. Adjust final volume to 100ml
- 4. Filter through 0.22µm filter if needed

1.0M MnCl₂·4H₂O (Standard)

- Use: General-purpose separations
- Sensitivity: ~10⁻³ g/cm³
- Density range: 1.00-1.30 g/cm³

Preparation for 100ml:

- 1. Weigh 19.8g MnCl₂·4H₂O
- 2. Dissolve in 80ml distilled water
- 3. Adjust final volume to 100ml

3.0M MnCl₂·4H₂O (Wide Range)

- Use: Large density differences
- Sensitivity: ~10⁻² g/cm³
- Density range: 1.00-1.56 g/cm³

Preparation for 100ml:

- 1. Weigh 59.4g MnCl₂·4H₂O
- 2. Dissolve in 70ml distilled water (exothermic!)
- 3. Cool to room temperature
- 4. Adjust final volume to 100ml

Gadolinium-Based Solutions (Biological Applications)

Gadobutrol (FDA-approved)

- Use: Cell separation, biocompatible applications
- Concentration: 30-50mM
- Excellent biocompatibility

GdCl₃·6H₂O (High Performance)

- Use: Dense materials, wide dynamic range
- Concentration: 0.5M
- Density range: 0.8-3.0 g/cm³
- More expensive than MnCl₂

Solution Additives

Density Modifiers

- **Sucrose**: Increases solution density without changing magnetic properties
- **D₂O**: Increases density (1.107 g/cm³ vs 1.000 g/cm³ for H₂O)

• NaCI: Inexpensive density modifier

Surfactants (Anti-bubble agents)

- **Tween-20**: 0.1% v/v prevents air bubble adhesion
- CTAB: For positively charged surfaces

Storage and Handling

- Store solutions in dark bottles at room temperature
- Label with concentration, preparation date, and expiration
- Most solutions stable for 6-12 months
- Filter before use if precipitation occurs

Calibration Procedures

Density Standards

Commercial Standards

Material	Density (g/cm³)	Size	Notes
PMMA beads	1.180 ± 0.002	3mm	Clear, widely available
Polystyrene	1.050 ± 0.002	3mm	White, standard plastic
Nylon	1.140 ± 0.002	3mm	Machinable
Glass beads	2.500 ± 0.010	2mm	Soda-lime glass
▲	•		•

Preparation of Custom Standards

- 1. Use high-purity materials with known densities
- 2. Machine to uniform spherical shape (2-5mm diameter)
- 3. Verify density by weighing and volume displacement
- 4. Color-code for easy identification

Calibration Procedure

1. System Preparation

python

```
# Initialize system
microscope = MagLevMicroscope()
microscope.connect()
calibration = MagLevCalibration(microscope)
```

2. Background Capture

- Fill cell with paramagnetic solution only
- Capture 10-20 frames for background averaging
- Ensure no particles or bubbles present

3. Scale Calibration

- Place ruler or calibration slide in field of view
- Measure known distance in pixels
- Calculate pixel-to-mm conversion factor

4. Density Calibration

For each density standard:

- 1. Place standard in solution
- 2. Wait 30 seconds for equilibration
- 3. Record levitation height
- 4. Remove standard completely

5. Calibration Curve Generation

- Plot levitation height vs. density
- Fit linear relationship: ρ = a·h + b
- Verify R² > 0.98 for good calibration
- Save calibration coefficients

Quality Control

- Recalibrate daily or after changing solutions
- Use check standards to verify calibration drift
- Document all calibration parameters

Operating Procedures

Standard Separation Protocol

1. Pre-Separation Checklist

System calibrated within last 24 hours
\square Solution prepared and filtered
Sample cell clean and dry
☐ Microscope focused and aligned
☐ Background image captured

2. Sample Preparation

• Particle Size: 10μm - 5mm optimal range

• Sample Amount: 10-100 particles per run

• Pre-treatment: Remove air bubbles, wash if needed

• **Documentation**: Record sample ID, source, expected density

3. Loading Procedure

- 1. Fill cell completely with paramagnetic solution
- 2. Use pipette or tweezers to introduce sample
- 3. Gently tap cell to remove air bubbles
- 4. Wait 2-5 minutes for equilibration

4. Data Collection

```
# Start automated analysis
analyzer = MagLevAnalyzer(microscope, calibration)
analyzer.start_analysis(duration_seconds=300) # 5-minute run
```

Manual Method:

- 1. Capture images every 30 seconds for 5 minutes
- 2. Measure particle positions in image analysis software
- 3. Convert positions to levitation heights
- 4. Calculate densities using calibration curve

5. Results Analysis

- Record final equilibrium positions
- Calculate density statistics (mean, std dev)
- Identify outliers or anomalous particles
- Generate separation report

Advanced Techniques

High-Sensitivity Measurements

- Use 0.1M MnCl₂ solution
- Increase magnet separation for gentler gradients
- Extended equilibration time (10-15 minutes)
- Temperature control ±0.5°C

Wide Dynamic Range

- Use 3M MnCl₂ or GdCl₃ solutions
- "Tilted MagLev" configuration for extreme densities
- Multiple solution chambers for different ranges

Flow-Through Separations

- Continuous sample introduction
- Real-time density sorting
- Fraction collection at specific height zones

Troubleshooting

Common Issues and Solutions

Particles Not Levitating

Symptoms: Particles sink to bottom or float to top **Causes & Solutions**:

- Solution concentration too low → Increase molarity
- Particles too dense/light for current setup → Change solution or use tilted configuration
- Magnetic field too weak → Check magnet alignment and separation

Poor Separation Resolution

Symptoms: Particles with different densities levitate at similar heights Causes & Solutions:

- Low magnetic field gradient → Decrease magnet separation
- Solution concentration too high → Dilute solution
- Temperature fluctuations → Improve temperature control

Unstable Levitation

Symptoms: Particles drift or oscillate Causes & Solutions:

- Air bubbles in solution → Degas solution, add surfactant
- Vibrations → Isolate system from vibrations
- Convection currents → Improve temperature stability

Image Quality Issues

Symptoms: Blurry images, poor particle detection **Causes & Solutions**:

- Focus drift → Refocus microscope
- Poor lighting → Adjust illumination, use diffused light
- Dirty optics → Clean microscope lens and cell windows

Error Codes and Diagnostics

Calibration Errors

- **CAL_001**: Insufficient calibration points → Use more density standards
- CAL_002: Poor linear fit (R² < 0.95) → Check standard densities, remeasure
- CAL_003: Scale calibration failed → Recalibrate pixel-to-mm ratio

Hardware Errors

- **HW_001**: Camera connection failed → Check USB connection, drivers
- **HW_002**: Pump communication error → Verify serial port, baud rate
- **HW_003**: Temperature sensor malfunction → Check sensor connections

Safety Guidelines

Chemical Safety

Paramagnetic Solutions

- MnCl₂: Mild irritant, avoid skin/eye contact
- GdCl₃: More toxic, use in fume hood
- General: Wear safety glasses, gloves, lab coat

Waste Disposal

- Collect used paramagnetic solutions for proper disposal
- Do not pour down drain
- Follow institutional chemical waste protocols

Physical Safety

Magnetic Fields

- Strong Magnets: Can pinch fingers, attract metal objects
- Pacemaker Warning: Keep devices > 30cm from magnets
- Data Storage: Keep magnetic media away from system

Electrical Safety

- Use GFCI-protected outlets for all equipment
- Keep liquids away from electrical connections
- Proper grounding for all instruments

Biological Safety

- Use appropriate biosafety level for biological samples
- Sterilize equipment between samples if needed
- Follow institutional biosafety protocols

Maintenance

Daily Maintenance

Clean sample cell with appropriate solvent
\square Check solution levels and clarity
 Verify microscope focus and alignment
☐ Back up data files

Weekly Maintenance Calibration verification with check standards Clean microscope optics Check magnet alignment Update data logs **Monthly Maintenance** Deep clean all components Replace solutions if degraded Calibrate with full standard set Software updates Preventive maintenance on pumps **Long-term Storage** Empty and clean all fluid lines Store magnets with keepers Protect optics from dust Document system configuration **Troubleshooting Log** Maintain a log of: Issues encountered Solutions implemented Performance changes over time Calibration drift patterns

Appendix A: Solution Recipes

Buffer Solutions for Biological Samples

Isotonic MnCl₂ Buffer

- 0.5M MnCl₂·4H₂O
- 150mM NaCl
- 10mM HEPES, pH 7.4
- Osmolality: ~300 mOsm/kg

Low-Ionic Strength Buffer

- 0.1M MnCl₂·4H₂O
- 1mM EDTA
- 10mM Tris-HCl, pH 8.0

Non-Aqueous Solutions

Alcohol-Based (for hydrophobic samples)

- 1M MnCl₂ in methanol
- Density: ~0.85 g/cm³
- Use for low-density polymers

Fluorinated Solvents

- Gd-chelates in fluorinated solvents
- For organic-sensitive samples
- Specialty application, expensive

Appendix B: Density Reference Tables

Common Materials

Material	Density (g/cm³)	Notes
Polymers		
Polyethylene (HDPE)	0.94-0.97	
Polypropylene	0.90-0.91	
Polystyrene	1.04-1.065	
PVC	1.38-1.41	
PMMA	1.17-1.20	
Nylon 6	1.13-1.15	
Biological		
Water	1.000	Reference
Blood plasma	1.025-1.029	
Red blood cells	1.080-1.120	
Bacteria (E. coli)	1.05-1.30	Variable
Yeast cells	1.06-1.20	Variable
Minerals		
Quartz	2.65	
Calcite	2.71	
Diamond	3.52	
Metals		
Aluminum	2.70	
Copper	8.96	
Gold	19.32	

Document Version: 1.0

Last Updated: [Current Date]

For technical support, contact: [Your Contact Information]