Lean project First step in formalizing Walsh analogue of the Carleson-Hunt theorem

Izabela Mandla

January 28, 2025

Table of Contents

- Math behind it
 - Dyadic Intervals and Walsh functions
 - Walsh series
 - Haar and Redamacher
- 2 Motivation
- 3 Lean

Math behind it

Dyadic Interval: $I = [2^k n, 2^k (n+1))$ where $k, n \in \mathbb{Z}$. **Walsh Function:** For $x \in [0, 1)$

$$W_0(x) \equiv 1,$$

$$W_{2n}(x) = \begin{cases} W_n(2x) & x < 0.5, \\ W_n(2x-1) & x \geq 0.5 \end{cases},$$

$$W_{2n+1}(x) = \begin{cases} W_n(2x) & x < 0.5, \\ -W_n(2x-1) & x \geq 0.5. \end{cases}$$

Math behind it

Walsh Fourier series:

Let $f \in L^2([0,1])$. The series

$$\sum_{l=0}^{\infty} \langle f, W_l \rangle W_l$$

is called the Walsh-Fourier series for f and converges in a sense of L^2 , where

$$\langle f, W_l \rangle = \int_0^1 f(x) W_l(x) dx.$$

Math behind it

Haar function Define Haar function h(x) as

$$h(x) \equiv \begin{cases} 1, & 0 \le x < \frac{1}{2}, \\ -1, & \frac{1}{2} < x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

and for $I = [2^k n, 2^k (n+1))$

$$h_I(x)=2^{\frac{k}{2}}h\left(2^kx-n\right).$$

Rademacher function

$$r_n(t) = 2^{-n/2} \sum_{I \in \mathcal{T}^n} h_I(t),$$

where \mathcal{I}_m is the set of dyadic intervals contained in [0,1) of length 2^{-m} .

Motivation

Goal for the future...

Theorem

For $f \in L^p([0,1])$, 1 , the Walsh-Fourier series converges to <math>f(x) for almost every $x \in [0,1]$.

Where we go with that?

Current focus:

Theorem

For every $N \in \mathbb{N}$ let \mathcal{M} be the unique subset of \mathbb{N} such that

$$N = \sum_{m \in \mathcal{M}} 2^m$$
.

Then, for every dyadic test function f and every $x \in [0, \infty)$, we have

$$\sum_{i=0}^{N} \langle f, W_i \rangle W_i(x) = \int_0^1 W_N(x) K_M(x, y) W_N(y) f(y) dy$$

with

$$K_{\mathcal{M}}(x,y) = 1 + \sum_{m \in \mathcal{M}} \sum_{I \in \mathcal{I}_{-m}^m} h_I(x) h_I(y).$$

On the Way to Formalize It

Progress So Far:

- Formalized definition and properties of dyadic intervals and binary representation set.
- Rewritten and given statements:
 - Walsh functions.
 - Walsh series.
 - Haar functions.
 - Rademacher functions.
- Rewritten lemmas used in the proof.

On the Way to Formalize It

What more should be done?

- Finishing sections about
 - Walsh functions.
 - Walsh series.
 - Haar functions.
 - Rademacher functions.
 - Kernel.
- Proving the needed lemmas.
- Proving the main theorem.

On the Way to Formalize It

Highs and lows

- Confusion about properly defining stuff.
- Dealing with Walsh functions.