Рекурсивные функции (recursive functions) представляют собой одну из фундаментальных математических моделей вычислений, разработанную в 1930-х годах математиками Куртом Гёделем, Жаком Эрбраном и Стивеном Клини. Согласно тезису Чёрча-Тьюринга, множество вычислимых функций совпадает с классом частично рекурсивных функций.

Модель рекурсивных функций основана на **конструктивном подходе** к определению вычислимости: мы начинаем с нескольких тривиально вычислимых функций и постепенно строим всё более сложные функции, применяя определённые операции. Такое построение покрывает все вычислимые функции $f: \mathbb{N}^k \to \mathbb{N}, \, 0 \in \mathbb{N}$. Идея заключается в том, чтобы определить класс функций $f: \mathbb{N}^k \to \mathbb{N}$ **синтаксически** — через правила построения, а не через абстрактное понятие "алгоритма". Это даёт точное математическое определение вычислимости.

Построение начинается с класса примитивно рекурсивных функций, который порождает множество вычислимых всюду определенных функций. Далее строятся частично рекурсивные функции, которые охватывают все множество вычислимых функций. Это множество содержит также и частичные функции и примитивно рекурсивные функции, включая всюду определенные функции, которые не были покрыты примитивно рекурсивными функциями. Всюду определенные функции из множества частично рекурсивных функций называются общерекурсивными функциями (general recursive functions).

Примитивно рекурсивные функции

Класс примитивно рекурсивных (primitive recursive — PR) функций задается индуктивно. Оно состоит из указания класса базовых функций и двух операторов (композиции и примитивной рекурсии), позволяющих строить новые примитивно рекурсивные функции на основе уже имеющихся. Примитивно рекурсивные функции заведомо являются всюду определенными вычислимыми, причем число шагов не просто конечно, а примитивно ограничено — существует примитивно-рекурсивная верхняя оценка. Важно понимать, что не все вычислимые функции $f: \mathbb{N}^k \to \mathbb{N}$ сводятся к примитивно рекурсивным функциям (например, функция Аккермана). РR является частным случаем частично рекурсивных функций, которые совпадают с множеством всех вычислимых функций $f: \mathbb{N}^k \to \mathbb{N}$, как частично, так и всюду определенных.

Класс примитивно рекурсивных функций \mathcal{PR} — это наименьший класс функций $f:\mathbb{N}^k \to \mathbb{N}$ $(0 \in \mathbb{N})$, который:

- 1. Содержит базовые функции z(x), s(x) и проективные функции I_i^k .
- 2. Замкнут относительно композиции и примитивной рекурсии.

Базовые функции

Нулевая функция (zero function) $z:\mathbb{N}^n\to\mathbb{N}$ всегда возвращает 0, каким бы ни был аргумент x:

$$z(x_1,\ldots,x_n)=0$$

Функция следования (successor function) или функция преемника $s:\mathbb{N}\to\mathbb{N}$ возвращает элемент, следующий за аргументом x:

$$s(x) = x + 1$$

Проекционные функции (projection functions) $I_i^n:\mathbb{N}^n\to\mathbb{N}$ возвращает аргумент с индексом i, т.е. для любых $n\in\mathbb{N}^+$ и $1\leq i\leq n$:

$$I_i^n(x_1,\ldots,x_n)=x_i$$

При n=1 проективная функция является тождественной I(x)=x .

В общем случае могли быть определены другие базовые функции на других множествах.

Операции 📵

Композиция

Композиция (composition) или **подстановка** (substitution). Пусть f — функция от m переменных, а g_1,\ldots,g_m — функции от n переменных. Тогда функция $h:\mathbb{N}^n\to\mathbb{N}$, определяемая равенством

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n))$$

называется композицией функций f,g_1,\ldots,g_m . Коротко можно записать через оператор композиции

$$h=f\circ (g_1,\ldots,g_m)=\operatorname{Cn}[f,g_1,\ldots,g_m]$$

В общем случае, функция g_i не обязана быть функцией от всех аргументов x_1,\ldots,x_n . Но такая запись вполне уместна, если предполагать, что внутри функции будут отобраны нужные аргументы при помощи проективных функций.

$$\equiv x + 2 \Rightarrow$$

Предположим, мы хотим реализовать функцию h(x,y)=x+2. Можно представить ее в виде композиции функций I_1^2 и s:

$$h=s\circ s\circ I_1^2=\operatorname{Cn}[s,\operatorname{Cn}[s,I_1^2]]$$

Примитивная рекурсия

Примитивная рекурсия (primitive recursion). Пусть $f: \mathbb{N}^m \to \mathbb{N}$ и $g: \mathbb{N}^{m+2} \to \mathbb{N}$ — определены как примитивно рекурсивные функции: $f,g \in \mathcal{PR}$. Тогда функция h определяемая операцией примитивной рекурсии из f и g, также примитивно рекурсивна. Примитивная рекурсия задается уравнением:

$$h(x_1,\ldots,x_m,0)=f(x_1,\ldots,x_m)$$
 $h(x_1,\ldots,x_m,s(y))=g(x_1,\ldots,x_m,y,h(x_1,\ldots,x_m,y))$

или в векторной форме, если $\mathbf{x}=(x_1,\ldots,x_m)$:

$$h(\mathbf{x}, 0) = f(\mathbf{x}), \quad h(\mathbf{x}, s(y)) = g(\mathbf{x}, y, h(\mathbf{x}, y))$$

y — номер шага итераций. Функцию f можно рассматривать как исходную функцию в начале итерационного процесса (базовый случай). Функция g принимает m переменных x_i , номер шага итераций y и значение функции h на текущем шаге итерации, и возвращает значение функции h на следующем шаге итерации. При m=1:

$$h(x,0)=f(x),\quad h(x,s(y))=g(x,y,h(x,y))$$

Функцию h, определяемую путем примитивной рекурсии из функций f и g , обозначим

$$h = \Pr[f, g]$$

Если рассматривается единственная переменная y, то схема принимает вид:

$$h(0)=f(),\quad h(s(y))=g(y,h(y))$$

В этом случае x_i не появляется вовсе, а функция f нуля переменных есть некоторая константа s(0) или s(s(0)) и т.д.

Другой способ – использовать фиктивный (dummy) x.

Примеры

Функции бинарных операторов

≔ Сложение ○ >

Функция **сложения** add двух натуральных чисел. Определим f(x) как I(x), а g(x) как композицию функций s и I_3^3 , т.е. $\operatorname{Cn}[s,I_3^3]$, чтобы отобрать третий аргумент, переданный в g и прибавить к нему 1:

$$\operatorname{add}(x,0) = I(x) = x$$
 $\operatorname{add}(x,s(y)) = s \circ I_3^3(x,y,\operatorname{add}(x,y))$

Таким образом можно записать:

$$\mathrm{add} = \Pr[I, s \circ I_3^3] = \Pr[I, \operatorname{Cn}[s, I_3^3]]$$

≔ Умножение ⊙ >

Функция **умножения** mul двух натуральных чисел. Определим f(x) как z(x), а g определим как композицию функции add и функций I_1^3, I_3^3 , чтобы производилось сложение первого и третьего аргументов функции g:

$$\mathrm{mul}(x,0)=z(x)=0$$
 $\mathrm{mul}(x,s(y))=\mathrm{add}(I_1^3,I_3^3)=\mathrm{add}(x,\mathrm{mul}(x,y))$

Таким образом можно записать:

$$\mathrm{mul} = \Pr[z, \mathrm{add} \circ (I_1^3, I_3^3)] = \Pr[z, \mathrm{Cn}[\mathrm{add}, I_1^3, I_3^3]]$$

константная функция, возвращающая 0, есть базовая функция z

Е Возведение в степень • >

$$\exp(x,0) = s \circ z(x) = 1$$
 $\exp(x,s(y)) = \operatorname{mul}(I_1^3,I_3^3) = \operatorname{mul}(x,\exp(x,y))$

константная функция, возвращающая 1, определяется композицией базовых функций s и z. Для краткости просто пишем 0 и 1.

≡ Гипероператоры >

Продолжая подобным образом эту серию мы получаем мы получаем операцию **тетрации** (суперэкспоненту), которая представляет собой

стек из экспонент $x^{x^{x^{-}}}$ (всего в стеке y "иксов"). Эту операцию удобнее записать используя оператор экспоненты \uparrow и оператор тетрации $(\uparrow \uparrow)$:

$$x \uparrow \uparrow y = x \uparrow x \uparrow x \cdots \uparrow x$$

Данную серию можно неограниченно продолжать, и так как мы каждый раз получаем функции, на основе примитивно рекурсивных функций, используя операции композиции и примитивной рекурсии, все функции серии являются примитивно рекурсивными.

Обобщенно, операторы этой серии называются гипероператорами n -го порядка. Сложение — гипероператор первого порядка, умножение — второго, экспонента — третьего. Далее идет тетрация $\uparrow\uparrow$, пентация $\uparrow\uparrow\uparrow$, гексация \uparrow^4 и т/д.

Другими примерами примитивно рекурсивных функций могут служить: факториал, предшествующее число (кроме случая 0), ограниченное вычитание. Обратные функции вообще говоря не сводятся к примитивно рекурсивным функциям. Для их реализации требуется операция минимизации.

Функции от одной переменной

Для функций от одной переменной в рекурсивной операции участвует только y.

≔ Предшествующий элемент >

Получим схему для функции pred от одной переменной, возвращающей **предшествующий элемент** (predecessor). Если значение аргумента 0, то возвращается 0:

$$\operatorname{pred}(0) = z = 0, \quad \operatorname{pred}(s(y)) = I_2^3$$

В данном примере $g(x,y,\operatorname{pred}(y))=I_2^3$. Поэтому для входного значения s(y)=y+1 функция вернет значение y. Так как мы имеем дело с функцией от одной переменно, переменная x является фиктивной. В другой нотации можно записать так:

$$\operatorname{pred} = \Pr[z, I_2^3]$$

Исходя из того, что 0!=1 и y!=y(y-1)!, функции f и g определим следующим образом:

$$factorial(0) = 1$$
, $factorial(s(y)) = mul(s \circ I_2^3, I_3^3)$

≔ 3наковая функция >

Знаковая функция в данном случае будет возвращать 0 только в том случае, если аргумент равен 0, и 1 в противном случае:

$$\operatorname{sgn}(y) = egin{cases} 0, & ext{if} & y = 0, \ 1, & ext{if} & y > 0. \end{cases}$$

Функции f и g определим следующим образом:

$$sgn(0) = 0$$
, $sgn(s(y)) = s \circ z = 1$

Все аргументы в рекурсивной формуле фиктивны.

Другие функции

≔ Усеченная разность >

Усеченная разность (Truncated subtraction) между x и y возвращает значение разности, если $x \geq y$, и 0 в противном случае:

$$\mathrm{sub}(x,y) = \dot{x-y}$$

Функции f и g определим следующим образом:

$$\operatorname{sub}(x,0) = x = I_1^2, \quad \operatorname{sub}(x,s(y)) = \operatorname{pred}[\operatorname{sub}(x,y)]$$

Замкнутость данной операции обеспечивается тем обстоятельством, что $\operatorname{pred}(0) = 0$. Поэтому, если x < y, операция не будет выводить за пределы множества \mathbb{N}_0 .

≔ Тождественное равенство >

На основе знаковой функции и усеченной разности легко создать функцию $\operatorname{eq}(x,y)$, которая будет возвращать 1, если x и y равны, и 0 – в противном случае. Идея заключается в том, что если x и y равны, то обе разности $x\dot{-}y$ и $y\dot{-}x$ будут обращаться в ноль. Тогда знаковая функция от этих разностей будет давать 0. Если же x и y не равны, то знаковая функция от двух разностей будет различной.

$$\operatorname{eq}(x,0) = \operatorname{sub}(s \circ z(I_1^2),\operatorname{sgn}(I_1^2)) = 1 \dot{-} \operatorname{sgn}(x)$$

$$\operatorname{eq}(x,y) = 1 \dot{-} \operatorname{sgn}(x \dot{-} y) \cdot \operatorname{sgn}(y \dot{-} x)$$

Функция h записана в упрощенной нотации, при котором произведение mul обозначено через бинарный оператор \cdot . Если бы мы в функциях g и h не вычитали второе слагаемое от 1, то в результате получили бы функцию neq , которая является инверсией функции eq .

Функции eq и neq могут служить характеристическими функциями для бинарных отношений "равны" и "не равны", определенных на $\mathbb{N}_{\mathbb{O}} \times \mathbb{N}_{\mathbb{O}}$.

≔ Отношения порядка >

Еще проще получить характеристические функции для отношений порядка. Получим функцию $\gcd(x,y)$ — отношение "больше или равно" (greater or equal), которая возвращает 1, если $x \geq y$, и 0 — в противном случае.

$$\gcd(x,0) = s \circ z(I_1^2) = 1, \quad \gcd(x,s(y)) = \operatorname{sgn} \circ \operatorname{sub}(I_1^2,I_2^2)$$

В упрощенной нотации:

$$\gcd(x,y) = \operatorname{sgn}[\dot{x-(y-1)}]$$

Для отношения "больше" $\operatorname{gt}(x,y)$ (greater than), т.е. x>y:

$$\operatorname{gt}(x,0)=\operatorname{sgn}\circ I_1^2=\operatorname{sgn}(x)$$

$$\operatorname{gt}(x,s(y))=\operatorname{sgn}\circ\operatorname{sub}(I_1^2,s\circ I_2^2)$$

В упрощенной нотации:

$$\operatorname{gt}(x,y) = \operatorname{sgn}(x\dot{-}y)$$

Меняя местами аргументы x и y или инвертируя, можно получить характеристические фунции и для других отношений порядка $(<,\leq)$.

≔ Тернарный оператор >

Тернарный оператор, или функция случая ${\rm case}(x,y,z)$, является примитивно рекурсивной:

$$\mathrm{case}(x,y,z) = egin{cases} x, & \mathrm{if} & z=0, \ y, & \mathrm{if} & z>0, \end{cases}$$

Мы можем построить эту функцию используя лишь композицию функций рассмотренных выше: умножение, сложение, симметрическая разность, знаковая функция, константная функция:

$$\operatorname{case}(x, y, z) = x \cdot (1 - \operatorname{sgn}(z)) + y \cdot \operatorname{sgn}(z)$$

Заметим, что на этот раз через z мы обозначили переменную, а не нулевую функцию.

≔ Минимум >

Минимальное значение пары x,y может быть определено следующим образом:

$$\min(x,0) = z(x) = 0$$

$$\min(x, s(y)) = \sup(s(I_2^3), \sup(s(I_2^3), I_1^3))$$

Функцию h можно было бы упрощенно записать так:

$$\min(x,y) = y\dot{-}(y\dot{-}x)$$

≔ Максимум >

$$\max(x,0) = I_1^2 = x$$

$$\max(x, s(y)) = \operatorname{add}(s(I_2^3), \sup(I_1^3, s(I_2^3)))$$

Функцию h можно было бы упрощенно записать так:

$$\min(x,y) = y + \dot{(x-y)}$$

≔ Расстояние >

В качестве функции расстояния будем рассматривать абсолютное значение разности:

$$dist(x, y) = |x - y|$$

Функции f и g определим следующим образом:

$$dist(x,0) = I_1^2 = x$$

$$dist(x, s(y)) = add(sub(I_1^3, s(I_2^3)), sub(s(I_2^3), I_1^3))$$

Функцию h можно было бы упрощенно записать так:

Частично рекурсивные функции

Частично рекурсивные функции (partial recursive functions) являются расширением класса примитивно рекурсивных функций путем добавления еще одной операции (минимизации) для продуцирования новых функций. Согласно тезису Чёрча-Тьюринга, класс частично рекурсивных функций (µ-рекурсивных) совпадает с множеством вычислимых по Тьюрингу функций, как всюду определенных, так и частично определенных функций □.

Операция минимизации

Минимизация (оператор μ или Mn) позволяет получить частично рекурсивные функции из других частично рекурсивных. Пусть $g:\mathbb{N}^{n+1} \to \mathbb{N}$ — всюду определенная функция. Минимизация определяет частично рекурсивную функцию $f:\mathbb{N}^n \to \mathbb{N}$:

$$f(\mathbf{x}) = \mu y[g(\mathbf{x}, y) = 0] = \operatorname{Mn}_{y}[g](\mathbf{x})$$

Выражение $\mu\,y[g({\bf x},y)=0]$ определяет наименьшее y, при котором $g({\bf x},y)=0$, если такое значение существует. Если такого y не существует, то f при данном ${\bf x}$ будет не определено.

Можно определить минимизацию через частично определенную функцию g . Тогда добавляется еще одно условие: для всех z < y функция $g(\mathbf{x},z)$ должна быть определена и не равна нулю $g(\mathbf{x},z) \neq 0$. В противном случае, функция f не будет определена при x.

Таким образом, при фиксированном $\mathbf{x}=(x_1,\dots,x_n)$ функция $f(x_1,\dots,x_n)$ возвращает минимальное значение y^* последнего аргумента функции $g(x_1,\dots,x_n,y)$, при котором g принимает значение 0, при условии, что функция определена при всех значениях $y < y^*$. Если нет такого минимального значения y^* или если не для всех $y < y^*$ функция g определена при \mathbf{x} , то и значение f при \mathbf{x} не определено.

+ Обоснование вычислимости >

Если g является вычислимой всюду определенной или частичной функцией, то таковой будет и f. Рассмотрим подробнее процесс вычисления f при заданном \mathbf{x} . Начиная с g0 мы последовательно

вычисляем $g(\mathbf{x},0),\,g(\mathbf{x},1),\,g(\mathbf{x},2)$ и т.д. до тех пор, пока не достигнем такого значения y^* , при котором $g(\mathbf{x},y^*)=0$. Если \mathbf{x} принадлежит области определения f, то такое y^* существует, и число шагов, необходимых для вычисления $f(\mathbf{x})$, будет будет ограничено сверху суммой числа шагов, необходимых для вычисления $g(\mathbf{x},0)$, числа шагов для вычисления $g(\mathbf{x},1)$ и т.д. до тех пор, пока не будет вычислено $g(\mathbf{x},y^*)$, т.е. число шагов для вычисления $f(\mathbf{x})$ будет конечным. Если же \mathbf{x} не входит в область определения f, то это может быть по двум причинам. С одной стороны, может оказаться, что вся последовательность $g(\mathbf{x},0),\,g(\mathbf{x},1),\,g(\mathbf{x},2),\ldots$ является определенной, но среди них нет нулей. С другой стороны, может оказаться, что для некоторого i последовательность $g(\mathbf{x},0),\,g(\mathbf{x},1),\ldots,g(\mathbf{x},i-1)$ определенна, но не содержит нулей, а $g(\mathbf{x},i)$ – не определено. В обеих случаях вычисление $f(\mathbf{x})$ будет включать процесс, который продолжается вечно, не выдавая результат.

+ Регулярные функции >

Всюду определенная функция $g:\mathbb{N}^{n+1}\to\mathbb{N}$ называется **регулярной** (regular), если для каждого $\mathbf{x}=(x_1,\ldots,x_n)$ существует такой y^* , при котором $g(\mathbf{x},y^*)=0$. Если g — регулярная функция, то $f=\mathrm{Mn}[g]$ будет всюду определенной функцией (при любых \mathbf{x}). Более того, если g является всюду определенной функцией, то $f=\mathrm{Mn}[g]$ будет всюду определена в том и только том случае, если g — регулярная.

≔ Example

Умножение $g=\mathrm{mul}(x,y)$ является регулярной функцией: для любого x при $y^*=0$ имеем $g(x,y^*)=0$.

Сложение $g=\mathrm{sum}(x,y)$ не является регулярной функцией: g=0 только при x=y=0; для всех прочих значений x нет такого y, при котором g(x,y)=0.

Операция минимизации позволяет получить обратные функции.

≔ Целая часть от деления >

Определим функцию ${\rm Div}(x,y)$ — целая часть от деления x на y. Исходная функция может быть выбрана так:

$$g(x,y,z) = [y(z+1) \le x]$$

Функция $g:\mathbb{N}^3 \to \{0,1\}$ всюду определена на $\mathbb{N}^3,\, (0\in\mathbb{N})$. При фиксированных x,y значение g(x,y,z) будет равно 1 для всех z, при которых значение выражения y(z+1) не превышает x. Если увеличивать z, то, как только значение выражения y(z+1) превысит x, функция g вернет g0. Это наименьшее g1, при котором g2 обращается в g3, и будет целой частью от деления g3 на g4:

$$z = \left\lfloor rac{x}{y}
ight
floor$$

Таким образом,

$$\mathrm{Div}(x,y) = \mathrm{Mn}_z[g] = \mathrm{Mn}_z[y(z+1) \leq x]$$

Следует отметить, что функции получения целой части от деления и остатка, вообще говоря, можно реализовать через примитивно рекурсивные функции. Правда, для этого необходимо тотализировать эту функцию, положив $\mathrm{Div}(x,0)=0$, в противном случае Div при y=0 не определен, и потому никак не может быть примитивно рекурсивной функцией.