

Bachelor of Computer Application

## **Computational Mathematics**

## **LECTURE 7 NOTES**

# **Functions-Introduction**





#### Function As a Special Kind of Relation

- Let A and B be two non-empty sets. A relation f from A to B, to, a sub-set of A×B, is called a function (or a mapping or a map) from A to B, if
  - (i) for each  $a \in A$  there exists be B such that  $(a, b) \in f$
  - (ii) (a, b) $\in$ f and (a, c) $\in$ f  $\Longrightarrow$ b=c.

Thus, a non-void subset f of  $A \times B$  is a function from A to B if each element of A appears in some ordered pair in f and no two ordered pairs in f have the same first element.

If  $(a, b) \in f$ , then b is called the image of a under f.

**Example 1:** Let A=  $\{1,2,3\}$ , B=  $\{1,2,3,4\}$  and  $f_1$   $f_2$  and  $f_3$  are three subsets of Ax Bas given below:

$$f1=\{(1, 2), (2, 3), (3, 4)\}\ f2=\{(1, 2), (1, 3), (2, 3), (3, 4)\}.\ f3=\{(1, 3), (2, 4)\}.$$

Then, f1 is a function from A to B but f2 and f3 are not functions from A to B. f is not a function from A to B, because 1∈A has two images 2 and 3 in B and f3 is not a function from A to B because 3∈A has no image in B.

If a function f is expressed as the set of ordered pairs, the domain of f is the set of all first components of members of f and the range of f is the set of second components of members of f

i.e., Domain of  $f=\{a: (a, b) \in f\}$ , and Range of  $f=\{b: (a,b) \in f\}$ 

■ Example 2: If  $x, y \in \{1, 2, 3, 4\}$ , then which of the following are functions in the given set?

(a) 
$$f1 = \{(x,y): y = x+1\}$$

(b) 
$$f2 = \{(x,y): x+y>4\}$$

(c)  $f3 = \{(x, y): y < x\}$ 

(d) 
$$f4 = \{(x, y): x+y=5\}$$

Also, in case of a function give its range.

Solution:

If we express f1, f2, f3 and f4 as sets of ordered pairs, then we have

$$f1 = \{(1, 2), (2, 3), (3, 4)\}$$



$$f2 = \{(1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4,3)\}$$

$$f3 = \{(2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)\}$$
 and  $f4 = \{(1, 4), (2, 3), (3, 2), (4, 1)\}$ 

(a) We have,  $f1 = \{(1, 2), (2, 3), (3, 4)\}$ 

We observe that an element 4 of the given set has not appeared in first place of any ordered pair of f1. So, f1 is not a function from the given set to itself.

**(b)** We have,  $f2 = \{(1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)\}$ 

We observe that 2, 3, 4 have appeared more than once as first components of the ordered pairs in f2. So,  $f_2$  is not a function.

(c) We have,  $f3 = \{(2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)\}.$ 

We observe that 3 and 4 have appeared more than once as first components of the ordered pairs in f3. So, f3 is not a function.

(d) We have,  $f4=\{(1, 4), (2, 3), (3, 2), (4, 1)\}$ 

We observe that each element of the given set has appeared as first components in same and one ordered pair of f4. So, f4 is a function in the given set. In this case, Range of  $f = \{1, 2, 3, 4\}$ 

- Example 3: Let f be a relation on the set N of natural numbers defined by f = {(n,3n):n∈N}. Is f a function from N to N. If so, find the range of f.
- Solution:

Since for each  $n \in \mathbb{N}$ , there exists a unique  $3n \in \mathbb{N}$  such that  $(n, 3n) \in \mathbb{N}$ . Therefore, function from N to N.

Clearly, Range of  $f = \{f(n): n \in \mathbb{N}\} = \{3n: n \in \mathbb{N}\}$ 

#### • Function As a Correspondence

- Let A and B be two non-empty sets. Then a function "f" from set A to set B is a rule or method or correspondence which associates elements of set A to elements of set B such that:
  - (i) all elements of set A are associated to elements in set B.,



(ii) an element of set A is associated to a unique element in set B.

In other words, a function 'f' from a set A to a set B associates each element of set A to a unique element of set B

Terms such as "map" (or "mapping"), "correspondence" are used as synonyms for "function" f. If f is a function from a set A to a set B, then we write f:  $A \to B$  or  $A \to B$ , which is read as f is function from A to B or f maps A to B.

If an element a∈A is associated to an element be b∈B, then b is called 'the f-image of a' or 'image of a under f or 'the value of the function f at a'. Also, a is called the pre-image of b under the function.

We write it as: b = f(a)

#### Exercise:

- 1. Let  $A = \{-2, -1, 0, 1, 2\}$  and  $f: A \rightarrow Z$  be a function defined by  $f(x) = x^2 2x 3$ . Find:

  - (i) range of f ie. f (A) (ii) pre-images of 6,-3 and 5.
- 2. If a function f:  $R \rightarrow R$  be defined by

$$f(x) = \begin{cases} 3x-2, & x<0 \\ 1, & x=0 \\ 4x+1, & x>0 \end{cases}$$

Find: f (1), f (-1). f (0), f (2).

- 3. A function f:  $R \rightarrow R$  is defined by f (x)= $x^2$ . Determine
  - (i) range of f (ii)  $\{x:f(x)=4\}$  (iii)  $\{y:f(y)=-1\}$
- 4. Let f: R+  $\rightarrow$ R, where R+ is the set of all positive real numbers, be such that  $f(x) = \log_{e} x$ . Determine
  - (i) the image set of the domain of f
  - (ii)  $\{x:f(x)=-2\}$
  - (iii) whether f(xy) = f(x) + f(y) holds.



#### • Domain, Co-Domain and Range of a Function

Let f: A→B Then, the set A is known as the domain of f and the set B is known as the co-domain of f. The set of all f-images of elements of A is known as the range of f or image set of A under fand is denoted by (A).

Thus, 
$$f(A)=\{f(x):x\in A\}$$
 Range of f

Clearly, f(A)⊆B

#### Example 1:

Let  $A = \{-2, -1, 0, 1, 2\}$  and  $B = \{0, 1, 2, 3, 4, 5, 6\}$ . Consider a rule  $f(x) = x^2$ . Under this rule, we obtain

$$f(-2) = (-2)^2 = 4$$
,  $f(-1) = (-1)^2 = 1$ ,  $f(0) = 0^2 = 0$ ,  $f(1) = 1^2 = 1$  and  $f(2) = 2^2 = 4$ .

We observe that each element of A is associated to a unique element of B.

So,  $f:A \rightarrow B$  given by  $f(x)=x^2$  is a function.

Clearly, domain  $(f)=A=\{-2,-1,0,1,2\}$  and range  $(f)=\{0,1,4,1\}$ 

#### Example 2:

Consider a rule f(x)=2x-3 associating elements of N (set of natural numbers) to elements of N.

This rule does not define a function from N to itself, because f (1)= $2\times1-3=-1\in N$  i.e.,  $1\in N$  (domain) is not associated to any element of N (co-domain).

#### Example 3:

Let A=
$$\{-2, -1, 0, 1, 2\}$$
 and f: A $\rightarrow$ Z be given by f (x)= $x^2$ -2x-3 Find: (i) the range of f (ii) pre-images of 6, -3 and 5.

#### Solution:

(i) We have,  $f(x)=x^2-2x-3$ .

$$f(-2)=(-2)^2-2(-2)-3=5, f(-1)=(-1)^2-2(-2)-3=0, f(0)=-3$$

$$f(1)=1^2-2\times 1-3=-4 \text{ and } f(2)=2^2-2\times 2-3=-3$$



So, range 
$$(f)=\{f(-2), f(-1), f(0), f(1), f(2)\}=\{0,5,-3,-4\}$$

(ii) Let x be a pre-image of 6. Then,

$$f(x) = 6 \Rightarrow x^2 - 2x - 3 - 6 \Rightarrow x^2 - 2x - 9 = 0 \Rightarrow x = 1 \pm \sqrt{10}$$

Since  $x=1\pm\sqrt{10}\notin A$ . So, there is no pre-image of 6. Let x be a pre-image of -3. Then,

$$f(x)=-3 \Rightarrow x^2-2x-3=-3 \Rightarrow x^2-2x=0 \Rightarrow x=0,2$$

Clearly, 0,  $2 \in A$ . So, 0 and 2 are pre-images of -3.Let x be a pre-image of 5. Then

$$f(x)=5 \Rightarrow x^2-2x-3=5 \Rightarrow x^2-2x-8-0 \Rightarrow (x-4)(x+2)=0 \Rightarrow x=4,-2$$

Since  $-2 \in A$  bet  $\notin 4$  A. So, -2 is a pre-image of 5.

#### **Equal Functions**

- The functions f and g are said to be equal if
  - (i) domain of = domain of g
  - (ii) co-domain of f = co-domain of g and.
  - (iii) f(x)=g(x) for every x belonging to their common domain.

If two functions f and g are equal, then we write f=g.

#### Example 1:

Let A =  $\{1, 2\}$ , B =  $\{3, 6\}$  and f: A  $\rightarrow$  B given by f (x) =  $x^2+2$  and g: A  $\rightarrow$  B given by g(x)=3x. Then, we observe that f and g have the same domain and co-domain. Also we have f(1)=3=g(1) and f(2)=6=g(2). Hence, f=g(1)=1

Example 2:

Let f:R-{2}
$$\rightarrow$$
R be defined by f(x)= and g: R $\rightarrow$ R be defined by

g(x)=x+2. Find whether f=g or not.



#### Solution:

• We have, 
$$f(x) = \frac{x^2 - 4}{x - 2}$$
,  $x \ne 2$ 

$$\Rightarrow \frac{(x_{\overline{x}})^{2}(x+2)}{x-2} = x+2 \text{ for all } x\neq 2$$

$$\Rightarrow$$
 f(x)=g(x) for all x \neq 2

Thus, f (x)=g (x) for all x $\in$ R-[2]. But f (x) and g (x) have different domains. Infact, domain of f-R-[2] and domain of g= R. Therefore, f $\neq$ g.

#### Real Functions

■ A function  $f: A \rightarrow B$  is called a real valued function, if B is a subset of R (set of all real numbers).

If A and B both are subsets of R, then f is called a real function.

#### Example:

Let N be the set of natural numbers. Define a real valued function  $f: N \rightarrow N$  by f(x) = 2x + 1. Using this definition, complete the table given below.

| x | 1     | 2     | 3     | 4     | 5          | 6     | 7          |
|---|-------|-------|-------|-------|------------|-------|------------|
| у | f(1)= | f(2)= | f(3)= | f(4)= | f(5)=.<br> | f(6)= | f(7)=.<br> |

• **Solution:** The completed table is given by



| x | 1     | 2     | 3     | 4      | 5      | 6      | 7      |
|---|-------|-------|-------|--------|--------|--------|--------|
| у | f(1)= | f(2)= | f(3)= | f(4)=1 | f(5)=1 | f(6)=1 | f(7)=1 |
|   | 3     | 5     | 9     | 1      | 3      | 5      | 7      |

### • Some Functions and Their Graphs

#### 1. Identity function:

Let R be the set of real numbers. Define the real valued function  $f: R \to R$  by y = f(x) = x for each  $x \in R$ . Such a function is called the identity function. Here the domain and range of f are R.

The graph is a straight line as shown in Fig. It passes through the origin.



#### 2. Constant function:

Define the function  $f: R \to R$  by y = f(x) = c,  $x \in R$  where c is a constant and each  $x \in R$ . Here domain of f is R and its range is  $\{c\}$ .

The graph is a line parallel to x-axis. For example, if f(x)=3 for each  $x \in \mathbb{R}$ , then its graph will be a line as shown in the Fig.





## 3. Polynomial function:

A function  $f: R \to R$  is said to be polynomial function if for each x in R,  $y = f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ , where n is a non-negative integer and  $a_0$ ,  $a_1$ ,  $a_2$ ,..., $a_n \in R$ .



■ **Example:** The functions defined by  $f(x) = x^3 - x^2 + 2$ , and  $g(x) = x^4 + \sqrt{2}x$  are some examples of polynomial functions, whereas the function h defined by  $h(x) = x^{2/3} + 2x$  is not a polynomial function

## Example:

Define the function f:  $R \to R$  by  $y = f(x) = x^2$ ,  $x \in R$ . Complete the Table given below by



using this definition. What is the domain and range of this function? Draw the graph of f.

| х                | -<br>4 | -<br>3 | -<br>2 | -1 | 0 | 1 | 2 | 3 | 4 |
|------------------|--------|--------|--------|----|---|---|---|---|---|
| $y = f(x) = x^2$ |        |        |        |    |   |   |   |   |   |

• Solution: The completed Table is given below:

| х                | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4  |
|------------------|----|----|----|----|---|---|---|---|----|
| $y = f(x) = x^2$ | 16 | 9  | 4  | 1  | 0 | 1 | 4 | 9 | 16 |

Domain of  $f = \{x : x \in R\}$ . Range of  $f = \{x^2 : x \in R\}$ .

The graph of f is given by Fig.





#### 4. Rational functions:

Rational Functions are functions of the type, where f(x) and g(x) are polynomial functions of x defined in a domain, where  $g(x) \neq 0$ .



## Example:

Define the real valued function  $f: R - \{0\} \to R$  defined by f(x) = 1/x,  $x \in R - \{0\}$ . Complete the Table given below using this definition. What is the domain and range of this function?

| x       | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5 | 2 |
|---------|----|------|----|------|------|-----|---|-----|---|
| y = 1/x |    |      |    |      |      |     |   |     |   |

• Solution: The completed Table is given by



| x          | -2       | -1.5      | -1 | -0.<br>5 | 0.2<br>5 | 0.<br>5 | 1 | 1.5      | 2       |
|------------|----------|-----------|----|----------|----------|---------|---|----------|---------|
| y =<br>1/x | -0.<br>5 | -0.6<br>7 | -1 | -2       | 4        | 2       | 1 | 0.6<br>7 | 0.<br>5 |

• The domain is all real numbers except 0 and its range is also all real numbers except 0. The graph of f is given in Fig.



#### 5. Modulus Function:

The Modulus function f:  $R \rightarrow R$  defined by f(x) = |x| for each  $x \in R$  is called modulus function. For each non-negative value of x, f(x) is equal to x.

But for negative values of x, the value of f(x) is the negative of the value of x, i.e.,

## **SUNSTONE**

The graph of the modulus function is given in Fig.



### 6. Signum function:

The function f:R→R defined by

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is called the signum function. The domain of the signum function is R and the range is the set {-1, 0, 1}. The graph of the signum function is given by the Fig.



## 7. Greatest integer fu

$$f(x) = \frac{|x|}{x}$$
,  $x'$  0 and 0 for  $x = 0$ 

The function  $f: R \to R$  defined by f(x) = [x],  $x \in R$  assumes the value of the greatest integer, less than or equal to x. Such a function is called the greatest integer function.

From the definition of [x], we can see that

$$[x] = -1 \text{ for } -1 \le x < 0$$

$$[x] = 0 \text{ for } 0 \le x < 1$$

# **SUNSTONE**

$$[x] = 1 \text{ for } 1 \le x < 2$$

$$[x] = 2$$
 for  $2 \le x < 3$  and so on.

The graph of the function is shown in Fig



### • Algebra of Real Functions

#### 1. Addition of two real functions

Let  $f: X \to R$  and  $g: X \to R$  be any two real functions, where  $X \subset R$ .

Then, we define (f + g):  $X \rightarrow R$  by

$$(f + g)(x) = f(x) + g(x)$$
, for all  $x \in X$ .

#### 2. Subtraction of a real function from another

Let  $f: X \to R$  and  $g: X \to R$  be any two real functions, where  $X \subset R$ . Then, we define  $(f-g): X \to R$  by

$$(f-g)(x) = f(x) - g(x)$$
, for all  $x \in X$ .

### 3. Multiplication by a scalar



Let  $f: X \rightarrow R$  be a real valued function and  $\alpha$  be a scalar. Here by scalar, we mean a real number. Then the product  $\alpha$  f is a function from X to R defined by

$$(\alpha f)(x) = \alpha f(x), x \in X.$$

#### 4. Multiplication of two real functions

The product (or multiplication) of two real functions  $f:X \to R$  and  $g:X \to R$  is a function  $fg:X \to R$  defined by

(fg) 
$$(x) = f(x) g(x)$$
, for all  $x \in X$ .

This is also called pointwise multiplication.

#### 5. Quotient of two real functions

Let f and g be two real functions defined from  $X \rightarrow R$ , where  $X \subset R$ . The quotient of f by g denoted by f/g is a function defined by

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \text{ provided } g(x) \neq 0, x \in X$$

#### **\*** Examples:

#### Example 1:

Let  $f(x) = x^2$  and g(x) = 2x + 1 be two real functions. Find (f + g)(x), (f - g)(x), (fg)(x)

Solution: We have,

$$(f + g)(x) = x^2 + 2x + 1, (f - g)(x) = x^2 - 2x - 1,$$

(fg) (x) = 
$$x^2$$
 (2x + 1) =  $2x^3 + \left(x^{\frac{f_2}{g}}\right)(x) = \frac{x^2}{2x+1}, x \neq -\frac{1}{2}$ 

#### Example 2:

Let  $f(x) = \sqrt{x}$  and g(x) = x be two functions defined over the set of nonnegative real numbers.



Find (f + g) (x), (f - g) (x), (fg) (x) 
$$a(fg)(x)$$

#### Solution:

We have

$$(f + g)(x) = \sqrt{x + x}, (f - g)(x) = x - x,$$

$$(fg) \ x = \sqrt{x(x)} = x^{\frac{3}{2}} \ and \ (\frac{f}{g}) \ (x) = x^{-\frac{1}{2}}, \ x \neq 0$$

#### Exercise:

1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

2. Find the domain and range of the following real functions:

(i) 
$$f(x) = -|x|$$

(i) 
$$f(x) = -|x|$$
 (ii)  $f(x) = \sqrt{9 - x^2}$ 

- 3. A function f is defined by f(x) = 2x 5. Write down the values of

  - (i) f (0), (ii) f (7),
- (iii) f (-3).
- 4. The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by t(C) = 9C5 + 32. Find
  - (i) t(0)
- (ii) t(28)
- (iii) t(-10)
- (iv) The value of C, when t(C) =



212.

5. Find the range of each of the following functions.

(i) 
$$f(x) = 2-3x, x \in R, x > 0$$
.

(ii) 
$$f(x) = x2 + 2$$
, x is a real number.

(iii) 
$$f(x) = x$$
,  $x$  is a real number.