UNIVERSITY DEPARTMENT OF MATHEMATICS

Tilka Manjhi Bhagalpur University, Bhagalpur

Class Test Examination

Time: $1\frac{1}{2}$ hour PAPER - VI Session: 2017–19

1. Choose the most appropriate option.

(05)

- (a) The contour integration is $\boldsymbol{independent}$ of path in a domain Ω if
 - A. the integrand has an anti-derivative in Ω
 - B. the integrand is analytic in Ω
 - C. both of A and B choice
 - D. None of these
- (b) For any integer n, the value of integration $\oint_{|z|=1} \frac{1}{z^n} dz$, along the positively oriented contour is/are
 - A. 0 B. $2\pi i$ C. depends on n D. None of these
- (c) If the integration of a complex valued function f along any closed contour in domain Ω is zero, then which of the following is true
 - A. The function f is analytic in Ω
 - B. The function f has an anti-derivative in Ω
 - C. The contour integration $\int_{\mathcal{X}} f(z) dz$, depends on the path.
 - D. None of these
- (d) Which of the following is **true** for contour integration?
 - A. It depends on the parametrizaton of the path.
 - B. It depends on the orientation of the path.
 - C. It depends on length of the path
 - D. None of these
- (e) If f is analytic in domain Ω , then which of the following is **not** true
 - A. Maximum value lies on the boundary of the domain.
 - B. Integration along any closed contour can be non-zero.
 - C. All the derivative of f exist and coninuous in Ω .
 - D. none of these
- 2. Answer any two of the following

(10)

- (a) Find $\int_{\gamma} |z|^2 dz$ along the square with vertices at (0,0),(1,0),(1,1),(0,1).
- (b) Evaluate the following integral in the positively oriented contours.

i.
$$\oint_{|z-1|=\frac{5}{3}} \frac{1}{(z-4)(z+1)^4} dz$$

ii.
$$\oint_{|z|=2} \frac{e^{i\pi z/2}}{z^2-1} dz$$

(c) Let f be an entire function such that $|f(z)| \le M|z|$, $\forall z \in \mathbb{C}$, where M is a fixed positive constant. Using Cauchy's Inequality, show that $f(z) = \alpha z$, where α is a complex constant.

Complex Analysis End of exam