7.4 聚类分析

2014年6月25日

聚类分析的基本思想

上一节介绍的判别分析,其特点是:事先知道研究对象分为 几个类别,而且有一些类别已知的样品,从这些类别已知 的样品数据出发,建立一种判别方法,以此,对类别未知的 样品可以判别其分类

聚类分析(Cluster Analysis)是指:有一些样品需要分类,但是它们可以分成哪几类,是什么样的类型,事先都是不知道的,也没有什么已知类别的样品可以作为分类的参考。我们只能根据"物以类聚"的原则,把特性比较接近的样品聚集在一起,以此对样品进行分类的方法

例如, 动植物的分类。采集了一大批某种动物或植物的标本,事先不知道它们可以分为几类,只是根据从标本测得的各种数据(例如 动物的各种体形特征,植物的各种外形尺寸)考虑把特征相近的标本聚集在一起,分成几种类型。这是一个聚类分析问题

又如,上市股票的分类。在一个股市中,有成百上千种股票对每一种股票,都有一大批数据(例如股票价格、成交量、市盈率、公司资本、负债、产值、利润等等),要求把特征相近的股票聚集在一起,分成几种类型。这也是一个聚类分析问题

再如,不同气象情况年份的分类。对某地积累了许多年的气象资料,对每一年,都有一大批数据(例如各个月份的平均气温、降水量、年最高气温、年最低气温等等),要求把气象情况相近的年份聚集在一起,分成几种类型。这也是一个聚类分析问题

聚类的方法很多,比如:系统聚类,动态聚类,模糊聚类等等这里我们只介绍最常用的、也是比较成熟的一种方法是系统聚类法(Hierarchical Clustering Method,又称谱系聚类法)。系统聚类法的基本思想是:开始时将每个样品单独作为一类,类与类之间的距离也就是样品与样品之间的距离。然后,找出距离最近的两类,将它们合并成一类,再找出距离最近的两类,将它们合并为一类,……,这样一直下去,每次类别的个数减少1,直到所有的样品合并成为一类为止

聚类分析的结果,可以用一个图的形式表示出来,这种图像一棵树的样子(如图),称为聚类

要知道分成 m 类的聚类结果,可以在聚类图中与 m 条竖线相交的高度处画一条水平线,这 m 条竖线对应的就是用系统聚类法分成的 m个 类 (如图)

在上图中,如果我们希望知道分成2类的聚类结果,可以在与2条竖线相交的高度处画一条水平线,可以看出,分成的2类是: {1,2}, {3,4,5,6}

如果我们希望知道分成4类的聚类结果,可以在与4条竖线相交的高度处画一条水平线,可以看出,分成的4类是:

 $\{1, 2\}, \{3, 4\}, \{5\}, \{6\}$

系统聚类法中类与类之间的距离

在系统聚类法的每一步中,都要寻找距离最近的两类,所以,必须对类与类之间的距离作出定义

我们用小写的 d_{ij} , $i=1,2,\cdots,n$, $j=1,2,\cdots,n$

表示第 i 介撑品与第 j 介撑品之间的距离:

$$d_{ij}$$
可以是闵氏距离 $d_{ij} = \left(\sum_{k=1}^{m} \left| x_{ik} - x_{jk} \right|^{q}\right)^{\frac{1}{q}}$

也可以是马氏距离
$$d_{ij} = \sqrt{(x_i - x_j)^T S^{-1}(x_i - x_j)}$$

设 G_1, G_2, \dots, G_g 表示分成的各个类

我们用大写: D_{pq} 表示 G_p 类与 G_q 类之间的距离

系统聚类一开始很简单,每一个类只有一个样品,类与类之间的距离也就是样品与样品之间的距离

从第二步开始就不一样了,要计算类与类的距离了,下面介绍几种常用的类与类之间距离的定义:

(1) 最短距离法

定义 G_{p} 类与 G_{q} 类之间的距离 D_{pq} 为 G_{p} , G_{q} 这两

类中最近的两个样品之间的距离,即 $D_{pq} = \min_{x_i \in G_s, x_i \in G_s} d_{ij}$

类与类距离定义的最短距离法:

$$D_{pq} = \min_{x_i \in G_g, x_j \in G_g} d_{ij}$$

如果将 G_p , G_q 合并成一个新的类 G_r , 这时,

其他的类 G_k 到 G_r 的距离显然可由下式求出:

$$D_{kr} = \min_{x_i \in G_k, x_j \in G_r} d_{ij} = \min \left\{ \min_{x_i \in G_k, x_j \in G_g} d_{ij}, \min_{x_i \in G_k, x_j \in G_g} d_{ij} \right\} = \min \left\{ D_{kp}, D_{kq} \right\}$$

(2) 最长距离法

定义 G_p 类与 G_q 类之间的距离 D_{pq} 为 G_p, G_q 这两

类中最远的两个样品之间的距离,即 $D_{pq} = \max_{x_i \in G_g, x_i \in G_g} d_{ij}$

如果将 G_p , G_q 合并成一个新的类 G_r , 这时,

其他的类 G_k 到 G_k 的距离显然可由下式求出:

$$D_{kr} = \max_{x_i \in G_k, x_j \in G_r} d_{ij} = \max \left\{ \max_{x_i \in G_k, x_j \in G_g} d_{ij}, \max_{x_i \in G_k, x_j \in G_g} d_{ij} \right\}$$

$$= \max\{D_{kp}, D_{kq}\} \quad .$$

(3) 中间距离法

首先,对每一类都可以确定一个中心:如果一个类中只有一个样品,则中心就是这个样品,如果将两类合并,则合并后的类的中心,就是原来两类中心的连线的中点

定义 G_p 类与 G_q 类之间的距离 D_{pq} 为 G_p 的中心与 G_q 的中心之间的欧氏距离。

如果将 G_p , G_q 合并成一个新的类 G_r ,这时

其他的类 G_k 到 G_r 的距离可由下式求出:

$$D_{kr}^2 = \frac{1}{2}D_{kp}^2 + \frac{1}{2}D_{kq}^2 - \frac{1}{4}D_{pq}^2$$

类 G_{k} 到 G_{k} 的距离的平方公式是什么含意呢?

$$D_{ky}^2 = \frac{1}{2}D_{kp}^2 + \frac{1}{2}D_{kq}^2 - \frac{1}{4}D_{pq}^2$$

由平面几何可知,在边长为 a,b,c 的三角形中,

$$a$$
 边上的中线长度 m_a 等于 $m_a = \sqrt{\frac{1}{2}b^2 + \frac{1}{2}c^2 - \frac{1}{4}a^2}$

而 D_{pq} 相当于 a , D_{kp} 相当于 b , D_{kq} 相当于 c ,

 D_k ,相当于 a 边上的中线长度 m_a

(4) 重心法

首先,对每一类 G_p 都可以确定一个重心:重心就是属于

这一类的样品的观测值的样本均值
$$\bar{x}_p = \frac{1}{n_p} \sum_{x_i \in G_p} x_i$$
 ,

其中
$$n_p$$
 是 G_p 类中的样品数, $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{im} \end{bmatrix}$ 是第 i 个

样品的观测值。

如果一个类中只有一个样品,则重心就是这个样品,如果将 G_p , G_q 两类合并,则合并后的类 G_p 的重心为:

$$ar{x}_r = rac{n_p ar{x}_p + n_q ar{x}_q}{n_r}$$
 ,其中 n_p, n_q 是 G_p, G_q 中的样品数

$$n_r = n_p + n_a$$
 是 G_r 中的样品数。

定义 G_p 类与 G_q 类之间的距离 D_{pq} 为 G_p 的重心与 G_q 的重心之间的欧氏距离。

如果将 G_p , G_q 合并成一个新的类 G_r ,这时,其他的类 G_k 到 G_r

的距离可由下式求出:

$$D_{kr}^{2} = \frac{n_{p}}{n_{r}} D_{kp}^{2} + \frac{n_{q}}{n_{r}} D_{kq}^{2} - \frac{n_{p} n_{q}}{n_{r}^{2}} D_{pq}^{2}$$

这是因为

$$D_{kr}^2 = (\overline{x}_k - \overline{x}_r)^T (\overline{x}_k - \overline{x}_r) = \left(\overline{x}_k - \frac{n_p \overline{x}_p + n_q \overline{x}_q}{n_r}\right)^T \left(\overline{x}_k - \frac{n_p \overline{x}_p + n_q \overline{x}_q}{n_r}\right)$$

$$= \overline{x}_k^T \overline{x}_k - \frac{2n_p \overline{x}_k^T \overline{x}_p}{n_r} - \frac{2n_q \overline{x}_k^T \overline{x}_q}{n_r} + \frac{n_p^2 \overline{x}_p^T \overline{x}_p + 2n_p n_q \overline{x}_p^T \overline{x}_q + n_q^2 \overline{x}_q^T \overline{x}_q}{n_r^2}$$

$$D_{kr}^{2} = (\overline{x}_{k} - \overline{x}_{r})^{T} (\overline{x}_{k} - \overline{x}_{r}) = \left(\overline{x}_{k} - \frac{n_{p}\overline{x}_{p} + n_{q}\overline{x}_{q}}{n_{r}}\right)^{T} \left(\overline{x}_{k} - \frac{n_{p}\overline{x}_{p} + n_{q}\overline{x}_{q}}{n_{r}}\right)$$

$$= \overline{x}_k^T \overline{x}_k - \frac{2n_p \overline{x}_k^T \overline{x}_p}{n_r} - \frac{2n_q \overline{x}_k^T \overline{x}_q}{n_r} + \frac{n_p^2 \overline{x}_p^T \overline{x}_p + 2n_p n_q \overline{x}_p^T \overline{x}_q + n_q^2 \overline{x}_q^T \overline{x}_q}{n_r^2}$$

$$=\frac{n_p(\overline{x}_k^T\overline{x}_k-2\overline{x}_k^T\overline{x}_p+\overline{x}_p^T\overline{x}_p)}{n_r}+\frac{n_q(\overline{x}_k^T\overline{x}_k-2\overline{x}_k^T\overline{x}_q+\overline{x}_q^T\overline{x}_q)}{n_r}-\frac{n_pn_q(\overline{x}_p^T\overline{x}_p-2\overline{x}_p^T\overline{x}_q++\overline{x}_q^T\overline{x}_q)}{n_r^2}$$

$$=\frac{n_p}{n_r}(\overline{x}_k-\overline{x}_p)^T(\overline{x}_k-\overline{x}_p)+\frac{n_q}{n_r}(\overline{x}_k-\overline{x}_q)^T(\overline{x}_k-\overline{x}_q)-\frac{n_pn_q}{n_r^2}(\overline{x}_p-\overline{x}_q)^T(\overline{x}_p-\overline{x}_q)$$

$$= \frac{n_p}{n_r} D_{kp}^2 + \frac{n_q}{n_r} D_{kq}^2 - \frac{n_p n_q}{n_r^2} D_{pq}^2$$

(5) 类平均法

定义 G_p 类与 G_q 类之间的距离 D_{pq} 的恶方为 G_p

中样品与 G_a 中样品的距离的平方的平均值

$$D_{pq}^{2} = \frac{1}{n_{p} n_{q}} \sum_{x_{i} \in G_{i}} \sum_{x_{j} \in G_{q}} d_{ij}^{2}$$

如果将 G_p , G_q 合并成一个新的类 G_r , 这时,

其他的类 G_{k} 到 G_{k} 的距离显然可<u>由下式求出</u>:

$$D_{kr}^{2} = \frac{n_{p}}{n_{r}} D_{kp}^{2} + \frac{n_{q}}{n_{r}} D_{kq}^{2}$$

(6) 离差平方和法(Ward 法)

对每一类 G_p 都可以定义一个离差平方和

$$SS_p = \sum_{x_i \in G_p} (x_i - \overline{x}_p)^T (x_i - \overline{x}_p) = \sum_{x_i \in G_p} x_i^T x_i - n_p \overline{x}_p^T \overline{x}_p$$

如果将 G_p , G_q 合并成一个新的类 G_r , G_r 的离差平方和 $SS_r > SS_p + SS_q$,

 G_p 离 G_q 越远, SS_p 越大, G_p 离 G_q 越近, SS_p 越小,所以,可以定义:

 G_p 类与 G_q 类之间的距离平方为 $D_{pq}^2 = SS_r - SS_p - SS_q$

可以证明:

如果将 G_p , G_q 合并成一个新的类 G_r , 这时,其他的类 G_k

到 G, 的距离可由下式求出:

$$D_{kr}^{2} = \frac{n_{k} + n_{p}}{n_{k} + n_{r}} D_{kp}^{2} + \frac{n_{k} + n_{q}}{n_{k} + n_{r}} D_{kq}^{2} - \frac{n_{k}}{n_{k} + n_{r}} D_{pq}^{2}$$

系统聚类法的统一公式和计算步骤

前面介绍了6种常用的系统聚类法,这些方法的区别在于:它们对类与类之间的距离有不同的定义.

如果将 G_p , G_q 两类合并成一个新的类 G_r ,这时,其他的类 G_k 到 G_r 的距离就有不同的计算公式。

1969年, Wishart 发现这些公式可以统一起来, 写成下列统一形式:

$$D_{kr}^{2} = \alpha_{p} D_{kp}^{2} + \alpha_{q} D_{kq}^{2} + \beta D_{pq}^{2} + \gamma \left| D_{kp}^{2} - D_{kq}^{2} \right|$$

其中系数 $\alpha_p, \alpha_q, \beta, \gamma$ 对于不同的方法有不同的取值

下表列出了Wishart的统一计算公式中参数对应的取值:

		=			
方法	α_{p}	α_q	β	γ	
最短距离法	1/2	1/2	0	-1/2	
最长距离法	1/2	1/2	0	1/2	
中间距离法	1/2	1/2	-1/4	0	
重心法	$\frac{n_p}{n_r}$	$\frac{n_q}{n_r}$	$-\frac{n_p n_q}{n_r^2}$	0	
类平均法	$\frac{n_p}{n_r}$	$\frac{n_q}{n_r}$	0	0	
离差平方和法	$\frac{n_k + n_p}{n_k + n_r}$	$\frac{n_k + n_q}{n_k + n_r}$	$-\frac{n_k}{n_k+n_r}$	0	

系统聚类的步骤

建立一个 D^2 矩阵,其中元素是类与类之间距离的平方:

$$egin{bmatrix} 0 & D_{12}^2 & \cdots & D_{1n}^2 \ D_{21}^2 & 0 & \cdots & D_{2n}^2 \ dots & dots & \ddots & dots \ D_{n1}^2 & D_{n2}^2 & \cdots & 0 \end{bmatrix}$$

一开始,每一个样品单独作为一类,类与类之间的距离就是样品与样品之间的距离。 即有 $D_{pq}^2 = d_{pq}^2$ 。

然后,在 D^2 矩阵的非对角元素中找出一个最小值 D^2_{pq} 。

 $\left(D_{pq}^{2} \right)$ 在所有非对角元素中最小,说明在现有的各类中 $\left(G_{p} \right)$

类与 G_q 类距离最近,将 G_p , G_q 两类合并成一个新的类 G_p

按照前面给出的统一计算公式,可以求出其他的类 G_k 到 G_k

的距离,从而建立一个新的 D^2 矩阵。

然后,再在新的 D^2 矩阵的非对角元素中找出一个最小值 D^2_{pq} ,

将 G_p , G_q 两类合并成一个新的类 G_p , 按照前面给出的统一计算公式,

可以求出其他的类 G_k 到 G_k 的距离,再建立一个新的 D^2 矩阵,…… 就这样,一直下去,每次类别的个数减少 1,直到所有的样品合并成为一类为止

记录下全部合并过程,就能画出聚类图。从聚类图就可以得到 聚类分析的结果

聚类分析应用实例

例 2002年足球世界杯赛16强

2002年足球世界杯赛,最后有16支球队进入前16名,这些球队在进入前16名以前的分组赛中的进球数和失球数统计如右表,作图如下:

	-				
编号	球队名称	X_1 进球数	X ₂ 失球数		
1	丹麦	5	2		
2	塞内加尔	5	4		
3	西班牙	9	4		
4	巴拉圭	6	6		
5	巴西	11	3		
б	土耳其	5	3		
7	韩国	4	1		
8	美国	5	6 1		
9	德国	11			
10	爱尔兰	5	2		
11	瑞典	4	3		
12	英格兰	2	1		
13	墨西哥	4	2		
14	意大利	4	3		
15	日本	5	2		
16	比利时	6	5		

下面对这16支球队进行系统聚类分析。

因为进球数和失球数是同一类型的变量,所以不必对它们进行标准化处理。选用欧氏距离作为样品与样品之间的距离

(1) 最短距离法 得到的聚类图:

从聚类图可以看出,如果分成5类,最短距离法有下列聚类结果:

第1类: { 9.德国 } 第2类: { 5.巴西 } 第3类: { 3.西班牙 }

第4类: {12.英格兰}

第5类: { 16.比利时, 8.美国, 4.巴拉圭, 7.韩国, 13.墨西哥, 14.意大利, 11.瑞典, 2.塞内加尔, 6.土耳其, 15.日本, 10.爱尔兰, 1.丹麦 }

(2) 最长距离法 的聚类结果:

第2类: {3.西班牙}

第3类: {8.美国,4.巴拉圭,16.比利时,2.塞内加尔}

第4类: {12.英格兰}

第5类: {13.墨西哥,7.韩国,14.意大利,11.瑞典,6.土耳其,15.日本,

10.爱尔兰, 1.丹麦 }

(3) 中间距离法 得到的聚类结果

从聚类图可以看出

中间距离法分成5类的聚类结果:

第1类: {9.德国,5.巴西}

第2类: {3.西班牙}

第3类: {16.比利时,8.美国,4.巴拉圭}

第4类: {12.英格兰}

第5类: { 13. 墨西哥, 7. 韩国, 2. 塞内加尔, 14. 意大利,

11.瑞典, 6.土耳其, 15.日本, 10.爱尔兰, 1.丹麦 }

(4) 重心法 得到的聚类结果:

从聚类图可以看出

重心法分成5类的结果:

第1类: {9.德国,5.巴西}

第2类: {3.西班牙}

第3类: {16.比利时,8.美国,4.巴拉圭,

2.塞内加尔 }

第4类: {12.英格兰}

第5类: {14.意大利,11.瑞典,13.墨西哥,7.韩国,

6. 土耳其, 15. 日本, 10. 爱尔兰, 1. 丹麦 }

(5) 类平均法 得到的聚类结果:

1 10 15 6 11 14 7 13 12 2 4 8 16 3 5 9 类平均法分成5类有下列聚类结果: 第1类: {9.德国,5.巴西} 第2类: {3.西班牙} 第3类: {16.比利时,8.美国,4.巴拉圭, 2.塞内加尔 } 第4类: {12.英格兰} 第5类: {13.墨西哥,7.韩国,14.意大利,11.瑞典, 6. 土耳其, 15. 日本, 10. 爱尔兰, 1. 丹麦 }

(6) 离差平方和法 得到的聚类结果

从聚类图可以看出,如果分成5类

离差平方和法有下列聚类结果:

第1类: {9.德国,5.巴西}

第2类: {3.西班牙}

第3类: {16.比利时,8.美国,4.巴拉圭}

第4类: {12.英格兰}

第5类: { 14. 意大利, 11. 瑞典, 6. 土耳其, 2. 塞内加尔,

13.墨西哥, 7.韩国, 15.日本, 10.爱尔兰, 1.丹麦 }

例 全国各地文化程度状况分类

1990年全国人口普查对全国30个省、直辖市、自治区各种文化程度的人口比例作了统计得到数据如下

编 号	地区	大学以上	初中	文盲半文盲	编 号	地区	大学以上	初中	文盲半文盲
1	北京	9.30	30.55	8.70	16	河南	0.85	26.55	16.15
2	天津	4.67	29.38	8.92	17	湖北	1.57	23.16	15. 79
3	河北	0.96	24.69	15.21	18	湖南	1.14	22.57	12.10
4	山西	1.38	29.24	11.30	19	广东	1.34	23.04	10.45
5	内蒙古	1.48	25.47	15.39	20	广西	0.79	19.14	10.61
6	辽宁	2.60	32.32	8.81	21	海南	1.24	22.53	13.97
7	吉林	2.15	26.31	10.49	22	四川	0.96	21.65	16.24
8	黑龙江	2.14	28.46	10.87	23	贵州	0.78	14.65	24.27
9	上海	6.53	31.59	11.04	24	云南	0.81	13.85	25.44
10	江苏	1.47	26.43	17.23	25	西藏	0.57	3.85	44.43
11	浙江	1.17	23.74	17.46	26	陕西	1.67	24.36	17.62
12	安徽	0.88	19.97	24.43	27	甘肃	1.10	16.85	27.93
13	福建	1.23	16.87	15.63	28	青海	1.49	17.76	27.70
14	江西	0.99	18.84	16.22	29	宁夏	1.61	20.27	22.06
15	山东	0.98	25.18	16.87	30	新疆	1.85	20.66	12.75

要求根据文化程度状况统计数据对上述地区作聚类分析

用"类平均法"作系统聚类得到的聚类图:

从用"类平均法"作系统聚类的聚类图可以看出,如果分成**4**类则聚类结果为:

第1类: {1.北京, 2.天津, 9.上海, 6.辽宁, 4.山西, 8.黑龙江, 7.吉林}

第2类: {3.河北,5.内蒙古,10.江苏,16.河南,11.浙江,26.陕西,15.山东,17.湖北,22.四川,21.海南,13.福建,14.江西,18.湖南,19.广东,30.新疆,20.广西}

第3类: { 12.安徽, 29.宁夏, 23.贵州, 24.云南, 27.甘肃, 28.青海 }

第4类: {25.西藏}

教材内容讲解完毕

作为复习,我们最后再讲解一套综合测试题

数理统计综合测试题-讲解

- 一. 选择题(每小题 4 分, 共 36 分)
 - 1. 设总体的期望 μ 和方差 σ^2 均未知,从总体中抽取了一个容量为 n 的样本 (X_1, X_2, \dots, X_n) ,则下述选项中可以作为总体的期望 μ 和方差 σ^2 的无偏估计量的 洗项是(A)

(A)
$$X_1 \neq 0$$
 $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ (B) $\overline{X} \neq 0$ $\frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - \overline{X}^2$

(B)
$$\overline{X} = \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - \overline{X}^2$$

(C)
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

(C)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (D) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

- 2. 5 名评委对某歌手的打分分别是: 63, 65, 70, 71, 95,根据打分,代表该歌手水平最 合理的指标应是这些分值的(B).
 - (A) 均值; (B) 中值; (C) 方差; (D) 众数

3. 设总体期望为 μ , 方差为 σ_0^2 , (X_1, X_2, \cdots, X_n) 为总体的一个容量为 n 的样本,

X为样本均值,则(D).

- (A) 当 \mathbf{n} 充分大时, \overline{X} 近似服从正态分布 $\mathtt{N}(\pmb{\mu},\pmb{\sigma}_{\mathtt{0}}^{\mathtt{2}})$;
- (B) 当 n 充分大时, \overline{X} 的取值收敛于总体期望 μ ;
- (C) 因总体分布未知,无论 \mathbf{n} 多大, \overline{X} 都未必可视为服从正态分布;
- (D) 当 n 充分大时, \overline{X} 近似服从正态分布 $\mathbb{N}(\mu, |\sigma_0^2/n)$

4. 设 总 体 $\xi \sim N(1,2^2)$, (X_1,X_2,\cdots,X_{10}) 是 ξ 的 样 本

 $Y = (X_1 - 1)^2 + (X_2 - 1)^2 + ... + (X_{10} - 1)^2$,则下述选项正确的是(C).

(A) $Y \sim \chi^2(10)$;

(B) $Y \sim N(10, 40)$;

(C) $\frac{Y}{4} \sim \chi^2(10)$;

(D) $\frac{Y}{2} \sim \chi^2(10)$

- 5. 不考虑交互作用的正交试验,若问题中有 4 个因子,每个因子都是 2 个水平, 应选取的. 正交表是 (B).

- (A) $L_4(2^3)$; (B) $L_8(2^7)$; (C) $L_9(3^4)$; (D) $L_{16}(2^{15})$

- 6. 设总体 $\xi \sim N(\mu, \sigma_0^2)$, 其中 σ_0^2 已知, (X_1, X_2, \dots, X_n) 是 ξ 的样本,总体期望
 - μ 的置信水平为1- α 的置信区间的长度记为 L,则**错误**的选项是 (C)。
 - (A) L与样本容量 n 有关; (B) L与置信水平 1- α 有关;
 - (C) L与样本 (X_1, X_2, \dots, X_n) 的取值有关; (D) L与总体方差 σ_0^2 有关.

- 7. 显著性水平lpha下的某假设检验,原假设 $f H_{f o}$,则(f A).
 - (A) <u>犯第一类</u>错误的概率一定不超过α;
 - (B) 犯第二类错误的概率一定为 1- α ;
 - (C) 犯第一类错误的概率一定为 $oldsymbol{lpha}$;
 - (D) 要么犯第一类错误,要么犯第二类错误,二者必居其一.

8.多元线性回归模型 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{e}$,其中 $\mathbf{e} \sim N(0, \sigma^2 \mathbf{I})$,关于 $\boldsymbol{\beta}$ 的最小二乘估计 $\hat{\boldsymbol{\beta}}$ 下述**错误**的选项是(\mathbf{c})。

(A)
$$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'Y$$

(B)
$$E(\hat{\beta}) = \beta$$

(C)
$$\hat{\beta} \sim N(\beta, \sigma^2 I)$$

(D)
$$\hat{\beta}$$
与残差平方和 SS_a 相互独立

9. 根据变元的n组观测值来求m元线性回归的复相关系数,下述选项正确的是(A)

(A)
$$R = \sqrt{\frac{SS_R}{SS_T}}$$

$$(B) \quad R = \sqrt{\frac{SS_{\epsilon}}{n-2}}$$

(C)
$$R = \sqrt{\frac{SS_e}{n - m - 1}}$$

$$(D) R = \sqrt{1 - \frac{SS_R}{SS_T}}$$

二、(本题 10 分) 立邦牌油漆的干燥时间 $\xi \sim N(\mu, \sigma^2)$,随机抽取 9 个样品,测得干燥时间(单位:小时)的样本均值为 6.2,**修正样本标准差**为 0.6928,分别求 μ, σ^2 的置信水平为 95%的置信区间。

解:(1) μ 的置信水平为 1- α 的置信区间为:

$$[\overline{X} - t_{1-\alpha/2}(n-1)\frac{S^*}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2}(n-1)\frac{S^*}{\sqrt{n}}]$$

=[6.2-2.306*0.6928/3, 6.2+2.306*0.6928/3]=[5.6675, 6.7325]

(2) 由样本数据得到n=9, $s_{n-1}^2=0.48$, 对于 $\alpha=0.05$, 自由度为 8

有
$$\chi^2_{0.025}(8) = 2.180$$
, $\chi^2_{0.975}(8) = 17.535$, 所以

$$\frac{(n-1)S_{n-1}^2}{\chi_{0.975}^2(n-1)} = \frac{8 \times 0.48}{17.535} = 0.2190; \qquad \frac{(n-1)S_{n-1}^2}{\chi_{0.025}^2(n-1)} = \frac{8 \times 0.48}{2.180} = 1.7615$$

故 σ^2 的 95%的置信区间为 [0.2190, 1.7615]

三.(本题 10 分)设 $(X_1,...,X_n)$ 是取自总体的一个简单随机样本的密度函数为

$$p(x) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$
 其中 $\theta > 0$ 为未知参数,

- (1) 求 θ 的矩法估计量 $\hat{\theta}$,并说明 $\hat{\theta}$ 是否为 θ 的无偏估计?
- (2) 求 θ 的极大似然估计.

解: (1)先计算
$$E\xi = \int_{\theta}^{+\infty} xe^{-(x-\theta)} dx = (-xe^{-(x-\theta)})|_{\theta}^{+\infty} + \int_{\theta}^{+\infty} e^{-(x-\theta)} dx = \theta + 1$$
 由于 $E\xi = \overline{X}$,得到 $\hat{\theta} = \overline{X} - 1$

 $\boxtimes \widehat{E}\widehat{\theta} = E(\overline{X} - 1) = E\overline{X} - 1 = E\xi - 1 = (\theta + 1) - 1 = \theta,$

故 $\hat{\theta} = \bar{X} - 1$ 是 θ 无偏估计。

(2) 对于一组观测值 $(x_1, x_2, \dots x_n)$,设 $x_1, \dots, x_n \ge \theta$,此时似然函数

$$L(\theta) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} (e^{-(x_i - \theta)})$$

两边取对数,得对数似然函数 $\ln L(\theta) = -\sum_{i=1}^{n} x_i + n\theta$

分别关于 θ 求导,可得 $\frac{d \ln L(\theta)}{d \theta} = n > 0 \ln L(\theta)$ 关于 θ 严格单调递增

所以 $\ln L(\theta)$ 的极大值应在 θ 取值的右面的边界点上取到,

数极太似然估计为 $\hat{\theta} = \min_{1 \le i \le n} x_i$,

四、(本题 10 分) 对某种合金材料的熔点作了四次测试,根据 4 次的测试数据算得样本均值 为 $\overline{X}=1267$ (度),修正样本标准差 $S^*=3.65$ (度),设合金材料的熔点服从正态分布,

在显著性水平 $\alpha = 5$ % 下:

- (1) 能否认为该种合金的熔点符合厂家所公布的 1260 度?
- (2) 能否认为该种合金熔点的标准差不超过2度?

解: 1) 要检验的假设为 H_0 : $\mu = 1260$, H_1 : $\mu \neq 1260$

检验用的统计量
$$T=rac{ar{X}-\mu_0}{S^*/\sqrt{n}}\sim t\,(n-1)$$
 ,

拒绝域为
$$|T| \ge t_{1-\frac{\alpha}{2}}(n-1) = t_{0.975}(3) = 3.1824.$$

$$|T| = \frac{1267 - 1260}{3.65 / \sqrt{4}} = 3.836 > 3.1824$$
,落在拒绝域内,

故拒绝原假设 H_0 ,即不能认为结果符合公布的数字 1260°C.

(2) 要检验的假设为 $H_0: \sigma \leq 2$, $H_1: \sigma > 2$

检验用的统计量
$$\chi^2 = \frac{(n-1)S^{*2}}{\sigma_0^2} \sim \chi^2 (n-1)$$
,

拒绝域 $\chi^2 > \chi^2_{1-\alpha}(n-1) = \chi^2_{0.95}(3) = 7.815$

 $\chi^2 = 40/4 = 10 > 7.815$,落在拒绝域内,故拒绝原假设 H_0

即不能认为测定值的标准差不超过 20℃.

五. (本题 10 分) 把一枚硬币连抛 100 次,结果出现了 40 次正面向上,60 次反面向上 在显著性水平显著性水平 $\alpha = 5\%$ 下,能否认为这枚硬币是均匀的?

解: 假设硬币是均匀的, 令 X=0 表示反面向上,否则,X=1, 即:

$$H_0: X \sim \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\chi^{2} = \frac{1}{n} \sum_{i=1}^{r} \frac{n_{k}^{2}}{p_{k}} - n \sim \chi^{2}(r-1) : \chi^{2} = \frac{1}{100} \left(\frac{60^{2}}{0.5} + \frac{40^{2}}{0.5} \right) - 100 = 4$$

 $\chi^2 = 4 > \chi^2_{1-\alpha}(r-1) = 3.841$, 故拒绝原假设,认为该硬币不均匀.

六. (本题 14分) 抽查 6家企业,根据产量 x_i (台) 与单位成本 y_i (万元)的统计数据得:

$$\sum x_i = 360$$
, $\sum x_i^2 = 25000$, $\sum y_i = 55$, $\sum y_i^2 = 565$, $\sum x_i y_i = 2860$

- (1) 求单位成本与产量的相关系数;
- (2) 求单位成本关于产量的回归方程;
- (3) 求线性回归的残差平方和 SS_s 及估计的标准差 $\hat{\sigma}$;
- (4) 在显著性水平 $\alpha = 0.05$ 下检验单位成本与产量是否有线性相关关系.

解: 1)
$$\bar{x} = 60$$
, $\bar{y} = 9.1667$, $L_{xx} = \sum x_i^2 - n\bar{x}^2 = 3400$,

$$L_{xy} = 60.8333$$
 $L_{xy} = \sum x_i y_i - n\overline{x} \ \overline{y} = -440,$

$$r = \frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}} = -0.9675$$

2)
$$y = \beta_0 + \beta_1 x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma)$

$$\hat{\beta}_1 = \frac{L_{xy}}{L_{xx}} = -0.1294 \,,$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 16.931$$

回归方程为 y = 16.931-0.1294x

4)
$$H_0: \beta_1 = 0$$

$$T = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}} \sqrt{L_{xx}} \sim t(n-2)$$

$$T = \frac{-0.1294 - 0}{0.9871} \sqrt{3400} = -7.6439$$

$$|T| > t_{0.975}(4) = 2.7764$$

3)
$$SS_e = L_{yy} - \hat{\beta}_1 L_{xy} = 3.8973$$

$$\hat{\sigma} = \sqrt{\frac{SS_e}{n-2}} = 0.9871$$

故拒绝原假设,即认为单位成本与产量有统计的线性相关关系.

七. (本题 10 分) 为了研究一天中的不同工作时间对工作效率的影响,随机抽取 12 人,等分成三组,A 組做早班,B 組做晚班,C 組做夜班,分别记录他们完成同一种工作的完工时间,数据如下:

组别	完	I	时	间
▲ 早班	5.2	5.6	5.8	5.4
B晚班	5.4	4.9	6.1	6.6
C夜班	6.1	5.8	5.9	7.2

试利用方差分析的方法,在显著性水平 $\alpha = 0.05$ 下分析不同的班次对工作效率是否有显著性影响?

解:方差分析的前提是:假设不同班次的完工时间服从正态分布,且方差相等,即 $\xi_i \sim N(\mu_i, \sigma^2)$, i=1,2,3.

检验班次对工作效率是否有影响,相当于检验: $H_0: \mu_1 = \mu_2 = \mu_3$

方差分析:							
组	计数	求和	平均	方差			
行 1	4	22	5.5	0.066667			
行 2	4	23	5. 75	0.563333			
行 3	4	25	6. 25	0.416667			
方差分析							
差异源	SS	df	MS	F	F crit		
組间	1.166667	2	0. 583333	1.671975	4. 256492		
组内	3.14	9	0.348889				
总计	4. 306667	11					

F 〈 F $\frac{\text{crit}}{\text{crit}}$ = 4.26, 故 接受原假设,即在显著性水平 0.05 下认为不同的班次对工作效率无显著性影响.

谢谢你的配合

祝你考出好成绩

By K. Zhu