2)
$$\mu_2$$
: $\|\mu_2 - \mu_1\|_2 = \sqrt{(2-2)^2 + (5-10)^2} = \sqrt{25} = 5$
(215) $\|\mu_2 - \mu_2\|_2 = \sqrt{(2-5)^2 + (5-8)^2} = \sqrt{18} = 3\sqrt{2}$
 $\|\mu_2 - \mu_2\|_2 = \sqrt{(2-1)^2 + (5-2)^2} = \sqrt{10}$

Cus = argum (lus - pells = C) [ms -> c2]

K-means

- 1) Initialize centraids
- 2) Assign points to clasters
- 3) Adjust certraids mean
- 41 Re-assign points

$$||G| = ||K_{6} - \mu_{0}||_{2} = \sqrt{(6-2)^{2} + (4-6)^{2}} = \sqrt{4+6+36} = \sqrt{52}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(6-3)^{2} + (4-6)^{2}} = \sqrt{4+6} = \sqrt{44}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(6-4)^{2} + (4-6)^{2}} = \sqrt{4+6} = \sqrt{44}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-3)^{2} + (4-6)^{2}} = \sqrt{4+6} = \sqrt{44}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-3)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-5)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-5)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-5)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2} = \sqrt{(4-6)^{2} + (4-6)^{2}} = \sqrt{2}$$

$$||K_{6} - \mu_{0}||_{2}$$

$$||u_{1} - \mu_{1}||_{2} = \sqrt{(\gamma - \delta)^{2} + (5 - \delta_{1})^{2}} = \sqrt{50}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(\gamma - \delta)^{2} + (5 - \delta_{1})^{2}} = \sqrt{2}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(\gamma - \delta)^{2} + (5 - \delta_{1})^{2}} = \sqrt{16 + 36}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(\gamma - \delta)^{2} + (4 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{52}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (4 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{52}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (4 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{52}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (4 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{52}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{52}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{65}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{65}$$

$$||u_{1} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{(6 - \delta)^{2} + (2 - \delta)^{2}} = \sqrt{16 + 36} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{16 + 36} = \sqrt{16} = \sqrt{16}$$

$$||u_{2} - \mu_{2}||_{2} = \sqrt{16 + 36} = \sqrt$$

d. Different centroid initializations greatly impact the convergence speed, cluster quality (how well data is grouped) and stability of the K-nears algorithm. This aborthmentally assumes that clusters are well-separated, not overlapping and spherical, thouse this is not true for real datasets.

If the centroids are too close or too far, it can lead to poor and slow convergence and lead to converging into a local minimum instead of a global one.

we can counteract these difficulties by running the algorithm multiple times with different seeds and select the best, removing outliers, or using nethods like PCA, or LDA, to normalise data perform dimensionality peduction, or optimize class separation.

Part B - pcA

D y1 y2 y3 y4

My 5 0 1 +

My 0 5 0 +

My 1 0 -1 -

a. 1) cortex data
$$M' = (Mi - \mu)$$
 $N = 3$
 $M' = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 5/3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 5/3 \\ 0 \end{bmatrix}$
 $M_1' = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 5/3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 5/3 \\ 0 \end{bmatrix}$
 $M_2' = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 5/3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 10/3 \\ 0 \end{bmatrix}$
 $M_3' = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \begin{bmatrix} 2 \\ 5/3 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -5/3 \\ 0 \end{bmatrix}$

PCA

> apply k-L Transform

11 center data

21 compute covariance matrix

31 eigenvalues and eigenvectors

4)
$$\mu' = \mu^{T} \mu$$

> n dimensions of higher varience

(a higher N)

$$cov(ny) = \frac{\sum (ni - \overline{n}) (yi - \overline{y})}{N-1}$$
for samples

21 comprae coversionce matrix

Centered	Doutaget	42	43	44					set p=1	00
	3	-73		+	(removed mean)					
hzl	-2	10/3	0	+						
-	-1	-5/3	-1	-						
	(6v (91,91)		ov(ya,)	12)	wyays)		7	-5	2	
			(Z							
٤ =	cov(yzyn)	C	w(420	72)	couly2143)	N	-5	25	0	
					65					
	Car(43,4A)	Ca	w(431.	y ₂)	Cor(23,73)		2	0	1	

$$det(\Sigma - \chi I) = 0 \le 1 \quad det \left(\begin{bmatrix} 7 - 7 & -5 & 2 \\ -5 & \frac{25}{3} - 7 & 0 \\ 2 & 0 & 1 - 7 \end{bmatrix}\right) = 0 \in I$$

$$(2-1)(\frac{2t}{3}-1)(1-1)-[2\cdot2\cdot(\frac{25}{3}-1)]-[5)(-5)(1-1)=0$$

$$\Theta\left(\frac{175}{3} - 77 - \frac{25}{3}x + 7^2\right)(1-7) - \left(\frac{100}{3} - 47\right) - \left(25 - 257\right) = 0$$

$$GI - \chi^3 + \frac{49}{3}\chi^2 - \frac{134}{3}\chi^2 = 0$$
 $GI = \chi_{120} V = \chi_{120} V = \frac{49 + \sqrt{793}}{6} V = \frac{49 - \sqrt{793}}{6}$

Assuming
$$k=5$$
: $v_1 = \begin{bmatrix} 5 \\ 3 \\ -10 \end{bmatrix}$

$$V_{1} = \frac{V_{1}}{11 \text{ mul}_{2}} = \begin{bmatrix} \frac{5}{\sqrt{134}} \\ \frac{3}{\sqrt{134}} \\ -\frac{5}{\sqrt{134}} \end{bmatrix} = \begin{bmatrix} 0,43.9 \\ 0,13592 \\ -\frac{5}{\sqrt{134}} \end{bmatrix}$$