Московский Физико-Технический Институт (государственный университет)

Работа 25

Цель работы:

text

В работе используются:

text

1 Выполнение задания

1.1 Ознакомительные шаги

1. Откроем в Micro-Cap файл adm3p.cir, в котором подготовлены схемы лестничных фильтров порядка n=3, реализующих входной адмиттанс.

1.2 Трехполюсные лестничные фильтры

1. Откроем модель adm3p.cir и реализуем лестничные фильтры третьего порядка с параметрами:

$$R_0 = 50, \quad f_0 = 1MHz, \quad Q = 10.$$

Для этого вычислим эталонные значения:

$$L_0 = \frac{R_0}{2\pi f_0}, \quad C_0 = \frac{1}{2\pi f_0 R_0}$$

и установим на схеме номиналы компонентов f_0, Q, R_0, L_0, C_0 .

- 2. Сравним частотный характеристики фильтров с теоретическими, удостоверимся в правильности расчетов.
- 3. Сравним частотные характеристики по напряжению и по мощности. Измерим уровни затухания по мощности на границах полос пропускания, там где затухание по напряжению составляет 0.7. Запишем получившиеся данные в таблицу:

	ФНЧ	ФВЧ	Полосовой	Режекторный
Затухание по мощности	0,5	0,5	0,5	0,5

Исследуем степень деградации характеристик фильтра нижних частот при варьировании сопротивления источника RSL и нагрузки RLL от 25 до 75 с шагом 25.

	RLL		RSL		
	Напряжение	Мощность	Напряжение	Мощность	
25	0,33	0,44	0,66	1,77	
50	0,5	1	0,5	1	
75	0,6	1,43	0,4	0,625	

4. Изучим фазовые характеристики фильтров, измерим значения фазовых сдвигов на нулевой и бесконечной частотах:

ω	ФНЧ	ФВЧ	Полосовой	Режекторный
0	0	$-\pi/2$	$3\pi/2$	0
∞	$-3\pi/2$	-2π	$-3\pi/2$	0

5. Выведем логарифмическую частотную характеристику фильтра нижних частот в диапазоне 1Meg, 100k (логарифмическая шкала) и измерим по ней уровни затухания в децибелах на частотах 0, f_0 , $2f_0$, $10f_0$:

f	0	f_0	$2f_0$	$10f_0$
$K(f_0)$	-6	-9	-24,2	-66

6. Выведем логарифмическую частотную характеристику полосового фильтра в диапазоне 1500k, 500k (линейная шкала) и измерим по ней уровень подавления на частоте f_0 :

$$K(f_0) = -6 \, dB.$$

Измерим одностороннюю ширину $\triangle f$ полосы пропускания по уровню -3dB и уровень затухания при расстройках на $2 \triangle f$, $10 \triangle f$ от частоты f_0 :

$$\triangle f = 49 \, k$$

$$K(f_0 - 2 \triangle f) = -19 \, dB, \quad K(f_0 + 2 \triangle f) = -16 \, dB$$

$$K(f_0 - 10 \triangle f) = -69,7 dB, \quad K(f_0 + 10 \triangle f) = -55 dB$$

7. По логарифмической частотной характеристике режекторного фильтра в диапазоне частот 1500, 500k измерим ширины полос по уровням -3dB, -43dB, -63dB:

$K(f_0 \pm \triangle f), dB$	-3	-43	-63
$\triangle f$	50k	10k	4,5k

2 Фильтры низших частот высших порядков

1. Откроем модель batt.cir, в которой реализованы фильтры Баттерворта нижних частот с параметрами $R_0 = 100, f_0 = 1MHz(L_0 = 15.916, C_0 = 1.592n)$ порядков от 3 до 7. Изучим их частотные и переходные характеристики. По логарифмическим графикам в диапазоне 10Meg, 100k измерим затухания на частотах $f_0, 2f_0$ и $10f_0$:

Фильтр Баттерворта	n=3	n=4	n=5	n=6	n=7
$K(f_0), dB$	-3.03	-3.04	-3.04	-3.04	-3.04
$K(2f_0), dB$	-18.15	-24.13	-30.13	-36.15	-42.18
$K(10f_0), dB$	-60.02	-80.03	-100.03	-120.03	-140.03

2. Повторим те же исследования для фильтров Чебышева с неравномерностями 0.5 dB (файл cheb0-5.cir) и 3 dB (файл cheb3-0.cir)

Чебышева 0.5 dB	n=3	n=4	n=5	n=6	n=7
$K(2f_0), dB$	-19,2	-30,6	-42,1	-53,5	-64,9
$K(10f_0), dB$	-62,8	-88,9	-114,9	-140,9	-166,9
Чебышева 3.0 dB	n=3	n=4	n=5	n=6	n=7
$K(2f_0), dB$	-28,3	-39,7	-51,2	-62,6	-74,1
$K(10f_0), dB$	-72,0	-98,0	-124,0	-150,0	-176

3. Вернемся к batt.cir и перенастроим фильтры на $R_0=50,\,f_0=10MHz$:

3 Семиполюсной фильтр

1. Открыв файл pb7p.cir реализуем семиполюсной фильтр Чебышева с неравномерностью 3 dB. для тракта усилителя промежуточной частоты приемника с параметрами $R_0=600,\ f_0=465kHz$ и двухсторонней полосой $\Delta f=24kHz,\ Q=\frac{f_0}{\Delta f}=19.375$. По логарифмической частотной характеристике измерим избирательность по соседнему каналу - уровень затухания при расстройках на $\pm 24kHz$ от f_0 :

+24kHz	-72.294 dB
-24kHz	-75.923 dB

Аналогично посчитаем разрешающую способность для фильтра Чебышева 0.5 dB:

+24kHz	-63.173 dB
-24kHz	-66.802 dB

И для фильтра Баттерворта:

+24kHz	-40.655 dB
-24kHz	-43.798 dB