BAYESIAN NETWORKS

CS221 Fall 2019

Dhruv Kedia Jon Kotker

What are we covering today?

PROBABILISTIC INFERENCE COOKBOOK

SAMPLE PROBLEMS

CONDITIONAL INDEPENDENCE

Bayesian Networks

Definition: Bayesian network-

Let $X = (X_1, \dots, X_n)$ be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

Bayesian Networks

A Bayesian network represents a joint probability distribution.

A Bayesian network represents a joint probability distribution.

P(F=f, C=c, A=a, V=v, S=s, H=h, I=i) = p(f) p(c) p(a) p(v | f) p(s | f, c) p(h | c, a) p(i | a)

Probabilistic Inference Cookbook

Given a query $P(Q \mid E = e)$:

- 1. Remove (marginalize) variables not ancestors of Q or E.
- 2. Convert Bayesian network to factor graph.
- 3. Condition (shade nodes / disconnect) on E = e.
- 4. Remove (marginalize) nodes disconnected from Q.
- 5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle filtering).

Example: alarm

$$\begin{vmatrix}
b & p(b) \\
1 & \epsilon \\
0 & 1 - \epsilon
\end{vmatrix}$$

$$\begin{vmatrix} e & p(e) \\ 1 & \epsilon \\ 0 & 1 - \epsilon \end{vmatrix}$$

[whiteboard]

Query: $\mathbb{P}(B)$

• Marginalize out A, E

Query: $\mathbb{P}(B \mid A = 1)$

• Condition on A=1

Example: A-H (section)

[whiteboard]

Query: $\mathbb{P}(C \mid B = b)$

• Marginalize out everything else, note $C \perp \!\!\! \perp B$

Query: $\mathbb{P}(C, H \mid E = e)$

• Marginalize out A, D, F, G, note $C \perp\!\!\!\perp H \mid E$

Bayesian Lights (Fall 2016 Midterm)

This holiday season, you decide to put your knowledge of Bayesian networks to good use. You decide to create Bayesian LightsTM, an arrangement of lights that turn on and off randomly according to the joint distribution of a Bayesian network.

Figure 1 shows the Bayesian network corresponding to the lights. Each light is associated with a variable which takes on values in $\{0,1\}$ (off: 0, on: 1). For example, A_1 is the light in the upper-left corner and E_1 is the light at the very bottom. A light in the top row is on with probability α . The status of a light in subsequent rows is governed by the two parent lights directly above it, and it is on with probability β when the two parent lights above it have different statuses (on-off or off-on), and off with probability β when the two parent lights above it have the same status. In other words, each light is the result of applying a noisy XOR function.

C ⊥ A | W? Yes C ⊥ F | W? Yes V ⊥ H | W? Yes C ⊥ V | W?

Explaining Away!

Patterns

