Collision Detection: Hierarchical Algorithms

Rafael Murrieta-Cid

Centro de Investigación en Matemáticas (CIMAT)

June 2021

Outline

Collision Detection: Hierarchical Algorithms

Collision Detection: Hierarchical Algorithms

Pre-computation Phase

- There is a geometric primitive, e.g. a sphere.
- Let *O* be a 3D object with surface *S* composed of triangles.
- There is a pre-computation phase, in which each triangle in S is enclosed in the smallest geometric primitive.
- A tree data structure is built, the tree has as leaf nodes the triangles enclosed in the geometric primitive.
- The tree can be built using a top-down approach. Recursively a volume is split into two sets
 E₁ and E₂ having the same cardinality of leaves.
- The partition is finished when the nodes in the tree have each one a single geometric primitive containing a single triangle.
- It is suitable to have a balanced tree.

Hierarchical Algorithm

- Let O_1 and O_2 be two objects and T_1 and T_2 their respective trees.
- The collision test is done traveling the trees, using a deep-first search method. Pairs of nodes in the trees are examined.
- If the volumes associated with the vertices do not intersect then they are pruned of the trees.
- If the volumes associated with the nodes intersect then the child nodes are examined.
- Eventually if the terminal nodes intersect then the triangles themselve are checked for collision.

Recursive Algorithm

- Let r_1 and r_2 be the root vertices of the trees T_1 and T_2 .
- vol(v) denotes the volume associated with the vertex v, left-child(v) and right-child(v) design the two children of v if v is not a terminal (leaf) node.
- Recursive algorithm COLLIDE(r₁,r₂)

 - If r_1 and r_2 are leaf nodes then test the triangle for collision. If there is collision return 1, otherwise return 0.
 - 3 If $vol(r_2) < vol(r_1)$ then switch r_1 and r_2 .
 - If COLLIDE $(r_1, \text{ left-child}(r_2)) = 1$ then return 1.
 - **5** Else if COLLIDE(r_1 , right-child(r_2)) = 1 then return 1.
 - Else return 0.

Recursive Algorithm

Thanks... Questions?

murrieta@cimat.mx