Directional Derivatives and Gradient Vector Directional Derivative:

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

where **u** is a unit vector. **Gradient Vector**:

$$\nabla f(x,y) = \langle f_x, f_y \rangle$$

Properties: - ∇f points in the direction of max increase of f.

- $\nabla \hat{f}$ is perpendicular to level curves of f.

Max Rate of Change:

Max Rate =
$$|\nabla f(x, y)|$$

- Maximum and Minimum Values Second Derivative Test: Compute $D = f_{xx}f_{yy} (f_{xy})^2$. If D > 0 and $f_{xx} > 0$, local min at (a,b). If D > 0 and $f_{xx} < 0$, local max at (a,b).
- If D < 0, saddle point at (a, b).

- If D=0, test inconclusive. Critical Points: Solve $f_x=0$, $f_y=0$.

Lagrange Multipliers

Purpose: Find extrema of f(x,y) subject to g(x,y)=0. Method: 1. $\nabla f = \lambda \nabla g$ $f_x = \lambda g_x$, $f_y = \lambda g_y$ 2. Include g(x,y)=0.

- 3. Solve for x, y, \(\lambda\).
 4. Evaluate f at solutions.

Double Integrals over Rectangles

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

where $R = [a, b] \times [c, d]$. **Fubini's Theorem:** If f is continuous

$$\iint_{R} f(x,y) dA = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

Average Value of a Function

Average Value over R:

$$f_{\text{avg}} = \frac{1}{(b-a)(d-c)} \iint_{R} f(x,y) \, dA$$

Double Integrals over General Regions

Type I Region (Vertical):

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

$$\iint_D f \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f \, dy \, dx$$

Type II Region (Horizontal):

$$D = \{(x, y) \mid c \le y \le d, \ h_1(y) \le x \le h_2(y)\}$$

$$\iint_D f\,dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f\,dx\,dy$$

Double Integrals in Polar Coordinates

When to Convert: - Circular regions or integrands with $x^2 + y^2$.

When f(x,y) is easier to integrate in polar form.

Transformation:

$$x = r\cos\theta, \ y = r\sin\theta$$

Integral:

$$\iint_D f(x,y) dA = \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Tips: - Adjust limits of r and θ to match D.

- Common for circles, sectors, annuli.

Vector Fields

Definition: $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ Gradient Field: $\mathbf{F} = \nabla f$

Conservative Field: $\mathbf{F} = \nabla f$.

Curl in \mathbb{R}^2 :

 $\operatorname{curl} \mathbf{F} = Q_x - P_u$

Line Integrals

When to Use: - To compute work done by a force field along a path.

- To integrate a scalar function over a curve (mass, length).

Types of Line Integrals: - Scalar Line Integral (with respect to arc length): $\int_C f \, ds$

- Vector Line Integral (work): $\int_C \mathbf{F} \cdot d\mathbf{r}$

How to Compute: 1. Parameterize C by $\mathbf{r}(t)$, $t \in [a, b]$.

- 2. Compute $\mathbf{r}'(t)$ and $|\mathbf{r}'(t)|$ if necessary.
- 3. Substitute into the integral: Scalar: $\int_a^b f(\mathbf{r}(t))|\mathbf{r}'(t)|dt$

- Vector: $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ When to Convert to Polar Coordinates: - When C is a circle or curve naturally described in polar coordinates. - When integrand involves $x^2 + y^2$ or trigonometric functions.

Converting to Polar Coordinates: - Use $x = r \cos \theta$, $y = r \sin \theta$. - Express **F** and $d\mathbf{r}$ in terms of r and θ .

Tips: - Choose the simplest parameterization possible.

- For circles: $x = a \cos t$, $y = a \sin t$, $t \in [0, 2\pi]$
- For straight lines, use linear parameterizations.

Applications: - Calculating work, circulation, or flux.

- Finding mass of a wire with variable density.

Fundamental Theorem for Line Integrals

If $\mathbf{F} = \nabla f$, then:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)$$

Conservative Field Test: - If $P_y = Q_x$, then **F** is conservative.

Green's Theorem When to Use: - To convert a difficult line integral into a double integral (or vice versa).

When dealing with circulation or flux over a closed curve C in the plane.

- C must be a positively oriented (counter-clockwise) simple closed curve.

Statement:

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Applications: - Calculating area: Area = $\frac{1}{2} \oint_C x \, dy - y \, dx$

- Computing work done by a force field around a closed path.

How to Apply: 1. Verify conditions (closed curve, positive orientation).

2. Identify P(x, y) and Q(x, y). 3. Compute $Q_x - P_y$. 4. Evaluate $\iint_D (Q_x - P_y) dA$. Tips: - Simplify the integrand before integrating.

- Choose the order of integration based on D.
- For circular regions, consider polar coordinates.

Example: Evaluating a Line Integral Using Green's Theorem

Problem: Let $\vec{F}(x,y) = (x^2 + y^2, \frac{1}{3}x^3 + 2xy + x)$. Compute $\int_C \vec{F} \cdot d\vec{r}$ along the semicircle C defined by $x^2 + y^2 = 16$ for $y \ge 0$. Solution: 1. Close the Curve: - Add the interval from x = 4 to x = -4 along y = 0 to form a closed curve C'. 2. Apply Green's Theorem:

$$\int_{C'} \vec{F} \cdot d\vec{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

- Compute $\frac{\partial Q}{\partial x} = x^2 + 2y + 1$, $\frac{\partial P}{\partial y} = 2y$. - Integrand: $x^2 + 1$. 3. Compute

$$\iint_{D} (x^{2} + 1) dxdy = \int_{0}^{\pi} \int_{0}^{4} (r^{2} \cos^{2} \theta + 1) r dr d\theta$$

- Evaluate:

$$\int_0^{\pi} \left(\frac{64}{4} \cos^2 \theta + 8 \right) d\theta = 40\pi$$

4. Compute Integral over Straight Segment: - Parametrize: $x=t,\ y=0,\ t\in[4,-4]$. - $\vec{F}\cdot d\vec{r}=x^2dx$. - Integral: $\int_4^{-4}x^2dx=-\frac{128}{3}$. 5. Find

$$\int_{G} \vec{F} \cdot d\vec{r} = \int_{G'} \vec{F} \cdot d\vec{r} - \left(-\frac{128}{3} \right) = 40\pi + \frac{128}{3}$$

Answer: $\int_C \vec{F} \cdot d\vec{r} = 40\pi + \frac{128}{2}$

Trigonometric Identities

Pythagorean:

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$1 + \tan^2 \theta = \sec^2 \theta$$

Double Angle:

$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

Sum and Difference:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

Common Derivatives and Integrals

Derivatives:

$$\frac{d}{dx}e^{ax} = ae^{ax}$$
$$\frac{d}{dx}\ln x = \frac{1}{x}$$
$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$
$$\frac{d}{dx}\sin ax = a\cos ax$$
$$\frac{d}{dx}\cos ax = -a\sin ax$$

 $\frac{d}{dx}\tan ax = a\sec^2 ax$

Integrals:

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \sqrt{x} dx = \frac{2}{3} x^{3/2} + C$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax + C$$

Techniques: - Substitution: Let u = g(x).

- Integration by Parts: $\int u \, dv = uv - \int v \, du$.

Jacobian Determinant

Transformation from (x, y) to (u, v):

$$J = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| \begin{matrix} x_u & x_v \\ y_u & y_v \end{matrix} \right| = x_u y_v - x_v y_u$$

Use in Integration

$$\iint_D f(x,y)\,dA = \iint_{D'} f(x(u,v),y(u,v))|J|\,du\,dv$$

Conservative Vector Fields Tests: - If $P_y = Q_x$, F is conservative. Finding Potential f: 1. Integrate P w.r.t x to get f.

2. Differentiate f w.r.t y, compare with Q.

3. Adjust f as needed.

Coordinate Transformations

Polar to Cartesian:

$$x = r\cos\theta, \ y = r\sin\theta$$

Cartesian to Polar:

$$r = \sqrt{x^2 + y^2}, \ \theta = \arctan\left(\frac{y}{x}\right)$$

Cylindrical:

$$x = r\cos\theta, \ y = r\sin\theta, \ z = z$$

Spherical:

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

Derivative Rules

$$\frac{d}{dx}c = 0$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}[cf(x)] = cf'(x)$$

$$\frac{d}{dx}[f \pm g] = f' \pm g'$$

$$\frac{d}{dx}[fg] = f'g + fg'$$

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$$

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Example: Computing Area Between Circles

Problem: Compute the area of the region R with $y \geq 0$ outside C_2 and inside C_1 , where:

$$C_1: (x-1)^2 + y^2 = 1, \quad C_2: x^2 + y^2 = 2$$

Solution Steps: 1. Express the curves in polar coordinates: - For C_1 :

$$(x-1)^2 + y^2 = 1$$

Substitute $x = r \cos \theta$, $y = r \sin \theta$:

$$(r\cos\theta - 1)^2 + (r\sin\theta)^2 = 1$$

Simplify:

$$r^2 - 2r\cos\theta = 0$$

So r=0 or $r=2\cos\theta$. Since r=0 is trivial, C_1 corresponds to $r=2\cos\theta$. - For C_2 :

$$x^2 + y^2 = 2$$

In polar coordinates:

$$r^{2} = 2$$

So $r = \sqrt{2}$. 2. **Determine the limits of integration:** - Find the angle θ where the curves intersect:

$$r = \sqrt{2} = 2\cos\theta$$
$$\cos\theta = \frac{\sqrt{2}}{2}$$
$$\theta = \frac{\pi}{4}$$

Therefore, θ ranges from 0 to π/4.
3. Set up the double integral in polar coordinates:

$$A = \int_{\theta=0}^{\frac{\pi}{4}} \int_{r=\sqrt{2}}^{r=2\cos\theta} r \, dr \, d\theta$$

4. Compute the integral: - Integrate with respect to r:

$$\int_{r=\sqrt{2}}^{r=2\cos\theta} r \, dr = \left[\frac{1}{2}r^2\right]_{r=\sqrt{2}}^{r=2\cos\theta} = \frac{1}{2}\left((2\cos\theta)^2 - (\sqrt{2})^2\right) = \frac{1}{2}\left(4\cos^2\theta - 2\right)$$

- Integrate with respect to θ

$$A = \int_0^{\frac{\pi}{4}} \left(2\cos^2 \theta - 1 \right) d\theta$$

5. Simplify and evaluate the integral: - Use the identity $\cos 2\theta =$ $2\cos^2\theta - 1$:

$$2\cos^2\theta - 1 = \cos 2\theta$$

$$A = \int_0^{\frac{\pi}{4}} \cos 2\theta \, d\theta = \left[\frac{1}{2} \sin 2\theta \right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left(\sin \frac{\pi}{2} - \sin 0 \right) = \frac{1}{2} (1 - 0) = \frac{1}{2}$$

6. Final Answer: - The area $A = \frac{1}{2}$ square units.

Example: Evaluating a Line Integral

Problem: Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = \langle 4xy^2 + 9x^2, 3e^y + 3e^y \rangle$ $4x^2y\rangle$ and C is the part of the parabola $4y=x^2$ from (2,1) to (-2,1). Solution: 1. Verify if the Vector Field is Conservative: - Let $P=4xy^2+9x^2$ and $Q=3e^y+4x^2y$. - Compute $\frac{\partial P}{\partial y}=8xy$ and $\frac{\partial Q}{\partial x}=8xy$.

- Since $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, \vec{F} is conservative.

2. Find the Potential Function f(x,y): - $f_x = 4xy^2 + 9x^2 \implies f(x,y) = \int (4xy^2 + 9x^2) dx = 2x^2y^2 + 3x^3 + g(y)$. - Differentiate with respect to y: $f_y = \int (4xy^2 + 9x^2) dx = 2x^2y^2 + 3x^3 + g(y)$. $4x^2y+g'(y)$. - Set equal to Q: $4x^2y+g'(y)=3e^y+4x^2y\implies g'(y)=3e^y$. - Integrate g'(y): $g(y)=3e^y$. - Potential function: $f(x,y)=2x^2y^2+3x^3+3e^y$. 3. Apply the Fundamental Theorem for Line Integrals:

$$\int_{C} \vec{F} \cdot d\vec{r} = f(-2, 1) - f(2, 1).$$

- Compute $f(2,1)=2(2)^2(1)^2+3(2)^3+3e^1=8+24+3e$. $f(-2,1)=2(-2)^2(1)^2+3(-2)^3+3e^1=8-24+3e$. - Result:

$$\int_C \vec{F} \cdot d\vec{r} = (8 - 24 + 3e) - (8 + 24 + 3e) = -48.$$

4. Path Independence Verification: - Choose the line segment C' from (2,1) to (-2,1) and parametrize by $\vec{r}(t)=\langle -t,1\rangle$ with $-2\leq t\leq 2$. $d\vec{r} = \langle -1, 0 \rangle dt$ and $\vec{F}(\vec{r}(t)) = \langle 4t + 9t^2, 3e + 4t^2 \rangle$. $-\vec{F} \cdot d\vec{r} = -4t - 9t^2$.

5. Evaluate the Integral Directly:

$$\int_{-2}^{2} (-4t - 9t^2) dt = \left[-2t^2 - 3t^3 \right]_{-2}^{2} = -48.$$

Answer: $\int_C \vec{F} \cdot d\vec{r} = -48$.