

Status of the NASA Allsky Camera Network

William J. Cooke
Lead, NASA Meteoroid Environment Office
wiliam.j.cooke@nasa.gov

In the Beginning...

- There were visual observers (and still are)
- Data limited to radiants and rough estimates of speed and brightness
- Can get very cold during winter nights

FIG. 3-3. Modern visual meteor observing at Springhill Meteor Observatory near Ottawa. Warm air is supplied to the individual compartments.

Photographic Observations

Wide field

All sky

Meteorite Observation and
Recording Program (MORP)

Modra Observatory

- All sky systems are nice because only 1 camera is needed per station

Super Schmidt Cameras

- First employed in the 1940's
- Detected bright meteors (magnitudes $> +3$)
- Large FOV
- Multiple stations and use of rotating shutter enabled location, speed, and orbit determinations

- Much of what we know is based on data taken with these systems

- The advent of fast, wide field photographic systems led to the creation of the first meteor networks
- European Fireball Network began in 1958 in Germany and Czechoslovakia
- The Prairie Network began in 1964 in the U.S. Funding was terminated in 1975
- MORP began in Canada in 1968. Its 12 stations used Super-Komura cameras. Funding discontinued in 1985

- Only European network remains operating today

Photographic Advantages

- Large dynamic range
 - Good photometry
- High resolution
 - Precise astrometry
- Can be automated to some degree

Czech system

Video Observations

- Largely pioneered by Clifton and Naumann in the 1960's at MSFC (Meteor Physics Branch)

- Advantages:

- 100x better sensitivity over Super Schmidt cameras
- 30 fps rate gives better temporal resolution than rotating shutter
- Unrivaled temporal accuracy thru GPS time stamps

- Disadvantages:

- Limited resolution compared to photographic
- Limited dynamic range (most systems are 8 bit)

The Sandia Sentinel Systems

- Sentinel I (1998) - “look down” system with hardware meteor detection. 6 second buffer, parallel connection to computer (Moooo)
- Sentinel II (2004) - conventional all sky with hardware detection. USB connection to computer
- Sentinel III (2007) - all sky system with software detection

Camera: Hi-Cam HB-710E
Lens: Rainbow L163VDC4 1.6-3.4mm f/1.4 lens

Current Fireball Networks

Name	System Type	Start Year	Reference
European Network	Photographic	1951	Oberst et al (1998)
Japan Fireball Network	Video	1977	Shiba et al (1998)
Sandia All-sky Network	Video	1997	
Spanish Meteor Network	CCD/Video	1997	Trigo-Rodriguez et al (2008)
Denver Museum Fireball Network	Video	2001	Sullivan and Klebe (2004)
Southern Ontario Meteor Network	CCD/Video	2004	Weryk et al (2008)
Desert Fireball Network	Photographic	2004	Spurny and Borovicka (2006)
Polish Fireball Network	Video	2004	Olech et al (2006)

Goals of the NASA Network

- Establish the speed distribution of cm size meteoroids
- Determine which sporadic sources produce large particles
- Determine (low precision) orbits for bright meteors
- Attempt to discover the size at which showers begin to dominate the meteoroid flux
- Monitor the activity of major meteor showers
- Assist in the location of meteorite falls

Station Locations

- 11 more to install!

Automated Lunar and Meteor Observatory (ALaMO)

Station Components

- All-sky Camera
 - Low light level video camera
 - All sky (fish eye) lense
 - heater/fan to prevent dewing
- Computer running ASGARD (**A**ll **S**ky and **G**uided **A**utomatic **R**eal-time **D) software**
- GPS
- Uninterruptible Power Supply (UPS)
- Internet connection

Detection

```

#
# version : 20090611
# num_fr : 20
# time : 20090811 08:24:51.297 UTC
# unix : 1249979091.297046
# ntp : LOCK 62141 181788 31681
# seq : 43288344
# mul : 0 [A]
# site : 02
# latlon : 34.8535 -85.3143 246.0
# text : C3PO
# label :
# plate : 20090724-094001-02-aut-calib-ID
# geom : 640 480
# reject : 0
#
# fr   time   sum   seq      cx      cy      th      phi     lsp     mag   flag
30  -0.500  4499 43288329  300.265  308.405  24.895  -75.082  -7.15  -7.15  0000
31  -0.467  5283 43288330  301.501  310.025  25.186  -76.129  -7.54  -7.54  0000
32  -0.434  4890 43288331  301.857  314.106  26.190  -77.110  -8.12  -8.12  0000
33  -0.400  5619 43288332  303.022  316.712  26.756  -78.211  -8.48  -8.48  0000
34  -0.367  7861 43288333  303.941  320.176  27.574  -79.268  -8.62  -8.62  0000
35  -0.334  7651 43288334  305.163  322.512  28.087  -80.263  -8.82  -8.82  0000
36  -0.300  6796 43288335  306.232  326.347  29.011  -81.338  -8.98  -8.98  0000
37  -0.267  8053 43288336  307.425  328.721  29.554  -82.238  -9.07  -9.07  0000
38  -0.234  9157 43288337  308.517  332.484  30.478  -83.205  -9.12  -9.12  0000
39  -0.200  7418 43288338  310.156  335.234  31.113  -84.283  -9.24  -9.24  0000
40  -0.167  8873 43288339  311.224  338.986  32.056  -85.133  -9.28  -9.28  0000
41  -0.133  7929 43288340  312.432  342.882  33.039  -86.010  -9.33  -9.33  0000
42  -0.100  7909 43288341  313.751  346.717  34.011  -86.882  -9.45  -9.45  0000
43  -0.067  8397 43288342  314.826  349.421  34.697  -87.531  -9.52  -9.52  0000
44  -0.033  13750 43288343  315.998  356.506  36.573  -88.429  -10.22  -10.22  0000
45  0.000  14263 43288344  316.409  358.491  37.099  -88.699  -10.62  -10.62  0000
46  0.033  11660 43288345  318.995  360.889  37.673  -89.865  -10.24  -10.24  0000
47  0.067  12812 43288346  318.587  366.500  39.220  -89.918  -10.87  -10.87  0000
48  0.100  11156 43288347  321.343  368.218  39.623  -91.050  -10.04  -10.04  0000
49  0.133  6245 43288348  323.660  369.902  40.040  -91.990  -8.52  -8.52  0000

```

20090811 08:24:51

Calibration

- Need to transform between pixel coordinates to az, el
- Every 30 minutes the camera computer produces a calibration plate (several images stacked together to show lots of stars)
- User runs an IDL script to match stars to image
- A least squares fit is performed to determine plate parameters

The transformation of the plate coordinates x, y to the celestial coordinates a, z is done by means of five equations. The equation for r can be rewritten as

$$r = C \left[\sqrt{(x - x_0)^2 + (y - y_0)^2} + A(y - y_0) \cos(F - a_0) - A(x - x_0) \sin(F - a_0) \right], \quad (9)$$

where we introduced the global scale factor C (see below). The other four equations are

$$u = Vr + S(e^{Dr} - 1) + P(e^{Qr^2} - 1) \quad (6)$$

$$b = a_0 - E + \arctan \left(\frac{y - y_0}{x - x_0} \right) \quad (4)$$

$$\cos z = \cos u \cos \varepsilon - \sin u \sin \varepsilon \cos b \quad (1)$$

$$\sin(a - E) = \sin b \sin u / \sin z \quad (2)$$

From: "asgard (02)"
Date: August 13, 2009 6:03:52 AM CDT
To: "list"
Subject: allsky 20090813

Last sync and disk usage :

01 : 20090813 06:00:01 CDT : 280188 / 465365 MB free
02 : 20090813 07:00:02 EDT : 282305 / 465365 MB free

Last recorded event and plate :

01 : 20090813 100436 UTC : 20090724-094001-01-aut-calib-ID
02 : 20090813 102022 UTC : 20090724-094001-02-aut-calib-ID

ASGARD version and NTP status :

01 : 20090611 : LOCK 18154 64069 4032
02 : 20090611 : LOCK -13559 63498 7150

date time : : vel beg end : src

date	time	:	:	vel	beg	end	:	src
+ 20090813	03:16:41	:	01 02	:	: ...
+ 20090813	04:01:55	:	01 02	:	59.7	109.8	99.5	: PER
+ 20090813	04:05:44	:	01 02	:	58.1	107.5	95.4	: PER
+ 20090813	04:10:46	:	01 02	:	58.0	103.4	93.5	: PER
+ 20090813	04:19:51	:	01 02	:	39.4	98.1	86.8	: ...
+ 20090813	04:25:20	:	01 02	:	60.4	109.8	90.7	: PER
+ 20090813	04:26:40	:	01 02	:	59.8	107.5	97.0	: PER
+ 20090813	04:38:54	:	01 02	:	60.5	109.6	95.5	: PER
+ 20090813	04:46:45	:	01 02	:	63.6	109.1	90.0	: PER
+ 20090813	05:04:44	:	01 02	:	58.8	106.9	89.6	: PER
+ 20090813	05:08:56	:	01 02	:	60.6	111.1	85.8	: PER
+ 20090813	05:09:33	:	01 02	:	60.5	102.5	92.1	: ...

[Live View](#)

20090615 E I
20090614 E I
20090613 E I
20090612 E I
20090611 E I
20090610 E I
20090609 E I
20090608 E I
20090607 E I
20090606 E I
20090605 E I
20090604 E I
20090603 E I
20090602 E I
20090601 E I
20090531 E I
20090530 E I
20090529 E I
20090528 E I
20090527 E I
20090526 E I

20090530 07:16:38 UTC ...

vel 24.5 km/s beg 82.3 km end 53.8 km
evcorr [TXT](#) [PNG](#) [mllg](#) [INPUT](#) [ZMILI](#) [ORBIT](#)

20090530 07:29:17 UTC ...

vel 26.6 km/s beg 87.4 km end 58.2 km
evcorr [TXT](#) [PNG](#) [mllg](#) [INPUT](#) [ZMILI](#) [ORBIT](#)

BEGINNING POINT:

X = 329.933 Y = -5281.118 Z = 3703.070
.059 .011 .068

GEOGRAPHIC LAM = -86.69515 FI = 35.16388 H = 87.381 KM
.00063 .00078 .040

201

eg

deg

g

END POINT:

X = 342.215 Y = -5238.779 Z = 3711.185
.052 .010 .058

GEOGRAPHIC LAM = -86.53255 FI = 35.43644 H = 58.225 KM
.00057 .00067 .034

g

Note: LAMBDA approximate (valid for TIME=0)

FOR THE END POINT: AZIMUTH= 26.107 ZNT. DISTANCE= 49.577
.131 .162

time 20090530 7.4881 hours
lat 35 26 11.179 = 35.4364 deg
lon 273 28 02.828 = 273.4675 deg
ht 0.000 b 3.61297 -4.69162 -6.88988 -18.76613
alp 253.822 +/- 0.084 deg
del -10.430 +/- 0.171 deg
v_inf 26.645 +/- 0.262 km/s
v_avg 26.645 +/- 0.262 km/s

a 2.292 +/- 0.076 AU
e 0.771 +/- 0.009
incl 8.245 +/- 0.208 deg
omega 276.178 +/- 0.201 deg
asc_node 68.911 +/- 0.000 deg
v_g 24.325 +/- 0.288 km/s
v_h 36.920 +/- 0.173 km/s
alp_geo 251.922 +/- 0.090 deg
del_geo -12.710 +/- 0.186 deg
q_per 0.525 +/- 0.003 AU
q_aph 4.059 +/- 0.154 AU
lambda 252 252 +/- 0.090 deg
- 0.186 deg
- 0.186 deg

Live View

20090903 E I
20090902 E I
20090901 E I
20090831 E I
20090830 E I
20090829 E I
20090828 E I
20090827 E I
20090826 E I
20090825 E I
20090824 E I
20090823 E I
20090822 E I
20090821 E I
20090820 E I
20090819 E I
20090818 E I
20090817 E I
20090816 E I
20090815 E I
20090814 E I

01 02

Sensitivity and Response

- Can detect magnitude 0 meteors
- ASGARD software can handle simultaneous events
- Aircraft (flashing lights) made detection algorithm crazy; continual improvements have reduced number of falses

20081214 06:26:44 .606244 UTC ***

Walker_County (02)

System Requirements

- ✓ Pentium 3, 900MHz, 512Mb RAM
- ✓ at least 40 Gb data space, in 2 partitions (>20 Gb for video buffer, rest to store events)
- ✓ US GlobalSat BU-353 Waterproof USB GPS units (required, available from <http://www.gpscentral.ca/products/usglobalsat/bu353.htm>)
- ✓ Brooktree 878A framegrabber (Hauppauge WinTV card)
- ✓ Debian linux version 5
- ✓ DSL or faster internet connection

Coverage

Preliminary Geminid Results

2009 Perseids

