CRETIN

Session 5

Howard Scott

Session topics

Atomic models revisited

- Model comparisons
- Closed shell challenges

Radiation transport

- "Flavors": continuum, lines, spectral
- Radiation description + transport equation
- Goals: energetics, kinetics / populations / spectra

Revisiting atomic models - Kr

Atomic model structure can affect

- Average quantities e.g. <Z>
- Charge state distribution
- Emission / absorption spectra

Effects can vary greatly with density:

Low density is sensitive to

- Detailed structure
- Low-lying levels
- Autoionizing state / transitions

High density is sensitive to

Extent of excited states (number and multiplicity)

The requirements on an atomic model vary with the application

Closed shells pose a challenge for atomic models

New recommendation for standard models: dca_xx /usr/gdata/dca/Models/2018 05 02

(K-shell models will follow soon)

A bug in the 2017 models produced strange behavior at the N-O shell boundary

New (2018) models show improved closed-shell behavior

Radiation transport "flavors"

Continuum, lines and spectra are treated separately for efficiency

Iterated to consistency with atomic kinetics (and other processes):

- continuum radiation coarselybinned over full energy range for evaluating photo rates
- <u>line radiation</u> finely-binned for resolving individual line profiles

Evaluated after convergence:

 spectral radiation at arbitrary energies to resolve features of interest

Radiation description

- Macroscopic description: specific intensity I_v
 - energy per (area x solid angle x time) within the frequency range (v + dv)
 - -dE = energy crossing area dA within $(d\Omega dv dt)$

$$dE = I_{v}(\vec{r}, \Omega, t)(\vec{n} \bullet \vec{\Omega}) dA d\Omega dv dt$$

Microscopic description: photon distribution function f_v

$$dE = \sum_{\text{spins}} (hv) f_v(\vec{r}, \vec{p}, t) \frac{d^3 \vec{x} d^3 \vec{p}}{h^3} \qquad \vec{p} = \frac{hv}{c} \vec{\Omega}$$

Correspondence between descriptions:

$$I_{v} = 2 \frac{hv^{3}}{c^{2}} f_{v} \left(\vec{r}, \vec{p}, t \right)$$

Angle-averaged intensity:

$$J_{v} = \frac{1}{4\pi} \int I_{v} d\Omega$$

LTE: Planck function Bose-Einstein distribution
$$B_{v} = 2 \frac{hv^{3}}{c^{2}} \frac{1}{e^{hv/kT_{r}} - 1} \qquad f_{v} = \frac{1}{e^{hv/kT_{r}} - 1}$$

Radiation transport equation

$$\frac{1}{c}\frac{\partial I_{v}}{\partial t} + \vec{\Omega} \cdot \nabla I_{v} = -\alpha_{v}I_{v} + \eta_{v}$$

 α_{ν} = absorption coefficient (fractional energy absorbed per unit length) η_{ν} = emissivity (energy emitted per unit time, volume, frequency, solid angle)

Define the source function : $S_{\nu} = \eta_{\nu}/\alpha_{\nu}$ and optical depth τ_{ν} : $d\tau_{\nu} = \alpha_{\nu} dr$

Characteristic form of the transport equation

$$\frac{dI_{v}}{d\tau_{v}} = -I_{v} + S_{v} \implies I_{v}(\tau_{v}) = I_{v}(0)e^{-\tau_{v}} + \int_{0}^{\tau_{v}} e^{-(\tau_{v} - \tau'_{v})} S_{v}(\tau'_{v}) d\tau'_{v}$$

Self-consistently determining S_v and I_v is the hard part of radiation transport

Radiation transport "goals"

LTE / energy transport:

- Solves radiation transport + energy balance equations for J_v + material temperature
- Used in rad-hydro codes (with modifications) for NLTE)
- NLTE / spectroscopy:
 - Solves radiation transport + rate equations for J_v + populations
- "Formal" transport:
 - Assumes S_{ν} is fixed, no self-consistency
 - Used in Cretin for spectral transport

$$\frac{dE_m}{dt} = 4\pi \int \alpha_v (J_v - S_v) dv$$
$$\alpha_v = \alpha_v (T_e), S_v = B_v (T_e)$$

$$\frac{d\mathbf{y}}{dt} = \mathbf{A}\mathbf{y} , \mathbf{A}_{ij} = \mathbf{A}_{ij} (T_e, J_v)$$
$$S_v = \frac{2hv^3}{c^2} S_{ij} , S_{ij} \approx a + b \overline{J}_{ij}$$

- Each "goal" uses different methods to achieve self-consistency
- Treatment of the radiation transport equation may also change

Self-consistency and convergence in radiation transport

The combined equations of radiation transport + other physics

$$\frac{dI_{v}}{d\tau_{v}} = -I_{v} + S_{v} , S_{v} = S_{v}(T_{e}, J_{v}) , J_{v} = \frac{1}{4\pi} \int I_{v} d\Omega$$

are non-linear and must be iterated to convergence

Simple iteration ("lambda iteration") transports the effects of radiation in the combined system ~ 1 optical depth/iteration

- convergence can require many iterations: $\sim \tau^n$, n = 1 2
- false convergence is a problem for $\tau \gg 1$

Controls to set convergence tolerances and maximum iterations depend on the type of transport

Methods to accelerate convergence differ for each type of transport

Major controls on radiation transport

Continuum radiation

- switch 36: 0 (off), > 0 (steady-state: c=∞), < 0 (time-dependent)
 1-d options: +/-1 (Feautrier formalism), other (integral formalism)
- Frequencies same as used by kinetics: must cover entire range $[0, > 20 T_{max}]$
- Convergence by lambda iteration: switch 44, param 56 for charge state populations

Spectral radiation

- Turned on by existence of spectrum commands
- Frequencies set by spectrum commands: cover only range(s) of interest
- switch 63: include Doppler shifts if ≠0

Line radiation

- switch 37 : 0 (off), other (on)
- Only affects transitions identified with line commands
- Frequency mesh for each line set by **lbins** commands
- Convergence by linearization: switches 40, 41 + param 57
- Many options for controlling physics

