Problemas

Recopilación de L. M. Nieto Dado el funcional $\phi \in C^{1}(\mathbb{R}^{3})$, $\gamma \in C^{2}(a, b)$. 1 Dado el funcional $\mathcal{F}[y(x)] = \int_{0}^{b} \Phi(x, y(x), y'(x)) dx,$

demuéstrese la equivalencia de las dos formas siguientes de las ecuaciones de Euler-Lagrange

a)
$$\frac{\partial \Phi}{\partial y} - \frac{d}{dx} \frac{\partial \Phi}{\partial y'} = 0$$
 b) $\frac{\partial \Phi}{\partial x} - \frac{d}{dx} \left(\Phi - y' \frac{\partial \Phi}{\partial y'} \right) = 0.$

2 Si la función
$$\Phi(x,y(x)/y'(x))$$
 en el funcional $\mathcal{F}[y(x)]$ es del tipo

$$\Phi(x, y(x), y'(x)) = \Phi_1(x, y(x)) + \Phi_2(x, y(x)) y'(x),$$

$$\partial \Phi_1$$

2 Si la función $\Phi(x, y(x), y'(x))$ en el funcional $\mathcal{F}[y(x)]$ es del tipo $\Phi(x, y(x), y'(x)) = \Phi_1(x, y(x)) + \Phi_2(x, y(x)) y'(x),$ demuéstrese que la ecuación de Euler-Lagrange conduce a $\frac{\partial \Phi_1}{\partial y} = \frac{\partial \Phi_2}{\partial x}$; Qué implica este becho sobre la dependencia de la integral respecto a la elección del camino? camino?

- 4 Obténgase la forma que adopta la ecuación de Euler-Lagrange en los siguientes casos particulares:
 - a) Φ sólo depende de y'.
 - b) Φ no depende de y.
 - c) Φ no depende explícitamente de x.
 - d) $\Phi = G(x, y)\sqrt{1 + {y'}^2}$.
- 5 Aplíquense los resultados anteriores a los ejemplos siguientes:

a)
$$\mathcal{F}[y(x)] = \int y(2x - y)dx$$
, $y(0) = 0$, $y(\pi/2) = \pi/2$.

b)
$$\mathcal{F}[y(x)] = \int (y^2 + 2xyy')dx$$
, $y(a) = A$, $y(b) = B$.

b)
$$\mathcal{F}[y(x)] = \int (y^2 + 2xyy')dx$$
, $y(a) = A$, $y(b) = B$.
g) $\mathcal{F}[y(x)] = \int (1 + y'^2)^{1/2} dx$, $y(a) = A$, $y(b) = B$. He cho en due.
d) $\mathcal{F}[y(x)] = \int y'(1 + x^2y')dx$, $y(1) = 3$, $y(2) = 5$.

d)
$$\mathcal{F}[y(x)] = \int y'(1+x^2y')dx$$
, $y(1) = 3$, $y(2) = 5$.

6 Encuéntrense los extremales de los siguientes funcionales:

a)
$$\mathcal{F}[y(x)] = \int_a^b [y^2 + {y'}^2 - 2y \sin x] dx$$
.
b) $\mathcal{F}[y(x)] = \int_a^b [y^2 - {y'}^2 - 2y \cos x] dx$.
c) $\mathcal{F}[y(x)] = \int_a^b [y^2 + {y'}^2 + 2y e^x] dx$.
d) $\mathcal{F}[y(x)] = \int_a^b [y^2 - {y'}^2 - 2y \sin x] dx$.

b)
$$\mathcal{F}[u(x)] = \int_{0}^{b} [u^2 - {u'}^2 - 2u \cosh x] dx$$

c)
$$\mathcal{F}[y(x)] = \int_{0}^{b} [y^{2} + {y'}^{2} + 2ye^{x}] dx$$

d)
$$\mathcal{F}[u(x)] = \int_{0}^{b} [u^2 - {y'}^2 - 2u \sin x] dx$$

7 Demuéstrese que dados dos puntos cualesquiera del plano de abscisas diferentes, en general no hay extremal del funcional

$$\mathcal{F}[y(x)] = \int_{a}^{b} (y^{2} + \sqrt{1 + {y'}^{2}}) dx$$

que pase por dichos puntos.