Tensor Network Hackathon

Team 9: Optimizing Camera Placement for Emergency Prevention and Response

Introduction

Camera Placement problem

- Deployment of hyper-spectral cameras in case of natural disaster
- High cost → goal is to maximise utility
 - Maximize coverage
 - Minimize overlap
 - Satisfy constraints

Introduction

Camera Placement problem in Ising formulation

W_{ij} - symmetric overlap between camera i and j

A_i — area covered by camera i

Ground state search with DMRG and imag. time evolution (ITE)

Introduction

Camera Placement problem: Constrained case

$$H(z) = \sum_{i < j}^{N} W_{ij} z_i z_j - \xi \sum_{i=1}^{N} A_i z_i + P \left(\sum_{i=1}^{N} z_i - N + 2C \right)^2$$

$$H(z) = \sum_{i < j}^{N} \tilde{W}_{ij} z_i z_j - \sum_{i=1}^{N} \tilde{A}_i z_i \qquad \tilde{W}_{ij} = W_{ij} + 2P(N - 2C)$$
$$\tilde{A}_i = 2P(N - 2C) - \xi A_i$$

with penalty term P, available antennas C (set to N/2)

Introduction Implementation

- Quantum Tea Leaves:
 - Tensor network ansatz with MPS, TTN
 - Ground state search with DMRG, ITE

generate
$$(-1,+1,-1,+1,+1)$$
 $(+1,-1,+1,+1)$ evaluate $H(z)$ $H(z)$

ITE: $t \to -i\tau$, $|\psi(t)\rangle = e^{-\tau \hat{H}} |\psi(t=0)\rangle$

Commercial Solver: GUROBI

Ground state search via DMRG & ITE

Hyperparameter optimization

- To optimize:
 - Max. number of steps/sweeps: 500
 - Max. bond dimension: 32
 - (TTN+DMRG) Sweep order: simple vs. random
 - (ITE): Time-step ("temperature"): 0.1

Performance comparison

Visual agreement ...?

- Test case:
 - N=16 sites
 - $\xi = 0.25$
 - constraint:

C=N/2 P=50

Constrained

Brute force

Performance comparison

Energy&approximation ratio of the optimal solution

Performance comparison

Time to solution

Time scaling

BF: exponential

• TN: linear

Thank you!