Summary

8 Sept 2020

Model

$$y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip} + e_i$$
 for $i = 1, ..., n$
Or,

$$X = X \beta + e$$

where Y is a $n \times 1$ column vector;

 $\ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \ensuremath{ \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design Matrix";} \ensuremath{ \begin{subarray}{c} X is a $n \times p'$ matrix, called "Design$

 β is a $p' \times 1$ column vector;

n is the number of observations

p'(=p+1) is the number of unknown parameters in the model.

Assumptions

(1)
$$E(e_i) = 0$$

(2)
$$\operatorname{Var}(e_i) = \sigma^2$$

(3)
$$\operatorname{Cov}(e_i, e_j) = 0$$

(4)
$$e_i \sim \Lambda$$

Or,

$$e \sim MN(0, \sigma^2 I)$$

$$\Rightarrow Y \sim MN(X\beta, \sigma^2 I)$$

Method of least squares

p = 1

Find $\hat{\beta}_0$, $\hat{\beta}_1$ such that $\sum_{i=1}^n \hat{e}_i^2$ is minimized, $\sum_{i=1}^n \hat{e}_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$, where

- \hat{e}_i define: Residual
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$ for i = 1, ..., n define: Fitted value