Importing Libraries

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

Loading Dataset

df = pd.read_csv("/content/Spotify.csv")
df. head()

→ *		Unnamed:	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo
	0	0	0.0102	0.833	204600	0.434	0.021900	2	0.1650	-8.795	1	0.4310	150.062
	1	1	0.1990	0.743	326933	0.359	0.006110	1	0.1370	-10.401	1	0.0794	160.083
	2	2	0.0344	0.838	185707	0.412	0.000234	2	0.1590	-7.148	1	0.2890	75.044
	3	3	0.6040	0.494	199413	0.338	0.510000	5	0.0922	-15.236	1	0.0261	86.468
	4	4	0.1800	0.678	392893	0.561	0.512000	5	0.4390	-11.648	0	0.0694	174.004

Data Cleaning

df.drop("Unnamed: 0", axis = 1, inplace = True)
df.head()

₹	a	cousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	time_signa
	0	0.0102	0.833	204600	0.434	0.021900	2	0.1650	-8.795	1	0.4310	150.062	
	1	0.1990	0.743	326933	0.359	0.006110	1	0.1370	-10.401	1	0.0794	160.083	
	2	0.0344	0.838	185707	0.412	0.000234	2	0.1590	-7.148	1	0.2890	75.044	
	3	0.6040	0.494	199413	0.338	0.510000	5	0.0922	-15.236	1	0.0261	86.468	
	4	0.1800	0.678	392893	0.561	0.512000	5	0.4390	-11.648	0	0.0694	174.004	
4													•

df.isnull().sum()

 \rightarrow acousticness danceability 0 duration_ms 0 energy instrumentalness key liveness loudness mode 0 speechiness 0 tempo time_signature 0 valence target 0 song_title artist dtype: int64

df.shape

→ (2017, 16)

```
df.info()
```

```
cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 2017 entries, 0 to 2016
Data columns (total 16 columns):
# Column Non-Null Count Dtype
------
0 acousticness 2017 non-null float64
1 danceability 2017 non-null int64
2 duration_ms 2017 non-null int64
4 instrumentalness 2017 non-null float64
4 instrumentalness 2017 non-null int64
5 key 2017 non-null int64
6 liveness 2017 non-null float64
7 loudness 2017 non-null float64
8 mode 2017 non-null float64
9 speechiness 2017 non-null float64
10 tempo 2017 non-null float64
11 time_signature 2017 non-null float64
12 valence 2017 non-null float64
13 target 2017 non-null object
15 artist 2017 non-null object
dtypes: float64(10), int64(4), object(2)
memory usage: 252.2+ KB
```

df.columns

df.describe()

₹		acousticness	danceability	duration_ms	energy	instrumentalness	
	count	2017.000000	2017.000000	2.017000e+03	2017.000000	2017.000000	2017.0
	mean	0.187590	0.618422	2.463062e+05	0.681577	0.133286	5.3
	std	0.259989	0.161029	8.198181e+04	0.210273	0.273162	3.6
	min	0.000003	0.122000	1.604200e+04	0.014800	0.000000	0.0
	25%	0.009630	0.514000	2.000150e+05	0.563000	0.000000	2.0
	50%	0.063300	0.631000	2.292610e+05	0.715000	0.000076	6.0
	75%	0.265000	0.738000	2.703330e+05	0.846000	0.054000	9.0
	max	0.995000	0.984000	1.004627e+06	0.998000	0.976000	11.0

Data Analysis

→ Top 5 most popular artist

→ Top 5 loudest track

```
top\_five\_tracks = df[["song\_title","loudness"]].sort\_values(by = "loudness", ascending = True)[:5] \\ top\_five\_tracks
```

	song_title	loudness
1594	Lyric Pieces, Book I Op. 12: I. Arietta	-33.097
1596	8 Fantasiestücke, Op.12 : 1. Des Abends	-31.367
1598	Piano Quartet in E flat, Op.47: 3. Andante can	-31.082
1531	I Was So Young, and You Were So Beautiful	-30.447
1549	Eleanor	-29.460

```
plt.figure(figsize = (10,5))
colors = ["pink","red","blue","green","yellow"]
sns.barplot(x="loudness", y="song_title", data=top_five_tracks, hue="song_title", palette=colors, dodge=False, legend=False)
plt.title("Top 5 Loudest Track")
plt.show()
```


top_danceability_song = df[["artist","danceability","song_title"]].sort_values(by = "danceability", ascending = False)[:5]
top_danceability_song

Next steps: View recommended plots

```
plt.figure(figsize = (10,5))
sns.barplot(x ="danceability", y="artist", data=top_danceability_song, hue = "song_title")
plt.title("Top 5 Danceability Song")
plt.show()
```


Top 5 instrumental tracks

top_ten_instrumental_tracks = df[["instrumentalness", "song_title", "artist"]].sort_values(by = "instrumentalness", ascending = False)[
top_ten_instrumental_tracks

₹		instrumentalness	song_title	artist
	1313	0.976	Senseless Order	Signs of the Swarm
	271	0.968	So Destroyed (channeling Rage Peace)	Prince Rama
	1575	0.964	A Hundred Dreams from Now	Ray Bryant
	1619	0.958	Raven	John Dahlbäck
	725	0.957	Strandbar (disko)	Todd Terje

```
plt.figure(figsize = (10,5))
plt.pie(x = "instrumentalness", data = top_ten_instrumental_tracks, labels ="song_title", autopct = "%1.2f%%")
plt.title("Top 5 Instrumental Tracks")
plt.show()
```


Top 5 Instrumental Tracks


```
interest_feature_cols = ["danceability", "energy", "loudness", "speechiness", "acousticness", "instrumentalness", "liveness", "valence"

for feature_col in interest_feature_cols:
    pos_data = df[df["target"]== 1][feature_col]
    neg_data = df[df["target"]== 1][feature_col]

plt.figure(figsize= (10,5))
    sns.displot(pos_data, bins = 30, label = "positive", color = "green")
    sns.displot(neg_data, bins = 30, label = "negative", color = "red")
    plt.title(f"Distribution of {feature_col}")

plt.legend(loc = "upper right")
    plt.show()
```


Distribution of danceability

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>

Distribution of speechiness

<Figure size 1000x500 with 0 Axes>

negative

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>

