LECTURER: PROF. McDonald Scribe: Dmitrii Avdiukhin

3.1 Convex functions

Definition 3.1. Set C is convex iff $\forall x, c \in C, \forall t \in [0, 1]$ $tx + (1 - t)y \in C$.

So C is convex iff for any two points in C their segment is also entirely in C.

Definition 3.2. Convex combination of set of points $x_1, \ldots, x_k \in \mathbb{R}^n$ is

$$\left\{ \left. \sum_{i=1}^{k} \Theta_{i} x_{i} \right| \left. \sum_{i=1}^{k} \Theta_{i} = 1, \ \forall i \ \Theta_{i} \in [0; 1] \right. \right\}.$$

Definition 3.3. Convex hull of any $C \in \mathbb{R}^n$, denoted conv(C) is a union of all convex combinations of different elements of C.

Examples:

- Empty set, point, line, segment.
- Norm ball: $\{x \mid ||x|| < r\}.$
- Hyperplane $\{x \mid a^{\mathsf{T}}x = b\}$, Affine space $\{x \mid Ax = b\}$.
- Hyperspace: $\{x \mid a^{\mathsf{T}}x \leq b\}$, Polyhedron $\{x \mid Ax \leq b\}$.
- Cone such that if $x_1, x_2 \in C$ then $t_1x_1 + t_2x_2 \in C \ \forall t_1, t_2 \geq 0$.

Definition 3.4. Set C is a cone iff $\forall t \geq 0, x \in C \implies tx \in C$.

Type of cones:

- Norm cone: $\{(x,t) | ||x|| \le t \}$.
- Normal cone for some C and $x \in C$: $N_C(x) = \{ g \mid g^\mathsf{T} x \ge g^\mathsf{T} y \ \forall y \in C \}.$
- Positive semidefinite cone $S^n_+ = \{ x \in S^n \mid x \succeq 0 \}, S^n$ is Hilbert space.

3.2 Key properties

- Separation hyperplane. A, B are convex, nonempty, disjoint. Then $\exists a, b : A \subseteq \{x \mid a^{\mathsf{T}} \leq b\}, B \subseteq \{x \mid a^{\mathsf{T}} \geq b\}.$
- Supporting hyperplane. C nonempty, convex, $x_0 \in boundary(C)$. Then $\exists a: C \subseteq \{x \mid a^\mathsf{T} x \leq a^\mathsf{T} x_0\}$.

3.3 Operations preserving convexity

- Intersection.
- Scaling, translation. C is convex $\implies aC + b$ is convex.
- Affine image and preimage. f(x) = Ax + b, C is convex $\implies f(C), f^{-1}(C)$ are convex.
- Lots more (See Boyd and Vandenberghe (2004), chapter 2).

Example 3.5. $A_1, \ldots, A_k, B \in \mathbb{S}^n$ – symmetrical matrices. Then $C = \left\{ x \in \mathbb{R}^k \mid \sum_{i=1}^k x_i A_i \leq B \right\}$.

Proof. $f: \mathbb{R}^k \to \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$. $C = f^{-1}(S^n_+)$ – affine preimage of convex cone.

3.4 Convex function

Definition 3.6. Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff dom $f \subseteq \mathbb{R}^n$ is convex and

$$\forall x, y \in \text{dom } f, t \in [0; 1] \quad f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

Other definitions:

- f is concave iff -f is convex.
- f is strictly convex iff $\forall t \in (0;1)$ the inequality in definition is strict.
- f is $strongly\ convex$ with parameter τ iff $f(x) \frac{\tau}{2} \|x\|_2^2$ is convex.

Examples:

- $f(x) = \frac{1}{x}$ is strictly convex, but not strongly.
- Univariate functions:
 - $-e^{ax}$ is convex $\forall a \in \mathbb{R}$ over \mathbb{R} .
 - $-x^a$ convex given $a \ge 1$ or $a \le 1$ over \mathbb{R}_+ .
 - $-\log x$ is concave over \mathbb{R}_+ .
- Affine $a^{\mathsf{T}}xb$ is both convex and concave.
- Quadratic $\frac{1}{2}x^{\mathsf{T}}Qx + b^{\mathsf{T}}x + c$ is convex if $Q \succeq 0$.
- $||u Ax||_2^2$ convex since $A^{\mathsf{T}}A \succeq 0$.
- Norms: all vector norms and most matrix norms are convex.
- Indicator function is convex. C is a convex set, then $I_C(x) = \begin{cases} 0, & x \in C \\ \infty, otherwise \end{cases}$.
- Support function is convex $\forall C.\ I_C^*(x) = \max_{y \in C} x^\mathsf{T} y.$

3.5 Key properties

- f is convex iff its epigraph is convex, where $epi(f) = \{ (x, t) \in \text{dom } f \times R \mid f(x) \leq t \}.$
- f is convex \implies all its sublevel sets are convex. $C_t = \{x \in \text{dom } f \mid f(x) \le t\}$. The converse is false.
- Assume f is differentiable. Then f is convex iff dom f is convex and $\forall x, y \in \text{dom } f$ $f(y) \geq f(x) + \nabla f(x)^{\mathsf{T}}(y-x)$. Essentially, it means that f's graph is above any tangent plain.
- Assume f is twice differentiable. f is convex iff dom f is convex and $\forall x \in \text{dom } f \ \nabla^2 f(x) \succeq 0$.

3.6 Operations preserving function convexity

- Nonnegative linear combination.
- Pointwise maximum. $\forall s \in S \ f_s$ is convex $\implies f(x) = \max_{S} f_s(x)$ is also convex.
- Partial minimum. g(x,y) convex over variables x,y; C convex. Then $f(x) = \min_{y \in C} g(x,y)$ is also convex. E.g., $f(x) = \max_{y \in C} \|x - y\|$ or $f(x) = \min_{y \in C} \|x - y\|$.

References

Boyd, S., and Vandenberghe, L. (2004), Convex optimization, Cambridge university press.