Aprendizaje profundo

PERCEPTRÓN MULTICAPA

Gibran Fuentes-Pineda Septiembre 2020

Neurona natural

Imagen del usuario Quasar de Wikipedia, traducida al español (CC BY-SA 3.0)

Comunicación entre neuronas

Neurona artificial: unidad de umbral lineal

- · Elementos básicos
 - 1. Pesos sinápticos
 - 2. Estímulo cumulativo
 - 3. Todo o nada (activación)

$$\hat{y} = a = \phi(b + \sum_{i=1}^{m} w_i \cdot x_i)$$
$$= \phi(b + \mathbf{w}^{\top} \cdot \mathbf{x})$$

Forma general de neurona artificial

- · Elementos básicos
 - 1. Pesos sinápticos
 - 2. Estímulo cumulativo
 - 3. Todo o nada (activación)

$$\hat{y} = a = \phi(b + \sum_{i=1}^{m} w_i \cdot x_i)$$
$$= \phi(b + \mathbf{w}^{\top} \cdot \mathbf{x})$$

Compuerta AND (\wedge)

<i>X</i> ₁	<i>X</i> ₂	AND (∧)
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta AND (∧)

<i>X</i> ₁	<i>X</i> ₂	$AND\left(\wedge\right)$
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta AND (\land)

<i>X</i> ₁	<i>X</i> ₂	$AND\left(\wedge\right)$
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta AND (\land)

<i>X</i> ₁	<i>X</i> ₂	$AND\left(\wedge\right)$
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta AND (\land)

<i>X</i> ₁	<i>X</i> ₂	AND (∧)
0	0	0
0	1	0
1	0	0
1	1	1

<i>X</i> ₁	<i>X</i> ₂	NOR (↓)
0	0	1
0	1	0
1	0	0
1	1	0

<i>X</i> ₁	<i>X</i> ₂	NOR (↓)
0	0	1
0	1	0
1	0	0
1	1	0

<i>X</i> ₁	<i>X</i> ₂	NOR (↓)
0	0	1
0	1	0
1	0	0
1	1	0

<i>X</i> ₁	<i>X</i> ₂	NOR (↓)
0	0	1
0	1	0
1	0	0
1	1	0

<i>X</i> ₁	<i>X</i> ₂	NOR (↓)
0	0	1
0	1	0
1	0	0
1	1	0

Compuerta NOT (\neg)

<i>X</i> ₁	NOT (¬)
0	1
1	0

Compuerta NOT (\neg)

<i>X</i> ₁	NOT (¬)
0	1
1	0

Compuerta NOT (\neg)

<i>X</i> ₁	NOT (¬)
0	1
1	0

Algoritmo de aprendizaje: perceptrón

- Inicializa pesos y sesgo con zeros o un número aleatorio pequeño
- 2. Para cada ejemplo en el conjunto de entrenamiento 21 Calcula la salida

$$\hat{\mathbf{y}}^{(i)} = \phi(\mathbf{w}(t)^{\top}\mathbf{x}^{(i)} + b)$$

2.2 Actualiza cada peso w_j , j = 1, ..., d y el sesgo b

$$w_j[t+1] = w_j[t] + (y^{(i)} - \hat{y}^{(i)}) \cdot x_j^{(i)}$$

$$b[t+1] = b[t] + (y^{(i)} - \hat{y}^{(i)})$$

 Realiza hasta que converja o hayan pasado un número de épocas¹

¹Le llamamos época a pasar por todos los ejemplos del conjunto de entrenamiento una vez

Neurona con función de activación lineal o identidad

$$\frac{lineal(z) = z}{\frac{dlineal(z)}{dz}} = 1$$

· Función de pérdida: error cuadráticos medio (ECM)

$$ECM(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})^{2}$$
$$\frac{\partial ECM}{\partial w_{j}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) \cdot x_{j}^{(i)}$$
$$\frac{\partial ECM}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})$$

Neurona con función de activación sigmoide o logística

$$sigm(z) = \frac{1}{1 + exp(-z)}$$
$$\frac{dsigm(z)}{dz} = sigm(z)(1 - sigm(z))$$

· Función de pérdida: entropía cruzada binaria (ECB)

$$ECB(\mathbf{y}, \mathbf{\hat{y}}) = -\sum_{i=1}^{N} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
$$\frac{\partial ECB}{\partial w_{j}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) \cdot x_{j}^{(i)}$$
$$\frac{\partial ECB}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})$$

Clasificación multietiqueta

· Función de pérdida: ECB de cada categoría

$$ECB(\mathbf{y}_{k}, \mathbf{\hat{y}}_{k}) = -\sum_{i=1}^{N} \left[y_{k}^{(i)} \log \hat{y}_{k}^{(i)} + (1 - y_{k}^{(i)}) \log (1 - \hat{y}_{k}^{(i)}) \right]$$

Clasificación softmax (1)

Clasificación softmax (2)

 Neuronas de la capa de salida tienen una función de activación softmax compartida, dada por

softmax(**z**)_i =
$$\frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_j}}$$
, $i = 1, ..., K$

· Función de pérdida: entropía cruzada categórica (ECC)

$$ECC(\mathbf{Y}, \mathbf{\hat{Y}}) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \left[y_k^{(i)} \cdot \log \frac{e^{z_k^{(i)}}}{\sum_{j} e^{z_j^{(i)}}} \right] x_j^{(i)}$$
$$\frac{\partial ECC}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{\hat{Y}}^{(i)} - \mathbf{y}^{(i)}) \otimes \mathbf{x}^{(i)}$$
$$\frac{\partial ECC}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{\hat{Y}}^{(i)} - \mathbf{y}^{(i)})$$

Entrenamiento: minimización de pérdida

· Para los casos anteriores la función de pérdida es convexa

Entrenamiento: descenso por gradiente (GD)

 Algoritmo iterativo de primer orden que va moviendo los pesos w y sesgos b hacia donde la pérdida descienda más rápido en el vecindario, esto es,

$$\theta[t+1] = \theta[t] - \alpha \nabla \mathcal{L}(\theta[t])$$

donde

$$\begin{aligned} \boldsymbol{\theta} &= \{ w, b \} \\ \nabla \mathcal{L}(\boldsymbol{\theta}[t]) &= \left[\frac{\partial \mathcal{L}}{\partial \theta_0[t]}, \cdots, \frac{\partial \mathcal{L}}{\partial \theta_d[t]} \right] \end{aligned}$$

 \cdot A lpha se le conoce como tasa de aprendizaje

Entrenamiento: descenso por gradiente estocástico (SGD)

- Aproximación estocástica de GD: estima $\nabla \mathcal{L}(\boldsymbol{\theta}[t])$ y actualiza pesos y sesgos con un minilote de b ejemplos de entrenamiento
 - · b es un hiperparámetro
 - Es común dividir y ordenar aleatoriamente el conjunto de n ejemplos de entrenamiento en k minilotes ($b \times k \approx n$); una época ocurre cada vez que se han considerado los k minilotes

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje lpha

Problemas no lineales

· ¿Cómo modelamos una computer XOR?

<i>X</i> ₁	<i>X</i> ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Problemas no lineales

· ¿Cómo modelamos una computer XOR?

<i>X</i> ₁	<i>X</i> ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

 Minsky y Papert demostraron que era imposible aprender la XOR con perceptrones

Múltiples capas

· Podemos usar la fórmula

$$X_1 \oplus X_2 = (X_1 \vee X_2) \wedge \neg (X_1 \wedge X_2)$$

Red neuronal densa

Pérdida para redes neuronales multicapa

 Para múltiples capas de neuronas la función de pérdida no es convexa

Entrenamiento de redes neuronales multicapa

- Usualmente a través del descenso por gradiente estocástico (SGD) o variantes
- Aunque en problemas convexos SGD aproxima al GD, en la práctica se ha observado que en el entrenamiento de redes neuronales SGD encuentra mejores soluciones, especialmente con minilotes pequeños^{2,3,4}
- Problema: calcular eficientemente las derivadas parciales respecto a los pesos y sesgos de las capas ocultas

²Kleinberg et al. An Alternative View: When Does SGD Escape Local Minima?, 2018

³Zhu et al. The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects, 2019.

⁴Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, 2017.

Cálculo del gradiente en redes densas (1)

Cálculo del gradiente en redes densas (2)

Cálculo del gradiente en redes densas (3)

Cálculo del gradiente en redes densas (4)

Algoritmo de retro-propagación

- 1. Propagamos cada entrada $\mathbf{x}^{(i)}$ hacia adelante para generar la correspondiente salida $\mathbf{\hat{y}}^{(i)}$
- Calculamos derivadas parciales de la pérdida respecto a cada peso y sesgo capa por capa, empezando con la de salida y propagándolas hacia atrás para calcular las de la capa anterior

Cálculo del gradiente por retropropagación (1)

Cálculo del gradiente por retropropagación (2)

Cálculo del gradiente por retropropagación (3)

Cálculo del gradiente por retropropagación (4)

Ejemplo: propagación hacia adelante

- Considera una red densa con 1 capa de entrada, 1 capa oculta con o neuronas con activación sigmoide y 1 neurona de salida con activación lineal.
- La propagación hacia adelante estaría dada de la siguiente manera:

$$a^{\{1\}} = x^{(i)}$$

$$z^{\{2\}} = W^{\{1\}} \cdot a^{\{1\}}$$

$$a^{\{2\}} = \phi(z^{\{2\}})$$

$$z^{\{3\}} = W^{\{2\}} \cdot a^{\{2\}}$$

$$a^{\{3\}} = \phi(z^{\{3\}})$$

$$\hat{y} = a^{\{3\}}$$

Ejemplo: función de pérdida ECM

 Suponiendo una tarea de regresión y la función de pérdida ECM:

$$ECM(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

Ejemplo: retropropagación (1)

 Calculamos el gradiente de la función de pérdida con respecto a W^{2} de la siguiente forma

$$\frac{\partial ECM}{\partial \mathbf{W}^{\{2\}}} = \frac{\partial \sum_{i} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$= \frac{\sum_{i} \partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$\frac{\partial \frac{1}{2} (y - \hat{y})^{2}}{\partial \mathbf{W}^{\{2\}}} = (y - \hat{y}) \cdot \left(-\frac{\partial \hat{y}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= (y - \hat{y}) \cdot \left(-\frac{\partial \hat{y}}{\partial z^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= \underbrace{-(y - \hat{y}) \cdot \frac{\partial \hat{y}}{\partial z^{\{3\}}}}_{\delta^{\{3\}}} \cdot \mathbf{a}^{\{2\}}$$

Ejemplo: retropropagación (2)

 Calculamos el gradiente de la función de pérdida respecto a W^{1} de la siguiente forma

$$\frac{\partial ECM}{\partial \mathbf{W}^{\{1\}}} = \frac{\partial \sum_{i} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}}$$

$$= \frac{\sum_{i} \partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}}$$

$$\frac{\partial \frac{1}{2} (y - \hat{y})^{2}}{\partial \mathbf{W}^{\{1\}}} = (y - \hat{y}) \left(-\frac{\partial \hat{y}}{\partial \mathbf{W}^{\{1\}}} \right)$$

$$= (y - \hat{y}) \left(-\frac{\partial \hat{y}}{\partial \mathbf{z}^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} \right)$$

$$= \underbrace{-(y - \hat{y}) \cdot \frac{\partial \hat{y}}{\partial z^{\{3\}}}}_{\delta^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} = \delta^{\{3\}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}}$$

Ejemplo: retropropagación (3)

$$= \delta^{\{3\}} \cdot \left(\underbrace{\frac{\partial z^{\{3\}}}{\partial a^{\{2\}}} \cdot \frac{\partial a^{\{2\}}}{\partial W^{\{1\}}}}_{\mathbf{W}^{\{1\}}} \right)$$

$$= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \left(\frac{\partial a^{\{2\}}}{\partial W^{\{1\}}} \right)$$

$$= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \left(\frac{\partial a^{\{2\}}}{\partial z^{\{2\}}} \cdot \underbrace{\frac{\partial z^{\{2\}}}{\partial W^{\{1\}}}}_{\mathbf{x}^{(i)}} \right)$$

$$= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \underbrace{\frac{\partial a^{\{2\}}}{\partial z^{\{2\}}} \cdot \mathbf{x}^{(i)}}_{\mathbf{x}^{(i)}}$$

Desvanecimiento del gradiente: 2 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Desvanecimiento del gradiente: 3 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Desvanecimiento del gradiente: 4 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Características generales de las redes neuronales densas

- Aproximadores universales (con 1 sola capa oculta con un número finito de neuronas^{5,6})
- Frecuentemente sobreparametrizados⁷
- Usualmente empleados como bloques de clasificación (no tan profundos) en conjunto con otros tipos de capas

 $^{^{5}\}mbox{Cybenko}.$ Approximation by Superpositions of a Sigmoidal Function, 1989

⁶Hornik et al. Multilayer Feedforward Networks are Universal Approximators, 1989.

[']Allen-Zhu et al. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers, 2020.