Homework 7

Mark Schulist

1)

P	\overline{Q}	$P \wedge Q$	$Q\Rightarrow (P\wedge Q)$	$P\Rightarrow (Q\Rightarrow (P\wedge Q))$
T	T	Т	Т	T
T	F	F	Т	T
F	Т	F	F	T
F	F	F	Т	Т

2)

P	Q	R	$P \lor Q$	$R \wedge P$	$(P \lor Q) \Leftrightarrow (R \land P)$
T	Т	T	Т	T	Т
T	Т	F	Т	F	F
T	F	T	Т	T	Т
F	Т	T	Т	F	F
F	Т	F	Т	F	F
Т	F	F	Т	F	F
F	F	T	F	F	Т
F	F	F	F	F	Т

3)

3.a)

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

We need to show that the truth tables are identical on both sides for all inputs (P,Q,R).

P	Q	R	$Q \vee R$	$P \wedge Q$	$P \wedge R$	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
Т	Т	Т	Т	Т	Т	Т	T
Т	Т	F	Т	T	F	Т	T
Т	F	F	F	F	F	F	F
Т	F	Т	Т	F	T	Т	T
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

As we can see, the last 2 columns are the same, so we can say that the two statements are equal.

3.b)

$P \lor (Q \land R)$	$: (P \lor Q)$	$(P) \wedge (P)$	$\vee R$
----------------------	----------------	------------------	----------

P	Q	R	$Q \wedge R$	$P \lor Q$	$P \vee R$	$P \vee (Q \wedge R)$	$(P\vee Q)\wedge (P\vee R)$
Т	Т	Т	Т	Т	T	Т	T
Т	Т	F	F	Т	T	T	T
Т	F	F	F	T	T	Т	T
Т	F	Т	F	Т	T	Т	T
F	Т	Т	Т	T	T	Т	T
F	Т	F	F	Т	F	F	F
F	F	Т	F	F	T	F	F
F	F	F	F	F	F	F	F

Same as above, we can see that the last 2 columns are the same, therefore they are equal statements.

4)

$$(a,b) \sim (c,d) \Leftrightarrow a+d=c+b$$

Reflexive:

We need to show that $(a, b) \sim (a, b)$. Substituting in values shows:

$$a+b=a+b$$

Therefore, this relation is reflexive.

Symmetric:

We need to show that $(a,b) \sim (c,d) \Leftrightarrow (c,d) \sim (a,b)$.

$$a+d=c+b \Leftrightarrow c+b=a+d$$

Because the equals sign on $\mathbb N$ is symmetric, we can say that \sim is also symmetric.

Transitive:

We need to show that if $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, then $(a, b) \sim (e, f)$.

$$a + d = c + b$$

$$c + f = e + d$$

 \Longrightarrow add both eqs and commutative a+f+(d+c)=e+b+(d+c)

$$\implies$$
 prop 6 $a+f=e+b$

The final line is the definition of $(a,b) \sim (e,f)$. Therefore, we have shown that \sim is transitive.

5)

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

Reflexive:

$$(a,b) \sim (a,b)$$

 $\implies ab = ba$

This is the definition of our relation, so it is reflexive.

Symmetric:

$$(a,b) \sim (c,d) \Leftrightarrow (c,d) \sim (a,b)$$

 $\Rightarrow ad = bc \Leftrightarrow cb = da$

Multiplication is commutative, so this property holds (it is symmetric).

Transitive:

Want to show:

$$(a,b) \sim (c,d) \wedge (c,d) \sim (e,f) \Rightarrow (a,b) \sim (e,f)$$

We can use definition of the relation:

$$\begin{aligned} ad &= bc \\ cf &= de \\ \\ \implies \text{mul both eqs and commutative} \quad af(dc) &= be(dc) \\ \\ \implies \text{prop } 7, 0 \neq dc \quad af &= be \end{aligned}$$

This last line is the definition of the relation we want to show, so we have proven that \sim is transitive.