(el otro soutido es tarea) (Ej:) $\Xi = S_3 = \{ (1), (12), (13), (23),$ (123) , (132)} $H = \{ (1), (13) \}$ Celcluros (ufendes 12q. y derecto: (12) (13) = (132) (13)(12) = (123) $(12)H = \{ (12), (132) \} + (12) = \{ (12), (123) \}$ $(23) H = \{ (23), (123) \}$ $H(23) = \{ (13), (132) \}$ Por equalercia de cluses solo hay esta contidud de cluses pour este grepo my en your x H + Hx. y es la cardinales tieren la misma card.

y es la cardinale de H (o el pros

con el que estens o perudo).

es un grupo es (1) H (1), o lo fic es 10 maro H. Leva: Muy fontes luferules d'ereches crantos Der? Son X = [], definins $X^{-1} = \{ \chi^{-1}, \chi \in X \}$ Teneros $(\chi^{-1})^{-1} = X$, es Jeir P(E) -> P(E) es biyection. to particular Sea # & 5 teneros: H = (H-1) -1 C H=1 => H = H⁻¹, Sca 2H on betern izequerdo (sego $(\chi H)^{-1} = H^{-1} \chi = H \chi$

exponces ES infactiva.
Alternationmente se prede decir q es invertible.
p-1: gH -> H gh -> h.
Det I order de un elemento I:
Davo un grupo [] g & [], el order de g es el menor éntero positivo t.q.
g es el mour entero positivo tioj.
q^ = 7
SI no existe q time order w.
frop. Sou 5 un gropo, g & E
<g>> = { g^, n ∈ 2/3 ≤ []</g>
Subyrpo «Cico generado por g.
30 Jipo acco generals por g.
129>1 es iguil al order de g.
Per terrem de lagrage
Por teorem de la grange et orden de g divide (E).
200000000000000000000000000000000000000
6 Si g liere order 1 x D, g = 1
Sii Nm.
UII · ·

Per: Sean
$$g^{m1}$$
, $g^{m2} \in \langle g \rangle$
 $g^{m} (g^{m2})^{-1} = g^{m1} \cdot g^{-m2} = g^{m2-m2} \in \langle g \rangle$

Por all test $\langle g \rangle \leq \Xi$.

So $g' = g^{K}$, Preds respectively go g^{-K} , $g^{n-K} = 1$.

On contadious an ord. on de g .

Sean, about, $n < \infty$ el order de g .

Sean, about, $n < \infty$ el order de g .

Sean $g^{n} = (g^{n})^{K} = 1$

Sean $g^{n} = 1$, Podenos escribor $m = nq + r$, $n < r < r$
 $1 = g^{m} = g^{n} + r$

$$\langle y \rangle = \left\{ 1 = y^{3}, g, g^{2}, ..., y^{n-1} \right\}$$

