Homework 1: Symplectic Linear Algebra

Given a linear subspace Y of a symplectic vector space (V,Ω) , its **symplectic** orthogonal Y^{Ω} is the linear subspace defined by

$$Y^{\Omega} := \{ v \in V \, | \, \Omega(v,u) = 0 \text{ for all } u \in Y \} \ .$$

1. Show that $\dim Y + \dim Y^{\Omega} = \dim V$.

Hint: What is the kernel and image of the map

$$\begin{array}{ccc} V & \longrightarrow & Y^* = \operatorname{Hom}(Y, \mathbb{R}) & ? \\ v & \longmapsto & \Omega(v, \cdot)|_Y \end{array}$$

- 2. Show that $(Y^{\Omega})^{\Omega} = Y$.
- 3. Show that, if Y and W are subspaces, then

$$Y \subseteq W \iff W^{\Omega} \subseteq Y^{\Omega}$$
.

4. Show that:

Y is **symplectic** (i.e., $\Omega|_{Y\times Y}$ is nondegenerate) $\iff Y\cap Y^{\Omega}=\{0\} \iff V=Y\oplus Y^{\Omega}.$

- 5. We call Y isotropic when $Y \subseteq Y^{\Omega}$ (i.e., $\Omega|_{Y \times Y} \equiv 0$). Show that, if Y is isotropic, then $\dim Y \leq \frac{1}{2} \dim V$.
- 6. We call Y coisotropic when $Y^{\Omega}\subseteq Y$. Check that every codimension 1 subspace Y is coisotropic.
- 7. An isotropic subspace Y of (V,Ω) is called **lagrangian** when $\dim Y=\frac{1}{2}\dim V$. Check that:

Y is lagrangian $\iff Y$ is isotropic and coisotropic $\iff Y = Y^{\Omega}$.

8. Show that, if Y is a lagrangian subspace of (V,Ω) , then any basis e_1,\ldots,e_n of Y can be extended to a symplectic basis $e_1,\ldots,e_n,f_1,\ldots,f_n$ of (V,Ω) .

Hint: Choose f_1 in W^{Ω} , where W is the linear span of $\{e_2, \ldots, e_n\}$.

9. Show that, if Y is a lagrangian subspace, (V,Ω) is symplectomorphic to the space $(Y\oplus Y^*,\Omega_0)$, where Ω_0 is determined by the formula

$$\Omega_0(u \oplus \alpha, v \oplus \beta) = \beta(u) - \alpha(v)$$
.

In fact, for any vector space E, the direct sum $V=E\oplus E^*$ has a canonical symplectic structure determined by the formula above. If e_1,\ldots,e_n is a basis of E, and f_1,\ldots,f_n is the dual basis, then $e_1\oplus 0,\ldots,e_n\oplus 0,0\oplus f_1,\ldots,0\oplus f_n$ is a symplectic basis for V.