REMARKS/ARGUMENTS

Claims 11-14, 16 and 17 remain pending herein.

The Applicants thank Examiner Patel for the courtesies extended during a telephone interview conducted on April 28, 2004. The substance of the discussion during that interview is incorporated in the following remarks.

During the course of the April 28, 2004 interview, Examiner Patel stated that he had intended to include in the Final Rejection a rejection of claim 11 under 35 U.S.C.§112, first paragraph concerning the expressions "such as a capacitor element", "and/or" and "such as an electromechanical conversion element" in claim 11. The above amendments consist of changes to address these concerns of the Examiner. Accordingly, since the above amendments eliminate concerns raised by the U.S. PTO, and since those concerns were not stated in the Final Rejection or in the previous Office Action mailed March 24, 2003, it is respectfully submitted that entry of the amendments set forth above would be proper under 37 C.F.R. 1.116. Accordingly, entry of the above amendments is respectfully requested.

The drawings were objected to. The Office Action contains a statement regarding the cross-hatching pattern shown for the masking film 72 in Figs. 9A and 9B. It is respectfully noted that the materials out of which the masking film 72 can be constructed include metals. Accordingly, it is respectfully submitted that the solid-line cross-hatching in the masking film 72 depicted in Figs. 9A and 9B is appropriate under 37 C.F.R. and the MPEP. Accordingly, it is respectfully requested that the U.S. PTO reconsider and withdraw this objection.

Claims 12, 13, 14 and 17 were rejected under 35 U.S.C.§112, second paragraph.

It is respectfully noted that the specification, page 3, lines 8-26 describes that using conventional screen printing techniques, it has been difficult to form a gap of not more than 40 µm between patterns, and that a method has been employed in which different parts of the

overall pattern have been made by performing screen printing several times in a divided manner. The specification further describes that using such a plurality of screen printing procedures, however, the film thickness of the pattern formed by the "odd-numbered screen printing process" has been seen to differ from the film thickness of a pattern formed by an "even-numbered screen printing process" by 10% or more. The meaning of such disclosure is that in one of the screen printing procedures, the odd-numbered patterns are formed, and in the other screen printing process, the even-numbered patterns are formed, and the even-numbered and odd-numbered patterns are aligned with one another such that they alternate (i.e., even-numbered patterns are positioned between odd-numbered patterns and odd-numbered patterns are positioned between even-numbered patterns).

The present specification further discloses, e.g., at page 17, lines 15-25, that according to the present invention, contrary to the prior art, an entire pattern can be formed by a single screen printing procedure, even though printed elements are spaced from one another by a gap of not more than 40 µm. The specification further discloses that where a plurality of patterns are formed according to the present invention in an aligned manner, the elements in the overall pattern which would have been formed by an odd-numbered operation (in a two-printing step procedure according to the prior art) have an average thickness which differs, by not more than 5% of the overall average thickness, from the average thickness of elements of the overall pattern which would have been formed by an even-numbered operation (in a two-printing step procedure of the prior art). That is, the specification discloses that "even-numbered patterns" and odd-numbered patterns" are those elements of the overall pattern which would have been formed by one or the other, respectively, of the printing steps if a two-step screen printing process of the prior art were used to print the patterns. The

expression "aligned manner" indicates that the respective elements corresponding to the evennumbered patterns and the odd-numbered patterns are aligned with one another.

Also, it is respectfully noted that claims 13 and 14 are product-by-process claims. In addition, claim 13 recites that each of the screen printed patterns comprising a printing ink material applied on the substrate.

In view of the above, it is respectfully requested that the U.S. PTO reconsider and withdraw this rejection.

Claims 11-14, 16 and 17 were rejected under 35 U.S.C.§103(a) over U.S. Patent No. 6,041,496 (Haq '496) in view of U.S. Patent No. 6,047,893 (Nakata '893). In addition, claims 12 and 17 were rejected under 35 U.S.C.§103(a) over Haq '496, Nakata '893 and U.S. Patent No. 5,624,782 (Hayakawa '782).

As discussed during the April 28, 2004 telephone interview, submitted herewith is a reference from du Pont® (one copy is more clean and the other copy includes more Englishlanguage translation of Japanese text) which includes information which demonstrates that a pattern formed by screen-printing structurally differs from patterns formed by other methods, e.g., photolithography. In particular, the page entitled "Line Resolution, Fodel® vs Screen Printing" clearly shows the difference between a screen-printed pattern and a pattern formed by photolithography.

The Office Action contains an acknowledgment that Haq '496 does not disclose a gap between screen-printed patterns of not more than 40 μ m. Nakata '893 is apparently relied on in the Office Action for alleged disclosure of forming a wiring pattern having a line spacing as small as 15 μ m. It is respectfully submitted that neither Haq '496 nor Nakata '893, nor any combination thereof, discloses or suggests a circuit board comprising a plurality of screen-printed patterns formed on a substrate, a gap disposed between the plurality of screen-printed

patterns being not more than 40 μ m. Moreover, it is respectfully submitted that neither Haq '496 nor Nakata '893 contains disclosure which would enable one of skill in the art to produce such a structure. Hayakawa '782 is apparently relied on in the Office Action for alleged disclosure of uniformity of thickness of patterns.

Accordingly, such disclosure in Hayakawa '782 would not overcome the shortcomings of Haq '496 and Nakata '893 as attempted to be applied against claim 11. Accordingly, it is respectfully requested that the U.S. PTO reconsider and withdraw these rejections.

In view of the above, claims 11-14, 16 and 17 are in condition for allowance.

If the Examiner believes that contact with Applicants' attorney would be advantageous toward the disposition of this case, the Examiner is herein requested to call Applicants' attorney at the phone number noted below.

The Commissioner is hereby authorized to charge any additional fees associated with this communication or credit any overpayment to Deposit Account No. 50-1446.

Respectfully submitted,

Customer No.: 025191

Telephone: (315) 233-8300

Facsimile: (315) 233-8320

April 30, 2004 Date

Kevin C. Brown Reg. No. 32,402

KCB:jms Enclosure:

du Pont® Reference

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Fodel ® Process Equipments (設備/装置

Exposure

Lens アンメ

Photomask フォトマスク

セラミック基板

フォーデルの販光性 Fodel® TF Paste **厚膜ペースト**

<u>Development (現</u>

Coveyorized Developer System コンベア式現像システム

 $0.4\% \, \text{Na}_2\text{CO}_3, \, 30\%$ (Sodium carbonate)

フェデル®(Fodel®)雑葉条件(Standard Process) Fodel ® Pt/Ag Platable Conductor

注釈	Remarks	スクリーン印刷 Coroon Drinting		安间	at Room Temp.	ボックス炉	Drying Oven	水銀 又は水銀/キセノンランプによるUV光(365nm)	Hg or Hg/Xe UV Light(λ _{max} : 365nm)	0.4%炭酸ナトリウム水溶液(30°C)	0.4% Na ₂ CO ₃ (Sodium carbonate) 30°C	ベルトや	Conventional Belt Furnace	*) TTC : Total Time to Clean
推奨条件	Recommendation	12~18µm		10min	-	80% /20min	80°C/20min		600~1,000mj/cm ²		TTC * X1.2~2.0		850°C/10min(Peak)	
プロセス	Process	乾燥膜厚 Driod Thicknoss	DIED HIICKHESS	レベリング	Leveling	乾燥	Drying	露光	Exposure	現像	Development	焼成	Firing	

フォデル®(Fodel®)特性比較 (Performance) Fodel® Pt/Ag Platable Conductor(K3714) Screen Print Low Temp. Cu 6002F

		Fodel/ K3714 Pt/A	Low Temp. Cu 6002F
プロセス	Process	146	スクリーン印刷
ファインライン苷 Fine Line		30 m m 08/m m	75 µm/75 µm
(ライン/スペース)	(Line/Space)		
ツート抵抗		□/ Uw5 ≈	□/ Om/ ~
Sheet Resistivity		☐ /× ☐ ~	☐ / /
$(@5\mu m Fired)$		(@ 5μ m Fired)	(@16 μ m Fired)
接着強度	初期値 Initial	(N) 0E ₹	(N) ≥
Adhesion (on $96\% \text{ Al}_2 \text{ O}_3$)	I-ジング後 150°C/48hr	(N) 0E ₹	≥ 30 (N)
/6- 7			

從来のFodel® Pt//Ag 導体

X 1,000

.

X 200

アルミナ基板上

Fodel ® PWAG メッキ下地(Platable Conductor) (機成画:Fired Surface)

On Alumina

30 mm /30 mm ライン&スペース(L&S)

50mm/50mm L&S

Line Resolution(ライン解像度) Fodel® vs Screen Printing

(Screen Printing) スクリーン印刷

フォデル® (Fodel®)

6002F~Low Temp. Cu

Fodel® Platable Pt/Ag

Top View Back Light

 $50 \mu \text{ m W}$

75 m W

X-Section

Eodel® Pt//Ag Cross Section(断面図)

35μm Fired Width (焼成巾)On Alumina (アルミナ基板上)

35μm Fired Width (焼成巾) On 6050 Diel (誘電体上) 75μm Fired Width (焼成巾) On Alumina (アルミナ基板上) 75μm Fired Width (焼成巾) On 6050 Diel (誘電体上)

All: Fired
Thickness
6~7 μm

Co-fired Photo Imageable Silv Fodels on Green Tape Tin Future Trends -

80 µm Inductor Coil

Co-Fired Ag Fodel® On 951 50 µm Lines and Spaces

Fodel ® Study on Pitch / Via & Size 市場のピッチ&ヴィアサイズ・スタディ

フェデル®(Fodel®)能源条件(Standard Process) Fodel ® Pt/Ag Platable Conductor

プロセス	推奨条件	米
Process	Recommendation	Remarks
乾燥膜厚	124.18	はロイールのと
Dried Thickness	15.410 [211]	Screen Printing
アスリング	10001	英語
Leveling		at Room Temp.
乾燥	80° / 20min	ポックス炉
Drying		Drying Oven
露光	2	木鶴 又は木銀/キセノンランプによるUV光(365nm)
Exposure		Hg or Hg/Xe UV Light(λ max : 365nm)
現像	11C * V12.20	0.4%炭酸ナトリウム水溶液(30℃)
Development	11¢ 11¢~2.0	0.4% Na ₂ CO ₄ (Sodium carbonate)30°C
徒政	OE May /1 () min (Dook)	ライジン
Firing	DOUG I UNINGLEAR)	Conventional Belt Furnace

*) TTC: Total Time to Clean

Comparative Characteristics

フォデル®(Fodel®)特性比較 (Performance) Fodel®Pt/Ag Platable Conductor(K3714)

Screen Print Low Temp. Cu 6002F

(@16µm Fired) スクリーン印刷 Low Temp. Cu 75 µm/75 µm ≈ 4m0/□ N) 0E ₹ N) 08 ₹ 6002F Pt/A (@5 µm Fired) 30 µm/30 µm ≈ 5mΩ/□ ≥ 30 (N) (N) 0€ ≥ Fodel₄ K3714 (Line/Space) /150°C/48hr 1-> 沙沙像 Process 台頭衛 Initial ライン/スペース) アレイソリイン和 (on 96% Al₂ O₃) (@5µm Fired) Sheet Resistivity ツート熱 Adhasiva Strongth 接着強度 Adhesion Fine Line プロセス

Alter Edging

forner FODEL PVAg Canductor

世来のFodel® Pt//Ag 遺体

X 1,000

X 200

.

アルミナ基板上 On Alimina Substrate

Fodel * PWAG X * + Ftt (Platable Conductor)

(無政國: Fired Surface)

50 mm /50 mm L&S 30mm/30mm 34x6x~~x4x6x

On Alumina

ess (a)

Line Resolution(ライン解像度) Fodel® vs Screen Printing

スクリーン印刷 (Screen Printing)

フォデル® (Fodel®)

6002F~Low Temp. Cu

Kreen eine eenske tip het en nagen augen een een

Fodel® Platable Pt/Ag

Top View Back Light

50 mm W

X-Section

75µm W

Eodel® Pt/Ag Cross Section(断面図)

35μm Fired Width (焼成巾) On Alumina (アルミナ基板上)

35μm Fired Width (競成巾) On 6050 Diel (誘電体上)

■ 75μm Fired Width (無成巾) On Alumina (アルミナ基板上) ● 75μm Fired Width (焼成巾) On 6050 Diel (誘電体上)

All: Fired Thickness 6~7 μm

Co-fired Photo Imageable Silver Fodel® on Green TapeTM

SO Frm lackector Cell

イきっる領域 by FODEL Soreen Print - Edge Technology Region Coverable by FOCEL Servin Patel - Late Technolo ··· Fodelがかん **2**007 Build-up PW Build-sp PhB FodelM1/1/5-で知りの確果 Study of Pitch and '/Iz Size in the Narkelplac 퇽 \$ LTCC Purchipo Bulki-up PWB EE FIC industry radies Q Factories - CK? 2 Established technology uningerich Mil. Caquatally ଞ୍ଚ * (日來のFodel技術 Forma: Fodel Tashmiqua ・説来のスクリーン四型強/LTCC/パンケンク Prior Screen Printing Method / LTCC Purching ・政庁の取状範囲 Curent Required Kange 3 · FUFF-727PWB BUILD FWB ・ 院来のスクリーン西里法 Prior Bernan Printing Mathed * 旧来のFodel技術 Forner FODEL Technique + Ten Conductor Petersing (LAS) * 提行の厚水範囲 Curri Required Range ・フレキシブル Floxible ピルト・ブップPWB Bull-Lp FWB オーガニック Organk オーガニック Organic セブニッケー・ - Gest Careen Print) - Feder Tape