Chapitre 1 - Ensembles de mots

Benjamin WACK (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Lundi 1er Octobre 2018

0) Introduction

Discret est l'opposé de continu, et il peut y avoir un nombre fini ou infini de valeurs. On ne fera ni de géométrie ni d'analyse de fonctions (dérivées, etc.).

1) Mots

a) Alphabets et mots

Définition. Un alphabet est un ensemble fini de symboles.

Exemples.

- alphabet de 26 lettres
- code ASCII
- notes de musique

Définition. un mot sur un alphabet A est une suite ordonnée finie de symboles de A.

L'ordre des lettres est important : abba est différent de baab. Il peut y avoir des répétitions.

Si x_1, x_2, x_n sont des symboles de A; on peut parler du mot $x = x_1x_2...x_n$

Cas particulier. Le mot vide à 0 symboles noté ϵ .

 ϵ n'est pas un symbole de A

On note A^n l'ensemble des mots sur A formés de n symboles et A^* l'ensemble de tous les mots sur A.

Définition. On appelle longueur d'un mot le nombre de symboles qui le composent.

$$lg(x_1x_2...x_n) = n$$
$$lg(\epsilon) = 0$$

Dans A^* on retrouve chaque symbole de A sous la forme d'un mot de longueur 1.

Exemples.

- alphabet latin à 26 lettres
 - Toute suite de lettres est appelée mot (même s'il n'est pas dans le dictionnaire)
- alphabet binaire $B = \{0, 1\}$ Il y a 2^n mots binaires de longueur n.
- alphabet des chiffres $\{0,1,2,\ldots,9\}$ un mot sur cet alphabet représente un nombre entier

Définitions. On appelle **langage** sur A un ensemble (fini ou infini) de mots sur A, autrement dit une partie de A^* .

Exemples.

- Les mots du dictionnaire Larousse 2018
- Les suites de chiffres qui ne commencent pas par un 0.
- Le langage d'un seul mot $\{u\}$
- {ε}
- Le langage vide : $\{\emptyset\}$ (à ne pas confondre avec ϵ !)
- A^{*}

b) Préfixe, suffixe, facteur

Concaténation

Soient $u = u_1 u_2 \dots u_n$ et $v = v_1 v_2 \dots v_p$ alors **le concaténé** de u et v noté simplement uv est le mot $u_1 u_2 \dots u_n v_1 v_2 \dots v_p$

Exemple. Si u = 1011 et v = 010 alors uv = 1011010

Préfixe, suffixe, facteur

Soient u et v deux mots sur A. On dit que u est un préfixe de v si il existe un mot w tel que v = uw w peut être le mot vide.

On note $u \sqsubseteq v$ le fait que u est préfixe de v $u \sqsubset v$ le fait que u est préfixe strict de v (cas où $w \neq \epsilon$)

Autre caractérisation : si $u=u_1u_2\dots u_n,\ v=v_1v_2\dots v_p$ alors $u\sqsubseteq v$ si et seulement si $u_1=v_1,u_2=v_2,\dots,u_n=v_n$ et $n\le p$

Propriété. Si $u \sqsubseteq v$ et $v \sqsubseteq u$ alors u = v

Propriété. Si $u \sqsubseteq v$ alors $lg \ u \le lg \ v$ et si $u \sqsubseteq v$ alors $lg \ u < lg \ v$

On dit que u est un :

- suffixe de v s'il existe un mot w tel que v = wu.
- facteur de v si il existe 2 mots x et y tels que v = xuy

Exemples. Soit le mot baaca :

- ses préfixes sont ϵ , b, ba, baa, baac, baaca.
- ses suffixes sont ϵ , a, ca, aca, aca, baaca
- ses facteurs sont ϵ , b, ba, baa, baac, baaca, a, aa, aac, aaca, ac, aca, c, ca

Propriété. Si u est un mot de longueur n, il admet exactement n+1 préfixes distincts, n+1 suffixes distincts et au moins n+1 facteurs (souvent plus).

Propriétés.

- lg(uv) = lg(u) + lg(v)
- $lg(u^n) = n \times lg(u)$ (où u^n est le mot u répeté n fois) $u^0 = \epsilon$

Soit
$$P$$
: " $w = uv$ " et Q : " $lq(w) = lq(u) + lq(v)$ " on a $P \Rightarrow Q$.

La réciproque $(Q \Rightarrow P)$ n'est pas vraie : :white_check_mark: Si w = uv alors lg(w) =lg(u) + lg(v) :negative_squared_cross_mark: Si lg(w) = lg(u) + lg(v) alors W = uvContre-exemple: u = a, v = b, w = aa

En revanche, la contraposée $(!Q \Rightarrow !P)$ est vraie : Si $lg(w) \neq lg(u) + lg(v)$ alors $w \neq uv$

c) Distance entre mots

Soient u et v deux mots sur A de même longueur La **distance** de u à v est le nombre de symboles de u qu'il faut modifier pour obtenir v.

Exemples.

- u = arbre, v = aller, d(u, v) = 4 (seul le a est identique aux 2)
- u = 0101110, v = 0011101, d(u, v) = 4 (seuls 3 sur 7 caractères sont identiques aux 2)

Propriétés. (qui disent que d est bien un distance)

- $d(u,v) = 0 \ ssi \ u = v$
- d(u, v) = d(v, u)
- inégalité triangulaire : $\forall u, v, w$,

$$d(u,v) \le d(u,w) + d(w,v)$$

Preuve. $d(u,v) = \sum_{i=1}^{n} d(u_i,v_i)$, d'où $d(u,w) + d(w,v) = \sum_{i=1}^{n} (d(u_i,w_i) + d(w_i,v_i))$. On peut donc se focaliser sur un seul symbole à la fois : - si $u_i = v_i$ alors $d(u_i, v_i) = 0 \le d(u_i, w_i) + d(w_i, v_i)$ - si $u_i \ne v_i$ alors $d(u_i, v_i) = 1$ et w_i est différent d'au moins un des deux. $d(u_i, w_i) + d(w_i, v_i) = 1 + 0$ ou 0 + 1 ou 1 + 1

2) Ordre lexicographique

Idée : comme l'odre du dictionnaire.

Soit A un alphabet quelcoquue, $A = \{a_1, a_2, \dots, a_k\}$

On dit que A est **ordonné** si on fixe un ordre < sur les symboles, par exemple, $a_1 < a_2 < \cdots < a_k$

Soient u et v deux mots de A^* , u est **avant** v **dans l'odre lexicographiqe** (noté $u \leq_{\text{lex}} v$) si : - u est un préfixe de v OU - il existe un mot w et deux symboles x < y tels que $wx \sqsubseteq u$ et $wy \sqsubseteq v$

Autrement dit si $u = u_1 u_2 \dots u_n$, $v = v_1 v_2 \dots v_p$: - $n \le p$ et $u_1 = v_1$, \cdots , $u_n = v_n$ OU - $\exists k$ tel que $u_1 = v_1, \dots u_k = v_k$ e $u_{k+1} < v_{k+1}$

Remarque. Si u et v sont de longueur 1, les ordres \leq sur A et \leq _{lex} sur A^* coïncindent.

Exemple. Sur $B = \{0,1\}$ avec 0 < 1, rangeons to us les mots de longueur ≤ 3 : 1. ϵ 2. 0, 1 3. 00, 01, 10, 11 4. 000, 001, 010, 011, 101, 110, 111

$$\epsilon \le_{\text{lex}} 0 \le_{\text{lex}} 00 \le_{\text{lex}} 000 \le_{\text{lex}} 001 \le_{\text{lex}} 01 \le_{\text{lex}} 010 \le_{\text{lex}} 011$$

 $\le_{\text{lex}} 1 \le_{\text{lex}} 10 \le_{\text{lex}} 100 \le_{\text{lex}} 101 \le_{\text{lex}} 11 \le_{\text{lex}} 110 \le_{\text{lex}} 111$

Propriété. \leq_{lex} est un ordre total : quels que soient u et $v \in A^*$ on a toujours $u <_{\text{lex}}$ ou $u >_{\text{lex}}$ ou $u >_{$

Remarque. L'odre lexicographique n'est pas commode à définir, par contre on peut écrire un algorithme pour décider si $u \leq_{\text{lex}} v$ (cf. TD3)

3) Ensembles et dénombrement

a) Notion d'ensemble, fini ou infini

Un ensemble E est une collection d'éléments sans ordre ni répétition. Si E est fini, on peut le décrire explicitement par exemple $\{a,b,c\}$ ou encore $\{c,a,b\}$. Cette notation est limitée : on écrit vite des ensembles comme $\{a,b,c,\cdots\}$, ce qui est ambigü.

En général on décrit plutôt {la forme générale} de éléments de l'ensemble ou {les propriétés}.

Exemple.
$$\{2k+1|k\in\mathbb{N}\}=\{1,3,5,\dots\}\ \{k\in\mathbb{N}|k\ impair\}$$

Notations. - $x \in E$: l'élément x appartient à lensemble E - $A \subseteq B$: l'ensemble A est contenu / inclus dans B, aautrement dit tout élément de A appartient à B - $A \subset B$: inclusion stricte (si $A \subseteq B$ et $A \neq B$) - l'ensemble vide \emptyset ne contient aucun élément : $\{\}$

Exemples.
$$-1 \in \{0,1\}$$
 $--5 \notin \mathbb{N}$ $--5 \in \mathbb{Z}$ $-\mathbb{N} \subset \mathbb{Z}$ $-\mathbb{Z} \subseteq \mathbb{Z}$ $-\{\epsilon\} \neq \emptyset$ $-\{-1,1\} \subseteq \mathbb{N}$

Remarque. $x \in E$ si et seulement si $\{x\} \subseteq E$

Définition. Le cardinal d'un ensemble fini est le nombre d'éléments qui le composent, noté card E, #E ou |E|.

Exemples. - card
$$(\{a, b, \dots, z\}) = 26$$
 - card $(\{0, 1, \dots, 9\}) = 10$ - card $(\{\epsilon\}) = 1$ - card $(\emptyset) = 0$

Attention. Par convention, dans tout ce cours, si on parle du cardianl d'un ensemble, celui-ci est fini

Proprietés. - Si $X \subseteq Y$ alors card $X \leq \text{card } Y$ - Si $X \subset Y$ alors card X < card Y

(Notez le parallèle entre $\subseteq,$ \leq et \sqsubseteq et entre $\subset,$ < et $\sqsubset)$

b) Opérations entre ensembles

Union et intersection

L'union de X et Y est l'ensemble des éléments présents dans X ou Y.

$$X \cup Y = \{x | x \in X \text{ ou } x \in Y\}$$

L'intersection de X et de Y est l'ensemble des éléments présents la fois dans X et dans Y.

$$X \cap Y = \{x | x \in X \text{ et } x \in y\}$$

Attention: - X et Y sont **différents** si il existe un élément présent dans l'un mais pas dans l'autre - X et Y sont **disjoints** s'ils n'ont aucun élément commun : $X \cap Y = \emptyset$ (disjoint est "plus fort" que différent)

Exemples. - $\{0,1\} \cup \{1,2,3\} = \{0,1,2,3\}$ - $\{-0,2,4,\dots\} \cup \{1,3,5,\dots\} = \mathbb{N}$ - $\{0,1\} \cap \{1,2,3\} = \{1\}$: ils sont différents mais pas disjoints - $\{0,2,4,\dots\} \cap \{1,3,5,\dots\} = \emptyset$: ils sont disjoints

Proprieté. card
$$(X \cup Y) + \text{card } (X \cap Y) = \text{card } X + \text{card } Y$$

Diagramme de Venn avec union et intersection

D'où card $X \cup Y \le \operatorname{card} X + \operatorname{card} Y$ et : on a l'égalité ssi X et Y sont disjoints. Dans ce cas on note l'union disjointe $X \cup Y$ ou X + Y alors $\boxed{\operatorname{card}(X + Y) = \operatorname{card}(X) + \operatorname{card}(Y)}$

Différence

$$X \setminus Y = \{ x \in X | x \notin Y \}$$

 $\operatorname{card}(X \setminus Y) \le \operatorname{card} X$

Partition

Définition. Soit un ensemble X (fini ou non). On appelle **partition finie** de X: n sous-ensembles X_1, X_2, \ldots, X_n deux à deux disjoints (= **exclusivité**) et dont l'union forme X.

Autrement dit : tout élément de X fait partie d'un X_i et d'un seul

Exemple. N est partitionné en nombres pairs et nombres impairs.

$$X = X_1 + X_2 + \dots + X_n = \sum_{i=1}^{n} X_i$$

$$X = \bigcup_{i=1}^{n} X_i$$
 et $\forall i, j$ disjoints $X_i \cap X_j = \emptyset$

Exemples. - L'ensemble des élèves d'INFO3 rangés par année de naissance. - \mathbb{Z} est partitionné en 5 parties $(\mathbb{Z}/5\mathbb{Z})$: $\{5k|k\in\mathbb{Z}\}, \{5k+1|k\in\mathbb{Z}\}, \{5k+2|k\in\mathbb{Z}\}, \{5k+3|k\in\mathbb{Z}\}, \{5k+4|k\in\mathbb{Z}\}$

Complémentaire

Soient X et Y deux ensembles tels que $Y \subseteq X$. Alors X - Y ou $C_x Y$ est le supplémentaire de Y dans X. $\{x \in X | x \notin Y\}$: cas particulier de différence

Alors: - Y et X - Y forment 2 partitions de X:

$$X = (X - Y) + Y$$

-
$$cardX = card(X-Y) + cardY$$
 - $\boxed{card(X-Y) = cardX + cardY}$ si $Y \subseteq X$

c) Ensemble d'ensembles, n-uplets

Soient X_1, X_2, \ldots, X_n des ensembles.

Le **produit cartésien** de ces ensembles, noté $X_1 \times X_2 \times \cdots \times X_n$ ou $\prod_{i=1}^n X_i$ est l'ensemble des n-uplets de la forme (x_1, x_2, \dots, x_n) avec $x_1 \in X_1, x_2 \in X_2, \dots, x_n \in X_n$

En informatique ce sont les struct, enregistrement, tuple, etc.

Exemple. -
$$\{1,2\} \times \{a,b,c\} = \{(1,a),(2,a),(1,b),(1,c),(2,b),(2,c)\}$$
 - $\{1,2\} \times \{1,2,3\} = \{(1,1),(1,2),(2,1),(1,3),(2,2),(2,3)\}$; $(1,2) \neq (2,1)$!

Atention l'ordre d'un n-uplet est important!

Propriété. Si X_1, \ldots, X_n sont finis, alors :

$$card(X_1 \times X_2 \dots X_n) = card(X_1) \times card(X_2) \times \dots \times card(X_n)$$

Cas particulier. Si $X_1 = X_2 = \cdots = X_n = X$ alors on note $X^n = X \times X \times \cdots \times X$ et $card(X^n) = card(X)^n$

 $Exemple. \mathbb{R}^n$; les mots de longueur n sur l'alphabet X "correspondent" exactement au éléments de X^n

Ensemble des parties

Définition. Si X est un ensemble, on note $\mathcal{P}(X)$ l'ensemble des parties (ou sous-ensembles) de X, autrement dit tous les ensembles contenus dans X.

$$A \subseteq X \text{ ssi } A \in \mathcal{P}(X)$$

Exemple.
$$X = \{a, b, c\}, \mathcal{P}(x) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}\}$$

Remarque. Contrairement aux mots, dans une partie il n'y a pas de répétition ni de notion d'ordre (il n'a pas d'importance)

Propriété.

$$card(\mathcal{P}(X)) = 2^{cardX}$$

 $\begin{array}{l} \textit{D\'{e}monstration}. \text{ Si } X = \{x_1, x_2, \dots, x_n\} \text{ une partie } Y \text{ de } X \text{ correspond à un mot binaire } b_1 b_2 \dots b_i \dots b_n \\ \text{avec } b_i \ = \ \begin{cases} 0 \text{ si } x_i \notin Y \\ 1 \text{ si } x_i \in Y \end{cases}, \text{ il y autant de parties de } X \text{ que de mots binaires de longueur } n : \\ \left(card\{0,1\} \right)^n = 2^n = 2^{cardX} \end{array}$

Ensembles infinis

Parmi les ensembles **infinis**, on peut distinguer les ensembles **dénombrables**, c'est-à-dire ceux pour lesquels on peut **énumérer** les éléments (les numéroter $0, 1, 2, \ldots$) > Autrement dit faire une correspondance entre les entiers naturels et l'ensemble en question

Exemple. \mathbb{N} et \mathbb{Z} sont dénombrables mais pas \mathbb{R} ni [0,1]

4) Monoïdes

On appelle **monoïde** un ensemble X lorsque pour tous éléments $x,y,z\in X:$ - X est pourvu d'une opération binaire interne ou **loi interne** $\square: x\square y\in X$ - \square soit **associative**: si $x,y,z\in X$ alors $(x\square y)\square z=x\square (y\square z)=x\square y\square z$ - X possède un **élément neutre** $e:e\square x=x=x\square e$

Exemples. - $(\mathbb{R}, +, 0)$ - $(\mathbb{R}, \times, 1)$ - $(\mathbb{N}, +, 0)$ (n'est pas un groupe !) - $(\mathbb{N}, \times, 1)$ - (A^*, \cdot, ϵ) - $(M_{n,n}(\mathbb{R}), \times, I_n)$ - $(\mathcal{P}(X), \cap, X)$ - $(\mathcal{P}(X), \cup, \emptyset)$

Remarque. Un groupe est toujours un monoïde, mais l'inverse n'est pas vrai.

Propriété. Dans un monoïde e est unique.

 $D\acute{e}monstration$. Supposons en effet que e et e' soient tous deux neutres, alors :

$$e = e \square e' = e'$$

Homomorphisme de monoïdes. Soient (X, \square, e) et (X', \square', e') , on dit que $f: X \to X'$ est un homomorphisme de monoïdes si $\begin{cases} f(e) = e' \\ f(x \square y) = f(x) \square' f(y) \end{cases}$ (il faut que les deux conditions soient respectées !)

Exemples. - $\exp: (\mathbb{R}, +, 0) \to (\mathbb{R}_+^*, \times, 1)$ avec $e^0 = 1$ et $e^{x+y} = e^x \times e^y$ - \ln est l'homomorphisme de monoïdes réciproque - $\lg: (A^x, \cdot, \epsilon) \to (\mathbb{N}, +, 0)$ avec $\lg \epsilon = 0$ et $\lg(u \cdot v) = \lg u + \lg v$ - complémentaire $: - (\mathcal{P}(X), \cap, X) \to (\mathcal{P}(X), \cup, \emptyset)$ avec $\overline{X} = \emptyset$ et $\overline{A \cap B} = \overline{A} \cup \overline{B}$ - $(\mathcal{P}(X), \cup, \emptyset) \to (\mathcal{P}(X), \cap, X)$ - $(\mathcal{P}(X), \cup, \emptyset) \to (\mathbb{N}, +, 0)$ n'est **pas** un homomorphisme de monoïdes car $(\mathcal{P}(X), \cup, \emptyset) \to (\mathcal{P}(X), \cup, \emptyset)$ avec $(\mathcal{P}(X), \cup, \emptyset) \to (\mathcal{P}(X), \cup, \emptyset)$ o'est $(\mathcal{P}(X), \cup$

5) Systèmes de numération

Définition. Une base de numération est un entier $b \ge 2$ et un symbole pour chaque valeur de 0 à b-1

Exemples. - La base 10 usuelle - La base 2 avec $\{0,1\}$ - La base 16 avec $\{0,1,\ldots,9,A,B,C,D,E,F\}$ - La base 60 (date des Mésopotamiens en -4000) est encore utilisée pour les minutes et secondes - La base 256 où on représente un chiffre par un couple d'hexadécimaux $(16 \times 16 = 256)$ est utilisée pour représenter des couleurs en informatique - La base 64 avec $\{A\ldots Z\ a\ldots z\ 0\ldots 9+/\}$ avec A" = "0, a" = "26 et 0" = "52

Définition. L'**écriture en base** b **d'un entier** n est un mot sur l'alphabet des chiffres $x_k \dots x_0$ tel

que
$$\begin{cases} x_k \neq 0 \\ \sum_{i=0}^k x_i b^i = n \end{cases}$$

Attention. Différencier les symboles (écrits) de la valeur (entière) : l'entier qui vaut 7 en base 10 s'écrit 7, en base 2 il s'écrit 111 et en base 1 il s'écrit IIIIIII.

Propriété. L'écriture en base b d'un entier n existe toujours et elle est unique

Notation. On écrit $(x_k \dots x_0)_b$ pour noter la base

Définition. Si $b^k \le n < b^{k+1}$ alors **la taille de** n **en base** b est le nombre de chiffres qu'il faut pour l'écrire en base b, ici k+1.

Démonstration. Chaque x_i est compris entre 0 et b-1 et $x_k \ge 1$.

D'où
$$0 + 1.b^k \le \underbrace{\sum_{i=0}^k x_i b^i}_{i=0} \le \sum_{i=0}^k (b-1)b^i \ (=b^{k+1}-1 < b^{k+1})$$
 or,

$$\sum_{i=0}^{k} (b-1)b^{i} = (b-1) + (b^{2} - b) + (b^{3} - b^{2}) + \dots + (b^{k+1} - b^{k})$$

$$= b^{k+1} - 1 \text{ (somme télescopique)}$$

Rappel.
$$\sum_{i=0}^{k} b^i = \frac{b^{k+1}-1}{b-1}$$

On appelle \log_b (logarithme en base b) une fonction croissante sur \mathbb{R}_+^* telle que $\log_b(b^k) = k$.

On peut la définir par $\log_b x = \frac{\ln x}{\ln b}$

Alors immédiatement, si n s'écrit sur k+1 chiffres en base b, alors $k=\lfloor \log_b n \rfloor$.

Donc la taille de n en base b est $1 + \lfloor \log_b n \rfloor$.

Exemple. On veut écrire le nombre d'humains sur Terre (environ 7 milliards = 7×10^9) sur des bits, cherchons de combien de bits on a besoin :

$$\log_2(7 \times 10^9) = \log_2(7) + \log_2(10^9) \approx 3 + 30 \ (= 33)$$