Review of Wed: - How do chages behave within matter? -Charge by contact, tape - How is neutral matter affected by Efields? Polasization

Electric dipole moment P=95 Pinduced = X Eapplied atomic Polarizability Carbon 2~ 10-40 Cm N/C L is thy but w/ many cutoms it adds up E xample Neutral Atan + pt charge Eapplied 91

Force on 2,?

$$|\vec{F}_{i}| = 2, E_{induced}$$

$$|\vec{E}_{applied}| = 2$$

$$|\vec{E}_{ind}| = 2$$

$$|\vec{F}_{ind}| = 3$$

$$|\vec{F}_{ind}| = 3$$

$$|\vec{F}_{ind}| = 3$$

$$|\vec{F}_{ind}| = 3$$

Eapplied?

Field of pt chy

Eapp =
$$\frac{1}{4\pi\epsilon_0}$$
 $\frac{2i}{r^2}$

Eind = $\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{4\pi\epsilon_0}$ $\frac{2i}{r^2}$
 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{4\pi\epsilon_0}$ $\frac{2i}{r^2}$
 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{r^2}$
 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{r^3}$
 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{r^3}$
 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{2i}{r^3}$

Direction?

 $=\frac{1}{4\pi\epsilon_0}$ $\frac{2i}{r^3}$ $\frac{$

F, = Force acting on Q, What is F, force acting neutral atom ? Newton's 3= Law $\hat{F}_{1} = -\hat{F}_{1}$ Same magnitude force, but towards the Fz F, Can a charged object ever repel a neutral object? $N \cap I$

- Today we want to take a closer look at how applied electric fields affect matter
 - We've used the example of a neutral atom whose electron cloud is slightly shifted by the applied field
 - Not all atoms keep a tight hold over their outer electrons!
 - This has important effects
 - We need to analyze this type of material separately
- · Broadly speaking, we talk about two different types of materials
 - Insulators
 - Conductors

- So far, we've dealt with insulators
 - Electrons can "shift" (~10^-10 meters) but are not free to move about anywhere

Polarized Insulator

- · Excess charge on an insulator:
 - Charge "stays put" doesn't move
 - o Do rod demo
 - ► Like charge to like charge = repel
 - What if I hold up the other end of the rod?
 - Attraction
 - ► I charged it on one side, but the charges didn't move

Conductors

Ex: Salt water

Not Cl

O

Mobile charges

Ex: Metals

Election "gas"
Randomly distributed
No net change

Polarization -Shift in mobile charges

Excess Charge

Scatter!

No excess charge in interior
- only on sufface

We will grantify this next week. Read 14,6-14,7!