Particle creation in an expanding universe

Joachim Pomper, Philipp Schreiner, Tristan Feyer

University of Graz

February 23, 2022

Topic overview

- Preliminaries
 - Motivation
 - Scalar Field in Gravitational Field
 - Vacua
- Our model and results
- Summary

Motivation

 $\left. \begin{array}{l} General\,Relativity \\ Quantum\,Mechanics \end{array} \right\} particle\,creation\,by\,expansion\,of\,universe \end{array}$

L. Parker

Assumptions and Goal

Action in Minkowski space

Action: (Minkowski spacetime)

$$S = \int \mathrm{d}^4 x \left(\frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2 \right)$$

- Determines motion of free scalar field
- Need to couple to background metric
- Equations of motion follow from $\delta S = 0$

Minimal coupling

Minimally coupled action:

$$S_{\min} = \int \mathrm{d}^4 x \sqrt{-|g|} \left(rac{1}{2} g^{\mu
u} D_{\mu} \phi D_{
u} \phi - rac{1}{2} m^2 \phi^2
ight)$$

We performed following modifications of to action:

- Exchange metric: $\eta^{\mu\nu} \to g^{\mu\nu}$
- Adapt derivatives: $\partial_{\mu} o D_{\mu}$
- Covariant volume element: $\mathrm{d}^4 x \to \mathrm{d}^4 x \sqrt{-|g|}$

Conformal coupling

Conformal coupling action:

$$S_{
m conf} = \int \mathrm{d}^4 x \sqrt{-|g|} \left[rac{1}{2} g^{\mu
u} D_\mu \phi D_
u \phi - rac{1}{2} \left(m^2 + rac{R}{6}
ight) \phi^2
ight]$$

Perks:

- Conformal invariance for m=0: $g_{\mu\nu} o \tilde{g}_{\mu\nu} = \Omega^2(x)g_{\mu\nu}$
- Simplification for conformally flat spacetimes $g_{\mu
 u} = \Omega^2(x) \eta_{\mu
 u}$

Flaws:

Might violates strong equivalance principle

Equations of Motion

Using the principle of least action we obtain

$$\Box \phi + (m^2 + \xi R)\phi = 0$$

minimal coupling :
$$\xi = 0$$
 conformal coupling : $\xi = \frac{1}{6}$

$$\Box \phi \equiv rac{1}{\sqrt{-g}} \partial_{\mu} \left(g^{\mu
u} \sqrt{-g} \partial_{
u} \phi
ight)$$

Notice: for $\eta_{\mu\nu}$ this reduces to the well-known Klein-Gordon-equation

Vacua

- flat Minkowski space:
 - symmetry in timetranslation
 - positive frequency mode with respect to it
 - define vacuum state
 - define complete Fock space
 - ✓ same number of particles for different observers
- general spacetime
 - no symmetry in timetranslation
 - separation in time-dependent and space-dependent factors impossible
 - no sets of time independent basis modes
 - **X** different number of particles for different observers

Bogolubov Transformations and Coefficients

- observer I
 - complete orthogonal set of mode solutions of field:

$$\phi(x) = \sum_{i} [a_i u_i(x) + a_i^{\top} u_i^*(x)]$$

- vacuum state: $a_i |0\rangle = 0 \ \forall i$
- observer II
 - different complete orthogonal set of mode solutions of field:

$$\phi(x) = \sum_{j} [\bar{a}_{j}\bar{u}_{j}(x) + \bar{a}_{j}^{\top}\bar{u}_{j}^{*}(x)]$$

• vacuum state: $\bar{a}_j \ket{\bar{0}} = 0 \ \forall j$

Bogolubov transformations:

$$\bar{u}_j = \sum_i [\alpha_{ji} u_i + \beta_{ji} u_i^*]$$

$$u_i = \sum_{j} [\alpha_{ji}^* \bar{u}_j - \beta_{ji} \bar{u}_j^*]$$

Bogolubov Transformations and Coefficients

Bogolubov coefficients: α_{ii} , β_{ii}

connect creation and annihilation operators

- \Rightarrow different Fock spaces for $\beta_{ii} \neq 0$.
- \Rightarrow for particle number N_i : $\langle \bar{0} | N_i | \bar{0} \rangle = \sum_i |\beta_{ji}|^2$
- \Rightarrow particle creation \checkmark

Physical Vacuum

Q: So what is the actual physical vacuum?

Physical Vacuum

Q: So what is the actual physical vacuum?

A: A priori, there's no best choice.

Minimization of instantaneous energy

Hamiltonian for quantum field:

$$H(t) = \frac{1}{2} \int d^3x \left[\Pi^2 + (\nabla \phi)^2 + m_{\text{eff}}^2(t) \phi^2 \right]$$

→ explicitly time-dependent ⇒ no time-independent eigenvectors

Instantaneous vacuum $|_{t^*}0\rangle$:

lowest-energy state of $H(t^*)$

Ambiguity of vacuum state

• Decomposition of fields into plane waves

$$\exp(i\mathbf{k}\mathbf{x} - i\omega_k t)$$

• Particle only well defined if

$$\delta k \ll k$$

$$\lambda \gg \frac{1}{k}$$

(spatial size of wave packet)

Geometry!

Example: spatially flat Friedmann modes

$$\omega_k^2(t) = k^2 + m^2 a^2 - \frac{a''}{a}$$

- curvature might be too large
- Hamiltonian not bounded below due to gravitational effects
- ⇒ Definition of instantaneous vacuum \$

Particle creation: Our model and results

Specifying the metric

Solution to Einstein equations assuming a homogeneous, isotropic and spatially flat universe:

FLRW Metric:
$$ds^2 = dt^2 - a^2(t)\delta_{ij}dx^idx^j$$

- → Spatial part: flat but scales with time
- → Spacetime curved!

Specifying the metric

Solution to Einstein equations assuming a homogeneous, isotropic and spatially flat universe:

FLRW Metric:
$$ds^2 = dt^2 - a^2(t)\delta_{ij}dx^idx^j$$

After introducing conformal time

$$\eta(t) \equiv \int^t \frac{\mathrm{d}t}{\mathsf{a}(t)}$$

metric becomes conformally equivalent to Minkowski metric:

$$\mathrm{d}s^2 = \underbrace{a^2(\eta)\eta_{\mu\nu}}_{\sigma_{\mu\nu}} \mathrm{d}x^\mu \mathrm{d}x^\nu$$

Equation of motion

For a conformally coupled scalar field:

$$rac{1}{\sqrt{-g}}\partial_{\mu}\left(g^{\mu
u}\sqrt{-g}\partial_{
u}\phi
ight)+\left(m^{2}+rac{R}{6}
ight)\phi=0$$

$$\psi ds^2 = a^2(\eta) \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$
 and $\chi(x) \equiv a(\eta) \phi(x)$

$$\left[\partial_{\mu}\partial^{\mu} + a^{2}(\eta)m^{2}\right]\chi(x) = 0$$

→ Klein-Gordon-equation with time-dependent mass term

↓ spatial Fourier transform

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}\eta^2} + \omega_k^2(\eta)\right] \chi_k(\eta) = 0$$

Expansion model

Expansion model

Asymptotic behaviour:

$$\label{eq:continuity} \begin{split} \left[\frac{\mathrm{d}^2}{\mathrm{d}\eta^2} + \omega_k^2(\eta)\right] \chi_k(\eta) &= 0 \\ \omega_k^2(\eta) &= k^2 + m^2 a^2(\eta) \end{split}$$

$$\omega_k(\eta \to -\infty) = \sqrt{k^2 + c_-^2 m^2}$$
 $\omega_k(\eta \to +\infty) = \sqrt{k^2 + c_+^2 m^2}$

Expansion model

Asymptotic behaviour:

$$\begin{bmatrix} \frac{\mathrm{d}^2}{\mathrm{d}\eta^2} + \omega_k^2(\eta) \end{bmatrix} \chi_k(\eta) = 0 \qquad \qquad \omega_k(\eta \to -\infty) = \sqrt{k^2 + c_-^2 m^2}$$
$$\omega_k^2(\eta) = k^2 + m^2 a^2(\eta) \qquad \qquad \omega_k(\eta \to +\infty) = \sqrt{k^2 + c_+^2 m^2}$$

 \Rightarrow Plane wave behaviour for $\eta \to \pm \infty$ \checkmark Notion of particles and vacuum

Solving equation of motion

We find two sets of (equivalently good) solutions

$$v_{\rm in}^+$$
 $v_{\rm in}^-$ and $v_{\rm out}^+$ $v_{\rm out}^-$

and they are used to define vacua in the past/future, respectively:

Solving equation of motion

We find two sets of (equivalently good) solutions

$$v_{\rm in}^+$$
 $v_{\rm in}^-$ and $v_{\rm out}^+$ $v_{\rm out}^-$

and they are used to define vacua in the past/future, respectively:

Bogolyubov transformation

Natural units and mass reference

- 1. Want dimensionless units \tilde{m} and \tilde{k}
 - \rightarrow express m and k in units of η_0^{-1}
- 2. Want to describe produced particles long after the expansion ended
 - → Masses should be measured by scales in the remote future (rest mass)

Particle density

$$egin{aligned} n(ilde{k}) &= rac{\cosh \pi \left(ilde{\omega}_{
m out} - ilde{\omega}_{
m in}
ight) - 1}{\cosh \pi \left(ilde{\omega}_{
m out} + ilde{\omega}_{
m in}
ight) - \cosh \pi \left(ilde{\omega}_{
m out} - ilde{\omega}_{
m in}
ight)} \ & ilde{\omega}_{
m out} &= \sqrt{ ilde{k}^2 + ilde{m}^2} \ & ilde{\omega}_{
m in} &= \sqrt{ ilde{k}^2 + rac{c_-^2}{c_\perp^2} ilde{m}^2} \end{aligned}$$

Observations:

- No massless particles are created
- Only depends on relative increase $\frac{c_+}{c_-}$
- No η_0 -dependence

$$N(\eta_0, \tilde{m}) = rac{4\pi}{\eta_0^3} \int_0^\infty \mathrm{d} \tilde{k} \ \tilde{k}^2 \ n(\tilde{k}; \tilde{m})$$

Observations:

- Things from $n(\tilde{k})$ still apply
- Now also: η_0 -dependence
- More rapid expansion produces more particles

... more interested in $N(\tilde{m})$, though.

Different absolute scaling and different ratios of $\frac{c_+}{c_-}$:

Same absolute scaling but different ratio of $\frac{c_+}{c_-}$:

ightarrow effect of expansion is more pronounced if the universe starts out small

Different absolute scaling but identical ratio of $\frac{c_+}{c_-}$:

Same scaling but different η_0 :

Time- and mass-scales:

 $\rightarrow \eta_0$ sets scale of produced particles

Summary

- Notion of vacuum is ambiguous in curved spacetime
- Finding physical vacuum is important to start talking about particles
- Expansion of universe creates particles

- Only relative increase important
- Stronger relative increase ⇒ more particles
- More rapid increase ⇒ more particles
- Time scale of expansion sets mass scale of produced particles

