LEZIONE 4 FORHULA DI CLOS IN STRUTTURE S-S-S IL COSTO RISUCTAMTE F $C = 2NK + KN^2$ DEFINIAMO K IN MODO CHIE LA STRUTTURA SI'A NON BLOCCATE · SI SUPPONE CHE DELLE N LINEE IN INGRESSO AD UN CERTO BLOCCO DEL PRIMO STADIO N-1 SIANO GIA OCCOPATE · LA SOLA LINEA LIBERA RICHIEDE DI ESSERE CONNESSA CON L'UNICA LIMEA LIBERA DI UN DATO BLOCCO DEL TERZO STADÍO

GLI NGRESSI DEL BLOCCO AC PRIMO STADIO

COSTITUIRAMNO INGRESSI A BLOCCHI DEL

SECONDO STADIO LA CUI USCITA VERSO

IL BLOCCO DI INTERESSE DEL TERZO STADIO

E LIBERA

ANALOGAMENTE:

I BLOCCHI DEL SECONDO STADIO CHE HANNO

LE USCITE VERSO IL BLOCCO DEL TERZO

STADIO DI INTERESSE OCCUPATE FIANNO L'INGRESSO

VERSO IL BLOCCO DEL PRIMO STADÍO LÍBERO

CONSEQUENZA DELCE NOSTRE IPOTESI É

k = 2n - 1

RFLAZIONE

D1

CLOS.

0	TTIMI	27AZ10	ME	DEL	(0510
---	-------	--------	----	-----	-------

APPLICANDO IL RISULTATO DI CLOS HO:

$$C = 2Nk + k + k^2 = 2N(2n-1) + (2n-1) + k^2$$

$$dC = 0$$

$$dc = 0$$

IPOTES, PRATICHE

SI HA

$$C \simeq 4 Nn + 2 N^2$$

$$\frac{dC}{n} = 4n = 2\frac{N^2}{h^2} = 0$$

VINCOLI DELLA SOLUZIONE OTTIMA!

N DEYE ESSERE IMITERO E TALE PER CUI
ANCHE N RISUCTI' IMTERO.

E	S	£	M	79	0	2
_						

$$N = \sqrt{\frac{N}{2}} = 222$$

$$h = 200$$
 ; $N = 500$ $K = 399$ $C = 1.810^8$

$$h = 200$$
; $N = 500$ $k = 399$ $C = 1.810^8$
 $h = 250$; $N = 400$ $k = 499$ $C = 1.8.10^8$

CONFRONTANDO IL COSTO DITENUTO CON

QUELLO CHE AUREI AUUTO CON UNIA

STRUTTURA A SINGOLO STADIO EQUIVALENTE

DATO DA:

C = 1.0

COH L'AGGIVATA DI UNO STADIO T SI POSSONO RISOCYERE LE SITUAZIONI DI BLOCCO TIPICHE DELLE STRUTTURE A DUE STADI TOS O S-T. ESEMPIO CAHACE 7 LIMEA 1 -> CATALE 10 LIMEA 3 CAHIACE 12 LIMEA 2 -> CAMACE 10 LIMEA 7 CAHALE 7. LINENT CAHALE 10 LINEAL -> S CAMALE 10 LIMEA 3 - CAMALÉ 10 LIMEA 3

	CANALE 12 LIMEA L> CANALE 7 LIMEA ->
-	S' CAMALE 7 CIMEA 7 T - CAMALE 10
	LINEA 7.
	MUTUANDO LE IPOTESI DEL CASO PEGGIORE
	EMUMCIATE PER LA STRUTTORA S-S-S SÍ
	MA IL SEGUENTE RISULTATO
	K=2n-1 FORMULA DI CLOS

PARTENDO DA UNA STRUTTURA T-S-T SI PUO DEFIMIRE UMA STRUTTURA A CIMQUE STADI MEDIANTE LA REALIZZAZIONE DELLO STADIO CENTRALE S COK VHA ARCHLITETTURA A TRE STADI 5-S-S

ANALISI DI LEE SI CONSIDERA L'EVENTO BLOCCE SU BASE STATISTICA LO SCOPO DELL'AHALISÍ DÍ LEE É QUELLO PI DEFINIRE STRUTTURE DI COMMUTAZIONE PER LE QUALI L'EXENTO BLOCCO SIA RAGIONIEVOLMEN TE RARO E ALLO STESSO TEMPO A BRIANO UN COSTO INFERIORE DELLE STRUTTURE EQUIVACENTI SECONDO CLOS.

I PARAMETRI' N K NON SODDISFANO IN GENERALE

LA RELAZIONE DI CLOS. (K MINORE).

DAZLA FIGURA SI'NOTA CHE ESISTONO K

CAMMINI PASSANTI DA ELEMENTI DEL

SECONDO STADIO CHE CONNETTONO IL

BLOCCO DEL PRIMO STADIO AC BLOCCO

THDICHIAMO CON Q (OCASE) CA PROB.

DI AVERE UMA RICHIESTA DI COMMESSIONE SU

NHO DEGLI N INGRESSI DEC BLOCCO DEC

PRIMO STADIO.

ASSUMIAMO CHE QUALSIASI USCITA POSSA ESSERE RICHIESTA CON UGUALE PROB.

DEL TERZO STADIO CONSIDERATO

			SSERE (OMSIDE	СП (№ ИН (И)
P	- no	υ			
Si	PUÓ YE	ERIFICARE	COME	P SIA	LA PROB.
Dı.	AVERF	O CCUPA	TO CH	CAMMIN	O CHE
(- 1		91			
LOL	IGA UN	Blocco D	EL SE(C	DMDO SIF	1010
O F	DUM BL	OCCO DE	- PRIMO	STADVO	O AD UM
Blo	cco DE	EL TERE	-o STADI	<i>O</i> .	
				BABILI	

PRIMO STADIO AL TERZO NON
SIA DISPONIBICE
$1 - (1 - p)^2$
V
VN BLOCCO DEL PRIMO STADIO MON
SARA POSSIBILE COMMETTERLO COM
UN Blocco DEC TERZO STADIO (BLOCCO)
CON PROB. P DATA DA:
-
P = [1-p] FORMULA DI LEE
BLEE

ES.	EMPIO				
n=	120	k= 128	(k	= 239)	
Q =	0,7				
P :	= [1-	$(4-p)^2 \int_{-\infty}^{k}$	10-7		
Si	HA IN	PRATICA I	UHA CO	HDIZIOHE	DiBLO
Mol	TO RARA	COH UHA	BUONA	RIDUZION	4E Di Cos
N 6	TA				
L'x	INALISI	DILE	E E	APPROS	SIVATA.
VIT	itica				
Ион	YIEME	. RISPETTAT	A LA C	CONDIZIONI	Ερί

COMMUTATORI VELOCI A PACCHETTO · RETI AD ALTA VELOCITA · RIDORRE I TEMPI DI COMMUTAZIONE · LIMITARE COOPERAZIOME HK-SW. TECHOLOGIE · CROSSBAR · BAMYAH S: INDIVIDUA LA PORTA DI USCITA DESIDERATA PROCESSANDO SEQUENZIALMEMTE I BIT CHE

IDENTIFICANO L'INDIRILLO DELLA PORTA DI USCITA SI POSSONO AVERE CONFLITTI NEI NODI INTERMI ALLA STRUTTURA LA STRUTTURA É MODUCARE L'ELEMENTO BASE E:

IM GEMERALE SE SI DEVONO COLLEGARE

N LIHEE IN INGRESSO (OM ACTRETTANTE

LINEE IN USCITA SI USERANNO Nº 800 N
2 02

LIYELLI CIASCUMO CON Nº SXITCH
2

ELEMENTARI

BATCHER- BANYAM

PERMETTE DI RISOLVERE LE SITUAZIONI

DI CONFLITTO

LA SOLUZIONE E QUELLA DI FARE PRECEDERE

ALLA STRUTTURA BANYAN UMA STRUTTURA

DI RIORDINO DEI PACCHIETTI DETTA

BANYAM.