

DFS Test Report

Report No.: RF151022E06A-2

FCC ID: 2AD8UFZCWM2A1

Test Model: WM2A-AC210m

Received Date: Dec. 10, 2015

Test Date: Mar. 09, 2016

Issued Date: Apr. 14, 2016

Applicant: Nokia Solutions and Networks.OY

Address: Karaportti 3, P.O. Box 226, Nokia Group, Finland.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF151022E06A-2 Page No. 1 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Table of Contents

Rele	ase Control Record	3
1	Certificate of Conformity	4
2	EUT Information	5
2. 2. 2. 2. 2. 2.	EUT Software and Firmware Version Description Of Available Antennas to The EUT EUT Maximum and Minimum Conducted Power	5 6 10 14
3.	U-NII DFS Rule Requirements	15
3. 3.	J	
4.	Test & Support Equipment List	19
4. 4.		
5.	Test Procedure	20
5. 5. 5. 5.	Calibration of DFS Detection Threshold Level	21 21
6.	Test Results	22
6.: 6.: 6.:	,	24 24 29 36 38
7.	Information on The Testing Laboratories	73
8.	APPENDIX-A	74
9.	APPENDIX-B	134

Release Control Record

Issue No.	Description	Date Issued
RF151022E06A-2	Original release.	Apr. 14, 2016

Report No.: RF151022E06A-2 Page No. 3 / 134 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: Wi-Fi AP Module 802.11 ac

Brand: Nokia

Test Model: WM2A-AC210m

Sample Status: MASS-PRODUCTION

Applicant: Nokia Solutions and Networks.OY

Test Date: Mar. 09, 2016

Standards: FCC Part 15, Subpart E (Section 15.407)

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v01r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _		, Date:	Apr. 14, 2016	
	Claire kuan / Specialist			a a
Approved by :		, Date:	Apr. 14, 2016	
	May Chen / Manager			

2 EUT Information

2.1 Operating Frequency Bands and Mode of EUT

TABLE 1: OPERATING FREQUENCY BANDS AND MODE OF EUT

Operational Made	Operating Frequency Range		
Operational Mode	5250~5350MHz	5470~5725MHz	
Master	✓	✓	

2.2 EUT Software and Firmware Version

Table 2: The Eut Software/Firmware Version

No.	Product	Model No.	Software/Firmware Version
1	Wi-Fi AP Module 802.11 ac	WM2A-AC210m	QSDK Prernium Router QCA9558.LN / LuCl 0.11.1 Release(0.11.1)

Note: This module WM2A-AC210m was installed in host equipment (HMN: Flexi Zone Multiband Indoor Pico BTS)

2.3 Description Of Available Antennas to The EUT

Table 3: Antenna List

WLAN – 5GHz Antenna spec.								
Antenna No	PCB Chain No.	Brand	Model	Antenna Type	Gain(dBi)	Frequency (GHz to GHz)		
				4 PIFA	6.03	5.15~5.25		
	1100	0 11 1	02102140-06084A4		6.17	5.25~5.35		
1	U20	Galtronics			5.57	5.47~5.725		
					5.18	5.725~5.85		
				1 PIFA	5.1	5.15~5.25		
_			02102140-06084A1		4.91	5.25~5.35		
2	U21	Galtronics			5.23	5.47~5.725		
					5.73	5.725~5.85		

Cable Spec.						
Antenna No	Brand	Model	Connector Type	Cable Loss(dB)	Cable Length (cm)	
1	Galtronics	LL100	MMCX	0	30.6	
2	Galtronics	LL100	MMCX	0	9.1	

Report No.: RF151022E06A-2 Page No. 5 / 134 Report Format Version: 6.1.1

2.4 EUT Maximum and Minimum Conducted Power

Table 4: The Measured Conducted Output Power

802.11a

1Tx Chain0

Frequency Band	MAX. F	MAX. Power		ower
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	22.56	180.302	16.56	45.29
5470~5725	22.61	182.39	16.61	45.81

1Tx Chain1

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	22.87	193.642	16.87	48.641
5470~5725	22.83	191.867	16.83	48.195

2Tx CDD Mode

Frequency Band	MAX. F	Power	MIN. Power		
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	
5250~5350	21.14	130.067	15.14	32.659	
5470~5725	21.45	139.486	15.45	35.075	

Report No.: RF151022E06A-2 Page No. 6 / 134 Report Format Version: 6.1.1

802.11ac (VHT20)

1Tx Chain0

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	22.62	182.81	16.62	45.92
5470~5725	22.57	180.717	16.57	45.39

1Tx Chain1

Frequency Band (MHz)	MAX. Power		MIN. Power	
	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	22.81	190.985	16.81	47.973
5470~5725	22.71	186.638	16.71	46.881

2Tx CDD Mode

Frequency Band	MAX. F	Power	MIN. F	ower
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	21.29	134.73	15.29	33.806
5470~5725	21.15	130.456	15.15	32.734

Report No.: RF151022E06A-2 Page No. 7 / 134

802.11ac (VHT40)

1Tx Chain0

Frequency Band	MAX. Power requency Band		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	22.41	174.181	16.41	43.75
5470~5725	22.13	163.305	16.13	41.02

1Tx Chain1

Frequency Band	MAX. F	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	
5250~5350	22.81	190.985	16.81	47.973	
5470~5725	22.81	190.985	16.81	47.973	

2Tx CDD Mode

Frequency Band	MAX. F	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	
5250~5350	23.50	223.973	17.50	56.234	
5470~5725	23.75	236.866	17.75	59.566	

Page No. 8 / 134

Report No.: RF151022E06A-2

802.11ac (VHT80)

1Tx Chain0

Frequency Band	MAX. F	Power	MIN. F	ower
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	19.48	88.716	13.48	22.28
5470~5725	22.41	174.181	16.41	43.75

1Tx Chain1

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	20.74	118.577	14.74	29.785
5470~5725	20.56	113.763	14.56	28.576

2Tx CDD Mode

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	18.13	65.048	12.13	16.331
5470~5725	23.84	242.038	17.84	60.814

2.5 EUT Maximum and Minimum EIRP Power

Table 5: The EIRP Output Power List

802.11a

1Tx Chain0

Frequency Band	MAX. F	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	
5250~5350	28.73	746.450	22.73	187.50	
5470~5725	28.18	657.659	22.18	165.20	

1Tx Chain1

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	27.78	599.790	21.78	150.661
5470~5725	28.06	639.735	22.06	160.694

2Tx CDD Mode

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	27.31	538.477	21.31	135.207
5470~5725	27.02	502.957	21.02	126.474

Report No.: RF151022E06A-2 Page No. 10 / 134 Report Format Version: 6.1.1

802.11ac (VHT20)

1Tx Chain0

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	28.79	756.833	22.79	190.11
5470~5725	28.14	651.627	22.14	163.68

1Tx Chain1

Frequency Band	MAX. F	MIN. I		Power
(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
5250~5350	27.72	591.561	21.72	148.594
5470~5725	27.94	622.300	21.94	156.315

2Tx CDD Mode

Frequency Band	MAX. Power		Power MIN. Power	
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	27.46	557.782	21.46	139.959
5470~5725	26.72	470.396	20.72	118.032

Report No.: RF151022E06A-2 Page No. 11 / 134 Report Format Version: 6.1.1

802.11ac (VHT40)

1Tx Chain0

Frequency Band	MAX. Power		MIN. F	ower
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	28.58	721.109	22.58	181.13
5470~5725	27.70	588.843	21.7	147.91

1Tx Chain1

Frequency Band	MAX. Power		MIN. F	Power
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	27.72	591.561	21.72	148.594
5470~5725	28.04	636.794	22.04	159.956

2Tx CDD Mode

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	29.67	927.247	23.67	232.809
5470~5725	29.32	854.088	23.32	214.783

Report No.: RF151022E06A-2 Page No. 12 / 134 Report Format Version: 6.1.1

802.11ac (VHT80)

1Tx Chain0

Frequency Band	MAX. Power		MIN. F	ower
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	25.65	367.284	19.65	92.26
5470~5725	27.98	628.059	21.98	157.76

1Tx Chain1

Frequency Band	MAX. Power		MIN. F	Power
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)
5250~5350	25.65	367.283	19.65	92.257
5470~5725	25.79	379.316	19.79	95.280

2Tx CDD Mode

Frequency Band	MAX. Power				MIN. F	ower
(MHz)	Output Output Power(dBm) Power(mW)		Output Power(dBm)	Output Power(mW)		
5250~5350	24.30	269.299	18.30	67.608		
5470~5725	29.41	872.737	23.41	219.280		

Report No.: RF151022E06A-2 Page No. 13 / 134 Report Format Version: 6.1.1

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Maximum EIRP of this device is **927.247** mW which more than 500mW, therefore it's require TPC function.

The UUT can adjust a transmitter's output power based on the signal level present at the receiver.TPC is auto controlled by software

2.7 Statement of Manufacturer

Manufacturer statement confirming that inforn	nation regarding tl	the parameters of the	detected	Radar
Waveforms is not available to the end user.				

Report No.: RF151022E06A-2 Page No. 14 / 134 Report Format Version: 6.1.1

3. U-NII DFS Rule Requirements

3.1 Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

Table 6: Applicability of DFS Requirements Prior To Use a Channel

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	✓	Not required	✓	
DFS Detection Threshold	✓	Not required	✓	
Channel Availability Check Time	✓	Not required	Not required	
U-NII Detection Bandwidth	✓	Not required	✓	

Table 7: Applicability of DFS Requirements During Normal Operation.

	Operational Mode		
Requirement	Master or Client with radar detection	Client without radar detection	
DFS Detection Threshold	✓	Not required	
Channel Closing Transmission Time	✓	✓	
Channel Move Time	✓	✓	
U-NII Detection Bandwidth	✓	Not required	

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Report No.: RF151022E06A-2 Page No. 15 / 134 Report Format Version: 6.1.1

3.2 Test Limits And Radar Signal Parameters

Detection Threshold Values

Table 8: DFS Detection Thresholds For Master Devices And Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	00.15
power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the	0.4 JD
power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 9: DFS Response Requirement Values

Parameter	Value					
Non-occupancy period	Minimum 30 minutes					
Channel Availability Check Time	60 seconds					
Channel Move Time	10 seconds See Note 1.					
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.					
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3					

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: RF151022E06A-2 Page No. 16 / 134 Report Format Version: 6.1.1

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 10: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A	Roundup $ \begin{cases} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggr	egate (Radar Types	1-4)	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Report No.: RF151022E06A-2 Page No. 17 / 134 Report Format Version: 6.1.1

Table 11: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number Of Pulses Per Burst	Number Of Bursts	Minimum Percentage Of Successful Detection	Minimum Number Of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 12: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop Rate (kHz)		Hopping Sequence Length (msec)	Minimum Percentage Of Successful Detection	Minimum Number Of Trials	
6	1	333	9	0.333	300	70%	30	

Report No.: RF151022E06A-2 Page No. 18 / 134 Report Format Version: 6.1.1

4. Test & Support Equipment List

4.1 Test Instruments

Table 13: Test Instruments List

Description & Manufacturer	Model No.	Serial No	Date Of Calibration	Due Date Of Calibration
Spectrum Analyzer R&S	FSP40	100060	May. 08, 2015	May. 07, 2016
Vector Signal Generator Agilent	N5182B	MY53051263	Aug. 10, 2015	Aug. 09, 2016
EMCO Horn Antenna	3115	SN00028262	Jan 08, 2016	Jan. 07, 2017

4.2 Description of Support Units

Table 14: Support Unit Information.

No.	Product	Brand	Model No.	FCC ID	Spec
1	Wireless LAN Unit	NEC	NP05LM	RRK-NECNP05LM	

NOTE: This device was functioned as a ☐Master ☐Slave device during the DFS test.

Table 15: Software/Firmware Information.

No.	Product	Model No.	Software/Firmware Version				
1	Wireless LAN Unit	NP05LM	Driver Version: 06/18/2014, 1026.12.606.2014				

Report No.: RF151022E06A-2 Page No. 19 / 134 Report Format Version: 6.1.1

5. Test Procedure

5.1 DFS Measurement System

A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating system and (2) the Traffic Monitoring system. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Radiated Setup Configuration of DFS Measurement System

Channel Loading

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

a)	The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be	
	transmitting in a streaming mode.	
b)	Software to ping the client is permitted to simulate data transfer but must have random ping intervals.	
c)	Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.	√
d)	Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.	

Report No.: RF151022E06A-2

5.2 Calibration of DFS Detection Threshold Level

The measured channel is 5500MHz and 5510MHz and 5530MHz. The radar signal was the same as transmitted channels, and injected into the antenna of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

Radiated setup configuration of Calibration of DFS Detection Threshold Level

The calibrated conducted detection threshold level is set to -64dBm. The tested level is lower than required level hence it provides margin to the limit.

5.3 Deviation from Test Standard

No deviation.

5.4 Radiated Test Setup Configuration

Master mode

The EUT is a U-NII Device operating in Master mode. The radar test signals are injected into the Master Device.

6. Test Results

6.1 Summary of Test Results

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass

Report No.: RF151022E06A-2 Page No. 23 / 134 Report Format Version: 6.1.1

6.2 Test Results

6.2.1 Test Mode: Device Operating In Master Mode.

The radar test waveforms are injected into the Master.

DFS Detection Threshold

For detection threshold level of -64dBm, the tested level is lower than required level for 1dB, hence it provides margin to the limit.

Radar Signal 0

Report No.: RF151022E06A-2 Page No. 25 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Report No.: RF151022E06A-2 Page No. 26 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Report No.: RF151022E06A-2 Page No. 27 / 134
Reference No.: 151022E11

Page No. 28 / 134

Report Format Version: 6.1.1

U-NII 99% Channel bandwidth

U-NII 99% Channel bandwidth

U-NII 99% Channel bandwidth

Detection Bandwidth Test - IEEE 802.11ac (VHT20)

Radar Type 0

EUT Frequency: 5500MHz
EUT 99% Power bandwidth: 18.0525MHz
Detection bandwidth limit (100% of EUT 99% Power bandwidth): 18.0525MHz

Detection bandwidth (5510(FH) – 5490(FL)): 20MHz

Test Result : PASS

TEST RESUIT . FA	lest Result . FASS										
Radar				Trial 1	Numbe	r / Det	ection				Detection
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5.490G(FL)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	90
5.491G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.492G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.493G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.494G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.495G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.496G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.497G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.498G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.499G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.500G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.501G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.502G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.503G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.504G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.505G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.506G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.507G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.508G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.509G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.510G(FH)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100

Report No.: RF151022E06A-2 Page No. 32 / 134 Report Format Version: 6.1.1

Detection Bandwidth Test - IEEE 802.11ac (VHT40)

Radar Type 0

EUT Frequency: 5510MHz

EUT 99% Power bandwidth: 37.075MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 37.075MHz

Detection bandwidth (5529(FH) – 5491(FL)): 38MHz

Test Result : PASS

Radar Trial Number / Detection											
Radar		I		mair	vumbe	r / Det	ection	I	I	1	Detection
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5.491G(FL)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.492G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.493G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.494G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.495G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.496G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.497G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.498G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.499G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.500G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.501G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.502G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.503G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.504G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.505G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.506G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.507G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.508G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.509G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.510G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.511G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.512G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.513G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.514G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.515G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.516G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.517G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.518G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.519G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.520G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.521G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.522G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.523G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.524G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.525G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.526G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.527G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.528G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.529G(FH)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	90

Report No.: RF151022E06A-2 Page No. 33 / 134 Report Format Version: 6.1.1

Detection Bandwidth Test - IEEE 802.11ac (VHT80)

Radar Type 0

EUT Frequency: 5530MHz

EUT 99% Power bandwidth: 76.68MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 76.68MHz

Detection bandwidth (5569(FH) – 5491(FL)) : 78MHz

Test Result : PASS

Radar	<u></u>	Trial Number / Detection									
Frequency											Detection
(MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5.491G(FL)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.492G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.493G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.494G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.495G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.496G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.497G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.498G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.499G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.500G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.501G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.502G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.503G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.504G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.505G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.506G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.507G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.508G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.509G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.510G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.511G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.512G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.513G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.514G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.515G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.516G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.517G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.518G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.519G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.520G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.521G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.522G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.523G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.524G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.525G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.526G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.527G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.528G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.529G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.530G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.531G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.532G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.533G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.534G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
	•										

Report No.: RF151022E06A-2 Page No. 34 / 134 Report Format Version: 6.1.1

| 5.535G | Yes | 100 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5.536G | Yes | 100 |
| 5.537G | Yes | 100 |
| 5.538G | Yes | 100 |
| 5.539G | Yes | 100 |
| 5.540G | Yes | 100 |
| 5.541G | Yes | 100 |
| 5.542G | Yes | 100 |
| 5.543G | Yes | 100 |
| 5.544G | Yes | 100 |
| 5.545G | Yes | 100 |
| 5.546G | Yes | 100 |
| 5.547G | Yes | 100 |
| 5.548G | Yes | 100 |
| 5.549G | Yes | 100 |
| 5.550G | Yes | 100 |
| 5.551G | Yes | 100 |
| 5.552G | Yes | 100 |
| 5.553G | Yes | 100 |
| 5.554G | Yes | 100 |
| 5.555G | Yes | 100 |
| 5.556G | Yes | 100 |
| 5.557G | Yes | 100 |
| 5.558G | Yes | 100 |
| 5.559G | Yes | 100 |
| 5.560G | Yes | 100 |
| 5.561G | Yes | 100 |
| 5.562G | Yes | 100 |
| 5.563G | Yes | 100 |
| 5.564G | Yes | 100 |
| 5.565G | Yes | 100 |
| 5.566G | Yes | 100 |
| 5.567G | Yes | 100 |
| 5.568G | Yes | 100 |
| 5.569G(FH) | Yes | 100 |

Report No.: RF151022E06A-2 Page No. 35 / 134
Reference No.: 151022E11

6.2.3 Channel Availability Check Time

If the EUT successfully detected the radar burst, it should be observed as the EUT has no transmissions occurred until the EUT starts transmitting on another channel.

	Observation					
Timing of Radar Signal	EUT	Spectrum Analyzer				
Within 1 to 6 second	Detected	No transmissions				
Within 54 to 60 second	Detected	No transmissions				

Initial Channel Availability Check Time

NOTE: T1 denotes the end of power-up time period is 71th second. T2 denotes the end of Channel Availability Check time is 131th second. Channel Availability Check time is equal to (T2 – T1) 60 seconds.

Report No.: RF151022E06A-2 Page No. 36 / 134 Report Format Version: 6.1.1

Radar Burst at the Beginning of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 71th second. T2 denotes 77th second and the radar burst was commenced within a 6 second window starting from the end of power-up sequence. T3 denotes the 131th second.

Radar Burst at the End of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 71th second.T2 denotes 125th second and the radar burst was commenced within 54th second to 60th second window starting from the end of power-up sequence. T3 denotes the 131th second.

Report No.: RF151022E06A-2 Page No. 37 / 134 Report Format Version: 6.1.1

6.2.4 Channel Closing Transmission and Channel Move Time

Wireless Traffic Loading

IEEE 802.11ac (VHT20)

IEEE 802.11ac (VHT40)

IEEE 802.11ac (VHT80)

Report No.: RF151022E06A-2 Page No. 38 / 134 Report Format Version: 6.1.1

IEEE 802.11ac VHT20

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A	19 · 10 ⁶	18	30	93.3
2	1-5	150-230	23-29	30	90
3	6-10	6-10 200-500		30	83.3
4	11-20	200-500	12-16	30	83.3
	Aggregate (Radar 1	ypes 1-4)		120	87.5

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	80

Report No.: RF151022E06A-2 Page No. 39 / 134
Reference No.: 151022E11

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	93.3

Report No.: RF151022E06A-2 Page No. 40 / 134 Report Format Version: 6.1.1

IEEE 802.11ac (VHT40)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 \$\mu\$ sec, with a minimum increment of 1 \$\mu\$ sec, excluding PRI values selected in Test A	19.106	18	30	90
2	1-5	150-230	23-29	30	90
3	6-10	200-500	16-18	30	83.3
4	11-20	200-500	12-16	30	73.3
	Aggregate (Radar T	ypes 1-4)		120	84.2

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	80

Report No.: RF151022E06A-2 Page No. 41 / 134
Reference No.: 151022E11

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	93.3

Report No.: RF151022E06A-2 Reference No.: 151022E11 Page No. 42 / 134

Report Format Version: 6.1.1

Report Format Version: 6.1.1

IEEE 802.11ac (VHT80)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066	19 • 106	18	30	93.3
2	1-5	150-230	23-29	30	90
3	6-10	200-500	16-18	30	83.3
4	11-20 200-500			30	80
	Aggregate (Radar T	ypes 1-4)		120	86.7

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	83.3

Report No.: RF151022E06A-2 Page No. 43 / 134

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	90

Report No.: RF151022E06A-2 Page No. 44 / 134 Report Format Version: 6.1.1

IEEE 802.11ac VHT80

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
0	60	60

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: Zoom in of the first 500ms after radar signal applied.

IEEE 802.11ac VHT80

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
0	60	60

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: Zoom in of the first 500ms after radar signal applied.

Report No.: RF151022E06A-2 Page No. 46 / 134 Report Format Version: 6.1.1

IEEE 802.11ac VHT80

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
0	60	60

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: Zoom in of the first 500ms after radar signal applied.

Report No.: RF151022E06A-2 Page No. 47 / 134
Reference No.: 151022E11

IEEE 802.11ac VHT80

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
0	60	60

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: Zoom in of the first 500ms after radar signal applied.

Report No.: RF151022E06A-2 Page No. 48 / 134 Report Format Version: 6.1.1

IEEE 802.11ac VHT80

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
0	60	60

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: Zoom in of the first 500ms after radar signal applied.

Туре	Type 1 Radar Statistical Performances						
Trial	Test	Pulse	Pulse	Pulses	Pulse	Detection	
#	Frequency	Repetition	Repetition	per	Repetition		
	(MHz)	Frequency	Frequency	Burst	Interval		
		Number (1	(Pulse per		(microseconds)		
		to 23)	seconds)				
1	5500	10	1433	76	698	Yes	
2	5503	20	1114	59	898	Yes	
3	5496	2	1859	99	538	Yes	
4	5501	9	1475	78	678	Yes	
5	5500	14	1285	68	778	Yes	
6	5492	16	1223	65	818	Yes	
7	5504	1	1931	102	518	Yes	
8	5504	18	1166	62	858	Yes	
9	5502	21	1089	58	918	Yes	
10	5492	6	1618	86	618	Yes	
11	5494	7	1567	83	638	Yes	
12	5499	13	1319	70	758	Yes	
13	5500	12	1355	72	738	No	
14	5499	3	1792	95	558	Yes	
15	5498	19	1139	61	878	Yes	
16	5496		848.2	45	1179	Yes	
17	5502		1675	89	597	Yes	
18	5492		429	23	2331	Yes	
19	5496		896.9	48	1115	Yes	
20	5494		525.8	28	1902	Yes	
21	5493		509.2	27	1964	Yes	
22	5504		639.4	34	1564	Yes	
23	5496		504.8	27	1981	Yes	
24	5503		855.4	46	1169	Yes	
25	5508		346	19	2890	Yes	
26	5496		759.3	41	1317	Yes	
27	5494		446.6	24	2239	Yes	
28	5507		458.9	25	2179	No	
29	5505		357.8	19	2795	Yes	
30	5495		435.9	24	2294	Yes	
				•	Detection Pat	to: 02 2 0/	

Detection Rate: 93.3 %

Minimum Percentage of Successful Detection: 60 %

Trial #		al Performance	,0		
IIIai #	Test	Pulses per	Pulse	PRI(us)	Detection
	Frequency	Burst	Width(us)		
	(MHz)				
1	5500	28	4	203	Yes
2	5499	26	3.3	172	No
3	5501	28	4.4	222	Yes
4	5491	26	2.9	162	Yes
5	5506	27	3.4	174	Yes
6	5503	27	3.6	177	Yes
7	5504	24	1.8	214	Yes
8	5492	29	5	169	Yes
9	5508	28	4.3	159	Yes
10	5501	28	4	187	Yes
11	5504	24	1.9	220	Yes
12	5498	25	2.7	154	Yes
13	5495	26	2.8	198	No
14	5503	26	2.7	161	Yes
15	5493	23	1.3	184	Yes
16	5506	25	2.6	164	Yes
17	5501	26	3.1	165	Yes
18	5497	24	2	202	Yes
19	5509	25	2.2	204	Yes
20	5497	24	1.9	175	Yes
21	5506	29	4.5	193	Yes
22	5508	26	3	155	Yes
23	5503	29	4.6	150	No
24	5507	23	1.2	192	Yes
25	5507	29	4.9	160	Yes
26	5492	25	2.3	151	Yes
27	5507	27	3.9	205	Yes
28	5508	29	4.8	216	Yes
29	5505	29	4.6	213	Yes
30	5509	27	3.4	176	Yes

Detection Rate: 90 % Minimum Percentage of Successful Detection: 60 %

Type 3 Radar Statistical Performances						
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection	
	Frequency	Burst	Width(us)			
	(MHz)		· ·			
1	5500	18	9	221	Yes	
3	5507	17	8.3	478	Yes	
3	5502	18	9.4	463	Yes	
4	5501	17	7.9	353	Yes	
5	5499	17	8.4	200	Yes	
6	5495	17	8.6	236	No	
7	5504	16	6.8	408	Yes	
8	5504	18	10	326	Yes	
9	5492	18	9.3	283	Yes	
10	5503	18	9	439	Yes	
11	5494	16	6.9	371	No	
12	5494	17	7.7	403	Yes	
13	5496	17	7.8	292	Yes	
14	5495	17	7.7	420	Yes	
15	5498	16	6.3	431	Yes	
16	5500	17	7.6	424	Yes	
17	5501	17	8.1	434	Yes	
18	5503	16	7	383	Yes	
19	5508	16	7.2	495	Yes	
20	5497	16	6.9	319	Yes	
21	5503	18	9.5	440	No	
22	5500	17	8	259	Yes	
23	5495	18	9.6	443	Yes	
24	5508	16	6.2	423	Yes	
25	5493	18	9.9	464	Yes	
26	5494	16	7.3	446	Yes	
27	5500	18	8.9	279	No	
28	5497	18	9.8	329	No	
29	5500	18	9.6	272	Yes	
30	5507	17	8.4	470	Yes	
Detection Rate: 83.3 %						

Detection Rate: 83.3 %

Minimum Percentage of Successful Detection: 60 %

802.11ac (VHT20)

Type 4 Radar Statistical Performances						
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection	
	Frequency	Burst	Width(us)	, ,		
	(MHz)		, ,			
1	5500	15	17.7	221	Yes	
3	5498	14	16.1	478	Yes	
3	5500	16	18.6	463	Yes	
4	5496	14	15.2	353	Yes	
5	5503	14	16.3	200	Yes	
6	5505	15	16.9	236	No	
7	5495	13	12.9	408	Yes	
8	5494	16	19.9	326	Yes	
9	5509	16	18.4	283	Yes	
10	5508	15	17.8	439	Yes	
11	5492	13	13.1	371	No	
12	5499	14	14.8	403	Yes	
13	5492	14	15	292	Yes	
14	5509	14	14.9	420	No	
15	5496	12	11.7	431	Yes	
16	5492	13	14.5	424	Yes	
17	5494	14	15.8	434	Yes	
18	5506	13	13.3	383	Yes	
19	5504	13	13.7	495	No	
20	5496	13	13	319	Yes	
21	5504	16	18.9	440	Yes	
22	5497	14	15.4	259	Yes	
23	5509	16	18.9	443	No	
24	5498	12	11.6	423	Yes	
25	5500	16	19.6	464	Yes	
26	5501	13	13.9	446	Yes	
27	5498	15	17.4	279	Yes	
28	5496	16	19.5	329	Yes	
29	5502	16	19.1	272	Yes	
30	5500	15	16.4	470	Yes	
Detection Rate:83.3 %						

Detection Rate:83.3 %

Minimum Percentage of Successful Detection: 60 %

Type 5 Radar Statistical Performances						
Trial #	Chirp Center	Test Signal Name	Detection			
	Frequency(MHz)					
1	5500	LP_Signal_01	No			
2	5502	LP_Signal_02	Yes			
3	5494	LP_Signal_03	Yes			
4	5505	LP_Signal_04	No			
5	5503	LP_Signal_05	Yes			
6	5506	LP_Signal_06	Yes			
7	5503	LP_Signal_07	No			
8	5506	LP_Signal_08	Yes			
9	5494	LP_Signal_09	Yes			
10	5497	LP_Signal_10	Yes			
11	5507	LP_Signal_11	Yes			
12	5503	LP_Signal_12	Yes			
13	5493	LP_Signal_13	Yes			
14	5505	LP_Signal_14	Yes			
15	5502	LP_Signal_15	Yes			
16	5501	LP_Signal_16	Yes			
17	5498	LP_Signal_17	Yes			
18	5494	LP_Signal_18	Yes			
19	5494	LP_Signal_19	No			
20	5500	LP_Signal_20	Yes			
21	5499	LP_Signal_21	Yes			
22	5500	LP_Signal_22	No			
23	5496	LP_Signal_23	Yes			
24	5503	LP_Signal_24	Yes			
25	5503	LP_Signal_25	Yes			
26	5494	LP_Signal_26	Yes			
27	5506	LP_Signal_27	No			
28	5499	LP_Signal_28	Yes			
29	5499	LP_Signal_29	Yes			
30	5498	LP_Signal_30	Yes			
		Detecti	on Rate: 80 %			
	Minimum Percen	tage of Successful D	etection: 80 %			
The Long Pulse R	adar pattern shown in App	pendix A.1				

Type 6 Radar Statistical Performances							
Trial #	Pulses per Pulse Width(us) PRI(us) Detection						
	Burst						
1	9	1	333.3	Yes			
2	9	1	333.3	Yes			
3	9	1	333.3	Yes			
4	9	1	333.3	Yes			
5	9	1	333.3	Yes			
6	9	1	333.3	Yes			
7	9	1	333.3	Yes			
8	9	1	333.3	Yes			
9	9	1	333.3	No			
10	9	1	333.3	Yes			
11	9	1	333.3	Yes			
12	9	1	333.3	Yes			
13	9	1	333.3	Yes			
14	9	1	333.3	Yes			
15	9	1	333.3	Yes			
16	9	1	333.3	Yes			
17	9	1	333.3	Yes			
18	9	1	333.3	Yes			
19	9	1	333.3	Yes			
20	9	1	333.3	Yes			
21	9	1	333.3	Yes			
22	9	1	333.3	Yes			
23	9	1	333.3	Yes			
24	9	1	333.3	Yes			
25	9	1	333.3	Yes			
26	9	1	333.3	Yes			
27	9	1	333.3	Yes			
28	9	1	333.3	Yes			
29	9	1	333.3	Yes			
30	9	1	333.3	No			
			Detection F	Rate: 93.3 %			
Minimum Percentage of Successful Detection: 70 %							

Minimum Percentage of Successful Detection: 70 %

Type 6 Radar Sta	atistical Performances				
Trial #	Hopping Frequency	Detection			
	Sequence Name				
1	HOP_FREQ_SEQ_01	Yes			
2	HOP_FREQ_SEQ_02	Yes			
3	HOP_FREQ_SEQ_03	Yes			
4	HOP_FREQ_SEQ_04	Yes			
5	HOP_FREQ_SEQ_05	Yes			
6	HOP_FREQ_SEQ_06	Yes			
7	HOP_FREQ_SEQ_07	Yes			
8	HOP_FREQ_SEQ_08	Yes			
9	HOP_FREQ_SEQ_09	No			
10	HOP_FREQ_SEQ_10	Yes			
11	HOP_FREQ_SEQ_11	Yes			
12	HOP_FREQ_SEQ_12	Yes			
13	HOP_FREQ_SEQ_13	Yes			
14	HOP_FREQ_SEQ_14	Yes			
15	HOP_FREQ_SEQ_15	Yes			
16	HOP_FREQ_SEQ_16	Yes			
17	HOP_FREQ_SEQ_17	Yes			
18	HOP_FREQ_SEQ_18	Yes			
19	HOP_FREQ_SEQ_19	Yes			
20	HOP_FREQ_SEQ_20	Yes			
21	HOP_FREQ_SEQ_21	Yes			
22	HOP_FREQ_SEQ_22	Yes			
23	HOP_FREQ_SEQ_23	Yes			
24	HOP_FREQ_SEQ_24	Yes			
25	HOP_FREQ_SEQ_25	Yes			
26	HOP_FREQ_SEQ_26	Yes			
27	HOP_FREQ_SEQ_27	Yes			
28	HOP_FREQ_SEQ_28	Yes			
29	HOP_FREQ_SEQ_29	Yes			
30	HOP_FREQ_SEQ_30	No			
	De	etection Rate: 93.3 %			
Minimum Percentage of Successful Detection: 70 %					

Minimum Percentage of Successful Detection: 70 %
The Frequency Hopping Radar pattern shown in Appendix A.2

802.11ac (VHT40)

Туре	Type 1 Radar Statistical Performances							
Trial		Pulse	Pulse	Pulses	Pulse	Detection		
#	Frequency	Repetition	Repetition	per	Repetition			
	(MHz)	Frequency	Frequency	Burst	Interval			
	, ,	Number (1	(Pulse per		(microseconds)			
		to 23)	seconds)					
1	5510	10	1433	76	698	Yes		
2	5520	20	1114	59	898	No		
3	5500	2	1859	99	538	Yes		
4	5520	9	1475	78	678	Yes		
5	5495	14	1285	68	778	Yes		
6	5498	16	1223	65	818	No		
7	5492	1	1931	102	518	Yes		
8	5513	18	1166	62	858	Yes		
9	5515	21	1089	58	918	Yes		
10	5514	6	1618	86	618	Yes		
11	5507	7	1567	83	638	Yes		
12	5492	13	1319	70	758	Yes		
13	5506	12	1355	72	738	Yes		
14	5517	3	1792	95	558	Yes		
15	5520	19	1139	61	878	Yes		
16	5509		848.2	45	1179	Yes		
17	5500		1675	89	597	Yes		
18	5504		429	23	2331	Yes		
19	5503		896.9	48	1115	Yes		
20	5511		525.8	28	1902	No		
21	5514		509.2	27	1964	Yes		
22	5510		639.4	34	1564	Yes		
23	5522		504.8	27	1981	Yes		
24	5523		855.4	46	1169	Yes		
25	5528		346	19	2890	Yes		
26	5499		759.3	41	1317	Yes		
27	5506		446.6	24	2239	Yes		
28	5505		458.9	25	2179	Yes		
29	5494		357.8	19	2795	Yes		
30	5527		435.9	24	2294	Yes		
	Detection Rate: 90 %							

Detection Rate: 90 %

Minimum Percentage of Successful Detection: 60 %

Report No.: RF151022E06A-2 Reference No.: 151022E11 Page No. 57 / 134

Report Format Version: 6.1.1

Type 2 Radar Statistical Performances							
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection		
	Frequency	Burst	Width(us)	, ,			
	(MHz)						
1	5510	28	4	203	Yes		
2	5520	26	3.3	172	Yes		
3	5500	28	4.4	222	Yes		
4	5510	26	2.9	162	No		
5	5510	27	3.4	174	Yes		
6	5519	27	3.6	177	Yes		
7	5526	24	1.8	214	Yes		
8	5511	29	5	169	Yes		
9	5515	28	4.3	159	Yes		
10	5504	28	4	187	Yes		
11	5500	24	1.9	220	Yes		
12	5510	25	2.7	154	Yes		
13	5513	26	2.8	198	Yes		
14	5528	26	2.7	161	Yes		
15	5508	23	1.3	184	Yes		
16	5503	25	2.6	164	Yes		
17	5494	26	3.1	165	Yes		
18	5499	24	2	202	No		
19	5524	25	2.2	204	Yes		
20	5526	24	1.9	175	Yes		
21	5492	29	4.5	193	Yes		
22	5525	26	3	155	Yes		
23	5523	29	4.6	150	Yes		
24	5508	23	1.2	192	Yes		
25	5521	29	4.9	160	No		
26	5518	25	2.3	151	Yes		
27	5508	27	3.9	205	Yes		
28	5492	29	4.8	216	Yes		
29	5501	29	4.6	213	Yes		
30	5511	27	3.4	176	Yes		
Detection Rate: 90 %							

Detection Rate: 90 % Minimum Percentage of Successful Detection: 60 %

Type 3 Radar Statistical Performances						
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection	
	Frequency	Burst	Width(us)	, ,		
	(MHz)		, ,			
1	5510	18	9	221	Yes	
2	5520	17	8.3	478	No	
3	5500	18	9.4	463	Yes	
4	5515	17	7.9	353	Yes	
5	5498	17	8.4	200	Yes	
6	5527	17	8.6	236	No	
7	5510	16	6.8	408	Yes	
8	5522	18	10	326	Yes	
9	5510	18	9.3	283	Yes	
10	5507	18	9	439	Yes	
11	5495	16	6.9	371	Yes	
12	5510	17	7.7	403	Yes	
13	5499	17	7.8	292	Yes	
14	5518	17	7.7	420	Yes	
15	5506	16	6.3	431	Yes	
16	5496	17	7.6	424	Yes	
17	5500	17	8.1	434	Yes	
18	5516	16	7	383	Yes	
19	5522	16	7.2	495	No	
20	5526	16	6.9	319	Yes	
21	5502	18	9.5	440	Yes	
22	5492	17	8	259	Yes	
23	5523	18	9.6	443	Yes	
24	5501	16	6.2	423	Yes	
25	5519	18	9.9	464	Yes	
26	5526	16	7.3	446	No	
27	5496	18	8.9	279	Yes	
28	5514	18	9.8	329	Yes	
29	5498	18	9.6	272	Yes	
30	5507	17	8.4	470	No	
Detection Rate: 83 3 %						

Detection Rate: 83.3 % Minimum Percentage of Successful Detection: 60 %

Type 4	Radar Statistic	al Performanc	es		
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection
	Frequency	Burst	Width(us)	, ,	
	(MHz)		, ,		
1	5510	15	17.7	221	No
2	5520	14	16.1	478	Yes
3	5500	16	18.6	463	Yes
4	5498	14	15.2	353	Yes
5	5514	14	16.3	200	Yes
6	5528	15	16.9	236	Yes
7	5526	13	12.9	408	Yes
8	5492	16	19.9	326	No
9	5528	16	18.4	283	No
10	5519	15	17.8	439	Yes
11	5517	13	13.1	371	No
12	5509	14	14.8	403	Yes
13	5514	14	15	292	Yes
14	5512	14	14.9	420	Yes
15	5525	12	11.7	431	Yes
16	5525	13	14.5	424	No
17	5498	14	15.8	434	Yes
18	5521	13	13.3	383	Yes
19	5496	13	13.7	495	Yes
20	5499	13	13	319	Yes
21	5519	16	18.9	440	No
22	5503	14	15.4	259	No
23	5501	16	18.9	443	Yes
24	5526	12	11.6	423	Yes
25	5496	16	19.6	464	Yes
26	5495	13	13.9	446	Yes
27	5503	15	17.4	279	No
28	5516	16	19.5	329	Yes
29	5494	16	19.1	272	Yes
30	5519	15	16.4	470	Yes
				Detection R	ata: 72 20/

Detection Rate: 73.3%

Minimum Percentage of Successful Detection: 60 %

Type 5 Radar Statistical Performances					
Trial #	Chirp Center	Test Signal Name	Detection		
I II ai #	Frequency(MHz)	rest olynar Name	Detection		
1	5510	LP_Signal_01	Yes		
2	5520	LP_Signal_02	Yes		
3	5500	LP_Signal_03	Yes		
4	5521	LP_Signal_04	Yes		
5	5508	LP Signal 05	Yes		
6	5523	LP_Signal_06	Yes		
7	5511	LP_Signal_07	Yes		
8	5505	LP_Signal_08	Yes		
9	5505	LP_Signal_09	Yes		
10	5517	LP_Signal_10	No		
11	5522	LP_Signal_11	Yes		
12	5512	LP_Signal_12	Yes		
13	5497	LP_Signal_13	No		
14	5515	LP_Signal_14	Yes		
15	5522	LP_Signal_15	Yes		
16	5509	LP_Signal_16	Yes		
17	5503	LP_Signal_17	Yes		
18	5518	LP_Signal_18	Yes		
19	5515	LP_Signal_19	Yes		
20	5504	LP_Signal_20	Yes		
21	5502	LP_Signal_21	Yes		
22	5507	LP_Signal_22	Yes		
23	5506	LP_Signal_23	Yes		
24	5505	LP_Signal_24	Yes		
25	5507	LP_Signal_25	No		
26	5518	LP_Signal_26	No		
27	5521	LP_Signal_27	Yes		
28	5508	LP_Signal_28	Yes		
29	5509	LP_Signal_29	No		
30	5504	LP_Signal_30	No		
			on Rate: 80 %		
	Minimum Percentage of Successful Detection: 80 %				

Minimum Percentage of Successful Detection: 80 %
The Long Pulse Radar pattern shown in Appendix A.1

Type 6 F	Type 6 Radar Statistical Performances				
Trial #	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection	
1	9	1	333.3	Yes	
2	9	1	333.3	Yes	
3	9	1	333.3	Yes	
4	9	1	333.3	Yes	
5	9	1	333.3	Yes	
6	9	1	333.3	Yes	
7	9	1	333.3	Yes	
8	9	1	333.3	Yes	
9	9	1	333.3	Yes	
10	9	1	333.3	Yes	
11	9	1	333.3	Yes	
12	9	1	333.3	Yes	
13	9	1	333.3	Yes	
14	9	1	333.3	Yes	
15	9	1	333.3	Yes	
16	9	1	333.3	No	
17	9	1	333.3	Yes	
18	9	1	333.3	Yes	
19	9	1	333.3	Yes	
20	9	1	333.3	Yes	
21	9	1	333.3	Yes	
22	9	1	333.3	Yes	
23	9	1	333.3	Yes	
24	9	1	333.3	Yes	
25	9	1	333.3	Yes	
26	9	1	333.3	Yes	
27	9	1	333.3	Yes	
28	9	1	333.3	Yes	
29	9	1	333.3	Yes	
30	9	1	333.3	No	
			Detection R	ate: 93.3 %	
I	Minimum Department of Supercoful Detection, 70 0/				

Minimum Percentage of Successful Detection: 70 %

Type 6 Radar Statistical Performances				
Trial #	Hopping Frequency	Detection		
	Sequence Name			
1	HOP_FREQ_SEQ_01	Yes		
2	HOP_FREQ_SEQ_02	Yes		
3	HOP_FREQ_SEQ_03	Yes		
4	HOP_FREQ_SEQ_04	Yes		
5	HOP_FREQ_SEQ_05	Yes		
6	HOP_FREQ_SEQ_06	Yes		
7	HOP FREQ SEQ 07	Yes		
8	HOP FREQ SEQ 08	Yes		
9	HOP FREQ SEQ 09	Yes		
10	HOP FREQ SEQ 10	Yes		
11	HOP FREQ SEQ 11	Yes		
12	HOP FREQ SEQ 12	Yes		
13	HOP FREQ SEQ 13	Yes		
14	HOP FREQ SEQ 14	Yes		
15	HOP FREQ SEQ 15	Yes		
16	HOP FREQ SEQ 16	No		
17	HOP FREQ SEQ 17	Yes		
18	HOP FREQ SEQ 18	Yes		
19	HOP FREQ SEQ 19	Yes		
20	HOP FREQ SEQ 20	Yes		
21	HOP FREQ SEQ 21	Yes		
22	HOP FREQ SEQ 22	Yes		
23	HOP FREQ SEQ 23	Yes		
24	HOP_FREQ_SEQ_24	Yes		
25	HOP FREQ SEQ 25	Yes		
26	HOP FREQ SEQ 26	Yes		
27	HOP FREQ SEQ 27	Yes		
28	HOP FREQ SEQ 28	Yes		
29	HOP FREQ SEQ 29	Yes		
30	HOP FREQ SEQ 30	No		
	De	tection Rate: 93.3 %		
Minimum Percentage of Successful Detection: 70 %				

Minimum Percentage of Successful Detection: 70 %
The Frequency Hopping Radar pattern shown in Appendix A.2

Report No.: RF151022E06A-2 Page No. 63 / 134 Report Format Version: 6.1.1

802.11ac (VHT80)

Type	1 Radar St	atistical Perf	ormances			
Trial		Pulse	Pulse	Pulses	Pulse	Detection
#	Frequency	Repetition	Repetition	per	Repetition	
	(MHz)	Frequency	Frequency	Burst	Interval	
	, ,	Number (1	(Pulse per		(microseconds)	
		to 23)	seconds)		,	
1	5530	10	1433	76	698	Yes
2	5540	20	1114	59	898	Yes
3	5560	2	1859	99	538	Yes
4	5520	9	1475	78	678	Yes
5	5500	14	1285	68	778	Yes
6	5542	16	1223	65	818	Yes
7	5511	1	1931	102	518	No
8	5505	18	1166	62	858	Yes
9	5494	21	1089	58	918	Yes
10	5522	6	1618	86	618	Yes
11	5559	7	1567	83	638	Yes
12	5506	13	1319	70	758	Yes
13	5565	12	1355	72	738	Yes
14	5546	3	1792	95	558	Yes
15	5554	19	1139	61	878	Yes
16	5551		848.2	45	1179	Yes
17	5508		1675	89	597	Yes
18	5497		429	23	2331	Yes
19	5529		896.9	48	1115	Yes
20	5510		525.8	28	1902	Yes
21	5516		509.2	27	1964	Yes
22	5566		639.4	34	1564	Yes
23	5509		504.8	27	1981	Yes
24	5498		855.4	46	1169	Yes
25	5535		346	19	2890	No
26	5560		759.3	41	1317	Yes
27	5494		446.6	24	2239	Yes
28	5557		458.9	25	2179	Yes
29	5563		357.8	19	2795	Yes
30	5497		435.9	24	2294	Yes
					Detection Ra	to: 03 3 0/

Detection Rate: 93.3 % Minimum Percentage of Successful Detection: 60 %

802.11ac (VHT80)

Type 2	Radar Statistic	al Performanc	es		
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection
	Frequency	Burst	Width(us)	, ,	
	(MHz)		, ,		
1	5530	28	4	203	Yes
2	5540	26	3.3	172	Yes
3	5560	28	4.4	222	Yes
4	5520	26	2.9	162	Yes
5	5500	27	3.4	174	Yes
6	5500	27	3.6	177	Yes
7	5546	24	1.8	214	Yes
8	5536	29	5	169	Yes
9	5544	28	4.3	159	Yes
10	5530	28	4	187	No
11	5565	24	1.9	220	Yes
12	5562	25	2.7	154	Yes
13	5554	26	2.8	198	Yes
14	5512	26	2.7	161	Yes
15	5544	23	1.3	184	Yes
16	5514	25	2.6	164	Yes
17	5531	26	3.1	165	No
18	5562	24	2	202	Yes
19	5553	25	2.2	204	Yes
20	5500	24	1.9	175	Yes
21	5542	29	4.5	193	No
22	5502	26	3	155	Yes
23	5531	29	4.6	150	Yes
24	5514	23	1.2	192	Yes
25	5504	29	4.9	160	Yes
26	5556	25	2.3	151	Yes
27	5503	27	3.9	205	Yes
28	5494	29	4.8	216	Yes
29	5539	29	4.6	213	Yes
30	5499	27	3.4	176	Yes
					Rate: 90 %

Detection Rate: 90 %

Minimum Percentage of Successful Detection: 60 %

802.11ac (VHT80)

Type 3	Radar Statistic	al Performance	es		
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection
	Frequency	Burst	Width(us)		
	(MHz)				
1	5530	18	9	221	Yes
2	5540	17	8.3	478	No
3	5560	18	9.4	463	Yes
4	5520	17	7.9	353	Yes
5	5500	17	8.4	200	Yes
6	5541	17	8.6	236	Yes
7	5525	16	6.8	408	Yes
8	5503	18	10	326	Yes
9	5560	18	9.3	283	Yes
10	5540	18	9	439	Yes
11	5511	16	6.9	371	No
12	5565	17	7.7	403	Yes
13	5551	17	7.8	292	Yes
14	5522	17	7.7	420	Yes
15	5563	16	6.3	431	Yes
16	5535	17	7.6	424	Yes
17	5539	17	8.1	434	Yes
18	5505	16	7	383	Yes
19	5542	16	7.2	495	Yes
20	5559	16	6.9	319	No
21	5519	18	9.5	440	Yes
22	5559	17	8	259	Yes
23	5498	18	9.6	443	Yes
24	5541	16	6.2	423	No
25	5566	18	9.9	464	Yes
26	5538	16	7.3	446	Yes
27	5495	18	8.9	279	Yes
28	5543	18	9.8	329	Yes
29	5556	18	9.6	272	No
30	5518	17	8.4	470	Yes

Detection Rate: 83.3 %

Minimum Percentage of Successful Detection: 60 %

802.11ac (VHT80)

Type 4	Radar Statistic	al Performanc	es		
Trial #	Test	Pulses per	Pulse	PRI(us)	Detection
	Frequency	Burst	Width(us)		
	(MHz)				
1	5530	15	17.7	221	Yes
2	5540	14	16.1	478	Yes
3	5560	16	18.6	463	Yes
4	5520	14	15.2	353	Yes
5	5500	14	16.3	200	No
6	5557	15	16.9	236	Yes
7	5560	13	12.9	408	Yes
8	5526	16	19.9	326	No
9	5549	16	18.4	283	Yes
10	5568	15	17.8	439	Yes
11	5558	13	13.1	371	Yes
12	5530	14	14.8	403	Yes
13	5542	14	15	292	Yes
14	5562	14	14.9	420	Yes
15	5505	12	11.7	431	No
16	5502	13	14.5	424	Yes
17	5554	14	15.8	434	Yes
18	5528	13	13.3	383	No
19	5495	13	13.7	495	Yes
20	5562	13	13	319	Yes
21	5521	16	18.9	440	Yes
22	5521	14	15.4	259	Yes
23	5555	16	18.9	443	Yes
24	5548	12	11.6	423	Yes
25	5499	16	19.6	464	Yes
26	5500	13	13.9	446	Yes
27	5534	15	17.4	279	Yes
28	5495	16	19.5	329	Yes
29	5522	16	19.1	272	No
30	5542	15	16.4	470	No
				Detection	Rate: 80%

Detection Rate: 80%

Minimum Percentage of Successful Detection: 60 %

Type 5 Radar Statistical Performances				
			Datastas	
Trial #	Chirp Center	Test Signal Name	Detection	
	Frequency(MHz)			
1	5530	LP_Signal_01	No	
2	5540	LP_Signal_02	Yes	
3	5560	LP_Signal_03	Yes	
4	5520	LP_Signal_04	Yes	
5	5500	LP_Signal_05	Yes	
6	5539	LP_Signal_06	Yes	
7	5527	LP_Signal_07	No	
8	5502	LP_Signal_08	No	
9	5516	LP_Signal_09	Yes	
10	5501	LP_Signal_10	Yes	
11	5554	LP_Signal_11	Yes	
12	5554	LP_Signal_12	Yes	
13	5529	LP_Signal_13	Yes	
14	5560	LP_Signal_14	Yes	
15	5551	LP_Signal_15	Yes	
16	5517	LP_Signal_16	Yes	
17	5527	LP_Signal_17	Yes	
18	5509	LP_Signal_18	Yes	
19	5509	LP_Signal_19	Yes	
20	5528	LP_Signal_20	No	
21	5550	LP_Signal_21	Yes	
22	5544	LP_Signal_22	Yes	
23	5516	LP_Signal_23	Yes	
24	5505	LP_Signal_24	Yes	
25	5539	LP_Signal_25	Yes	
26	5535	LP_Signal_26	Yes	
27	5544	LP_Signal_27	Yes	
28	5558	LP_Signal_28	Yes	
29	5540	LP_Signal_29	No	
30	5510	LP_Signal_30	Yes	
			Rate: 83.3 %	
Minimum Demonstrate of Cusesseful Detection, 00.0/				

Minimum Percentage of Successful Detection: 80 %
The Long Pulse Radar pattern shown in Appendix A.1

Type 6 F	Type 6 Radar Statistical Performances				
Trial #	Pulses per	Pulse Width(us)	PRI(us)	Detection	
	Burst				
1	9	1	333.3	Yes	
2	9	1	333.3	Yes	
3	9	1	333.3	Yes	
4	9	1	333.3	Yes	
5	9	1	333.3	Yes	
6	9	1	333.3	Yes	
7	9	1	333.3	Yes	
8	9	1	333.3	Yes	
9	9	1	333.3	No	
10	9	1	333.3	Yes	
11	9	1	333.3	No	
12	9	1	333.3	Yes	
13	9	1	333.3	Yes	
14	9	1	333.3	Yes	
15	9	1	333.3	Yes	
16	9	1	333.3	Yes	
17	9	1	333.3	Yes	
18	9	1	333.3	Yes	
19	9	1	333.3	Yes	
20	9	1	333.3	No	
21	9	1	333.3	Yes	
22	9	1	333.3	Yes	
23	9	1	333.3	Yes	
24	9	1	333.3	Yes	
25	9	1	333.3	Yes	
26	9	1	333.3	Yes	
27	9	1	333.3	Yes	
28	9	1	333.3	Yes	
29	9	1	333.3	Yes	
30	9	1	333.3	Yes	
		·	Detection	Rate: 90 %	
Minimum Percentage of Successful Detection: 70 %					

Minimum Percentage of Successful Detection: 70 %

Type 6 Radar St	atistical Performances	
Trial #	Hopping Frequency	Detection
	Sequence Name	
1	HOP_FREQ_SEQ_01	Yes
2	HOP_FREQ_SEQ_02	Yes
3	HOP_FREQ_SEQ_03	Yes
4	HOP_FREQ_SEQ_04	Yes
5	HOP_FREQ_SEQ_05	Yes
6	HOP_FREQ_SEQ_06	Yes
7	HOP_FREQ_SEQ_07	Yes
8	HOP_FREQ_SEQ_08	Yes
9	HOP_FREQ_SEQ_09	No
10	HOP_FREQ_SEQ_10	Yes
11	HOP_FREQ_SEQ_11	No
12	HOP_FREQ_SEQ_12	Yes
13	HOP_FREQ_SEQ_13	Yes
14	HOP_FREQ_SEQ_14	Yes
15	HOP_FREQ_SEQ_15	Yes
16	HOP FREQ SEQ 16	Yes
17	HOP FREQ SEQ 17	Yes
18	HOP_FREQ_SEQ_18	Yes
19	HOP_FREQ_SEQ_19	Yes
20	HOP FREQ SEQ 20	No
21	HOP FREQ SEQ 21	Yes
22	HOP FREQ SEQ 22	Yes
23	HOP_FREQ_SEQ_23	Yes
24	HOP FREQ SEQ 24	Yes
25	HOP FREQ SEQ 25	Yes
26	HOP FREQ SEQ 26	Yes
27	HOP FREQ SEQ 27	Yes
28	HOP FREQ SEQ 28	Yes
29	HOP FREQ SEQ 29	Yes
30	HOP FREQ SEQ 30	Yes
		Detection Rate: 90 %
M	inimum Percentage of Succes	

6.2.5 Non-Occupancy Period

EUT (master) links with Client on 5530MHz

2) The master and DFS-certified client device are associated, and system testing will be performed with channel-loading for a non-occupancy period test.

Client performed with channel-loading via master.

 The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes;

Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

5)An analyzer plot that contains a single 30-minute sweep on the original test frequency.

7. Information on The Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF Lab/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> **Web Site:** <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

Report No.: RF151022E06A-2 Page No. 73 / 134 Report Format Version: 6.1.1

8. APPENDIX-A

RADAR TEST SIGNAL

A.1 The Long Pulse Radar Pattern

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_01
Number of Bursts in Trial: 17

Nulli	Dei Oi Duisi	o III Tilai.	17			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	16	87.1	1005	1124	1315
2	2	14	78.3	1225	1096	-
3	3	18	92.3	1006	1256	1202
4	2	12	73.4	1915	1427	-
5	2	14	79.5	1853	1277	-
6	2	15	82.9	1220	1804	-
7	1	8	60.5	1503	-	-
8	3	20	99.1	1706	1116	1993
9	3	18	91.2	1613	1117	1796
10	3	17	87.8	1268	1707	1177
11	1	8	61.8	1477	-	-
12	2	11	71.2	1342	1062	-
13	2	12	72.2	1133	1307	-
14	2	11	71.8	1450	1946	-
15	1	6	54	1195	-	-
16	2	11	69.7	1763	1773	-
17	2	13	76.5	1332	1181	-
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 74 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_02
Number of Bursts in Trial: 15

INUITI	bei oi buist	S III IIIai.	15			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	9	62.7	1841	-	-
2	1	9	65	1928	-	-
3	1	8	61	1701	-	-
4	3	18	93.7	1347	1119	1800
5	2	12	74.5	1621	1247	-
6	3	19	94	1965	1984	1972
7	1	6	53.3	1142	-	-
8	3	20	97.7	1055	1022	1255
9	1	10	66	1564	-	-
10	3	16	85.5	1197	1739	1672
11	3	20	97	1138	1001	1756
12	3	19	95	1376	1897	1209
13	2	14	80.2	1979	1160	-
14	3	15	83.9	1335	1712	1284
15	2	13	75.6	1424	1525	_
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 75 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_03
Number of Bursts in Trial: 18

Num	ber of Burst	s in Triai:	18			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	13	77.3	1318	1914	-
2	2	14	78.3	1772	1677	-
3	3	15	83.7	1324	1909	1558
4	3	17	88	1230	1379	1333
5	1	6	54.1	1163	-	-
6	1	5	52.7	1165	-	-
7	1	9	64.1	1651	-	-
8	1	5	50.8	1428	-	-
9	1	7	58.1	1691	-	-
10	1	6	55.3	1633	-	-
11	1	9	63.9	1819	-	-
12	3	19	93.8	1034	1662	1296
13	1	5	51.6	1091	-	_
14	1	5	52.4	1172	-	_
15	1	7	58.1	1757	-	-
16	3	18	90.9	1224	1737	1823
17	2	11	69.7	1714	1506	_
18	1	9	63	1700	-	-
19						
20						

Report No.: RF151022E06A-2 Page No. 76 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_04
Number of Bursts in Trial: 14

Numi	per of Bursts	s in Trial:	14			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	6	54.1	1548	-	-
2	1	6	54.2	1872	-	-
3	2	10	66.7	1031	1959	-
4	1	7	58.7	1343	-	-
5	3	17	90	1794	1522	1415
6	1	9	62.5	1765	-	-
7	3	15	84.4	1582	1024	1377
8	3	17	88.9	1866	1466	1985
9	2	13	75.7	1813	1471	-
10	1	9	63.5	1704	-	-
11	3	20	97.5	1895	1250	1764
12	1	9	63.6	1229	-	-
13	1	6	54	1439	-	ı
14	1	8	60.9	1146	-	-
15						
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 77 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal

Test Signal Name: LP_Signal_05
Number of Bursts in Trial: 15

Numi	Number of Bursts in Trial: 15								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	1	6	53.8	1157	-	-			
2	3	16	86.3	1801	1453	1589			
3	3	19	93.9	1339	1097	1065			
4	3	19	94	1126	1635	1617			
5	3	17	88.1	1873	1348	1297			
6	1	10	66.1	1150	-	-			
7	1	9	65.6	1969	-	-			
8	2	12	73.8	1320	1048	-			
9	3	20	98.7	1893	1760	1494			
10	1	9	64.1	1019	-	1			
11	1	5	52.9	1496	-	ı			
12	3	17	88.4	1716	1703	1037			
13	1	8	60.6	1643	-	ı			
14	1	5	50.1	1847	-	-			
15	1	5	51.7	1064	-	-			
16									
17									
18									
19									
20									

Report No.: RF151022E06A-2 Page No. 78 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_06
Number of Bursts in Trial: 16

Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	19	95.3	1246	1322	1079
2	1	7	57.8	1426	-	-
3	3	19	94.6	1485	1212	1504
4	2	13	77.2	1484	1851	-
5	2	15	81.9	1690	1193	-
6	2	13	76.1	1123	1865	-
7	2	14	79.7	1884	1867	-
8	1	7	58.8	1515	-	-
9	2	10	68.6	1372	1098	-
10	3	17	88.3	1266	1041	1961
11	2	11	71.1	1665	1573	-
12	1	6	53.6	1856	-	-
13	1	9	65.2	1351	-	-
14	2	13	77.1	1934	1833	-
15	1	5	50.5	1158	-	-
16	1	6	53.3	1026	-	-
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 79 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_07
Number of Bursts in Trial: 10

Numi	per of Bursts	s in Trial:	10			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	19	94.5	1407	1162	1848
2	1	5	51.2	1977	-	-
3	1	5	52.9	1795	-	-
4	3	17	90	1108	1546	1057
5	1	9	65.4	1237	-	-
6	1	7	58.6	1688	-	-
7	1	9	64.1	1373	-	-
8	1	5	52.8	1015	-	ı
9	1	6	53.6	1072	-	1
10	3	20	97.5	1425	1128	1728
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 80 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_08
Number of Bursts in Trial: 20

Num	ber of Burst	s in Trial:	20			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	14	80.9	1545	1603	-
2	3	19	96.5	1189	1449	1225
3	1	10	65.8	1925	-	-
4	3	16	87	1018	1049	1841
5	1	9	64.6	1048	-	-
6	2	13	75.3	1429	1368	-
7	1	8	60.4	1156	-	-
8	2	13	77.7	1681	1307	-
9	1	7	57.1	1625	-	-
10	3	17	89.7	1355	1088	1374
11	1	8	61.6	1537	-	-
12	3	19	94.9	1989	1865	1947
13	1	8	62.2	1234	-	-
14	1	10	66.2	1931	-	-
15	1	6	54.2	1062	-	-
16	1	9	65.4	1014	-	-
17	3	19	96.9	1572	1489	1042
18	1	8	60	1576	-	-
19	2	14	79.2	1757	1993	-
20	3	16	86.2	1237	1607	1060

Report No.: RF151022E06A-2 Page No. 81 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_09
Number of Bursts in Trial: 18

Num	ber of Burst		18	T	1	
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	5	50.3	1304	-	-
2	3	19	96.7	1110	1527	1070
3	3	20	98.2	1762	1412	1836
4	1	8	60.8	1717	-	-
5	1	7	58.4	1414	-	-
6	3	16	87.1	1316	1073	1461
7	1	7	57.6	1241	_	-
8	1	8	60.1	1221	-	-
9	3	16	86.3	1654	1744	1692
10	3	16	86.7	1755	1869	1740
11	3	18	93.7	1974	1684	1766
12	3	18	91.8	1000	1883	1358
13	2	12	73.6	1378	1071	-
14	3	16	84.5	1919	1612	1130
15	3	19	95.8	1186	1280	1074
16	2	12	74.1	1406	1391	-
17	1	6	56.2	1652	-	-
18	1	9	62.8	1950	-	-
19						
20						

Report No.: RF151022E06A-2 Page No. 82 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal Test Signal Name: LP_Signal_10

Number of Bursts in Trial: 17

Numb	Number of Bursts in Trial: 17								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	3	16	86.6	1390	1815	1673			
2	2	11	69.2	1281	1774	-			
3	2	11	69.4	1456	1693	-			
4	2	13	78.1	1713	1628	-			
5	3	19	96.7	1273	1267	1953			
6	3	19	94.9	1913	1569	1581			
7	1	5	50.4	1580	-	-			
8	1	7	58	1885	-	-			
9	2	14	79.1	1446	1562	-			
10	2	10	68.1	1488	1780	-			
11	1	10	65.8	1046	-	-			
12	3	17	88	1302	1109	1574			
13	2	15	83.3	1620	1736	-			
14	1	7	58.4	1943	-	-			
15	3	16	85.9	1213	1904	1356			
16	3	18	91.2	1459	1369	1495			
17	3	20	97.2	1828	1761	1556			
18									
19									
20									

Report No.: RF151022E06A-2 Page No. 83 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_11
Number of Bursts in Trial: 11

Numb	Number of Bursts in Trial: 11								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	3	15	83.7	1367	1936	1111			
2	1	7	57.4	1458	ı	ı			
3	3	18	91.9	1931	1647	1411			
4	3	20	97.4	1519	1954	1649			
5	1	9	64.5	1830	-	-			
6	3	19	94.3	1223	1240	1724			
7	2	12	74	1983	1995	-			
8	1	5	50.8	1203	1	-			
9	3	19	93.8	1989	1148	1705			
10	1	8	62	1631	ı	-			
11	1	8	61.2	1049	-	-			
12									
13									
14									
15									
16									
17									
18									
19									
20									

Report No.: RF151022E06A-2 Page No. 84 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_12
Number of Bursts in Trial: 13

Num	ber of Burst	s in Trial:	13			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	9	62.7	1344	-	-
2	3	17	87.7	1689	1060	1536
3	3	17	89.1	1066	1260	1420
4	1	5	50	1906	-	-
5	2	11	71.2	1226	1988	-
6	1	8	62.4	1301	-	-
7	2	11	69.1	1720	1463	-
8	3	20	97.8	1092	1310	1399
9	3	18	93.1	1357	1816	1417
10	2	12	72.2	1788	1409	-
11	3	20	100	1036	1473	1960
12	1	6	53.2	1236	-	-
13	1	8	60.4	1139	-	-
14						
15						
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 85 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_13

Number of Bursts in Trial: 13

Numi	Number of Bursts in Trial: 13								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	1	5	50.3	1838	-	-			
2	1	7	58	1565	-	-			
3	3	17	89.5	1216	1771	1201			
4	3	19	94.4	1820	1217	1683			
5	3	20	98.3	1547	1168	1947			
6	1	6	53.3	1570	-	-			
7	3	16	85.2	1288	1718	1474			
8	1	6	55.9	1812	-	-			
9	2	15	82.5	1003	1497	-			
10	3	16	87.4	1443	1952	1272			
11	1	8	62	1880	-	-			
12	1	10	66.6	1529	-	-			
13	1	9	64.4	1436	-	-			
14									
15									
16									
17									
18									
19									
20									

 Report No.: RF151022E06A-2
 Page No. 86 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_14
Number of Bursts in Trial: 13

Num	ber of Bursts		13	1		Γ
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	9	65.5	1603	-	-
2	2	12	72	1539	1276	-
3	2	12	74.9	1615	1200	_
4	3	19	95.4	1777	1502	1452
5	2	13	77.2	1528	1418	-
6	1	5	52.8	1360	-	-
7	2	15	82.9	1198	1323	_
8	3	17	89.3	1567	1882	1189
9	3	19	95.4	1738	1199	1275
10	3	18	91.5	1290	1430	1642
11	2	14	79.1	1265	1258	-
12	1	10	65.7	1698	-	-
13	2	10	66.8	1298	1243	-
14						
15						
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Page No. 87 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_15
Number of Bursts in Trial: 9

Numi	Number of Bursts in Trial: 9							
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	2	11	70.9	1787	1674	-		
2	3	17	89.4	1798	1422	1694		
3	3	17	88.1	1644	1730	1469		
4	3	20	98.2	1964	1735	1292		
5	2	12	74.9	1345	1676	-		
6	3	15	83.8	1670	1447	1355		
7	1	6	54.2	1245	-	-		
8	2	15	81.5	1516	1697	-		
9	3	20	97	1278	1577	1204		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Report No.: RF151022E06A-2 Page No. 88 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal Test Signal Name: LP_Signal_16 Number of Bursts in Trial: 13

Numi	per of Bursts	s in Trial:	13			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	7	56.5	1025	-	-
2	1	6	54.8	1747	-	ı
3	2	14	79.7	1261	1578	-
4	1	5	52.6	1785	-	-
5	3	17	90.5	1303	1408	1996
6	2	13	76.8	1606	1544	1
7	1	6	55.2	1535	-	-
8	2	14	80.3	1470	1759	-
9	1	5	50.3	1835	-	-
10	2	13	77	1604	1067	-
11	3	15	83.5	1286	1191	1640
12	1	7	56.8	1152	-	-
13	3	20	97	1341	1387	1491
14						
15						
16						
17						
18						
19						
20						

Report No.: RF151022E06A-2 Report Format Version: 6.1.1 Reference No.: 151022E11

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_17
Number of Bursts in Trial: 14

Number of Bursts in Trial: 14								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	3	20	97.1	1827	1696	1538		
2	2	12	72.9	1039	1924	-		
3	3	20	97.7	1153	1554	1081		
4	3	19	95	1521	1021	1396		
5	3	20	97.1	1257	1499	1918		
6	2	11	70.3	1509	1028	-		
7	2	11	71.2	1825	1115	-		
8	1	6	55	1077	1	-		
9	1	10	66.6	1254	1	1		
10	1	8	60.4	1262	ı	1		
11	2	14	78.6	1550	1708	ı		
12	2	15	81.5	1393	1397	-		
13	2	15	82.4	1967	1938	-		
14	3	19	95.9	1779	1600	1017		
15								
16								
17								
18								
19								
20								

Report No.: RF151022E06A-2 Page No. 90 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_18
Number of Bursts in Trial: 11

Num	ber of Burst	s in Trial:	11			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	10	67.8	1723	1154	-
2	3	15	84.4	1129	1622	1586
3	1	8	62.4	1782	-	-
4	2	14	78.3	1352	1076	-
5	1	8	62.4	1721	-	-
6	2	15	83	1715	1259	-
7	2	10	68.5	1726	1994	-
8	1	9	65.5	1366	-	-
9	2	11	70.1	1392	1143	-
10	1	10	65.7	1050	-	-
11	2	12	74.6	1394	1948	-
12						
13						
14						
15						
16						
17						
18						
19						
20						

 Report No.: RF151022E06A-2
 Page No. 91 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_19
Number of Bursts in Trial: 11

Nulli	bei oi buist	5 III IIIai.	1 1			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	8	62.4	1285	-	-
2	1	6	56.1	1402	-	-
3	3	15	84	1218	1125	1253
4	1	9	65	1930	-	-
5	3	18	91.1	1375	1196	1311
6	1	5	52	1429	-	-
7	2	15	82.3	1949	1493	-
8	1	8	59.9	1029	-	-
9	2	12	74	1579	1671	-
10	3	18	92.3	1016	1623	1648
11	1	9	65.2	1047	-	-
12						
13						
14						
15						
16						
17						
18						
19						
20						

 Report No.: RF151022E06A-2
 Page No. 92 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_20
Number of Bursts in Trial: 10

INUIII	bei oi buist	5 III IIIai.	10			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	5	50.5	1566	-	-
2	2	14	79.9	1746	1619	-
3	3	16	86.7	1068	1568	1309
4	3	15	83.9	1846	1371	1802
5	1	8	60.3	1362	-	-
6	3	18	92	1543	1905	1010
7	3	17	90	1624	1685	1751
8	3	19	94.5	1107	1454	1211
9	1	5	51	1814	-	-
10	2	11	71.1	1103	1709	-
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

 Report No.: RF151022E06A-2
 Page No. 93 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_21
Number of Bursts in Trial: 19

Number of Bursts in Trial: 19								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	1	7	58	1609	-	-		
2	2	14	80.9	1599	1729	1		
3	3	16	87.5	1061	1678	1433		
4	3	19	96	1743	1388	1940		
5	3	17	87.9	1811	1575	1956		
6	3	20	98.7	1958	1607	1992		
7	2	11	71	1945	1314	-		
8	2	12	73.9	1699	1908	1		
9	2	14	78.4	1319	1101	1		
10	2	15	81.6	1444	1084	-		
11	1	5	52.8	1166	-	ı		
12	2	15	81.9	1478	1445	1		
13	2	11	70.4	1822	1991	-		
14	3	16	84.7	1183	1035	1306		
15	1	9	64.1	1069	-	-		
16	3	16	87.2	1588	1317	1902		
17	3	17	90	1874	1601	1842		
18	2	13	75.5	1009	1889	-		
19	1	7	58.3	1472	-	-		
20								

Report No.: RF151022E06A-2 Page No. 94 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_22
Number of Bursts in Trial: 14

Nulli	bei oi buist	5 III IIIai.	14			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	19	96.4	1970	1608	1981
2	2	11	71.6	1289	1680	-
3	1	7	58.4	1434	-	-
4	1	6	53.5	1208	-	-
5	1	5	52.6	1455	-	-
6	3	15	83.9	1657	1990	1540
7	2	15	82.5	1892	1282	-
8	3	18	91.7	1233	1664	1007
9	2	14	78.5	1646	1886	-
10	2	12	72.7	1468	1711	-
11	2	13	76.6	1792	1941	-
12	2	13	75.6	1858	1184	-
13	2	13	75.6	1398	1449	-
14	1	9	64.7	1389	_	-
15						
16						
17						
18						
19						
20						

 Report No.: RF151022E06A-2
 Page No. 95 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_23
Number of Bursts in Trial: 19

Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	6	53.5	1855	-	-
2	1	6	54.3	1605	-	-
3	2	13	75.2	1611	1775	-
4	3	19	96.5	1630	1151	1769
5	2	11	69.1	1464	1023	-
6	1	6	53.1	1951	-	-
7	1	6	53.3	1383	-	-
8	1	8	61.2	1274	-	-
9	3	16	86	1137	1645	1440
10	3	19	95.6	1169	1687	1313
11	1	8	60.7	1020	-	-
12	1	8	62.4	1227	-	-
13	2	10	68.6	1361	1325	-
14	1	8	59.5	1555	-	-
15	1	5	51.9	1249	-	-
16	2	11	69.7	1228	1533	-
17	2	12	73.1	1625	1868	-
18	1	5	51.9	1890	-	-
19	1	9	64.4	1182	-	-
20						

Report No.: RF151022E06A-2 Page No. 96 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_24
Number of Bursts in Trial: 8

Numb	Number of Bursts in Trial: 8							
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	3	16	86.1	1907	1194	1340		
2	1	6	54.7	1976	ı	-		
3	3	20	99.5	1385	1768	1824		
4	3	20	99.6	1781	1927	1334		
5	2	13	77.4	1331	1549	-		
6	3	16	84.9	1935	1637	1423		
7	1	8	62.1	1731	-	-		
8	1	6	55.4	1100	-	-		
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Report No.: RF151022E06A-2 Page No. 97 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_25
Number of Bursts in Trial: 20

Num	per of Burst	s in Triai:	20			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	7	57	1734	-	-
2	3	18	92.6	1857	1043	1188
3	1	5	51.2	1337	-	-
4	1	5	51.8	1980	-	-
5	1	6	55.9	1346	-	-
6	2	13	77.2	1929	1891	-
7	2	10	67.2	1161	1480	-
8	2	10	66.8	1180	1632	-
9	2	14	80.3	1231	1321	-
10	3	17	89	1797	1660	1144
11	3	18	90.7	1923	1702	1410
12	2	11	70.8	1330	1826	-
13	2	12	72.3	1438	1328	-
14	1	6	54.9	1368	-	-
15	3	16	85.1	1888	1679	1634
16	3	16	85.6	1492	1598	1294
17	1	9	62.9	1467	-	-
18	3	18	92.8	1350	1594	1957
19	3	17	90.2	1487	1486	1534
20	1	9	65.2	1986	-	-

 Report No.: RF151022E06A-2
 Page No. 98 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_26
Number of Bursts in Trial: 12

Nulli	Del Ol Duisi	S III I I Iai.	12			
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	12	73	1987	1295	-
2	3	17	89.7	1462	1770	1004
3	1	7	58.7	1105	-	-
4	3	20	99.6	1359	1783	1104
5	2	12	74.7	1404	1384	-
6	1	8	61.1	1078	-	-
7	3	17	89.5	1082	1667	1752
8	1	8	59.9	1530	-	-
9	1	6	54	1864	-	-
10	1	6	54.8	1790	-	-
11	3	20	97.9	1937	1349	1778
12	1	8	61.6	1135	-	-
13						
14						
15						
16						
17						
18						
19						
20						

 Report No.: RF151022E06A-2
 Page No. 99 / 134
 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_27
Number of Bursts in Trial: 17

Number of Bursts in Trial: 17									
		Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)				
1	7	57	1175	-	-				
3	20	97.8	1722	1655	1789				
3	19	96.4	1058	1922	1171				
2	10	68.6	1571	1912	-				
3	16	84.8	1982	1190	1510				
3	19	93.8	1791	1799	1489				
1	6	54.7	1083	-	-				
3	16	85.3	1557	1080	1002				
1	5	51.3	1854	-	-				
3	18	92.8	1860	1876	1234				
2	11	71.7	1559	1283	1				
2	14	80.8	1512	1185	-				
2	15	82.4	1776	1102	ı				
2	14	81.1	1159	1481	-				
3	18	92.1	1386	1561	1435				
2	14	81.2	1094	1845	-				
2	11	69.6	1999	1210	-				
	Pulses per Burst 1 3 3 3 3 1 1 3 3 2 2 2 2 2 2 2 2 2 3 3 2 2	Pulses per Chirp Burst (MHz) 1 7 3 20 3 19 2 10 3 16 3 16 3 19 1 6 3 16 1 5 3 18 2 11 2 14 2 15 2 14 3 18 2 11	Pulses per Burst Chirp (MHz) Pulse Width(us) 1 7 57 3 20 97.8 3 19 96.4 2 10 68.6 3 16 84.8 3 19 93.8 1 6 54.7 3 16 85.3 1 5 51.3 3 18 92.8 2 11 71.7 2 14 80.8 2 15 82.4 2 14 81.1 3 18 92.1 2 14 81.2	Pulses per Burst Chirp (MHz) Pulse Width(us) PRI-1 (us) 1 7 57 1175 3 20 97.8 1722 3 19 96.4 1058 2 10 68.6 1571 3 16 84.8 1982 3 19 93.8 1791 1 6 54.7 1083 3 16 85.3 1557 1 5 51.3 1854 3 18 92.8 1860 2 11 71.7 1559 2 14 80.8 1512 2 14 81.1 1159 3 18 92.1 1386 2 14 81.2 1094	Pulses per Burst Chirp (MHz) Pulse Width(us) PRI-1 (us) PRI-2 (us) 1 7 57 1175 - 3 20 97.8 1722 1655 3 19 96.4 1058 1922 2 10 68.6 1571 1912 3 16 84.8 1982 1190 3 19 93.8 1791 1799 1 6 54.7 1083 - 3 16 85.3 1557 1080 1 5 51.3 1854 - 3 18 92.8 1860 1876 2 11 71.7 1559 1283 2 14 80.8 1512 1185 2 15 82.4 1776 1102 2 14 81.1 1159 1481 3 18 92.1 1386 1561 2				

Report No.: RF151022E06A-2 Page No. 100 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal

Test Signal Name: LP_Signal_28
Number of Bursts in Trial: 20

Number of Bursts in Trial: 20								
Burst	Pulses per Burst	Chirp (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	1	9	63.9	1585	-	-		
2	3	16	86.7	1093	1636	1572		
3	3	16	84.6	1840	1733	1365		
4	3	19	94.7	1803	1145	1917		
5	3	19	96.9	1932	1682	1748		
6	2	15	82.5	1293	1837	1		
7	2	10	67.3	1877	1075	1		
8	3	15	83.9	1921	1758	1095		
9	1	5	51.6	1170	-	-		
10	2	13	77.2	1616	1942	-		
11	3	19	94.9	1052	1308	1793		
12	3	17	87.7	1251	1465	1592		
13	1	7	57.2	1844	-	-		
14	1	9	62.7	1403	-	-		
15	2	13	75.5	1638	1829	-		
16	3	18	91.1	1808	1966	1326		
17	2	14	79.1	1451	1042	-		
18	1	9	63.8	1898	_	_		
19	2	12	74.6	1018	1248	-		
20	1	7	58.5	1881	-	-		

Report No.: RF151022E06A-2 Page No. 101 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal Test Signal Name: LP_Signal_29

Number of Bursts in Trial: Pulses per Chirp Pulse Burst PRI-3 (us) PRI-1 (us) PRI-2 (us) Width(us) Burst (MHz) 66.4 50.8 69.1 54.9 63.8 80.2 77.9 67.2 93.6 58.3 -90.4 90.2 68.1 63.2 _ -60.2 -

Report No.: RF151022E06A-2 Page No. 102 / 134 Report Format Version: 6.1.1

Long Pulse Radar Test Signal
Test Signal Name: LP_Signal_30
Number of Bursts in Trial: 15

r ot Bursts II	n Iriai:	15			
		Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	9	65.3	1207	-	1
2	14	79.1	1920	1997	ı
3	16	84.8	1056	1518	1626
2	15	83.1	1520	1584	1
1	10	66.6	1300	-	1
1	8	59.9	1576	-	-
3	20	97.7	1659	1027	1279
3	19	94.2	1476	1086	1563
2	14	80	1832	1843	-
3	19	96.2	1541	1448	1810
3	17	89.8	1511	1962	1147
1	6	53.2	1442	-	1
2	10	67.3	1710	1514	1
2	10	67.5	1088	1587	-
2	12	72.6	1475	1978	-
	Pulses per Burst 1 2 3 2 1 1 3 3 3 2 3 3 1 2 2 2 2	1 9 2 14 3 16 2 15 1 10 1 8 3 20 3 19 2 14 3 19 3 17 1 6 2 10 2 10	Pulses per Burst Chirp (MHz) Pulse Width(us) 1 9 65.3 2 14 79.1 3 16 84.8 2 15 83.1 1 10 66.6 1 8 59.9 3 20 97.7 3 19 94.2 2 14 80 3 19 96.2 3 17 89.8 1 6 53.2 2 10 67.3 2 10 67.5	Pulses per Burst Chirp (MHz) Pulse Width(us) PRI-1 (us) 1 9 65.3 1207 2 14 79.1 1920 3 16 84.8 1056 2 15 83.1 1520 1 10 66.6 1300 1 8 59.9 1576 3 20 97.7 1659 3 19 94.2 1476 2 14 80 1832 3 19 96.2 1541 3 17 89.8 1511 1 6 53.2 1442 2 10 67.3 1710 2 10 67.5 1088	Pulses per Burst Chirp (MHz) Pulse Width(us) PRI-1 (us) PRI-2 (us) 1 9 65.3 1207 - 2 14 79.1 1920 1997 3 16 84.8 1056 1518 2 15 83.1 1520 1584 1 10 66.6 1300 - 1 8 59.9 1576 - 3 20 97.7 1659 1027 3 19 94.2 1476 1086 2 14 80 1832 1843 3 19 96.2 1541 1448 3 17 89.8 1511 1962 1 6 53.2 1442 - 2 10 67.3 1710 1514 2 10 67.5 1088 1587

Report No.: RF151022E06A-2 Page No. 103 / 134 Report Format Version: 6.1.1

A.2 The Frequency Hopping Radar pattern

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_01									
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency		
	(Hz)		(Hz)		(Hz)		(Hz)		
1	5.551G	2	5.488G	3	5.414G	4	5.690G		
5	5.570G	6	5.335G	7	5.581G	8	5.429G		
9	5.706G	10	5.391G	11	5.356G	12	5.431G		
13	5.442G	14	5.666G	15	5.689G	16	5.338G		
17	5.286G	18	5.603G	19	5.399G	20	5.514G		
21	5.340G	22	5.557G	23	5.313G	24	5.482G		
25	5.680G	26	5.427G	27	5.674G	28	5.713G		
29	5.522G	30	5.494G	31	5.509G	32	5.701G		
33	5.425G	34	5.309G	35	5.504G	36	5.694G		
37	5.564G	38	5.692G	39	5.327G	40	5.434G		
41	5.478G	42	5.622G	43	5.517G	44	5.477G		
45	5.515G	46	5.578G	47	5.330G	48	5.471G		
49	5.271G	50	5.326G	51	5.655G	52	5.707G		
53	5.274G	54	5.290G	55	5.552G	56	5.639G		
57	5.405G	58	5.617G	59	5.420G	60	5.709G		
61	5.276G	62	5.486G	63	5.556G	64	5.407G		
65	5.621G	66	5.467G	67	5.668G	68	5.562G		
69	5.536G	70	5.328G	71	5.490G	72	5.343G		
73	5.699G	74	5.649G	75	5.583G	76	5.624G		
77	5.499G	78	5.567G	79	5.720G	80	5.673G		
81	5.357G	82	5.677G	83	5.629G	84	5.652G		
85	5.685G	86	5.545G	87	5.613G	88	5.612G		
89	5.620G	90	5.458G	91	5.658G	92	5.656G		
93	5.535G	94	5.575G	95	5.333G	96	5.498G		
97	5.566G	98	5.362G	99	5.625G	100	5.372G		

Report No.: RF151022E06A-2 Page No. 104 / 134 Report Format Version: 6.1.1

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_02										
CEO#										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.700G	2	5.693G	3	5.590G	4	5.669G			
5	5.455G	6	5.362G	7	5.557G	8	5.351G			
9	5.441G	10	5.320G	11	5.685G	12	5.567G			
13	5.561G	14	5.562G	15	5.433G	16	5.621G			
17	5.403G	18	5.325G	19	5.305G	20	5.524G			
21	5.679G	22	5.722G	23	5.560G	24	5.696G			
25	5.310G	26	5.572G	27	5.515G	28	5.477G			
29	5.661G	30	5.619G	31	5.699G	32	5.532G			
33	5.277G	34	5.523G	35	5.468G	36	5.528G			
37	5.632G	38	5.343G	39	5.510G	40	5.711G			
41	5.655G	42	5.385G	43	5.670G	44	5.719G			
45	5.673G	46	5.461G	47	5.313G	48	5.612G			
49	5.505G	50	5.694G	51	5.347G	52	5.355G			
53	5.558G	54	5.489G	55	5.345G	56	5.642G			
57	5.358G	58	5.394G	59	5.447G	60	5.563G			
61	5.338G	62	5.538G	63	5.635G	64	5.419G			
65	5.401G	66	5.437G	67	5.509G	68	5.678G			
69	5.552G	70	5.623G	71	5.328G	72	5.499G			
73	5.620G	74	5.717G	75	5.463G	76	5.360G			
77	5.293G	78	5.412G	79	5.404G	80	5.645G			
81	5.617G	82	5.350G	83	5.508G	84	5.639G			
85	5.283G	86	5.672G	87	5.671G	88	5.565G			
89	5.398G	90	5.473G	91	5.474G	92	5.370G			
93	5.383G	94	5.395G	95	5.724G	96	5.570G			
97	5.553G	98	5.389G	99	5.327G	100	5.402G			

Report No.: RF151022E06A-2 Page No. 105 / 134
Reference No.: 151022E11

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_03										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.616G	2	5.593G	3	5.412G	4	5.699G			
5	5.355G	6	5.583G	7	5.352G	8	5.553G			
9	5.580G	10	5.639G	11	5.317G	12	5.519G			
13	5.467G	14	5.401G	15	5.554G	16	5.420G			
17	5.568G	18	5.643G	19	5.584G	20	5.558G			
21	5.448G	22	5.533G	23	5.516G	24	5.618G			
25	5.418G	26	5.527G	27	5.492G	28	5.426G			
29	5.693G	30	5.447G	31	5.398G	32	5.451G			
33	5.499G	34	5.678G	35	5.373G	36	5.430G			
37	5.393G	38	5.548G	39	5.367G	40	5.518G			
41	5.478G	42	5.428G	43	5.705G	44	5.574G			
45	5.612G	46	5.377G	47	5.346G	48	5.356G			
49	5.572G	50	5.720G	51	5.406G	52	5.510G			
53	5.329G	54	5.301G	55	5.559G	56	5.621G			
57	5.295G	58	5.692G	59	5.489G	60	5.668G			
61	5.495G	62	5.493G	63	5.434G	64	5.358G			
65	5.400G	66	5.353G	67	5.395G	68	5.535G			
69	5.682G	70	5.411G	71	5.354G	72	5.595G			
73	5.537G	74	5.695G	75	5.631G	76	5.701G			
77	5.526G	78	5.582G	79	5.321G	80	5.504G			
81	5.465G	82	5.700G	83	5.421G	84	5.432G			
85	5.388G	86	5.360G	87	5.649G	88	5.672G			
89	5.304G	90	5.469G	91	5.472G	92	5.361G			
93	5.542G	94	5.509G	95	5.604G	96	5.587G			
97	5.461G	98	5.323G	99	5.575G	100	5.619G			

Report No.: RF151022E06A-2 Page No. 106 / 134
Reference No.: 151022E11

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_04										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.315G	2	5.385G	3	5.544G	4	5.527G			
5	5.637G	6	5.499G	7	5.405G	8	5.595G			
9	5.382G	10	5.443G	11	5.423G	12	5.691G			
13	5.380G	14	5.650G	15	5.305G	16	5.411G			
17	5.294G	18	5.655G	19	5.398G	20	5.693G			
21	5.474G	22	5.542G	23	5.337G	24	5.432G			
25	5.555G	26	5.644G	27	5.625G	28	5.410G			
29	5.379G	30	5.298G	31	5.682G	32	5.507G			
33	5.275G	34	5.510G	35	5.310G	36	5.641G			
37	5.616G	38	5.543G	39	5.512G	40	5.485G			
41	5.401G	42	5.449G	43	5.434G	44	5.724G			
45	5.472G	46	5.316G	47	5.416G	48	5.477G			
49	5.273G	50	5.619G	51	5.351G	52	5.486G			
53	5.672G	54	5.681G	55	5.712G	56	5.548G			
57	5.465G	58	5.623G	59	5.500G	60	5.708G			
61	5.626G	62	5.332G	63	5.348G	64	5.574G			
65	5.367G	66	5.517G	67	5.400G	68	5.553G			
69	5.592G	70	5.404G	71	5.353G	72	5.392G			
73	5.513G	74	5.463G	75	5.349G	76	5.707G			
77	5.547G	78	5.582G	79	5.440G	80	5.580G			
81	5.551G	82	5.363G	83	5.593G	84	5.514G			
85	5.277G	86	5.309G	87	5.578G	88	5.671G			
89	5.678G	90	5.524G	91	5.424G	92	5.508G			
93	5.594G	94	5.700G	95	5.652G	96	5.673G			
97	5.662G	98	5.466G	99	5.614G	100	5.506G			

Report No.: RF151022E06A-2 Page No. 107 / 134 Reference No.: 151022E11

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_05										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ_00	Frequency			
OLQ#	(Hz)	OLQ#	(Hz)	OLG	(Hz)	OLQ#	(Hz)			
1	5.685G	2	5.319G	3	5.437G	4	5.701G			
5	5.674G	6	5.702G	7	5.517G	8	5.404G			
9	5.443G	10	5.471G	11	5.376G	12	5.614G			
13	5.515G	14	5.411G	15	5.450G	16	5.469G			
17	5.475G	18	5.661G	19	5.610G	20	5.412G			
21	5.716G	22	5.694G	23	5.341G	24	5.389G			
25	5.378G	26	5.539G	27	5.309G	28	5.544G			
29	5.409G	30	5.422G	31	5.620G	32	5.687G			
33	5.526G	34	5.704G	35	5.405G	36	5.644G			
37	5.627G	38	5.359G	39	5.640G	40	5.424G			
41	5.372G	42	5.532G	43	5.617G	44	5.353G			
45	5.676G	46	5.690G	47	5.664G	48	5.688G			
49	5.371G	50	5.419G	51	5.388G	52	5.671G			
53	5.721G	54	5.507G	55	5.692G	56	5.714G			
57	5.473G	58	5.303G	59	5.575G	60	5.703G			
61	5.391G	62	5.635G	63	5.438G	64	5.533G			
65	5.719G	66	5.428G	67	5.603G	68	5.658G			
69	5.385G	70	5.589G	71	5.712G	72	5.569G			
73	5.275G	74	5.529G	75	5.622G	76	5.447G			
77	5.581G	78	5.588G	79	5.362G	80	5.655G			
81	5.579G	82	5.407G	83	5.723G	84	5.461G			
85	5.573G	86	5.384G	87	5.632G	88	5.675G			
89	5.540G	90	5.478G	91	5.439G	92	5.619G			
93	5.451G	94	5.310G	95	5.444G	96	5.541G			
97	5.434G	98	5.325G	99	5.349G	100	5.491G			

Report No.: RF151022E06A-2 Page No. 108 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_06										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.566G	2	5.598G	3	5.575G	4	5.467G				
5	5.513G	6	5.421G	7	5.440G	8	5.411G				
9	5.536G	10	5.407G	11	5.550G	12	5.460G				
13	5.540G	14	5.388G	15	5.339G	16	5.595G				
17	5.308G	18	5.348G	19	5.643G	20	5.351G				
21	5.383G	22	5.518G	23	5.581G	24	5.669G				
25	5.614G	26	5.413G	27	5.370G	28	5.708G				
29	5.477G	30	5.722G	31	5.679G	32	5.525G				
33	5.340G	34	5.343G	35	5.320G	36	5.539G				
37	5.710G	38	5.323G	39	5.396G	40	5.592G				
41	5.603G	42	5.719G	43	5.636G	44	5.717G				
45	5.649G	46	5.473G	47	5.577G	48	5.554G				
49	5.633G	50	5.648G	51	5.362G	52	5.345G				
53	5.622G	54	5.425G	55	5.700G	56	5.620G				
57	5.452G	58	5.346G	59	5.470G	60	5.448G				
61	5.533G	62	5.638G	63	5.580G	64	5.589G				
65	5.501G	66	5.468G	67	5.441G	68	5.416G				
69	5.269G	70	5.327G	71	5.318G	72	5.567G				
73	5.627G	74	5.309G	75	5.672G	76	5.617G				
77	5.445G	78	5.436G	79	5.355G	80	5.601G				
81	5.446G	82	5.517G	83	5.682G	84	5.376G				
85	5.605G	86	5.621G	87	5.686G	88	5.488G				
89	5.500G	90	5.691G	91	5.604G	92	5.478G				
93	5.480G	94	5.684G	95	5.514G	96	5.588G				
97	5.693G	98	5.657G	99	5.393G	100	5.545G				

Report No.: RF151022E06A-2 Page No. 109 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_07										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.393G	2	5.522G	3	5.449G	4	5.692G				
5	5.596G	6	5.723G	7	5.527G	8	5.624G				
9	5.327G	10	5.681G	11	5.708G	12	5.441G				
13	5.286G	14	5.724G	15	5.496G	16	5.695G				
17	5.486G	18	5.360G	19	5.562G	20	5.487G				
21	5.619G	22	5.689G	23	5.561G	24	5.584G				
25	5.337G	26	5.675G	27	5.651G	28	5.450G				
29	5.497G	30	5.354G	31	5.472G	32	5.557G				
33	5.424G	34	5.608G	35	5.335G	36	5.539G				
37	5.492G	38	5.503G	39	5.309G	40	5.364G				
41	5.629G	42	5.667G	43	5.558G	44	5.410G				
45	5.715G	46	5.478G	47	5.687G	48	5.688G				
49	5.530G	50	5.618G	51	5.601G	52	5.707G				
53	5.531G	54	5.617G	55	5.598G	56	5.710G				
57	5.588G	58	5.501G	59	5.578G	60	5.633G				
61	5.409G	62	5.703G	63	5.502G	64	5.397G				
65	5.534G	66	5.606G	67	5.380G	68	5.454G				
69	5.352G	70	5.533G	71	5.508G	72	5.525G				
73	5.373G	74	5.705G	75	5.418G	76	5.528G				
77	5.570G	78	5.552G	79	5.484G	80	5.604G				
81	5.706G	82	5.551G	83	5.383G	84	5.361G				
85	5.475G	86	5.625G	87	5.346G	88	5.614G				
89	5.350G	90	5.328G	91	5.674G	92	5.586G				
93	5.381G	94	5.512G	95	5.725G	96	5.390G				
97	5.547G	98	5.429G	99	5.709G	100	5.662G				

Report No.: RF151022E06A-2 Page No. 110 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_08										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ_00	Frequency				
JLQ#	(Hz)	OLQ#	(Hz)	OLQ#	(Hz)	OLQ#	(Hz)				
1	5.536G	2	5.511G	3	5.483G	4	5.718G				
5	5.682G	6	5.621G	7	5.326G	8	5.421G				
9	5.503G	10	5.472G	11	5.325G	12	5.429G				
13	5.357G	14	5.725G	15	5.471G	16	5.581G				
17	5.659G	18	5.673G	19	5.724G	20	5.499G				
21	5.303G	22		23	5.724G 5.412G	24	5.499G 5.660G				
			5.432G	27		28					
25	5.482G	26	5.377G		5.465G		5.578G				
29	5.469G	30	5.345G	31	5.473G	32	5.406G				
33	5.717G	34	5.321G	35	5.420G	36	5.389G				
37	5.597G	38	5.401G	39	5.358G	40	5.622G				
41	5.519G	42	5.649G	43	5.528G	44	5.509G				
45	5.470G	46	5.489G	47	5.573G	48	5.505G				
49	5.589G	50	5.577G	51	5.512G	52	5.538G				
53	5.569G	54	5.302G	55	5.722G	56	5.387G				
57	5.566G	58	5.598G	59	5.664G	60	5.583G				
61	5.385G	62	5.537G	63	5.507G	64	5.486G				
65	5.594G	66	5.567G	67	5.632G	68	5.575G				
69	5.366G	70	5.436G	71	5.368G	72	5.545G				
73	5.694G	74	5.643G	75	5.356G	76	5.696G				
77	5.669G	78	5.547G	79	5.692G	80	5.674G				
81	5.610G	82	5.620G	83	5.531G	84	5.680G				
85	5.382G	86	5.652G	87	5.376G	88	5.460G				
89	5.497G	90	5.624G	91	5.375G	92	5.417G				
93	5.491G	94	5.477G	95	5.488G	96	5.479G				
97	5.689G	98	5.607G	99	5.380G	100	5.453G				

Report No.: RF151022E06A-2 Page No. 111 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_09										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.530G	2	5.461G	3	5.327G	4	5.559G				
5	5.535G	6	5.660G	7	5.398G	8	5.549G				
9	5.454G	10	5.499G	11	5.670G	12	5.594G				
13	5.414G	14	5.545G	15	5.551G	16	5.657G				
17	5.555G	18	5.497G	19	5.460G	20	5.610G				
21	5.492G	22	5.341G	23	5.591G	24	5.576G				
25	5.356G	26	5.508G	27	5.361G	28	5.553G				
29	5.661G	30	5.556G	31	5.665G	32	5.366G				
33	5.685G	34	5.371G	35	5.350G	36	5.579G				
37	5.682G	38	5.686G	39	5.408G	40	5.709G				
41	5.633G	42	5.547G	43	5.679G	44	5.656G				
45	5.431G	46	5.628G	47	5.640G	48	5.450G				
49	5.358G	50	5.596G	51	5.711G	52	5.712G				
53	5.615G	54	5.412G	55	5.483G	56	5.675G				
57	5.575G	58	5.624G	59	5.520G	60	5.382G				
61	5.275G	62	5.484G	63	5.488G	64	5.415G				
65	5.706G	66	5.562G	67	5.590G	68	5.567G				
69	5.642G	70	5.481G	71	5.331G	72	5.516G				
73	5.372G	74	5.395G	75	5.541G	76	5.518G				
77	5.405G	78	5.598G	79	5.511G	80	5.654G				
81	5.462G	82	5.574G	83	5.343G	84	5.458G				
85	5.351G	86	5.716G	87	5.546G	88	5.379G				
89	5.509G	90	5.319G	91	5.345G	92	5.680G				
93	5.335G	94	5.424G	95	5.337G	96	5.600G				
97	5.724G	98	5.416G	99	5.696G	100	5.564G				

Report No.: RF151022E06A-2 Page No. 112 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_10									
050"										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.488G	2	5.646G	3	5.471G	4	5.393G			
5	5.724G	6	5.387G	7	5.642G	8	5.439G			
9	5.671G	10	5.600G	11	5.339G	12	5.621G			
13	5.360G	14	5.539G	15	5.369G	16	5.593G			
17	5.291G	18	5.495G	19	5.427G	20	5.700G			
21	5.499G	22	5.634G	23	5.649G	24	5.368G			
25	5.661G	26	5.713G	27	5.325G	28	5.420G			
29	5.588G	30	5.623G	31	5.631G	32	5.416G			
33	5.639G	34	5.308G	35	5.364G	36	5.505G			
37	5.391G	38	5.476G	39	5.388G	40	5.484G			
41	5.501G	42	5.336G	43	5.395G	44	5.508G			
45	5.711G	46	5.459G	47	5.521G	48	5.567G			
49	5.601G	50	5.517G	51	5.725G	52	5.486G			
53	5.624G	54	5.331G	55	5.419G	56	5.492G			
57	5.516G	58	5.458G	59	5.438G	60	5.692G			
61	5.479G	62	5.597G	63	5.478G	64	5.502G			
65	5.481G	66	5.583G	67	5.614G	68	5.378G			
69	5.346G	70	5.669G	71	5.523G	72	5.509G			
73	5.358G	74	5.410G	75	5.643G	76	5.575G			
77	5.640G	78	5.722G	79	5.557G	80	5.433G			
81	5.490G	82	5.595G	83	5.674G	84	5.456G			
85	5.443G	86	5.626G	87	5.560G	88	5.463G			
89	5.553G	90	5.402G	91	5.656G	92	5.514G			
93	5.535G	94	5.555G	95	5.694G	96	5.374G			
97	5.319G	98	5.504G	99	5.633G	100	5.538G			

Report No.: RF151022E06A-2 Page No. 113 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_11										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.647G	2	5.436G	3	5.492G	4	5.404G				
5	5.385G	6	5.336G	7	5.577G	8	5.497G				
9	5.509G	10	5.478G	11	5.430G	12	5.374G				
13	5.656G	14	5.680G	15	5.683G	16	5.407G				
17	5.361G	18	5.455G	19	5.470G	20	5.475G				
21	5.535G	22	5.717G	23	5.518G	24	5.573G				
25	5.419G	26	5.662G	27	5.632G	28	5.363G				
29	5.610G	30	5.381G	31	5.376G	32	5.706G				
33	5.561G	34	5.307G	35	5.708G	36	5.453G				
37	5.698G	38	5.701G	39	5.645G	40	5.445G				
41	5.642G	42	5.525G	43	5.629G	44	5.344G				
45	5.403G	46	5.523G	47	5.408G	48	5.580G				
49	5.700G	50	5.584G	51	5.684G	52	5.501G				
53	5.517G	54	5.703G	55	5.375G	56	5.482G				
57	5.339G	58	5.410G	59	5.415G	60	5.592G				
61	5.283G	62	5.365G	63	5.542G	64	5.434G				
65	5.394G	66	5.370G	67	5.328G	68	5.712G				
69	5.710G	70	5.620G	71	5.346G	72	5.526G				
73	5.566G	74	5.456G	75	5.590G	76	5.655G				
77	5.545G	78	5.461G	79	5.606G	80	5.624G				
81	5.377G	82	5.529G	83	5.670G	84	5.556G				
85	5.585G	86	5.393G	87	5.627G	88	5.654G				
89	5.583G	90	5.302G	91	5.457G	92	5.543G				
93	5.690G	94	5.630G	95	5.567G	96	5.507G				
97	5.516G	98	5.447G	99	5.565G	100	5.520G				

Report No.: RF151022E06A-2 Page No. 114 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_12										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.511G	2	5.510G	3	5.605G	4	5.502G				
5	5.703G	6	5.290G	7	5.512G	8	5.479G				
9	5.629G	10	5.670G	11	5.359G	12	5.598G				
13	5.552G	14	5.658G	15	5.551G	16	5.417G				
17	5.312G	18	5.445G	19	5.665G	20	5.580G				
21	5.698G	22	5.368G	23	5.684G	24	5.461G				
25	5.613G	26	5.376G	27	5.693G	28	5.683G				
29	5.274G	30	5.389G	31	5.533G	32	5.449G				
33	5.546G	34	5.704G	35	5.488G	36	5.400G				
37	5.303G	38	5.346G	39	5.362G	40	5.578G				
41	5.373G	42	5.573G	43	5.603G	44	5.549G				
45	5.432G	46	5.528G	47	5.525G	48	5.527G				
49	5.633G	50	5.288G	51	5.386G	52	5.436G				
53	5.537G	54	5.387G	55	5.583G	56	5.344G				
57	5.422G	58	5.600G	59	5.720G	60	5.339G				
61	5.385G	62	5.409G	63	5.639G	64	5.486G				
65	5.357G	66	5.596G	67	5.360G	68	5.632G				
69	5.705G	70	5.403G	71	5.544G	72	5.636G				
73	5.388G	74	5.305G	75	5.638G	76	5.404G				
77	5.570G	78	5.710G	79	5.365G	80	5.547G				
81	5.685G	82	5.476G	83	5.451G	84	5.556G				
85	5.348G	86	5.518G	87	5.536G	88	5.519G				
89	5.686G	90	5.397G	91	5.456G	92	5.561G				
93	5.647G	94	5.723G	95	5.624G	96	5.539G				
97	5.426G	98	5.454G	99	5.501G	100	5.717G				

Report No.: RF151022E06A-2 Page No. 115 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_13									
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.393G	2	5.419G	3	5.406G	4	5.503G			
5	5.274G	6	5.473G	7	5.549G	8	5.358G			
9	5.374G	10	5.426G	11	5.709G	12	5.636G			
13	5.650G	14	5.569G	15	5.515G	16	5.630G			
17	5.322G	18	5.302G	19	5.361G	20	5.684G			
21	5.708G	22	5.280G	23	5.651G	24	5.626G			
25	5.523G	26	5.724G	27	5.580G	28	5.410G			
29	5.299G	30	5.583G	31	5.614G	32	5.653G			
33	5.444G	34	5.402G	35	5.594G	36	5.713G			
37	5.427G	38	5.498G	39	5.390G	40	5.520G			
41	5.491G	42	5.640G	43	5.368G	44	5.693G			
45	5.645G	46	5.488G	47	5.316G	48	5.559G			
49	5.341G	50	5.463G	51	5.666G	52	5.540G			
53	5.526G	54	5.365G	55	5.582G	56	5.680G			
57	5.388G	58	5.466G	59	5.497G	60	5.431G			
61	5.441G	62	5.364G	63	5.317G	64	5.545G			
65	5.537G	66	5.670G	67	5.517G	68	5.673G			
69	5.683G	70	5.624G	71	5.657G	72	5.521G			
73	5.408G	74	5.586G	75	5.530G	76	5.660G			
77	5.477G	78	5.552G	79	5.327G	80	5.353G			
81	5.722G	82	5.538G	83	5.412G	84	5.403G			
85	5.548G	86	5.326G	87	5.542G	88	5.672G			
89	5.668G	90	5.539G	91	5.423G	92	5.534G			
93	5.518G	94	5.401G	95	5.382G	96	5.644G			
97	5.415G	98	5.336G	99	5.628G	100	5.581G			

Report No.: RF151022E06A-2 Page No. 116 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_14										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.456G	2	5.413G	3	5.672G	4	5.530G				
5	5.702G	6	5.489G	7	5.633G	8	5.441G				
9	5.458G	10	5.550G	11	5.676G	12	5.408G				
13	5.600G	14	5.339G	15	5.657G	16	5.533G				
17	5.562G	18	5.606G	19	5.551G	20	5.484G				
21	5.474G	22	5.473G	23	5.440G	24	5.612G				
25	5.260G	26	5.314G	27	5.340G	28	5.583G				
29	5.618G	30	5.517G	31	5.604G	32	5.362G				
33	5.312G	34	5.301G	35	5.411G	36	5.531G				
37	5.321G	38	5.410G	39	5.617G	40	5.573G				
41	5.522G	42	5.582G	43	5.454G	44	5.401G				
45	5.399G	46	5.293G	47	5.553G	48	5.353G				
49	5.324G	50	5.491G	51	5.592G	52	5.558G				
53	5.709G	54	5.526G	55	5.434G	56	5.594G				
57	5.561G	58	5.506G	59	5.364G	60	5.711G				
61	5.291G	62	5.501G	63	5.667G	64	5.500G				
65	5.691G	66	5.436G	67	5.420G	68	5.643G				
69	5.563G	70	5.427G	71	5.696G	72	5.459G				
73	5.532G	74	5.425G	75	5.378G	76	5.469G				
77	5.651G	78	5.374G	79	5.359G	80	5.660G				
81	5.387G	82	5.555G	83	5.624G	84	5.369G				
85	5.285G	86	5.549G	87	5.615G	88	5.356G				
89	5.712G	90	5.576G	91	5.482G	92	5.690G				
93	5.278G	94	5.355G	95	5.323G	96	5.670G				
97	5.580G	98	5.723G	99	5.540G	100	5.477G				

Report No.: RF151022E06A-2 Page No. 117 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_15										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.487G	2	5.593G	3	5.536G	4	5.422G				
5	5.630G	6	5.302G	7	5.664G	8	5.499G				
9	5.660G	10	5.364G	11	5.475G	12	5.408G				
13	5.432G	14	5.429G	15	5.329G	16	5.562G				
17	5.716G	18	5.474G	19	5.471G	20	5.409G				
21	5.674G	22	5.591G	23	5.451G	24	5.550G				
25	5.279G	26	5.346G	27	5.577G	28	5.587G				
29	5.454G	30	5.725G	31	5.394G	32	5.410G				
33	5.588G	34	5.463G	35	5.497G	36	5.378G				
37	5.679G	38	5.418G	39	5.314G	40	5.526G				
41	5.292G	42	5.366G	43	5.485G	44	5.720G				
45	5.452G	46	5.702G	47	5.469G	48	5.441G				
49	5.266G	50	5.703G	51	5.369G	52	5.345G				
53	5.631G	54	5.333G	55	5.459G	56	5.342G				
57	5.373G	58	5.424G	59	5.627G	60	5.483G				
61	5.308G	62	5.698G	63	5.619G	64	5.625G				
65	5.382G	66	5.448G	67	5.535G	68	5.673G				
69	5.519G	70	5.426G	71	5.542G	72	5.467G				
73	5.421G	74	5.691G	75	5.393G	76	5.495G				
77	5.723G	78	5.532G	79	5.704G	80	5.383G				
81	5.637G	82	5.445G	83	5.565G	84	5.527G				
85	5.489G	86	5.583G	87	5.360G	88	5.374G				
89	5.286G	90	5.655G	91	5.647G	92	5.602G				
93	5.533G	94	5.620G	95	5.470G	96	5.554G				
97	5.632G	98	5.661G	99	5.628G	100	5.368G				

Report No.: RF151022E06A-2 Page No. 118 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_16										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.537G	2	5.611G	3	5.651G	4	5.568G				
5	5.518G	6	5.590G	7	5.512G	8	5.700G				
9	5.351G	10	5.338G	11	5.591G	12	5.530G				
13	5.618G	14	5.366G	15	5.543G	16	5.579G				
17	5.522G	18	5.536G	19	5.594G	20	5.374G				
21	5.393G	22	5.725G	23	5.659G	24	5.424G				
25	5.352G	26	5.718G	27	5.724G	28	5.360G				
29	5.720G	30	5.391G	31	5.348G	32	5.451G				
33	5.686G	34	5.619G	35	5.504G	36	5.716G				
37	5.377G	38	5.285G	39	5.436G	40	5.681G				
41	5.407G	42	5.372G	43	5.498G	44	5.541G				
45	5.520G	46	5.454G	47	5.383G	48	5.453G				
49	5.329G	50	5.671G	51	5.558G	52	5.410G				
53	5.596G	54	5.523G	55	5.547G	56	5.415G				
57	5.563G	58	5.400G	59	5.460G	60	5.556G				
61	5.653G	62	5.654G	63	5.656G	64	5.598G				
65	5.574G	66	5.315G	67	5.437G	68	5.430G				
69	5.466G	70	5.696G	71	5.447G	72	5.402G				
73	5.440G	74	5.476G	75	5.624G	76	5.418G				
77	5.286G	78	5.573G	79	5.608G	80	5.413G				
81	5.306G	82	5.350G	83	5.513G	84	5.709G				
85	5.421G	86	5.560G	87	5.511G	88	5.387G				
89	5.632G	90	5.670G	91	5.342G	92	5.644G				
93	5.678G	94	5.305G	95	5.426G	96	5.580G				
97	5.324G	98	5.301G	99	5.546G	100	5.411G				

Report No.: RF151022E06A-2 Page No. 119 / 134 Faference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_17										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.666G	2	5.702G	3	5.502G	4	5.364G				
5	5.608G	6	5.432G	7	5.457G	8	5.641G				
9	5.481G	10	5.306G	11	5.563G	12	5.425G				
13	5.381G	14	5.322G	15	5.514G	16	5.372G				
17	5.680G	18	5.506G	19	5.350G	20	5.579G				
21	5.688G	22	5.397G	23	5.430G	24	5.532G				
25	5.660G	26	5.523G	27	5.419G	28	5.437G				
29	5.590G	30	5.471G	31	5.310G	32	5.545G				
33	5.712G	34	5.708G	35	5.623G	36	5.536G				
37	5.461G	38	5.607G	39	5.615G	40	5.614G				
41	5.392G	42	5.653G	43	5.354G	44	5.569G				
45	5.443G	46	5.547G	47	5.362G	48	5.459G				
49	5.581G	50	5.538G	51	5.441G	52	5.395G				
53	5.632G	54	5.692G	55	5.363G	56	5.357G				
57	5.436G	58	5.542G	59	5.701G	60	5.410G				
61	5.624G	62	5.628G	63	5.558G	64	5.374G				
65	5.338G	66	5.722G	67	5.529G	68	5.595G				
69	5.676G	70	5.458G	71	5.706G	72	5.442G				
73	5.667G	74	5.477G	75	5.352G	76	5.582G				
77	5.600G	78	5.431G	79	5.633G	80	5.719G				
81	5.332G	82	5.413G	83	5.675G	84	5.399G				
85	5.277G	86	5.500G	87	5.401G	88	5.360G				
89	5.564G	90	5.341G	91	5.377G	92	5.424G				
93	5.639G	94	5.586G	95	5.438G	96	5.593G				
97	5.314G	98	5.635G	99	5.724G	100	5.515G				

Report No.: RF151022E06A-2 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_18										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.713G	2	5.381G	3	5.665G	4	5.356G				
5	5.413G	6	5.525G	7	5.383G	8	5.667G				
9	5.685G	10	5.297G	11	5.639G	12	5.395G				
13	5.365G	14	5.681G	15	5.579G	16	5.605G				
17	5.557G	18	5.710G	19	5.516G	20	5.721G				
21	5.268G	22	5.701G	23	5.438G	24	5.504G				
25	5.718G	26	5.524G	27	5.464G	28	5.673G				
29	5.638G	30	5.586G	31	5.670G	32	5.535G				
33	5.606G	34	5.580G	35	5.675G	36	5.435G				
37	5.357G	38	5.578G	39	5.645G	40	5.648G				
41	5.432G	42	5.599G	43	5.552G	44	5.614G				
45	5.574G	46	5.482G	47	5.660G	48	5.449G				
49	5.641G	50	5.657G	51	5.470G	52	5.392G				
53	5.360G	54	5.427G	55	5.330G	56	5.359G				
57	5.316G	58	5.671G	59	5.500G	60	5.628G				
61	5.659G	62	5.353G	63	5.664G	64	5.558G				
65	5.453G	66	5.680G	67	5.662G	68	5.501G				
69	5.545G	70	5.355G	71	5.377G	72	5.652G				
73	5.590G	74	5.429G	75	5.390G	76	5.433G				
77	5.272G	78	5.532G	79	5.534G	80	5.404G				
81	5.371G	82	5.367G	83	5.627G	84	5.618G				
85	5.289G	86	5.596G	87	5.704G	88	5.502G				
89	5.287G	90	5.651G	91	5.490G	92	5.426G				
93	5.709G	94	5.370G	95	5.589G	96	5.646G				
97	5.281G	98	5.487G	99	5.602G	100	5.457G				

Report No.: RF151022E06A-2 Page No. 121 / 134 Reference No.: 151022E11

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_19											
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.705G	2	5.339G	3	5.519G	4	5.458G				
5	5.453G	6	5.421G	7	5.415G	8	5.542G				
9	5.334G	10	5.680G	11	5.686G	12	5.629G				
13	5.639G	14	5.313G	15	5.712G	16	5.536G				
17	5.424G	18	5.391G	19	5.522G	20	5.523G				
21	5.676G	22	5.390G	23	5.701G	24	5.588G				
25	5.362G	26	5.613G	27	5.452G	28	5.704G				
29	5.363G	30	5.491G	31	5.411G	32	5.367G				
33	5.672G	34	5.513G	35	5.565G	36	5.502G				
37	5.264G	38	5.440G	39	5.546G	40	5.350G				
41	5.668G	42	5.611G	43	5.388G	44	5.640G				
45	5.319G	46	5.706G	47	5.628G	48	5.505G				
49	5.495G	50	5.584G	51	5.660G	52	5.435G				
53	5.287G	54	5.326G	55	5.699G	56	5.579G				
57	5.284G	58	5.295G	59	5.474G	60	5.651G				
61	5.564G	62	5.487G	63	5.478G	64	5.551G				
65	5.445G	66	5.413G	67	5.521G	68	5.365G				
69	5.503G	70	5.404G	71	5.402G	72	5.645G				
73	5.456G	74	5.436G	75	5.548G	76	5.568G				
77	5.372G	78	5.692G	79	5.333G	80	5.571G				
81	5.356G	82	5.422G	83	5.716G	84	5.608G				
85	5.634G	86	5.625G	87	5.371G	88	5.635G				
89	5.309G	90	5.358G	91	5.577G	92	5.427G				
93	5.461G	94	5.377G	95	5.499G	96	5.504G				
97	5.392G	98	5.648G	99	5.683G	100	5.417G				

Report No.: RF151022E06A-2 Page No. 122 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_20										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.472G	2	5.534G	3	5.632G	4	5.672G				
5	5.284G	6	5.570G	7	5.567G	8	5.565G				
9	5.584G	10	5.590G	11	5.621G	12	5.471G				
13	5.585G	14	5.540G	15	5.696G	16	5.445G				
17	5.269G	18	5.619G	19	5.332G	20	5.701G				
21	5.330G	22	5.671G	23	5.640G	24	5.663G				
25	5.642G	26	5.547G	27	5.530G	28	5.368G				
29	5.616G	30	5.465G	31	5.607G	32	5.436G				
33	5.648G	34	5.425G	35	5.488G	36	5.381G				
37	5.414G	38	5.697G	39	5.421G	40	5.357G				
41	5.355G	42	5.518G	43	5.310G	44	5.407G				
45	5.334G	46	5.692G	47	5.684G	48	5.685G				
49	5.350G	50	5.337G	51	5.611G	52	5.718G				
53	5.526G	54	5.483G	55	5.695G	56	5.586G				
57	5.474G	58	5.635G	59	5.336G	60	5.675G				
61	5.435G	62	5.674G	63	5.325G	64	5.505G				
65	5.615G	66	5.520G	67	5.416G	68	5.658G				
69	5.305G	70	5.562G	71	5.542G	72	5.402G				
73	5.639G	74	5.630G	75	5.419G	76	5.572G				
77	5.494G	78	5.380G	79	5.427G	80	5.578G				
81	5.403G	82	5.460G	83	5.449G	84	5.724G				
85	5.554G	86	5.430G	87	5.691G	88	5.596G				
89	5.660G	90	5.662G	91	5.643G	92	5.545G				
93	5.647G	94	5.694G	95	5.625G	96	5.614G				
97	5.426G	98	5.464G	99	5.558G	100	5.666G				

Report No.: RF151022E06A-2 Page No. 123 / 134
Reference No.: 151022E11

Report Format Version: 6.1.1

	Hopping		cy Sequence		HOP_FREQ_						
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.667G	2	5.359G	3	5.650G	4	5.433G				
5	5.409G	6	5.572G	7	5.340G	8	5.436G				
9	5.712G	10	5.325G	11	5.380G	12	5.631G				
13	5.624G	14	5.450G	15	5.642G	16	5.349G				
17	5.612G	18	5.697G	19	5.476G	20	5.559G				
21	5.492G	22	5.426G	23	5.657G	24	5.669G				
25	5.518G	26	5.294G	27	5.524G	28	5.455G				
29	5.315G	30	5.311G	31	5.564G	32	5.574G				
33	5.333G	34	5.662G	35	5.404G	36	5.576G				
37	5.313G	38	5.582G	39	5.393G	40	5.412G				
41	5.528G	42	5.640G	43	5.628G	44	5.672G				
45	5.701G	46	5.444G	47	5.482G	48	5.651G				
49	5.291G	50	5.725G	51	5.364G	52	5.373G				
53	5.397G	54	5.653G	55	5.378G	56	5.346G				
57	5.587G	58	5.549G	59	5.614G	60	5.396G				
61	5.585G	62	5.299G	63	5.664G	64	5.480G				
65	5.376G	66	5.301G	67	5.496G	68	5.428G				
69	5.388G	70	5.410G	71	5.556G	72	5.389G				
73	5.490G	74	5.675G	75	5.705G	76	5.629G				
77	5.626G	78	5.342G	79	5.371G	80	5.526G				
81	5.605G	82	5.477G	83	5.402G	84	5.690G				
85	5.568G	86	5.513G	87	5.703G	88	5.451G				
89	5.670G	90	5.550G	91	5.557G	92	5.719G				
93	5.413G	94	5.553G	95	5.613G	96	5.500G				
97	5.604G	98	5.303G	99	5.689G	100	5.661G				

Report No.: RF151022E06A-2 Page No. 124 / 134
Reference No.: 151022E11

	Hopping	Frequenc	cy Sequence	Name: H	HOP_FREQ_	SEQ 22	<u> </u>
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency
	(Hz)		(Hz)		(Hz)		(Hz)
1	5.605G	2	5.692G	3	5.596G	4	5.412G
5	5.577G	6	5.372G	7	5.320G	8	5.385G
9	5.509G	10	5.361G	11	5.406G	12	5.671G
13	5.449G	14	5.428G	15	5.588G	16	5.707G
17	5.543G	18	5.659G	19	5.632G	20	5.695G
21	5.649G	22	5.492G	23	5.446G	24	5.401G
25	5.416G	26	5.286G	27	5.506G	28	5.677G
29	5.400G	30	5.691G	31	5.655G	32	5.513G
33	5.493G	34	5.624G	35	5.636G	36	5.590G
37	5.585G	38	5.608G	39	5.518G	40	5.398G
41	5.456G	42	5.462G	43	5.650G	44	5.345G
45	5.524G	46	5.441G	47	5.500G	48	5.607G
49	5.499G	50	5.323G	51	5.348G	52	5.432G
53	5.303G	54	5.447G	55	5.610G	56	5.681G
57	5.473G	58	5.474G	59	5.668G	60	5.679G
61	5.705G	62	5.665G	63	5.498G	64	5.431G
65	5.443G	66	5.475G	67	5.480G	68	5.552G
69	5.402G	70	5.356G	71	5.688G	72	5.442G
73	5.660G	74	5.554G	75	5.631G	76	5.572G
77	5.536G	78	5.561G	79	5.528G	80	5.579G
81	5.430G	82	5.522G	83	5.724G	84	5.556G
85	5.501G	86	5.682G	87	5.581G	88	5.545G
89	5.461G	90	5.359G	91	5.658G	92	5.704G
93	5.380G	94	5.673G	95	5.669G	96	5.502G
97	5.301G	98	5.325G	99	5.369G	100	5.377G

Report No.: RF151022E06A-2 Page No. 125 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_23										
CEO#											
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
	(Hz)		(Hz)		(Hz)		(Hz)				
1	5.594G	2	5.527G	3	5.665G	4	5.458G				
5	5.498G	6	5.510G	7	5.388G	8	5.441G				
9	5.275G	10	5.654G	11	5.408G	12	5.650G				
13	5.512G	14	5.612G	15	5.502G	16	5.334G				
17	5.405G	18	5.500G	19	5.678G	20	5.370G				
21	5.602G	22	5.306G	23	5.596G	24	5.522G				
25	5.710G	26	5.331G	27	5.690G	28	5.669G				
29	5.406G	30	5.329G	31	5.526G	32	5.340G				
33	5.332G	34	5.718G	35	5.635G	36	5.342G				
37	5.290G	38	5.547G	39	5.586G	40	5.562G				
41	5.493G	42	5.686G	43	5.663G	44	5.598G				
45	5.620G	46	5.401G	47	5.371G	48	5.434G				
49	5.357G	50	5.708G	51	5.400G	52	5.711G				
53	5.582G	54	5.443G	55	5.713G	56	5.343G				
57	5.439G	58	5.575G	59	5.658G	60	5.397G				
61	5.302G	62	5.558G	63	5.667G	64	5.697G				
65	5.689G	66	5.378G	67	5.395G	68	5.628G				
69	5.415G	70	5.322G	71	5.549G	72	5.546G				
73	5.380G	74	5.348G	75	5.377G	76	5.442G				
77	5.698G	78	5.438G	79	5.608G	80	5.576G				
81	5.672G	82	5.477G	83	5.535G	84	5.682G				
85	5.564G	86	5.555G	87	5.638G	88	5.482G				
89	5.583G	90	5.455G	91	5.656G	92	5.707G				
93	5.404G	94	5.384G	95	5.326G	96	5.679G				
97	5.276G	98	5.376G	99	5.589G	100	5.369G				

Report No.: RF151022E06A-2 Page No. 126 / 134
Reference No.: 151022E11

Report Format Version: 6.1.1

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_24										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency			
	(Hz)		(Hz)		(Hz)		(Hz)			
1	5.485G	2	5.302G	3	5.450G	4	5.436G			
5	5.688G	6	5.375G	7	5.492G	8	5.682G			
9	5.467G	10	5.655G	11	5.391G	12	5.561G			
13	5.395G	14	5.486G	15	5.452G	16	5.432G			
17	5.412G	18	5.357G	19	5.327G	20	5.685G			
21	5.347G	22	5.511G	23	5.582G	24	5.581G			
25	5.632G	26	5.590G	27	5.529G	28	5.372G			
29	5.416G	30	5.351G	31	5.547G	32	5.714G			
33	5.438G	34	5.568G	35	5.681G	36	5.622G			
37	5.273G	38	5.465G	39	5.505G	40	5.691G			
41	5.305G	42	5.411G	43	5.342G	44	5.455G			
45	5.530G	46	5.674G	47	5.358G	48	5.433G			
49	5.266G	50	5.477G	51	5.680G	52	5.677G			
53	5.603G	54	5.301G	55	5.623G	56	5.423G			
57	5.466G	58	5.621G	59	5.546G	60	5.672G			
61	5.393G	62	5.458G	63	5.370G	64	5.588G			
65	5.631G	66	5.724G	67	5.427G	68	5.576G			
69	5.593G	70	5.429G	71	5.533G	72	5.425G			
73	5.687G	74	5.646G	75	5.562G	76	5.525G			
77	5.535G	78	5.723G	79	5.703G	80	5.397G			
81	5.369G	82	5.651G	83	5.647G	84	5.721G			
85	5.392G	86	5.717G	87	5.441G	88	5.495G			
89	5.488G	90	5.352G	91	5.440G	92	5.560G			
93	5.545G	94	5.523G	95	5.354G	96	5.526G			
97	5.587G	98	5.313G	99	5.567G	100	5.496G			

Report No.: RF151022E06A-2 Page No. 127 / 134 Report Reference No.: 151022E11

		_							
Hopping Frequency Sequence Name: HOP_FREQ_SEQ_25									
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency		
	(Hz)		(Hz)		(Hz)		(Hz)		
1	5.501G	2	5.332G	3	5.571G	4	5.686G		
5	5.438G	6	5.529G	7	5.534G	8	5.693G		
9	5.543G	10	5.723G	11	5.406G	12	5.455G		
13	5.354G	14	5.540G	15	5.484G	16	5.604G		
17	5.428G	18	5.444G	19	5.340G	20	5.549G		
21	5.688G	22	5.283G	23	5.687G	24	5.351G		
25	5.350G	26	5.434G	27	5.486G	28	5.451G		
29	5.644G	30	5.365G	31	5.464G	32	5.708G		
33	5.369G	34	5.319G	35	5.696G	36	5.372G		
37	5.493G	38	5.650G	39	5.422G	40	5.640G		
41	5.704G	42	5.496G	43	5.530G	44	5.586G		
45	5.310G	46	5.634G	47	5.520G	48	5.559G		
49	5.680G	50	5.603G	51	5.664G	52	5.513G		
53	5.703G	54	5.408G	55	5.318G	56	5.576G		
57	5.724G	58	5.511G	59	5.614G	60	5.683G		
61	5.718G	62	5.294G	63	5.347G	64	5.466G		
65	5.450G	66	5.448G	67	5.580G	68	5.446G		
69	5.489G	70	5.447G	71	5.449G	72	5.574G		
73	5.602G	74	5.312G	75	5.548G	76	5.584G		
77	5.297G	78	5.582G	79	5.374G	80	5.516G		
81	5.410G	82	5.555G	83	5.681G	84	5.398G		
85	5.572G	86	5.522G	87	5.405G	88	5.441G		
89	5.565G	90	5.592G	91	5.609G	92	5.689G		
93	5.391G	94	5.333G	95	5.465G	96	5.507G		
97	5.715G	98	5.394G	99	5.700G	100	5.356G		

Report No.: RF151022E06A-2 Page No. 128 / 134
Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_26										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ_20	Frequency				
OLQ"	(Hz)	OLGII	(Hz)	OLGII	(Hz)	OLGII	(Hz)				
1	5.399G	2	5.652G	3	5.582G	4	5.697G				
5	5.452G	6	5.545G	7	5.380G	8	5.343G				
9	5.725G	10	5.592G	11	5.529G	12	5.405G				
13	5.253G	14	5.643G	15	5.598G	16	5.617G				
17	5.593G	18	5.560G	19	5.326G	20	5.534G				
21	5.508G	22	5.372G	23	5.682G	24	5.491G				
25	5.495G	26	5.396G	27	5.503G	28	5.477G				
29	5.427G	30	5.501G	31	5.430G	32	5.589G				
33	5.571G	34	5.712G	35	5.658G	36	5.665G				
37	5.371G	38	5.553G	39	5.569G	40	5.717G				
41	5.621G	42	5.517G	43	5.699G	44	5.566G				
45	5.428G	46	5.627G	47	5.583G	48	5.688G				
49	5.437G	50	5.448G	51	5.445G	52	5.570G				
53	5.375G	54	5.562G	55	5.364G	56	5.488G				
57	5.677G	58	5.403G	59	5.502G	60	5.523G				
61	5.678G	62	5.536G	63	5.620G	64	5.466G				
65	5.596G	66	5.454G	67	5.316G	68	5.673G				
69	5.645G	70	5.357G	71	5.530G	72	5.378G				
73	5.458G	74	5.511G	75	5.516G	76	5.440G				
77	5.609G	78	5.702G	79	5.705G	80	5.494G				
81	5.550G	82	5.515G	83	5.548G	84	5.547G				
85	5.490G	86	5.676G	87	5.415G	88	5.684G				
89	5.681G	90	5.659G	91	5.449G	92	5.576G				
93	5.407G	94	5.351G	95	5.475G	96	5.376G				
97	5.614G	98	5.637G	99	5.626G	100	5.470G				

Report No.: RF151022E06A-2 Page No. 129 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_27										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency				
,	(Hz)		(Hz)	,	(Hz)		(Hz)				
1	5.677G	2	5.335G	3	5.532G	4	5.602G				
5	5.509G	6	5.716G	7	5.607G	8	5.409G				
9	5.486G	10	5.714G	11	5.619G	12	5.341G				
13	5.424G	14	5.401G	15	5.723G	16	5.549G				
17	5.407G	18	5.298G	19	5.681G	20	5.517G				
21	5.488G	22	5.295G	23	5.387G	24	5.724G				
25	5.468G	26	5.639G	27	5.597G	28	5.477G				
29	5.462G	30	5.692G	31	5.332G	32	5.617G				
33	5.334G	34	5.611G	35	5.574G	36	5.600G				
37	5.637G	38	5.672G	39	5.711G	40	5.514G				
41	5.627G	42	5.328G	43	5.493G	44	5.569G				
45	5.715G	46	5.344G	47	5.508G	48	5.454G				
49	5.541G	50	5.442G	51	5.423G	52	5.720G				
53	5.542G	54	5.481G	55	5.684G	56	5.670G				
57	5.675G	58	5.392G	59	5.479G	60	5.586G				
61	5.435G	62	5.393G	63	5.550G	64	5.487G				
65	5.430G	66	5.482G	67	5.444G	68	5.567G				
69	5.311G	70	5.667G	71	5.377G	72	5.504G				
73	5.301G	74	5.365G	75	5.626G	76	5.525G				
77	5.632G	78	5.646G	79	5.445G	80	5.618G				
81	5.548G	82	5.536G	83	5.350G	84	5.671G				
85	5.421G	86	5.510G	87	5.582G	88	5.492G				
89	5.461G	90	5.491G	91	5.397G	92	5.434G				
93	5.357G	94	5.463G	95	5.609G	96	5.403G				
97	5.661G	98	5.596G	99	5.469G	100	5.655G				

Report No.: RF151022E06A-2 Page No. 130 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_28										
SEQ#	Frequency	SEQ#	Frequence	SEQ#	Frequency	SEQ_28					
SEQ#	(Hz)	SEQ#	(Hz)	SEQ#		SEQ#	Frequency				
		0	· /		(Hz)		(Hz)				
1	5.636G	2	5.408G	3	5.589G	4	5.353G				
5	5.517G	6	5.280G	7	5.558G	8	5.723G				
9	5.507G	10	5.522G	11	5.487G	12	5.406G				
13	5.501G	14	5.513G	15	5.686G	16	5.581G				
17	5.679G	18	5.300G	19	5.716G	20	5.469G				
21	5.614G	22	5.465G	23	5.498G	24	5.381G				
25	5.493G	26	5.326G	27	5.632G	28	5.494G				
29	5.635G	30	5.335G	31	5.602G	32	5.525G				
33	5.479G	34	5.388G	35	5.417G	36	5.639G				
37	5.690G	38	5.462G	39	5.678G	40	5.569G				
41	5.710G	42	5.472G	43	5.391G	44	5.572G				
45	5.582G	46	5.500G	47	5.630G	48	5.364G				
49	5.480G	50	5.442G	51	5.345G	52	5.458G				
53	5.368G	54	5.689G	55	5.435G	56	5.369G				
57	5.450G	58	5.299G	59	5.708G	60	5.637G				
61	5.657G	62	5.698G	63	5.490G	64	5.565G				
65	5.399G	66	5.365G	67	5.477G	68	5.631G				
69	5.414G	70	5.685G	71	5.358G	72	5.483G				
73	5.560G	74	5.473G	75	5.356G	76	5.576G				
77	5.503G	78	5.379G	79	5.346G	80	5.570G				
81	5.457G	82	5.382G	83	5.392G	84	5.523G				
85	5.289G	86	5.423G	87	5.478G	88	5.376G				
89	5.520G	90	5.644G	91	5.328G	92	5.419G				
93	5.398G	94	5.360G	95	5.380G	96	5.384G				
97	5.456G	98	5.583G	99	5.606G	100	5.431G				

Report No.: RF151022E06A-2 Page No. 131 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_29										
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ_28	Frequency				
OLQ!!	(Hz)	OLGII	(Hz)	OLGII	(Hz)	OLGII	(Hz)				
1	5.378G	2	5.707G	3	5.336G	4	5.533G				
5	5.678G	6	5.692G	7	5.391G	8	5.491G				
9	5.652G	10	5.662G	11	5.455G	12	5.627G				
13	5.384G	14	5.721G	15	5.686G	16	5.649G				
17	5.633G	18	5.682G	19	5.314G	20	5.676G				
21	5.392G	22	5.536G	23	5.617G	24	5.345G				
25	5.429G	26	5.309G	27	5.725G	28	5.555G				
29	5.368G	30	5.303G	31	5.313G	32	5.653G				
33	5.501G	34	5.648G	35	5.618G	36	5.444G				
37	5.606G	38	5.541G	39	5.591G	40	5.584G				
41	5.548G	42	5.656G	43	5.684G	44	5.560G				
45	5.671G	46	5.590G	47	5.428G	48	5.611G				
49	5.435G	50	5.481G	51	5.420G	52	5.558G				
53	5.667G	54	5.664G	55	5.494G	56	5.526G				
57	5.502G	58	5.640G	59	5.403G	60	5.389G				
61	5.365G	62	5.615G	63	5.569G	64	5.382G				
65	5.413G	66	5.593G	67	5.321G	68	5.547G				
69	5.412G	70	5.556G	71	5.724G	72	5.691G				
73	5.426G	74	5.497G	75	5.621G	76	5.646G				
77	5.390G	78	5.306G	79	5.634G	80	5.474G				
81	5.610G	82	5.605G	83	5.544G	84	5.537G				
85	5.409G	86	5.424G	87	5.438G	88	5.553G				
89	5.425G	90	5.645G	91	5.351G	92	5.397G				
93	5.399G	94	5.512G	95	5.469G	96	5.465G				
97	5.575G	98	5.369G	99	5.717G	100	5.393G				

Report No.: RF151022E06A-2 Page No. 132 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_30							
SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency	SEQ#	Frequency
	(Hz)		(Hz)		(Hz)		(Hz)
1	5.450G	2	5.707G	3	5.552G	4	5.661G
5	5.634G	6	5.557G	7	5.562G	8	5.421G
9	5.469G	10	5.614G	11	5.510G	12	5.522G
13	5.350G	14	5.711G	15	5.578G	16	5.519G
17	5.451G	18	5.463G	19	5.513G	20	5.453G
21	5.621G	22	5.668G	23	5.345G	24	5.341G
25	5.479G	26	5.426G	27	5.523G	28	5.628G
29	5.688G	30	5.491G	31	5.375G	32	5.433G
33	5.608G	34	5.560G	35	5.573G	36	5.480G
37	5.351G	38	5.535G	39	5.559G	40	5.666G
41	5.542G	42	5.329G	43	5.613G	44	5.691G
45	5.544G	46	5.347G	47	5.493G	48	5.492G
49	5.684G	50	5.401G	51	5.434G	52	5.658G
53	5.681G	54	5.572G	55	5.410G	56	5.394G
57	5.577G	58	5.495G	59	5.319G	60	5.384G
61	5.386G	62	5.662G	63	5.377G	64	5.484G
65	5.678G	66	5.364G	67	5.616G	68	5.460G
69	5.558G	70	5.419G	71	5.618G	72	5.629G
73	5.305G	74	5.471G	75	5.518G	76	5.541G
77	5.505G	78	5.567G	79	5.424G	80	5.565G
81	5.366G	82	5.644G	83	5.369G	84	5.462G
85	5.392G	86	5.397G	87	5.344G	88	5.598G
89	5.624G	90	5.556G	91	5.423G	92	5.509G
93	5.301G	94	5.379G	95	5.719G	96	5.663G
97	5.506G	98	5.532G	99	5.571G	100	5.709G

Report No.: RF151022E06A-2 Page No. 133 / 134 Report Format Version: 6.1.1 Reference No.: 151022E11

9. APPENDIX-B

BAND EDGE AT NEARBY DFS BAND

--- END ---

Report No.: RF151022E06A-2 Page No. 134 / 134 Report Format Version: 6.1.1

Reference No.: 151022E11