Problème #1

Les bâtiments A et B sont situés dans une région sismique active. Le bâtiment A sera endommagé si l'accélération maximale du sol (aussi connue comme le PGA "Peak Ground Acceleration") dépasse $0.3\,\mathrm{g}$ avec un tremblement de terre d'une durée de plus de 15 secondes, ou, si l'accélération maximale du sol dépasse $0.6\,\mathrm{g}$, qu'importe la durée du tremblement de terre. Le bâtiment B sera endommagé si l'accélération maximale du sol dépasse $\max(0.5-0.01T,0.1)\,\mathrm{g}$, B0. T représente la durée du tremblement de terre en secondes.

Utilisez un système de coordonnées à deux dimensions (axe horizontal : accélération maximale du sol (m/s^2) , axe vertical : durée du tremblement de terre (s)) afin de décrire l'espace d'échantillonnage. Représentez les événements suivants dans l'espace d'échantillonnage :

- a) Les bâtiments A et B ne sont pas endommagés,
- b) Le bâtiment A est endommagé et B ne l'est pas,
- c) Le bâtiment B est endommagé et A ne l'est pas,
- d) Le bâtiment B est endommagé.

Problème #2

Le suivi électronique des structures (SES) a pour but de déterminer l'état des structures à partir de données enregistrées par des capteurs. Lorsque les données enregistrées sont imprécises, ou lorsque les données enregistrées sont indirectement liées à l'état des structures, la relation entre les données enregistrées et l'état d'une structure est également imprécise.

Soit une structure pouvant être dans un des trois états suivants : {Aucun Dommage (AD), Dommages Légers (LD), Dommages Importants (ID)}. Cette structure dispose d'un système de suivi électronique qui peut indiquer un des quatre états suivants : \widehat{AD} , \widehat{LD} , \widehat{ID} , ou \widehat{IN} (\widehat{IN} : résultats inconcluants). L'information obtenue à partir du SES est caractérisée par des probabilités conditionnelles Pr(état indiqué par le SES|état réel). Soient les probabilités conditionnelles représentées par la table suivante :

	État réel de		
	la structure		
État indiqué par le SES	AD	LD	ID
Aucun Dommage (\widehat{AD})	0.7	0.2	0.0
Dommages Légers (\widehat{LD})	0.2	0.6	0.2
Dommages Importants (\widehat{ID})	0.0	0.1	0.7
Résultats Inconcluants $(\widehat{\mathit{IN}})$	0.1	0.1	0.1

(A noter que pour un système de diagnostic "exact", $\Pr(\widehat{E_i}|E_j)=1, \forall i=j \text{ et } \Pr(\widehat{E_i}|E_j)=0, \forall i\neq j.$) Supposons que notre connaissance a priori des probabilités d'avoir un état de dommage suite à un tremblement de terre est : $\Pr(AD=0.2), \Pr(LD=0.3)$ et $\Pr(ID=0.5)$

- a) Quelle est la probabilité que le système de suivi électronique indique \widehat{AD} , \widehat{LD} , \widehat{ID} ou \widehat{IN} suite à un tremblement de terre?
- b) Supposons qu'à la suite à un tremblement de terre le système de suivi électronique indique l'un des états \widehat{AD} , \widehat{LD} , \widehat{ID} ou \widehat{IN} . Construire une table indiquant quelle est la probabilité $\Pr(\text{état réel}|\text{état indiqué par le SES})$ pour chaque état possible.

Problème #3

Soit les variables aléatoires X et Y décrites par la densité de probabilité cumulative bi-variée (CDF)

$$F(x,y) = -\exp(-(x+y)^2) + \exp(-x) + \exp(-y), \quad x > 0, y > 0$$
(1)

Déterminer :

- a) La densité de probabilité bi-variée de X et Y.
- b) La densité de probabilité marginale de X.
- c) La densité de probabilité conditionnelle de X étant donné Y.
- d) La probabilité que X > 1 étant donné que Y = 3.

Piste de démarrage

```
%%Code snippet - Matlab symbolic toolbox
clear
clc
x=sym('x','positive'); %symboblic def. of x as strictly >0
y=sym('y','positive'); %symboblic def. of x as strictly >0
F_xy=1-exp(-x)-exp(-y)+exp(-x-y-x*y) %Symbolic definition of the joint PDF
```

$$\begin{split} \frac{df_X(x)}{dx} &= \texttt{diff(f_x,x)} \\ \frac{\partial f_{XY}(x,y)}{\partial x \partial y} &= \texttt{diff(diff(f_xy,x),y)} \\ \int_0^\infty f_X(x) dx &= \texttt{int(f_x,x,0,inf)} \\ f_X(x=8) &= \texttt{subs(f_x,x,8)} \end{split}$$

Problème #4

Une structure est sujette aux charges X_1 et X_2 ayant comme moyennes $\mu_1 = 150$ et $\mu_2 = 400$, comme écarts types $\sigma_1 = 10$ et $\sigma_2 = 40$, et un coefficient de corrélation $\rho = 0.4$. Le moment fléchissant M et l'effort tranchant (V) a un point de la structure sont décrits par

$$M = 30X_1 + 10X_2 \tag{2}$$

$$V = -3X_1 + 5X_2 \tag{3}$$

Déterminer :

- a) les valeurs moyennes μ_M , μ_V
- b) les écarts types σ_M, σ_V
- c) le coefficient de corrélation $\rho_{M,V}$

Piste de solution

[standard_dev_vector,corr_matrix]=cov2corr(S_MV) %Covatiance matrix -> standard deviation & correlation matrix