ECN 6338 Cours 4 Optimisation Statique sans contraintes

William McCausland

2022-02-03

Survol du cours 4

Optimisation univariée

- méthode de dichotomie (bracketing)
- 2. méthode de Newton (ou de Newton-Raphson)

Exemple, maximisation du profit d'un monopole

- 1. valeur, gradient et matrice hessienne du profit
- 2. code pour les évaluations

Optimisation multivariée

- 1. méthode de Nelder-Mead
- 2. méthode de Newton
- 3. méthode de "direction set"
 - a. direction des axes de coordonnées
 - b. direction opposée au gradient
 - c. direction Newton
 - d. direction BFGS

Mise en oeuvre en R et résultats

Méthode de Newton en une dimension

- ▶ Considérez la fonction $f(x) = x e^x$.
- Les deux premières dérivées sont

$$f'(x) = 1 - e^x$$
, $f''(x) = -e^x$

- f(x) est convexe avec un maximum unique à x = 0.
- \triangleright L'expansion quadratique de Taylor autour de x^k est

$$g(x) = f(x^k) + f'(x^k)(x - x^k) + \frac{1}{2}f''(x^k)(x - x^k)^2.$$

- Le maximum de g résoud l'équation $g'(x) = f'(x^k) + f''(x^k)(x x^k) = 0$.
- La solution $x^{k+1} x^k = -f'(x^k)/f''(x^k)$.
- Notez que $-\frac{f'(x)}{f''(x)} = \frac{1 e^x}{e^x}.$
- Pour $x \ll 0$, $x^{k+1} x^k \approx e^{-x} \gg |x|$.
- Pour $x \gg 0$, $x^{k+1} x^k \approx -1$.

Pas de Newton pour x = -2, -1, 1, 2

Un pire cas : minimisation de $f(x) = \log \cosh x$

 $f'(x) = \tanh x, f''(x) = (1 - \tanh^2 x)$

```
x = seq(-3, 3, length=101)
plot(x, log(cosh(x)), type='l')
```


Quasi-Newton en une dimension

- Supposons que la deuxième dérivée est couteuse.
- Au lieu de calculer

$$x^{k+1} - x^k = -f'(x^k)/f''(x^k),$$

on peut calculer

$$x^{k+1} - x^k = -f'(x^k)/h^k$$
,

οù

$$h^k \equiv \frac{f'(x^k) - f'(x^{k-1})}{x^k - x^{k-1}}.$$

- ▶ h_k est la pente d'une corde qui approxime la pente de la tangente de f'(x) à $x = x^k$.
- Attention : en plusieurs dimensions $H_k(x^k x^{k-1}) = \nabla f(x^k) \nabla f(x^{k-1})$ donne n équations, pas assez pour déterminer H_k .

Problème du monopole (Judd, page 105)

- ▶ Un monopole produit deux biens, en quantités Y et Z.
- Les coûts de production sont linéaires

$$c_Y(Y) = C_Y Y, \quad c_Z(Z) = C_Z Z,$$

- où $C_Y = 0.62$ et $C_Z = 0.60$.
- La demande est celle d'un consommateur avec utilité

$$U(Y,Z) = u(Y,Z) + M = (Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} + M,$$

- où $\alpha=$ 0.98, $\eta=$ 0.85 et M représente les dépenses en autres biens.
- La demande est donnée par les équations

$$p_Y = u_Y(Y, Z), \quad p_Z = u_Z(Y, Z),$$

où p_Y et p_Z sont les prix de Y et Z.

Problème du monopole (cont.)

Le problème du monopole est la maximisation du profit :

$$\max_{Y,Z\geq 0}\Pi(Y,Z),$$

οù

$$\Pi(Y,Z) = Yu_Y(Y,Z) + Zu_Z(Y,Z) - c_Y(Y) - c_Z(Z).$$

▶ Le revenu associé à Y est

$$Yu_{Y}(Y,Z) = Y\frac{\eta}{\alpha}(Y^{\alpha} + Z^{\alpha})^{\eta/\alpha - 1}\alpha Y^{\alpha - 1} = \eta(Y^{\alpha} + Z^{\alpha})^{\eta/\alpha - 1}Y^{\alpha}$$

Après la même démarche pour Zuz on peut écrire

$$\Pi(Y,Z) = \eta(Y^{\alpha} + Z^{\alpha})^{\eta/\alpha - 1}(Y^{\alpha} + Z^{\alpha}) - c_{Y}(Y) - c_{Z}(Z)$$
$$= \eta(Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} - c_{Y}Y - c_{Z}Z.$$

Le problème en logarithmes de quantité

- Pour éviter l'évaluation de Π à Y < 0 où Z < 0, soit $y \equiv \log Y$, $z \equiv \log Z$.
- Notez que $\log(Y^{\alpha}) = \alpha y$ alors $Y^{\alpha} = e^{\alpha y}$.
- Le problème s'écrit $\max_{y,z} \pi(y,z)$, où

$$\pi(y,z) = \Pi(e^y, e^z) = \eta(e^{\alpha y} + e^{\alpha z})^{\eta/\alpha} - 0.62e^y - 0.60e^z.$$

Faires les graphiques en R

```
source('pi.R')
C = c(0.62, 0.60) # Coûts marginaux
alpha = 0.98; eta = 0.85 # Paramètres de l'utilité
yz <- as.matrix(expand.grid(seq(-2, 1, length=301),</pre>
                            seq(0, 2, length=301))
colnames(yz) <-c('y', 'z')</pre>
df <- data.frame(</pre>
 pi_fn = apply(yz, 1, pi_val, C, alpha, eta), yz)
df[1:5,]
##
        pi_fn yz
```

```
## 1 0.2690171 -2.00 0

## 2 0.2691787 -1.99 0

## 3 0.2693416 -1.98 0

## 4 0.2695057 -1.97 0

## 5 0.2696711 -1.96 0
```

Graphique I

wireframe(pi_fn ~ y*z, data = df, shade=T)

Graphique II

contourplot(pi_fn ~ y*z, data=df, cuts=12) 1.5 -N 1.0 -0.5 -1.5 -1.0 -0.5 0.0 0.5

Graphique III

Gradient et matrice hessienne

Valeur : $\pi(y,z) = \Pi(e^y,e^z) = \eta(e^{\alpha y} + e^{\alpha z})^{\eta/\alpha} - C_Y e^y - C_Z e^z$. Gradient :

$$\frac{\partial \pi}{\partial x^{\top}} = \eta^2 (e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 1} \begin{bmatrix} e^{\alpha y} \\ e^{\alpha z} \end{bmatrix} - \begin{bmatrix} C_Y e^y \\ C_Z e^z \end{bmatrix}$$

Matrice hessienne:

$$\frac{\partial^{2} \pi}{\partial x \partial x^{T}} = \alpha \eta^{2} (\frac{\eta}{\alpha} - 1) (e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 2} \begin{bmatrix} e^{\alpha y} \\ e^{\alpha z} \end{bmatrix} \begin{bmatrix} e^{\alpha y} & e^{\alpha z} \end{bmatrix} \\
+ \alpha \eta^{2} (e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 1} \begin{bmatrix} e^{\alpha y} & 0 \\ 0 & e^{\alpha z} \end{bmatrix} - \begin{bmatrix} C_{Y} e^{y} & 0 \\ 0 & C_{Z} e^{z} \end{bmatrix}$$

Un formule plus générale

- ▶ Soit $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}^n$.
- ► Alors

$$\frac{\partial f(g(x))}{\partial x} = f'(g(x)) \frac{\partial g(x)}{\partial x}$$

$$\frac{\partial^2 f(g(x))}{\partial x \partial x^{\top}} = f''(g(x)) \frac{\partial g(x)}{\partial x^{\top}} \frac{\partial g(x)}{\partial x} + f'(g(x)) \frac{\partial^2 g(x)}{\partial x \partial x^{\top}}$$

Le calcul du gradient et de la matrice hessienne

```
pi_val_grad_hess <- function(x, C, alpha, eta) {</pre>
  eta_sur_al <- eta/alpha; eta2 = eta * eta
  X <- exp(x) # Vecteur de quantités
  X_al <- exp(alpha*x) # Vecteur de quantités X_i^alpha
 Q = sum(X al)
  Q_m2=Q^(eta_sur_al-2); Q_m1=Q_m2*Q; Q_m0=Q_m1*Q
  # Valeur v, gradient q, hessienne h du profit pi
  v = eta*Q m0 - t(C) %*% X
  g = (eta2*Q m1) * X al - C*X
  h = (alpha*eta2*(eta sur al-1)*Q m2) * X al %*% t(X al)
    + (alpha*eta2*Q m1) * diag(X al) - diag(C*X)
 list(valeur=v, gradient=g, hessien=h)
```

Vérification numérique des calculs I

```
C = c(0.62, 0.60) # Coûts marginaux
alpha = 0.98; eta = 0.85 # Paramètres de l'utilité
# Point d'expansion, pas, deuxième point d'évaluation
x1 = c(2, 1)
h = c(-0.001, 0.002)
x2 = x1 + h
# Valeur, gradient, matrice hessienne aux points x1, x2
vgh1 = pi_val_grad_hess(x1, C, alpha, eta)
vgh2 = pi val grad hess(x2, C, alpha, eta)
# Valeur à x2 de deux expansions de Taylor autour de x1
v2_1 = vgh1$valeur + vgh1$gradient %*% h
v2_2 = v2_1 + 0.5 * t(h) %*% vgh1$hessien %*% h
```

Vérification numérique des calculs II

```
vgh2$valeur - vgh1$valeur
                 [,1]
##
## [1.] 0.0003729129
v2_1 - vgh1$valeur
##
                 [,1]
## [1,] 0.0003738301
v2_2 - vgh1$valeur
##
                [,1]
## [1,] 0.000373819
```

Vérification numérique des calculs III

```
vgh2$gradient - vgh1$gradient

## [1] 0.0009541977 -0.0004401634

vgh1$hessien %*% h

## [,1]
## [1,] 8.936745e-05
## [2,] 3.354060e-05
```

Nelder-Mead (méthode de simplex, méthode de polytope)

Figure 1: Nelder Mead en deux dimensions

Notes sur la méthode Nelder-Mead

Avantages

- Simple à programmer, à comprendre
- Marche pour les fonctions avec des discontinuités, des coudes
- On fournit seulement une fonction pour évaluer la fonction (pas de gradient, pas de matrice hessienne).

Inconvénients

Lente : elle peut prendre beaucoup d'évaluations

Méthodes du type "direction set"

L'algorithme générique : faire les étapes suivantes jusqu'à ce que $\|x^k - x^{k+1}\| < \epsilon(1 + \|x^k\|)$, pour les tolérances δ et ϵ choisies :

- 1. Calculer une direction $s^k \in \mathbb{R}^n$.
- 2. Faire une recherche linéaire : trouver $\lambda_k = \arg\min_{\lambda} f(x^k + \lambda s^k)$.
- 3. $x^{k+1} = x^k + \lambda_k s^k$.

Si $\|\nabla f(x^k)\| < \delta(1 + f(x^k))$, réclamer le succès.

Quelques directions possibles

Directions possibles

- 1. direction des axes de coordonnées : $s^k = e_{(k \mod n + 1)}$
- 2. direction opposée au gradient : $s^k = -\nabla f(x^k)$
- 3. direction Newton : $s^k = -H(x^k)^{-1}\nabla f(x^k)$
- 4. direction BFGS : $s^k = -H_k^{-1} \nabla f(x^k)$

Considérations

- 1. Coûts d'évaluation de f, ∇f , $H(x^k)$.
- 2. Coût d'évaluation de ∇f relatif aux coûts d'évaluation de ces éléments :
 - a. un cas extrème : $f(x) = f_1(x_1) + \ldots + f_n(x_n)$.
 - b. un cas avec "rendements à l'échelle" f(x) = g(h(x)), avec g et h scalaires : g'(h(x)) est un factor commun du gradient.
- 3. Variations de H(x) et la courbature de la fonction.
- 4. Régions de non-convexité.
- 5. Alignement des valeurs propres de la matrice hessienne et les axes de coordonnées.
- 6. Besoin de calculer la matrice hessienne de toute façon?

Illustration des directions

Dans les graphiques suivantes,

- Le point du départ (x^k) et le gradient sont normalisés :
 - $x^k = (0,0) \text{ (vert)}$
 - ▶ $\nabla f(x^k) = (-1, -1)$ (direction en vert)
- La matrice hessienne est spécifié en termes de la décomposition en éléments propres $H = QDQ^{\top}$ où Q est la matrice de rotation pour une angle θ , $D = \operatorname{diag}(\lambda)$
- ► En noir :
 - le point x^{k+1} après un pas de Newton
 - la courbe de niveau de l'approximation quadratique
 - les vecteurs propres (directions de courbature maximale et minimale)
- ► En rouge : la direction de Newton

Exemple 1

```
source('conic.R')
grad <- c(-1, -1)
nc = Newton_conic(grad, theta=pi/8, lambda=c(1, 4))
Newton_plot(grad, nc)</pre>
```


Exemple 2

```
nc = Newton_conic(grad, theta=pi/8, lambda=c(0.25, 4))
Newton_plot(grad, nc)
```


Exemple 3

```
source('conic.R')
gradient <- c(-1, -1)
nc = Newton_conic(grad, theta=pi/8, lambda=c(-0.25, 4))
Newton_plot(grad, nc)</pre>
```


La méthode BFGS (Broyden-Fletcher-Goldfarb-Shanno)

- Les méthodes quasi-Newton utilisent une matrice H_k au lieu de la matrice hessienne de la méthode Newton.
- Deux conditions convenables :
 - **c** condition de corde pour H_k :

$$H_k(x^k - x^{k-1}) = \nabla f(x^k)^\top - \nabla f(x^{k-1})^\top$$

- ▶ H_k définie positive (une garantie que $s_k \equiv -H_k^{-1} \nabla f(x^k)$ est une direction de descente)
- ightharpoonup La mise à jour de H_k est

$$H_{k+1} = H_k - \frac{H_k z_k z_k^\top H_k}{z_k^\top H_k z_k} + \frac{y_k y_k^\top}{y_k^\top z_k},$$

où
$$z_k = x^{k+1} - x^k$$
, $y_k = \nabla f(x^{k+1})^{\top} - \nabla f(x^k)^{\top}$.

Mise à jour de rang un

Problème : résoudre la suite de systèmes $y_k = A_k b_k$, où $A_{k+1} = A_k + u_k u_k^{\top}$.

La solution directe prend $O(n^3)$ opérations :

- ightharpoonup mise à jour A_k , $O(n^2)$,
- ightharpoonup décomposition de cholesky, $O(n^3)$,
- ▶ substitutions avant et arrière, $O(n^2)$.

Une solution plus efficace implique la mise à jour de A_k^{-1} , avec le formule Sherman-Morrison :

$$(A \pm uu^{\top})^{-1} = A^{-1} \mp \frac{A^{-1}uu^{\top}A^{-1}}{1 + u^{\top}A^{-1}u}.$$

La mise à jour prend $O(n^2)$ opérations :

- $V = A^{-1}u, O(n^2).$
- Numérateur, vv^{\top} , $O(n^2)$; dénominateur, $1 + u^{\top}v$, O(n)
- $b_k = A_k^{-1} y_k, O(n^2).$

Résultats, Nelder-Mead

function gradient

53

\$convergence

[1] 0

\$message

##

##

##

```
## [1] -0.5627079 1.0769163

##

## $value

## [1] -0.3731764

##

## $counts
```

NA

Résultats, BFGS

```
optim(c(1,1), pi_minus, gr=pi_grad_minus, C, alpha, eta,
      method='BFGS')
## $par
## [1] -0.5561409 1.0758744
##
## $value
## [1] -0.3731763
##
## $counts
## function gradient
##
         25
                  23
##
## $convergence
## [1] 0
##
## $message
## NULL
```

Programmation linéaire

Le problème canonique est

$$\max_{x \in \mathbb{R}^n} c^\top x \text{ tel que } Ax \leq b, x \geq 0.$$

Méthodes par points intérieurs (crédit, Wikipédia)

