PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-024916

(43) Date of publication of application: 02.02.1987

(51)Int.Cl.

B23H 1/06 1/00 **B23H**

(21)Application number: 60-161566

(71)Applicant: SUZUKI MASAHIKO

MITSUBISHI ELECTRIC CORP

MORI NAOTAKE

(22)Date of filing:

22.07.1985

(72)Inventor:

SUZUKI MASAHIKO

SAITO NAGAO

MORI NAOTAKE TAKAHASHI HIDEAKI

SHOJI TETSUO

(54) FORMATION OF OUTER SURFACE LAYER BY ELECTRIC DISCHARGE MACHINING WITH USE OF MELALLOID ELECTRODE

(57)Abstract:

PURPOSE: To obtain a method of forming an outer surface layer which is excellent in corrosion resistance and high temperature oxidation resistant abilities, by using metalloid of silicone and germanium, or metal element such as bismuth for an electrode, so that the a workpiece may be combined with and cooled by the evaporated metalloid.

CONSTITUTION: Since a metalloid electrode has a high resistance, several fine electric discharges occur simultaneously over the entire surface of the electrode without discharge at only one position on the electrode. Accordingly, metalloid of silicone and germanium or metal element of bismuth, zirconium, tantalum, etc. is used for the electrode, and electric discharge is carried out in liquid or liquefied gas. Then, the metalloid, etc. having a low heat conductivity, etc. is evaporated while it has an electric charge. Therefore, it is transferred to the outer surface of a workpiece which is therefore subjected to rapid heating and cooling so that an

amorphous or fine crystal structure is formed on the outer surface of the workpiece. With this arrangement, an excellent outer layer surface having a high corrosion resistant and high temperature pickle resistant abilities may be obtained.

(9) 日本国特許庁(JP)

① 特許出願公開

⑩ 公開特許公報(A) 昭62-24916

⑤Int Cl.¹

識別記号

庁内整理番号

④公開 昭和62年(1987)2月2日

B 23 H 1/0

1/06 1/00 7908-3C A-7908-3C

審査請求 未請求 発明の数 1 (全9頁)

3発明の名称 半金属の電極を用いた放電加工による表面層の形成方法

②特 願 昭60-161566

②出 願 昭60(1985)7月22日

⑦発 明 者 鈴 木 正 彦 名古屋市天白区八事石坂660-33

の発明者 斎藤 長男 東京都千代田区丸の内2丁目2番3号 三菱電機株式会社

内

⑫発 明 者 毛 利 尚 武 名古屋市天白区天白町島田黒石3837番地の3

79発 明 者 高 橋 秀 明 仙台市金剛沢1-30-11

70発明者 庄子 哲雄 仙台市山手町21-3

①出 願 人 鈴 木 正 彦 名古屋市天白区八事石坂660-33

②出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

①出 願 人 毛 利 尚 武 名古屋市天白区天白町島田黒石3837番地の3

30代 理 人 弁理士 大岩 増雄 外2名

明 和 書

1. 発明の名称

半金属の電極を用いた放電加工による表面層 の形成方法

- 2. 特許請求の範囲
- (1) 放電加工の電極として半金属を用い、液中又はガス中において放電加工を行い、被加工物表面にアモルファス合金属若しくは微細な結晶構造をもつ表面層を形成することを特徴とする半金属の電極を用いた放電加工による表面層の形成方法。
- (2) 半金属は、シリコン又はチタンカーバイトであることを特徴とする特許請求の範囲第1項記載の半金属の電極を用いた放電加工による表面層の形成方法。
- (3) 被加工物は、合金鋼、合金又は純金属である ことを特徴とする特許請求の範囲第1項又は第 2項記載の半金属の電極を用いた放電加工によ る表面層の形成方法。
- 3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は、半金属の特殊電極を用いた放電加工によって、腐蝕性、高温性雰囲気および高応力下などの過酷な条件下で使用される機械装置類および工具類の表面改質を行う方法に関するものである。

(従来の技術)

原子力燃料リサイクル用の容器、化学反応装置 の容器などは高耐蝕性が要求され、また、ガスタ ーピンや蒸気ターピンの羽根およびノズル、更に はロケットの噴射ノズルなどは耐高温酸化性が要 求されることは周知のとおりである。

これらの構造材料の耐蝕性を改良するには、メッキや化学蒸着(CVD)による方法、また、耐熱性向上にはセラミック溶射による方法などが従来から試みられて来ているが、いづれをもっても上配の分野に利用することは不充分であった。そこで、これに対する方策として、表面をアモルファス(非晶質)構造若しくは極く微細な結晶構造に改質すれば期待できるが、そのような方法は知ら

れていなかった。現在知られており、製作されているアモルファス構造は、微粉末若しくは極薄板、 棒などの極く微小寸法のものに限られ、ある広さ のものを形成することは困難を要し、しかも、あ る母材表面にこれらの良い性質を賦与又は強固に 固着させることは不可能とされていた。

また、従来、古くから知られているものとして 放電現象を利用して表面改質を行う方法があり、 例えば、タングステン電極を用いて鋼材の表面を 硬化させようとする試みでは、タングステン電極 を振動させながら鋼材表面との間に通電し、短絡 と開放を繰返すことによって、クングステン材料 の鋼材への移転を行わせようとするものであった。

(発明が解決しようとする問題点)

しかしながら、上記の方法では鋼材の表面硬度 は上昇しても、表面が緻密でないため耐蝕性、耐 高温酸化性の向上には至らなかった。

以上述べたように、高耐蝕性および耐高温酸化 性を金属表面に対し、母材に強固に付着した状態 で賦与せしめる方法としては、従来から考えられ

〔発明の実施例〕

以下、この発明の実施例について説明するが、 この発明は高耐蝕性、耐高温酸化性を金属表面に 対し、母材に強固に付着した状態で賦与せしめる 技術を実現するためには、母材の表面にアモルフ ァス層をある広さをもって生じさせるか、観密に して微小な結晶構造をある広さをもって生じさせ るかのいづれかが必要と考え、これに対して放電 加工技術を利用したものである。即ち、放電加工 を利用して極めて微糊な表面を広い面積にわたっ て加工すれば、電極材料の一部は加工材料の表面 に移転し、高温高圧における急熱急冷が行われる ため、アモルファスを生じるか観客な微細結晶構 造が得られると着想した。その場合、電極材料と しては加工面積が広くなっても、また、電力を多 く供給しても加工面粗度が荒くならない半金属が 望ましいことにも着想した。半金属とはシリコン、 チタンカーパイトのようなものであり、例えば、 シリコンを放電加工用の電極とすれば、電極全体 が抵抗を持っているために、大きな電力を供給し

試みられてはいたが、有効、かつ、決定的な方法がなかった。

この発明は上記のような問題点を解消するためになされたもので、特殊電極を用いた放電加工によって、アモルファス若しくは微細結晶構造を持つ高耐蚀、高耐熱特性の表面層の形成方法を得ることを目的とするものである。

(問題点を解決するための手段)

この発明に係る表面層の形成方法は、放電加工の電極に半金属を用いて被加工物の放電加工を行うものである。

(作用)

この発明においては、半金属の電極が大きな抵抗を有しているため、電極面の一箇所で放電することなく、電極面全体で微細な放電が同時に多数発生する。これにより、熱伝導率の低い半金属電信蒸発する一方、電荷を持っているために被加工物表面に移転し、高温高圧における急熱急冷が行われて、被加工物表面にアモルファス又は微細な結晶構造を形成するものである。

たとしても、また、大面積のもとで加工したとしても、電極面の一箇所で放電が発生せずに電極面 積全体で微細な放電が発生することを我々は見い 出していたので、これを応用することとした。

以下、上記の着想に基づいて我々発明者が行った各種の試験およびその結果について説明する。

(実施例1)

不銹鋼 (SUS 304 18 Cr - 8 Ni - Fe) (板厚 13 mm) を用い倒およびシリコン (不純物打込済) を電極とし、表および第 5 図に示した条件によって放電加工を行った。

これらの結果を次に示す分析手段、観察手段、 試験手段等によって、その表面構造、特性等を確 定した。

- 1) アノード分極特性
- 2) エネルギー分散法による線分析
- 3) 王水による腐蝕試験
- 4) 走査型電子顕微鏡 (Scanning Type Electron Microscope,以下 SEMと呼ぶ)像, X線マイ クロアナライザー (Electron Prove Micro

表 SUS-304 (不銹鋼)およびSS 45 (炭素鋼)に 対する放電加工条件および電極形状

をプラス電極として加工したものは、鋼よりも費となって居り、耐蝕性の高いことが想定される。 電流密度も電位 +300m 以下では小さく、いちじるしく良好な耐蝕性をもっていることがわかった。
(2) エネルギー分散法による級分析(第2図)
シリコンを電極としたものは表面近荷にはシリ

コンの存在が確認された。 (3) 王水(硝酸1・塩酸3) 没蝕試験(2月r)

SUS 304 単体は容易かつ完全に容解。

銅電極によるものも容易に溶解。

シリコン電極によるものは、表面近傍が溶解しがたく、3μm程度の層となってうすはく状の広い 膜が残った。

このようなうす膜を化学薬品を用いて分離する 方法は、工業的・技術的・科学的用途に有用な方 法ともなりうる。

- (4) SEM観察およびEPMA線分析(第3図(a)、(b))
- (a) SEM像;第3図(a)より厚みは3 /m と確認 した。

Analyser,以下 EPMAと呼ぶ)による線分析

- 5) 電子回析像
- 6) 繰返し大変形による接合性試験
- (1) アノード分極特性(第1図)

金属の組織構造などは電気化学的な性質に極めて敏感に反応するものであり、この試験を行った。 御定条件

溶液; 0.5 モル 硫酸 (H2SO4) + 0.1 モル 食塩 (NaC4)

電位掃引速度; 1 mV/sec

照合電極; 飽和甘汞電極

第1図で示したように、被加工材(SUS 30.4) そのままのものは自然健位 $-400\,\mathrm{mV}$ 、 郷電極で加工されたものの自然電位 $-100\,\mathrm{mV}$ 、 シリコン電極で加工されたものの自然電位 Si (+) $0\,\mathrm{mV}$ 、 Si (+) $-150\,\mathrm{mV}$ 。

倒、シリコンで加工されたものの自然電位は、 いづれも費の方に移動しており、自然腐食速度は SUS 304 にくらべ大巾に遅い。特に、シリコン

(b) EPMAによる線分析(第3回(b)) 中央部でシリコンの機度が高く、表面および 母材との境界層でシリコンが減少している。

これらの結果から、シリコンを含んだ表面層 が形成されていることが明らかである。

(5) 電子回析像(第4図)

(6) 繰返し大変形による接合性試験(第5図、第6図)

SUS 304 について、シリコンを電極として放 電加工を行ったものについて機械的試験を行った。

第5図に示す板厚13 mm、巾24mmの矩型断面をもつ試験片に放電加工を行ったものにつき、第6図に示したような繰り返し大変形を与えた。繰返し変形後の放電加工面の永久変形量は30%であったが、放電加工面には損傷は認められなかった。

このことはアモルファス合金が理想的な完全型

Control of the second second

性であることと、 放電加工で加工されたアモルファス層と被加工材の接合性が極めて良好なことを 示している。

(実施例2)

被加工材料の種類によって、耐蝕性等に変化が あらわれるものかどうかを検討した。

被加工材として蒸気タービン羽根材に用いられる Ni 0.84%を含む、13 Cr 鋼を使い、 電極材を シリコンとした。放電加工条件は S U S に行った ものと同様である。

特に重酸クロム鋼は、高温酸化に対し強い抵抗が求められ、その改善が望ましい材料なので、シリコン電極で加工後 900°C 20 時間保持し、空冷したものにつき S E M 観察を行った。(第7回(a)、(b))

第 7 図(4)にはシリコン電極で加工した 13 Cr 鋼の放電加工面を示し、表面は微細な結晶粒で全面的に覆われ、高温酸化に対して大きな抵抗を有する層が形成され、Cr 鋼内部への酸化が阻止されていることがわかる。

放電加工を行った。耐蝕性は放電加工をしないア ルミニウムに対し著しく改善されている。

すなわち、濃度31%の塩酸 (HC4)に約60分浸漬 した結果、アルミニウム単体は はげしく全面的に 腐蚀されるが、放電加工したアルミニウムは、全 面的には腐蝕されず選択的に僅かに腐蝕を受ける にすぎない。

比較のために炭素鋼をシリコン電極で放電加工 したものを示せば、遊底34%の塩酸により全面的 に腐蝕して加工面は消失してしまうのに対し、ア ルミニウムをシリコンで加工したものは、耐蝕性 は大巾に向上する。

このように、組織が単一な純金属に対しては有 効である。

第9回にシリコン電極で放電加工したアルミニウムの34 %塩酸による腐蝕写真を示す。放電加工 面と然らざる部分との境界が明確に区別されていることが認められる。

以上の試験結果からも明らかなように、シリコ ン電極によって放電加工することによってアモル これに対し、第7回(b)に示す 13 Cr 鋼単体ではこの条件下では激しく酸化され、空冷に際して厚さ 30 μm 程度の酸化剂 は容易に剝離、飛散してしまう。 S E M 写真からも判るように、大きな深い凹みが発生して居り、高温酸化を受けて内部に酸化が及ぶことが認められる。

このようにシリコン電極で放電加工した表面層 の重要な意義が確かめられた。

〔実施仍3〕

炭素鋼(SC45)を用い、鋼およびシリコンを 低極として前記同様放電加工を行った。(第8図) 第8図にこの結果を示すが、自然電位は殆んど

第8回にこの結果を示すが、日然を正は知った。 等しく放電加工されたものの電流密度は小さいも のの、その傾向は等しい。この結果から改費され ていないことが判る。炭化物(セメンタイト)等 が多く混在している材料への効果は少ないと考え られる。

〔寒施例4〕

純金属のこの発明に対する有効度を知るために、 市販のアルミニウムに対し、シリコン電極による

ファスを生する場合も、微細結晶構造を生する場合もあるが、その耐蝕性、耐高温酸化性を向上させる条件が存在する。

その条件をまとめると次のようになる。

- (1) 電極材料は、シリコン、グルマニウム等の 抵抗をもった半金属、又、ビスマス等が想定され る。
- (2) 被加工材料は、不銹鋼のような合金鋼、アルミニウムのような純金属、および、炭化物等をあまり多く含まない合金等である。
- (3) 放電加工条件は加工面積が広くとも微和加工面が得られる加工条件であるから、シリコン電板又はシリコンを含むような電極を用いる場合。

なお、この発明によれば、金型等で腐蝕性の合 成樹脂を取扱うモールド金型や、高温度にさらさ れるダイカスト金型等にも有効である。

また、放電加工は従来、表面に熱影響にもとづくへアクラックを生ずることがあるが、合金鋼の適切なものを選べば(粗大な炭化物等の少ない) クラックの発生を防ぐことにもなる。 以下、各種の試験を通して得られた結論を述べると、「耐蝕性、耐高温酸化性を生ずる理由」として、この理由については、現在推定の段階ではあるが次のように考えられる。

気化したシリコンが高温にある放電点に吸い寄せられて急冷されれば、少なくも最密なシリコン 薄膜又は金属との合金膜によって表面を隙間なく 種うことになる。

シリコンは化学的には安定であり、王水には裕

電子解析像の写真、第5図は同接合試験片の図、第6図は同級返し大変形による接合試験の図、第7図(a),(b)はこの発明の実施例2による被加工材料の酸化を示す写真、第8図はこの発明の実施例3によるアノード分極曲線図、第9図はこの発明の実施例の実施例4による被加工材料の放電加工面の写真である。

代理人 大岩增雄

けないことは充分考えられる。

また、冷却速度が早ければ、アモルファスになる こともありうる。

なお、上記試験における加工装置としては、放 電加工の電極と被加工物との間に極間距離を維持 するサーボをかけながら、X,Y,Z方向に数値 制御をかけて、平面、曲面、立体形状を加工する ことを実施した。

(発明の効果)

以上のように、この発明によれば、放電加工の 電極として半金属を用いることにより、微細な放 電が同時に多数電極面内で発生するので、被加工 物質が半金属蒸気と結合冷却することによって、 高耐蝕性、耐高温酸化性を生じる、優れた表面層 の形成方法が得られる効果がある。

4.図面の簡単な説明

第1 図はこの発明の実施例1による試験結果を示すアノード分極曲線図、第2 図は同エネルギ分散法による線分析図、第3 図(a),(b)は同S E M像およびE P M A による線分析の写真、第4 図は同

A) Si

シリコン電極によるSUS 304の放電加工面の断面像

第4図

シリコン電極によるSUS 304の放電加工層の電子回析像 (アモルファスであると確認)

第7区 (a) >リコン電極による/3Cr体内の 放電/NOI面(900°C、20hr) (900°C、20hr)

13Cr鈿に対するシリコン放電加工面の耐熱性に 対する影響

東素銀および放魔加工面のアルド分極曲線 (溶液,0.5モル硫酸+0.1モル食塩) (照合電極12飽和甘汞電極 SCE)

第9则

シリコン電極によるアルミニュム 放電加工面(34%温酸腐蝕)

手 続 補 正 書(方式)

昭和 年 月 日

特許庁長官 殿

が現 1. 事件の設示 特新昭 60-1615 66号

2. 発明の名称 半金属の電極を用いた放電加工 による表面層の形成方法

3. 補正をする者

事件との関係 特許出願人

住 所 名古屋市天白区八事石坂 660-33

名称 鈴木芷 窟 (外2名)

4. 代 型 人 郵便番号 100

住 所 東京都千代田区丸の内二丁目 2番 3 号

三菱電機株式会社內

氏 名(7375)弁型士 大 岩 埳 雄

5. 補正命令の日付 昭和60年10月23日(発送日)

6. 補正の対象

- (1) 代理権を証明する書面
- (2) 明細書の図面の簡単な説明の機

7. 補正の内容

- (1) 代理権を証明する書面(鈴木正彦および 毛利尚武の分)を別紙のとおり補充する。
- (2) 明細書第16頁第19行~第17頁第1行 に「第3図……写真図、」とあるのを次のとおり 補正する。

「第3図はシリコン電極で放電加工した不銹鋼(SUS304)の金属組織の顕微鏡写真で、(a)はSEM像での金属組織の顕微鏡写真。(b)はEPMAによる級分析での金属組織の顕微鏡写真である。第4図はシリコン電極で放電加工した不銹鋼(SUS304)の放電加工脳の結晶構造を示すX線写真、J

(3) 同第17頁第2行~第4行に「第7図······ 写真図, 」とあるのを次のとおり補正する。

「第7図(a)(b)はこの発明の実施例2による被加工材料の酸化を示す金與組織の顕微鏡写真,」

(4) 同第17頁第5行~第7行に「第9図……

写真図である。」とあるのを次のとおり補正する。

「第9図はこの発明の実施例4による被加工材 料の放電加工面の金属組織の顕敬鏡写真である。」

8. 添付番類の目録

委任状 (鈴木正彦の分, 毛利尚武の分)

各1通

手 統 補 正 費(自発) 昭和 年 月 日

特許庁長官殿

1. 事件の表示

特赖昭 60 - 161566 号

2. 発明の名称

放電加工による表面層の形成方法

ر ..

以上 3. 補正をする者

> 事件との関係 住 所 名 称

特許出願人 東京都千代田区丸の内二丁目2番3号

(601) 三菱電機株式会社 代表者 志 岐 守 哉 (外2名)

4. 代 理

住 所

東京都千代田区丸の内二丁目2番3号

三菱電機株式会社内

(7375) 弁理士 大 岩 增 雄 氏 名

(迷桥先03(213)3421特許部)

- 5. 補正の対象
 - (1) 明細帯の発明の名称の欄
 - 明細書の特許請求の範囲の欄
 - ③ 明細度の発明の詳細を説明の機
- 8. 福正の内容
- (1) 明細書の発明の名称を「放覚加工による表 面層の形成方法」に補正する。
- (2) 明細書の特許請求の範囲を別紙のとおり補 正する。
- (3) 明細書第2頁第2行目の「半金属の」を削 除する。
- (4) 明細書第4頁第10行目。第13行目およ び第16行目の「半金属」の次化それぞれ「又は ピスマス。ジルコニウム。タンタル等の金属元素」 を加入する。
- (5) 明細書第5頁第1 8行目の「チタンカーパ イト」を「ゲルマニウム」に補正する。
- (6) 明細書第14頁第 6 行目の「又,ピスマス等」 を「又はピスマス、ジルコニウム。タンタル等の 金属元素」に補正する。

- (7) 明細書第16頁第3行目の「こともありう る。」の次に「ところで、この発明では電極にシ リコンを用いて各種試験を実施したが。ビスマス。 ジルコニウム。タンタル等の金属元業を電極とし て用いても上記実施例と同様の効果が超定される 。」を加入する。
- (8) 明細書第16頁第11行目および第13行 目の「半金属」の次にそれぞれ「又はビスマス、 ジルコニウム。タンタル等の金属元素」を加入す る.

特許請求の範囲

- (i) 放電加工の気極として半金属又はビスマス、ジルコニウム、タンタル等の金属元素を用い、液中又は液化ガス中において放電加工を行い、被加工物表面にブモルフアス合金層若しくは強細な結晶構造をもつ表面層を形成することを特徴とする 放電加工による表面層の形成方法。
- (2) 半金属は、シリコン又はゲルマニウムであることを特徴とする特許別求の範囲第1項配数の 放電加工による装面層の形成方法。
- (3) 被加工物は、合金側、合金叉は純金貨であることを特徴とする放電加工による表面層の形成方法。