Notes and Comments on Lecture 5

Minimum time problem. In equation (1), $\dot{x} = a(x,t) + B(x,t)u$, $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, a(x,t) is an n-component vector function of (x,t); $B(x,t) = [b_{ij}(x,t)]$ is an $n \times m$ matrix function; $B = [b_1, \dots, b_m]$, with b_i an $n \times 1$ column vector, for all i. The control functions are bounded by constant m-vectors M^- , M^+ and the inequality $M^- \le u(t) \le M^+$ is defined component-wise.

Let's analyse the bang-off-bang control:

$$|u_i| + p^{*\top} b_i(x^*, t) u_i = \begin{cases} (1 + s_i(t)) u_i, & u_i \ge 0 \\ (-1 + s_i(t)) u_i, & u_i \le 0 \end{cases}$$
 (1)

where the components of the switching function are $s_i(t) = p^{*\top}b_i(x^*(t), t)$. The optimal control is:

$$u_i^* = \begin{cases} 1, & s_i(t) < -1 & \text{(a)} \\ 0, & -1 < s_i(t) < 1 & \text{(b)} \\ -1, & s_i(t) > 1 & \text{(c)} \\ \text{undefined but } \ge 0, & s_i(t) = -1 & \text{(d)} \\ \text{undefined but } \le 0, & s_i(t) = 1 & \text{(e)} \end{cases}$$

(a)
$$(1) \Leftrightarrow () < 0, u_i \ge 0 \Rightarrow \min \text{ for } u_i = 1$$

 $(2) \Leftrightarrow () < 0, u_i \le 0 \Rightarrow \min \text{ for } u_i = 0$ $\Rightarrow u_i = 1 \text{ is minimizing}$

(1)
$$\Leftrightarrow$$
 () $>$ 0, $u_i \ge 0 \Rightarrow \min$ for $u_i = 0$
(b) $0 \le s_i(t) < 1$: (2) \Leftrightarrow () $<$ 0, $u_i \le 0 \Rightarrow \min$ for $u_i = 0$
(1) & (2) $\Rightarrow u_i = 0$ minimizing $-1 \le s_i(t)$, analogously

(c) analysis as in (a)

(1)
$$\Leftrightarrow$$
 () = 0, $u_i \ge 0 \Rightarrow \min \text{ for } u_i \text{ undefined but } \ge 0$
(d) $s_i(t) = -1$: (2) \Leftrightarrow () = -2, $u_i \le 0 \Rightarrow \min \text{ for } u_i = 0$

(1) & (2)
$$\Rightarrow$$
 minimizing u_i undefined but ≥ 0

(e) analysis as in (d)

On singular solutions, see the example in [Kirk, pages 300-306].