Fonction Logarithme.

I. En lien avec la fonction exponentielle.

Théorème-définition:

- 1. l'équation $\exp(x) = t$, où $t \in [0, +\infty[$, admet une unique solution dans \mathbb{R}
- 2. Il existe une fonction définie sur]0 ; $+\infty$ [qui à tout réel t, t>0 , associe l'unique réel x tel que $\exp(x)=t$.

Cette fonction est appelée fonction logarithme népérien, elle est notée ln.

t	1/e	1	2	e	3	e^2	4	e^3
x	-1	Ln 1	Ln 2	1	Ln 3	2	Ln 4	3

Ln est donc la fonction définie sur]0 ; $+\infty$ [telle que, pour $x \in \mathbb{R}$, $t \in$]0 ; $+\infty$ [: $\exp(x) = t <=> x = lnt$ ou $e^x = t <=> x = lnt$

Conséquences directes:

- ln est définie sur]0; $+\infty[$
- Pour x > 0, lnx = 0 <=> x = 1
- Pour x > 0, y > 0, $\ln(x) = \ln(y) \iff x = y$
- Pour $x \in \mathbb{R}$, $\ln(\exp(x)) = x$ ou $\ln(e^x) = x$.
- Pour x>0, $\exp(\ln x)=x$ ou $e^{\ln x}=x$.

Représentation graphique :

Corollaire : Dans un repère orthonormé, les courbes $C: y = \exp(x)$ et R: y = lnx sont symétriques par rapport à la droite y = x

Conséquence : La fonction ln vérifie une relation fonctionnelle.

Propriété:

- 1. Pour tous réels strictement positifs x, y, $\ln(xy) = \ln(x) + \ln(y)$.
- 2. Pour tout réel x > 0, $\ln\left(\frac{1}{x}\right) = -\ln(x)$.
- 3. Pour tous réels strictements positifs x, y, $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$.
- 4. Pour tout réel x>0 et pour tout entier relatif p, $\ln(x^p)=p\ln(x)$.
- 5. Pour tout réel x>0, $\ln(\sqrt{x})=\frac{1}{2}\ln(x)$.

Preuve:

1. Soient x, y deux réels strictement positifs.

Posons
$$A = \ln(xy)$$
 et $B = \ln x + \ln y$.

$$\exp(A) = \exp(\ln(xy)) = xy$$
.

$$\exp(B) = \exp(\ln x + \ln y) = \exp(\ln x) \times \exp(\ln y) = xy$$
.

On a donc exp(A)=exp(B).

On a donc, A=B d'où $\ln(xy) = \ln x + \ln y$ pour tout x, y > 0

2. Soit x > 0, en utilisant 1), on a :

$$\ln\left(x \times \frac{1}{x}\right) = \ln(x) + \ln\left(\frac{1}{x}\right)$$

$$\iff \ln(1) = \ln(x) + \ln\left(\frac{1}{x}\right)$$

$$\iff 0 = \ln(x) + \ln\left(\frac{1}{x}\right)$$

$$\text{d'où } \ln\left(\frac{1}{x}\right) = -\ln x.$$

3. Soient x, y > 0, en utilisant 1) et 2), on a :

$$\ln\left(\frac{x}{y}\right) = \ln\left(x \times \frac{1}{y}\right) = \ln\left(x\right) + \ln\left(\frac{1}{y}\right) = \ln\left(x\right) - \ln\left(y\right).$$

4. Soit x un réel strictement positif, p $\in \mathbb{Z}$

Posons
$$A = lnx^p$$
 et $B = plnx$.

$$\exp(A) = \exp(\ln x^p) = x^p$$
.

$$\exp(B) = \exp(plnx) = \exp(lnx)^p = x^p$$

d'où
$$\exp(A)=\exp(B) \Rightarrow A=B \Rightarrow lnx^p = plnx$$
.

5. Pour x > 0, $lnx = ln(\sqrt{x^2}) = 2ln(x)$,

d'où
$$\ln(\sqrt{x}) = \frac{1}{2} \ln x$$
.

Application : Ecrire les réels suivants à l'aide de ln2 et de ln3.

$$A=\ln 144$$
 $A=4\ln 2+2\ln 3$

$$B = \ln 81 + \ln (3\sqrt{3})$$
 $B = \frac{11}{2} \ln 3$

$$B = \frac{11}{2} \ln 3$$

II. Dérivabilité.

1. Approximation affine au voisinage de 1.

Grâce à l'étude graphique faite précédemment, nous avons constaté que la courbe représentative de la fonction ln admet au point d'abscisse 1 une tangente de coefficient directeur 1. Cela permet de conjecturer la dérivabilité de ln en 1 avec ln'(1)=1. D'où la propriété suivante :

Propriété:
$$-\lim_{h\to 0}\frac{\ln(1+h)}{h}=1.$$

$$-\lim_{x\to 1} \frac{\ln(x) - \ln(1)}{x-1} = 1$$

2. Fonction dérivée.

Déterminons la dérivée de la fonction *n*≥2 Soit a>0 et h proche de 0.

$$\frac{\ln(a+h) - \ln(a)}{h} = \frac{\ln(a + (1+h/a)) - \ln(a)}{h} = \frac{\ln(a) + \ln(1+h/a) - \ln(a)}{h} = \frac{\ln(1+h/a)}{h/a} \times 1/a.$$

d'où
$$\lim_{h\to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{h\to 0} \frac{1}{a} \frac{\ln\left(1 + \frac{h}{a}\right)}{\frac{h}{a}} = \frac{1}{a} \lim_{h\to 0} \frac{\ln\left(1 + \frac{h}{a}\right)}{\frac{h}{a}} = \frac{1}{a}$$

D'où la fonction ln est dérivable sur]0; $+\infty[$ et $(\ln(a))' = \frac{1}{a}$.

Propriété: ln est dérivable sur]0; $+\infty[$, et pour x>0, $\ln (x)=\frac{1}{x}$.

Conséquences:

- Corollaire 1 :
 - la fonction ln est continue sur $]0; +\infty[$.
 - la fonction ln est strictement croissante sur]0; $+\infty[$
 - Pour tous réels a, b>0, $\ln(a)<\ln(b) \iff a< b$.
 - Pour tout réel x > 0, $\ln(x) > 0 <=> x > 1$ $\ln(x) < 0 <=> 0 < x < 1$

Exemple : Résoudre dans Rles équations et inéquations suivantes :

A.
$$\ln(x+3) + \ln(x-2) = \ln 6 \implies x=3$$
.

B.
$$\ln(5-x) > 2\ln(x+1) = S=]-1;1[$$
.

* Corollaire 2 : Soit I un intervalle de \mathbb{R} Si u est une fonction dérivable sur I et strictement positive sur I, alors $f = \ln_0 u$ est dérivable sur I et pour tout $x \in \mathbb{R}$ et pour tout x appartenant à I, $f'(x) = \frac{u'(x)}{u(x)}$.

Exemple : Déterminer sur quel intervalle chacune des fonctions suivantes est dérivable et calculer sa dérivée.

$$f(x) = \ln(2x-1)$$
 $g(x) = \frac{\ln(1+x^2)}{x}$

III. Limites.

1. Limites de la fonction ln.

Théorème:

a.
$$\lim_{x \to +\infty} \ln(x) = +\infty$$
 b. $\lim_{x \to 0, x > 0} \ln(x) = -\infty$

Démonstration:

a. Montrer que $\lim_{x \to +\infty} \ln(x) = +\infty$.

Montrons que pour tout A appartenant à]0; $+\infty[$, il existe x_0 tel que pour tout x supérieur à x_0 , $\ln x > A$.

Or
$$\ln x > A$$

$$\ll x > e^A$$

En prenant $x_0 = e^A$, on a donc pour tout x supérieur à e^A , $\ln(x) > A$, d'où $\lim_{x \to +\infty} \ln(x) = +\infty$.

b. Montrons que $\lim_{x\to 0, x>0} \ln(x) = -\infty$.

Pour
$$x > 0$$
, $\ln(x) = -\ln\left(\frac{1}{x}\right)$.

$$\lim_{x \to 0, x > 0} \ln\left(\frac{1}{x}\right) = +\infty \text{ d'où } \lim_{x \to 0, x > 0} \ln(x) = -\infty$$

Nous obtenons donc pour tableau de variation :

X	0	1	$+\infty$
f(x)	- ∞	0	+ ∞

L'axe des ordonnées est asymptote à la courbe représentative de la fonction ln.

2. Croissances comparées.

Théorème:

$$\bullet \quad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\bullet \quad \lim_{x \to 0, x > 0} x \ln x = 0$$

• Pour tout entier
$$n \ge 2$$
, $\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$ et $\lim_{x \to 0, x > 0} x^n \ln(x) = 0$.

Preuve:

• Montrons que
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
.

Utilisons un changement de variable : $x=e^X \iff X=\ln x$.

$$\lim_{x \to +\infty} \frac{\ln x}{x} = \lim_{x \to +\infty} \frac{X}{e^X}$$

Or
$$\lim_{x \to +\infty} \frac{e^X}{X} = +\infty$$
 d'où $\lim_{x \to +\infty} \frac{X}{e^X} = 0$.

Par suite,
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
.

• Montrons que $\lim_{x\to 0, x>0} x \ln x = 0$.

$$x \ln x = \frac{-\ln\left(\frac{1}{x}\right)}{\frac{1}{x}} = \frac{-\ln X}{X} \text{ en posant } X = \frac{1}{x}.$$

$$\lim_{x\to 0, x>0} x \ln x = \lim_{X\to +\infty} -\ln \frac{X}{X} = 0$$

$$\lim_{x \to 0, x > 0} x \ln x = \lim_{X \to +\infty} -\ln \frac{X}{X} = 0$$
• Pour tout $n \ge 2$,
$$\frac{\ln(x)}{x^n} = \frac{\ln(x)}{x} \times \frac{1}{x^{n-1}}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{x^{n-1}} = 0 \text{ donc } \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$
Pour tout $n \ge 2$, $x^n \ln(x) = x \ln(x) \times x^{n-1}$

Pour tout
$$n \ge 2$$
, $x^n \ln(x) = x \ln(x) \times x^{n-1}$

$$\lim_{x \to 0, x > 0} x \ln(x) = 0 \text{ et } \lim_{x \to 0, x > 0} x^{n-1} = 0 \text{ , donc } \lim_{x \to 0, x > 0} x^n \ln(x) = 0$$