HW1 Sihong HE 89483859

Problem1

- (a) I used Golden Section Method to build the optimizer function optimizer1D(func, x1, s). I selected $\epsilon_x = 1\mathrm{e} 4$ and $\epsilon_F = 1\mathrm{e} 6$. We can calculate the machine precision $\epsilon_m = 2.22\mathrm{e} 16$ through the function MEp(). The input of the optimizer function are func (the function which we want to find its optimum), x1 (the starting point), s (the step). The output is the optimum and the number of function used.
- (a) I chosen $f_1(x) = x^2 2x + 1$ and $f_2(x) = e^{x+2} x$ as my objective functions. I chosen 0.3 as the step. The starting point is randomly chosen from uniform distribution between -1 and 1. The true optimum of $f_1(x)$ and $f_2(x)$ are 1 and -2 respectively.

function	Number	Time	Relative distant
$f_1(x) = x^2 - 2x + 1$	15 + _2.042	0.01699 + _0.01224	0.00049 + _0.00122
$f_2(x) = e^{x+2} - x$	17 + _0.001	0.01815 + _0.00208	0.00037 + _0.00051

Problem2

- (b) I used multidimensional coordinate descent method to build the optimizer function $\frac{\text{optimizer2D(func, x1, y1, s)}}{\text{optimizer2D(func, x1, y1, s)}}$ basing on the function optimizer1D(func, x1, s). The output is the optimum and the number of function used.
- (c) I chosen $f_1(x) = x^2 + y^2$ and $f_2(x) = (x-1)^2 + e^{y+2} y$ as my objective functions. I chosen 0.3 as the step. The starting points are randomly chosen from uniform distribution between -1 and 1. The true optimum of $f_1(x)$ and $f_2(x)$ are (0,0) and (1,-2) respectively.

function	Number	Time	Relative distant
$f_1(x) = x^2 + y^2$	68 + _0	0.07171 + _0.00587	0.00031 + _0
$f_2(x) = (x-1)^2 + e^{y+2} - y$	73 + 0.40822	0.07765 + _0.01205	0.00031 + _0