Camada de Rede (Protocolo IPv4)

Redes e Serviços

Licenciatura em Engenharia Informática DETI-UA

A Internet

Tipos de Endereçamento

- Tipos de endereçamento
 - Unicast Identifica um único recetor
 - Broadcast Todos são recetores
 - Multicast Identifica todos os elementos de um grupo como recetores (all-of-many)
 - Anycast Identifica um elemento de um grupo como recetor (one-of-many)

Endereçamento IPv4

- Um endereço IPv4 é um identificador global único de um interface de rede
- Um endereço IPv4:
 - Tem 32 bits de comprimento
 - Identifica
 - Uma rede (network prefix)
 - Um interface de rede (host number)

network prefix

host number

- Notação:
 - Usam uma notação decimal com pontos
 - Cada byte (8 bits) é identificado por um número decimal entre 0 e 255
 193.136.92.1 = 11000001 10001000 01011100 00000001

193

136

92

universidade de aveiro

Endereçamento IPv4

Interface

- Ligação entre um host/router e a rede
 - Os routers (tipicamente) têm mais de um interface
 - Os hosts têm (tipicamente) um interface (mas podem ter mais)
- Cada interface tem de ter pelo menos um endereço IP associado (mas pode ter mais de um)

Endereços IP especias

Т	udo 0s	Este Host (apenas válido durante inicializações)
TUOO US		Host na própria rede (apenas válido durante inicializações)
Tudo 1s		Broadcast local (não pode ser usado como endereço de origem)
NetID Tudo 1s		Broadcast dirigido à rede <i>NetID</i> (não pode ser usado como endereço de origem)
127 Qualquer (mais comum 1)		Loopback (nunca aparece na rede)
NetID Tudo 0s		Identificador da rede <i>NetID</i> (Usado apenas com designação)

Endereços IP Classful (até 1993)

- Quando os endereços Internet foram definidos (início dos anos 1980), o espaço de endereçamento estava dividido em classes
 - Classe A: O prefixo de rede tem 8 bits
 - Endereço IP começa por "0" (binário)
 - Classe B: O prefixo de rede tem 16 bits
 - Endereço IP começa por "10" (binário)
 - Classe C: O prefixo de rede tem 24 bits
 - Endereço IP começa por "110" (binário)
- A partir de 1993 o tamanho do prefixo de rede passou a ser definido pela máscara de rede.

Endereçamento IP Classes de Endereços

Divisão do Espaço de Endereçamento

Classe	Menor endereço	Maior endereço
Α	1.0.0.0	126.0.0.0
В	128.0.0.0	191.255.0.0
С	192.0.0.0	223.255.255.0
D	224.0.0.0	239.255.255.255
E	240.0.0.0	255.255.255.254

Classe	# bits no prefixo	# máximo de redes	# bits no sufixo	# máximo de hosts por rede
Α	7	128	24	16 777 216
В	14	16 384	16	65 536
С	21	2 097 152	8	256

NOTA: Nem todos os possíveis endereços podem ser usados!

Blocos de endereços privados

Prefixo	Endereço mais baixo	Endereço mais alto
10.0.0.0/8	10.0.0.0	10.255.255.255
172.16.0.0/12	172.16.0.0	172.31.255.255
192.168.0.0/16	192.168.0.0	192.168.255.255
169.254.0.0/16	169.254.0.0	169.254.255.255

 Os pacotes para estes destinos não são encaminhados na rede pública

Problemas com Endereços IP Classful

- No início dos anos 1990, o esquema de endereçamento classful tinha múltiplos problemas:
 - Espaço de endereçamento plano.
 - As tabelas de encaminhamento no núcleo da Internet necessitavam de ter uma entrada para cada rede.
 - Em 1993, o tamanho das tabelas de encaminhamento começaram a ser demasiado grandes para a capacidade de muitos routers.
 - Poucas gamas de endereços para redes grandes
 - → Endereços das classes A e B eram já muito escassos.
 - Flexibilidade limitada
 - Com as redes das classes A e B havia um desperdício de endereços
 - As redes de classe C não existiam em número suficiente para o número de redes existentes.

Máscaras

- A máscara é utilizada para separar a parte de rede da parte do interface dos endereços
 - A parte da máscara (em binário) cujo bit seja 1 indicam que esse bit no endereço faz parte do identificador da rede
 - Os bits da máscara que sejam 0 indicam que esse bit no endereço faz parte do identificador do host.
- Inicialmente os endereços IP tinham uma fronteira fixa entre o identificador de rede e do interface,
 - Definida a partir dos primeiros bits do endereço.
 - Máscara de tamanho pré-definido.
- Depois de 1993 passaram a ter fronteiras flexíveis, sendo estas definidas a partir de uma máscara de tamanho variável.
 - Chamadas de VLSM (Variable Length Subnet Mask).
- Permitiram a criação de sub-redes (subnets).

	decima	al	bin	ário
Endereço IP	193.136.92. 1	11000001.100010	00.01011100.	0000001
Máscara	255.255.255. 0	111111111.11111111	.11111111.	00000000
	rede in	► iterface	rede	interface

CIDR - Classless Interdomain Routing

Objetivos:

- Nova interpretação do espaço de endereçamento.
- Reestruturação das atribuições de endereços IP para aumentar eficiência.
- Permite a agregação de rotas para minimizar o tamanho das tabelas de encaminhamento
- CIDR (Classless Interdomain routing)
 - Abandona a noção de classe.
 - O comprimento do identificador de rede é arbitrário (sub-rede).
 - O comprimento do identificador de rede deve ser fornecido com o endereço.

Notação CIDR

- Com a aparição do CIDR veio uma notação diferente de representar as máscaras dos endereços IPv4.
 - Ainda hoje as duas co-existem.
- Notação CIDR de um endereço IP:
 - 192.0.2.0/18
 - → "18" é p comprimento do prefixo de rede. Indica que os primeiros 18 bits do endereço são o prefixo de rede (e que os 14 bits restantes identificam o host).
- A notação CIDR pode substituir a notação original
 - O endereço IP 128.143.137.144 com máscara 255.255.255.0 fica 128.143.137.144/24 na notação CIDR.
- A notação CIDR permite remover os zeros no final do identificador.
 - 192.0.2.0/18 pode ser representado por 192.0.2/18.

Endereçamento IP: CIDR

- CIDR: Classless InterDomain Routing
 - Sub-divisão de redes em sub-conjuntos de endereços de comprimento arbitrário
 - Formato: a.b.c.d/x, onde x é o número de bits do identificador da (sub-)rede
 - Sub-divisão de redes (sub-netting)
 - **-** /24 = 255.255.255.0
 - **-** /25 = 255.255.255.128
 - **-** /26 = 255.255.255.192
 - Agregação de redes
 - **-** /23 = 255.255.254.0

11001000 00010111 00010000 00000000

universidade de aveiro

Agregação de Redes IPv4

- Processo inverso da criação de sub-redes.
- Usado para obter um identificador de rede único para múltiplas (sub)redes IP.
- Exemplo:

193.136.92.0/24 + 193.136.93.0/24

=> 193.136.92.0**/23**

Blocos de Endereços CIDR

- A notação CIDR define blocos de endereços
- Os blocos são usados na alocação de endereços IPv4
- #Endereços Usáveis = #Máquinas 2 Endereços
 - Endereço de identificação da rede + Endereço de broadcast

Prefixo		# de dereços	# endereços usáveis	Prefixo CIDR	# de endereços	# endereços usáveis
2	1	2048	2046	30	4	2
2	0	4096	4094	29	8	6
1	9	8192	8190	28	16	14
1	8	16384	16382	27	32	30
1	7	32768	32766	26	64	62
1	6 6	65536	65534	25	128	126
1	5 1	31072	131070	24	256	254
1	4 2	62144	262142	23	512	510
1:	3 5	24288	524286	22	1024	1022

CIDR vs. (Sub)Máscara

Prefixo CIDR	(Sub)Máscara
21	255.255.248.0
20	255.255.240.0
19	255.255.224.0
18	255.255.192.0
17	255.255.128.0
16	255.255.0.0
15	255.248.0.0
14	255.240.0.0
13	255.224.0.0

Prefixo CIDR	(Sub)Máscara
30	255.255.252
29	255.255.255.248
28	255.255.255.240
27	255.255.255.224
26	255.255.255.192
25	255.255.255.128
24	255.255.255.0
23	255.255.254.0
22	255.255.252.0

Exemplo

 Problema: gamas pequenas de endereços necessárias em múltiplas (V)LANs.

193.1.1.0/24

Example

5+1+2=8 8 or 16

Nota: Para as ligações ponto-a-ponto são necessários endereços IP! Mas geralmente são usados endereços privados (gama de endereços para uso interno numa rede).

universidade de aveiro

Formato do Datagrama IP

Campos do Datagrama IPv4

- Version (4 bits) versão do protocolo IP (versão 4)
- Header Length IHL (4 bits) tamanho do cabeçalho em blocos de 4 octetos
 - quando não tem opções, o cabeçalho ocupa 5 blocos de 4 octetos e o primeiro octeto do cabeçalho IP assume o valor 0x45
- Type of Service (1 byte) tipo de serviço ao qual o pacote pertence
 - Identifica o tipo de serviço e o objectivo é diferenciar o tratamento dos pacotes pelos routers com base na qualidade do serviço pretendida (por defeito, este campo tem o valor 0x00)
- Total Length (2 bytes) tamanho total do datagrama IP em octetos, incluindo o cabeçalho.
 - o tamanho máximo do datagrama IP é 65 535 octetos
 - no entanto este tamanho está restringido pelo Maximum Transport Unit (MTU) da rede (mecanismo de fragmentação e reagrupamento)

Campos do Datagrama IPv4

- Identification (2 bytes) identificador atribuído pela estação que gerou o datagrama
 - este campo é mantido durante o processo de fragmentação permitindo o destinatário identificar os vários fragmentos de um mesmo pacote
- Flags (3 bits)
 - o primeiro bit está reservado para uso futuro (assume sempre o valor 0)
 - o segundo bit assume o valor 0 se o datagrama puder ser fragmentado e o valor 1 caso contrário
 - o terceiro bit assume o valor 0 se for o último fragmento e 1 se não for
- Fragment Offset (13 bits) posição (em múltiplos de 8 bytes) do fragmento no datagrama original (o primeiro fragmento tem o valor 0x00)

Campos do Datagrama IPv4

- Time to Live (1 byte) o máximo tempo que o datagrama pode permanecer na rede
 - é alterado em cada router e quando atinge o valor 0 o datagrama é eliminado
 - cada router decrementa este campo em 1 unidade ou no número de segundos que demorou a processar o datagrama
- Protocol (1 byte) especifica o protocolo de nível superior
- Header Checksum (2 bytes) resultado da soma (em palavras de 16 bits) dos outros campos do cabeçalho
 - como o header é alterado em cada router, este valor é também recalculado
 - permite detectar erros de transmissão que alterem o cabeçalho do datagrama

Resolução de Endereços Físicos

- ARP: Address Resolution Protocol
- Quando "A" precisa de contactar "C" por IPv4
 - "A" precisa do endereço MAC de "C"
 - Só sabe o endereço IPv4
 - Se o endereço de "C" não estiver na tabela ARP de "A" então,
 - → "A" envia um pacote "ARP Request" em broadcast para a rede local (MAC destino: FF-FF-FF-FF-FF) com o endereço IPv4 de "C"
 - Todas as máquinas recebem
 - "C" verifica que o seu IP vem no "ARP request" e responde com um "ARP reply" diretamente para "A" (MAC destino==MAC de A) com a indicação do seu MAC.
 - "A" atualiza a sua tabela ARP
- A resolução de endereços MAC apenas existe dentro da mesma rede local
 - Pacotes ARP não "atravessam" routers!

Encaminhamento para outra LAN (1)

- Quando uma estação pretende enviar um pacote IP para uma rede IP que não a sua, o primeiro salto é para o default gateway
 - O default gateway é configurado pelo utilizador ou obtido dinamicamente.
 - Corresponde ao endereço IP da interface de um dos routers que pertence à rede da máquina de origem.

Encaminhamento para outra LAN (2)

- Envio de um pacote IPv4 de "A" para "D"
 - "A" constrói datagrama IP com origem o IP de "A" e destino o IP de "D"
 - "A" verifica que o endereço de "D" pertence a outra rede IPv4 logo "A" vai ter de enviar o pacote via o seu gateway (router)
 - "A" determina o endereço MAC do seu gateway (ARP)
 - "A" constrói trama Ethernet com origem o MAC de "A" e destino o MAC do router
 - "A" encapsula o datagrama IP na trama Ethernet
 - "A" envia a trama Ethernet
 - O router recebe a trama
 - O router retira o datagrama IP da trama Ethernet e verifica que é destinado a "D"
 - O router determina o endereço MAC de "D" (ARP)
 - Router constrói trama Ethernet com endereço de origem o MAC do router e endereço de destino o MAC de "D"
 - Router encapsula o datagrama IPv4 (sem alterações) na trama Ethernet
 - Router envia trama para "D"

Encaminhamento IPv4

Encaminhamento IPv4

- Encaminhamento hop-by-hop
- Tabelas de encaminhamento IP
 - Destino (Identificador da Rede)
 - Máscara
 - Next Hop (próximo router do caminho)
 - Interface
 - Custo

Destino	Máscara	Next hop	Interface	Custo
193.0.0.0	/24	193.1.01	eth0	1
193.1.0.0	/24	directo	eth0	-
193.2.0.0	/24	directo	eth1	-
10.3.0.0	/8	193.2.0.3	eth1	1

Destino	Máscara	Next hop	Interface	Custo
193.0.0.0	/24	directo	eth0	-
193.1.0.0	/24	directo	eth1	-
193.2.0.0	/24	193.1.0.2	eth1	1
10.3.0.0	/8	193.1.0.2	eth1	2

Destino	Máscara	Next hop	Interface	Custo
193.0.0.0	/24	193.2.0.2	eth0	2
193.1.0.0	/24	193.2.0.2	eth0	1
193.2.0.0	/24	directo	eth0	-
10.3.0.0	/8	directo	eth1	-

universidade de aveiro

Encaminhamento Estático vs. Dinâmico

- O encaminhamento estático é predefinido por configuração estática.
 - Define-se o next-hop para atingir uma determinada rede.
 - O next-hop deverá ser o endereço do próximo router do caminho e deverá pertencer a uma rede que o router já conhece.
 - É necessária a definição de uma rota estática para cada rede para a qual se pretende conectividade.
 - → Pode-se usar a rede 0.0.0.0/0 que representa todas as redes.
 - Quando se define uma rota estática usado a rede 0.0.0.0/0 chama-se rota por omissão (default route).
- O encaminhamento dinâmico pressupõe o uso de um protocolo de comunicação entre os nós da rede de modo a determinar as redes existentes e os melhores caminhos (nexp-hops) para as atingir.
- O encaminhamento dinâmico é preferível no entanto em cenários simples o encaminhamento estático pode ser aceitável.

Rotas Estáticas

- Sem qualquer encaminhamento definido os routers apenas conhecem as redes a que estão diretamente ligados.
 - Exemplo 1
 - O Router1 não conhece as redes 193.2.0.0/24 e 10.3.0.0/24
 - Rotas estáticas necessárias:
 - 193.2.0.0/24 acessível através de 193.1.0.2 (eth0 do Router2)
 - 10.3.0.0/24 acessível através de 193.1.0.2 (eth0 do Router2)
 - Exemplo 2
 - O Router2 não conhece as redes 193.0.0.0/24 e 10.3.0.0/24
 - Rotas estáticas necessárias:
 - 193.0.0.0/24 acessível através de 193.1.0.1 (eth1 do Router1)
 - 10.3.0.0/24 acessível através de 193.2.0.3 (eth0 do Router3)

Fragmentação e Reagrupamento em IPv4

- Em cada rede local existe um tamanho máximo de pacote que pode ser transmitido
 - MTU Maximum Transfer Unit
- Caso seja maior, o pacote é fragmentado à entrada e reagrupamento à saída.
- Campos que intervêm na fragmentação:
 - Identification, fragment offset, flags: do not fragment e more fragments

Protocolo ICMP

- ICMP (Internet Control Message Protocol)
- Usado para transmissão de mensagens com a operação de uma rede.
 - Notificação de redes não acessíveis,
 - Notificação de hosts não acessíveis,
 - Notificação de portos UDP não acessíveis,
 - Notificação de redirecionamento de pacotes/rotas,
 - Testes de conectividade e descoberta de caminhos, etc...
- Tem um cabeçalho de tamanho fixo de 8 bytes.

Resolução de Endereços Físicos e Comando Ping

