STAT 530 Bioinformatics: Homework 2

Due Feb 27, 2017

For problems using R, turn in your answers in the form of a compiled R notebook PDF.

Problem 1 (5 points)

Make a PLINK file set called qcd by extracting individuals and SNPs from hapmap1 using the following QC parameters:

- Exclude samples with missing rates of > 6%.
- Exclude SNPs with missing rates of > 10%.
- Exclude SNPs with MAF < 0.05.
- Exclude SNPs deviating from HWE at $p < 10^{-4}$.

How many samples were removed? How many SNPs are left?

Problem 2 (2 points)

Run one GWAS using logistic regression without controlling for any principal components. Use the flag --out nopc. What is the genomic inflation factor? Report the OR of the SNP rs2222162. Is having more minor alleles of this SNP associated with higher or lower risk?

Problem 3 (5 points)

Calculate the top 3 PCs using EIGENSTRAT. Use the parameters in example.perl script but output 3 PCs instead of 2. Save the top 3 PCs as qcd.pca. Report the top 5 lines of qcd.pca.

Problem 4 (5 points)

Now run a GWAS controlling for PCs. Create a covariate file pcs.txt containing the three principal components calculated using EIGENSTRAT; use the R script make_pcs.R provided on the course website. Using this file, run a GWAS controlling for the first principal component. Use the flag --out pc1. Have we adequately controlled for population stratification? Report the OR of the SNP rs2222162. Is having more minor alleles of this SNP associated with higher or lower risk?

Problem 5 (5 points)

Using the PC-adjusted GWAS results, do any of the SNPs reach genome-wide significance? What is the Bonferroni threshold adjusting for the total number of SNPs tested? Do any SNPs pass this threshold?

Problem 6 (5 points)

Make a Manhattan plot of the results using R and the package qqman. Which SNP exceeds the 10^{-5} significance threshold? Using the UCSC Genome Browser, find the RefSeq gene closest to the the SNP.