Distributed robust statistical learning: A Byzantine mirror descent algorithm

Mihailo Jovanović

ee.usc.edu/mihailo

work of
Dongsheng Ding and Xiaohan Wei

58th IEEE Conference on Decision and Control

Motivating application

FEDERATED LEARNING

A. Worker machine B. Master machine C. Shared model

Google AI, Blog '17

Byzantine fault

• FAULT SOURCES

- * Machine failures
- * Communication errors
- * Malicious users

Byzantine failure model

STOCHASTIC LEARNING PROBLEM

$$\begin{array}{ll}
\text{minimize} & F(w) := \mathbb{E}_{z \sim \mathcal{D}} \left(f(w; z) \right) \\
\text{subject to} & w \in \mathcal{W} \subset \mathbb{R}^d
\end{array}$$

Byzantine failure model

STOCHASTIC LEARNING PROBLEM

$$\begin{array}{ll}
\text{minimize} & F(w) := \mathbb{E}_{z \sim \mathcal{D}} \left(f(w; z) \right) \\
\text{subject to} & w \in \mathcal{W} \subset \mathbb{R}^d
\end{array}$$

1 master and m workers

$$\star \ z_t^i \sim \mathcal{D}, i \in \{1, \dots, m\}$$

m gradients at time t

$$abla_t^i \,:=\, \left\{ egin{array}{ll}
abla f(w_t; z_t^i) & ext{normal machine} \ & ext{arbitrary} & ext{Byzantine machine} \end{array}
ight.$$

Identification of "good" workers

- MEDIAN AGGREGATION
 - * robust to outliers

sequence							median
1,	3,	3,	6,	7,	8,	10	6
10^{-10} ,	3,	3,	6,	7,	8,	10^{10}	6

Euclidean setting

BYZANTINE SGD

$$w_{t+1} := \underset{w \in \mathcal{W}}{\operatorname{argmin}} F(w_t) + \eta \langle \xi_t, w - w_t \rangle + \frac{1}{2} \|w - w_t\|_2^2$$

 ξ_t - stochastic estimate of the gradient $\nabla F(w_t)$

$$\xi_t = \frac{1}{m} \sum_{i \in \Omega_t} \nabla_t^i$$

 Ω_t – set of "good" workers

Convergence

Convex smooth objective function

$$F(\bar{w}) - F(w^{\star}) \leq \tilde{O}\left(\frac{C}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

$$\star \ \bar{w} := \frac{1}{T} \sum_{t=1}^{T} w_{t+1}$$

- \star T total number of iterations
- $\star \|w w'\|_2 \leq W \text{ for all } w, w' \in \mathcal{W} \subset \mathbb{R}^d$
- $\star \| \nabla_t^i \nabla_t \|_2 \leq C$ gradient norm bound for "good" workers

Alistarh, Allen-Zhu, Li, NeurIPS '18

Example

LINEAR REGRESSION

$$f(w;z) = \frac{1}{2} (x^T w - y)^2, \ w \in \mathcal{W} \subset \mathbb{R}^d$$

*
$$z:=(x,y)$$
 - data generated by $y=x^Tw^*+\xi$
$$x(i) \sim \{-1,1\}, \;\; \xi \sim \mathcal{N}(0,\sigma^2)$$

dimension-dependent gradient norm bound

$$\mathbb{E}\left(\|\nabla_t^i - \nabla_t\|_2\right) \, \leq \, \sqrt{\left(d-1\right)W^2 \, + \, d\,\sigma^2}$$

Yin, Chen, Kannan, Bartlett, ICML '18

Exploiting problem geometry to improve the dimension dependence

Bregman divergence

$$D(x,y) \; := \; \Phi(x) \; - \; \Phi(y) \; - \; \nabla \Phi(y)^T (x \, - \, y)$$

 \star Φ - differentiable, 1-strongly convex w.r.t. $\|\cdot\|$

Bregman divergence

$$D(x,y) := \Phi(x) - \Phi(y) - \nabla \Phi(y)^{T}(x - y)$$

- \star Φ differentiable, 1-strongly convex w.r.t. $\|\cdot\|$
- EXAMPLES

$$\star \Phi(x) = \frac{1}{2} \|x\|_2^2$$

strongly convex w.r.t. $\|\cdot\|_2$

$$D(x,y) = \frac{1}{2} \|x - y\|_2^2$$

Bregman divergence

$$D(x,y) := \Phi(x) - \Phi(y) - \nabla \Phi(y)^{T}(x - y)$$

 \star Φ - differentiable, 1-strongly convex w.r.t. $\|\cdot\|$

EXAMPLES

$$\star \ \Phi(x) = \frac{1}{2} \|x\|_2^2$$

$$D(x,y) = \frac{1}{2} \|x - y\|_2^2$$

$$\star \Phi(x) = \sum_{i} x(i) \log x(i)$$

strongly convex w.r.t. $\|\cdot\|_1$

strongly convex w.r.t. $\|\cdot\|_2$

$$D(x,y) = \sum_{i} x(i) \log \frac{x(i)}{y(i)}$$
 KL divergence

Bubeck, Found. Trends Mach. Learn. '15

Non-Euclidean setting

BYZANTINE MIRROR DESCENT

$$w_{t+1} := \underset{w \in \mathcal{W}}{\operatorname{argmin}} F(w_t) + \eta \langle \xi_t, w - w_t \rangle + D(w, w_t)$$

 ξ_t - stochastic estimate of the gradient $\nabla F(w_t)$

$$\xi_t = \frac{1}{m} \sum_{i \in \Omega_t} \nabla_t^i$$

 Ω_t – set of "good" workers

IMPORTANT QUANTITIES

- $\star \ \nabla_t^1, \dots, \nabla_t^m \ \ \text{gradients (normal or Byzantine)}$
- $\star A_t^1, \ldots, A_t^m$ gradient related values

$$A_t^i := \sum_{k=1}^t \left\langle \nabla_k^i, w_k - w_1 \right\rangle$$

 $\star B_t^1, \ldots, B_t^m$ - accumulated gradients

$$B_t^i := \sum_{k=1}^t \nabla_k^i$$

used to update the set of "good" workers

Convergence result

Convex and L-smooth objective function

$$\begin{split} F(\bar{w}) \,-\, F(w^\star) \,\, \leq \,\, \frac{2R^2}{\eta T} \,\,+\,\, \frac{8\sqrt{2}W C \Delta (1 + 4\alpha \sqrt{m})}{\sqrt{mT}} \\ \,\, + \,\, \eta \left(\frac{32C^2\Delta^2}{m} + 64\alpha^2C^2\right) \quad \text{w.h.p.} \end{split}$$

$$\sup_{w \in \mathcal{W}} D(w, w_1) \le R^2$$

$$\Delta = \Theta\left(\sqrt{\log \frac{mT}{\delta}}\right)$$

$$\stackrel{\sim}{=} 2L$$

$$\eta \leq \tfrac{1}{2L}$$
 matches standard mirror descent for $C=0$

Optimal rate

OPTIMAL STEPSIZE

$$\eta \ = \ \left\{ \begin{array}{ll} \min\left(\frac{1}{\alpha C \sqrt{T}}, \frac{1}{2L}\right), & \alpha \ \geq \ \frac{1}{\sqrt{m}} \\ \min\left(\frac{1}{C} \sqrt{\frac{m}{T}}, \frac{1}{2L}\right), & \alpha \ < \ \frac{1}{\sqrt{m}} \end{array} \right.$$

$$F(\bar{w}) - F(w^\star) \le \tilde{O}\left(C\left(\frac{R^2}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)\right)$$
 w.h.p.

$$\mbox{matches the rate of} \left\{ \begin{array}{ll} \mbox{Byzantine SGD}, & \alpha \neq 0 \\ \mbox{batch SGD}, & \alpha = 0 \end{array} \right.$$

Probability simplex

$$\mathcal{W} := \left\{ w \in \mathbb{R}^d, \|w\|_1 = 1, \ w \ge 0 \right\}$$
$$\|\cdot\| = \|\cdot\|_1, \ \|\cdot\|_* = \|\cdot\|_{\infty}$$

KL DIVERGENCE

$$D(x,y) = \sum_{i} x(i) \log \frac{x(i)}{y(i)}$$

- $\star \| \nabla_t^i \nabla_t \|_{\infty} \leq C \text{dimension-independent bound}$
- $\star~w_1 = (\frac{1}{d}, \cdots, \frac{1}{d})~-~$ uniform initialization

$$D(w^*, w_1) \le \log d = R^2$$

Convex and L-smooth objective function

$$F(\bar{w}) - F(w^*) \leq \frac{2\log d}{\eta T} + \frac{8C\Delta(\sqrt{mT} + 4\alpha m\sqrt{T})}{mT} + \eta \left(\frac{4C^2\Delta^2}{m} + 32\alpha^2C^2\right) \text{ w.h.p.}$$

C – dimension-independent constant

OPTIMAL STEPSIZE η

$$F(\bar{w}) - F(w^*) \leq \tilde{O}\left(\frac{\log d}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

Summary

- RESULTS
 - ⋆ Byzantine mirror descent
 - * Probability simplex: nearly dimension-free
- ONGOING EFFORT
 - * Problems with constraints
 - * Byzantine primal-dual algorithm

Extra slides

Concentration bounds

Gradient bias

$$|E_1| = \left| \sum_{t=1}^T \sum_{i \in \Omega_t} \left\langle \nabla_t^i - \nabla_t, w_t - w^\star \right\rangle \right|$$

$$\leq 4WC\Delta\sqrt{2Tm} + 16\alpha mWC\Delta\sqrt{2T} \quad \text{w.h.p.}$$

Gradient variance

$$\begin{split} \underline{E_2} &= \frac{1}{T} \sum_{t=1}^T \left\| \frac{1}{m} \sum_{i \in \Omega_t} (\nabla_t^i - \nabla_t) \right\|_*^2 \\ &\leq \frac{16C^2\Delta^2}{2} + 32\alpha^2C^2 \quad \text{w.h.p.} \end{split}$$

$$\star I_A = 4WC\Delta\sqrt{2T}$$

$$\star I_B = 4C\Delta\sqrt{2T}$$

$$\star \ \Delta = R + 2\sqrt{2\log\frac{8\sqrt{2}mT}{\delta}}$$

Convergence analysis

Convex and L-smooth objective

$$\frac{1}{mT} \sum_{t=1}^{T} \sum_{i \in \Omega_t} (F(w_{t+1}) - F(w^\star)) \leq \eta \underline{E_2} + \frac{R^2}{\eta T} - \frac{\underline{E_1}}{mT}$$

$$\leq \underline{\eta} C^2 \left(\frac{16\Delta^2}{m} + 32\alpha^2 \right) + \underbrace{\frac{R^2}{\eta T}}_{\text{error}} + \underbrace{C \frac{4\sqrt{2}W\Delta}{\sqrt{mT}} + \alpha C \frac{16\sqrt{2}W\Delta}{\sqrt{T}}}_{\text{bias}}$$

$$\star \|w - w'\| \le W \text{ for all } w, w' \in \mathcal{W}$$

$$\star D(w^{\star}, w_1) \leq R^2$$

$$\star \|\nabla_t^i - \nabla_t\|_* < C$$

$$\star \eta \leq \frac{1}{2L}$$