Università di Pisa

Corso di Scienza e Ingegneria dei Materiali -12 crediti

Corso di laurea in Ingegneria Chimica – Appello d'esame – 27-07-2018 – Aula F8

Informazioni: questo è un esame senza consultazione di libri, appunti o altro materiale relativo al programma del corso. I calcolatori **sono** permessi ad esclusione di quelli preprogrammati a risolvere esercizi. Non è assolutamente consentito l'uso di telefoni cellulari, computer palmari ecc., né scambiare suggerimenti o opinioni con i propri colleghi. Per i calcoli e la brutta copia sono distribuiti dal docente appositi fogli da riconsegnare alla fine della prova: non utilizzare fogli di altra provenienza. Ai trasgressori sarà immediatamente *ritirato e annullato* il compito in qualunque momento della prova. Il tempo a disposizione per la prova è di 3 ore. È consentito uscire per andare in bagno solo a partire dalla seconda ora della prova.

Verrà valutato un punteggio parziale per risposte numericamente errate ma supportate da un ragionamento corretto. Il punteggio assegnato alle domande ed esercizi è riportato in cima al testo. Per l'ammissione occorre ottenere un punteggio pari o superiore a 18, così distribuito: almeno 12 punti nella parte numerica (esercizi) ed almeno 6 in quella teorica (quesiti a risposta aperta e chiusa).

Allieva/o:

e-mail:

PUNTEGGIO	UNO	DUE	TRE	QUATTRO	TOTALE
Esercizi	/6	/6	/5	/4	/21
Domande a Risposta Aperta	/3	/3	/3	/3	/12
Voto finale					/33

Esercizi:

Esercizio Nº1

Dato il seguente diffrattogramma dell'Oro ($\lambda = 0.1541$ nm, r = 0.1442nm, n = 1):

- a) Individuare il tipo di struttura (CCC, CFC, EC...).
- b) Determinare gli indici di Miller per ciascuno dei picchi indicati in figura.
- c) Calcolare la distanza interplanare di ciascun picco.
- d) Verificare, per ciascun picco, che il raggio atomico fornito coincida con quello calcolato.

Esercizio N°2

Un provino di una lega metallica con sezione rettangolare ($l_0 = 25$ mm; spessore = 1,6 mm; larghezza = 5mm) viene sottoposto ad una prova di trazione. È fornita la seguente curva sforzo/deformazione:

- a) Determinare: modulo elastico, sforzo allo snervamento e allungamento a rottura.
- b) Calcolare la deformazione reale a rottura e lo sforzo reale allo snervamento assumendo una diminuzione della larghezza del provino del 3% rispetto al valore iniziale e trascurando la variazione di spessore.
- c) Poco prima della rottura del provino, lo sforzo reale è 720 MPa. Valutare l'esponente di incrudimento (n) e la costante K relative alla zona di deformazione plastica del materiale.
- d) Determinare il diametro dei grani ($\sigma_0 = 30 \text{MPa}$; $k_y = 9.5 \text{ MPa} \cdot \text{mm}^{1/2}$).
- e) Se il materiale viene lasciato ad alta temperatura per 12 minuti quale sarà la dimensione finale del grano ($K=5,44 \cdot 10^{-5} \text{ mm}^2/\text{min}$; n=2)

Esercizio N°3

Si vuole far solidificare del Cu (CFC) per nucleazione omogenea con un sottoraffreddamento di $\Delta T = 280 \text{K}$. (a₀=361,5 pm; T_{fusione}=1083°C; $\Delta H_{fusione}=1,628 \text{ kJ/cm}^3$; $\gamma=1,5\cdot10^{-5} \text{J/cm}^2$).

- a) È possibile che avvenga la nucleazione omogenea? Se sì, calcolare il raggio critico.
- b) A partire dal grafico nella figura sottostante determinare la velocità (tasso) di ricristallizzazione del rame alle varie temperature.
- b) Calcolare, infine, le costanti cinetiche n e k per ricristallizzare il rame a 102°C.

Esercizio Nº4

Uno sforzo di 75 MPa è applicato nella direzione [001] ad un monocristallo di tipo CFC. Calcolare:

- a) La componente dello sforzo di taglio che agisce nel sistema di scorrimento (111) $[\bar{1}01]$
- b) La componente dello sforzo di taglio che agisce nel sistema di scorrimento (111) $[\bar{1}10]$

Domande a risposta aperta:

Domanda N°1

Completare il diagramma di fase binario di figura, individuando le reazioni invarianti, le regioni monofasiche e quelle bifasiche. Schematizzare, inoltre, l'evoluzione microstrutturale osservabile per raffreddamento di una lega 10% in peso di Al.

Domanda N°2

La trasformazione martensitica, caratteristica di materiali metallici quali l'acciaio, può presentarsi anche nei materiali ceramici. Fornire un esempio di trasformazione di tale tipo nei ceramici e descrivere la tecnologia con cui tale fenomeno viene sfruttato per produrre un materiale con caratteristiche meccaniche avanzate.

Domanda N°3

La temperatura di transizione vetrosa del polietilene è ben al di sotto della temperatura ambiente, ma il modulo elastico del polietilene ad alta densità è alto quasi come quello di un polimero vetroso. Discutere e motivare tale comportamento.

Domanda N°4

Elencare e descrivere i principali processi produttivi dei compositi fibro-rinforzati.