סיבוכיות- תרגול 3

 $.coNP = \{S \mid \overline{S} \in NP\}$ הגדרה:

לא פורמלי: כל הבעיות עבורן קיימת הוכחה קצרה לכל קלט שאינו בשפה.

<u>דוגמאות:</u>

- $.\overline{SAT} = \{\phi \mid \text{ ספיקה ONF} \}$ שאינה טפיקה שוסחה בצורת 1
- $\overline{Clique} = \{(G, k) \mid k$ לא מכיל תת-גרף מלא בגודל $G\} \in coNP$.2

<u>תרגיל:</u> הוכיחו:

- א. לכל בעית הכרעה S קיימת רדוקצית קוק למשלים שלה.
- ב. לכל בעית הכרעה $S \in \mathcal{P}$ כך ש- $S \neq \emptyset, \Sigma^*$ קיימת רדוקצית קארפ למשלים שלה.

<u>פתרון:</u>

יריץ A_S .S את הוכחה: בהנתן קופסה שחורה $A_{ar{S}}$ המכריעה את $ar{S}$, נבנה אלגוריתם פולינומי A_S המכריע את A_S הוחזיר תשובה הפוכה. ברור כי A_S רץ בזמן פולינומי, ומתקיים:

$$A_S(x) = 1 \Leftrightarrow A_{\bar{S}}(x) = 0 \Leftrightarrow x \notin \bar{S} \Leftrightarrow x \in S$$

ב. הוכחה: יהיו $x_1 \in S$ ו- $x_2 \notin S$. נגדיר את הפונקציה הבאה:

$$f(x) = \begin{cases} x_2 & x \in S \\ x_1 & x \notin S \end{cases}$$

 x_2 או x_1 והחזרת S והחזרת לחישוב בזמן פולינומי ע"י הרצת האלגוריתם הפולינומי המכריע את f והחזרת f או בהתאם לתשובה. כמו כן, מתקיים:

$$x \in S \Longrightarrow f(x) = x_2 \in \bar{S}$$

 $x \notin S \Longrightarrow f(x) = x_1 \notin \bar{S}$

. עצמית לרדוקציה ער פוש ב-PC שלא ניתנת לרדוקציה עצמית איימת בעית חיפוש לרדוקציה עצמית. בהנחה ש- $P \neq NP \cap coNP$

: מתקיים ער ער ער פולינומי V_S מתקיים: אולכן קיים פולינום בא אולכן אולכן אולכל $S \in NP$. $S \in (NP \cap coNP) \setminus P$ מתקיים:

$$x \in S \Longrightarrow \exists y, |y| \le p_S(|x|), V_S(x, y) = 1$$
 .1

$$x \notin S \Longrightarrow \forall y, V_S(x, y) = 0$$
 .2

בנוסף, $V_{ar{S}}$ כך שלכל x מתקיים: $p_{ar{S}}(\cdot)$ ומוודא פולינומי $S\in coNP$, כך שלכל מתקיים:

$$x \in \overline{S} \Longrightarrow \exists y, |y| \le p_{\overline{S}}(|x|), V_{\overline{S}}(x, y) = 1$$
 .1

$$x \notin \bar{S} \Longrightarrow \forall y, V_{\bar{S}}(x, y) = 0$$
 .2

נסמן היחס הבא: $q = \max\{p_{S}, p_{\bar{S}}\}$ נסמן

$$R = \{(x,y) \mid |y| \leq q(|x|), (V_S(x,y) = 1 \vee V_{\bar{S}}(x,y) = 1)\}$$

לפי הגדרת היחס, R חסום פולינומית וניתן להשתמש במוודאים $V_S,V_{ar{S}}$ להכרעה האם זוג (x,y) שייך ל-לא קיים S_R , לא קיים המכריע את S_R , לא ניתן לרדוקציה עצמית. כלומר, בהנתן אלגוריתם המכריע את $R \in PC$, לא קיים RR אלגוריתם פולינומי הפותר את בעית החיפוש

 $y,|y| \leq q(|x|)$ פיים $x \notin S$ ועבור, $V_S(x,y) = 1$ כך ש $y,|y| \leq q(|x|)$ קיים $x \in S$ נשים לב כי עבור כי ניתן $R\in PF$, אזי $S_R=\Sigma^*$ כי ניתן "לכן ש-1 $S_R=\Sigma^*$, ולכן ש-1 $S_R=\Sigma^*$, כלומר, אם קיימת רדוקציה עצמית עבור .1 ממוזירה המחזירה במכונה S_R במכונה המחזירה תמיד להחליף כל קריאה לקופסה השחורה המכריעה את

נניח בשלילה כי $R \in PF$. כלומר, קיים אלגוריתם פולינומי A_R הפותר את בעית החיפוש R. נבנה אלגוריתם פולינומי $S \in P$ המכריע את S ובכך נראה כי A_S בסתירה.

$A_{\rm S}(x)$

- $.y \leftarrow A_R(x)$.1 .1 . $V_S(x,y)$ אחזר את .2

:מתקיים $x \in S$ פולינומיים ולכן גם A_S פולינומיי A_S פולינומיים ולכן גם עבור V_S -ו

- $V_S(x,y) = 1$ כך ש- $|y| \le q(|x|), y$.1
 - $V_{\bar{S}}(x,y) = 0, y$.2

לכן, (R יחזיר Y עבורו Y עבורו Y, בהכרח מתקיים כי Y בהכרח עבורו Y יחזיר עבורו לכן, כאשר :מתקיים $x \notin S$ מתקיים באופן דומה, באופן באופן . $A_S(x) = 1$

- $V_{\bar{S}}(x,y) = 1$ כך ש $|y| \le q(|x|), y$.1
 - $V_S(x,y) = 0, y + 12$.2

לכן, כאשר $V_S(x,y)=0$ יחזיר $V_S(x,y)=0$, בהכרח מתקיים כי $V_S(x,y)=0$ ולכן עבורו $V_S(x,y)=0$. סה"כ , כלומר R לא ניתן לרדוקציה עצמית. $S \in P$ קיבלנו כי $S \in P$