

이차함수 $y=ax^2+bx+c$ 의 그래프

○ 중단원 지도 목표

- 1. 이차함수 $y=a(x-p)^2+q$ 의 그래프를 그리고, 그 성질을 알게 한다.
- 2. 이차함수 $y = ax^2 + bx + c$ 를 $y = a(x p)^2 + q$ 의 꼴로 고치고, 그 그래프를 그릴 수 있도록 한다.
- 3. 최댓값과 최솟값의 의미를 알고, 이차함수의 최댓값과 최솟값을 구할 수 있도록 한다.

○ 중단원의 구성

소단원 명	지도 내용
1. 이차함수 $y=a(x-p)^2+q$ 의 그래프	• 이차함수 $y=ax^2+q$ 의 그래프 • 이차함수 $y=a(x-p)^2$ 의 그래프 • 이차함수 $y=a(x-p)^2+q$ 의 그래프
2. 이차함수 $y = ax^2 + bx + c$ 의 그래프와 최대, 최소	• 이차함수 $y=ax^2+bx+c$ 의 그래프 • 이차함수의 최댓값과 최솟값
중단원 마무리하기	스스로 정리하기 기초 다지기, 기본 익히기, 실력 기르기
창의 · 인성 키우기	• 개념 바루기 • 생각 키우기

. - 대왕 비숙 (학교

▶완전제곱식을 포함한 식으로 고칠 수 있는가?

1. 이 단원에서는 이차함수를 $y=a(x-p)^2+q$ 로 나타내는 것을 학습하므로 주어진 이차식을 완전제곱식을 포함한 식으로 고칠 수 있어야 한다.

풀이
$$x^2+4x+5=(x^2+4x+4)+1$$

= $(x+2)^2+1$

답 2,1

▶평행이동을 알고 있는가?

2. 이 단원에서 이차함수의 그래프에서 평행이동을 학습하 므로 먼저 일차함수의 그래프의 평행이동을 알고 있어 야 한다.

- 풀이 (1) y=2x+5의 그래프는 y=2x의 그래프를 y축의 방향으로 5만큼 평행이동한 것이다.
- (2)y=2x-3의 그래프는 y=2x의 그래프를 y축의 방향으로 -3만큼 평행이동한 것이다.

답 (1)5 (2) -3

▶일차함수의 그래프를 그릴 수 있는가?

3. 이 단원에서 이차함수의 그래프의 평행이동을 학습하므로 간단한 이차함수의 그래프를 그릴 수 있어야 한다.

lacksquare 이차함수 $y{=}a(x{-}p)^2{+}q$ 의 그래프

기도 목표

- 1. 이차함수 $y=ax^2+q$ 의 그래프를 그리고, 그 성질을 알게 한다.
- 2. 이차함수 $y=a(x-p)^2$ 의 그래프를 그리고, 그 성질을 알게 한다.
- 3. 이차함수 $y=a(x-p)^2+q$ 의 그래프를 그리고, 그 성질을 알게 한다.

지도상의 유의점

- 1. 대응표를 이용하여 세 이차함수 $y=ax^2+q$, $y=a(x-p)^2$, $y=a(x-p)^2+q$ 의 그래프를 $y=ax^2$ 그래프와 같은 좌표 평면 위에 그려 봄으로써 그래프 사이의 관계를 이해하도록 한다.
- 2. 이차함수의 그래프를 평행이동해도 그래프의 폭과 모양은 변화가 없음을 알게 한다.

1/4차시 차시별 지도 방법

생각 열기	대응표를 완성하고, 순서쌍 (x,y) 를 좌표평면 위에 나타내어 보게 한 후, 두 그래프를 겹쳐 보는 활동을 통하여 y 축의 방향으로의 평행이동을 직관적으로 이해하도록 한다.
본문	생각 열기를 바탕으로 $y=ax^2+q$ 의 그래프를 그리는 방법에 대하여 설명하고, 그래프의 특징을 알수 있도록 한다.
함께 풀기 1, 문제 3	주어진 그래프를 이용하여 y 축의 방향으로 평행이 동한 그래프를 그리는 방법을 설명하고, 문제 3 을 스스로 풀어 보게 하여 능동적으로 참여하는 수업 이 되도록 한다.
문제 3	이차함수의 식을 통하여 꼭짓점의 좌표를 학생 스스로 구해 볼 수 있도록 충분한 시간을 준다.

이차함수 $y=ax^2+q$ 의 그래프는 어떻게 그릴까?

생각 열기 대응표를 이용하여 $y=x^2$ 과 $y=x^2+3$ 의 함숫값을 비교해 보고, 투명 종이를 이용하여 한 그래프를 다른 그래프로 평행이동시켜 보는 활동을 통하여 두 이차함수의 그래프 사이의 관계를 이해하게 하는 생각 열기이다.

127쪽

이차함수 $y=a(x-p)^2+q$ 의 그래프

○학습 목표 이차함수 y=a(x-p)²+q의 그래프를 그리고, 그 성질을

기러기들은 추운 겨울을 지내기 위해 늦은 가을 남쪽 으로 날아간다. 앞에서 날아가는 기러기들은 바람을 일 으켜 뒤에 날아오는 기러기들이 더 쉽게 날아갈 수 있도 록 V자 대형을 유지한 채 평행이동하듯이 날아가는 것

1/4차시 \bigcirc 이차함수 $y=ax^2+q$ 의 그래프는 어떻게 그릴까?

다음 표는 두 이차함수 $y=x^2$ 과 $y=x^2+3$ 에 대하여 x의 값에 대응하는 y의 값을 나타낸 것이다.

x	 -3	-2	-1	0	1	2	3	
x^{z}	 9	4	1	0	1	4	9	
$x^2 + 3$								

(1) 표의 빈칸을 채워 보자.

(2) 표에서 순서쌍 (x, y)를 좌표로 하는 점들을 오 른쪽 좌표평면 위에 나타내고, 그 점들을 연결하 여 $y=x^2$, $y=x^2+3$ 의 그래프를 그려 보자.

(3) 투명 종이에 $y=x^2$ 의 그래프를 그대로 옮겨 그린 다음 $y = x^2 + 3$ 의 그래프와 겹치게 하려면 어떻 게 이동해야 하는지 말하여 보자.

생각 열기에서 같은 x의 값에 대하여 x^2+3 의 값은 x^2 의 값보다 항상 3만큼 크다.

따라서 이차함수 $y=x^2+3$ 의 그래프는 이차함 수 $y=x^2$ 의 그래프를 y축의 방향으로 3만큼 평행 이동한 것이다.

이때 이차함수 $y=x^2+3$ 의 그래프는 꼭짓점의 좌표가 (0, 3)이고, y축을 축으로 하는 아래로 볼 록하 포묵선이다

2, 이차함수 y=ax3+bx+c의 그래프 **127**

(1)	x	 -3	-2	-1	0	1	2	3	
	x^{2}	 9	4	1	0	1	4	9	•••
	$x^2 + 3$	 12	7	4	3	4	7	12	

- $(3)y=x^2$ 의 그래프를 y축의 방향으로 3만큼 평행이동하면 $y=x^2+3$ 의 그래프와 겹쳐진다.
- 1 $y=x^2+3$ 의 그래프는 $y=x^2$ 의 그래프를 y축의 방향으 로 3만큼 평행이동한 것임을 알게 한다. 이때 그래프의 폭, 모양, 축은 변하지 않고 꼭짓점의 좌표는 달라짐에 주 의하도록 지도한다.

일반적으로 이차함수 $y = ax^2 + q$ 의 그래프에 대하여 다음이 성립한다.

의치하수의 그래프의

lacktriangle 이차함수 $y=ax^2$ 의 그래프를 y축의 방향으로 q만큼 평행이동한 것이다. ❷ 꼭짓점의 좌표가 (0, q)이고, y축을 축으로 하는 포물선이다.

이차함수 $y=ax^2+q$ 의 그래프

(1) 이차함수 $y=2x^2+1$ 의 그래프는 이차함수 $y=2x^2$ 의 그래프를 y축의 방향

(2) 이차함수 $y = -3x^2 + 2$ 의 그래프는 이차함수 $y = -3x^2$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 것이다

[문제 1] 다음 이차함수의 그래프는 $y=3x^2$ 의 그래프를 y축의 방향으로 얼마만큼 평행이동한 것인

(1) $y = 3x^2 - 2$

(2) $y = 3x^2 + 5$

128 Ⅲ 이차원수

이차함수 $y = -2x^2$ 의 그래프를 이용하여 이차함수 $y = -2x^2 + 2$ 의 그래프를 그리고, 그래 프의 꼭짓점의 좌표와 축의 방정식을 구하여라

물이》 $y = -2x^2 + 2$ 의 그래프는 $y = -2x^2$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 것이므로 그래

따라서 $y = -2x^2 + 2$ 의 그래프는 꼭짓점의 좌표가 (0, 2)이고, 축의 방정식은 x=0이다.

답》》 품이 참조

129쪽

문제 2 오른쪽 그림은 이차함수 $y=\frac{1}{2}x^2$ 의 그래프이다. 이

그래프를 이용하여 다음 이차함수의 그래프를 그리고 그래프의 꼭짓점의 좌표와 축의 방정식을 각각 구하

(1) $y = \frac{1}{2}x^2 + 2$

[문제 3] 다음 이차함수의 그래프를 y축의 방향으로 [] 안의 값만큼 평행이동한 그래프를 나타내 는 이차함수의 식을 구하여라, 또 그 함수가 나타내는 포물선의 꼭짓점의 좌표를 구하여라.

(1) $y = 4x^2 [-3]$

(2) $y = -\frac{7}{2}x^2$ [5]

2/4차시 2 이차함수 $y=a(x-p)^2$ 의 그래프는 어떻게 그릴까?

다음 표는 두 이차함수 $y=x^2$ 과 $y=(x-2)^2$ 에 대하여 x의 값에 대응하는 y의 값을 나타낸 것이다.

x	 -2	-1	0	1	2	3	4	
x^2	 4	1	0	1	4	9	16	
(x-2)2								

(1) 표의 빈칸을 채워 보자.

(2) 표에서 순서쌍 (x, y)를 좌표로 하는 점들을 오른쪽 좌표평면 위에 나타내고, 그 점들을 연결 하여 $y=x^2$, $y=(x-2)^2$ 의 그래프를 그려 보자.

(3) 투명 종이에 $y=x^2$ 의 그래프를 그대로 옮겨 그린 다음 $y = (x-2)^2$ 의 그래프와 겹치게 하려면 어떻게 이동해야 하는지 말하여 보자.

2, 이차함수 y=ax²+bx+c의 그래프 **129**

$[PM \ 1] y$ 축의 방향으로 얼마만큼 평행이동한 것인지 말하기

풀이 (1) y축의 방향으로 -2만큼 평행이동

(2) y축의 방향으로 5만큼 평행이동

문제3 평행이동한 이차함수의 식과 꼭짓점의 좌표 구하기

풀이 (1) $y=4x^2$ 의 그래프를 y축의 방향으로 -3만큼 평행이 동하면 $y=4x^2-3$ 이고, 꼭짓점의 좌표는 (0, -3)이다.

(2) $y = -\frac{7}{2}x^2$ 의 그래프를 y축의 방향으로 5만큼 평행이동하 면 $y = -\frac{7}{2}x^2 + 5$ 이고, 꼭짓점의 좌표는 (0, 5)이다.

[EM 2] y축의 방향으로 평행이동한 이차함수의 그래프를 그리 고, 꼭짓점의 좌표, 축의 방정식 구하기

풀이 두 이차함수 $y = \frac{1}{2}x^2 + 2$,

 $y = \frac{1}{2}x^2 - 4$ 의 그래프를 그리면 오른쪽과 같다.

- (1) 꼭짓점의 좌표: (0, 2). 축의 방정식: *x*=0
- (2) 꼭짓점의 좌표: (0. -4). 축의 방정식: x=0

수준별 교수·학습 방법

이처함수 $y=ax^2+q$ 의 그래프를 그릴 수 있다.

- $y=ax^2$, $y=ax^2+q$ 의 그래프를 한 좌표평면 위에 그리고, 투 명 종이를 이용하여 한 그래프가 다른 그래프와 겹치는 활동을 해 봄으로써 평행이동을 직관적으로 이해하도록 한다.
- lacksquare 이차함수 $y=ax^2$, $y=ax^2+q$ 의 함숫값을 비교하도록 하고, 이 를 통해 $y=ax^2+q$ 를 어떻게 그릴 수 있는지를 스스로 생각해 보고 토론할 수 있는 기회를 제공한다. 컴퓨터 프로그램이나 그래픽 계산기를 활용하여 자신의 추측을

확인할 수 있는 기회를 제공한다.

2/4차시 차시별 지도 방법

생각 열기	대응표를 완성하고, 순서쌍 (x, y) 를 좌표평면 위에 나타내어 보게 한 후, 두 그래프를 겹쳐 보는 활동을 통해 x 축의 방향으로의 평행이동을 직관적으로 이해하도록 한다.
본문	생각 열기를 바탕으로 $y=a(x-p)^2$ 그래프를 그리는 방법에 대하여 설명하고, 그래프의 특징을 알 수 있도록 한다.
함께 풀기 2, 문제 5	주어진 그래프를 이용하여 x 축의 방향으로 평행이동한 그래프를 그리는 방법을 설명하고, 문제 5 를 스스로 풀어 보게 하여 능동적으로 참여하는 수업이 되도록 한다.
문제 6, 7	이차함수의 식을 통하여 꼭짓점의 좌표를 학생 스스로 구해 볼 수 있도록 충분한 시간을 준다.

이차함수 $y=a(x-p)^2$ 의 그래프는 어떻게 그릴까?

생각 열기 대응표를 이용하여 $y=x^2$ 과 $y=(x-2)^2$ 의 함숫값을 비교해 보고, 투명 종이를 이용하여 한 그래프를 다른 그래프로 이동시켜 보는 활동을 통해 두 이차함수의 그래프 사이의 관계를 이해하도록 하는 생각 열기이다.

(1)	x	•••	-2	-1	0	1	2	3	4	•••
	x^{2}	•••	4	1	0	1	4	9	16	•••
	$(x-2)^2$	•••	16	9	4	1	0	1	4	•••

 $(3) y = x^2$ 의 그래프를 x축의 방향으로 2만큼 평행이동하면 $y = (x-2)^2$ 의 그래프가 된다.

130쪽

- 2 대응표에서 $y=x^2$ 의 함숫값을 오른쪽으로 두 칸 이동하면 $y=(x-2)^2$ 의 함숫값과 같음을 학생들이 이해하도록 설명함으로써 $y=a(x-p)^2$ 의 그래프의 평행이동에 대하여 쉽게 이해할 수 있도록 지도한다.
- ③ $y=(x-2)^2$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 2만큼 평행이동한 것임을 알도록 한다. 이때 그래프의 폭, 모양은 변하지 않고 꼭짓점의 좌표와 축은 달라짐에 주의하도록 지도한다.

[문제4] x축의 방향으로 얼마만큼 평행이동한 것인지 말하기

- **풀이** (1) $y=6(x+3)^2$ 의 그래프는 $y=6x^2$ 의 그래프를 x축의 방향으로 -3만큼 평행이동한 것이다.
- (2) $y=6(x-1)^2$ 의 그래프는 $y=6x^2$ 의 그래프를 x축의 방향으로 1만큼 평행이동한 것이다.

문제 4 다음 이차함수의 그래프는 $y = 6x^2$ 의 그래프를 x축의 방향으로 얼마만큼 평행이동한 것인지

 $(1)y = 6(x+3)^2$

 $(2) y = 6(x-1)^2$

이차함수 $y=-3x^2$ 의 그래프를 이용하여 이차함수 $y=-3(x+4)^2$ 의 그래프를 그리고, 그래프의 꼭짓점의 좌표와 축의 방정식을 구하여라.

물이》 $y = -3(x+4)^2$ 의 그래프는 $y = -3x^2$ 의 그래프를 x축의 방향으로 -4만큼 평행이동한 것이므로 그래프는 오른쪽 그림과 간다

이때 $y = -3(x+4)^2$ 의 그래프는 꼭짓점의 좌표가 (-4, 0)이고, 축의 방정식은 x=-4이다.

문제 5 오른쪽 그림은 이차함수 $y=2x^2$ 의 그래프이다. 이 그래 프를 이용하여 다음 이차함수의 그래프를 그리고, 그래 프의 꼭짓점의 좌표와 축의 방정식을 각각 구하여라.

(1) $y=2(x-1)^2$

(2) $y=2(x+2)^2$

[문제 6] 다음 이차함수의 그래프를 x축의 방향으로 [] 안의 값만큼 평행이동한 그래프를 나타내 는 이차함수의 식을 구하여라. 또 그 함수가 나타내는 포물선의 꼭짓점의 좌표와 축의 방정식을 각각 구하여라.

(1) $y = -9x^2 [-2]$

(2) $y = 3x^2 [-5]$

의사소통기

문제 7

이차함수 $y=2x^2$ 의 그래프와 이차함수 $y=-2(x-3)^2$ 의 그래프 사이의 관계에 대하여 말하여라

2. 이차함수 y=ax2+bx+c의 그래프 131

[문제 5] x축의 방향으로 평행이동한 이차함수의 그래프를 그리 고, 꼭짓점의 좌표, 축의 방정식 구하기

풀이 두 이차함수 $y=2(x-1)^2$, $y=2(x+2)^2$ 의 그래프를 그리면 다음과 같다.

(1) 꼭짓점의 좌표: (1, 0), 축의 방정식: x=1

(2) 꼭짓점의 좌표: (-2,0), 축의 방정식: x=-2

$\mathbb{C}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ 방향으로 평행이동한 그래프의 식, 꼭짓점의 좌 표. 축의 방정식 구하기

풀이 (1) $y = -9x^2$ 의 그래프를 x축의 방향으로 -2만큼 평행 이동하면

 $y = -9(x+2)^2$

이때 꼭짓점의 좌표는 (-2, 0), 축의 방정식은 x=-2

 $(2) y=3x^2$ 의 그래프를 x축의 방향으로 -5만큼 평행이동

 $y = 3(x+5)^2$

이때 꼭짓점의 좌표는 (-5, 0), 축의 방정식은 x = -5

문제7 평행이동과 관련된 두 이차함수의 그래프 사이의 관계 말하기

풀이 $y=2x^2$ 의 그래프와 x축에 대칭인 그래프를 그린 다음 x축의 방향으로 3만큼 평행이동하면

 $y = -2(x-3)^2$

의 그래프와 겹쳐진다.

오개념 진단 · 지도

이차함수 $y=ax^2$ 의 그래프를 x축의 방향으로 p만큼 평행이동 하면 그 식은 $y=a(x+p)^2$ 이 아니라 $y=a(x-p)^2$ 임에 주의 하도록 한다

 $\mathbf{Q} \mathbf{U} = 3x^2$ 의 그래프를 x축의 방향으로 4만큼 평행이동한 그래 프를 나타내는 이차함수 식은 $y=3(x-4)^2$ 이고. $y=3x^2$ 의 그래프를 x축의 방향으로 -4만큼 평행이동한 그래프를 나타내는 이차함수 식은 $y=3(x+4)^2$ 이다.

수준별 교수·학습 방법

이차함수 $y=a(x-p)^2$ 의 그래프를 그릴 수 있다.

[하] 이차함수 $y=ax^2$, $y=a(x-p)^2$ 의 그래프를 한 좌표평면 위에 그리고, 투명 종이를 이용하여 한 그래프가 다른 그래프와 겹 치는 활동을 해 봄으로써 평행이동을 직관적으로 이해하도록

igg| 두 이차함수 $y=ax^2$, $y=a(x-p)^2$ 의 함숫값을 비교하도록 하 고, 이를 통해 $y=a(x-p)^2$ 를 어떻게 그릴 수 있는지를 스스로 생각해 보고 토론할 수 있는 기회를 제공한다.

컴퓨터 프로그램이나 그래픽 계산기를 활용하여 자신의 추측을 확인할 수 있는 기회를 제공한다.

3/4차시 차시별 지도 방법

[교과 교실]

생각 열기 무한생이 컴퓨터 프로그램을 이용하여 그린 그래 프를 보고 나누는 대화 내용을 통하여, 이차함수 $y=a(x-p)^2+q$ 의 그래프를 그리는 방법을 단계적으로 이해하도록 유도한다. 본문 생각 열기의 활동을 바탕으로 $y=a(x-p)^2+q$ 의 그래프를 그리는 방법을 설명하면서 그 특징을 정리해 볼 수 있도록 지도한다. 주어진 그래프에서 평행이동을 이용하여 $y=a(x-p)^2+q$ 의 그래프를 그리는 방법을 설명하고, 문제 8을 스스로 풀어 보게 하여 능동적으로 참여하는 수업이 되도록 한다.

이차함수 $y=a(x-p)^2+q$ 의 그래프는 어떻게 그림까?

생각 열기 컴퓨터 프로그램을 이용하여 그래프를 x축의 방향으로 평행이동한 다음, 다시 y축의 방향으로 평행이동하는 단계적활동을 통해 $y=(x-3)^2+2$ 의 그래프가 $y=x^2$ 의 그래프를 어떻게 평행이동한 것인지를 알게 하려는 생각 열기이다.

 $y=(x-3)^2+2$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 3만큼 평행이동한 다음, 다시 y축의 방향으로 2만큼 평행이동한 것이다.

[문제8] x축, y축의 방향으로 얼마만큼 평행이동한 것인지 말하기

- 풀이 (1) $y=-7(x+3)^2+4$ 의 그래프는 $y=-7x^2$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 4만큼 평행이 동한 것이다.
- (2) $y = -7(x-4)^2 3$ 의 그래프는 $y = -7x^2$ 의 그래프를 x축 의 방향으로 4만큼, y축의 방향으로 -3만큼 평행이동한 것이다.

[문제 9] 오른쪽 좌표평면 위에 이차함수 $y=2x^2$ 의 그래프를 이용 하여 이차함수 $y=2(x-1)^2-3$ 의 그래프를 그리고, $y=2(x-1)^2-3$ 의 그래프의 꼭짓점의 좌표와 축의 방정식을 구하여라

4/4차시

문제 10 다음 이차함수의 그래프를 [] 안의 값만큼 차례로 x축과 y축의 방향으로 평행이동한 그래프를 나타내는 이차함수의 식을 구하여라. 또 그 함수가 나타내는 포물선의 꼭짓점의 좌표와 축의 방정식을 각각 구하여라.

(1) $y = -3x^2 \begin{bmatrix} -3 & 5 \end{bmatrix}$

(2) $y = \frac{1}{4}x^2 [4, -5]$

(3) $y = 7x^2 [2, 1]$

(4) $y = -\frac{2}{3}x^2[-1, -4]$

이차함수 찾기

라는 누구일까요?

나는 이차함수의 그래프이고, 아래로 볼록합니다

- 나와 폭이 같은 친구의 이차항의 계수는 1입니다.
- 나는 직선 x=3에 대하여 좌우가 대칭인 몸을 가지고 있습니다. 나는 점 (3 2)를 지납니다

4 한국는 누구일까요?

내 친구는 나와 폭이 같습니다. 내가 x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동하면 내 친구와

이차함수의 그래프를 하나 정하여 소개하는 글을 써 보고, 자신이 쓴 글을 다른 사람이 쓴 글과 서로 바꾸어 어떤 그래프인지를 맞추는 놀이를 하여보자.

134 III 이차환수

문제 $y=a(x-p)^2+q$ 의 그래프를 그리고, 꼭짓점의 좌표와 축의 방정식 구하기

풀이 $y=2(x-1)^2-3$ 의 그래프를 그리면 오른쪽과 같고.

꼭짓점의 좌표는 (1, -3), 축의 방정식은 x=1이다

수준별 교수 한습 방법

이차함수 $y=a(x-p)^2+q$ 의 그래프를 그릴 수 있다.

 $lackbr{W}$ 이차함수 $y=ax^2$ 의 그래프를 $y=a(x-p)^2+q$ 의 그래프로 평 행이동한 것뿐만 아니라 꼭짓점이 원점이 아닌 두 이차함수의 그래프의 평행이동에 대해서도 생각해 볼 수 있도록 기회를 제 공하다.

4/4차시 차시별 지도 방법

무제 10

x축의 방향과 y축의 방향으로 각각 평행이동한 그래프를 나타내는 이차함수의 식을 구하고, 그 결과를 친구들과 비교해 보도록 한다

즐거운 활동하기

'이차함수 찾기'라는 흥미 있는 활동을 통해 이차 함수의 그래프의 특징과 평행이동에 대해 보다 명 확히 이해하도록 하고 학생들 스스로 이차함수의 그래프를 소개하고. 맞추는 활동을 통해 자기 주 도적인 학습 능력을 키울 수 있도록 지도한다.

[EM 10] x축, y축의 방향으로 평행이동한 그래프의 식, 꼭짓점 의 좌표. 축의 방정식 구하기

풀이 (1) 구하는 이차함수의 식은 $y = -3(x+3)^2 + 5$ 이고. 꼭짓점의 좌표는 (-3.5). 축의 방정식은 x = -3이다.

- (2) 구하는 이차함수의 식은 $y = \frac{1}{4}(x-4)^2 5$ 이고, 꼭짓점의 좌표는 (4, -5), 축의 방정식은 x=4이다.
- (3) 구하는 이차함수의 식은 $y=7(x-2)^2+1$ 이고. 꼭짓점의 좌표는 (2,1), 축의 방정식은 x=2이다.
- (4) 구하는 이차함수의 식은 $y = -\frac{2}{2}(x+1)^2 4$ 이고, 꼭짓점의 좌표는 (-1, -4), 축의 방정식은 x = -1이다.

🍻 즐거운 호날동하다

이차함수 찾기

지도상의 유의점 이차함수에서 위로 볼록, 아래로 볼록, 평행이동 의 개념을 이용하여 그래프를 찾고. 적절한 수학적 개념을 사용하 여 이차함수의 표현을 자유롭게 할 수 있도록 지도한다.

- **활동 1** 이차항의 계수가 1이고, x=3에 대칭이므로 $y = (x-3)^2 + b$ 점 (3, 2)를 지나므로 2=b $y = (x-3)^2 + 2$ 따라서 나는 이차함수 $y=(x-3)^2+2$ 의 그래프이다.
- **활동2** $y=(x-3)^2+2$ 를 x축의 방향으로 2만큼. y축의 방 향으로 3만큼 평행이동하면 $y=(x-5)^2+5$ 이므로 내 친구는 이차함수 $y=(x-5)^2+5$ 의 그래프이다.
- **활동3** 예시 문항 나는 $y=(x-3)^2+2$ 의 그래프입니다. 나는 아래로 볼록하고, 내 친구는 위로 볼록합니다. 내 친구의 이차항의 계수의 절댓값은 나의 이차항의 계수의 절댓값의 두 배입니다. 나와 내 친구는 꼭짓점의 좌표가 같습니다. 내 친구는 누구일까요?
 - 달 $y = -2(x-3)^2 + 2$ 의 그래프

창의·인성 함수에서 배운 수학적 지식을 적절하게 활용하여 타 인과 함께 해결하면서 상호 작용하는 능력을 키울 수 있게 한다.

▶ 수준별 교수·학습 방법

x축, y축의 방향으로 평행이동한 그래프를 나타내는 이차함수의 식을 구할 수 있다.

- 이처함수 $y=a(x-p)^2+q$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동한 것임을 구체적인 예를 통해 충분히 연습을 하게 한 후에 평행이동한 그래프를 나타내는 이처함수의 식을 구할 수 있도록 지도한다.
 - ① $y=3(x-2)^2+4$ 의 그래프는 $y=3x^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 4만큼 평행이동한 것이다. $y=-2(x+1)^2+3$ 의 그래프는 $y=-2x^2$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 3만큼 평행이동한 것이다.

👺 < 확인하기

평가의 주안점 이차함수의 그래프를 그릴 수 있다.

9 평가의 주안점 평행이동한 이차함수의 식을 구할 수 있다.

0.1-1		10 2 1		ie ie i m i.
풀이	이차함수	x축의 방향으로 평행이동	<i>y</i> 축의 방향으로 평행이동	평행이동한 이차함수의 식
	(1) $y = 2x^2$	1	-2	$y=2(x-1)^2-2$
	(2) $y = -3x^2$	-1	2	$y = -3(x+1)^2 + 2$
	$(3) y = \frac{2}{3}x^2$	-1	-2	$y = \frac{2}{3}(x+1)^2 - 2$
	$(4) y = -\frac{1}{4}x^2$	1	2	$y = -\frac{1}{4}(x-1)^2 + 2$

135쪽

++110

오른쪽 그림은 이차함수 $y=\frac{1}{2}x^2$ 의 그래프이다. 이 그래프를 이용하여 다음 이차함수의 그래프를 그려라.

(1) $y = \frac{1}{2}x^2 - 5$ (2) $y = \frac{1}{2}(x-2)^2$

(3) $y = \frac{1}{2}(x+3)^2 + 5$

이차함수의 그래프를 다음과 같이 평행이동한 이차함수의 식을 구하여라.

이차함수	x축의 방향으로 평행이동	y축의 방향으로 평행이동	평행이동한 이차함수의 식
(1) $y = 2x^2$	1	-2	
(2) $y = -3x^2$	-1	2	
(3) $y = \frac{2}{3}x^2$	-1	-2	
(4) $y = -\frac{1}{4}x^2$	1	2	

다음 이차함수의 그래프의 꼭짓점의 좌표와 축의 방정식을 각각 구하여라.

(1) $y = -2x^2 - 6$

(2) $y=5(x-4)^2$

(3) $y = \frac{1}{2}(x+8)^2 + 1$

 $(4) y = -3(x-5)^2 - 3$

수학적 과정 의사소통 추론 문제 해결

이차함수 $y=ax^2+q$ 의 그래프가 제1, 2, 3, 4사분면에 모두 그려지기 위한 두 상수 a,q의 조건을 설명하여라.

2, 이차함수 $y=ax^3+bx+c$ 의 그래프 **135**

3 평가의 주안점 꼭짓점의 좌표와 축의 방정식을 구할 수 있다.

풀이 주어진 이차함수의 꼭짓점의 좌표와 축의 방정식을 구하면

(1) 꼭짓점의 좌표: (0, -6), 축의 방정식: x=0

(2) 꼭짓점의 좌표: (4,0), 축의 방정식: x=4

(3) 꼭짓점의 좌표: (-8, 1), 축의 방정식: x = -8

(4) 꼭짓점의 좌표: (5, -3), 축의 방정식: x=5

4 평가의 주안점 이차함수 $y=ax^2+q$ 의 그래프가 제1, 2, 3, 4 분면에 모두 그려지기 위한 조건을 추론할 수 있다.

풀이 (i) a>0일 때, q<0이면 그래프가 제1, 2, 3, 4사분면에 모두 그려진다.

(ii) a<0일 때, q>0이면 그래프가 제1, 2, 3, 4사분면에 모두 그려진다.

따라서 aq<0이면 주어진 조건을 만족하는 그래프를 그릴 수 있다.

이차함수 $y=ax^2+bx+c$ 의 그래프와 최대, 최소

이차함수 $y=ax^2+bx+c$ 의 그래프와 최대, 최소

f O 학습 목표 이차함수 $y=ax^2+bx+c$ 의 그래프를 그리고, 그 성질을 이해한다. 이차함수의 최댓값과 최솟값의 의미를 이해하고, 그 값을 구할 수 있다.

○배울 용어 최댓값, 최솟값 배구에서 세터가 토스한 공이 네트 위를 포물선 모양으로

날아갈 때, 상대방의 블로킹을 피하기 위해 그 배구공이 포불선의 가장 높은 지점에 도달하였을 때 스파이크를 하는 경우가 많다. 과연 공이 포물선 모양으로 날아갈 때, 가장 높은 지점을 알 수 있을까?

지도 목표

- 1. 이차함수 $y=ax^2+bx+c$ 를 $y=a(x-p)^2+q$ 의 꼴로 고 치고, 그 그래프를 그릴 수 있게 한다.
- 2. 최댓값과 최솟값의 의미를 알고, 이차함수의 최댓값과 최솟 값을 구할 수 있게 한다.

1/2차시 \bigcirc 이차함수 $y=ax^2+bx+c$ 의 그래프는 어떻게 그릴까?

생각열기

▮ 다음 두 학생의 대화를 읽고, □ 안에 알맞은 수를 써넣어라.

민정: 이차함수 $y = x^2 - 4x + 7$ 의 그래프를 어떻게 그릴 수 있을까? 수민: 지난 시간에는 $y=a(x-p)^2+a$ 의 꼴의 그래프를 그렸는데. 민정: 그럼, 완전제곱식을 이용하여 변형해 볼까?

 $y = x^2 - 4x + 7$ $=(x^2-4x+4)-4+7$ $=(x-\Box)^2+\Box$

1 생각 열기에서 이차함수 $y=x^2-4x+7$ 을 $y=a(x-p)^2+q$ 의 꼴로 고치면 $y=x^2-4x+7=(x-2)^2+3$

이므로 이차함수 $y=x^2-4x+7$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동한 것과 같다.

따라서 이차함수 $y=x^2-4x+7$ 의 그래프는 꼭짓점 의 좌표가 (2, 3)이고, 직선 x=2를 축으로 하는 아래로 볼록한 포물선이다.

또 x=0일 때 y=7이므로 y축과 만나는 점의 좌표는 (0 7)이다

136 Ⅲ. 이차함수

지도상의 유의점

- 1. 이차함수의 최댓값과 최솟값은 x의 값의 범위가 실수 전체 인 경우만을 다루고. 제한된 범위에서의 최댓값과 최솟값은 다루지 않는다.
- 2. 이차함수의 그래프와 이차방정식의 해의 관계는 다루지 않 는다.

 \bigcirc 이차함수 $y=ax^2+bc+c$ 의 그래프는 어떻게 그릴 까?

생각 열기 이차함수 $y=x^2-4x+7$ 의 그래프를 그리기 위해 $y=a(x-p)^2+q$ 의 꼴로 고치는 과정을 생각해 보도록 하는 생 각 열기이다.

$$y=x^{2}-4x+7$$

$$=(x^{2}-4x+4)-4+7$$

$$=(x-2)^{2}+3$$

1/2차시 차시별 지도 방법

생각 열기	두 학생의 대화를 통하여 이차함수 $y=ax^2+bx+c$ 의 그래프를 그리기에 앞서 이차식을 변형하는 방법을 알 수 있도록 지도한다.
본문, 함께 풀기 1	생각 열기의 식을 변형하는 방법과 이차함수 $y=a(x-p)^2+q$ 의 그래프를 이용하여 $y=ax^2+bx+c$ 의 그래프를 그리는 방법을 설명한다.
문제 1	학생들 스스로 그래프를 그리고, 친구들과 그 결과를 비교해 볼 수 있도록 한다.
함께 풀기 2, 문제 2	꼭짓점의 좌표와 한 점의 좌표가 주어진 경우의 이차함수의 식을 구하는 과정을 통하여 이차함수 의 그래프에 대한 이해를 높이도록 한다.
문제 3	실생활과 관련된 문제 상황에 대하여 학생 스스로 탐구하는 자세를 갖도록 유도할 수 있게 한다.

 \bigcirc 이차함수 $y=ax^2+bx+c$ 의 그래프를 이차함수 $y=a(x-p)^2+q$ 꼴로 고친 다음 a의 부호. 꼭짓점의 좌표를 이용하여 그래프의 성질을 이해하도록 한다.

이차함수 $y=ax^2+bx+c$ 의 그래프는

 $y = a(x-p)^2 + q$

의 꼴로 바꾸고 축, 꼭짓점의 x좌표, y좌표를 구하여 그릴 수 있다.

일반적으로 이차함수 $y=ax^2+bx+c$ 의 그래프는 다음과 같은 성질을 갖는다.

이차한수 $y=ax^2+hx+c$ 의 그래프

- $\mathbf{0}$ $y=a(x-p)^2+q$ 의 꼴로 바꾸어 그린 그래프와 같다.
- ② a>0이면 아래로 볼록하고, a<0이면 위로 볼록하다.</p>
- ❸ y축 위의 점 (0, c)를 지난다.

이차함수 $y = -2x^2 + 8x - 5$ 의 그래프를 그리고, 꼭짓점의 좌표와 축의 방정식을 구하 여라

물이》 $y = -2x^2 + 8x - 5$ 를 $y = a(x-p)^2 + q$ 의 꼴로 고치면 $y = -2x^2 + 8x - 5$ $=-2(x^2-4x)-5$

 $=-2(x^2-4x+4-4)-5$ $=-2(x^2-4x+4)+8-5$ $=-2(x-2)^2+3$

따라서 이차함수 $y = -2x^2 + 8x - 5$ 의 그래프는 오른쪽 위의 그림과 같다.

이때 꼭짓점의 좌표는 (2, 3)이고, 축의 방정식은 x=2이다.

답》) 풀이 참조

[문제 1] 다음 이차함수의 그래프를 그리고, 꼭짓점의 좌표와 축의 방정식을 각각 구하여라.

(1) $y = 3x^2 + 6x + 1$

2. 이차함수 y=ax²+bx+c의 그래프 137

그래프의 꼭짓점의 좌표와 그래프가 지나는 다른 한 점이 주어졌을 때, 이차함수의 식을 구하는 방법에 대하여 알아보자.

오른쪽 그림과 같이 꼭짓적의 좌표가 (2 -1)이고 점 (0 3) 을 지나는 포물선이 있다. 이 포물선이 나타내는 이차함수의 식을 구하여라.

풀이» 포물선의 꼭짓점의 좌표가 (2, −1)이므로 이차함수는 $y=a(x-2)^2-1$

의 꼴로 나타낼 수 있다.

이 포물선이 점 (0,3)을 지나므로 x=0, y=3을 ①에 대입하면 $3=a(0-2)^2-1$, 3=4a-1, 4a=4

따라서 구하는 이차함수는

 $y=(x-2)^2-1=x^2-4x+4-1$ 이다.

[문제 2] 오른쪽 그림과 같이 꼭짓점의 좌표가 (2, 3)이고, 점 (0, 11)을 지나는 포물선이 나타내는 이차함수의 식을 구하여라.

 $y = x^2 - 4x + 3$

문제 3 다음 그림은 파라볼라 안테나를 좌표평면 위에 나타낸 것이다. 파라볼라 안테나의 단면이 아래 오른쪽 그림과 같이 포물선 모양이라 할 때, 이 포물선이 나타내는 이차함수의 식을 구하여라

138 III 이차한수

문제 1 이차함수 $y=ax^2+bx+c$ 의 그래프 그리기

풀이 (1) $y=3x^2+6x+1$

$$=3(x^2+2x+1)-3+1$$
$$=3(x+1)^2-2$$

그래프는 [그림 1]과 같고, 꼭짓점의 좌표는 (-1, -2). 축의 방정식은 x=-1이다

(2) $y = -x^2 + 2x + 2$

$$=-(x^2-2x+1)+1+2$$

$$=-(x-1)^2+3$$

그래프는 [그림 2]와 같고, 꼭짓점의 좌표는 (1, 3),

축의 방정식은 x=1이다.

문제2 꼭짓점의 좌표와 한 점의 좌표가 주어진 경우의 이차함 수의 식 구하기

풀이 꼭짓점의 좌표가 (2, 3)이므로

$$y=a(x-2)^2+3$$

····· (1)

이차함수가 점 (0, 11)을 지나므로

11=4a+3, 4a=8, a=2

a=2를 ①에 대입하면

$$y=2(x-2)^2+3$$

$$=2(x^2-4x+4)+3$$

$$=2x^2-8x+11$$

이다

문제3 그래프를 보고 이차함수의 식 구하기

풀이 꼭짓점의 좌표가 점 (3.1)이므로

$$y=a(x-3)^2+1$$

····· (1)

이차함수가 (7,3)을 지나므로

$$3=a\times 4^2+1$$
, $16a=2$, $a=\frac{1}{8}$

 $a=\frac{1}{8}$ 을 ①에 대입하면

2/2차시 🔰 이차함수의 최댓값과 최솟값을 어떻게 구할까?

생각열기

《막 별기에서 물줄기의 수평 거리가 $2 \, \mathrm{m}$ 가 되었을 때, 물줄기의 높이가 $3 \, \mathrm{m}$ 로 가장 높이 올라감을 알 수 있다.

2)2+3

이차함수 y=-(x-2)²+3의 그래프는 오른
 쪽 그림과 같이 꼭짓점의 좌표가 (2, 3)이고, 위로 볼록한 포물선이다.

따라서 이차함수 $y=-(x-2)^2+3$ 의 값 중에서 가장 큰 값은 x=2일 때의 y=3이고, 가장 작은 값은 없다.

 $y=-(x-2)^2+3$ 에서 x의 값이 한없이 작아지거나 커질 때 함 숫값은 한없이 작아지므로 가장 작은 한숙값은 없다.

 $y = (x-2)^2 + 10$

서 x의 값이 한없이 작

아지거나 커질 때 함숫 값은 한없이 커지므로

가장 큰 항수값은 없다

이차함수 $y=(x-2)^2+1$ 의 그래프는 오른쪽 그림과 같이 꼭짓점의 좌표가 (2,1)이고, 아래로 볼록한 포물선이다.

따라서 이차함수 $y=(x-2)^2+1$ 의 값 중에서 가장 작은 값은 x=2일 때, y=1이고 가장 큰 값 은 없다.

이와 같이 어떤 함수의 함숫값 중에서 가장 큰 값을 그 함수의 **최댓값**, 가장 작은 값을 그 함수의 **최솟값**이라고 한다.

위의 에에서 이차함수 $y=-(x-2)^2+3$ 의 최댓값은 3이고, 최솟값은 없다. 또한 이차함수 $y=(x-2)^2+1$ 의 최솟값은 1이고, 최댓값은 없다.

2, 이차함수 y=ax²+bx+c의 그래프 **139**

$$\begin{aligned} y &= \frac{1}{8} (x - 3)^2 + 1 \\ &= \frac{1}{8} (x^2 - 6x + 9) + 1 \\ &= \frac{1}{8} x^2 - \frac{3}{4} x + \frac{17}{8} \\ & \text{olth} \end{aligned}$$

▶ 수준별 교수·학습 방법

이차함수 $y=ax^2+bx+c$ 의 그래프를 그릴 수 있다.

- 다음의 (0)와 같은 이차식을 완전제곱식으로 변형하는 방법을 충분히 연습하게 한 후, 이차함수 $y=ax^2+bx+c$ 의 그래프를 $y=a(x-p)^2+q$ 의 그래프를 이용하여 그리는 방법을 익히도록 한다.
 - $2x^2+4x+3$, $-x^2+6x+1$, $-2x^2+4x+3$
- 이처함수 $y=ax^2+bx+c$ 를 $y=a(x-p)^2+q$ 의 꼴로 변형하는 과정 이외의 다른 방법으로 이처함수의 그래프의 모양을 개략적으로 추측하는 방법에 대하여 생각해 보도록 한다. 즉, x축, y축과 만나는 점 등을 이용하여 이처함수의 그래프를 그리는 방법에 대하여 생각해 보게 한다.

2/2차시 차시별 지도 방법

생각 열기	주변에서 흔히 볼 수 있는 분수의 물줄기를 통하여 이차함수의 모양을 알게 하고, 사진의 그래프의 모양에서 가장 높은 점을 시각적으로 파악하도록 한다.
본문	이차함수의 최댓값과 최솟값을 구하는 방법을 설명하고, 보기를 통하여 시각적으로 확인하게 하면서 최댓값과 최솟값을 구할 수 있도록 지도한다.
함께 풀기 3	식을 변형하여 최댓값과 최솟값을 구하는 방법을 설명하고, 그래프를 통하여 확인할 수 있도록 지 도한다.
문제 5	여러 학생이 나와서 자신이 풀고자 하는 문제를 풀게 한 후, 자신의 풀이를 설명할 수 있도록 지도 한다.
함께 풀기 4, 문제 6	일상생활에서 나타나는 문제를 해결하는 데 수학이 중요한 역할을 한다는 것을 깨닫게 하고, 문제를 해결하는 데 흥미를 가지도록 한다.

▶ 이차함수의 최댓값과 최솟값을 어떻게 구할까?

생각 열기 이차함수의 그래프에서 최댓값과 최솟값이 꼭짓점의 좌표의 값임을 시각적으로 알게 하려는 생각 열기이다.

물줄기가 가장 높이 올라갔을 때의 높이는 3m이다.

2 그래프를 통해 시각적으로 최댓값과 최솟값의 개념을 이해한 후, $y=ax^2+bx+c$ 의 그래프를 $y=a(x-p)^2+q$ 의 꼴로 고쳤을 때 꼭짓점의 좌표를 알면 그래프를 그리지 않고도 최댓값과 최솟값을 구할 수 있음을 인식하도록하다.

즉, a>0이면 이차함수의 그래프는 아래로 볼록하므로 x=p에서 최솟값은 q이고, 최댓값은 없고, a<0이면 이 차함수의 그래프는 위로 볼록하므로 x=p에서 최댓값은 q이고, 최솟값은 없음을 이해하도록 한다.

[문제4] 이차함수 $y=a(x-p)^2+q$ 의 최댓값과 최솟값 구하기

풀이 (1)x=0일 때 최솟값은 0이고, 최댓값은 없다.

- (2) x = 0일 때 최댓값은 0이고, 최솟값은 없다.
- (3) x = 1일 때 최솟값은 -2이고, 최댓값은 없다.
- (4) x = -3일 때 최댓값은 4이고, 최솟값은 없다.

일반적으로 이차함수 $y=a(x-p)^2+q$ 에서 a<0이면 이 이차함수의 그래프가 위로 볼록하므로 최댓값은 꼭짓점의 y좌표와 같고 최숫값은 없다. 또, a>0이면 이 이차함수의 그래프가 아래로 볼록하므로 최솟값은 꼭짓점의 y좌표와 같고 최댓값 은 없다.

이상을 정리하면 다음과 같다.

(1) 이차함수 $y=x^2$ 의 그래프의 최솟값은 x=0일 때 0이고, 최뫗값은 없다. (2) 이차함수 $y=-x^2$ 의 그래프의 최됏값은 x=0일 때 0이고, 최솟값은 없다. (3) 이차함수 $y=\frac{1}{2}(x-1)^2+2$ 의 그래프의 최솟값은 x=1일 때 2이고, 최됏값은 없다.

[문제 4] 다음 이차함수의 최댓값과 최솟값을 구하여라.

 $\begin{array}{ll} \text{(1) } y\!=\!2x^2 & \text{(2) } y\!=\!-3x^2 \\ \text{(3) } y\!=\!(x\!-\!1)^2\!-\!2 & \text{(4) } y\!=\!-2(x\!+\!3)^2\!+\!4 \end{array}$

한편 이차함수 $y=ax^2+bx+c$ 의 최멋값과 최솟값은 $y=a(x-p)^2+q$ 의 꼴로 나타내면 쉽게 구항 수 있다

140 Ⅲ, 이차함수

$lacksymbol{\mathbb{E}}$ 제5) 이차함수 $y\!=\!ax^2\!+\!bx\!+\!c$ 의 최댓값과 최솟값 구하기

置0| (1)
$$y = -2x^2 - 4x + 10$$

= $-2(x^2 + 2x + 1) + 12$
= $-2(x+1)^2 + 12$

따라서 x=-1일 때 최댓값은 12이고, 최솟값은 없다.

(2)
$$y=x^2+8x-10$$

= $x^2+8x+16-26$
= $(x+4)^2-26$
따라서 $x=-4$ 일 때 최솟값은 -26 이고, 최댓값은 없다.

그물망의 넓이를 ym²라 할 때.

$$y=x(20-x)$$
= $-x^2+20x$
= $-(x^2-20x+100)+100$

 $=-(x-10)^2+100$

따라서 x=10일 때, 최댓값은 100이다.

즉, 가로의 길이가 10m, 세로의 길이가 10m일 때, 행사장의 넓이는 최대가 된다.

▶ 수준별 교수·학습 방법

이차함수의 최댓값과 최솟값을 구할 수 있다.

- 하 주어진 이차함수의 식을 $y=a(x-p)^2+q$ 의 꼴로 변형하고, 이를 그래프로 그렸을 때, 최댓값, 최솟값이 어느 위치인지를 그래 프에서 직관적으로 확인하는 과정을 충분히 반복하여 최댓값과 최솟값의 개념을 이해하도록 한다.
- 상 실생활의 여러 상황을 이차함수로 나타내고 이 상황에서 최댓값 과 최솟값을 구하여 문제를 해결하도록 지도한다.

문제 6 이차함수의 최댓값과 최솟값 구하기

풀이 그물망의 가로의 길이를 xm라 하면 둘레의 길이가 40m이므로 세로의 길이는 (20-x)m이다.

- 다음 이차함수의 그래프를 오른쪽 좌표평면 위에 그리고, 꼭짓점의 좌표와 축의 방정식을 각각 구

 - (2) $y = 3x^2 + 6x 4$
 - (3) $y = -\frac{1}{2}x^2 + 2x + 6$
 - (4) $y = -x^2 6x 7$

오른쪽 그림과 같이 꼭짓적의 좌표가 (-2 2)이고 원점을 지나는 포물선이 나타내는 이차함수의 식을 구하여라.

- 다음 이차함수의 최댓값과 최솟값을 구하여라.
 - (1) $y = 3x^2 4$
- (2) $y = -(x-5)^2 + 7$
- (3) $y=2x^2-10x+12$
- (4) $y = -\frac{1}{2}x^2 2x + 1$

수학적 과정 의사소등 추론 문제 해결

어떤 돌고래가 바닷물 위로 솟아오른 지점으로부터의 수 평 거리를 xm, 바닷물 표면으로부터의 높이를 ym라 할

인 관계식이 성립한다고 한다. 이 돌고래가 솟아오른 최 고 높이를 구하여라.

142 Ⅲ. 이차함수

평가의 주안점 여러 가지 이차함수의 그래프를 그릴 수 있다.

풀이

 $(1) y = (x-2)^2 - 3$ 이므로

꼭짓점의 좌표: (2, -3), 축의 방정식: x=2

(2) $y=3(x+1)^2-7$ 이므로

꼭짓점의 좌표: (-1, -7), 축의 방정식: x=-1

 $(3) y = -\frac{1}{2}(x-2)^2 + 8$ 이므로

꼭짓점의 좌표: (2, 8), 축의 방정식: x=2

 $(4) y = -(x+3)^2 + 2$ 이므로

꼭짓점의 좌표: (-3, 2) 축의 방정식: x = -3

2 평가의 주안점 주어진 그래프를 보고 이차함수의 식을 구할 수 있다.

풀이 꼭짓점의 좌표가 점 (-2, 2)이므로

$$y=a(x+2)^2+2$$

.....(1)

이차함수가 점
$$(0,0)$$
을 지나므로 $4a=-2$

$$a = -\frac{1}{2}$$

$$a = -\frac{1}{2}$$
을 ①에 대입하면

$$y = -\frac{1}{2}(x+2)^2 + 2$$

$$=-\frac{1}{2}(x^2+4x+4)+2$$

$$=-\frac{1}{2}x^2-2x$$

이다

3 평가의 주안점 이차함수의 최댓값과 최솟값을 구할 수 있다.

풀이 (1) $y=3x^2-4$ 에서

x=0일 때 최솟값은 -4이고, 최댓값은 없다.

(2) $y = -(x-5)^2 + 7$ 에서

x=5일 때 최댓값은 7이고, 최솟값은 없다.

(3) $y = 2x^2 - 10x + 12$

$$=2\left(x^{2}-5x+\frac{25}{4}\right)-\frac{25}{2}+12$$

 $=2\left(x-\frac{5}{2}\right)^2-\frac{1}{2}$

따라서 $x=\frac{5}{2}$ 일 때 최솟값은 $-\frac{1}{2}$ 이고, 최댓값은 없다.

(4)
$$y = -\frac{1}{3}x^2 - 2x + 1$$

$$=-\frac{1}{3}(x^2+6x+9)+4$$

$$=-\frac{1}{3}(x+3)^2+4$$

따라서 x=-3일 때 최댓값 4이고, 최솟값은 없다.

4 평가의 주안점 이차함수의 최댓값을 이용하여 돌고래가 솟아 오른 최고 높이를 구할 수 있다

$$=0.1x^2+x$$

$$=-0.1(x^2-10x+25)+2.5$$

$$=-0.1(x-5)^2+2.5$$

이므로 x=5일 때. 최댓값은 2.5이다.

따라서 돌고래가 솟아오른 최고 높이는 2.5m이다.

출단원 마무리하다

스스로 정리하기

1. (1) p, q

(2) p, q, x = p

2.(1) p. q

(2) p, q

을 기초 다지기

평가의 주안점 이처함수의 그래프의 평행이동을 이해할 수 있다.

풀이 $y=-3x^2+2$ 의 그래프는 $y=-3x^2$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 것이므로 m=2이다.

이때 꼭짓점의 좌표가 (0, 2)이므로 b=0, c=2이다.

2 평가의 주안점 이차함수 그래프의 꼭짓점의 좌표와 축의 방정 식을 구할 수 있다.

풀이 (1) 꼭짓점의 좌표: (-4, -3)

축의 방정식: x=-4

(2) 꼭짓점의 좌표: (3, 1)

축의 방정식: *x*=3

3 평가의 주안점 이차함수의 그래프의 최댓값과 최솟값을 구할수 있다.

풀이 (1) $y = \frac{2}{3}(x+1)^2 + \frac{3}{2}$ 에서

x=-1일 때 최솟값은 $\frac{3}{2}$ 이고, 최댓값은 없다.

(2) $y = -2x^2 + 12x - 13$

 $=-2(x^2-6x+9)+5$

 $=-2(x-3)^2+5$

이므로 x=3일 때 최댓값은 5이고, 최솟값은 없다.

기본 익히기

4 평가의 주안점 이차함수의 그래프의 성질을 이해할 수 있다.

풀이 $y=2(x-1)^2$ 의 그래프가 점 (a,8)을 지나므로 $8=2(a-1)^2$ $(a-1)^2=4$, $a-1=\pm 2$ a=-1 또는 a=3 점 (a,8)이 제1사분면 위의 점이므로 a>0 따라서 a=3이다.

5 평가의 주안점 이차함수의 그래프의 평행이동을 이해할 수 있다.

풀이 주어진 그림에서 그래프는 $y=3x^2$ 의 그래프를 x축의 방향으로 -2만큼 평행이동한 것이므로

m=-2이다.

즉. 축의 방정식이 x=-2이므로

p=-2이다.

② 기보 인하기

4 이처함수 $y=2(x-1)^2$ 의 그래프가 제1사분면 위에 있는 점 (a,8)을 지낼 때, a의 값을 구하여라.

이차함수 $y=a(x-p)^2$ 의 그래프

5 오른쪽 그림은 이처함수 y=3x²의 그래프를 x축의 방향으로 m만큼 평행이동한 그래프이다. 이 그래프의 축의 방정식을 x=p라 할 때, m, p의 값을 구하여라.

 이차함수 $y=a(x-p)^2$

 의 그래프

6 이차함수 $y=a(x-p)^2+q$ 의 그래프의 꼭짓점의 좌표가 (-2,3)이고 점 (0,-1)을 지날 때, 이 이차함수의 식을 구하여라.

C이차함수 $y=a(x-p)^2+q의$ 그래프

7 이차함수 y=-x²+ax+4의 그래프의 축의 방정식이 x=2일 때, 상수 a의 값을 구하여라.

C이차함수 y=ax²+bx+c의

서술학

두 이차함수 y=2x²-8x+6과 y=x²+mx+n의 그래프의 꼭짓점의 좌표가 서로 같을 때, 두 상수 m, n의 값을 구하고, 그 과정을 서술하여라. C이차함수 y=ax²+bx+c의 그래프

이처함수 y=x²-4x-2의 그래프의 꼭짓점을 Α, y축과 만나는 점을 B라 할 때, ΔΟΑΒ의 넓이를 구하여라. (단, 점 Ο는 원점이다.) ○ 이차함수 $y=ax^2+bx+c$ 의 그래 프의 활용

144 Ⅲ, 이차함수

6 평가의 주안점 이차함수의 그래프의 꼭짓점과 한 점의 좌표를 이용하여 이차함수의 식을 구할 수 있다.

풀이 이차함수 $y=a(x-p)^2+q$ 의 그래프의 꼭짓점의 좌표 가 (-2,3)이므로

$$p = -2, q = 3$$

따라서 주어진 이차함수는 $y=a(x+2)^2+3$ 이다.

이때 그래프가 점 (0, -1)을 지나므로

$$-1=4a+3.4a=-4$$

a = -1

따라서 $y = -(x+2)^2 + 3 = -x^2 - 4x - 1$ 이다.

7 평가의 주안점 이차함수의 그래프에서 축의 방정식을 구할 수 있다.

置の|
$$y = -x^2 + ax + 4$$

= $-\left(x^2 - ax + \frac{a^2}{4}\right) + \frac{a^2}{4} + 4$
= $-\left(x - \frac{a}{2}\right)^2 + \frac{a^2}{4} + 4$

축의 방정식이 x=2이므로 $\frac{a}{2}=2$

따라서 a=4이다.

8 평가의 주안점 이차함수의 그래프의 꼭짓점의 좌표를 구할 수 있다.

이므로 $y=2x^2-8x+6$ 의 그래프의 꼭짓점의 좌표는 (2,-2)이다.

이때 $y=x^2+mx+n$ 의 그래프의 꼭짓점의 좌표도

$$y=(x-2)^2-2$$

$$=x^2-4x+4-2$$

$$=x^2-4x+2$$

따라서 m=-4, n=2이다.

..... ③

단계	채점 기준	배점 비율
0	$y=a(x-p)^2+q$ 의 꼴로 고친다.	30%
2	$y=2x^2-8x+6$ 의 그래프의 꼭짓점의 좌표를 구한다.	20%
3	m, n 의 값을 구한다.	각 25%

9 평가의 주안점 이차함수의 꼭짓점의 좌표를 구하고, 삼각형의 넓이를 구할 수 있다.

置0|
$$y=x^2-4x-2$$

= $(x^2-4x+4)-4-2$
= $(x^2-4x+4)-6$
= $(x-2)^2-6$

이므로 그래프를 그리면 다음 그림과 같다.

이때 A(2, -6), B(0, -2)이므로 점 A에서 y축에 내린 수선의 발을 H라 하면

$$\triangle OAB = \frac{1}{2} \times \overline{OB} \times \overline{AH}$$
$$= \frac{1}{2} \times 2 \times 2$$

=:

이다.

- 10 평가의 주안점 그래프를 보고 이차함수의 그래프의 식을 구할 수 있다.
 - 풀이 (1) 그래프의 꼭짓점의 좌표가 $\left(\frac{3}{2}, -\frac{7}{2}\right)$ 이므로

$$y = a\left(x - \frac{3}{2}\right)^2 - \frac{7}{2}$$

이 그래프가 점 (0,1)을 지나므로

$$1 = a \left(0 - \frac{3}{2}\right)^2 - \frac{7}{2}$$

$$\frac{9}{4}a = \frac{9}{2}$$

$$a=2$$

따라서 구하는 이차함수의 식은

$$y=2\left(x-\frac{3}{2}\right)^2-\frac{7}{2}=2x^2-6x+1$$

(2) 그래프의 꼭짓점의 좌표가 (2, 3)이므로

$$y=a(x-2)^2+3$$

이 그래프가 점 (0, -5)를 지나므로

$$-5 = a(0-2)^2 + 3$$

$$4a = -8$$

$$a=-2$$

따라서 구하는 이차함수의 식은

$$y = -2(x-2)^2 + 3 = -2x^2 + 8x - 5$$

이다.

| | 평가의 주안점 이차함수의 그래프의 최댓값과 최솟값을 구할 수 있다.

풀이 (1)
$$y = \frac{1}{2}x^2 + x$$

$$= \frac{1}{2}(x^2 + 2x + 1) - \frac{1}{2}$$

$$= \frac{1}{2}(x+1)^2 - \frac{1}{2}$$

이므로 x=-1일 때 최솟값은 $-\frac{1}{2}$ 이고, 최댓값은 없다.

(2)
$$y = -x^2 + 2x + 1$$

= $-(x^2 - 2x + 1) + 2$
= $-(x-1)^2 + 2$

이므로 x=1일 때 최댓값은 2이고, 최솟값은 없다.

실력 기르기

12 평가의 주안점 이차함수의 그래프를 보고 각 항의 계수의 부호 를 추론할 수 있다.

풀이 그래프가 아래로 볼록하므로

a > 0

y축과 만나는 점의 y좌표가 양수이므로

c > 0

145쪽

다음 그림과 같은 포물선이 나타내는 이차함수의 식을 구하여라.

C이차향수의 최댓강과

고 이차함수의 식 구하기

- 다음 이차함수의 최댓값과 최솟값을 구하고, 그때의 x의 값을 구하여라.

♣ 실력 기르기

이차함수 $y=ax^2+bx+c$ 의 그래프가 오른쪽 그림과 같을 때, 세 상수 a, b, c의 부호를 각각 말하여라

의 그래프에서 a는 이차형 수의 그래프가 아래로 볼록 ↑ 그대고 1 이대도 결국 한 모양인지, 위로 볼록한 모 양인지를 결정하고, c는 y축 과 만나는 점임을 이용한다.

- 폭죽을 초속 30m의 속력으로 위를 향하여 쏘아 옥렸다 x초 후의 폭죽의 높이를 ym라 할 때
 - 고, 그 과정을 서술하여라

 $y=a(x-p)^2+q$ 의 골로 변형한다.

..... 2

2, 이차함수 y=ax3+bx+c의 그래프 **145**

$$y = a\left(x + \frac{b}{2a}\right)^2 + \frac{-b^2 + 4ac}{4a} \text{ on } k$$

(꼭짓점의 x좌표)<0이므로 $\frac{-b}{2a}$ <0

이때 a > 0이므로 b > 0따라서 a>0, b>0, c>0이다.

13 평가의 주안점 이처함수의 최댓값을 이용하여 실생활 문제를 해결할 수 있다.

이므로 x=3일 때, 최댓값 45를 갖는다.

따라서 3초가 지난 후에 폭죽의 최대 높이는 45m이다.

단계	채점 기준	배점 비율	
0	$y=-5x^2+30x$ 를 $y=a(x-p)^2+q$ 의 꼴로 변형한다.	60%	
2	폭죽의 최대 높이를 구한다.	40%	

✔ 개념 바루기

지도상의 유의점 이차함수 $y=2(x+3)^2+2$ 의 그래프를 $y=2x^2$ 의 그래프가 x축의 방향으로 3만큼, y축의 방향으로 2만큼 평행될 것이라고 생각하는 학생들이 많다. 미선이가 그린 그래프에 한 점 의 좌표를 대입하여 그려진 그래프가 맞는지 확인시키고. x축의 방향으로 -3만큼 평행이동하여 그려야 함을 알게 한다.

올바른 풀이 $y=2(x+3)^2+2$ 의 그래프는 $y=2x^2$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 2만큼 평행이동한 그래 프이므로 이차함수의 그래프를 그리면 다음과 같다.

미선이가 그린 그래프를 보면 꼭짓점의 좌표가 (3, 2)이다. 이때 x=3, y=2를 이차함수 $y=2(x+3)^2+2$ 에 대입하면 좌변은 2이지만 우변은 $2 \times (3+3)^2 + 2 = 74$ 이므로 좌변과 우변의 값이 달라서 이 그래프가 점 (3, 2)를 지나지 않음을 알 수 있다. 즉. 미선이가 그린 그래프는 잘못된 것이다.

창의 · 인성 위의 문항 외에도 일어날 수 있는 또 다른 오류를 발 표해 볼 수 있는 시간을 제공하여 서로의 경험을 공유할 수 있도록 하다

👸 생각 키우기

지도상의 유의점 목표물을 지나는 것만 주어진 상황에서 학생들이 다양하게 이차함수의 식을 구할 수 있도록 지도한다.

풀이 (1) 꼭짓점의 좌표가 (-1, 8)이므로 이차함수의 식은

 $y = a(x+1)^2 + 8$

이 그래프가 점 (2.0)을 지나므로

0 = 9a + 8

 $a = -\frac{8}{9}$

~ 창<u>의</u>, 인성 키우기

igvee 개념 바루기 다음은 미선이가 $y=2x^2$ 의 그래프를 이용하여 $y=2(x+3)^2+2$ 의 그래프를 그린 것이다. 옳지 않은 부분을 찾아 바르게 고쳐라

> ・1対時かな y=2(x+3)2+2=1 コマド亜 と y=2x²±1 □2H± 를 x축의 방향으로 3만큼, y축의 방향으로 2만큼 프향경이 동한 것이 의로 그래프를 그리면 최른쪽과

♂ 생각 키우기 이차함수의 식을 입력하면 포물선 모양으 로 날아가는 로켓포가 있다. 오른쪽 그림 과 같이 좌표가 (-4,0)인 지점에서 로 켓포를 발사하여 산 너머 A(2, 0)지점에 있는 목표물을 명중시키려고 한다.

> (1)로켓포가 꼭짓점의 좌표가 (-1, 8) 인 이차함수의 그래프 위를 움직여서 A 지점에 있는 목표물을 명중시키려 고 할 때, 입력해야 하는 이차함수의 식을 구하여라.

> (2) 발사 위치를 변경하여 로켓포가 산을 넘어 A 지점에 있는 목표물을 명중시 킬 수 있는 이차함수의 식을 만들어라.

146 III. 이차함수

따라서 입력해야 하는 이차함수의 식은

$$\begin{split} y &= -\frac{8}{9}(x+1)^2 + 8 \\ &= -\frac{8}{9}x^2 - \frac{16}{9}x + \frac{64}{9} \end{split}$$
 orth

(2) 예시 답안

로켓포의 발사 위치를 (-6.0)이라 하자.

꼭짓점의 좌표가 (-2, 10)이고, 점 A(2, 0)을 지나도록

이차함수 식을 만들면

 $y=a(x+2)^2+10$

점 (2,0)을 대입하면 0=16a+10

따라서 입력해야 하는 이차함수의 식은

$$y = -\frac{5}{8}(x+2)^2 + 10$$
 이다

창의 · 인성 학생들이 자기 스스로 꼭짓점의 좌표, 축 등을 생각해 보고 이를 식으로 표현하는 능력을 키우고, 이를 통해 이차함수의 유용성을 깨닫도록 한다.

학년 반 번호:

/ 점수:

선다형은 각 4점. 나머지 문항은 각 문항에 표시함.

- 이차함수 $y=3x^2-4$ 의 그래프에 대한 설명 중 옳지 않은 것은?
 - ① 꼭짓점의 좌표는 (0, -4)이다.
 - ② y축에 대칭인 그래프이다.
 - ③ 점 (1, −1)을 지난다.
 - ④ 아래로 볼록한 그래프이다.
 - ⑤ 이차함수 $y=x^2$ 의 그래프를 y축의 방향으로 -4만 큼 평행이동한 그래프이다.
- 이 이 자함수 $y = -2x^2 + 4x + 1$ 의 그래프는 $y = -2x^2$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동한 것이다. 이때 *ab*의 값은?
 - (1) 3
- (2) **4**
- (3) **5**

- (4) **6**
- (5)7
- \bigcap 다음 이차함수의 그래프 중 이차함수 $y=5x^2$ 의 그래프를 평행이동하여 완전히 포갤 수 없는 것은?
 - (1) $y=5(x+3)^2$
- ② $y = 5x^2 2$
- ③ $y = 20x 5x^2$
- $4) y=5(x+1)^2+2$
- (5) $y = 3 + 10x + 5x^2$
- \bigcap 이차함수 $y=x^2+8x+k$ 의 그래프의 꼭짓점의 좌표가 (-4, -7)일 때, 다음 중 이 그래프가 지나는 점은?
 - (1)(-2,-5) (2)(-1,2)
- (0.10)

- (4)(1,6) (5)(2,-1)
- 이 지하는 $y=2x^2+ax+b$ 의 그래프는 x=2일 때 최솟값 1을 갖는다. 두 상수 a, b에 대하여 a+b의 값은?
 - (1) -3
- (2) 1
- (3) 0

- **4** 1
- (5) 3

- 다음 중 이차함수 $y=x^2-2x-5$ 의 그래프에 대한 설명 으로 옳지 않은 것은?
 - ① 직선 x=1을 축으로 한다.
 - ② y축과 만나는 점의 좌표는 (0, -5)이다.
 - ③ 아래로 볼록한 포물선이다.
 - ④ 꼭짓점의 좌표는 (1, -5)이다.
 - ⑤ 이차함수 $y=x^2$ 의 그래프를 x축의 방향으로 1만큼. y축의 방향으로 -6만큼 평행이동한 것이다.
- **17** 이차함수 $y=-x^2+5$ 의 최댓값을 m, 이차함수 $y=(x-2)^2$ 의 최솟값을 n이라 할 때, m-n의 값은?
 - 1 1
- 2 2
- ③3

- (4) **4**
- (5)5
- □ 오른쪽 그림은 이차함수 $y=a(x-b)^2+c$ 의 그래프이다. a, b, c의 부호는?

- ① a > 0, b > 0, c > 0
- ② a > 0, b > 0, c < 0
- (4) a < 0, b > 0, c > 0
- $\bigcirc a < 0, b > 0, c < 0$

- \bigcap 지면에서 초속 30m로 쏘아 올린 공의 t초 후의 높이를 hm라 할 때, $h=30t-5t^2$ 인 관계가 성립한다. 이때 공이 가장 높이 올라갔을 때의 높이는?
 - (1) 30m
- ② 35m
- ③ 40m

- 4 45m
- $\odot 50 \mathrm{m}$

단답형

- 10 이차함수 $y=-x^2+4x+5$ 는 x=a일 때, 최댓값 b를 갖는다. ab의 값을 구하여라. [8점]
- 일차함수 y=-x+k의 그래프가 이차함수 $y=-x^2-10x-25$ 의 그래프의 꼭짓점을 지날 때, 상수 k의 값을 구하여라. [8점]
- **12** 다음 그림은 이차함수 $y=ax^2+bx+c$ 의 그래프이다. 상수 c의 값을 구하여라. [8점]

서술형

13 다음 그림과 같이 이차함수 $y=-x^2-4x+1$ 의 그래프가 y축과 만나는 점을 A, 그래프의 꼭짓점을 B, 원점을 O라 할 때, $\triangle AOB$ 의 넓이를 구하고, 그 과정을 서술하여라. [12점]

- **]4** 이차함수 $y=x^2-2ax+4a$ 의 최솟값을 b라 할 때, 다음 물음에 답하고, 그 과정을 서술하여라. [각 6점]
 - (1) b를 a에 관한 식으로 나타내어라.
 - (2) *b*의 최댓값을 구하여라.

수리 논술형

15 다음 제시문을 읽고, 직사각형의 모양의 창문의 넓이가 최대가 될 때 이 창문의 둘레의 길이를 구하고, 그 과정을 설명하여라.

[16점]

오른쪽 그림은 빗변의 길이가 16m인 직각이등변삼각형 모양의 지붕 옆면에 내접하는 직사각형 모양의 창문을 그린 것이다.

20			
	중단원 종	크가 문제	
01 5	02 ①	03 ③	04 2
05 4	06 4	07 ⑤	082
09 4	10 18	11 -5	
$12\frac{21}{5}$	13~15 풀	이 참조	

01 평가 기준 $y=ax^2+q$ 꼴인 이차함수의 그래프의 특징을 이해하고 있는가?

풀이 (5) 이차함수 $y=3x^2-4$ 의 그래프는 $y=3x^2$ 의 그래프를 y축의 방향으로 -4만큼 평행이동한 그래프이다

72 평가 기준 이차함수의 평행이동을 이해하고 있는가?

$${\Xi}$$
0| $y=-2x^2+4x+1=-2(x^2-2x+1)+3$
= $-2(x-1)^2+3$

이므로 $y=-2x^2$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 3만큼 평행이동한 것이다.

즉,
$$a=1$$
, $b=3$ 이므로 $ab=1\times 3=3$ 이다.

03 평가 기준 이차함수의 그래프를 평행이동했을 때, 완전히 포 개어지는 이차함수의 그래프를 찾을 수 있는가?

풀이 이차함수 $y=5x^2$ 의 그래프를 평행이동하여 완전히 포 개어지려면 이차항의 계수가 같아야 한다.

그런데 ③ $y=20x-5x^2$ 은 이차항의 계수가 -5이므로 $y=5x^2$ 의 그래프를 평행이동하여 포갤 수 없다.

(4 평가 기준 이차함수의 식을 구하고, 지나는 점을 구할 수 있는가?

置の
$$y=x^2+8x+k$$

= $x^2+8x+16-16+k$
= $(x+4)^2-16+k$

이고. 그래프의 꼭짓점의 y좌표가 -7이므로

$$-16+k=-7$$

k=9

따라서 이차함수는 $y=x^2+8x+9$ 이므로 주어진 점 중에서 그래프 위의 점은 2(-1,2)이다.

05 평가 기준 이차함수의 최솟값을 구할 수 있는가?

풀이 이차함수 $y=2x^2+ax+b$ 가 x=2일 때 최솟값 1을 가지므로 $y=2(x-2)^2+1$ $=2(x^2-4x+4)+1$ $=2x^2-8x+9$ 즉, a=-8, b=9이므로 a+b=-8+9=1이다.

06 평가 기준 $y=ax^2+bx+c$ 인 꼴의 이차함수의 그래프의 특징을 이해하고 있는가?

$$y=x^2-2x-5$$

= $x^2-2x+1-6$
= $(x-1)^2-6$

이때 꼭짓점의 좌표는 (1,-6)이고, y축과 만나는 점의 좌표는 (0,-5)이다.

따라서 주어진 설명 중 옳지 않은 것은 ④이다.

07 평가 기준 이차함수의 최댓값과 최솟값을 구할 수 있는가? 풀이 $y=-x^2+5$ 는 x=0일 때, 최댓값 5를 가지므로 m=5 또한 $y=(x-2)^2$ 은 x=2일 때, 최솟값 0을 가지므로 n=0 따라서 m-n=5-0=5이다.

08 평가 기준 이차함수의 그래프를 보고 각 계수의 부호를 알수 있는가?

풀이 아래로 볼록하므로 a>0 (꼭짓점의 x좌표)>0이므로 b>0 (꼭짓점의 y좌표)<0이므로 c<0

09 평가 기준 실생활 문제에서 이차함수의 최댓값을 구할 수 있는가?

이므로 3초 후에 공의 최고 높이는 45m이다.

10 평가 기준 이차함수의 최댓값을 구할 수 있는가?

이므로 그래프는 오른쪽과 같다. x=2일 때, 최댓값 9를 가지 므로

a=2, b=9

따라서 ab=18이다.

11 평가 기준 이차함수의 꼭짓점의 좌표를 구하고, 이 꼭짓점의 좌표를 일차함수에 대입하여 미지수를 구할 수 있는가?

풀0|
$$y=-x^2-10x-25$$

= $-(x^2+10x+25)$
= $-(x+5)^2$

이때 꼭짓점의 좌표는 (-5, 0)이고, 일차함수 y=-x+k의 그래프가 점 (-5, 0)을 지나므로

0 = 5 + k

따라서 k=-5이다.

12 평가 기준 이차함수의 그래프를 보고 이차함수의 식을 구할 수 있는가?

풀이 이차함수의 그래프가 x=2일 때, 최댓값 5를 가지므로 $y=a(x-2)^2+5$

점 (-3,0)을 지나므로 0=25a+5

$$a = -\frac{1}{5}$$

$$y = -\frac{1}{5}(x-2)^{2} + 5 = -\frac{1}{5}(x^{2} - 4x + 4) + 5$$

$$= -\frac{1}{5}x^{2} + \frac{4}{5}x - \frac{4}{5} + 5$$

$$= -\frac{1}{5}x^{2} + \frac{4}{5}x + \frac{21}{5}$$

따라서 $c=\frac{21}{5}$ 이다.

13 평가 기준 이차함수의 그래프 위의 세 점을 이은 삼각형의 넓이를 구할 수 있는가?

풀이 그래프가 y축과 만나는 점 A의 좌표는 (0, 1)이다.

$$y = -x^{2}-4x+1$$

$$= -(x^{2}+4x+4)+5$$

$$= -(x+2)^{2}+5$$

이므로 그래프의 꼭짓점 B의 좌표는 (−2, 5)이다. ····· ② 이때 점 B에서 y축에 내린 수선의 발을 H라 하면

$$\triangle AOB = \frac{1}{2} \times \overline{AO} \times \overline{BH} = \frac{1}{2} \times 1 \times 2 = 1$$
 응

단계 배점 채점 기준 2점 점 A의 좌표를 구한다. 점 B의 좌표를 구한다. 6점 △AOB의 넓이를 구한다. 4점

14 평가 기준 이처함수의 최댓값과 최솟값을 구할 수 있는가?

$$≡$$
0| (1) $y=x^2-2ax+4a=(x^2-2ax+a^2)-a^2+4a$
= $(x-a)^2-a^2+4a$

이므로 x=a일 때. 최솟값은 $-a^2+4a$ 이다.

따라서 $b=-a^2+4a$ 이다.

(2)
$$b = -a^2 + 4a = -(a^2 - 4a + 4) + 4$$

= $-(a-2)^2 + 4$

이므로 b = a = 2일 때, 최댓값 4를 가진다.

단계	채점 기준	배점
0	주어진 함수의 최솟값 b 를 a 에 관한 식으로 나타낸다.	6점
2	b의 최댓값을 구한다.	6점

15 평가 기준 실생활에서 이차함수의 최댓값을 구할 수 있는가?

풀이 오른쪽 그림에서 △ABC 가 직각이등변삼각형이므로 △DBE, △GFC도 직각이등변삼

각형이다. 이때. $\overline{\mathrm{BE}} = x$ 라 하면 $\overline{\text{DE}} = \overline{\text{GF}} = \overline{\text{FC}} = x$ ਾਂਡ

..... 1

..... 👍

 $\overline{EF} = 16 - 2x$

따라서 창문의 넓이를 y라 하면

 $y = (16-2x)x = -2x^2 + 16x = -2(x-4)^2 + 32 \cdots$

이므로 x=4일 때 최댓값 32를 가진다.

그러므로 구하는 직사각형의 둘레의 길이는 24m이다.

단계 배점 채점 기준 $\overline{\text{EF}}$ $\overline{\text{GF}}$ = x01 대한 식으로 나타낸다 5점 직사각형의 넓이에 대한 식을 구한다. 4점 최댓값을 구한다. 5점 직사각형의 둘레의 길이를 구한다. 2점

단원 마무리하다

평가의 주안점 이차함수가 되는 조건을 알 수 있다.

이차함수가 되기 위해서는 이차항의 계수가 0이 아니어야 하므로

 $4 + m \neq 0$

따라서 $m \neq -4$ 이다

2 평가의 주안점 이차함수의 평행이동을 이해할 수 있다.

풀이 이차함수 $y=-2x^2$ 의 그래프를 x축의 방향으로 m만 a=0 방향으로 a=0만 평행이동하면

$$y = -2(x-m)^2 + n$$
 ①
$$y = -2x^2 + 12x + 9$$

$$= -2(x^2 - 6x) + 9$$

$$= -2(x^2 - 6x + 9) + 27$$

$$= -2(x-3)^2 + 27$$
 ②
이므로 ①, ②를 비교하면

3 평가의 주안점 이차함수의 그래프를 보고 이차함수의 식을 구할 수 있다.

풀이 이차함수 $y=ax^2+bx+c$ 의 꼭짓점의 좌표가 (2,6)이 므로

$$y=a(x-2)^2+6$$
 ······ ① 그래프가 점 $(5,0)$ 을 지나므로

 $0=a(5-2)^2+6$

m=3, n=27

이다.

$$9a = -6, 3a = -2$$

따라서 $a=-\frac{2}{3}$ 이다.

 $a = -\frac{2}{3}$ 를 ①에 대입하면

$$y = -\frac{2}{3}(x-2)^{2} + 6$$

$$= -\frac{2}{3}x^{2} + \frac{8}{3}x - \frac{8}{3} + 6$$

$$= -\frac{2}{3}x^{2} + \frac{8}{3}x + \frac{10}{3}$$

따라서 $b=\frac{8}{3}$, $c=\frac{10}{3}$ 이다.

147쪽

단원 마무리하기

- ••• 함수 $y=4x^2-mx(3-x)+2$ 가 이차함수가 되기 위한 상수 m의 조건을 구하여라
- ••• 2 이자함수 $y=-2x^2$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동했더니 $y=-2x^2+12x+9$ 가 되었다. m, n의 값을 구하여라.
- 이처함수 y=ax²+bx+c의 그래프가 오른쪽 그림과 같을 때,
 세 상수 a, b, c의 값을 구하여라.

- ••• 4 이처함수 $y=-3x^2+bx+c$ 의 그래프가 두 점 (-1,-8), (2,1)을 지날 때, 이 함수의 최뎃값을 구하고, 그 과정을 서술하여라.
- ••• 5 오른쪽 그림과 같이 폭이 20cm인 종이의 양쪽을 같은 높이 .xcm만큼 직각으로 접어 올렸다. 단면 ABCD의 넓이가 최대가 되도록 하려고 할 때, x의 값을 구하여라.

오른쪽 그림과 같이 이차함수 y=ax²의 그래프가 정사각형 ABCD의
 둘레 위의 서로 다른 두 점에서 만날 때, 상수 a의 값의 범위를 구하여라.

단원 마무리하기 147

4 평가의 주안점 두 점을 지나는 이차함수의 식을 구하고, 최댓 값을 구할 수 있다.

풀이 이차함수의 그래프가 점 (-1, -8)을 지나므로

$$-8 = -3 - b + c$$

$$-b+c=-5$$
 (1)

이차함수의 그래프가 점 (2 1)을 지나므로

1 = -12 + 2b + c

2b+c=13 ②

..... 1

①. ②를 연립하여 풀면

b=6, c=1

..... 2

이차함수 $y = -3x^2 + 6x + 1$ 이므로

$$y = -3x^2 + 6x + 1$$

$$=-3(x^2-2x+1)+4$$

$$=-3(x-1)^2+4$$

.....

따라서 x=1일 때, 최댓값은 4이다.

단계	채점 기준	배점 비율	
0	두 점 $(-1, -8)$, $(2, 1)$ 을 지남을 이용하여 두 개의 식을 세운다.	각 20%	
2	b, c 의 값을 구한다.	각 10%	
3	$y=a(x-p)^2+q$ 의 꼴로 식을 변형한다.	30%	
4	최댓값을 구한다.	10%	

이차함수 $y=3x^2+12x+2$ 의 꼭짓점의 좌표가 점 (1, 2)를 지나는 직선 y=ax+b 위에 있다. 이 직선 이 그래프인 일차함수의 식을 구하고, 그 과정을 서술하여라.

•••• 8 오른쪽 그림과 같이 이차함수 $y=-x^2+x+6$ 의 그래프에서 y좌표가 같은 두 점 A, B를 잡고, 두 점 A, B에서 x축 위에 내린 수선의 발을 각각 C, D라 하자. □ACDB의 둘레의 길이의 최댓값을 구하여라.

••• 9 오른쪽 그림과 같이 두 이차함수의 그래프

 $y = -x^2 + 4x$, $y = -x^2 + 4x + 4$

와 y축 및 두 포물선의 축으로 둘러싸인 부분의 넓이를 구하여라.

문제 해경

••• 10 어느 가게에서는 호떡 한 개의 가격이 1000원일 때 하루 동안의 호떡 판 매량이 200개였는데, 호떡 한 개의 가격을 100원씩 올릴 때마다 판매량이 10개씩 줄어든다고 한다. 호떡 한 개의 가격을 얼마만큼 올렸을 때, 하루 동안 호떡의 총 판매 금액이 최대가 되는지 구하여라

148 Ⅲ. 이차함수

5 평가의 주안점 실생활에서 이차함수를 나타내는 식을 만들고 그 함수의 최댓값을 구할 수 있다.

풀이 단면의 세로의 길이가 xcm이므로 가로의 길이는 (20-2x)cm이고. 단면의 넓이를 ycm²라 하면

$$y = x(20-2x) = 20x-2x^2$$

$$=-2(x^2-10x)$$

$$=-2(x^2-10x+25)+50$$

$$=-2(x-5)^2+50$$

따라서 x=5일 때 단면의 넓이는 최대가 된다.

6 평가의 주안점 이차항의 계수와 이차함수의 그래프의 폭 사이 의 관계를 이해할 수 있다.

풀이 $y=ax^2$ 의 그래프가 정사각형 ABCD의 둘레 위의 그래 프와 서로 다른 두 점에서 만나기 위해서는 그래프가 점 B를 지날 때보다는 폭이 좁고. 점 D를 지날 때보다 폭이 넓어야 하다

(i) 점
$$\mathrm{B}(-5,2)$$
를 지날 때, a 의 값을 구하면

$$2=a(-5)^2$$
, $25a=2$ 이므로 $a=\frac{2}{25}$ 이다.

(ii) 점 D(-3, 4)를 지날 때, a의 값을 구하면

$$4=a(-3)^2$$
, $9a=4$ 이므로 $a=\frac{4}{9}$ 이다.

(i), (ii)에서 상수 a의 값의 범위는 $\frac{2}{25} < a < \frac{4}{9}$ 이다.

7 평가의 주안점 이차함수의 그래프의 꼭짓점의 좌표를 구하는 활용 문제를 해결할 수 있다.

풀이
$$y=3x^2+12x+2$$

$$=3(x^2+4x+4)-10$$

$$=3(x+2)^2-10$$

따라서 꼭짓점의 좌표는 (-2, -10)이고.

꼭짓점의 좌표가 y=ax+b의 그래프 위의 점이므로

$$-10 = -2a + b$$

.....(2)

또 직선이 (1, 2)를 지나므로 2=a+b

(2)-(1)을 하면 3a=12이므로 a=4

..... 🙆

a=4를 ②에 대입하면 b=-2

......

따라서 구하는 일차함수의 식은 y=4x-2이다.

단계	채점 기준	배점 비율	
0	$y=3x^2+12x+2$ 의 꼭짓점의 좌표를 구한다.	30%	
2	꼭짓점과 점 $(1, 2)$ 를 이용하여 a, b 의 값을 구한다.	50%	
3	일차함수의 식을 구한다.	20%	

8 평가의 주안점 이차함수의 그래프에서 최댓값을 구하는 활용 문제를 해결할 수 있다.

물이
$$y = -x^2 + x + 6$$

$$=-\left(x^2-x+\frac{1}{4}\right)+\frac{25}{4}$$

$$=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}$$

이므로 꼭짓점의 좌표는 $\left(\frac{1}{2}, \frac{25}{4}\right)$ 이다.

점 B의 좌표를 $(a, -a^2+a+6)$ 이라 하면

점 A의 좌표는 $(1-a, -a^2+a+6)$ 이다.

따라서 □ACDB의 둘레의 길이를 y라 하면

$$y=2\{(2a-1)+(-a^2+a+6)\}$$

$$=2(-a^2+3a+5)$$

$$=-2(a^2-3a)+10$$

$$=-2\left(a^2-3a+\frac{9}{4}\right)+10+\frac{9}{2}$$

$$=-2\left(a-\frac{3}{2}\right)^2+\frac{29}{2}$$

이므로 $a=\frac{3}{2}$ 일 때, \square ACDB의 둘레의 길이의 최댓값은 $\frac{29}{2}$ 이다

평가의 주안점 이차함수의 그래프의 평행이동을 활용한 문제를 해결할 수 있다.

풀이 색칠한 부분의 넓이는 오른쪽 그림과 같이 $y=-x^2+4x+4$ 의 그래 프를 y축의 방향으로 -4만큼 평행이동했을 때 만들어지는 \Box OABC의 넓이와 같다.

$$y = -x^2 + 4x$$

$$=-(x^2-4x+4)+4$$

$$=-(x-2)^2+4$$

그러므로 점 A의 좌표는 (2, 0), 점 B의 좌표는 (2, 4),

점 C의 좌표는 (0, 4)이다.

따라서 \square OABC의 넓이는 $2 \times 4 = 8$ 이다.

10 평가의 주안점 실생활에서 이차함수를 나타내는 식을 만들고, 그 함수의 최댓값을 구할 수 있다.

풀이 호떡의 한 개의 가격을 100x원 올리면 호떡 한 개의 가격은 (1000+100x)원이고, 판매량은 (200-10x)개이다. 이때 총 판매 금액을 y원이라 하면

$$y = (1000 + 100x)(200 - 10x)$$

$$=-1000x^2+10000x+200000$$

$$=-1000(x^2-10x+25)+225000$$

$$=-1000(x-5)^2+225000$$

따라서 x=5일 때. 최댓값을 갖는다.

그러므로 호떡 한 개의 가격을 500원 올렸을 때, 호떡의 총 판매 금액이 최대가 된다.

♦ हेम्रड हे ला

지도상의 유의점 이 과제를 통해 학생들은 이차함수를 적절히 활용하여 실생활의 여러 가지 문제를 해결할 수 있는 능력을 기를 수 있도록 지도한다. 또한 이차함수가 활용되는 상황을 학생들 스스로 찾아서 토론하고, 발표하는 시간을 갖도록 한다.

풀이 (1) 신입 회원이 한 명일 경우 회비는

40000-1000=39000(원)이다.

- (2) 신입 회원이 한 명일 경우 이 수영장의 수입은 39000×21=819000(원)이다.
- (3) 표를 완성하면 다음과 같다.

신입 회원의 수(명)	1	2	3	4	5
회원들의 회비(원)	39000	38000	37000	36000	35000
수영장 수입(원)	819000	836000	851000	864000	875000

(4) y를 x에 대한 식으로 나타내면

$$y = (40000 - 1000x)(20 + x)$$

 $=-1000x^2+20000x+800000$

이다.

(5) 컴퓨터 프로그램을 이용하여 이차함수의 그래프를 그리면 다음 과 같다.

(6) y = (40000 - 1000x)(20 + x)

 $=-1000x^2+20000x+800000$

 $=-1000(x^2-20x+100)+900000$

 $=-1000(x-10)^2+900000$

따라서 신입 회원의 수가 10명일 때, 수영장의 수입이 최대가 된다.

창의 · 인성 이차함수를 활용하여 실생활의 문제를 해결하는 과정을 통해 수학에 대한 흥미와 유용성을 느끼도록 한다.

우리 생활 주변에서는 포물선 모양의 사물을 자주 발견할 수 있다

전파를 탐지하는 접시 모양의 파라볼라 안테나, 매일 거리에서 보는 자동차의 헤 드라이트 등에서도 포물선 모양을 찾아볼 수 있다.

[그림 1]과 같이 포물선을 축을 중심으로 회전시켜 만들어진 곡면을 포물면이라 한다. 이 포물면에 는 [그림 2]와 같이 축과 평행하게 들어오는 빛이나 전파가 포물면에 반사된 후 한 점에 모이고, 반대로 그 점에서 나온 빛이 포물면에 반사되어 평행하게 나아가는 독특한 성질이 있다.

이 성질을 이용하여 만든 포물면 모양인 전파 망원경, 위성 안테나는 멀리서 오는 빛이나 전파를 뚜렷하게 수신할 수 있고, 숲속의 새소리를 듣기 위해 사용하는 포물면 모양의 집음기는 소리를 효과적으로 모을 수 있다 또 손전등이나 자돗차의 전조등의 한 점에서 나온 빛은 포물면에 반사된 후 축에 평행하게 나아 가므로 빛을 멀리까지 보낼 수 있다.

수학으로 세상 읽기 151

낱·말·맞·히·기

1. $(a+b)^2$, $3(x+2y)^2$ 과 같이 다항식의 제곱으로 된 식이나 다항식의 제곱에 상수를 곱한 식

3, 기호 √ 4. 이차방정식의 두 근이 중복되어 서로 같을 때, 이 근

다음 가로와 세로의 열쇠를 읽고, 알맞은 용어를 아래 표에 써넣어라.

을 주어진 이차방정식의 🔲 이라고 한다. 7, 모든 항을 좌변으로 이항하여 정리한 식이

(x에 대한 이차식)=0의 꼴로 나타낼 수 있는 방정식 8. 하나의 다항식을 두 개 이상의 인수의 곱으로 나타내 는 것

10, 실수 중 유리수가 아닌 수

150쪽

11. 가장 좋고 훌륭함. 또한 그러한 일

 제곱하여 a가 되는 수를 a의 □□□이라고 한다. 이차방정식 ax²+bx+c=0의 근은

 $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ (단, $b^2-4ac\geq 0$)

이다. 이를 이차방정식의 □□□□이라고 한다.

6. y=3x-1은 일차함수이고, $y=-x^2+4x+3$ 은 ____이다.

9. 분수의 분모가 근호를 포함한 무리수일 때, 분모와 분자에 0이 아닌 같은 수를 곱하여 분모를 유리수로 고치는 것

11. 이차함수 $y = -3x^2 + 5$ 의 그래프의 최댓값은 5이고, □□□은 없다.

12, 이차함수 $y=ax^2$ 의 그래프와 같은 모양의 곡선을 □□□ 이라고 한다.

150 표. 이차함수

수하

수학으로 세상 읽기

포물면의 축과 평행하게 들어오는 빛이나 전파는 포물면의 초 점에 모이고. 초점에서 나온 빛은 포물면에 반사되어 평행하게 나 아간다. 따라서 포물면 모양을 하고 있는 파라볼라 안테나. 전파 망원경, 자동차의 전조등, 집음기, 손전등 등은 포물면의 성질이 활용되고 있다.

위와 같이 포물선(포물면)의 성질은 우리 생활 주변에서 유용 하게 활용되고 있으므로 그 예들을 찾아보고. 그 원리를 생각해 보도록 한다.