

Redes de Computadores II EEL 879

Parte IV Roteamento Inter-Domínio

Luís Henrique M. K. Costa

luish@gta.ufrj.br

Universidade Federal do Rio de Janeiro -PEE/COPPE P.O. Box 68504 - CEP 21945-970 - Rio de Janeiro - RJ Brasil - http://www.gta.ufrj.br

Organização da Internet

- **o** 1980
 - Arpanet + enlaces de satélite (Satnet)
 - Uma única rede (rodando GGP)
- Crescimento da rede
 - Atualizações de topologia mais frequentes
 - Diferentes implementações do GGP
 - Implantação de novas versões cada vez mais difícil
- Divisão em sistemas autônomos (AS Autonomous System)
 - Unidade que contém redes e roteadores sob administração comum
 - AS backbone Arpanet + Satnet
 - Outras redes ASs stub
 - Comunicação com outros ASs através do AS backbone
- EGP (Exterior Gateway Protocol)
 - Projetado para troca de informação de roteamento entre os ASs

Sistemas Autônomos

"conjunto de roteadores e redes sob a mesma administração"

- Não há limites rígidos
 - 1 roteador conectado à Internet
 - Rede corporativa unindo várias redes locais da empresa, através de um backbone corporativo
 - Conjunto de clientes servidos por um ISP (*Internet Service Provider*)
- Do ponto de vista do roteamento
 - "todas as partes de um AS devem permanecer conectadas"
 - Todos os roteadores de um AS devem estar conectados
 - Redes que dependem do AS backbone para se conectar n\u00e3o constituem um AS
 - Os roteadores de um AS trocam informação para manter conectividade
 - Protocolo de roteamento

Sistemas Autônomos

- Roteadores dentro de um AS
 - Gateways internos (interior gateways)
 - Conectados através de um IGP (Interior Gateway Protocol)
 - Ex. RIP, OSPF, IGRP, IS-IS
- Cada AS é identificado por um número de AS de 32 bits (antes 16 bits)
 - Escrito na forma decimal
 - Atribuído pelas autoridades de numeração da Internet
 - IANA (Internet Assigned Numbers Authority)

Troca de Informação de Roteamento

- Divisão da Internet em ASs
 - Administração de um número menor de roteadores por rede
- Mas conectividade global deve ser mantida
 - As entradas de roteamento de cada AS devem cobrir todos os destinos da Internet
- Dentro de um AS, rotas conhecidas usando o IGP
- Informação sobre o mundo externo através de gateways externos
 - ➤ EGP (Exterior Gateway Protocol)

O Protocolo EGP

- Responsável pela troca de informação entre gateways externos
 - Informação de alcançabilidade ("reachability")
 - Conjunto de redes alcançáveis

- Os roteadores A e B utilizam EGP para listar as redes alcançáveis dentro dos AS X e Y
- A pode então anunciar estas redes dentro do AS X usando RIP ou OSPF, por exemplo
 - RIP: DV com entradas correspondentes às redes anunciadas por B
 - OSPF: LS com rotas externas

Funcionamento do EGP

• EGP:

> Troca de alcançabilidade entre dois *gateways* externos

Procedimentos

- Atribuição de vizinho ("neighbor acquisition")
 - Determina se dois gateways concordam em ser vizinhos
- Alcançabilidade de vizinho ("neighbor reachability")
 - Monitora o enlace entre dois gateways vizinhos
- Alcançabilidade de rede ("network reachability")
 - Organiza a troca de informação de alcançabilidade

Mensagens do EGP

- Transportadas sobre o IP (protocol number = 8)
- Cabeçalho comum

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

EGP Version	Туре	Code	Info	
Checksum		AS Number		
Sequence Number		data		

- O Version − 2
- AS Number identificação do Sistema Autônomo
- O Sequence number nº de sequência
 - Valores diferentes de acordo com o tipo de mensagem
 - > Em geral, relacionam perguntas a respostas
- Checksum idêntico ao IP

Mensagens do EGP

→ Type – sub-protocolo

- > 1, 2 procedimento de alcançabilidade de rede
- > 3 procedimento de atribuição de vizinho
- > 5 procedimento de alcançabilidade de vizinho
- > 8 mensagens de erro

Code

Identificação de um tipo de mensagem dentro de um subprotocolo

Info

- Informação adicional
 - p. ex. motivos de eventos

Mensagens de Erro

Enviadas a qualquer momento

EGP Version	Type = 8	Code = 0	Unused
Checksum		AS Number	
Sequence Number		Reason	

Error Message Header (first three 32-bit words of EGP header)

0	Unspecified
1	Bad EGP checksum
2	Bad IP Source address in NR Poll or Response
3	Undefined EGP Type or Code
4	Received poll from non-neighbor
5	Received excess unsolicited NR message
6	Received excess poll
7	Erroneous counts in received NR message
8	No response received to NR poll

- o nº de seq. arbitrário escolhido pelo emissor
- \circ Code = 0
- Reason especifica o erro
- Os primeiros 12 bytes do pacote que gerou o erro são repetidos
 - Tratamento do erro pode se basear neste "cabeçalho"

Procedimento de Atribuição de Vizinho

Ser vizinho EGP

- Eventualmente transportar tráfego proveniente do AS vizinho
- Acordo formal necessário
- Configuração explícita
- Implementação do EGP
 - Parâmetro: lista de vizinhos potenciais
 - Um roteador só aceita se tornar vizinho de outro roteador em sua lista

Atribuição

- 2-way handshake
 - Roteador envia mensagem "neighbor acquisition request"
 - Vizinho envia mensagem "neighbor acquisition reply"

Mensagem de Atribuição de Vizinho

Info field

Atribuição de Vizinho

- Se o roteador não aceita o vizinho
 - Envio de mensagem "refusal"
 - Motivo: campo info
- Se o roteador não recebe nem reply nem refusal
 - Pedidos podem ser repetidos (tipicamente a cada 30s)
 - » nº de seq. incrementado a cada pedido
 - Respostas (replies ou refusals) devem repetir o mesmo nº de seq. do pedido
 - Descarte de outras respostas
- Roteador pode deixar de ser vizinho
 - Envio de "neighbor cease message"
 - Motivo: campo info
 - Repetidas até a recepção de ack com nº de seq. correspondente

Alcançabilidade de Vizinho

Neighbor Reachability (NR) messages (tipo 5)

0 0 1 2 3 4 5 6 7	1 8 9 0 1 2 3 4 5	2 · 6 7 8 9 0 1 2 3	3 4 5 6 7 8 9 0 1
EGP Version	Type = 5	Code = 0 / 1	Status
Checl	ksum	AS No	ımber
Sequence	Number		

- Ode: 0 − Hello, 1 IHU (I Heard You)
 - > 1 IHU para cada Hello, com nº de seqüência correspondente
- Info indicação de status (assimetria possível, status 1)

0	No status given
1	You appear reachable to me
2	You appear unreachable to me due to neighbor reachability protocol
3	You appear unreachable to me due to network reachability information
4	You appear unreachable to me due to problems with my network interface

Alcançabilidade de Vizinho

Escolha do período de Hellos

- > NR Hello Interval define o intervalo *mínimo* entre os hellos
 - Se o vizinho envia mais hellos dentro do NR HI, pode-se n\u00e3o responder a todos
 - Como consequência, 1 par Hello/IHU com sucesso não significa enlace ok, 1 falha não é suficiente para declarar enlace ruim
- Além disso, deve-se evitar oscilações (enlace up/down)

Dual threshold procedure

- Alcançável >> Inalcançável
 - Menos que i IHUs recebidos em resposta a n Hellos
- Inalcançável >> Alcançável
 - Pelo menos j IHUs recebidos em resposta a m Hellos
- \rightarrow m > n, j/m > i/n
 - RFC911: i=1 n=4 j=3 m=4

Alcançabilidade de Redes

- Troca de lista de redes alcançáveis por cada vizinho
- Baseada em polling
 - A intervalos regulares, o roteador consulta seu vizinho sobre sua lista de redes alcançáveis
 - Intervalo mínimo entre consultas dado pelo parâmetro NR poll interval (da mensagem de atribuição)

0	1	2	3	
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3	4 5 6 7 8 9 0 1	
EGP Version	Type = 2	Code = 0	Unused	
Checksum		AS Number		
Sequence Number		Unused		
ID Source Notwork				

Alcançabilidade de Redes

- Mensagens de consulta (polling)
 - ➤ Tipo = 2, Code = 0, campo info não utilizado
 - » nº de seq. a ser repetido nas respostas
 - IP source network prefixo da rede à qual os dois parceiros estão conectados
- Mensagens de alcançabilidade (reachability)
 - ➤ Tipo = 1, Code = 0
 - Enviada alguns segundos após recepção da msg. de consulta
 - Repete seu nº de seq.
- Oconsulta é repetida, com mesmo nº de seq., se não houve resposta
- O respondedor deve repetir a resposta
- Se após n consultas, não houve resposta
 - > Não há redes alcançáveis a partir deste vizinho

Mensagens de Alcançabilidade

- As mensagens de alcançabilidade contêm
 - Cabeçalho EGP
 - ➤ IP source network idêntico ao da mensagem de consulta
 - Lista de gateways e redes alcançáveis
 - Um segmento Ethernet pode conter vários roteadores, de vários Sistemas Autônomos

Exemplo

- Se relações de vizinhos independentes
 - 9 conexões EGP, desperdício de recursos
- Uma conexão é suficiente
 - C, um gateway externo do AS X, conhece as redes alcançáveis a partir dos outros roteadores, A e B
 - Basta uma conexão EGP entre 1 roteador de cada AS
- No entanto, não basta dar a lista de redes alcançáveis
 - Ou todos os destinos dentro do AS X seriam alcançados através do roteador C
- Portanto, mensagens carregam associações entre gateways e redes
- Terminologia: A e B são vizinhos indiretos de C

Mensagem de Alcançabilidade

EGP Version Type Code U 0

Checksum AS Number

Sequence Number # of Int. Gtws = x # of Ext. Gtws = y

IP Source Network

-z times-

Distance 2	# of Networks	
Net 1,2,1		
Net 1,2,2		

_____1, 2 or 3 bytes_____

Mensagem de Alcançabilidade

- Número de gateways (externos + internos)
 - Modelo hierárquico: só o core anuncia gateways externos
- Cada lista
 - Parte estação do endereço do roteador na rede de conexão
 - #Distances sub-listas
 - Redes alcançáveis agrupadas por distância
 - Distâncias definidas por convenções
 - EGP só define que 255 significa inalcançável
- Mensagens enviadas em resposta a consultas (polls)
 - ➤ Mesmo nº de seq., campo info não utilizado
 - Intervalo típico de consultas ~ 2 min.
 - Um roteador pode enviar (no máximo) 1 mensagem de resposta não solicitada
 - U bit = 1 (bit mais significativo do campo info)

Anúncio de Destinos no EGP

- Anúncio do destino x supõe
 - Existe caminho para o destino x dentro do AS
 - O AS concorda em transportar dados para x usando este caminho
- Implicações
 - Maiores custos em redes pagas por volume de tráfego
 - O tráfego externo compete pelos mesmos recursos que o tráfego interno
- O Deve-se tomar cuidado com o que se anuncia...

Exemplo

ASs X e Y conectados ao provedor Z

- X e Y pagam Z pelo transporte de seus pacotes
- Suponha que X e Y sejam organizações "próximas"
 - Podem decidir ter uma conexão direta ("backdoor")
- Anúncios
 - E deve anunciar para F alcançabilidade das redes dentro de X
 - F deve anunciar para E alcançabilidade das redes dentro de Y

Exemplo

- Rotas aprendidas são propagadas pelos IGPs
- A é capaz de alcançar redes em X e Y
 - Mas A não deve anunciá-las
 - Não faz sentido A anunciar rotas para Y, o objetivo não é X se tornar uma rede de trânsito...
- Para funcionar, deve-se implementar duas listas
 - Redes que podem ser servidas
 - Arquivo de configuração (lista pode ser por vizinho)
 - Redes que podem ser alcançadas
 - Obtidas do IGP

Cálculo de Distâncias

- Métrica do EGP: inteiro de 0 a 255
 - ➤ EGP apenas especifica que 255 = inalcançável
- Utilização da métrica
 - Sinalização de rotas "preferenciais"

- Suponha AB enlace principal, CD enlace de backup
- A distância anunciada por C deve ser maior que a anunciada por A

Outro Exemplo

- Rotas em Y
 - Anunciadas por C para D
 - Anunciadas por B para A
 - Anunciadas por F para E (conexão backdoor)
- Para que o backdoor funcione
 - Distância anunciada por F < distância anunciada por B
 - Para tanto
 - Anuncia-se distâncias maiores por C que por F
 - E espera-se que Z não anunciará através de B distâncias menores que as aprendidas por D...

Tabelas de Roteamento

- Para que uma rota externa seja usada pelo IGP
 - Procedimento de atribuição de vizinho realizado com sucesso
 - Vizinho deve estar alcançável
 - Vizinho deve ter anunciado o destino
 - O roteador local deve ter determinado que não existe outra rota melhor para o destino
- Quarta condição
 - Várias rotas podem existir para o destino
 - > A de menor distância deve ser escolhida...

Exemplo

- Simples se rotas chegam no mesmo roteador
 - Basta pegar a rota de menor métrica
- Se não, distâncias EGP devem ser traduzidas na métrica do IGP para garantir a melhor escolha
 - Tradução depende do IGP

Rotas Externas no IGP

OSPF

- External link state records
- ➤ E bit = 1 métrica externa, maior que qualquer valor interno
- LSs propagados a todos os roteadores, decisão baseada na distância anunciada pelo EGP

O RIP

- ▶ Métrica 0 a 15
 - Problemas para traduzir métricas externas em número de saltos
- Para garantir preferência entre rota primária e secundária
 - métrica (rota primária) < métrica (rota secundária)
 - métrica = métrica RIP + métrica inicial derivada do EGP
- Para garantir a inequação
 - Métrica inicial derivada do EGP = diâmetro do AS para caminho secundário
 - Porém esta métrica deve ser menor que 8, ou o mecanismo não funciona (rota secundária daria inalcançável a partir de alguns roteadores)

Topologia da Rede

- EGP "parece" com protocolos de vetores de distância
 - Mas não há regras bem especificadas para cálculo de distâncias
 - Convergência lenta
- Distâncias anunciadas pelo EGP
 - Combinam preferências e políticas
- Exemplo do backbone NSFnet
 - > 128 rede alcançável
 - > 255 rede inalcançável

Topologia da Rede

- Em geral, um roteador não anuncia distância menor que a aprendida do seu vizinho
 - Apenas um consenso, não existe a regra no EGP
- Necessidade de isolamento de mudanças de topologia
 - Mudanças de métricas em um AS não são anunciadas em geral, apenas quando há perda de conectividade
- \circ Infinito = 255
 - Convergência seria lenta em caso de loop
- Além disso, updates enviados após consultas (a cada 2 min.)
 - > 2 min. x 255 > 8 horas...

Topologia da Rede

Conclusão

- EGP não foi projetado como protocolo de roteamento em geral, apenas como "anunciador de alcançabilidades"
- Topologia
 - ASs stub conectados a um backbone (Arpanet)
 - Pode funcionar se a topologia for uma árvore
 - NSFnet
 - Redes regionais
 - Redes universitárias e de pesquisa
 - Podem haver conexões backdoor, apenas bilaterais
- Com o aumento da Internet, as limitações do EGP ficaram evidentes...

Envio de Informação Falsa

- EGP: um gateway externo malicioso pode injetar informação falsa na rede
 - Ex. Roteador no AS X anuncia rotas para redes do AS Y, com distâncias menores que as anunciadas por Y
 - Rotas ineficientes
 - Buracos negros
- Não há diferença entre um anúncio correto e outro com alcançabilidade em excesso
- RFC-1096 (`89)
 - Diretivas para administração e configuração dos roteadores EGP
 - P. ex., roteadores da NSFnet (backbone) devem possuir listas de ASs e redes "configuradas"

Roteamento por Políticas

- Ex. Rede com dois acessos à Internet
 - Um pelo backbone NSFnet
 - Outro por um provedor comercial
 - Ideal: utilizar provedor comercial para destinos em parceiros comerciais, utilizar a NSFnet para destinos em parceiros acadêmicos
- Rotas são recebidas pelas duas redes...
 - Não se deve acreditar nas distâncias EGP
- Solução: configuração manual
 - Rota para destinos acadêmicos será sempre pela NSFnet, não importa as métricas anunciadas pelo EGP

Outras Limitações do EGP

- Loops de roteamento
 - > EGP foi projetado para 1 backbone e topologia em árvore...
- Tamanho de mensagens e fragmentação
 - Listas completas são transportadas nas mensagens EGP
 - Com listas cada vez maiores, a MTU de muitas redes foi ultrapassada...
 - Perda de 1 fragmento = perda da mensagem...
- A escolha foi desenvolver o BGP, substituto do EGP

Border Gateway Protocol (BGP)

- No início...
 - 8 bits de rede, 24 bits de estações...
 - Mas a Internet logo iria ultrapassar as 256 redes...
 - Divisão em classes A, B e C
 - Redes grandes, médias e pequenas poderiam ser criadas
- 1991: mais problemas por vir...
 - Penúria de endereços de Classe B
 - Explosão das tabelas de roteamento
- Remédio: CIDR (Classless Inter-Domain Routing)

Penúria de Redes Classe B

- O Classe A − 128 redes, 16.777.214 estações
- O Classe B − 16.384 redes, 65.534 estações
- O Classe C − 2.097.152 redes, 254 estações
- Classe A muito escassos...
- Classe C muito pequeno...
- Classe B melhor escolha na maioria das vezes
- Em 1994, metade dos Classe B já haviam sido alocados...

Explosão das Tabelas de Roteamento

- Problemas observados
 - > IGP que enviava tabelas completas, periodicamente
 - Aumento da tabela de roteamento
 - Mensagens fragmentadas
 - Roteadores com buffer de 4 pacotes
 - Realocação do buffer não era rápida o suficiente
 - Tabela de roteamento com próx. salto para todos os destinos
 - Implementada em memória rápida nas próprias interfaces de rede
 - Memória rápida, mas escassa...
 - Na época, havia 2.000 redes, o projeto comportava 10.000 entradas...
 - Sistemas modernos usam solução hierárquica
 - Rotas usadas mais frequentemente são guardadas em cache
 - Tabela completa na memória principal e calculada pelo processador central
 - No entanto, o problema persiste...
 - BGP: envio diferencial, tamanho da tabela proporcional ao produto do número de destinos pelo número de vizinhos

Endereços Sem Classe (CIDR)

- Muitas organizações possuem mais de 256 estações, mas muito poucas mais de alguns milhares...
 - > Em vez de uma Classe B, alocar várias Classes C
- Fornecimento de endereços
 - Existem dois milhões de Classe C
 - Classe B fornecido
 - Se no mínimo 32 redes, com no mínimo 4.092 estações
 - Classe A fornecido em casos raros
 - E apenas pelo IANA, as autoridades regionais não o distribuem
- Distribuição de n Classes C
 - Resolve a penúria de Classes B
 - Mas deve ser feita com cuidado, para não piorar a explosão das tabelas
 - Classes C "contíguos" devem ser alocados
 - Criam "super-redes"
 - Agregação por regiões pode ser vislumbrada

Vetores de Caminho

Inter-domínio

- Nem sempre o caminho mais curto é o melhor
- Distâncias representam preferências por determinadas rotas
 - Convergência do Bellman-Ford não pode ser garantida
 - Destinos inalcançáveis poderiam implementar split horizon, mas não há como contar até o infinito para prevenir loops
- Estados de enlace
 - Tentado no protocolo IDPR (Inter-Domain Policy Routing)
 - Problemas
 - Distâncias arbitrárias
 - Para evitar loops, IDPR propunha source routing
 - Inundação da base de dados da topologia
 - Problema mesmo com nível de granularidade do AS
 - OSPF: áreas com até 200 roteadores
 - Internet: 700 ASs em 1994...

Vetores de Caminho

- Vetor de caminho (path vector PV)
 - > "DV" que transporta a lista completa das redes (ASs) atravessados
 - Loop apenas se um AS é listado duas vezes

Algoritmo

- Ao receber anúncio, roteador verifica se seu AS está listado
 - Se sim, o caminho não é utilizado
 - Se não, o próprio número de AS é incluído no PV
- Domínios não são obrigados a usar as mesmas métricas
 - Decisões autônomas
- Desvantagem
 - Tamanho das mensagens
 - Memória

Consumo de Memória do PV

- Cresce com o número de redes na Internet (N)
 - Uma entrada por rede
- Para cada uma das redes, o caminho de acesso (lista de ASs)
 - > Todas as redes em um AS usam o mesmo caminho
 - Número de caminhos a armazenar proporcional ao número de ASs (A)
 - Tamanho médio de um caminho: distância média entre 2 ASs
 - Depende do tamanho e topologia da Internet
 - Hipótese: diâmetro varia com o logaritmo do tamanho da rede
 - Seja x a memória consumida para armazenar um AS, y a memória consumida por um destino, a memória consumida
 - x . A . Log A + y . N

Agregação de Rotas

- Até BGP-3: destinos são apenas classe A, B ou C
- BGP-4: CIDR
 - Rotas devem incluir endereço e comprimento do prefixo
 - > Para diminuir o tamanho das tabelas, agregação de rotas
- Exemplo
 - Provedor T
 - Duas Classes C: 197.8.0/24 e 197.8.1/24
 - ASs X e Y, clientes de T
 - Classes C: 197.8.2/24 e 197.8.3/24
 - Anúncios sem agregação:
 - Caminho1: através de {T}, alcança 197.8.0/23
 - Caminho 2: através de {T, X}, alcança 197.8.2/24
 - Caminho 3: através de {T, Y}, alcança 197.8.3/24
 - ▶ Idealmente, anunciar-se-ia Caminho 1: alcança 197.8.0/22
 - Problema: anunciar apenas {T} não evita loops, anunciar {T,X,Y} é incorreto...

Agregação de Rotas

- Solução: caminho estruturado em dois componentes
 - Seqüência de ASs (ordenado)
 - Conjunto de ASs (não ordenado)
- Exemplo (cont.)
 - Caminho 1: (Seqüência {T}, Conjunto {X,Y}, alcança 197.8.0/22)
 - Se um vizinho Z anuncia o caminho:
 Caminho n: (Seqüência {Z,T}, Conjunto {X,Y}, alcança 197.8.0/22)
- Os dois conjuntos devem ser usados para prevenir loops
- Caminhos podem ser agregados recursivamente
 - A Seqüência de ASs contém a interseção de todas as seqüências
 - O conjunto de ASs contém a união de todos os conjuntos de ASs
 - A lista de redes, todas as redes alcançáveis

Agregação de Rotas

Atributos de Caminhos

- Principais
 - Lista dos ASs atravessados (AS_PATH)
 - Lista das redes alcançáveis (destinos)
- Outros atributos ajudam o processo de decisão...
- o BGP-3
- o Flags
 - ➤ O = 1 atributo opcional ou O = 0 atributo bem conhecido
 - ➤ T = 1 atributo transitivo ou T = 0 atributo local
 - ▶ P = 1 informação parcial
 - ➤ E = 0 comprimento do atributo codificado em 1 octeto ou 2 (E=1)

Atributos de Caminhos

- Tratamento de extensões no BGP-3
 - > Flag de atributo opcional é verificado
 - Atributos opcionais não-transitivos
 - Informação pertinente à conexão local, apenas
 - Ignorados silenciosamente se n\u00e3o conhecidos
 - Atributos opcionais transitivos
 - Se não conhecidos, enviados, mas com o bit parcial (P) em 1

BGP-4: 7 atributos

Attribute	Туре	Flags	Value
ORIGIN	1	Well known	IGP (0), EGP (1) or other (2)
AS_PATH	2	Well known	Autonomous systems in the path
NEXT_HOP	3	Well known	Address of next router
MULTI_EXIT_DISC	4	Optional, local	32 bit metric
LOCAL_PREF	5	Well known	32 bit metric
ATOMIC_AGGREGATE	6	Well known	Flags certain aggregations
AGGREGATOR	7	Optional, transitive	AS number and router ID

Atributos de Caminho

Origin

Informação de roteamento obtida do IGP; pelo antigo protocolo EGP, ou por outro meio

Next Hop

- Mesma função que o vizinho indireto no EGP
- (atributo não transitivo)
- Multi Exit Discriminator (MED)
 - Métrica usada para escolher entre diversos roteadores de saída
 - Entre diversos caminhos que diferem apenas pelos atributos MUITI_EXIT_DISC e NEXT_HOP
 - Estes caminhos não devem ser agregados
 - Permite exportar informação (limitada) da topologia interna para um AS vizinho

Atributos de Caminho

Local Preference

- Sincroniza a escolha de rotas de saída pelos roteadores dentro de um AS
- O atributo é adicionado ao caminho pelo roteador de entrada
- Usado na escolha entre vários caminhos que levam a um prefixo de rede

Aggregator

- Inserido pelo roteador que agregou rotas
- Contém o número de AS e IP do roteador
- Usado para diagnosticar problemas

Atomic Aggregate

- Indica que o roteador está passando um caminho agregado
- Não possui conteúdo

Parceiros BGP Internos e Externos

- Rotas devem ser passadas para o IGP
- Atributos de caminhos devem ser transmitidos a outros roteadores BGP do AS
 - > Transmissão de informação através do IGP não é suficiente

Solução: conexão BGP interna

Conexões BGP Internas

Conexões internas

- Propagação de rotas externas independente do IGP
- Roteadores podem eleger a melhor rota de saída, em conjunto
- Se os roteadores de um AS escolhem nova rota externa, esta deve ser anunciada imediatamente para parceiros externos que usam este AS como trânsito
 - Ou risco de loops de ASs...
- Roteadores BGP conectados por malha completa
 - Problemas de escalabilidade, se o número de roteadores BGP é grande...

EBGP x IBGP

- External BGP Peers x Internal BGP Peers
 - Diferenciação: pelo número do AS, na abertura da conexão
- Funcionamento
 - Rotas aprendidas de um peer EBGP repassadas a outros ASes através das conexões IBGP
 - Evita-se armazenar todos os prefixos externos nos roteadores internos
 - Porém, no anúncio através do IBGP não se acrescenta o AS
 - Risco de loop > regras específicas

Anúncios EBGP x IBGP

Regra 1

Um roteador BGP pode anunciar prefixos que aprendeu de um par EBGP a um par IBGP; também pode anunciar prefixos que aprendeu de um par IBGP para um par EBGP

Regra 2

Um roteador BGP não deve anunciar prefixos que aprendeu de um par IBGP para outro par IBGP

Motivos para Regra 2

- Evitar loops: o número de AS não é acrescentado no anúncio IBGP
- Rotas internas devem ser anunciadas pelo IGP...

Execução sobre o TCP

- Controle de Erro TCP
 - O BGP pode ser mais simples (máquina de estados do EGP é bem mais complexa)
 - Por outro lado...
 - EGP informação gradual (%), decisão de enlace operacional ou não
 - BGP/TCP enlace operacional ou não (informação "binária")
 - BGP utiliza sondas (probes) enviados periodicamente
- Transmissão confiável
 - Atualizações incrementais, menor consumo de banda que no EGP
- Problema: controle de congestionamento do TCP
 - Cada conexão TCP recebe uma parte justa ("fair share") da banda
 - Desejável na maioria dos casos
 - Mas não em se tratando do protocolo de roteamento, que pode eventualmente adaptar-se e remediar o congestionamento

Cabeçalho BGP

- TCP: orientado a byte
 - Delimitadores necessários nas mensagens BGP

- Marker projetado para utilização por mecanismos de segurança
- A estação lê os 19 bytes correspondentes ao cabeçalho, mais (length – 19) bytes da mensagem BGP
- Type

■ 1 – Open 2 – Update 3 – Notification 4 – KeepAlive

Exemplo de Problema de Alinhamento

Suponha uma mensagem de 255 bytes de comprimento

Recebida desalinhada de 1 byte

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 H H H H H H H H H H H H H L L T x
```

- Comprimento recebido: 65.582(FF02) em vez de 255(00FF)
- Testes de sanidade
 - Comprimento entre 19 e 8192 bytes
 - Type deve estar entre 1 e 4
 - Marker deve ter o valor esperado pelo algoritmo de segurança

Troca Inicial

Mensagem OPEN

- Version Versão do BGP
- My Autonomous System número de AS do roteador emetente
- Hold Time número de segundos utilizado no KeepAlive
- BGP Identifier um dos endereços IP do roteador

Troca Inicial

- Opções: TLV
 - > 1 byte de tipo + 1 byte de comprimento + N bytes de conteúdo
- Opção Tipo 1
 - Informação de autenticação
 - Determina o conteúdo do marcador (nas mensagens seguintes)
- Conexão com sucesso (envio posterior de mensagens keepalive)
 - Versão e Hold Time devem estar ok
- Insucesso (envio de mensagem de notificação)
 - Diferença de versão
 - pode ser tentada uma versão menor
 - Falha de autenticação
 - existe parametrização, como no EGP
 - Colisão
 - Duas conexões TCP abertas
 - Uma é fechada (decisão pelo identificador BGP)

Mensagens de Atualização

Mensagens UPDAŢE

- Lista de rotas inalcançáveis
- Informação sobre um caminho específico

Mensagens de Atualização

- Lista de rotas inalcançáveis
 - Rotas anunciadas anteriormente, agora inalcançáveis
 - Podem ser reunidas rotas de caminhos diferentes
- Informação sobre um caminho
 - Atributos referentes a este caminho
 - Formato TLV
 - Redes alcançáveis por este caminho
- As mensagens não são alinhadas em 32 bits...
 - Listas de prefixos de roteamento nos dois campos
 - 1 byte de comprimento do prefixo em bits
 - Endereço com o comprimento necessário

Mensagens de Atualização

- Uma mensagem para cada caminho
 - Todos os caminhos são enviados após a troca inicial
 - Não são repetidos periodicamente, são enviadas mensagens de atualização apenas para os caminhos que mudarem
- Funcionamento semelhante ao DV
 - Ao receber atualização, se caminho "mais curto", modificação de rota e envio aos vizinhos
 - Se malha completa entre os parceiros BGP internos
 - Atualização recebida em uma conexão interna não precisa ser enviada aos parceiros internos
- Testes de sanidade
 - Verificação de loops (path-vector)
 - Hold-down antes de começar a utilizar o caminho

Procedimento KeepAlive

Enviadas periodicamente, se necessário

Length

A conexão TCP sinaliza problemas quando há tentativa de envio de dados

Type: KEEPALIVE

- Testam o enlace em uma direção
- Na direção contrária
 - O parceiro deve enviar uma mensagem no mínimo a cada Hold-Time s
 - > Na verdade, envio de 3 mensagens, em média, por Hold-Time
 - O atraso de transmissão sobre o TCP não é constante
 - Tipicamente, uma mensagem a cada 2 minutos
- Hold-Time pode ser zero não há envio de mensagens keepalive
 - Útil se enlaces pagos por demanda
 - Outro mecanismo deve ser utilizado pra detectar se enlace operacional GTA/UFRJ

Notificação de Erros

- Mensagem de erro
 - Recepção de mensagem incorreta
 - Ausência de recepção de mensagens
- Conexão TCP fechada após o envio da notificação

- Erros identificados por código e sub-código
 - A notificação "cease" não é um erro, mas indicação de término da conexão

Códigos de Erro

Code	Subcode	ubcode Symbolic Name	
1		Message Header Error	
	1	1 Connection Not Synchronized	
	2	Bad Message Length	
	3	Bad Message Type	
2	OPEN Message Error		
	1	Unsupported Version Number	
	2	Bad Peer AS	
	3	Bad BGP Identifier	
	4	Unsupported Optional Parameter	
	5	Authentication Failure	
	6	Unacceptable Hold Time	
3	UPDATE Message Error		
	1	Malformed Attribute List	

	2	Unrecognized Well-Known Attribute	
	3	Missing Well-Known Attribute	
	4	Attribute Flags Error	
	5	Attribute Length Error	
	6	Invalid ORIGIN Attribute	
	7	AS Routing Loop	
	8	Invalid NEXT_HOP Attribute	
	9	Optional Attribute Error	
	10	Invalid Network Field	
	11	Malformed AS_PATH	
4	Hold Timer Expired		
5	Finite State Machine Error		
6	Cease		

Riscos de Ataques à Conexão TCP

Ataques e conseqüências pro BGP

- SYN flooding
 - Derrubar o servidor com um grande número de conexões semi-abertas
 - Desconexão de uma rede inteira
- > RST
 - Quebra da conexão através do envio de um pacote RESET
 - Desconexão de conjuntos de redes (que deixam de ser anunciadas)
- DATA insertion
 - Inserção de um pacote forjado na conexão
 - Criação de erros
- Hijacking
 - Um terceiro se passa por uma das estações
 - Inserção de rotas falsas, criação de loops, buracos negros, captura do tráfego enviado a uma rede

Proteção da Conexão TCP

- TCP MD5 Signature Option
 - Similar ao mecanismo do RIP e OSPF, mas implementada no TCP
 - Opção TCP

IP Header (20 bytes)
TCP "fixed" header (20 bytes)
TCP Options, including MD5 checksum
TCP Payload (BGP)

- Foi implementada na Internet
 - Embora seja julgada de proteção fraca por experts de segurança
- Alternativa
 - TCP + IPSEC

Sincronização com o IGP

- Rotas devem ser mantidas coerentes
- No plano BGP
 - Roteadores de borda aprendem rotas de roteadores em ASs vizinhos
 - Selecionam caminhos através do processo de decisão do BGP
 - Sincronizam-se através de conexões BGP internas
- No plano IGP
 - Roteadores de borda anunciam rotas externas
 - Aprendem a conectividade local

Políticas de Interconexão

- Redes comercias não transportam tráfego para "qualquer um"
 - O acordo básico é entre o provedor e o cliente
 - acesso à Internet através de uma rota default
 - Pequenos provedores compram serviços de trânsito de provedores maiores (provedores de backbone)
 - Grandes provedores podem se interconectar (peering)
 - Limited peering conexão aos endereços diretamente administrados pelo parceiro
 - Full peering interconexão transitiva (o AS pode ser usado como trânsito)
 - Provedores podem negociar acordos de backup
 - Manter conectividade em caso de falha parcial

Políticas de Interconexão

- Acordos são especificados em contratos, que roteadores de borda devem forçar
 - Acordo com um cliente
 - Só são aceitos caminhos que levam ao cliente, só é exportada uma rota default
 - Serviços de trânsito
 - Anúncio de caminhos para os destinos listados no contrato
 - Limited peering
 - Anúncio de rotas apenas para o AS local e clientes
 - O roteador de borda pode ser programado para só aceitar estas rotas
 - Full peering
 - Remoção de todas as restrições
 - Backup
 - Preferência baixa associada às rotas importadas

Processo de Decisão

- Três fases
 - > Análise dos caminhos recebidos de roteadores externos
 - Seleção do caminho mais apropriado para cada destino
 - Anúncio do caminho aos vizinhos

Análise do Caminho Recebido

- Remoção de caminhos inaceitáveis
 - Que incluem o AS local no caminho de ASs
 - Não conformes à política do AS
 - Que não foram qualificados como estáveis
- Métricas
 - Número de ASs no caminho (simples demais)
 - Pesos podem ser associados a alguns ASs
 - Caminhos agregados são um problema
 - Número de ASs na seqüência de ASs é uma sub-estimativa
 - Número de ASs no conjunto de ASs é uma super-estimativa
- A métrica pode então ser combinada com preferências locais
 - Ex. local preference, banda do enlace com o vizinho, custo

Seleção de Caminhos

- 1. Remoção de caminhos cujo próximo salto está inalcançável
- 2. Separar os caminhos com o maior LOCAL_PREFERENCE
- Se existem múltiplos caminhos, escolher o de menor valor MULTI_EXIT_DISC
- 4. Se ainda existem múltiplos caminhos, selecionar o caminho anunciado pelo parceiro BGP *externo* de maior identificador
- 5. Se ainda existem múltiplos caminhos, selecionar o caminho anunciado pelo parceiro BGP interno de maior identificador
- Anúncio da rota aos vizinhos...

Exportando Rotas no OSPF

- RFC-1403 (BGP OSPF Interaction)
 - ▶ Bit E = 1, métrica = 1
- External Route Tag

0		1											2											3							
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
а	С	р	I		Arbitrary Tag											Autonomous System															

- Arbitrary bit (a)
 - a = 1 codificação padronizada
- Completeness bit (c)
 - c = 1 rotas aprendidas do BGP, completas
- Path length (pl)
 - pl = 2 (AS remoto + AS local)
- Tag
- Número do AS para o qual a rota aponta

CIDR e IGP

- Z recebe os caminhos
 - Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/22
 - Path(Y): (Sequence{Y}), alcança 197.8.3.0/24
- O Quando uma máquina em Z quer enviar a uma máquina em Y
 - O segundo caminho ganha ("mais específico")
 - É mais "seguro" utilizar o caminho mais específico

CIDR e IGP

Mas o caminho mais específico não é necessariamente mais curto

- Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/22
- Path(W): (Sequence{W,V,Y}), alcança 197.8.3.0/24
- > Pode-se configurar o BGP para não escolher o mais específico
 - A ser feito com cuidado...

CIDR e IGP

- Passagem de prefixos para o IGP
 - Todos os prefixos podem ser passados, se o IGP os "entende"
 - Se não, os prefixos devem ser quebrados
- Anúncios equivalentes no primeiro exemplo
 - Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/23, 197.8.2.0/24
 - Path(Y): (Sequence{Y}), alcança 197.8.3.0/24
- Os anúncios podem ser exportados agregados ou não
 - Path(Z): (Sequence{Z}, Set{X,Y,T}), alcança 197.8.0.0/22

Exportando Rotas para ASs Vizinhos

- Caminho exportado
 - Caminho recebido + Número do AS local
 - (AS local adicionado ao AS_SEQUENCE)
 - LOCAL_PREFERENCE é removido
 - MULTI_EXIT_DISC pode ser configurado
 - Se caminhos foram agregados no AS
 - Atributo AGGREGATOR
 - Atributo ATOMIC_AGGREGATE
 - Se caminhos mais específicos foram fundidos em menos específicos

Escalabilidade Interna

O Problema

- Malha completa de conexões BGP internas
- Dados N roteadores, (N.(N-1)) / 2 conexões IBGP
- Cada roteador deve gerenciar N-1 conexões IBGP (TCP)
- Soluções possíveis
 - > BGP Route Reflectors
 - BGP Confederations

Refletores de Rotas BGP

- Roteadores Route Reflector (RR)
 - Funcionam como "concentradores"
- Roteadores clientes
 - Se conectam apenas a um route reflector
 - Se comportam como se estivessem conectados à malha completa
- RRs + Clientes formam "clusters"

Refletores de Rotas BGP: Convenções

- Um cluster pode ter múltiplos Refletores de Rotas
 - Redundância
- CLUSTER-ID
 - Identificador do cluster
 - Normalmente, o identificador BGP do roteador Refletor de Rotas
- Refletores de Rotas se conectam entre si em malha completa

Malha Completa IBGP

Número de conexões IBGP por roteador: N-1

Exemplo: 1 Route Reflector

1 RR: número de conexões de R6 não diminui

Exemplo: 2 RRs

Diminui o número de conexões para N/2

Exemplo: 3 RRs

Aparece a malha entre RRs

Exemplo de RRs com 3 clusters

Regras de Anúncios usando RRs

- Anúncio recebido por um RR, de outro RR
 - Repassado aos seus clientes
- Anúncio recebido por um RR, de um cliente
 - Repassado a outros RRs
- Anúncio recebido por um RR, de um parceiro EBGP
 - Repassado aos outros RRs e a seus clientes

Regras de Anúncios usando RRs

- Risco de loops
 - RRs podem repassar prefixos aprendidos de pares IBGP para outros pares IBGP
 - Não há a adição do número de AS (previne loops)

Refletores de Rotas BGP: Prevenção de Loops

ORIGINATOR-ID

- Adicionado apenas pelo RR de origem
- Quando recebe anúncio do cliente, o RR acrescenta o ORIGINATOR-ID antes de refleti-lo para outros pares
- Só um ORIGINATOR-ID pode existir no anúncio
- Se o RR recebe um anúncio com seu próprio ORIGINATOR-ID, deve ignorá-lo

CLUSTER-LIST

- Sequência de CLUSTER-IDs que indicam o caminho de clusters que um anúncio atravessou (semelhante ao path vector)
- Quando um RR reflete um anúncio, ele deve acrescentar o seu CLUSTER-ID à lista

Refletores de Rotas BGP: Seleção de Caminhos

- Modificação na escolha de caminhos
 - Preferência para a rota com o CLUSTER-LIST mais curto
 - Convenção
 - Comprimento do CLUSTER-LIST = zero se a rota n\u00e3o possui o atributo CLUSTER-LIST

Confederações BGP

- Ideia básica: hierarquia
 - ASes são divididos em sub-ASes
 - Malha completa somente dentro de cada sub-AS
 - Conexões "IBGP externas" interconectam os sub-Ases
- O AS é um "AS Confederado"
 - A confederação possui um número de AS único
 - Sub-ASes podem usar números de AS do espaço de numeração público ou privado

Exemplo de Confederações BGP

Confederações BGP: Prevenção de Loops

- Atributos: AS-CONFED-SET e AS-CONFED-SEQUENCE
 - Funcionamento equivalente ao AS-SET e AS-SEQUENCE
 - Entre sub-ASes, em vez de entre Ases

Regras

- Quando um anúncio é encaminhado de um sub-AS a outro sub-AS, acrescenta-se o AS_CONFED_SEQUENCE com o número do sub-AS
- Quando o anúncio sai do AS Confederado, AS-CONFED-SET e AS-CONFED-SEQUENCE são retirados

Convivência com Outros Protocolos

- Versões anteriores do BGP
 - Não suportam CIDR
 - Rotas deveriam ser "desagregadas"

AS_PATH: X, alcança 197.8.0.0/22

AS_PATH: X, alcança 197.8.0.0, 197.8.1.0, 197.8.2.0, 197.8.3.0

- Problemas de explosão da tabela de roteamento...
- Não possuíam "seqüência de ASs" e "conjunto de ASs" separados
 - Imprecisão de decisões
- O EGP
 - Não possui prevenção de loops
- Conclusão: outros protocolos só podem ser utilizados em ASs "folha"

BGP: Observações Finais

O BGP

Topologia genérica, em malha, em vez da árvore imposta pelo EGP

O CIDR

Evitou o colapso da Internet pela penúria de endereços Classe B

O BGP

- Evitou o colapso da Internet pela explosão das tabelas de roteamento
- No entanto, o BGP precisa de muita configuração manual...

AS's Únicos

Fonte: http://www.cidr-report.org/

Entradas BGP Ativas

Fonte: http://www.cidr-report.org/