$Hw8_Q4$

Hongkai Lou

2024-12-03

```
dat = expand.grid(factory=c("East", "West"), accident=c("No", "Yes"))
dat\$y = c(645, 1275, 28, 31)
tab = matrix(dat$y, nrow=2,
dimnames=list(factory=c("East", "West"), accident=c("No", "Yes")))
4(a)
fit1 = glm(y~factory+accident, poisson, dat)
summary(fit1)
##
## Call:
## glm(formula = y ~ factory + accident, family = poisson, data = dat)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.48148
                          0.03875 167.27
                                            <2e-16 ***
                          0.04745
                                             <2e-16 ***
## factoryWest 0.66298
                                    13.97
## accidentYes -3.48254
                          0.13217 -26.35
                                           <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 2423.492 on 3 degrees of freedom
## Residual deviance: 4.678 on 1 degrees of freedom
## AIC: 38.427
##
## Number of Fisher Scoring iterations: 4
print(paste('The number of unlogged accidents in the west is', exp(6.481+0.663-3.483)))
## [1] "The number of unlogged accidents in the west is 38.9002236513537"
fit2 = glm(y~factory*accident, poisson, dat)
summary(fit2)
##
## Call:
## glm(formula = y ~ factory * accident, family = poisson, data = dat)
##
```

Estimate Std. Error z value Pr(>|z|)

Coefficients:

##

```
## (Intercept)
                            6.46925
                                      0.03937 164.299
                                                         <2e-16 ***
## factoryWest
                                      0.04832 14.103
                            0.68145
                                                         <2e-16 ***
## accidentYes
                                      0.19304 -16.251
                           -3.13705
                                                         <2e-16 ***
                                                         0.0288 *
## factoryWest:accidentYes -0.57967
                                      0.26515
                                               -2.186
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 2.4235e+03 on 3
                                       degrees of freedom
## Residual deviance: 1.1857e-13 on 0 degrees of freedom
  AIC: 35.749
##
##
## Number of Fisher Scoring iterations: 3
print(paste('The number of unlogged accidents in the west using interaction model is', exp(6.46925+0.68
```

[1] "The number of unlogged accidents in the west using interaction model is 30.999776661765"

\mathbf{d}

The residual deviance 0 residual deviance largely due to 0 degrees of freedom. The degrees of freedom of chi-square test is (r-1)* (c-1). Here, the degrees of freedom is 1*1, but with intersection term included, it becomes 0, meaning the model fully explains the data, and the chi-square tests lost its significance.

\mathbf{e}

We see the z value is -2.186 with p-value equals to 0.0288. Since p-value < 0.05, it is considered significant.

\mathbf{f}

By rejecting the null hypothesis, it tells us that we reject the null hypothesis that the independent variable will significantly affect the output variable. Thus, Factory and Accident are not independent.

\mathbf{g}

```
lrt_result <- anova(fit1, fit2, test = "Chisq")</pre>
print(lrt_result)
## Analysis of Deviance Table
## Model 1: y ~ factory + accident
## Model 2: y ~ factory * accident
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
##
                    4.678
## 1
             1
                    0.000 1
## 2
             0
                                4.678 0.03055 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The deviance is 4.678 with a p value of 0.03055, which is larger than 0.05, so we reject the null hypothesis

\mathbf{h}

```
#Factory: i, accident: j
summary(fit2)
##
## Call:
## glm(formula = y ~ factory * accident, family = poisson, data = dat)
##
## Coefficients:
##
                           Estimate Std. Error z value Pr(>|z|)
                                      0.03937 164.299 <2e-16 ***
## (Intercept)
                            6.46925
## factoryWest
                            0.68145
                                      0.04832 14.103 <2e-16 ***
                           -3.13705
                                       0.19304 -16.251 <2e-16 ***
## accidentYes
## factoryWest:accidentYes -0.57967
                                      0.26515 -2.186 0.0288 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 2.4235e+03 on 3 degrees of freedom
## Residual deviance: 1.1857e-13 on 0 degrees of freedom
## AIC: 35.749
## Number of Fisher Scoring iterations: 3
east noacc = exp(6.46925)
east_acc = exp(6.46925-3.13705)
west_noacc = exp(6.46925+0.68145)
west_acc = exp(6.46925+0.68145-3.13705-0.57967)
east_accident_odds = log(east_acc/east_noacc)
west_accident_odds = log(west_acc/west_noacc)
print(c(east_accident_odds, west_accident_odds))
## [1] -3.13705 -3.71672
i
c = -3.13705, d = (3.13705 - 3.71672) = -0.57967
j
The estimation is exactly same
summary(glm(accident~factory, family = 'binomial', weight = y, dat))
##
## Call:
## glm(formula = accident ~ factory, family = "binomial", data = dat,
##
       weights = y)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.1370 0.1930 -16.251 <2e-16 ***
```

```
## factoryWest -0.5797    0.2651 -2.186    0.0288 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 530.73 on 3 degrees of freedom
## Residual deviance: 526.06 on 2 degrees of freedom
## AIC: 530.06
##
## Number of Fisher Scoring iterations: 6
```