

Frame C++ class

v5.0.7

Table of contents

- Overview
- Versions
- Library files
- Supported pixel formats
- Frame class description
 - Frame class declaration
 - Default constructor
 - Constructor with parameters
 - Copy-constructor
 - o getVersion method
 - Copy operator =
 - o cloneTo method
 - Compare operator ==
 - Compare operator !=
 - o release method
 - serialize method
 - o deserialize method
 - Frame class public members
- Build and connect to your project

Overview

Frame class is basic class for other projects which describes video frame. Main file **Frame.h** contains declaration of **Frame** class and **Fourcc** enum which describes pixel formats supported by **Frame** class. The library doesn't have any third party dependencies. It uses C++17 standard. The library is licensed under the **Apache 2.0** license.

Versions

Table 1 - Library versions.

Version	Release date	What's new
1.0.0	08.09.2020	First Frame class version in VideoDataStructures repository.
2.0.0	19.11.2020	Transformation matrix added.
3.0.0	20.12.2020	Added NV12 pixel format.
4.0.0	20.01.2023	 Interface changed. Added new pixel formats. Added shared_ptr for frame data. Added new methods for copy and compare data. Added new method for serialization and deserialization frame data. Tests changed.
5.0.0	19.03.2023	- shared_ptr replaced by normal pointer Documentation updated.
5.0.1	29.05.2023	- Pixel format description (NV12 and NV21) mistake fixed.
5.0.2	22.06.2023	- Added LICENSE. - Repository made public.
5.0.3	22.06.2023	- Added build guide.
5.0.4	06.07.2023	- Documentation updated.
5.0.5	12.11.2023	- Fixed errors serialization/deserialization functions.
5.0.6	14.12.2023	- Memory leakage from "=" operator fixed.
5.0.7	19.03.2024	- Type of data fields changes from uint32_t to int.

Library files

The library supplied by source code only. The user would be given a set of files in the form of a CMake project (repository). The repository structure is shown below:

Supported pixel formats

The Frame.h file contains Fourcc enum which defines supported pixel formats. Fourcc enum declaration:

```
/// Macro to make FOURCC code.
#define MAKE_FOURCC_CODE(a,b,c,d) ((uint32_t)(((d)<<24)|((c)<<16)|((b)<<8)|(a)))
 * @brief FOURCC codes enum.
 */
enum class Fourcc
    /// RGB 24bit pixel format.
   /// https://docs.kernel.org/userspace-api/media/v41/pixfmt-rgb.html#v412-pix-fmt-
rgb24
    RGB24 = MAKE_FOURCC_CODE('R', 'G', 'B', '3'),
   /// BGR 24bit pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-rgb.html#v4l2-pix-fmt-
bgr24
    BGR24 = MAKE_FOURCC_CODE('B', 'G', 'R', '3'),
   /// YUYV 16bits per pixel format.
   /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-packed-yuv.html#v4l2-pix-
fmt-yuyv
   YUYV = MAKE_FOURCC_CODE('Y', 'U', 'Y', 'V'),
   /// UYVY 16bits per pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-packed-yuv.html#v4l2-pix-
fmt-vyuy
   UYVY = MAKE_FOURCC_CODE('U', 'Y', 'V', 'Y'),
    /// Grayscale 8bit.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-luma.html#v4l2-pix-
fmt-grey
   GRAY = MAKE_FOURCC_CODE('G', 'R', 'A', 'Y'),
   /// YUV 24bit per pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-packed-yuv.html#v4l2-pix-
fmt-yuv24
   YUV24 = MAKE_FOURCC_CODE('Y', 'U', 'V', '3'),
   /// NV12 pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-planar.html#v4l2-pix-
fmt-nv12
   NV12 = MAKE_FOURCC_CODE('N', 'V', '1', '2'),
    /// NV21 pixel format.
```

```
/// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-planar.html#v4l2-pix-
fmt-nv21
    NV21 = MAKE_FOURCC_CODE('N', 'V', '2', '1'),
    /// YU12 (YUV420) - Planar pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-planar.html#v4l2-pix-
fmt-yuv420
   YU12 = MAKE_FOURCC_CODE('Y', 'U', '1', '2'),
    /// YV12 (YVU420) - Planar pixel format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-planar.html#v4l2-pix-
fmt-yuv420
   YV12 = MAKE_FOURCC_CODE('Y', 'V', '1', '2'),
    /// JPEG compressed format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-compressed.html#v4l2-pix-
fmt-jpeg
    JPEG = MAKE_FOURCC_CODE('J', 'P', 'E', 'G'),
    /// H264 compressed format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-compressed.html#v4l2-pix-
fmt-h264
    H264 = MAKE\_FOURCC\_CODE('H', '2', '6', '4'),
    /// HEVC compressed format.
    /// https://docs.kernel.org/userspace-api/media/v4l/pixfmt-compressed.html#v4l2-pix-
fmt-hevc
    HEVC = MAKE_FOURCC_CODE('H', 'E', 'V', 'C')
};
```

Table 2 - Bytes layout of supported pixel formats. Example of 4x4 pixels image.

Frame class description

Frame class declaration

Frame.h file contains **Frame** class declaration. Frame class declaration:

```
/// Copy class constructor.
    Frame(Frame& src);
    /// Class destructor.
    ~Frame();
    /// Operator "=".
    Frame& operator= (const Frame& src);
    /// Operator "!=".
    bool operator!= (Frame& src);
    /// Operator "==".
    bool operator== (Frame& src);
    /// Clone data. Method copies frame and copy just pointer to data.
    void cloneTo(Frame& dst);
    /// Release frame memory.
    void release();
    /// Serialize frame data.
   void serialize(uint8_t* data, int& size);
    /// Deserialize data to frame object.
    bool deserialize(uint8_t* data, int size);
    /// Frame width (pixels).
   int width{0};
   /// Frame height (pixels).
   int height{0};
    /// FOURCC code of data format.
   Fourcc fourcc{Fourcc::YUV24};
   /// Frame data size (bytes).
   int size{0};
   /// ID of frame.
   int frameId{0};
    /// ID of video source.
   int sourceId{0};
   /// Pointer to frame data.
   uint8_t* data{nullptr};
};
```

Default constructor

Default Frame class constructor doesn't do anything. It doesn't allocate memory. Constructor declaration:

```
Frame();
```

Constructor with parameters

Constructor with parameters allocates memory and initializes Frame attributes (size, pixels format etc.). By default allocated memory filled by 0. Constructor declaration:

```
Frame(uint32_t width, uint32_t height, Fourcc fourcc, uint32_t size = 0, uint8_t* data =
nullptr);
```

Parameter	Description	
width	Frame width. Must be > 0.	
height	Frame height. Must be > 0.	
fourcc	Pixel format according to <u>Fourcc</u> enum.	
size	Optional parameter. Size of external frame data. If user wants to initialize frame data from another buffer it can be done by initializing parameter size and data .	
data	Optional parameter. Pointer to external frame data to be copied.	

Example of frame initialization:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);

// Copy.
cr::video::Frame image2 = cr::video::Frame(640, 480, cr::video::Fourcc::YUV24);

// Init by external data. Data will be copied.
cr::video::Frame image3(640, 480, cr::video::Fourcc::BGR24, 921600, externalDataBuffer);

// Init frame attributes manually.
Frame image4;
image4.data = externalDataBuffer;
image4.width = 640;
image4.width = 640;
image4.size = image4.width * image4.height * 3;
image4.fourcc = cr::video::Fourcc::BGR24;

// Dynamic allocation.
cr::video::Frame* image5 = new cr::video::Frame(640, 480, cr::video::Fourcc::YUV24);
```

Copy-constructor

Copy constructor copy frame data from other Frame class instance. Constructor declaration:

```
Frame(Frame& src);
```

Example of frame initialization:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);

// Copy-constructor.
cr::video::Frame image2(image1);

// Copy-constructor.
cr::video::Frame image3 = cr::video::Frame(image1);
```

getVersion method

The **getVersion()** method returns string of current version of **Frame** class. Method declaration:

```
static std::string getVersion();
```

Method can be used without **Frame** class instance. Example:

```
std::cout << "Frame class version: " << cr::video::Frame::getVersion() << std::endl;</pre>
```

Console output:

```
Frame class version: 5.0.7
```

Copy operator

Copy operator "=" intended to full copy of frame data. Operator copies frame data and frame attributes. Operator declaration:

```
Frame& operator= (const Frame& src);
```

Example:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);

// Make copy.
cr::video::Frame image2 = image1;
```

cloneTo method

The **cloneTo(...)** method designed to clone frame object without copy of data. Method copies frame attributes and initialize pointer to frame data without copy of data. Method declaration:

```
void cloneTo(Frame& dst);
```

Parameter	Description	
dst	Frame object for initialization. Method initialize only frame attributes and copies pointer to frame data.	

Example:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);

// Clone.
cr::video::Frame image2;
image1.cloneTo(image2);
```

Compare operator equal

Compare operator "==" compares data attributes and frame data of to Frame objects. Operator declaration:

```
bool operator== (Frame& src);
```

Returns: TRUE if all attributes and data of two Frame objects are identical (or when comparing an object to itself) or FALSE if not.

Example:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);
cr::video::Frame image2(640, 480, cr::video::Fourcc::RGB24);

// Compare.
if (image1 == image2)
    std::cout << "Identical" << std::endl;

// Change data.
image1.data[0] = rand() % 255;

// Compare.
if (image1 == image2)
    std::cout << "Identical" << std::endl;
else
    std::cout << "Not identical" << std::endl;</pre>
```

Compare operator not equal

Compare operator "!=" compares data attributes and frame data of to Frame objects. Operator declaration:

```
bool operator!= (Frame& src);
```

Returns: TRUE if all attributes and data of two Frame objects are identical (or when comparing an object to itself) or FALSE if not.

Example:

```
// Frame filled by 0.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);
cr::video::Frame image2(640, 480, cr::video::Fourcc::RGB24);

// Compare.
if (image1 != image2)
    std::cout << "Not identical" << std::endl;
else
    std::cout << "Identical"

// Change data.
image1.data[0] = rand() % 255;

// Compare.
if (image1 != image2)
    std::cout << "Not identical" << std::endl;
else
    std::cout << "Identical" << std::endl;</pre>
```

release method

The **release()** method intended to release allocated memory and reset frame attributes. Method declaration:

```
void release();
```

Example:

```
// Create Frame object with memory allocation.
cr::video::Frame image1(640, 480, cr::video::Fourcc::RGB24);

// Release Frame object.
image1.release();
```

serialize method

The **serialize(...)** method intended for serialization of Frame object with data. Sometimes the user needs to serialize an object in order to transfer or write it somewhere. Method declaration:

```
void serialize(uint8_t* data, int& size);
```

Parameter	Description
data	Pointer to data buffer.

Parameter	Description
size	Size of serialized data.

Example:

deserialize method

The **deserialize(...)** method intended for deserialization of Frame object. Method declaration:

```
bool deserialize(uint8_t* data, int size);
```

Parameter	Description
data	Pointer to data buffer.
size	Size of serialized data.

Returns: TRUE of the data deserialized or FALSE if not.

Example:

```
return false;
}
// Compare atributes.
if (srcFrame.size != dstFrame.size)
    std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
    return false:
}
if (srcFrame.width != dstFrame.width)
    std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
    return false;
}
if (srcFrame.height != dstFrame.height)
    std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
    return false;
if (srcFrame.fourcc != dstFrame.fourcc)
    std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
    return false;
}
if (srcFrame.sourceId != dstFrame.sourceId)
    cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;</pre>
    return false;
}
if (srcFrame.frameId != dstFrame.frameId)
    std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
    return false;
}
// Compare frame data.
for (uint32_t i = 0; i < srcFrame.size; ++i)</pre>
    if (srcFrame.data[i] != dstFrame.data[i])
        std::cout << "[" << __LINE__ << "] " << __FILE__ << " : ERROR" << std::endl;
        return false;
    }
}
```

Frame class public members

Frame class public members declaration:

```
/// Frame width (pixels).
uint32_t width{0};
/// Frame height (pixels).
uint32_t height{0};
```

```
/// FOURCC code of data format.
Fourcc fourcc::YUV24};
/// Frame data size (bytes).
uint32_t size{0};
/// ID of frame.
uint32_t frameId{0};
/// ID of video source.
uint32_t sourceId{0};
/// Pointer to frame data.
uint8_t* data{nullptr};
```

Table 3 - Frame class public members.

Field	Description
width	Frame width.
height	Frame height.
fourcc	Fourcc code according to Fourcc enum declared in Frame.h file.
size	Size of frame data.
frameId	Frame ID. User defines this filed.
sourceld	Source ID. User defines this field.
data	Pointer to frame data.

Build and connect to your project

Typical commands to build Frame library:

```
git clone https://github.com/ConstantRobotics-Ltd/Frame.git
cd Frame
mkdir build
cd build
cmake ..
make
```

If you want connect Frame library to your CMake project as source code you can make follow. For example, if your repository has structure:

```
CMakeLists.txt
src

CMakeList.txt
yourLib.h
yourLib.cpp
```

You can add repository **Frame** as submodule by command:

```
cd <your repository folder>
git submodule add https://github.com/ConstantRobotics-Ltd/Frame.git 3rdparty/Frame
```

In you repository folder will be created folder **3rdparty/Frame** which contains files of **Frame** repository. New structure of your repository:

```
CMakeLists.txt
src
CMakeList.txt
yourLib.h
yourLib.cpp
3rdparty
Frame
```

Create CMakeLists.txt file in **3rdparty** folder. CMakeLists.txt should contain:

```
cmake_minimum_required(VERSION 3.13)
## 3RD-PARTY
## dependencies for the project
project(3rdparty LANGUAGES CXX)
## SETTINGS
## basic 3rd-party settings before use
# To inherit the top-level architecture when the project is used as a submodule.
SET(PARENT ${PARENT}_YOUR_PROJECT_3RDPARTY)
# Disable self-overwriting of parameters inside included subdirectories.
SET(${PARENT}_SUBMODULE_CACHE_OVERWRITE OFF CACHE BOOL "" FORCE)
## CONFIGURATION
## 3rd-party submodules configuration
ON CACHE BOOL "" FORCE)
SET(${PARENT}_SUBMODULE_FRAME
if (${PARENT}_SUBMODULE_FRAME)
                               ON CACHE BOOL "" FORCE)
  SET(${PARENT}_FRAME
                               OFF CACHE BOOL "" FORCE)
  SET(${PARENT}_FRAME_TEST
endif()
## INCLUDING SUBDIRECTORIES
## Adding subdirectories according to the 3rd-party configuration
if (${PARENT}_SUBMODULE_FRAME)
  add_subdirectory(Frame)
endif()
```

File **3rdparty/CMakeLists.txt** adds folder **Frame** to your project and excludes test application (Frame class tests) from compiling. Your repository new structure will be:

```
CMakeLists.txt
src
CMakeList.txt
yourLib.h
yourLib.cpp
3rdparty
CMakeLists.txt
Frame
```

Next you need include folder 3rdparty in main **CMakeLists.txt** file of your repository. Add string at the end of your main **CMakeLists.txt**:

```
add_subdirectory(3rdparty)
```

Next you have to include Frame library in your **src/CMakeLists.txt** file:

```
target_link_libraries(${PROJECT_NAME} Frame)
```

Done!