Deep Neural Networks

UEF SUMMER SCHOOL 2017

Ville Hautamäki

What is deep learning? (1 / 2)

What is deep learning? (2 / 2)

ASR performance a historical perspective

Comparison on classical ML vs. deep learning

In classical Machine Learning:

In Deep Learning:

Feature Learning = Representation Learning = Embedding Learning

Comparison on classical ML vs. deep learning (NLP)

Comparison on classical ML vs. deep learning (LID)

Neural networks as universal function approximators

Estimating parameters: need of a loss function

$$E_i = f_o(y_i, f(x_i)),$$
Loss function, such as MSE or Cross-entropy (CE)
 $E_{train} = \frac{1}{n} \sum_{i=0}^n E_i,$

$$\mathbf{W}^{l}(t) = \mathbf{W}^{l}(t-1) - \eta \cdot \frac{1}{n_{batch}} \sum_{i=0}^{n_{batch}} \frac{\partial E_{i}}{\partial \mathbf{W}^{l}(t-1)},$$

Backprop: gradient chain-rule is your friend

Backpropagation

When things go wrong with backprop: gradient vanishing/ explosion

Let's see an example using numpy.

```
 z = 1/(1 + np.exp(-np.dot(W, x))) \ \# \ forward \ pass \\  dx = np.dot(W.T, z*(1-z)) \ \# \ backward \ pass: local \ gradient \ for \ x \\  dW = np.outer(z*(1-z), x) \ \# \ backward \ pass: local \ gradient \ for \ W
```

If your weight matrix W is initialized too large, the output of the matrix multiply could have a very large range (e.g. numbers between -400 and 400), which will make all outputs in the vector z almost binary: either 1 or 0. But if that is the case, z*(1-z), which is local gradient of the sigmoid non-linearity, will in both cases become zero ("vanish"), making the gradient for both x and W be zero. The rest of the backward pass will come out all zero from this point on due to multiplication in the chain rule.

Problems with classical sigmoidal activation

Rectified linear as an alternative activation

Stochastic gradient descent / decomposable loss

```
Algorithm 1 General learning procedure of neural network
Require: initialize all weights W(0) (sufficient small values is important [70])
    for 1 to n_{enoch} do
      shuffle-training-set # suggested in [70]
      for mini-batch to training-batches do
         # Forward pass
 4:
         mini-batch = normalize-data(mini-batch) # suggested in [70]
         prediction = network-output(mini-batch | W(t - 1))
6:
         error = objective-function(target, prediction)
         # Backward pass
 8:
         gradients = \partial error/\partial \mathbf{W}(t-1)
         gradients = apply-constraint(gradients) # prevent grad. vanishing, exploding [101]
10:
         \mathbf{W}(t) = \text{update-algorithm}(\mathbf{W}(t-1), \eta, \text{gradients})
         # validating can be in the middle or in the end of an epoch
12:
```

Avoiding overfit by dropout regularization

(a) Standard Neural Net

(b) After applying dropout.

Validation set: avoiding overfit

Validation set: avoiding overfit

networks

Convolutional neural

Local connectivity is beneficial (vs. fully connected)

What is convolution?

$$(f \star g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$
$$= \int_{-\infty}^{+\infty} f(t - \tau)g(\tau)d\tau.$$

Structure of the convolutional neural networks (CNN)

Stride and padding parameters

Max Pooling

CNN as a learned feature extractor

Frame-level features created by shifting window around M raw input samples by 10ms

Interpretability of learned filters

WaveNet example

Generative Modeling with Neural Networks

Why generative instead of discriminative?

- Probabilistic interpretation: we not only get a point estimates but the whole distribution.
- Possibility to sample fake data.
- Transfer learning. Such as in brain imaging, we can learn general image model from photographs (like ImageNet) and then use only a small set of application domain images to adapt the model to the new domain.
- It is unsupervised learning, the big open problem in machine learning.
- Idea is that, you can only truly understand any phenomenon if you can generate it.

We learn to generate from a latent code

First deep generative model: autoencoder

Unsupervised learning is data compression

- If we are able to represent the data reliably with a short code, then we are able to compress it.
- Interestingly, already one of the founding fathers of data compression Prof.
 Jorma Rissanen alluded to the importance of this observation.

Variational autoencoder (VAE)

THE ENCODER COMPRESSES DATA INTO A LATENT SPACE (Z). THE DECODER RECONSTRUCTS THE DATA GIVEN THE HIDDEN REPRESENTATION.

Generative adversarial network (GAN)

The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

The **generator** turns random noise into immitations of the data, in an attempt to fool the discriminator.