Tutoraggio Ricerca Operativa2020/2021 7. Teoria dei Grafi: Nozioni base, alberi ricoprenti e cammini minimi

Aurora Rossi, Alice Raffaele, Romeo Rizzi

Università degli Studi di Verona

28 aprile 2022

Nozioni base

- **Grafo**: configurazione formata da un insieme di punti (*vertici* o *nodi*) e un insieme di linee (*lati* o *archi*) che uniscono coppie di nodi;
 - **Indiretto**: quando i *lati* non sono orientati; si indica con G = (V, E);
 - **Diretto**: quando gli *archi* sono orientati; si indica con G = (V, A).
- **Grafo pesato**: a ogni lato/arco è associato un valore, detto *peso*; esiste quindi una funzione $f: E \to R$ che associa a ogni arco e un valore p;
- Grafo connesso: quando tutti i vertici sono collegati tra loro (i.e., esiste un percorso che collega tutte le coppie di nodi);
- Grafo completo: quando ogni vertice è direttamente collegato con un lato a tutti gli altri;
- Vertici adiacenti: se esiste un lato/arco che li collega direttamente;
- Ciclo: sottografo i cui vertici formano un ciclo (un percorso chiuso).
- Taglio: dato un insieme $S\subseteq V$, il taglio $\delta(S)$ è l'insieme dei lati/archi del grafo che hanno esattamente una estremità in S;
- Albero: grafo connesso e aciclico.

Il problema dell'albero ricoprente di costo minimo (Minimum Spanning Tree)

Consideriamo un grafo G = (V, E, w) indiretto, connesso e pesato. Un albero ricoprente di G è un sottografo $T = (V, E' \subseteq E)$ di G tale che:

- T è un albero;
- T contiene tutti i vertici di G.

Il minimo albero ricoprente (MST) è un albero ricoprente a costo minimo.

Esempio: consideriamo 8 case e i loro possibili collegamenti con i loro relativi costi; come possiamo collegarle in modo che il costo complessivo sia il minimo?

L'algoritmo di Kruskal

Algoritmo proposto dal matematico americano Joseph Kruskal nel 1956.

Procedimento:

- 1 Ordinare i lati in base al loro peso, in modo non decrescente;
- 2 Prendere i primi n-1 lati tali da:
 - Ottenere un sottografo connesso;
 - Non avere cicli.

Strategia: mantiene un sottografo non per forza connesso di un MST (all'inizio tutti i vertici del grafo e nessun lato).

Risoluzione esercizio con Kruskal (I)

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **3** (4,5) 5
- **6** (2, 4) 8
- **0** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(4,7)** 11
- **1** (2,3) 18
- **(3,8)** 19
- **3** (7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (II)

Inserisco in soluzione il lato $(6,7) \rightarrow$ **Costo parziale**: 1

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **(**4,5)5
- **1** (2,4) 8
- **4** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (III)

Inserisco in soluzione il lato $(1,5) \rightarrow$ **Costo parziale**: 3

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **3** (4,5) 5
- **1** (2,4) 8
- **4** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (IV)

Inserisco in soluzione il lato $(6,8) \rightarrow$ **Costo parziale**: 5

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **(**4,5)5
- **1** (2,4) 8
- **4** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (V)

Inserisco in soluzione il lato $(1,2) \rightarrow$ **Costo parziale**: 9

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- (1,2) 4
- **(**4,5)5
- **1** (2, 4) 8
- **4** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (VI)

Inserisco in soluzione il lato $(4,5) \rightarrow$ **Costo parziale**: 14

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- (1,2) 4
- **6** (4,5) 5
- **1** (2, 4) 8
- **4** (4,8) 9

- **1** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- **(**5,6) 51

Risoluzione esercizio con Kruskal (VII)

Inserisco in soluzione il lato $(2,4) \rightarrow NO!$ Si formerebbe il ciclo 1-2-4-5.

- (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **6** (4,5) 5
- **1** (2, 4) 8
- **4** (4,8) 9

- **1** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2, 3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (VIII)

Inserisco in soluzione il lato $(4,9) \rightarrow$ **Costo parziale**: 23

- **1** (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **6** (4,5) 5
- **(**2,4)8
- **(**4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(4,7)** 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- **(**5,6) 51

Risoluzione esercizio con Kruskal (IX)

Inserisco in soluzione il lato $(1,4) \rightarrow NO!$ Si formerebbe il ciclo 1-4-5.

- (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- (1,2) 4
- **6** (4,5)5
- **1** (2, 4) 8
- **0** (4,8) 9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(4,7)** 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- (5,6) 51

Risoluzione esercizio con Kruskal (X)

Inserisco in soluzione il lato $(3,4) \rightarrow$ **Costo parziale**: 34

- (6,7) 1
- **2** (1,5) 2
- **3** (6,8) 2
- **4** (1, 2) 4
- **6** (4,5) 5
- **1** (2, 4) 8
- **(**4,8)9

- **3** (1, 4) 10
- **9** (3, 4) 11
- **(**4,7) 11
- **1** (2,3) 18
- **(3,8)** 19
- **(**7,8) 23
- **(**5,6) 51

Risoluzione esercizio con Kruskal - Soluzione

In soluzione ci sono n-1=7 lati \rightarrow **Costo totale MST**: 34

Note:

- Se al posto del lato (3,4) avessimo inserito il lato (4,7), si sarebbe formato il ciclo 4-5-6-7;
- L'algoritmo di Kruskal è *ottimo*: trova sempre la soluzione migliore; **Complessità**: si può dimostrare che sia $O(|E| \log |E|)$ o $O(|E| \log |V|)$.

L'algoritmo di Prim

Fu originariamente sviluppato nel 1930 dal matematico ceco **Vojtěch Jarník** e indipendentemente dall'informatico **Robert C. Prim** nel 1957. Nel 1959 venne riscoperto da **Edsger Dijkstra**.

Procedimento:

- Selezionare un nodo di origine e inserirlo in un insieme *S*;
- ② Aggiungere il lato (u, v) di costo minimo adiacente a un nodo in S (i.e., $u \in S$, $v \in V \setminus S$);
- Inserire v in S e ripetere dallo Step 2, finché la cardinalità di S non è pari a n.

Strategia: costruisce un albero connesso e aciclico (all'inizio fa parte della soluzione solo il nodo di origine).

Complessità: $O(|E| \log |V|)$.

Risoluzione esercizio con Prim (I)

Risolviamo lo stesso esercizio con l'algoritmo di Prim.

Selezioniamo come nodo origine il vertice 1 e inseriamolo in S.

Risoluzione esercizio con Prim (II)

Vertici già visitati: $S = \{1\}$; Lati selezionabili: $\{(1,2),(1,4),(1,5)\}$; Costo parziale: 0.

Scegliendo il lato (1,5), inseriamo il vertice 5 in S e aggiungiamo i lati a esso adiacenti tra quelli selezionabili:

Vertici già visitati: $S = \{1, 5\}$; Lati in soluzione: $\{(1, 5)\}$ Lati selezionabili:

 $\{(1,4),(1,5),(4,5),(5,6)\};$

Costo parziale: 2.

Risoluzione esercizio con Prim (III)

Vertici già visitati: $S = \{1,5\}$; Lati in soluzione: $\{(1,5)\}$ Lati selezionabili: $\{(1,2),(1,5),(4,5),(5,6)\}$; Costo parziale: 2.

Selezioniamo il lato (1,2) e aggiungiamo a S il vertice 2:

Vertici già visitati: $S = \{1, 5, 2\}$; Lati in soluzione: $\{(1,5), (1,2)\}$ Lati selezionabili: $\{(1,4), (4,5), (5,6)\}$; Costo parziale: 6.

Risoluzione esercizio con Prim (IV)

Aggiungiamo i lati adiacenti al vertice 2:

Vertici già visitati: $S = \{1, 5, 2\}$; Lati in soluzione: $\{(1,5), (1,2)\}$ Lati selezionabili: $\{(1,5), (4,5), (5,6), (2,3), (2,4)\}$; Costo parziale: 6.

Selezioniamo il lato (4,5) e aggiungiamo a S il vertice 4:

Vertici già visitati: $S = \{1, 5, 2, 4\}$; Lati in soluzione: $\{(1,5), (1,2), (4,5)\}$ Lati selezionabili: $\{(1,5), (5,6), (2,3), (2,4)\}$; Costo parziale: 11.

Risoluzione esercizio con Prim (V)

Aggiungiamo i lati adiacenti al vertice 4:

Vertici già visitati: $S = \{1, 5, 2, 4\}$; Lati in soluzione:

{(1,5), (1,2), (4,5)}

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(2,4),(3,4),(4,7),$$

Costo parziale: 11.

Non possiamo selezionare il lato (2,4) perché si formerebbe un ciclo tra i nodi 1-2-4-5.

Risoluzione esercizio con Prim (VI)

Vertici già visitati: $S = \{1, 5, 2, 4\}$; Lati in soluzione:

$$\{(1,5),(1,2),(4,5)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(4,8)\}$$

Costo parziale: 11.

Selezioniamo il lato (4,8) e aggiungiamo a S il vertice 8:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8)\}$$
 Lati

selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7)\};$$

Costo parziale: 20.

Risoluzione esercizio con Prim (VII)

Aggiungiamo i lati adiacenti al vertice 8:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(6,8),$$

Costo parziale: 20.

Selezioniamo il lato (6,8) e aggiungiamo a S il vertice 6:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8, 6\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8),(6,8)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(7,8)\}$$

Costo parziale: 22.

Risoluzione esercizio con Prim (VIII)

Aggiungiamo i lati adiacenti al vertice 6:

Vertici già visitati: $S = \{1, 5, 2, 4, 8, 6\}$;

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8),(6,8)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(7,8),(6,7)\};$$

Costo parziale: 22.

Selezioniamo il lato (6,7) e aggiungiamo a S il vertice 7:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8, 6, 7\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8),(6,8),(6,7)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(7,8)\};$$

Costo parziale: 23.

Risoluzione esercizio con Prim (IX)

Tutti i lati adiacenti al vertice 7 sono già tra i selezionabili:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8, 6, 7\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8),(6,8),(6,7)\}$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(3,4),(4,7),(7,8)\};$$

Costo parziale: 22.

Non possiamo selezionare il lato (1,4) altrimenti otterremmo il ciclo 1-4-5. Selezioniamo il lato (3,4) e aggiungiamo a S il vertice S:

Vertici già visitati:

$$S = \{1, 5, 2, 4, 8, 6, 7, 3\};$$

Lati in soluzione:

$$\{(1,5),(1,2),(4,5),(4,8),(6,8),(6,7),(3,$$

Lati selezionabili:

$$\{(1,5),(5,6),(2,3),(4,7),(7,8)\};$$

Costo totale: 34.

Il problema dei cammini minimi (Shortest Path)

Consideriamo un grafo G = (V, A, w) diretto, connesso e pesato (pesi non negativi).

Dato un vertice di partenza s, si vuole calcolare la lunghezza (il costo) di tutti i cammini minimi per raggiungere gli altri vertici.

L'algoritmo di Dijkstra (II)

Indichiamo con d[u] il valore del cammino minimo da s al nodo u; segniamo il nodo di provenienza tra parentesi (e.g., se il parent di 4 è 1, allora scriveremo d[4] (1)).

Procedimento:

- Inizializzazione:
 - selezionare un nodo di origine s, inserirlo in un insieme S e impostare d[s] := 0;
 - per ogni nodo $u \neq s$, impostare $d[u] := \infty$ (nil).
- 2 Finché S non è vuoto:
 - visitare (i.e., rimuovere) il nodo u in S avente distanza minore;
 - inserire i nodi raggiungibili da u in S e aggiornare le loro distanze, calcolando $\min\{d[v], d[u] + w(u, v)\}$, dove v è raggiungibile da u.

Strategia: anche Dijkstra costruisce un albero connesso e aciclico (all'inizio fa parte della soluzione solo il nodo di origine s).

Complessità: $\Theta(|E| + |V| \log |V|)$, usando come strutture dati heap di Fibonacci, adatte alle code di priorità.

Risoluzione esercizio con Dijkstra (I)

Impostiamo s=1 e costruiamo una tabella che, iterazione dopo iterazione, aggiorneremo:

NODO	ITER 0 DIST. (PADRE)	ITER 1 DIST. (PADRE)	ITER 2 DIST. (PADRE)	ITER 3 DIST. (PADRE)	ITER 4 DIST. (PADRE)	ITER 5 DIST. (PADRE)
2	∞ (nil)					
3	∞ (nil)					
4	∞ (nil)					
5	∞ (nil)					
6	∞ (nil)					

All'inizio impostiamo per tutti i nodi la distanza ∞ e come nodo padre $\it nil$ (i.e., $\it nulla$).

Risoluzione esercizio con Dijkstra (II)

Nodi visitati: $\{1\}$.

I nodi raggiungibili dal nodo 1 sono 2, 4 e 5 ightarrow Aggiorniamo i loro valori nella tabella:

NODO	ITER 0 DIST. (PADRE)	ITER 1 DIST. (PADRE)	ITER 2 DIST. (PADRE)	ITER 3 DIST. (PADRE)	ITER 4 DIST. (PADRE)	ITER 5 DIST. (PADRE)
2	∞ (nil)	8 (1)				
3	∞ (nil)	∞ (nil)				
4	∞ (nil)	7 (1)				
5	∞ (nil)	10 (1)				
6	∞ (nil)	∞ (nil)				

Ora che abbiamo usato il nodo 1, selezioniamo il nodo più vicino, ossia il nodo 4. Dovremo:

- considerare i nodi raggiungibili da 4;
- eventualmente aggiornare le loro distanze.

Risoluzione esercizio con Dijkstra (III)

Nodi visitati: $\{1,4\}$.

I nodi raggiungibili dal nodo 4 sono 5 e 6 ightarrow Aggiorniamo i loro valori nella tabella:

NODO	ITER 0 DIST. (PADRE)	ITER 1 DIST. (PADRE)	ITER 2 DIST. (PADRE)	ITER 3 DIST. (PADRE)	ITER 4 DIST. (PADRE)	ITER 5 DIST. (PADRE)
2	∞ (nil)	8 (1)	8 (1)			
3	∞ (nil)	∞ (nil)	∞ (nil)			
4	∞ (nil)	7 (1)	7 (1)			
5	∞ (nil)	10 (1)	10 (1)			
6	∞ (nil)	∞ (nil)	17 (4)			

Nota:

• Per aggiornare il valore del nodo 5, abbiamo calcolato $\min\{d[5], w(4,5) + d[4]\} = \min\{10, 7+7\} = 10 \rightarrow \text{Conviene ancora partire da 1 per arrivare a 5.}$

Iteriamo ancora selezionando il nodo più vicino, ossia il nodo 2. Come prima:

- Consideriamo i nodi raggiungibili da 2;
- Eventualmente aggiorniamo le loro distanze.

Risoluzione esercizio con Dijkstra (IV)

Nodi visitati: $\{1,4,2\}$.

I nodi raggiungibili dal nodo 2 sono 3 e 4 \rightarrow 4 è già stato visitato, quindi aggiorniamo solo il valore relativo al 3:

NODO	ITER 0 DIST. (PADRE)	ITER 1 DIST. (PADRE)	ITER 2 DIST. (PADRE)	ITER 3 DIST. (PADRE)	ITER 4 DIST. (PADRE)	ITER 5 DIST. (PADRE)
2	∞ (nil)	8 (1)	8 (1)	8 (1)		
3	∞ (nil)	∞ (nil)	∞ (nil)	18 (2)		
4	∞ (nil)	7 (1)	7 (1)	7 (1)		
5	∞ (nil)	10 (1)	10 (1)	10 (1)		
6	∞ (nil)	∞ (nil)	17 (4)	17 (4)		

Continuiamo selezionando ora il nodo 5.

Risoluzione esercizio con Dijkstra (V)

Nodi visitati: $\{1, 4, 2, 5\}$.

Il nodo 5 può raggiungere solo il nodo 6 o Aggiorniamone il valore.

NODO	ITER 0	ITER 1	ITER 2	ITER 3	ITER 4	ITER 5
	DIST. (PADRE)	DIST. (PADRE)	DIST. (PADRE)	DIST. (PADRE)	DIST. (PADRE)	DIST. (PADRE)
2	∞ (nil)	8 (1)	8 (1)	8 (1)	8 (1)	
3	∞ (nil)	∞ (nil)	∞ (nil)	18 (2)	18 (2)	
4	∞ (nil)	7 (1)	7 (1)	7 (1)	7 (1)	
5	∞ (nil)	10 (1)	10 (1)	10 (1)	10 (1)	
6	∞ (nil)	∞ (nil)	17 (4)	17 (4)	13 (5)	

Ora toccherebbe allo stesso nodo 6, ma non può raggiungere niente quindi lo riteniamo visitato e passiamo all'ultimo nodo rimasto, ossia il 3.

NODO	ITER 0 DIST. (PADRE)	ITER 1 DIST. (PADRE)	ITER 2 DIST. (PADRE)	ITER 3 DIST. (PADRE)	ITER 4 DIST. (PADRE)	ITER 5 DIST. (PADRE)
2	∞ (nil)	8 (1)	8 (1)	8 (1)	8 (1)	8 (1)
3	∞ (nil)	∞ (nil)	∞ (nil)	18 (2)	18 (2)	18 (2)
4	∞ (nil)	7 (1)	7 (1)	7 (1)	7 (1)	7 (1)
5	∞ (nil)	10 (1)	10 (1)	10 (1)	10 (1)	10 (1)
6	∞ (nil)	∞ (nil)	17 (4)	17 (4)	13 (5)	13 (5)

Nodi visitati: {1, 4, 2, 5, 6, 3}.

Risoluzione esercizio con Dijkstra (VI)

Nodi visitati: $\{1, 4, 2, 5, 6, 3\}$.

Albero dei cammini minimi:

Bibliografia e sitografia

- Wikipedia, Algoritmo di Kruskal, https://it.wikipedia.org/wiki/Algoritmo_di_Kruskal
- Wolfram MathWorld, Kruskal's Algorithm, https://mathworld.wolfram.com/KruskalsAlgorithm.html
- RIP Tutorial, Introduzione all'algoritmo di Prim, https://riptutorial.com/it/algorithm/example/24246/ introduzione-all-algoritmo-di-prim
- it-swarm-dev, Qual è la differenza tra l'algoritmo di Dijkstra e Prim?, https://www.it-swarm.dev/it/algorithm/qual-e-la-differenza-tra-lalgoritmo-di-dijkstra-e-prim/1070017448/
- Università di Pisa, *Esercizi di PL su grafi* http: //groups.di.unipi.it/~a006137/esercizi1_pl_grafi.pdf