Lecture 7: Sequence Tagging

PCL II, CL, UZH April 13, 2016

Contents

- 1. Tagging
- 2. POS Tagging
- 3. Probabilistic-based tagger
- 4. Rule-based taggers
- 5. Evaluation

- Part-of-speech (PoS) tagging
 - Fruit flies like a banana
 - Time flies like an arrow

- Part-of-speech (PoS) tagging
 - Fruit noun flies like verb a determiner banana noun
 - O Time noun flies like preposition an determiner arrow noun

- Part-of-speech (PoS) tagging
 - O Fruit noun flies like verb a determiner banana noun
 - O Time noun flies verb like preposition an determiner arrow noun
- Named entity recognition
 - Prof. people gives a presentation in train
 - Prof. Volk hält einen Vortrag in Zug

- Part-of-speech (PoS) tagging
 - O Fruit noun flies like verb a determiner banana noun
 - O Time noun flies verb like preposition an determiner arrow noun
- Named entity recognition
 - Prof. peopleVolk gives a presentation in trainZug
 - Prof. Volk_{NAME} hält einen Vortrag in Zug_{PLACE}

- Part-of-speech (PoS) tagging
 - O Fruit noun flies noun like verb a determiner banana noun
 - O Time noun flies like preposition an determiner arrow noun
- Named entity recognition
 - o Prof. peopleVolk gives a presentation in trainZug
 - Prof. Volk_{NAME} hält einen Vortrag in Zug_{PLACE}
- Word sense disambiguation
 - A duck is smaller than a typical <u>crane</u>

- Part-of-speech (POS) tagging
 - Fruit noun flies like verb a determiner banana noun
 - O Time noun flies verb like preposition an determiner arrow noun
- Named entity recognition
 - o Prof. peopleVolk gives a presentation in trainZug
 - Prof. Volk_{NAME} hält einen Vortrag in Zug_{PLACE}
- Word sense disambiguation
 - A duck is smaller than a typical <u>crane</u>

Tagging POS Tagging

- Part-of-speech (POS) tagging
 - O Fruit noun flies noun like verb a determiner banana noun
 - O Time noun flies verb like preposition an determiner arrow noun
- Named entity recognition
 - Prof. peopleVolk gives a presentation in trainZug
 - Prof. Volk_{NAME} hält einen Vortrag in Zug_{PLACE}
- Word sense disambiguation
 - A duck is smaller than a typical <u>crane</u>

Contents

- 1. Tagging
- 2. POS Tagging
- 3. Probabilistic-based tagger
- 4. Rule-based taggers
- 5. Evaluation

POS Tagging Applications

- Information extraction
- Question answering
- Speech synthesis
 - o conTENT vs CONtent, obJECT vs OBject
- Parsing
- Word sense disambiguation
- Machine translation

- Tree-tagger
- Stanford POS tagger
- Zmorge
- ..


```
:kitt$ echo "Fed raises interest rates 0.5 percent" | tree-tagger-english
    reading parameters ...

tagging ...

Fed NP Fed
raises VVZ raise
```

rates NNS rate

0.5 CD @card@

interest NN interest

percent NN percent

finished.

Use external tagger in Python:

```
import os
def tag(input):
    output = []
    taggerProc = os.popen("echo %s | tree-tagger-english" %input)
    for line in taggerProc.readlines():
        (wordform, tag, lemma) = line.split("\t")
        lemma = lemma.strip()
        if lemma == "<unknown>":
            lemma = wordform
        output.append((wordform, tag, lemma))
    return output
if name == " main ":
    print tag("Fed raises interest rates 0.5 percent.")
```


NLTK built-in:

```
import nltk

tokenList = nltk.word_tokenize("Fed raises interest rates 0.5 percent")

# ['Fed', 'raises', 'interest', 'rates', '0.5', 'percent']

posResult = nltk.pos_tag(tokenList)

# [('Fed', 'NNP'), ('raises', 'VBZ'), ('interest', 'NN'), ('rates', 'NNS'), ('0.5', 'CD'), ('percent', 'NN')]

# posResult[0] = ('Fed', 'NNP')

# posResult[0][1] = 'NNP'
```

POS Tagging Tagged Data

• The Brown corpus:

```
o nltk.corpus.brown.raw()
o nltk.corpus.brown.words()
o nltk.corpus.brown.sents()
o nltk.corpus.brown.tagged_words()
    [(u'The', u'AT'), (u'Fulton', u'NP-TL'), ...]
o nltk.corpus.brown.tagged_sents()
```

• also treebank (Penn), con112007, etc.

POS Tagging Tagged Data

• The Brown corpus:

```
o nltk.corpus.brown.raw()
o nltk.corpus.brown.words()
o nltk.corpus.brown.sents()
o nltk.corpus.brown.tagged_words()
    [(u'The', u'AT'), (u'Fulton', u'NP-TL'), ...]
o nltk.corpus.brown.tagged_sents()
```

- also treebank (Penn), conll2007, etc.
- → Problem: different tag sets
 - NLTK solution: simplified universal tag set

POS Tagging NLTK simplified tag set

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;!
X	other	ersatz, esprit, dunno, gr8, univeristy

POS Tagging NLTK simplified tag set


```
>>> import nltk.corpus
>>> print nltk.corpus.brown.tagged words()
# [('The', 'AT'), ('Fulton', 'NP-TL'), ...]
>>> print nltk.corpus.brown.tagged words(tagset='universal')
# [('The', 'DET'), ('Fulton', 'NOUN'), ...]
>>> print nltk.corpus.treebank.tagged words()
# [('Pierre', 'NNP'), ('Vinken', 'NNP'), ...]
>>> print nltk.corpus.treebank.tagged words(tagset= 'universal')
# [('Pierre', 'NOUN'), ('Vinken', 'NOUN'), ...]
```

POS Tagging How? - Introduction

There are essentially two sources of information:

Syntagmatic Information
 Look at the tags of other words in the context
 e.g. a new play. NN or VBP?
 AT JJ NN vs. AT JJ VBP

2. Lexical Information

Consider only the word involved

 \rightarrow assign the most common tag.

Contents

- 1. Tagging
- 2. POS Tagging
- 3. Probabilistic-based tagger
- 4. Rule-based taggers
- 5. Evaluation

- Statistical: we need a tagged training corpus
- Maximum Likelihood Estimate

$$P(t^{k} | t^{j}) = C(t^{k} | t^{j}) / C(t^{j})$$
 For tags

$$P(w^{l} | t^{j}) = C(w^{l} : t^{j}) / C(t^{j})$$
 For words

$$t = P(w|t') \cdot P(t'|t_{i-1})$$

e.g. a new play P(NN|JJ) >> P(VBP|JJ) $P(NN|JJ) \approx 0.45 \text{ and } P(VBP|JJ) \approx 0.0005$

• Problem:

clearly marked is ambiguous in a Bigram Markov Model. *RB* (adverb) can precede both:

- $\rightarrow VBD$ (verb in the past tense)
- $\rightarrow VBN$ (past participle)

• Problem:

clearly marked is ambiguous in a Bigram Markov Model. *RB* (adverb) can precede both:

- $\rightarrow VBD$ (verb in the past tense)
- $\rightarrow VBN$ (past participle)
- More context can help: Trigram tagger
 P(BEZ RB VBN|is clearly marked) > P(BEZ RB VBD|is ...)
 P(PN RB VBD|he clearly marked) > P(PN RB VBN|he ...)


```
import nltk
from nltk.tag import *

bigram_tagger = nltk.BigramTagger(train_sents)
print bigram_tagger.tag(untag(sents[2007]))

print bigram_tagger.tag(untag(sents[4203]))

# [('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'), ('is', 'BEZ'), ('13.5', None), ('million', None), (',', None), ('divided', None), ('into', None), ...
```



```
import nltk
from nltk.tag import *

bigram_tagger = nltk.BigramTagger(train_sents)
print bigram_tagger.tag(untag(sents[2007]))

print bigram_tagger.tag(untag(sents[4203]))

# [('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'), ('is', 'BEZ'), ('13.5', None), ('million', None), (',', None), ('divided', None), ('into', None), ...
```

• problem: '13.5' is OOV

• longer context (bigger *k*) means more probability that a particular n-gram has not been seen = "sparse data" effect

- longer context (bigger *k*) means more probability that a particular n-gram has not been seen = "sparse data" effect
- solution: back-off to smaller k:
 - try to find $p(t_i | t_{i-1}, t_{i-2})$
 - o if " $t_{i-2}t_{i-1}t_i$ " has not been seen, try $p(t_i \mid t_{i-1})$
 - o etc.

- Unigram Tagger: only based on $p(w_i | t_i)$
 - will assign the most probable tag per word
 - o no matter the context

- Unigram Tagger: only based on $p(w_i | t_i)$
 - will assign the most probable tag per word
 - no matter the context
- Default tagger: will assign the same tag to all words


```
import nltk
from nltk.tag import *

default_tagger = nltk.DefaultTagger("NN")
unigram_tagger = nltk.UnigramTagger(train_sents, backoff=default_tagger)
bigram_tagger = nltk.BigramTagger(train_sents, backoff=unigram_tagger)

print bigram_tagger.tag(untag(sents[4203]))

# [('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'), ('is', 'BEZ'), ('13.5', 'NN'), ('million', 'CD'), (',', ','), ('divided', 'VBN'), ('into', 'IN'),
```

Markov Model Taggers My walk was awesome


```
p(t \mid \text{"my"}) = \{\text{"pron"}: 0.99, \dots\}
p(t \mid \text{"walk"}) = \{\text{"verb"}: 0.8, \text{"noun"}: 0.19, \dots\}
p(t \mid \text{"was"}) = \{\text{"verb"}: 0.92, \dots\}
p(t \mid \text{"awesome"}) = \{\text{"adj"}: 0.99, \dots\}
```

```
p(t_i \mid t_{i-1} = \text{`<s>'}) = \{\text{`noun': } 0.35, \text{`pron': } 0.3 \dots \}
p(t_i \mid t_{i-1} = \text{`pron'}) = \{\text{`verb': } 0.3, \text{`noun': } 0.35, \text{`adj': } 0.3 \dots \}
p(t_i \mid t_{i-1} = \text{`verb'}) = \{\text{`adj': } 0.2, \text{`noun': } 0.15, \text{`verb': } 0.01, \dots \}
p(t_i \mid t_{i-1} = \text{`noun'}) = \{\text{`verb': } 0.3, \text{`noun': } 0.2, \dots \}
```

Best tag for 'walk':

```
p(\text{`verb'} \mid \text{`walk'}) \cdot p(\text{`verb'} \mid \text{`pron'}) = 0.8 \cdot 0.3 = 0.24

p(\text{`noun'} \mid \text{`walk'}) \cdot p(\text{`noun'} \mid \text{`pron'}) = 0.19 \cdot 0.35 = 0.0665
```

Markov Model Taggers My walk was awesome


```
p(t \mid \text{"my"}) = \{\text{"pron"}: 0.99, \dots\}
p(t \mid \text{"walk"}) = \{\text{"verb"}: 0.8, \text{"noun"}: 0.19, \dots\}
p(t \mid \text{"was"}) = \{\text{"verb"}: 0.92, \dots\}
p(t \mid \text{"awesome"}) = \{\text{"adj"}: 0.99, \dots\}
```

```
p(t_i \mid t_{i-1} = \text{`<s>'}) = \{\text{`noun': } 0.35, \text{`pron': } 0.3 \dots \}
p(t_i \mid t_{i-1} = \text{`pron'}) = \{\text{`verb': } 0.3, \text{`noun': } 0.35, \text{`adj': } 0.3 \dots \}
p(t_i \mid t_{i-1} = \text{`verb'}) = \{\text{`adj': } 0.2, \text{`noun': } 0.15, \text{`verb': } 0.01, \dots \}
p(t_i \mid t_{i-1} = \text{`noun'}) = \{\text{`verb': } 0.3, \text{`noun': } 0.2, \dots \}
```

Best tag for 'walk':

```
p(\text{`verb'} \mid \text{`walk'}) \cdot p(\text{`verb'} \mid \text{`pron'}) = 0.8 \cdot 0.3 = 0.24

p(\text{`noun'} \mid \text{`walk'}) \cdot p(\text{`noun'} \mid \text{`pron'}) = 0.19 \cdot 0.35 = 0.0665
```

But 'walk' as 'verb' brings down the likelihood of the whole sequence:

```
p('pron verb verb adj' | 'my walk was awesome') =

p('pron' | 'my') · p('verb' | 'walk') · p('verb' | 'was') · p('adj' | 'awesome') ·

p('pron' | '<s>') · p('verb' | 'pron') · p('verb' | 'verb') · p('adj' | 'verb') =

0.99 · 0.8 · 0.92 · 0.99 · 0.3 · 0.3 · 0.01 · 0.2 = 0.00013...
```

```
p('pron noun verb adj' | 'my walk was awesome') =

p('pron' | 'my') · p('noun' | 'walk') · p('verb' | 'was') · p('adj' | 'awesome') ·

p('pron' | '<s>') · p('verb' | 'pron') · p('noun' | 'verb') · p('adj' | 'verb') =

0.99 · 0.2 · 0.92 · 0.99 · 0.3 · 0.3 · 0.15 · 0.2 = 0.00049...
```

Viterbi Algorithm

- Instead of $t = \operatorname{argmax}_{t'} p(w_i | t') \cdot p(t' | t_{i-1})$ for each i
- Viterbi = optimization over the whole sequence: $t = \operatorname{argmax}_{t'} p(t'|w)$
- Using dynamic programming
 - o to be explained in lecture #11

Hidden Markov Model

- No tagged training data
- In NLTK:

```
from nltk.tag.hmm import HiddenMarkovModelTagger
hmm_tagger = HiddenMarkovModelTagger.train(train_sents)
```

Contents

- 1. Tagging
- 2. POS Tagging
- 3. Probabilistic-based tagger
- 4. Rule-based taggers
- 5. Evaluation

RegExp tagger

List of regular expressions and corresponding POS tags

```
>>> regexp tagger = nltk.RegexpTagger(
       [(r'^-?[0-9]+(.[0-9]+)?;', 'CD'), \# cardinal numbers
      (r'(The|the|A|a|An|an)$', 'AT'), # articles
     (r'.*able$', 'JJ'),
                                           # adjectives
      (r'.*ness$', 'NN'),
                                           # nouns formed from adjectives
      (r'.*ly$', 'RB'),
                                           # adverbs
      (r'.*s$', 'NNS'),
                                           # plural nouns
      (r'.*ing$', 'VBG'),
                                           # gerunds
       (r'.*ed$', 'VBD'),
                                           # past tense verbs
       (r'.*', 'NN')
                                           # nouns (default)
. . . 1)
>>> regexp tagger.tag(test sent)
[('The', 'AT'), ('Fulton', 'NN'), ('County', 'NN'), ('Grand', 'NN'), ('Jury', 'NN'),
('said', 'NN'), ('Friday', 'NN'), ('an', 'AT'), ('investigation', 'NN'), ('of', 'NN'),
("Atlanta's", 'NNS'), ('recent', 'NN'), ('primary', 'NN'), ('election', 'NN'),
('produced', 'VBD'), ('``', 'NN'), ('no', 'NN'), ('evidence', 'NN'), ("''", 'NN'),
('that', 'NN'), ('any', 'NN'), ('irregularities', 'NNS'), ('took', 'NN'),
('place', 'NN'), ('.', 'NN')]
```

Brill tagger

- start with a naive tagger's output
 - o e.g. a unigram tagger:

to/DT increase/NN grants/NN ...

 The learning algorithm constructs a ranked list of transformations

e.g.

Source tag	Target tag	Triggering environment
NN	VB	previous tag is TO
VBP	VB	one of the prev. 3 tags is MD
VBP	VB	one of the prev. 2 words is <i>n</i> ' <i>t</i>

Brill tagger


```
\begin{array}{l} \textbf{C}_0 := \text{corpus with each word tagset with its most frequent tag} \\ \textbf{for } k := 0 \text{ step 1 do} \\ & \textbf{v} := \text{the transformation } \textbf{u}_i \text{ that minimizes } \textbf{E}(\textbf{u}_i(\textbf{C}_k)) \\ & \textbf{if } (\textbf{E}(\textbf{C}_k) - \textbf{E}(\textbf{v}(\textbf{C}_k))) < \textbf{e} \text{ then break fi} \\ & \textbf{C}_{k+1} := \textbf{v}(\textbf{C}_k) \\ & \textbf{T}_{k+1} := \textbf{v} \end{array}
```

end

Output sequence: T_1, \ldots, T_k

Contents

- 1. Tagging
- 2. POS Tagging
- 3. Probabilistic-based tagger
- 4. Rule-based taggers
- 5. Evaluation

Accuracy in NLTK


```
import nltk
from nltk.tag import *

default_tagger = nltk.DefaultTagger("NN")
unigram_tagger = nltk.UnigramTagger(train_sents, backoff=default_tagger)
bigram_tagger = nltk.BigramTagger(train_sents, backoff=unigram_tagger)
print bigram_tagger.evaluate(test_sents)
```

Confusion matrix in NLTK


```
def tagList(sents):
    '''remove tokens and leave only tags'''
    return [tag for sent in sents for word, tag in sent]
def applyTagger(tagger, corpus):
    '''apply a tagger to a corpus'''
    return [tagger.tag(nltk.tag.untag(sent)) for sent in corpus]
goldTags = tagList(test sents)
testTags = tagList(applyTagger(bigram tagger, test sents))
cm = nltk.ConfusionMatrix(goldTags, testTags)
print cm.pp(sort by count=True, show percents=True,
    truncate=9)
```



```
NN
    0.0% <10.1%> .
           . <8.5%>
ΑТ
NNS |
               . <4.3%>
                   . <6.0%>
                       . <3.4%>
    1.4%
                                . 0.0%
JJ
                            . <4.8%>
                                . <2.7%>
NΡ
CC
```

(row = reference; col = test)

Is 95% good accuracy?

Performance in practice

Is 95% good accuracy?

Depends not just on the tagger

- The amount of training data available
- The tag set
- Same or different domain
- but on the text domain
- the language
- ...

State of the art:

http://aclweb.org/aclwiki/index.php?title=POS Tagging %28State of the art%29

Lecture 7: Sequence Tagging

PCL II, CL, UZH April 13, 2016

