

Previous lecture:

Passivity

How to analyze the passivity properties of a system by using the definitions of passivity for

Memoryless functions
Dynamical systems

Understand the relations between passivity and
Lyapunov stability

Meansivity (IOS)

The passivity theorems (for feedback connections)

Dynamic positioning system for ships

$$\eta = \begin{bmatrix} x \\ y \\ \psi \end{bmatrix}$$

System model:

$$M(\eta)\ddot{\eta} + C(\eta,\dot{\eta})\dot{\eta} + D(\eta)\dot{\eta} = \tau$$

System properties:

$$M = M^{T} > 0$$

$$z^{T}Dz > 0 \quad z \neq 0$$

$$z^{T}(\frac{1}{2}\dot{M} - C)z = 0 \quad \forall z \in \mathbb{R}^{3}$$

Find a control law $\tau = g(t, (\eta, \dot{\eta}))$ that makes the origin $(\eta, \dot{\eta}) = (0,0)$ an asymptotically stable equilibrium point.

0

0

Example cont.

- We shape the (potential) energy
- We add virtual spring forces

Energy-based Lyapunov control design Example: Two-link robot manipulator

Example: Two-link robot manipulator

Control problem:

Find a feedback control law that stabilizes a constant desired configuration q_d .

(Without loss of generality: Assume that $q_d = 0$, i.e. stabilize $(q, \dot{q}) = (0, 0)$)

Two-link robot manipulator

$$H_{11} = m_1 l_{c_1}^2 + I_1 + m_2 \left[l_1^2 + l_{c_2}^2 + 2l_1 l_{c_2} \cos q_2 \right] + I_2$$

$$H_{22} = m_2 l_{c_2}^2 + I_2$$

$$H_{12} = H_{21} = m_2 l_1 l_{c_2} \cos q_2 + m_2 l_{c_2}^2 + I_2$$

$$h = m_2 l_1 l_{c2} \sin q_2$$

$$g_1 = m_1 l_{c1} g \cos q_1 + m_2 g [l_{c2} \cos (q_1 + q_2) + l_1 \cos q_1]$$

$$g_2 = m_2 l_{c_2} g \cos(q_1 + q_2)$$

0

Example: Two-link robot manipulator

General robot manipulator:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

System properties:

$$M(q) = M^{T}(q) > 0 \quad \forall q \in \mathbb{R}^{m}$$
$$z^{T}(\frac{1}{2}\dot{M} - C)z = 0 \quad \forall z, q, \dot{q} \in \mathbb{R}^{m}$$

Dynamic model:

Two-link robot manipulator:

$$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} -h\dot{q}_2 & -h\dot{q}_1 - h\dot{q}_2 \\ h\dot{q}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} + \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$

Control design using passivity theorems 2 useful results: Passivity of LTI systems

Control design using passivity theorems

Two useful results to include linear systems/controllers:

Result 1 (Theorem 2.3, Lozano et al.)

LTI system y(s) = h(s)u(s)h(s) rational transfer function $Re(p_i) < 0, \forall i$

- 1) The system is passive $\Leftrightarrow \text{Re}[h(j\omega)] \ge 0$, $\forall \omega$
- 2) The system is input strictly passive $(\varphi(u) = \delta u)$ $\mathsf{Re}[h(j\omega)] \geq \delta > 0, \quad \forall \ \omega$
- 3) The system is output strictly passive $(\rho(y) = \varepsilon y)$ $\exists \varepsilon > 0 \text{ s.t. } \mathsf{Re}[h(j\omega)] \ge \varepsilon |h(j\omega)|^2$

0

Control design using passivity theorems 2 useful results: Passivity of LTI systems

Control design using passivity theorems

Example: Time constant

Example: Time constant

Consider the system $y(s) = \frac{1}{1+T_s}u(s)$

Analyze the passivity properties of this LTI system

0

Control design using passivity theorems

Two useful results to include linear systems/controllers:

Result 2 (Proposition 2.1, Lozano et al.)

Let

$$h(s) = \frac{(s-z_1)(s-z_2)\cdots}{s(s-p_1)(s-p_2)\cdots} \qquad \begin{array}{l} \operatorname{Re}(z_i) < 0 \\ \operatorname{Re}(p_i) < 0 \end{array}$$

Control design using passivity theorems 2 useful results: Passivity of LTI systems

Lecture 11: Passivity-based control design

Control design using passivity theorems

Example: PID controllers

Example: PID controllers

PID controller

with bounded derivative action:

$$h_{r1}(s) = K_p \frac{1 + T_i s}{T_i s} \cdot \frac{1 + T_d s}{1 + \alpha T_d s} \quad 0 \le T_d < T_i \qquad K_p > 0$$

PID controller

with bounded integral action and bounded derivative action:

$$h_{r2}(s) = K_p \beta \frac{1 + T_i s}{1 + \beta T_i s} \cdot \frac{1 + T_d s}{1 + \alpha T_d s} \quad \begin{array}{l} 0 \le T_d < T_i \\ 0 < \alpha \le 1 \\ 1 \le \beta < \infty \end{array} \quad K_p > 0$$

Analyze the passivity properties of these two PID controllers

Lecture 11: Passivity-based control design

Control design using passivity theorems PID feedback control

PID feedback control

Analysis/Design using passivity theorems

0

PID feedback control:

Analysis/Design using passivity theorems

Example: Motor control

Analysis/Design using passivity theorems

Example: Motor control

Motor and load with elastic transmission:

$$J_m \ddot{ heta}_m = \phi_K(\Delta heta) + \phi_D(\Delta \dot{ heta}) + T_m + F(\dot{ heta}_m)$$

$$J_L(\ddot{ heta}_m + \Delta \ddot{ heta}) = -(\phi_K(\Delta heta) + \phi_D(\Delta \dot{ heta}))$$

 θ_m motor angle

 $\Delta\theta$ angular deflection through spring

$$\Delta \theta = \theta_L - \theta_m$$

 $\phi_K \in \text{sector } [0, \infty)$

 $\phi_D \in \mathsf{sector} [0, \infty)$

$$F(\dot{\theta}_m) = \begin{cases} F_0, & \dot{\theta}_m < 0 \\ -F_0, & \dot{\theta}_m > 0 \end{cases}$$

Lecture 11: Passivity-based control design

0

0

Example: Motor control Analysis/Design using passivity theorems

Motor control:

Analysis/Design using passivity theorems

Control design using passivity theorems A new passivity theorem for stabilization: Theorem 14.4

A new passivity theorem for stabilization

0

Theorem 14.4

i) H_1 is

- passive with V positive definite and radially unbounded
- zero-state observable
- ii) H_2 satisfies $y^T \phi(y) > 0$, $y \neq 0$

then the origin is *globally asymptotically stable*.

Choice of y

Let

$$\dot{x} = f(x) + G(x)u$$
 (affine system)

If $\exists V(x)$

- \circ C^1
- positive definite
- radially unbounded

Choose
$$y = \left[\frac{\partial V}{\partial x} G(x) \right]^T$$

Then $u \mapsto y$ is passive

22

Lecture 11: Passivity-based control design

How to achieve passivity Choice of *u* (Feedback passivation)

How to achieve passivity

0

Choice of u (Feedback passivation)

Let

$$\dot{x} = f(x) + G(x)u$$

Choose

$$u = \alpha(x) + \beta(x)v$$

$$y = h(x)$$

such that

$$\dot{x} = f(x) + G(x)\alpha(x) + G(x)\beta(x)\nu$$

$$y = h(x)$$

has desired passivity properties $v \mapsto y$

23

Chains of a (Foodback possipation

Example: Robot manipulator

0

Dynamic model:

General robot manipulator:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

System properties:

$$M(q) = M^{T}(q) > 0 \quad \forall q \in \mathbb{R}^{m}$$
$$z^{T}(\frac{1}{2}\dot{M} - C)z = 0 \quad \forall z, q, \dot{q} \in \mathbb{R}^{m}$$

Control problem:

Find a feedback control law that stabilizes $(q,\dot{q})=(0,0)$ using passivity based control design.

24

Lecture 11: Passivity-based control design

Summary 0 Passivity Robustness: If the model possesses the same passivity properties regardless of the numerical values of the physical parameters, and a controller is designed so that stability relies on the passivity properties only, the closed-loop system will be stable regardless of the values of the physical parameters A tool for choosing where to place sensors: Passivity considerations are helpful as a guide for the choice of a suitable variable y for output feedback. This is helpful for selecting where to place sensors for feedback control. A tool for choosing where to place actuators: A guide for choice of location of actuators Lecture 11: Passivity-based control design

