8

Лекция 8. Организация функционирования распределённых ВС с привлечением аппарата стохастического программирования

Пазников Алексей Александрович

Ассистент Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики http://cpct.sibsutis.ru/~apaznikov

Пусть ВС состоит из n ЭМ, размещённых в H вычислительных центрах, и обслуживает l терминалов. Тогда очевидно, что:

$$\sum_{i=0}^{H} n_i = n \quad \sum_{i=0}^{H} l_i = l$$

×

Задача IV

- На терминалы поступают потоки задач различных рангов.
- Спрос с каждого терминала $j \in \{1, 2, ..., l\}$ подчинён пуассоновскому распределению.
- ρ_j и ${\rho_j}^*$ среднее значение спроса при минимальном и максимальном требуемом ранге.
- c_j стоимость использования одной ЭМ с терминала j.
- $\|c_{ik}\|$ стоимости каналов между i-м и k-м ВЦ; $i,j\in 1,2,...,H$

Пусть

- x_j ранг подсистемы, назначенной терминалу j, $j \in \{1, 2, ..., l\}$
- a_j и a_j^* минимальный и максимальный ранги подсистем, которая потребуется на терминале j.
- χ_{ij} число ЭМ i-го ВЦ, используемых терминалом j
- Введём функцию $\delta(\chi_{ii})$

$$\delta = \begin{cases} 1, \text{если } \chi_{ij} > 0 \\ 0, \text{если } \chi_{ij} = 0 \end{cases}$$

Тогда потери, связанные с использованием каналов:

$$\sum_{j=1}^{l} \sum_{t=1}^{H} \delta(\chi_{ij}) c_{ik_j}, kj = 1, 2, ..., H$$

где k_i – номер ВЦ, содержащего терминал j.

- Избыточные ЭМ на *j*-м терминале простаивают.
- При необеспечении минимально необходимым числом ЭМ все ЭМ, выделенные терминалу, простаивают и платится штраф.

Задача, которую необходимо решить:

$$\min_{x_{j}} z = \sum_{j=1}^{l} \left\{ \sum_{i=1}^{H} \delta(x_{ij}) + \delta_{j}(x_{j}) (c_{j}x_{j} + k\rho_{j}^{*}) + c_{j}(x_{j} - \rho_{j}^{*}) + c_{j}[\rho_{j}^{*}p_{j}^{*}(x_{j} - 1) - x_{j}p_{j}^{*}(x_{j})] \right\}$$

при условиях

 x_i, χ_{ij} - неотрицательные целые, j=1, ..., l, i=1, ..., H

$$\sum_{j=1}^{l}\chi_{ij}=ni$$
 , $\sum_{j=1}^{H}\chi_{ij}-xj=0$

Здесь

$$\delta j(xj) = egin{cases} 1, & \text{если }
ho_j p_j(x_j-1) - xj p_j(xj) \geq 0,5, \\ 0, & \text{если }
ho_j p_j(x_j-1) - xj p_j(x_j) < 0,5, \end{cases}$$

$$p_{j}(x_{j}) = \sum_{a_{j}=x_{j}}^{\infty} \frac{\rho_{j}^{a_{j}}}{a_{j}!} e^{-\rho_{j}}, \qquad p_{j}^{*}(x_{j}) = \sum_{a_{j}^{*}=x_{j}}^{\infty} \frac{(\rho_{j}^{*})^{a_{j}^{*}}}{a_{j}^{*}!} e^{-\rho_{j}^{*}}$$

 $k
ho_{i}$ – штраф за нерешение задачи на j-м терминале,

k – коэффициент штрафа

- Задача целочисленного программирования.
- Поиск точного решения связан с большими затратами.
- Лучше быстрое гарантированное получение приближенного решения.
- Задача может быть эффективно решена методом цепей Монте-Карло

Задача IV. Пример

- H = 7 количество ВЦ.
- n = 16 общее число ЭМ, причём

$$n_1 = 1$$
, $n_2 = 2$, $n_3 = 4$, $n_4 = 1$, $n_5 = 2$, $n_6 = 3$, $n_7 = 3$

• l = 32 – количество терминалов, причём

$$l_1 = 3$$
, $l_2 = 5$, $l_3 = 6$, $l_4 = 1$, $l_5 = 4$, $l_6 = 7$, $l_7 = 6$

- Известны значения c_i , ρ_i , ρ_i^* , j=1,...,32
- Задана матрица $\|c_{ik}\|$.

Пример. Размещение 7 ВЦ и 32 терминалов

Пусть ВС состоит из n=16 ЭМ и включает H=7 ВЦ:

Пример. Размещение 7 ВЦ и 32 терминалов

Варианты топологического размещения ВС:

1. Система с кольцевой структурой.

2. Одномерная (линейная) система.

3. Система с радиальной структурой.

4. Система с произвольной структурой.

Методы решения

Методы решения

Метод рекуррентных соотношений («динамическое программирование»)

Рассмотрим задачу линейного программирования:

$$z=\sum_{j=1}^n f_j(xj) o \min_{x_j}$$
 , (1)
$$\sum_{j=1}^n a_jx_j \leq b,$$
 $a_j>0, \qquad x_j\geq 0,$ $j=1,\dots,n$ b,aj,xj — целые

Оптимальное решение x_1^* , x_2^* , ..., x_n^* обеспечивает глобальный минимум (1) при ограничениях (2):

$$z^* = \sum_{j=1}^n f_j(xj) = \min_{x_j} \sum_{j=1}^n f_j(xj),$$

Можно показать, что для последовательности функций

$$\Lambda_k(\xi) = \min_{x_j} \sum_{i=1}^k f_i(x_i), \qquad k = 1, ..., n, = 0, ..., b$$

в которых решение удовлетворяет условию

$$\sum_{j=1}^{n} a_j x_j \le \xi$$

справедливы рекуррентные соотношения

(3)

$$\Lambda_k(\xi) = \min_{x_k} [fk(x_k) + \Lambda k - 1(\xi - akxk)] = \min_{x_k} \Omega_k(xk)$$

где x_k может принимать значения $0, 1, ..., [\xi / a_k]$.

Процедура отыскания z*:

- 1. Непосредственное определение $\Lambda_1(\xi)$
- 2. Вычисление $\Lambda_k(\xi), \ k=2, \ 3, \ ..., \ n-1$ при помощи (3)
- 3. Определение $z^* = \Lambda_n(b)$

Как отыскиваются оптимальные x_i^*

Пусть $x'_1(\xi)$ – значение $x_1(\xi)$, для которых

$$f_1(x'_1(\xi)) = \min_{0 \le x_1 \le [\xi/a_1]} f_1(x_1) = \Lambda_1(\xi)$$

где
$$\xi = 0, 1, ..., b$$

Строится таблица $x'(\Lambda)$

ξ	$\Lambda_1(\xi)$	$x_1(\xi)$
0	$\Lambda_1(\xi)$	$x_1(\xi)$
1	$\Lambda_1(\xi)$	$x_1(\xi)$
• • •	$\Lambda_1(\xi)$	$x_1(\xi)$
b	$\Lambda_1(\xi)$	$x_1(\xi)$

Получив $\Lambda_1(\xi)$ для всех $\xi = 0, 1, ..., b$, вычисляем

$$\Lambda_2(\xi) = \min_{0 \le x_2 \le [\xi/a_2]} [f_2(x_2) + \Lambda_1(\xi) - a_2 x_2]$$

Для этого фиксируем ξ и последовательно для $x_2=0,1,...,\, [\xi\,/\,a_2]$ находим величины

$$\Omega_2(0,\xi) = f_2(0) + \Lambda_1(\xi)$$

$$\Omega_2(1,\xi) = f_2(1) + \Lambda_1(\xi - a_2)$$

.....

$$\Omega_2([\xi/a_2], \xi) = f_2([\xi/a_2]) + \Lambda_1(\xi - [\xi/a_2])$$

(4)

- Наименьшая величина из (4) будет $\Lambda_1(\xi)$.
- Процедура выполняется рекурсивно.
- Для всех ξ строится аналогичная таблица x'_2 .
- Отыскиваются оставшиеся значения ${x_{j}}^{*}$.

$$x_{n-i}^* = x_{n-i}' \left(b - \sum_{k=0}^{i-1} a_{n-k}' x_{n-k}^* \right), \qquad i = 1, ..., n$$

В результате получаем z^* и множество решений x_i^* .

Хаим Сутин «Гладиолусы»