Nombre de la asignatura: Energía Eólica

Línea de trabajo: Sustentabilidad en Sistemas Energéticos

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

Historial de la asignatura.

Fechas revisión	Participantos	Observaciones, cambios o
/actualización	Participantes	justificación
Octubre de 2015	Dr. Iván Valencia Salazar	Propuesta de contenidos
Instituto Tecnológico	MC. Jorge Arturo Mendoza Sosa	temáticos comunes a la línea
de Veracruz		de Investigación
		"Sustentabilidad en Sistemas
		Energéticos"

2. Pre-requisitos y correquisitos.

3. Objetivo de la asignatura.

El objetivo general de la asignatura es dotar al alumno de los conocimientos y competencias necesarias sobre la energía eólica, así como diseñar y evaluar sistemas y equipamientos energéticos relacionados con la utilización de la energía eólica.

4. Aportación al perfil del graduado.

- Colaborar en el desarrollo de proyectos tecnológicos para la innovación de productos y/o servicios.
- Desarrollar en el alumno la creatividad para proponer soluciones integrando las tecnologías emergentes de la energía.

5. Contenido temático

Unidad	Temas	Subtemas	
I	Introducción.	1.1 Desarrollo Histórico y Evolución de Turbinas	
		Eólicas	
		1.2 El viento como recurso renovable.	
		1.3 Variaciones anuales y por estaciones.	
		1.4 Turbulencia.	
		1.5 Caracterización de las velocidades del viento.	
II	Aerodinámica de las turbinas	2.1 Teoría del momento.	
	eólicas de eje horizontal.	2.2 Teoría del disco rotor.	
		2.3 Teoría del rotor de aspas.	
		2.4 Geometría del aspa.	
		2.5 El método de la aceleración potencial.	
III	Comportamiento de la turbina	2.6 Aerodinámica de una turbina eólica en estado 3.1 Curvas de comportamiento.	
	eólica.	3.2 Operación a velocidad rotacional constante.	
		3.3 Operación a velocidad rotacional variable.	
		3.4 Pruebas de campo	
		3.5 Medición del comportamiento de una turbina	
IV	Diseño y aplicaciones de una	4.1 Estándares nacionales e internacionales.	
	turbina	4.2 Cargas básicas para el diseño.	
		4.3 Cargas extremas.	
		4.4 Cargas de fatiga	
		4.5 Cargas en operación estable.	
		4.6 Diseño y respuesta dinámica del aspa.	
		4.7 Cálculo de la torre de la turbina eólica.	
		4.8 Diámetro del rotor.	
		4.9 Velocidad de rotación.	
V	Modelado, Simulación y Proyecto	5.1 Componentes del sistema y sus interacciones	
	de aplicación	5.2 Modelado de sistemas Eólicos	
		5.3 Simulación de sistemas Eólicos	
		5.4 Proyecto de Aplicación	

6. Metodología de desarrollo del curso.

Queda a elección del Docente que imparte la materia.

7. Sugerencias de evaluación.

- Exámenes
- Ejercicios en Clase
- Trabajos de Investigación
- Simulaciones
- Proyecto

8. Bibliografía y Software de apoyo.

Bibliografía:

- 1. "Wind Energy Basics Revised", Paul Gipe, Ed. Chelsea Green Publishing, 2009.
- 2. "Wind Power, Paul Gipe", Ed. Chelsea Green Publishing, 2004.
- 3. "Wind Energy Systems", Gary Johnson's, Electronic version, 2004.
- 4. "Sistemas eólicos de producción de energía eléctrica", Rodríguez Amenedo, J.L. y Burgos Díaz, J.C. y Arnalte Gómez, s., Ed. Rueda, 2003.
- 5. "Energía eólica", VV.AA. y Sánchez Naranjo, Consuelo y Cruz Cruz, Ignacio, Ed. Promotora General de Estudios, 2006.

Software:

- 5. Matlab http://www.mathworks.com/products/matlab/
- 6. Trnsys "Transient System Simulation Tool" http://www.trnsys.com/

9. Actividades propuestas.

Unidad	Actividad
I	Proyecto de Investigación, acerca de la evaluación del potencial del viento
	como fuente renovable.
II	Calculo de los modelos aerodinámicos a partir del método de aceleración
	potencial
III	Resolver problemas que involucren el análisis energético de las turbinas
	eólicas en régimen inestable
IV	Resolver problemas sobre el diseño de los elementos componentes de un
	aerogenerador.
V	Simulaciones

10. Nombre y firma de los catedráticos responsables.

Dr. Iván Valencia Salazar	
MC. Jorge Arturo Mendoza Sosa	