

Departamento de Matemática, Universidade de Aveiro

Cálculo II - Agrupamento II — 1.º Teste de Avaliação 5 de abril de 2017

Duração: 2h

[15pts] 1. (a) Sem resolver, efetue a mudança de variável $z = y + e^x$ em $(y' + e^x)(2x + y + e^x) = x$ e classifique a equação diferencial obtida.

[10pts] (b) Sem resolver, mostre que $y(x) = \sin\left(x + \frac{\pi}{4}\right) - \frac{\sqrt{2}}{2}$ é solução do problema de valor inicial $(y'')^2 + (y')^2 = 1, \ y(0) = 0$

 $\text{2. Considere a função } F:\mathbb{R}^2 \to \mathbb{R} \text{ definida por } \quad F(x,y) = \left\{ \begin{array}{ll} \frac{y^2 \sin(x)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0); \\ 0 & \text{se } (x,y) = (0,0). \end{array} \right.$

[15pts] (a) Determine o domínio de continuidade de F.

[20pts] (b) Calcule, caso existam, $\frac{\partial F}{\partial x}(0,0), \ \frac{\partial F}{\partial y}(0,0)$ e a derivada direcional de F no ponto (0,0) segundo o vetor unitário $v=\left(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\right)$.

[15pts] (c) A função F não é diferenciável em (0,0). Porquê?

3. Considere a função $f: \mathbb{R}^3 \to \mathbb{R}$ definida por f(x, y, z) = 2x + 2y - z.

[20pts] (a) Garanta a existência e determine os valores máximo e mínimo (absolutos) de f em $D=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}.$

[20pts] (b) Determine uma equação para o plano tangente no ponto (1,1,0) à superfície de nível 4 da função $q(x,y,z)=x\ f(x,y,z).$

4. Determine o integral geral das seguintes equações diferenciais.

[25pts] (a) $y' = \frac{2x}{1+y^2}$.

[10pts]

[25pts] (b) $y' - x^2y = x^2$.

6. Considere a equação diferencial $\sin(2y) + (x+1) - \cos(2y)y' = 0$, $x \in [0, \frac{\pi}{2}]$.

5. Utilize diferenciais para calcular um valor aproximado de $(2.01)^5 \ln(0.99)$.

[15pts] (a) Mostre que esta equação diferencial não é exata mas que admite um factor integrante, apenas função de x, $\mu(x) = e^{\lambda x}$, para algum $\lambda \in \mathbb{R}$.

[10pts] (b) Sabendo que y_1 é solução da equação diferencial dada será $y_2 = -y_1$ também uma sua solução?

"Pensar é o trabalho mais difícil que existe, o que é provavelmente a razão por que tão poucos se envolvem nele."

Henry Ford