Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 13 - Асимметричные криптосистемы

Общий вид

Перестановка RSA

Атаки на RSA

PKCS 1

Шифр Эль-Гамаль

Общий вид

Общий вид криптосистемы с открытым ключом.

Замеч.: в таком виде уязвима к атаке Man-in-the-Middle, если зл-к встраивается в канал на этапе передачи открытого ключа, и открытый ключ нельзя проверить в обход зл-ка. (Hash, ЭЦП.)

Т.е. есть проблема - управление откр. ключами. (public key management) 4日 5 4周 5 4 3 5 4 3 5 6 3

Опр.

Асимм. κ/c - это тройка алгоритмов G, E, D:

 $G(\cdot)$ - рандомизированный генератор пары ключей (открытый ключ, закрытый ключ - public key, secret key). Принимает seed начальное значение.

Атаки на RSA

 $E(\cdot,\cdot)$ - рандомизир. алгоритм шифрования. c=E(pk,m)

 $D(\cdot,\cdot)$ - детерм. алгоритм расшифрования. m=D(sk,c)

Для пары (pk, sk), созданной G(), верно D(sk, E(pk, m)) = m

Общий вид

Односторонняя функция с секретом.

Существование односторонних функций до сих пор не доказано. Существует несколько функций, для которых не известно эффективного алгоритма вычисления обратной функции. (Но для большинства - не доказано, что их нет!) На них основываются методы асимметричной криптографии.

Атаки на RSA

Атаки на RSA

3л-к возвращает значение b', пытается угадать значение b.

Опр.

Общий вид

S = (G, E, D) семантически стойкая к атаке с выбранным открытым текстом (semantic security), если для $\forall A \in \mathrm{PP}$

$$Adv_{CPA}(A, S) := |P(b' = 1|b = 0) - P(b' = 1|b = 1)| < \varepsilon(n)$$

Сравнение с симм. к/с.

В симм. κ/c зл- κ не знал ключ и не мог сам строить ш/т по открытому тексту.

В асимм. к/с зл-к знает открытый ключ и может созд. любое кол-во ш/т для любых исходных текстов, даже если ключ "одноразовый".

Поэтому для асимм. к/с не различаем случаи с одноразовым ключом и многоразовым ключом.

Из стойкости для однораз. ключа ⇒ стойкость для многораз. ключа.

Асимм. шифрование обязано быть рандомизированным.

Стойкость против активных атак

Опр.

S=(G,E,D) семантически стойкая к атаке с выбранным шифротекстом, если $\forall A\in\operatorname{PP}$

$$Adv_{CCA}(A, S) = |P(b' = 1|b = 0) - P(b' = 1|b = 1)| < \varepsilon(n)$$

Пример

Общий вид

Пусть мы можем воздействовать на шифротекст: контролируемо подменять часть сообщения. Тогда не будет стойк. к атаке с выбр. шифротекстом: зл-к узнает, чему равно b.

Симм. к/с:

Общий вид

стойкий шифр - заверенное шифрование (стойкость к атаке с выбранным открытым текстом и целостность $\mathbf{u}/\mathbf{\tau}$).

Т.е. зл-к не может создавать новые шифротексты, которые будут приняты.

Асимм. к/с:

Зл-к может создавать новые ш/т, которые будут приняты. Поэтому непосредственно требуем стойкость к атаке с выбранным ш/т.

Перестановка с секретом

Опр.

Три алгоритма $(G(),F(\cdot,\cdot),F'(\cdot,\cdot))$ определяют <u>перестановку</u> с секретом, если

G() выдает пары pk, sk - открытый ключ, закрытый ключ.

$$F(pk,\cdot): \underline{X \to X}$$
.

$$F'(sk, y)$$
 - функция $F^{-1}(pk, \cdot)$: если $y = F(pk, x)$, то $F'(sk, y) = x$.

Опр.

Если ф-ция $F(pk,\cdot):X\to X$ - односторонняя ф-ция при неизв. sk,

то $(G(), F(\cdot, \cdot), F'(\cdot, \cdot))$ определяет *стойкую перестановку с секретом* (secure trapdoor permutation).

Раздел 13 - Асимметричные криптосистемы

Общий вид

Перестановка RSA

Атаки на RSA

PKCS 1

Шифр Эль-Гамаль

1977, Rivest, Shamir, Adleman.

Основана на выч-но трудной задаче: разл. на мн-ли.

Генерация ключей

1) Выбир. любые p,q - большие простые числа, например, 128-битовые. Держим их в секрете.

Атаки на RSA

- 2) N := pq
- 3) $\varphi(N)=\varphi(p)\varphi(q)=(p-1)(q-1)$ невозм. быстро вычислить, не зная p,q
- 4) Выбир. $\forall e>1$: НОД $(e,\varphi(N))=1$. Число e "небольшое" и с малым числом единичных битов (это ускоряет вычисления можно польз. сдвигами). Например, e=0x100001 или $e=2^{16}+1$ простые числа.
- 5) $d = e^{-1} mod(\varphi(N))$ с пом. ExtGCD.

Число И наз. "модулем"

Общий вид

Число e - открытая экспонента, d - закрытая экспонента

Пара (N, e) - откр. ключ (public key), (N, d) - закрытый ключ (private key).

Числа p, q больше не нужны, но они секретные.

Сообщение - на части, часть \leftrightarrow число m, 0 < m < N. $c := m^e \mod N$

Расшифрование

$$c^d=m^{ed} \mod N=m^{karphi(n)+1} \mod N=^{(*)} \mod N$$
 (т. Эйлера)

Атаки на RSA

(*): с вероятностью порядка $1 - 2/min(p,q) \approx 1 - 2^{-len(min(p,q))}$, число m не кратно p или q.

Если m не вз. простое с N? Вер-ть этого $pprox 2^{-len(min(p,q))}$ никогда не случится. Это будет замечено, можно попросить изменить *m* и переслать.

$p=11,\;q=17,\;N=187.\;e$ не должно иметь общих дел-й с 10*16=160. Пусть e=9.

Тогда
$$d = 9^{-1} \mod 160 = 89$$
 (ExtGCD)

Пусть
$$m = 688232$$
. $m_1 = 68$, $m_2 = 82$, $m_3 = 32$.

Зашифрование:
$$c_1 = 68^9 \mod 187 = 17$$
.

Расшифрование: $17^{89} \mod 187 = 68 = m_1$.

- не обесп. семантическую стойкость шифрования к атаке с выбранным открытым текстом (детерминированное шифр-е);

Атаки на RSA

Является ли перестановка RSA, $m \rightarrow m^e \mod N$, односторонней функцией?

Пусть d не изв.; известно $c = x^e$; требуется найти $x = c^{1/e}$ в \mathbb{Z}_N , вычислив корень степени e.

Лучший известный сейчас алгоритм вычисл. корней степени е в \mathbb{Z}_N : два шага,

Атаки на RSA

- 1) разложить N на множители (сложно, субэкспоненциальный алгоритм), N = pq
- 2) вычисл. корни степ. e по модулю простых p и q (полин. алгоритм).

Можно ли проще? Не известно.

Субэкспоненциальная сложность взлома, поэтому асимм. κ/c при той же стойкости имеет более длинный ключ и медленнее, чем симм. κ/c .

Использование асимм. к/с:

- 1) инициализация сессии, создание общего ключа для симм. шифра
- 2) односторонняя коммуникация, напр. e-mail.

Раздел 13 - Асимметричные криптосистемы

Общий вид

Перестановка RSA

Атаки на RSA

PKCS 1

Шифр Эль-Гамаль

Атака 1 на перестановку RSA - а-ля "встреча посередине".

Типично: асимметричное шифрование исп. для создания общего ключа для сессии, в которой будет исп. симметричное шифрование.

Длина ключа k для симм. шифра небольшая. Пусть это 64 бита. Зл-к видит $c=k^e\in\mathbb{Z}_N.$

Если k можно предст. в виде $k=k_1\cdot k_2$, $0< k_1, k_2< 2^{34}$ (это произойдет с вер-ю ок. 0.35 для k длины 64 бита), то $c/(k_1)^e=(k_2)^e$.

Атака:

- 1) постр. таблицу: $c/1^e$, $c/2^e$, $c/3^e$, ... $c/(2^{34})^e$ треб. время пропорц. 2^{34} и память $2^{34} \cdot 34$.
- 2) для $k_2=0,...,2^{34}$ попробовать найти $(k_2)^e$ в таблице треб. 2^{34} операций поиска, т.е. время пропорц. $2^{34} \cdot log_2(2^{34})$.

Если нашли, то выдать пару $(k_1,k_2);\;k:=k_1\cdot k_2.$ Найден ключ k, который будет исп. в симметричном шифре. Общее время $\approx 2^{40}\ll 2^{64}.$

Общий вид

Атака 2 на перестановку RSA с малым d

Большое d - долго расшифровывать. Уменьшим его?

Атака Wiener'a: $d < N^{0.25} \Rightarrow$ можно найти d по (N, e).

RSA: малая публичная экспонента - быстрое шифрование. Рек.

 $e=2^{16}+1$ - простое. Шифр-е - 17 умножений по модулю.

Атака 3 при одинаковой публичной экспоненте e=3

e = 3.

 $\underline{3}$ получателя: $(N_1,e), (N_2,e), (N_3,e).$ $m \to c_1, c_2, c_3.$

 $N := N_1 N_2 N_3$, N_i вз. простые.

Обозн. $c = m^3 < N$.

 $\Rightarrow \exists! c \in \mathbb{Z}_N : c = c_i \mod N_i$

 $\Rightarrow m = c^{1/3}$ - как числа, не по модулю.

Защита:

- а) для атаки нужно e получателей: c < N. Не исп. e = 3.
- б) рандомизация шифрования (см. напр. PKCS 1)

Атака 4 на RSA с общим модулем

 (N, e_i, d_i) . Пусть e_i вз. простые.

$$c_1=m^{e_1} mod \ n$$
 $c_2=m^{e_2} mod \ n$ HOД $(e_1,e_2)=1$, поэтому $ExtGCD\Rightarrow e_1',e_2':\ e_1e_1'+e_2e_2'=1.$

Атаки на RSA

Очев, одно из e'_1 , e'_2 отрицательное. Пусть это e'_1 . Тогда выч. $c_1^{-1} mod n (ExtGCD)$.

$$(c_1^{-1})^{-e_1'} * c_2^{e_2'} = m^{e_1 e_1' + e_2 e_2'} = m \mod n$$

Защита: не использовать общий модуль.

Атака 5: проблема малой энтропии

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```

Малая начальная энтропия \Rightarrow одинаковые p. Тогда $HOД(N_1, N_2) = p$. Так факторизуется 0.4% от взятых в сети публичных ключей!

Атака 6 по побочным каналам

- время или график мощности при вычислении $c^d \mod N$.
- ЭМИ \Rightarrow ошибка при вычислении $c^d \mod N$.

Любое из них позволит узнать d.

Раздел 13 - Асимметричные криптосистемы

Общий вид

Перестановка RSA

Атаки на RSA

PKCS 1

Шифр Эль-Гамаль

- (G, F, F^{-1}) односторонняя функция с секретом, $X \to Y$.
- $H: X \to K$ криптографическаяя x/ϕ
- (E_s, D_s) симметрический шифр: заверенное шифрование

Защита: $|X|^{1/2}$ достаточно велико.

H(x): нужный размер результата и запутывание.

$$E(pk, m): \qquad D(sk, (y, c)): x \stackrel{R}{\leftarrow} X, y := F(pk, x) c := E_s(H(x), m) (y, c) D(sk, (y, c)): x := F^{-1}(sk, y) m := D_s(H(x), c) m$$

$$E_s(H(x), m)$$

Теорема 1

Если (G, F, F') - односторонняя функция с секретом, (E_S, D_S) обесп. заверенное шифрование $H: X \to K$ - "случайный оракул", то асимм. к/с (G, E, D) стойкая к атаке с изв. шифротекстом (в модели со случ. оракулом).

Без док-ва.

В жизни нет "случайных оракулов", но иначе доказать не удается.

Public-Key Cryptography Standard 1 (RSA) (*)

v1.5: шифрование: c := RSA(pk, (02||randompad||FF||m)) Зачем randompad?

Расшифрование: расшифровать ш/т и проверить, что первые 2 байта равны $0x00\ 0x02$. Если не равны, отправить ошибку "неверный протокол".

Т.е. зл-к может проверять, что первые два байта после расшифровки равны 02.

Как м.б. исправить?

- а) Не шифровать 02? Примем все ш/т!
- б) Не отвечать "неверный протокол" и обеспечить равное время работы.

$$s \stackrel{R}{\leftarrow} M$$

послать
$$c' = cs^e \mod n = (ms)^e \mod n$$

если
$$c'$$
 не отвегнут, то $msb(ms) = 02$.

Так собираем инф-ю об m. Чтобы полностью узнать m, нужно неск. миллионов сообщений.

Атаки на RSA

PKCS1 v2.0: OAEP (*)

Optimal Asymmetric Encryption Padding

$$n := len(N); r \stackrel{R}{\leftarrow} R$$
. Шифрование: $c = RSA(f(m||pad, r))$

G,H - хэш функции.

При расшифровке проверить pad. Отвергнуть ш/т, если не правильный.

(Пояснить рисунок.)

Теорема 2

Если RSA - односторонняя перестановка с секретом и G, H случайные оракулы, то RSA-OAEP стойкая к атакам с выбранным шифротекстом.

Реализация расшифрования:

Так, чтобы избежать атаку по возвращаемому ответу и по времени обработки.

(Вторая стойкая к атакам асимметричная к/с)

(по данным NIST)

Симм. шифр	размер модуля RSA	Порядок гр. эллипт. кривой
64	512	
80	1024	160
128	3072	256
256 (AES)	15360	512

Атаки на RSA

Поэтому постеп. переход к к/с на эллипт. кривых.

Раздел 13 - Асимметричные криптосистемы

Общий вид

Перестановка RSA

Атаки на RSA

PKCS 1

Шифр Эль-Гамаль

Осн. на сложности проблемы дискр. логарифмирования: по известным p, g, y найти x: $y = g^x \mod p$. Субэксп. сложность.

Атаки на RSA

1. Генерация ключей:

- выбир. группу G порядка q. Обычно G циклическая подгруппа нек. группы \mathbb{Z}_p^* (см. далее).
- g генератор G.
- выбир. случ. x: 1 < x < q 1
- выч. $y := g^x$
- O.K. (G, q, g, y); 3.K. x

- 2. Шифрование. Все операции в группе G.
 - m ∈ G.
 - выбир. случ. k, 1 < k < q 1. Это аналог IV, но k не передается.

Атаки на RSA

- $c_1 := g^k$
- $c_2 := v^k m$
- (c_1, c_2) шифротекст, в 2 раза длиннее m.
- 3. Расшифрование:
 - $m := c_2 \cdot c_1^{-x}$.
- 4. Корректность:
 - $c_2 * c_1^{-x} = y^k m \cdot c_1^{-x} = g^{kx} m g^{-kx} = m$

Утверждение

Если в группе G дискретный логарифм - сложная задача и алгоритм шифрования не разглашает информацию об m, то шифр Эль Гамаля семантически стойкий к атаке с выбором открытого текста.

Атаки на RSA

Без док-ва.

Подходит, напр., группа вычетов \mathbb{Z}_p^* по модулю надежного простого числа p=2q+1 (p,q - простые) и выбор g из **подгруппы квадратичных вычетов** порядка q, так что $\left(rac{g}{p}
ight)=1$ и ограничение множества сообщений: $\left(rac{m}{p}
ight)=1$.

Утверждение

Произвольные \mathbb{Z}_p^* и g не подходят: раскрывается 1 бит инф-и об m.

Док-во

Пусть g - генератор \mathbb{Z}_p^* . След-но g - не кв. вычет, $\left(\frac{g}{p}\right)=-1$.

Символ Лежандра вычисляется эффективно. Вычислим $\left(\frac{c_1}{p}\right) = \left(\frac{g^k}{p}\right) = \left(\frac{g}{p}\right)^k$ - узнаем четность k. Публичный ключ $y = g^x$ - узнаем четность x.

$$c_2 = g^{kx}m$$
, вычислим $l_1 = \left(\frac{c_2}{p}\right)$.

Из предыдущих, знаем $l_2 = \left(\frac{g^{kx}}{p}\right)$.

Тогда узнаем
$$\left(\frac{m}{p}\right)=I_1/I_2.$$
 Ч.т.д.

Литература к лекции

1. Boneh, Joux, Nguyen. Why Textbook ElGamal and RSA Encryption Are Insecure. Параграфы 1 и 3.1. http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/bojong00.pdf

Атаки на RSA

- 2*. PKCS 1 v2.2: RSA Cryptography Standard, http://www.emc.com/collateral/white-papers/ h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
- 3*. Y. Tsiounis, M. Yung. On the Security of ElGamal Based Encryption, http: //www-verimag.imag.fr/~plafourc/teaching/Elgamal.pdf