DRUGA GLAVA

2. SKUPOVI

 $S = \{x | S(x)\}$, znači isto što i: $S = \{x | x \text{ ima svojstvo } S(x)\}$ tj. S je skup svih elemenata koji imaju svojstvo S(x).

Za skupove prirodnih, celih, racionalnih, realnih brojeva koristimo oznake redom: N, Z, Q, R.

 $Podskup\ A$ skupaSje skup koji zadovoljava uslov: $(\forall x)\ (x\in A\Rightarrow x\in S).$ Oznaka je $A\subset S$ ili $S\supset A.$

Jednakost dva skupa definiše se na sledeći način

$$A = B \iff (\forall x) \quad (x \in A \iff x \in B) \quad \text{ili} \quad (A = B \iff (A \subset B \land B \subset A).$$

Postoji jedan i samo jedan prazanskup. To je skup koji nema elemenata. Prazan skup je matematička konstanta. Označavamo ga sa \varnothing .

Unijadva skupa Ai Bje skup koji označavamo sa $A \cup B$ i to je:

$$A \cup B = \{x | x \in A \lor x \in B\}.$$

Presek dva skupa A i B je skup koji označavamo sa $A \cap B$ i to je:

$$A \cap B = \{x | x \in A \land x \in B\}.$$

Ako je $A \cap B = \emptyset$, tada kažemo da su A i B disjunktni (razdvojeni).

Razlika skupa A i skupa B je skup koji označavamo sa $A \backslash B$ i to je:

$$A \backslash B = \{ x | \ x \in A \land x \notin B \}.$$

Grafička interpretacija pomoću tzv. *Ojler-Venovih dijagrama* (šrafirani delovi su redom: unija, presek, razlika) data je na slikama 6, 7 i 8.

Komplement skupa A, skup označen sa A', definišemo kao: $A' = \{x \mid x \notin A\}$. Komplement skupa A u odnosu na skup B, ako $A \subset B$, je: $C_B(A) = B \setminus A$. Uređen par (uređena dvojka) je skup od dva elementa, recimo a i b, koji označavamo sa (a,b) i definišemo kao: $(a,b) = \{\{a\},\{a,b\}\}$.

Jednakost dva uređena para karakteriše prirodu ovih skupova:

$$(a,b) = (c,d) \iff (a = c \land b = d).$$

 $Dekartov \ proizvod \ dva \ skupa \ A \ i \ B$, u oznaci $A \times B$ je

$$A \times B = \{(a, b) | a \in A \land b \in B\}.$$

Dekartov kvadrat skupa A je: $A^2 = A \times A = \{(a, b) | a, b \in A\}.$

Relacija između dva elementa a i b, $a \in A$, $b \in B$, je skup ρ , takav da je $\rho \subset A \times B \land (a,b) \in \rho$. Tada pišemo: $a\rho b$, što znači: a je u relaciji ρ sa b.

Od mogućih osobina relacije ρ definisanih na skupu $A, \rho \subset A \times A$, ističemo:

(R) refleksivnost $(\forall x \in A)(x\rho x)$

(S) simetričnost $(\forall x, y \in A)(x\rho y \Rightarrow y\rho x)$

(AS) antisimetričnost $(\forall x, y \in A)(x\rho y \land y\rho x \Rightarrow x = y)$

(T) transitivnost $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$

Relacija ekvivalencije je svaka relacija koja ima osobine R, S, T. Ona deli skup na disjunktne klase, a elementi jedne klase su svi jedni s drugim u relaciji. Oznaka za relaciju ekvivalencije je \sim (tilda), a za klasu ekvivalencije: $C_x = \{y | x \sim y\}$.

Relacija poretka je svaka relacija koja se odlikuje osobinama R, AS, T.

 $Funkcija\ (preslikavanje)$ skupa $A\ u$ skup $B,\,A\stackrel{f}{\longrightarrow} B,$ je podskupf Dekartovog proizvoda $A\times B,$ koji se odlikuje osobinama: svakom elementu askupa Aodgovara tačno jedna uređena dvojka $(a,b),\ b\in B,$ takva da $(a,b)\in f,$ sl. 9. Koriste se označavanja: $f=\begin{pmatrix} m & n & p \\ 1 & 5 & 5 \end{pmatrix}$ i $f=\{(m,1),(n,5),(p,5)\}.$ SkupA je domen,a skupB je kodomen funkcije f.

Sl. 9

Sl. 10

Elemenat $a \in A$ je original (lik), a elemenat $b \in B$ je slika. Činjenicu da je $(a,b) \in f$ označavamo sa f(a) = b. Skup slika označavamo sa f(A).

Ako je f(A) = B, tada je f preslikavanje skupa A na skup B (sirjekcija), sl. 10. Ako važi implikacija: $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$, tada je f preslikavanje jedan-jedan, odnosno 1-1 (injekcija), sl. 11.

Sl. 11

Sl. 12

Ako je f preslikavanje na i jedan-jedan, sl. 12, onda je to bijekcija i postoji $inverzno\ (obratno)$ preslikavanje skupa B na skup A. To označavamo sa $B=f^{-1}(A)$.

Ako je f(A) = B i g(B) = C, tada se skup A preslikava na skup C kompozicijom preslikavanja: $g \circ f(A) = C$ (čita se: "gof od A jednako C"). Važi zakon asocijativnosti: $h \circ (g \circ f) = (h \circ g) \circ f$.

Svako preslikavanje skupa $A \times A$ u skup A naziva se binarna operacija. Dakle, ako za svaki $x, y \in A$ postoji $z \in A$, tako da $(x,y) \xrightarrow{*} z$, kažemo da je z rezultat primene operacije * redom na x i y. Pišemo: x * y = z.

Operacija je komutativna ako za $\forall x, y \in A$ važi: x * y = y * x.

Operacija je asocijativna ako za $\forall x, y \in A$ važi: x * (y * z) = (x * y) * z.

Ako postoji $e \in A$, tako da za $\forall x \in A$, važi: e*x = x*e = x, tada je e jedinični element (jedinica) operacije *.

Ako za $\forall x \in A$ postoji $y \in A$, tako da je x * y = y * x = e, tada je y inverzni elemenat (obrat) eementa x u odnosu na jedinicu e. Inverzni elemenat označavamo i sa x^{-1} .

Skup snabdeven operacijom čini algebarsku strukturu, na primer: (A, *)

Algebarska struktura (A, *) je *grupa*, ako se operacija * odlikuje osobinama:

- 1° Asocijativnaje, tj. važi jednakost: x*(y*z)=(x*y)*z, za bilo koju trojku elemenata $x,y,z\in A.$
- 2° U skupu A postoji jedinični elemenat e, tj. za svaki elemenat $x \in A$ važe jednakosti: e*x=x*e=x.
- 3° Za svaki elemenat $x \in A$ postoji obrat $x^{-1} \in A$, tj. za svaki elemenat $x \in A$ može se naći elemenat $x^{-1} \in A$, takav da važe jednakosti: $x*x^{-1} = x^{-1}*x = e$. Ako je * još i komutativna operacija, onda se (A, *) naziva komutativna (Abelova) grupa.

Älgebarska struktura $(R, +, \cdot)$ je polje realnih brojeva jer se odlikuje osobinama:

- 1° a+b=b+a (komutativnost sabiranja)
- $2^{\circ} \ a + (b+c) = (a+b) + c$ (asocijativnost sabiranja)
- 3° a + 0 = 0 + a = a (0 je neutralni (jedinični) elemenat sabiranja)
- $4^{\circ} \ a + (-a) = (-a) + a = 0$ (postojanje suprotnog (inverznog) elementa za sabiranje)
- $5^{\circ} \ a \cdot b = b \cdot a$ (komutativnost množenja)
- $6^{\circ} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (asocijativnost množenja)
- 7° $1 \cdot a = a \cdot 1 = a$ (postoji jedinični elemenat za množenje)
- 8° $a \cdot a^{-1} = a^{-1} \cdot a = 1, a \neq 0$ (postojanje inverznog elementa za množenje)
- 9° $a\cdot(b+c)=a\cdot b+a\cdot c$ (distributivnost množenja u odnosu na sabiranje), gde su $a,\,b,\,c,\,(-a),\,a^{-1},\,1$ i 0 realni brojevi, a R skup svih realnih brojeva.

2.1 OPERACIJE SA SKUPOVIMA

 \triangle 61. Za skup S, dat jednakošću: $S = \{x | F(x)\}\}$, kažemo da je dat opisivanjem. Data jednakost ističe da skup S sadrži samo one elemente x koji imaju svojstvo F(x) (za koje je tačna formula F(x)).

Odrediti elemente skupova koji su dati opisivanjem:

- a) $\{x \mid x \in N \land x > 2 \land x < 5\},\$ b) $\{x \mid x \mid 12 \land x \in N\};\$
- c) $\{x | x \in N \land x < 5 \land x \neq 3\}$, d) $\{x | (x+1)| 9 \land x \in Z\}$;
- e) $\{x | 10 | x \land x | 40 \land x \in N\}$, f) $\{x | x \in N \land x < 2 \land x \neq 1\}$.

- △ 62. Utvrditi koja od navedenih tvrđenja su tačna, a koja su netačna:
 - a) $1 \in \mathbb{N}$, gde je \mathbb{N} oznaka za skup prirodnih brojeva: b) $\emptyset = 0$;
 - c) $\varnothing \in \{\varnothing\}$; d) $\varnothing = \{0\}$; e) $\{a\} \in \{a, b, c\}$;
 - f) $\{1, 2, 3\} = \{1, 2, 3, 2, 1\};$ g) $\{x \mid x 3 = 0\} \supset \{3\}.$
- \triangle 63. Koja od relacija =, \subset , \supset , važi između skupa A koji je dat navođenjem elemenata i skupa B koji je zadat opisivanjem.
 - a) $A = \{2\}; B = \{x | x 2 = 0\};$
 - b) $A = \{2, 4, 6, 8\}, B = \{x | x \in 2N \land x < 10\};$
 - c) $A = \emptyset$, $B = \{x | x \in N \land x < 1\}$;
 - d) $A = \{1, 2, 3, 4, 5, 6\}, B = \{x \mid x \in N \land x \mid 6\}.$
- \Box **64.** Na skupu $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ rešiti po x formule:
 - a) $\tau((x-1)|6) = \top$; b) $\tau((x+1)|(x+3)) = \bot$, c) $\tau((x+1)^2 \neq 2) = \top$.
- \square **65.** Rešiti po x i y formule:
 - a) $x \in \{1, 2, 3, 4\}$; b) $2 \in \{1, x, 3, 4\}$; c) $\{1, 5\} \subset \{1, 2, x, 4, 10\}$;
 - d) $\{x\} \subset \{2,5,6\}$; e) $\{1,5\} \in \{1,2,x,4,10\}$;
 - f) $\{x,y\} \subset \{2,5,10\}$; g) $\{1,x,2,y\} \subset \{1,2,3,4\}$.
- \triangle 66. Odrediti vrednosti promenljivih x, y tako da vredi:
 - a) (x,y) = (2,1); b) $\left(\frac{1}{x},1\right) = \left(1,\frac{y}{3}\right);$ c) $\left(\frac{x}{y},y\right) = (2,3);$
 - $\mathrm{d}) \ \ (x,y) = \Big(3,\frac{y}{2}\Big); \quad \mathrm{e}) \ \left(1,\frac{1}{x}\right) = \left(1,\frac{1}{y}\right).$
- \triangle 67. Odrediti $A \cap B$ ako je:
 - a) $A = \{a, b, c, d, e\}, B = \{a, e, i, o, u\};$ b) $A = \{1, 3, 5, 7\}, B = \{2, 4, 6\};$
 - c) $A = \{a | a \text{ je paran broj}\}, B = \{b | b \text{ nije ceo broj}\};$
 - d) $A = \emptyset$, B = N; e) $A = \{a \mid 2 \mid a\} = \{b \mid 0 < b < 5\}$;
 - f) $A = \{a | a \in N \land a \le 3\}, B = \{b | b \in N \land b \ge 2\};$
 - g) $A = \{a \mid a^2 4 = 0\}, B = \{b \mid b < 2\}; \text{ h) } A = \{a \mid 2 \mid a\}, B = \{b \mid 3 \mid b\}.$
- \triangle 68. Rešiti formulu $\{1,2,3\} \cap X = \{2,3\}$, ako je X podskup skupa $\{2,3,4,5\}$.
- \triangle **69.** Da li važi jednakost $\{0, 1, 2, 3, 4\} \cap X = \{1, 2\}$, ako je:
 - a) $X = \{3, 4\}$; b) $X = \emptyset$; c) $X = \{0, 1\}$;
 - d) $X = \{2,3\};$ e) $X = \{0,1,2,3\}$?
- \triangle 70. Dati su skupovi: $A = \{a | a | 6 \land a \in N\}, B = \{1, 3, 5\},$
- $C = \{c \mid c \in Z \land c > 0 \land c < 8\}$. Odrediti:
 - a) $A \cup B$; b) $A \cap C$: c) $(A \cup B) \cap C$; d) $(A \cap B) \cup (A \cap C)$;
 - e) $(A \cup B) \cap (A \cup C)$; f) $((A \cup B) \cap C) \cap A$.
- △ **71.** Dati su skupovi: $A = \{a | a^2 4 = 0\}$, $B = \{b | -3 < b < 3 \land b \in Z\}$, $C = \{c | c ≤ 7 \land c ∈ N\}$. Odredite skupove:

- a) $(A \backslash B) \backslash C$; b) $(A \cup B) \backslash C$; c) $(A \backslash B) \cap (A \backslash C)$;
- d) $(A \cap B) \setminus C$; e) $(A \cap B) \setminus (A \cap C)$.

 \triangle **72.** Dati su skupovi $A=\{a|\ a|12\},\ B=\{b|\ b|24\},\ C=\{c|\ c|6\},\ D=\{2,3,4\}.$ Utvrditi da su $A,\ C$ i D podskupovi skupa B i odrediti komplemente skupova $A,\ C$ i D u odnosu na skup B.

 \triangle **73.** Dati su dijagrami skupova A, B i C, sl. 13. Odrediti skupove: $A, B, C, A \setminus B, B \setminus A, C \setminus (A \cup B), C_c(A), C_c(B), C_c(A \cap B), C_c(A \cup B).$

Sl. 13

- \square **74.** Osenčene skupove na sl. 14 opisati pomoću skupova A, B i C:
 - 1) Koristeći se oznakama operacija ∨, ∧ i relacija ∈ i ∉;
 - 2) Koristeći skupovne operacije.

Sl. 14

 \triangle **75.** Na slici 15 je unija proizvoljnih skupova A, B, i C rastavljena na disjunktne skupove: $D_1, D_2, D_3, D_4, D_5, D_6, D_7$. Slično opisu u **zadatku 74**, opisati skupove D_1, D_2, \ldots, D_7 .

- 2) Iz dijagrama zaključujemo da je $A = D_1 \cup D_2 \cup D_4 \cup D_5$. Koristeći slične jednakosti dokazati:
 - a) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C);$
 - b) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C);$
 - c) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C);$
 - d) $A \setminus (B \cap C) = ((A \setminus B) \cup (A \setminus C).$

Sl. 15

- \Box 76. Dati su card A=26, card B=29, card C=33, card $(A\cap B)=14$, card $(A\cap C)=16$, card $(B\cap C)=18$, card $(A\cap B\cap C)=16$. Koristeći dijagrame odrediti:
 - 1) $card(A \setminus (B \cup C));$ 2) $card(B \setminus (A \cup C));$ 3) $card(C \setminus (B \cup A));$
 - 4) $card((A \cap B) \setminus C)$; 5) $card((B \cap C) \setminus A)$; 6) $card((A \cap C) \setminus B)$.
- b) Odrediti card A i card B, ako je:
 - 1) $card(A \setminus B) = 5 \wedge card(B \setminus A) = 6 \wedge card(A \cap B) = 3;$
 - 2) $card(A \setminus B) = 4 \wedge card(B \setminus A) = 8 \wedge card(A \cup B) = 18;$
 - 3) $card(A \setminus B) = 10 \land card(A \cap B) = 7 \land card(A \cup B) = 24.$
- \bigcirc 77. Dati su skupovi $A=\{a|\ a|18\land a\in N\},\ B=\{b|\ b|30\land b\in N\},\ C=\{c|\ c|45\land c\in N\}.$ Odrediti skupX,koji zadovoljava sledeće uslove:

$$X \cap A = X, \ X \cap B = X \cap C = A \cap B \cap C, \ X \setminus B = X \setminus C \neq \emptyset$$

 \bigcirc 78. Skupovne identičnosti mogu se dokazivati pomoću tablica, sličnih istinitosnim tablicama, samo umesto \top i \bot , tablice popunjavamo sa \in i $\not\in$. Pri tome koristimo ekvivalenciju, kojom se definiše jednakost dvaju skupova:

$$(A = B) \iff (\forall x)((x \in A) \Rightarrow (x \in B)) \land (\forall x)((x \in B) \Rightarrow (x \in A)).$$

Tako, na primer, za dokaz identičnosti $(A \cap B) \setminus C = A \cap (B \setminus C)$, načinićemo tablicu:

A	B	C	$A \cap B$	$B \backslash C$	$A \cap B \setminus C$	$A \cap (B \backslash C)$
\in	\in	\in	\in	∉	∉	∉
\in	\in	∉	\in	\in	\in	\in
\in	∉	\in	∉	∉	∉	∉
\in	∉	∉	∉	∉	∉	∉
∉	\in	\in	∉	∉	∉	∉
∉	\in	∉	∉	\in	∉	∉
∉	∉	\cup	∉	∉	∉	∉
∉	∉	∉	∉	\in	∉	∉

Dve poslednje kolone, kao što vidimo, popunjene su na identičan način, što potvrđuje zadatu identičnost. Odavde zaključujemo da se može pisati bez zagrada: $A \cap B \setminus C$.

Slično navedenom primeru, dokazati sledeće skupovne identičnosti:

- a) $A \cup A = A$ i $A \cap A = A$ (zakon idempotentnosti unije i preseka skupova);
- b) $A \cup B = B \cup A$ i $A \cap B = B \cap A$ (zakon komutativnosti unije i preseka skupova);
- c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ i $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (zakoni distributivnosti);
- d) $(A \cup B)' = A' \cap B'$ i $(A \cap B)' = A' \cup B'$, gde ' ("prim") označava komplement skupa (De Morganovi zakoni za skupove).
- 79. Skupovne jednakosti mogu se dokazivati na osnovu definicija skupovnih operacija i ekvivalencije kojom se definiše jednakost dva skupa. Na primer, jednakost

 $(A \cup B')' = A' \cap B$ dokazujemo koristeći ekvivalenciju:

$$(A \cup B')' = A' \cap B \iff (\forall x)(x \in (A \cup B')' \Rightarrow x \in (A' \cap B)) \land \land (\forall y)(y \in (A' \cap B) \Rightarrow y \in (A \cup B')'.$$

Prvi deo dokaza:

$$(\forall x)(x \in (A \cup B')' \Rightarrow x \notin (A \cup B') \Rightarrow x \notin A \land x \notin B' \Rightarrow x \in A' \land x \in B \Rightarrow x \in (A' \cap B)).$$

Drugi deo dokaza:

$$(\forall y)(y \in (A' \cap B) \Rightarrow y \in A' \land y \in B \Rightarrow y \notin A \land y \notin B' \Rightarrow y \notin (A \cup B') \Rightarrow y \in (A \cup B')').$$

Dokazati skupovnu jednakost $(B \setminus C) \cap A = (A \cap B) \setminus C$:

- a) Koristeći dijagrame i disjunktne podskupove, kao u zadatku 75.
- b) Koristeći tablice pripadnosti, kao u zadatku 78.
- c) Koristeći definicije skupovnih operacija, kao što je učinjeno sa upravo dokazanim primerom.
- □ 80. Koja od navedenih skupovnih formula je tačna:
 - a) $A \cap B = B \Rightarrow A \subset B$; b) $A \cap B = A \Rightarrow A \subset B$;
 - c) $A \cup B = B \Rightarrow B \subset A$; d) $A \cup B = A \Rightarrow B \subset A$;
 - e) $A \subset B \Rightarrow B \setminus A = \emptyset$; f) $A \subset B \Rightarrow A \setminus B = \emptyset$; g) $A \setminus B = \emptyset \iff A \subset B$;
 - h) $A \cup B = A \iff A \subset B$; i) $A \cup \emptyset = \emptyset \iff A = \emptyset$.
- O 81. Učenik je napisao na školskoj tabli redom prirodne brojeve od 1 do 1000. Prvo je izbrisao brojeve koji su deljivi sa 4 i brojeve koji su deljivi sa 6, a zatim i brojeve koji su deljivi sa 10. Koliko je brojeva ostalo na školskoj tabli?
- □ 82. U razredu ima 20 dečaka. Četrnaestorica imaju smeđe oči, petnaestorica imaju smeđu kosu, sedamnaestorica teže više od 60 kg, a osamnaestorica su viši od 165 cm. Dokazati da barem četvorica dečaka imaju sve navedene osobine.
- □ 83. Na Balkanskom kongresu matematičara svaki od 100 učesnika govori bar jedan od stranih jezika: engleski, francuski ili ruski. Ruski jezik govori 57 učesnika, ruski i francuski 28, engleski i francuski 34 a 5 učesnika govori samo francuski. Samo dva strana jezika govori 49 učesnika, a sva tri 11 učesnika. Odgovoriti
- a) Koliko učesnika govori francuski jezik? b) Koliko učesnika govori samo engleski jezik? c) Koliko učesnika ne govori francuski jezik?
- O 84. U školskom izveštaju dati su podaci o sportskim aktivnostima učenika: 50 % igra košarku, a 40 % rukomet. Svaki deseti učenik bavi se rukometom i fudbalom, 5 % bavi se sa sva tri sporta. Za fudbal nije zainteresovano 40 % učenika. 30 % učenika igra fudbal, a ne igra košarku, a 20 % igra rukomet, a za košarku se ne interesuje.
- a) Koliko procenata učenika ove škole ne upražnjava ni jedan od navedenih sportova? b) Koliko procenata učenika upražnjava samo jedan sport?
- * 85. U nekom društvu matematičara svaki od njih se bavi bar jednom od sledećih grana matematike : algebrom, analizom, geometrijom ili logikom. Onaj

koji se bavi algebrom ili logikom bavi se i analizom; onaj koji se bavi geometrijom bavi se i logikom; onaj koji se bavi analizom i geometrijom bavi se i algebrom. Kojom od ovih grana se bavi najviše, a kojom najmanje matematičara?

 \bigcirc 86. Uočimo skup $A = \{1, 2, 3\}$. Skup čiji su elementi svi podskupovi skupa A naziva se partitivni skup skupa A. To je skup

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Naći partitivne skupove datih skupova:

- a) $M = \{m, n\}$; b) $N = \emptyset$; c) $S = \{*, \circ, \Box, \triangle\}$.
- \square 87. 1) Naći Dekartove proizvode dvaju datih skupova, $A \times B$ i $B \times A$:
 - a) $A = \{a\}, B = \{b, c, d\};$ b) $A = \{1, 3\}, B = \{2, 4, 6\};$
 - c) $A = \{a, b\}, B = \{2, 3\}.$

Da li važi zakon komutacije za Dekartov proizvod, tj. da li važi jednakost: $A \times B = B \times A$?

- 2) Odrediti Dekartove kvadrate datih skupova:
- a) $A = \{1\}$; b) $B = \{a, b\}$; c) $C = \{m, n, p\}$; d) $D = \{2, 4, 6, 8\}$.

2.2 BINARNE RELACIJE

- \triangle 88. Znak ρ zameniti jednim od znakova: =, <, >, |, tako da dati zapis postane tačna formula:
 - a) $2\rho 3$; b) $2\rho 2$; c) $1\rho (-1)$; d) $2\rho 4$; e) $2\rho \frac{1}{2}$; f) $x\rho 2x$, $x \in N$;
 - g) $(x-1)(x+1)\rho(x^2-1)$, gde je x realan broj, različit od 1 i -1,
 - h) $(x-1)(x-1)\rho(x-1)^2$, gde je x realan broj, različit od 1,
 - i) $(x+x)\rho 2x$, gde je x iz R i $x \neq 0$.
- \square 89. Na skupu $A=\{1,2,3,4,5,6\}$ određena je relacija $\rho,$ tako da $x\rho y$ ako i samo ako je $x+y\equiv 0\ (\mathrm{mod}\ 2)^3)$
 - 1) Načiniti tablicu relacije ρ .
 - 2) Rešiti formule:
 - a) $\tau(1\rho x) = \top$; b) $\tau(2\rho x) = \bot$;
 - c) $\tau(x\rho 3) = \bot$; d) $\tau(x\rho 6) = \top$, gde je $x \in A$.
- \triangle 90. Relacija ρ skupa $A = \{2, 4, 6, 8\}$ data je tablicom:
 - 1) Odrediti:
 - a) $\tau(6\rho 2)$; b) $\tau(4\rho 4)$; c) $\tau(6\rho 8)$;
 - d) $\tau(8\rho6)$; e) $\tau(2\rho2)$. 2) Rešiti formule:

- a) $\tau(2\rho x) = \bot$; b) $\tau(4\rho x) = \top$;
 - c) $\tau(6\rho x) = \top$; d) $\tau(8\rho x) = \bot$.

- \square 91. Koje su od relacija skupa R:
 - a) =; b) >; c) <; d) \neq ; e) \leq ; f) \geq ; g) | (se sadrži):

1° refleksivne, 2° simetrične, 3° antisimetrične, 4° tranzitivne? Koja od navedenih relacija je relacija ekvivalencije, a koja ρ | 1 2 3

Koja od navedenih relacija je relacija ekvivalencije, a koja je relacija poretka?

- \square 92. Relacija ρ skupa $A=\{1,2,3\}$ predstavljena je tablicom. Zbog čega ρ nije relacija ekvivalencije?
- \bigcirc 93. Uočimo skup $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ i u njemu relaciju ρ definisanu ovako: $x\rho y$ akko $x-y\equiv 0 \pmod 3$, tj. akko x i y pri deljenju sa 3 daju isti ostatak.
 - a) Nacrtati graf relacije ρ , b) Dokazati da je ρ relacija ekvivalencije.
 - c) Odrediti klase ekvivalencije skupa A u odnosu na relaciju ρ .
- \bigcirc 94. U skupu $A=\{1,2,3,4,5,6\}$ definisana je relacija ρ na sledeći način: $x\rho y~akko~x\leq y.$
 - a) Dokazati da je ρ relacija poretka, tj. da je refleksivna, antisimetrična i tranzitivna.
 - b) Nacrtati graf relacije ρ . c) Načiniti tablicu relacije ρ .
- \square 95. Uočimo skup $A=\{1,2,3,4,5,6\}$ i u njemu relaciju $\rho,$ datu na sledeći način: $x\rho y$ akko x|y.
 - a) Dokazati da je ρ relacija poretka.
 - b) Nacrtati graf relacije ρ . c) Sastaviti tablicu relacije ρ .
 - d) Dokazati da je ρ relacija poretka na skupu N. Da li to važi za skup $Z \setminus \{0\}$?
- \bigcirc 96. Na skupu uređenih parova prirodnih brojeva definisana je relacija ρ :
- a) $(x,y)\rho(x_1,y_1) \stackrel{\text{def}}{\Longleftrightarrow} x+y_1=x_1+y;$ b) $(x,y)\rho(x_1,y_1) \stackrel{\text{def}}{\Longleftrightarrow} x\cdot y_1=x_1\cdot y.$ Dokazati da je ρ refleksivna, simetrična i tranzitivna relacija, tj. da je ρ relacija ekvivalencije.

2.3 PRESLIKAVANJA

- - a) f(1), f(2), f(3), f(4), f(5), f(6);
 - b) Rešiti po x iz $\{1,2,3,4,5,6\}$ formule: $f(x)=a, \ f(x)=b, \ f(x)=c, \ f(x)=d.$
- \triangle 98. Uočimo preslikavanje $f=\begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$ skupa $\{a,b,c,d\}$ na samog sebe. Odrediti:
 - a) f(a), f(b), f(c), f(f(d));
 - b) Rešiti formule po x iz skupa $\{a,b,c,d\}$: $f(x)=a,\,f(f(x))=b,\,f(f(f(x)))=d,$

- 1) Iz priložene slike odrediti:
- a) f(a); b) f(b); c) f(c): d) f(d):
- e) f(e).
- 2) Rešiti po x iz skupa $A = \{a, b, c, d, e\}$ formule:
 - a) f(x) = 1; b) f(x) = 2; c) f(x) = 3;
 - d) f(x) = 4.
- 100. Odrediti sva preslikavanja skupa A u samog sebe, u slučajevima:
 - a) $A = \{a\};$ b) $A = \{a, b\}.$
- 101. Vrednost promenljive x u skupu R \bigcirc za koju je tačna formula f(x) = x, naziva se nepokretna (fiksna) tačka funkcije f(x). Tako, na

Sl. 16

primer, nepokretna tačka funkcije f(x) = 2x - 1 je broj 1, jer je tačna formula $f(1) = 2 \cdot 1 - 1 = 1$, tj. f(1) = 1. Ova se tačka dobije iz uslova f(x) = x, u ovom slučaju iz 2x - 1 = x.

- 1) Odrediti, ukoliko postoje, nepokretne tačke funkcija:
- a) f(x) = 2x; b) f(x) = x; c) f(x) = 2x + 1; d) f(x) = x + 1.
- 2) Ako sa f označimo preslikavanje skupa $A = \{a, b, c, d, e\}$ u samog sebe,

odrediti nepokretne tačke preslikavanja u sledećim slučajevima:

a)
$$f = \begin{pmatrix} a & b & c & d & e \\ a & b & c & e & d \end{pmatrix}$$
; b) $f = \begin{pmatrix} a & b & c & d & e \\ a & b & c & d & e \end{pmatrix}$; c) $f = \begin{pmatrix} a & b & c & d & e \\ e & c & b & a & d \end{pmatrix}$

- 3) Ako je $A = \{1, 2, a, b\}$, odrediti sva preslikavanja skupa A u samog sebe tako da: a) svaki element skupa A bude nepokretna tačka, b) 1 i a budu nepokretne tačke, c) b bude nepokretna tačka, d) ne bude nepokretnih tačaka.
- **102.** Koliko ima 1-1 i na preslikavanja skupa A u samog sebe u slučaju:
 - a) $A \neq \{1, 2, 3, 4\}$; b) $A \neq \{1\}$; c) $A \neq \{1, 2\}$;
 - c) $A \text{ je } \{1, 2, 3, 4, 5, 6\};$ e) $A \text{ je } \{a, b, c, d\}.$
- 103. Uočimo funkciju $f = \begin{pmatrix} p & q & r \\ r & p & q \end{pmatrix}$ koja preslikava skup $A = \{p,q,r\}$ u samog sebe. Odrediti:
 - a) f^2 , tj. $f \circ f$; b) f^3 , tj. $f^2 \circ f$; c) f^4 , tj. $f^3 \circ f$;
 - d) f^5 , tj. $f^4 \circ f$; e) f^6 , tj. $f^5 \circ f$:
- 104. Data je funkcija $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ koja preslikava skup $\{1,2,3\}$ na samog sebe. Rešiti po x (iz skupa N) sledeće formule:
 - a) $f^x = I$, gde je I identično preslikavanje, tj. $I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.
 - b) $f^x = f$; c) $f^x = f^2$.

Uputstvo: Obrazovati f^n (n je $1,2,3,\ldots$) i utvrditi pravilo pomoću kog se može f^n svesti na f ili na f^2 .

- \bigcirc **105.** Odrediti $f \circ g$, (f i g su funkcije), ako je:
 - a) f(x) = x, g(x) = x + 1; b) f(x) = x + 1, g(x) = x;
 - c) f(x) = x + 1, g(x) = x + 1; d) f(x) = x + 3, g(x) = x 1.
- □ **106.** Data su preslikavanja $f = \begin{pmatrix} p & q & r & s \\ a & b & d & c \end{pmatrix}$, $g = \begin{pmatrix} p & q & r & s \\ b & a & c & d \end{pmatrix}$, $h = \begin{pmatrix} p & q & r & s \\ c & a & b & d \end{pmatrix}$, skupa $A = \{p, q, r, s\}$ na skup $B = \{a, b, c, d\}$. Odrediti inverzna preslikavanja f^{-1} , g^{-1} i h^{-1} , skupa B u skup A.
- □ **107.** Data je linearna funkcija:

a)
$$f(x) = 2x - 1$$
; b) $f(x) = 3x - 2$; c) $f(x) = \frac{1}{2}x$; d) $f(x) = 1 - \frac{3}{4}x$.

Odrediti $f^{-1}(x)$, a zatim dokazati da je $(f^{-1} \circ f)(x) = x$ i $(f \circ f^{-1})(x) = x$.

 \bigcirc **108.** Odrediti f(x) ako je:

a)
$$f(2x+1) = 3x-2$$
; b) $f(x+3) = x$; c) $f(\frac{x}{2}-1) = \frac{2x}{3}+1$;

d)
$$f(4x-1) = \frac{1}{4}x+1$$
; e) $f(2x) = \frac{x}{2}$; f) $f^{-1}(x) = x-3$.

2.4 BINARNE OPERACIJE

- - 1) Izračunati vrednost izraza:
 - a) p * n; b) $n \circ n$; c) $(p * p) \circ (n * p)$; d) $p \circ (p * (n \circ (p * n)))$.
 - 2) Rešiti po x (x iz $\{p,n\}$) jednačine:
 - $\mathrm{a)} \ \ p*x=n; \quad \mathrm{b)} \ (p*x)*n=p; \quad \mathrm{c)} \ (n\circ x)\circ n=n; \quad \mathrm{d)} \ (p*x)\circ (n*x)=n.$
- $\square \quad \textbf{110.} \text{ Dokazati da je komutativna operacija} * \text{ data tablicom} \quad \begin{matrix} * & a & b & c \\ \hline a & c & a & b \\ b & a & b & c \\ c & b & c & a \end{matrix}.$

Zatim, rešiti jednačine po x u skupu $\{a,b,c\}$.

- a) a * x = b; b) x * b = c; c) (a * x) * c = b; d) b * x = x;
- e) a * x = x * b; f) (x * x) * a = b; g) a * x = x.
- \square 111. Neka je u skupu $S=\{1,2,3,4,6,9\}$ definisana operacija * na sledeći način: $x*y\stackrel{\text{def.}}{=} NZD(x,y)$ gde je NZDoznaka za najveći zajednički delilac.
 - a) Sastaviti tablicu operacije *.
 - b) Da li je skup S zatvoren u odnosu na operaciju *, tj. da li je za sve $x,\,y$ iz S takođe x*y iz S?
 - c) Da li je operacija * komutativna, tj. da li za sve $x,y\in S$, važi formula x*y=y*x?

 \square 112. U skupu R definisane su operacije * sledećim jednakostima:

a)
$$x * y = \frac{x}{y}$$
; b) $x * y = x(x+y)$; c) $x * y = \frac{xy}{x+y}$; d) $x * y = x - y$;

e)
$$x * y = x^2 + xy + y^2$$
.

Koja je od ovih operacija komutativna?

- \square 113. U skupu $A=\{1,2,3,4,5,6\}$ definisane su operacije * i o na sledeći način: $x*y=\max(x,y),\,(x\circ y)=\min(x,y)^4)$
 - a) Sastaviti tablice operacija * i o.
 - b) Dokazati da su operacije * i o komutativne.
- \bigcirc **114.** Da li je algebarska struktura (A, *) grupa ili Abelova (komutativna) grupa, ako:
 - 1) $A = \{a, b, c\}$, a operacija * data je tablicom desno?
 - 2) operacije a, b, c, d, e su određene tablicama, a elementi skupa A su dati u prvoj levoj koloni tablica?

	*	a	b	c
1)	a	c	a	b
1)	b	a	b	c
	c	b	c	a

 \bigcirc 115. U skupu Q racionalnih brojeva definisane su operacije \triangle i \square na sledeći način: $x\triangle y=x+y+1$ $x\square y=xy+x+y$. Dokazati da je operacija \square distrributivna u odnosu na operaciju \triangle , tj. da za racionalne brojeve $x,\,y,\,z$ važe jednakosti:

$$x\Box(y\triangle x)=(x\Box y)\triangle(x\Box z) \text{ i } (y\triangle z)\Box x=(y\Box x)\triangle(z\Box x).$$

 $^{^{4)}}$ max je oznaka za najveći broj, a min za najmanji. Npr. $\max(2,5)=5.$ (Videti uvod za 4. glavu).