Concetti Matematici Utili

Wed 16 Mar

Limiti Asintotici

Limite Asintotico Superiore

Consideriamo f(n) asintoticamente (definitivamente) non negativa.

Dare un limite asintotico superiore vuol dire scrivere f(n) in termini di O(g(n)), ovvero trovare un'altra funzione per cui da un punto n_0 in poi f(n) < g(n) a meno di una costante.

- ▼ Esempio
 - $3n^2 = O(10n^2)$

Vero per qualsiasi n_0

 $3n^2 = O(2n^2)C$

Vero da $n_0=10~{\rm e}~C=100~{\rm in}$ poi

 $3n^2 = O(n^2)$

Vero da $n_0=10\ {\rm e}\ C=100$ in poi

$$f(n) = O(g(n)) \quad \exists \; C > 0, n_0 \geq 0 \; \mathrm{tc}$$

$$0 \le f(n) \le Cg(n), \forall n \ge n_0$$

Limite Asintotico Inferiore

Consideriamo f(n) asintoticamente (definitivamente) non negativa.

Dare un **limite sintotico** *inferiore* vuol dire scrivere f(n) in termini di $\Omega(g(n))$, ovvero trovare un'altra *funzione* per cui da un punto n_0 in poi f(n) > g(n) a meno di una *costante*.

Ordini di Grandezza (dal più grande)

- 1. n^2
- 2. nlog(n)
- 3. *n*
- 4. log(n)
- 5. const