Arrangement of data in a particular order.

$$A = [1 \ 13 \ 9 \ 6 \ 12]$$
#factors $\rightarrow 1 \ 2 \ 3 \ 4 \ 6$

Ascerding (default)
Descending

A→ Winer ar integer array, delete elements from array one by one & the cost of deletion is sum of elements.

Fird min cost to delete all elements.

$$A = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$$
 cost = 2+1+4=7

1+4=5

4 = 4

$$A = (2 | Y)$$
 $Z | Cost = 7 + 3 + 1 = 11 / 1$

Remove
$$x$$
 $x + y + 3$
 y $y + 2$
 $x + 2y + 32 \rightarrow total cost$
 $x > y > 3

initial cost$

Lontribution technique

$$A = \begin{bmatrix} 3 & 5 & 1 & -3 \end{bmatrix}$$

$$N = 4 \quad -3 \quad 1 \quad 3 \quad 3$$

$$N = 4 \quad -3 \quad 1 \quad 3 \quad 5$$

$$4 \quad 3 \quad 2 \quad 1$$

Lost = $(-3 \times 4) + (1 \times 3) + (3 \times 2) + (5 \times 6) = 2$

$$\| \text{Sort in ascending order} \rightarrow TC = O(N \log(N))$$

and = 0

$$\text{for } i \rightarrow 0 \quad \text{to } (N-1) \cdot 4$$

$$\text{and } + = A[i] \times (N-i)$$

$$\frac{3}{2}$$

Letter are

$$TC = O(N \log(N)) \quad SC = O(i)$$

$$A \rightarrow \text{ Given an integer array with distinct elements,}$$

$$\text{find the count of noble integers } i.e. \quad A[i] \cdot 4.t$$

$$\text{ (count of elements} \cdot A[i] = A[i].$$

```
A = [-3 \ 0 \ 2 \ 5]
   Bruteforce - Vi, fird the court of elements < Ali]
                 & check if it is noble or not,
                  add the court to get ars.
               TC = O(N \times N) \qquad SC = O(1)
      A = \begin{bmatrix} -3 & 0 & 2 & 3 \\ -3 & 0 & 2 & 5 \end{bmatrix} | asc. sorted
#el. < A[i] + 0 | 2 3
Ans = 1
        Il sort in ascending order
      for i \rightarrow 0 to (N-1) d
      if (AGi7 == i) ert++
      return ent
                                       TC = O(N \log(N)) SC = O(1)
A - liver ar integer array with distint elements,
     fird the court of noble integers i.e AliI s.t
```

 $A = \begin{bmatrix} -10 & 1 & 1 & 2 & 3 & 4 \\ -10 & 1 & 1 & 3 & 100 \end{bmatrix}$ $\#e < A[i] \rightarrow 0 \quad 1 \quad 1 \quad 3 \quad 4 \quad Ars = 3$ $\times \checkmark \checkmark \checkmark \times X$

(court of elements < A[i]) = A[i].

$$A = \begin{bmatrix} -10 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ -10 & 1 & 1 & 2 & 4 & 4 & 4 & 8 & 10 \end{bmatrix}$$

Selection Sout

2) Find second largest element
$$\rightarrow 7C = O(2N) = O(N)$$

 $SC = O(2) = O(1)$

3) Find third largest element
$$\rightarrow$$
 TC = O(3N) = O(N)
: $SC = O(3) = O(1)$

$$5C = O(K)$$
 \rightarrow use same array

$$A = \begin{bmatrix} 7 & 8 & 1 & 0 \\ 4 & 2 & 7 & 8 \end{bmatrix} \quad |m| = 8$$

$$4 \quad 2 \quad 7 \quad 8 \quad |m| = 7$$

$$K = 3$$
 $K = 5$
 $A = \begin{bmatrix} 7 & 8 \\ 7 & 8 \end{bmatrix}$
 $X = 5$
 $X =$

lorgest K elements are present in sorted order ~

sorted array

⇒ Irect N elements $\rightarrow TC = O(N^2)$

```
SC = 0(1)
       n = 0
       for i \to (n-1) to 0 & || for |i| = n-1; i > = 0; i - -)
           if (A[i] > x) A[i+1] = A[i] (i+1)
else break ||0-i||
       ALi+1]=2
                             // n=0, i=n-1=-1
                                   i+1 = 0
     A = \begin{bmatrix} 0 & 2 & 3 & 4 & 8 \end{bmatrix}
n=882 34 5
i=n-1=xxxxxxx-1
```