Folgen

Marten Lienen

26. Oktober 2012

Zusammenfassung

Sei (a_n) eine Folge und sei $x_0 \in \mathbb{R}$. Wir sagen, dass (a_n) gegen x_0 konvergiert, wenn gilt: Für jedes $\varepsilon \in \mathbb{R}_{>0}$ gibt es ein $N \in \mathbb{N}$, sodass $|x_0 - a_n| < \varepsilon \forall n \geq N$.

Die Folge (a_n) ist eigentlich eine Abbildung $a : \mathbb{N} \to \mathbb{R}$; wir schreiben $a_n := a(n)$.

Etwas allgemeiner betrachtet man für ein $n_0 \in \mathbb{Z}$ Abbildungen $a : \{n_0, n_0 + 1, \dots\} \mapsto \mathbb{R}$ und spricht dann von der Folge $(a_n)_{n>n_0}$.

Satz 2

Jede konvergente Folge ist beschränkt.

Definition. Jede Folge mit $\lim_{n\to\infty} a_n = 0$ heißt Nullfolge.

Bemerkung. Sei (a_n) eine Folge. Genau dann konvergiert die Folge (a_n) gegen a, wenn die Folge $(a_n - a)$ eine Nullfolge ist.

Lemma. Sind (a_n) und (b_n) Nullfolgen, so auch $(a_n + b_n)$ und $(a_n - b_n)$.

Beweis. Sei $\varepsilon > 0$. Weil (a_n) Nullfolge ist, gibt es $N_1 \in \mathbb{N}$ mit $|a_n| < \frac{\varepsilon}{2} \forall n \geq N_1$. Weil (b_n) Nullfolge ist, gibt es $N_2 \in \mathbb{N}$ mit $|b_n| < \frac{\varepsilon}{2} \forall n \geq N_2$.

Sei
$$N:=\max\{N_1,N_2\}$$
. Ist $n\geq N$, so ist $n\geq \tilde{N}_1\wedge n\geq N_2$, also $|a_n+b_n|\leq |a_n|+|b_n|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

Satz 3

Ist (a_n) eine Nullfolge und (b_n) eine beschränkte Folge, so ist $(a_n \cdot b_n)$ eine Nullfolge.

Beweis. Weil (b_n) beschränkt ist, gibt es ein $B \in \mathbb{R}_{>0}$ mit der Eigenschaft mit $|b_n| \leq B \forall n \in \mathbb{N}$. Sei $\varepsilon > 0$. Weil (a_n) eine Nullfolge ist, gibt es ein $N \in \mathbb{N}$ mit $|a_n| < \frac{\varepsilon}{B} \forall n \in \geq N$. Ist $n \geq N$, so ist $|a_n \cdot b_n| = |a_n| \cdot |b_n| < \frac{\varepsilon}{B} \cdot B = \varepsilon$.

Satz 4: Rechenregeln für Grenzwerte

Seien (a_n) und (b_n) Folgen mit $a_n \mapsto a$ und $b_n \mapsto b$.

• $a_n + b_n \mapsto a + b$ und $a_n - b_n \mapsto a - b$

- $\bullet \ a_n b_n \mapsto ab$
- Ist $b \neq 0$, so ist $b_n \neq 0$ für fast alle n und $\frac{a_n}{b_n} \mapsto \frac{a}{b}$.

Beweis. 1: $(a_n - a)$ und $(b_n - b)$ sind Nullfolgen. Nach dem Lemma ist $((a_n - a) \pm (b_n - b)) = (a_n \pm b_n) - (a \pm b)$ auch eine Nullfolge. Deswegen konvergiert $(a_n \pm b_n)$ gegen $a \pm b$.

2: $a_n b_n - ab = a_n (b_n - b) + b(a_n - a) \rightarrow 0$ nach Satz 4 und Lemma.

3: |b| > 0. Aus $b_n \to b$ folgt: Für fast alle n ist $|b - b_n| < \frac{|b|}{2}$. Dann ist $|b| = |b - b_n + b_n| \le |b - b_n| + |b_n| < \frac{|b|}{2} + |b_n|$ für fast alle $n \to |b_n| > |b| - \frac{|b|}{2} = \frac{|b|}{2}$ für fast alle n.

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b_n b}\right| = \left|\frac{1}{b_n}\right| \cdot \left|\frac{1}{b}\right| \cdot \left|b - b_n\right|$$

Für fast alle n ist $|\frac{1}{b_n}|=\frac{1}{|b|}<\frac{2}{|b|}$. Deswegen ist die Folge $(|\frac{1}{b_n}|)$ beschränkt. Aus Satz 3 folgt, dass $(\frac{1}{b_n}-\frac{1}{b})$ eine Nullfolge ist, also $\frac{1}{b_n}\to\frac{1}{b}$. Aus Satz 2 folgt: $\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n}\to a\cdot\frac{1}{b}=\frac{a}{b}$.

Beispiel.

$$\lim_{n \to \infty} \frac{2n^2 - 3n + 6}{3n^2 - 8n + 1} = \lim_{n \to \infty} \frac{2 - \frac{3}{n} + \frac{6}{n^2}}{3 - \frac{8}{n} + \frac{1}{n^2}} = \frac{2}{3}$$

Beispiel.

$$\lim_{n \to \infty} \frac{1000n + 312}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{1000}{n} + \frac{312}{n^2}}{1\frac{1}{n^2}} = 0$$

Satz 5

Seien (a_n) und (b_n) Folgen mit $a_n \to a$ und $b_n \to b$. Ist $a_n \ge b_n \forall n \in \mathbb{N}$, so ist $a \ge b$.

Beweis. Es ist $a_n - b_n \ge 0 \forall n \in \mathbb{N} \text{ und } a_n - b_n \to a - b$. Deswegen ist $a - b \ge 0$.

Beispiel. Für welche $a \in \mathbb{R}$ konvergiert die Folge (a^n) ? Wir benutzen Satz 6.

Satz 6: Bernoullische Ungleichung

Sei $x \in \mathbb{R}$ und x > -1. Für alle $n \in \mathbb{N}$ gilt $(x+1)^n \ge 1 + nx$.

Beweis. Wir benutzen vollständige Induktion nach n:

Für n = 1 steht auf beiden Seiten 1 + x.

Sei $n \in \mathbb{N}$ und sei bereits gezeigt, dass $(1+x)^n \ge 1 + nx$.

$$(1+x)^{n+1} = (1+x)^n (1+x)$$