ANÁLISE PREDITIVA

ALUNOS: LETÍCIA, STEFANI E BERNARDO.

TÓPICOS

- Definição
- Tipos de Problemas em Análise Preditiva
- Passo a passo Geral da Análise Preditiva
- Ferramentas
 Recomendadas

- Modelos
- Métricas de Avaliação
- Casos de sucesso
- Nosso problema
- Códigos
- Gráficos gerados
- Conclusão
- Referências

DEFINIÇÃO

A análise preditiva é uma área da ciência de dados que utiliza modelos estatísticos, machine learning (ML) e inteligência artificial (IA) para analisar dados históricos e prever eventos futuros.

Ela identifica padrões ocultos nos dados e permite transformar informações passadas em insights acionáveis para apoiar decisões estratégicas.

TIPOS DE PROBLEMAS EM ANÁLISE PREDITIVA

• Regressão

Objetivo: prever um valor contínuo.

Exemplo: prever o preço de um imóvel, a receita mensal de uma empresa ou a nota de um aluno.

Classificação

Objetivo: prever uma categoria ou rótulo (label), geralmente com probabilidade associada.

Exemplo: prever se um cliente vai cancelar a assinatura (sim/não), se um e-mail é spam ou não.

Séries Temporais

Objetivo: prever valores ao longo do tempo, levando em conta a dependência temporal dos dados.

Exemplo: prever a demanda de energia elétrica na próxima semana, a cotação de ações ou o fluxo

de caixa mensal.

PASSO A PASSO GERAL DA ANÁLISE PREDITIVA

- Coleta → obter os dados (internos ou externos).
- **Limpeza** → tratar erros, valores nulos e inconsistências.
- Feature Engineering → criar e selecionar variáveis relevantes.
- Split treino/teste → separar dados para treinar e validar.
- **Modelagem** → aplicar algoritmos de ML/estatística.
- Avaliação → medir desempenho (ex.: acurácia, RMSE).
- **Deploy** → colocar o modelo em produção para gerar previsões reais.

FERRAMENTAS RECOMENDADAS

Linguagem: Python (principal no mercado).

- pandas, numpy → manipulação e análise de dados
- scikit-learn modelos clássicos de ML
- xgboost, lightgbm modelos de alta performance
- prophet → séries temporais
- matplotlib → visualização

Ambientes de trabalho

- Jupyter Notebook / Google Colab → exploração e prototipagem
- **Docker** → garantir reprodutibilidade e padronização

MODELOS

- Regressão Linear → modelo simples e interpretável, bom como baseline.
- Random Forest → conjunto de árvores, robusto a ruídos e captura relações não lineares.
- XGBoost → algoritmo de boosting, muito eficiente e com alto desempenho em competições.
- Prophet (Meta/Facebook) → voltado para séries temporais, lida bem com sazonalidade, tendência e feriados.

MÉTRICAS DE AVALIAÇÃO

Regressão

- MAE → erro médio absoluto
- **RMSE** → dá mais peso a erros grandes
- R² → explica quanto o modelo captura da variabilidade

Classificação

- Accuracy → acertos totais
- Precision / Recall → foco em erros de falso positivo/negativo
- AUC → mede a qualidade geral da separação entre classes

CASOS DE SUCESSO

- **Netflix** → usa sistemas de recomendação (filtragem colaborativa + modelos híbridos) para personalizar filmes e séries, aumentando engajamento.
- **Uber** → aplica previsão de demanda e precificação dinâmica, ajustando preços em tempo real conforme oferta e procura.
- **Bancos** → utilizam score de crédito com modelos como regressão logística e árvores de decisão, e hoje aplicam técnicas de explicabilidade (ex.: SHAP, LIME) para dar transparência às decisões.

NOSSO PROBLEMA

Nós queremos prever vendas mensais do produto X para o próximo mês a partir de histórico mensal (últimos 36 meses).

Os dados são fictícios.

Usado para gerar dados sintéticos de 36 meses

import pandas as pd import numpy as np import matplotlib.pyplot as plt

```
np.random.seed(42)
meses = pd.date_range(start="2021-01-01", periods=36, freq="M")
vendas = 200 + np.arange(36) * 3 + np.random.normal(0, 20, 36)

df = pd.DataFrame({"mes": meses, "vendas": vendas})
```

Usado para visualizar dados

```
plt.figure(figsize=(10,5))
plt.plot(df["mes"], df["vendas"], marker="o")
plt.title("Histórico de Vendas - Produto X")
plt.xlabel("Mês")
plt.ylabel("Vendas")
plt.show()
```

GRÁFICO GERADO

Esse gráfico representa o histórico de vendas por produto.

```
df["lag1"] = df["vendas"].shift(1)
df["lag2"] = df["vendas"].shift(2)
df["rolling3"] = df["vendas"].rolling(3).mean()
df["mes_num"] = df["mes"].dt.month
Usado para features de defasagem (lags) e médias móveis
df = df.dropna().reset_index(drop=True)
Usado para remover NaN (Números qua não são um número) iniciais
train = df.iloc[:-6]
test = df.iloc[-6:]
X_train = train.drop(columns=["mes", "vendas"])
y_train = train["vendas"]
X_test = test.drop(columns=["mes", "vendas"])
```

Esse código é para usar 30 meses para treino, 6 para teste.

y_test = test["vendas"]

Esse código prepara três modelos de Machine Learning diferentes para prever as vendas do Produto X

```
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
```

Dicionário chamado modelos

```
modelos = {
   "Linear": LinearRegression(),
   "RandomForest": RandomForestRegressor(n_estimators=100, random_state=42),
   "XGBoost": XGBRegressor(n_estimators=100, random_state=42)
}
```

Organiza e exibe os resultados dos modelos

pd.DataFrame(resultados).T[["MAE", "RMSE"]]

GRÁFICO GERADO

Os gráficos representam três modelos de machine learning diferentes para prever as vendas


```
plt.figure(figsize=(10,5))
plt.plot(test["mes"], y_test, label="Real", marker="o")
for nome in resultados:
    plt.plot(test["mes"], resultados[nome]["preds"], label=nome, marker="x")
plt.legend()
plt.title("Vendas Reais vs Preditas")
plt.show()
```

Gera o gráfico

GRÁFICO GERADO

O gráfico representa os resultados com cada modelo de machine learning.

CONCLUSÃO

- Análise preditiva transforma dados históricos em decisões estratégicas.
- Pipeline estruturado garante modelos confiáveis e precisos.
- Ferramentas e modelos avançados ampliam o valor dos dados.
- Métricas de avaliação orientam melhorias contínuas.
- Casos reais mostram impacto na inovação e competitividade.
- Investir em análise preditiva é apostar numa cultura data-driven.

REFERÊNCIAS

https://share.google/azF7Ga0CvJvz9IPYD

https://www.pecan.ai/blog/predictive-analytics-tools/#:~:text=As%20seis%20melhores%20plataformas%20de,modelos%20personaliz%C3%Alveis%20para%20modelos%20preditivos.

https://share.google/LJoJZzyQr6UsZwaO3

https://www.oracle.com/in/business-analytics/data-analytics-challenges/

THANKYOU

FOR COMING