ТМП ДЗ №1

Максим Щемилкин А-05-19

30 марта 2022

1 Построить конечный автомат, распознающий язык

1. $L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$

 $2. \ L = \{w \in \{a,b\}^* \quad |w|_a \leq 2, |w|_b \geq 2\}$

Это решение получается через перебор первых 4 символов. Такой же результат можно получить через произведение двух грамматик:

$$L_1 = \{ w \in \{a, b\}^* \mid w|_a \le 2 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31		32
32		33
33		33

Получим:

3.
$$L = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\}$$

Нет такого конечного автомата

$$4.\ L=\{w\in\{a,b\}^*\quad ww=www\}$$

Это возможно только для языка, состоящего из пустого слова, так как при $|w|>0ww\neq www$. Можем построить недерминированный KA:

2 Построить KA, используя прямое произведение

1.
$$L = \{w \in \{a,b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2\}$$

Разобьем на 2 автомата:

$$L_1 = \{ w \in \{a, b\}^* \mid w|_a \ge 2 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Значит, $L=L_1\wedge L_2$. Имеем $\Sigma=a,b,s=11,T=33$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31	31	32
32	32	33
33	33	33

Получим:

 $2.\ L=\{w\in\{a,b\}^*\quad |w|\geq 3\wedge |w|\quad odd\}$ Разобьем на 2 автомата:

$$L_1 = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid |w| \quad odd \}$$

Значит, $L=L_1\wedge L_2$. Имеем $\Sigma=a,b,s=11,T=42$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	22	22
12	21	21
21	32	32
22	31	31
31	42	42
32	41	41
41	42	42
42	41	41

Получим:

Так как в вершину 12 попасть нельзя, можно автомат немного упростить:

 $3.\ L = \{w \in \{a,b\}^* \ |w|_a \ \vdots \ 2 \wedge |w|_b \ \vdots \ 3\}$ Разобьем на 2 автомата:

$$L_1 = \{ w \in \{a, b\}^* \mid w|_a : 2 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid w|_b : 3 \}$$

Значит, $L=L_1\wedge L_2$. Имеем $\Sigma=a,b,s=11,T=11$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	11
21	11	22
22	12	23
23	13	21

Получим:

