Decidable Languages

Recall that:

A language L is Turing-Acceptable if there is a Turing machine M that accepts L

Also known as: Turing-Recognizable or Recursively-enumerable languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

 $w \notin L \longrightarrow M$ halts in a non-accept state or loops forever

Definition:

A language L is decidable if there is a Turing machine (decider) M which accepts L and halts on every input string

Also known as recursive languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \longrightarrow M$$
 halts in a non-accept state

Every decidable language is Turing-Acceptable

Sometimes, it is convenient to have Turing machines with single accept and reject states

These are the only halting states

That result to possible halting configurations

We can convert any Turing machine to have single accept and reject states

Old machine

Multiple accept states

New machine

One accept state

Do the following for each possible halting state:

Old machine

Multiple reject states

New machine

For all tape symbols X not used for read in the other transitions of q_i

One reject state

For a decidable language L:

For each input string, the computation halts in the accept or reject state

For a Turing-Acceptable language L:

It is possible that for some input string the machine enters an infinite loop Problem: Is number x prime?

Corresponding language:

$$PRIMES = \{1, 2, 3, 5, 7, ...\}$$

We will show it is decidable

Decider for PRIMES:
On input number x:

Divide x with all possible numbers between 2 and \sqrt{x}

If any of them divides X

Then reject

Else accept

the decider for the language solves the corresponding problem

Decider for PRIMES

Theorem:

If a language L is decidable, then its complement \overline{L} is decidable too

Proof:

Build a Turing machine M' that accepts \overline{L} and halts on every input string (M') is decider for \overline{L}

Transform accept state to reject and vice-versa

MM' q'_{reject} q_{accept} q_{accept}' q_{reject}

Turing Machine M'

On each input string w do:

- 1. Let M be the decider for L
- 2. Run M with input string wIf M accepts then reject

 If M rejects then accept

Accepts \overline{L} and halts on every input string

Undecidable Languages

An undecidable language has no decider: each Turing machine that accepts L does not halt on some input string

We will show that:

There is a language which is Turing-Acceptable and undecidable

We will prove that there is a language L:

- \overline{L} is not Turing-acceptable (not accepted by any Turing Machine)
- · L is Turing-acceptable

Therefore, [is undecidable

Non Turing-Acceptable L

A Language which is not Turing Acceptable

Consider alphabet $\{a\}$

```
Strings of \{a\}^+:
a, aa, aaa, aaaa, ...
a^1 a^2 a^3 a^4 ...
```

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

(There is an enumerator that generates them)

Each machine accepts some language over $\{a\}$

$$M_1, M_2, M_3, M_4, \dots$$

$$L(M_1), L(M_2), L(M_3), L(M_4), \dots$$

Note that it is possible to have

$$L(M_i) = L(M_j)$$
 for $i \neq j$

Since, a language could be accepted by more than one Turing machine

Example language accepted by M_i

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Binary representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$								

Example of binary representations

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists of the 1's in the diagonal

Consider the language \overline{L}

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

$$L = \{a^i : a^i \in L(M_i)\}$$

consists of the O's in the diagonal

Theorem:

Language \overline{L} is not Turing-Acceptable

Proof:

Assume for contradiction that

 \overline{L} is Turing-Acceptable

There must exist some machine M_k that accepts $\overline{L}: L(M_k) = \overline{L}$

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_1$? $L(M_k) = \overline{L}$

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_2$?

? $L(M_k) = \overline{L}$

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_3$?

? $L(M_k) = \overline{L}$

Similarly:
$$M_k \neq M_i$$

for any i

Because either:

$$a^i \in L(M_k)$$

$$a^i \notin L(M_k)$$

$$a^i \notin L(M_i)$$

$$a^i \in L(M_i)$$

the machine \boldsymbol{M}_k cannot exist

L is not Turing-Acceptable

Non Turing-Acceptable

A Language which is Turing-Acceptable and Undecidable

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

There is a
Turing machine
that accepts L

Each machine that accepts L doesn't halt on some input string

Theorem: The language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is Turing-Acceptable

Proof: We will give a Turing Machine that accepts L

Turing Machine that accepts LFor any input string w

- Compute i, for which $w = a^i$
- \cdot Find Turing machine \boldsymbol{M}_i (using the enumerator for Turing Machines)
- Simulate M_i on input a^l
- If M_i accepts, then accept w

End of Proof

Observation:

Turing-Acceptable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not Turing-acceptable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

(Thus, \overline{L} is undecidable)

Non Turing-Acceptable \overline{L}

Theorem: $L = \{a^i : a^i \in L(M_i)\}$ is undecidable

Then L is decidable

However, \overline{L} is not Turing-Acceptable! Contradiction!!!!

Not Turing-Acceptable T Turing-Acceptable Decidable

Turing acceptable languages and Enumerators

We will prove:

(weak result)

 If a language is decidable then there is an enumerator for it

(strong result)

 A language is Turing-acceptable if and only if there is an enumerator for it

Theorem:

if a language L is decidable then there is an enumerator for it

Proof:

Let M be the decider for L

Use M to build the enumerator for L

Let \tilde{M} be an enumerator that prints all strings from input alphabet in proper order

 \mathcal{A}

```
aa
Example:
                         ah
alphabet is \{a,b\}
                              (proper order)
                         ha
                         bb
                         aaa
                        aah
```

Enumerator for L

Repeat:

- 1. \widetilde{M} generates a string w
- 2. M checks if $w \in L$

YES: print w to output

NO: ignore w

This part terminates, because L is decidable

Enumerator for L

Generates all Strings in alphabet

Tests each string if it is accepted by M

Example: $L = \{b, ab, bb, aaa, \dots\}$

	~		Enumeration
	\widetilde{M}	M	Output
w_1	\boldsymbol{a}	reject	
w_2	b	accept	b
w_3	aa	reject	_
:	ab	accept	ab
•	ba	reject	
•	bb	accept	bb
	aaa	accept	aaa
	aab	reject	•
	• • •	• • •	•
	•	•	END OF PROOF

Theorem:

if language $\,L\,$ is Turing-Acceptable then there is an enumerator for it

Proof:

Let M be the Turing machine that accepts L

Use M to build the enumerator for L

Enumerator for L

NAIVE APPROACH

Enumerator for L

Repeat: \widetilde{M} generates a string w

M checks if $w \in L$

YES: print w to output

NO: ignore w

Problem: If $w \notin L$

machine M may loop forever

BETTER APPROACH

 \widetilde{M} Generates first string w_1

M executes first step on w_1

 \widetilde{M} Generates second string w_2

M executes first step on w_2 second step on w_1

\widetilde{M} Generates third string w_3

M executes first step on w_3 second step on w_2 third step on w_1

And so on.....

String: w_1 w_4 w_2 W_3 Step in computation

of string

If for any string w_i machine M halts in an accepting state then print w_i on the output

Theorem:

If for language L there is an enumerator then L is Turing-Acceptable

Proof:

Using the enumerator for L we will build a Turing machine that accepts L

Input Tape

Turing machine that accepts L

For any input string w

Loop:

- \cdot Using the enumerator of L, generate the next string of L
- Compare generated string with w If same, accept and exit loop

End of Proof

By combining the last two theorems, we have proven:

A language is Turing-Acceptable if and only if there is an enumerator for it