Corso di Laurea in Informatica Algebra Lineare e Analisi Numerica Esame dell'11/2/2021 (6 CFU + seconda parte per 9 CFU)

1. Si supponga di dover calcolare

$$f(x) = \sin\left(\frac{x}{2}\right) - \frac{\sin x}{2}$$

per piccoli valori positivi di x.

- (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
- (b) Determinare il condizionamento delle funzioni seno e coseno.
- (c) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):

(c1):
$$x \mapsto s := \sin x$$
, $s2 := \sin\left(\frac{x}{2}\right) \mapsto y1 := s2 - s/2$
(c2): $x \mapsto s := \sin x$, $s2 := \sin\left(\frac{x}{2}\right) \mapsto q := s^2 \mapsto y2 := 4 \cdot q \cdot s2$

2. Determinare una sequenza di rotazioni di Givens che porti il vet-

tore
$$x = \begin{pmatrix} -1 \\ -2 \\ 0 \\ 2 \end{pmatrix}$$
 nella forma $\begin{pmatrix} 0 \\ k \\ 0 \\ 0 \end{pmatrix}$, con k opportuno (esplicitare le matrici di rotazione). Dare inoltre un'interpretazione geometrica

dell'esercizio svolto.

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

4. Verificare che $\lambda=0$ è un autovalore della matrice $A=\begin{pmatrix} -2 & -1 & -3 \\ -1 & 2 & 1 \\ -3 & 1 & -2 \end{pmatrix}$ e calcolare, se esiste, una diagonalizzazione di A. Studiare la convergenza del metodo delle potenze.

- 5. Nel seguito, siano Ae \tilde{A} due matrici con dimensioni 7×4 e 3×5 rispettivamente.
 - (a) Determinare le dimensioni delle matrici U, Σ, V (rispettivamente $\tilde{U}, \tilde{\Sigma}, \tilde{V}$) della SVD di A (rispettivamente \tilde{A}).
 - (b) Si indichi rispettivamente con $u_i, v_i, \tilde{u}_i, \tilde{v}_i$ la *i*-esima colonna delle matrici $U, V, \tilde{U}, \tilde{V}$. Dire se le seguenti affermazioni sono vere o false, giustificando le risposte:
 - (b1) Il vettore Au_i è multiplo di v_i per ogni i.
 - (b2) Il vettore $\tilde{A}\tilde{v}_i$ è multiplo di \tilde{u}_i per ogni i.
 - Se λ è un *qualunque* autovalore di A^tA , allora
 - (b3) $\sigma = \sqrt{\lambda}$ è valore singolare di A.
 - Se $\tilde{\lambda}$ è un qualunque autovalore di $\tilde{A}^t\tilde{A},$ allora
 - (b4) $\tilde{\sigma} = \sqrt{\tilde{\lambda}}$ è valore singolare di \tilde{A} .