3 Números reales

INTRODUCCIÓN

En la unidad anterior se estudiaron los números racionales o fraccionarios y se aprendió a compararlos, operar con ellos y utilizarlos para resolver problemas. En esta unidad se verán los números fraccionarios expresados en forma decimal.

Lo más importante de la unidad es conseguir que los alumnos identifiquen y trabajen con los distintos tipos de números que aparecen en la unidad, distinguiendo los diferentes números decimales: exacto, periódico puro, periódico mixto e irracional. El concepto de los números irracionales puede resultar complicado a los alumnos por la aparición de infinitas cifras que no se repiten, por lo que es importante practicar, poniendo ejemplos de racionales e irracionales y pidiendo a los alumnos que los clasifiquen.

RESUMEN DE LA UNIDAD

- Los *números irracionales* son números decimales no exactos y no periódicos.
- El conjunto de los *números reales* lo forman los números racionales e irracionales.
- *Truncar* las cifras decimales de un número hasta un orden determinado consiste en cambiar por ceros las cifras que vienen a continuación de dicho orden.
- Redondear un número decimal es estimar si se suma o no una unidad a la cifra que ocupa la posición a la que se va a redondear el número.
- Raíz n-ésima de un número: $\sqrt[n]{a} = a^{1/n}$.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Reconocer e interpretar intervalos en la recta real.	Intervalos abiertos, cerrados, semiabiertos y semicerrados.	Representación gráfica de intervalos en la recta real.
2. Aproximar un número decimal.	Aproximación por truncamiento y redondeo.	Truncamiento y redondeo de un número decimal hasta un orden.
3. Calcular el error que se comete al aproximar un número decimal.	Error absoluto.Cota o margen de error.Error relativo.	 Obtención de los errores absoluto y relativo al aproximar un número decimal. Determinación de la cota de error.
4. Operar con radicales.	 Transformación de radicales en potencias. Multiplicación y división de radicales. Racionalización de denominadores. 	 Expresión de números escritos en forma de raíces en potencias. Operaciones con radicales. Multiplicación por el conjugado del denominador.

OBJETIVO 1

RECONOCER E INTERPRETAR INTERVALOS EN LA RECTA REAL

_____ CURSO: _____ FECHA: ____

- 1 Halla un número racional que pertenezca al intervalo $\left[\frac{1}{7}, \frac{6}{7}\right]$.
- 2 Escribe cuatro intervalos encajados que definan los números.
- b) $\sqrt{10}$
- c) $\sqrt{11}$
- 3 Representa en la recta estos intervalos.
 - a) (-2, 4]
- c) x > 8 e) $-3 < x \le 1$ g) |x| < 5

- b) [-3, 5]
- d) x < 3 f) -2 < x < 1 h) |x| > 3
- 4 Expresa los siguientes intervalos con paréntesis o corchetes.
- **5** Expresa con x y los signos <, >, \le o \ge los intervalos.
- 6 Escribe cinco intervalos encajados que definan π .

3

OBJETIVO 2 **APROXIMAR UN NÚMERO DECIMAL**

que vienen a continuación de dicho orden.

Para **truncar** las cifras decimales de un número hasta un orden determinado eliminamos las cifras

EJEMPLO

5,751 truncado a las décimas es 5,7. 0,837 truncado a las centésimas es 0,83.

12,3146 truncado a las milésimas es 12,314.

1 Trunca los números decimales a la cifra de las décimas, centésimas y milésimas.

a) 0,2765

b) 12,34

c) 8,7521

d) 361,4938

0,2

0.27

0.276

Para **redondear** un número decimal hasta un orden determinado vemos si la cifra del siguiente orden es menor que 5 o mayor o igual que 5 y, en función de eso, dejamos la cifra anterior como está o la incrementamos en una unidad.

EJEMPLO

5,751 redondeado a las décimas es 5,8.

0,837 redondeado a las centésimas es 0,84.

12,3146 redondeado a las milésimas es 12,315.

2 Redondea los números decimales a las décimas, centésimas y milésimas.

a) 0,2765

b) 12,3453

c) 8,7521

d) 361,4932

0,3

0,28

0.277

3 Efectúa las operaciones con números decimales, y redondea el resultado a las centésimas.

a) $(1,367 + 4,875) \cdot 2 = \underline{\hspace{1cm}} \cdot 2 = \underline{\hspace{1cm}} = 12,48$

b) (3,642 - 2,485) - (9,675 + 1,476) = _____ = ___ = ___ = _9,99

e) $\frac{35,732 - 20,189}{63,562 - 18,987} =$ ______ = 0,349 = 0,35

3

OBJETIVO 3

CALCULAR EL ERROR QUE SE COMETE AL APROXIMAR UN NÚMERO DECIMAL

LOMBDE	OLIDOO	
NOMBRE:	CURSO:	FFCHA.
NOMBIL:	CUNSU	1 LUI IA

El **error absoluto** que cometemos al aproximar un número decimal es igual al valor absoluto de la diferencia entre el número dado y el número aproximado. Se representa por E_a .

EJEMPLO

Sea el número 3,5765. ¿Qué error absoluto se comete al aproximarlo a las centésimas?

Podemos aproximar el número de dos maneras: truncándolo o redondeándolo.

Si lo truncamos a las centésimas, el número es 3,57; y el error absoluto sería:

$$E_a = |3,5765 - 3,57| = 0,0065$$

Si lo redondeamos a las centésimas, el número es 3,58; y el error absoluto sería:

$$E_a = |3,5765 - 3,58| = 0,0035$$

Como el error cometido al redondear es menor, esta forma de aproximación es mejor que el truncamiento.

- 1 Calcula el error que cometemos al aproximar los siguientes números decimales a las milésimas.
 - a) 35,3277

Por truncamiento queda 35,327.

Por redondeo queda 35,328.

$$E_a = |35,3277 - \underline{}| = 0,0007$$

$$E_a = |___ - 35,3277| = 0,0003$$

b) 107,8912

Por truncamiento queda: _____

Por redondeo queda: ____

$$E_a = |107,8912 - | = 0,0002$$

$$E_a = |107,8912 - | = 0,0002$$

El máximo error absoluto que cometemos al hacer una aproximación se llama cota o margen de error.

EJEMPLO

Al hallar con la calculadora el valor de $\sqrt{3}$, obtenemos:

$$\sqrt{3} = 1.7320508$$

Pero esta es una aproximación por redondeo que hace la calculadora a 7 cifras decimales, por lo que no es el valor exacto de $\sqrt{3}$.

Como no podemos hallar el error absoluto, al no conocer el valor exacto, vamos a calcular una cota del error absoluto cometido. Si aproximamos, por ejemplo, a las centésimas:

$$1,73 < \sqrt{3} < 1,74$$

El error que cometemos será menor o, como máximo, igual que la diferencia entre 1,73 y 1,74; es decir: 1,74 - 1,73 = 0,01.

Así, resulta que 0,01 es una cota del error cometido al aproximar $\sqrt{3}$ a las centésimas.

2 Halla una cota de error al aproximar $\sqrt{3}$ a las milésimas.

$$1,73$$
2 $< \sqrt{3} < 1,73$ **3**

$$1,733 - 1,732 =$$

Obtén la cota de error al aproximar los números a las décimas y a las centésimas.

a)
$$\frac{3}{7}$$
 $\frac{3}{7} = 0.42857...$

Para la aproximación a las décimas:

$$0.4 < \frac{3}{7} <$$

luego la cota de error será:

$$0.5 - 0.4 =$$

Para la aproximación a las centésimas:

$$0.42 < \frac{3}{7} <$$

luego la cota de error será:

$$0,43 - 0,42 =$$

b)
$$\frac{3}{11}$$
 $\frac{3}{11} = 0.272727$

Para la aproximación a las décimas:

$$0.2 < \frac{3}{11} <$$

luego la cota de error será:

Para la aproximación a las centésimas:

$$0.27 < \frac{3}{11} <$$

luego la cota de error será:

$$0.28 - 0.27 =$$

c)
$$2,3\hat{5}$$

$$2,3\hat{5} = 2,35555...$$

Para la aproximación a las décimas:

luego la cota de error será:

Para la aproximación a las centésimas:

luego la cota de error será:

$$2,36 - 2,35 = 0,01$$

d)
$$\sqrt{7}$$
 $\sqrt{7} = 2.64575$

Para la aproximación a las décimas:

$$2,6 < \sqrt{7} <$$

luego la cota de error será:

Para la aproximación a las centésimas:

$$2.64 < \sqrt{7} <$$

luego la cota de error será:

$$2,65 - 2,64 = 0,01$$

El error relativo que cometemos al aproximar un número decimal es el cociente entre su error absoluto y el valor exacto de dicho número. Se representa por Er.

EJEMPLO

Sea el número 3,5765. ¿Qué error relativo se comete al aproximarlo por truncamiento a las centésimas? ¿Y a las milésimas?

Si lo truncamos a las centésimas, el número es 3,57; y el error absoluto E_a sería:

$$E_a = |3,5765 - 3,57| = 0,0065$$

$$E_a = |3,5765 - 3,57| = 0,0065$$

El error relativo, en este caso, es: $E_r = \left| \frac{0,0065}{3,5765} \right| = 0,001817$

Si lo truncamos a las milésimas, el número es 3,576; y el error absoluto E_a sería:

$$E_a = |3,5765 - 3,576| = 0,0005$$

El error relativo, en este caso, es:
$$E_r = \left| \frac{0,0005}{3,5765} \right| = 0,000139$$

Otra forma de expresar el error relativo es mediante el tanto por ciento:

Para las centésimas:
$$E_r = 0.001817 = 0.18 \%$$

Para las milésimas:
$$E_r = 0.000139 = 0.01 \%$$

4 Halla el error relativo que cometemos al aproximar por truncamiento a las centésimas.

a)
$$\frac{5}{7}$$
 $\frac{5}{7} = 0.71428$

El error absoluto será:

$$E_a = |0.71428 - 0.71| =$$

El error relativo será:

$$E_r = \left| \frac{0,00428}{0.71428} \right| = 0,005992 = 0,60 \%$$

b)
$$\frac{7}{9}$$
 $\frac{7}{9} = 0,77777$

El error absoluto será:

$$E_a = |0.77777 - 0.77| =$$

El error relativo será:

$$E_r = \left| \frac{0,00777}{0,77777} \right| = 0,00999 = 1 \%$$

c)
$$3,87\widehat{5}$$
 $3,87\widehat{5} = 3,87555...$

El error absoluto será:

$$E_a = |3,87555 - 3,87| = 0,00555$$

El error relativo será:

$$E_r = \left| \frac{0,00555}{3.87555} \right| = 0,001432 = ----\%$$

d)
$$\sqrt{7}$$
 $\sqrt{7} = 2,64575$

El error absoluto será:

$$E_a = |2,64575 - 2,64| = 0,00575$$

El error relativo será:

$$E_r = \left| \frac{0,00575}{2.64575} \right| = 0,00217 =$$
_____%

5 Al medir varias veces con una cinta métrica, graduada en centímetros, la altura de un compañero de clase, hemos obtenido los siguientes valores.

Calcula la media de estas medidas y el error relativo cometido.

El valor medio de estas medidas será:

El error absoluto cometido en cada una de las medidas lo obtenemos restando la media de cada medida y obteniendo su valor absoluto:

MEDIDAS	177	173	175	174	177	174	174	173	175	172
ERROR ABSOLUTO	177 – 174,4 = 2,6	173 – 174,4 = 1,4	0,6	0,4	2,6	0,4	0,4	1,4	0,6	2,4

La media de los errores absolutos será:

La altura del compañero es: $174,4\pm1,3$ cm, y el error relativo cometido es:

$$\left| \frac{1,3}{174,4} \right| = 0,00745 = 0,75 \%$$

OPERAR CON RADICALES

_____ CURSO: _____ FECHA: ____ NOMBRE: ___

La raíz *n*-ésima de un número se puede poner en forma de potencia:

$$\sqrt[n]{a} = a^{1/n}$$

 $\sqrt[n]{a}$ se llama **radical**, a es el **radicando** y n es el **índice** de la raíz.

Es más fácil operar con potencias que con raíces, por lo que transformamos las raíces en potencias.

EJEMPLO

$$\sqrt{5} = 5^{1/2}$$
 $\sqrt{3^2} = 3^{2/7}$

1 Escribe los radicales en forma de potencias.

a)
$$\sqrt[5]{7^3} =$$
_____ $^{3/5}$

b)
$$\frac{1}{\sqrt{8^5}} = \frac{1}{8^{5/2}} = 8^{\square}$$
 c) $\sqrt[3]{\sqrt{5}} =$

c)
$$\sqrt[3]{\sqrt{5}} =$$

MULTIPLICACIÓN (O DIVISIÓN) DE RADICALES

Para multiplicar o dividir radicales con el mismo radicando, los convertimos primero en potencias.

EJEMPLO

$$\sqrt[3]{\mathbf{2}} \cdot \sqrt[5]{\mathbf{2}} = 2^{1/3} \cdot 2^{1/5} = 2^{1/3 + 1/5} = 2^{(5+3)/15} = 2^{8/15} = \sqrt[15]{2^8}$$

$$\sqrt[7]{3^5}: \sqrt[3]{3} = 3^{5/7}: 3^{1/3} = 3^{5/7-1/3} = 3^{(15-7)/21} = 3^{8/21} = \sqrt[21]{3^8}$$

2 Calcula los siguientes productos de radicales.

a)
$$\sqrt[5]{7^3} \cdot \sqrt{7^3} = 7^{3/5} \cdot 7^{3/2} = 7^{3/5+3/2} = 7^{(--+--)/--} = 7^{21/10} = \sqrt[10]{7^{21}}$$

b)
$$\sqrt[7]{6^2} + 6 = 6 - \cdot 6 = 6 - \cdot = 6^{9/7} = \sqrt[7]{6^9}$$

d)
$$\sqrt[4]{2^3} \cdot \sqrt[3]{2^2} \cdot \sqrt{2} = 2^{3/4} \cdot 2^{2/3} \cdot 2^{1/2} = 2^{-----} = 2^{23/12} = \sqrt[12]{2^{23}}$$

3 Halla estos cocientes de radicales.

a)
$$\sqrt{2}: \sqrt[3]{2} = 2^{1/2}: 2^{1/3} = 2^{1/2-1/3} = 2^{(3-2)/6} = 2^{1/6} = \sqrt[6]{2}$$

b)
$$\sqrt[3]{8^5}$$
 : $\sqrt[3]{8^2}$ =

c)
$$\sqrt[7]{5} : \sqrt[4]{5^3} =$$

d)
$$(\sqrt[3]{3^7} \cdot \sqrt[3]{3^4}) : \sqrt{3^2} = (3 - 3 - 3) : 3 = 3 -$$

RACIONALIZAR DENOMINADORES

Racionalizar un denominador es el proceso mediante el que hacemos desaparecer el radical del denominador de la fracción.

Este proceso consiste en multiplicar el numerador y el denominador por un número que haga que en el denominador se elimine la raíz.

EJEMPLO

$$\frac{\mathbf{1}}{\sqrt{\mathbf{2}}} = \frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\frac{\mathbf{1}}{\sqrt[5]{3^2}} = \frac{1 \cdot \sqrt[5]{3^3}}{\sqrt[5]{3^2} \cdot \sqrt[5]{3^3}} = \frac{\sqrt[5]{3^3}}{3}$$

$$\frac{1}{3 - \sqrt{2}} = \frac{1 \cdot (3 + \sqrt{2})}{(3 - \sqrt{2}) \cdot (3 + \sqrt{2})} = \frac{3 + \sqrt{2}}{7}$$

En este caso, utilizamos la propiedad de que una suma por una diferencia de dos números es igual a una diferencia de cuadrados:

$$(3 - \sqrt{2}) \cdot (3 + \sqrt{2}) = 3^2 - (\sqrt{2})^2 = 9 - 2 = 7$$

4 Racionaliza los denominadores de las fracciones.

a)
$$\frac{1}{\sqrt{3}} =$$

b)
$$\frac{1}{\sqrt[3]{2^2}} =$$

c)
$$\frac{5}{2+\sqrt{3}} = \frac{5 \cdot (2-\sqrt{3})}{(2+\sqrt{3}) \cdot (2-\sqrt{3})} = --------= 10-5\sqrt{3}$$

d)
$$-\frac{1}{\sqrt{5}-\sqrt{3}} = -\frac{1\cdot(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})\cdot(\sqrt{5}+\sqrt{3})} = -\frac{\sqrt{5}+\sqrt{3}}{2}$$

e)
$$\frac{1+\sqrt{2}}{1-\sqrt{2}} = \frac{(1+\sqrt{2})\cdot(}{(1-\sqrt{2})\cdot(}) = \frac{(}{})^2 = -(1+\sqrt{2})^2$$

f)
$$\frac{\sqrt{3}}{2\sqrt{5}} = \frac{\boxed{\boxed{}} \cdot \boxed{\boxed{}}}{\boxed{\boxed{}} \cdot \boxed{\boxed{}}} = \frac{\sqrt{15}}{10}$$

g)
$$\frac{2}{1-\sqrt{3}} =$$