<u>Propriété</u>: Le groupe symétrique \mathfrak{S}_n n'est pas abélien si $n \geq 3$

<u>Démonstration</u>: supposons $n \ge 3$. Posons

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 2 & 1 & 3 & 4 & \dots & n \end{pmatrix} \text{ et } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 3 & 2 & 1 & 4 & \dots & n \end{pmatrix}$$

Alors on a $(\theta \circ \tau)(1) = \theta(3) = 3$

et
$$(\tau \circ \theta)(1) = \tau(2) = 2$$

Donc $\theta \circ \tau \neq \tau \circ \theta$

Donc (\mathfrak{S}_n, \circ) n'est pas abélien

Propriété : La signature d'une transposition est -1

<u>Démonstration</u>: Soit $\tau = (i j)$ ∈ \mathfrak{S}_{n} une transposition, i < j

$$\mathsf{Alors}\,\tau = \begin{pmatrix} 1 & 2 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & 2 & \dots & i-1 & j & i+1 & \dots & j-1 & i & j+1 & \dots & n \end{pmatrix}$$

$$\Rightarrow I(\tau) = 0 + 0 + \dots + \operatorname{Card}\{k \mid i+1 \le k \le j\} + \operatorname{Card}\{k \mid i+1 \le k \le j-1\} + 0 + 0 + \dots + 0$$

$$= (j - (i+1) + 1) + (j - 1 - (i+1) + 1)$$

$$= 2(j-i) - 1$$

Or puisque j > i, 2(j-1) - 1 est un entier impair

Donc
$$\varepsilon(i) = (-1)^{2(j-i)-1} = -1$$

Propriété : Le déterminant d'une matrice de taille 2 est det(A) = ad - bc

 $\underline{\text{D\'emonstration:}} \text{ Dans } \mathfrak{S}_2, \text{ il n\'existe que 2 permutations:} \sigma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \text{ et } \sigma_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

On a $I(\sigma_1)=0$ et $I(\sigma_2)=1$, ce qui implique $\varepsilon(\sigma_1)=1$ et $\varepsilon(\sigma_2)=-1$

Donc $\forall A \in M_2(\mathbb{K})$,

On a
$$\det(A) = \varepsilon(\sigma_1) \prod_{i=1}^2 a_{\sigma_1(i),i} + \varepsilon(\sigma_2) \prod_{i=1}^2 a_{\sigma_2(i),i}$$

= $a_{1,1} \times a_{2,2} + (-1) \times a_{2,1} \times a_{1,2}$
= $ad - bc$

<u>Propriété</u>: Soit $T = (a_{i,j})_{1 \le i,j \le n} \in M_n(\mathbb{K})$ triangulaire supérieure, alors $\det(T) = \prod_{i=1}^n a_{i,i}$

Démonstration :

On a
$$\det(T) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i} \ (\star)$$

 \hookrightarrow Soit $\sigma \in \mathfrak{S}_{\mathrm{n}}$, si $\exists k \in [1, n]$ tel que $\sigma(k) > k$ alors $a_{\sigma(k), k} = 0$

Et dans ce cas-là,
$$\prod_{i=1}^n a_{\sigma(i),i} = a_{\sigma(k),k} \times \prod_{\substack{i=1 \ i \neq k}}^n a_{\sigma(i),i} = 0$$

Donc dans (\star) , il reste les termes provenant de $\sigma \in \mathfrak{S}_{\mathbf{n}}$ tels que $\forall k \in [1, n], \sigma(k) \leq k$

Pour une telle σ , on a $\sigma(1) \in [1, n], \sigma(1) \le 1 \Rightarrow \sigma(1) = 1$

Puis
$$\sigma(2) \le 2$$
 et $\sigma(2) \ne 1 \Rightarrow \sigma(2) = 2 \dots \dots \Rightarrow \sigma = Id$

Donc en remplaçant dans (*):

$$\begin{split} \det(T) &= \underbrace{\varepsilon(Id)}_{=1,} \left(a_{Id(1),1}, a_{Id(2),2}, \dots a_{Id(n),n} \right) \\ &= a_{1,1} a_{2,2} \dots a_{n,n} \end{split}$$

<u>Propriété</u>: Soit $A \in M_n(\mathbb{K})$ ayant 2 colonnes égales, alors $\det(A) = 0$

<u>Démonstration</u>: Notons C_1, C_2, \dots, C_n les colonnes de A, on suppose qu'il existe $i, j \in [1, n]$, $i \neq j$ tels que $C_i = C_j$. Notons B la matrice obtenue en échangeant C_i et C_j alors B = A

Et
$$det(A) = det(B) = -det(A) \Rightarrow det(A) = 0$$

Corollaire : Soit $A \in M_n(\mathbb{K})$

- (i) $A \text{ inversible} \Leftrightarrow \det(A) = 0$
- (ii) Si A inversible, $det(A^{-1}) = \frac{1}{det(A)}$

Démonstration:

 $\text{$\tt w$} \Rightarrow \text{$\tt w$} : \operatorname{Si} A \text{ est inversible, il existe } A^{-1} \in M_n(\mathbb{K}) \text{ tel que } A \cdot A^{-1} = Id$

$$\Rightarrow \det(A \cdot A^{-1}) = \det Id$$

$$\Rightarrow \det(A) \det(A^{-1}) = 1$$

Alors
$$\det(A) \neq 0$$
 et $\det(A^{-1}) = \frac{1}{\det(A)}$

 $\ll =$ " : Supposons A non inversible. Alors les colonnes de A sont liées, donc $\det(A) = 0$

Lemme : Soient B et B' deux bases de E

Alors $Mat_B(u)$ et $Mat_{B'}(u)$ ont le même déterminant.

<u>Démonstration</u>:

Notons $A=Mat_{B}(u)$ et $A^{\prime}=Mat_{B^{\prime}}(u).$ Par la formule du changement de base :

$$A' = P^{-1}AP$$
 où $P = Pass_{B \rightarrow B'}$

D'où
$$det(A') = det(P^{-1}) det(A) det(P)$$

$$= \frac{1}{det(P)} det(A) det(P)$$

$$= det(A)$$