Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TÀI LIÊU SƯU TẬP

Chapter 5

Discrete Structures for Computing

Eunctions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Contents

Functions

Functions

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto **Functions**

Sequences and Summation

Recursion

2 One-to-one and Onto Functions

3 Sequences and Summation

Recursion

TÀI LIỆU SƯU TẬP BỞI HCMUT-CNCP

Course outcomes

	Course learning outcomes \(\triangle \)
	"How of
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
	A C M M M M M M M M M M
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 – Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
	TAITIFII SIIII TAP
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 – Compute probabilities of various events, conditional
	ones, Bayes theorem

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Introduction

KHOACNCD

- Each student is assigned a grade from set $\{0,0.1,0.2,0.3,\ldots,9.9,10.0\}$ at the end of semester
- Function is extremely important in mathematics and computer science
 - linear, polynomial, exponential, logarithmic,...
- Don't worry! For discrete mathematics, we need to understand functions at a basic set theoretic level

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functio

One-to-one and Onto Functions

Sequences and Summation

Recursion

5.4

Function

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

• $f:A \to B$

- tu 1A -> duy nhat 1 B
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a
 - a is pre-image ($nghich \ anh$) of f(a)
- ullet Range of f is the set of all images of elements of A
- f maps (ánh xa) A to B

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functio

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

ВАСНКНОАСПСР.СОМ

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the the square of an integer to this integer. What is f(x)? Domain, codomain, range of f?

- $f(x) = x^2$
- Domain: set of all integers
- Codomain: Set of all integers
- Range of f: {0,1,4,9,0.}

Add and multiply real-valued functions

Definition

Let f_1 and f_2 be functions from A to \mathbb{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example

Let $f_1(x)=x^2$ and $f_2(x)=x-x^2$. What are the functions f_1+f_2 and f_1f_2 ?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + x - x^2 = x$$
$$(f_1 f_2)(x) = f_1(x) f_2(x) = x^2 (x - x^2) = x^3 - x^4$$

BACHKHOACNCP.COM

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functio

One-to-one and Onto Functions

Sequences and Summation

Image of a subset

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Functi

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition

Let $f: A \to B$ and $S \subseteq A$. The image of S:

$$f(S) = \{f(s) \mid s \in S\}$$

 $f(\{a,b,c,d\})=\{x,y,z\}$

LIỆU SƯU TẬP

BổI HCMUT-CNCP

One-to-one

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

BK TP.HCM

Contents

Functions

One-to-one and Onto

Sequences and Summation

Recursion

Definition

A function f is one-to-one or injective ($don \ anh$) if and only if

$$\forall a \forall b \ (f(a) = f(b) \to a = b)$$

Is $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1one-to-one?

• Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$

one-to-one?

BỞI HCMUT-CNCP

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

BK TP.HCM

Contents

Functions

One-to-one and Onto

Summation

Recursion

Sequences and

Definition

 $f: A \to B$ is onto or surjective (toàn ánh) if and only if

$$\forall b \in B, \exists a \in A: \ f(a) = b$$

Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x + 1$ onto?

• Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$

BỞI HCMUT-CNCP

One-to-one and onto (bijection)

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Recursion

KHOACNC

Definition

 $f:A\to B$ is bijective (one-to-one correspondence) (song ánh) if and only if f is injective and surjective

• Let f be the function from $\{a, bc, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, f(d) = 3. Is f a bijection?

BỞI HCMUT-CNCP

Example

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Inverse function (Hàm ngược)

Definition

Let $f:A\to B$ be a bijection then the inverse of f is the function $f^{-1}:B\to A$ defined by

if
$$f(a) = b$$
 then $f^{-1}(b) = a$

A one-to-one correspondence is call invertible (khả nghịch) because we can define the inverse of this function.

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Example

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and

Summation

Recursion

OACNC

Example

$$A = \{a,b,c\}$$
 and $B = \{1,2,3\}$ with

$$f(a) = 2 \qquad f(b) = 3$$

f is invertible and its inverse is

$$f^{-1}(1) = c$$
 $f^{-1}(2) = a$

$$f^{-1}(3) = \ell$$

Example

Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. If f invertible?

Example

BACHKHOACNCP.COM

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Function Composition

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition

Given a pair of functions $g:A\to B$ and $f:B\to C$. Then the composition ($h\phi p \ thanh$) of f and g, denoted $f\circ g$ is defined by

 $f \circ g : A \to C$ $f \circ g(a) = f(g(a))$

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Example

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Graphs of Functions

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z} .

Definition

BỞI HCMUT-CNCP

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Important Functions

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bảng: Properties (n is an integer, x is a real number)

- (1a) $|x| = n \text{ iff } n \le x < n+1$
- $(1b) \quad |x| = n \text{ iff } n 1 < x \le n$
- (1c) $|x| = n \text{ iff } x 1 < n \le x$
- (1d) $\lceil x \rceil = n \text{ iff } x \le n < x + 1$
- $(2) \quad x 1 < \lfloor x \rfloor \le \lceil x \rceil < x + 1$
- (3a) $[-x] \subseteq [-x] \cap M \cup T C \cap C$
- $(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$
- (4a) [x+n] = [x] + n (Ab) [x+n] = [x] + n

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Sequences

Functions Huvnh Tuong Nguyen

Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Recursion

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1,3,5,7,9,\ldots$$
 $a_n = 2n-1$
Arithmetic sequence ($c\hat{a}p \ s\hat{o} \ c\hat{o}ng$)

Example

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots \qquad a_n = \frac{1}{2^{n-1}}$$

Geometric sequence (cấp số nhân)

TÀI LIÊU SƯU TẬP

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = 6n - 1$
 $\{b_n\}$ 1, 7, 25, 79, 241, 727, 2185, ... $b_n = 3^n - 2$

Recurrence Relations

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = a_{n-1} + 6$ for $n = 2, 3, 4, \ldots$ and $a_1 = 5$

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition:
$$f_0 = 0$$
 and $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4, ...$

Example

Find the Fibonacci numbers f_2, f_3, f_4, f_5 and f_6

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2$ B O H C

$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

$$f_5 = f_4 + f_3 = 3 + 2 = 5$$

 $f_6 = f_5 + f_4 = 5 + 3 = 8$

BACHKHOACNCP.COM

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

ummation

Recursion

5.22

Exercise (1)

Initial deposit: \$10,000

Interest: 11%/year, compounded annually (*lãi suất kép*)

After 30 years, how much do you have in your account?

Solution:

Let P_n be the amount in the account after n years. The sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)

$$P_1 = (1.11)P_0$$

$$P_2 = (1.11)P_1 = (1.11)^2 P_0$$

$$P_3 = (1.11)P_2 = (1.11)^3 P_0$$

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0^{(1)} + CMUT-CNCP$$

Step 2. Calculate

$$P_{30} = (1.11)^{30}10,000 = \$228,922.97.0 \text{ ACNCP.COM}$$

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Exercise (2)

What is the 2012th number in the sequence $\{x_n\}$: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,

Solution:

In this sequence, integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and so on. Therefore integer n appears n times in the sequence.

We can prove that (try it!)

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

and can easily calculate that

$$\sum_{i=1}^{62} i = 1953$$

so the next 63 numbers (until 2016) is 63. T - C N C P

Therefore, 2012th number in the sequence is 63.

Theorem

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

Chứng minh.

Let
$$S_n = \sum_{j=0}^n ar^j$$
.

$$rS_{n} = r \sum_{j=0}^{n} ar^{j}$$

$$= \sum_{j=0}^{n} ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^{k}$$

$$= \left(\sum_{k=0}^{n} ar^{k}\right) + (ar^{n+1} - a)$$

$$= S_{n} + (ar^{n+1} - a)$$

Solving for S_n shows that if $r \neq 1$, then $S_n = \frac{ar^{n+1}-a}{r-1}$ If r=1, then $S_n = \sum_{j=0}^n a = (n+1)a$ CNCP.COM

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

equences and

Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Definition (Recursion (đệ quy))

The act of defining an object (usually a function) in terms of that object itself.

Functions

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto **Functions**

Sequences and Summation

Recursive Algorithms

Definition

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Solution. We base on the recursive definition of n!: $n! = n \cdot (n-1)!$ and 0! = 1.

procedure factorial(n: nonnegative integer) if n=0 then return 1 else return $n \cdot factorial(n-1)$ | HCMUT-CNCP $\{output is n!\}$

BACHKHOACNCP.COM

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

procedure *fibonacci*(*n*: nonnegative integer)

else return fibonacci(n-1) + fibonacci(n-2)

procedure *iterative fibonacci*(*n*: nonnegative integer)

Recursive Algorithm

if n = 0 then return 0 else if n=1 then return 1

{output is fibonacci(n)}

if n=0 then return 0

Iterative Algorithm

return y

{output is the *nth* Fibonacci number}

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

else

```
x := 0
             LIÊU SƯU TẬP
y := 1
for i := 1 to n-1
   z := x + y
              BÖLHCMUT-CNCP
   x := y
   y := z
```

Tower of Hanoi

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

ecursion

The rules:

1 Move one at a time from one peg to another

together with 64 gold disks of different sizes.

with the largest on the borrom.

2 A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.

The myth says that the world will end when they finish the puzzle.

There is a tower in Hanoi that has three pegs mounted on a board

Initially, these disks are placed on the first peg in order of size,

Tower of Hanoi – 64 Discs

3

4

6

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

BỞI HCMUT-CNCP

Tower of Hanoi – 1 Disc

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tower of Hanoi – 1 Disc

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Recursion

Moved disc from peg 1 to peg 3.

BỞI HCMUT-CNCP

Tower of Hanoi – 1 Disc

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIEU SƯU TAP

BổI HCMUT-CNCP

B A C H K H O A C N C P . C O N

Tower of Hanoi - 2 Discs

2

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tower of Hanoi - 2 Discs

2

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 1 to peg 2.

BỞI HCMUT-CNCP

Tower of Hanoi - 2 Discs

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

1 2

Moved disc from peg 1 to peg 3.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Recursion

2

Moved disc from peg 2 to peg 3.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

TAI LIỆU SƯU TẬP

BổI HCMUT-CNCP

2

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIỆU SƯU TẬP

BổI HCMUT-CNCP

B A C H K H O A C N C P . C O N

2

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TÀI LIÊU SƯU TẬP

Moved disc from peg 1 to peg 3.

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIEU SU'U TAP

Moved disc from peg 1 to peg 2.

2

BŐI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 3 to peg 2.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

3

TAI LIEU SU'U TAP

Moved disc from peg 1 to peg 3.

2

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

3

'AI LIEU SU'U TAP

Moved disc from peg 2 to peg 1.

2

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

One-to-one and Onto

Functions
Sequences and

Summation

Recursion

3

Moved disc from peg 2 to peg 3.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

3

Moved disc from peg 1 to peg 3.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

3

TAI LIEU SƯU TAP

BổI HCMUT-CNCP

2

3

4

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

TAI LIỆU SƯU TẬP

BổI HCMUT-CNCP

2

3

4

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 1 to peg 2.

BŐI HCMUT-CNCP

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

TAI LIEU SU'U TAP

Moved disc from peg 1 to peg 3.

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

Moved disc from peg 2 to peg 3.

BỞI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

Moved disc from peg 1 to peg 2. BŐI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

2

AI LIEU SU'U TAP

Moved disc from peg 3 to peg 1.

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 3 to peg 2.

BŐI HCMUT-CNCP

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 1 to peg 2.

BŐI HCMUT-CNCP

2

Functions Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le BK TP.HCM Contents Functions One-to-one and Onto Functions Sequences and

Moved disc from peg 1 to peg 3.

BÖI HCMUT-CNCP

2

3

BACHKHOACNCP.COM

Summation

Recursion

Functions Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le BK TP.HCM Contents Functions One-to-one and Onto Functions Sequences and Summation

Moved disc from peg 2 to peg 3.

3

BỞI HCMUT-CNCP

BACHKHOACNCP COM

Recursion

2

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

One-to-one and Onto Functions

Sequences and Summation

Recursion

4

Moved disc from peg 2 to peg 1.

BỞI HCMUT-CNCP

3

2

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Moved disc from peg 3 to peg 1.

BỞI HCMUT-CNCP

3

Functions Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le BK TP.HCM Contents Functions One-to-one and Onto Functions Sequences and Summation 3

Moved disc from peg 2 to peg 3.

BỞI HCMUT-CNCP

2

BACHKHOACNCP.COM

Recursion

Functions Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le BK TP.HCM Contents Functions One-to-one and Onto Functions Sequences and Summation 3

Moved disc from peg 1 to peg 2.

2

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Recursion

Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le Contents Functions One-to-one and Onto Functions

'AI LIEU SƯU TAP

Moved disc from peg 1 to peg 3.

BACHKHOACNCP.COM

Sequences and Summation

Recursion

3

Functions Tower of Hanoi – 4 Discs Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le BK TP.HCM Contents Functions One-to-one and Onto Functions 2 Sequences and Summation 3

Moved disc from peg 2 to peg 3.

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Recursion

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Sequences and Summation

Recursion

2

3

4

TAI LIÊU SƯU TẬP

BổI HCMUT-CNCP

Tower of Hanoi

Algorithm

procedure hanoi(n, A, B, C)

if n=1 then move the disk from A to C

else

call hanoi(n-1, A, C, B)move disk n from A to C **call** hanoi(n-1, B, A, C)

Recurrence Relation

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2H(n-1) + 1 & \text{if } n > 1. \end{cases}$$

Recurrence Solving

$$H(n) = 2^n - 1$$

BÓI HCMUT-CNCP

If one move takes 1 second, for n = 64

$$2^{64} - 1 \approx 2^{4} \times 10^{19} \text{ sec CP.COM}$$

 $\approx 500 \text{ billion years!}.$

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

ecursion