Polarization Pipeline

Filtermen:
Steve Berul
David D'Alessandro
Andrew Deck

Background

Viktor Gruev

Motivation

- Currently on CPU
 - Drains battery life
 - Battery runs out before air tanks

Where We Come In

Our task:

- Create polarized pipeline to be deployed on FPGA using ScalaPipe
- Time trial individual kernels to determine bottlenecks in pipeline
- Suggest best architecture for pipeline given bottlenecks

Where We Come In

- Data Throughput
 - 1920x1080 frames
 - 30 frames/second
 - 62.2 M pixels/second
- FPGA assumptions
 - Virtex 7
 - Best case clock rate: 700 Mhz

Pipeline Structure

- Border Extension
- Interpolation
- Stokes Parameter Calculation
- Degree of Linear Polarization
- Angle of Linear Polarization
- HSV Generator
- HSV->RGB Image Converter

Border Extension

88	12	230	96
45	50	40	87
77	98	130	167
75	32	150	112

Border Extension

50	45	50	40	87	40
12	88	12	230	96	230
50	45	50	40	87	40
98	77	98	130	167	130
32	75	32	150	112	150
98	77	98	130	167	130

Border Extension

- Inputs:
 - Image Data UNSIGNED32
- Outputs:
 - Image Data UNSIGNED32
- Timing:
 - 7.8 cycles/pixel
 - 42.9 frames/second

Interpolation

(I(0) I(45) I(90) I(135)	50	45	50	40	87	40
	12	88	12	230	96	230
	50	45	50	40	87	40
	98	77	98	130	167	130
	32	75	32	150	112	150
	98	77	98	130	167	130

Interpolation

- Inputs:
 - Image Data UNSIGNED32
- Outputs:
 - Interpolated Intensities Vector(FLOAT32, 4)
- Timing:
 - 226.8 cycles/pixel
 - 1.5 frames/second

Interpolation

- Suggested Optimizations:
 - Parallelization
 - Integer interpolation
 - Loss of accuracy
 - Increase in speed
- Parallelization
 - 21 instances of kernel necessary as is
- Integer Interpolation
 - Timing:
 - 50.8 cycles/pixel
 - 6.6 frames/second
 - 5 instances necessary

Stokes Parameters

Stokes Parameters

- Inputs:
 - Interpolated Intensities Vector(FLOAT32, 4)
- Outputs:
 - Stokes Parameters Vector(FLOAT32,3)
- Timing:
 - 23.9 cycles/pixel
 - 14.1 frames/second

Degree of Linear Polarization

Degree of Linear Polarization

- Inputs:
 - Stokes Parameters Vector(FLOAT32, 3)
- Outputs:
 - Degree of Linear Polarization FLOAT32
- Timing:
 - 115.9 cycles/pixel
 - 2.9 frames/second

Angle of Polarization

Angle of Polarization

- Inputs:
 - Stokes Parameters Vector(FLOAT32, 3)
- Outputs:
 - Angle of Polarization FLOAT32
- Timing:
 - 236.5 cycles/pixel
 - 1.4 frames/second

Generate HSV

- Inputs:
 - S0 FLOAT32
 - Degree of Linear Polarization FLOAT32
 - Angle of Polarization FLOAT32
- Outputs:
 - HSV Vector(FLOAT32, 3)
- Timing:
 - No results yet, but not a bottleneck

HSV → RGB

- Inputs:
 - HSV Vector(FLOAT32, 3)
- Outputs:
 - RGB Vector(UNSIGNED16, 3)
- Timing:
 - No results yet, but not a bottleneck

Suggested Architecture

Questions Still Seeking Answer

- Will this architecture fit on the FPGA?
 - Synthesis issues