R-707/727 SERVICE NOTES

First Edition

SPECIFICATIONS

Memory Capacity

: 64 Rhythm Patterns (16 x 4 Group)

Track

4 (1 to 4; continuous Maximum measures=998)

Step

1 to 16 steps/measure

Tempo

- 38 to 250

Rear Panel Trigger Out Master Out (L,R/MONO) [8Vp-p, 1K Ω] +5V, 20ms Pulse

TR-707 Rim Shot

TR-727 Hi Agogo Sync In/Out (5P DIN): (1: Run/Stop, 2: GND, 3: Clock, 4: NC, 5: Continue)

Power Consumption : 2.4 W

Dimensions

380 (W) x 73 (H) x 250 (D) mm

14-15/16" (W) x 2-7/8" (H) x 9-13/16" (D) in

Weight

1.5 kg/13 lb. 5 oz. : 12V AC Adaptor

Accessories Options

Connection Cord PJ-1 Memory Cartridge M-64C

Pedal Switch DP-2

B-3

	TR-707	TR-727				
4	Voicing Board (7313604000) (pcb 2291098102)	Voicing Board (7313804000) (pcb 2292018900)				
②	Volume Board (7313605000) (pcb 2291098002)	Volume Board (7313805000) (pcb 2292019000)				
9	Switch Board (7313606000) (pcb 2291097903)					
0	LCD Board (7313607000) (pcb 2291098203)					

Window Cover (2202069200)

Escutcheon

(2202069300)

Pin configuration

TERMINAL ASSIGNMENTS
Pla see Pla se. Pla see Pla se. Pla see

ı	144	28	SEC41	5.5	SEESS
2	REAUT	2 B	SEC (8	5.6	SEGET
3	c3	30	SECAT	5 7	50020
4	ŶĔ	3 1	SEC46	5.8	51015
5	it	3 2	SED45	5 9	SEC18
	53	33	SEC44	60	58017
7	B 7	34	SEC41	61	SEC 16
8	DK	3.5	SEE45	8 2	SEC 15
9	05	3 6	SEC41	63	SEC16
10	м	37	\$6010	6 4	S2013
11	744	38	10332	8.5	SEE 12
12	D3	3 9	SEC 38	6.6	2EE11
13	02	40	50037	67	SECIO
1.4	DI	41	SEE 16	6.8	5509
15	De	4 2	SECUS	6.9	SECOR
1.6	Treft	43	SEC14	70	1332
17	Tref2	4.4	SEE11	-71	SECE
18	103	45	25033	7 2	SECS
19	PC3	48	SECTI	73	SEC4
20	¥t.	47	SEC30	7.4	SECO
2 1	13	48	SEE29	7 5	2025
2 2	73	4 9	SEE 20	7 6	SEOI
2 3	CORD	50	SEC?7	77	SEC0
2 4	COX1	51	SEE 26	78	snc
2 5	CO#2	5 2	SEC75	79	O2C3
2.6	COM 3	5.3	SEC24	80	DSC1
27	SECSO	5 4	SEC ? 2		
		·			

(2226036000)

123430251001

supplied with LCD

Reflector

■ LP-191A-G

OLP-1918-G (15029422)

Top Panel

● (2201064700)

O(2201066400)

(15029418)

PARTS LIST EXCLUSIVE PARTS

TR-707

CASING 2201064700 Top Panel

7313604000 Voicing Board (pcb 2291098102) 7313605000 Volume Board (pcb 2291098002)

LCD 15029418 LCD LP-191A-C

1C
Program ROM
15179720 HN4827128G-25 NHOS EPROM
(Ver. 0 SN460100-504399)
(Ver. 1 SN504400-519599)
or
15179660 HN613128PE95 CMOS MASK ROM
(Ver. 1 SN519600-533099)
or
15179692 HN613128PG24 CMOS MASK ROM
(Ver. 2 SN533100-up)

UPWARD COMPATIBILITY

Ver.0

In Pattern PLAY mode -- Selecting a pattern from different scale while repeating STOP and START or CONTINUE sometimes leads to Power-ON initialization.

ROMs of Ver. I always run the new pattern at the beginning of a measure.

er.l

When the unit is used as a Master -- Repetitions of STOP and CONTINUE more than 30 times would cause generation of a redundant MIDI clock \$F8.

When the unit is used as a Slave -- Will miss a MIDI IN clock when STOP signal follows the Clock within lms.

MASK ROM of Ver.2 cures this problem.
For a replacement Ver.2 or up is recommendable.
上記コンパチなので確認用としてはパージョン番号の大きいPROMの使用が発ましい.

Sound ROM 15179661 HN61256PC-71 CMOS MASK ROM BD1/2, SD1/2, LT, MT 15179662 HN61256PC-72 CMOS MASK ROM HT, Open/Closed H.H. Rim, Cow HCP, Tambourine 15179663 HN61256PC-73 CMOS MASK ROM Crash Cymbal 15179664 HN61256PC-74 CMOS MASK ROM Ride Cymbal

TR-727 CASING

2201066400 Top Panel

PCB 7313804000 Voicing Board (pcb 2292018900) 7313805000 Volume Board (pcb 2292019000)

LCD 15029422 LCD LP-191B-G

122020693001

15179695	HN61256PC-80		E, AGOGO, CABASA
15179696	HN61256PC-81	MARACAS, W CMOS mask QULJADA	
15179697	HN61256PC-82	CMOS mask STAR CHIME	
COMMON P	ARTS		
	AUIS		
2201064600	Bottom Case		······································
2202069100	Battery Cover		
2202069200	Display Window	,	
2202069300	LCD Escutcheor		
2202569400	Cartridge Lid		
2247029000	ON, KEY TOP		
2247029000	Knob Key Top (large	gray	TEMPO
2247030700	Key Top (Targe	2) gray	Main Key 1-16,ENTER, START,SHIFT,STOP/CONT
2247036800	Key Top (small	l) gray	
2247037100	Knob	white	BD,SD,LT,MT,HT,OCH.
			RS/CB.HCP/TAMB,RIDE.
			CRASH
2247037000	Knob	or ange	VOLUME
12479225	TK-305	black	POWER
PCB ASSY			
7313606000	Switch Board	(pcb 2291	007003
7313607000	LCD Board	(pcb 229)	
7313608000	Cartridge Boas		
COIL, TRAN			
2244025000 12449229	S097744 FK0B160MH15	Transfor	rmer DC/DC convertor line filter
12449229	PROBLOGISTS	W 11	line filter
SOCKET			
13429629	MIDI 3-NS-533		DIN
13449713	HEC0470-01-61	0	AC adapter
13449415	HSJ0807-01-01		mini
13449248	HLJ0521-01-01		stereo
13449133	HLJ0521-01-11		monoral
13449137 2342516500	HLJ2336-01-10 PBRS-28U-T01-		dual
2342310300	1863-200-101-	,	cartridge
SWITCH			
12479719	Rubber switch		14 contact upper row
12479720 13129135	Rubber switch SDW-1P	(Pad) B	18 contact lower row
13129133	2DM-IL		POWER
POTENTION			
13339342	S2018 50KB		slide 15mm travel
13339451	S3028 50KB		dual slide 15mm travel
13219373	EWH-LNAF20C16		TEMPO
13299136 13299141	RVF8P01-503 5 RVF8P01-204 2	OND ONER	trimmer trimmer
	MIC RESONATOR		CIlmei
12389736	HC-18/U	·	4.0MHz Xtal
12389735	CSA 1.6MK	1	.6MHZ ceramic resonator
		-	
IC 15330835	BD(2011 1 / DD		
15229825	RD63H114PF HD63O3XF		gate arrey CPU
15179200			
15179340	HM6116LP-4		CMOS S RAM
15219148	HM6116LP-4 HD61602		CMOS S RAM LCD driver
	HM6116LP-4 HD61602 TC40H000P	N AND gate	CMOS S RAM
15219148	HM6116LP-4 HD61602	N AND gate	CMOS S RAM LCD driver
15219148 15159503	HM6116LP-4 HD61602 TC40H000P quad 2-input	_	CMOS S RAM LCD driver H CMOS

15159505	TC40H004P		H CMOS
15160513	hex inverter		
15159517	TC40H010P triple 3-input Na	AND care	H CMOS
15159506	TC40H138P	AID Race	H CHOS
		der/demutltiplexer	
15159535	TC40H151P		H CMOS
15159511	l-of-8 data sele TC40H174P	ctor/multiplexer	H CMOS
13137311	hex D-type flip	flop	11 (2103
15159524	TC40H245P	•	H CMOS
15159507	octal bidirection TC40H273P	nal bus buffer	H CMOS
13133307	octal D-type fli	n flop	n chos
15159530	тС40н367Р	•	H CMOS
15159104	hex bus buffer TC4011BP		CMOC
13139104	quad 2-input NAM) gate	CMOS
15159105	TC4013BP	_	CHOS
15150171	dual D-type flip	flop	
15159141	HD14040BP 12-stage binary	rounter	CMOS
15159113	HD14051BP		CMOS
		multiplexer/demult	
15159301	TC4520BP dual binary up c	ounter.	CMOS
15159303	HD4584BP	bancer	CMOS
	hex schmitt trig	ger	
15189136	M5218L		Ор атр
15189154	TL064	_	FET Op amp
15219147	UPC624C		/A convertor
15199108F0	UA78M05UC		egurator +5V
15229712	PC900		hoto coupler
15149118	M54517P	tran	sistor array
TRANSISTOR			
15129612	2SD1469-R		NPN
15129137	2SC2603-F		NPN
15129412	2SC1384-Q		NPN
15119125	2SA1115-F		PNP
15139101	2SK30ATM-Y		FET
DIODE			
15019126	1SS113T-77		diode
15019209TO	S-5500G		rectifier
15019667	RD-12EB1-T		12V zener
15029136	GL-9NP2		LED red/grn
15029150	GL-9PR12		LED red
RESISTOR A	RRAY		
13919133	RKM7LM502		/A converter
13919103	RGSD8X103J	10K x 8	,
13919113	RGSD4X103J	10K x 4	
13910107	RSD8X332J	3.3K x 8	
CONNECTOR			
13439256	5089-11A	IIP (Switch pcb)	
13439255	5089-13A	l3P (Switch pcb)	
13439253	5494-9C	9P (Voicing pcb)	
13439252	5494-10C	10P (Voicing pcb)	
13439254 2343025100	5597-28APB	28P (Voicing pcb)	cartridge connector LCD
WIRING ASS		77.65	
2341048000	13P	(LCD pcb)	
2341047900	liP	(Voicing pcb)	
2347015200	9P flat cable	(Volume pcb)	
2347015300	10P flat cable	(Volume pcb)	
		p.o,	

2217515300	Spring	RAM cartridge
2214531300	Shaft	RAM cartridge
2345014600	Plate	battery
12469117	Heat Sink MT-25-BS	i
2219049900	LED Holder	(switch pcb)
13529117	Ceramic Capacitor	D55Y5V1H334Z21
	·	0.33µF (LCD pcb)
12559708	Fusing Resistor	FRN8 1/4W2.7Ω
2225022801	Shield Cover	top panel
2225022400	Shield	(Voicing pcb-Volume pcb)
COMMERCIA	LLY AVAILABLE ACC	ESSORIES
12569105	Dry cell SUM-3S 1	.5V
12449538	12V AC adapter (10	(V0V)
12449539	12V AC adapter (11	7V)
12449540	12V AC adapter (22	(VO)
12449541	12V AC adapter (24	OVA) Australian
2343067500	Connection Cable I	.P-25

3

BD 1/2 LEVEL

VOLUME BOARD

COM

LCD BOARD

SWITCH BOARD

CARTRIDGE LED

TEMPO

CIRCUIT DESCRIPTIONS

TR-707 and TR-727 are designed based on the same circuit configuration, having more in common with each other. The differences between two models are sound data, component values in several audio stages and a couple of pin connections at IC30 of Voice board.

Both models derive all rhythm sounds from PCM-encoded samples of real sounds stored in ROM. Each waveform is stored either independently (e.g. CYMBAL) or together with another waveform as shown in Tables 1 and 2. Accordingly, sound reproducing circuits are classified into two: multiplex and single. The following description focuses on PCM sound reproduction system, taking TR-707 circuits as a representative.

回路解説

TR-707/127 は ROM にメモリされている PC M 成形 (サウンドデータ)を音原として利用しています。 楽器の 種類が異なる為一部に結論や定数の違いがあるものの、全 体の回路構成は両機桶に共通です。 以下 TR-707 を例に とってお明します。

要1及び2から刺る様に、IC34、IC35には複数音 顔のデータが、IC19、IC22には単一音筋がメモリさ れています。従って、これら音動データの読み出しから再 生までの過程もシングル方式とマルチの二種類があります。

MULTIPLEX SOUND PROCESSING

MULTIPLE ADDRESS COUNTERS

IC30 RD63H114 on Voicing Board is a custom-LSI(called Gate Array) designed for use in PCM-sound multi-rhythm systems. The LSI assumes the key role in the TR 707 sound system. It incorporates a master clock generator, timing generator and 8 13-bit address counters. The timing generator, not only supplies clocks to these counters for generating address bits, but also feeds peripheral circuits with various timing clocks to sync the entire system operation. Of these timing clocks, A, B and C together make a channel-select code for signaling the ROMs (ICs 34, 35), MUX IC40 and DMUX IC41 which voice is being addressed by an address counter in IC30.

マルチ音源

マルチブル・アドレスカウンタ

を音熱データをメモリしている ROM(1 C 3 4 , 3 5) からのデータ読み出し、D/A 変換、S/H むよびその他の 随連回路は、I C 3 0 R D 6 3 H 1 1 4 をマスターとして動作します。R D 6 3 H 1 1 4 はマルチ音源機器用に開発されたカスタム L S I であって、内蔵のクロックおよびタイミング発生回路によりこれら外付回路を同期させるクロック 信号を出力します。同期クロックのうち A 、B 、C はボイス・チェンネルのセレクトコードを形成しますので特に重要です。I C 3 0 は R O M (I C 3 4 , 3 5) 内の各音級データの アドレスを次々と出力して行きますが、A 、B 、C は 今どの音感アドレス(アドレス・カウンタのチャンネル番号)が出力されているかを、R O M 以外の M U X I C 4 0 。D M U X I C 4 1 に 6 知らせます。(例 S D の場合 A = 1 , B = 0 、C = 0 。次頁のタイミングチャート彰開)

Now suppose that TR-707 is to run with BASS DRUM 1(BD-1) being selected, the CPU IC5 puts XST0 (CH0 start) and XSTA (XST0-XST7 enable) low, resetting counter 0, presetting it to the starting address 0000H and allowing it to count the clock pulse XCK0 from pin B in discrete steps. The counter continues counting until it increments up to 1FFFH and tops there until the next trigger pulse is received. While counting, the contents (a group of 13 clock pulses) of the counter is transferred to address selector where it is read every 40µs and is presented along ports ADR0 through ADRC—13 lower address bits.

ROW MEMORY READING

IC34 and IC35, 32,768 word by 8 bit ROM, require 15 address bits to access their memory locations. Clocks A and B from IC30 serve as MSBs while C indicates which one of two ROMs is to be selected—Chip Select.

On the contrary, LSB ADR0 is defeated when particular voice is selected: BD-1 and BD-2 share the same memory area with even addresses allocated to BD-1 and odd ones to BD-2 as shown in Table 1. With BD-1, data selector IC33 blocks ADR0 and passes "0" data from IC32 onto A0 of ROM IC35. With BD-2, IC33 selects "1". With Low Torn, Mid Torn, Hi Torn or Hi Hat, ADR0 is allowed to reach A0.

Each 8-bit memory location (PCM waveform data) in ROM is loaded into latch IC36 on the rising edge of CLK4. This 8 bit data is, if converted to analog equivalent by D/A converter IC37 as it is, not restored to its original amplitude. A certain technic is involved during PCM to improve S/N ratio, to have higher resolution, etc. A signal coming from Envelope Generator into (+) REF pin gives right tone contour to a continual PCM waveforms being decoded and converted to an analog sound.

TR-727 Sound Data ROM

IC ED.	20H	CE	CZ	VOICE	HEHORY	
1034	HM61256PC71	H	L	H1 BOKGO	?N ADRS	4k byte
	(15179694)	Ì		LOW BOXGO	2N - I ADBS	4k b) te
			ļ	MUTE HE COMCA	2N ADRS	4k byte
			;	OPER HI CONCA	2N - 1 ADRS	4k byce
		!		LOW CONGA		Sk byce
	Ĺ.	ĺ	!	HI TIMBALE		Sk byte
iOs	EDI61256PC80	н	н	LOW TIRBALE		Bk byte
	(15179695)	ì		WHISTIE		Bk byce
		l		MI ACOCO	2N ADRS	44 6
į				TOM ACOCO	ZH + L ADRS	4k b) te
1		!		CABASA	2N ADRS	44 6.16
1				MARACAS	2N + 1 ADRS	4k byte

今 BASS DRUM1 (BD-1)が選択された状態で、リズムが走ったとすると、IC30 (XST0 (チャンネル0スタート)と XSTA (XST0-7イネーブル)が加わり、カワンタCH0 は0000 Hにリセットされた後XCK 0に加えられて米るクロックBをカウントして行きます。 この13 ビット・アドレスカワンタのカウント値は40μs師にアドレス・セレクタにより ADRO-ADRC端子に出力されて行きます。 (次にもう一度 XST0 が加わらない場合、カワンタは最大値 1FFFH に達するとストップしたままとなります。)

サウンド・データの飲み出し

256KビットRON IC34、IC35のノモリ・ロケーションにアクセスするには、15ビットのアドレスが必要です。残りのMSB2ビットにはIC30のA、Bクロックが当てられます。クロックCは、どちらのROMにアリセスするかを選ぶチップセレクトです。一方LSBADROは、音感によってはROMアドレスとして使用されません。例えば、BD-1とBD-2は同じROMのメモリ・エリアを共有しており、BD-1には偶数のアドレスがBD-2には奇数アドレスが割当てられています。(表1参照)。との為、BD-1の場合、ROMのA0には常に"0"がIC32、IC33を通じて加えられます(BD-2の場合は"1")。

ROMから続み出されたサウンド・データは、1C37(ラダー・ネットワーク内蔵)でアナログ電圧に変換され リズム音波形の一部分(サンプリング波形)を再現します が、抵巾値は原音の値とは必ずしも一致しません。これは PCMの過程において S/N 比や分解能向上の処理が合ま れている為です。再生音のエンベロープは、1C37の(H REFに扱れ込む ENV GEN からの個号によって左右されます。

TR-707 Sound Data ROM

IC 140.	ROM	CE	CS	VOICE	HENORY
1034	HN61256PC71	; H	1	BASS DRUM I	2N ADRS 4k byt
	(15179661)	,	!	BASS DRUM 2	IN . I ADRS 48 byt
				SHARE DRUM 1	IN ADRS 4k byt
		I		SMARE DRUM 2	2H - I ADRS 48 byt
				LOW TON	Ba byt
	<u>'</u>	:		HID TOR	Sh byt
1035	HH61256PC72	• н	н	HI TON	Sk byt
	(15179662)			HI HAT	Sk byt
			ł	RIM SHOT	2h ADRS 48 byt
				COM BELL	2H - 1 ADRS 4k ber
				HAND CLAP	IN ADRS 4% by c
			ļ	TAMBOURING	2H . I ADRS 4k het

Table 1 表1

ENVELOPE GENERATOR

Data coming to latch IC31 is a combination of LEVEL and DYNAMICS (ACCENT). The value of LEVEL is always constant regardless of voice selected, while DYNAMICS varies with MIDI Velocity or ACCENT amount setting.

Although LEVEL/DYNAMICS is connected to all 8 ENV GENERATORs it is allowed to enter only the transistor whose base-emitter junction, for example Q26, is being forward biased by a TRIG from latch IC27 or IC28 at XSTA rate. Q26 output is then connected by IC40 to (+) REF pin of IC37 every 40µs with its level decaying according to C53xR59 time constant as the successive BD-1 data are converted to analog voltages, giving a bass drum contour to the voice.

The DAC output is boosted at Q41 and Q42 conjunction and is channeled into the S/H which is designated by A B C code placed at IC41 select pins.

As can be seen from the timing chart, the timing of enve loping and D/A converting lag one slit behind the memory addressing. That is, BD-1 sound read from ROM with channel No. ABC=000 becomes an audible sound when channel No. is represented by ABC=100. This is because the data accessed on a positive going CLK4 with ABC=000 is latched into IC36 on the next CLK4 with ABC=100. Consequently. TRIG data to IC3.27 and 28, and LEVEL/DYNAMICS data to IC31 are made to delay one CLK4 cycle to keep pace with D/A conversion at IC37.

エンベローブ アクセント

XSTA(SXT0-7イネーブル)は1C30のアドレスカウンタに加えられると同時に、ラッチ1C27。28のCKにも加えられ、BD-1が選択されている時には、ENV GENのQ26がTR1Gパルスによって導通し、LEVELとDYNAMICS(ACCENT)の混合された電圧がC53に充電されます。なお、LEVEL/DYNAMICS CVは8本全てのトランジスタに印加されますが、TR1Gパルスが現在加わっているトランジスタにのみに流入します。Q26の出力は1C39dを通り、1C40により時分割でD/AコンパータのREF端子へ送られて行きますが、製巾はC53×R96の時定数に応じて破衰して行きます。時定数はBDのサウンド・データ全部がROMから読み出される時間より長くなる様に設定されています。

注 1C30のアドレス・カウンタのチャンネル番号と 1C40/41のチャンネル番号が異なっています。 これはROMのサウンドデータが、アクセスされた時より CLK4の1サイクル外遅れて1C36 にラッチされ D/A 実換される為です。したがってTR1G および LEVEL/DYNAM1CS データもその分遅れて出 力されます。

HI HAT

Output from Q35 has no distinction between closed hi hat and open hi hat and is given a particular waveshape (decay) at VCA Q22 and IC42 as OPEN/CLOSED select signal is applied on the base of Q21.

SINGLE SOUND PROCESSING

Each of CYMBAL voices (RIDE and CRASH) has dedicated sound ROM, address counter, D/A converter and envelope generator. The difference from Multiplex processing in circuit configuration is that envelope control is accomplished after the wave data becomes analog form. LEVEL/DYNAMICS (ACCENT CV) rounted to Q18 emitter (CRASH) is charged into envelope capacitor C50 on a TRIG, giving a contour to CRASH sound passing through Q14.

TR-707 Sound ROM

IC NO.	ROM	CE	cs	VOICE	MEMORY
IC19	HN61256PC73	н	L	CRASH CYMBAL	32k byte
	(15179663)	1	ĺ	1	
IC22	HN61256PC74	н	L	RIDE CYMBAL	32k byte
i	(15179664)	1	1		1

Hi Hat IC対しては、もう一度エンベロープ回路(VCA-IC42a,Q32)が追加されており、クローズかオープンかによりディケイタイムを切替えています。

シングル音源

RIDE CYMBAL および CRASH CYMBAL は、それぞれ専用のアドレス・カウンタ , ROMおよび D/A コンバータを持っていますが動作原理はマルチ音源の場合と変りません。ただし、エンベロープがD/A変換後VCAに加えられる点が違います。

TR-727 Sound ROM

IC NO.	ROM	CE	CS	VOICE	MEMORY
IC19	HN61256PC81	н	L	QUIJADA	32k byte
	(15179696)			ĺ	1
1C22	HN61256PC82	н	L	STAR CHIME	32k byce
	(15179697)	!		ĺ	

Table 2 表2

TESTING AND ADJUSTING

The built-in test program executes the following test and adjusting routines while in Test Mode.

RUNNING TEST PROGRAM

While holding down CLEAR and INSTRUMENT, switch the power ON. The unit is now in the test mode and the test program initiates test routines with TEST 1.

TEST 1. LED SEQUENTIAL LIGHTING

Upon entering test mode the program lights up LEDs, starting with MAIN KEY 1 through SCALE INDICATOR, PATTERN GROUP and CARTRIDGE (red and green alternately) and repeats.

Leave the LEDs lighting and go to TEST 2.

TEST 2. ALL LEDs AND LCD DOTS LIGHTING

Press ENTER and verify lighting of all LEDs and LCD dots.

Leave them lit and go to TEST 3.

TEST 3. SWITCHES AND ACCENT AMOUNT READING

Press ENTER. All LCD display will be cleared OFF. Referring to the illustration below, push numbered buttons 1—32 one by one and check for the lighting of corresponding dot on either Bass Drum (BonGo) or Snare Drum (Hi Conga) row on the display window. Slide up or down ACCENT and verify that TEMPO MEASURE window reads 1 and 16 at the extremities of travel.

テストおよび調整

TR-707,TR-727 には回路機能チェックおよび調整用のプログラムが内蔵されています。このプログラムを走らせるにはテストモードに入る必要があります。

テストモード

CLEAR と INSTRUMENT ボタンを同時に押しながら電源をオンするとテストモードとなり、テスト 1 が自動的に実行されます。

テスト1 LED順次点灯

テストモードに入ると、メインキーの1から順次 LEDが 点灯して行きます。 CARTRIDGEの LEDは赤と緑が 交互に点灯します。

LED の点灯はくり返されますが、そのままの状態でテスト2へ進んで下さい。

テスト2 LEDおよひLCD全点灯

ENTER を押します。全ての LED および LCD 上の全ドットが点灯する筈です。

そのままの状態でテスト3へ進んで下さい。

テスト3 スイッチおよひアクセントレベル読込み

ENTER を押すと LCD のドットが消えます。 パネル上 のスイッチを押すと、右図に示す様に、対応した番号のド ットが LCDの上に表示されます。 If not verified, go to ACCENT AMOUNT ADJUST-MENT below without exiting the test mode.

When all tests are satisfactory, turned the power off and on again to return to the normal operation mode (if necessary).

ACCENT AMOUNT ADJUSTMENT

This test must be carried out in the test mode and follow the tests above.

- Set ACCENT at MIN and adjust TM2 of VOICING board for a transition point of "1" to/from "2" of TEMPO MEASURE display reading.
- Set ACCENT at MAX and adjust TM3 for a transition point of "15" to/from "16" of TEMPO MEASURE display reading.

The unit will remain in the test mode until the power is turned OFF.

TEMPO CLOCK RATE ADJUSTMENT

This adjustment must be done in the normal operation mode.

 Set TEMPO at FAST and adjust TM1 of VOICING board for 250 reading on TEMPO MEASURE window. 次に、アクセント(AC)つまみを上下させると LCDの TEMPO/MEASURE 部に数字が表示されます。MIN の位置で"1"、MAXで"16" とならない場合は、次の アクセントレベル調整へ進んで下さい。

調整が不要で、通常のモードに戻るには一旦電源をオフに して下さい。

アクセントレベル調整

本調整はテストモードで行ないます。上記のテストの後で 行なって下さい。

- アクセント(AC)をMINにセットし、TM2(ボイシング基板)でTEMPO/MEASURE の表示が "1"か"2"になる臨界点に調整します。
- A C を M A X にセットし、 T M 3 で表示が "15 "か "16" になる 臨界点に 調整します。

テンポ調整

本調整は通常のモードで行ないます。テストモードになっている場合は、一度電源をオフにして下さい。

TEMPOをFASTにセットし、TMI(ポイシング基板) でTEMPO/MEASUREの表示が 250になる様調整 します。

5 7 1 1 5 6 6 7 2 1 10 11 1 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 2 29 2

TR-707/YR-727 GENERAL CIRCUIT DIAGRAM

MAIN KEY LED

VOLUME BOARD

TR-707 7313605000 (pcb 2291098002)

TR-727 7313805000 (pcb 2292019000)

View from foil side

BELOW PCB LAYOUT For TR-707

TR-727's: identical to TR-707's except for those represented in red in the circuit diagram left.

下の基板図はTR-707用です。

TR-727の場合は回路図の赤線要示に従って相違点を確認して下さい。

SWITCH BOARD

7313606000 (pcb 2291097903)

View from foil side

, ,

٠,٠

١,

3

UT For TR-707 R-707's except for those represented in red diagram left

建表示に従って相違点を確認して下さい。

LCD BOARD

7313607000

(pcb 2291098203)

VOICING BOARD

-

2-4

M

112

TR-707 7313604000 (pcb 2291098102) **TR-727** 7313804000 (pcb 2292018900)

BELOW PCB LAYOUT For TR-707
TR-727's: identical to TR-707's except for those represented in red in the circuit diagram left.

下の基板図はTR-707用です。 TR-777の場合は回路図の赤線表示に従って相違点を確認して下さい。

7 10 1

View from foil side

5 15 37 36

IC DATA

TR-707/TR-727 MIDI IMPLEMENTATION

1. TRANSMITTED DATA

Second	Thad	Description	
DE41 1111	0000 0000		• 1
		60-74 (TF	t 727 only
	U	No. 10 ON	• 1
		AAAAAA * 15-51 Se	54 45
		100 : 120	
D	0,,, ,,,,	Song Potation Point	• 4 • 4
		****** *** 1 ***	
		******* **** ****	1111 383
•			
			• 1

		Lining Class	••
0100 0001	0		
1111 GIII (1	FOI	Seguence Data	
		thertween messager	
	0	011 111 0000 0000 111 111 U	Out Out

Notes: or Transmitted channel B can be changed to 1 - 16 from the front panel. When the power is applied, the fresh channel B are after to the fair power OF county unchanged.

27 When the measure number on the county unchanged.

29 When the fresh is it is at

track #	# 6555565
	٥
2	
3	2
4	,

••	Tempo Mode	Sees Synchronized with			
	ELDI mede Dia mede	internal temps clock foreign timing clock positive edge of the Dib clock			
•5 Fee		igned as fellers.			

Setting A. hormal Setting B. When the "MIDS DE IN- LASS STEP" builtons are areased while Non "SHIP? houses

TR-727	Key Name	kkkkkk	kkkkkkk
	H. Bence	60	25
	Low Bongo	61	36
	Mate He Cones	62	30
	Open Hr Conga	63	41
	Lee Cense	6.	41
	H1 Timbale	65	45
	Lee Timbale		46
	H1 Age to	6?	3?
	Cabias		56 39
	Heretes	78	54
	Short Whistle	72	:2
	Long Whitele	77	
	Quijods Star Chine	73	4.9 51
	SIST CAIDS		31
TR-707		Setting A	Setting B
1 H-707	Key Name	kkkkkk	kkkkkk
	Bars Gram 1	33	16
	Bass drum 2	36	17
	W	37	43
	Seare drum 1	38	30
	Hend clap	39	15
	Sasta drum 2	40	19
	Lee tem	41	•0
	Clease 11 7.21	47	6.7
	416	+ 5	•1
	Osea Mmai	• •	
	High ton	••	47
	Cresh crees!		••
	fide crabel	51	50
	Famour Inc	51	46
	C	34	

2. RECOGNIZED RECEIVE DATA

	ion
bittiti + 60-1	
• 11-5	54.56
	(FB-707)
****** * 1	21
1011 \$666 0111 1100 0000 0000 ms. (II)	
1011 9999 0111 1101 0000 0008 (MS) (IS	
1111 0010 Com **** Orre **** New Court on 1	*******
******* 1440	A LEGILLARIA
111111 301	
1111 0011 0014 0000 5444 5-1	• 1
111111 1 11411	
1111 'GCG (.e.s	••
1111 1010 51411	• 4
1111 Q11 (+41,440	**
1111 1100	••
1111 0000 0100 0001 0100 0010 7	
1111 DITE (LOE) Sequence Date	
(for laying mag)	****

Notes: ** Becomes channel * can be canned to 1 - 16 from the least power of which the power is applied the feature cannel * can be cannel * cannel * can be cannel * can be cannel * cannel *

,		
TR-727	kkkkkkk	Instrumen
	60	H. Benge
	61	Lee Passe
	62	Bute Hr Cong
	63	Open H. Cone
	6.6	I C.ase
	65	H. Timeste
	66	Lev Tiebale
	67	H. Ageas
	66	100 0000
	74	Cabres
		4
	?)	Shert Whield
	72	long Whistre
	73	Qu -) = 4 +
	74	Stat Chine

	**	Stat Chine
TR-707	kkkkkkk	instrument
	25	Brss Dree I
	36	8:11 Drum 2
	,,	Pin Shet
	30	Seere Oran 1
	39	Hend Clas
	40	Share Dram 2
	41.42	Lee Tee
	12.44	Closed HHet
	45.47	Sid Ten
	46	Onen Mi-Hay
	18.50	mich lee
	10	Crash Cymbal
	\$1	Bice Crobel
	54	Tembeurine
	12	Comball
	••	

All the more OFF mestages are ignored

#3 Recognized while the whit STOPS in the frack Play made #4 When the STHC mode is at WID!

While in the Tape Intestace mode, all MIDI messages are ignored

3. HANDSHAKING COMMUNICATION

3.1 Message Type

3 1 1 W.		file (WSF)
	Byte	Description
	1111 0000	feeterre steins
	0100 0001	Release ID #
	1111 0111	Operation code End of Spales byclusive
-		
3 1 7 80	40021 4 1110	
	Byte	Description
	1111 0000	A
	0100 0001	toclusive claims
	0100 0001	Operation code
	1111 0111	Led of System factoring
•		Las or spring process
3 1 3 04	1.	(DAT)
	Byte	Description
	1111 0000	***************************************
	0:00 000:	entincing status Majone ID B
	0:01 0010	Operation sees
	9000 0010	Fermet tree
	0100 0010	Siers 5 (0 - 14)
	0000 ****	•••••
	0000 7777	
		512 date bries (256 bries of present)
	0000	
	0000 ,,,,	
	Desr	Check sum (for proceding \$12 data hyses)
		Ind of System technolog
Note		al the all helps in data and the chart sam much
	0 (7 5:14)	21 122 211 2112 1A 2212 222 122 /AUG 122 2221
3 1 4 4	hneviedge	(PAS)
	Byte	Description
	1111 0000	Entlesies states
	0100 0001	Reland 10 0 Concation code
	0101 C011	tag of Sector fortuning
•		720 11 31(110 1111111111111111111111111111
		(CAL)
	Byte	Description
	1111 0000	fatheres states
	0101 0001	Reland ID 8

3 1 6 fed at lite	(10+)	
Byte	Descriptio	n
4 1111 0000		
B 0100 0001	0.1	
. 0101 0101	020123100 5044	
4 1111 0111	Operation code Fee of System Facto	
3 1 7 Communication	errer (ERR)	
Byte	Descriptio	n
	forteness states	
5 1111 000p		
. 0111 0001	000111100 1010	
4 1111 0111	Reland ID B Operation code and of System Eugle	
3) # Rejection	(RJC)	
Byte	Description	n
3 1111 0000		
6 0100 0001 4 0111 0000		
4 1111 Gang		
• 1111 0111	twe of Shriem Entle	
3.2 Sequence of C		
. MQF	Pequent a full	(*********
▶ DAI	Date	(transmitted)
CAT	Continue	(transmitted)
PAS	Actnovings	(received)
	(it times)	
4 DAI	0.1.	(1/4010(1144)
104	tos at fula	(11401011104)
PAS	Arbnesledge	(rese,
1 2 2 Vbcs 134 VSF .		
. VSF	want to Send a file	(/ece 1706)
t ROF	Hogaest a File	(1(40101)104)
/ DAI	Data	((****)****)
CVI	Continue	(received)
PAS	At hose ledge	(crancolicad)
	(14 (1841)	
	D	(rerelyed)
	ted at file	(received)
PAS	Acknowledge	(1/455@11144)
3 2 3 When the WSF :	46787	
. ws/	Seel to Seed a fale	(receives)
A MIC	We see the e	(14444-11444)
	(Inc sequence will as	1548 141818 10
•		

i	MIC MPs	bont to Send a file Rejection (The sequence will normal operation)	(received) (transmilled) abort then return to
2 4 1			,
i	eof	Provent a fits Rejection (The sequence will necoal operation)	(received)
2 5 1	When the ERR	is recognized	

Da1	Da te	(1/2010)11104)
C > 1	C1-4	(1/4858)1184)
1 HR	Commandation prior	(********)
DAT	Deta (same block)	11/********
CVI	Continue	(17000011104)

CAT Date (received)
EBW Commenceries order (stansmitted)
The unit will expect to receive the previous DAT