BoothMultiplier

Corso di ASE anno 18/19

Gruppo 14 PREVITERA GABRIELE PENNONE MIRKO PENNA SIMONE

Contents

1	Clas	ss Index	1
	1.1	Class List	1
2	File	Index	3
	2.1	File List	3
3	Clas	ss Documentation	5
	3.1	anodes_manager Entity Reference	5
		3.1.1 Detailed Description	5
		3.1.2 Member Data Documentation	5
		3.1.2.1 IEEE	6
		3.1.2.2 STD_LOGIC_1164	6
	3.2	booth_multiplier Entity Reference	6
	3.3	booth_multiplier_control_unit Entity Reference	7
	3.4	booth_multiplier_onBoard Entity Reference	7
	3.5	BoothMultiplier_tb_onBoard Entity Reference	8
		3.5.1 Detailed Description	8
	3.6	carrySelect_adder Entity Reference	9
	3.7	carrySelect_addSub Entity Reference	9
	3.8	carrySelect_cell Entity Reference	10
	3.9	cathodes_manager Entity Reference	11
		3.9.1 Detailed Description	11
		3.9.2 Member Data Documentation	11
		2021 IEEE	44

ii CONTENTS

3.9.2.2 STD_LOGIC_1164	11
3.10 clock_divisor Entity Reference	12
3.10.1 Detailed Description	12
3.10.2 Member Data Documentation	12
3.10.2.1 STD_LOGIC_1164	13
3.11 counter_modN Entity Reference	13
3.12 counter_UpMod2n_Re_Sr Entity Reference	13
3.12.1 Detailed Description	14
3.12.2 Member Data Documentation	14
3.12.2.1 IEEE	14
3.12.2.2 STD_LOGIC_1164	14
3.13 display_7_segmenti Entity Reference	15
3.13.1 Detailed Description	15
3.14 flipflop_d_risingEdge_asyncReset Entity Reference	15
3.14.1 Detailed Description	16
3.14.2 Member Data Documentation	16
3.14.2.1 IEEE	16
3.14.2.2 STD_LOGIC_1164	16
3.15 flipflopmux Entity Reference	17
3.15.1 Detailed Description	17
3.16 full_adder Entity Reference	17
3.16.1 Detailed Description	18
3.17 half_adder Entity Reference	18
3.18 mux2_1 Entity Reference	19
3.18.1 Detailed Description	19
3.18.2 Member Data Documentation	19
3.18.2.1 IEEE	19
3.18.2.2 STD_LOGIC_1164	20
3.19 overflow_checker Entity Reference	20
3.19.1 Detailed Description	20

CONTENTS

	3.19.2	Member	Data Docume	entation .	 	 	 	 	 		21
		3.19.2.1	STD_LOGIC	C_1164 .	 	 	 	 	 		21
3.20	registe	r_d_Re_A	r Entity Refer	ence	 	 	 	 	 		21
	3.20.1	Detailed	Description		 	 	 	 	 		22
	3.20.2	Member	Data Docume	entation .	 	 	 	 	 	•	22
		3.20.2.1	STD_LOGIC	C_1164 .	 	 	 	 	 		22
3.21	ripple_	carry_add	er Entity Refe	erence .	 	 	 	 	 		22
	3.21.1	Member	Data Docume	entation .	 	 	 	 	 		22
		3.21.1.1	std_logic_1	164	 	 	 	 	 		23
3.22	rippleC	arry_adde	er Entity Refer	rence	 	 	 	 	 		23
	3.22.1	Detailed	Description		 	 	 	 	 		23
	3.22.2	Member	Data Docume	entation .	 	 	 	 	 		23
		3.22.2.1	c_in		 	 	 	 	 		24
		3.22.2.2	c_out		 	 	 	 	 		24
		3.22.2.3	IEEE		 	 	 	 	 		24
		3.22.2.4	S		 	 	 	 	 		24
		3.22.2.5	STD_LOGIC	C_1164 .	 	 	 	 	 		24
		3.22.2.6	width		 	 	 	 	 		24
		3.22.2.7	Y		 	 	 	 	 		24
3.23	scan_c	hain Entity	y Reference		 	 	 	 	 	•	25
	3.23.1	Detailed	Description		 	 	 	 	 		25

iv CONTENTS

	4.1	booth_multiplier_control_unit.vhd File Reference	27
	4.2	4.1.1 Detailed Description	
	12		27
	4.2	booth_On_Board.vhd File Reference	27
		4.2.1 Detailed Description	28
	4.3	carrySelect_adder.vhd File Reference	28
		4.3.1 Detailed Description	28
	4.4	carrySelect_addSub.vhd File Reference	29
		4.4.1 Detailed Description	29
	4.5	carrySelect_cell.vhd File Reference	29
		4.5.1 Detailed Description	29
	4.6	counter_modN.vhd File Reference	30
		4.6.1 Detailed Description	30
	4.7	display_7_segmenti.vhd File Reference	30
		4.7.1 Detailed Description	30
	4.8	flipflopmux.vhd File Reference	31
		4.8.1 Detailed Description	31
	4.9	full_adder.vhd File Reference	31
		4.9.1 Detailed Description	31
	4.10	half_adder.vhd File Reference	32
		4.10.1 Detailed Description	32
	4.11	scan_chain.vhd File Reference	32
		4.11.1 Detailed Description	32
Ind	ex		33

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

entity anodes_manager	
Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.	
Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati	
da segnali 0-attivi	j
entity booth_multiplier	;
entity booth_multiplier_control_unit	,
entity booth_multiplier_onBoard	7
entity BoothMultiplier_tb_onBoard	3
entity carrySelect_adder)
entity carrySelect_addSub)
entity carrySelect_cell)
entity cathodes_manager	
entity clock_divisor	
Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più	
bassa "clock_frequency_out"	2
entity counter_modN	3
entity counter_UpMod2n_Re_Sr	3
entity display_7_segmenti	ó
entity flipflop_d_risingEdge_asyncReset	
Flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di	
salita, con segnale di enable e reset asincrono	j
entity flipflopmux	,
entity full_adder	,
entity half_adder	3
entity mux2_1	
Definisco il componente e la sua interfaccia)
entity overflow_checker)
entity register_d_Re_Ar	
Registro di diensione "width" che prende in ingresso un dato D e lo memorizza 21	
entity ripple_carry_adder	2
entity rippleCarry_adder	3
ontity scan chain	

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

booth_multiplier_control_unit.vhd	
Unità di controllo del moltiplicatore di Booth	27
booth_On_Board.vhd	
Componente di alto livello per implementare il moltiplicatore di Booth su board	27
carrySelect_adder.vhd	
Sommatore Carry Select	28
carrySelect_addSub.vhd	
Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione	29
carrySelect_cell.vhd	
Singolo blocco di un sommatore carry Select	29
counter_modN.vhd	
Contatore modulo 2 alla N	30
display_7_segmenti.vhd	
Display a 7 segmenti	30
flipflopmux.vhd	
Flip flop D con multiplexer	31
full_adder.vhd	
Sommatore Full-Adder 3 ingressi 2 uscite	31
half_adder.vhd	
Sommatore half_adder 2 ingressi 2 uscite	32
scan_chain.vhd	
Registro di n flip flop D multiplexati	32

File Index

Chapter 3

Class Documentation

3.1 anodes_manager Entity Reference

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti. Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• select_digit in STD_LOGIC_VECTOR(2 downto 0)

anodes_manager input: seleziona digit

enable_digit in STD_LOGIC_VECTOR(7 downto 0)

anodes_manager input: abilita digit

anodes out STD_LOGIC_VECTOR(7 downto 0)

anodes_manager output: digit da accendere

3.1.1 Detailed Description

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.

Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

3.1.2 Member Data Documentation

3.1.2.1 IEEE

```
IEEE [Library]
```

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

3.1.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· anodes_manager.vhd

3.2 booth_multiplier Entity Reference

Libraries

IEEE

architecture dataflow of anodes_manager end

Use Clauses

- STD_LOGIC_1164
- numeric_std
- math_real

Generics

• N INTEGER:= 8

Ports

- X in STD_LOGIC_VECTOR(N- 1 downto 0)
- Y in STD_LOGIC_VECTOR(N- 1 downto 0)
- · start in STD_LOGIC
- clock in STD_LOGIC
- reset_n in STD_LOGIC
- stop out STD_LOGIC
- Z out STD_LOGIC_VECTOR((2 *N)- 1 downto 0)

The documentation for this class was generated from the following file:

booth_multiplier.vhd

3.3 booth_multiplier_control_unit Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- numeric_std
- · math_real

Generics

• N NATURAL:= 8

parallelismo di X

Ports

- clock in STD_LOGIC
- start in STD_LOGIC
- reset_n in STD_LOGIC
- counter_hit in STD_LOGIC

segnala la fine della moltiplicazione

x_lsbs in STD_LOGIC_VECTOR(1 downto 0)

ultimi due bit di x corrente

- stop out STD_LOGIC
- · en_a out STD_LOGIC

se scan_en =1 la scan chain funziona come shifter register

- en_q out STD_LOGIC
- en_m out STD_LOGIC
- shift out STD_LOGIC
- subtract out STD_LOGIC
- count_up out STD_LOGIC
- reset_a out STD_LOGIC
- reset_count out STD_LOGIC

reset il conteggio

The documentation for this class was generated from the following file:

· booth_multiplier_control_unit.vhd

3.4 booth_multiplier_onBoard Entity Reference

Libraries

IEEE

Use Clauses

STD_LOGIC_1164

Generics

N NATURAL:= 4

Ports

- clock in STD_LOGIC
- start in STD_LOGIC
- start_led out STD_LOGIC
- stop out STD_LOGIC
- enable_a in STD_LOGIC
- enable_b in STD_LOGIC
- subtract in STD_LOGIC
- input in STD_LOGIC_VECTOR(3 downto 0)

input addendo

- · overflow out STD LOGIC
- c_out out STD_LOGIC
- anodes out STD_LOGIC_VECTOR(7 downto 0)
- leds out STD_LOGIC_VECTOR(2 *N- 1 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

output carry in uscita

The documentation for this class was generated from the following file:

· booth_On_Board.vhd

3.5 BoothMultiplier_tb_onBoard Entity Reference

Libraries

· ieee

Use Clauses

• std_logic_1164

3.5.1 Detailed Description

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

The documentation for this class was generated from the following file:

· BoothMultiplier_tb_onBoard.vhd

3.6 carrySelect_adder Entity Reference

Libraries

• IEEE

Use Clauses

STD_LOGIC_1164

Generics

M NATURAL:= 4

M parallelismo dei ripplecarry adder.

P NATURAL:= 2

P parallelismo delle celle dell carry select Come metto M e P, marco e co fanno la stima dei tempi e mettono solo (M*P) da cui ricavano poi M e P io direi di fare una versione con M e P espliciti e una versione come l'hanno fatta loro, ma su quella.

Ports

```
    A in STD_LOGIC_VECTOR(((M *P)-1)downto 0)
```

input addendo

• B in STD_LOGIC_VECTOR(((M *P)- 1)downto 0)

input addendo

· c in in STD_LOGIC

input carry in ingresso

S out STD_LOGIC_VECTOR(((M *P) - 1)downto 0)

output somma

c_out out STD_LOGIC

output carry in uscita

The documentation for this class was generated from the following file:

· carrySelect_adder.vhd

3.7 carrySelect_addSub Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- · math_real
- · numeric_std

Generics

- M NATURAL:= 4
- P NATURAL:= 2

P parallelismo delle celle dell carry select Come metto M e P, marco e co fanno la stima dei tempi e mettono solo width da cui ricavano poi M e P io direi di fare una versione con M e P espliciti e una versione come l'hanno fatta loro, ma su quella.

Ports

```
    A in STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        input addendo
    B in STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        input addendo
    subtract in STD_LOGIC
    S out STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        output somma
    overflow out STD_LOGIC
    c_out out STD_LOGIC
        output carry in uscita
```

The documentation for this class was generated from the following file:

· carrySelect_addSub.vhd

3.8 carrySelect_cell Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 4

Ports

- A in STD_LOGIC_VECTOR((width- 1)downto 0)
- B in STD_LOGIC_VECTOR((width- 1)downto 0)
- · c in in STD LOGIC
- S out STD_LOGIC_VECTOR((width- 1)downto 0)
- · c_out out STD_LOGIC

The documentation for this class was generated from the following file:

carrySelect_cell.vhd

3.9 cathodes_manager Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD

Ports

```
    select_digit in STD_LOGIC_VECTOR( 2 downto 0 )
    cathodes_manager input: seleziona digit su cui mostrare la cifra
```

```
    values in STD_LOGIC_VECTOR( 31 downto 0 )
    cathodes_manager input: valore da mostrare (codifica esadecimale)
```

dots in STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager input: punto da accendere per la parte decimale

cathodes out STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager output: catodo da accendere

3.9.1 Detailed Description

Permette di gestire l'abilitazione dei catodi associati ad ogni segmento omologo di ogni cifra(digit) di un display a 7 segmenti.

Per accendere il giusto segmento è necessario che il catodo sia 0, poichè i catodi sono pilotati da segnali 0-attivi.

3.9.2 Member Data Documentation

```
3.9.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.9.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
```

The documentation for this class was generated from the following file:

cathodes_manager.vhd

3.10 clock_divisor Entity Reference

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_← frequency_out".

Libraries

IEEE

architecture behavioral of cathodes_manager end

Use Clauses

• STD_LOGIC_1164

Generics

• clock_frequency_in integer:= 100000000

frequenza del clock in ingresso

clock_frequency_out integer:= 1000

frequenza del clock in uscita

Ports

· enable in STD_LOGIC

clock_divisor input: segnale enable

reset_n in STD_LOGIC

clock_divisor input: segnale reset

clock_freq_in in STD_LOGIC

clock_divisor input: segnale di clock in ingresso

clock_freq_out out STD_LOGIC

clock_divisor output: segnale di clock in uscita

3.10.1 Detailed Description

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_⇔ frequency_out".

3.10.2 Member Data Documentation

```
3.10.2.1 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· clock_divisor.vhd

3.11 counter_modN Entity Reference

Libraries

IEEE

architecture behavioral of clock_divisor end

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD
- · STD LOGIC ARITH
- math_real

Generics

count_max integer:= 8

Ports

- clock in STD_LOGIC
- count_up in STD_LOGIC
- reset_n in STD_LOGIC
- value out STD_LOGIC_VECTOR((integer(ceil(log2(real(count_max)))))-1 downto 0)
- hit out STD_LOGIC

The documentation for this class was generated from the following file:

• counter_modN.vhd

3.12 counter_UpMod2n_Re_Sr Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- numeric_std

Generics

- n NATURAL:= 1
- enable_level STD_LOGIC:=' 1 '

Ports

enable in STD_LOGIC

enable input

reset_n in STD_LOGIC

reset input

clock in STD_LOGIC

clock input

count_hit out STD_LOGIC

count_hit output

COUNTS out STD_LOGIC_VECTOR((n-1))downto 0)

COUNT output.

3.12.1 Detailed Description

Contatore modulo 2 alla N. Il conteggio viene effettuato sul fronte di salita del clock e il reset è sincrono.

3.12.2 Member Data Documentation

```
3.12.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.12.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
```

The documentation for this class was generated from the following file:

• counter_UpMod2n_Re_Sr.vhd

3.13 display_7_segmenti Entity Reference

Libraries

IEEE

architecture behavioral of counter_UpMod2n_Re_Sr end

Use Clauses

STD LOGIC 1164

Ports

enable in STD_LOGIC

enable del componente

clock in STD_LOGIC

clock

· reset in STD_LOGIC

reset 1-attivo

values in STD_LOGIC_VECTOR(31 downto 0)

Stringa di bit del valore da mostrare.

dots in STD_LOGIC_VECTOR(7 downto 0)

Segnali che permette di pilotare i punti.

enable_digit in STD_LOGIC_VECTOR(7 downto 0)

Segnali che attiva le digit.

anodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota gli anodi.

cathodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota i catodi.

3.13.1 Detailed Description

Componente che permette di pilotare fino a 4 digit ricevendo il valore da mostrare sul display come sequenza di bit

The documentation for this class was generated from the following file:

· display_7_segmenti.vhd

3.14 flipflop_d_risingEdge_asyncReset Entity Reference

flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di salita, con segnale di enable e reset asincrono.

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

```
    init_value STD_LOGIC:=' 0 '
        definisce il livello iniziale del flipflop
    reset_level STD_LOGIC:=' 0 '
        definisce il livello reset
    enable_level STD_LOGIC:=' 1 '
```

definisce il livello enable

Ports

· clock in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale di clock per sincronizzare

enable in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale enable

reset in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale reset

d in STD_LOGIC

flipflop_d_risingEdge_asyncReset input: input data

• q out STD_LOGIC

flipflop_d_risingEdge_asyncReset output : output data

3.14.1 Detailed Description

flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di salita, con segnale di enable e reset asincrono.

3.14.2 Member Data Documentation

```
3.14.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.14.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <14/11/2018> <13/11/2018> <log> create
```

The documentation for this class was generated from the following file:

flipflop_d_risingEdge_asyncReset.vhd

3.15 flipflopmux Entity Reference

Libraries

IEEE

architecture behavioural end

Use Clauses

• STD_LOGIC_1164

Ports

clock in STD_LOGIC

clock

· en in STD_LOGIC

enable

· reset_n in STD_LOGIC

racat

• scan_en in STD_LOGIC

segnale di selezione del multiplexer per modalità (0 = normale, 1 = controllo)

• d in STD_LOGIC

ingresso del flipflop in modalità normale

scan_in in STD_LOGIC

ingresso del flipflop in modalità controllo

q out STD_LOGIC

uscita del flipflop

3.15.1 Detailed Description

flipflopmux è un flip flop D con multiplexer: scan_en è il segnale di controllo del multiplexer, se scan_en = 0 l'ingresso è d, se scan_en = 1 l'ingresso è scan_in.

The documentation for this class was generated from the following file:

· flipflopmux.vhd

3.16 full_adder Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

X in STD_LOGIC

full_adder input : addendo

Y in STD_LOGIC

full_adder input : addendo

• C_in in STD_LOGIC

full_adder input : carry in ingresso

• S out STD_LOGIC

full_adder output : sommaC_out out STD_LOGIC

full_adder output : carry

3.16.1 Detailed Description

Descrizione Somma i 3 bit in ingresso (2 addendi e 1 carry in ingresso). In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

The documentation for this class was generated from the following file:

· full_adder.vhd

3.17 half_adder Entity Reference

Libraries

· ieee

architecture dataflow of full_adder end

Use Clauses

· std logic 1164

Ports

- x in std_logic
- y in std_logic
- s out std_logic
- c out std_logic

The documentation for this class was generated from the following file:

half_adder.vhd

3.18 mux2_1 Entity Reference

definisco il componente e la sua interfaccia

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width natural:= 1

parallelismo dell' I/O del multiplexer

Ports

```
    SEL in STD_LOGIC
        mux2_1 input: selezione
    A in STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 input: A
    B in STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 input: B
    X out STD_LOGIC_VECTOR((width - 1 )downto 0 )
        mux2_1 output: X
```

3.18.1 Detailed Description

definisco il componente e la sua interfaccia

Descrizione Quando l'ingresso SEL è basso, l'uscita assume il valore del segnale A, altrimenti quando il segnale SEL è alto l'uscita assume il valore del segnale B.

3.18.2 Member Data Documentation

```
3.18.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –
```

3.18.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <14/11/2018><13/11/2018><log> create

The documentation for this class was generated from the following file:

mux2_1.vhd

3.19 overflow_checker Entity Reference

Libraries

IEEE

architecture dataflow of mux2_1 end

Use Clauses

• STD LOGIC 1164

Ports

• a in STD_LOGIC

bit più significativo (segno) di A

• b in STD_LOGIC

bit più significativo (segno) di B

subtract in STD_LOGIC

bit di operazione: 1 se sottrazione, 0 se addizione

• s in STD LOGIC

bit più significativo (segno) di S

overflow out STD_LOGIC

bit alto se ho una condizione di overflow

3.19.1 Detailed Description

Descrizione La macchina controlla se vi è overflow nel risultato confrontando le cifre più significative (segno) dei due operandi e del risultato con subtract. Ho overflow in caso di:

- · somma di due positivi con risultato negativo
- · somma di due negativi con risultato positivo
- · differenza di positivo e negativo con risultato negativo
- · differenza di negativo e positivo con risultato positivo

3.19.2 Member Data Documentation

```
3.19.2.1 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
```

The documentation for this class was generated from the following file:

overflow_checker.vhd

3.20 register_d_Re_Ar Entity Reference

Registro di diensione "width" che prende in ingresso un dato D e lo memorizza.

Libraries

IEEE

architecture behavioural of overflow_checker end

Use Clauses

• STD LOGIC 1164

Generics

```
    width NATURAL:= 8
        definisce il parallelismo del registro
    reset_level STD_LOGIC:=' 0 '
        definisce il livello reset
    enable_level STD_LOGIC:=' 1 '
        definisce il livello enable
```

Ports

```
    clock in STD_LOGIC
        register_d_Re_Ar input : segnale di clock per sincronizzare
    enable in STD_LOGIC
        register_d_Re_Ar input : segnale enable
    reset in STD_LOGIC
        register_d_Re_Ar input : segnale reset
    d in STD_LOGIC_VECTOR(width - 1 downto 0)
        register_d_Re_Ar input : inpput data
    q out STD_LOGIC_VECTOR(width - 1 downto 0)
        register_d_Re_Ar input : output data
```

3.20.1 Detailed Description

Registro di diensione "width" che prende in ingresso un dato D e lo memorizza.

3.20.2 Member Data Documentation

```
3.20.2.1 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <16/11/2018> <16/11/2018> <log> create
```

The documentation for this class was generated from the following file:

• register_d_Re_Ar.vhd

3.21 ripple_carry_adder Entity Reference

Libraries

ieee

architecture behavioral of register_d_Re_Ar end

Use Clauses

• std_logic_1164

Generics

· width natural

Ports

```
• X in std_logic_vector(width- 1 downto 0)
```

- Y in std_logic_vector(width- 1 downto 0)
- · cin in std_logic
- cout out std_logic
- sum out std_logic_vector(width- 1 downto 0)

3.21.1 Member Data Documentation

```
3.21.1.1 std_logic_1164
```

```
std_logic_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

• ripple_carry_adder.vhd

3.22 rippleCarry_adder Entity Reference

Libraries

• IEEE

Use Clauses

• STD LOGIC 1164

Generics

• width NATURAL:= 8

Ports

- X in STD LOGIC VECTOR(width 1 downto 0)
- Y in STD_LOGIC_VECTOR(width 1 downto 0)
- c_in in STD_LOGIC
- S out STD_LOGIC_VECTOR(width 1 downto 0)
- c out out STD LOGIC

rippleCarry_adder output: carry

3.22.1 Detailed Description

Descrizione Somma le 2 stringe di bit in ingresso (2 addendi) e 1 bit (carry in ingresso). Caratterizzato da una serie di full_adder in cascata che propagano il riporto.

In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

3.22.2 Member Data Documentation

```
3.22.2.1 c_in
c_in in STD_LOGIC [Port]
rippleCarry_adder input: addendo
3.22.2.2 c_out
c_out out STD_LOGIC [Port]
rippleCarry_adder output: carry
rippleCarry_adder output: somma
3.22.2.3 IEEE
IEEE [Library]
FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -
3.22.2.4 S
S out STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
rippleCarry_adder input : carry in ingresso
3.22.2.5 STD_LOGIC_1164
STD_LOGIC_1164 [Package]
last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
3.22.2.6 width
width NATURAL:= 8 [Generic]
usato per definire il parallelismo del rippleCarry_adder
3.22.2.7 Y
Y in STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
rippleCarry_adder input: addendo
The documentation for this class was generated from the following file:
```

rippleCarry_adder.vhd

3.23 scan_chain Entity Reference

Libraries

IEEE

Use Clauses

• STD LOGIC 1164

Generics

```
    width integer:= 8
        dimensione del registro

    shift_direction std_logic:=' 1 '
        shift a sinistra
```

Ports

```
    clock in STD_LOGIC
```

segnale clock di tempificazione

en in STD_LOGIC

segnale di abilitazione 1-attivo

reset_n in STD_LOGIC

segnale di reset 0-attivo

· scan en in STD LOGIC

segnale di selezione modalità (0 = normale, 1 = controllo)

scan_in in STD_LOGIC

primo valore scan-in

d_reg in STD_LOGIC_VECTOR(width - 1 downto 0)

valore in ingresso nel registro

scan_out out STD_LOGIC

ultimo valore scan-out

q_reg out STD_LOGIC_VECTOR(width - 1 downto 0)

valore in uscita del registro

3.23.1 Detailed Description

Scan chain è un registro di width flipflop D multiplexati. Quando scan_en = 0, il componente si comporta come un normale registro. Quando scan_en = 1, diventa uno shift register che shifta ad ogni colpo di clock. La direzione dello shift è regolata dal generic shift_direction (0 = right, 1 = left)

The documentation for this class was generated from the following file:

· scan_chain.vhd

Chapter 4

File Documentation

4.1 booth_multiplier_control_unit.vhd File R	<i>leference</i>
--	------------------

Unità di controllo del moltiplicatore di Booth.

Entities

• booth_multiplier_control_unit entity

4.1.1 Detailed Description

Unità di controllo del moltiplicatore di Booth.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.2 booth_On_Board.vhd File Reference

Componente di alto livello per implementare il moltiplicatore di Booth su board.

28 File Documentation

Entities

· booth_multiplier_onBoard entity

4.2.1 Detailed Description

Componente di alto livello per implementare il moltiplicatore di Booth su board.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.3 carrySelect_adder.vhd File Reference

Sommatore Carry Select.

Entities

• carrySelect_adder entity

4.3.1 Detailed Description

Sommatore Carry Select.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.4 carrySelect_addSub.vhd File Reference

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

Entities

· carrySelect_addSub entity

4.4.1 Detailed Description

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.5 carrySelect_cell.vhd File Reference

Singolo blocco di un sommatore carry Select.

Entities

• carrySelect_cell entity

4.5.1 Detailed Description

Singolo blocco di un sommatore carry Select.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

30 File Documentation

4.6 counter_modN.vhd File Reference

Contatore modulo 2 alla N.

Entities

• counter_modN entity

4.6.1 Detailed Description

Contatore modulo 2 alla N.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.7 display_7_segmenti.vhd File Reference

Display a 7 segmenti.

Entities

• display_7_segmenti entity

4.7.1 Detailed Description

Display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.8 flipflopmux.vhd File Reference

flip flop D con multiplexer

Entities

· flipflopmux entity

4.8.1 Detailed Description

flip flop D con multiplexer

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.9 full_adder.vhd File Reference

Sommatore Full-Adder 3 ingressi 2 uscite.

Entities

• full_adder entity

4.9.1 Detailed Description

Sommatore Full-Adder 3 ingressi 2 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

32 File Documentation

4.10 half_adder.vhd File Reference

Sommatore half_adder 2 ingressi 2 uscite.

Entities

· half_adder entity

4.10.1 Detailed Description

Sommatore half_adder 2 ingressi 2 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.11 scan_chain.vhd File Reference

Registro di n flip flop D multiplexati.

Entities

• scan_chain entity

4.11.1 Detailed Description

Registro di n flip flop D multiplexati.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Index

anodes_manager, 5	mux2_1, 19
IEEE, 5	rippleCarry_adder, 24
STD_LOGIC_1164, 6	
,	mux2_1, 19
booth_On_Board.vhd, 27	IEEE, 19
booth_multiplier, 6	STD_LOGIC_1164, 19
booth_multiplier_control_unit, 7	
booth_multiplier_control_unit.vhd, 27	overflow_checker, 20
booth_multiplier_onBoard, 7	STD_LOGIC_1164, 21
BoothMultiplier_tb_onBoard, 8	
	register_d_Re_Ar, 21
c_in	STD_LOGIC_1164, 22
rippleCarry_adder, 23	ripple_carry_adder, 22
c out	std_logic_1164, 22
rippleCarry_adder, 24	rippleCarry_adder, 23
carrySelect_addSub, 9	c_in, 23
carrySelect_addSub.vhd, 29	c_out, 24
carrySelect_adder, 9	IEEE, 24
carrySelect_adder.vhd, 28	S, 24
•	STD_LOGIC_1164, 24
carrySelect_cell, 10	width, 24
carrySelect_cell.vhd, 29	Y, 24
cathodes_manager, 11	1,24
IEEE, 11	S
STD_LOGIC_1164, 11	rippleCarry_adder, 24
clock_divisor, 12	STD_LOGIC_1164
STD_LOGIC_1164, 12	
counter_UpMod2n_Re_Sr, 13	anodes_manager, 6
IEEE, 14	cathodes_manager, 11
STD_LOGIC_1164, 14	clock_divisor, 12
counter_modN.vhd, 30	counter_UpMod2n_Re_Sr, 14
counter_modN, 13	flipflop_d_risingEdge_asyncReset, 16
	mux2_1, 19
display_7_segmenti, 15	overflow_checker, 21
display_7_segmenti.vhd, 30	register_d_Re_Ar, 22
	rippleCarry_adder, 24
flipflop_d_risingEdge_asyncReset, 15	scan_chain, 25
IEEE, 16	scan_chain.vhd, 32
STD_LOGIC_1164, 16	std_logic_1164
flipflopmux, 17	ripple_carry_adder, 22
flipflopmux.vhd, 31	
full_adder, 17	width
full_adder.vhd, 31	rippleCarry_adder, 24
half_adder, 18	Υ
half_adder.vhd, 32	rippleCarry_adder, 24
nan_adder.vnd, 02	11pp10-0411
IEEE	
anodes_manager, 5	
cathodes_manager, 11	
counter_UpMod2n_Re_Sr, 14	
flipflop_d_risingEdge_asyncReset, 16	