

SI340 Module Parole

Alignement temporel et Programmation dynamique (DTW)

> Gaël RICHARD Mai 2010

Distorsions temporelles

- Un même locuteur ne peut pas prononcer plusieurs fois une même séquence vocale avec exactement le même rythme et la même durée totale
- Les échelles temporelles de deux occurences d'un même mot ne coïncident pas
- Les suites de vecteurs issus de la paramétrisation ne peuvent pas être comparées entre elles

Alignement

■ Cas (*irréaliste*) où les deux séquences sont prononcées avec exactement le même rythme et la même durée ($T_y=T_x$)

Alignement temporel linéaire

■ Cas (un peu plus réaliste) où la déformation est linéaire: un mot et chacun de ses segments est prononcé plus rapidement et dans la même proportion

Alignement temporel linéaire

■ Distance entre les séquences

$$d(\chi,\xi) = \sum_{i_x=1}^{T_x} d(i_x,i_y)$$

$$i_y = \frac{T_y}{T_x} i_x$$

「粉髪祭

Alignement temporel dynamique

■ Cas (*beaucoup plus réaliste*) où la déformation entre les séquences est dynamique

們實際

Alignement temporel dynamique

■ Fonctions de déformation

$$i_x = \phi_x(k) \text{ pour } k = 1, 2, \dots, T$$

$$i_y = \phi_y(k) \text{ pour } k = 1, 2, \dots, T$$

☐ Mesure de similarité entre les séquences

$$d_{\phi}(\chi,\xi) = \sum_{k=1}^{T} d(\phi_x(k),\phi_y(k)))m(k)/M_{\phi}$$

□ Choix du meilleur chemin

$$d(\chi,\xi)) = \min_{\phi} d_{\phi}(\chi,\xi)$$

Programmation dynamique (DTW)

- Permet (sous certaines conditions) d'obtenir la solution optimale sans devoir considérer toutes les solutions possibles
- Principe de base: la solution optimale peut être obtenue à partir de solutions intermédiaires optimales
- La distance optimale est obtenue en calculant, pour chaque point (i_x, i_y) la distance cumulée $D(i_x, i_y)$ correspondant à la distance optimale que l'on obtient en comparant les deux sous-séquences (souspolitiques)

Programmation dynamique (DTW)

lacksquare Distance accumulée minimale entre (1,1) et (i_x,i_y)

$$D(i_x, i_y) = \min_{\phi_x, \phi_y, T'} \sum_{k=1}^{T'} d(\phi_x(k), \phi_y(k)) m(k)$$

où
$$\phi_x(T') = i_x \; ; \; \phi_y(T') = i_y$$

☐ Le facteur de normalisation sera utilisé une fois que le point final aura été atteint

$$M_{\phi} = \sum_{k=1}^{T} m(k)$$

「祝き選

Programmation dynamique (DTW)

■ Rajout de contraintes

$$D(i_x, i_y) = \min_{(i'_x, i'_y)} [D(i'_x, i'_y) + \zeta((i'_x, i'_y), (i_x, i_y))]$$

Avec la distance pondérée définie par:

$$\zeta((i_x',i_y'),(i_x,i_y)) = \sum_{l=0}^{L_s} d(\phi_x(T'-l),\phi_y(T'-l)m(T'-l))$$

Ls est le nombre de déplacements dans le chemin pour aller de (i_x^\prime,i_y^\prime) , à (i_x,i_y)

的智慧

Exemples de contraintes locales

$$\min \left\{ \begin{array}{l} D(i_x - 1, i_y) + d(i_x, i_y), \\ D(i_x - 1, i_y - 1) + 2d(i_x, i_y), \\ D(i_x, i_y - 1) + d(i_x, i_y) \end{array} \right\}$$

$$\min \left\{ \begin{array}{l} D(i_x - 2, i_y - 1) + \frac{1}{2} [d(i_x - 1, i_y) + d(i_x, i_y)], \\ D(i_x - 1, i_y - 1) + d(i_x, i_y), \\ D(i_x - 1, i_y - 2) + \frac{1}{2} [d(i_x, i_y - 1) + d(i_x, i_y)] \end{array} \right\}$$

$$\min \left\{ \begin{array}{l} D(i_x - 2, i_y - 1) + 3d(i_x, i_y), \\ D(i_x - 1, i_y - 1) + 2d(i_x, i_y), \\ D(i_x - 1, i_y - 2) + 3d(i_x, i_y), \end{array} \right\}$$

Utilisation en reconnaissance vocale

■ Repose sur l'utilisation de contraintes supplémentaires:

- Des contraintes de monocité
 - Point de départ (début des deux mots): (1,1)
 - Point d'arrivée (fin des deux mots): (T_x, T_y)
- Des contraintes globales
 - Réduction de l'espace de recherche
- Des contraintes locales
 - Prédécesseurs limités à quelques éléments proches
 - Chemins uniquement Gauche-droite
 - Utilisation de poids (pénalités) suivant les chemins

Implémentation (DTW)

■ Initialisation de la matrice D des distances cumulées

$$D_A(1,1) = d(1,1)m(1)$$

- Calculer les distance locales pour tous les autres éléments de la première colonne de D: d(1,i)
- Si la transition verticale est autorisée, calculer les distances accumulées de la première colonne:

$$D(i_x, i_y) = \min_{(i_x', i_y')} [D(i_x', i_y') + \zeta((i_x', i_y'), (i_x, i_y))]$$

Sinon les distances sont égales à l'infini.

- Passer à la colonne suivante et ainsi de suite....
- Lorsque le dernier point est atteint, réinjecter le coefficient de normalisation $d(\chi,\xi) \,=\, \frac{D_A(T_x,T_y)}{M_\phi}$

Exemple (DTW)

■ Soit les séquences

- A=(1 2 2 4 6) (séquence test))
- B = (2 3 4 5 6 7) (référence en mémoire)
- C= (1 2 4 4 6 6) (référence en mémoire)
- Calculer la matrice des distances locales avec
 - $d(i,j) = (s(i) s(j))^2$
- Calculer la matrice des distances cumulées avec la contrainte locale suivante:

們醫選

Exemple: corrigé (DTW)

Distances locales

R

4

3

2

36	25	25	9	1
25	16	16	4	0
16	9	9	1	1
9	4	4	0	4
4	1	1	1	9
1	0	0	4	16

2

2

2

4

A

Distances cumulées

		/			
∞	91	566	566	16	<u>4</u>
∞	55	31	31	7	<u>3</u>
∞	30	15	15	<u>3</u>	4
∞	14	6	6	<u>2</u>	6
∞	5	2	2	3	12
∞	1	1	1	5	21
	∞	∞	∞	∞	∞

選響研

Exemple: corrigé (DTW)

Distances locales

6

6

4

2

1

25	16	16	4	0
25	16	16	4	0
9	4	4	0	4
9	4	4	0	4
1	0	0	4	16
0	1	1	9	25

Distances cumulées

∞	69	40	40	8	<u>0</u>
∞	44	24	24	4	<u>0</u>
∞	19	8	8	<u>0</u>	4
∞	10	4	4	<u>0</u>	4
∞	1	<u>0</u>	0	4	20
∞	<u>0</u>	1	2	11	36
	∞	∞	∞	∞	∞

C = 0 /9 = 0

Possibilité d'initialiser D(0,0) à 1

Région de recherche du chemin optimal

(d'après Rabiner93)

Relâchement de contraintes aux extrémités

Reconnaissance de mots connectés

■ Séquence reconnue:

DTW: discussion

- Très utilisée dès les années 70.
- Actuellement moins utilisée mais est à la base des systèmes utilisant les HMM
- Nombreuses améliorations développées:
 - Adaptation à la variabilité
 - Multi-références
 - Références obtenues par Quantification Vectorielle (k-means)
 - Adaptation multi-locuteur

SI340 Module Parole

Introduction aux Modèles de Markov *utilisation en parole*

Gaël RICHARD Mai 2010

Chaînes de Markov discrètes

響響

Chaînes de Markov discrètes

Notations

- *t*=1,2 ... sont les instants de changement d'états
- q_t est l'état à l'instant t
- La probabilité d'être dans l'état j sachant que l'on a été dans l état i au temps t-1 et dans l'état k à l'état t-2, etc... est:

$$P[q_t = j | q_{t-1} = i, q_{t-2} = k, \ldots]$$

Chaînes de Markov du premier ordre:

$$P[q_t = j | q_{t-1} = i, q_{t-2} = k, \ldots] = P[q_t = j | q_{t-1} = i]$$

Chaînes de Markov discrètes (notations)

Système dont les changements d'états sont indépendants du temps:

Avec les propriétés suivantes:

$$a_{ij} = P[q_t = j | q_{t-1} = i]$$
 pour $1 \le i, j \le N$
$$a_{ij} \ge 0 \quad \forall j, i$$

$$\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$$

Probabilité de l'état initial

$$\pi_i = P[q_1 = i], \qquad 1 \le i \le N$$

一般實際

Exercice: Modèle Météo à 3 états

- Ecrire la matrice de transition A
- Sachant qu'à t=1 le temps est ensoleillé, quelle est la probabilité (connaissant le modèle) que le temps pour les 7 prochains jours soit (Soleil, Soleil, pluie, pluie, Soleil, Nuageux, Soleil)?
- Sachant que le système est dans un état connu, quelles est la probabilité qu'il reste dans cet état pendant exactement d jours ?

選出

Exercice: Modèle Météo à 3 états (correction)

■ La matrice A vaut:

$$A = \begin{pmatrix} 0.4_{11} & 0.3_{12} & 0.3_{13} \\ 0.2_{21} & 0.6_{22} & 0.2_{23} \\ 0.1_{31} & 0.1_{32} & 0.8_{33} \end{pmatrix}$$

■ Soit l'observation:

$$P(\mathbf{O}|Model) = P[3,3,3,1,1,3,2,3,|Model]$$

$$= P[3]P[3|3]^{2}P[1|3]P[1|1]P[3|1]P[2|3]P[3|2]$$

$$= \pi_{3} \cdot (a_{33})^{2}a_{31}a_{11}a_{13}a_{32}a_{23}$$

$$= (1.0)(0.8)^{2}(0.1)(0.4)(0.3)(0.1)(0.2)$$

$$= 1.536 \times 10^{-4}$$

Exercice: Modèle Météo à 3 états (correction)

■ Soit la séquence d'observation:

•
$$O = (i, i, i, i, ..., i, j \neq i)$$

$$P(\mathbf{O}|Model, q_1 = i) = P(\mathbf{O}, q_1 = i|Model)/P(q_1 = i)$$

= $P[i]P[i|i]^{d-1}P[i|j]/P[i]$
= $\pi_i(a_{ii})^{d-1}(1 - a_{ii})/\pi_i$
= $(a_{ii})^{d-1}(1 - a_{ii})$

Extension aux modèles de Markov cachés

- Modèle Pile (P) ou Face (F)
- **■** Fournit une séquence d'observations

$$\mathbf{O} = (\mathbf{O_1} \ \mathbf{O_2} \ \mathbf{O_3} \ \dots \ \mathbf{O_T})$$

$$= (\mathbf{F} \ \mathbf{P} \ \mathbf{F} \ \dots \ \mathbf{F})$$

 Le premier modèle qui vient à l'esprit est le modèle suivant où une seule pièce de monnaie est utilisée

Extension aux modèles de Markov cachés

- Construire d'autres modèles en supposant que l'on a:
 - 2 pièces de monnaie qui possèdent un biais différent (par exemple la pièce A a une probabilité 0.6 de sortir Face alors que la pièce B a une probabilité 0.4 de sortir Face)
 - Extrapoler à un modèle de 3 pièces de monnaie

選擇

Extension aux modèles de Markov cachés (solution)

(c)

$$P(F) = P_1$$
 $P(F) = P_2$
 $P(P) = 1-P_1$ $P(P) = 1-P_2$

$$P(F) = \frac{1}{P_1} = \frac{2}{P_2} = \frac{3}{P_3}$$
 $P(P) = 1-P_1 = 1-P_2 = 1-P_3$

Extension aux modèles de Markov cachés

■ Modèle des boules et des urnes

M couleurs

■ Le tirage s'effectue de la façon suivante:

- Une urne est sélectionnée (selon une procédure aléatoire)
- Une boule est ensuite tirée dans cette urne. La couleur de la boule constitue l'observation
- La boule est replacée dans l'urne et une nouvelle urne peut être sélectionnée pour le tirage suivant

Extension aux modèles de Markov cachés

- Le tirage est effectué dans une autre pièce

 ne permet pas de savoir dans quelle urne a été tirée chaque boule
- Un modèle approprié: modèle de markov à N états

Caractérisation des HMM

- Un modèle HMM pour des données d'observations discrètes sera caractérisé par:
 - Le nombre N d'états du modèle
 - Modèle HMM ergodique
 - Modèle HMM Gauche-droite
 - q_t est l'état à l'instant t
 - Le nombre M de symboles distincts d'observation par état (soit la taille de l'alphabet)
 - Ex P et F pour le modèle Pile ou Face
 - Ex. Les couleurs pour le modèle Boules et urnes
 - On notera ces symboles sous la forme:

$$V = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_M$$

Caractérisation des HMM

La matrice A=a_{ii} de transition entre états où

$$a_{ij} = P[q_t = j | q_{t-1} = i]$$
 pour $1 \le i, j \le N$

Notons que $a_{ii} = 0$ pour les transitions impossibles

 La distribution de probabilité B=b_j(k) d'observation des symboles où

$$b_j(k) = P[\mathbf{o}_t = \mathbf{v}_k | q_t = j], \quad \text{pour } 1 \le k \le M$$

définit la distribution de probabilité des symboles dans l'état j

La distribution de l'état initial pour laquelle

$$\pi_j = P[q_1 = j], \quad \text{pour} \quad 1 \le j \le N$$

Caractérisation des HMM

- En résumé, la spécification complète d'un HMM est donnée par:
 - Paramètres N et M du modèle
 - La specification des symboles d'observation
 - La spécification des probabilités A, B et Π
 - On notera par convention $\lambda = (A,B,\pi)$ pour désigner le modèle complet.
 - Ce modèle inclut une mesure de probabilité soit: $P(\mathbf{O}|\lambda)$

HMM: Générateur d'observations (Exercice)

Supposons les modèles à 3 états suivants dans le cadre d'une expérience Pile ou Face:

 Etat 1
 Etat 2
 Etat3

 P(F)
 0.5
 0.75
 0.25

 P(P)
 0.5
 0.25
 0.75

avec chaque probabilité de transition étant gale à 1/3 (la probabilité d'état initiale étant également égale à 1/3)

Questions:

- Connaissant la séquence O=(F F F P P P P P), quelle est la séquence d'états la plus probable ? Quelle est la probabilité d'observer cette séquence et celle de cette séquence d'états
- 2. Quelle est la probabilité que la séquence d'observation provienne entièrement de l'état 1?
- 3. En est-il de même avec la séquence O=(FPPFPFPF)?
- 4. Quelles seraient vos réponses avec la matrice de transition suivante:

a11=0.9	A21=0.45	a33=0.45
a12=0.05	a22=0.1	a32=0.45
a13=0.05	a23=0.45	a33=0.1

一般是

Les trois problèmes des HMM

■Problème 1: Évaluer la probabilité d'une séquence d'observations.

connaissant la séquence d'observation $\mathbf{O} = (\mathbf{o_1}, \mathbf{o_2}, \mathbf{o_3}, \dots, \mathbf{o_T})$ et le modèle, $\lambda = (A, B, \pi)$ comment peut-on calculer $P(\mathbf{O}|\lambda)$ qui est la probabilité de la séquence d'observations, connaissant le modèle.

■Problème 2: Retrouver la séquence d'états optimale.

connaissant la séquence d'observation $\mathbf{O} = (\mathbf{o_1}, \mathbf{o_2}, \mathbf{o_3}, \dots, \mathbf{o_T})$ et le modèle $\lambda = (A, B, \pi)$ comment choisit-on la séquence d'état $q = (q_1, q_2, q_3, \dots, q_T)$ qui est optimale au sens d'un certain critère (i.e. la séquence d'états qui "explique" au mieux les observations)

Les trois problèmes des HMM

■ Problème 3: Ré-estimer les paramètres du modèle.

Comment ajuste-t-on les paramètres du modèle $\lambda = (A,B,\pi)$ pour maximiser $P(\mathbf{O}|\lambda)$ qui est la probabilité de la séquence d'observation connaissant le modèle.

Problème 1: Évaluer la probabilité d'une séquence d'observations.

connaissant la séquence d'observation et le modèle, comment peut-on calculer la probabilité de la séquence d'observations, connaissant le modèle.

 ✓ Solution intuitive: énumérer toutes les séquences d'états de taille T (N^T séquences possibles)

Soit **q** I'une de ces séquences: $\mathbf{q} = (q_1, q_2, \dots q_T)$

En supposant que les observations sont statistiquement indépendantes:

$$P(\mathbf{O}|\mathbf{q},\lambda) = \prod_{t=1}^{T} P(\mathbf{o}_t|q_t,\lambda)$$

On en déduit:

$$P(\mathbf{O}|\mathbf{q},\lambda) = b_{q_1}(\mathbf{o}_1) \cdot b_{q_2}(\mathbf{o}_2) \dots b_{q_T}(\mathbf{o}_T)$$

Problème 1: Évaluer la probabilité d'une séquence d'observations.

la probabilité d'une telle séquence d'états est aussi donnée par:

$$P(\mathbf{q}|\lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \dots a_{q_{T-1} q_T}$$

La probabilité jointe de O et q est le produit des deux termes

$$P(\mathbf{O}, \mathbf{q}|\lambda) = P(\mathbf{O}|\mathbf{q}, \lambda) \cdot P(\mathbf{q}|\lambda)$$

 La probabilité de la séquence O est donnée en sommant cette probabilité jointe sur l'ensemble des séquences d'états possibles q

$$P(\mathbf{O}|\lambda) = \sum_{all \ \mathbf{q}} P(\mathbf{O}|\mathbf{q},\lambda) \cdot P(\mathbf{q}|\lambda)$$

$$= \sum_{q_1,q_2,\dots,q_T} \pi_{q_1} b_{q_1}(\mathbf{o}_1) a_{q_1 q_2} b_{q_2}(\mathbf{o}_2) a_{q_2 q_3} \dots b_{q_T}(\mathbf{o}_T) a_{q_{T-1} q_T}$$

三溪夏附

Problème 1: Évaluer la probabilité d'une séquence d'observations.

- Interprétation
- à t=1: nous sommes dans l'état q_1 avec la probabilité πq_1 et nous générons un symbole o_1 avec la probabilité $b_{q_1}(o_1)$
- à t=2, nous faisons une transition à l'état q_2 à partir de l'état q1 avec la probabilité $a_{q_1q_2}$ et générons le symbole o_2 avec la probabilité $b_{q_2}(o_2)$
- et ainsi de suite jusqu 'à o_T

Problème 1: Évaluer la probabilité d'une séquence d'observations.

- Complexité de l'approche pour évaluer $P(\mathbf{O}|\lambda)$
 - $(2T-1)N^T$ multiplications
 - $N^T 1$ additions
- Calcul impossible même pour des petites valeurs de N (nombre d'états) et T (nombre d'observations).
- Une solution: I 'algorithme forward (ou récurrence avant)

Algorithme Forward

Soit la variable définie par :

$$\alpha_t(i) = P(\mathbf{o_1}, \mathbf{o_2}, \mathbf{o_3} \dots \mathbf{o_t}, q_t = i | \lambda)$$

qui est la probabilité de la séquence d'observations partielle $o_1, o_2, o_3 \dots o_t$ et de l'état i à l'instant t connaissant le modèle

Algorithme:

• Initialisation
$$\alpha_1(i) = \pi_i b_i(\mathbf{o}_1)$$

Initialisation
$$\alpha_1(i) = \pi_i b_i(\mathbf{o}_1), \quad 1 \leq i \leq N$$

• Récursion
$$\alpha_{t+1}(j) = \left[\sum_{i=1}^N \alpha_t(i)a_{ij}\right]b_i(\mathbf{o}_{t+1}), \qquad 1 \leq t \leq T-1, \quad 1 \leq j \leq N$$

• Arrêt
$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Algorithme Forward

■ Approche largement moins complexe:

- N(N+1)T-1)+N multiplications
- N(N-1)(T-1) additions

■ De façon similaire, on peut définir un algorithme backward à partir de la probabilité de la séquence d'observation partielle de t+1 à la fin étant donné l'état i au temps t et le modèle:

$$\beta_t(i) = P(\mathbf{o_{t+1}}, \mathbf{o_{t+2}}, \mathbf{o_{t+3}} \dots \mathbf{o_T} | q_t = i, \lambda)$$

Problème 2: Retrouver la séquence d'états optimale.

- On cherche ici à trouver une séquence optimale d'états connaissant la séquence d'observations
- L'approche couramment retenue est de trouver l'unique meilleure séquence d'états (ou encore chemin)
- Méthode basée sur la programmation dynamique : l'algorithme de Viterbi

Problème 2: Retrouver la séquence d'états optimale.

■ On introduit la notion de meilleur chemin partiel jusqu 'au temps t et finissant à l 'état i:

$$\delta_t(i) = \max_{q_1, q_2, \dots, q_{t-1}} P[q_1 q_2 \dots q_{t-1}, q_t = i, \mathbf{o}_1 \mathbf{o}_2, \dots \mathbf{o}_t | \lambda]$$

■ Par récurrence, on peut alors déterminer:

$$\delta_{t+1}(j) = \left[\max_{i} \delta_t(i) a_{ij}\right] \cdot b_j(\mathbf{o}_{t+1})$$

■ En pratique, il sera aussi nécessaire de garder la séquence d'états pour chaque temps t. Ce sera réalisé à l'aide du tableau $\psi_t(j)$

Problème 2: Retrouver la séquence d'états optimale.

■ Algorithme:

Initialisation

$$\delta_1(i) = \pi_i b_i(\mathbf{o}_1), \ 1 \le i \le N$$

$$\psi_1(i) = 0$$

$$\delta_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}] \cdot b_j(\mathbf{o}_t), \qquad 2 \le t \le T-1; \quad 1 \le j \le N$$

$$\psi_t(j) = \arg \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}], \quad 2 \le t \le T-1; \quad 1 \le j \le N$$

• Arrêt
$$P^* = \max_{1 \leq i \leq N} [\delta_T(i)]$$

$$q_T^* = \arg\max_{1 \leq i \leq N} [\delta_T(i)]$$

Rétropropagation (chemin optimal)

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \qquad t = T - 1, T - 2, \dots, 1$$

們發展

Exercice: Algorithme de Viterbi

- Soit le modèle choisi pour l'expérience avec 3 pièces avec les probabilités suivantes:
 - Etat1: P(P) = P(F) = 0.5
 - Etat2: P(P)=0.75; P(F)=0.25
 - Etat 3: P(P) = 0.25; P(F)=0.75
 - Tous les aij =1/3; probabilités initiales = 1/3
 - Quel est la séquence d'état optimale obtenue par l'algorithme de Viterbi pour l'observation (F F F P P P P P)?
 - Pouvez vous trouver la séquence d'état optimale obtenue pour la matrice de transition suivante ?

a11=0.9	A21=0.45	a33=0.45
a12=0.05	a22=0.1	a32=0.45
a13=0.05	a23=0.45	a33=0.1

16万量

Problème 3: Ré-estimer les paramètres du modèle.

- Problème plus complexe
- Utilisation de l'algorithme de Baum-Welch (aussi connu sous le nom d'algorithme Expectation-Maximisation)
- Objectif: Ré-estimer les paramètres du modèle $\lambda = (A,B,\pi)$ pour maximiser localement $P(\mathbf{O}|\lambda)$

Ré-estimer les paramètres du modèle (2)

■ Définissons la probabilité d'être dans l'état i à l'instant t et dans l'état j à l'instant t + 1 connaissant le modèle, et la séquence d'observation O: $\xi_t(i,j)$

On a:

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | \mathbf{O}, \lambda)$$

$$= \frac{P(q_t = i, q_{t+1} = j, \mathbf{O} | \lambda)}{P(\mathbf{O} | \lambda)}$$

Ré-estimer les paramètres du modèle (2)

■ Interprétation:

 $\xi_t(i,j)$ est l'ensemble des chemins vérifiant les conditions requises par l'équation précédente:

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{o_{t+1}})\beta_{t+1}(j)}{P(\mathbf{O}|\lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{o_{t+1}})\beta_{t+1}(j)}{\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{t}(i)a_{ij}b_{j}(\mathbf{o_{t+1}})\beta_{t+1}(j)}$$

Ré-estimer les paramètres du modèle (3)

■ La probabilité d'être dans l'état i à l'instant t connaissant la séquence d'observation O et le modèle est $\gamma_t(i)$, et s'écrit:

$$\gamma_t(i) = \sum_{j=1}^{N} \xi_t(i,j)$$

- Par ailleurs, si l'on somme $\gamma_t(i)$ sur le temps t, on obtient une quantité qui peut être interprétée comme une estimation du nombre de fois que l'état i est visité (Si l'on ne somme que sur les T-1 premiers indices, on a <u>une estimation du nombre de transitions</u> à partir de l'état i).
- De même, si l'on somme la variable $\xi_t(i,j)$ sur le temps (sur les T premiers indices), on obtient une <u>estimation du nombre de transitions</u> de l'état i vers l'état j.

Ré-estimer les paramètres du modèle (4)

On obtient finalement:

 $\overline{\pi}_j$ = estimation du nombre de fois dans l'état i à l'instant t=1 = $\gamma_1(i)$

$$\overline{a}_{ij} = \frac{\text{estimation du nombre de transitions de l'état } i \text{ à l'état } j}{\text{estimation du nombre de transitions à partir de l'état } i}$$

$$= \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

 $\overline{b}_j(k) = \frac{\text{estimation du nombre de fois dans l'état } j \text{ en y observant le symbole } \mathbf{v_k}}{\text{estimation du nombre de fois dans l'état } j}$

$$= \frac{\sum_{t=1,\mathbf{o_t}=\mathbf{v_k}}^{T-1} \gamma_t(i)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

Ré-estimer les paramètres du modèle (5)

■ Ainsi, à partir du modèle courant $\lambda = (A,B,\pi)$ on obtient un modèle réestimé $\overline{\lambda} = (\overline{A},\overline{B},\overline{\pi})$ pour lequel, on a:

$$P(\mathbf{O}|\overline{\lambda}) > P(\mathbf{O}|\lambda)$$

■ On peut montrer que l'approche décrite est équivalente à l'utilisation de l'algorithme EM qui maximisera par rapport à λ la fonction auxilliaire de Baum :

$$Q(\lambda',\lambda) = \sum_{\mathbf{q}} P(\mathbf{O},\mathbf{q}|\lambda') \log P(\mathbf{O},\mathbf{q}|\lambda)$$

1份38

Densités d'observations continues

- Les paramètres prennent en général des valeurs continues, d'où l'intérêt d'utiliser des <u>densités d'observation continues</u>
- Pour des modèles simples (par exemple sommes de Gaussiennes), on peut trouver des expressions analytiques pour les formules de réestimations.

$$b_j(\mathbf{o}) = \sum_{k=1}^{M} c_{jk} \aleph(\mathbf{o}, \mu_{jk} \Gamma_{jk}), \quad 1 \le j \le N$$

機器

Densités d'observations continues

■ Modèle par somme de Gaussiennes

$$b_j(\mathbf{o}) = \sum_{k=1}^M c_{jk} \aleph(\mathbf{o}, \mu_{jk} \Gamma_{jk}), \quad 1 \le j \le N$$

Avec:

$$\sum_{k=1}^{M} c_{jk} = 1, \quad 1 \le i \le N$$
$$c_{jk} \ge 0, \quad 1 \le j \le N, \quad 1 \le k \le M$$

Approche par Mélanges de Gaussiennes

(Voir Cours O. Cappé http://tsi.enst.fr/~ocappe/em_tap.pdf)

■ Modèle de mélange

Exemple à 2 dimensions avec 1, 2 puis 3 gaussiennes

Approche par Mélanges de Gaussiennes (GMM)

■ Exemple de modèles à 2 composantes

Approche par Mélanges de Gaussiennes (GMM)

■ Exemple de modèles à 2 composantes

图图图

Equivalence de modèles

Equivalence entre

- un état d'une chaîne de Markov cachée avec une densité d'observation sous la forme d'un mélange de Gausiennes
- un modèle multi-états en parallèle contenant chacun une des Gaussiennes du mélange:

Formules de ré-estimation

■ Où la probabilité d'être dans l'état j au temps t avec la k^{ième} Gaussienne du mélange représentant o, est donnée par:

$$\overline{c_{jk}} = \frac{\sum_{t=1}^{T} \gamma_t(j,k)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \gamma_t(j,k)}$$

$$\overline{\mu_{jk}} = \frac{\sum_{t=1}^{T} \gamma_t(j,k).\mathbf{o}_t}{\sum_{t=1}^{T} \gamma_t(j,k)}$$

$$\overline{\Gamma_{jk}} = \frac{\sum_{t=1}^{T} \gamma_t(j,k).(\mathbf{o}_t - \mu_{jk})(\mathbf{o}_t - \mu_{jk})'}{\sum_{t=1}^{T} \gamma_t(j,k)}$$

$$\gamma_t(j,k) = \left[\frac{\alpha_t(j)\beta_t(j)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)} \right] \left[\frac{c_{jk}\aleph(\mathbf{o_t},\mu_{jk}\Gamma_{jk})}{\sum_{m=1}^M c_{jm}\aleph(\mathbf{o_t},\mu_{jm}\Gamma_{jm})} \right]$$