## **CSE-170 Computer Graphics**

# Lecture 4 Transformations (I)

Dr. Renato Farias rfarias 2@ucmerced.edu



#### **Announcements**

Labs start this week!

- The first programming assignment has been posted, check CatCourses
  - pdf with instructions
  - zips with support code (assumes Visual Studio)



#### **2D Transformation Matrices**



- What is a primitive rotation?
  - Rotation around origin of coordinate system
  - Can be easily encoded as a matrix multiplication!



- How to compute a 2D Rotation of angle  $\theta$ ?
  - Use some trigonometry





- How to compute a 2D Rotation of angle  $\theta$ ?
  - Use some trigonometry

$$a = l\cos\alpha, \ x = l\cos(\alpha + \theta),$$

$$b = l \sin \alpha$$
,  $y = l \sin(\alpha + \theta)$ 





- How to compute a 2D Rotation of angle  $\theta$ ?
  - Use some trigonometry
  - And remember:  $\sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$  $\cos(\alpha + \theta) = \cos \alpha \cos \theta - \sin \alpha \sin \theta$





- How to compute a 2D Rotation of angle  $\theta$ ?
  - Use some trigonometry

$$x = a\cos\theta - b\sin\theta \\ y = a\sin\theta + b\cos\theta$$
  $\Rightarrow$  
$$\left( x \right) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$





#### **2D Rotation Matrix Encoding**

• 2D Rotation by given angle:  $\mathbf{R}_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ 

– Examples:





#### **Rotations**

- Rotations are linear rigid transformations
- Matrix inverse: inverses the transformation
- For rotations:
  - The inverse transformation of a rotation matrix of angle  $\theta$  is another rotation matrix of angle  $-\theta$ .
  - For rotations, the transpose of the matrix works as the inverse transformation
    - So no need to compute the inverse of the matrix to rotate objects back

(this is also valid for rotations in 3D)



## **2D Scaling**

2D Scaling Matrix

$$S_{r,s} = \begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix}$$

Examples





## **Uniform Scaling**





## Transformation of "Objects"

- Just transform every vertex of the object!
  - In 2D our objects are polygons described by a sequence of 2D points
  - Ex:





## **Shearing**

• Shearing transformation  $Sh_{x,y} = \begin{pmatrix} 1 & x \\ y & 1 \end{pmatrix}$ 

• Ex: shearing in x by 0.6

$$Sh_{x,y} = \begin{pmatrix} 1 & 0.6 \\ 0 & 1 \end{pmatrix}$$





## **Types of transformations**

- Linear
  - Identity
  - Rotations
  - Scalings
  - Reflections (reflections are "scalings by -1")
  - Shears
  - Combinations of linear transformations are also linear
  - All invertible (except scaling of 0)
- Affine = Linear plus translations
  - An affine transformation preserves collinearity and ratios of distances (ex: a midpoint remains a midpoint)
- CEST

But, we also need a way to encode translations!

- Allow us to perform affine mappings y=Ax+p
  - We need to encode both linear transformations and translations
- Homogeneous coordinates
  - Allows to include translations in matrix representation
  - Mathematical interpretation: Projective Geometry



## **Affine Maps**

- Affine maps can be encoded with homogeneous coordinates
  - From Cartesian to homogeneous coordinates:

$$\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \implies \underline{\mathbf{v}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

– From homogeneous to Cartesian coordinates:

$$\underline{\mathbf{v}} = \begin{pmatrix} x \\ y \\ w \end{pmatrix} \implies \mathbf{v} = \begin{pmatrix} x/w \\ y/w \end{pmatrix}$$



- An infinite number of points correspond to (x,y,1)
  - All points are in the line (tx,ty,t),  $t \in \Re$





Let's now apply a shear transformation in 3D:

$$\begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} tx \\ ty \\ t \end{pmatrix} = \begin{pmatrix} tx+tr \\ ty+ts \\ t \end{pmatrix}$$





• Let's now apply a shear transformation in 3D:

$$\begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} tx \\ ty \\ t \end{pmatrix} = \begin{pmatrix} tx+tr \\ ty+ts \\ t \end{pmatrix}$$





#### **Homogeneous Transformation**

#### Summary

- Shear in 3D results in a translation in the 2D plane w=1
- We used a linear transformation in 3D to achieve a homogeneous transformation in 2D
- This can be generalized to any dimension
  - The last column in the homogeneous matrix encodes the translation:

$$\mathbf{T}_{r,s} = \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix}$$



## **Homogeneous Transformation**

- Using Homogeneous Transformations:
  - Convert to homogeneous coordinate

$$\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \implies \underline{\mathbf{v}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2. Transform

$$\underline{\mathbf{v}'} = \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix}$$

3. Convert back to original dimension

$$\underline{\mathbf{v}'} = \begin{pmatrix} x+r \\ y+s \\ 1 \end{pmatrix} \implies \mathbf{v}' = \begin{pmatrix} \frac{x+r}{1} \\ \frac{y+s}{1} \end{pmatrix} = \begin{pmatrix} x+r \\ y+s \end{pmatrix}$$



- Example: advance clock hands
  - Which transformation matrix would you use to rotate the clock hands?





- Composing transformations
  - First, translate to origin





- Composing transformations
  - Now rotate





- Composing transformations
  - Finally translate back





 The final transformation is obtained with the composition of the three transformations:

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -a \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix}$$
 translation rotation around back origin to origin

Applying the transformation:

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -a \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$



#### **3D Transformation Matrices**



#### **3D Transformations**

- Homogeneous Coordinates
  - in 2D, we used 3 x 3 matrices
  - in 3D, we use 4 x 4 matrices
- Again, in homogeneous coordinates each 3D point has an extra value, w

$$\begin{pmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w' \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix}$$



- Affine transformations
  - If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

$$\begin{pmatrix}
e_{11} & e_{12} & e_{13} & e_{14} \\
e_{21} & e_{22} & e_{23} & e_{24} \\
e_{31} & e_{32} & e_{33} & e_{34}
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
x' \\
y' \\
z'
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 1 & w
\end{pmatrix}$$



#### **Translation**

Translation of (a,b,c)

$$\begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ z+c \\ 1 \end{pmatrix}$$

Translation(c, 0, 0)





## **Scaling**

• Scaling of (a,b,c)

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} ax \\ by \\ cz \\ 1 \end{pmatrix}$$





#### **Rotation**

#### Around z axis

$$R_{z}(\theta) = \begin{cases} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{cases}$$





#### **Rotation**

• Around x axis: 
$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Around y axis: 
$$R_y(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



#### **3D Positive Rotations**





#### Rotation around arbitrary axis

 About v=(x,y,z), a unit vector on an arbitrary axis (Rodrigues Formula):



- How can you derive the above matrix?
  - Decompose the desired transformation in simple transformation matrices, then multiply all of them together.
     The idea is to use the transformations mapping the generic axis v to one frame axis, rotate your points around that frame axis, and then transform everything back.



#### **OpenGL** matrices

- OpenGL stores matrices in 16-value arrays with column-major format
  - The elements of each column are contiguous in memory:

```
mat4 (vec4, // first column vec4, // second column vec4, // third column vec4); // fourth column
```

This follows all the notation we have seen



## **OpenGL** matrices

- If you build your matrices according to the notation we've seen here, you should be fine with post-multiplication
- When values in line-major format are stored in column-major format:
  - The resulting matrix is transposed!
  - Simple change: vectors should then multiply the matrices from the left
- Either works, your program just has to be consistent in which it uses!



#### **OpenGL** matrices





https://al-radkov.com/blog/2020/03/10/matrix-multiplication-and-the-GPU/