1

3.

What Is Claimed Is:

1	1. An apparatus for detecting errors on a source-synchronous bus,	
2	comprising:	
3	the source-synchronous bus, wherein the source-synchronous bus includes	
4	a plurality of data lines and a clock line;	
5	a transmitting mechanism coupled to the source-synchronous bus, wherein	
6	the transmitting mechanism is configured to transmit data on the source-	
7	synchronous bus;	
8	a receiving mechanism coupled to the source-synchronous bus, wherein	
9	the receiving mechanism is configured to receive data from the source-	
10	synchronous bus; and	
11	an error detecting mechanism coupled to the receiving mechanism that is	
12	configured to detect errors on the source-synchronous bus;	
13	wherein the error detecting mechanism can detect errors on the plurality of	
14	data lines including errors that are caused by an error on the clock line.	
1	2. The apparatus of claim 1, wherein the apparatus further comprises:	
2	a grouping mechanism coupled to the transmitting mechanism that is	
3	configured to group data bits into an error group;	
4	a detection code generating mechanism coupled to the grouping	
5	mechanism that is configured to generate a detection code for the error group; and	
6	the transmitting mechanism that is further configured to transmit the	
7	detection code on the source-synchronous bus using a clock cycle other than the	
8	clock cycles used for transmitting data bits of the error group.	

The apparatus of claim 2, wherein the detection code is a parity bit.

3

1	4. Th	ne apparatus of claim 2, wherein the detection code is an error			
2	correcting code.				
1	5. Tł	ne apparatus of claim 2, wherein the grouping mechanism is			
2	further configure	d to skew data bits within the error group across time.			
1	6. Th	ne apparatus of claim 5, wherein skewing data bits across time			
2	includes delaying a data bit based on a position of the data bit within the error				
3	group.				
1	7. Tł	ne apparatus of claim 5, further comprising a gathering			
2	mechanism coupled to the receiving mechanism, wherein the gathering				
3	mechanism is configured to de-skew data bits within the error group.				
1	8. A	method for detecting errors on a source-synchronous bus,			
2	wherein the source-synchronous bus includes a plurality of data lines and a cloo				
3	line, the method comprising:				
4	transmitting data from a source on the source-synchronous bus;				
5	receiving data at a destination from the source-synchronous bus; and				
6	detecting data errors at the destination, wherein detecting data errors				
7	includes detecting errors that are caused by errors on the clock line.				
1	9. Th	ne method of claim 8, further comprising:			
2	grouping	data bits into an error group;			

generating a detection code for the error group; and

4	transmitting the detection code on the source-synchronous bus using a
5	clock cycle other than the clock cycles used for transmitting data bits of the error
6	group.

- 1 10. The method of claim 9, wherein the detection code is a parity bit.
- 1 11. The method of claim 9, wherein the detection code is an error 2 correcting code.
- 1 12. The method of claim 9, further comprising skewing data bits 2 within the error group across time.
- 1 13. The method of claim 12, wherein skewing data bits across time 2 includes delaying a data bit based on a position of the data bit within the error 3 group.
- 1 14. The method of claim 12, further comprising de-skewing data bits 2 within the error group.
- 1 15. A computing system for detecting errors on a source-synchronous 2 bus, comprising:
- the source-synchronous bus, wherein the source-synchronous bus includes a plurality of data lines and a clock line;
- a central processing unit coupled to the source-synchronous bus, wherein the central processing unit is configured to transmit data on the source-
- 7 synchronous bus;

time.

3

8	a memory unit coupled to the source-synchronous bus, wherein the		
9	memory unit is configured to receive data from the source-synchronous bus; and		
10	an error detecting mechanism coupled to the memory unit that is		
11	configured to detect errors on the source-synchronous bus;		
12	wherein the error detecting mechanism can detect errors on the plurality of		
13	data lines including errors that are caused by an error on the clock line.		
1	16. The computing system of claim 15, wherein the computing system		
2	further comprises:		
3	a grouping mechanism coupled to the central processing unit that is		
4	configured to group data bits into an error group;		
5	a detection code generating mechanism coupled to the grouping		
6	mechanism that is configured to generate a detection code for the error group; and		
7	the central processing unit that is further configured to transmit the		
8	detection code on the source-synchronous bus using a clock cycle other than the		
9	clock cycle used for the error group.		
1	17. The computing system of claim 16, wherein the detection code is a		
2	parity bit.		
1	18. The computing system of claim 16, wherein the detection code is		
2	an error correcting code.		
1	19. The computing system of claim 16, wherein the grouping		
2	mechanism is further configured to skew data bits within the error group across		

- 1 20. The computing system of claim 19, wherein skewing data bits
- 2 across time includes delaying a data bit based on a position of the data bit within
- 3 the error group.
- 1 21. The computing system of claim 19, further comprising a gathering
- 2 mechanism coupled to the memory unit, wherein the gathering mechanism is
- 3 configured to de-skew data bits within the error group.