Cardiac arrhythmia

Instructors: Thomas Bury, Leon Glass

Ventricular arrhythmia

PVC = Premature Ventricular Complex

Sudden cardiac death - epidemiology

- Cardiovascular disease is a leading cause of death (31% of all global deaths)

 The World Health Organisation
- 50% are cases of 'sudden cardiac death' death within 1 hour after the onset of symptoms

Gerber et al. Secular trends in deaths from cardiovascular diseases: a 25-year community study.

Circulation.

J. Anthony Gomes. Heart Rhythm disorders: History, Mechanisms, and Management Perspectives, Springer.

Why analyse PVC dynamics?

• Frequent PVCs show increased risk of cardiac death

Dukes et al. Ventricular ectopy as a predictor of heart failure and death. JACC (2015)

Ventricular fibrillation is often preceded by frequent PVCs

Deyell et al. Sudden Cardiac Death Risk Stratification. Circulation research. (2015)

- PVC dynamics in patients are rich but poorly understood still cannot reliably infer mechanism from pattern
- Problem of risk stratification for sudden cardiac death

How can we analyse PVC dynamics?

Holter recording

1947 - Norman Holter

apparatus in 1947 weighing 85 lb

1954 - Briefcase recorder

Image courtesy of National Museum of American History

1960 - Tape recorder

2010 onwards:

Icentia cardioSTAT

Apple watch

H L Kennedy. The history, science and innovation of Holter technology. Annals of Noninvasive Electrocard. (2006)

try **H** ted

ECG data processing

Beat detection algorithm (Icentia)

N - normal (sinus) beat

V - premature ventricular complex (PVC)

Timing - precise to 250Hz

Beat-to-beat interval plot

NV - coupling interval

VN - compensatory pause

NN - sinus interval

App demonstration

Pure parasystole

• Ectopic pacemaker independent of sinus pacemaker

Assumptions

- 1. Ectopic beat blocked if it falls inside refractory period, θ
- 2. Ectopic beat expressed if it falls outside of refractory period, θ
- 3. Sinus beat following an expressed ectopic beat is blocked (compensatory pause)

Difference equation for phase

 ϕ_i Phase of the i^{th} sinus beat (expressed or not) in the ectopic cycle

Find the expression for ϕ_{i+1} in terms of ϕ_i and make a cobweb plot.

$$\phi = \frac{t}{t_e}$$

$$\phi_{i+1} = \begin{cases} \phi_i + \frac{t_s}{t_e} & 0 \le \phi_i < 1 - \frac{t_s}{t_e} \\ \phi_i + \frac{t_s}{t_e} - 1 & 1 - \frac{t_s}{t_e} \le \phi_i < 1 \end{cases}$$

Or put more simply...

$$\phi_{i+1} = \phi_i + \frac{t_s}{t_e} \pmod{1}$$

Pure parasystole

NIB: Number of intervening sinus beats between two ectopic beats

Rules

- 1. Three different values
- 2. One of which is odd
- Sum to two smaller values < largest value

Glass et al., Dynamics of pure parasystole. American Journal of Physiology (1986).

Pure parasystole

Courtemanche et al., Beyond pure parasystole: promises and problems in modeling complex arrhythmias. American Journal of Physiology (1989)

 $\theta/t_s = 0.6$

Factors not included

- Modulation of ectopic focus
- Conduction time to and from ectopic focus
- Variable refractory period
- Stochasticity in parameters

Nau et al., Modulation of Parasystolic Activity by Nonparasystolic Beats. Circulation (1982)

Modulated parasystole

Pacemakers are influenced by external stimuli

 $\frac{T-t_e}{t_e}$ Normalized change in ectopic cycle length

Nau et al., Modulation of Parasystolic Activity by Nonparasystolic Beats. Circulation (1982)

$$\frac{T}{t_e} = \begin{cases} k\phi + 1 & 0 \le \phi < 0.5\\ k(\phi - 1) + 1 & 0.5 \le \phi < 1 \end{cases}$$

k is the strength of resetting

Difference equation

Courtemanche et al., American Journal of Physiology (1989)

Case 1: Small ϕ

Sinus beat is **blocked** - no modulation of ectopic focus

$$\phi_{i+1} = \phi_i + \frac{t_s}{t_e} \mod 1$$
$$0 \le \phi_i < (t_s - \theta)/t_e$$

Case 2: Large ϕ

Sinus beat is **expressed** - modulation of ectopic focus

Shift in phase due to modulation

$$\phi_{i+1} = \phi_i + \frac{t_s}{t_e} + 1 - \frac{T(\phi_i)}{t_e} \mod 1$$

$$(t_s - \theta)/t_e \le \phi_i < 1$$

Difference equation

Courtemanche et al., American Journal of Physiology (1989)

Investigate dynamics of modulated parasystole using online app https://modulated-parasystole-cobweb.herokuapp.com/

How does this differ qualitatively from pure parasystole (k=0)?

$$\phi_{i+1} = \begin{cases} \phi_i + \frac{t_s}{t_e} & 0 \le \phi_i < \frac{t_s - \theta}{t_e}, \\ \phi_i + \frac{t_s}{t_e} + 1 - f(\phi_i) & \frac{t_s - \theta}{t_e} \le \phi < 1, \end{cases}$$

k=0.5 : Modulated parasystole

Entrainment

Courtemanche et al., American Journal of Physiology (1989)

2:1 entrainment zone

3:1 entrainment zone

Modulated ectopic period is an integer multiple of sinus period

$$\phi_{i+1} = \begin{cases} \phi_i + \frac{t_s}{t_e} & 0 \le \phi_i < \frac{t_s - \theta}{t_e}, \\ \phi_i + \frac{t_s}{t_e} + 1 - f(\phi_i) & \frac{t_s - \theta}{t_e} \le \phi < 1, \end{cases}$$

2:1 entrainment

3:1 entrainment

