SIR NFTs

USYD FinTech Bootcamp Capstone August-2023

Group 3: Shayan, Isabel, Ram

Agenda

- Project Overview
- Datasets used
- ML Models & Learnings
- DEMO
- Outcome
- Future Direction

Division of work amongst the team:

- Slide Deck Manager, coding for smart contracts, minting NFT and hosting on a blockchain: Shayan
- README.md file Manager, building + coding the WGAN model. Designing the digital artwork: Isabel
- GitHub Manager and project introduction: Ram

SIR NFTs

Concept: Create NFTs and use smart contracts to list them on the Ethereum blockchain

- → Create artworks using AI/ML
- → Create a smart contract
- → Register and appraise the artworks
- List the artworks on a NFT marketplace (in our case OpenSea)
- → Set the artworks up for sale
- Create a framework for commercialisation

Machine Learning Models

GAN

MNIST CIFAR-100

-Initial GAN experiments on basic datasets: MNIST's grayscale digits and CIFAR100's colored images. **WGAN**

Dmlab Dataset

 Advanced WGAN training on Dmlab: this dataset contains frames observed by an agent in the DeepMind Lab environment

All Things Data + Deep Learning

WGAN

Consists of a generator and discriminator Uses Wasserstein loss for stable training

DATASETS

Started with simple datasets:
MNIST & CIFAR100
Advanced to more complex
dataset: Dmlab

TRAINING ENVIRONMENT

Google Collab leveraged for GPU-intensive ML tasks

GENERATOR

Begins with a noise vector

DISCRIMINATOR

Evaluates the "realness" of images
Outputs a score rather than a probability

CONSTANTS

Batch Size Noise Dim Training Ratio Epochs

Demo

Quick Code Runthrough

Learnings

The training dataset could be access easily through Jupyter Lab but access was not possible through Streamlit

Copyright

Since the NFTs are planned to be put up for sales, we need to ensure we are not infringing on copyright

Outcomes

Machine Learning

- Model Selection: WGAN
- Training and Testing on Chosen Dataset
- Image Generation
 - Higher Epochs = More Detailed Images

Smart Contracts

- Remix + Ganache + MetaMask
- Python + Streamlit App
- Pinata IPFS

Future Direction

Proprietary Images

Explore Pretrained Models

Detailed artworks created via higher processing power

Utilised authors' proprietary images to train models

Tweaks can quickly generate desired outcomes/artwork

OpenSea Listings

Marketable App

Marketplace Capability

Driven through API
Connection

Open UI to other users to list their own NFTs

Ability to list NFTs on multiple marketplaces beyond OpenSea

THANKS!

Isabel, Ram, Shayan

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Key Links

- GitHub Repo
 - Please refer to the **Evidence** folder for screen recordings of the code execution
- Google Drive Folder

Resources and References

- Non-fungible tokens (NFT) | ethereum.org
- ERC-721 Non-Fungible Token Standard | ethereum.org
- A beginner's quide to NFTs Linda Xie
- The Non-Fungible Token Bible: Everything you need to know about NFTs | OpenSea
- How to Create an NFT
- NFT tokenomics: ideas and examples
- NFTs Tokenomics: getting started for a successful NFT business
- NFT Image Size: Correct Dimensions for NFT Art [With Examples] Ebutemetaverse
- opensea-api · PyPI
- API Overview
- Futuristic Background Google Slides and PowerPoint Template
- @inproceedings{liu2015faceattributes, title = {Deep Learning Face Attributes in the Wild}, author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou}, booktitle = {Proceedings of International Conference on Computer Vision (ICCV)}, month = {December}, year = {20}
- <u>Learning Multiple Layers of Features from Tiny Images</u>, Alex Krizhevsky, 2009
- MNIST is made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license. In another source, it says mnist is available for non commercial use, but I would be careful in usi