A Benchmark Suite for Designing Combinational Logic Circuits via Metaheuristics

Lucas Augusto Müller de Souza, José Eduardo H. da Silva, Luciano Jerez Chaves, and Heder Soares Bernardino.

This supplementary material presents the tables with detailed results obtained from the experiments presented on the paper, allowing benchmark users to compare their algorithms with the proposed approaches.

Table 1: Experiment 1 – Information about the number of function evaluations used by CGP to find the first feasible circuit and the Success Rate (SR) obtained by each mutation.

Problem	Method			Objective	Function E	valuations			SR	p-value	
		Best	Q1	Median	Q3	Worst	Mean	Stdev	(%)		
C17	SAM SAMGAM	541.0 1221.0	$1889.0 \\ 2029.0$	2373.0 3005.0	3733.0 3665.0	$15385.0 \\ 15833.0$	3302.76 3680.04	$3.08E+03 \ 2.94E+03$	100.0 100.0	1.00E-00	
cm42a	SAM SAMGAM	$14977.0 \\ 15237.0$	31761.0 23301.0	$43229.0 \\ 31013.0$	53877.0 39785.0	94449.0 74321.0	45702.76 34081.00	$\substack{2.02E+04\\1.33E+04}$	100.0 100.0	2.88E-01	
cm82a	SAM SAMGAM	4213.0 3345.0	$11377.0 \\ 13125.0$	$20085.0 \\ 21253.0$	32933.0 32485.0	$111697.0 \\ 132805.0$	$28149.16 \\ 30386.28$	$^{2.46E+04}_{2.94E+04}$	100.0 100.0	1.00E-00	
cm138a	SAM SAMGAM	$91677.0 \\ 47021.0$	$210009.0 \\ 161609.0$	$265941.0 \\ 234853.0$	$405473.0 \\ 324709.0$	798257.0 444297.0	333323.40 237318.12	$\substack{1.86E+05\\1.15E+05}$	100.0 100.0	9.17E-0	
decod	SAM SAMGAM	393377.0 174473.0	572217.0 403597.0	683077.0 550285.0	952613.0 669189.0	1300929.0 880637.0	779161.48 535477.16	$^{2.58\mathrm{E}+05}_{1.77\mathrm{E}+05}$	100.0 100.0	4.79E-0	
f51m	SAM SAMGAM	436065.0 869073.0	2314637.0 1347501.0	3343513.0 2047477.0	5421109.0 3715721.0	11605525.0 13699469.0	4127082.60 2990684.68	$^{2.94\mathrm{E}+06}_{2.69\mathrm{E}+06}$	100.0 100.0	1.00E-0	
majority	SAM SAMGAM	557.0 885.0	3137.0 3853.0	5457.0 5661.0	9129.0 12557.0	24053.0 19377.0	6174.12 7605.96	$^{4.90E+03}_{5.36E+03}$	100.0 100.0	1.00E-0	
z4ml	SAM SAMGAM	21129.0 37181.0	$122533.0 \\ 70309.0$	$200429.0 \\ 163353.0$	303501.0 258665.0	482493.0 463189.0	221805.32 172815.08	$^{1.23\mathrm{E}+05}_{1.12\mathrm{E}+05}$	100.0 100.0	1.00E-0	
9symml	SAM SAMGAM	260965.0 287257.0	555709.0 700026.0	1274929.0 1028541.0	2861877.0 2511969.0	9904525.0 4211033.0	1894035.72 1624326.17	2.07E+06 1.23E+06	100.0 96.0	1.00E-0	
alu2	SAM SAMGAM	7789925.0 14686325.0	9587184.0 14686325.0	11384443.0 14686325.0	13181702.0 14686325.0	14978961.0 14686325.0	11384443.00 14686325.00	$3.59E+06 \\ 0.00E+00$	8.0 4.0	1.00E-0	
alu4	SAM SAMGAM	4586621.0 3992309.0	9375589.0 11196071.0	11991005.0 15097929.0	18784375.0 17484821.0	29996997.0 29470241.0	13909170.74 15349400.37	$\substack{6.81E+06\\6.46E+06}$	92.0 76.0	1.00E-0	
cm85a	SAM SAMGAM	243661.0 115893.0	377333.0 280477.0	541665.0 431705.0	1117569.0 574533.0	1692469.0 948761.0	717483.08 451483.40	$^{4.52\mathrm{E}+05}_{2.04\mathrm{E}+05}$	100.0 100.0	8.99E-0	
cm151a	SAM SAMGAM	37385.0 27673.0	79497.0 64197.0	101497.0 81129.0	151505.0 93809.0	226145.0 313189.0	112819.88 86299.08	$5.15E+04 \\ 5.39E+04$	100.0 100.0	5.13E-0	
cm162a	SAM SAMGAM	107533.0 108257.0	313641.0 432441.0	553757.0 551581.0	855689.0 877985.0	2164481.0 1610085.0	685180.68 668600.52	$^{4.95E+05}_{3.73E+05}$	100.0 100.0	1.00E-0	
cu	SAM SAMGAM	$1370425.0 \\ 669965.0$	$2865457.0 \\ 1366277.0$	3867989.0 2297385.0	$7267673.0 \\ 2626785.0$	$16369765.0 \\ 8138933.0$	$5455837.48 \\ 2352364.52$	$\substack{3.73E+06\\1.57E+06}$	100.0 100.0	2.67E-0	
x2	SAM SAMGAM	$576325.0 \\ 296413.0$	$1407977.0 \\ 879709.0$	$2473437.0 \\ 1617541.0$	3398381.0 2099813.0	$4854321.0 \\ 3526977.0$	$2445051.72 \\ 1610590.28$	$^{1.19E+06}_{8.64E+05}$	100.0 100.0	2.41E-0	
cmb	SAM SAMGAM	-			-	-	-	-	0.0		
cc	SAM SAMGAM	1882389.0 1298045.0	$2284765.0 \\ 2126313.0$	3380073.0 2933933.0	5839385.0 4230937.0	8951901.0 7358309.0	$4112475.24 \\ 3279860.84$	$^{2.11E+06}_{1.51E+06}$	100.0 100.0	1.00E-0	
cordic	SAM SAMGAM	-	-	-	-	-	-	-	$0.0 \\ 0.0$		
frg1	SAM SAMGAM	1853877.0 1775573.0	4076977.0 4489533.0	5990665.0 5703125.0	7069533.0 8200213.0	17084045.0 15155957.0	6354018.44 6231536.20	$3.48E+06 \\ 3.01E+06$	100.0 100.0	1.00E-0	
pm1	SAM SAMGAM	1791037.0 4663713.0	4032489.0 7030979.0	9084849.0 8821889.0	11387865.0 12244145.0	14881761.0 33652349.0	8185932.84 10811699.67	$^{4.06E+06}_{6.46E+06}$	100.0 96.0	1.00E-0	
sct	SAM SAMGAM	10387637.0 4950309.0	13780521.0 11930974.0	21271377.0 17676179.0	32387513.0 27486698.0	43430237.0 36316169.0	23233395.44 19439902.45	$^{1.00\mathrm{E}+07}_{1.00\mathrm{E}+07}$	72.0 88.0	1.00E-0	
t481	SAM SAMGAM	50925.0 32785.0	123813.0 138909.0	$215753.0 \\ 223365.0$	607685.0 422949.0	1782545.0 1439421.0	423432.36 341220.52	$^{4.33E+05}_{2.94E+05}$	100.0 100.0	1.00E-0	
tcon	SAM SAMGAM	86449.0 47813.0	190485.0 90365.0	287345.0 122233.0	370529.0 168149.0	652245.0 270469.0	298886.12 135175.88	$^{1.49E+05}_{6.06E+04}$	100.0 100.0	3.18E-0	
vda	SAM SAMGAM	-	-	-	-	-	-	-	0.0		

Table 2: Experiment 1 – The mean of total time spent by each algorithm.

Problem	Method	Execution	n time (s)
1 Toblem	Method	Mean	1.15E+00 1.26E+01 1.35E+01 1.26E+01 1.35E+01 1.51E+02 1.03E+02 1.03E+02 9.92E+01 4.87E+00 4.22E+00 4.40E+01 6.29E+01 1.35E+03 2.20E+03 2.23E+03 1.25E+04 1.31E+04 9.54E+01 1.80E+02 6.27E+02 7.71E+02 3.46E+02 3.76E+02 1.82E+02 1.82E+02 1.26E+03 2.27E+03 2.27E+03 2.27E+03 2.27E+03 3.14E+03 3.14E+03 3.14E+03 3.14E+03 3.16E+03 3.62E+03 3.62E+03 3.62E+03 3.62E+03 3.76E+02
C17	SAM SAMGAM	46.13 40.23	
cm42a	SAM SAMGAM	120.40 124.56	
cm82a	SAM SAMGAM	45.46 42.46	1.26E+01
cm138a	SAM SAMGAM	229.93 224.74	5.10E + 01
decod	SAM SAMGAM	299.94 365.16	
f51m	SAM SAMGAM	354.14 377.63	
majority	SAM SAMGAM	24.71 20.87	
z4ml	SAM SAMGAM	$171.72 \\ 165.93$	
9symml	SAM SAMGAM	2309.80 2462.72	
alu2	SAM SAMGAM	7264.68 7940.65	
alu4	SAM SAMGAM	31333.04 38968.91	
cm85a	SAM SAMGAM	751.98 730.57	
cm151a	SAM SAMGAM	3506.51 3203.77	
cm162a	SAM SAMGAM	$2199.23 \\ 2115.61$	
cu	SAM SAMGAM	$2782.84 \\ 2309.90$	
x2	SAM SAMGAM	$1100.20 \\ 1022.47$	
cmb	SAM SAMGAM	5960.31 9117.83	
cc	SAM SAMGAM	$11878.37 \\ 14096.77$	
cordic	SAM SAMGAM	9334.73 8176.20	
frg1	SAM SAMGAM	$13431.62 \\ 13090.45$	
pm1	SAM SAMGAM	$4543.29 \\ 5076.47$	
sct	SAM SAMGAM	8224.75 10982.86	$\substack{2.20E+03\\3.44E+03}$
t481	SAM SAMGAM	$1761.05 \\ 1571.19$	$\substack{5.36E+02\\7.51E+02}$
tcon	SAM SAMGAM	6034.98 6839.18	$\substack{1.22E+03\\1.81E+03}$
vda	SAM SAMGAM	199463.62 194848.54	$\substack{8.67E+04\\6.77E+04}$

Table 3: Experiment 1 – Number of transistors obtained for the first feasible solution and the final solution for all problems.

D., -1.1	TAT - 41 7			First Feas	sible So	lution (I	FFS)				Fina	l Soluti	on (FS)			RR	p-value	p-value
Problem	Method	Best	Q1	Median	Q3	Worst	Mean	Stdev	Best	Q1	Median	Q3	Worst	Mean	Stdev	(%)	(FFS)	(FS)
C17	SAM SAMGAM	22.0 23.0	36.0 44.0	$54.0 \\ 55.0$	66.0 62.0	77.0 109.0	51.96 56.60	$^{1.63\mathrm{E}+01}_{1.79\mathrm{E}+01}$	8.0 8.0	8.0 8.0	8.16 8.0	8.0 9.0	9.0 11.0	8.0 8.56	3.67E-01 8.52E-01	84.30 84.88	1.00E-00	9.53E-01
cm42a	SAM SAMGAM	104.0 94.0	112.0 109.0	122.0 115.0	$129.0 \\ 127.0$	$150.0 \\ 149.0$	$121.52 \\ 117.84$	$^{1.07\mathrm{E}+01}_{1.22\mathrm{E}+01}$	$29.0 \\ 28.0$	31.0 33.0	33.48 35.0	36.0 37.0	$38.0 \\ 44.0$	$34.0 \\ 35.16$	$^{2.66\mathrm{E}+00}_{3.84\mathrm{E}+00}$	72.45 70.16	1.00E-00	9.53E-01
cm82a	SAM SAMGAM	$48.0 \\ 46.0$	64.0 68.0	69.0 76.0	75.0 87.0	89.0 116.0	69.84 76.84	$^{9.76\mathrm{E}+00}_{1.61\mathrm{E}+01}$	20.0 18.0	$24.0 \\ 24.0$	27.36 26.0	29.0 29.0	$47.0 \\ 44.0$	$25.0 \\ 27.36$	$^{6.67\mathrm{E}+00}_{5.97\mathrm{E}+00}$	60.82 64.39	8.74E-01	9.53E-01
cm138a	SAM SAMGAM	76.0 79.0	88.0 100.0	102.0 113.0	113.0 120.0	129.0 133.0	$102.52 \\ 110.08$	$^{1.48\mathrm{E}+01}_{1.32\mathrm{E}+01}$	$27.0 \\ 28.0$	30.0 30.0	$32.36 \\ 32.0$	33.0 34.0	$40.0 \\ 37.0$	$32.0 \\ 32.16$	$^{2.94\mathrm{E}+00}_{2.69\mathrm{E}+00}$	68.44 70.78	8.14E-01	9.53E-01
decod	SAM SAMGAM	113.0 125.0	132.0 132.0	139.0 146.0	144.0 151.0	163.0 170.0	$139.40 \\ 143.68$	$^{1.25\mathrm{E}+01}_{1.16\mathrm{E}+01}$	$41.0 \\ 45.0$	$49.0 \\ 54.0$	53.12 55.0	57.0 61.0	64.0 69.0	$54.0 \\ 56.72$	$\substack{5.52E+00\\6.04E+00}$	61.89 60.52	1.00E-00	9.49E-01
f51m	SAM SAMGAM	93.0 111.0	112.0 128.0	$120.0 \\ 134.0$	$128.0 \\ 143.0$	$161.0 \\ 164.0$	$122.68 \\ 134.28$	$^{1.65\mathrm{E}+01}_{1.39\mathrm{E}+01}$	74.0 78.0	80.0 94.0	89.60 98.0	93.0 111.0	$128.0 \\ 130.0$	89.0 101.00	$^{1.22\mathrm{E}+01}_{1.28\mathrm{E}+01}$	$26.96 \\ 24.78$	1.28E-01	2.43E-02
majority	SAM SAMGAM	$22.0 \\ 23.0$	$32.0 \\ 30.0$	36.0 37.0	$55.0 \\ 47.0$	87.0 66.0	$44.60 \\ 38.96$	$^{1.75\mathrm{E}+01}_{1.15\mathrm{E}+01}$	11.0 11.0	$12.0 \\ 12.0$	12.92 12.0	13.0 13.0	$23.0 \\ 21.0$	$12.0 \\ 13.16$	$^{2.56\mathrm{E}+00}_{2.41\mathrm{E}+00}$	$71.03 \\ 66.22$	1.00E-00	9.53E-01
z4ml	SAM SAMGAM	67.0 57.0	79.0 81.0	86.0 88.0	96.0 103.0	112.0 124.0	88.16 89.88	$^{1.18\mathrm{E}+01}_{1.62\mathrm{E}+01}$	$35.0 \\ 35.0$	$42.0 \\ 42.0$	48.08 46.0	51.0 51.0	76.0 76.0	48.0 48.12	$\substack{8.86E+00\\9.07E+00}$	45.46 46.46	1.00E-00	9.53E-01
9symml	SAM SAMGAM	95.0 118.0	154.0 170.5	175.0 207.0	251.0 240.2	$332.0 \\ 341.0$	202.24 210.50	$\substack{6.96E+01\\5.17E+01}$	77.0 85.0	100.0 99.8	$128.84 \\ 122.0$	157.0 136.5	$210.0 \\ 234.0$	$118.0 \\ 127.75$	$\substack{3.95E+01\\3.52E+01}$	36.29 39.31	1.00E-00	9.53E-01
alu2	SAM SAMGAM	$393.0 \\ 489.0$	$404.5 \\ 489.0$	$416.0 \\ 489.0$	$427.5 \\ 489.0$	$439.0 \\ 489.0$	$416.00 \\ 489.00$	$^{2.30\mathrm{E}+01}_{0.00\mathrm{E}+00}$	$306.0 \\ 392.0$	$316.8 \\ 392.0$	$327.50 \\ 392.0$	$338.2 \\ 392.0$	$349.0 \\ 392.0$	$327.5 \\ 392.00$	$^{2.15\mathrm{E}+01}_{0.00\mathrm{E}+00}$	21.27 19.84	1.00E-00	9.53E-01
alu4	SAM SAMGAM	222.0 268.0	$294.0 \\ 375.0$	$345.0 \\ 408.0$	$390.0 \\ 477.5$	$469.0 \\ 549.0$	341.22 416.11	$\substack{6.97E+01\\7.89E+01}$	158.0 151.0	181.5 197.5	$209.70 \\ 256.0$	$243.5 \\ 301.5$	$267.0 \\ 357.0$	$205.0 \\ 253.89$	$\substack{3.40E+01\\6.40E+01}$	$38.54 \\ 38.98$	6.83E-02	4.55E-01
cm85a	SAM SAMGAM	70.0 88.0	119.0 192.0	$141.0 \\ 214.0$	176.0 228.0	298.0 301.0	$151.96 \\ 203.48$	$\substack{5.15E+01\\5.53E+01}$	$42.0 \\ 42.0$	$47.0 \\ 49.0$	51.84 53.0	56.0 57.0	68.0 79.0	$51.0 \\ 53.84$	$\substack{7.14E+00\\8.00E+00}$	65.89 73.54	2.66E-02	9.53E-01
cm151a	SAM SAMGAM	78.0 84.0	124.0 124.0	$150.0 \\ 159.0$	195.0 168.0	282.0 294.0	$159.00 \\ 158.04$	$\substack{5.03E+01\\4.43E+01}$	$36.0 \\ 36.0$	$42.0 \\ 40.0$	$46.00 \\ 45.0$	46.0 49.0	78.0 57.0	$44.0 \\ 44.72$	$\substack{8.11E+00\\5.75E+00}$	71.07 71.70	1.00E-02	9.53E-01
cm162a	SAM SAMGAM	$110.0 \\ 133.0$	183.0 181.0	209.0 214.0	$251.0 \\ 242.0$	$304.0 \\ 309.0$	$211.00 \\ 209.40$	$\substack{5.35E+01\\4.41E+01}$	$54.0 \\ 57.0$	63.0 63.0	66.00 65.0	69.0 70.0	$78.0 \\ 74.0$	$65.0 \\ 65.56$	5.97E+00 5.03E+00	68.72 68.69	1.00E-00	9.53E-01
cu	SAM SAMGAM	126.0 192.0	$215.0 \\ 238.0$	$238.0 \\ 284.0$	$254.0 \\ 359.0$	$383.0 \\ 406.0$	241.20 300.88	$\substack{5.86E+01\\6.82E+01}$	58.0 59.0	$62.0 \\ 65.0$	66.28 67.0	68.0 71.0	79.0 77.0	$67.0 \\ 67.64$	$\substack{5.12E+00\\4.44E+00}$	72.52 77.52	6.83E-02	9.53E-01
x2	SAM SAMGAM	155.0 165.0	190.0 220.0	212.0 241.0	251.0 283.0	374.0 350.0	224.80 253.76	5.17E+01 4.86E+01	51.0 55.0	56.0 58.0	62.80 62.0	67.0 65.0	99.0 68.0	61.0 61.80	9.51E+00 3.59E+00	72.06 75.65	3.68E-01	9.53E-01
cmb	SAM SAMGAM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cc	SAM SAMGAM	$375.0 \\ 410.0$	$463.0 \\ 553.0$	513.0 644.0	554.0 705.0	$665.0 \\ 827.0$	519.04 637.72	$\substack{7.42E+01\\9.79E+01}$	74.0 80.0	81.0 86.0	86.76 89.0	92.0 96.0	98.0 116.0	87.0 91.56	$_{8.02E+00}^{6.27E+00}$	83.28 85.64	1.20E-03	6.66E-01
cordic	SAM SAMGAM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
frg1	SAM SAMGAM	107.0 108.0	139.0 131.0	158.0 154.0	176.0 175.0	242.0 242.0	$160.36 \\ 157.60$	$3.05E+01 \\ 3.37E+01$	84.0 83.0	89.0 93.0	96.20 96.0	100.0 100.0	114.0 112.0	96.0 95.96	$\substack{7.27E+00\\6.70E+00}$	40.01 39.11	1.00E-00	9.53E-01
pm1	SAM SAMGAM	155.0 201.0	$214.0 \\ 284.8$	$256.0 \\ 315.5$	$307.0 \\ 355.5$	$379.0 \\ 496.0$	266.56 328.92	$\substack{5.41E+01\\6.55E+01}$	53.0 53.0	57.0 58.0	57.84 59.0	$59.0 \\ 61.2$	$62.0 \\ 64.0$	58.0 59.33	$^{2.09E+00}_{2.59E+00}$	78.30 81.96	6.66E-02	6.23E-01
sct	SAM SAMGAM	$308.0 \\ 386.0$	$364.2 \\ 450.0$	423.0 510.0	$458.0 \\ 567.0$	597.0 758.0	423.11 515.18	$\substack{7.84E+01\\8.69E+01}$	83.0 91.0	$93.5 \\ 98.0$	97.72 100.0	103.0 104.8	112.0 113.0	97.5 101.41	$^{6.93\mathrm{E}+00}_{5.72\mathrm{E}+00}$	76.90 80.32	3.89E-02	9.53E-01
t481	SAM SAMGAM	$60.0 \\ 62.0$	$107.0 \\ 96.0$	147.0 128.0	$193.0 \\ 215.0$	$413.0 \\ 378.0$	$159.60 \\ 162.08$	$\substack{7.21E+01\\8.51E+01}$	$43.0 \\ 42.0$	$48.0 \\ 49.0$	63.60 57.0	68.0 68.0	$144.0 \\ 95.0$	55.0 62.00	$^{2.40\mathrm{E}+01}_{1.61\mathrm{E}+01}$	60.15 61.75	1.00E-00	9.53E-01
tcon	SAM SAMGAM	$345.0 \\ 469.0$	$450.0 \\ 555.0$	478.0 613.0	545.0 643.0	660.0 761.0	501.40 603.36	$\substack{7.71E+01\\6.65E+01}$	$36.0 \\ 32.0$	$38.0 \\ 40.0$	43.80 44.0	49.0 52.0	57.0 65.0	$43.0 \\ 45.92$	$_{8.09E+00}^{6.31E+00}$	91.26 92.39	1.10E-03	9.53E-01
vda	SAM SAMGAM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 4: Experiment 1 – Mean number of each gate, total gates and circuit depth in the first feasible and optimized solution.

Problem	Method				First F	easible	Solution								mized S				
	Method	AND	OR	NOT	NAND	NOR	XOR	XNOR	Total	Depth	AND	OR	NOT	NAND	NOR	XOR	XNOR	Total	Depth
C17	SAM SAMGAM	5.24 4.84	$3.60 \\ 3.60$	3.16 3.68	$3.56 \\ 4.20$	3.44 4.08	2.48 3.00	$3.28 \\ 3.64$	24.76 27.04	9.28 10.28	2.60 1.96	$0.08 \\ 0.16$	$0.72 \\ 0.96$	$0.64 \\ 0.96$	$0.80 \\ 1.32$	$0.00 \\ 0.04$	0.00 0.00	$4.84 \\ 5.40$	$3.96 \\ 4.08$
cm42a	SAM SAMGAM	$6.24 \\ 6.52$	12.72 10.24	5.68 6.36	10.08 11.52	7.00 7.88	$7.32 \\ 7.20$	7.20 6.36	56.24 56.08	11.72 12.16	$0.76 \\ 1.32$	$3.88 \\ 3.56$	$0.84 \\ 0.72$	8.12 8.20	$6.36 \\ 5.96$	$0.20 \\ 0.40$	$0.04 \\ 0.28$	$20.20 \\ 20.44$	$6.28 \\ 6.68$
cm82a	SAM SAMGAM	3.12 3.44	3.20 3.84	3.56 4.60	3.76 3.80	$3.04 \\ 3.52$	$5.72 \\ 6.56$	6.48 6.72	28.88 32.48	10.28 10.48	0.92 1.08	$0.56 \\ 1.00$	1.00 1.08	1.16 1.24	3.48 3.60	4.32 4.12	1.16 0.92	12.60 13.04	7.88 7.68
cm138a	SAM SAMGAM	$6.52 \\ 7.00$	10.48 10.28	4.80 5.48	10.12 11.12	8.48 7.48	4.84 5.44	5.12 6.00	50.36 52.80	12.32 12.20	1.48 1.48	3.36 3.36	2.00 1.68	6.88 6.84	5.68 6.04	0.20 0.20	0.16 0.12	19.76 19.72	8.20 7.88
decod	SAM	14.72	7.56	5.56	9.60	15.68	7.84	7.72	68.68	12.12	5.68	2.56	3.12	4.16	18.88	0.72	1.04	36.16	8.36
	SAMGAM	15.80	7.96	6.84	9.68	14.56	7.64	8.12	70.60	12.52	7.68	2.84	2.68	3.84	18.44	0.80	1.12	37.40	9.60
f51m	SAM	3.84	4.20	5.80	5.04	3.84	12.80	12.12	47.64	12.52	2.80	2.96	3.72	3.68	4.36	14.00	5.16	36.68	11.60
	SAMGAM	6.04	5.88	6.24	4.48	4.68	12.96	12.92	53.20	12.80	4.24	4.28	3.92	3.24	5.48	13.52	6.88	41.56	12.00
majority	SAM	3.12	3.28	2.36	3.48	2.92	2.52	3.00	20.68	9.80	0.76	1.20	0.08	1.72	4.48	0.28	0.04	8.56	5.76
	SAMGAM	3.08	3.40	1.72	2.64	3.20	1.96	2.48	18.48	9.20	1.28	1.16	0.32	1.20	4.80	0.20	0.04	9.00	6.12
z4ml	SAM	4.36	3.84	5.16	3.60	4.24	8.36	7.52	37.08	11.24	1.80	1.36	1.84	1.84	4.32	7.28	2.52	20.96	9.76
	SAMGAM	3.52	4.40	4.88	3.60	3.20	9.08	7.88	36.56	10.92	1.72	1.56	1.60	1.52	4.04	8.08	2.16	20.68	10.12
9symml	SAM	12.88	12.32	9.20	12.44	12.40	15.76	14.52	89.52	17.72	8.00	7.92	3.96	7.96	12.68	11.88	7.20	59.60	16.12
	SAMGAM	12.29	13.62	9.38	14.29	11.29	15.58	15.67	92.12	18.33	7.79	8.71	4.25	8.79	11.42	10.33	7.62	58.92	16.17
alu2	SAM	28.50	20.00	17.50	31.50	31.50	31.00	28.50	188.50	20.50	21.00	21.00	15.00	24.00	31.00	24.50	19.00	155.50	20.50
	SAMGAM	36.00	27.00	23.00	35.00	28.00	38.00	32.00	219.00	21.00	29.00	30.00	21.00	34.00	25.00	24.00	22.00	185.00	19.00
alu4	SAM	22.13	21.61	24.09	24.00	22.26	23.22	22.43	159.74	18.65	15.17	13.96	16.04	15.13	20.74	14.39	10.30	105.74	16.65
	SAMGAM	26.42	26.42	28.53	29.58	28.32	28.32	27.37	194.95	20.37	17.47	15.95	19.11	17.79	26.53	16.26	14.26	127.37	18.05
cm85a	SAM	11.16	11.04	11.36	10.24	9.20	9.32	9.64	71.96	15.96	4.24	3.88	3.24	4.04	9.96	2.80	1.48	29.64	12.32
	SAMGAM	13.56	15.84	14.36	15.52	14.16	12.00	12.28	97.72	16.96	3.16	4.56	3.80	5.20	9.76	2.68	1.60	30.76	12.44
cm151a	SAM	11.96	12.96	9.88	11.92	12.88	8.48	9.28	77.36	16.64	3.48	2.92	2.84	4.28	13.96	1.60	0.76	29.84	11.88
	SAMGAM	11.04	12.72	9.40	11.80	13.16	9.24	9.16	76.52	16.60	4.52	2.88	2.32	3.76	13.72	1.32	0.60	29.12	11.68
cm162a	SAM	16.84	13.64	14.96	16.80	12.84	12.80	12.56	100.44	15.20	6.76	3.88	4.60	5.84	11.76	3.48	1.56	37.88	11.12
	SAMGAM	16.84	13.76	16.48	15.80	14.52	12.48	12.04	101.92	16.20	6.28	4.96	4.80	6.16	11.04	3.48	1.12	37.84	11.60
cu	SAM	19.80	18.48	19.48	17.24	19.88	13.04	12.92	120.84	16.68	7.20	4.84	4.92	4.44	17.00	2.36	1.08	41.84	10.96
	SAMGAM	24.84	21.88	21.40	20.12	23.48	17.20	17.68	146.60	17.48	8.52	4.12	5.12	5.68	15.76	2.36	0.76	42.32	11.48
x2	SAM	16.44	18.56	15.84	17.20	15.52	13.36	12.24	109.16	17.32	4.44	6.44	4.36	6.72	11.28	1.96	1.52	36.72	11.80
	SAMGAM	18.96	18.48	17.80	19.96	16.56	15.40	14.60	121.76	16.80	6.04	5.04	4.72	6.72	12.12	2.00	0.84	37.48	11.64
cmb	SAM SAMGAM	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	
cc	SAM	39.68	32.28	39.92	36.56	37.96	31.24	32.60	250.24	19.08	10.40	5.84	9.96	5.48	16.88	2.40	2.32	53.28	9.44
	SAMGAM	48.92	41.68	48.60	41.40	43.52	41.28	39.44	304.84	21.04	11.40	6.40	12.32	5.32	16.16	2.36	2.44	56.40	9.80
cordic	SAM SAMGAM	-	-	-	- -	-	-	-	-	- -	-	-	-	-	-	-	-	-	-
frg1	SAM SAMGAM	20.80 20.36	13.20 13.80	12.16 11.64	17.68 16.96	13.56 12.00	$4.56 \\ 4.28$	4.40 4.72	86.36 83.76	16.32 15.84	17.08 17.16	7.52 8.28	4.48 4.36	12.44 12.56	13.32 12.48	$0.80 \\ 0.72$	$0.48 \\ 0.24$	56.12 55.80	13.76 13.20
pm1	SAM SAMGAM	21.92 24.75	18.28 22.88	24.64 27.00	21.68 26.46	18.48 24.21	14.88 16.96	13.76 19.67	133.64 161.92	16.52 17.12	7.64 7.58	3.20 4.29	8.96 10.25	6.16 5.38	8.64 9.67	1.60 1.25	0.36 0.29	36.56 38.71	9.36 10.00
sct	SAM	30.17	29.44	33.61	30.00	28.50	25.11	26.61	203.44	19.94	7.72	6.39	11.50	7.00	13.44	5.44	3.56	55.06	14.44
	SAMGAM	33.82	35.59	41.73	35.77	33.73	33.91	31.91	246.45	21.45	7.45	7.73	14.09	5.82	13.68	5.45	3.82	58.05	15.14
t481	SAM	9.36	8.48	12.88	10.56	9.88	12.12	10.92	74.20	15.20	2.76	2.96	7.96	3.16	6.48	6.68	2.84	32.84	10.00
	SAMGAM	9.96	10.08	13.60	9.80	10.00	11.92	10.76	76.12	14.96	2.20	2.76	7.40	3.48	7.04	5.96	3.20	32.04	10.28
tcon	SAM	33.80	32.60	37.24	34.68	34.32	32.48	32.56	237.68	19.28	3.08	2.20	4.12	2.40	13.80	2.12	1.04	28.76	5.04
	SAMGAM	43.40	39.20	46.52	42.36	39.96	38.16	38.12	287.72	20.56	3.60	3.24	4.60	2.96	11.88	1.84	1.08	29.20	5.00
vda	SAM SAMGAM	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-

Table 5: Experiment 1 – Algorithm Counting: for each problem, the number of times that each method obtained statistically better results. For the cases where there is no statistical difference, both algorithms are counted.

Method	#Evaluations	#Transistors First Solution	#Transistors Final Solution
SAM	19	22	22
SAMGAM	22	18	22

Table 6: Experiment 2 – Information about the number of transistors, number of gates, depth, relative reduction (RR), time and p-value for each problem.

Problem	Method	FFS		3.5			imized S			/0/:		p-value
I TODICIII	Wicthod	Value	Min	Median	Mean	Stdev	Max	Gates	Depth	RR (%)	Time (s)	p-varue
C17	$_{\mathrm{SAM}}^{\mathrm{PM}}$	12	12.00 8.00	12.00 8.00	12.00 8.00	$0.00 \\ 0.00$	12.00 8.00	6.00 4.00	4.00 4.00	0.00 33.33	14.10 20.15	5.30E-22
cm42a	$_{ m SAM}^{ m PM}$	156	$30.00 \\ 31.00$	$36.00 \\ 36.00$	$35.76 \\ 35.56$	$2.52 \\ 2.65$	$42.00 \\ 41.00$	$21.70 \\ 21.56$	$6.50 \\ 6.42$	77.08 77.21	$158.63 \\ 160.05$	8.00E-01
cm82a	PM SAM	159	18.00 19.00	$22.00 \\ 21.00$	22.04 22.76	$\frac{2.04}{3.67}$	28.00 36.00	11.54 13.38	8.04 8.60	86.14 85.69	66.10 84.19	8.00E-01
cm138a	PM SAM	148	33.00 32.00	39.00 38.00	38.52 38.78	$\frac{2.44}{3.05}$	42.00 46.00	23.64 23.80	8.04 8.30	73.97 73.80	296.15 323.55	8.00E-01
decod	PM SAM	132	59.00 56.00	69.00 67.00	68.46 67.90	5.23 8.20	80.00 90.00	37.96 38.56	7.52 7.68	48.14 48.56	233.24 270.71	8.00E-01
f51m	PM SAM	638	638.00 344.00	638.00 421.50	638.00 415.02	0.00 23.64	638.00 449.00	323.00 215.20	29.00 23.54	$0.00 \\ 34.95$	3317.60 1995.98	5.10E-19
majority	PM SAM	24	13.00 11.00	16.00 14.00	16.92 14.00	2.12 1.67	22.00 18.00	9.20 8.52	6.48 6.16	29.50 41.67	14.31 16.30	5.44E-09
z4ml	PM SAM	503	499.00 33.00	503.00 87.00	502.92 89.88	0.56 40.12	503.00 223.00	254.96 49.36	33.00 15.16	0.02 82.13	1773.45 1054.02	7.30E-19
9symml	PM SAM	1039	1039.00 197.00	1039.00 257.00	1039.00 262.92	0.00 50.34	1039.00 367.00	524.00 142.24	92.00 22.60	0.00 74.69	5625.68 4684.54	1.09E-09
alu2	PM SAM	1790	1790.00 497.00	1790.00 623.50	1790.00 626.26	0.00 53.35	1790.00 746.00	900.00 325.10	74.00 61.66	$0.00 \\ 65.01$	10414.20 106322.62	5.11E-19
alu4	PM SAM	-	-	-	-	-	-	-	-	-	-	-
cm85a	PM SAM	610	610.00 43.00	610.00 62.00	610.00 69.14	0.00 20.76	610.00 106.00	309.00 40.12	25.00 17.96	0.00 88.67	2334.73 1652.11	5.04E-19
cm151a	PM SAM	154	43.00 45.00	54.00 52.00	53.22 51.68	4.06 3.67	58.00 59.00	31.36 31.78	12.14 12.02	65.44 66.44	3317.33 1892.28	1.78E-01
cm162a	PM SAM	200	57.00 59.00	67.00 65.00	66.98 65.56	4.52 3.64	78.00 79.00	40.58 40.18	12.14 12.26	66.51 67.22	1924.53 1388.39	5.48E-01
cu	PM SAM	261	64.00 63.00	75.00 72.00	75.36 71.88	5.54 4.48	87.00 82.00	46.88 46.20	12.84 12.36	71.13 72.46	2369.41 1774.73	2.00E-01
x2	PM SAM	174	56.00 55.00	63.00 65.00	63.40 63.94	2.37 3.35	67.00 73.00	38.18 38.86	13.18 12.74	63.56 63.25	827.97 630.05	8.00E-01
cmb	PM SAM	144	44.00 46.00	58.50 65.50	59.18 64.64	10.51 8.22	75.00 77.00	34.50 38.30	10.48 12.26	58.90 55.11	721.09 664.53	6.20E-02
cc	PM SAM	256	86.00 75.00	102.00 90.00	101.96 89.20	7.96 7.79	130.00 105.00	55.68 50.70	8.82 8.94	60.17 65.16	3058.44 1925.81	4.23E-10
cordic	PM SAM	-	-	-	-	-	-	-	-	-	-	-
frg1	PM SAM	1605	1605.00 238.00	1605.00 356.00	$1605.00 \\ 354.32$	$0.00 \\ 53.40$	1605.00 441.00	816.00 193.16	$116.00 \\ 25.00$	$0.00 \\ 77.92$	191578.47 37334.75	1.09E-09
pm1	PM SAM	2084	2084.00 74.00	2084.00 84.00	2084.00 84.58	0.00 5.23	2084.00 97.00	1050.00 51.26	45.00 10.98	0.00 95.90	26939.52 6579.89	4.68E-19
sct	PM SAM	466	438.00 92.00	466.00 106.00	461.96 106.64	6.42 8.62	466.00 129.00	238.92 64.74	25.58 16.24	0.87 77.12	9090.86 5168.36	3.18E-17
t481	PM SAM	-	-	-	-	-	-	-	-	-	-	-
tcon	PM SAM	49	43.00 43.00	49.00 46.00	47.92 46.60	1.67 1.70	49.00 49.00	26.36 26.24	4.52 4.36	2.20 4.90	380.79 361.93	6.18E-02
vda	PM SAM	-	-	-	-	-	-	-	-	-	-	-

Table 7: Experiment 2 – Mean number of each gate, total gates and circuit depth in the optimized solution.

Problem	Method	ANTI	O.D.	Non		nized So		VNIOD	/m - 1	Donth	
		AND	OR	NOT	NAND	NOR	XOR	XNOR	Total	Depth	
C17	PM SAM	$6.00 \\ 4.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$6.00 \\ 4.00$	$4.00 \\ 4.00$	
cm42a	PM SAM	$0.68 \\ 0.40$	8.82 8.38	2.34 1.80	$4.56 \\ 5.22$	5.30 5.76	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$21.70 \\ 21.56$	$6.50 \\ 6.42$	
cm82a	$_{ m SAM}^{ m PM}$	1.88 1.82	1.18 1.38	$0.58 \\ 0.82$	$0.00 \\ 0.04$	$4.40 \\ 6.50$	$3.06 \\ 2.32$	$0.44 \\ 0.50$	11.54 13.38	8.04 8.60	
cm138a	PM SAM	$0.24 \\ 0.30$	11.54 11.74	3.06 2.82	3.10 2.86	5.70 6.04	$0.00 \\ 0.04$	$0.00 \\ 0.00$	23.64 23.80	8.04 8.30	
decod	PM SAM	29.84 28.76	0.22 0.16	3.44 3.12	$0.16 \\ 0.42$	4.16 6.10	$0.14 \\ 0.00$	0.00 0.00	37.96 38.56	7.52 7.68	
f51m	PM SAM	246.00 132.26	69.00 64.52	8.00 8.48	$0.00 \\ 0.12$	0.00 8.64	$0.00 \\ 0.62$	0.00 0.56	323.00 215.20	29.00 23.54	
majority	PM SAM	$4.28 \\ 2.92$	3.04 1.96	0.12 0.10	0.40 0.60	1.36 2.94	0.00	0.00 0.00	9.20 8.52	6.48 6.16	
z4ml	PM SAM	192.96 22.18	55.00 13.64	7.00 3.34	0.00 0.20	0.00 8.04	$0.00 \\ 1.38$	0.00 0.58	254.96 49.36	33.00 15.16	
9symml	PM SAM	430.00 73.64	85.00 46.20	9.00 8.20	0.00 0.32	0.00 13.64	0.00 0.20	0.00 0.04	524.00 142.24	92.00 22.60	
alu2	PM SAM	750.00 206.22	140.00 94.50	10.00 13.58	0.00 0.20	$0.00 \\ 10.50$	$0.00 \\ 0.06$	$0.00 \\ 0.04$	900.00 325.10	74.00 61.66	
alu4	PM SAM	-	-	-	-	-	-	-	-	-	
cm85a	PM SAM	256.00 18.94	45.00 10.04	8.00 3.12	0.00 0.04	0.00 7.98	$0.00 \\ 0.00$	0.00 0.00	309.00 40.12	25.00 17.96	
cm151a	PM SAM	15.86 14.54	4.78 5.00	1.44 1.60	1.22 0.36	8.06 10.28	$0.00 \\ 0.00$	$0.00 \\ 0.00$	31.36 31.78	12.14 12.02	
cm162a	PM SAM	12.28 11.70	11.76 11.88	4.12 4.02	1.04 0.56	10.72 11.42	$0.66 \\ 0.56$	$0.00 \\ 0.04$	40.58 40.18	12.14 12.26	
cu	PM SAM	21.60 19.72	6.04 5.80	4.00 3.76	0.84 0.08	14.40 16.80	$0.00 \\ 0.04$	0.00	46.88 46.20	12.84 12.36	
x2	PM SAM	8.42 8.98	13.36 13.54	4.18 3.86	2.04 1.92	9.50 10.26	$0.64 \\ 0.26$	0.04 0.04	38.18 38.86	13.18 12.74	
cmb	PM SAM	11.22 10.52	11.12 13.16	3.14 3.82	1.98 2.30	6.86 8.32	0.18 0.18	0.00	34.50 38.30	10.48 12.26	
cc	PM SAM	32.44 27.50	12.14 10.72	6.44 6.90	1.18 0.28	3.22 5.30	$0.26 \\ 0.00$	0.00	55.68 50.70	8.82 8.94	
cordic	PM SAM	-	-	-	-	-	-	-	-	-	
frg1	PM SAM	673.00 107.88	116.00 53.00	27.00 15.84	$0.00 \\ 0.28$	$0.00 \\ 16.16$	$0.00 \\ 0.00$	0.00 0.00	816.00 193.16	116.00 25.00	
pm1	PM SAM	876.00 17.40	158.00 14.20	16.00 14.60	$0.00 \\ 1.56$	$0.00 \\ 3.42$	0.00 0.08	0.00	1050.00 51.26	45.00 10.98	
sct	PM SAM	163.66 21.16	59.06 18.54	15.96 7.50	$0.06 \\ 0.14$	$0.08 \\ 16.52$	$0.04 \\ 0.58$	0.06 0.30	238.92 64.74	25.58 16.24	
t481	PM SAM	-	-	-	-	-	-	-	-	-	
tcon	PM SAM	13.68 13.36	7.04 7.00	2.08 1.92	0.84 0.00	2.72 3.96	0.00	0.00 0.00	26.36 26.24	4.52 4.36	
vda	PM SAM	-	-	-	-	-	-	-	-	-	

Table 8: Experiment 2 – Algorithm Counting: for each problem, the number of times that each method obtained statistically better results. For the cases where there is no statistical difference, both algorithms are counted.

Method	#Transistors Final Solution
PM	10
SAM	21