

Boaz Zimbler, Adam Vinestock, Itay Shapira, Omri Newman Reichman University January 2, 2023

Table of Contents

- Pipeline Architecture
- Pre-Processing
- FreaAl
- Model Calibration
- Test Set Partition and Prediction
- Additional Optimization Approaches
- Code Demo
- Results and Comparisons
- Next Steps
- Q&A

Pipeline Architecture

GitHub Repo

Pre-Processing

Categorical

VehGas	Count
Regular	345877
Diesel	332136

Area	Count
С	191880
D	151596
Е	137167
Α	103957
В	75459
F	17954

Numerical

FreaAl

What

Automated Extraction of Data Slices to Test ML Models Identifying **Weak Data** which **underperforms in the model**

How

HDR

FreaAl

Business **Decision Making**

"Focusing" on specific market

Rely on model only in **specific** market

Why

Improving model by dealing with weak data

Getting more Weak Data to train on

Splitting models to reduce generalization error

FreaAl

Model Calibration

- Based on FreaAl we identify 'Low quality' subsets of data
- Extract Low quality data from the training set splitting it into two - Low and High quality data
- Train two new XGBoost models calibrated to data sets

Test Set Partition and Prediction

Partition test set into two
High quality data | Low quality data
as determined by FreaAl decision trees

Predict on partitioned test sets using corresponding models from Calibration step

Additional Optimization Approaches

'High quality' vs 'Low quality' data performance

features = [features]

Creating more robust data partition - low quality data detection using ensemble of trees

```
[31] # Extracting more robust poor quality data
    def mask_repeated_elemer [108] # Preproccessing the data
       unique elements, cou
                            features flagged = nn.concatenate((french df.columns.["FLAGGED"]))
       repeated elements =
                                               ----- Test data summary using threshold of 4 tree's
       return repeated elem
                            mask = frenc
                            flags = np.w
                                               Baseline
    def flagged data(df, out
                            X flagged =
                                                predictions within threshold: 64.02%, MSE: 31.215869537406565
       poor data = np.empty
       n trees = len(output
                            df flagged =
       for i in range(n tre
        features = output.
                                               Low quality data
                            df flagged['
        if isinstance(feat
                                                predictions within threshold: 19.01%, MSE: 67.26537746807695
          pass
                            df flagged['
        else:
                            df flagged.h
           features = [fe
                                               High quality data
        tree model = outpu
        leaf = output.iloc
                                                predictions within threshold: 76.07%, MSE: 9.933800932185752
                                Area Ve
        leaf indices = tre
        bad indices = np.a
                             0.0
        poor data = np.cor
                                               Weighted sum
       flagged data = mask
                                                predictions within threshold: 65.91%, MSE: 31.422290499466996
       print(f"Num of min a
                             1 0.0
       print(f"Total size o
       return flagged data
                                                           52.0
                                                                                                          22.0 0.000000
                                                                                                                             0.0
    def classify samples(X,
                                           7.0
                                                   0.0
                                                                       50.0
                                                                                  0.0
                                                                                          1.0
                                                                                                  76.0
                                                                                                          72.0 0.000000
                                                                                                                             0.0
       low quality indices
       for i in range(trees
                             4 1.0
                                           7.0
                                                   0.0
                                                           46.0
                                                                       50.0
                                                                                  0.0
                                                                                          1.0
                                                                                                  76.0
                                                                                                          72.0 1.190476
                                                                                                                              0.0
        features = trees.i
        if isinstance(feat
          pass
        else:
```

Low-quality Data Generation

```
Test data summary using CWGAN-GP

Baseline
predictions within threshold: 64.02%, MSE: 31.215869537406565

IMPLOW quality data
predictions within threshold: 8.02%, MSE: 46.486560008961625

High quality data
predictions within threshold: 76.07%, MSE: 27.923652375874138

Weighted sum
predictions within threshold: 64.04%, MSE: 31.228953100811516
```

Oversampling using Gaussian Copulas

CWGAN-GP data generation using YData

Splitting models to reduce generalization error

Code Demo

French

Boston

Results and Comparison (French)

Results and Comparison (French)

Results and Comparison (Boston)

Next Steps

We Want More Data

- More Data Collection
- Implementing HPD on top of Decision Trees
- Further explore FreaAl using Decision Tree Regressors

Q&A?

Thanks!

