Optimal Portfoilio Selection

Project on course Optimization Methods and NLA

Authors:

- Oleg Gorodnitskii
- · Dmytro Fedoriaka
- Rasul Khasianov

Skoltech, 2017

Introduction

- 1. **Asset** an investment instrument that can be bought and sold.
- 2. Suppose we purchase an asset for x(0) dollars on one date and then later sell it for x(1) dollars and there are N risky assets, whose **rates of returns** are given by random Variables R_1, \ldots, R_N :

$$R_n = \frac{x_n(1) - x_n(0)}{x_n(0)}, \ n = 1, \dots, N$$

1. Let $w = (w_1, \dots, w_N)^T$, w_n denotes the proportion of wealth invested in asset n. The **rate of return of the portfolio** is

$$R_P = \sum_{n=1}^{N} w_n R_n$$
, where $\sum_{n=1}^{N} w_n \le 1$, $w_n \ge 0$

The goal: to choose the portfolio weighting factors optimally

Markowitz Mean-Variance Analysis

For a given portfolio w, we can compute the mean and the variance of the portfolio return as:

$$\mathbb{E}[R] = \sum_{i=1}^{N} w_i R_i = w^T R$$

$$\text{Var}[R] = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i \sigma_{ij} w_j = w^T \Sigma w$$

For arbitrary weigths we will get the following results of means and variances:

What is the efficient portfolio?

Mean-Variance efficient portfolio

A portfolio w^* is said to be **mean-variance efficient** if there exists no portfolio w with:

$$\mu_P \ge \mu^*$$
 and $\sigma_P^2 \le {\sigma^*}^2$

That is, you cannot find a portfolio that has a higher return and lower risk than those for an efficient portfolio.


```
In [1]: import numpy as np
  import pandas as pd
  import os
  import matplotlib.pyplot as plt
  from datetime import datetime
  import cvxpy as cvx
  from cvxpy import *
  %matplotlib inline
```

```
In [2]: # Name of train/test dataset. 'data', 'nyse_each_50', 'nyse_each_10' or 'n
    yse'
    DATASET_NAME = 'data'

# Period, on which we will invest.
PERIOD = 60

# Set of lambda parameters, which we will check.
LAMBDA_RANGE = [0.01, 0.1, 0.5, 1, 2]
```

Dataset: historical 2014 prices for p = 22 securities


```
In [3]: data_folder = os.path.join(os.path.dirname(os.getcwd()), 'data')
    train_file = os.path.join(data_folder, DATASET_NAME + '_train.csv')
    test_file = os.path.join(data_folder, DATASET_NAME + '_test.csv')
```

```
In [4]: # Reading data.
data = pd.read_csv(train_file)
```

```
In [5]: # Extract prices and dates.

sequrity_ids = data.columns[1:]
    dates = [datetime.strptime(d, '%Y-%m-%d') for d in data['Date']]
    prices = np.array(data[sequrity_ids]).T

# Covariation matrix.
    cov = np.corrcoef(prices)

# Number of sequrities.
    N = len(sequrity_ids)

# Number of time moments in train data.
    T = len(dates)
```

Data: prices from 2007 to 2015 years

```
In [6]: # Visualize some prices.

plt.figure(figsize=(14,7))
    seq_to_show = sequrity_ids[-4:]

for seq in seq_to_show:
    plt.plot(dates[::6], data[seq][::6], label = seq)
    plt.legend( bbox_to_anchor=(1.1, 1))
    plt.title("Stock prices", fontsize=20)
    plt.show()
```


Covariation matrix

```
In [7]: # Visualize covariation matrix.
    plt.figure(figsize=(14,7))
    plt.imshow(cov, interpolation='none')
    plt.colorbar()
    plt.xticks(range(len(sequrity_ids)), sequrity_ids, fontsize=10,rotation='vertical')
    plt.yticks(range(len(sequrity_ids)), sequrity_ids, fontsize=10,rotation='horizontal')
    plt.title("Covariation matrix", fontsize=20)
    plt.show()
```


Prediction of future prices

Here we use **ARIMA** (autoregressive integrated moving average) model to predict future points in the series.

```
In [8]: from statsmodels.tsa.arima_model import ARIMA
        from statsmodels.tsa.seasonal import seasonal_decompose
        from sklearn.metrics import mean squared error
        import matplotlib.pylab as plt
        def test_stationarity(timeseries):
            dftest = adfuller(timeseries, autolag='AIC')
            return (dftest[0], dftest[4]['5%'])
        def stationarize(timeseries):
            timeseries log = np.log(timeseries)
            timeseries_log_diff = timeseries_log - timeseries_log.shift()
            timeseries log diff.dropna(inplace=True)
            return timeseries_log_diff
        def check stationarity(data):
            for sym in list(data):
                print(test_stationarity(stationarize(data[sym])))
        def predict_on_period(timeseries, period):
            model = ARIMA(timeseries, order=(2, 1, 1))
            results_ARIMA = model.fit(disp=-1)
            forecasts = results ARIMA.forecast(period)
            return forecasts[0]
        def pred arima(data, period):
            prices_pred = []
            for sym in list(data):
                timeseries stat = stationarize(data[sym])
                prices pred.append(np.sum(predict on period(timeseries stat, peri
        od))+np.log(data[sym][-1]))
            return np.exp(prices_pred)
        def to_ts(data):
            data['Date'] = pd.to datetime(data['Date'], format = '%Y-%m-%d')
            data_indx = data.set_index('Date')
            return data_indx
```

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.c ore.datetools module is deprecated and will be removed in a future ve rsion. Please use the pandas.tseries module instead.

from pandas.core import datetools

```
In [9]:
         # This suppresses warnings.
          import warnings
         warnings.simplefilter('ignore')
In [10]:
         predictions = pred_arima(to_ts(data), PERIOD)
         print(predictions)
          [ 112.54381181
                            2.43892397
                                          18.6003847
                                                        12.27763302
                                                                       18.9916865
             29.76371127
                           27.09299485
                                          13.26919889
                                                        13.96294103
                                                                       24.5305158
         7
             35.44761556
                           61.21564136
                                          45.08104417
                                                        40.01296965
                                                                        9.1672790
         4
              3.52334355
                           29.0580858
                                          55.70364482
                                                         6.19941901
                                                                       40.8417413
         8
             53.92092256
                           10.84631203]
```

Results by ARIMA prediction

Optimization formulation

In order to forecast the best protfolio going forward:

$$\min_{w} w \sum w$$

$$s. t. R^{T} w \ge p$$

$$\sum_{i} w_{i} = 1, w_{i} \ge 0$$

Idea: minimize risks

```
In [11]:
         # Calculates profit if we buy sequrities at time_buy, sell them
         # at time sell, spend x[i] part of capital on i-rh security.
         # Assumes that initial capital is equal to 1.
         def count_profit(prices, date_buy, date_sell, x):
             prices_at_buy = prices[:, date_buy]
             prices at sell = prices[:, date sell]
             capital spent = np.sum(x)
             amount_bought = x / prices_at_buy
             revenue = np.dot(amount_bought, prices_at_sell)
             return revenue - np.sum(x)
         # Calculates real profit on test data.
         test prices = None
         def count real profit(portfolio, period):
             global test_prices
                                            # This is to ensure we don't read CSV
             if test prices is None:
         each time we count profit
                 data folder = os.path.join(os.path.dirname(os.getcwd()), 'data')
                 test_data_file = os.path.join(data_folder, DATASET_NAME + '_test.
         csv')
                 test data = pd.read csv(test data file)
                 test_prices = np.array(test_data[sequrity_ids]).T
             return count profit(test prices, 0, period, portfolio)
         # prices - numpy.array (N x T) of known prices (N - number of sequritites
         , T - number of time moments).
         # date buy - index of row in prices, which corresponds to buying date.
         # 1 - 'lambda' parameter in objective.
         # predicted prices - predicted/known prices on day of selling, from exter
         nal predictor.
                              Must be arranged in the same order, as columns in pr
         ices.
         def get_optimal portfoilio_for_known predictions(prices, date buy, 1, pre
         dicted prices):
             # Calculating profitabilities.
             r = np.array([
```

```
(predicted_prices[i] - prices[i, date_buy]) / prices[i, date buy]
        for i in range(N)
    ])
    cov = np.corrcoef(prices[:,:date buy+1])
    return get_optimal_portfolio(r, cov, 1)
def portfolio info(portfolio, period):
    portfolio_real = portfolio.copy()
    portfolio = np.abs(portfolio)
    plt.figure(figsize=(17,4))
    # Show portfolio as pie chart.
    inv_seq = []
    for i in range(N):
        if portfolio[i] > 1e-2:
            inv_seq.append((portfolio[i], sequrity_ids[i]))
    inv_seq.sort(reverse=True)
    non zero inv = len(inv seq)
    fracs = [inv_seq[i][0] for i in range(non_zero_inv)]
    labels = [inv_seq[i][1] for i in range(non_zero_inv)]
    plt.subplot(1, 2, 1)
    plt.pie(fracs, labels=labels, radius=0.9, labeldistance=1.3, rotatela
bels=True)
    plt.title('Portfolio', fontsize = 20)
    # Model that we invest according to portfolio now and sell segurities
later,
    # varying period between buying and selling.
    period_range = range(period)
    profits = [count_real_profit(portfolio, per) for per in period_range]
    plt.subplot(1, 2, 2)
    plt.plot(period_range, profits)
    plt.xlabel("Period", fontsize = 15)
    plt.ylabel("Profit", fontsize = 15)
    plt.title('Portfolio profitability over time', fontsize = 20)
    plt.show()
    print("Profit on test data in %d steps: %f%%" % (period, count real p
rofit(portfolio real, period)*100))
def get mean variance(prices, date buy, predicted prices, portfolio, peri
od):
    # Calculating profitabilities.
    r = np.array([
        (predicted_prices[i] - prices[i, date_buy]) / prices[i, date_buy]
        for i in range(N)
    cov = np.corrcoef(prices[:,:date_buy+1])
    return r.T @ portfolio, portfolio.T @ cov @ portfolio, count_real_pro
fit(portfolio, period)*100
```


Profit on test data in 60 steps: 0.570290%

Optimization formulation: modification 1

In order to forecast the best protfolio going forward:

$$\max_{w} R^{T} w$$

$$s. t. \quad w\Sigma w \le p$$

$$\sum_{i} w_{i} = 1, \ w_{i} \ge 0$$

Idea: maximize returns

```
In [14]: def get_optimal_portfolio(r, cov, p):
    x = cvx.Variable(N)

    objective = cvx.Maximize(sum_entries(np.diag(r) @ x))
    constraints = [cvx.quad_form(x, cov) <= p, cvx.sum_entries(x) == 1]
    prob = cvx.Problem(objective, constraints)
    obj = prob.solve()
    portfolio = np.copy(np.array(x.value).reshape(-1))
    return portfolio

#predictions = pred_arima(to_ts(data), PERIOD)

p = 0.017
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices, T-1, p, predictions)
    portfolio_info(opt_portfolio, PERIOD)</pre>
```


Profit on test data in 60 steps: 0.436067%

```
In [15]: # Collect results

results_2 = []
for p in np.linspace(0.0165, 0.6, 100):
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices, T-1, p, predictions)
    mean, var, profit = get_mean_variance(prices, T-1, predictions, opt_p ortfolio, PERIOD)
    results_2.append([mean, var, profit])

results_2 = np.array(results_2)
plt.figure(figsize=(12, 5))
plt.scatter(results_2[:, 1], results_2[:, 0], c = results_2[:, 2], s=10)
plt.colorbar();
```


Optimization formulation: modification 2

In order to forecast the best protfolio going forward:

$$\max_{w} R^{T} w - \lambda w \Sigma w$$

$$s. t. \sum_{i} w_{i} = 1, \ w_{i} \ge 0$$

Idea: try to balance previous two objectives in a single objective function!

```
In [16]: def get_optimal_portfolio(r, cov, 1):
    x = cvx.Variable(N)

    objective = cvx.Maximize(r*x - 1*cvx.quad_form(x, cov))
    constraints = [cvx.sum_entries(x) == 1]
    prob = cvx.Problem(objective, constraints)
    obj = prob.solve()
    portfolio = np.copy(np.array(x.value).reshape(-1))
    return portfolio

#predictions = pred_arima(to_ts(data), PERIOD)

1 = 100
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices, T-1, 1, predictions)
    portfolio_info(opt_portfolio, PERIOD)
```


Profit on test data in 60 steps: 0.548908%

```
In [17]: # Collect results

results_3 = []
for p in np.linspace(0.6, 10, 100):
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices,
T-1, p, predictions)
    mean, var, profit = get_mean_variance(prices, T-1, predictions, opt_p
ortfolio, PERIOD)
    results_3.append([mean, var, profit])

results_3 = np.array(results_3)
plt.figure(figsize=(12, 5))
plt.scatter(results_3[:, 1], results_3[:, 0], c = results_3[:, 2], s=10)
plt.colorbar();
```


Sparse Portfolios

Practical investing requires balancing portfolio optimality and simplicity!

- Managing large asset positions and transacting frequently is expensive and timeconsuming
- Their choice set for investment opportunities is massive and includes exchangetraded funds (ETFs), mutual funds, and thousands of individual stocks.

How does one invest optimally while keeping the simplicity (sparsity) of a portfolio in mind?

Answer: for example l_1 penalizing

$$L = \frac{1}{2}w^T \Sigma w - w^T \mu + \lambda ||w||_1$$

This problem can reformulated to the form of **standard** sparse **regression** loss functions:

$$L = \frac{1}{2} \| L^T w - L^{-1} \mu \|_2^2 + \lambda \| w \|_1$$

where $\Sigma = LL^T$ — Cholesky decomposition

Proof:

$$L = \frac{1}{2} w^{T} \Sigma w - w^{T} \mu + \lambda ||w||_{1} \sim$$

$$\sim \frac{1}{2} (w - \Sigma^{-1} \mu)^{T} \Sigma (w - \Sigma^{-1} \mu) + \lambda ||w||_{1} =$$

$$= \frac{1}{2} (w - L^{-T} L^{-1} \mu)^{T} L L^{T} (w - L^{-T} L^{-1} \mu) + \lambda ||w||_{1} =$$

$$= \frac{1}{2} [L^{T} (w - L^{-T} L^{-1} \mu)]^{T} [L^{T} (w - L^{-T} L^{-1} \mu)] + \lambda ||w||_{1} =$$

$$= \frac{1}{2} ||L^{T} w - L^{-1} \mu||_{2}^{2} + \lambda ||w||_{1}$$

```
In [18]: def get_optimal_portfolio(r, cov, 1):
    x = cvx.Variable(N)
    L = np.linalg.cholesky(cov)

    objective = cvx.Minimize(0.5 * cvx.norm2(L.T @ x - np.linalg.inv(L) @ r) ** 2 + l*cvx.norm1(x))
    constraints = [cvx.sum_entries(x) == 1]
    prob = cvx.Problem(objective, constraints)
    obj = prob.solve()
    portfolio = np.copy(np.array(x.value).reshape(-1))
    return portfolio

l = 0.035
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices, T-1, l, predictions)
    portfolio_info(opt_portfolio, PERIOD)
```


Profit on test data in 60 steps: 26.475352%

```
In [19]: # Collect results

results_4 = []
for p in np.linspace(0.001, 0.1, 100):
    opt_portfolio = get_optimal_portfoilio_for_known_predictions(prices, T-1, p, predictions)
    mean, var, profit = get_mean_variance(prices, T-1, predictions, opt_p ortfolio, PERIOD)
    results_4.append([mean, var, profit])

results_4 = np.array(results_4)
plt.figure(figsize=(12,5))
plt.scatter(results_4[:, 1], results_4[:, 0], c = results_4[:,2], s=10)
plt.colorbar();
```


What we have learned?

- Mean-Variance Optimization
- l_1 regularization to find sparse solution
- We faced with the problem of non-convex optimization

