$FTP \underbrace{Algorithms}_{\overline{C}heat\ Sheet}$

Diego Gil

$Herbstsemester\ 2024/25$

Contents					5	Exercises		9
1	Sear	rch an	d Analysis	$_{2}$		5.1 5.2	Exercise 1.1: Sorting Complexity Exercise 1.2: Quadratic Algorithm	9
2	Data	a Stru	<u>ictures</u>	3		5.3	Exercise 1.3: Time Complexity	9
	2.1	Trees 2.1.1	Basic Tree Terminology	3 3		5.4 5.5	Exercise 1.4: Dominant Terms Exercise 1.5: Big-Oh Notation	10
		2.1.2 2.1.3	KD-Trees	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$		$\frac{5.6}{5.7}$	Exercise 1.6: Computational Complexity Exercise 2: Binary Search Tree Property	10 11
		2.1.4 2.1.5	KD-Tree Implementation Details Binary Search Trees (BST)	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$		5.8 5.9	Exercise 2.1: Heap Structure Exercise 2.2: Heap Height	
3			ty Analysis	6		5.10	Exercise 2.4: Recursive Algorithm Running Time	12
	3.1 3.2 3.3	Quadı Time	g Complexity	6 6 6		5.12	Exercise 3.1: HEAPSORT Operations . Exercise 3.2: Tree Predecessor Exercise 3.4: Binary Search Tree Insertion	13
	3.4 3.5 3.6	Big-O	nant Terms	$\begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$		5.14 5.15	Exercise 3.2: Tree Predecessor Exercise 3.4: Binary Search Tree Insertion	14 14
	3.7 3.8	Maste	r Theorem	6 6			Exercise 3.5: Binary Search Tree Deletion Exercise 4.1: Quicksort Partitioning Worst Case	
4	<u>r</u>			8 0		5.18	Exercise 4.2: COUNTING-SORT Algorithm	
	4.1	4.1.1	Representations	8 8 8			Exercise 5.1: BUILDKDTREE Algorithm Exercise 5.2: BUILDKDTREE Com-	
	1.2		Dijkstra's Algorithm Limitations	8		J. <u>2</u> U	plexity	18

1	Search	and	Analysis
---	--------	-----	----------

2 Data Structures

2.1 Trees

2.1.1 Basic Tree Terminology

Height: The height of a tree is the length of the longest path from the root to a leaf. It is the number of edges on this path.

Level: The level of a node is the number of edges on the path from the root to the node. The root node is at level 0.

Minimum Width: The minimum width of a tree is the smallest number of nodes at any level of the tree.

Maximum Width: The maximum width of a tree is the largest number of nodes at any level of the tree.

Depth: The depth of a node is the number of edges from the node to the tree's root node.

Leaf: A leaf is a node with no children.

Internal Node: An internal node is a node with at least one child.

Binary Tree: A tree data structure in which each node has at most two children, referred to as the left child and the right child.

2.1.2 KD-Trees

Problem Type: Construction of a KD-Tree from 2D points

What to Look For:

- Set of 2D points given as coordinates
- Request to build a KD-Tree
- Questions about tree properties (height, leaves)

Given Points:
$$P = \{(1,3), (12,1), (4,5), (5,4), (10,11), (8,2), (2,7)\}$$

Solution Strategy:

- 1. Sort points by x-coordinate (root level)
- 2. Find median point
- 3. Split into left/right subtrees
- 4. Repeat with y-coordinates for next level
- 5. Continue alternating x/y until all points placed

Detailed Solution:

1. Root Level (x-split)

- Sorted x: (1,3),(2,7),(4,5), (5,4), (8,2),(10,11),(12,1)
- Median (5,4) becomes root ℓ_1

Figure 1: *
Coordinate Split at Root Level

2. Tree Structure

Figure 2: *
KD-Tree Structure

3. Final Properties

• Height: 3 (counting from 0)

• Leaves: 7 (all original points)

• Second leaf from left: (4,5)

Exam Tips:

- 1. Always start by sorting points on current dimension
- 2. Mark median point clearly in your sorting
- 3. Draw coordinate system with splitting lines
- 4. Keep track of which dimension you're splitting on:
 - Level 0: x-coordinate
 - Level 1: v-coordinate
 - Level 2: x-coordinate
 - And so on...
- 5. Verify tree properties at the end

Common Mistakes to Avoid:

- Don't forget to alternate dimensions
- Don't skip sorting at each level
- Don't mix up left (<) and right (>) subtrees
- Don't forget to verify final tree properties

2.1.3 KD-Tree Complexity Analysis

Problem Type: Complexity proof for KD-Tree construction

What to Look For:

• Proof of time complexity $O(n \log n)$

- Proof of space complexity O(n)
- Recursive analysis

Solution Strategy:

- 1. Prove space complexity first (easier)
- 2. Analyze recursive structure
- 3. Set up recurrence relation
- 4. Apply Master Theorem

Space Complexity Proof:

- 1. For $n=2^k$ points:
 - Internal nodes (parents): $2^k 1$
 - Total nodes: $2^k + 2^{k-1} = n + n/2 = 3n/2 < 3n$
- 2. For general n (not power of 2):
 - Find t where $2^{t-1} < n < 2^t$

 - Internal nodes n_p : $2^{t-2} < n_p < 2^{t-1}$ Total nodes: $3 \cdot 2^{t-2} < n + n_p < 3 \cdot 2^{t-1}$
 - Therefore: $n + n_p < 3n$
- 3. Each node uses O(1) storage
- 4. Total storage: $O(1) \cdot O(n) = O(n)$

Time Complexity Proof:

- 1. At each recursion:
 - Split n points into two subsets of n/2
 - Finding median costs O(n)
- 2. Recurrence relation:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

- 3. Apply Master Theorem:
 - Similar to Merge-Sort analysis
 - Results in $T(n) = O(n \log n)$

Key Points for Exam:

- Space complexity proof:
 - Count nodes for power of 2
 - Extend to general case
 - Multiply by constant storage
- Time complexity proof:
 - Identify recursive pattern
 - Write recurrence relation
 - Apply Master Theorem
- Remember median finding is O(n)

Common Mistakes to Avoid:

- Don't forget to account for non-power-of-2 cases
- Don't ignore constant factors in space analysis
- Remember to justify linear median finding
- Don't skip the Master Theorem application

KD-Tree Implementation Details 2.1.4

Definition: A k-dimensional tree (KD-tree) is a space-partitioning data structure for organizing points in a k-dimensional space.

Properties:

- Each node represents a point in k-dimensional space
- Each non-leaf node splits space into two parts
- Splits alternate between dimensions at each level
- Points are stored in a binary tree structure

BUILDKDTREE Algorithm:

- 1. Input: Set of points P and depth d
- 2. If |P| = 1: return leaf node with the point
- 3. Determine split dimension: $d \mod k \pmod{k}$
- 4. Sort points by split dimension
- 5. Find median point m
- 6. Split points into P_L (< m) and P_R (> m)
- 7. Recursively build left and right subtrees:

 - $T_L = \text{BUILDKDTREE}(P_L, d+1)$ $T_R = \text{BUILDKDTREE}(P_R, d+1)$
- 8. Return node with (m, T_L, T_R)

Implementation Details:

- Even depths: split on x-coordinate (vertical line)
- Odd depths: split on y-coordinate (horizontal line)
- Each internal node stores:
 - Split point coordinates
 - Split dimension
 - Pointers to left/right children
- Leaf nodes store single points

Binary Search Trees (BST)

Definition: A binary tree where for each node x:

- All keys in left subtree are < x.key
- All keys in right subtree are > x.key
- No duplicate keys allowed

Basic Operations:

- 1. **TREE-SEARCH**(x, k): Find node with key k
 - Start at root, compare with k
 - If equal: found
 - If k smaller: go left
 - If k larger: go right
 - Time: O(h) where h is height
- 2. **TREE-MINIMUM**(x): Find smallest key
 - Follow left pointers until NIL
 - Time: O(h)
- 3. **TREE-MAXIMUM**(x): Find largest key
 - Follow right pointers until NIL
 - Time: O(h)
- 4. **TREE-SUCCESSOR**(x): Find next larger key
 - right subtree exists: TREE-MINIMUM(right)
 - Else: Go up until first right turn
 - Time: O(h)
- 5. **TREE-PREDECESSOR**(x): Find next smaller
 - If left subtree exists: TREE-MAXIMUM(left)
 - Else: Go up until first left turn
 - Time: O(h)

Modifying Operations:

- 1. **TREE-INSERT**(T, z): Insert new node z
 - Follow BST property down to leaf
 - Insert as left/right child
 - Time: O(h)
- 2. **TREE-DELETE**(T, z): Delete node z
 - Case 1: No children remove directly
 - Case 2: One child replace with child
 - Case 3: Two children:
 - Find successor y (min in right subtree)
 - Replace z with y
 - Delete y from original position
 - Time: O(h)

Helper Operation:

- **TRANSPLANT**(T, u, v): Replace subtree
 - Replaces subtree rooted at u with subtree rooted at v
 - Updates parent pointers
 - Used in DELETE operation

Properties:

- Inorder traversal gives sorted sequence
- Height h determines operation time:
 - Best case (balanced): $h = \lg n$
 - Worst case (linear): h = n
- No explicit balancing shape depends on insertion order

Tree Traversal:

- Inorder: Left subtree \rightarrow Root \rightarrow Right subtree
 - Visits nodes in sorted order
 - Used for ordered printing
- **Preorder**: Root \rightarrow Left subtree \rightarrow Right subtree
 - Root processed before children
 - Used for copying tree structure
- Postorder: Left subtree \rightarrow Right subtree \rightarrow Root
 - Root processed after children
 - Used for deletion

Implementation Details:

- Node structure:
 - key: Value stored in node
 - left, right: Pointers to children
 - p: Pointer to parent (optional)
- Sentinel NIL:
 - Used to mark leaf nodes
 - Simplifies boundary conditions

Key Insights:

- Successor never has left child
- Predecessor never has right child
- All operations maintain BST property
- Performance depends on tree height
- Balancing requires additional mechanisms (AVL, Red-Black)

3 Complexity Analysis

3.1 Sorting Complexity

Big-Oh Notation: Describes the upper bound of an algorithm's running time. For example, $O(n \log n)$ is common in efficient sorting algorithms like Merge Sort.

3.2 Quadratic Algorithms

Understanding $O(n^2)$: Often seen in simple sorting algorithms like Bubble Sort, where each element is compared to every other element.

3.3 Time Complexity

Complexity Classes: Includes constant O(1), logarithmic $O(\log n)$, linear O(n), quadratic $O(n^2)$, and more. Helps in understanding the efficiency of algorithms.

3.4 Dominant Terms

Identifying Dominant Terms: In expressions like $5n^2 + 3n \log n$, the term $5n^2$ is dominant, leading to $O(n^2)$.

3.5 Big-Oh Notation Properties

Rules: Includes the rule of sums $O(f + g) = O(\max\{f, g\})$ and products $O(f \cdot g) = O(f) \cdot O(g)$.

3.6 Computational Complexity

Nested Loops: Analyzing loops within loops to determine total complexity, such as $O(n(\log n)^2)$ for certain nested structures.

3.7 Master Theorem

The Master Theorem provides a way to solve recurrence relations of the form:

$$T(n) = aT\left(\frac{n}{h}\right) + f(n)$$

where $a \geq 1$, b > 1, and f(n) is an asymptotically positive function. The theorem helps determine the asymptotic behavior of T(n) by comparing f(n) with $n^{\log_b a}$.

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then:

$$T(n) = \Theta(n^{\log_b a})$$

2. If $f(n) = \Theta(n^{\log_b a})$, then:

$$T(n) = \Theta(n^{\log_b a} \log n)$$

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant c < 1 and sufficiently large n, then:

$$T(n) = \Theta(f(n))$$

The Master Theorem is widely used in analyzing the time complexity of divide-and-conquer algorithms, such as Merge Sort and Quick Sort.

3.8 Heap Operations

Basic Heap Properties:

- A heap is a complete binary tree
- In a max-heap, for each node i: parent.key \geq children.key
- In a min-heap, for each node i: parent.key \leq children.key

Array Representation: For a node at index i:

• Parent: $\lfloor i/2 \rfloor$

• Left child: 2i

• Right child: 2i + 1

Figure 3: *
Array indices in heap

MAX-HEAPIFY Operation:

- 1. Compare root with children
- 2. If child is larger, swap with largest child
- 3. Recursively heapify affected subtree

Figure 4: *
MAX-HEAPIFY example

BUILD-MAX-HEAP Operation:

- 1. Start from last non-leaf node $(\lfloor n/2 \rfloor)$
- 2. Apply MAX-HEAPIFY to each node up to root

Figure 5: *
BUILD-MAX-HEAP example

HEAPSORT Operation:

- 1. BUILD-MAX-HEAP
- 2. Repeatedly:

- Swap root with last element
- Reduce heap size by 1
- MAX-HEAPIFY root

COUNTING-SORT Overview: A non-comparison based sorting algorithm that works in O(n+k) time, where n is the number of elements and k is the range of input.

Key Properties:

- Stable sorting algorithm
- Works best when k = O(n)
- Requires extra space for counting array C and output array B
- Input must be non-negative integers

Algorithm Steps:

- 1. Initialize counting array C[0..k] to all zeros
- 2. Count occurrences of each element in input array A
- 3. Compute cumulative sums in C
- 4. Build output array B using C as position guide

Pseudocode:

1: function COUNTING-SORT(A, B, k)let C[0..k] be a new array 2: for $i \leftarrow 0$ to k do 3: $C[i] \leftarrow 0$ 4: end for 5: for $i \leftarrow 1$ to A.length do 6: $C[A[i]] \leftarrow C[A[i]] + 1$ 7: end for 8: for $i \leftarrow 1$ to k do 9: $C[i] \leftarrow C[i] + C[i-1]$ 10: end for 11: 12: for $j \leftarrow A.length$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ 13: $C[A[j]] \leftarrow C[A[j]] - 1$ 14: end for 15: 16: end function

Array States During Execution:

- After counting (C[i] = frequency of i):
 - Each C[i] contains count of elements equal to i
- After cumulative sums:
 - Each C[i] contains count of elements $\leq i$
 - -C[i] represents position after which next i should go
- During output array construction:
 - Process input from right to left
 - Use C[A[j]] as position index in B
 - Decrement C[A[j]] after each placement

Time Complexity Analysis:

- Initialize C: O(k)
- Count frequencies: O(n)

- Compute cumulative sums: O(k)
- Build output array: O(n)
- Total: O(n+k)

Space Complexity:

- Array C: O(k)
- Array B: O(n)
- Total: O(n+k)

Key Insights:

- Processing from right to left ensures stability
- Cumulative sum array C determines final positions
- No comparisons between elements needed
- Efficient when range of input is not too large

Common Applications:

- Sorting integers with known range
- As subroutine in Radix Sort
- When stability is required
- When input range is O(n)

4 Graph Algorithms

4.1 Graph Representations

4.1.1 Graph Transpose

Problem Type: Computing transpose G^T of a directed graph G = (V, E)

What to Look For:

- Graph representation type (matrix/list)
- Direction of edges must be reversed
- Time complexity analysis required

Key Definitions:

- $G^T = (V, E^T)$ where $E^T = \{(v, u) \mid (u, v) \in E\}$
- |V| = n (number of vertices)
- |E| (number of edges)

Solution for Adjacency Matrix:

1. Given matrix M_G , create M_G^T by swapping entries:

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} m_{11} & m_{21} & \cdots & m_{n1} \\ m_{12} & m_{22} & \cdots & m_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ m_{1n} & m_{2n} & \cdots & m_{nn} \end{pmatrix}$$

2. Example:

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

- 3. Time Complexity: $\Theta(n^2)$
 - Must swap $n^2 n$ entries (excluding diagonal)
 - Each swap is O(1)

Solution for Adjacency List:

- 1. Create empty adjacency lists for G^T : O(n)
- 2. For each vertex v in G:
 - For each edge (v, w) in v's adjacency list
 - Add v to w's list in G^T
- 3. Time Complexity: $\Theta(|V| + |E|)$
 - Creating lists: O(|V|)
 - Processing edges: O(|E|)

Comparison:

- Matrix: $\Theta(n^2)$ always
- List: $\Theta(|V| + |E|)$ which is better for sparse graphs
- List requires more complex implementation

Common Mistakes to Avoid:

- Don't forget self-loops (diagonal elements)
- Don't count diagonal elements in matrix swaps
- Remember to initialize all new lists in adjacency list solution
- Don't confuse |V| and |E| in complexity analysis

4.2 Shortest Paths

4.2.1 Dijkstra's Algorithm Limitations

Problem Type: Counterexample for Dijkstra with negative weights

What to Look For:

- Directed graph with negative weights
- Minimal example showing algorithm failure
- Negative cycle demonstration

Solution:

1. Consider this directed graph:

- 2. Why Dijkstra fails:
 - Initial distance to a: -4
 - After one cycle: -5
 - After two cycles: -6
 - Continues to decrease indefinitely

Key Properties:

- Any negative cycle causes Dijkstra to fail
- Algorithm assumes:
 - Edge weights are non-negative
 - Shortest paths exist (no negative cycles)
- For negative weights, use Bellman-Ford instead

Common Mistakes to Avoid:

- Single negative edge isn't enough
- Example must have negative total cycle weight

5 Exercises

5.1 Exercise 1.1: Sorting Complexity

Problem: A sorting method with "Big-Oh" complexity $O(n \log n)$ spends exactly 1 millisecond to sort 1,000 data items. Given this, estimate how long it will take to sort 1,000,000 items.

Solution Steps:

- 1. Understand the Problem: You need to find out how long it will take to sort 1,000,000 items using the given complexity.
- 2. Identify Known Values:
 - T(1,000) = 1ms
 - Complexity is $O(n \log n)$
- 3. Calculate Constant c:
 - Formula: $T(n) = c \cdot n \log n$
 - Use T(1,000) = 1ms to find c:

$$c = \frac{1ms}{1,000 \log 1,000}$$

- 4. Calculate T(1,000,000):
 - Use the formula $T(n) = c \cdot n \log n$
 - Substitute n = 1,000,000:

$$T(1,000,000) = c \cdot 1,000,000 \cdot \log 1,000,000$$

- 5. Simplify the Expression:
 - Calculate log 1,000,000
 - Multiply and simplify to find the time in seconds

Exam Note: Remember that $O(n \log n)$ complexity means the time increases logarithmically with the size of the data.

Hint: To solve similar exercises, focus on understanding the relationship between the given complexity and the time it takes to process a certain amount of data. Use the formula $T(n) = c \cdot f(n)$ to calculate the constant c and then use it to find the time for a different amount of data.

5.2 Exercise 1.2: Quadratic Algorithm

Problem: A quadratic algorithm with processing time $T(n) = cn^2$ spends 1ms for 100 items. Calculate the time for 5,000 items.

Solution Steps:

- 1. Understand the Problem: You need to calculate the time for 5,000 items given the complexity.
- 2. Identify Known Values:
 - T(100) = 1ms
 - Complexity is $O(n^2)$
- 3. Calculate Constant c:

- Formula: $T(n) = c \cdot n^2$
- Use T(100) = 1ms to find c:

$$c = \frac{1ms}{100^2}$$

- 4. Calculate T(5,000):
 - Use the formula $T(n) = c \cdot n^2$
 - Substitute n = 5,000:

$$T(5,000) = c \cdot (5,000)^2$$

- 5. Simplify the Expression:
 - Calculate $(5,000)^2$
 - Multiply and simplify to find the time in milliseconds.

Exam Note: Quadratic complexity $O(n^2)$ means time increases with the square of the data size.

Hint: To solve similar exercises, focus on understanding the relationship between the given complexity and the time it takes to process a certain amount of data. Use the formula $T(n) = c \cdot f(n)$ to calculate the constant c and then use it to find the time for a different amount of data.

5.3 Exercise 1.3: Time Complexity

Problem: Given $T(n) = c \cdot f(n)$, where f(n) = n or $f(n) = n^3$, calculate the time for 100,000 items.

Solution Steps:

- 1. Understand the Problem: You need to calculate the time for different functions f(n).
- 2. Identify Known Values:
 - T(1,000) = 10s
 - Functions f(n) = n and $f(n) = n^3$
- 3. Calculate Constant c for Each Function:
 - Use T(1,000) = 10s to find c for each f(n).
- 4. Calculate T(100,000) for Each Function:
 - For f(n) = n, compute T(100, 000).
 - For $f(n) = n^3$, compute T(100,000).
- 5. Simplify the Expressions:
 - Calculate the necessary values and simplify.

Exam Note: Understand how different functions f(n) affect time complexity.

Hint: To solve similar exercises, focus on understanding the relationship between the given complexity and the time it takes to process a certain amount of data. Use the formula $T(n) = c \cdot f(n)$ to calculate the constant c and then use it to find the time for a different amount of data.

5.4 Exercise 1.4: Dominant Terms

Problem: Analyze expressions to find dominant terms and Big-Oh complexity.

Solution Steps:

- 1. Understand the Problem: You need to identify the dominant term in each expression.
- 2. Analyze Each Expression:
 - Look for the term that grows fastest as *n* increases.
 - Example: For the expression $5n^2 + 3n \log n$, the term $5n^2$ grows faster than $3n \log n$.
- 3. Determine Big-Oh Notation:
 - Use the dominant term to find the Big-Oh notation.
 - Example: $5n^2 + 3n \log n$ is $O(n^2)$.
- 4. Practice with Examples:

• Expression: $n^3 + n^2 \log n$

• Dominant Term: n^3

• Big-Oh: $O(n^3)$

Exam Note: Focus on the term that grows fastest as n increases.

Hint: To solve similar exercises, focus on identifying the dominant term in each expression. Use the properties of logarithms and powers of n to analyze the relationships between terms and determine the Big-Oh notation.

Expression	Big-Oh
$5 + 0.001n^3 + 0.025n$	$O(n^3)$
$500n + 100n^{1.5} + 50n\log_{10}n$	$O(n^{1.5})$
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	$O(n^{1.75})$
$n^2 \log_2 n + n(n \log n)^2$	$O(n^2 \log n)$
	$O(n \log n)$
$3\log_8 n + \log_2 \log_2 \log_2 n$	$O(\log n)$
$100n + 0.01n^2$	$O(n^2)$
$0.01n + 100n^2$	$O(n^2)$
$2n + n^{0.5} + 0.5n^{1.25}$	$O(n^{1.25})$
$0.01n\log_2 n + n(\log_2 n)^2$	$O(n(\log n)^2)$
$100n\log_3 n + n^3 + 100n$	$O(n^3)$
$0.003\log_4 n + \log_2\log_2 n$	$O(\log n)$

Table 1: Dominant terms and Big-Oh notation for various expressions.

Exam Note: Focus on the term that grows fastest as n increases.

Hint: To solve similar exercises, focus on identifying the dominant term in each expression. Use the properties of logarithms and powers of n to analyze the relationships between terms and determine the Big-Oh notation.

5.5 Exercise 1.5: Big-Oh Notation

Problem: Determine if statements about Big-Oh notation are true or false.

Solution Steps:

- 1. Understand the Problem: You need to evaluate the truth of each statement about Big-Oh notation.
- 2. Evaluate Each Statement:
 - Rule of Sums: $O(f+g) = O(\max\{f,g\})$
 - Rule of Products: $O(f \cdot g) = O(f) \cdot O(g)$
 - Transitivity: If g = O(f) and h = O(g), then h = O(f)
- 3. Correct Any False Statements:
 - If a statement is false, provide the correct formula.
 - Example: If O(f+g) = O(f) + O(g) is false, correct it to $O(f+g) = O(\max\{f,g\})$

Exam Note: Understand the properties of Big-Oh notation and be able to apply them to different scenarios.

Hint: To solve similar exercises, focus on understanding the properties of Big-Oh notation. Use the rules of sums, products, and transitivity to evaluate the truth of each statement.

Statement	Evaluation
Rule of sums: $O(f+g) = O(f)+$	FALSE
O(g)	
Rule of products: $O(f \cdot g) =$	TRUE
$O(f) \cdot O(g)$	
Transitivity: if $g = O(f)$ and	FALSE
h = O(f) then $g = O(h)$	
$5n + 8n^2 + 100n^3 = O(n^4)$	TRUE
$5n + 8n^2 + 100n^3 = O(n^2 \log n)$	FALSE

Table 2: Evaluation of Big-Oh notation statements.

Exam Note: Understand the properties of Big-Oh notation and be able to apply them to different scenarios.

Hint: To solve similar exercises, focus on understanding the properties of Big-Oh notation. Use the rules of sums, products, and transitivity to evaluate the truth of each statement.

5.6 Exercise 1.6: Computational Complexity

Problem: Analyze the complexity of a given algorithm.

Solution Steps:

- 1. Understand the Problem: You need to break down the algorithm to find its complexity.
- 2. Analyze Each Loop:
 - Identify the number of iterations for each loop.

- Example: For a loop running from 1 to n, the complexity is O(n).
- 3. Combine Results for Total Complexity:
 - Multiply the complexities of nested loops.
 - Example: A loop inside another loop, both running n times, results in $O(n^2)$.
- 4. Simplify the Total Complexity:
 - Combine terms to find the overall complexity.
 - Example: If you have $O(n^2) + O(n)$, the dominant term is $O(n^2)$.

Exam Note: Pay close attention to nested loops and their impact on complexity. Practice breaking down algorithms into their basic components to understand their efficiency.

Hint: To solve similar exercises, focus on breaking down the algorithm into its basic components. Analyze each loop and combine the results to find the total complexity.

5.7 Exercise 2: Binary Search Tree Property

Problem: Consider a binary search tree T whose keys are distinct. Show that if the right subtree of a node x in T is empty and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x. (Recall that every node is its own ancestor.)

Solution: Let's prove this by contradiction:

- 1. First, observe that since x has no right subtree, its successor y must be an ancestor of x.
 - This is because in a BST, if x had any right child, its successor would be in that subtree.
 - Since there is no right subtree, we must go up the tree to find a larger value.
- 2. Assume for contradiction that there exists a node $z \neq y$ that is:
 - The lowest ancestor of x whose left child is an ancestor of x
 - Different from y (the successor of x)

Figure 6: *
Contradiction in BST property

This leads to a contradiction because:

- Since x is in the left subtree of y: x.key < y.key
- Since z is an ancestor of y: y.key < z.key
- But y is the successor of x, so there can't be any value z.key between x.key and y.key
- Therefore, z must be y

Thus, y (the successor of x) must be the lowest ancestor of x whose left child is also an ancestor of x.

5.8 Exercise 2.1: Heap Structure

Problem: Viewing a heap as a tree, we define the height of a node in a heap to be the number of edges on the longest simple downward path from the node to a leaf, and we define the height of the heap to be the height of its root. What are the minimum and maximum numbers of elements in a heap of height h?

Solution: From the previous exercise (in particular its solution) we have seen that

$$2^h < n < 2^{h+1} - 1$$

where h is the height of the complete binary tree. By taking the logarithm lg in base 2 at each term of the above sequence of inequalities, since lg is a monotone increasing function we have

$$h \le \ln n \le \ln(2^{h+1} - 1)$$

Now it is enough to note that

$$h = \ln 2^h < \ln n < \ln(2^{h+1} - 1) < h + 1$$

Thus we have

$$h = |h| \le |\ln n| \le |\ln(2^{h+1} - 1)| = h$$

Figure 7: *
Simple Binary Tree Representing a Heap

Hint: To solve similar exercises, focus on understanding the structure of heaps and binary trees. Use the properties of logarithms and powers of 2 to analyze the relationships between nodes and height.

5.9 Exercise 2.2: Heap Height

Problem: Show that an *n*-element heap has height $|\lg n|$. (Where $\lg(\cdot)$ denotes logarithm in base 2).

Solution: From the previous exercise (in particular its solution) we have seen that

$$2^h \le n \le 2^{h+1} - 1$$

where h is the height of the complete binary tree. By taking the logarithm \lg in base 2 at each term of the

above sequence of inequalities, since lg is a monotone increasing function we have

$$h \le \ln n \le \ln(2^{h+1} - 1)$$

Now it is enough to note that

$$h = \ln 2^h \le \ln n \le \ln(2^{h+1} - 1) < h + 1$$

Thus we have

$$h = |h| \le |\ln n| \le |\ln(2^{h+1} - 1)| = h$$

Hint: To solve similar exercises, focus on understanding the structure of heaps and binary trees. Use the properties of logarithms and powers of 2 to analyze the relationships between nodes and height.

5.10 Exercise 2.4: Recursive Algorithm Running Time

Problem: We consider the running time of a recursive algorithm y(n). Suppose that y(n) verifies the following:

1.

$$\begin{cases} y(1) = 0 \\ y(n) = y\left(\frac{n}{2}\right) + 1 & n \ge 1 \end{cases}$$

If possible, calculate the running time.

2.

$$\begin{cases} y(1) = 0 \\ y(n) = 3y\left(\frac{n}{4}\right) + n^2 \log_2 n & n \ge 1 \end{cases}$$

If possible, calculate the running time.

3.

$$\begin{cases} y(1) = 0 \\ y(n) = 5y\left(\frac{n}{3}\right) + \log_2 n & n \ge 1 \end{cases}$$

If possible, calculate the running time.

Solution: Using the Master Theorem:

- 1. We have $a=1,\ b=2,$ and f(n)=1. Since $n^{\log_b a}=n^0=1,$ we have $f(n)=\Theta(1).$ Thus we are in case II of the Master Theorem. So $T(n)=\Theta(\ln n).$
- 2. We have a=3, b=4, and $f(n)=n^2\log_2 n$. Since $n^{\log_b a}=n^{\log_4 3}$, we have $f(n)=\Omega(n^{\log_4 3+\epsilon})$ for some $\epsilon>0$. Therefore, for the Master Theorem (case 3), we have $T(n)=\Theta(n^2\ln n)$.
- 3. We have a=5, b=3, and $f(n)=\log_2 n$. Since $n^{\log_b a}=n^{\log_3 5}>n$, we have $f(n)=O(n^{\log_3 5-\epsilon})$ for some $\epsilon>0$. Therefore, we are in case 1 of the Master Theorem, and so $T(n)=\Theta(n^{\log_3 5})$.

Conclusion: To apply the Master Theorem, follow these steps:

1. Identify the parameters a, b, and f(n) from the recurrence relation. 2. Calculate $n^{\log_b a}$ to compare with f(n). 3. Determine which case of the Master Theorem applies: - Case 1: If f(n) grows slower than $n^{\log_b a}$, then $T(n) = \Theta(n^{\log_b a})$. - Case 2: If f(n) grows at the same rate as $n^{\log_b a}$, then $T(n) = \Theta(n^{\log_b a} \log n)$. - Case 3: If f(n) grows faster

than $n^{\log_b a}$, then check the regularity condition. If it holds, $T(n) = \Theta(f(n))$.

This approach helps in determining the asymptotic behavior of recursive algorithms efficiently.

Hint: To solve similar exercises, identify the parameters a, b, and f(n) in the recurrence relation, and apply the Master Theorem to determine the running time.

5.11 Exercise 3.1: HEAPSORT Operations

Problem: Using the figure in slide 25 of the slide of week 2 as a model, illustrate the operations of HEAP-SORT on the array

$$A = \{5, 13, 2, 25, 7, 17, 20, 8, 4\}$$

Solution: Let's break down the HEAPSORT process into detailed steps:

- 1. Build Max-Heap (BUILD-MAX-HEAP):
- Start with the array as a binary tree (parent at i, children at 2i and 2i + 1)
- For each non-leaf node from $\lfloor n/2 \rfloor$ down to 1:
 - Call MAX-HEAPIFY on that node
 - This ensures the subtree rooted at each node satisfies max-heap property
- 2. Extract and Sort (HEAPSORT):
- For i from n down to 2:
 - Swap A[1] (root) with A[i] (last element)
 - Reduce heap size by 1
 - Call MAX-HEAPIFY on root (1) to maintain max-heap property

Detailed Process for Our Array:

- 1. Initial array: {5, 13, 2, 25, 7, 17, 20, 8, 4}
- 2. BUILD-MAX-HEAP:
 - Start from last non-leaf node (|9/2| = 4)
 - Apply MAX-HEAPIFY at each level up to root
 - Results in max-heap with 25 at root
- 3. HEAPSORT Process:
 - Swap 25 with last element, heapify remaining
 - Swap new max with second-to-last, heapify
 - Continue until all elements processed
- 4. Final sorted array: $\{2, 4, 5, 7, 8, 13, 17, 20, 25\}$

Key Operations:

- MAX-HEAPIFY(A, i): Ensures subtree at index i maintains max-heap property
- BUILD-MAX-HEAP(A): Converts array into max-heap
- HEAPSORT(A): Repeatedly extracts maximum and rebuilds heap

Figure 8: *

 $\begin{array}{c} \text{HEAPSORT steps: Initial} \rightarrow \text{BUILD-MAX-HEAP} \rightarrow \text{First} \\ \text{extraction} \end{array}$

Note: The process continues similarly until all elements are sorted. At each step:

- The largest element moves to the root
- We swap it with the last element of the current heap
- We reduce the heap size and MAX-HEAPIFY the root

Hint: To solve similar exercises:

- 1. Draw the initial array as a complete binary tree
- 2. Apply BUILD-MAX-HEAP by working bottom-up
- 3. For each HEAPSORT step:
 - Draw the current heap state
 - Show the swap operation
 - Show the heapified result
- 4. Keep track of the sorted portion at the end of the array

5.12 Exercise 3.2: Tree Predecessor

Problem: Write the TREE-PREDECESSOR procedure.

Solution: To obtain TREE-PREDECESSOR(x) procedure, we replace in TREE-SUCCESSOR(x) "left" instead of "right" and "MAXIMUM" instead of "MINIMUM".

```
1: procedure Tree-Predecessor(x)
       if x.right \neq NIL then
           return Tree-Maximum(x.left)
 3:
       end if
 4:
       y \leftarrow x.p
 5:
       while y \neq NIL and x = y.left do
 6:
 7:
           x \leftarrow y
           y \leftarrow y.p
 8:
       end while
 9:
10:
       return y
11: end procedure
```


Figure 9: *

Example: Predecessor of 15 is 13 (maximum in left subtree)

Explanation:

- Case 1: If x has a left subtree, the predecessor is the maximum element in that subtree
- Case 2: If no left subtree exists, we go up the tree until we find a node that is a right child
- The predecessor's key is the largest key in the tree smaller than x.key

5.13 Exercise 3.4: Binary Search Tree Insertion

Problem: Let T be a Binary Search Tree. Prove that it always possible to insert a node z as a leaf of the tree T with z.key = r.

Solution: This is a straightforward property of Binary Search Trees. We prove this by induction on the height of the tree.

- **Base case** (h = 0):
 - Tree consists only of root node x
 - If $r \leq x.key$: place z as left child of x
 - If r > x.key: place z as right child of x

• Inductive step:

- Assume the statement is true for trees of height h-1
- For a tree of height h with root x:
 - * If $r \leq x.key$: insert in left subtree
 - * If r > x.key: insert in right subtree
- By inductive hypothesis, we can insert in the chosen subtree (height h-1)

Figure 10: *

Example: Inserting node with key=12 (shown in red)

Key Points:

- The BST property ensures we can always find a valid leaf position
- At each step, we reduce the problem to a smaller subtree

- The process terminates when we reach a NULL child pointer
- Insertion maintains the BST property

5.14 Exercise 3.2: Tree Predecessor

Problem: Write the TREE-PREDECESSOR procedure.

Solution: To obtain TREE-PREDECESSOR(x) procedure, we replace in TREE-SUCCESSOR(x) "left" instead of "right" and "MAXIMUM" instead of "MIN-IMUM".

```
1: procedure Tree-Predecessor(x)
       if x.right \neq NIL then
          return Tree-Maximum(x.left)
 3:
       end if
 4:
 5:
       y \leftarrow x.p
       while y \neq NIL and x = y.left do
 6:
 7:
 8:
          y \leftarrow y.p
       end while
 9:
10:
       return y
11: end procedure
```


Figure 11: *

Example: Predecessor of 15 is 13 (maximum in left subtree)

Explanation:

- Case 1: If x has a left subtree, the predecessor is the maximum element in that subtree
- Case 2: If no left subtree exists, we go up the tree until we find a node that is a right child
- The predecessor's key is the largest key in the tree smaller than x.key

5.15 Exercise 3.4: Binary Search Tree Insertion

Problem: Let T be a Binary Search Tree. Prove that it always possible to insert a node z as a leaf of the tree T with z.key = r.

Solution: This is a straightforward property of Binary Search Trees. We prove this by induction on the height of the tree.

Proof. • Base case (h = 0):

- Tree consists only of root node x
- If $r \leq x.key$: place z as left child of x

- If r > x.key: place z as right child of x

• Inductive step:

- Assume the statement is true for trees of height h-1
- For a tree of height h with root x:
 - * If $r \leq x.key$: insert in left subtree
 - * If r > x.key: insert in right subtree
- By inductive hypothesis, we can insert in the chosen subtree (height h-1)

П

Figure 12: *

Example: Inserting node with key=12 (shown in red)

Key Points:

- The BST property ensures we can always find a valid leaf position
- At each step, we reduce the problem to a smaller subtree
- The process terminates when we reach a NULL child pointer
- Insertion maintains the BST property

5.16 Exercise 3.5: Binary Search Tree Deletion

Problem: Let T be a Binary Search Tree given in the figure below. Give the output tree after the call of TREE-DELETE(T,z) where z is the node with key 41.

Figure 13: *

Initial Binary Search Tree with node 41 to be deleted

Algorithm: TREE-DELETE(T, z)

```
1: procedure TREE-DELETE(T, z)
       if z.left = NIL then
2:
            Transplant(T, z, z.right)
3:
        else if z.right = NIL then
4:
            Transplant(T, z, z.left)
5:
6:
       else
           y \leftarrow \text{Tree-Minimum}(z.right)
7:
           if y.p \neq z then
8:
               Transplant(T, y, y.right)
9:
               y.right \leftarrow z.right
10:
               y.right.p \leftarrow y
11:
            end if
12:
            Transplant(T, z, y)
13:
           y.left \leftarrow z.left
14:
            y.left.p \leftarrow y
15:
        end if
16:
17: end procedure
```

Solution: Let's solve this step by step following the TREE-DELETE algorithm:

1. Analyze the node to be deleted (41):

- Node 41 has two children: 16 (left) and 53 (right)
- Since it has two children, we fall into the third case (lines 7-15)
- We need to find its successor to replace it

2. Find the successor of 41 (lines 7):

- Call TREE-MINIMUM(z.right) to find successor
- Right subtree starts at node 53
- Follow left pointers: $53 \rightarrow 46 \rightarrow 42$
- Node 42 has no left child, so it's the successor

3. Handle successor's position (lines 8-11):

- Check if successor (42) is not a direct child of 41
- Since 42 is not direct child (it's grandchild), we:
 - Replace 42 with its right child (NIL in this case)
 - Make 42 point to 41's right child (53)
 - Make 53's parent point to 42

4. Complete the replacement (lines 12-14):

- Replace 41 with 42 using TRANSPLANT
- Make 42 point to 41's left child (16)
- Make 16's parent point to 42

Figure 14: *

Finding successor: Node to delete (41) in red, successor (42) in blue

Figure 15: *

Final Binary Search Tree after deleting node 41

Key Points for Tree Deletion:

- There are three cases when deleting a node:
 - 1. Node has no children (leaf node):
 - Simply remove it by setting parent's pointer to NIL
 - Example: Deleting a leaf like node 25
 - 2. Node has one child:
 - Replace node with its only child
 - Update parent pointers
 - Example: If node 16 had only child 25
 - 3. Node has two children:
 - Find successor (smallest value in right subtree)
 - Replace node with successor
 - Handle successor's original position
 - Example: Node 41 in our case
- Finding the successor (TREE-MINIMUM):
 - Start at node's right child
 - Keep following left pointers until NIL
 - Last node found is successor
 - Important: Successor never has a left child
- TRANSPLANT operation:
 - Used to replace one subtree with another
 - Updates parent pointers correctly
 - Handles special case of root node
 - Does not handle child pointers of moved nodes

Verification: After deletion:

- Node 42 maintains BST property:
 - Left subtree (16, 25) contains values < 42

- Right subtree (53, 46, 55) contains values > 42
- Tree structure remains valid:
 - All parent-child pointers are correct
 - No nodes were lost or duplicated
- BST invariants are preserved:
 - For every node: left subtree values < node key < right subtree values
 - Tree remains connected
 - No cycles are created

Exercise 4.1: Quicksort Partitioning 5.17Worst Case

Problem: Prove that the worst case in Partitioning Algorithm (for Quicksort) has running time $\Theta(n^2)$, where n is the cardinality of the set of elements in the partitioning.

Solution: We provide both an intuitive proof and a formal proof by induction.

Part 1: Intuitive Proof

1. Worst Case Scenario:

- At each step, we get maximally unbalanced partitions:
- A k-1 element array and an empty array
- This happens when pivot is always smallest/largest element

2. Recurrence Relation: Let T(n) be the running time of Quicksort with Partition:

- Splitting time is linear: $\Theta(k)$ for array of size
- Base case: T(0) is constant, so $T(0) = \Theta(1)$
- For size k: $T(k) = T(k-1) + T(0) + \Theta(k)$
- Simplifies to: $T(k) = T(k-1) + \Theta(k)$

3. Solving the Recurrence:

$$T(n) = T(n-1) + \Theta(n)$$

$$= T(n-2) + \Theta(n-1) + \Theta(n)$$

$$= T(n-3) + \Theta(n-2) + \Theta(n-1) + \Theta(n)$$

$$\vdots$$

$$= T(0) + \sum_{i=1}^{n} \Theta(i)$$

4. Final Step:

- Sum is arithmetic series: $\sum_{i=1}^{n} i$
- Using identity: $\sum_{i=1}^{n} i = \frac{\overline{n(n+1)}}{2}$ Therefore: $T(n) = \Theta(n^2)$

Part 2: Formal Proof by Induction

- 1. Claim: $T(n) = \Theta(n^2)$ for worst-case running time
- 2. Precise Statement:

- For all 0 < m < n: $T(m) = \Theta(m^2)$
- This means $\exists c_1, d_1 > 0 : c_1 m^2 \leq T(m) \leq$
- Partition time $P(m) = \Theta(m)$, so $\exists c_2, d_2 > 0$: $c_2 m \le P(m) + T(0) \le d_2 m$

3. Constants:

- Let $c = \min\{c_1, c_2\}$ and $d = \max\{d_1, d_2, 1\}$
- Then for all $m \ge n 1$: $cm^2 \le T(m) \le dm^2$
- And for all $m \ge n$: $2cm \le T(0) + P(m) \le dm$

4. Inductive Step:

$$T(n) = T(n-1) + T(0) + P(n)$$

$$c(n-1)^2 + 2cn \le cn^2 - 2cn + 1 + 2cn = cn^2 + 1$$

$$d(n-1)^2 + dn \le dn^2 - dn + 1 \le dn^2$$

Therefore: $cn^2 < T(n) \le dn^2$, proving T(n) = $\Theta(n^2)$

Key Insights:

- The worst case occurs with extremely unbalanced partitions
- Each partition step costs linear time
- The cumulative effect leads to quadratic runtime
- Both intuitive and formal proofs confirm $\Theta(n^2)$ complexity

Exercise 4.2: COUNTING-SORT Al-5.18 gorithm

Problem: We apply COUNTING-SORT with the input vector A = (5, 6, 5, 3, 3, 7, 4, 4, 4, 5, 3, 8, 8). Let Cand B be the arrays mentioned in the pseudocode of COUNTING-SORT. Answer the following questions:

- 1. What is C[7] after the for loop at lines 7-8 of the pseudocode?
- 2. What is B[13] after the first cycle at line 10?
- 3. What is C[8] after the first cycle?

Solution: Let's solve this step by step following the COUNTING-SORT algorithm.

1. Algorithm Overview:

- Input array A = (5, 6, 5, 3, 3, 7, 4, 4, 4, 5, 3, 8, 8)with k = 8 (max value)
- Array C[0..k] is used for counting and cumulative
- Array B[1..n] will store the sorted output

2. Step-by-Step Execution:

- 1. Initialize array C:
 - Create C[0..8] initialized to zeros
 - C = [0, 0, 0, 0, 0, 0, 0, 0, 0]
- 2. Count elements (lines 3-4):
 - Count occurrences of each value in A
 - After this step: C = [0, 0, 0, 3, 3, 3, 1, 1, 2]

• Meaning: three 3s, three 4s, three 5s, one 6, one 7, two 8s

3. Compute cumulative sums (lines 5-6):

- ullet Transform C into cumulative counts
- C = [0, 0, 0, 3, 6, 9, 10, 11, 13]
- Therefore, C[7] = 11 (Answer to Question 1)

4. Build sorted array (lines 7-8):

- Process A from right to left
- \bullet Place elements in B based on C values
- After first cycle (processing last element 8):
 - -B[13] = 8 (Answer to Question 2)
 - C[8] is decremented to 12 (Answer to Question 3)
- Final sorted array: B = [3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 8, 8]

Key Insights:

- The cumulative sum array C helps maintain stability by tracking positions
- Processing from right to left ensures stability
- C[i] represents the position after which the next element i should be placed
- ullet Each placement decrements the corresponding counter in C

Final Answers:

- 1. C[7] = 11
- 2. B[13] = 8
- 3. C[8] = 12

5.19 Exercise 5.1: BUILDKDTREE Algorithm

Problem: We apply BUILDKDTREE(P, 0) to the following set P of points in the plane:

$$P = \{(1,3), (12,1), (4,5), (5,4), (10,11), (8,2), (2,7)\}$$

Answer the following questions:

- 1. Give the height of the tree
- 2. How many leaves are there?
- 3. The second leaf (starting from left) is the point with first coordinate...

Solution: Let's solve this step by step following the BUILDKDTREE algorithm.

1. Algorithm Review:

- At even depths (0,2,...): split on x-coordinate (vertical line)
- At odd depths (1,3,...): split on y-coordinate (horizontal line)
- Each split creates a new level in the tree
- Points are recursively divided into left and right subsets

2. Step-by-Step Construction:

1. Root Level (depth 0, x-split):

- Sort by x-coordinate: (1, 3), (2, 7), (4, 5), (5, 4), (8, 2), (10, 11), (12, 1)
- Median point (5,4) becomes root ℓ_1
- Left subset: $\{(1,3),(2,7),(4,5)\}$
- Right subset: $\{(8,2), (10,11), (12,1)\}$

2. Level 1 (depth 1, y-split):

- Left subset sorted by y: (1,3), (4,5), (2,7)
- Right subset sorted by y: (12, 1), (8, 2), (10, 11)
- Medians (2,7) and (10,11) become nodes ℓ_2 and ℓ_3

3. Level 2 (depth 2, x-split):

- Split remaining points into leaf nodes
- Left of ℓ_2 : (1,3),(4,5) become leaves under ℓ_4
- Left of ℓ_3 : (8,2),(12,1) become leaves under ℓ_6

Figure 16: *
Points in 2D plane

Figure 17: *
Final KD-Tree structure

3. Answers:

- 1. Height of the tree = 3 (counting levels from 0)
- 2. Number of leaves = 7 (each original point becomes a leaf)
- 3. Second leaf from left = $x_4 = (4, 5)$

Key Insights:

- The tree is built by alternating between x and y coordinates
- Each internal node represents a splitting line
- Vertical splits (even depths) compare x-coordinates
- Horizontal splits (odd depths) compare ycoordinates
- All original points end up as leaves

5.20 Exercise 5.2: BUILDKDTREE Complexity

Problem: (It is enough to give an intuitive idea) Prove that the BUILDKDTREE for a set of n points has running time $O(n \log n)$ and uses O(n) storage.

Solution: Let's break this down into two parts: storage complexity and runtime complexity.

1. Storage Complexity O(n):

- Each splitting line divides points into two equal parts (up to unity)
- For $n = 2^k$ points, we need $2^k 1$ lines (internal nodes)
- For splitting 2, the total nodes (parents + leaves) is:

$$2^k + 2^{k-1} = n + n/2 = 3n/2 < 3n$$

- For n not a power of 2, there exists t where $2^{t-1} < n < 2^t$
- Number of internal nodes n_p is bounded by:

$$2^{t-2} < n_p < 2^{t-1}$$

• Total nodes (parents + leaves) satisfies:

$$3 \cdot 2^{t-2} < n + n_p < 3 \cdot 2^{t-1}$$

- Therefore: $n + n_p < 3 \cdot 2^{t-1} < 3n$
- Each node uses O(1) storage
- Total storage: $O(1) \cdot O(n) = O(n)$

2. Runtime Complexity $O(n \log n)$:

- BUILDKDTREE is recursive:
 - Each recursion splits n points into two n/2 subsets
 - Split cost is linear (O(n)): finding median in x or y coordinates
- Building time T(n) follows the recurrence:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

- By Master Theorem (as in Merge-Sort):
 - -a=2 (subproblems)
 - -b=2 (size reduction)
 - -f(n) = O(n) (split cost)
 - Case 1: $f(n) = O(n) = \Theta(n^{\log_2 2}) = \Theta(n)$

- Therefore: $T(n) = O(n \log n)$

Key Insights:

- Storage is linear because each point becomes exactly one leaf node
- Runtime is $O(n \log n)$ due to:
 - Linear-time splitting at each level
 - Logarithmic number of levels in the tree