ЛАБОРАТОРНАЯ РАБОТА №5

Вероятностные алгоритмы проверки чисел на простоту

Пусть a — целое число. Числа ± 1 , $\pm a$ называются *тривиальными делителями* числа a.

Целое число $p \in \mathbb{Z}/\{0\}$ называется *простым*, если оно не является делителем единицы и не имеет других делителей, кроме тривиальных. В противном случае число $p \in \mathbb{Z}/\{-1,0,1\}$ называется *составным*.

Например, числа $\pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 17, \pm 19, \pm 23, \pm 29$ являются простыми.

Пусть $m \in N, m > 1$. Целые числа a и b называются сравнимыми по модулю m (обозначается $a \equiv b \pmod{m}$) если разность a - b делится на m. Также эта процедура называется нахождением остатка от целочисленного деления a на b.

Проверка чисел на простоту является составной частью алгоритмов генерации простых чисел, применяемых в криптографии с открытым ключом. Алгоритмы проверки на простоту можно разделить на вероятностные и детерминированные.

Детерминированный алгоритм всегда действует по одной и той же схеме и гарантированно решает поставленную задачу (или не дает никакого ответа). Вероятностный алгоритм использует генератор случайных чисел и дает не гарантированно точный ответ. Вероятностные алгоритмы в общем случае не менее эффективны, чем детерминированные (если используемый генератор случайных чисел всегда дает набор одних и тех же чисел, зависящих от входных данных, то вероятностный алгоритм становится детерминированным).

Для проверки на простоту числа n вероятностным алгоритмом выбирают случайной число a (1 < a < n) и проверяют условия алгоритма. Если число n не проходит тест по основанию a, то алгоритм выдает результат «Число n составное», и число n действительно является составным.

Если же n проходит тест по основанию a, ничего нельзя сказать о том, действительно ли число n является простым. Последовательно проведя ряд проверок таким тестом для разных a и получив для каждого из них ответ «Число n, вероятно, простое», можно утверждать, что число n является простым с вероятностью, близкой к 1. После t независимых выполнений теста вероятность того, что составное число n будет t раз объявлено простым (вероятность ошибки), не превосходит $\frac{1}{2^t}$.

Схема вероятностного алгоритма проверки числа на простоту

 $\mathit{Tecm}\ \Phi epma$ основан на малой теореме Ферма: для простого числа p и произвольного числа $a,\,1\leq a\leq p-1,$ выполняется сравнение

$$a^{p-1} \equiv 1 \ (mod \ p).$$

Следовательно, если для нечетного n существует такое целое a, что $1 \le a < n$, HOД(a,n) = 1 и $a^{n-1} \ne 1 \pmod{n}$, то число n составное. Отсюда получаем следующий вероятностный алгоритм проверки числа на простоту.

1. Алгоритм, реализующий тест Ферма.

Bxo∂. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a \le n 2$.
- 2. Вычислить $r \leftarrow a^{n-1} \pmod{n}$.
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

На шаге 1 мы не рассматривали числа a=1 и a=n-1, поскольку $1^{n-1}\equiv 1 \pmod n$ для любого целого n и $(n-1)^{n-1}\equiv (-1)^{n-1}\equiv 1 \pmod n$ для любого нечетного n.

Тест Соловэя-Штрассена. Основан на критерии Эйлера: нечетное число n является простым тогда и только тогда, когда для любого целого числа $a, 1 \le a \le n-1$, взаимно простого с n, выполняется сравнение:

$$a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \ (mod \ n),$$

где $\left(\frac{a}{n}\right)$ – символ Якоби.

Пусть $m,n\in Z$, где $n=p_1p_2\dots p_r$ и числа $p_i\neq 2$ простые (не обязательно различные). Символ Якоби $\left(\frac{m}{n}\right)$ определяется равенством

$$\left(\frac{m}{n}\right) = \left(\frac{m}{p_1}\right) \left(\frac{m}{p_2}\right) \dots \left(\frac{m}{p_r}\right).$$

> 2. Алгоритм вычисления символа Якоби.

Вход. Нечетное целое число $n \ge 3$, целое число $a, 0 \le a < n$. Выход. Символ Якоби $\left(\frac{a}{n}\right)$.

1. Положить $g \leftarrow 1$.

- 2. При a = 0 результат: 0.
- 3. При a = 1 результат: g.
- 4. Представить a в виде $a = 2^k a_1$, где число a_1 нечетное.
- 5. При четном k положить $s \leftarrow 1$, при нечетном k положить $s \leftarrow 1$, если $n \equiv$ JIII BCKOFC $\pm 1 \pmod{8}$; положить $s \leftarrow -1$, если $n \equiv \pm 3 \pmod{8}$.
- 6. При $a_1 = 1$ результат: $g \cdot s$.
- 7. Если $n \equiv 3 \; (mod \; 4)$ и $a_1 \equiv 3 \; (mod \; 4)$, то $s \leftarrow -s$.
- 8. Положить $a \leftarrow n \pmod{a_1}, n \leftarrow a_1, g \leftarrow g \cdot s$ и вернуться на шаг 2
 - 3. Алгоритм, реализующий тест Соловэя-Штрассена.

Bxo∂. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a < n-2$.
- 2. Вычислить $r \leftarrow a^{\frac{n-1}{2}} \pmod{n}$.
- 3. При $r \neq 1$ и $r \neq n-1$ результат: «Число n составное».
- 4. Вычислить символ Якоби $s \leftarrow \binom{a}{n}$
- 5. При $r \equiv s \pmod{n}$ результат: «Число n составное». В противном случае результат: «Число n, вероятно, простое».

На сегодняшний день для проверки чисел на простоту чаще всего используется тест Миллера-Рабина, основанный на следующем наблюдении. Пусть число n нечетное и $n-1=2^{s}r$, где r – нечетное. Если n простое, то для любого $a \ge 2$, взаимно простого с n, выполняется условие $a^{p-1} \equiv 1 \pmod{p}$.

4. Алгоритм, реализующий тест Миллера-Рабина.

Bxo∂. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Представить n-1 в виде $n-1=2^{s}r$, где число r нечетное.
- 2. Выбрать случайное целое число $a, 2 \le a < n 2$.

- 3. Вычислить $y \leftarrow a^r \pmod{n}$.
- 4. При $y \neq 1$ и $y \neq n-1$ выполнить следующие действия.
 - 4.1.Положить j ← 1.
 - 4.2. Если $j \le s 1$ и $y \ne n 1$, то
 - 4.2.1. Положить $y \leftarrow y^2 \ (mod \ n)$.
 - 4.2.2. При y = 1 результат: «Число n составное».
 - 4.2.3. Положить $j \leftarrow j + 1$.
 - 4.3. При $y \neq n-1$ результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

K. Medhphile Borolo Задания к лабораторной работе

. MB IIP

. MB IIP

. MB TOCYLLADCTBALHHUM YHUBAROCULTATION

CARATOROMYN LOCYLLAROCTBALHHUM YHUBAROCULTATION

CARATOROMYN LOCYLLAROCTBALHUM YHUBAROCTBALHUM YHUBAROCTBALH Реализовать все рассмотренные алгоритмы программно.