

ASDN
Subject: The Analysis and Synthesis of numerical devices

Author: Terman Emil FAF161
Prof: S. Munteanu

1 Objectives

- verify the correct operation of the laboratory bench integrated circuits;
- assemble and adjust the schema of a binary-decimal decoder in the home theme in the AND-NO set;
- assemble and adjust the schema of a binary-decimal encoder in the home theme in the AND-NO set;
- for the assembled circuits the cost and the retention time are determined;

2 Docoder

Encoder: 8 3 2 (-4) Decoder: 5 2 1 1

	Code				Functions									
Decimal numbers	8	3	2	(-4)					Tunc	tions				
	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	У0	<i>y</i> ₁	<i>y</i> ₂	у3	У4	У5	У6	У7	У8	у9
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	1	0	0	0	0	0	0
4	1	0	0	1	0	0	0	0	1	0	0	0	0	0
5	0	1	1	0	0	0	0	0	0	1	0	0	0	0
6	1	0	1	1	0	0	0	0	0	0	1	0	0	0
7	1	1	0	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	1	1	1	0	0	0	0	0	0	0	0	0	1
	0	0	0	1										
	0	0	1	1										
	0	1	0	1										
	1	0	1	0										
	1	1	0	0										
	1	1	1	0										

Tab 1: Code decoder

3 Encoder

Decimal number					Inp	outs						Out	puts	
											5	2	1	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	1
2	0	0	1	0	0	0	0	0	0	0	0	0	1	1
3	0	0	0	1	0	0	0	0	0	0	0	1	0	1
4	0	0	0	0	1	0	0	0	0	0	0	1	1	1
5	0	0	0	0	0	1	0	0	0	0	1	0	0	0
6	0	0	0	0	0	0	1	0	0	0	1	0	1	0
7	0	0	0	0	0	0	0	1	0	0	1	1	0	0
8	0	0	0	0	0	0	0	0	1	0	1	1	1	0
9	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	x_0	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	f_4	f_3	f_2	f_1

Tab 4: Encoder

$$f_1 = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_9}$$

$$f_2 = \overline{x_2} \cdot \overline{x_4} \cdot \overline{x_6} \cdot \overline{x_8} \cdot \overline{x_9}$$

$$f_3 = \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_7} \cdot \overline{x_8} \cdot \overline{x_9}$$

$$f_4 = \overline{x_5} \cdot \overline{x_6} \cdot \overline{x_7} \cdot \overline{x_8} \cdot \overline{x_9}$$

Tab 5: NAND form of decoder functions

4 Circuits

Circuit	Cost	Time
1	28	1
2	30	2

Tab 6: Cost and time

5 Conclusion

This laboratory work taught me how to create circuits for decoders and encoders. They are extremely important parts of circuits and information interchange and processing can't be realized without them.