Antespuerra zambopetras Ha novemo Her vonnenser en cha. Chegetberg Tema 3

1. Предварителни сведения за понятията в заглавието и анотацията.

<u>Дефиниция 1.1</u> (за пръстен)

Нека К е непразно множество, в което са дефинирани следните две операции:

- първата: на всеки два елемента а, b ∈ K съпоставя елемент а + b ∈ K, който се нарича сума
 на а и b
- втората: на всеки два елемента a, b ∈ K съпоставя елемент a.b ∈ K, който се нарича произведение на a и b.

Казваме, че относно тези операций К е пръстен, ако са изпълнени следните условия:

- (1)(a + b) + c = a + (b + c) асоциативност на събирането
- (2) a + b = b + a комутативност на събирането
- (3) съществува нулев елемент $0 \in K$ такъв, че a+0=a, за всяко $a \in K$
- (4) За всяко $a \in K$ съществува противоположен елемент $-a \in K$ такъв, че a + (-a) = 0
- (5) (a.b).c = a.(b.c) асоциативност на умножението
- (6) (a + b).c = a.c + b.c дясна дистрибутивност на умножението
- (7) с.(b + c) = c.a + c.b лява дистрибутивност на умножението

Да споменем, че (1-4), показват, че К е комутативна група относно събирането*1

Казваме, че K е пръстен c единица, ако съществува е \in K, е \neq 0 такъв, че a.e = e.a = a за всяко а \in K. Казваме, че K е *комутативен* ако за всяко a, b \in K a.b=b.a

Дефиниция 1.2 (за поле)

Комутативният пръстен P с единица ще наричаме *поле*, ако единицата не съвпада с нулевия елемент на P и всеки ненулев елемент на P е обратим².

<u>Дефиниция 1.3</u> (за полином)

Нека К е комутативен пръстен. Полином на променлива x над пръстена K, наричаме израз от вида: $f(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + \ldots + a_n x^n$, където $a_0, a_1, \ldots, a_n \in K$ и се наричат коефициенти на f(x).

Полагаме $a_0x^0 = a_0$ и $a_1x^1 = a_1x$. Така, че всеки полином ше има вида $f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ Ако всички коефициенти на f(x) са равни нула, f(x) се нарича нулев **полином**. Ако f(x) е ненулев, тогава най-голямото естествено число n, за което коефициента пред x^n е различен от нула се нарича степен на f(x) и се бележи ct(f(x)) или deg(f(x)). Множеството на всички полиноми над пръстена K се бележи Ct(x). То също е пръстен и Ct(x) е полиномът от нулева степен Ct(x) е полиномът от нулева степен Ct(x) се фициент единицата в Ct(x) е полиномът от нулева степен Ct(x) коефициент единицата в Ct(x) е полиномът от нулева степен Ct(x) коефициент единицата в Ct(x)

<u>Дефиниция 1.4</u> (за алгебрически затворено поле)

Казваме, че *полето* F е *алгебрично затворено*, ако всеки неконстантен полином от F[x] се разлага на линейни множители над F^3 .

¹ Виж дефиницията на група например от [1,2]

 $^{^2}$ т.е. Р е поле, ако мултипликативната му група Р* съвпада с подмножеството Р\ $\{0\}$ от ненулевите елементи на Р

³ За целите на темата, интуитивната представа за разлагане на полином е достатъчна. За прецизация [3].

2. Основна теорема на алгебрата. Затвореност на полето на комплексните числа като следствие.

Теорема 2.1 Основна теорема на алгебрата(Теорема на Даламбер):

Всеки неконстантен полином $f(x) \in C[x]$ има комплексен корен.

Ще са ни необходими следните две леми.

<u>Лема 1:</u>

Нека $f(x) \in R[x]$ и ст. f(x) е нечетно число. Тогава f(x) има реален корен.

Доказателство:

Нека
$$f(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$$
, $a_n \neq 0$

ст. f(x) = n, n -нечетно число

 $h(x) = \frac{1}{a_n} \left(\frac{a_0}{a_n} + \ldots + x^n \right)$. f(x) има реален корен тогава и само тогава, когато h(x) има реален корен. Следователно достатъчно е да докажем, че h(x) има реален корен. Тъй-като ст.(h(x)) е нечетна имаме

$$\lim_{x \to -\infty} (h(x)) = - \propto H \lim_{x \to -\infty} (h(x)) = + \infty.$$

Следователно съществува $x_1 \in R$ такова, че $h(x_1) < 0$ и съществува $x_2 \in R$ такова, че $h(x_2) < 0$. тъй като h(x) е непрекъсната, съществува $x_0 \in [x_1, x_2]$ такова, че $h(x_0) = 0$, т.е. x_0 е корен на h(x).

Лема 2:

Нека $a + bx + cx^2 \in C[x]$, $a \neq 0$. Тогава $a + bx + cx^2$ има комплексен корен.

Доказателство:

Корените на
$$a+bx+cx^2=0$$
 са $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, които в общия случей са комплексни.

Преди доказателството на теоремата на Даламбер ще докажем следното по-слабо твърдение:

Теорема 2.2:

Нека f(x) е неконстантен полином с реални коефициенти. Тогава f(x) има комплексен корен.

Д-во:

Нека
$$f(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$$
, $a_n \neq 0$. Нека $n = 2^s$.k, k – нечетно число.

Доказателството ще извършим по индукция относно s.

1.База s = 0.

В тази ситуация n е нечетно число и от $\mathbf{Лема}\ \mathbf{1}$ следва, че $\mathbf{f}(\mathbf{x})$ има даже реален корен.

2.Нека $s \ge 1$. Разглеждаме разширение E на полето на комплексните числа C над, което f(x) се разлага на линейни множители.

$$f(x) = (x - \alpha_0)(x - \alpha_1)...(x - \alpha_n)$$
 където $\alpha_1, ..., \alpha_n \in E$ и са корени на $f(x)$ в E . Разглеждаме

$$H(x; x_1, x_2, ..., x_n) = \prod_{1 \le i < j \le n} [x - (x_i + x_j + cx_i x_j)]$$

където с е произволно реално число. След като развием дясната част и направим съответните опростявания ще получим полином на променливата x, коефициентите на който са от пръстена на полиномите $R[x_1, x_2, \ldots, x_n]$. Разглеждаме транспозицията $x_i \leftrightarrow x_j$

при тази транспозиция имаме

$$\begin{aligned} &x_{i}+x_{j}+cx_{i}x_{j} &\longleftrightarrow x_{j}+x_{i}+cx_{j}x_{i}\\ &x_{i}+x_{k}+cx_{i}x_{k} &\longleftrightarrow x_{j}+x_{k}+cx_{j}x_{k}\,,\,k\neq j \end{aligned}$$

Множителите, в които не участват x_i и x_j не се променят. Следователно произволна при транспозиция на променливите множителите на $H(x;\,x_1,x_2,\ldots,x_n)$ се разместват, но тяхното произведение не се променя. Следователно при всяко разместване на променливите коефициентите на $H(x;\,x_1,x_2,\ldots,x_n)$ не се променят. Това означава, че коефициентите пред степените на x са симетрични полиноми от пръстена x са симетрични полиноми от пръстена x съгласно основното следствите на теоремата за симетрични полиноми x се бъдат реални числа, т.е.

$$(*)H(x;\alpha_1,\alpha_2,\dots,\alpha_n) = \prod\nolimits_{1 \leq i < j \leq n} \bigl[x - \bigl(\alpha_i + \alpha_j + \mathrm{c}\alpha_i\alpha_j\bigr)\bigr] \epsilon R\left[x\right]$$

Имаме cт.h(x) = $\binom{n}{2}$ = $\frac{n(n-1)}{2}$ = $\frac{2^s k(2^s k-1)}{2}$ = $2^{s-1} k(2^s k-1)$ = $2^{s-1} k'$, където k' е нечетно число.

И така $h(x) \in R[x]$ и ст. $h(x) = 2^{s-1}k'$, където k' е нечетно число. Съгласно индуктивната хипотеза h(x) има комплексен корен $\beta \in C$. Заместваме в (*) и получаваме

$$h(\beta;\alpha_1,\alpha_2,\dots,\alpha_n) = \prod_{1 \leq i < j \leq n} \left[\beta - \left(\alpha_i + \alpha_j + c\alpha_i\alpha_j\right)\right] = 0$$

Тъй-като в Е няма делители на нулата, имаме $\beta = \alpha_i + \alpha_j + c\alpha_i\alpha_j$ за някои индекси і и ј. И така за всяко реално число $c \in R$ сеществуват индекси і и ј такива, че $\alpha_i + \alpha_j + c\alpha_i\alpha_j \in C$. Понеже двойките индекси (i, j), където $1 \le i \le n$ и $1 \le j \le n$ са краен брой, а реалните числа са безброй много съществуват реални числа $c_i \ne c_j$, за които при едни и същи индекси і и ј имаме:

$$\alpha_i + \alpha_j + c_1 \alpha_i \alpha_j = z_1 \epsilon C$$

$$\alpha_i + \alpha_j + c_2 \alpha_i \alpha_j = z_2 \epsilon C$$

като извадим тези равенства получаваме

$$(c_1 - c_2)\alpha_i\alpha_j = z_1 - z_2$$
 и $\alpha_i\alpha_j = \frac{z_1 - z_2}{c_1 - c_2}$

Поради това $\alpha_i + \alpha_j = z_1 - c_1 \alpha_i \alpha_j \in C$. Получихме, че сумата и прозведението на a_i и a_j са комплексни числа. Разглеждаме

$$(**) t(x) = (x - \alpha_i)(x - \alpha_j) = x^2 - (\alpha_i + \alpha_j) + \alpha_i \alpha_j$$

От Лема 2 имаме, че t(x) има комплексен корен γ . Заместваме в (**) и получаваме

$$(\gamma - \alpha_i)(\gamma - \alpha_j) = 0$$

Тъй като в F няма делители на нулата имаме, че $\gamma = \alpha_i$ или $\gamma = \alpha_i$. Следователно α_i или α_i е комплексно число. Теорема 2.2 е доказана.

<u>Д-во на Теоремата на Даламбер(Т. 2.1):</u>

Нека $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n \in C[x], a_n \neq 0.$

Ако коефициентите са реални Теоремата на Даламбер следва от Теорема 1.

Ще предполагаме, че не всичките коефициенти $\alpha_0,\alpha_1,\alpha_2,\ldots,\alpha_n$ са реални. Разглеждаме полинома $f_1(x)=\bar{a_0}+\bar{a_1}x+\bar{a_2}x^2+\ldots+\bar{a_n}x^n$, чийто коефициенти са комплексно спрегнатите на коефициентите на f. Да разгледаме полинома h(x) от степен 2n, който е равен на произведението на f и f_1 . $h(x)=f(x)f_1(x)=b_0+b_1x+b_2x^2+\ldots+b_{2n}x^{2n}$.

Тъй-като
$$b_k = \sum_{i+j=k} a_i \bar{a_j}$$
 , $\bar{b_k} = \sum_{i+j=k} \bar{a_i} a_j$. Следователно $b_k = \bar{b_k}$, за всяко $\kappa = 0, \dots$

2n, т.е. h(x) ϵ R[x]. От Теорема 2.1 имаме, че h(x) има комплексен корен α ϵ C. Следователно

$$h(\alpha) = f(\alpha)f_1(\alpha)$$

Тъй като в полето С няма делители на нулата, или $f(\alpha) = 0$, или $f_1(\alpha) = 0$.

Ако $f(\alpha) = 0$, тогава f(x) има комплексен корен α и теоремата е доказана.

Нека
$$f_1(\alpha)=0$$
 т.е. $\bar{a_0}+\alpha\bar{a_1}+\alpha^2\bar{a_2}+\ldots+\alpha^n\bar{a_n}=0$. Тогава $f_1(\alpha)=0$, т.е.

$$\bar{a_0} + \bar{\alpha}\bar{a_1} + \alpha^2\bar{a_2} + \ldots + \bar{\alpha}^n\bar{a_n} = a_0 + \bar{\alpha}a_1 + \bar{\alpha}^2a_2 + \ldots + \bar{\alpha}^na_n = 0$$
 т.е. $f(\bar{\alpha}) = 0$ или комплексното число $\bar{\alpha}$ е корен на $f(x)$.

<u>Теорема 2.3</u> Полето С на комплексните числа е алгебрически затворено.

Нека $f(x) \in C[x]$ е неконстантен полином.

Индукция по степента на полинома - n.

- Aко n=1 f(x) е линеен полином и следователно теоремата е доказана.
- Нека за n > 1 е вярно твърдението.
- Нека ст.(f)=n+1. Според теоремата на Даламбер f има поне един корен α , т.е.

$$f(x) = (x - \alpha)g(x),$$

Където ст.(g) = n. Прилагаме индукционната стъпка за g и теоремата е доказана.

<u>Теорема 2.4</u> Над полето на реалните числа неразложими са полиномите от първа степен и тези полиноми над R от втора степен, които нямат реални корени. Други неразложими полиноми в R[x] няма.

Доказателство:

1) Нека f(x) има реални коефициенти и ст. f(x) = 2.

Ако f(x) е разложим над R, тогава корените на f(x) са реални.

Ако f(x) има реален корен α , тогава f(x) се разлага във вида:

 $f(x) = (x - \alpha)g(x)$, където ст.g(x) = 1. Следователно f(x) е разложим над R.

Поради това един полином с реални коефициенти от втора степен е разложим над R *тогава и само тогава*, когато има реални корени. Следователно един полином от втора

степен е неразложим над полето на реалните числа тогава и само тогава, когато няма реални корени. $((A \leftrightarrow B) \leftrightarrow (\bar{A} \leftrightarrow \bar{B}))$

- **2**) Нека ст. $f(x) \ge 3$ и $f(x) \in R[x]$. Трябва да докажем, че f(x) е разложим над R.
- **2.1**) Ако f(x) има реален корен α , тогава f(x) се разлага във вида:

$$f(x) = (x - \alpha)g(x) \text{ if } (x - \alpha), g(x) \in R[x]$$

където ст. $g(x) \ge 2$. Следователно f(x) е разложим над R.

2.2) Нека f(x) няма реални корени. Тогава от теоремата на Даламбер следва, че f(x) има комплексен корен, който не е реален, т.е. $\alpha \neq \bar{\alpha}$. Следователно в каноничното разлагане на f(x) ще участва $(x - \alpha)(x - \bar{\alpha})$, т.е.

$$f(x) = (x - \alpha)(x - \bar{\alpha})g(x) = (x^2 - (\alpha + \bar{\alpha}) + \alpha\bar{\alpha})g(x)$$

Тъй като x^2 – $(\alpha + \bar{\alpha})$ + $\alpha\bar{\alpha}$ ϵ R [x] следва, че g(x) ϵ R [x]. От ст. $f(x) \ge 3$, следва ст. $g(x) \ge 1$. Следователно f(x) е разложим над R.

3. Формули на Виет

Нека F е поле и $f \in F$. Нека E е разширение на полето F, над което f се разлага на линейни множители. Имаме, че

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = a_n (x - \beta_1)(x - \beta_2) \dots (x - \beta_n)$$

 $\beta_1,\beta_2,\dots,\beta_n$ ϵE и са корените на f над E. Ако разкрием скобите отдясно получаваме следните връзки между корените на f $\beta_1,\beta_2,\dots,\beta_n$ и коефициентите му a_0,a_1,\dots,a_n , които се наричат формули на Виет

$$\beta_1 + \beta_2 + \dots + \beta_n = \frac{-a_{n-1}}{a_n}$$

$$\prod_{1 \le i < j \le n} \beta_i \beta_j = \frac{a_{n-2}}{a_n}$$

$$\prod_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k} = \frac{(-1)^k a_{n-k}}{a_n}$$

$$\beta_1 \beta_2 \dots \beta_n = \frac{(-1)^n a_0}{a_n}$$

Литература:

- [1]Записки по алгебра: Групи, пръстени, полиноми.
- [2] http://www.fmi.uni-sofia.bg/algebra/valnotes.shtml
- [3] http://en.wikipedia.org/wiki/Algebra

Темата е разработена от Велико Дончев, уч. 2011/2012 г.