Computer Networks: Transport Layer and Protocols

By,

Mr. Kumar Pudashine, (MEng, AIT)

CCNP (Security), CEH, ITIL Expert, ISO 27001, CISA, AcitivIdentity Certified
Information Technology Division,
Agricultural Development Bank,
Ramshahpath, Kathmandu
Nepal

Transport Layer: Duties??

Transport Layer: Type of Data Deliveries

Transport Layer: Port Numbers

Transport Layer : IP VS Port Numbers

Transport Layer: Port Numbers (IANA Range)

Transport Layer: Socket Address

Transport Layer: Multiplexing and Demultiplexing

Transport Layer: Three Step Connection Establishment

Transport Layer: Four Step Connection Termination

Transport Layer: TCP Segment Format

	Header							Data		
Source port address 16 bits								Destination port address 16 bits		
Sequence number 32 bits										
Acknowledgment number 32 bits										
HLEN 4 bits	Reserved 6 bits	r	a c k	p s h	r s t	s y n	f i n	Window size 16 bits		
	Che 16	cksu bits				Urgent pointer 16 bits				
Options and padding										

Transport Layer: TCP Segment Format (Control Fields)

URG: Urgent pointer is valid

ACK: Acknowledgment is valid

PSH: Request for push

RST: Reset the connection

SYN: Synchronize sequence numbers

FIN: Terminate the connection

URG	ACK	PSH	RST	SYN	FIN

Transport Layer: UDP Segment Format

Client Server Computing: What it is ??

- It is a logical extension of Modular Programming.
- Modular Programming => Concept of separation of Modules.
- Client Server Computing => New Idea !!
- Modules can be separated in different Machines.
- Calling Modules => Clients
- Called Modules => Server

Client Server Model: Traditional Model

True Client Server Model

Distributed Client Server Model

Distributed Applications: Three-Tier Architecture

Socket Programming-01

(Client/Server Interaction with TCP Sockets)

Socket Programming-02 Java Socket Programming

Thank You