Design and Analysis of Algorithms - CS602

Practice-sheet: Divide and Conquer

Miscellaneous

1. Counting Double-Inversions

You are given an array A storing n numbers. A pair (i,j) with $0 \le i < j \le n-1$ is said to be a double-inversion if A[i] > 2A[j]. Design and analyze an $O(n \log n)$ time algorithm based on divide and conquer paradigm to compute the total number of double-inversions in A.

2. Local minima in an array

Let A[1..n] be an array storing n distinct numbers. An index $1 \le i \le n$ is said to be a local minima if A[i] is strictly smaller than its neighbors, if exists, that is, A[i-1] and A[i+1]. Design an $O(\log n)$ time algorithm to find one local minima in A.

3. Local minima in a complete binary tree

Consider an n-node complete binary tree T, where $n = 2^d - 1$ for some d. Each node v of T is labeled with a real number x_v . You may assume that the real numbers labeling the nodes are all distinct. A node v of T is a local minimum if the label of x_v is less than the label x_w for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T, but the labeling is only specified in the following implicit way: For each node v, you can determine the value x_v by probing the node v. Show how to find a local minimum of T using only $O(\log n)$ probes to the nodes of T.

4. Real life problem of divide and conquer

Suppose you are consulting for a bank that is concerned about fraud detection, and they come to you with the following problem. They have a collection of n bank cards that they have confiscated, suspecting them of being used in fraud. Each bank card is a small plastic object, containing a magnetic strip with some encrypted data, and it corresponds to a unique account number in the bank. Each account can have many bank cards corresponding to it, and we'll say that two cards are equivalent if they correspond to the same account.

It is difficult to read the account number off a bank card directly, but the bank has a high tech "equivalence tester" that takes two bank cards and, after performing some computations, determines whether they are equivalent.

The question is the following: among the collection of n cards, is there a set of more than n/2 of them that are equivalent to one another? Assume that the only feasible operations you can do with the cards are to pick two of them and plug them into equivalence tester. Design a divide and conquer based algorithm to decide the answer of their question with only $O(n \log n)$ invocations of the equivalence tester.

Geometric Problems

1. Closest Pair Distance

The following problems are based on the divide and conquer algorithm for computing closest pair distance discussed in the class.

- (a) Write a neat and complete pseudocode of the algorithm we discussed in the lecture (without referring to the slides).
- (b) The algorithm we discussed in the lecture assumed that the median line passes through only one point. What if the median line passes through multiple points?
 ? In particular, how will you ensure that the left half as well as right half has \[[n/2] \] points given that the median line passes through multiple points?

2. Non-dominated points

In the lectures, we discuss a divide and conquer based algorithm to compute non-dominated points. However, there is an alternate and equally simple algorithm for this problem that runs in $O(n \log n)$ time. Provide complete description and analysis of this algorithm.

Hint: The algorithm makes use of sorting as the first step.

3. Least perimeter triangle*

Let P be a set of n points in a plane. Design an $O(n \log n)$ algorithm to find the least perimeter triangle out of all possible triangles defined by P. Assume, without loss of generality, that there are no three collinear points in P.

Hint: If you fully internalized the algorithm for closest pair problem, then you just have to pursue the same direction and make minor changes.