L01

Intro

Introduce Yourself

- 1. Name
- 2. Background
- 3. The Goal

Course Structure

https://online.ithillel.ua/courses/machine-learning

ML Engineer Stairs

Skipping steps is injurious to learning

Lesson Goal

What branches of mathematics are needed in ML?

How do you think?

Lesson Goal

What branches of mathematics are needed in ML?

- 1. Calculus (Матан)
- 2. Linear Algebra
- 3. Statistics
- 4. Mathematical optimization

Machine Learning Task

Papers with code

https://paperswithcode.com/

Al vs ML vs DL

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

ML vs DL

DL Frameworks / Languages

Statistics Based on Probability Interpretations

https://en.wikipedia.org/wiki/Probability interpretations

"Physical" Probability. Classical (frequentist) statistics

PROBABILITY RULE To find the probability of an outcome, multipy the probabilities of the branches.

"Evidential" Probability / Conditional Probability (Bayesian Statistics)

https://towardsdatascience.com/bayes-theorem-the-holy-grail-of-data-science-55d93315defb

https://setosa.io/ev/conditional-probability/

Consequences

Can have different approaches for composing cost (loss) function to be minimized.

- 1. "Physical" Probability \rightarrow Error minimization (MSE, RMSE, etc.)
- 2. "Evidential" Probability → Maximum likelihood minimization

Visualizations:

- https://www.geogebra.org/m/xC6zg7Zv
- https://rpsychologist.com/likelihood/

Visualization for combination of 2 normal distributions

https://www.geogebra.org/m/wt5qdsKB

HW

Range of flight:

$$L = \frac{v_0^2 sin(2\alpha)}{g}$$

Experiment:

- Set distributions for v and alpha (normal, uniform)
- Get distribution plot for L
- Params in json format
- Prepare report with plots
- Make zip archive with report, code and json config

Must watch: https://www.youtube.com/watch?v=Dn6b9fCIUpM