	מעבדה 1
מעבדרמעבדר	
הקדמה	2
תיאור הקוים הנכנסים למערכת	3
מודלים	4
Top	4
מחבר מחסר ושולל	6
שיפטר	8
Logic	10
סיכום כללי	12

מעבדה 1

הקדמה

במעבדה זו נלמדת השפה VHDL המתארת חומרה המשמשת לתיאור של מעגלים ספרתיים. בפרט, יושמה מערכת המבצעת מספר מודלים הכוללים מחבר, מחסר, מודל האחראי על פעולות לוגיות בין זוג וקטורים שיפטרים ועוד. בעזרת פקודות הניתנות לALUFN, קו וקטורי הנכנס למערכת, הלה מיישמת כל אחת מהפעולות הנזכרות מעלה על שני וקטורי כניסה אחרים, Y,X.

סכימת המערכת שיושמה 1 Figure

Function	Decimal	ALUFN	Operation	Note
Kind	value			
Arithmetic	8	01000	Res=Y+X	
	9	01 001	Res=Y-X	Used also for compare operation
	10	01 010	Res=neg(X)	
Shift	16	10 000	Res=SHL Y,X(k-1 to 0)	Shift Left Y of q≜X(k-10) times
				Res=Y(n-1-q0)#(q@0)
				When $k = log_2 n$
	17	10 001	Res=SHR Y,X(k-1 to 0)	Shift Right Y of $q \triangleq X(k-10)$ times
				Res=(q@0)#Y(n-1q)
				When $k = log_2 n$
Boolean	24	11000	Res=not(Y)	
	25	11 001	Res=Y or X	
	26	11 010	Res=Y and X	
	27	11 011	Res=Y xor X	
	28	11 100	Res=Y nor X	
	29	11 101	Res=Y nand X	
	30	11 1111	Res=Y xnor X	

ר המערכת - 2 Figure מיאור מלא לאופן

תיאור הקוים הנכנסים למערכת

ישנם שלושה קוים עיקריים אשר נכנסים למערכת:

- X וקטור •
- Y וקטור •
- ALUFN •

Y[n-1:0]

- תיאור: קו כניסה למערכת המייצג וקטור בן nביטים.
- שימוש: וקטור זה מספק את אחד הערכים שישמשו בפעולות האריתמטיות או הלוגיות במודולים הפנימיים של הALU הפנימיים של

X[n-1:0]

. ביטים n ביטים היאור: קו כניסה נוסף למערכת המייצג בי הוא וקטור בן n

שימוש: וקטור זה מספק את הערך השני שישמש בפעולות האריתמטיות או הלוגיות במודולים • ALU. הפנימיים של ה

ALUFN[4:0]

- אריכה לבצע. ALU בריכה המייצג קוד פקודה בן 5 ביטים המגדיר את הפעולה שה
 - : שימוש
- . שני שיבצע את הפעולה משמשים לבחירת המודול הפנימי שיבצע את הפעולה. \mathbf{ALUFN} [4:3]
 - Adder/Subtractor יינסיי מפעיל את מודול ה
 - Shifter יי01" מפעיל את מודול ה
 - . Logic מפעיל את מודול ה "11" •
- המודול בתוך הספציפית הנמוכים מגדירים את הביטים הנמוכים שלושת הביטים שלושת הביטים הנמוכים את סוג הפעולה הספציפית בתוך המודול הנבחר. לדוגמה, חיבור, חיסור, הזזה שמאלה או ימינה ופעולות לוגיות.

מודלים

Top

: פרמטרים גנריים

- .n גודל וקטור הכניסות והיציאות. o
- \mathbf{k} מספר ביטים לייצוג לוגריתם של: \mathbf{k}
 - \mathbf{k} ערך מחושב המבוסס על: \mathbf{m}

2. כניסות:

- n וקטורי כניסות בגודל $Y_i, X_i \circ$
- אוגית שתבוצע. ביטים האריתמטית/לוגית ביטים ביטים ביטים בגודל ALUFN_i $\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

: יציאות

- . n וקטור יציאה בגודל ALUout_o \circ
- דגלי יציאה לציון תוצאות חישוב מיוחדות (שליליות, Mflag_o, Cflag_o, Zflag_o, Vflag_o \circ נשיאה, אפס, וחריגה).

מבנה הארכיטקטורה:

: קבועים וסוגים

- מספר המודולים הפנימיים. NUM_OF_MODULES
- STD_LOGIC הגדרות סוגים עבור וקטורים ומטריצות של vector, matrix o

2. אותות פנימיים:

- ס אותות עבור כניסות ויציאות המודולים הפנימיים.
- Vflag_sub.iVflag_add אותות עבור דגלי חישוב מיוחדים כמו

. אינסטנציות של תת-מודולים

- מבצע חיבור/חיסור. AdderSub_inst o
 - הוזה. Shifter_inst ∘ מבצע פעולות הווה.
 - מבצע פעולות לוגיות. Logic_inst o

. היגיון חיווט והפעלה

- ALUFN_i סיווט כניסות למודולים לפי ערכי ∘
- . קביעת ערכים לדגלים בהתאם לתוצאות החישוב.

.5 היגיון יציאה:

- ALUout_o בחירת תוצאת המודול המתאים והעברתה ליציאה 🌼 🌣
- Vflag_o -ו Nflag_o, Zflag_o, Cflag_o, היציאה היציאה ס קביעת ערכים לדגלי היציאה ס

6. הערות כלליות

ס כדי לאפשר מינימום אנרגיה בזמן פעולה, רק מצב אחד יכול להיות דולק, וכאשר אף מצב לאדולק ישנם שיערי כניסה שיקבעו כי המערכת כבויה

7. תוצאות סימולציה

אפשר לראות את פעולות המודל בעת כניסות שונות, שהרי הוא עושה פעולות שונות לפי הטבלה
 בהקדמה.

○ להלן התוצאות בהשוואה למודל הזהב.

מחבר מחסר ושולל

שרטוט של המודל המיושם -3 Figure

1. פרמטרים גנריים:

. גודל וקטור הכניסות והיציאות, ברירת מחדל היא ${f 8}$ ביטים ${f n}$

2. כניסות:

- . וקטורי כניסות בגודל nz_adderSub_in, y_adderSub_in o
- . וקטור כניסה בגודל ϵ ביטים המגדיר את הפעולה שתבוצע (חיבור או חיסור). $\Delta {
 m LUFN}$

: יציאות

- (Carry Out). יציאת נשיאה adderSub_cout
- . וקטור יציאה בגודל מביטים המייצג את תוצאת adderSub_out וקטור יציאה בגודל n

מבנה הארכיטקטורה:

: קבועים וסוגים

- STD_LOGIC הגדרת סוגים עבור וקטורים של \circ
- sub_control. reg, x_adderSub_xor, y_adderSub_gated אותות פנימיים כגון

2. אותות פנימיים:

- אות המשמש לשליטה האם מתבצע חיסור (ערך '1') או חיבור (ערך '0').
- עבור פעולת חיסור. sub_control וקטור שיכול להיות מושלך עם $x_adderSub_xor$
- על היות by_adderSub_in וקטור שמאפשר שליטה על הערך של y_adderSub_gated במקרים של פעולות לא חוקיות.

3. תהליך לוגי:

- ALUFN בהתאם ל sub_control קביעת ערך o
- ALUFN בהתאם לערך y_adderSub_gated קביעת ערך
- . עם אפשרות להיפוך ביטים עבור חיסור. x_adderSub_xor הפקת וקטור

4. אינסטנציות של סכום מלא (FA)

- (sub_control) אינסטנציה של סכום מלא לביט הראשון עם כניסת נשיאה ראשונית first o
- הנשיאה עבור כל הביטים הנותרים, מקשרים כל ביט עם הנשיאה \mathbf{Rest}_{\circ} סמהביט הקודם.

.5 היגיון יציאה:

. reg נקבעת מהביט האחרון של הוקטור (adderSub_cout) יציאת נשיאה

6. תוצאות:

של המודל - 4 Figure - 4 אינפוטים תקינים של

של המודל - 5 Figure - אינפוטים לא תקינים של המודל

שיפטר

מבנה כללי:

המודול Shifter מבצע פעולות של הזזה שמאלה (Shift Left) והזזה ימינה אל מבצע פעולות של הזזה שמאלה המודול מבצע פעולות של הזזה שמאלה וקטור כניסה בגודל k ביטים.

Shifter רכיבי

: פרמטרים גנריים:

- . גודל וקטור הכניסות והיציאות, ברירת מחדל היא 8 ביטים מ $\,$ ה
- . ברירת מחדל היא ביטים ($\log 2(n)$), ברירת מחדל היא מספר ביטים k \circ

2. כניסות:

- וקטור כניסה בגודל חביטים המייצג את הנתונים שיש להזיז. y_Shifter_in \circ
 - . וקטור כניסה בגודל אביטים את במות $x_Shifter_in$
- או שמאלה שתבוצע (הזזה שמאלה או ALUFN כניסה בגודל 3 ביטים המגדיר את סוג הפעולה שתבוצע הזזה שמאלה או ימינה).

: יציאות

- ביט יציאה המייצג את הביט שייזז החוצהיי במהלך ההזזה. Shifter_cout \circ
 - וקטור יציאה בגודל מביטים המייצג את תוצאת ההזזה. Shifter_out

מבנה הארכיטקטורה:

: קבועים וסוגים

- std_logic_vector הגדרת סוגים עבור וקטורים של
- ס הגדרת מטריצה עבור הוקטורים של הביטים המוזזים שמאלה וימינה.

2. אותות פנימיים:

- איסוף הביטים שנזזו Shifter_cout_vector_left, Shifter_cout_vector_right החוצה במהלך ההזזה.
 - מטריצות עבור התהליך ההזזה שמאלה וימינה בהתאמה. row_left, row_right o

3. תהליך לוגי:

- אמוזז שמאלה, והביט שזז נאסף בוקטור אוז בוקטור אוז ביט בוקטור ביט בוקטור אזה שמאלה ביט בוקטור Shifter cout vector left.
- בוקטור אינה ימינה: כל ביט בוקטור אביא אואר_Shifter_in כל ביט בוקטור אז נאסף בוקטור Shifter_cout_vector_right.

: הפקת תוצאה ויציאה

- x_Shifter_in מתוצאה הסופית של ההזזה (שמאלה או ימינה) התוצאה הסופית של ההזזה (שמאלה או ימינה) התוצאה הסופית ס ALUFN.
- ALUFN.ix_Shifter_in הביט שייזז החוצהיי במהלך ההזזה נקבע לפי ערך Shifter_cout o

5. הערות

. המודל מיושם באופן דומה לסרטוני ההדרכה, בעזרת מטריצת עזר לתוצאה ווקטור עזר לקרי.

6. תוצאות

- 6 Figure תוצאות של אינפוטים תקינים המראות גם את הקרי

ר תוצאות של אינפוטים לא תקינים - 7 Figure

Logic

מבנה כללי:

המודול בצע פעולות לוגיות על שני וקטורי כניסה של חביטים, כאשר סוג הפעולה נקבע על ידי וקטורי במודול אני ועל חבצע מגוון פעולות לוגיות כמו NOT, OR, AND, XOR, NOR, NAND, במודול מסוגל לבצע מגוון פעולות לוגיות כמו Λ LUFN .

Logic רכיבי

: פרמטרים גנריים:

- . גודל וקטור הכניסות והיציאות, ברירת מחדל היא 8 ביטים $m n \sim$
- OP מספר הפעולות הלוגיות הנתמכות פלוס אחת (עבור תוצאה של אפסים), ברירת מחדל היא OP ... 8

2. כניסות:

- . וקטורי כניסה בגודל חביטים עליהם מתבצעות הפעולות הלוגיות x_logic, y_logic
 - . וקטור כניסה בגודל ביטים המגדיר את הפעולה הלוגית שתבוצע. $\Delta ext{LUFN}$

: יציאות

וקטור יציאה בגודל חביטים המייצג את תוצאת הפעולה הלוגית. Logic_out \circ

מבנה הארכיטקטורה:

1. סוגים ואותות פנימיים:

- מטריצה המייצגת את כל התוצאות האפשריות עבור כל הפעולות הלוגיות רesult_matrix \circ הנתמכות.
 - output_matrix o אות פנימי של המטריצה המכילה את כל תוצאות הפעולות הלוגיות.

2. חישוב תוצאות:

- $_{\circ}$ לכל ערך אפשרי של ALUFN מ-000 עד 111) נקבעת הפעולה הלוגית המתאימה $_{\circ}$
 - y_logic על NOT את תוצאת output_matrix(0)
 - y_logic ל x_logic ל OR מקבל את תוצאת output_matrix(1) ■
 - y_logic ל x_logic בין AND מקבל את תוצאת output_matrix(2) ■
 - y_logic בין XOR בין את תוצאת output_matrix(3) ■
 - y_logic אב NOR מקבל את תוצאת output_matrix(4) ■
 - y_logic בין NAND מקבל את תוצאת output_matrix(5) ■
 - y_logic אל XNOR בין את תוצאת output_matrix(6) ■
- output_matrix(7) מקבל את וקטור האפסים (ברירת מחדל לפקודות לא חוקיות).

: הפקת תוצאה ויציאה

המודול מחמטריצה המתאימה המתאימה בוחר את המודול בוחר את המודול בוחר את בהתאם המטריצה ומעביר אותה בהתאם ליציאה Logic_out ליציאה

4. תוצאות

→ /tb_logic/ALUFN → /tb_logic/ALUFN	011	010		011		
/tb_logic/y_logic	10000011	00011101	00100000	00100011	00100110	
+- /tb_logic/x_logic	01011000	00010100	00010110	00011000	00011010	
± –♦ /tb_logic/Logic_out	11011011	00010100	(00000000	00111011	[00111100	

and, xor פעולות לוגיות של - 8 Figure

	011	100		101		
II —	10000011	00110101	00111000	00111011	00111110	
+- /tb_logic/x_logic	01011000	00100100	00100110	00101000	00101010	
/tb_logic/Logic_out	11011011	11001010	11000001	11010111	11010101	

nor, nand פעולות לוגיות של - 9 Figure

+-> /tb_logic/ALUFN	011	000			Į (001					
+- /tb_logic/y_logic	10000011	00000101		00001000	10	00001011		000011	0		
+- /tb_logic/x_logic	01011000	00000100		00000110	Į (0000 1000		000010	.0		
+> /tb_logic/Logic_out	11011011	11111010		11110111	10	00001011		000011	0		

→ /tb_logic/ALUFN	011	110		111			
/tb_logic/y_logic	10000011	01001101	01010000	01010011	01010	110	
/tb_logic/x_logic	01011000	00110100	00110110	00111000	00111	010	
+> /tb_logic/Logic_out	11011011	00000000		10010100	10010	011	

nor אינפוטים אסורים עבור - 11 Figure

סיכום כללי

המבנה המשולב של המודולים מאפשר מימוש יחידה אריתמטית-לוגית (ALU) גמישה ורבת-יכולות, אשר מתאימה לשימוש במערכות דיגיטליות כמו מעבדים ומערכות. כל אחד מהמודולים מבצע פעולה ספציפית בצורה יעילה, והשילוב ביניהם מאפשר לממש פעולות מורכבות בהתאם לצרכים שונים.