

(5) in
$$|n|^2$$

$$Q = t \int_0^b u(y) dy = t \left[\frac{1}{2\mu} \frac{\partial P}{\partial x} \left(\frac{y^3}{3} - \frac{by^2}{2} \right) + \frac{v_0}{b} \frac{y^2}{2} \right] b$$

$$= t \left[\frac{1}{2\mu} \frac{\partial P}{\partial x} \left(\frac{b^3}{3} - \frac{b^3}{2} \right) + \frac{v_0}{b} \frac{b^2}{2} \right]$$

$$= t \left[\frac{\partial P}{\partial x} \cdot \frac{b^3}{-12\mu} + \frac{v_0b}{2} \right] \stackrel{!}{=} 0$$

$$\frac{\partial P}{\partial x} = \frac{6\mu v_0}{b^2} = 30000 \frac{Pa}{m}$$

$$T = M \frac{\partial u}{\partial y} = \frac{\partial P}{\partial x} \left(y - \frac{b}{2} \right) + \frac{MV_0}{b}$$

Extreme werte von uly) bei Tly) =0 =

Aufgabe 17

Befrachtung infinitesimales Fluid element

Bestimmung von
$$T(x)$$
 and $V(x)$:

$$\int \frac{\partial T}{\partial x} dx = T(x) = \frac{\partial P}{\partial y} \times - \rho g x + C_1$$

$$\int \frac{\partial T}{\partial x} dx = V(x) = \frac{1}{M} \frac{\partial P}{\partial y} \frac{x^2}{2} - \frac{1}{M} \rho g \frac{x^2}{2} + \frac{C_1}{M} x + C_2$$

mit $V(a) = Va$, $V(-a) = 2Va$

$$\int \frac{1}{M} (\frac{\partial P}{\partial y} - Pg) \frac{a^2}{2} + \frac{C_1}{M} a + C_2 = -Va$$

$$\int \frac{1}{M} (\frac{\partial P}{\partial y} - Pg) \frac{a^2}{2} - \frac{C_1}{M} a + C_2 = 2Va$$

$$C_2 = \frac{Vo}{2} - \frac{a^2}{2M} (\frac{\partial P}{\partial y} - Pg)$$

$$V(x) = \int \frac{1}{M} (\frac{\partial P}{\partial y} - Pg) \frac{x^2}{2} - \frac{3Ua}{2a} x + \frac{Vo}{2} - \frac{a^2}{2M} (\frac{\partial P}{\partial y} - Pg)$$

$$T(x) = (\frac{\partial P}{\partial y} - Pg) \times - \frac{3VoM}{2a}$$
b) $ges: V(0)$ (weam $T(-\frac{a}{2}) = 0$ and $Verläute V(x)$, $T(x)$)
$$V(0) = \frac{Vo}{2} - \frac{a^2}{2M} (\frac{\partial P}{\partial y} - \rho g)$$

b) ges:
$$V(0)$$
 wear $T(-\frac{a}{2})=0$ and $Verlaute\ V(x)$, $T(x)$

$$V(0) = \frac{V_0}{2} - \frac{a^2}{2\mu} \left(\frac{\partial P}{\partial y} - Pg\right)$$
Bestimmung $\frac{\partial P}{\partial y}$ and $T(-\frac{a}{2})=0$:
$$-\frac{\partial P}{\partial y} \frac{a}{2} + \frac{Pga}{2} - \frac{3V_0M}{2a} = 0 \implies \frac{\partial P}{\partial y} = Pg - \frac{3V_0M}{a^2}$$

$$V(0) = \frac{V_0}{2} - \frac{a^2}{2\mu} lq + \frac{3}{2} v_0 + \frac{a^2}{2\mu} lq = 2V_0$$

Autgabe 18

	ZMA DX MB+	MA - 1// -	ZMA JX MB	HA - WETMA
UB(4) = 1	3P (y2 + b 18-14 N8+14	$(\frac{1}{4}y) - b^2 \frac{34}{55}$	NB+ MA	
	$\frac{\partial P}{\partial X}$ (y + b $\frac{MB-M}{MB+M}$			
	34,6	•	MB+NA	
$T_{A8} = \frac{\partial P}{\partial x}$	y + 3p b MB-	MA		
b) Verland usy	, , t (4)			
Qualifativ —:	> alles bekannt	außer Posit	tion y*	
	für Umax, c	abschätten :	oben oder	unten?
3	u = 0 -> T=0			
	3p yx + 3p b Mr			
	y* = \frac{b}{2} MA-	MB 70	mit UA>)	UB
	19			
MB	y* \) llg X,U	. T	
	W	1		
MA		flacher,	weil Viskositäit	größer
		<u>əu</u> .	= 1	
Zusammentassi	ing:			
	Gesch windigkeits-	und Schule	c pannuna sverteili	una über
0GL oder	Kraftgleichgewicht o	im Lind Eleme	w(
- Nächste Vortn	agsübung wird über	Webex dur	ch geführt	
	klausur 2023 F			