Logistic Regression The Basics

Andy Grogan-Kaylor

3 May 2021 09:46:51

Logistic Regression

Basic handout on logistic regression for a binary dependent variable.

Get The Data

We start by obtaining $simulated\ data$ from StataCorp.

- . clear all
- . graph close _all
- . use http://www.stata-press.com/data/r15/margex, clear
 (Artificial data for margins)

Describe The Data

The variables are as follows:

. describe

Contains data from http://www.stata-press.com/data/r15/margex.dta
Observations: 3,000 Artificial data for margins
Variables: 11 27 Nov 2016 14:27

Variable	Storage	Display	Value	Variable label
name	type	format	label	
y outcome sex group age distance ycn yc treatment agegroup arm	float byte byte float float float float float byte byte byte	%6.1f %2.0f %6.0f %2.0f %3.0f %6.2f %6.1f %6.1f %2.0f %8.0g %8.0g	sexlbl	

Sorted by: group

The Equation

$$\ln\left(\frac{p(outcome)}{1 - p(outcome)}\right) = \beta_0 + \beta_1 x_1$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(outcome)}{1-p(outcome)}$ is the odds of the outcome.

Hence,
$$\ln \left(\frac{p(outcome)}{1 - p(outcome)} \right)$$
 is the log odds.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios: $OR = e^{\beta}$

Estimate Logistic Regression (logit y x)

We then run a logistic regression model in which outcome is the dependent variable. sex, age and group are the independent variables.

```
. logit outcome i.sex c.age i.group
Iteration 0: log likelihood = -1366.0718
             log likelihood = -1111.4595
Iteration 1:
              log likelihood = -1069.588
Iteration 2:
Iteration 3: log likelihood = -1068
Iteration 4: log likelihood = -1067.9941
              \log likelihood = -1067.9941
Iteration 5:
Logistic regression
                                                     Number of obs = 3,000
                                                     LR chi2(4) = 596.16
                                                     Prob > chi2 = 0.0000
Log likelihood = -1067.9941
                                                     Pseudo R2
                                                                = 0.2182
```

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
sex						
female	.4991622	.1347463	3.70	0.000	.2350643	.76326
age	.0902429	.0064801	13.93	0.000	.0775421	.1029437
group						
2	5855242	.1350192	-4.34	0.000	850157	3208915
3	-1.360208	.2914263	-4.67	0.000	-1.931393	7890228
_cons	-5.553038	.3498204	-15.87	0.000	-6.238674	-4.867403

Odds Ratios (logit y x, or)

We re-run the model with exponentiated coefficients (e^{β} to obtain odds ratios.

```
. logit outcome i.sex c.age i.group, or

Iteration 0: log likelihood = -1366.0718

Iteration 1: log likelihood = -1111.4595

Iteration 2: log likelihood = -1069.588

Iteration 3: log likelihood = -1068

Iteration 4: log likelihood = -1067.9941

Iteration 5: log likelihood = -1067.9941

Logistic regression

Number of obs = 3,000

LR chi2(4) = 596.16

Prob > chi2 = 0.0000
```

T.og	likelihood	=	-1067	9941
LUK	TIVETIHOOG		1007	

Pseudo	R2	= 0.2182
--------	----	----------

outcome	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
sex						
female	1.64734	.221973	3.70	0.000	1.26499	2.145258
age	1.09444	.0070921	13.93	0.000	1.080628	1.108429
group						
2	.5568139	.0751806	-4.34	0.000	.4273478	.725502
3	.2566074	.0747822	-4.67	0.000	.1449462	.4542885
_cons	.0038757	.0013558	-15.87	0.000	.0019524	.0076933

Note: _cons estimates baseline odds.

β Coefficients and Odds Ratios

Substantively	β	OR
x is associated with an	> 0.0	> 1.0
increase in y		
no association	0.0	1.0
x is associated with a	< 0.0	< 1.0
descrease in y		

Coefficients, Standard Errors, p values, and Confidence Intervals

- z statistic: $z = \frac{\beta}{se}$. p value if $z_{\rm observed} > 1.96$ then p < .05.
- $CI = \beta \pm 1.96 * se$

Hence for the coefficient for sex, the confidence interval is:

$$.4991622 \pm (1.959964 * .1347463) = (.2350643, .7632601)$$

Confidence intervals for odds ratios (e^{β}) are obtained by exponentiating the confidence interval for the β coefficients. As a result of this non-linear transformation, confidence intervals for odds ratios are not symmetric.