HM6116L-2, HM6116L-3, HM6116L-4

2048-word×8-bit High Speed Static CMOS RAM

FEATURES

Single 5V Supply and High Density 24 Pin Package

 High Speed: Fast Access Time Low Power Standby and

120ns/150ns/200ns (max.)

Standby: 20µW (typ.)

Low Power Operation;

Operation: 160mW (typ.)

Completely Static RAM: No clock nor Timing Strobe Required

Directly TTL Compatible: All Input and Output

Pin Out Compatible with Standard 16K EPROM/MASK ROM

e Equal Access and Cycle Time

Capability of Battery Back up Operation

FUNCTIONAL BLOCK DIAGRAM

MABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to GND	VT	-0.5° to +7.0	V
Operating Temperature	Topr	0 to +70	,C
Storage Temperature	Tets	-65 to +150	,C
Temperature Under Bias	Thine	-10 to +85	,C
Power Dissipation	Рт	1.0	W

^{*} Pulse Width 50ns: -1.0V

PIN ARRANGEMENT

A7 [1		U		24,	Vcc
A6 [2				23	As
As [3				22	Ae
A4 [4				21.	WE
A3 [5				20	0E
Az [6				19	A10
At	7				18	CS
Ao	8				17	1/00
I/O ₁	9				16	1/0,
I/Oz	10				15	I/O6
1/03	11				14	I/Os
GND	12				13	1/04
		(Top Vie	ew)	1	

TRUTH TABLE

CS	ŌĒ	WE	Mode	Vcc Current	I/O Pin	Ref. Cycle
Н	×	×	Not Selected	Isa, Isaı	High Z	
I.	L	Н	Read	Icc	Dout	Read Cycle (1)~(3
1	н	L.	Write	Icc	Din	Write Cycle (1)
ī	L	L	Write	Icc	Din	Write Cycle (2)

■ RECOMMENDED DC OPERATING CONDITIONS (Ta=0 to +70°C)

Item	Symbol	min	typ	max	Unit	
Supply Voltage	Vcc	4.5	5.0	5.5	v	
	GND	0	0	0	v	
Input Voltage	VIH	2.2	3.5	6.0	v	
	VIL	-1.0*	_	0.8	v	

^{*} Pulse Width: 50ns, DC: VIL min = -0.3V

\blacksquare DC AND OPERATING CHARACTERISTICS ($V_{cc} = 5V \pm 10\%$, GND=0V, $T_a = 0$ to $+70^{\circ}$ C)

Item				HM6116L/P-2			HM6116L/P-3/-4			
	Symbol	Test Conditions	min	typ*	max	min	typ*	max	Unit	
Input Leakage Current	ILI	Vcc-5.5V, ViGND to Vcc	-	-	2	-	-	2	μA	
Output Leakage Current	ILO	$\overline{\text{CS}} = V_{IH} \text{ or } \overline{\text{OE}} = V_{IH},$ $V_{I/O} = \text{GND to } V_{CC}$	-	-	2	-	-	2	μA	
	Icc	CS - V11, 11/0 - 0mA	-	35	70	-	30	60	mA	
Operating Power Supply Current	Icc1**	$V_{IR} = 3.5 \text{V}, V_{IL} = 0.6 \text{V}, I_{ICO} = 0 \text{mA}$	-	30	-	-	25	-	mA	
Average Operating Current	Icc 2	min. cycle, duty = 100%	-	35	70	-	30	60	mA	
	IsB	$\overline{\text{CS}} = V_{IH}$	-	4	12	-	4	12	mA	
Standby Power Supply Current	Issı	$\overline{CS} \ge V_{cc} - 0.2 \text{V}, \ V_{in} \ge V_{cc} - 0.2 \text{V}$ 0.2V or $V_{in} \le 0.2 \text{V}$	-	4	100	-	4	100	μA	
Output Voltage		IoL = 4mA	-	_	0.4	_	_	-	v	
	Vol 101-2.1mA		-	-	-	_	-	0.4		
	Von	$I_{OH} = -1.0 \text{mA}$	2.4	-	-	2.4	-	-	V	

^{*:} Vcc-5V, Ta-25°C
**: Reference Only

\blacksquare AC CHARACTERISTICS ($V_{CC}=5V~\pm10\%,~Ta=0~to~+70^{\circ}C$)

• AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10 ns

Input and Output Timing Reference Levels: 1.5V

Output Load: 1TTL Gate and C_L = 100pF (including scope and jig)

• READ CYCLE

			HM6116L-2		HM6116L-3		16L-4	Unit
Item	Symbol	m in	max	min	max	min	max	Oiii
Read Cycle Time	trc	120	-	150	-	200	-	ns
Address Access Time	taa	-	120	-	150	-	200	ns
Chip Select Access Time	tacs	-	120	-	150	-	200	nś
Chip Selection to Output in Low Z	tcLZ	10	-	15	-	15	-	ns
Output Enable to Output Valid	toE	-	80	-	100	-	120	ns
Output Enable to Output in Low Z	toLZ	10	-	15	-	15	-	ns
Chip deselection to Output in High Z	tcHZ	0	40	0	50	0	60	ns
Chip Disable to Output in High Z	tonz	0	40	0	50	0	60	ns
Output Hold from Address Change	ton	10	-	15	-	15	-	ns

• WRITE CYCLE

		HM6116L-2		HM6116L-3		HM6116L-4		Unit
Item	Symbol	min	max	min	max	min	max	Onic
Write Cycle Time	twc	120	_	150	-	200	, —	ns
Chip Selection to End of Write	téw	70	_	90	-	120	-	ns
Address Valid to End of Write	taw	105	-	120	_	140	-	ns
Address Set Up Time	las	20	-	20	-	20	-	ns
Write Pulse Width	twp	70	-	90	-	120	-	ns
Write Pulse Width Write Recovery Time	twn	5	_	10	-	10	_	ns
Output Disable to Output in High Z	tonz	0	40	0	50	0	60	ns
Write to Output in High Z	twnz	0	50	0	60	0	60	ns
Data to Write Time Overlap	tow	35	_	40	-	60	-	ns
	ton	5	_	10	-	10	-	ns
Data Hold from Write Time Output Active from End of Write	tow	5	-	10	-	10	_	ns

■ CAPACITANCE (f=1MHz, Ta=25°C)

	1 0 11	Test Conditions	typ	max	Unit
Item	Symbol	Test Conditions	-71		P
Input Capacitance	C.,	V., -0V	3	5	pF
	C	V1/0 - 0V	5	7	pF
Input / Output Capacitance	C1/0	11/0 01			

TIMING WAVEFORM

• Read Cycle (1) (1), (5)

• Read Cycle (2) (1), (2), (4), (5)

• Read Cycle (3) (1), (3), (4), (5)

NOTES: 1. WE is High for Read Cycle.

2. Device is continuously selected, $\overline{CS} = V_{IL}$.

3. Address Valid prior to or coincident with \overline{CS} transition Low.

4. $\overline{OE} = V_{IL}$.

5. When \overline{CS} is Low, the address input must not be in the high impedance state.

• Write Cycle (1)

• Write Cycle (2)

NOTES: 1. A write occurs during the overlap (t_{WP}) of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$.

Dout

low CS and a low WE.

2. t_{WR} is measured from the earlier of CS or WE going high to the end of write cycle.

3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE

transition, output remain in a high impedance

state.

5. OE is continuously low. (OE = V_{IL})

6. D_{out} is the same phase of write data of this write cycle.

7. Dout is the read data of next address.
8. If CS is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

■LOW Vcc DATA RETENTION CHARACTERISTICS (Ta=0 to +70°C)

Item	Symbol	Test Conditions	min	typ	max	Unit
Vcc for Data Retention	VDR	$\overline{\text{CS}} \ge V_{cc} - 0.2 \text{V}, \ V_{in} \ge V_{cc} - 0.2 \text{V} \text{ or } V_{in} \le 0.2 \text{V}$	2.0	-	-	V
Data Retention Current	Iccor*	Vcc = 3.0 V, CS ≥ 2.8 V, V., ≥ 2.8 V or V., ≤ 0.2 V	-	-	50	μA
Chip Deselect to Data Retention Time	tops	C. D Wanter	0	-	-	ns
	tr	See Retention Waveform	t RC **	-	_	ns

●Low Vcc Data Retention Waveform

-HM6116L-2, HM6116L-3, HM6116L-4

5.0

Supply Voltage Vcc (V)

5.25

SUPPLY CURRENT VS.

ACCESS TIME VS.

4.75

0.4

ACCESS TIME VS.

ACCESS TIME VS.

A

SUPPLY CURRENT VS.

