浙江大学 2021 年研究生入学考试高等代数试题

- 1. 当 t 为何值时, $f(x) = x^3 + 6x^2 + tx + 8$ 有重根? 并求出重根.
- 2. 已知 $A^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 1 & -2 \\ 1 & 4 & 1 & 4 \\ -1 & 8 & 1 & -8 \end{pmatrix}$, 记 A_{ij} 是矩阵 A 的 (i,j) 元对应的代数余子式,求 $\sum_{i=1}^{4} \sum_{j=1}^{4} i A_{ij}.$
- 3. 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是 Ax = 0 的基础解系,令 $\beta_i = \alpha_{i+1} + \alpha_i, i = 1, 2, \dots, s 1.$ $\beta_s = \alpha_s + \alpha_1$. 问: $\beta_1, \beta_2, \dots, \beta_s$ 何时是 Ax = 0 的基础解系; 若 $\beta_1, \beta_2, \dots, \beta_s$ 不是 Ax = 0 的基础解系,则求出极大线性无关组,并且扩充为 Ax = 0 的基础解系.
- 4. 设 A 是 3×2 矩阵,B 为 2×3 矩阵,并且 $AB = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}$.
 - (1) 求 $(AB)^2$.
 - (2) 求 BA 的最小多项式.
 - (3) 求矩阵 BA.
- 5. 证明:实系数线性方程组 $\sum_{j=1}^{n} a_{ij}x_{j} = b_{i}, (i = 1, 2, \dots, n)$ 有解当且仅当 $\beta = (b_{1}, b_{2}, \dots, b_{n})^{T}$ 与 $\sum_{j=1}^{n} a_{ij}x_{j} = 0 (i = 1, 2, \dots, n)$ 的解空间正交.
- 6. 设 A 为 4 阶实对称矩阵,且 $\det A = 2, \lambda_1 = 1, \lambda_2 = -1$ 是其两个特征值, $L_1 = L(\alpha_1, \alpha_2), L_2 = L(\alpha_3)$ 是其特征子空间,其中

$$\alpha_1 = (1, 1, -1, -1)^T, \alpha_2 = (1, -1, 1, 1)^T, \alpha_3 = (0, 1, 1, 0)^T.$$

求 A^* 以及 A 的正交相似标准型.

7. 设 V 是线性空间, φ 是 V 上的线性变换,并且其特征多项式为 $(\lambda-2)^6(\lambda+2)^4$. 试将 V 分解为两个非平凡的 φ — 不变子空间的直和,并证明你的结论.

8.
$$\c abla A = \begin{pmatrix} 1 & x & 4 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 2 & y \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- (1) x,y 取何值时,A 可相似对角化.
- (2) 当 x = 0, y = 1 时,求 A 的不变因子、初等因子以及 Jordan 标准型.
- 9. 设 V,W 分别为有限维线性空间, φ 是 V 到 W 的线性映射, 证明:
 - (1) φ 是满射当且仅当存在线性映射 $\psi:W\longrightarrow V$ 使得 $\varphi\psi=\mathrm{Id}_W.$
 - (2) φ 是单射当且仅当存在线性映射 $\psi: W \longrightarrow V$ 使得 $\psi \varphi = \mathrm{Id}_V$.
 - (3) φ 是同构当且仅当存在线性映射 $\psi: W \longrightarrow V$ 使得 $\varphi \psi = \mathrm{Id}_W, \psi \varphi = \mathrm{Id}_V$.