FULL RANK LINEAR REGRESSION

1 Warm-up

Let X be a random vector in \mathbb{R}^d with mean $\mu \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ and A a symmetric matrix in $\mathbb{R}^{d \times d}$. Then,

$$\mathbb{E}[X^{\top}AX] = \mu^{\top}A\mu + \operatorname{Trace}(A\Sigma).$$

2 Student's t-statistics

We assume that for all $1 \leq i \leq n$, $Y_i = X_i^{\top} \theta_{\star} + \varepsilon_i$ for some unknown $\theta_{\star} \in \mathbb{R}^d$ where the $(\varepsilon_i)_{1 \leq i \leq n}$ are i.i.d. random variables with distribution $\mathcal{N}(0, \sigma_*^2)$. Let $\varepsilon \in \mathbb{R}^n$ be the random vector such that for all $1 \leq i \leq n$, the *i*-th component of ε is ε_i . The model is then written $Y = X\theta_{\star} + \varepsilon$. Assume that X has full rank and that $\widehat{\theta}_n = (X^{\top}X)^{-1}X^{\top}Y$ and $\widehat{\sigma}_n^2 = \|Y - X\widehat{\theta}_n\|^2/(n-d)$.

1. For all $1 \leq j \leq d$, show that

$$\frac{\widehat{\theta}_{n,j} - \theta_{\star,j}}{\widehat{\sigma}_n \sqrt{(X^T X)_{j,j}^{-1}}} \sim \mathcal{S}(n-d),$$

where S(n-d) is the Student's t-distribution with n-d degrees of freedom, i.e. the law of $X/\sqrt{Y/(n-d)}$ where $X \sim \mathcal{N}(0,1)$ is independent of $Y \sim \chi^2(n-d)$.

2. Provide a confidence interval with confidence level $1-\alpha$ for $\theta_{\star,j}$.

3 Random design

Consider the regression model given by

$$Y = X\theta_{\star} + \varepsilon \,,$$

where $X \in \mathbb{R}^{n \times d}$ the $(\varepsilon_i)_{1 \leqslant i \leqslant n}$ are i.i.d. centered Gaussian random variables with variance σ_{\star}^2 and independent of $(X_i)_{1 \leqslant i \leqslant n}$ which are assumed to be random. Assume that $X^{\top}X$ has full rank and that θ_{\star} is estimated by

$$\widehat{\theta}_n = (X^\top X)^{-1} X^\top Y .$$

- 1. Compute the excess risk $\mathsf{R}(\theta) \mathsf{R}(\theta_{\star})$, where $\mathsf{R}(\theta) = n^{-1} \mathbb{E}[\|Y X^{\top}\theta\|_{2}^{2}]$.
- 2. Compute then the excess risk $\mathbb{E}[\mathsf{R}(\widehat{\theta}_n) \mathsf{R}(\theta_{\star})]$.

4 Fisher statistics (bonus)

Consider the regression model given by

$$Y = X\theta_{\star} + \varepsilon \,,$$

where $X \in \mathbb{R}^{n \times d}$ and the $(\varepsilon_i)_{1 \leqslant i \leqslant n}$ are i.i.d. centered Gaussian random variables with variance σ_{\star}^2 . Assume that $X^{\top}X$ has full rank and that θ_{\star} and σ_{\star}^2 are estimated by

$$\widehat{\theta}_n = (X^\top X)^{-1} X^\top Y$$
 and $\widehat{\sigma}_n^2 = \frac{\|Y - X \widehat{\theta}_n\|^2}{n - d}$.

1. Let L be a $\mathbb{R}^{q \times d}$ matrix with rank $q \leqslant d$. Show that

$$\frac{(\widehat{\theta}_n - \theta_{\star})^{\top} L^{\top} (L(X^{\top}X)^{-1}L^{\top})^{-1} L(\widehat{\theta}_n - \theta_{\star})}{q\widehat{\sigma}_n^2} \sim \mathcal{F}(q, n - d),$$

where $\mathcal{F}(q,n-d)$ is the Fisher distribution with q and n-d degrees of freedom, i.e. the law of (X/q)/(Y/(n-d)) where $X \sim \chi^2(q)$ is independent of $Y \sim \chi^2(n-d)$.

2. Using the previous question, build a confidence region with confidence level $1 - \alpha \in (0, 1)$ for θ_{\star} .