Mecânica Clássica - Anotações

Rodrigo Moreira 5 de maio de 2021 SUMÁRIO 2

Sobre este texto: As páginas a seguir consistem de anotações	realizadas
durante um estudo de férias sobre Mecânica Analítica. O material	base para
este estudo é [1]. Os livros [2, 3] foram utilizados como suplemento.	O plano é
estudar as seguintes seções de [1]:	

Capítulo 2: seções 2.1, 2.2 e 2.4.

Capítulo 3: seções 3.1, 3.2 e 3.4.

 $\begin{tabular}{ll} \textbf{Capítulo 5:} & seções 5.1.1, 5.1.3, 5.2, 5.3.1, 5.3.3, 5.3.4 (apenas as duas primeiras subseções) e 5.4.1 (apenas as duas primeiras subseções) \\ \end{tabular}$

Capítulo 8: seções 8.1, 8.2.1, 8.2.2, 8.2.3 e 8.3.

Capítulo 9: seções 9.1, 9.2.1 e 9.2.2 (apenas as duas primeiras subseções).

.

Sumário

I	M	ecânica Lagrangiana	3
1	For	malismo Lagrangiano	3
	1.1	Vínculos e Espaço de Configurações	3
	1.2	Equações de Lagrange	8
	1.3	Aspectos Geométricos e Princípio de Hamilton	13
\mathbf{R}	eferê	ncias	19

Parte I

Mecânica Lagrangiana

1 Formalismo Lagrangiano

1.1 Vínculos e Espaço de Configurações

Considere um sistema formado por N partículas¹ se deslocando em um espaço tridimensional, que por simplicidade, consideremos como \mathbb{R}^{32} . **Vínculos** são fatores de caráter geométrico, oriundos de agentes externos ao sistema estudado, e que restringem as possíveis posições e velocidades das partículas que compõem o sistema.

Exemplo 1.1. Se a trajetória de uma partícula restringe-se a uma esfera de raio R, temos que as coordenadas desta partícula respeitam a seguinte relação:

$$x^2 + y^2 + z^2 - R^2 = 0. (1.1)$$

A Equação (1.1) é o que chamamos de equação de vínculo.

Podemos generalizar a Equação (1.1) para o sistema de N partículas citado anteriormente. Se considerarmos este conjunto de objetos como sendo um subconjunto de \mathbb{R}^{3N+1} , mais geralmente, equações de vínculo seriam funções suaves que relacionariam as coordenadas das partículas da seguinte forma:

$$f_I(\mathbf{x_1}, \dots, \mathbf{x_n}, t) = 0, \ I = 1, \dots K < 3N,$$
 (1.2)

onde $\mathbf{x_k}$ é posição da k-ésima partícula, t representa um instante de tempo e K representa a quantidade de vínculos aos quais o sistema obedece. O fator t foi levado em consideração, pois, podemos pensar que o sistema restringe-se a uma região que pode mudar com o tempo³. As funções dadas pela Equação (1.2) caracterizam o que se chama de **vínculo holonômico**. Na situação em que ocorrem dependências com as velocidades das partículas na eq. (1.2), temos que

$$f_I(\mathbf{x_1}, \dots, \mathbf{x_n}, \dot{\mathbf{x}_1}, \dots, \dot{\mathbf{x}_n}, t) = 0. \tag{1.3}$$

No caso da Equação (1.3), diz-se que o vínculo é **não-holonômico**. Se pudermos integrar uma equação do tipo 1.3 de modo a torná-la da forma em 1.2, ainda dizemos que o vínculo é holonômico.

 $^{^1{\}rm Objetos}$ pontuais com uma massa específica e sujeitos a interações físicas no sentido mais intuitivo possível.

²Em geral, poderia tratar-se de qualquer espaço euclidiano \mathbb{E}^n , i.e., um espaço vetorial de dimensão finita com produto interno.

³Pense por exemplo que as partículas encontram-se sobre uma superfície que oscila com o tempo.

Exemplo 1.2. Na situação em que um disco de raio R rola sem deslizar sob uma superfície horizontal, temos que a equação que garante esta condição é

$$\dot{x} = R\dot{\phi}$$

onde x é a posição do centro de massa e ϕ é o ângulo de rotação com relação ao eixo que passa pelo centro de masso, perpendicular ao plano de rotação. Como esta equação pode ser integrada para assumir o aspecto $x - R\phi = 0$, temos que o vínculo nesta situação é holonômico.

Definição 1.1. Um sistema mecânico é dito **holonômico** quando todos os vínculos deste sistema são holonômicos.

Relação entre Vínculos e Trabalho

No caso simples, onde N=K=1, se $\mathbf{F}(\mathbf{x},\dot{\mathbf{x}},\mathbf{t})$ é a força conhecida que atua sobre a partícula (e.g., força gravitacional) e \mathbf{C} é a força devido ao vínculo (e.g., força de atrito com a superfície), temos que, pela equação do vínculo e pela $2^{\underline{\mathbf{a}}}$ lei de Newton,

$$f(\mathbf{x},t) = 0, (1.4)$$

$$m\ddot{\mathbf{x}} = \mathbf{F} + \mathbf{C}.\tag{1.5}$$

Com isso, temos 4 equações (1.4 e cada componente de 1.5), mas 6 incógnitas (as componentes de \mathbf{x} e de \mathbf{C}). A princípio, o que justifica desconhecermos as componentes de \mathbf{C} é o fato de existir mais uma força compatível com vínculo geométrico⁴. Para poder diminuir a quantidade de incógnitas e conseguirmos obter $\mathbf{x}(t)$, impomos que \mathbf{C} é necessariamente perpendicular à superfície. Os detalhes desta imposição serão descritos a seguir.

Se $f(\mathbf{x},t) = c$ é a equação para uma superfície qualquer, providenciado que $\nabla f \neq 0^5$, sabemos que o gradiente será perpendicular à superfície no ponto (\mathbf{x},t) . Desta forma, podemos escrever a força de vínculo como sendo

$$\mathbf{C} = \lambda \nabla f(\mathbf{x}, t), \tag{1.6}$$

onde $\lambda \in \mathbb{R}$ é um parâmetro que pode depender de t. Com isso, reduzimos nosso número de incógnitas para 4: λ e as componentes de \mathbf{x} . A partir de certa condição, a interpretação física da Equação (1.6) é de que a força de vínculo não realiza trabalho. Isto pode ser verificado assumindo que \mathbf{F} é conservativa. Sob estas hipóteses, temos que ao tomar o produto escalar de 1.5 com $\dot{\mathbf{x}}$:

$$m\ddot{\mathbf{x}} \cdot \dot{\mathbf{x}} \equiv \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m \dot{x}^2 \right) = -\nabla V \cdot \dot{\mathbf{x}} + \lambda \nabla f \cdot \dot{\mathbf{x}}.$$

⁴Por exemplo, se impomos que a partícula se restringe a uma superfície, então a ação de qualquer força paralela a esta no ponto onde a partícula se encontra ainda resulta em uma força compatível com o vínculo.

⁵Para K, N > 1, é necessário que a matriz de entradas $\frac{\partial f_I}{\partial x^{\alpha}}$ tenha pelo menos posto K.

Visto que

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \nabla V \cdot \dot{\mathbf{x}} + \frac{\partial V}{\partial t},$$
$$\frac{\mathrm{d}f}{\mathrm{d}t} = \nabla f \cdot \dot{\mathbf{x}} + \frac{\partial f}{\partial t},$$

temos que

$$\frac{\mathrm{d}E}{\mathrm{d}t} \equiv \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m \dot{x}^2 + V \right) = \frac{\partial V}{\partial t} - \lambda \frac{\partial f}{\partial t},$$

pois $\frac{\mathrm{d}f}{\mathrm{d}t}=0$ por conta de a partícula permanecer na superfície. Supondo que o potencial não varie com o tempo, então a variação de energia da partícula dariase exclusivamente por conta da dependência temporal de f e isso implica que \mathbf{C} realiza trabalho sobre a partícula. Para verificar que isto é verdade, pense no caso em que não há dependência temporal de f; como \mathbf{C} é perpendicular à superfície, então $\mathbf{C} \cdot \dot{\mathbf{x}} = 0$. Agora, se existe alguma dependência temporal, não necessariamente temos que \mathbf{C} é perpendicular à velocidade da partícula e portanto há trabalho sendo realizado.

Coordenadas Generalizadas

Para um sistema de N partículas com K vínculos holonômicos independentes, sabemos que a equação de movimento para a i-ésima partícula é dada por

$$m_i \ddot{\mathbf{x}} = \mathbf{F}_i + \mathbf{C}_i, \tag{1.7}$$

onde C_i é a força de vínculo atuando sobre a partícula. Por superposição, temos que para cada partícula, essa força é dada por

$$\mathbf{C}_i = \sum_{I=1}^K \lambda_I \mathbf{\nabla}_i f_I, \tag{1.8}$$

onde ∇_i é o gradiente com respeito às coordenadas do vetor \mathbf{x}_i^6 .

A partir de um raciocínio análogo ao de antes, se $V(\mathbf{x_1},\dots,\mathbf{x_n},t)$ representa a energia potencial total do sistema, então a variação da energia total do sistema é dada por

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i=1}^{N} \frac{m_i \dot{x}_i^2}{2} + V \right).$$

Se todas as forças derivam deste potencial, então, tomando o produto escalar de ambos os lados da eq. (1.7) com $\dot{\mathbf{x}}_i$ e somando em i, segue que

$$\sum_{i=1}^{N} \frac{m_i \dot{x}_i^2}{2} = -\sum_{i=1}^{N} \nabla_i V \cdot \dot{\mathbf{x}}_i + \sum_{i=1}^{N} \sum_{I=1}^{K} \lambda_I \nabla_i f_I \cdot \dot{\mathbf{x}}_i.$$
(1.9)

⁶Lembre que agora cada f_I é uma função definida em algum subconjunto de \mathbb{R}^{3N} .

Veja que

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \sum_{i=1}^{N} \nabla_{i}V \cdot \dot{\mathbf{x}}_{i} + \frac{\partial V}{\partial t},$$

$$\frac{\mathrm{d}f_I}{\mathrm{d}t} = \sum_{i=1}^N \nabla_i f_I \cdot \dot{\mathbf{x}}_i + \frac{\partial f_I}{\partial t}.$$

Substituindo estes resultados na eq. (1.9), e assumindo que $\frac{\partial V}{\partial t} = 0$, como $f_I(\mathbf{x_1}, \dots, \mathbf{x_n}) = 0$ para cada I, concluímos que

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\sum_{I=1}^{K} \lambda_I \frac{\partial f_I}{\partial t}.$$

Desta forma, se nenhum dos vínculos possui alguma dependência temporal, a energia do sistema permanece constante.

Agora, para $i \in \{1, ..., N\}$, seja τ_i um vetor tal que

$$\sum_{i=1}^{N} \boldsymbol{\tau_i} \cdot \boldsymbol{\nabla}_i f_I = 0, \ I = 1, \dots, K.$$
 (1.10)

Como o posto da matriz de entradas $\partial f_I/\partial x^{\alpha}$ é K, então a eq. (1.10) determina K coordenadas do vetor $\boldsymbol{\tau} := (\boldsymbol{\tau_1}, \dots, \boldsymbol{\tau_N})$, de forma que apenas 3N - K dessas coordenadas são independentes. Desta forma, tomando o produto escalar de eq. (1.7) com $\boldsymbol{\tau_i}$ e somando em i, conclui-se facilmente que

$$\sum_{i=1}^{N} (m_i \ddot{\mathbf{x}}_i - \mathbf{F}_i) \cdot \boldsymbol{\tau}_i = 0. \tag{1.11}$$

A eq. (1.11) é conhecida como **princípio de d'Alembert**. Podemos interpretar os vetores τ_i como possíveis deslocamentos "infinitesimais" da i-ésima partícula, contanto que estes respeitem os vínculos do sistema, e chamamos eles de **deslocamentos virtuais**. As 3N - K relações obtidas somadas com as K relações independentes dadas pelos vínculos nos fornecem as 3N relações necessárias para definir as componentes de $\mathbf{x} := (\mathbf{x_1}, \dots, \mathbf{x_N})$.

Do que foi visto acima, uma vez escolhidos N vetores τ_i apropriados, podemos definir as trajetórias das partículas que compõem nosso sistema. Perceba que os vínculos na eq. (1.2) definem em conjunto uma hiper-superfície de \mathbb{R}^{3N7} e uma vez escolhidos os vetores que satisfazem 1.10, o vetor τ definido há pouco é tangencial a esta hiper-superfície. De agora em diante, a hiper-superfície definida pelos vínculos holonômicos será denotada por Q e chamaremos ela de variedade de configurações.

 $^{^7}$ Analogamente, $\mathbb{E}^{3N}.$ Também podemos levar em conta o parâmetro te adicionar uma dimensão temporal.

Considere uma região $U \subset \mathbb{R}^{3N+1}$ que contém um ponto $\mathbf{x} \in Q$. Para cada $\alpha \in \{1, \dots, 3N\}$, seja $q^{\alpha}: U \to \mathbb{R}$ um mapa $C^{\infty}(U \cap Q)$ tal que ele seja invertível, isto é, tal que:

$$q^{\alpha} = q^{\alpha}(\mathbf{x_1}, \dots, \mathbf{x_N}, t),$$

$$\mathbf{x_i} = \mathbf{x_i}(q^1, \dots, q^{3N}, t),$$

e que a matriz Jacobiana desta transformação seja não-singular. Se conseguirmos encontrar um conjunto de funções q^{α} tais que as equações de vínculo mostrem que uma quantidade destas funções é constante, então facilitaremos o trabalho de resolver as equações de movimento. Sem perda de generalidade, a menos de dependências temporais, podemos definir que as últimas K funções como

$$q^{n+I}(\mathbf{x}) := R_I(f_1(\mathbf{x}), \dots, f_K(\mathbf{x})), \ I = 1, \dots, K,$$
 (1.12)

onde $n \equiv 3N-K$. Assim, também podemos escrever as funções de vínculo como funções dos q_{n+1},\ldots,q_{n+K} . Impondo os vínculos, temos que

$$q^{n+I} = R_I(0, \dots, 0) \tag{1.13}$$

e portanto temos o que havíamos desejado: o novo conjunto de coordenadas é constante para uma certa quantidade delas. A dinâmica do sistema então se reduz a entender como que as outras n coordenadas se comporta em função do tempo. Por definição, n é o **número de graus de liberdade** do nosso sistema e também a dimensão de Q. A eq. (1.13) informa que os pontos continuam restritos à variedade de configuração e as demais funções q^1, \ldots, q^n são chamadas de **coordenadas generalizadas**.

Vejamos a seguir alguns exemplos de variedades de configuração.

Exemplo 1.3. Um caso simples de variedade de configuração é um plano. No caso de apenas uma partícula temos N=1 e K=1. Daí, segue que n=2. O vínculo é simplesmente a equação que restringe a partícula ao plano.

Exemplo 1.4. A esfera S^1 . Como visto em qualquer livro introdutório de geometria diferencial, essa esfera trata-se de uma variedade diferenciável de dimensão 1. Ela é o espaço de configuração do pêndulo planar simples (fig. 1), sendo θ a coordenada generalizada que representa o ângulo entre o eixo vertical e a haste do pêndulo. Explicitamente, as equações de vínculo são

$$f_1(x, y, z) = x^2 + y^2 + z^2 - R^2 = 0,$$

$$f_2(x, y, z) = z = 0.$$

Exemplo 1.5. No caso do pêndulo planar duplo, o espaço de configurações é o produto $S^1 \times S^1$, o que é intuitivo uma vez que sabemos o espaço de configurações para o pêndulo do exemplo anterior. As coordenadas generalizadas são os ângulos θ_1 e θ_2 entre as hastes e o eixo vertical.

Outros dois exemplos seriam o pêndulo esférico e o pêndulo esférico duplo, mas acredito que a ideia para encontrar o espaço de configurações deles já tenha ficado evidente em vista dos dois exemplos sobre pêndulos acima.

Figura 1: Representação do pêndulo simples.

1.2 Equações de Lagrange

Como cada ponto $\mathbf{x_i} \in Q$ pode pode ser escrito em função das coordenadas generalizadas q^{α} , então o vetor tangente ao ponto $\mathbf{x_i}$ com relação a uma curva parametrizada pela γ – ésima coordenada generalizada é dado simplesmente por $\frac{\partial \mathbf{x_i}}{\partial q^{\gamma}}$. Como existem n coordenadas generalizadas, isto nos permite concluir que um vetor tangente ao ponto $\mathbf{x_i}$ é da forma

$$au_{i} = \epsilon^{\alpha} \frac{\partial \mathbf{x_{i}}}{\partial a^{\alpha}},$$

onde implicitamente está sendo feita uma soma de 1 até n indexada por α . Daí, pela eq. (1.11)(princípio de d'Alembert), obtemos n equações da forma

$$\sum_{i=1}^{N} (m_i \ddot{\mathbf{x}}_i - \mathbf{F}_i) \cdot \frac{\partial \mathbf{x}_i}{\partial q^{\alpha}} = 0, \ \alpha = 1, \dots, n.$$
 (1.14)

Assumindo que as forças conhecidas $\mathbf{F_i}$ derivem de um potencial V, facilmente conclui-se que

$$\sum_{i=1}^{N} \mathbf{F_i} \cdot \frac{\partial \mathbf{x_i}}{\partial q^{\alpha}} = -\frac{\partial V}{\partial q^{\alpha}}.$$

Com relação ao produto $\ddot{\mathbf{x}}_{\mathbf{i}} \cdot \frac{\partial \mathbf{x}_{\mathbf{i}}}{\partial q^{\alpha}}$, utilizando a regra do produto temos que

$$\ddot{\mathbf{x}}_{\mathbf{i}} \cdot \frac{\partial \mathbf{x}_{\mathbf{i}}}{\partial q^{\alpha}} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\mathbf{x}}_{\mathbf{i}} \cdot \frac{\partial \mathbf{x}_{\mathbf{i}}}{\partial q^{\alpha}} \right] - \dot{\mathbf{x}}_{\mathbf{i}} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathbf{x}_{\mathbf{i}}}{\partial q^{\alpha}}. \tag{1.15}$$

No entanto,

$$\mathbf{v_i} \equiv \mathbf{x_i} = \frac{\partial \mathbf{x_i}}{\partial q^\alpha} \dot{q}^\alpha + \frac{\partial \mathbf{x_i}}{\partial t} \implies \frac{\partial \mathbf{v_i}}{\partial \dot{q}^\alpha} = \frac{\partial \mathbf{x_i}}{\partial q^\alpha}.$$

Daí

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathbf{x_i}}{\partial q^{\alpha}} = \frac{\partial^2 \mathbf{x_i}}{\partial q^{\beta} \partial q^{\alpha}} \dot{q}^{\beta} + \frac{\partial}{\partial t} \left(\frac{\partial \mathbf{x_i}}{\partial q^{\alpha}} \right) = \frac{\partial}{\partial q^{\alpha}} \left(\frac{\partial \mathbf{x_i}}{\partial q^{\beta}} \dot{q}^{\beta} + \frac{\partial \mathbf{x_i}}{\partial t} \right) = \frac{\partial \mathbf{v_i}}{\partial q^{\alpha}}.$$

Se para cada i na eq. (1.15) multiplicarmos o termo por m_i e utilizarmos o resultado acima, segue que

$$\sum_{i=1}^{N} m_i \ddot{\mathbf{x}}_i \cdot \frac{\partial \mathbf{x}_i}{\partial q^{\alpha}} = \sum_{i=1}^{N} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_i \mathbf{v}_i \cdot \frac{\partial \mathbf{v}_i}{\partial \dot{q}^{\alpha}} \right) - m_i \mathbf{v}_i \frac{\partial \mathbf{v}_i}{\partial q^{\alpha}} \right].$$

Pela linearidade da derivação, sendo a energia cinética do sistema $T=\frac{1}{2}\sum_i m_i v_i^2,$ segue que:

$$\sum_{i=1}^{N} m_i \ddot{\mathbf{x}}_i \cdot \frac{\partial \mathbf{x}_i}{\partial q^{\alpha}} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}^{\alpha}} - \frac{\partial T}{\partial \dot{q}^{\alpha}}.$$

Aplicando a igualdade acima juntamente com aquela obtida assumindo que as forças são conservativas, conclui-se que o princípio de d'Alembert assume a forma

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}^{\alpha}} - \frac{\partial (T - V)}{\partial q^{\alpha}} = 0.$$

Como os $\mathbf{x_i}$ são funções apenas dos q^{α} , então o potencial também será função apenas dos q^{α} , de forma que $\frac{\partial V}{\partial \dot{q}^{\alpha}}=0$. Em vista disso, podemos definir uma função denominada **Lagrangiana** da forma a seguir:

$$L = T - V$$
.

e com isso concluir que para cada α vale que

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}^{\alpha}} - \frac{\partial L}{\partial a^{\alpha}} = 0. \tag{1.16}$$

As 1.16 são conhecidas como **equações de Lagrange**. A partir do processo para obter as equações de Lagrange, podemos concluir que em um sistema onde todas as forças derivam de uma função escalar V e onde os vínculos são suaves, as equações de Lagrange são equivalentes à segunda lei de Newton e, mais do que isso, representam uma forma simplificada de lidar com problemas envolvendo vínculos, pois basta encontrar as expressões para T e V em função das coordenadas generalizadas e resolver as equações de Lagrange.

Exemplo 1.6. Em uma região onde existe um campo gravitacional uniforme, uma conta de massa m desliza ao longo de um aro circular de raio R. Assumindo que o aro gira em torno de um eixo radial com velocidade angular constante Ω , escreva as equações de Lagrange para o sistema.

Primeiramente, observamos que o espaço de configurações do sistema é a esfera S^1 , pois em coordenadas esféricas temos os vínculos r=R e $\varphi=\Omega t$, de forma que para este sistema de uma partícula, 3N-K=1. Logo, nossa variedade de configurações tem uma dimensão e dada a restrição imposta à partícula, é natural imaginar que $Q=S^1$ e $q=\theta$. Desta forma, a lagrangiana do sistema é

$$L(\theta, \dot{\theta}) = \frac{m}{2} (R^2 \dot{\theta}^2 + R^2 \Omega^2 \sin^2 \theta) + mgR \cos \theta,$$

onde o segundo termo na expressão para T advém da rotação do aro. Com isso, segue que a equação de Lagrange assume a forma

$$\ddot{\theta} = \Omega^2 \sin \theta \cos \theta - \frac{g}{R} \sin \theta.$$

Se estivéssemos interessados em analisar pontos de equilíbrio do sistema, bastaria avaliar os pontos em que $\ddot{\theta}$ se anula, pois a aceleração da partícula na direção $\hat{\varphi}$ é nula (para verificar isso, basta abrir a expressão para aceleração em coordenadas esféricas) e a aceleração radial não afeta o módulo da velocidade.

Exercício 1.1. Encontre as equações de movimento para o pêndulo planar duplo.

Invariância por mudança de coordenadas e lagrangianas equivalentes

Uma vez estabelecidas as coordenadas generalizadas q^{α} , suponha que existam novas coordenadas $g^{\beta} = g^{\beta}(q^1, \dots, q^n, t)$ que sejam funções suaves das antigas coordenadas generalizadas. Como o sistema a se estudado pode ser descrito tanto pelas q^{α} como pelas g^{β} , é necessário que possamos também escrever as q^{α} como funções suaves das novas coordenadas. Desta forma, temos que

$$\dot{q}^{\alpha} = \frac{\partial q^{\alpha}}{\partial q^{\beta}} \dot{g}^{\beta} + \frac{\partial q^{\alpha}}{\partial t} \implies \frac{\partial \dot{q}^{\alpha}}{\partial \dot{q}^{\beta}} = \frac{\partial q^{\alpha}}{\partial q^{\beta}}.$$

Escrevendo cada termo das equações de Lagrange em função das novas coordenadas temos que

$$\frac{\partial \bar{L}}{\partial \dot{g}^{\beta}} = \sum_{\alpha=1}^{n} \left(\frac{\partial L}{\partial q^{\alpha}} \frac{\partial q^{\alpha}}{\partial \dot{g}^{\beta}} + \frac{\partial L}{\partial \dot{q}^{\alpha}} \frac{\partial \dot{q}^{\dot{\alpha}}}{\partial \dot{g}^{\beta}} \right) = \sum_{\alpha=1}^{n} \frac{\partial L}{\partial \dot{q}^{\alpha}} \frac{\partial q^{\alpha}}{\partial g^{\beta}},$$

pois q^{α} não têm dependência com relação a \dot{g}^{β} . Consequentemente, temos que

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \bar{L}}{\partial \dot{g}^{\beta}} \right) = \sum_{\alpha=1}^{n} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}} \right) \frac{\partial q^{\alpha}}{\partial g^{\beta}} + \frac{\partial L}{\partial \dot{q}^{\alpha}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial q^{\alpha}}{\partial g^{\beta}} \right) \right]$$
$$= \sum_{\alpha=1}^{n} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}} \right) \frac{\partial q^{\alpha}}{\partial g^{\beta}} + \frac{\partial L}{\partial \dot{q}^{\alpha}} \frac{\partial \dot{q}^{\alpha}}{\partial g^{\beta}} \right].$$

Visto que

$$\frac{\partial \bar{L}}{\partial g^{\beta}} = \sum_{\alpha=1}^{n} \left(\frac{\partial L}{\partial q^{\alpha}} \frac{\partial q^{\alpha}}{\partial g^{\beta}} + \frac{\partial L}{\partial \dot{q}^{\alpha}} \frac{\partial \dot{q}^{\alpha}}{\partial g^{\beta}} \right),$$

concluímos que

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \bar{L}}{\partial \dot{g}^{\beta}} - \frac{\partial \bar{L}}{\partial g^{\beta}} = \sum_{\alpha=1}^{n} \left[\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}^{\alpha}} - \frac{\partial L}{\partial q^{\alpha}} \right] \frac{\partial q^{\alpha}}{\partial g^{\beta}} = 0.$$

Definição 1.2 (Lagrangianas equivalentes). Se as lagrangianas L_1 e L_2 dão origem às mesmas equações de movimento para o mesmo sistema, diz-se que elas são equivalentes.

Proposição 1.1. Seja $F: \mathbb{R}^{n+1} \to \mathbb{R}$, $F(\mathbf{q}, \dot{\mathbf{q}}, t)$, uma função suave e seja L_1 a lagrangiana de um sistema mecânico sujeito a vínculos holonômicos. Se $L_2: \mathbb{R}^{n+1} \to \mathbb{R}$ é definida por

$$L_2 = L_1 + \frac{\mathrm{d}F}{\mathrm{d}t},$$

então L_1 e L_2 são equivalentes.

Para a demonstração desta proposição, faremos uso do

Lema 1.1. Seja $F: \mathbb{R}^{n+1} \to \mathbb{R}$, $F(q^1, \dots, q^n, t)$, uma função suave. Então, para cada $j \in \{1, \dots, n\}$, vale que

$$\frac{\partial}{\partial \dot{q}^j} \left(\frac{\mathrm{d}F}{\mathrm{d}t} \right) = \frac{\partial F}{\partial q^j},$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial q^j} \right) = \frac{\partial}{\partial q^j} \left(\frac{\mathrm{d}F}{\mathrm{d}t} \right).$$

Demonstração do Lema 1.1.

Seja $j \in \{1, \ldots, n\}$ e $F(q^1, \ldots, q^n, t)$ suave. Então:

$$\frac{\partial}{\partial \dot{q}^j} \left(\frac{\mathrm{d}F}{\mathrm{d}t} \right) = \frac{\partial}{\partial \dot{q}^j} \left(\sum_{i=1}^n \frac{\partial F}{\partial q^i} \dot{q}^i + \frac{\partial F}{\partial t} \right) = \frac{\partial F}{\partial q^j},$$

pois nem F nem suas derivadas parciais dependem de \dot{q}^{j} .

Para mostrar a segunda igualdade, basta usar a suavidade de F:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial F}{\partial q^j}\right) = \sum_{i=1}^n \frac{\partial^2 F}{\partial q^i \partial q^j} \dot{q}^i + \frac{\partial^2 F}{\partial t \partial q^j} = \sum_{i=1}^n \frac{\partial^2 F}{\partial q^j \partial q^i} \dot{q}^i + \frac{\partial^2 F}{\partial q^j \partial t} = \frac{\partial}{\partial q^j} \left(\frac{\mathrm{d}F}{\mathrm{d}t}\right).$$

Demonstração da Proposição 1.1.

Seja $\alpha \in \{1, \ldots, n\}$. Segue da definição de L_2 que

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L_2}{\partial \dot{q}^{\alpha}} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L_1}{\partial \dot{q}^{\alpha}} \right) + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial}{\partial \dot{q}^{\alpha}} \left(\frac{\mathrm{d}F}{\mathrm{d}t} \right) \right).$$

Sendo L_1 solução das equações de Lagrange e aplicando o lema 1.1 segue que

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L_2}{\partial \dot{q}^{\alpha}} \right) = \frac{\partial}{\partial q^{\alpha}} \left(L_1 + \frac{\mathrm{d}F}{\mathrm{d}t} \right) = \frac{\partial L_2}{\partial q^{\alpha}}.$$

Conservação de energia

Uma vez fornecida uma lagrangiana⁸ $L(\mathbf{q}, \dot{\mathbf{q}}) = T - V$ para um determinado sistema mecânico sujeito a vínculos holonômicos, como obter uma expressão para a energia? Dadas certas condições, é possível obter a expressão para a energia do sistema do seguinte modo⁹:

$$E(\mathbf{q}, \dot{\mathbf{q}}) = \sum_{\gamma} \dot{q}^{\gamma} \frac{\partial L}{\partial \dot{q}^{\gamma}} - L. \tag{1.17}$$

Apesar de a expressão parecer um tanto arbitrária, seu lado direito é o que se chama por **transformada de Legendre** da função Lagrangiana; as definições mais formais da transformada serão apresentadas em algum ponto mais adiante. Por ora é suficiente ver que hipóteses precisam ser feitas sobre L para que a eq. (1.17) de fato seja a energia do sistema.

Se cada uma das partículas é uma função das coordenadas generalizadas e (possivelmente) do tempo, então temos que a velocidade da i-ésima partícula é dada por

$$\frac{\mathrm{d}\mathbf{x_i}}{\mathrm{d}t} \equiv \mathbf{v_i} = \sum_{\alpha} \frac{\partial \mathbf{x_i}}{\partial q^{\alpha}} \dot{q}^{\alpha} + \frac{\partial \mathbf{x_i}}{\partial t}.$$

Desta forma, a expressão para a energia cinética do sistema em função das velocidades generalizadas é:

$$T = \frac{1}{2} \sum_{i=1}^{N} m_i \left(\sum_{\alpha} \frac{\partial \mathbf{x_i}}{\partial q^{\alpha}} \dot{q}^{\alpha} + \frac{\partial \mathbf{x_i}}{\partial t} \right) \cdot \left(\sum_{\beta} \frac{\partial \mathbf{x_i}}{\partial q^{\beta}} \dot{q}^{\beta} + \frac{\partial \mathbf{x_i}}{\partial t} \right).$$

Se utilizarmos a expressão acima na lagrangiana, então a eq. (1.17) assume a forma a seguir:

$$\sum_{\alpha} \dot{q}^{\gamma} \frac{\partial L}{\partial \dot{q}^{\gamma}} - L = \sum_{i=1}^{N} \sum_{\alpha, \gamma} m_{i} \frac{\partial \mathbf{x_{i}}}{\partial q^{\alpha}} \cdot \frac{\partial \mathbf{x_{i}}}{\partial q^{\gamma}} \dot{q}^{\alpha} \dot{q}^{\gamma} + \sum_{i=1}^{N} \sum_{\alpha} \frac{\partial \mathbf{x_{i}}}{\partial t} \cdot \frac{\partial \mathbf{x_{i}}}{\partial t} \dot{q}^{\gamma} - T + V,$$

pois o potencial independe de \dot{q}^{γ} . Claramente, a igualdade acima não equivale à energia do sistema, contudo, se supormos que os vínculos não possuem dependências temporais explícitas, então obtemos o que desejamos. Com efeito, se $\partial_t \mathbf{x_i} = 0$ para todo t, então a energia cinética torna-se uma forma quadrática nas velocidades generalizadas, i.e., $T = \sum A_{\alpha\gamma} \dot{q}^{\alpha} \dot{q}^{\gamma}$. Consequentemente, temos que

$$E(\mathbf{q}, \dot{\mathbf{q}}) = \sum_{\gamma} \dot{q}^{\gamma} \frac{\partial L}{\partial \dot{q}^{\gamma}} - L = 2T - T + V = T + V.$$

⁸O uso da palavra "uma" se dá justamente por conta da proposição 1.1, já que não há uma única lagrangiana que nos forneça as informações de interesse para o sistema estudado.

⁹Por clareza, a convenção de Einstein será omitida no que segue.

Derivando a eq. (1.17) com relação ao tempo, verifica-se que

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\frac{\partial L}{\partial t}.$$

Portanto, é preciso que a lagrangiana do sistema não possua dependências temporais para que a quantidade definida pela eq. (1.17) seja conservada.

Em conclusão, em um sistema mecânico sujeito a vínculos holonômicos, se a energia cinética é uma forma quadrática nas velocidades generalizadas e se a energia potencial depende exclusivamente das coordenadas generalizadas, a transformada de Legendre de $L(\mathbf{q}, \dot{\mathbf{q}}, t)$ é a energia do sistema. Para que a energia seja conservada, então é necessário que L não dependa explicitamente do tempo.

Exercício 1.2. Aplique a eq. (1.17) na lagrangiana obtida no Exemplo 1.6 e verifique se esta grandeza equivale à energia e se ela é conservada.

1.3 Aspectos Geométricos e Princípio de Hamilton

A partir das subseções anteriores, sabemos que um sistema mecânico sujeito a vínculos holonômicos pode ser visto como uma hiper-superfície $\mathcal{M} \subset \mathbb{R}^{3N}$ que pode ser localmente mapeada em \mathbb{R}^n , n < 3N, por meio de um conjunto $\mathbf{q} = (q^1, \dots, q^n)$ de funções suaves definidas num conjunto $U \subset \mathcal{M}$. Além disso, se \mathbf{q}' é outro conjunto de funções suaves, definidas numa região $V \subset \mathcal{M}$ tal que $U \cap V \neq \emptyset$, as equações de Lagrange permanecem invariantes na região onde é possível descrever cada q^{α} como função de \mathbf{q}' e as funções $\mathbf{q} \circ \mathbf{q}'^{-1}$ e $\mathbf{q}' \circ \mathbf{q}^{-1}$ são suaves¹⁰.

As características acima servem como motivadoras para a

Definição 1.3. Um sistema mecânico é uma tripla $(\mathcal{M}, \langle \cdot, \cdot \rangle, \mathcal{F})$, onde

a) $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ é uma variedade Riemanniana cuja métrica induz o mapa $\mu: T\mathcal{M} \to T^*\mathcal{M}$:

$$\mu(p,v)\cdot(p,w):=\langle v,w\rangle_p,\ \forall (p,v)\forall (p,w)\in T\mathcal{M},$$

denominado operador massa;

b) $\mathcal{F}: T\mathcal{M} \to T^*\mathcal{M}$ é um mapa diferenciável que satisfaz $\mathcal{F}(T_p\mathcal{M}) \subset T_p^*\mathcal{M}$ para todo $p \in \mathcal{M}$, denominado **força externa**.

Por costume, chama-se a variedade \mathcal{M} de espaço de configurações¹¹.

Se $I \subset \mathbb{R}$ é um intervalo, então uma curva $c: I \to \mathcal{M}$ que seja solução da equação de Newton é chamada de **trajetória do sistema mecânico**.

¹⁰Intuitivamente, essas inversas e composições estão bem definidas, pois, a princípio, podemos transitar entre diferentes sistemas de coordenadas que descrevem um sistema mecânico sem que as formas das leis físicas sejam alteradas. Em palavras chiques, esta característica é chamada de covariância geral.

¹¹Para uma leitura mais aprofundada sobre os temas desta seção, vide [4] ou [5].

Definição 1.4. Dado um sistema mecânico, temos que a força externa \mathcal{F} é:

- 1. **Posicional** se $\mathcal{F}(p,v)$ depende apenas de $\pi(v)$ para todo $(p,v) \in T\mathcal{M}$.
- 2. Conservativa se existe $V: \mathcal{M} \to \mathbb{R}$ tal que $\mathcal{F}(p,v) = -dV_{\pi(v)}$ para todo $(p,v) \in T\mathcal{M}$. A função V é a energia potencial.

Definição 1.5. Seja $(\mathcal{M}, \langle \cdot, \cdot \rangle, \mathcal{F})$ um sistema mecânico. A **energia cinética** do sistema é a função $K: T\mathcal{M} \to \mathbb{R}$ definida por

$$K(p,v) := \frac{1}{2} \langle v, v \rangle_p,$$

onde $\langle \cdot, \cdot \rangle_p$ é o produto interno em $T_p\mathcal{M}$ definido pela métrica estabelecida.

Como a lagrangiana de um sistema mecânico é uma função das configurações e das velocidades relacionadas às configurações do sistema, é razoável defini-la como sendo uma função diferenciável $L: T\mathcal{M} \to \mathbb{R}$.

No que segue, sejam $a, b \in \mathcal{M}$ e $t_1, t_2 \in \mathbb{R}$ tais que $t_1 < t_2$. Ademais, seja C o conjunto de todas as curvas diferenciáveis $c: [t_1, t_2] \to \mathcal{M}$ tal que $c(t_1) = a$ e $c(t_2) = b$.

Definição 1.6. Sejam \mathcal{M} um sistema mecânico e $L: T\mathcal{M} \to \mathbb{R}$ uma lagrangiana definida neste sistema. A **ação** determinada por L é a função $S: \mathbb{C} \to \mathbb{R}$ definida por

$$S(c) := \int_{t_1}^{t_2} L(c(t), \dot{c}(t)) dt.$$

Definição 1.7. Dado $\varepsilon > 0$, uma variação de $c \in \mathbb{C}$ é um mapa $\gamma: (-\varepsilon, \varepsilon) \to \mathbb{C}$ tal que:

- 1. $\gamma(0) = c$;
- 2. O mapa $\tilde{\gamma}$: $(-\varepsilon, \varepsilon) \times [t_1, t_2] \to \mathcal{M}$, definido por $\tilde{\gamma}(s, t) := \gamma(s)(t)$, é diferenciável.

No mais, se S é a ação de um sistema mecânico, diz-se que c é um **ponto** critico de S quando

$$\left. \frac{\mathrm{d}}{\mathrm{d}s} S(\gamma(s)) \right|_{s=0} = 0$$

para qualquer variação γ da curva c.

Teorema 1.1 (Princípio de Hamilton). Uma curva $c \in \mathbb{C}$ é um ponto crítico da ação determinada por uma lagrangiana $L: T\mathcal{M} \to \mathbb{R}$ se e somente se satisfaz as equações de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) \right) - \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t)) = 0$$

para qualquer carta $(TU, q^1, \dots, q^n, \dot{q}^1, \dots, \dot{q}^n)$ em $T\mathcal{M}$.

Demonstração.

 (\Leftarrow) Seja $(U,\varphi)=(U,q^1,\ldots,q^n)$ uma carta em \mathcal{M} tal que $c([t_1,t_2])\subset U^{12}$. Dado $\varepsilon>0$, seja $\gamma:(-\varepsilon,\varepsilon)\to \mathbb{C}$ uma variação de c e defina $q(s,t):=(q\circ\tilde{\gamma})(s,t)$. Localmente, a expressão para a ação do sistema é

$$S(\gamma(s)) = \int_{t_1}^{t_2} L(q(s,t), \frac{\partial q}{\partial t}(s,t)) dt,$$

onde $L(q(s,t), \frac{\partial q}{\partial t}(s,t))$ é um abuso de notação para a composição $L \circ \tilde{\varphi}^{-1}$, com $\tilde{\varphi}^{-1}$ sendo a inversa do mapa de coordenadas da carta induzida $(TU, \tilde{\varphi})$, $\tilde{\varphi} = (q^1, \dots, q^n, \dot{q}^1, \dots, \dot{q}^n)$.

A derivada da ação S avaliada em s=0 é

$$\left. \frac{\mathrm{d}}{\mathrm{d}s} S(\gamma(s)) \right|_{s=0} = \int_{t_1}^{t_2} \sum_{\alpha=1}^{n} \frac{\partial L}{\partial q^{\alpha}} \left(q(0,t), \frac{\partial q}{\partial t}(0,t) \right) \frac{\partial q^{\alpha}}{\partial s}(0,t) \mathrm{d}t$$

$$+ \int_{t_1}^{t_2} \sum_{\alpha=1}^n \frac{\partial L}{\partial \dot{q}^{\alpha}} \left(q(0,t), \frac{\partial q}{\partial t}(0,t) \right) \frac{\partial^2 q^{\alpha}}{\partial s \partial t}(0,t) dt.$$

Integração por partes implica em

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} S(\gamma(s)) \bigg|_{s=0} &= \int_{t_1}^{t_2} \sum_{\alpha=1}^n \frac{\partial L}{\partial q^\alpha} \left(q(0,t), \frac{\partial q}{\partial t}(0,t) \right) \frac{\partial q^\alpha}{\partial s}(0,t) \mathrm{d}t \\ &+ \sum_{\alpha=1}^n \frac{\partial L}{\partial \dot{q}^\alpha} \left(q(0,t), \frac{\partial q}{\partial t}(0,t) \right) \frac{\partial q}{\partial s}(0,t) \bigg|_{t_1}^{t_2} \\ &- \int_{t_1}^{t_2} \sum_{\alpha=1}^n \frac{\mathrm{d}}{\mathrm{d}t} \bigg(\frac{\partial L}{\partial \dot{q}^\alpha} \left(q(0,t), \frac{\partial q}{\partial t}(0,t) \right) \bigg) \frac{\partial q^\alpha}{\partial s}(0,t) \mathrm{d}t. \end{split}$$

Como por hipótese $\forall s \ \gamma(s) \in \mathcal{C}$, segue que $\forall s \ q(s,t_1) := q(\gamma(s)(t_1)) = q(c(t_1)) = q(a)$ e $q(s,t_2) := q(\gamma(s)(t_2)) = q(c(t_2)) = q(b)$. Consequentemente

$$\frac{\partial q}{\partial s}(0, t_1) = \frac{\partial q}{\partial s}(0, t_2) = 0.$$

Disto, conclui-se facilmente que a expressão para a derivada da ação em s=0 é

$$\left. \frac{\mathrm{d}}{\mathrm{d}s} S(\gamma(s)) \right|_{s=0} = \int_{t_1}^{t_2} \sum_{\alpha=1}^{n} \left[\frac{\partial L}{\partial q^{\alpha}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}} \right) \right] (q(t), \dot{q}(t)) w^{\alpha}(t) \mathrm{d}t,$$

onde $q(t) \equiv q(c(t))$, $\dot{q}(t) \equiv \partial q/\partial t$ (0,t) e $w^{\alpha}(t) \equiv \partial q^{\alpha}/\partial s$ (0,t). Visto que localmente $c: [t_1, t_2] \to \mathcal{M}$ satisfaz as equações de Euler-Lagrange, então concluise que

$$\frac{\mathrm{d}}{\mathrm{d}s}S(\gamma(s))\Big|_{s=0} = 0.$$

Sendo γ qualquer, ao estender o resultado acima para toda variação tem-se que a curva c é um ponto crítico da ação.

 (\Longrightarrow) Suponha que c é ponto crítico da ação do sistema. Escolhidas uma carta (U,φ) e um mapa suave $w\colon [t_1,t_2]\to\mathbb{R}^n$ tal que $w(t_1)=w(t_2)=0$, tem-se que o mapa q(s,t):=q(t)+sw(t) é a forma local do mapa induzido por uma variação $\gamma\colon (-\varepsilon,\varepsilon)\to \mathbf{C}$ da curva c. Se $\rho\colon [t_1,t_2]\to\mathbb{R}$ é uma função suave e positiva tal que $\rho(t_1)=\rho(t_2)=0$, então basta definir as funções coordenadas de w como sendo

$$w^{\alpha}(t) := \left[\frac{\partial L}{\partial q^{\alpha}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\dot{\alpha}}} \right) \right] (q(t), \dot{q}(t)) \rho(t).$$

Daí, como c é ponto crítico da ação, tem-se que:

$$\frac{\mathrm{d}}{\mathrm{d}s}S(\gamma(s))\bigg|_{s=0} = \int_{t_1}^{t_2} \sum_{\alpha=1}^{n} \left[\frac{\partial L}{\partial q^{\alpha}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}} \right) \right]^2 (q(t), \dot{q}(t))\rho(t) \mathrm{d}t = 0.$$

Portanto, para cada α vale que

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{\alpha}} \right) (q(t), \dot{q}(t)) - \frac{\partial L}{\partial q^{\alpha}} (q(t), \dot{q}(t)) = 0.$$

Fisicamente, o princípio de Hamilton¹³ exprime que a evolução temporal de um sistema mecânico é descrito por uma trajetória $c: [t_1, t_2] \to \mathcal{M}$ no espaço de configurações em que a grandeza chamada ação não possui perturbações de primeira ordem.

Definição 1.8. Seja \mathcal{M} um sistema mecânico. A **derivada fibrada**¹⁴ da função lagrangiana L é a aplicação $\mathbb{F}L$: $T\mathcal{M} \to T^*\mathcal{M}$ que a cada $(p,v) \in T\mathcal{M}$ designa um elemento $\mathbb{F}L_v \in T_p^*\mathcal{M}$ definido por

$$(\mathbb{F}L)_v(w) := \frac{\mathrm{d}}{\mathrm{d}t}L(v+tw)\bigg|_{t=0}, \ \forall w \in T_p\mathcal{M}.$$

Para não carregar a notação, tem-se que $(\mathbb{F}L)_v \equiv \mathbb{F}L(p,v)$.

Definição 1.9. Seja L: $TM \to \mathbb{R}$ a lagrangiana de um sistema mecânico. A sua função **Hamiltoniana associada**, $H: TM \to \mathbb{R}$, é a função definida por

$$H(v) := (\mathbb{F}L)_v(v) - L(v).$$

 $^{^{13}\}mathrm{Tamb\'{e}m}$ chamado de princ'ipio da ação estacionária ou princ'ipio da mínima ação.

¹⁴Tradução livre do termo *fiber derivative*.

Seja $(a, v) \in T\mathcal{M}^{15}$. Em coordenadas locais $(q^1, \dots, q^n, \dot{q}^1, \dots, \dot{q}^n)$, a Hamiltoniana associada exprime-se como

$$H(q(a), \dot{q}(v)) = \dot{q}^{\alpha}(v) \frac{\partial L}{\partial \dot{q}^{\alpha}} - L(q(a), \dot{q}(v)).$$

Daí, segue que a hamiltoniana associada (em coordenadas locais) é a mesma grandeza definida na eq. (1.17) e portanto é definida a partir da transformada de Legendre da lagrangiana. Visto que nesta seção a energia cinética é uma forma quadrática das coordenadas generalizadas e que a lagrangiana é uma função independente do tempo, concluímos o mesmo da seção anterior: a hamiltoniana equivale à energia do sistema e ela é constante. Esta última característica encontra-se no

Teorema 1.2. A função Hamiltoniana associada é constante ao longo das soluções das equações de Euler-Lagrange.

Exercício 1.3. Prove o teorema 1.2.

Um aspecto importante do formalismo lagrangiano é sua capacidade de explicitar a relação entre simetrias e quantidades conservadas. Isso será explorado um pouco mais detalhadamente a seguir.

Definição 1.10. Seja G um grupo e S um conjunto. Diz-se que G atua em S se existe um homomorfismo ϕ entre G e o grupo de bijeções de S em S. Equivalentemente:

$$\phi(g)(p) = A(g, p),$$

onde A: $G \times S \rightarrow S$ é um mapa que satisfaz:

- 1. Se $e \in G$ é o elemento neutro, então A(e, p) = p, $\forall p \in S$;
- 2. Se $q, h \in G$, então $A(qh, p) = A(q, A(h, p)), \forall q, h \in G \forall p \in S$.

Por costume, denota-se A(q, p) por $q \cdot p$.

Definição 1.11. Seja G um grupo de Lie atuando em uma variedade \mathcal{M} . A lagrangiana $L: T\mathcal{M} \to \mathbb{R}$ é dita G-invariante se

$$L((\mathrm{d}g)_{p}v) = L(v),$$

para todos $v \in T_p\mathcal{M}$, $p \in \mathcal{M}$ e $g \in G$, onde $g: \mathcal{M} \to \mathcal{M}$ é o mapa $p \mapsto g \cdot p$.

Recordando que $\mathfrak{g} \equiv T_e G$, temos o seguinte:

Definição 1.12. Seja G um grupo de Lie atuando em uma variedade \mathcal{M} . A ação infinitesimal de $V \in \mathfrak{g}$ em \mathcal{M} é o campo vetorial $X^V \in \mathfrak{X}(\mathcal{M})$ definido por

$$X_p^V := \left. \frac{\mathrm{d}}{\mathrm{d}t} (\exp(tV) \cdot p) \right|_{t=0} = (dA_p)_e V,$$

onde $A_p: G \to \mathcal{M} \ \'e \ o \ mapa \ A_p(g) = g \cdot p$.

 $^{^{15} \}mathrm{Optei}$ por usar a no lugar de p, pois físicos reservam este último símbolo para denotar o momento linear.

Teorema 1.3 (Noether). Seja G um grupo de Lie atuando em uma variedade \mathcal{M} . Se $L: T\mathcal{M} \to \mathbb{R}$ for G-invariante, então $J^V: T\mathcal{M} \to \mathbb{R}$ definido por $J^V(v) := \mathbb{F}L_v(X^V)$ é constante ao longo das soluções das equações de Euler-Lagrange para todo $V \in \mathfrak{g}$.

Demonstração.

Exemplo 1.7.

Exemplo 1.8.

REFERÊNCIAS 19

Referências

[1] Jorge V. José e Eugene J. Saletan. Classical Dynamics: A Contemporary Approach. Cambridge University Press, 1998. DOI: 10.1017/CB09780511803772.

- [2] Nivaldo A. Lemos. *Analytical Mechanics*. Cambridge University Press, 2018. DOI: 10.1017/9781108241489.
- [3] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag New York, 1989. DOI: 10.1007/978-1-4757-2063-1.
- [4] Leonor Godinho e José Natário. An Introduction to Riemannian Geometry. With Applications to Mechanics and Relativity. Universitext. Springer, 2014.
- [5] Michael Spivak. *Physics for mathematicians: Mechanics I.* Publish or Perish, 2010.