

# Fitting Linear Models

Fitting Models to Data Not Data to Models Model Fitting Series - With Applications in R

Jesse Ghashti

October 8, 2025

Centre for Scholarly Communication

The University of British Columbia | Okanagan Campus | Syilx Okanagan Nation Territory

# Welcome, feel free to get ready while we wait to start...



#### Install Required Packages

```
packages <- c("dplyr", "mgcv", "ggplot2", "gratia", "faraway")</pre>
toInstall <- packages[!(packages %in%
                          installed.packages()[,"Package"])]
if(length(toInstall)) install.packages(toInstall)
library('dplyr') # for data wrangling
library('mgcv') # for modeling
library('ggplot2') # for fancy plots
library('gratia') # for qqplot-based model graphics
library('faraway') # for datasets
```

# Workshop Series Overview



| Session | Topic                                          | Date/Time        |
|---------|------------------------------------------------|------------------|
| 1       | Simple Linear Regression                       | Oct 7, 9:00 AM   |
| 2       | Fitting Linear Models in R                     | Oct 8, 10:30 AM  |
| 3       | Multiple Linear Regression in R                | Oct 16, 4:00 PM  |
| 4       | Interaction Terms & Hierarchical Linear Models | Oct 21, 11:00 AM |
| 5       | Generalized Linear Models                      | Oct 23, 4:00 PM  |
| 6       | Generalized Additive Models (GAMs)             | Oct 28, 11:00 AM |
| 7       | Interpreting & Predicting from GAMs            | Oct 29, 10:30 AM |
| 8       | Hierarchical GAMs                              | Nov 4, 12:00 PM  |
| 9       | Penalized Models                               | Nov 18, 11:00 AM |
| 10      | Survival Models                                | Nov 25, 11:00 AM |
| 11      | Nonparametric Models                           | Dec 2, 11:00 AM  |

#### New Here?





**New to R?** Check out the Fundamentals of R series!

**GitHub code** for today's workshop



# Last Time (Workshop 1) — Quick Recap



#### **Key Concepts**

- Simple linear regression:  $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- Least Squares estimates:  $\hat{eta}_1=rac{\sum(x_i-ar{x})(Y_i-ar{Y})}{\sum(x_i-ar{x})^2}$ ,  $\hat{eta}_0=ar{Y}-\hat{eta}_1ar{x}$
- Five assumptions: certainty in x, linearity, homoscedasticity, independence, normality

# Today: Fitting & Diagnosing Linear Models in R



#### Today we will...

- Build a reusable diagnostics function
- Fit linear models to real datasets (ChickWeight, prostate, women, state.x77)
- Examine transformations and why they may fail
- Emphasize: Fit the correct model to the data, not the data to the model

#### In case you missed it, today we require...

```
library('dplyr')  # for data wrangling
library('mgcv')  # for modeling
library('ggplot2') # for fancy plots
library('gratia') # for ggplot-based model graphics
library('faraway') # for datasets
theme_set(theme_classic(base_size = 15))
```

# **Diagnostics Function: Structure & Data Generation**



We'll build a function that simulates data, fits a linear model, computes residuals, and plots the 5 assumption views.

#### Function diagnosing any issues with model assumption violations

# Diagnostics Function: Plots (1) Certainty in x; (2) Linearity



#### Function continued...

```
cowplot::plot_grid(
  #' 1. *Certainty in x*: unlike Y, there is no error or uncertainty in x.
 ggplot(d0) +
   geom_errorbar(aes(x, ymin = Y - 1, ymax = Y + 1), color = 'grey') +
   geom_point(aes(x, Y), alpha = a) +
   labs(x = 'x', v = 'Y',
        title = expression(E(Y)^{"|=|"mu"but"E(x)^{|=|"x})),
  #' 2. *Linearity*: The relationship between X and the mean of Y is linear.
  ggplot(d0) +
   geom_line(aes(x, mu), col = 'red', lwd = 1, alpha = 0.5) +
   geom_smooth(aes(x, Y), lwd = 1, method = 'gam', formula = y ~ s(x),
               color = 'darkorange') +
   geom_point(aes(x, Y), alpha = a) +
   labs(x = 'x', y = 'Y',
        title = expression(E(Y)~'='~mu~'='~beta[0]~+~beta[1]~x)).
```

# Diagnostics Function: Plots (3)–(4) Homoscedasticity, Independence



#### Function continued...

```
#' 3. *Homoscedasticitu*: The variance of the residuals is constant.
ggplot(d0) +
 geom_hline(yintercept = 0, color = 'grey') +
 geom_smooth(aes(x, e), col = 'darkorange', lwd = 1, method = 'gam',
              formula = v \sim s(x), se = FALSE) +
 geom point(aes(x, e), alpha = a) +
 labs(x = 'x', v = 'Residuals (e)',
       title = expression(Var(epsilon)~'='~sigma^2)),
#' 1. *Independence*: residuals are independent of each other.
ggplot(d0) +
 geom_line(aes(seq(nrow(d0)), e), color = 'grey') +
 geom_point(aes(seg(nrow(d0)), e), alpha = a) +
 labs(x = 'Observation order', v = 'e',
       title = expression(e[italic(i)]~'\U2AEB'~e[italic(j)]~
                            'for'~italic(i)~'\U2260'~italic(j))),
```

# Diagnostics Function: Plots (5) Normality



#### Function continued...

```
#' 5. *Normalitu*: errors follow a Gaussian distribution.
ggplot(d0, aes(e)) +
 geom_histogram(aes(y = after_stat(density)), color = 'black',
                fill = 'grey', binwidth = 1) +
 geom_line(aes(x, dens), color = 'red', lwd = 1,
            tibble(x = seq(-3, 3, by = 0.001),
                  dens = dnorm(seq(-3, 3, bv = 0.001)))) +
 labs(x = expression('Residuals,'~e~'='~Y~-~hat(mu)).
      v = 'Densitv'.
      title = expression(epsilon~'~'~N('0,'~sigma^2))),
ggplot(d0, aes(sample = e)) +
 geom_qq_line(color = 'red') +
 geom_gg(color = 'black', alpha = a) +
 labs(x = 'Expected quantiles'.
      v = 'Obseved quantiles'.
      title = expression(epsilon~'~'~N('0,'~sigma^2))))
```

# Running the Diagnostics Function (N = 10)





# Running the Diagnostics Function (N = 100)





# Running the Diagnostics Function (N = 100)





# Linear Models in R: ChickWeight



#### ChickWeight Data



# Diagnostics for ChickWeight



Watch for nonlinearity, nonconstant variance, and structure (e.g., growth curves) that violate simple linearity.



# Log Transform $\neq$ Magic Fix (I)





# Log Transform $\neq$ Magic Fix (II)



Transformations can change the question and introduce bias.



#### **Prostate Cancer Data**



**Interpretation:** Check linearity and variance patterns; consider link/response choice if diagnostics misbehave.

#### Income vs Illiteracy (US States, 1970s)





#### Income vs Illiteracy (US States, 1970s)





#### Handling Leverage/Outliers





#### Handling Leverage/Outliers





#### Compare Smooth vs Linear Trend (Restricted Data)



**Question:** Is a strictly linear trend adequate, or do we choose the smooth term?



#### Interpreting summary() Output



```
# interpret linear model summaries ----
# coefficients, df, SE,
# t statistics, p-values, R^2, R^2_adj,
# statistical significance
summary(m_ii2)
# For a single slope the F statistic equals
# the squared t statistic.
# *This does not hold for multiple
# t statistics at once *
# Generally. the F statistic compares two
# models and assesses whether the addition
# of at least one term in the larger model
# (not in the simpler model) is significant.
```

**Question:** Is a strictly linear trend adequate, or does a smooth term capture meaningful curvature?

```
Family: gaussian
Link function: identity
Formula:
Illiteracy ~ Income
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7177902 0.6054266 6.141 1.65e-07 ***
Income
           -0.0005809 0.0001366 -4.252 9.97e-05 ***
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
```

R-sq.(adj) = 0.262 Deviance explained = 27.8%

-ML = 37.145 Scale est. = 0.27801 n = 49

#### Key Takeaways



- Visual diagnostics are essential: check all five assumptions
- Transformations change the target; use with care (Jensen's)
- Outliers/leverage can dominate inference inspect, justify, document
- Choose models that match data-generating mechanisms

#### What's Next?

#### **Additional Resources:**

- An Introduction to Statistical Learning (James et al.)
- Linear Models with R (Faraway)

#### Additional Questions? Book an Appointment!



#### **Next Workshop:**

# Multiple Linear Regression October 16, 4:00 PM

- Variable Selection
- Multicollinearity
- and more!