Accuracy Delta by Model, Fault Type, Dataset

Fig. 1: AD of individual models, compared with models protected with TDFM techniques when trained with faulty CIFAR-10 datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

Fig. 2: AD of individual models, compared with models protected with TDFM techniques when trained with faulty CIFAR-10 datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

II. GTSRB

Fig. 3: AD of individual models, compared with models protected with TDFM techniques when trained with faulty GTSRB datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

Fig. 4: AD of individual models, compared with models protected with TDFM techniques when trained with faulty GTSRB datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

III. PNEUMONIA

Fig. 5: AD of individual models, compared with models protected with TDFM techniques when trained with faulty Pneumonia datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

Fig. 6: AD of individual models, compared with models protected with TDFM techniques when trained with faulty Pneumonia datasets. The error bars in the results indicate the 95% confidence intervals. Lower values are better.

IV. RUNTIME COST ANALYSIS

Fig. 7: Average training time overheads across TDFM techniques and datasets. Lower values are better.