EE4211: Data Science for the Internet of Things

Parameter Estimation from Data

Biplab Sikdar

- Examples
- Moment estimation
- Maximum likelihood estimation
- Bayesian parameter estimation

Example 1: Superconducting VLSI

- Current VLSI technologies: CMOS (complimentary metal oxide semiconductor)
- Superconducting digital electronics: applications in high performance-computing due to a potential for much higher clock rates and lower energy dissipation
- Problem: Current superconducting digital circuits about 5 orders of magnitude lower integration scale than the typical CMOS circuits.
 - $\hfill \hfill \hfill$

Example 1: Superconducting VLSI

Two processes developed at MIT Lincoln Labs: 8 and 9 superconducting layers

Scanning Electron Microscope image of a wafer cross section

Example 1: Superconducting VLSI

Junction conductances at top and bottom layers

outlier

66

Example 2: Fish Farms

Example 2: Fish Farms

Example 2: Fish Farms

- Fish population fed with normal and high protein diet
- Estimate the weight gain due to change in diet

Parameter/Point Estimation

- □ Suppose we know we have data with values x_1, x_2, \dots, x_n drawn from some (e.g. exponential) distribution
- □ The exponential distribution $exp(\lambda)$ is not a single distribution but rather a one-parameter family of distributions
- \square Each value of λ defines a different distribution in the family, with pdf $f_X(x)=\lambda e^{-\lambda x}$, $x\geq 0$
- The question remains: which exponential distribution?
- fine We are interested in finding a point estimate to the parameter λ

Parameter Estimation

- Questions to ask:
 - □ How to estimate model parameters from data?
 - What are the factors to consider when choosing between estimators?
 - Is there an optimal way of estimating parameters from data?
 - How to compare different parameter values?

Parameter Estimation

- Most questions in statistics can be formulated in terms of making statements about underlying parameters
- Objective: devise a framework for estimating those parameters and making statements about our certainty in these estimates
- Three different approaches to making such statements
 - Moment estimators
 - Maximum likelihood estimators
 - □ Bayesian estimators

Moment Estimation

 Moment estimation techniques: parameter values are found that match sample moments (mean, variance, etc.) to those expected

Population (parameter)

Samples (statistic)

Moment Estimation

- Step 1: Start with the underlying distribution of the data
- Step 2: Obtain the expression for the first moment (mean) in terms of the parameters
- Step 3: Obtain expressions for higher order moments if distribution has more than one parameter
- Step 4: Compute the sample based moments
- Step 5: Substitute sample moments in the analytic expressions for the moments and solve to obtain the parameters

- □ We measure the levels of white phosphorus in the air
- Used in munitions, chemical weapons

- Phosphorus levels have a gamma distribution
- Gamma distribution:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

- \square shape parameter: α
- \square scale parameter: β
- \square Distribution mean: α/β
- □ Variance: α/β^2

$$\hat{\beta} = \frac{\bar{X}}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} = 0.14$$

$$\hat{\alpha} = \beta \bar{X} = 4.03$$

- Although the moment method looks sensible, it can lead to biased estimators
- Bias is measured by the difference between the expected estimate and the truth

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta$$

- In the previous example, estimates of both parameters are upwardly biased
- Bias is not the only thing to worry about
- We also need to worry about the variance of an estimator

- \square Parameter: population mean, $\mu = E[X] = \frac{1}{N} \sum_{i=1}^{N} X_i$
- \square Statistic: sample mean, $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- □ Bias($\hat{\theta}$) = $E[\hat{\theta}] \theta$

$$E[\hat{\mu}] = E\left[\frac{1}{n}\sum_{i=1}^{n} X_i\right]$$

- \square Parameter: population mean, $\sigma^2 = E[(X-\mu)^2]$
- \square Statistic: sample mean, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \hat{\mu})^2$
- □ Bias $(\hat{\theta}) = E[\hat{\theta}] \theta$ □

$$E[\hat{\sigma}^{2}] = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\hat{\mu})^{2}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n}(X_{i}^{2}-2X_{i}\hat{\mu}+\hat{\mu}^{2})\right] \qquad (E[aX] = aE[X])$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n}X_{i}^{2}-2\hat{\mu}\sum_{i=1}^{n}X_{i}+n\hat{\mu}^{2}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n}X_{i}^{2}-2\hat{\mu}n\hat{\mu}+n\hat{\mu}^{2}\right] \qquad (\hat{\mu} = \frac{1}{n}\sum_{i=1}^{n}X_{i})$$

$$= \frac{1}{n}\left[\sum_{i=1}^{n}E[X_{i}^{2}]-nE[\hat{\mu}^{2}]\right] \qquad (E[X+Y] = E[X]+E[Y])$$

$$= \frac{1}{n}\left[\sum_{i=1}^{n}(\sigma^{2}+\mu^{2})-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right] \qquad (E[\hat{\mu}^{2}] = \frac{\sigma^{2}}{n}+\mu^{2})$$

 $=\frac{(n-1)}{n}\sigma^2$

Mean Square Error of an Estimator

$$MSE[\hat{\theta}] = E[(\hat{\theta} - \theta)^{2}]$$

$$= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^{2}]$$

$$= E[(\hat{\theta} - E[\hat{\theta}])^{2}] + E[(E[\hat{\theta}] - \theta)^{2}]$$

$$+2E[(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta)]$$

$$= E[(\hat{\theta} - E[\hat{\theta}])^{2}] + (E[\hat{\theta}] - \theta)^{2}$$

$$+2(E[\hat{\theta}] - \theta)E[(\hat{\theta} - E[\hat{\theta}])] \qquad E[\hat{\theta}] - \theta : \text{constant}$$

$$= E[(\hat{\theta} - E[\hat{\theta}])^{2}] + (E[\hat{\theta}] - \theta)^{2}$$

$$+2(E[\hat{\theta}] - \theta)(E[\hat{\theta}] - E[\hat{\theta}]) \qquad E[\hat{\theta}] : \text{constant}$$

$$= VAR[\hat{\theta}] + (\text{bias}[\hat{\theta}])^{2}$$

Efficiency

- An estimator $\hat{\theta}$ is said to be efficient if its mean square error is the smallest among all competitors
- □ Relative efficiency:

$$e(\hat{\theta}_1, \hat{\theta}_2) = \frac{MSE[\hat{\theta}_1]}{MSE[\hat{\theta}_2]}$$

Problems with Moment Estimation

- They are usually not the "best estimators" available: do not achieve the minimum MSE
- Sometimes the estimates may be meaningless:
 - \square Uniform distribution: $U(0,\theta)$
 - □ Observed data: 3, 5, 6,18
- □ Expected value: $E[X] = \theta/2$
- \square Method of moments estimate of θ :

$$\hat{\theta} = 2E[X] = 2\frac{3+5+6+18}{4} = 16$$

This is not acceptable, because we have a sample of 18

Maximum Likelihood Estimator

- \square We have data with values x_1, x_2, \cdots, x_n drawn from some distribution with parameter θ
- \square We would like to obtain an estimate of heta: $\hat{ heta}$
- One of the approaches to estimating $\hat{\theta}$ is to find what value of parameter θ makes the current observation x_1, x_2, \cdots, x_n most likely
 - For any model the maximum information about model parameters is obtained by considering the likelihood function

Maximum Likelihood Estimator

 Maximum likelihood estimate: joint-distribution of the observed data is given by

$$f_{\mathcal{X}}(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} f_{\mathcal{X}}(x_i; \theta)$$

$$\triangleq L(\theta)$$

Maximizing the likelihood function:

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} L(\theta)$$

$$= \arg\left\{\frac{dL(\theta)}{d\theta} = 0\right\}$$

 It is often easier to work with the natural log of the likelihood function: log likelihood

- Suppose that the time to failure of a photo-lithography equipment is modeled by an exponential distribution with (unknown) parameter λ
- Data: 2, 3, 1, 3, 4 years
- \square What is the MLE for λ ?
- □ Exponential: $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$
- □ The likelihood function:

□ Log likelihood:

$$\ln(L(\lambda)) = 5 \ln \lambda - 13\lambda$$

Maximizing the likelihood:

$$\frac{d\ln(L(\lambda))}{d\lambda} = \frac{5}{\lambda} - 13 = 0$$

Maximum likelihood estimate:

$$\hat{\lambda}_{MLE} = \frac{13}{5}$$

Why use Method of Moments?

□ Consider a family of Gamma distribution with parameters $\theta_1 = \alpha$ and $\theta_2 = \beta$, with θ_1 , $\theta_2 > 0$:

$$f_X(x) = \frac{1}{\Gamma(\theta_1)\theta_2^{\theta_1}} x^{\theta_1 - 1} e^{-\frac{x}{\theta_2}}, \qquad x > 0$$

 \square For data with values x_1, x_2, \dots, x_n from this distribution:

$$L(\theta_1, \theta_2) = \prod_{i=1}^n f_x(x_i; \theta_1, \theta_2)$$

$$= \left[\frac{1}{\Gamma(\theta_1)\theta_2^{\theta_1}}\right]^n (x_1 x_2 \cdots x_n)^{\theta_1 - 1} e^{-\sum_{i=1}^n \frac{x_i}{\theta_2}}$$

Gamma function makes it hard to find MLE in a closed form

Bayesian Estimation

- \Box The main difference with respect to MLE is that in the Bayesian case θ is a random variable
- This notion is encapsulated in the use of a subjective prior for the parameters
- □ Basic idea:
 - \square Observed data: x_1, x_2, \dots, x_n

- 투
- lue Probability distribution for data given parameters: $f_X(x; heta)$
- lacktright Prior distribution for parameter: $f_{\Theta}(heta)$ lacktright
- Goal: compute posterior probability

$$f_{\Theta|X}(\theta|x) = \frac{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{f_{X}(x)} \sim f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)$$

Bayesian Estimation

- □ We have conditional distribution for parameter θ : $f_{\Theta|X}(\theta|x)$
- What if we are asked to make a point estimate?
- \square Option: θ that maximizes $f_{\Theta|X}(\theta|x)$: $\underset{\theta}{\operatorname{arg max}} f_{\Theta|X}(\theta|x)$
- Option: Depending on the cost of error
 - \square Suppose the cost is $(\theta \hat{\theta})^2$: $\hat{\theta} = E[\theta | x]$
 - Because for a random variable Y, the expected value of the squared error, $E[(Y-b)^2]$, is minimized at b=E[Y]
 - \square Suppose the cost is $|\theta \hat{\theta}|$: $\hat{\theta} = \text{Median}[\theta | x]$
 - Expected value of E[|Y b|] is minimized at b = Median[Y]

- F
- \square We toss a coin m times and observe n heads
- □ If I toss the coin again, what is the probability of a heads?
- Model for data: generated by a sequence of independent
- draws from a Bernoulli distribution, parameterized by θ , which is the probability of flipping a heads.
 - \square MLE estimator for θ :

$$L(\theta) = \theta^{n} (1 - \theta)^{m-n}$$
$$l(\theta) = n \ln \theta + (m - n) \ln(1 - \theta)$$

 \square MLE estimator for θ :

$$\frac{dl(\theta)}{d\theta} = 0 \quad \Rightarrow \quad \widehat{\theta}_{MLE} = \frac{n}{m}$$

□ Bayesian:

$$f_{\Theta|X}(\theta|x) \sim f_{X|\Theta}(x|\theta) f_{\Theta}(\theta)$$

- \square What should be our prior belief for heta, $f_{\Theta}(heta)$?
- Ideally, we would like our posterior distribution to be from the same family as the prior distribution: conjugate distribution

$$f_{\Theta}(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

□ Bayesian (MAP) estimator:

$$\begin{split} \widehat{\theta}_{MAP} &= \arg\max_{\theta} f_{X|\Theta}(x|\theta) f_{\Theta}(\theta) \\ &= \arg\max_{\theta} \left(\ln f_{X|\Theta}(x|\theta) + \ln f_{\Theta}(\theta) \right) \\ &= \arg\max_{\theta} (n \ln \theta + (m-n) \ln(1-\theta) + (\alpha-1) \ln \theta \end{split}$$

$$\hat{\theta}_{MLE} = \frac{n}{m}$$

$$\hat{\theta}_{MAP} = \frac{n + \alpha - 1}{n + \beta - 1 + \alpha - 1}$$

- The MAP estimate is equivalent to the ML estimate with $\alpha-1$ additional heads and $\beta-1$ additional Tails
- \square Example: if $\alpha=7$ and $\beta=3$ it is as if we had begun the experiment with 6 heads and 2 tails on the record
- \square Good idea if we initially believed probability of heads was 6/8
- Useful in reducing variance of the estimate for small samples.
- Example: data contains only one coin flip, heads. Then $\widehat{\theta}_{MLE}=1$. However, if we believe the coin is probably fair, then we can assign $\alpha=\beta=3$ (or any $\alpha=\beta$), and we get $\widehat{\theta}_{MAP}=3/5$

Interval Estimation

- In most cases the chance that the point estimate we obtain for a parameter is actually the correct one is zero
- Generalize the idea of point estimation to interval estimation:
 rather than estimating a single value of a parameter we
 estimate a region of parameter space
- We make the inference that the parameter of interest lies within the defined region
- The coverage of an interval estimator is the fraction of times the parameter actually lies within the interval
- The idea of interval estimation is intimately linked to the notion of confidence intervals

Acknowledgements

- A number of the slides in this lecture are based on material from various sources:
 - Gil McVean
 - Jeremy Orloff
 - Jonathan Bloom
 - Sebastian Thrun
 - Alex Teichman