MP* KERICHEN 2020-2021

DS no1

Devoir de rentrée, filière MP pour les 3/2, à rendre complet le jour de la rentrée. Lire avant le plolycopié sur la rédaction et s'y conformer.

PREMIER PROBLÈME

- 1. Soit un réel x distinct de -1.
 - (a) On suppose $x \ge 1$. Montrer que pour tout entier naturel n:

$$\frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + (-1)^n \frac{x^n}{1+x}.$$

(b) On suppose x > -1. Déduire de la sous-question précédente que pour tout entier $n \ge 1$,

$$\ln(1+x) = \sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1} + \int_0^x (-1)^n \frac{t^n}{1+t} dt.$$

(c) On suppose que $x \ge 0$. Montrer que pour tout entier $n \ge 1$,

$$\left| \int_0^x (-1)^n \frac{t^n}{1+t} dt \right| \le \frac{x^{n+1}}{n+1}.$$

(d) On suppose que $-1 < x \le 0$. Montrer que pour tout entier $n \ge 1$,

$$\left| \int_0^x (-1)^n \frac{t^n}{1+t} dt \right| \le \frac{1}{1+x} \frac{|x|^{n+1}}{n+1}.$$

- (e) Déduire des sous-questions précédentes que si $-1 < x \le 1$, alors la série de terme général $(-1)^n \frac{x^{n+1}}{n+1}$ est convergente de somme $\ln(1+x)$.
- (f) On suppose |x| > 1. Quelle est la nature de la série de terme général $(-1)^n \frac{x^{n+1}}{n+1}$?
- 2. À l'aide d'une calculatrice, déterminer un élément n de \mathbb{N}^* pour lequel $\sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1}$ est une valeur approchée de $\ln(1+x)$ à 10^{-8} près, dans les cas suivants :
 - (a) $x = \frac{1}{3}$.
 - (b) $x = \frac{1}{8}$.
 - (c) x = 1.

3. (a) Justifiez que

$$\ln(2) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}.$$

Pour tout entier $p \ge 1$, on note $R_p = \sum_{k=2p+1}^{+\infty} \frac{(-1)^{k+1}}{k}$.

(b) Montrer que pour tout $p \in \mathbf{N}^*$,

$$R_p = \lim_{N \to +\infty} \sum_{k=p}^{N} \frac{1}{(2k+1)(2k+2)}.$$

(c) Soit a un nombre réel strictement positif. Montrer que pour tout p et tout N, entiers tels que 0 , on a :

$$\frac{1}{2} \left(\frac{1}{2p+a} - \frac{1}{2N+a+2} \right) \le \sum_{k=p}^{N} \frac{1}{(2k+a)^2} \le \frac{1}{2} \left(\frac{1}{2p+a-2} - \frac{1}{2N+a} \right).$$

Pour ce faire on comparera la somme centrale à des intégrales et on illustrera par une figure chaque inégalité.

(d) Déduire des sous-questions précédentes que pour tout entier naturel non nul p,

$$\frac{1}{4p+4} \le R_p \le \frac{1}{4p-2}$$

et donner un équivalent de R_p lorsque p tend vers $+\infty$.

- (e) Déterminer un entier $p \ge 1$ tel que $\sum_{k=1}^{2p} \frac{(-1)^{k+1}}{k} + \frac{1}{4p+4}$ soit une valeur de $\ln(2)$ à 10^{-8} près. Comparer ce résultat avec celui de la question 2.
- 4. On se propose de calculer $\ln(2)$ et $\ln(3)$
 - (a) Exprimer $\ln(2)$ et $\ln(3)$ à l'aide de $\ln\left(1+\frac{1}{3}\right)$ et $\ln\left(1+\frac{1}{8}\right)$.
 - (b) Les calculs de la question 2 donnent les valeurs approchées à 10^{-8} près suivantes :

$$\ln\left(1+\frac{1}{3}\right) \approx 0,28768207 \text{ et } \ln\left(1+\frac{1}{8}\right) \approx 0.11778304.$$

En déduire une valeur approchée de $\ln(2)$ et $\ln(3)$. Donner la précision de ces résultats.

- 5. Soit $x \in]-1,1[$.
 - (a) Montrer que pour tout entier $n \geq 1$,

$$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{k=0}^{n-1} \frac{x^{2k+1}}{2k+1} + \int_0^x \frac{t^{2n}}{1-t^2} dt.$$

(b) On suppose de plus $x \in [0, 1[$. En déduire que pour tout entier $n \ge 1$,

$$\left| \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) - \sum_{k=0}^{n-1} \frac{x^{2k+1}}{2k+1} \right| \le \frac{1}{1-x^2} \frac{x^{2n+1}}{2n+1}.$$

- (c) Quelles valeur de x peut-on choisir dans la formule précédente pour en déduire une valeur approchée de $\ln(2)$? de $\ln(3)$?
- (d) Donner un entier $n \ge 1$ permettant d'obtenir, à l'aide des valeurs de x précédentes, une valeur approchée de $\ln(2)$ et de $\ln(3)$ à 10^{-8} près.
- (e) Comparer cette méthode d'approximation de ln(2) et de ln(3) avec celle étudiée à la question 4.
- 6. On se propose déterminer des valeurs approchées de $\ln(n)$ pour tout nombre entier n > 1.
 - (a) Expliquer pour quoi il suffit de calculer des valeurs de $\ln(n)$, pour tout nombre premier.
 - (b) Décrire une méthode pour calculer des valeurs approchées de $\ln(n)$, pour tout entier n tels que $2 \le n \le 20$.

SECOND PROBLÈME

Dans tout le problème, E est un espace vectoriel de dimension $n \ge 2$ sur le corps des réels, et id l'application identité de E. La composée de deux endomorphismes f et g de E sera simplement notée fg plutôt que $f \circ g$

Rappels.

- Un endomorphisme f de E est appelé homothétie s'il est de la forme $f = \lambda id$, où $\lambda \in \mathbf{R}$.
- Un endomorphisme f de \mathbf{E} est appelée projecteur de \mathbf{E} si $f^2 = f$. On sait alors que $E = \operatorname{im}(f) \oplus \ker(f)$ et que f est la projection sur $\operatorname{im}(f)$ selon $\ker(f)$ (voir feuilles de colles). Autrement dit tout vecteur x de E s'écrit de manière unique $x = x_1 + x_2$, avec $x_1 \in \operatorname{im}(f)$ et $x_2 \in \ker(f)$ et $f(x) = x_1$.

1. Traces et projecteurs

- 1. Soient A et B des éléments de $\mathcal{M}_n(\mathbf{R})$, montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 2. Soient $f \in \mathcal{L}(E)$ et \mathcal{B} et \mathcal{B}' des bases de E. Montrer que $\mathrm{Mat}_{\mathcal{B}'}(f)$ et $\mathrm{Mat}_{\mathcal{B}'}(f)$ ont même trace.

On peut donc définir sans ambigüité la trace de f comme la valeur commune des traces des matrices de f. On note tr(f) la trace de f.

Soit p un projecteur de E.

- 3. Montrer que rg(p) = tr(p).
- 4. Soient f et g des endomorphismes de E. Montrer que :

$$\operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

5. Soit s un endomorphisme de E qui s'écrit :

$$s = \sum_{i=1}^{m} p_i,$$

où $p_1, p_2,...,p_m$ sont des projecteurs de E. Montrer que $\operatorname{tr}(s) \geq \operatorname{rg}(s)$.

2. Endomorphismes de trace nulle

Dans cette partie f désigne un endomorphisme de E.

- 6. On suppose dans cette question que f n'est pas une homothétie.
 - (a) Démontrer qu'il existe un vecteur $x \in E$ tel que la famille (x, f(x)) soit libre.
 - (b) Montrer qu'il existe une base $\mathcal{B} = (e_1, e_2, ..., e_n)$ dans laquelle la matrice de f est de la forme suivante :

$$\begin{pmatrix} 0 & \times & \times & \cdots & \times \\ 1 & & & & \\ 0 & & & & \\ \vdots & & A & & \\ 0 & & & & \end{pmatrix},$$

où $A \in \mathcal{M}_{n-1}(\mathbf{R})$.

(c) En déduire que si $\operatorname{tr}(f) = 0$, alors il existe une base \mathcal{B}' dans laquelle la matrice de f a une diagonale nulle.

7. On suppose dans cette question que f est de la forme $f = f_1 f_2 - f_2 f_1$ avec f_1 et f_2 des endomorphismes de E. Montrer que tr(f) = 0.

On va étudier la réciproque.

8. On suppose à présent que $\operatorname{tr}(f) = 0$. On désigne par $\mathcal{D}_n(\mathbf{R})$ l'ensemble des éléments de $\mathcal{M}_n(\mathbf{R})$ diagonaux et $\mathcal{G}_n(\mathbf{R})$ celui des éléments de $\mathcal{M}_n(\mathbf{R})$ à diagonale nulle. Enfin on définit l'élément D de $\mathcal{D}_n(\mathbf{R})$, par

$$D = diag(1, 2, ..., n).$$

(a) Montrer que $\mathcal{D}_n(\mathbf{R})$ et $\mathcal{G}_n(\mathbf{R})$ sont des espaces vectoriels dont on précisera les dimensions

Soit l'application linéaire $\Phi: \mathcal{M}_n(\mathbf{R}) \to \mathcal{M}_n(\mathbf{R}); M \mapsto DM - MD$.

- (b) Montrer que $\operatorname{im}(\Phi) \subset \mathcal{G}_n(\mathbf{R})$ et que $\ker(\Phi) \subset \mathcal{D}_n(\mathbf{R})$. En déduire que $\operatorname{im}(\Phi) = \mathcal{G}_n(\mathbf{R})$.
- (c) Montrer qu'il existe f_1 et f_2 , endomorphismes de E, tels que : $f = f_1 f_2 f_2 f_1$.

3. Prescription de la diagonale

Dans cette partie on suppose que $\underline{n = \dim(E) = 2}$ et on désigne par f un endomorphisme de E qui n'est pas une homothétie.

On se donne des réels t_1 et t_2 tels que : $t_1 + t_2 = tr(f)$.

9. La question 6.(a) fournit une famille (x, f(x)) libre. Montrer l'existence d'une base \mathcal{B} de E, dont on exprimera les vecteurs au moyen de x et f(x), telle que la matrice de f dans cette base soit de la forme :

$$\begin{pmatrix} t_1 & c \\ b & t_2 \end{pmatrix}, \tag{1}$$

où b et c sont des réels.

10. On suppose que la trace de f est un entier et que :

$$\operatorname{tr}(f) \ge \operatorname{rg}(f) = 2.$$

- (a) On suppose que f n'est pas une homothétie. Montrer en utilisant la question 9 que f est une somme finie de projecteurs.
- (b) On suppose que f est une homothétie. Montrer que f est encore une somme finie de projecteurs.