Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application: Listing of claims:

Claim 1. (Currently amended) A compound of Formula I:

$$\begin{pmatrix}
R_1 \\
n \\
N \\
Z \\
R_2$$
(I)

in which

n is selected from 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from -CR₄=;

wherein R_4 is selected from hydrogen, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkoxy;

 R_1 is selected from halo, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy and $-C(O)OR_4$; wherein R_4 is selected from hydrogen, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkoxy;

 R_2 is selected from $C_{6\text{-}10}$ aryl, and $C_{3\text{-}12}$ cycloalkyl; wherein any aryl or cycloalkyl of R_2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy, $-C(O)NR_5R_5$, $-OR_5$, $-OC(O)R_5$, $-NR_5R_6$, $-C(O)R_5$ and $-NR_5C(O)R_5$;

wherein:

 R_5 and R_6 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy, $C_{6\text{-}6}$

 $_{10}$ aryl- C_{0-4} alkyl, and C_{3-12} cycloalkyl- C_{0-4} alkyl; wherein any aryl or cycloalkyl of R_5 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy;

 R_3 is selected from C_{6-10} aryl and C_{3-12} cycloalkyl; wherein any aryl or cycloalkyl of R_3 is substituted with 1 to 5 radicals independently selected from halo, C_{1-6} alkoxy, halosubstituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, -OXR₇, -OXC(O)NR₇XR₈, -OXC(O)NR₇XC(O)OR₈, -OXC(O)NR₇XOR₈, -OXC(O)NR₇XNR₇R₈, -OXC(O)NR₇XS(O)₀₋₂R₈, -OXC(O)NR₇XNR₇C(O)R₈, -OXC(O)NR₇XC(O)XC(O)OR₈, -OXC(O)NR₇R₉, -OXC(O)OR₇, -OXOR₇, -OXR₉, -XR₉, -OXC(O)R₉, -OXS(O)₀₋₂R₉ and -OXC(O)NR₇CR₇[C(O)R₈]₂; wherein:

X is a selected from a bond and C_{1-6} alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR_7 , $S(O)_2$ and O;

 R_7 and R_8 are independently selected from hydrogen, cyano, $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl;

 R_9 is selected from $C_{6\text{-}10}$ aryl- $C_{0\text{-}4}$ alkyl and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OR_{10}; \text{ and any aryl or cycloalkyl of } R_9 \text{ is optionally substituted}$ with 1 to 4 radicals independently selected from halo, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkoxy, $-XC(O)OR_{10}, -XC(O)R_{10}, -XC(O)R$

 R_{10} is independently selected from hydrogen and $C_{1\text{-}6}$ alkyl; and thepharmaceutically acceptable salts, hydrates, solvates and isomers thereof or a pharmaceutically acceptable salt or isomer thereof.

Claim 2. (Previously presented) The compound of claim 1 of Formula Ia:

$$(R_1)$$
n O R_2 R_3 (Ia)

in which

n is selected from 1, 2 and 3;

Y is selected from -CH=;

 R_1 is selected from halo, $C_{1\text{-}6}$ alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and $C_{1\text{-}6}$ alkyl;

 R_2 is selected from C_{6-10} aryl and C_{3-12} cycloalkyl; wherein any aryl or cycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_5 is selected from hydrogen and C_{1-6} alkyl; and

 $R_3 \ is \ selected \ from \ C_{6\text{-}10} aryl \ and \ C_{3\text{-}12} cycloalkyl; \ wherein \ any \ aryl \ or \ cycloalkyl \ of \ R_3 \ is \ substituted \ with \ 1 \ to \ 5 \ radicals \ independently \ selected \ from \ halo, \ hydroxyl, \ C_{1\text{-}} \ _{6} alkoxy, \ halo-substituted-C_{1\text{-}6} alkyl, \ halo-substituted-C_{1\text{-}6} alkoxy, \ -OXR_7,$

 $-OXC(O)NR_7R_8$, $-OXC(O)NR_7XC(O)OR_8$, $-OXC(O)NR_7XOR_8$,

 $-OXC(O)NR_7XNR_7R_8$, $-OXC(O)NR_7XS(O)_{0-2}R_8$, $-OXC(O)NR_7XNR_7C(O)R_8$,

 $-OXC(O)NR_7XC(O)XC(O)OR_8$, $-OXC(O)NR_7R_9$, $-OXC(O)OR_7$, $-OXOR_7$, $-OXR_9$,

-XR₉, -OXC(O)R₉ and -OXC(O)NR₇CR₇[C(O)R₈]₂;

wherein

X is a selected from a bond and C_{1-6} alkylene;

 R_7 and R_8 are independently selected from hydrogen, cyano, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl, C_{2-6} alkenyl and C_{3-12} cycloalkyl- C_{0-4} alkyl;

 R_9 is selected from $C_{6\text{-}10}$ aryl- $C_{0\text{-}4}$ alkyl and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OR_{10}$; and any aryl or cycloalkyl of R_9 is optionally substituted

with 1 to 4 radicals independently selected from halo, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkoxy, -XC(O)OR₁₀, -XC(O)R₁₀, -CR₁₀(NR₁₀R₁₀)=NOR₁₀, -XC(O)NR₁₀R₁₀, -XS(O)₀₋₂NR₁₀R₁₀ and -XS(O)₀₋₂R₁₀; wherein

 R_{10} is independently selected from hydrogen and C_{1-6} alkyl.

Claim 3. (Previously presented) The compound of claim 2 in which

- R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and
- R₂ is selected from phenyl, cyclohexyl, cyclopentyl, and naphthyl; wherein any aryl or cycloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethylamino, methoxy, trifluoromethyl, trifluoromethoxy and -OC(O)CH₃.
- Claim 4. (Previously presented) The compound of claim 3 in which R₃ is phenyl substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, -OCH₂C(O)NH₂, -OCH₂C(O)OCH₃, -OCH₂C(O)NHCH₃,
- $-OCH_2C(O)N(CH_3)_2$, $-R_9$, $-OR_9$, $-OCH_2R_9$, $-OCH_2C(O)R_9$, $-OCH_2C(O)NHR_9$,
- $-OCH_2C(O)N(CH_3)R_9$, $-OCH_2C(O)NHCH_2R_9$, $-OCH_2CN$, $-OCH_2C_2H_3$, $-OCH_2C_2H_4$,
- -O(CH₂)₂OH, -OCH₂C(O)NH(CH₂)₂C(O)OC₂H₅, -OCH₂C(O)NH(CH₂)₂CH₂F,
- $-OCH_2C(O)NHCH_2CH_2F, -OCH_2C(O)NH(CH_2)_2C(O)OH, \\$
- $-OCH_2C(O)NHCH(CH_2R_9)C(O)OC_2H_5$, $-OCH_2C(O)NHC(O)(CH_2)_2C(O)OCH_3$,
- -OCH₂C(O)NH(CH₂)₂NHC(O)CH₃, -OCH₂C(O)NHCH₂C(O)C₂H₅,
- $-OCH_2C(O)NH(CH_2)_2C(O)OC_4H_9$, $-OCH_2C(O)NHCH_2C(O)OC_2H_5$,
- $-OCH_2C(O)NHCH[C(O)OC_2H_5]_2$, $-S(O)_2CH_3$, $-OCH_2C(O)NHCH_2CF_3$,
- $-OCH_2C(O)NHCH_2C(O)(CH_2)_2C(O)OCH_3$, $-OCH_2C(O)N(CH_3)CH_2C(O)OCH_3$,
- $-OCH_2C(O)NH(CH_2)_3OC_2H_5$, $-OCH_2C(O)NH(CH_2)_3OCH(CH_3)_2$, $-OCH_2C(O)NH(CH_2)_2SCH_3$,
- -OCH₂C(O)NHCH₂CH(CH₃)₂, -OCH₂C(O)NHCH(CH₃)CH₂OH,
- -OCH₂C(O)NHCH₂CH(CH₃)C₂H₅, -OCH₂C(O)NHCH(CH₃)C(O)OC₂H₅,
- -OCH₂C(O)NHCH₂CH(CH₃)₂ and -OCH₂C(O)(CH₂)₃OCH(CH₃)₂; wherein

R₉ is phenyl, cyclopropyl-methyl, phenethyl; wherein any alkyl of R₉ can have a hydrogen replaced with $-C(O)OC_2H_5$; wherein any aryl of R₉ is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, $-OC(O)CH_3$, -COOH, $-S(O)_2NH_2$, $-CH(NH_2)=NOH$, $-C(O)OC_2H_5$, $-CH_2C(O)OH$, $-CH_2C(O)OC_2H_5$, $-CH_2C(O)OC_3$, $-C(O)OC_3$, -C(O)OC

Claim 5. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

Claim 6. (Cancelled) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 7. (Cancelled) The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.

Claim 8. (Cancelled).

Claim 9. (Cancelled) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 10. (Cancelled) The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.

Claim 11. (Currently amended) The compound of claim1 selected from: