Database Design and Development

Unit 4

Lecture 1

Background on database design

Chapter outcomes

- By the end of this chapter you will be able to:
 - Define relational databases
 - Identify major RDBMSs
 - Identify main characteristics of RDBs
 - Understand SQL's role in RDBs
 - Recognize where a database could be useful

Databases

- Databases
 - Set of logically related data designed to meet organization's need
 - It doesn't have to be electronic, but usually is
- There are different main types of databases
 - Flat File Databases
 - Hierarchical Databases
 - Relational Databases

Flat file databases

- Flat file databases
 - Simplest form of an electronic database is the flat file database
 - Consist of a file which stores data in a structured way
 - A common format is the delimited file
- Delimited files
 - These have some sort of character separating columns of data
 - Delimiter is a coma/tab (or any non-alphanumeric character)
- Disadvantages
 - Have almost no protection for data integrity and security
 - Often contain many redundancy (repeated data)

Data Integrity, Redundancy?

- Data integrity
 - Accuracy/correctness of the data in the database
 - E.g., age must be integers
- Redundancy
 - Storing the same data in more than one place

Flat File Databases

File based

```
Student.txt — dited ~

1|Mr. A|a@fpt.edu.vn|Java Class|07-2016
2|Mr. B|b@fpt.edu.vn|Java Class|07-2016
3|Ms. C|c@fpt.edu.vn|Java Class|07-2016
1|Mr. A|a@fpt.edu.vn|C Class |07-2016
2|Mr. B|b@fpt.edu.vn|C Class |07-2016
3|Ms. C|c@fpt.edu.vn|C Class |07-2016
3|Ms. C|c@fpt.edu.vn|C Class |07-2016
```

Repeated data (redundancy)

Hierarchical Databases

- Hierarchical databases are organized in a tree-like structure
 - Parent table can have many child tables
 - No child table can have more than one parent
 - They are connected to one another through links
- E.g.,
 - Directories/Sub directories/Files hierarchies in OS
- Disadvantages
 - It does present the same problems of redundancy, data integrity, and comparability of data

Hierarchical Databases

Relational Databases

- In relational model, data is organized into tables
 - Even the info about the tables is stored in tables
- Relationship among tables
 - Defined by repeating column(s) from one in another table
 - These repeating columns are called "keys"
- This solved many problems
 - One of those is data redundancy

Keys?

- In RDBs, each table usually has one (or more) column(s) designated as a primary key (khóa chính)
- A key uniquely identifies each row in a table
 - Giving one of its values, you can find exactly one row in the table
- This key becomes a foreign key when it is repeated in another table
 - To create relationship between the tables

Relational Databases

Mr. A

Mr. B

Ms. C

Practical Tutorial 1

- Guide student how to create a database specified in previous slide using the Designer
 - Show the key
 - Try to insert some data
 - Try to insert duplicated key

Drawback of RDBMS

- It's the complexity of the design
- So you should follow a design process that allows you to design a DB to achieve
 - Integrity
 - Flexibility

Situations where databases are for

- Due to the complexity of the RDB design
 - RDB is good when there is a large amount of complex data to handle

Activity

- Here are some situations where DB is good for
 - Student Management System
 - Supermarket System
 - Library Management System
 - Etc.,
- Please
 - Give some further situations to use DBs
- Explain why they are suitable to use DBs for these

Scenario – for this course

- There are 2 paper pages each week (AM and PM)
- Beginning of a month, tutors enter:
 - Their availability for each day
 - Duration for each day
 - Courses they can tutor
- Students sign up for particular sessions
 - It's free as long as they are registered in the class for which they are getting tutored
- Tutoring sessions are 30 minutes each
- A tutor can do maximum 15 hours a week
- As long as tutor shows up when scheduled, tutor is paid about \$10.5/hour

Scenario – Current system and opportunity

- Current system
 - Paper based records are taken back to the office every 2 weeks and typed into Excel
- Opportunity
 - A DB is proposed to replace this

DBMS

- A DBMS is a system for managing DBs
- It supports
 - Creating/Manipulating DBs
 - Maintaining DB (backing up/recovering, etc.)
 - Security for the DB
 - Etc.

Some famous RDBMSs

Table 1-2	Some Relational Database Management Systems	
RDBMS	Comments	URL
ORACLE	The biggest and the first commercial RDBMS. Powers many of the world's largest companies	http://www.Oracle.com
SQL Server	Microsoft's RDMS product. Ships in many versions designed for different company needs. Also powers many large enterprises	http://www.microsoft.com/sql/default.mspx
DB2	IBM's RDBMS	http://www306.ibm.com/software/data/db2/9/
MySQL	The most popular open source RDBMS, currently owned by SUN	http://www.MySql.com
PostGres SQL	Another free, open source RDBMS. It is older and some would say more powerful than MySQL	http://www.postgresql.org/
ACCESS	Microsoft's desktop database	http://office.microsoft.com/en-us/access/default.aspx?ofcresset=1

SQL(structured query language)

- Allows users to access data in relational database management systems
- Allows users to describe data
- Allows to embed within other languages SQL modules, libraries & pre-compilers
- Allows users to create and drop DBs and tables
- Allows users to create view, stored procedure, functions in a database
- Allows users to set permission on tables, procedures, and views

Practical Tutorial 2

 Use SQL Code to create the same database that you've made in Practical Tutorial 1

How do you get the requirements?

- One of the ways is to prepare an interview, in which you can ask about
 - What things the client is doing/recording?
 - What business constraints are required?
 - What reports are expected?
 - Etc.,

Identifying the big topics

- After the interview, first thing to do is to identify the big topic
 - What the database is about?
 - What are the major components going to be?
 - What does it include?
- Specifically, list the entities of the DB and specify the attributes inside them
- How to find these?
 - One way is to look at the nouns in your document

Entities and Attributes?

- An entity(thực thể) is something that the database is concerned with
 - Data is stored about this
 - It may have relationship with other entities
- Attributes (thuộc tính) define entities
 - The entity student has attributes like Id, name,
 DoB, email, etc.

Activity: Finding the entities

Find the entities for this "tutoring" scenario

Activity Result

- Tutors
- Students
- Schedules
- Courses
- Requests
- Sessions

Getting the scope

Statement of work

- Is a short statement of one or more paragraphs
- Says in clear, general terms what project will do
- It's a more complete statement about the objectives and timeline of the project

Why?

- We are making a DB for a client not just ourselves
- Not get trapped by preconceived notions
- Need to get as clear as possible about what DB is intended to do

Elements of Statement of Work

- History: Reasons for the project
 - Problem of the current system or
 - Opportunity to provide new services
- Scope: Requirements and expectations
 - States high level requirements
 - It doesn't go into details about how things are done
 - May include some general constraints (time, budgets)
- Objectives: Things intended to achieve
 - What database is supposed to achieve
 - I.e., why the client wants the DB
- Tasks and deliverables:
 - Project is broken into discrete tasks with time and deliverables

Activity (Homework)

 Study statement of the work for the "tutoring" scenario in the textbook of this course

Documenting a DB

- It's important
 - Imagine if you taken over a DB from another
 - How do you work with it if you don't have a doc
- How to document a DB? There are two main aspects to describe:
 - Process by which the DB was developed
 - The structure of the DB

Documenting DB

- Describe processes by which DB will be developed
 - The first one is the Statement of the work
 - In the future, you will learn more documents
- Structures of the DB, describes "Data dictionary":
 - Tables
 - Columns and their data types
 - Relationships among tables

Things we have done

- Identified situation in which a DB could prove valuable
- Reviewed briefly the history of DBs
- Identified some components of RDBMS
 - e.g., entities, attributes and key fields
- Using interview
 - To gather general information about a DB
- Developing Statement of work for a DB

Activity

Vocabulary

Match the definitions to the vocabulary words:

1. Attribute	 — a. A type of database that uses "relations," tables, to store and relate tables.
Foreign key	 b. The process of organizing data into tables or entities and then determining the relations
0 ,	among them.
Statement of work	 c. The language relational databases use to create their objects and to modify and retrieve data.
4. Primary key	 — d. These files have some sort of character separating columns of data. The delimiter is often a
	comma or tab, but it can be any non-alphanumeric character.
Data integrity	 e. Files where the length in characters of each column is the same.
6. Redundancy	 f. Refers to the accuracy and the correctness of the data in the database.
Delimited files	 g. Refers to storing the same data in more than one place in the database.
Relational database	 h. This key uniquely identifies each row in the table.
9. Entity	 i. This key is the primary key repeated in another table to create a link between the tables.
Relational design	 j. A short statement of one or more paragraphs that says in clear, but general, terms what the
	project will do.
11. SQL	 k. Something that the database is concerned with, about which data can be stored.
12. Constraints	 1. Things that define aspects of entities.
Fixed width files	— m. Limits on what the database will do.
	 n. A document including the scope, objectives, and timeline for a given project.

References

 Cogner, S., 2012. Hands-on Database: An Introduction to Database Design and Development. Prentice Hall.