Universality of asymmetric lens proxy pullbacks

Applied Category Theory 2022

Matthew Di Meglio

12:49 ₹		ııl २ ⊈
	Ava	
		Hi
Hey		
	What's r	new?
I'm g		
QWE	RTYU	I O P

	With	Index	Kind	Message
	Ava	0	sent	Hi
		1	received	Hey
		2	sent	What's new?
		3	draft	I'm g
_	Cam	0	received	Hey

Time	From	То	Message
09:00	Matt	Ava	Hi
11:11	Bob	Ava	Gday
11:15	Ava	Matt	Hey
12:23	Matt	Ava	What's new?
12:31	Cam	Matt	Hello

With	Index	Kind	Message
Ava	0	sent	Hi
	1	received	Hey
	2	sent	What's new?
	3	draft	I'm g
Cam	0	received	Hey

Time	From	То	Message
09:00	Matt	Ava	Hi
11:11	Bob	Ava	Gday
11:15	Ava	Matt	Hey
12:23	Matt	Ava	What's new?
12:31	Cam	Matt	Hello

With	Index	Kind	Message
Ava	0	sent	Hi
	1	received	Hey
	2	sent	What's new?
	3	draft	I'm g
Cam	0	received	Hey

Time	From	То	Message
09:00	Matt	Ava	Hi
11:11	Bob	Ava	Gday
11:15	Ava	Matt	Hey
12:23	Matt	Ava	What's new?
12:31	Cam	Matt	Hello

With	Index	Kind	Message
Ava	0	sent	Hi
	1	received	Hey
	2	sent	What's new?
	3	draft	I'm g
Cam	0	received	Hey

Time	From	То	Message
09:00	Matt	Ava	Hi
11:11	Bob	Ava	Gday
11:15	Ava	Matt	Hey
12:23	Matt	Ava	What's new?
12:31	Cam	Matt	Hello

With	Index	Kind	Message
Ava	0	sent	Hi
	1	received	Hey
	2	sent	What's new?
	3	draft	I'm g
Cam	0	received	Hey

Get functor

$$A \leftarrow G$$
 F
 G

A

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

Necessary conditions

If L exists then

Necessary conditions

If L exists then

1. (K,J) is compatible with (F,G)

Necessary conditions

If L exists then

- 1. (K,J) is compatible with (F,G)
- 2. (K,J) is independent

FKD

KD

KD

JD

JD

$$A_1 \xrightarrow{KJ^{D_1}b_2} A_2$$

$$KD$$

$$A_1 \xrightarrow{KJ^{D_1}b_2} A_2 \xrightarrow{a_3} A_3$$

$$KD$$

$$JK^{D}a_{1} \longrightarrow B_{1} \longrightarrow B_{2} \longrightarrow B_{3}$$

$$JD$$

$$D_1 \xrightarrow{J^{D_1}b_2} D_2 \xrightarrow{K^{D_2}a_3} D_3 \cdots D_n$$

$$\begin{array}{c}
 & K^{D}a_{1} \longrightarrow D_{1} \xrightarrow{J^{D_{1}}b_{2}} D_{2} \xrightarrow{K^{D_{2}}a_{3}} D_{3} \cdots D_{n} \\
 & D & D_{1} \xrightarrow{J^{D_{1}}b_{2}} D_{2} \xrightarrow{K^{D_{2}}a_{3}} D_{3} \cdots D_{m}
\end{array}$$

$$\begin{array}{c}
 & K & D & J & M \\
 & M & M \\
 & M & M & M \\
 &$$

$$A_{1} \xrightarrow{KJ^{D_{1}}b_{2}} A_{2} \xrightarrow{a_{3}} A_{3} \cdots A_{n}$$

$$KD \xrightarrow{a_{1}} A_{1}' \xrightarrow{KJ^{D_{1}}b_{2}'} A_{2}' \xrightarrow{a_{3}'} A_{3}' \cdots A_{m}'$$

$$JK^{D}a_{1} \longrightarrow B_{1} \longrightarrow B_{2} \xrightarrow{b_{2}} B_{3} \cdots B_{n}$$

$$JD \longrightarrow B_{1} \longrightarrow B_{2} \xrightarrow{b_{2}} B_{3} \cdots B_{m}$$

$$JK^{D}a_{1} \longrightarrow B_{1} \longrightarrow B_{2} \xrightarrow{b_{2}} B_{3} \cdots B_{m}$$

$$\begin{array}{c}
K^{D}a_{1} \longrightarrow D_{1} \xrightarrow{J^{D}b_{2}} D_{2} \xrightarrow{K^{D}z}a_{3} \longrightarrow D_{n} \\
\downarrow D \\
\downarrow A_{1} \longrightarrow A_{1} \xrightarrow{KJ^{D}b_{2}} A_{2} \xrightarrow{a_{3}} A_{3} \cdots A_{n}
\end{array}$$

$$\begin{array}{c}
K^{D}a_{1} \longrightarrow D_{1} \xrightarrow{J^{D}b_{2}} D_{2} \xrightarrow{K^{D}z}a_{3} \longrightarrow D_{3} \cdots D_{m}
\end{array}$$

$$\begin{array}{c}
K^{D}a_{1} \longrightarrow A_{1} \xrightarrow{KJ^{D}b_{2}} A_{2} \xrightarrow{a_{3}} A_{3} \cdots A_{n}
\end{array}$$

$$\begin{array}{c}
JK^{D}a_{1} \longrightarrow B_{1} \xrightarrow{b_{2}} B_{2} \xrightarrow{JK^{D}z}a_{3} \longrightarrow B_{3} \cdots B_{n}
\end{array}$$

$$\begin{array}{c}
JK^{D}a_{1} \longrightarrow B_{1} \xrightarrow{b_{2}} B_{2} \xrightarrow{JK^{D}z}a_{3} \longrightarrow B_{3} \cdots B_{m}
\end{array}$$

Sufficient conditions

Sufficient conditions

 $(G',F') \iff \text{ independent and } \\ \text{compatible with } (F,G)$

Conclusion

- Sync-minimal lens proxy pullbacks are universal amongst the independent and compatible lens spans
- This characterisation allowed a better understanding of when lens proxy pullbacks are real pullbacks
- Approach was inspired by Böhm and Simpson's treatment of pullback proxies in other categories

mdimeglio.github.io