MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J Fall 2020 Problem Set 1 due Wednesday 9/9/2020

Readings:

- (a) Notes from Lecture 1.
- (b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:

[C], Sections 1.1-1.4.

[GS], Sections 1.1-1.3.

[W], Sections 1.0-1.5, 1.9.

Exercise 1. Let \mathbb{N} be the set of positive integers.

- (a) A function $f: \mathbb{N} \to \{0,1\}$ is said to be *eventually zero* if there exists some N such that f(n) = 0, for all n > N. Show that the set of eventually zero functions is countable.
- (b) Does the result from part (a) remain valid if we consider rational-valued eventually zero functions $f: \mathbb{N} \to \mathbb{Q}$?
- (c) Does the result from part (a) remain valid if we consider real-valued eventually zero functions $f: \mathbb{N} \to \mathbb{R}$?
- (d) A function $f: \mathbb{N} \to \mathbb{Q}$ is said to be *eventually constant* if there exists some $N \in \mathbb{N}$ and $q \in \mathbb{Q}$ such that f(n) = q, for all n > N. Are the eventually constant functions also countable?

Exercise 2. Let $\{x_n\}$ and $\{y_n\}$ be real sequences that converge to x and y, respectively. Provide a formal proof of the fact that $x_n + y_n$ converges to x + y.

Exercise 3. We are given a function $f:A\times B\to \mathbb{R}$, where A and B are nonempty sets.

(a) Assuming that the sets A and B are finite, show that

$$\max_{x \in A} \min_{y \in B} f(x, y) \le \min_{y \in B} \max_{x \in A} f(x, y).$$

(b) For general nonempty sets (not necessarily finite), show that

$$\sup_{x \in A} \inf_{y \in B} f(x, y) \le \inf_{y \in B} \sup_{x \in A} f(x, y).$$

Exercise 4. A probabilistic experiment involves an infinite sequence of trials. For k = 1, 2, ..., let A_k be the event that the kth trial was a success. Write down a set-theoretic expression that describes the following event:

B: For every k there exists an ℓ such that trials $k\ell$ and $k\ell^2$ were both successes.

Note: A "set theoretic expression" is an expression like $\bigcup_{k>5} \bigcap_{\ell < k} A_{k+\ell}$.

Exercise 5. Let $f_n, f, g: [0,1] \to [0,1]$ and $a, b, c, d \in [0,1]$. Derive the following set theoretic expressions:

(a) Show that

$${x \in [0,1] \mid \sup_{n} f_n(x) \le a} = \bigcap_{n} {x \in [0,1] \mid f_n(x) \le a},$$

and use this to express $\{x \in [0,1] \mid \sup_n f_n(x) < a\}$ as a countable combination (countable unions, countable intersections and complements) of sets of the form $\{x \in [0,1] \mid f_n(x) \leq b\}$.

- (b) Express $\{x \in [0,1] \mid f(x) > g(x)\}$ as a countable combination of sets of the form $\{x \in [0,1] \mid f(x) > c\}$ and $\{x \in [0,1] \mid g(x) < d\}$.
- (c) Express $\{x \in [0,1] \mid \limsup_n f_n(x) \le c\}$ as a countable combination of sets of the form $\{x \in [0,1] \mid f_n(x) \le c\}$.
- (d) Express $\{x \in [0,1] \mid \lim_n f_n(x) \text{ exists} \}$ as a countable combination of sets of the form $\{x \in [0,1] \mid f_n(x) < c\}$, $\{x \in [0,1] \mid f_n(x) > c\}$, etc. (Hint: think of $\{x \in [0,1] \mid \limsup_n f_n(x) > \liminf_n f_n(x)\}$).

Exercise 6. (a) Give an example of set Ω with two σ -algebras \mathcal{F}_1 and \mathcal{F}_2 such that $\mathcal{F}_1 \cup \mathcal{F}_2$ is NOT a σ -algebra. *Hint:* Consider $\Omega = \{a, b, c\}$.

- (b) Let $\Omega \neq \emptyset$ be a set. Let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$ be an increasing sequence of σ -algebras. Show that $\mathcal{F} = \bigcup_{i=1}^{\infty} \mathcal{F}_i$ is an algebra.
- (c) Consider the same situation as in part (b). Give an example where \mathcal{F} is not a σ -algebra. *Hint*: Consider $\Omega = \mathbb{N}$ and $\mathcal{F}_n = \sigma(\{\{1\}, \{2\}, \cdots, \{n\}\})$. (Recall that $\sigma(\mathcal{C})$ is the smallest sigma algebra containing the collection of sets \mathcal{C} .) Then consider the set of even numbers for the union.

Remark: In fact a stronger statement is true: If $\mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq ...$ is a *strictly increasing* sequence of σ -algebras then $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is NOT a σ algebra.

Exercise 7. Optional — not to be graded

This exercise develops an example that is meant to illustrate the following: if we work with fields instead of σ -fields, and if we only require finite additivity, then countable additivity will not be an automatic consequence, and the model may not correspond to any intuitive notion of probabilities.

Let $\Omega=\mathbb{N}$ (the positive integers), and let \mathcal{F}_0 be the collection of subsets of Ω that either have finite cardinality or their complement has finite cardinality. For any $A\in\mathcal{F}_0$, let $\mathbb{P}(A)=0$ if A is finite, and $\mathbb{P}(A)=1$ if A^C is finite.

- (a) Show that \mathcal{F}_0 is a field but not a σ -field.
- (b) Show that \mathbb{P} is finitely additive on \mathcal{F}_0 ; that is, if $A, B \in \mathcal{F}_0$, and A, B are disjoint, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- (c) Show that \mathbb{P} is not countably additive on \mathcal{F}_0 ; that is, construct a sequence of disjoint sets $A_i \in \mathcal{F}_0$ such that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_0$ and $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \neq \sum_{i=1}^{\infty} \mathbb{P}\left(A_i\right)$.
- (d) Construct a decreasing sequence of sets $A_i \in \mathcal{F}_0$ such that $\bigcap_{i=1}^{\infty} A_i = \emptyset$ for which $\lim_{i \to \infty} \mathbb{P}(A_i) \neq 0$.