

Multi-Satellite Fire Detection Composite FRED

CSB Meeting 17 Mar 2020

Progress Update

- Sun glint filter for Himawari-8/9
- Use of logistic regression
- Validation Results
- New approach in ground-truthing

Himawari-8/9 Sun Glint Rejection

- Sun glint angle
 - the angle difference between reflected solar beam and the satellite view/zenith angle, from the satellite reference frame. If the angle is small, it means that the outgoing solar reflection is directed at the sensor of satellite.
- Calculation done using pyorbital and satellite metadata

$$\cos\theta_{g} = \cos\theta_{v}\cos\theta_{s} - \sin\theta_{v}\sin\theta_{s}\cos\phi$$

where

 θ_g = sun glint angle

 θ_{v} = satellite view/zenith angle

 θ_s = solar zenith angle

 ϕ = relative azimuth angle (difference between solar and satellite azimuth angle)

Himawari-8/9 Sun Glint Rejection

The following rules are used in the MODIS/VIIRS fire detection algorithm

$$\theta_{\rm g} < 2^{\circ}$$
 (8) $\theta_{\rm g} < 8^{\circ}$ and $\rho_{0.65} > 0.1$ and $\rho_{0.86} > 0.2$ and $\rho_{2.1} > 0.12$ (9) $\theta_{\rm g} < 12^{\circ}$ and $(N_{\rm aw} + N_{\rm w}) > 0$ (10)

- Opt for a simple thresholding method in (8)
- Criterion (9) and (10) involves processing of original HSD data, efforts akin to producing fire hotspot product ourself

Himawari-8/9 Sun Glint Rejection

- Very effective in eliminating sun-glint induced fire hotspots
- Initial exploration found that majority of false alarms can be easily rejected
- Optimal threshold is determined during the validation phase

Before

After

H-8 hotspots at different sun glint angles

Sun glint induced hotspots removed (minimum angle of 12°)

Overview

Regridding

- Different satellite hotspot data has different resolutions or grid size (0.75 - 2 km)
- Harmonisation to standardise grid resolution
- All data is gridded to 2 km resolution

Temporal Aggregation

- Aggregate fire hotspot detected within a certain observation window period
- Observation period used:
 - 00:00 08:30 UTC

Aggregated Hotspots (00 – 09 UTC)

12/10/2019 05:22:00 NPP

12/10/2019 06:10:00 Himawari-8/9

12/10/2019 05:22:00 NPP 12/10/2019 05:22:00 NPP

12/10/2019 05:22:00 NPP 12/10/2019 05:22:00 NPP 12/10/2019 06:00:00 Himawari-8/9

12/10/2019 05:22:00 NPP 12/10/2019 06:13:16 AQUA

Feature Engineering - Hotspot Weight

Let W_i to be total weight based on hotspots detected by geostationary and polar-orbiting satellites, and i is the position of grid

$$W_{i} = \sum_{j=1}^{n_{g}} (1 - \alpha) \frac{1}{n_{g}} + \sum_{k=1}^{n_{p}} \alpha \frac{1}{n_{p}} c_{j}$$

where

 α is the ratio of contribution by geostationary and polar orbiters. If $\alpha=0$, it means there are no polar orbiters included. If $\alpha=1$, it means there are no geostationary satellites included.

 n_g is the maximum number of geostationary observations made during the window period.

 c_i is the normalized confidence level (scaled to 1.0)

 n_p is the number of polar orbiting satellites (4 - N20, TERRA, AQUA, NPP), k is the identifier of the polar satellite

Machine Learning – Logistics Regression

- Probabilistic version of linear regression y = mx + c
- Simple model for easy interpretation

- Purpose:
 - To fit the logistic regression curve with the data
 - Find optimal parameters for
 - Alpha weight ratio of polar and geostationary satellite hotspot
 - Sun glint angle
- Group A: July 2019 ground-truth data prepared by Effy
 - Used earlier for N20 validation
 - Early part of hotspot season
 - Sentinel-2 data and NUS CRISP
 - Date of burning estimated based on burnt mark
 - Num of labels 342
- Group B: 1-4 Sep 2019
 - Peak of hotspot season
 - Integrated various API/plugins on QGIS to visualize sat data very quickly
 - Sentinel-2, NUS CRISP, MODIS, VIIRS, Planet
 - Less uncertainty with date of burning estimation
 - Num of labels 622

Verification Area

Group A: July 2019

Group B: 1-4 Sep 2019

Handling of validation data

Class imbalance problem

- Number of false alarms > number of true positive
- Resampling is done to ensure 50:50 ratio
- 1 km buffer is added for verification
- 75:25 split for training and test data

Before resampling

After resampling

ROC = Area under the curve

1.0 is perfect, 0.5 is no better than random guess.

Group A: July 2019

- Performance of a hotspot composite is clearly better than using solely geostationary or polar-orbiting satellite
- Improvement in score shown when sunglint filter is applied
- Choice of optimal parameter of alpha and sun glint angle sensitive to training data
 - (training data not representative enough yet)

Group B: 1- 4 Sep 20
ROC score for sunglint angle/alpha combination

	2										
0	0.69	0.75	0.79	0.81	0.83	0.84	0.85	0.85	0.86	0.85	0.79
4	0.71	0.77	0.8	0.82	0.83	0.84	0.85	0.86	0.86	0.86	0.79
Angle (°) 8	0.72	0.78	0.8	0.82	0.84	0.85	0.86	0.86	0.86	0.86	0.79
Sunglint Angle (°) 12 8	0.71	0.77	0.8	0.81	0.83	0.84	0.85	0.86	0.86	0.86	0.79
91	0.69	0.76	0.79	0.8	0.82	0.83	0.84	0.84	0.84	0.84	0.79
8	0.65	0.74	0.77	0.79	0.81	0.82	0.82	0.83	0.83	0.83	0.79
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

How to pick the optimal parameter?

Group B: 1- 4 Sep 2019

ROC score for sunglint angle/alpha combination 0.69 0.85 0.86 0.79 0.81 0.83 0.84 0.85 0.85 0.79 0 0.71 0.82 0.83 0.84 0.85 0.86 0.86 0.86 0.79 4 Sunglint Angle (°) 0.72 0.78 0.82 0.84 0.85 0.86 0.86 0.86 0.86 0.79 0.71 0.81 0.83 0.84 0.85 0.86 0.86 0.86 0.79 0.69 0.79 0.82 0.83 0.84 0.84 0.84 0.84 0.79 16 0.65 0.74 0.79 0.81 0.83 0.83 0.83 0.79 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.9 1.0 Alpha

Group B: 1- 4 Sep 2019

Group B: 1-4 Sep 2019

Group B: 1-4 Sep 2019

Conclusion

- Multi-sat hotspot composite clearly superior over single source hotspot data
- Sun glint filter brought major improvement
- Optimisation of model parameters still on-going as they are sensitive to model data but modelling approach is more or less finalised