Caffine
$$\equiv$$
 line through $x,y \in C$ also lies in C
$$\theta x + (-\theta)y \in C \quad \forall \quad 0 \in \mathbb{R}$$
 line through x,y

$$\frac{\theta=1}{x} \frac{\theta=0}{y}$$

Eg:
$$C = \{x \in \mathbb{R}^n \mid Ax = b\}$$

$$A \in \mathbb{R}^{m \times n} \quad b \in \mathbb{R}^m$$

Solution set of a system of linear egns.

suppose
$$x, y \in C \Rightarrow Ax = b$$

 $Ay = b$

suppose
$$Z = 0x + (1-0)y$$

parameter

Does
$$z \in C$$
? or $Az = b$
or $A(0x + (1-0)y) = b$
or $O(Ax) + (1-0)(Ay)$

$$= 0b + (1-0)b = b$$

$$\Rightarrow z \in C$$

$$\Rightarrow z \in C$$

$$\Rightarrow b$$
for any $0 \in \mathbb{R}$
(we subtriction on 0)

Eg:
$$N = 2$$

$$\left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \mid x_1 + x_2 = 1 \right\}$$

line is affine

$$N=3 \qquad \begin{cases} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} \in \mathbb{R}^3 \\ \end{cases} \qquad x_3=0 \qquad \begin{cases} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = 0 \end{cases}$$

plane in 3D

Eg:
$$D : \{x \in \mathbb{R}^m \mid Ax \leq b\}$$
solution set of inequalities $b \in \mathbb{R}^m$
 $A \in \mathbb{R}^{m \times n}$

$$x,y \in D$$

$$z = 0x + (1-0)y \in D$$

$$x \in D$$
 => $Ax \leq b$
 $y \in D$ => $Ay \leq b$
 $Az = A(0x + (1-0)y) = O(Ax) + (1-0)(Ay)$
In general: $Ax \leq b \not\Rightarrow O(Ax) \leq 0b$

In general:
$$Ax \le b \implies 0(Ax) \le 0b$$

not true for $0 < 0$

$$\frac{\epsilon_0}{2}$$
 n=2, m=1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\{x \in \mathbb{R} \mid x \leq 1\}$$

haff line not affine

not affine

half-space