Flight Delay Predictions

Amirhossein Arefzadeh Aria Azem Amin Aghakasiri

Table of contents

01 Introduction

Problem and dataset explanation

03 Data Exploration

Visualization of data for further inference

02 Preprocessing

Data cleaning and more

04 Learning

Employing Neural Network-Based Approach for Flight Delay Prediction

Why Flight Delay

- Per the Bureau of Transportation Statistics, 18.6 % of flights experienced delays (arrival > 15 minutes).
- 1.5 % of flights were canceled
- Flight delays can lead to missed connections, increased costs, and significant passenger inconvenience.

Flight Delay Dataset

5,819,079

Number of flights

322

Number of airports

54

Number of state

Flight Delay Dataset

Source

te Structure 36 features

Target

Estimating the delay time for flights

www.kaggle.com

Flight Delay Dataset

- Date :
 day of the flight trip
- Airline : airline identifier
- Origin_Airport : starting airport

- Destination_Airport : destination airport
- Distance : distance between two airports
- Air_Time : the time in the sky

Preprocessing

Data cleaning

Removing duplicated and invalid data and add new features

Label encoding

Encoding nominal and ordinal features accordingly

Normalizing

Scaling data for better ML convergence speed

2015 U.S. Airport Flight Distribution

Average of delay per month

This chart shows the average arrival and departure delays across difference months.
Seasonal trends, weather conditions and holidays may contribute to variations in delays

Average of delay by AIRLINE

This visualization compares the average delays for different airlines. Some airlines may have better on-time performance due to fleet efficiency, airport hubs, or operational strategies.

number of cancellation per month

Displays the monthly trend of flight cancellations. Weather conditions, mechanical issues, and airline policies could influence these numbers.

Average of DELAY by DISTANCE

A plot of average arrival delay versus flight distance shows no clear correlation, indicating that delay times are not strongly related to how far a plane travels.

Sum of CANCELLED and DIVERTED by AIRLINE

Compares airlines based on the number of cancelled and diverted flights. Some airlines may handle disruptions better than others

Average of AIRLINE_DELAY by AIRLINE

This chart ranks airlines based on their overall flight delays.

Operational efficiency and airport hubs play a role in these rankings.

Average of delay by DAY_OF_WEEK

Examines whether certain days have higher delays. Weekends or peak business travel days might see different delay patterns.

Model Overview

Layer (type)	Output Shape	Param #	Connected to
catDAY_OF_WEEK_i (InputLayer)	(None, 1)	0	=
catWEEK_OF_YEAR (InputLayer)	(None, 1)	0	=
catIS_WEEKEND_inp (InputLayer)	(None, 1)	0	S
passthroughAIRLI (InputLayer)	(None, 1)	0	-
passthrough_ORIGI (InputLayer)	(None, 1)	0	-
passthroughDESTI (InputLayer)	(None, 1)	0	-
passthroughTAIL (InputLayer)	(None, 1)	0	-
catDAY_OF_WEEK_e (Embedding)	(None, 1, 4)	28	catDAY_OF_WEEK
catWEEK_OF_YEAR (Embedding)	(None, 1, 4)	24	catWEEK_OF_YEA
catIS_WEEKEND_emb (Embedding)	(None, 1, 2)	4	catIS_WEEKEND
passthroughAIRLI (Embedding)	(None, 1, 8)	112	passthroughAIR
passthroughORIGI (Embedding)	(None, 1, 50)	15,650	passthroughORI
passthroughDESTI (Embedding)	(None, 1, 50)	15,650	passthroughDES
passthroughTAIL (Embedding)	(None, 1, 50)	220,600	passthroughTAI

num_inp (InputLayer)	(None, 6)	0	-
flatten (Flatten)	(None, 4)	0	catDAY_OF_WEEK
flatten_1 (Flatten)	(None, 4)	0	catWEEK_OF_YEA
flatten_2 (Flatten)	(None, 2)	0	cat_IS_WEEKEND
flatten_3 (Flatten)	(None, 8)	0	passthroughAIR
flatten_4 (Flatten)	(None, 50)	0	passthroughORI…
flatten_5 (Flatten)	(None, 50)	0	passthroughDES
flatten_6 (Flatten)	(None, 50)	0	passthroughTAI
concatenate (Concatenate)	(None, 174)	0	num_inp[0][0], flatten[0][0], flatten_1[0][0], flatten_2[0][0], flatten_3[0][0], flatten_4[0][0], flatten_5[0][0], flatten_6[0][0]
dense (Dense)	(None, 128)	22,400	concatenate[0][0]
dense_1 (Dense)	(None, 64)	8,256	dense[0][0]
dense_2 (Dense)	(None, 32)	2,080	dense_1[0][0]
regression_output (Dense)	(None, 1)	33	dense_2[0][0]

284,837

total number of parameters

Test vs. Validation Loss per Epoch

Model Evaluation

```
---- Test metrics
MSE : 0.000372
RMSE : 0.019299
MAE : 0.007517
```

R² : 0.9996

SMAPE : 4.3092%

---- Test metrics (original scale)

MSE : 0.590975 RMSE : 0.7687

MAE : 0.2994 R² : 0.9996

SMAPE : 12.6284%

Sample Predictions

		flight_id	actual_arrival_delay		flight_id	predicted_arrival_delay	
	0	11	-30.0	0	11	-30.336096	
	1	27	-3.0	1	27	-3.222282	
	2	30	2.0	2	30	1.942082	
	3	68	-4.0	3	68	-4.065832	
	4	80	9.0	4	80	9.057667	
	5	89	-18.0	5	89	-18.058674	
	6	134	-6.0	6	134	-5.812082	
	7	169	27.0	7	169	26.775656	
	8	194	11.0	8	194	10.948182	
	9	213	3.0	9	213	3.181458	

Thanks!

Do you have any questions?

amirrfz2003@gmail.com ariaazem@gmail.com kasiri.amin@gmail.com

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>