Wildfire Detection with a CNN Ensemble 1INF52 Deep Learning

CPSquad

PUCP

March 3, 2025

Contents

- Introduction
- State of the Art and Baseline
- Open Dataset
- 4 Experiments: Model Pipeline
 - Model Pipeline
 - Hyperparameter Tuning
 - Ensemble
- Results
- 6 Conclusions

Introduction and Problem Statement

- The increasing frequency of wildfires has led to a demand for automated monitoring systems.
- Traditional methods (satellites, thermal sensors) suffer from delayed data retrieval.
- Deep Learning can improve detection speed and accuracy.

Figure: Wildfire in Peru, 2024.

Research Motivation and Goals

Objective of this Study

- Develop an ensemble of CNNs for wildfire detection in aerial images.
- Evaluate the performance of Xception,
 DenseNet121, and ResNet152.
- Improve classification accuracy while keeping computational efficiency.

Traditional Approaches to Wildfire Detection

- Sensor-based methods: Use temperature, smoke, and gas sensors, but have limited coverage.
- Classic Computer Vision methods: Use color-based segmentation, but suffer from high false positives.
- Machine Learning and Deep Learning approaches:
 - CNN-based classification (e.g., Xception, DenseNet, ResNet).
 - Object detection with YOLOv8.
 - Vision Transformers (ViTs) for feature extraction.

Baseline Model: FireSight (Stanford)

- FireSight combines CNNs and ViTs for aerial wildfire detection.
- Achieves 82.28% accuracy using DenseNet + ResNet + ViT ensemble.
- Our approach:
 - Improve CNN-only ensemble.
 - Optimize architecture for real-time drone deployment.

FLAME Dataset Overview

- FLAME dataset contains drone-captured images of wildfires.
- Training Set: 39,375 images Test Set: 8,617 images.
- Class Distribution:
 - Fire: **25,027 images (63.55%)**.
 - No-Fire: **14,357 images (36.45%)**.

Pipeline for Model Training

Figure: Model Architecture

- Preprocessing: Images resized to 224x224 and augmented.
- Training Strategy: Individual CNNs trained separately.
- Evaluation: Models compared based on accuracy, precision, recall, and F1-score.

Keras Tuner for Hyperparameter Search

- Keras Tuner used for optimizing batch size, dropout, L2 regularization, and learning rate.
- Best hyperparameters found:

Model	Batch Size	Dropout	L2 Factor	Learning Rate
Xception	10	0.45	0.001	0.00541
DenseNet121	64	0.35	0.001	0.00147
ResNet152	64	0.4	0.0005	0.00093

Why Use an Ensemble?

- Goal: Improve model stability and accuracy.
- We experimented with:
 - Majority Voting (Final Selection).
 - Weighted Averaging.
 - Stacking.

Final Approach: Voting

- Each model votes on the predicted class.
- The most frequent class is the final prediction.

Confusion Matrices

Final Model Performance

- Baseline F1-score: 0.58, Accuracy: 82.28%
- Our Final Model: F1-score: 0.61, Accuracy: 86.50%

Key Takeaways

- Our ensemble outperforms the baseline in accuracy and F1-score.
- CNN ensembles can achieve real-time inference on drones.
- Future work: Dataset expansion, real-world testing, transfer learning.

Thank You!

Questions?