Missing data simulation

summary(sem(mod.full, data=data))

data.ms <- tbl df(data.ms)</pre>

```
#Download and load the necessary packages
install.packages("mice")
install.packages("tidyverse")
install.packages("lavaan")
library(mice)
library(tidyverse)
library(lavaan)
#Under this URL, you find a presenation of the ampute() function within MICE that allows
#creating missing data
https://rdrr.io/cran/mice/man/ampute.html
#Data creating (similar to your data set, N=8000)
set.seed(123)
e1 = rnorm(8000) #Three random error variables are created
e2 = rnorm(8000)
e3 = rnorm(8000)
X = e1 #
M = .5*X + e2 \#Effecs are .5
Y = .5*M + e3
data = tibble(X,M,Y) #Creating a data set
#SEM with complete data set
mod.full <- '</pre>
  Y \sim M
  M∼X'
```

```
Number of observations 8000

Estimator ML

Model Fit Test Statistic 0.239

Degrees of freedom 1

P-value (Chi-square) 0.625

(...)

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

M 0.484 0.010 47.976 0.000

M ~

X 0.498 0.011 44.269 0.000
```

#You see, the effects are (of course) almost exactly as created (within the margin of sampling error)

```
#Missing data generation: I delete 60% in all of the three variables!
results = ampute(data, prop=.6, mech="MAR")

#Extraction of the data set with missing data
data.ms <- results[11]$\$amp</pre>
```

#Rename variables (has to be done, as ampute eliminates them)

```
data.ms <- data.ms %>%
  rename(Xmis=X, Ymis=Y, Mmis=M)
```

#Show a part of the dataset with missings

data.ms %>% print(n=30)

```
# A tibble: 8,000 x 3
      Xmis
               Mmis
                        Ymis
                      <db1>
   -0.560
                     -0.315
                      0.581
             1.76
                      0.159
                     -0.945
    0.129
             0.198
             0.988
    0.461
             1.08
                     -1.84
             -0.141
                     -0.525
   -0.687
            -0.250
                      0.723
11
             -0.496
    0.360
13
                     -0.478
            -0.216
14
                      0.179
15
             0.911
                     -0.594
16
             0.712
                      0.734
17
18
                      0.364
19
            0.250
20
21
            -2.66
22
23
                     -0.175
24
25
   -0.625
                      1.26
26 NA
                      0.164
27
            -0.544
                     -0.444
28 NA
            -0.361
                     0.952
29 -1.14
                      0.132
30
             2.26
# ... with 7,970 more rows
```

#SEM with listwise deletion

```
mod.LD <- '
   Ymis ~ Mmis
   Mmis ~ Xmis</pre>
```

summary(sem(mod.LD, data=data.ms))

Number of observations	Used 3237	Total 8000
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square)	ML 0.119 1 0.730	
Parameter Estimates:		

Information Information sat Standard Errors		model	St	Expected ructured Standard	
Regressions:					
	Estimate	Std.Err	z-value	P(> z)	
Ymis ~ Mmis	0.439	0.016	26.818	0.000	
Mmis ~	0.437	0.010	20.010	0.000	
Xmis	0.426	0.018	23.911	0.000	

#You see, the used data is N=3237, effects are downward biased. One could create a systematically affected data set where missingness of the DV is affected my missing common causes and the bias would be larger

#SEM with FIML

#The model structure is the same)

summary(sem(mod.LD, data=data.ms, missing="FIML", fixed.x=FALSE))

Estimator Model Fit Test Degrees of free P-value (Chi-so	dom				
Parameter Estimat	es:				
Information Observed information based on Standard Errors			Observed Hessian Standard		
Regressions:					
37	Estimate	Std.Err	z-value	P(> z)	
Ymis ~ Mmis Mmis ~	0.490	0.012	40.134	0.000	
MMIS ~ Xmis	0.497	0.013	37.283	0.000	
Intercepts:					
.Ymis .Mmis Xmis	Estimate 0.005 0.013 0.006		0.404 1.013	0.686	

#You see, the effects are exactly as in the model with the full data set—although only 40% is available!