Informe de Trabajo Práctico N°5B

Cinemática Inversa

Robótica I

Ingeniería en Mecatrónica Facultad de Ingeniería - UNCUYO

Alumno: Juan Manuel BORQUEZ PEREZ Legajo: 13567

1. Robot

Figura 1: Robot 6gdl - muñeca esférica

La definición de los sistemas en el robot es la que se indica en fig. 2

Figura 2: Robot 6gdl - Sistemas DH

La matriz de DH que resulta es table 1. Para el caso, se utilizaran solamente valores unitarios para los parámetros de longitud de DH $(a_i \ y \ d_i)$.

Sistema	θ	d	a	α	σ
1	q_1	d_1	0	$\pi/2$	0
2	q_2	0	a_2	0	0
3	q_3	0	0	$\pi/2$	0
4	q_4	d_4	0	$\pi/2$	0
5	q_5	0	0	$\pi/2$	0
6	q_6	d_6	0	0	0

Cuadro 1: Robot 6gdl - Matriz DH

2. Ejercicio 1: Primer Problema de Pieper

Figura 3: Robot 6gdl - Primer problema de Pieper

Como se puede observar en el esquema cinemático de la fig. 1 los eslabones 1, 2, 3 y 4 se mueven siempre en un mismo plano que contiene al eje Z_0 y el ángulo que el mismo forma con respecto al plano X_0Z_0 es el ángulo θ_1 . En la fig. 4 se muestra en otra perspectiva en donde se muestran los dos posibles valores para el ángulo.

Figura 4: Plano q_1

Luego se obtiene q_1 como en la eq. (1)

$$\begin{cases} (q_1)_1 = atan2(y_c, x_c) \\ (q_1)_1 < 0 \Rightarrow (q_1)_2 = (q_1)_1 + \pi \\ (q_1)_1 > 0 \Rightarrow (q_1)_2 = (q_1)_1 - \pi \end{cases}$$
 (1)

Para cada valor de q_1 se tiene la transformación 0T_1 y con la misma se obtiene ${}^1\overline{p_c}$ como ${}^1\overline{p_c} = \left({}^0T_1\right)^{-1}{}^0\overline{p_c}$. El problema queda entonces formulado como se muestra en fig. 5. Se puede ver que es equivalente al de la cinemática inversa de un robot RR planar que se vió en la "parte A" de este trabajo, como queda denotado por los eslabones pintados en negro y las articulaciones con círculos rojos. Para completar la analogía con un RR planar, en la figura se define un sistema auxiliar S3' junto con la variable q_3' . La longitud del primer y segundo eslabón en el RR planar son a_2 y d_4 del robot respectivamente.

Luego, q_2 y q'_3 se obtienen siguiendo el procedimiento para el RR planar. Finalmente se usa la eq. (2) para obtener q_3 .

Figura 5: Plano q_{23}

$$q_3 = \frac{\pi}{2} - q_3' \tag{2}$$

3. Ejercicio 2: Segundo Problema de Pieper

Dado que se conocen los valores de q_1 , q_2 y q_3 se obtiene 0T_3 (para cada terna). Con esta, se determina 3T_6 como ${}^3T_6 = {}^0T_3^{-1} {}^0T_6$.

El problema hasta aquí queda formulado gráficamente como se indica en fig. 6. Se puede observar en fig. 2 que el Z_6 siempre se mueve en el plano determinado por Z_3 y

 X_4 , de manera que su proyección en el plano X_3Y_3 coincide que la de X_4 sobre el mismo plano. Así, se puede determinar q_4 como el ángulo entre el Z_3X_4 (señallado en negro en la figura) y el eje X_3 , existiendo los dos posibles valores indicados en la figura.

Figura 6: Plano q_4

Sean 3n_6 , 3o_6 y 3a_6 los versores del sistema dado por 3T_6 . El 3a_6 da la dirección de Z_6 . Luego se determina q_4 a partir de sus componentes 1 y 2 como:

$$\begin{cases}
(q_4)_1 = atan2 ((^3a_6)_2, (^3a_6)_1) \\
(q_4)_1 < 0 \Rightarrow (q_4)_2 = (q_4)_1 + \pi \\
(q_4)_1 > 0 \Rightarrow (q_4)_2 = (q_4)_1 - \pi
\end{cases}$$
(3)

Obtenido q_4 , se determina ahora 4T_6 como ${}^4T_6 = {}^3T_4^{-1}\, {}^3T_6$ y el problema queda como se indica en fig. 7. Luego se obtiene

$$\begin{cases} \alpha = atan2 ((^{4}a_{6})_{2}, (^{4}a_{6})_{1}) \\ q_{5} = \frac{\pi}{2} + \alpha \end{cases}$$
 (4)

Figura 7: Plano q_5

Finalmente se obtiene 5T_6 como ${}^5T_6 = {}^4T_5^{-1}\, {}^4T_6$ y el problema queda como en fig. 8. De donde se obtiene facilmente:

$$q_6 = atan2\left(\left({}^5n_6\right)_2, \left({}^5n_6\right)_1\right) \tag{5}$$

(6)

Figura 8: Plano q_6