Question Number	Scheme	Marks
1 (a)	v 20	
	30	Shape B1
		Figs (2, 30) B1 (2)
	O = 2 $T = t$	
(b)	$300 = \frac{1}{2}(2 + T) \times 30$	M1 A1
	$\Rightarrow T = \underline{18 \mathrm{s}}$	A1 (3)
	Or If t is time decelerating (and clear from working):	
	$300 = 30 \times 2 + \frac{1}{2} .30.t$	M1 A1
	$\Rightarrow t = 16 \text{ s} \Rightarrow \text{ total time} = 18 \text{ s}$	A1 (3)
		· · · · · · · · · · · · · · · · · · ·
[

Question Number	Scheme	Marks
2 (a)	$3 \text{ kg:} \qquad 3g - T = 3 \text{ x } \frac{3g}{7}$	M1 A1
	$\Rightarrow T = \frac{12g}{7} \text{ or } 16.8 \text{ N or } 17 \text{ N}$	A1
(b)	$m \text{ kg:} \qquad T - mg = m \cdot \frac{3g}{7}$	(3) M1 A1
	$\frac{12g}{7} = mg + \frac{3mg}{7}$ (Sub for <i>T</i> and solve)	↓ M1
	$\Rightarrow m = \underline{1.2}$	A1 (4)
-		
r.		

Question Number	Scheme	Marks
3 (a)	$A = \begin{bmatrix} R \\ 2 \\ 10g \end{bmatrix} \qquad 1.6 \qquad C = \begin{bmatrix} 0.4 \\ 30g \end{bmatrix}$	
	M(C): $R \times 3.6 + 30g \times 0.4 = 10g \times 1.6$ $\Rightarrow R = 10.9 \text{ or } 11 \text{ or } 98/9 \text{ N}$	M1 A1 ↓ M1 A1
(b)	$A \downarrow mg \qquad \qquad 1.6 \qquad C \qquad 0.4 \downarrow 80g$	(4)
	Tilting about $C \Rightarrow$ reaction at $A = 0$	M1
	$M(C)$: $mg \times 3.6 + 10g \times 1.6 = 80g \times 0.4$	M1 A1
	$\Rightarrow m = 4.44 \text{ or } 4.4 \text{ or } 40/9 \text{ kg}$	A1 (4)

Scheme	Marks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1
$\Rightarrow v = \underline{15 \text{ m s}^{-1}}$	A1 (3)
Impulse-momentum: $(R - 3.2g)0.05 = 3.2 \times 15$	M1 A1 A1√
$\Rightarrow R = 960 + 3.2g \approx 991$	M1 A1 (5)
Or : deceleration: $0 = 15 + 0.05a \implies a = -300 \text{ m s}^{-2}$	
Hence $3.2g - R = 3.2 \text{ x} - 300$	M1 A1 A1√
$\Rightarrow R = 960 + 3.2g \approx 991$	M1 A1 (5)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Final M1 needs a three term equation.

EDEXCEL 6677 MECHANICS M1 NOVEMBER 2004

MARK SCHEME

Question Number	Scheme	Marks
5 (a)	$\tan \theta = \frac{3}{2} \ (\theta = 56.3^{\circ})$	M1
	angle between v and $\mathbf{j} = 90 + 56.3 \approx 146^{\circ}$	M1 A1 (3)
(b)	$\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + (-\mathbf{i} + 2\mathbf{j})t$	M1
	$= (2-t)\mathbf{i} + (-3+2t)\mathbf{j}$	A1 (2)
(c)	$t=3, \mathbf{v} = -\mathbf{i} + 3\mathbf{j}$	M1
	speed = $\sqrt{(1^2 + 3^2)}$ = $\sqrt{10 \text{ or } 3.16 \text{ m s}^{-1}}$	M1 A1 (3)
(d)	v parallel to $\mathbf{i} \implies -3 + 2t = 0$	M1
	$\Rightarrow t = \underline{1.5 \text{ s}}$	A1 (2)

Question Number	Scheme	Marks
6 (a)	$v^2 = 20^2 + 2 \times 4 \times 78 \implies v = 32 \text{ m s}^{-1}$	M1 A1 (2)
(b)	B: $32 = 20 + 4t \implies t = 3 \text{ s}$	M1 A1√
	A: Distance = $30 \times t = \underline{90 \text{ m}}$	M1 A1 (4)
(c)	$30T = 20T + \frac{1}{2}.4.T^2$	M1
	$2T^2 - 10T = 0$	↓ M1 A1
	$\Rightarrow t = (0 \text{ or}) \underline{5} \underline{s}$	↓ M1 A1 (5)

Question Number		Scheme	Marks
7 (a)	0.2R	150 $R(\uparrow) R + 150 \sin 20 = 30g$	M1 A1
	3 0 <i>g</i> ★	$\Rightarrow R \approx 243 \text{ N}$	A1 (3
	R(→):	$150\cos 20 - 0.2R = 30a$	M1 A1
	- S	$\Rightarrow a \approx 3.08 \text{ m s}^{-2}$	A1 (3
	F ← → 20°	$S = 30g \implies F = 0.2 \times 30g$	M1 A1
	▼ 30 <i>g</i>	$30a' = (-) 0.2 \times 30g \implies a' = (-) 0.2g (= 1.96)$	M1 A1
		$0 = 12^2 - 2 \times 0.2g \times s $ (using new	a') M1
		$\Rightarrow s \approx 36.7 \mathrm{m}$	A1 (6)

Question Number	Scheme	Marks
8 (a)	T R R(perp. to slope): $R = 20g \cos 60 \ (= 10g = 98 \text{ N})$	M1 A1
	F = 0.4R (used)	B1
	$20g + R(\text{parallel to slope}): T + F = 20g \cos 30$	M1 A2, 1, 0
(b)	$T = 10\sqrt{3} g - 4g \approx \underline{131 \text{ or } 130 \text{ N}}$	↓ M1 A1 (8)
	R = 10g as before	B1 √
	$F T - 0.4R = 20g\cos 30$	M1 A1
	$20g \downarrow$ $T = 10\sqrt{3} g + 4g \approx 209 \text{ or } 210 \text{ N}$	A1 (4)
(c) (i)	Friction acts down slope (and has magnitude $0.4R$)	B1
(ii)	Net force on package = 0 (or equivalent), or 'no acceleration'	B1 (2)