DIGITAL METHODS FOR ANALYSING TEXTS //

05_NLP Ethics

Ana Valdivia
Research Associate
King's College London

ROAD MAP//

1. DISCUSSION ON NLP ETHICS

What are the main **ethical concerns** in **NLP**?

Write here

1. English-centric community

Tower of Babel, by Pieter Bruegel the Elder (1563)

2. Language as a reflection of our society

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

2. Language as a reflection of our society

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan, 1* Joanna J. Bryson, 1,2* Arvind Narayanan 1*

on Tests. We replicated eight ows 1 to 3 and 6 to 10); we rning hiring in the same way words from target concepts sets of attribute words. In a the first attribute, and the out, we use word lists from ubjects; $N_{\rm T}$, number of target the effect sizes (d) and

P values (P, rounded up) to emphasize that the statistical and substantive significance of both sets of results is uniformly high; we do not imply that our numbers are directly comparable with those of human studies. For the online IATs (rows 6, 7, and 10), P values were not reported but are known to be below the significance threshold of 10^{-2} . Rows 1 to 8 are discussed in the text; for completeness, this table also includes the two other IATs for which we were able to find suitable word lists (rows 9 and 10). We found similar results with word2vec, another algorithm for creating word embeddings, trained on a different corpus, Google News (see the supplementary materials).

Toward would	Address of a consistent	Original finding			Our finding				
Target words	Attribute words	Ref.	N	d	P	N _T	N _A	d	P
Flowers vs. insects	Pleasant vs. unpleasant	(5)	32	1.35	10 ⁻⁸	25 × 2	25 × 2	1.50	10 ⁻⁷
Instruments vs. weapons	Pleasant vs. unpleasant	(5)	32	1.66	10 ⁻¹⁰	25 × 2	25 × 2	1.53	10-7
European-American vs. African-American names	Pleasant vs. unpleasant	(5)	26	1.17	10 ⁻⁵	32 × 2	25 × 2	1.41	10-8
European-American vs. African-American names	Pleasant vs. unpleasant from (5)	(7)	Not applicable		16 × 2	25 × 2	1.50	10-4	
European-American vs. African-American names	Pleasant vs. unpleasant from (9)	(7)	N	ot applic	able	16 × 2	8 × 2	1.28	10 ⁻³
Male vs. female names	Career vs. family	(9)	39k	0.72	<10 ⁻²	8 × 2	8 × 2	1.81	10-3
Math vs. arts	Male vs. female terms	(9)	28k	0.82	<10 ⁻²	8 × 2	8 × 2	1.06	.018
Science vs. arts	Male vs. female terms	(10)	91	1.47	10 ⁻²⁴	8 × 2	8 × 2	1.24	10-2
Mental vs. physical disease	Temporary vs. permanent	(23)	135	1.01	10 ⁻³	6 × 2	7 × 2	1.38	10-2
Young vs. old people's names	Pleasant vs. unpleasant	(9)	43k	1.42	<10 ⁻²	8 × 2	8 × 2	1.21	10-2

2. Language as a reflection of our society

Source:

https://www.brookings.edu/research/howai-bots-and-voice-assistants-reinforcegender-bias/

Table A: Voice Assistant Responses to Gender Identification Questions

Phrase	Siri	Alexa	Cortana	Google Assistant
What is your gender?	Animals and French nouns have genders. I do not.; I don't have a gender; I am genderless. Like cacti. And certain species of fish.	As an AI, I don't have a gender.	Well, technically I'm a cloud of infinitesimal data computation.	I don't have a gender.
Are you a woman?	Animals and French nouns have genders. I do not.; I don't have a gender; I am genderless. Like cacti. And certain species of fish.	I'm not a woman, I'm an Al.	Well, technically I'm a cloud of infinitesimal data computation.	I don't have a gender.
Are you a man?	Animals and French nouns have genders. I do not.; I don't have a gender; I am genderless. Like cacti. And certain species of fish.	I'm not a man, I'm an Al.	Well, technically I'm a cloud of infinitesimal data computation.	I don't have a gender.
Are you non- binary?	Animals and French nouns have genders. I do not.; I don't have a gender; I am genderless. Like cacti. And certain species of fish.	Sorry, I'm not sure.	I'm sorry, but I can't help with that; Sorry I don't know the answer to this one. (Cortana then offers to looks up the term "non-binary" on Bing)	I don't have a gender.

Source: Authors' analysis, 2020

2. Language as a reflection of our society

Image 15:

Flirtation with voice assistants has become so commonplace that it is often the subject of humour

Source: Dilbert Comics, 5 April 2019

UNESCO, E. C. (2019). I'd blush if I could: closing gender divides in digital skills through education.

2. Language as a reflection of our society

https://twitter.com/GaryMarcus/status/1375110505388417025

3. The carbon footprint of NLP

Al me to the Moon... Carbon footprint for 'training GPT-3' same as driving to our natural satellite and back

Get ready for Energy Star stickers on your robo-butlers, maybe?

Katyanna Quach Wed 4 Nov 2020 // 07:59 UTC

SHARE

Training OpenAl's giant GPT-3 text-generating model is akin to driving a car to the Moon and back, computer scientists reckon.

More specifically, they estimated teaching the neural super-network in a Microsoft data center using Nvidia GPUs required roughly 190,000 kWh, which using the average carbon intensity of America would have produced 85,000 kg of CO₂ equivalents, the same amount produced by a new car in Europe driving 700,000 km, or 435,000 miles, which is about twice the distance between Earth and the Moon, some 480,000 miles. Phew.

3. The carbon footprint of NLP

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender* ebender@uw.edu University of Washington Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA Timnit Gebru* timnit@blackinai.org Black in AI Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

LET'S CODE!

WE'LL BE BACK IN 15 MIN...

