

Fundamentals of Optimization

Homework 1 – Solutions

Instructions

- 1. You should attempt all questions.
- 2. The total marks for this assignment are 10.
- 3. The assignment consists of STACK questions (5/10 marks) and open-ended questions (5/10 marks).
- 4. All STACK questions are duly marked and are available in the STACK quiz. You must solve those by completing the STACK quiz.
- 5. For the open-ended questions, please write down your solutions in a concise and reproducible way and remember to justify every step using appropriate references when necessary. Failing to do so may result in deductions.
- 6. The strict deadline for completing the quiz and handing-in your solutions for the open-ended questions is **noon (12:00) on Friday, 14 October 2022**.
- 7. For the open-ended questions, please upload a **single PDF**. For some useful suggestions, please see Course Information → Tips for Creating a PDF File for Submission on the Learn page.

STACK Problems

1 Basic Concepts (3 marks)

STACK question

Decide, for each of the following three optimization problems, whether

- (i) the feasible region is empty; or nonempty and bounded; or nonempty and unbounded;
- (ii) the feasible region is a convex set; or a nonconvex set;
- (iii) the objective function is a convex function; a concave function; both convex and concave; or neither convex nor concave;
- (iv) the optimization problem is a convex optimization problem; or a nonconvex optimization problem;
- (v) the optimization problem is infeasible, is unbounded, or has a finite optimal value;
- (vi) write down the optimal value using the convention in the lectures (use +inf for $+\infty$ and -inf for $-\infty$);
- (vii) the set of optimal solutions is *empty*; or *nonempty*;
- (viii) the set of optimal solutions is a convex set; or a nonconvex set.

- $(1.1) \min\{x^3 2x^2 + x 2 : x^2 2x 8 \ge 0, \quad x \in \mathbb{R}\}.$
- $(1.2) \min\{2x^2 12x 6 : x^2 6x \ge -5, \quad x \in \mathbb{R}\}.$

[3 marks]

Solution

(1.1) Note that $x^2 - 2x - 8 \ge 0$ if and only if $(x - 1)^2 - 9 \ge 0$ if and only if $|x - 1| \ge 3$ if and only if $x \in (-\infty, -2] \cup [4, \infty)$. The feasible region is therefore given by $\mathcal{S} = (-\infty, -2] \cup [4, \infty)$. The feasible region is nonempty and unbounded since there does not exist any finite number $K \in \mathbb{R}$ such that $\mathcal{S} \subseteq [-K, K]$. \mathcal{S} is a nonconvex set since $-2 \in \mathcal{S}$, $4 \in \mathcal{S}$ but $(1/2)(-2) + (1/2)(4) = 1 \notin \mathcal{S}$. The objective function is given by $f(x) = x^3 - 2x^2 + x - 2$. Let x = 1, y = -1, and $\lambda = 1/2$. Then,

$$f(\lambda x + (1 - \lambda)y) = f(0) = -2 > \lambda f(x) + (1 - \lambda)f(y) = (1/2)(-2) + (1/2)(-6) = -4$$

which implies that f is not a convex function. Similarly, if x = 0, y = 2, and $\lambda = 1/2$. Then,

$$f(\lambda x + (1 - \lambda)y) = f(1) = -2 < \lambda f(x) + (1 - \lambda)f(y) = (1/2)(-2) + (1/2)(0) = -1,$$

which implies that f is not a concave function. Therefore, f is neither convex nor concave. Since f is not a convex function, the optimization problem is a nonconvex optimization problem. By computing the first derivative of the objective function given by

$$f'(x) = 3x^2 - 4x + 1,$$

you can easily see that f is strictly increasing on $(-\infty, -2]$. Therefore, define a sequence of feasible solutions given by $x^k = -1 - k \in \mathcal{S}, \ k = 1, 2, \ldots$. Then, $f(x^k) \to -\infty$ as $k \to \infty$. Therefore, the optimization problem is unbounded and the optimal value is given by $z^* = -\infty$. In this example, no feasible solution attains the optimal value, i.e., $\mathcal{S}^* = \emptyset$. Therefore, the set of optimal solutions is empty. Finally, \mathcal{S}^* is a convex set by Remark 1 in Section 3.2 in the lecture notes.

(1.2) Note that $x^2 - 6x \ge -5$ if and only if $(x-3)^2 - 4 \ge 0$ if and only if $|x-3| \ge 2$ if and only if $x \in (-\infty, 1] \cup [5, \infty)$. The feasible region is therefore given by $\mathcal{S} = (-\infty, 1] \cup [5, \infty)$. The feasible region is nonempty and unbounded since there does not exist any finite number $K \in \mathbb{R}$ such that $\mathcal{S} \subseteq [-K, K]$. \mathcal{S} is a nonconvex set since $1 \in \mathcal{S}$, $5 \in \mathcal{S}$ but $(1/2)(1) + (1/2)(5) = 3 \notin \mathcal{S}$. The objective function is given by $f(x) = 2x^2 - 12x - 6$. We claim that f is a convex function. Let $x \in \mathbb{R}$, $y \in \mathbb{R}$, and $\lambda \in [0, 1]$. Then,

$$f(\lambda x + (1 - \lambda)y) = 2(\lambda x + (1 - \lambda)y)^{2} - 12(\lambda x + (1 - \lambda)y)) - 6$$

$$= \lambda(2x^{2} - 12x - 6) + (1 - \lambda)(2y^{2} - 12y - 6) + (\lambda^{2} - \lambda)(2x^{2} - 4xy + 2y^{2})$$

$$= \lambda f(x) + (1 - \lambda)f(y) - 2\lambda(1 - \lambda)(x - y)^{2}$$

$$\leq \lambda f(x) + (1 - \lambda)f(y),$$

where we used $\lambda \in [0,1]$ and $(x-y)^2 \ge 0$ to derive the inequality in the last line. It follows that f is a convex function. To determine if this is a convex optimization problem, we need to first check if f is a convex function, which we just established. In addition, we need to check the constraints, i.e., we need to check whether the function on the left-hand side of the single \ge -type constraint is a concave function. We claim that $g(x) = x^2 - 6x$ is not a concave function. To see this, let x = 0, y = 6, and $\lambda = 1/2$. Then,

$$g(\lambda x + (1 - \lambda)y) = g(3) = -9 < \lambda g(x) + (1 - \lambda)g(y) = (1/2)(0) + (1/2)(0) = 0,$$

which implies that g is not a concave function. Since g is not a concave function, the optimization problem is a nonconvex optimization problem. By computing the first derivative of the objective function given by

$$f'(x) = 4x - 12,$$

you can easily see that f is strictly increasing on $(3, +\infty)$ and strictly decreasing on $(-\infty, 3)$. Therefore, the best feasible solution is given by $\min\{f(1), f(5)\} = -16$. Therefore, the optimal value is given by $z^* = -16$. Note that this value is attained by each of $x^1 = 1$ and $x^2 = 5$. Therefore, $\mathcal{S}^* = \{1, 5\}$. Therefore, the set of optimal solutions is nonempty. Finally, \mathcal{S}^* is a nonconvex set since $1 \in \mathcal{S}^*$, $5 \in \mathcal{S}^*$, but for $\lambda = 1/2$, $\lambda x + (1 - \lambda)y = 3 \notin \mathcal{S}^*$.

2 Level Sets, Sublevel Sets, Superlevel Sets, and Epigraphs (2 marks)

STACK question

Decide, for each of the two functions,

- (i) whether epi(f) is a convex set or nonconvex set;
- (ii) whether the sublevel set $\mathcal{L}_{\alpha}^{-}(f)$, where $\alpha = 0$, is a convex set or nonconvex set;
- (iii) whether the level set $\mathcal{L}_{\alpha}(f)$, where $\alpha = 1$, is a convex set or nonconvex set;
- (iv) whether the superlevel set $\mathcal{L}_{\alpha}^{+}(f)$, where $\alpha = 1$, is a convex set or nonconvex set.
- $(2.1) f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \min\{|x_1|, |x_2|\}.$
- (2.2) $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = x_1^2 + x_2^2.$

[2 marks]

Solution

(2.1) We have

$$epi(f) = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} : z \ge \min\{|x_1|, |x_2|\}\}.$$

We claim that $\operatorname{epi}(f)$ is a nonconvex set. To see this, let $(x,z_1)=([0,1]^T,0)\in\operatorname{epi}(f)$, $(y,z_2)=([1,0]^T,0)\in\operatorname{epi}(f)$, but for $\lambda=1/2$, we have $\lambda(x,z_1)+(1-\lambda)(y,z_2)=([1/2,1/2]^T,0)\not\in\operatorname{epi}(f)$, which implies that $\operatorname{epi}(f)$ is a nonconvex set. Note that this implies that f is a nonconvex function by Proposition 3.1.

Note that $f(x) \geq 0$ for each $x \in \mathbb{R}^2$, which implies that $\mathcal{L}_{\alpha}^-(f) = \emptyset$ for each $\alpha < 0$, which is a convex set by Remark 1 in Section 3.2 in the lecture notes. For each $\alpha \geq 0$, $x \in \mathcal{L}_{\alpha}^-(f)$ if and only if $\min\{|x_1|, |x_2|\} \leq \alpha$ if and only if $|x_1| \leq \alpha$ or $|x_2| \leq \alpha$. Therefore, for $\alpha \geq 0$, we obtain

$$\mathcal{L}_{\alpha}^{-}(f) = \{ x \in \mathbb{R}^2 : x_1 \in [-\alpha, \alpha], x_2 \in \mathbb{R} \} \cup \{ x \in \mathbb{R}^2 : x_1 \in \mathbb{R}, x_2 \in [-\alpha, \alpha] \}.$$

Therefore, for $\alpha = 0$, we get

$$\mathcal{L}_{\alpha}^{-}(f) = \{ x \in \mathbb{R}^2 : x_1 = 0, x_2 \in \mathbb{R} \} \cup \{ x \in \mathbb{R}^2 : x_1 \in \mathbb{R}, x_2 = 0 \},$$

which is the union of x_1 - and x_2 -axes. You can easily see that this is a nonconvex set since $x = [0,1]^T \in \mathcal{L}^-_{\alpha}(f)$, $y = [1,0]^T \in \mathcal{L}^-_{\alpha}(f)$, but for $\lambda = 1/2$, we have $\lambda x + (1-\lambda)z_2 = [1/2,1/2]^T \notin \mathcal{L}^-_{\alpha}(f)$. Similarly, you can show that $\mathcal{L}^-_{\alpha}(f)$ is a nonconvex set for each $\alpha > 0$. Similarly, $\mathcal{L}_{\alpha}(f) = \emptyset$ for each $\alpha < 0$, which is a convex set by Remark 1 in Section 3.2 in the lecture notes. For $\alpha \geq 0$, note that $f(x) = \alpha$ if and only if $|x_1| = \alpha$ and $|x_2| \geq \alpha$, or $|x_2| = \alpha$ and $|x_1| \geq \alpha$. Therefore, for $\alpha \geq 0$, we obtain

$$\mathcal{L}_{\alpha}(f) = \{ x \in \mathbb{R}^2 : x_1 \in \{-\alpha, \alpha\}, x_2 \in (-\infty, -\alpha] \cup [\alpha, \infty) \}$$
$$\cup \{ x \in \mathbb{R}^2 : x_1 \in (-\infty, -\alpha] \cup [\alpha, \infty), x_2 \in \{-\alpha, \alpha\} \}.$$

Therefore, for $\alpha = 1$, we get

$$\mathcal{L}_{\alpha}(f) = \{ x \in \mathbb{R}^2 : x_1 \in \{-1, 1\}, x_2 \in (-\infty, -1] \cup [1, \infty) \}$$
$$\cup \{ x \in \mathbb{R}^2 : x_1 \in (-\infty, -1] \cup [1, \infty), x_2 \in \{-1, 1\} \},$$

which is a nonconvex set since $x = [1, 1] \in \mathcal{L}_{\alpha}(f)$, $y = [-1, -1]^T \in \mathcal{L}_{\alpha}(f)$, but for $\lambda = 1/2$, we have $\lambda x + (1 - \lambda)z_2 = [0, 0]^T \notin \mathcal{L}_{\alpha}(f)$. Similarly, you can show that $\mathcal{L}_{\alpha}(f)$ is a nonconvex set for each $\alpha > 0$.

Finally, we obtain $\mathcal{L}_{\alpha}^+(f) = \mathbb{R}^2$ for each $\alpha \leq 0$ since $f(x) \geq 0$ for each $x \in \mathbb{R}^2$, which is obviously a convex set. For each $\alpha > 0$, $x \in \mathcal{L}_{\alpha}^+(f)$ if and only if $\min\{|x_1|, |x_2|\} \geq \alpha$ if and only if $|x_1| \geq \alpha$ and $|x_2| \geq \alpha$. Therefore, for $\alpha \geq 0$, we obtain

$$\mathcal{L}_{\alpha}^{+}(f) = \{ x \in \mathbb{R}^2 : x_1 \in (-\infty, -\alpha] \cup [\alpha, \infty), x_2 \in (-\infty, -\alpha] \cup [\alpha, \infty) \}.$$

Therefore, for $\alpha = 1$, we get

$$\mathcal{L}_{\alpha}^{+}(f) = \{ x \in \mathbb{R}^2 : |x_1| \ge 1 \} \cap \{ x \in \mathbb{R}^2 : |x_2| \ge 1 \}.$$

This is a nonconvex set since $[1,1]^T \in \mathcal{L}^+_{\alpha}(f)$ and $[-1,-1]^T \in \mathcal{L}^+_{\alpha}(f)$ but the midpoint $[0,0]^T \notin \mathcal{L}^+_{\alpha}(f)$. Similarly, you can show that $\mathcal{L}^+_{\alpha}(f)$ is a nonconvex set for each $\alpha > 0$.

(2.2) We have

$$epi(f) = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} : z \ge x_1^2 + x_2^2\}.$$

Let $(x, z_1) \in \text{epi}(f)$, $(y, z_2) \in \text{epi}(f)$, and let $\lambda \in [0, 1]$. We need to show that $\lambda(x, z_1) + (1 - \lambda)(y, z_2) = (\lambda x + (1 - \lambda)y, \lambda z_1 + (1 - \lambda)z_2) \in \text{epi}(f)$, i.e.,

$$\lambda z_1 + (1 - \lambda)z_2 \ge (\lambda x_1 + (1 - \lambda)y_1)^2 + (\lambda x_2 + (1 - \lambda)y_2)^2. \tag{1}$$

Since $(x, z_1) \in \operatorname{epi}(f)$ and $(y, z_2) \in \operatorname{epi}(f)$, we have

$$z_1 \ge x_1^2 + x_2^2, \quad z_2 \ge y_1^2 + y_2^2.$$

Since $\lambda \in [0, 1]$, by multiplying the first inequality by $\lambda \geq 0$ and the second one by $1 - \lambda \geq 0$, we obtain

$$\lambda z_{1} + (1 - \lambda)z_{2} \ge \lambda(x_{1}^{2} + x_{2}^{2}) + (1 - \lambda)(y_{1}^{2} + y_{2}^{2})$$

$$= \lambda^{2}x_{1}^{2} + 2\lambda(1 - \lambda)x_{1}y_{1} + (1 - \lambda)^{2}y_{1}^{2} + \lambda(1 - \lambda)(x_{1}^{2} - 2x_{1}y_{1} + y_{1})^{2}$$

$$+ \lambda^{2}x_{2}^{2} + 2\lambda(1 - \lambda)x_{2}y_{2} + (1 - \lambda)^{2}y_{2}^{2} + \lambda(1 - \lambda)(x_{2}^{2} - 2x_{2}y_{2} + y_{2})^{2}$$

$$= (\lambda x_{1} + (1 - \lambda)y_{1})^{2} + (\lambda x_{2} + (1 - \lambda)y_{2})^{2}$$

$$+ \lambda(1 - \lambda)[(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}]$$

$$\ge (\lambda x_{1} + (1 - \lambda)y_{1})^{2} + (\lambda x_{2} + (1 - \lambda)y_{2})^{2},$$

where we used $\lambda \in [0, 1]$, $(x_1 - y_1)^2 + (x_2 - y_2)^2 \ge 0$ to derive the last inequality. This proves (1). It follows that $\operatorname{epi}(f)$ is a convex set. Note that this implies that f is a convex function by Proposition 3.1.

Note that $f(x) \geq 0$ for each $x \in \mathbb{R}^2$, which implies that $\mathcal{L}_{\alpha}^-(f) = \emptyset$ for each $\alpha < 0$, which is a convex set by Remark 1 in Section 3.2 in the lecture notes. For $\alpha \geq 0$, note that $f(x) \leq \alpha$ if and only if $x_1^2 + x_2^2 \leq \alpha$. If $x_2 = \beta$, then we obtain $x_1^2 \leq \alpha - \beta^2$, i.e., $|x_1| \leq \sqrt{\alpha - \beta^2}$. Therefore, for $\alpha \geq 0$,

$$\mathcal{L}_{\alpha}^{-}(f) = \bigcup_{\beta \in [-\sqrt{\alpha}, \sqrt{\alpha}]} \left\{ [x_1, \beta]^T : x_1 \in [-\sqrt{\alpha - \beta^2}, \sqrt{\alpha - \beta^2}] \right\}.$$

For each $\alpha \geq 0$, we obtain all the points in the interior and on the boundary of the circle of radius $\sqrt{\alpha}$ centred at the origin. You can easily verify that this is a convex set.

Therefore, for $\alpha = 0$, we simply get $\mathcal{L}_{\alpha}^{-}(f) = [0,0]^{T}$, which is obviously a convex set since it is a singleton.

Similarly, $f(x) \ge 0$ for each $x \in \mathbb{R}^2$, which implies that $\mathcal{L}_{\alpha}(f) = \emptyset$ for each $\alpha < 0$, which is a convex set by Remark 1 in Section 3.2 in the lecture notes. For $\alpha \ge 0$, note that $f(x) = \alpha$ if and only if $x_1^2 + x_2^2 = \alpha$. If $x_2 = \beta$, then we obtain $x_1^2 = \alpha - \beta^2$, i.e., $|x_1| = \sqrt{\alpha - \beta^2}$. Therefore, for $\alpha \ge 0$,

$$\mathcal{L}_{\alpha}(f) = \bigcup_{\beta \in [-\sqrt{\alpha}, \sqrt{\alpha}]} \left\{ [x_1, \beta]^T : x_1 \in \{-\sqrt{\alpha - \beta^2}, \sqrt{\alpha - \beta^2}\} \right\}.$$

For each $\alpha \geq 0$, we actually obtain the boundary of the circle of radius $\sqrt{\alpha}$ centred at the origin. For $\alpha = 1$, we get

$$\mathcal{L}_{\alpha}(f) = \bigcup_{\beta \in [-1,1]} \left\{ [x_1, \beta]^T : x_1 \in \{-\sqrt{1-\beta^2}, \sqrt{1-\beta^2}\} \right\},\,$$

which is clearly a nonconvex set since $[0,1]^T \in \mathcal{L}_{\alpha}(f)$ and $[0,-1]^T \in \mathcal{L}_{\alpha}(f)$, but the midpoint $[0,0] \notin \mathcal{L}_{\alpha}(f)$. You can easily verify that $\mathcal{L}_{\alpha}(f)$ is a nonconvex set for each $\alpha > 0$.

Finally, we obtain $\mathcal{L}_{\alpha}^{+}(f) = \mathbb{R}^{2}$ for each $\alpha \geq 0$ since $f(x) \geq 0$ for each $x \in \mathbb{R}^{2}$, which is obviously a convex set. For each $\alpha > 0$, $x \in \mathcal{L}_{\alpha}^{+}(f)$ if and only if $x_{1}^{2} + x_{2}^{2} \geq \alpha$. Using a similar argument, if $x_{2} = \beta$, then $x_{1}^{2} \geq \alpha - \beta^{2}$. If $\beta \in [-\sqrt{\alpha}, \sqrt{\alpha}]$, then we have $|x_{1}| \geq \sqrt{\alpha - \beta^{2}}$. Otherwise, if $|\beta| > \sqrt{\alpha}$, then $\alpha - \beta^{2} < 0$, which implies that $x_{1} \in \mathbb{R}$. Therefore, for each $\alpha > 0$, we get

$$\mathcal{L}_{\alpha}^{+}(f) = \left(\bigcup_{\beta \in [-\sqrt{\alpha}, \sqrt{\alpha}]} \left\{ [x_1, \beta]^T : x_1 \in (-\infty, -\sqrt{\alpha - \beta^2}] \cup [\sqrt{\alpha - \beta^2}, \infty) \right\} \right) \cup \left(\bigcup_{|\beta| > \sqrt{\alpha}} \left\{ [x_1, \beta]^T : x_1 \in \mathbb{R} \right\} \right).$$

For each $\alpha > 0$, we obtain all the points outside of the circle of radius $\sqrt{\alpha}$ centred at the origin, including the points on the boundary of the circle. For each $\alpha > 0$, this is a nonconvex set since $[-\sqrt{\alpha}, 0]^T \in \mathcal{L}^+_{\alpha}(f)$ and $[\sqrt{\alpha}, 0]^T \in \mathcal{L}^+_{\alpha}(f)$ but the midpoint $[0, 0]^T \notin \mathcal{L}^+_{\alpha}(f)$. For $\alpha = 1$, we get

$$\mathcal{L}_{\alpha}^{+}(f) = \left(\bigcup_{\beta \in [-1,1]} \left\{ [x_1, \beta]^T : x_1 \in (-\infty, -\sqrt{1 - \beta^2}] \cup [\sqrt{1 - \beta^2}, \infty) \right\} \right) \cup \left(\bigcup_{|\beta| > 1} \left\{ [x_1, \beta]^T : x_1 \in \mathbb{R} \right\} \right),$$

which again is a nonconvex set.

Open Ended Problems

3 Level Sets and Sublevel Sets (2.5 marks)

Consider the following optimization problem:

$$(\mathbf{P}) \quad \min_{x} \{ f(x) : x \in \mathcal{S} \},\$$

where $f: \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$, and $S \subseteq \mathbb{R}^n$. Suppose that the optimal value of (P) is denoted by $z^* \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.

(3.1) Prove the following proposition:

(P) is an unbounded optimization problem if and only if

$$S \cap \mathcal{L}_{\alpha}^{-}(f) \neq \emptyset$$
, for all $\alpha \in \mathbb{R}$,

where $\mathcal{L}_{\alpha}^{-}(f)$ denotes the sublevel set of f at level $\alpha \in \mathbb{R}$,

[1.5 marks]

Solution

Since this is an if only if statement, we need to establish both implications.

 \Rightarrow : Suppose that (P) is an unbounded optimization problem. Then, there exists a sequence $x^k \in \mathcal{S}, \ k=1,2,\ldots$ of feasible solutions such that $\lim_{k\to\infty} f(x^k) = -\infty$. Therefore, for every $\alpha \in \mathbb{R}$, there exists some positive integer $k^* \in \mathbb{Z}$ such that $f(x^{k^*}) \leq \alpha$ (i.e., for every real

 $\alpha \in \mathbb{R}$, there exists some positive integer $k^* \in \mathbb{Z}$ such that $f(x^*) \leq \alpha$ (i.e., for every real number α , we can find a feasible solution whose objective function value is less than or equal to α since (P) is an unbounded optimization problem). It follows that $x^{k^*} \in \mathcal{S}$ and $x^{k^*} \in \mathcal{L}_{\alpha}^-(f)$, which implies that $\mathcal{S} \cap \mathcal{L}_{\alpha}^-(f) \neq \emptyset$.

⇐: Suppose that

$$S \cap \mathcal{L}_{\alpha}^{-}(f) \neq \emptyset$$
, for all $\alpha \in \mathbb{R}$.

Choose $\alpha = -1 \in \mathbb{R}$. Since $S \cap \mathcal{L}_{\alpha}^{-}(f) \neq \emptyset$, there exists $x^{1} \in S$ such that $f(x^{1}) \leq -1$. Now choose $\alpha = -2 \in \mathbb{R}$. By a similar reasoning, there exists $x^{2} \in S$ such that $f(x^{2}) \leq -2$. Repeating this process for $\alpha \in \{-3, -4, \ldots\}$, we obtain a sequence $x^{k} \in S$, $k = 1, 2, \ldots$ of feasible solutions such that

$$f(x^k) \le -k, \quad k = 1, 2, \dots$$

It follows that $\lim_{k\to\infty} f(x^k) = -\infty$, which implies that (P) is an unbounded optimization problem.

(3.2) Suppose that $z^* \in \mathbb{R}$ (i.e., the optimal value is finite). Let $\mathcal{S}^* \subseteq \mathbb{R}^n$ denote the set of optimal solutions of (P). Prove the following identity:

$$\mathcal{S}^* = \mathcal{L}_{z^*}(f) \cap \mathcal{S},$$

where $\mathcal{L}_{z^*}(f)$ denotes the level set of f for $\alpha = z^*$. (Hint: One way of showing that the two sets are equal is to show that each set is a subset of the other one as done in Problem 4.1 in Exercise Set 0.) [1 marks]

Solution

Following the given hint, we will try to show that each set is a subset of the other one:

 $\mathcal{S}^* \subseteq \mathcal{L}_{z^*}(f) \cap \mathcal{S}$: If $\mathcal{S}^* = \emptyset$, then this is clearly true. Otherwise, let $\hat{x} \in \mathcal{S}^*$. Then, $\hat{x} \in \mathcal{S}$ since $\mathcal{S}^* \subseteq \mathcal{S}$ and $f(\hat{x}) = z^*$, i.e., $\hat{x} \in \mathcal{L}_{z^*}(f)$ by definition of the optimal value since \hat{x} is an optimal solution. Therefore, $\hat{x} \in \mathcal{L}_{z^*}(f) \cap \mathcal{S}$.

 $\mathcal{L}_{z^*}(f) \cap \mathcal{S} \subseteq \mathcal{S}^*$: If $\mathcal{L}_{z^*}(f) \cap \mathcal{S} = \emptyset$, then this is clearly true. Otherwise, let $\hat{x} \in \mathcal{L}_{z^*}(f) \cap \mathcal{S}$. It follows that $\hat{x} \in \mathcal{S}$ and $f(\hat{x}) = z^*$. Since z^* denotes the optimal value, we have $f(\bar{x}) \geq z^*$ for each $\bar{x} \in \mathcal{S}$. Since $f(\hat{x}) = z^*$, it follows that $\hat{x} \in \mathcal{S}^*$.

4 Vertices of Convex Sets (2.5 marks)

Let $C_1 \subseteq \mathbb{R}^n$ and $C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets and let $C = C_1 \cap C_2$. Suppose that $C \neq \emptyset$.

(4.1) Prove the following result:

If $\hat{x} \in \mathcal{C}$ and \hat{x} is a vertex of at least one of \mathcal{C}_1 and \mathcal{C}_2 , then \hat{x} is a vertex of \mathcal{C} .

[1.5 marks]

Solution

Note that $C = C_1 \cap C_2$ is a convex set since convexity is preserved under taking intersections by Remark 3 in Section 3.2. Suppose that $\hat{x} \in C$ and \hat{x} is a vertex of at least one of C_1 and C_2 . Without loss of generality, suppose that \hat{x} is a vertex of C_1 . Then, there exists a hyperplane $\mathcal{H} = \{x \in \mathbb{R}^n : a^T x = \alpha\}$, where $a \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$, and a halfspace $\mathcal{H}^+ = \{x \in \mathbb{R}^n : a^T x \geq \alpha\}$ such that

- (i) $C_1 \cap \mathcal{H} = \{\hat{x}\}$, and
- (ii) $C_1 \subseteq \mathcal{H}^+$.

Since $\hat{x} \in \mathcal{C}$, $\hat{x} \in \mathcal{H}$ and $\mathcal{C} \cap \mathcal{H} \subseteq \mathcal{C}_1 \cap \mathcal{H} = \{\hat{x}\}$, we obtain $\mathcal{C} \cap \mathcal{H} = \{\hat{x}\}$. Similarly, since $\mathcal{C} \subseteq \mathcal{C}_1 \subseteq \mathcal{H}^+$, we obtain $\mathcal{C} \subseteq \mathcal{H}^+$. It follows that there exists a hyperplane $\mathcal{H} = \{x \in \mathbb{R}^n : a^T x = \alpha\}$, where $a \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$, and a halfspace $\mathcal{H}^+ = \{x \in \mathbb{R}^n : a^T x \geq \alpha\}$ such that (a) $\mathcal{C} \cap \mathcal{H} = \{\hat{x}\}$, and (b) $\mathcal{C} \subseteq \mathcal{H}^+$. By (a) and (b), we conclude that \hat{x} is a vertex of \mathcal{C} .

(4.2) Consider the following proposition, which is the converse of the proposition in (4.1):

If $\hat{x} \in \mathcal{C}$ is a vertex of \mathcal{C} , then \hat{x} is a vertex of at least one of \mathcal{C}_1 and \mathcal{C}_2 .

Either prove this proposition or find a counterexample.

[1 mark]

Solution

The proposition is not true as we can find many counterexamples. Suppose, for instance, that

$$C_1 = \{x \in \mathbb{R}^2 : x_1 \ge 0\}, \quad C_2 = \{x \in \mathbb{R}^2 : x_2 \ge 0\}.$$

Clearly, $C_1 \subset \mathbb{R}^2$ and $C_2 \subset \mathbb{R}^2$ are both convex sets since each of them is a halfspace in \mathbb{R}^2 and halfspaces are convex sets by Corollary 4.7. We claim that neither set has a vertex. To see this, suppose, for a contradiction, that $\hat{x} \in C_1$ is a vertex of C_1 . Then, $\hat{x}_1 \geq 0$ and $\hat{x}_2 \in \mathbb{R}$. Let $d = [0, 1]^T \in \mathbb{R}^2$. Then, it easy to see that $\hat{x} - d \in C_1$ and $\hat{x} + d \in C_1$. By Problem 4.1 in Exercise Set 1, \hat{x} cannot be a vertex, which is a contradiction. Similarly, one can show that C_2 contains no vertices by defining $d = [1, 0]^T$. On the other hand, consider

$$C = C_1 \cap C_2 = \{x \in \mathbb{R}^2 : x_1 \ge 0, \quad x_2 \ge 0\}.$$

We claim that $[0,0]^T \in \mathcal{C}$ is a vertex of \mathcal{C} . Let $a = [1,1]^T \in \mathbb{R}^2 \setminus \{0\}$ and $\alpha = 0$. Let $\mathcal{H} = \{x \in \mathbb{R}^2 : a^T x = \alpha\} = \{x \in \mathbb{R}^2 : x_1 + x_2 = 0\}$ and $\mathcal{H}^+ = \{x \in \mathbb{R}^n : x_1 + x_2 \geq 0\}$. Then, it is straightforward to show that (a) $\mathcal{C} \cap \mathcal{H} = \{\hat{x}\}$ and (b) $\mathcal{C} \subseteq \mathcal{H}^+$. Therefore, \hat{x} is a vertex of \mathcal{C} but not a vertex of \mathcal{C}_1 or \mathcal{C}_2 . This is a counterexample to the given proposition.