house du TVI "jundichotomie"
Soit fi ane Panchon continue sur un ontervalle. [a, b].
Démontrars que pour tout rèel RE[fa]; fb] il épude un unique d'E[a; b] tel que f(d) = R.
On consideré cleur suites (an) et (bn)
Om considéré cleurs suites (an) et (bn) définies pour tout entier naturel n par!
For a and b a
$(a_n) = a_n + b_n$
(ct sinar)
C DUHY - PW
Démontrons par récurrence que pour tout entier naturel n, la propriété:
or making my to propriett.
$\frac{1}{2}$
200
et 0 < an < an + 1 < bon < bon
Initialisation: Bur n=0, on a:
Q(x) = Q(x) = Q(x) = Q(x)
$\beta(a_0) = \beta(a) e + \beta(b_0) = \beta(b)$
et-par hypothèse f(a) < R < f(b)
donce of the second
donc f(a0) ≤ k ≤ f(b0)

De plus on a $a_1 = \frac{a+b}{2}$ et $b_1 = b_0$ ou $b_1 = \frac{a+b}{2}$ et $a_1 = a_0$.

Dono les clear cos, on a · $a \le a_0 \le a_1 \le b_1 \le b_0 \le b$ et $b_0 - a_0 = \frac{b-a}{2}$. Done Po est maie.

Heredite: Soit un entier m > 0 tel que mest vuie la hypothère de réminence on a:

bn-an-bn-an

i bmtan-an-bm-an donc b - a ment = b-a

2m+1

Ensul-c par hypothère de récurrence, ona

B(an) \(\begin{array}{c} \begin{array}{c} \cdot \cdot \cdot \begin{array}{c} \cdot \cd Si $f(am+bn) \leq k$ alors f(am+1) = am+bm f(am+1) = am f(am+1) = amsiman $\begin{cases} a_{m+1} = a_m \\ b_{m+1} = a_m + b_m \end{cases}$ Dans Ces deux cas on a: f(am+1) < k < f (bm+1) De plus par hypothèse de récursonce, on a : 0 < an < antre < bn = b on a ant2 = an+1+bn+1 et bn+2 = bn+1

ou ante = ante et brite = ante tomes Prusque antré la 2 bonts dans Ces 2 ces, on a: $a \leq a_m \leq a_{m+1} \leq a_{m+2} \leq b_{m+1} \leq b_m \leq b$ danc a < a m+1 < a m+2 < b m+2 < b m+1 < b donc Ponto est maie. Conclusion. Por est initialisée ethereddanie dans elle est maie par récurrence pour tout entier n>0 On a démontre que pour tout-entier n>0, or a : (1) a < anta ≤ bnta ≤ bn ≤ b $\frac{b^{-\alpha} - \alpha^{-\alpha}}{2^{\alpha}}$ (3) et f(bm) < & < f(bm) De la première inégalité, on déduit-que (an) est voissante et majorée part donc converge d'après le théorème

	de convergence monotone.
	De même (b) est décraissante est ménorée, par a dens converge d'appès le trèvieme de convergence mondane
	et minagrèc, par a dens converge
	d'appes & théorème de convergence
	maratare
	Notans $Q = \lim_{m \to +\infty} a_m d + \beta = \lim_{m \to +\infty} b_m$
	De l'inégalité (2) , sochant que lim $\frac{b-a}{2m}=0$, on déduil- que $\lambda=\beta$.
	au lim b-a m
	$n \rightarrow + \infty$ $\frac{1}{2}m = 0$
	que J_B_
(3) Enfin, par continuite de fran
	[a;b], suchant que a. < d < b
	· · · (har passage à · ·
	limite dans a < an < b)
	no déduit d'une manviète du coms
)	imite dans a \le an \le b). an déduit d'une propriété du auss

que lim f(am) = f(d) el-lim $(b_n) = (B) = (d)$ $n \rightarrow +\infty$ Comme pour tout entier n>0, en a d'après l'inéagelite (3). g(am) < k < f(bm) en passant à la limite, il $f(d) \leq k \leq f(d)$ et-den (Q)-k. On a ainsi prouve l'existence d'un de [u,b] tel que b(d)=k (mais pas son unicité) Notons que (an) et (bm) sont des suites dites adjacentes