Diskrete Mathematik - Übungen SW11

David Jäggli

10. Mai 2023

Inhaltsverzeichnis

1 Einführung in die Zahlentheorie III

2

1 Einführung in die Zahlentheorie III

I.)

Weis nicht ob das genügt, aber ist der output 00, ist automatisch der input $1 \to$ keine Sicherheit in diesem Fall.

II.) a)
$$\phi(pq) = (p-1)(q-1)$$

$$\phi(47 \cdot 59) = (47-1)(59-1) = 46 \cdot 58 = 2668$$

$$2668 = 156 \cdot 17 + 16$$

$$17 = 1 \cdot 16 + 1$$

Sie sind teilerfremd.

b) Modulares Inverses von $e \mod \phi(pq) = 17 \mod 2668$ $d \cdot e \mod \phi(pq) = 1$ $d \cdot e + x \cdot \phi(pq) = 1$ $1 = 17 - 1 \cdot 16$ $1 = 17 - (2668 - 156 \cdot 17)$ $1 = 157 \cdot 17 + (-1) \cdot 2668$ d = 157

$$e \ d \equiv 1 \mod \phi(pq)$$

 $17 \cdot 157 \equiv 1 \mod 2668$
 $2669 \equiv 1 \mod 2668$

true

e : 17

n:2773

 $m_1: 8 \ m_2: 117 \ m_3: 1212$

 $c \equiv m^e \mod n$

$$m_1 \to c_1 = 8^{17} \mod 2773 = 596$$

 $m_2 \to c_2 = 117^{17} \mod 2773 = 1769$
 $m_3 \to c_3 = 1212^{17} \mod 2773 = 2345$

d = 157

n = 2773

$$\begin{aligned} c_1 &\to m_1 = 596^{157} \mod 2773 = 8 \\ c_2 &\to m_2 = 1769^{157} \mod 2773 = 117 \\ c_3 &\to m_3 = 2345^{157} \mod 2773 = 1212 \end{aligned}$$

III.)

n = 17'753

 $\phi(n) = 17280$

$$\phi(n) = (p-1)(q-1)$$

$$n = p \cdot q \to q = \frac{n}{p}$$

2 Unbekannte, 2 Gleichungen

$$(p-1)(q-1) = \phi(n)$$

$$(p-1)\left(\frac{n}{p}-1\right) = \phi(n)$$

$$n-p-\frac{n}{p}+1 = \phi(n)$$

$$n-p-\frac{n}{p}+1-\phi(n) = 0$$

$$-p^2+np-n+p-\phi(n)\cdot p = 0$$

$$-p^2+(n-\phi(n)+1)p-n = 0$$

$$-p^2+474p-17'753 = 0$$

$$p_1 = 41$$
$$p_2 = 433$$

IV.)

Schlüssel: (n, e) = (2537, 13)

Geheimtext: c = 2018

$$n \text{ faktorisieren } \rightarrow n = 43 \cdot 59$$

 $\phi(n) = (43 - 1)(59 - 1) = 42 \cdot 58 = 2436$

Modular Inverse d von e mod $\phi(n)$

Mi erweitertertem euklidischem Algorithmus $\rightarrow d \cdot e + x \cdot \phi(n) = 1$

$$1 = -5 \cdot 2436 + 937 \cdot 13$$

Mit modulo rechnen und es folgt: $d \cdot e = 937 \cdot 13 \equiv 1 \mod 2436$ d = 937

Für Klartext berechnen, Formel: $M=C^d \mod n$ anwenden. $M=C^d \mod n = 2081^{937} \mod 2537 = 1819$