ME111A - Laboratório de Estatística

Atividade 5

Profa. Larissa Avila Matos

Exercício 1 (5,0 pontos)

Em 16 de junho de 2018, a loteria da Caixa no jogo da Mega-Sena tinha prêmio estimado de R\$ 30.000.000,00. Os sorteios da Mega-Sena são realizados duas vezes por semana, às quartas e aos sábados. Desde o seu inicio em 11/03/1996 até os dias de hoje 13/06/2018 a Mega-Sena já realizou 2049 sorteios (http://loterias.caixa.gov.br/wps/portal/loterias/landing/megasena/).

No jogo básico da Mega-Sena, os jogadores selecionam 6 números em um conjunto de 60 bolas brancas. Em cada sorteio, os números vencedores são selecionados usando uma máquina de bolas, contendo bolas brancas numeradas de 1 a 60. Seis bolas são sorteadas da máquina e estes são os números vencedores. O sorteio é feito sem reposição.

A Tabela a seguir apresenta as freqüências das 60 bolas brancas com as quais elas foram sorteadas nesses anos de Mega-Sena, ou seja, apresenta as freqüências das 60 bolas nos 2049 jogos disputados até o momento.

Bola	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Freq.	203	209	192	225	233	211	195	203	184	232	198	201	210	193	186
Bola	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Freq.	212	219	205	191	196	179	181	228	221	187	166	211	219	210	215
Bola	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Freq.	197	216	223	210	204	210	210	203	192	195	211	218	213	208	203
Bola	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Freq.	195	201	190	201	211	222	219	233	225	175	211	189	200	202	192

- a. Se cada bola tiver a mesma probabilidade de ser sorteada, quantas vezes você esperaria que cada bola tivesse sido retirada até agora? Faça um gráfico de barras para visualizar a distribuição das frequências e adicione uma linha vermelha horizontal ao gráfico indicando a frequência esperada para cada bola.
- b. Que tipo de teste qui-quadrado (aderência ou independência) seria apropriado para testar se cada bola tem a mesma chance de ser sorteada? Explique seu raciocínio. Escreva as hipóteses apropriadas.
- c. Qual é a conclusão do teste de hipóteses? Com base nesse teste, há algum número que você recomende para a próxima Mega-Sena?

Exercício 2 (5,0 pontos)

Nos conjuntos de dados do R contém o conjunto de dados airquality. Esse conjunto de dados se refere a medições diárias da qualidade do ar em Nova York, de maio a setembro de 1973.

Examine esse conjunto de dados (use as funções head e summary). Observe que há valores ausentes nos dados da concentração de ozônio e da radiação solar, ou seja, esses dados não foram coletados. Poderíamos ignorar os valores ausentes e conduzir nossa análise de regressão, uma vez que a resposta padrão da função lm (linear model) é omitir casos com valores ausentes em qualquer um dos parâmetros especificados. No entanto, para evitar problemas futuros, podemos excluir esses valores construindo um novo conjunto de dados "limpo" da seguinte forma:

air.cleaned <- na.omit (airquality)</pre>

Pra todos os itens a seguir, use a função 1m para conduzir uma análise de regressão de mínimos quadrados (MQ) e explore as saídas do modelo ajustado usando a função summary.

- i. Realize uma regressão linear simples da concentração de ozônio em função da radiação solar e responda:
 - a. Quais são as estimativas dos parâmetros do modelo de regressão linear simples?
 - b. Existe efeito da radiação solar na concentração de ozônio?
 - c. Como é a equação do modelo ajustado? Apresente a equação ajustada num gráfico de dispersão.
 - d. Qual seria a mudança esperada na concentração de ozônio para a mudança de 1 unidade na radiação solar?
- ii. Realize uma regressão linear simples da concentração de ozônio em função do vento e responda:
 - a. Quais são as estimativas dos parâmetros do modelo de regressão linear simples?
 - b. Existe efeito do vento na concentração de ozônio?
 - c. Como é a equação do modelo ajustado? Apresente a equação ajustada num gráfico de dispersão.
 - d. Qual seria a mudança esperada na concentração de ozônio para a mudança de 1 unidade na velocidade do vento?
- iii. Realize uma regressão linear simples da concentração de ozônio em função da temperatura e responda:
 - a. Quais são as estimativas dos parâmetros do modelo de regressão linear simples?
 - b. Existe efeito da temperatura na concentração de ozônio?
 - c. Como é a equação do modelo ajustado? Apresente a equação ajustada num gráfico de dispersão.
 - d. Qual seria a mudança esperada na concentração de ozônio para a mudança de 1 unidade na temperatura?