MIEEC Computer Networks Lecture note 6

Medium access control

Medium Access Control

Link access: single vs. multiple

- Point-to-point links
 - RS-232

- Modem, dial-up link
- Link between Ethernet switch and host
- Broadcast links
 - Initial Ethernet
 - 802.11 Wireless LAN

TO THINK

 How do you coordinate stations to access a shared medium?

- How does this relate to statistical multiplexing and queuing?

Ideal multiple access protocol

Goal

- Coordinate stations to use R bit/s shared broadcast channel
- One station wants to transmit => uses R bit/s
- m stations want to transmit => use R/m bit/s on average

Requirements

- Decentralized
- No coordination
- No clock synchronization
- Simple

Classes of MAC protocols

- Channel partitioning
 - TDM Time division multiplexing
 - FDM Frequency division multiplexing
- Taking turns
 - Now it's my turn, now it's your turn
 - TDM?
- Random access
 - Collisions allowed

TDM/FDM channel partitioning

- From requirements
 - Decentralized?
 - Clock synchronization? TDM vs. FDM
 - Simple?
- Why don't we use it?
 - Flexibility

Taking turns 1: Polling

- Master station
 - Asks other stations to transmit in turns
 - One or more times every round, same/different bandwidth for different clients
- Concerns
 - Polling overhead
 - need to ask even if nothing to transmit
 - Latency
 - Need to wait for your turn
 - Master: single point of failure

Taking turns 2: Token passing

- Control token
 - Its possession defines the station that can transmit
 - Token is passed sequentially from one station to the next
- Concerns
 - Token overhead
 - Latency
 - Token single point of failure

Random Access

- No a priori coordination
 - Station transmits packet when it has a packet to send
 - At channel rate R
- Two or more stations transmit simultaneously
 - Collision
- Random access MAC defines:
 - When to send packets
 - How to detect collisions
 - How to recover from collisions
- Aloha, CSMA, CSMA/CD, CSMA/CA

MAC Concepts

- Traffic source
 - One frame transmitted at a time
 - Probability of 1 frame being transmitted in $\delta: p_1(\delta) \sim \lambda \delta$
 - Poisson arrival
- Collision if two stations transmit at same time
 - Frame retransmission (how?)
- Continuous time vs. slotted time
 - Continuous: frame can be transmitted at any time
 - Slotted: frame must be transmitted at the beginning of slot
- Carrier sense vs. no carrier sense
 - Sensing: station can know if medium is busy before sending

ALOHA

Faculdade de Engenharia da Universidade do Porto

Slotted vs. un-slotted ALOHA

Slotted

- $-T_{slot} = T_{frame}$
- Transmissions and retransmissions at beginning of slot

 Stations transmit when they have frame to send

Traffic model

- Poisson arrival, large number of stations N
- Constant frame length, $T_{frame} = 1$
- S: received traffic
 - λ_{rx} : rate of received frames, i.e. transmitted with success
 - $S = \lambda_{rx} * T_{frame} < 1$; S::efficiency
- G: generated traffic
 - λ : rate of transmitted frames
 - $-G = \lambda * T_{frame} = Np$
 - p probability of one station generating a frame in T_{frame} (new or retransmission)

Slotted ALOHA: Efficiency

 $p_0(t) = e^{-\lambda t}$ G: generated traffic S:efficiency

•
$$S = P(Success) = N(p(1-p)^{N-1})$$

 $\sim Npe^{-p(N-1)} \sim Npe^{-pN} =$
 $= Ge^{-G} = Gp_0(T_{frame})$

•
$$S_{max} \Rightarrow \frac{\delta S}{\delta G} = 0 \Rightarrow G = 1; S_{max} = \frac{1}{e} \sim 36.8\%$$

ALOHA: Efficiency

G: generated traffic S:efficiency

• $S = Gp_0(2 * T_{frame}) = Ge^{-2G}$

•
$$S_{max} \Rightarrow \frac{\delta S}{\delta G} = 0 \Rightarrow G = \frac{1}{2}$$
; $S_{max} = \frac{1}{2e} \sim 18.4\%$

ALOHA vs. TDM

Figure 4.6 Comparison of expected waiting time W in slots, from arrival until beginning of successful transmission, for stabilized Aloha and for TDM with m=8 and m=16. For small arrival rates, the delay of stabilized Aloha is little more than waiting for the next slot, whereas as the arrival rate approaches $1/\epsilon$, the delay becomes unbounded.

CSMA Carrier Sense Multiple Access

Logic: don't interrupt others

- Listen to the medium before transmitting
 - If free: transmit frame
 - If busy: defer transmission
- What if others start transmitting at the same time?

CSMA collisions

- Propagation delay
 - Stations may hear others too late
- Vulnerability time

$$-2 * T_{prop}$$

- Entire packet is lost
- Collision probability

$$-a = \frac{T_{prop}}{T_{frame}} \ll 1$$

Faculdade de Engenharia da Universidade do Porto

Variations of CSMA

- Focus on what happens when the medium is busy
 - i.e. persistency
- Non-persistent
 - If busy: wait random time and retransmit
- Persistent
 - If busy: station waits until medium is free, then retransmits
- p-persistent
 - Slot time :: round trip time, $2 * T_{prop}$
 - If free: transmit with probability p, or defer to next slot (1-p)
 - If busy
 - 1) if deferred from previous slot => collision
 - 2) else station waits until medium is free and repeat algorithm

Variations of CSMA: Efficiency

Non-persistent: better efficiency with G, longer delay

CSMA/CDlision Detection

- Carrier sense
 - Sense medium before transmitting
 - If free: start transmitting
 - If busy: wait until free and transmit (persistent)
- Collision detection
 - Listen to medium while transmitting
 - If collision detected
 - Stop transmission
 - Delay retransmission (binary exponential backoff algorithm)
 - No ACK

CSMA/CD Binary exponential backoff algorithm

- Time slots
 - $-T_{slot} = 2 * T_{prop}$
- After the ith consecutive collision
 - Attempt to transmit
 - After waiting
 - A random number of slots
 - Uniformly distributed 0 and 2ⁱ-1

CSMA/CD Efficiency

- Efficiency $S = \frac{n_{tx}}{n_{tx} + E[n_{contention}]}$ $n_{tx} = \frac{T_{frame}}{T_{slot}} = \frac{T_{frame}}{2*T_{prop}} = \frac{1}{2a}, a = \frac{T_{prop}}{T_{frame}}$
- P: probability that one station transmits in one slot
- A: probability that exactly one station transmits in a slot and gets the medium

•
$$A = {N \choose 1} p^1 (1-p)^{N-1} = Np(1-p)^{N-1}$$

•
$$E[n_{contention}] = \sum_{i=1}^{+\infty} i(1-A)^i A = \frac{1-A}{A}$$

•
$$S = \frac{\frac{1}{2a}}{\frac{1}{2a} + \frac{(1-A)}{A}} = \frac{1}{1+2a\frac{1-A}{A}}$$

•
$$p = \frac{1}{N} \Rightarrow A_{max} = \left(1 - \frac{1}{N}\right)^{N-1}$$
; $\lim_{N \to \infty} A_{max} = \frac{1}{e} \Rightarrow \lim_{N \to \infty} S = \frac{1}{1 + 3.44a}$

CSMA/CD Minimum frame size required

- Frame too short
 - Collision not visible at A
 - Visible at C
- A C B

- Frame long enough
 - Collision visible in A

Faculdade de Engenharia da Universidade do Porto

TO THINK

 Why don't we need ACK packets in CSMA/CD?

 Can we use CSMA/CD in a wireless medium?

CSMA/CA Collision Avoidance

Faculdade de Engenharia da Universidade do Porto

CSMA/CA Collision Avoidance

- Station has a packet to transmit:
 - Monitors channel activity
 - Waits after DIFS idle period
 - Transmits if medium is free
- If medium is busy
 - Selects random backoff interval
 - Decrements backoff timer when channel idle > DIFS
 - Stops timer when channel busy
 - Transmits when backoff timer reaches zero
- Consecutive packet transmission
 - Wait for random backoff interval, even if free after DIFS
 - Avoids channel capture

CSMA/CA ACK packet required

CSMA/CA ACK packet required

- CSMA/CD, vulnerability time
 - CSMA/CA does not rely on CD
 - no vulnerability time
 - no guarantee that collisions are visible
- Acknowledgment packet
 - Sent by receiving station to indicate transmission success
 - Immediate response after SIFS < DIFS interval, priority over other transmissions
- No ACK after timeout or different packet
 - Retransmission scheduled, backoff rules
- CSMA/CA efficiency depends strongly on # competing stations
 - 60% efficiency is a common value

Standards and Technology

IEEE 802 Reference Model

- Data Link Layer has 2 sub-layers
- LLC logic link control
 - Interface to network layer
 - Error detection, ARQ, flow control
- MAC medium access control
 - Access control
 - Frame retransmission/reception
 - Addressing
 - Error control

5

Faculdade de Engenharia da Universidade do Porto

IEEE Standards

- 802.1 Higher layer LAN protocols
- 802.2 Logical Link Control
- 802.3 Ethernet, CSMA/CD
- 802.11 Wireless LAN
- 802.15 PAN (Personal, Bluetooth, ZigBee)

- 802.16 Broadband Wireless Access (WMAN, WiMax)
- 802.20 Mobile Broadband (MBWA, Mobile WiMax)
- 802.22, Wireless Regional (Cognitive radio, free TV spectrum)

Faculdade de Engenharia da Universidade do Porto

Ethernet MAC Sublayer

- Frame formats
 - a) DIX (DEC, Intel, Xerox) Ethernet
 - No LLC sublayer, IP over Ethernet
 - b) IEEE 802.3

MAC Addresses

 Why do you need an address?

- 48 bit MAC addresses
- Each adapter has a unique MAC address

Ethernet Topology

- CSMA/CD MAC
- Bus topology
 - Popular in the 90's
 - Stations in same collision domain
- Star topology
 - Today's topology
 - Active switch in the center
 - Stations don't collide with each others
 - Each station runs its own Ethernet protocol with the switch

Ethernet evolution: Coaxial cable

- First Ethernet was on coaxial cable
 - Multiple transmitters and receivers

Ethernet evolution: Active Hub

- Original Ethernet difficult to manage
 - Cable faults hard to detect
 - Single fault can bring entire network down
- Solution: active hub
 - Point-to-point cables only

Active hubs as repeaters

- Repeats bits on one port to all other ports
- Physical layer functions only
- Collision in one port => repeated to all ports
- One network with repeaters
 - one collision domain

Networks of hubs

Tree topology

• Single collision

domain

TO THINK

- How to improve the efficiency of a hub?
 - Collision domain

Ethernet evolution: Bridge

- Bridge (i.e. switch)
 - Forwards frames based on MAC addresses
 - Receive packet => analyze packet => resend on other port
- Bridge separates collision domains
 - Bridge LAN may be larger than LAN with repeaters
 - Several frames can be transmitted simultaneously

Ethernet evolution: Bridges and repeaters together

Ethernet evolution: Point-to-point only cable

- Unshielded Twisted Pair (UTP)
 - Cheaper, easier to install (can be bent)
 - Does not support multiple transmitters/receivers as well as coaxial
- Ethernet is now Point-to-point
 - No multiple transmitters/receivers
 - UTP can be used

Ethernet evolution: Full duplex Ethernet

- UTP cables have two pairs of cables
 - Can be used simultaneously in both directions

- This is called "Full Duplex Ethernet"
 - No CSMA/CD
 - From the original Ethernet we now retain only
 The frame format and the MAC addresses

Current Ethernet

- Used mostly for local interconnection
 - of a limited number of stations
 - up to a few hundreds

- Primarily point-to-point cables
 - UTP for short distances
 - Fiber for long distances
 - Active hubs are primarily bridges

Switch

- Link-layer device
- Forwards Ethernet frames
- Transparent to hosts
 - Unaware of its presence
- Plug-and-play, selflearning
 - Does not need configuration
- Has forwarding table

Switch: self-learning

- Look at frame source address
- Add entry to forwarding table

MAC addr	interface	TTL
A	1	60

Forwarding table (initially empty)

Destination: A'

Source: A

Switch: Frame forwarding/flooding

- When switch receives frame:
- 1. record link of sending host
- 2. lookup destination MAC
- 3. if entry found

if destination on sender segment => drop frame else forward frame to destination

else flood (i.e. forward on all interfaces except sender)

Wireless LAN

- Infrastructure or adhoc topology
- CSMA/CA MAC
- 802.11 protocol stack

High-speed Backbone Wired LAN

Nomadic

Virtual LANs

- One bridge emulates multiple LANs / broadcast domains
- VLANs can be extended to other bridges

VLANs: IEEE 802.1Q Standard

• 802.3 (legacy) and 802.1Q frame formats

- How does the ideal MAC work?
- Name the differences:
 - Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA
- Delay and offered traffic: how do they relate in a random MAC?
- Why doesn't CSMA/CD require ACK packets?
- What is the format of a MAC address?
- What's left from the original coaxial Ethernet in today's switched, full-duplex Ethernet?
- How do hubs and switches retransmit frames?
- How does a switch learn MAC addresses of stations?
- What's a virtual LAN?

HOMEWORK

Review slides

- Read:
 - Tanenbaum 4.1, 4.2, 4.3, 4.4, 4.7, 4.8
 - Bertsekas 4.2, 4.4
- Do your Moodle homework