A Spine for Teichmueller Space of Closed Hyperbolic Surfaces (Draft)

December 22, 2023

We claim a minimal dimension spine W of Teichmueller space Teich(S) consists of surfaces which are filled by their shortest essential nonseparating geodesics. The key element in our geometric retraction is the construction of nonconstant harmonic functions on S depending uniquely and canonically on short C-systoles. This allows explicit Teichmueller type deformation of the hyperbolic metric to increase all the C-systoles simultaneously, and increase the homological rank of the systoles. [- J.H. Martel]

1 C-Systoles, Homological Rank, and Filling.

We let (S,g) be a closed hyperbolic surface with constant Gauss curvature K=-1. We begin with a series of definitions and notation.

Definition: A collection C of curves is *essential* if the curves are homotopically nontrivial. The collection is *nonseparating* if the curves are nonzero $[\alpha] \neq 0$ in $H_1(S, \mathbf{Z})$ for $\alpha \in C$.

Definition: Let C = C(g) be the set of geodesic nonseparating essential curves on (S, g).

Definition: Let C' be a collection of essential nonseparating geodesics. The complexity of C' is defined as the rank of the homological image of C', that is

$$\xi(C') := \dim \operatorname{span}(H_1(C')).$$

We observe $\xi = \xi(C')$ is an integer taking every integral value between $1 \le \xi \le 2g$ where g is the genus of the surface S.

Definition: The C-systole of (S, g) consists of the shortest curves in C relative to g-length. We denote the C-systoles of a given metric g by C' = C'(g).

Definition: A collection of curves C_0 fills the surface S if the complement $S-C_0$ is a disjoint union of topological disks.

Lemma: A subset $C_0 \subset C(S,g)$ is filling if and only if $\xi(C_0) = 2g$. *Proof:*

2 Belt Tightening Lemma

The following Belt Tightening Lemma is our main observation:

Belt Tightening Lemma: Let (S,g) be hyperbolic surface with C-systoles C'.

There exists a one-parameter deformation $\{g_t\}$ in Teich(S) such that:

- the metric g_t is hyperbolic for all $t \ge 0$ and $g_0 = g$;
- the curve lengths $\ell(\gamma, g_t)$ are simultaneously increasing for all $t \geq 0$ and all $\gamma \in C'$.

The proof depends on the construction of an explicit harmonic function on the surface-with-corners S - C'. This construction is provided in Lemma [ref].

Proof: Let $\phi=d\hat{u}$ be the unique harmonic one-form constructed in Lemma [ref]. Let $q_t:=(e^t\phi+ie^{-t}\phi^*)^2$ for $t\geq 0$. Define g_t to be the resultant hyperbolic structure $(q_t)\#g$. [Incomplete]

Claim: The lengths of the curves in C' are provided by [formula] and the lengths are simultaneously increasing with respect to the deformation. QED.

3 Harmonic Functions on Surfaces-With-Corners

On a given Riemann surface (S,g) we let * ("star") denote the Hodge star operator. The Cauchy-Riemann theorem says harmonic one-forms on Riemann surfaces are precisely the real parts of analytic complex differentials. In Lemma [ref] we construct a holomorphic one-form $\phi + i\phi^*$ which is canonically defined by the C-systoles of a Riemann surface S. The complex square $q := (\phi + i\phi^*)^2$ defines a holomorphic quadratic differential on the surface. The transverse invariant foliations of this quadratic differential are the real and imaginary parts of \sqrt{q} , and indeed defined by ϕ and ϕ^* . The retraction constructed in Lemma [ref] depends on repeated application of a flow $t \mapsto e^{-t}\phi + ie^t\phi^*$ constructed from the harmonic one-form ϕ .

In general the systoles C' = C'(g) define a link in the surface. This means C' has an almost everywhere uniquely defined normal vector except at the geometric intersections of certain curves $\gamma \cap \gamma'$. But these intersections are finite. Therefore we consider the normal derivative n as defined everywhere except some isolated finite number of points on C in S.

Lemma: (Harmonic Extensions) Let (S, g) be a hyperbolic surface with C-systoles C'. There exists harmonic functions u on S satisfying the measurable Neumann boundary condition

$$\frac{\partial u}{\partial n} = 1$$
 on the curves C' .

The harmonic functions are unique up to additive constant.

Proof. The curves C' are geodesics in the surface S, and $C' \hookrightarrow S$ is a link. We cut the surface along this link to obtain the hyperbolic surface with geodesic boundary S-C'. The hypothesis of constant unit normal derivative becomes a Neumann boundary condition on $\partial(S-C')$. Poisson's fundamental theorem [insert ref] says there exists a unique harmonic extension \hat{u} onto S-C' with prescribed normal derivative on the boundary.

This extension \hat{u} is nonconstant since $n \cdot \nabla u = 1 \neq 0$ by hypothesis and is unique up to additive constant. Therefore the harmonic one-form $\phi := d\hat{u}$ is uniquely defined on S.

Remark: The main idea behind the harmonic one-form ϕ is to define the quadratic holomorphic differential $q=(\phi+i\phi^*)^2$ whose measured foliations are precisely given by ϕ,ϕ^* . The key point is that Teichmueller type deformations $t_{-t}=(e^t + e^{-t})^*$ for $t\geq 0$ are well-defined analytic deformations on Teichmueller space. In otherwords $\{q_t \mid t\geq 0\}$ is an explicit variation of hyperbolic structure, and thre is a sense of pushforward $q_t:=q_t\#g$.

Remark: We want to relate $\phi = d\hat{u}$ to the hypothesis that $\xi(C') < 2g$. In otherwords, we need a comment on cohomology and Hodge theorem to say that ϕ is nonzero when $\xi < 2g$. This could be established by period arguments, since by construction it's evident that $\int_{\gamma} \phi \neq 0$ (?) [Error Careful]

Lemma: If C' does not fill S, then the harmonic extension \bar{u} constructed in Lemma [ref] is nonconstant on S.

Proof. [Incomplete]

4 Well-Rounded Retract of Teichmueller Space

Here is our proposal for constructing well-rounded retracts of Teich(S).

Remark: We observe that if C' does not fill S, then the harmonic extensions \hat{u} are everywhere nonconstant by Lemma [ref]. [Error?]. This implies the Teichmueller deformations q_t are nontrivial for $t \geq 0$.

Definition: For every index $1 \leq j \leq 2g$, let W_j be the subvariety of Teich(S) consisting of hyperbolic metrics whose C-systoles satisfy $\xi(C) \geq j$.

Theorem: The Teichmueller space Teich continuously and equivariantly retracts onto $W = W_{2g}$. Moreover W has codimension 2g-1 in Teich and therefore is a minimal dimension spine of Teich.

Proof: The retract $Teich \to W$ is defined as a composition of retracts $W_1 \to W_2 \to \cdots \to W_{2g}$. The general retract $W_j \to W_{j+1}$ is defined as follows:

Let (S,g) be a hyperbolic surface in W_j with $\xi(C(g))=j<2g$. Let $\{g_t\}$ be the unique one-parameter deformation of hyperbolic metrics constructed in Belt Tightening Lemma which simultaneously expands the lengths of C'.

Claim: There exists a minimal stopping time $\tau = \tau(g)$ which depends continuously on g such that $g_{\tau} \in W_{j+1}$. Equivalently τ is the unique minimal time such that a new independent C-systole appears and which strictly increases the complexity ξ . Analytically τ is defined as the least time t such that

$$\xi(S_0(g_t)) > \xi(S_0(g)).$$

Claim: The one-parameter deformation defines a continuously well-posed global retraction $g\mapsto g_{\tau}$ from W_j to W_{j+1} .

Claim: The subvariety W_{j+1} is a codimension one subvariety of W_j . Therefore W_{2g} is a codimension 2g-1 subvariety of Teich. This is the minimal possible dimension according to Bieri-Eckmann homological duality. QED.

Remark: Geometric minimality requires a further homological duality argument a la [Souto-Pettet]. [Insert details]