LOCAL BINARY PATTERN

WHERE LOCAL BINARY PATTERNS USED

- Local binary pattern (LBP) is a popular technique used for image/face representation and classification.
- Local Binary Patterns (LBPs) have been used for a wide range of applications
 - 1. Face detection
 - Face recognition
 - 3. Facial expression recognition
 - Remote sensing
 - Texture classification
 - Object detection systems

HOW LOCAL BINARY PATTERN WORKS?

- The most common approach however, dictates that each 3×3 window in the image is processed to extract an LBP code.
- The processing involves thresholding the center pixel of that window with its surrounding pixels using the window mean, window median or the actual center pixel, as thresholds.

How LBP Works ?!

OUTPUT VALUE OF LBP OPERATOR CAN BE OBTAINED AS FOLLOWS:

LBP =
$$\sum_{n=0}^{7} s(i_n - i_c) 2^n$$

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Values

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Value

$\sum_{}^{7}$	$s(i_n$	_	$i_c)2^n$
n=0			

i_0	i_1	i_2
<i>i</i> ₇	i_c	i_3
i_6	i_5	i_4

FO	r, n = 0				
	$s(i_0$	$-i_c)2^{i}$	1	4	·)20
			=	s(1)	
			_		

5	9	1
4	4	6
7	2	3

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Value

7			
	<i>(</i> ·		· \0n
\	$s(i_n)$	_	$i_c)2^n$
n=0			

i_0	i_1	i_2
i_7	i_c	i_3
i_6	i_5	i_4

For, n = 0

$$s(i_0 - i_c)2^n = s(5-4)2^0$$

$$s(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0. \end{cases}$$

5	9	1
4	4	6
7	2	3

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Value

For, n = 0

1 > 0

1	9	1	
4	4	6	
7	2	3,	

i_0	i_1	i_2
i_7	i_c	i_3
i_6	i_5	i_4

5	9	1
4	4	6
7	2	3

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Values

$\frac{7}{2}$	s(in	 $i) 2^n$
$\sum_{n=0}$	$s(\iota_n$	$\iota_C \jmath L$

i_0	i_1	i_2
i_7	i_c	i_3
i_6	i_5	i_4

For, n = 1

$$s(i_1 - i_c)2^1 = s(9 - 4)2^1$$

Here, i_c = Center Pixel Value i_n = Neighbour Pixel Values

$\frac{7}{2}$	a(i	$i_c)2^n$
$\sum_{n=0}$	$s(i_n$	$l_c/2$

i_0	i_1	i_2
<i>i</i> ₇	i_c	i_3
i_6	i_5	i_4

For, n = 2

$$s(i_2 - i_c)2^2 = s(1-4)2^2$$

$$s(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0. \end{cases}$$

1	1	0
1		1
1	0	0

FOR EXAMPLE: METHOD 2

10	12	18
7	9	6
9	2	4

1 1 1 0 0 0 1 0

1 1 0 1 0 0 1 1

BINARY NUMBER INTO DECIMAL

1	1	0
1		1
1	0	0

Binary Number Generated

LOCAL BINARY PATTERNS

Fig. 2.3 Different texture primitives detected by the LBP

Advanced LBP (P,R)

P = Pixels R = Radius

LBP(8,1) LBP(16,2)

LBP(20,4)

uLBP

- Uniformity measure U ("pattern") is the number of bitwise transitions from 0 to 1 or vice versa.
- A local binary pattern is called uniform if its uniformity measure is at most 2. i.e transitions between 0 and 1 ≤ 2

Example

- 00000000 (0 transitions)
- 01110000 (2 transitions)
- 11001111 (2 transitions)
- 11001001 (4 transitions)
- 01010011 (6 transitions)

Reasons for omitting non-uniform patterns

- most of the local binary patterns in natural images are uniform
- · Ojala et al. noticed that in texture images, uLBP account for
 - 90% of all patterns using the (8,1)
 - 70% in the (16, 2) neighborhood.
- Facial images
 - 90.6% of the patterns in the (8, 1)
 - 85.2% of the patterns in the (8, 2)

Histogram of LBP(1)

LBP

Histogram

Normalized histogram