Question 1.

3rd degree Lagrange polynomial approximation

Error distribution for the 3rd degree Lagrange polynomial approximation :

6th degree Lagrange polynomial approximation:

Error distribution for the 6th degree Lagrange polynomial approximation :

Error values for the 3rd and the 6th degree Lagrange polynomial approximation :

Polynomial Degree	x=0.1	x=0.9	x=1.5	x=1.9
3	0.0769269	0.00868774	-0.302344	-0.779357
6	0.0627347	0.00724272	0.00859439	0.0620758

6th degree Lagrange Polynomial:

 $f(x) = -0.841471 - 0.836756 x + 10.4029 x^{2} - 24.5576 x^{3} + 30.0517 x^{4} - 16.9888 x^{5} + 3.42808 x^{6}$

3rd degree Lagrange Polynomial:

 $f(x) = -0.841471 - 0.505227 x + 3.66638 x^2 - 1.69915 x^3$

Mathematica Program to calculate the Lagrange Polynomial of degree n

Lagrange Interpolation:

```
ln[24]:= Clear[x, x1, x2, f1, f2, f3, fexact]
In[25]:= L[i_, xdata_, x_] := Module[{product, LagrangePol = 1},
         Do[If[k > i | k < i, product = (x - xdata[[k]]) / (xdata[[i]] - xdata[[k]]);
            LagrangePol = LagrangePol * product];
          , {k, 1, Length[xdata]}];
         LagrangePol]
ln[26]:= xdata = \{x0, x1, x2, x3, x4, x5, x6\}
      ydata = {f0, f1, f2, f3, f4, f5, f6}
Out[26]= \{x0, x1, x2, x3, x4, x5, x6\}
Out[27]= \{f0, f1, f2, f3, f4, f5, f6\}
In[28]:= LagPoly[f , n ] := Module[{polynomial}, polynomial = Sum[L[i, xdata, x] * f[[i]], {i, n}];
          polynomial);
```

Sample output is given for the polynomial of degree n=6

$$\begin{aligned} &\text{Out[29]=} \ \ \, \frac{\text{f0} \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x}-\text{x6})}{(\text{x0}-\text{x1}) \ (\text{x0}-\text{x2}) \ (\text{x0}-\text{x3}) \ (\text{x0}-\text{x4}) \ (\text{x0}-\text{x5}) \ (\text{x0}-\text{x6})} + \\ & \frac{\text{f1} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x}-\text{x6})}{(-\text{x0}+\text{x1}) \ (\text{x1}-\text{x2}) \ (\text{x1}-\text{x3}) \ (\text{x1}-\text{x4}) \ (\text{x1}-\text{x5}) \ (\text{x1}-\text{x6})} + \\ & \frac{\text{f2} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x3}) \ (\text{x2}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x2}-\text{x6})}{(-\text{x0}+\text{x2}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x2}-\text{x6})} + \\ & \frac{\text{f3} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x3}-\text{x6})}{(-\text{x0}+\text{x3}) \ (-\text{x1}+\text{x3}) \ (-\text{x2}+\text{x3}) \ (\text{x3}-\text{x4}) \ (\text{x3}-\text{x5}) \ (\text{x3}-\text{x6})} + \\ & \frac{\text{f4} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x5}) \ (\text{x4}-\text{x6})}{(-\text{x0}+\text{x4}) \ (-\text{x1}+\text{x4}) \ (-\text{x2}+\text{x4}) \ (-\text{x3}+\text{x4}) \ (\text{x4}-\text{x5}) \ (\text{x4}-\text{x6})} + \\ & \frac{\text{f5} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x6})}{(-\text{x0}+\text{x5}) \ (-\text{x1}+\text{x5}) \ (-\text{x2}+\text{x5}) \ (-\text{x3}+\text{x5}) \ (-\text{x4}+\text{x5}) \ (\text{x5}-\text{x6})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5})}{(-\text{x4}+\text{x5}) \ (\text{x5}-\text{x6})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5})}{(-\text{x4}+\text{x5}) \ (\text{x5}-\text{x6})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5})}{(-\text{x4}+\text{x5}) \ (\text{x5}-\text{x6})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5})}{(-\text{x4}+\text{x5}) \ (\text{x5}-\text{x6})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x}-\text{x5})}{(-\text{x4}+\text{x5}) \ (\text{x}-\text{x5})} + \\ & \frac{\text{f6} \ (\text{x}-\text{x0}) \ (\text{x}-\text{x1}) \ (\text{x}-\text{x2}) \ (\text{x}-\text{x3}) \ (\text{x}-\text{x4}) \ (\text{x}-\text{x5}) \ (\text{x}-\text$$

Equally spaced 7 data points and corresponding function values

Question 2.

Error for Natural Cubic Spline

Cubic Spline with Clamped Ends (Extra info)

Note that when you use the clamped end boundary conditions, you get a better approximation at the right boundary. However, the derivative of the function may or may not be available in other problems

Error for Cubic Spline with Clamped Ends (Extra info)

Error values for the cubic spline approximation:

Boundary Condition	x=0.1	x=0.9	x=1.5	x=1.9
natural	-0.00250403	-0.00022346	-0.00553973	-0.112989
clamped	0.0000108384	-0.000351246	0.0017765	-0.0110839

QUESTION 3: Use mettod of undetermined coefficients:

Expand firt, firt, firt, and first into Taylor series about K_i :

(1) $f_{i+1} = f_i + hf_i' + \frac{h^2}{2}f_i'' + \frac{h^3}{6}f_i'' + \frac{h^4}{24}f_i'' + \frac{h^5}{120}f_i''^5$, $O(h^6)$ (2) fi-1= fi-hfi + hfi" - hfi" - hfi" + h4 fi (4) - h5 fi (5) + O(h6) (3) fix = fi + 2hfi + 2h^2fi" + 4h^3fi" + 2h^4fi(4) + 4h^5fi(5) + 0(h6) (4) fi-2=fi-2hfi+2hfi"-4h3fi"+2h4fi(4)-4h5fi(5),0(46) Now malk, 2/4 (2) by d; (3) by & and (4) by B. (1) + $\alpha(2)$ + $\gamma(3)$ + $\beta(4)$ = fix1 + & fi-1 + & fi+2 + & fi-2 = (1+ a+ 8+ B) fi + (1-x+28-2B)hfi+(=+ (=+ =+2+2B)h2fi"+ $\left(\frac{1}{6} - \frac{\alpha}{6} + \frac{4t}{3} - \frac{4\beta}{3}\right)h^3f_i''' + \left(\frac{1}{24} + \frac{\alpha}{24} + \frac{2t}{3} + \frac{2\beta}{3}\right)h_f'''$ $+\left(\frac{1}{120}-\frac{1}{120}+\frac{48}{15}-\frac{43}{15}\right)h^{5}f_{i}^{(5)}+O(h^{6})$ (5) In order to have a finite difference approximation to fi' with an order of occurracy of O(h4), the coefficients of fi", fi", and fi(4) should be equal

So
$$\frac{1}{2} + \frac{2}{2} + 2x + 2x^{2} = 0$$
 (6)
 $\frac{1}{6} - \frac{4}{6} + \frac{4x}{3} - \frac{4x}{3} = 0$ (7)
 $\frac{1}{24} + \frac{2}{24} + \frac{2}{3} + \frac{2x}{3} = 0$ (8)
From (6) $2 + 1 = -4x - 4x = 0$
Pe-uniting (6) using (9)
 $\frac{1}{24} + \frac{2}{24} + \frac{2}{3} \left(-\frac{x-1}{4} \right) = 0$
 $\frac{1}{24} + \frac{2}{24} - \frac{4}{6} - \frac{1}{6} = 0$
 $\frac{3}{24} = \frac{3}{24} \Rightarrow \boxed{x = -1}$ (10)
Pe-uniting (1) $\Rightarrow x + x = 0 \Rightarrow x = -x = 0$
 $(7) \Rightarrow \frac{1}{3} + \frac{x}{3} = 0 \Rightarrow x = -\frac{1}{8}$
 $(7) \Rightarrow \frac{1}{3} + \frac{x}{3} = 0 \Rightarrow x = -\frac{1}{8}$
Substituting the volves of

$$f_{i+1} - f_{i-1} - \frac{1}{8} f_{i+2} + \frac{1}{8} f_{i-2} = (1+1-\frac{1}{4}-\frac{1}{4}) h f_i^{i}$$

$$+ \left(\frac{1}{120} + \frac{1}{120} - \frac{4}{120} - \frac{4}{120}\right) h^5 f_i^{(5)} + O(h^6)$$

$$-f_{i+2} + \frac{8}{1} f_{i+2} - \frac{8}{1} f_{i-1} + f_{i-2} = \frac{6}{4} h f_i^{i} - \frac{h^5}{20} f_i^{5} + \cdots$$

$$Finally;$$

$$f_i^{l} = \frac{-f_{i+2} + f_{i+1} - f_{i-1} + f_{i-2}}{12h} + \frac{h^4}{30} f_i^{(4)} + \cdots$$

$$Approximation \qquad Leading \\ Torm of \\ the frincotton$$

Error Table

h	Error (1st Order)	Error (4 th Order)
10-1	8.67541 x 10 ⁻²	5.74867 x 10 ⁻⁵
10-2	8.26649 x 10 ⁻³	5.58038 x 10 ⁻⁹
10-3	8.22587 x 10 ⁻⁴	5.57554 x 10 ⁻¹³
10-4	8.22181 x 10 ⁻⁵	3.35509 x 10 ⁻¹³
10-5	8.22139 x 10 ⁻⁶	4.10538 x 10 ⁻¹²
10 ⁻⁶	8.22042 x 10 ⁻⁷	6.99095 x 10 ⁻¹¹
10-7	8.07461 x 10 ⁻⁸	3.00165 x 10 ⁻¹⁰
10-8	9.18195 x 10 ⁻⁹	9.18195 x 10 ⁻⁹
10-9	1.20204 x 10 ⁻⁷	4.61894 x 10 ⁻⁸
10 ⁻¹⁰	1.23043 x 10 ⁻⁶	2.4987 x 10 ⁻⁷

Comment: As expected, the reduction in error is consistent with the order of each method. The round-off error becomes important at small mesh sizes, so the error starts to increase after a certain grid size for each method. The optimal grid size for the first order approximation is approximately 10⁻⁸ whereas the optimal grid size for the fourth order is around 10⁻³ (see also the plots in the next two pages).

Error vs. Step Size (1st Order Approximation)

Error vs. Step Size (4th Order Approximation)

QUESTION 4)

Let
$$f(x_0) = fi$$
 $f(x_0 + h/2) = fi + 1$ $f(x_0 + \frac{3h}{2}) = fi + 2$

White Toylor Series exponsion for f_{i+1} and f_{i+2} decided

 $K_i = X_0$:

P. A f_i' h^2 f_i'' h^3 f_i''' (1)

$$f_{i+1} = f_i + \frac{h}{2} f_i' + \frac{h^2}{3} f_i'' + \frac{h^3}{48} f_i''' + \frac{27h^3}{48} f_i'' + \frac{27h^3}{48$$

Aifference formula to approximate (of); multiply (1)
with -9 and add to (2) =

-9(Egn1) + Egn2= >

$$-\frac{9h+1}{2} = -\frac{9h}{2} - \frac{9h}{2} \frac{h''}{8} - \frac{9h^3}{48} \frac{h'''}{48} \frac{h''$$

$$-2Ri+1+fi+2=-8Ri-3hfi'+\frac{3}{8}h^3fi'''_{+}$$
 (3)

$$f'_{i} = \frac{-f_{i+2} + 9f_{i+1} - 8f_{i}}{3h} + \frac{1}{8}h^{2}f_{i}^{111} + \cdots (4)$$
Representation

Bot b) To obtain a first order occurate one-sided finite difference formula to approximate $(\frac{d^2f}{dx^2})_i$ multiply Eqn(1) with -3 and odd to (2)= $\frac{1}{2}$ $\frac{d^2f}{dx^2}_i$ $\frac{d^2f}{dx$

Approximation Leading form of the TE.