Prelim 2: Practice Exam

1. Let $f(x;\theta)$ be the logistic location pdf

$$f(x \mid \theta) = \frac{e^{x-\theta}}{(1+e^{x-\theta})^2}, \quad -\infty < x < \infty; -\infty < \theta < \infty$$

Based on one observation X, find the size α test of $H_0: \theta = 0$ versus $H_1: \theta > 0$.

- 2. Let X_1, \dots, X_n be n independent observations from $N(\mu, 1)$.
 - (a) Find the LRT for $H_0: \mu \leq 2$ vs $H_1: \mu > 2$ at $\alpha = 0.05$
 - (b) Calculate the power function for the LRT test. Is the power function increasing or decreasing? Justify your answer.
 - (c) How large should n be so that the test in (a) has power 0.9 for $\mu = 2.5$
 - (d) If we took 9 samples and observed $\bar{x} = 2.5$. Compute the p-value based on this data for the test in (a). Will you reject H_0 at the level $\alpha = 0.05$ based on this p-value? Explain your answer.

(You may need the following information:) $z_{0.1} = 1.28, z_{0.05} = 1.645, z_{0.025} = 1.960, z_{0.01} = 2.33, z_{0.005} = 2.58.$

3. Let X_1, \ldots, X_n be sampled iid from $Poisson(\lambda)$. Assume λ is sampled from the $Gamma(\alpha, \beta)$ prior and let the loss function be

$$L(\lambda, \hat{\lambda}) = \lambda(\lambda - \hat{\lambda})^2.$$

Calculate the Bayes optimal estimator $\hat{\lambda}_{\text{Bayes}}$ for λ that minimizes the expected loss.

- 4. Let X_1, \dots, X_n be independent random variables, and $X_i \sim \text{Exponential}(scale = \lambda)$, i.e., $f(x) = \frac{1}{\lambda} \exp(-x/\lambda)$, for $x \geq 0$
 - (a) Find the UMVUE of λ .
 - (b) Calculate the mean squared error of the UMVUE.
 - (c) Find the Fisher information $I(\lambda)$ for n observations. Is the CRLB attainable?
- 5. Review the examples in class and go over suggested optional exercises in each homework assignments.

1