La fonction exponentielle

1^{re} Spécialité mathématiques Analyse - Cours

1. Généralités sur la fonction exponentielle

1. Introduction

Définition et propriété admise :

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f'=f et f(0)=1.

Cette fonction est appelé fonction exponentielle et se note exp.

Ainsi, pour tout réel x, on a $\exp'(x) = \exp(x)$ et $\exp(0) = 1$.

2. Propriétés algébriques

Lemme:

Pour tout réel x, on a $\exp(x) \neq 0$.

Propriétés :

- 1. Pour tous réels x et y, on a $\exp(x+y) = \exp(x) + \exp(y)$. Cette relation s'appelle relation fonctionnelle.
- 2. Pour tous réels x et y, on a :
 - $\bullet \ \exp(-x) = \frac{1}{\exp(x)}$
 - $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
 - $\exp(nx) = \exp(x)^n$

3. La notation e^x

Définition:

L'image de 1 par la fonction \exp est le nombre noté e, appelé constante d'Euler.

Ainsi, $\exp(1) = e$

Remarque: La fonction exp possède les mêmes propriété algébriques que les fonctions puissances. On notera donc $\exp(x) = e^x$ ($e \approx 2,7182...$).

4. Lien avec les suites géométriques

Propriété:

Soit a un réel. Soit u la suite définie pour tout entier naturel n par $u_n = e^{na}$.

Alors la suite u est une suite géométrique.

II. Étude et applications de la fonction exponentielle

1. Signe de la fonction exponentielle

Propriété:

La fonction \exp est strictement positive sur $\mathbb R$.

Autrement dit : pour tout nombre réel x, $e^x > 0$.

2. Variations de la fonction exponentielle

Propriété:

La fonction \exp est strictement croissante sur $\mathbb R$.

On résume dans le tableau de variation suivant :

x	$-\infty$ $+\infty$
Signe de $f'(x)$	+
Variations de $f(x) = e^x$	

3. Courbe de la fonction exponentielle

x	e^x
-2	$\approx 0,13$
-1,5	$\approx 0,22$
-1	≈ 0.37
-0,5	$\approx 0,61$
0	1
0, 5	$\approx 1,64$
1	$\approx 2,72$
1,5	$\approx 4,48$
2	$\approx 7,39$

4. Fonctions définies par $f(t)=e^{kt}$ avec $k\in\mathbb{R}$

Propriété:

Pour k>0, la fonction f définie par $f(t)=e^{kt}$ est strictement croissante sur $\mathbb R$.

Pour k < 0, la fonction f définie par $f(t) = e^{kt}$ est strictement décroissante sur \mathbb{R} .

5. Fonctions du type $f: x \mapsto e^{ax+b}$

Propriété:

Pour a et b fixés, la fonction f définie sur $\mathbb R$ par $f(x)=e^{ax+b}$ est dérivable sur $\mathbb R$ et pour tout réel x, $f'(x)=a\times e^{ax+b}$.

6. Équations et inéquations

Propriété:

Pour tous réels a et b, on a :

- $e^a = e^b \Leftrightarrow a = b$
- $\bullet \ e^a < e^b \Leftrightarrow a < b$

Exemples:

ullet On résout dans ${\mathbb R}$ l'équation $e^{2x+1}=e^{x-3}$

$$e^{2x+1} = e^{x-3}$$

$$\Leftrightarrow 2x + 1 = x - 3$$

$$\Leftrightarrow x + 1 = -3$$

$$\Leftrightarrow x = -4$$

$$\Leftrightarrow S = \{-4\}$$

ullet On résout dans ${\mathbb R}$ l'inéquation $e^{x-3} < 1$

$$e^{x-3} < 1$$

$$\Leftrightarrow e^{x-3} < e^0$$

$$\Leftrightarrow x - 3 < 0$$

$$\Leftrightarrow x < -3$$

$$\Leftrightarrow S =]-\infty;3[$$