Manifolds Exercise Sheet 3.

Department of Mathematics

Brice Loustau Philipp Käse Summer term 2020 22.05.2020

Groupwork

Exercise G1 (Hopf fibration)

Consider the 1-sphere and 3-sphere as subsets of the complex space, that is

$$S^1 = \{z \in \mathbb{C} : |z|^2 = 1\}$$
 and $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}.$

- a) Show that the action of S^1 on S^3 by multiplication, i.e., $z \cdot (z_1, z_2) = (zz_1, zz_2)$, is a free action by homeomorphisms.
- b) Show that there is a natural bijection $S^3/S^1 \approx \mathbb{C}P^1$.
- c) Show that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
- d) Optional. Show that the projection $\pi: S^3 \to S^3/S^1 \approx S^2$ is a smooth map. In fact, it is a principal fiber bundle, called the Hopf fibration.

Exercise G2 (Tangent bundle to S^1)

Show that TS^1 is a cylinder.

More precisely, show that $TS^1 \approx S^1 \times \mathbb{R}$ as smooth manifolds, in fact as smooth vector bundles.

Exercise G3 (Coordinate vectors)

Let M be a smooth manifold and (x^1,\ldots,x^m) be local coordinates. Denote (U,φ) the associated chart.

a) Recall the definition of the coordinate vectors $\frac{\partial}{\partial x^i}$.

Explain why any
$$v \in T_p M$$
 is uniquely written $v = \sum_{i=1}^m v^i \frac{\partial}{\partial x^i}$ where $v^i = (\mathrm{d} x^i)_{|_p}(v)$.

b) Show that alternatively, $\frac{\partial}{\partial x^i} = (\varphi_*)^{-1}(e_i)$ where $(e_i)_{1 \le i \le m}$ is the canonical basis of \mathbb{R}^m .

What is the Jacobian matrix of $\varphi \colon U \to \mathbb{R}^m$, taking the local coordinates (x^i) on U and the usual coordinates on \mathbb{R}^m ?

Exercise G4 (Jacobian matrix and change of coordinates)

How does the Jacobian matrix of a smooth map behave under changes of coordinates?

Homework

Hand in your work by Tuesday, 02.06.2020.

Exercise H1 (The Lie group U(1))

14 points

- a) Show that U(1) is:
 - a matrix group, by identifying it to a subgroup of $GL(2,\mathbb{R})$,
 - a manifold, by identifying it to $S^1 \subseteq \mathbb{R}^2$.

Derive that U(1) is a Lie group.

- b) Show that $SO(2, \mathbb{R})$ is a matrix Lie group isomorphic to U(1). You may admit that $SO(2, \mathbb{R})$ is a submanifold of $GL(2, \mathbb{R})$.
- c) Show that \mathbb{R}/\mathbb{Z} is a Lie group isomorphic to U(1).

Exercise H2 (Differentials)

8 points

- a) Let $f: M \to N$ and $g: N \to P$ be smooth maps between smooth manifolds.
 - Show that $g \circ f$ is smooth, and express $d(g \circ f)$ in terms of df and dg.
 - Assume $f \colon M \to N$ is a diffeomorphism. Express $d(f^{-1})$ in terms of df.
- b) Let M and N be smooth manifolds and let $f: M \to N$.
 - Show that if f is constant, then f is smooth and $df \equiv 0$.
 - Is the converse true?

Exercise H3 (Jacobian matrix)

8 points

Let $f: M \to N$ and be a smooth map between smooth manifolds.

Let $p \in M$. Let $\varphi = (x^1, \dots, x^m)$ [resp. $\psi = (y^1, \dots, y^n)$] be a smooth chart on M [resp. on N], whose domain U contains p [resp. whose domain V contains f(p)].

- a) Show that the following definitions of the *Jacobian of* f at p are equivalent:
 - $\operatorname{Jac}_p(f) = \left[\frac{\partial f^j}{\partial x^i}\Big|_{p}\right]_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant i \leqslant n}}$ where $f^j = y^j \circ f$.
 - $\operatorname{Jac}(f)$ is the matrix associated to the linear map $\operatorname{d} f_{|p} \colon \operatorname{T}_p M \to \operatorname{T}_{f(p)} N$ in the bases $\left(\frac{\partial}{\partial x^i}\right)_{1 \leqslant i \leqslant m}$ of $\operatorname{T}_p M$ and $\left(\frac{\partial}{\partial y^j}\right)_{1 \leqslant j \leqslant n}$ of $\operatorname{T}_{f(p)} N$.
 - Jac(f) is the Jacobian matrix of the map $\psi \circ f \circ \varphi^{-1} \colon \varphi(U) \subseteq \mathbb{R}^m \to \mathbb{R}^n$.
- b) Is the Jacobian matrix of f at p is *intrinsic*, in the sense that it is independent of the choice of the charts φ and ψ ? Is the rank of the Jacobian intrinsic?

Further Exercises

Exercise F1 (Complex projective space)

Define the complex projective space $\mathbb{C}P^m$ analogously to the real projective space.

- a) Show that $\mathbb{C}P^m$ is a smooth manifold of dimension 2m.
- b) Show that $\mathbb{C}P^m$ is compact. Hint: Show that there is a continuous map $S^{2m+1} \to \mathbb{C}P^m$.
- c) How would you define a complex manifold? Show that $\mathbb{C}P^m$ is an example.

Exercise F2 (Connectedness of $GL(n, \mathbb{R})$)

- a) Show that $\det \colon M_n(\mathbb{R}) \to \mathbb{R}$ is a continuous map. Can you say better?
- b) Derive that $GL(n, \mathbb{R})$ is not connected.
- c) (**) Show that $\mathrm{GL}(n,\mathbb{R})$ has two connected components. Hint: Polar decomposition. Start with the case n=2.