Multivariable Calculus and Linear Algebra

Sarang Mohaniraj

Contents

Ι	Mult	tivariable Calculus	1
11	Paran	netric Equations and Polar Coordinates	2
	11.1	Curves Defined by Parametric Equations	2
	11.2	Calculus with Parametric Curves	3
	11.3	Polar Coordinates	9
	11.4	Areas and Lengths in Polar Coordinates	11
	11.5	Conic Sections	13
	11.6	Conic Sections in Polar Coordinates	13
12	Infinit	se Sequences and Series	14
	12.1	Sequences	15
	12.2	Series	15
	12.3	The Integral Test and Estimates of Sums	15
	12.4	The Comparison Tests	15
	12.5	Alternating Series	15
	12.6	Absolute Convergence and the Ratio and Root Tests	15
	12.7	Strategy for Testing Series	15
	12.8	Power Series	15
	12.9	Representation of Functions as Power Series	15
	12.10	Taylor and Maclaurin Series	15
	12.11	The Binomial Series	15
	12.12	Applications of Taylor Polynomials	15
13	Vector	rs and the Geometry of Space	16
	13.1	Three-Dimensional Coordinate Systems	16
	13.2	Vectors	16
	13.3	The Dot Product	16
	13.4	The Cross Product	16
	13.5	Equations of Lines and Planes	16
	13.6	Cylinders and Quadric Surfaces	16
	13.7	Cylindrical and Spherical Coordinates	16
14	Vector	r Functions	17
	14.1	Vector Functions and Space Curves	17
	14.2	Derivatives and Integrals of Vector Functions	17

CONTENTS	ii
----------	----

14.4 Motion in Space: Velocity and Acceleration 15 Partial Derivatives 15.1 Functions of Several Variables 15.2 Limits and Continuity 15.3 Partial Derivatives 15.4 Tangent Planes and Linear Approximations 15.5 The Chain Rule 15.6 Directional Derivatives and the Gradient Vector 15.7 Maximum and Minimum Values 15.8 Lagrange Multipliers 16 Multiple Integrals 16.1 Double Integrals over Rectangles 16.2 Iterated Integrals 16.3 Double Integrals over General Regions 16.4 Double Integrals in Polar Coordinates 16.5 Applications of Double Integrals 16.6 Surface Area 16.7 Triple Integrals in Cylindrical and Spherical Coordinates 16.9 Change of Variables in Multiple Integrals	18 . 18 . 18 . 18 . 18 . 18 . 18 . 18 .
15.1 Functions of Several Variables 15.2 Limits and Continuity 15.3 Partial Derivatives 15.4 Tangent Planes and Linear Approximations 15.5 The Chain Rule 15.6 Directional Derivatives and the Gradient Vector 15.7 Maximum and Minimum Values 15.8 Lagrange Multipliers 16 Multiple Integrals 16.1 Double Integrals over Rectangles 16.2 Iterated Integrals 16.3 Double Integrals over General Regions 16.4 Double Integrals in Polar Coordinates 16.5 Applications of Double Integrals 16.6 Surface Area 16.7 Triple Integrals in Cylindrical and Spherical Coordinates 16.8 Triple Integrals in Cylindrical and Spherical Coordinates	. 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18
15.2 Limits and Continuity	. 18 . 18 . 18 . 18 . 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 19
15.3 Partial Derivatives	. 18 . 18 . 18 . 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 19
15.3 Partial Derivatives	. 18 . 18 . 18 . 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 19
15.4 Tangent Planes and Linear Approximations 15.5 The Chain Rule	. 18 . 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19
15.5 The Chain Rule	. 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19
15.6 Directional Derivatives and the Gradient Vector 15.7 Maximum and Minimum Values 15.8 Lagrange Multipliers 16 Multiple Integrals 16.1 Double Integrals over Rectangles 16.2 Iterated Integrals 16.3 Double Integrals over General Regions 16.4 Double Integrals in Polar Coordinates 16.5 Applications of Double Integrals 16.6 Surface Area 16.7 Triple Integrals 16.8 Triple Integrals in Cylindrical and Spherical Coordinates	. 18 . 18 . 18 . 19 . 19 . 19 . 19 . 19 . 19
15.8 Lagrange Multipliers	. 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 1
16 Multiple Integrals 16.1 Double Integrals over Rectangles	19 . 19 . 19 . 19 . 19 . 19 . 19 . 19 .
16.1 Double Integrals over Rectangles	. 19 . 19 . 19 . 19 . 19 . 19
16.2 Iterated Integrals	. 19. 19. 19. 19. 19. 19
16.3 Double Integrals over General Regions	. 19 . 19 . 19 . 19 . 19
16.4 Double Integrals in Polar Coordinates	. 19. 19. 19. 19
16.5 Applications of Double Integrals	. 19 . 19 . 19
 Surface Area	. 19 . 19
16.7 Triple Integrals	. 19
16.8 Triple Integrals in Cylindrical and Spherical Coordinates $$	
- •	
16.9 Change of Variables in Multiple Integrals	. 19
	. 19
17 Vector Calculus	20
17.1 Vector Fields	. 20
17.2 Line Integrals	. 20
17.3 THe Fundamental Theorem for Line Integrals	. 20
17.4 Green's Theorem	
17.5 Curl and Divergence	
17.6 Parametric Surfaces and Their Areas	
17.7 Surface Integrals	
17.8 Stokes' Theorem	
17.9 The Divergence Theorem	
17.10 Summary	. 20
18 Second-Order Differential Equations	21
18.1 Second-Order Linear Equations	
18.2 Nonhomogenous Linear Equations	
18.3 Applications of Second-Order Differential Equations	
18.4 Series Solutions	. 21
II Linear Algebra	22
1 Vectors	23

CONTENTS	iii
----------	-----

	1.1 1.2 1.3 1.4	The Geometry and Algebra of Vectors Length and Angle: The Dot Product Lines and Planes	23 23 23 23
2	System 2.1 2.2 2.3 2.4 2.5	ns of Linear Equations Introduction to Systems of Linear Equations	24 24 24 24 24 24
3	Matrie 3.1 3.2 3.3 3.4 3.5 3.6 3.7		25 25 25 25 25 25 25 25 25 25
4	4.1 4.2 4.3 4.4 4.5 4.6	values and Eigenvectors Introduction to Eigenvalues and Eigenvectors	26 26 26 26 26 26 26 26
Э	5.1 5.2 5.3 5.4 5.5	Orthogonality in \mathbb{R}^n	27 27 27 27 27 27
6	Vector 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Vector Spaces and Subspaces	28 28 28 28 28 28 28 28
7	Distar	nce and Approximation	29

CONTEN'	ΓS	iv
7.1	Inner Product Spaces	29
7.2	Norms and Distance Function	29
7.3	Least Squares Approximation	29
7.4	The Singular Value Decomposition	29
7.5	Applications	29

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a **parameter** by the equations)

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x,y). As t changes, (x,y) = (f(t),g(t)) changes and traces out a curve C, which is called a **parametric curve**. The direction of the arrows on curve C show the change in the position of the equation as t increases.

We can also restrict t to a finite interval. In general, the curve with parametric equations

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

The Cycloid

Example 11.1.1. A circle with radius r rolls along the x-axis. The curve traced out by a point P on the circumference of the circle is called a **cycloid**. Find parametric equations for the cycloid.

Solution. We will use the angle of rotation θ as the parameter ($\theta = 0$ when P is at the origin).

Suppose the circle has rotated θ radians. Using the figure, the distance it has rolled from the origin is

$$|OT| = arc \ PT = r\theta$$

because P starts at the origin. Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the figure,

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$
$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Definition 11.1.1. Paremetric equations of the cycloid are

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

11.2 Calculus with Parametric Curves

We will mainly solve problems involving tangents, area, arc length, and surface area.

Tangents

In the previous section, we saw that some curves defined by parametric equations x = f(t) and y = g(t) can also be expressed, by eliminating the parameter, in the form y = F(x). If we substitute x = f(t) and y = g(t) in the equation y = F(x), we get

$$g(t) = F(f(t))$$

If g, f, and F are differentiable, the Chain Rule gives

$$g'(t) = F'(f(t))f'(t) = F'(x)f'(t)$$

If $f'(t) \neq 0$, we can solve for F'(x):

Definition 11.2.1. The slope of the tangent to the parametric curve y = F(x) is F'(x).

$$F'(x) = \frac{g'(t)}{f'(t)}$$

This enables us to find tangents to parametric curves without having to eliminate the parameter. We can rewrite the previous equation in an easily remembered form.

Definition 11.2.2. We can use this to find tangents to parametric curves without having to eliminate the parameter.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ if } \frac{dx}{dt} \neq 0$$

The curve has a

- horizontal tangent when $\frac{dy}{dt} = 0$ (provided that $\frac{dx}{dt} \neq 0$)
- vertical tangent when $\frac{dx}{dt} = 0$ (provided that $\frac{dy}{dt} \neq 0$)

This is useful when sketching parametric curves.

Definition 11.2.3. We can also find $\frac{d^2y}{dx^2}$ by replacing y with $\frac{dy}{dx}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Proof. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ considering y(t) and g(t).

1.

Chain rule:
$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} \implies \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad (\implies \text{means "implies"})$$

2.

Chain rule:
$$\frac{d}{dt} \left(\frac{dy}{dx} \right) = \left(\frac{d}{dx} \frac{dy}{dx} \right) \frac{dx}{dt} = \frac{d^2y}{dx^2} \frac{dx}{dt}$$
Substitute:
$$\frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \right)$$
Quotient rule:
$$= \frac{\frac{d^2y}{dt^2} \frac{dx}{dt} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt} \right)^2}$$

Set equation from line 1 and line 3 equal and divide both sides by $\frac{dx}{dt}$

$$\frac{d^2y}{dx^2} = \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2\left(\frac{dx}{dt}\right)}$$
$$= \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

Example 11.2.1. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- 1. Show that C has two tangents at the point (3,0) and find their equations.
- 2. Find the points on C where the tangent is horizontal or vertical.
- 3. Determine where the curve is concave upward or downward.

Solution. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

1. Rewrite $y = t^3 - 3t = t(t^2 - 3) = 0$ when t = 0 or $t = \pm \sqrt{3}$. This indicates that C intersects itself at (3.0).

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t} = \frac{3}{2}\left(t - \frac{1}{t}\right)$$
$$t = \pm\sqrt{3} \rightarrow dy/dx = \pm 6/(2\sqrt{3})$$

so the equations of the tangents at (3,0) are

$$y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$

- 2. C has a horizontal tangent when dy/dx = 0. In other words, when dy/dt = 0 and $dx/dt \neq 0$. $dy/dt = 3t^2 3 = 0$ when $t^2 = 1$ so $t = \pm 1$. This means there are horizontal tangents on C at (1,-2) and (1,2). C has a vertical tangent when dx/dt = 2t = 0, so t = 0. This means C has a vertical tangent at (0,0).
- 3. To determine concavity we calculate the second derivative:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{3}{2}\left(1 + \frac{1}{t^2}\right)}{2t} = \frac{3(t^2 + 1)}{4t^3}$$

The curve is concave upward when t > 0 and concave downward when t < 0.

Area

We already know that area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$. We can apply this to parametric equations using the Substitution Rule for Definite Integrals.

Definition 11.2.4. If the curve C is given by parametric equations x = f(t) and y = g(t) and t increases from α to β ,

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

(Switch α to β if the point on C at β is more left than α .

Example 11.2.2. Find the area under one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

Solution. One arch of the cycloid is given by $0 \le \theta \le 2\pi$. Using the Substitution Rule with $y = r(1 - \cos \theta)$ and $dx = r(1 - \cos \theta)d\theta$, we have

$$A = \int_0^{2\pi} y dx = A = \int_0^{2\pi} r(1 - \cos \theta) r(1 - \cos \theta) d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 d\theta = r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) d\theta$$

$$= r^2 \int_0^{2\pi} \left[1 - 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$$

$$= r^2 \left[\frac{3}{2} \theta - 2\sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{2\pi}$$

$$= r^2 \left(\frac{3}{2} \cdot 2\pi \right) = 3\pi r^2$$

Arc Length

We already know how to find length L of a curve C given in the form y = F(x), $a \le x \le b$.

Definition 11.2.5. If F' is continuous, then

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx}$$

If C can describe the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, where dx/dt = f'(t) > 0. Using the substitution rule, we obtain

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx} = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^{2} \frac{dx}{dt} dt}$$

Since dx/dt > 0, we have

Theorem 11.1. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

This is consistent with the general formula $L = \int ds$ and $(ds^2) = (dx^2) + (dy^2)$.

Proof. Prove the length formula of a parametric curve

$$\overrightarrow{ds} = \overrightarrow{i} dx + \overrightarrow{j} dy$$

$$ds^2 = \overrightarrow{ds} \cdot \overrightarrow{ds} = \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) \cdot \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) = dx^2 + dy^2$$

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$L = \int_{\alpha}^{\beta} ds = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.3. Find the length of the unit circle as (x,y) moves both once and twice around the circle.

Solution. For one traversal around the unit circle,

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

so $dx/dt = -\sin t$ and $dy/dt = \cos t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t} dt$$
$$= \int_0^{2\pi} dt = 2\pi$$

For two traversals around the unit circle,

$$x = \sin 2t$$
 $y = \cos 2t$ $0 \le t \le 2\pi$

so $dx/dt = 2\cos 2t$ and $dy/dt = -2\sin 2t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{4\cos^2 2t + 4\sin^2 2t} \ dt = \int_0^{2\pi} 2 \ dt = 4\pi$$

Surface Area

We can also adapt the surface area formula to a parametric curve.

Definition 11.2.6. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, is rotated about the **x-axis**, where f', g' are continuous and $g(t) \ge 0$, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

If the curve C is rotated about the **y-axis**, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The generic formulas $S = \int 2\pi y \ ds$ for rotation about the x-axis and $S = \int 2\pi x \ ds$ for rotation about the y-axis are still valid, but for parametric curves we use

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.4. Show that the surface area of a sphere of radius r is $4\pi r^2$

Solution. The sphere is obtained by rotating the semicircle

$$x = r \cos t$$
 $y = r \sin t$ $0 \le t \le \pi$

about the x-axis.

$$S = \int_0^{\pi} 2\pi r \sin t \sqrt{(-r\sin t)^2 + (r\cos t)^2} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \sqrt{r^2 (\sin^2 t + \cos^2 t)} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \cdot r dt = 2\pi r^2 \int_0^{\pi} \sin t dt$$

$$= 2\pi r^2 (-\cos t) \Big|_0^{\pi} = 4\pi r^2$$

11.3 Polar Coordinates

In addition to Cartisian coordinates, we can also use a **polar coordinate system**.

Point P is represented by the ordered pair (r, θ) , where r is the distance to the point from the center and θ is the angle from the polar axis to the point.

The points (r, θ) and $(-r, \theta)$ are on the same line and have the same distance |r| from the center but are on opposite sides of the center. Additionally, $(-r, \theta)$ and $(r, \theta + \pi)$ are also on the same line.

This means a complete counterclockwise rotation is given by an angle 2π , so (r,θ) is also represented by

$$(r, \theta + 2n\pi)$$
 and $(-r, \theta + (2n+1)\pi)$

Relationship Between Cartesian and Polar Coordinates

Example 11.3.1. Convert the point $(2, \pi/3)$ from polar to Cartesian coordinates.

Solution.

$$r=2,\;\theta=\pi/3$$

$$x=r\cos\theta=2\cos\frac{\pi}{3}=2\cdot\frac{1}{2}=1$$

$$y=r\sin\theta=2\sin\frac{\pi}{3}=2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$$

So the point is $(1, \sqrt{3})$ in Cartesian coordinates.

Example 11.3.2. Represent the Cartesian coordinates (1, -1) in polar coordinates.

Solution.

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
$$\tan \theta = \frac{y}{x} = -1$$

Since the point (1,-1) lies in the fourth quadrant, we can choose $\theta = -pi/4$ or $\theta = 7pi/4$. So the possible answers are either $(\sqrt{2}, -\pi/4 \text{ or } (\sqrt{2}, 7\pi/4.$

Polar Curves

The graph of a polar equation $r = f(\theta)$, or $F(r, \theta) = 0$, consists of all of the points where (r, θ) satisfies the equation.

Tangents to Polar Curves

To find a tangent line to a polar curce $r = f(\theta)$, we regard θ as a parameter and write the parametric equations as

$$x = r\cos\theta = f(\theta)\cos\theta$$
 $y = r\sin\theta = f(\theta)\sin\theta$

So

Definition 11.3.1.

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dy}{d\theta}sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

- horizontal tangent when $\frac{dy}{d\theta} = 0$ (provided that $\frac{dx}{d\theta} \neq 0$)
- vertical tangent when $\frac{dx}{d\theta} = 0$ (provided that $\frac{dy}{d\theta} \neq 0$)

Note tangent lines at the pole have r=0 and the slope of the tangent simplifies to

$$\frac{dy}{dx} = \tan\theta \text{ if } \frac{dr}{d\theta} \neq 0$$

Example 11.3.3. For the cardiod $r = 1 + \sin \theta$, find the slope of the tangent line when r=3

Solution.

$$r = 1 + \sin \theta$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta} = \frac{\cos \theta \sin \theta + (1 + \sin \theta) \cos \theta}{\cos \theta \cos \theta - (1 + \sin \theta) \sin \theta}$$

$$= \frac{\cos \theta (1 + 2 \sin \theta)}{1 - 2 \sin^2 \theta - \sin \theta} = \frac{\cos \theta (1 + 2 \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}$$

The slope of the tangent where $\theta = \pi/3$ is

$$\frac{dy}{dx} \Big|_{\theta=\pi/3} = \frac{\cos(\pi/3)(1+2\sin(\pi/3))}{(1+\sin(\pi/3))(1-\sin(\pi/3))}$$

$$= \frac{\frac{1}{2}(1+\sqrt{3})}{(1+\sqrt{3}/2)(1-\sqrt{3})} = \frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}$$

$$= \frac{1+\sqrt{3}}{-1-\sqrt{3}} = -1$$

NOTE Instead of memorizing the equation, we can instead use the same method we used to derive it.

$$x = r\cos\theta = (1 + \sin\theta)\cos\theta = \cos\theta + \frac{1}{2}\sin 2\theta$$

$$y = r\sin\theta = (1 + \sin\theta)\sin\theta = \sin\theta + \sin^2\theta$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta + \cos 2\theta} = \frac{\cos\theta + \sin 2\theta}{-\sin\theta + \cos 2\theta}$$

This is equivalent to the previous equation.

11.4 Areas and Lengths in Polar Coordinates

Area

We can determine the formula for the area of a region whose boundary is given by a polar equation by taking the limit of a Riemann Sum starting with the formula for the area of a sector of a circle $A = \frac{1}{2}r^2\theta$.

Definition 11.4.1. The formula for the area A of the polar region \mathcal{R} is

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

with the understanding that $r = f(\theta)$.

Example 11.4.1. Find the area enclosed by one loop of the four-leaved rose $r = 2\cos 2\theta$.

Solution. The right loop rotates from $\theta = -\pi/4$ to $\theta = \pi/4$.

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos^2 2\theta \ d\theta$$
$$= \int_0^{\pi/4} \cos^2 2\theta \ d\theta = \int_0^{\pi/4} \frac{1}{2} (1 + \cos 4\theta) \ d\theta$$
$$= \frac{1}{2} [\theta + \frac{1}{4} \sin 4\theta] = \pi/8$$

We can also adapt the formula to find the area of a region bounded by two polar curves.

Definition 11.4.2. Let \mathcal{R} be a region that is bounded by curves with polar equations $r = f(\theta)$, $r = g(\theta)$, $\theta = a$, and $\theta = b$, where $f(\theta) \geq g(\theta) \geq 0$ and $0 < b - a \leq 2\pi$. The area A of \mathcal{R} is found by subtracting the area inside $r = g(\theta)$ from the area inside $r = f(\theta)$, so

$$A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta - \int_{a}^{b} \frac{1}{2} [g(\theta)]^{2} d\theta$$
$$= \int_{a}^{b} \frac{1}{2} ([f(\theta)]^{2} - [g(\theta)]^{2}) d\theta$$

Arc Length

To find the length of a polar curve $r=f(\theta),\ a\leq \theta\leq b,$ we regard θ as a parameter and write the parametric equations of the curve as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

Using the projecut Rule and differentiating with respect to θ , we obtain

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

so, using $\cos^2 \theta + \sin^2 \theta = 1$, we have

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta$$
$$+ \left(\frac{dr}{d\theta}\right)^2 \sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\cos^2\theta$$
$$= \left(\frac{dr}{d\theta}\right)^2 + r^2$$

Assuming that f' is continuous, we can use the theorem from 11.2 about the arc length of a curve defined by parametric equations to write the arc length as

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

Definition 11.4.3. The length of a curve with polar equation $r = f(\theta), \ a \le \theta \le b$, is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

Example 11.4.2. Find the arc length of the cardiod $r = 1 + \sin \theta$.

Solution. The full length of the cardiod is given by the parameter interval $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2+2\sin\theta} d\theta = 8 \text{ (by rationalizing the integrand by } \sqrt{2-2\sin\theta})$$

11.5 Conic Sections

11.6 Conic Sections in Polar Coordinates

Infinite Sequences and Series

- 12.1 Sequences
- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

- 15.1 Functions of Several Variables
- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- 17.10 Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions

Part II Linear Algebra

Vectors

- 1.1 The Geometry and Algebra of Vectors
- 1.2 Length and Angle: The Dot Product
- 1.3 Lines and Planes
- 1.4 Code Vectors and Modular Systems

Systems of Linear Equations

- 2.1 Introduction to Systems of Linear Equations
- 2.2 Direct Methods for Solving Linear Systems
- 2.3 Spanning Sets and Linear Independence
- 2.4 Applications
- 2.5 Iterative Method for Solving Linear Systems

Matrices

- 3.1 Matrix Operations
- 3.2 Matrix Algebra
- 3.3 The Inverse of a Matrix
- 3.4 The LU Factorization
- 3.5 Subspaces, Basis, Dimension, and Rank
- 3.6 Introduction to Linear Transformations
- 3.7 Applications

Eigenvalues and Eigenvectors

- 4.1 Introduction to Eigenvalues and Eigenvectors
- 4.2 Determinants
- 4.3 Eigenvalues and Eigenvectors of $n \times n$ Matrices
- 4.4 Similarity and Diagonalization
- 4.5 Iterative Methods for Computing Eigenvalues
- 4.6 Applications and the Perron-Frobenius Theorem

Orthogonality

- 5.1 Orthogonality in \mathbb{R}^n
- 5.2 Orthogonal Complements and Orthogonal Projections
- 5.3 The Gram-Schmidt Process and the QR Factorization
- 5.4 Orthogonal Diagonalization of Symmetric Matrices
- 5.5 Applications

Vector Spaces

- 6.1 Vector Spaces and Subspaces
- 6.2 Linear Independence, Basis, and Dimension
- 6.3 Change of Basis
- 6.4 Linear Transformation
- 6.5 The Kernel and Range of a Linear Transformation
- 6.6 The Matrix of a Linear Transformation
- 6.7 Applications

Distance and Approximation

- 7.1 Inner Product Spaces
- 7.2 Norms and Distance Function
- 7.3 Least Squares Approximation
- 7.4 The Singular Value Decomposition
- 7.5 Applications