INTRODUCTION TO COMPUTATIONAL LOGIC HOMEWORK 4 DUE DATE: DECEMBER 2, 2020

Please use the CoQ file $hw2-2.v^1$ to show the following instance of the Chinese remainder theorem:

Theorem 1. Let $m, n \in \mathbb{Z}$ and m, n be relatively prime. For every $a, b \in \mathbb{Z}$, there is an $x \in \mathbb{Z}$ such that

$$\begin{array}{ccc} x & \equiv & a & (m) \\ x & \equiv & b & (n). \end{array}$$

Hints:

- Bezout's coefficients in the Coq standard library Znumtheory² will be useful.
- A useful on-line information is Software Foundations³.
- Another useful on-line information is Certified Programming with Dependent Types⁴.
- Send me emails if you have any question.

¹http://www.iis.sinica.edu.tw/~bywang/courses/comp-logic/hw2-2.v

²https://coq.inria.fr/distrib/current/stdlib/

 $^{^3}$ https://softwarefoundations.cis.upenn.edu/current/index.html

⁴http://adam.chlipala.net/cpdt/html/toc.html