Fundamentos de Estadística Bayesiana

Juan Carlos Martínez-Ovando

ITAM

[Mini] Taller de Métodos Numéricos y Estadísticos en Cosmología 2017 Cinvestav, CDMX 6 de abril de 2017

1. Incertidumbre y aleatoriedad

1.1. Consideraciones

Incertidumbre ↔ Desconocimiento

Datos

El proceso que genera los datos

$$\{x_1,\ldots,x_n\},\$$

es desconocido.

Aleatoriedad intrínseca

Nuestro desconocimiento acerca de los datos lo manifestamos suponiendo aleatoriedad intrínseca empleando un modelo

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n).$$

1.1. Consideraciones

Incertidumbre ↔ Desconocimiento

Datos

El proceso que genera los ${f datos}$

$$\{x_1,\ldots,x_n\},\$$

es desconocido.

Aleatoriedad intrínseca

Nuestro desconocimiento acerca de los datos lo manifestamos suponiendo aleatoriedad intrínseca empleando un modelo

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$

1.1. Consideraciones

Incertidumbre Desconocimiento

Datos

El proceso que genera los ${f datos}$

$$\{x_1,\ldots,x_n\},\$$

es desconocido.

Aleatoriedad intrínseca

Nuestro desconocimiento acerca de los datos lo manifestamos suponiendo aleatoriedad intrínseca empleando un modelo

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n).$$

1.2. Dependencia

Es un supuesto atribuible al modelo \mathbb{P} y no a los datos.

Independencia

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{j=1}^n \mathbb{P}(X_j \le x_j).$$

Intercambiabilidad

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_{\sigma(1)} \le x_1, \dots, X_{\sigma(n)} \le x_n),$$

para toda permutaciór

$$\{\sigma(1),\ldots,\sigma(n)\}\ \mathsf{de}\ \{1,\ldots,n\}$$

1.2. Dependencia

Es un supuesto atribuible al modelo \mathbb{P} y no a los datos.

Independencia

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{j=1}^n \mathbb{P}(X_j \le x_j).$$

Intercambiabilidad

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_{\sigma(1)} \le x_1, \dots, X_{\sigma(n)} \le x_n),$$

para toda permutación

$$\{\sigma(1),\ldots,\sigma(n)\}\ \mathsf{de}\ \{1,\ldots,n\}$$

1.2. Dependencia

Es un supuesto atribuible al modelo \mathbb{P} y no a los datos.

Independencia

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{j=1}^n \mathbb{P}(X_j \le x_j).$$

Intercambiabilidad

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_{\sigma(1)} \le x_1, \dots, X_{\sigma(n)} \le x_n),$$

para toda permutación

$$\{\sigma(1),\ldots,\sigma(n)\}\ \mathsf{de}\ \{1,\ldots,n\}.$$

2. Subjetividad y modelación

2.1. Subjetividad

Intercambiabilidad supone que el orden en el cual los datos son recolectados/observados es indiferente.

Teorema de representación

Atribuible a Bruno de Finetti, bajo intercambiabilidad

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \int_{\Theta} \prod_{i=1}^n F_X(x_i | \theta) \Pi(d\theta)$$

- $ightharpoonup F_X(x_i|\theta)$ es una distribución de probabilidades
- $m{\theta}$ es un objeto estocástico no observable común a todos los datos (a.k.a parámetro)
- $lackbox \Pi(heta)$ es una medida de probabilidad

2.1. Subjetividad

Intercambiabilidad supone que el orden en el cual los datos son recolectados/observados es indiferente.

Teorema de representación

Atribuible a Bruno de Finetti, bajo intercambiabilidad

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \int_{\Theta} \prod_{i=1}^n F_X(x_i | \theta) \Pi(d\theta)$$

- $ightharpoonup F_X(x_i|\theta)$ es una distribución de probabilidades
- $m{\theta}$ es un objeto estocástico no observable común a todos los datos (a.k.a. parámetro)
- $ightharpoonup \Pi(\theta)$ es una medida de probabilidad

2.2. Juicio inicial

Teorema de representación

El Teorema de Representación es de existencia más no de unicidad

Probabilidades subjetivas

- La aleatoriedad intrínseca no se interpreta como un límite de frecuencias
- Sino, aleatoriedad intrínseca es un juicio individual subjetivo (en función de nuestro conocimiento/desconocimiento)

Distribución inicial

- La distribución $\Pi(\theta)$ se interpreta como el juicio o creencia individual acerca de modelo antes de observar los datos.
- ▶ Aunque $\Pi(\theta)$ esta definida sobre Θ , en realidad representa una medida de probabilidad sobre la colección de modelos $F(x|\theta)$.

2.2. Juicio inicial

Teorema de representación

El Teorema de Representación es de existencia más no de unicidad

Probabilidades subjetivas

- La aleatoriedad intrínseca no se interpreta como un límite de frecuencias
- Sino, aleatoriedad intrínseca es un juicio individual subjetivo (en función de nuestro conocimiento/desconocimiento)

Distribución inicial

- La distribución $\Pi(\theta)$ se interpreta como el juicio o creencia individual acerca de modelo antes de observar los datos.
- ▶ Aunque $\Pi(\theta)$ esta definida sobre Θ , en realidad representa una medida de probabilidad sobre la colección de modelos $F(x|\theta)$.

2.2. Juicio inicial

Teorema de representación

El Teorema de Representación es de existencia más no de unicidad

Probabilidades subjetivas

- La aleatoriedad intrínseca no se interpreta como un límite de frecuencias
- Sino, aleatoriedad intrínseca es un juicio individual subjetivo (en función de nuestro conocimiento/desconocimiento)

Distribución inicial

- La distribución $\Pi(\theta)$ se interpreta como el juicio o creencia individual acerca del modelo antes de observar los datos.
- ▶ Aunque $\Pi(\theta)$ esta definida sobre Θ , en realidad representa una medida de probabilidad sobre la colección de modelos $F(x|\theta)$.

Variables observables

Supongamos que los datos son tales que

$$x_i = \begin{cases} 1 & \text{con base en la ocurrencia de un evento} \\ 0 & \text{no ocurrencia del evento} \end{cases}$$

Desconocimiento/aleatoriedad

Desconocer el mecanismo generador de x_i s induce aleatoriedad intrínseca

$$f(x_i = j) = \begin{cases} \theta & \text{si } j = 1\\ (1 - \theta) & \text{si } j = 0 \end{cases}$$

 $con 0 \le \theta \le 1.$

Distribución Bernoulli

Lo anterior es equivalente a suponer que los datos son generados con una distribución Bernoulli, i.e.

$$x|\theta \sim F(x|\theta) = Ber(x_i|\theta)$$

Variables observables

Supongamos que los datos son tales que

$$x_i = \begin{cases} 1 & \text{con base en la ocurrencia de un evento} \\ 0 & \text{no ocurrencia del evento} \end{cases}$$

Desconocimiento/aleatoriedad

Desconocer el mecanismo generador de x_i s induce aleatoriedad intrínseca

$$f(x_i = j) = \begin{cases} \theta & \text{si } j = 1\\ (1 - \theta) & \text{si } j = 0 \end{cases}$$

con $0 \le \theta \le 1$.

Distribución Bernoulli

Lo anterior es equivalente a suponer que los datos son generados con una distribución Bernoulli, i.e.

$$x|\theta \sim F(x|\theta) = Ber(x_i|\theta)$$

Variables observables

Supongamos que los datos son tales que

$$x_i = \begin{cases} 1 & \text{con base en la ocurrencia de un evento} \\ 0 & \text{no ocurrencia del evento} \end{cases}$$

Desconocimiento/aleatoriedad

Desconocer el mecanismo generador de x_i s induce aleatoriedad intrínseca

$$f(x_i = j) = \begin{cases} \theta & \text{si } j = 1\\ (1 - \theta) & \text{si } j = 0 \end{cases}$$

 $con 0 < \theta < 1.$

Distribución Bernoulli

Lo anterior es equivalente a suponer que los datos son generados con una distribución Bernoulli, i.e.

$$x|\theta \sim F(x|\theta) = Ber(x_i|\theta).$$

Configuración

Cada valor específico de θ en (0,1) define un modelo de probabilidad particular, por ejemplo:

```
\begin{array}{lll} \text{M1} & Ber(x|0,1) \\ \text{M2} & Ber(x|0,33) \\ \text{M3} & Ber(x|0,999) \\ \text{M4} & Ber(x|0,001) \\ \text{M5} & \text{etc.} \end{array}
```

Juicio inicial

Definido como la creencia acerca de la plausibilidad de cada configuración para describir los datos que estan por observarse.

Posibles alternativas

```
\begin{array}{ll} \blacktriangleright & \Pi_1(\theta) = \sum_{k=1}^K \alpha_k \delta_{\theta_k}(\theta) \text{ para un conjunto de } \theta_k \text{s en } (0,1] \\ \blacktriangleright & \Pi_2(\theta) = U(\theta|0,1) \\ \blacktriangleright & \Pi_3(\theta) = Be(\theta|a,b) \end{array}
```

entre muchas otras,

Configuración

Cada valor específico de θ en (0,1) define un modelo de probabilidad particular, por ejemplo:

```
\begin{array}{lll} \text{M1} & Ber(x|0,1) \\ \text{M2} & Ber(x|0,33) \\ \text{M3} & Ber(x|0,999) \\ \text{M4} & Ber(x|0,001) \\ \text{M5} & \text{etc.} \end{array}
```

Juicio inicial

Definido como la creencia acerca de la plausibilidad de cada configuración para describir los datos que estan por observarse.

Posibles alternativas:

$$\blacktriangleright \ \Pi_1(\theta) = \sum_{k=1}^K \alpha_k \delta_{\theta_k}(\theta)$$
 para un conjunto de θ_k s en $(0,1)$

$$\Pi_2(\theta) = U(\theta|0,1)$$

$$\Pi_3(\theta) = Be(\theta|a,b)$$

entre muchas otras,

Figura: Una posible distribución $\Pi(\theta)$

Reflexión

Recordemos:

- ightharpoonup Los datos x_i s son observables
- La variable (parámetro) θ no es observable.
- $ightharpoonup \Pi(\theta)$ no es única, sino subjetiva

Modelación

Así, el modelo subjetivo es una medida de probabilidad conjunta de observables y no observables,

$$\mathbb{P}(x_1, \dots, x_n, \theta) = F(x_1, \dots, x_n | \theta) \times \Pi(\theta)$$
$$= \prod_{i=1}^n F(x_i | \theta) \times \Pi(\theta)$$

Reflexión

Recordemos:

- \triangleright Los datos x_i s son observables
- La variable (parámetro) θ no es observable.
- $ightharpoonup \Pi(\theta)$ no es única, sino subjetiva

Modelación

Así, el modelo subjetivo es una medida de probabilidad conjunta de observables y no observables,

$$\mathbb{P}(x_1, \dots, x_n, \theta) = F(x_1, \dots, x_n | \theta) \times \Pi(\theta)$$
$$= \prod_{i=1}^n F(x_i | \theta) \times \Pi(\theta)$$

3. Aprendizaje y prediccón

3.1. Aprendizaje

Aprendizaje bayesiano/inferencia

El aprendizaje bayesiano, con base en un conjunto de datos, x_i s consiste en la actualización de $\Pi(\theta)$ condicional en los datos, i.e.

$$\Pi(\theta|x_1,\ldots,x_n) = \frac{F(x_1,\ldots,x_n|\theta)\Pi(\theta)}{\mathbb{P}(x_1,\ldots,x_n)}$$

donde

$$\mathbb{P}(x_1,\ldots,x_n) = \int_{\Theta} F(x_1,\ldots,x_n|\theta)\Pi(d\theta)$$

Las ecuaciones anteriores se refieren al Teorema de Bayes de probabilidades inversas.

Comentario

- El denominador en $\Pi(\theta|x_1,\ldots,x_n)$, i.e. $\mathbb{P}(x_1,\ldots,x_n)$ se conoce como la constante de normalización de la distribución actualizada para θ
- Generalmente, la constante de normalización no puede obtenerse de manera analítica cerrada, pero puede aproximarse empleando métodos numéricos

3.1. Aprendizaje

Aprendizaje bayesiano/inferencia

El aprendizaje bayesiano, con base en un conjunto de datos, x_i s consiste en la actualización de $\Pi(\theta)$ condicional en los datos, i.e.

$$\Pi(\theta|x_1,\ldots,x_n) = \frac{F(x_1,\ldots,x_n|\theta)\Pi(\theta)}{\mathbb{P}(x_1,\ldots,x_n)}$$

donde

$$\mathbb{P}(x_1,\ldots,x_n) = \int_{\Theta} F(x_1,\ldots,x_n|\theta) \Pi(d\theta)$$

Las ecuaciones anteriores se refieren al Teorema de Bayes de probabilidades inversas.

Comentario

- El denominador en $\Pi(\theta|x_1,\ldots,x_n)$, i.e. $\mathbb{P}(x_1,\ldots,x_n)$ se conoce como la constante de normalización de la distribución actualizada para θ
- Generalmente, la constante de normalización no puede obtenerse de manera analítica cerrada, pero puede aproximarse empleando métodos numéricos.

Especificación

Continuemos con el modelo Bernoulli-beta del ejemplo 2.3.

$$f(x_1,...,x_n|\theta) = \prod_{i=1}^n Ber(x_i|\theta)$$

 $\propto \theta^{\#\{x_i:x_i=1\}} (1-\theta)^{\#\{x_i:x_i=0\}}$

У

$$\begin{array}{rcl} \pi(\theta) & = & Be(\theta|a,b) \\ & \propto & \theta^{a-1}(1-\theta)^{b-1}\mathbb{I}_{(0,1)}(\theta). \end{array}$$

Aprendizaje bayesiano

Así, la distribución actualizada para θ es,

$$\pi(\theta|x_1,\ldots,x_n) \propto \theta^{\#\{x_i:x_i=1\}+a-1} (1-\theta)^{\#\{x_i:x_i=0\}+b-1} \mathbb{I}_{(0,1)}(\theta)$$

Especificación

Continuemos con el modelo Bernoulli-beta del ejemplo 2.3.

$$f(x_1,...,x_n|\theta) = \prod_{i=1}^n Ber(x_i|\theta)$$

 $\propto \theta^{\#\{x_i:x_i=1\}} (1-\theta)^{\#\{x_i:x_i=0\}}$

У

$$\pi(\theta) = Be(\theta|a,b)$$

$$\propto \theta^{a-1} (1-\theta)^{b-1} \mathbb{I}_{(0,1)}(\theta).$$

Aprendizaje bayesiano

Así, la distribución actualizada para θ es,

$$\pi(\theta|x_1,\ldots,x_n) \quad \propto \quad \theta^{\#\{x_i:x_i=1\}+a-1} (1-\theta)^{\#\{x_i:x_i=0\}+b-1} \mathbb{I}_{(0,1)}(\theta).$$

Figura: Distribución $\Pi(\theta)$ actualizada con base en los **datos**

3.3. Predicción

Reflexión

Predicción es el objetivo último cuando se define un modelo estocástico.

Se anticipan posibles resultados de eventos observables con base en información pasada.

Distribución predictiva

La previsión de posibles esenarios no observados aun se produce con

$$\mathbb{P}(x^f|x_1,\dots,x_n) = \int_{\Theta} \underbrace{F(x^f|\theta)}_{\text{Intrinseca}} \underbrace{\Pi(d\theta|x_1,\dots,x_n)}_{\text{Enistémica}}.$$

Cuando la constante de normalización de $\Pi(\theta|x_1,\ldots,x_n)$ no se puede calcular de manera analítica cerrada, la distribución predictiva puede aproximarse mediante el método de Monte Carlos, donde

$$\widehat{\mathbb{P}}(x^f|x_1,\ldots,x_n) = \frac{1}{M} \sum_{m=1}^M F(x^f|\theta^{(m)}).$$

3.3. Predicción

Reflexión

Predicción es el objetivo último cuando se define un modelo estocástico.

Se anticipan posibles resultados de eventos observables con base en información pasada..

Distribución predictiva

La previsión de posibles esenarios no observados aun se produce con

$$\mathbb{P}(x^f|x_1,\dots,x_n) = \int_{\Theta} \underbrace{F(x^f|\theta)}_{\text{Intrinseca}} \underbrace{\Pi(d\theta|x_1,\dots,x_n)}_{\text{Epistémica}}.$$

Cuando la constante de normalización de $\Pi(\theta|x_1,\ldots,x_n)$ no se puede calcular de manera analítica cerrada, la distribución predictiva puede aproximarse mediante el método de Monte Carlos, donde

$$\widehat{\mathbb{P}}(x^f|x_1,\ldots,x_n) = \frac{1}{M} \sum_{m=1}^M F(x^f|\theta^{(m)}).$$

3.4. Resultados importantes

Aspectos importantes

Conforme el conjunto de datos es más grande, la incertidumbre epistémica se reduce.

En el caso límite, la incertidumbre epistémica se desvance, i.e.

$$\lim_{n \to \infty} \pi(\theta | x_1, \dots, x_n) = \delta_{\{\theta^*\}}(\theta), \tag{1}$$

donde

 $heta^*$ es el "verdadero"valor de heta.

Conciliación de opiniones

Se ha demostrado que aun en el caso donde dos individuos asignan distribuciones iniciales distintas, digamos Π_1 y Π_2 , el proceso de aprendizaje de ambos converge con el tamaño de los datos, i.e.

$$\lim_{n \to \infty} \pi_1(\theta | x_1, \dots, x_n) = \lim_{n \to \infty} \pi_2(\theta | x_1, \dots, x_n)$$
 (2)

y ambos convergen al "verdadero" valor de θ^* .

3.4. Resultados importantes

Aspectos importantes

Conforme el conjunto de datos es más grande, la incertidumbre epistémica se reduce.

En el caso límite, la incertidumbre epistémica se desvance, i.e.

$$\lim_{n \to \infty} \pi(\theta | x_1, \dots, x_n) = \delta_{\{\theta^*\}}(\theta), \tag{1}$$

donde

 θ^* es el "verdadero" valor de θ .

Conciliación de opiniones

Se ha demostrado que aun en el caso donde dos individuos asignan distribuciones iniciales distintas, digamos Π_1 y Π_2 , el proceso de aprendizaje de ambos converge con el tamaño de los datos, i.e.

$$\lim_{n \to \infty} \pi_1(\theta | x_1, \dots, x_n) = \lim_{n \to \infty} \pi_2(\theta | x_1, \dots, x_n)$$
 (2)

y ambos convergen al "verdadero" valor de θ^* .

3.5. Inferencia

Inferencia bayesiana

Siendo que toda la información contenida en los datos se resume en

$$\Pi(\theta|x_1,\ldots,x_n),$$

cualquier problema inferencial puede derivarse de esta distribución, e.g.

- Estimación puntual.- Media, moda o mediana de la distribución.
- Estimación por intervalos.- Regiones inter-cuantílicas de la distribución.
- Pruebas de hipótesis.- Con probabilidades cuantificadas respecto a la distribución.

3.5. Inferencia

Figura: Distribución final de θ en el modelo Bernoulli-beta

4. Herramientas computacionales

Definición

Para un modelo de probabilididad donde

$$x_i \sim F(x_i|\theta),$$

tal que la distribución puede expresarse como

$$F(x_i|\theta) = \int F(x_i|\gamma)G(d\gamma|\theta),$$

de define γ como una variable latente para el dato x_i .

Interpretación

- Las variables latentes con variables no observables que descomponen el modelo en partes analíticamente manejables.
- En particular, se emplean para simplificar la distribución conjunta (verosimilitud) de un conjunto de datos.
- Se emplean tanto en el paradigma bayesiano como frecuentista de aprendizaje.

Definición

Para un modelo de probabilididad donde

$$x_i \sim F(x_i|\theta),$$

tal que la distribución puede expresarse como

$$F(x_i|\theta) = \int F(x_i|\gamma)G(d\gamma|\theta),$$

de define γ como una variable latente para el dato x_i .

Interpretación

- Las variables latentes con variables no observables que descomponen el modelo en partes analíticamente manejables.
- En particular, se emplean para simplificar la distribución conjunta (verosimilitud) de un conjunto de datos.
- Se emplean tanto en el paradigma bayesiano como frecuentista de aprendizaje.

Ejemplo: Modelo tipo mezcla

Para un modelo de probabilidad donde

$$x_i \sim F(x_i|\theta) = \sum_{j=1}^{J} w_j N(x_i|\mu_k, 1),$$

donde $w_j \geq 1$ y $\sum_{j=1}^{J} w_j = 1$.

Verosimilitud

El aprendizaje con base en un conjunto de datos, x_1, \ldots, x_n , descansa en la funcion de verosimilitud,

$$lik\left(\left\{w_{j}, \mu_{j}\right\}_{j=1}^{J} | \left\{x_{i}\right\}_{i=1}^{n}\right) = \prod_{i=1}^{n} \sum_{j=1}^{J} w_{j} N(x_{i} | \mu_{j}, 1).$$

la cual resulta intratable

Ejemplo: Modelo tipo mezcla

Para un modelo de probabilidad donde

$$x_i \sim F(x_i|\theta) = \sum_{j=1}^{J} w_j N(x_i|\mu_k, 1),$$

donde $w_j \geq 1$ y $\sum_{j=1}^J w_j = 1$.

Verosimilitud

El aprendizaje con base en un conjunto de datos, x_1,\dots,x_n , descansa en la funcion de verosimilitud,

$$lik\left(\{w_j,\mu_j\}_{j=1}^J|\{x_i\}_{i=1}^n\right) = \prod_{i=1}^n \sum_{j=1}^J w_j N(x_i|\mu_j,1),$$

la cual resulta intratable.

Ejemplo: Modelo tipo mezcla

Introduciendo una variable latente

$$z_i = j$$
 con $\mathbb{P}(z_i = j) = w_j$,

tenemos que

$$x_i|z_i \sim N(x_i|\mu_j,1).$$

integrando z_i recuperamos el modelo original de mezclas.

Verosimilitud extendida

Introduciendo las variables latentes en el proceso de aprendizaje, definimos la siguiente extensión de verosimilitud,

$$lik\left(\{w_j, \mu_j\}_{j=1}^J, \{z_i\}_{i=1}^n | \{x_i\}_{i=1}^n\right) = \prod_{i=1}^n \mathbb{I}(z_i = j) w_j N(x_i | \mu_j, 1),$$

y ahora aprendemos de los parámetros y variables latentes simultáneamente.

Ejemplo: Modelo tipo mezcla

Introduciendo una variable latente

$$z_i = j$$
 con $\mathbb{P}(z_i = j) = w_j$,

tenemos que

$$x_i|z_i \sim N(x_i|\mu_j,1).$$

integrando z_i recuperamos el modelo original de mezclas.

Verosimilitud extendida

Introduciendo las variables latentes en el proceso de aprendizaje, definimos la siguiente extensión de verosimilitud,

$$lik\left(\{w_j, \mu_j\}_{j=1}^J, \{z_i\}_{i=1}^n | \{x_i\}_{i=1}^n\right) = \prod_{i=1}^n \mathbb{I}(z_i = j) w_j N(x_i | \mu_j, 1),$$

y ahora aprendemos de los parámetros y variables latentes simultáneamente.

Racionalidad

Constantes de normalización de la distribución final de parámetros y variables latentes usualmete no se pueden calcular analíticamente.

Idea

Usualmente, se generan muestras aleatorias de la distribución final, y características de interés se aproximan empleando el método de Monte Carlo.

Ejemplo: Mezcla de Modelos

Se generan

$$\left\{ \left(w_{j}^{(m)}, \mu_{j}^{(m)}\right)_{j=1}^{J}, \left(z_{i}^{(m)}\right)_{i=1}^{n}\right\}_{m=1}^{M}$$

para un M relativamente "grande"

Estas muestras serán presumiblemente obtenidas de la distribución final de interés

Racionalidad

Constantes de normalización de la distribución final de parámetros y variables latentes usualmete no se pueden calcular analíticamente.

Idea

Usualmente, se generan muestras aleatorias de la distribución final, y características de interés se aproximan empleando el método de Monte Carlo.

Ejemplo: Mezcla de Modelos

Se generan

$$\left\{ \left(w_{j}^{(m)}, \mu_{j}^{(m)}\right)_{j=1}^{J}, \left(z_{i}^{(m)}\right)_{i=1}^{n}\right\}_{m=1}^{M}$$

para un M relativamente "grande"

Estas muestras serán presumiblemente obtenidas de la distribución final de interés

Racionalidad

Constantes de normalización de la distribución final de parámetros y variables latentes usualmete no se pueden calcular analíticamente.

Idea

Usualmente, se generan muestras aleatorias de la distribución final, y características de interés se aproximan empleando el método de Monte Carlo.

Ejemplo: Mezcla de Modelos

Se generan

$$\left\{ \left(w_j^{(m)}, \mu_j^{(m)} \right)_{j=1}^J, \left(z_i^{(m)} \right)_{i=1}^n \right\}_{m=1}^M$$

para un M relativamente "grande".

Estas muestras serán presumiblemente obtenidas de la distribución final de interés.

Algorimos

- Métodos de aceptació y rechazo (muestreo por importancia)
- Métodos de Monte Carlo vía Cadenas de Markov
 - Metropolis-Hastings
 - Gibbs sampler
- Métodos de Monte Carlo secuenciales
- Métodos variacionales
- Slice-sampler
- Métodos bayesianos computacionales aproximados (ABC)

Ejercicios

Veamos algunos ejemplos en R...

Algorimos

- Métodos de aceptació y rechazo (muestreo por importancia)
- Métodos de Monte Carlo vía Cadenas de Markov
 - Metropolis-Hastings
 - Gibbs sampler
- Métodos de Monte Carlo secuenciales
- Métodos variacionales
- Slice-sampler
- Métodos bayesianos computacionales aproximados (ABC)

Ejercicios

Veamos algunos ejemplos en R...