

Modul: Telekomunikacije i informatika

Višemedijske usluge

Sustavi Peer-to-Peer (P2P)

Ak.god. 2007./2008.

Sadržaj predavanja

- Centralizirani i decentralizirani distribuirani sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Centralizirani distribuirani sustavi (1)

Primjer - Web tražilice

- npr. Google
- 91,000,000 upita po danu
- oko 2,480,000,000 indeksiranih dokumenata

odgovora

Google Cluster: 15000 poslužitelja (podatak iz 2003)

Centralizirani distribuirani sustavi (2)

Model klijent-poslužitelj

- centralizirani koordinator koji prihvaća sve korisničke upite
- indeks dokumenata je raspodijeljen, pretraživanje je raspodijeljeno u grozdu računala (*cluster*), no organizacija pretraživanja je centralizirana
- prednosti
 - efikasnost, kratko vrijeme odgovora
 - globalno rangiranje...
- nedostaci
 - cijena (infrastruktura, administracija...)

Decentralizirani distribuirani sustavi (1)

Napster: 100 poslužitelja

- Primjer aplikacija za razmjenu mp3 datoteka
 - npr. Napster 1,570,000 korisnika 2,000,000 mp3 datoteka (u prosjeku 220 datoteka po korisniku) (podaci za 02/2001) Peer Napster Server <title> "brick in the wall" <artist> "pink floyd" eer? <size> "1 MB" <category> "rack Peer Peer **Prijenos** Odgovor datoteke f.mp3 Peer f.mp3 se s peera X nalazi na

VU, ak.g. 2007./2008.

05.06.2008.

peeru X

Decentralizirani distribuirani sustavi (2)

- pretraživanje je i dalje centralizirano
 - postoji centralizirani indeks s podacima o lokaciji datoteka
- pohrana i download datoteke je decentraliziran
- broj potrebnih poslužitelja je znatno manji jer se resursno zahtjevne operacije izvode na decentralizirani način
- prednosti
 - dijeljenje resursa, svaki čvor (peer) "plaća" sudjelovanje u mreži vlastitim resursima (disk, mreža, datoteke)
 - znatno manja cijena infrastrukture i održavanja
- nedostaci
 - centralizirano pretraživanje i jedinstvena točka ispada

Decentralizirani distribuirani sustavi (3)

- Primjer: aplikacija za razmjenu datoteka
 - npr. Gnutella

Decentralizirani distribuirani sustavi (4)

- Gnutella je primjer potpuno decentraliziranog sustava
 - svi čvorovi sudjeluju u procesu pretraživanja (ne postoji centralizirani indeks)
 - brzo pronalazi datoteke koje su replicirane na velikom broju čvorova
- prednosti
 - skalabilnost sustava
 - ne postoji posebna infrastruktura niti potreba za održavanjem sustava
 - ne postoji jedinstvena točka ispada
- nedostaci
 - velika količina generiranog mrežnog prometa
 - ne postoji garancija pronalaska tražene datoteke
 - free-riding

Sadržaj predavanja

- Centralizirani i decentralizirani distribuirani sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Definicija sustava peer-to-peer (P2P)

 mreža istovrsnih "čvorova" peerova

 svaki peer istovremeno vrši funkciju poslužitelja i klijenta

 svaki čvor "plaća" sudjelovanje u mreži nudeći dio vlastitih resursa (memorija, CPU) ostalim čvorovima

 potencijalno sustav P2P nudi neograničene resurse (broj peerova nije ograničen)

Overlay network

- "prekrivajuća mreža" (overlay network) nad stvarnom mrežnom topologijom
- peerovi su programi koji se izvode na aplikacijskom sloju

- koristi resurse krajnjih računala koji čine posebnu mrežu neovisnu o mrežnoj topologiji
- mreža peerova se konstantno mijenja (računala se spajaju i odspajaju)

Mreža peerova

- Kada su 2 peera susjedi?
 - otvorena TCP konekcija
 - virtualne grane među *peerovima*, *peer* zna IP adresu drugog *peera*
- Kako se održava mreža peerova?
 - mreža je izrazito nestabilna
 - npr. peer periodički provjerava stanje susjeda (ping porukama)
 - ako je susjed nedostupan, briše se iz liste susjeda
 - potreban je poseban algoritam za otkrivanje novih susjeda
 - poseban algoritam za dodavanje novog peera u postojeću mrežu (najčešće poznaje listu peerova za inicijalni kontakt)

Obilježja sustava P2P

- decentralizirani distribuirani sustav
 - nema centralizirane koordinacije među peerovima
 - ne postoji jedna točka ispada
- samoorganizirajuća mreža čvorova
 - peerovi su međusobno neovisni
- skalabilan sustav
 - dodavanje novih čvorova i ispad čvorova je podržano organizacijom P2P mreže i definiranim protokolima
- globalni informacijski sustav bez velikih ulaganja
 - raspodijeljena instalacija i održavanje

Osnovna zadaća sustava P2P (1)

Pronalaženje podataka u sustavima P2P!

Osnovna zadaća sustava P2P (2)

- Kako pronaći podatak d u mreži peerova?
 - peer s adresom p pohranjuje podatak d (npr. datoteka) koji se može jedinstveno identificirati ključem k (npr. k = hash(d))
 - za dani ključ k pronaći peera p na kome je pohranjen podatak d
 - dovoljno je znati funkciju $\mathbf{f}: k \to p$ da bismo pronašli d jer ta funkcija određuje identifikator *peera* na kome je pohranjen d
 - Kako definirati i implementirati funkciju f u distribuiranoj i decentraliziranoj okolini?

Vrste sustava P2P

- nestrukturirani sustavi
 - primjeri: Freenet, Gnutella
- strukturirani sustavi
 - primjeri: CAN, Chord, P-Grid, Pastry

Nestrukturirani sustavi P2P

- mrežna topologija nema definiranu strukturu
- mrežu peerova čini slučajan graf, npr. peer "poznaje" svoja četiri susjeda i preko njih pretražuje cijelu mrežu

Strukturirani sustavi P2P

- mrežna topologija je definirana i ima posebnu strukturu
- podatak d jedinstveno određuje ključ k (svaki peer može odrediti k za d)
- podatak d je pohranjen na peeru koji je "zadužen" za ključ k, a ne na peeru koji ga kreira

Sadržaj predavanja

- Centralizirani i decentralizirani distribuirani sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Nestrukturirani sustavi P2P

- podatak (npr. datoteka) je pohranjen na peeru koji ga kreira, ne postoji veza između podatka d i peera p
- moguće je pohraniti kopiju podatka na peerovima koji ga kopiraju s originalnog peera
- pretraživanje se izvodi preplavljivanjem ili slučajnim izborom (random walk), itd.

Oznaka čvora koji je izvor upita "q".

Preplavljivanje

preplavljivanje susjednih čvorova

Oznaka čvora koji je primio "q" prvi put.

Prijenos upita "q"

Preplavljivanje

Osnovno načelo:

proslijedi upit svim susjedima osim onome od koga si ga primio

Što je s duplikatima?

Npr. H je primio upit od B i C. Ako upit ima jedinstveni identifikator, H uočava duplikat i ignorira ga.

Preplavljivanje

G šalje odgovor direktno do S, no A, F i H ne znaju da je *q* pronađen i nastavljaju s preplavljivanjem svojih susjeda!

Primjeri aplikacija

- Gnutella
- KaZaA
- BitTorrent

Gnutella

- aplikacija razvijena u 14 dana za razmjenu recepata ("quick hack" by Nullsoft)
- koristi ograničeno preplavljivanje pri traženju podataka
 - svaki čvor šalje upit svim svojim susjedima
 - vrijeme valjanosti upita je ograničeno parametrom time-to-live (TTL = 7)
 - svaki upit ima jedinstveni identifikator zbog petlji u mreži
- novi čvor se jednostavno povezuje u sustav tako da se spoji na barem jedan poznati Gnutella čvor

Protokol: vrste poruka

Туре	Description	Contained Information
Ping	Announce availability and probe for other servents	None
Pong	Response to a ping	IP address and port# of responding servent; number and total kb of files shared
Query	Search request	Minimum network bandwidth of responding servent; search criteria
QueryHit	Returned by servents that have the requested file	IP address, port# and network bandwidth of responding servent; number of results and result set
Push	File download requests for servents behind a firewall	Servent identifier; index of requested file; IP address and port to send file to

Gnutella: održavanje mrežne topologije (Ping/Pong)

Gnutella: pretraživanje (Query/QueryHit/GET)

Problem: Free-riding (1)

- Veliki postotak korisnika su "free riders"
 - 66% peerova ne nudi vlastite datoteke
 - 73% peerova nude 10 ili manje datoteka
 - 1% peerova nude 37% svih datoteka
 - 10% peerova nude 87% svih datoteka

Problem: Free-riding (2)

- Veliki broj peerova nudi datoteke koje nikoga ne zanimaju
- od 11,585 peerova koji nude datoteke:
 - 1% peerova odgovara na 47% svih upita
 - 25% peerova odgovara na 98% svih upita
 - 63% peerova nikada ne odgovaraju na upite

Obilježja nestrukturiranih sustava P2P

- jednostavnost (jednostavan protokol)
- robustnost (ne postoji jedna točka ispada)
- niska cijena objavljivanja novog podatka (podatak ostaje na peeru koji ga objavljuje)
- velika cijena prilikom pretraživanja, generira se veliki mrežni promet
- dobro za pronalaženje podataka koji su replicirani na velikom broju peerova, ali ne za podatke pohranjene na malome broju peerova

Sadržaj predavanja

- Centralizirani i decentralizirani distribuirani sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Strukturirani sustavi P2P

- podatak d je pohranjen na peeru koji je "zadužen" za ključ k, a ne na peeru koji ga kreira
- svaki peer ima jedinstveni identifikator (adresu) p te je moguće definiranim distribuiranim algoritmom jednoznačno povezati p i k, a stoga i pronaći d
- sustav P2P implementira metodu lookup(k) koja vraća identifikator peera za dani ključ k

Distributed Hash Table (DHT)

Tipičan primjer strukturiranog sustava P2P

hash tablica je raspodijeljena na više čvorova.

- lookup omogućuje svakom čvoru da pronađe vrijednost povezanu s nekim ključem
- primjer: lookup("CS30"), odgovor: "Distributed Sys."

Distributed Hash Table (DHT)

- moraju realizirati dvije osnovne funkcije
 - put(*k*, *d*)
 - d = get(k)
- osnova je metoda lookup(k) nužna za implementaciju put i get
- svaki peer održava dio globalnog DHT-a, odgovoran je za podskup ključeva k i njima pridruženih podataka d
- pretraživanje se provodi u ograničenom broju koraka
 - kada peer primi upit, ako ga ne može riješiti jer nije zadužen za k, peer ga prosljeđuje drugome peeru koji će s većom vjerojatnošću moći odgovoriti na upit
 - može se garantirati da će podatak biti pronađen

Primjeri aplikacija

- Chord
- CAN
- P-Grid
- Pastry

Chord

- koristi hash funkciju koja se izvodi nad podatkom i adresom peera i proizvodi binarni ključ duljine m
 - npr. m=8
 - podatkovni ključ: key("jingle-bells.mp3")=17
 - ključ peera: key(196.178.0.1)=3
- podatak "jingle-bells.mp3" se pohranjuje na peeru s prvim većim binarnim ključem

Mogućnosti pretraživanja
1. svaki peer zna sve ostale
peerove u mreži
O(n) routing table size
2. svaki peer zna samo svoga
prethodnika

O(n) search cost

Tablice usmjeravanja na peerovima

 svaki peer zna m ostalih peerova s rastućom distancom (razlika između identifikatora originalnog peera i njegovog susjeda, npr. 1, 2, 4, 8, 16)

Tablica usmjeravanja na peeru p
Prvi sljedeći peer čiji je identifikator
p takav da vrijedi
-> s;=successor(p+2i-1) for i=1,..,m

Si	р
s ₁ (distanca 1)	p2
s ₂ (distanca 2)	p2
s ₃ (distanca 4)	p2
s ₄ (distanca 8)	р3
s ₅ (distanca 16)	p4

Pretraživanje

 kada peer p primi upit, traži u svojoj tablici usmjeravanja najveći mogući ključ peera koji je manji od traženog podatkovnog ključa

Search O(log n) cijena pretraživanja

Dodavanje čvorova u mrežu

Novi čvor q se spaja u mrežu

tablica usmjeravanja peera p

i	р
S₁	q
S ₁ S ₂	q
S ₃	p2
IS،	р3
S ₅	p4

tablica usmjeravanja peera q

i	р
S ₁	p2
S ₂	p2
s_3	р3
S _A	р3
Se	p4

Tablice usmjeravanja na peerovima

 za dani primjer svaki peer mora znati 3 peera koji su zaduženi za "drugi dio stabla"

Pretraživanje

kada peer primi upit, prosljeđuje ga čvoru s najbližim ključem iz svoje tablice usmjeravanja

VU, ak.g. 2007./2008.

Replikacija

Veći broj peerova može biti zadužen za isti adresni prostor. Npr. peerovi 1 i 6, te 3 i 4. Replikacija se koristi da bi sustav podržao proces kojim peerovi napuštaju mrežu. Potrebno je također promijeniti podatke u tablici usmjeravanja.

VU, ak.g. 2007./2008. 05.06.2008.

Dodavanje novog čvora u mrežu

Pri dodavanju novog peera u mrežu, kontaktira se peer u postojećoj mreži i u najjednostavnijem slučaju novi peer dijeli adresni prostor s novim peerom.

VU, ak.g. 2007./2008. 05.06.2008.

Osobine strukturiranih sustava P2P

- garantira pronalaženje podatka u O(log n) koraka (n je broj peerova u mreži)
 - skalabilno rješenje u odnosu na nestrukturirane sustave
- povećana cijena objavljivanja novog podatka u odnosu na nestrukturirane P2P sustave
 - podatak se pohranjuje na peeru koji je za njega "zadužen"
- potrebno je održavati dodatne strukture podataka (tablice usmjeravanja) radi umjeravanje upita prema peerovima koji pohranjuju tražene podatke

Sadržaj predavanja

- Centralizirani i decentralizirani distribuirani sustavi
- Definicija sustava P2P
- Nestrukturirani sustavi P2P
- Strukturirani sustavi P2P
- Primjeri aplikacija

Dijeljenje datoteka

- Ivica koristi P2P aplikaciju na svome prijenosnom računalu.
- Povremeno se spaja na internet i pri tome svaki puta njegovo računalo mijenja IP adresu.
- Ivica registrira datoteke koje ima na svome računalu u sustav i traži "Hey Jude"
- P2P aplikacija pronalazi ostale peerove koji imaju kopiju "Hey Jude".
- Ivica odabire jednoga peera, npr. Maricu od koje kopira datoteku.
- Dok Ivica kopira datoteku na svoje računalo, ostali korisnici mogu kopirati njegove datoteke.

Trenutno poručivanje

Instant messaging (IM)

- Ivica koristi P2P aplikaciju na svome prijenosnom računalu.
- Povremeno se spaja na internet i pri tome svaki puta njegovo računalo mijenja IP adresu.
- Ivica se registrira u IM sustav i pri tome nalazi Maricu koja je online.
- Za realizaciju komunikacije (slanje kratkih poruka) otvara se direktna TCP konekcija između 2 računala – P2P komunikacija.

VoIP: primjer Skype

- mreža istovjetnih čvorova koja se koristi za realizaciju usluga VoIP i IM, uključuje prisutnost
- usluga SkypeOut omogućuje pozive s PC-a prema fiksnoj i pokretnoj mreži
- hijerarhijska mreža P2P: svaki čvor s javnom IP adresom, zadovoljavajućim RAM-om i brzinom prijenosa može biti odabran za "super čvor" (SN), "samoorganizirajuća mreža"

Mreža sustava Skype

VU, ak.g. 2007./2008. 05.06.2008.