Reference number: 286552-1-1 Page 1 of 22

Test Report

INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C

Equipment Under Test: Smart watch with Bluetooth Low Energy

Model: BT0

BT001

Manufacturer:

Anima AB

Västra Varvsgatan 19 SE-21119 MALMÖ

SWEDEN

Customer:

Anima AB

Västra Varvsgatan 19 SE-21119 MALMÖ

SWEDEN

FCC Rule Part:

15.247: 2015

IC Rule Part:

RSS-247, Issue 1, 2015 RSS-GEN Issue 4, 2014

KDB:

Guidance for Performing Compliance

Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 (June 9, 2015)

Date:

25 January 2017

Date:

25 January 2017

Issued by:

Emil Haverinen

Testing Engineer

Checked by:

Rauno Repo Testing Engineer

PRODUCT DESCRIPTION	3
Equipment Under Test (EUT)	3
Description of the EUT	
Ratings and Declarations	3
Power Supply	3
Mechanical Size of the EUT	3
Mechanical Size of the EUT	3
GENERAL REMARKS	4
Disclaimer	4
SUMMARY OF TESTING	5
EUT Test Conditions	5
TEST RESULTS	6
Maximum Peak Conducted Output Power	6
Transmitter Radiated Spurious Emissions 9 kHz - 26500 MHz	
Transmitter Band Edge Measurement and Conducted Spurious Emissions	
6 dB Bandwidth of the Channel	
Power Spectral Density	
99% Occupied Bandwidth	20
00 /0 Occupios Buildingtii	20
TEST EQUIPMENT	22
ILOI LOO LOO INCITI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Equipment Under Test (EUT)

Trade mark: Kronaby Sweden

Model: BT001

Type: Smart watch with Bluetooth Low Energy

Serial no: RED-FCC-ISED-S1

RED-FCC-ISED-S2

FCC ID: 2AKPL-BT001 IC: 22272-BT001

Description of the EUT

The EUT is a smart watch with Bluetooth Low Energy capabilities. The smart watch uses replaceable CR3032 battery as a power source and it does not have any I/O ports for connecting ancillary equipment.

Classification of the device

Fixed device	
Mobile Device (Human body distance > 20cm)	
Portable Device (Human body distance < 20cm)	\boxtimes

Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Ratings and Declarations

Operating Frequency Range (OFR): 2402 - 2480 MHz

Channels: 40 Channel separation: 2 MHz

99% Channel bandwidth: 1.071716509 MHz (mid channel)

Effective conducted power: 3.68 dBm (peak)

Transmission technique: DSSS Modulation: GFSK Antenna gain: 2.7 dBi

Power Supply

Operating voltage range: 2.2 - 3.3 VDC (tested with 3 V from laboratory supply)

Normally the EUT is powered from coin battery.

Mechanical Size of the EUT

Ø43 mm x 15 mm

Samples

Two samples were used in tests. One with RF connector replacing antenna for conducted measurements. Both samples were tested with special firmware made for testing purposes. Both samples were equipped with small 3-wire programming cables for controlling the radio.

Disclaimer

This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms and conditions.htm. attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. This document cannot be reproduced except in full, without prior approval of the Company.

SUMMARY OF TESTING

Test Specification	Description of Test	Result
§15.207(a) / RSS-GEN 8.8	Conducted Emissions on Power Supply Lines	N/A ⁽¹
§15.247(b)(3) / RSS-247 5.4(4)	Maximum Peak Conducted Output Power	PASS
§15.247(a)(2) / RSS-247 5.2(1)	6 dB Bandwidth	PASS
§15.247(e) / RSS-247 5.2(2)	Power Spectral Density	PASS
RSS-GEN 6.6	99% Occupied Bandwidth	PASS
§15.247(d) / RSS-247 5.5	100 kHz Bandwidth of Frequency Band Edges and Conducted Spurious Emissions	PASS
§15.209(a), §15.247(d) / RSS-247 5.5	Radiated Emissions Within The Restricted Bands	PASS

¹⁾ The EUT cannot be connected to public network, no input/output ports.

EUT Test Conditions

The EUT was in continuous transmit mode during all the tests. The hopping was stopped and the EUT was configured into the wanted channel using software provided by the manufacturer. Normal modulation and duty cycle was applied in all the tests.

The EUT was tested without wristband.

Following channels were used during the tests when the hopping was stopped:

Channel Low (Ch 0) = 2402 MHz

Channel Mid (Ch 19) = 2440 MHz

Channel High (Ch 39) = 2480 MHz

Test Facility

		Testing Location / address:	SGS Fimko Ltd
		FCC registration number: 90598	Särkiniementie 3
			FI-00210, HELSINKI
			FINLAND
	\boxtimes	Testing Location / address:	SGS Fimko Ltd
		FCC registration number: 178986	Karakaarenkuja 4
		Industry Canada registration	FI-02610, ESPOO
L		number: 8708A-2	FINLAND

TEST RESULTS

Maximum Peak Conducted Output Power

Standard: ANSI C63.10 (2013)

 Tested by:
 EHA

 Date:
 24.1.2017

 Temperature:
 23 ± 3 °C

 Humidity:
 15 % RH

Measurement uncertainty: $\pm 2.87 dB$ Level of confidence 95 % (k = 2)

FCC Rule: 15.247(b)(3)

RSS-247 5.4(4)

For systems using digital modulation in the 2400-2483.5 MHz bands the limit is 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

Measured values are peak values.

Results:

Table 1: Maximum conducted output power

Channel	Channel Conducted Power Limit [dBr		Margin [dBm]	Result
Low	3.68	30	26.32	PASS
Mid	3.58	30	26.42	PASS
High	3.40	30	26.60	PASS

Figure 1: Conducted power (ch low)

Figure 2: Conducted power (ch mid)

Figure 3: Conducted power (ch high)

Transmitter Radiated Spurious Emissions 9 kHz - 26500 MHz

Standard: ANSI C63.10 (2013)

 Tested by:
 EHA / JSU / PKA

 Date:
 18.1 - 25.1.2017

 Temperature:
 23 ± 3 °C

 Humidity:
 20 - 40 % RH

Measurement uncertainty: $\pm 4.51 \text{ dB}$ Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

The correction factor in the final result table contains the sum of the transducers (antenna + amplifier + cables).

Frequency range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector
30 - 80	100	40.0	Quasi-peak
88 - 216	150	43.5	Quasi-peak
216 - 960	200	46.0	Quasi-peak
960 - 1000	500	53.9	Quasi-peak
Above 1000	500	53.9	Average
Above 1000	5000	73.9	Peak

Low channel

Table 2: Quasi-peak results (ch low)

	-	-	-						
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
944.011000	33.7	1000.0	120.000	100.0	Н	1.0	27.7	12.3	46.0

Table 3: Peak results (ch low)

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2324.575000	59.1	1000.0	1000.000	279.0	Н	348.0	14.2	14.8	73.9
2377.975000	62.3	1000.0	1000.000	191.0	V	0.0	14.5	11.6	73.9
2389.800000	49.7	1000.0	1000.000	317.0	V	0.0	14.6	24.2	73.9
7205.500000	48.1	1000.0	1000.000	150.0	Н	18.0	12.1	25.8	73.9
9609.000000	51.1	1000.0	1000.000	150.0	Н	68.0	15.7	22.8	73.9

Table 4: Average results (ch low)

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2324.325000	35.7	1000.0	1000.000	150.0	V	0.0	14.2	18.2	53.9
2377.975000	36.6	1000.0	1000.000	150.0	V	0.0	14.5	17.3	53.9
2389.400000	36.1	1000.0	1000.000	150.0	V	1.0	14.6	17.8	53.9
4804.000000	33.8	1000.0	1000.000	150.0	Н	38.0	8.3	20.1	53.9
7205.400000	36.5	1000.0	1000.000	150.0	Н	19.0	12.1	17.4	53.9
9607.100000	37.7	1000.0	1000.000	400.0	Н	69.0	15.7	16.2	53.9
18485.05000	34.5	1000.0	1000.000	400.0	V	105.0	19.0	19.4	53.9
22005.80000	35.3	1000.0	1000.000	150.0	V	62.0	22.2	18.6	53.9
25463.10000	37.3	1000.0	1000.000	150.0	V	287.0	25.8	16.6	53.9

Middle channel

Table 5: Quasi-peak results (ch mid)

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
957.700000	26.8	1000.0	120.000	205.0	Н	215.0	27.8	19.2	46.0

Table 6: Peak results (ch mid)

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2466.750000	61.8	1000.0	1000.000	150.0	V	0.0	14.5	12.1	73.9
4879.900000	45.1	1000.0	1000.000	150.0	Н	234.0	8.3	28.8	73.9
7319.200000	50.6	1000.0	1000.000	150.0	Н	64.0	12.1	23.3	73.9
9760.900000	53.9	1000.0	1000.000	150.0	Н	61.0	15.9	20.0	73.9

Table 7: Average results (ch mid)

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4879.900000	35.4	1000.0	1000.000	150.0	Н	223.0	8.3	18.5	53.9
7319.400000	38.3	1000.0	1000.000	150.0	Н	52.0	12.1	15.6	53.9
9759.100000	40.8	1000.0	1000.000	150.0	Н	60.0	15.9	13.1	53.9
18145.45000	34.1	1000.0	1000.000	100.0	V	170.0	18.6	19.8	53.9
22091.35000	35.0	1000.0	1000.000	100.0	Н	238.0	22.5	18.9	53.9
25044.50000	36.4	1000.0	1000.000	100.0	V	189.0	24.1	17.5	53.9
26355.40000	35.9	1000.0	1000.000	100.0	Н	151.0	26.2	18.0	53.9

High channel

Table 8: Quasi-peak results (ch high)

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
956.653000	26.8	1000.0	120.000	232.0	H	81.0	27.8	19.2	46.0

Table 9: Peak results (ch high)

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2493.325000	59.1	1000.0	1000.000	150.0	V	9.0	14.8	14.8	73.9
2493.500000	58.8	1000.0	1000.000	150.0	V	21.0	14.8	15.1	73.9
2497.375000	49.8	1000.0	1000.000	366.0	V	89.0	14.9	24.1	73.9
2568.725000	62.8	1000.0	1000.000	190.0	V	340.0	14.9	11.1	73.9
4959.500000	47.4	1000.0	1000.000	150.0	V	315.0	8.2	26.5	73.9
7439.200000	53.0	1000.0	1000.000	150.0	Н	64.0	12.1	20.9	73.9
9919.800000	52.2	1000.0	1000.000	150.0	Н	68.0	16.4	21.7	73.9

Table 10: Average results (ch high)

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2483.500000	37.8	1000.0	1000.000	252.0	Н	335.0	14.7	16.1	53.9
4959.900000	37.6	1000.0	1000.000	150.0	Н	143.0	8.2	16.3	53.9
7439.400000	42.5	1000.0	1000.000	150.0	Н	68.0	12.1	11.4	53.9
9919.300000	41.2	1000.0	1000.000	150.0	Н	68.0	16.4	12.7	53.9
19769.75000	34.5	1000.0	1000.000	100.0	V	296.0	19.3	19.4	53.9
22142.90000	35.4	1000.0	1000.000	100.0	V	0.0	22.6	18.5	53.9
25559.50000	36.9	1000.0	1000.000	100.0	Н	53.0	25.9	17.0	53.9

Radiated Band Edge results

FCC Part 15 Class B Electric Field Strength 3 m PK [..\EMI radiated\]
FCC Part 15 Class B Electric Field Strength 3 m AV [..\EMI radiated\]
Preview Result 1-PK+ [Preview Result 1.Result:1]
Preview Result 2-AVG [Preview Result 2.Result:2]
Final Result 1-PK+ [Final Result 1.Result:1]
Final Result 2-AVG [Final Result 2.Result:1]

Figure 4: Radiated Band Edge measurement graph (ch low)

Figure 5: Radiated Band Edge measurement graph (ch high)

Standard: ANSI C63.10 (2013)

 Tested by:
 EHA

 Date:
 24.1.2017

 Temperature:
 23 ± 3 °C

 Humidity:
 15 % RH

Measurement uncertainty: \pm 2.87 dB Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Table 11: Band edge attenuation

Band Edge Attenuation					
Lower Band Edge	Upper Band Edge				
-42.66 dBc	-36.09 dBc				
Limit: -20d	Вс				

Table 12: Conducted spurious emissions channel low

Frequency [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]	Result
936.06	-70.27	-16.52	-53.75	PASS
2371.15	-40.54	-16.52	-24.02	PASS
2401.98	3.48	-	-	Carrier
3620.96	-66.05	-16.52	-49.52	PASS
4804.02	-54.85	-16.52	-38.33	PASS
7206.01	-45.61	-16.52	-29.09	PASS
12595.15	-59.72	-16.52	-43.20	PASS
15842.93	-57.03	-16.52	-40.51	PASS
16192.79	-55.82	-16.52	-39.30	PASS
21945.77	-57.43	-16.52	-40.90	PASS
24425.57	-57.35	-16.52	-40.83	PASS
25720.19	-56.88	-16.52	-40.36	PASS

Table 13: Conducted spurious emissions channel mid

Frequency [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]	Result
702.08	-70.84	-16.65	-54.19	PASS
2363.97	-65.75	-16.65	-49.11	PASS
2439.98	3.35	-	-	Carrier
2493.05	-38.74	-16.65	-22.10	PASS
4879.96	-56.39	-16.65	-39.74	PASS
7320.01	-45.89	-16.65	-29.24	PASS
12487.16	-60.17	-16.65	-43.53	PASS
15513.41	-57.23	-16.65	-40.59	PASS
16155.39	-55.58	-16.65	-38.94	PASS
19475.25	-58.29	-16.65	-41.64	PASS
24829.90	-56.97	-16.65	-40.32	PASS
26302.03	-56.83	-16.65	-40.18	PASS

Table 14: Conducted spurious emissions channel high

Frequency [MHz]	Level [dBm]	Limit [dBc]	Margin [dB]	Result
956.28	-70.55	-16.78	-53.77	PASS
1240.03	-67.79	-16.78	-51.00	PASS
2479.98	3.22	-	-	Carrier
2493.00	-38.42	-16.78	-21.64	PASS
4960.02	-56.29	-16.78	-39.51	PASS
7439.35	-46.67	-16.78	-29.89	PASS
12853.90	-59.84	-16.78	-43.06	PASS
15504.41	-57.37	-16.78	-40.59	PASS
16163.26	-55.41	-16.78	-38.62	PASS
19540.69	-58.03	-16.78	-41.25	PASS
24512.00	-57.25	-16.78	-40.47	PASS
25812.34	-56.53	-16.78	-39.74	PASS

Figure 6: Lower Band Edge

Figure 7: Upper Band Edge

Figure 8: Conducted spurious emissions 30 - 26500 MHz channel low

Figure 9: Conducted spurious emissions 30 - 26500 MHz channel mid

Figure 10: Conducted spurious emissions 30 - 26500 MHz channel high

6 dB Bandwidth of the Channel

Standard: ANSI C63.10 (2013)

Tested by:EHADate:24.1.2017Temperature: 23 ± 3 °CHumidity:15 % RH

FCC Rule: 15.247(a)(2)

RSS-247 5.2(1)

Results:

Table 15: 6 dB bandwidth test results

Channel	6 dB BW [kHz]	Minimum limit [kHz]
Low	725.415	
Mid	732.977	500
High	725.727	

Figure 11: 6 dB bandwidth channel low

Figure 12: 6 dB bandwidth channel mid

Figure 13: 6 dB bandwidth channel high

Power Spectral Density

Standard: ANSI C63.10 (2013)

 Tested by:
 EHA

 Date:
 24.1.2017

 Temperature:
 23 ± 3 °C

 Humidity:
 15 % RH

FCC Rule: 15.247(e) RSS-247 5.2(2)

Results:

Table 16: Power spectral density test results

Channel	PSD dBm/10 kHz	Maximum limit [dBm/3kHz]
Low	-8.05	
Mid	-8.09	+8.00
High	-8.57	

Figure 14: Power spectral density channel low

Figure 15: Power spectral density channel mid

Figure 16: Power spectral density channel high

99% Occupied Bandwidth

Standard: RSS-GEN (2014)

 Tested by:
 EHA

 Date:
 24.1.2017

 Temperature:
 23 ± 3 °C

 Humidity:
 15 % RH

RSS-GEN 6.6

Table 17: 99% occupied bandwidth test results

Channel	Limit	99 % BW [MHz]	Result
Low	-	1.065591700	PASS
Mid	-	1.071716509	PASS
High	-	1.068716603	PASS

Figure 17: 99% OBW channel low

Figure 18: 99% OBW channel mid

Figure 19: 99% OBW channel high

TEST EQUIPMENT

Equipment	Manufacturer	Туре	Inv or serial	Prev Calib	Next Calib
ANTENNA	A.H. SYSTEMS	SAS-200/518	inv:7873	-	-
SPECTRUM ANALYZER	AGILENT	E7405A	inv:9746	2016-01-07	2018-01-07
PREAMPLIFIER	CIAO	CA118-3123	inv:10278	2016-11-28	2017-11-28
PREAMPLIFIER	ALC MICROWAVE	AWB-2018-40-08	inv:9749	2016-08-30	2017-08-30
DC-POWER SUPPLY	DELTA ELEKTRONIKA	SM 130-25D	sn:03494	-	-
ANTENNA	EMCO	3117	inv:7293	2016-03-16	2018-03-06
ANTENNA	EMCO	3160-09	inv:7294	2016-03-16	2017-03-16
TURNTABLE	MATURO	DS430 UPGRADED	inv:10182	-	-
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv:10183	-	-
ANTENNA MAST	MATURO	TAM 4.0E	inv:10181	-	-
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU 26	inv:8453	2016-06-10	2017-06-10
SIGNAL ANALYZER	ROHDE & SCHWARZ	FSV40	inv:9093	2016-06-10	2017-06-10
ANTENNA	ROHDE & SCHWARZ	HFH2-Z2, 335.4711.52	inv:8013	2016-08-29	2017-08-29
ANTENNA	SCHWARZBECK	VULB 9168	inv:8911	2016-10-25	2018-10-25
TEMPERATURE/ HUMIDITY METER	VAISALA	HMT 333	inv:8638	2016-03-01	2017-03-01
HIGH PASS FILTER	WAINWRIGHT	WHKX4.0/18G-10SS	sn:10	2016-01-22	2017-01-22
ATT SMAM/F 50 Ω 18 GHZ 10 DB 1 W	HUBER&SUHNER	6610.19.AA	sn:RF ATTEN 07	2016-02-02	2017-02-02