PROCEDE DE PREPARATION DE FLOCS MINERAUX MIXTES A BASE DE TIO2, COMPOSITION A BASE DE TIO2 ET DE SIO2 ET SON UTILISATION A TITRE D'AGENT OPACIFIANT NOTAMMENT EN INDUSTRIE PAPETIERE

Publication number: FR2773167

Publication date:

1999-07-02

Inventor:

LE CORNEC PATRICE; FAJARDIE FRANCK; FOULON

MICHEL

Applicant:

RHONE POULENC CHIMIE (FR)

Classification:

- international:

C08K3/00; C08K9/02; C09C1/36; C09D7/12;

C09D17/00; C09D201/00; D21H17/67; D21H17/69; D21H19/64; D21H17/68; D21H21/28; C08K3/00; C08K9/00; C09C1/36; C09D7/12; C09D17/00; C09D201/00; D21H17/00; D21H19/00; D21H21/14; (IPC1-7): C09C3/06; C01G23/047; C09C1/36;

D21H17/69; D21H21/28; D21H23/76

- European:

C09C1/36D6; D21H17/69 Application number: FR19970016709 19971230

Priority number(s): FR19970016709 19971230

Also published as:

WO9935193 (A1) EP1044242 (A1)

EP1044242 (A0) CA2316281 (A1)

Report a data error here

Abstract of FR2773167

The invention concerns a method for preparing a composition based on TiO2 useful as opacifier which consists in mixing with an aqueous TiO2 dispersion an aqueous dispersion of at least an inorganic spacer, in conditions such that the two mineral species combine into mixed mineral flocs wherein the TiO2 particles are globally spaced from one another by the spacer particles and/or aggregates. The invention also concerns a composition based on TiO2 and SiO2 characterised in that the TiO2 and SiO2 particles are combined therein in the form of mixed mineral flocs based on TiO2 and SiO2 wherein the TiO2 particles are globally isolated from one another by said silica aggregates and its use as opacifier, in particular in the paper industry.

Data supplied from the esp@cenet database - Worldwide

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 No de publication :

2 773 167

(à n'utiliser que pour les commandes de reproduction)

21 No d'enregistrement national :

97 16709

(51) Int Cl⁶: **C 09 C 3/06**, C 09 C 1/36, D 21 H 23/76, 21/28, 17/69, C 01 G 23/047

(12)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 30.12.97.
- (30) Priorité :

- (71) Demandeur(s): RHODIA CHIMIE FR.
- Date de mise à la disposition du public de la demande : 02.07.99 Bulletin 99/26.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): LE CORNEC PATRICE, FAJARDIE FRANCK et FOULON MICHEL.
- 73 Titulaire(s):
- (4) Mandataire(s): CABINET BONNET THIRION.
- PROCEDE DE PREPARATION DE FLOCS MINERAUX MIXTES A BASE DE TIO2, COMPOSITION A BASE DE TIO2 ET DE SIO2 ET SON UTILISATION A TITRE D'AGENT OPACIFIANT NOTAMMENT EN INDUSTRIE PAPETIERE.
- 57 La présente invention a pour objet un procédé de préparation d'une composition à base de TiO₂ utile comme agent opacifiant comprenant le mélange à une dispersion aqueuse de TiO₂, d'une dispersion aqueuse d'au moins un agent espaceur inorganique, dans des conditions telles que les deux espèces minérales s'agencent en des flocs minéraux mixtes dans lesquels les particules de TiO2 sont globalement espacées les unes des autres par des particules etlou agrégats de l'agent espaceur.

lement espacées les unes des autres par des particules etlou agrégats de l'agent espaceur.

Elle a également pour objet une composition à base de TiO₂ et de SiO₂ caractérisée en ce que les particules de TiO₂ et de SiO₂ y sont agencées sous la forme de flocs minéraux mixtes à base de TiO₂ et de SiO₂ dans lesquels les particules de TiO₂ sont globalement isolées les unes des autres par des agrégats de ladite silice et son utilisation à titre d'agent opacifiant notamment en industrie papetière.

La présente invention a pour objet une composition à base de TiO₂, utile à titre d'agent opacifiant notamment dans les papiers lamifiés et un procédé de préparation permettant d'obtenir ladite composition.

Le papier lamifié, appelé communément papier décor, est l'élément de surface à fonction opacifiante et décorative, utilisé pour la fabrication des panneaux stratifiés, destinés à l'industrie de l'ameublement.

5

10

15

20

25

30

35

Une particularité du papier décor est de posséder un taux extrêmement élevé de TiO₂, pouvant atteindre jusqu'à 40 % de la masse de la feuille sèche.

A titre comparatif, les papiers type impression-écriture peuvent en contenir au grand maximum 10 %.

En fait, cette teneur importante en TiO₂ s'explique par le niveau d'opacité exigé pour un papier décor. Ce papier subit un processus de stratification qui tend à le rendre transparent. Or, ceci est incompatible avec ses fonctions opacifiantes et décoratives. Il est donc nécessaire d'y remédier par apport d'un agent opacifiant.

Le dioxyde de titane est classiquement utilisé pour cette application car c'est le seul pigment blanc pouvant apporter les niveaux d'opacité exigés grâce à son indice de réfraction élevé.

La demande WO 89/08739 propose toutefois de remplacer à raison de 5 à 40 % en poids, le TiO₂ par de la silice précipitée amorphe et de mettre en oeuvre les mélanges correspondants, plus intéressants sur un plan économique, à titre de charges dans l'industrie papetière.

Conventionnellement, les feuilles de papier sont préparées à partir d'un mélange de fibres cellulosiques et de charges minérales dont majoritairement le TiO₂, dispersées dans l'eau. Ce mélange est contenu dans une "caisse de tête" qui alimente une toile où la feuille se forme par égouttage et filtration. Lors de cette filtration, les fibres de cellulose sont retenues sur la toile ainsi qu'une partie de la charge minérale, en interactions ou non avec les fibres enchevêtrées. On obtient ainsi "le matelas fibreux" qui après séchage donne la feuille de papier.

En fait, il s'avère que seule une partie de la quantité initiale en TiO₂ est retenue dans le matelas fibreux et en outre que cette fraction est généralement trop agglomérée pour que le TiO₂ puisse développer un maximum d'opacité.

Pour réduire cette perte en TiO₂ lors de la formation du matelas fibreux, les papetiers introduisent généralement dans leurs mélanges cellulosiques des agents de rétention. Ces agents sont classiquement des polymères cationiques qui permettent la fixation des particules de TiO₂ sur les fibres par des phénomènes d'homo- et d'hétéro-floculation.

Toutefois, dans le cas de la rétention de charges opacifiantes, tel le dioxyde de titane, l'utilisation d'un polymère électriquement chargé, entraîne une perte d'efficacité en opacité en raison d'une floculation trop forte et trop dense.

10

15

20

En conséquence, il apparaît que le simple fait de retenir le TiO₂ dans le matelas fibreux n'est pas suffisant en soi en terme de rendement d'opacité. Il serait également nécessaire de maintenir le TiO₂ dans le matelas fibreux, sous une forme suffisamment dispersée pour qu'il puisse conserver ses propriétés pigmentaires et développer un bon pouvoir opacifiant. Avantageusement, on pourrait alors obtenir la même opacité tout en engageant moins de TiO₂. Le rendement d'opacité du TiO₂ en serait significativement augmenté.

A cet effet, la demande de brevet internationale WO 97/18268 propose de procéder à un traitement de surface des particules de TiO_2 . Ce traitement consiste à les recouvrir d'une monocouche de particules inorganiques comme la silice et dont la taille particulaire demeure inférieure à celle des particules de TiO_2 . Ce revêtement de type monocouche particulaire permet d'espacer les particules de TiO_2 , les unes des autres.

25

La présente invention a précisément pour objet de proposer une nouvelle composition à base de TiO₂ répondant à l'ensemble des exigences évoquées ci-dessus.

30

Plus particulièrement, elle propose un nouveau système d'agent opacifiant permettant d'améliorer à la fois la rétention du TiO₂, lors de la formation du matelas fibreux, et de l'y conserver dans une structure de floculation la moins pénalisante possible pour l'opacité.

35

Les inventeurs ont ainsi mis en évidence qu'une solution au problème de l'agglomération de la charge minérale consistait à créer des flocs minéraux mixtes en intercalant entre les particules de TiO₂ des particules, sous forme d'agrégats ou non, d'un agent dit espaceur de nature inorganique.

Les flocs minéraux mixtes obtenus selon l'invention, sont avantageux à plusieurs titres:

- ils permettent de maintenir suffisamment dispersées les particules de TiO₂ lors des différentes étapes de formation de la feuille de papier pour que le maximum d'entre elles puissent développer leur caractère pigmentaire et donc participer à l'opacité dans la feuille sèche,
- ils possèdent une structure ouverte, ce qui est propice à une meilleure rétention,
- ils se révèlent également suffisamment résistants pour résister aux forces capillaires qui interviennent lors de l'égouttage et du séchage du matelas fibreux, ainsi qu'aux cisaillements que l'on peut rencontrer au cours de la fabrication de la feuille.

En fait, la cohésion interne des flocs minéraux mixtes, issus de l'association au TiO₂ d'au moins un agent espaceur inorganique, repose sur la solidité de liaisons ioniques établies entre le TiO₂ et l'agent espaceur. Cette cohésion découle directement du processus retenu pour préparer lesdits flocs minéraux mixtes.

20

25

30

35

10

15

Plus précisément, ces flocs sont obtenus dans des conditions opératoires telles que le TiO₂ et l'agent espaceur inorganique considéré présentent des charges de surface opposées et significativement différentes. En particulier le TiO₂ et l'agent espaceur inorganique considéré se doivent de posséder des points isoélectriques suffisamment différents pour qu'il puisse exister une plage de pH dans laquelle ces deux espèces minérales possèdent des charges opposées. Dans ces conditions, les deux espèces minérales manifestent l'une vis à vis de l'autre une attraction électrostatique. Les forces d'attraction résultantes doivent être suffisantes pour d'une part conduire à un agencement structural des deux composés et d'autre part pour les stabiliser sous cette forme.

En conséquence, la présente invention a pour premier objet un procédé de préparation d'une composition à base de TiO₂, utile comme agent opacifiant caractérisé en ce qu'il comprend les étapes selon lesquelles :

- on mélange à une dispersion aqueuse de TiO₂ une dispersion aqueuse d'au moins un agent espaceur inorganique, le mélange des deux

dispersions étant effectué sous agitation et à un pH compris entre les points isoélectriques respectifs desdits TiO_2 et agent espaceur et choisi de telle manière que lesdits TiO_2 et agent espaceur possèdent des charges de surfaces opposées et suffisamment différentes pour conduire, sous l'effet de forces électrostatiques, à leur agencement en des flocs minéraux mixtes dans lesquels les particules de TiO_2 sont globalement espacées les unes des autres par des particules et/ou agrégats de l'agent espaceur;

- on régule le cas échéant, le pH à la valeur fixée en étape 1,

10

- on mûrit la dispersion aqueuse de flocs minéraux mixtes résultante à une température suffisante pour renforcer la solidité des liaisons établies entre les particules de TiO₂ et les particules et/ou agrégats de l'agent espaceur,
- on récupère ladite composition sous forme d'une dispersion aqueuse de flocs minéraux mixtes et
 - éventuellement on formule ladite composition sous une forme sèche.

20

La figure 1 donne une représentation schématique de la structure de flocs minéraux mixtes obtenus selon l'invention. Elle est confirmée par le cliché de microscopie électronique en transmission présenté en figure 2.

25

Au sens de l'invention, on entend désigner sous le terme floc, des agglomérats mixtes de deux espèces minérales de type TiO_2 et agent espaceur inorganique comme SiO_2 par exemple. Ces agglomérats résultent de l'association entre des agrégats dudit agent espaceur et des particules de TiO_2 .

30

35

Un agent espaceur est constitué de particules ou d'agrégats de particules qui viennent s'intercaler entre les particules de TiO₂.

En ce qui concerne le point isoélectrique, il correspond au pH pour lequel la particule de l'espèce minérale considérée a une charge de surface globalement nulle. Pour un pH supérieur à cette valeur, la charge est globalement négative et pour un pH inférieur, la charge est globalement positive.

Le TiO₂ utilisé selon l'invention est de préférence un TiO₂ rutile.

Plus préférentiellement, il s'agit d'un TiO2 rutile de taille pigmentaire.

Il peut le cas échéant être revêtu d'un traitement de surface minéral.

De préférence, ce traitement de surface comprend au moins un composé choisi parmi les alumine, silice, zircone, phosphate, oxyde de cérium, oxyde de zinc, oxyde de titane et leurs mélanges.

La quantité en oxyde(s) peut être de l'ordre de 1 à 20 % en poids ou moins ou de préférence de l'ordre de 3 à 10 % en poids ou moins, par rapport au poids total du pigment .

A titre illustratif de ces dioxydes de titane, on peut tout particulièrement citer les deux pigments rutiles Rhoditan RL18 et RL62®, commercialisés par Rhône-Poulenc. Ces deux pigments se différencient de par la composition de leur traitement de surface et les potentiels Zeta qui en résultent.

Le RL 18 possède un traitement de surface silice-alumine (SiO₂/Al₂O₃) et un potentiel Zeta négatif à pH 6, on l'appelle "TiO₂ anionique".

En revanche, le RL62 possède un traitement de surface phosphate-alumine ($P_2O_5/$ Al_2O_3) avec un potentiel Zeta positif à pH 6, on l'appelle "TiO₂ cationique". Le choix du pH de 6 est proche du pH de mise en oeuvre industriel.

Dans le cadre de la présente invention, le choix du TiO₂, anionique ou cationique, conditionne bien entendu le choix de l'agent espaceur inorganique qui lui est associé.

25

5

10

15

20

Dans chacun des cas, on choisit un agent espaceur inorganique possédant un point isoélectrique suffisamment différent de celui du TiO₂ considéré pour que puissent se manifester les attractions électrostatiques entre les deux composés qui sont nécessaires à leur agencement.

30

La dispersion aqueuse de TiO₂, mise en oeuvre selon l'invention comprend environ 5 à 80 % en poids de TiO₂ et de préférence environ 5 à 40%. A cet égard, le point limitant est la viscosité de la suspension qui doit rester à une valeur raisonnable pour être aisément manipulable.

35

Selon un mode préféré de l'invention, le TiO₂ retenu est un TiO₂ rutile pigmentaire cationique et en particulier le Rhoditan RL62.

En ce qui concerne les agents espaceurs inorganiques considérés selon l'invention, ils se doivent de ne pas interférer avec les autres réactifs classiquement mis en oeuvre dans l'industrie papetière.

De préférence, ils n'absorbent pas de manière significative la lumière du visible.

De manière générale, la taille de leurs particules est inférieure à celle des particules de TiO₂. Toutefois, ces particules sont de préférence agencées sous forme d'agrégats dont la taille est alors supérieure à celles des particules de TiO₂. De préférence ces agrégats possèdent une taille comprise entre environ 0,5 et 2µm.

A titre illustratif des agent espaceurs inorganiques pouvant être utilisés selon l'invention, on peut notamment citer les oxydes de silicium, de titane, de zirconium, de zinc, de magnésium, d'aluminium, d'yttrium, d'antimoine, de cérium et d'étain ; les sulfates de baryum et de calcium ; le sulfure de zinc ; les carbonates de zinc, de calcium, de magnésium, de plomb et de métaux mixtes ; les phosphates d'aluminium, de calcium, de magnésium, de zinc, de cérium et de métaux mixtes ; les titanates de magnésium, de calcium, d'aluminium et de métaux mixtes ; les fluorures de magnésium et de calcium ; les silicates de zinc, de zirconium, de calcium, de baryum, de magnésium, d'alcalino-terreux mixtes et de minéraux silicatés ; les aluminosilicates d'alcalin et d'alcalino-terreux ; les oxalates de calcium, de zinc, de magnésium, d'aluminium et de métaux mixtes ; les aluminates de zinc, de calcium, de magnésium et d'alcalino-terreux ; l'hydroxyde d'aluminium et leurs mélanges.

25

30

35

20

10

15

Bien entendu, le choix de cet agent espaceur est effectué de manière à ce qu'il présente une différence de point isoélectrique suffisante avec la forme TiO₂ retenue.

A titre d'agents espaceurs inorganiques convenant tout particulièrement à la présente invention, on peut citer les oxydes minéraux qui sont de préférence choisis parmi les oxydes de silicium, de zirconium, d'aluminium, d'antimoine, de cérium et d'étain et leurs mélanges.

Dans le cas particulier où le TiO₂ pigmentaire rutile cationique est retenue, cet agent espaceur inorganique est de préférence une silice, une alumine, un silicoaluminate ou un de leurs mélanges.

En ce qui concerne le rapport entre le TiO₂ et l'agent espaceur, il est bien entendu variable selon la nature de l'agent espaceur retenu.

En général, la borne inférieure de ce rapport est constituée par la quantité minimale en agent espaceur inorganique qui est nécessaire pour observer un effet positif au niveau du rendement opacifiant et sa borne supérieure par la quantité maximale en agent espaceur au-delà de laquelle des effets indésirables se manifesteraient au niveau du papier incorporant la composition obtenue selon le procédé revendiqué. Ces effets indésirables peuvent notamment se traduire par une fragilité du papier notamment en terme de résistance que ce soit à l'état sec ou état humide.

Cet agent espaceur peut généralement être utilisé à raison d'environ 1 à 40% par rapport au poids de TiO_2 , de manière préférée à raison d'environ 5 à 15 % en poids et plus préférentiellement à raison d'environ 10 % en poids.

Comme explicité ci-dessus, ces deux composés sont mis en présence sous forme de dispersions aqueuses correspondantes, dans des conditions opératoires telles que s'élaborent par hétérocoagulation du TiO₂ avec les particules et/ou agrégats de particules de l'agent espaceur inorganique, les flocs minéraux mixtes. L'agent espaceur peut également être précipité in situ. Dans ce cas l'ajustement de pH propice à l'hétérocoagulation sera effectué après l'étape de précipitation de l'agent espaceur.

Ces conditions opératoires propices à la manifestation du phénomène d'hétérocoagulation entre l'agent espaceur inorganique et le TiO₂ sont notamment le choix d'un pH dans une plage définie par leurs points isoélectriques respectifs. Il convient de choisir ce pH de telle manière que les deux composés aient des charges de surface opposées et suffisamment différentes.

Pour des raisons de mise en oeuvre il est souhaitable que les points isoélectriques de l'agent espaceur et du TiO₂ soient espacés d'au moins une unité pH.

30

35

10

15

20

Les flocs minéraux mixtes composant la composition attendue, se forment donc sous agitation desdites dispersions, généralement à température ambiante et à un pH tel que défini précédemment. Il peut le cas échéant, être nécessaire de procéder en cours de réaction à un ajustement du pH pour le maintenir à une valeur propice à la formation desdits flocs.

L'attraction est immédiate. Toutefois il est préférable de maintenir l'agitation pendant environ 15 minutes de façon à stabiliser le système avant l'étape de mûrissement.

Selon une variante préférée de l'invention le TiO₂ est utilisé sous une forme rutile pigmentaire cationique et de préférence est le RL62, et l'agent espaceur associé est la silice.

5

Plus préférentiellement, la silice utilisée est une silice de grande surface spécifique notamment comprise entre environ 20 et 300 m 2 /g. Elle peut se présenter sous la forme d'agrégats de tailles comprises entre environ 0,5 et 10 μ m.

10

L'emploi de la silice à titre d'agent espaceur conformément à la présente invention est avantageux à plusieurs titres.

Tout d'abord elle possède un point isoélectrique aux environs de 2 soit une valeur suffisamment différente de celle du point isoélectrique de la forme cationique du TiO₂ (6,5 à 7).

Par ailleurs, la silice présente l'avantage de ne pas adsorber de manière significative la lumière du visible ce qui est favorable en terme de blancheur de la feuille.

20

25

30

35

15

Le pH pour la mise en présence des deux dispersions correspondantes est compris entre les points isoélectriques de l'agent espaceur et du TiO₂. Normalement la borne supérieure est imposée par le point isoélectrique du TiO₂ considéré et la borne inférieure devrait être imposée par le point isoélectrique de l'agent espaceur concerné. Dans le cas présent, ce pH devrait être compris entre 2 et 6,5. Toutefois, dans le cas particulier du RL62, il est nécessaire d'éviter la dissolution de son traitement de surface. A cet effet, on limitera la plage de pH entre 4,5 et 6,5. Plus préférentiellement le procédé selon l'invention est mis en oeuvre à un pH de l'ordre de 5,5.

Dans le cas particulier de la préparation d'une composition comprenant du TiO₂ sous une forme rutile pigmentaire cationique associée à des agrégats de particules de silice, la silice est utilisée à raison d'au moins

1 % en poids par rapport au poids de TiO₂.

Ce n'est qu'à partir de ce taux en silice que l'on observe un gain significatif en termes de rétention et d'opacité. Ce taux de silice peut être augmenté jusqu'à environ 20 % en poids de TiO₂. Au delà de cette valeur, on est confronté au problème de fragilité du papier évoqué ci-dessus.

En conséquence, la silice est de préférence utilisée à raison d'environ 5 à 15 % en poids du poids en ${\rm TiO_2}$ et plus préférentiellement à raison de 10% en poids .

La silice peut être introduite soit sous forme d'une dispersion aqueuse de particules de silice de type slurry ou être générée in situ par acidification d'une solution de silicates.

5

10

20

25

30

35

Dans le cas particulier où l'on précipite la silice in situ dans la dispersion de ${\rm TiO_2}$, il est procédé, après l'étape de précipitation, à un ajustement du pH du milieu réactionnel, à une valeur propice à la manifestation des forces électrostatiques entre le ${\rm TiO_2}$ et la silice ainsi générée. Ces forces sont donc nécessaires à leur hétérocoagulation.

La seconde étape requise selon le procédé revendiqué, correspond en fait à une opération de mûrissement des flocs minéraux mixtes formés dans l'étape précédente.

Comme évoqué précédemment, les flocs minéraux mixtes obtenus selon le procédé revendiqué sont notamment destinés à être mis en oeuvre comme agent opacifiant dans l'industrie papetière. Ceci sous entend toute une succession de manipulations desdits flocs.

Il est par conséquent nécessaire que ces flocs soient suffisamment solides pour résister aux cisaillements, le cas échéant à l'effet floculant de dérivés polymériques comme la PAE (polyamino-amide-épichlorohydrine), ainsi qu'au retrait de l'eau lors de la formation et du séchage de la feuille.

Il importe donc que les particules de TiO₂ présentes dans la composition obtenue selon l'invention soient non seulement suffisamment dispersées pour améliorer leur rendement d'opacité, mais également mieux retenues lors de la formation de la feuille.

En conséquence, l'opération de mûrissement réalisée selon le procédé revendiqué s'avère particulièrement avantageuse pour renforcer les interactions chimiques voire stériques établies au sein des flocs minéraux mixtes. Il est par ailleurs vraisemblable que certaines des liaisons ioniques soient converties en liaisons covalentes à l'issue de cette étape de mûrissement.

Dans le cas particulier de la préparation d'une composition de flocs minéraux mixtes à base de TiO_2 et SiO_2 , cette étape de mûrissement est

réalisée à une température supérieure à 40 °C. De préférence, la température est comprise entre environ 60 °C et 100 °C.

En ce qui concerne la durée du chauffage, elle est d'au moins 30 minutes et le cas échéant peut se prolonger jusqu'à trois heures. A l'issue de cette étape de chauffage, la composition résultante est laissée refroidir à température ambiante et peut être récupérée telle quelle.

Cette composition peut être mise en oeuvre directement sous cette forme à titre d'agent opacifiant.

Toutefois on peut également envisager de la formuler sous une forme sèche. A cet effet, il s'avère possible d'appliquer à la dispersion obtenue selon l'invention différentes techniques de séchage conventionnelles.

10

15

20

25

30

35

En particulier il peut s'agit d'un séchage par atomisation ou séchage en couche mince. Toutefois un simple séchage ne conduira pas à un produit convenablement redispersé. Les flocs s'agglomérant au séchage, il est préférable de désagglomérer le produit par une étape de broyage à jet d'air (micronisation).

Selon une autre variante du procédé revendiqué, les flocs minéraux mixtes obtenus à l'issue de la première ou de la seconde étape du procédé peuvent subir un traitement de surface minéral. Celui-ci comprend au moins un oxyde hydraté tel que défini précédemment. Ces derniers peuvent être précipités au sein du milieu réactionnel après mise en présence des dispersions de TiO₂ et de l'agent espaceur.

Le traitement de surface minéral représente environ 16% en poids ou moins ou de préférence de l'ordre de 10% en poids ou moins, par rapport au poids total des flocs minéraux mixtes ainsi traités.

La présente invention s'étend aux compositions à base de TiO₂ susceptibles d'être obtenues selon le procédé revendiqué.

Elle a également pour objet une composition à base de TiO₂ et SiO₂ caractérisée en ce que les particules de TiO₂ et SiO₂ y sont agencées sous la forme de flocs minéraux mixtes dans lesquels les particules de TiO₂ sont globalement espacées les unes des autres par des agrégats de ladite silice.

Ces flocs minéraux mixtes de TiO₂ et SiO₂ sont stabilisés grâce à des forces électrostatiques établies entres les particules de TiO₂ et les agrégats de SiO₂. Par ailleurs, cette stabilité des flocs minéraux est renforcée par le fait qu'ils subissent un mûrissement tel que décrit précédemment. Cette

opération de mûrissement contribue notamment à créer des liaisons covalentes entre le TiO_2 et SiO_2 au sein des flocs.

Dans le cas des flocs minéraux mixtes selon l'invention, il n'existe pas une répartition uniforme des agrégats de l'agent espaceur inorganique autour des particules de TiO₂. Cette répartition est discontinue. Les figures 1 et 2 donnent une idée de la structure desdits flocs.

Le TiO₂ est de préférence un TiO₂ rutile de taille pigmentaire.

Il peut le cas échéant, être revêtu d'un traitement de surface minéral. Ce traitement de surface peut être choisi parmi les phosphate, alumine, silice, zircone, oxyde de cérium, oxyde de zinc, oxyde de titane et leurs mélanges.

La quantité en oxyde(s) peut être de l'ordre de 1à 20 % en poids ou moins ou de préférence de l'ordre de 3 à 10 % en poids ou moins, par rapport au poids total du pigment.

Le TiO₂ est de préférence un TiO₂ rutile pigmentaire cationique.

De manière préférentielle, le TiO₂ est le RL62.

Plus préférentiellement, la silice utilisée est une silice de grande surface spécifique notamment comprise entre environ 20 et 300 m²/g. Elle se présente sous la forme d'agrégats de tailles comprises entre environ 0,5 et 10 µm. La silice est de préférence une silice de précipitation. Il peut également s'agir d'une silice générée in situ par acidification d'une solution de silicates.

La silice est de préférence présente à raison d'environ 1 à 20 % en poids du poids en TiO_2 et plus préférentiellement à raison d'environ 5 à 15 % en poids et plus préférentiellement 10 %.

25

30

35

10

15

20

Le cas échéant, ces flocs minéraux à base de TiO₂ et SiO₂ peuvent être revêtus d'au moins un traitement de surface minéral tel que défini précédemment.

La quantité en traitement de surface minéral peut être de l'ordre de 16 % en poids ou moins ou de préférence de l'ordre de 10 % en poids ou moins, par rapport au poids total des flocs minéraux mixtes.

Les compositions telles que définies ci-dessus ou obtenues selon l'invention s'avèrent intéressantes pour la préparation du papier dont le papier lamifié et tout particulièrement avantageuses en terme de rétention au niveau des fibres de celluloses et de rendement d'opacité du TiO₂ utilisé.

Les procédés de préparation classiques du papier lamifié ou papier décor, mettent généralement en oeuvre, outre les fibres de cellulose à caractère anionique, et l'agent opacifiant, un agent polymère à caractère cationique jouant le rôle d'agent de renforcement à l'état humide et d'agent de rétention.

Dans le cas de l'emploi d'une composition à base de flocs minéraux TiO_2/SiO_2 à titre d'agent opacifiant, on observe que la rétention chimique par attraction électrostatique est avantageusement renforcée comparativement au TiO_2 sous forme individuelle cationique.

10

15

20

25

30

35

5

Cette amplification en terme de rétention peut s'expliquer de la manière suivante.

En l'absence de polymère cationique, le TiO₂ cationique est attiré par les fibres de cellulose anioniques ce qui est favorable à la rétention du TiO₂. En revanche, en présence du polymère, les interactions fibre-TiO₂ changent et la rétention du TiO₂ diminue. Ce phénomène s'interprète par une cationisation des fibres de cellulose, résultant de leur recouvrement par le polymère cationique.

A l'inverse, dans une composition à base de flocs minéraux TiO_2/SiO_2 , il existe un mélange de charges cationiques TiO_2 , et anioniques, SiO_2 , dont le potentiel zeta est globalement négatif. Les flocs minéraux mixtes se comportent donc comme des charges anioniques. Dans ces conditions on peut imaginer que les flocs mixtes puissent entrer en interaction attractive avec les fibres de cellulose positivées par le polymère cationique, par l'intermédiaire des agrégats de silice chargés négativement qu'ils contiennent. il en résulte un gain en terme de rétention.

Les compositions à base de flocs minéraux mixtes revendiquées et obtenues selon l'invention sont particulièrement intéressantes à titre d'agent opacifiant et notamment en industrie papetière.

Le gain d'opacité mesuré sur les feuilles préparées à l'aide d'une composition à base de flocs minéraux mixtes selon l'invention, résulte visiblement du cumul de deux phénomènes: l'augmentation de la quantité de TiO₂ retenue sur la feuille, résultant d'une meilleure rétention au moment de la formation du matelas fibreux, et l'amélioration du rendement d'opacité résultant de la meilleure dispersion des particules de titane contenues dans lesdits flocs.

Par ailleurs, il a été noté que ces compositions privilégiaient la blancheur du papier les incorporant.

Outre cette application en industrie papetière, les compositions revendiquées et obtenues selon l'invention sont également avantageuses à titre d'agent opacifiant dans les industries de peintures et de plastiques.

Les exemples et figures figurant ci-après sont présentés à titre illustratif et non limitatif de la présente invention.

Figures:

10

5

Figure 1 : représentation schématique de pigments TiO₂ espacés par des agrégats de SiO₂.

Figure 2 : cliché de microscopie électronique en transmission de flocs minéraux mixtes à base de TiO₂ et SiO₂.

Figure 3 : évolution de la rétention de charge pour différents minéraux mixtes en fonction de la vitesse d'agitation imposée au mélange "cellulose/PAE/charge" avant formation du matelas fibreux.

MATERIELS ET METHODES

Les produits utilisés sont des produits commerciaux :

25

20

Le dioxyde de titane utilisé dans les exemples est du dioxyde de titane rutile commercialisé sous le nom de Rhoditan RL62 par la société RHONE-POULENC. Ce pigment est constitué de TiO₂ rutile enrobé par un traitement de surface phosphate alumine (P₂O₅/Al₂O₃). A pH 6, son potentiel zéta est positif. Son point isoélectrique est localisé aux environs de 6,5-7.

30

- Fibres de cellulose : feuilles sèches d'un mélange 70/30 de fibres courtes / fibres longues préalablement raffiné à 35° SR, fournies par la société ARJO WIGGINS.

35

 La silice est une silice de précipitation de grande surface spécifique comprise entre 20 et 300 m².g¹¹ et possédant des agglomérats de tailles comprises entre 0,5 et 10 µm. Son point isoélectrique se situe aux environs de 2.

- résine PAE (polyaminoamide épichlorohydrine), R4947* de la société CECA

A. Test de la "formette de rétention"

10 Appareillage:

- Disperseurs rapides Dispermat[™] et Pendraulik[™]
- Cuves de mélange
- "Formette de rétention", société TECHPAP

15

Mode opératoire :

- Préparation de la dispersion fibres/TiO₂

A 15 g de fibres redispersées dans 500 ml d'eau désionisée pendant 10 mn au Dispermat à 3 000 t/mn, on rajoute la quantité nécessaire de slurry TiO₂ ou de suspension de produit selon l'invention, de façon à introduire 15 g en sec de TiO₂. On prendra donc en considération l'extrait du slurry de TiO₂ ou de la suspension selon l'invention. Cet ajout est réalisé dans une cuve de mélange. Il est suivi d'une dilution à 4 litres avec de l'eau désionisée.

25

20

Préparation de la prise d'essai

Une prise d'essai de 500 ml du mélange bien homogénéisé est soutirée dans une éprouvette. On y rajoute à la micropipette, la quantité de résine PAE voulue (solution commerciale diluée 10 fois). L'éprouvette est retournée 2 fois pour bien mélanger. Cette prise d'essai est alors introduite dans la formette de rétention pour obtenir une feuille.

Mesure de la rétention

35

30

La formation de la feuille est déclenchée après un temps d'agitation de 30 s à une vitesse de 1 300 t/mn suivi d'un temps de repos de 1 s. La feuille obtenue est récupérée sur la toile sous la forme d'un "paton",

séché à l'étuve puis calciné à 800 °C. Les cendres obtenues sont alors pesées à 10⁻⁴ g près.

Le taux de rétention est donné par : P2/P1.

5

P1 = poids de charges ($TiO_2 + SiO_2$) dans un prélèvement initial de 500 ml P2 = poids de cendres après calcination de la feuille préparée.

B. Test de rendement d'opacité

10

Les tests de rendement d'opacité ont été effectués à partir de formettes fabriquées afin de connaître la répartition spatiale du dioxyde de titane dans la feuille sèche.

Les formettes ont été fabriquées en accord avec le mode opératoire décrit au paragraphe ci-dessous.

Les propriétés optiques de la formette imprégnée et pressée ont également été mesurées selon la méthode décrite ci-après.

1. Fabrication des formettes

20

15

i) Formulation de la pâte à papier

Cellulose : 15 g (qui représente 100 parts)

Composition opacifiante : 100 parts (exprimées en TiO₂) soit 15 g

PAE: 0,8 % en sec par rapport à la cellulose

25

30

ii) Préparation de la pâte : défibrage

On déchire la cellulose à la main en petits carrés après l'avoir humectée d'eau. Les petits carrés de cellulose sont ajoutés progressivement dans 500 ml d'eau en agitation dans le bol Dispermat à 1000 t/mn. Après ajout de la cellulose, on augmente la vitesse à 3000 t/mn et on laisse sous agitation 10 mn.

iii) Mélange composition opacifiante-fibres

On dilue à 1 litre la cellulose défibrée. Puis, on met sous agitation dans un mélangeur avec pale. On ajoute la composition opacifiante sous la forme d'une poudre ou d'une suspension puis, on agite pendant 5 mn. Finalement, on dilue l'ensemble à 4 litres en vue de fabriquer des formettes de grammage à 80 g/m².

iv) Fabrication de formettes

On prélève 500 ml de suspension bien homogénéisée dans une éprouvette. On rajoute la PAE (solution commerciale diluée 10 fois pour avoir un volume de prise acceptable), soit 1 ml. On retourne plusieurs fois l'éprouvette pour bien mélanger.

On verse le contenu de l'éprouvette dans le bol de la tireuse de formette rempli avec 6 litres d'eau distillée. On mélange par bullage pendant 10 s, on laisse reposer pendant 10 s, puis on fabrique la formette en tirant sous vide.

La formette est ensuite récupérée sur un support en carton, puis placée dans un sécheur sous vide pendant 7 mn.

On pèse alors la formette avec précision et on rectifie le volume prélevé pour atteindre le grammage voulu (règle de trois).

Si une feuille a le grammage désiré et n'a pas de défaut de fabrication, on la sélectionne pour la suite des opérations, c'est-à-dire, caractérisations chimiques et optiques.

2. Mesure du taux de cendres

15

20

30

35

On mesure la quantité de TiO₂ présente dans la feuille de 80 g/m² en calcinant un tiers de la formette à 800 °C pendant une heure.

On calcule ainsi le pourcentage de TiO₂ présent dans la feuille :

Le taux de cendres mesure la quantité de charges minérales présente dans la feuille. Cette détermination se fait selon la méthode NF 03-047 (Recueil des Normes françaises Papier, Carton, et Pâte : méthode d'essais, tome A, 4^{ème} édition, 1985).

3. Mesure de l'opacité de la feuille imprégnée et pressée

i) <u>Préparation de la résine mélamine formol (résine Inilam 3240 de la société CECA)</u>

On fait chauffer 400 g d'eau à 60 °C. Lorsque cette température est atteinte, on verse en pluie progressivement sous agitation magnétique les 245 g de résine préalablement pesée. Une fois que tout est solubilisé on laisse sous agitation à 60 °C pendant 30 mn. Après refroidissement, on filtre à travers une toile de 50 µm.

ii) Imprégnation - pressage

On découpe des bandes de papier de 7 cm sur 10 cm. Les bandes sont ensuite imprégnées par capillarité en les posant 1 mn sur la résine. On exprime entre deux tiges de verre et on fait sécher pendant 2 mn dans une étuve à 120 °C.

On imprègne une deuxième fois les bandes par immersion dans la résine pendant 1 mn. On exprime entre une tige d'acier et une tige de verre. On fait sécher pendant 3 mn dans l'étuve à 120 °C.

On fixe ces feuilles sur un support constitué de bas en haut de 2 barrières blanches et 3 barrières kraft, la formette étant en contact directe avec les barrières kraft.

On presse les stratifiés obtenus pendant 8 mn à 150 °C sous une pression de 100 bars.

20

25

35

5

10

15

iii) Mesures des propriétés optiques

Les mesures d'opacité sur les stratifiés se font en évaluant le rapport de contraste, pour chacun des papiers à tester, entre la zone sur fond kraft et la zone sur fond blanc, en utilisant la fonction "opacité du spectrocolorimètre Elrepho 2000 de la société DATACOLOR.

EXEMPLE 1

Préparation d'une composition de flocs minéraux mixtes selon l'invention sous forme d'une suspension aqueuse

Le RL 62 est utilisé sous la forme d'une suspension aqueuse titrant 40 g/l.

Les flocs minéraux sont élaborés par hétérocoagulation des particules du TiO₂ avec les agrégats de silice.

Le processus d'hétérocoagulation consiste à ajouter à pH régulé le slurry de silice dans un pied de cuve agité contenant la suspension de TiO₂. Le pH d'hétérocoagulation peut être choisi entre 4,5 et 6,5, mais il est

préférable de travailler à pH = 5.5. Le pH est régulé en ajoutant simultanément au slurry de silice une solution de HCl. Cette opération a lieu à température ambiante. La suspension finale contient 10 % en masse de silice par rapport à la teneur en pigment TiO_2 et l'extrait sec global ($TiO_2 + SiO_2$) est d'environ de 11%.

Après un contact de 15 minutes à pH régulé de 5,5, la suspension, toujours agitée, est portée à une température comprise entre 60 °C et la température d'ébullition pendant 1 à 3 h puis refroidie à température ambiante.

Tous les échantillons préparés selon ce protocole, ont été testés en préparant des formettes (feuille ronde). Pour tous les essais le volume de mélange "fibre + charge + PAE" prélevé dans la cuve de mélange a été ajusté de manière à obtenir des feuilles de même grammage : 80 g/m².

10

15

20

25

30

35

- Une partie de la formette est calcinée pour déterminer la quantité d'oxyde présent dans la feuille sèche (SiO₂ + TiO₂). Connaissant la quantité de silice ajoutée par rapport au TiO₂, on en déduit le % de TiO₂ présent dans la feuille sèche. Le protocole de formation de la formette et le principe de calcul du taux de TiO₂ sont détaillés dans le chapitre précédent, Matériels et méthodes.

Il a été vérifié par dosage du TiO₂ et du SiO₂ par fluorescence X dans les feuilles obtenues qu'il n'y avait pas de rétention préférentielle de l'une ou l'autre des espèces minérales. Le rapport SiO₂/TiO₂ est conservé tout au long du procédé de la formation de la feuille.

- L'autre partie de la formette est imprégnée de résine et pressée de manière à obtenir un papier stratifié dont on mesure ensuite l'opacité et la blancheur. Les protocoles d'imprégnation et de mesure d'opacité sont également décrits ci-dessus.

Certains échantillons ont également été testés dans le test de formette de rétention pour évaluer la résistance des flocs au cisaillement. Ce test consiste à soumettre le mélange "fibre + charge + PAE" à une agitation vive et cisaillante pendant un certain temps immédiatement avant de former la formette.

La contribution de chacun des deux phénomènes (rétention et effet espaceur) au gain d'opacité total mesuré pour chacun des essais est détaillée dans les tableaux 1 et 2.

Le tableau 2 ci-après rend également compte des résultats obtenus avec une composition témoin 1 (T1). Celle-ci est préparée en mélangeant simplement la silice et le TiO₂.

		1	TABLEAU 1			
Essais	S		Opacité	cité		Taux d
						0%
SiO ₂	Mûrissement	Mesures	Дора	Δrét	Δ esp	Mesures
9,	Aucun	91,1	Réf.	Réf.	Réf.	35,6

 Δ cend

Taux de cendres (% TiO₂) Ref

35,6 37,8 39,9 39,5 39,7

+2,2 +4,3 +4,1 +4,1 +4,1

+0,3

+ 1,1 + 1,0 + 1,0

6'0+

92,0 92,9

3 h à ébullition 3 h à ébullition 3 h à ébullition 1 h à ébullition

0 % 1 % 5 %

2 m 4 m

°

+0,7 +0,7

+1,8

+1,7

92,8

10 % 10 %

93

6,0+

+2,0

TABLEAU 2	

Prise de résine	(%)	106	105	130
Taux de cendres	(%)	36,5	41,5	39.5
Opacité (%)		90,5	91,8	89,5
Mûrissement		aucun	1 h à ébullition	simple mélange
SiO ₂		0 %	10 %	10 %
essai n°		9	7	Ţ

 Δ_{cend} = gain de taux de cendres résultant de la meilleure rétention du TiO_2 lors de la formation de la feuille

 $\Delta_{opa} = \Delta_{r\acute{e}t} + \Delta_{esp} = gain d'opacité total$

 $\Delta_{\text{rét}} = \Delta_{\text{cend}}$ * pente = gain d'opacité résultant de l'augmentation du taux de TiO₂ retenu dans la feuille (meilleure rétention)

 Δ_{esp} = Δ_{opa} - $\Delta_{\text{rét}}$ = gain d'opacité résultant de la meilleure dispersion du TiO₂ retenu dans la feuille grâce à l'effet espaceur des agrégats de silice.

10

15

20

25

Les résultats des essais 1 à 5 montrent clairement que l'utilisation de flocs minéraux mixtes permet non seulement d'améliorer la rétention première passe (taux de cendres plus élevés) mais permet également d'améliorer le rendement d'opacité du TiO_2 retenu puisque dans tous les cas le gain d'opacité (Δ_{opa}) est supérieur au gain d'opacité normalement prévu par une augmentation du taux de cendres ($\Delta_{rét}$).

En revanche, la comparaison des résultats de l'essai témoin 1, T1 à ceux des essais 6 et 7 révèle clairement qu'un simple mélange, c'est-à-dire sans prendre de précaution particulière au niveau des conditions de pH et de mûrissement, ne conduit pas à une amélioration en terme d'opacité.

L'augmentation significative de la prise de résine est l'indice d'une structure poreuse et non homogène.

En ce qui concerne l'influence du taux de silice, on remarque que les essais réalisés avec 5 et 10 % de silice sont nettement plus performants que l'essai réalisé avec 1 % de silice.

En conséquence, les résultats précédents montrent que par rapport à une formulation classique (TiO₂ sans silice), l'utilisation d'un mixte minéral contenant 5 et 10 % de silice devrait permettre d'améliorer l'opacité de 0,6 à 0,9 point à taux équivalent de cendres. Ce gain correspond au rendement d'opacité mesuré pour les essais les plus performants.

On peut également envisager avec des compositions selon l'invention, d'utiliser moins de TiO₂ tout en conservant le même niveau d'opacité qu'une formulation classique sans silice puisque les minéraux mixtes améliorent le taux de cendres et le rendement d'opacité. Le gain potentiel en TiO₂ peut être estimé en évaluant le gain de taux de cendres correspondant à un gain d'opacité égal au rendement d'opacité. Cette valeur rapportée au taux

de cendres des essais sans silice correspond au pourcentage de ${\rm TiO_2}$ qui peut être économisé tout en restant au même niveau d'opacité que l'essai témoin. Dans ces conditions, l'utilisation d'un mixte minéral contenant 10 % de silice devrait permettre d'économiser au moins 7 à 10 % de ${\rm TiO_2}$ tout en conservant le même niveau d'opacité qu'une formulation classique sans silice.

EXEMPLE 2:

15

20

25

30

A l'aide du test de la "formette de rétention", l'aptitude à la rétention du produit obtenu selon l'invention a été comparée avec celles d'oxydes de titane "classiques".

Produit A: produit selon l'invention $SiO_2 = 10 \%$ Produit B: produit selon l'invention, $SiO_2 = 15 \%$

Produit C: TiO₂ Rhoditan RL18

Produit D : TiO₂ Rhoditan RL62.

Les résultats du test sur "formette de rétention" sont donnés au tableau 3.

A un taux de PAE de 0,8 %, taux usuel dans l'application, les produits selon l'invention conduisent à des taux de rétention supérieurs à celui du RL62 et équivalents à celui du RL18. Ceci est dû à leur caractère anionique mais aussi à leur structure particulière conférée par le procédé de synthèse faisant l'objet de l'invention.

A PAE de 0 %, on met en évidence le caractère auto-rétentif du produit. Bien que plus anioniques que le RL18, les produits selon l'invention présentent un caractère autorétentif nettement plus marqué. Cela est bien la preuve d'une structure géométrique particulière constituée de flocs lâches et peu denses, et montre que, dans ce cas, la rétention est loin d'être uniquement le résultat d'interactions de nature électrostatique entre les fibres (naturellement anioniques) et les charges.

TABLEAU 3:

		Taux de	e PAE(% sed	c/fibres)	
Réf. produit	0	0,2	0,4	0,8	1,2
		Tau	x de rétention	ı (%)	
A	38	64	74	72	73
В	24	46	55	69	73
С	2,5	36	44	79	74
D	49	57	47	40	42

EXEMPLE 3

Détermination de l'influence de l'étape de mûrissement

10

15

20

a) Effet en terme de rétention :

Les résistances aux cisaillements de certaines compositions de flocs minéraux identifiés en exemple 1 ont été testées par le test de "formette de rétention".

La figure 3 montre l'évolution de la rétention de charge pour différentes compositions en fonction de la vitesse d'agitation imposée au mélange "cellulose/PAE/charge" avant formation du matelas fibreux.

On remarque que la rétention des flocs minéraux mixtes diminue lorsque la vitesse d'agitation augmente. Elles restent toutefois nettement plus élevées que celles obtenues à partir de la charge sans silice. Nous pouvons donc conclure que les flocs minéraux mixtes sont suffisamment résistants aux cisaillements pour conserver une bonne rétention première passe.

Les résultats obtenus montrent également que :

- la réduction de la durée de mûrissement de 3 h à 1 h influe peu sur la résistance des flocs,
- le système contenant 10 % de silice apporte une meilleure rétention que le système contenant 5 % de silice quelle que soit la vitesse d'agitation. Ce résultat confirme qu'il est préférable d'utiliser 10 % de silice.

b) Effet en terme d'opacité

En fait, il s'avère qu'il n'est pas possible d'obtenir une feuille de papier de bonne qualité à partir d'un mélange RL62 SiO_2 à 10 % en SiO_2 , n'ayant pas subi d'étape de mûrissement.

Dès l'ajout de cellulose et de la PAE dans la cuve de mélange, on est confronté à une agglomération et formation de "pelotes".

L'étape de mûrissement est donc une étape nécessaire à la formation de flocs minéraux mixtes efficaces.

10 **EXEMPLE 4**:

5

Effet sur la blancheur des feuilles de papier stratifiées des compositions de flocs minéraux mixtes selon l'invention

La blancheur des feuilles stratifiées (la mesure est effectuée sur la zone fond blanc) a été mesurée pour chaque essai. Les résultats sont regroupés dans le tableau 4 ci-après.

Les mesures de blancheur ont été effectuées selon l'échelle CIE l* a* b*, sur un spectrocolorimètre ELREPHO 2000® de la société DATACOLOR.

TABLEAU 4

	Essais			Blan	Blancheur	
ž	SiO ₂	Mûrissement	Γ.	۵۲*	p*	*d\(\nabla\)
_	%0	Aucun	93,8	Réf.	5,0	Réf.
2	1 %	3 h à ébullition	93,9	+0,1	4,7	-0,3
က	5 %	3 h à ébullition	94,0	+0,2	4,5	-0,5
4	10 %	3 h à ébullition	94,3	+0,5	4,4	9'0-
9	10 %	1 h à ébullition	94,1	+0,3	4,4	9'0-

De manière générale, on observe que l'utilisation des compositions selon l'invention améliore la blancheur de la feuille stratifiée et cela d'autant plus que le taux de silice augmente. Pour 5 et 10 % de silice on mesure un gain d'environ 0,2 point en L* et surtout une diminution du b* de 0,4 à 0,6 point. Une telle diminution du b* confère un sous-ton bleu prononcé à la feuille stratifiée et renforce l'impression de blancheur.

En plus d'une amélioration de la rétention et du rendement d'opacité du TiO₂ retenu, elles entraînent donc également une amélioration de la blancheur de la feuille stratifiée.

EXEMPLE 5

<u>Préparation d'une composition de flocs minéraux mixtes</u> sous forme de poudre.

15

20

25

30

35

10

Dans cet exemple, l'hétérocoagulation est réalisée selon le procédé décrit à l'exemple 1. Après l'étape de mûrissement (1 h à 90 °C), le produit est séché en couche mince (15 h en étuve à 150 °C). Le produit obtenu est divisé en deux parties : l'une est utilisée telle quelle alors que l'on fait subir à l'autre un broyage à jets d'air (micronisation).

Ces deux produits sont soumis au test de rendement d'opacité. Ils sont mis en oeuvre sur les fibres de cellulose après une mise en slurry à un extrait sec de 40 %. Ils sont comparés à un produit témoin : oxyde de titane RHODITAN RL62 mis en slurry à 40 %. Dans cet exemple, la formulation utilisée est la suivante :

Fibre de cellulose : 100 parts (15 g) Pigment opacifiant : 100 parts (15 g) Résine PAE : 0,8 % en sec /fibres

Dans le cas du produit témoin, on introduit 15 g de TiO_2 RL62. Dans le cas des produits selon l'invention, on introduit 15 g de l'ensemble $TiO_2 + SiO_2$.

Le reste du mode opératoire est celui décrit dans le test "Rendement d'opacité".

Les résultats sont donnés au tableau 5 :

Ces résultats montrent clairement qu'un produit réalisé selon l'invention auquel on fait subir un seul séchage (essai 2) n'est pas meilleur qu'un produit standard (essai 1). En revanche, ce même produit, après une étape de micronisation (essai 3) dégage tout son potentiel d'amélioration de

rendement d'opacité. Il conduit en effet à une feuille de papier qui, après stratification, dégage une opacité de 2,4 points supérieure à celle du papier stratifié élaboré à partir du produit de référence RHODITAN RL62, et ce pour un taux de TiO₂ dans la feuille tout à fait comparable.

	Taux de TiO ₂	(%)	38,2	37,8	37,8
	Taux de	cendres (%)	38,2	41,6	41,6
	Opacité (%)		89,1	89,3	91,5
J 5	Micronisation		1	non	ino
TABLEAU 5	Séchage	étuve	į	15 h à 150 °C	90°C 15hà 150°C
	Mûrissement		1	1 h à 90 °C	1 h à 90 °C
	SiO ₂		% 0	10 %	10 %
	Essai n°		-	2	က
	<u> </u>				

REVENDICATIONS

- 1. Procédé de préparation d'une composition à base de TiO₂ utile comme agent opacifiant caractérisé en ce qu'il comprend les étapes selon lesquelles :
 - on mélange à une dispersion aqueuse de TiO₂, une dispersion aqueuse d'au moins un agent espaceur inorganique, le mélange_des deux dispersions étant effectué sous agitation et à un pH compris entre les points isoélectriques respectifs desdits TiO₂ et agent espaceur et choisi de telle manière que lesdits TiO₂ et agent espaceur possèdent des charges de surface opposées et suffisamment différentes pour conduire, sous l'effet de forces électrostatiques, à leur agencement en des flocs minéraux mixtes dans lesquels les particules de TiO₂ sont globalement espacées les unes des autres par des particules et/ou agrégats de l'agent espaceur;

10

15

- on régule le cas échéant, le pH à la valeur fixée en étape 1,
- on mûrit la dispersion aqueuse de flocs minéraux mixtes
 résultante à une température suffisante pour renforcer la solidité des liaisons établies entre les particules de TiO₂ et les particules et/ou agrégats de l'agent espaceur,
 - on récupère ladite composition sous forme d'une dispersion aqueuse de flocs minéraux mixtes et
 - éventuellement on formule ladite composition sous une forme sèche.
- 2. Procédé selon la revendication 1 caractérisé en ce que le 30 dioxyde de titane utilisé est un TiO₂ rutile.
 - 3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le dioxyde de titane utilisé est un TiO₂ rutile de taille pigmentaire.
- 4. Procédé selon la revendication 1, 2 ou 3 caractérisé en ce que le TiO₂ est revêtu d'un traitement de surface minéral.

5. Procédé selon la revendication 4 caractérisé en ce que le traitement de surface comprend au moins un composé choisi parmi les alumine, silice, zircone, phosphate, oxyde de cérium, oxyde de zinc, oxyde de titane et leurs mélanges.

5

6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que la dispersion aqueuse de TiO₂ comprend environ 5 à 80 % en poids de TiO₂.

10

15

20

25

30

- 7. Procédé selon la revendication 6 caractérisé en ce que la dispersion aqueuse de TiO₂ comprend environ 5 à 40 % en poids de TiO₂.
- 8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que l'agent espaceur inorganique est choisi parmi les oxydes de silicium, de titane, de zirconium, de zinc, de magnésium, d'aluminium, d'yttrium, d'antimoine, de cérium et d'étain ; les sulfates de baryum et de calcium ; le sulfure de zinc ; les carbonates de zinc, de calcium, de magnésium, de plomb et de métaux mixtes ; les phosphates d'aluminium, de calcium, de magnésium, de zinc, de cérium et de métaux mixtes ; les titanates de magnésium, de calcium, d'aluminium et de métaux mixtes ; les fluorures de magnésium et de calcium ; les silicates de zinc, de zirconium, de calcium, de baryum, de magnésium, d'alcalino-terreux mixtes et de minéraux silicatés ; les aluminosilicates d'alcalin et d'alcalino-terreux ; les oxalates de calcium, de zinc, de magnésium, d'alumínium et de métaux mixtes ; les aluminates de zinc, de calcium, de magnésium et d'alcalino-terreux ; l'hydroxyde d'aluminium et leurs mélanges.
- 9. Procédé selon l'une des revendications 1 à 8 caractérisé en ce que l'agent espaceur inorganique est choisi parmi les oxydes de silicium, de zirconium, d'aluminium, d'antimoine, de cérium, d'étain et leurs mélanges.
 - 10. Procédé selon l'une des revendications 1 à 9 caractérisé en ce que l'agent espaceur inorganique est utilisé à raison d'environ 1 à 40 % en poids par rapport au poids de TiO₂.

- 11. Procédé selon l'une des revendications 1 à 10 caractérisé en ce que l'agent espaceur inorganique est utilisé à raison d'environ 5 à 15 % en poids par rapport au poids de TiO₂.
- 12. Procédé selon l'une des revendications 1 à 11 caractérisé en ce que le TiO₂ est un TiO₂ rutile pigmentaire cationique.
- 13. Procédé selon la revendication 12 caractérisé en ce que l'agent espaceur inorganique est une silice, une alumine, un silicoaluminate ou un de leurs mélanges.
 - 14. Procédé selon l'une des revendications 1 à 13 caractérisé en ce que l'agent espaceur inorganique est une silice et que le TiO₂ est un TiO₂ rutile pigmentaire cationique.
- 15. Procédé selon la revendication 14 caractérisé en ce que la silice possède une surface spécifique comprise entre environ 20 et 300 m²/g.
- 16. Procédé selon la revendication 14 ou 15 caractérisé en ce que la silice se présente sous la forme d'agrégats de taille comprise entre environ 0,5 et 10 μm.
 - 17. Procédé selon l'une des revendications 14 à 16 caractérisé en ce que la silice est générée in situ par acidification d'une solution de silicates.
 - 18. Procédé selon la revendication 17 caractérisé en ce que le pH est ajusté après précipitation in situ de la silice à une valeur propice à la manifestation des forces électrostatiques entre le TiO₂ et la silice ainsi générée.
 - 19. Procédé selon l'une des revendications 14 à 17 caractérisé en ce que les deux dispersions aqueuses sont mises en présence à un pH de l'ordre de 5,5.
 - 20. Procédé selon l'une des revendications 14 à 19 caractérisé en ce que la silice est utilisée à raison d'environ 5 à 15 % en poids par rapport au poids de TiO_2 .

5

10

25

30

35

- 21. Procédé selon l'une des revendications 14 à 20 caractérisé en ce que l'étape de mûrissement est réalisée à une température comprise entre environ 60 °C et 100 °C pendant au moins 30 minutes.
- 22. Procédé selon l'une des revendications 1 à 21 caractérisé en ce que les flocs minéraux mixtes obtenus à l'issue de la première ou seconde étape subissent un traitement de surface minéral.

15

20

- 23. Procédé selon la revendication 22 caractérisé en ce que le traitement de surface minéral représente environ 16 % en poids ou moins par rapport au poids total des flocs minéraux mixtes traités.
 - 24. Composition à base de TiO₂ susceptible d'être obtenue selon le procédé défini selon l'une des revendications 1 à 23.
 - 25. Composition à base de TiO₂ et de SiO₂ caractérisée en ce que les particules de TiO₂ et de SiO₂ y sont agencées sous la forme de flocs minéraux mixtes à base de TiO₂ et de SiO₂ dans lesquels les particules de TiO₂ sont globalement espacées les unes des autres par des agrégats de ladite silice.
 - 26. Composition selon la revendication 25 caractérisée en ce que la silice est présente à raison d'environ 5 à 15 % en poids par rapport au TiO₂.
- 27. Composition selon la revendication 25 ou 26 caractérisée en ce que le TiO₂ est un TiO₂ rutile pigmentaire cationique.
 - 28. Composition selon l'une des revendications 25 à 27 caractérisée en ce que la silice possède une surface spécifique comprise entre environ 20 et 300 m²/g et/ou se présente sous la forme d'agrégats de taille comprise entre environ 0,5 et 10 μ m.
- 29. Composition selon l'une des revendications 25 à 28 caractérisée en ce que les flocs minéraux mixtes à base de TiO₂ et de SiO₂ sont revêtus d'un traitement de surface minéral.

- 30. Composition selon la revendication 29 caractérisée en ce que ce traitement de surface minéral représente environ 16 % en poids ou moins par rapport au poids total des flocs minéraux mixtes.
- 31. Utilisation d'une composition obtenue selon l'une des revendications 1 à 23 ou d'une composition définie selon l'une des revendications 24 à 30 à titre d'agent opacifiant.

32. Utilisation selon la revendication 31 en industries papetière, des plastiques et de peintures.

FIG.1

FIG.2

FIG.3

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

N° d'enregistrement national

de la PROPRIETE INDUSTRIELLE

établi sur la base des demières revendications déposées avant le commencement de la recherche FA 553716 FR 9716709

DOCL	IMENTS CONSIDERES COMME PER	C.	evendications oncemées	
Catégorie	Citation du document avec indication, en cas de besoi des parties pertinentes	in, d	e la demande xaminée	
X	EP 0 573 150 A (TIOXIDE GROUP S décembre 1993	2	,3,8,9, 24,25, 31,32	
;	 page 3, alinéa 7 * page 3, dernier alinéa - page revendications 1-3,6,8,9,14, 	e 4, alinéa	.,	
X	GB 2 234 990 A (TIOXIDE GROUP P février 1991	1 2	1,3,8, 10,22, 24,25, 31,32	
	* page 3, alinéa 3 * * page 7, ligne 14 - page 8, al	linéa 2 *		
X	DATABASE WPI Week 8626 Derwent Publications Ltd., Lond AN 86-165096 XP002076462	3	24-26, 31,32	
	& JP 61 097 133 A (MITSUBISHI M ET AL.) , 15 mai 1986 * abrégé *	METAL CORP.		DOMAINES TECHNIQUES RECHERCHES (Int.CL.6)
X	DATABASE WPI Week 8740 Derwent Publications Ltd., Lond AN 87-281912 XP002076463 & JP 62 197 309 A (TOKUYAMA SOU	don, GB;	1,4,5,8, 9,17,18, 24,25, 31,32	C09D
	septembre 1987 * abrégé *			• • •
X	WO 93 12184 A (ROHM AND HAAS Co juin 1993 * page 13, alinéa 4 - page 14, * page 17, ligne 23-26; revend *	alinéa 2 *	1,24,31, 32	
		-/		
	Date d'achèver	ment de la recherche		Examinateur
	3 se	ptembre 1998	Van	Bellingen, I
X:pa Y:pa au A:pe	CATEGORIE DES DOCUMENTS CITES rticutièrement pertinent à lui seul rticutièrement pertinent en combinaison avec un tre document de la même catégorie rtinent à l'encontre d'au moins une revendication arrière-plan technologique général	de dépôt ou qu'à u D : cité dans la dema L : cité pour d'autres i	et bénéficiant d et qui n'a été p ine date postéri nde raisons	l'une date antérieure ubliéqu'à cette date
O:di	vulgation non-ecrite cument intercalaire	& : membre de la mêr		

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

N° d'enregistrement national

de la PROPRIETE INDUSTRIELLE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FA 553716 FR 9716709

DOCO	MENTS CONSIDERES COMME PERTINE	Revendications concernées de la demande	
atégorie	Citation du document avec indication, en cas de besoin, des parties perlinentes	examinée	
x	US 2 176 875 A (H. V. ALESSANDRONI) octobre 1939 * page 1, colonne de droite, alinéa revendication 1 *		
X	US 2 176 877 A (H. V. ALESSANDRONI) octobre 1939 * revendication 1; exemple 1 *	24 1,8,24	
X	AU 505 597 B (LAPORTE AUSTRALIA) 29 novembre 1979 * page 3, alinéa 2 - page 4, alinéa * page 4A, dernier alinéa - page 4, 1; revendications 1,4,8 *		
D,A	WO 89 08739 A (PPG INDUSTRIES) 21 septembre 1989 * page 2, ligne 12-19 * * page 3, ligne 16-18 *	24,25, 28,31,3	2
A	US 2 220 966 A (I. J. KRCHMA) 12 nov 1940 * page 3, alinéa 3; exemple V *	vembre 1,8,24	DOMAINES TECHNIQUES RECHERCHES (Int.CL.6)
A	US 2 113 380 A (J. B. NICHOLS) 5 avi 1938 * le document en entier * 	ril 24	
	Date d'achèvement de la	recherche	Examinateur
	3 septemb	re 1998 Va	ın Bellingen, I
X:pa Y:pa au A:pe	ticulièrement pertinent à lui seul à lui seul à luitculièrement pertinent à lui seul de luitculièrement pertinent en combinaison avec un tre document de la même catégorie D : cit rilinent à l'encontre d'au moins une revendication L : cit	porie ou principe à la base de cument de brevet bénéfician a date de dépôt et qui n'a ête dépôt ou qu'à une date post é dans la demande é pour d'autres raisons	t d'une date antérieure i publié qu'à cette date érieure.