Matemática Discreta

21^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Fórmula multinomial

Identidades combinatórias diversas

Referências bibliográficas

Fórmula multinomial

Teorema (fórmula multinomial)

Se $a_1, a_2, \ldots, a_r \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + ... + a_r)^n = \sum_{t_1 + \cdots + t_r = n} {n \choose t_1, \ldots, t_r} a_1^{t_1} \cdots a_r^{t_r}$$

onde $t_1, t_2, t_r \in \mathbb{N} \cup \{0\}.$

• Com efeito, desenvolvendo o produto de n factores

$$(a_1 + a_2 + \ldots + a_r)(a_1 + a_2 + \ldots + a_r) \ldots (a_1 + a_2 + \ldots + a_r)$$

obtêm-se termos da forma $a_1^{t_1} \cdots a_r^{t_r}$, com $t_1 + \cdots + t_r = n$, que correspondem à escolha de a_1 em t_1 dos factores, a_2 em t_2 dos restantes factores, etc. Logo, existem $\binom{n}{t_1,\dots,t_r}$ termos da forma $a_1^{t_1} \cdots a_r^{t_r}$.

Matemática Discreta

Fórmula multinomial

Método recursivo para a determinação de números binomiais

Tendo em conta que para $n, k \in \mathbb{N}$,

$$\begin{pmatrix} n \\ n+k \end{pmatrix} = 0,$$
 e $\begin{pmatrix} n \\ 0 \end{pmatrix} = \begin{pmatrix} n \\ n \end{pmatrix} = 1,$

convencionando que $\binom{0}{0} = 1$, então a igualdade

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n-1 \\ k \end{array}\right) + \left(\begin{array}{c} n-1 \\ k-1 \end{array}\right)$$

estabelece um método recursivo para a determinação dos números binomiais.

Para
$$n \ge 2$$
 e $0 < k < n$ vem: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Identidades combinatórias diversas

Exemplo

Vamos mostrar que para cada inteiro positivo *n* se verifica a igualdade

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n}.$$

Considerando a grelha $n \times n$, sabemos que existem

$$\binom{n}{n}$$

caminhos mais curtos entre A e B.

Matemática Discreta

Lidentidades combinatórias diversas

Identidades combinatórias diversas (cont.)

Podemos partir o conjunto de todos os caminhos mais curtos entre A e B nos n+1 subconjuntos disjuntos

 $A_0, \ldots, A_k, \ldots, A_n$, onde A_k (para $k \in \{0, 1, \ldots, n\}$) é o conjunto de todos caminhos mais curtos entre A e B que passam no ponto (k, n - k).

Identidades combinatórias diversas (cont.)

Por aplicação do princípio da adição,

$$|\mathcal{A}_0| + \cdots + |\mathcal{A}_k| + \cdots + |\mathcal{A}_n| = {2n \choose n}.$$

Basta provar a igualdade $|A_k| = \binom{n}{k}^2$.

Esta igualdade é consequência do facto de cada caminho de A_k ser a concatenação de um caminho mais curto entre A e (k, n - k) na grelha $k \times (n - k)$, cujo número é

$$\binom{n-k+k}{k}$$

com um caminho mais curto entre (k, n - k) e B na grelha $(n - k) \times k$, cujo número é

$$\binom{k+n-k}{n-k}$$
.

Matemática Discreta

Lidentidades combinatórias diversas

Identidades combinatórias diversas (cont.)

Exemplo

Vamos mostrar a igualdade

$$\binom{n}{t_1, t_2, \ldots, t_r} = \sum_{i=1}^r \binom{n-1}{t_1, \ldots, t_i - 1, \ldots, t_r},$$

que é uma generalização da igualdade $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, uma vez que $\binom{n}{k} = \binom{n}{k} = \binom{n}{k}$.

A parte esquerda da igualdade é o número multinomial que corresponde ao número de partições de $\{1, 2, ..., n\}$ nos subconjuntos $A_1, ..., A_r$, com cardinalidade $t_1, ..., t_r$, respectivamente.

Identidades combinatórias diversas (cont.)

Podemos dividir estas partições nos seguinte *r* tipos de partições distintas:

- (1) aquelas em que $n \in A_1$, cuja cardinalidade corresponde ao número de partições de n-1 elementos em r subconjuntos, com cardinalidades t_1-1, t_2, \ldots, t_r , respectivamente;
- (2) aquelas em que n ∈ A₂, cuja cardinalidade corresponde ao número de partições de n − 1 elementos em r subconjuntos, com cardinalidades t₁, t₂ − 1,..., tr, respectivamente;
- (·) etc;
- (r) aquelas em que $n \in A_r$, cuja cardinalidade corresponde ao número de partições de n-1 elementos em r subconjuntos, com cardinalidades t_1, t_2, \ldots, t_r-1 , respectivamente.

Matemática Discreta

Lidentidades combinatórias diversas

Identidades combinatórias diversas (cont.)

Logo, para i = 1, ..., r, o número de partições do tipo i é igual a

$$\binom{n-1}{t_1,\ldots,t_i-1,\ldots,t_r}$$

e, aplicando o princípio da adição, obtém-s a identidade pretendida.

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática* Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2008.