# **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 40 compute nodes are available.

Program started at Sun Jul 23 19:32:45 2017

Program finished at Sun Jul 23 22:37:02 2017 [Runtime:0000:03:04:17]



## **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1018040110

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings:

Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a\*b\*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.1.0

Haplotyping is turned on:

Output file: outfile\_1.0\_0.4

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_1.0\_0.4
Print data: No

Print genealogies [only some for some data type]:

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 19:32:45]

# Data summary

Data file: infile.1.0
Datatype: Sequence data
Number of loci: 100

Mutationmodel:

| Mutationmodel: |         |               |                          |  |
|----------------|---------|---------------|--------------------------|--|
| Locus S        | ublocus | Mutationmodel | Mutationmodel parameters |  |
| 1              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9              | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34             | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 35 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 36 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 37 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 38 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 39 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 40 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 41 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 42 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 43 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 44 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 45 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 46 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 47 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 48 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 49 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 50 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 51 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 52 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 53 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 54 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 55 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 56 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 57 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 58 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 59 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 60 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 61 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 62 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 63 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 64 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 65 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 66 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 67 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 68 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 69 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 70 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 71 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 72 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 73 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 74 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 75 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 76 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 77 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 78 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 79 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|    |   |              |                   |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

|    | 40000 |  |
|----|-------|--|
| 21 | 10000 |  |
| 22 | 10000 |  |
| 23 | 10000 |  |
| 24 | 10000 |  |
| 25 | 10000 |  |
| 26 | 10000 |  |
| 27 | 10000 |  |
| 28 | 10000 |  |
| 29 | 10000 |  |
| 30 | 10000 |  |
| 31 | 10000 |  |
| 32 | 10000 |  |
| 33 | 10000 |  |
| 34 | 10000 |  |
| 35 | 10000 |  |
| 36 | 10000 |  |
| 37 | 10000 |  |
| 38 | 10000 |  |
| 39 | 10000 |  |
| 40 | 10000 |  |
| 41 | 10000 |  |
| 42 | 10000 |  |
| 43 | 10000 |  |
| 44 | 10000 |  |
| 45 | 10000 |  |
| 46 | 10000 |  |
| 47 | 10000 |  |
| 48 | 10000 |  |
| 49 | 10000 |  |
| 50 | 10000 |  |
| 51 | 10000 |  |
| 52 | 10000 |  |
| 53 | 10000 |  |
| 54 | 10000 |  |
| 55 | 10000 |  |
| 56 | 10000 |  |
| 57 | 10000 |  |
| 58 | 10000 |  |
| 59 | 10000 |  |
| 60 | 10000 |  |
| 61 | 10000 |  |
| 62 | 10000 |  |
| 63 | 10000 |  |
| 64 | 10000 |  |
| 65 | 10000 |  |
|    |       |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

|    |   |   |       |       |       | 7.0.0 |
|----|---|---|-------|-------|-------|-------|
| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |       |
|    |   |   |       |       |       |       |

| 97         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
|------------|-----------|---|-------|-------|-------|-------------|
| 98         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 99         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 100        | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| Population |           | ı | 1.000 | 1.000 | Locus | Gene copies |
| 1 Roman    |           |   |       |       | 1     | 10          |
| i Koman    | 3110111_0 |   |       |       | 2     | 10          |
|            |           |   |       |       | 3     | 10          |
|            |           |   |       |       | 4     | 10          |
|            |           |   |       |       |       |             |
|            |           |   |       |       | 5     | 10          |
|            |           |   |       |       | 6     | 10          |
|            |           |   |       |       | 7     | 10          |
|            |           |   |       |       | 8     | 10          |
|            |           |   |       |       | 9     | 10          |
|            |           |   |       |       | 10    | 10          |
|            |           |   |       |       | 11    | 10          |
|            |           |   |       |       | 12    | 10          |
|            |           |   |       |       | 13    | 10          |
|            |           |   |       |       | 14    | 10          |
|            |           |   |       |       | 15    | 10          |
|            |           |   |       |       | 16    | 10          |
|            |           |   |       |       | 17    | 10          |
|            |           |   |       |       | 18    | 10          |
|            |           |   |       |       | 19    | 10          |
|            |           |   |       |       | 20    | 10          |
|            |           |   |       |       | 21    | 10          |
|            |           |   |       |       | 22    | 10          |
|            |           |   |       |       | 23    | 10          |
|            |           |   |       |       | 24    | 10          |
|            |           |   |       |       | 25    | 10          |
|            |           |   |       |       | 26    | 10          |
|            |           |   |       |       | 27    | 10          |
|            |           |   |       |       | 28    | 10          |
|            |           |   |       |       | 29    | 10          |
|            |           |   |       |       | 30    | 10          |
|            |           |   |       |       | 31    | 10          |
|            |           |   |       |       | 32    | 10          |
|            |           |   |       |       | 33    | 10          |
|            |           |   |       |       | 34    | 10          |
|            |           |   |       |       | 35    | 10          |
|            |           |   |       |       | 36    | 10          |
|            |           |   |       |       | 37    | 10          |
|            |           |   |       |       | 38    | 10          |
|            |           |   |       |       | 39    | 10          |
|            |           |   |       |       | 40    | 10          |
|            |           |   |       |       | -     |             |

| 41 | 10 |
|----|----|
| 42 | 10 |
| 43 | 10 |
| 44 |    |
| 45 |    |
| 46 |    |
| 47 |    |
| 48 |    |
| 49 |    |
| 50 |    |
| 51 |    |
| 52 |    |
| 53 |    |
| 54 |    |
| 55 |    |
| 56 |    |
| 57 |    |
| 58 |    |
| 59 |    |
| 60 |    |
| 61 |    |
|    |    |
| 62 |    |
| 63 |    |
| 64 |    |
| 65 |    |
| 66 |    |
| 67 |    |
| 68 |    |
| 69 |    |
| 70 |    |
| 71 |    |
| 72 |    |
| 73 |    |
| 74 |    |
| 75 |    |
| 76 |    |
| 77 |    |
| 78 |    |
| 79 |    |
| 80 |    |
| 81 |    |
| 82 |    |
| 83 |    |
| 84 |    |
| 85 | 10 |
|    |    |

|                          | 20  | 40 |  |
|--------------------------|-----|----|--|
|                          | 86  | 10 |  |
|                          | 87  | 10 |  |
|                          | 88  | 10 |  |
|                          | 89  | 10 |  |
|                          | 90  | 10 |  |
|                          | 91  | 10 |  |
|                          | 92  | 10 |  |
|                          | 93  | 10 |  |
|                          | 94  | 10 |  |
|                          | 95  | 10 |  |
|                          | 96  | 10 |  |
|                          | 97  | 10 |  |
|                          | 98  | 10 |  |
|                          | 99  | 10 |  |
|                          | 100 | 10 |  |
| Total of all populations | 1   | 10 |  |
|                          | 2   | 10 |  |
|                          | 3   | 10 |  |
|                          | 4   | 10 |  |
|                          | 5   |    |  |
|                          |     | 10 |  |
|                          | 6   | 10 |  |
|                          | 7   | 10 |  |
|                          | 8   | 10 |  |
|                          | 9   | 10 |  |
|                          | 10  | 10 |  |
|                          | 11  | 10 |  |
|                          | 12  | 10 |  |
|                          | 13  | 10 |  |
|                          | 14  | 10 |  |
|                          | 15  | 10 |  |
|                          | 16  | 10 |  |
|                          | 17  | 10 |  |
|                          | 18  | 10 |  |
|                          | 19  | 10 |  |
|                          | 20  | 10 |  |
|                          | 21  | 10 |  |
|                          | 22  | 10 |  |
|                          | 23  | 10 |  |
|                          | 24  | 10 |  |
|                          | 25  | 10 |  |
|                          | 26  | 10 |  |
|                          | 27  | 10 |  |
|                          | 28  | 10 |  |
|                          | 29  | 10 |  |
|                          | 30  | 10 |  |
|                          | ა∪  | 10 |  |

| 31 | 10 |
|----|----|
| 32 | 10 |
| 33 | 10 |
| 34 | 10 |
| 35 | 10 |
| 36 | 10 |
| 37 | 10 |
| 38 | 10 |
| 39 | 10 |
| 40 | 10 |
| 41 | 10 |
| 42 | 10 |
| 43 | 10 |
| 44 | 10 |
| 45 | 10 |
| 46 | 10 |
| 47 | 10 |
| 48 | 10 |
| 49 | 10 |
| 50 | 10 |
| 51 | 10 |
| 52 | 10 |
| 53 | 10 |
| 54 | 10 |
| 55 | 10 |
| 56 | 10 |
| 57 | 10 |
| 58 | 10 |
| 59 | 10 |
| 60 | 10 |
| 61 | 10 |
| 62 | 10 |
| 63 | 10 |
| 64 | 10 |
| 65 | 10 |
| 66 | 10 |
| 67 | 10 |
| 68 | 10 |
| 69 | 10 |
| 70 | 10 |
| 71 | 10 |
| 72 | 10 |
| 73 | 10 |
| 74 | 10 |
| 75 | 10 |
|    |    |

|     | A010 1- |
|-----|---------|
| 76  | 10      |
| 77  | 10      |
| 78  | 10      |
| 79  | 10      |
| 80  | 10      |
| 81  | 10      |
| 82  | 10      |
| 83  | 10      |
| 84  | 10      |
| 85  | 10      |
| 86  | 10      |
| 87  | 10      |
| 88  | 10      |
| 89  | 10      |
| 90  | 10      |
| 91  | 10      |
| 92  | 10      |
| 93  | 10      |
| 94  | 10      |
| 95  | 10      |
| 96  | 10      |
| 97  | 10      |
| 98  | 10      |
| 99  | 10      |
| 100 | 10      |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.03253 | 0.04420 | 0.04797 | 0.04993 | 0.05180 | 0.04537 | 0.08713 |
| 2     | $\Theta_1$ | 0.03460 | 0.04533 | 0.04823 | 0.05007 | 0.05187 | 0.04643 | 0.08977 |
| 3     | $\Theta_1$ | 0.03540 | 0.04547 | 0.04790 | 0.04947 | 0.05167 | 0.04610 | 0.08785 |
| 4     | $\Theta_1$ | 0.03533 | 0.04467 | 0.04777 | 0.04967 | 0.05153 | 0.04577 | 0.08784 |
| 5     | $\Theta_1$ | 0.03553 | 0.04567 | 0.04790 | 0.04933 | 0.05153 | 0.04590 | 0.08941 |
| 6     | $\Theta_1$ | 0.03500 | 0.04573 | 0.04790 | 0.04927 | 0.05160 | 0.04590 | 0.08762 |
| 7     | $\Theta_1$ | 0.03353 | 0.04433 | 0.04783 | 0.04967 | 0.05173 | 0.04557 | 0.08828 |
| 8     | $\Theta_1$ | 0.03287 | 0.04447 | 0.04777 | 0.04980 | 0.05173 | 0.04563 | 0.08845 |
| 9     | $\Theta_1$ | 0.03580 | 0.04547 | 0.04790 | 0.04980 | 0.05140 | 0.04650 | 0.08845 |
| 10    | $\Theta_1$ | 0.03340 | 0.04473 | 0.04810 | 0.05007 | 0.05160 | 0.04577 | 0.08765 |
| 11    | $\Theta_1$ | 0.03580 | 0.04593 | 0.04817 | 0.05013 | 0.05167 | 0.04683 | 0.08885 |
| 12    | $\Theta_1$ | 0.03553 | 0.04627 | 0.04797 | 0.04933 | 0.05153 | 0.04643 | 0.08900 |
| 13    | $\Theta_1$ | 0.03467 | 0.04493 | 0.04783 | 0.04980 | 0.05160 | 0.04603 | 0.08890 |
| 14    | $\Theta_1$ | 0.03460 | 0.04507 | 0.04823 | 0.05020 | 0.05167 | 0.04610 | 0.08804 |
| 15    | $\Theta_1$ | 0.03453 | 0.04473 | 0.04783 | 0.04967 | 0.05173 | 0.04603 | 0.08796 |
| 16    | $\Theta_1$ | 0.03327 | 0.04460 | 0.04790 | 0.04993 | 0.05167 | 0.04570 | 0.08720 |
| 17    | $\Theta_1$ | 0.03293 | 0.04460 | 0.04803 | 0.04993 | 0.05153 | 0.04570 | 0.08855 |
| 18    | $\Theta_1$ | 0.03227 | 0.04447 | 0.04777 | 0.04987 | 0.05160 | 0.04557 | 0.08629 |
|       |            |         |         |         |         |         |         | _       |

| 19 | $\Theta_1$ | 0.03467 | 0.04420 | 0.04817 | 0.04980 | 0.05147 | 0.04543 | 0.08956 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.03573 | 0.04467 | 0.04790 | 0.04987 | 0.05147 | 0.04577 | 0.08891 |
| 21 | $\Theta_1$ | 0.03407 | 0.04460 | 0.04810 | 0.05007 | 0.05173 | 0.04570 | 0.08797 |
| 22 | $\Theta_1$ | 0.03387 | 0.04540 | 0.04817 | 0.05013 | 0.05173 | 0.04643 | 0.08903 |
| 23 | $\Theta_1$ | 0.03460 | 0.04467 | 0.04797 | 0.04980 | 0.05167 | 0.04583 | 0.08731 |
| 24 | $\Theta_1$ | 0.03353 | 0.04520 | 0.04843 | 0.05013 | 0.05187 | 0.04630 | 0.08952 |
| 25 | $\Theta_1$ | 0.03527 | 0.04487 | 0.04810 | 0.04987 | 0.05173 | 0.04603 | 0.08819 |
| 26 | $\Theta_1$ | 0.03420 | 0.04527 | 0.04823 | 0.05013 | 0.05180 | 0.04630 | 0.08926 |
| 27 | $\Theta_1$ | 0.03487 | 0.04527 | 0.04797 | 0.04993 | 0.05160 | 0.04637 | 0.08924 |
| 28 | $\Theta_1$ | 0.03413 | 0.04513 | 0.04803 | 0.05007 | 0.05187 | 0.04617 | 0.08936 |
| 29 | $\Theta_1$ | 0.03513 | 0.04473 | 0.04790 | 0.04967 | 0.05173 | 0.04597 | 0.08721 |
| 30 | $\Theta_1$ | 0.03453 | 0.04467 | 0.04790 | 0.04993 | 0.05167 | 0.04570 | 0.08782 |
| 31 | $\Theta_1$ | 0.03747 | 0.04500 | 0.04777 | 0.04947 | 0.05167 | 0.04623 | 0.08954 |
| 32 | $\Theta_1$ | 0.03433 | 0.04473 | 0.04797 | 0.04973 | 0.05160 | 0.04590 | 0.08818 |
| 33 | $\Theta_1$ | 0.03627 | 0.04540 | 0.04803 | 0.05000 | 0.05153 | 0.04637 | 0.08860 |
| 34 | $\Theta_1$ | 0.03487 | 0.04520 | 0.04810 | 0.05000 | 0.05187 | 0.04630 | 0.08774 |
| 35 | $\Theta_1$ | 0.03460 | 0.04487 | 0.04810 | 0.05007 | 0.05180 | 0.04597 | 0.08797 |
| 36 | $\Theta_1$ | 0.03500 | 0.04433 | 0.04790 | 0.04973 | 0.05173 | 0.04557 | 0.08743 |
| 37 | $\Theta_1$ | 0.03620 | 0.04553 | 0.04817 | 0.04993 | 0.05173 | 0.04663 | 0.08933 |
| 38 | $\Theta_1$ | 0.03587 | 0.04520 | 0.04790 | 0.04973 | 0.05153 | 0.04630 | 0.08871 |
| 39 | $\Theta_1$ | 0.03327 | 0.04513 | 0.04810 | 0.05013 | 0.05193 | 0.04617 | 0.08778 |
| 40 | $\Theta_1$ | 0.03607 | 0.04613 | 0.04803 | 0.04927 | 0.05187 | 0.04637 | 0.08902 |
| 41 | $\Theta_1$ | 0.03387 | 0.04527 | 0.04810 | 0.04967 | 0.05160 | 0.04543 | 0.08608 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.03527 | 0.04473 | 0.04777 | 0.04967 | 0.05153 | 0.04590 | 0.08821 |
| 43    | $\Theta_1$ | 0.03513 | 0.04500 | 0.04797 | 0.04973 | 0.05173 | 0.04617 | 0.08845 |
| 44    | $\Theta_1$ | 0.03593 | 0.04527 | 0.04810 | 0.05027 | 0.05160 | 0.04623 | 0.08842 |
| 45    | $\Theta_1$ | 0.03480 | 0.04480 | 0.04790 | 0.04980 | 0.05173 | 0.04597 | 0.08817 |
| 46    | $\Theta_1$ | 0.03540 | 0.04473 | 0.04817 | 0.04993 | 0.05180 | 0.04590 | 0.08827 |
| 47    | $\Theta_1$ | 0.03667 | 0.04493 | 0.04797 | 0.04967 | 0.05167 | 0.04623 | 0.08869 |
| 48    | $\Theta_1$ | 0.03467 | 0.04553 | 0.04770 | 0.04927 | 0.05147 | 0.04570 | 0.08707 |
| 49    | $\Theta_1$ | 0.03607 | 0.04493 | 0.04810 | 0.04993 | 0.05180 | 0.04603 | 0.08931 |
| 50    | $\Theta_1$ | 0.03593 | 0.04507 | 0.04763 | 0.04947 | 0.05147 | 0.04623 | 0.08838 |
| 51    | $\Theta_1$ | 0.03720 | 0.04620 | 0.04803 | 0.04947 | 0.05140 | 0.04650 | 0.08953 |
| 52    | $\Theta_1$ | 0.03387 | 0.04433 | 0.04790 | 0.04987 | 0.05153 | 0.04543 | 0.08749 |
| 53    | $\Theta_1$ | 0.03527 | 0.04460 | 0.04797 | 0.04973 | 0.05160 | 0.04583 | 0.08847 |
| 54    | $\Theta_1$ | 0.03540 | 0.04473 | 0.04790 | 0.04960 | 0.05173 | 0.04603 | 0.08887 |
| 55    | $\Theta_1$ | 0.03620 | 0.04527 | 0.04803 | 0.04960 | 0.05160 | 0.04650 | 0.08926 |
| 56    | $\Theta_1$ | 0.03387 | 0.04473 | 0.04817 | 0.05020 | 0.05187 | 0.04577 | 0.08759 |
| 57    | $\Theta_1$ | 0.03660 | 0.04627 | 0.04810 | 0.04927 | 0.05173 | 0.04663 | 0.08876 |
| 58    | $\Theta_1$ | 0.03500 | 0.04500 | 0.04797 | 0.04987 | 0.05167 | 0.04610 | 0.08794 |
| 59    | $\Theta_1$ | 0.03673 | 0.04507 | 0.04797 | 0.05000 | 0.05153 | 0.04610 | 0.08885 |
| 60    | $\Theta_1$ | 0.03553 | 0.04527 | 0.04823 | 0.05020 | 0.05160 | 0.04630 | 0.08907 |
| 61    | $\Theta_1$ | 0.03493 | 0.04520 | 0.04817 | 0.05007 | 0.05180 | 0.04623 | 0.08836 |

| 62 | $\Theta_1$ | 0.03447 | 0.04587 | 0.04823 | 0.05000 | 0.05180 | 0.04603 | 0.08935 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.03507 | 0.04447 | 0.04810 | 0.04993 | 0.05160 | 0.04563 | 0.08831 |
| 64 | $\Theta_1$ | 0.03687 | 0.04513 | 0.04810 | 0.04993 | 0.05167 | 0.04630 | 0.08877 |
| 65 | $\Theta_1$ | 0.03380 | 0.04480 | 0.04803 | 0.05013 | 0.05160 | 0.04583 | 0.08782 |
| 66 | $\Theta_1$ | 0.03567 | 0.04520 | 0.04817 | 0.05000 | 0.05167 | 0.04630 | 0.08868 |
| 67 | $\Theta_1$ | 0.03407 | 0.04493 | 0.04817 | 0.05013 | 0.05153 | 0.04590 | 0.08762 |
| 68 | $\Theta_1$ | 0.03673 | 0.04573 | 0.04810 | 0.05007 | 0.05187 | 0.04683 | 0.08922 |
| 69 | $\Theta_1$ | 0.03413 | 0.04440 | 0.04790 | 0.04973 | 0.05167 | 0.04563 | 0.08823 |
| 70 | $\Theta_1$ | 0.03367 | 0.04533 | 0.04817 | 0.05000 | 0.05173 | 0.04643 | 0.08841 |
| 71 | $\Theta_1$ | 0.03467 | 0.04507 | 0.04797 | 0.04980 | 0.05187 | 0.04617 | 0.08862 |
| 72 | $\Theta_1$ | 0.03553 | 0.04607 | 0.04810 | 0.04940 | 0.05167 | 0.04623 | 0.08933 |
| 73 | $\Theta_1$ | 0.03687 | 0.04460 | 0.04777 | 0.04933 | 0.05180 | 0.04603 | 0.08964 |
| 74 | $\Theta_1$ | 0.03500 | 0.04440 | 0.04783 | 0.04953 | 0.05160 | 0.04570 | 0.08777 |
| 75 | $\Theta_1$ | 0.03387 | 0.04527 | 0.04797 | 0.04987 | 0.05173 | 0.04637 | 0.08832 |
| 76 | $\Theta_1$ | 0.03653 | 0.04553 | 0.04817 | 0.05007 | 0.05160 | 0.04663 | 0.08913 |
| 77 | $\Theta_1$ | 0.03587 | 0.04487 | 0.04790 | 0.04967 | 0.05173 | 0.04603 | 0.08886 |
| 78 | $\Theta_1$ | 0.03647 | 0.04527 | 0.04817 | 0.04987 | 0.05173 | 0.04643 | 0.08891 |
| 79 | $\Theta_1$ | 0.03420 | 0.04480 | 0.04790 | 0.04980 | 0.05147 | 0.04563 | 0.08867 |
| 80 | $\Theta_1$ | 0.03527 | 0.04513 | 0.04810 | 0.05007 | 0.05167 | 0.04623 | 0.08919 |
| 81 | $\Theta_1$ | 0.03620 | 0.04547 | 0.04790 | 0.05007 | 0.05173 | 0.04650 | 0.08968 |
| 82 | $\Theta_1$ | 0.03300 | 0.04453 | 0.04810 | 0.05007 | 0.05187 | 0.04563 | 0.08755 |
| 83 | $\Theta_1$ | 0.03453 | 0.04513 | 0.04803 | 0.05013 | 0.05160 | 0.04603 | 0.08829 |
| 84 | $\Theta_1$ | 0.03587 | 0.04473 | 0.04823 | 0.05000 | 0.05167 | 0.04590 | 0.08937 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.03573 | 0.04480 | 0.04810 | 0.04987 | 0.05173 | 0.04597 | 0.08826 |
| 86    | $\Theta_1$ | 0.03593 | 0.04580 | 0.04783 | 0.04933 | 0.05173 | 0.04603 | 0.08865 |
| 87    | $\Theta_1$ | 0.03440 | 0.04447 | 0.04783 | 0.04967 | 0.05167 | 0.04570 | 0.08673 |
| 88    | $\Theta_1$ | 0.03400 | 0.04567 | 0.04783 | 0.04927 | 0.05173 | 0.04583 | 0.08758 |
| 89    | $\Theta_1$ | 0.03560 | 0.04480 | 0.04790 | 0.04973 | 0.05147 | 0.04590 | 0.08889 |
| 90    | $\Theta_1$ | 0.03587 | 0.04473 | 0.04797 | 0.04980 | 0.05160 | 0.04590 | 0.08743 |
| 91    | $\Theta_1$ | 0.03593 | 0.04507 | 0.04830 | 0.05013 | 0.05173 | 0.04617 | 0.08877 |
| 92    | $\Theta_1$ | 0.03527 | 0.04493 | 0.04797 | 0.04993 | 0.05173 | 0.04603 | 0.08797 |
| 93    | $\Theta_1$ | 0.03420 | 0.04520 | 0.04830 | 0.05040 | 0.05180 | 0.04597 | 0.08833 |
| 94    | $\Theta_1$ | 0.03947 | 0.04520 | 0.04790 | 0.04967 | 0.05160 | 0.04637 | 0.08893 |
| 95    | $\Theta_1$ | 0.03427 | 0.04460 | 0.04770 | 0.04960 | 0.05153 | 0.04583 | 0.08795 |
| 96    | $\Theta_1$ | 0.03527 | 0.04473 | 0.04797 | 0.04980 | 0.05180 | 0.04590 | 0.08788 |
| 97    | $\Theta_1$ | 0.03433 | 0.04507 | 0.04830 | 0.05027 | 0.05193 | 0.04610 | 0.08866 |
| 98    | $\Theta_1$ | 0.03540 | 0.04493 | 0.04770 | 0.04967 | 0.05167 | 0.04603 | 0.08859 |
| 99    | $\Theta_1$ | 0.03373 | 0.04593 | 0.04810 | 0.04973 | 0.05187 | 0.04623 | 0.08931 |
| 100   | $\Theta_1$ | 0.03647 | 0.04507 | 0.04817 | 0.04993 | 0.05167 | 0.04623 | 0.08872 |
| All   | $\Theta_1$ | 0.01487 | 0.01893 | 0.02117 | 0.02280 | 0.02620 | 0.02083 | 0.09985 |
|       |            |         |         |         |         |         |         |         |

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |

# Bayesian Analysis: Posterior distribution over all loci



## Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| Locus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15920.81 | -15398.06 | -15394.58 | -15468.89 |
| 2     | -17535.59 | -16629.21 | -16598.43 | -16652.17 |
| 3     | -16495.21 | -15724.72 | -15695.46 | -15760.57 |
| 4     | -16115.04 | -15472.52 | -15460.51 | -15524.49 |
| 5     | -16908.90 | -15900.26 | -15830.37 | -15891.40 |
| 6     | -15928.07 | -15372.03 | -15386.05 | -15443.42 |
| 7     | -18387.76 | -16740.90 | -16556.13 | -16617.88 |
| 8     | -16566.08 | -15767.43 | -15728.46 | -15797.47 |
| 9     | -16370.47 | -15558.15 | -15523.96 | -15581.19 |
| 10    | -15864.89 | -15142.11 | -15113.15 | -15178.46 |
| 11    | -15976.65 | -15455.46 | -15472.13 | -15535.39 |
| 12    | -18529.28 | -16524.64 | -16265.36 | -16330.68 |
| 13    | -16560.47 | -15746.81 | -15711.58 | -15766.57 |
| 14    | -16385.70 | -15748.20 | -15752.10 | -15812.54 |
| 15    | -16183.59 | -15548.59 | -15549.10 | -15604.98 |
| 16    | -16137.22 | -15489.11 | -15492.01 | -15546.08 |
| 17    | -16250.29 | -15525.15 | -15512.37 | -15568.16 |
| 18    | -15326.33 | -15003.71 | -15029.09 | -15102.54 |
| 19    | -16612.27 | -15950.53 | -15952.48 | -16007.22 |
| 20    | -17676.64 | -16262.70 | -16127.93 | -16180.22 |
| 21    | -17497.94 | -16378.34 | -16292.84 | -16353.86 |
| 22    | -16753.91 | -15811.29 | -15744.14 | -15814.62 |
| 23    | -15331.87 | -14901.13 | -14932.11 | -14991.28 |
| 24    | -18693.16 | -16901.43 | -16699.70 | -16749.53 |
| 25    | -17165.55 | -16019.81 | -15916.77 | -15984.29 |
| 26    | -16565.74 | -15912.70 | -15919.54 | -15973.11 |
| 27    | -15997.90 | -15447.19 | -15465.87 | -15516.05 |
| 28    | -16811.94 | -15889.85 | -15840.57 | -15903.01 |
| 29    | -15150.78 | -14754.79 | -14780.36 | -14846.56 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 19:32:45]

| 30 | -17328.61 | -15991.00 | -15857.12 | -15915.33 |
|----|-----------|-----------|-----------|-----------|
| 31 | -18027.66 | -16292.37 | -16089.32 | -16149.16 |
| 32 | -15982.00 | -15286.65 | -15260.55 | -15331.16 |
| 33 | -16612.80 | -15849.77 | -15829.52 | -15882.57 |
| 34 | -15081.38 | -14727.28 | -14765.20 | -14826.56 |
| 35 | -15443.03 | -14905.75 | -14911.80 | -14974.80 |
| 36 | -16132.27 | -15530.42 | -15540.08 | -15592.18 |
| 37 | -16664.58 | -16003.53 | -16008.48 | -16058.50 |
| 38 | -15826.94 | -15161.49 | -15153.48 | -15208.87 |
| 39 | -15433.53 | -14791.43 | -14774.61 | -14840.27 |
| 40 | -16717.52 | -15749.37 | -15684.78 | -15742.38 |
| 41 | -14506.72 | -14269.49 | -14312.26 | -14388.95 |
| 42 | -18993.14 | -16872.41 | -14763.20 | -16662.50 |
| 43 | -16919.05 | -16062.40 | -14789.32 | -16079.01 |
| 44 | -16295.08 | -15466.48 | -15273.63 | -15487.46 |
| 45 | -16909.27 | -16285.70 | -15135.84 | -16345.93 |
| 46 | -17008.85 | -15902.20 | -15822.51 | -15876.06 |
| 47 | -16054.95 | -15282.87 | -14920.62 | -15313.84 |
| 48 | -16428.30 | -15840.63 | -15840.08 | -15909.97 |
| 49 | -16114.29 | -15444.74 | -15443.28 | -15494.30 |
| 50 | -15898.42 | -15310.20 | -15318.20 | -15372.75 |
| 51 | -17620.02 | -16586.23 | -16282.67 | -16578.76 |
| 52 | -16203.11 | -15594.87 | -14935.40 | -15657.19 |
| 53 | -17361.94 | -16100.83 | -15866.44 | -16047.18 |
| 54 | -16332.89 | -15541.89 | -15514.56 | -15572.85 |
| 55 | -16140.13 | -15610.88 | -15521.62 | -15689.79 |
| 56 | -17658.89 | -16479.65 | -15699.77 | -16447.78 |
| 57 | -17489.60 | -16092.74 | -15446.61 | -16009.24 |
| 58 | -14612.96 | -14365.66 | -14420.68 | -14489.29 |
| 59 | -15552.70 | -15128.65 | -15163.26 | -15218.43 |
| 60 | -18558.58 | -16604.95 | -16122.85 | -16416.01 |
| 61 | -17066.49 | -16005.49 | -15686.16 | -15985.86 |
| 62 | -17141.69 | -16271.27 | -15552.45 | -16287.02 |
| 63 | -18242.80 | -16815.28 | -15156.57 | -16736.12 |
| 64 | -16705.20 | -15531.65 | -15430.34 | -15492.90 |
| 65 | -16482.60 | -15677.82 | -15540.67 | -15705.65 |
| 66 | -18294.19 | -16501.43 | -15455.95 | -16347.44 |
| 67 | -15656.59 | -15148.79 | -15166.66 | -15224.49 |
| 68 | -20189.33 | -17777.58 | -15961.16 | -17518.27 |
| 69 | -16882.17 | -15920.41 | -15853.86 | -15915.37 |
| 70 | -17154.06 | -16108.49 | -15924.47 | -16092.09 |
| 71 | -15884.16 | -15393.18 | -15426.84 | -15481.39 |
| 72 | -16755.11 | -16037.35 | -15741.48 | -16087.95 |
| 73 | -17522.28 | -16508.94 | -15416.11 | -16500.04 |
| 74 | -16970.44 | -15741.97 | -15494.33 | -15687.44 |
|    |           |           |           |           |

| All       | -1675448.38            | -1581414.68            | -1552191.46            | -1581616.52            |
|-----------|------------------------|------------------------|------------------------|------------------------|
| 100       | -10022.29              | -10004.21              | -10101.44              | -10400.30              |
| 99<br>100 | -18679.65<br>-16022.29 | -17131.65<br>-15384.21 | -16033.81<br>-15181.44 | -17039.95<br>-15438.35 |
| 98        | -15848.28              | -15311.97              | -15324.65              | -15385.61              |
| 97        | -15801.93              | -15320.39              | -15352.42              | -15406.03              |
| 96        | -16625.49              | -15909.95              | -15908.05              | -15959.56              |
| 95<br>06  | -16260.56              | -15531.51              | -15514.52              | -15570.34              |
| 94        | -17250.62              | -16061.80              | -15968.41              | -16019.36              |
| 93        | -16433.56              | -15630.57              | -15595.59              | -15654.80              |
| 92        | -17596.21              | -16034.49              | -15518.42              | -15918.24              |
| 91        | -16188.35              | -15549.85              | -15552.89              | -15604.58              |
| 90        | -15711.27              | -15053.43              | -15033.74              | -15100.07              |
| 89        | -16466.80              | -15887.74              | -15630.93              | -15959.12              |
| 88        | -16843.17              | -15693.67              | -15428.40              | -15658.54              |
| 87        | -18948.23              | -16346.90              | -15427.17              | -16037.75              |
| 86        | -16684.81              | -15834.67              | -15142.28              | -15855.49              |
| 85<br>86  | -16061.05              | -15376.24              | -15369.50              | -15421.92              |
| 84        | -19658.78              | -17559.60              | -15269.74              | -17358.27              |
| 83        | -15273.37              | -14857.55              | -14426.05              | -14950.10              |
| 82        | -15139.87              | -14696.48              | -14719.21              | -14781.07              |
| 81        | -18540.00              | -17131.11              | -14333.86              | -17061.08              |
| 80        | -17171.26              | -16244.24              | -16209.64              | -16258.32              |
| 79        | -17238.10              | -15955.51              | -15838.33              | -15896.46              |
| 78<br>70  | -16917.01              | -16201.06              | -16191.47              | -16248.44              |
| 77        | -16539.55              | -15618.04              | -15560.25              | -15619.49              |
| 76<br>77  | -19031.47              | -17171.17              | -15832.77              | -17012.64              |
| 75<br>70  | -18145.34              | -16556.86              | -15994.97              | -16442.24              |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 185.008553]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

# Acceptance ratios for all parameters and the genealogies

| Parameter              | Accepted changes                           | Ratio              |
|------------------------|--------------------------------------------|--------------------|
| $\Theta_1$ Genealogies | 364461552/399970288<br>67998078/1600029712 | 0.91122<br>0.04250 |

# MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter   | Autocorrelation | Effective Sampe Size |
|-------------|-----------------|----------------------|
| $\Theta_1$  | 0.37861         | 11712621.02          |
| Genealogies | 0.65962         | 5528726.36           |

# Average temperatures during the run

# Chain Temperatures 1 0.00000 2 0.00000 3 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

4

0.00000

### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| not help in such situations, reducing number of parameters may help in such situations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No warning was recorded during the run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |