AIND Planning Project Carlos Arreaza

Part 1: Results

īme Elapsed (sec)
0.05729
1.0833
0.018636
0.1459
0.065807
9.3459
Took more than 10 min
8.3001199
Took more than 10 min
14.88
50.77
Took more than 10 min
3.469243
Took more than 10 min
70.4954
Го Го

Part 2: Results

Part 2						
Problem	Search Type	Expansions	Goal Tests	New Nodes	Path Length	Time Elapsed (sec)
P1	8 (astar_search wth h_1_	55	57	224	6	0.0691
P1	9 (astar_search with h_ignore_prec	41	43	170	6	0.05502
P1	10 (astar_search with h_pg_levels	11	13	50	6	0.9864
P2	8 (astar_search wth h_1_	4853	4855	44041	9	12.814
P2	9 (astar_search with h_ignore_prec	1450	1452	13303	9	3.78135
P2	10 (astar_search with h_pg_levels	86	88	841	9	76.088
P3	8 (astar_search wth h_1_	18235	18237	159716	12	62.511
P3	9 (astar_search with h_ignore_prec	5040	5042	44944	12	16.95
P3	10 (astar_search with h_pg_levels	318	320	2934	12	417.12

Part 3: written analysis

1) Provide an optimal plan for Problems 1, 2, and 3.

Optimal plan for problem 1:

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Load(C2, P2, JFK)

```
Fly(P2, JFK, SFO)
Unload(C1, P1, JFK)
Unload(C2, P2, SFO)
```

Optimal plan for problem 2:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Load(C3, P3, ATL)

Fly(P1, SFO, JFK)

Fly(P2, JFK, SFO)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Optimal plan for problem 3:

Load(C2, P2, JFK)

Flv(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C4, P2, SFO)

Unload(C3, P1, JFK)

Unload(C1, P1, JFK)

Unload(C2, P2, SFO)

2) Compare and contrast non-heuristic search result metrics (optimality, time elapsed, number of node expansions) for Problems 1,2, and 3. Include breadth-first, depth-first, and at least one other uninformed non-heuristic search in your comparison; Your third choice of non-heuristic search may be skipped for Problem 3 if it takes longer than 10 minutes to run, but a note in this case should be included.

The 3 non-heuristic search to be compared here are: breadth-first-search, depth-first-graph-search, and uniform-cost-search. The best of the 3 search algorithms for all 3 problems is **breadth-first-search**. It took less time than the other 2, it provided a more optimal plan (problem 1: length 6 instead of 12, problem 2: plan length 9, instead of 1085, and problem 3: plant length 12, instead of 660). Breath-first-search had an overall less node expansion than uniform-cost-search, but higher than depth-first-graph-search. The problem with depth-first-graph-search is that it provided a longer path.

3) Compare and contrast heuristic search result metrics using A^* with the "ignore preconditions" and "level-sum" heuristics for Problems 1, 2, and 3.

The direct comparison of A* with ignore preconditions and level-sum heuristics can be shown in the following table:

Problem	Search Type	Expansions	Goal Tests	New Nodes	Path Length	Time Elapsed (sec)
P1	9 (astar_search with h_ignore_pred	41	43	170	6	0.05502
P1	10 (astar_search with h_pg_levels	11	13	50	6	0.9864
P2	9 (astar_search with h_ignore_pred	1450	1452	13303	9	3.78135
P2	10 (astar_search with h_pg_levels	86	88	841	9	76.088
P3	9 (astar_search with h_ignore_pred	5040	5042	44944	12	16.95
P3	10 (astar_search with h_pg_levels	318	320	2934	12	417.12

4) What was the best heuristic used in these problems? Was it better than non-heuristic search planning methods for all problems? Why or why not?

The best heuristic search algorithm was A^* with ignore preconditions heuristic. It took significantly less amount of time to complete (almost an order of magnitude less than A^* with level-sum heuristic), and had less node expansions than A^* with h_1 heuristic.