$\begin{array}{c} {\rm Math}~440-{\rm Real}~{\rm Analysis}~{\rm II} \\ {\rm Final}~{\rm Exam} \end{array}$

Amandeep Gill

May 14, 2015

Problem 1 Determine which of the following series are divergent, conditionally convergent, or absolutely convergent.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k}{2k^2 - 1}$$
 converges conditionally.

Proof: Let $b_k = \frac{k}{2k^2-1}$. Since $b_{k+1} = \frac{k+1}{2(k+1)^2-1} = \frac{k+1}{2k^2+4k+1} < b_k$ for all $k \in \mathbb{K}$ and $\lim_{k\to\infty} b_k = 0$, by the Alternating Series Test $\sum_{k=1}^{\infty} \frac{(-1)^k k}{2k^2-1}$ converges conditionally.

(b) $\sum_{k=0}^{\infty} \frac{(-1)^{a_k}}{k^2+1}$ where $a_k = \lfloor \frac{k}{2} \rfloor$ converges absolutely.

Proof: Let $b_k = \left| \frac{(-1)^{a_k}}{k^2 + 1} \right| = \frac{1}{k^2 + 1}$. For all $k \in \mathbb{N}$, $b_k < \frac{1}{k^2}$, therefore since $\frac{1}{k^2}$ is a convergent P-series $\sum_{k=1}^{\infty} b_k$ converges. Thus $\sum_{k=0}^{\infty} \frac{(-1)^{a_k}}{k^2 + 1}$ converges absolutely.

Problem 2 Let $\{q_k\}_{k\in\mathbb{N}}$ be an enumeration of the rational numbers on [0,1], and for each $k\in\mathbb{N}$ define $C_k=\{q_1,q_2,\ldots,q_k\}$. Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=\sum_{k=1}^{\infty}2^{-k}\chi_{C_k}$.

(a) The series defining f converges uniformly on [0,1].

Proof: Let f be defined piecewise as

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \backslash \mathbb{Q} \\ 2^{1-i} & \text{if } x = q_i \text{ for some } q_i \in \{q_k\}_{k \in \mathbb{N}} \end{cases}$$

Let $\epsilon > 0$ be given, $f_n(x) = \sum_{k=1}^n 2^{-k} \chi_{C_k}$, and let $m, n_o \in \mathbb{N}$ such that $m > n_o$ and $2^{-n_o} < \epsilon$. If $x \in [0,1] \backslash \mathbb{Q}$, then $f_m(x) = 0$ and $|f_m(x) - f(x)| = 0 < \epsilon$. Otherwise, $x = q_i$ for some $i \in \mathbb{N}$.

case i > m:

$$f_m(x) = 0$$
 and $|f_m(x) - f(x)| = 2^{1-i} < 2^{-n_0} < \epsilon$.

case $i \leq m$:

$$f_m(x) = 2^{1-i} - 2^{-m}$$
 and $|f_m(x) - f(x)| = 2^{-m} < 2^{-n_0} < \epsilon$.

Thus f_n converges to f uniformly on [0,1].

(b) Calculate $f(q_1), f(q_2), f(q_3), \text{ and } f(\sqrt{2}/2)$

Solution:

$$f(q_1) = 1$$

$$f(q_2) = \frac{1}{2}$$

$$f(q_3) = \frac{1}{4}$$

$$f(\sqrt{2}/2) = 0$$

(c) f is Riemann integrable on [0,1]

Proof: For each $n \in \mathbb{N}$ let $\mathcal{P}_n = \{x_0, x_1, \dots, x_{2^n}\}$ partition [0, 1] where $x_i = \frac{i}{2^n}$. For each n, $\mathcal{U}(\mathcal{P}_n, f) \leqslant \sum_{k=1}^{2^n} 2^{1-k} \frac{1}{2^n} = 2^{1-n} - 2^{1-n-2^n}$ as the sup of an interval in the partition must be $f(q_1)$ or less, which means that the sup of one of the remaining intervals must be $f(q_2)$ or less, and so on up to $f(q_{2^n})$ in the final interval. Thus by Lemma 6.1.3

$$\inf_{\mathcal{P}} \mathcal{U}(\mathcal{P}, f) \leqslant \lim_{n \to \infty} \mathcal{U}(\mathcal{P}_n, f) \leqslant \lim_{n \to \infty} 2^{1-n} - 2^{1-n-2^n} = 0$$

f is non-negative, so by Theorem 6.1.4,

$$0 \leqslant \sup_{\mathcal{Q}} \mathcal{L}(\mathcal{Q}, f) \leqslant \inf_{\mathcal{P}} \mathcal{U}(\mathcal{P}, f) \leqslant 0$$

Therefore $\int_{0}^{1} f dx = 0$ by Definition 6.1.5.

(c) f is Lebesgue integrable on [0,1]

Proof: $\int_0^1 f dx = 0$, so $\int_0^1 f d\lambda = 0$ by Corollary 10.6.8.

- **Problem 3** Let A be a measurable subset of \mathbb{R} , and let $\mathcal{L}(A)$ denote the set of all Lebesgue integrable functions on A. Given $f, g \in \mathcal{L}(A)$ and $c \in \mathbb{R}$, define (f+g)(x) = f(x) + g(x) and (cf)(x) = cf(x) for all $x \in \mathbb{R}$
 - (a) $\mathcal{L}(A)$ forms a vector space over \mathbb{R} .

Proof: Let $f, g \in \mathcal{L}(A)$ and $c \in \mathbb{R}$. By assumption $\int_A |f| d\lambda$, $\int_A |g| d\lambda < \infty$, so from the Triangle Inequality,

$$|(f+g)(x)| = |f(x) + g(x)| \le |f(x)| + |g(x)|$$

Thus $\int\limits_A |(f+g)| \, d\lambda \leqslant \int\limits_A |f| + |g| \, d\lambda = \int\limits_A |f| \, d\lambda + \int\limits_A |g| \, d\lambda$ by Theorem 10.7.8(a). Therefore $\int\limits_A |(f+g)d\lambda < \infty|$ and $(f+g) \in \mathcal{L}(A)$. Similarly, $|cf(x)| = |c| \cdot |f(x)|$ and by Theorem 10.7.8(a),

$$\int_{A} |cf| \, d\lambda = |c| \cdot \int_{A} |f| \, d\lambda < \infty$$

Hence $(cf)(x) \in \mathcal{L}(A)$. Because the eight vector space axioms hold trivially, $\mathcal{L}(A)$ is a vector space over \mathbb{R} .

(c) Let $||\cdot|| : \mathcal{L}(A) \to \mathbb{R}$ be $||f|| = \int_A |f| d\lambda$. $||\cdot||$ is not a norm on $\mathcal{L}(A)$

Proof: Let A = [0,1] and $f(x) = \chi_E(x)$ where $E = [0,1] \cap \mathbb{Q}$. Then $||f|| = \int\limits_A |f| \, d\lambda = \int\limits_A \chi_E d\lambda$. By Theorem 10.6.10, $\int\limits_A \chi_E d\lambda = \int\limits_E 1 \, d\lambda + \int\limits_{E^c} 0 \, d\lambda$. Let $x_n \in E$ such that $\bigcup\limits_{n \in \mathbb{N}} \{x_n\} = E$, and let $\epsilon > 0$ be given. Then for each $I_n = (x_n - \frac{\epsilon}{2^{n+1}}, x_n + \frac{\epsilon}{2^{n+1}})$, $E \subset \bigcup\limits_{n \in \mathbb{N}} I_n$ and $\sum\limits_{n \in \mathbb{N}} \lambda(I_n) = \epsilon$. Thus, by Theorem 6.1.11, $\lambda(E) = 0$ and $\int\limits_E 1 \, d\lambda + \int\limits_{E^c} 0 \, d\lambda = 1\lambda(E) + 0\lambda(E^c) = 0$. Since $f \neq 0$ for all $x \in [0,1]$, $||\cdot||$ does not satisfy the property that ||f|| = 0 if and only if f = 0, and therefore $||\cdot||$ is not a norm on $\mathcal{L}(A)$.

Problem (4) Let $a \in \mathbb{R}$ such that $0 < a < \frac{1}{2}$, and let $C_0 = [0, 1]$ be the first step in the generalized Cantor set with C_n comprised of 2^n disjoint intervals of length a^n such that $C_n \subset C_{n-1}$, and define

$$C_a = C_0 \cap C_1 \cap C_2 \cap \cdots$$

(a) If $a \in \mathbb{R}$ with $0 < a < \frac{1}{2}$ then the set C_a is measurable with measure 0.

Proof: For each $n \in \mathbb{N}$, C_n is the union of 2^n disjoint intervals of length a^n , so by Theorem 10.4.5(b) $\lambda(C_n) = 2^n a^n = (2a)^n$. Let $\{c_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers such that $c_n = \lambda(C_n) = (2a)^n$. Because the number of intervals is countable for all n, Theorem 10.4.5(b) holds for all n, and since $a < \frac{1}{2}$, 2a < 1 and c_n is a monotonically decreasing sequence bounded by [0,1] and thus $\lim_{n \to \infty} c_n = 0$. As $C_a \subset C_n$, for each open cover $U \supset C_n$ so $C_a \subset U$ and so $\lambda^*(C_a) \leqslant \lambda^*(C_n)$ by Definition 10.3.1. By Theorem 10.3.4(a) $\lambda(C_n) = \lambda^*(C_n)$, hence $\lambda^*(C_a) \leqslant c_n$ for all n. Therefore $0 \leqslant \lambda_*(C_a) \leqslant \lambda^*(C_a) \leqslant \lim_{n \to \infty} c_n = 0$, and by Definition 10.3.4(a) C_a is measurable with $\lambda(C_a) = 0$.

(b) $\frac{\log 2}{\log(1/a)}$ is an upper bound on the Hausdorff dimension of C_a .

Proof: Let A_n be defined as a ball in \mathbb{R} such that $|A_n| = a^n$ is a δ_n cover for each $n \in \mathbb{N}$. The number of A_n balls needed to cover C_a is then $N = 2^n$. By Definition D.2.4, $\mathcal{H}^s_{\delta_n}(C_a) \leqslant \sum_{k=1}^N |A_n|^s = 2^n a^{sn}$. Therefore, as $\mathcal{H}^s(C_a) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(C_a) \leqslant \lim_{n \to \infty} 2^n a^{sn}$. Thus $s = \frac{\log 2}{\log(1/a)}$ is an upper bound on $\dim_H(C_a)$.

Problem 5 The Hausdorff dimension of any countable subset of \mathbb{R}^n is zero.

Proof: Let $X = \{x_1, x_2, x_3, \ldots\}$ be a subset of \mathbb{R}^n , and let $C = \bigcup_{k=1}^{\infty} C_k$ be a cover of X such that for each $k \in \mathbb{N}$, $C_k = \{x_k\}$. Thus $|C_k| = 0$, and C is a δ -cover for all $\delta > 0$. By Definition D.2.4, $\mathcal{H}^s_{\delta}(X) \leqslant \sum_{k=1}^{\infty} 0^s = 0$ for all $\delta, s > 0$, and so $\mathcal{H}^s(X) \leqslant \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(X) = 0$ and $\dim_H(X) = 0$.

Problem 6 Let $\{E_k\}_{k\in\mathbb{N}}$ be a sequence of subsets of \mathbb{R} . If there exists a sequence $\{U_k\}_{k\in\mathbb{N}}$ of pairwise disjoint open sets such that $E_k\subset U_k$ for all $k\in\mathbb{N}$, then

$$\lambda^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \lambda^*(E_k)$$

Proof: Let $\{U_k\}_{k\in\mathbb{N}}$ be a sequence of disjoint open sets such that $E_k \subset U_k$ for all k, and let U be the union of all U_k and E be the union of all E_K . By Theorem 10.4.4(a), $\lambda^*(E) \leqslant \sum_{k=1}^{\infty} \lambda^*(E_k)$.

case
$$\lambda^*(E) = \infty$$
:
From the above, $\infty \leqslant \sum_{k=1}^{\infty} \lambda^*(E_k)$ and so $\sum_{k=1}^{\infty} \lambda^*(E_k) = \lambda^*(E)$.

case $\lambda^*(E) < \infty$:

Because $U_i \cap U_j = \emptyset$ for all $i, j \in \mathbb{N}$ where $i \neq j$, E_i and E_j are similarly disjoint. Thus, given $\epsilon > 0$, by Definition 10.3.1 there exists an open set A where $E \subset A$, $m(A) < \infty$, and for each $k \in \mathbb{N}$, let $V_k \subset A$ be an open set such that $E_k \subset V_k \subset U_k$ and $\lambda^*(E_k) = m(V_k) - \frac{\epsilon}{2^k}$. Given that V_k is an open set $m(V_k) = \lambda(V_k)$ by Theorem 10.3.2(Ex2), and so from Theorem 10.4.5(b) and the fact that V_k are pairwise disjoint, $m(V) = \sum_{k=1}^{\infty} m(V_k)$ where V is the union of V_k for all k. V is a subset of A, so Theorem 10.2.4 gives $m(V) \leq m(A)$. Hence

$$\sum_{k=1}^{\infty} \lambda^*(E_k) = \sum_{k=1}^{\infty} \left(m(V_k) - \frac{\epsilon}{2^k} \right) \leqslant \sum_{k=1}^{\infty} m(V_k) = m(V) < \infty$$

Therefore $\sum_{k=1}^{\infty} \lambda^*(E_k) = m(V) - \epsilon = m(V)$, since ϵ is arbitrary. Similarly from Definition 10.3.1, for each $\epsilon > 0$ there exists an open set B such that $E \subset B \subset V$ and $\lambda^*(E) = m(B) - \epsilon$, and again since ϵ is arbitrary, $\lambda^*(E) = m(B)$. Thus

$$\sum_{k=1}^{\infty} \lambda^*(E_k) + \lambda^*(E) = m(V) + m(B)$$

$$\lambda^*(E) + \lambda^*(E) \leqslant m(V) + m(B)$$

$$\lambda^*(E) + \lambda^*(E) \leqslant \sum_{k=1}^{\infty} \lambda^*(E_k) + \lambda^*(E)$$

$$\lambda^*(E) \leqslant \sum_{k=1}^{\infty} \lambda^*(E_k)$$

Therefore $\lambda^*(E) = \sum_{k=1}^{\infty} \lambda^*(E_k)$.

Problem 7 Let γ be given such that $0 < \gamma < 1$, and let the following be the generalized construction of the Cantor set with $C_0 = [0,1]$ and C_{k+1} generated by removing the center open interval of length $\gamma/3^{k+1}$ from each of the 2^k interval of C_k . Define C_{γ} as

$$C_{\gamma} = C_0 \cap C_1 \cap C_2 \cap \cdots$$

(a) C_{γ} has positive measure with no intervals.

Proof: An alternate definition for C_{γ} can be defined as the set $[0,1] \backslash A_{\gamma}$, where $A_{\gamma} = \bigcup_{n=1}^{\infty} A_n$ such that A_i , A_j are pairwise disjoint when $i \neq j$ and each A_n is the union of 2^{n-1} disjoint open intervals of length $\gamma/3^n$. For each n, $m(A_n) = \sum_{i=1}^{2^{n-1}} \frac{\gamma}{3^n}$ using Definition 10.2.2, and so from Theorem 10.3.2(Ex2) $\lambda(A_n) = \gamma\left(\frac{2^{n-1}}{3^n}\right)$. Because A_{γ} is a countable union of disjoint open sets, $\lambda(A_{\gamma}) = \sum_{n=1}^{\infty} \lambda(A_n) = \gamma$ by Theorem 10.4.5. Since C_{γ} is complementary to A_{γ} on [0,1], C_{γ} has measure $\lambda(C_{\gamma}) = 1 - \lambda(A_{\gamma})$ by Corollary 10.4.3 and Theorem 10.3.7. Thus $\lambda(C_{\gamma}) = 1 - \gamma$. However, given $\epsilon > 0$ and $x \in C_{\gamma}$, let $I = [x - \epsilon, x + \epsilon]$. For some $n \in \mathbb{N}$, the length of each closed interval in C_n is $l = \frac{1-\gamma}{3^n} < \epsilon$. As $x \in C_n$, x is also in some closed interval I_n of length l with a gap in between I_n and the adjacent intervals, therefore $I_n \subset I$ and I contains all points that lie on the same interval as x. As ϵ is arbitrary, $I = \{x\}$ and there are no intervals in C_{γ} .

(b) If $f:[0,1]\to\mathbb{R}$ as $f(x)=\chi_{C_{\gamma}}(x)$, then f is not Riemann integrable.

Proof: Because there are no intervals on C_{γ} , each $x \in C_{\gamma}$ is a jump discontinuity of f. Hence the set of discontinuities of f has measure $1 - \gamma > 0$, and f is not Riemann integrable by Theorem 6.1.13.

(c) As defined in (b), f is Lebesgue integrable.

Proof: f is a simple, non-negative function defined on a measurable set, so $\int_{[0,1]} f d\lambda = \int_{C_{\gamma}} 1 d\lambda + \int_{A_{\gamma}} 0 d\lambda = (1 - \gamma) \text{ by Theorem 10.6.10(b)}.$