- 1. Вступ.
- 2. Масивно-паралельні системи.
- 3. Симетричні мультипроцесорні системи.
- 4. Системи з неоднорідним доступом до пам'яті.
- 5. Паралельні векторні процесори.
- 6. Кластерні системи.

1. Вступ.

Основним параметром класифікації паралельних комп'ютерів є наявність спільної (SMP) чи розподіленої пам'яті (MPP). Щось середнє між SMP і MPP являють собою NUMA - архітектури, де пам'ять фізично розподілена, але на логічному рівні загальнодоступна. Кластерні системи є дешевшим варіантом MPP. За підтримкою команд обробки векторних даних говорять про векторно - конвеєрні процесори, які, у свою чергу можуть об'єднуватися в PVP - системи з використанням загальної чи розподіленої пам'яті. Усе більшу популярність дістають ідеї комбінування різних архітектур в одній системі і побудови неоднорідних систем.

При організації розподілених обчислень у глобальних мережах, наприклад, Інтернет говорять про мета - комп'ютери, які, строго кажучи, не є паралельними архітектурами. Розглянемо основні типи комп'ютерів за такими ознаками: особливості архітектури, приклади конкретних комп'ютерів, перспективи масштабованості, типові особливості побудови операційних систем, найхарактерніша модель програмування.

2. Масивно - паралельні системи (МРР)

Блок-схема МРР наведена на рис.6.1, характеристики – в табл.6.1.

Рис. 6.1. Блок-схема МРР

На рис.6.1 позначено: ЛП – локальна пам'ять, ПР – процесор, ПР-К – процесор комутаційний, ВВВ – вузол вводу-виводу. Пунктирними лініями позначені необов'язкові вузли і лінії зв'язку.

Перевагами MPP ε хороша масштабованість і висока швидкодія (серед розглянутих схем — найшвидша); недоліками — великий час міжпроцесорного обміну, використання кожним ПР обмеженого об'єму локального банку даних, висока ціна програмного забезпечення.

3. Симетричні мультипроцесорні системи (SMP)

Блок-схема SMP наведена на рис.6.2, характеристики – в табл.6.2.

Рис. 6.2. Блок-схема SMP

Перевагами SMP ϵ : простота організації, універсальність при програмуванні, простота експлуатації, невисока ціна; недоліком – погана масштабованість.

Таблиця 6.1. Характеристики МРР

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9 00111	opino minima mar	•		
Архітектура	Система	складається	3	однорідних	обчислювальних	вузлів,	що
	включають:						
	- один чи кілька центральних процесорів (звичайно RISC);						

	- локальну пам'ять (прямий доступ до пам'яті інших вузлів неможливий); - комунікаційний процесор чи мережний адаптер; - іноді - тверді диски (як у SP) і/чи інші пристрої введення/виведення. До системи можуть бути додані спеціальні вузли введення/виведення і вузли керування. Вузли зв'язані через деяке комунікаційне середовище
П	(високошвидкісна мережа, комутатор і т.п.)
Приклади	IBM RS/6000 SP2, Intel Paragon/Asci Red, SGI/CRAY T3E, Hitachi
	SR8000, трансп'ютерні системи Parsytec.
Масштабованість	Загальне число процесорів у реальних системах досягає декількох тисяч
	(Asci Red, Blue Mountain).
Операційна система	Існують два основних варіанти:
	1. Повноцінна ОС працює тільки на керуючій машині (front - end), на кожнім вузлі працює сильно урізаний варіант ОС, що забезпечують
	тільки роботу розташованих в них паралельних задач. Приклад: Cray T3E.
	2. На кожнім вузлі працює повноцінна UNIX - подібна ОС (варіант,
	близький до кластерного підходу). Приклад: IBM RS/6000 SP + OC AIX,
	що встановлюються окремо на кожнім вузлі.
Модель	Програмування в рамках моделі передачі повідомлень (MPI, PVM,
програмування	BSPlib)

Таблиця 6.2. Характеристики SMP

	таолиця б.г. Характеристики SWI
Архітектура	Система складається з декількох однорідних процесорів і масиву загальної пам'яті (звичайно з декількох незалежних блоків). Усі процесори мають доступ до будь-якої комірки пам'яті з однаковою швидкістю. Процесори підключені до пам'яті або за допомогою загальної шини (базові 2 - 4 процесорні SMP - сервери), або за допомогою crossbar - комутатора (НР 9000). Апаратно підтримується когерентність кешів
Приклади	HP 9000 V - class, N - class; SMP - сервери і робочі станції на базі
T	процесорів Intel (IBM, HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu і ін.)
Масштабованість	Наявність загальної пам'яті спрощує взаємодія процесорів між собою,
	прооте накладає сильні обмеження на їхнє число - не більш 32 у
	реальних системах. Для побудови масштабованих систем на базі SMP
	використовуються кластерні чи NUMA - архітектури .
Операційна система	Уся система працює під керуванням єдиної ОС (звичайно UNIX -
•	подібної, але для Intel - платформ підтримується Windows NT). ОС
	автоматично (у процесі роботи) розподіляє процеси/нитки по
	процесорах (scheduling), але іноді можлива і явна прив'язка.
Модель	Програмування в моделі загальної пам'яті. (POSIX threads, OpenMP).
програмування	Для SMP – систем існують порівняно ефективні засоби автоматичного
	розпаралелення.

4. Системи з неоднорідним доступом до пам'яті (NUMA) Блок -схема NUMA наведена на рис.6.3, характеристики — в табл.6.3.

Рис. 6.3. Блок-схема NUMA

Переваги системи NUMA забезпечуються зручністю систем з спільною пам'яттю і дешевизною систем з розподіленою пам'яттю.

Таблиця 6.3. Характеристики NUMA

	<u> </u>
Архітектура	Склад: однорідні базові модулі (комірки) з невеликого числа процесорів
	і блоку пам'яті. Модулі об'єднані за допомогою високошвидкісного
	комутатора. Підтримується єдиний адресний простір, апаратно
	підтримується доступ до віддаленої пам'яті. Доступ до локальної пам'яті
	в кілька разів швидший, ніж до віддаленої. У випадку апаратного
	підтримання когерентності кешів у всій системі говорять про
	архітектуру cc - NUMA (cache - coherent NUMA)
Приклади	HP HP 9000 V - class y SCA - конфігураціях, SGI Origin2000, Sun HPC
	10000, IBM/Sequent NUMA - Q 2000, SNI RM600.
Масштабованість	Обмежується об'ємом адресного простору, можливостями апаратури
	підтримки когерентності кешів і можливостями ОС по керуванню
	великим числом процесорів.
Операційна система	Система працює під керуванням єдиної ОС, як у SMP. Можливі варіанти
	коли окремі "частини" системи працюють під керуванням різних ОС
	(наприклад, Windows NT i UNIX y NUMA - Q 2000).
Модель	Аналогічно SMP.
програмування	

5. Паралельні векторні системи (PVP)

Блок - схема PVP наведена на рис.6.4, характеристики – в табл.6.4.

Таблиця 6.4. Характеристики PVP

Архітектура	Основна ознака - наявність спеціальних векторно – конвеєрних процесорів, у				
	яких передбачені команди однотипної обробки векторів незалежних даних,				
	що ефективно виконуються на конвеєрних функціональних пристроях.				
	Як правило, кілька таких процесорів (1 - 16) працюють одночасно над				
	спільною пам'яттю (аналогічно SMP) у рамках багатопроцесорних				
	конфігурацій. Кілька таких вузлів можуть бути об'єднані за допомогою				
	комутатора (аналогічно МРР).				
Приклади	NEC SX - 4/SX - 5, лінія векторно - конвеєрних комп'ютерів CRAY: CRAY - 1,				
	CRAY J90/T90, CRAY SV1, серія Fujitsu VPP.				
Модель	Ефективне програмування має на увазі векторизацію циклів (для досягнення				
програмування	розумної продуктивності одного процесора) і їх розпаралелення (для				
	одночасного завантаження декількох процесорів однією задачею).				

Перевагами PVP ϵ висока швидкодія і практично відсутність проблеми вза ϵ модії між процесорами; недоліком – висока вартість.

6. Кластерні системи

Характеристики кластерної системи наведені в табл.6.5.

Таблиця 6.5. Характеристики кластерних систем

Архітектура	Набір	робочих	стан	щій (чи	ПК)	загального	призначення,
	викори	стову€ться	як	дешевий	варіан	т масивно	– паралельного

	комп'ютера. Для зв'язку вузлів використовується одна з стандартних мережних технологій (Fast/ Gigabit Ethernet, Myrinet) на базі шинної чи архітектури комутатора. При об'єднанні в кластер комп'ютерів різної потужності чи різної архітектури, говорять про гетерогенні (неоднорідні) кластери. Вузли кластера можуть одночасно використовуватися як користувацькі робочі станції.
Приклади	NT - кластер у NCSA, Beowulf - кластери.
Операційна система	Використовуються стандартні для робочих станцій ОС, найчастіше, вільно розповсюджувані - Linux/FreeBSD, разом зі спеціальними засобами підтримки паралельного програмування і розподілу навантаження.
Модель програмування	Програмування, як правило, у рамках моделі передачі повідомлень (найчастіше - MPI). Дешевизна подібних систем обертається великими накладними витратами на взаємодію паралельних процесів між собою, що сильно звужує потенційний клас розв'язуваних задач.