ТИПОВОЙ РАСЧЕТ

«Интегральное исчисление» ЗАДАНИЯ

Найти неопределённые интегралы путем:

- 1) внесения переменной под знак дифференциала;
- 2) использования тригонометрических формул;
- 3) интегрирования по частям;
- 4) интегрирования дробно-рациональных выражений 1-го типа;
- 5) интегрирования дробно-рациональных выражений 2-го типа;
- 6) интегрирования дробно-рациональных выражений 3-го типа;
- 7) применения универсальной тригонометрической подстановки $t = tg\frac{x}{2} \; ;$
- **8**) применения формул понижения степени в тригонометрических выражениях.
- 9) Интегрирование иррациональных функций (замена на t²).
- 10) Интегрирование иррациональных функций (тригонометрические подстановки).
- 11)-12) Вычислить определённые интегралы.
- **13)-15**) Вычислить площадь области D, ограниченной графиками данных функций.
- **16)-18)** Вычислить длину дуги кривой L.
- 19) Вычислить объем тела V, ограниченного заданными поверхностями.
- **20**) Вычислить объем тела V, образованного вращением данной линии вокруг заданной оси (0х или 0у).
- 21), 23) Вычислить несобственные интегралы.
- 22), 24) Исследовать сходимость несобственных интегралов.

$1. \int \frac{\arctan x dx}{1+x^2}$	$2. \int \cos 2x \cos 4x dx$
$\int (x^2 + 1)e^{2x} dx$	$4. \int \frac{x^2 + 8}{2 - x^2 - x} dx$
5. $\int \frac{2x^2 + 7x + 7}{(x+1)^2(x+2)} dx$	6. $\int \frac{3x^2 + 7x + 5}{(x+1)(x^2 + 2x + 2)} dx$
$7. \int \frac{\mathrm{dx}}{2\sin x - 3\cos x + 2}$	$8. \int \sin^4 x dx$
$9. \int \sqrt{\frac{2x-1}{4-2x}} dx$	$10. \int \frac{x^2 dx}{\sqrt{4-x^2}}$
$11. \int_{0}^{\frac{\pi}{3}} x \cos x dx$	10. $\int \frac{x^2 dx}{\sqrt{4-x^2}}$ 12. $\int_{\frac{\pi}{2}}^{2\operatorname{arctg2}} \frac{dx}{\sin^2 x (1-\cos x)}$
13. D: $2x = y^2$, $2y = x^2$	14. D: $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases}$ $(0 \le t \le 2\pi) y = 0$
15. D: $\rho = 2\cos 2\varphi, 0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = \ln x$; $2 \le x \le 4$
17. $L:\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), 0 \le t \le \frac{\pi}{2} \end{cases}$	18. L: $\rho = e^{\frac{3\varphi}{4}}$; $0 \le \varphi \le \frac{\pi}{2}$
19. V: $x^2 + y^2 + \frac{z^2}{4} = 1$, z = 0; $z = 1$	20. $y^2 = 4x$; $0 \le x \le 2$ $(0x)$
$z = 0; z = 1$ 21. $\int_{0}^{+\infty} \frac{dx}{x^{2} + 2x + 2}$	22. $\int_{1}^{+\infty} \frac{\sqrt{x} dx}{\sqrt{(x+1)(x+2)^2}}$
$23. \int_{2}^{3} \frac{2x}{\sqrt{x^2 - 4}} dx$	$24. \int_{2}^{3} \frac{e^{x}}{(x-3)^{2}} dx$

$1. \int \frac{\sqrt{\ln x}}{x} dx$	2. ∫ sin x cos 3x dx
$3. \int (x^2 - x + 1) \sin x dx$	4. $\int \frac{x^3 + x^2 + 2x + 3}{x^2 + x} dx$
$\int \frac{7x^3 - 3x^2 - 2x + 2}{x^3(x - 1)} dx$	4. $\int \frac{x^3 + x^2 + 2x + 3}{x^2 + x} dx$ 6. $\int \frac{5x^2 + 11}{(x - 1)(x^2 + 2x + 5)} dx$
$7. \int \frac{\mathrm{dx}}{\cos x + 2\sin x - 1}$	$8. \int \sin^2 3x \cos^2 3x dx$
$9. \int \frac{x dx}{4 + \sqrt{2x + 3}}$	$10. \int \frac{\mathrm{dx}}{\left(\sqrt{x^2+9}\right)^3}$
$11. \int_{0}^{\frac{\sqrt{3}}{3}} \arccos x dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{(1 + \sin x)^{2}} dx$
13. D: $y = x^2, x + y = 2$	14. $D: \begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases}$ $x = 2 (x \ge 2)$
15. D: $\rho = \sin 2\varphi, 0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = \frac{x^2}{2} - \ln x$; $2 \le x \le 4$
17. L: $\begin{cases} x = 3\cos^3 t, \\ y = 3\sin^3 t, 0 \le t \le \frac{\pi}{2}. \end{cases}$	18. L: $\rho = a\varphi$; $0 \le \varphi \le 2\pi$
19. V: $z = \frac{x^2}{4} + \frac{y^2}{2}$, $z = 1$	20. $y = \frac{b}{a} \sqrt{a^2 - x^2}$; $0 \le x \le a$ (0x)
$21. \int_{1}^{+\infty} \frac{\mathrm{dx}}{x^2 + 2x}$	$22. \int_{1}^{+\infty} \frac{x+7}{5x^4 + 3x^2 + 2} dx$
21. $\int_{1}^{+\infty} \frac{dx}{x^{2} + 2x}$ 23. $\int_{2}^{3} \frac{2}{\sqrt{x^{2} - 4}} dx$	$24. \int_{0}^{1} \frac{\cos x}{\sqrt[3]{x}} dx$

1. $\int \sin x e^{\cos x} dx$	2. ∫ sin 2x sin 5x dx
$3. \int \ln(x^2 + 4) dx$	$4. \int \frac{5x^2 - 8}{x^2 - 3x + 2} dx$
$\int \frac{2x^2 - 7x + 8}{(x - 2)^2 (x - 1)} dx$	6. $\int \frac{2x^2 - 12x + 1}{(x+1)(x^2 - 2x + 2)} dx$
$7. \int \frac{\cos x dx}{3 - \cos x}$	$8. \int \sin^4 x \cos^2 x dx$
$9. \int \sqrt{\frac{x+2}{x+4}} dx$	$10. \int \frac{\sqrt{x^2 - 1}}{x^4} dx$
$11. \int_{0}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^3 x} dx$	12. $\int_{\frac{\pi}{2}}^{2\operatorname{arctg2}} \frac{\mathrm{dx}}{\sin^2 x (1 + \cos x)}$
13. D: $y = 2x - x^2$, $x + y = 0$	14. D: $\begin{cases} x = 3\cos t, \\ y = 8\sin t, \end{cases}$ $y = 4\sqrt{3} (y \ge 4\sqrt{3})$
15. D: $\rho = a \cos 3\phi$, $-\frac{\pi}{6} \le \phi \le \frac{\pi}{6}$	16. L: $y = \sqrt{1 - x^2} + \arcsin x$; $2 \le x \le 0.5$
17. $L:\begin{cases} x = 2\cos t - \cos 2t, \\ y = 2\sin t - \sin 2t, 0 \le t \le \pi \end{cases}$	18. L: $\rho = e^{\frac{4\varphi}{3}}$; $0 \le \varphi \le \pi$
19. V: $\frac{x^2}{4} + \frac{y^2}{2} = 1$, z=0 z=1, (y \ge 0)	20. $y = 2\left(1 - \frac{x^2}{4}\right)$; $0 \le x \le 2$ (0x)
21. $\int_{0}^{+\infty} \frac{dx}{x^2 + 4x + 8}$	` /
$23. \int_{4}^{5} \frac{5x}{\sqrt{25 - x^2}} dx$	22. $\int_{1}^{+\infty} \frac{3 + \sin x}{\sqrt[3]{x}} dx$ 24. $\int_{3}^{5} \frac{\sin x}{(x - 5)^{3}} dx$

$1. \int \frac{x^3 dx}{x^4 + 1}$	2. ∫ cos 2x cos 6x dx
$3. \int (x+5)^2 \cos 2x dx$	4. $\int \frac{2x^3 + 6x^2 + x - 3}{x^2 + 3x} dx$
$5. \int \frac{x^2 + 3x + 3}{x^3(x+1)} dx$	6. $\int \frac{10-3x^2-3x}{(x-1)(x^2-2x+5)} dx$
$7. \int \frac{\sin x - 1}{5\sin x + 13} dx$	$8. \int \cos^4 5x dx$
$9. \int \frac{3-2x}{5+\sqrt{2x+1}} \mathrm{dx}$	$10. \int \sqrt{4-x^2} dx$
11. $\int_{0}^{\frac{1}{\sqrt{3}}} xarctgx dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{5 + 4 \cos x}$
13. D: $y = \lg x , y = 0,$ x = 0,1; x = 10	14. D: $\begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t), \\ y = 6, (0 < x < 8\pi, y \ge 6) \end{cases}$
15. D: $\rho = 2a(2 + \cos \varphi)$, $0 \le \varphi \le 2\pi$	16. L: $y = \ln \frac{2}{x}$; $1 \le x \le \sqrt{3}$
17. $L: \begin{cases} x = \cos t + t \sin t, \\ y = \sin t - t \cos t, 0 \le t \le 1 \end{cases}$	18. L: $\rho = \frac{1}{\varphi}$; $\frac{1}{2} \le \varphi \le 1$
19. $V: z = x^2 + 4y^2$, z = 1	20. $y = \sqrt{4 - x^2}$; $0 \le x \le 1$ (0x)
$21. \int_{2}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}^2 + 4\mathrm{x}}$	$22. \int_{1}^{+\infty} \frac{\operatorname{arctg} x}{x^3 + 7x + 1} dx$
21. $\int_{2}^{+\infty} \frac{dx}{x^{2} + 4x}$ 23. $\int_{2,5}^{5} \frac{dx}{\sqrt{25 - x^{2}}}$	$24. \int_{0}^{1} \frac{x dx}{\sqrt{1-x}}$

$1. \int \frac{\arcsin^2 x dx}{\sqrt{1 - x^2}}$	2. ∫sin 2x sin 3x dx
3. $\int (3-x+2x^2)e^x dx$	$4. \int \frac{3x^2 + 26}{x^2 + x - 12} dx$
5. $\int \frac{5x^2 + 4x - 7}{(x+2)^2(x-3)} dx$	6. $\int \frac{5x^2 + 15x + 12}{(x+2)(x^2 + 4x + 5)} dx$
$7. \int \frac{\mathrm{dx}}{8\cos x - 10}$	$8. \int \sin^2 \frac{3x}{3} \cos^2 \frac{3x}{2} dx$
$9. \int \sqrt{\frac{x-5}{x+3}} \mathrm{d}x$	$10. \int \frac{x^4 dx}{\sqrt{9-x^2}}$
11. $\int_{0}^{\frac{\sqrt{2}}{2}} x \arcsin x dx$	12. $\int_{2\operatorname{arctg}\frac{1}{3}}^{2\operatorname{arctg}\frac{1}{2}} \frac{\mathrm{dx}}{\sin x (1-\sin x)}$
13. D: $y=2^x$, $y=2$, $x=0$	14. <i>D</i> : $\begin{cases} x = \frac{3}{4}\cos^3 t, \\ y = 3\sin^3 t \end{cases}$
15. D: $\rho = \operatorname{atg}\varphi$, $0 \le \varphi \le \frac{\pi}{4}$	16. L: $y = \ln \cos x$; $0 \le x \le \frac{\pi}{4}$
17. L: $\begin{cases} x = \cos t - \frac{\cos 2t}{2}, \\ y = \sin t - \frac{1}{2}\sin 2t, \frac{\pi}{3} \le t \le \frac{\pi}{2} \end{cases}$	18. L: $\rho = 2e^{\varphi}$; $0 \le \varphi \le \frac{\pi}{2}$
19. V: $\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1$, z=0; z=1	20. $y = \sqrt{x-3}$; $3 \le x \le 7$ (0x)
$21. \int_0^{+\infty} \frac{\mathrm{dx}}{x^2 - 2x + 2}$	$22. \int_{1}^{+\infty} \frac{x}{\sqrt{1+x^3}} dx$
$23. \int_{3}^{4} \frac{3x}{\sqrt{x^2 - 9}} dx$	24. $\int_{9}^{10} \frac{\cos^2 x}{\sqrt[3]{(x-9)^5}} dx$

$1. \int x^2 \sqrt{1-x^3} dx$	2. ∫sin 4x cos5x dx
3. \(\int \text{g(3x)} \text{dx} \)	4. $\int \frac{3x^2 + 12x + 1}{x^2 - 1} dx$
5. $\int \frac{5x^3 + 4x^2 - 2x - 4}{x^3(x+2)} dx$	6. $\int \frac{3x+14}{(x-2)(x^2+4x+8)} dx$
$7. \int \frac{\mathrm{dx}}{7\cos x - 6\sin x + 9}$	8. $\int \sin^4 2x dx$
$9. \int \sqrt{\frac{2x+1}{2x+2}} dx$	$10. \int \frac{\mathrm{dx}}{\left(\sqrt{1-x^2}\right)^3}$
$11. \int_{1}^{e} x^2 \ln x dx$	12. $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos x dx}{1 + \sin x - \cos x}$
13. D: $y = (x+1)^2$, $x = \sin \pi y$, $y = 0$, $(0 \le y \le 1)$	14. $D: \begin{cases} x = 2\cos t, \ y = 3, \\ y = 6\sin t, (y \ge 3) \end{cases}$
15. D: $\rho = 1 - \sin \varphi, -\frac{\pi}{4} \le \varphi \le \frac{\pi}{4}$	16. L: $y = e^x + 1$; $0 \le x \le 1$
17. $L: \begin{cases} x = (t^2 - 2)\sin t - 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \frac{\pi}{2} \le t \le \pi \end{cases}$	18. L: $\rho = 1 + \cos \varphi$; $0 \le \varphi \le 1$
19. V: $\frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{36} = -1$, z = 8	20. $y = ch x$; $0 \le x \le 1$ $(0x)$
19. $V: \frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{36} = -1, z = 8$ 21. $\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2}$ 23. $\int_{3}^{4} \frac{3}{\sqrt{x^2 - 9}} dx$	$22. \int_{1}^{\infty} \frac{2 + \cos x}{x^2 + 1} dx$
$23. \int_{3}^{4} \frac{3}{\sqrt{x^2 - 9}} dx$	22. $\int_{1}^{\infty} \frac{2 + \cos x}{x^{2} + 1} dx$ 24. $\int_{0}^{1} \frac{\sin^{2} x}{\sqrt{1 - x^{2}}} dx$

$1. \int \frac{\cos x + 1}{\sin x + x} dx$	$2. \int \sin 7x \cos x dx$
$3. \int (4x^2 - 3)\cos x dx$	$4. \int \frac{9x^2 + 24}{x^2 + 7x + 10} dx$
5. $\int \frac{6x^2 + x - 19}{(x - 1)^2 (x + 3)} dx$	6. $\int \frac{4x^2 - 9x + 17}{(x+2)(x^2 - 4x + 5)} dx$
$7. \int \frac{dx}{4\sin x + 5}$	$8. \int \sin^2 \frac{x}{2} \cos^4 \frac{x}{2} dx$
$9. \int \frac{\mathrm{dx}}{1 + \sqrt{x + 1}}$	10. $\int \frac{\sqrt{x^2 - 25}}{x^4} dx$
$11. \int_{1}^{e} x \ln x dx$	12. $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin x dx}{1 + \cos x + \sin x}$
13. D: $y = x$, $y = x + \sin^2 x$, $(0 \le x \le \pi)$	14. $D: \begin{cases} x = \sqrt{2} \cos t, \\ y = 4\sqrt{2} \sin t, \end{cases}$ $y = 4, (y \ge 4)$
15. D: $\rho = 3(1 + \sin \varphi), -\frac{\pi}{3} \le \varphi \le 0$	16. L: $y = \arcsin \sqrt{x} + \sqrt{x - x^2}$; $0 \le x \le 1$
17. L: $\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), 0 \le t \le \pi \end{cases}$	18. L: $\rho = \sin^3 \frac{\varphi}{3}$; $0 \le \varphi \le \pi$
19. V: $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$, z = -1, $z = 1$	20. $y = -x^2 + 5x - 4;$ $y \ge 0$ (0x)
$z = -1, z = 1$ $21. \int_{0}^{+\infty} \frac{dx}{x^2 - 4x + 8}$	22. $\int_{1}^{+\infty} \frac{5 - \cos x}{\sqrt{x^2 + x + 1}} dx$
$23. \int_{1}^{2} \frac{x}{\sqrt[3]{x-1}} dx$	$24. \int_{4}^{6} \frac{x^2 + 7}{\sqrt{(x - 4)^3}} dx$

$1. \int \frac{e^x dx}{e^x + 2}$	2. ∫cos4x cosx dx
	$4x^2 - 14x - 108$
3. $\int (x^2 + 2x - 3)\sin(4x) dx$	$4. \int \frac{4x^2 - 14x - 108}{x^2 - 4x - 21} dx$
5. $\int \frac{x^3 - 10x^2 - 3x + 6}{x^3(x - 2)} dx$	6. $\int \frac{4x^2 - 11x + 14}{(x - 2)(x^2 - 4x + 8)} dx$
$7. \int \frac{\mathrm{dx}}{9\cos x + 6\sin x + 11}$	$8. \int \sin^2 x \cos^2 x dx$
$9. \int \sqrt{\frac{x-2}{x+2}} \mathrm{d}x$	$10. \int \frac{dx}{\left(\sqrt{x^2+4}\right)^3}$
$11. \int_{0}^{\frac{\pi}{2}} \frac{x \arccos x}{\sqrt{1-x^2}} dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{1 + \cos x + \sin x}$
13. D: $y = \frac{1}{1+x}$, $y = 0$, $0 \le x \le 2$	14. $D: \begin{cases} x = 8\cos^3 t, & x = 1, \\ y = 8\sin^3 t, & (x \ge 1) \end{cases}$
15. D: $\rho = 4(1 - \cos \varphi), -\frac{\pi}{4} \le \varphi \le 0$	16. L: $y = \ln(x^2 - 1)$; $3 \le x \le 5$
17. L: $\begin{cases} x = e^{t}(\cos t + \sin t), \\ y = e^{t}(\cos t - \sin t), \frac{\pi}{2} \le t \le \pi \end{cases}$	18. L: $\rho = 1 - \sin \varphi$; $0 \le \varphi \le \frac{\pi}{6}$
19. $V: x^2 + \frac{y^2}{4} = 9$,	20. $y = -x^2 + 2x$; $y \ge 0$ (0x)
$z=0, z=x (x \ge 0)$	<i>y</i> = 0 (011)
$21. \int_{5}^{+\infty} \frac{\mathrm{dx}}{x^2 - 4x}$	$22. \int_{1}^{+\infty} \frac{\cos^2 x}{e^x} dx$
$23. \int_{0}^{1} \frac{x}{\sqrt[3]{1-x^2}} dx$	$24. \int_{2}^{5} \frac{x^3 + 5}{\sqrt{x - 2}} dx$

$1. \int \frac{\mathrm{dx}}{\sqrt[3]{\ln x} \cdot x}$	2. ∫ sin 3x sin 5x dx
3. $\int \arcsin(2x) dx$	$4. \int \frac{3x^2 - 15}{x^2 - 7x - 8} dx$
$\int \frac{9x - 9}{(x - 3)^2 (x + 3)} dx$	6. $\int \frac{29 - 2x^2}{(x+1)(x^2 + 2x + 10)} dx$
$7. \int \frac{\cos x + 2}{3\cos x - 5} dx$	$8. \int \sin^4 3x \cos^4 3x dx$
$9. \int \sqrt{\frac{x-1}{x+1}} \mathrm{d}x$	$10. \int x^2 \sqrt{1-x^2} dx$
$11. \int_{1}^{2} x^{2} e^{3x} dx$	$12. \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{2 + \cos x}$
13. D: $\frac{x^2}{4} + \frac{y^2}{9} = 1$	14. $D: \begin{cases} x = 9\cos t, & y = 2, \\ y = 4\sin t, & (y \ge 2) \end{cases}$
15. D: $\rho = 2\varphi$, $0 \le \varphi \le 1$	16. L: $y = \sqrt{1 - x^2} + \arccos x$; $0 \le x \le 0.9$
17. L: $\begin{cases} x = 2t, \\ y = e^{2t}, 0 \le t \le 1 \end{cases}$	18. L: $\rho = 1 - \cos \varphi$; $0 \le \varphi \le \frac{\pi}{2}$
19. $V: z = 4x^2 + 9y^2$, z = 2	20. $y = 2 \sin x$; $0 \le x \le \pi$ (0x)
21. $\int_{3}^{+\infty} \frac{dx}{x^2 - 6x + 10}$	$22. \int_{1}^{+\infty} \frac{\sqrt{x+1}}{x+7} dx$
$23. \int_{4}^{6} \frac{4x}{\sqrt{x^2 - 16}} dx$	24. $\int_{1}^{5} \frac{x + e^{x}}{(x - 1)^{2}} dx$

$1. \int \frac{x dx}{\left(x^2 + 1\right)^2}$	2. ∫cos 3x cos x dx
$3. \int (2-x-x^2)\cos(5x) dx$	$4. \int \frac{2x^2 + 10x + 14}{x^2 + 6x + 8} dx$
$\int \frac{6x^2 - 2x^3 + x + 3}{x^3(x+3)} dx$	6. $\int \frac{3x^2 - 8x + 23}{(x-1)(x^2 - 2x + 10)} dx$
$7. \int \frac{1-\sin x}{10+8\sin x} dx$	8. $\int \cos^4 x dx$
$9. \int \frac{x + \sqrt[3]{x}}{\sqrt[6]{x} + 1} dx$	10. $\int \frac{x^2}{\sqrt{16-x^2}} dx$ 12. $\int_{2\operatorname{arctg2}}^{2\operatorname{arctg3}} \frac{dx}{\cos x(1-\cos x)}$
$11. \int_{\frac{1}{2}}^{1} e^{2x} \sin x dx$	12. $\int_{2\operatorname{arctg2}}^{2\operatorname{arctg3}} \frac{\mathrm{dx}}{\cos x (1 - \cos x)}$
13. D: $y = \arcsin x$, $y = 0$,	$x = 32\cos^3 t$ $x = 12\sqrt{3}$.
$0 \le x \le 1$	14. D: $\begin{cases} x = 32\cos^3 t, & x = 12\sqrt{3}, \\ y = 3\sin^3 t, & (x \ge 12\sqrt{3}) \end{cases}$
15. D: $\rho = 5\cos\varphi$,	16. L: $y = \ln(1 - x^2)$;
$0 \le \varphi \le \frac{\pi}{3}$	$0 \le x \le 0.5$
17. L: $\begin{cases} x = 2t, \\ y = \cosh 2t, 0 \le t \le 2 \end{cases}$	18. L: $\rho = 1 + \sin \varphi$; $\frac{\pi}{6} \le \varphi \le \frac{\pi}{3}$
19. $V: \frac{x^2}{4} + y^2 - z^2 = 4$, z = 1, z = 2	20. $y = 5\cos x$; $0 \le x \le \frac{\pi}{2}$ (0x)
$21. \int_{6}^{+\infty} \frac{dx}{x^2 - 6x + 8}$	22. $\int_{1}^{+\infty} \frac{\sqrt{x^3} + 5}{x^4 + x + 1} dx$
$23. \int_{4}^{5} \frac{4}{\sqrt{x^2 - 16}} dx$	$24. \int_{0}^{1} \frac{x+5}{\sqrt{1-x^{4}}} dx$

$1. \int \frac{\mathrm{d}x}{x \cdot (\ln^2 x - 4)}$	2. ∫sin 2x cos x dx
3. $\int (x^2 - 4x + 3)e^{2x} dx$	$4. \int \frac{x^2 - 11}{x^2 - 2x - 3} dx$
$\int \frac{6x^2 + 15x - 5}{(x+3)^2(x-1)} dx$	6. $\int \frac{3x^2 + 9x + 5}{(x+3)(x^2 + 2x + 2)} dx$
$7. \int \frac{\mathrm{dx}}{6\sin x + 10}$	$8. \int \sin^4 \frac{x}{2} \cos^4 \frac{x}{2} dx$ $10. \int \sqrt{9 - x^2} dx$
$9. \int \sqrt{\frac{x+5}{x-3}} dx$	$10. \int \sqrt{9-x^2} dx$
$11. \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} e^{x} \cos x dx$	12. $\int_{2\arctan \frac{1}{2}}^{\frac{\pi}{2}} \frac{dx}{(1+\sin x - \cos x)^2}$
13. D: $y = tg x$, $y = \frac{2}{3} cos x$, $x = 0$	14. $D: \begin{cases} x = t^2, \\ y = t^3 - t \end{cases}$
15. D: $\rho = 3\sin\varphi$, $0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = chx$; $0 \le x \le 2$
17. $L: \begin{cases} x = 2t, \\ y = \ln(\cos 2t), 0 \le t \le \frac{\pi}{6} \end{cases}$	18. L: $\rho = 2\varphi$; $0 \le \varphi \le \frac{1}{2}$
19. V: $x^2 + \frac{y^2}{16} - \frac{z^2}{4} = 1$, $z = 3$	20. $y = \sin^2 x$; $0 \le x \le \pi$ $(0x)$
$21. \int_{-\infty}^{0} \frac{\mathrm{dx}}{x^2 + 2x + 2}$	22. $\int_{1}^{+\infty} \frac{4 + \cos x}{\sqrt[3]{x^2 + 3}} dx$
$23. \int_{2}^{3} \frac{x}{\sqrt[3]{x-2}} dx$	24. $\int_{-1}^{2} \frac{5 - \sin x}{\sqrt{(x+1)^3}} dx$

$1. \int \frac{tg^5x}{\cos^2 x} dx$	2. ∫sin 4x cos x dx
$3. \int \ln(1-x^2) dx$	4. $\int \frac{x^3 + 3x^2 + 5x + 6}{x^2 + 3x} dx$
5. $\int \frac{2x^3 - 16x^2 + x - 4}{x^3(x - 4)} dx$	6. $\int \frac{5x^2 - 5x + 10}{(x - 3)(x^2 + 2x + 5)} dx$
7. $\int \frac{dx}{\cos x + 5\sin x + 1}$	$8. \int \sin^2 x \cos^4 x dx$
$9. \int \frac{2\mathrm{dx}}{\sqrt{2x+3}+2}$	$10. \int \frac{\mathrm{dx}}{\mathrm{x}^2 \sqrt{\mathrm{x}^2 - 25}}$
$11. \int_{1}^{2} e^{x} \sin 2x dx$	12. $\int_{0}^{\frac{2\pi}{3}} \frac{(1+\sin x) dx}{1+\cos x + \sin x}$
13. D: $x^2 + \frac{y^2}{4} = 1$	14. $D: \begin{cases} x = 2 + \cos t, \\ y = 3 + \sin t \end{cases}$
15. D: $\rho = 2\sin\varphi$, $\frac{\pi}{6} \le \varphi \le \frac{\pi}{2}$	16. L: $y = 3 - \ln \cos x$; $0 \le x \le \frac{\pi}{3}$
17. L: $\begin{cases} x = 2t, \\ y = \ln(\sin 2t), \frac{\pi}{6} \le t \le \frac{\pi}{3} \end{cases}$	18. L: $\rho = \cos \varphi$; $0 \le \varphi \le \frac{\pi}{2}$
19. V: $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$, z=0, z=1	20. $y = x^3 + 2$; $0 \le x \le 1$ $(0x)$
$21. \int_{-\infty}^{-3} \frac{\mathrm{dx}}{x^2 + 2x}$	$22. \int_{1}^{+\infty} \frac{\operatorname{arctg} x}{e^{x}} dx$
$z = 0, z = 1$ $21. \int_{-\infty}^{-3} \frac{dx}{x^2 + 2x}$ $23. \int_{0}^{2} \frac{2x^2}{\sqrt[3]{8 - x^3}} dx$	$24. \int_{2}^{3} \frac{4 + \cos x}{\sqrt[3]{x - 2}} dx$

$1. \int x^{10} \sqrt{3x^{11} + 2} dx$	$2. \int \cos 2x \cos 7x dx$
$3. \int (2x-x^2)\sin(3x) dx$	$4. \int \frac{3x^2 - 18}{x^2 - 2x - 8} dx$
5. $\int \frac{5x^2 - 14x + 2}{(x-3)^2(x+2)} dx$	6. $\int \frac{-2x^2 - 10x - 3}{(x+1)(x^2 - 2x + 2)} dx$
$7. \int \frac{\mathrm{dx}}{\sin x + 2\cos x - 3}$	8. $\int \sin^4 6x dx$
$9. \int \sqrt{\frac{x-3}{x+4}} \mathrm{d}x$	$10. \int \frac{x^4 dx}{\left(\sqrt{1-x^2}\right)^3}$
$11. \int_{2}^{3} \cos(\ln x) dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{(1+\cos x)dx}{1+\cos x + \sin x}$
13. D: $y = \sin x$, $y = \cos x$, $y = 0$	14. $D: \begin{cases} x = \frac{9}{5}\cos^3 t, \\ y = \frac{9}{4}\sin^3 t \end{cases}$
15. D: $\rho = \frac{1}{2\phi}, \frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$	16. L: $y = (e^{2x} + e^{-2x})/4 + 5$; 0 \le x \le 1
17. $L: \begin{cases} x = 2t, \\ y = 2\ln(t^3 - 1), 2 \le t \le 3 \end{cases}$	18. L: $\rho = \sin \varphi$; $0 \le \varphi \le \frac{\pi}{3}$
19. V: $\frac{x^2}{3} + \frac{y^2}{12} = 1$, $z = 0$, $z = y\sqrt{3}$ $(y \ge 0)$	20. $y = \sqrt{x}e^{x}$; $0 \le x \le 1$ $(0x)$
$21. \int_{-\infty}^{0} \frac{dx}{x^2 + 4x + 8}$	22. $\int_{1}^{+\infty} \frac{x^2 + 3x + 1}{\sqrt[3]{x^7 + 4x + 2}} dx$
$23. \int_{5}^{6} \frac{5x}{\sqrt{x^2 - 25}} dx$	$24. \int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{x} - 1}$

$1. \int \frac{e^{\arctan x} dx}{1+x^2}$	2. ∫sin x sin 9x dx
3. $\int (3x^2 + x - 5)e^x dx$	4. $\int \frac{3x^3 + 6x^2 - 3x - 4}{x^2 + 2x} dx$
5. $\int \frac{2x^3 + 6x^2 + 2x + 4}{x^3(x+2)} dx$	6. $\int \frac{x^2 - 6x + 13}{(x - 1)(x^2 - 2x + 5)} dx$
$7. \int \frac{\cos x dx}{15 + 5 \cos x}$	$8. \int \sin^4 2x \cos^4 2x dx$
$9. \int \frac{(x-1)dx}{3-\sqrt{x+3}}$	$10. \int \frac{\sqrt{x^2 - 9}}{x^4} dx$
$11. \int_{2}^{3} \sin(\ln x) dx$	10. $\int \frac{\sqrt{x^2 - 9}}{x^4} dx$ 12. $\int_{0}^{2\arctan \frac{1}{2}} \frac{(1 + \sin x) dx}{(1 - \sin x)^2}$
13. D: $y = \ln x$, $y = \ln^2 x$	14. $D: \begin{cases} x = 2\sqrt{2}\cos^3 t, & x = 1, \\ y = \sqrt{2}\sin^3 t, & (x \ge 1) \end{cases}$
15. D: $\rho = \operatorname{ctg} \varphi$, $\frac{\pi}{6} \le \varphi \le \frac{\pi}{3}$	16. L: $y = -\arccos\sqrt{x} + \sqrt{x - x^2}$; $0 \le x \le 0.5$
17. $L: \begin{cases} x = 3t, \\ y = 3\ln(1 - t^2), \frac{1}{3} \le t \le \frac{1}{2} \end{cases}$	18. L: $\rho = 2e^{\frac{5\varphi}{12}}$; $0 \le \varphi \le 1$
19. $V: z = x^2 + 6y^2, z = 2$	20. $y = 4 - x^2$; $0 \le x \le 2$ (0x)
$21. \int_{-\infty}^{-5} \frac{\mathrm{dx}}{x^2 + 4x}$	22. $\int_{1}^{+\infty} \frac{1+\sin x}{\sqrt{x^3+7}} dx$
$23. \int_{5}^{6} \frac{3}{\sqrt{x^2 - 25}} dx$	$24. \int_{0}^{1} \frac{\arcsin x}{\sqrt[4]{1-x}} dx$

$1. \int \frac{x dx}{\sqrt{x^2 + 1}}$	2. ∫ sin 4x cos 3x dx
3. $\int arctg(4x) dx$	$4. \int \frac{4x^2 + 2}{x^2 - 2x - 8} dx$
$\int \frac{5x^2 + 7x}{(x+2)^2(x-4)} dx$	6. $\int \frac{3x^2 + 12x + 13}{(x+3)(x^2 + 4x + 5)} dx$
$7. \int \frac{\mathrm{dx}}{3 - 2\sin x + \cos x}$	$8. \int \cos^4 3x dx$
$9. \int \frac{\sqrt{x} + x}{1 + \sqrt[3]{x}} dx$	$10. \int \frac{x^4}{\sqrt{16-x^2}} dx$
$11. \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{x \cos x}{\sin^2 x} dx$	12. $\int_{0}^{2\arctan \frac{1}{3}} \frac{\cos x dx}{\left(1 + \cos x\right)\left(1 - \sin x\right)}$
13. D: $y = 2x^2$, $y = -x^3$	$14. D: \begin{cases} x = 3\cos t, \\ y = 8\sin t \end{cases}$
15. D: $\rho = \cosh \phi$, $0 \le \phi \le 1$	16. L: $y = (e^{2x} + e^{-2x})/4 - 3$; $\ln \sqrt{2} \le x \le \ln \sqrt{5}$
17. $L: \begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t), \ 0 \le t \le \frac{\pi}{2} \end{cases}$	18. L: $\rho = 5\varphi$; $0 \le \varphi \le 1$
19. V: $\frac{x^2}{49} + \frac{y^2}{25} - z^2 = 1$, z = 0, $z = 3$	20. $y = e^{2-x}$; $0 \le x \le 1$ $(0x)$
$21. \int_{-\infty}^{0} \frac{\mathrm{dx}}{x^2 - 2x + 2}$	$22. \int_{1}^{+\infty} \frac{\mathrm{dx}}{\sqrt{x} + \sin^2 x}$
$23. \int_{3}^{4} \frac{x}{\sqrt[3]{x-3}} dx$	$24. \int_{2}^{4} \frac{x^3 + 1}{(x - 2)^2} dx$

$1. \int \frac{4 - \operatorname{ctg}^3 x}{\sin^2 x} \mathrm{d}x$	2. ∫ cos x cos 8x dx
$3. \int (9-x^2)\cos(2x) dx$	$4. \int \frac{3x^2 + 6x - 1}{x^2 + 2x - 3} dx$
$\int \frac{6x^3 + 20x^2 - x - 5}{x^3(x+5)} dx$	$4. \int \frac{3x^2 + 6x - 1}{x^2 + 2x - 3} dx$ $6. \int \frac{9x + 2}{(x - 3)(x^2 + 4x + 8)} dx$
$7. \int \frac{\mathrm{dx}}{3\sin x + 2\cos x - 5}$	$8. \int \sin^2 \frac{x}{4} \cos^4 \frac{x}{4} dx$
$9. \int \sqrt{\frac{x-6}{x+2}} \mathrm{d}x$	$10. \int x^2 \sqrt{4-x^2} dx$
11. $\int_{1}^{4} x^{2} e^{-x} dx$	12. $\int_{-\frac{2\pi}{3}}^{0} \frac{\cos x dx}{1 + \cos x - \sin x}$
13. D: $y = \ln x$, $y = 0$, $x = e$, $x = e^2$	14. D: $\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases}$
	$y = 6 (0 < x < 12\pi, y \ge 6)$
15. D: $\rho = \sinh \varphi$, $0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = \arcsin x - \sqrt{1 - x^2}$; $0 \le x \le 1$
17. $L:\begin{cases} x = 2\cos^3 t, \\ y = 2\sin^3 t, \frac{\pi}{2} \le t \le \pi \end{cases}$	18. L: $\rho = e^{\frac{12}{5}\phi}$; $0 \le \phi \le 1$
19. V: $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{25} = -1$,	20. $y = \sqrt{3-x}$; $1 \le x \le 3$ (0x)
z = 6, z > 0	
21. $\int_{-\infty}^{-2} \frac{dx}{x^2 - 2x}$ 23. $\int_{1}^{3} \frac{3x}{\sqrt[3]{9 - x^2}} dx$	$22. \int_{1}^{+\infty} \frac{\mathrm{dx}}{x^2 + \cos^2 x}$
$23. \int_{1}^{3} \frac{3x}{\sqrt[3]{9-x^2}} dx$	$24. \int_{2}^{3} \frac{e^{x}}{\sqrt[3]{x^{3} - 8}} dx$

$1. \int \frac{\mathrm{dx}}{\mathrm{x \ln^5 x}}$	2. ∫sin 5x sin 6x dx
$3. \int (3-x^2)\sin(3x) dx$	$4. \int \frac{4x^2 + 11}{x^2 + 7x + 10} dx$
$\int \frac{6x-2}{(x+1)^2(x-3)} dx$	$6. \int \frac{4x^2 + 3x + 7}{(x+2)(x^2 + 5 - 4x)} dx$
$7. \int \frac{\mathrm{dx}}{8\cos x + 4\sin x + 9}$	$8. \int \sin^4 \frac{x}{4} dx$
$9. \int \frac{\sqrt{x+1}+1}{2-\sqrt{x+1}} dx$	$10. \int \frac{\mathrm{dx}}{\left(\sqrt{x^2 + 25}\right)^3}$
11. $\int_{0}^{\frac{1}{2}} (\arcsin x)^{2} dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{(1 + \cos x + \sin x)^{2}}$
13. D: $y = (x^2 + 2x)e^{-x}$, $y = 0$	14. $D: \begin{cases} x = 5 + \sin t, \\ y = 4 + \cos t \end{cases}$
15. D: $\rho = 4\sqrt{\varphi}$, $0 \le \varphi \le 1$	16. L: $y = 2 - \ln \sin x$; $\frac{\pi}{6} \le x \le \frac{\pi}{3}$
17. $L: \begin{cases} x = 6\cos t + 3\cos 2t, \\ y = 6\sin t - 3\sin 2t, \frac{\pi}{2} \le t \le \pi \end{cases}$	18. L: $\rho = \frac{2}{\varphi}$; $1 \le \varphi \le 2$
19. V: $\frac{x^2}{16} + y^2 + \frac{z^2}{9} = 1$, z = 0, z = 2	20. $y = 2x^3 - 1$; $1 \le x \le 2$ (0x)
$21. \int_{-\infty}^{0} \frac{dx}{x^2 - 4x + 8}$	22. $\int_{1}^{+\infty} \frac{x+6}{\sqrt[3]{x^4} + x + 8} dx$
$23. \int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx$	24. $\int_{7}^{8} \frac{e^{x} + 5}{(x - 7)^{3}} dx$

$1. \int \frac{x^2 \mathrm{dx}}{\sqrt{2x^3 + 3}}$	2. ∫sin 2x sin 6x dx
3. $\int (x^2 + 5x + 7)e^{2x} dx$	$4. \int \frac{4x^3 + 16x^2 - x - 12}{x^2 + 4x} dx$
$\int \frac{2x - 9x^2 - 2x^3 + 6}{x^3(x+3)} dx$	4. $\int \frac{4x^3 + 16x^2 - x - 12}{x^2 + 4x} dx$ 6. $\int \frac{3x^2 - 8x + 8}{(x - 2)(x^2 - 4x + 8)} dx$
$7. \int \frac{\mathrm{dx}}{3\cos x - 4\sin x + 5}$	$8. \int \sin^4 x \cos^4 x dx$
$9. \int \sqrt{\frac{x-3}{x+1}} \mathrm{d}x$	$10. \int \frac{\mathrm{dx}}{\mathrm{x}^2 \sqrt{\mathrm{x}^2 - 1}}$
$11. \int_{0}^{1} (\operatorname{arct} \operatorname{gx})^{2} dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{(1+\sin x)^2}$
13. D: $y = e^x$, $y = e^{-x}$, $x = 1$	14. D: $\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases} y = 9,$ $(y \ge 9, 0 < x < 12\pi)$
15. D: $\rho = 4\sin \varphi$, $0 \le \varphi \le \frac{\pi}{3}$	16. L: $y = 3 - \ln(x^2 - 1);$ $\sqrt{2} \le x \le 3$
17. L: $\begin{cases} x = 3\cos t + 3t\sin t, \\ y = 3\sin t - 3t\cos t, 1 \le t \le 2 \end{cases}$	18. L: $\rho = 3e^{\frac{7\varphi}{24}}$; $0 \le \varphi \le 1$
19. V: $\frac{x^2}{2} + \frac{y^2}{8} = 1$, $z = 0$, $z = y\sqrt{3} (y \ge 0)$	20. $y = \arccos \frac{x}{3}; x \ge 0 (0y)$
$21. \int_{-\infty}^{-1} \frac{\mathrm{dx}}{x^2 - 4x}$	22. $\int_{1}^{+\infty} \frac{x+15}{8x^3+4x+11} dx$
$23. \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$	$24. \int_{0}^{1} \frac{\cos^2 x}{\sqrt{x}} dx$

$1. \int \frac{\cos x dx}{\sqrt{\sin^2 x + 2}}$	$2. \int \cos 3x \cos 5x dx$
$3. \int \ln(4x^2 - 1) dx$	4. $\int \frac{x^2 + 11}{x^2 + x - 2} dx$
5. $\int \frac{18 - x^2 - x}{(x - 2)^2 (x + 2)} dx$	6. $\int \frac{2x^2 - x + 18}{(x+3)(x^2 + 2x + 10)} dx$
$7. \int \frac{\mathrm{dx}}{2\cos x + 5\sin x - 1}$	$8. \int \sin^4 x \cos^4 x \ dx$
9. $\int \frac{2\sqrt{x+2}-1}{5+\sqrt{x+2}} dx$ 11. $\int x \cos x dx$	$10. \int \sqrt{25-x^2} dx$
$11. \int_{0}^{\pi/2} x \cos x dx$	12. $\int_{-\frac{\pi}{2}}^{0} \frac{\sin x dx}{(1 + \cos x - \sin x)^{2}}$
13. D: $\frac{x^2}{16} + \frac{y^2}{4} = 1$	14. $D: \begin{cases} x = 8\cos^3 t, & x = 3\sqrt{3}, \\ y = 4\sin^3 t, & (x \ge 3\sqrt{3}) \end{cases}$
15. D: $\rho = 5\cos 4\varphi$,	16.
$-\frac{\pi}{8} \le \varphi \le \frac{\pi}{8}$	L: $y = \sqrt{x - x^2} - \arccos \sqrt{x} + 3$; $\frac{1}{4} \le x \le 1$
$\begin{cases} x = 2\cos t - \cos 2t, \end{cases}$	18. L: $\rho = 2(1 + \cos \varphi);$
$L: \begin{cases} x = 2\cos t - \cos 2t, \\ y = 2\sin t - \sin 2t, 0 \le t \le \frac{\pi}{4} \end{cases}$	$\frac{\pi}{2} \le \varphi \le \pi$
19. $V: z = x^2 + 5y^2, z = 2$	20. $y = \arcsin \frac{x}{5}$; $x \ge 0$ (0y)
$21. \int_{-\infty}^{2} \frac{dx}{x^2 - 6x + 10}$	$22. \int_{1}^{+\infty} \frac{x+1}{\sqrt[3]{x^5 + x^3 + 5}} dx$
$23. \int_{4}^{5} \frac{x}{\sqrt[3]{x-4}} dx$	$24. \int_{3}^{5} \frac{\sin x + 3}{(x - 5)^{4}} dx$

$1. \int \frac{x^2 dx}{x^6 + 1}$	2. ∫sin 4x cosx dx
$3. \int (2-x-x^2)\cos(5x) dx$	$4. \int \frac{3x^3 - 9x^2 + 4x - 15}{x^2 - 3x} dx$
5. $\int \frac{3x - 10x^2 - x^3 + 15}{x^3(x+5)} dx$	4. $\int \frac{3x^3 - 9x^2 + 4x - 15}{x^2 - 3x} dx$ 6. $\int \frac{3x^2 - 7x + 20}{(x - 3)(x^2 - 2x + 10)} dx$
$7. \int \frac{2\sin x dx}{12\sin x - 13}$	8. ∫sin ⁴ 3x dx
$9. \int \frac{\sqrt[3]{x} + x}{\sqrt{x} + \sqrt[6]{x}} dx$	$10. \int \frac{x^2 dx}{\left(\sqrt{4-x^2}\right)^3} dx$
$11. \int_{1}^{2} \frac{\ln x}{x^2} dx$	$12. \int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{2 + \sin x}$
13. D: $y = e^x$, $y = -x^3 e^x$, $x = 0$ x = -1	14. $D: \begin{cases} x = 3\cos t, & y = 4, \\ y = 8\sin t, & (y \ge 4) \end{cases}$
15. D: $\rho = 4(2 + \cos \varphi)$,	16. L: $y = 3 - \arccos x + \sqrt{1 - x^2}$;
$0 \le \varphi \le \pi$	$0 \le x \le 4/9$
17. $L: \begin{cases} x = 3(t^2 - 2)\sin t + 6t\cos t, \\ y = 3(2 - t^2)\cos t + 6t\sin t, \end{cases}$ $0 \le t \le \frac{\pi}{2}$	18. $L: \rho = 4\sin^3 \frac{\varphi}{3}; \frac{\pi}{2} \le \varphi \le \pi$
19. $V: \frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1, z = 1,$ z = 3	20. $y = x^2$; $0 \le y \le 1$ (0y)
19. $V: \frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1, z = 1,$ z = 3	$22. \int_{1}^{+\infty} \frac{\arctan dx}{x\sqrt{x} + 7}$
19. V: $\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1$, $z = 1$,	• • • • • • • • • • • • • • • • • • • •

2. ∫cos5x cos2x dx
$4. \int \frac{8x^2 - 7}{x^2 - x - 2} dx$
4. $\int \frac{8x^2 - 7}{x^2 - x - 2} dx$ 6. $\int \frac{2x^2 + 9x + 14}{(x + 4)(x^2 + 2x + 2)} dx$
$8. \int \sin^2 \frac{3x}{2} \cos^4 \frac{3x}{2} dx$
$10. \int x^2 \sqrt{9 - x^2} dx$
$12. \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos x (1 + \cos x)}$
14. D: $\begin{cases} x = 8(t - \sin t), \\ y = 8(1 - \cos t), \end{cases} y = 12,$ $(y \ge 12, 0 < x < 16\pi)$
16. L: $y = 2 + \ln \sin x$;
$\frac{\pi}{4} \le x \le \frac{\pi}{3}$
18. L: $\rho = \sin^3 \frac{\varphi}{3}$; $0 \le \varphi \le \frac{\pi}{2}$
20. $y = \sqrt{x-1}$; $0 \le y \le 1$ (0y)
$22. \int_{1}^{+\infty} \frac{9 + \cos x}{\sqrt{x} + 9} dx$
22. $\int_{1}^{+\infty} \frac{9 + \cos x}{\sqrt{x} + 9} dx$ 24. $\int_{7}^{8} \frac{\sin^{2} x}{\sqrt[5]{(x - 7)^{6}}} dx$

$1. \int \frac{x^8 dx}{x^9 + 2}$	2. ∫sin 6x sin x dx
3. $\int (3x^2 + 4)e^{4x} dx$	4. $\int \frac{5x^2 - 6x - 1}{x^2 - x} dx$
5. $\int \frac{6x^2 - x^3 + 4x - 12}{x^3(x - 3)} dx$	6. $\int \frac{5x^2 - 10x + 18}{(x - 4)(x^2 + 2x + 5)} dx$
$7. \int \frac{\mathrm{dx}}{2 + 3\cos x - 2\sin x}$	$8. \int \sin^2 5x \cos^2 5x \ dx$
$9. \int \frac{1-\sqrt{2x+1}}{\sqrt{2x+1}+3} dx$	$10. \int \frac{x^4}{\sqrt{1-x^2}} dx$
$11. \int_{1}^{e} \ln^2 x \mathrm{d}x$	10. $\int \frac{x^4}{\sqrt{1-x^2}} dx$ 12. $\int_{-\frac{\pi}{2}}^{0} \frac{\cos x dx}{(1+\cos x - \sin x)^2}$
13. D: $y = (x-1)^2$, $y^2 = x-1$	14. D: $\begin{cases} x = 8\cos^3 t, & x = 3\sqrt{3}, \\ y = 4\sin^3 t, & (x \ge 3\sqrt{3}) \end{cases}$
15. D: $\rho = 2 - \sin \varphi$, $0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = \ln 3 - \ln x$; $\sqrt{5} \le x \le 3$
2	18. L: $\rho = 4(1 + \sin \varphi)$; $\frac{\pi}{2} \le \varphi \le \pi$
19. V: $x^2 + \frac{y^2}{9} + \frac{z^2}{25} = 1$, $z = 1$, $z = 4$	20. $y = \ln x$; $1 \le x \le e$ (0y)
$21. \int_{2}^{+\infty} \frac{dx}{x^{2} + 8x}$ $23. \int_{1}^{2} \frac{1}{\sqrt{4 - x^{2}}} dx$	22. $\int_{1}^{+\infty} \frac{3 - \sin x}{x^4 + 5x + 6} dx$
$23. \int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} dx$	$24. \int_{1}^{2} \frac{\cos^{2} x dx}{\sqrt{4 - x^{2}}} dx$

$1. \int \frac{\ln^2 x + \ln x + 1}{x} dx$	2. $\int \sin 8x \cos 3x dx$
$3. \int (1-x^2)\sin(2x) dx$	$4. \int \frac{x^2 + 19}{10 - x^2 - 3x} dx$
5. $\int \frac{3x - 2x^2 + 30}{(x - 4)^2(x + 1)} dx$	6. $\int \frac{x^2 - 11x - 8}{(x+4)(x^2 - 2x + 2)} dx$
$7. \int \frac{1 - \cos x}{\cos x + 3} dx$	8. $\int \cos^4 2x \ dx$
$9. \int \sqrt{\frac{x+4}{x-2}} \mathrm{d}x$	$10. \int \frac{\mathrm{dx}}{\mathrm{x}^2 \sqrt{\mathrm{x}^2 - 9}}$
$11. \int_{0}^{1} x^{3} e^{x^{2}} dx$	12. $\int_{0}^{2\operatorname{arctg}_{2}^{1}} \frac{(1-\sin x) dx}{\cos x(1+\cos x)}$
13. D: $\frac{x^2}{9} + \frac{y^2}{25} = 1$	14. $D:\begin{cases} x = 2 + 3\cos t, \\ y = 3 + 2\sin t \end{cases}$
15. D: $\rho = 2(1 + \sin \varphi)$,	16. $L: y = \frac{1}{2} \operatorname{ch} 2x + 1;$
$-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$ 17. L: $\begin{cases} x = 4t, \\ y = 2e^{2t}, 1 \le t \le 2 \end{cases}$	$0 \le x \le 0.5$
$17. L: \begin{cases} x = 4t, \\ 17. L: \end{cases}$	18. L: $\rho = 2(1 - \sin \varphi)$;
$y = 2e^{2t}, 1 \le t \le 2$	$\frac{\pi}{3} \le \varphi \le \frac{2\pi}{3}$
19. $V: \frac{x^2}{12} + \frac{y^2}{27} = 1$, $z = 0$, $z = \frac{y}{\sqrt{3}} (y \ge 0)$	20. $y = \arccos \frac{x}{5}$; $x \le 0$ (0y)
$21. \int_{-2}^{+\infty} \frac{dx}{x^2 + 8x + 20}$	22. $\int_{1}^{+\infty} \frac{13 + \sin x}{\sqrt[3]{x^2} + \sqrt{x} + 1} dx$
$23. \int_{5}^{6} \frac{x}{\sqrt[3]{x-5}} dx$	24. $\int_{1}^{3} \frac{x^2 + 1}{\sqrt{(x - 1)^5}} dx$

$1. \int \frac{\sin x dx}{\cos^2 x}$	2. ∫sin x cos5x dx
3. $\int (x^2 + 8x + 2)\cos(3x) dx$	$4. \int \frac{3x^2 - 4x - 8}{x^2 - 2x} dx$
$\int \frac{x^3 - x^2 + 5x + 5}{x^3(x+1)} dx$	4. $\int \frac{3x^2 - 4x - 8}{x^2 - 2x} dx$ 6. $\int \frac{13x - 3x^2 + 9}{(x - 4)(x^2 - 2x + 5)} dx$
$7. \int \frac{\mathrm{dx}}{5 - 4\cos x + 2\sin x}$	$8. \int \sin^4 4x \cos^4 4x \ dx$
$9. \int \frac{2x-1}{3+\sqrt{x-3}} \mathrm{d}x$	$10. \int \sqrt{16-x^2} dx$
11. $\int_{0}^{\frac{1}{4}} \frac{\arcsin 2x dx}{\sqrt{1 - 4x^2}}$	12. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{(1 + \sin x + \cos x)^2}$
13. D: $y = x(x-1)^2$, $y = 0$	14. $D: \begin{cases} x = 5\cos t, \\ y = \sin t \end{cases}$
15. D: $\rho = 2(1 - \cos \varphi)$,	16. L: $y = 4 + \arcsin x - \sqrt{1 - x^2}$;
$-\frac{\pi}{2} \le \varphi \le 0$	$0 \le x \le \frac{5}{6}$
17. L: $\begin{cases} x = 6t, \\ y = 3ch2t, 0 \le t \le 1 \end{cases}$	18. L: $\rho = 3\phi$; $1 \le \phi \le 3$
19. $V: z = 4x^2 + 8y^2, z = 5$	20. $y = \arcsin \frac{x}{2}$; $x \le 0$, $(0y)$
21. $\int_{2}^{+\infty} \frac{dx}{x^2 + 8x + 12}$	$22. \int_{1}^{+\infty} \frac{\cos\left(\frac{1}{x}\right)}{x^3 + x + 16} dx$
$23. \int_{5}^{6} \frac{x}{\sqrt[3]{25 - x^2}} dx$	$24. \int_{3}^{7} \frac{x^2 + 2}{\sqrt{x - 3}} dx$

$1. \int \frac{\mathrm{dx}}{\sqrt[3]{x^2} \left(\sqrt[3]{x} + 3\right)}$	2. ∫cos 4x cos 6x dx
3. $\int \arcsin(3x) dx$	$4. \int \frac{x^2 + 5}{x^2 - 5x + 4} \mathrm{d}x$
$\int \frac{5x - x^2 + 12}{(x+3)^2(x-1)} dx$	6. $\int \frac{5x^2 + 23x + 10}{(x+5)(x^2 + 4x + 5)} dx$
$7. \int \frac{2\sin x - 3}{5 - 4\sin x} dx$	$8. \int \sin^4 \frac{x}{2} \cos^2 \frac{x}{2} dx$
$9. \int \frac{\sqrt{x+4}}{x} dx$	10. $\int \frac{dx}{(\sqrt{25+x^2})^3}$
$11. \int_{0}^{\frac{\pi}{4}} x \sin x \cos x dx$	$12. \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{dx}}{3 + 2\cos x}$
13. D: $y = \frac{1}{1+x^2}$, $y = \frac{x^2}{2}$	14. D: $\begin{cases} x = 10(t - \sin t), \\ y = 10(1 - \cos t), \end{cases}$ $y = 15(0 < x < 20\pi, y \ge 15)$
15. D: $\rho = a\varphi$, $0 \le \varphi \le 2$	16. L: $y = 6 + \ln \cos x$; $0 \le x \le \frac{\pi}{3}$
17. L: $\begin{cases} x = 6t, \\ y = 3\ln(\cos 2t), -\frac{\pi}{6} \le t \le \frac{\pi}{6} \end{cases}$	18. L: $\rho = 3\cos\varphi$; $-\frac{\pi}{2} \le \varphi \le 0$
19. V: $x^2 + \frac{y^2}{25} - z^2 = 1$, $z = 5$	20. $y = \sqrt[4]{x}$; $x \le 1$ (0y)
$21. \int_{3}^{+\infty} \frac{dx}{x^2 - 8x + 17}$	22. $\int_{1}^{+\infty} \frac{x^2 + 2\sqrt{x} + 6}{x^3 + x\sqrt{x} + 1} dx$
$23. \int_{2}^{3} \frac{3x}{\sqrt{9-x^{2}}} dx$	$24. \int_{3}^{4} \frac{e^{x} + x^{2}}{(x-3)^{2}} dx$

	T
$1. \int \frac{\mathrm{dx}}{\arcsin x \sqrt{1-x^2}}$	2. ∫sin 5x cosx dx
$3. \int (x^2 + 2)\sin(5x) dx$	4. $\int \frac{2x^3 - 6x^2 + 4x - 15}{x^2 - 3x} dx$
$\int \frac{4x - x^2 - 3x^3 + 4}{x^3(x+1)} dx$	4. $\int \frac{2x^3 - 6x^2 + 4x - 15}{x^2 - 3x} dx$ 6. $\int \frac{8x + 13}{(x - 5)(x^2 + 4x + 8)} dx$
$7. \int \frac{\mathrm{dx}}{2 - \sin x + 5 \cos x}$	$8. \int \sin^2 3x \cos^4 3x \ dx$
$9. \int \sqrt{\frac{x+5}{x-6}} dx$	$10. \int x^2 \sqrt{25 - x^2} dx$
11. $\int_{-1}^{1} x \operatorname{arctg} x dx$	$12. \int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{3 + \cos x}$
13. D: $y = (x-2)^3$, $y = 4x-8$	14. $D: \begin{cases} x = \cos^3 t, \\ y = \sin^3 t \end{cases}$
15. D: $\rho = 5\cos\varphi$,	16. L: $y = 21 + e^x$;
$-\frac{\pi}{2} \le \varphi \le \frac{\pi}{4}$	
17. L: $\begin{cases} x = 6t, \\ y = 3\ln(\sin 2t), -\frac{\pi}{4} \le t \le \frac{\pi}{3} \end{cases}$	18. L: $\rho = 3\sin \varphi$; $\frac{\pi}{2} \le \varphi \le \frac{2\pi}{3}$
19. $V: \frac{x^2}{25} + \frac{y^2}{4} - \frac{z^2}{100} = 1,$ z = 12	20. $y = (x-1)^2$; $x \ge 0$, $y \ge 0$ (0y)
$21. \int_{9}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}^2 - 8\mathrm{x}}$	$22. \int_{1}^{+\infty} \frac{\sin\left(\frac{1}{x}\right)}{x\sqrt{x} + 14} dx$
$23. \int_{1}^{3} \frac{1}{\sqrt{9-x^2}} dx$	$24. \int_{0}^{1} \frac{x+3}{\sqrt{1-x^4}} dx$

$1. \int \frac{\cos x - x \sin x}{(x \cos x)^2} dx$	2. ∫sin 6x sin 4x dx
3. $\int (2-x)^2 e^{7x} dx$	$4. \int \frac{3x^2 - 13}{x^2 - 7x + 6} dx$
$\int \int \frac{10x - 2x^2}{(x-1)^2(x+1)} dx$	6. $\int \frac{4x^2 - 5x + 25}{(x+5)(x^2 - 4x + 5)} dx$
$7. \int \frac{2\cos x + 3}{12\cos x - 13} dx$	8. ∫sin ⁴ 4x dx
$9. \int \frac{3+2\sqrt{x+4}}{2-3\sqrt{x+4}} dx$	$10. \int \frac{\mathrm{dx}}{\left(\sqrt{\mathbf{x}^2 + 1}\right)^3}$
$11. \int_{0}^{e} \ln x dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{2\cos x dx}{3 - 2\sin x}$
13. D: $x^2 + y^2 - 2x = 0$,	14. $D:\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases} y = \frac{1}{2},$
y≥0	$\left(y \ge \frac{1}{2}, 0 < x < 2\pi \right)$
15. D: $\rho = 3\cos\varphi$,	16. L: $y = \frac{e^x + e^{-x}}{2} + 7$;
$-\frac{\pi}{4} \le \varphi \le \frac{\pi}{3}$	$0 \le x \le 3$
17. $L: \begin{cases} x = 4t, \\ y = 4\ln(t^2 - 1), 3 \le t \le 5 \end{cases}$	18. L: $\rho = 2e^{\frac{24\varphi}{7}}$; $0 \le \varphi \le 1$
19. $V: \frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{100} = 1$,	$20. y^2 = x - 2 (0y)$
$z = 1, z = 3$ 21. $\int_{-\infty}^{4} \frac{dx}{x^2 - 8x + 17}$	22. $\int_{1}^{+\infty} \frac{3x^2 + \sqrt{(x+1)^3}}{\sqrt[3]{x^8} + 15} dx$
$23. \int_{6}^{7} \frac{x}{\sqrt[3]{x-6}} dx$	24. $\int_{-2}^{0} \frac{2 + \cos x}{\sqrt{(x+2)^3}} dx$

$1. \int \frac{\sqrt{\arctan dx}}{1+x^2}$	2. ∫sin 8x cos5x dx
3. $\int (3-x-2x^2)\cos(2x) dx$	4. $\int \frac{4x^3 - 8x^2 - x - 2}{x^2 - 2x} dx$
5. $\int \frac{9x^2 - x^3 + 5x - 15}{x^3(x - 3)} dx$	6. $\int \frac{3x^2 - 10x + 1}{(x - 5)(x^2 - 4x + 8)} dx$
$7. \int \frac{\mathrm{dx}}{9 - \sin x + 8 \cos x}$	$8. \int \sin^4 5x \cos^4 5x dx$
$9. \int \sqrt{\frac{x+2}{x-1}} \mathrm{d}x$	$10. \int \frac{x^4 dx}{\sqrt{4-x^2}}$
11. $\int_{0}^{1} \arccos x dx$	12. $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x) dx}{1 + 3\cos x}$
13. D: $y = \sqrt{4 - x^2}$, $y = 0$, x = 0, $x = 1$	14. $D: \begin{cases} x = \frac{1}{3}\cos t, \\ y = 2\sin t \end{cases}$
X-0, X-1	
	<u>16.</u>
15. D: $\rho = 3\sqrt{\varphi}$, $0 \le \varphi \le 9$	L: $y = 7 + \arccos\sqrt{x} - \sqrt{x - x^2}$; $0 \le x \le 0.5$
17. L: $\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), \frac{\pi}{2} \le t \le \pi \end{cases}$	18. L: $\rho = 3\varphi$; $2 \le \varphi \le 3$
19. V: $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{100} = 1$,	20. $y = x^2 - 2x + 1$, $2 \le x \le 3$ (0y)
$z = 0, \ z = \frac{x}{\sqrt{3}} (x \ge 0)$	2=1=3 (0)
$21. \int_{-\infty}^{-1} \frac{\mathrm{dx}}{\mathrm{x}^2 - 8\mathrm{x}}$	22. $\int_{1}^{+\infty} \frac{x^2 + 3x + 1}{x^2 e^x} dx$
$23. \int_{0}^{1} \frac{x^{2}}{\sqrt[3]{1-x^{3}}} dx$	$24. \int_{3}^{4} \frac{5 + \sin x}{\sqrt[3]{x - 3}} dx$

$\int 1. \int x (1-x^2)^7 dx$	2. ∫cos 2x cos 3x dx
$3. \int \ln(1+x^2) dx$	4. $\int \frac{6x^2 + 7}{x^2 - x - 6} dx$
$\int \frac{9x - 2x^2 + 6}{(x+2)^2(x-2)} dx$	6. $\int \frac{2x^2 + 5x + 50}{(x+5)(x^2 + 2x + 10)} dx$
$7. \int \frac{\mathrm{dx}}{10 - 6\cos x + 3\sin x}$	$8. \int \sin^2 \frac{x}{3} \cos^2 \frac{x}{3} dx$
$9. \int \sqrt{\frac{x+4}{x-4}} dx$	$10. \int \frac{\mathrm{dx}}{\mathrm{x}^2 \sqrt{\mathrm{x}^2 - 4}}$
$11. \int_{0}^{1} x \sin^2 x dx$	$12. \int_{0}^{\pi} \frac{\cos x dx}{1 - 2\cos x + \sin x}$
13. D: $x^2 + y^2 - 4y = 0$, $y \ge 2$	14. $D: \begin{cases} x = 2\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, x = 1 \ (x \ge 1) \end{cases}$
15. D: $\rho = \frac{2}{\varphi\sqrt{\varphi}}$, $1 \le \varphi \le 2$	16. L: $y = \frac{e^{2x} + e^{-2x} + 6}{4}$; $0 \le x \le 1$
17. L: $\begin{cases} x = 5\cos^3 t, \\ y = 5\sin^3 t, \pi \le t \le \frac{3\pi}{2} \end{cases}$	18. L: $\rho = 2e^{2\varphi}$; $0 \le \varphi \le 2$
19. $\mathbf{V} : \mathbf{z} = 2\mathbf{x}^2 + 18\mathbf{y}^2$,	20. $y = \sqrt[6]{x}$,
z=5	$y \ge 1$ (Uy)
$21. \int_{-\infty}^{6} \frac{dx}{x^2 - 8x + 20}$	$y \le 1 (0y)$ 22. $\int_{1}^{+\infty} \frac{4 + \cos x}{\sqrt[3]{x^2 + 22}} dx$
$23. \int_{3}^{4} \frac{4x}{\sqrt{16 - x^2}} dx$	$24. \int_{0}^{2} \frac{\mathrm{dx}}{\sqrt{x} - \sqrt{2}}$

$\int \frac{2tgx + 3}{\cos^2 x} dx$	2. ∫sin x cos 6x dx
3. $\int (4x - x^2)e^{2x} dx$	$4. \int \frac{3x^2 - 11x + 8}{x^2 - 4x} dx$
$\int \frac{4x - 3x^2 - 4x^3 + 4}{x^3(x+1)} dx$	4. $\int \frac{3x^2 - 11x + 8}{x^2 - 4x} dx$ 6. $\int \frac{4x^2 - 17x + 35}{(x - 5)(x^2 - 2x + 10)} dx$
$7. \int \frac{\sin x dx}{12\sin x + 13}$	$8. \int \cos^4 7x dx$
$9. \int \frac{1+x+\sqrt[4]{x}}{2+\sqrt{x}} dx$	$10. \int \sqrt{36-x^2} dx$
$11. \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx$	12. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x dx}{(1 + \cos x)^2}$
13. D: $y = 3x - x^2$, $y = 0$	14. $D:$ $\begin{cases} x = 3.5 \cos t, \\ y = 3.5 \sin t \end{cases}$
15. D: $\rho = 7 \operatorname{tg} \varphi$, $0 \le \varphi \le \frac{\pi}{4}$	16. $L: y = 1/2 \cdot (2 - e^{x} - e^{-x}),$ $0 \le x \le 2$
17. L: $\begin{cases} x = 10\cos t - 5\cos 2t, \\ y = 10\sin t - 5\sin 2t, \frac{\pi}{4} \le t \le \frac{\pi}{2} \end{cases}$	18. L: $\rho = \frac{2}{\varphi^2}$; $\frac{1}{4} \le \varphi \le \frac{3}{4}$
19. $V: \frac{x^2}{27} + \frac{y^2}{3} - z^2 = 1$,	20. $y = \ln \frac{x}{2}$; $1 \le x \le 2e$
z = 1, z = 5	(0y)
$21. \int_{-\infty}^{1} \frac{dx}{x^2 - 8x + 15}$	$22. \int_{1}^{+\infty} \frac{8 + \sin x}{x\sqrt{x} + 6x + 1} dx$
$z = 1, z = 5$ $21. \int_{-\infty}^{1} \frac{dx}{x^2 - 8x + 15}$ $23. \int_{2}^{4} \frac{1}{\sqrt{16 - x^2}} dx$	$24. \int_{0}^{1} \frac{\arccos x}{\sqrt[4]{1-x}} dx$