Al in Mathematics Lecture 10 Reinforcement Learning

Bar-Ilan University
Nebius Academy | Stevens Institute of
Technology
May 27, 2025

About This Course

1 week: Intro

2 weeks: Classic ML

2 weeks: Deep Learning in Mathematics

4 weeks: Math as an NLP problem (LLMs etc.)

4 weeks: Reinforcement Learning (RL) in Math

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

What are the states, actions and rewards in this case?

Actions – possible movements: right, left, up, down.

States – possible positions of an agent.

Rewards – For example: -10 for falling into the lake and +100 for finishing in left bottom corner.

Frozen Lake

Poes the agent see the layout?

Provided the strain of the

Markov Decision Process

Policy

A **policy** is the agent's strategy for choosing actions.

Policy

A **policy** is the agent's strategy for choosing actions.

Deterministic policy:

 $\pi(s) = a$ — always choose action a in state s.

Stochastic policy:

 $\pi(a \mid s) = P(a_t = a \mid s_t = s)$ — probability of taking action a in state s.

RL Algorithms

Model based methods

The agent explicitly learns or uses a model of the environment's dynamics, meaning we have intentionally designed it to do so.

If the agent discovers a way to represent probabilities on its own without being guided to build or use a model, it is still considered model-free.

The difference between model free and model based algorithms in the Frozen Lake problem is as follows:

Model free:

The agent only observes its current position (as a state index) and the reward after each move.

Model based:

Either know or learn how likely the agent is to slip when moving in a given direction. They also have access to or reconstruct the entire state space and update a transition model P(s'|s,a).

RL Algorithms

CEM (Cross Entropy Method)

The **Cross Entropy Method (CEM)** is an optimization algorithm that iteratively refines a probability distribution over candidate solutions. At each step, it samples solutions from the current distribution, evaluates their performance, and then updates the distribution to focus more on the best-performing samples.

Over time, this process increases the likelihood of generating high-quality solutions, effectively guiding the search toward optimal or near-optimal outcomes.

Suppose you want to estimate the area of a circle with radius r=1, but without using the formula $S=\pi\,r^2$. Instead, you can approach the problem as a **stochastic optimization or estimation task**, suitable for methods like the **Monte Carlo simulation**.

Setup:

- The unit circle (radius 1) is centered at the origin (0,0).
- Enclose the circle within a square of side length 2, spanning from (-1, -1) to (1, 1).
- The area of the square is known: 4.
- Estimate the area of the circle by randomly sampling points in the square and measuring how many fall inside the circle.

Circle with radius 0.1

Seems like for smaller circle we need to select randomly from a smaller square uniformly, right?

Probability (Small): 0.348

Approx. Area Small Circle: 0.03129

Idea

Let's update probability distribution after first step, such that samples Inside will have a larger probability.

Formally CEM

Suppose we have a probability distribution $p(x, \theta_t)$. Iteratively:

- Sample $x_1, x_2 \dots x_N$ from $p(x, \theta_t)$.
- Evaluate samples using the target function.
- Select the elite set: $S_t \subset \{x_1, ..., x_N\}$ consisting of the top $\rho \cdot N$ samples (e. g. $\rho = 0.1$).
- Update parameters:

$$\theta_{t+1} = argmax_{\theta} \sum_{x \in S_t} \log p(x, \theta).$$

How to apply in RL?

We have a policy $\pi(s, \theta_0)$.

Iteratevly:

- Generate N episodes by acting in the environment using policy $\pi(s, \theta_0)$.
- Evaluate each episode by computing the total return (sum of rewards).
- Select the elite set: $S_t \subset \{x_1, ..., x_N\}$ consisting of the top $\rho \cdot N$ episodes (e. g. $\rho = 0.1$).
- Update policy parameters using only the elite episodes.

Suppose we are interested in such an unusual graph property:

What is the largest possible ratio between the smallest and largest eigenvalues of a graph's adjacency matrix?

This is a challenging combinatorial question, and we can approach it using **reinforcement learning techniques**.

Let's define a **score function** for a graph with adjacency matrix Adj:

$$L(Adj) = \frac{\lambda_{min}}{\lambda_{max}}$$

We'll apply the Cross-Entropy Method (CEM) to optimize this score in the following setup:

- We generate the adjacency matrix element by element, making predictions based on the current partial state of the matrix.
- Once a full matrix is constructed, we evaluate it using the score function.
- The agent is then trained to imitate the decisions that led to the highest-scoring matrices.
- We'll explore the results of this method during the practical session!