Exercícios Atiyah-Macdonald

3 de setembro de 2021

Soluções por Caio Antony G de M Andrade

Exercício 1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Demonstração. Seja $x \in A$ um nilpotente qualquer, e y = -x, que também é nilpotente. Sendo $n \in \mathbb{N}$ o menor natural tal que $y^n = 0$, temos

$$(1-y)(1+y+\cdots+y^{n-1})=1-y^n=1$$
,

de onde 1 - y = 1 + x é invertível.

Se $\lambda \in A$ é também invertível, então $\lambda^{-1}x$ é nilpotente, de onde $1 + \lambda^{-1}x$ é inversível, e portanto $\lambda + x = \lambda(1 + \lambda^{-1}x)$ é inversível.

Exercício 2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- i) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. [If $b_0 + b_1 x + \cdots + b_m x^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use Ex. 1.]
- ii) f is nilpotent $\Leftrightarrow a_0, a_1, \ldots, a_n$ are nilpotent.
- iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. [Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0$ ($0 \leqslant r \leqslant n$).]
- iv) f is said to be primitive if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive.

Demonstração. too long

i) (\Rightarrow) Suponha que $g(x) = b_0 + b_1 x + \cdots b_m x^m$ é o inverso de f. Temos que

$$1 = gf = \sum_{i=1}^{m+n} c_i x^i, \quad \text{com } c_i = \sum_{j=0}^{i} a_j b_{i-j},$$

e note que $c_0 = 1$ e $c_1 = 0$ para i > 0. Assim vemos que a_0 e b_0 são inversíveis. Vemos também em particular, de $c_{m+n} = 0$, que $a_n b_m = 0$. Ainda, multiplicando $c_{m+n-1} = a_n b_{m-1} + a_{n-1} b_m$ por a_n e usando que $a_n b_m = 0$, vemos que $a_n^2 b_{m-1} = 0$. Prosseguindo indutivamente, obtemos

Exercício 3. Generalize the results of Exercise 2 to a polynomial ring $A[x_1, \ldots, x_r]$ in several indeterminates.

Exercício 4. In the ring A[x], the Jacobson radical is equal to the nilradical.

Exercício 5. Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that i) f is a unit in $A[[x]] \Leftrightarrow a_0$ is a unit in A. ii) If f is nilpotent, then a_n is nilpotent for all $n \geq 0$. Is the converse true? (See Chapter 7, Exercise 2.) iii) f belongs to the Jacobson radical of $A[[x]] \Leftrightarrow a_0$ belongs to the Jacobson radical of A. iv) The contraction of a maximal ideal f of f is a maximal ideal of f and f is generated by f and f is the contraction of a prime ideal of f is the contraction of a prime ideal of f is the contraction of a prime ideal of f.

Exercício 6. A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.

Demonstração. Suponha que $\operatorname{rad}(A) \not\subseteq N(A)$, e tome $a \in \operatorname{rad}(A) \setminus N(A)$. Como $(a) \not\subseteq N(A)$, existe $b \in A$ tal que $0 \neq ab = abab$. Como $a \in \operatorname{rad}(A)$, tem-se que $1 - ab \in U(A)$. Mas

$$(1-ab)ab = 0,$$

o que é uma contradição, pois um elemento não pode ser divisor de zero e inversível simultaneamente. Assim, $\operatorname{rad}(A) \subseteq N(A)$, o que mostra o resultado.

Exercício 7. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Exercício 8. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Exercício 9. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \iff \mathfrak{a}$ is an intersection of prime ideals.

Exercício 10. Let A be a ring, \Re its nilradical. Show that the following are equivalent: i) A has exactly one prime ideal; ii) every element of A is either a unit or nilpotent; iii) A/\Re is a field.

Exercício 11. A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that i) 2x = 0 for all $x \in A$; ii) every prime ideal p is maximal, and A/\mathfrak{p} is a field with two elements; iii) every finitely generated ideal in A is principal.

Exercício 12. A local ring contains no idempotent $\neq 0, 1$.

Demonstração. Seja $e \in A$ um idempotente. Como $A = \operatorname{rad}(A) \cup U(A)$ é local, $e \in \operatorname{rad}(A)$ ou $e \in U(A)$. Suponha $e \neq 0, 1$. Temos de e(e-1) = 0 que e é divisor de zero, e assim, $e \in \operatorname{rad}(A)$. Temos que $1-e \in U(A)$. Mas 1-e também é divisor de zero, absurdo.