统计II

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

- I、某公司想要了解消费者购买牙膏时更追求什么样的目标,于是通过商场拦访对30个人进行访谈,用7级里克特量表询问他们对以下陈述的认同程度(即I表示非常不同意,7表示非常同意,VI:购买预防蛀牙的牙膏是重要的;V2:我喜欢使牙齿亮泽的牙膏;v3:牙膏应当保护牙龈;V4:我喜欢使口气清新的牙膏;V5:预防坏牙不是牙膏提供的一项重要功效;V6:购买牙膏时最重要的考虑是富有魅力的牙齿:
 - * 将调查样本存储于文本文档 yagao.txt。请使用R函数factanal对数据进行因子分析,根据载荷系数矩阵,写出因子和原变量之间的线性关系式。
- 2、某地区农业生态经济系统的各区域单元相关指标数据在文本文件agriculture.txt中,使用R中的主成分分析的函数princomp选取更少的指标来描述该地区的农业生态经济系统。写出主成分和原变量之间的线性关系式。

课堂测试09

先用电脑完成 40分钟 然后誊抄纸上

- 3、下表是一个一个村庄儿童年龄和平均身高的统计数据
 - * (I) 画出平均身高height和年龄age关系的散点图
 - * (2) 建立回归模型并提取结果输出,在(I)中的图中表示生成的模型

平均身高与年龄			
年龄(月)	平均身高 (厘米)	年龄(月)	平均身高 (厘米)
18	76.1	24	79.9
19	77 (= 8.114)	25	81.1
20	78.1	26	. 81.2
21	78.2	27	81.8
22	78.8	28	82.8
23	79.7	29	83.5

● 4、revenue.txt中记录了财政收入(y)和第一产业GDP X₁、第二产业GDP X₂、第三产业GDPx₃、人口数X₄、社会消费品零售总额X₅、受灾面积X₆、等情况的统计数据。要求:写出多元线性回归模型。

上次课程内容回顾

- 基本统计
- 因子和主成分分析
 - ★ cor(), factanal(), princomp(), screeplot(), biplot(), predict(),...
- 回归分析
 - ★ lm(), fitted(), residuals(), scatterplot()...

方差分析

方差分析定义

- 方差分析(analysis of variance, ANOVA)是分析各个自变量对因 变量影响的一种方法。
- 这里的自变量就是定性变量的因子及可能出现的称为协变量 (covariate) 的定量变量。
- 分析结果是由一个方差分析表表示的
- 原理为:把因变量的值随着自变量的不同取值而得到的变化进行 分解,使得每一个自变量都有一份贡献,最后剩下无法用已知的 原因解释的则看成随机误差的贡献。
- 然后用各自变量的贡献和随机误差的贡献进行比较(F检验),以 判断该自变量的不同水平是否对因变量的变化有显著贡献。输出 就是F-值和检验的一些p-值。

一个例子

表9-1 单因素组间方差分析

	治疗方案	
CBT		EMDR
s1		s 6
s2		s 7
s3		88
s4		s 9
ន5		ສ10

教材RiA 199页

表9-2 单因素组内方差分析

患者	时	间
芯 有	5周	6个月
s1		
s2		
s 3		
s4		
ន5		
s6		
s7		
88		
S9		
s10		

一个例子

表9-3 含组间和组内因子的双因素方差分析

			时	时 间		
		患 者	5周	6个月		
		s1				
		s2				
	CBT	s 3				
		s4				
疗法		s 5				
71 /4	EMDR	s6				
		s7				
		s8				
		s9				
		s10				

协方差分析

多元方差分析

aov()

• aov(formula, data = dataframe)

教材RiA 201页

表9-4 R表达式中的特殊符号

符号	用法
~	分隔符号,左边为响应变量,右边为解释变量。例如,用A、B和C预测y,代码为y~ A + B + C
+	分隔解释变量
:	表示变量的交互项。例如,用A、B和A与B的交互项来预测y,代码为y~ A + B + A:B
*	表示所有可能交互项。代码y~ A * B * C可展开为y ~ A + B + C + A:B + A:C + B:C + A:B:C
^	表示交互项达到某个次数。代码y ~ (A + B + C)^2可展开为y ~ A + B + C + A:B + A:C + B:C
	表示包含除因变量外的所有变量。例如,若一个数据框包含变量y、A、B和C,代码y ~ .可展开为y ~ A + B + C

表9-5 常见研究设计的表达式

设	计 表 达 式
单因素ANOVA	y ~ A
含单个协变量的单因素ANCOVA	y ~ x + A
双因素ANOVA	y ~ A * B
含两个协变量的双因素ANCOVA	$y \sim x1 + x2 + A*B$
随机化区组	y ~ B + A (B是区组因子)
单因素组内ANOVA	y ~ A + Error(Subject/A)
含单个组内因子(w)和单个组间因	子(B)的重复测量ANOVA y~B*W+Error(Subject/W)

单因素方差分析

```
> library(multcomp)
                            > attach(cholesterol)
> table(trt)
trt
 1time 2times 4times
                      drugD
                             drugE
                         10
                  10
    10
           10
                                 10
> aggregate(response, by = list(trt), FUN = mean)
  Group.1
                 х
          5.78197
    1time
   2times 9,22497
  4times 12.37478
    drugD 15.36117
    drugE 20.94752
> aggregate(response, by = list(trt), FUN = sd)
  Group.1
    1time 2.878113
  2times 3.483054
  4times 2.923119
    drugD 3.454636
5
    drugE 3.345003
```

> cholesterol trt response 1time 3.8612 1time 10.3868 1time 5.9059 1time 3.0609 1time 7.7204 1time 2.7139 1time 4.9243 1time 2.3039 1time 7.5301 1time 9.4123 10 11 2times 10.3993 12 2times 8.6027 13 2times 13.6320 14 2times 3.5054 15 2times 7.7703 16 2times 8.6266 17 2times 9.2274 18 2times 6.3159 19 2times 15.8258 20 2times 8.3443 21 4times 13.9621

单因素方差分析表

表 7.3: 单因素方差分析表

方差来源	自由度	平方和	均方	F比	p 值
因素 A	r-1	S_A	$MS_A = \frac{S_A}{r-1}$	$F = \frac{MS_A}{MS_E}$	p
误 差	n-r	S_E	$MS_E = \frac{S_E}{n-r}$		
总 和	n-1	S_T			

```
> fit <- aov(response ~ trt)</pre>
```

> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

trt 4 1351.4 337.8 32.43 9.82e-13 ***

Residuals 45 468.8 10.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

单因素方差分析例子

Mean Plot with 95% CI

多重比较

> TukeyHSD(fit)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = response ~ trt)

\$trt

```
diff
                            lwr
                                      upr
                                              p adj
2times-1time 3.44300 -0.6582817 7.544282 0.1380949
4times-1time 6.59281 2.4915283 10.694092 0.0003542
drugD-1time 9.57920 5.4779183 13.680482 0.0000003
drugE-1time
             15.16555 11.0642683 19.266832 0.0000000
4times-2times 3.14981 -0.9514717 7.251092 0.2050382 <-
drugD-2times
              6.13620 2.0349183 10.237482 0.0009611
drugE-2times
             11.72255 7.6212683 15.823832 0.0000000
drugD-4times 2.98639 -1.1148917 7.087672 0.2512446
drugE-4times
              8.57274 4.4714583 12.674022 0.0000037
drugE-drugD
              5.58635 1.4850683 9.687632 0.0030633
```

多重比较

```
> par(las = 2)
```

- > par(mar = c(5, 8, 4, 2))
- > plot(TukeyHSD(fit))
- > par(opar)

95% family-wise confidence level

Differences in mean levels of trt

多重比较

```
library(multcomp)
par(mar = c(5, 4, 6, 2))
tuk <- glht(fit, linfct = mcp(trt = "Tukey"))
plot(cld(tuk, level = 0.05), col = "lightgrey")
par(opar)
```


正态假设检验

```
library(car)
```

qqPlot(lm(response ~ trt, data = cholesterol), simulate = TRUE, main = "QQ Plot", labels = FALSE)

单因素协方差分析

```
> data(litter, package = "multcomp")
> attach(litter)
> table(dose)
dose
      5
         50 500
         18
            17
20
     19
> aggregate(weight, by = list(dose), FUN = mean)
  Group.1
                 Х
1
        0 32.30850
2
        5 29.30842
3
       50 29.86611
      500 29.64647
> fit <- aov(weight ~ gesttime + dose)</pre>
> summary(fit)
            Df Sum Sq Mean Sq F value Pr(>F)
                134.3
                       134.30 8.049 0.00597 **
gesttime
             1
                        45.71 2.739 0.04988 *
dose
             3
                137.1
Residuals 69 1151.3
                        16.69
                        0.001
```

```
> litter
  dose weight gesttime number
        28.05
                  22.5
                           15
        33.33
                  22.5
                           14
3
     0 36.37
                  22.0
                           14
4
     0 35.52
                  22.0
                           13
5
        36.77
                  21.5
                           15
6
                  23.0
        29.60
7
                  21.5
                           16
        27.72
8
                  22.5
                           15
     0 33.67
9
                  22.5
     0 32.55
                           14
10
        32.78
                  21.5
                           15
                  22.0
11
     0 31.05
                           12
12
     0 33.40
                  22.5
                           15
                  22.0
13
        30.20
                           16
                  21.5
14
     0 28.63
                            7
                  22.0
     0 33.38
                           15
15
                  22.0
                           13
16
     0 33.43
                  21.5
                           14
17
     0 29.63
                  22.0
18
     0 33.08
                           15
                  22.5
19
     0 31.53
                           16
20
     0 35.48
                  22.0
```

0.01**'*'** 0.05 **'**.' 0.1 Signif. codes:

单因素协方差分析

library(HH) ancova(weight ~ gesttime + dose, data = litter)

双因素方差分析

```
> table(supp, dose)
   dose
supp 0.5 1 2
 OJ 10 10 10
 VC 10 10 10
> aggregate(len, by = list(supp, dose), FUN = mean)
 Group.1 Group.2 x
     OJ
           0.5 13.23
1
  VC 0.5 7.98
3
  OJ 1.0 22.70
  VC 1.0 16.77
4
5
  0J 2.0 26.06
     VC
           2.0 26.14
> aggregate(len, by = list(supp, dose), FUN = sd)
 Group.1 Group.2
     OJ
           0.5 4.459709
2
  VC
        0.5 2.746634
3
  0J 1.0 3.910953
4
  VC 1.0 2.515309
        2.0 2.655058
5
     OJ
     VC
         2.0 4.797731
```

双因素方差分析表

表 7.12: 双因素方差分析表

方差来源	自由度	平方和	均方	F比	p 值
因素 A	r-1	S_A	$MS_A = \frac{S_A}{r-1}$	$F_A = \frac{MS_A}{MS_E}$	p_A
因素 B	s-1	S_B	$MS_B = \frac{S_B}{s-1}$	$F_B = \frac{MS_B}{MS_E}$	p_B
误 差	(r-1)(s-1)	S_E	$MS_E = \frac{S_E}{(r-1)(s-1)}$		
总 和	rs-1	S_T			

双因素方差分析例子

Interaction between Dose and Supplement Type

双因素方差分析例子

```
library(gplots)
```

Interaction Plot with 95% Cls

双因素方差分析例子

library(HH)

interaction2wt(len ~ supp * dose)

len: main effects and 2-way interactions

重复测量方差分析

```
w1b1 <- subset(CO2, Treatment == "chilled")
fit <- aov(uptake ~ (conc * Type) + Error(Plant/(conc)),
  w1b1)
summary(fit)
                   > summary(fit)
                   Error: Plant
                            Df Sum Sq Mean Sq F value Pr(>F)
                             1 2667.2 2667.2 60.41 0.00148 **
                   Type
                   Residuals 4 176.6 44.1
                   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                   Error: Plant:conc
                            Df Sum Sq Mean Sq F value Pr(>F)
                             1 888.6 888.6 215.46 0.000125 ***
                   conc
                   conc:Type 1 239.2 239.2 58.01 0.001595 **
                   Residuals 4 16.5 4.1
                   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                   Error: Within
                            Df Sum Sq Mean Sq F value Pr(>F)
                   Residuals 30
                                  869
                                        28.97
```

重复测量方差分析

Interaction Plot for Plant Type and Concentration

重复测量方差分析例子

练习

练习 - 0040

第9章

练习 - 0041

例 7.1 利用四种不同配方的材料 A_1 、 A_2 、 A_3 、 A_4 生产出来的元件,测得其使用寿命如表 7.1 所示. 问:四种不同配方下元件的使用寿命有无显著的差

表 7.1: 元件寿命数据

材料				使用	寿命			
A_1	1600	1610	1650	1680	1700	1700	1780	
A_2	1500	1640	1400	1700	1750			
A_3	1640	1550	1600	1620	1640	1600	1740	1800
A_4	1510	1520	1530	1570	1640	1600		

例 7.9 在一个农业试验中,考虑四种不同的种子品种 A_1 , A_2 , A_3 , A_4 和三种不同的施肥方法 B_1 , B_2 , B_3 得到产量数据如表 7.10 所示 (单位: kg). 试分析种子与施肥对产量有无显著影响?

表 7.10: 农业试验数据

	B_1	B_2	B_3
A_1	325	292	316
A_2	317	310	318
A_3	310	320	318
A_4	330	370	365

例 7.11 研究树种与地理位置对松树生长的影响,对四个地区的三种同龄松树的直径进行测量得到数据如下表 7.15 所示 (单位: cm). A_1, A_2, A_3 表示三个不

 B_1 B_3 B_4 B_2 2325 212120 17 11 16 19 13 20 18 A_1 2114 152616 2427 242830 19 26 24 21 19 18 19 26 26 28 A_2 17 2225262025292318 15 23 21 25 12 19 23 22 22 13 12 A_3 2218 1214 13 2219 10

表 7.15: 三种同龄松树的直径测量数据

同树种, B_1, B_2, B_3, B_4 表示四个不同地区. 对每一种水平组合,进行了 5 次测量、对此试验结果进行方差分析.

7.1 三个工厂生产同一种零件. 现从各厂产品中分别抽取 4 件产品作检测, 其检测强度如表 7.25 所示.

表 7.25: 产品检测数据

エ厂		零件	强 度	
甲	115	116	98	83
乙	103	107	118	116
丙	73	89	85	97

- (1) 对数据作方差分析, 判断三个厂生产的产品的零件强度是否有显著差异;
- (2) 求每个工厂生产产品零件强度的均值,作出相应的区间估计 $(\alpha = 0.05)$;
- (3) 对数据作多重检验。

7.5 为研究人们在催眠状态下对各种情绪的反应国是否有差异,选取了 8 个受试者. 在催眠状态下,要求每人按任意次序做出恐惧、愉快、忧虑和平静 4 种反应. 表 7.29 给出了各受试者在处于这 4 种情绪状态下皮肤的电位变化值. 试在 $\alpha = 0.05$ 下,检验受试者在催眠状态下对这 4 种情绪的反应力是否有显著差异.

表 7.29: 4 种情绪状态下皮肤的电位变化值 (单位: mV)

		11327 17		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
は かれ 小り ナ				受 话	式 者			
情绪状态	1	2	3	4	5	6	7	8
恐惧	23.1	57.6	10.5	23.6	11.9	54.6	21.0	20.3
愉快	22.7	53.2	9.7	19.6	13.8	47.1	13.6	23.6
忧虑	22.5	53.7	10.8	21.1	13.7	39.2	13.7	16.3
平静	22.6	53.1	8.3	21.6	13.3	37.0	14.8	14.8

大作业

大作业 - 0004

- 完成课后大作业0004
- 提交rmd文档

- 完成练习004I-0045
- 提交rmd文档

确定分组和包

谢谢!

孙惠平 sunhp@ss.pku.edu.cn