TKU211103 Kalkulus Variabel Jamak

Double Integral/Integral Ganda

Oleh: Tim Dosen Kalkulus Variabel Jamak

Semester Gasal 2021/2022

Departemen Matematika FMIPA UGM

1. Definisi Double Integral

Motivasi (Volume dan Integral Ganda)

Diberikan persegi panjang

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d.\}$$

Motivasi (Volume dan Integral Ganda)

Diberikan persegi panjang

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d.\}$$

Misalkan $f(x,y) \ge 0$. Grafik fungsi f adalah permukaan dengan persamaan z = f(x,y). Misalkan S adalah daerah di bawah grafik f dan di atas R, yaitu

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le f(x, y), (x, y) \in R\}.$$

Motivasi (Volume dan Integral Ganda)

Diberikan persegi panjang

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d.\}$$

Misalkan $f(x,y) \ge 0$. Grafik fungsi f adalah permukaan dengan persamaan z = f(x,y). Misalkan S adalah daerah di bawah grafik f dan di atas R, yaitu

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le f(x, y), (x, y) \in R\}.$$

Tujuan kita adalah mencari volume S.

Integral Ganda

Definisi

Integral ganda f atas persegi panjang R adalah

$$\iint_{R} f(x, y) \ dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

asalkan nilai limitnya ada.

Integral Ganda

Definisi

Integral ganda f atas persegi panjang R adalah

$$\iint_{R} f(x,y) \ dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

asalkan nilai limitnya ada.

Akibatnya, jika $f(x,y) \ge 0$, maka **volume** V yaitu daaerah di bawah permukaan z = f(x,y) dan diatas persegi panjang R adalah

$$V = \iint_R f(x, y) \ dA.$$

Integral Iterasi

Menghitung integral ganda secara langsung sulit dilakukan namun integral ganda dapat dinyatakan sebagai integral iterasi.Misalkan f fungsi yang terintegral pada $R = [a,b] \times [c,d]$. Notasi $\int_{c}^{d} f(x,y) dy$ mempunyai arti bahwa x dibuat tetap (fixed) dan f(x,y) diintegralkan terhadap y. Prosedur ini disebut **integral parsial** terhadap y.

Integral Iterasi

Menghitung integral ganda secara langsung sulit dilakukan namun integral ganda dapat dinyatakan sebagai integral iterasi.Misalkan f fungsi yang terintegral pada $R = [a,b] \times [c,d]$. Notasi

 $\int_{c}^{a} f(x,y)dy$ mempunyai arti bahwa x dibuat tetap (fixed) dan f(x,y) diintegralkan terhadap y.

Prosedur ini disebut **integral parsial** terhadap *y*.

Misalkan

$$A(x) = \int_{c}^{d} f(x, y) dy.$$

Selanjutnya,

$$\int_a^b A(x)dx = \int_a^b \left[\int_c^d f(x,y)dy \right] dx \qquad \dots (1)$$

Integral Iterasi

Integral pada ruas kanan persamaan (1) disebut "integral iterasi". Lebih lanjut,

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$

Dengan cara yang serupa diperoleh

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dy dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dy \right] dx$$

Contoh (1)

Hitunglah integral iterasi berikut: (a) $\int_0^3 \int_1^2 x^2 y dy dx$ (b) $\int_1^2 \int_0^3 x^2 y dx dy$

Contoh (1)

Hitunglah integral iterasi berikut: (a) $\int_0^3 \int_1^2 x^2 y dy dx$ (b) $\int_1^2 \int_0^3 x^2 y dx dy$

Penyelesaian:

(a) Dengan menganggap x sebagai konstanta diperoleh

$$\int_{1}^{2} x^{2} y dy = \left[x^{2} \frac{y^{2}}{2} \right]_{y=1}^{y=2} = \frac{3}{2} x^{2}.$$

Akibatnya $A(x) = \frac{3}{2}x^2$. Selanjutnya,

$$\int_0^3 \int_1^2 x^2 y dy dx = \int_0^3 A(x) dx = \frac{3}{2} \int_0^3 x^2 dx = \frac{27}{2}.$$

Contoh (1)

Hitunglah integral iterasi berikut: (a) $\int_0^3 \int_1^2 x^2 y dy dx$ (b) $\int_1^2 \int_0^3 x^2 y dx dy$

Penyelesaian:

(a) Dengan menganggap x sebagai konstanta diperoleh

$$\int_{1}^{2} x^{2} y dy = \left[x^{2} \frac{y^{2}}{2} \right]_{y=1}^{y=2} = \frac{3}{2} x^{2}.$$

Akibatnya $A(x) = \frac{3}{2}x^2$. Selanjutnya,

$$\int_0^3 \int_1^2 x^2 y dy dx = \int_0^3 A(x) dx = \frac{3}{2} \int_0^3 x^2 dx = \frac{27}{2}.$$

(b) Dengan cara yang serupa diperoleh

$$\int_{1}^{2} \int_{0}^{3} x^{2} y dx dy = \int_{1}^{2} 9 y dy = \frac{27}{2}.$$

Teorema Fubini

Teorema (Fubini)

Jika f kontinu pada persegi panjang

$$R = \{(x, y) \mid a \le x \le b, \ c \le y \le d\}$$

maka,

$$\iint_R f(x,y)dA = \int_a^b \int_c^d f(x,y)dydx = \int_c^d \int_a^b f(x,y)dxdy.$$

Contoh (2)

Tentukan volume benda solid S yang dibatasi oleh paraboloida elipis $x^2 + 2y^2 + z = 16$, bidang x = 2 dan y = 2 serta tiga bidang koordinat.

Contoh (2)

Tentukan volume benda solid S yang dibatasi oleh paraboloida elipis $x^2 + 2y^2 + z = 16$, bidang x = 2 dan y = 2 serta tiga bidang koordinat.

Penyelesaian: Pertama bahwa S berada di bawah permukaan $z = 16 - x^2 - 2y^2$ dan di atas persegi $R = [0, 2] \times [0, 2]$.

Contoh (2)

Tentukan volume benda solid S yang dibatasi oleh paraboloida elipis $x^2 + 2y^2 + z = 16$, bidang x = 2 dan y = 2 serta tiga bidang koordinat.

Penyelesaian: Pertama bahwa S berada di bawah permukaan $z = 16 - x^2 - 2y^2$ dan di atas persegi $R = [0, 2] \times [0, 2]$.

$$V = \iint_{R} (16 - x^{2} - 2y^{2}) dA = \int_{0}^{2} \int_{0}^{2} (16 - x^{2} - 2y^{2}) dx dy$$
$$= \int_{0}^{2} \left[16x - \frac{1}{3}x^{3} - 2y^{2}x \right]_{x=0}^{x=2} dy = \int_{0}^{2} \left(\frac{88}{3} - 4y^{2} \right) dy = 48.$$

Double Integal Fungsi Separabel

Misalkan f(x, y) = g(x)h(y) dan $R = [a, b] \times [c, d]$, diperoleh

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \int_{a}^{b} g(x)h(y)dxdy$$

$$= \int_{c}^{d} \left[\int_{a}^{b} g(x)h(y)dx \right] dy = \int_{c}^{d} \left[h(y) \int_{a}^{b} g(x)dx \right] dy$$

$$= \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy.$$

Jadi,

$$\iint_{R} f(x,y)dA = \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy.$$

Double Integral atas Daerah Lebih Umum

$$F(x,y) = \begin{cases} f(x,y) & \text{ jika } (x,y) \in D \\ 0 & \text{ jika } (x,y) \notin D. \end{cases}$$

jika
$$(x, y) \in D$$

jika $(x, y) \notin D$.

Jika F terinteral pada R maka didefinisikan integral ganda fungsi f atas D sebagai

$$\iint_D f(x,y)dA = \iint_R F(x,y)dA.$$

Daerah D dikatakan masuk ke dalam tipe I jika

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

dengan g_1 dan g_2 kontinu pada [a, b].

Daerah D dikatakan masuk ke dalam tipe I jika

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

dengan g_1 dan g_2 kontinu pada [a, b].

Jika f kontinu pada daerah tipe I D dengan

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

maka

$$\iint_D f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dydx.$$

Daerah tipe II dapat dinyatakan sebagai

$$D = \{(x,y) \mid c \le y \le d, \ h_1(y) \le x \le h_2(y)\}$$
$$\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy.$$

Contoh (3)

Hitunglah $\iint_D (x+2y) dA$, dimana D adalah daerah yang dibatasi parabola $y=2x^2$ dan $y=1+x^2$.

Contoh (3)

Hitunglah $\iint_D (x+2y) dA$, dimana D adalah daerah yang dibatasi parabola $y=2x^2$ dan $y=1+x^2$.

Penyelesaian:

$$D = \{(x,y) \mid -1 \le x \le 1, \ 2x^2 \le y \le 1 + x^2\}.$$

Contoh (3)

Hitunglah $\iint_D (x+2y) dA$, dimana D adalah daerah yang dibatasi parabola $y=2x^2$ dan $y=1+x^2$.

Penyelesaian:

$$D = \{(x, y) \mid -1 \le x \le 1, \ 2x^2 \le y \le 1 + x^2\}.$$

Akibatnya,

$$\iint_{D} (x+2y)dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x+2y)dydx = \int_{-1}^{1} \left[xy + y^{2} \right]_{y=2x^{2}}^{y=1+x^{2}} dx$$
$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1)dx = \frac{32}{15}$$

Contoh (4)

Hitunglah volume benda solid di bawah paraboloida $z = x^2 + y^2$ dan di atas daerah D pada bidang-xy yang dibatasi oleh garis y = 2x dan parabola $y = x^2$.

Contoh (4)

Hitunglah volume benda solid di bawah paraboloida $z=x^2+y^2$ dan di atas daerah D pada bidang-xy yang dibatasi oleh garis y=2x dan parabola $y=x^2$.

Penyelesaian:

Daerah D adalah tipe I dengan

$$D = \{(x, y) \mid 0 \le x \le 2, \ x^2 \le y \le 2x \}.$$

Akibatnya, volume benda di bawah $z = x^2 + y^2$ dan di atas D adalah

Lanjutan Penyelesaian:

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{2} \int_{x^{2}}^{2x} (x^{2} + y^{2}) dy dx$$

$$= \int_{0}^{2} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=2x} dx$$

$$= \int_{0}^{2} \left[-\frac{x^{6}}{3} - x^{4} + \frac{14x^{3}}{3} \right] dx$$

$$= \left[-\frac{x^{7}}{21} - \frac{x^{5}}{5} + \frac{7x^{4}}{6} \right]_{0}^{2} = \frac{216}{35}$$

2. Double Integral pada Polar Koordinat

Double Integral pada Polar Koordinat

Pada koordinat polar, misalkan fungsi $f(r,\theta)$ didefinisikan pada region terbatas R yang dibatasi oleh sinar garis $\theta=\alpha$, $\theta=\beta$, dan kurva kontinu $r=g_1(\theta)$ dan $r=g_2(\theta)$.

$$S_n = \sum_{k=1}^n f(r_k, \theta_k) \Delta A_k.$$

Double Integral pada Polar Koordinat

Contoh Double Integral pada Polar Koordinat

Contoh (5)

Tentukan luas daerah tertutup lemniscate $r^2 = 4\cos 2\theta$.

Penyelesaian: Untuk menghitung luas kita pilih $f(r, \theta) = 1$.

Luas lemniscate adalah 4 kali luas daerah di kuadran 1 sehingga diperoleh

$$A = 4 \int_0^{\pi/4} \int_0^{\sqrt{4\cos 2\theta}} r \, dr d\theta = 4 \int_0^{\pi/4} 2\cos 2\theta \, d\theta = 4.$$

Double Integral pada Polar Koordinat

Kita dapat mengubah integral ganda $\iint_R f(x,y) dy dx$ ke dalam bentuk integral polar. Pertama kita substitusi $x = r \cos \theta$ dan $y = r \sin \theta$ dengan $dx dy = r dr d\theta$. Akibatnya diperoleh

$$\iint_{R} f(x,y) dx dy = \iint_{G} f(r\cos\theta, r\sin\theta) r dr d\theta$$

dengan ${\it G}$ adalah daerah integrasi pada koordinat polar.

Contoh Double Integral pada Polar Koordinat

Contoh (6)

Hitunglah $\iint_R e^{x^2+y^2} dy dx$ dengan R adalah setengah cakram yang dibatasi sumbu-x dan kurva $y=\sqrt{1-x^2}$.

Penyelesaian: Substitusi $x = r \cos \theta$, $y = r \sin \theta$ dan ganti dxdy menjadi $r drd\theta$ sehingga diperoleh

$$\iint_{R} e^{x^{2}+y^{2}} dy dx = \int_{0}^{\pi} \int_{0}^{1} e^{r^{2}} r dr d\theta = \int_{0}^{\pi} \left[\frac{1}{2} e^{r^{2}}\right]_{0}^{1} d\theta$$
$$= \int_{0}^{\pi} \frac{1}{2} (e-1) d\theta = \frac{\pi}{2} (e-1).$$

3. Aplikasi Double Integral

Pusat Massa

TABLE 15.1 Mass and first moment formulas for thin plates covering a region R in the xy-plane

Mass:
$$M = \iint_R \delta(x, y) dA$$
 $\delta(x, y)$ is the density at (x, y)

First moments:
$$M_x = \iint_R y \delta(x, y) dA$$
, $M_y = \iint_R x \delta(x, y) dA$

Center of mass:
$$\overline{x} = \frac{M_y}{M}$$
, $\overline{y} = \frac{M_x}{M}$

Contoh Pusat Massa

Contoh (7)

Sebuah pelat tipis menutupi daerah berbentuk segitiga yang dibatasi oleh sumbu-x, garis x=1 dan garis y=2x pada kuadran pertama. Densitas/ketebalan pelat tersebut pada titik (x,y) adalah $\delta(x,y)=6x+6y+6$. Tentukan massa pelat, momen pertama, serta pusat massanya.

Penyelesaian: Daerah yang dibatas pelat tersebut dapat dilihat pada gambar berikut.

Contoh Pusat Massa

Penyelesaian Lanjutan: Massa pelat tersebut adalah

$$M = \int_0^1 \int_0^{2x} \delta(x, y) \, dy dx = \int_0^1 \int_0^{2x} (6x + 6y + 6) \, dy dx$$
$$= \int_0^1 (24x^2 + 12x) \, dx = 14.$$

Momen pertama terhadap sumbu-x diberikan oleh

$$M_{x} = \int_{0}^{1} \int_{0}^{2x} y \delta(x, y) \, dy dx = \int_{0}^{1} \int_{0}^{2x} (6xy + 6y^{2} + 6y) \, dy dx = \int_{0}^{1} (28x^{3} + 12x^{2}) \, dx = 11.$$

Dengan cara serupa diperoleh bahwa $M_y=\int_0^1\int_0^{2x}x\delta(x,y)\,dydx=10$. Akibatnya, diperoleh pusat massa pelat tersebut berada pada koordinat $(\overline{x},\overline{y})$ dengan

$$\overline{x} = \frac{M_y}{M} = \frac{10}{14} = \frac{5}{7}, \qquad \overline{y} = \frac{M_x}{M} = \frac{11}{14}.$$

Momen Inersia

TABLE 15.2 Second moment formulas for thin plates in the xy-plane

Moments of inertia (second moments):

About the x-axis:
$$I_x = \iint y^2 \delta(x, y) dA$$

About the y-axis:
$$I_y = \iint x^2 \delta(x, y) dA$$

About a line L:
$$I_L = \iint r^2(x, y) \delta(x, y) dA,$$

where
$$r(x, y) = \text{distance from } (x, y) \text{ to } L$$

About the origin
$$I_0 = \iint (x^2 + y^2)\delta(x, y) dA = I_x + I_y$$
 (polar moment):

Radii of gyration: About the x-axis:
$$R_x = \sqrt{I_x/M}$$

About the y-axis:
$$R_y = \sqrt{I_y/M}$$

About the origin:
$$R_0 = \sqrt{I_0/M}$$

Contoh Momen Inersia

Contoh (8)

Menggunakan Contoh 7, tentukan momen inersia serta radius putaran terhadap sumbu koordinat dan titik pusat.

Penyelesaian: Dengan menggunakan fungsi densitas $\delta(x,y) = 6x + 6y + 6$, momen inersia terhadap sumbu-x diberikan oleh

$$I_x = \int_0^1 \int_0^{2x} y^2 \delta(x, y) \, dy dx = \int_0^1 \int_0^{2x} (6xy^2 + 6y^3 + 6y^2) \, dy dx$$
$$= \int_0^1 (40x^4 + 16x^3) \, dx = 12.$$

Dengan cara serupa, momen inersia terhadap sumbu-y diberikan oleh

$$I_y = \int_0^1 \int_0^{2x} x^2 \delta(x, y) \, dy dx = \frac{39}{5}.$$

Contoh Momen Inersia

Penyelesaian: Lebih lanjut, momen inersia terhadap titik pusat diberikan oleh

$$I_O = I_x + I_y = 12 + \frac{39}{5} = \frac{60 + 39}{5} = \frac{99}{5}.$$

Tiga radius putaran diberikan oleh

$$\begin{split} R_x &= \sqrt{I_x/M} = \sqrt{12/14} = \sqrt{6/7} \approx 0,93 \\ R_y &= \sqrt{I_y/M} = \sqrt{\left(\frac{39}{5}\right)/14} = \sqrt{39/70} \approx 0,75 \\ R_O &= \sqrt{I_O/M} = \sqrt{\left(\frac{99}{5}\right)/14} = \sqrt{99/70} \approx 1,19. \end{split}$$

Misalkan region G pada bidang-uv ditransformasi satu-satu ke region R pada bidang-xy yang memenuhi persamaan

$$x = g(u, v), \qquad y = h(u, v).$$

Integral fungsi f(x, y) pada R diberikan oleh

$$\iint_R f(x,y)dx\,dy = \iint_G f(g(u,v),h(u,v))|J(u,v)|du\,dv.$$

dengan J(u, v) merupakan matriks Jacobian. Integal di atas terdefinisi jika g, h, dan f mempunyai derivatif parsial yang kontinu.

Definisi (Jacobian)

Determinan Jacobian atau **Jacobian** dari transformasi koordinat $x = g(u, v), \ y = h(u, v)$ adalah

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

Contoh (9)

Hitunglah
$$\int_0^1 \int_0^{1-x} \sqrt{x+y}(y-2x)^2 dy dx$$
.

Penyelesaian: Substitusi u = x + y dan v = y - 2x sehingga diperoleh

$$x = \frac{u}{3} - \frac{v}{3}, \qquad y = \frac{2u}{3} + \frac{v}{3}.$$

xy-equations for the boundary of R	Corresponding <i>uv</i> -equations for the boundary of <i>G</i>	Simplified <i>uv</i> -equations
x+y=1	$\left(\frac{u}{3} - \frac{v}{3}\right) + \left(\frac{2u}{3} + \frac{v}{3}\right) = 1$	u = 1
x = 0	$\frac{u}{3} - \frac{v}{3} = 0$	v = u
y = 0	$\frac{2u}{3}+\frac{v}{3}=0$	v = -2u

Penyelesaian: Jacobian dari transformasi tersebut adalah

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{vmatrix} = \frac{1}{3}.$$

Jadi diperoleh

$$\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dy dx = \int_{u=0}^{u=1} \int_{v=-2u}^{v=u} u^{1/2} v^2 |1/3| dv du$$
$$= \frac{1}{9} \int_0^1 u^{1/2} (9u^3) du = \int_0^1 u^{7/2} du = \frac{2}{9}.$$

Thank You

Some of the graphics: Copyright $\ @$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley