1. Teoría de Números

1.1. División

Considerando a \mathbb{Z} como el conjunto de los números enteros, para $a,b\in\mathbb{Z}$ y $a\neq 0$, se dice que a divide a b si es que:

$$a|b \leftrightarrow \exists q \in \mathbb{Z} \ . \ a \cdot q = b$$

En el caso que esto no se cumpla, entonces a no divide b, expresado como a/b

1.1.1. Propiedades de la división

- Si $a|b \ y \ a|c$, entonces a|(b+c)
- Si a|b, entonces $a|(b \cdot c)$ para todo $c \in \mathbb{Z}$
- Si a|b y b|c, entonces a|c

Corolario: Si a|b y b|c, entonces $a|(b \cdot m + n \cdot c)$, para todo $m, n \in \mathbb{Z}$

1.2. Módulo

Con $a, b \in \mathbb{Z}$, a > 0 y a|b, entonces existe un único par $q, r \in \mathbb{Z}$ tal que $a \cdot q + r = b$. Esta corresponde a la definición de la división con resto. Mediante esta, se define el operador módulo (mód) y el operador división (div).

$$b \operatorname{div} a = q$$
 $b \operatorname{m\'od} a = r$

1.3. Congruencia modular

Con $m \in \mathbb{Z}$ y m > 0, diremos que para todo $a, b \in \mathbb{Z}$, a es congruente con b mód m si:

$$a \equiv b \pmod{m}$$
 si, y solo si $m \mid (a - b)$

1.3.1. Propiedades de la congruencia modular

Para todo $a, b, m \in \mathbb{Z}$, donde m > 0, se cumple que:

- $a \equiv b \pmod{m}$
- \bullet $a = b + m \cdot s$, para algún $s \in \mathbb{Z}$
- $(a \mod m) = (b \mod m)$

1.3.2. Suma y multiplicación de la congruencia modular

Para todo m > 0, si $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$ entonces:

$$a+c \equiv b+d \pmod{m}$$

 $a \cdot c \equiv b \cdot d \pmod{m}$

Adicionalmente...

$$\begin{array}{lll} (a+b) & \operatorname{m\'od} \ m & = & ((a & \operatorname{m\'od} \ m) + (b & \operatorname{m\'od} \ m)) & \operatorname{m\'od} \ m \\ (a \cdot b) & \operatorname{m\'od} \ m & = & ((a & \operatorname{m\'od} \ m) \cdot (b & \operatorname{m\'od} \ m)) & \operatorname{m\'od} \ m \end{array}$$

1.3.3. Aritmética módulo m - Aritmética modular

Con m > 0, se define $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$. Entonces, para todo $a, b \in \mathbb{Z}_m$, se definen las operaciones $+_m y \cdot_m$

$$\begin{array}{rcl} a+_m b & = & (a+b) \mod m \\ a\cdot_m b & = & (a\cdot b) \mod m \end{array}$$

La aritmética modular cumple con las siguientes propiedades:

Clausura: $a +_m b \in \mathbb{Z}_m$; $a \cdot_m b \in \mathbb{Z}_m$ Conmutatividad $a +_m b = b +_m a$; $a \cdot_m b = b \cdot_m a$ Asociatividad $a +_m (b +_m c) = (a +_m b) +_m c$; $a \cdot_m (b \cdot_m c) = (a \cdot_m b) \cdot_m c$ Identidad: $a +_m 0 = a$; $a \cdot_m 1 = a$ Inverso aditivo: $a \neq 0$, $\exists a' \in \mathbb{Z}_m$. $a +_m a' = 0$ Distributividad: $a \cdot_m (b +_m c) = (a \cdot_m b) + (a \cdot_m c)$

1.4. Representación de los números

Sea b > 1. Si $n \in \mathbb{N} - \{0\}$, entonces n se puede escribir de forma única como:

$$n = a_{k-1}b^{k-1} + a_{k-2}b^{k-2} + a_{k-3}b^{k-3} + \dots + a_2b^2 + a_1b^1 + a_0 = \sum_{i=0}^{k-1} a_ib^i$$

con

- *k* > 1
- Para todo $i < k, a_i < b$
- $a_{k-1} \neq 0$

Para poder simplificar un poco las cosas, vamos a establecer que todo número en representación de n en base b corresponde a la secuencia

$$(n)_b = a_{k-1} \dots a_2 a_1 a_0$$

Como pequeño dato curioso, si esto le parece familiar al lector, es porque esto representa la forma en que nosotros escribimos los números normalmente, en donde la base b = 10.

1.4.1. Encontrando la representación de n en base b

Ahora que entendemos que podemos representar números usando distintas bases, ¿cómo podemos encontrar la representación de cualquier número en cualquier base?

Si se tiene un número $n \in \mathbb{N} - \{0\}$ y b > 0, sabiendo que su representación debe ser de la forma $(n)_b = a_{k-1} \dots a_2 a_1 a_0$ y que por la división con resto, sabemos que $n = q \cdot b + r$, entonces tenemos que

$$\begin{array}{rcl}
r & = & a_0 \\
(q)_b & = & a_{k-1} \dots a_1
\end{array}$$

1.4.2. Suma de números en base b

La forma de llegar al algoritmo para la suma de números en base b corresponde al siguiente, considerando que n y m son números en base b.

$$\begin{array}{lll} n+m & = & (n_{k-1}+m_{k-1}) \cdot b^{k-1} + \ldots + (n_2+m_2) \cdot b^2 + (n_1+m_1) \cdot b + (n_0+m_0) & /(n_0+m_0) = c_0 \cdot b + s_0 \\ n+m & = & (n_{k-1}+m_{k-1}) \cdot b^{k-1} + \ldots + (n_2+m_2) \cdot b^2 + (n_1+m_1+c_0) \cdot b + s_0 & /(n_1+m_1+c_0) = c_1 \cdot b + s_1 \\ n+m & = & (n_{k-1}+m_{k-1}) \cdot b^{k-1} + \ldots + (n_2+m_2+c_1) \cdot b^2 + s_1 \cdot b + s_0 & /(n_2+m_2+c_1) = c_2 \cdot b + s_2 \\ / \ldots \end{array}$$

Si se continua aplicando hasta terminar con toda la ecuación, se obtiene que

$$n + m = c_{k-1} \cdot b^k + s_{k-1} \cdot b^{k-1} + \dots + s_1 \cdot b + s_0$$

Estas son muchas letras y posiblemente confunde demasiado, por lo que es mejor trabajar con un ejemplo de como se usa este algoritmo. Supongamos que queremos realizar la suma $(11)_2 + (14)_2$, donde $(11)_2 = 1011$ y $(14)_2 = 1110$.

Se comienza con el primer dígito (1011; 1110): 1 + 0Resultado: 1 Se continua con el segundo dígito (1011; 1110): 1+1+0 $1 \cdot 2 + 0$ Resultado: 01 Se continua con el tercer dígito (1011; 1110): 0+1+1Resultado: 001 Se continua con el cuarto dígito (1011; 1110): 1 + 1 + 1Resultado: 1001 = $1 \cdot 2 + 1$ Siguiente dígito de la base (5° dígito acumulado): 0 + 0 + 1 $0 \cdot 2 + 1$ Resultado: 11001

Entonces, $(11)_2 + (14)_2 = 11001$.

Este algoritmo es exactamente lo que se usa para realizar sumas de forma manual en base 10.

1.4.3. Multiplicación de números en base b

Considerando que n y m son números en base b, la multiplicación $m \cdot n$

$$n \cdot m = n(m_{k-1}b^{k-1} + \ldots + m_2b^2 + m_1b + m_0) = n \cdot (m_{k-1}b^{k-1}) + \ldots + n \cdot (m_2b^2) + n \cdot (m_1b) + n \cdot (m_0)$$

Considerando esto, se define p_i como

$$(p_i)_b = n \cdot (m_i \cdot b) = \begin{cases} 0 & \text{si } m_i = 0 \\ n_{k-1} \dots n_1 n_0 0 \dots 0 & \text{si } m_i = 1. \text{ La cantidad de ceros es } i \end{cases}$$

1.5. Máximo común divisor

Sea $a, b \in \mathbb{Z} - \{0\}$. El máximo común divisor de a y b (o gcd(a, b)) corresponde al mayor número d tal que d|a y d|b, simultaneamente. El gcd(a, b) podemos decir, en otras palabras, que corresponde al máximo del conjunto $D_{a,b}$, definido como

$$D_{a,b} = \{ c \in \mathbb{Z} \mid c | a \wedge c | b \}$$

1.5.1. Algoritmo del MCD - Algoritmo de Euclides¹

Para obtener el gcd(a, b), se puede usar el algoritmo de Euclides, el cual permite descomponer el problema en un problema más pequeño.

$$\gcd(a,b) \quad /a = b \cdot q + r$$

$$\gcd(a,b) = \gcd(b,r) \quad / \text{Repetir de forma iterativa hasta poder determinar el MCD}.$$

1.6. Conjunto Generadores

Con $a, b \in \mathbb{Z} - \{0\}$, se define el conjunto generador de $a y b (\langle a, b \rangle)$ como

$$\langle a, b \rangle = \{ c \in \mathbb{Z} \mid \exists s, t \in \mathbb{Z} : c = a \cdot s + b \cdot t \}$$

De forma más general, el conjunto generado por a_1, \ldots, a_n se define como

$$\langle a_1, \dots, a_n \rangle = \{ c \in \mathbb{Z} \mid \exists s_1, s_2, \dots, s_n \in \mathbb{Z} : c = a_1 s_1 + a_2 s_2 + \dots + a_n s_n \}$$

¹Información obtenida desde KhanAcademy

1.6.1. Identidad de Bézout

Para todo $a, b \in \mathbb{Z} - \{0\}$

- gcd(a,b) es el menor entero positivo tal que existe $s,t\in\mathbb{Z}$: gcd(a,b)=sa+tb

1.7. Ecuaciones de Congruencias

Esto sirve como una especie de "continuación" a la congruencia modular. Se define una congruencia lineal como la ecuación de la siguiente forma

$$ax \equiv b \pmod{m}$$
 ; $m \in \mathbb{N} - \{0\}$; $a, b \in \mathbb{Z}$; x variable

1.7.1. Como resolver una ecuación de congruencia lineal

Para poder resolver $ax \equiv b \pmod{m}$, se debe encontrar el inverso multiplicativo de a, o sea, a^{-1} (No necesariamente $a^{-1} = 1/a$), de forma que

$$a \cdot a^{-1} \equiv b \pmod{m}$$

Asumiendo que a^{-1} existe, significa que podemos resolver la ecuación de la siguiente forma

$$\begin{array}{rcl} ax & \equiv & b \pmod{m} & /{\cdot}a^{-1} \\ (a \cdot a^{-1})x & \equiv & a^{-1}b \pmod{m} & /a \cdot a^{-1} = 1 \\ x & \equiv & a^{-1}b \pmod{m} \end{array}$$