Data Viz in Plotting

```
In [ ]: import pandas as pd # For data manipulation and analysis
        import numpy as np # For numerical computations
        import matplotlib.pyplot as plt # For creating static, animated, and interactiv
        import seaborn as sns # For statistical data visualization based on Matplotlib
        import scipy # For scientific and technical computing (including optimization,
In [4]: import pandas as pd
        import numpy as np
        # Creating realistic data for employees
        data = {
            'Employee ID': np.arange(1001, 1011),
            'Employee Name': ['Satender Kumar', 'data 1', 'Jane Smith', 'Robert Brown',
            'Department': ['Data Analyst', 'IT', 'Finance', 'Marketing', 'Sales', 'Opera
            'Age': [24, np.random.randint(25, 60), np.random.randint(25, 60), np.random.
            'Location': ['London, Canada', 'Toronto', 'London', 'Sydney', 'San Francisco
            'Salary': np.random.randint(50000, 150000, size=10),
            'Years with Company': np.random.randint(1, 15, size=10),
            'Position': ['Data Analyst', 'Developer', 'Analyst', 'Designer', 'Consultant
            'Performance Score': np.random.randint(1, 5, size=10),
            'Bonus': np.random.randint(1000, 10000, size=10),
            'Gender': ['Male', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Ma
            'Marital Status': ['Single', 'Single', 'Married', 'Single', 'Single', 'Marri
            'Education': ['Bachelor', 'Master', 'PhD', 'Bachelor', 'Master', 'PhD', 'Bac
            'Hire Date': pd.to_datetime(['2019-06-12', '2015-07-23', '2012-09-05', '2018
            'Overtime Hours': np.random.randint(0, 20, size=10),
            'Sick Days Taken': np.random.randint(0, 10, size=10),
            'Vacation Days Taken': np.random.randint(5, 20, size=10),
            'Training Hours': np.random.randint(10, 50, size=10),
            'Certifications': ['Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No'
            'Supervisor': ['Anna Smith', 'Brian Adams', 'Clara Jones', 'Daniel Martin',
        # Creating the DataFrame
        df = pd.DataFrame(data)
```

In [10]: df

	Employee ID	Employee Name	Department	Age	Location	Salary	Years with Company	Position	P
0	1001	Satender Kumar	Data Analyst	24	London, Canada	50379	3	Data Analyst	
1	1002	data 1	IT	37	Toronto	98030	3	Developer	
2	1003	Jane Smith	Finance	42	London	54742	13	Analyst	
3	1004	Robert Brown	Marketing	50	Sydney	79468	7	Designer	
4	1005	Emily Davis	Sales	39	San Francisco	140576	5	Consultant	
5	1006	Michael Wilson	Operations	55	Paris	149810	2	Engineer	
6	1007	Sarah Taylor	R&D	46	Berlin	122118	1	Scientist	
7	1008	David Lee	Support	56	Tokyo	121107	11	Support Agent	
8	1009	Laura Johnson	Admin	38	Dubai	143323	8	Admin Assistant	
9	1010	James White	Legal	48	Singapore	51334	12	Lawyer	
4									•
<u>.</u>									

In [11]: import pandas as pd import numpy as np

```
In [13]: # Creating realistic data for a second set of employees
                        data1 = {
                                   'Employee ID': np.arange(1011, 1021),
                                   'Employee Name': ['Satender Kumar', 'data 1', 'Chris Evans', 'Natalie Portma 'Department': ['Data Analyst', 'HR', 'IT', 'Marketing', 'Finance', 'Sales',
                                   'Age': [24, np.random.randint(25, 60), np.random.randint(25, 60), np.random.
                                   'Location': ['London, Canada', 'Los Angeles', 'New York', 'Chicago', 'Housto
                                   'Salary': np.random.randint(60000, 160000, size=10),
                                   'Years with Company': np.random.randint(1, 20, size=10),
                                   'Position': ['Data Analyst', 'HR Manager', 'IT Specialist', 'Marketing Coord
                                   'Performance Score': np.random.randint(1, 5, size=10),
                                   'Bonus': np.random.randint(2000, 12000, size=10),
                                   'Gender': ['Male', 'Male', 'Female', 'Female', 'Male', 'Female', 'Male', 'Fe
                                   'Marital Status': ['Single', 'Married', 'Single', 'Single', 'Married', 'Sing
                                   'Education': ['Master', 'Bachelor', 'Master', 'PhD', 'Bachelor', 'Master', '
                                   'Hire Date': pd.to_datetime(['2018-07-15', '2014-03-22', '2011-10-12', '2017
                                   'Overtime Hours': np.random.randint(0, 25, size=10),
                                   'Sick Days Taken': np.random.randint(0, 8, size=10),
                                   'Vacation Days Taken': np.random.randint(7, 22, size=10),
                                   'Training Hours': np.random.randint(15, 55, size=10),
                                   'Certifications': ['Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes',
                                   'Supervisor': ['John Smith', 'Michael Johnson', 'Patricia Williams', 'Linda
```

```
# Creating the second DataFrame
df1 = pd.DataFrame(data1)
```

In [15]: df1

Out[15]:

	Employee ID	Employee Name	Department	Age	Location	Salary	Years with Company	Position
0	1011	Satender Kumar	Data Analyst	24	London, Canada	95392	5	Data Analyst
1	1012	data 1	HR	56	Los Angeles	75471	17	HR Manager
2	1013	Chris Evans	IT	30	New York	129083	12	IT Specialist
3	1014	Natalie Portman	Marketing	27	Chicago	104039	3	Marketing Coordinator
4	1015	Tom Holland	Finance	56	Houston	138405	5	Financial Analyst
5	1016	Emma Watson	Sales	35	Phoenix	145713	19	Sales Manager
6	1017	Daniel Radcliffe	R&D	41	Philadelphia	62592	1	Research Scientist
7	1018	Scarlett Johansson	Operations	44	San Antonio	119897	10	Operations Manager
8	1019	Robert Downey Jr.	Legal	27	San Diego	92816	3	Legal Advisor
9	1020	Mark Ruffalo	Support	46	Dallas	144765	1	Support Specialist
4								+

In [17]: merged_df = pd.merge(df, df1, on='Employee ID', suffixes=('_df', '_df1'), how='c
 print(merged_df)

	Employee II	D Employee Name_df	Department df	Age_df	Loc	ation_df	\	
0	100:	-	Data Analyst	24.0		, Canada	`	
1	100		IT	37.0	Toronto			
2	100		Finance	42.0		London		
3	1004	4 Robert Brown	Marketing	50.0		Sydney		
4	100	5 Emily Davis	Sales	39.0	San F	rancisco		
5	1000	•	Operations	55.0		Paris		
6	100	7 Sarah Taylor	R&D	46.0		Berlin		
7	1008	8 David Lee	Support	56.0		Tokyo		
8	1009	9 Laura Johnson	Admin	38.0		Dubai		
9	1010	<pre>James White</pre>	Legal	48.0	S	ingapore		
10	101:	1 NaN	NaN	NaN		NaN		
11	101	2 NaN	NaN	NaN	N NaN			
12	101	NaN	NaN	NaN		NaN		
13	1014	4 NaN	NaN	NaN		NaN		
14	101	5 NaN	NaN	NaN		NaN		
15	1010	6 NaN	NaN	NaN		NaN		
16	101	7 NaN	NaN	NaN		NaN		
17	1018	8 NaN	NaN	NaN		NaN		
18	1019	9 NaN	NaN	NaN		NaN		
19	1020	NaN	NaN	NaN		NaN		
	دمامس طف	Variation Commons	. عد المحادة	L: J.C	Dansann	C	٠ ٠٠	,
0	Salary_df	Years with Company	_	_	Peritoriii	ance Scor	_	\
0 1	50379.0			Analyst veloper			2.0 4.0	
2	98030.0 54742.0	-		Analyst			3.0	
3	79468.0	_		esigner			4.0	
4	140576.0			sultant			1.0	
5	149810.0			ngineer			2.0	
6	122118.0			ientist			2.0	
7	121107.0	1	L1.0 Support				4.0	
8	143323.0	-	8.0 Admin Ass	_			1.0	
9	51334.0	1	12.0	Lawyer			1.0	
10	NaN	-	NaN	NaN			NaN	
11	NaN		NaN	NaN			NaN	
12	NaN		NaN	NaN			NaN	
13	NaN		NaN	NaN			NaN	
14	NaN		NaN	NaN			NaN	
15	NaN		NaN	NaN			NaN	
16	NaN		NaN	NaN			NaN	
17	NaN		NaN	NaN			NaN	
18	NaN		NaN	NaN			NaN	
19	NaN		NaN	NaN			NaN	
	_	Gender_df1 Mari	_		_	Hire Date	_	\
0		NaN	Nal		NaN		NaT	
1		NaN	Nal		NaN		NaT	
2		NaN	Nal		NaN		NaT	
3		NaN	Naf		NaN		NaT	
4		NaN	Naf		NaN		NaT	
5		NaN	Naf		NaN		NaT	
6	1421.0	NaN	Naf		NaN		NaT	
7	3473.0	NaN	Nal		NaN		NaT	
8	5515.0	NaN	Nal		NaN		NaT	
9	3612.0	NaN	Nan		NaN	664=	NaT	
10	NaN	Male	Single		Master	2018-0		
11	NaN	Male	Marrie		chelor	2014-0		
12	NaN	Female	Single		Master	2011-1		
13	NaN	Female	Single		PhD	2017-0		
14	NaN	Male	Marrie	d Ba	chelor	2015-0	9-23	

15	NaN		Female		S	ingle	Master	2016-11	-01
16	NaN		Male			ingle	PhD	2019-05	-11
17	NaN		Female		Ма	rried	Bachelor	2020-07	-08
18	NaN		Male		S	ingle	Master	2013-08	-19
19	NaN		Male		Ма	rried	PhD	2012-01	-09
	Overtime	Hours_df1	Sick	Days	Taken_df	1 Vacat	ion Days Tak	en_df1 \	
0		NaN			Na	N		NaN	
1		NaN			Na	N		NaN	
2		NaN			Na	N		NaN	
3		NaN			Na	N		NaN	
4		NaN			Na	N		NaN	
5		NaN			Na	N		NaN	
6		NaN			Na	N		NaN	
7		NaN			Na	N		NaN	
8		NaN			Na	N		NaN	
9		NaN			Na	N		NaN	
10		3.0			0.	0		18.0	
11		18.0			2.	0		14.0	
12		16.0			7.	0		16.0	
13		9.0			6.	0		11.0	
14		16.0			1.	0		17.0	
15		2.0			7.	0		9.0	
16		17.0			2.	0		21.0	
17		21.0			2.	0		13.0	
18		9.0			3.	0		10.0	
19		16.0			7.	0		21.0	
	Training	Hours_df1	Certif	icat	ions_df1	Supe	ervisor_df1		
0		NaN			NaN		NaN		
1		NaN			NaN		NaN		
2		NaN			NaN		NaN		
3		NaN			NaN		NaN		
4		NaN			NaN		NaN		
5		NaN			NaN		NaN		
6		NaN			NaN		NaN		
7		NaN			NaN		NaN		
8		NaN			NaN		NaN		
9		NaN			NaN		NaN		
10		42.0			Yes		John Smith		
11		41.0			Yes	Micha	el Johnson		
12		39.0			No	Patrici	la Williams		
13		36.0			Yes	L	inda Brown		
14		45.0			No	Bar	rbara Jones		
15		51.0			Yes	Elizab	eth Garcia		
16		24.0			No	Susa	an Martinez		
17		37.0			Yes	Jessica	Hernandez		
18		16.0			Yes	5	Sarah Lopez		
19		54.0			No	Ka	aren Wilson		
		9 columns]							

[20 rows x 39 columns]

In [19]: df.plot()

Out[19]: <Axes: >

In [21]: df1.plot()

Out[21]: <Axes: >

In [54]: # Pie chart for department distribution in df1
 df1['Department'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Depa
 plt.ylabel('') # Remove the y-label for a cleaner look
 plt.show()

Department Distribution in df1

In [56]: # Stacked bar plot showing count of employees by Department and Gender in df
 df.groupby(['Department', 'Gender']).size().unstack().plot(kind='bar', stacked=T
 plt.title('Stacked Bar Plot for Department and Gender in df')
 plt.ylabel('Number of Employees')
 plt.show()


```
In [57]: # Area plot showing salary over years with company in df1
df1.plot.area(x='Years with Company', y='Salary', figsize=(10, 7), alpha=0.4)
plt.title('Area Plot for Salary Over Years with Company in df1')
plt.ylabel('Salary')
plt.show()
```



```
In [58]: from mpl_toolkits.mplot3d import Axes3D

# 3D scatter plot in df
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(df['Age'], df['Salary'], df['Performance Score'], c='r', marker='o')
ax.set_xlabel('Age')
ax.set_ylabel('Salary')
ax.set_zlabel('Performance Score')
plt.title('3D Scatter Plot in df')
plt.show()
```

3D Scatter Plot in df


```
In [59]: # Hexbin plot for Age vs. Salary in df1
    df1.plot.hexbin(x='Age', y='Salary', gridsize=20, cmap='Blues', figsize=(10, 7))
    plt.title('Hexbin Plot for Age vs. Salary in df1')
    plt.show()
```


In [61]: # Hexbin plot for Age vs. Salary in df
 df.plot.hexbin(x='Age', y='Salary', gridsize=20, cmap='Blues', figsize=(11, 8))
 plt.title('Hexbin Plot for Age vs. Salary in df')
 plt.show()

In [63]: df.boxplot()

Out[63]: <Axes: >

In [30]: df1.boxplot()

Out[30]: <Axes: >

In [32]: import pandas as pd
import matplotlib.pyplot as plt

```
# Assuming df is your first DataFrame
df.hist(figsize=(12, 10), bins=15, grid=False)

# Display the plots for df
plt.suptitle('Histograms for df')
plt.show()
```

Histograms for df

In [35]: # Assuming df1 is your second DataFrame
 df1.hist(figsize=(12, 10), bins=15, grid=False)

Display the plots for df1
 plt.suptitle('Histograms for df1')
 plt.show()

In [36]: # Box plots for df1
 df1.boxplot(figsize=(12, 10))
 plt.suptitle('Box Plots for df1')
 plt.show()


```
In [37]: # Box plots for df1
    df.boxplot(figsize=(12, 10))
    plt.suptitle('Box Plots for df')
    plt.show()
```



```
In [44]: # Scatter plot between 'Age' and 'Salary' in df1
df1.plot.scatter(x='Age', y='Salary', title='Age vs. Salary in df1')
plt.show()
```


In [45]: # Scatter plot between 'Age' and 'Salary' in df
df.plot.scatter(x='Age', y='Salary', title='Age vs. Salary in df')
plt.show()

In [48]: # Density plot for Age distribution in df1
df1['Age'].plot(kind='density', title='Density Plot for Age in df1')

In [51]: import seaborn as sns

Violin plot for Salary distribution in df
sns.violinplot(y='Salary', data=df)
plt.title('Salary Distribution in df')
plt.show()

In [52]: # Pie chart for department distribution in df1
 df1['Department'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Depa
 plt.ylabel('') # Remove the y-label for a cleaner look
 plt.show()

Department Distribution in df1

In [53]: # Pie chart for department distribution in df
 df['Department'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Depar
 plt.ylabel('') # Remove the y-label for a cleaner look
 plt.show()

Department Distribution in df


```
In [68]: import numpy as np
         # Radar chart for comparing different metrics for the first employee in df
         categories = ['Age', 'Salary', 'Years with Company', 'Performance Score', 'Bonus
         values = df.loc[0, categories].values.flatten().tolist()
         # Adding the first value to the end of the list to close the radar chart
         values += values[:1]
         angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
         angles += angles[:1]
         fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
         ax.fill(angles, values, color='red', alpha=0.25)
         ax.plot(angles, values, color='red', linewidth=2)
         ax.set_yticklabels([])
         ax.set_xticks(angles[:-1])
         ax.set_xticklabels(categories)
         plt.title('Radar Chart for First Employee in df')
         plt.show()
```

Radar Chart for First Employee in df Salary Years with Company Age Bonus

```
import plotly.express as px

# Sunburst plot showing hierarchy of Department and Gender in df
fig = px.sunburst(df, path=['Department', 'Gender'], values='Salary')
fig.update_layout(title='Sunburst Plot for Department and Gender in df')
fig.show()
```

Sunburst Plot for Department and Gender in df

```
In [72]: # Joint plot for Age vs. Salary in df
sns.jointplot(x='Age', y='Salary', data=df, kind='reg', height=8)
plt.suptitle('Joint Plot for Age vs. Salary in df', y=1.03)
plt.show()
```


In [73]: # Swarm plot for Performance Score across Department in df1
plt.figure(figsize=(10, 7))
sns.swarmplot(x='Department', y='Performance Score', data=df1)
plt.title('Swarm Plot for Performance Score Across Department in df1')
plt.xticks(rotation=90)
plt.show()

