Homework5. Problem 1 Computer Vision Features

Jae Dong Hwang

Computer Vision Features

For this assignment add 4 new feature sets to Assignment5Support.Featurize (Notice that the code is split so you'll need to duplicate your features for the training set vs the test set). Build a model with random forests tune the parameters (Try at least 3 settings each of: min to split, num trees and feature restriction).

Divide the image into a 3 x 3 grid and for each grid location include a feature for the min, max, average y-gradient among the locations in the grid. What test-set accuracy did you achieve? What parameter values were best?

Divide the image into a 3 x 3 grid and for each grid location include a feature for the min, max, average x-gradient among the locations in the grid. What test-set accuracy did you achieve? What parameter values were best?

Omplement a histogram of gradients across the whole image (not on the grid) with 5 uniformly spaced bins for the absolute value of the y gradients (0 - 0.2, 0.2 - 0.4, etc). For each bin create a feature whose value is the percent of y-gradients that fall in the bin. What test-set accuracy did you achieve? What parameter values were best?

Implement a histogram of gradients across the whole image (not on the grid) with 5 uniformly spaced bins for the absolute value of the x gradients (0 - 0.2, 0.2 - 0.4, etc). For each bin create a feature whose value is the percent of x-gradients that fall in the bin. What test-set accuracy did you achieve? What parameter values were best?

I ran three type of paramter sweeps: minToSplit, numTrees, and feature restriction. I compared the best results of each parameter sweeps and got the results below. The number of trees dominated the accuracy improvement. For histograms, I used the five uniform bins, [0 - 0.2, 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, 0.8 - 1], for histograms.

- Accuracies and Parameters Selected
 - 3x3 grid + y gradients
 - Best Accuracy: 0.8193069306930693 (Param Sweep with numTrees ([20, 40, 60, 80]))
 - min_to_split: 20
 - bagging_w_replacement: True
 - num_trees: 60
 - feature_restriction: 100
 - Statistics:

	1	0
1	(TP) 482	2 (FN) 116
C) (FP) 103	3 (TN) 511

Accuracy: 0.8193069306930693 Precision: 0.8239316239316239 Recall: 0.8060200668896321 FPR: 0.16775244299674266 FNR: 0.1939799331103679

• 3x3 grid + x gradients

■ Best Accuracy: 0.8448844884488449 (Param Sweep with numTrees ([20, 40, 60, 80]))

■ min_to_split: 20

bagging_w_replacement: True

■ num_trees: 40

• feature_restriction: 100

Statistics:

	1	0
1	(TP) 498	(FN) 100
0	(FP) 88	(TN) 526

Accuracy: 0.8448844884488449 Precision: 0.8498293515358362 Recall: 0.8327759197324415 FPR: 0.14332247557003258 FNR: 0.16722408026755853

• Histogram of a image y-gradients

Best Accuracy: 0.8061056105610561 (Param Sweep with numTrees ([20, 40, 60, 80]))

■ min_to_split: 20

bagging_w_replacement: True

■ num_trees: 60

• feature_restriction: 100

Statistics:

	1	0
1	(TP) 447	(FN) 151
0	(FP) 84	(TN) 530

Accuracy: 0.8061056105610561 Precision: 0.8418079096045198 Recall: 0.7474916387959866 FPR: 0.13680781758957655 FNR: 0.2525083612040134

• Histogram of a image y-gradients

■ Best Accuracy: 0.7904290429042904 (Param Sweep with numTrees ([20, 40, 60, 80]))

min_to_split: 20

bagging_w_replacement: True

■ num trees: 80

• feature_restriction: 100

Statistics:

	1	0
1	(TP) 427	(FN) 171
0	(FP) 83	(TN) 531

Accuracy: 0.7904290429042904 Precision: 0.8372549019607843 Recall: 0.7140468227424749 FPR: 0.13517915309446255 FNR: 0.28595317725752506

Produce an ROC curve with one curve for: the y-gradients on the 3x3 grid; the x-gradients on the 3x3 grid; the y-gradient histogram; the x-gradient histogram. Use the tuning values you found in the previous parts of this assignment.

