1

UNIVERSIDAD POLITÉCNICA DE PACHUCA

Maestría en Mecatrónica (PNPC 002005) Examen de Admisión, sección Matemáticas Temario y Problemario

El examen de admisión a la Maestría en Mecatrónica de la Universidad Politécnica de Pachuca, sección matemáticas, evaluará los siguientes temas:

1) Álgebra

- Factorización
- Simplificación de expresiones algebraicas
- Solución de ecuaciones algebraicas, lineales y no lineales, con una incógnita
- Solución de sistemas de ecuaciones algebraicas lineales
- Números complejos: representación y operaciones.

2) Cálculo Diferencial e Integral

- Concepto y gráfica de funciones
- Concepto y evaluación de límites
- Concepto de continuidad
- Concepto y aplicaciones de derivada
- Propiedades de derivadas
- Regla de la cadena
- Derivadas parciales
- Concepto y aplicación de integral
- Propiedades de la integral
- Técnicas de Integración (exacta, por cambio de variable y por partes)

3) Ecuaciones Diferenciales

- Ecuaciones diferenciales de primer orden
- Ecuaciones diferenciales de orden superior
- Solución de ecuaciones diferenciales lineales por la Transformada de Laplace.

4) Álgebra Lineal

- Álgebra de matrices
- Determinantes
- Sistemas de ecuaciones lineales
- Valores y vectores propios

Material recomendado para consulta:

- Zill, D. G., y Dewar, J. M. (2012). Álgebra, trigonometría y geometría analítica. McGraw Hill Educación.
- Purcell, E. J., Rigdon, S. E., y Varberg, D. E. (2007). Cálculo. Pearson Educación.
- Zill, D. G., y Cullen, M. R. (2013). Ecuaciones diferenciales. McGraw-Hill Interamericana.
- Grossman, S. I. (2008). Álgebra lineal. McGraw Hill Educación.

A continuación, se presentan una serie de problemas a manera de guía de estudio para el examen de admisión sección matemáticas.

- 1) Encuentre dos números reales cuya suma de cuadrados dé 100 y cuya suma simple dé cero.
- 2) Separe en francciones parciales la siguiente expresión $F(x) = \frac{x+3}{(x+1)(x+2)}$.
- 3) Determine las raíces del polinomio $p(\lambda) = \lambda^3 + 3\lambda^2 + 4\lambda$.
- 4) ¿Puede un polinomio de segundo grado tener raíces $\lambda=-j$ y $\lambda=5$?
- 5) Identifique las partes real e imaginaria de la siguiente operación $\frac{4+5j}{1+j}$.
- 6) Resuelva la siguiente ecuación

$$-x_2 - x_3 + x_4 = 0$$

$$x_1 + x_2 + x_3 + x_4 = 6$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = -1$$

$$3x_1 + x_2 - 2x_3 + 2x_4 = 3$$

- 7) Determine el dominio de la función $f(x) = x/(1-x^2)$.
- 8) Determine si la función $f(x) = x^2 5$ es par, impar o ninguna de las anteriores.

9) Grafique la función
$$f(x) = \left\{ \begin{array}{l} 1, x \geq 2 \\ x^2, 1 < x < 2 \\ 0, x < -1 \end{array} \right.$$

- 10) Encuentre la ecuación de la recta que une los puntos (2,3) y (5,-3).
- 11) La expresión $\log_2 x = 4$ tiene la siguiente ecuación exponencial equivalente.

a)
$$2^4 = x$$

b)
$$4^2 = x$$

c)
$$2^x = 4$$

d) Niguna anterior

- 12) Determine $\lim_{x\to 1} \left(\frac{x^3-1}{x-1}\right)$.
- 13) ¿Es continua la función $f(x) = \begin{cases} 1, x \ge 0 \\ -x^2, x > 0 \end{cases}$.
- 14) Calcule f'(x) para $f(x) = \cos xe^{-3x^2}$.
- 15) Resuelva la integral $\int \sin^3 x \cos x dx$.
- 16) Resuelva la integral $\int 0.5x \sin(4x^2) dx$.
- 17) Cacule $\frac{\partial f}{\partial y}$ para la función $f(x,y) = \frac{x^2 + 2xy y^2}{(x+y)^2}$.
- 18) Determine el valor de m tal que la solución propuesta satisfaga a la ecuación diferencial asociada.

a)
$$2y'' + 7y' - 4y = 0$$
; $y = e^{mx}$

b)
$$xy'' + 2y' = 0; \quad y = x^m$$

19) Resuelva las siguientes ecuaciones por el método de separación de variables:

a)
$$\frac{dy}{dx} + 2xy = 0$$

b)
$$\frac{dx}{dy} + 2y = 1$$
, $y(0) = 5/2$

20) Resuelva las siguientes ecuaciones diferenciales lineales utilizando el método del factor de integración:

a)
$$y + 3x^2y = x^2$$

b)
$$x \frac{dy}{dx} - y = x^2 \sin x$$

- 21) Resuelva las siguientes ecuaciones diferenciales por el método de Laplace
 - a) $\frac{dy}{dt} y = 1$, y(0) = 0
 - b) $\dot{y} + 6y = e^{4t}$.

c)
$$y'' - 6y' + 13y = 0$$
, $y(0) = 0$, $y'(0) = 3$

22) Determine el valor de k para el cual la EDO sea exacta $(y^3 + kxy^4 - 2x)dx + (3xy^2 + xy^4)dx$

$$20x^2y^3)dy = 0$$

- 23) Determine si las siguientes ecuaciones diferenciales lineales son exactas; de serlo resuélvalas por dicho método.
 - a) (2x-1)dx + (3y+7)dy = 0
 - b) $(5x+4y)dx + (4x-8y^3)dy = 0$
 - c) $(x^2 y^2)dx + (x^2 2xy)dy = 0$
- 24) Sean $A = \begin{bmatrix} 4 & 1 & 6 \\ 2 & 3 & 5 \end{bmatrix}$ y $B = \begin{bmatrix} 1 & 3 & 0 \\ -2 & 2 & -4 \end{bmatrix}$, verifique que A + B = B + A, $(A + B)^T = A^T + B^T$ y 3(A + B) = 3A + 3B.
- 25) Determine todos los valores de λ tales que el determinante de $\begin{bmatrix} 2-\lambda & 4 \\ 3 & 3-\lambda \end{bmatrix}$ sea cero.
- 26) Evalúe por inspección el determinante de $\begin{bmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 3 & -2 \end{bmatrix}.$
- 27) Calcule el determinante de $\begin{bmatrix} 2 & 5 & 4 \\ 3 & 1 & 2 \\ 5 & 4 & 6 \end{bmatrix}$ por medio de la expansión en cofactores.
- 28) Suponga que $A \in \mathbb{R}^{3 \times 3}$ es una matriz descompuesta en dos factores $\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix};$ calcule $\det(A)$.
- 29) ¿Cuáles de los siguientes conjuntos de vectores son linealmente independientes en \mathbb{R}^3 ?

 a) $[1,1,1]^T$, $[1,1,0]^T$, $[1,0,0]^T$; b) $[1,0,1]^T$, $[0,1,0]^T$; c) $[1,2,4]^T$, $[2,1,3]^T$, $[4,-1,1]^T$.
- 30) Determine el polinomio característico, los valores y vectores propios de $A = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$.