PRACTICE WORK REPORT №5

« Simple digital circuits design and simulation »

Principles of Circuits

Student: 20321308 CAO Xinyang Program of Computer Science and Technology

1. Task 1

A	В	С	$Y = \overline{AB} \cdot \overline{B} + \overline{C}$	$Y = \bar{B} \cdot \bar{C}$
0	0	0	1	1
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

2. Task 2

$$Y = \bar{A} \cdot B \cdot \bar{C} + \bar{A} \cdot B \cdot C + A \cdot \bar{B} \cdot \bar{C} + A \cdot \bar{B} \cdot C + A \cdot B \cdot \bar{C} + A \cdot B \cdot C$$

 $Y_{min} = A+B$

Karnaugh map

	Ē	С
$ar{A}ar{B}$	0	0
$\bar{A}B$	1	1
AB	1	1
$A\bar{B}$	1	1

True table

A	В	С	Y	Y_{min}
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

3. Conclusion

Karnaugh mapping is a systematic approach, which will always produce the simplest configuration possible for the logic circuit.