<u>Dashboard</u> / My courses / <u>CS304 2024</u> / <u>General</u> / <u>Classtest</u>

Started on	Friday, 1 March 2024, 11:03 AM
State	Finished
Completed on	Friday, 1 March 2024, 11:22 AM
Time taken	19 mins 40 secs
Grade	5.00 out of 6.00 (83 %)
uestion 1	
correct	
lark 0.00 out of 0.50	
Which is the corre	ect multiplicative inverse of the polynomial $g(x)=x^3+x^2$ in $Z_2[x]/x^8+x^4+x^3+x+1$.
a. x³+x+1	
b. _v 7 _{+v} 5 _{+v} 4	
○ b. x ⁷ +x ⁵ +x ⁴	
○ b. _{x⁷+x⁵+x⁴}	
	7
	rrect.

Classtest: Attempt review
) then y =
~

Question 3	
Correct	
Mark 1.00 out of 1.00	
If AES-Mixcolumn(23, 67, 89, 45) = (x,y,	z,w) then w =
[here input and output are in integer]	
[Here Impac and Output are In Integer]	
O a. 159	
133	
○ b. ₈₇	
O c. 145	
d. 121	~
e. none of these	
Your answer is correct.	
The correct answer is:	
121	
Question 4	
Correct	
Mark 0.50 out of 0.50	
What is the period of the 5-bit LFSR whose of	connection polynomial is $x^5+x^4+x^2+x+1$
○ a. 15	
b. none of these	
0 6 16	
O c. 16	
d. 31	✓
O e. 32	
Your answer is correct.	
The correct answer is:	
The correct answer is:	
The correct answer is: 31	

Question **5** Correct Mark 0.50 out of 0.50 We define a new encryption algorithm TEnc using AES-128 encryption technique. TEnc : $\{0,1\}^{384} imes \{0,1\}^{128} o \{0,1\}^{128}$ where C = TEnc(K||K1||K2, M) = K2 \oplus AES-128-Enc(K, K1 \oplus M). Here K, K1, K2 each is of 128 bit. What will be the decryption algorithm (TDec) corresponding to TEnc. a. None of these \bigcirc b. M = TDec(K||K1||K2, C) = K \oplus AES-128-Dec(K1, K2 \oplus C) \bigcirc C. M = TDec(K||K1||K2, C) = K2 \oplus AES-128-Dec(K, K1 \oplus C) \bigcirc d. M = TDec(K||K1||K2, C) = K1 \oplus AES-128-Dec(K, K2 \oplus C) Your answer is correct. The correct answer is:

 $M = TDec(K||K1||K2, C) = K1 \oplus AES-128-Dec(K, K2 \oplus C)$

Question **6**Correct
Mark 0.50 out of 0.50

Consider one-bit encryption $C=P\oplus K$. If Pr[K=0]=0.5 and Pr[P=1]=0.3

then Pr[P=0|C=1] is

- a. none of these
- c. _{0.4}
- O d. 0.5
- e. _{0.3}

Your answer is correct.

The correct answer is:

0.7

Question **7**

Correct

Mark 0.50 out of 0.50

Select the correct answer where S_1 : $\{0,1\}^6 \rightarrow \{0,1\}^4$ and S_2 : $\{0,1\}^6 \rightarrow \{0,1\}^4$ are the first two

defined S-boxes for the round function of DES. (For the description of these S-boxes please

see Handbook of Applied Cryptography book.)

- \circ a. $S_1(59) = 4$, $S_2(23) = 8$
- \bullet b. $S_1(59) = 0$, $S_2(23) = 10$.
- \circ c. $S_1(59) = 1$, $S_2(23) = 10$.
- \bigcirc d. $S_1(59) = 0$, $S_2(23) = 14$.

Your answer is correct.

The correct answer is:

 $S_1(59) = 0, S_2(23) = 10.$

Question **8**

Incorrect

Mark 0.00 out of 0.50

Which is the correct multiplicative inverse of the polynomial $g(x)=x^3+x^2$ in $\mathbb{Z}_2[x]/x^5+x^4+x^2+x+1$.

$$lacksquare$$
 a. x^4+x^2+x+1

$$igoplus b. igl[x^4+x^3+x igr]$$

$$\bigcirc$$
 C. $x^4+x^3+x^2+x+1$

Your answer is incorrect.

The correct answer is:

$$x^4 + x^3 + x^2 + x + 1$$

+, 3.10 1 W	Glassiest. Attempt review
Question 9	
Correct	
Mark 0.50 out of 0.50	
A sequence of plaintext blocks x1,,xn are encryp	oted by
using AES-128 in CBC mode. The corresponding cipher	rtext blocks
are y1,,yn. During transmission y1 is transmitte	ed incorrectly
(i.e., some 1's are changed to 0's and vice verse).	
The number of plaintext blocks that will be decrypt	ted incorrectly is
a. none of these	
O b. n	
r.	
○ c. 1	
-	
⊚ d. 2	~
2	
○ e. ₃	
5	
Your answer is correct.	
The correct answer is:	

2

	·	
uestion 10		
orrect		
lark 0.50 out of 0.50		
Consider AES-256 bit encryption a	algorithm and a 512 bit key K=K1 K2 where K1 and K2 are of 256 bit.	
		_
The encryption algorithm C=AES-25	.6(AES-256(M,K1),K2) provides	
a. 256-bit security		
250 521 5000. 20,		
b. 512-bit security		
Your answer is correct.		
The correct answer is:		
256-bit security		
→ Announcements		
- Announcements		
Jump to		

<u>Dashboard</u> / My courses / <u>CS304 2024</u> / <u>General</u> / <u>Classtest-Pre-Endterm</u>

Started on	Tuesday, 30 April 2024, 9:20 AM	
State	• Finished	
Completed on	Tuesday, 30 April 2024, 9:36 AM	
Time taken	16 mins 26 secs	
Grade	6.50 out of 7.00 (93 %)	
Question 1		
ncorrect		
Mark 0.00 out of 0.50		
function G = F o	F (i.e., F compose F).	
Which of the foll	lowing statement is true?	
		
	lowing statement is true? image resistant function	×

Your answer is incorrect.

Question $\boldsymbol{2}$

Correct
Mark 0.50 out of 0.50
We define the following two problems Computational Diffie-Hellman (CDH)
problem and Discrete Log (DL) problem :
problem and biscrete tog (bt) problem .
CDH: Given p,g , g^a and g^b compute g^{ab}
DL: Given p,g and g^a , find a .
pt. Given p,y and y , find a.
Here p is a large prime number and g is a generator of the cyclic
group \mathbb{Z}_p^* with multiplication modulo p operation. Which of
group Zip with materpreacton modulo p operation. Whiteh of
the following statement is most accurate?
a. DL and CDH both are equivalent
DL and CDH both are equivalent
b. If CDH is solved then DL is also solved
© C. If DL is solved then CDH is also solved

Your answer is correct.

Question 3
Correct
Mark 0.50 out of 0.50
Consider AES-256 bit encryption algorithm and CBC modes of operation.
Using AES-256 in CBC mode we define a CBC-MAC. Let M1 be a message of
256 bit and CBC-MAC corresponding to M1 be T1. Let M1=m1 m2 where
each m1 and m2 is of 128 bits. The MAC corresponding
to M2=M1 $\mid\mid$ (m2 \oplus T1) will be,
a. None of these
○ b. T1 C where C=AES-256(m2 ⊕ T1)
© C. C=AES-256(m2)
\odot d. C=AES-256(m2 \oplus T1)
C-AL3-230(III2 ① 11)
○ e. _{T1}
- S. [1

Your answer is correct.

Question 4	
Correct Mark 0.50 out of 0.50	
Let $F_k = F_{k-1} \oplus Enc(P_k, F_{k-1})$ be an iterated hash function where Enc is the	
AES-128 encryption algorithm and F_k, P_k each is of 128-bit.	
The initial F_0 is a 128-bit public data, P_k is	
the $k\text{-th}$ message block.	
Which of the following statement is correct?	
a. The above iterated hash function is a collision resistant hash function	~
○ b. The above iterated hash function is not a collision resistant hash function	
ine above iterated hash function is not a collision resistant hash function	
Your answer is correct.	
Question 5	
Correct	
Mark 0.50 out of 0.50	
Let n=pq where p,q are primes. Consider e such that	
$gcd(e,\phi(n))=1$ [here ϕ is the Euler's totient function].	
The function defined by $f(x) = x^e \mod n$ is	
\bigcirc a. $_{\mathrm{not}}$ a bijection on \mathbb{Z}_{n}^{st}	•
$^{ extstyle }$ $^{ extstyle $	<u></u>
Your answer is correct.	

https://betamoodle.iiitvadodara.ac.in/mod/quiz/review.php?attempt=164392&cmid=4538

Question 6
Correct
Mark 0.50 out of 0.50
Which of the following is true for forward secrecy?
willeli of the following is true for forward secrety:
a. forward secrecy implies perfect secrecy
○ b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
if Pr[m0 c0] is known then Pr[mi c1] will also be known
© C. if the security of present message is compromised still the security of previous messages remain unaffected
○ d. if Pr[m1 c1] is known then Pr[m0 c0] will also be known
Your answer is correct.
Question 7
Question / Correct
Mark 0.50 out of 0.50
Suppose that K = (5, 21) is a key in an Affine Cipher over $\frac{1}{2} \frac{1}{2}$. The decryption function $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.
can be expressed as $\sqrt[3]{d \ K(y)} = a'y + b'$, where $\sqrt[3]{a'}$, $b' \in \mathbb{Z}_{31}$.
○ b. <u>a'=23,b'=3</u>
<u> </u>
○ c. ••• ••• ••• ••• ••• ••• ••• ••• •••
<u> </u>
Od. none of these
none of these
Your answer is correct.

Question 8
Correct
Mark 0.50 out of 0.50
If g is a generator of the group <a>\textstyle z m^{*} , where
$2 m^{*}=\{x\sim x/x = 1\}$ (m is not a prime) then what is the
order of g?
a.
○ b. (<u>m-1)(m-2)</u>
○ c
Your answer is correct.
Question 9
Correct
Mark 0.50 out of 0.50
Let <u>g:\{0,1\}^{256} \rightarrow \{0,1\}^{256}</u> be any preimage
resistant function. Define :\[\(\frac{1}{0,1} \^{512} \rightarrow \(\frac{0,1}\\^{512} \\ \)
by using the following rule:
<pre>f(x 0,\ldots,x {511})=1^{512} \text{ if } x 0=x 1=\cdots =x {255}=1</pre>
f(x_0,\ldots,x_{511})=1^{256} g(x_{256},\ldots_,x_{511})_\text{_otherwise}
Here 1 ¹ / _d denotes a denotes a denotes all bits are one. Which of the
following statement is true?
a. is preimage resistant function
15 pi etiliage i eststant function
○ b. preimage resistant function
Your answer is correct.

Question 10
Correct
Mark 0.50 out of 0.50
CBC-MAC constructed using AES-512 will have MAC size
a. 128 bit
O b. 256 bit
○ C. 512 bit
Od. Depends on the message size
Your answer is correct.
Tour answer is correct.
Question 11
Correct
Mark 0.50 out of 0.50
Let $h: \{0,1\}^* \cdot \{0,1\}^n$ be a preimage resistant and collision resistant
hash function. Define a new hash function $h': \{0,1\}^* \in \{0,1\}^{n+1}$
by using following rule $h'(x)=0 x$ if $x\in \{0,1\}^n$,
otherwise $h'(x)=1$ $h(x)$. Which of the following statement is true.
ocher Habe William (A. Che Fortowang Statement 15 Crae.
○ a. <u>h'</u> is neither preimage resistant nor collision resistant
○ b. <u></u>
is a preimage resistant as well as collision resistant
○ C. is not a preimage resistant but collision resistant
Your answer is correct.

Correct	
Correct	
Mark 0.50 out of 0.50	
	7
Expanded key size of AES-256 is	
a. 44 words	
Ob. 48 words	
○ c. none of these	
	,
◎ d. 60 words	
e. _{56 words}	
Your answer is correct.	
Toda diswer is correct.	
Question 13	
Correct	
Mark 0.50 out of 0.50	
Let $n = 19 * 23$ and the encryption key of RSA be $e = 7$.	
Let $n = 19 * 23$ and the encryption key of RSA be $e = 7$. For the message $M = 88$ which of the following statement is true.	
For the message M = 88 which of the following statement is true.	
For the message M = 88 which of the following statement is true.	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211	
For the message M = 88 which of the following statement is true.	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107 c. the decryption key d = 23, ciphertext C = 111	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107 c. the decryption key d = 23, ciphertext C = 111	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107 c. the decryption key d = 23, ciphertext C = 111 d. none of these	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107 c. the decryption key d = 23, ciphertext C = 111	
For the message M = 88 which of the following statement is true. a. the decryption key d = 113, ciphertext C = 211 b. the decryption key d = 283, ciphertext C = 107 c. the decryption key d = 23, ciphertext C = 111 d. none of these	

tion 14 ect 0.50 out of 0.50	
0.50 out of 0.50	
nsider the prime number p = 311 and the group $\frac{1}{2} \frac{p^*}{p^*}$ with	
ltiplication modulo p operation. Let g=17 be a generator of the group	
\\mathbb{Z}_p^*.	
ice and Bob now would like to establish a common secret key using	
ffie-Hellman key exchange protocol on the above mentioned group.	
and the second files and f	
e secret key of Alice and Bob are 119 and 62 respectively. Which of the	
llowing statement is correct.	
a. Alice's public key = 215, Bob's public key = 36, Common secret key = 216	~
Alice's public key = 215, Bob's public key = 36, Common secret key = 216	
b. Alice's public key = 40, Bob's public key = 128, Common secret key = 210	
c. none of these	
d. Alice's public key = 215, Bob's public key = 36, Common secret key = 213	
ur answer is correct.	
■ Midterm	

Oashboard / My cou	urses / <u>CS304</u> / <u>Topic 1</u> / <u>Midterm</u>	
Started on	Thursday, 10 March 2022, 2:34 PM	
State	Finished	
Completed on	Thursday, 10 March 2022, 3:53 PM	
Time taken	1 hour 18 mins	
Grade	20.00 out of 40.00 (50 %)	
Question 1		
ncorrect		
Mark 0.00 out of 1.00		
a. not invertib. invertible		×
Your answer is inco		
invertible		

Mark 0.00 out of 1.00
Assume that in a classroom there are 250 students. Form a group by taking x many
students randomly from the classroom. For which value of x there will be atleast
two students with same date of birth with probability 0.9.
a. none of these
○ b. 35
○ c. ₄₁
○ d. ₃₀
Your answer is incorrect.
The correct answer is:
41

Question **2**Incorrect

Question 3
incorrect
Mark 0.00 out of 1.00
Expanded key size of AES-256 is
a. 44 words
O b. 56 words
S6 words
C. 48 words
Od. 60 words
e. none of these
Your answer is incorrect.
The correct answer is:
60 words

Mark 1.00 out of 1.00
If AES-Mixcolumn(23, 67, 45, 89) = (x,y,z,w) then y =
[here input and output are in integer]
⊚ a. ₁₉₁
³ d. 191
O b. 159
○ c. ₂₂₉
O d. [121
Your answer is correct.
The correct answer is:
191

Question **4**Correct

estion 5	
rrect	
rk 1.00 out of 1.00	
What are the correct values of x,y such that 23x+43y=gcd(23,43)?	_
○ a. x=13,y=7	
	/
C. x=25,y=-18	
○ d. none of these	
○ e. x=-24,y=16	
our answer is correct.	
The correct answer is:	
x=15,y=-8	

Let P , C , K be the plaintext space, ciphertext space and key space respectively.	
Consider an encryption algorithm E with the following conditions:	
7. 0	
1. $ P = C = K $	
2. every key is equiprobable	
3. for every $p \in P$, $c \in C$ there is an unique key k such that $E(p,k) = c$,	
Select the most appropriate option	
igcup a. E provides perfect secrecy $igcup b.$ E will provide perfect secrecy if $ K > P $	
E will provide perfect secrecy if $ \mathbf{A} > F $	
$\ igotimes$ C. E can not provide perfect secrecy as it differs from OTP	×
Your answer is incorrect.	
The correct answer is:	
E provides perfect secrecy	

Question **6**Incorrect

Mark 0.00 out of 1.00

Question 7
Incorrect
Mark 0.00 out of 1.00
What is meant by the security of an Encryption Scheme?
what is meant by the security of an Encryption Scheme:
a. An attacker who gets hold of a ciphertext should not be able to get any function of the bits of the plaintext
b. An attacker who gets hold of a ciphertext should not be able to get any bit of the plaintext
C. An attacker who gets hold of a ciphertext should not be able to know the plaintext
O. An attacker who gets hold of a ciphertext should not be able to get the secret key used for the encryption
Your answer is incorrect.
The correct answer is:
An attacker who gets hold of a ciphertext should not be able to get any bit of the plaintext
All attacker who gets hold of a ciphertext should not be able to get any bit of the plaintext
Question 8
Incorrect
Mark 0.00 out of 1.00
The number of valid keys in the Affine Cipher over \text{mathbb{Z} \ {46}} is
a. none of these
○ b. ₁₀₁₂
O c. 46
O d. 2116
Your answer is incorrect.
The correct answer is:
1012
erez

Which is the multiplicative inverse of (x^3+x^2+1) in	
(\mathbb{F}_2[x]/ <x^8+x^4+x^3+x+1>,+,*). Here + and * are</x^8+x^4+x^3+x+1>	
the polynomial addition and polynomial multiplication under	
the polynomial addition and polynomial multiplication under	
modulo $\sqrt{x^8+x^4+x^3+x+1}$.	
○ a	
○ b. none of these	
D. Horie of these	
○ c <u>x^7+x^6+x^2+1</u>	
<u> </u>	
e. _{x^7 + x^6 + x^5 + 1} _{x^8 + x^8 + x^6 + x^8 + x^}	
	_
Your answer is correct.	
The correct answer is:	
$x^7 + x^6 + x^5 + 1$	

Question **10**Correct

Mark 1.00 out of 1.00

Mark 1.00 out of 1.00
For a fixed key any symmetric key encryption algorithm should
o a. not necessary to be surjective
O b. none of these
none of these
O C. not necessary to be injective
Od. be surjective function
e. be injective function
3
Your answer is correct.
The correct answer is:
be injective function

Question **11**Correct

Mark 0.00 out of 1.00
Select the correct answer where $\sqrt{9,1}^6$ $\sqrt{9,1}^4$
and <u>\$ 2:\{0,1\}^6\rightarrow\{0,1\}^4</u> are the pre-defined S-boxes
for the round function of DES.
a. s 1(55)=14, s 2(43)=15
○ b. S 1(55)=6, S 2(43)=7
C. S 1(55)=15, S 2(43)=14
○ d. s 1(55)=7, s 2(43)=6
e. none of these
Your answer is incorrect.
The correct answer is:
<u>S 1(55)=14</u> , <u>S 2(43)=15</u>

Question **12**Incorrect

Question 13
Correct
Mark 1.00 out of 1.00
Let <u>n=p\times q</u> where <u>p,q</u> are two large primes.
Here 📝 is known to everyone and 🎅 2,9 are hidden.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Consider the hash function $h(x)=x^2 \mod n$.
○ a. ph is not an one-way function
○ b. is an one-way function ✓
Your answer is correct.
The correct answer is:
済 is an one-way function

Mark 0.00 out of 1.00	
If AES-Mixcolumn(23, 67, 89, 45) = (x,y,z,w) then w =	
[here input and output are in integer]	
O a. 121	
O b. 87	
○ C. 159	×
O d. 145	
143	
e. none of these	
Your answer is incorrect. The correct answer is:	
THE COTTECT ALLOWER IS.	
121	

Question **14**Incorrect

Correct
Mark 1.00 out of 1.00
Lat China (Controlly) in the controlly i
Let <u>h:\mathbb{Z}_{2^{512}}\rightarrow \mathbb{Z}_{2^{256}}</u> be a hash function
defined as $h(x) = (155x^4 + 201x^3 + 2x^2 + 101x + 1) \mod 2^{256}$.
Is h second preimage resistant?
○ a. yes
y e o
Your answer is correct.
The correct answer is:
no
Question 16
Correct Mark 1.00 and a £4.00
Mark 1.00 out of 1.00
Consider AES-128 in CFB mode of operation. One message of length 1024 bits
has been encrypted using AES-128 in CFB mode of operation.
nas been entrypted using AES-126 in CFB mode of operation.
Now to decrypt the ciphertext which of the following process needs to be followed
a. encryption of AES-128 needs to fit in CFB mode
b. decryption of AES-128 needs to fit in CFB mode
Your answer is correct.
The correct answer is:
encryption of AES-128 needs to fit in CFB mode

Question 15

Consider playfair cipher with the key KEYMORD. Which is the correct ciphertext of the plaintext COMMUNICATION when the plaintext is encrypted using playfair cipher with the mentioned key. a. none of these b. LCQTNTQGBRXFES c. LCQTNTQGBRXFES d. LCQTNTQGBRXFES vour answer is correct. The correct answer is: LCQTNTQGBRXFES Covestion 18 Covertion 18 Coverti	Correct
ciphertext of the plaintext COMMUNICATION when the plaintext is encrypted using playfair cipher with the mentioned key. a. none of these b. acquirigements c [cquirigements] d. acquirigements e. acquirigements vour answer is correct. The correct answer is Leconorgaments Correct Mark 100 out of 100 pecryption of CBC mode of operation can be implemented in parallel e. pm b. yes vour answer is correct. The correct answer is correct.	Mark 1.00 out of 1.00
ciphertext of the plaintext COMMUNICATION when the plaintext is encrypted using playfair cipher with the mentioned key. a. none of these b. acquirigements c [cquirigements] d. acquirigements e. acquirigements vour answer is correct. The correct answer is Leconorgaments Correct Mark 100 out of 100 pecryption of CBC mode of operation can be implemented in parallel e. pm b. yes vour answer is correct. The correct answer is correct.	
ciphertext of the plaintext COMMUNICATION when the plaintext is encrypted using playfair cipher with the mentioned key. a. none of these b. acquirigements c [cquirigements] d. acquirigements e. acquirigements vour answer is correct. The correct answer is Leconorgaments Correct Mark 100 out of 100 pecryption of CBC mode of operation can be implemented in parallel e. pm b. yes vour answer is correct. The correct answer is correct.	
encrypted using playfair cipher with the mentioned key. a none of these b CQTMTQGBEXESS c CQTMTQGBEXESS d CQTMTQGBEXES e CQTMTQGBEXES Your answer is correct. The correct answer is: ECOTHTQGBEXES CORRECT CORRECT Mark 100 aut of 1:00 pecryption of CBC mode of operation can be implemented in parallel a po b yes Your answer is correct The correct answer is correct.	Consider playfair cipher with the key KEYWORD. Which is the correct
a. none of these b. CCTINTGGBRAYES C LCGTNTGGBRAYES d. LCGTNTGGBRAYES e. LCGTNTGGBRAYES Your answer is correct. The correct answer is: LCQTNTGGBRAYES Corect Mark 120 and of 1.00 Decryption of CNC mode of operation can be implemented in parallel	ciphertext of the plaintext COMMUNICATION when the plaintext is
a. none of these b. CCTINTGEREXPES C LCGTINTGEREXPES d. LCGTINTGEREXPES e. LCGTINTGEREXPES Your answer is correct. The correct answer is: LCQTINTGEREXPES Correct Mark 120 and of 1.00 Decryption of CRC mode of operation can be implemented in parallel Decryption of CRC mode of operation can be implemented in parallel Decryption of CRC mode of operation can be implemented in parallel	encrypted using playfair cipher with the mentioned key.
© b. LCOTNITGERRAFES © c. LCOTNITGERRAFES © e. LCOTNITGERRAFES Your answer is correct. The correct answer is: LCOTNITGERRAFES Correct What 1.00 out of 1.00 Decryption of CRC mode of operation can be implemented in parallel © a. no © b. lyes	
© b. LCOTNITGERRAFES © c. LCOTNITGERRAFES © e. LCOTNITGERRAFES Your answer is correct. The correct answer is: LCOTNITGERRAFES Correct What 1.00 out of 1.00 Decryption of CRC mode of operation can be implemented in parallel © a. no © b. lyes	
© C. LCOTNITGEREXFES O d. LCOTNITGEREXFES O e. LCOTNITGEREXFES Your answer is correct. The correct answer is: LCOTNITGEREXFES Question 18 Correct Mark 100 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel O a. no D by yes Your answer is correct. The correct answer is:	a. none of these
© C. LCOTNITGEREXFES O d. LCOTNITGEREXFES O e. LCOTNITGEREXFES Your answer is correct. The correct answer is: LCOTNITGEREXFES Question 18 Correct Mark 100 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel O a. no D by yes Your answer is correct. The correct answer is:	
□ d. LCQTNTQRGBXFES □ e. LCQTNTQRGBXFES Your answer is correct. The correct answer is: LCQTNTQGBBXFES Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel □ a. no □ b. yes Your answer is correct. The correct answer is:	b. LCQTNTQGBRXFES
□ d. LCQTNTQRGBXFES □ e. LCQTNTQRGBXFES Your answer is correct. The correct answer is: LCQTNTQGBBXFES Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel □ a. no □ b. yes Your answer is correct. The correct answer is:	
□ d. LCQTNTQRGBXFES □ e. LCQTNTQRGBXFES Your answer is correct. The correct answer is: LCQTNTQGBBXFES Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel □ a. no □ b. yes Your answer is correct. The correct answer is:	
Your answer is correct. The correct answer is: LCQTNTQRBEXEES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. Ino b. Iyes Your answer is correct. The correct answer is:	© C. LCQTNTQGRBXFES
Your answer is correct. The correct answer is: LCQTNTQRBEXEES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. Ino b. Iyes Your answer is correct. The correct answer is:	
Your answer is correct. The correct answer is: LCQTNTQRBEXEES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. Ino b. Iyes Your answer is correct. The correct answer is:	
Your answer is correct. The correct answer is: [CCQTNTQGREXFES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b yes Your answer is correct. The correct answer is:	○ d. LCQTNQTGRBXFES
Your answer is correct. The correct answer is: [CCQTNTQGREXFES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b yes Your answer is correct. The correct answer is:	
Your answer is correct. The correct answer is: [CCQTNTQGREXFES Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b yes Your answer is correct. The correct answer is:	
The correct answer is: [CQTNTQGRBXFES] Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no Your answer is correct. The correct answer is:	○ e. LCQTNTQRGBXFES
The correct answer is: [CQTNTQGRBXFES] Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no Your answer is correct. The correct answer is:	
The correct answer is: [CQTNTQGRBXFES] Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no Your answer is correct. The correct answer is:	
The correct answer is: [CQTNTQGRBXFES] Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no Your answer is correct. The correct answer is:	
Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	Your answer is correct.
Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	The correct answer is:
Question 18 Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	LCQTNTQGRBXFES
Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	
Correct Mark 1.00 out of 1.00 Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	
Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	Question 18
Decryption of CBC mode of operation can be implemented in parallel a. no b. yes Your answer is correct. The correct answer is:	Correct
○ a. no ⑤ b. yes Your answer is correct. The correct answer is:	Mark 1.00 out of 1.00
○ a. no ⑤ b. yes Your answer is correct. The correct answer is:	
○ a. no ⑤ b. yes Your answer is correct. The correct answer is:	Description of CDC mode of according on he implemented in according
 b. yes Your answer is correct. The correct answer is: 	pecryption of the mode of operation can be implemented in parallel
 b. yes Your answer is correct. The correct answer is: 	
 b. yes Your answer is correct. The correct answer is: 	
Your answer is correct. The correct answer is:	ino ino
Your answer is correct. The correct answer is:	
Your answer is correct. The correct answer is:	
The correct answer is:	yes yes
The correct answer is:	
The correct answer is:	
The correct answer is:	
	Your answer is correct.
yes	The correct answer is:
	yes

Question 17

Mark 0.00 out of 1.00	
Which is the multiplicative inverse of (x^4+x^3+x+1) in (x^4+x^3+x+1) in (x^4+x^3+x+1) .	
Here + and * are the polynomial addition and polynomial multiplication under modulo $\sqrt[3]{x^8+x^4+x^3+x+1}$.	
Here + and * are the polynomial addition and polynomial multiplication under modulo	
\bigcirc a. $\bigcirc_{x^7 + x^6 + x^3 + x^2}$	
○ b. [x^7 + x^6 + x^5 + 1]	
\bigcirc C. $2x^7 + x^6 + x^2 + x + 1$	
O d. $x^7 + x^6 + x^3 + x^2 + 1$	
e. none of these	×
Your answer is incorrect.	
The correct answer is:	
$x^7 + x^6 + x^3 + x^2$	

Question **19**Incorrect

Question 20	
Incorrect	
Mark 0.00 out of 1.00	
SUBBYTES(6A) =	
SOUBTIES (OR) -	
a. none of these	×
O b. 34	
O c. 20	
O d. 24	
○ e. _{@2}	
Value and the impact of	
Your answer is incorrect.	
The correct answer is:	
02	
Question 21	
Incorrect	
Mark 0.00 out of 1.00	
How many distinct predefined functions are used in SHA-1	
	*
a. none of these	
O b C	
O b. 4	
○ c. ₃	
O d. 80	
Your answer is incorrect.	
The correct answer is:	
3	

Mark 0.00 out of 1.00
Let $F = \{k-1\} \setminus P = \{k-1\} \setminus P = P = P = P = P = P = P = P = P = P$
AES-128 encryption algorithm and $\sum_{k, p} k$ each is of 128-bit.
AES-128 encryption algorithm and Fry R, P K each is of 128-bit.
The initial 🗽 0 is a 128-bit public data, 庐 k is
the k-th message block.
the k-th message block.
Which of the following statement is correct?
 a. The above iterated hash function is a collision resistant hash function b. The above iterated hash function is not a collision resistant hash function
Your answer is incorrect.
The correct answer is:
The above iterated hash function is a collision resistant hash function

Question **22**Incorrect

Mark 1.00 out of 1.00
Consider Affine cipher with the key K=(11, 16). Which is the correct ciphertext
of the plaintext MIDSEM when the plaintext is encrypted using Affine cipher
with the mentioned key.
a. SAXGIS
O b. SAGXIS
○ C. SAXIGS
○ d. none of these
e. SAXGSI
Your answer is correct.
The correct answer is:
SAXGIS

Question **23**Correct

Question 24
Incorrect
Mark 0.00 out of 1.00
Which of the following statement is correct?
a. if encryption function is oneway then decryption is not possible
○ b. encryption function is oneway if the private key is unknown
© (
only hash functions are oneway functions
Your answer is incorrect.
The correct answer is:
encryption function is oneway if the private key is unknown

Mark 1.00 out of 1.00
Consider playfair cipher with the key MIDSEM. Which is the correct
ciphertext of the plaintext VADODARA when the plaintext is
encrypted using playfair cipher with the mentioned key.
a. MHELMCPC
○ b. MHEMLCPC
○ c. none of these
O d. MHLEMCPC
○ e. MHELCMPC
Your answer is correct.
The correct answer is:
MHELMCPC MHELMCPC

Question **25**Correct

Mark 1.00 out of 1.00
Let $h: (0,1)^* rightarrow (0,1)^n$ be a preimage resistant and collision resistant
hash function. Define a new hash function $h': \{0,1\}^* \cdot \{0,1\}^* $
by using following rule $h'(x)=0$ if $x \in \mathbb{Z}$, if $x \in \mathbb{Z}$, $x \in \mathbb{Z}$
otherwise $h'(x)=1$ $h(x)$. Which of the following statement is true.
○ a. h' is neither preimage resistant nor collision resistant
○ b. <u>_h'</u> is a preimage resistant as well as collision resistant
○ Ch' is not a preimage resistant but collision resistant
Your answer is correct.
The correct answer is:
☑h' is not a preimage resistant but collision resistant

Question **26**Correct

Question 27
Correct
Mark 1.00 out of 1.00
If all the 16 round keys of DES are identical then
a. only the last round and first round of DES will be identical
0 b 5
DES encryption and decryption functions will not be identical due to the IP
© C. DES encryption and decryption functions will be exactly equal
O d. none of these
Your answer is correct.
The correct answer is:
DES encryption and decryption functions will be exactly equal

Consider AES-128 in OFB mode of operation. One message 🔊 of length 1024 bits
has been encrypted using AES-128 in OFB mode of operation. During transmission 256-th bit
and 512-th bit of the ciphertext are altered. Now the receiver performs the
decryption on the received ciphertext and obtained the decrypted text $ ightharpoonup_{\underline{M}'}$.
Which of the following statement is true?
\bigcirc a. \boxed{M} and $\boxed{M'}$ will differ from $\boxed{256}$ -th bit to $\boxed{512}$ -th bit
b. m and m' will differ at 256-th bit to 1024-th bit
C. none of these
\circ d. $_{\underline{M}}$ and $_{\underline{M'}}$ will differ at $_{\underline{C}256}$ -th bit and $_{\underline{C}512}$ -th bit
Your answer is incorrect.
The correct answer is:
and multiple will differ at 256-th bit and 512-th bit

Question **28**Incorrect

Correct	
Mark 1.00 out of 1.00	
S-boxes in DES map	
O a. 4 bits to 6 bits	
O b. 2 bits to 4 bits	
C. 4 bits to 4 bits	
⊕ d. 6 bits to 4 bits	*
0 0103 00 4 0103	
e. none of these	
Your answer is correct.	
The correct answer is:	
6 hits to 4 hits	

Mark 1.00 out of 1.00
Consider Affine cipher with the key K=(9, 19). Which is the correct
ciphertext of the plaintext INDIA when the plaintext is encrypted
using Affine cipher with the mentioned key.
a. NGUNM
O b. none of these
○ C. NGTNU
O d. NUGNT
● e. NGUNT
Your answer is correct.
The correct answer is:
NGUNT

Question **30**Correct

Correct
Mark 1.00 out of 1.00
Let $h:\mathbb{Z}_{512}\times Z_{512}\times Z_{512}\times Z_{512}$ be a hash
function defined as $h(x,y)=(ax+by)\mod 512$, $a,b \in \{512\}$.
Which of the following is correct?
○ a. <u>h</u> is an ideal hash function
b.
Your answer is correct.
The correct answer is:
is not an ideal hash function

A sequence of plaintext blocks x1,,xn are encrypted by
using AES-128 in CBC mode. The corresponding ciphertext blocks
are y1,,yn. During transmission y1 is transmitted incorrectly
(i.e., some 1's are changed to 0's and vice verse).
The number of plaintext blocks that will be decrypted incorrectly is
○ a. none of these
O b. 1
O c. 2
○ d. 3
⊚ e. _n
Your answer is incorrect.
The correct answer is:
2

Question **32**Incorrect

Mark 0.00 out of 1.00	
Consider one-bit encryption $ c=P \setminus pr[K=0]=0.5 $ and $ pr[P=1]=0.3 $	
that Parents and the	
then $pr[P=0 C=1]$ is	
○ a. _{0.7}	
b. 0.5	×
○ c. none of these	
○ d. _{0.4}	
○ e. _{0.3}	
0.5	
Your answer is incorrect.	
The correct answer is:	
0.7	

Question **33**Incorrect

Select the most appropriate one. Hash function has the following property a. Preimage finding is hard b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard	Incorrect
 a. Preimage finding is hard b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	Mark 0.00 out of 1.00
 a Preimage finding is hard b Finding preimage, collision, second preimage all are hard c Finding preimage or collision or second preimage may not be hard d Second preimage finding is hard e Collision finding is hard Your answer is incorrect.	
 a Preimage finding is hard b Finding preimage, collision, second preimage all are hard c Finding preimage or collision or second preimage may not be hard d Second preimage finding is hard e Collision finding is hard Your answer is incorrect.	
b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard	Select the most appropriate one. Hash function has the following property
b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard	
b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard	
 b. Finding preimage, collision, second preimage all are hard c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard 	<pre></pre>
 c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	
 c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	
 c. Finding preimage or collision or second preimage may not be hard d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	0 b. Einding projects collicion, second projects all and hand
 d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	rinuing preimage, corrision, second preimage arr are mard
 d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	
 d. Second preimage finding is hard e. Collision finding is hard Your answer is incorrect.	
© e. Collision finding is hard Your answer is incorrect.	Finding preimage or collision or second preimage may not be hard
© e. Collision finding is hard Your answer is incorrect.	
© e. Collision finding is hard Your answer is incorrect.	
Your answer is incorrect.	○ d. Second preimage finding is hard
Your answer is incorrect.	
Your answer is incorrect.	
Your answer is incorrect.	Oe. Collision finding is hard
The correct answer is:	Your answer is incorrect.
The correct answer is.	The correct answer is:
Finding preimage or collision or second preimage may not be hard	Finding preimage or collision or second preimage may not be hard

Let a lobes(M,K) and a lobes(M,K). Which of the following relation is true? a a none of these b. a lobes(C.2): c. a lobes(C.2): your answer is correct. The correct answer is: none of these sestion 36 correct ark 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1824 bits	orrect	
a none of these b D Labar(C 1) C D Late 2 Your answer is correct. The correct answer is: none of these which also out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1824 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ctphertext which of the following process needs to be followed a decryption of AES-128 needs to fit in OFB mode b encryption of AES-128 needs to fit in OFB mode	1ark 1.00 out of 1.00	
** a none of these b ** DC lebs(C) C ** DC lec 2 **Your answer is correct.** The correct answer is: none of these **setten 36 correct and 0.00 out of 1.00 **Consider ARS-128 in OPB mode of operation. One message of length 1924 bits has been encrypted using ARS-128 in OPB mode of operation. Now to decrypt the ctphertext which of the following process needs to be followed **setten 36 **Consider ARS-128 needs to fit in OPB mode **setten 36 **Consider ARS-128 needs to fit in OPB mode **Setten 36 **Setten 3		
** a none of these b ** DC lebs(C) C ** DC lec 2 **Your answer is correct.** The correct answer is: none of these **setten 36 correct and 0.00 out of 1.00 **Consider ARS-128 in OPB mode of operation. One message of length 1924 bits has been encrypted using ARS-128 in OPB mode of operation. Now to decrypt the ctphertext which of the following process needs to be followed **setten 36 **Consider ARS-128 needs to fit in OPB mode **setten 36 **Consider ARS-128 needs to fit in OPB mode **Setten 36 **Setten 3		
Ocur answer is correct. Wour answer is correct. The correct answer is: none of these Consider AES-128 in OFB mode of operation. One message of length 1924 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a juscryption of AES-128 needs to fit in OFB mode Vour answer is incorrect. The correct answer is:	Let $\sum_{C} 1 = DES(M,K)$ and $\sum_{C} 2 = DES(\lambda M,K)$. Which of the following relation is true?	
Ocur answer is correct. Wour answer is correct. The correct answer is: none of these Consider AES-128 in OFB mode of operation. One message of length 1924 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a juscryption of AES-128 needs to fit in OFB mode Vour answer is incorrect. The correct answer is:		
Ocuranswer is correct. Your answer is correct. The correct answer is: none of these Accorded Accor		
Ocuranswer is correct. Your answer is correct. The correct answer is: none of these Accorded Accor		
Your answer is correct. The correct answer is: none of these Jeston 36 Consider AES-128 in OFB mode of operation. One message of length 1824 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a Jecryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	on none of these	
Your answer is correct. The correct answer is: none of these Sestion 36 correct ark 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1824 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a georyption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Your answer is correct. The correct answer is: none of these Jeston 36 Consider AES-128 in OFB mode of operation. One message of length 1824 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a Jecryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Your answer is correct. The correct answer is: none of these Sestion 36 correct ark 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1824 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a georyption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	b. c 1=\bar{C 2}	
Your answer is correct. The correct answer is: none of these Westion 36 Correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. Gecryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Your answer is correct. The correct answer is: none of these Westion 36 Correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. Gecryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Your answer is correct. The correct answer is: none of these Westion 36 Correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. Gecryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	^ - -	
The correct answer is: none of these destion 36 correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode	C. <u>2</u> 1=C 2	
The correct answer is: none of these destion 36 correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode		
The correct answer is: none of these destion 36 correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode		
The correct answer is: none of these destion 36 correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode		
The correct answer is: none of these destion 36 correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode		
Design 36 Correct ank 0.00 out of 1.00 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode	Your answer is correct.	
Design 36 Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	The correct answer is:	
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	none of these	
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	Direction 36	
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
Consider AES-128 in OFB mode of operation. One message of length 1024 bits has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	naix oldo dat di 1.00	
has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	Consider AFS-128 in OFB mode of operation. One message of length 1024 hits	
ciphertext which of the following process needs to be followed a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:	consider this indicate of operations one message of integer indicates	
 a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is: 	has been encrypted using AES-128 in OFB mode of operation. Now to decrypt the	
 a. decryption of AES-128 needs to fit in OFB mode b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is: 	ciphertext which of the following process needs to be followed	
b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		
b. encryption of AES-128 needs to fit in OFB mode Your answer is incorrect. The correct answer is:		•
Your answer is incorrect. The correct answer is:	a. decryption of AES-128 needs to fit in OFB mode	^
Your answer is incorrect. The correct answer is:		
Your answer is incorrect. The correct answer is:		
Your answer is incorrect. The correct answer is:	b. ancryption of AES-128 needs to fit in OER mode	
The correct answer is:	encryption of ALS-128 needs to fit in orb mode	
The correct answer is:		
The correct answer is:		
The correct answer is:		
The correct answer is:	Your answer is incorrect.	
encryption of AES-128 needs to fit in OFB mode		
	encryption of AES-128 needs to fit in UFB mode	

Mark 1.00 out of 1.00
Consider one round of Feistel network with the block size 64-bit and
the secret key K of size 32-bit. The round function is defined by
$f(R_0,K)=S(R_0) = S(R_0) = S(X) = (X+1) \mod 2^{32}.$
Find the ciphertext for the plaintext = 1 and key K = 1.
○ a. ₂₁₄₇₄₈₃₆₄₈
214/403040
b. ₄294967297
○ c. none of these
Od. 2147483649
○ e. ₄₂₉₄₉₆₇₂₉₆
Your answer is correct.
The correct answer is:
4294967297

Question **37**Correct

Mark 1.00 out of 1.00
Assume that in a classroom there are 220 students. Form a group by
taking x many students randomly from the classroom. For which value
of x there will be atleast two students with same date of birth
with probability 0.7.
◎ a. ₃₀
O b. 35
o c. none of these
O d. 28
Your answer is correct.
The correct answer is:
30
Question 39
Correct Mark 1.00 out of 1.00
Mark 1.00 ddt of 1.00
Encryption of CBC mode of operation can be implemented in parallel
O b. yes
Your answer is correct.
The correct answer is:
no

Question **38**Correct

Mark 0.00 out of 1.00	
For each key DES is basically a permutation i.e., we can have 2^{56} such	
permutations. With all these permutations consider the set G.	
Now G with the operation composition of permutations	
○ a. is not closed	
25 1100 020500	
	x
<pre>b. is closed</pre>	
Your answer is incorrect.	
The correct answer is:	
is not closed	
→ Announcements	
Jump to	
	Endterm ►

Question **40**Incorrect

<u>)ashboard</u> / My cou	
	rses / <u>CS304</u> / <u>Topic 1</u> / <u>Endterm</u>
	Thursday, 12 May 2022, 2:05 PM
	Finished
	Thursday, 12 May 2022, 3:25 PM
	1 hour 20 mins
Grade	20.00 out of 40.00 (50 %)
Question 1	
orrect	
Mark 1.00 out of 1.00	
Let n = 53 * 73 an	d the encryption key of RSA be e = 679.
For the message M	= 1234 which of the following statement is true.
0	
a. none of these	
b. the deepwati	on key d = 2160, ciphertext C = 3693
the decrypti	on key u = 2100, ciphertext C = 3093
C. the decrypti	on key d = 787, ciphertext C = 760
C. the decrypti	on key d = 787, ciphertext C = 760
C. the decrypti	on key d = 787, ciphertext C = 760
	on key d = 787, ciphertext C = 760 on key d = 2167, ciphertext C = 3693
	on key d = 2167, ciphertext C = 3693
d. the decrypti	on key d = 2167, ciphertext C = 3693 Ct.

Question 2	
Correct	
Mark 1.00 out of 1.00	
$p=2^{255}-19$ is a	
○ a □	
a. pseudo-prime number	
	~
C. composite number	
composite number	
Your answer is correct.	
The correct answer is:	
prime number	

Consider the Elliptic curve EL: $y^2 = x^3 + 5x + 3$ under modulo 11. \boxplus denotes the addition operation between two points on EL. If $P = (3,1)$, $Q = (0,5)$ are two points on this curve then $P \boxplus Q$ will be
\boxplus denotes the addition operation between two points on EL. If $P=(3,1)$, $Q=(0,5)$ are two points on this curve then $P\boxplus Q$ will be
If $P=(3,1)$, $Q=(0,5)$ are two points on this curve then $P \boxplus Q$ will be
will be
will be
a. [0,6)
○ b. (1,8)
(1,8)
○ c. none of these
O d. (0,5)
○ e. (1,3)
Your answer is correct.
The correct answer is:
(0,6)

Question **3**Correct

Correct
Mark 1.00 out of 1.00
Let H be a collision resistant hash function. Define a new hash
function H1 based on H in the following way.
H1(X) = H(X) if $X $ $neq $ $X0$, $H1(X) = H(X1)$ if $X = X0$ where $X0$ and $X1$ are
not equal. Is H1 collision resistant?
O a. Yes
Your answer is correct.
The correct answer is:
No
Question 5
Incorrect
Mark 0.00 out of 1.00
Consider the RSA encryption algorithm with N=pq, here p,q are
constact the NSA energyption algorithm with N-pq, here p,q are
large primes. Let the encryption key be e=3.
The encryption of the message m is c1 and encryption of the
message m+1 is c2. Is it possible to find m from c1 and c2 with out
performing decryption?
a. No
O b. Yes
Your answer is incorrect.
The correct answer is:
Yes

Mark 0.00 out of 1.00
Consider AES-256 bit encryption algorithm and CBC modes of operation.
Using AES-256 in CBC mode we define a CBC-MAC. Let M1 be a message of
256 bit and CBC-MAC corresponding to M1 be T1. Let M1=m1 m2 where
each m1 and m2 is of 128 bits. The MAC corresponding
to M2=M1 (m2 <u>loplus</u> T1) will be,
○ a. C=AES-256(m2)
C=AES-256(m2)
○ b. T1 C where C=AES-256(m2
○ c. _{T1}
Od. None of these
○ U.
● e. C=AES-256(m2 <u>Noplus</u> T1)
Your answer is incorrect.
The correct answer is:
C=AES-256(m2)

Question **6**Incorrect

Mark 1.00 out of 1.00
Consider the prime number p=2267 and the group $\frac{1}{2} p^*$ with
multiplication modulo p operation. Let g=2 be a generator of the group $\sqrt{\frac{p^*}{2}p^*}$.
Alice and Bob now would like to establish a common secret key using
Diffie-Hellman key exchange protocol on the above mentioned group.
The secret key of Alice and Bob are 1197 and 62 respectively. Which of the
following statement is correct.
a. Alice's public key = 1965, Bob's public key = 1209, Common secret key = 1459
○ b. none of these
C. Alice's public key = 1758, Bob's public key = 1528, Common secret key = 1980
Od. Alice's public key = 1284, Bob's public key = 1975, Common secret key = 1890
Your answer is correct.
The correct answer is:
Alice's public key = 1965, Bob's public key = 1209, Common secret key = 1459
Question 8
Correct
Aark 1.00 out of 1.00
Farmend assessed invalidational to and assessmention
Forward secrecy implies end to end encryption
○ a. True
Your answer is correct.
The correct answer is:
False

Question **7**Correct

Question 9
forrect
Mark 1.00 out of 1.00
In Signal protocol the initial secret key that will be established
between two users is
SHA-256(concatenation of Diffie-Hellman shared keys)
○ b. SHA-256(concatenation of Diffie-Hellman shared keys and 1)
C. Concatenation of SHA-256(Diffie-Hellman shared keys)
O d. Diffie-Hellman shared key
Your answer is correct.
The correct answer is:
SHA-256(concatenation of Diffie-Hellman shared keys)

We define the following two problems Computational Diffie-Hellman (CDH)	
problem and Discrete Log (DL) problem :	
CDH: Given $p_{p,g}$, p_{g^a} and p_{g^b} compute p_{g^a}	
Compace Mas (ab).	
DL: Given $ ho_p$, $ ho_g$ and $ ho_g$ $ ho_a$, find $ ho_a$.	
Here 🚂 is a large prime number and 🎅 is a generator of the cyclic	
The contract of the cycle	-
group $\overline{\sum_{mathbb}\{Z\}_p \wedge *}$ with multiplication modulo $\overline{\sum_p}$ operation. Which of	
the following statement is most accurate?	_
\bigcirc a. $\fbox{If DL}$ is solved then CDH is also solved	
\odot b. If CDH is solved then DL is also solved	
○ C. DL and CDH both are equivalent	
Your answer is incorrect.	
The correct answer is:	
If DL is solved then CDH is also solved	

Question **10**Incorrect

Question 11
ncorrect
Mark 0.00 out of 1.00
CBC-MAC constructed using AES-512 will have MAC size
○ a. Depends on the message size
pepends on the message size
O b. 128 bit
○ c. _{256 bit}
250 010
◎ d. 512 bit
Your answer is incorrect.
The correct answer is:
128 bit

ncorrect
1ark 0.00 out of 1.00
Select the most appropriate option. During the registration phase
in Signal protocol the user
In Signal protocol the user
a. uploads public key of identity key, signed prekey, and signature on public key of signed prekey
b. uploads public key of identity key, signed prekey
uploads public key of identity key, signed prekey
© C. uploads public key of identity key, signed prekey, ephemeral key and signature on public key of signed prekey
Od. uploads public key of identity key, signed prekey, and signature on public key of identity key
Value and the second of the second of
Your answer is incorrect.
The correct answer is:
uploads public key of identity key, signed prekey, and signature on public key of signed prekey
Question 13
ncorrect
Mark 0.00 out of 1.00
Consider the RSA encryption RSA-Enc algorithm and construct the
bit-generator G defined as follows.
$G() \times z = j$ -th bit of c. Here $c = RSA-Enc() \times z = x \cdot e \cdot mod \cdot n$ and j is fixed.
Which of following statement is correct?
a. G is not Pseudorandom
U 15 HOC ESECUCIO ATTUCIN
○ b. G is Pseudorandom
Your answer is incorrect.
The correct answer is:
G is Pseudorandom

Let $g: \{0,1\}^{256}$ \rightarrow \{0,1\}^{256}\ be any preimage
resistant function. Define $f: (0,1)^{512} \rightarrow (0,1)^{512}$
by using the following rule:
<pre>f(x 0,\ldots,x {511})=1^{512} \text{ if } x θ=x 1=\cdots =x {255}=1</pre>
<pre> f(x_0,\ldots,x_{511})=1^{256}, g(x_{256},\ldots_,x_{511}) \text{_otherwise}. </pre>
Here 110d denotes a 12d-bits string whose all bits are one. Which of the
following statement is true?
a. is preimage resistant function
○ b. is not preimage resistant function
Your answer is correct.
The correct answer is:
🗽 is preimage resistant function

Question **14**Correct

Mark 1.00 out of 1.00
A trapdoor function is a function that is easy to compute in one
direction, yet difficult to compute in the opposite direction (finding
its inverse) without special information, called the "trapdoor".
Which of the following statement is correct?
O a. RSA encryption is a trapdoor function with public key is the trapdoor
$^{\odot}$ b. RSA encryption is a trapdoor function with private key is the trapdoor
C. Public key encryption function can not be a trapdoor function
Your answer is correct.
The correct answer is:
RSA encryption is a trapdoor function with private key is the trapdoor

Question **15**Correct

Mark 0.00 out of 1.00	
Consider the Elliptic curve EL: <u>y^2=x^3+6x+3</u> under modulo 17.	
Noxplus denotes the addition operation between two points on EL.	
If $P=(16,8)$, $Q=(15,0)$ are two points on this curve then $P\setminus boxplus 0$	
will be	
a. (8,11)	×
O b. (16,9)	
c. none of these	
O d. (9,2)	
(3,2)	
O e. (6,0)	
(0,0)	
Your answer is incorrect.	
The correct answer is:	
(16,9)	

Question **16**Incorrect

AES-Mixcolumn(160, 189, 63, 98) [all are in decimal]
O a. 165, 179, 213, 25
O b. 211, 100, 225, 123
211, 100, 225, 125
O c. 18, 23, 16, 21
○ d. none of these
⊚ e. ₂₁₈ , 226, 197, 189
Your answer is correct.
The correct answer is:
218, 226, 197, 189

Question **17**Correct

Consider the prime number p=353 and the group $\boxed{\sum_{mathbb}{Z}_{p^*}}$ with
multiplication modulo p operation. Let g=3 be a generator of the group
<u></u>
Alice and Bob now would like to establish a common secret key using
Diffie-Hellman key exchange protocol on the above mentioned group.
The secret key of Alice and Bob are 97 and 233 respectively. Which of the
following statement is correct.
○ a. Alice's public key = 340, Bob's public key = 28, Common secret key = 210
○ b. None of these
C. Alice's public key = 240, Bob's public key = 48, Common secret key = 130
□ d. Alice's public key = 40, Bob's public key = 248, Common secret key = 160
Affice's public key - 40, bob's public key - 240, Common secret key - 100
Your answer is correct.
The correct answer is:
Alice's public key = 40, Bob's public key = 248, Common secret key = 160

Question **18**Correct

Consider the Elliptic curve EL: $\sqrt[3]{y^2=x^3+5x+3}$ under modulo 13.
<u>hoxplus</u> denotes the addition operation between two points on EL.
If $\mathbb{P}=(9,7)$, $\mathbb{Q}=(4,3)$ are two points on this curve then $\mathbb{P}\setminus \text{boxplus } 0$
will be
a. (8,3)
O b. (8,10)
C. (13,10)
○ d. none of these
Your answer is correct.
The correct answer is:
(10,0)

Question **19**Correct

fark 0.00 out of 1.00
If g is a generator of the group <a>\textstyle \textstyle m^{\strue \textstyle \textstyle m^{\strue \textstyle \textstyle m}} \text{ where}
$Z_m^{*}=\frac{x^{-}}{x^{-}}$ (m is not a prime) then what is the
order of g?
○ b. <u>_\phi(m)</u>
○ c. <u>(m-1)(m-2)</u>
Your answer is incorrect.
The correct answer is:
Pahi(m)

Question **20**Incorrect

Correct Mark 1.00 out of 1.00 Which of the following is true for forward secrecy? a. [forward secrecy implies perfect secrecy] b. [if Pr[m0 c0] is known then Pr[m1 c1] will also be known] c. [if Pr[m1 c1] is known then Pr[m0 c0] will also be known]
Which of the following is true for forward secrecy? a. forward secrecy implies perfect secrecy b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
a. Forward secrecy implies perfect secrecy b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
a. Forward secrecy implies perfect secrecy b. [if Pr[m0 c0] is known then Pr[m1 c1] will also be known
a. forward secrecy implies perfect secrecy b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
○ b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
○ b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
○ b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
○ b. if Pr[m0 c0] is known then Pr[m1 c1] will also be known
\bigcirc C. [if Pr[m1 c1] is known then Pr[m0 c0] will also be known
\bigcirc C. if Pr[m1 c1] is known then Pr[m0 c0] will also be known
C. if Pr[m1 c1] is known then Pr[m0 c0] will also be known
(i) d. (c.)
$^{\odot}$ d. $_{\odot}$ if the security of present message is compromised still the security of previous messages remain unaffected
Your answer is correct.
The correct answer is:
if the security of present message is compromised still the security of previous messages remain unaffected

If n = pq, where p, q are large primes. We state the following problems P1 and P2:
P1: Find p, q from n.
P2: Compute phi(n) without knowing p, q.
P2: Compute April (n) without knowing p, q.
Which of the following statement is true?
a. Solving P2 is harder than P1.
SOLVING F2 15 Harder Chan F1.
O b.
Problems P1 and P2 are equivalent.
C. Solving P1 is harder than P2.
55272118 12 25 1141 461 (11411 121
Your answer is incorrect.
The correct answer is:
Problems P1 and P2 are equivalent.

Question **22**Incorrect

Consider the prime number p=3319 and the group $\sqrt[]{\text{mathbb}\{Z\}}$ with
multiplication modulo p operation. Let $g=6$ be a generator of the group $\frac{1}{2} \frac{n+b}{2}$.
Alice and Bob now would like to establish a common secret key using
Diffie-Hellman key exchange protocol on the above mentioned group.
barrie nearman key exchange proceeds on the doore mentative groups
The secret key of Alice and Bob are 1197 and 62 respectively. Which of the
following statement is correct.
○ a. Alice's public key = 1582, Bob's public key = 1758, Common secret key = 1890
○ c. none of these
○ d. Alice's public key = 1658, Bob's public key = 1528, Common secret key = 1980
Your answer is correct.
The correct answer is:
Alice's public key = 1758, Bob's public key = 1582, Common secret key = 1890

Question **23**Correct

lark 1.00 out of 1.00	
Let n = 43 * 73 and the encryption key of RSA be e = 1195.	
Let if 4.9 75 and the energyption key of Kok be e 4 1155.	
For the message M = 1234 which of the following statement is true.	
a. the decryption key d = 787, ciphertext C = 760	
b. the decryption key d = 760, ciphertext C = 787	
o c. none of these	
Od. the decryption key d = 777, ciphertext C = 760	
the decryption key d = ///, ciphertext C = /60	
Your answer is correct.	
The correct answer is:	
the decryption key d = 787, ciphertext C = 760	
uestion 25	
orrect	
lark 1.00 out of 1.00	
The key derivation function of the Signal protocol is	
a. an invertible function	
b. an one to one function	
an one to one function	
C. an one way function	~
an one way function	
Your answer is correct.	
The correct answer is:	
an one way function	

Question **24**Correct

Consider the AES-128 key-scheduling algorithm.
If K0, K1,, K10 denotes the 11 round keys corresponding to the
secret key K (in hexadecimal),
K = 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Then K1 (in hexadecimal) is
a. c0 39 34 78 84 6c 52 0f 0c f5 f8 b4 c0 28 16 4b
O b. d6 aa 74 fd d2 af 72 fa da a6 78 f1 d6 ab 76 fe
C. c1 84 21 af ed 10 c0 2a 45 fb 89 de 5d a3 52 a5
O d. none of these
e. 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Your answer is correct.
The correct answer is:
c0 39 34 78 84 6c 52 0f 0c f5 f8 b4 c0 28 16 4b
<u> </u>

Question **26**Correct

Mark 1.00 out of 1.00

ncorrect
Mark 0.00 out of 1.00
Which of the following technique is followed in the SSL record protocol
whiteh of the following technique is followed in the 351 fectoral protocol
to achieve confidentiality as well as integrity?
\circ a. None of these
Notice of cliese
<pre>b. Encryption((MAC(compressed data)) Encryption(compressed data)</pre>
Liter yption((MAC(Compressed data)) Liter yption(compressed data)
C. Encryption (compressed data MAC(compressed data))
d. Encryption(compressed data) MAC(compressed data)
Your answer is incorrect.
The correct answer is:
Encryption (compressed data MAC(compressed data))
Question 28
ncorrect
Mark 0.00 out of 1.00
laik 0.00 out of 1.00
Let n be a product of two large primes i.e., $n = p*q$. We know that
finding p, q from n is a computationally hard problem. If I give you n
along with

Question **27**

Mark 1.00 out of 1.00
Let n = 17 * 11 = 187 and the encryption key of RSA be e = 7.
For the message M = 88 which of the following statement is true.
a. the decryption key d = 13, ciphertext C = 21
○ b. the decryption key d = 21, ciphertext C = 11
© C. the decryption key d = 23, ciphertext C = 11
Your answer is correct.
The correct answer is:
the decryption key d = 23, ciphertext C = 11
Question 30
ncorrect
Mark 0.00 out of 1.00
Foliant the most communicate anti-
Select the most appropriate option.
In Signal protocol perfect secrecy is achieved
a. by deleting previous root key and using SHA-256
b. by deleting previous root key, previous chain key and using SHA-256
C. by deleting previous root key, previous chain key, previous message key and by using SHA-256
Your answer is incorrect.
The correct answer is:
by deleting previous root key, previous chain key, previous message key and by using SHA-256

Question **29**Correct

Mark 0.00 out of 1.00
The initial message in Signal protocol is encrypted using
a. AES-256 in CBC mode on (Message MAC on the message)
○ b. AES-256 in CTR mode with signature based encryption
○ C. authenticated encryption with associated data using AES-256
Your answer is incorrect.
The correct answer is: authenticated encryption with associated data using AES-256
Question 32
ncorrect
Mark 0.00 out of 1.00
In SSL the sequence number of the sending data and receiving
data is a part of
a. session state
O b. Connection state
Your answer is incorrect.
The correct answer is:
connection state
connection state

Question **31**Incorrect

We define a new encryption algorithm TEnc using AES-128 encryption
technique.
TEnc : \(\int_{\(0,1\\)^{\(384\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
C = TEnc(K K1 K2, M) = K2 <u>Noplus</u> AES-128-Enc(K, K1 <u>Noplus</u> M).
Here K, K1, K2 each is of 128 bit. What will be the decryption algorithm
(TDec) corresponding to TEnc.
○ a. None of these
C. M = TDec(K K1 K2, C) = K2 <u>loplus</u> AES-128-Dec(K, K1 <u>loplus</u> C)
O. M = TDec(K K1 K2, C) = K $\sqrt{\text{oplus}}$ AES-128-Dec(K1, K2 $\sqrt{\text{oplus}}$ C)
Your answer is correct.
Your answer is correct. The correct answer is: M = TDec(K K1 K2, C) = K1

Question **33**Correct

Mark 1.00 out of 1.00

Incorrect
Mark 0.00 out of 1.00
In which message of the SSL protocol, server sends its random number?
a. in server's hello message
○ b. in change cipher message
○ C. in handshake message
O d. inside record header
2.152dc CCO. W .1CCCC.
Your answer is incorrect.
The correct answer is:
in server's hello message
Question 35
Correct
Mark 1.00 out of 1.00
Let F be a preimage resistant function from S to S. Consider a new
function G = F o F (i.e., F compose F).
Which of the following statement is true?
a. G is a preimage resistant function
D. a need not be a preimage resistant function
Your answer is correct.
The correct answer is:
G need not be a preimage resistant function

Question **34**

Question 36
Not answered
Marked out of 1.00
Select the most appropriate option. Signal protocol provides
a. end to end encryption, forward secrecy only
b. end to end encryption, forward secrecy and handles out of order messages
C. end to end encryption only
Your answer is incorrect.
The correct answer is:
end to end encryption, forward secrecy and handles out of order messages
Question 37
Not answered
Marked out of 1.00
A 5-bit LFSR is constructed using the connection polynomial
$f(x)=x^5+x^4+x^2+x+1$. The period of this LFSR will be
O a. 31
○ b. none of these
O c. ₆₃
63
O d. 30
30
O e. 15
13
Your answer is incorrect.
The correct answer is: 31
151

Question 38
Not answered
Marked out of 1.00
If the two fragmented data are identical in SSL Record protocol, then
which of the following statement is correct?
a. the corresponding encrypted data will be identical as the compressed data will be the same
○ b. the corresponding encrypted data will be different
C. nothing can be said
Your answer is incorrect.
The correct answer is:
the corresponding encrypted data will be different
the corresponding entrypted data will be different
Question 39
Not answered
Marked out of 1.00
Certificate is a
a. signed public key of an user signed by some trusted party
○ b. MAC of an user's public key generated by some trusted party
C. signed private key of an user signed by some trusted party
○ d. signed public key of user signed by the same user
Your answer is incorrect.
The correct answer is: signed public key of an user signed by some trusted party

Marked out of 1.00
Let $\bigcap_{n=pq}$ where $\bigcap_{p,q}$ are primes. Consider \bigcap_{e} such that
gcd(e, phi(n))=1 [here phi is the Euler's totient function].
The function defined by $\int_{-\infty}^{\infty} f(x) = x^e \mod n$ is
○ a. not a permutation on mathbb{Z} n^*
○ b. none of these
C. a permutation on maintain-name="maintai
Your answer is incorrect.
The correct answer is:
a permutation on mathbb{Z} n^*
→ Midterm
Jump to

Question **40**Not answered

<u>Dashboard</u> / My courses / <u>CS364 2024</u> / <u>General</u> / <u>LAB test</u>

Started on	Friday, 1 March 2024, 11:33 AM
State	Finished
Completed on	Friday, 1 March 2024, 11:53 AM
Time taken	20 mins
Grade	5.00 out of 9.00 (56 %)
Question 1	
Not answered	
Not graded	
Consider a modified	d Playfair cipher on
{ A, B, C, D,, Z, \ , /,	, [,] } . Note that the set has 30 elements.
Consider the key =	AETIMPSB and select the encryption of
plaintext = CRYPTO	\N
a. QDUDWBEV	
□ b. QDDUBWEV	
c. QDUDBWEV	
d. none of thes	e
e. QDUDBWVE	
Your answer is inco	rrect.
The correct answers	s are:
QDUDBWEV,	
none of these	

Question 2
Incorrect
Mark 0.00 out of 1.00

Consider AES-Subbyte table Sub().

We define a new S-box from Sub as follows:

S(x) = Sub((2*x)+1), here a*x and y+b are done in

$$\mathbb{F}_2[x]/< x^8+x^6+x^5+x^4+x^2+x+1>.$$

What is value of S(212)? Here input, output are in decimal.

- ◎ a. 28
- b. none of these
- c. 92
- O d. 29
- e. 113

Your answer is incorrect.

The correct answer is:

29

Question ${\bf 3}$

Incorrect

Mark 0.00 out of 1.00

MIXCOLUMN (32, 198, 201, 35) = ?

when we work on $\mathbb{F}_2[x]/< x^8+x^6+x^5+x^4+x^2+x+1>$.

Input, output are in decimal.

- a. (151, 202, 102, 41)
- b. (151, 102, 212, 41)
- o. (151, 212, 102, 11)
- od. (151, 212, 102, 41)
- e. none of these

Your answer is incorrect.

The correct answer is:

(151, 212, 102, 41)

×

uestion 4				
orrect				
ark 1.00 out of 1.00				
Consider Shift cipher and find	I the encryption of			
the plaintext = aeqwg				
where key = 5				
a. fjvbl				~
○ b. fvjbl				
o c. fjvbp				
O d. none of these				
o e. fjvlb				
Your answer is correct.				
The correct answer is:				
fjvbl				
uestion 5				
orrect				
orrect lark 1.00 out of 1.00				
orrect	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these	then the multiplicative inv	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is =	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447 d. 1486619448	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447 d. 1486619448	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447 d. 1486619448 e. 1486719448	then the multiplicative invo	erse		
orrect flark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447 d. 1486619448 e. 1486719448	then the multiplicative invo	erse		
orrect lark 1.00 out of 1.00 Let p = 2147483647. If a = 13 of a under mod p is = a. none of these b. 1486729448 c. 1486719447 d. 1486619448 e. 1486719448	then the multiplicative invo	erse		

, 3.111 101	EAD test. Attempt review
Question 6 Incorrect	
Mark 0.00 out of 1.00	
a. doc dat di ilid	
Consider a Playfair cipher with key = aedoqmw	
What is the correct ciphertext of the plaintext = iamd	
a. ehew	
b. hewe	×
o c. dgab	
od. none of these	
e. gdba	
Your answer is incorrect.	
The correct answer is:	
gdba	
Question 7	
Correct	
Mark 1.00 out of 1.00	
CAESAR-Encryption (aeqwg) = ?	
a. dhtzj	•
○ b. dthjz	
○ c. dhtzq	
○ d. ahtzj	
o e. none of these	
Your answer is correct.	
The correct answer is: dhtzj	

Question 8 Correct	
Mark 1.00 out of 1.00	
Consider Affine encryption algorithm.	
If the secret key is $K = (11,5)$, the ciphertext of the	
plaintext = aeswq is = ?	
a. none of these	
○ b. fxvny	
c. fxvnz	
○ d. fxnvz	
○ e. fzvnx	
Your answer is correct.	
The correct answer is:	
fxvnz	
Question 9	
COFFECT	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1 >$. Input, output are in decimal. o a. (253, 212, 12, 41)	
MIXCOLUMN (32, 198, 201, 35) = ?	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1 >$. Input, output are in decimal. o a. (253, 212, 12, 41)	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1>$. Input, output are in decimal. a. [(253, 212, 12, 41)]	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1 >$. Input, output are in decimal. o a. (253, 212, 12, 41)	
Mark 0.00 out of 1.00	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1>$. Input, output are in decimal. a. [(253, 212, 12, 41)]	
MIXCOLUMN (32, 198, 201, 35) = ? when we work on $\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x^2 + 1 >$. Input, output are in decimal. a. (253, 212, 12, 41) b. (251, 212, 10, 41) c. (231, 18, 101, 55) d. (211, 213, 17, 37)	
when we work on $\mathbb{F}_2[x]/< x^8+x^4+x^3+x^2+1>$. Input, output are in decimal. a. $(253,\ 212,\ 12,\ 41)$ b. $(251,\ 212,\ 10,\ 41)$ c. $(231,\ 18,\ 101,\ 55)$	

Question 10	
Correct	
Mark 1.00 out of 1.00	
Consider AES-Subbyte table Sub().	
We define a new S-box from Sub as follows:	
S(x) = Sub((2*x)+1), here $a*x$ and $y+b$ are done in	
$\mathbb{F}_2[x]/< x^8 + x^4 + x^3 + x + 1 > .$	
What is value of S(126)? Here input, output are in decimal.	
○ a. 48	
b. 84	✓
O c. 88	
O d. none of these	
○ e. 83	
Your answer is correct.	
The correct answer is: 84	
→ Announcements	
Jump to	

```
Dashboard / My courses / IT301 IT / Topic 1 / Midterm (2nd Online)
         Started on Wednesday, 15 September 2021, 9:09 AM
               State Finished
     Completed on Wednesday, 15 September 2021, 9:49 AM
        Time taken 39 mins 59 secs
              Grade 5.50 out of 10.00 (55%)
Question 1
Incorrect
Mark 0.00 out of 0.50
  Let g:\{0,1\}^{256} \rightarrow \{0,1\}^{256} be any preimage resistant function. Define f:\{0,1\}^{512} \rightarrow \{0,1\}^{512} by using the following rule:
  f(x[0], ..., x[511]) = 1^{512} if x[0] = x[1] = ... = x[255] = 1
  f(x[0], ..., x[511]) = 1^{256} ||g(x[256], ..., x[511]) \text{ otherwise}
  Here 1<sup>d</sup> denotes a d-bits string whose all bits are 1. Which of the following statement is true?
   a. f is not preimage resistant function

    b. f is preimage resistant function

  Your answer is incorrect.
  The correct answer is:
  f is preimage resistant function
Question \mathbf{2}
Incorrect
Mark 0.00 out of 0.50
  How many distinct constants are used in the construction of
  SHA-1 hash function?
   a. 4
   O b. 79
   oc. 80
   d. None of these
  Your answer is incorrect.
  The correct answer is:
  4
```

Question 3	
Incorrect	
Mark 0.00 out of 0.50	
A sequence of plaintext blocks x1,,xn are encrypted by using DES in CFB mode.	
The corresponding ciphertext blocks are y1,,yn. During transmission y1 is transmitted incorrectly	
(i.e., some 1's are changed to 0's and vice verse). The number of plaintext blocks that will be decrypted	
incorrectly is	
O a. 3	
O b. 2	
c. None of these	×
O d. 1	
○ e. 0	
Your answer is incorrect.	
The correct answer is:	
2	
Ouestion 4	
Correct	
Mark 0.50 out of 0.50	
Let $F_k = F_{k-1} \oplus Enc(P_k, F_{k-1})$ be an iterated hash function where Enc is the DES encryption algorithm	
and F_k , P_k each is of 64-bit. The initial F_0 is a 64-bit public data, P_k is the k-th message block. Which of	
the following statement is correct?	
a. The above iterated hash function is a collision resistant hash function.	
b. The above iterated hash function is not a collision resistant hash function.	~
Your answer is correct.	
The correct answer is:	
The above iterated hash function is not a collision resistant hash function.	

https://betamoodle.iiitvadodara.ac.in/mod/quiz/review.php?attempt=43032&cmid=1719

Question 5 Correct	
Mark 0.50 out of 0.50	
Let H be the MERKLE -DAMGARD based hash function. Let h be the Message Authentication Code (MAC) of M and h = $H(K \parallel M)$. Here K is the secret key which is unknown to the attacker.	
From M and h is it possible for an attacker to produce a valid MAC on	
a different message M1 without knowing the secret key K.	
a. Yes	~
○ b. No	
Your answer is correct.	
The correct answer is:	
Yes	
Question 6 Correct Mark 0.50 out of 0.50	
Lat Marco Har Har Har Har har reconstruit bank () 420 bis	
Let $M = x_1 x_2 x_3 x_4 x_n$ be a message with len(x_i)=128 bit	
Let y_0 be an 128-bit public parameter and K be the 128-bit secret key. E denotes the AES-128 bit encryption	
algorithm. We use the following procedure to generate $y_i = E(y_{i-1} \oplus x_i, K)$ for $i = 1$ to n.	
Which of the following is true?	
a. y_n is the encryption of M	
○ b. y _n is the neither MAC nor the encryption of M	
© c. y _n is the MAC of M	~
Your answer is correct.	
The correct answer is: y _n is the MAC of M	

Question 7
Incorrect Mark 0.00 out of 0.50
Wark 0.00 Out of 0.50
SUBBYTES(C7)=
a. None of these
O b. 10
O c. F0
O d. C6
○ e. F4
Your answer is incorrect.
The correct answer is:
C6
Question 8
Correct
Mark 0.50 out of 0.50
How many fixed pre-defined functions are involved in SHA-1
O a. 79
O b. 69
◎ c. 80
○ d. None of these
Your answer is correct.
The correct answer is:
80

Question 9 Correct
Mark 0.50 out of 0.50
AES-192 requires how many round keys?
○ a. 12
O b. None of these
O c. 10
⊕ d. 13 ✓
○ e. 11
O f. 14
Your answer is correct.
The correct answer is:
13
Question 10
Correct
Mark 0.50 out of 0.50
Suppose two different plaintexts X=(x1,x2,,xn) and Y=(y1,y2,,yn) are encrypted using
same key and IV in OFB mode. Then which of the following is true?
a. Two ciphertexts will be completely independent
b. It will depend on the encryption algorithm used in OFB mode
 c. Ciphertexts will reveal an information regarding the plaintexts
Od. Nothing can be said about the plaintexts from ciphertexts
Your answer is correct.
The correct answer is: Ciphertexts will reveal an information regarding the plaintexts
Ciphertexts will reveal air information regarding the plaintexts

17/21, 10:44 AM	Midterm (2nd Online): Attempt review
Question 11 Correct	
Mark 0.50 out of 0.50	
Consider the AES-128 encryption algorithm. AES-128 encryption 128-bit message block and generates 128-bit ciphertext block (i.e., AES-128: {0, 1} ¹²⁸ × {0, 1} ¹²⁸ → {0, 1} ¹²⁸ . Define the compression function h: {0, 1} ²⁵⁶ → {0, 1} ¹²⁸ by using h(m1 m2) = AES-128(m1, m2). Which of the following statement is true a. h is not collision resistant. b. h is collision resistant. Your answer is correct. The correct answer is: h is not collision resistant.	AES-128(M,K)=C)
Question 12 Incorrect Mark 0.00 out of 0.50	
Let H be a hash function from {0,1}* to {0,1} ¹²⁸ . Given X ₁ from {0, to X ₁ such that H(X ₁)=H(X ₂) is known as a. Collision finding problem b. Preimage finding problem c. Second preimage finding problem d. None of these	1)* finding X ₂ from {0,1}* not equal

Your answer is incorrect.

The correct answer is:

Second preimage finding problem

Question 13	
Incorrect	
Mark 0.00 out of 0.50	
Let h: $\{0,1\}^* \rightarrow \{0,1\}^n$ be a preimage resistant and collision resistant hash function.	
Define a new hash function h': $\{0,1\}^* \rightarrow \{0,1\}^{n+1}$ by using following rule	
$h'(x)=0$ x if x belongs to $\{0,1\}^n$,	
otherwise $h'(x)=1 h(x)$.	
Which of the following statement is true.	
 a. h' is a preimage resistant as well as collision resistant. 	
○ b. h ' is neither preimage resistant nor collision resistant.	
c. h' is not a preimage resistant but collision resistant.	
C. IT IS NOT a preimage resistant but comision resistant.	
Your answer is incorrect.	
The correct answer is:	
h' is not a preimage resistant but collision resistant.	
Question 14	
Correct	
Mark 0.50 out of 0.50	
Suppose you have an encrypted ciphertext C=C1 C2 Cn which is encrypted using AES-128 in CBC mode	
of operation. Is it possible to decrypt the ciphertext blocks in parallel?	
a. Yes it is possible	
b. No it is not possible	
Your answer is correct.	
The correct answer is:	
Yes it is possible	

Question 15 Incorrect
Mark 0.00 out of 0.50
Let H be a compression function from A to B where $ A = N$ and $ B = M$ and $N > M$.
For a given H(X) from B the worst case complexity of finding X from A is
 a. None of these
○ b. O(M)
○ c. O(M ^{1/2})
\bigcirc d. $O(N^{1/2})$
⊚ e. O(N) ×
Your answer is incorrect.
The correct answer is: O(M)
S(M)
Question 16 Correct
Mark 0.50 out of 0.50
Select the most appropriate statement:
(1) Hash function can be used for encryption
(2) Hash function can be used for authentication and can not be used for correctness
checking of the message
(3) Hash function can be used for authentication and for checking of correctness of message
O a. (2)
○ c. None of these are correct
O d. (1)
Your answer is correct.
The correct answer is: (3)
The correct answer is:

Question 17	
Incorrect	
Mark 0.00 out of 0.50	
Let F be a bijection from {0,1} ^m to {0,1} ^m and F is also preimage resistant.	
Define a new function H from {0,1} ^{2m} to {0,1} ^m in the following way	
for any X from $\{0,1\}^{2m}$, X = X1 \parallel X2, where X1, X2 both are of m bits and	
$H(X) = F(X1 \oplus X2)$	
Which of the following statement is correct?	
a. H is not second preimage resistant	
b. H is second preimage resistant function	×
Your answer is incorrect.	
The correct answer is:	
H is not second preimage resistant	
Question 18	
Correct	
Mark 0.50 out of 0.50	
What is the size of $Y = SHA-1(X)$ for any X ?	
a. None of these	
O b. 256 bits	
O c. 128 bits	
O d. 64 bits	
e. 160 bits	~
Your answer is correct.	
The correct answer is: 160 bits	

Question 20
Correct
Mark 0.50 out of 0.50
What is the biggest advantage of CBC mode of operation
a. It does not need IV.
○ b. It does not propagate error in the ciphertext.
C. It can encrypt in parallel different parts of the message.
O d. The IV is secret, so the length of the key is doubled.
the 27 25 Secrety 50 the length of the key 25 dodded.
© e. Ciphertext block depends on all the ciphertext blocks before it.
Your answer is correct.
The correct answer is:
Ciphertext block depends on all the ciphertext blocks before it.
▼ Pre Midterm
Jump to

Dashboard / My courses / IT301 IT / Topic 1 / Pre Midterm

Started on Monday, 23 August 2021, 11:49 AM

State Finished

Completed on Monday, 23 August 2021, 12:33 PM

Time taken 44 mins 41 secs

Grade 7.50 out of 10.00 (75%)

Question 1

Incorrect

Mark 0.00 out of 0.50

Select the correct answer where S_1 : $\{0,1\}^6 \rightarrow \{0,1\}^4$ and S_2 : $\{0,1\}^6 \rightarrow \{0,1\}^4$ are the first two

defined S-boxes for the round function of DES. (For the description of these S-boxes please

see page 260 of Handbook of Applied Cryptography book.)

 \bigcirc a. $S_1(59) = 0$, $S_2(23) = 14$.

 \odot b. $S_1(59) = 4$, $S_2(23) = 8$

 \circ c. $S_1(59) = 1$, $S_2(23) = 10$.

 \bigcirc d. $S_1(59) = 0$, $S_2(23) = 10$.

Your answer is incorrect.

The correct answer is:

 $S_1(59) = 0, S_2(23) = 10.$

The above statement is not always true

it is one to one

Question 6	
Correct	
Mark 0.50 out of 0.50	
Round key size of DES is	
○ a. 64 bit	
b. 48 bit	•
○ c. 56 bit	
Voca a construction of the	
Your answer is correct. The correct answer is:	
48 bit	
_	
Question 7 Incorrect	
Mark 0.00 out of 0.50	
Total memory required to store an S-box $S:\{0,1\}^m o \{0,1\}^m$ is	
\bigcirc a. 2^m bits	
	×
	×
$lacksquare$ b. m $lacksquare$ c. $m2^m$ bits	×
	×
	×
\bigcirc c. $m2^m$ bits Your answer is incorrect. The correct answer is:	×
\bigcirc c. $m2^m$ bits	×
\bigcirc c. $m2^m$ bits Your answer is incorrect. The correct answer is:	×
\bigcirc c. $m2^m$ bits Your answer is incorrect. The correct answer is:	×
O c. $m2^m$ bits Your answer is incorrect. The correct answer is: $m2^m$ bits Question 8 Correct	×
O c. $m2^m$ bits Your answer is incorrect. The correct answer is: $m2^m$ bits	×
O c. $m2^m$ bits Your answer is incorrect. The correct answer is: $m2^m$ bits Question 8 Correct	*
O c. $m2^m$ bits Your answer is incorrect. The correct answer is: $m2^m$ bits Question 8 Correct	*
Your answer is incorrect. The correct answer is: $m2^m$ bits	*
Your answer is incorrect. The correct answer is: $m2^m$ bits Question 8 Correct Mark 0.50 out of 0.50 AES-512 has 16 rounds.	*
Your answer is incorrect. The correct answer is: $m2^m$ bits	*
Your answer is incorrect. The correct answer is: $m2^m$ bits Question 8 Correct Mark 0.50 out of 0.50 AES-512 has 16 rounds.	*
 ○ c. m2^m bits Your answer is incorrect. The correct answer is: m2^m bits Question 8 Correct Mark 0.50 out of 0.50 AES-512 has 16 rounds. ⑥ a. Flase ⑥ b. True 	*
Your answer is incorrect. The correct answer is: m2 ^m bits Question 8 Correct Mark 0.50 out of 0.50 AES-512 has 16 rounds. a. Flase b. True Your answer is correct.	*
 ○ c. m2^m bits Your answer is incorrect. The correct answer is: m2^m bits Question 8 Correct Mark 0.50 out of 0.50 AES-512 has 16 rounds. ◎ a. Flase ○ b. True 	*

403291461126605635584000000

Question 11
Correct
Mark 0.50 out of 0.50
S-boxes in DES map
O a. 4 bits to 6 bits
O b. 2 bits to 4 bits
© C. 6 bits to 4 bits
O d. 4 bits to 4 bits
Your answer is correct.
The correct answer is:
6 bits to 4 bits
Question 12
Correct
Mark 0.50 out of 0.50
Consider one-bit encryption $C=P\oplus K$. If $Pr[K=0]=0.5$ and $Pr[P=1]=0.2$ then $Pr[P=0 C=1]$ is
○ a. 0.5
O b. 0.4
O c. 0.2
⊚ d. 0.8
G 4. 0.0
Your answer is correct.
The correct answer is:
0.8

Your answer is correct.

The correct answer is: It is not a valid key

Question 15 Correct
Mark 0.50 out of 0.50
The original name of AES is
a. Advanced Encryption System
b. Advanced Encryption Standard
○ c. Rijndael ✓
Your answer is correct.
The correct answer is:
Rijndael
Question 16
Correct Mark 0.50 out of 0.50
Walk 0.30 Out of 0.30
Consider one round of Feistel Network with the block size 64 bit and secret key K of size 32 bit.
The round function is defined by $f(R,K)=S(R\oplus K)$ where $S(X)=(1+X)\mod 2^{32}$.
The ciphertext corresponding to the plaintext = 1 is
○ a. 4294967296
O b. 4294967297
c. None of the other
O d. 458129844
○ e. 1
Your answer is correct.
The correct answers are: 4294967297,
458129844,
4294967296,
1,
None of the other

Question 17

Incorrect

Mark 0.00 out of 0.50

Let E be encryption algorithm of DES with 3 rounds. Let M be a message

and K be a secret key.

Let
$$C_1=E(M,K)$$
 and $C_2=E(\bar{M},\bar{K})$.

Here \bar{X} denotes the bitwise complement of X.

Which of the following relation is correct?

- \bigcirc a. $ar{C_1}=C_2$
- b. None of the other

 \bigcirc c. $C_1=C_2$

Your answer is incorrect.

The correct answer is:

$$\bar{C}_1 = C_2$$

Question 18

Correct

Mark 0.50 out of 0.50

Which is the correct statement for DES among the following statements:

- Block size = 64, Key size = 56, Number of rounds = 16.
- b. Block size = 56, Key size = 48, Number of rounds = 16.
- C. Block size = 64, Key size = 48, Number of rounds = 10.

Your answer is correct.

The correct answer is:

Block size = 64, Key size = 56, Number of rounds = 16.

Question 19 Correct Mark 0.50 out of 0.50 Let us consider Feistel Network encryption with 16 rounds. The 16 round keys are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. Consider the message = 32. Find the ciphertext C corresponding to the message = 32 generated using above Feistel Network and the above mentioned round keys. We further apply same encryption on the ciphertext C using the round keys in reverse order (i.e., 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) and generate C1. What will be the value of C1? a. 23 b. 2147 © c. 32 d. None of the other Your answer is correct. The correct answer is: 32 Question 20 Correct Mark 0.50 out of 0.50 Shift cipher provides perfect secrecy or not. a. It will never provide perfect secrecy as it differs from OTP. b. Yes if we use an independent key for each plaintext character. Your answer is correct. The correct answer is: Yes if we use an independent key for each plaintext character. Announcements Jump to...

Midterm (2nd Online) ►