

什么是状态通道

"Off Blockcahin" 2 way State Channels

Transactions

Locking up state using smart contract

submitting the state changes back to the blockchain

Blockchain

区块链的部分状态通 过多个签名和部分智 能合约锁定

参与者通过产生以及签名来时时更新状态

参与者将状态传回到 区块链上,然后关闭 状态通道,并且再次 锁定状态

状态通道的概念

状态通道的核心就是上述那种架构设计

状态通道一般被视为layer 2层 (可拓展层),链上为layer 1层 (安全层)

状态通道的组成:

- 多签钱包或者智能合约
- 互相构建和签署交易,相互更新状态
- 提交区块链, 关闭通道

状态通道的类型

特殊状态通道

- 支付通道
- App定制型

通用状态通道

• 反事实实例化

1 支付通道

支付通道的由来

链上交易的缺陷:

- 交易费用高
- 速度慢
- 效率低

打开通道:

链上锁定状态,建立合约

链下交易:

频繁双向支付交易

关闭通道:

向链上提交状态,并进行争议性 解决

样例: https://ethfans.org/posts/counterfactual-for-dummies-part-1

02

2 APP定制通道

定制型状态通道

0 ETH

Bob

On-Chain

10 ETH Alice: 5 ETH

Bob: 5 ETH

Rule 1: If player gets 4 in a row, reward all ETH to that player.

Rule 2: If a player attempts to go twice in a row, reward all ETH to other player.

Rule 3: If a player does not respond to a dispute within 2 minutes, reward all ETH to disputing player.

Rule n: etc...

Judge Smart Contract Ex: Connect Four Multisig

Off-Chain

Alice

Offchain Transaction Signed By: Alice, Bob

Offchain Transaction Signed By: Alice

法官职责:

- 在比赛期间持有游戏资金
- 作为游戏规则的真相来源,解决玩家纠纷(例 如:欺骗,拖延)
- 在某一方赢或双方平局的情况下适当分配资金

游戏规则:

- Rule 1: ...
- Rule 2: ...
- Rule 3: ...
- Rule 4: ...

3 闪电网络

什么是闪电网络

闪电网络就是支付状态通道的应用 ,核心交易类型有两种:

- RSMC (序列到期可撤销合约)
- HTLC (哈希时间锁定合约)

BTC

RSMC

- 1、双方各拿出0.5BTC,构建Funding Tx,输出为爱丽 丝和鲍伯的2/2多重签名。此时,Funding Tx未签名, 更不广播。
- 2、爱丽丝构造Commitment Tx: C1a和RD1a,并交给鲍伯签名。C1a的第一个输出为多重签名地址,爱丽丝的另一把私钥爱丽丝2和鲍伯的2/2多重签名,第二个输出为鲍伯 0.5BTC。
- 3、RD1a为C1a第一个输出的花费交易,输出给爱丽丝0.5BTC,但此类型交易带有sequence,作用是阻止当前交易进块,只有前向交易有sequence个确认时才能进块。
- 4、鲍伯构造Commitment Tx: C1b和RD1b, 并交给爱丽丝签名。结构与C1a、RD1a是对称关系。
- 5、鲍伯对C1a和RD1a进行签名,并将签名给爱丽丝;同理,爱丽丝对C1b和RD1b签名,完成后给鲍伯。此时,由于并未对Funding Tx进行签名,任何一方均无法作恶,任何一方也不会有任何损失。
- 6、双方均完成对commitment Tx的签名并交换后,各自再对Funding Tx进行签名,并交换。此时,Funding Tx是完整的交易,广播之

- 1. 如何才能彻底废弃掉C1a和C1b?
- 2. 爱丽丝交出爱丽丝2的私钥给鲍伯,即意味放弃C1a,而 仅能认可C2a
- 3. 爱丽丝破坏合约存在C2a的情况下依然广播出C1a,那么鲍伯就可以修改RD1a的输出给他自己,形成新的交易BR1a。BR1a由于没有Sequence,肯定会先于RD1a执行那么爱丽丝的惩罚就是失去她全部的币

其他参考:

https://www.jianshu.com/p/e326802294e1 https://blog.csdn.net/chunlongyu/article/details/803 54563

防作弊机制

引入第三方来解决"始终在线"的假设

闪电网络"监视 器"/"瞭望塔"

Pisa"保管人 (Custodians)"

Celer"状态防卫网络"

HTLCs are generated from left to right (A->B->C->D)

交易结构图:

- 如果Alice和Bob之间建立一个通道, Bob和Charlie之间建立一个通道, 同时Charlie和Dave之间也建立了一个通道, 那么Alice可以通过Charlie和Bob把她的付款转给Dave。为了在不引入额信任假设, Alice需要确保Bob或Charlie不会带着她的钱跑路。这个攻击向量可以通过HTLCs来解决, 交易最终遵循一个多步骤的过程来完成。
- 在这个模型中,Dave生成了一个随机数R作为原像,并将该原像的哈希值H共享给Alice。然后Alice就和Bob就达成了一个HTLC——"如果你告诉我H对应的原像R,我将支付你1比特币,但如果你三天内不给我看原像,我将收回我的1比特币"。然后Bob与Charlie达成一个类似的HTLC,不同之处在于它将在两天后退还这1个比特币。类似地,Charlie与Dave达成一个HTLC,同样其退款周期更短。

比较

闪电网络

支付宝

• 安全性:

绝对安全, 不存在资金冻结等风险

・ 支付速度:

除上链确认操作外,其交易速度几乎与支付宝等价

• 隐私程度:

线下足够隐私

• 风险:

无法复原

• 安全性:

依赖于其商业信用和规模,资金受法律监管

• 支付速度:

秒速

· 隐私程度:

依赖第三方

• 风险:

较小,可中心化恢复

闪电网络的优缺点

优点:

- 快速支付
- 无需可信第三方
- 为区块链减负
- 支付通道可以无限期地保持开放
- 双方约定可快速关闭通道
- 洋葱式路由
- 具有多重签名功能
- 跨链

缺陷:

- 收款时要求必须在线,没有离线付款
- 监控通道的需求
- 匹配失败
- 对于大额付款并不理想
- 集中化

1. 环境:

Bitcoin 测试链全节点 c-lightning 版本闪电网络

- 2. 操作指令:
 - i) 启动比特币节点和闪电网络 bicoind -daemon -testnet lightning --network=testnet -log-level=debug ii) 创建通道
 - iii) 转账与状态更新
 - iiii) 关闭通道

参考:

https://www.8btc.com/article/156211

