Lecture 6

Chap. 4 Network Layer, part I

Chapter goals

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - dealing with scale
 - advanced topics: IPv6
- instantiation, implementation in the Internet

Overview

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network Layer

- Transport segment from sending to receiving host
- On sending side encapsulates segments into datagrams
- On rcving side, delivers segments to transport layer
- Network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - Routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Interplay between routing and forwarding

Overview

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network layer connection and connection-less service

- Datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- Analogous to the transport-layer services, but:
 - Service: host-to-host
 - No choice: network provides one or the other
 - Implementation: in the core

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

IP Packet Forwarding

- Each packet has destination address
- Each switch has forwarding table of destination → next hop
 - At v and x: destination → east
 - At w and y: destination → south
 - At z: destination → north
- Distributed routing algorithm for calculating forwarding tables
- https://www.youtube.com/watch?v=jnJO9ypv3m8

Forwarding table

4 billion possible entries!

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 111111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

Longest prefix matching

Prefix Match	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?

How do we set up Routing Tables?

- Graph theory to compute "shortest path"
 - Switches = nodes
 - Links = edges
 - Delay, hops = cost
- Need to adapt to changes in topology

Overview

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Router Architecture Overview

Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Input Port Functions

- e.g., Ethernet
 - see chapter 5

- given datagram dest., lookup output port using
- forwarding table in input port memory
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Three types of switching fabrics

Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Crossbar provides full NxN interconnect
 - Expensive
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches Gbps through the interconnection network

Output Ports

- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!
- Scheduling discipline chooses among queued datagrams for transmission
 - Can be simple (e.g., first-come first-serve) or more clever (e.g., weighted round robin)

Overview

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

The Internet Network layer

Host, router network layer functions:

IP datagram format

IP Fragmentation & Reassembly

- network links have MTU
 (max.transfer size) largest
 possible link-level frame.
 - different link types, different
 MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes severa datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

IP Addressing: introduction

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one interface
 - IP addresses associated with each interface

Addressing in IP

- IP addresses are names of interfaces
- Domain Name System (DNS) names are names of hosts
- DNS binds host names to interfaces

Addressing Considerations

- Fixed length or variable length?
- Issues:
 - Flexibility
 - Processing costs
 - Header size
- Engineering choice: IP uses fixed length addresses

Addressing Considerations

- Structured vs flat
- Issues
 - What information would routers need to route to Ethernet addresses?
 - Need structure for designing scalable binding from interface name to route!
 - How many levels? Fixed? Variable?

IP Addresses

- Fixed length: 32 bits
- Initial classful structure (1981)
- Total IP address size: 4 billion
 - Class A: 128 networks, 16M hosts
 - Class B: 16K networks, 64K hosts
 - Class C: 2M networks, 256 hosts

High Order Bits	<u>Format</u>	<u>Class</u>
0	7 bits of net, 24 bits of host	Α
10	14 bits of net, 16 bits of host	В
110	21 bits of net, 8 bits of host	С

IP Address Classes

(Some are Obsolete)

Some Special IP Addresses

- 127.0.0.1: local host (a.k.a. the loopback address)
- Host bits all set to 0: network address
- Host bits all set to 1: broadcast address

Interaction with Link Layer

- How does one find the Ethernet address of a IP host?
- ARP
 - Broadcast search for IP address
 - E.g., "who-has 128.2.184.45 tell 128.2.206.138" sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g, "reply 128.2.184.45 is-at 0:d0:bc:f2:18:58" sent to 0:c0:4f:d:ed:c6

Original IP Route Lookup

- Address classes
 - A: 0 | 7 bit network | 24 bit host (16M each)
 - B: 10 | 14 bit network | 16 bit host (64K)
 - C: 110 | 21 bit network | 8 bit host (256)
- Address would specify prefix for forwarding table
 - Simple lookup

Original IP Route Lookup – Example

- ce.kw.ac.kr address 128.134.54.178
 - Class B address class + network is 128.134
 - Lookup 128.134 in forwarding table
 - Prefix part of address that really matters for routing
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - 2 Million class C networks

Subnets

IP address:

- subnet part (high order bits)
- host part (low order bits)

What's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

Recipe

 To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24

Subnets

Subnet Addressing RFC917 (1984)

- For class B & C networks
- Very few LANs have close to 64K hosts
 - For electrical/LAN limitations, performance or administrative reasons
- Need simple way to get multiple "networks"
 - Use bridging, multiple IP networks or split up single network address ranges (subnet)
 - Must reduce the total number of network addresses that are assigned

Subnetting

- Variable length subnet masks
 - Could subnet a class B into several chunks

Subnetting Example

- Assume an organization was assigned address 150.100
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - Seven
- What is the network mask?
 - 11111111 11111111 11111111 10000000
 - 255.255.255.128

IP addresses: how to get one?

Q: How does *host* get IP address?

- hard-coded by system admin in a file
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

Implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
 - address shortage should instead be solved by IPv6

ICMP: Internet Control Message Protocol

•	used by hosts & routers to	Type	<u>Code</u>	<u>description</u>
	communicate network-level	0	0	echo reply (ping)
	information	3	0	dest. network unreachable
	 error reporting: unreachable 	3	1	dest host unreachable
	host, network, port, protocol	3	2	dest protocol unreachable
	echo request/reply (used by ping)	3	3	dest port unreachable
		3	6	dest network unknown
		3	7	dest host unknown
•	network-layer "above" IP:	4	0	source quench (congestion
	 ICMP msgs carried in IP 			control - not used)
	datagrams	8	0	echo request (ping)
		9	0	route advertisement
•	ICMP message: type, code plus	10	0	router discovery
	first 8 bytes of IP datagram	11	0	TTL expired
	causing error	12	0	bad IP header

Traceroute and ICMP

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP "host unreachable" packet (type 3, code 3)
- When source gets this ICMP, stops.