数据挖掘大作业三:分类与聚类分析报告

姓名: 康杨

学号:2120171024

一.实验环境

本次实验使用环境为 Python3.6, 使用 IDE 为 Visual Studio Code, 使用 sklearn 进行算法分析, 使用 pandas 进行数据分析, 选取 Titanic 数据集进行数据分析实验。

二.分类实验

本次分类实验选用 CART 决策树,随机森林以及梯度提升决策树三个模型分别进行 Titanic 数据的训练及预测,预测结果的精确度、召回率、F1 指数和支持率输出于result 目录下的 classification_result.txt,可视化绘图保存于 plot 目录下。

2.1 CART 决策树

CART 分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量。如果待预测分类是离散型数据,则 CART 生成分类决策树;如果待预测分类是连续型数据,则 CART 生成回归决策树。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 六维特征, 用来训练 CART 决策树分类器。结果如下图 1 和 2。

图 1 parch,sibsp,pclass 散点图

图 2 age,sibsp,pclass 散点图

在测试集上的各项指标为:

DecisionTreeClassifier:

	precision	recall	f1-score	support
0	0.93	0.94	0.93	263

1	0.89	0.88	0.89	155
avg / total	0.92	0.92	0.92	418

2.2 随机森林

在机器学习中,随机森林(Random Forest)是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。Leo Breiman 和 Adele Cutler 发展出推论出随机森林的算法。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 六维特征, 用来训练随机森林分类器。结果如下图 3 和 4。

图 3 parch,sibsp,pclass 散点图

图 4 age,sibsp,pclass 散点图

在测试集上的各项指标为:

RandomForestClassifier:

	precision	recall	f1-score	support
0	0.83	0.83	0.83	268
1	0.70	0.71	0.70	150
avg / total	0.79	0.78	0.78	418

2.3 梯度提升决策树

梯度提升决策树 GBDT 又叫 MART (Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和 SVM 一起被认为是泛化能力 (generalization)较强的算法。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 六维特征, 用来训练随机森林分类器。结果如下图 5 和 6。

图 5 parch,sibsp,pclass 散点图

图 6 age,sibsp,pclass 散点图

在测试集上的各项指标为:

GradientBoostingClassifier:

	precision	recall	f1-score	support
0	0.96	0.86	0.91	298
1	0.72	0.92	0.81	120
avg / total	0.89	0.88	0.88	418

三.聚类实验

本次聚类实验选用 K-means, MeanShift 以及 MiniBatchKMeans 三个模型分别进行 Titanic 数据的训练及预测,预测结果的精确度、召回率、F1 指数和支持率输出于 result 目录下的 cluter_result.txt,可视化绘图保存于 plot 目录下。

3.1 K-means

K-means 算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means 算法的基本思想是:以空间中 k 个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 等九维特征(其中标称属性均转化为数值),用来训练 K-means 聚类器。和正确的分类对比如下图 7。

图 7 age, pclass, fare 散点图对比

与原始数据对比的各项指标为:

KMeans:

	precision	recall	f1-score	support
0	0.84	0.81	0.83	571
1	0.68	0.73	0.70	320
avg / total	0.78	0.78	0.78	891

3.2 MeanShift

Mean Shift 算法:指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 等九维特征 (其中标称属性均转化为数值),用来训练 Mean Shift 聚类器。和正确的分类对比如下图 8。

图 8 age, pclass, fare 散点图对比

与原始数据对比的各项指标为:

MeanShift:

	precision	recall	f1-score	support
0	0.94	0.62	0.75	824
1	0.00	1.00	0.01	1
2	0.00	0.00	0.00	1
3	0.00	0.00	0.00	1
4	0.00	0.00	0.00	1
5	0.00	0.00	0.00	1
6	0.00	0.00	0.00	1

7	0.00	0.00	0.00	1
8	0.00	0.00	0.00	1
9	0.00	0.00	0.00	1
10	0.00	0.00	0.00	1
11	0.00	0.00	0.00	1
12	0.00	0.00	0.00	1
13	0.00	0.00	0.00	1
14	0.00	0.00	0.00	1
15	0.00	0.00	0.00	1
16	0.00	0.00	0.00	1
17	0.00	0.00	0.00	1
18	0.00	0.00	0.00	1
19	0.00	0.00	0.00	1
20	0.00	0.00	0.00	1
21	0.00	0.00	0.00	1
22	0.00	0.00	0.00	1
23	0.00	0.00	0.00	1
24	0.00	0.00	0.00	1
25	0.00	0.00	0.00	1
26	0.00	0.00	0.00	1
27	0.00	0.00	0.00	1
28	0.00	0.00	0.00	1
29	0.00	0.00	0.00	1
30	0.00	0.00	0.00	1
31	0.00	0.00	0.00	1
32	0.00	0.00	0.00	1
33	0.00	0.00	0.00	1
34	0.00	0.00	0.00	1
35	0.00	0.00	0.00	1
36	0.00	0.00	0.00	1
37	0.00	0.00	0.00	1
38	0.00	0.00	0.00	1
39	0.00	0.00	0.00	1
40	0.00	0.00	0.00	1
41	0.00	0.00	0.00	1
42	0.00	0.00	0.00	1
43	0.00	0.00	0.00	1
44	0.00	0.00	0.00	1
45	0.00	0.00	0.00	1
46	0.00	0.00	0.00	1
40 47	0.00	0.00	0.00	1
48	0.00	0.00	0.00	1
40 49	0.00	0.00	0.00	1
50	0.00	0.00	0.00	1
50	0.00	0.00	0.00	Ţ

0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.87	0.58	0.69	891
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.3 MiniBatchKMeans

Mini Batch K-Means 算法是 K-Means 算法的变种,采用小批量的数据子集减小计算时间,同时仍试图优化目标函数,这里所谓的小批量是指每次训练算法时所随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,与其他算法相比,减少了 k-均值的收敛时间,小批量 k-均值产生的结果、一般只略差于标准算法。

本次实验中, 提取每个人的 "Sex" , "Embarked" , "PcClass" , "Sibsp" , "Fare" 和 "Age" 等九维特征 (其中标称属性均转化为数值),用来训练 Mean Shift 聚类器。和正确的分类对比如下图 9。

图 9 age, pclass, fare 散点图对比

与原始数据对比的各项指标为:

MiniBatchKMeans:

	precision	recall	f1-score	support
0	0.01	1.00	0.02	5
1	1.00	0.39	0.56	886
avg / total	0.99	0.39	0.55	891

四.实验总结

本次实验通过编写程序实现了 Titanic 数据集的分类和聚类。通过 sklearn 中的特征提取功能将标称属性转化为数值,实现了分类器的训练和数据的非监督聚类。通过此次实验,学习并实践了经典的分类模型 CART 决策树、随机森林和梯度提升决策树,经典的聚类算法 K-means、MeanShift 和 MiniBatchKMeans,详细地了解了算法的各个步骤。深入理解了分类和聚类算法在数据挖掘中的原理和作用。