Researching: The New Mersenne Prime Conjecture

Victor Ekekrantz 2021–12–09

Compiled

Victor Ekekrantz	2021–12–09 kl. 12:22	Page 2
Contents		
1 Acknowledgements		3
2 Introduction		3
3 Mersenne primes		3
4 Wagstaff primes		3

1 Acknowledgements

The original formulation of the conjecture treated here is by: Bateman, P. T., J. L. Selfridge, and S. S. Wagstaff. "The Editor's Corner: The New Mersenne Conjecture." The American Mathematical Monthly 96, no. 2 (1989): 125–28. https://doi.org/10.2307/2323195.

The New Mersenne Prime Conjecture

Let p be any odd number. If two following conditions hold, then so does the third:

- a) $p = 2^k \pm 1$ or $p = 4^k \pm 3$ for some natural number k.
- b) $2^p 1$ is prime (a Mersenne prime)
- c) $(2^p + 1)/3$ is prime (a Wagstaff prime)

2 Introduction

This mathematical paper looks into proving The New Mersenne Prime Conjecture. Will it succeed? Nobody knows, but it might be some interesting findings along the way. And a lot of prime numbers are guaranteed.

3 Mersenne primes

Numbers of the following form $2^p - 1$ are Mersenne numbers. The Mersenne primes are the subset of Mersenne numbers that also are prime numbers.

4 Wagstaff primes

Numbers of the following form $(2^p+1)/3$ are Wagstaff numbers. The Wagstaff primes are the subset of Wagstaff numbers that also are prime numbers.