

Robust Region Feature Synthesizer for Zero-Shot Object Detection Peiliang Huang¹, Junwei Han¹, De Cheng², Dingwen Zhang¹ (¹NPU, ²XDU)

Motivation:

- ➤ Intra-class diversity: objects in real-world detection scenarios present high variation in pose, shape, texture, etc.
- ➤ Inter-class separability: each object category has easy-torecognized characteristics that are distinct from other object categories
- Existing approaches did not jointly consider the intra-class diversity and inter-class separability.

Our approach:

We design a unified region feature synthesizer for feature synthesizing in real-world detection scenarios.

The contributions are:

- ➤ We reveal the key challenges, i.e., the intra-class diversity and interclass separability, for feature synthesizing in real-world object detection scenarios.
- ➤ With the goal to synthesize robust region features for ZSD, we build a novel framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
- ➤ Comprehensive experiments on three datasets, including PASCAL VOC, COCO, and DIOR, demonstrate the effectives of the proposed approach. Notably, this is also the first attempt for implementing zero-shot object detection in remote sensing imagery.

Intra-class Semantic Diverging:

The visual features synthesized from adjacent noise vectors will be pulled closer while those synthesized from distinct noise vectors will be pushed away.

$$\mathcal{L}_{S_d} = \mathbb{E}\left[-\log \frac{\exp(\tilde{\mathbf{f}}^s \cdot \tilde{\mathbf{f}}_+^s / \tau)}{\exp(\tilde{\mathbf{f}}^s \cdot \tilde{\mathbf{f}}_+^s / \tau) + \sum_{i=1}^N \exp(\tilde{\mathbf{f}}^s \cdot \tilde{\mathbf{f}}_{i-}^s / \tau)}\right]$$

Inter-class Structure Preserving:

By pushing away the visual features from different categories this learning component can effectively enhance the discrimination of the synthesized visual features.

$$\mathcal{L}_{S_{p}} = \mathbb{E}\left[-\log \frac{\exp(\tilde{\mathbf{f}}^{s} \cdot \mathbf{g}_{+}/\tau)}{\exp(\tilde{\mathbf{f}}^{s} \cdot \mathbf{g}_{+}/\tau) + \sum_{j \in \Phi} \exp(\tilde{\mathbf{f}}^{s} \cdot \mathbf{g}_{j}/\tau)}\right]$$

Framework:

- > Our method contains an object detection module and a unseen classifier learning module.
- > The leaning objective function of RRFS is:

$$\min_{G} \max_{D} \mathcal{L}_{WGAN} + \lambda_1 \mathcal{L}_{C_s} + \lambda_2 \mathcal{L}_{S_d} + \lambda_3 \mathcal{L}_{S_p}$$

Results:

Performance on PASCAL VOC					Performance on DIOR					
Met	hod	ZSD	GZSD			Mathad	Zen	GZSD		
Mici	IIVu		S	U	HM	Method	ZSD	S	U	HM
SA	N	59.1	48	37	41.8	PL	0.4	4.3	0	0
HF	RE	54.2	62.4	25.5	36.2				0.4	۸٥
BI	.C	55.2	58.2	22.9	32.9	BLC	1.1	6.1	0.4	0.8
SI	U	64.9	_	_	_	SU	10.5	30.9	2.9	5.3
Ou	ırs	65.5	47.1	49.1	48.1	Ours	11.3	30.9	3.4	6.1

Performance on PASCAL VOC

	Method	Split		Recall		mAP			
	Method	Split	S	U	HM	S	U	HM	
	PL	48/17	38.2	26.3	31.2	35.9	4.1	7.4	
	BLC	48/17	57.6	46.4	51.4	42.1	4.5	8.2	
	Ours	48/17	59.7	58.8	59.2	42.3	13.4	20.4	
	PL	65/15	36.4	37.2	36.8	34.1	12.4	18.2	
	BLC	65/15	56.4	51.7	53.9	36.0	13.1	19.2	
	SU	65/15	57.7	53.9	55.8	36.9	19.0	25.1	
	Ours	65/15	58.6	61.8	60.2	37.4	19.8	26.0	

Qualitative results on three datasets

Code:https://github.com/HPL123/RRFS

Contact with us: https://nwpu-brainlab.gitee.io/index_en.html