Techniki Optymalizacji: Optymalizacja wypukła

Wojciech Kotłowski

Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl

pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek 15:00-16:30 Slajdy dostępne pod adresem: http://www.cs.put.poznan.pl/wkotlowski/

02.12.2013

Spis treści

1 Łatwe i trudne w optymalizacji ciągłej

Spis treści

1 Łatwe i trudne w optymalizacji ciągłej

■ Kombinacją wypukłą wektorów (punktów) y_1, \ldots, y_k nazywamy dowolny wektor:

$$\boldsymbol{x} = \lambda_1 \boldsymbol{y}_1 + \ldots + \lambda_k \boldsymbol{y}_k,$$

gdzie współczynniki λ są nieujemne i takie, że $\lambda_1+\ldots+\lambda_k=1.$

■ Kombinacją wypukłą wektorów (punktów) $y_1, ..., y_k$ nazywamy dowolny wektor:

$$\boldsymbol{x} = \lambda_1 \boldsymbol{y}_1 + \ldots + \lambda_k \boldsymbol{y}_k,$$

gdzie współczynniki λ są nieujemne i takie, że $\lambda_1+\ldots+\lambda_k=1.$

Przykład: dla dwóch punktów y_1, y_2 , ich wszystkie kombinacje wypukłe tworzą odcinek łączący y_1 i y_2 .

■ Kombinacją wypukłą wektorów (punktów) $y_1, ..., y_k$ nazywamy dowolny wektor:

$$\boldsymbol{x} = \lambda_1 \boldsymbol{y}_1 + \ldots + \lambda_k \boldsymbol{y}_k,$$

gdzie współczynniki λ są nieujemne i takie, że $\lambda_1 + \ldots + \lambda_k = 1$.

Przykład: dla dwóch punktów y_1, y_2 , ich wszystkie kombinacje wypukłe tworzą odcinek łączący y_1 i y_2 .

■ Kombinacją wypukłą wektorów (punktów) $y_1, ..., y_k$ nazywamy dowolny wektor:

$$\boldsymbol{x} = \lambda_1 \boldsymbol{y}_1 + \ldots + \lambda_k \boldsymbol{y}_k,$$

gdzie współczynniki λ są nieujemne i takie, że $\lambda_1+\ldots+\lambda_k=1.$

Przykład: dla dwóch punktów y_1, y_2 , ich wszystkie kombinacje wypukłe tworzą odcinek łączący y_1 i y_2 .

■ Kombinacją wypukłą wektorów (punktów) $y_1, ..., y_k$ nazywamy dowolny wektor:

$$\boldsymbol{x} = \lambda_1 \boldsymbol{y}_1 + \ldots + \lambda_k \boldsymbol{y}_k,$$

gdzie współczynniki λ są nieujemne i takie, że $\lambda_1+\ldots+\lambda_k=1.$

■ Przykład: dla dwóch punktów y_1, y_2 , ich wszystkie kombinacje wypukłe tworzą odcinek łączący y_1 i y_2 .

Pytanie: jak wygląda kombinacja wypukła k punktów na płaszczyźnie?

Zbiór wypukły

Zbiór wypukły \mathcal{X} to taki zbiór, że dla jakichkolwiek punktów $y_1, \ldots, y_k \in \mathcal{X}$, każda ich kombinacja wypukła należy do \mathcal{X} .

Zbiór wypukły

Zbiór wypukły \mathcal{X} to taki zbiór, że dla jakichkolwiek punktów $y_1, \ldots, y_k \in \mathcal{X}$, każda ich kombinacja wypukła należy do \mathcal{X} .

Alternatywnie, zbiór wypukły $\mathcal X$ to taki zbiór, że dla jakichkolwiek dwóch punktów $y_1,y_2\in\mathcal X$, odcinek je łączący w całości należy do $\mathcal X$.

Zbiór wypukły

Zbiór wypukły \mathcal{X} to taki zbiór, że dla jakichkolwiek punktów $y_1, \ldots, y_k \in \mathcal{X}$, każda ich kombinacja wypukła należy do \mathcal{X} .

Alternatywnie, zbiór wypukły $\mathcal X$ to taki zbiór, że dla jakichkolwiek dwóch punktów $y_1,y_2\in\mathcal X$, odcinek je łączący w całości należy do $\mathcal X$.

Funkcja $f(\boldsymbol{x})$ jest wypukła, jeśli dla dowolnych dwóch punktów $\boldsymbol{x}_1, \boldsymbol{x}_2$ i dowolnego $\lambda \in [0,1]$, $f(\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2) \leq \lambda f(\boldsymbol{x}_1) + (1-\lambda)f(\boldsymbol{x}_2)$

Funkcja f(x) jest wypukła, jeśli dla dowolnych dwóch punktów x_1,x_2 i dowolnego $\lambda \in [0,1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Innymi słowy, funkcja f(x) jest wypukła, jeśli odcinek łączący dwa punkty na wykresie leży w całości powyżej lub na wykresie funkcji.

Innymi słowy, epigraf funkcji f(x) (zbiór ograniczony od dołu wykresem) jest zbiorem wypukłym.

Funkcja f(x) jest wypukła, jeśli dla dowolnych dwóch punktów x_1, x_2 i dowolnego $\lambda \in [0,1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Innymi słowy, funkcja f(x) jest wypukła, jeśli odcinek łączący dwa punkty na wykresie leży w całości powyżej lub na wykresie funkcji.

Innymi słowy, epigraf funkcji f(x) (zbiór ograniczony od dołu wykresem) jest zbiorem wypukłym.

Funkcja f(x) jest wypukła, jeśli dla dowolnych dwóch punktów x_1, x_2 i dowolnego $\lambda \in [0,1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Innymi słowy, funkcja f(x) jest wypukła, jeśli odcinek łączący dwa punkty na wykresie leży w całości powyżej lub na wykresie funkcji.

Innymi słowy, epigraf funkcji f(x) (zbiór ograniczony od dołu wykresem) jest zbiorem wypukłym.

Funkcja f(x) ma w punkcie x_0 minimum lokalne, jeśli istnieje takie ϵ , że dla dowolnych x spełniających $\|x-x_0\| \leq \epsilon$, mamy $f(x_0) \leq f(x)$.

Funkcja f(x) ma w punkcie x_0 minimum lokalne, jeśli istnieje takie ϵ , że dla dowolnych x spełniających $\|x-x_0\| \leq \epsilon$, mamy $f(x_0) \leq f(x)$.

Funkcja f(x) ma w punkcie x_0 minimum globalne, jeśli dla dowolnych x, mamy $f(x_0) \leq f(x)$.

Funkcja f(x) ma w punkcie x_0 minimum lokalne, jeśli istnieje takie ϵ , że dla dowolnych x spełniających $\|x-x_0\| \le \epsilon$, mamy $f(x_0) \le f(x)$.

Funkcja f(x) ma w punkcie x_0 minimum globalne, jeśli dla dowolnych x, mamy $f(x_0) \leq f(x)$.

Optymalizacja wypukła

Fakt

Rozważmy minimalizację funkcji wypukłej $f(\boldsymbol{x})$ na wypukłym zbiorze rozwiązań dopuszczalnych \mathcal{X} . Wtedy każde minimum lokalne funkcji $f(\boldsymbol{x})$ jest też jej minimum globalnym.

■ Niech $x_0 \in \mathcal{X}$ – minimum lokalne. Załóżmy przeciwnie, że nie jest minimum globalne, tj. istnieje $x_1 \in \mathcal{X}$ takie, że $f(x_1) < f(x_0)$.

- Niech $x_0 \in \mathcal{X}$ minimum lokalne. Załóżmy przeciwnie, że nie jest minimum globalne, tj. istnieje $x_1 \in \mathcal{X}$ takie, że $f(x_1) < f(x_0)$.
- Ponieważ x_0 jest minimum lokalnym, więc istnieje ϵ taki, że jeśli $\|x x_0\| \le \epsilon$, to $f(x_0) \le f(x)$.

- Niech $x_0 \in \mathcal{X}$ minimum lokalne. Załóżmy przeciwnie, że nie jest minimum globalne, tj. istnieje $x_1 \in \mathcal{X}$ takie, że $f(x_1) < f(x_0)$.
- Ponieważ x_0 jest minimum lokalnym, więc istnieje ϵ taki, że jeśli $\|x x_0\| \le \epsilon$, to $f(x_0) \le f(x)$.
- Weźmy kombinację wypukłą $x_2 = \lambda x_1 + (1 \lambda)x_0$.
 Zauważmy, że:

$$\|x_2 - x_0\| = \|\lambda(x_1 - x_0)\| = \lambda \|x_1 - x_0\|$$

czyli dla odpowiednio małego λ , będziemy mieli $\|x_2-x_0\|\leq \epsilon$, a stąd $f(x_0)\leq f(x_2)$.

- Niech $x_0 \in \mathcal{X}$ minimum lokalne. Załóżmy przeciwnie, że nie jest minimum globalne, tj. istnieje $x_1 \in \mathcal{X}$ takie, że $f(x_1) < f(x_0)$.
- Ponieważ x_0 jest minimum lokalnym, więc istnieje ϵ taki, że jeśli $\|x-x_0\| \le \epsilon$, to $f(x_0) \le f(x)$.
- Weźmy kombinację wypukłą $x_2 = \lambda x_1 + (1 \lambda)x_0$.
 Zauważmy, że:

$$\|x_2 - x_0\| = \|\lambda(x_1 - x_0)\| = \lambda \|x_1 - x_0\|$$

czyli dla odpowiednio małego λ , będziemy mieli $\|x_2 - x_0\| \le \epsilon$, a stąd $f(x_0) \le f(x_2)$.

■ Z drugiej strony, z wypukłości funkcji f(x): $f(x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_0) \le f(x_0)$

- Niech $x_0 \in \mathcal{X}$ minimum lokalne. Załóżmy przeciwnie, że nie jest minimum globalne, tj. istnieje $x_1 \in \mathcal{X}$ takie, że $f(x_1) < f(x_0)$.
- Ponieważ x_0 jest minimum lokalnym, więc istnieje ϵ taki, że jeśli $\|x-x_0\| \le \epsilon$, to $f(x_0) \le f(x)$.
- Weźmy kombinację wypukłą $x_2 = \lambda x_1 + (1 \lambda)x_0$.
 Zauważmy, że:

$$\|x_2 - x_0\| = \|\lambda(x_1 - x_0)\| = \lambda \|x_1 - x_0\|$$

czyli dla odpowiednio małego λ , będziemy mieli $\|x_2 - x_0\| \le \epsilon$, a stąd $f(x_0) \le f(x_2)$.

■ Z drugiej strony, z wypukłości funkcji f(x): $f(x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_0) \le f(x_0)$

sprzeczność!

Problemy wypukłe mają tylko globalne minima każda metoda szukająca lokalnych minimów, znajdzie również globalne minimum!

- Problemy niewypukłe są często dużo trudniejsze:
 - ⇒ Wiele (często: wykładniczo wiele) lokalnych minimów.

- Problemy niewypukłe są często dużo trudniejsze:
 Wiele (często: wykładniczo wiele) lokalnych minimów.
- Jeśli problem jest niewypukły, możesz starać się rozwiązać "najbliższe" wypukłe przybliżenie problemu (tzw. relaksacja). Bardzo popularna metoda w uczeniu maszynowym!

- Problemy wypukłe mają tylko globalne minima
 każda metoda szukająca lokalnych minimów, znajdzie również globalne minimum!
- Problemy niewypukłe są często dużo trudniejsze:
 Wiele (często: wykładniczo wiele) lokalnych minimów.
- Jeśli problem jest niewypukły, możesz starać się rozwiązać "najbliższe" wypukłe przybliżenie problemu (tzw. relaksacja). Bardzo popularna metoda w uczeniu maszynowym!
- W mojej części przedmiotu będziemy rozwiązywać wyłącznie problemy wypukłe.

- Problemy wypukłe mają tylko globalne minima każda metoda szukająca lokalnych minimów, znajdzie również globalne minimum!
- Problemy niewypukłe są często dużo trudniejsze:
 Wiele (często: wykładniczo wiele) lokalnych minimów.
- Jeśli problem jest niewypukły, możesz starać się rozwiązać "najbliższe" wypukłe przybliżenie problemu (tzw. relaksacja). Bardzo popularna metoda w uczeniu maszynowym!
- W mojej części przedmiotu będziemy rozwiązywać wyłącznie problemy wypukłe.
- W ostatniej części przedmiotu (prof. Jaszkiewicz) będziecie rozwiązywać problemy wyłącznie niewypukłe.