TAGES ANZEIGER MATH PROBLEMS

The Zürich daily *Tages Anzeiger* has a weekly math column. Here are some problems (translated from German to English) and my solutions.

1. 2024-05-02: Overlapping squares

Three squares with the given side lengths overlap as follows:

The gray surface is twice as large as the black surface. What is the area of the white surface?

2. 2024-06-27: DIGIT SUM TIMES 2024

Let Q(n) be the sum of digits of a natural number n. For all $n, Q(2n) \leq 2Q(n)$.

Find a number n such that $Q(n) = 2024 \cdot Q(3n)$.

Restating the problem, we know that for all n:

$$\frac{Q(2n)}{Q(n)} \le 2$$

and we want some n such that:

$$\frac{Q(3n)}{Q(n)} = \frac{1}{2024} \le 2$$

Let's use the notation $x\{k\}y$ to denote a natural number in base 10 where the digit x is repeated k times and followed by the digit y.

Playing around a bit to build intuition, for all positive k, $2(9\{k\}9) = 19\{k\}8$ and

$$\frac{Q(19\{k\}8)}{Q(9\{k\}9)} = \frac{1+9k+8}{9k+9} = 1$$

Similarly, $2(1\{k\}) = 2\{k\}$ and

$$\frac{Q(2\{k\})}{Q(1\{k\})} = 2$$

Intuitively, we want to find some increasing sequence of numbers n_i that contain a repeating pattern of digits such that $Q(n_i)$ grows much more quickly than $Q(3n_i)$ as the pattern of digits increases in length. Can we find a 3n that consists mostly of 0s while n does not?

The simplest pattern for which this is true is numbers of the form $n=3\{k\}y$ with $y\in\{4,5,6\}$. Then $3n=10\{k\}z$, where $z\in\{2,5,8\}$, respectively.

We may be onto something! Let's build a table:

n	$3\{k\}4$	$3\{k\}5$	$3\{k\}6$
3n	$10\{k\}2$	$10\{k\}5$	$10\{k\}8$
Q(n)	3k+4	3k + 5	3k+6
Q(3n)	3	6	9

 $\frac{3k+4}{3} = 2024$ has no integer solution (for any $m, 3m-4 \mod 3 = 2$).

 $\frac{3k+5}{6}=2024$ has no integer solution (for any $m,\,6m-5\mod 3=1).$

But $\frac{3k+6}{9} = 2024$ does have an integer solution $(9m-6 \mod 3 = 0)$. k = 6070, so $n = 3\{6070\}6$ (and $3n = 10\{6070\}8$).