

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

Red-Black trees

- **→** Definitions
- ➤ How to search, insert, remove elements

Definitions

- Red-Black Tree (RBT) (1972 Rudolph Bayer)
 - ➤ Binary Search Tree (BST)
 - o with one extra **bit** of storage per node:
 - its color: **RED** or **BLACK**.
 - > Constraint of the node colors on any simple path from the root to a leaf,
 - o RBT ensure that:
 - no such path is more than 2 times as long as any other,
 - \rightarrow the tree is approximately balanced.
 - Each node of the tree contains the attributes
 - 1. Color
 - 2. Key
 - 3. Left
 - 4. Right
 - 5. Parent
 - > If a child or the parent of a node does not exist
 - o the corresponding pointer attribute of the node contains the value NIL. (NIL == NULL == null pointer)
 - ➤ NULL == pointers to leaves (external nodes) of the BST
 - > the key-bearing nodes == internal nodes of the tree.

Properties

- 5 key properties
 - 1. Every node is either **red** or **black**.
 - 2. The root is **black**.
 - Every leaf (NIL) is black.
 - 4. If (a node is **red**) then
 - o **both** its children are **black**.
 - 5. For each node, all simple paths from the node to descendant leaves contain the **same** number of **black** nodes.

Example

RBT

> with leaves and the root's parent omitted entirely.

Example

RBT

- with each NIL replaced by the single sentinel T:nil,
 - o which is always **black**, and with black-heights omitted.

Example

RBT

- ➤ Every leaf, shown as a NIL = **black**.
- ➤ Each non-NIL node is marked with its **black**-height
- ➤ NILs have black-height 0.

Definitions

- The **black-height** of the node: bh(x)
 - Number of **black** nodes on any simple path from, but not including, a node x down to a leaf
- Property 5 (red → both children are black) →
 - > well defined notion of **black**-height because
 - o all descending simple paths from the node have the same number of black nodes.
 - ➤ We define the **black-height** of a RBT == the **black-height** of its **root**.
- RBT with n internal nodes → height at most 2*log(n+1)

Proof (1)

- Let h be the height of the tree.
- Show that
 - \triangleright Subtree rooted at any node x contains at least $2^{bh(x)}-1$ internal nodes.
- By induction on the height of x.
 - \rightarrow If (h(x)==0) then
 - o x must be a leaf (T.nil)
 - o the subtree rooted at x contains at least $2^{bh(x)}-1 = 0$ internal nodes.
 - ➤ Inductive step
 - o consider a node x with h>0 and x is an internal node with 2 children.
 - Each child has bh(x) (red) or bh(x)-1 (black)
 - Because the h(x.child) < h(x)
 - > Apply the inductive hypothesis
 - \rightarrow each child has at least $2^{bh(x)-1}-1$ internal nodes
 - \rightarrow the subtree rooted at x contains at least
 - \circ $(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$ internal nodes

Proof (2)

- Property 4
 - ➤ At least half the nodes on any simple path from the root to a leaf, not including the root, must be **black**
- \rightarrow bh(root) must be at least h/2
- \blacksquare → n ≥ 2^{h/2}-1
 - \rightarrow log(n+1) \geq h/2
 - \geq 2 log(n+1) \geq h
- We can implement Search, Minimum, Maximum, Successor, and Predecessor in O(log n)

Relationships with B-trees

RBT

- > Same structure as a B-tree of order 4
 - Each node can contain
 - between 1 and 3 values
 - between 2 and 4 child pointers
- In this B-tree, each node will contain only 1 value matching the value in a **black** node of the RBT
 - o with an optional value before and/or after it in the same node
 - o matching an equivalent **red** node of the RBT
- Move up the red nodes
 - > \rightarrow they align horizontally with their parent **black** node
 - Through the creation of an horizontal cluster.
 - \circ B-tree, / modified graphical representation of the RBT \rightarrow all leaf nodes have the same depth.
- A minimum fill factor of 33% of values per cluster
 - > with a maximum capacity of 3 values.

Relationships with B-trees

- RBT versus B-Tree
 - ➤ Property 4

RBT

B-tree

Red Black Tree

- Insert & Delete
 - ➤ We must keep the constraints of the tree
 - > \rightarrow change the colors of some of the modes in the RBT
 - > > change the pointer structure of the RBT
 - Through Rotation
 - Like AVL trees

Insertion & Deletion

■ Node z

- ➤ Parent: z.p
- ➤ Grand-parent: z.p.p
- ➤Uncle (y)
 - o z.p.p.left
 - if z.p.p.right == z.p
 - o z.p.p.right
 - if z.p.p.left == z.p

- Insert node **z** in tree T
 - ➤ Default insert like in a BST
 - ➤ Set color to RED
 - **≻**InsertFixup

```
RB-INSERT (T, z)
                             y = T.nil
                            x = T.root
                             while x \neq T.nil
                                 y = x
                                if z. key < x. key
Find where to insert
                                     x = x.left
Same as BST
                                 else x = x.right
                             z \cdot p = y
                             if y == T.nil
 Special case: root?
                                 T.root = z
                             elseif z. key < y. key
                                y.left = z
                             else y.right = z
                         14 z.left = T.nil
                         15 z.right = T.nil
  Default color: RED
                        16 z.color = RED
                             RB-INSERT-FIXUP (T, z)
```

- Fix the tree, consider **3 main cases**
 - >z and its parent z.p are red
 - $\circ \rightarrow$ violation of property 4
 - \geq z's uncle y is red \Rightarrow case 1
 - recolor nodes and move the pointer z up the tree (b)
 - >z and its parent are both red
 - o but z's uncle y is black
 - \circ Because z is the right child of z.p \rightarrow case 2
 - o perform a **left rotation (c)**
 - o z is the left child of its parent → case 3
 recoloring and right rotation (d)

Fix tree

➤ Pseudo Code

T.root.color = BLACK

```
RB-INSERT-FIXUP (T, z)
    while z.p.color == RED
        if z.p == z.p.p.left
                                z.p.p = grand parent
             y = z.p.p.right
                                y is RED
            if v.color == RED
                 z.p.color = BLACK
                                                                   // case 1
                 y.color = BLACK
                                                                   // case 1
                                                                   // case 1
                 z.p.p.color = RED
                                                                   // case 1
                z = z.p.p
 9
            else if z == z.p.right y is Black
                                                                   // case 2
10
                     z = z.p
11
                     LEFT-ROTATE (T, z)
                                                                   // case 2
12
                 z.p.color = BLACK
                                                                   // case 3
13
                 z.p.p.color = RED
                                                                   // case 3
14
                RIGHT-ROTATE(T, z.p.p)
                                                                   // case 3
        else (same as then clause
                 with "right" and "left" exchanged)
```

What we want to keep in the loop (invariant)

- 1. Node z is red
- 2. If (z.p is the root) then z.p is black
- 3. If the tree violates any of the RBT properties then it violates at most one of them and the violation is property 2 or property 4.
 - If property 2 violation
 - \rightarrow because z is the root and is red.
 - If property 4 violation
 - → because both z and z.p are red.

Case 1:

>z's uncle y is red

■ Case 2:

>z's uncle y is black and z is a right child

■ Case 3:

>z's uncle y is black and z is a left child

Insert - Case 1

Violation of Property 4 (if a node is red, both children are black)

>z and z.p : red

Insert - Case 2 & 3

Violation of Property 4

➤z and z.p: both red 🕾

Each of the subtrees α , β , and γ has a black root

- α, β, and γ from property 4
- δ because case 1 otherwise each has the same bh (black height)

Transform Case 2 → Case 3 by a **left rotation** (preserves property 5)

- all downward simple paths from a node to a leaf have the same number of blacks.
- Case 3 causes some **color changes** and a **right rotation** (preserve property 5).

The **while** loop then terminates because property 4 is satisfied == no longer 2 red nodes in a row.

Insert

Complexity

- ➤ Height of a RBT on n nodes = O(log n)
- \rightarrow RB-INSERT take O(log n) in time.
- ► RB-INSERTFIXUP,
 - while loop repeats only if
 - case 1 happens and then the pointer z moves 2 levels up the tree.
 - \rightarrow total number of times the **while** loop can be executed is O(log n)
 - $\circ \rightarrow O(\log n)$ time.
- ➤ It never performs more than 2 rotations
 - o because since the **while** loop terminates if case 2 or case 3 is executed!!

- Transplant function
 - > It replaces one subtree as a child of its parent with another subtree
 - o replaces the subtree rooted at node **u** with the subtree rooted at node **v**
 - ►/!\ Reference to T.nil , not nil
 - Use of a sentinel

```
RB-TRANSPLANT (T, u, v)

1 if u.p == T.nil

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 v.p = u.p
```

- Difference with BST delete
 - > Keep track of potential issues for violation of the RBT properties

Main idea

- ➤ Delete node z
 - If (z has fewer than 2 children) then
 - z is removed from the tree
 - \circ y = z
 - o If (z has 2 children) then
 - y should be z's successor
 - y moves into z's position in the tree.
 - Remember y's color before it is removed from or moved within the tree
 - Keep track of the node x that moves into y's original position in the tree
 - since node x might also cause violations
 - After deleting node z,
 - RB-DELETE calls RB-DELETE-FIXUP
 - changes colors and performs rotations to restore the RBT properties.

■ Pseudo code

 $>O(\log(n))$

RB-Transplant(T,u,v):

replaces the subtree rooted at node **u** with the subtree rooted at node **v**

```
RB-DELETE (T, z)
 1 y = z
 2 y-original-color = y.color
   if z.left == T.nil
        x = z.right
        RB-TRANSPLANT (T, z, z. right)
    elseif z.right == T.nil
        x = z.left
        RB-TRANSPLANT (T, z, z, left)
    else y = \text{TREE-MINIMUM}(z.right)
        y-original-color = y.color
        x = y.right
        if y.p == z
13
            x \cdot p = y
14
        else RB-TRANSPLANT(T, y, y.right)
15
            y.right = z.right
            y.right.p = y
        RB-TRANSPLANT(T, z, y)
        y.left = z.left
19
        y.left.p = y
20
        y.color = z.color
    if y-original-color == BLACK
22
        RB-DELETE-FIXUP (T, x)
```

- If (y.c==red)
 - > RBT properties are respected when y is removed because:
- 1. No bh in the tree have changed.
- 2. No red nodes have been made adjacent.
 - ➤ Because y takes z's place in the tree, along with z's color
 - \rightarrow cannot have 2 adjacent red nodes at y's new position in the tree.
 - > if y was not z's right child then y's original right child x replaces y in the tree
 - ➤If (y.c==red) then x.c==black
 - o so replacing y by x cannot cause 2 red nodes to become adjacent!
- 3. As y could not have been the root if it was red
 - > root remains black.

- If (y.c==black)
 - \triangleright Remove y \rightarrow change hb
 - > Problems to fix the tree!
- 1. If y had been the root and a red child of y becomes the new root
 - \rightarrow violation of property 2.
- 2. If (x.c==red) and (x.p.c==red)
 - \rightarrow violation of property 4.
- 3. Moving y within the tree causes any simple path that previously contained y to have 1 fewer black node
 - > violation of property 5 (by any ancestor of y in the tree!)
 - Correction
 - o say that node x, now occupying y's original position, has an "extra" black
 - o if (add 1 to the count of black nodes on any simple path that contains x)
 - Then under this interpretation, property 5 holds.

- \circ When we remove or move the black node y \rightarrow we "push" its blackness onto node x.
- > Problem:
- \rightarrow now node x is neither red nor black \rightarrow violation of property 1.

Delete Fixup

> Pseudo-code


```
RB-DELETE-FIXUP(T, x)
    while x \neq T.root and x.color == BLACK
        if x == x.p.left
            w = x.p.right
            if w.color == RED
                                                                   // case 1
                 w.color = BLACK
                 x.p.color = RED
                                                                   // case 1
                 LEFT-ROTATE (T, x.p)
                                                                   // case 1
                 w = x.p.right
                                                                   // case 1
            if w.left.color == BLACK and w.right.color == BLACK
10
                 w.color = RED
                                                                   // case 2
                                                                   // case 2
11
                x = x.p
            else if w.right.color == BLACK
12
13
                                                                   // case 3
                     w.left.color = BLACK
14
                     w.color = RED
                                                                   // case 3
15
                     RIGHT-ROTATE (T, w)
                                                                   // case 3
                                                                   // case 3
16
                     w = x.p.right
                                                                   // case 4
17
                 w.color = x.p.color
18
                 x.p.color = BLACK
                                                                   // case 4
19
                 w.right.color = BLACK
                                                                   // case 4
20
                 LEFT-ROTATE (T, x.p)
                                                                   // case 4
21
                 x = T.root
                                                                   // case 4
        else (same as then clause with "right" and "left" exchanged)
    x.color = BLACK
```

Case 1:

- ➤ It happens when
 - node w (sibling of x is red) w.c==red
- > w must have black children
 - we can switch the colors of w and x.p
 - Perform a left-rotation on x.p without violating any RBT properties
- ➤ New sibling of x (1 of w's children prior to the rotation): black
- \triangleright case 1 \rightarrow case 2, 3, or 4.

Case 2:

- ➤ It happens when
 - (x's sibling w.c==black) and (w.right.c==black) and (w.left.c==black)
- \rightarrow As w is black \rightarrow take one black off both x and w
 - leaving x with only 1 black and leaving w red.
- ➤ Compensate for removing 1 black from x and w
 - Add an extra black to x.p that was red or black
 - o How?
 - by repeating the **while** loop with x.p as the new node x.
 - If we enter **Case 2** through **Case 1**, the new node x is red-and-black, since the original x.p was red.
- \rightarrow color of the new node x is red
 - > and the loop terminates when it tests the loop condition.

Case 3:

- ➤ It happens when
 - w.c==black and w.left.c==red and w.right.c==black
- > Switch the colors of w and w.left
- > Then perform a **right rotation** on w without
 - violating any of the RBT properties
- The new sibling w of x is now a **black** node
 - > with a red right child
 - \triangleright Transform Case 3 \rightarrow case 4.

■ Case 4:

- ➤ It happens when
 - (x's sibling w.c==black) and (w.right.c==red)
- ➤ Some color changes + left rotation on x.p
 - Remove the extra black on x, making it singly black
 - without violating any of the RBT properties.
- \triangleright Setting x to be the root causes the while loop to terminate when it tests the loop condition.

- Complexity analysis
 - ➤ height of a RBT of n is O(log n),
 - o total cost of the procedure without the call to RB-DELETEFIXUP is log n time
 - ➤ Within RB-DELETE-FIXUP
 - o Cases 1, 3, and 4:
 - lead to termination after performing a constant number of color changes and
 - + At most 3 rotations
 - Case 2 is the only case where the while loop can be repeated
 - the pointer x moves up the tree at most O(log n) times,
 - no rotations!
 - ➤ → RB-DELETE-FIXUP
 - o takes O(log n) time
 - Performs at most 3 rotations
 - ➤ Total time for RB-DELETE = O(log n)

Conclusion

- Red-Black trees
 - > A form of semi-balanced binary tree
 - Compared to other trees
 - o more general purpose: add, remove, and look-up
 - but AVL trees have faster look-ups at the cost of slower add/remove!
- Applications
 - ➤ Linux kernel
 - The anticipatory, deadline, and CFQ I/O schedulers: RBT to track requests

- The packet CD/DVD driver: RBT trees
- o The high-resolution timer uses an RBT to organize outstanding timer requests
- The ext3 file system tracks directory entries in an RBT
- Virtual memory areas (VMAs) are tracked with RBTs
- Complexity

Algorithm	Average	Worst case
Space	O(n)	O(n)
Search	$O(\log n)$	$O(\log n)$
Insert	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$

Questions?

- Acknowledgment + Reading
 - ➤ Csci 115 book Section 7.4
 - ➤ Chapter 13, Red-Black Trees, Introduction to Algorithms, 3rd Edition.

