[Přední strana pevných desek vazby. Není součástí elektronické verze práce.]

Univerzita Karlova Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

BAKALÁŘSKÁ PRÁCE

Ondřej Krsička

Kalibrace meteorologických webových kamer

Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: Mgr. Martin Mirbauer

Studijní program: Informatika (B0613A140006)

Studijní obor: IPP5 (0613RA1400060009)

[Vevázaný list s kopií podepsaného "Zadání bakalářské práce". Toto zadání není součástí elektronické verze, nescanovat!]

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.
V dne
Podpis autora

Děkuji vedoucímu bakalářské práce Mgr. Martinu Mirbauerovi za cenné rady při psaní této bakalářské práce. Dále děkuji svým rodičům za podporu při studiu.

Název práce: Kalibrace meteorologických webových kamer

Autor: Ondřej Krsička

Katedra: Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: Mgr. Martin Mirbauer, Katedra softwaru a výuky in-

formatiky

Abstrakt: Abstrakt. [doporučeno cca 80–200 slov; nejedná se o zadání práce

TODO]

Klíčová slova: kalibrace, webová kamera, model oblohy

[Informace o práci se musí objevit i v metadatech PDF. Přečtěte si v souboru README, jak se to dělá.]

Title: Weather Webcam Calibration

Author: Ondřej Krsička

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Martin Mirbauer, Department of Software and Computer Science

Education

Abstract: Abstract. TODO

Keywords: calibration, webcam, sky model

Obsah

Ú٦	od		2
1	Teo	retický základ	3
	1.1	Sférická soustava souřadnic	3
	1.2	Ohnisková vzdálenost a zorný úhel	3
	1.3	Nalezení bodu na obloze	4
	1.4	Radiometrie, fotometrie a spektrometrie	5
	1.5	Perezův model oblohy	6
	1.6	Pražský model oblohy	6
		1.6.1 Matematický popis	7
		1.6.2 Využití	7
	1.7	Úprava práce	7
	1.8	Jednoduché příklady	8
	1.9	Matematické vzorce a výrazy	8
	1.10	Definice, věty, důkazy,	10
2	Odk	azy na literaturu	11
	2.1	Několik ukázek	11
3	Tab	ulky, obrázky, programy	12
	3.1	Tabulky	12
	3.2	Obrázky	13
	3.3	Programy	13
4	Form	mát PDF/A	18
Zá	věr		19
\mathbf{Se}	znan	n použité literatury	20
Se	znan	ı obrázků	21
Se	znan	ı tabulek	22
\mathbf{Se}	znan	n použitých zkratek	23
Se	znan	n publikací	24
\mathbf{A}	Příl	ohy První příloha	25 25

Úvod

Meteorologické webové kamery představují významný zdroj informací o počasí, oblačnosti a dalších atmosférických jevech. Kromě přímého využití v meteorologii mohou tyto kamery sloužit i pro další účely, jako je renderování realistických mraků a oblohy v různých aplikacích, například ve filmovém průmyslu, videohrách či simulacích. Klíčovým faktorem pro dosažení vysoké úrovně realismu v takových aplikacích je správná kalibrace webových kamer, což zahrnuje určení parametrů kamery, jako jsou azimut, zenit, natočení a zorné pole. Tyto údaje však nemusejí být známé, proto existují metody pro jejich aproximaci.

Cílem této bakalářské práce je porovnat stávající přístupy k automatickému nalezení chybějících parametrů meteorologických kamer, konkrétně metody Lalonde08/10 a Hold-Geoffroy. Následně je zamýšleno vylepšit metodu Lalonde08/10 integrací modelu oblohy Prague Sky Model.

Pro validaci navrženého řešení bude využit dataset webových kamer od Českého hydrometeorologického ústavu (ČHMÚ), který poskytuje obrazová data z 98 webových kamer.

1. Teoretický základ

1.1 Sférická soustava souřadnic

Bod na obloze budeme určovat ve sférické soustavě souřadnic. Ta umožňuje bod na obloze jednoznačně určit jeho azimutem ϕ a zenitem θ .

Definice 1 (Azimut). Azimut ϕ je úhel na vodorovné rovině, který je svírán se severním směrem. Hodnoty azimutu ϕ se pohybují v rozmezí 0° až 360° .

Definice 2 (Zenit). Zenit θ je úhel vertikálního směru, měřený od bodu přímo nad kamerou (zenit) směrem dolů k horizontu. Hodnoty zenitu θ se pohybují v rozmezí 0° až 90° .

Orientaci kamery v terénu pak definujeme pomocí úhlů (θ_c, ϕ_c) určujících bod na obloze, který je uprostřed snímku.

Obrázek 1.1: Sférická soustava souřadnic Wikipedia (2023)

1.2 Ohnisková vzdálenost a zorný úhel

Pro nás nejvýznamější parametr objektivu je ohnisková vzdálenost f_c , pomocí které lze určit zorné pole kamery.

Definice 3 (Ohnisková vzdálenost). Ohnisková vzdálenost f_c [mm] je vzdálenost mezi optickým středem objektivu a rovinou snímače (čipu) při zaostření na nekonečno. (Hoško, 2014)

Ohnisková vzdálenost se mění, když upravujeme optický zoom. Větší zoom znamená větší ohniskovou vzdálenost a užší zorný úhel. My budeme ohniskovou vzdálenost modelovat v pixelech, protože neznáme velikost senzoru webových kamer, ale známe rozlišení jejich snímků.

Lemma 1. Pro objektiv s ohniskovou vzdáleností f_c [px] a snímací čip velilosti (W, H) [px] je zorný úhel ve vodorovném směru ω_h dán vztahem

$$\omega_h = 2 \arctan\left(\frac{W}{2f}\right).$$
 (1.1)

 $D\mathring{u}kaz.$ Vztah je dán goniometrií pravoúhlého trojúhelníku, jehož odvěsny jsou f a W/2.

TO.5MM
Full Frame Fisheye

DX-FORMAT is equivalent to a 1.5x crop compared to FX format

135MM

Field OF VIEW

12°

46°

Obrázek 1.2: Vliv ohniskové vzdálenosti na zorný úhel Nikon (2023)

1.3 Nalezení bodu na obloze

Abychom mohli modelovat snímek oblohy kamerou s parametry (f_c, θ_c, ϕ_c) , musíme převést pozici pixelu na snímku na pozici bodu na obloze.

4

Lemma 2. (Lalonde a kol., 2010, Appendix B) Buď ϕ_c azimut kamery, θ_c zenit kamery, f_c [px] ohnisková vzdálenost kamery, (W, H) [px] rozlišení snímku, (x_p, y_p) pozice pixelu (horizontální a vertikální vzdálenost od levého horního rohu snímku). Nechť $u_p = x_p - W/2$, $v_p = H/2 - y_p$. Pak

$$\theta_p = \arccos\left(\frac{v_p \cdot \sin(\theta_c) + f_c \cdot \cos(\theta_c)}{\sqrt{f_c^2 + u_p^2 + v_p^2}}\right),\tag{1.2}$$

$$\phi_p = \arctan\left(\frac{f_c \cdot \sin(\phi_c) \cdot \sin(\theta_c) - u_p \cdot \cos(\theta_c) - v_p \cdot \sin(\theta_c) \cdot \cos(\phi_c)}{f_c \cdot \cos(\theta_c) \cdot \sin(\phi_c) + u_p \cdot \sin(\theta_c) - v_p \cdot \cos(\theta_c) \cdot \cos(\phi_c)}\right)$$
(1.3)

 $D\mathring{u}kaz$. Jednotlivé kroky důkazu jsou podrobně popsány v práci Lalonde a kol. (2010, Appendix B).

Lemma 3. (Lalonde a kol., 2010, strana 16) Nechť (ϕ_c, θ_c) je směr kamery, (ϕ_s, θ_s) je pozice slunce na obloze, $f_c[px]$ ohnisková vzdálenost kamery, (W, H) rozlišení snímku, (x_p, y_p) pozice pixelu (horizontální a vertikální vzdálenost od levého horního rohu snímku). Nechť $u_p = x_p - W/2$, $v_p = H/2 - y_p$. Pak úhel γ_p mezi sluncem (ϕ_s, θ_s) a bodem na obloze (ϕ_c, θ_c) je dán vztahem

$$\gamma_p = \arccos\left(\cos(\phi_p) \cdot \cos(\phi_s) + \sin(\phi_p) \cdot \sin(\phi_s) \cdot \cos(\theta_p - \theta_s)\right) \tag{1.4}$$

1.4 Radiometrie, fotometrie a spektrometrie

Radiometrie a spektrometrie jsou vědní disciplíny, které se zabývají měřením a analýzou světla a elektromagnetického záření. Radiometrie se zaměřuje na kvantitativní měření energie elektromagnetického záření. Fotometrie se na druhou stranu zaměřuje na měření světla ve vztahu k lidskému vnímání. Spektrometrie zkoumá vlastnosti světla a elektromagnetického záření v různých vlnových délkách. Vzhledem k tomu, že lidské oko má různou citlivost na různé vlnové délky světla, fotometrická měření jsou váženy podle vnímání lidského oka.

Nás nejvíce bude zajímat vztah mezi radiometrickou veličinou zář a fotometrickou veličinou jas.

Definice 4 (Spektrální odezva). Spektrální odezva $V(\lambda)$ je funkce, která popisuje citlivost lidského oka na různé vlnové délky světla.

Definice 5 (Spektrální zář a jas). Jas L je zář L_e vážená spektrální odezvou lidského oka $V(\lambda)$. Platí:

$$L(\lambda) = L_e(\lambda) \cdot V(\lambda) \tag{1.5}$$

Příklad využití spektrální citlivosti oka je převod RGB obrázku do jednoho kanálu L (scikit-image, 2021).

$$L = 0.2126 \cdot R + 0.7152 \cdot G + 0.0722 \cdot B \tag{1.6}$$

Obrázek 1.3: Pozice slunce (θ_s, γ_s) , orientace kamery (θ_c, γ_c) , pozice bodu na obloze (θ_p, γ_p) , úhel bodu na obloze se sluncem γ_p , pozice bodu na obrázku (u_p, v_p) (Lalonde a kol., 2010, strana 15)

1.5 Perezův model oblohy

Tento analytický model oblohy byl poprvé představen v článku Perez a kol. (1993). Model bere v úvahu zenit pozorovaného bodu θ a úhel se sluncem γ .

Věta 4. (Perez a kol., 1993) Relativní jas bodu na obloze vůči jasu zenitu je dán vztahem:

$$l_p = (1 + a \cdot \exp(b/\cos(\theta))) \cdot (1 + c \cdot \exp(d \cdot \gamma) + e \cdot \cos^2(\gamma))$$
 (1.7)

 $Kde\ (a,b,c,d,e)$ jsou koeficienty modelu, které závisí na meteorologických podmínkách a zeměpisné poloze.

Výhoda Perezova modelu je jeho jednoduchost. Je vhodný pro simulace, ve kterých se prefetuje výpočetní výkon nad přesností. Jeho nevýhodou je to, že nedokáže zohledňovat více atmosférických vlivů a že jeho parametry a,b,c,d,e je nutné nalézt v tabulkách nebo nastavit pomocí empirických měření.

1.6 Pražský model oblohy

Pražský model oblohy (Wilkie a kol., 2021) byl vyvinut na Matematickofyzikálni fakultě Univerzity Karlovy. Oproti Perezovu modelu nepočítá relativní jas (fotometrická veličina), ale zář (radiometrická veličina). Není to analytický model, ale přistupuje k datům vygenerovaným fyzikálním simulátorem Libradtran (Emde a kol., 2016), které jsou komprimovány do souboru o velikosti cca 2GB. Díky tomu je pražský model přesnější a obecnější než Perezův model a zároveň je rychlejší, než fyzikální simulace.

1.6.1 Matematický popis

Pražský model oblohy zohledňuje následující proměnné:

- θ_p : zenit pozorovaného bodu
- γ_p : úhel mezi pozorovaným bodem a sluncem
- ϕ_s : azimut slunce
- θ_s : zenit slunce
- viditelnost[km] (za jasného dne zhruba 100km)
- albedo: míra odrazivosti země, v rozsahu od 0 do 1. (Zasněžená krajina má vyšší albedo než travnatá plocha)
- vlnová délka [nm]: při generování obrázků nás bude zajímat červená, zelená a modrá barva, které odpovídají vlnovým délkám 650nm, 550nm a 450nm.

a vrací spektrální zář $L_e[W\cdot sr^{-1}\cdot m^{-2}\cdot nm^{-1}].$

1.6.2 Využití

Model je použit ve fotorealistickém renderovacím softwaru Corona Renderer od společnosti Chaos Czech a.s. (Chaos Czech a.s., 2023). Jeho hlavní oblasti využití zahrnují architektonické vizualizace, interiérový design, filmový a televizní průmysl, reklamu a 3D vizualizace a animace. Corona Renderer je kompatibilní s programy jako Autodesk 3ds Max a Cinema 4D, což usnadňuje jeho integraci do stávajících pracovních postupů.

1.7 Úprava práce

Práce se tiskne na bílý papír formátu A4. Okraje musí ponechat dost místa na vazbu: doporučen je horní, dolní a pravý okraj 25 mm, levý okraj 40 mm. Číslují se všechny strany kromě obálky a informačních stran na začátku práce; první číslovaná strana bývá obvykle ta s obsahem.

Písmo se doporučuje dvanáctibodové (12 pt) se standardní vzdáleností mezi řádky (pokud píšete ve Wordu nebo podobném programu, odpovídá tomu řádkování 1,5; v TEXu není potřeba nic přepínat). Pro běžný text používejte vzpřímené patkové písmo. Text matematických vět se obvykle tiskne pro zdůraznění skloněným (slanted) písmem, není-li k dispozici, může být zastoupeno kurzívou.

Primárně je doporučován jednostranný tisk (příliš tenkou práci lze obtížně svázat). Delší práce je lepší tisknout oboustranně a přizpůsobit tomu velikosti okrajů: 40 mm má vždy *vnitřní* okraj. Rub titulního listu zůstává nepotištěný.

Zkratky použité v textu musí být vysvětleny vždy u prvního výskytu zkratky (v závorce nebo v poznámce pod čarou, jde-li o složitější vysvětlení pojmu či zkratky). Pokud je zkratek více, připojuje se seznam použitých zkratek, včetně jejich vysvětlení a/nebo odkazů na definici.

Delší převzatý text jiného autora je nutné vymezit uvozovkami nebo jinak vyznačit a řádně citovat.

1.8 Jednoduché příklady

Čísla v českém textu obvykle sázíme v matematickém režimu s desetinnou čárkou: $\pi \doteq 3,141\,592\,653\,589$. V matematických textech se považuje za přípustné používat desetinnou tečku (pro lepší odlišení od čárky v roli oddělovače). Numerické výsledky se uvádějí s přiměřeným počtem desetinných míst.

Mezi číslo a jednotku patří úzká mezera: šířka stránky A4 činí 210 mm, což si pamatuje pouze 5 % autorů. Pokud ale údaj slouží jako přívlastek, mezeru vynecháváme: 25mm okraj, 95% interval spolehlivosti.

Rozlišujeme různé druhy pomlček: červeno-černý (krátká pomlčka), strana 16–22 (střední), 45 – 44 (matematické minus), a toto je — jak se asi dalo čekat — vložená věta ohraničená dlouhými pomlčkami.

V českém textu se používají "české" uvozovky, nikoliv "anglické".

Na některých místech je potřeba zabránit lámání řádku (v~TEXu značíme vlnovkou): u~předložek (neslabičnych, nebo obecně jednopísmenných), vrchol~v, před k~kroky, a~proto, ... obecně kdekoliv, kde by při rozlomení čtenář "škobrtnul".

1.9 Matematické vzorce a výrazy

Proměnné sázíme kurzívou (to TEX v matematickém módu dělá sám, ale nezapomínejte na to v okolním textu a také si matematický mód zapněte). Názvy funkcí sázíme vzpřímeně. Tedy například: $\text{var}(X) = \mathsf{E}\ X^2 - \left(\mathsf{E}\ X\right)^2$.

Zlomky uvnitř odstavce (třeba $\frac{5}{7}$ nebo $\frac{x+y}{2}$) mohou být příliš stísněné, takže je lepší sázet jednoduché zlomky s lomítkem: 5/7, (x+y)/2.

Necht

$$\mathbb{X} = egin{pmatrix} oldsymbol{x}_1^ op \ dots \ oldsymbol{x}_n^ op \end{pmatrix}.$$

Povšimněme si tečky za maticí. Byť je matematický text vysázen ve specifickém prostředí, stále je gramaticky součástí věty a tudíž je zapotřebí neopomenout patřičná interpunkční znaménka. Výrazy, na které chceme později odkazovat, je vhodné očíslovat:

$$\mathbb{X} = \begin{pmatrix} \boldsymbol{x}_1^{\top} \\ \vdots \\ \boldsymbol{x}_n^{\top} \end{pmatrix}. \tag{1.8}$$

Výraz (1.8) definuje matici X. Pro lepší čitelnost a přehlednost textu je vhodné číslovat pouze ty výrazy, na které se autor někde v další části textu odkazuje. To

jest, nečíslujte automaticky všechny výrazy vysázené některým z matematických prostředí.

Zarovnání vzorců do několika sloupečků:

$$\begin{split} S(t) &= \mathsf{P}(T > t), \qquad t > 0 \qquad \text{(zprava spojitá)}, \\ F(t) &= \mathsf{P}(T \leq t), \qquad t > 0 \qquad \text{(zprava spojitá)}. \end{split}$$

Dva vzorce se spojovníkem:

$$S(t) = P(T > t)$$

$$F(t) = P(T \le t)$$

$$t > 0 (zprava spojité). (1.9)$$

Dva centrované nečíslované vzorce:

$$egin{aligned} oldsymbol{Y} &= \mathbb{X}oldsymbol{eta} + oldsymbol{arepsilon}, \ \mathbb{X} &= egin{pmatrix} 1 & oldsymbol{x}_1^ op \ 1 & oldsymbol{x}_n^ op \end{pmatrix}. \end{aligned}$$

Dva centrované číslované vzorce:

$$Y = X\beta + \varepsilon, \tag{1.10}$$

$$\mathbb{X} = \begin{pmatrix} 1 & \boldsymbol{x}_1^{\top} \\ \vdots & \vdots \\ 1 & \boldsymbol{x}_n^{\top} \end{pmatrix}. \tag{1.11}$$

Definice rozdělená na dva případy:

$$P_{r-j} = \begin{cases} 0, & \text{je-li } r-j \text{ lich\'e}, \\ r! (-1)^{(r-j)/2}, & \text{je-li } r-j \text{ sud\'e}. \end{cases}$$

Všimněte si použití interpunkce v této konstrukci. Čárky a tečky se dávají na místa, kam podle jazykových pravidel patří.

$$x = y_1 - y_2 + y_3 - y_5 + y_8 - \dots =$$
 z (1.10)
 $= y' \circ y^* =$ podle (1.11)
 $= y(0)y'$ z Axiomu 1. (1.12)

Dva zarovnané vzorce nečíslované:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_i(y_i; \boldsymbol{\theta}),$$

$$\ell(\boldsymbol{\theta}) = \log \{L(\boldsymbol{\theta})\} = \sum_{i=1}^{n} \log \{f_i(y_i; \boldsymbol{\theta})\}.$$

Dva zarovnané vzorce, první číslovaný:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_i(y_i; \boldsymbol{\theta}),$$

$$\ell(\boldsymbol{\theta}) = \log \{L(\boldsymbol{\theta})\} = \sum_{i=1}^{n} \log \{f_i(y_i; \boldsymbol{\theta})\}.$$
(1.13)

Vzorec na dva řádky, první řádek zarovnaný vlevo, druhý vpravo, nečíslovaný:

$$\ell(\mu, \sigma^2) = \log \{ L(\mu, \sigma^2) \} = \sum_{i=1}^n \log \{ f_i(y_i; \mu, \sigma^2) \} =$$

$$= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2.$$

Vzorec na dva řádky, zarovnaný na =, číslovaný uprostřed:

$$\ell(\mu, \sigma^2) = \log \{ L(\mu, \sigma^2) \} = \sum_{i=1}^n \log \{ f(y_i; \mu, \sigma^2) \} =$$

$$= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2.$$
(1.14)

1.10 Definice, věty, důkazy, ...

Konstrukce typu definice, věta, důkaz, příklad, ... je vhodné odlišit od okolního textu a případně též číslovat s možností použití křížových odkazů. Pro každý typ těchto konstrukcí je vhodné mít v souboru s makry (makra.tex) nadefinované jedno prostředí, které zajistí jak vizuální odlišení od okolního textu, tak automatické číslování s možností křížově odkazovat.

Definice 6. Nechť náhodné veličiny X_1, \ldots, X_n jsou definovány na témž pravděpodobnostním prostoru (ω, \mathcal{A}, P) . Pak vektor $\mathbf{X} = (X_1, \ldots, X_n)^{\top}$ nazveme náhodným vektorem.

Definice 7 (náhodný vektor). Nechť náhodné veličiny X_1, \ldots, X_n jsou definovány na témž pravděpodobnostním prostoru (ω, \mathcal{A}, P) . Pak vektor $\mathbf{X} = (X_1, \ldots, X_n)^{\top}$ nazveme náhodným vektorem.

Definice 1 ukazuje použití prostředí pro sazbu definice bez titulku, definice 2 ukazuje použití prostředí pro sazbu definice s titulkem.

Věta 5. Náhodný vektor X je měřitelné zobrazení prostoru (ω, \mathcal{A}, P) do $(\mathbb{R}_n, \mathcal{B}_n)$.

Lemma 6 (?, str. 29). Náhodný vektor X je měřitelné zobrazení prostoru (ω, \mathcal{A}, P) do $(\mathbb{R}_n, \mathcal{B}_n)$.

Důkaz. Jednotlivé kroky důkazu jsou podrobně popsány v práci ?, str. 29.

Věta 5 ukazuje použití prostředí pro sazbu matematické věty bez titulku, lemma ?? ukazuje použití prostředí pro sazbu matematické věty s titulkem. Lemmata byla zavedena v hlavním souboru tak, že sdílejí číslování s větami.

2. Odkazy na literaturu

Odkazy na literaturu vytváříme nejlépe pomocí příkazů \citet, \citep atp. (viz laTeXový balíček natbib) a následného použití BibTeXu. V matematickém textu obvykle odkazujeme stylem "Jméno autora/autorů (rok vydání)", resp. "Jméno autora/autorů [číslo odkazu]". V českém/slovenském textu je potřeba se navíc vypořádat s nutností skloňovat jméno autora, respektive přechylovat jméno autorky. Je potřeba mít na paměti, že standardní příkazy \citet, \citep produkují referenci se jménem autora/autorů v prvním pádě a jména autorek jsou nepřechýlena.

Pokud nepoužíváme bibT_EX, řídíme se normou ISO 690 a zvyklostmi oboru. Jména časopisů lze uvádět zkráceně, ale pouze v kodifikované podobě.

2.1 Několik ukázek

Mezi nejvíce citované statistické články patří práce Kaplana a Meiera a Coxe (??). ? napsal článek o t-testu.

Prof. Anděl je autorem učebnice matematické statistiky (viz ?). Teorii odhadu se věnuje práce ?. V případě odkazů na specifickou informaci (definice, důkaz, ...) uvedenou v knize bývá užitečné uvést specificky číslo kapitoly, číslo věty atp. obsahující požadovanou informaci, např. viz ?, Věta 4.22 nebo (viz ?, Věta 4.22).

Mnoho článků je výsledkem spolupráce celé řady osob. Při odkazování v textu na článek se třemi autory obvykle při prvním výskytu uvedeme plný seznam: ? představili koncept EM algoritmu. Respektive: Koncept EM algoritmu byl představen v práci Dempstera, Lairdové a Rubina (?). Při každém dalším výskytu již používáme zkrácenou verzi: ? nabízejí též několik příkladů použití EM algoritmu. Respektive: Několik příkladů použití EM algoritmu lze nalézt též v práci Dempstera a kol. (?).

U článku s více než třemi autory odkazujeme vždy zkrácenou formou: První výsledky projektu ACCEPT jsou uvedeny v práci Genbergové a kol. (?). V textu nenapíšeme: První výsledky projektu ACCEPT jsou uvedeny v práci ?.

3. Tabulky, obrázky, programy

Používání tabulek a grafů v odborném textu má některá společná pravidla a některá specifická. Tabulky a grafy neuvádíme přímo do textu, ale umístíme je buď na samostatné stránky nebo na vyhrazené místo v horní nebo dolní části běžných stránek. LATEX se o umístění plovoucích grafů a tabulek postará automaticky.

Každý graf a tabulku očíslujeme a umístíme pod ně legendu. Legenda má popisovat obsah grafu či tabulky tak podrobně, aby jim čtenář rozuměl bez důkladného studování textu práce.

Na každou tabulku a graf musí být v textu odkaz pomocí jejich čísla. Na příslušném místě textu pak shrneme ty nejdůležitější závěry, které lze z tabulky či grafu učinit. Text by měl být čitelný a srozumitelný i bez prohlížení tabulek a grafů a tabulky a grafy by měly být srozumitelné i bez podrobné četby textu.

Na tabulky a grafy odkazujeme pokud možno nepřímo v průběhu běžného toku textu; místo "Tabulka 3.1 ukazuje, že muži jsou v průměru o 9,9 kg těžší než ženy" raději napíšeme "Muži jsou o 9,9 kg těžší než ženy (viz Tabulka 3.1)".

3.1 Tabulky

U tabulek se doporučuje dodržovat následující pravidla:

- Vyhýbat se svislým linkám. Silnějšími vodorovnými linkami oddělit tabulku od okolního textu včetně legendy, slabšími vodorovnými linkami oddělovat záhlaví sloupců od těla tabulky a jednotlivé části tabulky mezi sebou. V IATEXu tuto podobu tabulek implementuje balík booktabs. Chceme-li výrazněji oddělit některé sloupce od jiných, vložíme mezi ně větší mezeru.
- Neměnit typ, formát a význam obsahu políček v tomtéž sloupci (není dobré do téhož sloupce zapisovat tu průměr, onde procenta).
- Neopakovat tentýž obsah políček mnohokrát za sebou. Máme-li sloupec Rozptyl, který v prvních deseti řádcích obsahuje hodnotu 0,5 a v druhých deseti řádcích hodnotu 1,5, pak tento sloupec raději zrušíme a vyřešíme to jinak. Například můžeme tabulku rozdělit na dvě nebo do ní vložit popisné řádky, které informují o nějaké proměnné hodnotě opakující se v následujícím oddle tabulky (např. "Rozptyl = 0,5" a níže "Rozptyl = 1,5").
- Čísla v tabulce zarovnávat na desetinnou čárku.

Efekt	Odhad	$\begin{array}{c} \textbf{Sm\'{e}rod.} \\ \textbf{chyba}^a \end{array}$	P-hodnota
Abs. člen	-10,01	1,01	
Pohlaví (muž)	9,89	5,98	0,098
Výška (cm)	0,78	0,12	< 0.001

Pozn: ^a Směrodatná chyba odhadu metodou Monte Carlo.

Tabulka 3.1: Maximálně věrohodné odhady v modelu M.

V tabulce je někdy potřebné používat zkratky, které se jinde nevyskytují.
Tyto zkratky můžeme vysvětlit v legendě nebo v poznámkách pod tabulkou. Poznámky pod tabulkou můžeme využít i k podrobnějšímu vysvětlení významu některých sloupců nebo hodnot.

3.2 Obrázky

Několik rad týkajících se obrázků a grafů.

- Graf by měl být vytvořen ve velikosti, v níž bude použit v práci. Zmenšení příliš velkého grafu vede ke špatné čitelnosti popisků.
- Osy grafu musí být řádně popsány ve stejném jazyce, v jakém je psána práce (absenci diakritiky lze tolerovat). Kreslíme-li graf hmotnosti proti výšce, nenecháme na nich popisky ht a wt, ale osy popíšeme Výška [cm] a Hmotnost [kg]. Kreslíme-li graf funkce h(x), popíšeme osy x a h(x). Každá osa musí mít jasně určenou škálu.
- Chceme-li na dvourozměrném grafu vyznačit velké množství bodů, dáme pozor, aby se neslily do jednolité černé tmy. Je-li bodů mnoho, zmenšíme velikost symbolu, kterým je vykreslujeme, anebo vybereme jen malou část bodů, kterou do grafu zaneseme. Grafy, které obsahují tisíce bodů, dělají problémy hlavně v elektronických dokumentech, protože výrazně zvětšují velikost souborů.
- Budeme-li práci tisknout černobíle, vyhneme se používání barev. Čáry rozlišujeme typem (plná, tečkovaná, čerchovaná,...), plochy dostatečně rozdílnými intensitami šedé nebo šrafováním. Význam jednotlivých typů čar a ploch vysvětlíme buď v textové legendě ke grafu anebo v grafické legendě, která je přímo součástí obrázku.
- Vyhýbejte se bitmapovým obrázkům o nízkém rozlišení a zejména JPEGům (zuby a kompresní artefakty nevypadají na papíře pěkně). Lepší je vytvářet obrázky vektorově a vložit do textu jako PDF.

3.3 Programy

Algoritmy, výpisy programů a popis interakce s programy je vhodné odlišit od ostatního textu. Jednou z možností je použití LATEXového balíčku fancyvrb (fancy verbatim), pomocí něhož je v souboru makra.tex nadefinováno prostředí code. Pomocí něho lze vytvořit např. následující ukázky.

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Menší písmo:

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Bez rámečku:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

Užší rámeček:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

Obrázek 3.1: Náhodný výběr z rozdělení $\mathcal{N}_2(\mathbf{0},I).$

Obrázek 3.2: Hustoty několika normálních rozdělení.

Obrázek 3.3: Hustoty několika normálních rozdělení.

4. Formát PDF/A

Opatření rektora č. 13/2017 určuje, že elektronická podoba závěrečných prací musí být odevzdávána ve formátu PDF/A úrovně 1a nebo 2u. To jsou profily formátu PDF určující, jaké vlastnosti PDF je povoleno používat, aby byly dokumenty vhodné k dlouhodobé archivaci a dalšímu automatickému zpracování. Dále se budeme zabývat úrovní 2u, kterou sázíme TEXem.

Mezi nejdůležitější požadavky PDF/A-2u patří:

- Všechny fonty musí být zabudovány uvnitř dokumentu. Nejsou přípustné odkazy na externí fonty (ani na "systémové", jako je Helvetica nebo Times).
- Fonty musí obsahovat tabulku ToUnicode, která definuje převod z kódování znaků použitého uvnitř fontu to Unicode. Díky tomu je možné z dokumentu spolehlivě extrahovat text.
- Dokument musí obsahovat metadata ve formátu XMP a je-li barevný, pak také formální specifikaci barevného prostoru.

Tato šablona používá balíček pdfx, který umí L^AT_EX nastavit tak, aby požadavky PDF/A splňoval. Metadata v XMP se generují automaticky podle informací v souboru prace.xmpdata (na vygenerovaný soubor se můžete podívat v pdfa.xmpi).

Validitu PDF/A můžete zkontrolovat pomocí nástroje VeraPDF, který je k dispozici na http://verapdf.org/.

Pokud soubor nebude validní, mezi obvyklé příčiny patří používání méně obvyklých fontů (které se vkládají pouze v bitmapové podobě a/nebo bez unicodových tabulek) a vkládání obrázků v PDF, které samy o sobě standard PDF/A nesplňují.

Další postřehy o práci s PDF/A najdete na http://mj.ucw.cz/vyuka/bc/pdfaq.html.

Závěr

Seznam použité literatury

- CHAOS CZECH A.S. (2023). Corona Renderer. https://corona-renderer.com/. Accessed: 2023-04-17.
- EMDE, C., BURAS-SCHNELL, R., KYLLING, A., MAYER, B., GASTEIGER, J., HAMANN, U., KYLLING, J., RICHTER, B., PAUSE, C., DOWLING, T. a BUGLIARO, L. (2016). The libradtran software package for radiative transfer calculations (version 2.0.1). *Geoscientific Model Development*, **9**(5), 1647–1672. doi: 10.5194/gmd-9-1647-2016. URL https://gmd.copernicus.org/articles/9/1647/2016/.
- Hoško, J. (2014). Bezpečnostní kamerové systémy. Master's thesis, České vysoké učení technické v Praze. URL https://dspace.cvut.cz/handle/10467/24416.
- LALONDE, J.-F., NARASIMHAN, S. G. a EFROS, A. A. (2010). What do the sun and the sky tell us about the camera? *International Journal on Computer Vision*, 88(1), 24–51.
- NIKON (2023). Understanding Focal Length. https://www.nikonusa.com/en/learn-and-explore/a/tips-and-techniques/understanding-focal-length.html. Accessed: 2023-04-17.
- PEREZ, R., SEALS, R. a MICHALSKY, J. (1993). All-weather model for sky luminance distribution—preliminary configuration and validation. Solar Energy, 50(3), 235–245. ISSN 0038-092X. doi: https://doi.org/10.1016/0038-092X(93)90017-I. URL https://www.sciencedirect.com/science/article/pii/0038092X9390017I.
- SCIKIT-IMAGE (2021). RGB to Grayscale. https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_rgb_to_gray.html. Accessed: 2023-04-17.
- WIKIPEDIA (2023). Sférická soustava souřadnic. URL https://cs.wikipedia.org/wiki/Sf%C3%A9rick%C3%A1_soustava_sou%C5%99adnic#/media/Soubor:Spherical_with_grid.svg. Accessed: 2023-04-17.
- WILKIE, A., VEVODA, P., BASHFORD-ROGERS, T., HOŠEK, L., ISER, T., KOLÁŘOVÁ, M., RITTIG, T. a KŘIVÁNEK, J. (2021). A fitted radiance and attenuation model for realistic atmospheres. *ACM Trans. Graph.*, **40**(4). ISSN 0730-0301. doi: 10.1145/3450626.3459758. URL https://doi.org/10.1145/3450626.3459758.

Seznam obrázků

1.1	Sférická soustava souřadnic Wikipedia (2023)	3
1.2	Vliv ohniskové vzdálenosti na zorný úhel Nikon (2023)	4
1.3	Pozice slunce (θ_s, γ_s) , orientace kamery (θ_c, γ_c) , pozice bodu na obloze (θ_p, γ_p) , úhel bodu na obloze se sluncem γ_p , pozice bodu na obrázku (u_p, v_p) (Lalonde a kol., 2010, strana 15)	6
3.1	Náhodný výběr z rozdělení $\mathcal{N}_2(0,I)$	15
3.2	Hustoty několika normálních rozdělení	16
3.3	Hustoty několika normálních rozdělení	17

Seznam tabulek

	3.1	Maximálně	ě věrol	hodné	odha	ady v	modelu M					12
L	$\frac{\text{mate}}{\text{ce.}}$	ematických	prací	může	být	lepší	přemístit	seznam	tabulek	na	začá	itek

Seznam použitých zkratek

[U matematických prací může být lepší přemístit seznam zkratek na začátek práce.]

Seznam publikací

[Součástí doktorských prací musí být seznam vlastních publikací.]

A. Přílohy

[Přílohy k bakalářské práci, existují-li. Každá příloha musí být alespoň jednou odkazována z vlastního textu práce. Přílohy se číslují.]

[Do tištěné verze se spíše hodí přílohy, které lze číst a prohlížet (dodatečné tabulky a grafy, různé textové doplňky, ukázky výstupů z počítačových programů, apod.). Do elektronické verze se hodí přílohy, které budou spíše používány v elektronické podobě než čteny (zdrojové kódy programů, datové soubory, interaktivní grafy apod.). Elektronické přílohy se nahrávají do SISu a lze je také do práce vložit na CD/DVD. Povolené formáty souborů specifikuje opatření rektora č. 72/2017.]

A.1 První příloha