Jeminar 5

1.4.37 di se determine toate relatible de echivalenter our n pet defini pe A=7a,b,cq Solutie: A multime 0 relatie de échiralenta (echivalentie) pe A este o preordine care este de asemenea simetrica (o relatie reflexirei, transituri sometrica) priordine = reflexive transitive Drelottie Repe A lete Fransitive dace:

Va,b,c EA, en

aRb ni bRr = aRr · V a, b ∈ A, douci a Rb -) le Ra (innetria) · Ha, b EA, dacei a Rb n b Ra, atunci a = b (antirimetria) 1 a g; 16 g; 7 c g; 7 a, 6 g; 7 a, 2 g; 16, 24; 1a, b, 24 = 2a, b, 27 Porchile posibile:

\(\frac{1}{a,a}\); (a,b); (a,c); (b,a); (b,b); (b, r); (r,a); (r,b); (2,2) } des: o relatie pe multimen Aute o submultime a reflexiva : (x, x) ente en

relatii sinetrica: (X, y) este en relatie =) (y,x) ette en relatie transitiva: (x, y) este en relatie ný (y, z) ente en relatie =) (x, 7) erte en relatie R1=1(a,a); (b,b); (e,c) 5 R2=7 (a, a); (b, b); (c, c); (a,b); (b,a)4 P3=3(a,a), (6,b); (2,2); (6,c); (c, b) } Ry = 4 (a,a); (b,b); (x,z); (a,z) (c,a)4 R5={(a,a); (b,b); (e, c); (a,c); (c,a); (a,b); (b,a); (b,c); (< , &) }

14.39 Sa re arate rà relation data prin (a,b) ~ (c,d) dace ad = eb este o echivalenta pe Z × Z* si sa se determine multimea factor (2 x 2*). Jolutii: (a,b) ~(c,d) (=) ad= 28 [] (a,b) ~(a,b)? (=) ab _ ab (adv.) =) rel erto reflexive (a,b), (c,d), (e, f) € Z/ × (Z*) (a, e) ~ (c, d) ~ $(c,d) \sim (e',f)$? (a, b)~(e,f)

<u>ه</u> <u>ح</u> ED ED 2 × 2*/~ = \(a,b)| a = 2, b = 2*, $(\alpha, b) = 14$ 2 × 2*/~= a Fir ~ 5 rel. de echi pe Z × Z* (a, b) E Zx Z* : $\overline{(a,e)} = \overline{(a,e)} = \overline{(x,y)} \in \mathbb{Z} \times \mathbb{Z}^*$ (xy)~(a,s) erte clara de echivalenta Multimea factor a lui Z×Z* clasifor de échivalenter. $\mathbb{Z} \times \mathbb{Z}^* / \mathbb{Z} = \mathbb{Z} \times \mathbb{Z}$

(a,b)
$$\lambda(x,y) = \lambda y = xb$$
,
b, $y \in \mathbb{Z}^*$

(a,b) $\lambda(x,y) = \lambda y$

(a,b) $\lambda(x,y) = \lambda y$
 $\lambda(x,y) = \lambda(x,y) =$

Johntin: a)
$$f(\frac{3}{4})^3 = \frac{4}{1} = 4$$
 $f(\frac{6}{2}) = \frac{7}{4}$
 $f(\frac{5}{4}) + \frac{3}{4}f(\frac{5}{2}) + \frac{5}{4}f(\frac{5}{4}) + \frac{5}{$

d) X=0 <u>mu</u> comme OEZ

=) la me ete line
clepinità

1.4.41. Consideram multimea Q = (Z X Z*)/~ ra in væ.

1. 4.39. Ja v orate ra +,. : a x a -> a munt bine definite, unde: $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{a}{b} = \frac{ac}{bd}$ pt. $\forall \alpha, b, r, d \in \mathbb{Z}$, $b \neq 0$, $d \neq 0$. Johntie: (a, b)~(c, d) (=) ad=cb b, d = Z* 2 x 2* | = { (a, b) | a & 2, b & 2/*, b = \\ \alpha \\ \

$$\frac{\alpha}{b} = \frac{\alpha!}{b!} \quad \stackrel{\stackrel{\sim}{n}}{a} = \frac{c!}{a!} + \frac{c!}{a!}$$

$$\Rightarrow \frac{\alpha}{b} + \frac{\alpha}{d} = \frac{\alpha!}{b!} + \frac{c!}{a!}$$

$$\frac{\alpha}{b} + \frac{\alpha}{b!} = \frac{\alpha}{b!} + \frac{c!}{a!}$$

$$\frac{\alpha}{b} = \frac{\alpha!}{b!} = \Rightarrow \frac{\alpha}{b!} = \frac{\alpha}{b!} + \frac{c!}{a!}$$

$$\frac{\alpha}{d} = \frac{\alpha!}{d!} = \Rightarrow \frac{\alpha}{d!} = \frac{c!}{a!} + \frac{c!}{a!}$$

$$(\alpha d + bc) b' d' = \alpha d b' d' + b c b' d'$$

$$b d (\alpha d' + b' c') = b d (\alpha' d' + b' c')$$

$$\frac{\alpha}{b} = \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c!}{a!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{d!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \frac{c'}{b!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \frac{c}{d!} = \Rightarrow$$

$$\Rightarrow \frac{\alpha!}{b!} \quad \stackrel{\sim}{n} \quad \stackrel{\sim}{n$$

[
$$x$$
] $_{n}$ + [y] $_{n}$ = [x + y] $_{n}$, x , y \in z
 \vdots z $_{n}$ x z $_{n}$ \rightarrow z $_{n}$ unde
[x] $_{n}$ [y] $_{n}$ = [x y] $_{n}$, x , y \in z
 \vdots x $_{n}$ = [x y] $_{n}$, x , y \in z
 \vdots x $_{n}$ = x $_{n}$ | x $_{n}$

=) smetria 1,2,3 =) relatie de echivalenta (2) Obs. X = y = x, y auauton rest dupa împortirea la $X = M \cdot \alpha + \pi_1$ $, \alpha, r_1 \in \mathbb{Z}$ $0 \leq x_1 < m$ $y = m \cdot b + n_2$, $b, n_2 \in \mathbb{Z}$ $0 \le \pi_2 \le m$ $x_1 \leftarrow x_1 = x_2 = x_2 = x_3 = x_4 = x_4$ \Rightarrow m/(x-y)=) X = m8 X = my =) m/X-y X-3=m·a+2,-m·b-2-= m (a-b)+ 71-22