Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- "connection"-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state * pipelined: before data exchange
 - not a circuit
- * TCP views data as an unstructured, ordered, byte stream
 - delivers these bytes reliably and in order"
 - no "message boundaries"

- full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size
 - - TCP congestion and flow control set window size
- flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

TCP seq. numbers, ACKs

sequence numbers:

- byte stream "number" of first byte in segment's data
- 32-bit seq
- randomly chosen upon initialization (not 0!)
- one per direction

acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK

Q: how receiver handles out-oforder segments

- A: TCP spec doesn't say, up to implementor
- In practice: typically buffers them and wait to fill up gaps.

TCP seq. numbers, ACKs

simple telnet application scenario

ACK "piggybacked" on the server-to-client data packet