POLITECNICO DI MILAN

Elettrotecnica Parte 2: Caratteristiche dei componenti

Prof. Ing. Giambattista Gruosso, Ph. D.

Dipartimento di Elettronica, Informazione e Bioingegneria

Indice

- Caratteristiche dei componenti
- POLITECNICO DI MILANO

- Resistore
- Generatore di Tensione
- Generatore di Corrente
- Generatori Controllati
- Serie di Resistori
- Partitore di Tensione
- Parallelo di Resistori
- Partitore di Corrente
- Serie di generatori
- Generatore Reale di Tensione e di corrente
- Trasformazione dei generatori.

Caratteristiche dei Bipoli

POLITECNICO DI MILANO

I bipoli sono com pletamente caratterizzati dalla corrente i(t) che li attraversa e dalla tensione v(t) che vi è fra i loro terminali.

L'equazione analitica che esprime il legame tensione-corrente è detta "equazione caratteristica" o semplicemente "caratteristica" del componente.

□Un bipolo si dice caratterizzato in corrente se è possibile esprimere la tensione in funzione della corrente: V=V(I)

Prof. G. Gruosso

☐ Un bipolo si dice caratterizzato in tensione se è possibile esprimere la corrente in funzione della tensione: I=I(V)

Resistore Ideale

Casi limite: corto circuito ideale e circuito aperto ideale

POLITECNICO DI MILANO

Prof. G. Gruosso

Utilizzatori

Oppure
$$i = G \cdot v$$

$$v = -R \cdot i$$
Oppure

Resistore Ideale Casi limite: corto circuito ideale e circuito aperto ideale

POLITECNICO DI MILANO

Prof. G. Gruosso

comportamenti limite di R:

- circuito aperto ideale: i=0 per ogni v
- corto circuito ideale: v=0 per ogni i

Generatori ideali

Generatore ideale di tensione

Generatore ideale di corrente

$$v(t) = e(t)$$

$$v(t) \left(\bigoplus_{i=1}^{\infty} i(t) a(t) \right)$$

$$i(t) = a(t)$$

Prof. G. Gruosso

Generatore ideale non ammette equazione inversa e non dipende dalla convenzione.

Generatori ideali

POLITECNICO DI MILANO

Generatore ideale di tensione Generatore ideale di corrente

$$v(t) = e(t)$$

$$v(t) \left(\bigoplus_{i=1}^{\infty} i(t) a(t) \right)$$

$$i(t) = a(t)$$

Prof. G. Gruosso

Corto Circuito

$$v(t)$$
 $\begin{cases} i(t) \\ i(t) \end{cases}$

$$v(t) = 0$$

Circuito Aperto

$$v(t) \left(\begin{array}{c} \stackrel{\circ}{\downarrow} i(t) \\ \hline v(t) = 0 \end{array} \right) \qquad v(t) \left(\begin{array}{c} \stackrel{\circ}{\downarrow} i(t) \\ \hline \end{array} \right) \qquad i(t) = 0$$

di tensione o del resistore di di corrente o del resistore di resistenza nulla

Caso degenere del generatore Caso degenere del generatore resistenza infinita o conduttanza nulla

Generatori Controllati

POLITECNICO DI MILANO

Generatore di tensione controllato in tensione

$$v(t) = \alpha v_{x}(t)$$

Generatore di corrente controllato in tensione

$$i(t) = G_m V_{\mathsf{X}}(t)$$

Prof. G. Gruosso

Generatore di tensione controllato in Corrente

$$v(t) = R_m i_x(t)$$

Generatore di corrente controllato in corrente

$$i(t) = \beta i_{x}(t)$$

Generatori Controllati: esempio di circuito

POLITECNICO DI MILANO

Esempio di soluzione di una rete

POLITECNICO DI MILANO

Prof. G. Gruosso

$$V_1 = R_1 I_1$$
 $V_2 = R_2 I_2$
 $V_3 = E_1$
 $V_4 = R_5 I_4$
 $V_5 = R_4 I_5$
 $V_6 = R_6 I_6$
 $V_7 = R_3 I_7$
 $V_8 = E_2$
NB:

Della convenzione
generatori

$$I_{3} - I_{1} = 0$$

$$I_{5} - I_{7} - I_{1} = 0$$

$$I_{5} - I_{2} + I_{1} = 0$$

$$I_{6} + I_{2} + I_{7} = 0$$

$$I_{8} + I_{7} = 0$$

$$V_{1} - V_{3} - V_{5} + V_{4} = 0$$

$$V_{2} - V_{4} - V_{6} = 0$$

 $V_7 - V_5 - V_6 + V_8 = 0$

Concetto di Equivalenza

POLITECNICO DI MILANO

Prof. G. Gruosso

Due bipoli (o gruppi di bipoli) si dicono equivalenti se esibiscono la stessa caratteristica ai morsetti.

Serie di Resistori

POLITECNICO DI MILANO

$$I_1 = I_2 = \cdots = I_i = \cdots = I_n = I$$

$$V_{AB} = V_1 + V_2 + \dots + V_i + \dots + V_n = R_1 I_1 + R_2 I_2 + \dots + R_n I_n = (R_1 + \dots + R_n) \cdot I = R_{eq} \cdot I \implies$$

$$R_{eq} = \sum_{i} R_{i}$$

Partitore di tensione

POLITECNICO DI MILANO

Prof. G. Gruosso

$$V_i = R_i I$$
 $V = (R_1 + ... + R_n)I \Rightarrow I = V / \sum_h R_h$ $V_i = V \cdot \frac{R_i}{\sum_h R_h}$

Nel caso di due soli resistori:

Parallelo di Resistori

POLITECNICO DI MILANO

$$A \xrightarrow{V_{AB}} B$$

$$R_{eq}$$

$$V_i = R_i I_i$$
 $I_i = \frac{V_i}{R_i} = G_i V_i$

$$V_1 = V_2 = \dots = V_i = V_n = V$$

B
$$I = I_1 + \ldots + I_n = \frac{V_1}{R_1} + \ldots + \frac{V_n}{R_n}$$

$$= \left(\frac{1}{R_1} + \cdots + \frac{1}{R_n}\right) \cdot V$$

$$G_{eq} = \sum_{i} G_{i} = \sum_{i} \frac{1}{R_{i}} = \frac{1}{R_{eq}}$$

Partitore di Corrente

POLITECNICO DI MILANO

$$\begin{bmatrix}
I_1 & I_2 & I_3 & I_n \\
V & R_1 & R_2 & R_i & R_n
\end{bmatrix}
I_i = \frac{V}{R_i} = V \cdot G_i$$

$$I = I_1 + I_2 + \cdots + I_n = 1$$

$$V \cdot (G_1 + G_2 + \cdots + G_n) \Rightarrow V = \frac{I}{\sum_h G_h}$$

$$\Rightarrow I_i = G_i \cdot V = \frac{G_i}{\sum_h G_h} \cdot I$$

Nel caso di due soli resistori:
$$R_1$$
 I_1 I_2 I_2 I_3 I_4 I_5 I_6 I_8 I_8 I_8 I_8 I_8 I_8 I_8 I_9 $I_$

Serie di generatori (sia ideali che controllati)

POLITECNICO DI MILANO

Prof. G. Gruosso

Generatori di corrente in serie: caso vietato perché viola la legge LKC

Parallelo di generatori (sia ideali che controllati)

POLITECNICO DI MILANO

Prof. G. Gruosso

Generatori di tensione in Parallelo: Caso vietato perché viola la LKT

Serie di un generatore di tensione con un resistore: Generatore reale di tensione

POLITECNICO DI MILANO

Parallelo di un generatore di corrente con un resistore:

Generatore reale di corrente

POLITECNICO DI MILANO

$$i = Gv - i_G$$

Trasformazione dei generatori

POLITECNICO DI MILANO

Prof. G. Gruosso

$$v = v_G + Ri$$

$$i = Gv - i_G$$

$$\frac{v}{R} = \frac{v_G}{R} + i$$

$$i = \frac{v}{R} - \frac{v_G}{R}$$

Si può sempre trasformare un generatore reale di tensione in uno di corrente e viceversa (anche pilotati)

Collegamenti a Stella e a Triangolo

POLITECNICO DI MILANO

$$R_1 = \frac{R_b R_c}{(R_a + R_b + R_c)}$$

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$