

Description

The VSM0103Y uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 100V, I_{D} = 3A$

 $R_{DS(ON)}\,{<}160m\Omega\;\textcircled{0}\;V_{GS}{=}10V\quad\text{(Typ:}136m\Omega\text{)}$

 $R_{DS(ON)}$ <170m Ω @ V_{GS} =4.5V (Typ:140m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
Ī	VSM0103Y-S2	VSM0103Y	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G S	±20	V
Drain Current-Continuous	I _D	3	Α
Drain Current-Pulsed (Note 1)	I _{DM}	20	Α
Maximum Power Dissipation	P _D	1.5	W
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	100	°C/W
· ·			

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA		

Shenzhen VSEEI Semiconductor Co., Ltd

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	<u>'</u>		•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.0	1.5	2.0	V
D : 0 0 0 1 1 D : 1	Б	V_{GS} =10V, I_D =3A	-	136	160	- mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_D =3A	-	140	170	
Forward Transconductance	g FS	$V_{DS}=5V,I_{D}=3A$	-	5	-	S
Dynamic Characteristics (Note4)	1					
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	650	-	PF
Output Capacitance	Coss		-	24	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	20	-	PF
Switching Characteristics (Note 4)	<u>'</u>		•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, R_L =19 Ω	-	6	-	nS
Turn-on Rise Time	t _r		-	4	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	20	-	nS
Turn-Off Fall Time	t _f		-	4	-	nS
Total Gate Charge	Qg	\/ F0\/ 0 A	-	20		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=50V,I_{D}=3A,$	-	2.1	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	3.3	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =3A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	3	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to productio

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

3 2.5 Ip- Drain Current (A) 2 1.5 1.0 0.5 0 0 25 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance