

- ●第四章 8088存储系统
 - ■1. 存储器的设计
 - ■2. IBM PC/XT的结构
 - ■3.8088最小系统设计

第1节 8088的存储器

- 存储器 (Memory)
 - ■存储器是计算机的记忆设备,用来存放程序和数据。
 - ■存储介质
 - ◆半导体器件和磁性材料。
 - ◆最小存储单位就是一个双稳态半导体电路或一个 CMOS晶体管或磁性材料存储元,它可存储一位 二进制代码(BIT)。

存储器的分类

- 按存储介质分
 - ■半导体存储器:用半导体器件组成的存储器。
 - ■磁表面存储器:用磁性材料做成的存储器。
- 按存储方式分
 - 随机存储器: 任何存储单元的存取时间和位置无关。
 - ■顺序存储器:只能按某种顺序来存取,存取时间和位置有关。
- 按存储器的读写方式
 - 只读存储器(ROM): 半导体存储器。
 - 随机读写存储器(RAM): 半导体存储器。
- 按信息的可保存性分
 - ■非永久记忆的存储器: 断电后信息即消失的存储器。
 - ■永久记忆性存储器: 断电后仍能保存信息的存储器。

半导体存储器的分类与结构

- 只读存储器 ROM分类与特点
 - ■掩膜ROM —— ROM
 - ■可编程ROM—— PROM (Programmable)
 - ■可擦除ROM——EPROM (Erase Programmable)
 - ■闪速存储器——Flash Memory

类型	特点	容量	读取	写时间
PROM	批量生产,工厂编程	KB	150ns	
EPROM	小批量,设计厂编程	KB	150ns	>10s
Flash Memory	批量产生,用户编程	MB	80ns	>10us

半导体存储器芯片的结构(RAM为例)

- 组成:
 - ■存储体
 - ◆多个存储单元的有机集合就是存储体。
 - □线性排列或矩阵排列
 - ■外围控制电路
 - ◆地址引脚(地址总线)
 - ◆输入和输出电路(双向数据总线)
 - ◆片选端 (CS)
 - ◆读写控制端

RAM芯片的典型结构

- RAM芯片的典型结构
 - ■一组地址线
 - ■一组数据线
 - ■片选线
 - ■读线
 - ■写线

存储单元的两种排列方式● 以64个存储单元为例□ 存储单元

64个单元

 A_5

 A_4

 A_3

 A_2

 A_1

 A_0

译

63

- 两种地址译码方式
 - ■单译码方式• 64根选择线
 - ■双译码方式• 16根选择线

RAM的结构与工作原理: 动态RAM|静态RAM

- 动态RAM (DRAM) 的特点
 - ■存储单元——用电容充电保持,单管结构,简单;
 - 动态刷新——存储的数据处于暂态,保留2~8ms;
 - ■容量较大——单位面积的存储单元多

典型SRAM芯片

- 典型SRAM芯片
 - Intel2114\6116\6232\6264\621
 - \bullet 6264=8KB=8K×8=2¹³ × 8
 - ◆13根地址线(9根X向,4根Y向
 - ◆8根数据线
 - ◆片选线、读写线和电源线

NC	1		28	$\mathbb{L}_{\mathbb{C}_{\mathfrak{e}}}$
A 12	2		27	$\overline{\mathrm{WE}}$
A_7 —	3		26	—NC
A_6 —	4		25	A_8
A_5 —	5		24	A_9
A_4 —	6		23	$\underline{\mathbf{A}}_{11}$
A_3	7	6264	22	$\overline{\text{OE}}$
A_2 —	8		21	$\underline{\mathbf{A}}_{10}$
A_1	9		20	$\overline{\text{CE}}$
A_{o}	10		19	-D ₇
D°	11		18	$-D_6$
D_1	12		17	$-D_{5}$
D_2	13		16	$-D_4$
GND	14		15	$-D^3$

INTEL6264的引脚

地址线: A₀~A₁₂

数据线: D₀~ D₇

● 输出允许信号: OE

● 写允许信号: WE

6264的工作方式和工作过程

CE	WE	OE	方式	操作
0	0	0	非法	不允许WE与OE同时为低电平
0	1	0	读出	从RAM中读出数据
0	0	1	写入	将数据写入RAM中
0	1	1	选中	内部I/O三态门均处于高阻
1	×	×	未选中	内部I/O三态门均处于高阻

- RAM与CPU的连接
 - ■地址线的连接
 - ■数据线的连接
 - ■控制线的连接
- ●在连接中要考虑的问题
 - ■数据总线和芯片位数的匹配.(位扩展,横向扩展)
 - ■存储容量与芯片容量的匹配.(字扩展,纵向扩展)
 - ■每个芯片在存储空间中的范围(片选CE的译码)

位扩展

- 当芯片数据总线宽度〈 CPU数据总线宽度时,进行位扩展,用数个芯片联合起来提供一个完整的字数据。
 - 芯片数量 = CPU数据总线宽度(或字长)/芯片数据总线宽度
- 8088的数据总线宽度= 8位
- 扩展原则:每个芯片的<u>地址线、控制线、片选端</u>相连,仅数据线分别引出,从而每个芯片提供字的不同位段。
- 例:用Intel2114芯片(1K x 4),设计1K * 8的存储系统。

WE	CS	方式	D7-D0
X	Н	未选中	高阻
Н	L	写	O U T
L	L	读	IN

位扩展

●用Intel2114芯片(1K x 4),设计一个1Kx8的存储系统

字扩展

●功能

- ■扩展存储空间容量。当单个芯片(字数)容量太少时,需要进行字扩展,需要数个芯片联合起来形成大容量的存储空间。
- ■芯片数量 = 所需容量(或字数)/单个的芯片容量

●扩展原则

■每个芯片的地址线、数据线、控制线**并联**,仅片选端分别引出,实现每个芯片占据不同的地址范围。

● 例子

■用两片1K×8位SRAM芯片构成2K×8位的存储器

字位扩展

- 适用条件:
 - ■字向和位向均不能满足要求时需进行字向和位向同时扩充。
- 方法:
 - ■一个存储器系统的容量为M×N,若使用L×K存储器芯片,那么,这个存储器子系统系统共需要(M/L)×(N/K)个存储芯片,分成M/L组,每组N/K片,组内采用位扩展法连接(数据线连接不同),组间采用字扩展法连接(片选线连接不同)。

存储单元的访问过程

- CPU对存储单元的访问过程:
 - ■片选:选择存储器芯片。通过CPU的高位地址线得到片选信号。
 - ■字选: 再从选中的芯片中依照地址码选择相应的存储单元读写数据。由CPU输出的n(n由片内存储容量 2ⁿ决定)条低位地址线完成选择。
- ●地址译码电路的设计基本思路: 二级译码
 - ■用地址高位实现芯片之间的选择(片选译码)
 - ■用地址低位实现片内的存储单元的选择(片内译码)

二级译码地址译码的例子1

- 用高位地址实现多片存储芯片之间的选择(片选)
- 用低位地址实现存储芯片内的存储单元选择(字选)

二级译码地址译码的例子2 $A_{12} \sim A_0$ $A_{\scriptscriptstyle 12} \hspace{-2pt} \sim \hspace{-2pt} A_{\scriptscriptstyle 0}$ A_{19} $\overline{\mathbf{WE}}$ A_{18} 高位地址线 \overline{OE} A_{17} 6264 & $\circ \overline{\mathbf{CS}}_{\mathbf{1}}$ A_{16} A_{15} $\int D_7 \sim D_0$ D7~D0 该6264地址范围是多少? 1111 0000 0000 0000 0000 ~ 1111 0001 1111 1111 1111

片选信号的产生方法

- ●存储器片选信号的产生方法
 - ■线选法
 - ■全译码法
 - ■部分译码法

线选法

- 方法:
 - ■用地址总线的高位地址中的某一位直接(或反向) 作为存储器芯片的片选信号CS,用地址线的低位实 现对芯片的片内单元的选择(字选)。

芯片	A ₁₉ ~ A ₁₅	A ₁₄ A ₁₃	$A_{12} \sim A_0$	一个可用地址
1	××××	1 0	全0~全1	04000H ~ 05FFFH
2	××××	0 1	全0~全1	02000H ~ 03FFFH

- 优点
 - ■电路简单,选择芯片不需外加逻辑电路。
- ●缺点
 - ■不能充分利用系统的存储器空间,每个芯片所占的 地址空间把整个地址空间分成了相互隔离的区段, 即地址空间不连续。
 - ■每个存储单元具有多个地址,造成地址重叠现象。
- ●适用场合
 - ■适用于存储容量较小的简单
 - ■微机系统或不需要扩充内存空间的系统。

全译码法

● 方法:

■将系统地址总线中除片内地址以外的全部高位地址 接到地址译码器的输入端参加译码,把译码器的输 出信号作为各芯片的片选信号,将它们分别接到存 储器芯片的片选端,以实现片选。

- 优点:
 - ■可以使每片(或组)芯片的地址范围不仅是唯一的,而且是连续的,不会产生地址重叠现象。
- 缺点:
 - ■对译码电路要求较高。
- ●适用场合
 - ■适用于存储器芯片较多的系统。

部分译码法

- 方法:
 - 将高位地址线中某几位(不是全部高位)地址经过译码器译码, 作为片选信号,仍用地址线低位部分直接连到存储器芯片的 地址输入端实现片内寻址。

部分译码的例子

● A₁₈不参与译码(A₁₈=1/0=X)

- 同一存储器占用两组地址: F0000H~F1FFFH 和 B0000H~B1FFFH
 - ■被选中芯片的每个单元都占有两个地址。

片选方法的比较

线选法

电路简单:

空间不连续, 地址重叠;

全译码

译码电路要求高:

地址范围唯一,连续不重叠;

部分译码 介于先选法和全译码之间,地址重叠。

8088最小系统:

- ●功能:
 - ■能让系统运行程序的最小电路。
- ●构成:
 - ■CPU,内存,373芯片,245芯片,电源,复位,晶振等。

- 8284A的功能有3个
 - 产生恒定时钟
 - 对就绪信号(READY)进行同步
 - 对复位信号 (RESET) 进行同步。
 - ◆提示:外界RDY及RES信号可以在任何时候到来,8284A能把它们同步到时钟后沿(下降沿)再向CPU输出READY及RESET信号。

片选译码电路

备注:

```
IS61C512 (普通内存1): 00000 - 0FFFF (64K)
IS61C512 (普通内存2): 10000 - 1FFFF (64K)
AT28C512 (程序): F0000 - FFFFF (64K)
```