1. Vision-based

Pros:

Simple

Photo + flow evidence

Cons:

Visible

Only for regular flow, not for rocky riverbeds

Alternative:

Combine with data about power output No stick, just a tree

1. Direct sensor

Pros:

Cheaper

Still simple

Easier to hide

Does not depend on video

Cons:

Very sensitive to placement if measuring flow

Can we calculate one from other two? Yes!

Stream flow = river flow - turbine flow

Can we measure just one and use open data for the rest? Yes!

Power [W] = Net head [m] x Flow [l/s] x g x e Flow [l/s] = Power[W] / (Net head[m] x g x e)Avg. power [Wh] = (Yearly Power [Wh] / 365x24)Avg. flow [l/s] = Avg. power / (Net head x g x e) Yearly flow [I] = Avg. flow x 365x86400

Power Plant Tracker (PPT) –

https://github.com/jariarkko/powerplanttracker

```
% ppt_flowcalculator.sh —country serbia
138 hydro power plants
211 power plants with energy production data
1 hydro power plants with net head data
```

For hydro power station црквине (Serbia, 2017):

Yearly power	2951585.600	KWh
Net head (height)	60.900	m
Average power	336.939	KW
Average flow	1.128	m3/s
Yearly flow	35571450.867	m3