SC201 Lecture 4

Supervised Learning

< _____ regression >

$$\theta =$$

< _____ regression >

$$\theta =$$

$$\theta xi$$
 ______, $\sigma(\theta xi)$ _____

$$\theta xi$$
 _____ , $\sigma(\theta xi)$ _____

visualize.py

• It is possible to raise xi to exponent (______)

feature $xi \rightarrow \theta xi + b \rightarrow$ ______

feature xi, xi² \rightarrow _____ \rightarrow _____

< Maximum Likelihood Estimation >

The origin of _____

● 機率最大化

Maximize $(hi)^{yi} (1-hi)^{1-yi} = Maximize$

= Maximize _____ = Maximize _____

= Minimize _____ **→ J** = _____

0

1

< L = -log(1-hi) when yi==0> stanCode

Gradient Descent

< Batch Gradient Descent > BGD

$$\theta = \theta - \alpha \left(\frac{d}{d\theta} \right)$$

where J =

$$\frac{dj}{d\theta} =$$

• Compute the gradient using

- Move _____ towards the optimum
- ____update

• _____RAM needed

•

< Stochastic Gradient Descent > SGD

$$\theta = \theta - \alpha \left(\frac{d}{d\theta} \right)$$

where L = _____

$$\frac{dL}{d\theta} =$$

• Compute the gradient using

- _____learning process

 (often _____ from optimum)
- ____update
- _____RAM

•

(bounce around min)

Normalization

Define Model (hi)	hi =
. ,	

Define Loss Function L = _____

Find the best parameters (weights)

$$\frac{dL}{dWi} =$$