第6节隐圆问题(★★★)

内容提要

本节归纳高考中几类常见的隐圆问题:

- 1. 定长对定点: 平面上到定点 C(a,b) 的距离等于定长 r 的点 P 的轨迹是圆,如图 1.
- 2. 定长对定角:
- ①平面上过两定点 A 和 B 的直线 l_1 , l_2 互相垂直,则它们交点 P 的轨迹为圆,如图 2.
- ②平面上与两定点 A和 B所成视角为固定锐角或钝角的点的轨迹为一段圆弧,如图 3.
- 3. 定长对定比 (阿氏圆): 设A和B是平面内两定点,若点P满足 $\frac{|PA|}{|PB|}$ = $\lambda(\lambda > 0$ 且 $\lambda \neq 1$),则点P的轨迹是圆,该圆被称为阿氏圆,如图 4.

典型例题

类型 I: 定长对定点

【例 1】如果圆 $C:(x-a)^2+(y-1)^2=1$ 上存在两个点到原点 O 的距离为 2,则正实数 a 的取值范围是_____.

解析: 到原点的距离为 2 的点在圆 $O: x^2 + y^2 = 4$ 上,故问题等价于圆 C 和圆 O 有两个交点,

由题意,圆 C 的圆心为 C(a,1),半径 $r_1=1$,圆 O 的半径 $r_2=2$,所以 $|OC|=\sqrt{a^2+1}$,

两圆相交⇒ $|r_1-r_2|<|OC|< r_1+r_2\Rightarrow 1<\sqrt{a^2+1}<3$,结合 a>0 可解得: $0< a< 2\sqrt{2}$.

答案: $(0,2\sqrt{2})$

【例 2】过圆 $C:(x-1)^2+y^2=1$ 外一点 P 作圆 C 的两条切线 PA, PB,切点分别为 A 和 B,若 $PA\perp PB$,则点 P 到直线 l:x+y-4=0 的距离的最小值为_____.

解析: 先分析点 P 的运动轨迹, $\angle APB$ 的大小由 |PC| 决定,故可由 $PA \perp PB$ 求得 |PC|,

如图, $PA \perp PB \Rightarrow \angle APC = 45^{\circ} \Rightarrow \Delta PAC$ 是等腰直角三角形,所以 $|PC| = \sqrt{2}|AC| = \sqrt{2}$,

注意到 C 是定点,所以点 P 的轨迹是以 C(1,0) 为圆心, $\sqrt{2}$ 为半径的圆,如图,

接下来就是圆上动点到定直线距离的最值问题了, 先求圆心 C 到直线 l 的距离 d,

 $d = \frac{|1-4|}{\sqrt{1^2+1^2}} = \frac{3\sqrt{2}}{2} > \sqrt{2}$, 直线 l 与点 P 所在的圆相离,图中点 P 即为所求距离最小的情形,

所以点 P 到直线 l 的距离的最小值为 $\frac{3\sqrt{2}}{2} - \sqrt{2} = \frac{\sqrt{2}}{2}$.

【反思】从上面两道题可以看出,动点P与定点C之间的距离为定值这种条件隐含了点P的轨迹是圆,在 诸多问题中,发现这一特征,往往是解题的关键.

类型Ⅱ:定长对定角

【例 3】已知点 A(-2,0), B(2,0), C(4,3), 动点 P 满足 $PA \perp PB$,则 |PC| 的取值范围是()

(A) [2,5] (B) [2,8] (C) [3,7] (D) [4,6]

解析: A, B 是定点,由 $PA \perp PB$ 可知点 P 的轨迹是以 AB 为直径的圆,先求出该圆,

由题意,点P在圆 $x^2+y^2=4$ 上(不含A,B两点),

如图,点C在圆外,|PC|的最大值、最小值分别在 P_1 , P_2 处取得,

因为 $|OC| = \sqrt{4^2 + 3^2} = 5$,所以 $|PC|_{max} = |OC| + |OP_1| = 7$, $|PC|_{min} = |OC| - |OP_2| = 3$.

答案: C

【变式】已知点 A(a,0), B(-a,0),其中 a>0,若圆 $C:(x-\sqrt{3})^2+(y-1)^2=4$ 上存在点 P,使 $\angle APB=90^\circ$, 则 a 的取值范围是 ()

(A) (0,4) (B) (0,4] (C) [2,3] (D) [1,2]

解析: $\angle APB = 90^{\circ}$ 隐含了点 P 的轨迹是圆, 先把该圆找到,

因为 $\angle APB = 90^{\circ}$,所以点P在以AB为直径的圆上,该圆的圆心为原点O,半径 $r_1 = a$,

点P也在圆C上,于是两圆应有交点,如图,可根据圆与圆的位置关系来求a的范围,

由题意,圆 *C* 的圆心为 $C(\sqrt{3},1)$,半径 $r_2 = 2$, 所以 |OC| = 2,

两圆有交点 $\Rightarrow |r_1 - r_2| \le |OC| \le r_1 + r_2$,所以 $|a - 2| \le 2 \le a + 2$,结合 a > 0 解得: $0 < a \le 4$.

答案: B

【反思】从例3和变式可以看出,涉及过两定点的两动直线互相垂直时,它们的交点的轨迹是圆.

类型III: 定长对定比(阿氏圆)

【例 4】若点 C 到 A(-1,0),B(1,0)的距离之比为 $\sqrt{3}$,则点 C 到直线 l: x-2y+3=0的距离的最小值为_____.

解析:要求目标,需找C的轨迹,可设C的坐标,利用两点距离公式翻译距离之比的条件,

设
$$C(x,y)$$
,则由 $\frac{|CA|}{|CB|} = \sqrt{3}$ 可得 $\frac{\sqrt{(x+1)^2 + y^2}}{\sqrt{(x-1)^2 + y^2}} = \sqrt{3}$,整理得: $(x-2)^2 + y^2 = 3$,

所以点 C 在圆心为 M(2,0),半径 $r=\sqrt{3}$ 的圆上,圆心 M 到直线 l 的距离 $d=\frac{|2+3|}{\sqrt{1^2+(-2)^2}}=\sqrt{5}>\sqrt{3}$,

直线 l 与圆 M 相离,图中的点 C 即为到 l 距离最小的情形,故所求距离的最小值为 $d-r=\sqrt{5}-\sqrt{3}$.

答案: √5 - √3

《一数•高考数学核心方法》

强化训练

- 1. $(2014 \cdot 北京卷 \cdot \star \star \star \star)$ 已知圆 $C:(x-3)^2 + (y-4)^2 = 1$ 和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得 $\angle APB = 90^\circ$,则m的最大值为(
- (A) 7 (B) 6 (C) 5 (D) 4

- 2. (★★★) 若圆 $C: x^2 + y^2 6x 6y m = 0$ 上有到点 P(-1,0) 的距离为 1 的点,则实数 m 的取值范围是 ()
- (A) [-18,6] (B) [-2,6] (C) [-2,18] (D) [4,18]

- 3.(2022・陕西模拟・ $\star\star\star$)阿波罗尼斯(约公元前 262~190 年)证明过这样一个命题: 在平面内到两定点的距离之比等于常数 k(k>0且 $k\neq 1$)的点的轨迹是圆,后人将这个圆称为阿氏圆. 若平面内两定点 A 和 B 之间的距离为 2,动点 P 满足 $\frac{|PA|}{|PB|} = \sqrt{2}$,则 ΔPAB 的面积的最大值是()
- (A) $\sqrt{2}$ (B) 2 (C) $2\sqrt{2}$ (D) 4

4. (★★★) 已知圆 $O: x^2 + y^2 = 1$,圆 $M: (x-a)^2 + (y-a+4)^2 = 1$,若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,且 $\angle APB = 60^\circ$,则a的取值范围为_____.

5. $(2022 \cdot 河南模拟 \cdot \star \star \star \star \star)$ 已知点M(0,-a), N(0,a), a>0, 若圆 $C:(x-3)^2+(y+4)^2=9$ 上存在点P使得 $\angle MPN$ 为钝角,则a的取值范围是_____.

《一数•高考数学核心方法》