

Géométrie Algorithmique

Cours réalisé par Stéphane Bessy

Pour le second semestre du M1 Informatique

Version 1.2

Année universitaire 2007-2008

Table des matières

1	Inte	tersection dans un ensemble de segments					
	1.1	Position du problème					
	1.2	Tri de segments					
		1.2.1 Primitives					
		1.2.2 Structures de données					
		L'algorithme					
		1.3.1 Principe					
		1.3.2 L'algorithme proprement dit					
		1.3.3 Preuve de l'algorithme					
		1.3.4 Complexité					
		1.3.5 Remarque					
2 Calcul d'enveloppe convexe dans le plan							
	2.1	Définitions et problématique					
	2.2	Algorithme de Jarvis: 1973					
		2.2.1 Principe					
		2.2.2 L'algorithme					
		2.2.3 Analyse de l'algorithme					
	2.3	Algorithme de Graham: 1972					
		2.3.1 Principe					
		2.3.2 Structure de données					
		2.3.3 L'algorithme					
		2.3.4 Analyse de l'algorithme					
	2.4	Rappels mathématiques					

Table des figures

1.1	Ordre sur les segments
1.2	Exemple
1.3	Insertion d'un sommet
1.4	Suppression d'un sommet
1.5	Preuve - Intersection multiple
1.6	Preuve - Schéma de la situation
1.7	Application au recouvrement d'objets
2.1	Enveloppe convexe de points du plan
2.2	Enveloppe convexe de points de l'espace
2.3	Un polygone simple
2.4	Un polygone pas simple
2.5	Un ensemble convexe
2.6	Un ensemble pas convexe
2.7	Intersection de demi-plans
2.8	Jarvis - Illustration du principe
2.9	Graham - Illustration du principe

Chapitre 1

Intersection dans un ensemble de segments

1.1 Position du problème

Soit (s_1, \ldots, s_n) un ensemble de n segments dans le plan. Chaque segment est donné par ses deux extrémités :

 $s_i = [p_i, q_i] \quad \forall i, 1 \leq i \leq n$ avec par convention : p_i est à gauche de q_i .

On fait l'hypothèse qu'il n'existe aucun segment vertical.

Question: Existe-t-il deux segments s_i et s_j qui s'intersectent (avec $i \neq j$)?

En T.D., nous avons pu déterminer si deux segments s'intersectent en $\Theta(1)$. Ainsi en testant tous les couples, on obtient un algorithme en $\Theta(n^2)$. Nous allons présenter un algorithme en $\Theta(n \log n)$ qui utilise une technique de balayage du plan avec un faisceau vertical, de la gauche vers la droite.

1.2 Tri de segments

 \dot{A} un instant t, nous comparons les segments coupés par le faisceau. Ce qui nous donne un ordre sur les segments :

Fig. 1.1 – Ordre sur les segments.

Au temps t, s < s' si le point d'intersection de s avec le faisceau a une ordonnée inférieure à celle du point d'intersection de s' avec le faisceau.

Remarque : Une intersection entre deux segments est repérée par une permutation de ces deux segments dans les ordres associés à deux dates différentes.

Nous allons gérer deux ensembles de données :

- un ordre total qui évolue;
- un ensemble fini de dates par lesquelles nous nous intéresserons à l'ordre précédent (échéancier).

L'échéancier contiendra les 2n abscisses des segments triés par ordre croissant.

Fig. 1.2 – Exemple.

1.2.1 Primitives

(T désigne l'ordre sur les segments.)

- Insérer(s,T): insère s dans T (*);
- Supprimer(s,T);
- AuDessus (s,T): retourne le successeur de s dans l'ordre T;
- AuDessous (s,T): retourne le prédécesseur de s dans l'ordre T.
- (*) pour connaître la position d'un segment s=[p,q] par rapport à s'=[p',q'] précédemment inséré : si det $\left(\overrightarrow{p'q'},\overrightarrow{p'p}\right)>0$ alors s est au-dessus de s', sinon s est au-dessous de s'.

1.2.2 Structures de données

	tableau	liste doublement chaînée	arbre binaire (**)
Insérer	$\Theta\left(n\right)$	$\Theta\left(n\right)$	Θ (hauteur)
Supprimer	$\Theta\left(n\right)$	$\Theta(1)$	Θ (hauteur)
AuDessus	$\Theta(1)$	$\Theta(1)$	Θ (hauteur)
AuDessous	$\Theta(1)$	$\Theta(1)$	Θ (hauteur)

(**) arbre binaire : valeur(fils gauche) \leq valeur(père) \leq valeur(fils droit).

- arbre Rouge et Noir : hauteur en $2 \log n$;
- arbre AVL : hauteur en $\log n$.

1.3 L'algorithme

1.3.1 Principe

 \grave{A} l'insertion, nous testons s'il y a une intersection avec celui du dessus et celui du dessus :

Fig. 1.3 – Insertion de s_c .

 \grave{A} la suppression, nous testons si les segments successeur et prédécesseur s'intersectent :

Fig. 1.4 – Suppression de s_a .

Algorithme 1: Intersection de segments.

```
 \begin{array}{c|c} \textbf{Donn\'ees} : \text{Un ensemble de segments.} \\ \textbf{Sorties} : \text{VRAI si deux segments s'intersectent, sinon FAUX.} \\ \textbf{d\'ebut} \\ \hline & T \leftarrow \varnothing \\ \hline & \text{Trier les abscisses des extr\'emit\'es des segments (\'ech\'eancier)} \\ \textbf{pour chaque point } r \text{ de l'\'ech\'eancier faire} \\ \hline & \textbf{si } r \text{ est extr\'emit\'e gauche d'un segment } s \text{ alors} \\ \hline & \text{Ins\'erer}(s,T) \\ \hline & \textbf{si AuDessus}(s,T) \text{ et } s \text{ s'intersectent ou AuDessous}(s,T) \text{ et } s \text{ s'intersectent alors} \\ \hline & \textbf{L retourner VRAI} \\ \hline & \textbf{si } r \text{ est extr\'emit\'e droite d'un segment } s \text{ alors} \\ \hline & \textbf{L retourner VRAI} \\ \hline & \textbf{L retourner VRAI} \\ \hline & \text{Supprimer}(s,T) \\ \hline & \text{retourner FAUX} \\ \hline & \textbf{fin} \\ \hline \end{array}
```

1.3.3 Preuve de l'algorithme

Si l'algorithme renvoie VRAI : il existe bien deux segments qui s'intersectent!

Si l'algorithme renvoie FAUX : supposons qu'il existe deux segments qui s'intersectent, et notons I l'intersection la plus à gauche de l'ensemble des segments. S'il y a plus de deux segments qui contiennent I, on en choisit deux consécutifs dans l'ordre circulaire :

Fig. 1.5 – Intersection multiple.

Si à l'insertion de s_a au temps t, l'algorithme n'a pas détecté I, alors s_b n'est pas prédécesseur de s_a . Aucun des segments inclus entre s_a et s_b dans l'ordre (au temps t) n'intersecte s_a ou s_b car I est le point d'intersection le plus à gauche. Notons s_c celui de ces segments dont l'extrémité droite est la plus à droite :

Fig. 1.6 – Schéma de la situation.

À la suppression de s_c , nous devons tester l'intersection entre s_a et s_b : l'algorithme trouve I!

1.3.4 Complexité

Bilan:

- tri de 2n points;
- n appels à Insérer et Supprimer;
- $-\ 2n\ {\rm appels}$ à AuDessous et AuDessus.

D'où une complexité en :

 $\Theta(n^2)$ avec des tableaux.

 $\Theta(n \log n)$ avec des arbres de recherche de hauteur $\log n$.

1.3.5 Remarque

Un tel algorithme peut être utilisé pour le recouvrement d'objets :

Fig. 1.7 – Application au recouvrement d'objets graphiques.

Chapitre 2

Calcul d'enveloppe convexe dans le plan

2.1 Définitions et problématique

But: Trouver la plus petite surface (resp. volume) convexe qui contienne un ensemble de points de \mathbb{R}^2 (resp. de \mathbb{R}^3).

Exemple 1. Dans \mathbb{R}^2 :

Fig. 2.1 – Enveloppe convexe de 10 points du plan.

Exemple 2. Dans \mathbb{R}^3 :

Fig. 2.2 – Enveloppe convexe de 14 points de l'espace.

Dans tout ce qui suit, on se placera systématiquement dans le plan euclidien \mathbb{R}^2 .

Par commodité, on notera [[a,b]] l'ensemble $\mathbb{Z} \cap [a,b]$ pour a et b entiers.

Définition 1. Un polygone est une suite finie de segments $S_i = [p_i, q_i], i \in [[1, n]]$ vérifiant :

$$\begin{cases} q_i = p_{i+1} \ pour \ tout \ i \in [[1, n-1]] \ ; \\ q_n = p_1. \end{cases}$$

Quelquefois (par abus de langage), on appellera également "polygone" l'intérieur d'un tel polygone.

Définition 2. Un polygone est dit simple si pour tous les $i \neq j$ dans [[1,n]] tels que S_i s'intersecte avec S_j , alors i et j sont consécutifs et les segments S_i et S_j s'intersectent uniquement en leurs extrémités.

Exemple 3.

Fig. 2.3 – Un polygone simple.

Exemple 4.

Fig. 2.4 – Un polygone pas simple!

Définition 3. Un ensemble $E \subseteq \mathbb{R}^2$ est dit convexe si :

$$\forall a, b \in E \ et \ \forall \ c \in [a, b], \ on \ a \ c \in E.$$

Exemple 5.

Fig. 2.5 – Un ensemble convexe.

Exemple 6.

Fig. 2.6 – Un ensemble pas convexe.

Remarque 1. Les polygones convexes sont des intersections de demi-plans... Plus précisément : un polygone convexe est exactement une intersection bornée non vide d'un nombre fini de demi-plans (résultat admis).

Exemple 7.

Fig. 2.7 – Intersection de demi-plans.

Définition 4.

L'enveloppe convexe d'un ensemble fini Q de points du plan est le plus petit polygone convexe qui contient Q. On la note : EC(Q).

Remarque 2. Ici, « le plus petit » est au sens de l'inclusion.

Problème: Comment calculer EC(Q)?

2.2 Algorithme de Jarvis: 1973

2.2.1 Principe

La technique utilisée est celle du « paquet cadeau ».

Exemple 8.

Fig. 2.8 – Jarvis : Illustration du principe.

2.2.2 L'algorithme

```
Algorithme 2 : Jarvis.
    Données : Q = un ensemble fini de points du plan.
    Sorties: L = la liste des sommets de EC(Q) donnée dans le sens direct.
 1 début
        p_{\min} \leftarrow \text{le sommet le plus bas}
 2
 3
        p_{\text{courant}} \leftarrow p_{\text{min}}
        Insérer(p_{courant},L)
 4
        répéter
 5
             Choisir p \neq p_{\text{courant}}
 6
             Prendre p_{\text{suivant}} le point le plus à droite de [p_{\text{courant}}, p)
 7
 8
             p_{\text{courant}} \leftarrow p_{\text{suivant}}
 9
             Insérer(p_{courant},L)
        jusqu'à p_{\text{courant}} = p_{\text{min}}
10
        retourner L
12 fin
```

2.2.3 Analyse de l'algorithme

Preuve:

On admet la validité de cet algorithme.

Complexité:

La ligne 7 peut prendre un temps en $\Theta(n)$.

La boucle s'exécute autant de fois qu'il y a de sommets dans l'enveloppe convexe de Q.

Donc en tout, on est en
$$\Theta(n \cdot h)$$
 où $h := |EC(Q)|$.

$$Or\ EC(Q) \subseteq Q \Longrightarrow h = |EC(Q)| \leqslant |Q| = n.$$

Donc dans le pire des cas, on obtiendra une complexité en $O(n^2)$.

Remarque 3. Tout ceci peut s'étendre à la dimension 3.

2.3 Algorithme de Graham: 1972

2.3.1 Principe

Tout d'abord, on trie les sommets par angle polaire croissant.

Puis à chaque nouveau sommet :

- si on tourne à gauche, alors on continue à empiler le sommet ;
- si on tourne à droite, alors on revient d'un cran en arrière.

Exemple 9.

Fig. 2.9 – Graham : Illustration du principe.

2.3.2 Structure de données

Comme nous l'avons suggéré au paragraphe précédent, nous aurons besoin d'utiliser une structure de pile, notée S.

Les primitives associées à notre pile S seront :

- Dernier (S): renvoie le sommet tout en haut de la pile S;
- AvantDernier(S): renvoie le sommet juste avant Dernier(S);
- Empiler (v, S): empile le sommet v sur S;
- Dépiler(S): dépile le dernier élément de S.

Algorithme 3: Graham.

```
Données : Q = \text{un} ensemble fini de points du plan appelés sommets.
Sorties : S = l'enveloppe convexe de Q empilée dans le sens direct.
début
   // ******* PHASE 1 : ******
   p_0 \leftarrow le sommet d'ordonnée minimale (en cas d'égalité, prendre celui qui est situé le plus à gauche).
   p_1, \ldots, p_n \leftarrow les points restants de Q, triés par angle polaire croissant autour de p_0,
   à partir de la demi-droite horizontale issue de p_0 vers la droite.
   (En cas d'égalité entre plusieurs sommets, supprimer ces derniers sauf celui qui est le plus éloigné de p_0.)
   // ******* PHASE 2 : ******
   Empiler (p_0,S)
   Empiler(p_1,S)
   Empiler(p_2,S)
   pour chaque i = 3 jusqu'à n faire
       tant que p_i est à droite de [AvantDernier(S), Dernier(S)] faire
       \_ Dépiler(S)
      Empiler (p_i, S)
   retourner S
fin
```

2.3.4 Analyse de l'algorithme

Preuve:

On admet la validité de l'algorithme.

Complexité:

```
Phase 1 \to \text{le tri est en } \Theta(n \log n);
Phase 2 \to \text{na\"ivement en } \mathbf{O}(n^2),
mais en fait, chaque point est empilé (et éventuellement dépilé) au plus une fois,
donc en \Theta(n).
```

D'où une complexité en $\Theta(n \log n)$.

Remarque 4. Nous verrons en T.D. que $\Omega(n \log n)$ est une borne inférieure pour le calcul d'enveloppe convexe. Autrement dit, l'algorithme de Graham est "optimal".

2.4 Rappels mathématiques

```
-f(n) = \Omega(n \log n)
\iff \exists \alpha \text{ telle que } f(n) \geqslant \alpha \cdot n \log n \text{ à partir d'un certain rang };
-f(n) = \mathbf{O}(n \log n)
\iff \exists \beta \text{ telle que } f(n) \leqslant \beta \cdot n \log n \text{ à partir d'un certain rang };
-f = \Theta(n \log n)
\iff \exists \alpha, \beta \text{ telles que } \alpha \cdot n \log n \leqslant f(n) \leqslant \beta \cdot n \log n \text{ à partir d'un certain rang.}
```