Deterministic Finite Automata (DFA)

Asai Asaithambi

Spring 2018

Topic Overview

What does this topic cover?

- Finite State Machines (FSM)
 - Pictorial Representation
 - Formal Definition
 - Computation in a FSM
 - String Recognition/Language
- Regular Language/Operations
 - The union of two regular languages is regular
- Deterministic vs. Nondeterministic

Finite State Machines: General Ideas

- Simplest model of computation
- A small computer with very limited memory
- "Finite" and small
- An Example: Controller for an automatic (swinging) door
- Two pads: front and rear (of the door)

A Swinging Door Controller

- The door is in one of two states: "OPEN" or "CLOSED"
- Four possible input conditions:
 - FRONT (Person standing in front of the doorway)
 - BACK (Person standing to the rear of the doorway)
 - BOTH (People standing in front and to the rear)
 - NEITHER (No one standing on either pad)
- Controller goes from one state to another:
 - Based on input received

State Diagram and Transition Table

input signal

		NEITHER	FRONT	REAR	ВОТН
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

State Diagram/FSM Characteristics

- States drawn as circles (nodes)
- Transitions drawn as arcs (edges)
- Always exactly one starting or initial state
- Final or accepting states (there may be more than one)
- Input will be called the *alphabet* (Σ)
- A FSM can "accept" or "reject" strings
 - Start in the starting state
 - Start at the beginning of string
 - Take transitions based on symbol in the string
 - Process all symbols in the string
 - String "accepted" if you reach one of the final states
 - String "rejected" otherwise.
 - Question: What strings are accepted?

FSM: Formal Definition

5-tuple: $(Q, \Sigma, \delta, q_0, F)$

- Q: (Finite) Set of States
- Σ : Alphabet, a (finite) set of symbols
- δ : Transition Function, $\delta: Q \times \Sigma \mapsto Q$
- q_0 : unique start or initial state, $q_0 \in Q$
- F: set of final states, $F \subseteq Q$

$\delta_{\scriptscriptstyle \perp}$	a	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

$$(\{q_1, q_2, q_3\}, \{a, b\}, \delta, q_1, \{q_2\})$$

FSM: Example Machine M_1

 M_1 accepts the language A, where

$$A = L(M_1) = \{w \mid w \text{ contains at least one 1 and}$$

an even number of 0s follow the last 1 $\}$.

A is the language of the machine M_1 .

FSM: Example Machines M_2 and M_3

M_2

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2. \end{array}$$

$$L(M_2) = \{w \mid w \text{ ends in a } 1\}$$

M_3

 $L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$

FSM: Example Machine M₄

 $L(M_4) = \{w \mid w \text{ begins and ends with the same symbol}\}.$

FSM: Example Computations

Processing the string aabb:

$$q_1 \stackrel{\mathsf{a}}{\longrightarrow} q_2 \stackrel{\mathsf{a}}{\longrightarrow} q_3 \stackrel{\mathsf{b}}{\longrightarrow} q_1 \stackrel{\mathsf{b}}{\longrightarrow} q_1$$

 q_1 is not a final state;

∴ aabb is not accepted.

Processing the string abba:

$$q_1 \stackrel{\mathsf{a}}{\longrightarrow} \ q_2 \stackrel{\mathsf{b}}{\longrightarrow} \ q_3 \stackrel{\mathsf{b}}{\longrightarrow} \ q_1 \stackrel{\mathsf{a}}{\longrightarrow} \ q_2$$

 q_2 is a final state;

∴ abba is accepted.

Formal Definition of Computations

- $M = (Q, \Sigma, \delta, q_0, F)$
- How does M process the string $w = w_1 w_2 \cdots w_n$, $w_i \in \Sigma$
- M starts at state q_0 and receives input w_1
- ullet It reaches the next state as determined by δ
- At this next state, it receives the next input w₂
- In this manner, it reaches the sequence of states
- $r_0, r_1, \cdots, r_n \in Q$ such that:
 - $or r_0 = q_0$ $or r_{i+1} = \delta(r_i, w_{i+1}), i = 0, 1, 2, \dots, n-1$
- w is accepted, or $w \in L(M)$ if $r_n \in F$
- w is not accepted, or $w \notin L(M)$ if $r_n \notin F$

Designing Finite Automata (FA)

- A FA accepts strings, recognizes languages.
- Wish to design a FA that recognizes a given language.
- The designer acts as the automaton.
- Processes strings symbol by symbol.
- After each symbol is "read," needs to decide:
 - o Whether the string read "so far" is in the language.
 - Whether the symbol read is "crucial information."
- States serve as "memory"
- As the number of states needs to be "finite,"
 - Needs to remember only a few pieces of information;
 - o Exactly what is crucial will depend on the language.

Designing a FA: Example 1

- To recognize all bit strings with an odd number of 1s
- Entire string need not be remembered
- Os need not be counted or the number of Os need not be remembered
- Must remember and keep track of whether:
 - the number of 1s read so far is even:
 - o the number of 1s read so far is odd:
- This means two states will be needed:
 - even so far;
 - odd so far;

FA Example 1 (cont.)

- When the FA is in state q_{even}:
 - Reading a 1 takes it to state q_{odd};
 - \circ Reading a 0 keeps it in state q_{even} .
- When the FA is in state q_{odd} :
 - Reading a 1 takes it to state q_{even} ;
 - \circ Reading a 0 keeps it in state q_{odd} .

FA Example 1 (finish up)

- Set the start state and the final state
- Which one is the initial state?
 - \circ Initial state: no symbols read yet (zero symbols or ε)
 - Since zero is even, initial state is q_{even} .
- Which one is the final state?
 - Final/Accept state: Odd number of 1s read
 - \circ q_{odd} is set as an accept state.

Designing a FA: Example 2

- To recognize all bit strings that contain 001 as a substring.
- Entire string need not be remembered
- There are four possibilities: You have just seen:
 - No symbols as yet;
 - A 0;
 - The pattern 00; and
 - o The pattern 001.
- Assign states q, q_0 , q_{00} , and q_{001} .

FA Example 2 (cont.)

When in state q, reading:

- A 0 will take you to state q_0 ;
- \circ A 1 will still leave you in state q.

FA Example 2 (cont.)

When in state q_0 , reading:

- A 0 will take you to state q_{00} ;
- \circ A 1 will return you to state q.

FA Example 2 (cont.)

When in state q_{00} , reading:

- o A 0 will leave you in state q_{00} ;
- o A 1 will return you to state q_{001} .

FA Example 2 (finish up)

When in state q_{001} , reading:

- o A 0 or 1 will leave you in state q_{001} ;
- o A 1 will leave you in state q_{001} .

q is the start state and q_{001} is the accept state.

Designing a FA: Example 3

To construct a machine M that recognizes all bit strings <u>not containing</u> 110 as a substring, we construct M_1 that recognizes all bit strings containing 110 as a substring.

Then, by making all the non-accepting states of M_1 accepting states, and the accepting states of M_1 as non-accepting states, we obtain the desired machine M. Then, it is true that $L(M) = \overline{L(M_1)}$.

Regular Languages and Operations

- Regular Languages
 - We say that a language is regular, if: some finite automaton recognizes it.
 - The languages we have seen so far are regular.
- Regular Operations: Let A and B be languages.
- Then we define:
 - Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
 - Star: $A^* = \{x_1x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

Regular Operations Example

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}. If A=\{\operatorname{good},\operatorname{bad}\} and B=\{\operatorname{boy},\operatorname{girl}\}, then A\cup B=\{\operatorname{good},\operatorname{bad},\operatorname{boy},\operatorname{girl}\}, A\circ B=\{\operatorname{goodboy},\operatorname{goodgirl},\operatorname{badboy},\operatorname{badgirl}\}, \text{ and } A^*=\{\varepsilon,\operatorname{good},\operatorname{bad},\operatorname{goodgood},\operatorname{goodbad},\operatorname{badgood},\operatorname{badbad},\operatorname{goodgoodgood},\operatorname{goodgooddad},\operatorname{goodbaddgood},\operatorname{goodbadbad},\ldots\}.
```

More on Regular Languages and Operations

- The class of regular languages is *closed* under regular operations.
- Let Σ be the alphabet.
- Let A_1 and A_2 be regular languages over Σ . Then:
 - − $A_1 \cup A_2$ is regular.
 - − $A_1 \circ A_2$ is regular.
 - A_1^* and A_2^* are regular.
- To show that $A_1 \cup A_2$ is regular:
 - We let M_1 and M_2 be FAs with:

$$L(M_1) = A_1$$
 and $L(M_2) = A_2$

– We construct a FA M, with $L(M) = A_1 \cup A_2$

Constructing FA for $A_1 \cup A_2$

- Let $A_1 = L(M_1)$, with $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
- Let $A_2 = L(M_2)$, with $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$
- Let

∘
$$L(M) = A_1 \cup A_2 = L(M_1) \cup L(M_2)$$
, with
∘ $M = (Q, \Sigma, \delta, a_0, F)$.

- Then:
 - $\circ \ \ Q = Q_1 \times Q_2 = \{(r_1, r_2) \, | \, r_1 \in Q_1, r_2 \in Q_2\}$
 - \circ Σ is the same as for both M_1 and M_2
 - o δ for M is defined using δ_1 and δ_2 :

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- $\circ q_0 = (q_1, q_2)$
- $\circ \ F = F_1 \times Q_2 \cup F_2 \times Q_1$
- Note: For $A_1 \cap A_2$, we set $F = F_1 \times F_2$

FAs for Two Languages A_1 and A_2

• Let $A_1 = L(M_1) = \{w \mid w \text{ contains exactly two a's}\}.$

• Let $A_2 = L(M_2) = \{w \mid w \text{ contains at least two b's}\}.$

FA to Accept $A_1 \cup A_2$

• State (m, n) labeled mn in the picture.

• $A_1 \cup A_2 = \{w \mid w \text{ has exactly two a's } \underline{\text{or}} \text{ at least two b's} \}$

FA to Accept $A_1 \cap A_2$

• State (m, n) labeled mn in the picture.

• $A_1 \cup A_2 = \{w \mid w \text{ has exactly two a's } \underline{\text{and}} \text{ at least two b's} \}$

Deterministic vs. Nondeterministic

- We need the concept of nondeterminism to show that regular languages are closed under the concatenation and star operations,
- A FA in which the next state is uniquely defined for every state and input pair is called a deterministic finite automaton (DFA). We have considered only DFAs so far.
- A FA in which the next state may be a set of states instead of a unique state is called a nondeterministic finite automaton (NFA). The next state may be the empty set (\emptyset) as well.
- Additionally, transitions in a NFA may be labeled with ε (the empty string) as well. Note that the empty string is not part of the alphabet, but ε transitions may occur in NFAs.
- The study of NFAs is our next topic in the course.