UM-SJTU JOINT INSTITUTE HONORS MATHEMATICS II (Vv186)

RECITATION CLASS

WEEK THREE
BASIC CONCEPTS IN LOGIC AND SETS

TA: Yahoo

Date: 27 Sept 2016

1 Notation

Question: How to use **B** to define **A**?

$$A := B$$

Example: Exponential function.

$$exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbf{C}$$

Specifically, when z = 0

$$exp(z) = 1, z = 0$$

Therefore, we can define what is called Euler number:

$$e := exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$$

2 Statement

Definition: A statement (also called a proposition) is anything we can regard as being either true or false.

Question: How to define what exactly a statement is? What we mean by saying something is true or false? Are we able to define them? Example in real life: 'It is raining.'

Mathematical examples:

1 > 0' is a true statement.

 $x^3 > 0'$ is not a statement.

" $\forall x \in \mathbf{R}, \ x^3 > 0' \text{ is a false statement.}$

In the final example, $\forall x \in \mathbf{R}$ is a quantifier, and $x^3 > 0$ is a statement frame or predicate.

Comment:

statement = predicate + quantifer(some value)

3 Working statements

3.1 Negation(A unary operation)

Let A be a statement. Then we define the negation of A, written as $\neg A$, to be the statement that is true if A is false and false if A is true.

Comment: We often use truth table to describe logic operations(Or proof!).

$$\begin{array}{c|c} A & \neg A \\ \hline T & F \\ F & T \end{array}$$

Table 1: Truth table for negation of A

3.2 Conjuncion(A binary operation)

Let A and B be two statements. Then we define the conjunction of A and B, written A \bigwedge B, which is spoken as A and B. A and B can be described by the following truth table:

A	В	А∧В
Т	Т	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	F

Table 2: Truth table for conjunction of A, B

3.3 Disjunction(A binary operation)

Let A and B be two statements. Then we define the disjunction of A and B, written A \bigvee B, which is spoken as A or B. A and B can be described by the following truth table:

A	В	$A \bigvee B$
Т	Т	Т
${\rm T}$	\mathbf{F}	${ m T}$
\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}

Table 3: Truth table for disjunction of A, B

4 Tautology and contradiction

A compound statement that is always true is called a tautology.

Example: A $\bigvee \neg A$ is a tautology. (Easy proof.)

A compound statement that is always false is called a contradiction.

Example: A $\bigwedge \neg A$ is a contradiction.(Easy proof.)

5 Implication

Let A and B be two statements. Then we define the implication of B and A, written $A \Rightarrow B$, by the following truth table:

$$\begin{array}{c|ccc} A & B & A \bigvee B \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & F \\ \end{array}$$

Table 4: Truth table for implication of B and A

Strange as it might seem at first sight, remember it is a definition!

Example: $\forall x \in \mathbf{R}, x > 0 \implies x^3 \ge 0$. (Always a true statement, then a tautology)

Comment: Try illustrating implication of B and A by real life situation where A: It is raining, B: I bring an umbrella.

6 Equivalence

Let A and B be two statements. Then we define the equivalence of A and B, written $A \Leftrightarrow B$, 'A is equivalent to B', or 'A if and only if B', by the following truth table:

A	В	$A \bigvee B$
Т	Т	Τ
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$

Table 5: Truth table for equivalence of A and B

Two compound statements A and B are called logically equivalent if A \Leftrightarrow B is a tautology, denoted by A \equiv B.

Examples: De Morgan Rules are tautologies.

$$\neg (A \bigvee B) \equiv (\neg A) \bigwedge (\neg B)$$
$$\neg (A \bigwedge B) \equiv (\neg A) \bigvee (\neg B)$$

7 Contraposition

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Comment: Contraposition is useful in simplifying some proof.

8 Logical Quantifiers

8.1 Universal quantifier

Denoted by the symbol \forall , read as 'for all'.

Let M be a set and A(x) be a predicate. Then we define the quantifier \forall by

$$\forall x \in M : A(x) \Leftrightarrow A(x) \text{ is true for all } x \in M$$

8.2 Existential quantifier

Denoted by the symbol \exists , read as 'there exists'.

$$\exists x \in M : A(x) \Leftrightarrow A(x) \text{ is true for at least one } x \in M$$

Comment:

$$\exists x \in M : A(x) \Leftrightarrow \neg \forall x \in M : (\neg A(x))$$

9 Vacuous Truth

If the domain of the universal quantifier \forall is the empty set $M = \emptyset$, then the statement $\forall x \in M$: A(x) is defined to be true regardless of the predicate A(x). It is then said that A(x) is vacuously true.

Examples: All pink elephants can fly. All pink elephants can't fly.

10 Nesting Quantifiers

$$\forall x \exists y : x + y > 0$$

$$\exists x \forall y : x + y > 0$$

11 Naive Set Theorem

We indicate that an object (called an element) x is part of a collection (called a set) X by writing $x \in X$. We characterize the elements of a set X by some predicate P:

$$x \in X \Leftrightarrow P(x)$$

We write such a set X in the form $X = \{x : P(x)\}.$

We define the empty set $\emptyset := \{x : x \neq x \}$. The empty set has no elements, because the predicate $x \neq x$ is never true.

If every object $x \in X$ is also an element of a set Y, then we say that X is a subset of Y.

We say that X = Y if and only if X is subset of Y and Y is subset of X.

We say that X is a proper subset of Y if X is subset of Y but $X \neq Y$.

Example: $A = \{a,b,c\}, B = \{a,b,b,c,a,c\}, a,b,c \in \mathbf{R} \text{ then } A = B.$

If a set X has a finite number of elements, we define the cardinality of X to be this number, denoted by #X, |X| or card X.

We define the power set: $P(M) = \{A:A \text{ is a subset of } M\}.$

12 Operation on sets

If $A = \{x : P_1(x)\}$, $B = \{x : P_2(x)\}$ we define the union, intersection and difference of A and B by

 $A \cup B := \{x : P_1(x) \lor P_2(x)\}, A \cap B := \{x : P_1(x) \land P_2(x)\}, A \setminus B := \{x : P_1(x) \land \neg P_2(x)\}$

We then define the complement of A by $A^c := M \setminus A$.

Comment: De morgan's rule for sets.

13 Ordered pair

An ordered pair denoted by (a,b) has the property

$$(a,b) = (c,d) \Leftrightarrow (a=c) \lor (b=d)$$

There are (at least) two ways of defining an ordered pair as a set:

$$(a,b) := \{\{a\}, \{a,b\}\}\$$

$$(a,b) := \{\{1,a\},\{2,b\}\}\$$

Cartesian product: A x B := $\{(a, b) : a \in A, b \in B\}$.

14 The Russel antinomy

The predicate $P(x) : x \neq x$ does not define a set $A = \{x : P(x)\}.$

Some other antinomy example: The sentence below is right.

The sentence above is wrong.

References

 $[1] \ \ Hohberger, H., 2016, "vv186_main", https://sjtu-umich.instructure.com/courses/102/files. Retrieved 2016-09-25.$