CSC 327 – Lab 3

Shyang Kao

ID: 5206454

Course Name: CSC 326

Due Date: February 26, 2022

Experiment Description

Part I -- Hierarchical Ripple Schematic Capture Design Entry and Implementation using Quartus II and performing Functional and Timing Simulations

Hierarchical Design Methods:

In this part of the laboratory each student is to utilize schematic capture techniques to create the Adder/Subtractor module using hierarchical schematic capture techniques. As the name implies, hierarchical designs utilize a hierarchy of logical levels to represent the design. In this type of design one does not implement the design in a flat manner where the entire design is placed on a single design sheet that utilizes the lowest-level gate/flip-flop components (i.e. primitives) but rather, the design is implemented on multiple sheets that are used to form a hierarchy of components. In this manner complex components are created using a set of less complex components, which themselves may be made up of more basic components. This continues until the components that are the lowest level to be modeled are encountered. These primitive components are usually at the gate, flip-flop or latch level.

Design Capture Assignment:

Students are to develop of multi-level hierarchical design of an Adder/Subtractor using schematic capture techniques. The top level of the design should be as shown in Figure 1. It is to be made up of two four-bit adders that are cascaded together by connecting the B_Coin output of one Four_BIT_Adder_Sub_module to the B_Cin input of the other module, as shown in Figure 2.

Figure 2 Eight_BIT_Adder_Sub Module created form two Four_BIT_Add_Sub_module

Each Four BIT_Adder_Sub_module should be made up of four one-bit full subtractor/adder module as shown in Figure 3.

Eight-bit Adder/Subtractor Module

The example design that is to be created and evaluated in this laboratory experiment is an eightbit adder/subtractor module as shown in Figure 1.

Figure 1: (a) Eight-Bit Subtractor/Adder Modulo

Figure 1: (b) Overflow Signal (V)

Its function is to output the valid difference or sum between two eight-bit quantities that are present on its A and B inputs. Figure 1(a) can be cascaded to support the creation of proportionately larger size subtraction and addition operations so there is also a borrow/carry input, B_Cin , and a borrow/carry output, B_Cout . Whenever the Add_Sub line is a logic high the D_S output produces a difference of A-B and the B_Cout indicates if there is a borrow is required at the most significant bit position. Whenever the Add_Sub line is at a logic low, the D_S output produces the sum of A+B and the B_Cout line indicates if a carry is generated at the most significant bit position. Figure 1 (b) shows the Overflow signal created from the MSB bits of A, B and D_S to indicate if there is any overflow in the addition/subtraction operation. The module itself can be implemented in a number of ways, such as a carry-lookahead subtractor/adder, with each style of implementation presenting various complexity performance trade-offs.

Figure 3 Four-BIT_Adder_Sub_module created from four one-bit full adder and Ex_OR gate:

Each Adder_Sub_Module should then be represented as shown in Figure 4

Figure 4 Representation of one-bit full adder (i.e. Adder_Sub_Module of our design)

Components are to be created from the bottom level up (i.e. you should start with Adder Sub Module and then build all the way up to Eight BIT Adder Subtracter Module). In other words, first create the Adder Sub_Module (as shown in Fig. 4) and save it as Adder Sub_Module.bdf in your current project directory and then create the symbol file of the module (in Quartus follow the sequence (Figs. 5 and 6), File Tecare Tigle then sequentially create Four BIT Adder Sub module.bdf and all the way up to top level entity, Eight_BIT_Adder_Subtracter_Module.bdf module.

Implementation Assignment:

Implementation Assignment:
After the successful demonstration of the simulation with the assigned input stimulus the design is to be downloaded and implemented using the DE2-115 rapid prototyping platform. Before doing its student should modify the top level of the design so that all of the input signals, which are to be connected to (SW0-SW17), are also run to the discrete LEDs (LEDR0-LEDR17) on the DE2-

115 as shown in Figure 10. The pin assignments for all of the pins need to be set to the Cyclone 115 as shown in Figure 10. The pin assignments for all of the pins need to be set to the Cyclone VF pin numbers as shown in Figure 11 (which shows the pin assignment of the output signals of the design (i.e. B C_{QUT} to LEDGS (PIN F17) and D S[7.0] to LDEGT.LEDGO (PIN G21.PIN E21), respectively)). You are to complete the rest of the pin assignments (input signals) of your design. Assign A[7]...A[0] to SW15...SW8, respectively, B[7]...B[0] to SW7...SW0, respectively, the output of Overflow to LEDR16, and Add Joh to SW17. In order to see the status of your inputs (whether of tr) | LEDR17-LEDR0 are also to be connected to the respective pins of the board. Use the DE2-115 user manual for the specified pin assignment.

Simulation Assignment:

Simulation Assignment:

To perform the simulation, the circuit should be tested with some known inputs to check whether it is producing the desired results. The circuits designed in Figure 1 can be used to perform subtraction operation using either 2's complement of 1's complement technique. Keep it in mind that no matter what approach you use the circuit should produce the same result. Depending on which technique you want to use, the Circuit in Figure 1 needs a minor modification.

If you decide to use 2's complement technique, the Add-Sub control line should be connected to the B_Cin input line, and B[7] and Add_Sub signals are Ex-OR' inputs and the output of the Ex-OR is connected to the B7 input of the overflow module, as shown in Figure 7. (Why is se?? Explain)

Now simulate the circuit with the following input data sets. Simulation result is shown in Figure 9. To verify results, the corresponding Decimal Values are shown as signed decimal number on

First Pair:	Second Pair:	Third Pair:	Fourth Pair:
$A = 64_{10} = 010000000_2$;	$A = 64_{10} = 010000000_2$	$A = 64_{10} = 010000000_2$	$A = 32_{10} = 00100000_2$
$B = 32_{10} = 001000000_2$;	$B = 16_{10} = 000100000_2$; $B = 64_{10} = 010000000_2$	$B = 64_{10} = 01000000_2$

Part II:

Simulation Assignment: Modify the circuit in Figure 7 such a way that it would perform subtraction using 1's-Complement technique. After you design the circuit simulate the circuit with the input pairs given below, and demonstrate that your circuit is producing the expected results.

First Pair:	Second Pair:	Third Pair:	Fourth Pair:
$A = 64_{10} = 010000000_2$;	$A = 64_{10} = 010000000_2$	$A = 64_{10} = 010000000$	a_2 ; $A = 32_{10} = 001000000_2$
$B = 32_{10} = 001000000_2$:	B = 1610 = 000100000	$\cdot B = 64 = 010000000$	$a \cdot B = 64 = 010000000$

To see the propagation delay of the output D_S signal, use timing simulation instead of functional simulation. To see the propagation delays more clearly, we changed the simulation end time and grid size from μs to ns. After you have reproduced the simulation of Figure 9, you will find that D_S is not produced right at the edges of the transition. It takes some time before you get the correct result. Which demonstrate the effect of propagation delays (Figure 12)?

Implementation Assignment:

After the successful demonstration of the simulation with the assigned input stimulus the design is to be downloaded and implemented using the DE2-115 rapid prototyping platform. Before doing this student should modify the top level of the design so that all of the input signals, which are to this student should modify the top level of the design so that all of the input signals, which are to be connected to (SW0-SW17), are also run to the discrete LEDs (LEDR0-LEDR17) on the DE2-115 as shown in Part-I. The pin assignments for all of the pins need to be set to the Cyclone IV E pin numbers as shown in Figure 11 (which shows the pin assignment of the output signals of the design (i.e. B_Cour to LEDG8 (PIN_F17) and D_S[7.0] to LDEG7.LEDG0 (PIN_G21.PIN_E21), respectively)). You are to complete the rest of the pin assignments (input signals) of your design. Assign A[7]...A[0] to SW15...SW8, respectively, B[7]...B[0] to SW7...SW0, respectively, the output of **Overflow** to LEDR[16], and Add_Sub to SW17. In order to see the status of your inputs (whether 0 or 1), LEDR17-LEDR0 are also to be connected to the respective pins of the board. Use the DE2-115 user manual for the specified pin assignment.

Experimental Results

One-bit full adder circuit design

Four-bit adder-subtracter circuit design

Eight-bit adder-subtracter circuit design

Overflow circuit design

2's complement adder-subtracter circuit design

2's Complement Simulation result

2's Complement Pin Planner

Question on page 5

Answer: The circuit's sign and arithmetic operator are determined by the Add sub that connects to the B Cin. B[7] and Add sub proceed to the Ex-OR gate to determine the final sign, and then to B7 to contribute the overflow detection factor. The DS7 receives the output and checks for overflow.

Simulation result

1's Complement Pin Planner

Question on page 8:

Ans: A 1's complement is sometimes provided an extra 1 that isn't added to the outcome. This procedure will take some time to transmit and add that 1 to the results.