

Merchant & Gould F C Inventor: Gill, et al. Docket No.: 7500.350US01 Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES Attorney Name John J Gresens Phone No. '612 371 5265 : Sheet 2 of 12

M	M, P(M)	R, (12)	R2(76)	R3(12,16)	Products
12 12	12 12 112	p(D)p(C)	$p(\overline{D})p(\overline{C}) \mid p(\overline{D})p(\overline{C})f_k$	$p(D)p(C)f_{lb}$	$p(D)^{2}p(C)p(D)p(C)^{2}f_{ll}^{2}f_{ls}^{2}$
12 16	2/12/16	12 16 Zhishs $p(D)p(C)p(D)$ $p(D)p(C)p(D)$	$p(D)p(C)p(\overline{D})$		$2p(D)^{\dagger} \mathcal{A}(C)^{\dagger} p(D)^{\dagger} \mathcal{A}_{1} f_{16}$
16 16	J116	$p(D)p(C)f_{l_2}$	16 I6 f_{16} $p(D)p(C)f_{12}$ $p(\overline{D})p(\overline{C})$	$p(\overline{D})p(C)f_{l2}$	$p(D)^2 p(C) p(D) p(C)^2 f_n^2 f_n^2$
					Denominator=sum of above

Table 1: Calculation of the components of the likelihood ratio for an example where 3 replicates show evidence of spurious bands and allele drop-out.

Fig.

Inventor: Gill, et al.
Docket No 7500 360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No* 612 371 526\$
Sheet 3 of 12

	 _				
	Froducts	$2f_{\sigma}f_{\sigma}f_{\sigma}^{\sigma}$ $p(D)^{\sigma}p(D)p(C)^{\sigma}p(Sf)^{\sigma}$	$(2/afcP(\overline{D})^4P(\overline{C})P(\overline{S})^3P(\overline{S})P(\overline{C}) + P(\overline{S})P(C)f.$	0, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	しょうしょう アクタス (23)
D-40	1 Dal D. J. C. J. C. J.	(15) (15) (15) (15) (15)	p(D) p(C) p(Si)	n(D)n(D)n(C) f n(Sy)	(の) なが バインルノーン ルノーン・ア
R₁≈abc	$p(D)^2 p(C) f p(St)^2$	10 D) 1 (S) (1 (S) 1 (C) 1 (C) 2 (C)	(") F(") F(") F(") + P(m) P("))	$p(D)'p(C)f_{\mu}p(SI)$	
P(M)	25.65	Zfofe	,,,,	₹89°	
M	ap	ac		20	

Table 2: Derivation of equation 12. Note that $p(\overline{St})$ only appears once when $M_f = bc$ and $R_f = abc$ because b must be in part or wholly

Fig. 4

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES

Attorney Name John J Gresens

Phone No. 612 371 5265

Sheet 4 of 12

Testing the robustness of the F designation: The F designation is conservative provided that the expression $\frac{1}{\left[1 + \frac{1 - 2p(D)}{2p(D)} f_a\right]} \Box 1.0 \text{ (from equation 7)}.$

Allele frequencies (f_a) 0.02, 0.05, 0.10 and 0.20 are tested. Generally the F designation is conservative provided p(D)>0.5.

Fig. 5

Merchant & Gould 1 C
Inventor: Gill, et al.
Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No. 612 371 5265
Sheet 5 of 12

Evaluation of $\frac{1}{\left[1 + \frac{f_a f_b^{n-1} p(C)^n}{2 p(D) \Gamma_D(C) \Gamma_D(C)^n}\right]}$ from equation 9 (called the scaling

function). When n (the number of replicates where the genotype is ab) is greater than or equal to 2 and $R_1 = a$, then the $LR \square 1/2f_a f_b$. When n=1, $1/2f_a$ would be used which is always conservative. In fig 2a p(C)=0.3; $f_a=f_b=0.1$.

Fig. 6a

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES
Attorney Name John J Gresens
Phone Ne 612 371 5265
Sheet 6 of 12

The 3 dimensional model showing the relationships between p(C) and p(D) when $f_a=0.1$. The scaling function $\Box I.0$ for moderate and low values of p(C) and for all intermediate values of p(D).

Fig. 6b

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES

Attorney Name John J Gresens

Phone No * 612 371 5265*

Sheet 7 of 12

Provided that the scaling function $\frac{1}{f_a \left[2 + \frac{f_b p(D) p(C)}{p(\overline{D}) p(\overline{C})} + \frac{f_b p(C)}{2 p(\overline{D}) p(D) p(\overline{C})} \right]} \ge 1.0$

(from equation 10) then $1/2f_b$ is conservative. Allele frequencies are $f_a=f_b=0.02,0.05,0.1,0.2$ respectively and

Fig. 7a

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES
Attorney Name John J Gresens
Phone No *512 371 5265.
Sheet 8 of 12

3- dimensional graph to show the combined effect of p(D) and p(C) when f_a =0.10. The critical point where the scaling function >1 is reached when p(C)<0.9 and p(D)<0.9.

Fig. 7b

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No 61€ 371 5265
Sheet 9 of 12

Fig. 8a

Merchant & Golin F.C.
Inventor: Gill, et al.
Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No. 612 371 5265
Sheet 10 of 12

When $f_0=.1$, the LRO1 when p(D)<0.5 and p(C)<0.3.

Fig. 8b

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES

Attorney Name John J Gresens

Phone Ne 612 371 5265

Sheet 11 of 12

Plots of scaling function $\frac{1 + \frac{p(C)^2 p(D) f_b(f_a + p(\overline{St}) f_c)}{p(\overline{C}) p(\overline{D}) \{p(St) p(\overline{C}) + p(\overline{St}) p(C) f_b\}}$

(equation 12) v. p(St) for several levels of p(D) ranging from 0.1 – 0.9. p(C)=0.3 and fa=fb=fc=0.1.

Fig. 9

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phona No 612 372 5265
Sheet 12 of 12

(** O) #	0.40	0.00	0.60	0.60		0.42					
P(D H.)					0.32		0.36	0.26	77.0	0.32	0.20
Plo mes)			İ		0.04		0.62	0,0	0.40	0.36	0.70

Meen 0.64 0.32 0.56

Table 3: Analysis of p(D) parameters derived from Table 1 of Gill et al [11],

Fig. 10