

Exercises in Textbook (6 th ed)			
Sections	s Exercises	Typical Ones	
§3-2	3.1~3.3	3.3(a)*	
§3-3	3.4~3.12, 3.26	3.5(b)*, 3.6(b)*, 3.10(b)	
§3-4	3.13, 3.14	3.13(b)	
§3-5	3.15	3.15(b)*	
補充資料 Tabular Meth		Repeat 3-15(b) by Quine- McCluskey method	
§3-6	3.16~3.23	3.16(a), 3.20	
§3-7	3.24, 3.25	3.24	
§3-8	3.27, 3.28, 3.30	3.28	
Ch4	3.29		
HDL	3.31~3.40		
* : Answ	ers to problems appear at	the end of the text. J.J. Shann 3-	

(Supplementary materials)

補充資料:Cost Criteria

- Two cost criteria:
 - i. Literal cost
 - > the # of literal appearances in a Boolean expression
 - ii. Gate input cost (✓)
 - > the # of inputs to the gates in the implementation

Reference:

M. Morris Mano & Charles R. Kime, *Logic and Computer Design Fundamentals*, 3rd Edition, 2004, Pearson Prentice Hall. (§2-4)

J.J. Shann 3-7

7

Literal Cost

- Literal cost:
 - the # of literal appearances in a Boolean expression
 - E.g.: $F = AB + C(D+E) \rightarrow 5$ literals $F = AB + CD + CE \rightarrow 6$ literals (p.2-69)
 - Adv.: is very simple to evaluate by counting literal appearances
 - Disadv.: does not represent ckt complexity accurately in all cases
 - ▶ E.g.:

$$G = ABCD + \overline{ABCD} \rightarrow 8 \text{ literals}$$

 $G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \rightarrow 8 \text{ literals}$

J.J. Shann 3-8

Gate Input Cost

- Gate input cost (GIC):
 - the # of inputs to the gates in the implementation
 - is a good measure for contemporary logic implementation
 - → is proportional to the # of transistors and wires used in
 implementing a logic ckt. (especially for ckt ≥ 2 levels)

J.J. Shann 3-9

9

E.g.: nonstandard vs. standard form (p.2-69)

$$F = AB + C(D + E) \rightarrow 3$$
-level (5 literals)
= $AB + CD + DE \rightarrow 2$ -level (6 literals)

AB + C(D + E)

GIC = 8

AB + CD + CE

GIC = 9

J.J. Shann 3-10

For SoP or PoS eqs, GIC = the sum of

- all literal appearances
- the # of terms excluding terms that consist only of a single literal
- the # of distinct complemented single literals (optional)
- E.g.: p.3-10

$$G = ABCD + \overline{ABCD} \longrightarrow GIC = 8 + 2 (+ 4)$$

$$G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \longrightarrow GIC = 8 + 4 (+ 4)$$

$$G = (A+B)(B+C)(C+D)(D+A) \rightarrow GIC = 8+4(+4)$$

J.J. Shann 3-12

3-2

The Map Method

J.J. Shann

13

The Map Method

XY + XY' = X

- Map method: Karnaugh map simplification
 - a simple straightforward procedure
 - K-map: a pictorial form of a truth table
 - > a diagram made up of squares n input variables → 2^n squares
 - > Each square represents one minterm of the function.
 - > Any adjacent squares in the map differ by only one variable.
 - The simplified expressions produced by the map are always in one of the two *standard forms*:
 - > SOP (sum of products) or POS (product of sums)
- The simplest algebraic expression: not unique
 - one w/ a minimum # of terms and
 - w/ the fewest possible # of literals per term.
 - \Rightarrow a ckt diagram w/ a minimum # of gates and the minimum # of inputs to the gate.

J.J. Shann 3-14

Three-variable map: $8 \text{ minterms} \Rightarrow 8 \text{ squares}$

$$F(X,Y,Z)$$

YZ

X 00 01 11 10

0 $X'Y'Z'$ $X'Y'Z$ $X'YZ$ $X'YZ'$

1 $XY'Z'$ $XY'Z$ XYZ XYZ XYZ'

m_0	\mathbf{m}_1	m_3	m_2
m_4	m_5	m ₇	m_6

- Only one bit changes in value from one adjacent column to the next
 - > Any two adjacent squares in the map differ by only one variable, which is primed in one square and unprimed in the other.
 - ▶ E.g.: m₅ & m₇
- Note: Each square has 3 adjacent squares.
 - > The right & left edges touch each other to form adjacent squares.
 - ▶ E.g.: $m_4 \rightarrow m_0, m_5, m_6$

J.J. Shann 3-17

17

F(X,Y,Z)

XY Z	0	1
00	0	1
01	2	3
11	6	7
10	4	5

X	0	1
00	0	4
01	1	5
11	3	7
10	2	6

J.J. Shann 3-19

19

Map Minimization of SOP Expression

Basic property of adjacent squares:

YZ				
X	00	01	11	10
0	0	1	3	2
	X'Y'Z'	X'Y'Z	X'YZ	X'YZ'
1	4	5	7	6
	XY'Z'	XY'Z	XYZ	XYZ'

\mathbf{m}_0	\mathbf{m}_1	m_3	m_2
m_4	m_5	m ₇	m_6

- Any two adjacent squares in the map differ by only one variable: primed in one square and unprimed in the other
 - E.g.: $m_5 = X\overline{Y}Z$, $m_7 = XYZ$
- ⇒ Any two minterms in adjacent squares that are ORed together can be simplified to a single AND term w/a removal of the different variable.

E.g.:
$$m_5 + m_7 = X\overline{Y}Z + XYZ = XZ(\overline{Y} + Y) = XZ$$

J.J. Shann 3-20

Procedure of map minimization of SOP expression:

- i. A 1 is marked in each minterm that represents the function.
 - > Two ways:
 - (1) Convert each minterm to a binary number and then mark a 1 in the corresponding square.
 - (2) Obtain the coincidence of the variables in each term.
- ii. Find possible adjacent 2^k squares:
 - \rightarrow 2 adjacent squares (i.e., minterms) \rightarrow remove 1 literal
 - > 4 adjacent squares (i.e., minterms) → remove 2 literal
 - > 2^k adjacent squares (i.e., minterms) \rightarrow remove k literal
 - ⇒ The larger the # of squares combined, the less the # of literals in the product (AND) term.
 - * It is possible to use the same square more than once.

J.J. Shann 3-21

21

Example 3.1

Simplify the Boolean function

$$F(X, Y, Z) = \Sigma m(2,3,4,5)$$

<Ans.>

J.J. Shann 3-22

- Product terms using 4 minterms
- $F(X, Y, Z) = \Sigma m(0,2,4,6)$

* The right & left edges touch each other to form adjacent squares.

$$\underline{m_0 + m_2} + \underline{m_4 + m_6} = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

$$= \overline{X}\overline{Z}(\overline{Y} + Y) + X\overline{Z}(\overline{Y} + Y)$$

$$= \overline{X}\overline{Z} + X\overline{Z} = \overline{Z}(\overline{X} + X) = \overline{Z}$$

J.J. Shann 3-23

23

• $F(X, Y, Z) = \Sigma m(0,1,2,3,6,7)$

$$F = \overline{X} + Y$$

* It is possible to use the same square more than once.

J.J. Shann 3-24

Non-unique Optimized Expressions

- There may be alternative ways of combining squares to product equally optimized expressions:
- E.g.: $F(X,Y,Z) = \sum m(1,3,4,5,6)$

J.J. Shann 3-27

27

Simplifying Functions not Expressed as Sumof-minterms Form

- If a function is not expressed as a sum of minterms:
 - use the map to obtain the minterms of the function & then simplify the function
- Example 3.4: Given the Boolean function

$$F = A'C + A'B + AB'C + BC$$

<Ans.>

$$F = A'C + A'B + AB'C + BC$$

$$0-1 \quad 01 - \quad 101 \quad -11$$

$$1, 3 \quad 2, 3 \quad 5 \quad 3, 7$$

$$= \sum m(1, 2, 3, 5, 7)$$

$$= C + A'B$$

$$1 \quad 10$$

$$0 \quad 11 \quad 10$$

$$0 \quad 1 \quad 1 \quad 1$$

$$1 \quad 1 \quad 1$$

J.J. Shann 3-28

Map Manipulation

- When choosing adjacent squares in a map:
 - Ensure that all the minterms of the function are covered when combining the squares.
 - Minimize the # of terms in the expression.
 - avoid any redundant terms whose minterms are already covered by other terms

J.J. Shann 3-34

Prime Implicants

- Implicant:
 - A product term is an implicant of a function if the function has the value 1 for all minterms of the product term.
- Prime implicant: PI
 - a product term obtained by combining the max. possible # of adjacent squares in the map
- Essential prime implicant: EPI, must be included
 - If a minterm in a square is covered by only one PI, that PI is said to be essential.
 - > Look at each square marked w/ a 1 and check the # of PIs that cover it.

J.J. Shann 3-35

35

Example

• Find the PIs and EPIs of the Boolean function

$$F(X, Y, Z) = \Sigma m(1,3,4,5,6)$$

<Ans.>

4 PIs:
$$\overline{X}Z$$
, $\overline{Y}Z$, $X\overline{Z}$, $X\overline{Y}$
2 EPIs: $\overline{X}Z$ (m_3) , $X\overline{Z}$ (m_6)

$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

$$= \overline{X}Z + X\overline{Z} + (\overline{Y}\overline{Z})$$

$$= \overline{X}Z + X\overline{Z} + (\overline{Y}\overline{Z})$$

J.J. Shann 3-36

Finding the Simplified Expression

- Procedure for finding the simplified expression from the map: (SoP form)
 - i. Determine all PIs.
 - ii. The simplified expression is obtained from the logical sum of all the EPIs plus other PIs that may be needed to cover any remaining minterms not covered by the EPIs.
 - There may be more than one expression that satisfied the simplification criteria.

J.J. Shann 3-39

39

補充資料 (Supplementary Materials)

Five-Variable Map

J.J. Shann

41

Summary

- *n*-variable map: 2^n minterms $\Rightarrow 2^n$ squares
- Maps for more than 4 variables are not as simple to use:
 - Employ computer programs specifically written to facilitate the simplification of Boolean functions w/ a large # of variables.
 - ⇒補充 Quine-McCluskey Method (p.3-58)

Reference:

Randy H. Katz & Gaetano Borriello, Contemporary Logic Design, Prentice Hall.

J.J. Shann 3-45

45

3-4

Product of Sums (PoS) Simplification

J.J. Shann

Product of Sums Simplification

- Approach 1: POS of F
 - Simplified F' in the form of sum of products
 - Apply DeMorgan's theorem F = (F')'F': sum of products $\Rightarrow F = (F')'$: product of sums
 - E.g.: Simplify the Boolean function in POS:

J.J. Shann 3-47

47

Approach 2 (duality): POS of F

- combinations of maxterms (it was minterms for SoP)
 - i. A 0 is marked in each maxterm that represents the function.
 - ii. Find possible adjacent 2^k squares and realize each set as a sum (OR) term, w/ variables being complemented.
- _ E.g.: for 4 variables

$$M_0M_1 = (A+B+C+D)(A+B+C+D')$$

= $(A+B+C) + (DD')$
= $A+B+C$

J.J. Shann 3-48

<Ans.> (b) POS of $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$ Approach 1: F'F CD CD AB AB F' = AB + CD + BD'F = (F')' = (AB + CD + BD')' = (A'+B')(C'+D')(B'+D)J.J. Shann 3-50

Don't-Care Conditions

- Don't care condition:
 - the unspecified minterms of a function
 - is represented by an x
 - E.g.: A 4-bit decimal code has 6 combinations which are not used.
- Incompletely specified function:
 - has unspecified outputs for some input combinations

Decimal	BCD
Symbol	Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

* 1010 ~ 1111 are not used and have no meaning.

J.J. Shann 3-55

55

Simplification of an Incompletely Specified Function

- Simplification of an incompletely specified function:
 - When choosing adjacent squares to simplify the function in the map, the x's may be assumed to be either 0 or 1, whichever gives the simplest expression.
 - An × need not be used at all if it does not contribute to covering a larger area.

J.J. Shann 3-56

* The outputs in a particular implementation of the function are only 0's and 1's.

• Simplify the Boolean function $F(w,x,y,z) = \Sigma m(1,3,7,11,15)$ which has the *don't-care* conditions $d(w,x,y,z) = \Sigma m(0,2,5)$.

(a) **SOP**: $F(w,x,y,z) = yz + w'x' = \Sigma m(0,1,2,3,7,11,15)$ $F(w,x,y,z) = yz + w'z = \Sigma m(1,3,5,7,11,15)$

(b) **POS**: $F(w,x,y,z) = z (w' + y) = \Sigma m(1,3,5,7,11,15)$. Shann 3-57

57

補充資料 (Supplementary Materials)

Quine-McCluskey Method &

CAD Tools for Simplification

J.J. Shann

A. Quine-McCluskey Method (for SOP)

- Tabular method to systematically find all PIs and a minimum cover of PIs for a function
 - 1. Find all prime implicants (xy + xy' = x)

Implication Table

(a) Fill Column 1 with minterm and don't-care condition indices.

Group by number of 1's.

(b) Apply theorem xy + xy' = x

Compare elements of adjacent groups.

Differ by one bit ⇒ Combine (eliminate a variable) and place in next column.

Mark the combined elements with a check (\checkmark).

Repeat until no further combinations may be made.

Mark the uncombined elements with a star $(*) \Rightarrow PI$.

2. Find the minimum cover of PIs ⇒ simplified SOP

PI Chart

J.J. Shann 3-59

59

- Tabular method to systematically find all PIs and a minimum cover of PIs for a function
 - 1. Find all prime implicants (xy + xy' = x)
 - 2. Find the minimum cover of PIs ⇒ simplified SOP

PI Chart

- (a) Construct the Prime Implicant Chart
- (b) Find the EPIs

(* EPIs must be in the set)

(c) Select PIs to cover the remaining minterms if necessary

(* Form the minimum set)

J.J. Shann 3-60

Finding the Minimum Cover (1/4)

Find the smallest set of PIs that cover all the minterms:

Prime Implicant Chart

- (a) Construct the Prime Implicant Chart
- (b) Find the EPIs (* EPIs must be in the set)
- (c) Select PIs to cover the remaining minterms if **necessary** (* Form the minimum set)

J.J. Shann 3-66

66

Finding the Minimum Cover (2/4)

(a) Construct the PI chart:

Prime Implicant Chart

4 5 6 8 9 10 13 **Rows** = prime implicants 0.4(0-00)**Columns = minterms only** X 0.8 (-000)(excludes don't-care conditions) Place an "X" if minterm is X X8,9 (100–) covered by the PI. X 8,10 (10-0) $F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13)$ 9,13 (1-01) X X $+ \Sigma d(0,7,15)$ **Prime Implicants:** X X X4,5,6,7 (01---) 0-00 = A' C' D'01 - - = A' B5,7,13,15 (-1-1) X X

-000 = B' C' D'-1-1 = B D100 - = A B' C'

10-0 = A B' D'1-01 = A C' D

J.J. Shann 3-67

Finding the Minimum Cover (4/4) (c) Select PIs to cover the 8 9 10 13 remaining minterms if 0,4 (0-00) necessary 0,8 (-000) X (* Form the minimum set) 8,9 (100–) X XEliminate all columns covered 8,10 (10-0) by EPI. 9,13 (1-01) Find minimum set of rows that cover the remaining columns. 4,5,6,7 (01---) 5,7,13,15 (-1-1) X X $\mathbf{F} = \mathbf{A} \mathbf{B}' \mathbf{D}' + \mathbf{A}' \mathbf{B} + \mathbf{A} \mathbf{C}' \mathbf{D}$

J.J. Shann 3-69

B. CAD Tools for Simplification

- Problems of Quine-McCluskey Method:
 - The # of PIs grows very quickly as the # of inputs increases.
 - Finding a min set cover is a very difficult problem.
 - » an NP-complete problem
 - > There are not likely to be any efficient algorithms for solving it.

Espresso:

- a program for 2-level Boolean function minimization
- combines many of the best heuristic techniques developed
 - > don't generate all PIs
 - > judiciously select a subset of primes that still covers the minterms

J.J. Shann 3-71

71

補充資料 (Supplementary Materials)

Multiple-Level Circuit Optimization

J.J. Shann

73

Multiple-Level Circuit Optimization

- 2-level ckt optimization: simplified SoP, PoS
 - can reduce the cost of combinational logic ckts
 - 2-level ckt: minimal propagation delay
- Multi-level ckts:
 - _ ckts w/ more than 2 levels
 - There are often additional cost saving available

• Reference:

 M. Morris Mano & Charles R. Kime, Logic and Computer Design Fundamentals, 3rd Edition, 2004, Pearson Prentice Hall. (§2-6)

J.J. Shann 3-74

Transformations for Multiple-level Optimization

- Multiple-level ckt optimization (simplification):
 - is based on the use of a set of transformations that are applied in conjunction w/ cost evaluation to find a good, but not necessarily optimum solution.

GIC, delay

- Transformations:
 - **Factoring:** for $GIC \downarrow$
 - → is finding a factored form from either a SoP or PoS expression for a function
 → distributive law
 - *Elimination*: for *delay* \downarrow
 - \rightarrow function G in an expression for function F is replaced by the expression for $G \rightarrow$ distributive law

J.J. Shann 3-75

75

A. Transformation for GIC Reduction (Factoring)

E.g.:
$$G = ABC + ABD + E + ACF + ADF$$

2-level implementation: gate-input cost = 17 Multi-level implementation: distributive law

$$G = \underline{ABC} + \underline{ABD} + E + \underline{ACF} + \underline{ADF}$$
 (a) $\rightarrow 17$

$$= \underline{AB(C+D)} + E + \underline{AF(C+D)}$$
 (b) $\rightarrow 13$

$$= (\underline{AB + AF}) (C + \underline{D}) + E \qquad (c) \to 12$$

$$= \underline{A(B+F)}(C+D) + E$$
 (d) $\rightarrow 9$

Gate input count (GIC)

J.J. Shann 3-76

(Cont'd)
$$G = A\overline{X}_{1}X_{2} + BX_{1}\overline{X}_{2}$$

$$X_{1} = CD$$

$$X_{2} = E + F$$

$$H = \overline{ABCD} + ABE + ABF + BCE + BCF$$

$$= B(\overline{ACD} + AE + AF + CE + CF)$$

$$= B(\overline{ACD} + A(E + F) + C(E + F))$$

$$= B(\overline{A}(CD) + (A + C)(E + F))$$

$$= B(\overline{AX}_{1} + (A + C)X_{2})$$

$$\Rightarrow G = A\overline{X}_{1}X_{2} + BX_{1}\overline{X}_{2}$$

$$H = B(\overline{AX}_{1} + (A + C)X_{2})$$

$$X_{1} = CD$$

$$X_{2} = E + F$$
substitution
$$X_{1} = CD$$

$$X_{2} = E + F$$

$$X_{1} = CD$$

$$X_{2} = E + F$$
substitution

NAND & NOR Implementation

- NAND & NOR gates:
 - are easier to fabricate w/ electronic components.
 - are the basic gates used in all IC digital logic families.
 - have the universal property:
 - > Any Boolean function can be implemented w/ NAND (NOR) gates only.
- Boolean function in terms of AND, OR, NOT
 ⇒ equivalent NAND (NOR) logic diagram

J.J. Shann 3-88

88

A. NAND Circuits

- Universal property of the NAND gate:
 - The logical operations of AND, OR, NOT can be obtained w/ NAND gates only.

J.J. Shann 3-89

Two graphic symbols for NAND gate:

- Implementation of a combinational ckt w/ NAND gates:
 - i. Obtain the simplified Boolean functions in terms of AND, OR, NOT.
 - ii. Convert the function to NAND logic.

J.J. Shann 3-90

90

Two-Level NAND Implementation

- Two-level NAND implementation: Sum of products (AND-OR) ⇒ NAND-NAND
- Example: F = AB + CD

(a)
$$\rightarrow$$
 (c): F = AB + CD = [(AB + CD)']' = [(AB)' (CD)']'
(c) \rightarrow (a): F = [(AB)' (CD)']' = AB + CD

J.J. Shann 3-91

Example 3.9

Implement the following Boolean function w/ NAND gates: $F(x,y,z) = \Sigma(1,2,3,4,5,7)$

<Ans.>

i. Simplify the function in SOP:

ii. Convert the function to NAND logic:

92

- Procedure of implementing a Boolean function w/ two-level NAND gates:
 - 1. Simplify the function and express it in sum of products.
 - 2. Draw a NAND gate for each product term of the expression that has at least two literals. The inputs to each NAND gate are the literals of the term.

 $\rightarrow 1^{st}$ level

- 3. Draw a single NAND gate (using the AND-invert or the invert-OR graphic symbol), w/ inputs coming from outputs of 1st level gates. \rightarrow 2nd level
- 4. A term w/ a single literal requires an inverter in the 1st level or may be complemented and applied as an input of the 2nd-level NAND gate. J.J. Shann 3-93

Multilevel NAND Circuits

- Standard form of Boolean function
 - \Rightarrow 2-level implementation
- Nonstandard form ⇒ Multilevel circuit

94

■ Procedure for obtaining a multilevel NAND diagram:

- 1. From a given Boolean expression, draw the logic diagram w/ AND, OR, and invert gates.
 - Assumption: Both the normal and complement inputs are available.
- 2. Convert all AND gates to NAND gates w/ AND-invert graphic symbol.
- 3. Convert all OR gates to NAND gates w/ invert-OR graphic symbols.
- 4. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (one-input NAND gate) or complement the input literal.

J.J. Shann 3-95

B. NOR Implementation

- NOR operation: the dual of NAND operation
 - All procedures and rules for NOR logic are the dual of those developed for NAND logic.
- Universal property of the NOR gate:
 - The logical operations of AND, OR, NOT can be obtained w/ NOR gates only.

Two graphic symbols for NOR gate:

- Implementation of a combinational ckt w/ NOR gates:
 - i. Obtain the simplified Boolean functions in terms of AND, OR, NOT.
 - ii. Convert the function to **NOR** logic.

J.J. Shann 3-98

98

Two-Level NOR Implementation

- Two-level NOR implementation:

 Product of sums (OR-AND) ⇒ NOR-NOR
- Procedure of implementing a Boolean function w/ two-level NOR gates:
 - 1. Simplify the function and express it in product of sums.
 - 2. Draw the OR-AND diagram of the POS expression.
 - OR gates → NOR gates w/ OR-invert graphic symbols.
 AND gate → NOR gate w/ invert-AND graphic symbol.
 - 4. A single literal term going into the 2nd-level gate must be complemented

Procedure for obtaining a multilevel NOR diagram:

- 1. From a given Boolean expression, draw the logic diagram w/ AND, OR, and invert gates.
 - Assumption: Both the normal and complement inputs are available.
- Convert each OR gate to a NOR gate w/ OR-invert symbol.

Convert each AND gate to a NOR gates w/ invert-AND symbols.

4. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (one-input NOR gate) or complement the input literal.

J.J. Shann 3-101

Other Two-Level Implementations

- The types of gates most often found in ICs are NAND and NOR.
 - NAND and NOR logic implementations are the most important from a practical point of view.
- Wired logic:
 - Some NAND or NOR gates allow the possibility of a wire connection b/t the outputs of two gates to provide a specific logic function.
 - E.g.: Wired-AND logic Wired-OR logic

J.J. Shann 3-104

104

Wired Logic

* The wired-logic gate is not a physical gate.

Wired-AND logic:

NAND-AND ⇒ AND-OR-INVERT (AOI) function

Wired-OR logic:

NOR-OR ⇒ OR-AND-INVERT (OAI) function

J.J. Shann 3-105

Exclusive-OR Function

■ Exclusive-OR: XOR, ⊕

$$x \oplus y = xy' + x'y$$

- is equal to 1 if only x = 1 or if only y = 1, but not both.
- Exclusive-NOR: XNOR, equivalence

$$(x \oplus y)' = xy + x'y'$$

- is equal to 1 if both x and y are equal to 1 or if both are equal to 0.
- * Two-variable XOR & XNOR are the complement to each other.
- They are particularly useful in arithmetic operations and error-detection and correction ckts.

J.J. Shann 3-114

114

Properties of XOR

 $x \oplus y = xy' + x'y$

Identities:

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

• Commutativity and associativity:

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

⇒ XOR gates w/ three or more inputs

J.J. Shann 3-115

E.g.: 4-variable XOR

 $A \oplus B \oplus C \oplus D$

$$= (AB' + A'B) \oplus (CD' + C'D)$$
$$= (AB' + A'B) (CD' + C'D)'$$

$$+ (AB' + A'B)' (CD' + C'D)$$

$$= (AB' + A'B)(CD + C'D')$$

+
$$(AB + A'B')(CD' + C'D)$$

= $\Sigma(1, 2, 4, 7, 8, 11, 13, 14)$

■ An *n*-variable XOR function is defined as the logical sum of the $2^{n}/2$ minterms whose binary numerical values have an odd # of 1's.

J.J. Shann 3-118

118

XNOR is commutative and associative

$$(A \oplus B)' = (B \oplus A)'$$

$$[(A \oplus B)' \oplus C]' = [A \oplus (B \oplus C)']'$$

$$= A \oplus B \oplus C$$

$$\neq$$
 (A \oplus B \oplus C)'

- Modifying the definition of multiple-variable XNOR operation: even function
 - equal to 1 if the input variables have an even # of 1's

J.J. Shann 3-119

• E.g.: 3-variable XNOR

XOR: $A \oplus B \oplus C = \Sigma(1,2,4,7)$ XNOR: $(A \oplus B \oplus C)' = \Sigma(0,3,5,6)$

Odd function $F = A \oplus B \oplus C$

Even function $F = (A \oplus B \oplus C)'$

J.J. Shann 3-120

120

E.g.: 4-variable XNOR

XOR: $A \oplus B \oplus C \oplus D = \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$

XNOR: $(A \oplus B \oplus C \oplus D)' = \Sigma(0, 3, 5, 6, 9, 10, 12, 15)$

Odd function $F = A \oplus B \oplus C \oplus D$

Even function $F = (A \oplus B \oplus C \oplus D)'$

■ An *n*-variable XNOR function is defined as the logical sum of the $2^n/2$ minterms whose binary numerical values have an even # of 1's.

J.J. Shann 3-121

Hardware Description Language (HDL)

- HDL:
 - is a language that describes the hardware structure and behavior of digital systems in a textual form.
 - Can be used to represent logic diagrams, Boolean expressions, and other more complex digital ckts.
- Two applications of HDL processing:
 - Logic simulation:
 - > the representation of the structure and behavior of a digital logic system through the use of a computer.
 - Logic synthesis:
 - the process of deriving a list of components and their interconnections (netlist) from the model of a digital system described in HDL.

J.J. Shann 3-128

J.J. Shann 3-129

128

Chapter Summary

- Minimization of Boolean function:
 - Algebraic manipulation: literal minimization (Ch2)
 - Map method: gate-level minimization (§3-2~3-5)
 - > SoP simplification & PoS simplification
 - > Don't-care conditions
 - _ Tabular method: Quine-McCluskey method (補充資料)
- Multiple-Level Circuit Optimization (補充資料)
- NAND and NOR Implementation
- Other two-level implementation
- XOR and XNOR Functions
- Hardware Description Language (HDL)

J.J. Shann 3-130