

## CLAIMS

1. A method for controlling the operation of at least a first hydraulic actuator and a second hydraulic actuator, the method comprising:
  - setting with a monitoring valve (10) the minimum or maximum pressure of the pressure medium led to the second actuator,
  - adjusting the pressure of the pressure medium led to the second actuator in a predefined pressure ratio with the pressure led to the first actuator,

characterized in that a reference pressure led to the monitoring valve (10) is controlled to define a specific pressure level of the first actuator, above which level pressure ratio control is active.
2. A monitoring valve comprising at least:
  - a body (26),
  - an elongated slide (20) having a first end and a second end and arranged to a space in the body (26) and movable in the longitudinal direction in said space,
  - at least one force element that is arranged to act on the first end of the slide (20) to move the slide (20) towards a first direction of travel (B), and
  - at least one controllable channel (6') that is arranged to open and close by the longitudinal movement of the slide (20),

characterized in that

  - the slide (20) has at least one collar (23),
  - a sleeve (42) is arranged around the slide (20),
  - the body (26) has a space, inside which the collar (23) and the sleeve (42) are arranged to move,
  - the outer rim of the sleeve (42) is sealed to the body (26) and the inner rim of the sleeve is sealed to the slide (20),
  - the sleeve (42) defines a first chamber (31) and a second chamber (30) on opposite sides of the sleeve (42), and said chambers (30, 31) are not connected to each other,
  - the first chamber (31) is connected at least to a first pressure channel,
  - the second chamber (30) is connected at least to a second pressure channel,

the sleeve (42) is arranged to move in the first (B) or the second (A) direction of travel depending on the pressure difference inside the chambers (30, 31), and

5 in one direction of travel, the sleeve (42) is arranged to act on the axial position of the slide (20) when abutting on the collar (23).

3. A monitoring valve as claimed in claim 2,

**c h a r a c t e r i z e d** in that

the sleeve (42) is arranged to abut on the collar (23), on the same side as the force element (12),

10 the first chamber (31) is on the force element (12) side of the sleeve (42) and the second chamber (30) is on the collar (23) side of the sleeve,

the first chamber (31) is connected to a sensing channel (9),

the second chamber (30) is connected to a reference channel (40),

the sleeve (42) is arranged to push via the collar (23) the slide (20)

15 towards the first direction of travel (B), if the pressure of the sensing channel (9) is higher than that of the reference channel (40).

4. A monitoring valve as claimed in claim 2,

**c h a r a c t e r i z e d** in that

the sleeve (42) is arranged to abut on the collar (23), on the opposite side of the collar (23) with respect to the force element (12),

20 the first chamber (31) is on the force element (12) side of the sleeve (42) and the second chamber (30) is on the opposite side of the sleeve (42),

the first chamber (31) is connected to a reference channel (40),

25 the second chamber (30) is connected to a sensing channel (9),

the sleeve (42) is arranged to push via the collar (23) the slide (20) towards the second direction of travel (A), if the pressure of the sensing channel (9) is higher than that of the reference channel (40).

30 5. A monitoring valve as claimed in any one of claims 2 or 4,  
**c h a r a c t e r i z e d** in that the force element is a spring (12) and  
the pushing force of the spring (12) is adjustable.

6. A monitoring valve as claimed in any one of claims 2 to 5,  
**c h a r a c t e r i z e d** in that

35 the second end of the slide (20) is arranged tightly to a bore (27) in  
the body (26),

the pressure of the controllable channel (6') is arranged to act on the end surface of the second end of the slide (20),

the bore (27) is connected to at least one transverse discharge channel (11), and

5 the second end of the slide (20) is arranged to open and close the connection between the controllable channel (6') and discharge channel (11).

7. A monitoring valve as claimed in any one of claims 2 to 6, **characterized** in that

10 the monitoring valve (10) is arranged to adjust the pressure variation of the controllable channel (6') in a predefined ratio with the pressure variation of the sensing channel (9), and

the pressure ratio of the monitoring valve (10) is determined by the ratio of the end surface area of the sleeve (42) to the cross-surface area of the second end of the slide (20).

15 8. A monitoring valve as claimed in claim 3,

**characterized** in that the action of the sleeve (42) is arranged to increase the pressure of the controllable channel (6') at a given ratio, when the sleeve (42) abuts on the collar (23) of sleeve (42) on the same side as the force element (12).

20 9. A monitoring valve as claimed in claim 4,

**characterized** in that the action of the sleeve (42) is arranged to decrease the pressure of the controllable channel (6') at a given ratio, when the sleeve (42) abuts on the collar (23) of sleeve (42) on the opposite side of the force element (12).

25 10. A rock drilling apparatus comprising at least:

a percussion apparatus (71),

a feed apparatus (73),

30 a hydraulic system, to which the percussion apparatus (71) and feed apparatus (73) are connected, and at least one hydraulic pump (1) for supplying hydraulic pressure to the hydraulic system,

35 at least one compensator valve (5') in the pressure medium channel leading to the percussion apparatus (71), and at least one second compensator valve (5) in the pressure medium channel leading to the feed apparatus (73) for adjusting the operation of the percussion apparatus and feed apparatus, respectively, and

## 16

at least one monitoring valve (10) for setting the minimum pressure of the pressure medium led to the percussion apparatus (71) and for adjusting the pressure of the pressure medium led to the percussion apparatus (71) in a predefined pressure ratio with the pressure led to the feed apparatus (73),

5           **c h a r a c t e r i z e d** in that

a reference pressure channel (40) is connected to the monitoring valve (10) and the control of the pressure in the channel is arranged to provide a specific pressure level of the feed apparatus (73), above which level the feed pressure activates the pressure ratio control on the percussion apparatus (71).

10          11. A rock drilling apparatus comprising at least:

a percussion apparatus (71),  
a feed apparatus (73),

a hydraulic system, to which the percussion apparatus (71) and feed apparatus (73) are connected, and at least one hydraulic pump (1) for supplying hydraulic pressure to the hydraulic system,

15          at least one compensator valve (5) in the pressure medium channel leading to the feed apparatus (73) for adjusting the operation of the feed apparatus, and

20          at least one monitoring valve (10) for setting the minimum pressure of the pressure medium led to the percussion apparatus (71) and for adjusting the pressure variation of the pressure medium led to the percussion apparatus (71) in a predefined pressure ratio with the pressure variation of the feed apparatus (73),

25          **c h a r a c t e r i z e d** in that a reference pressure channel (40) is connected to the monitoring valve (10) and the control of the pressure in the channel is arranged to provide a specific pressure level of the feed apparatus (73), above which level the feed pressure activates the pressure ratio control on the percussion apparatus (71).

30          12. A rock drilling apparatus as claimed in claim 10 or 11,

30          **c h a r a c t e r i z e d** in that

the pressure of the feed apparatus (73) is determined by setting in the load-sense circuit (6) of the feed apparatus (73) a first relief valve (83) and a second relief valve (84) mounted respectively in the direction of the load-sense flow,

35          the reference channel (40) of the monitoring valve (10) is connected in-between the first relief valve (83) and the second relief valve (84),

the first relief valve (83) acts on the feed pressure and the percus-  
sion pressure in a predefined pressure ratio, and

the second relief valve (84) acts on the feed pressure only.

13. A rock drilling apparatus as claimed in any of the claims 10 to  
5 12, **c h a r a c t e r i z e d** in that

the rock drilling apparatus comprises at least one restrictor (82)  
sensitive to the actual flow of the feed apparatus (73),

the restrictor (82) is arranged in the feed circuit to the feed appara-  
tus (73) and induce feed pressure variation depending on the penetration rate

10 and the feed pressure variation simultaneously biases the monitor-  
ing valve (10) to control with pressure ratio the pressure variation on the per-  
cussion apparatus (71).

14. A rock drilling apparatus as claimed in claim 13

15 **c h a r a c t e r i z e d** in that the restrictor (82) of the feed appara-  
tus (73) is formed on a spool biased by a spring and hydraulic pressures on  
both ends, so that the restrictor area may be hydraulically controlled and be  
progressively restricted from its initial preset value down to a zero area, for  
drilling in difficult rock.