

Informe o5 Laboratorio de máquinas: Central Diésel, grupo electrógenos

Teresa Almonacid F.
Escuela de Ingeniería Mecánica
Pontificia Universidad Católica de
Valparaíso
Cristóbal Galleguillos
Tomás Herrera
Ignacio Ramos
9 de octubre de 2020

1. Introducción

El presente documento describe el de un ensayo de grupo electrógeno aplicado a un MCI en una central diésel, para ello se utilizó un motor Bedford con el propósito de conocer y analizar el comportamiento de este.

1.1. Objetivo general

Analizar el comportamiento de un motor MCI cuando se le aplica un grupo electrógeno

1.1.1. Objetivos específicos

- Analizar y discutir costos energéticos.
- Calcular potencias involucradas en el ensayo.
- Comprender, explicar y comparar las curvas relacionadas a los grupos electrógenos.
- Determinar las rpm óptimas para el mejor funcionamiento.

2. Índice

1.	Introducción	2
	1.1. Objetivo general	2
	1.1.1. Objetivos específicos	2
2.	Índice	3
3.	Instalación	4
;	3.1. Reconocimiento del laboratorio	4
4.	Ensayo	5
	4.1. Simbología	5
	4.2. Procedimiento de trabajo	5
	4.2.1. Datos previos	5
	4.2.2. Componentes ensayo	5
	4.2.3. Procedimiento para la obtención de los Valores	6
	4.2.3.1. Tabla de valores medidos	6
	4.3. Fórmulas Aplicadas	7
5.	Desarrollo tópicos	8
	5.1. Valores calculados	8
	5.2. Gráfica de las curvas	8
	5.3. Discusión de los resultados	11
	5.4. Velocidad de rotación	11
	5.5. Comparación de costos	12
	5.6. Comparación generador	12
6.	Referencias	13
1	Referencias	13
7.	Anexo	14
	7.1. Placa caudalímetro	14
	7.9. Fisha técnica ganerador eléctrico	16

3. Instalación

3.1. Reconocimiento del laboratorio

Al ser un laboratorio vía virtual se hace imposible poder reconocer las instalaciones in situs, por lo que se utilizó una imagen referencial la cual fue mostrada en la catedra del ramo.

Ilustración 1: esquema de la instalación, fuente: (Ketterer C. G., 2020)

4. Ensayo

4.1. Simbología

Tabla 4.1

Símbolo	Unidad de medida	Descripción
$ m P_{el}$	W	Potencia eléctrica en los
		bornes del alternador
$b_{ m el}$	Kg/kWh	Consumo específico en los
		bornes del alternador
$ m Q_{cb}$	m³/s	Caudal volumétrico
		combustible
C_{kWh}	\$/kWh	Costo del kWh generado
I_{m}	A	Corriente media
V_{m}	V	Tensión media
φ	О	Ángulo motor¹
Pc	Kg/m3	Densidad del combustible
С	\$	Costo del combustible ²
$\mathrm{P}_{\mathrm{efe}}$		Potencia efectiva
$b_{\rm m}$	gr/kWh	Consumo específico motor
N	RPM	Velocidad de rotación del
		motor
K	-	Factor de conversión de
		rad/s a rpm, tiene un valor
		de 9,5453
L	-	Factor de conversión de Hz
		a rpm, tiene un valor de 60

4.2. Procedimiento de trabajo

4.2.1. Datos previos³

- Previo a realizar el experimento es útil contar con la siguiente información.
- Determinar el volumen de la bureta a ensayar (en este caso 375 cm³).
- Densidad del combustible Diésel $[\rho c]$.
- Costo del combustible [*c*].

4.2.2. Componentes ensayo

Para la realización de este ensayo se utilizaron las siguientes componentes (Ketterer C. G., 2020):

- Motor Bedford 350 (en el anexo se adjunta ficha técnica)
- Generador eléctrico
- Termocupla PT-100 (en el anexo se adjunta ficha técnica)
- Intercambiador de calor
- Caudalímetro

¹ Al ser un motor trifásico tiene un Angulo de 120°

² Valores sacados del Global petrol Price actualizado el día 5 de octubre del 2020

³ (Ketterer, 2020)

• Estanque de combustible

4.2.3. Procedimiento para la obtención de los Valores

- Poner en marcha el motor para que trabaje en régimen (por 4 a 5 min aproximadamente).
- Poner la resistencia hidráulica a fondo.
- Acelerar de forma gradual, con el fin de conectar el motor al generador mediante la palanca de embrague.
- Una vez conectado al generador se acelera hasta llegar a la frecuencia deseada (50 Hz).
- Se acelera el motor hasta llegar a los 40°C aproximadamente, mientras que la temperatura de trabajo esta seteada a 76°C.
- El flujo de corriente se disipa en forma de calor en el agua y aumenta su temperatura.
- Cuando se está llegando a la temperatura deseada se conecta él toma fuerza, que produce una desaceleración, debido a que este le entrega la energía al generador.
- Una vez terminada las mediciones, rellena la probeta y se sigue con la siguiente medición.
- Seguir con el procedimiento análogo al descrito hasta que se llegue a plena carga o la ebullición del agua en la resistencia hidráulica muy violenta.

4.2.3.1. Tabla de valores medidos

Siguiendo el procedimiento descrito en el punto anterior, podemos obtener los siguientes valores

Tabla 4.2

Valores medidos / obtenidos por software / etc.								
Variables eléctricas						Combustible		
I1 [A]	I2 [A]	13 [A]	V1 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	t [s]
26	26	27	404	404	404	51,5	375	150
28	29	29	402	402	402	51	375	146
39	39	37	400	400	400	50,5	375	132
42,5	42,6	40,9	400	400	400	50	375	125
46,4	46,5	44,6	399,9	399,9	399,9	50	375	120

DE INCEPTERA

4.3. Fórmulas Aplicadas

Corriente media:

$$I_m = \frac{I_1 + I_2 + I_3}{3} [A]$$

Tensión media:

$$V_m = \frac{V_1 + V_2 + V_3}{3} [V]$$

Ecuación 4.2

Potencia eléctrica:

$$P_{el} = \cos \varphi * V_m * I_m [W]$$

Ecuación 4.3

Consumo específico en los bornes del alternador:

$$b_{el} = \rho_c * \frac{\dot{Q}_{cb}}{P_{el}} \left[\frac{kg}{kWh} \right]$$

Ecuación 4.4

Costo del kWh generado:

$$C_{kWh} = \frac{\dot{Q}_{cb} * c}{P_{el}} \left[\frac{\$}{kWh} \right]$$

Ecuación 4.5

Potencia efectiva:

$$P_{efec} = \frac{1,215491*P_{el}}{1000} [kW]$$

Ecuación 4.6

Consumo específico motor:

$$b_m = \frac{\rho_c * \dot{Q}c * 1000}{P_{efec}} \ \left[\frac{gr}{kWh} \right]$$

Ecuación 4.7

5. Desarrollo tópicos

5.1. Valores calculados

Gracias a las ecuaciones mencionadas anteriormente y a los datos tabulados de la tabla 4.2, es que pudimos hacer todos los cálculos relacionados a este ensayo mediante el software Excel, dándonos como resultado la siguiente tabla:

Tabla 4.3

Im [A]	Vm [V]	Pel	Qcomb	bel	Ckwh	Pefe	bm
26,333	33333	404	8661,79995	0,009	0,88318826	0,81045511	10,5283399	726,610281
28,666	66667	402	9382,6215	0,00924658	0,83767517	0,76869015	11,404492	689,16608
38,333	33333	400	12484,1082	0,01022727	0,69633983	0,6389942	15,1743212	572,887691
	42	400	13678,2403	0,0108	0,67113896	0,61586869	16,625778	552,154612
45,833	33333	399,9	14922,9195	0,01125	0,64079284	0,58802167	18,1386743	527,188473

5.2. Gráfica de las curvas

Gráfico 1

Gráfico 2

Gráfico 3

Gráfico 4

Gráfico 5

Gráfico 6

5.3. Discusión de los resultados

- El punto óptimo se encuentra en donde el costo es el mínimo y la potencia es la máxima, eso lo encontramos en la última medición realizada, dándonos una corriente media de 45,3 la potencia efectiva es y el costo mínimo es 0,58
- Trabajaron con pequeñas corrientes puede traer consigo una disminución en la eficiencia del motor
- A medida que la carga va aumentando la tensión por el contrario va disminuyendo
- A mayor carga media, la potencia eléctrica es mayor lo que provoca que la potencia efectiva aumente proporcionalmente
- Tanto las curvas de consumo especifico como las de costo de kWh son muy parecidas esto se puede dar ya que el consumo especifico va estrechamente relacionado a los costos

5.4. Velocidad de rotación

En este caso se nos dio la frecuencia con la que trabajaba el motor y se hizo la pregunta si había alguna fórmula que relacionara las frecuencias con la velocidad en rpm, es por ello por lo que a continuación se muestras dos fórmulas con las cuales se relaciona Hz con rpm:

Primer método:

$$N = 2 * \pi * f \left[\frac{rad}{s}\right]$$

$$W$$

$$N=w*K[rpm]$$

Ecuación 5.1

Segundo método:

$$N = f * L [rpm]$$

Ecuación 5.2

utilizando los valores de frecuencia de la tabla 4.2 y las ecuaciones 5.1 y 5.2 logramos llegar a los siguientes resultados:

Tabla 5.1

f [Hz]	N [rad/s]	N método 1 [rpm]	N método 2 [rpm]
51,5	323,584043	3088,706769	3090
51	320,442451	3058,719324	3060
50,5	317,300858	3028,73188	3030
50	314,159265	2998,744436	3000
50	314,159265	2998,744436	3000

Podemos decir de esto que el método 2 es mucho más directo y fácil dándonos valores enteros, a diferencia del uno que, si bien tiene valores muy parecidos al segundo método, se requiere de un paso más eso si los resultados nos dan más exactos. Su gráfico asociado es:

Gráfico 7

5.5. Comparación de costos

En el punto óptimo del ensayo tenemos un costo de kWh igual a 0,58802167, mientras que la mejor tarifa industrial de CHILQUINTA es igual a 19,154 \$/kWh⁴ lo cual es 33 veces mas cara que el costo kWh óptimo

5.6. Comparación generador

El generador GS22FLD ofrece 20kW prime, 22 kW standby, 400V, 50hz y un consumo de 3,7 lt/hr en modo prime (se adjunta ficha técnica en los anexos). De esta forma podemos calcular el costo de kWh. Recordar que el valor del combustible es de \$780 y que utilizaremos la ecuación 4.5.

Para el nuevo generador:

$$\frac{\$}{kWh} = \frac{3.7 * 780}{20} = 144.3 \frac{\$}{kWh}$$

Para el generador del ensayo:

$$\frac{\$}{kWh} = \frac{11,25*780}{14,66} = 598,568 \frac{\$}{kWh}$$

Si bien los costos de kWh se reducen considerablemente, disminuimos el caudal del combustible y aumentamos la potencia del generador.

⁴ Valores sacados de la página del chilquinta (CHILQUINTA, s.f.)

6. Referencias

1 Referencias

CHILQUINTA. (s.f.). Chilquinta.cl. Obtenido de

https://www.chilquinta.cl/storage/pdf/809286b550f74017cc95771dea875acb.pdf Kete, C. G. (s.f.).

Ketterer, C. G. (Dirección). (2020). Clase correspondiente a la experiencia 5 [Película]. Ketterer, C. G. (2020). Laboratorio de Maquinas Térmicas: motores de Combustión Interna ensayo de un Grupo Electrógeno. Santiago.

7. Anexo

7.1. Placa caudalímetro

7.2. Ficha técnica termocupla PT-100

)	Ficha técnica	01DT-1
Datos de funcionamiento	Señal de salida pasiva de la temperatura	PT100 PT1000 Ni1000 Ni1000TK5000 NTC5k NTC10k (10k2) NTC10k Pre (10k3)
	Fluido	Aire Agua
Datos de medición	Valores medidos	Temperatura
	Rango de medición de temperatura	PT, Ni: -50160 °C [-60320 °F] NTC: -50150 °C [-60300 °F]
	Precisión de la temperatura pasiva	Sensores Pasivos en función del tipo utilizado PT: Class B, ±0.3 °C @ 0 °C Ni: ±0.4 °C @ 0 °C NTC: ±0.2 °C @ 25 °C
Materiales	Prensaestopas	Adaptador de enchufe: PA66, negro Tuerca: PA6, negra
	Carcasa	Cubierta: Lexan, Belimo naranja NCS S0580- Y6OR Parte inferior: Lexan, Belimo naranja NCS S0580-Y6OR Junta: 0467 NBR70, negra
Datos de seguridad	Humedad ambiente	85% H.r., sin condensación
	Temperatura ambiente	-3550 °C [-30120 °F]
	Rango de temperatura de funcionamiento	PT, Ni : -50160 °C [-60320 °F] NTC : -50150 °C [-60300 °F]
	Carcasa de temperatura de superficie	Máx. 90 °C [195 °F]
	Clase de protección IEC/EN	III Tensión extra baja de protección (PELV)
	Clase de protección UL	UL Class 2 Supply
	Certificación IEC/EN	IEC/EN 60730-1 y IEC/EN 60730-2-9
	Certificación UL	pendientes
	Grado de protección IEC/EN	IP65
	Grado de protección NEMA/UL	NEMA 4X
	Normas de calidad	ISO 9001
	Peso	0.095 kg

7.3. Ficha técnica generador eléctrico

DATOS TÉCNICOS	
Frecuencia (Hz)	50
Velocidad Nominal (rpm)	1500
Potencia Prime (kVA/KW)	20 / 16
Potencia Standby (kVA)	22 / 18
Voltaje Nominal (V)	400
Fases / Líneas	3/4
Ruido (db) A 7 mts	65
Modelo Motor	4DW91-29D
Modelo Alternador	KI184E
Consumo 100% (L/hr)	5
Consumo 75% (L/hr)	3,7
Regulación Voltaje	<+1%
Variación aleatoria voltaje	<+1%
Regulación de frecuencia	< +5%
Variación aleatoria de frecuencia	< +0.5%

DIMENSIONES Y PESO	
Largo (mm)	2067
Ancho (mm)	905
Altura (mm)	1236
Peso (Kg)	792
Capacidad Estanque (L)	40

CARACTERISTICAS DE I	MOTOR
Marca	FAW
Modelo	4DW91-29D
Número de cilindros	4
Ciclos	Cuatro tiempos
Aspiración	NATURAL
Diámetro x carrera (mm)	90 x 100
Desplazamiento (L)	2,54
Razón de compresión	17,5:1
Regulador velocidad	Electrónico
Sistema enfriamiento	Ciclo Refrigeración Forzado
Caída de velocidad	<= 1%
Capacidad refrigerante (L)	-
Motor partida	12 Vdc
Alternador carga	14 Vdc

CARACTERISTICAS ALTERNADOR				
Frecuencia Nominal	50 HZ			
Velocidad Nominal	1500 rpm			
Modelo de Alternador	KI184E			
Potencia Prime (kVA) (kW)	20 / 16			
Eficiencia	90,30%			
Fases / líneas	3/4			
Voltaje nominal	400			
Tipo de excitación	Autoexcitado			
Factor de potencia	8.0			
Variación voltaje	>=5%			
Regulación voltaje	≤±1%			
Tipo aislación	Н			
Grado protección	IP23			