MOCOS data for bulletin - Dec 20, 2021

1. Comparison of trajectories without restrictions on Nov 22 with trajectories with restrictions

Specification of agent based model

We ran an agent based model tailored for Saxony. The configuration and setup includes:

- A. Simulated population
 - a. 4 076 893 individuals sampled based on Saxony population statistics
 - b. Individuals distributed into 2 193 265 households
- B. Parameters set to fixed values based on available data & educated assumptions
 - a. All infections are due to delta variant
 - b. Contact tracing has a delay of around 2 days
 - c. Base level of vaccinations in age groups according to this page as of Nov 13th 2021 https://www.coronavirus.sachsen.de/ueberblick-coronaschutzimpfungen-in-sachsen-9874.html#a-11374
 - i. 0-11: 0%
 - ii. 12-17: 26.7%
 - iii. 18-59: 58%
 - iv. 60+: 78.9%
 - d. Assuming average protection from vaccinations based on the literature:
 - i. Protection against symptomatic infection: 75%
 - ii. Protection against hospitalization: 87.5%
 - iii. Protection against death: 92%
 - e. Assuming 25% of people are naturally immunized due to earlier infections (overall dark figure ~2.8)
 - f. Using social contact freq matrices from COVIMOD
 - g. Screening of kids in schools 2 times per week
 - i. Assuming 80% effectivity of single test
 - ii. Age range of kids screened: 8 16
 - h. 37% of people having CoronaWarnApp or similar app that can help in contact tracking
 - i. Assuming 6 hours of delay for testing for CoronaWarnApp users
 - Probability of developing symptoms requiring hospitalization based on available dataset of patients. Mean hospital stay assumed to be 10 days
 - j. Distributions used in the disease progression:
 - i. Incubation time: Log-normal distribution with log-mean 1.37 and scale 0.5
 - ii. Symptom onset time: Gamma distribution with shape α =0.87 and scale θ =2.91
 - iii. Onset Hospitalization delay: Exponential distribution with mean 3.78 days

- iv. Onset death delay: Log-normal distribution with log-mean 1.70 and scale 1.21
- C. Nov 22th Lockdown has been evaluated to reduce infectivity by 30%

Pictures and links to csvs

1.1. Daily true cases

csv:

- a) Without lockdown https://drive.google.com/drive/u/0/folders/1YEGIiLAQ0NrScf2AKmTartSE7CCfHEBd
- b) With lockdown https://drive.google.com/drive/u/0/folders/1HDJSkIQWQ-FweKpHrAN-NAdYsyYLd8tJ

1.2. Daily detections

csv:

- a) Without lockdown https://drive.google.com/drive/u/0/folders/1t8RGdRzj_zTivBdiTizuHXAMSXNWRw20
- b) With lockdown https://drive.google.com/drive/u/0/folders/1e-pjF8hzNXMDxORUYpXhSgh5CXwY8QJf

1.3. Cumulative deaths

CSV:

- c) Without lockdown https://drive.google.com/drive/u/0/folders/1-ClhPcX3GSdeLqteBqED9OpBmCccu9bT
- d) With lockdown https://drive.google.com/drive/u/0/folders/1xkdc4yPtC9mnT4eLCcA8SD bb U8YQsJ

2. Data-driven Omicron scenarios for two assumed values of infectivity of omicron variant, and considering two different IFR levels of the new variant

Main assumptions:

- Booster vaccination gives 75% protection from symptomatic disease
- Natural immunity gives effectively ~40% of protection from symptomatic disease
- Vaccination up to two doses gives 30% protection from symptomatic disease

- Vaccination (either booster or not) gives 87.5% protection against hospitalization and 92% protection against death (like for delta variant)
- Two values of IFR of omicron relative to the delta variant were considered: 10% and 50%.
- Two infectivity levels of omicron relative to the delta variant were considered: 2x and 3x.
- For 2x infectivity we checked three pairs of contact tracing (b) and probability of detecting mild cases (q): b=q=0.1, b=q=0.2 and b=q=0.3
- For 3x infectivity we checked only one set of params of contact tracing (b) and probability of detecting mild cases (q): b=q=0.1
- Level of restricting contacts (f) value has been estimated to be in the range 0.45 0.5 (see heatmaps)
- Level of effective immunization value has been estimated to be around 40% (against symptomatic progression)

Specification of agent based model

We ran an agent based model tailored for Saxony. The configuration and setup includes:

- e) Simulated population
 - i) 4 076 893 individuals sampled based on Saxony population statistics
 - ii) Individuals distributed into 2 193 265 households
- f) Parameters set to fixed values based on available data & educated assumptions
 - All infections are due to omicron variant, that are later in a post processing step added on top of current delta-variant forecasts
 - ii) Contact tracing has a delay of around 2 days
 - iii) Base level of vaccinations in age groups according to this page as of Dec 21st 2021 https://www.coronavirus.sachsen.de/ueberblick-coronaschutzimpfungen-in-sachsen-9874.html#a-11374
 - 1) 0-11: at least one dose: 0%, booster: 0%
 - 2) 12-17: at least one dose: 37.5%, booster vaccination: 2.9%
 - 3) 18-59: at least one dose: 63.1%, booster vaccination: 20.5%
 - 4) 60+: at least one dose: 79.9%, booster vaccination: 42.9%
 - iv) Assuming average protection from vaccinations based on the literature:
 - 1) Protection against symptomatic infection: booster: 75%, without booster: 30%
 - 2) Protection against hospitalization: 87.5%
 - 3) Protection against death: 92%
 - v) Assuming 25% of people are naturally immunized due to earlier infections (overall dark figure ~2.8)
 - 1) Assuming natural immunization protects in 40% from symptomatic infection: this gives around 10% of people effectively immune from omicron
 - vi) Using social contact freg matrices from COVIMOD
 - vii) Screening of kids in schools 2 times per week
 - 1) Assuming 80% effectivity of single test
 - 2) Age range of kids screened: 8 16
 - viii) 37% of people having CoronaWarnApp or similar app that can help in contact tracking

- 1) Assuming 6 hours of delay for testing for CoronaWarnApp users
- ix) Probability of developing symptoms requiring hospitalization based on available dataset of patients. Mean hospital stay assumed to be 10 days
- x) Distributions used in the disease progression:
 - 1) Incubation time: Log-normal distribution with log-mean 1.37 and scale 0.5
 - 2) Symptom onset time: Gamma distribution with shape α =0.87 and scale θ =2.91
 - 3) Onset Hospitalization delay: Exponential distribution with mean 3.78 days
 - 4) Onset death delay: Log-normal distribution with log-mean 1.70 and scale 1.21

Pictures and links to csvs

2.1. Detections forecast

2.1.1. infectivity 2x Delta

csv: https://drive.google.com/drive/u/0/folders/1gWppcXPKslp8kolQlsdLl7vtEJU 9EAT

2.1.2. Infectivity 3x Delta

csv: https://drive.google.com/drive/u/0/folders/1_So2VpwTTTXHijRzgS2ZUmogy_s4Anvl

2.2. True cases forecast

2.2.1. Infectivity 2x Delta

csv: https://drive.google.com/drive/u/0/folders/19LZr0KPgC zKCgA0SaijPnyMXGW6cNFX

2.2.2. Infectivity 3x Delta

csv: https://drive.google.com/drive/u/0/folders/1T_p1A0hUuJxBHQBl0DoTWJsckfhkvvdn

2.3. Deaths forecast for 0.1 IFR

2.3.1. infectivity 2x Delta

csv: https://drive.google.com/drive/u/0/folders/1q8WgU2iEN2uygaNoIIGcltO5AsZfg Ov

2.3.2. Infectivity 3x Delta

Projected epidemics in Saxony after 2021/12/06 - fitted to 2021/11/05 - 06/12/2021

csv: https://drive.google.com/drive/u/0/folders/1CWjfceWyVfdx4WshAT8QPj3cpcfFQBky

2.4. Deaths forecast for 0.5 IFR

2.4.1. infectivity 2x Delta

csv: https://drive.google.com/drive/u/0/folders/1UD8j96jbskC2VI4m17Qo6PO4V2UJtDA9

2.4.2. Infectivity 3x Delta

csv: https://drive.google.com/drive/u/0/folders/1kdjya8xIVIBYCAYcIM-pUXMbmeC9RjqF

3. Simplified booster scenarios for Omicron

Main assumptions:

- Booster vaccination gives 100% protection from symptomatic disease while the rest (natural immunity or up to two vaccination doses) gives no immunity and no protection against severe symptoms and death
 - Remark: Giving no protection against severe symptoms and deaths is pessimistic assumption resulting in much higher number of deaths compared to more realistic Data-driven Omicron Scenario (See chapter 2)
- Two values of IFR of omicron relative to the delta variant were considered: 10% and 50%.
- Two infectivity levels of omicron relative to the delta variant were considered: 2x and 3x.
- For 2x infectivity we checked three pairs of contact tracing (b) and probability of detecting mild cases (g): b=q=0.1, b=q=0.2 and b=q=0.3

- For 3x infectivity we checked only one set of params of contact tracing (b) and probability of detecting mild cases (q): b=q=0.1
- Level of restricting contacts (f) value has been estimated to be in the range 0.45 0.5 (see heatmaps)
- Level of immunization value has been estimated to be in the range 0.25 (see heatmaps)

Specification of agent based model

We ran an agent based model tailored for Saxony. The configuration and setup includes:

- A. Simulated population
 - a. 4 076 893 individuals sampled based on Saxony population statistics
 - b. Individuals distributed into 2 193 265 households
- B. Parameters set to fixed values based on available data & educated assumptions
 - a. All infections are due to omicron variant, that are later in a post processing step added on top of current delta-variant forecasts
 - b. Contact tracing has a delay of around 2 days
 - c. Base level of vaccinations in age groups according to this page as of Dec 21st 2021 https://www.coronavirus.sachsen.de/ueberblick-coronaschutzimpfungen-in-sachsen-9874.html#a-11374
 - i. 0-11: booster: 0%
 - ii. 12-17: booster vaccination: 2.9%
 - iii. 18-59: booster vaccination: 20.5%
 - iv. 60+: booster vaccination: 42.9%
 - v. Total population: booster vaccination: 25%
 - d. Assuming simplified protection from vaccinations:
 - i. Protection against symptomatic infection: booster: 100%, without booster: 0%
 - ii. Protection against hospitalization: booster: 100%, without booster: 0%
 - iii. Protection against death: booster: 100%, without booster: 0%
 - e. Assuming natural immunization protects in 0% from symptomatic infection
 - f. Using social contact freq matrices from COVIMOD
 - g. Screening of kids in schools 2 times per week
 - i. Assuming 80% effectivity of single test
 - ii. Age range of kids screened: 8 16
 - h. 37% of people having CoronaWarnApp or similar app that can help in contact tracking
 - i. Assuming 6 hours of delay for testing for CoronaWarnApp users
 - i. Probability of developing symptoms requiring hospitalization based on available dataset of patients. Mean hospital stay assumed to be 10 days
 - j. Distributions used in the disease progression:
 - i. Incubation time: Log-normal distribution with log-mean 1.37 and scale 0.5
 - ii. Symptom onset time: Gamma distribution with shape α =0.87 and scale θ =2.91
 - iii. Onset Hospitalization delay: Exponential distribution with mean 3.78 days

iv. Onset - death delay: Log-normal distribution with log-mean 1.70 and scale 1.21

Pictures and links to csvs

3.1. Deaths forecasts for 0.1 IFR and 2x infectivity

csv: https://drive.google.com/drive/u/0/folders/1GGdFdGYQsed6iVnCtz706fD4TrcM9zzS

3.2. Deaths forecasts for 0.5 IFR and 2x infectivity

Projected epidemics in Saxony after 2021/12/06 - fitted to 2021/11/05 - 06/12/2021

csv: https://drive.google.com/drive/u/0/folders/1q5QzsscHqQ9tnu0WZ6GNWmrSW5ZCDeSR

3.3. Deaths forecasts for 0.1 IFR and 3x infectivity

Projected epidemics in Saxony after 2021/12/06 - fitted to 2021/11/05 - 06/12/2021

csv: https://drive.google.com/drive/u/0/folders/1efJBeqCMBpoX67c-KtM2VWVaxvX9wVYJ

3.4. Deaths forecasts for 0.5 IFR and 3x infectivity

csv: https://drive.google.com/drive/u/0/folders/1IZq-cy-gygpFmfktbeuKogNIVAXmKoXk

4. Heatmaps - simplified booster scenario

Main assumptions:

- Booster vaccination gives 100% protection from symptomatic disease while the rest (natural immunity or up to two vaccination doses) gives no immunity and no protection against severe symptoms and death
 - Remark: Giving no protection against severe symptoms and deaths is pessimistic assumption resulting in much higher number of deaths compared to more realistic Data-driven Omicron Scenario (See chapter 2)
- Two infectivity levels of omicron relative to the delta variant were considered: 2x and 3x.
- For 2x infectivity we checked three pairs of contact tracing (b) and probability of detecting mild cases (q): b=q=0.1, b=q=0.2 and b=q=0.3
- For 3x infectivity we checked only one set of params of contact tracing (b) and probability of detecting mild cases (q): b=q=0.1

Level of restricting contacts (f) value has been estimated to be in the range 0.7 0.75 (see heatmaps)

Specification of agent based model

We ran an agent based model tailored for Saxony. The configuration and setup includes:

- C. Simulated population
 - a. 4 076 893 individuals sampled based on Saxony population statistics
 - b. Individuals distributed into 2 193 265 households
- D. Parameters set to fixed values based on available data & educated assumptions
 - a. All infections are due to omicron variant, that are later in a post processing step added on top of current delta-variant forecasts
 - b. Contact tracing has a delay of around 2 days
 - c. Assuming simplified protection from vaccinations:
 - i. Protection against symptomatic infection: booster: 100%, without booster: 0%
 - ii. Protection against hospitalization: booster: 100%, without booster: 0%
 - iii. Protection against death: booster: 100%, without booster: 0%
 - d. Assuming natural immunization protects in 0% from symptomatic infection
 - e. Using social contact freq matrices from COVIMOD
 - f. Screening of kids in schools 2 times per week
 - i. Assuming 80% effectivity of single test
 - ii. Age range of kids screened: 8 16
 - g. 37% of people having CoronaWarnApp or similar app that can help in contact tracking
 - i. Assuming 6 hours of delay for testing for CoronaWarnApp users
 - h. Probability of developing symptoms requiring hospitalization based on available dataset of patients. Mean hospital stay assumed to be 10 days
 - i. Distributions used in the disease progression:
 - i. Incubation time: Log-normal distribution with log-mean 1.37 and scale 0.5
 - ii. Symptom onset time: Gamma distribution with shape α =0.87 and scale θ =2.91
 - iii. Onset Hospitalization delay: Exponential distribution with mean 3.78 days
 - iv. Onset death delay: Log-normal distribution with log-mean 1.70 and scale 1.21

Heatmaps

4.1 for 3x infectivity and b=q=0.1

4.1.1 peak of infections

4.1.2 Time till peak of infections

4.1.3 Fraction of population infected

4.2 for 2x infectivity and b=q=0.1

4.2.1 peak of infections

4.2.2 Time till peak of infections

4.2.3 Fraction of population infected

4.2 for 2x infectivity and b=q=0.2

4.2.1 peak of infections

4.2.2 Time till peak of infections

4.2.3 Fraction of population infected

4.2 for 2x infectivity and b=q=0.3

4.2.1 peak of infections

4.2.2 Time till peak of infections

4.2.3 Fraction of population infected

