$$|\lambda_1 - \nu^{(k)}| \simeq \frac{\|\mathbf{r}^{(k)}\|_2}{|(\mathbf{w}^{(k)})^T \mathbf{q}^{(k)}|}, \qquad k \ge 1,$$
 (4.1.22)

where $\mathbf{w}^{(k)}$ satisfies $(\mathbf{w}^{(k)})^T \mathbf{A} = \nu^{(k)} (\mathbf{w}^{(k)})^T$, and as $k \to \infty$, $\mathbf{w}^{(k)} \to \mathbf{w}$ and $\mathbf{w}^T \mathbf{A} = \lambda_1 \mathbf{w}^T$ is the left eigenvector associated with λ_1 .