Analysis I Homework 4

Nutan Nepal

October 25, 2022

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

- 1. Let X and Y be vector space. Let $T: \mathcal{D}(T) \subseteq X \to Y$ be a linear operator. Prove that
 - (a) The inverse $T^{-1}: \mathcal{R}(T) \to \mathcal{D}(T)$ exists iff $\mathcal{N}(T) = \{0\}$.
 - (b) If T^{-1} exists, then T^{-1} is linear.
 - (c) If $\dim(\mathcal{D}(T)) = n < \infty$ and T^{-1} exists, then $\dim(\mathcal{R}(T)) = \dim(\mathcal{D}(T))$.
 - (a) If $\mathcal{N} = \{0\}$ then for $x, y \in X$ we have $T(x) = T(y) \iff T(x y) = 0 \iff x y = 0 \iff x = y$. Hence, T is injective. Since $T : \mathcal{D}(Y) \to \mathcal{R}(T)$ is a surjective map (by definition), $T^{-1} : \mathcal{R}(T) \to \mathcal{D}(T)$ exists. Now, if T^{-1} exists, then T must be injective. So, $T(x) = T(y) \iff x = y$. But, by linearity of T, we have $T(x - y) = 0 \iff x = y$. Hence, the null space $\mathcal{N}(T) = \{0\}$.
 - (b) If T^{-1} exists, then every element of $\mathcal{R}(T)$ can be written as T(x) for some $x \in X$. Then, for two elements T(x) and T(y) in the range and $\alpha \in \mathbb{R}$, we have

$$T^{-1}(\alpha T(x) + T(y)) = T^{-1}T(\alpha x + y) = \alpha x + y = \alpha T^{-1}(T(x)) + T^{-1}(T(y)).$$

Hence, T^{-1} is linear.

(c) It suffices to show that if $\{e_1, \ldots, e_n\}$ is the basis of the domain, then $\{Te_1, \ldots, Te_n\}$ is a linearly independent set. We show that if

$$\lambda_1 T e_1 + \dots + \lambda_n T e_n = 0$$

then each $\lambda_i = 0$. Suppose, otherwise that some λ_i are non-zero in the above equation. Without loss of generality, we can assume that $\lambda_1, \ldots, \lambda_m$ are non-zero when $\lambda_1 T e_1 + \cdots + \lambda_n T e_n = 0$. Then we have, $\lambda_1 T e_1 + \cdots + \lambda_m T e_m = 0$ and $T(\lambda_1 e_1 + \cdots + \lambda_m e_m) = 0$. This means that $\lambda_1 e_1 + \cdots + \lambda_m e_m \in \mathcal{N}(T)$, but $\lambda_1 e_1 + \cdots + \lambda_m e_m \neq 0$ in X. This contradicts our assumption that T^{-1} exists. Hence dimension of the range is equal to the dimension of the domain.

2. Let X, Y and Z be vector space. Let $T: X \to Y$ and $S: Y \to Z$ be bijective. Then $(ST)^{-1}: Z \to X$ exists and $(ST)^{-1} = T^{-1}S^{-1}$.

Since S and T are bijective, they are both injective. So $\mathcal{N}(ST) = \{0\}$ and $ST : X \to Z$ is a surjective map, hence the inverse $(ST)^{-1} : Z \to X$ exists. We see that for every $z \in Z$ there exists a $y \in Y$ such that S(y) = z and for the same $y \in Y$ there exists an $x \in X$ such that T(x) = y. Then for each such $z \in Z$, we define $(ST)^{-1}(z) = x$. By the procedure of defining this map we see that $x = T^{-1}(S^{-1}(z))$. Hence $(ST)^{-1} = T^{-1}S^{-1}$.

3. Let X be a finite dimensional normed space and Y a normed space. Let $T: X \to Y$ be linear. Show that T is bounded.

Let the dimension of X be n and the basis is given by $\{e_1, \ldots, e_n\}$. Then for any $x = \sum_{i=1}^n \lambda_i e_i \in X$, we have $T(x) = T(\sum_{i=1}^n \lambda_i e_i) = \sum_{i=1}^n \lambda_i T(e_i)$. We see that

$$||T(x)|| = \left\| \sum_{i=1}^{n} \lambda_i T(e_i) \right\| \le \left| \sum_{i=1}^{n} \lambda_i \right| \cdot \max_{i=\overline{1,n}} T(e_i).$$

We also know that for any $x \in X$, $||x|| \ge c \cdot |\sum_{i=1}^n \lambda_i|$ for some positive c. Thus $||T(x)|| \le k \cdot ||x||$ for $k = (\max_{i=\overline{1,n}} T(e_i))/c$ and T is bounded.

4. Let X and Y be normed spaces. Let $T: \mathcal{D}(T) \subseteq X \to Y$ be a bounded linear operator. Show that T is continuous.

If T is bounded and linear then for all $x \in X$ we have, $||T(x)|| \le c||x||$ for some c > 0 in \mathbb{R} . Then, for an arbitrary $x \in X$, for every $\varepsilon > 0$ we have $0 < \delta < \varepsilon/c$ such that $||x - y|| < \delta$ implies $||T(x) - T(y)|| = ||T(x - y)|| \le c||x - y|| < \varepsilon$. Hence T is continuous.

5. Let X be a normed space, and Y be a Banach space. Let $T: \mathcal{D}(T) \subseteq X \to Y$ be a bounded linear operator. Show that T has an extension

$$\widetilde{T}: \overline{\mathcal{D}(T)} \to Y$$

which is a bounded linear operator such that $\|\widetilde{T}\| = \|T\|$.

For any $x \in \overline{\mathcal{D}(T)}$, we take a sequence $\{x_i\}_{1}^{\infty}$ in $\overline{\mathcal{D}(T)}$ such that $x_i \longrightarrow x$. Then we have

$$||Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le ||T|| ||x_n - x_m||.$$

Since $\{x_i\}_1^{\infty}$ is a convergent sequence in $\overline{\mathcal{D}(T)}$, we see that $\{Tx_i\}_1^{\infty}$ is Cauchy and hence (because Y is Banach), convergent in Y. We can call this limit y and define a function $\widetilde{T}:\overline{\mathcal{D}(T)}\to Y$ by Tx=y. We now show that this is a well-defined function, that is, the value of Tx does not depend on our choice of the sequence $\{x_i\}_1^{\infty}$ converging to x. Suppose $\{x_i\}_1^{\infty}$ and $\{z_i\}_1^{\infty}$ both converge to x. Then the sequence $\{v_i\}_1^{\infty}$ given by

$$x_1, z_1, x_2, z_2, \ldots$$

also converges to x. With similar argument as above we say that $\{Tv_i\}_1^{\infty}$ is a convergent sequence that converges to y since the subsequence $\{Tx_i\}_1^{\infty}$ converges to y. This shows that $\{Tz_i\}_1^{\infty}$ also converges to the same point and the function is well-defined. \widetilde{T} is linear and $\widetilde{T}(x) = T(x)$ for all $x \in \mathcal{D}(T)$, so \widetilde{T} is an extension of T.

Now, since T is bounded, we have

$$||Tx_n|| \le ||T|| ||x_n||.$$

As $n \to \infty$, we have $Tx_n \to \widetilde{T}x$ and $x_n \to x$. Since $\|\cdot\|$ is a continuous function, we obtain

$$\|\widetilde{T}x\| \le \|T\| \|x\|.$$

Hence, \widetilde{T} is bounded with $\|\widetilde{T}\| \leq \|T\|$. But $\|\widetilde{T}\| \leq \|T\|$ because the supremum cannot decrease in an extension. Hence $\|\widetilde{T}\| = \|T\|$.

6. Kreyszig p.102 / Problem 10. On C[0,1] define S and T by

$$y(s) = s \int_0^1 x(t) dt,$$
 $y(s) = sx(s),$

respectively. Do S and T commute? Find ||S||, ||T||, ||ST|| and ||TS||.

We have,

$$ST(x) = S(sx(s)) = s \int_0^1 (sx(s))(t) dt = s \int_0^1 tx(t) dt$$

and

$$TS(x) = T\left(s\int_{0}^{1} x(t) dt\right) = s^{2}\int_{0}^{1} x(t) dt.$$

For the constant function x=1 we see that, $ST(x)=s\int_0^1 t\cdot 1\ dt=s/2$ and $TS(x)=s^2(\int_0^1 1\ dt)=s^2$ and so S and T do not commute.

Now.

$$||S(x)|| = ||s \int_0^1 x(t) dt|| \le ||s|| \int_0^1 ||x(t)|| dt = ||s|| ||x|| = ||x||,$$

So, $||S|| \le 1$. But, for x = 1 we get $S(1) = ||s \cdot 1|| = 1$, so ||S|| = 1.

Similarly,

$$||T(x)|| = ||sx(s)|| \le ||s|| ||x|| = ||x|| \implies ||T|| = 1,$$

$$||ST(x)|| = \left||s \int_0^1 tx(t) \ dt\right|| \le ||s|| \left||\int_0^1 tx(t) \ dt\right|| \le ||s|| \int_0^1 ||tx(t)|| \ dt = \int_0^1 t||x(t)|| \ dt \le ||x||/2.$$

With similar argument as above, we obtain ||ST|| = 1/2. Now,

$$||TS(x)|| = ||s^2 \int_0^1 x(t) dt|| \le ||s^2|| \cdot ||x(t)|| = ||x||.$$

So, $||TS|| \le 1$ but for x = 1 we get ||TS(x)|| = 1. Hence ||TS|| = 1.

7. Kreyszig p.109 / Problem 2. Show that the functionals defined on C[a, b] by

$$f_1(x) = \int_a^b x(t)y_0(t) dt$$
 $(y_0 \in C[a, b])$

$$f_2(x) = \alpha x(a) + \beta x(b)$$
 $(\alpha, \beta \text{ fixed})$

are linear and bounded.

For $x, y \in C[a, b]$ and $\alpha \in \mathbb{R}$, we see that $f_1(\alpha x + y) = \int_a^b (\alpha x + y)(t)y_0(t) dt = \int_a^b (\alpha x(t) + y(t))y_0(t) dt = \alpha \int_a^b x(t)y_0(t) dt + \int_a^b y(t)y_0(t) dt = \alpha f_1(x) + f_1(y)$. Furthermore,

$$||f_1(x)|| = \left\| \int_a^b x(t)y_0(t) \ dt \right\| \le \int_a^b ||x(t)y_0(t)|| \ dt \le (b-a) \, ||x(t)y_0(t)|| = (b-a) ||y_0|| ||x||.$$

Hence, f_1 is linear and bounded.

Similarly, for $x, y \in C[a, b]$ and $\gamma \in \mathbb{R}$, $f_2(\gamma x + y) = \alpha(\gamma x + y)(a) + \beta(\gamma x + y)(b) = \alpha \gamma x(a) + \alpha y(a) + \beta \gamma x(b) + \beta y(b) = \gamma(\alpha x(a) + \beta x(b)) + \alpha y(a) + \beta y(b) = \gamma f_2(x) + f_2(y)$. And,

$$||f_2(x)|| = ||\alpha x(a) + \beta x(b)|| \le ||\alpha x(a)|| + ||\beta x(b)|| \le \alpha ||x|| + \beta ||x|| = (\alpha + \beta) ||x||.$$

Hence, f_2 is also linear and bounded.

8. Kreyszig p.109 / Problem 6. (Space C'[a,b]) The space $C^1[a,b]$ or C'[a,b] is the normed space of all continuously differentiable functions on J = [a,b] with norm defined by

$$||x|| = \max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)|.$$

Show that the axioms of a norm are satisfied. Show that f(x) = x'(c), c = (a+b)/2, defines a bounded linear functional on C'[a, b]. Show that f is not bounded, considered as a functional on the subspace of C[a, b] which consists of all continuously differentiable functions.

We first check that the axioms for the norms are satisfied.

- (a) $||x|| = \max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)| \ge \max_{t \in J} |x(t)| \ge 0$ and since $x \in C[a, b]$ is continuous on a bounded set, we have $||x|| \le \max_{t \in J} |x(t)| < \infty$.
- (b) If x = 0, then clearly ||x|| = 0 and if ||x|| = 0, we have $\max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)| = 0 \implies \max_{t \in J} |x(t)| = 0 \implies x = 0$.
- (c) If $\alpha \in \mathbb{R}$, then $\|\alpha x\| = \max_{t \in J} |\alpha x(t)| + \max_{t \in J} |(\alpha x)'(t)| = \alpha \max_{t \in J} |x(t)| + \max_{t \in J} |\alpha x'(t)|$. So we have $\|\alpha x\| = \alpha (\max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)|) = \alpha \|x\|$.
- (d) (Triangle Inequality) $||x + y|| = \max_{t \in J} |x(t) + y(t)| + \max_{t \in J} |(x + y)'(t)|$. Since we have (x + y)' = x' + y' and $\max_{t \in J} |x(t) + y(t)| \le \max_{t \in J} |x(t)| + \max_{t \in J} |y(t)|$, we get

$$||x+y|| \le \max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)| + \max_{t \in J} |y(t)| + \max_{t \in J} |y'(t)| = ||x|| + ||y||.$$

We now check that f is a linear bounded functional. We see that f(x+y)=(x+y)'(c)=x'(c)+y'(c)=f(x)+f(y) and hence f is linear. Now, $|f(x)|=|x'(c)|\leq \max_{t\in J}|x'(t)|\leq$

 $\max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)| = ||x||$ and so f is also bounded.

To show that f is not bounded as a functional on the subspace of C[a, b] we define a sequence of functions in C[a, b] such that the derivative of the limit at c is unbounded. Since the space C[a, b] is complete, the limit should also exist in the space but will have unbounded derivative at c,

9. **Kreyszig p.116** / **Problem 2.** Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $(\xi_1, \xi_2, \xi_3) \to (\xi_1, \xi_2, -\xi_1 - \xi_2)$. Find $\mathcal{R}(T)$, $\mathcal{N}(T)$ and a matrix which represents T.

For any $(x, y, z) \in \mathbb{R}^3$, we see that every element of $\mathcal{R}(T)$ can be represented as (x, y, -x - y) = x(1, 0, -1) + y(0, 1, -1). Hence, every element of $\mathcal{R}(T)$ can is a linear combination of (1, 0, -1) and (0, 1, -1). So, $\mathcal{R}(T) = \text{Span}\{(1, 0, -1), (0, 1, -1)\}$.

We see that an element in $\mathcal{R}(T)$ is (0,0,0) whenever x=0 and y=0. So T maps every element (0,0,z) to $(0,0,0) \in \mathcal{R}(T)$. Hence $\mathcal{N}(T) = \mathrm{Span}\{(0,0,1)\}$. We have

$$T = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \end{array} \right]$$

that takes an input $x \in \mathbb{R}^3$ as a column vector.

10. **Kreyszig p.116** / **Problem 4.** Let $\{f_1, f_2, f_3\}$ be the dual basis of $\{e_1, e_2, e_3\}$ for \mathbb{R}^3 , where $e_1 = (1, 1, 1), e_2 = (1, 1, -1), e_3 = (1, -1, -1)$. Find $f_1(x), f_2(x), f_3(x)$, where x = (1, 0, 0).

First we write x = (1, 0, 0) as $x = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$ for some $\lambda_i \in \mathbb{R}^3$. To find the values of λ_i , we solve the system of equations,

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}.$$

Solving the system of equations, we obtain $\lambda_1 = 1/2$, $\lambda_2 = 0$ and $\lambda_3 = 1/2$. Then,

$$f_1(x) = \lambda_1 f_1(e_1) = 1/2$$

$$f_2(x) = \lambda_2 f_2(e_2) = 0$$

$$f_3(x) = \lambda_3 f_3(e_3) = 1/2.$$

11. Show that if Y is a Banach space, then B(X,Y) is a Banach space.

The vector space B(X, Y) of all bounded linear operators from a normed space X into a normed space Y is itself a normed space with the operator norm.

We take a Cauchy sequence $\{T_i\}_{1}^{\infty}$ of bounded linear operators from X to Y and show that it is convergent in B(X,Y) to show that this is a Banach space. Since $\{T_i\}_{1}^{\infty}$ is Cauchy, for every

5

 $\varepsilon > 0$ we have $N \in \mathbb{N}$ such that for all m, n > N we have $||T_n - T_m|| < \varepsilon$. Then for all $x \in X$ and m, n > N we have, $||T_n x - T_m x|| \le ||T_n - T_m|| ||x|| < \varepsilon ||x||$. Then for any fixed $x \in X$, since ||x|| is a fixed number, we see that $\{T_i x\}_1^{\infty}$ is a Cauchy sequence in Y. Since Y is complete, $\{T_i x\}_1^{\infty}$ converges to a point (say y) in Y. This limit point depends on the choice of x and defines an operator $T: X \to Y$ where T(x) = y. T is linear since

$$\lim_{n \to \infty} T_n(\alpha x + z) = \lim_{n \to \infty} (\alpha T_n x + T_n z) = \alpha \lim_{n \to \infty} T_n x + \lim_{n \to \infty} T_n z.$$

Using the continuity of norm, we obtain

$$||T_n x - Tx|| = ||T_n x - \lim_{m \to \infty} T_m x|| = \lim_{m \to \infty} ||T_n x - T_m x|| < \varepsilon ||x||.$$

This shows that $(T_n - T)$ with n > N is a bounded linear operator. Since T_n is bounded, we see that T is also bounded. Furthermore, taking supremum over all $x \in X$ of norm 1, we obtain, $||T_n - T|| < \varepsilon$. Hence T_n converges to T in B(X,Y) and it is a Banach space.