1 Herleitung des Laplace-Modells

1.1 Annahmen

Die Luft ist inkompressibel. Das heißt ρ (Dichte der Luft) ist konstant. Effekte der Viskosität und Turbulenzen werden vernachlässigt. Das Geschwindigkeitsfeld der Luftmoleküle ist ein wirbelfreies Potentialfeld. $\nabla \times v = 0$ und $v = \nabla \phi$, wobei ϕ eine skalare Funktion ist.

1.2 Herleitung der Laplace-Gleichung

Einsetzen dieser Annahme in die Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

und Ausnutzen, dass ρ konstant ist, liefert die Laplace-Gleichung

$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

1.2.1 Randbedingungen

An den Rändern nehmen wir Neumann-Randbedingungen an:

$$n \cdot \nabla \phi = v_N$$

Für Wände gilt, dass $v_N = 0$ ist. Bei Lüftern variiert dieser Wert.

Aus Gründen der Eindeutigkeit muss ϕ an einer Stelle bekannt sein. Hierzu reicht es auf einem Randpunkt gleich Null zu setzen.

1.3 Wärmekonvektion

Zur Berechnung unserer Temperatur benötigen wir noch eine Gleichung, die den Wärmeübertrag beschreibt. Diese ist:

$$\rho c_n v \cdot \nabla T - \nabla \cdot (k \nabla T) = 0$$

T ist hierbei die Temperatur, ρ die Dichte, c_p die spezifische Wärme und k die Wärmeleitfähigkeit von Luft.

Einsetzen ergibt:

$$\rho c_p \nabla \phi \cdot \nabla T - k\Delta T = 0$$

1.3.1 Randbedingungen

Auch hier benötigen wir als Randbedingung wieder einen bekannten Wert T_D am Rand.

Desweiteren gibt es noch Neumann-Randbedingungen, welche den Wärme-Zufluss charakterisieren.

$$-n \cdot (k\nabla T) = q$$

2 Literatur

[1]: https://www.ima.umn.edu/preprints/pp2014/2434.pdf