

Model classifications

Models help answering different parallel questions

Model classifications

- Models help answering different parallel questions
 - Generality: inferential model classes
 - Granularity / scale: level of abstraction
- Knowing this interrelated hierarchy is crucial
 - Defines model goals
 - Defines evaluation framework (reviewers)
 - What can and should be expected from a model
 - Determines limitations

10 easy steps to model

A practical guide

Overview of the modelling exercise

Overview of the modelling exercise

- Step I: define an objective / goal / question
 - What exact aspect of data needs to be modelled?
 - Answer this question clearly and precisely!
 - Otherwise you will get lost (almost guaranteed)
 - Write everything down!

- Example
 - ▶ Bad question: "I would like to model motor control"
 - ▶ Good question: "How do time delays in sensory feedback influence motor control in a force field adaptation task"
- Also: define the model evaluation method!
 - How will you know your model is good?
 - ▶ See later...

- Step 2:What's known / unknown?
 - Survey the literature
 - What's known?
 - What has already been done?
 - Previous models as a starting point?
 - What hypotheses have been emitted in the field?
 - Are there any alternative / complimentary models?
 - What skill sets are required?
 - Do I need learn something before I can start?
 - Ensures that no important aspect is missed
 - Provides specific data sets / alternative models for comparison (see also evaluation criteria)

- Step 3: Determine the basic ingredients
 - What parameters / variables are needed in the model?
 - Constants?
 - ▶ Do they change over space, time, conditions...?
 - What details can be omitted?
 - Constraints, initial conditions?
 - Model inputs / outputs?
 - Variables needed to describe the process to be modelled?
 - Brainstorming!
 - What can be observed / measured? → latent variables?
 - Where do these variables come from?
 - Do any abstract concepts need to be instantiated as variables?
 - ☐ E.g. value, utility, uncertainty, cost, salience, goals, strategy, plant, dynamics
 - □ Instantiate them so that they relate to potential measurments!

- Step 4: Express hypotheses in math language (abstraction)
 - Relate ingredients identified in step 3
 - Do this before getting influenced by model structure / results
 - Hypotheses can be expressed in terms of relations between variables and state the original question from step 1 in a different form (in words)
 - What is the model mechanism expected to do?
 - ▶ How are different parameters expected to influence model results?
 - Assign variable names
 - Express hypotheses in terms of variables
 - ▶ Be explicit, e.g. y(t)=f(x(t),k) but z(t) doesn't influence y
 - ▶ Do the same with constraints, initial conditions, etc
 - Determines model approach and ingredients
 - The more precise the hypotheses, the easier the model will be to sell

Implementing the model

- Step 5: select toolkit / approach level of abstraction
 - What is the most appropriate approach to answer your question?
 - What level of abstraction is needed?
 - Determine granularity / scale based on hypotheses & goals
 - Stay as high-level as possible, but be as detailed as needed!!!
 - Select the toolkit
 - Requires prior knowledge about flexibility / limitations of toolkit
 - Often more than one option possible
 - Some toolkits are more flexible, span a wider range of behaviour and/or are lumpable
 - Also determines how the model will be solved, i.e. simulated
 - □ Analytical? Numerical?
 - ☐ E.g. spatial, temporal resolution?
 - We now have everything we need to actually start modelling!

Implementing the model

Step 6: Drafting

- Keep it as simple as possible!
- Draft on paper: flow diagram
 - Draw out model components (boxes)
 - What influences what? (arrows)
- Consider each model box separately
 - Draft internal workings in terms of equations
 - ▶ This might require a lot of work...
 - Relate box inputs to box outputs!
 - Keep in mind that the model should include a way to relate model variables to measurements
- You now have a first model ready to be implemented!

Implementing the model

- Step 7: implementation and adjustments
 - Start with the easiest possible implementation
 - Test functionality of model after each step before adding new model components (unit tests)
 - Simple models can sometimes accomplish surprisingly much...
 - Add / remove different model elements
 - Gain insight into working principles
 - ▶ What's crucial, what isn't?
 - Every component of the model must be crucial!
 - Make use of tools to evaluate model behavior
 - E.g. graphical analysis, changing parameter sets, stability / equilibrium analyses, derive general solutions, asymptotes, periodic behaviour, etc.

Model testing

- Step 8: Model completion
 - When am I done? → hard question!!!
 - Determine a criterion
 - Refer to steps I (goals) and 4 (hypotheses)
 - □ Does the model answer the original question sufficiently?
 - □ Does the model satisfy your own evaluation criteria?
 - □ Does it speak to the hypotheses?
 - Can the model produce the parametric relationships hypothesized in step 4?
 - Precise question & hypotheses crucial for this!
 - If the original goal has not been met \rightarrow back to drawing board!

Model testing

- Step 9: model testing and evaluation
 - By definition a model is always wrong!
 - ▶ Ensure the explicit interfacing with current or future data
 - model answers the questions/hypotheses/goals with a sufficient amount of detail
 - Quantitative evaluation methods
 - Statistics: how well does the model fit data?
 - Predictability: does the model make testable predictions?
 - ▶ Breadth: how general is the model?
 - Comparison against other models (BIC, AIC, etc.)
 - ▶ Not easy to do in a fair way...
 - Does the model explain previous data? Subsumption principle in physics!
 - A good model should provide insight that could not have been gained or would have been hard to uncover without the model
 - Model = working hypotheses \rightarrow a good model should be falsifiable!

Publishing

- Step 10: Communication through scientific publication
 - Know your target audience!
 - ▶ How much math details? How much explanation of math?
 - What's the message?
 - Should be experimentalists in most cases!!!
 - □ Provide intuitive explanations, analogies, etc.
 - □ Dora Angelaki: "a good modeller knows how to relate to experimentalists"
 - Clearly describe what the goals, hypotheses and performance criteria were
 - Prevents from false expectation of what the model should be doing
 - A graphical representation is worth 1000 words (or more)
 - Show model simulations in parallel to data
 - Much more convincing!
 - Publish enough implementation details
 - A good model has to be reproducible!

A few more considerations...

Lumping vs. abstraction

- Abstraction = process of information reduction to only retain the relevant underlying essence of a concept and / or render a concept more generalizable
- Lumping = particular instance of abstraction
 - Certain details irrelevant for a given research question are averaged out, discarded or merged together
 - ▶ E.g. Marr I = lumped system
 - Lumping allows focussing on a certain level of explanation
- However, ultimately models should span different levels of abstraction!
 - Otherwise information can be lost
 - E.g. spike coding & information transmission vs. rates (Sophie Denève)
 - ▶ This is hard!!!

Theory, models and data

Happy modelling!