UNIVERSIDADE FEDERAL DO AMAZONAS

DISCIPLINA: LABORATÓRIO DE SISTEMA DE CONTROLE

ENSAIO 03: COMPORTAMENTO DE UM SISTEMA DE 2ª ORDEM

OBJETIVOS:

- 1. Compreender o funcionamento eletromagnético de um galvanômetro de bobina móvel e identificar os parâmetros relevantes para um modelo dinâmico
- 2. Identificar o comportamento transitório de um sistema de 2ª ordem
- 3. Predizer a influência de parâmetros no comportamento transitório de um sistema de 2^{a} ordem.
- 4. Determinar o período próprio de um galvanômetro
- 5. Realizar função de transferência e diagramas de simulação analógica

Formulação do Problema: O desenho abaixo representa um galvanômetro

Um diagrama de fluxo de sinal e a equação diferencial do galvanômetro, quando inserido no circuito elétrico são dados abaixo.

$$J\frac{d^2\theta}{dt^2} + \left(B + \frac{\Phi_m^2}{r+R}\right)\frac{d\theta}{dt} + K\theta = \frac{\Phi_m}{r+R}E \text{ , onde:}$$

- J Momento de inércia do conjugado móvel
- B Coeficiente de atrito viscoso do mancal
- K Constante de elasticidade da mola de restrição
- R Resistência do circuito que se quer medir a corrente
- r Resistência interna do galvanômetro
- $\Phi_{\rm m}$ Fluxo no entreferro
- E Força eletromotriz da bateria
- T Torque do conjugado móvel
- I Corrente
- Θ Posição angular do ponteiro
- Ω velocidade angular do pomteiro

O polinômio característico de um sistema de 2ª ordem é dado por $s^2 + 2\zeta\omega_n s + {\omega_n}^2$ onde ω_n é a freqüência natural não-amortecida, ζ é a taxa de amortecimento, $\zeta\omega_n$ é o amortecimento e $\omega_d = \omega \sqrt{1-\zeta^2}$ é a freqüência natural amortecida

- $1^{\underline{a}}$) No Simulink, faça uma realização por função de transferência para o galvanômetro e simule para J=0.5 N/s², B=0 Φ =10 Wb r=1 Ω e R=49 Ω K=4 N/m, E=9 V
- a) O que representa tecnicamente o termo $\frac{\Phi_m^2}{r+R}$?
- b) Qual o valor de regime permanente? Justifique.
- c) Qual o tipo de comportamento do sistema? Justifique.
- $2^{\underline{a}})$ Faça uma realização utilizando o DFS , Observe a influência de R no comportamento dinâmico do sistema
- a) Certifique-se que o DFS e a função de transferência global são equivalente.
- b) Qual o valor de $R_{eq} = r + R$ para se obter amortecimento crítico? Este valor é chamado de resistência crítica R_c .
- c) Simule o sistema para valores de R de modo que o sistema apresente os comportamentos: subamortecido, superamortecido e amortecimento crítico.
- d) Comente sobre a influência de R no comportamento do sistema.
- e) Comente sobre a influência de J, K e Φ no comportamento do sistema.
- 3ª) Chama-se período próprio do galvanômetro, o período de oscilação do galvanômetro em circuito aberto.
- a) Faça uma realização da função de transferência do galvanômetro usando somente blocos de computador analógico (sum, integrator, gain). Faça um ensaio para determinar o período próprio do galvanômetro

b) Determine o período de oscilação do galvanômetro. Despreze B, visto que

Determine o período de oscilação do galvanômetro. Despreze B, visto que
$$B \ll \frac{\Phi_m^2}{R_{eq}}$$
 e mostre que $T = \frac{2\pi}{\sqrt{\frac{K}{J}\left[1-\left(\frac{R_c}{R_{eq}}\right)^2\right]}}$ onde: R_c – Resistência crítica