Al tutorial 5

Brandon Skerritt

Question 1

Assume that $P=\neg(p1v\neg p2)$. Write down the truth table for P. Give the list of interpretations I under which P is true. How many different interpretations are there that make P true?

p1	p2	(p1v¬p2)	¬(p1v¬p2)	P
1	1	1	0	0
1	0	1	0	0
0	1	0	1	1
0	0	1	0	0

Question 2

Assume that $P = (((p1 \land \neg p2) \land p3) \Rightarrow p2)$. Write down the truth table for P. How many different interpretations make P true. Give the list of interpretations I under which P false.

p1	p2	р3	(p1∧¬p2)	(p1 \(\backsquare p2 \) \(\lambda p3 \)	(((p1∧¬p2)∧p3)⇒p2)	p
1	1	1	0	0	1	1
1	1	0	0	0	1	1

1	0	1	1	1	0	0
0	1	1	0	0	0	0
0	0	1	0	0	1	1
0	1	0	0	0	0	0
1	0	1	1	1	0	0
1	0	0	1	0	0	0
0	0	0	0	0	1	1

This is wrong. Correcting the correct ones

Logical implication truth table

p1	p2	p1 => p2
1	1	1
1	0	0
0	1	1
0	0	1

Logical implication is ONLY false when 1 0 = 0

p1	p2	р3	(p1 \(\pa p2 \)	(p1 \(\backsquare p2 \) \(\chi p3 \)	(((p1∧¬p2)∧p3)⇒p2)	p
0	1	1	0	0	0	1

Question 3

A formula P is calledsatisfiable there exists an interpretation I such that I§ = 1. Which of the following formulas are satisfiable? Check using truth tables

p1	p2	~p1	~p1^p2
1	1	0	0
1	0	0	0
0	1	1	1
0	0	1	0

Thus this is satisfiable for p1 a=0 and p2=1

p1	~p1	p1=>~p1
1	0	0
0	1	1

Thus this is sastisfiable for p1 = 0.

1	0	0
0	1	0

Not satisfiable.

• $(p1 \wedge (\neg p2 \vee \neg p1))$

p1	p2	~p1	~p1	(~p2 V ~p1)	(p1 \((\neg p 2 \neg \neg 1))
1	1	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	0
0	0	1	1	1	0

Question 4

Consider a formula P with n atomic propositions. How many rows does the truth table for P have?

2^n rows. Because a proposition is either true or false (2).

Question 5

Consider $P = (((((\neg p1 \land p2) \lor p3) \land p4) \lor p5) \Rightarrow p1)$. Show without using truth tables that P is satisfiable.

Let p1 = 1.

Then

p1	anything	anything -> p1
1	1	1
0	1	1

Therefore as long as p1 is 1, anything on the left hand side will always be satisfiable as it either results in a 0 or a 1.

Question 6

Consider $P = ((((\neg p1 \land p2) \lor p3) \land p4) \lor p5) \land (p6 \land \neg p6))$. Show without using truth tables that P is not satisfiable $(p6 \land \neg p6)$ is never satisfiable. Therefore the left hand side is never satisfiable because its an and statement.

Question 7