

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

Plastic-Encapsulate Darlington Transistors

ULN2003 DARLINGTON TRANSISTOR (NPN)

Description

ULN2003 is high voltage, high current darlington arrays each containing seven open collector darlington pairs with common emitters. Each channel rated at 500mA and can withstand peak currents of 600mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. The ULN2003 device has a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

Features

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs: 40 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

Applications

- Relay Drivers
- Hammer Drivers
- Lamp Drivers
- Line Drivers
- Logic Buffers
- Stepper Motors
- IP Camera
- HVAC Valve and LED Dot Matrix

Logic Diagram

Pin Configuration and Functions

Pin Functions

PIN					
NAME	NO.	TYPE	DESCRIPTION		
1B	1				
2B	2				
3B	3				
4B	4	ı	Channel 1 through 7 Darlington base input		
5B	5				
6B	6				
7B	7				
1C	16				
2C	15				
3C	14				
4C	13	0	Channel 1 through 7 Darlington collector output		
5C	12				
6C	11				
7C	10				
GND	8	_	Common emitter shared by all channels (typically tied to ground)		
СОМ	9	I/O	Common cathode node for flyback diodes (required for inductive loads)		

Typical Characteristics

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL		ULN2003		
FARAMETER	STWBOL	MIN	TYP	MAX	UNIT
Output voltage	Vo			40	V
Input voltage	V _I			30	V
Collector current(continuous current)	I _C			500	mA
Base current(continuous current)	I _B			25	mA
Operating Ambient Temperature	T _A	-20		85	°C
Operating Junction Temperature	T _J			150	°C
Storage Temperature	T_{stg}	-55		150	°C

ELECTRICAL CHARACTERISTICS ($T_a=25^{\circ}C$ unless otherwise specified)

	PARAMETER	TEST CO	TEST CONDITIONS		ULN2003		
PARAMETER		1251 00	TEST CONDITIONS		TYP	MAX	UNIT
lanu	Collector cutoff current	V _{CE} = 40 V, Tamb=+85°C				100.0	μΑ
I _{CEX}	Concettor Catori Carrett	V _{CE} = 40 V, Tamb=+25°C				50.0	μΑ
		I _C = 350 mA, I _B =500uA			1.1	1.6	V
V _{CES}	Collector-emitter saturation voltage	Ic = 200 m	Ic = 200 mA, Iв=350uA		0.95	1.3	
		Ic = 100 mA, IB=250uA			0.85	1.1	
II _(ON)	Input current(ON)	V _I = 3.85 V			0.93	1.35	mA
	Input voltage(ON)	V _{CE} = 2.0 V, I _C =200mA				2.4	
VI _(ON)		V _{CE} = 2.0 V, I _C =250mA				2.7	V
		V _{CE} = 2.0 V, I _C =300mA				3.0	
II _(OFF)	Input current(OFF)		V _{CE} = 2.0 V, I _C =350mA		100		μА
Cı	Input capacitance				15	30	pF
t _{ON}	On delay time	50%EI to 50% EO			0.25	1.0	μs
t _{OFF}	Off delay time	50%EI to 50% EO			0.25	1.0	μS
I _R	Clamp reverse current	V _R = 50 V	TA=+25°C			50.0	μА
			TA=+85°C			100.0	
V _F	Clamp forward voltage	IF=350mA			1.5	2.0	V

Typical Characteristics Measurement

Figure 1. I_{CEX} Test Circuit

Figure 3. $I_{I(on)}$ Test Circuit

NOTE: I_I is fixed for measuring V_{CE}(sat), variable for measuring hFE.

Figure 5. h_{FE} , $V_{CE(sat)}$ Test Circuit

Figure 7. V_F Test Circuit

Figure 2. I_{I(off)} Test Circuit

Figure 4. V_{I(on)} Test Circuit

Figure 6. I_R Test Circuit

Figure 8. TTL to Load

Figure 9. Use of Pullup Resistors to Increase Drive Current

SOP-16 Package Outline Dimensions

GVADOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
A	-	-	1.75		
A1	0.10	-	0.25		
A2			1.60		
A3	0.97	1.02	1.07		
b	0.35	-	0.46		
С	0.19	-	0.25		
D	9.80		10.0		
Е	5.80	6.00	6.20		
E1	3.80		4.00		
e	1.27BSC				
L	0.70	0.5	1.00		
L1	1.40BSC				
θ	0	-	8°		

DIP-16 Package Outline Dimensions

SYMBOL	MILLIMETER			
SYMBOL	Min	Max		
A	3.710	4.310		
A1	0.510			
A2	3.200	3.600		
В	0.380	0.570		
B1	1.524(BSC)			
С	0.204	0.360		
D	18.800	19.200		
Е	6.200	6.600		
E1	7.320	7.920		
e	2.540(BSC)			
L	3.000	3.600		
E2	8.400	9.0070		

NOTICE

JSCJ reserves the right to make modifications,enhancements,improvements,corrections or other changes without further notice to any product herein. JSCJ does not assume any liability arising out of the application or use of any product described herein.