计算机体系结构-第二章习题

181002222 连月菡

-目录-

计算机体系结构-第二章习题

2-9

2-10

2-11

2-9

2-9 经统计,某机器 14 条指令的使用频度分别为 0.01, 0.15, 0.12, 0.03, 0.02, 0.04, 0.02, 0.04, 0.01, 0.13, 0.15, 0.14, 0.11, 0.03。分别求出用等长码、哈夫曼码、只有两种码长的扩展操作码等 3 种编码方式的操作码平均码长。

答: 因为指令条数为14条,故**等长码**平均码长:由 $2^3<14<2^4=16$,得平均码长为4位 将14条指令从小到大排序后,得到:0.01,0.01,0.02,0.02,0.03,0.03,0.04,0.04,0.11,0.12,0.13,0.14,0.15,0.15 哈夫曼树如下图

哈夫曼平均码长为

 $(0.01+0.01)\times 7+0.02\times 6+(0.02+0.03+0.03)\times 5+(0.04+0.04)\times 4+(0.12+0.11+0.13+0.14+0.15+0.15)\times 3=3.38$ 两种码长的扩展操作码

因为 $2^3 < 14 < 2^4$,所以两种码长为3和4。其中码长为3的时候,可以给8个操作码编码,所以剩余6个操作码的码长为4位。

扩展操作码平均码长为: $(3\times 8 + 4\times 6)/14 \approx 3.4$ 位

2-10 电文由 A~J及空格字符组成, 其字符出现频度依次为 0.17, 0.05, 0.20,

0.06, 0.08, 0.03, 0.01, 0.08, 0.13, 0.08, 0.11

- (1) 各字符用等长二进码编码,传送 103 个字符时,共需传送多少个二进制码码位?
- (2) 构造哈夫曼树,写出各字符的二进制码码位数,计算字符的二进制位平均码长。
- (3) 用哈夫曼码传送 103 个字符, 比定长码传送可减少传送的二进制码码位数是多少?

(1)因为A~J有11个字符, $2^3 < 11 < 2^4$,因此一个字符是4位,传送的二进制码码位为 4×10^3 位

(2)从小到大排列出现的频度, 0.01,0.03,0.05,0.06,0.08,0.08,0.08,0.11,0.13,0.17,0.20

哈夫曼平均码长为

 $(0.01+0.03)\times 5 + (0.05+0.06+0.08+0.08+0.08)\times 4 + (0.11+0.13+0.17)\times 3 + 0.20\times 2 = 3.23 \times 10^{-2}$

(3)哈夫曼码传送的字符数位 3.23×10^3 位

减少传送的二进制码码位数 $(4-3.23) \times 10^3 = 0.77 \times 10^3$ 位

2-11

2-11 用于文字处理的某专用机,每个文字符用 4 位十进制数字 $(0\sim9)$ 编码表示,空格则用 $_{\square}$ 表示,在对传送的文字符号和空格进行统计后,得出数字和空格的出现频度分别为

⊔: 20%	0:17%	1:6%
2:8%	3: 11%	4:8%
5:5%	6:8%	7:13%
8:3%	9:1%	

- (1) 若上述数字和空格均用二进制编码,试设计二进制信息位平均长度最短的编码。
- (2) 若传送 10⁶ 个文字符号(每个文字符号后均跟一个空格), 按最短的编码, 共需传送多少个二进制位?
 - (3) 若十进制数字和空格均用 4 位二进制码表示, 共需传送多少个二进制位?

⁽¹⁾平均长度最短的编码是哈夫曼编码。

符号	概率	哈夫曼编码	位数
U	20%	01	2
3	11%	001	3
7	13%	101	3
0	17%	111	3
5	5%	0001	4
1	6%	1000	4
2	8%	1001	4
4	8%	1100	4
6	8%	1101	4
9	1%	00000	5
8	3%	00001	5

平均长度为: $\sum_{i=1}^n p_i imes l = 3.23$ 位

(2)

每个文字字符的二进制码平均长度为: $(4+1) \times 3.23 = 16.15$ 位

所以共需传送 $16.15 \times 10^6 = 1.615 \times 10^7$ \pm

(3)

二进制位数为 $4 \times (4+1) \times 10^6 = 2 \times 10^7$ 位