Exercise Sheet 4 (Summative)

Solutions need to be handed in **before** 6 December 9 December 10 December, 5pm.

In this assignment, we study asymmetric cryptography based on the Discrete Logarithm problem. This is a **summative** assignment and hence counts towards your final module's mark.

- 1. Let p = 23.
 - (a) Compute by hand and build the table:

i	0	1	2	3	20	21	22
$5^i \mod 23$	1						1

(b) Compute by hand $\log_5 11$ and $\log_5 20$ in \mathbb{Z}_{23}^{\star} .

1

1

2. Consider the following public key cipher with key generator algorithm KG and encryption algorithm Enc:

Key generator KG: Alice generates a key as follows

- Generate primes p, q such that q divides p 1.
- Let $g \in \mathbb{Z}_p^*$ be a generator of the subgroup $G_q \subseteq \mathbb{Z}_p^*$ with $\operatorname{ord}(G_q) = q$.
- Choose random x, y from $\{0, \dots, q-1\}$.
- Compute $h_1 = g^x \mod p$ and $h_2 = g^y \mod p$.
- Publish the public key $PK = (p, q, g, h_1, h_2)$.
- Retain the private key pair SK = (x, y).

Encryption algorithm Enc: To encrypt a message $M \in G_q$ to Alice using her public key $PK = (p, q, g, h_1, h_2)$, Bob computes the following steps

- Choose random $z \in \{0, \ldots, q-1\}$, calculate $c_1 = g^z \mod p$ and $c_2 = M \cdot h_1^{-z} \cdot h_2^z \mod p$.
- The ciphertext is then $C = (c_1, c_2)$.

Note that all multiplications are modulo p.

- (a) Design an appropriate decryption algorithm Dec for the cipher and demonstrate its correctness (i.e. Dec(SK, Enc(PK, M)) = M for KG() = (PK, SK)).
- (b) Assume that we run the encryption algorithm $\operatorname{Enc}(PK,\cdot)$ with the parameters $PK=(p=23,q=11,g=6,h_1=?,h_2=?),$ SK=(x=9,y=8). Use the decryption algorithm $\operatorname{Dec}(SK,C)$ in order to decrypt the ciphertext C=(3,10).

3. Let consider the following variant of the El-Gamal encryption scheme.

Key Generation KG: Let G_q be a subgroup of prime order q of \mathbb{Z}_p^* for prime p and let g be a generator of G_q . Let $H:\{0,1\}^* \to \{0,1\}^n$ be a hash-function. Let x be a random integer between 0 and q-1. Let $y=g^x \mod p$. The public-key is (p,q,g,y,H) and the private-key is x.

Encryption Enc: Given $m \in \{0,1\}^n$, generate a random integer r between 0 and q-1 and let:

$$c = (g^r, H(y^r) \oplus m)$$

(a) Design an appropriate decryption algorithm Dec for the cipher and demonstrate its correctness (i.e. Dec(SK, Enc(PK, M)) = M for KG() = (PK, SK)).

2

(b) Describe a chosen-ciphertext attack (CCA attack) against this variant.

Total points: 8