Example 1: Page 195 #16(a)

Prove that $S^* = \lim_{n \to \infty} \left(\sup \{ s_{n+1}, s_{n+2}, s_{n+3} ... \} \right) = \lim \sup s_n, s \in \mathbb{R}$ Want to show that, although we know $s^* = \lim_{n \to \infty} \left(\sup \{ s_{n+1}, s_{n+2}, s_{n+3} ... \} \right), s^*$ is in fact $\limsup s_n$.

Let $t_n = \sup \{s_{n+1}, s_{n+2}, s_{n+3}...\}$ —Side Note—

$$\begin{aligned} |\mathbf{s}_n| &\leq \mathbf{M} \ \forall \ \mathbf{n} \in \mathbb{N} \\ -\mathbf{M} &\leq \mathbf{s}_n \leq \mathbf{M} \ \forall \ \mathbf{n} \in \mathbb{N} \end{aligned}$$

 $\{t_n\}$ is a bounded, decreasing sequence and

$$t_{n+1} = \sup\{s_{n+2}, s_{n+3}...\} \le t_n = \sup\{s_{n+1}, s_{n+3}, ...\} \ \forall \ n \in \mathbb{N}$$

If U is a bounded set in $\mathbb R$ and $V\subset U$, then sup $V\leq \sup U$. So, sup $U\in \mathbb R$ exists.

- i) $u \le \sup U \ \forall \ u \in U$
- ii) $\forall \epsilon > 0$, exs $u_1 \in U$ st sup $U \epsilon < u_1$

Notice that for $v \in V$, $v \leq \sup U$.

So, sup $V \le \sup U$.

Is \mathbf{t}_n bounded?

It's bounded below since $-M \le s_{n+1} \le t_n \ \forall \ n \in \mathbb{N}$

By the monotonic convergence theorem,

$$\lim_{n\to\infty} t_n = s^*$$
 exists.

From Theorem 4.4.11, conditions (a) and (b):

a.
$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } s_n < s^* + \epsilon, \forall n \geq N$$

b.
$$\forall \epsilon > 0, i \in \mathbb{N}, \exists j > i \text{ st } s_j > s^* - \epsilon$$

Notice that $s^* \leq t_n \ \forall \ n \in \mathbb{N}$

(since t_n is decreasing and it has a limit)

Let $n \in \mathbb{N}$ and notice that $t_{n+k} \leq t_n \ \forall \ k \in \mathbb{N}$

So,

$$\lim_{h \to \infty} t_{n+k} \le t_n \ \forall \ n \in \mathbb{N}$$

$$\stackrel{k\to\infty}{\text{So}}$$

$$\mathbf{s}^* = \lim_{k \to \infty} \mathbf{t}_{n+k}$$
, therefore $\mathbf{s}^* \le \mathbf{t}_n \ \forall \ \mathbf{n} \in \mathbb{N}$

Thus,

$$\forall \ \epsilon > 0, \ \exists \ N_1 \in \mathbb{N} \ st$$

$$|t_n - s^*| < \epsilon \text{ for } n \ge N_1$$

 $t_n - s^* < \epsilon \text{ for } n \ge N_1$
 $t_n < s^* + \epsilon \text{ for } n \ge N_1$

$$s_{n+1} \le t_n < s^* + \epsilon \text{ for } n+1 \ge N_1 + 1$$

So,

$$s_M < s^* + \epsilon \text{ for } M \ge N_1 + 1$$

So, s^* satisfies (a).

Define $t_n = \sup \{s_{n+1}, s_{n+2}, s_{n+3}...\}$

Now for any $\epsilon > 0$,

$$t_n \ge s^* > s^* - \frac{\epsilon}{2} \ \forall \ n \in \mathbb{N}$$
 (1)

Also, for any i = n $\in \mathbb{N}$, \exists s_j where j > i st

$$t_n - \frac{\epsilon}{2} < s_j \tag{2}$$

Notice that $\mathbf{t}_n - \frac{\epsilon}{2}$ is no longer a least upper bound for the set.

From (1) and (2), $s_j > t_n - \frac{\epsilon}{2} > s^* - \epsilon$

So, since s^* satisfies (a) and (b), s^* is the $\limsup s_n$.

Unbounded Sequences

 $S = \{\text{all subsequential limits of } s_n\}$

We know that S is not empty if s_n is bounded since every bounded sequence has a convergent subsequence. But what if s_n is bounded? page 192 Case:

i) $\{s_n\}$ is unbounded above.

From the proof of Theorem 4.4.8, \exists a monotonic subsequence $\{s_{n_k}\}$ of $\{s_n\}$ st $\lim_{k\to\infty} s_{n_k} = \infty$

Although ∞ is not a real number, we say that, if s_n is unbounded above, then $\limsup s_n = \infty$

ii) $\{s_n\}$ is bounded above but unbounded below.

Subcase i: \exists a subsequence $\{s_{n_k}\}$ st $\lim_{k\to\infty} s_{n_k} = s \in \mathbb{R}$. Then, set $\limsup s_n = \sup S_n$

Subcase ii: There is no subsequence $\{s_{n_k}\}$ st $\lim_{k\to\infty} s_{n_k} = s \in \mathbb{R}$ (a finite number).

Then, $\lim_{n\to\infty} s_n = -\infty$

and, $\limsup s_n = -\infty$, so $\sup S = -\infty$

which means, since $\lim \inf s_n \leq \lim \sup s_n$, $\lim \inf = -\infty$