Lecture 5: Submanifolds

Tianpei Xie

Oct. 17th., 2022

Contents

1	1 Embedded Submanifolds	2
	1.1 Defintions and Examples	. 2
	1.2 Slice Charts for Embedded Submanifolds	. 3
	1.3 Level Sets	
2	2 Immersed Submanifolds	7
	2.1 Definitions and Examples	. 7
3	Restricting Maps to Submanifolds	9
	3.1 Theorems	. 9
	3.2 Uniqueness of Smooth Structures on Submanifolds	. 10
	3.3 Extending Functions from Submanifolds	. 10
4	The Tangent Space to a Submanifold	11
5	5 Submanifolds with Boundary	12

1 Embedded Submanifolds

1.1 Defintions and Examples

- **Definition** Suppose M is a smooth manifold with or without boundary. An <u>embedded</u> <u>submanifold</u> of M is a subset $S \subseteq M$ that is a <u>manifold</u> (without boundary) in the <u>subspace</u> <u>topology</u>, endowed with a <u>smooth structure</u> with respect to which the <u>inclusion map</u> $S \hookrightarrow M$ is a <u>smooth embedding</u>. Embedded submanifolds are also called <u>regular submanifolds</u>.
- **Definition** If S is an embedded submanifold of M, the difference dim M dim S is called <u>the codimension</u> of S in M, and the containing manifold M is called the <u>ambient</u> manifold for S.

An embedded *hypersurface* is an embedded submanifold of codimension 1. The *empty set* is an embedded submanifold of *any dimension*.

- Proposition 1.1 (Open Submanifolds). [Lee, 2003.]
 Suppose M is a smooth manifold. The embedded submanifolds of codimension 0 in M are exactly the open submanifolds.
- There are several other ways to create submanifolds:

Proposition 1.2 (Images of Embeddings as Submanifolds). [Lee, 2003.] Suppose M is a smooth manifold with or without boundary, N is a smooth manifold, and $F: N \to M$ is a smooth embedding. Let S = F(N). With the subspace topology, S is a topological manifold, and it has a unique smooth structure making it into an embedded submanifold of M with the property that F is a diffeomorphism onto its image.

- Proposition 1.3 (Slices of Product Manifolds). [Lee, 2003.]
 Suppose M and N are smooth manifolds. For each p ∈ N, the subset M × {p} (called a slice of the product manifold) is an embedded submanifold of M × N diffeomorphic to M.
- Proposition 1.4 (Graphs as Submanifolds). [Lee, 2003.] Suppose M is a smooth m-manifold (without boundary), N is a smooth n-manifold with or without boundary, $U \subseteq M$ is open, and $f: U \to N$ is a smooth map. Let $\Gamma(f) \subseteq M \times N$ denote the graph of f:

$$\Gamma(f) = \{(x, y) \in M \times N : x \in U, y = f(x)\}.$$

Then $\Gamma(f)$ is an **embedded** m-dimensional submanifold of $M \times N$

- **Definition** An embedded submanifold $S \subseteq M$ is said to be **properly embedded** if the inclusion $S \hookrightarrow M$ is a **proper map**.
- Proposition 1.5 Suppose M is a smooth manifold with or without boundary and S ⊆ M is an embedded submanifold. Then S is properly embedded if and only if it is a closed subset of M.
- Corollary 1.6 Every compact embedded submanifold is properly embedded.
- Proposition 1.7 (Global Graphs Are Properly Embedded). [Lee, 2003.]
 Suppose M is a smooth manifold, N is a smooth manifold with or without boundary, and f: M → N is a smooth map. With the smooth manifold structure as above, the graph of f Γ(f) is properly embedded in M × N.

Figure 1: Smooth compatibility of slice charts [Lee, 2003.]

1.2 Slice Charts for Embedded Submanifolds

• **Definition** if U is an open subset of \mathbb{R}^n and $k \in \{0, ..., n\}$, a <u>k-dimensional slice</u> of U (or simply a k-slice) is any subset of the form

$$S = \left\{ (x^1, \dots, x^k, x^{k+1}, \dots, x^n) \in U : x^{k+1} = c^{k+1}, \dots, x^n = c^n \right\}$$

for some constants c^{k+1}, \ldots, c^n . (When k = n, this just means S = U.) Clearly, **every** k-slice is homeomorphic to an open subset of \mathbb{R}^k .

- Remark Sometimes it is convenient to consider slices defined by setting some subset of the coordinates other than the last ones equal to constants.
- **Remark** Although in general we allow our slices to be defined by arbitrary constants c^{k+1}, \ldots, c^n , it is sometimes useful to have slice coordinates for which the constants are **all zero**, which can easily be achieved by subtracting a constant from each coordinate function.
- **Definition** Let M be a smooth n-manifold, and let (U, φ) be a smooth chart **on** M. If S is a subset of U such that $\varphi(S)$ is a k-slice of $\varphi(U)$, then we say that S is a k-slice of U.
- **Definition** Given a subset $S \subseteq M$ and a nonnegative integer k, we say that S satisfies the local k-slice condition if each point of S is contained in the domain of a smooth chart (U, φ) for M such that $S \cap U$ is a single k-slice in U. Any such chart is called a slice chart for S in M, and the corresponding coordinates (x^1, \ldots, x^n) are called slice coordinates.
- Remark The key to understand the *the local k-slice condition* for $S \subseteq M$:
 - 1. It is a condition on the *subset* S only; it does *not presuppose* any particular *topology* or *smooth structure* on S. All it needs is the topology and smooth structure from the ambient manifold M.
 - 2. The local neighborhood $U \subseteq M$ is a <u>neighborhood</u> of p in the <u>ambient manifold</u> M not a neighborhood in S (since we do not define such topology);
 - 3. The k-slice representation is for the *intersection* $S \cap U$ under the smooth chart (U, φ) of the ambient manifold M.
- Theorem 1.8 (Local Slice Criterion for Embedded Submanifolds) [Lee, 2003.]. Let M be a smooth n-manifold. If $S \subseteq M$ is an embedded k-dimensional submanifold, then S satisfies the local k-slice condition. Conversely, if $S \subseteq M$ is a subset that satisfies the local k-slice condition, then with the subspace topology, S is a topological manifold of

Figure 2: A level set [Lee, 2003.]

dimension k, and it has a smooth structure making it into a k-dimensional embedded submanifold of M.

- Theorem 1.9 If M is a smooth n-manifold with boundary, then with the subspace topology, ∂M is a topological (n-1)-dimensional manifold (without boundary), and has a smooth structure such that it is a properly **embedded submanifold** of M.
- Example (Spheres as Submanifolds). For any $n \geq 0$, \mathbb{S}^n is an embedded submanifold of \mathbb{R}^{n+1} , because it is locally the graph of a smooth function: the intersection of \mathbb{S}^n with the open subset $\{x: x^i > 0\}$ is the graph of the smooth function

$$x^{i} = f(x^{1}, \dots, x^{i-1}, x^{i+1}, \dots, x^{n+1}),$$

where $f: \mathbb{B}^n \to \mathbb{R}$ is given by $f(u) = \sqrt{1 - |u|^2}$. Similarly, the intersection of \mathbb{S}^n with $\{x: x^i < 0\}$ is the graph of -f. Since every point in \mathbb{S}^n is in one of these sets, \mathbb{S}^n satisfies the local n-slice condition and is thus an embedded submanifold of \mathbb{R}^{n+1} .

1.3 Level Sets

- Remark In practice, embedded submanifolds are most often presented as *solution sets* of equations or systems of equations.
- **Definition** If $\Phi: M \to N$ is any map and c is any point of N, we call the set $\Phi^{-1}(c)$ **a level** set of Φ (Fig. 2). (In the special case $N = \mathbb{R}^k$ and c = 0, the level set $\Phi^{-1}(0)$ is usually called the zero set of Φ .)
- Remark It is easy to find level sets of smooth functions that are not smooth submanifolds.

$$\Theta(x,y) = x^2 - y$$
, $\Phi(x,y) = x^2 - y^2$, $\Psi(x,y) = x^2 - y^3$.

(Note that the zero set $\Theta^{-1}(0)$ is an embedded submanifolds in \mathbb{R}^2 but not for others.) In fact, *every closed subset of* M can be expressed as *the zero set* of some smooth real-valued function.

Theorem 1.10 (Constant-Rank Level Set Theorem). [Lee, 2003.]
 Let M and N be smooth manifolds, and let Φ : M → N be a smooth map with constant rank r. Each level set of Φ is a properly embedded submanifold of codimension r in M.

Proof: Write $m = \dim M$, $n = \dim N$, and k = m - r. Let $c \in \mathbb{N}$ be arbitrary, and let S denote the level set $\Phi^{-1}(c) \subseteq M$. From the rank theorem, for each $p \in S$ there are smooth

Figure 3: An embedded submanifold is locally a level set [Lee, 2003.]

charts (U, φ) centered at p and (V, ψ) centered at $c = \Phi(p)$ in which Φ has a coordinate representation of the form (4.1), and therefore $S \cap U$ is the slice

$$\{(x^1, \dots, x^r, x^{r+1}, \dots, x^m) \in U : x^1 = \dots = x^r = 0\}$$

Thus S satisfies the local k-slice condition, so it is an embedded submanifold of dimension k. It is closed in M by continuity, so it is properly embedded by Proposition 1.8.

- Corollary 1.11 (Submersion Level Set Theorem). [Lee, 2003.]
 If M and N are smooth manifolds and Φ : M → N is a smooth submersion, then each level set of Φ is a properly embedded submanifold whose codimension is equal to the dimension of N.
- Remark This result should be compared to the corresponding result in linear algebra: if $L: \mathbb{R}^m \to \mathbb{R}^r$ is a surjective linear map, then the kernel of L is a linear subspace of codimension r by the rank-nullity law. The vector equation Lx = 0 is equivalent to r linearly independent scalar equations, each of which can be thought of as cutting down one of the degrees of freedom in \mathbb{R}^m , leaving a subspace of codimension r.

In the context of smooth manifolds, the analogue of a surjective linear map is a smooth submersion, each of whose (local) component functions cuts down the dimension by one.

• **Definition** If $\Phi: M \to N$ is a smooth map, a point $p \in M$ is said to be <u>a regular point</u> of Φ if $d\Phi_p: T_pM \to T_{\Phi(p)}N$ is **surjective**; it is **a critical point** of Φ otherwise.

This means, in particular, that *every point* of M is *critical* if $\underline{\dim M} < \underline{\dim N}$, and every point is *regular* if and only if Φ is a *submersion*.

- **Definition** A point $c \in N$ is said to be **a regular value** of Φ if **every point** of the level set $\Phi^{-1}(c)$ is a regular point, and **a critical value** otherwise. In particular, if $\Phi^{-1}(c) = \emptyset$, then c is a regular value. Finally, a level set $\Phi^{-1}(c)$ is called **a regular level set** if c is a regular value of Φ ; in other words, a regular level set is a level set consisting **entirely** of regular points of Φ (points p such that $d\Phi_p$ is surjective).
- Remark If Φ is a *smooth immersion*, every point is a critical point of Φ . A level set from a smooth immersion is a critical level set.
- Remark Every properly embedded submanifold $M = \Phi^{-1}(c)$ is a regular level set. The following theorem shows that the converse is true as well.

Figure 4: A surface of revolution [Lee, 2003.]

- Theorem 1.12 (Regular Level Set Theorem). [Lee, 2003.]

 Every regular level set of a smooth map between smooth manifolds is a properly embedded submanifold whose codimension is equal to the dimension of the codomain.
- Example (*Spheres*). Now we can give a much easier proof that \mathbb{S}^n is an embedded submanifold of \mathbb{R}^{n+1} . The sphere is a regular level set of the smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ given by $f(x) = |x|^2$, since $df_x(v) = 2\sum_i x^i v^i$, which is surjective except at the origin.
- Proposition 1.13 (Local Level Set Criterion for Smooth Embedded Submanifolds) Let S be a subset of a smooth m-manifold M. Then S is an embedded k-submanifold of M if and only if every point of S has a neighborhood U in M such that $U \cap S$ is a level set of a smooth submersion $\Phi: U \to \mathbb{R}^{m-k}$.
- **Definition** If $S \subseteq M$ is an embedded submanifold, a smooth map $\Phi : M \to N$ such that S is a regular level set of Φ is called <u>a defining map for S</u>. In the special case $N = \mathbb{R}^{m-k}$ (so that Φ is a real-valued or vector-valued function), it is usually called **a defining function**.

More generally, if U is an open subset of M and $\Phi: U \to N$ is a smooth map such that $S \cap U$ is a regular level set of Φ , then Φ is called *a local defining map (or local defining function) for* S.

Remark The above proposition says every embedded submanifold admits a local defining function in a neighborhood of each of its points.

• Example (Surfaces of Revolution). Let \mathbb{H} be the half-plane $\{(r, z) : r > 0\}$, and suppose $C \subseteq \mathbb{H}$ is an embedded 1-dimensional submanifold. The surface of revolution determined by C is the subset $S_C \subseteq \mathbb{R}^3$ given by

$$S_C = \{(x, y, z) : (\sqrt{x^2 + y^2}, z) \in C\}.$$

The set C is called its <u>generating curve</u> (see Fig. 4). If $\varphi : U \to \mathbb{R}$ is any **local defining** function for C in \mathbb{H} , we get a **local defining function** Φ for S_C by

$$\Phi(x, y, z) = \varphi\left(\sqrt{x^2 + y^2}, z\right),$$

defined on the open subset

$$\widetilde{U} = \left\{ (x,y,z) : \left(\sqrt{x^2 + y^2}, z \right) \in U \right\} \subseteq \mathbb{R}^3$$

A computation shows that the Jacobian matrix of Φ is

$$D\Phi(x,y,z) = \left(\frac{x}{r}\frac{\partial \varphi}{\partial r}(r,z), \frac{y}{r}\frac{\partial \varphi}{\partial r}(r,z), \frac{\partial \varphi}{\partial z}(r,z)\right)$$

where we have written $r = \sqrt{x^2 + y^2}$. At any point $(x, y, z) \in S_C$, at least one of the components of $D\Phi(x, y, z)$ is nonzero, so S_C is a regular level set of Φ and is thus an embedded 2-dimensional submanifold of \mathbb{R}^3 .

For a specific example, the doughnut-shaped **torus** of revolution D is the surface of revolution obtained from the circle $(r-2)^2 + z^2 = 1$. It is a regular level set of the function $\Phi(x, y, z) = (\sqrt{x^2 + y^2} - 2)^2 + z^2$, which is smooth on \mathbb{R}^3 minus the z-axis.

2 Immersed Submanifolds

2.1 Definitions and Examples

• Definition Let M be a smooth manifold with or without boundary. An <u>immersed</u> submanifold of M is a subset $S \subseteq M$ endowed with a topology (not necessarily the subspace topology) with respect to which it is a topological manifold (without boundary), and a smooth structure with respect to which the inclusion map $S \hookrightarrow M$ is a smooth immersion.

As for embedded submanifolds, we define the **codimension** of S in M to be dim $M-\dim S$.

Remark This terms can be generalized to the *immersed topological submanifold of* M to be a subset $S \subseteq M$ endowed with a topology such that it is a topological manifold and such that the *inclusion map is a topological immersion*. It is an *embedded topological submanifold* if the inclusion is a *topological embedding*.

- Remark Every embedded submanifold is also an immersed submanifold. Because immersed submanifolds are the more general of the two types of submanifolds, we adopt the convention that the term **smooth submanifold** without further qualification means an immersed one, which includes an embedded submanifold as a special case. Similarly, the term **smooth hypersurface** without qualification means an immersed submanifold of **codimension** 1.
- The immersed submanifolds arise in natural way:

Proposition 2.1 (Images of Immersions as Submanifolds). [Lee, 2003.] Suppose M is a smooth manifold with or without boundary, N is a smooth manifold, and $F: N \to M$ is an injective smooth immersion. Let S = F(N). Then S has a unique topology and smooth structure such that it is a **smooth submanifold** of M and such that $F: N \to S$ is a diffeomorphism onto its image.

• Example (Immersed Submanifold but Not an Embedded Submanifold)

Both examples of The Figure-Eight and the Dense Curve on the Torus are images

Figure 5: An immersed submanifold is locally embedded submanifold. [Lee, 2003.]

of injective smooth immersions, they are **immersed submanifolds** when given appropriate topologies and smooth structures. As smooth manifolds, they are **diffeomorphic** to \mathbb{R} . They are **not embedded submanifolds**, because **neither** one has **the subspace topology**. In fact, their image sets cannot be made into embedded submanifolds even if we are allowed to change their topologies and smooth structures.

- Remark Suppose M is a smooth manifold and $S \subseteq M$ is an immersed submanifold. It can be shown that every subset of S that is **open** in the **subspace topology** is also **open** in its given **submanifold topology**; and the **converse** is true if and only if S is **embedded**.
- Proposition 2.2 (Criterion for Immersed Submanifold to be Embedded Submanifold)

Suppose M is a smooth manifold with or without boundary, and $S \subseteq M$ is an **immersed** submanifold. If any of the following holds, then S is embedded.

- 1. S has **codimension** 0 in M.
- 2. The inclusion map $S \hookrightarrow M$ is **proper**.
- 3. S is compact.
- Proposition 2.3 (Immersed Submanifolds Are Locally Embedded). [Lee, 2003.]
 If M is a smooth manifold with or without boundary, and S ⊆ M is an immersed submanifold, then for each p ∈ S there exists a neighborhood U of p in S that is an embedded submanifold of M.

Note that a smooth immersion is locally a smooth embedding.

- Remark It is important to be clear about what this proposition does and does not say: given an immersed submanifold $S \subseteq M$ and a point $p \in S$, it is possible to find a neighborhood U of p in S such that U is embedded; but it may not be possible to find a neighborhood V of P in M such that $V \cap S$ is embedded. (Fig 5)
- **Definition** Suppose $S \subseteq M$ is an immersed k-dimensional submanifold. **A local parametrization** of S is a continuous map $X: U \to M$ whose domain is an **open subset** $U \subseteq \mathbb{R}^k$, whose image is an **open subset** of S, and which, considered as a map into S, is a **homeomorphism** onto its image. It is called a **smooth local parametrization** if it is a **diffeomorphism** onto its image (with respect to Ss smooth manifold structure). If the image of X is all of S, it is called a **global parametrization**.
- Remark For a smooth chart (U, φ) of $M, \varphi : U \to \widehat{U} \subseteq \mathbb{R}^n$ is a diffeomorphism, its inverse $\varphi^{-1} : \widehat{U} \to U \subseteq M$ is a smooth local parameterization (in fact $X = \mathrm{Id}_M \circ \varphi^{-1}$).
- Proposition 2.4 Suppose M is a smooth manifold with or without boundary, $S \subseteq M$ is an

Figure 6: (Left) Restricting the domain. (Right) Restricting the codomain. [Lee, 2003.]

immersed k-submanifold, $\iota: S \hookrightarrow M$ is the inclusion map, and U is an open subset of \mathbb{R}^k . A map $X: U \to M$ is a **smooth local parametrization** of S **if and only if** there is a smooth coordinate chart (V, φ) for S such that $\underline{X = \iota \circ \varphi^{-1}}$. Therefore, every point of S is in the image of some local parametrization.

• Example (*Graph Parametrizations*).

Suppose $U\subseteq\mathbb{R}^n$ is an open subset and $f:U\to\mathbb{R}^k$ is a smooth function. The map $\gamma_f:U\to\mathbb{R}^n\times\mathbb{R}^k$ given by

$$\gamma_f(u) = (u, f(u))$$

is a smooth global parametrization of $\Gamma(f)$, called <u>a graph parametrization</u>. Its inverse is the graph coordinate map $\varphi: \Gamma(f) \to U$

$$\varphi(x,y) = x, \quad \forall (x,y) \in \Gamma(f).$$

For example, the map $F: \mathbb{B}^2 \to \mathbb{R}^3$ given by

$$F(u, v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right)$$

is a *smooth local parametrization* of \mathbb{S}^2 whose image is the open upper hemisphere, and whose *inverse* is one of the *graph coordinate maps*.

3 Restricting Maps to Submanifolds

3.1 Theorems

- **Remark** Given a smooth map $F: M \to N$, it is important to know whether F is still smooth when its domain or codomain is restricted to a submanifold. See Fig. 6.
- Theorem 3.1 (Restricting the Domain of a Smooth Map). [Lee, 2003.]

 If M and N are smooth manifolds with or without boundary, F: M → N is a smooth map, and S⊆ M is an immersed or embedded submanifold, then F|_S: S → N is smooth.
- The next theorem gives sufficient conditions for a map to be smooth when its codomain is restricted to an immersed submanifold. It shows that the failure of continuity is the only thing that can go wrong.

Theorem 3.2 (Restricting the Codomain of a Smooth Map). [Lee, 2003.] Suppose M is a smooth manifold (without boundary), $S \subseteq M$ is an **immersed submanifold**, and $F: N \to M$ is a smooth map whose **image is contained in** S. If F is **continuous** as a map from N to S, then $F: N \to S$ is smooth.

- Corollary 3.3 (Embedded Case).
 Let M be a smooth manifold and S ⊆ M be an embedded submanifold. Then every smooth map F: N → M whose image is contained in S is also smooth as a map from N to S.
- **Definition** If M is a smooth manifold and $S \subseteq M$ is an immersed submanifold, then S is said to be <u>weakly embedded</u> in M if every smooth map $F: N \to M$ whose image lies in S is smooth as a map from N to S. (Weakly embedded submanifolds are called initial submanifolds by some authors.)
- Remark Corollary above shows that every embedded submanifold is weakly embedded.

3.2 Uniqueness of Smooth Structures on Submanifolds

- Theorem 3.4 Suppose M is a smooth manifold and $S \subseteq M$ is an **embedded submanifold**. The subspace topology on S and the smooth structure from the local k-slice condition are **the** only topology and smooth structure with respect to which S is an embedded or immersed submanifold.
- Remark Thanks to this uniqueness result, we now know that a subset $S \subseteq M$ is an embedded submanifold if and only if it satisfies the local slice condition, and if so, its topology and smooth structure are uniquely determined.
 - Because the local slice condition is **a local condition**, if every point $p \in S$ has a neighborhood $\underline{U \subseteq M}$ such that $\underline{U \cap S}$ is an embedded k-submanifold of M.
- Theorem 3.5 Suppose M is a smooth manifold and $S \subseteq M$ is an immersed submanifold. For the given topology on S, there is only one smooth structure making S into an immersed submanifold.
- Theorem 3.6 If M is a smooth manifold and $S \subseteq M$ is a weakly embedded submanifold, then S has only one topology and smooth structure with respect to which it is an immersed submanifold.

3.3 Extending Functions from Submanifolds

- Remark Complementary to the restriction problem is the problem of extending smooth functions from a submanifold to the ambient manifold. Here we say $f \in C^{\infty}(S)$ for submanifold $S \subseteq M$, when f is considered as a function on the manifold S.
- Lemma 3.7 (Extension Lemma for Functions on Submanifolds). Suppose M is a smooth manifold, $S \subseteq M$ is a smooth submanifold, and $f \in C^{\infty}(S)$.
 - 1. If S is **embedded**, then there exist a **neighborhood** U of S in M and a smooth function $\widetilde{f} \in \mathcal{C}^{\infty}(U)$ such that $\widetilde{f}|_{S} = f$.
 - 2. If S is properly embedded, then the neighborhood U above can be taken to be all of M.

Figure 7: The tangent space of a submanifold. [Lee, 2003.]

4 The Tangent Space to a Submanifold

• Remark The tangent space to a smooth submanifold of an abstract smooth manifold can be viewed as a subspace of the tangent space to the ambient manifold, once we make appropriate identifications. The following proof is based on the <u>differential</u> of the inclusion map as a smooth immersion.

Proof: Let M be a smooth manifold with or without boundary, and let $S \subseteq M$ be an immersed or embedded submanifold. Since the inclusion map $\iota: S \hookrightarrow M$ is a **smooth immersion**, at each point $p \in S$ we have an *injective linear map* $d\iota_p: T_pS \to T_pM$. In terms of **derivations**, this injection works in the following way: for any vector $v \in T_pS$, the image vector $\tilde{v} = d\iota_p(v) \in T_pM$ acts on smooth functions on M by

$$\widetilde{v}f = d\iota_p(v)f = v(f \circ \iota) = v(f|_S).$$

We adopt the convention of *identifying* T_pS with *its image under this map*, thereby thinking of T_pS as a certain linear subspace of T_pM (Fig. 7). This identification makes sense regardless of whether S is *embedded or immersed*.

• There are several alternative ways to characterize the tangent space of a submanifold

1. Smooth curve on submanifold.

Proposition 4.1 Suppose M is a smooth manifold with or without boundary, $S \subseteq M$ is an immersed or embedded submanifold, and $p \in S$. A vector $v \in T_pM$ is in T_pS if and only if there is a smooth curve $\gamma: J \to M$ whose **image is contained in** S, and which is also **smooth** as a map into S, such that $0 \in J$, $\gamma(0) = p$, and $\gamma'(0) = v$.

2. Derivations on functions whose restriction on submanifold are constant zero.

Proposition 4.2 Suppose M is a smooth manifold, $S \subseteq M$ is an embedded submanifold, and $p \in S$. As a subspace of T_pM , the tangent space T_pS is characterized by

$$T_pS=\{v\in T_pM: vf=0 \ \textit{whenever}\ f\in \mathcal{C}^\infty(M) \ \textit{and}\ f|_S=0\}\,.$$

3. Kernel subspace of differential map of local defining map.

Proposition 4.3 Suppose M is a smooth manifold and $S \subseteq M$ is an embedded submanifold. If $\Phi: U \to N$ is any **local defining map** for S, then $T_pS = \mathbf{Ker}(d\Phi_p): T_pM \to T_{\Phi(p)}N$ for each $p \in S \cap U$.

Figure 8: An inward-pointing vector. [Lee, 2003.]

Note that $S \cap U = (\Phi \circ \iota)^{-1}(c)$ is the level set of $\Phi \circ \iota$ thus it is constant for $\Phi \circ \iota$. So $d\Phi_p \circ d\iota_p = 0$.

Corollary 4.4 Suppose $S \subseteq M$ is a level set of a smooth submersion $\Phi = (\Phi^1, \dots, \Phi^k)$: $M \to \mathbb{R}^k$. A vector $v \in T_pM$ is tangent to S if and only if $v\Phi^1 = \dots = v\Phi^k = 0$.

- Remark If M is a smooth manifold with boundary and $p \in \partial M$, it is intuitively evident that the vectors in T_pM can be separated into three classes:
 - 1. those tangent to the boundary;
 - 2. those pointing *inward*; See Fig 8.
 - 3. those pointing *outward*.

Definition If $p \in \partial M$, a vector $v \in T_pM \setminus T_p\partial M$ is said to be *inward-pointing* if for some $\epsilon > 0$ there exists a smooth curve $\gamma : [0, \epsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$, and it is *outward-pointing* if there exists such a curve whose domain is $(-\epsilon, 0]$.

Proposition 4.5 (Characterization of Tangent Vectors on Boundary using Component Functions)

Suppose M is a smooth n-dimensional manifold with boundary, $p \in \partial M$, and (x^i) are any smooth boundary coordinates defined on a neighborhood of p. The **inward-pointing vectors** in T_pM are precisely those with **positive** x^n -component, the **outward-pointing** ones are those with **negative** x^n -component, and the ones **tangent to** ∂M are those with **zero** x^n -component. Thus, T_pM is the **disjoint union** of $T_p\partial M$, the set of inward-pointing vectors, and the set of outward-pointing vectors, and $v \in T_pM$ is inward-pointing if and only if -v is outward-pointing.

- **Definition** If M is a smooth manifold with boundary, a **boundary defining function** for M is a smooth function $f: M \to [0, \infty)$ such that $f^{-1}(0) = \partial M$ and $df_p \neq 0$ for all $p \in \partial M$. For example, $f(x) = \sqrt{1 |x|^2}$ is a boundary defining function for the closed unit ball $\overline{\mathbb{B}}^n$.
- Proposition 4.6 Every smooth manifold with boundary admits a boundary defining function.

5 Submanifolds with Boundary

References

John Marshall Lee. *Introduction to smooth manifolds*. Graduate texts in mathematics. Springer, New York, Berlin, Heidelberg, 2003. ISBN 0-387-95448-1.