Gravity beyond CES: Implications for Substitution Patterns and Welfare

Paul Piveteau¹ Gabriel Smagghue²

¹Johns Hopkins University, SAIS

²Banque de France

November 2021

Introduction

- Gravity models are a popular tool for trade economists.
 - ▶ Theoretically founded, easy to estimate and have good predictive power.
- However, this tractability rules out important aspects of international trade.

$$\log s_{od} = \log C_o + (1 - \sigma) \log \tau_{od} - \log \left[\sum_{o'} C_{o'} \tau_{od}^{1 - \sigma} \right]$$

- Multilateral term is common across origins: no role for vertical differentiation for instance.
- Change in competition impact all origins similarly: Independence of Irrelevant Alternatives (IIA) property.

November 2021

2 / 34

Introduction

- Gravity models are a popular tool for trade economists.
 - ▶ Theoretically founded, easy to estimate and have good predictive power.
- However, this tractability rules out important aspects of international trade.

$$\log s_{od} = \log C_o + (1 - \sigma) \log \tau_{od} - \log \left[\sum_{o'} C_{o'} \tau_{od}^{1 - \sigma} \right]$$

- Multilateral term is common across origins: no role for vertical differentiation for instance.
- Change in competition impact all origins similarly: Independence of Irrelevant Alternatives (IIA) property.
- We develop an empirical strategy to capture more realistic patterns of differentiation.
 - ► Maintain the tractability of gravity regressions (2SLS estimation)
 - ▶ Capture the importance of differentiation and generate more realistic substitution patterns.

4 □ > 4 圊 > 4 悥 > 4 悥 > 9 등 - 9Q

This paper

- Show evidence of deviations from the IIA assumption.
 - ▶ The China shock had a stronger impact on competitors that are similar to China.
- We apply an empirical strategy that linearizes a demand system with mixed preferences
 - ▶ Mixed preferences generate flexible substitution patterns across countries.
 - Augment the linear gravity model with additional terms to capture the role of differentiation in the destination market
- We estimate this gravity model to quantify the importance of vertical and geographical differentiation in the data.
- We explore the implications of these substitution patterns:
 - predictions of the gravity model in response to a trade shock.
 - welfare impacts along the income distribution.

Preview of the results

- We find an important role for vertical and geographical differentiation.
 - ▶ The position of a country in the price distribution has an impact on its performance in export markets.
 - ▶ For instance, a country whose log price distance from the average moves from 0.5 to 1, increases its export value by 5 percent.
- Simulating the ban of Chinese exports to the US market,
 - we find vastly different effects on countries based on their position in the price distribution.
 - Heterogeneity in consumer preferences generates non-monotonic welfare effects along the income distribution.

4 / 34

Piveteau and Smagghue Gravity beyond CES

Related literature

- Mixed preferences in international trade
 - Adao, Costinot and Donaldson (2017), Heins (2021), Piveteau and Smagghue (2021).
- Random-coefficients demand system
 - ▶ Berry, Levinsohn and Pakes (1995), Salanie and Wolak (2019).
- Heterogenous gains from trade
 - ► Fajgelbaum and Khandelwal (2016), Borusyak and Jaravel (2021).

5 / 34

Piveteau and Smagghue Gravity beyond CES

Outline

- 1. Introduction
- 2. Motivation
- 3. Model
- 4. Estimation
- 5. Implications
- 6. Conclusion

Deviations from IIA

- CES preferences and its IIA assumption imply that all firms are similarly impacted by a change in competition.
- We test this assumption by looking at a large supply shock: the China shock in the US.
- Are products similar to Chinese products more affected by the rise of China?
- Specification:

$$\log X_{okt} = \beta \left(Dist_{ok} \times MSC_{kt} \right) + \gamma_{kt} + \delta_{ok} + \varepsilon_{okt}$$

- \triangleright X_{okt} is the US imports of hs6 product k from origin o at time t.
- ▶ MSC_{kt} the US import market share of Chinese products for product k at time t.
- ightharpoonup Dist_{ok} a "distance" between country o and China in product k.

→ロト ←団ト ← 巨ト ← 巨 → りへの

7 / 34

Data

- BACI provides yearly bilateral trade flows at the hs6 level (\approx 5300 products).
- We focus on the exports to the US from 1996 to 2018.
- We look at measures of distance based on the proximity in the price space.
 - Price defined as unit values (exported value divided by exported quantities).
- Two measures based on the relative price: $\log \tilde{p}_{okt_0} \equiv \log p_{okt_0} \log p_{Ckt_0}$.
 - Quadratic distance: $(\log \tilde{p}_{okt_0})^2$

$$\textbf{\textit{Position}}_{ok} = \left\{ \begin{array}{l} -2 & \text{if } \log \tilde{p}_{okt_0} < -2 \\ -1 & \text{if } \log \tilde{p}_{okt_0} \in [-2, -0.5] \\ 0 & \text{if } \log \tilde{p}_{okt_0} \in [-0.5, 0.5] \\ 1 & \text{if } \log \tilde{p}_{okt_0} \in [0.5, 2] \\ 2 & \text{if } \log \tilde{p}_{okt_0} > 2 \end{array} \right.$$

Table: Exporters far from China suffer less from the China shock

	log export _{okt}				
	(1)	(2)	(3)	(4)	
$MSC_{kt} imes (\log \tilde{p}_{okt_0})^2$	0.15*** (0.01)	0.15*** (0.01)			
$MSC_{kt} \times (Position_{ok} = -2)$,	,	0.19** (0.10)	0.20** (0.10)	
$\mathit{MSC}_{\mathit{kt}} imes (\mathit{Position}_{\mathit{ok}} = -1)$			0.18***	0.20***	
$\mathit{MSC}_{kt} imes (\mathit{Position}_{ok} = 1)$			(0.06) 0.21***	(0.06) 0.19***	
$MSC_{kt} \times (Position_{ok} = 2)$			(0.04) 0.65*** (0.05)	(0.05) 0.62*** (0.05)	
Num.Obs. Exporting country	2 853 160 All	2 631 408 Top 100	2 853 160 All	2 631 408 Top 100	

Notes: Standard errors clustered at the origin country level. All specifications include origin x product and product x time fixed effects. * p < 0.1, ** p < 0.05, *** p \leq 0.01 $_{\odot}$, ** $_{\odot}$ > $_{\odot}$ > $_{\odot}$

Outline

- 1. Introduction
- 2. Motivation
- 3. Model
- 4. Estimation
- 5. Implications
- 6. Conclusion

Mixed preferences

- A common solution to relax the IIA assumption is to introduce mixed preferences.
 - Consumers have CES preferences, but differ on how they value product characteristics.
- As a result, consumers buy from different countries based on the characteristics of their product.
- Countries that share characteristics (similar quality, similar prices) sell to the same type
 of consumers and are closer substitutes.
- In the example of the China shock:
 - ▶ Price-elastic consumers buy relatively more from low-cost countries like China.
 - ▶ When Chinese products enter the market, those low-cost countries suffer the most because their consumers are likely to switch toward Chinese products.

Preferences

• In a given product market, a consumer *i* derives utility from varieties *o* from a set of origin countries.

$$U_i = \left(\sum_o \exp(eta_i X_o + \xi_o) \, q_{io}^{rac{lpha_i}{lpha_i - 1}}
ight)^{rac{lpha_i - 1}{lpha_i}}$$

- X_o: observable characteristics.
- ξ_o : unobserved utility shifter (quality).
- $ightharpoonup q_{io}$: quantity purchased by *i* from country *o*.
- \triangleright β_i and α_i are consumer-specific preference parameters
- Demand shares from consumer i:

$$s_{io} = \frac{\exp(\beta_i X_o + (1 - \alpha_i) \log p_o + \xi_o)}{\sum_o \exp(\beta_i X_o + (1 - \alpha_i) \log p_o + \xi_o)}.$$

Aggregate import shares

- In each destination market d, we have a continuum of consumer i with a budget e_i , proportional to their income y_i , for this product.
- The aggregate import share in d from a country o is

$$s_{od} = \frac{\int_{i \in d} \pi_{io} e_i}{\int_{i \in d} e_i} di = \int_{i \in d} \frac{\exp(\beta_i X_{od} + (1 - \alpha_i) \log p_{od} + \xi_{od})}{\sum_o \exp(\beta_i X_{od} + (1 - \alpha_i) \log p_{od} + \xi_{od})} \omega_i di$$

- We need to make assumptions on the distributions of the consumer-specific terms.

 - $\beta_i = \beta + \sigma_\beta \varepsilon_i^{(2)}$
 - $E(\varepsilon_i) \equiv \int_{i \in d} \varepsilon_i \omega_i di = 0$ and $V(\varepsilon_i) \equiv \int_{i \in d} (\varepsilon_i E(\varepsilon_i))^2 \omega_i di = 1$
 - \blacktriangleright $E(\ln y_i) = \mu_{y_d}$ and $V(\ln y_i) = V_{y_d}$

イロト (部) (注) (注) 注 り(で

Approximation

- Salanie and Wolak (2019) shows how to approximate random-coefficients demand systems with a linear estimator.
 - Intuition: Taylor expansion of the structural error.
- With $\theta \equiv \{\pi, \sigma_{\alpha}, \sigma_{\beta}\}$, the vector of structural errors ξ is defined to match the observed import shares \hat{s}_{od} :

$$s_{od}(\xi,\theta) = \hat{s}_{od}$$
 so that we can write $\xi \equiv \xi(\theta)$.

• Second-order expansion around $\theta = 0$:

$$\xi(\theta) = \xi(0) + \frac{\partial \xi(\theta)}{\partial \theta} \bigg|_{\theta=0} \theta + \frac{\partial^2 \xi(\theta)}{\partial \theta^2} \bigg|_{\theta=0} \frac{\theta^2}{2} + O(\sigma^3)$$

Estimation regression

• The second-order expansion leads to a linear regression:

$$\begin{split} \xi(\theta) &= \xi(0) + \frac{\partial \xi(\theta)}{\partial \theta} \bigg|_{\theta=0} \theta + \frac{\partial^2 \xi(\theta)}{\partial \theta^2} \bigg|_{\theta=0} \frac{\theta^2}{2} + O(\sigma^3) \\ \log \left(\frac{\hat{s}_{od}}{\hat{s}_{oo}} \right) &= \beta \tilde{X}_{od} - \alpha \tilde{\log p}_{od} - \pi \mu_{y_d} \tilde{\log p}_{od} + \sigma_{\alpha}^2 K_{od}^{\log p} + \sigma_{\beta}^2 K_{od}^X + \pi^2 V_{y_d} K_{od}^{\log p} + \xi_{od}^2 K_{od}^2 K$$

with

- \tilde{X}_{od} and $\log p_{od}$ are characteristics normalized by the domestic good: $\tilde{X}_{od} = X_{od} X_{oo}$.
- K variables are called artificial regressors.
- $K_{od}^{\log p} = \tilde{\log p_{od}} \left(\frac{\tilde{\log p_{od}}}{2} \sum_{o' \neq d} \hat{s}_{o'd} \tilde{\log p_{o'd}} \right)$

Piveteau and Smagghue

Artificial regressors – Intuition

Artificial regressors identify the variance in consumer preferences.

- Measure the distance between a variety and the rest of the market.
- A variety far from others will sell more ceteris paribus.

Summary

- Economists used mixed preferences to capture realistic patterns of substitution across firms.
- However, their use is fairly limited because these models are difficult to estimate.
- The small- σ expansion of the model allows us to obtain a linear regression that can easily estimate the non-linear parameters of the model.
- Only requires to compute additional variables and add them in a standard 2SLS regression.

Outline

- 1. Introduction
- 2. Motivation
- 3. Model
- 4. Estimation
- 5. Implications
- 6. Conclusion

Data requirements

- The data requirements are similar to those of a gravity model or a demand system.
 - ▶ However, necessary to define an outside good to normalize the characteristics.
- Data sources:
 - BACI for trade flows.
 - MacMap for bilateral tariffs,
 - CEPII for gravity variables,
 - World Input Output Database (WIOD) for domestic market shares,
 - World Development Indicator for income distributions.
- Coverage:
 - varieties defined at the country x HS6 level,
 - years 2001, 2004 and 2007 (years of MacMap),
 - ▶ 42 destinations from WIOD .

Specification

Baseline specification for origin o, destination d, product k at time t:

$$\begin{split} \log \textit{export}_{\textit{odkt}} = \beta \textit{X}_{\textit{odt}} + \alpha \log \textit{p}_{\textit{odkt}} + \alpha_{\textit{y}} \log \textit{p}_{\textit{odkt}} \times \mu_{\textit{y}_{\textit{d}}} \\ + \delta_{1} \textit{K}_{\textit{odkt}}^{\log \textit{p}} + \delta_{2} \textit{K}_{\textit{odkt}}^{\log \textit{p}} \times \textit{V}_{\textit{y}_{\textit{d}}} + \delta_{3} \textit{K}_{\textit{od}}^{\textit{region}} \\ + \gamma_{\textit{dkt}} + \gamma_{\textit{okt}} + \varepsilon_{\textit{odkt}} \end{split}$$

- Prices are endogenous.
 - Tariffs as instrument.
- K variables also endogenous by construction.

 - ▶ Regress prices and import shares on the set of instruments to construct exogenous predictions of these variables.
 - ▶ Construct an "exogenous" version of K to use as instrument.

(D) (A) (E) (E) (O)

Results with artificial regressors

	(1) OLS	(2) RF	(3) 2SLS
log p	-0.07*** (0.00)		-1.86*** (0.06)
log(1 + tariff)	(0.00)	-1.71*** (0.05)	(5.55)

Notes: Number of observations: 8774 989. Standard errors clustered at the origin -product and destination-product levels. All specifications include origin \times product, destination \times product time fixed effects and bilateral gravity variables. * p < 0.1, ** p < 0.05, *** p < 0.01.

Piveteau and Smagghue Gravity beyond CES November 2021 23 / 34

Results with artificial regressors

(1) OLS	(2) RF	(3) 2SLS	(4) OLS	(5) 2SLS	
-0.07*** (0.00)		-1.86*** (0.06)		-1.99*** (0.07)	
(0.00)	-1.71*** (0.05)	(0.00)	-1.46*** (0.05)	(0.07)	
	(0.03)		-0.04***	0.18***	
			-7.67***	1.14***	
	ÒLŚ	OLS RF -0.07*** (0.00)	OLS RF 2SLS -0.07*** (0.00) -1.71***	OLS RF 2SLS OLS -0.07***	OLS RF 2SLS OLS 2SLS -0.07*** -1.86*** -1.99*** (0.00) (0.06) (0.07) -1.71*** -1.46*** (0.05) (0.05) -0.04*** 0.18*** (0.00) (0.01) -7.67*** 1.14***

Notes: Number of observations: 8774989. Standard errors clustered at the origin -product and destination-product levels. All specifications include origin \times product, destination \times product time fixed effects and bilateral gravity variables. * p < 0.1, ** p < 0.05, *** p < 0.01.

Results with artificial regressors

	(1) OLS	(2) RF	(3) 2SLS	(4) OLS	(5) 2SLS	(6) 2SLS
log p	-0.07*** (0.00)		-1.86*** (0.06)		-1.99*** (0.07)	-2.67*** (0.13)
$\log(1 + tariff)$	` ,	-1.71*** (0.05)	, ,	-1.46*** (0.05)	` ,	` ,
$\mathcal{K}^{\log p}$, ,		-0.04*** (0.00)	0.18*** (0.01)	0.52*** (0.04)
K^{region}				-7.67*** (0.03)	1.14*** (0.06)	1.42*** (0.07)
$\log p imes \mu_{y_d}$,	, ,	0.81*** (0.08)
$\mathcal{K}^{\log p} imes V_{y_d}$						0.64*** (0.08)

Notes: Number of observations: 8774 989. Standard errors clustered at the origin -product and destination-product levels. All specifications include origin \times product, destination \times product time fixed effects and bilateral gravity variables. * p < 0.1, ** p < 0.05, *** p < 0.01.

Piveteau and Smagghue Gravity beyond CES November 2021 23 / 34

Gravity-like regressions

	(1) OLS	(2) OLS	(3) 2SLS
log(1 + tariff)	-1.71***	-1.43***	-1.66***
	(0.05)	(0.05)	(0.05)
$K^{\log gdpc}$		0.02***	0.04***
		(0.00)	(0.00)
K^{region}		-7.71***	1.76***
		(0.03)	(0.05)

Notes: Number of observations: 8774989. Standard errors clustered at the origin -product and destination-product levels. All specifications include origin \times product, destination \times product time fixed effects and bilateral gravity variables. * p < 0.1, ** p < 0.05, *** p < 0.01.

24 / 34

Outline

- 1. Introduction
- 2. Motivation
- 3. Model
- 4. Estimation
- 5. Implications
- 6. Conclusion

Implications

- We introduced heterogeneity in consumer preferences to obtain a model with more realistic substitution patterns.
 - ▶ Role for vertical differentiation, spatial competition.
- First implication on trade flows:
 - ▶ the model can capture the heterogenous impacts on trade flows of trade liberalization, competition shocks, etc...
- Second implication for welfare:
 - ▶ Because consumers differ in their preferences, they are differently impacted by a change in trade flows.

26 / 34

Implications on trade flows

- Countries are now differently impacted by a change in competition.
- The cross elasticity with respect to China depends on the distance from Chinese prices.

Elasticity of Market shares to China USA, 2007

Implications on trade flows

- Countries are now differently impacted by a change in competition.
- The cross elasticity with respect to China depends on the distance from Chinese prices.
- A ban on Chinese exports have very heterogenous effects across countries.

Impact of Shutting Down Chinese Exports USA, 2007; HS product 910111

Piveteau and Smagghue Gravity beyond CES November 2021 27 / 34

Welfare implications

- The model estimates different elasticities of substitution along the income distribution.
 - ▶ Rich consumers have a lower elasticity of substitution (less sensitive to prices).
- Two implications for consumption behavior and welfare:
 - ▶ Rich consumers have a stronger taste for variety, which implies larger gains from trade.
 - ▶ They consume more expensive varieties, from relatively rich countries.

28 / 34

Welfare implications

The Heterogeneous Welfare Impact of China

• Under Cobb-Douglas preferences across products, the price index of consumer i is

$$P_i = \prod_k P_{ki}^{
ho_k}$$

- $P_{ki} = \left(\sum_{o} \exp(\beta_i X_{ok} + \xi_{ok}) p_{ok}^{(1-\alpha_i)}\right)^{\frac{1}{1-\alpha_i}}$
- $\triangleright \rho_k$: budget share of product k
- Impact of shutting down Chinese exports on consumer i's cost of living:

$$\hat{P}_i \equiv rac{P_i'}{P_i} - 1 = \prod_k \left(rac{P_{ki}'}{P_{ki}}
ight)^{
ho_k} - 1 = \prod_k \left[\left(1 - s_{k,i}^{ extit{CHN}}
ight)^{rac{1}{1-lpha_i}}
ight]^{
ho_k} - 1$$

• Welfare impact is consumer-specific because of different α_i and different import shares from China.

The Heterogeneous Welfare Impact of China

31 / 34

Outline

- 1. Introduction
- 2. Motivation
- 3. Model
- 4. Estimation
- 5. Implications
- 6. Conclusion

Conclusions

- We show how to augment gravity regressions with terms that capture more realistic patterns of substitution across countries.
- Allows to measure the role of vertical differentiation, local competition on trade flows.
- This has direct implications on the predictions of these models in terms of trade elasticities between countries.
- Capturing these substitution patterns also have interesting consequences on the heterogeneity of the gains from trade.

