Vehicle Detection Project

1. Introduction

Vehicle detection underpins countless intelligent-transportation applications—from automated traffic analyses to autonomous driving. In this project, we train and validate a YOLOv8 detector to recognize and localize ten vehicle and pedestrian categories in still images. We leverage Ultralytics' PyTorch-based implementation, preparing a bespoke dataset of annotated road scenes and fine-tuning on our classes.

2. Dataset Preparation

- **Source images** were gathered from public traffic-camera feeds and open benchmarks.
- Annotations were maintained in a CSV (labels.csv), each row:

SCSS

CopyEdit

(image_id, class_name, x_min, y_min, x_max, y_max)

Class mapping:

```
{ "car": 0, "pickup_truck": 1, "articulated_truck": 2, "single_unit_truck": 3, "work_van": 4, "bus": 5, "motorcycle": 6, "bicycle": 7, "motorized_vehicle": 8, "non-motorized_vehicle": 9, "pedestrian": 10 }
```

• Train/Val split: 80/20 by image ID to ensure no leakage.

Our preprocessing script:

- 1. Reads and groups CSV by image id.
- 2. Converts each box to YOLO format—normalized center + width/height.
- 3. Copies images into runs/detect/train2/images/{train,val} and writes labels to runs/detect/train2/labels/{train,val}.

3. Model & Training

- Framework: Ultralytics YOLOv8 (ultralytics Python package).
- Base model: yolov8n.pt (nano) for fast iteration, later scalable to yolov8m/l.

• Hardware: Tesla T4 GPU (15 GB).

4. Model Summary

After training, the final best.pt was validated:

Model summary (fused): 72 layers, 3,007,793 parameters, 0 gradients, 8.1 GFLOPs

5. Evaluation Results (on 1,126 images / 3,806 instances)

Class	Images	Instances	Precision	Recall	mAP@50	mAP@50-95
all	1,126	3,806	0.624	0.589	0.615	0.451
pickup_truck	311	434	0.795	0.786	0.844	0.688
car	944	2,544	0.835	0.882	0.912	0.667
articulated_truck	70	81	0.655	0.751	0.725	0.542
bus	105	121	0.931	0.897	0.938	0.830
motorized_vehicle	232	303	0.570	0.363	0.408	0.245
work_van	99	104	0.629	0.654	0.615	0.500
single_unit_truck	57	60	0.558	0.550	0.518	0.357
pedestrian	45	92	0.457	0.266	0.331	0.166
bicycle	22	26	0.481	0.577	0.640	0.408
non-motorized_vehicle	19	19	0.218	0.105	0.0913	0.0615
motorcycle	20	22	0.739	0.645	0.742	0.497

• Overall mAP@50: 0.615

• Overall mAP@50-95: 0.451

Inference speed (per image):

• Preprocess: 0.2 ms

• Inference: 1.7 ms

• Postprocess: 1.8 ms

6. Qualitative Insights

- Cars and pickup trucks achieve highest accuracy (mAP@50 > 0.84).
- **Buses** are nearly perfect (mAP@50 = 0.94).
- **Non-motorized vehicles** and **pedestrians** lag behind—small, irregular shapes and occlusion reduce recall.
- Motorized_vehicle class (a mixed category) shows lower recall, suggesting a need for more diverse training examples.

7. Conclusion

Our YOLOv8-based detector, with just 3 M parameters and 8 GFLOPs, achieves a solid mAP@50 of 0.615 across ten classes, running at sub-5 ms per image. With targeted data augmentation and model scaling, it's well positioned for real-time traffic analysis and autonomous-vehicle pipelines.