Lab 2 Report Padframe DAC

By Ogbonnaya Okorie

Goal

Layout a padframe of 8 pins and connect a 5-bit DAC to the padframe. One pin will be left unused.

Procedure

These are cells that we will be baselining the padframe DAC with. The "pad" cell as shown in figure 2.1 will be converted into a padframe array, in which we'll connect the inout pins to the "dac" cell connections.

Figure 1.1: Padframe Library Baseline

Figure 2.1: Pad Cell Schematic and Icon

• Below is the layout of the and 3D view of the "pad" cell that will be turned into an array for the padframe.

Figure 2.2: Pad Cell Layout

Figure 2.3: 3D View of Pad Layout

• Below is the schematic of the 5-bit DAC that will be connected to the padframe.

Figure 3.1: 5-bit DAC Schematic & Icon

• Below is the layout and 3D view of the 5-bit DAC. I included some spice code to confirm 5-bit DAC functionality, as shown in the simulation in Figure 3.3.

Figure 3.2: Layout of 5-bit DAC + Spice Code

```
SPICE deck for cell dac_sim{lay} from library lab_2_padframe_dac
       --- Operating Point ---
V(b4):
                0
                               voltage
                0.46875
V(vout):
                               voltage
                0
                               voltage
V(b3):
V(b2):
                0
                               voltage
                5
V(b1):
                               voltage
                5
V(b0):
                               voltage
                -0.000248535
                               device current
I(Vin):
                -0.000124023
                               device current
I(V1):
I(V2):
                6.44531e-005
                               device current
I(V3):
                3.51562e-005
                               device current
I(V4):
                2.34375e-005
                               device current
Ix (dac@2:B0):
                0.000124512
                               subckt current
Ix (dac@2:B1):
                0.000124023
                               subckt current
Ix (dac@2:B2):
                -6.44531e-005 subckt current
Ix (dac@2:B3):
                -3.51562e-005
                               subckt current
Ix(dac@2:B4):
                -2.34375e-005 subckt current
Ix(dac@2:GND): -0.000125488
                               subckt current
Ix (dac@2:VOUT):
                                               subckt_current
```

Figure 3.3: Simulation of 5-bit DAC

Figure 3.4: 3D View of 5-bit DAC Layout

Now that I know that I was able to successfully copy the 5-bit DAC design successfully and confirmed functionality, I will proceed on to designing the 5-bit padframe.

• Below is the view of the schematic and icon view of the padframe.

Figure 4.1: Padframe Schematic and Icon View

• Below is the layout and 3D view of the padframe with its 8 pins. The layout was created by making a 4x4 array of the "pad" cell and cutting the corners to get the 8 pins.

Figure 4.2: Padframe Layout

Figure 4.3: 3D View of Padframe

Now that we have the padframe layout, we can integrate the 5-bit DAC into the padframe and connect the DAC I/Os to the padframe pins.

- Below is the schematic and icon view of the DAC IC.
 - The pinout table and reasoning for selecting specific I/O pins will be explained in the next page.

Figure 5.1: DAC IC Schematic and Icon View

- Here is the unconnected layout of the 5-bit DAC IC, just to get an idea of how it is before connecting the DAC to the padframe.
 - The 5-bit DAC is the blue layout in the middle of the image, surrounded by the padframe.

Figure 5.2: Layout of Unconnected Padframe DAC

- Recalling the DAC IC icon view in Figure 5.1, we have an *odd* way of selecting the DAC I/O to the pins, and that is because of how the 5-bit DAC is layed out.
 - \circ Looking at the DAC left to right, the I/Os go from: gnd -> b0 -> b1 -> b2 -> b3 -> V_{out} -> b4.
 - We can't overlap nets or else we will get DRC errors, so we connect the DAC to the padframe as follows.

Figure 5.3: Layout of 5-bit DAC IC

• Below is the table of the connections of the 5-bit DAC relative to the padframe

5-bit DAC I/O	Padframe Pins
b4	pin[6]
b3	pin[4]
b2	pin[3]
b1	pin[2]
b0	pin[1]
gnd	pin[8]
V _{out}	pin[5]

Note: pin[7] in the padframe is unused

<u>Table 5.1: DAC IC Pin Connections</u>

• Below is a 3D view of the 5-bit DAC IC

Figure 5.4: 3D View of 5-bit DAC IC

DRC and LVS Check

```
Checking schematic cell 'pad{sch}'
No errors found
Checking schematic cell 'padframe{sch}'
No errors found
Checking schematic cell 'ic_dac{sch}'
No errors found
Checking icon cell 'pad{ic}'
No errors found
Checking icon cell 'padframe{ic}'
No errors found
Checking icon cell 'padframe{ic}'
No errors found
Checking icon cell 'ic_dac{ic}'
No errors found
Checking icon cell 'ic_dac{ic}'
No errors found
O errors and O warnings found (took 0.0 secs)
```

Figure 6.1: Error Check on DAC IC Schematic

```
Running DRC with area bit on, extension bit on, Mosis bit Checking again hierarchy .... (0.0 secs)
Found 9 networks
0 errors and 0 warnings found (took 0.002 secs)
```

Figure 6.2: DRC Check on DAC IC Layout

```
Hierarchical NCC every cell in the design: cell 'ic_dac{sch}' cell 'ic_dac{lay}'
Comparing: lab_2_padframe_dac:pad{sch} with: lab_2_padframe_dac:pad{lay}
  exports match, topologies match, sizes not checked in 0.002 seconds.

Comparing: lab_2_padframe_dac:padframe{sch} with: lab_2_padframe_dac:padframe{lay}
  exports match, topologies match, sizes not checked in 0.003 seconds.

Comparing: lab_2_padframe_dac:ic_dac{sch} with: lab_2_padframe_dac:ic_dac{lay}
  exports match, topologies match, sizes not checked in 0.001 seconds.

Summary for all cells: exports match, topologies match, sizes not checked

NCC command completed in: 0.008 seconds.
```

Figure 6.3: NCC Check on DAC IC Layout