CIS 471/571 (Fall 2020): Introduction Artificial Intelligence

Lecture 7: Expectimax, Utilities WeChat: cstutorcs

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminders

- Project 2: Multi-agent Search
 - Deadline: Oct 27th, 2020

Assignment Project Exam Help

- Homework 2: CSPs and Games om
 - Deadline: Oct 24th, **2020**hat: cstutorcs

Thanh H. Nguyen 10/19/20

Today

Expectimax Search Assignment Project Exam Help

Utilities

https://tutorcs.com

WeChat: cstutorcs

Thanh H. Nguyen 10/19/20

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
 Assignment Project Exam Help
- Values should now reflect average-case (expectimax) outcomes, not worst-case (mining type that the company to the
- Expectimax search: compute the experience score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Expectimax Pseudocode

```
def value(state):

if the state is a terminal state: return the state's utility

if the next agent is Troje return may palue(state)

if the next agent is EXP: return exp-value(state)

https://tutorcs.com
```

WeChat: cstutorcs

```
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, value(successor))
    return v
```

def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v

Expectimax Pseudocode

$$v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freewayssignment Project Exam Help
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavattps://tutorcs.com
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

WeChat: cstutorcs

- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

• The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes Assignment Project Exam Help

• Example: How long to getters: Meuairportom

WeCha^{2.0}cminores Time: 20 min

Probability: 0.250.50

60 min

0.25

35

What Probabilities to Use?

• In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state

• Model could be a simple uniform product a Examine)

• Model could be sophisticated and requirement deal of computation

- We have a chance node for any outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!

 For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should projecte Exam Help

https://tutorcs.com: Expectimax!

To figure out EACH chance node's WeChat: cstutprobabilities, you have to run a simulation of your opponent

- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types

Mixed Layer Types

• E.g. Backgammon

Expectiminimax

extra "random agent" player that moves after each min/max agent

 Each node computes the appropriate combination of its children

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Terminals have utility tupiesignment Project Exam Help

Node values are also utility tuples

• Each player maximizes its own tomponent or excom

 Can give rise to cooperation and competition dynamically...

Utilities

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility. Exam Help

• A rational agent should chose the action that maximizes its expected utility, given its knowledge /tutorcs.com

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging even makes sense?
 - What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

WeChat: cstutorcs

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Utilities

- Where do utilities come from? Chat: cstutorcs
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function

Utilities: Uncertain Outcomes

Preferences

 An agent must have preferences among:

• Prizes: *A*, *B*, etc.

- Frizes: A, D, etc.

Assignment Project Exam Help

Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p)_{https://tutores.com}]$$

WeChat: cstutorcs

• Preference: $A \succ B$

• Indifference: $A \sim B$

A Prize

A Lottery

Rationality

Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A > B) + (B > C) \Rightarrow (A > C)$

https://tutorcs.com

WeChat: cstutorcs

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

• Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

• Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

Usuch that:

$$U(A) \geq U(B) \Leftrightarrow A \succeq B$$
 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

We Chat: cstutorcs

• I.e. values assigned by U preserve preferences of both prizes and lotteries!

- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility

Human Utilities

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - Compare a prize A to assign dand lot to the tween Help
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe'httpvith/probabilityohp
 - Adjust lottery probability p until indifference: $A \sim L_p$ Resulting p is a utility in [0,4]eChat: cstutorcs

Human Utilities: Example

- •A person is given the choice between 2 scenarios:
 - Guaranteed scenario: the person receives \$50
 - Uncertain scenarios is a signification of the person receive \$100 or not.

 https://tutorcs.com
- Which choice would that person make?

Thanh H. Nguyen 10/19/20 (36)

Risk Aversion

- •Risk averse: would accept the guaranteed payment of (less than) \$50 rather than take the gamble

 Assignment Project Exam Help
- •Risk neutral: indifferent between the bet and the guaranteed \$50 paymentat: cstutorcs

•Risk seeking: would accept the bet even when the guaranteed payment is more than \$50

Thanh H. Nguyen 10/19/20

Prospect Theory: Utility Function

- Risk aversion: convexity
 - Risk averse regarding gain

Risk seeking regarding Signment Project Exam Help

https://tutorcs.com

Loss aversion

• Losses are felt more strong than gains stutores

Endowment effect

- We values things we own more highly
- Reference point: differentiate gains and loss

Positive Value

Source: https://www.economicshelp.org/blog/glossary/prospect-theory/