

苯并吡喃酮类化合物及其制备与应用

技术领域

本发明属农用杀虫、杀菌剂，具体地说是一种苯并吡喃酮类化合物及其制备与应用。

5

背景技术

天然产物苯并吡喃酮和甲氧基丙烯酸酯化合物均是已知的具有生物活性的化合物。文献 JP04-182461 曾公开了如下通式的化合物：

10

该专利中公开的化合物 51 的结构化学如下：

文献中没有公开该化合物的活性数据。然而通过合成并进行生测，发现该化合物活性较低。

15

发明内容

本发明的目的在于提供一种在很小的剂量下就可以控制各种病虫害的苯并吡喃酮类化合物，它可应用于农业上以防治作物的病害和虫害。

本发明的技术方案如下：

20 本发明提供一种苯并吡喃酮类化合物，如通式 (I) 所示：

式中：

A 选自 CH 或 N；

B 选自 O、S 或 NR₉, R₉ 选自氢或 C₁—C₁₂ 烷基;

R₁、R₂ 分别选自氢、C₁—C₁₂ 烷基或卤代 C₁—C₁₂ 烷基;

R₃ 选自氢、C₁—C₁₂ 烷基、卤代 C₁—C₁₂ 烷基或 C₁—C₁₂ 烷氧基;

R₄、R₅、R₆、R₇、R₈ 可相同或不同, 分别选自氢、卤素、氰基、硝基、C₁—C₁₂ 烷基、

C₂—C₁₂ 烯基、C₂—C₁₂ 炔基、C₁—C₁₂ 卤代烷基、C₁—C₁₂ 烷氧基、C₁—C₁₂ 烷硫基、C₁—C₁₂ 烷磺酰基、C₁—C₁₂ 烷基羰基、C₁—C₁₂ 烷氧基 C₁—C₁₂ 烷基、C₁—C₁₂ 烷氧基羰基、C₁—C₁₂ 烷氧基羰基 C₁—C₁₂ 烷基、C₁—C₁₂ 卤代烷氧基 C₁—C₁₂ 烷基或含有 0-2 个 C₁—C₁₂ 烷基取代的胺基 C₁—C₁₂ 烷基, 含有 0-3 个取代基的芳基、芳氧基、芳基 C₁—C₁₂ 烷基、芳基 C₁—C₁₂ 烷氧基、芳氧基 C₁—C₁₂ 烷基、芳基 C₁—C₁₂ 烷氧 C₁—C₁₂ 烷基、杂芳基、杂芳基 C₁—C₁₂ 烷基或杂芳基 C₁—C₁₂ 烷氧基, 其所述 0-3 个取代基选自卤素、硝基、C₁—C₆ 烷基、C₁—C₆ 卤代烷基、C₁—C₆ 烷氧基或 C₁—C₆ 烷基, 以及如下通式表示的基团:

其中: R₁₀、R₁₁ 分别选自氢、C₁—C₁₂ 烷基、芳基或芳基 C₁—C₁₂ 烷基; 当 R₃、R₄、R₅、R₆、R₇、R₈ 均为氢时, B 不为 NR₉;

及其立体异构体。

本发明中较为优选的化合物为: 通式 (I) 中

A 选自 CH 或 N;

B 选自 O、S 或 NR₉, R₉ 选自氢或 C₁—C₆ 烷基;

R₁、R₂ 分别选自氢、C₁—C₆ 烷基或卤代 C₁—C₆ 烷基;

R₃ 选自氢、C₁—C₆ 烷基、卤代 C₁—C₆ 烷基或 C₁—C₆ 烷氧基;

R₄、R₅、R₆、R₇、R₈ 可相同或不同, 分别选自氢、卤素、氰基、硝基、C₁—C₆ 烷基、C₂—C₆ 烯基、C₂—C₆ 炔基、C₁—C₆ 卤代烷基、C₁—C₆ 烷氧基、C₁—C₆ 烷硫基、C₁—C₆ 烷磺酰基、C₁—C₆ 烷基羰基、C₁—C₆ 烷氧基 C₁—C₆ 烷基、C₁—C₆ 烷氧基羰基、C₁—C₆ 烷氧基羰基 C₁—C₆ 烷基、C₁—C₆ 卤代烷氧基 C₁—C₆ 烷基或含有 0-2 个 C₁—C₁₂ 烷基取代的胺基 C₁—C₆ 烷基, 含有 0-3 个取代基的芳基、芳氧基、芳基 C₁—C₆ 烷基、芳基 C₁—C₆ 烷氧基、芳氧基 C₁—C₆ 烷基、芳基 C₁—C₆ 烷氧 C₁—C₆ 烷基、杂芳基、杂芳基 C₁—C₆ 烷基、杂芳基 C₁—C₆ 烷氧基, 其所述 0-3 个取代基可以选自卤素、硝基、C₁—C₂ 烷基、C₁—C₂ 卤代烷基、C₁—C₂ 烷氧基或 C₁—C₂ 烷基, 以及如下通式表示的基团:

其中: R₁₀、R₁₁ 分别选自氢、C₁—C₁₂ 烷基、芳基或芳基 C₁—C₆ 烷基; 当 R₃、R₄、R₅、R₆、R₇、R₈ 均为氢时, B 不为 NR₉。

本发明中进一步优选的化合物为: 通式 (I) 中

A 选自 CH 或 N;

B 选自 O 或 NH;

R₁、R₂ 分别选自甲基;

R₃ 选自氢或甲基;

R₄、R₅、R₆、R₇、R₈ 可相同或不同，分别选自氢、卤素、氟基、硝基、C₁—C₆ 烷基、

C₂—C₆ 烯基、C₁—C₆ 卤代烷基、C₁—C₆ 烷氧基、C₁—C₆ 烷基羰基、C₁—C₆ 烷氧基 C₁—C₆ 烷基、C₁—C₆ 烷氧基羰基、C₁—C₆ 烷氧基羰基 C₁—C₃ 烷基、C₁—C₃ 卤代烷氧基 C₁—C₃ 烷基或 0-2 个 C₁—C₃ 烷基取代的胺基 C₁—C₃ 烷基，可以被 0-2 个卤素、硝基、C₁—C₂ 烷基、C₁—C₂ 卤代烷基、C₁—C₂ 烷氧基或 C₁—C₂ 烷氧基 C₁—C₂ 烷基取代的苯基、苯氧基、苯基 C₁—C₂ 烷基、苯基 C₁—C₂ 烷氧基、苯氧基 C₁—C₂ 烷基、苄基、苄氧基或苄氧基 C₁—C₂ 烷基，以及如下通式表示的基团：

其中：R₁₀、R₁₁ 分别选自氢或 C₁—C₆ 烷基；当 R₃、R₄、R₅、R₆、R₇、R₈ 均为氢时，B 不为 NH。

本发明中更进一步优选的化合物为：通式 (I) 中

A 选自 CH 或 N;

B 选自 O 或 NH;

R₁、R₂ 选自甲基;

R₃ 选自氢或甲基;

R₄、R₅、R₆、R₇、R₈ 可相同或不同，分别选自氢、氯、溴、氟、氰基、C₁—C₆ 烷基、

C₁—C₆ 卤代烷基、C₁—C₆ 烷基羰基、C₁—C₆ 烷氧基、C₁—C₆ 烷氧基 C₁—C₃ 烷基、C₁—C₃ 卤代烷氧基 C₁—C₃ 烷基、0-2 个 C₁—C₃ 烷基取代的胺基 C₁—C₃ 烷基，可以被 0-2 个卤素、硝基、C₁—C₂ 烷基、C₁—C₂ 卤代烷基、C₁—C₂ 烷氧基或 C₁—C₂ 烷氧基 C₁—C₂ 烷基取代的苯基、苯氧基、苄基、苄氧基，以及如下通式表示的基团：

其中 R₁₀、R₁₁ 为甲基；当 R₃、R₄、R₅、R₆、R₇、R₈ 均为氢时，B 不为 NH。

以上给出的通式 (I) 化合物的定义中，汇集所用术语一般代表如下取代基：

卤：指氟、氯、溴或碘。

烷基：直链或支链烷基，例如甲基、乙基、丙基、异丙基或叔丁基。

卤代烷基：直链或支链烷基，在这些烷基上的氢原子可部分或全部被卤原子所取代，例如，卤代烷基诸如氯甲基、二氯甲基、三氯甲基、氟甲基、二氟甲基、三氟甲基。

烷氧基：直链或支链烷基，经氧原子键连接到结构上。

卤代烷氧基：直链或支链烷氧基，在这些烷氧基上的氢原子可部分或全部被卤原子所取代。例如，卤代烷氧基诸如氯甲氧基、二氯甲氧基、三氯甲氧基、氟甲氧基、二氟甲氧

基、三氟甲氧基、氯氟甲氧基、三氟乙氧基。

链烯基：直链或支链并可在任何位置上存在有双键，例如乙烯基、烯丙基。取代链烯基包括任意取代的芳基链烯基。

5 炔基：直链或支链并可在任何位置上存在有三键，例如乙炔基、炔丙基。取代炔基包括任意取代的芳炔基。

芳基以及芳烷基、芳基链烯基、芳炔基、芳氧基和芳氧基烷基中的芳基部分包括苯基和萘基。

苯基、苯氧基、苄基、苄氧基中可以含有的取代基为氢、烷基、烷氧基、卤代烷基、卤代烷氧基、卤素、硝基、氰基等，取代基的数目可为1~5。

10 本发明中所指杂芳基是含1个或多个N、O、S杂原子的5元环或6元环。例如呋喃、噻酚、吡咯、吡唑、咪唑、噻唑、三唑、吡啶、嘧啶、吡嗪、哒嗪、三嗪、喹啉、苯并呋喃。

在本发明的化合物中，由于碳-碳双键和碳-氮双键连接不同的取代基而可以形成几何异构体（分别以Z和E来表示不同的构型）。本发明包括Z型异构体和E型异构体及其任15何比例的混合物。

可以用下面表1中列出的化合物来说明本发明，但并不限于本发明。

(I)

其中 R₁、R₂=CH₃; E 为 C(CH₃)=NOCH₃; M 为 C₆H₃-3,4-(OCH₃)₂

20

表1

编号	A	B	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	物性*
1	CH	O	H	H	H	H	H	H	油状
2	CH	O	H	H	CH ₃	H	H	H	140~143
3	CH	O	H	H	CH ₃	H	H	CH ₃	188~190
4	CH	O	H	H	C ₆ H ₅	H	H	CH ₃	146~148
5	CH	O	H	CH ₃	CH ₃	H	H	H	120~122
6	CH	O	H	CH ₃	CH ₃	H	H	CH ₃	174~176
7	CH	O	H	H	CF ₃	H	H	H	164~166
8	CH	O	H	H	CH ₃	H	H	E	油状
9	CH	O	H	H	CH ₃	H	E	H	183~185

10	CH	O	H	H	CH ₃	H	COCH ₃	H	169~172
11	CH	O	H	H	CH ₃	H	H	COCH ₃	165~167
12	CH	O	H	Cl	CH ₃	H	H	H	162-164
13	CH	O	H	H	CH ₂ Cl	H	H	H	
14	CH	O	H	Cl	CH ₂ Cl	H	H	H	
15	CH	O	H	Cl	CH ₂ OCH ₃	H	H	H	
16	CH	O	H	Cl	CH ₂ CH ₃	H	H	H	
17	CH	O	H	H	CH ₂ CH ₃	H	H	CH ₃	154-156
18	CH	O	H	C ₂ H ₅	CH ₃	H	H	H	132-135
19	CH	O	H	H	CH ₂ OCH ₃	H	H	H	140-142
20	CH	O	H	H	CH ₂ OC ₂ H ₅	H	H	H	
21	CH	O	H	Cl	CH ₂ OC ₂ H ₅	H	H	H	
22	CH	O	H	OCH ₃	CH ₂ OCH ₃	H	H	H	
23	CH	O	H	N(CH ₃) ₂	CH ₃	H	H	H	
24	CH	O	H	CN	H	H	H	H	166-168
25	CH	O	H	Cl	CH ₃	H	H	CH ₃	202-204
26	CH	O	H	H	CH(CH ₃) ₂	H	H	H	128-130
27	CH	O	H	C ₃ H ₇	CH ₃	H	H	H	142-144
28	CH	O	H	H	t C ₄ - H ₉	H	H	H	
29	CH	O	H	H	4-Cl-C ₆ H ₄	H	H	H	149-152
30	CH	O	H	Cl	4-Cl-C ₆ H ₄	H	H	H	
31	CH	O	H	H	4-Cl-C ₆ H ₄	H	H	CH ₃	
32	CH	O	H	Cl	C ₆ H ₅	H	H	H	142-144
33	CH	O	H	H	CH ₂ CH ₃	H	H	H	134-136
34	CH	O	H	H	CH ₂ C ₂ H ₅	H	H	H	118-120
35	CH	O	H	H	CH ₂ C ₂ H ₅	H	H	CH ₃	146-148
36	CH	O	H	Cl	CH ₂ C ₂ H ₅	H	H	H	118-120
37	CH	O	H	CH ₃	CH ₂ C ₂ H ₅	H	H	H	112-115
38	CH	O	H	H	4-F-C ₆ H ₄	H	H	H	132-134
39	CH	O	H	Cl	4-F-C ₆ H ₄	H	H	H	
40	CH	O	H	H	4-F-C ₆ H ₄	H	H	CH ₃	
41	CH	O	H	H	4-CF ₃ -C ₆ H ₄	H	H	H	161-162
42	CH	O	H	Cl	4-CF ₃ -C ₆ H ₄	H	H	H	
43	CH	O	H	Cl	CH ₂ N(CH ₃) ₂	H	H	H	

44	CH	O	H	OCH ₃	C ₂ H ₅	H	H	H	
45	CH	O	H	OCH ₃	CH ₃	H	H	H	
46	CH	O	H	OC ₂ H ₅	CH ₃	H	H	H	
47	CH	O	H	H	CH ₂ OCH ₂ CF ₃	H	H	H	
48	CH	O	H	Cl	CH ₂ OCH ₂ CF ₃	H	H	H	
49	CH	O	H	F	CF ₃	H	H	H	
50	CH	O	H	F	CH ₃	H	H	H	163-164
51	CH	O	H	H	CH ₂ N(CH ₃) ₂	H	H	H	
52	CH	O	H	H	C ₆ H ₅	H	H	H	130-133
53	CH	O	H	Cl	Cl	H	H	H	
54	CH	O	H	F	Cl	H	H	H	
55	CH	O	H	H	CH ₂ OCH ₂ C ₆ H ₅	H	E	H	
56	CH	O	H	OCH ₃	4-Cl-C ₆ H ₄	H	H	H	
57	CH	O	H	F	4-Cl-C ₆ H ₄	H	H	H	
58	CH	O	H	H	M	H	H	H	81-83
59	CH	O	H	Cl	M	H	H	H	
60	CH	O	H	Cl	M	H	H	CH ₃	
61	CH	O	H	CH ₃ S	CH ₃	H	H	H	
62	CH	O	H	CH ₃ SO ₂	CH ₃	H	H	H	
63	CH	O	H	F	F	H	H	H	
64	CH	O	H	CH ₃ SO ₂	Cl	H	H	H	
65	CH	O	H	H	4-NO ₂ -C ₆ H ₄	H	H	H	
66	CH	O	H	Cl	4-NO ₂ -C ₆ H ₄	H	H	H	
67	CH	O	H	H	4-NO ₂ -C ₆ H ₄	H	H	CH ₃	
68	CH	O	H	PhCH ₂	CH ₃	H	H	H	159-162
69	CH	O	H	PhCH ₂	CH ₃	H	H	CH ₃	
70	CH	O	H	CF ₃ CH ₂ O	C ₃ H ₇	H	H	H	
71	CH	NH	H	CH ₃	CH ₃	H	H	H	
72	CH	NH	H	CH ₃	CH ₃	H	H	CH ₃	
73	CH	NH	H	OCH ₃	CF ₃	CH ₃	H	H	
74	CH	NH	H	OCH ₃	CH ₃	F	H	E	
75	CH	NH	H	H	CF ₃	H	H	CH ₃	
76	CH	NH	H	CH ₃	CH ₂ Cl	H	H	H	
77	CH	NH	H	CH ₃	CH ₂ Cl	H	H	CH ₃	

78	CH	NH	H	Cl	CH ₂ Cl	H	H	H	
79	CH	NH	H	H	M	Cl	H	E	
80	CH	NH	H	H	M	H	E	H	
81	CH	NH	H	H	M	H	COCH ₃	H	
82	CH	NH	H	H	M	H	H	COCH ₃	
83	CH	NH	H	Cl	CH ₂ OCH ₃	H	H	H	
84	CH	NH	H	H	4-C ₆ H ₅ Cl	H	H	H	
85	CH	NH	H	H	4-C ₆ H ₅ Cl	H	H	CH ₃	
86	CH	NH	H	H	CH ₂ OCH ₃	H	H	CH ₃	
87	CH	NH	H	CH ₃	CH ₂ OCH ₃	H	H	H	
88	CH	NH	H	CH ₃	CH ₂ OCH ₃	H	H	CH ₃	
89	CH	NH	H	H	CH ₂ OCH ₃	H	H	H	
90	CH	NH	H	H	CH ₂ OCH ₃	H	H	E	
91	CH	NH	H	H	CH ₂ OCH ₂ CF ₃	H	E	H	
92	CH	NH	H	H	CH ₂ N(CH ₃) ₂	H	H	H	
93	CH	NH	H	H	CH ₂ OCH ₂ CF ₃	H	H	COCH ₃	
94	CH	NH	H	Cl	CH ₂ OC ₂ H ₅	H	H	H	
95	CH	NH	H	H	CH ₂ OC ₂ H ₅	H	H	H	
96	CH	NH	H	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
97	CH	NH	H	H	CF ₃	H	H	CH ₃	
98	CH	NH	H	CH ₃	CF ₃	H	H	H	
99	CH	NH	H	CH ₃	Cl	H	H	CH ₃	
100	N	O	H	Cl	CH ₃	H	H	H	172~174
101	N	O	H	H	CH ₃	H	H	H	150~152
102	N	O	H	H	CH ₃	H	H	CH ₃	178~180
103	N	O	H	CH ₃	CH ₃	H	H	H	112~118
104	N	O	H	F	CH ₃	H	H	H	
105	N	O	H	H	CF ₃	H	H	Cl	
106	N	O	H	CH ₃	CH ₃	H	H	CH ₃	184~186
107	N	O	H	H	CH ₃	H	E	CO ₂ CH ₃	
108	N	O	H	H	CH ₃	H	COCH ₃	CO ₂ CH ₃	
109	N	O	H	Cl	CH ₃	H	H	CH ₃	198~200
110	N	O	H	H	CH ₂ Cl	H	H	CO ₂ CH ₃	
111	N	O	H	H	H	H	H	H	106~110

112	N	O	H	H	CH ₂ Cl	H	H	CF ₃	
113	N	O	H	H	3-CF ₃ -C ₆ H ₄	H	H	CF ₃	
114	N	O	H	CH ₃	3-CH ₃ -C ₆ H ₄	H	H	CF ₃	
115	N	O	H	CH ₃	4-CH ₃ -C ₆ H ₄	H	H	CF ₃	
116	N	O	H	H	CH ₂ Cl	H	H	H	
117	N	O	H	Cl	CH ₂ Cl	H	H	H	
118	N	O	H	Cl	CH ₂ F	H	H	H	
119	N	O	H	H	CH ₂ F	H	H	H	
120	N	O	H	H	CH ₂ Br	H	H	H	
121	N	O	H	H	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
122	N	O	H	Cl	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
123	N	O	H	CH ₃	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
124	N	O	H	H	CH ₂ OCH ₃	H	H	F	
125	N	O	H	CH ₃	CH ₂ OCH ₃	H	H	F	
126	N	O	H	CH ₃	CH ₂ OCH ₃	H	CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	
127	N	O	H	H	CH ₂ OCH ₃	H	H	H	
128	N	O	H	H	CH ₂ OCH ₃	H	H	E	
129	N	O	H	H	3-CF ₃ -C ₆ H ₄	H	E	H	
130	N	O	H	H	3-CH ₃ -C ₆ H ₄	H	COCH ₃	H	
131	N	O	H	H	4-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
132	N	O	H	Cl	CH ₂ OC ₂ H ₅	H	H	H	
133	N	O	H	H	CH ₂ OC ₂ H ₅	H	H	H	
134	N	O	H	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
135	N	O	H	H	3-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
136	N	O	H	CH ₃	4-OCH ₃ -C ₆ H ₄	H	H	H	
137	N	O	H	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
138	N	O	H	H	CH ₂ OC ₂ H ₅	H	H	Cl	
139	N	O	H	H	CH ₂ OC ₂ H ₅	H	H	E	
140	N	O	H	H	M	H	E	H	
141	N	O	H	H	3-CF ₃ -C ₆ H ₄	H	COCH ₃	H	
142	N	O	H	H	3-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
143	N	O	H	H	4-CH ₃ -C ₆ H ₄	H	H	H	
144	N	O	H	H	2-Cl-C ₆ H ₄	H	H	H	
145	N	O	H	H	3-Cl-C ₆ H ₄	H	H	CH ₃	

146	N	O	H	H	CH ₂ OCH ₂ CF ₃	H	H	CH ₃	
147	N	O	H	CH ₃	CH ₂ OCH ₂ CF ₃	H	H	H	
148	N	O	H	CH ₃	-CH ₂ OC ₆ H ₄	H	H	CH ₃	
149	N	O	H	H	-CH ₂ OC ₆ H ₄	H	H	H	
150	N	O	H	H	CH ₂ OCH ₂ C ₆ H ₄	H	H	E	
151	N	O	H	H	CH ₂ OCH ₂ C ₆ H ₄	H	E	H	
152	N	O	H	H	4-Cl-C ₆ H ₄	H	COCH ₃	H	
153	N	NH	H	H	CH ₃	H	H	H	210-214
154	N	NH	H	CH ₃	CH ₃	H	H	CH ₃	178~180
155	N	NH	H	H	2-Cl-C ₆ H ₄	H	H	CH ₃	
156	N	NH	H	CH ₃	3-Cl-C ₆ H ₄	H	H	H	
157	N	NH	H	CH ₃	4-Cl-C ₆ H ₄	H	H	CH ₃	
158	N	NH	H	Cl	CH ₂ Cl	H	H	H	
159	N	NH	H	Cl	CH ₃	H	H	H	
160	N	NH	H	H	3-CF ₃ -C ₆ H ₄	H	E	H	
161	N	NH	H	H	3-CH ₃ -C ₆ H ₄	H	COCH ₃	H	
162	N	NH	H	H	4-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
163	N	NH	H	H	CH ₂ OCH ₃	H	H	H	
164	N	NH	H	H	4-F-C ₆ H ₄	H	H	H	
165	N	NH	H	H	2-F-C ₆ H ₄	H	H	CH ₃	
166	N	NH	H	H	C ₆ H ₃ -3,5(Cl) ₂	H	H	CH ₃	
167	N	NH	H	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	H	
168	N	NH	H	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
169	N	NH	H	Cl	CH ₂ OCH ₃	H	H	H	
170	N	NH	H	H	CH ₂ OCH ₃	H	H	E	
171	N	NH	H	H	3,5(Cl) ₂ -C ₆ H ₃	H	E	H	
172	N	NH	H	H	2,4(Cl) ₂ -C ₆ H ₃	H	H	H	
173	N	NH	H	H	3,4(Cl) ₂ -C ₆ H ₃	H	H	H	
174	N	NH	H	Cl	CH ₂ OC ₂ H ₅	H	H	H	
175	N	NH	H	H	CH ₂ OC ₂ H ₅	H	H	H	
176	N	NH	H	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
177	N	NH	H	H	CF ₃	H	H	CH ₃	
178	N	NH	H	CH ₃	CF ₃	H	H	H	
179	N	NH	H	CH ₃	Cl	H	H	CH ₃	

180	N	NH	H	H	Cl	H	H	H	
181	N	NH	H	H	CH ₃	H	H	Cl	
182	N	NH	H	H	C ₆ H ₅	H	H	Cl	
183	N	NH	H	CH ₃	CH ₃	H	H	F	
184	N	NH	H	CH ₃	CH ₃	H	H	H	
185	N	NH	H	H	CF ₃	H	H	Cl	
186	N	NH	H	CH ₃	4-F-C ₆ H ₄	H	H	CH ₃	
187	N	NH	H	H	2-F-C ₆ H ₄	H	E	CO ₂ CH ₃	
188	N	NH	H	H	2-Cl-C ₆ H ₄	H	COCH ₃	CO ₂ CH ₃	
189	N	NH	H	H	3-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	
190	N	NH	H	H	4-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	
191	N	NH	H	H	CH ₂ Cl	H	CH ₃	H	
192	N	NH	H	H	CH ₂ Cl	H	CO ₂ C ₂ H ₅	CF ₃	
193	N	NH	H	H	CH ₂ Cl	H	H	CF ₃	
194	N	NH	H	CH ₃	M	H	CO ₂ C ₂ H ₅	CF ₃	
195	N	NH	H	CH ₃	CH ₂ Cl	H	H	CF ₃	
196	N	NH	H	H	CH ₂ Cl	H	H	H	
197	N	NH	H	H	CH ₂ Cl	H	H	E	
198	N	NH	H	H	CH ₂ Cl	H	E	H	
199	N	NH	H	H	CH ₂ Cl	H	COCH ₃	H	
200	N	NH	H	CH ₃	3,5-diCl-C ₆ H ₃	H	CO ₂ CH ₃	H	
201	CH	O	CH ₃	H	H	H	H	H	
202	CH	O	CH ₃	H	CH ₃	H	H	H	
203	CH	O	CH ₃	H	CH ₃	H	H	CH ₃	
204	CH	O	CH ₃	H	C ₆ H ₅	H	H	CH ₃	
205	CH	O	CH ₃	CH ₃	CH ₃	H	H	H	
206	CH	O	CH ₃	CH ₃	CH ₃	H	H	CH ₃	
207	CH	O	CH ₃	H	CF ₃	H	H	H	
208	CH	O	CH ₃	H	CH ₃	H	H	E	
209	CH	O	CH ₃	H	CH ₃	H	E	H	
210	CH	O	CH ₃	H	CH ₃	H	COCH ₃	H	
211	CH	O	CH ₃	H	CH ₃	H	H	COCH ₃	
212	CH	O	CH ₃	H	CH ₂ Cl	H	H	H	

213	CH	O	CH ₃	Cl	CH ₂ Cl	H	H	H	
214	CH	O	CH ₃	H	CH ₂ Cl	H	H	CF ₃	
215	CH	O	CH ₃	H	CH ₂ Cl	H	H	CH ₃	
216	CH	O	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	H	
217	CH	O	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	CH ₃	
218	CH	O	CH ₃	OCH ₃	CH ₂ Cl	H	H	H	
219	CH	O	CH ₃	H	CH ₂ Cl	H	H	E	
220	CH	O	CH ₃	H	CH ₂ Cl	H	E	H	
221	CH	O	CH ₃	H	CH ₂ Cl	H	COCH ₃	H	
222	CH	O	CH ₃	H	CH ₂ Cl	H	H	COCH ₃	
223	CH	O	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	H	
224	CH	O	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	H	H	
225	CH	O	CH ₃	Cl	CH ₂ OCH ₃	H	H	CH ₃	
226	CH	O	CH ₃	H	CH ₂ OCH ₃	H	H	CH ₃	
227	CH	O	CH ₃	CH ₃	3-CF ₃ -C ₆ H ₄	H	H	H	
228	CH	O	CH ₃	CH ₃	3-CH ₃ -C ₆ H ₄	H	H	CH ₃	
229	CH	O	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	H	H	
230	CH	O	CH ₃	H	2-Cl-C ₆ H ₄	H	H	E	
231	CH	O	CH ₃	H	3-Cl-C ₆ H ₄	H	E	H	
232	CH	O	CH ₃	H	CF ₃	H	COCH ₃	H	
233	CH	O	CH ₃	Cl	CH ₂ OCH ₃	H	H	COCH ₃	
234	CH	O	CH ₃	OCH ₃	CH ₂ OC ₂ H ₅	H	H	H	
235	CH	O	CH ₃	C ₂ H ₅	CH ₂ OC ₂ H ₅	H	CH ₃	H	
236	CH	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
237	CH	O	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	CO ₂ C ₂ H ₅	CH ₃	
238	CH	O	CH ₃	CH ₃	2-F-C ₆ H ₄	H	H	H	
239	CH	O	CH ₃	CH ₃	3-F-C ₆ H ₄	H	H	CH ₃	
240	CH	O	CH ₃	H	4-F-C ₆ H ₄	H	H	H	
241	CH	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	E	
242	CH	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	E	H	
243	CH	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	COCH ₃	H	
244	CH	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	COCH ₃	
245	CH	O	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	H	

246	CH	O	CH ₃	Cl	CH ₂ OCH ₂ CF ₃	H	H	H	
247	CH	O	CH ₃	H	CF ₃	H	H	CH ₃	
248	CH	O	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	CH ₃	
249	CH	O	CH ₃	CH ₃	CH ₂ OCH ₂ CF ₃	H	H	H	
250	CH	O	CH ₃	CH ₃	-CH ₂ OPh	H	H	CH ₃	
251	CH	O	CH ₃	H	-CH ₂ OPh	H	H	H	
252	CH	O	CH ₃	H	CH ₂ OCH ₂ Ph	H	H	E	
253	CH	O	CH ₃	H	CH ₂ OCH ₂ Ph	H	E	H	
254	CH	O	CH ₃	H	4-Cl-C ₆ H ₄	H	COCH ₃	H	
255	CH	O	CH ₃	H	4-Cl-C ₆ H ₄	H	H	COCH ₃	
256	CH	O	CH ₃	H	M	H	CO ₂ C ₂ H ₅	H	
257	CH	O	CH ₃	H	M	H	H	H	
258	CH	O	CH ₃	Cl	M	H	H	CH ₃	
259	CH	O	CH ₃	H	M	H	H	CH ₃	
260	CH	O	CH ₃	CH ₃	M	H	H	H	
261	CH	NH	CH ₃	Cl	H	H	H	H	
262	CH	NH	CH ₃	Cl	CH ₃	H	H	H	
263	CH	NH	CH ₃	H	CH ₃	H	H	CH ₃	
264	CH	NH	CH ₃	H	C ₆ H ₅	H	H	CH ₃	
265	CH	NH	CH ₃	CH ₃	CH ₃	H	H	H	
266	CH	NH	CH ₃	CH ₃	CH ₃	H	H	CH ₃	
267	CH	NH	CH ₃	OCH ₃	CF ₃	H	H	H	
268	CH	NH	CH ₃	OCH ₃	CH ₃	H	H	E	
269	CH	NH	CH ₃	H	CH ₃	H	E	H	
270	CH	NH	CH ₃	H	CH ₃	H	COCH ₃	H	
271	CH	NH	CH ₃	H	CH ₃	H	H	COCH ₃	
272	CH	NH	CH ₃	H	CH ₂ Cl	H	H	H	
273	CH	NH	CH ₃	H	M	H	H	H	
274	CH	NH	CH ₃	H	CH ₂ Cl	H	H	CH ₃	
275	CH	NH	CH ₃	H	CF ₃	H	H	CH ₃	
276	CH	NH	CH ₃	CH ₃	CH ₂ Cl	H	H	H	
277	CH	NH	CH ₃	CH ₃	CH ₂ Cl	H	H	CH ₃	
278	CH	NH	CH ₃	Cl	CH ₂ Cl	H	H	H	
279	CH	NH	CH ₃	H	M	H	H	E	

280	CH	NH	CH ₃	H	M	H	E	H	
281	CH	NH	CH ₃	H	M	H	COCH ₃	H	
282	CH	NH	CH ₃	H	M	H	H	COCH ₃	
283	CH	NH	CH ₃	Cl	CH ₂ OCH ₃	H	H	H	
284	CH	NH	CH ₃	H	4-C ₆ H ₅ Cl	H	H	H	
285	CH	NH	CH ₃	H	4-C ₆ H ₅ Cl	H	H	CH ₃	
286	CH	NH	CH ₃	H	CH ₂ OCH ₃	H	H	CH ₃	
287	CH	NH	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	H	
288	CH	NH	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	CH ₃	
289	CH	NH	CH ₃	H	CH ₂ OCH ₃	H	H	H	
290	CH	NH	CH ₃	H	CH ₂ OCH ₃	H	H	E	
291	CH	NH	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	E	H	
292	CH	NH	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	COCH ₃	H	
293	CH	NH	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	COCH ₃	
294	CH	NH	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	H	H	
295	CH	NH	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	H	
296	CH	NH	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
297	CH	NH	CH ₃	H	CF ₃	H	H	CH ₃	
298	CH	NH	CH ₃	CH ₃	CF ₃	H	H	H	
299	CH	NH	CH ₃	CH ₃	Cl	H	H	CH ₃	
300	CH	NH	CH ₃	H	Cl	H	H	H	
301	N	O	CH ₃	H	CH ₃	H	H	H	
302	N	O	CH ₃	H	C ₆ H ₅	H	H	Cl	
303	N	O	CH ₃	CH ₃	CH ₃	H	H	H	
304	N	O	CH ₃	CH ₃	CH ₃	H	H	H	
305	N	O	CH ₃	H	CF ₃	H	H	Cl	
306	N	O	CH ₃	CH ₃	CH ₃	H	H	CH ₃	
307	N	O	CH ₃	H	CH ₃	H	E	CO ₂ CH ₃	
308	N	O	CH ₃	H	CH ₃	H	COCH ₃	CO ₂ CH ₃	
309	N	O	CH ₃	H	CH ₃	H	H	CO ₂ CH ₃	
310	N	O	CH ₃	H	CH ₂ Cl	H	H	CO ₂ CH ₃	
311	N	O	CH ₃	H	H	H	H	H	
312	N	O	CH ₃	H	CH ₂ Cl	H	H	CF ₃	
313	N	O	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	H	CF ₃	

314	N	O	CH ₃	CH ₃	3-CH ₃ -C ₆ H ₄	H	H	CF ₃	
315	N	O	CH ₃	CH ₃	4-CH ₃ -C ₆ H ₄	H	H	CF ₃	
316	N	O	CH ₃	H	CH ₂ Cl	H	H	H	
317	N	O	CH ₃	H	CH ₂ Cl	H	H	E	
318	N	O	CH ₃	H	CH ₂ Cl	H	E	H	
319	N	O	CH ₃	H	CH ₂ Cl	H	COCH ₃	H	
320	N	O	CH ₃	H	CH ₂ Cl	H	H	COCH ₃	
321	N	O	CH ₃	H	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
322	N	O	CH ₃	Cl	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
323	N	O	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
324	N	O	CH ₃	H	CH ₂ OCH ₃	H	H	F	
325	N	O	CH ₃	CH ₃	CH ₂ OCH ₃	H	H	F	
326	N	O	CH ₃	CH ₃	CH ₂ OCH ₃	H	CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	
327	N	O	CH ₃	H	CH ₂ OCH ₃	H	H	H	
328	N	O	CH ₃	H	CH ₂ OCH ₃	H	H	E	
329	N	O	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	E	H	
330	N	O	CH ₃	H	3-CH ₃ -C ₆ H ₄	H	COCH ₃	H	
331	N	O	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
332	N	O	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	H	H	
333	N	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	H	
334	N	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
335	N	O	CH ₃	H	3-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
336	N	O	CH ₃	CH ₃	4-OCH ₃ -C ₆ H ₄	H	H	H	
337	N	O	CH ₃	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
338	N	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	Cl	
339	N	O	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	E	
340	N	O	CH ₃	H	M	H	E	H	
341	N	O	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	COCH ₃	H	
342	N	O	CH ₃	H	3-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
343	N	O	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	H	H	
344	N	O	CH ₃	H	2-Cl-C ₆ H ₄	H	H	H	
345	N	O	CH ₃	H	3-Cl-C ₆ H ₄	H	H	CH ₃	
346	N	O	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	CH ₃	

347	N	O	CH ₃	CH ₃	CH ₂ OCH ₂ CF ₃	H	H	H	
348	N	O	CH ₃	CH ₃	-CH ₂ OPh	H	H	CH ₃	
349	N	O	CH ₃	H	-CH ₂ OPh	H	H	H	
350	N	O	CH ₃	H	CH ₂ OCH ₂ Ph	H	H	E	
351	N	O	CH ₃	H	CH ₂ OCH ₂ Ph	H	E	H	
352	N	O	CH ₃	H	4-Cl-C ₆ H ₄	H	COCH ₃	H	
353	N	NH	CH ₃	H	CH ₃	H	H	H	
354	N	NH	CH ₃	CH ₃	CH ₃	H	H	CH ₃	
355	N	NH	CH ₃	H	2-Cl-C ₆ H ₄	H	H	CH ₃	
356	N	NH	CH ₃	CH ₃	3-Cl-C ₆ H ₄	H	H	H	
357	N	NH	CH ₃	CH ₃	4-Cl-C ₆ H ₄	H	H	CH ₃	
358	N	NH	CH ₃	H	CH ₂ Cl	H	H	H	
359	N	NH	CH ₃	H	M	H	H	E	
360	N	NH	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	E	H	
361	N	NH	CH ₃	H	3-CH ₃ -C ₆ H ₄	H	COCH ₃	H	
362	N	NH	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
363	N	NH	CH ₃	H	CH ₂ OCH ₃	H	H	H	
364	N	NH	CH ₃	H	4-F-C ₆ H ₄	H	H	H	
365	N	NH	CH ₃	H	2-F-C ₆ H ₄	H	H	CH ₃	
366	N	NH	CH ₃	H	C ₆ H ₃ -3,5(Cl) ₂	H	H	CH ₃	
367	N	NH	CH ₃	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	H	
368	N	NH	CH ₃	CH ₃	2-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
369	N	NH	CH ₃	Cl	CH ₂ OCH ₃	H	H	H	
370	N	NH	CH ₃	H	CH ₂ OCH ₃	H	H	E	
371	N	NH	CH ₃	H	C ₆ H ₃ -3,5(Cl) ₂	H	E	H	
372	N	NH	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	COCH ₃	H	
373	N	NH	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	COCH ₃	
374	N	NH	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	H	H	
375	N	NH	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	H	
376	N	NH	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
377	N	NH	CH ₃	H	CF ₃	H	H	CH ₃	
378	N	NH	CH ₃	CH ₃	CF ₃	H	H	H	
379	N	NH	CH ₃	CH ₃	Cl	H	H	CH ₃	
380	N	NH	CH ₃	H	Cl	H	H	H	

381	N	NH	CH ₃	H	CH ₃	H	H	Cl	
382	N	NH	CH ₃	H	C ₆ H ₅	H	H	Cl	
383	N	NH	CH ₃	CH ₃	CH ₃	H	H	F	
384	N	NH	CH ₃	CH ₃	CH ₃	H	H	H	
385	N	NH	CH ₃	H	CF ₃	H	H	Cl	
386	N	NH	CH ₃	CH ₃	4-F-C ₆ H ₄	H	H	CH ₃	
387	N	NH	CH ₃	H	2-F-C ₆ H ₄	H	E	CO ₂ CH ₃	
388	N	NH	CH ₃	H	2-Cl-C ₆ H ₄	H	COCH ₃	CO ₂ CH ₃	
389	N	NH	CH ₃	H	3-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	
390	N	NH	CH ₃	H	4-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	
391	N	NH	CH ₃	H	CH ₂ Cl	H	CH ₃	H	
392	N	NH	CH ₃	H	CH ₂ Cl	H	CO ₂ C ₂ H ₅	CF ₃	
393	N	NH	CH ₃	H	CH ₂ Cl	H	H	CF ₃	
394	N	NH	CH ₃	CH ₃	M	H	CO ₂ C ₂ H ₅	CF ₃	
395	N	NH	CH ₃	CH ₃	CH ₂ Cl	H	H	CF ₃	
396	N	NH	CH ₃	H	CH ₂ Cl	H	H	H	
397	N	NH	CH ₃	H	CH ₂ Cl	H	H	E	
398	N	NH	CH ₃	H	CH ₂ Cl	H	E	H	
399	N	NH	CH ₃	H	CH ₂ Cl	H	COCH ₃	H	
400	N	NH	CH ₃	CH ₃	3,5-diCl-C ₆ H ₃	H	CO ₂ CH ₃	H	
401	CH	O	H	i-C ₃ H ₇	CH ₃	H	H	H	油
402	CH	O	H	n-C ₄ H ₉	CH ₃	H	H	H	117-118
403	CH	O	H	n-C ₅ H ₁₁	CH ₃	H	H	H	
404	CH	O	H	C ₂ H ₄ -i-Pr	CH ₃	H	H	H	油
405	CH	O	H	n-C ₆ H ₁₃	CH ₃	H	H	H	113-115
406	CH	O	H	H	n-C ₄ H ₉	H	H	H	
407	CH	O	H	H	n-C ₅ H ₁₁	H	H	H	
408	CH	O	H	H	CH(CH ₃) ₂	H	H	CH ₃	110-112
409	CH	O	H	n-C ₃ H ₇	n-C ₃ H ₇	H	H	H	112-114
410	N	O	H	Cl	n-C ₃ H ₇	H	H	H	136-138
411	N	O	H	Cl	C ₆ H ₅	H	H	H	166-168
412	N	O	H	n-C ₃ H ₇	CH ₃	H	H	H	121-122
413	N	O	H	n-C ₄ H ₉	CH ₃	H	H	H	100-102
414	N	O	H	n-C ₆ H ₁₃	CH ₃	H	H	H	75-78

415	CH	O	H	CH ₃	n-C ₄ H ₉	H	H	H	
416	CH	O	H	C ₂ H ₅	n-C ₄ H ₉	H	H	H	
417	CH	O	H	C ₃ H ₇	n-C ₄ H ₉	H	H	H	
418	CH	O	H	i-C ₃ H ₇	n-C ₄ H ₉	H	H	H	
419	CH	O	H	n-C ₄ H ₉	n-C ₄ H ₉	H	H	H	
420	CH	O	H	CH ₃	n-C ₅ H ₁₁	H	H	H	
421	CH	O	H	C ₂ H ₅	n-C ₅ H ₁₁	H	H	H	
422	CH	O	H	C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
423	CH	O	H	i-C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
424	CH	O	H	n-C ₄ H ₉	n-C ₅ H ₁₁	H	H	H	
425	CH	O	H	H	n-C ₆ H ₁₃	H	H	H	
426	CH	O	H	CH ₃	n-C ₆ H ₁₃	H	H	H	
427	CH	O	H	C ₂ H ₅	n-C ₆ H ₁₃	H	H	H	
428	CH	O	H	C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
429	CH	O	H	i-C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
430	CH	O	H	n-C ₄ H ₉	n-C ₆ H ₁₃	H	H	H	
431	N	O	H	CH ₃	n-C ₄ H ₉	H	H	H	
432	N	O	H	C ₂ H ₅	n-C ₄ H ₉	H	H	H	
433	N	O	H	C ₃ H ₇	n-C ₄ H ₉	H	H	H	
434	N	O	H	i-C ₃ H ₇	n-C ₄ H ₉	H	H	H	
435	N	O	H	n-C ₄ H ₉	n-C ₄ H ₉	H	H	H	
436	N	O	H	CH ₃	n-C ₅ H ₁₁	H	H	H	
437	N	O	H	C ₂ H ₅	n-C ₅ H ₁₁	H	H	H	
438	N	O	H	C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
439	N	O	H	i-C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
440	N	O	H	n-C ₄ H ₉	n-C ₅ H ₁₁	H	H	H	
441	N	O	H	H	n-C ₆ H ₁₃	H	H	H	
442	N	O	H	CH ₃	n-C ₆ H ₁₃	H	H	H	
443	N	O	H	C ₂ H ₅	n-C ₆ H ₁₃	H	H	H	
444	N	O	H	C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
445	N	O	H	i-C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
446	N	O	H	n-C ₄ H ₉	n-C ₆ H ₁₃	H	H	H	
447	N	NH	H	CH ₃	n-C ₄ H ₉	H	H	H	
448	N	NH	H	C ₂ H ₅	n-C ₄ H ₉	H	H	H	

449	N	NH	H	C ₃ H ₇	n-C ₄ H ₉	H	H	H	
450	N	NH	H	i-C ₃ H ₇	n-C ₄ H ₉	H	H	H	
451	N	NH	H	n-C ₄ H ₉	n-C ₄ H ₉	H	H	H	
452	N	NH	H	CH ₃	n-C ₅ H ₁₁	H	H	H	
453	N	NH	H	C ₂ H ₅	n-C ₅ H ₁₁	H	H	H	
454	N	NH	H	C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
455	N	NH	H	i-C ₃ H ₇	n-C ₅ H ₁₁	H	H	H	
456	N	NH	H	n-C ₄ H ₉	n-C ₅ H ₁₁	H	H	H	
457	N	NH	H	H	n-C ₆ H ₁₃	H	H	H	
458	N	NH	H	CH ₃	n-C ₆ H ₁₃	H	H	H	
459	N	NH	H	C ₂ H ₅	n-C ₆ H ₁₃	H	H	H	
460	N	NH	H	C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
461	N	NH	H	i-C ₃ H ₇	n-C ₆ H ₁₃	H	H	H	
462	N	NH	H	n-C ₄ H ₉	n-C ₆ H ₁₃	H	H	H	
463	CH	O	H	H	CH ₂ -Ph-4-Cl	H	H	H	
464	CH	O	H	CH ₃	CH ₂ -Ph-4-Cl	H	H	H	
465	CH	O	H	C ₂ H ₅	CH ₂ -Ph-4-Cl	H	H	H	
466	CH	O	H	CH ₂ -Ph-4-Cl	CH ₃	H	H	H	
467	CH	O	H	CH ₂ -Ph-4-Cl	C ₂ H ₅	H	H	H	
468	CH	O	H	CH ₂ -Ph-4-Cl	C ₃ H ₇	H	H	H	
469	CH	O	H	CH ₃	CF ₃	H	H	H	
470	CH	O	H	Cl	CF ₃	H	H	H	
471	CH	O	H	C ₂ H ₅	CF ₃	H	H	H	
472	CH	O	H	n-C ₃ H ₇	CF ₃	H	H	H	
473	CH	O	H	n-C ₄ H ₉	CF ₃	H	H	H	
474	CH	O	H	H	CH ₂ CH ₂ -Ph -4-Cl	H	H	H	
475	CH	O	H	CH ₃		H	H	H	
476	CH	O	H	H	CH ₂ Bu-t	H	H	H	
477	CH	O	H	CH ₃	CH ₂ Bu-t	H	H	H	
478	CH	O	H	n-C ₃ H ₇	CH ₂ Bu-t	H	H	H	
479	CH	O	H	CH ₂ Bu-t	CH ₃	H	H	H	
480	CH	O	H	CH ₂ CH ₂ -Ph -4-Cl	CH ₃	H	H	H	
481	CH	O	H		C ₂ H ₅	H	H	H	
482	CH	O	H		C ₃ H ₇	H	H	H	

483	CH	O	H	CO ₂ CH ₃	CH ₃	H	H	H	
484	CH	O	H	CO ₂ CH ₃	CF ₃	H	H	H	
485	CH	O	H	CO ₂ C ₂ H ₅	C ₂ H ₅	H	H	H	
486	CH	O	H	CO ₂ C ₂ H ₅	n-C ₃ H ₇	H	H	H	
487	CH	O	H	CONHCH ₃	CH ₃	H	H	H	
488	CH	O	H	CONHC ₂ H ₅	CH ₃	H	H	H	
489	CH	O	H	CON(CH ₃) ₂	CH ₃	H	H	H	
490	CH	O	H	CH ₃	CO ₂ CH ₃	H	H	H	

* 表中数字表示熔点，单位为 °C。

本发明还提供了通式 (I) 所示的苯并吡喃酮类化合物及其立体异构体的制备方法：

由式 (II) 所示的苄卤和式 (III) 所示的含羟基的苯并吡喃酮类化合物在碱性条件下通过反应式 1 所示的步骤来制备。

5 反应式 1:

其中：Z 是离去基团，如卤素（氯、溴或碘）。

R₁、R₂、R₃、R₄、R₅、R₆、R₇、R₈、A、B 各基团的定义同上。

通式 (I) 化合物的制备条件：在适当的溶剂中，用适当的碱处理通式 (III) 所示的羟基苯并吡喃酮类化合物形成盐，然后加入式 (II) 的化合物，在适当的温度下进行反应。10 反应完成之后，以常规方法处理即得目的产物。

所说的适当的溶剂可选自如四氢呋喃、乙腈、甲苯、二甲苯、苯、N,N 二甲基甲酰胺、二甲亚砜、丙酮或丁酮等。

15 所说的适当的碱可选自如氢氧化钾、氢氧化钠、碳酸钠、碳酸钾、碳酸氢钠、三乙胺、吡啶或氢化钠等。

所说的适当的温度指室温至溶剂沸点温度，通常为 20~100°C。

反应可在 30 分钟至 20 小时内完成，通常 1~10 小时。反应终点可用薄层色谱 (TLC) 法控制。

通式 (II) 所示的化合物可以由已知方法制得, 见 USP4723034、USP5554578。

通式 (III) 所示的羟基苯并吡喃酮类化合物, 部分有市售, 也可以按照 Journal of Medicinal Chemistry, 2001, 44 (5), 664-671 中报道的方法, 由 $R_5COCHR_4CO_2CH_3$ (C_2H_5) 与取代的间苯二酚制得, 并且可以不经纯化直接用于制备目的产物。合成的通式 (III) 所示的部分羟基苯并吡喃酮类化合物见表 2:

表 2

通式(III) 化合物	R_4	R_5	R_6	R_7	R_8	物性*
III-1	H	CH ₃	H	H	COCH ₃	158-160
III-2	H	CH ₃	H	H	C(=NOMe)CH ₃	129-140
III-3	H	CH ₃	H	H	CO ₂ CH ₃	219-222
III-4	H	CH ₃	H	H	CH ₃	256-258
III-5	Cl	CH ₃	H	H	H	230-234
III-6	H	CF ₃	H	H	H	180-183
III-7	C ₆ H ₅ CH ₂	CH ₃	H	H	H	208-212
III-8	H	4-F-C ₆ H ₄	H	H	H	256-262
III-9	H	3,4-(OMe) ₂ C ₆ H ₄	H	H	H	184-188
III-10	F	CH ₃	H	H	H	203-206
III-11	H	C ₆ H ₅	H	H	H	240-242
III-12	H	C ₆ H ₅	H	H	CH ₃	260-262
III-13	Cl	C ₆ H ₅	H	H	H	188-190
III-14	CH ₃	CH ₃	H	H	H	118-120
III-15	CH ₃	CH ₃	H	H	CH ₃	218-222
III-16	Cl	n-C ₃ H ₇	H	H	CH ₃	176-178
III-17	Cl	n-C ₃ H ₇	H	H	H	148-150
III-18	H	i-C ₃ H ₇	H	H	CH ₃	160-162
III-19	n-C ₆ H ₁₃	CH ₃	H	H	H	170-172
III-20	i-C ₃ H ₇ CH ₂ CH ₂	CH ₃	H	H	H	101-102
III-21	n-C ₄ H ₉	CH ₃	H	H	H	134-136
III-22	n-C ₃ H ₇	CH ₃	H	H	H	142-144
III-23	H	CH ₂ OCH ₃	H	H	H	186-190

*表中数字表示熔点, 单位为 °C。

通式 (V) 和 (VII) 的化合物可以分别由通式 (IV) 和 (VI) 与甲胺水溶液反应而很容易地获得:

本发明还提供了一种杀虫杀菌组合物，该组合物中活性组分为通式(I)的化合物；组合物中的活性组分的重量百分含量为0.1-99%，余量为农业上可接受的载体。

本发明还提供了如上所定义的组合物的制备方法：将通式(I)的化合物与载体混合。这种组合物可以含本发明的单一化合物或几种化合物的混合物。

本发明组合物中的载体体系满足下述条件的物质：它与活性成分配制后便于施用于待处理的位点，例如可以是植物、种子或土壤；或者有利于贮存、运输或操作。载体可以是固体或液体，包括通常为气体但已压缩成液体的物质，通常在配制杀虫、杀菌组合物中所用的载体均可使用。

合适的固体载体包括天然和合成的粘土和硅酸盐，例如硅藻土、滑石、硅镁土、硅酸铝（高岭土）、蒙脱石和云母；碳酸钙；硫酸钙；硫酸铵；合成的氧化硅和合成硅酸钙或硅酸铝；元素如碳和硫；天然的或合成的树脂如苯并呋喃树脂，聚氯乙烯和苯乙烯聚合物或共聚物；固体多氯苯酚；沥青；蜡如蜂蜡或石蜡。

合适的液体载体包括水；醇如异丙醇或乙醇；酮如丙酮、甲基乙基酮、甲基异丙基酮或环己基酮；醚；芳烃如苯、甲苯、二甲苯；石油馏分如煤油或矿物油；氯代烃如四氯化碳、全氯乙烯或三氯乙烯。通常，这些液体的混合物也是合适的。

杀虫杀菌组合物通常加工成浓缩物的形式并以此用于运输，在施用之前由使用者将其稀释。少量表面活性剂的存在有助于稀释过程。这样，本发明的组合物中至少有一种载体优选是表面活性剂。例如组合物可含有至少两种载体，其中至少一种是表面活性剂。

表面活性剂可以是乳化剂、分散剂或润湿剂；它可以是非离子的或离子的表面活性剂。合适的表面活性剂的例子包括聚丙烯酸和木质素磺酸的钠盐或钙盐；分子中含至少12个碳原子的脂肪酸或脂肪胺或酰胺与环氧乙烷和/或环氧丙烷的缩合物。甘醇、山梨醇、蔗糖或季戊四醇脂肪酸酯及这些酯与环氧乙烷和/或环氧丙烷的缩合物；脂肪醇或烷基苯酚如对辛基苯酚或对辛基甲苯酚与环氧乙烷和/或环氧丙烷的缩合物；这些缩合产物的硫酸盐和磺酸盐；在分子中至少含有10个碳原子的硫酸或磺酸酯的碱金属或碱土金属盐，优选钠盐，例如硫酸月桂酸酯钠，硫酸仲烷基酯钠，磺化蓖麻油钠盐，磺酸烷基芳基酯钠，如十二烷基苯磺酸钠盐。

本发明的组合物的实例是可湿性粉剂、粉剂、颗粒剂和溶液，可乳化的浓缩剂、乳剂、悬浮浓缩剂、气雾剂和烟雾剂。可湿性粉剂通常含25, 50或75%重量活性成分，且通常

除固体惰性载体之外，还含有 3-10%重量的分散剂，且若需要可加入 0-10%重量的稳定剂和/或其它添加剂如渗透剂或粘着剂。粉剂通常可成型为具有与可湿性粉剂相似的组成但没有分散剂的粉剂浓缩剂，再进一步用固体载体稀释，得到通常含 0.5-10%重量活性组分的组合物。粒剂通常制备成具有 10 至 100 目 (1.676-0.152mm) 大小，且可用成团或注入技术制备。通常粒剂含 0.5-75%重量的活性成分和 0-10%重量的添加剂如稳定剂、表面活性剂、缓释改良剂。所谓的“可流动干粉”由具有相对高浓度活性成分的相对小的颗粒组成。可乳化浓缩剂除溶剂外，当需要时通常含有共溶剂，1-50%W/V 活性成分，2-20%W/V 乳化剂和 0-20%W/V 其他添加剂如稳定剂、渗透剂和腐蚀抑制剂。悬浮浓缩剂通常含有 10-75%重量的活性成分、0.5-15%重量的分散剂、0.1-10%重量的其它添加剂如消泡剂、腐蚀抑制剂、稳定剂、渗透剂和粘着剂。

水分散剂和乳剂，例如通过用水稀释按照本发明的可湿性粉剂或浓缩物得到的组合物，也列入本发明范围。所说的乳剂可具有油包水或水包油两种类型。

通过在组合物中加入其他的一种或多种杀菌剂，使其能比单独的通式(I)化合物具有更广谱的活性。此外，其他杀菌剂可对通式(I)化合物的杀菌活性具有增效作用。也可将通式(I)化合物与其他杀虫剂混用，或同时与另一种杀菌剂以及其他杀虫剂混用。

本发明具有如下优点：

本发明的化合物具有很好的杀虫活性，可用于防治各种作物上害虫。例如可用于防治粘虫、小菜蛾、蚜虫、朱砂叶螨、二斑叶螨、瓢虫、害螨以及淡色库蚊。尤其对瓢虫和淡色库蚊有特效，特别适合于对害虫的综合防治。

本发明的化合物同时具有广谱的杀菌活性，可用于防治在各种作物上由卵菌纲、担子菌纲、子囊菌和半知菌类等多种病菌引起的病害，而且由于这些化合物具有很高的生物活性使得在很低的剂量下就可以获得很好的效果。它们具有内吸活性并可用作叶面和土壤杀菌剂，可应用在防治各种作物上的病害，特别适合于防治下列植物病害：葡萄霜霉病、水稻纹枯病、水稻稻瘟病、番茄早疫病、番茄晚疫病、小麦锈病、小麦叶斑病、小麦白粉病、黄瓜白粉病、黄瓜霜霉病、黄瓜灰霉病等。

具体实施方式

以下具体的实例来进一步说明本发明。

合成实施例

30 实例 1：化合物 1 的制备方法

在室温下，将 0.84 克 60%的氢化钠加入反应瓶中，用石油醚洗涤后，向其中加入 30 毫升干燥的 N,N 二甲基甲酰胺，搅拌反应半小时，向其中加入 1.7 克 7-羟基香豆素，继续搅拌至无气体放出，加入 3 克(E)-2-[2-(溴甲基)苯基]-3-甲氧基丙烯酸甲酯，继续搅拌 3 小时。将反应混合物倒入冰水中，乙酸乙酯萃取 3 次，合并萃取液，用饱和食盐水洗 3 次，35 干燥，过滤，减压浓缩，得油状液体 5 克。柱层析得到标题化合物 2.8 克，为浅红黄色油

状物，收率 76.5%。

核磁数据 (^1H NMR, 300MHz, 内标 TMS, 溶剂 CDCl_3): δ ppm 3.69 (3H, s), 3.88 (3H, s), 5.04 (2H, s), 6.19-6.23 (1H, d), 6.77 (1H, s), 6.83-6.87 (1H, d), 7.18-7.20 (1H, m), 7.26-7.34 (4H, m), 7.48-7.64 (2H, m)。

5 实例 2：化合物 2 的制备

在室温下，将 0.45 克 60% 的氢化钠加入反应瓶中，用石油醚洗涤后，向其中加入 20 毫升干燥的 N,N 二甲基甲酰胺，搅拌反应半小时，向其中加入 1.0 克 7-羟基-4-甲基香豆素，继续搅拌至无气体放出，加入 1.66 克(*E*-2-[2-(氯甲基)苯基]-3-甲氧基丙烯酸甲酯，继续搅拌 3 小时。将反应混合物倒入冰水中，乙酸乙酯萃取 3 次，合并萃取液，用饱和食盐水洗 3 次，干燥，过滤，减压浓缩，得黄色固体为粗产品。用乙酸乙酯和石油醚的混合液 (1: 2) 柱层析得到标题化合物 1.73 克，熔点 140-143°C。收率 80%。

核磁数据 (^1H NMR, 300MHz, 内标 TMS, 溶剂 CDCl_3): δ ppm 2.38(3H,s), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.11(1H,s), 6.77(1H,s), 6.85-6.89(1H,d), 7.17-7.20(1H,m), 7.32-7.35(2H,m), 7.49-7.52(2H,m), 7.64(1H,s)。

15 实例 3：化合物 101 的制备

在室温下，将含有 1.2 克无水碳酸钾、1.0 克 7-羟基-4-甲基香豆素、1.70 克 2-溴甲基- α -(甲氧亚胺基) 苯乙酸甲酯于 20 毫升丁酮的混合液加热回流搅拌反应 5 小时，将反应混合物倒入冰水中，乙酸乙酯萃取 3 次，合并萃取液，饱和食盐水洗 3 次，干燥，过滤，减压浓缩，得黄色固体为粗产品。用乙酸乙酯和石油醚的混合液 (1: 2) 柱层析得到标题化合物 1.77 克，熔点 150-152°C。收率 83%。

核磁数据 (^1H NMR, 300MHz, 内标 TMS, 溶剂 CDCl_3): δ ppm 2.39(3H,s), 3.87(3H,s), 4.05(3H,s), 5.02(2H,s), 6.13(1H,s), 6.80-6.86(2H,m), 7.23-7.26(1H,m), 7.43-7.49(4H,m)。

实例 4：化合物 153 的制备

将 0.27 克化合物 101 与两倍摩尔比的甲胺在 30 毫升甲醇中室温搅拌过夜，浓缩后用乙酸乙酯萃取 2 次，合并的提取物用水洗涤 3 次，再用饱和食盐水洗 2 次，干燥，过滤，浓缩，得标题化合物 0.24 克，熔点 210-214°C。收率 89%。

核磁数据 (^1H NMR, 300MHz, 内标 TMS, 溶剂 CDCl_3): δ ppm 2.38(3H,s), 2.91-2.93(3H,d), 3.97(3H,s), 5.02(2H,s), 6.13(1H,s), 6.82-6.87(3H,m), 7.23(1H,d), 7.39-7.50(4H,m)。

30 其他化合物参照上述方法合成。

其他部分化合物的核磁数据 (^1H NMR, 300MHz, 内标 TMS, 溶剂 CDCl_3) 如下：

化合物 3: δ ppm 2.36(3H,s), 2.37(3H,s), 3.72(3H,s), 3.84(3H,s), 5.09(2H,s), 6.13(1H,s), 6.75-6.78(1H,d), 7.18-7.21(1H,m), 7.34-7.36(3H,m), 7.50-7.52(1H,m), 7.61(1H,s)。

合 物 4: δ ppm 2.41(3H,s), 3.69(3H,s), 3.81(3H,s), 5.08(2H,s), 6.20(1H,s),

35 6.68-6.71(1H,d), 7.18-7.21(4H,m), 7.32-7.50(5H,m), 7.59(1H,s), 7.92(1H,m)。

化合物 5: δ ppm 2.17(3H,s), 2.35(3H,s), 3.73(3H,s), 3.88(3H,s), 5.02(2H,s), 6.78(1H,s), 6.83-6.85(1H,d), 7.31-7.34(3H,m), 7.45-7.47(2H,d), 7.62(1H,s)。

化合物 6: δ ppm 2.32(3H,s), 2.31-2.36(6H,d), 3.69(3H,s), 3.84(3H,s), 5.07(2H,s), 6.74-6.77(1H,d), 7.17-7.20(1H,m), 7.31-7.36(3H,m), 7.51-7.54(1H,m), 7.61(1H,s)。

5 化合物 12: δ ppm 2.53(3H,s), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.78(1H,s), 6.83-6.85(1H,d), 7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.47-7.50(2H,d), 7.64(1H,s)。

化合物 17: δ ppm 1.25-1.32(3H,m), 2.36(3H,s), 2.74-2.76(2H,m), 3.71(3H,s), 3.84(3H,s), 5.08(2H,s), 6.15(1H,s), 6.75-6.78(1H,d), 7.18-7.21(1H,m), 7.33-7.38(3H,m), 7.50-7.54(1H,m), 7.61(1H,s)。

10 化合物 18: δ ppm 1.10-1.15(3H,t), 2.37(3H,s), 2.60-2.68(2H,q), 3.74(3H,s), 3.89(3H,s), 5.03(2H,s), 6.76(1H,d), 6.84-6.88(1H,dd), 7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.45-7.53(2H,m), 7.63(1H,s)。

15 化合物 19: δ ppm 3.48(3H,s), 3.74(3H,s), 3.89(3H,s), 4.56(2H,s), 5.04(2H,s), 6.34(1H,s), 6.79(1H,d), 6.84-6.88(1H,dd), 7.18-7.21(1H,m), 7.30-7.36(2H,m), 7.41-7.44(1H,d), 7.48-7.51(1H,m), 7.64(1H,s)。

化合物 24: δ ppm 3.72(3H,s), 3.92(3H,s), 5.10(2H,s), 6.78(1H,s), 6.94-7.21(1H,d), 7.22(1H,m), 7.33-7.35(2H,m), 7.36-7.45(2H,m), 7.66(1H,s), 8.13(1H,s)。

化合物 25: δ ppm 2.36(3H,d), 2.62(3H,d), 3.71(3H,s), 3.84(3H,s), 5.09(2H,s), 6.82(1H,d), 7.19-7.21(1H,m), 7.33-7.35(3H,m), 7.36-7.37(1H,m), 7.61(1H,s)。

20 化合物 26: δ ppm 1.25-1.30(6H,m), 3.20-3.23(1H,m), 3.74(3H,s), 3.91(3H,s), 5.04(2H,s), 6.15(1H,s), 6.790-6.799(1H,d), 6.80-6.90(1H,m), 7.18-7.23(1H,m), 7.32-7.37(2H,m), 7.48-7.57(2H,m), 7.64(1H,s)。

化合物 27: δ ppm 0.95-1.00(3H,t), 1.58(2H,m), 2.36(3H,s), 2.58(2H,t), 3.73(3H,s), 3.89(3H,s), 5.02(2H,s), 6.75(1H,d), 6.84-6.88(1H,dd), 7.18(1H,m), 7.31-7.34(1H,m), 25 7.47-7.51(2H,m), 7.63(1H,s)。

化合物 29: δ ppm 3.74(3H,s), 3.90(3H,s), 5.06(2H,s), 6.17(1H,s), 6.80-6.85(2H,m), 7.24-7.26(1H,m), 7.28-7.35(5H,m), 7.38-7.51(3H,m), 7.66(1H,s)。

化合物 32: δ ppm 3.73(3H,s), 3.90(3H,s), 5.05(2H,s), 6.75-6.78(1H,dd), 6.84-6.85(1H,d), 6.94-6.98(1H,d), 7.19-7.21(1H,m), 7.30-7.35(4H,m), 7.53-7.55(4H,m), 30 7.65(1H,s)。

化合物 33: δ ppm 1.27-1.32(3H,m), 2.74-2.77(2H,m), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.13(1H,s), 6.78-6.79(1H,d), 6.85-6.89(1H,m), 7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.48-7.52(2H,m), 7.64(1H,s)。

化合物 34: δ ppm 0.90-1.03(3H,m), 1.67-1.72(2H,m), 2.65-2.70(2H,m), 3.73(3H,s), 35 3.89(3H,s), 5.04(2H,s), 6.10(1H,s), 6.78-6.79(1H,d), 6.85-6.89(1H,m), 7.19-7.21(1H,m),

7.33-7.35(2H,m), 7.47-7.51(2H,m), 7.64(1H,s)。

化合物 35: δ ppm 1.00-1.25(3H,m), 1.69-1.72(2H,m), 2.36(3H,s), 2.65-2.70(2H,m), 3.71(3H,s), 3.84(3H,s), 5.08(2H,s), 6.12(1H,s), 6.75-6.78(1H,d), 7.21-7.26(1H,m), 7.33-7.38(3H,m), 7.50-7.53(1H,m), 7.61(1H,s)。

化合物 36: δ ppm 0.97(3H,t), 1.66(2H,m), 2.67(3H,s), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.78(1H,d), 6.85-6.88(1H,dd), 7.22(1H,m), 7.33-7.35(2H,m), 7.46-7.49(2H,m), 7.64(1H,s)。

化合物 37: δ ppm 1.05(3H,m), 1.57-1.64(2H,m), 2.16(3H,s), 2.71-2.76(2H,t), 3.70(3H,s), 3.83(3H,s), 5.02(2H,s), 6.78(1H,d), 6.87(1H,m), 7.20(1H,m), 7.32(2H,m), 7.45(2H,m), 7.64(1H,s)。

化合物 38: δ ppm(DMSO- d_6) 3.65(3H,s), 3.88(3H,s), 5.03(2H,s), 6.15(1H,s), 6.83-6.87(1H,dd), 6.91(1H,d), 7.09-7.17(2H,m), 7.23-7.35(4H,m), 7.43-7.46(1H,m), 7.51-7.55(2H,m), 7.66(1H,s)。

化合物 41: δ ppm 3.74(3H,s), 3.91(3H,s), 5.06(2H,s), 6.20(1H,s), 6.86(2H,m), 7.22(2H,m), 7.33-7.36(2H,m), 7.56(3H,m), 7.66(1H,s), 7.77(2H,d)。

化合物 50: δ ppm 2.34(3H,s), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.78-6.79(1H,d), 6.92-6.96(1H,dd), 7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.41-7.44(1H,d), 7.48-7.51(1H,m), 7.65(1H,s)。

化合物 52: δ ppm 3.74(3H,s), 3.90(3H,s), 5.06(2H,s), 6.20(1H,s), 6.80-6.86(1H,m), 7.18-7.22(1H,m), 7.32-7.37(4H,m), 7.41-7.44(2H,m), 7.50-7.52(4H,m), 7.65(1H,s)。

化合物 58: δ ppm 3.74(3H,s), 3.91(6H,d), 3.96(3H,s), 5.06(2H,s), 6.19(1H,s), 6.81-6.82(1H,m), 6.85(1H,s), 6.93-7.04(3H,m), 7.19-7.22(1H,m), 7.33-7.36(2H,m), 7.44-7.52(2H,m), 7.66(1H,s)。

化合物 68: δ ppm(DMSO- d_6) 2.49(3H,s), 3.66(3H,s), 3.89(3H,s), 3.92(2H,s), 5.00(2H,s), 6.78-6.79(1H,d), 6.85-6.89(1H,dd), 7.10-7.22(6H,m), 7.26-7.29(2H,m), 7.42(1H,m), 7.61-7.66(2H,m)。

化合物 100: δ ppm 2.54(3H,s), 3.87(3H,s), 4.04(3H,s), 5.02(2H,s), 6.81-6.85(1H,s), 7.26(1H,d), 7.43-7.52(5H,m)。

化合物 102: δ ppm 2.32(3H,s), 2.37(3H,s), 3.84(3H,s), 4.03(3H,s), 5.05(2H,s), 6.13(1H,s), 6.76-6.79(1H,d), 7.26(1H,d), 7.34-7.43(3H,m), 7.45-7.46(1H,d)。

化合物 103: δ ppm 2.18(3H,s), 2.37(3H,s), 3.91(3H,s), 3.98(3H,s), 5.35(2H,s), 6.85(1H,s), 6.86-6.88(1H,d), 7.26-7.40(3H,m), 7.49-7.52(1H,d), 7.62-7.65(1H,d)。

化合物 104: δ ppm 2.17(3H,s), 2.35(3H,s), 3.86(3H,s), 4.04(3H,s), 5.00(2H,s), 6.78-6.85(2H,m), 7.20-7.25(1H,d), 7.40-7.61(4H,m)。

化合物 109: δ ppm 2.91-2.93(3H,d), 3.97(3H,s), 5.02(2H,s), 6.23-6.26(1H,d),

6.82-6.86(3H,m), 7.20-7.23(1H,m), 7.34-7.37(1H,d), 7.39-7.45(2H,m), 7.50-7.53(1H,m),
7.61-7.64(1H,d)。

化合物 111: δ ppm 3.87(3H,s), 4.05(3H,s), 5.02(2H,s), 6.23-6.26(1H,d),
6.79-6.85(2H,m), 7.21(1H,d), 7.34-7.37(1H,d), 7.41-7.45(2H,m), 7.47-7.53(1H,m),
7.61-7.64(1H,d)。

化合物 401: δ ppm 1.32-1.36(6H,m), 2.39(3H,s), 3.27(1H,m), 3.74(3H,s), 3.89(3H,s),
5.03(2H,s), 6.72-6.73(1H,d), 6.83-6.87(1H,dd), 7.17-7.20(1H,m), 7.31-7.34(2H,m),
7.46-7.52(2H,m), 7.63(1H,s)。

化合物 402: δ ppm 0.93(3H,m), 1.45(4H,m), 2.35(3H,s), 2.60(2H,t), 3.74(3H,s),
3.89(3H,s), 5.04(2H,s), 6.78(1H,d), 6.84-6.85(1H,m), 7.18-7.20(1H,m), 7.30-7.35(2H,m),
7.45-7.50(2H,d), 7.64(1H,s)。

化合物 404: δ ppm 1.25(6H,m), 1.39(2H,m), 1.63(1H,m), 2.39(3H,s), 2.62(2H,t),
3.72(3H,s), 3.86(3H,s), 5.01(2H,s), 6.78(1H,d), 6.84(1H,m), 7.20(1H,m), 7.32(2H,m),
7.45(2H,d), 7.64(1H,s)。

化合物 405: δ ppm 0.88(3H,t), 1.42-1.52(8H,m), 2.38(3H,s), 2.64(2H,t), 3.72(3H,s),
3.86(3H,s), 5.01(2H,s), 6.78(1H,d), 6.84(1H,m), 7.20(1H,m), 7.32(2H,m), 7.45(2H,d),
7.64(1H,s)。

化合物 408: δ ppm 2.37(3H,s), 3.2-3.6(1H,m), 3.72(3H,s), 3.85(3H,s), 5.09(2H,s),
6.18(1H,s), 6.76-6.79(1H,d), 7.18-7.21(1H,m), 7.34-7.43(3H,m), 7.51-7.54(1H,m), 7.68(1H,5)。

化合物 409: δ ppm 0.96-1.03(6H,m), 1.58-1.63(4H,m), 2.71-2.79(4H,m), 3.72(3H,s),
3.85(3H,s), 5.00(2H,s), 6.79(1H,d), 6.87(1H,m), 7.19(1H,m), 7.32(2H,m), 7.45(2H,m),
7.64(1H,s)。

化合物 410: δ ppm 0.86-0.88(3H,m), 1.68-1.75(2H,m), 2.66-2.71(2H,m), 3.87(3H,s),
4.05(3H,s), 5.02(2H,s), 6.80-6.92(3H,m), 7.21-7.26(1H,d), 7.39-7.69(3H,m)。

化合物 411: δ ppm 3.87(3H,s), 4.05(3H,s), 5.02(2H,s), 6.73-6.77(1H,m),
6.87-6.88(1H,d), 6.97-7.00(1H,d), 7.21-7.24(1H,m), 7.28-7.32(2H,m), 7.42-7.57(6H,m)。

化合物 412: δ ppm 0.94(3H,t), 1.46(2H,m), 2.35(3H,s), 2.60(2H,t), 3.74(3H,s),
3.89(3H,s), 5.04(2H,s), 6.78(1H,d), 6.84(1H,m), 7.20(1H,m), 7.32(2H,m), 7.42-7.45(2H,d),
7.64(1H,s)。

化合物 413: δ ppm 0.94(3H,m), 1.45(4H,m), 2.36(3H,s), 2.60(2H,t), 3.86(3H,s),
4.05(3H,s), 5.00(2H,s), 6.78(1H,d), 6.84(1H,m), 7.20(1H,m), 7.38-7.45(4H,m)。

化合物 414: δ ppm 0.88(3H,m), 1.48-1.65(8H,m), 2.36(3H,s), 2.62(2H,t), 3.86(3H,s),
4.05(3H,s), 5.00(2H,s), 6.85(1H,m), 6.84(1H,m), 7.20(1H,m), 7.39-7.45(4H,m)。

制剂实施例 (配方中各组分均为重量百分含量)

实例 5 60%可湿性粉剂

化合物 6	60%
十二烷基萘磺酸钠	2%
木质素磺酸钠	9%
高岭土	补足至 100%

5 各组分（均为固体）混合在一起，在粉碎机中粉碎，直到颗粒达到标准。

实例 6 35% 乳油

化合物 1	35%
亚磷酸	10%
乙氧基化甘油三酸酯	15%

10 环己酮 补足至 100%

亚磷酸溶解在环己酮中，然后加入化合物 1 和乙氧基化甘油三酸酯，得到透明的溶液。

实例 7 30% 水悬浮剂

化合物 25	30%
十二烷基萘磺酸钠	4%
半纤维素	2%
环氧丙烷	8%
水	补足至 100%

将化合物 25 与 80% 的应加入水量以及十二烷基萘磺酸钠在球磨机中（1mm 珠）中一起粉碎。其它组分溶解在其余的水中，然后搅拌加入其它组分。

20 实例 8 25% 悬浮乳剂

化合物 12	25%
十二烷基醇聚乙二醇磷酸酯（乳化剂 1）	4%
乙氧基甘油三酸酯（乳化剂 2）	2%
十二烷基苯磺酸钙（乳化剂 3）	1.5%
25 环氧甲乙烷环氧丙烷共聚物（分散剂）	2.5%
环己酮（溶剂 1）	30%

烷基芳基馏分（沸点>200°C）（溶剂 2） 补足至 100%

化合物 12 溶解在 80% 应加入的溶剂量中，再加入乳化剂和分散剂，将混合物彻底搅拌。混合物在球磨机（1mm 珠）中粉碎，然后加入其余的溶剂。

30 生物活性测定

实例 9 杀菌活性测定

用本发明化合物对植物的各种菌病害进行了试验。试验的程序如下：

将植物试材进行盆栽。待测化合物原药用少量 N,N-二甲基甲酰胺溶解，用水稀释至所需的浓度。喷雾施药到植物试材上，24 小时后进行病害接种。接种后，将植物放在恒温 35 恒湿培养箱中，使感染继续，待对照充分发病后(通常为一周时间)进行评估调查。

部分测试结果如下：

200ppm 时，对黄瓜霜霉病防效为 100% 的有化合物 1, 2, 4, 5, 6, 12, 18, 19, 25, 26, 33, 34, 35, 37, 50, 52, 58, 69, 109, 402, 405, 409, 410, 413, 414 等；防效大于 95% 的有化合物 3, 24, 36, 38, 153, 411 等。

5 200ppm 时，对黄瓜灰霉病防效为 100% 的有化合物 2, 6, 18, 50, 58, 100, 402 等；防效大于 75% 的有化合物 6, 101, 102, 103, 106, 412 等。

200ppm 时，对葡萄霜霉病防效为 100% 的有化合物 6, 7, 10 等；防效大于 85% 的有化合物 8, 106, 154 等。

200ppm 时，对水稻纹枯病防效大于 85% 的有化合物 3, 101 等。

10 200ppm 时，对水稻稻瘟病防效大于 85% 的有化合物 6, 8, 10 等。

200ppm 时，对小麦白粉病防效为 100% 有化合物 402, 412, 413, 等；大于 70% 的有化合物 9, 101, 111, 410 等。

200ppm 时，对小麦锈病病防效为 100% 的有化合物 6 等；防效大于 95% 的有化合物 7, 10 等；防效大于 75% 的有化合物 8, 154 等。

15 200ppm 时，对小麦叶斑病防效大于 90% 的有化合物 6 等；防效大于 80% 的有化合物 7, 8, 9, 10, 11, 154 等。

200ppm 时，对番茄早疫病防效为 100% 的有化合物 6, 7 等；防效大于 90% 的有化合物 8, 10 等；防效大于 75% 的有化合物 11 等。

200ppm 时，对番茄晚疫病防效大于 95% 的有化合物 6 等；防效大于 75% 的有化合物 20 10 等。

200ppm 时，对玉米小斑病防效大于 95% 的有化合物 5, 6 等。

部分化合物与文献 JP04-182461 报道化合物 JP51 防治黄瓜霜霉病活性比较结果见表 3。

表 3 防治黄瓜霜霉病活性比较试验 (50ppm)

化合物	1	2	5	6	12	26	37	52	402	405	409	414	JP51
防效 (%)	100	100	100	100	100	100	100	100	100	100	100	100	20

25 实例 10 杀虫杀螨活性测定

取一定数量的三龄幼虫放入饲养盆中，以经过药物处理的玉米叶饲养。施药方法为波特喷雾。喷药量为 1mL，喷雾压力为 13.5 磅/平方英寸。

调查及结果统计：

药液浓度为 10ppm 时，化合物 2、5、6 等对供试靶标淡色库蚊死亡率达 100%。

30 药液浓度为 600ppm 时，化合物 5、6 还对粘虫、小菜蛾、桃蚜的也显示相当的活性，大于 50%。

药液浓度为 300ppm 时，化合物 7、9、10 对供试靶标墨西哥瓢虫死亡率达 100%；化合物 7 还对二斑叶螨显示相当的活性，大于 50%。

权 利 要 求 书

1、一种苯并吡喃酮类化合物，如通式（I）所示：

5

式中：

A 选自 CH 或 N；

B 选自 O、S 或 NR₉，R₉选自氢或C₁—C₁₂烷基；

R₁、R₂分别选自氢、C₁—C₁₂烷基或卤代C₁—C₁₂烷基；

R₃选自氢、C₁—C₁₂烷基、卤代C₁—C₁₂烷基或C₁—C₁₂烷氧基；

10 R₄、R₅、R₆、R₇、R₈可相同或不同，分别选自氢、卤素、氰基、硝基、C₁—C₁₂烷基、C₂—C₁₂烯基、C₂—C₁₂炔基、C₁—C₁₂卤代烷基、C₁—C₁₂烷氧基、C₁—C₁₂烷硫基、C₁—C₁₂烷磺酰基、C₁—C₁₂烷基羰基、C₁—C₁₂烷氧基 C₁—C₁₂烷基、C₁—C₁₂烷氧基羰基、C₁—C₁₂烷基取代的羧基 C₁—C₁₂烷基，含有0-3个取代基的芳基、芳氧基、芳基 C₁—C₁₂烷基、芳基 C₁—C₁₂烷氧基、芳氧基 C₁—C₁₂烷基、芳基 C₁—C₁₂烷氧 C₁—C₁₂烷基、杂芳基、杂芳基 C₁—C₁₂烷基或杂芳基 C₁—C₁₂烷氧基，其所述0-3个取代基选自卤素、硝基、C₁—C₆烷基、C₁—C₆卤代烷基、C₁—C₆烷氧基或 C₁—C₆烷氧基 C₁—C₆烷基，以及如下通式表示的基团：

其中：R₁₀、R₁₁分别选自氢、C₁—C₁₂烷基、芳基或芳基 C₁—C₁₂烷基；当R₃、R₄、R₅、R₆、R₇、R₈均为氢时，B不为NR₉；
20 及其立体异构体。

2、根据权利要求1所述的化合物，其特征在于：通式（I）中

A 选自 CH 或 N；

B 选自 O、S 或 NR₉，R₉选自氢或C₁—C₆烷基；

25 R₁、R₂分别选自氢、C₁—C₆烷基或卤代C₁—C₆烷基；

R₃选自氢、C₁—C₆烷基、卤代C₁—C₆烷基或C₁—C₆烷氧基；

R₄、R₅、R₆、R₇、R₈可相同或不同，分别选自氢、卤素、氰基、硝基、C₁—C₆烷基、C₂—C₆烯基、C₂—C₆炔基、C₁—C₆卤代烷基、C₁—C₆烷氧基、C₁—C₆烷硫基、C₁—C₆烷磺酰基、C₁—C₆烷基羰基、C₁—C₆烷氧基 C₁—C₆烷基、C₁—C₆烷氧基羰基、C₁—C₆烷氧

基羰基 C_1-C_6 烷基、 C_1-C_6 卤代烷氧基 C_1-C_6 烷基或含有 0-2 个 C_1-C_{12} 烷基取代的胺基 C_1-C_6 烷基，含有 0-3 个取代基的芳基、芳氧基、芳基 C_1-C_6 烷基、芳基 C_1-C_6 烷氧基、芳氧基 C_1-C_6 烷基、芳基 C_1-C_6 烷氧基 C_1-C_6 烷基、杂芳基、杂芳基 C_1-C_6 烷基、杂芳基 C_1-C_6 烷氧基，其所述 0-3 个取代基可以选自卤素、硝基、 C_1-C_2 烷基、 C_1-C_2 卤代烷基、 C_1-C_2 烷氧基或 C_1-C_2 烷氧基 C_1-C_2 烷基，以及如下通式表示的基团：

其中： R_{10} 、 R_{11} 分别选自氢、 C_1-C_{12} 烷基、芳基或芳基 C_1-C_6 烷基；当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时，B 不为 NR_9 。

3、根据权利要求 2 所述的化合物，其特征在于：通式（I）中

A 选自 CH 或 N；

B 选自 O 或 NH；

R_1 、 R_2 分别选自甲基；

R_3 选自氢或甲基；

R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同，分别选自氢、卤素、氟基、硝基、 C_1-C_6 烷基、

C_2-C_6 烯基、 C_1-C_6 卤代烷基、 C_1-C_6 烷氧基、 C_1-C_6 烷基羰基、 C_1-C_6 烷氧基 C_1-C_6 烷基、 C_1-C_6 烷氧基羰基、 C_1-C_6 烷氧基羰基 C_1-C_3 烷基、 C_1-C_3 卤代烷氧基 C_1-C_3 烷基或 0-2 个 C_1-C_3 烷基取代的胺基 C_1-C_3 烷基，可以被 0-2 个卤素、硝基、 C_1-C_2 烷基、 C_1-C_2 卤代烷基、 C_1-C_2 烷氧基或 C_1-C_2 烷氧基 C_1-C_2 烷基取代的苯基、苯氧基、苯基 C_1-C_2 烷基、苯基 C_1-C_2 烷氧基、苯氧基 C_1-C_2 烷基、苄基、苄氧基或苄氧基 C_1-C_2 烷基，以及如下通式表示的基团：

其中： R_{10} 、 R_{11} 分别选自氢或 C_1-C_6 烷基；当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时，B 不为 NH。

4、根据权利要求 3 所述的化合物，其特征在于：通式（I）中

A 选自 CH 或 N；

B 选自 O 或 NH；

R_1 、 R_2 选自甲基；

R_3 选自氢或甲基；

R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同，分别选自氢、氯、溴、氟、氟基、 C_1-C_6 烷基、

C_1-C_6 卤代烷基、 C_1-C_6 烷基羰基、 C_1-C_6 烷氧基、 C_1-C_6 烷氧基 C_1-C_3 烷基、 C_1-C_3 卤代烷氧基 C_1-C_3 烷基、0-2 个 C_1-C_3 烷基取代的胺基 C_1-C_3 烷基，可以被 0-2 个卤素、硝基、 C_1-C_2 烷基、 C_1-C_2 卤代烷基、 C_1-C_2 烷氧基或 C_1-C_2 烷氧基 C_1-C_2 烷基取代的苯基、苯氧基、苄基、苄氧基，以及如下通式表示的基团：

其中 R_{10} 、 R_{11} 为甲基；当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时，B 不为 NH 。

5、一种苯并吡喃酮类化合物的制备方法，其特征在于：通式(I)的化合物由式(II)所示的苄卤和式(III)所示的含羟基的苯并吡喃酮类化合物在碱性条件下反应制得：

(II),

(III),

其中：

Z 是离去基团，选自氯或溴；

A 选自 CH 或 N；

B 选自 O、S 或 NR_9 ， R_9 选自氢或 $C_1—C_{12}$ 烷基；

10 R_1 、 R_2 分别选自氢、 $C_1—C_{12}$ 烷基或卤代 $C_1—C_{12}$ 烷基；

R_3 选自氢、 $C_1—C_{12}$ 烷基、卤代 $C_1—C_{12}$ 烷基或 $C_1—C_{12}$ 烷氧基；

15 R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同，分别选自氢、卤素、氰基、硝基、 $C_1—C_{12}$ 烷基、 $C_2—C_{12}$ 烯基、 $C_2—C_{12}$ 炔基、 $C_1—C_{12}$ 卤代烷基、 $C_1—C_{12}$ 烷氧基、 $C_1—C_{12}$ 烷硫基、 $C_1—C_{12}$ 烷磺酰基、 $C_1—C_{12}$ 烷基羰基、 $C_1—C_{12}$ 烷氧基 $C_1—C_{12}$ 烷基、 $C_1—C_{12}$ 烷氧基羰基、 $C_1—C_{12}$ 烷氧基羰基 $C_1—C_{12}$ 烷基、 $C_1—C_{12}$ 卤代烷氧基 $C_1—C_{12}$ 烷基或含有 0-2 个 $C_1—C_{12}$ 烷基取代的胺基 $C_1—C_{12}$ 烷基，含有 0-3 个取代基的芳基、芳氧基、芳基 $C_1—C_{12}$ 烷基、芳基 $C_1—C_{12}$ 烷氧基、芳氧基 $C_1—C_{12}$ 烷基、芳基 $C_1—C_{12}$ 烷氧基、杂芳基、杂芳基 $C_1—C_{12}$ 烷基或杂芳基 $C_1—C_{12}$ 烷氧基，其所述 0-3 个取代基选自卤素、硝基、 $C_1—C_2$ 烷基、 $C_1—C_2$ 卤代烷基、 $C_1—C_2$ 烷氧基或 $C_1—C_2$ 烷硫基 $C_1—C_2$ 烷基，以及如下通式表示的基团：

20 其中： R_{10} 、 R_{11} 分别选自氢、 $C_1—C_{12}$ 烷基、芳基或芳基 $C_1—C_{12}$ 烷基；当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时，B 不为 NR_9 。

6、一种根据权利要求 1 所述的苯并吡喃酮类化合物在防治作物上害虫的应用。

7、一种根据权利要求 1 所述的苯并吡喃酮类化合物在防治作物上病菌的应用。

25 8、一种杀虫杀菌组合物，其特征在于：活性组分为权利要求 1 所述的苯并吡喃酮类化合物；组合物中的活性组分的重量百分含量为 0.1-99%。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2004/001255

A. CLASSIFICATION OF SUBJECT MATTER

C07D311/08 A01N43/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 C07D A61N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC, WPI, PAJ, CPRS, CNKI, CA, STN

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2897789 B (SHIONOGI & CO LTD) 31.May 1999 (31-05-1999) P4, P14 compound 51 and P16	1-5, 7-8
A	US 4372970 A (HADLER M R et al) 8.Feb 1983 (08-02-1983)	1-8
A	Full documents WO 198288 A1 (BAYER AG et al) 27.Dec 2001 (27-12-2001) Full documents	1-8

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 04.Feb 2005 (04.02.2005)	Date of mailing of the international search report 03 11 2005 (03.11.2005)
Name and mailing address of the ISA/CN 6, Xitucheng Rd., Jimen Bridge, Haidian District, 100088, Beijing, China Facsimile No. 86-10-62019451	Authorized officer LI Yan Telephone No. 86-10-62085610

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/CN2004/001255

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 2897789 B	31-05-1999	-----	-----
US 4372970 A	08-02-1983	EP 0029360 A WO 8101408 A DK 8103046 A JP 57500147 T BR 8009055 A	27-05-1981 28-05-1981 28-12-1981 28-01-1982 09-03-1982
WO 0198288 A1	27-12-2001	US 2004102516 A1 DE 10030094 A1 AU 200170560 A EP 1303505 A1 BR 200112063 A KR 2003031494 A CN 1443181 A JP 2004501144 T	27-05-2004 20-12-2001 02-01-2002 23-04-2003 13-05-2003 21-04-2003 17-09-2003 15-01-2004

国际检索报告	国际申请号 PCT/CN2004/001255												
A. 主题的分类 C07D311/08 A01N43/16 按照国际专利分类表(IPC)或者同时按照国家分类和 IPC 两种分类													
B. 检索领域 检索的最低限度文献(标明分类系统和分类号) IPC7 C07D A61N													
包含在检索领域中的除最低限度文献以外的检索文献													
在国际检索时查阅的电子数据库(数据库的名称, 和使用的检索词(如使用)) EPODOC, WPI, PAJ, CPRS, CNKI, CA, STN													
C. 相关文件 <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">类 型*</th> <th style="width: 80%;">引用文件, 必要时, 指明相关段落</th> <th style="width: 10%;">相关的权利要求</th> </tr> </thead> <tbody> <tr> <td>X</td> <td>JP 2897789 B (SHIONOGI & CO LTD) 31.5 月 1999 (31-05-1999) 第 4 页反应式 A、第 14 页化合物 51 和第 16 页</td> <td>1-5, 7-8</td> </tr> <tr> <td>A</td> <td>US 4372970 A (HADLER M R et al) 8.2 月 1983 (08-02-1983) 全文</td> <td>1-8</td> </tr> <tr> <td>A</td> <td>WO 0198288 A1 (BAYER AG et al) 27.12 月 2001 (27-12-2001) 全文</td> <td>1-8</td> </tr> </tbody> </table>		类 型*	引用文件, 必要时, 指明相关段落	相关的权利要求	X	JP 2897789 B (SHIONOGI & CO LTD) 31.5 月 1999 (31-05-1999) 第 4 页反应式 A、第 14 页化合物 51 和第 16 页	1-5, 7-8	A	US 4372970 A (HADLER M R et al) 8.2 月 1983 (08-02-1983) 全文	1-8	A	WO 0198288 A1 (BAYER AG et al) 27.12 月 2001 (27-12-2001) 全文	1-8
类 型*	引用文件, 必要时, 指明相关段落	相关的权利要求											
X	JP 2897789 B (SHIONOGI & CO LTD) 31.5 月 1999 (31-05-1999) 第 4 页反应式 A、第 14 页化合物 51 和第 16 页	1-5, 7-8											
A	US 4372970 A (HADLER M R et al) 8.2 月 1983 (08-02-1983) 全文	1-8											
A	WO 0198288 A1 (BAYER AG et al) 27.12 月 2001 (27-12-2001) 全文	1-8											
<input type="checkbox"/> 其余文件在 C 栏的续页中列出。 <input checked="" type="checkbox"/> 见同族专利附件。													
* 引用文件的具体类型: “A” 认为不特别相关的表示了现有技术一般状态的文件 “E” 在国际申请日的当天或之后公布的在先申请或专利 “L” 可能对优先权要求构成怀疑的文件, 为确定另一篇引用文件的公布日而引用的或者因其他特殊理由而引用的文件 “O” 涉及口头公开、使用、展览或其他方式公开的文件 “P” 公布日先于国际申请日但迟于所要求的优先权日的文件													
国际检索实际完成的日期 04.2 月 2005 (04.02.2005)													
国际检索报告邮寄日期 03 · 3 月 2005 (03 · 3 月 2005)													
中华人民共和国国家知识产权局(ISA/CN) 中国北京市海淀区蔚门桥西土城路 6 号 100088 传真号: (86-10)62019451													
受权官员 李亚林 电话号码: (86-10)62085610													

国际检索报告
关于同族专利的信息

国际申请号
PCT/CN2004/001255

检索报告中引用的专利文件	公布日期	同族专利	公布日期
JP 2897789 B	31-05-1999	-----	-----
US 4372970 A	08-02-1983	EP 0029360 A WO 8101408 A DK 8103046 A JP 57500147 T BR 8009055 A	27-05-1981 28-05-1981 28-12-1981 28-01-1982 09-03-1982
WO 0198288 A1	27-12-2001	US 2004102516 A1 DE 10030094 A1 AU 200170560 A EP 1303505 A1 BR 200112063 A KR 2003031494 A CN 1443181 A JP 2004501144 T	27-05-2004 20-12-2001 02-01-2002 23-04-2003 13-05-2003 21-04-2003 17-09-2003 15-01-2004