Day 9

Some more work with semidirect products

Groups of order 12

If G has order 12, then it has a Sylow subgroup V of order 4 and a Sylow subgroup P of order 3. Either V or P is normal. To see this, note that $V \cap P$ is the identity. Suppose P is not normal, so $n_3 = 4$. Then there are 8 elements of order 3 in G, and together with the identity this accounts for 9 elements of G. So there are at most 3 elements, plus the identity, available for V, so $n_2 = 1$.

Since either V or P is normal, G = VP.

If they are both normal, then G is abelian, and the possibilities are:

- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ (invariant factors are 6 and 2).
- $\mathbb{Z}/12\mathbb{Z}$

If G is not abelian, it is a semidirect product. Also, P is cyclic of order 3 and V is either cyclic or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- 1. V is normal.
 - a. $V = \mathbb{Z}/4\mathbb{Z}$. Then we need to look at maps $P \to \operatorname{Aut}(V)$. But P has order 3 and $\operatorname{Aut}(V)$ has order 2 so there are no nontrivial homomorphisms, so in this case G is cyclic.
 - b. $V = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The automorphisms of V are $\mathrm{GL}_2(\mathbb{Z}/2\mathbb{Z})$. This group has order 6 and is isomorphic to S_3 ; it acts on V by permuting the three non-zero elements. Therefore we can send the generator of P to an automorphism that cyclically permutes those elements. The resulting semi-direct product is A_4 .
- 2. P is normal. The automorphism group of P is $\mathbb{Z}/2\mathbb{Z}$, with non-trivial automorphism $x \to x^{-1}$ where x is a generator of P.
 - a. $V = \mathbb{Z}/4\mathbb{Z}$. We need a map from $V \to \operatorname{Aut}(P)$, and there's only one, which sends the generator $y \in V$ to the automorphism $x \mapsto x^{-1}$. This gives us a group with generators x and y such that $x^3 = y^4 = 1$ and $yxy^{-1} = x^{-1}$.

b. $V = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In this situation there are three nontrivial maps $V \to \operatorname{Aut}(P)$ (either (1,0), (0,1) or (1,1) acts like $x \mapsto x^{-1}$.) The resulting group has generators x, y, z where $x^3 = y^2 = z^2 = 1$, y and z commute with each other, x and z commute with each other, and $yxy^{-1} = x^{-1}$. (The actual choice of map $V \to \operatorname{Aut}(P)$ does not affect the isomorphism class of the result). This is the group D_{12} of symmetries of the hexagon.

So there are five isomorphism types of groups of order 12, two abelian, three nonabelian: D_{12} , A_4 , and $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.