第五节 单纯形法的进一步讨论

- 5.1 初始可行基与人工变量法
- 5.2 退化
- 5.3 检验数的几种表示形式

5.1 初始可行基与人工变量法

设 LP 问题的约束条件为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_1, \dots, x_n \ge 0; \ x_{n+1}, \dots, x_{n+m} \ge 0 \end{cases}$$

对每一个约束方程,考虑分别强行加入人工变量:

$$x_{n+1}, x_{n+2}, ..., x_{n+m}$$
, 得到

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ & \dots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &+ x_{n+m} &= b_m \\ x_1, \dots, x_n \geq 0; \ x_{n+1}, \dots, x_{n+m} \geq 0 \end{cases}$$

以 $x_{n+1},...,x_{n+m}$ 为基变量,得到一个单位基矩阵。令非基变量 $x_1,...,x_n$ 为零,得到一个初始基可行解

$$\mathbf{x}^{(0)} = (0,0,...,0,b_1,b_2,...,b_m)^{\mathrm{T}}$$

因人工变量是后加入到约束条件中的虚拟变量,若原问题有可行解,则经过基变换,所有人工变量应该能被其他变量从基中替换出来。

这可以通过合理构造目标函数来实现。

1、大M法

人工变量对目标函数值不应造成影响:对最大化问题(max)设人工变量在目标函数中的系数为-M(M为任意大的正数),对最小化问题(min),设人工变量在目标函数中的系数为+M;如此,优化过程会迫使人工变量离开。

例,用大 M 法求解 LP 问题。

$$\min z = -3x_1 + x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \end{cases}$$

$$\begin{cases} x_1, x_2, x_3 \ge 0 \end{cases}$$

解,加入松弛变量 x_4 ,减去剩余变量 x_5 ,原问题标准形式为

$$\min z = -3x_1 + x_2 + x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 &= 11 \\ -4x_1 + x_2 + 2x_3 & -x_5 &= 3 \\ -2x_1 + x_3 &= 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

再加入人工变量 x_6, x_7 ,引入系数大M,得到等价问题: ¹

$$\min z = -3x_1 + x_2 + x_3 + 0x_4 + 0x_5 + Mx_6 + Mx_7$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 & = 11 \\ -4x_1 + x_2 + 2x_3 & -x_5 + x_6 & = 3 \\ -2x_1 + x_3 & +x_7 & = 1 \end{cases}$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 & = 11 \\ x_1 + x_2 + 2x_3 & -x_5 + x_6 & = 3 \\ -2x_1 + x_3 & +x_7 & = 1 \end{cases}$$

¹ 注意,本例是求最小,因此要改用 $\sigma_i = c_i - z_i \ge 0$ 判别最优,而 θ 规则不变。

$c_j \rightarrow$	-3	1	1	0	0	М	M	۵
$\mathbf{c}_{\mathbf{B}} \mathbf{x}_{\mathbf{B}} \mathbf{b}$	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
$0 \mid x_4 \mid 11$	1	-2	1	1	0	0	0	11
$M \mid x_6 \mid 3$	-4	1	2	0	- 1	1	0	3/2
$M \mid x_7 \mid 1$	-2	0	[1]	0	0	0	1	1
$\sigma_j \rightarrow$	-3 + 6M	1-M	1-3M	0	M	0	0	
$0 \mid x_4 \mid 10$	3	-2	0	1	0	0	-1	
$M \mid x_6 \mid 1$	0	[1]	0	0	- 1	1	- 2	1
$1 \mid x_3 \mid 1$	-2	0	1	0	0	0	1	
$\sigma_j \rightarrow$	-1	1-M	0	0	M	0	3M - 1	
$0 \mid x_4 \mid 12$	[3]	0	0	1	-2	2	- 5	4
$1 \mid x_2 \mid 1$	0	1	0	0	- 1	1	- 2	
$1 \mid x_3 \mid 1$	-2	0	1	0	0	0	1	
$\sigma_j \rightarrow$	-1	0	0	0	1	M - 1	M+1	
$-3 \mid x_1 \mid 4$	1	0	0	1/3	-2/3	2/3	- 5/3	
$1 \mid x_2 \mid 1$	0	1	0	0	-1	1	- 2	
$1 \mid x_3 \mid 9$	0	0	1	2/3	-4/3	4/3	- 7/3	
$\sigma_j \rightarrow$	0	0	0	1/3	1/3	M - 1/3	M-2/3	

注:上述优化过程,如果能通过基变换,使得基变量不 再含有非零的人工变量,则表示原问题有可行解;

对于 \max 问题,若最终单纯形表中所有 $\sigma_j \leq 0$,但在其中还有某个非零人工变量,则表示原问题无可行解。

对于min问题,若最终单纯形表中所有 $\sigma_j \geq 0$,但在其中还有某个非零人工变量,则表示原问题无可行解。

2、两阶段法

第一阶段: 在标准形式线性规划问题的约束上加入人工变量 $x_{n+1},...,x_{n+m}$,构造以人工变量之和最小化为目标的新的 LP 问题(第一阶段问题):

$$\min w = x_{n+1} + \dots + x_{n+m}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ & \vdots & \ddots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &+ x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, x_{n+m} \ge 0 \end{cases}$$

用单纯形法求解第一阶段问题,若w = 0,说明原问题存在基可行解,进入第二阶段。否则原问题无可行解,停止计算。

第二阶段: 从第一阶段得到的最终表中除去人工变量,将目标函数行的系数换为原问题的目标函数系数,作为第二阶段计算的初始表,继续迭代,直至完成求解。

注意,无论是最大化问题还是最小化问题,<u>两阶段法在</u> <u>第一阶段构造的都是最小化问题</u>;因为最终目的是要让人工 变量成为0而出基。 例,用两阶段法重新求解上述 LP 问题。

解, 先加入人工变量, 构造第一阶段 LP 问题

$$\min w = x_6 + x_7$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 &= 11 \\ -4x_1 + x_2 + 2x_3 & -x_5 + x_6 &= 3 \\ -2x_1 + x_3 & +x_7 &= 1 \end{cases}$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 &= 11 \\ x_1 + x_2 + 2x_3 & -x_5 + x_6 &= 3 \\ x_1 + x_2 + x_3 & +x_7 &= 1 \end{cases}$$

第一阶段求解:

	$c_j \rightarrow$		0	0	0	0	0	1	1	θ_i
$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	σ_i
0	x_4	11	1	- 2	1	1	0	0	0	11
1	x_6	3	-4	1	2	0	-1	1	0	3/2
1	x_7	1	-2	0	[1]	0	0	0	1	1
	$\sigma_j \rightarrow$		6	-1	-3	0	1	0	0	
0	x_4	10	3	-2	0	1	0	0	-1	-
1	x_6	1	0	[1]	0	0	-1	1	-2	1
0	x_3	1	-2	0	1	0	0	0	1	-
	$\sigma_j \rightarrow$		0	- 1	0	0	1	0	3	
0	x_4	12	3	0	0	1	-2	2	-5	
0	x_2	1	0	1	0	0	-1	1	-2	
0	x_3	1	-2	0	1	0	0	0	1	
	$\sigma_j \rightarrow$		0	0	0	0	0	1	1	

人工变量 x_6 , $x_7 = 0$,所以第一阶段完全剔除了人工变量,因此当前解的非人工变量部分: $(0,1,1,12,0)^T$ 是原问题的基可行解,可以开始第二阶段的计算。

	$c_j \rightarrow$		-3	1	1	0	0	A
$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	χ_3	x_4	x_5	$ heta_i$
0	χ_4	12	[3]	0	0	1	- 2	4
1	\mathcal{X}_2	1	0	1	0	0	- 1	-
1	χ_3	1	- 2	0	1	0	0	-
	$\sigma_j \rightarrow$		-1	0	0	0	1	
-3	x_1	4	1	0	0	1/3	-2/3	
1	\mathcal{X}_2	1	0	1	0	0	- 1	
1	x_3	9	0	0	1	2/3	-4/3	
	$\sigma_j \rightarrow$		0	0	0	1/3	1/3	

5.2 退化

单纯形法用 θ 规则确定换出变量时,有时存在两个以上相同的最小比值,在下一次迭代中就有一个或几个基变量等于零,出现退化解;若再行换基,则换出变量 $x_l = 0$,迭代后目标函数值不变。

退化的情况在现实中几乎遇不到,但还是有人构造了一个特例,当出现退化时,进行多次迭代,基从 \mathbf{B}_1 , \mathbf{B}_2 , ...又返回到 \mathbf{B}_1 ,即出现计算过程的循环,永远达不到最优解。

退化的例子:

関化的例子:

$$\max z = \frac{3}{4}x_1 - 150x_2 + \frac{1}{50}x_3 - 6x_4$$

$$\begin{cases} \frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 + x_5 &= 0\\ \frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 &+ x_6 &= 0\\ x_3 &+ x_7 = 1 \end{cases}$$

	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	x _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
0	x_5	0	[1/4]	-60	-1/25	9	1	0	0	0
0	x_6	0	1/2	-90	-1/50	3	0	1	0	0
0	x_7	1	0	0	1	0	0	0	1	_
	$\sigma_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	x _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
3/4	x_1	0	1	-240	-4/25	36	4	0	0	-
0	x_6	0	0	[30]	3/50	-15	-2	1	0	0
0	x_7	1	0	0	1	0	0	0	1	_
	$\sigma_i \rightarrow$		0	30	7/50	-33	-3	0	0	

	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	x _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$\mid \; heta_i \; \mid$
3/4	x_1	0	1	0	[8/25]	-84	-12	8	0	0
-150	$ x_2 $	0	0	1	1/500	-1/2	-1/15	1/30	0	0
0	$ x_7 $	1	0	0	1	0	0	0	1	1
($\sigma_j \rightarrow$		0	0	2/25	-18	-1	-1	0	
	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	XB	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
$\frac{\mathbf{c_B}}{1/50}$	$x_{\mathbf{B}}$	b 0	<i>x</i> ₁ 25/8	$\frac{x_2}{0}$	<i>x</i> ₃	-525/2	-75/2	25	x_7	
	_		_	_		_			,	- 0
1/50	x_3	0	25/8	0	1	-525/2	-75/2	25	0	_

($c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
c _B	X _B	b	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	θ_i
1/50	x_3	0	-125/2	10500	1	0	[50]	-150	0	0
-6	$ x_4 $	0	-1/4	40	0	1	1/3	-2/3	0	0
0	χ_7	1	125/2	-10500	0	0	-50	150	1	
($\sigma_j \rightarrow$		1/2	-120	0	0	1	-1	0	
($c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	x _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
0	x_5	0	-5/4	210	1/50	0	1	-3	0	_
-6	x_4	0	1/6	-30	-1/150	1	0	[1/3]	0	0
0	$ x_7 $	1	0	0	1	0	0	0	1	_
($\sigma_i \rightarrow$		7/4	-330	-1/50	0	0	2	0	

	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
c _B	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	θ_i
0	x_5	0	[1/4]	-60	-1/25	9	1	0	0	
0	x_6	0	1/2	-90	-1/50	3	0	1	0	
0	x_7	1	0	0	1	0	0	0	1	
($\sigma_j \rightarrow$		7/4	-330	-1/50	0	0	2	0	

——又回到了初始可行基!

退化的解决方法: 摄动法、字典序法。

- 1974 年勃兰特(Bland)提出一种简便的规则,简称勃兰特规则:
- (1) 选取 $\sigma_j > 0$ 中<u>下标最小</u>(不是检验数最大)的非基变量 x_k 为换入变量。
- (2) 当按θ规则计算存在两个或两个以上最小比值时, 选取最小比值对应的下标最小的基变量为换出变量。

可以证明,按勃兰特规则,一定能避免出现循环。

用勃兰特规则计算上例:

	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
c_{B}	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	θ_i
0	x_5	0	[1/4]	-60	-1/25	9	1	0	0	0
0	x_6	0	1/2	-90	-1/50	3	0	1	O	0
0	<i>x</i> ₇	1	0	0	1	0	0	0	1	_
	$\sigma_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
3/4	x_1	0	1	-240	-4/25	36	4	0	0	-
0	x_6	0	0	[30]	3/50	-15	-2	1	O	0
0	x_7	1	0	0	1	0	0	0	1	_
	$\sigma_j \rightarrow$		0	30	7/50	-33	-3	0	0	

($c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$\mid \; heta_i \; \mid$
3/4	x_1	0	1	0	[8/25]	-84	-12	8	0	0
-150	x_2	0	0	1	1/500	-1/2	-1/15	1/30	0	0
0	x_7	1	0	0	1	0	0	0	1	1
($\sigma_j \rightarrow$		0	0	2/25	-18	-1	-1	0	
	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$\mid \; heta_i \; \mid$
1/50	x_3	0	25/8	0	1	-525/2	-75/2	25	0	_
-150	x_2	0	-1/160	1	0	[1/40]	1/120	-1/60	0	0
0	x_7	1	-25/8	0	0	525/2	75/2	-25	1	2/525
	$\sigma_i \rightarrow$		-1/4	0	0	3	2	-3	0	

($c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x_B}$	b	x_1	x_2	x_3	χ_4	x_5	x_6	<i>x</i> ₇	$\mid \; heta_i \; \mid$
1/50	x_3	0	-125/2	10500	1	0	50	-150	0	_
-6	$ x_4 $	0	-1/4	40	0	1	1/3	-2/3	0	_
0	χ_7	1	[125/2]	-10500	0	0	-50	150	1	2/125
	$\sigma_j \rightarrow$		1/2	-120	0	0	1	-1	0	

下一步迭代需使用勃兰特规则:上表中正检验数对应的变量为 x_1, x_5 ,令下标最小的变量 x_1 入基,而非正检验数最大的 x_5 入基,得到:

	$c_i \rightarrow$		3/4	-150	1/50	-6	0	0	0	
c_{B}	x _B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	$\mid \; heta_i \; \mid$
1/50	x_3	1	0	0	1	0	0	0	1	_
-6	x_4	1/250	0	-2	0	1	[2/15]	-1/15	1/250	3/100
3/4	x_1	2/125	1	-168	0	0	-4/5	12/5	2/125	_
C	$\sigma_j \rightarrow$		0	-36	0	0	7/5	-11/5	-1/125	
	$c_j \rightarrow$		3/4	-150	1/50	-6	0	0	0	
c_{B}	x _B	b	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	<i>x</i> ₇	θ_i
1/50	x_3	1	0	0	1	0	0	0	1	
0	x_5	3/100	0	-15	0	15/2	1	-1/2	3/100	
3/4	x_1	1/25	1	-180	0	6	0	2	1/25	
C	$\sigma_i \rightarrow$		0	-15	0	-21/2	0	-3/2	-1/20	

求解结束!

5.3 检验数的几种表示形式

LP 模型 检验数	$\max z = \mathbf{c}\mathbf{x}$ $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$	$\min z = \mathbf{c}\mathbf{x}$ $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$
$\sigma_j = c_j - z_j$	≤0(最优)	≥0(最优)
$\sigma_j = z_j - c_j$	≥0(最优)	≤0(最优)