$$\mathbf{P} = \{x_1, x_2, ..., x_n\}$$

$$var(l_i) = var(\bar{l_i}) = x_i$$

$$s(l_i) = s_i$$

$$s(\bar{l_i}) = 1 - s_i$$
weight $w_i \in \mathbf{R_0^+}$

1 Number of Horn formulae

a) maximize
$$\sum_{C} z_{C}$$
 HORN_FORMULA

b) maximize
$$\sum_{\forall C} w_C \cdot z_C$$
 RESPECT_DECOMPOSITION_HORN_FORMULA

c) maximize
$$\sum_{\forall C} |C| \cdot z_C$$
 LENGTH_WEIGHTED_HORN_FORMULA

d) maximize
$$\sum_{\forall C} |C|^2 \cdot z_C$$
 $SQUARED_LENGTH_WEIGHTED_HORN_FORMULA$

$$f)$$
 maximize $\sum_{\forall C} \frac{1}{|C|^2} \cdot z_C$

 $SQUARED_INVERSE_LENGTH_WEIGHTED_HORN_FORD$

subject to
$$\sum_{\forall l \in C} s(\bar{l}) \leq |C| - z_C \cdot (|C| - 1), \ \forall C$$

$$z_C \in \{0, 1\}, \qquad \forall C$$

$$s_i \in \{0, 1\},$$
 $\forall x_i \in \mathbf{P}$

2 Number of edges

a) minimize
$$\sum_{\forall x_i, x_j \in \mathbf{P}: \ i < j} e_{i,j} \qquad \textit{NUMBER_OF_EDGES}$$

b) minimize
$$\sum_{\forall x_i, x_j \in \mathbf{P}: \ i < j} w_{i,j} \cdot e_{i,j} \quad RESPECT_DECOMPOSITION_NUMBER_OF_EDGES$$

subject to
$$s(\bar{l_i}) + s(\bar{l_j}) \le 1 + e_{i,j}, \ \forall C: \ \forall l_i, l_j \in C: \ i < j$$

$$e_{i,j} \in \{0,1\}, \qquad \forall x_i, x_j \in \mathbf{P}: \ i < j$$

$$s_i \in \{0,1\}, \qquad \forall x_i \in \mathbf{P}$$

Number of vertices 3

a) minimize
$$\sum_{\forall x_i \in \mathbf{P}} v_i$$

 $NUMBER_OF_VERTICES$

b) minimize $\sum_{\forall x_i \in \mathbf{P}} w_i \cdot v_i$

 $RESPECT_DECOMPOSITION_NUMBER_OF_VERTICES$

subject to $\sum_{\forall l \in C} s(\bar{l}) \leq |C| - z_c \cdot (|C| - 1), \ \forall C$

 $s(\bar{l_i}) \le z_C + v_i,$

 $\forall C : \forall l_i \in C$

 $v_i \in \{0, 1\},$

 $\forall x_i \in \mathbf{P}$

 $s_i \in \{0, 1\},$

 $\forall x_i \in \mathbf{P}$

 $z_C \in \{0, 1\},\$

 $\forall C$

Vertex cover

a) minimize $\sum_{\forall x_i \in \mathbf{P}} c_i$

 $VERTEX_COVER$

b) minimize $\sum_{\forall x \in \mathbf{P}} w_i \cdot c_i$

 $RESPECT_DECOMPOSITION_VERTEX_COVER$

subject to $s(\bar{l_i}) + s(\bar{l_j}) \le 1 + c_i + c_j, \ \forall C: \ \forall l_i, l_j \in C: \ i < j$

 $c_i \in \{0, 1\},\$

 $\forall x_i \in \mathbf{P}$

 $s_i \in \{0, 1\}, \quad \forall x_i \in \mathbf{P}$