A-1 ----

WAR DEPARTMENT

TECHNICAL MANUAL

ABBREVIATED FIRING TABLES

TECHNICAL MANUAL No. 6-215 WAR DEPARTMENT, WASHINGTON, November 27, 1940.

ABBREVIATED FIRING TABLES

U113 , 2 TM 6:215

Prepared under direction of the Chief of Field Artillery

	Paragraphs	Pages
Section I. General	1-8	1-13
II. Tables common to all weapons		14
III. Firing tables, 75-mm gun		18
IV. Firing tables, 155-mm howitzer		33
APPENDIX I. Data correction sheet		55
II. Data correction sheet.		57
III. Condensed table of maximum ordinates		59
IV. Equivalent erosion effects		 60

SECTION I

GENERAL

	Paragraph
General	
Scope	
Purpose	
Arrangement	
Explanation of tables	
The metro message	
Type problems	
Selection of appropriate charge	

- 1. General.—Firing tables contain data pertinent to the application of fire, based on standard trajectories for each type of weapon and combination of projectile, fuze, and propelling charge. A standard trajectory is the one theoretically existing under known, arbitrarily selected conditions of weather, position, and matériel. The amount of important variance that may be expected in a trajectory fired under conditions differing from standard may be computed from the values listed in the tables.
- 2. Scope.—The tables contained herein are extracts from Firing Tables 75-B-4 for the 75-mm gun, M1897 (and modifications), and from Firing Tables 155-D-2 for the 155-mm howitzer, M1917, M1917A1, M1918, and M1918A1. Of the various combinations of projectile, fuze, and charge available for these weapons, there have been included two combinations for the 75-mm gun and four combinations for the 155-mm howitzer.

273090°-40-1

- 3. Purpose.—The purpose of this manual is to furnish field artillery students information regarding firing tables and instruction in their use. For the 75-mm gun, the manual includes sufficient data for the solution of problems involving selection and application of the appropriate combination of projectile and fuze for various missions; for the 155-mm howitzer, sufficient data to enable the student to select and apply the appropriate combination of fuze and charge for HE shell within the usual ranges for division artillery.
- 4. Arrangement.—a. Section I contains an explanation of the tables and instructions for their use.
- b. Section II contains data applicable to any combination of projectile, charge, and fuze. In it is found—
 - (1) Conversion factors.
 - (2) Natural trigonometric functions of angles in mils.
 - (3) s and d tables.
 - (4) Wind-component tables.
- (5) Tables and formulas for reducing temperature and density at the altitude of the meteorological datum plane to that at the altitude of the battery.
- c. Section III contains tables for the 75-mm gun. It is divided into two parts. One part contains data for shrapnel, Mk. I; the other, data for HE shell, Mk. I, point detonating fuzes M46 and M47. Each part contains three tables: A, B, and C.
- (1) Table A contains information on certain elements of a standard trajectory, range and deflection effects of differences from standard, and correction for the angle of site.
- (2) Table B gives the change in muzzle velocity due to variations in the temperature of the powder.
- (3) Table C gives the deflection effect for cant of axle. (The correction for this effect is not necessary for weapons equipped with sights having cross-leveling bubbles.)
- d. Section IV contains tables for the 155-mm howitzer. It is divided into four parts containing data for HE shell, Mk. I, point detonating fuzes M46 and M47, each part containing data for charges 3, 4, 5, and 6, respectively. Each part contains three tables: A, B, and C, containing data as explained in c (1), (2), and (3) above.
- 5. Explanation of tables.—The tables in section II are self-explanatory. The tables of sections III and IV are explained below.
- a. Table A.—This explanation is based upon table A for the 75-mm gun firing HE shell, Mk. I, fuzes M46 and M47. An explanation of the variations between this table and the table for other combinations of projectile, fuze, and charge is given in d below.

- (1) Column 1.—The range in yards for each hundred yards. The range given in these tables is regarded as measured along the surface of a sphere concentric with the earth and passing through the muzzle of the piece. For practical purposes, the range may be considered as measured along a horizontal plane passing through the piece. All effects throughout a computation are based on this range (to the nearest hundred yards). The determination of one effect is not based upon a range corrected for another effect. For example, the map range being 4123, a range of 4100 would be used throughout the computation as an argument in entering the tables, although the elevation for the map range, 4123, would be determined by interpolation to the nearest tenth of a mil. The algebraic sum of all range corrections is converted to mils of elevation and applied to this map-range elevation, as is the site. The result is the initial quadrant elevation.
- (2) Column 2.—The elevation in mils for the range shown in column 1.
- (3) Column 3.—The fork in mils of elevation. (The fork is the change in elevation for four probable errors change in range.)
- (4) Column 4.—The change in elevation for a 100-yard change in range. (This is c and applies to ranges within 50 yards of the tabulated range.)
- (5) Column 5.—The change in range for a 1-mil change in elevation. (Applies to ranges within 50 yards of tabulated range.)
 - (6) Column 6.—The time of flight to the level point.
- (7) Column 7.—The probable error in range. (The symbol for range probable error is e_{pr} .)
- (8) Column 8.—The probable error in deflection. (The symbol for deflection probable error is e_{pd}.)
- (9) Column 9.—The slope of fall (the tangent of the angle of fall), expressed as 1/a, where 1 is the vertical distance and a is the horizontal distance.
- (10) Column 10.—The line number of metro message, indicating the first figure of the seven-figure group to be used for any particular range. The seven-figure group on this line contains those data appropriate for the maximum ordinate of the range considered. The maximum ordinate is not given in table A. Its value in feet may be approximated by squaring the time of flight and multiplying by four. A condensed table of maximum ordinates is given in appendix III.
- (11) Column 11.—The deflection effect of drift in mils. The effect given in these tables includes side jump. Drift proper is always to the right, but the included left side jump effect exceeds the drift effect

in the shorter ranges. (Although a standard trajectory has drift, for convenience drift is considered a deflection effect.)

- (12) Column 12.—The deflection effect of a cross wind of 1 mile per hour. The direction of the effect is given in the wind-components table. A wind from the right causes a left effect; a wind from the left, a right effect. (See wind-components table and description of metro message.)
- (13) Columns 12 and 15 to 19, inclusive.—In columns 12 and 15 to 19 are given the effects of a unit increase above standard matériel and weather conditions. Range effects of a unit decrease below standard matériel and weather conditions are equal in value but opposite in sign to the effects shown in the table. A condition causing the trajectory to have greater range than standard has a plus range effect; one causing the trajectory to fall shorter than standard has a minus range effect. A condition causing the trajectory to fall to the right of a standard trajectory has a right deflection effect; one causing it to fall to the left, a left deflection effect. The range, usually measured from a map or firing chart, is one of the known values or arguments used in determining these effects. It is taken to the nearest 100 yards.
- (14) Columns 13 and 14.—The correction which must be applied to each mil of computed angle of site to compensate for the nonrigidity of the trajectory. It is computed to the nearest hundredth of a mil.
- (15) Column 15.—The range effect of an increase in weight of projectile of one cross from standard. (See table of projectile weights, sec. III.) For example, a projectile of weight one cross is one cross below standard; the effect is one times that shown in the table and is of the opposite sign.
- (16) Column 16.—The range effect of an increase of muzzle velocity of 1 foot per second from standard. The sign of the effect is the same as the sign of the variation. (See table B.)
- (17) Column 17.—The range effect of an increase of air temperature of 1 degree above standard (59° F.).
- (18) Column 18.—The range effect of a rear wind of 1 mile per hour. The sign of the effect is the same as that of the range component.
- (19) Column 19.—The range effect of an increase of air density of 1 percent above standard (100%).
- (20) Column 20.—The range setting to be placed on the range scale of a piece firing from the M1897 carriage (and the modifications thereof) in order to reach the range given in column 1.
- (21) Column 21.—The range setting similarly required when firing from the M2 carriage.
- (22) Column 1.—Range.—Same as in column 1 on the left side; repeated for convenience.

- b. Table B.—This table gives the change in muzzle velocity due to variation in the powder temperature. Whenever possible, the actual temperature of the powder should be taken. With fixed ammunition, the temperature of the place where the ammunition is stored at the battery is used. If the temperature cannot be taken at the battery, the air temperature given in the metro message, corrected for the altitude of the battery position, is used as a guide. With the effect obtained from this table, the column headed "Range Effect of Increase of—One foot per second in MV" in table A is entered to obtain the final effect in range.
- c. Table C.—This table gives the deflection effect of cant of the carriage axle of 10 mils. The effect of any other amount is proportional. The correction is applied to individual pieces by the executive.
- d. Variations in tables.—Tables B and tables C for all combinations of projectile, fuze, and charge are similar. Variations in tables A from the arrangement given in a above are described below.
- (1) 75-mm gun firing shrapnel, Mk. I, 21-second combination fuze.— Table A contains four additional columns showing—
- (a) Column 9.—The probable error in height of burst, expressed in mils.
- (b) Column 21.—The fuze setting, in seconds, to produce a graze burst.
- (c) Columns 22 and 23.—The displacement of the burst resulting from a change of five points in the corrector.
 - (d) No column of data is given for effect of weight of projectile.
- (2) 155-mm howitzer, firing HE shell, Mk. I, fuzes M46 and M47.—Separate tables are required for each of the seven charges of propelling powder used with this matériel. The tables are the same as those described in a above except that columns 20 and 21 (range settings) do not apply and are therefore omitted.
- 6. The metro message.—a. The metro message is a coded tabulation of meteorological conditions on the surface of the earth and at varying zones above it, for use by the Field Artillery in applying these meteorological effects to its firing data. It consists of a group of three letters to designate the sending station, followed by one five-figure group and a series of seven-figure groups, as explained by the table in paragraph 7. If the first figure of the five-figure group is 2, the message applies to antiaircraft or other high-angle fire; if the first figure is 3, the message applies to Field Artillery.
- b. Further explanation of the use of the metro message is included in type problems (par. 7).

- 7. Type problems.—a. General.—These tables have been arranged to facilitate a systematic method of determining corrections to map data. A convenient form for recording data is a Data Correction Sheet. (See app. I.) It contains the data for the type problem below.
- b. Problems.—Determination of a new base deflection and a new velocity error (VE). The base piece, 75-mm gun M2, is to be adjusted on a check point, using shell Mk. I, normal charge, fuze M46, for the purpose of determining a new base deflection and a new velocity error. The data are recorded in the following order, capitals indicating the major headings on the Data Correction Sheet:
- (1) The basic data, determined from a map or chart, are entered wherever indicated.

Map range (to the nearest yard)=4575 yards (initial data).

Altitude of target = 1665 feet (initial data).

Altitude of battery = 1505 feet (initial data).

Map shift (from base point) = BD R 50 (initial data).

Direction of fire (Y-azimuth to

nearest 100) = 4900 mils (wind components).

- (2) Compute the site. The difference in altitude between the target and battery is 160 feet (initial data), plus if the target is above the battery and minus if below. 160/3=+53 yards (initial data). The range is 4600. 53/4.6 equals 11.5, to the nearest tenth of a mil. Target is above battery; therefore, the site is plus 11.5. To correct the site enter table A, column 13, opposite range 4600. The correction for +1 mil angle of site is +0.04 mils. $11.5\times0.04=0.5$ mils site correction. Now enter, under initial data, site correction +0.5 and corrected site +12.0.
- (3) Determine the drift effect from column 11, table A. The correction always is opposite to the effect. Enter drift correction . . . = L5 (initial data).
- (4) From table A, determine the elevation corresponding to 4600 (column 2), and the change in elevation for a 100-yard range change (column 4). The elevation for 4575 is computed as follows:

Elevation for 4600 ______ 162. 2 25/100×6.0 _____ ___ 1. 5 Elevation for 4575 ______ 160. 7 (initial data)

(5) The matériel data are as follows:

Weight of projectile (reported by executive) = ++++ (range) Old VE (from previous firing) (if known) = +32 f/s (range)

(1)			(2)		
Example of metro message		Expl	anation		
MIFMIF	The letter M indicates designation of the se	ates a metro	message; then on. (The g	ne letters IF roup is usua	are the code lly repeated
31256	as indicated.) The figure 3 indicates that the feet above sea level; is 56° Fahrenheit.	e MDP (m	eteorologica	l datum pla	ne) is 1,200
	(3)	(4)	(5)	(6)	(7)
	Zones in height (feet)	Line of metro message	Azimuth of wind (mils)	Velocity of wind (m/h)	Density (%)
0320802 1351101 2371499 3401598 4441697 5481896 6502195 7532295 8562495 9622795	Surface Surface to 600 600 to 1500 1500 to 3000 3000 to 4500 4500 to 6000 6000 to 9000 9000 to 12,000 12,000 to 15,000 15,000 to 18,000	0 1 2 3 4 5 6 7 8 9	3200 3500 3700 4000 4400 4800 5000 5300 5600 6200	8 11 14 15 16 18 21 22 24 27	102 101 99 98 97 96 95 95 95
	The tabulation ab The first figure of message, column (4) The second and t azimuth of the dir measured clockwise In computations, t Y-North.	each group . (Also see hird figures ection from the his is usua	gives the lie column 10, explained in which the true North ally assume	ne number of table A.) in column (e ballistic of the bal	of the metro (5), give the wind blows, eds of mils. he same as

The fourth and fifth figures give the velocity of the ballistic wind,

column (6).

The sixth and seventh figures, explained in column (7), give the ballistic density in percentage of standard. If greater than standard, the first digit does not appear in the metro message; for ard, the first digit does not appear in the metro message; for example, 02 would mean 102, or an increase of 2 percent above normal, while 98 means a decrease of 2 percent below normal. This density must be corrected for the difference in altitude between the battery and the MDP by means of the table for correcting density (p. 18). The density is the mean effective density for the whole layer of atmosphere having a thickness equal to the height given.

^{*} Each additional line refers to an additional 6,000-foot zone in height.

Using powder temperature reported by the executive (40° F.), determine and enter the change in velocity due to powder temperature (table B), as follows:

Pow. temp. 40° F = -40 f/s (range)

(6) From table A, opposite the map range (4600), determine and enter:

Line number of message (from column 10)=2 (corrections, map range)

(7) The following metro message has been received: MIF MIF

	3	12	35
0	57	25	97
1	59	27	96
2	59	29	96
3	60	32	95
4	60	33	95

From the first line of the metro message, enter:

Altitude of MDP = 1200 feet

(Corrections, map range)

Temperature of air =35° F.

(Corrections, map range)

Having previously determined that the seven-figure line beginning with 2 applies, enter:

Wind direction =5,900 mils

(Corrections, map range)

Wind velocity _____ = 29 m. p. h.

(Corrections, map range)

Density _____ = 96%

(Corrections, map range)

The difference between the altitude of the battery (to the nearest 100 feet) and the altitude of the MDP is (1500-1200) feet and is entered as:

Battery 300 feet above MDP

(Corrections, map range)

Determine the corrected temperature and density, as follows: Corrected temperature $= 35 - (.2 \times 3) = 34.4^{\circ}$ or 34°

(Corrections, map range)

Corrected density ____ = $96 - (.3 \times 3) = 95.1\%$ or 95%

(Corrections, map range)

The variations from normal are entered as follows:

Variation of temperature $= (34-59) = -25^{\circ}$ F.

(Corrections, map range)

Variation of density ____ = (95-100) = -5%

(Corrections, map range)

(8) Enter the wind direction, adding 6,400 if its value is less than that of the direction of fire, and determine the chart direction (wind-component table, page 17), as follows:

Direction of wind _____ =5900 Direction of fire (subtract) ____ =4900 Chart direction ____ =1000

In the wind-components table opposite chart direction 1000, will be found:

Cross wind for 1 mile per hour ____ =L .83
Range wind for 1 mile per hour ___ =-.56

Determine and enter the cross wind and the range wind as follows:

Cross wind _____ =L .83 \times 29 (wind velocity)=L 24 miles per hour (deflection).

Range wind ____ = $-.56\times$ 29 (wind velocity) = -16 miles per hour (range).

- (9) Deflection.—The product of the cross wind (L 24) and the unit effect (.3 mil from column 12, table A) is 7.2 or 7 mils. The effect is left. The correction is Right 7, entered under Initial Data, as: Correction, weather ____ = R 7. The initial deflection can now be totaled. It is BD R 52.
- (10) Range.—Under Range are entered unit effects, determined from table A, columns 15 to 19 inclusive, opposite 4600 in column 1. (The VE mentioned therein is discussed in (12) below.) The product of the variation from normal and the unit effect is determined for each condition and entered in the proper plus or minus column. The sign

in each case is that of the algebraic product; that is, the sign is that of the unit effect if the variation is plus, the opposite if the variation is minus. Thus, the weight of projectile has been given as three crosses. Opposite 4600, in column 15, table A, is found the unit effect, plus 11 (difference of one cross above standard is plus). The effect is in yards, so in the plus column under Range, enter 11 $(1 \times +11)$.

- (a) Old VE of plus 32 f/s (column 16, table A, opposite 4600, where plus 2.0 yards is the effect of one f/s) equals 32 times plus 2.0 or plus 64 yards. Enter this in the plus column.
- (b) Powder temperature 40° (table B) corresponds to a decrease of 40 f/s. Turn again to column 16, table A, and note that minus 40 f/s times the same unit effect of plus 2.0 equals minus 80 yards. Enter this in the minus column under Range.
- (c) From Corrections, Map Range, where previously have been entered "Cor. temp. =34-59=-25", enter, after "Air temp." under Range, the minus 25°. The unit effect of plus 1.6 will be found opposite 4600, table A, in column 17. Plus 1.6 times minus 25 equals minus 40 yards. Enter this value in the minus column.
- (d) The range wind has been determined as minus 16 m. p. h. In column 18, table A, opposite 4600, will be found a unit effect of plus 5.3 yards for an increase of 1 mile per hour. Since the range wind is minus, plus 5.3 times minus 16 miles per hour equals a minus effect of 85 yards. Enter this value.
- (e) The density has been determined, under Corrections, Map Range, as minus 5 percent. Enter this value under "Known values" in Range. The unit effect at 4600 appears in column 19, table A, as minus 17 for 1 percent. Minus 17 times minus 5 equals plus 85. Enter this in the plus column.
- (f) Add the plus and minus columns. The total plus effect is 160 yards; the total minus effect is 205 yards. The difference between the totals of the plus and minus columns gives the net effect; in this case, -45 yards. The correction is opposite, +45 yards. The correction in mils is +45/17 (column 5, table A) which equals +2.6 mils. Under Initial Data, the initial quadrant elevation can now be totaled. It is 175.3 mils.
- (11) Check adjustment.—Assume that a precision adjustment has been made on the check point and that the following adjusted data therefor have resulted:

Adjusted deflection ____ =BD R 56 Adjusted quadrant elevation =173.2

The deflection to lay the battery on the new base deflection is deter-

mined as indicated on the form. The BC commands: **BASE DE-FLECTION RIGHT 4, RECORD NEW BASE DEFLECTION.** The method of determining the new VE is indicated on the form.

(12) VE.—The difference between the computed initial quadrant elevation and the adjusted quadrant elevation accounts for such range errors as could not be foreseen. The difference first appears in mils. From column 5, table A (opposite 4600) it can be converted to range change. (In this example, 2.1 mils becomes 36 yards.) The range change, divided by the range effect for 1 f/s (column 16, table A), or 36/2.0 becomes +18 f/s. The difference existing at a range of 4600 was thus reduced to feet per second of muzzle velocity applicable to any range. The VE is an effect. Had this been the first firing from the position with a new powder lot, the type problem would have had no old VE under Range. However, an old VE determined from previous firing was used in the calculations and a VE change and a new VE were determined. The algebraic sum of the VE change and the old VE is a new VE of plus 50 f/s. In the calculation of the next problem employing weather corrections, it would be entered as an old VE of 50 f/s under Range.

Note.—In the example given above, for purposes of simplicity of explanation, each unit effect has been discussed under the correction which it affects. However, after the student gains a clear understanding of the tables, time may be saved if, after step (5) above, all tabular values are taken from the table and entered in the appropriate places on the form. The values in this case would be—

1 mil change (column 5)	17
Line number of message (column 10)	
Cross wind (column 12)	. 3
Weight of projectile (column 15)	
Old VE (column 16)	+2.0
Powder temperature (column 16)	+2.0
Air temperature (column 17)	+1.6
Range wind m. p. h. (column 18)	+5.3
Density (column 19)	-17

c. Weather-correction diagram.—(1) When weather corrections are to be determined for a number of concentrations, which is usually the case, a weather-correction diagram, similar to the one shown, may be constructed on the firing chart, or on tracing paper to cover the target area on the firing chart, the diagram being large enough to cover the concentrations for which data are to be corrected. Corrections for weight of projectile, VE, and weather are then determined for the target area at every 2000 yards of range and for every 200 or 400 mils of deflection. Corrections for specific targets are obtained from the diagram by inspection and interpolation. A diagram is constructed

upon the receipt of each metro message; basic data, for concentrations previously assigned, may then be readily corrected. Basic data for

each target and check point include drift correction, angle of site, and complementary angle of site.

(2) Type problem.—The following data are available to the battery commander:

Ammunition Shell Mk. I, norma	d charge, fuze M46
Powder temperature	40° F.
Weight of projectile	3 crosses
Altitude of battery	1025 feet
VE from previous firing	minus 10 f/s
Y-azimuth of right limit of sector	2040
Y-azimuth of left limit of sector	1600
Range to nearest targets	3200 yards
Range to most distant targets	4900 yards

Metro message:

\mathbf{MIF}	MIF	ı		
		3	12	45
	0	25	18	99
	1	27	20	98
	2	27	22	98
	3	29	25	97

Using the right-hand part of the Data Correction Sheet, deflection and range corrections are determined for range 3000 and 5000 and Y-azimuths 1600 and 2000. Appendix II shows the method by which the corrections were determined for Y-azimuth 2000 and range 3000. Corrections for the three other intersections are determined similarly. The corrections for targets 3, 4, 5, and 6 are then determined by inspection. The corrections are as follows:

Target No.	Deflection	Range
3	R8	+10 mils
4	R5	+6
5	R4 or 5	+8 or 9
6	R5	+11

- 8. Selection of appropriate charge.—The selection of the appropriate propelling charge for use with the 155-mm howitzer depends upon the range. While the same range often can be reached by more than one charge, it should be remembered
 - a. The heavier the charge, the greater the erosion of the bore.
- b. The lighter the charge, the greater the dispersion and the angle of impact.
- c. When the range is greater than ¾ the maximum range of the charge tentatively selected, use the charge next above. Thus, for range 8100, use charge 6 instead of charge 5. Although increased erosion will result, not only will the dispersion be less, but it will not be necessary to change charges if the range is to be increased. This is particularly applicable where transfers of fire are to be made; the charge selected should be the one which will reach that concentration which is at the greatest range.

SECTION II

TABLES COMMON TO ALL WEAPONS CONVERSION TABLES

1 yard ___ = 0.9144 meters 1 meter __ = 1.0936 yards 1° ___ = 17.7778 mils 1′ ___ = 0.2963 mils 1 mil ___ = 0.0563° 1 mil ___ = 3.375′

NATURAL FUNCTIONS OF ANGLES IN MILS

Mils	sin	cos	tan	cot	X4c	Mils	sin	cos	tan	cot	(19) 19
0	. 0000	1. 0000	. 0000	offic in	1600	400	. 3827	. 9239	. 4142	2. 414	1200
20 30 40	. 0098 . 0197 . 0295 . 0393 . 0491	1.0000 .9998 .9996 .9992 .9988	. 0197 . 0295 . 0393	101. 8 50. 92 33. 95 25. 45 20. 36	90 80 70 60 50	10 20 30 40 50	. 3917 . 4007 . 4097 . 4187 . 4276	. 9200 . 9162 . 9122 . 9081 . 9040	. 4258 . 4374 . 4492 . 4610 . 4730	2. 349 2. 286 2. 226 2. 169 2. 114	90 80 70 60 50
70 80 90	. 0589 . 0687 . 0785 . 0883 . 0980	. 9983 . 9976 . 9969 . 9961 . 9952	. 0688 . 0787 . 0887	16. 96 14. 53 12. 71 11. 29 10. 15	40 30 20 10 1500	60 70 80 90 500	. 4364 . 4453 . 4540 . 4627 . 4714	. 8998 . 8954 . 8910 . 8865 . 8819	. 4851 . 4972 . 5095 . 5217 . 5345	2. 062 2. 011 1. 963 1. 916 1. 871	40 30 20 10 1100
20 30 40	. 1078 . 1175 . 1272 . 1371 . 1467	. 9942 . 9931 . 9919 . 9906 . 9892	. 1184 . 1284 . 1384	9. 224 8. 449 7. 793 7. 230 6. 741	90 80 70 60 50	10 20 30 40 50	. 4801 . 4886 . 4972 . 5057 . 5141	. 8773 . 8725 . 8677 . 8628 . 8577	. 5472 . 5600 . 5731 . 5861 . 5994	1. 827 1. 786 1. 745 1. 706 1. 668	90 80 70 60 50
70 80 90	. 1564 . 1661 . 1758 . 1855 . 1951	. 9877 . 9861 . 9845 . 9827 . 9808	. 1684 . 1784 . 1887	6. 314 5. 936 5. 600 5. 299 5. 027	40 30 20 10 1400	60 70 80 90 600	. 5225 . 5309 . 5392 . 5474 . 5556	. 8526 . 8474 . 8422 . 8369 . 8315	. 6128 . 6264 . 6401 . 6541 . 6682	1. 632 1. 596 1. 561 1. 529 1. 497	40 30 20 10 1000
20 30 40	. 2048 . 2144 . 2239 . 2334 . 2430	. 9788 . 9768 . 9746 . 9724 . 9700	. 2195 . 2297 . 2401	4. 782 4. 558 4. 353 4. 165 3. 992	90 80 70 60 50	10 20 30 40 50	. 5638 . 5718 . 5798 . 5878 . 5957	. 8259 . 8204 . 8148 . 8090 . 8032	. 6825 . 6970 . 7116 . 7265 . 7416	1. 465 1. 435 1. 405 1. 376 1. 348	90 80 70 60 50
70 80 90	2525 2620 2714 2809 2903	. 9676 . 9651 . 9625 . 9597 . 9569	. 2715 . 2820 . 2926	3. 832 3. 684 3. 546 3. 417 3. 297	40 30 20 10 1300	60 70 80 90 700	. 6036 . 6114 . 6191 . 6268 . 6344	. 7973 . 7914 . 7853 . 7792 . 7730	.7570 .7725 .7883 .8044 .8207	1. 320 1. 294 1. 268 1. 243 1. 219	40 30 20 10 900
20 30 40	2997 3090 3183 3276 3369	. 9541 . 9511 . 9480 . 9448 . 9415	. 3249 . 3358 . 3468	3. 184 3. 078 2. 978 2. 884 2. 795	90 80 70 60 50	10 20 30 40 50	. 6419 . 6494 . 6569 . 6643 . 6716	. 7668 . 7604 . 7539 . 7475 . 7410	. 8372 . 8541 . 8712 . 8886 . 9063	1. 194 1. 171 1. 148 1. 125 1. 103	90 80 70 60 50
70 . 80 . 90 .	3461 3553 3645 3736 3827	. 9382 . 9347 . 9313 . 9276 . 9239	. 3689 . 3801 . 3914 . 4028	2. 711 2. 631 2. 555 2. 483	40 30 20 10 1200	60 70 80 90 800	. 6788 . 6860 . 6931 . 7002 . 7071	. 7343 . 7276 . 7209 . 7141	. 9244 . 9428 . 9615 . 9805 1. 0000	1. 082 1. 061 1. 040 1. 020 1. 000	40 30 20 10 800
	cos	sin	cot	tan	Mils		cos	sin	cot	tan	Mil

EXPLANATION OF 8 AND d TABLES

100 yards (C)

O is the position of the observer.

T is the target, also the observer displacement (target offset in mils).

r is the distance OT in thousands of yards.

s is the deflection shift necessary to keep a shot on the OT line when making a range change of 100 yards (an increase in elevation of one c).

8 TABLE

Range GT in							,	T in 1	mils						
yards	100	200	300	400	500	600	700	800	900	1000	1100	1150	1200	1250	1300
2000	5	10	15	21	27	34	42	51	62	76	95	108	123	142	168
2100	5	10	15	20	26	32	40	49	59	73	91	103	117	136	160
2200	5	9	14	19	25	31	38	46	56	69		98	112	129	153
2300	4	9	13	18	24	30	36	44	54	66	83	94	107	124	
2400	4	8	13	18	23	28	35	42	52	64	79	90	102	119	140
2500	4	8	12	17	22	27	33	41	50	61	76	86	98	114	
2600	4	8	12	16	21	26	32	39	48	59		83	95	109	
2700	4	8	11	16	20	25	31	38	46	56	71	80	91	105	124
2800	4	7	īī	15	19	24	30	36	44	54	68	77	88		120
2900	3	7	11	15	19	23	29	35	43	53		74	85		116
3000	3	7	10	14	18	23	28	34	41	51	64	72	82	95	112
3200	3	6	10	13	17	21	26	32	39	48	60	67	77	89	105
3400	3	6	9	12	16	20	25	30		45		63	72		99
3600	3	6	9	12	15	19	23	28	34	42	53	60	68	79	93
3800	3	5	8	11	14	18	22	27	33	40	50	57	65	75	88
4000	3	5	8	11	14	17	21	25	31	38	48	54	61	71	84
4500	2	5	7	9	12	15	19	23	28	34	42	48	55	63	75
5000	2 2 2	4	6	8	11	14	17	20	25	31	38	43	49	57	67
5500	2	4	6	8	10	12	15	19	23	28	35	39	45	52	61
6000	2	3	5	7	9	11	14	17	21	25	32	36	41	47	56
6500	2	3	5	6	8	10	13	16	19	23	29	33	38	44	52
7000	2 1	3 3	4	6	8	10	12	15	18	22	27	31	35	41	48
7500	1	3	4	6	7	9	11	14	17	20	25	29	33	38	45
8000	1	3	4	5	7	9	10	13	16	19	24	27	31	36	42
8500	1	2	4	5	6	8	10	12	15	18	22	25	29	33	40
9000	1	2 2 2	3	5	6	8	9	11	14	17	21	24	27	32	37
9500	1	2	3	4	6	7	9	11	13	16	20	23	26	30	35
10000	1	2	3	4	5	7	8	10	12	15	19	22	25	28	34

d TABLE

Dis- tance	T in mils												
OT in yards	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
1000	10	20	30	39	48	57	65	72	79	85	90	94	97
1100	9	18	27	35	44	51	59	65	72	77	82	86	89
1200 1300	8	17 15	25 23	32 30	40 37	47	54 50	60 55	66 61	71 65	75 69	78 72	81 75
1400	7	14	23	28	34	40	46	51	56	60	64	67	70
1400 1500	7	13	20	26 26	32	38	40	48	50 52	56	60	63	65
1600	6	12	18	24	30	35	40	45	49	53	56	59	61
1700	6	12	17	23	28	33	38	42	46	50	53	55	57
1800	6	11	16	22	27	31	36	40	44	47	50	52	54
1900	5	10	16	21	25	30	34	38	41	45	47	50	51
2000	5	10	15	20	24	28	32		39	42	45	47	49
2100	5	9	14 13	19 18	23 22	27 26	31 29	34 33	37	40 38	43 41	45 43	46
2200 2300	5 4	9	13	17	21	25 25	29 28	33 31	36 34	37	39	41	44 42
2400	4	8	12	16	20	24	27	30	33	35	37	39	41
2500	4	8	12	16	19	23	26	29	31	34	36	38	39
2600	4	8	11	15	18	22	25	28	30	33	35	36	37
2700	4	7	11	14	18	21	24	27	29	31	33	35	36
2800 2900	3	7	11 10	14 13	17 17	20 20	23 22	26 25	28 27	30 29	32 31	34 32	35 34
3000	3	7	10	$\frac{13}{13}$	16	19	22	$\frac{25}{24}$	26	28	30	31	32
3200 3400	3 3	6	9	12 11	15 14	18 17	20 19	23 21	25 23	26 25	28 26	29 28	30 29
3600	3	6	8	11	13	16	18	20	22	24	25	26	27
3800	3	5	8	10	13	15	17	19	21	22	24	25	26
4000	2	5	7	10	12	14	16	18	20	21	22	24	24
4500	2	4	7	9	11	13	14	16	18	19	20	21	22
5000 5500	2 2	4	6 5	8 7	10	11 10	13 12	14 13	16 14	17 15	18 16	19 17	19 18
	2	3	5	6	8	9	11	12	13	14	15	16	16
6000	-				·					·			
6500 7000	2	3	5 4	6	7	9	10 9	11 10	12 11	13 12	14 13	14 13	15 14
7500	i	3	4	5	6	8	9	10	îî	11	12	13	13
8000	1	2	4	5	6	7	8	9	10	11	11	12	12

WIND COMPONENTS FOR 1 MILE-PER-HOUR WIND

Chart direc- tion of wind	Cross wind m. p. h.	Range wind m. p. h.	Chart direc- tion of wind	Cross wind m. p. h.	Range wind m. p. h.
0	0	-1.00	3200	0	+1.00
100 200 300	L . 10 L . 20 L . 29	99 98 96	3300 3400 3500	R . 10 R . 20 R . 29	+. 99 +. 98 +. 96
400	L . 38	92	3600	R . 38	+. 92
500 600 700	L . 47 L . 56 L . 63	88 83 77	3700 3800 3900	R . 47 R . 56 R . 63	+. 88 +. 83 +. 77
800	L . 71	 71	4000	R . 71	+. 71
900 1000 1100	L . 77 L . 83 L . 88	63 56 47	4100 4200 4300	R . 77 R . 83 R . 88	+. 63 +. 56 +. 47
1200	L . 92	3 8	4400	R . 92	+. 38
1300 1400 1500	L . 96 L . 98 L . 99	29 20 10	4500 4600 4700	R . 96 R . 98 R . 99	+. 29 +. 20 +. 10
1600	L 1.00	. 00	4800	R 1.00	. 00
1700 1800 1900	L . 99 L . 98 L . 96	+. 10 +. 20 +. 29	4900 5000 5100	R . 99 R . 98 R . 96	10 20 29
2000	L . 92	+. 38	5200	R . 92	 38
2100 2200 2300	L . 88 L . 83 L . 77	+. 47 +. 56 +. 63	5300 5400 5500	R . 88 R . 83 R . 77	47 56 63
2400	L . 71	+. 71	5600	R . 71	 71
2500 2600 2700	L . 63 L . 56 L . 47	+. 77 +. 83 +. 88	5700 5800 5900	R . 63 R . 56 R . 47	77 83 88
2800	L . 38	+. 92	6000	R . 38	92
2900 3000 3100	L . 29 L . 20 L . 10	+. 96 +. 98 +. 99	6100 6200 6300	R . 29 R . 20 R . 10	96 98 99
3200	0	+1.00	6400	0	-1.00

This table divides a wind of 1 mile per hour, blowing from the chart direction, into two components: the cross wind, perpendicular to the plane of fire, and the range wind, parallel to the plane of fire. The chart direction is the Y-azimuth of the wind direction as given in the metro message (increased by 6400 when necessary) minus the Y-azimuth of the direction of fire.

273090°-40-2

CORRECTED DENSITY AND TEMPERATURE

Height of bat- tery with ref-	Change in							
erence to the MDP, ft.	Density in percent	Temperature in °F.						
+600 +500 +400 +300 +200 +100 8ame -100 -200 -300 -400 -500 -600	-1. 8 -1. 5 -1. 2 -0. 9 -0. 6 -0. 3 0 +0. 3 +0. 6 +0. 9 +1. 2 +1. 5 +1. 8	$\begin{array}{c} -1.2 \\ -1.0 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0 \\ +0.2 \\ +0.4 \\ +0.6 \\ +1.0 \\ +1.2 \end{array}$						

Density decreases 0.3 percent for each 100 feet battery is above the MDP. Temperature decreases 0.2° F. for each 100 feet battery is above the MDP.

SECTION III

FIRING TABLES, 75-MM GUN

Characteristics 75-mm Gun, M1897, M1897A1, M1897A2, M1897A3, and M1897A4 Firing Shrapnel Mk. I and HE Shell Mk. I

75-MM GUN

Diameter of the bore between lands	inches 2.953
Diameter of the bore between grooves	inches 2.992
Total length	inches_107.126
Length of rifled portion	inches_ 87.772
Travel of projectile	inches 89.9
Capacity of powder chamberc	ubic inches 83
Number of grooves	24
Character of rifling	uniform twist
Character of rining	1 in 25.6 calibers
Maximum pressure for which gun is designed	
Weight of gun and breech mechanism	pounds_ 1,035

338

ABBREVIATED FIRING TABLES

75-MM GUN CARRIAGE, M2

	\mathbf{On}	On
	wheels	firing jack
Maximum traverse, rightmils_	800	800
Maximum traverse, leftmils_	711	711
Least possible elevationmils_	-178	-178
Greatest possible elevationmils_	818	821
Traverse for one turn of the traversing		
handwheelmils	19. 0	19. 0
Change in elevation for one turn of ele-		
vating handwheelmils	10	10
Maximum range scale settingyards	9760	9760
75-MM GUN CARRIAGE, M1897 (AND MO	DIFICATION	vs)
Total traverse (one-half on each side)	mil	s 106

PROJECTILE—MEAN WEIGHT OF FUZED PROJECTILE IN POUNDS

Least possible elevation _____mils_ -178

Greatest possible elevation mils

Traverse for one turn of traversing handwheel ____ mils_

wheel _____mils_ Maximum range scale setting_____meters_

Shrapnel.—Standardized at 15.96 pounds.

HE Shell, Mk. I.—P. D. fuzes M46 and M47.

Change in elevation for one turn of elevating hand-

Variations in weight are indicated by markings stenciled on the projectile as follows:

Mar	king		,	Weight
${f L}$				11. 58
+				11. 91
+	+	(standard)		12. 24
+	+	+		12. 57
+	+	+ +		12. 90

FUZES

21-second combination time and percussion.

Point detonating fuzes:

M46 (nose painted white)____superquick.

M47 (nose painted black)____delay.

- COMBINATIONS OF PROJECTILE, CHARGE, AND FUZE FOR WHICH TABLES ARE NOT INCLUDED HEREIN
- HE shell Mk. I, fuzes M46 and M47, reduced charge: Muzzle velocity 1115 f/s; maximum range, 6775 yards.
- HE shell Mk. I, fuzes (short) Mk. IV and Mk. V, reduced charge: Muzzle velocity, 1130 f/s; maximum range, 6965 yards.
- HE shell Mk. I, fuzes (short) Mk. IV and Mk. V, normal charge: Muzzle velocity, 1805 f/s; maximum range, 8915 yards.
- HE shell Mk. I, fuze (long) Mk. III, normal charge: Muzzle velocity, 1778 f/s; maximum range, 8175 yards.
- Chemical shell Mk. II, fuzes M46 and M47, reduced charge: Muzzle velocity, 1115 f/s; maximum range, 6425 yards.
- Chemical shell Mk. II, fuzes M46 and M47, normal charge: Muzzle velocity, 1758 f/s; maximum range, 8810 yards.
- Chemical shell Mk. II, fuzes (short) Mk. IV and Mk. V, reduced charge: Muzzle velocity, 1130 f/s; maximum range, 6400 yards.
- Chemical shell Mk. II, fuzes (short) Mk. IV and Mk. V, normal charge: Muzzle velocity, 1805 f/s; maximum range, 8400 yards.
- Chemical shell Mk. II, fuze (long) Mk. III, normal charge: Muzzle velocity, 1778 f/s; maximum range, 7925 yards.

SHRAPNEL, MK. I

Fuze, 21-second combination

(MV 1755 f/s)

Note.—Elevations given in this table are for carriage M2. Add 0.8 mils to these elevations when firing from carriage M1897 (and modifications).

Maximum range: 9760 yards.

Data for ranges 0-8000 included herein.

TABLE A

1 1	2	3	4	5	6	7	8	9	10	11 8	12	13
	1 No. of the Lot	1989	on for ge in	for 1- vation	ELPT C	Prob	able er	ror	e sejoi	metro	Deflection	n effect
	Train Michigan		n elevation	Change in range for 1- mil change in elevation	light	of the	Ni az i	burst	all	number of message	40 Se 2007	ind of 1 hour(+)
Range	Elevation	Fork	Change in 100-yard range	Change mil cha	Time of flight	Range	Deflection	Height of burst	Slope of fall	Line nur	Drift*	Lateral wind of mile per hour(+)
R	El	F	C	1 mil	Time	epr	e _{pd}	t.	Slope	Line	Dft.	W-D
yds.	n/n	m/	m	yds.	sec.	yds.	yds.	mh	1/-	No.	n/n	n/i
(1	1. 6	67	0. 0	11	0	1	0 1	0 01	L 1	. 0
100 200 300 400	3. 4 5. 0	1 1 1 1	1. 6 1. 6 1. 8 1. 8	64 61 58 56	0. 1 0. 3 0. 5 0. 7	11 11 11 11	0 0 0	1 1 1 1	1018 407 255 173	1 1 1 1	L 1 L 1 0 0	. 0 . 0 . 1 . 1
500		1	1. 8	54	0. 9	11	0	1	124	1	0	. 1
600 700 800 900	12. 6 14. 6	1 1 1 1	2. 0 2. 0 2. 0 2. 2	52 50 48 47	1. 1 1. 3 1. 5 1. 7	11 11 11 11	0 0 0	1 1 1 1	95 77 64 54	1 1 1 1	0 0	0.1
1000		1	2. 2	45	1. 9	11	1	$\frac{1}{1}$	46	1	0	.1
1100 1200 1300 1400	21. 2 23. 6 26. 2	1 1 1 1 1	2. 2 2. 4 2. 4 2. 4	44 42 41 40	2. 1 2. 3 2. 6 2. 8	11 11 11 11	1 1 1 1 1	1 1 1 1 1	40 35 31 28	1 1 1 1 1	0 0	.1 .1 .2 .2 .2
1500		1	2. 6	38	3. 0	11	1	$\frac{1}{1}$	25	1	R 1	. 2
1600 1700 1800	34. 0 36. 8 39. 6	1 1 1	2. 6 2. 6 2. 8	37 36 35	3. 2 3. 4 3. 7	11 11 11	1 1 1	1 1 1	23 21 19. 7	6 1 1	R 1 R 1 R 1	.2 .2 .2 .2 .2
2000	-	$\frac{1}{1}$	2. 8 3. 0	$\frac{34}{33}$	4. 0	11	1	$\frac{1}{1}$	18. 2	1		. 2
2100 2200 2300	48. 6 51. 6 54. 8	1 1 1	3. 0 3. 2 3. 2	32 32 31	4. 3 4. 6 4. 9 5. 1	11 11 11	1 1 1 1	1 1 1	16. 8 15. 6 14. 5 13. 5	1 1 1 1	R 1 R 1 R 1 R 1	.2
2400		$\frac{1}{1}$	3. 4	$\frac{30}{29}$	5. 4	11	1 1	$\frac{1}{1}$	12. 6 11. 8	1 1	R 1	. 3
2600 2700 2800 2900	65. 4 69. 0 72. 6	2 2 2	3. 4 3. 6 3. 6 3. 6	29 28 27	6. 0 6. 3 6. 5 6. 8	11 11 11	1 1 1	1 1 1 1 1	11. 2 10. 6 10. 0 9. 4	1 1 1 1 1	R 2 R 2 R 2 R 2 R 2	.3
3000	80. 0	2	3. 8	26	7. 1	11	1	1	8. 9	1	R 2	. 3
3100 3200 3300	87. 6 91. 6	2	3. 8 4. 0 4. 0	25	7. 4 7. 7 8. 0		1	1 1 1	8. 4 8. 0 7. 6	1 1 1	R 2 R 2 R 3	. 3
3400			4. 2	24	8. 3	11	1	1	7. 2	1	R 3	. 4
	100. 0	2	4. 2	24	8. 6	11	1	1	6. 9	1	R 3	. 4
3700 3800	104. 2 108. 6 113. 0 117. 4	2	4. 2 4. 4 4. 4 4. 4		8. 9 9. 2 9. 5 9. 9	11 11 11 11	1 1 1 1	1 1 1 1	6. 6 6. 3 6. 0 5. 8	1 1 1 1	R 3 R 3 R 3	. 4 . 4 . 4
	122. 0	7	4. 6	-	10. 2	11	_	1	5. 5	1	R 4	. 4

^{*}Drift includes side jump. 273090°—40——3

14	15	16	17	18	19	20	21	22	23	24	25	1 1
Comp. a			Range ef	fect of inc	erease of—	017	graze	st for	ector	for 1897 models)	M2	
		Btd.	cond	temperature Standard is F.	mile	n air	lor	Displacement of burst for change of 5 points in	COLL		g for	ar ye
fsite	fsite	One percent in wt. of projectile. Std. wt. 15.96 lbs.	One foot per second in MV	amper	wind 1 per hour	percent in density	setting burst	e of 5	setter	Range setting carriage (and	setting carriage	
+1 mil of site	–1 mil of site	of project.	ne foot in	ir te 1°. S 59° F.	Rear w	One per de	Fuze se	splace	fuze setter	nge	Range	Range
a +	Î	Wt.	VE	Temp.	₩-R	5 Den.				Set.	Set.	R
n/i	m	yds.	yds.	yds.	yds.	yds.	sec.	m	yds.	m.	yds.	yds.
. 00	. 00	0	0. 0	0. 0	0. 0	0	0. 0	1/6		160	-50	0
.00	. 00	$ \begin{array}{r r} -1 \\ -1 \\ -2 \end{array} $	+0.1 +0.2 +0.3	0. 0 0. 0 0. 0	0.0 + 0.1	0	0. 2 0. 4 0. 6	4. 1 4. 1 4. 2	230 226 221	250 340 425	$+50 \\ 150 \\ 250$	100 200 300
.00	. 00	$-\frac{1}{2}$	+0.3 +0.4	0. 0	$+0.1 \\ +0.1$	0	0. 8	4. 2	217	510	355	400
. 00	. 00	-3	+0.5	0. 0	+0.2	-1	1. 0	4. 3	213	595	455	500
.00	. 00	$-3 \\ -4$	+0.6 +0.7	0. 0 0. 0	$+0.2 \\ +0.2$	$-1 \\ -1$	1. 2 1. 4	4. 4 4. 5	209 205	680 765	555 655	600 700
.00	. 00	-4	+0.8	0.0	+0.3	-1	1. 6	4. 5	202	850	755	800
. 00	. 00	5	+0.9	0.0	+0.3	$\frac{-2}{2}$	1. 9	4. 6	199	935	855	900
. 00	. 00	$\frac{-5}{5}$	+1.0	0.0	+0.4	$\frac{-2}{-2}$	2. 1	4. 7	196	1020	_	1000
.00	. 00	$-5 \\ -5$	+1.1 + 1.1	0. 0 0. 0	$+0.4 \\ +0.5$	$-\frac{2}{2}$	2. 6	4.8	190	1200	$\frac{1060}{1165}$	1200
. 00	. 00	-5	-1.2	0.0	+0.5	$-2 \\ -3 \\ 2$	2. 8	4. 9	188	1290	1270	1300
.00	. 00	$\frac{-5}{-5}$	$\frac{+1.2}{+1.3}$	0.0	$\frac{+0.6}{+0.7}$	$\frac{-3}{-3}$	3. 1	4. 9 5. 0	185 183	_	$\frac{1373}{1480}$	100
.00	. 00	$-\frac{5}{5}$	$\frac{+1.3}{+1.3}$	0. 0	+0.7	$-\frac{3}{4}$	3. 6	5. 1		1560		200
.00	. 00	-5	+1.4	0.0	+0.8	-4	3. 8	5. 1	178	1650	1680	1700
.00	. 00	$-5 \\ -5$	+1.5 + 1.5	$\begin{array}{c} 0.0 \\ +0.1 \end{array}$	$+0.9 \\ +1.0$	$-5 \\ -5$	4. 1 4. 3	5. 2 5. 3		1745 1840		
+. 01	 01	-5	+1:6	+0.1	+1.1	-5	4. 6	5. 3	172	_	1980	-
+. 01	01	-5	+1.6	+0.1	+1.2	-6	4. 9	5. 4	170	2030	2080	2100
+.01 +.01	01 01	$-5 \\ -4$	+1.7 + 1.7	$+0.1 \\ +0.2$	+1.3 $+1.4$	$-6 \\ -6$	5. 2 5. 5	5. 5 5. 5	168	$\frac{2125}{2220}$	2180 2280	2200
+.01	01	-4	+1.8	$+0.2 \\ +0.2$	+1.5	-7	5. 8	5. 6		2315		
+. 01	 01	-4	+1.8	+0.3	+1.6	-7	6. 0	5. 7	A STATE OF THE PARTY OF THE PAR	2415	No. 25 April 1995	Service and the service and th
+. 01	01	-4	+1.9	+0.3	+1.7	-8	6. 3	5. 8		2515	2580	2600
[+.01]	01	-3	$+1.9 \\ +2.0$	$+0.3 \\ +0.4$	+1.8 +1.9	$-8 \\ -9$	6. 6	5. 9 5. 9	159	$\frac{2615}{2715}$	2785	2800
+.01	−. 01	-3	+2.0	+0.4	+2.0	-9	7. 2	6. 0	157	2810	2885	2900
+.01	100		+2.0	+0.5	+2.2	-9	7. 5	6. 0		2905		
+. 01	01 01	-3	$+2.1 \\ +2.1$	+0.5	$+2.3 \\ +2.4$	$-10 \\ -10$	7. 9 8. 2	6. 1 6. 1	155	$\frac{3000}{3095}$	3085	3100
	01	-2	+2.1	$+0.6 \\ +0.6$	+2.6	-11	8. 5	6. 2	152	3195	3280	3300
+.01	01	-2	+2.2	+0.7	+2.7	-11	8. 8	6. 3		3290		
+. 01		-2		+0.8	+2.9	$\frac{-11}{10}$	9. 1	6. 3		3385		
+.01	01	$-\frac{2}{-2}$	+2.2 + 2.3	$+0.9 \\ +0.9$	$+3.0 \\ +3.2$	$-12 \\ -12$	9. 4 9. 7	6. 4 6. 4	148	$\frac{3480}{3580}$	3680	3700
+.01	01	-1	+2.3	+1.0	+3.3	-13	10.0	6. 5	146	3675	3780	3800
	<u> 01</u>			+1.0	+3.5		10. 4		-	3770		
+.01	01	-1	+2.3	+1.1	+3.7	-14	10. 7	6. 6	143	3865	3980	4000

Second S	1	2	3	4	5	6	7	8	9	310	711	12	13
R					for 1- ation	Cares of L	Prob	able er	rror	I'm netts	netro	Deflection	on effect
R	94		101	elevatio	range f e in elev	1¢ 100.	THE DE	T. DESC.	ırst	nag A	of ee	77.71	d of 1 ur (+)
R		ion	1000	e in yard e	e in	of flig]	THE STATE OF	tion	of bu	f fall	numb	fal to	win er ho
R	Запве	Slevat	ork	hang 100- rang	Chang mil c	lime o	tange	оецес	Feight	lope		rift*	atera mile p
Yoks	R							4	-				
4000 122. 0 2 4. 6 22 10. 2 11 1 1 5. 5 1 R. 4 .4 4100 126. 6 2 4. 6 21 10. 5 12 2 1 5. 3 1 R. 4 .4 4200 131. 4 2 4. 8 21 10. 9 12 2 1 5. 1 1 R. 4 .4 4300 136. 2 2 4. 8 21 11. 2 12 2 1 4. 9 1 R. 4 .5 4400 141. 0 2 4. 8 20 11. 6 12 2 1 4. 7 1 R. 4 .5 4400 141. 0 2 4. 8 20 11. 9 12 2 1 4. 7 1 R. 4 .5 4500 146. 0 2 5. 0 20 11. 9 12 2 1 4. 7 1 R. 4 .5 4600 151. 0 3 5. 0 19 12. 6 12 2 1 4. 3 2 R. 4 .5 4700 156. 0 3 5. 0 19 12. 6 12 2 1 4. 0 2 2 R. 4 .5 4800 161. 2 3 5. 2 19 13. 0 12 2 1 4. 0 2 2 R. 5 .5 5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 7 2 2 R. 5 .5 5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 6 2 2 R. 5 .5 5000 172. 0 3 5. 6 18 14. 4 13 3 1 3. 6 2 2 R. 5 .5 5000 188. 8 3 5. 6 18 14. 4 13 3 1 3. 6 2 2 R. 5 .5 5000 188. 8 3 5. 6 18 14. 8 14 3 1 3. 4 2 2 R. 6 .6 5500 200. 2 3 5. 8 17 15. 6 14 3 1 3. 1 2 2 R. 6 .6 5500 202. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6 5500 224. 6 4 6. 2 16 16. 9 15 3 1 2. 8 2 R. 7 .6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 9 2 R. 6 .6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 9 2 2 R. 7 .6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 9 2 2 2 3 R. 8 .7 6000 234. 6 6 7. 0 14 20. 4 19 3 2 2. 2 3 3 R. 8 .7 6000 235. 6 7. 0 14 20. 4 19 3 2 2. 2 3 3 R. 8 .7 6000 236. 6 7. 8 13 22. 8 24 1. 81 3 3 1. 8 .7 7000 301. 4 6 7. 6 13 22. 8 24 4 1. 71 3 R. 11 .8 .8 7000 305. 6 9 8. 6 12 25. 4 25. 4	yds.	n/n	ηή	n/n	yds.	sec.			ηή				
4200 131. 4 2 4.8 21 10.9 12 2 1 5.1 1 1 1 1 1 4 4 4 4	4000		2		22		11	T 31	1		2+11		
4500		126. 6	2	4. 6	21	10. 5		2		5. 3	2 1	R 4	. 4
4500	4300	136. 2	2	4. 8	21	10. 9	12	2 2	1	5. 1 4. 9	2 11	R 4	. 4
5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 7 2 R. 5 .5 5100 177. 6 3 5. 4 18 14. 0 13 3 1 3. 6 2 R. 5 .5 5200 183. 2 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 .5 5300 188. 8 3 5. 6 18 14. 8 14 3 1 3. 5 2 R. 6 .6 5400 194. 4 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 .6 5500 200. 2 3 6. 0 17 16. 0 14 3 1 3. 0 2 R. 6 .6 5700 212. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6	4400	141. 0		4.8	20	11. 6	12		1	4. 7	1	R 4	. 5
5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 7 2 R. 5 .5 5100 177. 6 3 5. 4 18 14. 0 13 3 1 3. 6 2 R. 5 .5 5200 183. 2 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 .5 5300 188. 8 3 5. 6 18 14. 8 14 3 1 3. 5 2 R. 6 .6 5400 194. 4 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 .6 5500 200. 2 3 6. 0 17 16. 0 14 3 1 3. 0 2 R. 6 .6 5700 212. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6			2						_				
5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 7 2 R. 5 .5 5100 177. 6 3 5. 4 18 14. 0 13 3 1 3. 6 2 R. 5 .5 5200 183. 2 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 .5 5300 188. 8 3 5. 6 18 14. 8 14 3 1 3. 5 2 R. 6 .6 5400 194. 4 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 .6 5500 200. 2 3 6. 0 17 16. 0 14 3 1 3. 0 2 R. 6 .6 5700 212. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6	4600		3	5. 0 5. 0		12. 3 12. 6	12	2		4. 3	2	R 4	. 5
5000 172. 0 3 5. 4 19 13. 7 13 3 1 3. 7 2 R. 5 .5 5100 177. 6 3 5. 4 18 14. 0 13 3 1 3. 6 2 R. 5 .5 5200 183. 2 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 .5 5300 188. 8 3 5. 6 18 14. 8 14 3 1 3. 5 2 R. 6 .6 5400 194. 4 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 .6 5500 200. 2 3 6. 0 17 16. 0 14 3 1 3. 0 2 R. 6 .6 5700 212. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6	4800	161. 2	3	5. 2	19	13. 0	12	2	1	4. 0	2	R 5	. 5
5100 177. 6 3 5. 4 18 14. 0 13 3 1 3. 6 2 R. 5 . 5 5200 183. 2 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 . 5 5300 188. 8 3 5. 6 18 14. 4 13 3 1 3. 5 2 R. 5 . 5 5400 194. 4 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 6 6 5500 200. 2 3 5. 8 17 15. 6 14 3 1 3. 2 2 R. 6 6 5600 206. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 6 5900 224. 6 4 6. 2 16 17. 3 15 3 1 2. 8 2 R. 7 6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th>A STATE OF THE PARTY OF THE PAR</th> <th>. 5</th>								2				A STATE OF THE PARTY OF THE PAR	. 5
5500 200. 2 3 5.8 17 15.6 14 3 1 3.1 2 R.6 6 5600 206. 2 3 6.0 17 16.0 14 3 1 3.0 2 R.6 6 6 5700 212. 2 3 6.0 16 16.4 15 3 1 2.9 2 R.6 6 6 5800 218. 4 4 6.2 16 16.9 15 3 1 2.8 2 R.7 6 6000 231. 0 4 6.4 16 17.7 16 3 1 2.8 2 R.7 6 6100 237. 6 4 6.4 15 18.1 16 3 1 2.6 2 R.7 6 6200 254. 2 2 6.6 15 18.6 17 3 1 2.5 2 R.7 6							_		-				
5500 200. 2 3 5.8 17 15.6 14 3 1 3.1 2 R.6 6 5600 206. 2 3 6.0 17 16.0 14 3 1 3.0 2 R.6 6 6 5700 212. 2 3 6.0 16 16.4 15 3 1 2.9 2 R.6 6 6 5800 218. 4 4 6.2 16 16.9 15 3 1 2.8 2 R.7 6 6000 231. 0 4 6.4 16 17.7 16 3 1 2.8 2 R.7 6 6100 237. 6 4 6.4 15 18.1 16 3 1 2.6 2 R.7 6 6200 254. 2 2 6.6 15 18.6 17 3 1 2.5 2 R.7 6		177. 6 183. 2	3	5. 4	18	14. 0	13	3		3. 6	2	R 5	. 5
5500 200. 2 3 5.8 17 15.6 14 3 1 3.1 2 R.6 6 5600 206. 2 3 6.0 17 16.0 14 3 1 3.0 2 R.6 6 6 5700 212. 2 3 6.0 16 16.4 15 3 1 2.9 2 R.6 6 6 5800 218. 4 4 6.2 16 16.9 15 3 1 2.8 2 R.7 6 6000 231. 0 4 6.4 16 17.7 16 3 1 2.8 2 R.7 6 6100 237. 6 4 6.4 15 18.1 16 3 1 2.6 2 R.7 6 6200 254. 2 2 6.6 15 18.6 17 3 1 2.5 2 R.7 6	5300	188. 8	3	5. 6	18	14. 8	14	3	1	3. 4	2	R 6	. 6
5600 206. 2 3 6. 0 17 16. 0 14 3 1 3. 0 2 R. 6 .6 5700 212. 2 3 6. 0 16 16. 4 15 3 1 2. 9 2 R. 6 .6 5900 224. 6 4 6. 2 16 17. 3 15 3 1 2. 8 2 R. 7 .6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 8 2 R. 7 .6 6100 237. 6 4 6. 4 15 18. 1 16 3 1 2. 6 2 R. 7 .6 6300 251. 0 5 6. 6 15 18. 6 17 3 1 2. 5 2 R. 7 .6 6300 257. 8 5 6. 8 15 19. 0 17 3 2 2. 4 3 R. 8 .7													
5800 218. 4 4 6. 2 16 16. 9 15 3 1 2. 8 2 R. 7 . 6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 8 2 R. 7 . 6 6100 237. 6 4 6. 4 15 18. 1 16 3 1 2. 6 2 R. 7 . 6 6200 244. 2 4 6. 6 15 18. 6 17 3 1 2. 6 2 R. 7 . 6 6300 251. 0 5 6. 6 15 19. 0 17 3 2 2. 4 3 R. 8 . 7 6400 257. 8 5 6. 8 15 19. 4 18 3 2 2. 4 3 R. 8 . 7 6500 264. 6 5 7. 0 14 20. 4 19 3 2 2. 2 3 R. 9 . 7 <tr< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	-												
5800 218. 4 4 6. 2 16 16. 9 15 3 1 2. 8 2 R. 7 . 6 6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 8 2 R. 7 . 6 6100 237. 6 4 6. 4 15 18. 1 16 3 1 2. 6 2 R. 7 . 6 6200 244. 2 4 6. 6 15 18. 6 17 3 1 2. 6 2 R. 7 . 6 6300 251. 0 5 6. 6 15 19. 0 17 3 2 2. 4 3 R. 8 . 7 6400 257. 8 5 6. 8 15 19. 4 18 3 2 2. 4 3 R. 8 . 7 6500 264. 6 5 7. 0 14 20. 4 19 3 2 2. 2 3 R. 9 . 7 <tr< th=""><th>5700</th><th>212. 2</th><th>3</th><th>6. 0</th><th></th><th>16. 4</th><th></th><th>3</th><th>1</th><th>2. 9</th><th>2 2</th><th>R 6</th><th>6</th></tr<>	5700	212. 2	3	6. 0		16. 4		3	1	2. 9	2 2	R 6	6
6000 231. 0 4 6. 4 16 17. 7 16 3 1 2. 7 2 R 7 . 6 6100 237. 6 4 6. 4 15 18. 1 16 3 1 2. 6 2 R 7 . 6 6200 244. 2 4 6. 6 15 18. 6 17 3 1 2. 5 2 R 7 . 6 6300 251. 0 5 6. 6 15 19. 0 17 3 2 2. 4 3 R 8 . 7 6400 257. 8 5 6. 8 15 19. 0 17 3 2 2. 4 3 R 8 . 7 6500 264. 6 5 7. 0 14 19. 9 18 3 2 2. 3 3 R 8 . 7 6500 271. 6 5 7. 0 14 20. 4 19 3 2 2. 2 3 R 9 . 7	5800	218. 4	4	6. 2	16	16. 9	15	3	1	2. 8	2	R 7	. 6
6100 237. 6										and the second second			
6500 264.6 5 7.0 14 19.9 18 3 2 2.3 3 R 8 .7 6600 271.6 5 7.0 14 20.4 19 3 2 2.2 3 R 9 .7 6700 278.8 6 7.2 14 20.8 19 3 2 2.2 3 R 9 .7 6800 286.2 6 7.4 14 21.3 20 3 2.1 3 R 9 .7 6900 293.8 6 7.6 13 21.8 20 3 2.1 3 R 9 .7 7000 301.4 6 7.6 13 22.3 21 3 2.0 3 R 10 .7 7100 309.2 6 7.8 13 22.8 22 4 1.83 3 R 10 .7													
6500 264.6 5 7.0 14 19.9 18 3 2 2.3 3 R 8 .7 6600 271.6 5 7.0 14 20.4 19 3 2 2.2 3 R 9 .7 6700 278.8 6 7.2 14 20.8 19 3 2 2.2 3 R 9 .7 6800 286.2 6 7.4 14 21.3 20 3 2.1 3 R 9 .7 6900 293.8 6 7.6 13 21.8 20 3 2.1 3 R 9 .7 7000 301.4 6 7.6 13 22.3 21 3 2.0 3 R 10 .7 7100 309.2 6 7.8 13 22.8 22 4 1.83 3 R 10 .7	6200	244. 2	4	6. 6	15	18. 6	17	3	1	2. 5	2	R 7	. 6
6500 264.6 5 7.0 14 19.9 18 3 2 2.3 3 R 8 .7 6600 271.6 5 7.0 14 20.4 19 3 2 2.2 3 R 9 .7 6700 278.8 6 7.2 14 20.8 19 3 2 2.2 3 R 9 .7 6800 286.2 6 7.4 14 21.3 20 3 2.1 3 R 9 .7 6900 293.8 6 7.6 13 21.8 20 3 2.1 3 R 9 .7 7000 301.4 6 7.6 13 22.3 21 3 2.0 3 R 10 .7 7100 309.2 6 7.8 13 22.8 22 4 1.83 3 R 10 .7	6300	251. 0 257. 8	5	6. 6		19. 0	17	3	2	2. 4	3	R 8	. 7
6600 271. 6 5 7. 0 14 20. 4 19 3 2 2. 2 3 R. 9 . 7 6700 278. 8 6 7. 2 14 20. 8 19 3 2 2. 2 3 R. 9 . 7 6800 286. 2 6 7. 4 14 21. 3 20 3 R. 9 . 7 6900 293. 8 6 7. 6 13 21. 8 20 3 R. 10 . 7 7000 301. 4 6 7. 6 13 22. 3 21 3 2. 0 3 R. 10 . 7 7100 309. 2 6 7. 8 13 22. 8 22 4 1. 93 3 R. 10 . 7 7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R. 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4													1
6800 286. 2 6 7. 4 14 21. 3 20 3 2. 1 3 R 9 . 7 6900 293. 8 6 7. 6 13 21. 8 20 3 2. 1 3 R 10 . 7 7000 301. 4 6 7. 6 13 22. 3 21 3 2. 0 3 R 10 . 7 7100 309. 2 6 7. 8 13 22. 8 22 4 1. 93 3 R 10 . 7 7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4 1. 81 3 R 11 . 8 7400 333. 6 8 8. 2 12 24. 3 23 4 1. 76 3 R 12 . 8 7500 342. 0 8 8. 4 12 24. 9 24 4 1. 71 3 R 12 . 8				-	_						3		
6800 286. 2 6 7. 4 14 21. 3 20 3 2. 1 3 R 9 . 7 6900 293. 8 6 7. 6 13 21. 8 20 3 2. 1 3 R 10 . 7 7000 301. 4 6 7. 6 13 22. 3 21 3 2. 0 3 R 10 . 7 7100 309. 2 6 7. 8 13 22. 8 22 4 1. 93 3 R 10 . 7 7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4 1. 81 3 R 11 . 8 7400 333. 6 8 8. 2 12 24. 3 23 4 1. 76 3 R 12 . 8 7500 342. 0 8 8. 4 12 24. 9 24 4 1. 71 3 R 12 . 8	6700	278. 8	6	7. 2	14	20. 8	19	3	2	2. 2	3	R 9	. 7
7000 301. 4 6 7. 6 13 22. 3 21 3 2. 0 3 R 10 . 7 7100 309. 2 6 7. 8 13 22. 8 22 4 1. 93 3 R 10 . 7 7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4 1. 81 3 R 11 . 8 7400 333. 6 8 8. 2 12 24. 3 23 4 1. 76 3 R 12 . 8 7500 342. 0 8 8. 4 12 24. 9 24 4 1. 71 3 R 12 . 8 7600 350. 6 9 8. 6 12 25. 4 25 4 1. 66 3 R 12 . 8 7800 368. 6 10 9. 0 11 26. 5			6	7. 4		21. 3		3	- 2	2. 1	3	R 9	7
7100 309. 2 6 7. 8 13 22. 8 22 4 1. 93 3 R 10 . 7 7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4 1. 81 3 R 11 . 8 7400 333. 6 8 8. 2 12 24. 3 23 4 1. 76 3 R 12 . 8 7500 342. 0 8 8. 4 12 24. 9 24 4 1. 71 3 R 12 . 8 7600 350. 6 9 8. 6 12 25. 4 25 4 1. 66 3 R 12 . 8 7800 368. 6 10 9. 0 11 26. 5 26 4 1. 57 3 R 13 . 8 7900 378. 0 10 9. 2 11 27.			_		-		_	_	- 13				
7200 317. 2 7 8. 0 13 23. 3 22 4 1. 87 3 R 11 . 7 7300 325. 4 7 8. 2 12 23. 8 23 4 1. 81 3 R 11 . 8 7400 333. 6 8 8. 2 12 24. 3 23 4 1. 76 3 R 12 . 8 7500 342. 0 8 8. 4 12 24. 9 24 4 1. 71 3 R 12 . 8 7600 350. 6 9 8. 6 12 25. 4 25 4 1. 66 3 R 12 . 8 7700 359. 4 9 8. 8 11 26. 0 26 4 1. 61 3 R 13 . 8 7800 368. 6 10 9. 0 11 26. 5 26 4 1. 57 3 R 13 . 8 7900 378. 0 10 9. 2 11 27. 1 27 4 1. 52 4 R 14 . 8	7100	309. 2	6		-	22. 8	_	-				_	
7400 333.6 8 8.2 12 24.3 23 4 1.76 3 R 12 .8 7500 342.0 8 8.4 12 24.9 24 4 1.71 3 R 12 .8 7600 350.6 9 8.6 12 25.4 25 4 1.66 3 R 12 .8 7700 359.4 9 8.8 11 26.0 26 4 1.61 3 R 13 .8 7800 368.6 10 9.0 11 26.5 26 4 1.57 3 R 13 .8 7900 378.0 10 9.2 11 27.1 27 4 1.52 4 R 14 .8	7200	317. 2	7	8. 0	13	23. 3	22	4	1 10	1. 87	3	R 11	. 7
7500 342.0 8 8.4 12 24.9 24 4 1.71 3 R 12 .8 7600 350.6 9 8.6 12 25.4 25 4 1.66 3 R 12 .8 7700 359.4 9 8.8 11 26.0 26 4 1.61 3 R 13 .8 7800 368.6 10 9.0 11 26.5 26 4 1.57 3 R 13 .8 7900 378.0 10 9.2 11 27.1 27 4 1.52 4 R 14 .8			8	8. 2		23. 8			10	1. 81	3		. 8
7600 350. 6 9 8. 6 12 25. 4 25 4 1. 66 3 R 12 .8 7700 359. 4 9 8. 8 11 26. 0 26 4 1. 61 3 R 13 .8 7800 368. 6 10 9. 0 11 26. 5 26 4 1. 57 3 R 13 .8 7900 378. 0 10 9. 2 11 27. 1 27 4 1. 52 4 R 14 .8					-	-		_					
7700 359. 4 9 8. 8 11 26. 0 26 4 1. 61 3 R 13 . 8 7800 368. 6 10 9. 0 11 26. 5 26 4 1. 57 3 R 13 . 8 7900 378. 0 10 9. 2 11 27. 1 27 4 1. 52 4 R 14 . 8	7600	350. 6	_	8. 6				_	10				
7900 378. 0 10 9. 2 11 27. 1 27 4 1. 52 4 R 14 . 8			9	8.8	11	26. 0	26	4	110	1. 61	3	R 13	.8
	7900	378. 0		9. 0					1-19	1. 57			.8
1. TI			11	9. 6	10	27. 7	28	4	10	1. 47	4	R 14	.8

^{*} Drift includes side jump.

14	15	16	17	18	19	20	21	22	23	24	25	1
Comp. a	angle of r each	C	Range ef	fect of inc	erease of-	kert	graze	t for s in	ctor	1897 lels)	M2	
		std.	pu	is	mile	air	for g	Displacement of burst for change of 5 points in	corre	for 1897 models)	for	
te	te	t in ile. Sile. Silbs.	t per second	temperature Standard is F.		it in		ent of	ter	ting (and	setting carriage	
of si	mil of site	of projectile. wt. 15.96 lbs.	ot per in M	temi Stan	wind 1 per hour	percent i	setting burst	ceme	set	ange setting carriage (and	The second second	
+1 mil of site	1 mil	One pe of pr wt. 1	One foot r	Air 1°. 59° 1	Rear	One p	Fuze	isplacem	fuze in—	Range	Range	Range
+		o Wt.	VE	Temp.	₩-R	Den.		Height		Set.	Set.	R
m	ηή	yds.	yds.	yds.	yds.	yds.	sec.	n/n	yds.	m.	yds.	yds.
+.01	01	- 1	+2.3	+1.1	+ 3.7	-14	10. 7	6. 6		_	3980	
+. 01	01	- 1	+2.4	$+1.2 \\ +1.2$	+3.8 + 4.0	-14	11. 0 11. 4	6. 7 6. 7			4080 4185	
$+.01 \\ +.02$	01 02	$-\frac{1}{0}$	$+2.4 \\ +2.4$	+1.2 + 1.3	+4.0 + 4.2	-15	11.7	6. 8	139	4155	4285	4300
+. 02	 02	0	+2.5	+1.4	+ 4.4	-15	12. 1	6. 9			4385	
+. 02	 02	0	+2.5	+1.4	+ 4.6	-16	_	6. 9	137	4345	4485	
$+.02 \\ +.02$				$+1.5 \\ +1.6$	+4.8 + 5.0	$-16 \\ -16$	12. 8 13. 1	7. 0 7. 1			$4585 \\ 4685$	
+.02	02	+ 1	+2.6	+1.7	+ 5.2	-17	13. 5	7. 1	134	4630	4785	4800
+.02		_		+1.7	+ 5.4		13. 8				4885	70.000
+.02	02	-		+1.8			14. 2	7. 2	132		4985	
+.02				+1.9 +1.9	+5.8 + 6.0		14. 5 14. 9		131		5090 5190	
+. 03	03	+ 2	+2.6	+2.0	+ 6.2	-19	15. 2	7. 4	129	5100	5290	5300
+.03				+2.1	+ 6.4	_	15. 6				5390	
+.03				+2.2			16. 0	7. 5			$\frac{5485}{5585}$	
+.03				+2.2 + 2.3	+6.9 $+7.1$	$-21 \\ -21$	16. 3 16. 7	7. 5 7. 6			5685	
+.04	04	+ 4	+2.7	+2.4	+7.3	-22	17. 1	7. 7	125		5785	5800
+.04	<u> 04</u>	_		+2.5		$\frac{-22}{22}$	_		124			5900 6000
+. 04						$\frac{-23}{-23}$	_		$\frac{123}{122}$	_		6100
$[+.04 \\ +.05$				+2.6 +2.7	$+8.0 \\ +8.2$	$-23 \\ -24$			121			6200
+.05	05	+ 6	+2.8	+2.8	+ 8.4				121			6300 6400
+. 06		-				$-25 \\ -25$				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	6500
+.06		_					20. 5				_	6600
+.07			+2.9	+3.1	+ 9.4	-26	21. 0			50	6690	6700
+. 08	08	+ 8	+2.9	+3.2	+9.6	-27		TE.—Si	neotho	aimin		6800 6900
			+2.9		+9.8 +10.1	-	1 -1-	apnel is		aii		7000
+.09	_		$\frac{+2.9}{+3.0}$		+10.1	-	wit	h a 21-	-second		_	7100
+. 11	11	+10	+3.0	+3.5	+10.6	-29	all	nbinatio inform	TOTAL STREET,	rdra	7190	7200
+. 12	11	+10	+3.0	+3.6	+10.8 +11.0		whi	ich is ba	ased on	Jus		7300 7400
+.13			+3.0	_	+11.0 $+11.3$			behav		77 1936	_	7500
+.14 $+.16$			+3.0		+11.5		give	en beyo	nd the	1		7600
+. 17	18	+12	+3.0	+4.0	+11.7	-31	fuz	nt whe			7690	7700
+. 19	17	+ 12	+3.0	+4. ($\begin{vmatrix} +12.0 \\ +12.2 \end{vmatrix}$	$-32 \\ -32$	gra	ze burs	t is 21	11-0	7790	7800 7900
+.20			$\frac{3+3}{3+3}$		+12.2 $+12.5$	-	- sec	onds.		1 8	_	8000

TABLE B

Change in velocity due to change in temperature of powder-

Temperature of powder, F	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second	-51	-44	-37	-29	-22	-15	-8	0	+8	+16	+25

TABLE C

Cant of carriage axle, deflection effect in mils due to-

Range, yardsCant of 10 mils, effect	1000	2000	3000	4000	5000	6000	7000
	0. 2	0. 4	0. 8	1. 2	1. 7	2. 3	3. 0
Range, yardsCant of 10 mils, effect	7000	8000	9000	9500	9600	9700	9760
	3. 0	4. 0	5. 4	6. 8	7. 3	8. 0	9. 5

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

STATES ARTHUR LAND

HE SHELL, MK. I

Fuzes M46 and M47 (normal charge)
(MV 1784 f/s)

Note.—Elevations given in this table are for Carriage M2. Add 0.8 mil to these elevations when firing from Carriage M1897 (and modifications).

Maximum range: 9000 yards.

(Data for ranges 0-8000 included herein)

TABLE A

1	2	3	4	5	6	7	8	9	10	11	12
			ion for n range	Change in range for 1-mil change in elevation	1861		pable ror		metro	Deflection	on effect
on an	Carristian	CEDENCE CEDENCE	Change in elevation for 100-yard change in range	range fo	ht	The state of	pg 1 yeri	a guidea onen fin	number of message	interests	d of 1
98	Elevation		nge in 0-yard	nge in i	Time of flight	989	Deflection	e of fall		imprair	Lateral wind of I
Range	Elev	Fork	Cha 10	Cha	Tim	Range	Defl	Slope	Line	Drift*	Late
R	El	F	c	1 mil	Time	epr	epd	Slope	Line	Dft.	W-D
yds.	n/a	n/a	n/a	yds.	sec.	yds.	yds.	1/-	No.	n/a	n/a
0	-1.0	1	1. 4	71	0. 0	10	0		1	L 1	1000
100 200	+0.6 2.2	1 1	1. 4 1. 6	68 65	0. 1 0. 3	10 10	0	599 291	1 1	L 1 L 1	.0
300 400	3. 8 5. 6	1 1	1. 6 1. 8	62 59	0. 5 0. 7	11 11	0	189 140	1 1	0	.0
500	7. 4	1	1. 8	56	0. 9	11	0	109	1	0	. 0
600 700	9. 2 11. 2	1 1	2. 0 2. 0	53 50	1. 1 1. 3	11 11	0	88 73	1	0	.0
800	13. 2	1	2. 2	48	1. 5	11	0	62	1 1	0	.0
900	15. 2	1		46	1. 7	12	0	53	1	0	.0
1000	17. 4	1	2. 2	44	1. 9	12	0	46	1	0	. 0
1100 1200	19. 6 22. 0	1 1	2. 4 2. 4	42 41	2. 2 2. 4	12 12	0	41 36	1 1	0	.0
1300	24. 4	1	2. 6	39	2. 6	12	0	32	1	0	.0
1400	27. 0 29. 6	1 1	2. 6	38	2. 9	$\frac{12}{13}$	0	29 26	1	0 R 1	. 0
1600	32. 4	1	2. 8	36	3. 4	13	0	23	1	R 1	.1
1700 1800	35. 2	2	3. 0	34 33	3. 6 3. 9	13 13	0	21	1	R 1	. 1
1900	38. 0 41. 0	2 2	3. 0 3. 2	32	4. 2	14	0	19. 2 17. 6	1 1	R 1 R 1	:1
2000	44. 2	2	3. 2	31	4. 4	14	0	16. 2	1	R 1	. 1
2100	47. 4	2	3. 4	30	4.7	14	0	14. 9	1	R 1	. 1
2200 2300	50. 8 54. 2	2 2	3. 4 3. 6	29 28	5. 0 5. 3	14 15	0	13. 8 12. 8	1 1	R 1 R 1	:1
2400	57. 8	2	3. 6	27	5. 6	15	0	11. 9	1	R 2	. 1
2500	61. 4	2	3. 8	26	5. 9	15	0	11. 1	1	R 2	.1
2600 2700	65. 2 69. 0	2 3	3. 8 4. 0	26 25	6. 2 6. 5	15 16	0	10. 4 9. 8	1 1	R 2 R 2	.1
2800	73. 0	3	4. 0	25	6.8	16	0	9. 2	1	R 2	. 2
2900 3000	77. 0	$\frac{3}{3}$	4. 2	24	7. 1	$\frac{16}{17}$	0	8. 6	$\frac{1}{1}$	R 2	. 2
3100	81. 2	3	4. 2	23	7. 7	17	0	7. 7	$\frac{1}{1}$	R 2	. 2
3200	89. 8	3	4. 4	23	8. 1	17	0	7. 3	1	R 3	. 2
3300 3400	94. 4 99. 0	3	4. 6 4. 6	22 22	8. 4 8. 7	18 18	0	6. 9 6. 6	1 1	R 3	.2
3500	103. 6	3	4.8	21	9. 1	18	0	6. 3	1	R 3	. 2
3600	108. 4	4	4.8	21	9. 4	19	0	6. 0	1	R 3	. 2
3700	113. 4	4	5. 0	20 20	9. 8 10. 1	19 20	0	5. 7	1 1	R 3	. 2
3800 3900	118. 4 123. 4	4 4	5. 0 5. 2	19	10. 1	20	0	5. 4 5. 2	1	R 4	. 3
4000	128. 6	4	5. 2	19	10. 8	21	0	5. 0	1	R 4	. 3

^{*}Drift includes side jump.

Compler angle of sit		15	16	17	18	19	20	21	1
		2							
	te for each	ε	Range E	ffect of Inc	rease of—		897 carels)	M2 car-	
+1 mil of site	-1 mil of site	A One + in weight of projectiles. Two ++ is standard	A One foot per second in MV	Air temperature 1°. Standard is 59° F.	Rear wind 1 mile Berhour	De Dercent in air density	Range setting for 1897	Range setting for M2 carriage	R Range
ท	n/a	yds.	yds.	yds.	yds.	yds.	m.	yds.	yds.
. 00	. 00	0	0. 0	0. 0	0. 0	0	85	-135	0
. 00 . 00 . 00 . 00	. 00 . 00 . 00 . 00	$ \begin{array}{r} -1 \\ -2 \\ -4 \\ -5 \end{array} $	+0. 1 +0. 2 +0. 3 +0. 4	0. 0 0. 0 0. 0 0. 0	0. 0 0. 0 0. 0 0. 0	0 0 -1 -1	170 270 360 445	$ \begin{array}{r} -30 \\ +75 \\ \hline 170 \\ \hline 270 \end{array} $	100 200 300 400
. 00	. 00	-6	+0.5	0. 0	0. 0	-1	530	380	500
. 00 . 00 . 00 . 00	. 00 . 00 . 00	$ \begin{array}{r} -7 \\ -7 \\ -8 \\ -8 \end{array} $	$ \begin{array}{r} +0.6 \\ +0.7 \\ +0.7 \\ +0.8 \end{array} $	$ \begin{array}{c} 0.0 \\ 0.0 \\ +0.1 \\ +0.1 \end{array} $	$ \begin{array}{c} +0.1 \\ +0.1 \\ +0.1 \\ +0.2 \end{array} $	$ \begin{array}{r} -2 \\ -2 \\ -2 \\ -2 \\ \end{array} $	615 700 785 870	490 600 700 800	600 700 800 900
. 00	. 00	-8	+0.9	+0.1	+0.2	-3	960	900	1000
. 00 . 00 . 00 . 00	. 00 . 00 . 00	$ \begin{array}{r} -9 \\ -9 \\ -9 \end{array} $	+0. 9 +1. 0 +1. 1 +1. 1	$ \begin{array}{r} +0.1 \\ +0.1 \\ +0.2 \\ +0.2 \end{array} $	$ \begin{array}{r} +0.3 \\ +0.3 \\ +0.4 \\ +0.4 \end{array} $	$ \begin{array}{r} -3 \\ -3 \\ -3 \\ -4 \end{array} $	1050 1140 1230 1320	1000 1100 1205 1305	1100 1200 1300 1400
. 00	. 00	-10	+1.2	+0.2	+0.5	-4	1410	1410	1500
. 00 . 00 +. 01 +. 01	. 00 . 00 01 01	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \end{array} $	+1. 3 +1. 3 +1. 4 +1. 5	+0. 2 +0. 2 +0. 3 +0. 3	+0. 5 +0. 6 +0. 7 +0. 8	$ \begin{array}{r} -4 \\ -5 \\ -5 \\ -6 \end{array} $	1510 1605 1700 1800	1520 1625 1725 1830	1600 1700 1800 1900
+. 01	- . 01	-10	+1.5	+0.3	+0.9	-6	1900	1935	2000
+. 01 +. 01 +. 01 +. 01	01 01 01 01	-9 -9 -9 -8	+1.6 +1.6 +1.6 +1.7	$+0.3 \\ +0.4 \\ +0.4 \\ +0.4$	+1. 0 +1. 1 +1. 2 +1. 3	$ \begin{array}{r} -6 \\ -7 \\ -7 \\ -8 \end{array} $	2000 2105 2205 2305	2040 2145 2250 2360	2100 2200 2300 2400
+. 01	- . 01	-8	+1.7	+0.5	+1.5	-8	2410	2470	2500
+. 01 +. 01 +. 02 +. 02	01 01 02 02	$ \begin{array}{r} -7 \\ -7 \\ -6 \\ -5 \end{array} $	+1.7 +1.7 +1.8 +1.8	$ \begin{array}{r} +0.5 \\ +0.6 \\ +0.6 \\ +0.7 \end{array} $	+1. 6 +1. 8 +1. 9 +2. 1	$ \begin{array}{r} -8 \\ -9 \\ -9 \\ -10 \end{array} $	2515 2615 2720 2825	2575 2685 2795 2905	2600 2700 2800 2900
+. 02	 02	-4	+1.8	+0.7	+2.3	-10	2930	3015	3000
+. 02 +. 02 +. 02 +. 02	02 02 02 02	$ \begin{array}{r} -3 \\ -2 \\ -1 \\ 0 \end{array} $	+1.8 +1.8 +1.9 +1.9	+0.8 +0.8 +0.9 +0.9	+2. 5 +2. 7 +2. 8 +3. 0	$ \begin{array}{r} -10 \\ -11 \\ -11 \\ -12 \end{array} $	3035 3140 3250 3360	3120 3230 3345 3460	3100 3200 3300 3400
+. 02	 02	0	+1.9	+1.0	+3.2	-12	3470	3570	3500
+. 02 +. 03 +. 03 +. 03 +. 03	02 03 03 03	$\begin{array}{c} +1 \\ +2 \\ +3 \\ +4 \\ +5 \end{array}$	+1. 9 +1. 9 +1. 9 +1. 9 +2. 0	+1. 0 +1. 1 +1. 1 +1. 2 +1. 3	+3. 4 +3. 6 +3. 7 +3. 9 +4. 1	$ \begin{array}{r} -13 \\ -13 \\ -14 \\ -14 \\ \hline -15 \end{array} $	3580 3685 3790 3895 4000	3680 3790 3900 4015 4125	3600 3700 3800 3900 4000

1	2	3	4	5	6	7	8	9	10	11	12	
	12		range	r 1-mil		Probable error		- 6	metro	Deflection effect		
R Range	五 Elevation	Fork	Change in elevation for 100-yard change in range	Change in range for 1-mil change in elevation	Lime of flight	ada Range	d Deflection	Slope of fall	Tine number of message	Dft.	A Lateral wind of 1	
yds.	妕	mí	πή	yds.	sec.	yds.	yds.	1/-	No.	n/n	n/n	
4000	128. 6	4	5. 2	19	10. 8	21	0	5. 0	1	R 4	. 3	
4100 4200 4300 4400	134. 0 139. 4 144. 8 150. 4	5 5 5 5	5. 4 5. 4 5. 6 5. 8	19 18 18 18	11. 2 11. 6 12. 0 12. 3	21 22 22 22 22	0 0 0 1	4. 8 4. 6 4. 4 4. 2	1 1 2 2	R 4 R 4 R 4 R 4	. 3	
4500	156. 2	5	5. 8	17	12. 7	23	1	4. 0	2	R 5	00.3	
4600 4700 4800 4900	162. 2 168. 2 174. 4 180. 6	6 6 6	6. 0 6. 0 6. 2 6. 4	17 17 16 16	13. 1 13. 5 13. 9 14. 3	23 24 24 25	1 1 1 1	3. 9 3. 7 3. 6 3. 5	2 2 2 2	R 5 R 5 R 5 R 5	.3	
5000	187. 0	6	6. 4	16	14. 7	25	1	3. 3	2	R 6	10.4	
5100 5200 5300 5400	193. 4 200. 0 206. 8 213. 6	7 7 7 8	6. 6 6. 6 6. 8 7. 0	15 15 15 14	15. 1 15. 6 16. 0 16. 4	26 26 27 27	1 1 1 1	3. 2 3. 1 3. 0 2. 9	2 2 2 2	R 6 R 6 R 6 R 7	. 4	
5500	220. 6	8	7. 0	14	16. 9	28	1	2. 8	2	R 7	70.5	
5600 5700 5800 5900	227. 8 235. 0 242. 4 250. 0	8 9 9	7. 2 7. 4 7. 6 7. 6	14 13 13 13	17. 3 17. 7 18. 2 18. 7	29 29 30 30	1 1 1 1	2. 7 2. 6 2. 5 2. 4	2 2 2 2 2	R 7 R 8 R 8 R 8	. 5	
6000	257. 6	10	7.8	13	19. 1	31	1	2. 3	3	R 9	. 5	
6100 6200 6300 6400	265. 6 273. 6 281. 8 290. 2	10 11 11 12	8. 0 8. 2 8. 4 8. 6	12 12 12 12	19. 6 20. 1 20. 5 21. 0	32 32 33 34	1 1 1 1	2. 3 2. 2 2. 1 2. 0	3 3 3	R 9 R 9 R 10 R 10	. 5 . 6 . 6	
6500	298. 8	12	8.8	11	21. 5	34	1	1. 98	3	R 11	0.6	
6600 6700 6800 6900	307. 6 316. 6 325. 8 335. 4	13 13 14 14	9. 0 9. 2 9. 4 9. 6	11 11 11 10	22. 0 22. 6 23. 1 23. 6	35 36 37 37	1 1 1 1	1. 92 1. 86 1. 80 1. 74	3 3 3	R 11 R 12 R 12 R 13	. 6 . 6 . 7 . 7	
7000	345. 2	15	9.8	10	24. 2	38	1	1. 68	3	R 13	. 7	
7100 7200 7300 7400	355. 2 365. 4 376. 0 386. 8	16 16 17 18	10. 0 10. 2 10. 6 10. 8	10 10 9 9	24. 7 25. 2 25. 8 26. 4	39 40 41 42	1 1 1 1 1	1. 63 1. 58 1. 53 1. 48	3 3 4	R 14 R 14 R 15 R 15 R 16	.7 .7 .8 .8	
7500	398. 0	19	11. 2	9	27. 1	43	1	1. 43	4		. 8	
7600 7700 7800 7900	409. 4 421. 2 433. 4 446. 0	21 22 23 24	11. 6 12. 0 12. 4 13. 0	9 8 8 8	27. 7 28. 3 29. 0 29. 7	44 45 46 47	1 1 1 1 1	1. 38 1. 34 1. 29 1. 25	4 4 4 4	R 16 R 17 R 18 R 19	.8	
8000	459. 2	26	13. 6	7	30. 4	48	1	1. 20	4	R 20	9	

^{*}Drift includes side jump.

13	14	15	16	17	18	19	20	21	1
Complementary angle of site for each		Range Effect of Increase of—						M2 car-	-7
+1 mil of site	-1 mil of site	One + in weight of projectiles Two++isstand- ard	A One foot per second in MV	ad Air temperature 1°. Standard is 59° F.	A Rear wind 1 mile B per hour	One percent in air density	Range setting for 1897 carriage (and models)	Range setting for M2 carriage	Range
n/n	n/n	yds.	yds.	yds.	yds.	yds.	m	yds.	yds.
+. 03	 03	+ 5	+2.0	+1.3	+ 4.1	-15	4000	4125	4000
+. 03 +. 03 +. 04 +. 04	03 03 04 04	+ 6 + 7 + 8 + 9	+2. 0 +2. 0 +2. 0 +2. 0	+1. 3 +1. 4 +1. 5 +1. 5	+ 4.3 + 4.5 + 4.7 + 4.9	$ \begin{array}{r} -15 \\ -16 \\ -16 \\ -17 \end{array} $	4105 4210 4320 4430	4240 4350 4455 4565	4100 4200 4300 4400
+. 04	04	+10	+2.0	+1.6	+ 5. 1	-17	4540	4680	4500
+. 04 +. 04 +. 05 +. 05	04 04 05 05	$+11 \\ +12 \\ +13 \\ +14$	+2. 0 +2. 0 +2. 1 +2. 1	+1. 6 +1. 7 +1. 8 +1. 9	+ 5. 3 + 5. 5 + 5. 7 + 5. 9	$ \begin{array}{r} -17 \\ -18 \\ -18 \\ -19 \end{array} $	4645 4750 4855 4955	4795 4910 5025 5140	4600 4700 4800 4900
+. 05	 05	+16	+2.1	+2.0	+ 6.2	-19	5060	5250	5000
+. 05 +. 05 +. 06 +. 06	05 05 06 06	$+17 \\ +18 \\ +20 \\ +21$	$ \begin{array}{r} +2.1 \\ +2.1 \\ +2.1 \\ +2.1 \\ \end{array} $	$ \begin{array}{r} +2.1 \\ +2.2 \\ +2.2 \\ +2.3 \end{array} $	$ \begin{array}{r} + 6.4 \\ + 6.7 \\ + 6.9 \\ + 7.1 \end{array} $	$ \begin{array}{r} -20 \\ -20 \\ -21 \\ -21 \\ \end{array} $	5165 5270 5375 5480	5360 5475 5590 5700	5100 5200 5300 5400
+. 06	 06	+22	+2.1	+2.4	+ 7.4	-22	5575	5815	5500
+. 07 +. 07 +. 07 +. 08	07 07 07 08	+23 +24 +26 +27	+2. 1 +2. 1 +2. 2 +2. 2	+2. 5 +2. 6 +2. 6 +2. 7	+ 7. 6 + 7. 9 + 8. 1 + 8. 3	$ \begin{array}{r} -22 \\ -23 \\ -23 \\ -24 \end{array} $		5935 6050 6165 6275	5600 5700 5800 5900
+. 08	08	+28	+2.2	+2.8	+ 8.6	$\frac{-25}{25}$		6385	6000
+. 09 +. 09 +. 10 +. 10	09 09 10 10	$ \begin{array}{r} +29 \\ +31 \\ +32 \\ +34 \end{array} $	+2. 2 +2. 2 +2. 2 +2. 2	+2. 9 +3. 0 +3. 0 +3. 1	+ 8.8 + 9.1 + 9.3 + 9.5	$ \begin{array}{r} -25 \\ -26 \\ -26 \\ -27 \end{array} $		6500 6615 6730 6840	6100 6200 6300 6400
+. 11	 11	+35	+2.2	+3. 2	+ 9.8	-27	ng	6955	6500
+. 11 +. 12 +. 13 +. 14	11 12 12 13	$+36 \\ +37 \\ +39 \\ +40$	$ \begin{array}{r} +2.3 \\ +2.3 \\ +2.3 \\ +2.3 \end{array} $	+3. 3 +3. 4 +3. 4 +3. 5	+10.0 $+10.3$ $+10.5$ $+10.8$	$ \begin{array}{r} -28 \\ -28 \\ -29 \\ -29 \\ \end{array} $	Quadrant aiming	7070 7185 7300 7415	6600 6700 6800 6900
+. 15	 14	+41	+2.3	+3.6	+11.1	-30	adr	7530	7000
+. 16 +. 17 +. 18 +. 19	14 15 16 17	+42 +44 +45 +47	+2. 3 +2. 4 +2. 4 +2. 4	+3. 7 +3. 8 +3. 8 +3. 9	+11. 4 +11. 7 +11. 9 +12. 2	$ \begin{array}{r} -30 \\ -31 \\ -31 \\ -32 \\ \end{array} $	o Qui	7640 7760 7870 7985	7100 7200 7300 7400
+. 20	18 10	+48	+2.4	+4.0	+12.5	-33		8095	7500
+. 21 +. 23 +. 25 +. 27	19 20 21 23	+49 +51 +52 +54	+2. 4 +2. 5 +2. 5 +2. 5	$\begin{array}{r} +4.1 \\ +4.2 \\ +4.2 \\ +4.3 \end{array}$	+12.8 $+13.1$ $+13.4$ $+13.7$	$ \begin{array}{r} -33 \\ -34 \\ -34 \\ -35 \end{array} $		8205 8315 8425 8535	7600 7700 7800 7900
+. 30	 25	+55	+2.5	+4.3	+14.0	-36		8640	8000

TABLE B
Change in velocity due to change in temperature of powder—

Temperature of powder, F.	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second	-51	-44	-37	-29	-22	-15	-8	0	+8	+16	+25

Table C

Cant of carriage axle, deflection effect in mils due to—

Range, yardsCant of 10 mils, effect	1000 0. 2	2000 0. 4	4000 1. 3		
Range, yardsCant of 10 mils, effect	7000 3. 5	8000 4. 8	9000 7. 7	9000 10. 4	40 . l

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

SECTION IV

FIRING TABLES, 155-MM HOWITZER

Characteristics 155-mm howitzer, M1917, M1917A1, M1918, and M1918A1, firing HE shell Mk. I (narrow band)

155-MM HOWITZER

Diameter of the bore between lands	inches	6. 102
Diameter of the bore between grooves	inches	6. 178
Total length of howitzer	inches	91.81
Length of rifled portion		68. 39
Travel of projectile		69.88
Capacity of powder chamber	_cubic inches	425
Number of grooves	a supplied to	48
Character of rifling	uniform	twist
Maximum pressure for which howitzer		Cambers
signed		30,000

273090°-40-5

155-MM HOWITZER CARRIAGE

Total traverse (one-half on each side)mils	105
Least possible elevationmils	0
Greatest possible elevationmils	752.6
Traverse for one turn of traversing handwheelmils	0.41
Change in elevation for one turn of elevating hand-	
wheelmils	4.0
Horizontal site settingmils	300

PROJECTILE-MEAN WEIGHT OF FUZED PROJECTILE IN POUNDS

P. D. fuzes, M46 and M47

Variations in weight are indicated by markings stenciled on the projectile as follows:

CHARGES (HE SHELL, MK. I, NARROW BAND, FUZES, M46 AND M47*) FOR WHICH TABLES ARE NOT INCLUDED HEREIN

CHARGE 1 Muzzle velocity: 680 f/s.

Powder charge: Charge consists of base section No. 1.
The cartridge cloth is dyed green. The igniter pad is on the rear end of the base section.

Maximum range: 4255 yards.

CHARGE 2 Muzzle velocity: 742 f/s.

Powder charge: Charge consists of base section and one increment, numbered respectively 1 and 2. The cartridge cloth is dyed green. The igniter pad is on the rear end of the base section.

Maximum range: 4910 yards.

CHARGE 7 Muzzle velocity: 1478 f/s.

> Powder charge: Charge consists of base section and two increments, numbered respectively 5, 6, and 7. (Some M2 charges in storage are in 7 sections.) The cartridge cloth is white. The igniter pad is on the rear end of the base section.

Maximum range: 12,295 yards.

*Fuzes Mk. III and Mk. IV and shrapnel and chemical shell may also be used with this weapon. Tables and characteristics for these are not included herein.

CHARGE 3

(MV 832 f/s)

Powder charge: Charge consists of base section and two increments, numbered respectively 1, 2, and 3. The cartridge cloth is dyed green. The igniter pad is on the rear end of the base section.

Maximum range: 5990 yards.

(Data for ranges 0-5990 included herein.)

Digitized by Google

TABLE A

1	2	3	4	5	6	7	8	9	10
	127 - 12 14			17-12-16			ACKES IN		Y 4 . 1
			Change in elevation for 100- yard change in range	Change in range for 1-mil change in elevation		Probabl	e error		Line number of metro message
			for ang	tion					otro
			in i	ge f leva					Ü
			leve	ran in e	t	· 自然的			er of
	a		in e	in	flig	A Participation	g	fall	mpe
9	Elevation	State .	ard	nge	Time of flight	9	Deflection	Slope of fall	nu (
Range	Slev	Fork	Jhan y	Jha	Lin Lin	Range	Def	Slop	Cine
R	El	F	c	1 mil	Time	e _{pr}	e _{pd}	Slope	Line
yds.	T/A	πή	πή	yds.	sec.	yds.	yds.	1/—	No.
0	-5.8	2	7. 0	14	0.0	8	0		1
100	+1.2 8.4	2	7. 2	14	0. 4	8	0	140	1
200 300	8. 4 15. 6	2	7. 2	14 14	0.7	8888	0 0 0	70 46	1 1 1
400	23. 0	2 2 2 2	7. 2 7. 2 7. 2 7. 2	14	0. 4 0. 7 1. 1 1. 4	8	ŏ	35	i
500	30. 2	2	7. 2	14	1.8	8	0	28	1
600	37. 6	2	7.4	14	2. 2 2. 6 2. 9 3. 3	9	0	23	1 1 1 1
700 800	44. 8	2	7. 4 7. 4	13 13	2.6	9 9	0	19. 7 17. 2	1
900	44. 8 52. 2 59. 8	2 2 3 3	7. 4	13	3. 3	9	0 0 0	17. 2 15. 2	i
1000	67. 2	3	7.4	13	3. 7	9	0	13. 6	1
1100	74. 8 82. 2 89. 8	3	7. 4 7. 6 7. 6 7. 6	13	4. 1 4. 5 4. 8 5. 2	10	0	12. 3 11. 2 10. 3 9. 5	1 1 1 1
1200	82. 2	3	7. 6	13	4.5	10	0	11. 2	1
1300 1400	97. 6	3 3 3 3	7. 6	13 13	5. 2	10 10 10	0 0 0 1	9. 5	1
1500	105. 4	3	7.8	13	5. 6	10	1	8. 9	1
1600	113. 2	4	7. 8 7. 8 8. 0 8. 0	13	6. 0	11	1	8. 3 7. 7 7. 2 6. 8	1
1700	121. 0	4	7.8	13 12	6. 4	11 11	1	7.7	1
1800 1900	128. 8 136. 8	4 4	8. 0	12	6. 4 6. 7 7. 1	12	1 1 1 1	6.8	1 1 1 1
2000	145. 0	4	8. 2	12	7. 5	12	1	6. 4	1
2100	153. 0		8. 2	12	7. 9	12	1	6. 1	1
2200	161. 2	5555	8. 2 8. 4 8. 4 8. 6	12	7. 9 8. 3 8. 7 9. 1	13	1 1 1 1	6. 1 5. 8 5. 5 5. 2	1 1 1 1
2300 2400	169. 6 178. 0	5	8. 6	12 12	9. 1	13 13	1	5. 2	i
2500	186. 6	5	8. 6	12	9. 5	14	1	5. 0	1
2600	195. 2	6	8.8	11	9. 9	14	1	4.7	1
2700	204. 0	6	8.8	11	10. 3	15	1	4.5	1
2800 2900	212. 8 221. 8	6	9. 0 9. 0	11	10. 8 11. 2	15 16	1 1	4. 3 4. 1	1 1
3000	230. 8	6	9. 2	11	11. 6	16	1	4. 0	1
3100	240. 0	7	9. 2	11	12. 1	17	1	3. 8	1
3200	249. 4	7	9.4	10	12. 5	17	1	3. 7	2
3300 3400	259. 0 268. 8	7 7	9. 6 9. 8	10 10	13. 0 13. 4	17	1 1	3. 5 3. 4	2 2 2
3500	278. 6	7	10. 0	10	13. 9	18	1	3. 2	2
3600	288. 6	8	10. 2	10	14. 4	19		3. 1	
3700	299. 0	8	10. 4	10	14. 9	19	2	2.9	2
3800 3900	309. 6	8 9	10. 6 10. 8	9 9	15. 4 15. 9	19 20	2 2 2 2	2. 8 2. 7	2 2 2 2
4000	320. 4	9	11. 2	9	16. 4	20	2	2. 6	2

11	12	13	14	15	16	17	18	19	1
Deflectio	n effect		mentary site for		Range e	ffect of incr	ease of—		
Drift	Lateral wind of 1 mile per hour(+)	+1 mil of site	-1 mil of site	weight of projectile. Four square is standard	One foot per second in MV	Air temperature 1°. Standard is 59° F.	Rear wind 1 mile per hour	One percent in air density	Range
Dft.*	W-D	+		Wt.	VE	Temp.	W-R	Den.	R
m/	m	nú	n/n	yds.	yds.	yds.	yds.	yds.	yds.
L 4	0. 0	. 00	. 00	0	0. 0	0. 0	0. 0	0	0
L 4 L 4 L 4 L 4	0. 0 0. 0 0. 0 0. 0	. 00 . 00 . 00 . 00	.00	$ \begin{array}{r} -1 \\ -2 \\ -3 \\ -4 \end{array} $	+0. 2 +0. 4 +0. 7 +0. 9	0. 0 0. 0 0. 0 0. 0	0. 0 0. 0 0. 0 0. 0	0 0 0	100 200 300 400
L 3	0. 0	. 00	. 00	-5	+1.1	0. 0	+0.1	0	500
L 3 L 3 L 3 L 3	0. 0 0. 0 0. 0 0. 0	. 00 . 00 . 00	. 00 . 00 . 00	$ \begin{array}{r} -6 \\ -7 \\ -8 \\ -9 \end{array} $	$+1.3 \\ +1.6 \\ +1.8 \\ +2.1$	0. 0 0. 0 0. 0 0. 0	$+0.1 \\ +0.1 \\ +0.1 \\ +0.2$	0 0 0 0	600 700 800 900
L 2	0. 0	+. 01	01	-10	+2.3	0. 0	+0.2	0	1000
L 2 L 2 L 2 L 2	0. 0 0. 0 0. 0 0. 0	+. 01 +. 01 +. 02 +. 02	01 01 01 01	$ \begin{array}{r} -11 \\ -12 \\ -12 \\ -13 \end{array} $	+2.5 +2.7 +3.0 +3.2	0. 0 0. 0 0. 0 0. 0	+0. 2 +0. 2 +0. 3 +0. 3	0 0 0	1100 1200 1300 1400
L 1	0. 1	+. 02	01	-14	+3.4	0. 0	+0.3	0	1500
L 1 L 1 L 1	0. 1 0. 1 0. 1 0. 1	+, 02 +. 02 +. 03 +. 03	01 01 02 02	$ \begin{array}{r} -15 \\ -16 \\ -17 \\ -18 \end{array} $	+3. 6 +3. 8 +4. 1 +4. 3	0. 0 0. 0 0. 0 0. 0	+0.3 +0.4 +0.4 +0.4	-1 -1 -1 -1	1600 1700 1800 1900
0	0. 1	+. 03	02	-19	+4.5	0. 0	+0.4	-1	2000
0 0 R 1 R 1	0. 1 0. 1 0. 1 0. 1	+. 04 +. 04 +. 04 +. 05	02 03 03 03	$ \begin{array}{r} -20 \\ -21 \\ -21 \\ -22 \\ \end{array} $	+4. 7 +4. 9 +5. 2 +5. 4	0. 0 0. 0 0. 0 0. 0	+0.5 +0.5 +0.5 +0.6	-1 -1 -1 -1	2100 2200 2300 2400
R 1	0. 1	+. 05	04	-23	+5.6	0.0	+0.6	-1	2500
R 1 R 2 R 2 R 2	0. 1 0. 1 0. 1 0. 1	+. 06 +. 06 +. 07 +. 07	04 05 06 06	$ \begin{array}{r} -24 \\ -25 \\ -25 \\ -26 \end{array} $	+5.8 +6.0 +6.2 +6.4	0. 0 0. 0 0. 0 0. 0	+0.6 +0.7 +0.7 +0.8	$ \begin{array}{r} -2 \\ -2 \\ -2 \\ -2 \end{array} $	2600 2700 2800 2900
R 2	0. 1	+. 08	 07	-27	+6.6	0. 0	+0.8	-2	3000
R 2 R 3 R 3 R 3	0. 1 0. 1 0. 1 0. 1	+. 08 +. 09 +. 09 +. 10	08 08 09 10	$ \begin{array}{r} -28 \\ -28 \\ -29 \\ -29 \\ \end{array} $	+6. 8 +7. 0 +7. 2 +7. 4	0. 0 0. 0 0. 0 0. 0	+0.8 +0.9 +0.9 +1.0	$ \begin{array}{r} -2 \\ -2 \\ -2 \\ -3 \\ \end{array} $	3100 3200 3300 3400
R 3	0. 1	+. 11	<u> 11</u>	-30	+7.6	0.0	+1.0	-3	3500
R 4 R 4 R 4 R 5	0. 1 0. 1 0. 1 0. 1	+. 12 +. 13 +. 14 +. 15	12 13 14 15	$ \begin{array}{r} -31 \\ -31 \\ -32 \\ -32 \end{array} $	+7.8 $+8.0$ $+8.2$ $+8.4$	0. 0 0. 0 0. 0 0. 0	$+1.1 \\ +1.1 \\ +1.2 \\ +1.2$	$ \begin{array}{r} -3 \\ -3 \\ -3 \\ -4 \end{array} $	3600 3700 3800 3900
R 5	0. 1	+. 16	16	-33	+8.6	-0.1	+1.3	-4	4000

^{*}Drift includes side jump.

1	2	3	4	5	6	7	8	9	10
			ange	or 1-mil		Probab	le error		tro mes-
B Range	Elevation	Fork	Ohange in elevation for 100- yard change in range	Change in range for 1-mil	Time of flight	d Range	pd Deflection	Slope of fall	Line number of metro message
yds.	n/n	n/n	m	yds.	sec.	yds.	yds.	1/-	No.
4000	331. 4	9	11. 2	9	16. 4	20	2	2. 6	2
4100 4200 4300 4400	342. 6 354. 0 365. 8 378. 0	9 10 10 10	11. 4 11. 6 12. 0 12. 4	9 8 8 8	16. 9 17. 5 18. 0 18. 6	21 21 21 21 22	2 2 2 2	2. 5 2. 4 2. 3 2. 2	2 2 2 2
4500	390. 6	11	12. 8	8	19. 1	22	2	2. 2	2
4600 4700 4800 4900	403. 6 417. 2 431. 2 445. 8	11 12 13 14	13. 2 13. 8 14. 4 15. 0	7 7 7 7	19. 7 20. 3 20. 9 21. 5	23 23 24 24 24	2 2 2 2	2. 1 2. 0 1. 95 1. 87	3 3 3
5000	461. 2	15	15. 8	6	22. 1	25	2	.1.79	3
5100 5200 5300 5400	477. 4 494. 6 513. 0 532. 8	17 19 21 23	16. 8 17. 8 19. 0 20. 6	6 6 5 5	22. 8 23. 5 24. 3 25. 1	26 26 27 27	2 2 2 2 2	1. 72 1. 64 1. 57 1. 49	3 3 3
5500	554. 4	25	22. 8	4	26. 0	28	2	1. 42	3
5600 5700 5800 5900	578. 4 605. 8 638. 0 684. 0	28 34 43	25. 4 29. 2 36. 0	4 3 3	26. 9 28. 0 29. 3 30. 8	28 29 30 31	3 3 3 3	1. 34 1. 26 1. 17 1. 07	3 4 4 4
5990	773. 0				34. 1	32	4	0. 89	5
60									
GUIS NUTS			6 1 43)			12 - 13 40 - 19 50 - 19	30 I		
						10 - 49 70 - 30			
ento i fig. felfug. felfug.							60 A		
						16 110			

11	12	13	14	15	16	17	18	19	1
Deflection	on effect	Completangle of each	mentary site for		Range effe	ct of increa	se of—		
Drift	Lateral wind of 1 mile per hour(+)	+1 mil of site	-1 mil of site	One square in weight of projectile. Four square is standard	A One foot per second in MV	Air temperature 1°. Standard is 59° F.	A Rear wind 1 mile B per hour	One percent in air density	A Range
Dft.*	W-D		ηń	Wt.	yds.	Temp.	yds.	yds.	yds.
m/	<u>n</u> 0. 1	m/ + . 16	— <u>т</u> — . 16	yds. -33	$\frac{\text{yds.}}{+\ 8.\ 6}$	-0.1	$\frac{\text{yus.}}{+1.3}$	<u>yus.</u> — 4	4000
R 5 R 6 R 6 R 6	0. 1 0. 1 0. 2 0. 2	+ . 17 + . 19 + . 21 + . 23	17 18 19 21 23	$ \begin{array}{r} -34 \\ -35 \\ -35 \\ -36 \\ \end{array} $	+ 8.8 + 9.0 + 9.3 + 9.5	-0. 1 -0. 1 -0. 1 -0. 1 -0. 1	+1. 3 +1. 4 +1. 4 +1. 5 +1. 5	- 4 - 4 - 4 - 5 - 5	4100 4200 4300 4400 4500
R 7 R 8 R 8 R 8 R 9	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	+ . 27 + . 29 + . 32 + . 36	25 27 29 32	-38 -38 -39 -39	+ 9. 9 +10. 1 +10. 3 +10. 5	-0. 1 -0. 1 -0. 1 -0. 1	+1. 6 +1. 6 +1. 7 +1. 7	- 5 - 5 - 6 - 6	4600 4700 4800 4900
R 10 R 11 R 11 R 12 R 12	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	+ . 41 + . 46 + . 52 + . 60 + . 71	36 40 45 51 58		+10. 7 +10. 9 +11. 1 +11. 3 +11. 5	$ \begin{array}{r rrr} -0.1 \\ -0.1 \\ -0.1 \\ -0.1 \\ -0.1 \end{array} $	$ \begin{array}{r} +1.8 \\ +1.9 \\ +2.0 \\ +2.0 \\ +2.1 \end{array} $	- 6 - 6 - 7 - 7 - 7	5000 5100 5200 5300 5400
R 13 R 14 R 15 R 17 R 19	0. 2 0. 3 0. 3 0. 3 0. 3	+ . 84 +1. 01 +1. 36 +2. 72	68 80 95 -1. 18 -1. 60		+11. 7 +11. 9 +12. 1 +12. 2 +12. 3	$ \begin{array}{r r} -0.1 \\ -0.1 \\ -0.1 \\ -0.1 \\ -0.1 \end{array} $	+2. 2 +2. 3 +2. 5 +2. 7 +3. 0	- 8 - 8 - 9 - 9	5500 5600 5700 5800 5900
R 23	0. 3		-3. 09	-43	+12.4	-0, 1	+3.6	-10	5990
									• 44

^{*} Drift includes side jump.

 $\begin{tabular}{ll} T_{ABLE} & B \\ \hline \end{tabular}$ Change in velocity due to change in temperature of powder—

Temperature of pow- der, F	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second	-19	-17	-14	-12	-9	-6	-3	0	+3	+6	+9

 $\begin{tabular}{ll} Table C \\ Cant of carriage axle, deflection effect in mils due to— \end{tabular}$

Range, yards	1000	2000	3000	4000	4500	5000
Cant of 10 mils, effect	0. 7	1. 5	2. 4	3. 4	4. 1	4. 9

Range, yards	5000	5500	5600	5700	5800	5900	5990
Cant of 10 mils, effect	4. 9	6. 1	6. 5	6. 9	7. 3	8. 0	9. 7

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

CHARGE 4

(MV 939 f/s)

Powder charge: Charge consists of base section and three increments, numbered respectively 1, 2, 3, and 4. The cartridge cloth is dyed green. The igniter pad is on the rear end of the base section. Maximum range: 7360 yards.

(Data for ranges 3000—7000 included herein.)

Digitized by Google

TABLE A

1 1	2	3	4	TABLE 5	6	7	8	9	10
	-	-		100	751				
	All S	1	Change in elevation for 100- yard change in range	Change in range for 1-mil change in elevation		Probabl	e error		metro
-0.00		W 400	rang	for		100000			
			vatic se in	nge		The state of		The state of	number of message
			n ele hang	n ra ge in	ight	51/5		II.	HIP Hes
	tion		ge ir	ge i hang	Time of flight	9.	Deflection	Slope of fall	
R Range	Elevation	Fork	ys ys	Jhan c	rime	Range	Defle	Slope	Line
R	El	F	c	1 mil	Time	epr	e _{pd}	Slope	Line
yds.	n/a	n/n	n/n	yds.	sec.	yds.	yds.	1/-	No.
3000	178. 2	4	6. 8	15	10. 3	16	2	5. 1	1
3100	185. 0	5	7.0	14	10. 7	17	2	4. 9	1
3200 3300	192. 0 199. 0	5 5	7. 0 7. 0	14 14	11. 1 11. 4	17 17	2 2 2 2	4.6	1
3400	206. 2	5	7. 2	14	11.8	18		4. 4	1
3500	213. 4	5	7. 2	14	12. 2	18	2	4. 2	1
3600 3700	220. 6 228. 0	6 6	7. 4 7. 4	14 13	12. 6 13. 0	19 19	2 2 2 2	4. 1 3. 9	2 2 2 2
3800	235. 4	6	7. 6	13 13	13. 4 13. 8	19 20	2	3. 9 3. 8 3. 7	2
3900	243. 0 250. 8	6	7. 6	13	14. 2	20	2	3. 5	2
4100	258. 6	7	7.8	13	14. 6	21		3. 4 3. 3	
4200	266. 4	7 7	8. 0 8. 0	13 12	15. 0 15. 4	21 21	2 2 2 2	3. 3	2 2 2 2
4300 4400	274. 4 282. 6	7	8. 2	12	15.8	22		3. 2 3. 1	
4500	291. 0	7	8. 4	12	16. 3	22	2	3. 0	2
4600 4700	299. 4 308. 0	8 8 8	8. 4 8. 6	12 12	16. 7 17. 2	23 23	2 2 2 2	2. 9 2. 8 2. 7 2. 7	2 2 2 2
4800	316. 6	8	8.8	11	17. 6	23	2	2.7	2
4900	325. 4	9	9. 0	11	18. 1	24 24	2	2. 6	2
5000 5100	334. 4 343. 6	9	9. 2	11	19. 0	25	3	The second second second	
5200	352. 8	10	9. 4	11	19. 5	25	3 3 3	2. 5 2. 4 2. 3	2 3 3 3
5300 5400	362. 4 372. 2	10 11	9. 6 10. 0	10 10	20. 4	25 26	3	2. 3	
5500	382. 2	11	10. 2	10	20. 9	26	3	2. 2	3
5600	392. 4	12	10. 4	10	21. 4 21. 9	27 27	3 3	2. 1 2. 1	3 3
5700 5800	403. 0 413. 8	12 12	10. 6	9 9	22. 4	27	3	2. 00	3
5900	425. 0	13	11. 4	9	22. 9	28	3	1. 94	3
6000	436. 6	13	11. 8	9	23. 5	28	3	1. 88	3
6100 6200	448. 6 461. 0	14 14	12. 2 12. 6	8 8	24. 7	29	3	1. 76	3
6300	473. 8	15	13. 2 13. 8	8 7	25. 3 25. 9	29 30	3 3	1. 70 1. 64	3 3 3
6400	487. 2 501. 4	16	14. 6	7	26. 6	30	3	1. 58	3
6600	516. 4	18	15. 6	6	27. 3	31	3	1. 52	4
6700	532. 4	20 22	16. 8 18. 2	6 6	28. 1 28. 9	31 31	3 4	1. 46 1. 40	4 4
6800 6900	549. 6	25	20. 0	5	29. 7	32	4	1. 34	4
7000	590. 0	29	22. 4	5		32	4	1. 28	4

11	12	13	14	15	16	17	18	19	1
Deflection	on effect		mentary te for each		Range eff	ect of incr	ease of-	. A Section	in mall
Duit.*	Lateral wind of 1 mile	+1 mil of site	-1 mil of site	One square in weight of projectile. Four square is standard	A One foot per second in	ad Air temperature 1°. Standard is 59° F.	A Rear wind 1 mile per hour	Den percent in air density	A Range
n/a	n/a	n/n	竝	yds.	yds.	yds.	yds.	yds.	yds.
R 1	0. 1	+. 04	04	-26	+5.6	+0.2	+1.2	-2	3000
R 1 R 1 R 2 R 2	0. 1 0. 1 0. 1 0. 1	+. 04 +. 05 +. 05 +. 06	04 05 05 06	-27 -27 -28 -28	+5. 8 +5. 9 +6. 1 +6. 2	+0. 2 +0. 2 +0. 2 +0. 2	+1.3 +1.3 +1.4 +1.4	-2 -2 -2 -2	3100 3200 3300 3400
R 2	0. 1	+. 06	06	-29	+6.4	+0.2	-1.5	-3	3500
R 2 R 3 R 3 R 3	0. 1 0. 1 0. 1 0. 1	+. 06 +. 07 +. 07 +. 08	06 07 07 08	$ \begin{array}{r} -30 \\ -30 \\ -31 \\ -31 \end{array} $	+6. 6 +6. 7 +6. 9 +7. 0	+0. 2 +0. 2 +0. 2 +0. 2	$+1.6 \\ +1.6 \\ +1.7 \\ +1.7$	-3 -3 -3 -3	3600 3700 3800 3900
R 3	0. 1	+. 08	 08	-32	+7.2	+0.3	+1.8	-3	4000
R 3 R 4 R 4 R 4	0. 1 0. 1 0. 1 0. 1	+. 09 +. 09 +. 10 +. 10	09 09 10 10	$ \begin{array}{r} -33 \\ -33 \\ -34 \\ -34 \end{array} $	+7. 4 +7. 5 +7. 7 +7. 8	+0.3 +0.3 +0.3 +0.3	+1.9 $+2.0$ $+2.0$ $+2.1$	-4 -4 -4 -4	4100 4200 4300 4400
R 4	0. 1	+. 11	11	-35	+8.0	+0.3	+2.2	-4	4500
R 5 R 5 R 5 R 6	0. 1 0. 1 0. 1 0. 1	+. 12 +. 13 +. 14 +. 15	12 13 13 14	-35 -36 -36 -37	+8. 2 +8. 3 +8. 5 +8. 6	+0.3 +0.3 +0.3 +0.3	+2.3 +2.3 +2.4 +2.4	-5 -5 -5 -5	4600 4700 4800 4900
R 6	0. 2	+. 16	 15	-37	+8.8	+0.3	+2.5		5000
R 6 R 7 R 7 R 7	0. 2 0. 2 0. 2 0. 2	+. 17 +. 18 +. 19 +. 20	16 17 18 19	-38 -38 -39 -39	+9. 0 +9. 2 +9. 3 +9. 5	+0. 3 +0. 4 +0. 4 +0. 4	$+2.6 \\ +2.6 \\ +2.7 \\ +2.7$	$ \begin{array}{r} -6 \\ -6 \\ -6 \\ -6 \end{array} $	5100 5200 5300 5400
R 7	0. 2	+. 22	 20	-40	+9.7	+0.4	+2.8	-7	5500
R 7 R 8 R 8 R 9	0. 2 0. 2 0. 2 0. 2	+. 24 +. 26 +. 28 +. 30	21 22 24 26	-41 -41 -42 -42	+9.9 +10.1 +10.2 +10.4	+0. 4 +0. 4 +0. 4 +0. 4	+2. 9 +2. 9 +3. 0 +3. 0	-7 -7 -7 -8	5600 5700 5800 5900
R 9	0. 2	+. 32	 28	-43	+10.6	+0.4	+3.1	-8	6000
R 9 R 10 R 10 R 11	0. 2 0. 2 0. 2 0. 2	+. 35 +. 38 +. 42 +. 46	30 33 36 40	-44 -44 -45 -45	+10.8 +11.0 +11.1 +11.3	+0.4	+3. 2 +3. 2 +3. 3 +3. 3	-8 -9 -9 -9	6100 6200 6300 6400
R 11	0. 2	+. 51	44	<u>-46</u>	+11.5	+0.4	+3.4	-10	6500
R 12 R 13 R 13 R 14	0. 2 0. 2 0. 3 0. 3	+. 58 +. 66 +. 77 +. 92	49 56 65 75	-46 -47 -47 -48	+11. 7 +11. 9 +12. 1 +12. 3	$+0.3 \\ +0.3$	+3. 5 +3. 5 +3. 6 +3. 6	-10 -10 -11 -11	6600 6700 6800 6900
R 15	0. 3	+1.19	87	-48	+12.5	+0.3	+3.7	-12	7000

^{*}Drift includes side jump.

Table B
Change in velocity due to change in temperature of powder—

Temperature of pow- der, F.	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second	-18	-16	-14	-12	-9	-6	-3	0	+3	+6	+9

TABLE C

Cant of carriage axle, deflection effect in mils due to—

Range, yards	1000	2000	3000	4000	5000	6000	6500
Cant of 10 mils, effect	0. 6	1. 2	1.8	2. 6	3. 5	4. 6	5. 4

Range yards	6500	7000	7100	7200	7300	7360
Cant of 10 mils, effect	5. 4	6. 6	7. 0	7. 4	8. 1	9. 3

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

CHARGE 5 of a special week to the

(MV~1083~f/s)

Powder charge: M1A1. Charge M1A1 consists of base section and four increments, numbered respectively 1, 2, 3, 4, and 5. The cartridge cloth is dyed green. The igniter pad is on the rear end of the base section.

Powder charge: M2. Charge M2 consists of base section, Number 5. (Some M2 charges in storage are in 7 sections.) The cartridge cloth is white. The igniter pad is on the rear end of the base section.

273090°-40--7

For firing Charge 5, either Charge M1A1 or Charge M2, prepared as shown in the figure, may be used but preferably the former.

Maximum range: 9295 yards.

(Data for ranges 5000-9000 included herein)

ABBREVIATED FIRING TABLES TABLE A

1	02	3	*#4	5	6	.7 51	8	9	10
		***	Change in elevation for 100- yard change in range	Change in range for 1-mil change in elevation		Probab	le error	AND SECTION AS	Line, number of metro message
		2	nge in elevation for yard change in range	for			100		metr
722	3		evat ige i	ange 1 ele	3			1.4	of 1
	Ti i	12	n ele	n r	ight		1 1	=	ber
	tion	Figure 1	ge i	han	of fl		tion	of fa	nnu
Range	Elevation	Fork	han	han	Time of flight	Range	Deflection	Slope of fall	ine.
R	El	F	C	1 mil	Time	e _{pr}	e _{pd}	Slope	Lin
yds.	nh	mí	mí	yds.	sec.	yds.	yds.	1/-	No
5000	250. 2	8	6. 4	16	16. 0	30	3	3. 4	2
5100	256. 6	8	6. 4	16	16. 4	31	3	3. 3	2
5200 5300	263. 0 269. 6	8	6. 6 6. 6	15 15	16. 7 17. 1	31 31	3 3 3	3. 3	2 2 2 2
5400	276. 2	8	6. 8	15	17. 5	32	3	3. 1	2
5500	282. 8	9	6. 8	15	17. 9	32	3	3. 0	2
5600 5700	289. 6 296. 4	9	6. 8 7. 0 7. 0 7. 2	15 14	18. 3 18. 7	33 33	3 3	2. 9 2. 8 2. 8 2. 7	2 2 2 3
5800	303. 4	10	7. 0	14	19. 1	34	3	2. 8	2
5900	310. 4	10	7. 2	14	19. 5	34	3 3	2. 7	3
6000	317. 6	10	7. 2	14	19. 9	34	3	2. €	3
6100 6200	324. 8 332. 2	10 10	7. 4 7. 4 7. 6	14 14	20. 3 20. 7	35 35	3	2. 6 2. 5 2. 4 2. 4	3
6300	339. 8	11	7. 6	13	21. 2	36	3 3	2. 4	3
6400	347. 4	11	7. 6	13	21. 6	36		2. 4	3
6500	355. 0 362. 8	11	7.8	13	22. 0 22. 5	37	3	2. 3	3
6700	370. 8	12 12	8. 0	12	22. 9 23. 4	37	3	2. 3	3
6800 6900	379. 0 387. 2	12 13	7. 8 8. 0 8. 2 8. 2	12 12	23. 4 23. 8	38 38	4	2. 3 2. 2 2. 1 2. 1	3 3 3
7000	395. 6	13	8. 4	12	24. 3	39	4	2. 0	3
7100	404. 2	14	8. 6	12	24. 7	39	4	1. 99	3
7200	413. 0	14	8. 8	11	25. 2	40	4	1. 94	3
7300 7400	421. 8 431. 0	15 15	9. 0 9. 2	11 11	25. 7 26. 2	40	4 4	1. 89 1. 85	3
7500	440. 4	16	9. 4	11	26. 7	41	4	1. 80	3
7600	450. 0		9. 6		27. 2	42	4	1. 75	3
7700 7800	459. 8 470. 0		9. 8 10. 2	10	27. 8 28. 3	42 42	4 4	1. 71 1. 66	4
7900	480. 4	18	10. 6	10	28. 9	43	4	1. 62	4
8000	491. 2	19	11. 0	9	29. 4	43	4	1. 57	4
8100	502. 4	20	11. 4	9	30. 0	44	4	1. 53	4
8200 8300	514. 0 526. 0	21 22	11. 8 12. 4	8	30. 6 31. 3	44 45	4	1. 49 1. 44	4
8400	538. 6	23	13. 0	8	31. 9	45	5	1. 40	4
8500	552. 0	25	13. 8	7	32. 6	46	5	1. 36	4
8600	566. 2	27	14. 6	7	33. 3	46	5	1. 32	4 5
8700 8800	581. 2 597. 6	29 32	15. 6 17. 0	6	34. 1 34. 9	46 47	5 5	1. 27 1. 23	5
8900	615. 4	36	18. 8	5	35. 7	47	5	1. 18	5
9000	635. €	41	21. 6	5	36. 7		-		5
	gast mont Lower of	02 1 X 1 I	d swindu d agreda	47	ALL MARKET	MAKE WE		ekinderek Merikan Merikan di	
of hos	oogl	0		48				Origina	l from
II DY	$\mathbf{U} \mathbf{V} \mathbf{V} \mathbf{I}$						0.16.100.70	RSITY OF	

11	12	13	14	15	16	17	18	19	20	1
Deflection	n effect		emen- ngle of r each			ge effect o	of increase	of—		
Drift	A Lateral wind of 1 mile Der hour (+)	+1 mil of site	-1 mil of site	A One square in weight of projectile. Four square is standard	One square in weight of projectile. Four square is standard	A One foot per second in MV	Air temperature 1°.	Rear wind 1 mile per	u one percent in air density	Range
m	m	ná	mí	yds.	yds.	yds.	yds.	yds.	yds.	
R 5	0. 2	+. 08	$\frac{1}{08}$	-28	$\frac{\text{yus.}}{-12}$	+6.2	+3.0	+4.4		yds.
R 5 R 6 R 6 R 6	0. 2 0. 2 0. 2 0. 2	+. 08 +. 09 +. 09 +. 10	08 09 09 10	-29 -29 -29 -30	$ \begin{array}{r} -12 \\ -12 \\ -12 \\ -12 \end{array} $	$ \begin{array}{r} +6.3 \\ +6.4 \\ +6.5 \\ +6.6 \end{array} $	+3. 1 +3. 1 +3. 2 +3. 2	+4. 5 +4. 6 +4. 8 +4. 9	$ \begin{array}{r} -6 \\ -6 \\ -7 \\ -7 \\ -7 \\ \end{array} $	5000 5100 5200 5300 5400
R 6	0. 2	+. 10	<u>—. 10</u>	-30	-12	+6.7	+3.3	+5.0	-7	5500
R 6 R 7 R 7 R 7	0. 2 0. 2 0. 2 0. 2	+. 11 +. 11 +. 12	10 11 11 12	$ \begin{array}{r} -30 \\ -30 \\ -31 \\ -31 \end{array} $	$ \begin{array}{r} -12 \\ -12 \\ -12 \\ -12 \end{array} $	$+6.8 \\ +6.9 \\ +7.0 \\ +7.1$	+3. 4 +3. 4 +3. 5 +3. 5	+5.1 $+5.3$ $+5.4$ $+5.6$	-8 -8 -8 -9	5600 5700 5800 5900
R 7	0. 2	+. 12	−. 12	-31	-13	+7.2	+3.6	+5.7	-9	6000
R 7 R 7 R 8 R 8	0. 2 0. 2 0. 2 0. 2	+. 14 +. 14	13 14 14	$ \begin{array}{r} -31 \\ -32 \\ -32 \\ -32 \end{array} $	$ \begin{array}{r} -13 \\ -13 \\ -13 \\ -13 \end{array} $	+7.3 $+7.4$ $+7.5$ $+7.6$	+3. 6 +3. 7 +3. 7 +3. 8	$+5.8 \\ +6.0 \\ +6.1 \\ +6.3$	$ \begin{array}{r} -9 \\ -10 \\ -10 \\ -10 \end{array} $	6100 6200 6300 6400
R 8	0. 2	+. 15	15	-32	-13	+7.7	+3.8	+6.4	-10	6500
R 8 R 9 R 9 R 9	0. 2 0. 2 0. 2 0. 2	+. 16 +. 16 +. 17 +. 18		-33 -33 -33 -33	$ \begin{array}{r} -13 \\ -13 \\ -13 \\ -13 \end{array} $	+7. 8 +7. 9 +8. 0 +8. 1	$+3.8 \\ +3.9 \\ +3.9 \\ +4.0$	$+6.5 \\ +6.6 \\ +6.8 \\ +6.9$	-11 -11 -11 -11	6600 6700 6800 6900
R 9	0. 2	+. 19	19	-33	-13	+8.2	+4.0	+7.0	-12	7000
R 10 R 10 R 10 R 10	0. 2 0. 2 0. 2 0. 2	+. 20 +. 21 +. 22 +. 24	20 21 22 24	$ \begin{array}{r} -34 \\ -34 \\ -34 \\ -34 \end{array} $	$-13 \\ -13 \\ -13 \\ -13$	+8.3 +8.5 +8.6 +8.7	$egin{pmatrix} +4.&0 \\ +4.&1 \\ +4.&1 \\ +4.&2 \\ \hline \end{smallmatrix}$	$+7.1 \\ +7.2 \\ +7.4 \\ +7.5$	$ \begin{array}{r} -12 \\ -12 \\ -12 \\ -13 \end{array} $	7100 7200 7300 7400
R 10	0. 2	+. 26	−. 25	-34	-12	+8.8	+4.2	+7.6	-13	7500
R 11 R 11 R 11 R 12	0. 2 0. 2 0. 3 0. 3	+. 28 +. 30 +. 32 +. 34	28 30 32	-35 -35 -35 -36	$ \begin{array}{r} -12 \\ -12 \\ -12 \\ -12 \end{array} $	+8.9 $+9.0$ $+9.1$ $+9.2$	$+4.2 \\ +4.2 \\ +4.3 \\ +4.3$	+7. 7 +7. 8 +7. 9 +8. 0	-13 -14 -14 -14	7600 7700 7800 7900
R 12	0. 3		34	-36	-12	+9.4	+4.3	+8.1	-15	8000
R 12 R 13 R 13 R 14	0. 3 0. 3 0. 3 0. 3	+. 41 +. 45 +. 49 +. 53	39 42 46	$ \begin{array}{r} -36 \\ -37 \\ -37 \\ -37 \\ \end{array} $	$ \begin{array}{r} -12 \\ -12 \\ -12 \\ -12 \end{array} $	$+9.5 \\ +9.6 \\ +9.8 \\ +9.9$	+4.3 $+4.3$ $+4.4$ $+4.4$	+8. 2 +8. 3 +8. 3 +8. 4	$ \begin{array}{r} -15 \\ -15 \\ -16 \\ -16 \end{array} $	8100 8200 8300 8400
R 14	0. 3	+. 58		-37		+10.0	+4.4	+8.5	-17	8500
R 15 R 15 R 16 R 16	0. 3 0. 3 0. 3 0. 3	+. 63 +. 69 +. 78 +. 96	64 72 81	-38 -38 -38 -39	$-12 \\ -12 \\ -12$	$+10.2 \\ +10.3 \\ +10.5 \\ +10.7$	+4. 4 +4. 4 +4. 4 +4. 4	+8. 6 +8. 7 +8. 7 +8. 8	$ \begin{array}{r} -17 \\ -18 \\ -18 \\ -19 \end{array} $	8600 8700 8800 8900
R 17	0. 3	+1.39	 94	-39	-12	+10.8	+4.4	+8.8	-19	9000

Drift includes side jump.
These values are to be used with propelling charge M1A1 (green bag).
These values are to be used with propelling charge M2 (white bag).

Table B

Change in velocity due to change in temperature of powder—

Temperature of pow- der, F.	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second. Propelling Charge M1A1 (green bag)	-17	-15	-13	-10	- 8	-5	-3	0	+2	+5	+ 8
Change in velocity, feet per second. Propelling Charge M2 (white bag)	-27	-23	-20	-16	-12	-8	-4	0	+4	+8	+12

TABLE C

Cant of carriage axle, deflection effect in mils due to—

Range, yards	1000	2000	3000	4000	5000	6000	7000
Cants of 10 mils, effect	0. 4	0. 9	1. 4	2. 0	2. 6	3. 3	4.2
Range, yards	7000	8000	8500	9000	9100	9200	9295
Cant of 10 mils, effect	4. 2	5. 3	6. 1	7. 3	7. 6	8. 1	9. 4

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

N. A. R. T

released to extracte, and Francis of an astrolly all second ?

· Trible	11	100	(se)	er kun	it.	law.	est.	21	6	verse for applications of
The second second	4		X 1							Allega of special control of spe
San Anna Carlo		•								The Found opense of the Control of t

or an expensive has the search against to a say

CORNER DEFE	10.8 800 Liber	and the second of the second second
100 100		Public Committee
essa (essa	son the set	e de la companya de l

ides for the control of the control of the control of the section of the section of the control of the control

CHARGE 6

(MV 1359 f/8)

Powder charge: Charge consists of base section and one increment, numbered 5 and 6 respectively. (Some M2 charges in storage are in 7 sections.) The cartridge cloth is white. The igniter pad is on the rear end of the base section.

Maximum range: 11,460 yards.

(Data for ranges 7000—11,000 included herein.)

TABLE A

1	2	3	4	5	6	7	8	9	10
			-	1950	(3h)				
N . r c restouen	el aga k	n iii maa	Change in elevation for 100- yard change in range	Change in range for 1-mil change in elevation	700	Probab	le error	ula sala	metro
ALTO PROPERTY	ta ai a	over a fo	on fo	for	- Amyla	Days I were	a bris	a beam	Sec
i lisa s	alistei l	of T	yvati ge ir	ange i ele	n on bro	rine o	or (ections	number of message
			n ele	in rage ir	ligh	and ad	lo be	fall	nes
0	Elevation		ige i	ige i	Time of flight	Heel	Deflection	moni	in it.
Range	cleve	Fork	Jhan	Jhan	Pime	Range	Defle	Slope of	Line
R	El	F	c	1 mil	Time	epr	epd	Slope	Line
yds.	ηή	n/n	m	yds.	sec.	yds.	yds.	1/-	No.
7000	290. 0	9	6. 0	16_	20. 9	35	5	2. 7	3
7100 7200	296. 0 302. 2	10 10	6. 2 6. 2	16 16	21. 3 21. 7	35 36	5 5	2. 6 2. 5 2. 5 2. 4	3 3 3 3
7300	308. 4	10	6. 2	16	22. 1	36	5 5	2. 5	3
7400	314. 8	10	6.4	16	22. 5	37			A CONTRACTOR OF THE PARTY OF TH
7500 7600	321. 2 327. 6	10	6. 4	15 15	22. 9 23. 2	37	5 5	2.4	3
7700	334. 2	11	6. 6	15	23. 6	38	5 5	2. 3 2. 3 2. 2 2. 2	3
7800 7900	340. 8 347. 4	11 11	6. 6 6. 6	15 15	24. 0 24. 4	38 39	5 5	2. 2	3 3 3
8000	354. 2	11	6. 8	15	24. 9	39	5	2. 1	3
8100	361. 0	12	6. 8	14	25. 3	39	5 5	2. 1	
8200 8300	368. 0 375. 0	12 12	7. 0 7. 0	14 14	25. 7 26. 2	40 40	5	2. 0 1. 99	3 3 3 3
8400	382. 0	12	7. 0	14	26. 6	41	5 5	1. 95	3
8500	389. 2	12	7. 2	14	27. 0	41	5	1. 91	3
8600	396. 4	13 13	7. 2 7. 4	14 13	27. 5 27. 9	41 42	5	1. 87 1. 83	4
8700 8800	403. 8 411. 4	13	7.6	13	28. 4	42	5 5 5 6	1. 79	4 4 4
8900	419. 0	13	7. 6	13	28. 8	43		1. 75	
9000	426. 6	14	7. 8	13	29. 3	43	6	1. 72	4
9100 9200	434. 4 442. 4	14 15	7. 8 8. 0	13 12	29. 8 30. 3	43 44	6 6	1. 68 1. 64	4 4
9300	450. 4	15 16	8. 0 8. 2 8. 2	12 12	30. 7 31. 2	44 45	6 6	1. 61 1. 58	4 4 4
9400	458. 6 467. 0	16	8. 4	12	31. 7	45	6	1. 54	4
9600	475. 6	17	8. 6	11	32. 2	45	6	1. 51	4
9700	484. 4	17	8.8	11	32. 7	46	6	1.48	4 5
9800 9900	493. 4 502. 6	18 18	9. 0 9. 2	11	33. 3 33. 8	46 47	6 6	1. 44 1. 41	5 5
10000	512. 0	19	9. 6	10	34. 3	47	6	1. 38	5
10100	521. 6	19	10. 0	10	34. 9	47	7	1. 35	5
10200 10300	531. 6 542. 2	20 21	10. 4	10 9	35. 5 36. 1	48 48	7 7	1. 32 1. 29	5 5
10400	553. 4	22	11. 4	9	36. 7	49	7	1. 26	5
10500	565. 0	24	12. 0	8	37. 3	49	7	1. 22	5
10600 10700	577. 2 590. 2	25 26	12. 8 13. 6	8 7	38. 0 38. 7	49 50	7 7	1. 19 1. 16	5 6
10800	604. 2	28	14. 6	7	39. 5	50	7	1. 12	6
10900	619. 2	31	15. 8	6	40. 3	50	8	1. 09	6
11000	635. 6	35	17. 4	6	41. 2	50	8	1. 05	. 0

-05--- *000ETS

11	12	wo 130	14	15	16	17	ool 18 mi	19	1
Deflection	n effect	Complemangle of site		i i i i	Range	effect of inc	crease of—	e erute	indust.
Drift	Lateral wind of 1 mile per hour (+)	+1 mil of site	-1 mil of site	One square in weight of projectile. Four square is standard	One foot per second in MV	Air temperature 1°. Standard is 59° F.	Rear wind 1 mile per hour	One percent in air density	Range
Dft.*	W-D			Wt.	VE	Temp.	W-R	Den.	R
n/n	m	m	n/a_	yds.	yds.	yds.	yds.	yds.	yds.
R 6	0. 3	+. 10	<u> 10</u>	<u>-6</u>	+5.6	+3.6	+7.4	-16	7000
R 6 R 7 R 7 R 7	0. 3 0. 3 0. 3 0. 3	+. 10 +. 10 +. 11 +. 11	10 10 11 11	$ \begin{array}{r} -6 \\ -6 \\ -5 \\ \hline -5 \end{array} $	+5. 6 +5. 7 +5. 7 +5. 8	+3.7 +3.8 +3.9 +4.0	+7. 6 +7. 8 +7. 9 +8. 1	$ \begin{array}{r} -17 \\ -17 \\ -18 \\ -18 \end{array} $	7100 7200 7300 7400
R 7	0. 4	+. 11	11	-5	+5.8	+4.1	+8.3	-18	7500
R 7 R 8 R 8 R 8	0. 4 0. 4 0. 4 0. 4	+. 12 +. 12 +. 13 +. 13	12 12 13 13	$ \begin{array}{r} -5 \\ -4 \\ -4 \\ -4 \end{array} $	+5. 8 +5. 9 +5. 9 +6. 0	+4. 2 +4. 3 +4. 3 +4. 4	+8. 5 +8. 6 +8. 8 +9. 0	$ \begin{array}{r} -19 \\ -19 \\ -19 \\ -20 \end{array} $	7600 7700 7800 7900
R 8	0.4	+. 13	 13	-3	+6.0	+4.5	+9.2	-20	8000
R 8 R 9 R 9 R 9	0. 4 0. 4 0. 4 0. 4	+. 13 +. 14 +. 14 +. 15	13 14 14 15	-3 -3 -3 -2	+6.0 $+6.1$ $+6.1$ $+6.2$	+4.6 +4.7 +4.7 +4.8	+9. 4 +9. 6 +9. 7 +9. 9	$ \begin{array}{r} -21 \\ -21 \\ -21 \\ -22 \end{array} $	8100 8200 8300 8400
R 9	0. 4	+. 15	 15	-2	+6.2	+4.9	+10.1	-22	8500
R 9 R 10 R 10 R 10	0. 4 0. 4 0. 4 0. 4	+. 16 +. 16 +. 17 +. 17	16 16 17 17	$ \begin{array}{r} -2 \\ -1 \\ -1 \\ 0 \end{array} $	$+6.2 \\ +6.2 \\ +6.3 \\ +6.3$	+5. 0 +5. 0 +5. 1 +5. 1	$+10.3 \\ +10.5 \\ +10.7 \\ +10.9$	$ \begin{array}{r} -23 \\ -23 \\ -24 \\ -24 \end{array} $	8600 8700 8800 8900
R 10	0.4	+. 18	 18	0	+6.3	+5.2	+11.1	-24	9000
R 10 R 11 R 11 R 11	0. 4 0. 4 0. 4 0. 4	+. 19 +. 20 +. 21 +. 22	19 20 20 21	$0 \\ 0 \\ +1 \\ +1$	$+6.3 \\ +6.4 \\ +6.4 \\ +6.5$	+5. 3 +5. 3 +5. 4 +5. 4	+11. 3 +11. 5 +11. 7 +11. 9	$ \begin{array}{r} -25 \\ -25 \\ -26 \\ -26 \end{array} $	9100 9200 9300 9400
R 11	0.4	+. 23	 22	+1	+6.5	+5.5	+12.1	-27	9500
R 12 R 12 R 12 R 13	0. 4 0. 4 0. 4 0. 4	+. 25 +. 27 +. 29 +. 31	23 25 27 28	$+1 \\ +2 \\ +2 \\ +3$	$+6.5 \\ +6.6 \\ +6.6 \\ +6.7$	+5. 6 +5. 6 +5. 7 +5. 7	+12. 3 +12. 5 +12. 7 +12. 9	-27 -28 -28 -29	9600 9700 9800 9900
R 13	0. 5	+. 33	<u> 30</u>	+3	+6.7	+5.8	+13.1	-29	10000
R 13 R 14 R 14 R 15	0. 5 0. 5 0. 5	+. 36 +. 40 +. 44 +. 49	32 35 38 41	+3 +4 +4 +5	+6. 8 +6. 9 +6. 9	+5. 9 +5. 9 +6. 0 +6. 0	+13. 3 +13. 5 +13. 8 +14. 0	-30 -30 -31 -31	10100 10200 10300 10400
R 15	0.5	+. 56	<u> 45</u>	+5	+7.0	+6.1	+14.2	-32	10500
R 16 R 16 R 16 R 17	0. 5 0. 5 0. 5 0. 5	+. 64 +. 73 +. 84 +1. 00	50 56 63 72	$+5 \\ +6 \\ +6 \\ +7$	+7. 0 +7. 1 +7. 1 +7. 2	$ \begin{array}{r} +6.2 \\ +6.2 \\ +6.3 \\ +6.3 \end{array} $	+14. 4 +14. 6 +14. 9 +15. 1	$ \begin{array}{r} -32 \\ -33 \\ -33 \\ -34 \end{array} $	10600 10700 10800 10900
R 17	0. 5	+1.24	83	+7	+7.2	+6.4	+15.3	-35	11000

^{*}Drift includes side jump.

Table B

Change in velocity due to change in temperature of powder—

Temperature of pow- powder, F.	0	10	20	30	40	50	60	70	80	90	100
Change in velocity, feet per second	-37	-32	-27	-21	-16	-11	-5	0	+5	+11	+16

Table C

Cant of carriage axle, deflection effect in mils due to—

Range, yards	1000	2000	3000	4000	5000	6000	7000	8000	9000
Cant of 10 mils, effect_	0. 3	0. 6	1. 0	1. 4	1. 9.	2. 4	3. 0	3. 7	4. 5

Range, yards	9000	10000	10500	11000	11100	11200	11300	11400	11460
Cant of 10 mils, effect.	4. 5	5. 6	6. 3	7. 3	7. 6	7. 9	8. 3	8. 9	10. 0

Note.—Right wheel above left causes left deflection effect.

The deflection due to cant is automatically compensated for by cross leveling the sight, and this table is to be used only in the event the sight cannot be so used.

APPENDIX I DATA CORRECTION SHEET

Target:	Date:	Hour				
Matériel:						
INITIAL DATA	CORRECTIONS	S, MAP RA	NGE:			
Map range yar	Altitude of MDI	P=	00 fe			
Altitude of target fee	t Temperature of a	air=	_° F.			
Altitude of battery "	Line No. of mess	age=				
Height of target= "	Wind direction.		00 n	ails		
(/) yar	ds Wind velocity	=	_ MP	PΗ		
Site mil	B Density	=	— %			
Site correction = "	Battery	feet	_ MD	P		
Corrected site "	{100 feet above	$=2^{\circ} \text{ F. t}$ =3 % o	emp. density	,}		
Map shift = BD	Cor. temp. =	- 59 =	0			
Drift correction =	Cor. dens. =	<u>-100</u> =	%			
Correction, weather =	WIND C	OMPONEN	Т8			
Initial deflection = BD	Direction of wind	d=	00 m	ail s		
$Map range = . El_{-} =$	(Add 6400 if nece	(Add 6400 if necessary)				
Site =	Direction of fire_	=	00	"		
Range correction =	I	Chart direction 00 "				
Initial Q El=	Cross wind for 1					
	= Range wind for 1	Range wind for 1 MPH= DEFLECTION				
CHECK ADJUSTMENT	DEF					
Adj Df on Ck Pt BD Less Initial Df =	Known valu	ues Uni		R		
Correction BD	Cross wind=					
(Correct laying by this amount ar						
record new base deflection.)	\	RANGE				
Initial Q El	Known valu	es Uni	· 1 1	_		
Less Adj Q El=	Wt. of proj=		-			
Elevation change=	$- \left \begin{array}{c} \text{Old } VE_{} = \end{array} \right $			· · ·		
Range change = X =	Pow. temp.=		-			
VE -change = $\frac{\text{Range change}}{\text{range effect of 1 f/s}}$	f/s			1		
	Air temp=	= °F.				
= /= f/s Old <i>VE</i> = "	Rn. wind=	=				
New <i>VE</i>	MPH		_ .			
	Density=	= %	_ .			
	Totals		<u> </u>			
	Net effect, yards_		=			
	Correction =		mils			
273090°—40—— 9	55					

DATA CORRECTION SHEET

Target: Check point Date	e: <u>2/18/39</u> Hour: 6:00 AM			
Matériel: 75-mm M2 Shell Mark I, No	rmal Charge, Fuze M46.			
INITIAL DATA	CORRECTIONS, MAP RANGE: 4600			
Map range = 4575 yards	Altitude of MDP = 12 00 feet			
Altitude of target = 1665 feet	Temperature of air = 35 ° F.			
Altitude of battery = 1505 "	Line No. of message 2			
Height of target = + 160 "	Wind direction = 59 00 mils			
(160/3) = + 53 yards	Wind velocity= 29 MPH			
Site $53/4.6 = + 11.5$ mils	Density= 96 %			
Site correction= + 0.5 "	Battery 300 feet above MDP			
Corrected site = + 12.0 "	$\begin{cases} 100 \text{ feet above} =2^{\circ} \text{ F. temp.} \\ " " =3 \% \text{ density} \end{cases}$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cor. temp. = $34 - 59 = -25^{\circ}$			
Drift correction = L 5	Cor. dens. = $95 - 100 = \frac{5\%}{}$			
Correction, weather R 7	WIND COMPONENTS			
Initial deflection BD R 52	Direction of wind = 59 00 mils			
Map range = 4575 . El = 160.7	(Add 6400 if necessary)			
Site + 12.0	Direction of fire = 49 00 "			
Range correction = + 2.6	Chart direction = 10 00 "			
Initial Q El = 175. 3	Cross wind for 1 MPH=L83			
	Range wind for 1 MPH =			
CHECK ADJUSTMENT	DEFLECTION			
Adj Df on Ck Pt BD R 56	Known values Unit L R			
Less Initial Df R 52	effect 12 1t			
Correction BD R 4	Cross wind=L 24			
(Correct laying by this amount and	MPH			
record new base deflection.)	RANGE			
Initial Q El = 175. 3	Known values $\begin{vmatrix} \text{Unit} \\ \text{effect} \end{vmatrix} + \begin{vmatrix} - \end{vmatrix}$			
Less Adj Q El = 173. 2	Wt. of proj. = ++++11 11			
Elevation change 2.1	Old $VE_{} = +32 \text{ f/s} +2.0 64$			
Range change $=$ $\underbrace{2.1 \times 17}_{\text{Parabolic points}}$ $\underbrace{+ 36}_{\text{Parabolic points}}$	Pow. temp. = 40° F. =			
$VE \text{ change} = \frac{\text{Range change}}{\text{range effect of 1 f/s}}$				
= 36/2.0= +18 f/s	Air temp. =25° F			
Old VE = +32 "	Rn. wind==16			
New VE =+50 "	MPH +5.3 85			
	Density= -5% -17 85 Totals 160 205			
	Net effect, yards = -45			
	Correction = 45/17 = +2.6 mils			
	o and a second s			

Appendix II DATA CORRECTION SHEET

APPENDIX III
CONDENSED TABLE OF MAXIMUM ORDINATES (feet)

75-mm gun			155-mm howitzer				
Range yards	Shrapnel, 21	Shell Mk. I, fuzes M46	Shell Mk. I, fuze M46 and M47				
seconds, nor- mal charge	and M47, normal charge	Charge 3	Charge 4	Charge 5	Charge 6		
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000	16 75 213 451 814 1347 2129 3257 5055	16 79 229 501 930 1569 2507 3943 7010	54 229 551 1079 1970	42 178 423 806 1375 2231 3769	46 153 339 624 1032 1597 2378 3498 5430	20 95 236 450 782 1218 1795 2545 3518 4822	

APPENDIX IV EQUIVALENT EROSION EFFECTS

75-mm gun						
Projectile	Number of rounds equiva- lent in erosion effect to one round full charge	Equivalent erosion effects in decimals				
Shrapnel Shell Mk. I nor-	1	1				
mal charge	2	.5				
Shell Mk. I re- duced charge	30	.033				
155-mm howitzer						
Charge	Number of rounds equiva- lent in erosion effect to one full charge	Equivalent erosion effects in decimals				
1 2 3 4 5 6 7	120 70 40 20 10 3	. 0083 . 014 . 025 . 050 . 10 . 3				

[A. G. 062.11 (9-5-40).]

By order of the Secretary of War:

G. C. MARSHALL, Chief of Staff.

OFFICIAL:

E. S. ADAMS,

Major General,

The Adjutant General.