Final Project

→ Big Mart Sales Prediction

- ▼ We will be following the list of content given below:
 - 1. Problem Statement
 - 2. Hypothesis Generation
 - 3. Loading Packages and Data
 - 4. Data Structure and Content
 - 5. Exploratory Data Analysis
 - 6. Univariate Analysis

 - 7. Bivariate Analysis
 - 8. Missing Value Treatment
 - 9. Feature Engineering
 - 10. Encoding Categorical Variables
 - 11. Label Encoding
 - 12. One Hot Encoding
 - 13. PreProcessing Data
 - 14. Modeling
 - 15. Linear Regression
 - 16. Regularized Linear Regression
 - 17. RandomForest
 - 18. XGBoost 19. Summary

▼ 1. <u>Problem Statement</u>:

The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined. The aim of this data science project is to build a predictive model and find out the sales of each product at a particular store.

Using this model, BigMart will try to understand the properties of products and stores which play a key role in increasing sales.

1.1 The Data

We have two csv files, one is train (8523) and second is test (5681) data sets consisting of 12 features, train data set has both input and output variable. We need to predict the sales for test data set.

Variable	Description
Item_Identifier	Unique product ID
Item_Weight	Weight of product
Item_Fat_Content	Whether the product is low fat or not
Item_Visibility	The % of total display area of all products in a store allocated to the particular product
Item_Type	The category to which the product belongs
Item_MRP	Maximum Retail Price (list price) of the product
Outlet_Identifier	Unique store ID
Outlet_Establishment_Year	The year in which store was established
Outlet_Size	The size of the store in terms of ground area covered
Outlet_Location_Type	The type of city in which the store is located
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket
<pre>Item_Outlet_Sales</pre>	Sales of the product in the particulat store. This is the outcome variable to be predicte

▼ 2. <u>Hypothesis Generation</u>:

Store Level Hypotheses:

- 1. City type: Stores located in urban or Tier 1 cities should have higher sales because of the higher income levels of people there.
- 2. Population Density: Stores located in densely populated areas should have higher sales because of more demand.
- 3. Store Capacity: Stores which are very big in size should have higher sales as they act like one-stop-shops and people would prefer getting everything from one place.
- 4. Competitors: Stores having similar establishments nearby should have less sales because of more competition.
- 5. Marketing: Stores which have a good marketing division should have higher sales as it will be able to attract customers through the right offers and advertising.
- 6. Location: Stores located within popular marketplaces should have higher sales because of better access to customers. 7. Customer Behavior: Stores keeping the right set of products to meet the local needs of customers will have higher sales.
- 8. Ambiance: Stores which are well-maintained and managed by polite and humble people are expected to have higher footfall and thus higher sales.

Product Level Hypotheses:

- 1. Brand: Branded products should have higher sales because of higher trust in the customer.
- 2. Packaging: Products with good packaging can attract customers and sell more.
- 3. Utility: Daily use products should have a higher tendency to sell as compared to the specific use products.
- 4. Display Area: Products which are given bigger shelves in the store are likely to catch attention first and sell more.
- 5. Visibility in Store: The location of product in a store will impact sales. Ones which are right at entrance will catch the eye of customer first rather than the ones in back.
- 6. Advertising: Better advertising of products in the store will should higher sales in most cases.
- 7. Promotional Offers: Products accompanied with attractive offers and discounts will sell more.

Variable	Relation to hypotheses
Item_Identifier	ID variable
Item_Weight	Not considered in any hypothesis
Item_Fat_Content	Linked to 'utility' hypothesis. Low fat items are generally used more than others
Item_Visibility	Linked to 'Displat Area' hypothesis
Item_Type	More inferences about 'Utility' can be derived from this
Item_MRP	Not considered in any hypothesis
Outlet_Identifier	ID variable
Outlet_Establishment_Year	Not considered in any hypothesis
Outlet_Size	Linked to 'Store Capacity' hypothesis
Outlet_Location_Type	Linked to 'City Type' hypothesis
Outlet_Type	Linked to 'Store Capacity' hypothesis
<pre>Item_Outlet_Sales</pre>	Outcome or target variable

▼ 3. Loading Packages and Data:

from google.colab import drive

drive.mount('/content/drive') Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). import numpy as np import pandas as pd

11/24/23, 5:49 PM

import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns

from scipy.stats import mode

from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.tree import DecisionTreeRegressor

from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor

from xgboost import XGBRegressor

train = pd.read_csv('/content/drive/MyDrive/major project/Train.csv')
train.head()

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	Item_Visibility	<pre>Item_Type</pre>	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	<pre>Item_Outlet_Sales</pre>
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.1380
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.2700
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN	Tier 3	Grocery Store	732.3800
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052

test = pd.read_csv('/content/drive/MyDrive/major project/Test.csv')
test.head()

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	<pre>Item_Visibility</pre>	<pre>Item_Type</pre>	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type
0	FDW58	20.750	Low Fat	0.007565	Snack Foods	107.8622	OUT049	1999	Medium	Tier 1	Supermarket Type1
1	FDW14	8.300	reg	0.038428	Dairy	87.3198	OUT017	2007	NaN	Tier 2	Supermarket Type1
2	NCN55	14.600	Low Fat	0.099575	Others	241.7538	OUT010	1998	NaN	Tier 3	Grocery Store
3	FDQ58	7.315	Low Fat	0.015388	Snack Foods	155.0340	OUT017	2007	NaN	Tier 2	Supermarket Type1
4	FDY38	NaN	Regular	0.118599	Dairy	234.2300	OUT027	1985	Medium	Tier 3	Supermarket Type3

It is generally a good idea to combine both train and test data sets into one to perform feature engineering and then divide them

later again. This saves the trouble of performing the same steps twice on test and train.

Let's combine them into a dataframe df with a source column specifying where each observation belongs.

train['source'] = 'train'
test['source'] = 'test'

Combining both the data sets.
df = pd.concat([train, test], ignore_index = True)
df.head()

Outlet_Type Item_Outlet_Sales source Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Identifier Outlet_Establishment_Year Outlet_Size Outlet_Location_Type 9.30 0.016047 Dairy 249.8092 OUT049 Tier 1 Supermarket Type1 0 FDA15 Low Fat Medium 3735.1380 train DRC01 5.92 0.019278 Soft Drinks 48.2692 2009 443.4228 Regular OUT018 Tier 3 Supermarket Type2 train Medium 2 0.016760 FDN15 17.50 Low Fat Meat 141.6180 OUT049 1999 Medium Tier 1 Supermarket Type1 2097.2700 train 3 FDX07 19.20 Regular 0.000000 Fruits and Vegetables 182.0950 OUT010 1998 NaN **Grocery Store** 732.3800 train NCD19 8.93 Low Fat 0.000000 Household 53.8614 OUT013 1987 High Tier 3 Supermarket Type1 994.7052 train

df.tail()

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	Item_Visibility	<pre>Item_Type</pre>	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	<pre>Item_Outlet_Sales</pre>	source
14199	FDB58	10.5	Regular	0.013496	Snack Foods	141.3154	OUT046	1997	Small	Tier 1	Supermarket Type1	NaN	test
14200	FDD47	7.6	Regular	0.142991	Starchy Foods	169.1448	OUT018	2009	Medium	Tier 3	Supermarket Type2	NaN	test
14201	NCO17	10.0	Low Fat	0.073529	Health and Hygiene	118.7440	OUT045	2002	NaN	Tier 2	Supermarket Type1	NaN	test
14202	FDJ26	15.3	Regular	0.000000	Canned	214.6218	OUT017	2007	NaN	Tier 2	Supermarket Type1	NaN	test
14203	FDU37	9.5	Regular	0.104720	Canned	79.7960	OUT045	2002	NaN	Tier 2	Supermarket Type1	NaN	test

▼ 4. <u>Data Structure and Content</u>:

```
print ('The shape of train data:', train.shape)
print ('The shape of test data:', test.shape)
print ('The shape of concatenated dataset df:', df.shape)

The shape of train data: (8523, 13)
The shape of test data: (5681, 12)
The shape of concatenated dataset df: (14204, 13)
```

df.columns

▼ 5. Exploratory Data Analysis:

df.info(memory_usage = 'deep')

memory usage: 7.4 MB

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14204 entries, 0 to 14203
Data columns (total 13 columns):
# Column
                            Non-Null Count Dtype
---
                            -----
                            14204 non-null object
0 Item_Identifier
                            11765 non-null float64
1 Item_Weight
2 Item_Fat_Content
                            14204 non-null object
3 Item_Visibility
                            14204 non-null float64
                            14204 non-null object
4 Item_Type
                            14204 non-null float64
    Item_MRP
                            14204 non-null object
    Outlet_Identifier
    Outlet_Establishment_Year 14204 non-null int64
                            10188 non-null object
8 Outlet_Size
9 Outlet_Location_Type
                            14204 non-null object
10 Outlet_Type
                            14204 non-null object
11 Item_Outlet_Sales
                            8523 non-null float64
12 source
                            14204 non-null object
dtypes: float64(4), int64(1), object(8)
```

```
11/24/23, 5:49 PM
   # Checking for missing values, if any.
   df.isnull().sum()
        Item_Identifier
        Item_Weight
                                   2439
        Item_Fat_Content
        Item_Visibility
        Item_Type
        Item_MRP
        Outlet_Identifier
                                      0
        Outlet_Establishment_Year
                                     0
        Outlet_Size
                                   4016
        Outlet_Location_Type
                                      0
        Outlet_Type
                                   5681
        Item_Outlet_Sales
        source
        dtype: int64
```

- ▼ From the analysis above, we have the following information:
 - Item_Weight has 2439 (17.2%) missing values.
 - Outlet_Size has 4016 (28.3%) missing values.
 - The Item_Outlet_Sales is the target variable and missing values are ones in the test set. So, we need not worry about it. But, we'll impute the missing values in Item_Weight and Outlet_Size.

df.describe()

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	<pre>Item_Outlet_Sales</pre>
count	11765.000000	14204.000000	14204.000000	14204.000000	8523.000000
mean	12.792854	0.065953	141.004977	1997.830681	2181.288914
std	4.652502	0.051459	62.086938	8.371664	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.710000	0.027036	94.012000	1987.000000	834.247400
50%	12.600000	0.054021	142.247000	1999.000000	1794.331000
75%	16.750000	0.094037	185.855600	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

- ▼ Some observations:
 - The lower 'count' of Item_Weight shows the presence of missing values.
 - Item_Visibility has a min value of 0. It makes no practical sense as because when a product is being sold in a store, the visibility cannot be 0.
 - Item_MRP has Q3 (third quartile) as 185.86 and maximum value as 266.89 which may indicate that there is a presence of outliers.
 - Outlet_Establishment_Years vary from 1985 to 2009. If we can convert the years to how old the particular store is, it should have a better impact on sales.
 - The lower 'count' of Item_Outlet_Sales shows the presence of missing values.

```
for column in df.columns:
  print('----',column,'----')
  print(df[column].value_counts(),'\n')
   ----- Item_Identifier ------
   FDM22 10
   NCH42
   NCT18
   FDX13
   DRG37
   FDM10
   FDS22
   FDM50
   FDL50
   FDM52
   Name: Item_Identifier, Length: 1559, dtype: int64
   17.600
   12.150
   10.500
           123
   13.650
           115
   11.800
           113
   5.210
   7.960
   4.615
   9.035
   7.850
   Name: Item_Weight, Length: 415, dtype: int64
   ----- Item_Fat_Content -----
   Low Fat 8485
            4824
   Regular
   LF
             522
             195
   reg
   low fat 178
   Name: Item_Fat_Content, dtype: int64
   ----- Item_Visibility -----
   0.000000 879
   0.076856
   0.076841
   0.077290
   0.077169
   0.209684 1
   0.019592
   0.013530
   0.008772
   0.066817
   Name: Item_Visibility, Length: 13006, dtype: int64
   ----- Item_Type -----
   Fruits and Vegetables 2013
   Snack Foods
                       1989
   Household
                       1548
   Frozen Foods
                       1426
                       1136
   Dairy
                       1086
   Baking Goods
   Canned
                       1084
```

There are typos and difference in representation in categories of Item_Fat_Content variable. Some of 'Low Fat' values are miscoded as 'low fat' and 'LF'. Also, some of 'Regular' are mentioned as 'regular'.

```
print ('Original Categories:')
print (df.Item_Fat_Content.value_counts())
print ('\nModified Categories:')
df.Item_Fat_Content = df.Item_Fat_Content.replace({'LF': 'Low Fat', 'reg': 'Regular', 'low fat': 'Low Fat'})
print (df.Item_Fat_Content.value_counts())
    Original Categories:
    Low Fat 8485
    Regular 4824
               522
    LF
               195
    reg
    low fat 178
    Name: Item_Fat_Content, dtype: int64
    Modified Categories:
    Low Fat 9185
    Regular 5019
    Name: Item_Fat_Content, dtype: int64
```

▼ Lets have a look at the number of unique values in each of them.

```
for column in df.columns:
    print(column,':', len(df[column].value_counts()))

    Item_Identifier : 1559
    Item_Weight : 415
    Item_Fat_Content : 2
    Item_Visibility : 13006
    Item_Type : 16
    Item_MRP : 8052
    Outlet_Identifier : 10
    Outlet_Establishment_Year : 9
    Outlet_Size : 3
    Outlet_Location_Type : 3
    Outlet_Type : 4
    Item_Outlet_Sales : 3493
    source : 2
```

Some observations:

11/24/23, 5:49 PM

- There are total 1559 products but total IDs are 14204 which shows the presence of duplicate IDs. Hence, ID variable has duplicate values.
- Item_Type has 16 unique values.
- Big Mart has 10 outlets/stores.
- There are 3 types of outlets/stores on the basis of area covered which is represented by Outlet_Size.
- There are 3 types of locations for an outlet/store.
- There are 4 types of outlets/stores on the basis of store capacity which is represented by Outlet_Type.

```
# Checking for duplicates.
unique_ids = len(set(df.Item_Identifier))
total_ids = df.shape[0]
duplicate_ids = total_ids - unique_ids
print(duplicate_ids)
print('There are', duplicate_ids, 'duplicate IDs for', total_ids, 'total entries.')
    There are 12645 duplicate IDs for 14204 total entries.
```

Filtering categorical variables.

categorical_columns = [x for x in df.dtypes.index if (df.dtypes[x] == 'object') and x not in ['Item_Identifier', 'Outlet_Identifier', 'source']]

for col in categorical_columns:

print ('\nFrequency of Categories for varible %s'%col) print (df[col].value_counts())

Frequency of Categories for varible Item_Fat_Content

Low Fat 8485 Regular 4824 LF 522 195 reg low fat 178

Name: Item_Fat_Content, dtype: int64 Frequency of Categories for varible Item_Type Fruits and Vegetables 2013 Snack Foods 1989 Household 1548 Frozen Foods 1426 Dairy 1136 Baking Goods 1086 1084 Canned 858 Health and Hygiene 736 Meat Soft Drinks 726 Breads 416 Hard Drinks 362 Others 280 Starchy Foods 269 Breakfast 186 Seafood Name: Item_Type, dtype: int64

Frequency of Categories for varible Outlet_Size Medium 4655 Small 3980

High 1553 Name: Outlet_Size, dtype: int64

Frequency of Categories for varible Outlet_Location_Type Tier 2 4641 Tier 1 3980 Name: Outlet_Location_Type, dtype: int64

Frequency of Categories for varible Outlet_Type

Supermarket Type1 9294 Grocery Store 1805 Supermarket Type3 1559 Supermarket Type2 1546 Name: Outlet_Type, dtype: int64

▼ Let's seperate the numerical variables and categorical variables for further analysis.

1. Numerical Features:

```
numerical_features = df.select_dtypes(include = [np.number])
numerical_features.dtypes
    Item_Weight
                                 float64
                                 float64
    Item_Visibility
    Item_MRP
                                 float64
    Outlet_Establishment_Year
                                 int64
    Item_Outlet_Sales
                                 float64
    dtype: object
```

2. Categorical Features:

```
categorical_features = df.select_dtypes(include = [np.object])
categorical_features.dtypes
```

Item_Identifier object Item_Fat_Content object

Item_Type object Outlet_Identifier object Outlet_Size object object Outlet_Location_Type Outlet_Type object object source dtype: object

Pairplot

plt.style.use('fivethirtyeight')

Correlation matrix for numerical variables.

numerical_features.corr()

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	<pre>Item_Outlet_Sales</pre>
Item_Weight	1.000000	-0.015901	0.036236	0.000645	0.014123
Item_Visibility	-0.015901	1.000000	-0.006351	-0.083678	-0.128625
Item_MRP	0.036236	-0.006351	1.000000	0.000141	0.567574
Outlet_Establishment_Year	0.000645	-0.083678	0.000141	1.000000	-0.049135
Item_Outlet_Sales	0.014123	-0.128625	0.567574	-0.049135	1.000000

Correlation heatmap for numerical variables.

```
plt.figure(figsize = (10, 7))
sns.heatmap(df.corr(), vmax = 1, square = True, annot = True, cmap = 'viridis')
plt.xticks(rotation = 50, ha = 'right');
```


- Item_Weight has almost negligible correlation (1.4%) with the target variable Item_Outlet_Sales.
- Item_Visibility is having nearly zero correlation (-13%) with the target variable. This means that the sales are not affected by visibility of item which is a contradiction to the general assumption of "more visibility thus, more sales".
- Item_MRP is positively correlated with sales at an outlet, which indicates that the price quoted by an outlet plays an important factor in sales. Variation in MRP quoted by various outlets depends on their individual sales.
- Outlets situated in location with type tier 2 and medium size are also having high sales, which means that a one-stop-shopping-center situated in a town or city with populated area can have high sales.

▼ 6. <u>Univariate Analysis</u>:

▼ 6.1. Distribution of the target variable: Item_Outlet_Sales

```
plt.figure(figsize = (12, 7))
sns.distplot(df.Item_Outlet_Sales, bins = 25)
plt.xlabel('Item Outlet Sales', fontsize = 15)
plt.ylabel('Number of Sales', fontsize = 15)
plt.title('Item Outlet Sales Distribution', fontsize = 15);
```


print ('Skewness:', df.Item_Outlet_Sales.skew())
print('Kurtosis:', df.Item_Outlet_Sales.kurt())

Skewness: 1.1775306028542798 Kurtosis: 1.6158766814287264

Skewness > 1 which indicates that the distribution of Item_Outlet_Sales is highly positively skewed whereas, kurtosis > 1 shows that the distribution is leptokurtic.

6.2. Distribution of the numerical variables.

for i in df.describe().columns:
 sns.distplot(df[i].dropna())
 plt.show();

for i in df.describe().columns:
 sns.boxplot(df[i].dropna(), orient = 'v')

▼ 6.2.1 Distribution of the Item_MRP

```
ax = sns.distplot(df['Item_MRP'])
x1, x2, x3 = 72, 138, 204
ax.plot([x1, x1], [0, 0.007], color = 'r')
ax.plot([x2, x2], [0, 0.007], color = 'r')
ax.plot([x3, x3], [0, 0.007], color = 'r')
plt.show();
      0.007
      0.006
      0.005
      0.004
      0.003
      0.002
      0.001
      0.000
                    50
                           100
                                           200 250
                                  150
                                Item_MRP
```

The Item_MRP clearly shows that there are 4 different price categories. So we define them to be 'Low', 'Medium', 'High' and 'Very High'.

▼ 6.3. Categorical Variables

plt.figure(figsize = (8, 4))
sns.countplot(df.Item_Fat_Content)
plt.xlabel('Types of Fat Content')
plt.ylabel('Frequency');

11/24/23, 5:49 PM

▼ 6.3.2. Distribution of the Item_Type

plt.figure(figsize = (12, 8))
sns.countplot(df.Item_Type)
plt.xlabel('Types of Items')
plt.ylabel('Frequency')
plt.xticks(rotation = 50, ha = 'right');

▼ 6.3.3. Distribution of the Outlet_Size

plt.figure(figsize = (7, 5))
sns.countplot(df.Outlet_Size)
plt.xlabel('Types of Outlet Size')
plt.ylabel('Frequency');

▼ 6.3.4. Distribution of the Outlet_Location_Type

plt.figure(figsize = (7, 5))
sns.countplot(df.Outlet_Location_Type)
plt.xlabel('Types of Outlet Location')
plt.ylabel('Frequency');

▼ 6.3.5. Distribution of the Outlet_Type

plt.figure(figsize = (10, 6))
sns.countplot(df.Outlet_Type)
plt.xlabel('Types of Outlets')
plt.ylabel('Frequency');

7/14

▼ 7. <u>Bivariate Analysis</u>:

7.1. Numerical Variables

plt.figure(figsize = (12, 7))
plt.xlabel('Item Weight')
plt.ylabel('Item Outlet Sales')
plt.title('Item Weight and Item Outlet Sales Analysis')
plt.plot(df.Item_Weight, df.Item_Outlet_Sales, '.', alpha = 0.3);

7.1.1. Item_Weight and Item_Outlet_Sales Analysis

- Item_Outlet_Sales is spread well across the entire range of the Item_Weight without any obvious pattern.
- Item_Weight is shown to have a low correlation with the target variable.

▼ 7.1.2. Item_Visibility and Item_Outlet_Sales Analysis

plt.figure(figsize = (12, 7))
plt.xlabel('Item Visibility')
plt.ylabel('Item Outlet Sales')
plt.title('Item Visibility and Item Outlet Sales Analysis')
plt.plot(df.Item_Visibility, df.Item_Outlet_Sales, '.', alpha = 0.3);

- Less visible items are sold more compared to more visibility items as outlet contains daily used items which contradicts the null hypothesis.
- There is a string of points at Item_Visibility = 0.0 which seems strange as item visibility cannot be completely zero.

▼ 7.1.3. Item_MRP and Item_Outlet_Sales Analysis

plt.figure(figsize = (12, 7))
plt.xlabel('Item MRP')
plt.ylabel('Item Outlet Sales')
plt.title('Item MRP and Item Outlet Sales Analysis')
plt.plot(train.Item_MRP, train.Item_Outlet_Sales, '.', alpha = 0.3);

- We can clearly see that there are four segments of prices.

 The second sec
- The price range of MRP 150 to 250 has the highest range of products available.

▼ 7.1.4. Outlet_Establishment_Year and Item_Outlet_Sales Analysis

Outlet_Establish_Year_Sales = df.pivot_table(index = 'Outlet_Establishment_Year', values = 'Item_Outlet_Sales', aggfunc = np.median)

Outlet_Establish_Year_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (12, 7))
plt.xlabel('Outlet Establishment Year')
plt.ylabel('Item Outlet Sales')
plt.title('Impact of Outlet Establishment Years on Item Outlet Sales')

Every new outlet established at that particular year, surprisingly, has great sales except for the year 1998.

▼ 7.2. Categorial Variables

▼ 7.2.1. Impact of Item_Identifier on Item_Outlet_Sales

```
plt.figure(figsize = (20, 7))
plt.xlabel('Item_Identifier')
plt.ylabel('SQRT Item Outlet Sales')
plt.title('Item Identifier and Item Outlet Sales Analysis')
plt.plot(df.Item_Identifier, df.Item_Outlet_Sales, '.', alpha = 0.3);
```


▼ 7.2.2. Impact of Item_Fat_Content on Item_Outlet_Sales

```
Item_Fat_Content_Sales = df.pivot_table(index = 'Item_Fat_Content', values = 'Item_Outlet_Sales', aggfunc = np.median)
Item_Fat_Content_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (10, 6))
plt.xlabel('Fat Content')
plt.ylabel('Outlet Sales')
plt.title('Impact of Fat Content on Item Outlet Sales')
plt.xticks(rotation = 0);
```


Fat_Content types has almost equal distribution on the sales.

▼ 7.2.3. Impact of Outlet_Identifier on Item_Outlet_Sales

Outlet_Identifier_Sales = df.pivot_table(index = 'Outlet_Identifier', values = 'Item_Outlet_Sales', aggfunc = np.median)

Outlet_Identifier_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (12, 7))

plt.xlabel('Outlet_Identifier')

plt.ylabel('Item Outlet Sales')

plt.title('Impact of Outlet Identifier on Item Outlet Sales')

plt.xticks(rotation = 0);

- The average sales are around 2000.
- 'OUT027' has the highest sales.
- 'OUT010' and 'OUT019' has a quite similar distribution depicting very smaller number of sales.
- ▼ 7.2.4. Impact of Outlet_Size on Item_Outlet_Sales

Outlet_Size_Sales = df.pivot_table(index = 'Outlet_Size', values = 'Item_Outlet_Sales', aggfunc = np.median)

Outlet_Size_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (12, 7))
plt.xlabel('Outlet Size')
plt.ylabel('Item Outlet Sales')
plt.title('Impact of Outlet Size on Item Outlet Sales')
plt.xticks(rotation = 0);

Impact of Outlet Size on Item Outlet Sales

There is a very little difference between the sales of different outlets on the basis of the size of outlet i.e. the distribution is almost identical.

▼ 7.2.5. Impact of Outlet_Location_Type on Item_Outlet_Sales

```
Outlet_Location_Type_Sales = df.pivot_table(index = 'Outlet_Location_Type', values = 'Item_Outlet_Sales', aggfunc = np.median)

Outlet_Location_Type_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (12, 7))

plt.xlabel('Outlet Location Type')

plt.ylabel('Item Outlet Sales')

plt.title('Impact of Outlet Location Type on Item Outlet Sales')
```


There is a very little difference between the sales of different outlets on the basis of the location of the outlet.

▼ 7.2.6. Impact of Outlet_Type on Item_Outlet_Sales

Outlet_Type_Sales = df.pivot_table(index = 'Outlet_Type', values = 'Item_Outlet_Sales', aggfunc = np.median) Outlet_Type_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (12, 7)) plt.xlabel('Outlet Type') plt.ylabel('Item Outlet Sales') plt.title('Impact of Outlet Type on Item Outlet Sales') plt.xticks(rotation = 0);

- Grocery Store has most of its data points around the lower sales values as compared to the other categories. Hence, we can say that it has the least sales.
- nas the least sales.
 There is a very little difference between the sales of both Supermarkets Type 1 and Type 2, respectively.
- There is a very little difference between the sales of both Supermarkets Type
 Supermarket Type 3 has the highest sales contribution in the organization.

▼ 7.2.7. Impact of Item_Type on Item_Outlet_Sales

Item_Type_Sales = df.pivot_table(index = 'Item_Type', values = 'Item_Outlet_Sales', aggfunc = np.mean) Item_Type_Sales.plot(kind = 'bar', color = 'darkturquoise', figsize = (20, 9)) plt.xlabel('Item Type') plt.ylabel('Item Outlet Sales') plt.title('Impact of Item Type on Item Outlet Sales') plt.xticks(rotation = 55, ha = 'right');

Distribution of Item_Outlet_Sales across the categories of Item_Type is not very distinct.

▼ 7.2.8. Relation between Item_Type and Item_Visibility

```
Item_Type_Visible = df.pivot_table(index = 'Item_Type', values = 'Item_Visibility', aggfunc = np.mean)
Item_Type_Visible.plot(kind = 'bar', color = 'darkturquoise', figsize = (20, 9))
plt.xlabel('Item Type')
plt.ylabel('Item Visibility')
plt.title('Relation between Item Type and Item Visibility')
plt.xticks(rotation = 55, ha = 'right');
```


▼ 8. Missing Value Treatment:

Data Cleaning and Imputing Missing Values.

Determining the average weight per item.

▼ Let's impute Item_Weight by the average weight of that particular item.

```
item_avg_weight = df.pivot_table(values = 'Item_Weight', index = 'Item_Identifier')
# Getting a boolean variable specifying missing Item_Weight values.
miss_bool = df['Item_Weight'].isnull()
# Imputing data and checking missing values before and after imputation to confirm.
print ('Total number of orignal missing values:', sum(miss_bool))
df.loc[miss_bool, 'Item_Weight'] = df.loc[miss_bool, 'Item_Identifier'].apply(lambda x: item_avg_weight.at[x, 'Item_Weight'])
print ('Total number of final missing values:', sum(df['Item_Weight'].isnull()))
     Total number of orignal missing values: 2439
     Total number of final missing values: 0
```

▼ Let's impute Outlet_Size with the mode of the Outlet_Size for that particular type of outlet.

```
# Determining the mode.
outlet_size_mode = df.pivot_table(values = 'Outlet_Size', columns = 'Outlet_Type', aggfunc = (lambda x: mode(x).mode[0]))
print ('Mode for each Outlet_Type:', outlet_size_mode)
# Getting a boolean variable specifying missing Item_Weight values.
miss_bool = df['Outlet_Size'].isnull()
# Imputing data and checking missing values before and after imputation to confirm.
print ('\nTotal number of orignal missing values:', sum(miss_bool))
df.loc[miss_bool, 'Outlet_Size'] = df.loc[miss_bool, 'Outlet_Type'].apply(lambda x: outlet_size_mode[x])
print (sum(df['Outlet_Size'].isnull()))
     Mode for each Outlet_Type: Outlet_Type Grocery Store Supermarket Type1 Supermarket Type2 \
                        Small
    Outlet_Size
    Outlet_Type Supermarket Type3
    Outlet_Size
     Total number of orignal missing values: 4016
```

▼ 9. <u>Feature Engineering</u>:

▼ Modify Item_Visibility

The minimum value is 0 which makes no practical sense. Let's consider it like missing information and impute it with mean of that product.

```
# Determining average visibility of a product.
visibility_avg = df.pivot_table(values = 'Item_Visibility', index = 'Item_Identifier')
# Imputing 0 values with mean visibility of that product:
miss_bool = (df['Item_Visibility'] == 0)
print ('Total number of 0 values initially:', sum(miss_bool))
df.loc[miss_bool, 'Item_Visibility'] = df.loc[miss_bool, 'Item_Identifier'].apply(lambda x: visibility_avg.at[x, 'Item_Visibility'])
print ('Total number of 0 values after modification:', sum(df['Item_Visibility'] == 0))
     Total number of 0 values initially: 879
     Total number of 0 values after modification: 0
```

Earlier, we hypothesized that products with higher visibility are likely to sell more. But along with comparing products on absolute terms, we should look at the visibility of the product in that particular store as compared to the mean visibility of that product across all stores. This will give some idea about how much importance was given to that product in a store as compared to other stores. We can use the visibility_avg variable made above to achieve this.

```
# Determining another variable with means ratio
df['Item_Visibility_MeanRatio'] = df.apply(lambda x: x['Item_Visibility']/visibility_avg.loc[x['Item_Identifier']], axis = 1)
print (df['Item_Visibility_MeanRatio'].describe())
    count 14204.000000
                 1.061884
    mean
                 0.235907
    std
    min
                 0.844563
    25%
                 0.925131
    50%
                 0.999070
    75%
                 1.042007
                 3.010094
    max
```

16

```
▼ Modify Item_Type
  len(df.Item_Type.unique())
```

Name: Item_Visibility_MeanRatio, dtype: float64

The Item_Type variable has 16 unique categories which might prove to be very useful in analysis. So, it is a good idea to combine them.

One way could be to manually assign a new category to each. But, if we look at the Item_Identifier, i.e. the unique ID of each item, it starts with either FD, DR or NC. If we see the categories, these look like being Food, Drinks and Non-Consumables.

```
# Getting the first two characters of ID.
df['Item_Type_Combined'] = df['Item_Identifier'].apply(lambda x: x[0: 2])
# Renaming them to more intuitive categories.
df['Item_Type_Combined'] = df['Item_Type_Combined'].map({'FD': 'Food', 'NC': 'Non-Consumable', 'DR': 'Drinks'})
df['Item_Type_Combined'].value_counts()
                      10201
     Food
     Non-Consumable
                      2686
                       1317
    Drinks
     Name: Item_Type_Combined, dtype: int64
```

There are some non-consumables as well and a fat-content should not be specified for them. So we can also create a separate category for such kind of observations.

```
df.loc[df['Item_Type_Combined'] == 'Non-Consumable', 'Item_Fat_Content'] = 'Non-Edible'
df['Item_Fat_Content'].value_counts()

Low Fat 6499
Regular 5019
Non-Edible 2686
Name: Item_Fat_Content, dtype: int64
```

Determine the years of operation of a store.

```
# Subtracting from 2013 as data is collected in 2013.
df['Outlet_Years'] = 2013 - df['Outlet_Establishment_Year']
df['Outlet_Years'].describe()
             14204.000000
     count
     mean
                15.169319
                 8.371664
     std
     min
                 4.000000
     25%
                 9.000000
     50%
                14.000000
     75%
                26.000000
                28.000000
     max
     Name: Outlet_Years, dtype: float64
```

plt.figure(figsize = (8, 5))
sns.distplot(df.Outlet_Years, bins = 6, hist = False);

▼ Hence, as we can see, stores are 4 - 28 years old.

▼ 10. Encoding Categorical Variables:

Since, scikit-learn accepts only numerical variables, we need to convert all categories of nominal variables into numeric type variables. I have created a new variable Outlet same as Outlet Identifier but encoded that.

```
le = LabelEncoder()

df['Outlet'] = le.fit_transform(df['Outlet_Identifier'])

var_mod = ['Item_Fat_Content', 'Outlet_Location_Type', 'Outlet_Size', 'Item_Type_Combined', 'Outlet_Type', 'Outlet']
le = LabelEncoder()
for i in var_mod:
    df[i] = le.fit_transform(df[i])
```

▼ 11. Encoding Categorical Variables & 12. One Hot Encoding

▼ Let's have a look at the data types and presence of non missing values.

df.info(memory_usage = 'deep')

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14204 entries, 0 to 14203
Data columns (total 37 columns):

```
# Column
                     Non-Null Count Dtype
                                 -----
0 Item_Identifier 14204 non-null object
1 Item_Weight 14204 non-null float64
2 Item_Visibility 14204 non-null float64
3 Item_Type 14204 non-null object
4 Item_MRP 14204 non-null float64
5 Outlet_Identifier 14204 non-null object
 6 Outlet_Establishment_Year 14204 non-null int64
 7 Item_Outlet_Sales
                                 8523 non-null float64
                                 14204 non-null object
 9 Item_Visibility_MeanRatio 14204 non-null float64
 10 Outlet_Years
                                 14204 non-null int64
                                 14204 non-null uint8
 11 Item Fat Content 0
 12  Item_Fat_Content_1
                                  14204 non-null uint8
                                  14204 non-null uint8
 13 Item_Fat_Content_2
 14 Outlet_Location_Type_0
                                 14204 non-null uint8
 15 Outlet_Location_Type_1
                                 14204 non-null uint8
 16 Outlet_Location_Type_2
                                 14204 non-null uint8
 17 Outlet_Size_0
                                  14204 non-null uint8
 18 Outlet_Size_1
                                  14204 non-null uint8
 19 Outlet_Size_2
                                  14204 non-null uint8
 20 Outlet_Type_0
                                  14204 non-null uint8
 21 Outlet_Type_1
                                  14204 non-null uint8
22 Outlet_Type_2
                                  14204 non-null uint8
 23 Outlet_Type_3
                                  14204 non-null uint8
 24 Item_Type_Combined_0
                                  14204 non-null uint8
 25 Item_Type_Combined_1
                                  14204 non-null uint8
                                 14204 non-null uint8
 26 Item_Type_Combined_2
 27 Outlet_0
                                  14204 non-null uint8
 28 Outlet_1
                                  14204 non-null uint8
```

14204 non-null uint8

14204 non-null uint8 14204 non-null uint8

14204 non-null uint8

14204 non-null uint8 14204 non-null uint8

14204 non-null uint8

14204 non-null uint8

▼ 13. <u>PreProcessing Data</u>:

29 Outlet_2

30 Outlet_3

31 Outlet_4 32 Outlet_5

33 Outlet_6

34 Outlet_7 35 Outlet_8

36 Outlet_9

memory usage: 4.6 MB

Converting data back into train and test data sets as it is generally a good idea to export both of these as modified data sets so that they can be re-used for multiple sessions.

dtypes: float64(5), int64(2), object(4), uint8(26)

Exporting files as modified versions.
train.to_csv('Datasets/train_modified.csv', index = False)

test.to_csv('Datasets/train_modified.csv', index = False)

test.to_csv('Datasets/test_modified.csv', index = False)

C:\Users\admin\AppData\Local\Programs\Python\Python37\lib\site-packages\pandas\core\frame.py:4167: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,

train = pd.read_csv('Datasets/train_modified.csv')
test = pd.read_csv('Datasets/test_modified.csv')

▼ 14. <u>Modeling</u>:

```
# Defining target and ID columns:
target = 'Item_Outlet_Sales'
IDcol = ['Item_Identifier', 'Outlet_Identifier']
def modelfit(model, dtrain, dtest, predictors, target, IDcol):
   # Fit the algorithm on the data
    model.fit(dtrain[predictors], dtrain[target]) # X_train, y_train
   # Predict training set:
   dtrain_predictions = model.predict(dtrain[predictors]) # X_train
   # Perform cross-validation:
   cv_score = cross_val_score(model, dtrain[predictors], dtrain[target], cv = 20, scoring = 'neg_mean_squared_error')
   cv_score = np.sqrt(np.abs(cv_score))
   # Print model report:
   print ('Model Report:')
   print ('Mean Absolute Error:', mean_absolute_error(dtrain[target], dtrain_predictions))
    print ('Root Mean Square Error (RMSE): %.4g' % np.sqrt(mean_squared_error(dtrain[target].values, dtrain_predictions)))
   print ('CV Score: Mean = %.4g | Standard Deviation = %.4g | Minimum = %.4g | Maximum = %.4g' % (np.mean(cv_score), np.std(cv_score), np.min(cv_score), np.max(cv_score)))
   print ('Accuracy score:', '{:.3%}'.format(model.score(dtrain[predictors], dtrain[target])))
   # Predict on testing data:
   dtest[target] = model.predict(dtest[predictors]) # X_test
```

▼ 15. <u>Linear Regression</u>:

```
predictors = [x for x in train.columns if x not in [target] + IDcol]

# print predictors
model_1 = LinearRegression(normalize = True)
modelfit(model_1, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 836.1122800303403
    Root Mean Square Error (RMSE): 1127
    CV Score: Mean = 1129 | Standard Deviation = 43.72 | Minimum = 1074 | Maximum = 1213
    Accuracy score: 56.351%
```

▼ 16. Regularized Linear Regression:

16.1. Ridge Regression

```
model_2_1 = Ridge(alpha = 0.05, normalize = True)
modelfit(model_2_1, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 836.0274588621647
    Root Mean Square Error (RMSE): 1129
    CV Score: Mean = 1130 | Standard Deviation = 44.6 | Minimum = 1076 | Maximum = 1217
    Accuracy score: 56.254%
```

▼ 16.2. Lasso Regression

```
model_2_2 = Lasso(alpha = 0.05, normalize = True)
modelfit(model_2_2, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 835.448435441687
    Root Mean Square Error (RMSE): 1128
    CV Score: Mean = 1129 | Standard Deviation = 43.64 | Minimum = 1075 | Maximum = 1210
    Accuracy score: 56.340%
```

▼ <u>Decision Tree</u>:

```
model_3 = DecisionTreeRegressor(max_depth = 15, min_samples_leaf = 100)
modelfit(model_3, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 741.6300327699828
    Root Mean Square Error (RMSE): 1058
    CV Score: Mean = 1091 | Standard Deviation = 45.42 | Minimum = 1003 | Maximum = 1186
    Accuracy score: 61.580%
```

▼ 17. Random Forest:

```
model_4 = RandomForestRegressor(n_estimators = 400, max_depth = 6, min_samples_leaf = 100, n_jobs = 4)
modelfit(model_4, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 748.3090818589773
    Root Mean Square Error (RMSE): 1068
    CV Score: Mean = 1083 | Standard Deviation = 43.78 | Minimum = 1020 | Maximum = 1161
    Accuracy score: 60.829%
```

▼ 18. <u>XGBoost</u>:

```
model_5 = XGBRegressor(n_estimators = 1000, learning_rate = 0.05)
modelfit(model_5, train, test, predictors, target, IDcol)

Model Report:
    Mean Absolute Error: 421.89547033958786
    Root Mean Square Error (RMSE): 586.5
    CV Score: Mean = 1163 | Standard Deviation = 52.12 | Minimum = 1054 | Maximum = 1256
    Accuracy score: 88.185%
```

▼ 19. <u>Summary</u>:

Model

Table 1. Comparison of Cross Validation Scores of different models.

CV Score (Mean) CV Score (Std)

```
Linear Regression 1129
                                44.60
  Ridge Regression 1130
                                43.64
  Lasso Regression 1129
                 1091
                                45.42
  Decision Tree
                1083
                                43.78
  Random Forest
 XGBoost
                 1163
                                52.12
Table 2. Comparison of MAE, RMSE and accuracy of different models.
                 MAE RMSE Accuracy
  Model
```

Linear Regression 836.11 1127 56.35%

https://colab.research.google.com/drive/1hLOPw3poWV9PU5C97y0nC4eEpg_kRXy2#printMode=true

Model	MAE	RMSE	Accur
Ridge Regression	836.03	1129	56.25
Lasso Regression	835.45	1128	56.349
Decision Tree	741.63	1058	61.589
Random Forest	748.31	1068	60.839
XGBoost	421.89	586.5	88.189

As the profit made by the Big Mart is directly proportional to the accurate predictions of sales, they are desiring more accurate prediction algorithm so that the company will not suffer any losses.

XgBoost has produced more accurate predictions as compared to the other available techniques like linear regression, regularized linear regression, random forest, etc.

It is also concluded that XGBoost with lowest MAE & RMSE and also with the highest accuracy of 88.18%, among all the other models, performs better as compared to the other existing models.