Lemma 0.1. For a positive interval, I_i^+ defined on ψ , the eventually statement $(\lozenge_{[a,b]}\psi)$ is true starting from start timestamp, $t_r^{\lozenge_{[a,b]}\psi}$, up to finish timestamp, $t_f^{\lozenge_{[a,b]}\psi}$, if the width of next negative interval (I_{i+1}^-) is greater than b-a where: $t_r^{\lozenge_{[a,b]}\psi}=t_r^{\psi}-b$ and $t_f^{\lozenge_{[a,b]}\psi}=t_f^{\psi}-a$

Proof. According to the eventually definition, $\Diamond_{[a,b]}\psi$ is true if there exists a time $t' \in [t+a,t+b]$ such that ψ is satisfied.

Assume t_r^{ψ} is the first time that ψ is true. Then, the following condition is always true:

$$t_r^{\lozenge_{[a,b]}\psi} + a < t_r^{\psi} < t_r^{\lozenge_{[a,b]}\psi} + b$$

Since we looking for the earliest time that the condition is met, the rising time of $\Diamond_{[a,b]}\psi$ is equal to: $t_r^{\Diamond_{[a,b]}\psi}=t_r^\psi-b$. Similarly, assume t_f^ψ is the last instance that ψ is true. Then,

$$t_f^{\lozenge_{[a,b]}\psi} + a < t_f^{\psi} < t_f^{\lozenge_{[a,b]}\psi} + b$$

is always true.

Since we are looking for the latest time that the condition is met, the falling time of $\Diamond_{[a,b]}\psi$ is equal to:

$$t_f^{\lozenge[a,b]}{}^{\psi} = t_f^{\psi} - a$$

Since the width of the next negative interval is greater than b-a, we can show that the computed rising timestamp corresponding to the next positive interval is not less than the falling timestamp corresponding to the current interval (i.e. $t_{f_i}^{\Diamond[a,b]\psi} < t_{r_{i+1}}^{\Diamond[a,b]\psi}$):

$$\frac{\psi}{f_i} - a < t^{\psi}_{r_{i+1}} - b$$

is always true since the width of the next negative interval is greater than b-a $(t_{r_{i+1}}^{\psi}-t_{f_i}^{\psi}>b-a)$.

Lemma 0.2. For a positive interval, I_i^+ on ψ , the statement $\square_{[a,b]}\psi$ is true starting from start timestamp, $t_r^{\square_{[a,b]}\psi}$, up to finish timestamp, $t_f^{\square_{[a,b]}\psi}$, if the width of I_i^+ is greater than b-a, where $t_r^{\square_{[a,b]}\psi}=t_r^{\psi}-a$ and $t_f^{\square_{[a,b]}\psi}=t_f^{\psi}-b$.

Proof. According to the globally definition, $\Box_{[a,b]}\psi$ is true if for all time instances $t' \in [t+a,t+b]$, ψ is satisfied. In order to find the rising timestamp of $\Box_{[a,b]}\psi$, we are looking for the first time that ψ is true.

Assume t_r^{ψ} is the first time that ψ is true. Then,

$$t_r^{\psi} < t_r^{\square_{[a,b]}\psi} + a$$

is true.

Since we are looking for the earliest time, the rising time of $\square_{[a,b]}\psi$ is equal to:

$$t_r^{\square_{[a,b]}\psi} = t_r^{\psi} - a$$

Similarly, assume t_f^{ψ} is the last instance that ψ is true. Then,

$$t_f^{\psi} > t_f^{\square_{[a,b]}\psi} + b$$

is true.

Since we are looking for the latest time, the falling time of $\square_{[a,b]}\psi$ is equal to:

$$t_f^{\square_{[a,b]}\psi} = t_f^{\psi} - b$$

Since the width of positive interval is greater than b-a, we can show that the computed falling timestamp is always greater than the falling one (i.e. $t_f^{\square_{[a,b]}\psi} > t_r^{\square_{[a,b]}\psi}$):

$$t_f^{\psi} - b > t_r^{\psi} - a$$

which is always true since the width of the positive interval is greater than b-a $(t_r^{\psi}-t_f^{\psi}>b-a).$

Definition 0.1. Overlapped Intervals, A positive interval on a boolean signal, $I_{\psi_{1_i}}^+$ overlaps with another positive interval on another boolean signal, $I_{\psi_{2_j}}^+$ if and only if

$$\exists t' \in I_{\psi_{1_i}}^+, \exists t'' \in I_{\psi_{2_i}}^+ s.t. \ (s,t') \models \psi_1 \wedge (s,t'') \models \psi_2 \wedge t' = t''$$

Lemma 0.3. An until statement $(\psi_1 \mathcal{U} \psi_2)$ is false for non-overlapped intervals of ψ_1 and ψ_2 .

Proof. If $I_{\psi_{1_i}}^+$ and $I_{\psi_{2_j}}^+$ does not overlap, it means there does not exist a time that both ψ_1 and ψ_2 are satisfied (i.e. $\nexists t' \in I_{\psi_{1_i}}^+ \cup I_{\psi_{1_i}}^+ s.t.$ $(s,t) \models \psi_1 \wedge \psi_2$.)

According to until operator definition, there should be a point that ψ_2 is satisfied and ψ_1 is satisfied up to that point. Therefore, the result of evaluation is false if there does not exist a pair of intervals that overlap.

Lemma 0.4. Assume that I_1 and I_2 are two positive intervals defined on boolean signals ψ_1 and ψ_2 respectively. If the length of overlapping interval of I_1 and I_2 is greater than a (i.e. $I_{\psi_{1_i}}^+ \cap I_{\psi_{2_j}}^+ > a$), $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true starting from $t_r^{\mathcal{U}}$ and up to $t_f^{\mathcal{U}}$ so, we have:

$$t_r^{\mathcal{U}} = max(t_{r_i}^{\psi_1}, t_{r_i}^{\psi_2} - b)$$

and

$$t_f^{\mathcal{U}} = min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$$

 $t_{r_i}^{\psi_1}$ and $t_{r_j}^{\psi_2}$ are timestamps corresponding to rising edges of positive intervals of ψ_1 and ψ_2 , and $t_{f_i}^{\psi_1}$ and $t_{f_j}^{\psi_2}$ are timestamps corresponding to falling edges of positive intervals of ψ_1 and, ψ_2 respectively.

Proof. To ensure $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true starting from $t_r^{\mathcal{U}}$ until $t_f^{\mathcal{U}}$, three conditions must be satisfied:

- i) computed $t_r^{\mathcal{U}}$ must be less than $t_f^{\mathcal{U}}$ to indicate a positive interval and
- ii) $max(t_{r_i}^{\psi_1}, t_{r_i}^{\psi_2} b)$ is the start time and iii) $min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_1}) a$ is the finish time.

Part i) To prove the computed rising time is less than the falling one, we need to show that

$$t_r^{\mathcal{U}} < t_f^{\mathcal{U}}$$

or

$$max(t_{r_i}^{\psi_1}, t_{r_i}^{\psi_2} - b) < min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$$

Assuming

$$t_{r_i}^{\psi_1} > t_{r_i}^{\psi_2} - b$$

we have

$$t_{r_i}^{\psi_1} < \min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$$

If $t_{f_i}^{\psi_1} < t_{f_i}^{\psi_2}$, it yields $t_{r_i}^{\psi_1} < t_{f_i}^{\psi_1} - a$ which is always true since the width of the positive interval of ψ_1 is greater than a.

If $t_{f_i}^{\psi_2} < t_{f_i}^{\psi_1}$, it yields $t_{r_i}^{\psi_1} < t_{f_i}^{\psi_2} - a$ which is always true since the width of overlapping interval of ψ_1 and ψ_2 is greater than a.

Assuming

$$t_{r_i}^{\psi_2} - b > t_{r_i}^{\psi_1}$$

we have

$$t_{r_j}^{\psi_2} - b < \min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$$

If $t_{f_i}^{\psi_1} < t_{f_i}^{\psi_2}$, it yields

$$t_{r_i}^{\psi_2} - b < t_{f_i}^{\psi_1} - a$$

or

$$t_{f_i}^{\psi_1} - t_{r_i}^{\psi_2} > a - b$$

It's obvious that a-b<0 and $t_{f_i}^{\psi_1}-t_{r_i}^{\psi_2}>0$ since the minimum width of overlapping interval of ψ_1 and ψ_2 is greater than 0.

If $t_{f_i}^{\psi_2} < t_{f_i}^{\psi_1}$, it yields

$$t_{r_j}^{\psi_2} - b < t_{f_i}^{\psi_2} - a$$

or

$$t_{f_i}^{\psi_2} - t_{r_i}^{\psi_2} > a - b$$

which is true since the width positive interval of ψ_2 is greater than 0 and a-b<0.

Part ii): We need to show $t_r^{\mathcal{U}}$ is the first instance of time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true. Assume $t_{r_2}^{\mathcal{U}}$ is the first time that ψ_2 is satisfied. So, $t_{r_2}^{\mathcal{U}} \in [t_r^{\mathcal{U}} + a, t_r^{\mathcal{U}} + b]$. As a result, $t_r^{\mathcal{U}} + a < t_{r_2}^{\mathcal{U}} < t_r^{\mathcal{U}} + b$. Since we look for the first time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is satisfied, so:

$$t_r^{\mathcal{U}} > t_{r_2}^{\mathcal{U}} - b \tag{1}$$

Besides, ψ_1 must be true from $t_r^{\mathcal{U}}$ until $t_{r_2}^{\mathcal{U}}$. So, we have:

$$t_r^{\mathcal{U}} > t_{r_1}^{\mathcal{U}} \tag{2}$$

$$t_{r_2}^{\mathcal{U}} > t_{f_1}^{\mathcal{U}} \tag{3}$$

Condition 3 is always true since the minimum overlapping interval of ψ_1 and ψ_2 is greater that 0. Combining 1 and 2, one can compute the first time (rising time) that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is satisfied as: $t_r^{\mathcal{U}} = max(t_{r_i}^{\psi_1}, t_{r_j}^{\psi_2} - b)$

Part iii): We need to show that $t_f^{\mathcal{U}}$ is the final time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true.

- There are two cases that indicates a falling timestamp: a) there does not exist a time $t' > t_{f_2}^{\mathcal{U}} \in [t_f^{\mathcal{U}} + a, t_f^{\mathcal{U}} + b]$ such that ψ_2 is true
- b) there exists a time $t' > t_{f_2}^{\mathcal{U}} \in [t_f^{\mathcal{U}} + a, t_f^{\mathcal{U}} + b]$ such that ψ_2 is true <u>but</u> there exists a time $t'' > t_{f_2}^{\mathcal{U}} \in [t_f^{\mathcal{U}} + a, t_f^{\mathcal{U}} + b]$ such that ψ_1 is not true. For the first case, assume $t_{f_2}^{\mathcal{U}}$ is the final time that ψ_2 is satisfied. So,

 $t_{f_2}^{\mathcal{U}} \in [t_f^{\mathcal{U}} + a, t_f^{\mathcal{U}} + b].$ As a result, $t_f^{\mathcal{U}} + a < t_{f_2}^{\mathcal{U}} < t_f^{\mathcal{U}} + b$. As we look for final time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$

$$t_f^{\mathcal{U}} < t_{f_2}^{\mathcal{U}} - a \tag{4}$$

In second case, ψ_1 should be true from $t_f^{\mathcal{U}}$ until $t_{f_2}^{\mathcal{U}}$. Then:

$$t_f^{\mathcal{U}} > t_{r_1}^{\mathcal{U}} \tag{5}$$

$$t_{f_1}^{\mathcal{U}} > t_{f_2}^{\mathcal{U}} \tag{6}$$

Since we are looking for the final time that ψ_2 is satisfied but ψ_1 is not, we can replace t_{f_2} with $t_f + a$. As a result,

$$t_f^{\mathcal{U}} > t_{f_1}^{\mathcal{U}} - a \tag{7}$$

Combining 4 and 7, one can compute the final time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is satisfied as $t_f^{\mathcal{U}} = min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$.

Condition 5 is satisfied if we replace $t_f^{\mathcal{U}}$ with $min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a$.

So, we have $min(t_{f_i}^{\psi_1}, t_{f_i}^{\psi_2}) - a > t_{r_1}^{\mathcal{U}}$ which is always true because both the width of positive interval of ψ_1 and the minimum overlapping interval of ψ_1 and ψ_2 are greater than a.

Lemma 0.5. If the width of overlapping interval of ψ_1 and ψ_2 is less than a (a computed falling timestamp is less than previous computed rising one), we can cancel them out and $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ remains false in that interval $([t_{r_i}^{\mathcal{U}}, t_{r_i}^{\mathcal{U}}])$.

Proof. According to Lemma 0.4, $t^{\mathcal{U}}_{r_i}$ is the first time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true. So, for all $t^{\mathcal{U}}_{f_{i-1}} < t < t^{\mathcal{U}}_{r_i}$, $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is false. Besides, $t^{\mathcal{U}}_{f_i}$ is the final time that $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is true. So, for all $t^{\mathcal{U}}_{f_i} < t < t^{\mathcal{U}}_{r_{i+1}}$, $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is false. As a result, for all times $t \in [t^{\mathcal{U}}_{f_i}, t^{\mathcal{U}}_{r_i}]$, $\psi_1 \mathcal{U}_{[a,b]} \psi_2$ is false.