Supervised learning

Supervised learning

- Predictor variables/features and a target variable
- 목적: 예측 변수가 주어지면 target 변수를 예측함
 - Classification: taget 변수는 categories로 구분됨
 - Regression: target 변수는 값으로 정의됨

				Q	(Q,	
	Sepal.Length ^	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width [‡]	Species ‡	
14	4.3	3.0	1.1	0.1	setosa	
9	4.4	2.9	1.4	0.2	setosa	
39	4.4	3.0	1.3	0.2	setosa	
43	4.4	3.2	1.3	0.2	setosa	
42	4.5	2.3	1.3	0.3	setosa	
4	4.6	3.1	1.5	0.2	setosa	
7	4.6	3.4	1.4	0.3	setosa	
23	4.6	3.6	1.0	0.2	setosa	
48	4.6	3.2	1.4	0.2	setosa	
3	4.7	3.2	1 3	0.2	setosa	

Naming conventions

- Feature = predictor variables = independent variables
- Target variable = dependent variable = response variable

Supervised learning

- 시간이 오래 걸리거나 비용이 많이 드는 수동 작업을 자동화
 - •예)의사의진단
- 특징 및 상황에 대한 예측
 - 예) 고객이 광고를 클릭 할 것인가 또는 말 것인가?
- 레이블이 있는 데이터가 필요한 경우
 - 레이블이 있는 기록 데이터
 - 레이블이 지정된 데이터를 가져 오는 실험
 - 레이블이 지정된 데이터 크라우드소싱(crowdsourcing)

Supervised learning(Python)

- scikit-learn/sklearn
 - Integrated well with the SciPy stack
- Other libraries
 - TensorFlow
 - keras

EDA(Exploratory data analysis)

- Iris dataset
 - Feature
 - Petal length
 - Petal width
 - Sepal length
 - Sepal width
 - Target variables: Species
 - Versicolor
 - Virginica
 - Setosa

IRIS dataset

Iris Versicolor

Iris Virginica

Iris Setosa

Visual EDA

Supervised learning종류

- 예측(prediction)
 - regression
- 분류(classification)
 - k-Nearest Neighbors

Measuring model performance

- 분류에서 정확도는 일반적으로 사용되는 측정 항목입니다.
- 정확도 = 정확한 예측의 비율
- 어떤 데이터가 정확도를 계산하는 데 사용해야합니까?
- 모델이 새로운 데이터를 얼마나 잘 수행합니까?

Measuring model performance

- 분류 기준에 맞는 데이터의 정확도를 계산할 수 있음
 - 일반화 능력을 나타내지 않음
- 데이터를 교육 및 테스트 세트로 분할
 - 훈련 세트에 분류기 맞추기 / 훈련
 - 테스트 세트에 대한 예측을하십시오.
 - 알려진 라벨과 예측 비교

Model complexity

- Larger k =보다 매끄러운 결정 경계 = 덜 복잡한 모델
- Smaller k =보다 복잡한 모델 = overfitting으로 이어질 수 있음

Model complexity and over/underfitting

