AN OPEN-SOURCE TOOLBOX FOR SINGLE-PHASE FLOW SIMULATION IN PEM FUEL CELLS

Jean-Paul Kone¹

1. INTRODUCTION

An open-source code toolbox capable of predicting the distribution of the major physical quantities which are transported within a PEM fuel cell has been created using OpenFOAM. The toolbox can be used to rapidly gain important insights into the cell working processes which are essential for design optimization. It consists of a main program, relevant library classes, and a constructed simulation case for a co-flow galvanostatic run.

2. SOURCE CODE

2.1 LIBRARY SOURCE CODE

The libraries of the pemfcModels-4.0 toolbox are in the lib/ directory. Table 1 contains a complete list of the libraries (the names are reasonably descriptive).

Table 1 Libraries

Library name	Description
diffusivityModels	Diffusivity models used for laminar incompressible flow with multi-component mixtures and/or porous media
myContinuityErrs	Calculates and prints the continuity errors
MyMeshWave	Wave propagation of information through the grid
myPatchToPatchInterpolation	Interpolation class dealing with transfer of data between two primitivePatches
myPorosityModel	Porosity models with input/output functionality
pemfcSpecie	A set of electrochemical properties for a PEM fuel cell species
polyToddYoung	Todd-Young polynomials for gases thermodynamics properties calculation
regionProperties	Holds region information for coupled region simulations
smearPatchToMesh	Smears data from patch to mesh, giving each cell the value of the nearest patch face

¹ International Doctoral Innovation Centre IDIC, University of Nottingham, Ningbo 315100, China.

2.2 SOLVER SOURCE CODE

The coded file program starts in the main function, in $\verb|pemfcSinglephaseNonIsothermalSolver.c|, through the model execution. The$ model then begins by including the required OpenFOAM source code files to check the case path, and to read the system/controlDict file and instantiate the Time object runTime. This is followed by the generation of meshes, the reading of properties, and the creation of fields for the global cell mesh and the region meshes. The different components of the solver code are listed in Table 2, along with a brief description of each component.

Table 2 Description of the solver source code

Folder/file name	Description
pemfcSinglephaseNon- IsothermalSolver.C	Solver that can simulate the single-phase non-isothermal operation of PEM fuel cell
constants	Holds the physical constant values (e.g. universal gas constant, Faraday's constant, etc.)
createFields	Creates field variables (e.g. temperature, velocity, pressure, etc.) for the entire cell, and for the individual cell components
createMesh	Creates mesh for the entire cell, and for the individual cell components
createSpecies	Creates the individual gas species in the fuel (e.g. hydrogen and water vapour) on the anode side, and in air (e.g. oxygen, nitrogen and water vapour) on the cathode side. Calculates the mole fraction fields from the mass fractions fields of the gas species
diffusivity	Creates the gas diffusivity models of both fuel and air, and calculates the diffusivity values for the individual gas species

Table 2 (Continued)

Folder/file name	Description
electrochemistry	Calculates electrochemistry (e.g. cell current density, cell voltage, Nernst potential, overpotentials, electrochemical heating, etc.)
energyTransport	Solves the energy equation for the global mesh
mapping	Map regional fields to global mesh to solve the energy equation. Map global temperature to fluid region meshes to calculate local fluid density
momentumTransport	Solves pressure and momentum using the PISO iteration for both fuel and air. Following the solution, the Reynolds numbers are calculated (this is informative only)
multiSpeciesTransport	Solves the species transport equation for each specie other than the background (inert) specie. The mass fraction of the inert specie is computed by subtracting the sum of the mass fractions of all the other species from unity
patch	Sets global variables for the IDs of many patches that are frequently referenced. Creates patch to patch interpolation for interpolating mole fraction fields of fuel on the air since electrochemistry is assumed to occur on air/electrolyte interface
physicalProperties	Computes physical properties such as thermal conductivity, dynamic viscosity and density for both fuel and air
readParameters	Reads the activation parameters
readProperties	Reads properties of the entire cell and individual cell components, as well as properties of the reactants gases and the reaction
tools	Holds various tools for function integration, Ridder's method of root finding, etc.

2.3 COMPILING THE SOURCE CODE

Assuming OpenFOAM version 4.0 is installed, with the environmental variables set. To compile the library and application source code, go to:

pemfcModels-4.0/singlePhaseNonIsothermal

directories and run the (Allwmake) script. To do this, type (./Allwmake) at the command terminal. This should generate the shared object library libSinglephasePEMFC.so in the \$FOAM_USER_LIBBIN directory and application executable pemfcSinglephaseNonIsothermalSolver in the \$FOAM_USER_APPBIN directory.

A lnInclude/ directory, containing links to all the lib class files, will appear in the lib/ directory.

3. MODEL RUN

3.1 RUNNING A SIMULATION

Assuming OpenFOAM version 4.0 is installed, with the environmental variables set and the pemfcSinglephaseNonIsothermalSolver application already compiled, the command (make run) will run the executable from the terminal using the constructed case data. The model can also be run by typing the executable name and the output that is normally directed to Standard Out can be redirected to a file:

pemfcSinglephaseNonIsothermalSolver | tee log.run

After the model has run to completion, VTK files for visualization, e.g. with ParaView, can be created using the Makefile file by typing (make view) at the command line to generate VTK files for the last output step and (make viewAll) to get VTK files for all output directories. Otherwise, the (paraFoam) utility supplied with OpenFOAM can be invoked directly for visualization of results with ParaView.

3.2 SIMULATION INPUTS

Runtime inputs to the model are supplied in dictionaries in the case directory. Amongst these are the mesh files and the mesh mapping files generated during the mesh generation. Table 3 and 4 contain the complete list of the fields variables and the parameters that must be specified. The specifications supplied for the constructed case study can be viewed in the case files.

Numerical schemes are specified at runtime by fvSchemes files in the system directories. The fvSchemes dictionary contains sub-dictionaries which must be defined for the code to run. The fvSchemes used by the model are listed in Table 5, along with an indication of the regions in which they are applicable.

The solvers and other algorithmic controls and tolerances are supplied by the fvSolution dictionary files in the system directories as given in Table 6. The table shows three subdictionaries in the fvSolution files: solvers, PISO, and relaxationFactors. In the solvers sub-dictionary, the settings for the linear solvers chosen to solve the discretized finite volume equations for the various fields are specified. The relaxationFactors subdictionary contains under-relaxation factors to improve stability. The PISO sub-dictionary controls the PISO algorithm for the simultaneous solution of pressure and momentum. Table 6 also shows in which regions the settings are applied. Note that the fvSolution file must exist in the system directory even though it may not need any sub-dictionaries.

Table 3 Simulation input parameters and properties

file constant/cellProperti	es
Parameter/property	Comments
voltage	initial value of voltage
Ibar0	prescribed mean current density
fuelCellType	fuel cell type
Rhat	voltage correction coefficient
Tinit	initial temperature of fuel and air
kappaCl	electronic conductivity of catalyst layer
kappaGdl	electronic conductivity of gas diffusion layer
kappaBp	electronic conductivity of bipolar plate
rContact	contact resistance between the gas diffusion layer and the
	bipolar plate
tCl	thickness of catalyst layer
tGdl	thickness of gas diffusion layer
tBp	thickness of bipolar plate
epsilonGdl	porosity of gas diffusion layer
epsilonCl	porosity of catalyst layer
etaConConstant	concentration overpotential constant
fuelInletPatch	fuel mesh patch name for the inlet patch
fuelOutletPatch	fuel mesh patch name for the outlet patch
anodePatch	fuel mesh patch name for the fuel/electrolyte interface
fuelAbpPatch	fuel mesh patch name for the fuel/anode bipolar plate interface
airInletPatch	air mesh patch name for the inlet patch
airOutletPatch	air mesh patch name for the outlet patch
cathodePatch	air mesh patch name for the air/electrolyte interface
airCbpPatch	air mesh patch name for the air/cathode bipolar plate interface
electrolyteAnodePatch	electrolyte mesh patch name for the electrolyte/fuel interface
electrolyteCathodePatch	electrolyte mesh patch name for the electrolyte/air interface
abpFuelPatch	anode bipolar plate mesh patch name for the anode bipolar plate /fuel interface
cbpAirPatch	cathode bipolar plate mesh patch name for the cathode bipolar plate /air interface
file constant/rxnPropertie	
Parameter/property	Comments
rxnSpecies	list of species name and stoichiometric coefficient pairs
file constant/abp/abpPrope	rties
Parameter/property	Comments
rho	density of anode bipolar plate
Ср	heat capacity of anode bipolar plate
k	thermal conductivity of anode bipolar plate

Table 3 (Continued)

file constant/air/airProperties	5
Parameter/property	Comments
rho	initial density of air mixture
mu	dynamic viscosity of air mixture
Ср	initial isobaric heat capacity of air mixture
k	thermal conductivity of air mixture
dHyd	hydraulic diameter for Reynolds number
diffusivity	air diffusivity model sub-dictionary
file constant/air/pemfcSpecies	Properties
Parameter/property	Comments
speciesList	list of gas species in the air mixture
02	properties of oxygen
N2	properties of nitrogen
H2O	properties of water vapour
CpCoeffs	heat capacity coefficients sub-dictionary
muCoeffs	dynamic viscosity coefficients sub-dictionary
kCoeffs	thermal conductivity coefficients sub-dictionary
file constant/air/porosityPrope	erties
Parameter/property	Comments
cgdl	cathode gas diffusion layer
ccl	cathode catalyst layer
porosity	porosity value
Ср	heat capacity
k	thermal conductivity
myDarcyForchheimerCoeffs	Darcy-Forchheimer sub-dictionary
diffusivity	diffusivity model sub-dictionary
file constant/cbp/cbpProperties	
same as for abpProperties, but for cbpI	Properties
file constant/electrolyte/activ	
Parameter/property	Comments
i0Reference	reference exchange current density
ECathode	activation energy
alphaCathode	transfer coefficient
file constant/electrolyte/elect	trolyteProperties
Parameter/property	Comments
rho	density of electrolyte
Ср	heat capacity of electrolyte
k	thermal conductivity of electrolyte
sigma	initial ionic conductivity of electrolyte
file constant/fuel/fuelProperti	Les
same as for airProperties, but for fuel	lProperties
file constant/fuel/pemfcSpecies	Properties
same as for air species, but for fuel species	
file constant/fuel/porosityProp	perties
same as for air porous zones, but for fuel por	ous zones

Table 4 Simulation input initial fields

File	Field variable	Comments
0/k	cell thermal conductivity	May be changed to suit operating conditions
0/T	cell temperature	Inlet values = 1e-15 prevents outward diffusion at inlets
0/air/diffO2air	diffusivity of Oxygen in air mixture	Inlet value = 1e-15 prevents outward diffusion at inlet Not required if outward diffusion at inlet is not an issue Never required for background specie
0/air/p	air pressure	internalField and outlet boundaries at atmospheric pressure; other patches zeroGradient or equivalent
0/air/rho	air density	Optional
0/air/T	air temperature	Optional
0/air/U	air velocity	internalField 0 (or initialized to inlet value); inlet specified; outlet zeroGradient; cathodePatch type must allow code to set value (e.g. fixedValue)
0/air/YSpair	mass fraction of specie Sp	internalField initialized to inlet value cathodePatch must be type fixedGradient. Require one such file for each air specie, e.g., YH2Oair, YN2air, YO2air
0/fuel/diffH2fuel	diffusivity of hydrogen in fuel mixture	same as for 0/air/diffO2air
0/fuel/p	fuel pressure	same as for 0/air/p
0/fuel/rho	fuel density	same as for O/air/rho
0/fuel/T	fuel temperature	same as for 0/air/T
0/fuel/U	fuel velocity	same as for 0/air/U
0/fuel/YSpfuel	mass fraction of species Sp	same as for 0/air/YSpair e.g., YH2fuel, YH2Ofuel

Table 5 Simulation input fvScheme settings

Operator	Scheme	Region(s)
ddtSchemes		
default	steadyState;	all
gradSchemes		
default	Gauss linear;	all
grad(p)	Gauss linear;	air, fuel
divSchemes		
default	none;	all
div(rhoCpPhi,T)	Gauss upwind;	cell
div(phi,U)	Gauss GammaV 0.2;	air, fuel
div(phi,y)	Gauss upwind;	air, fuel
laplacianSchemes		
default	none;	all
laplacian(k,T)	Gauss harmonic corrected;	cell
laplacian(mu,U)	Gauss harmonic corrected;	air, fuel
laplacian((rho A(U)), p)	Gauss linear corrected;	air, fuel
laplacian(gamma,y)	Gauss harmonic corrected;	air, fuel
laplacian(diff,y)	Gauss harmonic corrected;	air, fuel
interpolationSchemes		
default	linear;	all
interpolate(T)	harmonic;	cell, air, fuel
interpolate(k)	harmonic;	cell, air, fuel
interpolate(rho)	harmonic;	air, fuel
snGradSchemes		
default	corrected;	all
fluxRequired		
default	no;	all
Т		cell
р		air, fuel

Table 6 Simulation input fvSolution settings

Solver dictionary			
Field	Solver	Parameters	Region(s)
Т	PBiCG	preconditioner DILU; tolerance 1e-18; relTol 0.0; minIter 1; maxIter 5000;	cell
р	PCG	preconditioner DIC; tolerance 1e-9; relTol 0.0; minIter 1; maxIter 700;	air, fuel
U	PBiCG	preconditioner DILU; tolerance 1e-9; relTol 0.0; minIter 1; maxIter 700;	air, fuel
Yi	PBiCG	preconditioner DILU; tolerance 1e-9; relTol 0.0; minIter 1; maxIter 1000;	
PISO dictionary			T
Parameter		Value	Region(s)
nIteration		0;	air, fuel
nCorrectors		2;	
nNonOrthogonal	Correctors	0;	_
pRefCell		0;	_
pRefValue		0;	
relaxationFact	cors dictionary		1
Field		Value	Region(s)
р		0.3;	air, fuel
U		0.7;	
yi		0.5	

3.3 SIMULATION OUTPUTS

Not only the model writes selected fields to time directories in the case directory, but it also writes to Standard Out as it proceeds.

The model produces time directories in the case directory, in accordance with the settings in the control dictionary (system/controlDict). For a steady state model like pemfcSinglephaseNonIsothermalSolver, these directory time name (e.g. 60/, 120/, etc.) represent the iteration count rather than time. Field IOobjects created with the AUTO_WRITE attribute as given in Table 7, will be written to these time directories.

Table 7 Simulation outputs at time > 0

*\rm \tau \tau \tau \tau \tau \tau \tau \tau	/ dit /	/apb/	/electrolyte/	/fnel/	field variable
	съ			съ	heat capacity
	diffSpair			diffSpfuel	diffusivity of species Sp
	X			사	thermal conductivity
	ď			Ъ	pressure
	phi			phi	velocity flux
	rho			rho	density
	Ŧ	H	Т	H	temperature
	n*			Ω_*	velocity
	XSpair			XSpfuel	mole fraction of species Sp
	*YSpair			*YSpfuel	mass fraction of species Sp
Tsource					energy source
			electrochemicalHeating		electrochemical heating
			etaActC		activation overpotential
			etaConC		concentration overpotential
			etaOhmic		ohmic overpotential
			I		current density
			ioc		exchange current density
			ilc		limiting current density
			NernstPot		Nernst potential
			sigmaMem		ionic conductivity
			Λ		voltage

*are MUST_READ and thus required at time 0