Progettazione di Circuiti Combinatori

Specifica del circuito

La progettazione del circuito parte da una sua specifica, ovvero:

- · Una descrizione testuale
- · Una tabella di verità

Sommario

- · Mintermini e maxtermini
- · Espansione in mintermini e maxtermini
- · Procedure di progettazione e analisi
- · Funzioni non completamente specificate

Esempio

- Un full adder riceve in ingresso due cifre binarie A,
 B, e un riporto Cin
- Il full adder produce in uscita una somma S e un riporto Cout

Tabella di verità

#	Α	В	Cin	S	Cout
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

Mintermini e Maxtermini

Mintermine

- Un <u>mintermine di n variabili è un prodotto (AND) di n literal</u> nelle quali <u>ciascuna</u> delle n variabili appare <u>esattamente una</u> <u>volta</u>, nella forma <u>"true" (es. A) o complemento (es. A')</u>
- · Una literal è una variabile o il suo complemento
- · Data una riga in una tabella di verità, un mintermine si ottiene:
- Includendo la <u>forma true delle variabile</u> se il valore di tale variabile è <u>1</u>
- Includendo la $\underline{forma\ complementata}$ se il valore della variabile è $\underline{\textit{0}}$

Mintermini

#	Α	В	С	Mintermine
0	0	0	0	m ₀ =A'B'C'
1	0	0	1	m ₁ =A'B'C
2	0	1	0	m ₂ =A'BC'
3	0	1	1	m ₃ =A'BC
4	1	0	0	m ₄ =AB'C'
5	1	0	1	m ₅ =AB'C
6	1	1	0	m ₆ =ABC'
7	1	1	1	m ₇ =ABC

Espansione in mintermini

- Una funzione scritta come somma (OR) di mintermini prende il nome di espansione in mintermini o forma canonica SOP o forma normale disgiuntiva
- Data una tabella di verità, <u>includiamo nell'OR tutti i</u> <u>mintermini che corrispondono alle righe in cui la</u> funzione f=1
- Data una funzione, <u>la corrispondente espansione in</u> mintermini è unica
 - · Ma non è necessariamente la soluzione a costo minimo

Espansione mintermini

Determinare l'espansione in mintermini per la seguente tabella di verità

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Soluzione

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

F=A'B'C'+A'BC+ABC'

Torniamo all'adder...

Produciamo l'espansione in mintermini per le uscite dell'adder...

#	Α	В	Cin	S	Cout
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

S=A'B'Cin+A'BCin'+AB'Cin'+ABCin

Cout=A'BCin+AB'Cin+ABCin'+ABCin

Esercizio

Determinare l'espansione in mintermini per le seguenti funzioni:

•
$$F_2 = A \cdot (B + C) + (A' + B) \cdot (B + C')$$

Esercizio

Determinare la tabella di verità per le seguenti espressioni:

Generalizzazione

$$F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 = \sum_{i=0}^7 a_i m_i$$

ABC	F	
0 0 0	a₀ .	_
0 0 1	a ₁	
0 1 0	a_2	a _i vale 0 o 1
0 1 1	a_3	o., . o o o o
100	a_4	
1 0 1	a ₅	
110	a_6	
111	a ₇	

Notazione

Usata per riferirsi all'espansione in mintermini

#	Α	В	С	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

 $F = \sum m(0,3,6)$

Come potremmo realizzarlo con sole porte NAND?

Realizzazione mediante NAND

Sfruttiamo la proprietà X'+Y'+Z'= (XYZ)' e trasformiamo in NAND l'OR con ingressi negati

I restanti NOT si realizzano cortocircuitando gli ingressi di porte NAND

Maxtermine

- Un maxtermine di n variabili è una somma (OR) di n literal in cui ciascuna variabile appare esattamente una volta, nella forma true o complemento (non entrambe)
- · Data una tabella di verità, il maxtermine si ottiene
- Includendo la forma true (es. A) se il valore è 0
- Includendo la forma complementata (es. A') se il valore è 1

Realizzazione mediante NAND: sommario

- · Sostituiamo gli AND con NAND
- Aggiungiamo un NOT in ingresso all'OR, in modo da annullare il NOT dei NAND
- Infine, possiamo realizzare i NOT e l'OR mediante NAND
- visto che ho negato gli ingressi della OR per annullare il NOT dei NAND, ogni OR sara' del tipo A'+B', che corrisponde a (AB)' e quindi a una NAND

Maxtermini

#	Α	В	C	Maxtermine
0	0	0	0	M ₀ =A+B+C
1	0	0	1	M ₁ =A+B+C'
2	0	1	0	M ₂ =A+B'+C
3	0	1	1	M ₃ =A+B'+C'
4	1	0	0	M ₄ =A'+B+C
5	1	0	1	M ₅ =A'+B+C'
6	1	1	0	M ₆ =A'+B'+C
7	1	1	1	M ₇ =A'+B'+C'

Espansione in maxtermini

- Una funzione scritta come prodotto (AND) di maxtermini è detta espansione in maxtermini o forma canonica POS o forma normale congiuntiva
- Data una tabella di verità, includiamo nell'AND tutti i <u>maxtermini che corrispondono alle righe in cui la funzione</u> <u>f=0</u>
- Data una funzione, la corrispondente espansione in maxtermini è unica
- · Ma non è necessariamente la soluzione a costo minimo

Espansione in maxtermini

Determinare l'espansione in maxtermini della funzione corrispondente alla seguente tabella di verità

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Soluzione

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

F=(A+B+C')(A+B'+C)(A'+B+C)(A'+B'+C')

Perché funziona?

Α	В	O	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Equivale a: (A'B'C)' · (A'BC')' · (AB'C')' · (ABC)'

Applichiamo De Morgan

$$(A'B'C)' \cdot (A'BC')' \cdot (AB'C')' \cdot (ABC)' =$$

$$= (A''+B''+C') \cdot (A''+B'+C'') \cdot (A'+B''+C'') \cdot (A'+B'+C') =$$

$$= (A+B+C') \cdot (A+B'+C) \cdot (A'+B+C) \cdot (A'+B'+C')$$

Corrisponde all'AND dei maxtermini delle righe in cui la funzione F vale zero

Esercizio

Determinare la tabella di verità per le seguenti funzioni:

- $F_1=(A+B'+C)(A'+B'+C)$
- $F_2=(A+B'+C')(A'+B'+C')(A'+B+C')$

Torniamo all'adder...

Produciamo l'espansione in maxtermini per le uscite dell'adder...

#	Α	В	Cin	S	Cout
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

S=(A+B+Cin)(A+B'+Cin')(A'+B+Cin')(A'+B'+Cin)

Cout=(A+B+Cin)(A+B+Cin')(A+B'+Cin)(A'+B+Cin)

Espansione in maxtermini

Determinare l'espansione in maxtermini delle seguenti funzioni:

- $F_1 = (A + B')(A + C)(B + C')$
- F₂ = A'B' + A'C' + B'C

Generalizzazione

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2) \cdot \cdot \cdot (a_7 + M_7) = \prod_{i=0}^{7} (a_i + M_i)$$

ABC	F	
0 0 0	a ₀ 、	
0 0 1	a ₁	
0 1 0	a ₂	
0 1 1	a ₃	
100	a_4	a vale 0 o 1
1 0 1	a ₅	
1 1 0	a_6	
1 1 1	a ₇	

Notazione

Per riferirsi all'espansione in maxtermini

#	Α	В	С	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $F = \prod M(1,2,4,7)$

Realizzazione circuito

$$F=(A+B'+C)(A'+B'+C)$$

Realizzazione mediante NOR

Stesso principio utilizzato per la realizzazione tramite NAND delle SOP

F=(A+B'+C)(A'+B'+C)

Inserisco dei NOR e poi nego gli ingressi delle AND

Realizzazione mediante NOR

Sostituiamo l'AND con ingressi negati con un NOR sfruttando la proprietà X'Y'=(X+Y)'

Realizziamo i restanti NOT cortocircuitando gli ingressi di porte NOR

Esempio

- F=A'B'C'+A'BC+AB'C+ABC
- · Numeri binari corrispondenti:
 - · 000+011+101+111
- Quali combinazioni di numeri binari mancano?
- 001, 010, 100, 110
- · Realizziamo la corrispondente SOP:
- (A+B+C')(A+B'+C)(A'+B+C)(A'+B'+C)

Conversione SOP → POS

- 1. Valutare ciascun mintermine identificando i corrispondenti numeri binari
- 2. Identificare i numeri binari non inclusi nella somma precedente
- 3. Per tali numeri binari, determinare i maxtermini e realizzare l'espansione in maxtermini

Conversione POS → SOP

Analoga alla conversione SOP → POS

- 1. Valutare ciascun maxtermine, identificando i corrispondenti numeri binari
- 2. Identificare i numeri binari non inclusi nella somma precedente
- 3. Per tali numeri binari, determinare i mintermini e realizzare l'espansione in mintermini

Esercizio

Convertire in SOP la seguente espressione POS:

F=(A+B+C)(A'+B+C')(A'+B+C)

Funzioni non completamente specificate

- Una funzione è completamente specificata se il suo valore (0 o 1) è definito per tutte le combinazioni delle variabili d'ingresso
- Potrebbero esserci casi in cui <u>non è necessario</u> <u>definire un valore di uscita</u> per alcune combinazioni di ingressi
- Tali combinazioni sono definite come "don't care"

Funzioni non completamente specificate

Funzioni non completamente specificate

Consideriamo il circuito N_1 che ha lo scopo di "pilotare" il circuito N_2

Supponiamo che il circuito N_1 non generi tutte le combinazioni di $A \ B \ C$

Supponiamo che non vi siano combinazioni di w, x, y, z tali che ABC assumano i valori 001 o 110

Tabelle di verità

Simbolo **X** o **d** al posto di **0** o **1** nelle righe per le quali la funzione non è specificata

ABC

Espansione in mintermini o maxtermini

- · Occorre specificare un valore per i casi "don't care"
- · Possono essere indifferentemente 0 o 1
- Ovviamente, la <u>scelta di 0 o 1 influenzerà la</u> complessità della risultante espansione
- Successivamente vedremo come le funzioni non completamente specificate sono gestite nella minimizzazione mediante mappe di Karnaugh

Esempio di funzione non completamente specificata

Circuito per pilotare un display a 7 segmenti 7-segment decoder

- 4 bit di ingresso
- Funzione di uscita non specificata per ingresso>9 (ABCD>1001)

Esempio

ABC

111

- Se assegno X=0 in tutti i casi:
 A'B'C'+A'BC+ABC=A'B'C'+BC
- Se assegno 1 alla prima X e 0 alla seconda: A'B'C'+A'B'C+A'BC+ABC=A'B'+BC

Espansione in mintermini e maxtermini

$$F = \sum m(0,3,7) + \sum d(1,6)$$
 mintermini "don't care"
$$F = \prod M(2,4,5) \bullet \prod D(1,6)$$
 maxtermini "don't care"
$$\frac{A B C}{000} = F$$

$$010 = 0$$

$$011 = 1$$

$$100 = 0$$

$$110 = X$$

$$111 = 1$$

Analisi e design di circuiti combinatori

Circuiti combinatori

- · Gli output sono funzione solo degli input
- · Nessuna memoria (stato)
- Possono essere descritti mediante <u>funzioni</u> Booleane e/o tabelle di verità

Design gerarchico

- · Se il problema è complesso, decomporlo in sotto-problemi
- · Successivamente, risolviamo ciascun sottoproblema
- Infine, combiniamo le soluzioni dei sottoproblemi per realizzare il circuito che serve per risolvere il problema di partenza
- Infatti, un circuito elettronico è spesso formato da più sottocircuiti (a volte su differenti chip) che risolvono sottoproblemi diversi
- · A volte sottoproblemi ricorrenti ...

Realizzazione di circuiti

Design dei Circuiti

Modo *più semplice*: rappresentare una funzione mediante *espansione in mintermini o maxtermini*, e realizzarla usando opportuni gate

Dov'è il problema?

Design dei Circuiti

- L'espansione in maxtermini o mintermini <u>non</u> <u>corrisponde necessariamente al circuito meno</u> <u>costoso</u> (minor numero di porte, stesso tipo di porte)
- Quindi, il nostro obiettivo ora è minimizzare il costo del circuito

Ma non solo il costo...

- Velocità
- dipende dai tempi di risposta dei circuiti e da quanti circuiti in cascata un input deve attraversare per produrre un output
- · Consumo energetico...
 - · vedere data sheet dei circuiti

Processo di sintesi

- 1. Partire dalle **specifiche** del circuito
- 2. Identificare gli input e gli output del circuito
- 3. Produrre la tabella di verità
- 4. Determinare l'espansione in mintermini e maxtermini
- Usare <u>l'algebra di Boole</u> o le <u>mappe di Karnaugh</u> per identificare <u>un'espressione equivalente a entrambe</u>
- 6. Scegliere la soluzione a costo minore
- 7. Costruire il circuito
- 8. Verifica (es. mediante simulazione)

Analisi

Obiettivo: determinare il <u>comportamento di un</u> <u>circuito a partire dalla sua descrizione</u> (diagramma del circuito)

Analisi

- Per circuiti semplici (2 livelli) può essere effettuata per ispezione
- Per circuiti a più livelli le cose possono essere più complicate...

Procedura di analisi

- 1. Identificare input e output
- 2. Tracciare i <u>segnali dagli ingressi alle uscite per tutte</u> <u>le combinazioni di ingressi</u>
- 3. Determinare il valore delle uscite
- 4. Realizzare la tabella di verità
- 5. Analizzare aspetti di temporizzazione, consumo, etc.
 - · Maggiori dettagli nei corsi di elettronica...