Food webs

DSTA

1 Data Science and Complex Networks

1.1 Basic concepts

The study of how objects(entities) connect to each other and the properties of their connection.

Possible understanding: a relationship istance.

1.2 Terminology

- $G = \langle V, E \rangle$ where $E \subseteq V \times V$
- |V| = n, |E| = m, density is $|E|/|V|^2$

. . .

- vertex v is adjacent to u if $(u, v) \in E$; $(v, v) \notin E$.
- neigh. of v, N(v): the set of adjacent vertices; deg(v) = |N(v)|

. . .

• The adjacency matrix $A_{n\times n}$ of G: $(u,v)\in E\leftrightarrow a_{ij}=1$

. . .

• [incidence matrix $I_{n \times m}$ of G:]

1.3 Paths, connectedness

- A path $u \to v$ is a sequence of edges $\langle (u, c_1), (c_1, c_2), \dots (c_k, v) \rangle$
- its length (k+1) is the cardinatility of the path.

. . .

- Two vertices are connected if \exists a path betw. them.
- A graph is connected if all its vertices are.

1.4 Distances, I

- Distance is the length of the (possibly non-unique) shortest path connecting them, ∞ otherwise.
- The diameter of a graph is the maximum distance between any two pairs

1.5 Distances, II

Average distances are also important

[...] the first world-scale social-network graph-distance computations, using the entire Facebook network of active users (\sim 721 million users, \sim 69 billion friendship links). The average distance [...] is 4.74, corresponding to 3.74 intermediaries or "degrees of separation."

1.6 Weighted, Directed, Multiplex

```
G = \langle V, E, w \rangle where w : E \to \mathbb{R}
```

Path lenght: sum of the weights of the arcs.

. . .

 $G = \langle V, E \rangle$ where $v \in V$ are **nodes** and $\langle u, v \rangle \in E$ are **arcs.** $w : E \to \mathbb{R}$ Out-neigh. and In-neigh.

. . .

 $G = \langle V, E, D \rangle$ where V are nodes D are dimensions/layers and $\langle u, v, d \rangle \in E$ are arcs

2 Interesting questions

2.1 interesting questions I: paths and oflow

2.2 interesting questions II: centralities

2.3 interesting questions III: clustering


```
import networkx as nx

G = nx.karate_club_graph()

print("Node Degree")

for v in G:
    print('%s %s' % (v, G.degree(v)))
```

3 Visualization

3.1 Visualizing frequencies by graphs

Polisemy:

3.2 More on Graphs/Networks

The Python 2 code can be cloned from Github

From the same author, a summary of the main concepts

4 Ch. 1: Food Webs

4.1 Important concepts

. . .

- modeling tip: it is ok to have a special node representing "nature"
- \bullet modeling tip: look for invariants

. . .

• find the connected component (the **bowtie**):

source, connect and sink.

4.2 Method

- study degree distribution
- find properties of a network in terms of the degree $\mathit{organization}$

. . .

• study clustering coefficient: why is it so much better than plain network density?