Convergence en loi, TCL.

1. Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles définies sur un espace $(\Omega, \mathscr{F}, \mathbb{P})$ et f une application continue de \mathbb{R} dans \mathbb{R} . On suppose que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire X. Montrer que la suite $(f(X_n))_{n\in\mathbb{N}}$ converge en loi vers f(X).

2.

- a) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles qui converge en loi vers une variable aléatoire réelle constante a. Montrer que la convergence a lieu aussi en probabilité.
- b) Soit $(X_n)_{n\geq 1}$ une suite indépendante de variables aléatoires réelles de même loi de Cauchy de paramètre 1. Soit $S_n = \sum_{k=1}^n X_k$. Etudier les convergences en probabilité et en loi des suites $(\frac{1}{\sqrt{n}}S_n)_{n\geq 1}$, $(\frac{1}{n}S_n)_{n\geq 1}$ et $(\frac{1}{n^2}S_n)_{n\geq 1}$.

 Indication: la fonction caractéristique de la loi de Cauchy est donnée par $\phi(t) = e^{-|t|}$.
- **3.** Soient X une variable aléatoire réelle, $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux variables aléatoires réelles.
 - a) Montrer que pour tous $t \in \mathbb{R}$, a > 0 et $n \in \mathbb{N}$,

$$|\phi_{X_n+Y_n}(t) - \phi_{X_n}(t)| \le 2\mathbb{P}(|Y_n > a|) + \mathbb{E}[\mathbb{1}_{]-\infty,a]}(|Y_n|)|e^{itY_n} - 1|].$$

- b) Montrer que si $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X et $(Y_n)_{n\in\mathbb{N}}$ converge en loi vers 0, alors la suite $(X_n + Y_n)_{n\in\mathbb{N}}$ converge en loi vers X.
- c) Montrer que la convergence en loi de $(X_n)_{n\in\mathbb{N}}$ vers X n'implique pas la convergence en loi de $(X_n-X)_{n\in\mathbb{N}}$ vers 0.

- 4. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi de Poisson de paramètre 1. Soit $S_n = \sum_{k=1}^n X_k$. Rappeler la loi de S_n et calculer la limite de la suite $\left(e^{-n}\sum_{k=0}^n \frac{n^k}{k!}\right)_{n\geq 1}$.
 - **5.** Formule de Stirling Soit a>0.
 - a) Montrer que si X est une variable aléatoire réelle de carré intégrable, on a

$$\mathbb{E}[|X - \inf(X, a)|] \le \mathbb{E}[X \mathbb{1}_{\{X > a\}}] \le (\mathbb{E}[X^2] \mathbb{P}(X \ge a))^{1/2}.$$

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi de Poisson de paramètre 1. On pose $S_n = \sum_{k=1}^n X_k$ et $Y_n = \frac{S_n - n}{\sqrt{n}}$.

- b) Pour tout $n \geq 1$, calculer $\mathbb{E}[Y_n^2]$. En déduire que $\mathbb{P}(Y_n^- \geq a) \leq \frac{1}{a^2}$.
- c) Montrer que $(Y_n)_{n\geq 1}$ converge en loi vers une variable aléatoire dont on précisera la loi. En déduire que $(Y_n^-)_{n\geq 1}$ converge en loi vers Y^- et que la suite $(\inf(Y_n^-,a))_{n\geq 1}$ converge en loi vers $\inf(Y^-,a)$.
- d) A l'aide de la question a), montrer que la suite $(\mathbb{E}[Y_n^-])_{n\geq 1}$ converge vers $\mathbb{E}[Y^-]$.
- e) Calculer $\mathbb{E}[Y^-]$ et $\mathbb{E}[Y_n^-]$ pour tout $n \geq 1$. En déduire la formule de Stirling

$$\lim_{n \to +\infty} \frac{\sqrt{2\pi n} n^n e^{-n}}{n!} = 1.$$

- **6.** 1. Soit $(p_n)_{n\geq 0}$ une suite de réels dans]0,1[telle que $\lim_{n\to +\infty} np_n=\lambda>0$. Soit $(X_n)_{n\geq 0}$ une suite de v.a. telles que pour tout $n:X_n\sim \mathcal{B}(n,p_n)$ et X une v.a. de loi de Poisson paramètre λ . Montrer que $(X_n)_{n\geq 0}$ converge en loi vers X.
- 2. Soit $(X_n)_{n\geq 0}$ une suite de v.a. réelles indépendatntes de même loi $\mathcal{N}(0,1)$. Etudier le comportement asymptotique en loi de la suite $Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k$.
- 7. On suppose que l'intervalle de temps entre deux voitures successives à un passage à niveau (peu fréquenté) suit une loi exponentielle de moyenne 30 minutes. On suppose de plus qu'il y a indépendance entre les intervalles de temps séparant les instants de passage de voitures. Calculer (une valeur approchée) de la probabilité qu'il y ait plus de 50 voitures qui empruntent le passage à niveau une journée donnée.