

DOT/FAA/CT-89/6

FAA Technical Center

Atlantic City International Airport N.J. 08405

Statistics on Aircraft Gas Turbine Engine Rotor Failures that Occurred in U. S. Commercial Aviation During 1984

R.A. DeLucia J.T. Salvino Naval Air Propulsion Center

Trenton, New Jersey

B. C. Fenton

FAA Technical Center

June 1989

Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
DOT/FAA/CT-89/6				
4. Title end Subtitle STATISTICS ON AIRCRAFT GAS T FAILURES THAT OCCURRED IN U. DURING 1984	URBINE ENGINE ROTOR S. COMMERCIAL AVIATION	5. Report Date June 1989 6. Performing Organization Code PE32		
7. Author's) R. A. Delucia/J. T. B. C. Fenton, FAA Tec. 9. Performing Organization Name and Address	chnical Center	NAPC~PE-185		
Commanding Officer Naval Air Propulsion Center PO Box 7176 Trenton, NJ 08628-0176		11. Interagency Agreement DOD/FA71NA AP98		
12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administrati	Lon	i3. Type of Report and Period Covered Final Report		
Technical Center Atlantic City International A 15. Supplementary Notes	Airport, NJ 08405	14. Sponsoring Agency Code ACD-210		

This report presents statistical information relating to gas turbine engine rotor failures which occurred during 1984 in commercial aviation service use. Two hundred and six failures occurred in 1984. Rotor fragments were generated in 114 of the failures and, of these, 18 were uncontained. The predominant failure involved blade fragments, 90.3 percent of which were contained. Seven disk failures occurred and all were uncontained. Seventy percent of the 206 failures occurred during the takeoff and climb stages of flight.

This service data analysis is prepared on a calendar year basis and published yearly. The data are useful in support of flight safety analyses, proposed regulatory actions, certification standards, and cost benefit analyses.

17. Key Words		18. Distribution Statem	nent	
Air Transportation Aircraft Hazards Aircraft Safety Gas Turbine Engine Rotor Fail Containment	lures ,	public through	is available to the National T crvice, Springfi	echnical
19. Security Classif. (of this report)	20. Security Clas	sif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unc	classified	24	

ACKNOWLEDGMENTS

We thank the Federal Aviation Administration personnel at the Flight Standards National Field Office, Oklahoma City, OK, for providing the basic data used to prepare this report.

Acces	sion For	
NTIS	GRA&I	X
DTIC	TAB	
Unanı	nounced	
Just	lfication	
	ribution/	Codes
D4 = 4	Avail ar	•
Dist	Specia	31
A-1		

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
INTRODUCTION	1
RESULTS	2
DISCUSSION AND CONCLUSIONS	3
APPENDIX	
A - Data of Engine Rotor Failures in U.S. Commercial Aviation for 1984	

LIST OF ILLUSTRATIONS

Figure		Page
1	Incidence of Engine Rotor Failures in U.S. Commercial Aviation - 1984	5
2	Incidence of Engine Rotor Failures in U.S. Commercial Aviation According to Affected Engine Model and Engine Fleet Hours - 1984	6
3	Component and Fragment Type Distributions for Contained and Uncontained Rotor Engine Failures (Failures that Produced Fragments) - 1984	7
4	The Incidence of Engine Rotor Failures in U.S. Commercial Aviation According to Engine Type Affected - 1984	8
5	Engine Rotor Failure Cause Categories - 1984	9
6	Flight Condition at Engine Rotor Failure - 1984	10
7	The Incidence of Uncontained Engine Rotor Failures in U.S. Commercial Aviation - 1962 through 1984	11

LIST OF TABLES

Table		Page
1	Gas Turbine Engine Failure Rates According to Engine Model and Type - 1984	12
2	Uncontained Engine Rotor Failure Distributions According to Cause and Flight Conditions ~ 1976 through 1984	13

EXECUTIVE SUMMARY

This service data analysis is prepared on a calendar basis and published annually. The data support flight safety analyses, proposed regulatory actions, certification standards, and cost benefit analyses. The following statistics are based on gas turbine engine rotor failures that have occurred in United States commercial aviation during 1984.

Two hundred and six rotor failures were reported in 1984. These failures accounted for approximately 12 percent of the 1657 shutdowns experienced by the United States commercial fleet. Rotor fragments were generated in 114 of the failures and, of these, 18 were uncontained. This represents an uncontained failure rate of 1.8 per million gas turbine engine powered aircraft flight hours, or 0.7 per million engine operating hours. Approximately 10.2 million and 24.7 million aircraft flight and engine operating hours, respectively, were logged in 1984.

Turbine rotor fragment-producing failures were approximately two times greater than that of the compressor rotor fragment-producing failures (79 and 32 respectively, of the total). Fan rotor failures accounted for three of the fragment-producing failures experienced.

Blade fragments were generated in 103 of the rotor failures; 10 of these were uncontained. The remaining eleven fragment-generating failures were produced by disk, rim, and seal.

Of the 115 known causes of failures (because of the high percentage of unknown causes of rotor failures, the percentages were based on the total number of known causes), the causal factors were (1) foreign object damage--48 (41.7 percent); (2) secondary causes--35 (30.4 percent); and (3) design and life prediction problems--32 (27.8 percent). One hundred and forty-five (71.4 percent) of the 206 rotor failures occurred during the takeoff and climb stages of flight. Ninety (78.9 percent) of the 114 rotor fragment-producing failures and 14 (77.8 percent) of the 18 uncontained rotor failures occurred during these same stages of flight.

The incidence of engine rotor failures producing fragments has increased 18.7 percent from 1983 (96 in 1983 and 114 in 1984). The uncontained engine rotor failures has increased 100 percent in 1984 (9 in 1983 and 18 in 1984). The 10-year (1975 through 1984) average of uncontained engine rotor failures has increased to 15.2.

INTRODUCTION

This report is sponsored and co-authored by the Federal Aviation Administration (FAA) Technical Center, located at the Atlantic City International Airport, New Jersey.

This service data analysis is published yearly. The data support flight safety analyses, proposed regulatory actions, certification standards, and cost benefit analyses.

The intent and purpose of this report is to present data as objectively as possible on rotor failure occurrences in United States commercial aviation. Presented in this report are statistics on gas turbine engine utilization and failures that have occurred in U.S. commercial aviation during 1984. These statistics are based on service data compiled by the FAA Flight Standards District Office. The National Safety Data Branch of the FAA Aviation Standards National Field Office disseminates this information in a service difficulty data base and the Air Carrier Aircraft Utilization and Propulsion Reliability Report. The FAA service data base contains only a fraction of the actual commercial helicopter fleet operating statistics. The number of turboshaft engines in use with the corresponding engine flight hours given herein are estimates derived primarily from statistics published by the Helicopter Association International in their helicoper annuals. The compiled data were analyzed to establish:

- 1. The incidence of rotor failures and the incidence of contained and uncontained rotor fragments (an uncontained rotor failure is defined as a rotor failure that produces fragments which penetrate and escape the confines of the engine casing).
- 2. The distribution of rotor failures with respect to engine rotor components, i.e., fan, compressor or turbine rotors and their rotating attachments or appendages such as spacers and seals.
- 3. The number of rotor failures according to engine model and engine fleet hours.
- 4. The type of rotor fragment (disk, rim, or blade) typically generated at failure.
- 5. The cause of failure.
- 6. The flight conditions at the time of failure.
- 7. Engine failure rate according to engine fleet hours.

RESULTS

The data used for analysis are contained in appendix A. The results of these analyses are shown in figures 1 through 7 and tables 1 and 2.

Figure 1 shows that 206 rotor failures occurred in 1984. These rotor failures accounted for approximately 12.4 percent of the 1657 shutdowns experienced by the gas turbine powered U.S. commercial aircraft fleet during 1984. Rotor fragments were generated in 114 of the failures experienced and, of these, 18 (15.8 percent of the fragment-producing failures) were uncontained. This represents an uncontained failure rate of 1.8 per million gas turbine engine powered aircraft flight hours, or 0.7 per million engine operating hours.

Approximately 10.1 million and 24.6 million aircraft flight and engine operating hours, respectively, were logged by the U.S. commercial aviation fleet in 1984. Gas turbine engine fleet operating hours relative to the number of rotor failures and type of engines in use are shown in figure 2.

Figure 3 shows the distribution of rotor failures that produced fragments according to the engine component involved (fan, compressor, turbine), the type of fragments that were generated, and the percentage of uncontained failures according to the type of fragment generated. These data indicate that:

- 1. The incidence of turbine rotor fragment-producing failures was approximately two times greater than that of the compressor rotor fragment-producing failures; these corresponded to 78 (68.4 percent) and 33 (28.9 percent), respectively, of the total number of fragment-producing failures. Fan rotor failures accounted for three (2.6 percent) of the fragment-producing failures experienced.
- 2. Blade fragments were generated in 103 (90.3 percent) of the rotor failures; 10 (8.8 percent) of these were uncontained. The remaining 11 (9.6 percent) rotor fragment failures were produced by disk, rim, and seal. All of the seven disk failures were uncontained, one rim failure was contained, and one of the three seal failures was uncontained.

Figure 4 shows the rotor failure distribution among the engine models that were affected and the total number of the models in use.

Table 1 contains a compilation of engine failure rates per million engine flight hours according to engine model, engine type, and containment condition. The engine failure rates per million flight hours by engine type are turbofan/turbojet--8.5, turboprop--11.1, and turboshaft--2.0. Uncontained engine failure rates per million flight hours by engine type were turbofan/turbojet--0.7, turboprop--0.8, and turboshaft--1.0.

Figure 5 shows what caused the rotor failures to occur. Of the 115 known causes of failure (because of the high percentage of unknown causes of rotor failure, the percentages were based on the total number of known causes), the causal factors were (1) foreign object damage--48 (41.7 percent); (2) secondary causes--35 (30.4 percent); and (3) design and life prediction problems--32 (27.8 percent).

Figure 6 indicates the flight conditions that existed when the various rotor failures occurred. One hundred and forty-five (70.4 percent) of the 206 rotor failures occurred during the takeoff and climb stages of flight. Ninety (78.9 percent) of the rotor fragment-producing failures and 14 (77.8 percent) of the uncontained rotor failures occurred during these same stages of flight. The highest number of uncontained rotor failures, 11 (61.1 percent), happened during takeoff.

Table 2 is a cumulative tabulation that describes the distribution of uncontained rotor failures according to fragment type, engine component involved, cause category, and flight condition (takeoff and climb are defined as "high power," all other conditions are defined as "low power") for the years 1976 through 1984. This table is expanded yearly to include all subsequent uncontained rotor failures. These data indicate that for "secondary causes" the number of uncontained failures was approximately six times greater at "high" power than "low" power (namely 30 and 5). For "design and life prediction problems" the number of "high" power uncontained failures was three times greater than "low" power (namely 24 and 8); and for "foreign object damage" the number of uncontained failures was seven times greater at "high" power than "low" power (namely 7 and 1). This tabulation also indicates that of the 138 total uncontained incidences, blade failures accounted for 68.1 percent; disk failures, 20.3 percent; rim failures, 5.1 percent; and seal/spacer failures, 6.5 percent.

Figure 7 shows the annual incidence of uncontained rotor failures in commercial aviation for the years 1962 through 1984. During 1984, the incidence of uncontained rotor failures increased by nine over the previous year, 1983. Over the past 10 years, 1975 through 1984, an average of 15.2 uncontained rotor failures per year have occurred. During the same time period, the rate of uncontained rotor failures has remained relatively constant at an average of approximately one per million engine operating hours.

DISCUSSION AND CONCLUSIONS

The incidence of engine rotor fragment-producing failures has remained relatively constant when compared to 1983 (96 in 1983 and 114 in 1984). The uncontained engine rotor failures has increased 100 percent (18 in 1984 and 9 in 1983). The 10-year (1975 through 1984) average of uncontained engine rotor failures is 15.2.

Of the 18 uncontained events that occurred during 1984, 12 (66.7 percent) involved turbine rotors, 5 (27.8 percent) involved compressor rotors, and 1 (5.6 percent) involved fan rotors.

The predominant cause of failure was attributed to foreign object damage (41.7 percent of the known failures), but no uncontained failure occurred in this category. Secondary causes (30.4 percent of the known failures) and design and life prediction problems (27.8 percent of the known causes) had 4 and 3 uncontained failures, respectively. The causes of the remaining 11 uncontained failures (61.1 percent) are unknown.

Uncontained failures occurred in 3 of the 10 known flight modes; i.e., 11 during takeoff (61.1 percent), 3 during climb (16.7 percent), and 3 in cruise (16.7 percent).

The higher incidences of uncontained rotor failures in calendar years 1967 through 1973 (except for 1968) were probably due to the introduction of newly developed engines entering the commercial aviation fleet, such as the JT9D and CF6 engines.

Structural life prediction and verification is being improved by the increased use of spin chamber testing by government and industry as a means of obtaining failure data for statistically significant samples. In addition, increased development and application of high sensitivity, nondestructive inspection methods should increase the probability of cracks being detected prior to failure. The capability to reduce the causes of failures from secondary effects is also being addressed through technology development programs. However, causes due to foreign object damage still appear to be beyond the control or scope of present technology.

FIGURE 1. INCIDENCE OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION - 1984

FIGURE 2. INCIDENCE OF ENGINE ROTOR FAILURES IN U.S COMMERCIAL AVIATION ACCORDING TO AFFECTED ENGINE MODEL AND ENGINE FLEET HOURS ~ 1984

ENGINE			TYF	E OF	FRA	TYPE OF FRAGMENT	T GEN	GENERATED	red	
ROTOR	D)	DISK	R	RIM	BL,	BLADE	SE	SEAL	10	TUTAL
CUMPUNENIS	TF	UCF	TF	TF UCF	TF	UCF	TF	UCF	TF	UCF
FAN	0	0	0	0	3	1	0	0	က	
COMPRESSOR		1	0	0	30	4	ય	0	88	5
TURBINE	9	9		0	02	2	1	1	82	12
TDTAL	7	7		0	103	10	3	1	114	18

COMPONENT AND FRACMENT TYPE DISTRIBUTIONS FOR CONTAINED AND UNCONTAINED ROTOR ENGINE FAILURES (FAILURES THAT PRODUCED FRACMENTS) - 1984 FIGURE 3.

FIGURE 4. THE INCIDENCE OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION ACCORDING TO ENGINE TYPE AFFECTED - 1984

FIGURE 5. ENGINE ROTOR FAILURE CAUSE CATEGORIES - 1984

FIGURE 6. FLIGHT CONDITION AT ENGINE ROTOR FAILURE - 1984

FIGURE 7. THE INCIDENCE OF UNCONTAINED ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION, 1962 through 1984

TABLE 1. GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE - 1984

TYPE/	AVERAGE NUMBER	ENGINE FLIGHT	N	O. OF	FAI	LURES			ATES / FLIGHT	10 ⁶
MODEL	IN USE	HRS.x106	C	NC	N	TOTAL	С	NC	N	TOTAL
TURBOFAN/T	IRBO.IFT									
JT8D	4834	12.7747	53	8	44	105	4.1	0.6	3.4	8.2
JT3D	379	0.5595	1	0	2	3	1.8	0.0	3.6	5.4
JT9D	690	2.4149	14	4	9	27	5.8	1.7	3.7	11.2
CF6	529	1.6339	8	1	7	16	4.9	0.6	4.3	9.8
RB211	311	0.8933	1	0	3	4	1.1	0.0	3.4	4.5
CF700	15	0.0052	0	0	0		0.0	0.0	0.0	0.0
SPEY	83	0.1827	3	0	2	0 5	16.4	0.0	10.9	27.4
JT15D	3	0.1827	0	0		0		0.0	0.0	0.0
TFE731	9				0		0.0			
		0.0093	0	0	0	0	0.0	0.0	0.0	0.0
CFM56	229	0.4771	0	0	1	1	0.0	0.0	2.1	2.1
ALF502	30	0.0565	1	0	0	1	17.7	0.0	0.0	17.7
JT4A	41	0.0250	0	0	0	0	0.0	0.0	0.0	0.0
CJ610	2	0.0002	0	0	0	0	0.0	0.0	0.0	0.0
TOTAL	7155	19.0334	81	13	68	162	4.3	0.7	3.6	8.5
TURBOPROP										
PT6A	937	1.8633	13	2	6	21	7.0	1.1	3.2	11.3
ALL501	353	0.5343	0	0	9	9	0.0	0.0	16.8	16.8
TPE331	403	0.7839	2	1	1	4	2.6	1.3	1.3	5.1
DART	260	0.3711	ō	ō	3	3	0.0	0.0	8.1	8.1
BASTAN	13	0.0227	Ö	Õ	ő	0	0.0	0.0	0.0	0.0
TYNE	17	0.0294	Õ	Ö	3	3	0.0		102.0	
CT7	6	0.0008	Ö	ő	0	ő	0.0	0.0	0.0	0.0
017	U	0.0000	U	U	U	U	0.0	0.0	0.0	0.0
TOTAL	1989	3.6055	15	3	22	40	4.2	0.8	6.1	11.1
TURBOSHAFT										
250C*	4250	1.4280	0	2	0	2	0.0	1.4	0.0	1.4
GEM510	6	0.0077	Ō	Ō	2		0.0	0.0		
ALL OTHERS	_	0.5860	Ö	Ö	ō		0.0	0.0	0.0	0.0
	·		,		·	· ·			0	
TOTAL*	6000	2.0217	0	2	2	4	0.0	1.0	1.0	2.0

C = CONTAINED NC = NOT CONTAINED
N = FUNCTION IMPEDED, NO FRAGMENTS GENERATED

^{*}Estimated total number in use and engine flight hours for entire U.S. commercial fleet.

TABLE 2. UNCONTAINED ENGINE ROTOR FAILURE DISTRIBUTIONS ACCORDING TO CAUSE AND FLIGHT CONDITIONS - 1976 THROUGH 1984

TYPE OF FRAGMENT GENERATED		Ω	DISK			RIM		K C	BLADE		S	SEAL			
ENGINE ROTOR COMPONENT	l I	FAN	COMD	TURB	FAN	COMP	TURB	FAN	COMP	TURB	FAN	COMP	TURB	SUB	TOTAL
CAUSE	FLIGHT COND.														
DESIGN/LIFE	н	c		c	c	,	c	α	٢		c	~	c	7,7	
PREDICTION	LOW	0	۰ -) m	0	0	0	· -	۰ ۵	- ~	c	· c	0	4 00	32
PROBLEMS	UNK	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ
SECONDARY	Н	0	-	0	0	0	0	4	4	18	0	0	٣	30	
CAUSES	LOW	0	0	0	0	0	0	0	2	3	0	0	0	2	36
	UNK	0	0	0	0	0	0	0	0		0	0	0		
FOREIGN	HI	-	0	_	0	0	0	50	0	0	0	0	0	7	
OBJECT	LOW	0	0	0	0	0	0	-	0	0	0	0	0	_	10
DAMAGE	UNK	0	0	0	0	0	0	7	C	0	0	0	c	2	
OUALITY	HI	0	-	0	0	0	-	. 7	0	0	C	c	0	7	
CONTROL	101	· C	· C	· c	c	· c		· C	· c	· c	· C	· C	· c	C	7
	UNK	0	0	0	0	0	0	0	0	0	0	0	0	0	·
TANOTTAGAGO	<u>1</u> 1	c	c	c	C	c	c	c	c	c	c	c	_		
	T.O.V	•	0	0	0	0	o c	0	· c	o C	c	0		0	c
	UNK	0	0	0	0	0	0	C	0	0	C	0	0	0)
ASSEMBLY/	HI	0	0	0	0	0	0	0	0	0	C	0	0	C	
INSP.	LOW	0	C	0	0	0	0	0	0	0	C	c	0	c	0
REPORTS	UNK	0	0	0	0	0	0	0	0	0	0	0	0	c	
UNKNOWN	H	0	-	∞	0	٣	0	7	&	6	-	2	_	37	
	LOW	1	0	4	0	-	0	0	7	2	0	~	0	14	95
	UNK			-			0	-		3		0		5	
SUBTOTAL	HI	7	œ	6	0	2	-	23	19	28	1	3	7	102	
	LOW		~	7	0	7	0	2	7	11	0	_	c	28	138
	UNK	0	0	1	0	0	0	3	0	7	0	0	0	8	
			6			•			à			¢			00.
TOTAL			87			-			7 4			٧		521	11.38

*Takeoff and climb are defined as "High Power" and all other conditions are defined as "Low Power".

APPENDIX A

Data of Engine Rotor Failures in U.S. Commercial

Aviation for 1984. Compiled from the

Federal Aviation Administration

Service Difficulty Reports.

Data Compilation Key

Component Code:

- F Fan
- C Compressor
- T Turbine

Fragment Type Code:

- D Disk
- R Rim
- B Blade
- S Seal
- N None

Cause Code:

- 1 Design and Life Prediction Problems
- 2 Secondary Causes
- 3 Foreign Object Damage
- 4 Quality Control
- 5 Operational
- 6 Assembly and Inspection Error
- 7 Unknown

Containment Condition Code:

- C Contained
- NC Not Contained
- N No Fragments Generated

Flight Condition Code:

- 1 Insp/Maint
- 2 Taxi/Grnd Hdl
- 3 Takeoff
- 4 Climb
- 5 Cruise
- 6 Descent
- 7 Approach
- 8 Landing
- 9 Hovering
- 10 Unknown

				FI	RAGMEN	ΙΤ	CONTAINMEN	T FLIGHT
SDR NO.	SUBMITTER	AIRCRAFT	ENG/LOC	COMPONENT		CAUSE		CONDITION
								
10308406	7 PSA	BAE146	ALF502	T	В	1	С	4
01128409	O EAL	DC10	CF6	T	В	2	С	4
09148402	4 WRL	DC10	CF6	T	В	7	С	4
08078404	5 UAL	DC10	CF6	С	В	3	С	3
04248418	7 WAL	DC10	CF6 UNK	С	В	1	NC	3
11138405		DC10	CF6	T	В	7	c	4
08148408	7 AAL	DC10	CF6	T	В	1	C	4
01268411		DC10	CF6	С	В	7	C	5
05098407		DC10	CF6	F	В	3	C	3
09258402		DC10	CF6	T	В	2	С	4 3
09048411		DC10	CF6	F	N	3	N	<i>3</i> 4
04248420		DC10	CF6	F	N	3	N	
04248419		DC10	CF6	F	N	3	N	3 4
06148403		DC10	CF6	С	N	7	N	2
02078420		DC10	CF6	С	N	3	N	3
11088404		DC10	CF6	T	N	2	N	
05228416		DC10	CF6	T	N	2	N	5 3
04248419		DC8	CFM562	C	N	3	N	3
02068405		F27	DART511	T	N	7	N	3 7
04188403		STC24	DART542	T	N	2	N	í
05298413		STC24	DART542	T	N	2	N	9
10258400		WEST.30	GEM510	T	N	2	N	1
10258400		WEST.30	GEM10	T	N	2	N	5
04108400		В707	JT3D	F	В	7	C	3
07178409		B707	JT3D	F	N	3	N	5
03158410		DC8	JT3D	T	N	7	N C	3
06268408		B727	JT3D	C	В	7	NC NC	3
09118405		B727	JT8D No.		В	2	C	3
05158413		B727	JT8D	C	В	7	NC	3
11068402		B727	JT8D No.		В	7	C	4
06298403		В727	JT8D	T	В	1	C	4
04188402		B727	JT8D	T	В	7 2	C	4
04118410		В727	JT8D	T	В		C	4
0605841		DC9	JT8D	T	В	1 1	C	3
07038409		DC9	JT8D	T	В	7	C	4
0621840		B727	JT8D	T	В		C	8
0328840		B727	JT8D	C	В	2 1	C	5
1210840		DC9	JT8D	C	В	7	C	3
0410840		DC9	JT8D	C	B B	7	C	4
0410840		DC9	JT8D	C V	В	7	C	5
1218840		DC9	JT8D		В	7	C	3
0313B40		DC9	JT8D	C	В	1	C	3
0313840		DC9	JT8D	C T	В	i	C	5 3 4 5 3 3
0501841	50 HAL	DC9	JT8D	ı	D	1	J	3

					FLIGHT	Г	CONTAINMEN'	
SDR NO. S	UBM1TTER	AIRCRAFT	ENG/LOC	COMPONENT	TYPE	CAUSE	CONDITION	CONDITION
						7	6	4
030684138	AAL	DC9	JT8D	C	В	7 3	C C	1
061984102	ACL	DC9	JT8D	C	В	3 1	C	4
102484011	TWA	DC9	JT8D	C	В	7	C	3
052284155	REP	DC9	JT8D	C	В	1	C	3
050984078	ACL	DC9	JT8D	T	В	7	NC	3
022884128	EAL	DC9	JT8D U		В	1	NC	4
121784057	DAL	DC9		NK C	B B	3	C	4
032284121	ONE	B727	JT8D	C		2	NC	3
032884094	EAL	B727	JT8D N		В	1	C	4
081484089	NWA	B727	JT8D	T	В	1	C	3
100283030	EAL	DC9	JT8D	T	В	7	C	3
052284159	REP	DC9	JT8D	C	B B	1	c	4
121884075	EAL	DC9	JT8D	T		1	Č	3
040484075	REP	DC9	JT8D	T	В	1	C	3
032284112	REP	DC9	JT8D	T	B B	2	C	4
020284037	EAL	DC9	JT8D	T		7	Č	7
111984077	USA	DC9	JT8D	T	В	2	C	5
100484050	REP	DC9	JT8D	T	В	7	Č	4
100383042	REP	DC9	JT8D	T	В	1	C	4
070384126	REP	DC9	JT8D	T	В	7	c	3
021084016	AKB	DC9	JT8D	. T	В	1	C	4
062684086	OZA	DC9	JT8D	T	В		NC	3
090484118	USA	DC9	JT8D U		В	1	C	4
022884124	USA	DC9	JT8D	T	В	1	C	4
051584139	NW	B727	JT8D	T	В	I	C	3
091884056	UAL	B727	JT8D	T	В	1	C	4
012480467	USA	DC9	JT8D	T	R	1	C	4
090484115	TBA	B727	JT8D	T —	В	7	C	3
909484072	MID	DC9	JT8D	T	В	7		3
082884127	MID	DC9	JT8D		D	7	NC	3
102484007	BNF	B727	JT8D	<u>T</u>	В	7	C C	4
091884047	REP	DC9	JT8D	T	В	7		
121084045	TWA	B727	JT8D	C	В	2	C	5
020784202	SWA	В737	JT8D	Ţ	В	2	C	4 3
071184010	OZA	DC9	JT8D	T	В	7	C	<u>د</u> د
051584138		B737	JT8D	T	В	2	C	4
060784067		DC9	JT8D	T	В	1	C	2
062684126		B727	JT8D	T	В	1	C	4
042484194		DC9	JT8D		D	7	NC	
120584086		DC9	JT8D	T	В	1	C	3
120384021		DC9	JT8D	T	В	7	C	4
032884128		B727	JT8D	T	В	7	C	4 4
012484069		B727	JT8D	T	В	7	C	1
082184158		DC9	JT8D	C	N	7	N	4
112684087	DAL	B727	JT8D	С	N	2	N	4

				,	FRAGMENT	,	CONTAINMEN	r FLIGHT
SDR NO.	SUBMITTER	AIRCRAFT	ENG/LOC	COMPONENT	TYPE	CAUSE		CONDITION
DDR NO.	JOBATE LEIN		21.07.200	3012 0112112				
091884055	FAL	B737	JT8D	T	N	2	N	3
121984058	EAL	DC9	JT8D	T	N	2	N	4
100484045	REP	B727	JT8D	С	N	7	N	5
071184003	EAL	DC9	JT8D	F	N	3	N	5
011284098	REP	B727	JT8D	T	N	2	N	3
032884089	USA	B727	JT8D	T	N	2	N	3
021584007	HAL	DC9	JT8D	С	N	7	N	6
080384017	AKB	DC9	JT8D	T	N	7	N	4
121084042	ACL	DC9	JT8D	С	N	7	N	3
061984110	ACL	DC9	JT8D	C	N	7	N	5
100484046	TWA	DC9	JT8D	С	N	3	N	3
020784208	UAL	B737	JT8D	F	N	3	N	7
120384051	ACL	B737	JT8D	C	N	3	N	1
041884023	EAL	B727	JT8D	T	N	7	N	4
022284151	REP	DC9	JT8D	T	N	2	N	5
122484056	REP	DC9	JT8D	T	N	2	N	5
091884045		DC9	JT8D	T	N	7	N	4
012684106		B727	JT8D	T	N	7	N	5
061984115		B727	JT8D	T	N	7	N	3
071184005		DC9	JT8D	Ť	N	7	N	1
071184068		DC9	JT8D	F	N	3	N	3
050184136		B727	JT8D	ć	N	Ī	N	1
051584140		B727	JT8D	F	N	3	N	4
072484004		B727	JT8D	Ĉ	N	3	N	5
100984024		DC9	JT8D	č	N	1	N	4
110684050		DC9	JT8D	Č	N	2	N	3
111984075		B737	JT8D	T	N	7	N	3
020284026		B737	JT8D	F	N	3	N	4
042484192		B737	JT8D	F	N	3	N	4
120384020		B727	JT8D	Ċ	N	3	N	3
060584142		B727	JT8D	Č	N	3	N	4
011284104		B737	JT8D	Ċ	N	3	N	6
050284002		B727	JT8D	Ċ	N	3	N	3
050284002		B727	JT8D	Č	N	3	N	3
121084043		B737	JT8D	Č	N	2	N	1
		DC9	JT8D	T	N	7	N	4
073184005		DC9	JT8D	Ť	N	7	N	4
051584145		DC9	JT8D	F	N		N	4
050884096		B727	JT8D	F	N	3 3	N	3
122784013		B727	JT8D	C	N	7	N	4
122484060		B727 B727	JT8D	T	N	7	N	3
011984103		DC9	JT8D	Ť	N	7	N	5
061484939		DC9 DC10	J10D J19D	Ċ	В	2	Ċ	4
031384062			J19D J19D	Ť	В	2	č	3
091884046		DC10	J 19D	Ť	В	7	Č	4
111484117		DC10		T	В	7	Č	4
11068405	1 NWA	DC10	JT9D	1	Д	,	•	₹

				F	FLIGHT		CONTAINMENT FLIGHT	
SDR NO.	SUBMITTER	A1RCARFT	ENG/LOC	COMPONENT	TYPE	CAUSE	CONDITION	CONDITION
07110/00/	1774	D010	JT9D	T	70	7	С	4
071184004	NWA	DC10 B747	JT9D	Ť	B B	7 1	C	4
102484013		B747	JT9D	T	В	7	c	4
041884024			JT9D	T	В	1	c	4
121884077		B747	JT9D	T	В	7	Č	3
120484118		B747 B747	JT9D	T	В	7	č	4
092684024		B747	JT9D	C	В	7	č	4
011284094		B747	JT9D	c	В	7	č	5
011284093 092584073		B747	JT9D	c	S	7	Ċ	4
		B747	JI9D UI		S	2	NC	4
102484009			JT9D 0	T	В	7	C	4
061984127		B747	JT9D U		В	2	NC	5
032884096		B747	JT9D N		В	7	NC	3
041084029		B747	JT9D N		D	7	NC	3
120584085		B747	JT9D N	F F	N	3	N	3
011284108		B747	JT9D	r F	N	3	N	3
110684019		B747	JT9D	r C	N	3	N	6
080384021		B747	JT9D	F	N	3	N	4
101784042		B747	JT9D	r C	N	7	N	4
011284102		B747	J19D	T	N	2	N	3
032884095		B747		F	N	3	N	8
050884103		B747	JT9D	r F	N	2	N	4
012484062		B747	JT9D		N	3	N N	ī
103084064		B747	JT9D	F	В	3 7	C	3
050284033		DHC6	PT6A	Т Н С	В	2	C	7
021084001		B99	PT6A R		В	3	Ċ	3
080884074		DHC6	PT6A	C	S	3 7	Ċ	3
032084032		DHC6	PT6A	C	B	7	Ċ	6
030984026		DHC6	PT6A	C	В	1	C	4
112784024		EMB110	PT6A	T	В	7	c	3
02218400		EMB110	PT6A	T	В	7	Ċ	1
04128411		EMB110	PT6A	T	В	7	C	5
121884070		SD330	PT6A	T		7	C	2
121084040		DHC7	PT6A	T	В	7	C	5
01058400		DHC7	PT6A	T	В	7	c	4
06198412		DHC7	PT6A	T	В	7	C	5
10118402		DHC7	PT6A	T	В	7	NC	_
02248401		B99	PT6A U		В	3	N N	3 2
03018405		DHC6	PT6A	C	N	3 7	NC	10
03018405		659	PT6A	T	В	3	N N	5
11184802		EMB110	PT6A	C	N	3 7	N N	4
04198402		G73	PT6A	T	N	7	N N	5
11238400		B99	PT6A	T	N	7	N N	3
01048400		SD330	PT6A	T	N			4
03158410		DHC7	PT6A	T	N	7 7	N	5
10248401		L1011	R8211	T	В	, 3	C N	3
01128411	6 EAL	L1011	RB211	С	N	د	N	J

					FRAGMEN	T	CONTAINMENT	FL1GHT
SDR NO.	SUBMITTER	AIRCRAFT I	ENG/LOC	COMPONENT	TYPE	CAUSE	CONDITION	CONDITION
112084027	' EAL	L1011	RB211	С	N	3	N	7
103184024		L1011	RB211	F	N	3	N	6
041184102		BAC111	SPEY	С	В	7	С	4
050884097		BAC111	SPEY	T	В	7	С	4
102984068		F28	SPEY	С	В	7	С	3
020784210		BAC111	SPEY	С	N	3	N	3 3
082884121		F28	SPEY	С	N	7	N	3
111684042		SA226	TPE331	RH T	D	7	NC	3
110584116		SA226	TPE331	l T	В	7	С	4
08318401		SA226	TPE331	l T	В	7	С	4
01108408		SA227	TPE33	t c	N	3	N	5
05298412		CL44	TYNF	С	N	3	N	4
050284040		CL44	TYNE	С	N	3	N	3
02028402		CL44	TYNE	T	N	2	N	5
08278401	_	B206L1	250C28	3 T	D	7	NC	5
09278400		B206B	250C20	т О	D	7	NC	5
02078421	_	188C	501D1	3 C	N	3	N	7
05018414		STCAPJO	501D1	3 C	N	3	N	4
06058414		STCAPJO	501D1	3 C	N	3	N	4
01128411		STCAPJO	501D1		N	3	N	,
01198411		STCAPJO	501D1		N	7	N	3
10308405		382G	501D1	3 C	N	3	N	4
10038401	-	382G	501D1	3 T	N	2	N	5
10098400		382G	501D1		N	7	N	5
08218415		STCAPJO	501D1	3 C	N	3	N	3
30220 125								