Доказательство. Индукция по длине n вывода формулы B из $\Gamma, A = (\Gamma, A \vdash^n B)$, то есть число MP.

Базис: n = 0, то есть 1) $B \in \Gamma$; 2) B - аксиома; 3) B = A

1-й случай.

- 1) B гипотеза ($B \in \Gamma$)
- 2) $B \to (A \to B)$ схема (1) при A := B, B := A
- 3) $A \rightarrow B$ MP, (1) и (2)

To есть $\Gamma \vdash (A \rightarrow B)$

2-й случай

- 1) B аксиома
- 2) $B \rightarrow (A \rightarrow B)$ cxema (1)
- 3) $A \to B$ MP, (1) и (2)

То есть $\vdash (A \to B)$, то есть для всякого $\Gamma : \Gamma \vdash (A \to B)$

3-й случай

Тогда $\vdash (A \to A)$, и $\Gamma \vdash (A \to A)$

Предположение: Пусть для любой формулы Φ такой, что $\Gamma, A \vdash^{l \leq n-1} B$ влечет $\Gamma \vdash (A \to \Phi); \quad n \geq 1$

Переход: $\Gamma, A \vdash^n B$, то есть $\Gamma, A, \dots, \Phi, \dots, \Phi \to B, B$, и $\Gamma, A \vdash^{l_1} \Phi, \quad l_1 < n; \quad \Gamma, A \vdash^{l_2} \Phi \to B; \quad l_2 < n$ По предположению индукции: $\Gamma \vdash A \to \Phi, \quad A \to (\Phi \to B)$ Предположим вывод из Γ :

$$1.(A \to (\Phi \to B)) \to ((A \to \Phi) \to (A \to B))$$
 - схема (2) при В:= Φ , С := В $2.(A \to \Phi) \to (A \to B)$ - МР, (1) и формуле $A \to (\Phi \to B)$ $3.A \to B$ - МР, (2) и формуле $A \to \Phi$

Итак, $\Gamma \vdash (A \rightarrow B)$

Теорема 0.1. (Обратная). Если $\Gamma \vdash (A \rightarrow B)$, то $\Gamma, A \vdash B$

То есть из этих двух теорем верно:

$$\Gamma, A \vdash B \Longleftrightarrow \Gamma \vdash (A \to B)$$

Далее любую формулу будем называть секвенцией.

Теорема 0.2. B теории L имеют место следующие секвенции:

- 1) $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$
- 2) $A \rightarrow (B \rightarrow C), B \vdash A \rightarrow C$
- $3) \vdash (\neg \neg A \to A)$
- $4) \vdash (A \to \neg \neg A)$
- $5) \vdash (A \to (\neg A \to B))$
- $(6) \vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
- $(7) \vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- $(8) \neg A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$
- $(9) \vdash (A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$

Доказательство.

```
1)
```

- 1) $A \to B$ гипотеза
- 2) $B \to C$ гипотеза
- 3) A гипотеза
- 4) B MP, (1) и (3)
- 5) C MP, (2), (4)

2)

- 1) $A \to (B \to C)$ гипотеза
- 2) B гипотеза
- 3) A гипотеза
- 4) $B \to C$ MP, (1) и (3)
- 5) C MP, (2) и (3)

3)

- 1) $\neg \neg A$ гипотеза
- 2) $(\neg A \rightarrow \neg \neg A) \rightarrow ((\neg A \rightarrow \neg A) \rightarrow A)$ схема 3 при замене $A := \neg A, B := A$
- 3) ¬¬ $A \rightarrow (¬A \rightarrow ¬¬A)$ схема 1 при A := ¬¬A, B :=
- 4) $\neg A \rightarrow \neg \neg A$ MP, (1) и (3)
- 5) $(\neg A \rightarrow) \rightarrow A$ MP, (2) и (4)
- 6) ¬ $A \to \neg A$ теорема $\vdash (A \to A)$ при $A := \neg A$
- 7) A MP, (5) и (6)

4)

- 1) $(\neg\neg\neg A \to \neg A) \to ((\neg\neg\neg A \to A) \to \neg\neg A)$ схема 3 при $B := \neg\neg A$
- 2) ¬¬¬ $A \rightarrow ¬A$ секвенция 3 при A := ¬A
- 3) $A \to (\neg \neg \neg A \to A)$ схема 1 при $B := \neg \neg \neg A$
- 4) $(\neg \neg \neg A \rightarrow A) \rightarrow \neg \neg A$ MP, (1) и (2)
- 5) $A \to \neg \neg A$ R1, (3) и (4)

5)

- 1) A гипотеза
- 2) ¬A гипотеза
- 3) $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$ cxema 3
- 4) ¬ $A \rightarrow (\neg B \rightarrow \neg A)$ схема 1 при $A := \neg A, B := \neg B$
- 5) ¬ $B \rightarrow \neg A$ MP, (2) и (4)
- 6) $(\neg B \to \neg A) \to B$ MP, (3) и (5)
- 7) $A \to (\neg B \to A)$ схема 1 при $B := \neg B$
- 8) ¬ $B \rightarrow A$ MP, (1) и (7)
- 9) В МР, (6) и (8)

6)

Уже доказана

7)

- 1) $A \to B$ гипотеза
- $2) \neg \neg A \rightarrow A$ секвенция 3
- $3)_{5}A \to B$ R1, (2) и (1)
- 4) $B \to \neg \neg B$ секвенция 4
- $5) \neg \neg A \rightarrow \neg \neg B$ R1, (3) и (4)
- 6) ¬ $B \to \neg A$ R6, (5) при $A := \neg B, B := \neg A$

8)

 $\vdash (A \to ((A \to B) \to B))$ - вспомогательная секвенция

- 1) А гипотеза
- 2) A o B гипотеза
- 3) B MP, (1) и (2)

Само док-во:

- 1) A гипотеза
- 2) $A \to ((A \to B) \to B)$ теорема
- 3) $(A \to B) \to B$ MP, (1) и (2)
- 4) $\neg B \rightarrow \neg (A \rightarrow B)$, R7, (3)

9)

- 1) $A \to B$ гипотеза
- 2) ¬ $A \rightarrow B$ гипотеза
- 3) $\neg B \rightarrow \neg A R7$, (1)
- 4) $\neg B \rightarrow \neg \neg A R7$, (2)
- 5) $(\neg B \to \neg \neg A) \to ((\neg B \to \neg A) \to B)$ схема 3 при $A := \neg A$
- 6) $(\neg B \rightarrow \neg A) \rightarrow B$ MP, (4) и (5)
- 7) B MP, (3) и (6)

Следствие 1. Если Γ , $A \vdash B$ и Γ , $\neg A \vdash B$, то $\Gamma \vdash B$

Доказательство. $\Gamma, A \vdash B \implies \Gamma \vdash A \to B; \quad \Gamma, \neg A \vdash B \implies \Gamma \vdash (\neg A \to B),$ тогда по R9 $\Gamma \vdash B$

Следствие 2. (Свойства дизъюнкции).

- 1) $A \vdash A \lor B$; $B \vdash A \lor B$
- 2) $A \vee B \vdash B \vee A$
- 3) Если $A \vdash B$, то для любой формулы $\Phi : \Phi \lor A \vdash \Phi \lor B; \quad A \lor \Phi \vdash B \lor \Phi$

Доказательство.

1 случай.

- 1) A гипотеза
- 2) $A \to (\neg A \to B) = A \to (A \lor B)$ секвенция 5
- 3) $\neg A \rightarrow B = A \lor B$