

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

<u>Progress</u> **Discussion Resources** Dates <u>Course</u>

Course / Unit 0. Brief Prerequisite Reviews, Homework 0, and Project 0 / Homework 1

12 of 15 × < Previous

12. Linear Independence, Subspaces and Dimension (Optional)

☐ Bookmark this page

Vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are said to be **linearly dependent** if there exist scalars c_1, \dots, c_n are zero and (2) $c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = 0$.

Otherwise, they are said to be **linearly independent**: the only scalars c_1, \ldots, c_n that $c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n = 0$ are $c_1 = \cdots = c_n = 0$.

The collection of non-zero vectors $\mathbf{v}_1,\ldots,\mathbf{v}_n\in\mathbb{R}^m$ determines a **subspace** of \mathbb{R}^m , linear combinations $c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$ over different choices of $c_1,\ldots,c_n\in\mathbb{R}$. The subspace is the size of the **largest possible**, **linearly independent** sub-collection of the $\mathbf{v}_1,\ldots,\mathbf{v}_n$.

Row and Column Rank (Optional)

0 points possible (ungraded)

Suppose ${f A}=egin{pmatrix}1&3\\2&6\end{pmatrix}$. The rows of the matrix, (1,3) and (2,6) , span a subspace of

1 \checkmark . This is the **row rank** of \mathbf{A} .

The columns of the matrix, $inom{1}{2}$ and $inom{3}{6}$ span a subspace of dimension

1 ✓ . This is the **column rank** of **A**.

We will be using these ideas when studying **Linear Regression**, where we will work wit rectangular matrices.

Submit

You have used 2 of 3 attempts

Rank of a matrix (Optional)

0 points possible (ungraded)

In general, row rank is always equal to the column rank, so we simply refer to this comra matrix.

What is the largest possible rank of a 2×2 matrix?

Submit

You have used 1 of 3 attempts

Invertibility of a matrix (Optional)

0 points possible (ungraded)

An matrix is invertible if and only if has full rank, i.e.

Which of the following matrices are invertible? Choose all that apply.

Previous

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Do Not Sell My Personal Information

Connect

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>