Teoría de Lenguajes

Clase Teórica 4
Minimización Autómatas Finitos

Primer cuatrimestre 2024

Bibliografía: Capítulo 4, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Teorema

Para todo autómata finito determinimístico hay otro que reconoce el mismo lenguaje y tiene una cantidad mímina de estados.

Demostración.

Fuerza bruta, y algoritmo para determinar si dos autómatas finitos reconocen el mismo lenguaje.

Ejemplos de minimización de AFD

 $M=< Q, \Sigma, \delta, q_0, F>$. El estado q_2 es inaccesible, entonces puede ser quitado. $\mathcal{L}(M)=(1^*01^*)(01^*01^*)^*$.

 $M' = < Q, \Sigma, \delta', q_0, F >$. No hay estados inaccesibles. $\mathcal{L}(M') = (1^*01^*)(01^*01^*)^*$.

Definición

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD. Definimos \equiv la relación de indistinguibilidad sobre Q: dos estados $q,r\in Q$ son indistinguibles, que denotamos $q\equiv r$, cuando

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \text{ si y solo si } \widehat{\delta}(r, \alpha) \in F).$$

Observación

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

Si
$$q \equiv r$$
 entonces $\forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q, \alpha) \equiv \widehat{\delta}(r, \alpha)\right)$

Demostración. Supongamos $q \equiv r$ pero $\exists \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \not\equiv \widehat{\delta}(r, \alpha))$. Entonces existe una cadena β que distingue $\widehat{\delta}(q, \alpha)$ de $\widehat{\delta}(r, \alpha)$:

$$\exists \beta \in \Sigma^*, (\widehat{\delta}(\widehat{\delta}(q, \alpha), \beta) \in F \land \widehat{\delta}(\widehat{\delta}(r, \alpha), \beta) \notin F)$$

o viceversa. Esto equivale a decir que

$$\widehat{\delta}(q, \alpha\beta) \in F \wedge \widehat{\delta}(r, \alpha\beta) \notin F$$

o viceversa. Pero entonces $q \not\equiv r$, y arribamos a una contradicción.

Teorema

La indistinguibilidad \equiv es una relación de equivalencia.

Demostración.

reflexividad: Debemos ver que para todo $q \in Q$, $q \equiv q$.

$$q \equiv q \text{ si y solo si } \forall \alpha \in \Sigma^*, (\widehat{\delta}(q,\alpha) \in F \Leftrightarrow \widehat{\delta}(q,\alpha) \in F)$$

y esta doble implicación es siempre verdadera.

ightharpoonup simetría: Supongamos $q \equiv r$. Entonces

$$\begin{split} \forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \Leftrightarrow \widehat{\delta}(r, \alpha) \in F). \text{ Luego,} \\ \forall \alpha \in \Sigma^*, (\widehat{\delta}(r, \alpha) \in F \Leftrightarrow \widehat{\delta}(q, \alpha) \in F). \text{ Por lo tanto, } r \equiv q. \end{split}$$

▶ transitividad: Supongamos $q \equiv r$ and $r \equiv s$. Entonces,

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \Leftrightarrow \widehat{\delta}(r, \alpha) \in F), y$$
$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(r, \alpha) \in F \Leftrightarrow \widehat{\delta}(s, \alpha) \in F)$$

Por lo tanto, $\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \Leftrightarrow \widehat{\delta}(s, \alpha) \in F)$. Es decir, $q \equiv s$.

Definición

Si A es un conjunto $y \sim$ una relación de equivalencia sobre A, entonces las clases de equivalencia forman una partición del conjunto A.

Las clases de equivalencia de la relación \sim determinan un nuevo conjunto, denominado conjunto cociente y denotado A/\sim .

Estados accesibles

Definición

El estado p de AFD $M=(Q,\Sigma,\delta,q_0,F)$ es inaccesible si para toda $w\in \Sigma^*,\ p\neq \widehat{\delta}(q_0,w).$

Algoritmo que computa el conjunto de estados accesibles

```
Input M
Output conjunto de estados accesibles
accesibles:=\{q_0\}
nuevos:= \{q_0\}
repetir
       temp:=\emptyset
        para cada q en nuevos
              para todo c en \Sigma
                     temp:= temp\cup \{\delta(q,c)\}
       nuevos:=temp - accesibles
        accesibles:= accesibles ∪ nuevos
hasta (nuevos \neq \emptyset)
```

Definición (Autómata Finito Determinístico Mínimo)

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles, el AFD mínimo equivalente $M_{min}=< Q_{min}, \Sigma, \delta_{min}, q_{min_0}, F_{min}>$ es

$$Q_{min}=(Q/\equiv)$$
 (las clases de equivalencia de \equiv) $\delta_{min}\left([q]\,,a
ight)=[\delta\left(q,a
ight)]$ $q_{min_0}=[q_0]$ $F_{min}=\{[q]\in Q_{min}:q\in F\}$

Veamos que
$$\mathcal{L}(M) = \mathcal{L}(M_{min})$$
:

$$\alpha \in \mathcal{L}(M) \Leftrightarrow \widehat{\delta}(q_0, \alpha) \in F \Leftrightarrow \widehat{\delta_{min}}([q_0], \alpha) \in F_{min}.$$

Observación

$$\operatorname{Si}\widehat{\delta}(q,\alpha)=r$$
 entonces $\widehat{\delta_{min}}([q],\alpha)=[r].$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}} \left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \\ \text{Conlcluimos que, Si } \widehat{\delta(q,\lambda)} = q \text{ entonces } \widehat{\delta_{min}}([q],\lambda) = [q]. \end{array}$$

Caso inductivo $|\alpha| = n + 1$, con $n \ge 0$.

Asumamos que la propiedad vale para longitud n.

Sea $\alpha = a\beta$.

$$\begin{array}{ll} \widehat{\delta}(q,a\beta) & = \widehat{\delta}(\delta\left(q,a\right),\beta) = & r \\ \widehat{\delta_{min}}([q],a\beta) & = \widehat{\delta_{min}}([\delta\left(q,a\right)],\beta) = & [r] & \text{por Hipótesis Inductiva} \\ & = \widehat{\delta_{min}}(\delta_{min}\left([q],a\right),\beta) & \text{por definición de } \delta_{min} \\ & = \widehat{\delta_{min}}([q],a\beta) & \text{por definición de } \delta_{min} \end{array}$$

Concluimos que

$$\operatorname{Si}\, \widehat{\delta}(q,a\beta) = r \qquad \text{ entonces } \qquad \widehat{\delta_{min}}([q]\,,a\beta) = [r]\,.$$

Definición (Indistinguibilidad de orden $k : \stackrel{k}{\equiv}$)

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles, y sea k un entero no negativo. Sean $p,q\in Q$. Decimos $p\stackrel{k}{\equiv} q$ si $\ \forall \alpha\in \Sigma^*, (|\alpha|\leq k)$ implica $\left(\widehat{\delta}\left(p,\alpha\right)\in F\Leftrightarrow \widehat{\delta}\left(q,\alpha\right)\in F\right)$.

Teorema (Propiedades de la indistinguibilidad de orden k)

- 1. $\stackrel{k}{\equiv}$ es una relación de equivalencia
- $\overset{\mathbf{2.}}{\equiv}\overset{k+1}{\equiv}\subseteq\overset{k}{\equiv}$
- 3. Si $Q F \neq \emptyset$ y $F \neq \emptyset$ entonces $\left(Q / \stackrel{0}{\equiv}\right) = \{Q F, F\}.$
- **4.** $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$
- 5. $Si\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$ entonces $\forall n \geq 0, \begin{pmatrix} k+n \\ \equiv \end{pmatrix}$

Demostración

- 1. $\stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.
- $\begin{array}{l} 2. \stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}. \text{ Supongamos } p \stackrel{k+1}{\equiv} q. \\ \text{Si } \forall \alpha \in \Sigma^*(|\alpha| \leq k+1) & \text{entonces } \left(\widehat{\delta}\left(p,\alpha\right) \in F \Leftrightarrow \widehat{\delta}\left(q,\alpha\right) \in F\right). \\ \text{Por lo tanto,} & \text{Si } \forall \alpha \in \Sigma^*, \quad (|\alpha| \leq k) & \text{entonces } \left(\widehat{\delta}\left(p,\alpha\right) \in F \Leftrightarrow \widehat{\delta}\left(q,\alpha\right) \in F\right). \\ \text{Por definición de} \stackrel{k}{\equiv}, & p \stackrel{k}{\equiv} q. \end{array}$

3. Supongamos $Q - F \neq \emptyset$ y $F \neq \emptyset$.

Debemos ver que $\left(Q/\stackrel{0}{\equiv}\right)=\{Q-F,F\}.$

$$\begin{split} \left(Q/\stackrel{0}{\equiv}\right) &= \left\{\{q \in Q: \widehat{\delta}(q,\lambda) \not\in F\}, \{q \in Q: \widehat{\delta}(q,\lambda) \in F\}\right\} \\ &= \left\{\{q \in Q: q \not\in F\}, \{q \in Q: q \in F\}\right\} \\ &= \left\{Q - F, F\right\}. \end{split}$$

- 4. Debemos probar $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$.
- $\Rightarrow) \text{ Supongamos } p \stackrel{k+1}{\equiv} r \text{ pero no es cierto que } \forall a \in \Sigma, \delta\left(p,a\right) \stackrel{k}{\equiv} \delta\left(r,a\right).$ Entonces $\exists a \in \Sigma, \exists \alpha \in \Sigma^*, \left(|\alpha| \leq k\right) \land$

$$\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha\right)\in F\right)\,\wedge\,\left(\widehat{\delta}\left(\delta\left(r,a\right),\alpha\right)\notin F\right).\text{ O viceversa.}$$

Por lo tanto $\left(\widehat{\delta}\left(p,a\alpha\right)\in F\right)$ \wedge $\left(\widehat{\delta}\left(r,a\alpha\right)\not\in F\right)$. O viceversa.

Entonces, $p \not\stackrel{k+1}{\not\equiv} r$, ya que $|a\alpha| \le k+1$, contradiciendo $p \stackrel{k+1}{\equiv} r$.

 \Leftarrow) Demostramos el contrapositivo. Supongamos que $p \not\equiv q$. Entonces $\exists \alpha = a\alpha'$, con $|\alpha| \leq k+1$ que distingue p de q, o sea que

$$\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha'\right)\in F\right)\wedge\left(\widehat{\delta}\left(\delta\left(q,a\right),\alpha'\right)\notin F\right).\text{ O viceversa}$$

Por lo tanto $\delta\left(p,a\right)\overset{k}{\not\equiv}\delta\left(q,a\right)$.

5. Debemos probar que si $\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$ entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Inducción en n.

Caso base: n=0. Trivial ya que $\stackrel{k+0}{\equiv}=\stackrel{k}{\equiv}.$

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si $\begin{pmatrix} k+1 \\ \equiv = \pm \end{pmatrix}$ entonces $\begin{pmatrix} k+n+1 \\ \equiv = \pm \end{pmatrix}$.

 $\mathsf{Supongamos} \, \left(\overset{k+1}{\equiv} = \overset{k}{\equiv} \right) \! . \, \, \mathsf{Veamos} \, \, \forall q,p \in Q, \, \left(q \overset{k+n+1}{\equiv} \, r \Leftrightarrow q \overset{k}{\equiv} \, r \right) .$

Supporting
$$(=-=)$$
. Veamos $\forall q,p \in \mathcal{Q}, \ (q=-r \Leftrightarrow q=r)$.
$$q \stackrel{k+n+1}{\equiv} r \Leftrightarrow \left(\forall a \in \Sigma, \ \delta\left(q,a\right) \stackrel{k+n}{\equiv} \delta\left(r,a\right) \right) \qquad \text{por definición } \stackrel{k+n}{\equiv}$$

$$q \stackrel{k+n+1}{\equiv} r \Leftrightarrow \left(\forall a \in \Sigma, \, \delta\left(q, a\right) \stackrel{k+n}{\equiv} \delta\left(r, a\right) \right)$$
$$\Leftrightarrow \left(\forall a \in \Sigma, \, \delta\left(q, a\right) \stackrel{k}{\equiv} \delta\left(r, a\right) \right)$$

por HI

$$\Leftrightarrow q \stackrel{k+1}{\equiv} r$$

por definición $\stackrel{k+1}{\equiv}$.

$$\Leftrightarrow q \stackrel{k}{\equiv} r$$

por suposición $\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$.

Recordemos

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles. El AFD mínimo equivalente $M_{min}=< Q_{min}, \Sigma, \delta_{min}, q_{mino}, F_{min}>$ es

$$\begin{aligned} Q_{min} &= (Q \, / \, \equiv) \text{ (las clases de equivalencia de } \equiv \text{)} \\ \delta_{min} \left([q] \, , a \right) &= [\delta \left(q, a \right)] \\ q_{min_0} &= [q_0] \\ F_{min} &= \{ [q] \in Q_{min} : q \in F \} \end{aligned}$$

Algoritmo de minimización de un AFD (algoritmo de Moore)

```
Input AFD M=(Q,\Sigma,\delta,q_0,F) Output Q/\equiv P:=\{Q\} i:=0 \mathbf{mientras} \quad \left(P \neq \{X/\stackrel{i}{\equiv}:\ X \in P\}\right) P:=\{X/\stackrel{i}{\equiv}:\ X \in P\} i:=i+1 \mathrm{return} \ P
```

```
Definimos M_{min}=(Q_{min},\Sigma,\delta_{min},q_{min_0},F_{min}), Q_{min}=Q/\equiv, \delta_{min}([q],a)=[\delta(q,a)], q_{min_0}=[q_0], F_{min}=\{[q]:q\in F\}
```

Teorema

Sea AFD $M=< Q, \Sigma, \delta, q_0, F>y$ sea M_{min} el autómata mínimo equivalente. Entonces, cualquier AFD M' que reconozca el mismo lenguaje tiene al menos tantos estados como M_{min} . Es decir,

$$\forall M', \left(\mathit{Si}\;\mathcal{L}\left(M'\right) = \mathcal{L}\left(M_{min}\right) \; \mathit{entonces} \; |Q'| \geq |Q_{min}| \right)$$

Para demostrarlo usaremos el siguiente lema.

Lema

Sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q'_0, F'>$ y M no posee estados inaccesibles. Si |Q|>|Q'| entonces existen dos cadenas tales que en M van desde q_0 a estados diferente, pero en M' van desde q'_0 al mismo estado.

Demostración. El enunciado es de la forma A implica B. Demostraremos el enunciado equivalente $\neg B$ implica $\neg A$. Demostraremos que si todo par de cadenas que conducen a estados diferentes en M conducen también a estados diferentes en M', entonces, la cantidad de estados de M es menor o igual a la de M'.

$$|Q| \le |Q'|.$$

Para esto definiremos una función inyectiva f de Q en Q^\prime .

Consideremos primero la función $g:Q\to \Sigma^*$ definida por g(q) es la cadena que da el camino mínimo desde q_0 a q;

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

Ahora sí, sea $f:Q\to Q'$ tal que f(q) es el estado al que llego en M' empezando en q_0' usando el camino mínimo en M dado por g(q),

$$f(q) = \widehat{\delta'}(q'_0, g(q)).$$

Veamos que f es inyectiva. Sean $p,q\in Q$ diferentes.

Entonces, $p = \widehat{\delta}\left(q_0, g\left(p\right)\right) \neq \widehat{\delta}\left(q_0, g\left(q\right)\right) = q$.

Y, supusimos,

$$\forall \alpha,\beta \in \Sigma^*, \left(\text{ Si } \widehat{\delta} \left(q_0,\alpha \right) \neq \widehat{\delta} \left(q_0,\beta \right) \text{ entonces } \widehat{\delta'} \left(q_0',\alpha \right) \neq \widehat{\delta'} \left(q_0',\beta \right) \right).$$

Entonces, $\widehat{\delta'}\left(q_0',g\left(p\right)\right) \neq \widehat{\delta'}\left(q_0',g\left(q\right)\right)$.

Usando la definición de f, tenemos $f(p) \neq f(q)$.

Concluímos $f:Q\to Q'$ es inyectiva, y por lo tanto $|Q|\leq |Q'|$.

Demostración del Teorema.

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\,(q_0,\alpha)$ y $\widehat{\delta_{min}}\,(q_0,\beta)$ son distinguibles por pertenecer al autómata M_{min} ,

 $\exists \gamma \in \Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M_{min}\right) \Leftrightarrow \beta \gamma \notin \mathcal{L}\left(M_{min}\right)$.

Por otro lado, como $\widehat{\delta}'(q_0', \alpha) = \widehat{\delta}'(q_0', \beta)$,

$$\widehat{\delta'}\left(q'_{0},\alpha\gamma\right)\in F\wedge\widehat{\delta'}\left(q'_{0},\beta\gamma\right)\in F\text{, o ambos }\notin F,$$

Entonces, $\alpha\gamma\in\mathcal{L}\left(M'\right)\Leftrightarrow\beta\gamma\in\mathcal{L}\left(M'\right)$.

Por lo tanto $\mathcal{L}(M_{min}) \neq \mathcal{L}(M')$, lo que contradice la hipótesis $\mathcal{L}(M') = \mathcal{L}(M_{min})$.

Algoritmos de Minimización de AFD

AFD
$$\langle Q, \Sigma, \delta, q, F \rangle$$
, con $|Q| = n$ y $|\Sigma| = s$.

Complejidad tiempo peor caso:

```
\begin{array}{ll} \text{Hopcroft (1971)} & O(ns \ \log n) \\ \text{Moore (1956)} & O(n^2s) \\ \text{Brzozowski (1963)} & O(2^n) \end{array}
```

Algoritmo de minimización de Brzozowski

```
Input AFD M=(Q,\Sigma,\delta,q_0,F) sin estados inaccesibles Output AFD M_{min} M^R:=\text{revertir }M M^R_D:=\text{determinizar }M_R (M^R_D)^R:=\text{revertir }M^R_D Output (M^R_D)^R
```

El algoritmo Brzozowski es correcto

 M_D^R es la determinación de M^R , por lo tanto sus estados son conjuntos de estados de M^R . Dos estados \mathcal{R}, \mathcal{S} de M_D^R difieren en al menos un estado q de M^R .

Supongamos $q \in \mathcal{R}$ y $q \notin \mathcal{S}$; entonces q aporta al menos una cadena al lenguaje aceptado desde \mathcal{R} , que no podría estar presente en el lenguaje aceptado desde \mathcal{S} ya que esta cadena es exclusiva de q (ningún otro estado lo acepta).

Esto es válido para cada par de estados y, por lo tanto, cada estado se distingue de todos los demás. Entonces, M_D^R es un DFA con todos los estados distinguibles y alcanzables. M_D^R es mínimo para lenguaje reverso. Al invertirlo nuevamente obtenemos $(M_D^R)^R$ que es mínimo para lenguaje para el lenguaje aceptado por M. \square

La complejidad es exponencial en el tamaño de M.

Algoritmo de minimización de Hopcroft Sea AFD (Q,Σ,δ,q_0,F) , donde Q no tiene inaccesibles.

```
P := \{F, Q \setminus F\};
W := \{F\}:
while (W is not empty) do
      choose and remove a set A from W
      for each c in \( \Sigma \) do
            let X be the set of states for which a transition on c leads to a state in A
            for each set Y in P for which X \ Y is nonempty and Y \ X is nonempty do
                  replace Y in P by the two sets X n Y and Y \ X
                  if Y is in W
                        replace Y in W by the same two sets
                  else
                        if |\mathbf{X} \cap \mathbf{Y}| \ll |\mathbf{Y} \setminus \mathbf{X}|
                              add X n Y to W
                        else
                              add Y \ X to W
            end:
      end:
end:
```

La complejidad peor caso es $O(n|\Sigma|\log n)$, donde n=|Q|.

Esta cota proviene de que cada una de las $n|\Sigma|$ transiciones participa en, a lo sumo, $O(\log n)$ pasos del algoritmo que realizan refinamiento, ya que en cada paso los conjuntos considerados de Q decrecen a la mitad de su tamaño.

Algoritmo de Hopcroft en página 161, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Ejercicios

- 1. Dar un autómata AFD tal que $Q/\stackrel{2}{\equiv}$ sea distinto de $Q/\stackrel{3}{\equiv}$.
- 2. Sea un AFD $M=(Q,\Sigma,\delta,q_0,F)$. Mostrar que para todo entero $k\geq 0$,

$$((Q/\stackrel{k}{\equiv}))/\stackrel{k}{\equiv})$$
 es igual a $Q/\stackrel{k}{\equiv}$.

- 3. Consideremos el algoritmo de minimización de autómatas de Moore. Reemplacemos la instrucción i=i+1 por la instrucción i=i+2. ¿Terminará la ejecución del ciclo? En caso de que sí, ¿Con qué resultado?
- 4. Un transductor es un autómata con entrada y con salida (también llamado "Mealy machine"). Formalmente un transductor finito determinístico es una 7-upla $M=(Q,\Sigma,\Delta,\delta,\rho,q_0,F)$ donde Q,Σ,δ y q_0 son como en un DFA, Δ es el alfabeto de salida y ρ es la función que mapea $Q\times\Sigma$ en Δ . Es decir $\rho(q,a)$ es salida de la transición del estado q con entrada a. La salida de M con entrada $a_1\ldots a_n$ es $\rho(q_0,a_1)\rho(q_1,a_2)\ldots\rho(q_{n-1},a_n)$ donde $q_0,\ q_1\ldots q_{n-1}$ es la secuencia de estados tal que $\delta(q_{i-1},a)=q_i$ para $i=1,\ldots,n$.

¿Cómo es el algoritmo de minimización para transductores?