Curvas Elípticas en Criptografía

Trabajo Fin de Grado

Adrián H. Ranea Robles 13 de julio de 2016

Universidad de Granada

Tabla de contenidos

- 1. Teoría de curvas elípticas
- 2. Criptografía con curvas elípticas
- 3. ссеру
- 4. Cifrado de las páginas de la UGR

Teoría de curvas elípticas

Definición de curva elíptica

Sea *K* un cuerpo. Una curva elíptica *E* se define por una ecuación de la forma

$$E: y^2 = x^3 + ax^2 + b (1)$$

donde $a, b \in K$ y $-16(4a^3 + 27b^2) \neq 0$.

Denotamos por E(K) al conjunto de pares $(x, y) \in K \times K$ que verifican (1) más un punto adicional ∞ .

Ejemplos de curvas elípticas sobre $\ensuremath{\mathbb{R}}$

Versión geométrica del método de la cuerda y la tangente

Versión geométrica del método de la cuerda y la tangente

Teorema

 $(E(K), +, \infty)$ es un grupo abeliano.

4

Endomorfismos

Un endomorfismo de E es un homomorfismo $\alpha: E(\overline{K}) \to E(\overline{K})$ dado por funciones racionales r_1, r_2

$$\alpha(x,y)=(r_1(x),r_2(x)y).$$

El grado de un endomorfismo α es el grado de r_1 .

 α es separable si la derivada $r_1(x)'$ no es idénticamente cero.

Un ejemplo es el endomorfismo multiplicación por n

$$n(P) = nP, \ \forall P \in E(\overline{K}).$$

5

Endomorfismos

Proposición

- α es separable \implies deg $(\alpha) = |\ker(\alpha)|$.
- α no es separable \implies deg $(\alpha) > |\ker(\alpha)|$.

Proposición

 $\alpha \neq 0 \implies \alpha$ es sobreyectiva.

Proposición

n(P) es separable $\iff car(K) \nmid n$.

Subgrupos de torsión

Un elemento de $E(\overline{K})$ cuyo orden es finito se llama punto de torsión.

El subgrupo de n-torsión es el subgrupo de $E(\overline{K})$ dado por

$$E[n] = \{ P \in E(\overline{K}) \mid nP = \infty \}.$$

Subgrupos de torsión

Un elemento de $E(\overline{K})$ cuyo orden es finito se llama punto de torsión.

El subgrupo de n-torsión es el subgrupo de $E(\overline{K})$ dado por

$$E[n] = \{ P \in E(\overline{K}) \mid nP = \infty \}.$$

Teorema

Si *car*(*K*) ∤ *n*, entonces

$$E[n] \simeq \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

Si car(K) = p > 0, y p|n, entonces

$$E[n] \simeq \mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'} \text{ o } \simeq \mathbb{Z}_n \oplus \mathbb{Z}_{n'}$$

donde $n = p^r n' \operatorname{con} p \nmid n'$.

Curvas elípticas sobre cuerpos finitos

Sea \mathbb{F}_q el cuerpo finito de q elementos.

 $E(\mathbb{F}_q)$ es un grupo abeliano *finito*.

Un ejemplo importante de endomorfismo sobre $E(\overline{\mathbb{F}_q})$ es el endormofirsmo de Frobenius

$$\phi_q(x,y) = (x^q, y^q), \quad \phi_q(\infty) = \infty$$

Curvas elípticas sobre cuerpos finitos

Sea \mathbb{F}_q el cuerpo finito de q elementos.

 $E(\mathbb{F}_q)$ es un grupo abeliano *finito*.

Un ejemplo importante de endomorfismo sobre $E(\overline{\mathbb{F}_q})$ es el endormofirsmo de Frobenius

$$\phi_q(x, y) = (x^q, y^q), \quad \phi_q(\infty) = \infty$$

Proposición

Sea E una curva elíptica definida sobre un cuerpo finito \mathbb{F}_q y consideremos el endomorfismo ϕ_q^n-1 con $n\geq 1$. Entonces

- 1. $\ker(\phi_q^n 1) = E(\mathbb{F}_{q^n}).$
- 2. $\phi_q^n 1$ es separable, por lo que $|E(\mathbb{F}_{q^n})| = \deg(\phi_q^n 1)$.

Teorema de Hasse

Teorema de Hasse

Sea E una curva elíptica definida sobre un cuerpo finito \mathbb{F}_q . Entonces el orden de $E(\mathbb{F}_q)$ verifica

$$|q+1-|E(\mathbb{F}_q)||\leq 2\sqrt{q}.$$

Criptografía con curvas

elípticas

RSA vs ECC

El problema del logaritmo discreto sobre curvas elípticas

Parámetros de dominio y pareja de llaves

ECDH

ссеру

Criptografía con Curvas Elípticas con Python

ccepy es una biblioteca escrita en python 3 para operar con el grupo de puntos de una curva elíptica y trabajar con protocolos criptográficos basados en curvas elípticas.

Herramientas

- Sphinx
- Hypothesis
- Google Style Guide
- Git

Módulos

El software ccepy consta de cuatro módulos principales:

- Aritmética elemental.
- Cuerpos finitos
- Curvas elípticas
- Esquemas criptográficos

y uno secundario:

Listado de curvas elípticas.

Search door

Primeros paso

Aritmética elementa

Cuerpos finit

Curvas elípticas

Listado de curvas elípticas

Docs » Curvas elípticas

View page source

Curvas elípticas

Aritmética con curvas elípticas.

Este módulo permite operar con el grupo de puntos de una curva elíptica.

Para utilizar las funciones y las clases de este módulo, debe importarlo previamente:

```
# reemplace ... por la función/clase que desea utilizar
from ccepy.curvas_elipticas import ...
```

Para operar con puntos de una curva elíptica, use las funciones de la forma curva elíptica_sobre_* y los operadores aritméticos habituales.

```
>>> E = curva_eliptica_sobre_Fq(a=2, b=3, p=97) # y^2 = x^3 + 2x + 3 sobre F97

>>> E.coeficientes

Coeficientes(a=2, b=3)

>>> P = E(0, 10)

>>> Q

(0,10)

>>> Q = E(3, 6)

>>> Q

(3,6)

>>> P + Q

(0,87)

>>> P

(0,87)

>>> P

(23,24)
```

Usando ccepy

Para instalar la última versión de ccepy:

```
pip install ccepy
```

Un ejemplo de aritmética de curvas elípticas:

```
>>> E = curva_eliptica_sobre_Fq(a=2, b=3, p=97)
>>> E(0, 10) + E(3, 6)
(85,71)
```

Cifrado de las páginas de la

UGR

Introducción a HTTPS

Páginas web de la UGR vulnerables