3.20 Promotion and Evacuation

shino16

2023年1月23日

目次

0	復習	2
1	Promotion	2

0 復習

f(t) は t のラベルと解釈できる.

1 Promotion

 $f \in \mathcal{L}(P)$ に以下の操作 (promotion) を行って得られるものを $f\partial$ とする:

- $1. f(t_1) = 1$ なる t_1 を取る.
- 2. $t_2 = \operatorname{argmin}\{f(t_2) : t_1 \lessdot t_2\}.$
- 3. $t_3 = \operatorname{argmin}\{f(t_3) : t_2 \lessdot t_3\}.$
- 4. これを繰り返し、極大な元 t_k を得るまで続ける.
- 5. $f(t_1) \leftarrow f(t_2), \ f(t_2) \leftarrow f(t_3), \ ..., \ f(t_{k-1}) \leftarrow f(t_k)$ と代入する.
- 6. $f(t_k) \leftarrow p+1$ と代入し、全ての元のラベルを 1 減らす.

 $f\partial$ は f の promotion. 極大鎖 $t_1 \lessdot t_2 \lessdot \cdots \lessdot t_k$ は f の promotion chain.

図1 Promotion

 δ の双対な操作を dual promotion ∂^* とする. 内容は:

- 1. $f(t_1) = p$ なる t_1 を取る.
- 2. $t_2 = \operatorname{argmax}\{f(t_2) : t_1 > t_2\}.$
- 3. $t_3 = \operatorname{argmax}\{f(t_3) : t_2 > t_3\}.$
- 4. これを繰り返し、極小な元 t_k を得るまで続ける.
- 5. $f(t_1) \leftarrow f(t_2)$, $f(t_2) \leftarrow f(t_3)$, ..., $f(t_{k-1}) \leftarrow f(t_k)$ と代入する.
- 6. $f(t_k) \leftarrow 0$ と代入し、全ての元のラベルを 1 増やす.

$$\partial^* = \partial^{-1}$$
 に注意.

 $f \in \mathcal{L}(P)$ に以下の操作 (evacuation) を行って得られるものを $f\epsilon$ とする.

- 1. $f \leftarrow f \partial$ とし、ラベル p を固定する.
- 2. f の残りのラベルのみに ∂ を作用させ、さらにラベル p-1 を固定する.
- 3. f の残りのラベルのみに ∂ を作用させ、さらにラベル p-2 を固定する.
- 4. これを f のラベルがすべて固定されるまで繰り返す.

 $f\epsilon \bowtie f \mathcal{O}$ evacuation.

図2 Evacuation

 ϵ の双対 dual evacuation ϵ^* も同様に定義する. つまり, ラベルを上に流して下方のラベルから固定していく.

1 Promotion

定理 (3.20.1). (a) $\epsilon^2 = 1$ (恒等写像).

(b)
$$\partial^p = \epsilon \epsilon^*$$
.

(c)
$$\partial \epsilon = \epsilon \partial^{-1}$$
.

この定理を示すのが 3.20 節の目標.

定義.

群
$$G = \langle \tau_1, \dots, \tau_{p-1} \mid \tau_i^2 = 1, \tau_i \tau_j = \tau_j \tau_i \text{ if } |i-j| > 1 \rangle,$$

 $\delta_j = \tau_1 \tau_2 \cdots \tau_j, \qquad (j = 1, \dots, p-1)$
 $\gamma_j = \delta_j \delta_{j-1} \cdots \delta_1,$
 $\gamma_j^* = (\tau_j \tau_{j-1} \cdots \tau_1)(\tau_j \tau_{j-1} \cdots \tau_2) \cdots (\tau_j \tau_{j-1})(\tau_j).$

補題. (a) $\gamma_j^2 = (\gamma_j^*)^2 = 1$.

(b)
$$\delta_j^{j+1} = \gamma_j \gamma_j^*$$
.

(c)
$$\delta_j \gamma_j = \gamma_j \delta_j^{-1}$$

証明. (a) (τ_1,\ldots,τ_j) を (τ_j,\ldots,τ_1) に置換すると γ_j は γ_j^* に変わる. よって γ_j についてのみ示せばよい.

j の帰納法. j=1 については

$$\gamma_1 = \delta_1 = \tau_1,$$

$$\tau_1^2 = 1,$$

より OK.

例えば

$$\gamma_4^2 = (\tau_1 \tau_2 \tau_3 \tau_4)(\tau_1 \tau_2 \tau_3)(\tau_1 \mathcal{V})(\mathcal{V})(\mathcal{V}(\mathcal{V}_3 \tau_3 \tau_4)(\tau_1 \tau_2 \tau_3)(\tau_1 \tau_2)(\tau_1)
= (\tau_1 \tau_2 \tau_3 \tau_4)(\tau_1 \tau_2 \tau_3)\tau_1(\tau_3 \tau_4)(\tau_1 \tau_2 \tau_3)(\tau_1 \tau_2)(\tau_1)
= (\tau_1 \tau_2 \tau_3)(\tau_1 \tau_2)\tau_1 \mathcal{V}_3(\mathcal{V}_3 \mathcal{V}_4)(\tau_1 \tau_2 \tau_3)(\tau_1 \tau_2)(\tau_1)
= \gamma_3^2$$

ということから、帰納的に OK.

(b,c) j の帰納法で同様にやる.

定理 (3.20.1, 再掲). (a) $\epsilon^2 = 1$.

- (b) $\partial^p = \epsilon \epsilon^*$.
- (c) $\partial \epsilon = \epsilon \partial^{-1}$.

補題 (再掲). (a) $\gamma_j^2 = (\gamma_j^*)^2 = 1$.

- (b) $\delta_j^{j+1} = \gamma_j \gamma_j^*$.
- (c) $\delta_j \gamma_j = \gamma_j \delta_j^{-1}$

定理 3.20.1 の証明. $f \in \mathcal{L}(P)$ を P の元の列 $u_1u_2 \cdots u_p$ と同一視する (ここで $f(u_i) = i$).

 $i=1,\ldots,p-1$ について、 $\tau_i:\mathcal{L}(P)\to\mathcal{L}(P)$ を

で定める. (なお $f(u_i) < f(u_{i+1})$ より, $u_i > u_{i+1}$ はあり得ない) あとは $\partial = \delta_{p-1}$ と $\epsilon = \gamma_{p-1}$ を示せば終わり.前者はお絵描き.後者は Evacuation ϵ の定義と $\gamma_{p-1} = \delta_{p-1}\delta_{p-2}\cdots\delta_1$ から.