

Machine Learning for Time Series

(MLTS or MLTS-Deluxe Lectures)

Dr. Dario Zanca

Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg 20.12.2022

Topics overview

- Time series fundamentals and definitions (2 lectures)
- Bayesian Inference (1 lecture)
- Gussian processes (2 lectures)
- State space models (2 lectures)
- Autoregressive models (1 lecture) ←
- Data mining on time series (1 lecture)
- Deep learning on time series (4 lectures)
- Domain adaptation (1 lecture)

Review concept: Stochastic process

Non-deterministic time series can be regarded as manifestations (equiv., realization) of a **stochastic process**, which is defined as a set of random variables $\{X_t\}_{t\in\{1,...,T\}}$

Even if we were to imagine having observed the process for an infinite period T of time, the infinite sequence

$$S = \{..., s_{t-1}, s_t, s_{t+1,...}\} = \{s_t\}_{t=-\infty}^{+\infty}$$

would still be a single **realization** from that process.

Still, if we had a battery of N computers generating series $S^{(1)}$, ..., $S^{(N)}$, and considering selecting the observation at time t from each series,

$$\left\{s_t^{(1)}, \dots, s_t^{(N)}\right\}$$

this would be described as a sample of N realizations of the random variable X_t

Review concept: Autocovariance

Given any particular realization $S^{(i)}$ of a stochastic process (i.e., a time series), we can define the vector of the j+1 most recent observations

$$x_t^{i} = [s_{t-j}^{(i)}, \dots, s_t^{(i)}]$$

We want to know the probability distribution of this vector x_t^i across realizations. We can calculate the j-th autocovariance

$$\gamma_{jt} = E(X_t - \mu_t)(X_{t-j} - \mu_{t-j})$$

Review concept: Autocorrelation function (ACF)

We can express the linear predictability of X_t from an adjacent value X_s , using the **autocorrelation function**:

$$\rho(s,t) = \frac{\gamma_{st}}{\sqrt{\gamma_{ss}\gamma_{tt}}}$$

where γ is the autocovariance defined previously.

Review concept: Stationarity

There are two types of stationarity.

A process is said **strictly stationary** if the joint distribution of $X_{t_1:t_2}$ is the same as that of $X_{t_1+h:t_2+h}$.

The term h is called lag.

For stricly stationary time series, all statistics do not depend on time.

A process is said **weakly stationary** if it has:

- $\mu = const.$
- $\sigma^2 < \infty$
- $| \bullet \quad \gamma_{jt} = \gamma_{j+h,t+h}$

A weakly stationary time series has finite variation, constant first moment, and that the second moment only depends on h = t - j.

Review concept: Partial autocorrelation function (PACF)

For stationary time series, the **partial autocorrelation function** expresses the correlation between X_t and an adjacent value X_s , but "removes" the effect of all values in between:

$$\phi_{11} = corr(X_{t+1}, X_t) = \rho_1$$

$$\phi_{hh} = corr(X_{t+h} - P_{t,h}(X_{t+h}), X_t - P_{t,h}(X_t)) = \rho_h$$

for $h \ge 2$, where $P_{t,h}$ is the surjective operator of orthogonal projection onto the linear subspace spanned by the intermediate values X_{t+1} , ..., X_{t+h-1} .

Review concept: Time series forecasting

Let $S = \{s_1, \dots, s_{T_1}, s_{T_1+1}, \dots, s_{T_2}\}$ be a time series, with s_i being the i-th observation collected at time t_i , and $t_i < t_j$, $\forall j$.

Then, a time series forecasting task is about predicting future values of a time series given some past data, i.e.,

$$f(s_1, ..., s_{T_1}) = (s_{T_1+1}, ..., s_{T_2})$$

In this lecture...

- Linear processes
 - Autoregressive processes (AR)
 - Moving average processes (MA)
- Combining AR and MA:
 - ARMA
 - ARIMA

Autoregressive models AR and MA models

White noise

The basic building block for all the processes considered in this lecture is the white noise, defined as a sequence

$$\{e_t\}_{t=-\infty}^{+\infty}$$

whose elements have zero mean and variance σ^2 , and are uncorrelated across time, i.e.,

- $\mathbb{E}(e_t) = 0$ (zero mean)
- $\mathbb{E}(e_t^2) = \sigma^2$ (variance)
- $\mathbb{E}(e_t e_\tau) = 0$ (zero autocovariance, i.e., uncorrelated)

If $e_t \sim \mathcal{N}(0, \sigma^2)$, then we have a so-called **Gaussian white noise**.

Random walk

A random walk is a stochastic random process that describes a path started at y_0 and consisting of random steps.

$$y_t = y_{t-1} + e_t$$

Equiv., for $t \ge 1$:

$$y_t = y_0 + \sum_{i=1}^t e_i$$

where e_i can be regarded as random variables of a white noise process.

Linear process representation

A linear process can be represented as an **infinite moving average process**, starting from a white noise $\{e_t\}_{t=-\infty}^{+\infty}$, as

$$y_{t} = \mu + e_{t} + \psi_{1}e_{t-1} + \psi_{2}e_{t-2} + \cdots$$

$$= \mu + e_{t} + \sum_{j=1}^{+\infty} \psi_{j}e_{t-j}$$

$$= \mu + \Psi(q^{-1})e_{t}$$

where,

- ψ_i are constant values
- q^{-m} is the *backshift operator*, such that $q^{-m}e_t=e_{t-m}$
- $\Psi(q^{-1}) = 1 + \psi_1 q^{-1} + \psi_2 q^{-2} + \dots = \sum_{j=0}^{+\infty} \psi_j q^{-j}$ is a linear filter.

If the sequence $\psi_1, \psi_2, ...$, has finite sum $\sum_i^{\infty} \psi_i < \infty$, then the filter is stable and the process y_t is stationary.

Linear process representation

Alternatively, a linear process can be represented with respect to its previous values as an infinite autoregressive process:

$$y_{t} = \mu + e_{t} + \pi_{1}y_{t-1} + \pi_{2}y_{t-2} + \cdots$$

$$y_{t} = \mu + e_{t} + \sum_{j=1}^{+\infty} \pi_{j}y_{t-j}$$

$$\Pi(q^{-1})y_{t} = \mu + e_{t}$$

where, similarly,

- π_i are constant values
- q^{-m} is the *backshift operator*, such that $q^{-m}e_t=e_{t-m}$
- $\Pi(q^{-1}) = 1 + \pi_1 q^{-1} + \pi_2 q^{-2} + \dots = \sum_{j=0}^{+\infty} \pi_j q^{-j}$ is a linear filter.

Linear process representation

The previous two formulations are algebrically equivalent, in fact:

$$y_t = \mu + e_t + \sum_{j=1}^{+\infty} \pi_j y_{t-j} \text{ (infinite autoregressive process)}$$

$$y_t = \mu + e_t + \pi_1 q^{-1} y_t + \cdots$$

$$y_t - \pi_1 q^{-1} y_t - \cdots = \mu + e_t$$

$$(1 - \pi_1 q^{-1} - \cdots) y_t = \mu + e_t$$

$$\Pi(q^{-1}) y_t = \mu + e_t$$

If the linear filter $\Pi(q^{-1})$ is **invertible**, then:

$$y_t = \bar{\mu} + \frac{1}{\Pi(q^{-1})} e_t$$
 (infinite moving average process)

Autoregressive models (AR)

Autoregressive models are based on the idea that the value of a time series at time t can be expressed as a linear combination of n past values, up to a random error:

$$AR(n): y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_n y_{t-n} + e_t$$

Where:

- *n* is the model's order
- $a_1, ..., a_n$ are the model's parameters, $a_n \neq 0$

In other words, the hyper-parameter n represents how far back to look for dependences with previous values in the time series.

Autoregressive models (AR)

We can simplify the notation for AR(n) using the backshift operator:

$$y_{t} = a_{1}y_{t-1} + a_{2}y_{t-2} + \dots + a_{n}y_{t-n} + e_{t}$$

$$y_{t} - a_{1}y_{t-1} - \dots - a_{n}y_{t-n} = e_{t}$$

$$(1 - a_{1}q^{-1} - \dots - a_{n}q^{-n})y_{t} = e_{t}$$

$$A(q^{-1})y_{t} = e_{t}$$

where $A(q^{-1})$ is called **autoregressive operator**.

Example: AR(0)

The simplest autoregressive model is **AR(0)**, which has no dependences between values in the time series.

$$AR(0)$$
: $y_t = e_t$

 \rightarrow AR(0) is equivalent to a white noise process.

Example: AR(1)

The first order autoregressive model AR(1) can be written as:

$$AR(1)$$
: $y_t = a_1 y_{t-1} + e_t$

Notice that:

- Only the previous term y_{t-1} and the current noise e_t contribute to the output.
- As $|a_1| \to 0$, the process looks like white noise.
- When $a_1 < 0$, the process oscillates around zero.
- When $a_1 = 1$, the process is equivalent to a random walk.

Example: AR(1)

A numerical example could be given by

$$y_t = \mathbf{0.9} \ y_{t-1} + e_t$$

Where, e.g., the Gaussian white noise $e_t = \mathcal{N}(0, 1)$.

Example: AR(1)

A numerical example could be given by

$$y_t = -0.9 y_{t-1} + e_t$$

Where, e.g., the Gaussian white noise $e_t = \mathcal{N}(0, 1)$.

Chosing an AR(n)

In concrete applications, the value of n is an hyper-parameter to optimize.

It is possible to identify the AR(n) model by looking at the partial autocorrelation function (PACF). In fact:

- The theoretical partial autocorrelation for lags h > n is zero.
 - → For concrete experimental data, it might be small but non-zero.

- For h = n the partial autocorrelation ϕ_n is not zero.
 - → For all lag values in between, it is not necessarily zero

Moving Average models (MA)

Moving average models (MA) are based on the idea that the value of a time series at time t can be expressed as a linear combination of n past input random shock (or white noise).

$$MA(m): y_t = e_t + b_1 e_{t-1} + \dots + b_m e_{t-m}$$

Where:

- *m* is the model's order
- $b_1, ..., b_m$ are the model's parameters, $b_m \neq 0$

In other words, the hyper-parameter m, again, represents how far back to look for dependecies with previous noise values.

Moving Average models (MA)

Similarly to the autoregressive case, the moving average model MA(m) can be expressed with a more synthetic notation by using the backshift operator:

$$y_t = e_t + b_1 e_{t-1} + \dots + b_m e_{t-m}$$

 $y_t = (1 + b_1 q^{-1} + \dots + b_m q^{-m}) e_t$
 $y_t = B(q^{-1}) e_t$

where $B(q^{-1})$ is called moving average operator.

Example: MA(1)

A numerical example could be given by

$$y_t = e_t + \mathbf{0.8} \ e_{t-1}$$

Where, e.g., the Gaussian white noise $e_t = \mathcal{N}(0, 1)$.

Chosing an MA(m)

In concrete applications, the value of m is an hyper-parameter to optimize.

It is possible to identify the MA(m) model by looking at the autocorrelation function (ACF). In fact:

- The theoretical autocorrelation for lags h > m is zero.
 - → For concrete experimental data, it might be small but non-zero.

- For h=m the autocorrelation ρ_m is not zero.
 - → For all lag values in between, it is not necessarily zero

Critical comparison

- Autoregressive models (AR) ignore correlated noise structures in the time series.
- Differently by AR models, finite moving average models (MA) are always stationary.
- It can be proved that:
 - All finite autoregressive processes AR(n) are infinite moving average processes
 - All finite and invertible moving average MA(m) processes are infinite autoregressive processes
- In practice, parameter estimation for MA models is generally more difficult than for AR models.

Autoregressive models ARMA and ARIMA models

ARMA models

ARMA model is a combination of autoregressive (AR) and moving average (MA) models.

$$ARMA(n,m): y_t = a_1y_{t-1} + a_2y_{t-2} + \dots + a_ny_{t-n} + b_1e_{t-1} + \dots + b_me_{t-m} + e_t$$

Which can be re-written using the backshift notation as:

$$ARMA(n,m): A(q^{-1})y_t = B(q^{-1})e_t$$

Where $A(q^{-1})$ is the autoregressive operator and $B(q^{-1})$ is the moving average operator, as defined previously.

Chosing an ARMA(n,m)

We can observe the ACF and PACF to determine the suitable hyper-parameters n and m.

	AR(n)	MA(m)	$AR\mathbf{MA}(n, \mathbf{m})$
ACF	Tails off	Cuts off after lag m	Tails off
PACF	Cuts off after lag n	Tails off	Tails off

The choice of n and m is not unique.

How to deal with Nonstationary time series?

A limitation of the ARMA models is the assumption of our time series to be stationary.

Many times, we can assume the time series to composed by a **non-stationary trend** and a **zero-mean stationary time series**, i.e.,

$$y_t = \mu_t + \phi_t$$

→ We can "stationarize" time series.

We can stationarize in two ways:

- Detrending
- Differencing

Stationarization: Detrending

By **detrending**, we can subtract an estimate for the time series' trend and deal with the remaining terms (i.e., residuals)

In formulas,

$$\hat{y}_t = y_t - \hat{\mu}_t$$

Detrending needs parameters estimation.

Stationarization: Differencing

The differencing operator is defined by

$$\nabla y_t = y_t - y_{t-1}$$

By using our backshift operator, the operator can be written as

$$\nabla = 1 - q^{-1}$$

Higher-order d differencing operations are given by

$$\nabla^d = (1 - q^{-1})^d$$

Stationarization: Differencing

By **differencing**, we compute the differences (or higher-order differences) of consecutive observations.

An advantage over detrending is that we do not need to estimate any parameters.

The differencing operation helps to stabilize the mean of a time series, by removing trends and seasonality.

ARIMA models

A process y_t is said to be ARIMA(n,d,m) if d-th order differenciation $\nabla^d y_t$ is ARMA(n,m).

Then, the ARIMA model can be written as

$$ARIMA(n, d, m): A(q^{-1})\nabla^{d}y_{t} = B(q^{-1})e_{t}$$

Notice that, ARIMA(n, 0, m) is equivalent to ARMA(n, m).

General scheme

- lacktriangle Check stationarity and seasonality, perform differentiation if necessary, to chose ARIMA(n, d, m).
- Determine the model's parameters that produce the best fitting, e.g., by Least square (LS) or Maximum likelihood estimation (MLE) methods.
- Perform a diagnostic checking, for example, by residual series analysis.
- We use the selected model for forecasting.

Lecture title Recap

In this lecture...

- Linear processes
 - Autoregressive processes (AR)
 - Moving average processes (MA)
- Combining AR and MA:
 - ARMA
 - ARIMA

ARIMA: Pros and Cons

• Pros:

- Effective in short-term series forecasting.
 - E.g., short-run inflation forecasts.
- It is a parametric model and it works better with relatively small number of observations.

Cons:

- Techniques for identifying the correct model are difficult to understand and usually computationally expensive.
- ARIMA models performance are poor at predicting series with turning points.

