

TUMOR TYPE
Lung non-small cell lung
carcinoma (NOS)
COUNTRY CODE

REPORT DATE 08 Feb 2021

ORD-0998537-01

ABOUT THE TEST FoundationOne® Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

PATIENT

DISEASE Lung non-small cell lung carcinoma (NOS)

DATE OF BIRTH 11 September 1936

SEX Male

MEDICAL RECORD # Not given

PHYSICIAN

MEDICAL FACILITY Rebagliati ADDITIONAL RECIPIENT None MEDICAL FACILITY ID 320968 PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Lung

SPECIMEN ID H21-00341 (Q20-19864)

SPECIMEN TYPE Block

DATE OF COLLECTION 23 December 2020 **SPECIMEN RECEIVED** 20 January 2021

Biomarker Findings

Microsatellite status - MS-Stable
Tumor Mutational Burden - 2 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

ALK EML4-ALK fusion (Variant 2)

6 Therapies with Clinical Benefit

10 Clinical Trials

0	Therapies	with	Lack	of	Response

BIOMARKER FINDINGS

Microsatellite status - MS-Stable

Tumor Mutational Burden - 2 Muts/Mb

GENOMIC FINDINGS

ALK - EML4-ALK fusion (Variant 2)

10 Trials see p. 7

No therapies or clinical trials. see Biomarker Findings section					
No therapies or clinical tr	No therapies or clinical trials. see Biomarker Findings section				
THERAPIES WITH CLINICAL (IN PATIENT'S TUMOR		THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE)			
Alectinib	1	none			
Brigatinib	1				
Ceritinib	1				
Crizotinib	1				
Lorlatinib	1				
Entrectinib					

ACTIONABILITY

NCCN category

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared

with non-MSI-H cases (70% vs. 12%, p=0.001)5.

FREQUENCY & PROGNOSIS

MSI-H is generally infrequent in NSCLC, reported in fewer than 1% of samples across several large studies⁶⁻¹¹, whereas data on the reported incidence of MSI-H in SCLC has been limited and conflicting¹²⁻¹⁵. One study reported MSI-H in lung adenocarcinoma patients with smoking history, and 3 of 4 MSI-H patients examined also had metachronous carcinomas in other organs, although this has not been investigated in large scale studies⁶. The prognostic implications of MSI in NSCLC have not been extensively studied (PubMed, Oct 2020).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁶. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS216-18. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁹⁻²¹. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins16,18,20-21.

BIOMARKER

Tumor Mutational Burden

RESULT 2 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1²²⁻²⁴, anti-PD-1 therapies²²⁻²⁵, and combination nivolumab and ipilimumab²⁶⁻³⁰. Multiple clinical trials of PD-1- or PD-L1-targeting immune checkpoint inhibitors or combination of PD-1 and CTLA-4 inhibitors in NSCLC have reported that patients with tumors harboring TMB ≥10 Muts/Mb derive greater clinical benefit from these therapies than those with TMB <10 Muts/Mb (based on this assay or others); similarly, higher efficacy of anti-PD-1 or anti-PD-L1 immunotherapy for treatment of patients with NSCLC, compared with the use of chemotherapy, has been observed more significantly in cases of TMB ≥10 Muts/Mb (based on this assay or others);^{22-23,26-28,31-38}. Improved OS of patients with NSCLC treated with pembrolizumab plus

chemotherapy relative to chemotherapy only³⁹, or those treated with nivolumab plus ipilimumab also relative to chemotherapy⁴⁰, has been observed across all TMB levels.

FREQUENCY & PROGNOSIS

A large-scale genomic analysis found that unspecified lung non-small cell lung carcinoma (NSCLC), lung adenocarcinoma, and lung squamous cell carcinoma (SCC) samples harbored median TMBs between 6.3 and 9 Muts/Mb, and 12% to 17% of cases had an elevated TMB of greater than 20 Muts/Mb41. Lower TMB is observed more commonly in NSCLCs harboring known driver mutations (EGFR, ALK, ROS1, or MET) with the exception of BRAF or KRAS mutations, which are commonly observed in elevated TMB cases⁴². Although some studies have reported a lack of association between smoking and mutational burden in NSCLC43-44, several other large studies did find a strong association with increased TMB⁴⁵⁻⁴⁸. TMB >10 muts/Mb was found to be more frequent in NSCLC metastases compared with primary tumors for both adenocarcinoma (38% vs. 25%) and SCC (41% vs. 35%) subtypes⁴⁹. A large study of Chinese patients with lung adenocarcinoma reported a shorter median OS for tumors with a higher number of mutations in a limited gene set compared with a lower mutation number (48.4 vs. 61.0 months)⁴³.

Another study of patients with NSCLC correlated elevated TMB with poorer prognosis and significantly associated lower TMB in combination with PD-L1 negative status with longer median survival in patients with lung adenocarcinoma⁵⁰. However, no significant prognostic association of TMB and/or PD-L1 status with survival has been reported in patients with lung SCC⁵⁰⁻⁵¹.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁵²⁻⁵³ and cigarette smoke in lung cancer^{31,54}, treatment with temozolomide-based chemotherapy in glioma⁵⁵⁻⁵⁶, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁵⁷⁻⁶¹, and microsatellite instability (MSI)^{57,60-61}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{22-23,26-28,31-38,62}.

GENOMIC FINDINGS

GENE ALK

ALTERATION
EML4-ALK fusion (Variant 2)

POTENTIAL TREATMENT STRATEGIES

ALK mutations or rearrangements may confer sensitivity to ALK TKIs such as crizotinib63-64, ceritinib⁶⁵, brigatinib⁶⁶⁻⁶⁷, alectinib⁶⁸, lorlatinib⁶⁹, and entrectinib⁷⁰. An ongoing Phase 2 study of lorlatinib for patients with ALK- positive NSCLC previously treated with second-generation TKIs reported an intracranial ORR of 54% and an extracranial ORR of 37%71. Lorlatinib also elicited significant clinical activity for patients with NSCLC and intracranial⁷² or intrathecal⁷³ metastases and against resistance mutations associated with progression on first- and secondgeneration ALK TKIs such as G1202R74-75. Crizotinib76, ceritinib77, and lorlatinib78-79 further displayed antitumor activity against ALK+ inflammatory myofibroblastic tumors (IMTs) in Phase 1/2 trials. Phase 1 studies of the ALK/ ROS1/TRK inhibitor entrectinib have reported responses for 4 of 7 (57%) kinase inhibitor-naive patients with ALK-rearranged solid tumors, including patients with NSCLC, renal cell carcinoma, and colorectal cancer, but in o of 13 patients with ALK fusion-positive tumors previously treated with an ALK inhibitor and in none of the other patients with ALK non-fusion alterations⁷⁰. A Phase 1/1B trial of entrectinib for children and adolescents with recurrent or refractory solid tumors reported responses in

patients with infantile fibrosarcoma (IFS; 1 CR) or inflammatory myofibroblastic tumor (IMT; 1PR) harboring ALK fusions80. A Phase 2 trial of the HSP90 inhibitor ganetespib reported PRs for a small number of patients with ALK-rearranged NSCLC81. A Phase 3 study for patients with inhibitor-naive ALK-positive non-small cell lung cancer (NSCLC) reported superior clinical benefit with ensartinib, a second-generation ALK inhibitor, compared with crizotinib treatment (median PFS 25.8 vs. 12.7 months [HR=0.51], ORR 75% vs. 67%, 36-month duration of response [DOR] 59% vs. 27%); intracranial activity of ensartinib for these patients was also improved compared with crizotinib (ORR 64% [7/11] vs. 21% [4/19])82. A Phase 2 study for patients with ALK-positive NSCLC who progressed on crizotinib reported an overall ORR of 52%, a median PFS of 9.6 months, and an intracranial ORR of 70% (28/40)83. The Phase 3 IMpower150 study showed that the addition of atezolizumab to bevacizumab plus chemotherapy treatment also had clinical efficacy in patients with untreated EGFR-mutated or ALK-rearranged metastatic NSCLC84; therefore, the patient's clinical context should be considered.

FREQUENCY & PROGNOSIS

ALK rearrangements are frequently observed in lung adenocarcinomas⁸⁵⁻⁸⁷. The EML4-ALK gene fusion has been observed in approximately 3-7% of non-small cell lung carcinoma cases, more frequently in younger patients, non-smokers, females, and patients of Asian heritage⁸⁸⁻⁹⁴. ALK protein expression has been associated with poor prognosis in some cancer types, including NSCLC, renal cell carcinoma, and neuroblastoma⁹⁵⁻⁹⁷.

EML4-ALK fusions have been reported to be a significant indicator of poor prognosis in advanced stage NSCLC⁹⁴.

FINDING SUMMARY

ALK encodes a receptor tyrosine kinase, a member of the insulin receptor superfamily, whose activation induces the downstream pathways associated with cell survival, angiogenesis, and cell proliferation98. Different EML4-ALK variants have been identified in cancer, all of which contain the intracellular tyrosine kinase domain of ALK99. The most commonly observed rearrangements consist of ALK exon 20 fused to a variety of breakpoints in EML4: exon 13 (variant 1, 33-54% of cases)¹⁰⁰⁻¹⁰³, exon 20 (variant 2, 10-12% of cases)100-103, exon 6 (variant 3 a/b, 26-44% of cases) 100-101,103-105, exon 15 (variant 4, 2% of cases)89,106-107, exon 18 (variant 5, 1.6-3% of cases)^{102,106}, exon 2 (variant 5 a/b, 1-2% of cases)100,107-109, and exon 17 (variant 8 a/b, less than 1%)102,106,110. All of these variants have been characterized as, or are predicted to be, activating and sensitive to ALK inhibitors, including crizotinib and ceritinib101,104,111; however, variants 3a/b are less sensitive to crizotinib in vitro^{101,103}. Although retrospective analyses of crizotinibtreated non-small cell lung cancer (NSCLC) have reported significant differences in outcomes among EML4-ALK variants, specifically longer median progression-free survival (PFS) in patients with variant 1 and improved 2-year PFS and time to progression in patients with variants other than 3a/b103,112-113, other studies have not found correlation between EML4-ALK variants and response to crizotinib in NSCLC^{102,105}.

THERAPIES WITH CLINICAL BENEFIT

IN PATIENT'S TUMOR TYPE

Alectinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Alectinib is a tyrosine kinase inhibitor that targets ALK and RET and is FDA approved to treat patients with ALK-positive, metastatic non-small cell lung cancer (NSCLC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

Activating ALK alterations may predict sensitivity to a lectinib on the basis of extensive clinical evidence in ALK-rearranged $\rm NSCLC^{114-118}$.

SUPPORTING DATA

Alectinib has been primarily studied for the treatment of ALK-rearranged NSCLC. In the Phase 3 ALEX study comparing alectinib with crizotinib in ALK-rearranged, inhibitor-naive NSCLC, patients treated with alectinib experienced significantly improved median PFS (34.8 vs.

10.9 months; HR=0.43), with PFS benefit observed in patients with EML4-ALK variants 1, 2, and 3a/b^{68,119} Similar results have been reported in the J-ALEX trial for inhibitor-naive Japanese patients with ALK-positive $\ensuremath{\mathsf{NSCLC^{120\text{-}121}}}$. For patients with crizotinib-refractory ALK-rearranged NSCLC, Phase 1/2 and Phase 2 trials of alectinib reported ORRs of 45% to $55\%^{117-118,122}$, and the Phase 3 ALUR trial showed that alectinib significantly improved PFS compared with chemotherapy (7.1 vs. 1.6 months; $HR=0.32)^{123}$. Alectinib has demonstrated significant activity against central nervous system (CNS) metastases for patients with NSCLC, with improved CNS-specific ORRs compared with chemotherapy (54.2% [13/24] vs. 0% [0/16])¹²³ or crizotinib (81% [17/21] vs. 50% [11/22])^{68,116-118,122,124-130}. Alectinib combined with atezolizumab led to an ORR of 81% (17/21) as first-line treatment for PD-L1 unselected, ALK+ NSCLC131.

Brigatinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Brigatinib is a kinase inhibitor that targets ALK, ROS1, and mutant EGFR and is FDA approved to treat patients with metastatic anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

Activating ALK alterations may predict sensitivity to brigatinib based on strong clinical^{66,132-133} and preclinical¹³⁴⁻¹³⁵ evidence.

SUPPORTING DATA

Brigatinib has been studied primarily for the treatment of ALK-rearranged NSCLC^{133,136-137}. Brigatinib was associated with an ORR of 17% (3/18 patients) in other solid tumors with ALK/ROS1/EGFR alterations⁶⁶. An initial Phase 1/2 study of brigatinib for the treatment of patients with ALK-rearranged NSCLC reported responses in 71.8% (51/71) of crizotinib-pretreated patients and in 100.0% (8/8) of crizotinib-naive patients with median

PFSs of 13.2 months and unreached, respectively (Gettinger et al., 2016;). Interim analyses of the Phase 3 ALTA-1L study comparing brigatinib to crizotinib for front-line treatment of patients with ALK-positive NSCLC show a superior median PFS (24.0 vs. 11.0 months, HR=0.49) and a significantly higher intracranial ORR (78% vs. 30%) with brigatinib 137-138. The Phase 2 ALTA study demonstrated the activity of brigatinib with 2 different dosing regimens following progression on crizotinib for patients with ALK-positive NSCLC, reporting ORRs of 46% and 56%, median PFSs of 9.2 and 16.7 months, and median OSs of 29.5 and 34.1 months¹³⁹. The intracranial activity of brigatinib has been demonstrated in multiple studies^{67,139} with the ALTA study reporting intracranial ORRs of 50.0% (13/26) and 66.7% (12/18), median duration of intracranial responses of 9.4 and 16.6 months, and median intracranial PFSs of 12.8 and 18.4 months¹³⁹. A retrospective study reported an ORR of 16.7% (3/18), a DCR of 66.7% (12/18), and a median PFS of 4.4 months for patients with ALK-positive alectinib-refractory NSCLC treated with brigatinib¹⁴⁰.

THERAPIES WITH CLINICAL BENEFIT

IN PATIENT'S TUMOR TYPE

Ceritinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Ceritinib is an inhibitor of the kinases ALK, ROS1, IR, and IGF-1R. It is FDA approved to treat metastatic nonsmall cell lung cancer (NSCLC) in patients whose tumors are positive for ALK rearrangements, as detected by an FDA-approved test. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of strong clinical data demonstrating benefit to patients with NSCLC^{65,141-146}, inflammatory myofibroblastic tumors, and anaplastic large cell lymphoma¹⁴⁷, ALK rearrangements may predict sensitivity to ceritinib. In ALK-rearranged NSCLC, responses to ceritinib have been observed in crizotinibnaïve patients^{65,141,144} as well as after relapse on crizotinib^{65,142-143,145-146}.

SUPPORTING DATA

Ceritinib has been shown to confer clinical benefit in patients with ALK/ROS1-rearranged NSCLC^{144,148}. Multiple Phase 3 studies have reported clinical benefit from ceritinib for patients with advanced ALK-rearranged (ALK+) NSCLC. As a first-line treatment for patients with ALK+ NSCLC in the ASCEND-4 Phase 3 study, ceritinib monotherapy significantly increased the median PFS to

16.6 months, compared to a median PFS of 8.1 months in patients with platinum-based chemotherapy¹⁴⁴. A Phase 3 study of ceritinib for ALK inhibitor naive patients with ALK+ NSCLC observed a whole-body (WB) ORR of 63.7%, a WB DCR of 89.5%, and PFS of 11.1 months 141 . The ASCEND-5 Phase 3 study comparing ceritinib to chemotherapy for patients with ALK+ NSCLC previously treated with crizotinib and chemotherapy also reported a significant benefit from ceritinib in ORR (39% vs. 7%) and median PFS (5.4 vs. 1.6 months); there was no improvement of median OS (18.1 vs. 20.1 months), which may be due to the crossover of patients to the ceritinib arm¹⁴³. The ASCEND-1 Phase 1 study of ceritinib for patients with ALK+ NSCLC reported an ORR of 72%, median PFS of 18.4 months, and 12-month OS of $83\%^{65}$. Earlier Phase 1 and 2 studies reported similar clinical benefit as measured by ORR (39-57%), median PFS (5.7-6.9 months), and median OS of 16.7 months $^{65,145-146}$; for patients with brain metastases, an intracranial ORR of 39% and duration of response of 12.8 months were achieved¹⁴². In patients with ALK/ROS₁-rearranged NSCLC, ceritinib treatment resulted in confirmed PRs in 73% (19/26) with a DCR of $92\%^{149}$. Case studies have also reported responses to ceritinib in patients with ALK+ NSCLC and ALK missense mutation after disease progression on crizotinib150 or alectinib151-152.

Crizotinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Crizotinib is an inhibitor of the kinases MET, ALK, ROS1, and RON. It is FDA approved to treat patients with ALK rearrangement- or ROS1 rearrangement-positive nonsmall cell lung cancer (NSCLC), and to treat pediatric and young adult patients with ALK rearrangement-positive anaplastic large cell lymphoma (ALCL). Please see the drug label for full prescribing information.

GENE ASSOCIATION

ALK activation may predict sensitivity to crizotinib. In patients with ALK-rearranged non-small cell lung cancer (NSCLC), crizotinib improved outcomes in both the first-line 64,153 and second-line 154 settings compared with chemotherapy. ALK inhibitors have also demonstrated clinical activity in the context of several other cancer types with activating ALK alterations, including thyroid carcinoma, colorectal carcinoma, inflammatory myofibroblastic tumor, and anaplastic large cell lymphoma $^{155\cdot160}$.

SUPPORTING DATA

Crizotinib has demonstrated efficacy in patients with NSCLC and ALK rearrangements^{64,112,153-154,161}, ROS1 rearrangements¹⁶²⁻¹⁶⁶, an NTRK1 fusion¹⁶⁷, or MET activation¹⁶⁸⁻¹⁸⁴. Three Phase 3 studies for patients with ALK-positive NSCLC reported superior PFS (7,7-11.1 vs.

3.0-7.0 months) and ORR (65.0%-87.5% vs. 20.0%-45.6%) when treated with crizotinib compared with chemotherapy regimens in various settings 64,153,161 . The efficacy of crizotinib for patients with brain metastases has also been examined. Prospective comparison of the intracranial efficacy for patients with stable, treated brain metastases included in the PROFILE 1014 study reported significantly prolonged intracranial disease control rate (DCR) at 24 weeks (56% vs. 25%) and PFS (9.0 vs. 4.0 months, HR= 0.40) for patients treated with first-line crizotinib as compared with chemotherapy¹⁸⁵. A pooled retrospective analysis of patients with ALK-rearranged NSCLC and concurrent brain metastases from the PROFILE 1007 and 1005 studies reported 12-week intracranial DCRs of 56% versus 62% and intracranial ORRs of 18% versus 33% for patients with previously untreated versus previously treated brain metastases¹⁸⁶. In a retrospective study of 90 patients with brain metastases from ALK-rearranged NSCLC, the median OS after diagnosis of brain metastasis was 49.5 months; lack of prior targeted therapy, absence of extracranial metastasis, and a Karnofsky performance score of 90 or higher were significantly associated with improved OS187. Upon disease progression, further survival benefit has been observed for patients with ALK-positive NSCLC who continue crizotinib treatment¹⁸⁸.

THERAPIES WITH CLINICAL BENEFIT

IN PATIENT'S TUMOR TYPE

Entrectinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Entrectinib is a TKI that targets TRKA/B/C (NTRK1/2/3), ROS1, and ALK. It is FDA approved to treat adult patients with ROS1-positive metastatic non-small cell lung cancer (NSCLC) and adult and pediatric patients with NTRK fusion-positive solid tumors that lack a known acquired resistance mutation and are metastatic or likely to result in severe morbidity after surgical resection, have no satisfactory alternative treatments, or have progressed following treatment. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in NSCLC, neuroblastoma, and other solid tumors $^{70,80,189-190}$, ALK fusions or activating mutations may predict sensitivity to entrectinib.

SUPPORTING DATA

A Phase 1 trial of entrectinib reported PRs for 2/4

patients with ALK-rearranged NSCLC, with 1 patient experiencing ongoing clinical benefit for more than 2 years⁷⁰. Phase 1 trials have reported a combined 66.7% ORR (1 CR, 5 PRs; n=9) for patients with ALK-rearranged solid tumors treated with entrectinib; responses were observed for patients with NSCLC (2/4), renal cell carcinoma (1/1), colorectal cancer ([CRC], 1/1), and inflammatory myofibroblastic tumors (2/2), but not for a patient with an unknown primary tumor^{70,191}. Clinical benefit with entrectinib monotherapy has been achieved for adult and pediatric patients with various solid tumors with and without CNS metastases and with NTRK, ROS1, or ALK fusions $^{70,80,192\text{-}195}$, and preclinical sensitivity has been observed in NTRK fusion-positive AML cell lines¹⁹⁶. In a Phase 1 trial, responses were restricted to patients harboring NTRK, ROS1, or ALK rearrangements, with the exception of ALK-mutant neuroblastoma, and were observed for patients with ALK or ROS1 rearrangements who had not received prior ALK TKI or crizotinib, $respectively ^{70}.\\$

Lorlatinib

Assay findings association

ALK

EML4-ALK fusion (Variant 2)

AREAS OF THERAPEUTIC USE

Lorlatinib is a tyrosine kinase inhibitor that targets ALK and ROS1. It is FDA approved to treat patients with ALK-positive metastatic non-small cell lung cancer (NSCLC) following disease progression on crizotinib, alectinib, or ceritinib. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of extensive clinical evidence in NSCLC $^{197-198}$, case studies in inflammatory myofibroblastic sarcoma $^{78-79}$, and preclinical evidence in multiple cell types $^{74,199-202}$, ALK activation may predict sensitivity to lorlatinib.

SUPPORTING DATA

Lorlatinib has primarily been investigated for ALK- and ROS1-positive NSCLC as an approach to overcome resistance to prior TKIs^{69,203}. In the Phase 3 CROWN study for the first-line treatment of ALK-positive nonsmall cell lung cancer (NSCLC), lorlatinib was shown to be superior to crizotinib, with significantly improved median PFS (mPFS; not estimable vs. 9.3 months,

HR=0.28) and higher overall ORR (76% vs. 58%) and intracranial ORR (82.4% [14/17] vs. 23.1% [3/13])¹⁹⁸. In a pivotal Phase 2 study for patients with ALK-positive NSCLC who had progressed on one or more ALK TKIs, lorlatinib elicited a 47% ORR, a 63.0% (51/81) intracranial ORR, and mPFS of 7.3 months¹⁹⁷; the ORR was 40% for patients previously treated with 1 or more secondgeneration TKIs²⁰⁴. In this study, lorlatinib reduced the incidence of first intracranial progression for patients with prior central nervous system metastases²⁰³. For patients whose tumors harbored 1 or more ALK kinase domain mutations, lorlatinib led to responses for 64.4% (29/45), including 57.1% (16/28) of those with the ALK G1202R resistance mutation²⁰⁵; G1202, therefore, does not appear to represent a major mechanism of lorlatinib resistance^{74-75,206}. In an expansion cohort of a Phase 1/2 study, patients with ALK-positive NSCLC who remained on lorlatinib following progression exhibited improved OS and OS post-PD relative to patients who received another treatment or no subsequent treatment²⁰⁷. In the JAVELIN Lung 101 study, the combination of lorlatinib and avelumab led to an ORR of 46.4% (13/28) for patients with ALK-positive NSCLC²⁰⁸.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial → Geographical proximity → Later trial phase. Clinical trials listed here may have additional enrollment criteria

that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

GENE ALK RATIONALE

ALK rearrangements, activating mutations, or amplification may predict sensitivity to ALK

inhibitors as well as HSP90 inhibitors.

ALTERATION EML4-ALK fusion (Variant 2)

TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer

TARGETS

VEGFRS, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, CDK4, CDK6, CSF1R, FLT3, KIT, RET, mTOR, EGFR, ERBB2, ERBB3, MEK, BRAF, SMO, DDR2, PARP, PD-1, CTLA-4, ERBB4

LOCATIONS: Washington, Oregon, California, Utah, North Dakota, Arizona, South Dakota, Nebraska

NCT02201992

Crizotinib in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Removed by Surgery and ALK Fusion Mutations (An ALCHEMIST Treatment Trial)

TARGETS
ALK, AXL, MET, ROS1, TRKA, TRKC

LOCATIONS: Washington

NCT03093116

A Study of TPX-0005 in Patients With Advanced Solid Tumors Harboring ALK, ROS1, or NTRK1-3
Rearrangements

TARGETS
ALK, ROS1, TRKA, TRKB, TRKC

LOCATIONS: Washington, Edmonton (Canada), California, Colorado, Minnesota

NCT02568267

Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring
NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

TARGETS
ALK, ROS1, TRKA, TRKB, TRKC

LOCATIONS: Washington, Utah, Nevada, California, Colorado, Arizona

NCT03737994

Biomarker/ALK Inhibitor Combinations in Treating Patients With Stage IV ALK Positive Non-Small Cell Lung Cancer (The NCI-NRG ALK Master Protocol)

TARGETS
ALK, RET, EGFR, ROS1, ABL, AXL, MET, TRKA, TRKC

LOCATIONS: Washington, Idaho

TUMOR TYPE

ORDERED TEST # ORD-0998537-01

CLINICAL TRIALS

NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR) LOCATIONS: Vancouver (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Londo Ottawa (Canada), Montreal (Canada)	TARGETS VEGFRS, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, CSF1R, FLT3, RET, mTOR, ERBB2, ERBB3, MEK, BRAF, SMO on (Canada), Toronto (Canada), Kingston (Canada),
NCT03596866	PHASE 3
An Efficacy Study Comparing Brigatinib Versus Alectinib in Advanced Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer Participants Who Have Progressed on Crizotinib	TARGETS ALK, EGFR, ROS1, RET

LOCATIONS: California, Toronto (Canada), Aguascalientes (Mexico), Georgia, Virginia, Ciudad de Mexico (Mexico), New York, Halifax (Canada), Uppsala (Sweden), Solna (Sweden)

NCT03087448	PHASE 1/2
Ceritinib + Trametinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer (NSCLC)	TARGETS MEK, ROS1, ALK

LOCATIONS: California

NCT04005144	PHASE 1
Brigatinib and Binimetinib in Treating Patients With Stage IIIB-IV ALK or ROS1-Rearranged Non-small Cell Lung Cancer	TARGETS MEK, ALK, EGFR, ROS1
LOCATIONS: California	

NCT04632992	PHASE 2
A Study Evaluating Targeted Therapies in Participants Who Have Advanced Solid Tumors With Genomic Alterations or Protein Expression Patterns Predictive of Response	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, PD-L1, ERBB2, ERBB3, PI3K-alpha, RET, AKTs
LOCATIONS: California, Tennessee, Connecticut	

TUMOR TYPE Lung non-small cell lung carcinoma (NOS) REPORT DATE 08 Feb 2021

ORDERED TEST # ORD-0998537-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

 APC
 CREBBP
 FANCD2
 KMT2C (MLL3)

 \$2421L
 V2048M
 R328Q
 A846V

 MLL2
 NF1
 PCLO
 SETD2

 Q3919_L3920insQ
 L484P
 I1122M
 S379R

STAT6TRAF2TSC1WDR90rearrangementL422V and T226MK587RE351D

ZNF217 P803S

APPENDIX

TUMOR TYPE

carcinoma (NOS)

Lung non-small cell lung

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B o	r W/TY)	APC
APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ALK	ARID1A	ARID2	ASMTL
ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL	B2M
BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A	BCOR
BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BRSK1
BTG2	BTK	BTLA		CAD	CALR*	CARD11	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	CCT6B	CD22	CD274 (PD-L1)	CD36	CD58
CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4 (FD-L1)	CDK6	CDK8
			CDC/3 CDKN2C	CEBPA	CHD2			CIC
CDKN1B CIITA	CDKN2A CKS1B	CDKN2B CPS1	CREBBP	CRKL		CHEK1 CSF1R	CHEK2 CSF3R	CTCF
					CRLF2			
CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2	DNMT3A
DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR	ELP2
EP300	EPHA3	EPHA5		EPHB1	ERBB2	ERBB3	ERBB4	ERG
ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FAM46C	FANCA	FANCC
FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31	FBXW7
FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2
FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1	FOXL2
FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3	GID4 (C17orf39)
GNA11	GNA12	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG
HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BJ	HIST1H2BK	HIST1H2BO	HIST1H3B	HNF1A	HRAS
HSP90AA1	ICK	ID3	IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2
IKZF3	IL7R	INHBA		INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2
JAK1	JAK2	JAK3		JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A
KDM5C	KDM6A	KDR	KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)
KRAS	LEF1	LRP1B	LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1
MAP2K2	MAP2K4	MAP3K1	MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2
MDM4	MED12	MEF2B	MEF2C	MEN1	MET	MIB1	MITF	MKI67
MLH1	MPL	MRE11A	MSH2	MSH3	MSH6	MTOR	MUTYH	MYC
MYCL (MYCL1)	MYCN	MYD88	MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2
NFKBIA	NKX2-1	NOD1	NOTCH1	NOTCH2	NPM1	NRAS	NT5C2	NTRK1
NTRK2	NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK
PAX5	PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)	PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TET2	TGFBR2	TLL2	TMEM30A	
TMSB4XP8 (TMSL3		TNFAIP3		TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5		TSC2	TSHR	TUSC3	TYK2	U2AF1
U2AF2	VHL	WDR90	WHSC1 (MMSET or		WISP3	WT1	XBP1	XPO1
YY1AP1	ZMYM3	ZNF217		ZNF703	ZRSR2			
			•					

^{*}Note: the assay was updated on 11/8/2016 to include the detection of alterations in CALR

APPENDIX

Genes Assayed in FoundationOne®Heme

HEMATOLOGICA	L MALIGNANCY	DNA GENE LIST:	FOR THE DETECT	ION OF SELECT	REARRANGEMEN	ITS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGICA	L MALIGNANCY	RNA GENE LIST: I	FOR THE DETECT	ION OF SELECT I	REARRANGEMEN	ITS		
ABI1	ABL1	ABL2	ACSL6	AFF1	AFF4	ALK	ARHGAP26 (GRAF)	
ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC	BCL10	BCL11A
BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR	BCR	BIRC3
BRAF	BTG1	CAMTA1	CARS	CBFA2T3	CBFB	CBL	CCND1	CCND2
CCND3	CD274 (PD-L1)	CDK6	CDX2	CHIC2	CHN1	CIC	CIITA	CLP1
CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2	CREBBP	CRLF2	CSF1
CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22	EGFR	EIF4A2	ELF4
ELL	ELN	EML4	EP300	EPOR	EPS15	ERBB2	ERG	ETS1
ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B	FCRL4	FEV	FGFR1
FGFR1OP	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3	FOXO4	FOXP1
FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	HERPUD1	HEY1	HIP1
HIST1H4I	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3	HOXA9	HOXC11
HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK	IGL	IKZF1
IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3	JAZF1	KAT6A (MYST3)
KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2	LPP	LYL1
MAF	MAFB	MALT1	MDS2	МЕСОМ	MKL1	MLF1	MLLT1 (ENL)	MLLT10 (AF10)
MLLT3	MLLT4 (AF6)	MLLT6	MN1	MNX1	MSI2	MSN	MUC1	MYB
MYC	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1	NF2
NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NTRK1	NTRK2	NTRK3
NUMA1	NUP214	NUP98	NUTM2A	OMD	P2RY8	PAFAH1B2	PAX3	PAX5
PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)	PDE4DIP	PDGFB	PDGFRA	PDGFRB
PER1	PHF1	PICALM	PIM1	PLAG1	PML	POU2AF1	PPP1CB	PRDM1
PRDM16	PRRX1	PSIP1	PTCH1	PTK7	RABEP1	RAF1	RALGDS	RAP1GDS1
RARA	RBM15	RET	RHOH	RNF213	ROS1	RPL22	RPN1	RUNX1
RUNX1T1 (ETO)	RUNX2	SEC31A	SEPT5	SEPT6	SEPT9	SET	SH3GL1	SLC1A2
SNX29 (RUNDC2A)	SRSF3	SS18	SSX1	SSX2	SSX4	STAT6	STL	SYK
TAF15	TAL1	TAL2	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3
TFG	TFPT	TFRC	TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63
TPM3	TPM4	TRIM24	TRIP11	TTL	TYK2	USP6	WHSC1 (MMSET or	
WHSC1L1	YPEL5	ZBTB16	ZMYM2	ZNF384	ZNF521	- · ·		· - /
					5			

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status Tumor Mutational Burden (TMB)

APPENDIX

Performance Specifications

The median exon coverage for this sample is 783x

ACCURACY					
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%			
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%			
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%			
Sensitivity: Microsatellite status	At ≥20% tumor nuclei	97.0%			
Sensitivity: Known Gene Fusions	>95.0%				
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%			
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%			
Specificity: Microsatellite status	Positive Predictive Value (PPV)	>95.0%			
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%			
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision				

Assay specifications were determined for pical median exon coverage of approximately 50oX. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

Microsatellite status, which is a measure of microsatellite instability (MSI), is determined by assessing indel characteristics at 114 homopolymer repeat loci in or near the targeted gene regions of the FoundationOne Heme test. For MSI results, confirmatory testing using a validated orthogonal method should be considered.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

APPENDIX

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across more than 250 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal) An alteration denoted as "amplification - equivocal"

implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Alterations and Therapies Biomarker and Genomic Findings Therapies are ranked based on the following criteria: Therapies with clinical benefit in patient's tumor type (ranked alphabetically within each NCCN category) followed by therapies with clinical benefit in other tumor type (ranked alphabetically within each NCCN category).

Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2020. All rights reserved. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >4obp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

APPENDIX

About FoundationOne®Heme

ORDERED TEST # ORD-0998537-01

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters with no conflicts), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are BAP1, BRCA1, BRCA2, BRIP1, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

MR Suite Version 2.2.0

APPENDIX

References

REPORT DATE

08 Feb 2021

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Warth A, et al. Virchows Arch. (2016) pmid: 26637197
- 7. Ninomiya H, et al. Br. J. Cancer (2006) pmid: 16641899
- 8. Vanderwalde A, et al. Cancer Med (2018) pmid: 29436178
- 9. Zang YS, et al. Cancer Med (2019) pmid: 31270941
- 10. Dudley JC, et al. Clin. Cancer Res. (2016) pmid:
- 26880610
- 11. Takamochi K, et al. Lung Cancer (2017) pmid: 28676214 Pylkkänen L, et al. Environ. Mol. Mutagen. (1997) pmid: 9329646
- 13. Gonzalez R, et al. Ann. Oncol. (2000) pmid: 11061602
- 14. Chen XQ, et al. Nat. Med. (1996) pmid: 8782463
- 15. Merlo A, et al. Cancer Res. (1994) pmid: 8174113
- 16. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 17. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 18. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 19. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 20. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 21. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 22. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 23. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 24. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 25. Cristescu R. et al. Science (2018) pmid: 30309915
- 26. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 27. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid:
- 28. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 29. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 30. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 31. Rizvi NA, et al. Science (2015) pmid: 25765070
- 32. Colli LM, et al. Cancer Res. (2016) pmid: 27197178
- 33. Wang VE, et al. J Immunother Cancer (2017) pmid: 28923100
- 34. Carbone DP, et al. N. Engl. J. Med. (2017) pmid:
- 35. Rizvi H. et al. J. Clin. Oncol. (2018) pmid: 29337640
- 36. Forde PM, et al. N. Engl. J. Med. (2018) pmid: 29658848 37. Miao D. et al. Nat. Genet. (2018) pmid: 30150660
- 38. Chae YK, et al. Clin Lung Cancer (2019) pmid: 30425022
- 39. Paz-Ares et al., 2019; ESMO Abstract LBA80
- 40. Hellmann MD, et al. N. Engl. J. Med. (2019) pmid:
- 31562796
- 41. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 42. Spigel et al., 2016; ASCO Abstract 9017
- **43.** Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 44. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 45. Govindan R, et al. Cell (2012) pmid: 22980976
- 46. Ding L, et al. Nature (2008) pmid: 18948947
- 47. Imielinski M, et al. Cell (2012) pmid: 22980975
- 48. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- **49.** Stein et al., 2019; DOI: 10.1200/PO.18.00376 50. Chen Y, et al. J. Exp. Clin. Cancer Res. (2019) pmid:
- 31088500
- 51. Yu H. et al. J Thorac Oncol (2019) pmid: 30253973
- 52. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 53. Hill VK, et al. Annu Rev Genomics Hum Genet (2013)

- pmid: 23875803
- 54. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 55. Johnson BE, et al. Science (2014) pmid: 24336570 56. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 58. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 59. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 60. Nature (2012) pmid: 22810696
- 61. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 62. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 63. Solomon BJ, et al. J. Clin. Oncol. (2018) pmid: 29768118
- 64. Solomon BJ, et al. N. Engl. J. Med. (2014) pmid: 25470694
- 65. Kim DW, et al. Lancet Oncol. (2016) pmid: 26973324
- 66. Gettinger SN, et al. Lancet Oncol. (2016) pmid: 27836716
- 67. Camidge DR, et al. J. Clin. Oncol. (2018) pmid: 29768119
- 68. Peters S, et al. N. Engl. J. Med. (2017) pmid: 28586279
- 69. Shaw AT, et al. Lancet Oncol. (2017) pmid: 29074098
- 70. Drilon A, et al. Cancer Discov (2017) pmid: 28183697
- 71. Camidge et al., 2019; ESMO Abstract 1487PD
- 72. Besse et al., 2018; ASCO Abstract 9032
- 73. Hochmair MJ, et al. Anticancer Drugs (2017) pmid: 28628492
- 74. Yoda S, et al. Cancer Discov (2018) pmid: 29650534
- 75. Dagogo-Jack I, et al. JCO Precis Oncol (2018) pmid: 29376144
- 76. Schöffski P, et al. Lancet Respir Med (2018) pmid: 29669701
- 77. Nishio M, et al. J Thorac Oncol (2015) pmid: 26020125
- 78. Yuan C, et al. Am J Case Rep (2017) pmid: 28713152
- 79. Parker BM, et al. J Oncol Pharm Pract (2018) pmid: 29925295
- 80. Robinson et al., 2019; ASCO Abstract 10009
- 81. Socinski MA, et al. Clin. Cancer Res. (2013) pmid:
- 82. Horn et al., 2020; WCLC Abstract 2
- 83. Yang Y, et al. Lancet Respir Med (2020) pmid: 31628085
- 84. Socinski MA, et al. N. Engl. J. Med. (2018) pmid: 29863955
- 85. To KF, et al. J Thorac Oncol (2013) pmid: 23625156
- 86. Selinger CI, et al. Mod. Pathol. (2013) pmid: 23743928
- 87. Takeuchi K, et al. Clin. Cancer Res. (2009) pmid: 19383809
- 88. Inamura K, et al. Mod. Pathol. (2009) pmid: 19234440
- 89. Koivunen JP, et al. Clin. Cancer Res. (2008) pmid:
- 90. Shaw AT, et al. J. Clin. Oncol. (2009) pmid: 19667264
- 91. Takahashi T, et al. Ann. Surg. Oncol. (2010) pmid: 20183914
- 92. Li Y, et al. PLoS ONE (2013) pmid: 23341890
- 93. Li H, et al. Lung Cancer (2013) pmid: 23098378
- 94. Zhou JX, et al. Ann. Oncol. (2013) pmid: 23277484
- 95. Takeda M, et al. Ann. Oncol. (2012) pmid: 22771825 96. Sukov WR, et al. Mod. Pathol. (2012) pmid: 22743654
- 97. Duijkers FA, et al. Am. J. Pathol. (2012) pmid: 22203052
- Grande E, et al. Mol. Cancer Ther. (2011) pmid:
- 21474455
- 99. Peters S, et al. Lung Cancer (2013) pmid: 23769207
- 100. Li T, et al. J Thorac Oncol (2014) pmid: 24346090
- 101. Heuckmann JM, et al. Clin. Cancer Res. (2012) pmid:
- 102. Lei YY, et al. Clin Lung Cancer (2016) pmid: 26454342
- 103. Woo CG, et al. Ann. Oncol. (2017) pmid: 28039177
- 104. Choi YL, et al. Cancer Res. (2008) pmid: 18593892

- 105. Kwak EL, et al. N. Engl. J. Med. (2010) pmid: 20979469
- 106. Sasaki T, et al. Eur. J. Cancer (2010) pmid: 20418096
- 107. Takeuchi K, et al. Clin. Cancer Res. (2008) pmid: 18927303
- 108. Zhang X, et al. Mol. Cancer (2010) pmid: 20624322
- 109. Maus MK, et al. Int J Biomed Sci (2012) pmid: 23675251
- 110. Sanders HR, et al. Cancer Genet (2011) pmid: 21356191
- 111. Soda M. et al. Nature (2007) pmid: 17625570
- 112. Yoshida T, et al. J. Clin. Oncol. (2016) pmid: 27354483
- 113. Seo S. et al. Ann. Oncol. (2017) pmid: 28407036
- 114. Ohe et al., 2015; ASCO Abstract 8061
- 115. Gandhi et al., 2015: ASCO Abstract 8019
- 116. Seto T, et al. Lancet Oncol. (2013) pmid: 23639470
- 117. Gadgeel SM, et al. Lancet Oncol. (2014) pmid: 25153538
- 118. Ou SH, et al. J. Clin. Oncol. (2016) pmid: 26598747
- 119. Camidge DR, et al. J Thorac Oncol (2019) pmid: 30902613
- 120. Hida T, et al. Lancet (2017) pmid: 28501140
- 121. Nakagawa K, et al. Lung Cancer (2020) pmid: 31812890
- 122. Shaw AT, et al. Lancet Oncol. (2016) pmid: 26708155
- 123. Novello S, et al. Ann. Oncol. (2018) pmid: 29668860
- 124. Tamura T, et al. J. Clin. Oncol. (2017) pmid: 28296581
- 125. Gainor JF, et al. J Thorac Oncol (2015) pmid: 25526238 126. Ajimizu H, et al. Med. Oncol. (2015) pmid: 25556163
- 127. Ou SH, et al. Oncologist (2015) pmid: 25568147 128. Klempner SJ, et al. Chin Clin Oncol (2015) pmid:
- 26112806 129. Dempke WC, et al. Anticancer Res. (2015) pmid:
- 26504000
- 130. Lin JJ, et al. J Thorac Oncol (2019) pmid: 30529198 131. Kim et al., 2018: ASCO Abstract 9009
- 132. Kim et al., 2016; ASCO Abstract 9007
- 133. Camidge et al., 2016; World Conference on Lung Cancer
- 134. Zhang S, et al. Clin. Cancer Res. (2016) pmid: 27780853
- 135. Siaw JT, et al. Oncotarget (2016) pmid: 27049722
- 136. Kim DW, et al. J. Clin. Oncol. (2017) pmid: 28475456 137. Camidge DR, et al. N. Engl. J. Med. (2018) pmid:
- 30280657
- 138. Camidge et al., 2019; ESMO Asia Abstract LBA1
- 139. Huber RM, et al. J Thorac Oncol (2019) pmid: 31756496 140. Lin JJ, et al. J Thorac Oncol (2018) pmid: 29935304
- 141. Felip et al., 2015; ASCO Abstract 8060 142. Felip et al., 2015; ELCC Abstract 141PD
- 143. Scagliotti et al., 2016; ESMO Abstract LBA42_PR
- 144. Soria JC, et al. Lancet (2017) pmid: 28126333
- 145. Crinò L, et al. J. Clin. Oncol. (2016) pmid: 27432917
- 146. Shaw AT, et al. N. Engl. J. Med. (2014) pmid: 24670165
- 147. Geoerger et al., 2015; ASCO Abstract 10005
- 148. Lim SM, et al. J. Clin. Oncol. (2017) pmid: 28520527
- 149. Wu et al., 2018; WCLC Abstract P1.01-97 150. Kodityal S, et al. Lung Cancer (2016) pmid: 26775591
- 151. Katayama R, et al. Clin. Cancer Res. (2014) pmid: 25228534
- 152. Ou SH, et al. Lung Cancer (2015) pmid: 25736571
- 153. Lu et al., 2016; ASCO Abstract 9058 154. Shaw AT, et al. N. Engl. J. Med. (2013) pmid: 23724913
- 155. Brugieres et al., 2017; ASH Abstract 2831 156. Gambacorti-Passerini et al., 2017; ASH Abstract 4128
- 157. Butrynski JE, et al. N. Engl. J. Med. (2010) pmid:
- 158. Pérot G, et al. PLoS ONE (2014) pmid: 24475247 159. Mossé YP, et al. J Clin Oncol (2017) pmid: 28787259
- 160. Gambacorti-Passerini C, et al. Am. J. Hematol. (2018) pmid: 29352732
- 161. Shaw et al., 2016; ASCO Abstract 9066
- 162. Moro-Sibilot D. et al. Ann. Oncol. (2019) pmid:

APPENDIX |

References

31584608

- 163. Goto et al., 2016; ASCO Abstract 9022
- 164. Shaw AT, et al. N. Engl. J. Med. (2014) pmid: 25264305
- 165. Mazières J, et al. J. Clin. Oncol. (2015) pmid: 25667280
- **166.** Scheffler M, et al. Oncotarget (2015) pmid: 25868855
- 167. Vaishnavi A, et al. Nat. Med. (2013) pmid: 24162815
- 168. Drilon et al., 2016; ASCO Abstract 108
- 169. Vassal et al., 2015; ASCO Abstract 2595
- 170. Camidge et al., 2014; ASCO Abstract 8001
- 171. Li et al., 2015; ASCO Abstract 8090
- 172. Schrock AB, et al. J Thorac Oncol (2016) pmid: 27343443
- 173. Jorge SE, et al. Lung Cancer (2015) pmid: 26791794
- 174. Paik PK, et al. Cancer Discov (2015) pmid: 25971939
- 175. Mahjoubi L, et al. Invest New Drugs (2016) pmid: 26892698
- 176. Benderra MA, et al. J Thorac Oncol (2016) pmid: 26845121
- 177. Wagar SN, et al. J Thorac Oncol (2015) pmid: 25898962

- **178.** Mendenhall MA, et al. J Thorac Oncol (2015) pmid: 25898965
- 179. Jenkins RW, et al. Clin Lung Cancer (2015) pmid: 25769807
- 180. Awad MM, et al. J. Clin. Oncol. (2016) pmid: 26729443
- 181. Schwab R, et al. Lung Cancer (2014) pmid: 24192513
- **182.** Zhang Y, et al. J Thorac Oncol (2016) pmid: 26724472
- **183.** Ou SH, et al. J Thorac Oncol (2011) pmid: 21623265
- **184.** Le X, et al. Clin Lung Cancer (2015) pmid: 25922291
- **185.** Solomon BJ, et al. J. Clin. Oncol. (2016) pmid: 27022118
- **186.** Costa DB, et al. J. Clin. Oncol. (2015) pmid: 25624436
- 187. Johung KL, et al. J. Clin. Oncol. (2016) pmid: 26438117188. Ou SH, et al. Ann. Oncol. (2014) pmid: 24478318
- 189. Desai et al., 2018; ASCO Abstract 10536
- 190. Ambati et al., 2018; doi/full/10.1200/P0.18.00095
- 191. Desai et al., 2020: ASCO Abstract 107
- 192. Demetri et al., 2018; ESMO Abstract LBA17
- 193. Siena et al., 2019; ASCO Abstract 3017194. Doebele et al., 2019; ASCO Abstract 9070

- oi. (2010) pilliu. 20729443
- 195. Doebele et al., 2018; WCLC Abstract 0A02.01
 196. Smith KM, et al. Mol. Cancer Ther. (2018) pmid: 29237803
- 197. Solomon BJ, et al. Lancet Oncol. (2018) pmid: 30413378
- 198. Shaw AT, et al. N Engl J Med (2020) pmid: 33207094
 - 199. Zou HY, et al. Cancer Cell (2015) pmid: 26144315
 - 200. Childress MA, et al. Mol. Cancer Res. (2018) pmid: 30002191
 - 201. Gainor JF, et al. Cancer Discov (2016) pmid: 27432227
 - 202. Infarinato NR, et al. Cancer Discov (2016) pmid: 26554404
 - 203. Bauer et al., 2018; WCLC Abstract MA08.05
 - 204. Bauer et al., 2020; AACR Abstract CT025
 - 205. Shaw AT, et al. J. Clin. Oncol. (2019) pmid: 30892989
 - 206. Ou SI, et al. Lung Cancer (2017) pmid: 28285684
 - 207. Ou et al., 2020; ESMO Abstract 1302P
 - 208. Shaw et al., 2018; ASCO Abstract 9008