Problem Set 6

Mark Schulist

1)

1.a)

Baryons: 3 quarks, spin $\frac{1}{2}$, l = 0.

For the first 2: $s_a=0,1.$ Now we add the third into the combinations.

$$s = \left(\frac{1}{2} + s_a\right), \left|\frac{1}{2} - s_a\right|$$

$$s = \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}$$
(1)

So the total possible values of s are $\frac{1}{2}$, $\frac{3}{2}$.

1.b)

Mesons: 2 quarks, $s = \frac{1}{2}$, l = 0.

$$s = s_1 + s_2, |s_1 - s_2|.$$

So s = 1, 0.

2)

 $l=1, m_l=0, s=\frac{1}{2}, m_s=-\frac{1}{2}.$ We can look up in the table to find which uncoupled states correspond to this coupled state.

We can see that this state is a sum of $\sqrt{\frac{2}{3}} \left| \frac{3}{2} \right| \frac{1}{\sqrt{3}} + \sqrt{\frac{1}{3}} \left| \frac{1}{2} \right| -\frac{1}{2}$ by looking in the Clebsch-Gordan table.

The first ket has $j=\frac{3}{2}$, so we get J^2 with $j(j+1)\hbar^2$. So in this case, $J^2=\frac{15}{4}\hbar^2$, and this occurs with probability $\frac{2}{3}$.

The second ket has $j=\frac{1}{2},$ so $J^2=\frac{3}{4}\hbar^2.$ This occurs with probability $\frac{1}{3}.$

3)

$$s_1=1, m_1=1, s_2=2, m_2=2$$

The total spin m=3. $s_z=\hbar.$

If we look int the Clebsch-Gordan table for total spin = 3 with $s_z=\hbar$, we find that there are three possible values for the z component of angular momentum.

1

- $|21\rangle$ has a z component of angular momentum of $2\hbar$, and this occurs with probability $\frac{1}{15}$.
- $|10\rangle$ has a z component of angular momentum of \hbar , and this occurs with probability $\frac{8}{15}$.
- $|01\rangle$ has a z component of angular momentum of $0\hbar$, and this occurs with probability $\frac{6}{15}$.

4) 11.16

$$I = 1, g_D = 0.857 (2)$$

 $j_1 = 1, j_2 = \frac{1}{2}.$

$$F^2|FM_F\rangle = F(F+1)\hbar^2|FM_F\rangle \tag{3}$$

We know that $m_1 \in \{-1,0,1\}$ and $m_2 \in \left\{-\frac{1}{2},\frac{1}{2}\right\}$.

So now we can fill out the F^2 matrix using Equation 3.

$$|\frac{3}{2} \frac{3}{2}\rangle \quad |\frac{3}{2} \frac{1}{2}\rangle \quad |\frac{3}{2} \frac{1}{2}\rangle \quad |\frac{3}{2} \frac{3}{2}\rangle \quad |\frac{1}{2} \frac{1}{2}\rangle \quad |\frac{1}{2} \frac{1}{2}\rangle$$

$$\frac{15}{4} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad \frac{15}{4} \quad 0 \quad 0 \quad 0 \quad 0$$

$$F^2 \doteq \hbar^2 \quad 0 \quad 0 \quad \frac{15}{4} \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad \frac{15}{4} \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad \frac{3}{4} \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad \frac{3}{4} \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad \frac{3}{4}$$

We know that $S^2 \doteq \frac{3}{4}\hbar^2$ Id and $I^2 \doteq 2\hbar^2$ Id.

$$H'_{hf} = \frac{A}{2\hbar^2} (F^2 - S^2 - I^2)$$

$$= \frac{A}{2} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 \end{pmatrix}$$
(5)

So we can see $\Delta E = \frac{3}{2}A$.

To compute A we need to use the version for hydrogen and then replace the g_p with g_D .

$$\frac{A_p}{A_D} = \frac{g_p}{g_D}$$

$$\implies A_D = \frac{A_p g_D}{g_p} = 217.7 \text{ MHz}$$
(6)

$$\frac{3}{2}A_D = 326.5 \text{ MHz}$$
 (7)

So the split is less compared to H.

Figure 1: Energy Split of Deuterium Atom with Hyperfine Structure In Figure 1, the top line refers to when $F=\frac{3}{2}$ and the bottom when $F=\frac{1}{2}$.