Metody ogrzewania mieszkań

Daniel Maher

January 2025

1 Wstęp

Celem tego projektu jest zbadanie efektywności różnych metod grzewczych za pomocą symulacji komputerowych. Odpowiemy sobie na dwa pytania: 'Czy grzejnik musi być pod oknem?' oraz 'Czy wyłączyć grzejniki przed wyjściem z domu?'

W związku z tym zbadamy dwa mieszkania. Jedno jednopokojowe z jednym oknem i grzejnikiem:

Rysunek 1: Mieszkanie jednopokojowe z jednym oknem i grzejnikiem

Drugie będzie modelowane na własnym mieszkaniu z trzema pokojami, grzejnikami i oknami:

Rysunek 2: Mieszkanie Pełne

2 Model Matematyczny

Żeby rozwiązać to zagadnienie, musimy wprowadzić model matematyczny, którym będziemy się kierowali, gdy tworzymy symulacje.

Mamy jednorodne równanie różniczkowe cząstkowe opisujące zmianę temperatury u:=u(x,y,t):

$$\frac{\partial u}{\partial t} = \alpha(\partial_{xx} + \partial_{yy})u$$

gdzie α to współczynnik przewodnictwa cieplnego. Przyjmiemy $\alpha=0.0025\frac{W}{m\cdot K}$ dla powietrza.

Musimy uwzględnić również grzejniki. Niech P będzie mocą grzejnika. Wtedy:

$$P = \frac{Q}{\Delta t} = \rho \cdot A \cdot c \cdot \frac{\delta u}{\Delta t} \approx \rho \cdot A \cdot c \cdot \frac{\partial u}{\partial t}$$

Stad:

$$\frac{\partial u}{\partial t} \approx \frac{P}{\rho \cdot A \cdot c}$$

Gdzie $\rho=1.1225\frac{kg}{m^3}$ to gęstość powietrza, A to powierzchnia grzejnika, a $c=1005\frac{J}{kgK}$ to ciepło właściwe powietrza. Przykładowa moc grzejnika (z Allegro) to 1500W.

Oczywiście musimy uwzględnić położenie grzejnika oraz średnią temperaturę w pokoju, dla której grzejnik przestanie grzać jeśli przekroczy pewien poziom (limit przyjmiemy jako $20^{\circ}C$). Niech $\Theta(x,y,u)$, będzie za to odpowiadało zwracajac 0 lub 1.

Ostatecznie dostajemy:

$$\frac{\partial u}{\partial t} = \alpha(\partial_{xx} + \partial_{yy})u + \frac{P}{\rho \cdot A \cdot c} \cdot \Theta(x, y, u)$$

3 Metoda Numeryczna

- Ustalamy pewien krok w przestrzeni h_x oraz w czasie h_t , żeby $\frac{h_t}{h_x^2} < \frac{1}{2}$. Przestrzeń $\Omega = [0,L] \times [0,M]$ jest dyskretyzowana w następujący sposób:

$$\Omega = \Big([x_0, x_1] \times [y_0, y_1] \Big) \cup \Big([x_1, x_2] \times [y_0, y_1] \Big) \cup \ldots \cup \Big([x_{L-1}, x_L] \times [y_0, y_1] \Big) \cup \\ \cup \ldots \cup \Big([x_0, x_1] \times [y_{M-1}, y_M] \Big) \cup \Big([x_1, x_2] \times [y_{M-1}, y_M] \Big) \cup \ldots \cup \Big([x_{L-1}, x_L] \times [y_{M-1}, y_M] \Big)$$

Czas [0,T] dysretyzujemy w następujący sposób:

$$[0,T] = [t_0,t_1] \cup [t_1,t_2] \cup \ldots \cup [t_{T-1},t_T]$$

- Niech $u_{i,j,k}$ odpowiada $u(x_i, y_j, t_k)$.
- Ustalamy stałą temperaturę początkową $u_{i,j,0}=T_0$
- Dla kolejnych k rozwiązujemy równanie ciepła:

$$u_{i,j,k+1} = u_{i,j,k} + \alpha \cdot \frac{h_t}{h_x^2} \Big(u_{i+1,j,k} + u_{i-1,j,k} + u_{i,j+1,k} + u_{i,j-1,k} - 4u_{i,j,k} \Big) + h_t \sum_{\Theta} \Theta(x_i, y_i, u_{i,j,k})$$

- Jeśli i, j należą do indeksów okna, to ustalamy temperaturę zewnętrzną:

$$u_{i,j,k+1} = T_{outside}$$

- Jeśli jest ściana pozioma $i \in [a, b], j = c$, to:

$$\mathbf{u}_{i,j,k+1} = 0$$

$$u_{i,j+1,k+1} = u_{i,j+2,k+1}$$

$$u_{i,j-11,k+1} = u_{i,j-2,k+1}$$

- Analogicznie dla ścian pionowych oraz ścian brzegowych mieszkania.

4 Czy grzejnik musi być pod oknem?

Sprawdźmy przypadek, gdy grzejnik znajduje się po przeciwległej stronie od okna:

Rysunek 3: Mieszkanie jednopokojowe z jednym oknem i grzejnikiem po przeciwległej stronie

Ustawiamy temperaturę początkową w mieszkaniu $5^{\circ}C$ i na zewnątrz $0^{\circ}C$ oraz sprawdzamy jaki jest stan po 2 godzinach:

Rysunek 4: Enter Caption

Jak widać, temperatura nie rozchodzi się równomiernie po pokoju. Połowa pokoju przy oknie ma średnio temperaturę 10 $\sim 15^{\circ}C,$ a druga połowa 25 $\sim 30^{\circ}C$

Robimy tak samo, gdy grzejnik jest na środku pokoju:

Rysunek 5: Mieszkanie jednopokojowe z jednym oknem i grzejnikiem po środku

Jest trochę lepiej. Po prawej stronie pokoju mamy dość równomierną temperaturę $\sim 23^{\circ}C$, a po lewej $\sim 15^{\circ}C$.

Zobaczmy, co się stanie gdy grzejnik będzie tuż przy oknie:

Rysunek 6: Mieszkanie jednopokojowe z jednym oknem i grzejnikiem po środku

Tutaj jest idealna sytuacja. W całym pokoju praktycznie mamy równomierną temperaturę $20^{\circ}C$. Wnioskujemy, że grzejnik przy oknie najlepiej zwalcza wchodzący chłód.

5 Czy wyłączyć grzejniki przed wyjściem z domu?

Żeby odpowiedzieć sobie na to pytanie zasymulujemy sytuację, gdzie w mieszkaniu jest równomierna temperatura $20^{\circ}C$, zostawiamy pokój z wyłączonymi grzejnikami na 2 godziny i potem grzejemy mieszkanie aż dojdzie do średnio $20^{\circ}C$ w mieszkaniu jeszcze raz. Rozważamy 3 przypadki, gdy na zewnątrz jest bardzo zimno $(-10^{\circ}C)$, zimno $(0^{\circ}C)$ i chłodno $(5^{\circ}C)$. Tutaj ustawiamy moc grzejnika jako 2000W:

Rysunek 7: Enter Caption

Rysunek 8: Gdy jest bardzo zimno

Rysunek 9: Gdy jest zimno

Rysunek 10: Gdy jest chłodno

Stwierdziłem po kilku próbach, że mieszkanie się dobrze ogrzewa jeszcze raz po 20 min. Teraz sprawdźmy ile energii zużywamy, gdy zostawiamy włączone grzejniki:

Rysunek 11: Gdy jest chłodno

Zużycie energii jest ogromne w porównaniu do poprzedniej strategii. Stąd wnioskujemy, że lepiej jest wyłączać grzejniki przed wyjściem z domu.

Chciałbym też dodać, że ciepło nie zmienia się za bardzo przy ścianach. Spodziewam się, że przy mniejszym h_x byłby bardziej dokładny przepływ ciepła szczególnie przy ścianach i drzwiach. Niestety możliwości moich urządzeń mnie ograniczają czasowo. Szczególnie problematyczny jest warunek $\frac{h_t}{h_x^2} < \frac{1}{2}$.