Writing Efficient Code

Optimizing Code

Before you consider a parallel algorithm:

- Make sure you have the best sequential algorithm
- Apply compiler optimization
- Identify performance bottlenecks
- Apply sequential optimization techniques

Timing of programs

Exists different ways to do timings:

- Insert specific timing code
- Use tools

```
#include <time.h> // Contains headers for timing
 time_t start, stop; // Timing variables
 double avg_time = 0;
 double cur time;
 for(i=0; i<100; i++) {
   start = clock();
                                            // Get the current time when we start
   scalar_product_sse += ScalarSSE(s1, s2); // Do work
   stop = clock();
                                             // Get the current time when we end
// Time is measured in "ticks", must calculate seconds
   cur_time = ((double) stop-start) / CLOCKS_PER_SEC;
                                             // Accumulate time on all iterations
   avg time += cur time;
// Will get more accurate time if we perform several runs and take the average
 printf("SIMD code used on average %f seconds.\n", avg_time / 100);
```

Timing of programs

```
#include <omp.h>

// Using OpenMP specific routines, must compile with -fopenmp

double start = omp_get_wtime();  // Timer start
    linear(&sum1, size, data);
    double end = omp_get_wtime();  // Timer ends
    double time1 = end - start;  // Calculate time

printf("Timing: %lf \n", time1);
```

Timing of programs

Use tools to time the program

gprof shows time spent in each routine

Compile with -pg
Run program
Creates binary file gmon.out
To get readable data execute:
Look at timing data:

gcc -pg myprog.c
./a.out
ls gmon.out
gprof a.out gmon.out > myprog_output
more myprog_output

More sophisticated tools such as Intel Vtune

The Traditional Model

- A sequential program executes one instruction at a time, according to the logic of the program
- Time to access any memory location is uniform
 and short (comparable to the time it takes to perform one flop)
- Each flop takes constant time (hopefully one clock tick)
- Well suited for algorithm analysis (recall the O-, Ω and Θ -notations)

But in the real world, things are slightly different...

How it really works

```
int main()

double a, b , result =0;
  printf("Enter first number : ");
  scanf("%1f",&a);

printf("Enter Second Number : ");
  scanf("%1f",&b);

result = a + b;
  printf("Addition of two numbers is : %1f", result);
  return 0;
```

Issues to consider

- Pipelining
- SIMD processing
- Memory hierarchy

SIMD

Single Instruction Multiple Data

- · Setting: Performing the same operation on multiple data
- Processors have hardware support for performing multiple operations at the same time.
- Compiler (or user) must detect operations that fit

Pipelines

Assembly line:

- Each worker performs a separate task
- Can produce one complete unit every time step

Example:

4 tasks, each requiring 4 sequential operations Would take $4 \times 4 = 16$ time steps.

Modern CPUs can pipeline similar operations

Using a pipeline of depth 4:

Takes 4 steps to fill the pipeline Takes 4 more steps to finish Total 8 steps.

Requires enough similar operations to pay off

The program must lend itself to using SIMD and pipelines

Latency

You want to buy a DVD. Two options: Download or buy at the store. Which is faster?

Assume a DVD holds 4.7Gbyte, 4 discs = 18.8 Gbyte = 150 Gbit. With a 25 Mbit/s connection this takes 150000/25 sec = 6 000 sec = 1 hour 40 minutes Going to the store takes max 30 minutes...

Latency: The time you have to wait before data starts arriving.

Going to the store: 30 minutes

Downloading: a few milliseconds (10-3)

[nmidd@ii122078 ~]\$ ping brake.ii.uib.no PING brake.ii.uib.no (129.177.120.119) 56(84) bytes of data. 64 bytes from brake.ii.uib.no (129.177.120.119): icmp_req=1 ttl=63 time=0.313 ms 64 bytes from brake.bccs.uib.no (129.177.120.119): icmp_req=2 ttl=63 time=0.311 ms

Latency between two computers is ≈ 0.3 ms = 0.0003 seconds = 300 000 x 10⁻⁹ seconds A 1GHz computer can perform 300 000 operations in the same time!

Memory Latency

- Larger cache size costs more and increases the latency.
- Bandwidth (bits per second) improves faster than latency.
- Computer looks for data as high up in the cache hierarchy as possible.
- Different strategies for deciding what to keep and what to throw away.

Exploiting Locality

CPU

Temporal locality: Likely that a memory cell that was

accessed recently will be used again

Spatial locality: Likely that memory cells close to a

recently accessed memory cell will be

used

Memory will store what you are likely to need closer to the CPU:

Temporal locality: Will store recently used data points high in the cache hierarchy

Spatial locality: Will simultaneously fetch memory cells close to requested cell

Cache line: Smallest unit of memory that the cache system operates on

Typically 64 bytes

Case study: Matrix multiplication

Compute $C = A \times B$ where A,B, and C are $n \times n$ real valued matrices

Fundamental operation in linear algebra, exists highly optimized codes

Requires $3n^2$ data elements and $n^2(2n - 1)$ flops

Mapping Data to Memory

- A matrix is a 2D data structure, while computer memory addresses are arranged in 1D (one long sequence of memory cells)
- Conventions for matrix layout
 - → by column, or "column major"; A(i,j) at A+i+j*n
 - \rightarrow by row, or "row major" A(i,j) at A+i*n+j

Column major

\	0	5	10	15
	1	6	11	16
	2	7	12	17
	3	8	13	18
	4	9	14	19

Fortran, Matlab

Row major

0	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14	15	
16	17	18	19	

C. Java

Column of matrix is stored in red cache lines

Layout of B matters

Each access to **B** requires a new cache line to be loaded

brake.ii.uib.no

Computer with 8 Gflop peak rate

Naive algorithm using n=1000 gave 162 Mflop; 2% of theoretical peak...

Transposing B


```
For i = 1,n

For j = i+1,n

temp = B(i,j)

B(i,j) = B(j,i)

B(j,i) = temp
```

```
For i=1,n

For j=1,n

C(i,j) = 0.0

For k=1,n

C(i,j) += A(i,k) * B(k,j)
```

For i=1,n
For j=1,n

$$C(i,j) = 0.0$$

For k=1,n
 $C(i,j) += A(i,k) * B(j,k)$

Multiplication by Blocks

Then
$$C_{0,0} = (A_{0,0} * B_{0,0}) + (A_{0,1} * B_{1,0}) + (A_{0,2} * B_{2,0})$$

Advantage:

For i = 0, nb-1
For j = 0, nb-1

$$C_{i,j} = 0.0$$

For k = 0, nb-1
 $C_{i,j} += A_{i,k} * B_{k,j}$

Both $A_{i,k}$ and $B_{k,j}$ can fit in cache With 2^*x elements in the cache we can perform $x * \sqrt{x}$ operations.

$$C_{i,j} \quad += \quad A_{i,k} \quad * \quad B_{k,j} \quad \sqrt{x}$$

Blocked Storage

- Make sure data elements within each block are stored in consecutive memory cells.
- Can use regular "transposed" matrix multiply on each block pair:

bs For i=1,bs For j=1,bs For k=1,bs
$$C(i,j) += A(i,k) * B(j,k)$$

A, B, and C now points to the start of each block

18

- Must know cache size in advance.
- . Other schemes try to be cache friendly independently of the cache size.

Storing Graphs

Individual lists:

- One vertex-indexed array
- Each entry points to a neighbor list
- Neighbor lists might not be consecutive in memory!

Compressed lists:

- Edges are consecutive
- Use extra dummy pointer at the end Points to last element + 1
- Use integer values in both arrays

Traverse the graph:

Computing Connected Components

Algorithms courses

- Traditionally taught to use either DFS or BFS
- Linear running time
- Will move around in memory depending on the structure of the graph and how it is stored.
- Not good in terms of memory use!

Disjoint set data structure

- (partial) components are represented by trees
- Find(v) returns root of component containing vertex v
- Union(u,v) merges trees containing vertices u and v
- Running time $O(m\alpha(m,n)) \approx O(m)$ Almost linear.
- Traverses the graph according to how it is stored!

Union-Find(G)

```
for each vertex v

p(v) = v

for each edge (u,v)

if Find(u) ≠ Find(v)

Union(u,v)
```


Experimental Results

From [Manne and Patwary 2009]

- Comparing DFS with Disjoint Set algorithm (ZZ)
- Real world graphs from the Florida sparse matrix collection

Name	V	E	Max Deg	Avg Deg	DFS	ZZ
m_t1	97578	4827996	236	98.95	0.12	0.06
cranksg2	63838	7042510	3422	220.64	0.15	0.03
$inline_1$	503712	18156315	842	72.09	0.57	0.26
ldoor	952203	22785136	76	47.86	0.71	0.47
$af_shell10$	1508065	25582130	34	33.93	1.04	0.37
boneS10	914898	27276762	80	59.63	0.86	0.38
bone010	986703	35339811	80	71.63	1.05	0.47
audi	943695	38354076	344	81.28	1.20	0.33
$spal_004$	321696	45429789	6140	282.44	1.33	0.66
rmat1	377823	30696982	8109	162.49	2.07	1.34
rmat2	504817	40870608	10468	161.92	2.71	1.81

Things to remember

Before going parallel, always optimize single CPU performance first

- Access data elements as sequentially as possible
- Do as much as possible with the data in cache
 - → Reuse data elements
- Check for compiler options that might help you
- To use full optimization, compile with -O3
- If possible, use optimized software
 - → Linear algebra software
 - → Graph algorithms

For more on sequential performance optimization, see the online book:

Algorithms for Modern Hardware

https://en.algorithmica.org/hpc/

Contains specific advice and examples