

La détection d'anomalies de données déséquilibrées

Cas du cancer du sein

Présenté par : Paola Andrieu, Augustin Robert, Timéo Baudat 24 octobre 2024

Sommaire

Introduction

Isolation Forest

Méthodes et indicateurs

One-Class Support Vector Machine

Local Outlier Factor

Comparaison de méthodes

Introduction - La détection d'anomalies

- Identification d'individus qui présentent un écart par rapport à la normale
- Détection de fraudes bancaires, informatiques...
- En médecine, faible présence d'individus avec des cas graves (par comparaison à des personnes saines)
- -> Problèmes liées à des données déséquilibrées (classification)

Le jeu de données

Jeu de données sur le cancer du sein (domaine de la santé)

- 30 features numériques (caractères géométriques des différentes cellules)
- 1 variable factorielle : Bénigne (0) ou Maligne (1)

5.6% du jeu de données représente les cellules malignes (21 vs 357) -> on les considère comme des anomalies

Comment gérer les données déséquilibrées ?

- Ré-échantillonnage possible avec oversampling ou undersampling
- 1. O<u>versampling (sur-échantillonnage)</u>: Générer des observations pour la classe minoritaire (par exemple : SMOTE, Adasyn)
- 2. <u>Undersampling (sous-échantillonnage)</u>: Supprimer les observations de la classe majoritaire (par exemple : Tomek)
- OU méthodes spécialisées pour la détection d'anomalies

Les méthodes de machine learning utilisées

- 1. Local Outlier Factor (LOF)
- 2. Isolation Forest
- 3. One-Class Support Vector Machine (OCSVM)

Certaines méthodes ne sont pas adaptées à la situation de nos données (par exemple : DBscan qui est adapté aux données de petites dimensions)

(Togbe et al., 2020)

Choix des indicateurs de performances

	Accuracy	Spécificité	Sensibilité	Balanced accuracy
Formule	$\frac{TP + TN}{FP + FN + TP + TN}$	$\frac{TN}{TN + FP}$	$\frac{TP}{TP + FN}$	<u>Spé + Sen</u> 2
Choix	 Ne tient pas compte de la classe minoritaire 	 Ne s'intéresse qu'à la classe négative 	 Ne s'intéresse qu'à la classe positive 	 Version pondérée de l'accuracy Tient compte du déséquilibre des classes

TP: Vrais positifs, TN: Vrais négatifs, FP: Faux positifs, FN: Faux négatifs, Spé: Spécificité, Sen: Sensibilité

Local Outlier Factor - Principe

Assignation à chaque point d'une valeur de densité locale qui dépend du nombre de voisins proches Comparaison de chaque densité locale à celle des voisins

Donne un score de "LOF" : plus il est élevé, plus l'observation a de chances d'être une anomalie On fixe un seuil qui sépare les points en anomalie ou non selon le score de LOF

Deux hyperparamètres : le seuil du score de LOF et le nombre de voisins considérés

Local Outlier Factor -Résultats

Balanced Accuracy: 0.82

Spécificité: 0.86

Balanced Accuracy en fonction des paramètres

Reference

Prediction 0 1 0 283 3 1 74 18

Accuracy: 0.7963

95% CI: (0.7521, 0.8358)

No Information Rate: 0.9444

P-Value [Acc > NIR] : 1

Kappa : 0.2508

Mcnemar's Test P-Value: 1.496e-15

Sensitivity: 0.7927

Specificity: 0.8571

Pos Pred Value : 0.9895

Neg Pred Value: 0.1957

Prevalence: 0.9444

Detection Rate: 0.7487

Detection Prevalence: 0.7566

Balanced Accuracy: 0.8249

'Positive' Class : 0

Reference

Local Outlier Factor - 0 283 3 74 18 Résultats

Isolation Forest - Principe

- Principe
 - Anomalies facilement isolables, car rares et différentes
- Concept clé
 - Isolation par partitionnement aléatoire (construction d'arbres de manière aléatoire)
 - Profondeur d'isolement
- Etapes de l'algorithme
 - Echantillonnage aléatoire
 - Construction de l'arbre d'isolation
 - Calcul du score d'anomalie
- Score d'anomalie
 - compris entre 0 et 1
 - d'autant plus grand que l'isolement est rapide
 - seuil à déterminer

Isolating an anomalous point

Isolating a normal point

Isolation Forest - Résultats

Isolation Forest - Résultats

Dim 1 (33.72%)

Reference

Prediction 0 1

0 321 0

1 36 21

Accuracy: 0.9048

95% CI: (0.8706, 0.9324)

No Information Rate: 0.9444

P-Value [Acc > NIR] : 0.9993

Kappa : 0.4977

Mcnemar's Test P-Value: 5.433e-09

Sensitivity: 0.8992

Specificity: 1.0000

Pos Pred Value : 1.0000

Neg Pred Value: 0.3684

Prevalence: 0.9444

Detection Rate: 0.8492

Detection Prevalence: 0.8492

Balanced Accuracy: 0.9496

One-Class Support Vector Machine - Principe

- Apprentissage sur une **seule classe** (points normaux) pour déterminer une frontière qui enveloppe la majorité des points normaux
- Transformation des données via un noyau (comme les SVM)
- Tous les points qui ne sont pas dans la zone normale dans l'hyperplan sont considérés comme des **anomalies**
- <u>Paramètre v</u>: contrôle la proportion d'erreurs acceptées (points hors de la frontière) et la fraction de support vectors.
- <u>Paramètre γ</u>: détermine l'influence d'un point de données individuel sur la forme de la frontière;
 un γ élevé génère une frontière plus complexe.

One-Class Support Vector Machine - Résultats

Sélection de la plage de 2 paramètres :

- <u>Paramètre v</u>: en lien avec la proportion d'anomalies -> inférieur à 10%
- Paramètre γ : inversement
 proportionnel au nombre de features
 (ici 30 donc valeur de base = 0.03)

Couple de valeurs optimale

One-Class Support Vector Machine - Résultats

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 273 4 1 84 17

Accuracy : 0.7672

95% CI: (0.7213, 0.8089)

No Information Rate: 0.9444

P-Value [Acc > NIR] : 1

Kappa : 0.2056

Mcnemar's Test P-Value : <2e-16</pre>

Sensitivity: 0.7647

Specificity: 0.8095

Pos Pred Value : 0.9856 Neg Pred Value : 0.1683

Prevalence: 0.9444

Detection Rate : 0.7222

Detection Prevalence: 0.7328

Balanced Accuracy: 0.7871

Dim 1 (33.72%)

14

Comparaison des méthodes

	LOF	IF	OCSVM
Balanced accuracy	0.82	0.95	0.79
Spécificité	0.86	1	0.81

En plus d'obtenir de meilleurs résultats, Isolation Forest reste la méthode la plus rapide (puis OC-SVM et enfin LOF qui reste la plus longue)

(Togbe et al., 2020) 15

- La détection d'anomalies est adaptée à de **nombreux domaines** (sécurité, économie, santé, capteurs automatiques, etc)
- Isolation Forest reste la méthode la plus performante par rapport à OCSVM et LOF
- Limite : problèmes si trop d'anomalies regroupées : peuvent ne pas être détectées (exemple d'un capteur qui peut générer des données anormales sur une durée t)

Hu Y, Shan WM and Y, Australia (2022) Rlof: R Parallel Implementation of Local Outlier Factor(LOF).

Liu FT, Ting KM, Zhou Z-H (2008) Isolation Forest. 2008 Eighth IEEE Int. Conf. Data Min. IEEE, Pisa, Italy, pp 413–422 Rouvière L (2023) Données déséquilibrées.

Togbe MU, Chabchoub Y, Boly A, Chiky R (2020) Etude comparative des méthodes de détection d'anomalies.

University of Wisconsin-Madison (n.d.) Breast Cancer Wisconsin (Diagnostic) Data Set.

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

Vaibhav Jayaswal (2020) Local Outlier Factor (LOF) — Algorithm for outlier identification, dans Towards Data Science

Des questions?

Merci pour votre écoute

Paola Andrieu

paola.andrieu@agrocampus-ouest.fr

Augustin Robert

augustin.robert@agrocampus-ouest.fr

Timéo Baudat

timeo.baudat@agrocampus-ouest.fr