

Skupina: **B – Hrnečková, Ray** Měřeno: **26. 2. 2025** Klasifikace:

1 Pracovní úkoly

- 1. Proměřte charakteristiky předložených vzorků a naměřené charakteristiky pomocí vhodného software zpracujte.
- 2. Analýzou získaných výsledků správně přiřaďte změřené charakteristiky následujícím vzorkům a zdůvodněte:
 - dielektrický úzkopásmový filtr pro rubínový laser
 - filtr RG7 (horní propust 700 nm)
 - ochranné brýlové sklo pro práci s Nd:YAG laserem
 - rubínový krystal
 - zrcadlo pro Nd:YAG laser
 - zrcadlo pro rubínový laser
 - infračervený filtr (horní propust 600 nm)
 - křemíková destička
 - sklo z černých brýlí
- 3. Z naměřených charakteristik pro:
 - a) Dielektrický úzkopásmový filtr pro rubínový laser
 - Změřte šířku transmisního pásu $\Delta \lambda$ pro rubínový laser.
 - Zjistěte vlnovou délku pro maximální hodnotu transmitance λ_{\max} pro rubínový laser.
 - b) Filtr RG7
 - Zjistěte vlnovou délku $\lambda_{1/2}$, pro kterou je transmitance rovna T=0.5.
 - c) Rubínový krystal
 - Určete polohu všech maxim absorpce λ_{\max} a šířky jednotlivých absorpčních pásů $\Delta \lambda$.
 - Spočtěte koeficienty interní absorpce α (při výpočtu nejprve odečtěte Fresnelovské ztráty na čelech krystalu, které jsou dány indexem lomu materiálu).
 - Rozhodněte, zda se jedná o 3- nebo 4- hladinový energetický systém.
 - Zdůvodněte lokální absorpční maximum na vlnové délce 694 nm.
 - d) Zrcadlo pro Nd:YAG laser
 - Odhadněte jeho použitelnost jako HR (high reflectivity) zrcadla, tzn. oblasti $\Delta \lambda$, kde je R > 98%.
 - Stanovte a zdůvodněte, zda je vhodné jako HR zrcadlo pro buzení laserovou diodu na vlnové délce $\lambda = 808 \mathrm{nm}$.
 - e) Zrcadlo pro rubínový laser
 - Odhadněte jeho použitelnost jako HR zrcadla, tzn. oblasti $\Delta \lambda$, kde je R > 98%.
 - f) Laserový krystal Nd:YVO4
 - Určete polohu významných maxim absorpce v rozsahu 800 až 900 nm. Které z těchto maxim jsou využívány pro čerpání tohoto aktivního materiálu prostřednictvím laserových diod?
 - Odhadněte, jakou šířku generované spektrální čáry by měla mít laserová dioda, kterou by bylo vhodné
 využít pro čerpání tohoto aktivního prostředí.

- Uveďte významné vlnové délky záření, které jsou generovány lasery s tímto typem aktivního prostředí. Pozorujete pokles transmise na těchto vlnových délkách a proč?
- Rozhodněte, zda se jedná o 3- nebo 4- hladinový energetický systém.

g) Laserový krystal Er:sklo

- Určete polohu významných maxim absorpce v rozsahu 800 až 1000 nm. Které z těchto maxim jsou využívány pro čerpání tohoto aktivního materiálu prostřednictvím laserových diod?
- Odhadněte, jakou šířku generované spektrální čáry by měla mít laserová dioda, kterou by bylo vhodné využít pro čerpání tohoto aktivního prostředí.
- Uveďte významné vlnové délky záření, které jsou generovány lasery s tímto typem aktivního prostředí. Pozorujete pokles transmise na těchto vlnových délkách a proč?
- Rozhodněte, zda se jedná o 3- nebo 4- hladinový energetický systém.

h) Krystal Cr:YAG

- Určete využití tohoto krystalu v laserové technice.
- měřte tloušťku vzorku a spočtěte interní absorpční koeficient na vlnové délce $\lambda=1{,}06\mu m$. Při výpočtu nejprve odečtěte Fresnelovské ztráty na čelech krystalu
- 4. Vysvětlete, proč při měření vzorků menších, než je plocha měřícího svazku, by naměřená charakteristika neodpovídala skutečnosti.

2 Vypracování

Vzorky k proměření byly označeny písmeny A-I. Přiřazení k vzorkům ze seznamu se nachází v Tab. 1. Naměřená transmisní spektra se nacházejí na obrázcích 1, 2 a 3.

Objekt	Přiřazený vzorek	Zdůvodnění	
A	Rubínový krystal	Absorpční peak na vln. délce	
		laserového záření rubínu	
В	Dielektrický úzkopásmový filtr pro rubínový laser	Vysoká transmise bezprostředně kolem	
		vln. délky laserového záření rubínu	
С	Zrcadlo pro rubínový laser Snížená transmise		
		pro vln. délku záření rubínu	
D	Filtr RG7 (horní propust 700 nm)	Náhlý pokles transmise pro vln. délky	
		kolem 700 nm a méně	
Е	Zrcadlo pro Nd:YAG laser	Snížená transmise kolem 1060 nm	
F	Ochranné brýlové sklo pro práci s Nd:YAG laserem	Velmi nízká transmise	
		pro vln. délky nad 1000 nm	
G	Infračervený filtr (horní propust 600 nm)	Náhlý pokles transmise pro vln. délky	
		kolem 600 nm a méně	
Н	Křemíková destička	Vysoká absorpce až do 1000 nm	
I	Sklo z černých brýlí	Absorpce ve viditelném spektru	

Tab. 1: Přiřazený seznam proměřených vzorků se zdůvodněním.

Obr. 1: Transmisní spektra vzorků A, B a C.

2.1 Dielektrický úzkopásmový filtr pro rubínový laser

Šířku transmisního pásu jsme určili jako $\Delta \lambda = 11,3\,\mathrm{nm}$ a vlnovou délku pro maximální transmitanci jako $\lambda_{\mathrm{max}} = 700\,\mathrm{nm}$.

Obr. 2: Transmisní spektra vzorků D, E a F.

Obr. 3: Transmisní spektra vzorků G, H a I.

2.2 Filtr RG7

Vlnovou délku, pro kterou je transmise rovna T=0.5jsme určili jako $\lambda_{1/2}=703.5\,\mathrm{nm}.$

2.3 Rubínový krystal

Jednotlivá maxima absorpce λ_{max} a jim příslušné šířky absorpčních pásů $\Delta\lambda$ a koeficienty interní absorpce α se nachází v Tab. 2. Absorpční pík na 693 nm odpovídá vlnové délce zářivého přechodu při generování laserového záření.

$\lambda_{\max}[nm]$	$\Delta\lambda[\mathrm{nm}]$	$\alpha [\mathrm{cm}^{-1}]$
410,0	162,4	2,47
545,5	142,3	1,50
693,0	5,5	0,32

Tab. 2: Polohy a šířky jednotlivých maxim absorpce.

Z toho, že k absorpci na této vlnové délce dochází, soudíme, že se jedná o tříhladinový energetický systém.

2.4 Zrcadlo pro Nd:YAG laser

Vzhledem k tomu, že transmise kolem 1 mikrometru je stále ještě kolem 30 %, pak je vyloučeno, aby reflektivita byla >98 %. Transmise na 808 nm je zhruba 50 %, tedy zrcadlo není vhodné pro čerpání diodou.

2.5 Zrcadlo pro rubínový laser

Transmise pro vlnové délky kolem 695 nm je příliš vysoká – kolem 30 %, tedy zrcadlo není použitelné jako HR zrcadlo pro tuto vlnovou délku.

2.6 Laserový krystal Nd:YVO4

Transmisní spektrum odhalilo peaky absorpce na vlnových délkách 808 nm, 835 nm, 878 nm a 888 nm. K čerpání pomocí laserových diod je nejčastěji používáno maximum na 808 nm, ovšem někdy se používá i čerpání vlnovou délkou 878 nm. Šířky těchto peaků (a tedy i optimální šířka pásma použité diody) odpovídá 24 nm pro čerpání na 808 nm a 16 nm pro čerpání na 878 nm.

Vlnové délky laserového záření generované krystalem Nd: YVO₄ jsou 914 nm, 1064 nm a 1342 nm. Na 914 nm je znatelný pokles transmise, na ostatních zmíněných vlnových délkách ne. Pro vlnovou délku 914 nm se tedy jedná o tříhladinivý systém, pro 1064 a 1342 nm jde o systém čtyřhladinový (ani jedna z hladin, mezi kterými dochází k zářivému přechodu ve čtyřhladinovém laseru, není stabilní a absorpce je proto neppravděpodobná).

2.7 Laserový krystal Er:sklo

Z transmisního spektra jsou patrné dvě absorpční maxima, první okolo 908 nm a druhé okolo 975 nm. K čerpání se nejčastěji používají vlnové délky kolem 975 nm. Šířka tohoto absorpčního peaku je 25 nm, což he tedy také optimální spektrální šířka použité čerpací diody. Er:sklo lasery produkují laserové záření na vlnových délkách 1535, 1544 a 1562 nm. V transmisním spektru je pozotovatelný pokles transmisivity na 1535 nm 1544 nm. Na těchto vlnových délkách se tedy jedná o tříhladinový systém, zbylá vlnová délka 1562 nm odpovídá čtyřhladinovému systému.

2.8 Krystal Cr:YAG

V laserové technice se Cr:YAG používá jako saturovatelný absorbér pro Nd:YAG lasery, dále může sloužit jako aktivní médium pro laditelný laser na vlnových délkách mezi 1350 a 1550 nm a také je možné jej použít pro generování femtosekundových pulsů. Tloušťka měřeného krystalu byla 1,04 mm a interní absorpční koeficient α_{1060} pro vlnovou délku 1060 nm je roven přibližně 6,8 cm⁻¹