Cvičení 4

Pojmy potřebné pro zvládnutí tohoto cvičení:

uspořádaná množina; Hasseův diagram; svaz jako relační struktura; úplný svaz; izotonní zobrazení; pevný bod zobrazení; operace na množinách; vlastnosti binárních homogenních operací (uzavřenost, asociativita, komutativita, idempotentnost); existence nulového či jednotkového prvku na množině vůči dané operaci; existence inverzních prvků; distributivní zákony, algebry, podalgebry, řád grupy.

Příklad 1: Rozhodněte a zdůvodněte, zda je zadaná relační struktura poset (částečně neostře uspořádaná množina). Pokud se jedná o poset, tak ho vhodně znázorněte (např. Hasseovým diagramem) a určete, zda je svazem či dokonce úplným svazem. Tr(R) (Re(R)) označuje tranzitivní (reflexivní) uzávěr relace R.

```
a) (A, \alpha), kde A = \{a, b, c, d, e, f, g\} a, \eta = \{(a, b), (a, c), (a, e), (b, d), (c, f), (e, d), (e, f), (c, d), (d, g), (f, g)\} a \alpha = id(A) \cup Tr(\eta),
```

- b) (B, β) , kde $B = \{x \in \mathbb{N}, 20 \mod x = 0\}$ a $(x, y) \in \beta \Leftrightarrow y \mod x = 0$,
- c) $(P(\{1,2,3,4\}),\subseteq)$,
- e) (E, ε) , kde $E = \mathbb{N} \{0\}$ a $(x, y) \in \varepsilon \Leftrightarrow x | y$ (tj. x celočíselně dělí y),
- $\begin{array}{ll} {\rm f)} & ({\sf F},\phi), \, {\rm kde} \, {\sf F} = \{a,b,c,d,e,f,g\} \, {\rm a} \, \theta = \{(a,b),(a,c),(a,e),(b,d),(e,d),(e,f),(c,d),(d,g),(f,g)\} \\ & {\rm a} \, \, \phi = id_{\sf F} \cup Tr(\theta), \end{array}$
- g) (G, γ) , kde $G = \{a, b, e, f, g\}$, $\rho = \{(a, b), (a, e), (b, g), (e, f), (g, f)\}$ a $\gamma = id_G \cup tr(\rho)$,
- h) (H, σ) , kde $H = \mathbb{N}$, $\chi = \{(0, 1)\} \cup \{(0, x), kde \ x \in \{2, 3, 4, \ldots\}\} \cup \{(x, 1), kde \ x \in \{2, 3, 4, \ldots\}\}$ a $\sigma = id_H \cup \chi$,
- i) (I, ι) , kde $I = \{a, b, c, d, e, f\}$, $\iota = Tr(Re(\{(a, b), (b, c), (c, d), (c, e), (d, f), (e, f)\}))$,
- j) (J, κ) , kde $I = \{a, b, c, d, e, f\}$, $\kappa = Tr(Re(\{(a, c), (b, c), (c, d), (c, e), (d, f), (e, f)\}))$,
- k) (\mathbb{N}, \leq) ,
- 1) (L, \leq) , kde $L = \{x \in \mathbb{Q}; |x| < \pi\}$,
- m) (M, \leq) , kde $M = \{x \in \mathbb{R}; |x| < \pi\}$,
- n) (N, \leq) , kde $N = \{x \in \mathbb{Q}; |x| \leq 3.14\}$,
- o) $(0, \le)$, kde $0 = \{x \in \mathbb{R}; |x| \le 3.14\}$.

Příklad 2: Pro následující úplné svazy (B, β) , $(P(\{1,2,3\}, \leq), (F, \phi))$ a (G, γ) z příkladu 1 sestrojte jedno izotonní a jedno antitonní zobrazení.

U každého zobrazení rozhodněte, zda je injektivní, surjektivní nebo bijektivní.

Ověřte, zda inverzní relace k těmto zobrazením jsou také zobrazeními.

U izotonních zobrazení f_1^i , f_2^i , f_3^i určete množinu pevných bodů.

Na svazu (F, φ) sestrojte zobrazení, které není ani izotonní, ani antitonní, a vysvětlete proč.

- a) $f_1^i: B \to B, f_1^a: B \to B,$
- $\mathrm{b)} \ f_2^i: P(\{1,2,3\}) \to P(\{1,2,3\}), \, f_2^\alpha: P(\{1,2,3\}) \to P(\{1,2,3\}),$
- c) $f_3^i: F \to F$, $f_3^a: F \to F$,

$$\mathrm{d})\ f_4^i:G\to F,\, f_4^\alpha:G\to F.$$

Příklad 3: Zopakujte si pojem operace. Jaké znáte nulární, unární a binární operace na:

- a) množině celých čísel,
- b) množině reálných čísel,
- c) množině n-dimenzionálních reálných vektorů,
- d) množině čtvercových regulárních matic dimenze n,
- e) množině binárních homogenních relací,
- f) množině jazyků nad abecedou {a, b},
- g) množině formulí výrokové logiky,
- h) množině neorientovaných grafů s n vrcholy.

Příklad 4: Ověřte, zda má daná binární homogenní operace na daném nosiči některé z těchto vlastností - uzavřenost, asociativitu, komutativitu, idempotentnost a zda existuje pro danou operaci nulový prvek, jednotkový prvek a ke každéme prvku inverzní prvek nosiče. Na závěr určete typ dané algebraické struktury.

	<i>J</i> 1	0	v		
a)	$(\mathbb{N},+),$	i)	$(\mathbb{Z}_7 \setminus [0], \cdot),$	q)	$(\{0,1\},\vee),$
b)	$(\mathbb{N}, -),$	j)	$(\mathbb{R},+),$	r)	$(\{0,1\}, \land),$
c)	$(\mathbb{N},\cdot),$	k)	$(\mathbb{R},-),$	s)	$(\Sigma^*, \cdot), \text{ kde } \Sigma^* = \cup_{i \geq 0} \Sigma^i$
d)	$(\mathbb{N},:),$	1)	$(\mathbb{R},\cdot),$		a Σ je konečná, neprázdná
e)	$(\mathbb{N}, \min),$	m)	$(\mathbb{R},:),$		abeceda a operace · je
f)	$(\mathbb{Z},-),$	n)	$(\mathbb{R}^n,+),$		zřetězení slov z Σ^* ,
g)	$(\mathbb{Z}_6,+),$	o)	$(\mathbb{R}^n, -),$,	$(P(A \times A), \circ)$, kde \circ repre-
h)	$(\mathbb{Z}_6,\cdot),$	p)	$(\mathbb{R}^{n\times n},\cdot),$		zentuje skládání relací.

Příklad 5: Ověřte, zda pro zadanou dvojici binárních operací na určené množině platí, že první operace je distributivní vzhledem k druhé operaci (případně, zda platí levý či pravý distributivní zákon):

a)
$$(\mathbb{R}, +, \cdot)$$
 f) $(\mathbb{R}, \cdot, :)$ g) $(\mathbb{R}^{n \times n}, \cdot, +)$ c) $(\mathbb{R}, \cdot, -)$ h) $(\{0, 1\}, \vee, \wedge)$ d) $(\mathbb{R}, :, +)$ i) $(\{0, 1\}, \wedge, \vee)$ e) $(\mathbb{R}, :, \cdot)$

Příklad 6: Určete vlastnosti následujících algebraických struktur (uzavřenost, asociativnost, existence nulového (agresivního) prvku, existence jednotkového (neutrálního) prvku, existence inverzních prvků, komutativita, idempotentnost). Určete typ algebraické struktury (grupoid, pologrupa, monoid, grupa, komutativní grupa).

Příklad 7: Nalezněte všechny podalgebry algeber z příkladu 6. Pokud je daná struktura grupou, tak určete řády prvků a strukturu, kterou generují mocniny konkrétního prvku. Najděte na nosičích algeber ekvivalence, které jsou kongruencemi.