Exercise 7. Show that the Tukey lemma implies the Hausdorff maximum principle. [*Hint*: if \prec is a strict partial order on A, let $\mathscr A$ be the collection of all subsets of A that are simply ordered by \prec . Show that $\mathscr A$ is of finite type.]

Proof. Let \mathscr{A} be the collection of all subsets of A that are simply ordered by \prec , let $B \in \mathscr{A}$, and let C be a finite subset of B. As a subset of a simply ordered set, C is simply ordered, (elements of C are comparable as elements of C and therefore $C \in \mathscr{A}$. From this we deduce that \mathscr{A} is of finite type, and, from the Tukey lemma, there exists $M \in \mathscr{A}$ such that no element of C properly contains C and C are comparable as elements of C and therefore C is a simply ordered subset of C and that for all C and C are comparable as elements of C and therefore C is maximal in the sense of Hausdorff's maximum principle.