Estudo sobre Sum-Product Networks e Aprendizagem Profunda

Renato Lui Geh

Instituto de Matemática e Estatística Universidade de São Paulo

16 de junho de 2016

Índice

- 1 Definição
- 2 Propriedades
- 3 Uma definição alternativa
- 4 Shallow vs. Deep SPNs
- 5 Classificação por Naive Bayes
- 6 Uma visão mais intuitiva
- 7 Aprendizado estrutural de SPNs
- 8 Referências e Bibliografia

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥)Q○

Relembrando...

Definição

Uma SPN S é um DAG com três tipos de nós: soma, produto e indicadores. Todo nó indicador é uma folha. Todo nó soma tem pais produto, e todo nó produto tem pais soma. Toda aresta com destino a um nó soma tem uma aresta com um peso associado. O valor de um nó soma i é $\sum_{j \in Ch(i)} w_{ij} v_j$ e o valor de um nó produto i é $\prod_{j \in Ch(i)} v_j$, onde Ch(i) é o conjunto de filhos de i, v_i é o valor do nó i e w_{ij} é o peso associado a aresta $i \rightarrow j$. Uma SPN representa um network polynomial de uma distribuição de probabilidade, e os indicadores da função são as folhas da SPN. O valor de uma SPN é o valor do nó raíz.

[PD11]

Renato Lui Geh

- 4日 > 4日 > 4目 > 4目 > 目 り90

Relembrando...

Sub-SPNs

Proposição

Seja um nó arbitrário i de uma SPN S, então S_i é uma sub-SPN que tem nó raíz em i.

→ロト → □ ト → 三 ト → 三 → りへで

Prova sub-SPNs

Demonstração.

Considere o caso base em que *i* é um nó indicador. Um nó indicador é uma distribuição de probabilidade monovariável. Portanto *i* é uma distribuição de probabilidade e pode ser representada por uma SPN, que no caso possue apenas um nó.

Se i é um nó soma, então o valor de i é $v_i = \sum_{j \in Ch(i)} w_{ij} v_j$. A soma de várias distribuições de probabilidade é uma distribuição de probabilidade. Portanto um nó soma é representável por uma SPN.

Caso i seja um nó produto, então o valor de i é $v_i = \sum_{j \in Ch(i)} v_j$. A multiplicação de distribuições de probabilidade é bem definida e é uma distribuição de probabilidade. Um nó produto é uma SPN.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ りゅ○

Completude

Definição (Completude)

Uma SPN S é completa se e somente se, para todo nó soma i, o escopo de i é igual par-a-par $Sc(S_i) = Sc(S_j)$ ao escopo de cada filho $j \in Ch(i)$.

4□ → 4□ → 4 □ → □ ■ 900

Consistência

Definição (Consistência)

Uma SPN S é consistente se e somente se, para todo nó produto i, nenhum filho de i tem valor diferente dos outros filhos.

Validade

Definição (Validade)

Uma SPN S é válida se S é consistente e completa.

→ロト→同ト→ヨト→ヨ のQ○

Decomponibilidade

Definição (Decomponibilidade)

Uma SPN S é decomponível se e somente se, para cada par $c_1, c_2 \in Ch(i)$ para qualquer i nó produto em S, $Sc(c_1) \cap Sc(c_2) = \emptyset$.

◆ロ → ← 個 → ← 国 → ● ● の へ ○

Uma definição alternativa

Definição

Uma SPN tem uma definição recursiva. Definimos que uma SPN S_i pode ser apenas:

- (i) Uma distribuição monovariável p(X) ou;
- (ii) Um nó soma tal que $S_i = \sum_{j \in Ch(i)} w_{ij} v_j$ onde para cada filho $j, k \in Ch(i), Sc(S_i) = Sc(S_k)$ ou;
- (iii) Um nó produto tal que $S_i = \prod_{j \in Ch(i)} v_j$ onde para cada filho $j, k \in Ch(i), Sc(S_j) \cap Sc(S_k) = \emptyset$.

[GD13]

- 4 ロ ト 4 部 ト 4 恵 ト 4 恵 ト - 恵 - め Q @

Uma definição alternativa

Shallow vs. Deep SPNs

Sejam p uma distribuição suficientemente complexa, S uma SPN que representa p e m = |Sc(p)|.

n camadas ocultas: Computa-se S em $\mathcal{O}(\exp(m))$.

n+1 camadas ocultas: Computa-se S em $\mathcal{O}(m^k), k <<< m$.

Prova disso em *Shallow vs. Deep Sum-Product Networks*, Delalleau e Bengio [DB11].

→ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Classificação por Naive Bayes

C: variável classe

$$\mathbf{A} = \{A_1, \dots, A_n\}$$
: variáveis atributos

$$A_i \perp A_j \equiv A_i \perp_d A_j$$
, para $1 \leq i, j \leq n$ e $i \neq j$

Classificação por Naive Bayes

Pelo Teorema da Fatorização:

$$\Pr(C, A_1, \dots, A_n) = \Pr(C) \prod_{i=1}^n \Pr(A_i | C)$$

Classificação resume-se a encontrar um máximo c:

$$\arg\max_{c} \left(\Pr(C = c | A_1 = a_1, \dots, A_k = a_k) = \frac{\Pr(C = c, A_1, \dots, A_k = a_k)}{\Pr(A_1 = a_1, \dots, A_k = a_k)} \right)$$

Aprendizado de Naive Bayes por MLE

MLE (Maximum Likelihood Estimation)

Máxima verossimilhança

Aprender uma Naive Bayes:

Variável classe
$$Pr(C = c) = \frac{N[C=c]}{N}$$

i-ésimo atributo $Pr(A_i = a_i | C = c) = \frac{N[A_i = a_i, C=c]}{N[C=c]}$

Uma visão mais intuitiva

Nós internos: variáveis latentes – camadas ocultas:

- +: mistura de distribuições "semelhança entre instâncias";
- x: independência entre variáveis.

Nós folhas: Valoração/instanciação das variáveis.

Uma visão mais intuitiva

Nós internos: variáveis latentes – camadas ocultas:

- +: mistura de distribuições "semelhança entre instâncias";
- x: independência entre variáveis.

Nós folhas: Valoração/instanciação das variáveis.

Figura: Learning the Structure of Sum-Product Networks Using Clustering on Variables, Dennis e Ventura [DV12]

Aprendizado estrutural de SPNs

Algoritmo 1 LearnSPN [GD13]

Input Conjunto **X** de variáveis, conjunto **I** de instâncias **Output** Uma SPN resultante do aprendizado estrutural

- 1: **if** |X| = 1 then
- 2: Retorna uma distribuição monovariável de X
- 3: end if
- 4: Tente dividir as variáveis **X** em duas partições **X**₁ e **X**₂ onde **X**₁ é (aproximadamente) independente de **X**₂
- 5: if dá para dividir then
- 6: **return** $\prod_{i=1}^{2}$ LearnSPN(\mathbf{X}_{i} , \mathbf{I})
- 7: else
- 8: Divida as instâncias \mathbf{I} em partições \mathbf{I}_1 e \mathbf{I}_2 tal que \mathbf{I}_1 e \mathbf{I}_2 sejam o mais similares possíveis.
- 9: **return** $\sum_{i=1}^{2} \frac{|\mathbf{I}_i|}{|\mathbf{I}|}$ LearnSPN(**X**, \mathbf{I}_i)
- 10: end if

Renato Lui Geh

Referências e Bibliografia I

- Aaron Dennis e Dan Ventura. "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". Em: Advances in Neural Information Processing Systems 25 (2012).
- Robert Gens e Pedro Domingos. "Learning the Structure of Sum-Product Networks". Em: International Conference on Machine Learning 30 (2013).
- Hoifung Poon e Pedro Domingos. "Sum-Product Networks: A New Deep Architecture". Em: *Uncertainty in Artificial Intelligence* 27 (2011).