

DOCUMENTO DE ARQUITETURA E DESIGN

Gestão de Projetos 2020/2021

Tabela de conteúdos

1. Tabela de Revisões	3
2. Objetivos e visão geral	4
3. Design Conceptual	5
3.1. Requisitos, Restrições e Suposições	5
4. Design Lógico	6
5. Design Físico	7

Departamento de Engenharia Informática

1. Tabela de Revisões

Versão	Autores	Data	Descrição	Revisão
0.1	Vera Estanqueiro	12 de novembro de 2020	Elaboração da estrutura do documento	Martinho Santos
0.2	Vera Estanqueiro Martinho Santos Alexandre Brito	12 de novembro de 2020	Escrita dos capítulos 2, 3 e 4	Sara Inácio
0.3	Vera Estanqueiro Martinho Santos	13 de novembro de 2020	Escrita das introduções	Artur Coutinho
0.4	Artur Coutinho	26 de novembro de 2020	Complementação de informação relativa ao sensor e leitura de dados	Vera Estanqueiro Martinho Santos Sofia Lebreiro
0.5	Artur Coutinho Vera Estanqueiro	3 de dezembro de 2020	Correção de gramática e complementação de diagramas	Martinho Santos
1.0		28 de dezembro de 2020	Revisão final	Sofia Lebreiro

2. Objetivos e visão geral

Esta secção consiste na sumarização de uma visão geral da arquitetura e design definidas para a realização do projeto. A arquitetura e design apresentadas neste documento têm de conseguir suportar os requisitos, tanto funcionais como não funcionais, identificados no documento de requisitos e permitir o bom funcionamento entre as componentes físicas e lógicas para permitir o display das pontuações/estatísticas após cada utilização do módulo.

Desta forma foram levantados os requisitos do sistema, identificadas as suas restrições e as suposições que levaram à definição do requisito. Também foram elaborados diagramas de alto nível de forma a esquematizar a relação existente entre os componentes durante uma utilização completa do sistema. Assim, será percetível a função de cada elemento dentro do sistema e auxiliará tanto a sua implementação como a validação do produto.

3. Design Conceptual

O design conceptual é o nível de inicialização do processo de design. A conceptualização é um conceito que se refere ao reconhecimento de soluções viáveis através da consideração de alternativas. Portanto, neste capítulo estão compilados os requisitos que o sistema precisa de implementar para na fase seguinte poderem ser construídos os modelos lógicos e físicos como uma representação para a solução do problema.

3.1. Requisitos, Restrições e Suposições

ID	REQUISITO	RESTRIÇÃO	SUPOSIÇÃO
R01	O Sistema deve conseguir aguentar a passagem de corrente gerada pela atividade, ou seja, 14 V.	N/A	O dínamo gera no máximo 14V
RO2	A base de dados deverá conseguir guardar até 50 000 000 de registos.	A base de dados conseguirá armazenar registos mensais no mínimo de 12 meses.	Por dia serão gerados 1000 registos == 200 pessoas por dia.
R03	O sistema deverá ter tempos de resposta inferiores a 1s.	O módulo deve ser de fácil uso, dinâmico e fácil compreensão.	O sentimento de incerteza pode ser gerado por um atraso no feedback do módulo para o utilizador.
RO4	O sistema deve estar pronto a funcionar após uma falha de energia, não perdendo os dados registados na base de dados. Os dados só são registados após o utilizador realizar um percurso na bicicleta.	Pouca manutenção.	N/A
R05	O hardware e software a instalar devem funcionar em conjunto com o sistema já implementado pelo Exploratório – Centro Ciência Viva Coimbra	Compatibilidade entre os componentes	O sistema instalado pelo Exploratório – Centro Ciência Viva funciona corretamente.

4. Design Lógico

O processo de design lógico envolve a organização dos dados numa representação que demonstra as suas relações lógicas. Estes tipos de diagramas são conhecidos como diagramas de entidades e atributos. O modelo seguinte foi construído com base nos requisitos coletados com o Exploratório – Centro Ciência Viva Coimbra e também, através de uma sessão de creative design onde foram discutidas as necessidades relativas ao software e hardware do produto.

O diagrama apresentado na *Figura 1* descreve aquilo que o sistema deverá fazer dentro do microcomputador (especificação do mesmo no capítulo seguinte) após a receção de informação por parte dos sensores.

Figura 1 - Diagrama Lógico

A leitura de dados do sensor irá ser efetuada a cada 0,25 segundos (250 milissegundos). Este valor foi escolhido, através de testes com recurso a simulação de dados, pois verificou-se que é o valor que permite o melhor balanço entre um intervalo de leituras rápido, mas que em paralelo disponibiliza tempo suficiente ao sistema para que o tratamento e processamento de dados sejam realizados e os valores apresentados.

5. Design Físico

Neste capítulo é especificado todo o *hardware* necessário para a realização do projeto em questão. Na figura abaixo está representado o diagrama relacional que permite visualizar todos os componentes integrantes do sistema e como se relacionam entre eles e com isto demonstrar como integrar o nosso produto na instalação já existente.

No diagrama da *Figura 2* está representado de uma forma um pouco mais simples, todas as ligações que o sistema final deverá ter (todas as setas representam uma ligação por algum tipo de cabo). De momento a instalação tem a bicicleta e o dínamo a funcionar como um todo (*hardware* já instalado no Exploratório – Centro Ciência Viva Coimbra) e a partir de um pequeno desvio de corrente no sistema deverá ser possível a ligação da restante parte sem modificações maiores.

Figura 2 - Diagrama Físico

- 1 A ligação já está feita no módulo;
- 2 e 3 Ligação com cabos positivo negativo;
- 4 Cabo macho-fêmea (https://www.electrofun.pt/cabos-condutores/cabos-jumper-macho-femea-coloridos-20-unidades-10cm);
- 5 O conversor está diretamente ligado à breadboard;
- 6 Cabos macho-macho (https://www.electrofun.pt/cabos-condutores/cabos-jumper-macho-macho-coloridos-20-unidades-10cm);
- 7 Cabo HDMI com conversor para SCART ou RCA.

Por fim na tabela abaixo estão listados todos os componentes de *hardware* e as suas especificações. Note-se que alguns não têm especificação, isto deve-se ao facto de esse material ser propriedade do Exploratório – Centro Ciência Viva Coimbra, não sendo necessária essa informação.

Hardware	Especificação	
Bicicleta	-	
Dínamo	14 V	
Sensor de amperagem	ACS 712 AC/DC 20 A	
Sensor de voltagem	Módulo de Sensor de Tensão B25	
Breadboard	830 pinos	
Conversor analógico digital	ADS1115 16bit	
Raspberry Pi	pberry Pi Raspberry Pi 2B V1.1	
Monitor	Monitor Entrada SCART ou RCA	

Breadboard a utilizar: https://www.electrofun.pt/breadboards/placa-ensaios-breadboard-transparente-de-830-pontos.

Sensor de voltagem a utilizar: https://www.electrofun.pt/sensores-arduino/modulo-sensor-tensao-b25.

Sensor de amperagem: https://www.electrofun.pt/sensores-arduino/sensor-de-corrente-arduino-acs712-20a.

O sensor de amperagem pertence a uma gama conhecida pela sua precisão e como tal considera-se que a sua percentagem de erro para qualquer situação relevante ao projeto é de 1.5%, a temperatura ambiente igual a 25°C, como indicado na respetiva *data sheet*. (https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf).

O sensor apresenta ainda uma resolução de 0,85mA (miliamperes), valor adquirido após alguns cálculos tendo em conta a sensibilidade do sensor e a resolução do conversor analógico digital.

O sensor de voltagem apresenta uma resolução de 0.00489V com uma leitura na gama entre 0.02445V e 25V DC (corrente direta). Este sensor é apropriado para utilização com Raspberry Pi, sendo que os cabos têm de ser inseridos corretamente (+ = +, - = -).