Arquitectura de Computadores Grado de Informática

Simulación

Departament d'Enginyeria Informàtica I Matemàtiques
Universitat Rovira i Virgili
Tarragona, Spain

Índice

Simuladores

II. Simplescalar

III. Benchmarks

Simuladores

Clasificación de Simuladores

Functional vs Performance

Functional Simulators

- Implementan la arquitectura (ISA)
- Realizan una ejecución real
- Implementan lo que el programador ve

Performance Simulators

- Implementan la microarquitectura (implementación del ISA)
- Modelan los recursos del sistema
- Preocupados por el tiempo
- Implementan lo que el programador no ve
- También llamados timing simulators

Trace-Driven vs Execution Driven

■ Trace-Driven

- Simulador lee traza de instrucciones captada en ejecución previa
- Fácil de implementar
- No hay información, ni evaluación de ejecución especulativa
- No se modela un comportamiento real del todo

Execution-Driven

- Simulador ejecuta el programa. No hay ejecución previa
- Difícil de implementar
- Permite la evaluación de la ejecución especulativa
- Se valida un comportamiento real

Schedulers vs Cycle Timers

Instruction Schedulers

- Simulador lanza instrucciones cuando recursos están disponibles
- Las instrucciones se procesan una a una
- Simple pero menos detallado

Cycle Timers

- Simulador sigue el estado de la microarquitectura ciclo a ciclo
- Estado del simulador = estado de la microarquitectura
- Perfecto para la simulación de la microarquitectura

Índice

Simuladores

II. Simplescalar

III. Benchmarks

Visión General

Introducción

- Conjunto de herramientas para la simulación
 - desde simples procesadores moniclo
 - a complejos procesadores superescalares
 - ejecución fuera de orden
 - jerarquía de memoria completa
- Universidad de Wisconsin-Madison
- Licencia libre y código abierto para fines académicos
- Ampliamente usado por la comunidad investigadora
- Limitaciones:
 - Single core
 - No proporciona datos sobre consumo

Tipo de Simulador

En color las opciones incluidas en Simplescalar

Simplescalar Suite

Sim-Fast	Sim-Safe	Sim-Profile	Sim-Cache Sim-BPred	Sim-Outorder
300 lines functional No timing	350 lines functional w/checks	900 lines functional Lot of stats	< 1000 lines functional Cache stats Branch stats	3900 lines performance OoO issue Branch pred. Mis-spec.
+	Velocidad			ALUs Cache
- Precisión y Detalle +			TLB 200+ KIPS	

Sim-Fast, Sim-Safe

☐ Sim-Fast

- Simulador funcional
- Optimizado en velocidad
- No asume jerarquía de memoria
- No valida las instrucciones

☐ Sim-Safe

- Simulador funcional
- Optimizado en velocidad
- No asume jerarquía de memoria
- Valida las instrucciones

Sim-Profile, Sim-BPred

☐ Sim-Profile

- Más que simulador es una herramienta de profiling
- Permite la recolección de información de profiling
- Genera informes detallados sobre:
 - Tipos de instrucción
 - Tipos de saltos
 - Tipos de accesos a memoria
 - etc

Sim-Bpred

- Simulador centrado en parte específica del procesador
- Analiza predictores de saltos
 - taken, not taken, perfect, bimodal, 2level, hybrid
- Genera estadísticas de aciertos y fallos del predictor
- No se reflejan los efectos del predictor en el tiempo de ejecución

Sim-Cache

- Simulador específico y rápido
- Centrado en la jerarquía de memoria del procesador
- Genera estadísticas de aciertos y fallos en jerarquía
- No refleja efectos de memoria en tiempo de ejecución
- Permite simular:
 - 2 niveles de caché
 - separar (o no) datos de instrucciones
 - TLB
 - Vaciado (flush) y compresión
- 🔲 Ideal si sólo nos centramos en memoria

Sim-Outorder

- El simulador más complicado y detallista
- Intenta simular todas las partes de un procesador
 - Jerarquía de memoria
 - Predictor de saltos
 - Ejecución fuera de orden
 - Banco de registros
 - Estaciones de reserva
 - Buffers de memoria
- Permite parametrizar la mayoría de sus componentes
- Se puede modificar el código para extender/añadir nuevas funcionalidades

Sim-Outorder (Hardware)

Instalación

Pasos de Instalación

- Obtener última versión de www.simplescalar.com
 - simplesim-3v0e.tgz
- Descomprimir
 - tar xvf simplesim-3v0e.tgz
- Configurar uno de dos ISA disponibles
 - make config-pisa
 - make config-alpha
- Compilar todas las herramientas
 - make
- Ahora ya se pueden realizar simulaciones
 - sim-outorder, sim-cache, sim-fast, etc

Ejecución y Configuración

Ejecutar Simulador

El formato para ejecución por línea de comandos es:

```
simulador {-parametros} benchmark
{argumentos} >& output_file_name
```

- Simulador
 - sim-cache, sim-outorder, etc
- Formato de los parámetros de simulación:

```
-parametroX valor
```

- Se ponen por línea de comandos uno detrás de otro
- Benchmarks
 - spec2006, minibench, etc

Parámetros Generales

- -config nom_fichero
 - permite poner todos los parámetros en un fichero
 - en el fichero cada parámetro va en una línea diferente
- -fastfwd valor
 - número de instrucciones iniciales saltadas sin simular
 - las instrucciones se ejecutan pero no recolectan estadísticas
 - sólo disponible en sim-outorder
- -max:inst valor
 - máximo número de instrucciones ejecutadas y simuladas
- -redir:sim nom_fichero
 - redirecciona salida del simulador en un fichero
- -redir:prog nom_fichero
 - redirecciona salida del benchmark en un fichero

Parámetros del Superescalar

Parámetro	Argumento	Valor por Defecto	
-fetch:ifqsize -decode:width -issue:width -commit:width	<int></int>	4	
Número de instrucciones	que se tratan a la vez	z por ciclo en cada etapa	
-ruu:size	<int></int>	16	
Número de instrucciones que es capaz de almacenar el procesador para la ejecución simultanea "fuera de orden"			
-lsq:size	<int></int>	8	
Número de instrucc	iones de acceso a me	moria simultaneas	

Parámetros de Memoria

Parámetro	Argumento	Valor por Defecto		
-mem:lat	<int> <int></int></int>	18 2		
Latencia en ciclos de acceso a memoria de un bloque de cache. Para el primer acceso del bloque Para los siguientes acessos hasta completar el bloque				
-mem:width	<int></int>	8		
Tamaño en bytes del bus de acceso a memoria				

Si un bloque de cache son 32 bytes:

Suponen 4 accesos a memoria con una

Latencia de 18 + 2 + 2 + 2 ciclos

Configuración del supersacalar

Si queremos un superescalar de 8 vias, con una ventana de instrucciones de 256 y una cola de accesos a memoria de 32

Configuración:

-fetch:ifqsize 8

-decode:width 8

-issue:width 8

-commit:width 8

-ruu:size 256

-lsq:size 32

Configuración del acceso a memoria

Bus de acceso a memoria de 32 bytes con una latencia de 300 y 2 ciclos

Configuración:

-mem:lat 300 2

-mem:width 32

Estadísticas Resultados

Estadísticas Simulador (Generales)

cycles per instruction

sim_num_insn sim_num_refs sim_num_loads sim_num_stores sim_num_branches sim_elapsed_time sim_total_insn sim_total_refs sim_total_loads sim_total_stores sim_total_branches sim_cycle sim IPC

total number of instructions committed total number of loads and stores committed total number of loads committed total number of stores committed total number of branches committed total simulation time (seconds) total number of instructions executed total number of loads and stores executed total number of loads executed total number of stores executed total number of branches executed total simulation time (cycles) instructions per cycle

sim_CPI

Estadísticas Simulador Superescalar

- Estadísticas de los buffers de instrucciones:
 - IFQ → buffer de fetch de instrucciones

IFQ_count Suma de las instrucciones que hay en cada ciclo

IFQ_fcount Veces que el buffer esta lleno

ifq_occupancy Media de instrucciones en el buffer por ciclo

ifq_rate Media de instrucciones salen/entran por ciclo

ifq_latency Media de ciclos que esta en el buffer

ifq_full Media de veces que el buffer esta lleno

- Estas estadísticas se repiten para:
 - •RUU → ventana de instrucciones
 - LSQ → buffer de accesos a memoria en marcha

Índice

Simuladores

II. Simplescalar

Benchmarks

Test Benchmarks

- Simplescalar incorpora benchmarks de prueba
 - simplesim-3.0/tests-pisa/
 - test-math, test-printf, etc
- Pocas instrucciones, ejecución instantánea
- Sirven para validar el funcionamiento del simulador
- Ejemplos de ejecución

```
sim-cache simplesim-3.0/tests-pisa/bin.little/test-math
```

Se puede probar simulador y todos los tests

Spec CPU2000 (Overview)

- SPEC: System Performance Evaluation Cooperative
- Sociedad sin ánimo de lucro
- ☐ Misión:
 - establecer, mantener y distribuir un conjunto estandarizado de benchmarks que se pueden aplicar a las últimas generaciones de procesadores
- Spec CPU2000:
 - enfocado a sistemas de computadores de carácter general
 - representativos del 2000 al 2006
- Se dividen en dos grupos
 - SpecINT: programas con cálculos de aritmética entera
 - SpecFP: programas con cálculos de aritmética en coma flotante

Spec CPU2000 (CINT)

Benchmark	Description
164.gzip	Compression
175.vpr	FPGA place and route
176.gcc	C compiler
181.mcf	Combinatorial optimization
186.crafty	Chess
197.parser	Word processing, grammatical analysis
252.eon	Visualization (ray tracing)
253.perlbmk	PERL script execution
254.gap	Group theory interpreter
255.vortex	Object-oriented database
256.bzip2	Compression
300.twolf	Place and route simulator

Spec CPU2000 (CFP)

Benchmark	Description
168.wupwise	Physics/Quantum Chromodynamics
171.swim	Shallow water modeling
172.mgrid	Multi-grid solver: 3D potential field
173.applu	Parabolic/elliptic PDE
177.mesa	3-D graphics library
178.galgel	Computational Fluid Dynamics
179.art	Image Recognition/Neural Networks
183.equake	Seismic Wave Propagation Simulation
187.facerec	Image processing: face recognition
188.ammp	Computational chemistry
189.lucas	Number theory/primality testing
191.fma3d	Finite-element Crash Simulation
200.sixtrack	High energy nuclear physics accelerator design
301.apsi	Meteorology: Pollutant distribution

Cargas de Trabajo (WorkLoads)

- Cada benchmark dispone de 3 posibles "workloads"
 - test
 - train
 - reference
- TEST: ejecuta alrededor de 500 milones de Insts.
- TRAIN: ejecuta alrededor de 5000 millones de Insts.
- REFERENCE: ejecuta alrededor de 50.000 millones
- Lo ideal sería ejecutar todo el REFERENCE
- Habitualmente se coge un conjunto representativo
 - Se saltan X millones (por ejemplo 200)
 - Se evalúan Y millones (por ejemplo 500)