Off network content for approval ©

REV	DATE	DESCRIPTION
Α	30_May_23	

NOTICE

The information contained in this documents is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Tesla, Inc.

PP Summary

Ran out of time to make proper school presentation.

PP includes slides form internal presentations & pictures of the rig

For approval to send off network

Includes

- Stroke testing rig
- Potential M3 mass down rr upper fore link
- CT aeroshield
- CT harness bracket (old)

Input (mm)		Output (mm)		
x1	33.617	r	147	
y1	72.4	L1	437	
z1	577.093	L2	437	
d1	582.5875			
x2	42.38			
y2	144.175			
z2	263.58			
d2	303.4088			
Input (r	mm)	Output (mm)		
x1	0	r	142	
y1	0	L1	595	
z1	-453	L2	595	
d1	453			
x2	0			
y2	0			
z2	-737			
d2	737			
	0/25/2023			
Input (r			Output (mm)	
x1	0.598	r	159	
y1	13.002	L1	478	
z1	636.607	L2	478	
x2	-10.49			
y2	60.043	d1	637	

Frame

- 2" Angle iron 1 x 1 x 1.5m
- ¼" Aluminum pegboard
 - Floor
 - Wall
 - Moveable sections
- Natural frequency ≈ 18Hz
- Weight ≈ 100kg

Suspension Quarter

- Adjustable 2-force members
- Water jet aluminum plate
- Linkage
 - ½" BJs & bearings
 - Strut: Ball bearing carriage
 - Ignore compliance
- Harness & hose connections
 - 3D printed mounts

Motor

- 3-phase 230V Rotary
 - 160 rpm (2.7Hz)
 - 14 ft*lb
 - Plug type: L15-30P

Product Series	730	730 Weight (Lbs)	
Speed (RPM)	160	Output Shaft Diameter (In)	1.25
Torque (InLb)	168	Lubrication (Type)	Semi-Fluid Grease
Ratio :1	10	Motor Size Input	NA
Input Hp (HP)	1/2	Construction File	E89715
Input Hp (HP)	0.5	Insulation File	E199928
Volts (V)	230	Construction File	150393
Amps (A) 1.9		CE Certification	Yes
Overhung Load (Lbs)	465	IP Rating	IP54

Motor Linkages - Damper

- Adjustable stroke length
 - Continuous vs discrete?
- Link length
 - Adjustable vs fixed?
- Y-compliance via BJ
- Mount on vibration dampeners?

Motor Linkages - Steer

- Adjustable stroke length
 - Continuous vs discrete?
- Link length
 - Adjustable vs fixed?

Mounts - Arm

- Adjustable in x, y, z
- Breadboard mounts
 - A Water jet 1" aluminum plate (or steel)
 - B Machined ¼" angle iron

Front Upper Control Arm

- Press bushings out of FUCA
- Press new ball joints into plugs
- Press plugs into FUCA

Front Lower Control Arm

- Press bushing out of FLCA
- Press plug into FLCA
- NOTE: FLCA is not currently cut.
 If KFS can support the cut as well please see following slide, otherwise this can be done by a separate team after this task

16

Front Lower Control Arm Cut

- FLCA aft arm to be removed
- Features that must remain undamaged:
 - A
 - E
 - (

Project Constraints

	Target	Previous	Achieved	Comments
Mass (kg)	<562	687	464	-0.446kg per vehicle
Compression/ Tension (KN)	>60KN	90KN	90KN	Will fail in buckling
Clevis Stiffness (KN/mm)		14.2	8.7	Previous in this case is MY forged Must be <= previous

Task: Design forged Al link to replace stamped

steel link

Objective: Mass down

Strength Validation

Catia Yield Check

Forged Al NV35, 60KN - Al NV35 Upper Fore Link Development V2.CATAnalysis

Colors: 0 - 100% yield

79% at corners 76% in bar

6110-T6 Aluminum

Yield: 345Mpa

Mass: 475g 16x16

Mass down: 212g

Total Mass Down: 424g

Buckling Analysis Sim (Hypermesh)

Results: 80KN, 3mm displacement

Strength Validation

Buckling Hand Calculations

$$F_{cr} = \frac{\pi^2 EI}{l^2}$$
 $E = 69GPa$
 $I = 4.43 \text{ e-9 m}^2$, for length = width = 0.016m

Knowing that F = 80 KN from hypermesh sim, we can solve for effective length l = .194 m

Now to design for 90KN, using l=.194m, we can solve for required moment of inertia $I=5~e-9m^2$

This corresponds to a side length of 0.0165m, or 16.5mm

NOTE: Moment of inertia I is calculated for a square cross section with 5mm fillets - This website is great & reliable

Other Design Considerations

Split line

Plane chosen for least possible machining

Clevis geometry

- Matched to current MY forged Al design
- Lower clevis stiffness

Next Steps

- LO Check
 - Current design lies within the bounding boxes of existing stamped & forged parts, but a check should still be performed
- Drawing Feedback
 - Module & part level drawing submitted to Steve for review
- DFM Feedback
- RFQ

Final Design Thickness

$$F_{cr} = \frac{\pi^2 E l}{l^2} = \cdots = 80KN$$

Where
 $E = 69GPa, I = 4.43 e-9 m^2$

Solving
 $l = .194m, --> 16.5x16.5 \text{ for } 90KN$
 $17x17 \text{ for } 104KN$

l - effective length found from buckling analysis sim results. - Have force, solve for l

Summary

Objective: Determine compression load at which the link fails in buckling.

Conclusion: Buckling Load = **80 kN**

(Refer Force-displacement curve)

Enforced Displacement = 3mm at Node 100001

Animation

Plastic Strain

Tensile Elongation Uniform = 0.091

Tensile Elongation Total = 0.12

Max Plastic Strain in part = 0.055

Yeah BUDDY

