

Pokerbots 2025

Lecture 5: Machine Learning

Sponsors

Announcements

reference-4-2025

- Coding demo from yesterday available on GitHub
- Jupyter, Numpy, Matplotlib
- Recording link in readme

Make-up Progress Reports due Tonight

- As per syllabus, if your team missed the Week 1 bot submission deadline, a progress report is required to earn credit
- Reports are half a page and must list team name and members
- Submit via email to pokerbots@mit.edu by 11:59pm Tonight

Hackathon Tomorrow!

- Sponsored by Codeium
- Wednesday night (1/15)
- 32-044, 7pm -- LATE
- Show up and grind
- Dinner provided
- Snacks, fun, and games
- Prizes for challenges and those that stick around
- Details will be announced on Piazza

No Class Thursday

Cancelled in light of Hackathon the night before and Codeium Tech Talk at 11:30am

Giveaways!

Distance Game: pkr.bot/dist

- Pick a point (x, y), x and y are reals from 0-100
- Winner is whoever's the furthest from anyone else's guess (maximum distance to nearest neighbor)
- Prize: Nintendo Switch

from last year^

*Banned kerbs that participated in yesterday's wager are ineligible to win

Survey Raffle: **pkr.bot/survey**

Class is halfway through (sort of)... help us improve it!

Winner selected at random

Prize:

One year's worth of GTO Wizard Full Subscription

*EVERYONE eligible to win

Machine Learning

Agenda for Today

- Machine Learning Basics
- Problem Setting for Supervised Learning
- Foundational Algorithms
- Creating a Good Model

Basics

What is Machine Learning (ML)?

- Using a machine (computation) to find patterns in data
- Found patterns can be applied without explicit programming
- Key idea: generalize instead of memorize
- Typically utilize large amounts of data
- Used for prediction, data compression, automation, decision-making

ML Workflow Overview

- Acquire dataset
- Create model(s)
- Evaluate model(s)
- Hopefully have good model via selection and improvement
- Deploy!

Types of Learning

- Supervised Learning
 - Dataset has examples of correct behavior
 - "Questions with answers"
 - Prediction tasks
- Unsupervised Learning
 - Dataset has no notion of good behavior
 - Task is to find patterns to represent dataset
 - o Clustering, compression, generative modeling
- Reinforcement Learning (RL)
 - Environment with feedback (rewards), but no correct target
 - Sequential decision making, control, pokerbots!

Questions?

Problem Setting

- Supervised learning setting (which we will focus on today)
- We love cats and birds!
- We want our algorithm to take a photo and tell us if it's a cat or a bird
- We have example photos and labels of both

Cat or Bird?

Key Variables in Supervised Learning

- data example contains
 - "input" properties called features;
 - o "output" property called label
- dataset is a collection of these examples
- an algorithm that takes as an input an incomplete example with only features,
 and outputs a label to complete the example.

Types of Prediction

Classification

- Predict a category
- Example: "cat or bird"

Regression:

- Predict continuous value aka real number(s)
- Example: giveaway estimations

Questions?

Foundational Algorithms

Linear Regression

- Linear relation between input and output
- "Line of best fit"
- \bullet $y = w \cdot x + b$
- Can generalize to multiple variables

$$\circ$$
 $y = W_1 \cdot X_1 + W_2 \cdot X_2 + \cdots + b$

• Easy to work with but only works well under certain conditions

Logistic Regression

- Modifies linear regression for binary classification
- Sigmoid function $\sigma(x)$ transforms any real number onto interval (0,1).
- $y = \sigma(w \cdot x + b)$
- Interpreted as outputting a probability of belonging to a specified class

k-Nearest Neighbors (kNN)

- Classification or regression
- Decision using proximity
- For an input:
 - Find the *k* closest neighbors within dataset
 - Aggregate their labels to decide output
 - Majority vote for classification
 - Average for regression
- Very flexible and can represent complex patterns
- Struggles with higher dimensions

Questions?

Creating a Good Model

Creating a Good Model

What is a model?

- Template for an algorithm
- Model class or hypothesis class is the collection of all possible algorithms that follow that template
- Some models are defined by parameters
 - Ex: w and b in linear regression
 - Space of possible parameters ← model class
 - Choosing a model equates to choosing the parameters
- Other models are non-parametric (kNN)
- The larger the model class, the more expressive a model is

Creating a **Good** Model

Loss Functions

- Metric for seeing if model is good by measuring the error it makes on an example
- This equates to measuring some distance between predicted and true label
 - Linear Regression: squared distance
 - Logistic Regression: cross-entropy
 - kNN: 0/1 accuracy rate
- Loss function reports a penalty for a single input-output example model is evaluates based on cumulative or average loss across whole set of examples

Creating a Good Model

Combine everything together!

- Consider all models within the hypothesis class and pick the one that has the best (lowest) loss across the entire dataset
- For parametric models, this is a minimization problem over the parameter space
 - "Training"
 - Sometimes near impossible to find the absolute best one so approximations are settled for
- Why don't we simply just use the most expressive hypothesis class? More options means that the best options are going to have better results...
 - Ex: the space of polynomial functions can do more than everything linear functions can

Overfitting

- "Too good to be true"
- Model fits dataset extremely well but fails to capture underlying relationship (which is what we want)
- Memorization occurs, which prevents generalization
- Caused by overexpressive hypothesis class, aka too many parameters, relative to number of data points

Model Evaluation

- Split dataset into training and testing groups
 - Create model only using train set
 - Evaluate model based on loss across test set
- Goal is to detect overfitting and have a more realistic measure of a good model
- Perform the split randomly
 - Each data point has equal chance of showing up in either
 - Idea is to have the data be from the same distribution but still different
- Analogy: Practice exams vs Real exam
 - Test same capabilities using different questions
 - o If real exam was exact copy of practice, then doing well doesn't say much about what was learned
- When we deploy model it may fail we want to assess whether this would happen (ideally not)

Sources of Error

Bias

- error due to simplistic assumptions
- model class not expressive/flexible enough to represent data
- consistent error resulting from approach
- Characterized by high loss in both training and testing
- Ex: Linear Regression

Variance

- error from sensitivity to training data
- Model class is overly flexible, attempting to capture noise as a pattern
- Characterized by low loss in training but high loss in testing (aka overfitting)
- Ex: kNN

Bias-Variance Tradeoff

- There is an inherent tradeoff between bias and variance within model selection
- Many design decisions (aka hyperparameters) increase/decrease the model's complexity which could lead to too much bias or variance
- Some considerations to find the "sweet spot":
 - Validation sets
 - Regularization
 - Careful feature selection/pruning

Questions?

Leave any type of feedback at pkr.bot/feedback!

Live Coding: reference-5-2025

Survey Raffle: kerb "rlsalas"

Distance Game: kerb "ybora31"

Thanks for watching!

Slides/notes will be posted on pkr.bot/resources

Make sure to check **pkr.bot/piazza** for updates

Lecture recordings at pkr.bot/panopto

Leave feedback at pkr.bot/feedback!