

WOLVES OF DEAN KEETON ST

Final Presentation ME369P

David Cayll, Ziam Ghaznavi, Nick Piacente

The University of Texas at Austin

This is not financial advice

Background

- Overview: Using Python to analysis stock market data analysis and visualization
- Selling Puts Contracts: "Agreement to buy 100 shares of a particular stock at a predetermined price by a particular date"
 - Premium Money received or price per contract
 - Strike price the predetermined price
 - Strike date expiration of the contract
 - Collateral 100*Strike Price
- Picking the right put to sell is hard!
 - Virtually infinite choices
 - Lots of variables
 - Highly risky
 - Different strategies

Example of an options chain

Contract Name	Last Trade Date	Strike ^	Last Price	Bid	Ask	Change	% Change	Volume	Open Interest	Implied Volatilit
IBM200501P00050000	2020-04-16 6:24PM EDT	50.00	0.04	-	0.03	0.00	-	-	21	385.949
IBM200501P00055000	2020-04-20 3:51PM EDT	55.00	0.30	0.00	0.03	0.00		-	1	325.009
IBM200501P00070000	2020-03-20 5:52PM EDT	70.00	0.92	0.00	0.00	0.00	-	-	0	50.009
IBM200501P00075000	2020-03-20 5:52PM EDT	75.00	4.00	0.01	0.00	0.00	-	-	0	193.759
IBM200501P00080000	2020-04-20 3:52PM EDT	80.00	0.48	0.00	0.02	0.00	-	4	17	181.259
IBM200501P00085000	2020-04-27 1:07PM EDT	85.00	0.06	0.00	0.03	0.00	-	105	113	165.639
IBM200501P00090000	2020-04-29 10:16AM EDT	90.00	0.01	0.00	0.01	0.00	-	1	196	131.259
IBM200501P00092000	2020-04-21 3:37PM EDT	92.00	0.05	0.00	0.03	0.00	-	2	6	137.509
IBM200501P00093000	2020-04-08 10:09AM EDT	93.00	0.78	0.00	0.03	0.00	-	1	1	132.819
IBM200501P00094000	2020-04-21 1:00PM EDT	94.00	0.15	0.00	0.03	0.00	-	28	32	128.139
IBM200501P00095000	2020-04-28 3:12PM EDT	95.00	0.02	0.00	0.02	0.00	-	1	135	118.759
IBM200501P00096000	2020-04-21 2:36PM EDT	96.00	0.16	0.00	0.01	0.00	-	86	102	109.389
IBM200501P00097000	2020-04-22 10:09AM EDT	97.00	0.09	0.00	0.03	0.00	-	2	25	117.199
IBM200501P00098000	2020-04-28 10:47AM EDT	98.00	0.02	0.00	0.03	0.00	-	2	13	112.509
IBM200501P00099000	2020-04-23 10:44AM EDT	99.00	0.04	0.00	0.02	0.00	-	6	40	104.699
IBM200501P00100000	2020-04-28 10:28AM EDT	100.00	0.01	0.00	0.01	0.00	-	11	655	93.759
IBM200501P00101000	2020-04-24 2:28PM EDT	101.00	0.03	0.00	0.03	0.00	-	1	19	101.569
IBM200501P00102000	2020-04-28 10:07AM EDT	102.00	0.13	0.00	0.02	0.00	-	10	22	93.759
IBM200501P00103000	2020-04-27 1:32PM EDT	103.00	0.02	0.00	0.03	0.00		27	50	93.759
IBM200501P00104000	2020-04-27 3:54PM EDT	104.00	0.03	0.00	0.03	0.00		4	42	90.639
IBM200501P00105000	2020-04-28 10:25AM EDT	105.00	0.03	0.00	0.02	0.00		10	185	82.819
IBM200501P00106000	2020-04-22 1:31PM EDT	106.00	0.34	0.00	0.03	0.00		18	124	82.819

Project Objective

- Need/Mission Statement:
 - "For a given options strategy, display and analyze in real time all stock market data for a user - given budget and personal risk tolerance"
- Selected strategy: Selling put options
- Contract Selection:
 - Implement goal programming to determine the best financial decision
- Output: Create a simple GUI to display the data
- Imposed Constraints:
 - Scope limited to DOW index
 - Single expiration date

Project Requirements

- Graphical User Interface/Front End:
 - Menu to receive inputs from user:
 - Target risk (probability of profit POP)
 - Budget (i.e. collateral required to sell put contracts)
 - Plots displaying all data within the users requirements in a clear and concise format
 - Suggests best option to user using goal programming methodology & proved contract specific details
- Data Importation/Processing Back End:
 - Retrieve real-time options data based on user input
 - Sort & filter relevant information
 - Select optimum contact based on risk tolerance of appropriate options data

Project Approach - Packages

Project Approach - Tkinter Plotting

- Create Tkinter GUI window
- Create Matplotlib fig & axes objects
- Use Matplotlib backend TkAgg to draw to Tcl/Tk canvas (through Tkinter)

Project Approach - Data Processing

Potential Gain

Potential gain - Takes into account the live bid and ask prices, as well as the and amount of money at risk

Probability of profit - Likelihood of a profitable trade, based on the Black-Scholes Model (1-delta):

$$\delta = N(d1) - 1$$
 Legend K Option N Standar t where : $d1 = \frac{ln\left(rac{S}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)t}{\sigma\sqrt{t}}$ $\sigma = \frac{ln\left(rac{S}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)t}{\sigma = r}$ $\sigma = \frac{ln\left(rac{S}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)t}{\sigma = r}$ $\sigma = \frac{ln\left(rac{S}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)t}{\sigma = r}$

K Option strike price
 N Standard normal cumulative distribution function
 r Risk-free interest rate
 σ Volatility of the underlying
 S Price of the underlying

https://www.iotafinance.com/en/Formula-Delta-of-a-Put-Option.htm

All raw data needed to perform calculations is pulled using the web-scraping capabilities of yahoo_fin

Project Results

The **bid** and **ask** prices for ALL options contracts of the company. Helps the user understand if buyers and sellers of the contract can agree on a price

Interactive chart shows all of the possible contracts within the user budget.

Detail about the **best** contract (based on user input) is shown below

When bid (blue) and ask (orange) are close together, buyers and sellers CAN agree on a price

buyers and sellers CANNOT agree on a price!

Live Demo

This is not financial advice

Project Results

Prediction on 4/20/2020

- At 10,000 budget and 90% POP:
- IBM \$96 Put Exp 5/1/2020 Sell for \$116
- As of 4/30, trade is <u>profitable \$108</u> (~1% return on investment in a <u>2 week</u> span)
- Note -- The average yearly long term return of the S&P 500 is 9.8%
- The result is reasonable and provides a clear way to filter out maximum profit scenarios at a given level of risk
- The pareto shown aligns with the expectation of 'high risk high reward'

Future Work

- Quicker data gathering
- Analysis of stocks outside of DOW Jones
- Other financial instruments
 - Different strategies (calls, spreads/multi-leg options)

Links

https://github.com/ME369P/wolvesOfDKSt-ClassShare

This is not financial advice