- (15%) 1. Consider a filter function whose poles and zeros are plotted in s-plane shown in **Fig. P1**. Please specify
 - (a) which type of filters it is. (low-pass/ high-pass/ band-pass/ all-pass) Explain your reason. (10%)
 - (b) its filter order N. Explain your reason. (5%)

(20%) 2. Consider an N^{th} -order Butterworth low-pass filter whose maximum allowed variation in passband is A_{max} , minimum required stopband attenuation is A_{min} , passband edge is ω_p , and stopband edge is ω_s . Find the required filter orders to meet the following specifications, respectively.

(Butterworth magnitude function=
$$\frac{1}{\sqrt{1+\varepsilon^2(\frac{\omega}{\omega_p})^{2N}}}$$
)

- (a) $A_{max} = 1 dB$, $A_{min} = 50 dB$, $\omega_p = 100 kHz$, and $\omega_s = 1 MHz$. (10%)
- (b) $A_{max}=1 dB$, $A_{min}=50 dB$, $\omega_p=100 kHz$, and $\omega_s=200 kHz$. (10%)
- (15%) 3. **Fig. P3** shows a switched-capacitor integrator and its two-phase clock.
 - (a) Express the equivalent time-constant for the integrator in terms of C_1 , C_2 , and T_c . (5%)
 - (b) Compared with an active-RC integrator, what are the benefits of a switched-capacitor integrator for on-chip implementation? (5%)
 - (c) Explain how stray capacitances affect the circuit. (5%)

- (15%) 4. (a) Please describe the Barkhausen criterion. (10%)
 - (b) In **Fig. P4**, will the circuit start oscillation or not? Why? (5%)

Fig. P4

- (20%) 5. **Fig. P5a** and **Fig. P5b** are bistable circuits with inverting and non-inverting topologies, respectively. Both have output saturation vlotages $L_+ = -L_- = 12V$, and the threshold voltages $V_{TH} = -V_{TL} = 4V$.
 - (a) Please sketch the transfer characteristic curves of both inverting and non-inverting topologies, respectively (mark the L₊, L₋, V_{TH}, V_{TL}, and the direction of the transfer operation on your plots). (10%)
 - (b) Let $R_1 = 10k\Omega$, please find R_2 and R_3 . (10%)

- (15%) 6. **Fig. P6** shows a NOR-based multivibrator circuit and its waveforms. Assume R =100k Ω , C =1nF, and NOR's transition threshold voltage $V_T = 0.5V_{DD}$.
 - (a) Which type of multivibrator is it? (bistable/ astable/ monostable) (5%)
 - (b) Calculate the peak voltage of the V_X , which is labelled as V_P . (5%)
 - (c) Calculate T_1 . (Hint: RC circuit complete response: $v(t) = v(\infty) + [v(0) v(\infty)]e^{-t/\tau}$) (5%)

