MMC Homework 2

1. For the 2-link manipulator shown, the link transformations 0_1T and 1_2T were determined. Their product is

$${}^0_2T = \left[\begin{array}{cccc} c_1c_2 & -c_1s_2 & s_1 & l_1c_1 \\ s_1c_2 & -s_1s_2 & -c_1 & l_1s_1 \\ s_2 & c_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The frame assingments used are indicated below in the figure. Note that frame 0 is coincident with frame 1 when θ_1 is 0. The length of the second link is l_2 . Find an expression for the vector ${}^0P_{tip}$ which locates the tip of the arm relative to the 0 frame. (Courtesy of J. Craig)

2. Consider the following RPR manipulator.

- (a) Assign link frames {0} through {3} for the manipulator that is, sketch the coordinate axes of each frame.
- (b) Find the Denavit-Hartenberg parameters for this manipulator that is, fill in the entries for the following table:

i	a_{i-1}	α_{i-1}	d_i	θ_i
1				
2		- 8		
3		l "		

(c) Derive the forward kinematics for this manipulator – that is, find the matrix ⁰₃T.

3. Program Forward Kinematics for Puma 560 Robots using Matlab

choose [a2, a3, d3, d4] as [1 0.3 0.5 1] and 6P_T = $[0\,0\,0.2]^T$

When $\theta_1=45^\circ$, $\theta_2=60^\circ$, $\theta_3=45^\circ$, $\theta_4=60^\circ$, $\theta_5=45^\circ$, $\theta_6=30^\circ$, find 0_TT .