	doc_1		doc_2		decision	id
cases			authors	Christian Moya Guang Lin		
			title	DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential-Algebraic Equations with Application to Power Networks		
	authors	Christian Moya	publication_date	2021-09-09 14:30:28+00:00		
		Guang Lin	source	SupportedSources.ARXIV		
			journal	None		
	title	DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations	volume			1
		with application to power networks	doi			
		te 2021-09-09 00:00:00		• http://arxiv.org/pdf/2109.04304v1		
	source	SupportedSources.SEMANTIC_SCHOLAR	urls	 http://arxiv.org/abs/2109.04304v1 http://arxiv.org/pdf/2109.04304v1 id8794105238381045081 		1
	journal	Neural Computing and Applications				358
	volume	35				1
	doi	10.1007/s00521-022-07886-y	id			1
	urls	https://www.semanticscholar.org/paper/e6239c8c9ff1c516e2241f66570a3f2e2735990c	s E n e abstract	Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. Deep-learning methods, however, find very challenging learning stiff dynamics. In this paper, we develop DAE-PINN, the first effective deep-learning framework for learning and simulating the solution trajectories of nonlinear differential-algebraic equations (DAE), which present a form of infinite stiffness and describe, for example, the dynamics of power networks. Our DAE-PINN bases its effectiveness on the synergy between implicit Runge-Kutta time-stepping schemes (designed specifically for solving DAEs) and physics-informed neural		
	id	id-1606239557483226306				
	abstract	None				1
	versions					1
				networks (PINN) (deep neural networks that we train to satisfy the dynamics of the underlying problem). Furthermore, our framework (i) enforces the neural network to satisfy the DAEs as (approximate) hard constraints using a penalty-based method and (ii) enables simulating DAEs for long-time horizons. We showcase the effectiveness and accuracy of DAE-PINN by learning and simulating the solution trajectories of a three-bus power network.		
			versions			