Государственное образовательное учреждение высшего профессионального образования

"Московский государственный технический университет имени Н.Э.Баумана"

Дисциплина: Анализ алгоритмов

Лабораторная работа №2

Умножение матриц

Студент группы ИУ7-54Б, Котов Никита

Содержание

Введение								
1	Ана	алитическая часть	4					
	1.1	Описание алгоритмов	4					
		1.1.1 Стандартный алгоритм	4					
		1.1.2 Алгоритм Винограда	4					
	1.2	Модель вычислений	5					
2	Кон	нструкторская часть	6					
	2.1	Разработка алгоритмов	6					
		2.1.1 Стандартный алгоритм умножения матриц	6					
		2.1.2 Алгоритм Винограда	7					
	2.2	Выводы по конструкторскому разделу	9					
3	Tex	Технологическая часть						
	3.1	Средства реализации						
$oldsymbol{2}$	3.2	Листинг кода	10					
	3.3	Трудоемкость алгоритмов	14					
	3.4	Тестирование фунций	15					
4	Экс	спериментальная часть	16					
	4.1	Тестирование времени работы функций	16					
За	клю	очение	18					

Введение

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.

Впервые матрицы упоминались ещё в древнем Китае, называясь тогда «волшебным квадратом». Основным применением матриц было решение линейных уравнений[1]. Так же, волшебные квадраты были известны чуть позднее у арабских математиков, примерно тогда появился принцип сложения матриц. После развития теории определителей в конце 17-го века, Габриэль Крамер начал разрабатывать свою теорию в 18-ом столетии и опубликовал «правило Крамера» в 1751 году. Примерно в этом же промежутке времени появился «метод Гаусса». Теория матриц начала своё существование в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу. Термин «матрица» ввел Джеймс Сильвестр в 1850 г[2].

Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.

Одной из основных операций над матрицами является умножение. Именно ему посвящена данная лабораторная работа.

В рамках выполнения работы необходимо решить следующие задачи:

- рассмотреть стандартный алгоритм умножения матриц и алгоритм Винограда;
- реализовать каждый из этих алгоритмов, внеся в последний, как минимум 3 оптимизации;
- рассчитать их трудоемкость;
- сравнить временные характеристики реализованных алгоритмов экспериментально;
- на основании проделанной работы сделать выводы.

1 Аналитическая часть

1.1 Описание алгоритмов

1.1.1 Стандартный алгоритм

Пусть даны две прямоугольные матрицы:

$$A_{lm} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \quad B_{mn} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

Тогда матрица С

$$C_{ln} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix},$$

где:

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = 1, 2, ...l; j = 1, 2, ...n)$$
(1)

будет называться произведением матриц А и В. Стандартный алгоритм реализует данную формулу.

1.1.2 Алгоритм Винограда

Рассматривая результат умножения двух матриц очевидно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Рассмотрим два вектора $V=(v1,\ v2,\ v3,\ v4)$ и $W=(w1,\ w2,\ w3,\ w4)$. Их скалярное произведение равно:

$$V * W = v1w1 + v2w2 + v3w3 + v4w4 \tag{2}$$

Это равенство можно переписать в виде:

$$V * W = (v1 + w2)(v2 + w1) + (v3 + w4)(v4 + w3) - v1v2 - v3v4 - w1w2 - w3w4$$
 (3)

Несмотря на то, что второе выражение требует вычисления большего количества операций, чем стандартный алгоритм: вместо четырех умножений - шесть, а вместо трех сложений - десять, выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, то для каждого элемента будет необходимо выполнить лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения. Из-за того, что операция сложения быстрее операции умножения, алгоритм должен работать быстрее стандартного.

1.2 Модель вычислений

Для последующего вычисления трудоемкости необходимо ввести модель вычислений:

2. трудоемкость оператора выбора

 ${f if}$ условие ${f then}$

Α

else

В

рассчитывается, как

$$f_{if} = f_{ ext{условия}} + egin{cases} f_A, & ext{если условие выполняется}, \ f_B, & ext{иначе}. \end{cases}$$

- 3. трудоемкость цикла рассчитывается, как $f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инициализации}} + f_{\text{сравнения}})$
- 4. трудоемкость вызова метода равна 0
- 5. трудоемкость вызова функции равна 1

2 Конструкторская часть

2.1 Разработка алгоритмов

2.1.1 Стандартный алгоритм умножения матриц

На рис. 1 представлена схема стандартного алгоритма умножения матриц

Рис. 1: Стандартный алгоритм умножения матриц

Видно, что для стандартного алгоритма не существует лучшего и худшего случаев, как таковых.

2.1.2 Алгоритм Винограда

На рис. 2 и рис. 3 приведена схема алгоритма Винограда

Рис. 2: Алгоритм Винограда

Рис. 3: Алгоритм Винограда

Видно, что для алгоритма Виноградова худшим случаем являются матрицы нечетного размера, а лучшим четного, т.к. отпадает необходимость в последнем цикле. В качестве оптимизаций можно:

- заранее считать в МН и MV отрицательные произведения
- заменить выражения вида a = a + ... на a + = ...
- в циклах по k сделать шаг 2, избавившись тем самым от двух операций умножения на каждую итерацию

2.2 Выводы по конструкторскому разделу

Были разработаны схемы обоих алгоритмов умножения матриц. Оценены лучшие и худшие случаи их работы, выбраны методы оптимизации.

3 Технологическая часть

3.1 Средства реализации

В качестве языка программирования был выбран С++, так как он предоставляет широкие возможности для эффективной реализации алгоритмов.

3.2 Листинг кода

Листинг 1: Стандартный алгоритм умножения матриц

```
matrix_d common_multiplication(matrix_d &m1, matrix_d &m2) {
    auto 1 = m1.size();
    auto m = m2.size();
    auto n = m2[0].size();

    if (m1[0].size() != m) {
        throw std::exception();
    }

    auto result = init_matrix(l, n);

    for (size_t i = 0; i < 1; i++) {
        for (size_t j = 0; j < n; j++) {
            for (int k = 0; k < m; k++) {
                result[i][j] += m1[i][k] * m2[k][j];
            }
        }
    }
    return result;
}</pre>
```

Листинг 2: Алгоритм винограда

```
row_d bad_get_negative_row_products(matrix_d &matrix, size_t m, size_t n) {
    auto result = row_d(m, 0.);
    for (size_t i = 0; i < m; i++) {
        for (size_t j = 0; j <= n / 2; j++) {
            result[i] = result[i] + matrix[i][j * 2] * matrix[i][j * 2 + 1];
        }
    }
}

return result;
}

row_d bad_get_negative_col_products(matrix_d &matrix, size_t m, size_t n) {
    auto result = row_d(m, 0.);
    for (size_t i = 0; i < m; i++) {
        for (size_t j = 0; j <= n / 2; j_{10}^{+=} 2) {
</pre>
```

```
result[i] = result[i] + matrix[2 * j][i] * matrix[2 * j + 1][i];
       }
   }
   return result;
}
matrix_d bad_vinograd_multiplication(matrix_d &m1, matrix_d &m2) {
   auto 1 = m1.size();
   auto m = m2.size();
   auto n = m2[0].size();
   if (m1[0].size() != m) {
       throw std::exception();
   }
   auto mh = bad_get_negative_row_products(m1, 1, m);
   auto mv = bad_get_negative_col_products(m2, n, m);
   auto result = init_matrix(1, n);
   for (size_t i = 0; i < 1; i++) {</pre>
       for (size_t j = 0; j < m; j++) {</pre>
           result[i][j] = -mh[i] - mv[j];
           for (size_t k = 0; k <= n / 2; k++) {</pre>
               result[i][j] = result[i][j] + (m1[i][2 * k + 1] + m2[2 * k][j]) *
                  (m1[i][2 * k] + m2[2 * k + 1][j]);
           }
       }
   }
   if (n % 2 == 1) {
       for (size_t i = 0; i < 1; i++) {</pre>
           for (size_t j = 0; j < m; j++) {</pre>
               result[i][j] = result[i][j] + m1[i][n - 1] * m2[n-1][j];
           }
       }
   }
   return result;
```

```
row_d get_negative_row_products(matrix_d &matrix, size_t m, size_t n) {
   auto result = row_d(m, 0.);
   for (size_t i = 0; i < m; i++) {</pre>
       for (size_t j = 0; j < n - 1; j += 2) {</pre>
           result[i] -= matrix[i][j] * matrix[i][j + 1];
       }
   }
   return result;
row_d get_negative_col_products(matrix_d &matrix, size_t m, size_t n) {
   auto result = row_d(m, 0.);
   for (size_t i = 0; i < m; i++) {</pre>
       for (size_t j = 0; j < n - 1; j += 2) {</pre>
           result[i] -= matrix[j][i] * matrix[j + 1][i];
       }
   }
   return result;
}
matrix_d vinograd_multiplication(matrix_d &m1, matrix_d &m2) {
   auto 1 = m1.size();
   auto m = m2.size();
   auto n = m2[0].size();
   if (m1[0].size() != m) {
       throw std::exception();
   }
   auto mh = get_negative_row_products(m1, 1, m);
   auto mv = get_negative_col_products(m2, n, m);
   auto result = init_matrix(1, n);
   for (size_t i = 0; i < 1; i++) {</pre>
       for (size_t j = 0; j < m; j++) {</pre>
           result[i][j] = mh[i] + mv[j];
           for (size_t k = 0; k < n - 1; k += 2) {</pre>
               result[i][j] += (m1[i][k + 1] + m2[k][j]) * (m1[i][k] + m2[k + 1])
                   1][i]);
           }
       }
   }
   if (n % 2 == 1) {
       for (size_t i = 0; i < 1; i++) {</pre>
           for (size_t j = 0; j < m; j++) {</pre>
               result[i][j] += m1[i][n - 1] * <math>m2[n-1][j];
           }
       }
   }
```

```
return result;
}
```

3.3 Трудоемкость алгоритмов

Стандартный алгоритм умножени матриц f=2+l(2+2+n(2+2+m(2+9))=11lmn+4ln+4l+2

Алгоритм Винограда

1.
$$f_{row} = 2 + l(2 + 2 + 0.5n(2 + 10)) = 6ln + 4l + 2$$

2.
$$f_{col} = 2 + n(2 + 2 + 0.5m(2 + 10)) = 6mn + 4n + 2$$

3.
$$f_{matrix} = 2 + l(2 + 2 + m(2 + 2 + 7 + 0.5n(2 + 22))) = 12lmn + 11lm + 4l + 2$$

4.
$$f_{end} = \begin{cases} 2, & \text{если матрица четная}, \\ 2+2+l(2+2+m(2+13)) = 15lm+4l+4, & \text{иначе}. \end{cases}$$

Итого, для худшего случая (нечетный размер матрицы) $f = f_{row} + f_{col} + f_{matrix} + f_{end} = 12lmn + 6ln + 6mn + 26lm + 12l + 4n + 10 \approx 12lmn$

Для лучшего случая (четный размер матрицы: $f = f_{row} + f_{col} + f_{matrix} + f_{end} = 12lmn + 6ln + 6mn + 11lm + 8l + 4n + 8 \approx 12lmn$

Оптимизированный алгоритм Винограда

1.
$$f_{row} = 2 + l(2 + 2 + 0.5n(2 + 8)) = 5ln - l + 2$$

2.
$$f_{col} = 2 + n(2 + 2 + 0.5m(2 + 8)) = 5mn - n + 2$$

3.
$$f_{matrix} = 2 + l(2 + 2 + m(2 + 2 + 5 + 0.5n(2 + 15))) = 8.5lmn + 9lm + 4l + 2lm + 2$$

4.
$$f_{end} = \begin{cases} 2, & \text{если матрица четная}, \\ 2+2+l(2+2+m(2+10)) = 12lm+4l+4, & \text{иначе}. \end{cases}$$

Итого, для худшего случая (нечетный размер матрицы) $f = f_{row} + f_{col} + f_{matrix} + f_{end} = 8.5 lmn + 5 ln + 5 mn + 21 lm + 7 l - n + 10 \approx 8 lmn$

Для лучшего случая (четный размер матрицы): $f = f_{row} + f_{col} + f_{matrix} + f_{end} = 8.5 lmn + 5 ln + 5 mn + 11 lm + 3 l - n + 8 \approx 8 lmn$

3.4 Тестирование фунций

В таблице 1 приведены тесты для функций, реализующих стандартный алгоритм умнодения матриц (CA), алгоритм Винограда (AB) и оптимизированный алгоритм Винограда (AB(O))

Таблица 1: Тестирование функций

Матрица 1	Матрица 2	Ожидаемый результат	CA	AB	AB(O)
$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 6 & 12 & 18 \\ 6 & 12 & 18 \\ 6 & 12 & 18 \end{pmatrix}$	\checkmark	$\sqrt{}$	$\sqrt{}$
$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 6 \\ 3 & 6 \end{pmatrix}$	$\sqrt{}$	$\sqrt{}$	\checkmark
(2)	(2)	(4)	$\sqrt{}$	$\sqrt{}$	\checkmark
$\begin{pmatrix} 1 & -2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 0 & 4 & 6 \\ 4 & 12 & 18 \\ 4 & 12 & 18 \end{pmatrix}$	$\sqrt{}$	$\sqrt{}$	\checkmark

4 Экспериментальная часть

4.1 Тестирование времени работы функций

Для измерения времени использовалась функция clock(). Чтобы исключить случайные отклонения в измеренном времени, измерялось время работы 10 запусков функции и делилось на 10.

В таблице 2 приведены замеры времени работы на квадратных матрицах стандартного алгоритма умножения (CA), алгоритма Винограда (AB) и оптимизированно алгоритма Винограда (AB(O)), на основе них построены графики рис 4. и рис. 5

Таблица 2: Время работы реализаций алгоритмов

Размер матрицы	CA	AB	AB(O)
100	0.014	0.013	0.011
200	0.115	0.115	0.098
300	0.420	0.399	0.348
400	1.031	1.000	0.860
500	2.223	2.175	1.836
600	4.072	4.061	3.441
700	6.622	6.584	5.685
800	10.178	10.121	9.312
900	15.059	14.827	13.070
1000	20.536	20.393	17.941
101	0.016	0.014	0.012
201	0.118	0.118	0.099
301	0.410	0.402	0.346
401	1.042	1.117	0.895
501	2.273	2.233	1.878
601	4.233	4.027	3.461
701	6.685	6.669	5.787
801	10.322	10.288	9.078
901	14.960	14.947	12.098
1001	20.688	20.473	17.955

Рис. 4: Замеры времени на матрицах с четным размером

Рис. 5: Замеры времени на матрицах с нечетным размером

Время работы алгоритма Винограда незначительно меньше стандартного алгоритма умножения, однако оптимизированная реализации имеет заметный прирост в скорости работы, на метрацах размером 1000 x 1000 уже около 18%.

Заключение

В рамках лабораторной работы были рассмотрены и реализованы стандартный алгоритм умножения матриц и алгоритм Винограда. Была рассчитана их трудоемкость и произведены замеры времени работы реализованных алгоритмов. На основании этого произведено сравнение их эффективности. Оптимизированный алгоритм Винограда имеет заметный выйгрыш в эффективности работы по сравнению с остальными алгоритмами.

Список литературы

- [1] Березкина Э. И. Математика древнего Китая / Отв. ред. Б.А.Розенфельд. М.: Наука, 1980. С. 173-206. 312 с.
- [2] Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики: Пер. с франц. М.: Мир, 1986. С. 397.