

Statistics Learning Lectures

Author: Ziyang Gong

Date: August 4, 2021

Version: 0.1.0

Contents

I	Calculus	1
1	Limit Theory	2
2	Differential Calculus	3
3	Integral Calculus	4
II	Matrix Theory	5
4	Matrix Norms	6
	4.1 Matrix Norms Induced by Vector Norms	6
5	Matrix Decompositions	7
	5.1 Spectral Decomposition	7
	5.2 Singular Value Decomposition	7
II	I Real Analysis	10
6	Measure Theory	11
	6.1 Semi-algebras, Algebras and Sigma-algebras	11
	6.2 Measure	12
7	Lebesgue Integration	14
	7.1 Properties of the Integral	14
	7.2 Product Measures	15
IV	V Functional Analysis	16
V	Probability Theory	17
8	Random Variables	18
	8.1 Probability Space	18
	8.2 Random Variables	18
	8.3 Distributions	19
	8.4 Expected Value	20

	8.5	Independence	20				
	8.6	Moments	22				
	8.7	Characteristic Functions	22				
9	Conv	Convergence of Random Variables					
	9.1	Convergence in Mean	25				
	9.2	Convergence in Probability	25				
	9.3	Convergence in Uninform	25				
	9.4	Convergence in Distribution	26				
	9.5	Almost Sure Convergence	28				
	9.6	Asymptotic Notation for Random Variables	29				
10	Law	of Large Numbers	31				
	10.1	Weak Law of Large Numbers	31				
	10.2	Strong Law of Large Numbers	32				
		Uniform Law of Large Numbers	33				
11	Cent	ral Limit Theorems	35				
	11.1	Classic Central Limit Theorem	35				
	11.2	Central Limit Theorem for independent non-identical Random Variables	37				
	11.3	Central Limit Theorem for dependent Random Variables	37				
12	The	Delta Methods	38				
13	Exer	cises for Probability Theory and Examples	39				
	13.1	Measure Theory	39				
	13.2	Laws of Large Numbers	39				
	13.3	Central Limit Theorems	39				
VI	St	ochastic Process	41				
14		tingales	42				
		Conditional Expectation	42				
	14.2	Martingales	42				
	14.3	Doob's Inequality	43				
	14.4	Uniform Integrability	43				
	14.5	Optional Stopping Theorems	43				
15	Mar	kov Chains	44				
	15.1	Markov Chain	44				
	15.2	Markov Properties	45				
	15.3	Recurrence and Transience	45				

~		-	-	TE	
$(\ \ \)$) [L, L,	H0	N	ES

		Stationary Measures	47
		Asymptotic Behavior	47
	15.6	Ergodic Theorems	47
16	Brov	vnian Motion	48
	16.1	Markov Properties	49
		Martingales	49
		Sample Paths	50
		Itô Stochastic Calculus	51
17	Exer	cises for Probability Theory and Examples	54
		Martingales	54
		Markov Chains	54
		Ergodic Theorems	54
		Brownian Motion	54
		Applications to Random Walk	54
		Multidimensional Brownian Motion	54
Vl	I S	Statistics Inference	55
18	Intro	oduction	56
	18.1	Populations and Samples	56
	18.2	Statistics	56
	18.3	Estimators	56
19	Max	imum Likelihood Estimator	59
	19.1	Consistency of MLE	59
	19.2	Asymptotic Normality of MLE	61
		Efficiency of MLE	61
20	Mini	imum-Variance Unbiased Estimator	62
21	Baye	es Estimator	65
	21.1	Single-Prior Bayes	66
		Hierarchical Bayes	67
		Empirical Bayes	68
		Bayes Prediction	68
22	Нур	othesis Testing	69

V	II	Convex Optimization	70			
23	Con	vex Sets	71			
	23.1	Affine and Convex Sets	71			
	23.2	Some Important Examples	72			
		Generalized Inequalities	72			
24	Con	vex Optimization Problems	74			
	24.1	Generalized Inequality Constraints	74			
		Vector Optimization	74			
25	Unco	onstrained Minimization	75			
	25.1	Definition of Unconstrained Minimization	75			
	25.2	General Descent Method	76			
	25.3	Gradient Descent Method	76			
	25.4	Steepest Descent Method	76			
	25.5	Newton's Method	76			
26	Exer	rcises for Convex Optimization	77			
	26.1	Convex Sets	77			
IX	G	eneralized Linear Model	78			
27	Gen	eralized Linear Model	7 9			
	27.1	Exponential Family	79			
	27.2	Model Assumption	79			
	27.3	Model Estimation	80			
28	Binary Data 8					
	28.1	Model Assumption	82			
	28.2	Model Estimation	82			
29	Poly	tomous Data	83			
	29.1	Model Assumption	83			
		Model Estimation	84			
30	Cou	nt Data	85			
	30.1	Model Assumption	85			
	30.2	Model Estimation	85			

31	Survival Data	86
	31.1 Survival Data	86
	31.2 Estimation of Survival Function	87
	31.3 Proportional Hazards Model	88
32	Modified Likelihood	89
	32.1 Marginal Likelihood	89
	32.2 Conditional Likelihood	89
	32.3 Profile Likelihood	90
	32.4 Quasi Likelihood	90
X	Machine Learning	91
33	Kernel Methods	92
34	Support Vector Machine	95
35	Linear Discriminant Analysis	96
36	K-Nearest Neighbor	97
37	Decision Tree	98
XI	Random Matrix Theory	99
38	Wishart and Laguerre Ensembles	100
	38.1 Laguerre Orthogonal Ensemble	100
	38.2 Marchenko-Pastur Theorem	104
	38.3 Extremal Figenvalues of	106

Part I Calculus

Chapter 1 Limit Theory

Definition 1.1 (Mapping)

Let $X: \Omega_1 \to \Omega_2$ be a mapping.

1. For every subset $B \in \Omega_2$, the inverse image of B is

$$X^{-1}(B) = \{\omega : \omega \in \Omega_1, X(\omega) \in B\} := \{X \in B\}.$$

2. For every class

Chapter 2 Differential Calculus

Chapter 3 Integral Calculus

Part II Matrix Theory

Chapter 4 Matrix Norms

4.1 Matrix Norms Induced by Vector Norms

Chapter 5 Matrix Decompositions

5.1 Spectral Decomposition

Definition 5.1 (Eigenvectors and Eigenvalues)

A (non-zero) vector \mathbf{v} of dimension n is an eigenvector of a square $n \times n$ matrix \mathbf{A} , if

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{5.1}$$

where λ is a scalar, termed the **eigenvalue** corresponding to \mathbf{v} .

Definition 5.2 (Spectral Decomposition)

For any $n \times n$ matrix with n linearly independent eigenvectors q_i , i = 1, ..., n. Then \mathbf{A} can be factorized as

$$\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$$

where \mathbf{Q} is the square $n \times n$ matrix whose i-th column is the eigenvector \mathbf{q}_i of \mathbf{A} , and $\mathbf{\Lambda}$ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, $\mathbf{\Lambda} = \lambda_i$. This factorization is called eigendecomposition or sometimes spectral decomposition.

Example 5.1 Real Symmetric Matrices As a special case, for every $n \times n$ real symmetric matrix, the eigenvalues are real and the eigenvectors can be chosen real and orthonormal. Thus a real symmetric matrix **A** can be decomposed as

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}' \tag{5.2}$$

where \mathbf{Q} is an orthogonal matrix whose columns are eigenvectors of \mathbf{A} , and $\mathbf{\Lambda}$ is a diagonal matrix whose entries are the eigenvalues of \mathbf{A} .

5.2 Singular Value Decomposition

Proposition 5.1 (Singular Value Decomposition)

For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}' \tag{5.3}$$

where

- $oldsymbol{\mathbf{U}} \in \mathbb{R}^{m imes m}$ is an orthogonal matrix whose columns are the eigenvectors of $\mathbf{A}\mathbf{A}'$
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix whose columns are the eigenvectors of $\mathbf{A}'\mathbf{A}$
- $\Sigma \in \mathbb{R}^{m \times n}$ is an all zero matrix except for the first r diagonal elements

$$\sigma_i = \mathbf{\Sigma}_{ii}, \quad i = 1, 2, \dots, r$$

which is called singular values, that are the square roots of the eigenvalues of $\mathbf{A'A}$ and of $\mathbf{AA'}$ (these two matrices have the same eigenvalues)

Remark We assume above that the singular values are sorted in descending order and the eigenvectors are sorted according to descending order of their eigenvalues.

Proof Without loss of generality, we assume $m \ge n$. Since for the case n > m, can then be established by transposing the SVD of A',

$$\mathbf{A} = (\mathbf{A}')' = (\mathbf{U}'\mathbf{\Sigma}\mathbf{V})' = \mathbf{V}'(\mathbf{U}'\mathbf{\Sigma})' = \mathbf{V}'\mathbf{\Sigma}\mathbf{U}$$

For $m \ge n$, suppose $\operatorname{rank}(A) = r$, and then $\operatorname{rank}(\mathbf{A}'\mathbf{A}) = r$ and the spectral decomposition of $\mathbf{A}'\mathbf{A}$ be

$$\mathbf{A}'\mathbf{A}\mathbf{V} = \mathbf{V}\operatorname{diag}\left(\sigma_1^2,\ldots,\sigma_r^2,0,\ldots,0\right)$$

where σ_i^2 are the eigenvalues of A'A and the columns of V, denoted $\boldsymbol{v}^{(i)}$, are the corresponding orthonormal eigenvectors.

Let

$$\boldsymbol{u}^{(i)} = \frac{\mathbf{A}\boldsymbol{v}^{(i)}}{\sigma_i}$$

then

$$\mathbf{A}' \mathbf{u}^{(i)} = \frac{\mathbf{A}' \mathbf{A} \mathbf{v}^{(i)}}{\sigma_i} = \sigma_i \mathbf{v}^{(i)} \Rightarrow$$
$$\mathbf{A} \mathbf{A}' \mathbf{u}^{(i)} = \sigma_i \mathbf{A} \mathbf{v}^{(i)} = \sigma_i^2 \mathbf{u}^{(i)}$$

implying that $u^{(i)}$ are eigenvectors of AA' corresponding to eigenvalues σ_i^2 .

Since the eigenvectors $\boldsymbol{v}^{(i)}$ are orthonormal, then so are the eigenvectors $\boldsymbol{u}^{(i)}$

$$\left(\boldsymbol{u}^{(i)} \right)' \boldsymbol{u}^{(j)} = \frac{\left(\boldsymbol{v}^{(i)} \right)' \mathbf{A}' \mathbf{A} \boldsymbol{v}^{(j)}}{\sigma_i^2} = \left(\boldsymbol{v}^{(i)} \right)' \boldsymbol{v}^{(j)} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

We have thus far a matrix V whose columns are eigenvectors of A'A with eigenvalues σ_i^2 , and a matrix U whose columns are r eigenvectors of AA' corresponding to eigenvalues σ_i^2 .

We augment the eigenvectors $\boldsymbol{u}^{(i)}$, $i=1,\ldots,r$ with orthonormal vectors $\boldsymbol{u}^{(i)}$, $i=r+1,\ldots,m$ that span null $(\mathbf{A}\mathbf{A}')$, and together $\boldsymbol{u}^{(i)}$, $i=1,\ldots,n$ are a full orthonormal set of eigenvectors of $\mathbf{A}\mathbf{A}'$ with eigenvalues σ_i^2 (with $\sigma_i=0$ for i>r).

Since

$$\left[\mathbf{U}'\mathbf{A}\mathbf{V}\right]_{ij} = \left(\mathbf{u}^{(i)}\right)'\mathbf{A}\mathbf{v}^{(j)} = \begin{cases} \sigma_j \left(\mathbf{u}^{(i)}\right)'\mathbf{u}^{(j)} & i \leq r \\ 0 & i > r \end{cases}$$

we get

$$\mathbf{U}'\mathbf{A}\mathbf{V} = \mathbf{\Sigma}$$

where

$$\Sigma = \begin{pmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_n) \\ \mathbf{0} \end{pmatrix}, \quad \sigma_i = 0 \text{ for } r < i \leq n$$

Consequentially, we get the desired decompositions

$$A = U\Sigma V'$$

5.2.1 Relationship to Matrix Norm

Theorem 5.1

For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$\|\mathbf{A}\|_2 = \sigma_{\text{max}}(\mathbf{A}) \tag{5.4}$$

Proof For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the SVD implies that,

$$\|\mathbf{A}\|_{2} = \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{U}\mathbf{\Sigma}\mathbf{V}'\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$$

Since U is unitary, that is,

$$\|\mathbf{U}\mathbf{x}\|_{2}^{2} = \mathbf{x}'\mathbf{U}'\mathbf{U}\mathbf{x}^{T}\mathbf{x} = \|\mathbf{x}\|_{2}^{2}, \quad \forall \mathbf{x} \in \mathbb{R}^{m}$$

thus,

$$= \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{\Sigma} \mathbf{V}' \mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$

Let y = V'x, and since V is unitary, we have

$$\|\mathbf{y}\|_2 = \|\mathbf{V}'\mathbf{x}\|_2 = \|\mathbf{x}\|_2 = 1$$

thus,

$$= \sup_{\mathbf{y} \neq \mathbf{0}} \frac{\|\mathbf{\Sigma}\mathbf{y}\|_{2}}{\|\mathbf{V}\mathbf{y}\|_{2}} = \sup_{\mathbf{y} \neq \mathbf{0}} \frac{\left(\sum_{i=1}^{r} \sigma_{i}^{2} |y_{i}|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{r} |y_{i}|^{2}\right)^{\frac{1}{2}}} \leq \sigma_{\max}(\mathbf{A})$$

which takes "=", if y = (1, 0, ..., 0)'.

Theorem 5.2

For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, suppose rank(A) = n, then

$$\min_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2 = \sigma_n(\mathbf{A}) \tag{5.5}$$

Proof The proof process is analogous to the above theorem.

Remark If rank(A) < n, then there is an x such that the minimum is zero.

Part III Real Analysis

Chapter 6 Measure Theory

6.1 Semi-algebras, Algebras and Sigma-algebras

Definition 6.1 (Semi-algebra)

A nonempty class of S of subsets of Ω is an **semi-algebra** on Ω that satisfy

- *1.* if $A, B \in \mathcal{S}$, then $A \cap B \in \mathcal{S}$.
- 2. if $A \in \mathcal{S}$, then A^C is a finite disjoint union of sets in \mathcal{S} , i.e.,

$$A^{C} = \sum_{i=1}^{n} A_{i}, where A_{i} \in \mathcal{S}, A_{i} \cap A_{j} = \emptyset, i \neq j.$$

Definition 6.2 (Algebra)

A nonempty class A of subsets of Ω is an **algebra** on Ω that satisfy

- 1. if $A \in \mathcal{A}$, then $A^C \in \mathcal{A}$.
- 2. if $A_1, A_2 \in \mathcal{A}$, then $A_1 \cup A_2 \in \mathcal{A}$.

Definition 6.3 (σ -algebra)

A nonempty class \mathcal{F} of subsets of Ω is a σ -algebra on Ω that satisfy

- 1. if $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$.
- 2. if $A_i \in \mathcal{F}$ is a countable sequence of sets, then $\bigcup_i A_i \in \mathcal{F}$.

Example 6.1 Special σ -algebra

- 1. **Trival** σ **-algebra** := $\{\emptyset, \Omega\}$. This is smallest σ -algebra.
- 2. Power Set := all subsets of σ , denoted by $\mathcal{P}(\Omega)$. This is the largest σ -algebra.
- 3. The smallest σ -algebra containing $A \in \Omega := \{\emptyset, A, A^C, \Omega\}$.

It is easy to define (Lesbegue) measure on the semi-algebra S, and then easily to extend it to the algebra \overline{S} , finally, we can extend it further to some σ -algebra (mostly consider the smallest one containing S).

Lemma 6.1

If S is a semi-algebra, then

 $\overline{S} = \{ \text{finite disjoint unions of sets in } S \}$

 \bigcirc

is an algebra, denoted by A(S), called **the algebra generated by** S.

Proof Let $A, B \in \overline{S}$, then $A = \sum_{i=1}^{n} A_i, B = \sum_{j=1}^{m} B_j$ with $A_i, B_i \in S$.

Intersection: For $A_i \cap B_j \in \mathcal{S}$ by the definition of semi-algebra \mathcal{S} , thus

$$A \cap B = \sum_{i=1}^{n} \sum_{j=1}^{m} A_i \cap B_j \in \overline{\mathcal{S}}.$$

So \overline{S} is closed under (finite) intersection.

Complement: For DeMorgan's Law, $A_i^C \in \mathcal{S}$ by the definition of semi-algebra \mathcal{S} and $\overline{\mathcal{S}}$ closed under (finite) intersection that we just shown, thus

$$A^{C} = \left(\sum_{i=1}^{n} A_{i}\right)^{C} = \bigcap_{i=1}^{n} A_{i}^{C} \in \overline{\mathcal{S}}.$$

So $\overline{\mathcal{S}}$ is closed under complement.

Union: For DeMorgan's Law and $\overline{\mathcal{S}}$ closed under (finite) intersection and complement that we just shown, thus

$$A \cup B = (A^C \cap B^C)^C \in \overline{\mathcal{S}}.$$

So \overline{S} is closed under (finite) union.

Hence, \overline{S} is an algebra.

Theorem 6.1

For any class A, there exists a unique minimal σ -algebra containing A, denoted by $\sigma(A)$, called the σ -algebra generated by A. In other words,

- 1. $A \subset \sigma(A)$.
- 2. For any σ -algebra \mathcal{B} with $\mathcal{A} \subset \mathcal{B}$, $\sigma(\mathcal{A}) \subset \mathcal{B}$. and $\sigma(\mathcal{A})$ is unique.

Proof Existence:

Uniqueness:

Example 6.2 Borel σ -algebras generated from semi-algebras

1.

6.2 Measure

Definition 6.4 (Measure)

Measure is a nonnegative countably additive set function, that is, a function $\mu: A \to \mathbf{R}$ with

- 1. $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{A}$.
- 2. if $A_i \in A$ is a countable sequence of disjoint sets, then

$$\mu(\cup_i A_i) = \sum_i \mu(A_i).$$

Definition 6.5 (Measure Space)

If μ is a measure on a σ -algebra \mathcal{A} of subsets of Ω , the triplet $(\Omega, \mathcal{A}, \mu)$ is a **measure space**.

Note A measure space $(\Omega, \mathcal{A}, \mu)$ is a **probability space**, if $P(\Omega) = 1$.

Property Let μ be a measure on a σ -algebra A

- 1. monotonieity if $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 2. subadditivity if $A \subset \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} u(A_m)$.
- 3. continuity from below if $A_i \uparrow A$ (i.e. $A_1 \subset A_2 \subset \dots$ and $\bigcup_i A_i = A$), then $\mu(A_i) \uparrow \mu(A)$.

4. continuity from above if $A_i \downarrow A$ (i.e. $A_1 \supset A_2 \supset \dots$ and $\cap_i A_i = A$), then $\mu(A_i) \downarrow \mu(A)$. **Proof**

Chapter 7 Lebesgue Integration

7.1 Properties of the Integral

Theorem 7.1 (Jensen's Inequality)

Let (Ω, A, μ) be a probability space. If f is a real-valued function that is μ -integrable, and if φ is a convex function on the real line, then:

$$\varphi\left(\int_{\Omega} f \,\mathrm{d}\mu\right) \le \int_{\Omega} \varphi(f) \,\mathrm{d}\mu.$$
 (7.1)

Proof Let $x_0 = \int_{\Omega} f d\mu$. Since the existence of subderivatives for convex functions, $\exists a, b \in R$, such that,

$$\forall x \in R, \varphi(x) \ge ax + b \text{ and } ax_0 + b = \varphi(x_0).$$

Then, we got

$$\int_{\Omega} \varphi(f) d\mu \ge \int_{\Omega} af + b d\mu = a \int_{\Omega} f d\mu + b = ax_0 + b = \varphi\left(\int_{\Omega} f d\mu\right).$$

Theorem 7.2 (Hölder's Inequality)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $p, q \in [1, \infty]$ with 1/p + 1/q = 1. Then, for all measurable functions f and g on Ω ,

$$\int_{\Omega} |f \cdot g| \, \mathrm{d}\mu \le \|f\|_p \|g\|_q. \tag{7.2}$$

Proof

Theorem 7.3 (Minkowski's Inequality)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $p \in [1, \infty]$. Then, for all measurable functions f and g on Ω ,

$$||f + g||_p \le ||f||_p + ||g||_p.$$
 (7.3)

Proof Since $\varphi(x) = x^p$ is a convex function for $p \in [1, \infty)$. By it's definition,

$$|f+g|^p = \left|2 \cdot \frac{f}{2} + 2 \cdot \frac{g}{2}\right|^p \le \frac{1}{2}|2f|^p + \frac{1}{2}|2g|^p = 2^{p-1}\left(|f|^p + |g|^p\right).$$

Therefore,

$$|f + g|^p < 2^{p-1} (|f|^p + |g|^p) < \infty.$$

By Hölder's Inequality (7.2),

$$\begin{split} \|f + g\|_{p}^{p} &= \int |f + g|^{p} d\mu \\ &= \int |f + g| \cdot |f + g|^{p-1} d\mu \\ &\leq \int (|f| + |g|) |f + g|^{p-1} d\mu \\ &= \int |f| |f + g|^{p-1} d\mu + \int |g| |f + g|^{p-1} d\mu \\ &\leq \left(\left(\int |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int |g|^{p} d\mu \right)^{\frac{1}{p}} \right) \left(\int |f + g|^{(p-1)\left(\frac{p}{p-1}\right)} d\mu \right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_{p} + \|g\|_{p} \right) \frac{\|f + g\|_{p}^{p}}{\|f + g\|_{p}} \end{split}$$

which means, as $p \in [1, \infty)$,

$$||f + g||_p \le ||f||_p + ||g||_p.$$

When $p = \infty$,

a

Theorem 7.4 (Bounded Convergence Theorem)

 \Diamond

Theorem 7.5 (Fatou's Lemma)

 \bigcirc

Theorem 7.6 (Monotone Convergence Theorem)

 \Diamond

7.2 Product Measures

Theorem 7.7 (Fubini's Theorem)

 \Diamond

Part IV Functional Analysis

Part V Probability Theory

Chapter 8 Random Variables

	Introduction
Probability Space	Expected Value
Random Variables	Independence
Distributions	Characteristic Functions

8.1 Probability Space

Definition 8.1 (Probability Space)

A probability space is a triple (Ω, \mathcal{F}, P) consisting of:

- 1. the sample space Ω : an arbitrary non-empty set.
- 2. the σ -algebra $\mathcal{F} \subseteq 2^{\Omega}$: a set of subsets of Ω , called events.
- 3. the probability measure $P: \mathcal{F} \to [0,1]$: a function on \mathcal{F} which is a measure function.

8.2 Random Variables

Definition 8.2 (Random Variable)

A random variable is a measurable function $X: \Omega \to S$ from a set of possible outcomes (Ω, \mathcal{F}) to a measurable space (S, S), that is,

$$X^{-1}(B) \equiv \{\omega : X(\omega) \in B\} \in \mathcal{F} \quad \forall B \in \mathcal{S}. \tag{8.1}$$

Typically, $(S, S) = (R^d, \mathcal{R}^d)$ (d > 1).

How to prove that functions are measurable?

Theorem 8.1

If $\{\omega : X(\omega) \in A\} \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S} , then X is measurable.

8.3 Distributions

8.3.1 Definition of Distributions

Definition 8.3 (Distribution)

A distribution of random variable X is a probability function $P: \mathcal{R} \to \mathbb{R}$ by setting

$$\mu(A) = P(X \in A) = P(X^{-1}(A)), \quad for A \in \mathcal{R}.$$
(8.2)

Definition 8.4 (Distribution Function)

The distribution of a random variable X is usually described by giving its distribution function,

$$F(x) = P(X \le x). \tag{8.3}$$

Definition 8.5 (Density Function)

If the distribution function $F(x) = P(X \le x)$ has the form

$$F(x) = \int_{-\infty}^{x} f(y) \mathrm{d}y,$$

that X has density function f.

8.3.2 Properties of Distributions

Theorem 8.2 (Properties of Distribution Function)

Any distribution function F has the following properties,

- 1. F is nondecreasing.
- 2. $\lim_{x \to \infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$.
- 3. *F* is right continuous, i.e., $\lim_{y \downarrow x} F(y) = F(x)$.
- 4. If $F(x-) = \lim_{y \uparrow x} F(y)$, then F(x-) = P(X < x).
- 5. P(X = x) = F(x) F(x-).

Proof

Theorem 8.3

If F satisfies (1), (2), and (3) in Theorem 8.2, then it is the distribution function of some random variable.

Proof

Theorem 8.4

A distribution function has at most countably many discontinuities

Proof

8.3.3 Families of Distributions

8.4 Expected Value

Definition 8.6 (Expectation)

.

Theorem 8.5 (Bounded Convergence theorem)

Theorem 8.6 (Fatou's Lemma)

If
$$X_n \geq 0$$
, then

$$\liminf_{n \to \infty} EX_n \ge E\left(\liminf_{n \to \infty} X_n\right).$$
(8.4)

Theorem 8.7 (Monotone Convergence theorem)

If
$$0 \le X_n \uparrow X$$
, then

$$EX_n \uparrow EX$$
.

 $(8.5)_{\sim}$

Theorem 8.8 (Dominated Convergence theorem)

If
$$X_n \to X$$
 a.s., $|X_n| \le Y$ for all n , and $EY < \infty$, then

$$EX_n \to EX$$
.

 $(8.6)_{\sim}$

8.5 Independence

8.5.1 Definition of Independence

Definition 8.7 (Independence)

- 1. Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- 2. Two random variables X and Y are independent if for all $C, D \in \mathcal{R}$

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D).$$
 (8.7)

3. Two σ -fields \mathcal{F} and \mathcal{G} are independent if for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$ the events A and B are independent.

The second definition is a special case of the third.

Theorem 8.9

- 1. If X and Y are independent then $\sigma(X)$ and $\sigma(Y)$ are independent.
- 2. Conversely, if \mathcal{F} and \mathcal{G} are independent, $X \in \mathcal{F}$ and $Y \in \mathcal{G}$, then X and Y are independent.

The first definition is, in turn, a special case of the second.

Theorem 8.10

- 1. If A and B are independent, then so are A^c and B, A and B^c , and A^c and B^c .
- 2. Conversely, events A and B are independent if and only if their indicator random variables 1_A and 1_B are independent.

The definition of independence can be extended to the infinite collection.

Definition 8.8

An infinite collection of objects (σ -fields, random variables, or sets) is said to be independent if every finite subcollection is,

1. σ -fields $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ are independent if whenever $A_i \in \mathcal{F}_i$ for $i = 1, \ldots, n$, we have

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P\left(A_i\right). \tag{8.8}$$

2. Random variables X_1, \ldots, X_n are independent if whenever $B_i \in \mathcal{R}$ for $i = 1, \ldots, n$ we have

$$P\left(\bigcap_{i=1}^{n} \{X_i \in B_i\}\right) = \prod_{i=1}^{n} P\left(X_i \in B_i\right).$$
 (8.9)

3. Sets A_1, \ldots, A_n are independent if whenever $I \subset \{1, \ldots, n\}$ we have

$$P\left(\bigcap_{i\in I} A_i\right) = \prod_{i\in I} P\left(A_i\right). \tag{8.10}$$

8.5.2 Sufficient Conditions for Independence

8.5.3 Independence, Distribution, and Expectation

Theorem 8.11

Suppose X_1, \ldots, X_n are independent random variables and X_i has distribution μ_i , then (X_1, \ldots, X_n) has distribution $\mu_1 \times \cdots \times \mu_n$.

Theorem 8.12

If X_1, \ldots, X_n are independent and have

- 1. $X_i \geq 0$ for all i, or
- 2. $E|X_i| < \infty$ for all i.

then

$$E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} EX_i \tag{8.11}$$

8.5.4 Sums of Independent Random Variables

Theorem 8.13 (Convolution for Random Variables)

1. If X and Y are independent, $F(x) = P(X \le x)$, and $G(y) = P(Y \le y)$, then

$$P(X+Y \le z) = \int F(z-y) \mathrm{d}G(y). \tag{8.12}$$

2. If X and Y are independent, X with density f and Y with distribution function G, then X + Y has density

$$h(x) = \int f(x - y) dG(y). \tag{8.13}$$

Suppose Y has density g, the last formula can be written as

$$h(x) = \int f(x - y)g(y)dy.$$
 (8.14)

3. If X and Y are independent, integral-valued random variables, then

$$P(X + Y = n) = \sum_{m} P(X = m)P(Y = n - m).$$
 (8.15)

8.6 Moments

Lemma 8.1

If Y > 0 and p > 0, then

$$E(Y^p) = \int_0^\infty p y^{p-1} P(Y > y) dy.$$
 (8.16)

8.7 Characteristic Functions

8.7.1 Definition of Characteristic Functions

Definition 8.9 (Characteristic Function)

If X is a random variable, we define its characteristic function (ch.f) by

$$\varphi(t) = E\left(e^{itX}\right) = E\left(\cos tX\right) + iE\left(\sin tX\right). \tag{8.17}$$

Note Eular Equation.

8.7.2 Properties of Characteristic Functions

Theorem 8.14 (Properties of Characteristic Function)

Any characteristic function has the following properties:

- 1. $\varphi(0) = 1$,
- 2. $\varphi(-t) = \overline{\varphi(t)}$,
- 3. $|\varphi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1$,
- 4. $\varphi(t)$ is uniformly continuous on $(-\infty, \infty)$,
- 5. $Ee^{it(aX+b)} = e^{itb}\varphi(at)$,
- 6. If X_1 and X_2 are independent and have ch.f.'s φ_1 and φ_2 , then $X_1 + X_2$ has ch.f. $\varphi_1(t)\varphi_2(t)$.

Proof

8.7.3 The Inversion Formula

The characteristic function uniquely determines the distribution. This and more is provided by:

Theorem 8.15 (The Inversion Formula)

Let $\varphi(t) = \int e^{itx} \mu(dx)$ where μ is a probability measure. If a < b, then

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$
 (8.18)

Proof

Theorem 8.16

If $\int |\varphi(t)| dt < \infty$, then μ has bounded continuous density

$$f(y) = \frac{1}{2\pi} \int e^{-ity} \varphi(t) dt.$$
 (8.19)

Proof

8.7.4 Convergence in Distribution

Theorem 8.17 (Lèvy's Continuity Theorem)

Let μ_n , $1 \le n \le \infty$ be probability measures with ch.f. φ_n .

- 1. If $\mu_n \stackrel{d}{\to} \mu_{\infty}$, then $\varphi_n(t) \to \varphi_{\infty}(t)$ for all t.
- 2. If $\varphi_n(t)$ converges pointwise to a limit $\varphi(t)$ that is continuous at 0, then the associated sequence of distributions μ_n is tight and converges weakly to the measure μ with characteristic function φ .

Proof

8.7.5 Moments and Derivatives

Theorem 8.18

If $\int |x|^n \mu(dx) < \infty$, then its characteristic function φ has a continuous derivative of order n given by

$$\varphi^{(n)}(t) = \int (ix)^n e^{itx} \mu(\mathrm{d}x). \tag{8.20}$$

Theorem 8.19

If $E|X|^2 < \infty$ then

$$\varphi(t) = 1 + itEX - t^2E(X^2)/2 + o(t^2).$$
 (8.21)

Theorem 8.20

If
$$\limsup_{h\downarrow 0} \{\varphi(h) - 2\varphi(0) + \varphi(-h)\}/h^2 > -\infty$$
, then
$$E|X|^2 < \infty. \tag{8.22}$$

Chapter 9 Convergence of Random Variables

☐ Convergence in Mean ☐ Convergence in Probability ☐ Convergence in Uninform ☐ Convergence in Uninform ☐ Convergence in Uninform

9.1 Convergence in Mean

Definition 9.1 (Convergence in Mean)

A sequence $\{X_n\}$ of real-valued random variables **converges** in the r-th mean $(r \ge 1)$ towards the random variable X, if

- 1. The r-th absolute moments $E(|X_n|^r)$ and $E(|X|^r)$ of $\{X_n\}$ and X exist,
- 2. $\lim_{n\to\infty} E(|X_n X|^r) = 0$.

Convergence in the r-th mean is denoted by

$$X_n \xrightarrow{L^r} X. \tag{9.1}$$

9.2 Convergence in Probability

Definition 9.2 (Convergence in Probability)

A sequence $\{X_n\}$ of real-valued random variables **converges** in **probability** towards the random variable X, if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0.$$
 (9.2)

Convergence in probability is denoted by

$$X_n \stackrel{p}{\to} X.$$
 (9.3)

9.3 Convergence in Uninform

Definition 9.3 (Convergence in Uninform)

9.4 Convergence in Distribution

Definition 9.4 (Convergence in Distribution)

A sequence $\{X_n\}$ of real-valued random variables is said to **converge in distribution**, or **converge weakly**, or **converge in law** to a random variable X, if

$$\lim_{n \to \infty} F_n(x) = F(x), \tag{9.4}$$

for every number at $x \in \mathbb{R}$ which F is continuous. Here F_n and F are the cumulative distribution functions of random variables X_n and X, respectively.

Convergence in distribution is denoted as

$$X_n \xrightarrow{d} X$$
, or $X_n \Rightarrow X$. (9.5)

Note

- Convergence in Distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this chapter.
- Convergence in Distribution does not imply that the sequence of corresponding probability density functions will also converge. However, according to Scheffé's theorem, convergence of the probability density functions implies convergence in distribution.

Lemma 9.1

If $F_n \stackrel{d}{\to} F_{\infty}$, then there are random variables Y_n , $1 \le n \le \infty$, with distribution F_n so that $Y_n \stackrel{a.s.}{\to} Y_{\infty}$. (9.6)

Theorem 9.1 (Portmanteau Lemma)

 $\{X_n\}$ converges in distribution to X, if and only if any of the following statements are true,

- $P(X_n \le x) \to P(X \le x)$, for all continuity points of the distribution of X.
- $Ef(X_n) \to Ef(X)$, for all bounded, continuous (Lipschitz) functions f.
- $\liminf_{n\to\infty} P(X_n \in G) \ge P(X_\infty \in G)$, for all open sets G.
- $\limsup_{n\to\infty} P(X_n \in K) \leq P(X_\infty \in K)$, for all closed sets K.
- $\lim_{n\to\infty} P(X_n \in A) = P(X_\infty \in A)$, for all Borel sets A with $P(X_\infty \in \partial A) = 0$.

 \bigcirc

Proof

Theorem 9.2 (Continuous Mapping Theorem)

Let g be a measurable function and $D_g = \{x : g \text{ is discontinuous at } x\}$ with $P(X \in D_g) = 0$, then,

$$X_{n} \xrightarrow{d} X \Rightarrow g(X_{n}) \xrightarrow{d} g(X),$$

$$X_{n} \xrightarrow{p} X \Rightarrow g(X_{n}) \xrightarrow{p} g(X),$$

$$X_{n} \xrightarrow{a.s.} X \Rightarrow g(X_{n}) \xrightarrow{a.s.} g(X).$$

$$(9.7)$$

If in addition g is bounded, then

$$Eg(X_n) \to Eg(X).$$
 (9.8)

Proof

Theorem 9.3

If $X_n \stackrel{p}{\to} X$, then

$$X_n \stackrel{d}{\to} X,$$
 (9.9)

and that, conversely, if $X_n \stackrel{d}{\to} c$, where c is a constant, then

$$X_n \stackrel{p}{\to} c.$$
 (9.10)

Proof

1. $\forall \varepsilon > 0$, at fixed point x, since if $X_n \leq x$ and $|X_n - X| \leq \varepsilon$, then $X \leq x + \varepsilon$, then

$${X \le x + \varepsilon} \subset {X_n \le x} \cup {|X_n - X| > \varepsilon},$$

similarly, if $X \le x - \varepsilon$ and $|X_n - X| \le \varepsilon$, then $X_n \le x$, then

$${X_n \le x} \subset {X \le x - \varepsilon} \cup {|X_n - X| > \varepsilon},$$

then, by the union bound,

$$P(X \le x + \varepsilon) \le P(X_n \le x) + P(|X_n - X| > \varepsilon)$$

$$P(X_n \le x) \le P(X \le x - \varepsilon) + P(|X_n - X| > \varepsilon)$$
.

So, we got

$$P(X \le x + \varepsilon) - P(|X_n - X| > \varepsilon) \le P(X_n \le x)$$

$$\le P(X \le x - \varepsilon) + P(|X_n - X| > \varepsilon)$$

As $n \to \infty$, $P(|X_n - X| > \varepsilon) \to 0$, then

$$P(X \le x - \varepsilon) \le \lim_{n \to \infty} P(X_n \le x) \le P(X \le x + \varepsilon)$$

$$\Rightarrow F(x - \varepsilon) \le \lim_{n \to \infty} F_n(x) \le F(x + \varepsilon)$$

By the property of distribution (Theorem 8.2), as $\varepsilon \to 0$, then

$$\lim_{n\to\infty} F_n(x) = F(x),$$

which means,

$$X_n \stackrel{d}{\to} X$$
.

2. Since $X_n \stackrel{d}{\to} c$, where c is a constant, then $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} P(X_n \le c + \varepsilon) = 1 \Rightarrow \lim_{n \to \infty} P(X_n > c + \varepsilon) = 0$$
$$\lim_{n \to \infty} P(X_n \le c - \varepsilon) = 0.$$

Therefore,

$$P\left(|X_n - c| < \varepsilon\right) = 0,$$

which means

$$X_n \stackrel{p}{\to} c$$
.

Theorem 9.4 (Slutsky's Theorem)

Let X_n, Y_n be sequences of random variables. If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$, then

- 1. $X_n + Y_n \xrightarrow{d} X + c$. 2. $X_n Y_n \xrightarrow{d} c X$.
- 3. $X_n/Y_n \xrightarrow{d} X/c$, provided that c is invertible.

Proof

Note However that convergence in distribution of $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ does in general not imply convergence in distribution of $X_n + Y_n \xrightarrow{d} X + Y$ or of $X_n Y_n \xrightarrow{d} XY$.

Theorem 9.5 (Cramér-Wold Theorem)

Theorem 9.6 (Helly's Selection Theorem)

For every sequence F_n of distribution functions, there is a subsequence $F_n(k)$ and a right continuous nondecreasing function F so that $\lim_{k\to\infty} F_{n(k)}(y) = F(y)$ at all continuity points *y* of *F*.

Theorem 9.7

Every subsequential limit is the distribution function of a probability measure if and only if the sequence F_n is tight, i.e., for all $\epsilon > 0$ there is an M_{ϵ} so that

$$\limsup_{n \to \infty} 1 - F_n(M_{\epsilon}) + F_n(-M_{\epsilon}) \le \epsilon. \tag{9.11}$$

9.5 Almost Sure Convergence

Definition 9.5 (Almost Sure Convergence)

A sequence $\{X_n\}$ of real-valued random variables converges almost sure or almost everywhere or with probability 1 or strongly towards the random variable X, if

$$P\left(\lim_{n\to\infty}X_n=X\right)=1. \tag{9.12}$$

Almost sure convergence is denoted by

$$X_n \stackrel{a.s.}{\to} X.$$
 (9.13)

Note

Theorem 9.8

If
$$X_n \stackrel{a.s.}{\to} X$$
, then

$$X_n \stackrel{p}{\to} X.$$
 (9.14)

Proof

Theorem 9.9

 $X_n \stackrel{p}{\to} X$ if and only if for all subsequence $X_{n(m)}$ exists a further subsequence $X_{n(m_k)}$, such that

$$X_{n(m_k)} \stackrel{a.s.}{\to} X.$$
 (9.15)

Figure 9.1: Relations of Convergence of Random Variables

9.6 Asymptotic Notation for Random Variables

Definition 9.6

A sequence $\{A_n\}$ of real-valued random variables is of smaller order in probability than a sequence $\{B_n\}$, if

$$\frac{A_n}{B_n} \stackrel{p}{\to} 0. \tag{9.16}$$

Smaller order in probability is denoted by

$$A_n = o_p(B_n). (9.17)$$

Particularly,

$$A_n = o_p(1) \iff A_n \stackrel{p}{\to} 0. \tag{9.18}$$

Definition 9.7

A sequence $\{A_n\}$ of real-valued random variables is of smaller order than or equal to a sequence $\{B_n\}$ in probability, if

$$\forall \varepsilon > 0 \ \exists M_{\varepsilon}, \quad \lim_{n \to \infty} P\left(|A_n| \le M_{\varepsilon}|B_n|\right) \ge 1 - \varepsilon.$$
 (9.19)

Smaller order than or equal to in probability is denoted by

$$A_n = O_p(B_n). (9.20)$$

Definition 9.8

A sequence $\{A_n\}$ of real-valued random variables is of the same order as a sequence $\{B_n\}$ in probability, if

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} < M_{\varepsilon}, \quad \lim_{n \to \infty} P\left(m_{\varepsilon} < \frac{|A_n|}{|B_n|} < M_{\varepsilon}\right) \ge 1 - \varepsilon.$$
 (9.21)

Same order in probability is denoted by

$$A_n \asymp_p B_n. \tag{9.22}$$

Chapter 10 Law of Large Numbers

Introduction

- ☐ Weak Law of Large Numbers
- Uniform Law of Large Numbers
- ☐ Strong Law of Large Numbers

10.1 Weak Law of Large Numbers

Lemma 10.1

If p > 0 and $E |Z_n|^p \to 0$, then

$$Z_n \stackrel{p}{\to} 0. \tag{10.1}$$

Proof

Theorem 10.1 (Weak Law of Large Numbers with Finite Variances)

Let $X_1, X_2, ...$ be i.i.d. random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$. Suppose $S_n = X_1 + X_2 + ... + X_n$, then

$$S_n/n \xrightarrow{L^2} \mu, \quad S_n/n \xrightarrow{p} \mu.$$
 (10.2)

Proof

Theorem 10.2 (Weak Law of Large Numbers without i.i.d.)

Let $X_1, X_2, ...$ be random variables, Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu_n = ES_n$, $\sigma_n^2 = Var(S_n)$, if $\sigma_n^2/b_n^2 \to 0$, then

$$\frac{S_n - \mu_n}{b_n} \stackrel{p}{\to} 0. \tag{10.3}$$

Proof

Theorem 10.3 (Weak Law of Large Numbers for Triangular Arrays)

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables. Suppose $b_n > 0$ with $b_n \to \infty$, $\bar{X}_{n,m} = X_{n,m} I_{(X_{n,m} \le b_n)}$, if

1.
$$\sum_{m=1}^{n} P(|X_{n,m}| > b_n) \to 0$$
, and

2.
$$b_n^{-2} \sum_{m=1}^n E \bar{X}_{n,m}^2 \to 0$$
.

Suppose $S_n = X_{n,1} + \cdots + X_{n,n}$ and $a_n = \sum_{m=1}^n E \bar{X}_{n,m}$, then

$$\frac{S_n - a_n}{b_n} \stackrel{p}{\to} 0. \tag{10.4}$$

Proof

Theorem 10.4 (Weak Law of Large Numbers by Feller)

Let X_1, X_2, \dots be i.i.d. random variables with

$$\lim_{x \to 0} x P(|X_i| > x) = 0. \tag{10.5}$$

Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu_n = E(X_1 I_{(|X_1| < n)})$, then

$$S_n/n - \mu_n \stackrel{p}{\to} 0. \tag{10.6}$$

Proof

Theorem 10.5 (Weak Law of Large Numbers)

Let $X_1, X_2, ...$ be i.i.d. random variables with $E|X_i| < \infty$. Suppose $S_n = X_1 + X_2 + ... + X_n$, $\mu = EX_i$, then

$$S_n/n \stackrel{p}{\to} \mu.$$
 (10.7)

Proof

10.2 Strong Law of Large Numbers

10.2.1 Borel-Cantelli Lemmas

Lemma 10.2 (Borel-Cantelli Lemma)

If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then

$$P(A_n \ i.o.) = 0.$$
 (10.8)

Lemma 10.3 (The Second Borel-Cantelli Lemma)

If $\{A_n\}$ are independent with $\sum_{n=1}^{\infty} P(A_n) = \infty$, then,

$$P(A_n i.o.) = 1.$$
 (10.9)

Corollary 10.1

Suppose $\{A_n\}$ are independent with $P(A_n) < 1, \forall n$. If $P(\bigcup_{n=1}^{\infty} A_n) = 1$ then

$$\sum_{n=1}^{\infty} P(A_n) = \infty, \tag{10.10}$$

and hence $P(A_n i.o.) = 1$

Proof

10.2.2 Strong Law of Large Numbers

Theorem 10.6 (Strong Law of Large Numbers)

Let $X_1, \overline{X_2, \dots}$ be i.i.d. random variables with $E|X_i| < \infty$. Suppose $S_n = X_1 + X_2 + \dots + X_n$, $\mu = EX_i$, then

$$S_n/n \stackrel{a.s.}{\to} \mu.$$
 (10.11)

10.3 Uniform Law of Large Numbers

Theorem 10.7 (Uniform Law of Large Numbers)

Suppose

- 1. Θ is compact.
- 2. $g(X_i, \theta)$ is continuous at each $\theta \in \Theta$ almost sure.
- 3. $g(X_i, \theta)$ is dominated by a function $G(X_i)$, i.e. $|g(X_i, \theta)| \leq G(X_i)$.
- 4. $EG(X_i) < \infty$.

Then

$$\sup_{\theta \in \Theta} \left| n^{-1} \sum_{i=1}^{n} g(X_i, \theta) - Eg(X_i, \theta) \right| \stackrel{p}{\to} 0. \tag{10.12}$$

Proof Suppose

$$\Delta_{\delta}\left(X_{i},\theta_{0}\right)=\sup_{\theta\in\mathcal{B}\left(\theta_{0},\delta\right)}g\left(X_{i},\theta\right)-\inf_{\theta\in\mathcal{B}\left(\theta_{0},\delta\right)}g\left(X_{i},\theta\right).$$

Since (i) $\Delta_{\delta}(X_i, \theta_0) \stackrel{a.s.}{\to} 0$ by condition (2), (ii) $\Delta_{\delta}(X_i, \theta_0) \le 2 \sup_{\theta \in \Theta} |g(X_i, \theta)| \le 2G(X_i)$ by condition (3) and (4). Then

$$E\Delta_{\delta}(X_i, \theta_0) \to 0$$
, as $\delta \to 0$.

So, for all $\theta \in \Theta$ and $\varepsilon > 0$, there exists $\delta_{\varepsilon}(\theta)$ such that

$$E\left[\Delta_{\delta_{\varepsilon}(\theta)}\left(X_{i},\theta\right)\right]<\varepsilon.$$

Since Θ is compact, we can find a finite subcover, such that Θ is covered by

$$\cup_{k=1}^{K} B\left(\theta_{k}, \delta_{\varepsilon}\left(\theta_{k}\right)\right).$$

$$\begin{split} \sup_{\theta \in \Theta} \left[n^{-1} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) - Eg\left(X_{i}, \theta\right) \right] \\ &= \max_{k} \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} \left[n^{-1} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) - Eg\left(X_{i}, \theta\right) \right] \\ &\leq \max_{k} \left[n^{-1} \sum_{i=1}^{n} \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g\left(X_{i}, \theta\right) - E\inf_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g\left(X_{i}, \theta\right) \right] \end{split}$$

Since

$$E\left|\sup_{\theta\in B(\theta_k,\delta_c(\theta_k))}g\left(X_i,\theta\right)\right|\leq EG\left(X_i\right)<\infty,$$

by the Weak Law of Large Numbers (Theorem 10.5),

$$=o_{p}(1) + \max_{k} \left[E \sup_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g(X_{i}, \theta) - E \inf_{\theta \in B(\theta_{k}, \delta_{\varepsilon}(\theta_{k}))} g(X_{i}, \theta) \right]$$

$$=o_{p}(1) + \max_{k} E \Delta_{\delta_{\varepsilon}(\theta_{k})} (X_{i}, \theta_{k})$$

$$\leq o_{p}(1) + \varepsilon$$

By analogous argument,

$$\inf_{\theta \in \Theta} \left[n^{-1} \sum_{i=1}^{n} g(X_i, \theta) - Eg(X_i, \theta) \right] \ge o_p(1) - \varepsilon.$$

The desired result follows from the above equation by the fact that ε is chosen arbitrarily.

Chapter 11 Central Limit Theorems

Introduction

- ☐ Classic Central Limit Theorem
- ☐ Central Limit Theorem for independent non-identical Random Variables
- ☐ Central Limit Theorem for dependent Random Variables

11.1 Classic Central Limit Theorem

11.1.1 The De Moivre-Laplace Theorem

Lemma 11.1 (Stirling's Formula)

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \text{ as } n \to \infty.$$
 (11.1)

Proof

Lemma 11.2

If $c_j \to 0$, $a_j \to \infty$ and $a_j c_j \to \lambda$, then

$$(1+c_j)^{a_j} \to e^{\lambda}. \tag{11.2}$$

Proof

Theorem 11.1 (The De Moivre-Laplace Theorem)

Let $X_1, X_2, ...$ be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = 1/2$ and let $S_n = X_1 + \cdots + X_n$. If a < b, then as $m \to \infty$

$$P\left(a \le S_m/\sqrt{m} \le b\right) \to \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx.$$
 (11.3)

Proof If n and k and integers

$$P(S_{2n} = 2k) = \binom{2n}{n+k} 2^{-2n}$$

By lemma 11.1, we have

$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} = \frac{(2n)!}{(n+k)!(n-k)!}$$

$$\sim \frac{(2n)^{2n}}{(n+k)^{n+k}(n-k)^{n-k}} \cdot \frac{(2\pi(2n))^{1/2}}{(2\pi(n+k))^{1/2}(2\pi(n-k))^{1/2}}$$

Hence,

$$P(S_{2n} = 2k) = {2n \choose n+k} 2^{-2n}$$

$$\sim \left(1 + \frac{k}{n}\right)^{-n-k} \cdot \left(1 - \frac{k}{n}\right)^{-n+k}$$

$$\cdot (\pi n)^{-1/2} \cdot \left(1 + \frac{k}{n}\right)^{-1/2} \cdot \left(1 - \frac{k}{n}\right)^{-1/2}$$

$$= \left(1 - \frac{k^2}{n^2}\right)^{-n} \cdot \left(1 + \frac{k}{n}\right)^{-k} \cdot \left(1 - \frac{k}{n}\right)^k$$

$$\cdot (\pi n)^{-1/2} \cdot \left(1 + \frac{k}{n}\right)^{-1/2} \cdot \left(1 - \frac{k}{n}\right)^{-1/2}$$

Let $2k = x\sqrt{2n}$, i.e., $k = x\sqrt{\frac{n}{2}}$. By lemma 11.2, we have

$$\left(1 - \frac{k^2}{n^2}\right)^{-n} = \left(1 - x^2/2n\right)^{-n} \to e^{x^2/2}$$

$$\left(1 + \frac{k}{n}\right)^{-k} = \left(1 + x/\sqrt{2n}\right)^{-x\sqrt{n/2}} \to e^{-x^2/2}$$

$$\left(1 - \frac{k}{n}\right)^k = \left(1 - x/\sqrt{2n}\right)^{x\sqrt{n/2}} \to e^{-x^2/2}$$

For this choice of k, $k/n \rightarrow 0$, so

$$\left(1+\frac{k}{n}\right)^{-1/2}\cdot\left(1-\frac{k}{n}\right)^{-1/2}\to 1.$$

Putting things together, we have

$$P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$$
, as $\frac{2k}{\sqrt{2n}} \to x$.

Therefore,

$$P\left(a\sqrt{2n} \le S_{2n} \le b\sqrt{2n}\right) = \sum_{m \in [a\sqrt{2n}, b\sqrt{2n}] \cap 2\mathbb{Z}} P\left(S_{2n} = m\right)$$

Let $m = x\sqrt{2n}$, we have that this is

$$\approx \sum_{x \in [a,b] \cap \left(2\mathbb{Z}/\sqrt{2n}\right)} (2\pi)^{-1/2} e^{-x^2/2} \cdot (2/n)^{1/2}$$

where $2\mathbb{Z}/\sqrt{2n} = \left\{2z/\sqrt{2n} : z \in \mathbb{Z}\right\}$. As $n \to \infty$, the sum just shown is

$$\approx \int_{a}^{b} (2\pi)^{-1/2} e^{-x^2/2} dx.$$

To remove the restriction to even integers, observe $S_{2n+1} = S_{2n} \pm 1$.

Let m = 2n, as $m \to \infty$,

$$P(a \le S_m/\sqrt{m} \le b) \to \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx.$$

11.1.2 Classic Central Limit Theorem

Theorem 11.2 (Classic Central Limit Theorem (i.i.d.))

Let X_1, X_2, \ldots be i.i.d. with $EX_i = \mu$, $Var(X_i) = \sigma^2 < \infty$. Let $S_n = X_1 + X_2 + \ldots + X_n$, then

$$\frac{S_n - n\mu}{\sigma n^{\frac{1}{2}}} \stackrel{d}{\to} \chi,\tag{11.4}$$

where χ has the standard normal distribution.

Proof

Theorem 11.3 (The Linderberg-Feller Central Limit Theorem)

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$. If

1.
$$\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2 > 0$$
.

2.
$$\forall \epsilon > 0$$
, $\lim_{n \to \infty} \sum_{m=1}^{n} E(|X_{n,m}|^2; |X_{n,m}| > \epsilon) = 0$

Then $S_n = X_{n,1} + \cdots + X_{n,n} \xrightarrow{d} \sigma \chi \text{ as } n \to \infty.$

Theorem 11.4 (Berry-Esseen Theorem)

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution F, which has a mean μ and a finite third moment σ^3 , then there exists a constant C (independent of F),

$$|G_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \frac{E |X_1 - \mu|^3}{\sigma^3}, \quad \forall x.$$
(11.5)

Corollary 11.1

Under the assumptions of Theorem 51,

$$G_n(x) \to \Phi(x) \text{ as } n \to \infty$$

for any sequence F_n with mean ξ_n and variance σ_n^2 for which

$$\frac{E_n |X_1 - \xi_n|^3}{\sigma^3} = o(\sqrt{n})$$

and thus in particular if (72) is bounded. Here E_n denotes the expectation under F_n .

11.2 Central Limit Theorem for independent non-identical Random Variables

Theorem 11.5 (The Liapounov Central Limit Theorem)

\Diamond

11.3 Central Limit Theorem for dependent Random Variables

Chapter 12 The Delta Methods

Theorem 12.1 (Delta Method)

Let $\{X_n\}$ be a sequence of random variables with

$$\sqrt{n}\left[X_n-\theta\right] \stackrel{d}{\to} \sigma\chi,$$

where θ and σ are finite, then for any function g with the property that $g'(\theta)$ exists and is non-zero valued,

$$\sqrt{n} \left[g\left(X_n \right) - g(\theta) \right] \stackrel{d}{\to} \sigma g'(\theta) \chi.$$

 \bigcirc

Proof Under the assumption that $g'(\theta)$ is continuous.

Since, $g'(\theta)$ exists, with the first-order Taylor Approximation:

$$g(X_n) = g(\theta) + g'(\tilde{\theta})(X_n - \theta),$$

where $\tilde{\theta}$ lies between X_n and θ .

Since
$$X_n \stackrel{p}{\to} \theta$$
, and $|\tilde{\theta} - \theta| < |X_n - \theta|$, then

$$\tilde{\theta} \stackrel{p}{\to} \theta$$
,

Since $g'(\theta)$ is continuous, by Continuous Mapping Theorem (9.2),

$$g'(\tilde{\theta}) \stackrel{p}{\to} g'(\theta)$$
.

and,

$$\sqrt{n} (g(X_n) - g(\theta)) = \sqrt{n} g'(\tilde{\theta})(X_n - \theta),$$

 $\sqrt{n} [X_n - \theta] \xrightarrow{d} \sigma \chi,$

by Slutsky's Theorem (9.4),

$$\sqrt{n} \left[g\left(X_n \right) - g(\theta) \right] \stackrel{d}{\to} \sigma g'(\theta) \chi.$$

Chapter 13 Exercises for Probability Theory and Examples

13.1 Measure Theory

Exercise 13.1

- 1. Show that if $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ are σ -algebras, then $\cup_i \mathcal{F}_i$ is an algebra.
- 2. Give an example to show that $\bigcup_i \mathcal{F}_i$ need not be a σ -algebra.

Solution

1. Complement: Suppose $A \in \cup_i \mathcal{F}_i$, since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$, assume $A \in \mathcal{F}_i$. And each \mathcal{F}_i is σ -algebra,

$$A^c \in \mathcal{F}_i \subset \cup_i \mathcal{F}_i$$
.

Finite Union: Suppose $A_1, A_2 \in \cup_i \mathcal{F}_i$, since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$, assume $A_1 \in \mathcal{F}_i, A_2 \in \mathcal{F}_j$, such that,

$$A_1, A_2 \in \mathcal{F}_{\max(i,j)}$$
.

Since each \mathcal{F}_i is σ -algebra,

$$A_1 \cup A_2 \in \mathcal{F}_i \subset \cup_i \mathcal{F}_i$$
.

2. Let \mathcal{F}_i be a Borel Set of $[1, 2 - \frac{1}{i}]$. Suppose $A_i = [1, 2 - \frac{1}{i}] \in \mathcal{F}_i$, $\bigcup_i A_i = [1, 2) \notin \bigcup_i \mathcal{F}_i$.

13.2 Laws of Large Numbers

13.3 Central Limit Theorems

Exercise 13.2 Let $g \ge 0$ be continuous. If $X_n \xrightarrow{d} X_{\infty}$, then

$$\liminf_{n\to\infty} Eg(X_n) \geq Eg(X_\infty).$$

Solution Let $Y_n \stackrel{d}{=} X_n$, $1 \le n \le \infty$ with $Y_n \stackrel{a.s.}{\to} Y_\infty$ (Lemma 9.1). Since $g \ge 0$ be continuous, $g(Y_n) \stackrel{a.s.}{\to} g(Y_\infty)$ and $g(Y_n) \ge 0$ (Theorem 9.2), and the Fatou's Lemma (8.6) implies,

$$\liminf_{n \to \infty} Eg(X_n) = \liminf_{n \to \infty} Eg(Y_n) \ge E\left(\liminf_{n \to \infty} g(Y_n)\right)$$

$$= Eg(Y_\infty) = Eg(X_\infty).$$

Exercise 13.3 Suppose g, h are continuous with g(x) > 0, and $|h(x)|/g(x) \to 0$ as $|x| \to \infty$. If $F_n \stackrel{d}{\to} F$ and $\int g(x) dF_n(x) \le C < \infty$, then

$$\int h(x) dF_n(x) \to \int h(x) dF(x).$$

Solution

$$\left| \int h(x) dF_n(x) - \int h(x) dF(x) \right| = \left| \int_{x \in [-M,M]} h(x) dF_n(x) + \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \in [-M,M]} h(x) dF(x) - \int_{x \in [-M,M]} h(x) dF(x) \right|$$

$$\leq \left| \int_{x \in [-M,M]} h(x) dF_n(x) - \int_{x \in [-M,M]} h(x) dF(x) \right|$$

$$+ \left| \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \notin [-M,M]} h(x) dF(x) \right|$$

Let X_n , $1 \le n < \infty$, with distribution F_n , so that $X_n \stackrel{a.s.}{\to} X$ (Lemma 9.1).

$$\left| \int_{x \in [-M,M]} h(x) \mathrm{d}F_n(x) - \int_{x \in [-M,M]} h(x) \mathrm{d}F(x) \right| = \left| E\left(h(X_n) - h(X)\right) I_{x \in [-M,M]} \right|.$$

By Continuity Mapping Theorem (9.2), $\lim_{n\to\infty} |E(h(X_n) - h(X)) I_{x\in[-M,M]}| = 0$. Since

$$h(x)I_{x\notin[-M,M]} \le g(x) \sup_{x\notin[-M,M]} \frac{h(x)}{g(x)},$$

and by Exercise 13.2

$$Eg(X) \leq \liminf_{n \to \infty} Eg(X_n) = \liminf_{n \to \infty} \int g(x) dF_n(x) \leq C < \infty,$$

$$\left| \int_{x \notin [-M,M]} h(x) dF_n(x) - \int_{x \notin [-M,M]} h(x) dF(x) \right| = \left| E\left(h(X_n) - h(X)\right) I_{x \notin [-M,M]} \right|$$

$$\leq 2E \max(h(X_n), h(X)) I_{x \notin [-M,M]} \leq 2C \sup_{x \notin [-M,M]} \frac{h(x)}{g(x)}.$$

Hence, let $M \to \infty$,

$$\lim_{n\to\infty} \left| \int h(x) dF_n(x) - \int h(x) dF(x) \right| \le 2C \sup_{x\notin [-M,M]} \frac{h(x)}{g(x)} \to 0,$$

which means,

$$\int h(x) dF_n(x) \to \int h(x) dF(x).$$

Exercise 13.4 Let X_1, X_2, \ldots be i.i.d. with $EX_i = 0$ and $EX_i^2 = \sigma^2 \in (0, \infty)$. Then

$$\sum_{m=1}^{n} X_m / \left(\sum_{m=1}^{n} X_m^2\right)^{1/2} \stackrel{d}{\to} \chi.$$

Exercise 13.5 Show that if $|X_i| \leq M$ and $\sum_n \text{Var}(X_n) = \infty$, then

$$(S_n - E S_n) / \sqrt{\operatorname{Var}(S_n)} \xrightarrow{d} \chi.$$

Exercise 13.6 Suppose $EX_i = 0$, $EX_i^2 = 1$ and $E|X_i|^{2+\delta} \le C$ for some $0 < \delta$, $C < \infty$. Show that $S_n/\sqrt{n} \stackrel{d}{\to} \chi$.

Part VI Stochastic Process

Chapter 14 Martingales

14.1 Conditional Expectation

Definition 14.1 (Conditional Expectation)

Example 14.1

1. If $X \in \mathcal{F}$, then

$$E(X \mid \mathcal{F}) = X.$$

2. If X is independent of \mathcal{F} , then

$$E(X \mid \mathcal{F}) = E(X).$$

3. If $\Omega_1, \Omega_2, \ldots$ is a finite or infinite partition of Ω into disjoint sets, each of which has positive probability, and let $\mathcal{F} = \sigma(\Omega_1, \Omega_2, \ldots)$, then

$$E(X \mid \mathcal{F}) = \frac{E(X; \Omega_i)}{P(\Omega_i)}$$
 on Ω_i .

Property

14.2 Martingales

Let \mathcal{F}_n be a filtration, i.e., an increasing sequence of σ -fields.

Definition 14.2 (Martingale)

A sequence $\{X_n\}$ of real-valued random variables is said to be a martingale with respect to \mathcal{F}_n , if

- 1. X_n is integrable, i.e., $E|X_n| < \infty$
- 2. X_n is adapted to \mathcal{F}_n , i.e., $\forall n, X_n \in \mathcal{F}_n$
- 3. X_n satisfies the martingale condition, i.e.,

$$E(X_{n+1} \mid \mathcal{F}_n) = X_n, \quad \forall n$$
 (14.1)

submartingale, respectively.

Example 14.2 Linear Martingale

Example 14.3 Quadratic Martingale

Example 14.4 Exponential Martingale

Example 14.5 Random Walk Suppose $X_n = X_0 + \xi_1 + \cdots + \xi_n$, where X_0 is constant, ξ_m are independent and have $E\xi_m = 0$, $\sigma_m^2 = E\xi_m^2 < \infty$. Let $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ for $n \ge 1$ and take $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Show X_n is a martingale, and X_n^2 is a submartingale.

Note If in the last definition = is replaced by $\leq or \geq$, then X is said to be a supermartingale or

Proof It is obvious that,

$$E|X_n| < \infty, \quad X_n \in \mathcal{F}_n$$

Since ξ_{n+1} is independent of \mathcal{F}_n , so using the linearity of conditional expectation, (4.1.1), and Example 4.1.4,

$$E(X_{n+1} | \mathcal{F}_n) = E(X_n | \mathcal{F}_n) + E(\xi_{n+1} | \mathcal{F}_n) = X_n + E\xi_{n+1} = X_n$$

So X_n is a martingale, and Theorem 4.2.6 implies X_n^2 is a submartingale.

Note If we let $\lambda = x^2$ and apply Theorem 4.4.2 to X_n^2 , we get Kolmogorov's maximal inequality, Theorem 2.5.5:

 $P\left(\max_{1 \le m \le n} |X_m| \ge x\right) \le x^{-2} \operatorname{var}(X_n) \tag{14.2}$

Theorem 14.1 (Orthogonality of Martingale Increments)

 \bigcirc

Theorem 14.2 (Conditional Variance Formula)

 \bigcirc

Definition 14.3 (Predictable Sequence)

Definition 14.4 (Stopping Time)

Theorem 14.3 (Martingale Convergence Theorem)

 \Diamond

14.3 Doob's Inequality

Theorem 14.4 (Doob's Decomposition)

Theorem 14.5 (Doob's Inequality)

Theorem 14.6 (L^p **Maximum Inequality**)

 \Diamond

14.4 Uniform Integrability

14.5 Optional Stopping Theorems

Chapter 15 Markov Chains

15.1 Markov Chain

Definition 15.1 (Markov Chain, Simple)

A sequence $\{X_n\}$ of real-valued random variables is said to be a Markov chain, if for any states $i_0, \ldots i_{n-1}, i$, and j

$$P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots X_0 = i_0) = P(X_{n+1} = j \mid X_n = i)$$
 (15.1)

and the transition probability is

$$p(i,j) = P(X_{n+1} = j \mid X_n = i)$$
(15.2)

Example 15.1 Random Walk Suppose $X_n = X_0 + \xi_1 + \cdots + \xi_n$, where X_0 is constant, $\xi_m \in \mathbb{Z}^d$ are independent with distribution μ . Show X_n is a Markov chain with transition probability,

$$p(i,j) = \mu(\{j-i\})$$

Proof Since ξ_m are independent with distribution μ ,

$$P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots X_0 = i_0)$$

= $P(X_n + \xi_{n+1} = j \mid X_n = i) = P(\xi_{n+1} = j - i) = \mu(\{j - i\})$

Definition 15.2 (Branching Processes)

Let ξ_i^n , $i, n \ge 1$, be i.i.d. nonnegative integer-valued random variables. Define a sequence $Z_n, n \ge 0$ by $Z_0 = 1$ and

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} & Z_n > 0\\ 0 & Z_n = 0 \end{cases}$$
 (15.3)

 Z_n is called a Branching process.

Note The idea behind the definitions is that Z_n is the number of individuals in the n-th generation, and each member of the n-th generation gives birth independently to an identically distributed number of children.

Example 15.2 Branching Processes Show branching process is a Markov chain with transition probability,

$$p(i,j) = P\left(\sum_{k=1}^{i} \xi_k = j\right)$$

Proof Since ξ_k^n are independent with identically distribution,

$$P(Z_{n+1} = j \mid Z_n = i, Z_{n-1} = i_{n-1}, \dots Z_0 = i_0)$$

$$=P\left(\sum_{k=1}^{Z_n} \xi_k^{n+1} = j \mid Z_n = i\right) = P\left(\sum_{k=1}^i \xi_k = j\right)$$

Suppose (S, S) be a measurable space, which will be the state space for our Markov chain.

Definition 15.3 (Transition Probability)

A function $p: S \times S \to \mathbf{R}$ is said to be a transition probability, if

- 1. For each $x \in S$, $A \to p(x, A)$ is a probability measure on (S, S)
- 2. For each $A \in \mathcal{S}$, $x \to p(x, A)$ is a measurable function

Definition 15.4 (Markov Chain)

A sequence $\{X_n\}$ of real-valued random variables with transition probability p is said to be a Markov chain with respect to \mathcal{F}_n , if

$$P(X_{n+1} \in B \mid \mathcal{F}_n) = p(X_n, B) \tag{15.4}$$

Remark Given a transition probability p and an initial distribution μ on (S, S), the consistent set of finite dimensional distributions is

$$P(X_{j} \in B_{j}, 0 \le j \le n) = \int_{B_{0}} \mu(dx_{0}) \int_{B_{1}} p(x_{0}, dx_{1}) \cdots \int_{B_{n}} p(x_{n-1}, dx_{n}) F$$
 (15.5)

15.2 Markov Properties

Definition 15.5 (Shift Operator)

*

Theorem 15.1 (Markov Property)

Corollary 15.1 (Chapman-Kolmogorov Equation)

Theorem 15.2 (Strong Markov Property)

15.3 Recurrence and Transience

Let $T_v^0 = 0$, and for $k \ge 1$, and

$$T_y^k = \inf\left\{n > T_y^{k-1} : X_n = y\right\}$$
 (15.6)

then T_y^k is the time of the k-th return to y, where $T_y^1 > 0$, so any visit at time 0 does not count.

Let

$$\rho_{xy} = P_x \left(T_y < \infty \right) \tag{15.7}$$

and we have

$$P_x\left(T_y^k < \infty\right) = \rho_{xy}\rho_{yy}^{k-1} \tag{15.8}$$

Proof

Let

$$N(y) = \sum_{n=1}^{\infty} 1_{(X_n = y)}$$
 (15.9)

be the number of visits to y at positive times.

Definition 15.6 (Recurrent)

A state y is said to be recurrent if $\rho_{yy} = 1$.

Property The recurrent state y has the following properties

1. y is recurrent if and only if

$$E_y N(y) = \infty$$
.

2. If x is recurrent and $\rho_{xy} > 0$, then y is recurrent and $\rho_{yx} = 1$.

Definition 15.7

A state y is said to be transient if $\rho_{yy} < 1$.

Property The transient state y has the following properties

1. If y is transient, then

$$E_x N(y) < \infty, \quad \forall x.$$

Proof

$$E_x N(y) = \sum_{k=1}^{\infty} P_x (N(y) \ge k) = \sum_{k=1}^{\infty} P_x \left(T_y^k < \infty \right)$$
$$= \sum_{k=1}^{\infty} \rho_{xy} \rho_{yy}^{k-1} = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty$$

Definition 15.8 (Closed State Set)

A set C of states is said to be closed, if

$$x \in C, \rho_{xy} > 0 \Rightarrow y \in C. \tag{15.10}$$

Definition 15.9 (Irreducible State Set)

A set D of states is said to be irreducible, if

$$x, y \in D \Rightarrow \rho_{xy} > 0. \tag{15.11}$$

Theorem 15.3

Let C be a finite closed set, then

- 1. C contains a recurrent state.
- 2. If C is irreducible, then all states in C are recurrent.

Theorem 15.4

Suppose $C_x = \{y : \rho_{xy} > 0\}$, then C_x is an irreducible closed set.

Proof If $y, z \in C_x$, then $\rho_{yz} \ge \rho_{yx}\rho_{xz} > 0$. If $\rho_{yw} > 0$, then $\rho_{xw} \ge \rho_{xy}\rho_{yw} > 0$, so $w \in C_x$.

Example 15.3 A Seven-state Chain Consider the transition probability,

try to identify the states that are recurrent and those that are transient.

Proof $\{2,3\}$ are transition states, and $\{1,4,5,6,7\}$ are recurrent states.

Remark Suppose S is finite, for $x \in S$,

1. x is transient, if

$$\exists y, \rho_{xy} > 0$$
, s.t. $\rho_{yx} = 0$

2. x is recurrent, if

$$\forall y, \rho_{xy} > 0$$
, s.t. $\rho_{yx} > 0$

15.4 Stationary Measures

15.5 Asymptotic Behavior

15.6 Ergodic Theorems

Definition 15.10 (Stationary Sequence)

4

Theorem 15.5 (Ergodic Theorem)

Example 15.4

Chapter 16 Brownian Motion

Definition 16.1 (Brownian Motion (1))

A real-valued stochastic process B(t), $t \ge 0$ is said to be Brownian motion, if

1. for any $0 = t_0 \le t_1 \le ... \le t_n$ the increments

$$B(t_1) - B(t_0), \ldots, B(t_n) - B(t_{n-1})$$

are independent

2. for any $s, t \geq 0$ and Borel sets $A \in \mathbb{R}$,

$$P(B(s+t) - B(s) \in A) = \int_{A} (2\pi t)^{-1/2} \exp(-x^2/2t) dx$$
 (16.1)

3. the sample paths $t \to B(t)$ are a.s. continuous

Property For a one-dimensional Brownian motion, if B(0) = 0, then we have the following properties

1.
$$EB_t = 0$$
, $Var(B_t) = t$, $t \ge 0$.

2. Cov
$$(B_s, B_t) = s$$
, Corr $(B_s, B_t) = \sqrt{\frac{s}{t}}$, $\forall 0 \le s \le t$.

Proof

1. Since $B_t = B_t - B_0 \sim N(0, t)$, then we have

$$EB_t = 0$$
, $Var(B_t) = t$

2. Suppose $0 \le s \le t$,

$$Cov(B_s, B_t) = E[(B_s - EB_s)(B_t - EB_t)] = EB_sB_t$$

Let $B_t = (B_t - B_s) + B_s$, we have

$$EB_sB_t = E[B_s \cdot ((B_t - B_s) + B_s)]$$

=
$$E[B_s \cdot (B_t - B_s)] + EB_s^2$$

Since $B_s = B_s - B_0$ and $B_t - B_s$ are independent,

$$E\left[B_s \cdot (B_t - B_s)\right] = EB_s \cdot E\left[B_t - B_s\right] = 0$$

Thus

$$Cov(B_s, B_t) = EB_s^2 = s$$

And

$$\operatorname{Corr}(B_s, B_t) = \frac{\operatorname{Cov}(B_s, B_t)}{\sigma_{B_s} \sigma_{B_t}} = \frac{s}{\sqrt{st}} = \sqrt{\frac{s}{t}}$$

A second equivalent definition of Brownian motion are as followed,

Definition 16.2 (Brownian Motion (2))

A real-valued stochastic process B(t), $t \ge 0$, starting from 0, is said to be Brownian motion, if

- 1. B(t) is a Gaussian process^a
- 2. $\forall s, t \geq 0, EB_s = 0 \text{ and } EB_sB_t = s \wedge t$
- 3. the sample paths $t \to B(t)$ are a.s. continuous

^aGaussian process, i.e., all its finite dimensional distributions are multivariate normal.

4

16.1 Markov Properties

16.2 Martingales

Example 16.1 Quadratic Martingale Suppose B_t is a Brownian motion, then

$$B_t^2 - t$$

is a martingale.

Proof Let $B_t^2 = (B_s + B_t - B_s)^2$, we have

$$E_{x} (B_{t}^{2} | \mathcal{F}_{s}) = E_{x} (B_{s}^{2} + 2B_{s} (B_{t} - B_{s}) + (B_{t} - B_{s})^{2} | \mathcal{F}_{s})$$

$$= B_{s}^{2} + 2B_{s} E_{x} (B_{t} - B_{s} | \mathcal{F}_{s}) + E_{x} ((B_{t} - B_{s})^{2} | \mathcal{F}_{s})$$

$$= B_{s}^{2} + 0 + (t - s)$$

since $B_t - B_s$ is independent of \mathcal{F}_s and has mean 0 and variance t - s.

Example 16.2 Exponential Martingale Suppose B_t is a Brownian motion, then

$$\exp\left(\theta B_t - \left(\theta^2 t/2\right)\right)$$

is a martingale.

Proof Let $B_t = B_t - B_s + B_s$, then

$$E_x \left(\exp \left(\theta B_t \right) \mid \mathcal{F}_s \right) = \exp \left(\theta B_s \right) E \left(\exp \left(\theta \left(B_t - B_s \right) \right) \mid \mathcal{F}_s \right)$$
$$= \exp \left(\theta B_s \right) \exp \left(\theta^2 (t - s) / 2 \right)$$

since $B_t - B_s$ is independent of \mathcal{F}_s and has mean 0 and variance t - s. Thus

$$E_x \left(\exp\left(\theta B_t - \left(\theta^2 t/2\right)\right) \mid \mathcal{F}_s \right) = E_x \left(\exp\left(\theta B_t\right) \mid \mathcal{F}_s \right) \cdot \exp\left(-\left(\theta^2 t/2\right)\right)$$
$$= \exp\left(\theta B_s - \left(\theta^2 s/2\right)\right)$$

Theorem 16.1 (Lévy's Martingale Characterization)

Let B(t), $t \ge 0$, be a real-valued stochastic process and let $\mathcal{F}_t = \sigma(B_s, s \le t)$ be the filtration generated by it. Then B(t) is a Brownian motion if and only if

- 1. B(0) = 0 a.s.
- 2. the sample paths $t \to B(t)$ are continuous a.s.
- 3. B(t) is a martingale with respect to \mathcal{F}_t
- 4. $|B(t)|^2 t$ is a martingale with respect to \mathcal{F}_t

16.3 Sample Paths

Let $0 = t_0^n < t_1^n < \dots < t_n^n = T$, where $t_i^n = \frac{iT}{n}$ be a partition of the interval [0, T] into n equal parts, and

$$\Delta_i^n B = B\left(t_{i+1}^n\right) - B\left(t_i^n\right) \tag{16.2}$$

be the corresponding increments of the Brownian motion B(t).

Theorem 16.2

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\Delta_i^n B \right)^2 = T \quad in \quad L^2$$
 (16.3)

Proof Since the increments $\Delta_i^n B$ are independent and

$$E\left(\Delta_i^n B\right) = 0, \quad E\left(\left(\Delta_i^n B\right)^2\right) = \frac{T}{n}, \quad E\left(\left(\Delta_i^n B\right)^4\right) = \frac{3T^2}{n^2}$$

it follows that

$$E\left(\left[\sum_{i=0}^{n-1} (\Delta_{i}^{n} B)^{2} - T\right]^{2}\right) = E\left(\left[\sum_{i=0}^{n-1} \left((\Delta_{i}^{n} B)^{2} - \frac{T}{n}\right)\right]^{2}\right)$$

$$= \sum_{i=0}^{n-1} E\left[\left((\Delta_{i}^{n} B)^{2} - \frac{T}{n}\right)^{2}\right]$$

$$= \sum_{i=0}^{n-1} \left[E\left((\Delta_{i}^{n} B)^{4}\right) - \frac{2T}{n}E\left((\Delta_{i}^{n} B)^{2}\right) + \frac{T^{2}}{n^{2}}\right]$$

$$= \sum_{i=0}^{n-1} \left[\frac{3T^{2}}{n^{2}} - \frac{2T^{2}}{n^{2}} + \frac{T^{2}}{n^{2}}\right]$$

$$= \frac{2T^{2}}{n} \to 0, \quad n \to \infty$$

Definition 16.3 (Variation)

The variation of a function $f:[0,T]\to\mathbb{R}$ is defined to be

$$\lim_{\Delta t \to 0} \sup_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|$$
(16.4)

where $t = (t_0, t_1, \dots, t_n)$ is a partition of [0, T], i.e. $0 = t_0 < t_1 < \dots < t_n = T$, and where

$$\Delta t = \max_{i=0,\dots,n-1} |t_{i+1} - t_i| \tag{16.5}$$

Theorem 16.3

The variation of the paths of B(t) is infinite a.s..

 \Diamond

Proof Consider the sequence of partitions $t^n = (t_0^n, t_1^n, \dots, t_n^n)$ of [0, T] into n equal parts. Then

$$\sum_{i=0}^{n-1} |\Delta_i^n B|^2 \le \left(\max_{i=0,\dots,n-1} |\Delta_i^n B| \right) \sum_{i=0}^{n-1} |\Delta_i^n B|$$

Since the paths of B(t) are a.s. continuous on [0, T],

$$\lim_{n \to \infty} \left(\max_{i=0,\dots,n-1} |\Delta_i^n B| \right) = 0 \quad \text{a.s.}$$

By Theorem 16.2, we have

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} (\Delta_i^n B)^2 = T \quad \text{in} \quad L^2$$

Since every sequence of random variables convergent in L^2 has a subsequence convergent a.s. There is a subsequence $t^{n_k} = \left(t_0^{n_k}, t_1^{n_k}, \dots, t_{n_k}^{n_k}\right)$ of partitions such that

$$\lim_{k \to \infty} \sum_{i=0}^{n_k - 1} \left| \Delta_i^{n_k} B \right|^2 = T \quad \text{a.s.}$$

Since

$$\sum_{i=0}^{n_{k}-1} \left| \Delta_{i}^{n_{k}} B \right| \ge \frac{\sum_{i=0}^{n_{k}-1} \left| \Delta_{i}^{n_{k}} B \right|^{2}}{\max_{i=0,\dots,n_{k}-1} \left| \Delta_{i}^{n_{k}} B \right|}$$

hence,

$$\lim_{k \to \infty} \sum_{i=0}^{n_k - 1} \left| \Delta_i^{n_k} B \right| = \infty \quad \text{a.s.}$$

while

$$\lim_{k\to\infty} \Delta t^{n_k} = \lim_{k\to\infty} \frac{T}{n_k} = 0$$

16.4 Itô Stochastic Calculus

Definition 16.4 (Random Step Process)

Definition 16.5 (Itô Stochastic Integral)

For any T > 0 we shall denote by M_T^2 the space of all stochastic processes $f(t), t \geq 0$ such that

$$1_{[0,T)}f \in M^2$$

The Itô stochastic integral (from 0 to T) of $f \in M_T^2$ is defined by

$$I_T(f) = I\left(1_{[0,T)}f\right)$$
 (16.6)

which can be denoted by

$$\int_0^T f(t) \, \mathrm{d}B(t) \tag{16.7}$$

Property The Itô Stochastic Integral has the following properties:

1. Linearity: For $\forall f, g \in M_t^2$, $\forall \alpha, \beta \in \mathbb{R}$,

$$\int_0^t (\alpha f(r) + \beta g(r)) \, \mathrm{d}B(r) = \alpha \int_0^t f(r) \, \mathrm{d}B(r) + \beta \int_0^t g(r) \, \mathrm{d}B(r) \tag{16.8}$$

2. Isometry: For $\forall f \in M_t^2$,

$$E\left(\left|\int_0^t f(r) \, \mathrm{d}B(r)\right|^2\right) = E\left(\int_0^t |f(r)|^2 \, \mathrm{d}r\right) \tag{16.9}$$

3. Martingale Property: For $\forall f \in M_t^2$ and $\forall 0 \leq s < t$

$$E\left(\int_0^t f(r) \, \mathrm{d}B(r) \mid \mathcal{F}_s\right) = \int_0^s f(r) \, \mathrm{d}B(r) \tag{16.10}$$

Proof

Definition 16.6 (Itô Process)

A stochastic process $\xi(t)$, $t \ge 0$ is said to be an Itô process if it has a.s. continuous paths and can be represented as

$$\xi(T) = \xi(0) + \int_0^T a(t) dt + \int_0^T b(t) dB(t) \quad a.s.$$
 (16.11)

where b(t) is a process belonging to M_T^2 for all T > 0 and a(t) is a process adapted to the filtration \mathcal{F}_t such that

$$\int_0^T |a(t)| \, \mathrm{d}t < \infty \quad a.s. \tag{16.12}$$

for all $T \geq 0$. The Itô process is denoted by

$$d\xi(t) = a(t) dt + b(t) dB(t)$$
(16.13)

Remark The class of all adapted processes a(t) satisfying 16.12 for some T > 0 will be denoted by \mathcal{L}_T^1 .

Theorem 16.4 (Itô Formula)

Suppose F(t,x) is a real-valued function with continuous partial derivatives $F'_t(t,x)$, $F'_x(t,x)$ and $F''_{xx}(t,x)$ for all $t \ge 0$ and $x \in \mathbb{R}$.

1. If $\xi(t)$ be an Itô process

$$\xi(t) = \xi(0) + \int_0^t a(s) \, ds + \int_0^t b(s) \, dB(s)$$

and the process $b(t)F'_x(t,\xi(t))$ belongs to M_T^2 for all $T \ge 0$. Then $F(t,\xi(t))$ is an Itô process such that

$$dF(t,\xi(t)) = \left(F'_t(t,\xi(t)) + F'_x(t,\xi(t))a(t) + \frac{1}{2}F''_{xx}(t,\xi(t))b(t)^2\right)dt + F'_x(t,\xi(t))b(t)dB(t)$$
(16.14)

2. If $\xi(t)$ be an Brownian Motion, such that $\xi(t) = B(t)$, and the process $F'_x(t, B(t))$ belongs to M_T^2 for all $T \ge 0$. Then F(t, B(t)) is an Itô process such that

$$dF(t, B(t)) = \left(F'_t(t, B(t)) + \frac{1}{2}F''_{xx}(t, B(t))\right)dt + F'_x(t, B(t))dB(t)$$
 (16.15)

Example 16.3 Exponential Martingale Show that the exponential martingale

$$X(t) = e^{B(t)} e^{-\frac{t}{2}}$$

is an Itô process, and satisfies the equation

$$dX(t) = X(t) dB(t)$$

Proof Let $F(t, x) = e^x e^{-\frac{t}{2}}$, then we have

$$F'_t(t,x) = -\frac{1}{2}F(t,x), \quad F'_x(t,x) = F(t,x), \quad F''_{xx}(t,x) = F(t,x)$$

thus, by Itô Formula, we have

$$dX(t) = dF(t, B(t)) = \left(F'_t(t, B(t)) + \frac{1}{2}F''_{xx}(t, B(t))\right) dt + F'_x(t, B(t)) dB(t)$$

$$= \left(-\frac{1}{2}F(t, B(t)) + \frac{1}{2}F(t, B(t))\right) dt + F(t, B(t)) dB(t)$$

$$= X(t) dB(t)$$

Example 16.4

Example 16.5

Chapter 17 Exercises for Probability Theory and Examples

- 17.1 Martingales
- 17.2 Markov Chains
- 17.3 Ergodic Theorems
- **17.4 Brownian Motion**
- 17.5 Applications to Random Walk
- 17.6 Multidimensional Brownian Motion

Part VII Statistics Inference

Chapter 18 Introduction

18.1 Populations and Samples

18.2 Statistics

18.2.1 Sufficient Statistics

Definition 18.1 (Sufficient Statistics)

A statistic T is said to be sufficient for X, or for the family $\mathcal{P} = \{P_{\theta}, \theta \in \Omega\}$ of possible distributions of X, or for θ , if the conditional distribution of X given T = t is independent of θ for all t.

Theorem 18.1 (Fisher–Neyman Factorization Theorem)

If the probability density function is $p_{\theta}(x)$, then T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$p_{\theta}(x) = h(x)g_{\theta}[T(x)].$$

Proof

18.2.2 Complete Statistics

Definition 18.2 (Complete Statistics)

A statistic T is said to be complete, if Eg(T) = 0 for all θ and some function g implies that $P(g(T) = 0 \mid \theta) = 1$ for all θ .

18.3 Estimators

Definition 18.3 (Estimator)

An estimator is a real-valued function defined over the sample space, that is

$$\delta: X \to \mathbb{R}. \tag{18.1}$$

 \Diamond

It is used to estimate an estimand, θ , a real-valued function of the parameter.

Unbiasedness

Definition 18.4 (Unbiasedness)

An estimator $\hat{\theta}$ of θ is unbiased if

$$E\hat{\theta} = \theta, \quad \forall \theta \in \Theta. \tag{18.2}$$

Note

• Unbiased estimators of θ may not exist.

_ `

Example 18.1 Nonexistence of Unbiased Estimator

Consistency

Definition 18.5 (Consistency)

An estimator $\hat{\theta}_n$ of θ is consistent if

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| > \varepsilon \right) = 0, \quad \forall \varepsilon > 0,$$
(18.3)

that is,

$$\hat{\theta}_n \stackrel{p}{\to} \theta.$$
 (18.4)

Example 18.2 Consistency of Sample Moments

Note

- 1. Unbiased But Consistent
- 2. Biased But Not Consistent

Asymptotic Normality

Definition 18.6 (Asymptotic Normality)

An estimator $\hat{\theta}_n$ of θ is asymptotic normality if

$$\sqrt{n}\left(\hat{\theta} - \theta\right) \stackrel{d}{\to} N\left(0, \sigma_{\theta}^2\right).$$
 (18.5)

Efficiency

Definition 18.7 (Efficiency)

*

Robustness

Definition 18.8 (Robustness)

Chapter 19 Maximum Likelihood Estimator

Suppose that $\mathbf{X}_n = (X_1, \dots, X_n)$, where the X_i are i.i.d. with common density $p(x; \theta_0) \in \mathcal{P} = \{p(x; \theta) : \theta \in \Theta\}$.

We assume that

 θ_0 is identified in the sense that if $\theta \neq \theta_0$ and $\theta \in \Theta$, then $p(x; \theta) \neq p(x; \theta_0)$ with respect to the dominating measure μ .

For fixed $\theta \in \Theta$, the joint density of \mathbf{X}_n is equal to the product of the individual densities, i.e.,

$$p\left(\mathbf{X}_{n};\theta\right) = \prod_{i=1}^{n} p\left(x_{i};\theta\right). \tag{19.1}$$

The maximum likelihood estimate for observed \mathbf{X}_n is the value $\theta \in \Theta$ which maximizes $L(\theta; X_n) := p(\mathbf{X}_n; \theta)$, i.e.,

$$\hat{\theta}\left(\mathbf{X}_{n}\right) = \max_{\theta \in \Theta} L\left(\theta; X_{n}\right). \tag{19.2}$$

Equivalently, the MLE can be taken to be the maximum of the standardized log-likelihood,

$$\frac{l\left(\theta; \mathbf{X}_{n}\right)}{n} = \frac{\log L\left(\theta; \mathbf{X}_{n}\right)}{n} = \frac{1}{n} \sum_{i=1}^{n} \log p\left(X_{i}; \theta\right) = \frac{1}{n} \sum_{i=1}^{n} l\left(\theta; X_{i}\right). \tag{19.3}$$

Define

$$Q(\theta; \mathbf{X}_n) := \frac{1}{n} \sum_{i=1}^n l(\theta; X_i),$$

$$\hat{\theta}(\mathbf{X}_n) := \max_{\theta \in \Theta} Q(\theta; \mathbf{X}_n).$$
(19.4)

19.1 Consistency of MLE

By the Weak Law of Large Numbers (Theorem 10.5), we can get,

$$\frac{1}{n}\sum^{n}l\left(\theta;X_{i}\right)\stackrel{p}{\to}E\left[l(\theta;X)\right].\tag{19.5}$$

Suppose $Q_0(\theta) = E[l(\theta; X)]$, then we will show that $Q_0(\theta)$ is maximized at θ_0 (i.e., the truth).

Lemma 19.1

If θ_0 is identified and $E_{\theta_0}[|\log p(X;\theta)|] < \infty, \forall \theta \in \Theta$, then $Q_0(\theta)$ is uniquely maximized at $\theta = \theta_0$.

Proof

Theorem 19.1 (Consistency of MLE)

Suppose that $Q(\theta; X_n)$ is continuous in θ and there exists a function $Q_0(\theta)$ such that

- 1. $Q_0(\theta)$ is uniquely maximized at θ_0 .
- 2. Θ is compact.
- 3. $Q_0(\theta)$ is continuous in θ .
- 4. $Q(\theta; X_n)$ converges uniformly in probability to $Q_0(\theta)$.

then

$$\hat{\theta}\left(X_{n}\right) \stackrel{p}{\to} \theta_{0}.\tag{19.6}$$

Proof $\forall \varepsilon > 0$, let

$$\Theta(\epsilon) = \{\theta : \|\theta - \theta_0\| < \epsilon\}.$$

Since $\Theta(\epsilon)$ is an open set, then $\Theta \cap \Theta(\epsilon)^C$ is a compact set (Assumption 2).

Since $Q_0(\theta)$ is a continuous function (Assumption 3), then

$$\theta^* := \sup_{\theta \in \Theta \cap \Theta(\epsilon)^C} \{Q_0(\theta)\}\$$

is a achieved for a θ in the compact set.

Since θ_0 is the unique maximized, let

$$Q_0(\theta_0) - Q_0(\theta^*) = \delta > 0.$$

1. For $\theta \in \Theta \cap \Theta(\epsilon)^C$. Let $A_n = \{ \sup_{\theta \in \Theta \cap \Theta(\epsilon)^C} |Q(\theta; \mathbf{X}_n) - Q_0(\theta)| < \frac{\delta}{2} \}$, then

$$A_n \Rightarrow Q(\theta; \mathbf{X}_n) < Q_0(\theta) + \frac{\delta}{2}$$

$$\leq Q_0(\theta^*) + \frac{\delta}{2}$$

$$= Q_0(\theta_0) - \frac{\delta}{2}$$

2. For $\theta \in \Theta(\epsilon)$. Let $B_n = \{\sup_{\theta \in \Theta(\epsilon)} |Q(\theta; \boldsymbol{X}_n) - Q_0(\theta)| < \frac{\delta}{2} \}$, then

$$B_n \Rightarrow Q(\theta; \boldsymbol{X}_n) > Q_0(\theta) - \frac{\delta}{2}, \forall \theta \in \Theta(\epsilon)$$

By Assumption 1,

$$Q(\theta_0; \boldsymbol{X}_n) > Q_0(\theta_0) - \frac{\delta}{2}$$

If both A_n and B_n hold, then

$$\hat{\theta} \in \Theta(\epsilon)$$
.

By Assumption 4, we can concluded that $P(A_n \cap B_n) \to 1$, so

$$P(\hat{\theta} \in \Theta(\epsilon)) \to 1$$
,

which means,

$$\hat{\theta}\left(\mathbf{X}_{n}\right) \stackrel{p}{\to} \theta_{0}.$$

- 19.2 Asymptotic Normality of MLE
- 19.3 Efficiency of MLE

Chapter 20 Minimum-Variance Unbiased Estimator

Definition 20.1 (UMVU Estimators)

An unbiased estimator $\delta(\mathbf{X})$ of $g(\theta)$ is the uniform minimum variance unbiased (UMVU) estimator of $g(\theta)$ if

$$Var_{\theta}\delta(X) \le Var_{\theta}\delta'(X), \quad \forall \theta \in \Theta,$$
 (20.1)

where $\delta'(X)$ is any other unbiased estimator of $g(\theta)$.

\$

Note If there exists an unbiased estimator of g, the estimand g will be called U-estimable.

1. If $T(\mathbf{X})$ is a complete sufficient statistic, estimator $\delta(\mathbf{X})$ that only depends on $T(\mathbf{X})$, then for any U-estimable function $g(\theta)$ with

$$E_{\theta}\delta(T(\mathbf{X})) = g(\theta), \quad \forall \theta \in \Theta,$$
 (20.2)

hence, $\delta(T(\mathbf{X}))$ is the unique UMVU estimator of $g(\theta)$.

2. If $T(\mathbf{X})$ is a complete sufficient statistic and $\delta(\mathbf{X})$ is any unbiased estimator of $g(\theta)$, then the UMVU estimator of $g(\theta)$ can be obtained by

$$E\left[\delta(\mathbf{X}) \mid T(\mathbf{X})\right]. \tag{20.3}$$

Example 20.1 Estimating Polynomials of a Normal Variance Let X_1, \ldots, X_n be distributed with joint density

$$\frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i} (x_i - \xi)^2\right]. \tag{20.4}$$

Discussing the UMVU estimators of ξ^r , σ^r , ξ/σ .

Solution

1. σ is known:

Since $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the complete sufficient statistic of X_i , and

$$E(\bar{X}) = \xi$$

then the UMVU estimator of ξ is \bar{X} .

Therefore, the UMVU estimator of ξ^r is \bar{X}^r and the UMVU estimator of ξ/σ is \bar{X}/σ .

2. \(\xi \) is known:

Since $s^r = \sum_i (x_i - \xi)^r$ is the complete sufficient statistic of X_i .

Assume

$$E\left[\frac{s^r}{\sigma^r}\right] = \frac{1}{K_{n,r}},$$

where $K_{n,r}$ is a constant depends on n, r.

Since $s^2/\sigma^2 \sim Ga(n/2, 1/2) = \chi^2(n)$, then

$$E\left[\frac{s^r}{\sigma^r}\right] = E\left[\left(\frac{s^2}{\sigma^2}\right)^{\frac{r}{2}}\right] = \int_0^\infty x^{\frac{r}{2}} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} dx = \frac{\Gamma\left(\frac{n+r}{2}\right)}{\Gamma(\frac{n}{2})} \cdot 2^{\frac{r}{2}}.$$

therefore,

$$K_{n,r} = \frac{\Gamma(\frac{n}{2})}{2^{\frac{r}{2}} \cdot \Gamma\left(\frac{n+r}{2}\right)}.$$

Hence,

$$E[s^r K_{n,r}] = \sigma^r \text{ and } E[\xi s^{-1} K_{n,-1}] = \xi/\sigma,$$

which means the UMVU estimator of σ^r is $s^r K_{n,r}$ and the UMVU estimator of ξ/σ is $\xi s^{-1} K_{n,-1}$.

3. Both ξ and σ is unknown:

Since (\bar{X}, s_x^r) are the complete sufficient statistic of X_i , where $s_x^2 = \sum_i (x_i - \bar{X})^r$.

Since $s_x^2/\sigma^2 \sim \chi^2(n-1)$, then

$$E\left[\frac{s_x^r}{\sigma^r}\right] = \frac{1}{K_{n-1,r}}.$$

Hence,

$$E\left[s_x^r K_{n-1,r}\right] = \sigma^r,$$

which means the UMVU estimator of σ^r is $s_x^r K_{n-1,r}$, and

$$E(\bar{X}^r) = \xi^r$$
,

which means the UMVU estimator of ξ^r is \bar{X}^r .

Since \bar{X} and s_x^r are independent, then

$$E[\bar{X}s_x^{-1}K_{n-1,-1}] = \xi/\sigma$$

which means the UMVU estimator of ξ/σ is $\bar{X}s_x^{-1}K_{n-1,-1}$.

Example 20.2 Let X_1, \ldots, X_n be i.i.d sample from $U(\theta_1 - \theta_2, \theta_1 + \theta_2)$, where $\theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}^+$. Discussing the UMVU estimators of θ_1, θ_2 .

Solution Let $X_{(i)}$ be the i-th order statistic of X_i , then $(X_{(1)}, X_{(n)})$ is the complete and sufficient statistic for (θ_1, θ_2) . Thus it suffices to find a function $(X_{(1)}, X_{(n)})$, which is unbiased of (θ_1, θ_2) .

Let

$$Y_i = \frac{X_i - (\theta_1 - \theta_2)}{2\theta_2} \sim U(0, 1),$$

and

$$Y_{(i)} = \frac{X_{(i)} - (\theta_1 - \theta_2)}{2\theta_2},$$

be the i-th order statistic of Y_i , then we got

$$E[X_{(1)}] = 2\theta_2 E[Y_{(1)}] + (\theta_1 - \theta_2)$$

$$= 2\theta_2 \int_0^1 ny (1 - y)^{n-1} dy + (\theta_1 - \theta_2)$$

$$= \theta_1 - \frac{3n + 1}{n + 1} \theta_2$$

$$E[X_{(n)}] = 2\theta_2 E[Y_{(n)}] + (\theta_1 - \theta_2)$$

$$= 2\theta_2 \int_0^1 ny^n dy + (\theta_1 - \theta_2)$$

$$= \theta_1 + \frac{n - 1}{n + 1} \theta_2$$

Thus,

$$\theta_1 = E\left[\frac{n-1}{4n}X_{(1)} + \frac{3n+1}{4n}X_{(n)}\right],$$

$$\theta_2 = E\left[-\frac{n+1}{4n}X_{(1)} + \frac{n+1}{4n}X_{(n)}\right],$$

which means the UMVU estimator is

$$\hat{\theta}_1 = \frac{n-1}{4n} X_{(1)} + \frac{3n+1}{4n} X_{(n)}, \quad \hat{\theta}_2 = -\frac{n+1}{4n} X_{(1)} + \frac{n+1}{4n} X_{(n)}.$$

Chapter 21 Bayes Estimator

We shall look for some estimators that make the risk function $R(\theta, \delta)$ small in some overall sense. There are two way to solve it: minimize the average risk, minimize the maximum risk.

This chapter will discuss the first method, also known as, Bayes Estimator.

Definition 21.1 (Bayes Estimator)

The Bayes Estimator δ with respect to Λ is minimizing the Bayes Risk of δ

$$r(\Lambda, \delta) = \int R(\theta, \delta) d\Lambda(\theta)$$
 (21.1)

where Λ is the probability distribution.

In Bayesian arguments, it is important to keep track of which variables are being conditioned on. Hence, the notations are as followed:

- The density of X will be denoted by $X \sim f(x \mid \theta)$.
- The prior distribution will be denoted by $\Pi \sim \pi (\theta \mid \lambda)$ or $\Lambda \sim \gamma (\lambda)$, where λ is another parameter (sometimes called a hyperparameter).
- The posterior distribution, which calculate the conditional distributions as that of θ given x and λ , or λ given x, which is denoted by $\Pi \sim \pi (\theta \mid x, \lambda)$ or $\Lambda \sim \gamma (\lambda \mid x)$, that is

$$\pi (\theta \mid x, \lambda) = \frac{f(x \mid \theta) \pi (\theta \mid \lambda)}{m(x \mid \lambda)},$$
(21.2)

where marginal distributions $m(x \mid \lambda) = \int f(x \mid \theta) \pi(\theta \mid \lambda) d\theta$.

Theorem 21.1

Let Θ have distribution Λ , and given $\Theta = \theta$, let X have distribution P_{θ} . Suppose, the following assumptions hold for the problem of estimating $g(\Theta)$ with non-negative loss function $L(\theta, d)$,

- There exists an estimator δ_0 with finite risk.
- For almost all x, there exists a value $\delta_{\Lambda}(x)$ minimizing

$$E\{L[\Theta, \delta(x)] \mid X = x\}. \tag{21.3}$$

Then, $\delta_{\Lambda}(x)$ *is a Bayes Estimator.*

Note Improper prior

Corollary 21.1

Suppose the assumptions of Theorem 21.1 hold.

1. If
$$L(\theta, d) = [d - g(\theta)]^2$$
, then

$$\delta_{\Lambda}(x) = E[g(\Theta) \mid x]. \tag{21.4}$$

2. If
$$L(\theta, d) = w(\theta) [d - g(\theta)]^2$$
, then

$$\delta_{\Lambda}(x) = \frac{E[w(\theta) g(\Theta) \mid x]}{E[w(\theta) \mid x]}.$$
 (21.5)

- 3. If $L(\theta, d) = |d g(\theta)|$, then $\delta_{\Lambda}(x)$ is any median of the conditional distribution of Θ given x.
- **4**. *If*

$$L(\theta, d) = \begin{cases} 0 \text{ when } |d - \theta| \le c \\ 1 \text{ when } |d - \theta| > c \end{cases},$$

then $\delta_{\Lambda}(x)$ is the midpoint of the interval I of length 2c which maxmizes $P(\Theta \in I \mid x)$.

Proof

Theorem 21.2

Necessiary condition for Bayes Estimator

 \Diamond

Methodologies have been developed to deal with the difficulty which sometimes incorporate frequentist measures to assess the choic of Λ .

- Empirical Bayes.
- Hierarchical Bayes.
- Robust Bayes.
- Objective Bayes.

21.1 Single-Prior Bayes

The Single-Prior Bayes model in a general form as

$$X \mid \theta \sim f(x \mid \theta),$$

$$\Theta \mid \gamma \sim \pi (\theta \mid \lambda),$$
(21.6)

where we assume that the functional form of the prior and the value of λ is known (we will write it as $\gamma = \gamma_0$).

Given a loss function $L(\theta, d)$, we would then determine the estimator that minimizes

$$\int L(\theta, d(x)) \pi(\theta \mid x) d\theta, \qquad (21.7)$$

where π ($\theta \mid x$) is posterior distribution given by

$$\pi (\theta \mid x) = \frac{f(x \mid \theta) \pi (\theta \mid \gamma_0)}{\int f(x \mid \theta) \pi (\theta \mid \gamma_0) d\theta}.$$

In general, this Bayes estimator under squared error loss is given by

$$E(\Theta \mid x) = \frac{\int \theta f(x \mid \theta) \pi(\theta \mid \gamma_0) d\theta}{\int f(x \mid \theta) \pi(\theta \mid \gamma_0) d\theta}.$$
 (21.8)

Example 21.1 Consider

$$X_i \stackrel{\text{i.i.d}}{\sim} N(\mu, \Gamma^{-1}), \quad i = 1, 2, \dots, n$$

 $\mu \sim N(0, 1),$
 $\Gamma \sim \text{Gamma}(2, 1),$

calculate the Single-Prior Bayes estimator under squared error loss.

Solution

$$p(X \mid \mu, \Gamma) = \Gamma^{n} (2\pi)^{-\frac{n}{2}} \exp \left[-2\Gamma^{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \right],$$
$$p(\mu) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\mu^{2}}{2} \right),$$
$$p(\Gamma) = \frac{1}{\Gamma(2)} \Gamma \exp (-\Gamma).$$

Therefore,

$$h(X, \mu, \Gamma) = C \Gamma^n \exp \left[-2\Gamma^2 \sum_{i=1}^n (x_i - \mu)^2 \right] \exp \left(-\frac{\mu^2}{2} \right) \Gamma \exp \left(-\Gamma \right),$$

where $C = \frac{(2\pi)^{-\frac{n+1}{2}}}{\Gamma(2)}$.

For μ , we have

$$\pi (\mu \mid X, \Gamma) = \frac{h(X, \mu, \Gamma)}{p(\mu \mid X)}$$

For exponential families

Theorem 21.3

21.2 Hierarchical Bayes

In a Hierarchical Bayes model, rather than specifying the prior distribution as a single function, we specify it in a **hierarchy**. Thus, the Hierarchical Bayes model in a general form as

$$X \mid \theta \sim f(x \mid \theta),$$

 $\Theta \mid \gamma \sim \pi(\theta \mid \lambda),$
 $\Gamma \sim \psi(\gamma),$
(21.9)

where we assume that ψ (·) is known and not dependent on any other unknown hyperparameters.

\$

Note We can continue this hierarchical modeling and add more stages to the model, but this is not ofthen done in practice.

Given a loss function $L(\theta, d)$, we would then determine the estimator that minimizes

$$\int L(\theta, d(x)) \pi(\theta \mid x) d\theta, \qquad (21.10)$$

where π ($\theta \mid x$) is posterior distribution given by

$$\pi (\theta \mid x) = \frac{\int f(x \mid \theta) \pi (\theta \mid \gamma) \psi (\gamma) d\gamma}{\int \int f(x \mid \theta) \pi (\theta \mid \gamma) \psi (\gamma) d\theta d\gamma}.$$

Note The posterior distribution can also be writed as

$$\pi (\theta \mid x) = \int \pi (\theta \mid x, \gamma) \pi (\gamma \mid x) d\gamma,$$

where $\pi(\gamma \mid x)$ is the posterior distribution of Γ , unconditional on θ . The equation 21.10 can be

writed as

$$\int L(\theta, d(x)) \pi(\theta \mid x) d\theta = \int \left[\int L(\theta, d(x)) \pi(\theta \mid x, \gamma) d\theta \right] \pi(\gamma \mid x) d\gamma.$$

which shows that the Hierarchical Bayes estimator can be thought of as a mixture of Single-Prior estimators.

Example 21.2 Poisson Hierarchy Consider

$$X_i \mid \lambda \stackrel{\text{i.i.d}}{\sim} \text{Poisson}(\lambda), \quad i = 1, 2 \dots, n$$

 $\lambda \mid b \sim \text{Gamma}(a, b), \text{ a known},$
 $\frac{1}{b} \sim \text{Gamma}(k, \tau),$
(21.11)

calculate the Hierarchical Bayes estimator under squared error loss.

Theorem 21.4

For the Hierarchical Bayes model (21.9),

$$K\left[\pi\left(\lambda\mid x\right),\psi\left(\lambda\right)\right] < K\left[\pi\left(\theta\mid x\right),\pi\left(\theta\right)\right],\tag{21.12}$$

where K is the Kullback-Leibler information for discrimination between two densities.

 \circ

Proof

Note

21.3 Empirical Bayes

21.4 Bayes Prediction

Chapter 22 Hypothesis Testing

Part VIII Convex Optimization

Chapter 23 Convex Sets

23.1 Affine and Convex Sets

23.1.1 Affine Sets

Definition 23.1 (Affine Set)

A nonempty set C is said to be **affine set**, if

$$\forall x_1, x_2 \in C, \theta \in \mathbf{R}, \theta x_1 + (1 - \theta)x_2 \in C.$$

23.1.2 Convex Sets

Definition 23.2 (Convex Set)

A nonempty set C is said to be convex set, if

$$\forall x_1, x_2 \in C, \theta \in [0, 1], \theta x_1 + (1 - \theta)x_2 \in C.$$

Definition 23.3 (Convex Hull)

The **convex hull** of said to be set C, denoted by conv C is a set of all convex combinations of points in C,

conv
$$C = \{\theta_1 x_1 + \ldots + \theta_k x_k | x_i \in C; \theta_i \ge 0, i = 1, \ldots, k; \theta_1 + \ldots + \theta_k = 1\}.$$

Note The convex hull conv C is always convex, which is the minimal convex set that contains C.

23.1.3 Cones

Definition 23.4 (Cone)

A nonempty set C is said to be **cone**, if

$$\forall x \in C, \theta \ge 0, \theta x \in C.$$

Definition 23.5 (Convex Cone)

A nonempty set C is said to be convex cone, if

$$\forall x_1, x_2 \in C, \theta_1, \theta_2 \ge 0, \theta_1 x_1 + \theta_2 x_2 \in C.$$

23.2 Some Important Examples

Definition 23.6 (Hyperplane)

A hyperplane is defined to be

$$\{x|a^Tx=b\},\$$

where $a \in \mathbf{R}^n$, $a \neq 0, b \in \mathbf{R}$.

Definition 23.7 (Halfspace)

A hyperplane is defined to be

$$\{x|a^Tx \leq b\},\$$

where $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$.

Definition 23.8 ((Euclidean) Ball)

A (Euclidean) ball in \mathbb{R}^n with center x_c and radius r is defined to be

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\},$$

where r > 0.

Definition 23.9 (Ellipsoid)

A Ellipsoid in \mathbb{R}^n with center x_c is defined to be

$$\mathcal{E} = \{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\} = \{x_c + Au | ||u_2|| \le 1\},\$$

where $P \in \mathbf{S}_{++}^n$ (symmetric positive definite).

23.3 Generalized Inequalities

23.3.1 Definition of Generalized Inequalities

Definition 23.10 (Proper Cone)

A cone $K \subseteq \mathbf{R}^n$ is said to be proper cone, if

- K is convex.
- K is closed.
- *K* is solid (nonempty interior).
- *K* is pointed (contains no line).

Definition 23.11 (Generalized Inequalities)

The partial ordering on \mathbb{R}^n defined by proper cone K, if

$$y - x \in K, \tag{23.1}$$

which can be denoted by

$$x \leq_K y \text{ or } y \succeq_K x. \tag{23.2}$$

The strict partial ordering on \mathbb{R}^n defined by proper cone K, if

$$y - x \in int K, \tag{23.3}$$

which can be denoted by

$$x \prec_K y \text{ or } y \succ_K x. \tag{23.4}$$

Note When $K = \mathbf{R}_+$, the partial ordering \leq_K is the usual ordering \leq on \mathbf{R} , and the strict partial ordering \prec_K is the usual strict ordering < on \mathbf{R} .

23.3.2 Properties of Generalized Inequalities

Theorem 23.1 (Properties of Generalized Inequalities)

A generalized inequality \leq_K has the following properties:

- Preserved under addition:
- Transitive:
- Preserved under nonnegative scaling:
- Reflexive:
- Antisymmetric:
- Preserved under limits:

A strict generalized inequality \prec_K has the following properties:

Chapter 24 Convex Optimization Problems

24.1 Generalized Inequality Constraints

Definition 24.1 (With Generalized Inequality Constraints)

A convex optimization problem with generalized inequality constraints is defined to be

where $f_0: \mathbf{R}^n \to \mathbf{R}$, $K_i \in \mathbf{R}^{k_i}$ are proper conves, and $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ are K_i -convex.

24.1.1 Conic Form Problems

Definition 24.2 (Conic Form Problem)

A conic form problem is defined to be

min
$$c^T x$$

s.t. $Fx + g \leq_K 0$
 $Ax = b$ (24.2)

24.1.2 Semidefinite Programming

24.2 Vector Optimization

Chapter 25 Unconstrained Minimization

25.1 Definition of Unconstrained Minimization

Definition 25.1 (Unconstrained Minimization Problem)

The unconstrained minimization problem is defined to be

$$\min_{\mathbf{x}} f(\mathbf{x}) \tag{25.1}$$

where $f: \mathbf{R}^n \to \mathbf{R}$ is convex and twice continuously differentiable.

Assume the problem is solvable, i.e., there exists an optimal point x^* , such that,

$$f(\mathbf{x}^*) = \inf_{\mathbf{x}} f(\mathbf{x})$$

and denote it by p^* . Since f is differentiable and convex, the point x^* be the optimal. if and only if

$$\nabla f(\mathbf{x}^*) = 0 \tag{25.2}$$

Solving (25.1) is equal to finding the solution of (25.2), thus (25.1) can be solved by analytic solution of (25.2) in a few cases, but usually can be solved by an iterative algorithm, i.e.,

$$\exists \mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \dots \in \text{dom } f, \quad \text{s.t. } f(\mathbf{x}^{(k)}) \to p^*, \quad \text{as} \quad k \to \infty$$

where the initial point $\mathbf{x}^{(0)}$ must lie in dom f, and the sublevel set

$$S = \left\{ \mathbf{x} \in \text{dom } f \mid f(\mathbf{x}) \le f(\mathbf{x}^0) \right\}$$

must be closed.

Remark

Example 25.1 Quadratic Minimization The general convex quadratic minimization problem has the form

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}' \mathbf{P} \mathbf{x} + \mathbf{q}' \mathbf{x} + r \tag{25.3}$$

where $\mathbf{P} \in \mathbb{S}^n_+$, $\mathbf{q} \in \mathbb{R}^n$, and $r \in \mathbb{R}$.

The optimality condition is

$$\mathbf{P}\mathbf{x}^* + \mathbf{q} = \mathbf{0} \tag{25.4}$$

which is a set of linear equations.

- 1. If P > 0, exists a unique solution $x^* = -P^{-1}q$.
- 2. If **P** is not positive definite, any solution of (25.4) is optimal for (25.3). Since $P \not\succeq 0$, i.e.,

$$\exists \mathbf{v}$$
. s.t. $\mathbf{v}'\mathbf{P}\mathbf{v} < 0$

Let $\mathbf{x} = t\mathbf{v}$, we have

$$f(\mathbf{x}) = t^2 (\mathbf{v}' \mathbf{P} \mathbf{v}/2) + t (\mathbf{q}' \mathbf{v}) + r$$

which converges to $-\infty$ as $t \to \infty$.

3. If (25.4) does not have a solution, then (25.3) is unbounded.

Since (25.4) does not have a solution, i.e.,

$$\mathbf{q} \notin \mathcal{R}(\mathbf{P})$$

Let

$$\mathbf{q} = \tilde{\mathbf{q}} + \mathbf{v}$$

where $\tilde{\mathbf{q}}$ is the Euclidean projection of \mathbf{q} onto $\mathcal{R}(\mathbf{P})$, and $\mathbf{v} = \mathbf{q} - \tilde{\mathbf{q}}$. And \mathbf{v} is nonzero and orthogonal to $\mathcal{R}(\mathbf{P})$, i.e., $\mathbf{v}'\mathbf{P}\mathbf{v} = 0$. If we take $\mathbf{x} = t\mathbf{v}$, we have

$$f(\mathbf{x}) = t\mathbf{q}'\mathbf{v} + r = t(\tilde{\mathbf{q}} + \mathbf{v})'\mathbf{v} + r = t(\mathbf{v}'\mathbf{v}) + r$$

which is unbounded below.

Remark The least-squares problem is a special case of quadratic minimization, that,

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \mathbf{x}' (\mathbf{A}'\mathbf{A}) \mathbf{x} - 2 (\mathbf{A}'\mathbf{b})' \mathbf{x} + \mathbf{b}'\mathbf{b}$$
 (25.5)

The optimality condition is

$$\mathbf{A}'\mathbf{A}\mathbf{x}^* = \mathbf{A}'\mathbf{b} \tag{25.6}$$

are called the normal equations of the least-squares problem.

Example 25.2 Unconstrained Geometric Programming The unconstrained geometric program in convex form

$$\min_{\mathbf{x}} f(\mathbf{x}) = \log \left(\sum_{i=1}^{m} \exp \left(\mathbf{a}_{i}' \mathbf{x} + b_{i} \right) \right)$$
 (25.7)

The optimality condition is

$$\nabla f\left(x^{*}\right) = \frac{\sum_{i=1}^{m} \exp\left(\mathbf{a}_{i}^{\prime} \mathbf{x}^{*} + b_{i}\right) \mathbf{a}_{i}}{\sum_{j=1}^{m} \exp\left(\mathbf{a}_{j}^{\prime} \mathbf{x}^{*} + b_{j}\right)} = \mathbf{0}$$
(25.8)

which has no analytical solution, so we must resort to an iterative algorithm. For this problem, dom $f = \mathbb{R}^n$, so any point can be chosen as the initial point $\mathbf{x}^{(0)}$.

Example 25.3 Analytic Center of Linear Inequalities

Definition 25.2 (Strong Convexity)

4

25.2 General Descent Method

25.3 Gradient Descent Method

25.4 Steepest Descent Method

25.5 Newton's Method

Chapter 26 Exercises for Convex Optimization

26.1 Convex Sets

Exercise 26.1 Solution set of a quadratic inequality Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbf{R}^n | x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

1. Show that C is convex if $A \succeq 0$.

Solution

1. We have to show that $\theta x + (1 - \theta)y \in C$ for all $\theta \in [0, 1]$ and $x, y \in C$. $(\theta x + (1 - \theta)y)^T A(\theta x + (1 - \theta)y) + b^T (\theta x + (1 - \theta)y) + c$ $= \theta^2 x^T A x + \theta (1 - \theta)(y^T A x + x^T A y) + (1 - \theta)^2 y^T A y + \theta b^T x + (1 - \theta)b^T y + c$ $= \theta^2 (x^T A x + b^T x + c) + (1 - \theta)^2 (y^T A y + b^T y + c) - \theta^2 (b^T x + c)$ $- (1 - \theta)^2 (b^T y + c) + \theta (1 - \theta)(y^T A x + x^T A y) + \theta b^T x + (1 - \theta)b^T y + c$ $\leq -\theta^2 (b^T x + c) - (1 - \theta)^2 (b^T y + c) + \theta (1 - \theta)(y^T A x + x^T A y)$ $+ \theta b^T x + (1 - \theta)b^T y + c$ $= \theta (1 - \theta)[(b^T x + c) + (b^T y + c) + x^T A x + y^T A y]$ $< \theta (1 - \theta)(-x^T A x - y^T A y + x^T A x + y^T A y) < 0$

Therefore, $\theta x + (1 - \theta)y \in C$, which shows that C is convex if A > 0.

Part IX Generalized Linear Model

Chapter 27 Generalized Linear Model

27.1 Exponential Family

Definition 27.1 (Exponential Family)

An exponential family of probability distributions as those distributions whose density is defined to be

$$f(y \mid \theta, \phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right]$$
 (27.1)

Property The exponential family have the following properties,

$$E(Y) = b'(\theta) \quad Var(Y) = b''(\theta)a(\phi).$$

Proof

Table 27.1: Common Distributions of Exponential Family

Distribution	Parameter(s)	θ	φ	$b(\theta)$	$a(\phi)$	$c(y,\phi)$	E(Y)	Var(Y)
Normal	$N(\mu, \sigma^2)$	μ	σ^2	$\frac{\theta^2}{2}$	φ	$-\frac{1}{2}\left[\frac{y^2}{\phi} + \log(2\pi\phi)\right]$	θ	φ
Bernoulli	Bern(p)	$\log\left(\frac{p}{1-p}\right)$	1	$\log (1 + e^{\theta})$	1	0	$\frac{e^{\theta}}{1+e^{\theta}}$	$\frac{e^{\theta}}{(1+e^{\theta})^2}$
Poisson	$P(\mu)$	$\log(\mu)$	1	$\mathrm{e}^{ heta}$	1	$-\log(y!)$	e^{θ}	e^{θ}

27.2 Model Assumption

Suppose the response Y has a distribution in the exponential family

$$f(y \mid \theta, \phi) = \exp \left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right]$$

with link function g, such that,

$$E(Y \mid \mathbf{X}) = \mu = g^{-1}(\eta), \quad \eta = \mathbf{X}'\boldsymbol{\beta}$$
(27.2)

where the link function provides the relationship between the linear predictor and the mean of the distribution function. If $\eta = \theta$, the link function is called **canonical link function**.

§

Note A generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for the response variable to have an error distribution other than the normal distribution.

Table 27.2: Commonly Used Link Functions

Distribution	Support of Distribution	Link Function $g(\mu)$	Mean Function $g^{-1}(\eta)$
Normal	real: $(-\infty, +\infty)$	μ	η
Bernoulli	integer: {0, 1}	$\log\left(\frac{\mu}{1-\mu}\right)$	$\frac{1}{1+\exp(-\eta)}$
Poisson	integer: 0, 1, 2,	$\log(\mu)$	$\exp\left(\eta ight)$

27.3 Model Estimation

27.3.1 Maximum Likelihood

Suppose the log-likelihood function be

$$\ell\left(\boldsymbol{\beta}\mid\mathbf{X},y\right) = \log\left[f\left(y\mid\theta,\phi\right)\right] = \log\left[f\left(y\mid g^{-1}(\eta),\phi\right)\right] \tag{27.3}$$

where g is the canonical link function and $\eta = \mathbf{X}'\boldsymbol{\beta}$.

Let

$$U(\boldsymbol{\beta}) = \frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}, \quad A(\boldsymbol{\beta}) = -\frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}' \partial \boldsymbol{\beta}}$$

be the score function and observed information matrix.

If $\hat{\beta}$ is the maximum likelihood estimate, then

$$U\left(\hat{\pmb{\beta}}\right) = \mathbf{0}$$

By mean value theorem,

$$U\left(\hat{\boldsymbol{\beta}}\right) - U\left(\boldsymbol{\beta}_{0}\right) = \frac{\partial U\left(\boldsymbol{\beta}^{*}\right)}{\partial \boldsymbol{\beta}} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}\right)$$
$$\Rightarrow -U\left(\boldsymbol{\beta}_{0}\right) = -A\left(\boldsymbol{\beta}^{*}\right) \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}\right)$$

where $\boldsymbol{\beta}^* \in \left[\boldsymbol{\beta}_0, \hat{\boldsymbol{\beta}}\right]$. Thus,

$$\hat{\boldsymbol{\beta}} = \boldsymbol{\beta}_0 + A^{-1} \left(\boldsymbol{\beta}^* \right) U \left(\boldsymbol{\beta}_0 \right)$$

Suppose $\hat{\beta}_t$, $\hat{\beta}_{t+1}$ be the maximum likelihood estimate at the t-th and (t+1)-th iterations, respectively. Two algorithms can be used to obtain the maximum likelihood estimate $\hat{\beta}$.

1. Newton-Raphson Method:

$$\hat{\boldsymbol{\beta}}_{t+1} = \hat{\boldsymbol{\beta}}_t + A^{-1} \left(\hat{\boldsymbol{\beta}}_t \right) U \left(\hat{\boldsymbol{\beta}}_t \right) \Leftrightarrow A \left(\hat{\boldsymbol{\beta}}_t \right) \hat{\boldsymbol{\beta}}_{t+1} = A \left(\hat{\boldsymbol{\beta}}_t \right) \hat{\boldsymbol{\beta}}_t + U \left(\hat{\boldsymbol{\beta}}_t \right)$$
(27.4)

where

$$U(\boldsymbol{\beta}) = \frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}$$
 (27.5)

is the score function and

$$A\left(\boldsymbol{\beta}\right) = -\frac{\partial^{2}\ell\left(\boldsymbol{\beta}\right)}{\partial\boldsymbol{\beta}'\partial\boldsymbol{\beta}}\tag{27.6}$$

is the observed information matrix.

2. Fisher's Scoring Method:

$$\hat{\boldsymbol{\beta}}_{t+1} = \hat{\boldsymbol{\beta}}_t + I^{-1} \left(\hat{\boldsymbol{\beta}}_t \right) U \left(\hat{\boldsymbol{\beta}}_t \right) \Leftrightarrow I \left(\hat{\boldsymbol{\beta}}_t \right) \hat{\boldsymbol{\beta}}_{t+1} = I \left(\hat{\boldsymbol{\beta}}_t \right) \hat{\boldsymbol{\beta}}_t + U \left(\hat{\boldsymbol{\beta}}_t \right)$$
(27.7)

where $U(\boldsymbol{\beta})$ is the score function and

$$I(\boldsymbol{\beta}) = E[A(\boldsymbol{\beta})] = -E\left[\frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}' \partial \boldsymbol{\beta}}\right]$$
(27.8)

is the Fisher information matrix.

27.3.2 Bayesian Methods

Chapter 28 Binary Data

28.1 Model Assumption

Suppose

$$Y \sim b(m, \pi), \quad i = 1, 2, \dots, n$$
 (28.1)

with link function

$$\eta = g(\pi) = \log\left(\frac{\pi}{1-\pi}\right) = \mathbf{x}'\boldsymbol{\beta}$$
(28.2)

Remark

28.2 Model Estimation

The likelihood function is

$$f(\mathbf{\pi} \mid \mathbf{X}, \mathbf{y}) = \prod_{i=1}^{n} {m_i \choose y_i} \pi_i^{y_i} (1 - \pi_i)^{m_i - y_i}$$
 (28.3)

and the log-likelihood function is

$$\ell\left(\boldsymbol{\beta}\right) = \log\left[f\left(\boldsymbol{\pi} \mid \mathbf{X}, \mathbf{y}\right)\right] = \sum_{i=1}^{n} \ell_{i}\left(\boldsymbol{\beta}\right)$$

$$= \sum_{i=1}^{n} \left\{\log\left[\binom{m_{i}}{y_{i}}\right] + y_{i}\log\left(\pi_{i}\right) + (m_{i} - y_{i})\log\left(1 - \pi_{i}\right)\right\}$$

$$= \sum_{i=1}^{n} \left[y_{i}\log\left(\frac{\pi_{i}}{1 - \pi_{i}}\right) + m_{i}\log\left(1 - \pi_{i}\right)\right] + \sum_{i=1}^{n}\log\left[\binom{m_{i}}{y_{i}}\right]$$
(28.4)

where

$$\pi_i = \frac{\exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right)}{1 + \exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right)}$$
(28.5)

Thus,

$$U_{r}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_{i} - m_{i}\pi_{i}) x_{ir}$$

$$I_{sr}(\boldsymbol{\beta}) = \sum_{i=1}^{n} m_{i}\pi_{i} (1 - \pi_{i}) x_{is}x_{ir}$$

Chapter 29 Polytomous Data

Definition 29.1 (Polytomous Data)

A response is polytomous, if the response of an individual or item in a study is **restricted to one** of a fixed set of possible values.

Remark There are two types of scales, pure scales and compound scales ¹. For pure scales, there are several types:

- 1. **Nominal Scale**: a scale used for labeling variables into distinct classifications and does not involve a quantitative value or order.
- 2. **Ordinal Scale**: a variable measurement scale used to simply depict the order of variables and not the difference between each of the variables.
- 3. **Interval Scale**: a numerical scale where the order of the variables is known as well as the difference between these variables.

29.1 Model Assumption

Let the category probabilities given x_i be

$$\pi_j(\mathbf{x}_i) = P\left(Y = y_j \mid \mathbf{X} = \mathbf{x}_i\right) \tag{29.1}$$

and the cumulative probabilities given x_i be

$$r_{j}(\mathbf{x}_{i}) = P\left(Y \leq \sum_{r \leq j} y_{r} \mid \mathbf{X} = \mathbf{x}_{i}\right)$$
(29.2)

where i = 1, 2, ..., n, j = 1, 2, ..., k.

Here,s multinomial distribution is in many ways the most natural distribution to consider in the context of a polytomous response variable. The denisty function of the multinomial distribution is,

$$P(Y_1 = y_1, \dots, Y_k = y_k) = \begin{cases} \frac{m!}{y_1! \dots y_k!} \pi_1^{y_1} \cdot \dots \cdot \pi_k^{y_k}, & \sum_{i=1}^k y_i = m \\ 0 & \text{otherwise} \end{cases}$$

for non-negative integers y_1, \ldots, y_k .

As for the link function, we have

Nominal Scale

$$\pi_{j}\left(\mathbf{x}_{i}\right) = \frac{\exp\left[\eta_{j}\left(\mathbf{x}_{i}\right)\right]}{\sum_{j=1}^{k} \exp\left[\eta_{j}\left(\mathbf{x}_{i}\right)\right]}$$
(29.3)

where $\eta_j(\mathbf{x}_i) = \eta_j(\mathbf{x}_0) + (\mathbf{x}_i - \mathbf{x}_0)' \boldsymbol{\beta}_j + \alpha_i$.

Ordinal Scale

¹A bivariate responses with one response ordinal and the other continuous is an example of compound scales.

1. Logistic Scale:

$$\log \left[\frac{r_j(\mathbf{x}_i)}{1 - r_j(\mathbf{x}_i)} \right] = \theta_j - \mathbf{x}_i' \boldsymbol{\beta}$$
 (29.4)

2. Complementary Log-Log Scale:

$$\log \left\{ -\log \left[1 - r_j \left(\mathbf{x}_i \right) \right] \right\} = \theta_j - \mathbf{x}_i' \boldsymbol{\beta}$$
 (29.5)

Interval Scale Suppose the j-th category exits a cardinal number or score, s_j , where the difference between scores is a measure of distance between or separation of categories.

1.

$$\log\left[\frac{r_{j}\left(\mathbf{x}_{i}\right)}{1-r_{j}\left(\mathbf{x}_{i}\right)}\right] = \varsigma_{0} + \varsigma_{1}\left(\frac{s_{j}+s_{j+1}}{2}\right) - \mathbf{x}_{i}'\boldsymbol{\beta} - \mathbf{x}_{i}'\boldsymbol{\xi}\left(c_{j}-\bar{c}\right)$$
(29.6)

where $c_j = \frac{s_j + s_{j+1}}{2}$ or $c_j = \text{logit}\left(\frac{s_j + s_{j+1}}{2}\right)$.

2.

$$\pi_{j}\left(\mathbf{x}_{i}\right) = \frac{\exp\left[\eta_{j}\left(\mathbf{x}_{i}\right)\right]}{\sum_{j=1}^{k} \exp\left[\eta_{j}\left(\mathbf{x}_{i}\right)\right]}$$
(29.7)

where $\eta_{j}(\mathbf{x}_{i}) = \eta_{j} + (\mathbf{x}_{i}'\boldsymbol{\beta}) s_{j} + \alpha_{i}$.

3.

$$\sum_{j=1}^{k} \pi_{j} (\mathbf{x}_{i}) s_{j} = \mathbf{x}_{i} \boldsymbol{\beta}$$
 (29.8)

29.2 Model Estimation

Chapter 30 Count Data

30.1 Model Assumption

Departures from the idealized Poisson model are to be expected. Therefore, we avoid the assumption of Poisson variation and assume only that

$$Var(Y) = \sigma^2 E(Y)$$
(30.1)

with link function

$$\log\left(\mu\right) = \eta = \mathbf{x}'\boldsymbol{\beta} \tag{30.2}$$

where $\mu = E(Y \mid \mathbf{X})$.

30.2 Model Estimation

For the response in the Poisson distribution, i.e.

$$P(Y = y \mid \mu) = \frac{e^{-\mu}\mu^{y}}{y!}$$

and the log-likelihood function is

$$\ell\left(\boldsymbol{\beta}\right) \propto \sum_{i=1}^{n} \left(y_i \log\left(\mu_i\right) - \mu_i\right) \tag{30.3}$$

where $\mu_i = E(Y \mid \mathbf{X} = \mathbf{x}_i)$.

Chapter 31 Survival Data

31.1 Survival Data

Definition 31.1 (Survival Function)

The survival function^a is defined to be

$$S(t) = P(T > t) = \int_{t}^{\infty} f(u) du = 1 - F(t).$$
 (31.1)

where t is some specified time, T is a random variable denoting the time of death.

^aThe survival function is the probability that the time of death is later than some specified time t.

Definition 31.2 (Lifetime Distribution Function)

The lifetime distribution function is defined to be

$$F(t) = P(T \le t) \tag{31.2}$$

If F is differentiable then the derivative, which is the density function of the lifetime distribution^a, is defined to be

$$f(t) = F'(t) = \frac{\mathrm{d}}{\mathrm{d}t}F(t) \tag{31.3}$$

^aThe function f is sometimes called the event density; it is the rate of death or failure events per unit time.

Definition 31.3 (Hazard Function)

The Hazard function^a is defined to be

$$\lambda(t) = \lim_{\varepsilon \to 0^+} \left[\frac{P(t \le T < t + \varepsilon \mid T \ge t)}{\varepsilon} \right] = \frac{f(t)}{S(t)}$$
(31.4)

^aThe Hazard function is the event rate at time t conditional on survival until time t or later (that is, $T \ge t$).

Property The relationship among $\lambda(t)$, f(t), S(t),

1.

$$\lambda(t) = -\frac{\mathrm{d}\log[S(t)]}{\mathrm{d}t} \tag{31.5}$$

2.

$$S(t) = \exp\left[-\int_0^t \lambda(x) \, \mathrm{d}x\right] \tag{31.6}$$

3.

$$f(t) = \lambda(t) \exp\left[-\int_0^t \lambda(x) \, \mathrm{d}x\right] \tag{31.7}$$

Proof

Example 31.1 Constant Hazards Suppose

$$\lambda(t) = \lambda \tag{31.8}$$

then

$$S(t) = \exp\left[-\int_0^t \lambda(x) \, \mathrm{d}x\right] = \exp\left[-\int_0^t \lambda \, \mathrm{d}x\right] = \exp(-\lambda t)$$
$$f(t) = \lambda(t) \exp\left[-\int_0^t \lambda(x) \, \mathrm{d}x\right] = \lambda \exp\left[-\int_0^t \lambda \, \mathrm{d}x\right] = \lambda \exp(-\lambda t)$$

which is the exponential distribution.

Example 31.2 Bathtub Hazards

$$\lambda(t) = \alpha t + \frac{\beta}{1 + \gamma t} \tag{31.9}$$

31.2 Estimation of Survival Function

Parametric Approach Suppose $t_1, t_2, ..., t_n$ are failure times corresponding to censor indicators $\delta_1, \delta_2, ..., \delta_n$. The likelihood function is

$$f(\boldsymbol{\theta} \mid \mathbf{t}, \boldsymbol{\delta}) = \prod_{i=1}^{n} [f(t_i)]^{\delta_i} [S(t_i)]^{1-\delta_i}$$

$$= \prod_{i=1}^{n} \left(\frac{f(t_i)}{S(t_i)}\right)^{\delta_i} S(t_i)$$

$$= \prod_{i=1}^{n} [\lambda(t_i)]^{\delta_i} S(t_i)$$
(31.10)

where $\lambda(t)$, S(t) depends on some parameter θ .

Example 31.3 Suppose *T* have exponential density, that,

$$f(t) = \lambda e^{-\lambda t}, \quad S(t) = e^{-\lambda t}$$

Thus,

$$\ell(\lambda) = \log[\ell(\theta)] = \sum_{i=1}^{n} [\delta_i \log(\lambda) - \lambda t_i]$$
$$= \left(\sum_{i=1}^{n} \delta_i\right) \log(\lambda) - \lambda \left(\sum_{i=1}^{n} t_i\right)$$

Hence,

$$\frac{\partial \ell(\lambda)}{\partial \lambda} = \frac{\sum_{i=1}^{n} \delta_i}{\lambda} - \sum_{i=1}^{n} t_i = 0 \Rightarrow \hat{\lambda} = \frac{\sum_{i=1}^{n} \delta_i}{\sum_{i=1}^{n} t_i}$$

Nonparametric Approach Then, for $t_{(k)} \le t < t_{(k+1)}$,

$$\hat{S}(t) = \prod_{j=1}^{k} \left(\frac{n_j - d_j}{n_j} \right)$$

$$= \left(1 - \frac{d_1}{n_1} \right) \left(1 - \frac{d_2}{n_2} \right) \cdots \left(1 - \frac{d_k}{n_k} \right)$$

$$\approx \left[1 - \hat{\lambda} (t_1) \right] \left[1 - \hat{\lambda} (t_2) \right] \cdots \left[1 - \hat{\lambda} (t_k) \right]$$
(31.11)

where $\hat{S}(t)$ is referred to as Kaplan-Meier estimate.

31.3 Proportional Hazards Model

Suppose $t_{(1)} < t_{(2)} < \ldots < t_{(m)}$ be death times. The number of individuals who alive just before time $t_{(j)}$, including those who are about to die at this time, will be denoted n_j , for $j = 1, 2, \ldots, m$, and d_j will denote the number who die at this time. Thus, we have

31.3.1 Model Assumption

Let t_1, t_2, \ldots, t_n be the failure times associated with censor indicator $\delta_1, \delta_2, \ldots, \delta_n$ and the covariate vectors \mathbf{x}_i .

Further, let $t_{(1)} \le t_{(2)} \le \ldots \le t_{(m)}$ be the ordered uncensored failure times corresponding to $\delta_{(j)} = 1, j = 1, 2, \ldots, m$, and $x_{(1)}, x_{(2)}, \ldots, x_{(m)}$ are the associated covariate vectors. Note (j) represents the label for the individual who dies at $t_{(j)}$.

The proportional hazards model specifying the hazard at time t for an individual whose covariate vector is \mathbf{x} is given by

$$\lambda(t) = \lambda_0(t) e^{\mathbf{x}'\boldsymbol{\beta}} \tag{31.12}$$

where $\lambda_0(t)$ is referred to as the baseline hazard function.

31.3.2 Model Estimation

The exact likelihood function is

$$\ell\left[\beta, \lambda_0(t)\right] = \prod_{i=1}^n \left[\lambda_i\left(t_i\right)\right]^{\delta_i} S\left(t_i\right)$$
(31.13)

depends on both the nonparametric function $\lambda_0(t)$ and the parameter $\boldsymbol{\beta}$. Thus, it might be difficult to estimate $\lambda_0(t)$ and $\boldsymbol{\beta}$ simultaneously.

The partial likelihood function is

$$\ell_p(\boldsymbol{\beta}) = \prod_{j=1}^m \frac{e^{\mathbf{x}'_{(j)}\boldsymbol{\beta}}}{\sum_{l \in R(t_{(j)})} e^{\mathbf{x}'_{l}\boldsymbol{\beta}}} = \prod_{i=1}^n \left[\frac{e^{\mathbf{x}'_{i}\boldsymbol{\beta}}}{\sum_{l \in R(t_i)} e^{\mathbf{x}'_{l}\boldsymbol{\beta}}} \right]^{\delta_i}$$
(31.14)

where R(t) is the set of individuals who are alive and uncensored at a time just prior to t_i , which is called the rik set.

Chapter 32 Modified Likelihood

Seek a modified likelihood function that depends on as few of the nuisance parameters as possible while sacrificing as little information as possible.

32.1 Marginal Likelihood

32.2 Conditional Likelihood

Let $\theta = (\varphi, \lambda)$, where φ is the parameter vector of interest and λ is a vector of nuisance parameters. The conditional likelihood can be obtained as follows:

- 1. Find the complete sufficient statistic S_{λ} , respectively for λ .
- 2. Construct the conditional log-likelihood

$$\ell_c = \log\left(f_{Y|S_{\lambda}}\right) \tag{32.1}$$

where $f_{Y|S_{\lambda}}$ is the conditional distribution of the response Y given S_{λ} .

Note Two cases might occur, that, for fixed φ_0 , $S_{\lambda}(\varphi_0)$ depends on φ_0 ; or $S_{\lambda}(\varphi_0) = S_{\lambda}$ is independent of φ_0 .

- 1. Independent:
- 2. Dependent:

Example 32.1

Conditional Likelihood for Exponential Family Suppose that the log-likelihood for $\theta = (\varphi, \lambda)$ can be written in the exponential family form

$$\ell\left(\boldsymbol{\theta},\mathbf{y}\right) = \boldsymbol{\theta}'\mathbf{s} - b\left(\boldsymbol{\theta}\right) \tag{32.2}$$

Also, suppose $\ell(\boldsymbol{\theta}, \mathbf{y})$ has a decomposition of the form

$$\ell(\boldsymbol{\theta}, \mathbf{y}) = \boldsymbol{\varphi}' \mathbf{s}_1 + \boldsymbol{\lambda}' \mathbf{s}_2 - b(\boldsymbol{\varphi}, \boldsymbol{\lambda})$$
 (32.3)

Remark The above decomposition can be achieved only if φ is a linear function of θ . The choice of nuisance parameter λ is arbitrary and the inferences regarding φ should be unaffected by the parameterization chosen for λ .

The conditional likelihood of the data \mathbf{Y} given \mathbf{s}_2 is

$$\ell\left(\boldsymbol{\varphi}\mid\mathbf{s}_{2}\right) = \boldsymbol{\varphi}'\mathbf{s}_{1} - b^{*}\left(\boldsymbol{\varphi},\boldsymbol{\lambda}\right) \tag{32.4}$$

which is independent of the nuisance parameter and may be used for inferences regarding φ .

Example 32.2 $Y_1 \sim P(\mu_1)$, $Y_2 \sim P(\mu_2)$ are independent. Suppose $\varphi = \log\left(\frac{\mu_2}{\mu_1}\right) = \log(\mu_2) - \log(\mu_1)$ is the parameter of interest and the nuisance parameter is

1.
$$\lambda_1 = \log(\mu_1)$$
.

2.

Then, give the conditional log-likelihood for different nuisance parameter.

Solution

1. The log-likelihood function in the form of (φ, λ) is

$$\ell(\phi, \lambda_1) \propto \log \left[e^{-(\mu_1 + \mu_2)} \mu_1^{y_1} \mu_2^{y_2} \right]$$

$$= -(\mu_1 + \mu_2) + y_1 \log(\mu_1) + y_2 \log(\mu_2)$$

$$= -\mu_1 \left(1 + \frac{\mu_2}{\mu_1} \right) + y_1 \log(\mu_1) + y_2 \log(\mu_1)$$

$$- y_2 \left[\log(\mu_1) - \log(\mu_2) \right]$$

$$= -e^{\lambda_1} (1 + e^{\varphi}) + (y_1 + y_2) \lambda_1 - y_2 \varphi$$

$$= s_1 \varphi + s_2 \lambda_1 - b(\varphi, \lambda_1)$$

where $s_1 = -y_2, s_2 = y_1 + y_2, b(\varphi, \lambda_1) = e^{\lambda_1} (1 + e^{\varphi}).$

Then, the conditional distribution of Y_1 , Y_2 given $S_2 = Y_1 + Y_2$ is $b\left(S_2, \frac{\mu_1}{\mu_1 + \mu_2}\right)$, thus,

$$\ell (\varphi \mid S_2 = s_2) \propto y_1 \log \left(\frac{\mu_1}{\mu_1 + \mu_2}\right) + y_2 \log \left(\frac{\mu_2}{\mu_1 + \mu_2}\right)$$

$$= y_1 \log \left(\frac{\mu_1}{\mu_1 + \mu_2}\right) + y_2 \log \left(\frac{\mu_1}{\mu_1 + \mu_2}\right)$$

$$- y_2 \left[\log \left(\frac{\mu_1}{\mu_1 + \mu_2}\right) - \log \left(\frac{\mu_2}{\mu_1 + \mu_2}\right)\right]$$

$$= (y_1 + y_2) \log \left(\frac{1}{1 + e^{\varphi}}\right) - y_2 \varphi$$

$$= s_1 \varphi - b^* (\varphi, s_2)$$

where $b^*(\varphi, s_2) = -s_2 \log \left(\frac{1}{1+\varphi^{-1}}\right)$.

32.3 Profile Likelihood

32.4 Quasi Likelihood

Part X Machine Learning

Chapter 33 Kernel Methods

Definition 33.1 (Positive Definite Kernel)

Let \mathcal{X} be a set, a function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive definite kernel on \mathcal{X} iff it is

1. symmetric, that is,

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$
 (33.1)

2. positive definite, that is,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) \ge 0, \tag{33.2}$$

holds for any $x_1, \ldots, x_n \in \mathcal{X}$, given $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$.

Theorem 33.1 (Morse-Aronszajn's Theorem)

For any set \mathcal{X} , suppose $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite, then there is a unique RKHS $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel K.

Proof

1. How to build a valid pre-RKHS \mathcal{H}_0 ?

Consider the vector space $\mathcal{H}_0 \subset \mathcal{R}^{\mathcal{X}}$ spanned by the functions $\{K(\cdot, \mathbf{x})\}_{\mathbf{x} \in \mathcal{X}}$. For any $f, g \in \mathcal{H}_0$, suppose

$$f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i), \quad g = \sum_{j=1}^{n} b_j K(\cdot, \mathbf{y}_j)$$

and let the inner product of \mathcal{H}_0 be

$$\langle f, g \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j K(\mathbf{x}_i, \mathbf{y}_j)$$
(33.3)

Let $\mathbf{x} \in \mathcal{X}$,

$$\langle f, K(\cdot, \mathbf{x}) \rangle_{\mathcal{H}_0} = \sum_{i=1}^{m} a_i K(\mathbf{x}, \mathbf{x}_i) = f(\mathbf{x})$$

And, we also have

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^m a_i g(\mathbf{x}_i) = \sum_{j=1}^n b_j f(\mathbf{y}_j)$$

Suppose

$$f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i), \quad g = \sum_{j=1}^{n} b_j K(\cdot, \mathbf{y}_j), \quad h = \sum_{k=1}^{p} c_k K(\cdot, \mathbf{z}_k)$$

(a). Linearity: For any
$$\alpha, \beta \in \mathbb{R}$$
, $\langle \alpha f + \beta g, h \rangle_{\mathcal{H}_0} = \alpha \langle f, h \rangle_{\mathcal{H}_0} + \beta \langle g, h \rangle_{\mathcal{H}_0}$.

$$\langle \alpha f + \beta g, h \rangle_{\mathcal{H}_{0}} = \left[\alpha \sum_{i=1}^{m} a_{i} K (\cdot, \mathbf{x}_{i}) + \beta \sum_{j=1}^{n} b_{j} K (\cdot, \mathbf{y}_{j}) \right] \cdot \sum_{k=1}^{p} c_{k} K (\cdot, \mathbf{z}_{k})$$

$$= \alpha \sum_{i=1}^{m} \sum_{k=1}^{p} a_{i} c_{k} K (\mathbf{x}_{i}, \mathbf{z}_{k}) + \beta \sum_{j=1}^{n} \sum_{k=1}^{p} b_{j} c_{k} K (\mathbf{y}_{j}, \mathbf{z}_{k})$$

$$= \alpha \langle f, h \rangle_{\mathcal{H}_{0}} + \beta \langle g, h \rangle_{\mathcal{H}_{0}}$$

(b). Conjugate Symmetry: $\langle f, g \rangle_{\mathcal{H}_0} = \langle g, f \rangle_{\mathcal{H}_0}$.

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^m \sum_{j=1}^n a_i b_j K\left(\mathbf{x}_i, \mathbf{y}_j\right) = \sum_{j=1}^n \sum_{i=1}^m b_j a_i K\left(\mathbf{y}_j, \mathbf{x}_i\right)$$
$$= \langle g, f \rangle_{\mathcal{H}_0}$$

(c). Positive Definiteness: $\langle f, f \rangle_{\mathcal{H}_0} \ge 0$ and $\langle f, f \rangle_{\mathcal{H}_0} = 0$ if and only if f = 0. By positive definiteness of K, we have:

$$\langle f, f \rangle_{\mathcal{H}_0} = \|f\|_{\mathcal{H}_0}^2 = \sum_{i=1}^m \sum_{j=1}^m a_i a_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) \ge 0$$

As for, $\langle f, f \rangle_{\mathcal{H}_0} = 0$ if and only if f = 0, we have,

" \Rightarrow " If f = 0, that is $f = \sum_{i=1}^{m} a_i K(\cdot, \mathbf{x}_i) = 0$, we have

$$\langle f, f \rangle_{\mathcal{H}_0} = \sum_{i=1}^m a_i f = 0$$

" \Leftarrow " For $\forall x \in \mathcal{X}$, by Cauchy-Schwarwz Inequality, we have,

$$|f(\mathbf{x})| = |\langle f, K(\cdot, \mathbf{x}) \rangle_{\mathcal{H}_0}| \le ||f||_{\mathcal{H}_0} \cdot K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}}$$

therefore, if $||f||_{\mathcal{H}_0} = 0$, then f = 0

Hence, definition in equation 33.3 is a valid inner product, which is a valid pre-RKHS \mathcal{H}_0 .

Example 33.1 Common Kernels

1.
$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right), \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

Proof

1. It is obvious that $K(\mathbf{x}, \mathbf{y})$ is symmetric, we only need to show $K(\mathbf{x}, \mathbf{y})$ is positive definite.

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$
$$= \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{x}\|^2\right) \cdot \exp\left(\frac{1}{\sigma^2}\langle\mathbf{x}, \mathbf{y}\rangle\right) \cdot \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{y}\|^2\right)$$

By the Taylor expansion of the exponential function, that

$$\exp\left(\frac{x}{\sigma^2}\right) = \sum_{n=0}^{+\infty} \left\{ \frac{x^n}{\sigma^{2n} \cdot n!} \right\}$$

Hence,

$$\exp\left(\frac{1}{\sigma^2}\langle \mathbf{x}, \mathbf{y}\rangle\right) = \sum_{n=0}^{+\infty} \left\{ \frac{\langle \mathbf{x}, \mathbf{y}\rangle^n}{\sigma^{2n} \cdot n!} \right\}$$

By the Multinomial Theorem, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle^{n} = \left(\sum_{i=1}^{d} x_{i} y_{i} \right)^{n} = \sum_{k_{1} + k_{2} + \dots + k_{d} = n} \left[\binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{d} (x_{i} y_{i})^{k_{i}} \right]$$

$$= \sum_{k_{1} + k_{2} + \dots + k_{d} = n} \left[\binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{\frac{1}{2}} x_{i}^{k_{i}} \cdot \binom{n}{k_{1}, k_{2}, \dots, k_{d}} \prod_{i=1}^{\frac{1}{2}} y_{i}^{k_{i}} \right]$$

Therefore,

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right) \cdot \exp\left(-\frac{\|\mathbf{y}\|^2}{2\sigma^2}\right) \cdot \sum_{n=0}^{+\infty} \left\{\frac{\langle \mathbf{x}, \mathbf{y} \rangle^n}{\sigma^{2n} \cdot n!}\right\}$$
$$= \sum_{n=0}^{+\infty} \frac{\exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}} \cdot \frac{\exp\left(-\frac{\|\mathbf{y}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}} \cdot \langle \mathbf{x}, \mathbf{y} \rangle^n$$

Let

$$c_{\sigma,n}\left(\mathbf{x}\right) = \frac{\exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right)}{\sigma^n \cdot \sqrt{n!}}, \quad f_{n,k}\left(\mathbf{x}\right) = \begin{pmatrix} n \\ k_1, k_2, \dots, k_d \end{pmatrix}^{\frac{1}{2}} \prod_{i=1}^{d} x_i^{k_i}$$

then,

$$K(\mathbf{x}, \mathbf{y}) = \sum_{n=0}^{+\infty} \sum_{k_1 + k_2 + \dots + k_d = n} c_{\sigma, n}(\mathbf{x}) f_{n, \mathbf{k}}(\mathbf{x}) \cdot c_{\sigma, n}(\mathbf{y}) f_{n, \mathbf{k}}(\mathbf{y})$$
$$= \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$$

where $\Phi(\mathbf{x})_{\sigma,n,\mathbf{k}} = c_{\sigma,n}(\mathbf{x}) f_{n,\mathbf{k}}(\mathbf{x})$.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \left\langle \Phi\left(\mathbf{x}_i\right), \Phi\left(\mathbf{x}_j\right) \right\rangle$$
$$= \left\langle \sum_{i=1}^{n} c_i \Phi\left(\mathbf{x}_i\right), \sum_{i=1}^{n} c_i \Phi\left(\mathbf{x}_i\right) \right\rangle \ge 0$$

for any $x_1, \ldots, x_n \in \mathcal{X}$, given $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$, i.e., $K(\mathbf{x}, \mathbf{y})$ is positive definite.

Chapter 34 Support Vector Machine

Theorem 34.1

The minimizer of

$$\arg\min_{g} E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

is the sign of $f(x) = \log \frac{p(x)}{1 - p(x)}$, i.e.,

$$sgn\left[p(x)-\frac{1}{2}\right]$$

where $sgn(\cdot)$ is the sign function.

Proof For the hinge loss function, that,

$$E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

$$= [1 - g(x)]_{+} P\left(Y = 1 \mid X = x\right) + [1 + g(x)]_{+} P\left(Y = -1 \mid X = x\right)$$

$$= [1 - g(x)]_{+} p(x) + [1 + g(x)]_{+} [1 - p(x)]$$

$$= \begin{cases} [1 - g(x)] p(x), & g(x) < -1 \\ 1 + [1 - 2p(x)] g(x), & -1 \le g(x) \le 1 \\ [1 + g(x)] [1 - p(x)], & g(x) > 1 \end{cases}$$

When g(x) < -1,

$$\arg\min_{g} E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\} = \arg\min_{g} \left[1 - g(x) \right] p(x) = -1$$

When g(x) > 1,

$$\arg\min_{g} E\left\{\left[1-Yg(X)\right]_{+}\mid X=x\right\} = \arg\min_{g}\left[1+g(x)\right]\left[1-p(x)\right] = 1$$

When $-1 \le g(x) \le 1$,

$$\arg\min_{g} E\left\{ [1 - Yg(X)]_{+} \mid X = x \right\}$$

$$= \arg\min_{g} \left\{ 1 + [1 - 2p(x)]g(x) \right\}$$

$$= \begin{cases} -1, & p(x) < \frac{1}{2} \\ 0, & p(x) = \frac{1}{2} \\ 1, & p(x) > \frac{1}{2} \end{cases}$$

Thus, for the $g(x) \in [-1, 1]$ the minimizer of $\arg\min_g E\left\{[1 - Yg(X)]_+ \mid X = x\right\}$ is the sign of $p(x) - \frac{1}{2}$, that is the sign of $f(x) = \log\frac{p(x)}{1 - p(x)}$

Chapter 35 Linear Discriminant Analysis

Chapter 36 K-Nearest Neighbor

Chapter 37 Decision Tree

Part XI Random Matrix Theory

Chapter 38 Wishart and Laguerre Ensembles

Suppose $\{X\}$ be a sequence of random vectors defined in \mathbb{R}^n , such that

$$E(\mathbf{X}) = 0, \quad E(\mathbf{X} \otimes \mathbf{X}) = I_n$$

and let $(X_i)_{1 \le i \le n}$ be the components of the random vector **X**.

Suppose $\{m_n\}$ be a sequence defined in \mathbb{N} such that

$$0<\underline{\rho}:=\liminf_{n\to\infty}\frac{n}{m_n}\leq\limsup_{n\to\infty}\frac{n}{m_n}=:\bar{\rho}<\infty$$

Let $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(m_n)}$ be i.i.d. copies of \mathbf{X} , and \mathbb{X} be the $m_n \times n$ random matrix with i.i.d. rows $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(m_n)}$, and their empirical covariance matrix is

$$\widehat{\mathbf{\Sigma}} := \frac{1}{m_n} \sum_{k=1}^{m_n} \mathbf{X}^{(k)} \otimes \mathbf{X}^{(k)} = \frac{1}{m_n} \mathbb{X}' \mathbb{X}$$

which is a $n \times n$ symmetric positive semidefinite random matrix, and

$$E\left(\widehat{\mathbf{\Sigma}}\right) = \mathbb{E}\left(\mathbf{X} \otimes \mathbf{X}\right) = \mathbf{I}_n$$

and $\widehat{\Sigma}$ is also called Wishart matrix.

For convenience, we define the random matrix

$$\mathbf{A} := m_n \widehat{\mathbf{\Sigma}} = \mathbb{X}' \mathbb{X} = \sum_{k=1}^{m_n} \mathbf{X}^{(k)} \otimes \mathbf{X}^{(k)}$$

\$

Note The eigenvalues of **A** are squares of the singular values of \mathbb{X} , in particularly

$$\lambda_{\max}(\mathbf{A}) = s_{\max}(\mathbb{X})^2 = \max_{\|\mathbf{x}\|=1} \|\mathbb{X}\mathbf{x}\|^2 = \|\mathbb{X}\|_2^2$$

if $m_n \geq n$, then

$$\lambda_{\min}(\mathbf{A}) = s_{\min}(\mathbb{X})^2 = \min_{\|\mathbf{x}\|=1} \|\mathbb{X}\mathbf{x}\|^2 = \|\mathbb{X}^{-1}\|_2^{-2}$$

38.1 Laguerre Orthogonal Ensemble

Specially, if the random variables $(X_i)_{1 \le i \le n}$ are i.i.d. standard Gaussians, then the distribution of the random matrix $\widehat{\Sigma}$ can be derived from the Wishart distribution.

Definition 38.1 (Wishart Distribution)

Suppose X be a $p \times n$ matrix, each column of which is independently drawn from a p-variate normal distribution with zero mean:

$$\mathbf{X}_i = (x_i^1, \dots, x_i^p)' \sim N_p(0, \mathbf{\Sigma})$$

Then the Wishart distribution is the probability distribution of the $p \times p$ random matrix,

$$\mathbf{M} = \mathbb{X}'\mathbb{X} = \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}'_{i}$$
 (38.1)

and which can be denoted by

$$\mathbf{M} \sim W_p(\mathbf{\Sigma}, n)$$

If $p = \Sigma = 1$, then this distribution is a chi-squared distribution with n degrees of freedom.

Note If $n \ge p$, the probability density function of **M** is

$$f(\mathbf{M}) = \frac{1}{2^{np/2} \left[\det \left(\mathbf{\Sigma} \right) \right]^{n/2} \Gamma_p \left(\frac{n}{2} \right)} \det \left(\mathbf{M} \right)^{(n-p-1)/2} \exp \left[-\frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{M} \right) \right]$$
(38.2)

with respect to Lebesque measure on the cone of symmetric positive definite matrices. Here, Γ_p is the multivariate gamma function defined as

$$\Gamma_p\left(\frac{n}{2}\right) = \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma\left(\frac{n}{2} - \frac{j-1}{2}\right)$$

The probability denisty function of $\widehat{\Sigma}$ can be derived from (38.2), since

$$\mathbf{A} \sim W_n(\mathbf{I}_n, m_n), \quad \det(\widehat{\mathbf{\Sigma}}) = m_n^{-n} \det(\mathbf{A}), \quad \operatorname{tr}(\widehat{\mathbf{\Sigma}}) = m_n^{-1} \operatorname{tr}(\mathbf{A})$$

thus,

$$\frac{m_n^{-n(m_n-n-1)/2+1}}{2^{m_n n/2} \Gamma_n\left(\frac{m_n}{2}\right)} \det\left(\widehat{\boldsymbol{\Sigma}}\right)^{(m_n-n-1)/2} \exp\left[-\frac{m_n}{2} \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}\right)\right]$$
(38.3)

Theorem 38.1

The joint probability density function of eigenvalues of $\widehat{\Sigma}$ is

$$p(\lambda) = \widetilde{Q}_{m_n}^{-1} \exp\left(-\frac{m_n}{2} \sum_{k=1}^n \lambda_k\right) \prod_{k=1}^n \lambda_k^{(m_n - n - 1)/2} \prod_{i < j} \left|\lambda_i - \lambda_j\right|$$
(38.4)

where

$$0 \le \lambda_1 \le \ldots \le \lambda_n < \infty$$

and \widetilde{Q}_{m_n} is the normalization constant.

Proof First, we will give the characteristic function of $\widehat{\Sigma}$, i.e.,

$$\varphi_{\widehat{\Sigma}}(\mathbf{P}) = E \left[\exp \left(i \sum_{1 \le i \le j \le n} P_{ij} \widehat{\Sigma}_{ji} \right) \right] = E \left[\exp \left(i \operatorname{tr} \left(\mathbf{P} \widehat{\Sigma} \right) \right) \right]$$

where $\{P_{ij}\}_{1 \le i \le j \le n} \in \mathbb{R}^{(n+1)n/2}$ and **P** is a real symmetric matrix, that

$$\mathbf{P} = \left\{ \widehat{P}_{ij}, \widehat{P}_{ij} = \widehat{P}_{ji} \right\}_{i,j=1}^{n}, \quad \widehat{P}_{ij} = \begin{cases} P_{ii}, & i = j \\ P_{ij}/2, & i < j \end{cases}$$

Thus, we have

$$= \int_{\mathbb{R}^{m_n \times n}} \exp\left(i \operatorname{tr}\left(\mathbf{P}\widehat{\boldsymbol{\Sigma}}\right)\right) \cdot (2\pi)^{-m_n n/2} \exp\left(-\frac{1}{2} \sum_{k=1}^{m_n} \sum_{i=1}^n \left(X_i^{(k)}\right)^2\right) \prod_{k=1}^{m_n} \prod_{i=1}^n dX_i^{(k)}$$

$$= \int_{\mathbb{R}^{m_n \times n}} (2\pi)^{-m_n n/2} \exp\left(-\frac{1}{2} \sum_{k=1}^{m_n} \sum_{i=1}^n \sum_{j=1}^n \mathbf{Q}_{ij} X_i^{(k)} X_j^{(k)}\right) \prod_{k=1}^{m_n} \prod_{i=1}^n dX_i^{(k)}$$

where

$$\mathbf{Q} = 1 - \frac{2i}{m_n} \mathbf{P}$$

Since $(X_i^{(k)})_{1 \le i \le n}$ are i.i.d. standard Gaussians,

$$= \left[\int_{\mathbb{R}^n} (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \mathbf{Q}_{ij} X_i X_j\right) \prod_{i=1}^n dX_i \right]^{m_n}$$

$$= \left[\int_{\mathbb{R}^n} (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \mathbf{X}' \mathbf{Q} \mathbf{X}\right) d\mathbf{X} \right]^{m_n}$$

$$= \left[\det(\mathbf{Q})^{-\frac{1}{2}} \int_{\mathbb{R}^n} (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \left(\mathbf{Q}^{\frac{1}{2}} \mathbf{X}\right)' \left(\mathbf{Q}^{\frac{1}{2}} \mathbf{X}\right)\right) d\mathbf{Q}^{\frac{1}{2}} \mathbf{X} \right]^{m_n}$$

$$= \left[\det(\mathbf{Q}) \right]^{-m_n/2}$$

thus,

$$[\det(\mathbf{Q})]^{-m_n/2} = \left[\det\left(1 - \frac{2i}{m_n}\mathbf{P}\right)\right]^{-m_n/2} = \prod_{k=1}^n \left(1 - \frac{2i}{m_n}p_k\right)^{-m_n/2}$$
(38.5)

where $\{p_k\}_{k=1}^n$ are the eigenvalues of **P**.

Then, we will show that the characteristic function of (38.4) conincides with the above function. By the Wishart distribution, the probability denisty of the real symmetric and positive definite random matrix $\widehat{\Sigma}$ is

$$\widetilde{Q}_{m_n}^{-1} \exp\left[-\frac{m_n}{2} \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}\right)\right] \left[\det\left(\widehat{\boldsymbol{\Sigma}}\right)\right]^{(m_n - n - 1)/2} d\widehat{\boldsymbol{\Sigma}}$$
(38.6)

where \widetilde{Q}_{m_n} is the normalization constant. Then, the characteristic function of (38.6), i.e.,

$$\widetilde{Q}_{m_n}^{-1} \int_{S^+} \exp\left[i \operatorname{tr}\left(\mathbf{P}\widehat{\boldsymbol{\Sigma}}\right) - \frac{m_n}{2} \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}\right)\right] \left[\det\left(\widehat{\boldsymbol{\Sigma}}\right)\right]^{(m_n - n - 1)/2} d\widehat{\boldsymbol{\Sigma}}$$

where the integration is over the set S_n^+ of $n \times n$ real symmetric and positive definite matrices.

Since

$$\sum_{k=1}^{n} \lambda_k = \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}\right), \quad \prod_{k=1}^{n} \lambda_k^{(m_n - n - 1)/2} = \left[\operatorname{det}\left(\widehat{\boldsymbol{\Sigma}}\right)\right]^{(m_n - n - 1)/2}$$

and

$$\mathrm{d}\widehat{\boldsymbol{\Sigma}} = \prod_{i < j} \left| \lambda_i - \lambda_j \right| \, \mathrm{d}\boldsymbol{\lambda} H_1 \left(\mathrm{d}O \right)$$

where H_1 is the normalized Haar measure of O(n), and the integration over λ and $O \in O(n)$ are independent.

Since the orthogonal invariance of the density of (38.6), we obtain (38.4), and the characteristic function is

$$Q_n^{-1} \int_{\left(\mathbb{R}_+\right)^n} \exp\left[\sum_{k=1}^n \left(i p_k - \frac{m_n}{2}\right) \lambda_k\right] \prod_{k=1}^n \lambda_k^{(m_n - n - 1)/2} \prod_{i < j} \left|\lambda_i - \lambda_j\right| d\boldsymbol{\lambda}$$
(38.7)

where $Q_{m_n} = m_n! \widetilde{Q}_{m_n}$.

If we viewed (38.5) and (38.7) as the function of $\{p_k\}_{k=1}^n \in \mathbb{R}^n$, then they can be **analytic**

continuation to the domain

$$\{p_k + i p'_k, p'_k \ge 0\}_{k=1}^n$$

If we replace $\{p_k\}_{k=1}^n$ by $\{ip_k', p_k' \ge 0\}_{k=1}^n$ on (38.5), since this is a set of uniqueness of both (38.5) and (38.7) analytic functions, we have

$$Q_{m_n}^{-1} \int_{\left(\mathbb{R}_+\right)^n} \exp\left[-\frac{m_n}{2} \sum_{k=1}^n q_k \lambda_k\right] \prod_{k=1}^n \lambda_k^{(m_n - n - 1)/2} \prod_{i < j} \left|\lambda_i - \lambda_j\right| d\lambda$$

where $q_k = 1 + \frac{2p'_k}{m_n} \ge 1, k = 1, ..., n$, and since

$$\forall i, j \quad \frac{q_i}{q_j} = \frac{1 + \frac{2p'_i}{m_n}}{1 + \frac{2p'_j}{m_n}} \to 1, \quad \text{as} \quad m_n \to \infty$$

we have

$$\prod_{i < j} |q_i \lambda_i - q_j \lambda_j| = \prod_{i < j} q_i \left| \lambda_i - \frac{q_j}{q_i} \lambda_j \right| \to \prod_{k=1}^n q_k^{(n-1)/2} \prod_{i < j} |\lambda_i - \lambda_j|, \quad \text{as} \quad m_n \to \infty$$

thus,

$$\prod_{k=1}^{n} q_{k}^{-m_{n}/2} \cdot Q_{m_{n}}^{-1} \int_{(\mathbb{R}_{+})^{n}} \exp\left[-\frac{m_{n}}{2} \sum_{k=1}^{n} q_{k} \lambda_{k}\right] \prod_{k=1}^{n} (q_{k} \lambda_{k})^{(m_{n}-n-1)/2} \cdot \prod_{i < j} |q_{i} \lambda_{i} - q_{j} \lambda_{j}| \, d\mathbf{q} \lambda$$

Since

$$\forall k \quad q_k \lambda_k \to \lambda_k, \quad \text{as} \quad m_n \to \infty$$

we can "lifting" from $\{\lambda_k\}_{k=1}^n$ to \mathcal{S}_n^+ bring the integral to

$$\prod_{k=1}^{n} \left(1 + \frac{2p_{k}'}{m_{n}} \right)^{-m_{n}/2} \widetilde{Q}_{n}^{-1} \int_{\mathcal{S}_{n}^{+}} \exp \left[-\frac{m_{n}}{2} \operatorname{tr} \left(\widehat{\boldsymbol{\Sigma}} \right) \right] \left[\det \left(\widehat{\boldsymbol{\Sigma}} \right) \right]^{(m_{n}-n-1)/2} d\widehat{\boldsymbol{\Sigma}}$$

The integral here is equal to \widetilde{Q}_n , the normalization constant of the probability measure (38.6).

If we replace $\{i p'_k\}_{k=1}^n$ back by $\{p_k\}_{k=1}^n$, then the above expression is

$$\prod_{k=1}^{n} \left(1 - \frac{2i}{m_n} p_k \right)^{-m_n/2}$$

which coincides with (38.5).

Thus the probability law of the Wishart matrices of Σ given by (38.6) implies that the corresponding joint probability density of eigenvalues is given by (38.4) for Σ .

Definition 38.2 (Laguerre Orthogonal Ensemble)

For the $n \times n$ Laguerre orthogonal ensembles^a of statistics, the joint probability density function of eigenvalues is for arbitrary parameter $\beta > 0$ and $\alpha > -\frac{2}{\beta}$, is

$$p(\lambda) = K_{\alpha,\beta} \exp\left(-\frac{\beta}{2} \sum_{k=1}^{n} \lambda_k\right) \prod_{k=1}^{n} \lambda_k^{\frac{\alpha\beta}{2}} \prod_{i < j} |\lambda_i - \lambda_j|^{\beta}$$
(38.8)

where

$$0 \le \lambda_1 \le \ldots \le \lambda_n < \infty$$

and $K_{n,m}$ are normalization constant.

^aEnsemble is often used in physics and the physics-influenced literature. In probability theory, the term **probability space** is more prevalent.

And Equation (38.8) can be written in the standard Boltzmann-Gibbs form, that,

$$p(\lambda) \propto \exp[-\beta E(\lambda)]$$

where

$$E(\lambda) = \frac{1}{2} \sum_{k=1}^{n} (\lambda_k - \alpha \log \lambda_k) - \frac{1}{2} \sum_{i \neq j} |\lambda_i - \lambda_j|$$
(38.9)

For the (38.4), which can be written as (38.8) form, that,

$$p(\lambda) \propto \exp\left[-\beta m_n E(\lambda)\right]$$

where $\beta = 1$ and

$$E(\lambda) = \frac{m_n}{2} \sum_{k=1}^n \left[\lambda_k - \left(\frac{m_n - n - 1}{m_n} \right) \log \lambda_k \right] - \frac{1}{2m_n} \sum_{i \neq j} \left| \lambda_i - \lambda_j \right|$$

38.2 Marchenko-Pastur Theorem

In this section, we will invastiage the empirical spectral measure of Σ , which converges to a nonrandom distribution — Marchenko-Pastur distribution. Before further proof, we will introduce some basic concepts and tools.

Definition 38.3 (Resolvent)

For a symmetric matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$, the resolvent $\mathbf{Q}_{\mathbf{M}}(z)$ of \mathbf{M} is defined as

$$\mathbf{Q}_{\mathbf{M}}(z) := \left(\mathbf{M} - z\mathbf{I}_{n}\right)^{-1} \tag{38.10}$$

where $z \in \mathbb{C}$ not eigenvalue of M.

Definition 38.4 (Empirical Spectral Measure)

For a symmetric matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$, the spectral measure or empirical spectral measure or empirical spectral distribution (e.s.d.) $\mu_{\mathbf{M}}$ of \mathbf{M} is defined as the normalized counting measure of the eigenvalues $\lambda_1(\mathbf{M}), \ldots, \lambda_n(\mathbf{M})$ of \mathbf{M} , i.e.,

$$\mu_{\mathbf{M}} := \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\mathbf{M})}$$
 (38.11)

Remark Since $\int \mu_{\mathbf{M}}(dx) = 1$, the spectral measure $\mu_{\mathbf{M}}$ of a matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ (random or not) is a probability measure.

Definition 38.5 (Stieltjes Transform)

For a real probability measure μ with support $supp(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined as

$$m_{\mu}(z) := \int \frac{1}{t - z} \mu \,(\mathrm{d}t)$$
 (38.12)

where $z \in \mathbb{C} \setminus \text{supp}(\mu)$.

Property The Stieltjes transform is

1. complex analytic on $\mathbb{C}\setminus \text{supp}(\mu)$.

2.

$$m_{\mu_{\rm M}}(z) = \frac{1}{n} \sum_{i=1}^{n} \int \frac{\delta_{\lambda_i({
m M})}(t)}{t-z} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_i({
m M})-z} = \frac{1}{n} \operatorname{tr} {
m {\bf Q}}_{
m M}(z)$$

As a transform, m_{μ} has an inverse formula to recover μ , as per the following result.

Theorem 38.2 (Inverse Stieltjes Transform)

For a, b continuity points of the probability measure μ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \text{Im} \left[m_{\mu}(x+iy) \right] dx$$
 (38.13)

Specially, if μ has a density f at x, then

$$f(x) = \frac{1}{\pi} \lim_{y \downarrow 0} \text{Im} \left[m_{\mu}(x + iy) \right]$$
 (38.14)

And, if μ has an isolated mass at x, then

$$\mu(\{x\}) = \lim_{y \downarrow 0} -iy m_{\mu}(x + iy)$$
 (38.15)

Proof

$$\frac{1}{\pi} \int_a^b \operatorname{Im} \left[m_{\mu}(x + iy) \right] dx = \frac{1}{\pi} \int_a^b \left[\int \frac{y}{(t - x)^2 + y^2} \mu(dt) \right] dx$$

By Fubini's theorem,

$$\begin{split} &= \frac{1}{\pi} \int \left[\int_a^b \frac{y}{(t-x)^2 + y^2} \, \mathrm{d}x \right] \mu(\mathrm{d}t) \\ &= \frac{1}{\pi} \int \left[\arctan\left(\frac{b-t}{y}\right) - \arctan\left(\frac{a-t}{y}\right) \right] \mu(\mathrm{d}t) \end{split}$$

Since

$$\left| \frac{y}{(t-x)^2 + y^2} \right| \le \frac{1}{y}, \quad \forall y > 0$$

by the dominated convergence theorem,

$$\frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \operatorname{Im} \left[m_{\mu}(x + iy) \right] dx = \frac{1}{\pi} \int \lim_{y \downarrow 0} \left[\arctan \left(\frac{b - t}{v} \right) - \arctan \left(\frac{a - t}{v} \right) \right] \mu(dt)$$

as $y \downarrow 0$, the difference in brackets converges either to $\pm \pi$ or 0 depending on the relative position of

a, b and t, thus

$$= \int 1_{[a,b]} \mu(\mathrm{d}t) = \mu\left([a,b]\right)$$

When μ has an isolated mass at x, i.e., $\mu(dt) = a\delta_x(t)$, similarly, since

$$|y(t-x)| \le \frac{1}{2} (y^2 + (t-x)^2)$$

by dominated convergence,

$$\lim_{y \downarrow 0} -iy m_{\mu}(x + iy) = -\lim_{y \downarrow 0} \int \frac{iy(t - x)\mu(dt)}{(t - x)^2 + y^2} + \lim_{y \downarrow 0} \int \frac{y^2 \mu(dt)}{(t - x)^2 + y^2} = a$$

With the above tools, we can prove the Marchenko-Pastur Theorem.

Theorem 38.3 (Marchenko-Pastur Theorem)

If

$$\frac{n}{m_n} \to \rho \in (0, \infty), \quad as \quad n \to \infty$$

and the empirical spectral measure of $\widehat{\Sigma}$ tends weakly with probability 1 to the nonrandom measure, i.e.,

$$\frac{1}{m_n} \sum_{k=1}^n \delta_{\lambda_k(\widehat{\Sigma})} \xrightarrow{d} \mu_{\rho}, \quad a.s.$$
 (38.16)

where μ_{ρ} is the Marchenko-Pastur distribution on $[a^-, a^+]$ with $a^{\pm} = (1 \pm \sqrt{\rho})^2$ given by

$$\mu_{\rho}(\mathrm{d}x) = \frac{\rho - 1}{\rho} \mathbf{I}_{\rho > 1} \delta_0 + \frac{\sqrt{(a^+ - x)(x - a^-)}}{\rho 2\pi x} \mathbf{I}_{[a^-, a^+]}(x) \, \mathrm{d}x$$
 (38.17)

Proof The normalization constant of eigenvalues of $\widehat{\Sigma}$ is

$$\widetilde{Q}_{m_n} = \int_{\left(\mathbb{R}_+\right)^n} \exp\left(-\frac{m_n}{2} \sum_{k=1}^n \lambda_k\right) \prod_{k=1}^n \lambda_k^{(m_n - n - 1)/2} \prod_{i < j} \left|\lambda_i - \lambda_j\right| d\lambda$$

$$= \int_{\left(\mathbb{R}_+\right)^n} \exp\left[-m_n E\left(\lambda\right)\right] d\lambda$$

where

$$E(\lambda) = \frac{m_n}{2} \sum_{k=1}^n \left[\lambda_k - \left(\frac{m_n - n - 1}{m_n} \right) \log \lambda_k \right] - \frac{1}{2m_n} \sum_{i \neq j} \left| \lambda_i - \lambda_j \right|$$

38.3 Extremal Eigenvalues of

Bibliography

- [1] Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge, UK; New York: Cambridge University Press, Mar. 8, 2004. 727 pp. ISBN: 978-0-521-83378-3.
- [2] Zdzisław Brzezniak and Tomasz Zastawniak. Basic Stochastic Processes. Oct. 16, 1998.
- [3] Luc Devroye, Laszlo Györfi, and Gabor Lugosi. *A Probabilistic Theory of Pattern Recognition*. Corrected edition. New York: Springer, Apr. 4, 1996. 653 pp. ISBN: 978-0-387-94618-4.
- [4] Rick Durrett. *Probability: Theory and Examples*. 5th Edition. Cambridge; New York, NY: Cambridge University Press, May 30, 2019. 430 pp. ISBN: 978-1-108-47368-2.
- [5] E. L. Lehmann. *Elements of Large-Sample Theory*. Springer texts in statistics. New York: Springer, 1999. 631 pp. ISBN: 978-0-387-98595-4.
- [6] E. L. Lehmann and George Casella. *Theory of Point Estimation*. 2nd Edition. Springer texts in statistics. New York: Springer, 1998. 589 pp. ISBN: 978-0-387-98502-2.
- [7] P. McCullagh and John A. Nelder. *Generalized Linear Models*. 2nd Edition. Boca Raton: Chapman and Hall/CRC, Aug. 1, 1989. 532 pp. ISBN: 978-0-412-31760-6.