CSE 208 (Data Structures and Algorithms II Sessional)

Offline Assignment 4

Submission deadline: Week 6

Section A1, A2, B2:

You have to implement the **Kruskal's** minimum spanning tree algorithm for an undirected weighted graph G = (V, E) as the fourth offline assignment of CSE 208. Please consider the following requirements:

- 1) Implement necessary code for graph representation without using standard template libraries.
- 2) Make sure the running time of the algorithm is $O(E \lg V)$.
- 3) Use file operations for input and output.
- 4) You may need to use your implementation for the online assignment. So make sure your code is well-organized so you can use it for solving other problems.

Sample Input	Sample Output
10 16	Added edges: [edges can vary]
0 1 4	(6,7)
0 7 8	(9,5)
1 7 10	(2, 8)
1 2 8	(5,6)
2 3 7	(2,5)
282	(0,1)
2 5 3	(2,3)
5 6 2	(0,7)
671	(3,4)
366	
3 5 15	MST weight: 38
3 4 10	_
4 5 10	
7 8 8	
972	
951	

Section B1:

You have to implement the **Prim's** minimum spanning tree algorithm for an undirected weighted graph G = (V, E) as the fourth offline assignment of CSE 208. Please consider the following requirements:

- 1) Implement necessary code for graph representation without using standard template libraries.
- 2) Make sure the running time of the algorithm is $O(V \lg V)$.
- 3) Use file operations for input and output.
- 4) You may need to use your implementation for the online assignment. So make sure your code is well-organized so you can use it for solving other problems.

Sample Input	Sample Output
10 16	Added edges: [edges can vary]
0 1 4	(0,1)
0 7 8	(1,2)
1 7 10	(2,8)
1 2 8	(2,5)
2 3 7	(9,5)
282	(5,6)
253	(6,7)
5 6 2	(2,3)
671	(5,4)
8 6 6	
3 5 15	MST weight: 38
3 4 10	
4 5 10	
788	
972	
9 5 1	