Álgebra y Álgebra II - Segundo Cuatrimestre 2020 Práctico 1 - Vectores en \mathbb{R}^2 y \mathbb{R}^3

Objetivos

- ullet Aprender las operaciones básicas de \mathbb{R}^2 y \mathbb{R}^3 (suma de vectores, multiplicación por escalares, producto escalar, calcular normas y ángulos).
- Familiarizarse con los conceptos de ortogonalidad y paralelismo.
- Aprender a describir rectas y planos de forma impícita y paramétrica.

Vectores y producto escalar

- 1. Dados v = (-1, 2 0), w = (2, -3, -1) y u = (1, -1, 1), calcular:
 - a) 2v + 3w 5u,
 - b) 5(v + w),
 - c) 5v + 5w (y verificar que es igual al vector de arriba).
- 2. Calcular los siguientes productos escalares.
 - a) $\langle (-1, 2-0), (2, -3, -1) \rangle$,
 - b) $\langle (4, -1), (-1, 2) \rangle$.
- 3. Dados v = (-1, 2 0), w = (2, -3, -1) y u = (1, -1, 1), verificar que:

$$\langle 2v + 3w, -u \rangle = -2\langle v, u \rangle - 3\langle w, u \rangle$$

- 4. Probar que
 - a) (2, 3, -1) y (1, -2, -4) son ortogonales.
 - b) (2,-1) y (1,2) son ortogonales. Dibujar en el plano.
- 5. Encontrar
 - a) un vector no nulo ortogonal a (3, -4),
 - b) un vector no nulo ortogonal a (2, -1, 4),
 - c) un vector no nulo ortogonal a (2, -1, 4) y (0, 1, -1),
- 6. Encontrar la longitud de los vectores.

 - (a) (2,3), (b) (t,t^2) ,

1

- (c) $(\cos \phi, \sin \phi)$.
- 7. Calcular $\langle v, w \rangle$ y el ángulo entre v y w para los siguientes vectores.

$$(a) \ v = (2, 2), w = (1, 0)$$

(a)
$$v = (2, 2), w = (1, 0),$$
 (b) $v = (-5, 3, 1), w = (2, -4, -7).$

8. Sea $v=(x_1,x_2,x_3)\in\mathbb{R}^3$ y recordar los vectores e_1 , e_2 y e_3 dados en la página 12 del apunte. Verificar que

$$v = x_1e_1 + x_2e_2 + x_3e_3 = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \langle v, e_3 \rangle e_3.$$

- 9. Probar, usando sólo las propiedades P1, P2, y P3 del producto escalar, que dados $v, w, u \in \mathbb{R}^n$ y $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - a) se cumple:

$$\langle \lambda_1 v + \lambda_2 w, u \rangle = \lambda_1 \langle v, u \rangle + \lambda_2 \langle w, u \rangle.$$

b) Si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle = \lambda_1^2 \langle v, v \rangle + \lambda_2^2 \langle w, w \rangle.$$

10. Dados $v, w \in \mathbb{R}^n$, probar que si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$||v + w||^2 = ||v||^2 + ||w||^2$$
.

¿Cuál es el nombre con que se conoce este resultado en \mathbb{R}^2 ?

11. Sean $v,w\in\mathbb{R}^2$, probar usando solo la definición explícita del producto escalar en \mathbb{R}^2 que

$$|\langle v, w \rangle| \le ||v|| ||w||$$
 (Designaldad de Schwarz).

[Ayuda: elevar al cuadrado y aplicar la definición.]

Rectas y planos

- 12. En cada uno de los siguientes casos determinar si los vectores \overrightarrow{vw} y \overrightarrow{xy} son equivalentes y/o paralelos.
 - a) v = (1, -1), w = (4, 3), x = (-1, 5), y = (5, 2).
 - b) v = (1, -1, 5), w = (-2, 3, -4), x = (3, 1, 1), y = (-3, 9, -17).
- 13. Sea R_1 la recta que pasa por $p_1 = (2,0)$ y es ortogonal a (1,3).
 - a) Dar la descripción paramétrica e implícita de R_1 .
 - b) Graficar en el plano a R_1 .
 - c) Dar un punto p por el que pase R_1 distinto a p_1 .
 - d) Verificar si $p + p_i$ y -p pertenece a R_1
- 14. Repetir el ejercicio anterior con las siguientes rectas.
 - a) R_2 : recta que pasa por $p_2 = (0,0)$ y es ortogonal a (1,3).
 - b) R_3 : recta que pasa por $p_3 = (1,0)$ y es paralela a R_1 .

3

- 15. Calcular, numérica y graficamente, las intersecciones $R_1 \cap R_2$ y $R_1 \cap R_3$.
- 16. Sea $v_0 = (2, -1, 1)$.
 - a) Describir paramétricamente el conjunto $P_1 = \{ w \in \mathbb{R}^3 : \langle v_0, w \rangle = 0 \}.$
 - b) Describir paramétricamente el conjunto $P_2 = \{ w \in \mathbb{R}^3 : \langle v_0, w \rangle = 1 \}.$
 - c) ¿Qué relación hay entre P_1 y P_2 ?
- 17. Escribir la ecuación paramétrica y la ecuación normal de los siguientes planos.
 - a) π_1 : el plano que pasa por (0,0,0), (1,1,0), (1,-2,0).
 - b) π_2 : el plano que pasa por (1, 2, -2) y es perpendicular a la recta que pasa por (2, 1, -1), (3, -2, 1).
 - c) $\pi_3 = \{ w \in \mathbb{R}^3 : w = s(1, 2, 0) + t(2, 0, 1) + (1, 0, 0); s, t \in \mathbb{R} \}.$
- 18. ¿Cuáles de las siguientes rectas cortan al plano π_3 del ejercicio 17c)? Describir la intersección en cada caso.
 - (a) $\{w: w = (3, 2, 1) + t(1, 1, 1)\},\$
- (b) $\{w: w = (1, -1, 1) + t(1, 2, -1)\},\$
- (c) $\{w: w = (-1, 0, -1) + t(1, 2, -1)\},\$ (d) $\{w: w = (1, -2, 1) + t(2, -1, 1)\}.$
- 19. Sea $L = \{(x, y) \in \mathbb{R}^2 : ax + by = c\}$ una recta en \mathbb{R}^2 . Sean $p \neq q$ dos puntos por los que pasa L.
 - a) ¿Para qué valores de c puede asegurar que $(0,0) \in L$?
 - b) ¿Para qué valores de c puede asegurar que $\lambda q \in L$?, donde $\lambda \in \mathbb{R}$.
 - c) ¿Para qué valores de c puede asegurar que $p + q \in L$?
- 20. Sea L una recta en \mathbb{R}^2 . Probar que L pasa por (0,0) si y sólo si pasa por $p + \lambda q$ para todo par de puntos distintos p y q de L y para todo $\lambda \in \mathbb{R}$.

Ejercicios de repaso

Si ya hizo los ejercicios anteriores continue a la siguiente guía. Los ejercicios que siquen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

- 21. Probar, usando sólo las propiedades P1, P2, y P3 del producto escalar, que dados $v, w, u \in$ \mathbb{R}^n y $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - a) $||\lambda_1 v|| = |\lambda_1| ||v||$.
 - b)

$$\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle = \lambda_1^2 ||v||^2 + 2 \langle v, w \rangle + \lambda_2^2 ||w||^2.$$

4

22. ¿Qué parejas de vectores son perpendiculares entre sí?

(a)
$$(1, -1, 1)$$
 y $(2, 1, 5)$,

(b)
$$(1, -1, 1)$$
 y $(2, 3, 1)$,

$$(c)$$
 $(-5, 2, 7)$ y $(3, -1, 2)$

(c)
$$(-5, 2, 7)$$
 y $(3, -1, 2)$ (d) $(\pi, 2, 1)$ y $(2, -\pi, 0)$.

23. Dados $v, w, \in \mathbb{R}^n$, probar que

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2.$$
 (*)

Hay un resultado clásico de la geometría elemental que dice "la suma de los cuadrados de las longitudes de los cuatro lados de un paralelogramo es igual a la suma de los cuadrados de las longitudes de las dos diagonales de éste" (Ley del paralelogramo). Relacione geométricamente el resultado (*) aplicado a \mathbb{R}^2 con la Ley del paralelogramo.