Building HMSC step by step: biotic interactions

7	Joint Species Distribution Modelling: Biotic	
	Interactions	142
	7.1 Strategies for Estimating Biotic Interactions in	
	Species Distribution Models	143
	7.2 Occurrence and Co-occurrence Probabilities	144
	7.3 Using Latent Variables to Model Co-occurrence	147
	7.4 Accounting for the Spatio-temporal Context	
	through Latent Variables	152
	7.5 Covariate-Dependent Species Associations	156
	7.6 A Cautionary Note about Interpreting Residual	
	Associations as Biotic Interactions	159
	7.7 Using Residual Species Associations for Making	
	Improved Predictions	160
	7.8 Simulated Case Studies with HMSC	165
	7.9 Real Case Study with HMSC: Sequencing	
	Data on Dead Wood-Inhabiting Fungi	172

Occurrence and co-occurrence probabilities

Capercaillie (Tetrao urogallus)

Source: Wikimedia

White-backed woodpecker (Dendrocopos luecotos)

Source: Wikimedia

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{10} = \cdots$$

$$q_{01} = \cdots$$

$$q_{00} = \cdots$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{11} = 0.25$$

$$q_{10}=0.25$$
 ion so No association $q_{01}=0.25$

$$q_{01} = 0.25$$

$$q_{00} = 0.25$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{11} = 0$$

$$q_{10} = 0.5$$

$$q_{01} = 0.5$$

$$q_{00} = 0.0$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{11} = 0.5$$

$$q_{10}=0$$

$$q_{01}=0$$

$$q_{00} = 0.5$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{11} = 0.1$$

$$q_{10} = 0.4$$

$$q_{01} = 0.4$$

$$q_{00} = 0.1$$

HMSC with fixed and random effects

Linear model: $y_{ij} = L_{ij} + \varepsilon_{ij}$

Presence-absence model: $y_{ij} \sim \text{Bernoulli}(\Phi(L_{ij}))$

Count model: $y_{ij} \sim Poisson(exp(L_{ij} + \varepsilon_{ij}))$

Thus far:

$$L_{ij} = L_{ij}^F = \sum_{k=1}^{n_c} x_{ik} \beta_{kj}$$

Now we extend to:

$$L_{ij} = L_{ij}^F + L_{ij}^R$$

HMSC with fixed and random effects

$$L_{ij} = L_{ij}^F + L_{ij}^R$$

Fixed effects:

$$L_{ij}^F = \sum_{k=1}^{n_c} x_{ik} \beta_{kj}$$

Random effects:

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

Site loadings Species loadings

HMSC with fixed and random effects (in matrix notation)

$$L_{ij} = L_{ij}^F + L_{ij}^R$$
$$\mathbf{L} = \mathbf{L}^F + \mathbf{L}^R$$

Fixed effects:

$$L_{ij}^F = \sum_{k=1}^{n_c} x_{ik} \beta_{kj}$$

$\mathbf{L}^F = \mathbf{X}\mathbf{B}$

Random effects:

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

$$\mathbf{L}^R = \mathbf{H}\mathbf{\Lambda}$$

Prior distributions for site and species loadings

Number of factors
$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$
 Site loadings Species loadings

iid
$$\eta_{ih} \sim N(0,1)$$

$$\lambda_{hj} \sim \frac{\text{Multiplicative gamma process shrinking prior}}{\text{(Bhattacharya and Dunson 2011)}}$$

Prior distributions for site and species loadings

iid

$$\eta_{ih} \sim N(0,1)$$

Multiplicative gamma process shrinking prior for λ_{hj} :

$$\lambda_{hj} \mid \phi_{hj}, \delta \sim N\left(0, \phi_{hj}^{-1} \tau_h^{-1}\right), \tau_h = \prod_{l=1}^h \delta_l$$

$$\phi_{hj} \mid v \sim \text{Ga}(v/2, v/2)$$

$$\delta_1 | a, b \sim Ga(a_1, b_1), \delta_l | a, b \sim Ga(a_2, b_2) \text{ for } l \ge 2$$

Covariance between linear predictors

Number of factors
$$L_{ij}^R = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$
 Site loadings Species loadings

iid
$$\eta_{ih} \sim N(0,1) \implies \text{Cov}[L_{i_1 j_1}^R, L_{i_2 j_2}^R] = \sum_{h=1}^{n_f} \lambda_{h j_1} \lambda_{h j_2} \delta_{i_1 i_2}$$

Covariance between linear predictors

Number of factors
$$L_{ij}^R = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$
 Site loadings Species loadings

$$\eta_{ih} \sim N(0,1) \Rightarrow \text{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \delta_{i_1i_2}$$

$$\Rightarrow L_{i}^{R} \sim N(0, \Omega) \qquad \Omega = \Lambda^{T} \Lambda$$

Association matrix at the correlation scale

$$\mathbf{R} = \operatorname{scale}(\mathbf{\Omega})$$

$$R_{j_1 j_2} = \frac{\Omega_{j_1 j_2}}{\sqrt{\Omega_{j_1 j_1} \Omega_{j_2 j_2}}}$$

Multiple random effects in the same model

Study design

Presence-absence of 60 bryophyte species surveyed on 204 aspen trees within 14 natural forest sites and 14 logging sites.

Retention aspens on a logging site.

Radula complanata

Neckera pennata

Ovaskainen et al. 2017 (ELE), Oldén et al. (2014)

Study design

Presence-absence of 60 bryophyte species surveyed on 204 aspen trees within 14 natural forest sites and 14 logging sites.

Multiple random effects in the same model

Species associations

Multiple random effects in the same model

Number of random effects

$$L_{ij}^R = \sum_{r=1}^{n_r} L_{ij}^{r,R}$$

$$L_{ij}^{r,R} = \sum_{h=1}^{n_f^r} \eta_{u^r(i)h}^r \lambda_{hj}^r$$

Units (e.g. plots) of random effect r

Spatial random effects / site loadings as hidden environmental covariates

Ovaskainen et al. 2016 (MEE): butterflies in UK

Prior distribution for spatial site loadings

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

HmscRandomLevel(units=plots)

Un-structured site loadings:

$$\eta_{ih}^{(3)} \sim N(0,1) \implies \text{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \delta_{i_1i_2}$$

HmscRandomLevel(sData=xy)

$$\eta_{\cdot h} \sim N(0, \Sigma_h), \quad \Sigma_{h, i_1 i_2} = \exp(-d_{i_1 i_2}/\alpha_h)$$

Spatial site loadings:

$$\Rightarrow \operatorname{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \exp(-d_{i_1i_2}/\alpha_h)$$

Conditional cross-validation

