

Recovery of Subspace Structure from High-Rank Data with Missing Entries

João Carvalho, Manuel Marques, João P. Costeira

1. Problem

High-dimensional data lying in low-dimensional subspaces are very common in problems such as motion segmentation, structure from motion or face clustering. In practice, however, **observed data are incomplete** due to sensor failure, occlusion or data corruption.

We propose a method to reconstruct and cluster incomplete high-dimensional data lying in a union of K subspaces, $\{S_k \subset \mathbb{R}^D\}_{k=1}^K$, with dimensions $\{d_k < D\}_{k=1}^K$.

We exploit the subspace structure of the data by using a *self-expressive* model:

Sparse coefficients with $diag(\mathbf{C}) = 0$

Sparse coefficients, with
$$diag(\mathbf{C}) = 0$$

$$\mathbf{X} = \mathbf{X}\mathbf{C}$$
Data: $[\mathbf{x}_1 \ \mathbf{x}_2 \dots \mathbf{x}_N] \in \mathbb{R}^{D \times N}$

where

$$\mathbf{X} = \mathbf{X}_{\Omega} + \mathbf{X}_{\Omega}$$
c

Missing entries at the complementary positions of Ω and zeros otherwise

Known entries at $(i,j) \in \Omega$ and zeros otherwise

To recover the original subspaces, we estimate the missing entries, \mathbf{X}_{Ω^0} , by imposing the subspace structure and then cluster the recovered data points. The missing data is estimated by solving the following **non-convex** optimization problem:

$$\min_{\mathbf{X}_{\Omega^{\complement}}, \mathbf{C}, \mathbf{E}, \mathbf{Z}} \quad \|\mathbf{C}\|_{1} + \lambda_{e} \|\mathbf{E}\|_{1} + \frac{\lambda_{z}}{2} \|\mathbf{Z}\|_{F}^{2}$$

$$\text{s.t.} \quad \mathbf{X}_{\Omega} + \mathbf{X}_{\Omega^{\complement}} = \left(\mathbf{X}_{\Omega} + \mathbf{X}_{\Omega^{\complement}}\right) \mathbf{C} + \underline{\mathbf{E} + \mathbf{Z}}$$

$$diag(\mathbf{C}) = 0, \quad \left(\mathbf{X}_{\Omega^{\complement}}\right)_{\Omega} = 0,$$

$$\text{Outlying entries and noise}$$

We propose a tight convex relaxation to solve this non-convex problem.

2. Accurate Subspace Segmentation by Successive Approximations

Consider we have a point $\mathbf{X}^{(i)}$ and $\mathbf{C}^{(i)}$. We define the following exact model

$$\mathbf{X}^{(i)} + \Delta \mathbf{X} = (\mathbf{X}^{(i)} + \Delta \mathbf{X})(\mathbf{C}^{(i)} + \Delta \mathbf{C}) + \mathbf{E} + \mathbf{Z}$$

where $\Delta \mathbf{X}_{\Omega} = 0$ and $diag(\Delta \mathbf{C}) = 0$.

To find ΔX and ΔC , we consider the **linearization** of this model in a **trust region**. This approximate model leads to the following convex problem, similar (1) but with new constraints:

$$\begin{array}{ll} \min_{\boldsymbol{\Delta}\mathbf{C},\boldsymbol{\Delta}\mathbf{X},\mathbf{E},\mathbf{Z}} & ||\mathbf{C}^{(i)} + \boldsymbol{\Delta}\mathbf{C}||_1 + \lambda_e \, ||\mathbf{E}||_1 + \frac{\lambda_z}{2} \, ||\mathbf{Z}||_F^2 \\ \text{s.t.} & \mathbf{X}^{(i)} + \boldsymbol{\Delta}\mathbf{X} = (\mathbf{X}^{(i)} + \boldsymbol{\Delta}\mathbf{X})\mathbf{C}^{(i)} \\ & + \mathbf{X}^{(i)}\boldsymbol{\Delta}\mathbf{C} + \mathbf{E} + \mathbf{Z} \end{array} \qquad \begin{array}{ll} \text{Linearized model} \\ & ||\boldsymbol{\Delta}\mathbf{X}||_{\infty} \leq \delta_X \\ & ||\boldsymbol{\Delta}\mathbf{C}||_{\infty} \leq \delta_C \end{array} \qquad \qquad \text{Trust region} \\ & diag(\boldsymbol{\Delta}\mathbf{C}) = 0 \\ & \boldsymbol{\Delta}\mathbf{X}_{\Omega} = 0. \end{array}$$

We compute a new solution to (1) by iteratively solving the previous problem and updating the current solution as

$$\mathbf{X}^{(i+1)} = \mathbf{X}^{(i)} + \mathbf{\Delta}\mathbf{X}$$
 $\mathbf{C}^{(i+1)} = \mathbf{C}^{(i)} + \mathbf{\Delta}\mathbf{C}$

3. Robust Initialization for Matrix Completion [1]

Since (1) is biconvex, we use Alternate Convex Search [2]

1. Given $\mathbf{X}_{\Omega^{\mathbf{C}}}^{(i)}$

$$\min_{\mathbf{C}, \mathbf{E}, \mathbf{Z}} \quad \|\mathbf{C}\|_{1} + \lambda_{e} \|\mathbf{E}_{\Omega}\|_{1} + \frac{\lambda_{z}}{2} \|\mathbf{Z}_{\Omega}\|_{F}^{2}$$
s.t.
$$\mathbf{X}_{\Omega} + \mathbf{X}_{\Omega^{\complement}}^{(i)} = (\mathbf{X}_{\Omega} + \mathbf{X}_{\Omega^{\complement}}^{(i)})\mathbf{C} + \mathbf{E} + \mathbf{Z}$$

$$diag(\mathbf{C}) = 0,$$

2. Given $\mathbf{C}^{(i+1)} = \mathbf{C}$

$$\mathbf{X}_{\Omega^\complement}^{(i+1)} = \left(\mathbf{X}^{(i)}\mathbf{C}^{(i+1)}
ight)_{\Omega^\complement} \quad ext{where} \quad \mathbf{X}^{(i)} = \mathbf{X}_\Omega + \mathbf{X}_{\Omega^\complement}^{(i)}$$

- [1] J. Carvalho, M. Marques, and JP Costeira, "Subspace Segmentation by Successive Approximations: A Method for Low-Rank and High-Rank Data with Missing Entries," arXiv preprint arXiv:1709.01467, 2017.
- [2] J. Gorski, F. Pfeuffer, and K. Klamroth, "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, vol. 66, no. 3, pp. 373–407, 2007.

4. Experiments

Synthetic Data

 ρ - Missing rate D - Ambient space dimension

d - Subspace dimension

K - Number subspaces

 N_k - Number points per subspace

Reconstruction Error

 $e_r = \frac{||\hat{\mathbf{X}} - \mathbf{X}||_F}{\|\mathbf{X}\|_F}$

Clustering Error

 $e_c = \frac{\text{\#missclassified point}}{\text{\#points}}$

Hopkins 155

Table 5. Reconstruction error for all sequences in Hopkins 155, with 8 trials per sequence (one per missing rate).

ho	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
SSC-EWZF	0.070	0.101	0.133	0.183	0.253	0.351	0.481	0.654
LMaFit-SSC	0.072	0.077	0.088	0.101	0.106	0.121	0.125	0.179
SRME-MC	0.005	0.005	0.005	0.005	0.006	0.010	0.022	0.077
Our method	0.001	0.002	0.003	0.004	0.009	0.018	0.035	0.113

Table 6. Clustering error for all sequences in Hopkins 155. ρ 0.100.200.300.400.500.600.700.80SSC-EWZF0.1800.2040.2260.2450.2570.2750.2960.318

Skeleton Completion

Table 8. Reconstruction error for the skeleton completion experiment (20 trials each).

ρ	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
SSC-EWZF	0.088	0.127	0.194	0.270	0.359	0.467	0.610	0.751
SRME-MC	0.044	0.059	0.085	0.103	0.132	0.166	0.248	0.364
Our method	0.040	0.055	0.086	0.100	0.116	0.133	0.175	0.240

CMU Motion Capture

Table 7. Reconstruction error for the experiments (20 trials each) with the CMU Mocap dataset.

ρ	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
SSC-EWZF	0.075	0.143	0.211	0.295	0.382	0.493	0.615	0.763
SRME-MC	0.019	0.031	0.047	0.070	0.100	0.160	0.232	0.384
Our method	0.012	0.021	0.034	0.051	0.071	0.128	0.160	0.245

Group Image Inpainting

COIL-20 ($\rho = 0.70$)

Extended Yale B ($\rho = 0.80$)

