Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

The Data Engineering Lifecycle & Undercurrents

Week 2

The Data Engineering Lifecycle & Undercurrents

Week 2 Overview

The Data Engineering Lifecycle

The Undercurrents

The Data Engineering Lifecycle

Data Generation in Source Systems

Source Systems - Databases

Databases

Relational Databases

NoSQL Databases

Source Systems - Files

Files

Source Systems - API

Application
Programming Interface
(API)

Source Systems - Data Sharing

Source Systems - IoT

"Swarm" of IoT devices

Source Systems - IoT

Deliver data

Unpredictable systems

- Systems go down
- Change in format/schema of data
- Change in data

Downstream Systems

- How are the systems set up?
- What kind of changes are to expect?

Understand how source systems work

- How they generate data
- How the data may change over time
- How the changes will impact downstream systems

The Data Engineering Lifecycle

Ingestion

Frequency of Ingestion

Batch Ingestion

Single batch

- Based on predetermined time interval
- Based on preset size threshold

Streaming Ingestion

Ingestion

Batch Ingestion

VS.

Stream Ingestion

Streaming and Batch Components

Streaming and Batch Components

The Data Engineering Lifecycle

Storage

Raw Hardware Ingredients

Solid-state storage

Magnetic disk

Magnetic disk

- Backbone of modern data storage system
- 2-3 times cheaper than solidstate storage

Raw Hardware Ingredients

RAM (Random Access Memory)

RAM

- Faster read and write speeds
- 30 50 times more expensive than solid-state storage
- Volatile

Storage

Storage

Storage Systems

Storage Systems

Storage Abstractions

Storage abstractions: combinations of storage systems

Choose configuration parameters:

- Latency
- Scalability
- Cost

Storage Hierarchy

Storage Hierarchy

Understand the details of your entire storage solution

Work near or at the top

The Data Engineering Lifecycle

Queries, Modeling and Transformation

Transformation

Transformation

Issuing a request to read records from a database or other storage system.

Issuing a request to read records from a database or other storage system.

Query Language

Issuing a request to read records from a database or other storage system.

Poor queries: negative impact on the source database

Issuing a request to read records from a database or other storage system.

Poor queries: cause row explosion in your database

You database

Issuing a request to read records from a database or other storage system.

Poor queries: cause downstream delays

Data modeling

Choosing a coherent structure for your data to make it useful for the business.

The Data Engineering Lifecycle

Serving Data

The Data Engineering Lifecycle

Analytics is the process of identifying key insights and patterns within data.

Business Intelligence

Operational Analytics

Embedded Analytics

Business Intelligence

Business Intelligence

Business Intelligence

Business Intelligence

Business Intelligence

Operational Analytics

Monitoring real-time data for immediate action

E-commerce website performance metrics Real-time website performance metrics

Operational Analytics

Monitoring real-time data for immediate action

Embedded Analytics

External or customer-facing analytics

Customer-facing dashboards

Embedded Analytics

External or customer-facing analytics

Embedded Analytics

External or customer-facing analytics

Machine Learning

The Data Engineering Lifecycle

Reverse ETL

The Undercurrents of the Data Engineering Lifecycle

Intro to the Undercurrents

The Undercurrents of the Data Engineering Lifecycle

Security

Data Sensitivity

ld	First Name	Last Name	Credit Card Number
25	John	Smith	457893
45	Lara	Jones	347891

ld	First Name	Last Name	Credit Card Number
25	J****	S****	****93
45	L****	J****	****91

Security in the Cloud

Identity and Access Management (IAM)

Encryption Methods

Networking Protocols

Security Theater

The Undercurrents of the Data Engineering Lifecycle

Data Management

Data Management

"Data management is the development, execution, and supervision of plans, programs, and practices that deliver, control, protect, and enhance the value of data and information assets throughout their life cycles."

DMBOK's Definition

Data Management

11 Data Knowledge Areas

Data Governance

"Data governance is, first and foremost, a data management function to ensure the quality, integrity, security, and usability of the data collected by an organization."

Data Governance: The definitive Guide

Data Governance

"Data governance is, first and foremost, a data management function to ensure the quality, integrity, security, and usability of the data collected by an organization."

Data Governance: The definitive Guide

Data Quality

High Quality Data

- Accurate
- Complete
- Discoverable
- Available in a timely manner

Exactly what stakeholders expect

Low Quality Data

- Inaccurate
- Incomplete
- Hard to find
- Late

Unusable

The Undercurrents of the Data Engineering Lifecycle

Data Architecture

"Data architecture is the design of systems to support the evolving data needs of an enterprise, achieved by flexible and reversible decisions reached through a careful evaluation of trade-offs"

"Data architecture is the design of systems to support the evolving data needs of an enterprise, achieved by flexible and reversible decisions reached through a careful evaluation of trade-offs"

"Data architecture is the design of systems to support the evolving data needs of an enterprise, achieved by flexible and reversible decisions reached through a careful evaluation of trade-offs"

"Data architecture is the design of systems to support the evolving data needs of an enterprise, achieved by flexible and reversible decisions reached through a careful evaluation of trade-offs"

Trade-offs

- Performance
- Cost
- Scalability
- ...

1. Choose common components wisely

- 1. Choose common components wisely
- 2. Plan for failure!

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability
- 4. Architecture is leadership

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability
- 4. Architecture is leadership
- 5. Always be architecting

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability
- 4. Architecture is leadership
- 5. Always be architecting
- 6. Build loosely coupled systems
- 7. Make reversible decisions

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability
- 4. Architecture is leadership
- 5. Always be architecting
- 6. Build loosely coupled systems
- 7. Make reversible decisions
- 8. Prioritize security

Zero-trust principle

- 1. Choose common components wisely
- 2. Plan for failure!
- 3. Architect for scalability
- 4. Architecture is leadership
- 5. Always be architecting
- 6. Build loosely coupled systems
- 7. Make reversible decisions
- 8. Prioritize security
- 9. Embrace FinOps

The Undercurrents of the Data Engineering Lifecycle

DataOps

DataOps

Improves the development process and quality of data products.

It's a set of cultural habits and practices.

Communication & Collaboration

Continuous Improvement

Rapid Iteration

DevOps practices

Agile methodology

Pillars of DataOps

Goal: Provide high-quality data products

DevOps (Applies to software build) **Continuous Integration and Continuous Delivery (CI/CD)** Deploy Integrate Build Test Code committed to CI/CD automation results in: a shared repo faster deployment fewer errors

DataOps

DevOps (Applies to software build)

Continuous Integration and Continuous Delivery (CI/CD)

Build Test Integrate Deploy

Code committed to a shared repo

CI/CD automation results in:

- faster deployment
- fewer errors

DataOps
(Applies to data processing)

Automated change management:

- Code
- Configuration
- Environment
- Data processing pipelines
- Data

Analytics

Prone to failure as the number of jobs grows

Data Sources

Checks the dependencies between tasks before each task is run

Automatic verification and deployment of new aspects

Pillar 2: Observability & Monitoring

Pillar 3: Incident Response

- ✓ Rapidly identify the incident's root causes
- ✓ Quickly resolve an incident

- √ Identify technology and tools
- √ Coordinate the efforts of the data team

The Undercurrents of the Data Engineering Lifecycle

Orchestration

Manual Execution

Pure Scheduling

Pure Scheduling

Pure Scheduling

Orchestration Frameworks

Time-based scheduling

Orchestration frameworks:

- Automate pipeline with complex dependencies
- Monitor pipeline

Event-based triggers

Orchestration frameworks:

- Automate pipeline with complex dependencies
- Monitor pipeline

Set up monitoring & alerts

Orchestration frameworks:

- Automate pipeline with complex dependencies
- Monitor pipeline

Directed Acyclic Graph

Directed Data flows in one direction

Directed Data flows in one direction

Acyclic

Data doesn't flow backward

DeepLearning.Al

The Undercurrents of the Data Engineering Lifecycle

Software Engineering

Software Engineering

Software engineering

The design, development, deployment, and maintenance of software applications.

Writing Code as a Data Engineer

Writing Code as a Data Engineer

Writing Code as a Data Engineer

Other coding use cases:

- Open source frameworks
- Infrastructure as code
- Pipeline as code
- Everyday general-purpose problem solving

Practical Examples on AWS

The Data Engineering Lifecycle on AWS

Databases

- Provisions database instances with the relational database engine of your choice
- Simplifies the operational overhead involved with provisioning and hosting a relational database

- A serverless NoSQL database option
- Create stand-alone tables that are virtually unlimited in their total size
- Has a flexible schema
- Best suited for applications that require low-latency access to large volumes of data

Streaming Sources

 Set up as a source system streaming real-time user activities from a sales platform log

 Handle messages when building your own data pipelines outside of these courses.

 Makes it easier to run Kafka workloads on AWS because the underlying infrastructure is managed for you

From a Database

 Can migrate and replicate data from a source to a target in an automated way

• Offers features that support data integration processes

From a Streaming Source

Traditional Data Warehouse

Access structured data in your data warehouse and unstructured data in an object storage data lake.

Data Processing Tools

Business Intelligence or Analytics

For querying structured and unstructured data

Dashboarding tools

Al or Machine Learning

 Serve batch data for model training, and work with some vector database

Practical Examples on AWS

The Undercurrents on AWS

Security

Shared Responsibility Model

Security

Identity and Access Management (IAM)

- IAM roles:
 - Give users/applications access to temporary credentials
 - Provide appropriate AWS API permissions to various tools or data storage areas

Instance level firewalls

Data Management

 Discover, create, and manage metadata for data stored in Amazon S3 or other storage and database systems

Centrally manage and scale fine-grained data access permissions

DataOps

 Collects metrics and provides monitoring features for cloud resources, applications, and on-premises resources

Store and analyze operational logs

Amazon CloudWatch Logs

 Sets up notifications between applications or via text/email that are triggered by events within your system

Orchestration

Architecture

Operational Excellence

Performance Efficiency

Security

Cost Optimization

Reliability

Sustainability

Software Engineering

Lab Walkthrough

Introduction to the Lab

Lab Walkthrough Videos

Video 1

Introduction to the lab

Video 2

Setting up the lab

Video 3

Preview of the lab content

You will learn more about all the tools in the upcoming courses.

Pipeline Scenario

Historical purchases & Customers' Info

You work at a retailer for scale models of classic cars and other vehicles.

Transform and serve the data

- Which product lines are more successful?
- How are the sales distributed across different countries?

Pipeline Scenario

Historical purchases & Customers' Info

• Extract the data the analyst needs

Data Modeling (course 4)

 Transform the data into a structure that is easier to understand and faster to query

Transformation script +
Structure of the data are given to you

• Store the data in a separate storage system

Structure of Transformed Data

fact orders orderLineNumber orderNumber int customerNumber int postalCode int productCode date orderDate date requiredDate shippedDate date varchai status comments varchai

quantityOrdered

priceEach

buyPrice

MSRP

orderAmount

int

float

float

float

float

Fact Table

Measurements related to a sales order that the data analyst is interested in aggregating

- total number of sales
- average price

dim locations

city

state

country

postalCode PK

int

varchar

varchar

varchar

Star schema

dim_products

int productCode PK

varchar productName

varchar productLine

varchar productScale

varchar productVendor

varchar productDescription

varchar productLineDescription

Dimension Tables

More context (customer locations, order details)

- total number of sales by country
- maximum quantities ordered for each product line

AWS Cloud9

Integrated Development Environment (IDE)

Video 2

Setting up the lab

- AWS Cloud9
- Jupyter Notebook

AWS Cloud9

Integrated Development Environment (IDE)

The Data Engineering Lifecycle & Undercurrents

Week 2 Summary

