W4

The data set co	onsists of information on 300 mothers with regards to:				
agefirst	Age of mother when she had her first child in year 2017				
mother30	30 years old or older at the time of the baby's birth				
lone	Whether the mother is a lone (single) parent				
momleave	Number of days of maternity leave				
four three	two seven one no six five				
Use the appropriate descriptive indices to identify potential typos in the data and if so, clean the data set. Use the space below to keep a record of the typos you found.					
The variable age	efirst had one dubious entry/entries.				
The variable mo	ther30 had three dubious entry/entries.				
The variable lon	e had two dubious entry/entries.				
The variable mo	mleave had no dubious entry/entries.				

was [null] 185 [148.5] π [$\mu \neq 30$ [112] =0.000] <0.001 [17.943] =0.001 π =0.5] $\pi \neq 0.5$ [chi-square] alternative] μ =30 [t] μ was not]
In 2016, "over half (53%) of all live births in England and Wales were to mothers aged 30 and over". Use the appropriate test to see if in 2017 among the women who gave birth, the proportion of women who were 30 or older, is equal to the proportion of the women who were younger than 30 years old.
Let π be the proportion of 'women aged 30 and over when they gave birth' in the population. We test the hypotheses:
H_0 : $\pi=0.5$ versus H_a : $\pi\neq0.5$
The observed number of women in our sample who aged 30 and over was 185 . The expected number of women to be aged 30 and over under the null hypothesis was 148.5 . According to the one sample chi-square test, this difference was statistically significant ($y^2 = 17.943$, df=1, p < 0.001).
<0.05 significantly higher one-sample t-test 120 299 do not reject reject 300 111 7.152 accept =0.000 significantly lower paired sample t-test <0.001 110 -8.480
In 2016, "on average, the mothers used 120 days of maternity leave". Use the appropriate test to infer if in 2017 the women used on average the same or different number of maternity leave days.
According to the one-sample t-test , the average number of maternity leave days in 2017 was significantly lower than the corresponding in 2016 (test value μ_0 — 111 × [120]). Therefore, we reject the null hypothesis (t= -8.480 × , df= 299 × ,p-value <0.001 ×).
=1 reject is <0.05 do not reject -0.5 is not 0.004 accept >0.05 224 do not accept =0.95 =0.947 In 2016, "25% of the mothers were lone parents". Use the appropriate test to infer if in 2017, the proportion of women who were single mothers was also 0.25.
According to the one-sample chi square test (χ^2 = 0.004 , df=1,p-value =0.947 \vee) the proportion of women who were lone parents in 2017 is not visignificantly different than the one in 2016. Based on our data, we do not reject \vee the null hypothesis.

The programme facilitator reports that the CBT programme they had run in Tanzania had equal proportions of males and females. Run the appropriate test to see if the proportions of males and females in the UK population are statistically different.

The programme facilitator reported that the average age of people who attended their programme in the USA was 45 years old. Does this compare to the UK results? Interpret the results.

The programme facilitator wants to understand if ethnicity distribution was different between the two sex groups. Run the appropriate test to see if this is the case.

To decide on which test	to use, we consider the	following:			
the design is a	two independent s	amples t-test	× [two indep	endent sample:	s design], and
ethnicity is a	categorica		✓ variable.		
Hence we can either use	e a test from the family	of the	chi-square tes	sts	or, if the assumptions
do not hold, a test from	the family of the	exac	t tests	~ .	
The appropriate tes	st to use here is	Fisher's e	xact test	✓ .	
According to the test, th	e proportion of each etl	nnicity group	did n	ot differ	✓ significantly
between two sex groups	s (p-value=	0.425). We	
do no	t reject	the null hyp	oothesis and we inf	er that there	
wa	s not	✓ sufficient d	ata to indicate asso	ciation betwee	n the two variables.

The programme facilitator wants to test if males were more willing than females to volunteer to give a talk, before their CBT treatment. Use the appropriate test and infer on the results.

To decide on which test t	o use, we consider t	he following:				
the design is a	two independent	samples design	✓ , and			
likA is a	categorical	~		ordinal		variable
but because the varia	able has more than		5	~	points on a respo	nse scale, we
decide to treat it as a		numerical	×	[continuous] varia	ble for our analysis	•8
Hence we can either use a			paramet	ric tests	✓ or, if the a	assumptions
do not hold, a test from th	ne family of the	non-para	metric tests			
The appropriate test	to use here is the	two independent s	amples Mann-	Whitney test	because the likA va	riable has a
	skewed	✓ distrib	ution for each	sex.		
According to our data, ma	ales [were not] signi	ficantly more willing	g than females	to give a talk befor	e their CBT treatme	ent (
U=2816	521.5	-	p=0).843	~).	

The programme facilitator want to test if males experienced more anxiety than females before their CBT treatment. Use the appropriate test and infer on the results.

To decide on which test to use, we consider the following:
the design is a [two independent samples design], and anxA is a numerical variable.
Hence we can either use a test from the family of the parametric tests or, if the assumptions do not hold, a test from the family of the non-parametric tests .
The appropriate test to use here is the two independent samples t-test because anxA is a symmetrical variable within each group.
According to our data, males experienced \checkmark significantly more anxiety than females $(t=-24.275)$ \checkmark , $(df=1497)$ \checkmark $(df=1172.128)$, $(p<0.001)$ \checkmark $(df=1497)$

W6 & 7

Then the type of variable: 'Nominal, Ordinal, Discrete, Continuous' height is a Numerical Continuous variable weight is a Continuous variable Numerical goals is a Numerical Continuous variable throws is a Numerical variable Continuous Numerical points is a variable Continuous team is a Categorical Nominal variable

Investigate the linear relationship between 'goals' and 'points' and fill the gaps.
There is a linear correlation × relationship between the two variables. The higher v the average
points scored per game, the higher v the percent of successful field goals. Variable 'goals' is
normally distributed. We can see in the histogram that it is bell-shaped ,
and symmetrical variable 'points' is not-normally valistributed. We can see in
the histogram v that it is not bell-shaped v , and not-symmetrical v around the mean. Hence,
we can estimate a Spearman v correlation coefficient. It takes a value of 0.347 v that can
be interpreted as a weak v positive v linear relationship. The correlation
can v be inferred to the whole population of players because p value=0.010 v . Therefore,
we reject verified the null hypothesis of no linear correlation verified between the two variables and we infer that
the 'goals' are linearly

Our journalist knows the player scored 6 points in average. Help him estimate the percentage of successful field goals of the player, based on his points. Use the appropriate SPSS command to build a simple linear regression model that can be used to predict the 'goals' knowing the 'points' of a player and fill the gaps.

y=0.411+0.003x+e	✓ is the equation of t	he linear regression	model. In context:		
b_0 represents b_1 represents that	at a 1 point difference	field goals for a play in points is asso		erence vin field go	
y=0.411+0.003x+e	y=-4.080+35.338x+e	the field goals	the extrapolated	no points	ilaci
a 1 point difference	0.003 difference	residual	a 2 points difference	no goals	
the points	35.338 difference				

Check the inference assumptions for	the linear model de	erived in Q6 and fill th	e gaps.	
1) We already know from Q3 that the	ere is a	linear		✓ relationship
between 'goals' and 'points'.				_
2) We plot the	histogram	✓ of th	ne errors and see th	ney are
normally		/ distributed.		
3) The error terms have	different varia	ance	× irrespective o	f the values of x. We can
inspect this by plotting a	scatterplo	ot	✓ of the	
standardised predicted versus stand	dardised residual	values. The plot sh	owed	
no pattern	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· .		
In summary conditions were	m	et	✓ , which	
allows		us to make inferen		el.
984(1998)(35)?				
Provided the four assumptions to car the alternative hypotheses for the reg $H_0 = b1$ coefficient equals ($H_1 = b1$ coefficient is different equals ($H_1 = b1$).	gression coefficient I		AREA CONTROL OF CONTRO	e met, write the null and
Use the model derived in Q6 to help having had a total of 6 points. Please "Kevin White, player of the Chicago B scored 6 points in average per play, a ITV news, Chicago"	fill the gap in his re	port for tonight's new	s: key role member fo	70
Half an hour before going on life, the that the percentage of successful field What would you recommend to the joint that would you recommend the joint the joint that would you recommend the joint that would you	l goals also depends			
As weight might be a confounder, pleas independent variables and "goals' as independent variables and "goals' and		·	nodel, including bo	th 'points' and 'weight'
The equation of the multiple linear reexplain a 38.5 v percent of outcomes.		= 0.207	x+0.001	The two variables
Use the adjusted R2 values to comparmodel derived in Q10. Fill the gaps:	re the simple linear	regression model deri	ved in Q6 and the r	multiple linear regression
The model including 'points' and 'weign which is higher which is higher		_		
If necessary help the journalist to co that the player got 6 total points in a the prediction.				
"Kevin White, player of the Chicago E scored 6 points in average per play, ITV news, Chicago"				or his team. The player evin White, informing for
The 95% confidence interval for the	predicted value is [35.20 🗸 , 53.73 🗸]	

NB: Dragged items are bigger than the labels, so stack in the order of path, coefficient, p-value and place variable names in the boxes.

Indirect effect (ab \checkmark) can be calculated as the addition \times [product] of paths a \checkmark and b \checkmark , which gives: ab \checkmark = (0.482 \checkmark) \times (-0.280 \checkmark) = -0.135 \checkmark . The total effect c \checkmark is therefore -0.135 \times [-0.140]

Sobel test of indirect effect is statistically significant (test statistic= -4.3197 , p <0.001).

This leads to the conclusion that perceived severity of anabolic steroid use is a mediator of the effect of treatment on Intent to use anabolic steroids

W9

Then, the type of variable: 'Nominal, Ordinal, Discrete, Continuous'

continuous 🗸 variable

BDI is a numerical

epiNeur is a numerical v continuous variable
stateanx is a numerical v continuous variable
What does the regression coefficient of stateanx_X_epiNeur tells you?
Regression coefficient of stateanx_X_epiNeur represents the interaction effect 🗸 between stateanx and epiNeur. The p-value
0.001 vsuggests that the interaction effect vis statistically significant v. This implies
hat both variables jointly affect depression \checkmark , but their effects are not independent \checkmark of each other. Effect of
tateanx depends v on epiNeur and vice-versa.
The coefficients of the variables stateanx and epiNeur do not carry their usual interpretations because of the presence of an interaction (cross-product) term involving these variables. For the interaction model, the coefficient of stateanx
can be interpreted as the effect of stateanx on bdi when epiNeur=0 . The estimated coefficient
0.038 implies in people with 0 neuroticism symptoms, one unit increase in
stateanx leads to 0.038 vunits increase in bdi. Similarly, the coefficient of epiNeur represents the effect of
epiNeur on bdi when stateanx=0 ✓ . Both coefficients are not significantly different from 0 ✓ as the
ovalue for the test for the stateanx's beta coefficient is 0.537 vand for epiNeurs' coefficient is
0.435 🗸 .
The estimated linear effect of epiNeur on bdi for a person with stateanx of 30 is 0.302 🗸 .'
stateanx presents 0 vinfluential value(s) because the absolute standardised DFBETA and DFFIT are lower than 1
✓ . epiNeur presents 0 influential value(s) because the absolute standardised DFBETA and DFFIT are
lower than 1 🗸 '

W10

The probability of a patient being adherant to hypertension treatment when they have high social support and are 58 years old, have a total score of 1 for depressive symptoms, 10 years of hypertension and a total score of 12 for self compassion is 99.8 %