CS325 - Project 1

Alexander Merrill

October 2014

Proof of Claim 1

Claim 1: y_i is not visible iff $\exists j, k$ such that j < i < k and $y* > m_i x* + b_i$ where (x*, y*) is the intersection of y_j and j_k .

 $A \equiv y_i$ is not visible

 $B \equiv \exists j, k \text{ such that } j < i < k \text{ and } y* < m_i x* + b_i \text{ where } (x*, y*) \text{ is the intersection of } y_j \text{ and } y_k.$

 $A \Leftrightarrow B$

First Prove $A \Rightarrow B$

Direct Proof:

Let y_i be a line that is not visible.

Then l < i < n because y_i and y_n are always visible.

Let k be the smallest index greater than i such that y_k is visible.

e.g. $y_1, y_2, ..., y_k, y_{k+1}, ..., y_{n-1}, y_n$

Let (x*, y*) be the left most point on y_k that is visible.

Let j be the greatest index such that y_i intersects y_k at (x*, y*) is visible.

Because y_i through y_{k-1} are not visible (by definition of k_j) j < i < k.

Since x*, y* is visible and y_i is not visible, $m_i x + b_i < y*$.

Prove $B \Rightarrow A$

Direct Proof:

Since $m_i < m_k$, the intersection point of y_i and y_k is left of x*.

Since $m_i < m_k$, $m_i x + b_i < m_k x + b_k \ \forall x > \bar{x}$.

Likewise since $m_i > m_j$, y_i and y_j intersect at (\bar{x}, \bar{y}) right of $x*(\bar{x} > x*)$.

 $\therefore m_i x + b_i < m_j x + b_j; \, \forall x < \bar{\bar{x}}.$

 $\therefore y_i$ is not visible.

 $y_k + y_j$ intersect at $m_k x + b_k = m_j x + b_j$

$$x = \frac{(b_j - b_k)}{(m_k - m_j)}$$

$$x = \frac{(b_j - b_k)}{(m_k - m_j)}$$

$$\text{Is } m_j \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_j > m_i \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_i$$

$$\text{If } m_k > m_j \text{ then instead compare } m_j(b_j - b_k) + b_j(m_k - m_j) > m_i(b_j + b_k)$$