

Model Development Phase Template

Date	21 June 2024
Team ID	739680
Project Title	Estimating Presence or Absence of Smoking through bio signals
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

from sklearn.li	near_model import LogisticRegression
logi - Logistic	Regression()
logi	
ogisticRegress	ion()
logi.fit(x_trai	n, y_train)
ogisticRegress	ion()
from sklearn.me	trics import confusion_matrix, accuracy_score, classification_report
_train_pred =	logi.predict(x_train)
_test_pred = 1	ogi.predict(x_test)
confusion Mat	rix for Training Data with Training Data
onfusion_matri	x(y_train ,y_train_pred)
erray([[19115, [4375,	5433], dtype=int64)
Accuracy For	Training Data With Logistic Regression
sccuracy_score(y_train,y_train_pred)*100
74.559697040437	94

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Random forest classifier	Model Building With Random Forest Classifier In [52]: from sklern.ensemble import RandomForestClassifier In [53]: from sklern.ensemble import RandomForestClassifier In [55]: fr	69%	: confusion_matrix(y_test, y_test_pred) : array([[8915, 1476], dtype=int64) [1388, 4744]], dtype=int64)
Decision tree	Model Building With Decision Tree from skizarn.tree import obesion/reeclassifier desi - desision/reeclassifier/(rritarion - "entropy", random_state - 8) desi.fit(_rtain,_rtain) desision/reeclassifier(rritarion-'entropy", random_state-8) y_train_pred - desi_ordist(_train) y_test_pred - desi_ordist(_train) y_test_pred - desi_ordist(_train) xconfusion_matrie_re_rroting_pose_with_desisten_rree softwise_matrie_re_rroting_pose_with_desisten_rree softwise_matrie_re_rroting_pose_with_desisten_ree serving_classis_ 8); ssevery_rot_resin_gouts_utc_desisten_ree serving_serre(y_train,y_train_pred)*s00 100.8	64%	on [83]: confusion_matrix(y_test, y_test_ened) Out[83]: arrhy([[8407, 1824], d)) [1941, 4390]], dtype=inte4)

Logistic Regression	Model Building with Logistic Regression from silearn.linear_model import logisticRegression logi = logisticRegression() logid = logisticRegression() logisticRegression() logisticRegression() logisticRegression() from silearn.netrics import confusion_metrix, accuracy_score, classification_report y_test_pred = logi.predict(x_test) logisticRegression logisticRegression() logisticRegress	76.4%	In [83]:
Gradient Boosting	SMAKTBRIDGE Treated interests Decides Live State of the Control	75%	STANK TERRING Decimal Tree