PHOTOGRAMMETRIC TASKS FOR +Z VERTICAL ADDED HEAD MASS EXPERIMENTS

GPA Associates P.O.Box 1200 New Orleans, LA 70148

Final Technical Report

Naval Biodynamics Laboratory P.O. Box 29407 New Orleans, La 70189-0407

Approved for public release; distribution is unlimited.

Prepared for

Naval Medical Research and Development Command Bethesda, MD 20889-5044

19960215 066

DTIC QUALITY INSPECTED 1

FILE COPY

Photogrammetric Tasks For +Z Vertical Added Head Mass Experiments

GPA Associates

Geodetic/Photogrammetric Analysis Associates

VINO Box 1200

New Orleans, LA 70148-1200

(504) 286-1200

Contract Number: N00205-91-M-G011

Photogrammetric Tasks For +Z Vertical Added Head Mass Experiments

The location and orientation of the head and body anatomic coordinate systems are essential for the analysis of acceleration data to determine forces and torques on the test subjects (Human research volunteers or HRVs). A new method was proposed to analyze the x-rays using very powerful photogrammetric techniques and to utilize the new Altek digitizing tablet.

The GIANT preprocessing program PREP was rewritten to accommodate input from the tablet. Two scripts were made for each of the two sets of x-rays.

Head Anatomic Coordinate System

Four x-rays were taken of each HRV, the two normal (A/P & Lateral) and two more but with the HRV rotated outward about 45°. In addition, two x-rays were made of the calibration prism for object space control. The new x-rays at 45° provided additional data to guarantee an over-determined solution for the photogrammetric system (GIANT) to process. Additional bb's were placed on the subjects in various places to improve the solutions (reduce the size of the error ellipsoids). The necessary characteristics for the added bb's were that they were immobile during the series of x-rays and that they tended to cover the field of view of the x-ray.

The six x-rays were separately digitized according to a fixed script (see appendix 1) within the program ALTHEAD, which created a 6-photo IMG.DAT file for GIANT. Only four of the six were different. The calibration x-ray images after pre-processing were merged with those of the corresponding normal (not rotated) A/P & lateral x-rays.

A full sample GIANT output is given in appendix 6 for one of the HRVs and the anthropometry output for all the HRVs is in appendix 4. Combined with neck data to be discussed, appendix 3 has the complete results in EZFlow format.

Typical errors in the determination of the essential anatomic points was approximately 1mm, about the limit one might expect consistent with the limitation of the geometry, the size of the bb's and other measurement errors.

Body Anatomic Coordinate System

The body anatomic system defied efforts to establish the same rigor. Prior efforts had none of the vertebral points on more than one x-ray. Their locations in space required some manipulation and assumptions relating their locations to external bb's and to the x-ray focal point(!). Photogrammetric techniques require two points for a minimum and preferably three or more.

Lateral x-rays are obscured by the large mass through which they must pass. Locating an object requires two or more non-collinear determinations. Therefore, a stereo pair was taken in the A/P direction. The superior corner remained invisible-washed out. Rotating the HRV about 25° resulted in the stereo pair being readable but not by everybody. Some experience seems if not essential at least helpful.

A new script (appendix 2) was written into PREP and called ALTBODY for the digitization of the body x-rays. The processed images were fed into GIANT. The error ellipsoids showed peak uncertainties in the direction of the x-ray tube of about 12cm(!). The stereo angle was definitely too narrow. Increasing the angle between the photos makes it even harder to bring the two stereo images together. The alternative was to use another stereo pair with the HRV rotated in the other direction. Each pair yielded the same 12cm error separately but together the error dropped to about 4-5mm.

A sample GIANT output for the body system is given in appendix 7, whereas the full anthropometric output portion for all the HRVs is in appendix 5 and is combined with the head data in EZFlow format in appendix 3.

The body results (errors) still lag behind the head data for several reasons:

The internal points are still difficult to see and identify. What one sees as the spinous process and some other points when the body is rotated in one direction is not quite what one sees for the opposite rotation-perhaps a point slightly shifted around the curve.

The sternum bb moves as the HRV breathes. Shoulder bb's are determined by posture as are the bb's on the neck. Usually these are close enough for each stereo pair, but not always. Often rotating the HRV changes the posture moves these through large distances:

IneckB (0.0648, -0.0068, 0.1775) vs. (0.0641, 0.0016, 0.1791) m IneckT (0.0535, 0.0343, 0.1886) vs. (0.0580, 0.0458, 0.1766) m

RECOMMENDATIONS

It was recommended that a lucite posing chair be constructed into which the HRV would be strapped in a manner similar to the actual sled runs. If it could be rotated and translated instead of moving the HRV relative to the chair, much of the errors obtained might be reduced. Such a chair is now under construction.

X-Ray Anthropometry Digitizing Script

FIDUCIALS	CALIBRATION PRISM	HRV HEAD
1	'c3' or 'c5'	'lam'
2	'c13'	'ram'
3	'c4' or 'c8'	'lon'
4	'c11'	'ron'
5	'c10'	'ltp'
6	'c9'	'rtp'
7	'c2' or 'c6'	'ctp'
8	'c12'	'chin'
9	'c1' or 'c7'	'ltúskF'
10	'cv1'	'ltuskM'
	'cv2'	'ltuskR'
	'cv3'	'rtuskF'
	'cv4'	'rtuskM'
•	'cv5'	'rtuskR'
	'cv6'	'capLfF'
1	'cv7'	'capLfR'
	'cv8'	'capRtF'
	'cv9'	'capRtR'
	'cv10'	'capCEN'
1.	/mboso are followed to	h 1 mb 6: 3
	(These are followed)	by ist non-zero ridu

cial)

1 2 3 4	5 6	7 8 9 10	cv1 c3 (c11 c2 (cv6	5) 6)	13 10 12	5 4(8) 9 1(7) 10
1 	 	3 	-1 -2 -3	 		 >

ALTEK DIGITIZER 4-BUTTON KEY CONTROL MEANINGS: #2:RED=ERROR-BACKUP

#4:BLUE=???

#1:YELLOW=MISSING

#3:GREEN=FIDUCIAL or DATA POINT

X-Ray Anthropometry Digitizing Script Locations of Fiducials **FIDUCIALS** Order of digitization 1 10 2 8 9 3 5 6 8 1 9 2 3 10 HRV BODY Approximate locations on x-rays 'origin' 'lf rib' rneckT lneckT 'rt rib' 'top_spin' 'bot_spin' 'spine bb' rtp ctp ltp 'sternum' 'lf_shold' 'rt_shold' rneckB lneckB lf rib spine bb rt rib 'ltp' top spin 'rtp' bot spin 'ctp' origin 'lneckT' 'lneckB' 'rneckT' 'rneckB' rt shold sternum lf shold

ALTEK DIGITIZER 4-BUTTON KEY CONTROL MEANINGS:
#2:RED=ERROR-BACKUP
#4:BLUE=??? #1:YELLOW=MISSING
#3:GREEN=FIDUCIAL or DATA POINT

(These are followed by 1st non-zero fiducial)

ANTHROPOMETRY OUTPUT IN FORM FOR EZ-FLOW

H00222	MAR 91	HEAD DATA
15.0758	0.4458 -	1.5789
-0.564306	-0.021160	-0.825294
-0.065657	0.997655	0.019315
0.822950	0.065086	-0.564373
H00222	MAR 91	NECK DATA
-18.4226	1.4523	7.8292
0.998378	-0.053356	-0.019868
0.051853	0.996219	-0.069711
0.023513	0.068568	0.997369

H00226	MAR 91	HEAD DATA
15.3533	-0.0296 -	1.6299
-0.558896	-0.013702	-0.829124
0.007833	0.999732	-0.021802
0.829201	-0.018680	-0.558639
H00226	MAR 91	NECK DATA
-15.2009	-0.9364	9.0198
0.975366	0.119443	-0.185460
-0.133935	0.988679	-0.067643
0.175280	0.090816	0.980321

H00227	MAR 91	NECK DATA
-19.8392	-2.7613	3.6425
0.977128	0.197335	0.079248
-0.193544	0.979657	-0.053037
-0.088102	0.036485	0.995443

```
H00235
              MAR 91
                             HEAD DATA
 15.7940
              0.6722
                       -0.2051
 -0.463656
              -0.040465
                          -0.885091
 -0.054751
               0.998356
                          -0.016962
  0.884322
               0.040595
                          -0.465109
H00235
              MAR 91
                             NECK DATA
-17.7137
             1.1679
                        6.9586
              -0.076149
  0.993792
                          -0.081107
  0.069104
               0.993862
                          -0.086388
  0.087187
               0.080247
                           0.992955
```

H00236	MAR 91	HEAD DATA
14.7014	-0.2727 -	0.7149
-0.544915	0.031293	-0.837907
0.030031	0.999391	0.017794
0.837953	-0.015467	-0.545523
H00236	MAR 91	NECK DATA
-17.8482	0.1340	6.5006
0.998851	-0.004147	-0.047748
0.004553	0.999954	0.008396
0.047711	-0.008603	0.998824

H00237	MAR 91	HEAD DATA
16.2832	-0.6640	0.0369
-0.413590	0.038658	-0.909642
0.057022	0.998237	0.016497
0.908676	-0.045047	-0.415065
H00237	MAR 91	NECK DATA
-17.6617	-0.3212	3.8235
0.990601	0.045063	0.129149
-0.041518	0.998687	-0.030017
-0.130332	0.024373	0.991171

H00240 14.5408 -0.563149 0.013597 0.826244 H00240 -18.9848 0.982062 0.028403 -0.186408	MAR 91 HEAD DATA -0.1803 -1.0551 0.014527 -0.826228 0.999873 0.008313 -0.006553 -0.563275 MAR 91 NECK DATA -0.1718 2.0138 -0.037795 0.184733 0.998178 0.053227 -0.047025 0.981346
H00241 15.8038 -0.454264 0.058616 0.888936 H00241 -18.1043 0.997620 -0.068312 -0.009364	MAR 91 HEAD DATA -0.4359 0.0998 -0.006159 -0.890846 0.997603 -0.036787 -0.068928 -0.452814 MAR 91 NECK DATA -0.5658 5.8621 0.068826 0.004151 0.994760 -0.076067 0.075602 0.997094
H00242 15.4861 -0.546887 0.024138 0.836858 H00242 -17.9545 0.985006 -0.117294 -0.126510	MAR 91 HEAD DATA -0.1765 -0.6569 -0.025832 -0.836807 0.998622 -0.046603 -0.045686 -0.545510 MAR 91 NECK DATA -2.4086 4.2884 0.117710 0.126123 0.993039 -0.010743 -0.004211 0.991956

```
H00243
               MAR 91
                              HEAD DATA
14.6950
             -0.1635
                       -0.6194
-0.540610
              -0.018653
                           -0.841067
  0.016261
               0.999336
                           -0.032615
  0.841116
              -0.031308
                           -0.539947
H00243
               MAR 91
                              NECK DATA
-17.1260
              1.0928
                         4.3546
  0.993706
              -0.057820
                            0.095949
  0.056713
               0.998289
                            0.014230
 -0.096607
              -0.008698
                            0.995285
H00245
               MAR 91
                              HEAD DATA
 15.2708
             -0.4895
                        -1.3856
 -0.588311
               0.010802
                           -0.808563
  0.036007
               0.999269
                           -0.012850
  0.807833
              -0.036674
                           -0.588270
H00245
               MAR 91
                              NECK DATA
-19.5921
             -0.1332
                         3.3402
  0.985944
              -0.020871
                            0.165767
  0.016782
               0.999520
                            0.026030
 -0.166231
              -0.022882
                            0.985821
H00246
                              HEAD DATA
               MAR 91
             -0.1917
                        -2.4835
 15.4854
 -0.602996
                           -0.797293
               0.026833
                            0.012342
  0.028161
               0.999527
  0.797247
              -0.015010
                           -0.603467
H00246
               MAR 91
                              NECK DATA
-17.5506
              0.0605
                         5.9785
                           -0.023598
  0.999634
              -0.013221
  0.013033
               0.999882
                           -0.008112
  0.023702
                            0.999689
               0.007801
H00247
               MAR 91
                              NECK DATA
-17.6736
                         3.1673
              0.3493
  0.978635
                            0.205009
               0.015629
  0.000959
               0.996749
                           -0.080565
```

0.079040

0.975439

-0.205602

HEAD ANTHROPOMETRY OUTPUT

HRV # 0222

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.0758cm Y = 0.4458cm Z = -1.5789cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.564306 -0.021160 -0.825294

-0.065657 0.997655 0.019315

0.822950 0.065086 -0.564373

HRV # 0226

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.3533cm Y = -0.0296cm Z = -1.6299cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.558896 -0.013702 -0.829124

0.007833 0.999732 -0.021802

0.829201 -0.018680 -0.558639

HRV # 0235

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.7940cm Y = 0.6722cm Z = -0.2051cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.463656 -0.040465 -0.885091

-0.054751 0.998356 -0.016962

0.884322 0.040595 -0.465109

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.7014cm Y = -0.2727cm Z = -0.7149cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.544915 0.031293 -0.837907

0.030031 0.999391 0.017794

0.837953 -0.015467 -0.545523

HRV # 0237

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 16.2832cm Y = -0.6640cm Z = 0.0369cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.413590 0.038658 -0.909642

0.057022 0.998237 0.016497

0.908676 -0.045047 -0.415065

HRV # 0240

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.5408cm Y = -0.1803cm Z = -1.0551cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.563149 0.014527 -0.826228

0.013597 0.999873 0.008313

0.826244 -0.006553 -0.563275

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.8038cm Y = -0.4359cm Z = 0.0998cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.454264 -0.006159 -0.890846

0.058616 0.997603 -0.036787

0.888936 -0.068928 -0.452814

HRV # 0242

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4861 cm Y = -0.1765 cm Z = -0.6569 cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.546887 -0.025832 -0.836807

0.024138 0.998622 -0.046603

0.836858 -0.045686 -0.545510

HRV # 0243

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.6950 cm Y = -0.1635 cm Z = -0.6194 cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.540610 -0.018653 -0.841067

0.016261 0.999336 -0.032615

0.841116 -0.031308 -0.539947

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.2708cm Y = -0.4895cm Z = -1.3856cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.588311 0.010802 -0.808563

0.036007 0.999269 -0.012850

0.807833 -0.036674 -0.588270

HRV # 0246

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4854cm Y = -0.1917cm Z = -2.4835cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.602996 0.026833 -0.797293

0.028161 0.999527 0.012342

0.797247 -0.015010 -0.603467

T-1 ANTHROPOMETRY OUTPUT

HRV # 0222

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -18.4226cm Y = 1.4523cm Z = 7.8292cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.998378 -0.053356 -0.019868

0.051853 0.996219 -0.069711

0.023513 0.068568 0.997369

HRV # 0226

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -15.2009cm Y = -0.9364cm Z = 9.0198cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.975366 0.119443 -0.185460

-0.133935 0.988679 -0.067643

0.175280 0.090816 0.980321

HRV # 0227

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -19.8392cm Y = -2.7613cm Z = 3.6425cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.977128 0.197335 0.079248

-0.193544 0.979657 -0.053037

-0.088102 0.036485 0.995443

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.7137cm Y = 1.1679cm Z = 6.9586cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.993792 -0.076149 -0.081107

0.069104 0.993862 -0.086388

0.087187 0.080247 0.992955

HRV # 0236

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.8482cm Y = 0.1340cm Z = 6.5006cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.998851 -0.004147 -0.047748

0.004553 0.999954 0.008396

0.047711 -0.008603 0.998824

HRV # 0237

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6617cm Y = -0.3212cm Z = 3.8235cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.990601 0.045063 0.129149

-0.041518 0.998687 -0.030017

-0.130332 0.024373 0.991171

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -18.9848cm Y = -0.1718cm Z = 2.0138cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.982062 -0.037795 0.184733

0.028403 0.998178 0.053227

-0.186408 -0.047025 0.981346

HRV # 0241

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -18.1043cm Y = -0.5658cm Z = 5.8621cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.997620 0.068826 0.004151

-0.068312 0.994760 -0.076067

-0.009364 0.075602 0.997094

HRV # 0242

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.9545cm Y = -2.4086cm Z = 4.2884cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.985006 0.117710 0.126123

-0.117294 0.993039 -0.010743

-0.126510 -0.004211 0.991956

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.1260cm Y = 1.0928cm Z = 4.3546cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.993706 -0.057820 0.095949

0.056713 0.998289 0.014230

-0.096607 -0.008698 0.995285

HRV # 0245

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -19.5921cm Y = -0.1332cm Z = 3.3402cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.985944 -0.020871 0.165767

0.016782 0.999520 0.026030

-0.166231 -0.022882 0.985821

HRV # 0246

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.5506cm Y = 0.0605cm Z = 5.9785cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.999634 -0.013221 -0.023598

0.013033 0.999882 -0.008112

0.023702 0.007801 0.999689

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6736cm Y = 0.3493cm Z = 3.1673cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.978635 0.015629 0.205009

0.000959 0.996749 -0.080565

-0.205602 0.079040 0.975439

Object Space Reference System is Rectangular
Rotation angles are Photo-to-Object
Complete Triangulation process is requested
Error Propagation is requested
[Eigenvector/Eigenvalue output]
Unit Variance will be based on constrained camera parameters
All Image Residuals will be listed
Triangulated Object Coordinates will not be saved

Adjusted Camera Station Parameters will be saved

This Document Contains Missing Page/s That Are Unavailable In The Original Document cv2

cv4

cv8

ram

ron

chin

ltuskM

capLfF

capRtF

capCEN

cv10

-72.3288

-65.5934

-49.0790

-9.0220

87.6002

-1.7931

-81.3890

180.5513

rtp -124.5797

rtuskM -142.9886

55.5835

cv6 -132.3124 -130.7580

-16.4941 -148.0864

118.9474 -167.8746

158.0377

162.2231

64.4032

38.9765

-8.7193

15.8420

140.5863

139.6819

169.2767

4.3056

104.0877

FRAME A/Pprism

PRINCIPAL DISTANCE =-1820.0000 mm Std. Dev. of X = 0.7500 mm Std. Dev. of Y = 0.7500 mm

CAMERA STATION PARAMETERS

	P	0	s	ıı	· I	0	N		Std	. De	v.		_		_		T U	-				std	. Dev	•
	=	-			618					1000		OME					-33				01		0.00	
	=				20					1000		PHI					59	_	.18		01		0.00	
2	=			Ι.	604	10	m		0.	1000	m	KAPI	PA	=	_	01	19	26	.94	20	01	00	0.00	00
									LATE	COOR	DINA	TES :	in	mi	11	ime	eter	s						
				II)		X		Y					ID			Σ	ζ.			Y		."	
				c	:3 -	-10	08.7	733	120.	0640					c1	3	-14	.5	547	1	123.	0519		
				- C	4	10	04.6	934	115.	3344					c1	1 -	-118	3.1	540)	11.	0636		
				C1	.0	-1	L7.2	353	5.	3470					C	9	98	3.3	659	+	-0.	7794	•	
				C	:2 -	-11	L4.5	128	- 93.	9894					c1	2	-19	.9	543	-1	111.	6611	4	
				C	:1	9	9.6	819	-99.	4433					cv	1 -	-126	. 6	205	1	154.	7530		

cv3

cv5

cv7

cv9

lam

lon

ltp

ctp

rtuskF -123.7788

rtuskR -161.7258

ltuskF

capLfR

capRtR

-11.8062

126.4267

-76.8059

72.7107

36.7835

92.0672

-20.6030

147.5698

96.9226

-88.1473

160.3876

164.3177

61.6900

42.1026

12.8076

20.2354

11.5104

89.9548

94.4914

103.5615

117.8744

-139.1647

48.6984 -157.6482

PAGE 2 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME A/Phrv45 same PAGE 3 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME LAThrv45 same PAGE 4 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME LATprism same PAGE 5 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 ERROR WARNINGS PASS POINTS APPEARING ON 1 PHOTO

cv1 cv2 cv6 cv7 rtuskR

.

.

Ident	Position	(meters)	Error Ellipsoid>	Length (m)
ctp	*0*Y =	0.0001 -0.0001	-6.178E-02 -8.899E-02 +9.941E-01 -6.918E-01 -7.141E-01 -1.069E-01	0.0003 0.0003
	z =	0.0000	+7.194E-01 -6.943E-01 -1.744E-02	0.0003
ltp	*0* Y =	0.0888 0.0001	-2.519E-01 -9.759E-02 +9.628E-01 -3.698E-01 -9.097E-01 -1.890E-01	0.0003
	z =	0.0635	+8.943E-01 -4.037E-01 +1.930E-01	0.0003
	X =	-0.0890	+1.242E-01 -1.409E-01 +9.822E-01	0.0003
rtp	*0* Y =	0.0001 0.0635	-5.344E-02 -9.894E-01 -1.352E-01 -9.908E-01 +3.571E-02 +1.304E-01	0.0003 0.0003
	x =	-0.0011	-4.186E-02 -2.834E-02 +9.987E-01	0.0029
Origin	Y =	-0.0671	-9.977E-01 -5.168E-02 -4.329E-02	0.0019
	Z =	0.1666	+5.284E-02 -9.983E-01 -2.611E-02	0.0015
nda re	X =	0.0365	-9.863E-02 -4.723E-02 +9.940E-01	0.0026
Rib_Lf	Y = Z =	-0.0510 0.1560	-9.891E-01 -1.055E-01 -1.032E-01 +1.097E-01 -9.933E-01 -3.631E-02	0.0017 0.0013
,	_			•
nih nt	X =	-0.0379	+3.763E-03 -4.485E-02 +9.990E-01	0.0027
Rib_Rt	Y = Z =	-0.0573 0.1564	+1.000E+00 +4.085E-03 -3.583E-03 +3.920E-03 -9.990E-01 -4.486E-02	0.0018 0.0014
lneckB	X =	0.0648	-6.518E-01 -1.441E-01 +7.446E-01	0.0165
Ineckb	Y = Z =	-0.0068 0.1775	-6.900E-01 -2.948E-01 -6.611E-01 +3.147E-01 -9.446E-01 +9.275E-02	0.0022 0.0016
	x =	0.0535	-6.434E-01 -2.030E-01 +7.381E-01	0.0168
lneckT	Y =	0.0343	-6.500E-01 -3.645E-01 -6.669E-01	0.0022
	z =	0.1886	+4.044E-01 -9.088E-01 +1.026E-01	0.0017
	X =	-0.0718	-5.371E-01 -1.373E-01 +8.323E-01	0.0157
rneckB	<u>Y</u> =	-0.0267	-8.168E-01 -1.618E-01 -5.538E-01	0.0027
	z =	0.2090	+2.107E-01 -9.772E-01 -2.522E-02	0.0019
	X =	-0.0797	-5.296E-01 -2.187E-01 +8.195E-01	0.0167
rneckT	Y =	0.0239	-7.478E-01 -3.357E-01 -5.728E-01	0.0028
	Z =	0.2196	+4.004E-01 -9.162E-01 +1.426E-02	0.0020
	X =	0.0641	+4.438E-01 -2.899E-02 +8.956E-01	0.0169
lneckBx	Y =	0.0016	+8.915E-01 -8.697E-02 -4.446E-01	0.0023
	Z =	0.1791	+9.078E-02 +9.958E-01 -1.275E-02	0.0017
1	x =	0.0580	+4.498E-01 -9.227E-02 +8.883E-01	0.0181
lneckTx	Y =	0.0458	+8.476E-01 -2.695E-01 -4.572E-01	0.0023
	Z =	0.1766	+2.815E-01 +9.586E-01 -4.301E-02	0.0017
_	X =	-0.0741	+5.965E-01 +6.606E-03 +8.026E-01	0.0170
rneckBx	Y =	-0.0227	-7.968E-01 +1.253E-01 +5.911E-01	0.0024
	Z =	0.1886	-9.669E-02 -9.921E-01 +8.003E-02	0.0018

Ident	Position	(meters)	Error Ellipsoid> Length (m)
sternum	X =	-0.0014	-6.136E-01 -3.879E-03 +7.896E-01 0.0151
	Y =	-0.1094	-7.893E-01 +2.828E-02 -6.133E-01 0.0030
	Z =	0.2047	-1.995E-02 -9.996E-01 -2.041E-02 0.0020
SpineBot	X =	-0.0008	-3.278E-02 -5.340E-02 +9.980E-01 0.0020
	Y =	-0.0564	-9.985E-01 -4.283E-02 -3.509E-02 0.0012
	Z =	0.1042	-4.462E-02 +9.977E-01 +5.192E-02 0.0010
SpineTop	X =	-0.0012	-3.556E-02 -5.649E-02 +9.978E-01 0.0020
	Y =	-0.0525	-9.982E-01 -4.609E-02 -3.819E-02 0.0012
	Z =	0.1062	-4.815E-02 +9.973E-01 +5.475E-02 0.0010
lf_shold	X =	0.1449	-6.292E-01 -4.279E-02 +7.760E-01 0.0280
	Y =	-0.0749	-7.771E-01 +1.914E-02 -6.290E-01 0.0015
	Z =	0.0366	+1.206E-02 -9.989E-01 -4.530E-02 0.0015
rt_shold	X =	-0.1069	-4.242E-01 -6.200E-02 +9.034E-01 0.0169
	Y =	-0.0697	-6.487E-01 +7.169E-01 -2.554E-01 0.0014
	Z =	0.0706	+6.318E-01 +6.944E-01 +3.443E-01 0.0012
rt_sholx	X = Y = Z =	-0.1233 -0.0712 0.0660	+5.634E-01 +6.231E-02 +8.238E-01 0.0260 -8.257E-01 +7.290E-03 +5.641E-01 0.0015 +2.914E-02 -9.980E-01 +5.555E-02 0.0014
spine_bb	X =	0.0010	-3.510E-02 -5.788E-02 +9.977E-01 0.0019
	Y =	-0.0523	-9.981E-01 -4.848E-02 -3.793E-02 0.0012
	Z =	0.0971	-5.056E-02 +9.971E-01 +5.607E-02 0.0009
sternumx	X =	0.0092	+5.207E-01 +1.234E-01 +8.448E-01 0.0161
	Y =	-0.1026	-8.346E-01 -1.345E-01 +5.341E-01 0.0030
	Z =	0.2146	+1.796E-01 -9.832E-01 +3.296E-02 0.0020
SUMM	ARY S	TATIS	TICS FOR OBJECT POINTS

RMS For Standard Deviations

Count =	18	X =	0.0088 meters
Count =	18	Y =	0.0023 meters
Count =	18	z =	0.0127 meters

CORRECTIONS APPLIED TO OBJECT CONTROL

X Number of Components = 3 RMS = 0.0001 meters
Y Number of Components = 3 RMS = 0.0001 meters
Z Number of Components = 3 RMS = 0.0000 meters

ANTHROPOMETRY OUTPUT

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6736cm Y = 0.3493cm Z = 3.1673cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.978635 0.015629 0.205009 0.000959 0.996749 -0.080565

-0.205602 0.079040 0.975439

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

A/Phrv45

A/Pprism

LAThrv45

LATprism

0.000004 -0.000004

0.000000

0.000001

0.000002

0.000001

0.000001

0.000001

6

	С	A M	E R	A	s	T A	T	ľ	0	N S	S	С	0	R	R	E	С	T	IC	N	S			
-			ΡO	s I	T 1	0	N									A	Т	T	I I	ט י	D	E		
		X		Y	?			Z					(Ome	ega	ι			Phi	•		K	app	a
									Ιt	era	atio	on		1										
A/Phrv45	0.	0155		-0.0	176	-	-0.	030	01	m.		-	0.	023	308	39	-0	.0	244	83	-(0.0	149	91
A/Pprism	0.	.0088		-0.0	0082	-	-0.	004	18	m.		-	0.	005	596	57	-0	. 0	063	40	-(0.0	021	85
LAThrv45	0.	0108		-0.0	074		0.	006	66	m.		-	0.	016	571	.0	-0	. 0	154	96	(0.0	107	55
LATprism	0.	0027		-0.0	020			006											098			0.0	153	73
	•	Prov	isi	ona]	Wei	ight	ed	l Si	ım	of	Squ	uar	es	=		25	7.	91	3					
									Ιt	era	atio	on		2										
A/Phrv45	-0.	0005		0.0	0003	-	-0.	000						000		37	0	. 0	001	20	-(0.0	006	25
A/Pprism	0.	0000		0.0	0001	_	-0.	000	01	m.			0.	000	003	0			000				000	
LAThrv45		0001			0000			000									-		000				002	
LATprism	1	0001			0000			000															004	
	į	Prov	isi	onal	. Wei	lght	:ed	l Si	ım	of	Squ	uar	es	=		11	.3.	54	5					

Provisional Weighted Sum of Squares = 105.258

0.0000 m.

0.0000 m.

0.0000 m.

0.0000 m.

Iteration

3

-0.000005

-0.000001

-0.000003

0.000000

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

-		•		
lam	A/Phrv45	A/Pprism	LAThrv45	LATprism
	-699	774	-320	- 70
	648	-479	666	-828
		•		
ram	A/Phrv45	A/Pprism	LAThrv45	LATprism
	-214	-131	364	-342
	10	-121	-174	
lon	A/Pprism	A/Phrv45	LAThrv45	LATprism
4	-20	- 16	32	-62
	248	- 119	-297	187
ron	A/Pprism	LAThrv45	A/Phrv45	LATprism
:	319	-331	60	289
	-299	213	-261	260
i i				
rtp	A/Phrv45	A/Pprism	LATprism	
i		-647		
	-160	-101	245	
	3 (3)			
ctp	A/Phrv45	A/Pprism	LAThrv45	LATprism
	-402			
	-153	-748	405	314
chin	A /Dowies	3 /Db45	T 3 Mb 4 F	T.3
CHIH	W) bbilsu	A/Phrv45	LATITV45	
		-176		
	557	284	-532	- 155
ltuskF	A/Porism	LAThrv45	7 /Dbx11/15	TAMosian
2002112	-225	_136	335	247
•	108		- 854	
	100	213	-034	600
capLfF	A/Phrv45	A/Pprism	T.AThrv45	T.ATnriam
		-279		
		429		
	• • •	123	7/1	370
capLfR	A/Pprism	A/Phrv45	LAThrv45	LATorism
_	- 736	732		
	-77			
capRtF	A/Pprism	A/Phrv45	LAThrv45	LATprism
	230	-145		-150
	-993	- 365	- 55	1017
•				•
capRtR	A/Pprism	LAThrv45	A/Phrv45	
	2		-422	
	-832	-85	248	439
capCEN		LAThrv45		LATprism
	- 65	359		-409
	-121	111	-211	124

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

c3 *0* A/Pprism -536 -122

C13 *0* LATprism A/Pprism 588 -222 733 384

C4 *0* A/Pprism 284 93

c11 *0* A/Pprism -566 347

c10 *0* A/Pprism LATprism -206 -230 332 -218

c9 *0* LATprism A/Pprism 467 503 95 -143

c2 *0* A/Pprism 347 44

c12 *0* LATprism A/Pprism -567 -79 -1790 189

c1 *0* A/Pprism 107 -366

cv3 LATprism A/Pprism 13 51 205 -248

cv4 LATprism A/Pprism -28 -97 -473 505

cv5 LATprism A/Pprism -47 -145 -856 810

cv8 LATprism A/Pprism 110 250 -950 1158

```
Weighted Sum of Squares (Camera) = 9.0
Weighted Sum of Squares (Object) = 10.6
Weighted Sum of Squares (Plates) = 69.5

Weighted Sum of Squares (Total) = 89.0
Degrees of Freedom..... = 112

a posteriori Variance of Unit Weight = 0.795
```

TRIANGULATED CAMERA STATIONS (Photo to Object)

Ident	Position	Error Ellipsoid	-> Length
A/Phrv45	X = 1.3610 m. Y = 0.3547 m. Z = 0.8256 m.	-0.3187 +0.0866 +0.9439 -0.1760 -0.9839 +0.0308 -0.9314 +0.1563 -0.3288	> 0.0059 m.
	Attitude: Phi =-	14 00 40.6501 66 05 36.2063 Std Dev: 07 07 17.5617	00 23 27.3083 00 14 51.3858 00 21 33.5212
A/Pprism	Y = 0.1988 m.	-0.7479 -0.0299 +0.6631 -0.0792 +0.9959 -0.0444 +0.6590 +0.0858 +0.7472	> 0.0029 m.
	Omega = Attitude: Phi =- Kappa =-	01 13 10.2479 26 21 0.4450 Std Dev: 01 26 53.6600	00 07 31.5754 00 07 36.5272 00 06 36.3141
LAThrv45	Y = 0.1896 m.	+0.8412 +0.0527 +0.5382 +0.3811 +0.6483 -0.6592 -0.3836 +0.7596 +0.5252	> 0.0019 m.
	Attitude: Phi =	06 14 47.5086 25 03 18.3900 Std Dev: 06 32 24.3338	00 10 17.6096 00 12 20.4255 00 09 36.9996
LATprism	X = -0.6522 m. Y = 0.1410 m. Z = 0.4651 m.	+0.3665 -0.0303 +0.9299 -0.1973 -0.9793 +0.0458 -0.9093 +0.2002 +0.3648	> 0.0013 m.
	Attitude: Phi =	00 06 0.5142 65 14 31.8184 Std Dev: 00 31 25.9699	00 13 58.9638 00 08 44.4022 00 13 1.5323

SUMMARY STATISTICS FOR CAMERA STATION

RMS For Standard Deviations

Iden	t		Pos	sition	(meters)			E	ror	Ellips	oid	>	Ler	ngth	(m)
	c1	*0*	Y		-0.0470 0.0510	-8	.99	8E-01	+2.	456E-01	+3	.164E-01 .607E-01		0.00	
			_	=	0.0194							.733E-01		0.00	004
	c 2	*0*	Y		-0.2348 0.0508	-8	. 66	3E-01	+1.	180E-01	+4	.643E-01 .853E-01		0.00	
				=	0.0973	- 6	.06	5E-02	-9.	893E-01	+1.	.323E-01		0.00	004
	с3	*0*		=	-0.2345 0.2541							.670E-01 .699E-01		0.00	
	-			=	0.0971						-	.660E-01		0.00	
		:		=	-0.0470							194E-01		0.00	004
	C4	*0*			0.2540							781E-01		0.00	
		i		=	0.0195							.087E-01		0.00	
	c 5	*0*		=	0.0233							113E-01		0.00	
	CS	~0^		=	0.2545							270E-01		0.00	
														•	
	c 6	*0*		=	0.0193 0.0502							251E-01 844E-01		0.00	
	Co			=	0.0302							302E-01		0.00	
												1			,01
	_		X		0.0973							919E-01		0.00	
	c7	*0*		= .	0.0502							556E-01		0.00	
			4	_	0.2353	+ 1.	• 3 T	0E-01	Ŧ9.	AODE-OI	T4.	.034E-02		0.00	004
			Х		0.0972							908E-01		0.00	04
	c8	*0*			0.2542							565E-01		0.00	
			Z	=	0.2350	+1.	. 42	7E-01	-9.	895E-01	-2.	.122E-02		0.00	004
			X		0.0502							610E-01		0.00	002
	C9	*0*			0.1524							863E-01		0.00	
			Z	=	0.2541	-2.	. 44	0E-02	+9.	991E-01	-3,	520E-02		0.00	002
	1.0		X		-0.0825							190E-01		0.00	
,	c10	*0*	Y Z		0.1524 0.1991							756E-01		0.00	
						-2.	. 30.	3E-02	ту.	9966-01	-1.	.335E-02		0.00	102
		.1. 0.1.	X		-0.2151							652E-01		0.00	
	c11	*0*	Y Z		0.1524 0.1441							515E-01 181E-01		0.00	
			۷	_	0.1441	т4.	. 23.	P-OI	-8.	784E-01	-2.	181E-01		0.00	002
			X		-0.0824							865E-01		0.00	02
•	c12	*0*			0.0511							355E-01		0.00	02
			Z	=	0.1992	-1.	.083	3E-01	-9.	724E-01	+2.	069E-01		0.00	02
			X		-0.0825	+9.	440	DE-01	+1.	971E-01	-2.	645E-01		0.00	02
	c13	*0*			0.2538	+2.	935	E-01	-1.	360E-01	+9.	462E-01		0.00	
		•	Z	=	0.1990	-r.	506	DE-01	+9.	709E-01	+1.	862E-01		0.00	02

Ident	Position	(meters)	Error Ellipsoid> Lengt	th (m)
ctp	X = Y = Z =	-0.0383 0.2450 0.2958	-9.945E-02 +7.538E-02 -9.922E-01 0	.0006 .0005 .0004
cv3	X = Y = Z =	-0.0819 0.2855 0.1960	-4.147E-01 +1.035E-01 -9.041E-01 0	.0007 .0006 .0005
cv4	X = Y = Z =	-0.0044 0.2856 0.2261	+2.011E-01 -1.375E-01 +9.699E-01 0	.0007 .0006 .0005
cv5	X = Y = Z =	0.0723 0.2851 0.2587	-4.477E-02 -1.213E-01 +9.916E-01 0.	.0007 .0007 .0005
cv8	X = Y = Z =	-0.0795 0.0202 0.1962	+4.384E-01 +1.407E-01 +8.877E-01 0.	.0007 .0006 .0005
cv9	X = Y = Z =	-0.0031 0.0196 0.2273	-2.377E-01 -1.792E-01 -9.547E-01 0.	.0007 .0006 .0005
lam	X = Y = Z =	-0.0279 0.2021 0.1319	-7.880E-01 -4.903E-02 -6.137E-01 0.	.0005 .0005 .0004
lon	X = Y = Z =	-0.0283 0.2371 0.2091	-4.224E-01 +4.123E-02 -9.055E-01 0.	.0005 .0005 .0004
ltp	X = Y = Z =	0.0438 0.1866 0.2551	+9.952E-01 +2.917E-02 +9.332E-02 0.	.0009 .0006 .0005
ram	X = Y = Z =	-0.1448 0.2021 0.1736	-4.739E-02 -5.937E-02 +9.971E-01 0. -9.928E-01 -1.068E-01 -5.354E-02 0.	.0005 .0005 .0004
ron	X = Y = Z =	-0.0958 0.2356 0.2355	+6.467E-02 -1.131E-01 +9.915E-01 0.	.0005 .0005 .0004
rtp	X = Y = Z =	-0.1256 0.1799 0.3103	+9.717E-01 +5.596E-02 +2.293E-01 0. +2.216E-01 +1.177E-01 -9.680E-01 0.	.0007 .0005
chin	X = Y = Z =	-0.0464 0.1430 0.2539	-9.928E-01 -1.145E-02 +1.195E-01 0. -1.184E-01 -6.899E-02 -9.906E-01 0.	.0004 .0005 .0004

Ident	Position	(meters)	Error Ellips	oid>	Length (m)
	X =	0.0732	+9.949E-01 -1.003E-01		0.0007
cv10	Y =	0.0193	+8.988E-03 +1.751E-01	+9.845E-01	0.0007
	z =	0.2593	+1.003E-01 +9.794E-01	-1.752E-01	0.0005
	X =	-0.0647	+8.678E-01 +2.523E-01		0.0005
capCEN	Y =	0.2922	-4.661E-01 +1.147E-01		0.0005
	z =	0.2118	+1.722E-01 -9.608E-01	-2.172E-01	0.0004
	X =	-0.0139	-6.646E-01 -2.250E-01		0.0006
\mathtt{capLfF}	Y =	0.2721	-7.341E-01 +1.872E-02		0.0005
<i>.</i>	Z =	0.1377	+1.394E-01 -9.742E-01	-1.776E-01	0.0004
	X =	-0.0218	-4.601E-01 -1.289E-01		0.0006
capLfR	<u>Y</u> =	0.2283	-8.811E-01 -5.569E-02		0.0005
	z =	0.0971	+1.094E-01 -9.901E-01	-8.792E-02	0.0004
	X =	-0.1503	-4.370E-02 +1.739E-01		0.0006
capRtF		0.2671	+9.786E-01 +2.058E-01		0.0005
	Z =	0.1950	+2.012E-01 -9.630E-01	-1.792E-01	0.0004
	X =	-0.1743	-2.505E-02 -1.033E-01		0.0006
capRtR	Y =	0.2281	-9.862E-01 -1.603E-01		0.0005
	Z =	0.1627	-1.637E-01 +9.817E-01	+9.786E-02	0.0004
	X =	0.0366	-6.066E-01 -6.847E-04		0.0006
ltuskF	Y =	0.1613	+7.929E-01 +7.251E-02		0.0005
· ·	z =	0.1157	-5.806E-02 +9.974E-01	-4.344E-02	0.0004
	x =	0.0492	-4.071E-01 +1.209E-02		0.0008
ltuskM	$\mathbf{Y} =$	0.1530	+9.132E-01 +2.323E-02		0.0006
	z =	0.0662	-1.630E-02 +9.997E-01	-2.050E-02	0.0005
	X =	0.0619	-7.345E-01 +1.433E-02		0.0021
ltuskR	Y =	0.1442	+6.786E-01 +2.666E-02		0.0007
	Z =	0.0156	-7.571E-03 +9.995E-01	-2.931E-02	0.0006
	X =	-0.1806	-6.375E-02 +3.157E-02		0.0006
rtuskF	Y =	0.1626	-9.974E-01 -3.479E-02		0.0005
	z =	0.2120	-3.273E-02 +9.989E-01	-3.371E-02	0.0004
	x =	-0.2192	-8.321E-01 -1.915E-02		0.0007
rtuskM	Y =	0.1573	-5.538E-01 -2.772E-02		0.0006
	Z =	0.1810	-3.130E-02 +9.994E-01	-1.246E-02	0.0005

PAGE 14

SUMMARY STATISTICS FOR OBJECT POINTS

RMS For Standard Deviations

Count = 24

0.0007 meters

Count = 24

X = Y = Y

0.0004 meters

Count = 24

z =

0.0007 meters

C O R	RECTION	S	APPLIED	ТО	овјест	CONTROL
-		x =	0.0000 m		x =	0.0001 m
	c10	Y =	0.0000 m		c11 Y =	0.0000 m
		z =	0.0000 m		z =	0.0000 m
		X =	-0.0001 m		X =	0.0001 m
	c1	Y =	0.0002 m		c12 Y =	0.0003 m
		z =	0.0000 m		z =	0.0001 m
		X =	-0.0001 m		x =	0.0000 m
	c2	Y =	0.0001 m		c13 Y =	-0.0002 m
	. 02	z =	0.0001 m		Z =	-0.0001 m
		Z –	0.0001 m		2	
		X =	0.0002 m		X =	-0.0001 m
-	с3	Y =	0.0001 m		c4 Y =	0.0000 m
		Z =	-0.0001 m		z =	0.0001 m
	,	x =	-0.0004 m		x =	-0.0001 m
	c 5	Y =	0.0005 m		c6 Y =	-0.0006 m
		Z =	-0.0005 m		z =	0.0000 m
	·	2 -	0.0003 m		_	
		X =	0.0001 m		X =	0.0000 m
	c7	Y =	-0.0006 m		c8 Y =	0.0002 m
		z =	0.0006 m		z =	0.0003 m
		x =	-0.0001 m			
	с9	Y =	0.0000 m			
		z =	0.0000 m			
	X Numb	er of	Components =	13 F		0.0002 meters
			Components =	13 F	RMS =	0.0003 meters
			Components =	13 F	RMS =	0.0003 meters

ANTHROPOMETRY OUTPUT

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4854cm Y = -0.1917cm Z = -2.4835cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

Object Space Reference System is Rectangular
Rotation angles are Photo-to-Object
Complete Triangulation process is requested
Error Propagation is requested
[Eigenvector/Eigenvalue output]
Unit Variance will be based on constrained camera parameters
All Image Residuals will be listed
Triangulated Object Coordinates will not be saved
Adjusted Camera Station Parameters will be saved

NBDL H-P UNIX GIANT (11/90) : HRV # 0247

HRV # 0247

FRAME LfEyLfSh

PRINCIPAL DISTANCE = -889.0000 mm Std. Dev. of X = 1.0000 mm Std. Dev. of Y = 1.0000 mm

CAMERA STATION PARAMETERS

	POSIT	ION	Std. Dev.		TUDE co Object)	Std. I	ev.
	Y = -0.1	540 m 010 m 980 m	0.0400 m 0.0400 m 0.0400 m		28 11.6650 37 5.3610 34 55.8970	02 00 0.	0000
		F	PLATE COORDINA	ATES in millim	neters		
	ID	X	У	ID	X	Υ	
	Origin Rib_Rt SpineBot sternum rt_shold rtp lneckT rneckT	50.8726 50.7604 136.0849 -76.5308 -68.6747 152.7598 44.8939	-39.4013 -91.5953 -64.5011 17.8384 87.4338 89.8550	spine_bb lf_shold ltp ctp lneckB rneckB	51.3787 47.0025 130.3984 94.8383 -18.1678	-22.8540 -33.8122 -35.9258 -60.5963 17.6056 7.5425 35.0096 16.9683	2
	NBDL H-P UNIX HRV # 0247	GIANT (11/	90) :			PAGE	3
\$			FRAME	LfEyRtSh	same		
	NBDL H-P UNIX HRV # 0247	GIANT (11/		RtEyRtSh	same	PAGE	4
_	NBDL H-P UNIX	GIANT (11/	90) :		•	PAGE	5

ERROR WARNINGS

PASS POINTS APPEARING ON 1 PHOTO

rneckTx lf_sholx

0.0000

0.0000

0.0000

0.0000

LfEyRtSh

RtEyRtSh

-0.000035 -0.000031 -0.000014

0.000004 -0.000013 -0.000018

CAMERA STATIONS CORRECTIONS ----- P O S I T I O N ---------- A T T I T U D E ----X Υ \mathbf{z} Omega Phi Kappa Iteration LfEyLfSh 0.0025 -0.0151 0.0139 m. -0.026937 -0.016773 0.019630 RtEyLfSh 0.0007 -0.01570.0119 m. -0.025419 -0.010306 0.017636 LfEyRtSh 0.0093 -0.0140-0.0131 m. -0.021530 -0.015926 -0.015962 RtEyRtSh -0.0021 -0.0128-0.0118 m. -0.026312 -0.005633 -0.024661 Provisional Weighted Sum of Squares = 140.584 Iteration 2_ LfEyLfSh 0.0002 -0.0003 -0.0002 m. 0.000233 -0.000255 -0.000341 RtEyLfSh 0.0002 -0.0004-0.0004 m. -0.000043 -0.000210 -0.000158 LfEyRtSh -0.0001 0.0000 -0.0006 m. -0.000729 -0.000113 -0.000705 RtEyRtSh 0.0002 0.0001 -0.0004 m. -0.000347 -0.000020 -0.000283 Provisional Weighted Sum of Squares = 111.744 Iteration LfEyLfSh 0.0000 0.0000 0.0000 m. 0.000001 -0.000025 -0.000004 RtEyLfSh 0.0000 0.0000 0.0000 m. 0.000015 -0.000023 -0.000003

Provisional Weighted Sum of Squares = 100.229

0.0000 m.

0.0000 m.

			Iterat:	ion 4		
LfEyLfSh	0.0000	0.0000	0.0000 m.	0.000000	0.000001	0.000000
RtEyLfSh	0.0000	0.0000	0.0000 m.	-0.000001		
LfEyRtSh	0.0000	0.0000	0.0000 m.	-0.000001		
RtEyRtSh	0.0000	0.0000	0.0000 m.			-0.000001

Provisional Weighted Sum of Squares =

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

•			(:	in microme	eters)
Origin		LfEyLfSh -1009 1029	688	LfEyRtSh -297 -584	477
Rib_Lf		-102	RtEyLfSh 133 -890	622	-675
Rib_Rt		RtEyLfSh -118 -3046	LfEyLfSh 1078 -2489	-674	-87
SpineTop		RtEyLfSh -34 1026	LfEyRtSh -209 -532	-111	344
SpineBot		LfEyLfSh 53 800	-414	LfEyRtSh -230 -825	550
spine_bb		LfEyLfSh 104 1104	- 511	LfEyRtSh 255 -978	RtEyRtSh 88 -1210
sternum			RtEyLfSh -60 446		
lf_shold		-86	RtEyLfSh 69 -498		
rt_shold		RtEyLfSh -8 60			
ltp	*0*	LfEyLfSh 384 674	RtEyLfSh 447 -1175	129	RtEyRtSh 324 -273
rtp	*0*	LfEyLfSh -90 282	LfEyRtSh 824 -1477	-149	RtEyRtSh 647 -1405
ctp :	*0*	LfEyRtSh -740 2404	LfEyLfSh -348 -1329	-10	RtEyRtSh -1339 1972
lneckT	•	LfEyLfSh 193 -973	- 156	£	

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

lneckB	RtEyLfSh	LfEyLfSh
	- 72	90
	482	-472
rneckT	LfEyLfSh	RtEyLfSh
	-142	114
	701	- 713
rneckB	LfEyLfSh	RtEvLfSh
,	-94	76
	491	-501
sternumx	LfEyRtSh	RtEvRtSh
1	91	-111
;	- 709	706

rt_sholx	RtEyRtSh	LfEyRtSh
	-169	141
	1088	-1094

lneckBx	LfEyRtSh	RtEyRtsh
	60	-72
	-470	469

rneckBx	LfEyRtSh	RtEyRtSh
	-77	91
	598	-50/

Weighted Weighted Weighted	Sum	of	Squares	(Object)	=	3.9 0.9 94.4
Waishtad	G	- 6	G	(m-+-1)		

Weighted Sum of Squares (Total) = 99.2 Degrees of Freedom.... = 66

a posteriori Variance of Unit Weight = 1.502

TRIANGULATED CAMERA STATIONS (Photo to Object)

Ident	Position	Error Ellipsoid	-> Length
LfEyLfSh	X =	+0.4197 +0.0111 +0.9076 -0.0871 +0.9958 +0.0281 +0.9035 +0.0908 -0.4189	> 0.0078 m.
	Attitude: Phi =	10 59 59.4595 32 38 28.0867 Std Dev: 06 41 13.8430	00 46 42.3820 00 45 45.4494 00 37 41.2801
RtEyLfSh	Y = -0.1110 m.	+0.5162 +0.0662 +0.8539 -0.1183 +0.9930 -0.0055 +0.8483 +0.0982 -0.5204	> 0.0082 m.
	Attitude: Phi =	08 45 42.5924 34 30 19.8861 Std Dev: 04 23 53.1196	00 47 24.2431 00 45 45.8510 00 38 33.6183
LfEyRtSh	Y = -0.0210 m.	-0.6552 +0.0448 +0.7541 -0.1390 -0.9884 -0.0620 -0.7425 +0.1454 -0.6538	> 0.0090 m.
	Attitude: Phi =-	00 52 21.6863 30 57 48.5047 Std Dev: 00 37 40.0242	00 50 40.5485
RtEyRtSh	Y = -0.0117 m.	-0.5521 +0.0166 +0.8336 -0.1410 -0.9873 -0.0737 -0.8218 +0.1582 -0.5474	> 0.0088 m.
	Attitude: Phi =-	00 18 -5.6923 29 29 51.1623 Std Dev: 02 15 37.0526	00 45 40.5535 00 50 52.2784 00 34 37.5112

SUMMARY STATISTICS FOR CAMERA STATION

RMS For Standard Deviations

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blan	k) 2. REPORT DATE December 1991	3. REPORT TYPE AND DATES COVERED Technical Report			
4. TITLE AND SUBTITLE					
Photogrammetric Tasks for + Z Vertical Added Head Mass Experiments			205-91-M-G011		
6. AUTHOR(S)					
GPA Associates					
			ERFORMING ORGANIZATION EPORT NUMBER		
Naval Biodynamics Laboratory P. O. Box 29407 New Orleans, LA 70189-0407			L-93R005		
			SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	12b.	DISTRIBUTION CODE		
Approved for public release; distrib	oution is unlimited.				
13. ABSTRACT (Maximum 200 we	ords)				
This publication provides documentation on the evaluation of the present X-ray Anthropometry System of the Naval Biodynamics Laboratory. Analysis, exposition, enhancement and documentation of the x-ray digitization and 3-D reconstruction algorithms, development of error analysis code for incorporation into digitization and reconstruction algorithms.					
14. SUBJECT TERMS X-Ray Anthropometry, PREP and GIANT, Camera Calibration, and Vector Constraints.			15. NUMBER OF PAGES 105		
			16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified		TION 20. LIMITATION OF ABSTRACT			