SEMÂNTICA LÓGICA PROPOSITIONAL CLÁSSICA

Marcelo Finger

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

2022

Marcelo Finger CS-IME-USP SINTAXE 1 / 36

TÓPICOS

- VALORAÇÕES
- 2 Recursão Estrutural
 - Exercícios
- 3 Tabelas da Verdade
 - Exercícos
- SATISFAZIBILIDADE
- O Consequência Lógica

Marcelo Finger

VALORAÇÕES

VALORAÇÕES

- 2 RECURSÃO ESTRUTURAI
 - Exercícios
- TABELAS DA VERDADE
 - Exercícos
- SATISFAZIBILIDADE
- 6 Consequência Lógica

MARCELO FINGER

SEMÂNTICA

• Fórmulas representam fatos sobre o mundo.

Valorações

000000

SEMÂNTICA

- Fórmulas representam fatos sobre o mundo.
- Os fatos podem ser "verdadeiros" ⇒ correspondem à realidade,

SEMÂNTICA

- Fórmulas representam fatos sobre o mundo.
- Os fatos podem ser "verdadeiros" ⇒ correspondem à realidade,
- ou "falsos" ⇒ não correspondem.

SEMÂNTICA

- Fórmulas representam fatos sobre o mundo.
- Os fatos podem ser "verdadeiros" ⇒ correspondem à realidade,
- ou "falsos" ⇒ não correspondem.

VALORAÇÕES

000000

- Fórmulas representam fatos sobre o mundo.
- Os fatos podem ser "verdadeiros" ⇒ correspondem à realidade.

Tabelas da Verdade

ou "falsos" ⇒ não correspondem.

Exemplo:

p = "Hoje está chovendo"

Marcelo Finger

SEMÂNTICA

- Fórmulas representam fatos sobre o mundo.
- Os fatos podem ser "verdadeiros" ⇒ correspondem à realidade.
- ou "falsos" ⇒ não correspondem.

Exemplo:

p = "Hoje está chovendo"

q = "Todo par maior que 2 é a soma de dois primos".

Marcelo Finger CS-IME-USP

VALORES VERDADE

T: "verdadeiro"

F: "falso"

Valorações 000000

Valoração:

$$v: \mathcal{P} \to \{T, F\}$$

Exemplo: valorações para $p \lor \neg q$

MARCELO FINGER SINTAXE

 $v(p \lor q)$ depende de:

v(p)

Valorações

0000000

v(q)

 $v(p \lor q)$ depende de:

v(p)

Valorações

0000000

- v(q)
- o interpretação de ∨

Marcelo Finger Sintaxe CS-IME-USP

 $v(p \lor q)$ depende de:

v(p)

Valorações

0000000

- v(q)
- interpretação de ∨

$$p \mid q \mid p \lor q$$

Marcelo Finger

CS-IME-USP

 $v(p \lor q)$ depende de:

v(p)

Valorações

0000000

- v(q)
- interpretação de ∨

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \end{array}$$

Marcelo Finger

 $v(p \lor q)$ depende de:

- v(p)
- v(q)
- interpretação de ∨

$$\begin{array}{c|cccc}
p & q & p \lor q \\
\hline
T & T & T \\
T & F & T
\end{array}$$

Marcelo Finger Sintaxe $v(p \lor q)$ depende de:

v(p)

Valorações

0000000

- v(q)
- o interpretação de ∨

$$\begin{array}{c|cccc}
p & q & p \lor q \\
\hline
T & T & T \\
T & F & T \\
F & T & T
\end{array}$$

Marcelo Finger

 $v(p \lor q)$ depende de:

- v(p)
- v(q)
- interpretação de ∨

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ \end{array}$$

Marcelo Finger Sintaxe Valorações

0000000

FORMALIZAÇÃO DA SEMÂNTICA

• Vamos iniciar criando uma valoração v para os símbolos proposicionais $\mathbb P$

$$v: \mathbb{P} \to \{0,1\}$$

MARCELO FINGER
SINTAXE

CS-IME-USP

FORMALIZAÇÃO DA SEMÂNTICA

• Vamos iniciar criando uma valoração v para os símbolos proposicionais $\mathbb P$

$$v: \mathbb{P} \to \{0,1\}$$

• Vamos agora extender esta valoração sobre todas as fórmulas da linguagem $\mathcal{L}\supset \mathbb{P}$

$$v:\mathcal{L} \rightarrow \{0,1\}$$

Marcelo Finger Sintaxe

FORMALIZAÇÃO DA SEMÂNTICA

 Vamos iniciar criando uma valoração v para os símbolos proposicionais \mathbb{P}

$$v: \mathbb{P} \to \{0,1\}$$

 Vamos agora extender esta valoração sobre todas as fórmulas da linguagem $\mathcal{L}\supset\mathbb{P}$

$$v: \mathcal{L} \rightarrow \{0,1\}$$

 Necessitamos apresentar regras que indutivamente extendam v de \mathbb{P} para \mathcal{L}

Marcelo Finger

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

Marcelo Finger

Valorações

000000

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\alpha \wedge \beta) = T$$
 sse $v(\alpha) = T$ e $v(\beta) = T$

Marcelo Finger

Valorações

0000000

- $v(\neg \alpha) = T$ sse $v(\alpha) = F$
- $v(\alpha \wedge \beta) = T$ sse $v(\alpha) = T$ e $v(\beta) = T$
- $v(\alpha \vee \beta) = T$ sse $v(\alpha) = T$ ou $v(\beta) = T$

Marcelo Finger

- $v(\neg \alpha) = T$ sse $v(\alpha) = F$
- $v(\alpha \wedge \beta) = T$ sse $v(\alpha) = T$ e $v(\beta) = T$
- $v(\alpha \vee \beta) = T$ sse $v(\alpha) = T$ ou $v(\beta) = T$
- $v(\alpha \to \beta) = T$ sse se $v(\alpha) = T$ então $v(\beta) = T$

Marcelo Finger

- $v(\neg \alpha) = T$ sse $v(\alpha) = F$
- $v(\alpha \wedge \beta) = T$ sse $v(\alpha) = T$ e $v(\beta) = T$
- $v(\alpha \vee \beta) = T$ sse $v(\alpha) = T$ ou $v(\beta) = T$
- $v(\alpha \to \beta) = T$ sse se $v(\alpha) = T$ então $v(\beta) = T$

Marcelo Finger

- $v(\neg \alpha) = T$ sse $v(\alpha) = F$
- $v(\alpha \wedge \beta) = T$ sse $v(\alpha) = T$ e $v(\beta) = T$
- $v(\alpha \vee \beta) = T$ sse $v(\alpha) = T$ ou $v(\beta) = T$
- $v(\alpha \to \beta) = T$ sse se $v(\alpha) = T$ então $v(\beta) = T$ sse $v(\alpha) = F \text{ ou } v(\beta) = T$

Marcelo Finger SINTAXE

- $v(\neg \alpha) = F$ sse $v(\alpha) = T$
- $v(\alpha \wedge \beta) = F$ sse $v(\alpha) = F$ ou $v(\beta) = F$
- $v(\alpha \lor \beta) = F$ sse $v(\alpha) = F e v(\beta) = F$
- $v(\alpha \to \beta) = F$ sse $v(\alpha) = T$ e $v(\beta) = F$

Marcelo Finger

- RECURSÃO ESTRUTURAL

RECURSÃO REGULAR

Uma definição por recursão se dá sobre alguma propriedade numérica n e contém as seguintes partes.

- Um (ou mais) casos básicos Em geral, os casos básico se referem aos valores iniciais de n, e.g. n = 0
- Um ou mais casos recursivos, que assumem que o objeto da definição já está definido para valores de n < N, e a partir disso constroi-se o objeto com valor de n = N.

Satisfazirilidade

Definições por Recursão Estrutural

Por estrutura, nos referimos aos componentes da fórmula, ou seja, aos conectivos booleanos e aos demais componentes da fórmula.

Uma definição por recursão estrutural se dá sobre fórmulas e contém as seguintes partes.

- Um (ou mais) casos básicos e não se referem à estrutura da fórmula Em geral, os casos básico se referem às fórmulas atômicas, ou à fórmula como um todo
- Um ou mais casos recursivos, que se referem à estrutura da fórmula (conectivos e demais componentes da fórmula)

Definição de Conjunto de Subformulas

O conjunto de subfórmulas de φ , $Subf(\varphi)$ é o menor conjunto tal que:

```
CASO BÁSICO Subf(p) = \{p\}, onde p é atômico
```

Caso Rec 1
$$Subf(\neg \varphi) = {\neg \varphi} \cup Subf(\varphi)$$

Caso Rec 2
$$Subf(\varphi_1 \land \varphi_2) = \{\varphi_1 \land \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

Caso Rec 3
$$Subf(\varphi_1 \vee \varphi_2) = \{\varphi_1 \vee \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

Caso Rec 4
$$Subf(\varphi_1 \to \varphi_2) = \{\varphi_1 \to \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

O conjunto de subfórmulas de φ , $Subf(\varphi)$ é o menor conjunto tal que:

TABELAS DA VERDADE.

```
CASO BÁSICO Subf(p) = \{p\}, onde p é atômico
```

Caso Rec 1
$$Subf(\neg \varphi) = {\neg \varphi} \cup Subf(\varphi)$$

Caso Rec 2
$$Subf(\varphi_1 \land \varphi_2) = \{\varphi_1 \land \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

Caso Rec 3
$$Subf(\varphi_1 \vee \varphi_2) = \{\varphi_1 \vee \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

Caso Rec 4
$$Subf(\varphi_1 \to \varphi_2) = \{\varphi_1 \to \varphi_2\} \cup Subf(\varphi_1) \cup Subf(\varphi_2)$$

 ψ é subfórmula própria de φ se $\psi \in Subf(\varphi)$ e $\psi \neq \varphi$

Tamanho de uma fórmula

O tamanho de uma fórmula $|\varphi|$ é definido por recursão estrutural

Caso Básico
$$|p| = 1$$
, onde p é atômico

Caso Rec 1
$$|\neg \varphi| = 1 + |\varphi|$$

Caso Rec 2
$$|\varphi_1 \wedge \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

Caso Rec 3
$$|\varphi_1 \vee \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

Caso Rec 4
$$|\varphi_1 \rightarrow \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

TABELAS DA VERDADE

O tamanho de uma fórmula $|\varphi|$ é definido por recursão estrutural

Caso Rec 1
$$|\neg \varphi| = 1 + |\varphi|$$

Caso Rec 2
$$|\varphi_1 \wedge \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

CASO BÁSICO |p| = 1, onde p é atômico

Caso Rec 3
$$|\varphi_1 \vee \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

Caso Rec 4
$$|\varphi_1 \rightarrow \varphi_2| = 1 + |\varphi_1| + |\varphi_2|$$

Uma indução estrutural pode ser vista como uma indução "regular" sobre o tamanho da fórmula

PRÓXIMO SUB-TÓPICO

- RECURSÃO ESTRUTURAL
 - Exercícios

árvore sintática.

• Definir por indução estrutural a altura de uma fórmula: $h(\varphi)$, como o maior número de conectivos desde a raiz (conectivo principal) até alguma folha (símbolo proposicional) em sua

- Oefinir por indução estrutural o número de ∧-ocorrências de uma fórmula.
- Operation Definir por indução estrutural o grau de alternância $\land \lor$ de uma fórmula. (Dica: use outras funções auxiliares)

MARCELO FINGER
SINTAXE

Mais Exercícios

O Seja Γ um conjunto finito de fórmulas. Seja $|\Gamma|$ a sua cardinalidade, ou seja, o número de elementos do conjunto.

Prove por indução estrutural que, para toda fórmua φ da LPC,

$$|Subf(\varphi)| \leq |\varphi|.$$

MARCELO FINGER CS-IME-USP

Próximo Tópico

- Tabelas da Verdade

00000

Tabelas da Verdade

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \lor \psi \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$

MARCELO FINGER CS-IME-USP

00000

Tabelas da Verdade

MARCELO FINGER SINTAXE

00000

Tabelas da Verdade

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \lor \psi \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \wedge \psi \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \\ \end{array}$$

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \to \psi \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

$$\begin{array}{c|ccccc} \varphi & \psi & \varphi \rightarrow \psi & & \varphi & \neg \varphi \\ \hline T & T & T & & T & F \\ T & F & F & & F & T \\ F & T & T & & & & \\ F & F & T & & & & \\ \end{array}$$

MARCELO FINGER SINTAXE

00000

Tabelas da Verdade

MARCELO FINGER SINTAXE

MARCELO FINGER CS-IME-USP

p	q	r	$\neg q$	$p \land \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F			
F	F	Т			
F	Т	F			
F	Т	Т			
Т	F	F			
Т	F	Т			
Т	Т	F			
T	Т	Т			

p	q	r	$\neg q$	$p \land \neg q$	$(p \wedge \neg q) \rightarrow r$
F	F	F	Т		
F	F	Т	Т		
F	Т	F	F		
F	Т	Т	F		
Т	F	F	Т		
Т	F	Т	Т		
T	Т	F	F		
T	Т	Т	F		

p	q	r	$\neg q$	$p \land \neg q$	$(p \wedge \neg q) \rightarrow r$
F	F	F	Т	F	
F	F	Т	Т	F	
F	Т	F	F	F	
F	Т	Т	F	F	
Т	F	F	Т	Т	
Т	F	Т	Т	Т	
Т	Т	F	F	F	
Т	Т	Т	F	F	

p	q	r	$\neg q$	$p \land \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F	Т	F	Т
F	F	Т	Т	F	Т
F	Т	F	F	F	Т
F	Т	Т	F	F	Т
Т	F	F	Т	Т	F
Т	F	Т	Т	Т	Т
Т	Т	F	F	F	Т
T	Т	Т	F	F	Т

PRÓXIMO SUB-TÓPICO

- Tabelas da Verdade
 - Exercícos

DÊ A TABELA DA VERDADE PARA AS SEGUINTES **FÓRMULAS**

00000

- $oldsymbol{p} \lor \neg q$
- \bullet $((p \rightarrow q) \rightarrow p) \rightarrow r$
- \bullet $((p \rightarrow q) \rightarrow p) \rightarrow p$

Marcelo Finger

SINTAXE

Próximo Tópico

- Satisfazibilidade

• Uma fórmula φ é satisfazível (ou satisfatível) se $v(\varphi) = T$ para algum v

- Uma fórmula φ é satisfazível (ou satisfatível) se $v(\varphi) = T$ para algum v
- Uma fórmula φ é **falsificável** se $v(\varphi) = F$ para algum v

- Uma fórmula φ é satisfazível (ou satisfatível) se $v(\varphi) = T$ para algum v
- Uma fórmula φ é falsificável se $v(\varphi) = F$ para algum v
- Uma fórmula φ é **válida** (ou uma **tautologia**) se $v(\varphi) = T$ para todo v

Satisfazibilidade

- Uma fórmula φ é satisfazível (ou satisfatível) se $v(\varphi) = T$ para algum v
- Uma fórmula φ é falsificável se $v(\varphi) = F$ para algum v
- Uma fórmula φ é **válida** (ou uma **tautologia**) se $v(\varphi) = T$ para todo v
- Uma fórmula φ é **inválida** (ou insatistazível) se $v(\varphi) = F$ para todo v

- Uma fórmula φ é satisfazível (ou satisfatível) se $v(\varphi) = T$ para algum v
- Uma fórmula φ é **falsificável** se $v(\varphi) = F$ para algum v
- Uma fórmula φ é **válida** (ou uma **tautologia**) se $v(\varphi) = T$ para todo v
- Uma fórmula φ é **inválida** (ou insatistazível) se $v(\varphi) = F$ para todo v
- Uma fórmula é contingente se for tanto satisfazível quanto falsificável

Classificar as seguintes fórmulas a partir de suas tabelas da verdade:

- $\bigcirc \neg (p \rightarrow p)$
- $((p \rightarrow q) \rightarrow p) \rightarrow p$ [Fórmula de Peirce]
- $((p \rightarrow q) \rightarrow p) \rightarrow r$

Próximo Tópico

- O Consequência Lógica

Marcelo Finger

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

Marcelo Finger CS-IME-USP

Consequência Lógica ou Acarretamento Lógico

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

Se
$$v(\varphi_i) = T$$
, então $v(\psi) = T$

Marcelo Finger

Marcelo Finger CS-IME-USP

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
F	F	F				
F	F	Т				
F	Т	F				
F	Т	Т				
Т	F	F				
Т	F	Т				
Т	Т	F				
T	Т	Т				

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
F	F	F	Т			
F	F	Т	F			
F	Т	F	Т			
F	Т	Т	F			
Т	F	F	Т			
Т	F	Т	F			
Т	Т	F	Т			
T	Т	Т	F			

Marcelo Finger

EXEMPLO

 $(p \land \neg q) \rightarrow r, \neg r, p \models q$ ("Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.")

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
F	F	F	Т	Т		
F	F	Т	F	Т		
F	Т	F	Т	F		
F	Т	Т	F	F		
T	F	F	Т	Т		
Т	F	Т	F	Т		
Т	Т	F	Т	F		
Т	Т	Т	F	F		

p	q	r	$\neg r$	$ \neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
F	F	F	Т	Т	F	
F	F	Т	F	Т	F	
F	Т	F	Т	F	F	
F	Т	Т	F	F	F	
T	F	F	Т	Т	Т	
Т	F	Т	F	Т	Т	
Т	Т	F	Т	F	F	
Т	Т	Т	F	F	F	

Marcelo Finger SINTAXE

CS-IME-USP

EXEMPLO

 $(p \land \neg q) \rightarrow r, \neg r, p \models q$ ("Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.")

p	q	r	$\neg r$	$ \neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
F	F	F	Т	Т	F	Т
F	F	Т	F	Т	F	Т
F		F	Т	F	F	Т
F	Т	Т	F	F	F	Т
Т	F	F	Т	Т	Т	F
Т	F	Т	F	Т	Т	Т
T	Т	F	Т	F	F	Т
T	Т	Т	F	F	F	Т

p	q	r	$\neg r$	$ \neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F	Т	Т	F	Т
F	F	Т	F	Т	F	Т
F		F	Т	F	F	Т
F	Т	Т	F	F	F	Т
T	F	F	Т	Т	Т	F
T	F	Т	F	Т	Т	Т
Т	Т	F	Т	F	F	Т
T	Т	Т	F	F	F	Т

Pelo método da a tabela da verdade, verifique a validade dos seguintes acarretamentos:

- $\neg p \lor \neg q \models \neg (p \land q)$
- $(p \lor (q \to p)) \land q \models p$
- $p \land (q \lor r) \models (p \land q) \lor (p \land r)$
- $p \rightarrow (q \lor r)$, $q \rightarrow s$, $r \rightarrow s \models p \rightarrow s$
- $p \rightarrow q$, $r \rightarrow s \models p \lor r \rightarrow q \lor s$

Satisfazirilidade

Teorema da Dedução

TEOREMA (DA DEDUÇÃO)

 $\varphi_1,...,\varphi_n \models \psi$ se e somente se $\varphi_1 \wedge ... \wedge \varphi_n \rightarrow \psi$ é válida

PROVA

(\Rightarrow) Seja v tq se $v(\varphi_1) = \cdots = v(\varphi_n) = 1$ então $v(\psi) = 1$; logo $v(\varphi_1 \wedge ... \wedge \varphi_n \to \psi) = 1$; por outro lado, se existe φ_i tq $v(\varphi_i) = 0$, $v(\varphi_1 \wedge ... \wedge \varphi_n \to \psi) = 1$, logo $\varphi_1 \wedge ... \wedge \varphi_n \to \psi$ é válida.

(\Leftarrow) Se para todo v, $v(\varphi_1 \land ... \land \varphi_n \to \psi) = 1$, então,para todo v se $v(\varphi_1) = \cdots = v(\varphi_n) = 1$ teremos $v(\psi) = 1$; logo $\varphi_1, ..., \varphi_n \models \psi$.

MARCELO FINGER SINTAXE

Equivalência Lógica

MARCELO FINGER CS-IME-USP

EQUIVALÊNCIA LÓGICA

$$\varphi \equiv \psi$$
 se $\varphi \models \psi$ e $\psi \models \varphi$

Marcelo Finger

Equivalência Lógica

$$\varphi \equiv \psi$$
 se $\varphi \models \psi$ e $\psi \models \varphi$

LEMA

$$\varphi \equiv \psi$$
 sse $v(\varphi) = v(\psi)$ para todo v

Marcelo Finger

Exemplos de equivalência lógica

- $p \rightarrow q \equiv \neg p \lor q$
- $\neg \neg p \equiv p$

Verificar que a tabela da verdade de cada membro da equivalência coincide

COMPLETUDE FUNCIONAL

Todas as fórmulas da LPC são equivalentes a fórmulas contendo apenas os seguintes conectivos:

- ¬ e ∧
- ¬ e ∨
- ¬ e →
- NAND (\uparrow): $\varphi \uparrow \psi =_{def} \neg (\varphi \land \psi)$
- Para demonstrar que um conjunto C de conectivos é funcionalmente completo, basta mostrar que os demais conectivos são equivalentes a fórmulas contendo apenas os conectivos de C.

MARCELO FINGER
SINTANE

Completude Funcional: Exemplos e Exercícios

TABELAS DA VERDADE

O Considere como básicos \neg e \land . Verificar as equivalências lógicas que definem \vee e \rightarrow :

$$\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$$
$$\varphi \to \psi \equiv \neg(\varphi \land \neg \psi)$$

- ② Considere como básicos ¬ e ∨. Apresentar e verificar as equivalências lógicas que definem \land e \rightarrow .
- Onsidere como básicos \neg e \rightarrow . Apresentar e verificar as equivalências lógicas que definem ∧ e ∨.
- O Considere como básico ↑. Apresentar e verificar as equivalências lógicas que definem \neg , \land , \lor e \rightarrow .