

Uncovering Project and Community Insights Using Data Driven Methods

Oindrilla Chatterjee Senior Data Scientist Red Hat

SCHEDULE

1 Metrics

4 Al tools for open source projects

2 Project AI4CI

5 Time to Merge Model

3 Operate First Community Cloud

Let's talk metrics

Why?

- Better allocate resources
- Evaluate a project's success
- Advocate for the project
- Analyze the development community
- Growth and journey of community

How?

- Sources like repositories, communication channels, website, service endpoints
- Open end-to-end workflows, from collection to deployment

ML to aid project development?

- Predicting time-to-merge to get an idea of "estimated effort"
- Predicting time to respond on issues
- Optimal stopping point for long running tests

Not here to tell you

Which metrics to track

Why use metrics to support your open source community

Here to tell you

How Al driven metrics can help

How to use open source ML tools to achieve this

How this can be done on an open community cloud

AI4CI: Open Source AIOps toolkit

https://github.com/aicoe-aiops/ocp-ci-analysis

Problem

- Need for AlOps Automated monitoring,
 analysis, alerting with Ops
 (CI/CD, development processes)
- Open Source data
 originating from real world
 production systems is a rarity
 for public datasets.
- Lack of AI driven metrics for open source community health.

Opportunity

- Open operations data made available by running open source software and applications in production.
- Data includes CI/CD data, code, telemetry, logs, operational dashboards.
- Eg: Kubernetes testing infrastructure, Fedora make their testing data available open source.

Solution

- Collection of intelligent and open source data science tools to collect and analyze the CI/CD data.
- AlOps models like Github time-to-merge service, optimal stopping time prediction, build log classifier
- KPI and Metric dashboards
- Goal is to foster an open source AlOps community with open ops data, Al tools and services.

AI4CI supports CI/CD and software dev processes

What is AI4CI?

Collection of **Open Source AlOps tools** including scripts,
notebooks, pipelines, dashboards
and data sources.

Data collection

Collection of open operations data from Kubernetes testing platforms eg: Testgrid, Github, and Prow.

Metrics

Collects metrics and **KPIs** and visualization dashboards.

ML Services

ML services which can support CI/CD processes.

Open source AlOps template

Resource for open source AlOps communities (notebooks, scripts, automated ML pipelines, dashboards, services tools)

The Operate First Community Cloud

- Operate First makes operations open source.
- An initiative centered around learning and developing code and practices in an open production community cloud.
- Deploy and maintain apps in an open environment leading to open operations data which include logs, issues,metrics.

www.operate-first.cloud/

Open Source data science and engineering tools on Operate First

Open Source data science and engineering tools on Operate First

- Operations Data like: Logs, Metrics, Github issues, PRs, architectural decisions, blueprints.
- These open operations datasets can help **enable Al tools** to assist with cloud operations.

Tooling for capturing metrics

Code Repository

Github API, Thoth MI-Scheduler, CHAOSS-Augur

Feature exploration & Engineering

Dashboard with key metrics

AI4CI Architecture

ML Service: Optimal Stopping Point Prediction

Sometimes tests/builds take longer than expected to run Find an Optimal Stopping Point after which the test will fail.

We can better allocate and save resources.

ML Service: Time to Merge Prediction

Time to merge prediction service for community health

- Identify **bottlenecks** in development process
- Leverage the rich **historical data** of consisting of Issues, Commits, PRs
- Give **new contributors** of an estimate of when their PR will be reacted upon
- Most importantly develop an **Al driven mindset** for community health

Current workflow: Github time to merge prediction service

behavior

COLLECT DATA

☐ openshift / origin

NEXT STEPS

- Service as a bot on Github PRs
- Live feedback from bot / service
- Iterate on time-to-merge models for better performance
- Toolified API for using the training service.

Resources

https://github.com/aicoe-aiops/ocp-ci-analysis/blob/master/docs/get-started.md

Open Data Sources

Notebooks

Dashboards

Model Endpoints

Automated Workflows

Video Playlist

Thank you!

@oindrilla_chat

www.linkedin.com/in/oindrilla-chatterjee/

