CS 6601 Assignment 3: Probability

Due on Feb 26th, 2017 by 11:59PM UTC-12 (Anywhere on Earth)

Important Notes:

- Use <u>Python 2.7</u> for this assignment.
- Submit the solution as a **Python** file: probability_solution.py on Bonnie as well as t-square.
- DO NOT CHANGE any function headers.
- If you are using the notebook provided to code, you will need to run your code in iPython2, due to version issues in pbnt. There are instructions for how to do this within probability notebook.ipnb.

Abstract

You will implement several Bayesian networks and sampling algorithms to gain a better understanding of probabilistic systems.

Learning Objectives

Students should be able to understand the importance of Bayesian networks to represent conditional dependencies. Also, be able learn the sampling methods, Gibbs and Metropolis-Hastings and develop an intuition for their convergence criteria (very "researchy").

Evaluation

Evaluation is using the last submission on Bonnie.

1. The Challenge

Many AI systems rely on probabilistic knowledge of the world, rather than absolute knowledge, to execute tasks efficiently: for example, motion planning in robots with unreliable sensors. One type of probabilistic system that is especially useful is the Bayesian network, which encodes a joint probability distribution among dependent variables as a network of conditional probabilities. Your challenge is to implement and test several of these networks, ultimately using a sampling method to approximate a probability distribution.

Figure 1: Example Bayesian network (representing prediction for wet grass).

2. Your Assignment

Your task is to implement a few basic networks as well as several sampling algorithms. You will do this in probability notebook.ipynb, and there are tests along the way to help. Unlike previous assignments, we will not be grading on performance but rather on completion.

We have provided the following additional classes and files:

File/Folder	Description
probability_tests.py	To test the models you've built.
pbnt/combined	Module to implement Bayesian networks (you'll basically need BayesNode in Node.py and BayesNet in Graph.py). Also contains an example (ExampleModels.py) to help you get started.

This is meant to be a shorter assignment, so there won't be much testing required.

3. Grading

BASIC TASK (100 points)

Warmup 1a: Build a basic Bayesian network representing a power plant. (10 points)

Warmup 1b: Set the probabilities for the Bayes Net. (15 points)

Warmup 1c: Use inference to calculate several marginal probabilities within the Net. (10points)

Exercise 2a: Build a Bayesian network representing a sports competition. (10 points)

Exercise 2b: Given the outcomes of 2 matches, calculate likelihoods for the 3rd match. (5 points)

Exercise 2c: Implement single iteration of Gibbs sampling. (15 points)

Exercise 2d: Implement single iteration of Metropolis-Hastings sampling.(15 points)

Exercise 2e: Compare the performance of the 2 sampling methods. (20 points)

4. Due date

This assignment is due on Bonnie and T-Square by **February 26th at 11:59PM UTC-12** (Anywhere on Earth). The deliverable for this assignment is a **Python file**:

Probability_solution.py

5. Resources

IMPORTANT: If you want to know more about how pbnt works, check out exampleinference.py and water() in pbnt/combined/ExampleModels.py. Also here's a clone of the library: https://github.com/achille/pbnt.

Basics of Bayes nets and Conditional Probability:

- https://www.mathsisfun.com/data/probability-events-conditional.html
- https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-st atistics-spring-2014/class-slides/

Gibbs Sampling and convergence:

- http://gandalf.psych.umn.edu/users/schrater/schrater_lab/courses/Al2/gibbs.pdf
- https://en.wikipedia.org/wiki/Gibbs sampling
- https://www.voutube.com/watch?v=ol0l6aTfb_g
- Section 14.5 in Russell and Norvig (pp. 535-538 for Gibbs sampling).

Metropolis Hastings and convergence:

- http://www.mit.edu/~ilkery/papers/MetropolisHastingsSampling.pdf
- https://www.cs.cmu.edu/~scohen/psnlp-lecture6.pdf

Although you don't have to implement the inference algorithm (<u>Junction tree</u>) that you'll use with your networks, you might be interested in knowing how it works. You can find details on pp. 529-530 of Russell and Norvig.