

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №2 по дисциплине "Методы машинного обучения"

Гема Модель полиномиальной регрессии - Регуляризация.
Студент Варламова Е. А.
Группа <u>ИУ7-23М</u>
Оценка (баллы)
Преполаватели Сололовников Владимир Игоревич

СОДЕРЖАНИЕ

1	Теоретическая часть						
	1.1	Полиномиальная регрессия. Регуляризация					
	1.2	Постановка задачи					
	1.3	Функционал эмпирического риска					
	1.4	Регуляризация					
	1.5	Описание алгоритма					
2	Практическая часть						
	2.1	Выбор средств разработки					

1 Теоретическая часть

1.1 Полиномиальная регрессия. Регуляризация.

Полиномиальная регрессия — это метод восстановления зависимости между независимыми и зависимыми переменными при помощи полиномиальной функции. Он часто используется для приближения нелинейного поведения данных и улучшения качества предсказаний по сравнению с линейной регрессией. Полиномиальная регрессия позволяет уловить сложные взаимосвязи в данных и учитывать нелинейные зависимости.

Регуляризация в статистике и машинном обучении – метод добавления некоторых дополнительных ограничений к условию с целью предотвратить переобучение. Чаще всего эта информация имеет вид штрафа за сложность модели.

Целью данной лабораторной работы является применение регуляризации к модели полиномиальной регрессии.

Для этого необходимо решить следующие задачи:

- формализовать задачу;
- описать алгоритм работы ПО, решающего поставленную задачу;
- привести особенности реализации ПО, решающего поставленную задачу;
- провести исследование зависимости среднеквадратичной ошибки регрессии от степени полинома;
- провести исследование зависимости значения функционала эмпирического риска на обучающей и контрольной выборках от степени полинома.

1.2 Постановка задачи

Функция:

$$y(x) = \frac{1}{1 + 25x^2}, x \in [-2, 2]$$
(1.1)

Обучающая выборка:

$$S_l: x_i = \frac{4(i-1)}{l-1} - 2, i = 1, \dots, l$$
 (1.2)

Контрольная выборка:

$$S_k: x_i = \frac{4(i-0.5)}{l-1} - 2, i = 1, \dots, l-1.$$
 (1.3)

Построить модель полиномиальной регрессии, аппроксимирующей данные обучающей выборки. Исходить из того, что степень полинома (начальный закон генерации обучающей выборки) неизвестен. Обучение проводить методом наименьших квадратов.

Для оптимальной модели полиномиальной регрессии, а также для модели полиномов меньшей и большей степеней (± 3) вывести значения коэффициентов полинома (всего 3 полинома).

К выбранным моделям (полиномам соответствующих степеней) применить метод регуляризации с использованием гребневой регрессии (ридж-регрессии) и Лассо-регрессии. Вывести значения коэффициентов полинома. Повторить для различных значений параметра.

Рассчитать функционал эмпирического риска (функционал качества) для всех полученных моделей на обучающей и контрольной выборках (вывести графики).

1.3 Функционал эмпирического риска

Функционал эмпирического риска (empirical risk functional) используется в машинном обучении для измерения качества модели на обучающей выборке. Он представляет собой среднее значение функции потерь (loss function) на обучающих примерах.

Для задачи регрессии, наши данные состоят из пар (x_i, y_i) , где x_i - входное значение, а y_i - соответствующее целевое значение. Пусть h(x) - модель, а $\ell(h(x), y)$ - функция потерь. Тогда эмпирический риск R(h) может быть записан следующим образом:

$$R(h) = \frac{1}{N} \sum_{i=1}^{N} \ell(h(x_i), y_i)$$

Здесь N - количество обучающих примеров, и сумма берется по всем парам (x_i, y_i) . Функция потерь $\ell(h(x_i), y_i)$ оценивает разницу между предсказанным значением $h(x_i)$ и истинным значением y_i .

В данной работе используется квадратичная функция потерь, а, соотвественно, функционал эмпирического риска равен среднеквадратичной ошибке.

Регуляризация 1.4

Регуляризация в статистике и машинном обучении – метод добавления некоторых дополнительных ограничений к условию с целью предотвратить переобучение. Чаще всего эта информация имеет вид штрафа за сложность модели.

Если выбрана излишне сложная модель при недостаточном объеме данных, то в итоге может быть получена модель, которая хорошо описывает обучающую выборку, но не обобщается на тестовую. Переобучение в большинстве случаев проявляется в том, что итоговые модели имеют слишком большие значения параметров. Одним из способов борьбы с негативным эффектом излишнего подстраивания под данные – использование регуляризации, т.е. добавление некоторого штрафа за большие значения коэффициентов у линейной модели. Тем самым запрещаются слишком "резкие" изгибы, и предотвращается переобучение.

Наиболее часто используемые виды регуляризации — L_1 и L_2 , а также их линейная комбинация – эластичная сеть.

В представленных ниже формулах для эмпирического риска Q приняты следующие обозначения: L – функция потерь, β – вектор параметров $q(x,\beta)$ из модели алгоритма, λ – неотрицательный гиперпараметр (коэффициент регуляризации).

Если в качестве функционал качества используется сумма квадратов остатков (Residual Sum of Squares – RSS), тогда изначально:

$$L(y_i, g(x_i, \beta)) = (g(x_i, \beta) - y_i)^2$$
(1.4)

$$L(y_i, g(x_i, \beta)) = (g(x_i, \beta) - y_i)^2$$

$$RSS = Q(\beta, X^l) = \sum_{i=1}^l (L(y_i, g(x_i, \beta))) = \sum_{i=1}^l (g(x_i, \beta) - y_i)^2$$
(1.4)

 L_2 -регуляризация (ridge regularization) или регуляризация Тихонова (Tikhonov regularization):

$$Q(\beta, X^{l}) = \sum_{i=1}^{l} L(y_{i}, g(x_{i}, \beta)) + \lambda \sum_{j=1}^{n} \beta_{j}^{2}$$
(1.6)

Минимизация регуляризованного соответствующим образом эмпирического риска приводит к выбору такого вектора параметров β , которое не слишком сильно отклоняется от нуля. В линейных классификаторах это позволяет избежать проблем мультиколлинеарности и переобучения.

 L_1 -регуляризация (lasso regularization) или регуляризация через манхэттенское расстояние:

$$Q(\beta, X^{l}) = \sum_{i=1}^{l} L(y_{i}, g(x_{i}, \beta)) + \lambda \sum_{j=1}^{n} |\beta_{j}|$$
(1.7)

Данный вид регуляризации также позволяет ограничить значения вектора β . Однако, к тому же он обладает интересным и полезным на практике свойством – обнуляет значения некоторых параметров, что в случае с линейными моделями приводит к отбору признаков.

1.5 Описание алгоритма

Схема алгоритма, вычисляющего оптимальную степень полинома по обучающей выборке, представлена на рисунке 1.1.

Рис. 1.1: Схема работы алгоритма

2 Практическая часть

2.1 Выбор средств разработки

В качестве языка программирования был использован язык Python, поскольку этот язык кроссплатформенный и для него разработано огромное количество библиотек и модулей, решающих разнообразные задачи.

В частности, имеются библиотеки, включающие в себя алгоритмы аппроксимации полиномом, линейной регрессии и регуляризации в библиотеке [1].

Для создания графиков была выбрана библиотека matplotlib [2], доступная на языке Python, так как она предоставляет удобный интерфейс для работы с данными и их визуализации.

2.2 Исследование ПО

В листинге 2.1 представлен код, выводящий максимальное по модулю значение коэффициентов полинома и значение ошибок на обучающей и контрольной выборок для моделей полиномиальной регрессии без регуляризации и с регуляризацией с помощью Лассо и Ридж методов для степеней полинома 10, 13 и 20 и для разных параметров α . Кроме того, для указанных моделей предусмотрен интерфейс вывода графиков фнукционала эмпирического риска в зависимости от степени полинома с возможностью варьировать параметры методов регуляризации.

Листинг 2.1: код

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from matplotlib.widgets import Slider
import warnings
warnings.filterwarnings("ignore")
```

```
def true function(x):
      return 1 / (1 + 25 * x**2)
12
13
14
  X_{train} = np.array([4 * (i - 1) / (l - 1) - 2 for i in range(1, l + 1)]).
     reshape(-1, 1)
  X control = np.array([4 * (i - 0.5) / (l - 1) - 2 \text{ for } i \text{ in } range(1, l)]).
     reshape(-1, 1)
  y_{train} = true_function(X_train)
  y control = true function(X control)
  degrees = [10, 13, 16]
  def fit polynomial regression (X, y, degree, model):
      poly features = PolynomialFeatures (degree=degree)
21
      X_poly = poly_features.fit_transform(X)
22
      model.fit(X poly, y)
23
      return poly_features
24
25
26
  def calculate error (model, poly features, X, y):
27
      X_{poly} = poly_{features.transform(X)
28
      y pred = model.predict(X poly)
      return mean_squared_error(y, y_pred), y_pred
  def get\_errs(model, X\_train, y\_train, X\_control, y\_control):
31
      train_errors = []
32
      control_errors = []
33
      for degree in degrees:
34
           poly_features = fit_polynomial_regression(X_train, y_train, degree,
35
              model)
          train error, y p t = calculate error(model, poly features, X train,
36
              y train)
          control\_error, y\_p\_c = calculate\_error(model, poly\_features,
37
              X_control, y_control)
           train _ errors . append (train _ error)
38
           control errors.append(control error)
39
      return train_errors,control_errors
40
  def update ridge(val):
42
      train errors ridge, control errors ridge = get errs(Ridge(alpha=val),
43
         X_train , y_train , X_control , y_control)
      ridge_plot_train.set_ydata(train_errors_ridge)
44
      ridge_plot_control.set_ydata(control_errors_ridge)
45
      fig.canvas.draw_idle()
46
  def update lasso(val):
48
      train errors lasso, control errors lasso = get errs(Lasso(alpha=val),
49
         X_train, y_train, X_control, y_control)
      lasso plot train.set ydata(train errors lasso)
50
      lasso_plot_control.set_ydata(control_errors_lasso)
51
      fig.canvas.draw idle()
52
53
```

```
def output errors():
       models = [LinearRegression(),
55
                  Lasso (alpha = 0.1),
56
                  Lasso (alpha=10),
57
                  Lasso (alpha=100),
58
                  Lasso (alpha = 1000),
59
                  Ridge (alpha = 0.1),
60
                  Ridge (alpha=10),
61
                  Ridge (alpha = 100),
62
                  Ridge (alpha = 1000)
63
      names = ["
64
                             , alpha = 0.1,
                 П
                             , alpha = 10",
                 П
                             , alpha = 100"
67
                             , alpha = 1000".
68
                             alpha = 0.1",
69
                 II
                             alpha = 10",
70
                             alpha = 100",
71
                             alpha = 1000"
72
       degs = [10, 13, 20]
73
       i = 0
74
       for model in models:
75
           for degree in degs:
76
                poly features = fit polynomial regression(X train, y train,
77
                   degree, model)
                train_error, y_p_t = calculate_error(model, poly features,
78
                   X_{train}, y_{train}
                control error, y p c = calculate error(model, poly features,
79
                   X control, y control)
                print("\hline {} & {} & {:.3f} & {:.3f} & {:.3f} & {:.3f} \\\\".
80
                   format(names[i],
                                                                           degree,
81
                                                                           np.max(np.
82
                                                                               abs(
                                                                               y_p_t)),
                                                                           np.max(np.
83
                                                                               abs(
                                                                               y_p_c)),
                                                                            train_error
84
                                                                            control_error
85
                                                                               ))
           i += 1
  output errors()
87
  fig , ax = plt.subplots()
88
89
  ax slider ridge = plt.axes([0.1, 0.01, 0.8, 0.03])
90
  ax_slider_lasso = plt.axes([0.1, 0.9, 0.8, 0.03])
91
_{93} train errors lin, control errors lin = get errs(LinearRegression(), X train,
```

```
y_train , X_control , y_control)
  ax.plot(degrees, train errors lin, label='
  ax.plot(degrees, control errors lin, label='
  train_errors_lasso, control_errors_lasso = get_errs(Lasso(alpha=0.1),
     X train, y train, X control, y control)
  lasso_plot_train , = ax.plot(degrees , train_errors_lasso , label='
  lasso plot_control, = ax.plot(degrees, control_errors_lasso, label='
100
  train errors ridge, control errors ridge = get errs(Ridge(alpha = 0.1),
     X train, y train, X control, y control)
  ridge_plot_train , = ax.plot(degrees , train_errors_ridge , label='
102
  ridge_plot_control, = ax.plot(degrees, control_errors_ridge, label=')
103
104
  slider ridge = Slider(ax slider ridge, 'Ridge', valmin=0, valmax=1000,
105
      valinit = 0.1
  slider ridge.on changed(update ridge)
106
107
  slider_lasso = Slider(ax_slider_lasso, 'Lasso', valmin=0, valmax=1000,
108
      valinit = 0.1)
  slider_lasso.on_changed(update_lasso)
109
  ax.legend()
110
111
  plt.xlabel(
112
  plt.ylabel(
113
  plt.title(
114
                                       ')
  plt.legend()
115
  plt.show()
116
```

На рисунке 2.1 показана зависимость значения ошибки от степени полинома для обучающей и контрольной выбоорок для разных моделей.

В таблице 2.1 показано, что при применении методов регуляризации максимальный по модулю коэффициент не такой большой, как без регуляризации.

Рис. 2.1:

Таблица 2.1: Результаты работы ПО

таолица 2.1: Результаты расоты 110								
		тах модуль	тах модуль					
Тип	Степень полинома	коэффициента	коэффициента	Ошибка на	Ошибка на			
модели		полинома	полинома	обучающей	контрольной			
Модели	Hommowa	на обучающей	на контрольной	выборке	выборке			
		выборке	выборке					
Линейная	5	0.415	0.411	0.027	0.025			
Линейная	10	0.692	0.665	0.008	0.008			
Линейная	20	1.000	360.683	0.000	13108.005			
Лассо, $alpha = 0.1$	5	0.199	0.199	0.048	0.047			
Лассо, $alpha = 0.1$	10	0.211	0.211	0.047	0.045			
Лассо, $alpha = 0.1$	20	0.217	0.217	0.046	0.044			
Лассо, $alpha = 10$	5	0.141	0.141	0.057	0.055			
Лассо, $alpha = 10$	10	0.155	0.155	0.054	0.053			
Лассо, alpha = 10	20	0.177	0.177	0.052	0.051			
Лассо, $alpha = 100$	5	0.141	0.141	0.057	0.055			
Лассо, alpha = 100	10	0.141	0.141	0.057	0.055			
Лассо, alpha = 100	20	0.160	0.160	0.054	0.053			
Π acco, alpha = 1000	5	0.141	0.141	0.057	0.055			
Лассо, alpha = 1000	10	0.141	0.141	0.057	0.055			
Лассо, alpha = 1000	20	0.158	0.158	0.055	0.054			
Pидж, $alpha = 0.1$	5	0.408	0.404	0.027	0.025			
Pидж, $alpha = 0.1$	10	0.494	0.486	0.018	0.016			
Pидж, $alpha = 0.1$	20	0.511	1.432	0.016	0.226			
Ридж, alpha = 10	5	0.258	0.257	0.040	0.038			
Ридж, alpha = 10	10	0.287	0.286	0.036	0.034			
Ридж, alpha = 10	20	0.296	0.296	0.036	0.034			
Ридж, alpha = 100	5	0.212	0.211	0.046	0.045			
Ридж, alpha = 100	10	0.230	0.229	0.044	0.043			
Ридж, alpha = 100	20	0.249	0.407	0.042	0.058			
Ридж, alpha = 1000	5	0.170	0.170	0.051	0.050			
Ридж, alpha = 1000	10	0.201	0.201	0.048	0.046			
Ридж, alpha = 1000	20	0.220	0.220	0.046	0.046			

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Scikit-learn: Machine learning in Python / F. Pedregosa [и др.]. 2011.
- 2. Библиотека визуализации данных matplotlib [Электронный ресурс]. Режим доступа: URL: https://matplotlib.org (дата обращения: 13.12.2023).