Q-1. Import the dataset and do usual data analysis steps like checking the structure & characteristics of the dataset

```
from google.colab import files
uploaded = files.upload()
Choose Files aerofit_treadmill.csv
       aerofit_treadmill.csv(text/csv) - 7279 bytes, last modified: 10/9/2024 - 100% done
     Saving aerofit_treadmill.csv to aerofit_treadmill.csv
import pandas as pd
# If you used Google Colab to upload
df = pd.read_csv('aerofit_treadmill.csv')
# Display data types of each column
data_types = df.dtypes
print("Data types of each column:\n", data_types)

    Data types of each column:

      Product
     Age
                       int64
     Gender
                      object
     Education
                       int64
     MaritalStatus
                     object
     Usage
                       int64
     Fitness
                       int64
     Income
                       int64
     Miles
                       int64
     dtype: object
# Get the shape of the dataset
shape = df.shape
print("Number of rows and columns:\n", shape)
Number of rows and columns:
# Check for missing values
missing_values = df.isnull().sum()
print("Number of missing values in each column:\n", missing_values)
Number of missing values in each column:
      Product
                      0
     Age
     Gender
     Education
                      0
     MaritalStatus
                      0
     Usage
                      0
     Fitness
                      0
     Miles
                      0
     dtype: int64
```

Q-2. #Detect Outliers \circ Find the outliers for every continuous variable in the dataset Hint: We want you to use boxplots to find the outliers in the given dataset \circ Remove/clip the data between the 5 percentile and 95 percentile Hint: We want You to use np.clip() for clipping the data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv('aerofit_treadmill.csv')
# Define continuous variables
continuous_vars = ['Age', 'Education', 'Usage', 'Income', 'Fitness', 'Miles']
# Create boxplots for each continuous variable
plt.figure(figsize=(15, 10))
for i, var in enumerate(continuous_vars, 1):
    plt.subplot(3, 2, i)
    plt.boxplot(df[var].dropna()) # Drop NA values for plotting
    plt.title(f'Boxplot of {var}')
plt.tight_layout()
plt.show()
# Clip the data for continuous variables
for var in continuous_vars:
    lower_bound = df[var].quantile(0.05)
upper_bound = df[var].quantile(0.95)
    df[var] = np.clip(df[var], lower_bound, upper_bound)
# Display the updated DataFrame with clipped values
print(df[continuous_vars].describe())
```

→ Show hidden output

Q.3 Check if features like marital status, Gender, and age have any effect on the product purchased \circ Find if there is any relationship between the categorical variables and the output variable in the data. \circ Find if there is any relationship between the continuous variables and the output

variable in the data.

```
import pandas as pd
import numpy as np
import matplotlib.pvplot as plt
import seaborn as sns
# Load the dataset
df = pd.read_csv('aerofit_treadmill.csv')
# Set the aesthetic style of the plots
sns.set(style="whitegrid")
# Count plots for categorical variables
plt.figure(figsize=(15, 5))
# Marital Status
plt.subplot(1, 3, 1)
sns.countplot(data=df, x='MaritalStatus', hue='Product')
plt.title('Product Purchased by Marital Status')
# Gender
plt.subplot(1, 3, 2)
sns.countplot(data=df, x='Gender', hue='Product')
plt.title('Product Purchased by Gender')
# Age (converted to categorical for the plot)
df['AgeGroup'] = pd.cut(df['Age'], bins=[0, 20, 30, 40, 50, 60, 70, 80], right=False)
plt.subplot(1, 3, 3)
sns.countplot(data=df, x='AgeGroup', hue='Product')
plt.title('Product Purchased by Age Group')
plt.tight_layout()
plt.show()
# Scatter plots for continuous variables
plt.figure(figsize=(15, 10))
# Age vs. Income
plt.subplot(3, 2, 1)
sns.scatterplot(data=df, x='Age', y='Income', hue='Product', alpha=0.6)
plt.title('Age vs. Income by Product Purchased')
# Education vs. Usage
plt.subplot(3, 2, 2)
sns.scatterplot(data=df, x='Education', y='Usage', hue='Product', alpha=0.6)
plt.title('Education vs. Usage by Product Purchased')
plt.subplot(3, 2, 3)
sns.scatterplot(data=df, x='Income', y='Miles', hue='Product', alpha=0.6)
plt.title('Income vs. Miles by Product Purchased')
# Fitness vs. Miles
plt.subplot(3, 2, 4)
sns.scatterplot(data=df, x='Fitness', y='Miles', hue='Product', alpha=0.6)
plt.title('Fitness vs. Miles by Product Purchased')
plt.tight_layout()
plt.show()
```

Show hidden output

Q.4 - Representing the Probability \circ Find the marginal probability (what percent of customers have purchased KP281, KP481, or KP781) \circ Find the probability that the customer buys a product based on each column. (Example: given that a customer is female, what is the probability she'll purchase a KP481)

```
import pandas as pd
# Load the dataset
df = pd.read csv('aerofit treadmill.csv')
# Step 1: Marginal Probability
marginal_counts = df['Product'].value_counts(normalize=True) * 100
print("Marginal Probability (Percentage of Customers by Product):\n", marginal_counts)
# Step 2: Probability Based on Each Column
# Probability of purchasing based on Gender
gender_product_prob = pd.crosstab(df['Gender'], df['Product'], normalize='index') * 100
print("\nProbability of Product Purchase by Gender (Percentage):\n", gender_product_prob)
# Probability of purchasing based on Marital Status
marital_status_product_prob = pd.crosstab(df['MaritalStatus'], df['Product'], normalize='index') * 100
print("\nProbability of Product Purchase by Marital Status (Percentage):\n", marital_status_product_prob)
# Step 3: Conditional Probability
# Example: Probability of purchasing KP481 given the customer is Female
conditional_probability = (df[(df['Gender'] == 'Female') & (df['Product'] == 'KP481')].shape[0] /
                              df[df['Gender'] == 'Female'].shape[0]) * 100
print (f'' \land Conditional\ Probability\ of\ purchasing\ KP481\ given\ the\ customer\ is\ Female:\ \{conditional\_probability:.2f\}\%'')
→ Marginal Probability (Percentage of Customers by Product):
      Product
```

```
KP281
       44.44444
```

```
KP481
                33.333333
              22.222222
      KP781
      Name: proportion, dtype: float64
      Probability of Product Purchase by Gender (Percentage):
       Product
                     KP281
                                  KP481
                                              KP781
      Gender
               52.631579 38.157895 9.210526
38.461538 29.807692 31.730769
      Female
     Male
     Probability of Product Purchase by Marital Status (Percentage): Product KP281 KP481 KP781
      MaritalStatus
                      44.859813 33.644860 21.495327
43.835616 32.876712 23.287671
      Partnered
      Single
      Conditional Probability of purchasing KP481 given the customer is Female: 38.16%
Q-5.Check the correlation among different factors \circ Find the correlation between the given features in the table.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv('aerofit_treadmill.csv')
\mbox{\tt\#} Step 1: Calculate the correlation matrix
# Select only continuous numerical columns for correlation
correlation_matrix = df[['Age', 'Education', 'Usage', 'Income', 'Fitness', 'Miles']].corr()
# Step 2: Create a heatmap to visualize the correlation matrix
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", square=True, cbar_kws={"shrink": .8})
plt.title('Correlation Heatmap')
plt.show()
Show hidden output
Q-6. 6. Customer profiling and recommendation o Make customer profilings for each and every product.
import pandas as pd
# Load the dataset
df = pd.read_csv('aerofit_treadmill.csv')
# Function to create customer profile
def create customer profile(product name):
    profile = df[df['Product'] == product_name].describe(include='all')
     return profile
# Create profiles for each product
profile_kp281 = create_customer_profile('KP281')
profile_kp481 = create_customer_profile('KP481')
profile_kp781 = create_customer_profile('KP781')
print("Customer\ Profile\ for\ KP281:\n",\ profile\_kp281)
print("\nCustomer Profile for KP481:\n", profile_kp481)
print("\nCustomer Profile for KP781:\n", profile_kp781)
```

Show hidden output

Start coding or generate with AI.