Data scientist Projet 6

Classification automatique des biens de consommation

Dolores Valide Mentor: Adrien Germond

Sommaire

- Problématique
- Présentation des données
- Processus de classification
- Résultats pour l'étude textuelle
- Résultats pour l'étude des images
- Conclusions

Problématique

L'entreprise Place de Marché souhaite lancer une marketplace e-commerce.

Sur leur site, des vendeurs proposent des articles à des acheteurs en postant une photo et une description.

Mission:

Étudier la faisabilité d'un moteur de classification d'articles, basé sur une image ou une description, pour l'automatisation de l'attribution de la catégorie de l'article.

Objectif:

Simplifier l'expérience utilisateur, améliorer la fiabilité, et automatiser les traitements en vue d'un développement.

De quelles données disposons-nous?

Base de données de 15 variables et 1050 données avec 32% de valeurs manquantes.

Répartition des types de colonnes

Un dataset aux catégories équilibrés

Répartition des types de colonnes

Comment procédons-nous pour classer des données images et textes ?

	Pré traitement	Features extraction et description construction d'un vecteur numérique	Réduction de dimension	Clustering	Visualisation	Evaluation
Données textuelles	Récupération des tokens et nettoyage, création d'un vocabulaire	 Bags of Words: Count-vectorizer, TF-IDF Words Embedding: Word2Vec, BERT, USE 	ACP	Algorithme de classification	TSNE à l'aide de l'ACP	Calcul de l'Indice de
Données graphiques (image)	Récupération des images Réduction de la taille image	Bags of visual word :SIFTEmbedding : CNN		Kmeans		Rand Ajusté

Etude de la classification par les descriptions

- Méthodologie
- Approche Bag of Words
- Approche vectorielle

Comment les données textuelles ont-elles été préparées ?

Dataset initial: 1050 lignes, 15 colonnes

Classification avec Count-Vectorizer

Score ARI: 0.36

La classification comporte des erreurs et les catégories sont mal attribuées

Classification avec TF-IDF

Score ARI: 0.5351

Meilleure classification qu'avec le count-vectorizer. Les catégories sont assez bien retrouvées avec l'algorithme.

Classification avec Word2Vec

Score ARI: 0.3326

Nous redescendons niveau performance. Les catégories proches sont mal attribuées.

Classification avec BERT

Score ARI: 0.3363

On obtient sensiblement les mêmes résultats qu'avec Word2Vec et Count-Vectorizer

Classification avec USE

Score ARI: 0.4091

Meilleure classification après le TF-IDF. Le principe d'embedding obtient de meilleurs résultats et minimise les matrices vides.

Etude de la classification à partir des images

- Approche SIFT
- Approche CNN

Classification SIFT

Score ARI: 0.0439

On obtient une très mauvaise classification. Presqu'aucune image n'est bien classée.

Classification Réseau de neurones : CNN

Score ARI: 0.4956

Meilleure classification pour les données graphiques(photos). Les catégories sont assez bien retrouvées avec l'algorithme.

Le score peut être amélioré en adaptant plus le modèle à nos données.

Conclusion

Le moteur de classification est réalisable. Au vu des résultats obtenus nous pourrions partir sur une combinaison de USE + CNN car ce sont les deux algorithmes qui obtiennent les meilleurs scores ARI et qui fonctionne sur le principe d'embedding.

Pistes d'améliorations :

Ajouter des variables comme le nom du produit et la deuxième catégorie pourrait améliorer la classification .

Pré-entrainer les réseaux de neurones pourrait améliorer les résultats. Affiner les hyperparamètres également.

Merci de votre attention

Questions - Réponses

