Two methods of solving linear second-order differential equations with Dirichlet boundary conditions

Anna Lina P. Sjur and Jan-Adrian H. Kallmyr September 23, 2018

Abstract

- 1 Introduction
- 2 Methods
- 3 Results

\mathbf{n}	${ m t_g/t_s}$	${f t_{LU}/t_s}$
10	2.08	3.70
10^{2}	1.89	$1.00 \cdot 10^2$
10^{3}	1.48	$1.05\cdot 10^4$
10^{4}	1.43	$1.18 \cdot 10^{6}$
10^{5}	1.39	-
10^{6}	1.41	-
10^{7}	1.39	_

Table 1: Ratio between CPU time for the general algorithm ($\mathbf{t_g}$), the special algorithm ($\mathbf{t_g}$) and the LU decomposition algorithm ($\mathbf{t_{LU}}$) for different matrix sizes (\mathbf{n}). The LU decomposition crashed for \mathbf{n} greater than 10^4 .

4 Discussion

 \mathbf{A}

$$A = \begin{bmatrix} b_1 & c_1 & 0 & \dots & \dots & 0 \\ a_1 & b_2 & c_2 & 0 & \dots & 0 \\ 0 & a_2 & b_3 & c_3 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \ddots & a_{n-2} & b_{n-1} & c_{n-1} \\ 0 & \dots & \dots & 0 & a_{n-1} & b_n \end{bmatrix},$$

Figure 1: The numeric solution using different solving algorithms. The graphs for n=100 and n=1000 are so similar that they are not distinguishable.