סיכום שיעור

יונתן אוחיון

1.11.2018

סדרות 1

סדרה היא קבוצה של מספרים (ממשיים), המסודרים לפי \mathbb{N}

$$a_1, a_2, a_3, \ldots \to (a_n)_{n=1}^{\infty}, (a_n)$$

1.0.1 דוגמאות

- סדרה קבועה $a_n = 17 \quad (17, 17, 17, \dots) \bullet$
 - $a_n = n \quad (1, 2, 3, \dots) \quad \bullet$
- לאפס מונית, שואפת מחדרה $a_n = \frac{1}{n} \quad (1, \frac{1}{2}, \frac{1}{3}, \dots)$
 - $a_n = (-1)^n \quad (-1, 1, -1, \dots) \bullet$

(ϵ,N) גבול של סדרה (הגדרה בלשון

N < n כך שלכל $N \in \mathbb{N}$ קיים לכל אם לכל של הסדרה הגבול ייקרא הגבול ייקרא איים על ייקרא הגבול מסומן כך: $|a_n - L| < \epsilon$ מתקיים

$$\lim_{n \to \infty} a_n = L$$

2.1 כתיב כמתים

$$(\exists L \in \mathbb{R}) \forall 0 < \epsilon, \exists N \in \mathbb{N}, \forall N < n, |a_n - L| < \epsilon$$

2.2 שלילה

$$(\forall L \in \mathbb{R})\exists 0 < \epsilon, \forall N \in \mathbb{N}, \exists N < n, |a_n - L| \ge \epsilon$$

שלילה זו למעשעה מראה שL נתון אינו גבול של הסדרה, ולא שהסדרה מתבדרת. על מנת להראות שלילה זו למעשעה שלילה זו עבור כל $L\in\mathbb{R}$

2.3 דוגמאות

תהי להראות שמתקיים . $\lim_{n \to \infty} a_n = 0$. נוכיח ש $a_n = \frac{1}{n}$ הסדרה (a_n) תהי

$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon$$

N < n כך של. $\frac{1}{\epsilon} < N$ כך של. אכן, עבור כל $N \in \mathbb{N}$ החל ממקום מסויים. לפי תכונת ארכימדס, קיים

$$|a_n| = \frac{1}{n} < \frac{1}{N} < \epsilon$$

כנדרש.

תהי (a_n) הסדרה ϵ , (a_n) הסדרה $a_n=\frac{1+(-1)^n}{2n}$ נחשב את הארכימדט ונוכיח בלשון $a_n=\frac{1+(-1)^n}{2n}$ לכן לכל N< n ש $(a_n)=\frac{1}{N}$ כך ש $(a_n)=\frac{1}{N}$. לכן לכל $(a_n)=\frac{1}{N}$ לכן לכל מת היים מת היים

$$0 \le |a_n| \le \frac{1}{n} < \frac{1}{N} < \epsilon$$

כנדרש.

משפט חשוב (משפט הסנדוויץ') 2.4

יהיו שלוש סדרות $a_n \leq b_n \leq c_n$ כך ש $(a_n), (b_n), (c_n)$ כמעט לכל

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

 $\lim_{n o \infty} b_n = L$ אזי גם (b_n) מתכנסת אזי

2.5 סדרה חסומה

סדרה (a_n) תיקרא חסומה אם קיים M > 0 כך ש $|a_n| < M$ לכל n, או $-M < a_n < M$ תנאי זה -M הוא תנאי הכרחי להתכנסות, כלומר כל סדרה מתכנסת הינה סדרה חסומה (או בשלילה, אם סדרה אינה חסומה היא אינה מתכנסת). יש לציין שלא כל הסדרות החסומות מתכנסות גם כן.

סדרה אפסה 2.6

 $\lim_{n \to \infty} a_n = 0$ סדרה (a_n) תיקרא אפסה אם

2.7 אריתמטיקה של גבולות

יהיו אזי: $(a_n),(b_n)$ סדרות מתכנסות.

$$(1)\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

$$(2)\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

מכללים אלו נוסעים חוקי החזקה ושאר החוקים הנמצאים בספר.