For the following problems, **manually** calculate the expression for the response then **validate** your answer with MATLAB Simulation.

Ex. If you get the response of the system $y(t) = e^{-t}$, please build your system in MATLAB and compare the output obtained from the system with $y(t) = e^{-t}$ in one plot for verification

Problem 1

Find the response of the output variable

$$y = 2x_1 + x_2$$

in the system described by state equations

$$\dot{x}_1 = -2x_1 + u$$

$$\dot{x}_2 = x_1 - x_2.$$

to a constant input u(t) = 5 for t > 0, if $x_1(0) = 0$, and $x_2 = 0$.

Problem 2

Given the standard RLC circuit (R = 1.2, C = 1, L = 0.2). To build the state space equation, we choose capacitor voltage $v_c(t) = x_1(t)$ and inductor current $i_l(t) = x_2(t)$ as state variables and $v_c(t)$ as output.

- 1) Find the state space equation for the RLC system
- 2) If $v_c(0) = 0$, $i_1(0) = 5$, $v_s(t) = 0$, find the x(t) for the system
- 3) If $v_c(0) = 0$, $i_l(0) = 0$, $v_s(t) = 5$, find the y(t) for the system

Problem 3

Considering the system

$$\ddot{x} + 4\dot{x} + 4x = u$$

- 1) Find the state space model for the system
- 2) Find the transfer function for the system. (Hint: you can use $C(sI A)^{-1}B + D$)
- 3) Suppose $u(t) = e^{-2t} sin(t)$ for $t \ge 0$, and $\ddot{x}(0) = \dot{x}(0) = 0$. Find the solution x(t)