ASSURE REU 2022:

Electronics Workshop

Scott Candey

2022-06-08

Version 1

Overview

- Electronics for space science
- Balloon projects (<u>COSI</u>)
- What is a microcontroller
- How do we debug electronics
- Using microcontroller
- Making our own balloon experiment

Microcontroller

- RP2040 microcontroller from Adafruit
- Programming it with CircuitPython
- One task at a time looping forever, unlike a computer or phone
- Interacts with the world easily

Tools for electronics debugging

How to tell what is happening at this moment? Digital multimeter!

- Black probe is ground, reference point for voltage
- Red probe is measurement

on Name

Using digital multimeter

- Black probe always touches the GND pin on the top left
- Try touching red probe to 3.3V, VBAT/BAT, and VBUS/USB
- What voltages do you measure for each?

Feather RP

https://www.adafruit.com/pr

Tools for electronics debugging

How to tell what is happening over time? Oscilloscope!

- Clip hanging off the probe is ground
- Tip of probe is measurement

on Name

Using oscilloscope

- Clip to wire from GND
- Probe D13
- Autoset to see waveform

Feather RP

https://www.adafruit.com/pr

Programming the microcontroller

Using the wonderful tutorials from Adafruit:

- Install the Mu editor
- Write "Hello World" equivalent: <u>Blinky</u>
- Talk to the board with the <u>serial console</u>
- Program the microcontroller "live" using REPL

Files

- code.py includes main loop, mostly editing this
- boot.py runs on startup
- lib contains libraries for talking to sensors

Sensors

- BME680 is a temperature, pressure, humidity, and gas sensor
- LSM6DSO32 is an accelerometer and gyrometer

Plug in both in a chain, then copy code from repository to microcontroller to get measurements from them printed out on the screen

Flash memory oddities

We want to save our measurements to the internal flash memory, like a flash drive

- Can't use flash with computer and with code at the same time
- boot.py sets up code access, stops computer access
- remove boot.py with REPL over serial
- reset button reloads microcontroller

```
import os; os.remove("boot.py")
```

Setting up the balloon experiment!

- Copy measurement logging code to microprocessor, including boot.py
- Press reset button to reload boot.py so that code can use the flash
- Take data for a few seconds, then open serial monitor and remove boot.py with import os; os.remove("boot.py")
- Press reset button to return control to the computer
- Open measurements.csv and check that you see various values
- Delete measurements.csv and copy boot.py back onto the microprocessor

Assembly of balloon experiment

- Disconnect microcontroller from computer, leave battery attached
- Kapton tape microcontroller, sensors, and battery into a bundle ("payload") with a loop for attaching string
- Fill up balloon and attach to string
- Tie knot in string through payload loop
- Bring payload and balloon outside

Running balloon experiment

- Countdown!
- Right before launch, press reset button
- Slowly release string to allow balloon to ascend
- Mark down important times in seconds from pressing reset
 - Try pulling string up and down sharply
 - Hover at various altitudes
- Return to Earth
- Bring payload and balloon back inside for analysis
- Dismantle payload

Data analysis

- Connect microcontroller to computer, open serial monitor
- Delete boot.py with instructions from earlier
- Press reset button to return control to computer
- Copy measurements.csv to a safe place on your computer
- Disconnect microcontroller from computer, put aside
- Open jupyter notebook using Anaconda
- Make graphs of time vs. our various measurements
 - Experiment with various types of graph or combined measurements on one graph