Álgebra relacional

El **álgebra relacional** es un lenguaje formal basado en operadores matemáticos utilizado para consultar y manipular bases de datos relacionales. Proporciona un conjunto de operaciones que permiten obtener nuevas relaciones a partir de otras existentes, siguiendo reglas precisas.

En el contexto de bases de datos relacionales, el álgebra relacional opera sobre conjuntos de tuplas (filas) y define cómo extraer, combinar o modificar estos datos. Cada operación toma una o más relaciones como entrada y produce una nueva relación como resultado, sin modificar las originales. Este enfoque asegura que los datos se manejen de forma consistente y lógica, y es la base teórica de muchos lenguajes de consulta como SQL.

Ejemplos Prácticos Operaciones unarias

Selección (σ): Permite obtener las tuplas que cumplen con una condición específica.

σSUELDO>3000 (EMPLEADO)

Esto selecciona todas las tuplas de la relación EMPLEADO donde el sueldo es mayor a 3000.

El resultado será:

Si la tabla EMPLEADO tiene la siguiente información:

ID	NOMBRE	SUELDO	
1	Juan	3500	
2	María	2900	
3	Pedro	4000	

ID	NOMBRE	SUELDO
1	Juan	3500
3	Pedro	4000

Ejemplos Prácticos Operaciones unarias

Proyección (π): Extrae columnas específicas de una relación, eliminando duplicados.

πNOMBRE, SUELDO (EMPLEADO)

Si la tabla EMPLEADO es:

ID	NOMBRE	SUELDO	CARGO
1	Juan	3500	Analista
2	María	2900	Manager
3	Pedro	4000	Analista

NOMBRE	SUELDO	
Juan	3500	
María	2900	
Pedro	4000	

Ejemplos Prácticos Operaciones de la Teoría de Conjuntos

Unión (U): Combina las tuplas de dos relaciones (deben tener el mismo esquema).

RUS

ID	NOMBRE	
1	Juan	
2	María	

ID	NOMBRE	
2	María	
3	Pedro	

ID	NOMBRE
1	Juan
2	María
3	Pedro

Ejemplos Prácticos Operaciones de la Teoría de Conjuntos

Intersección (n): Devuelve las tuplas que están en ambas relaciones.

 $R \cap S$

ID	NOMBRE	
1	Juan	
2	María	

ID	NOMBRE	
2	María	
3	Pedro	

ID	NOMBRE
2	María

Ejemplos Prácticos Operaciones de la Teoría de Conjuntos

Diferencia (-): Devuelve las tuplas que están en una relación pero no en la otra.

$$R - S$$

ID	NOMBRE
1	Juan
2	María

ID	NOMBRE	
2	María	
3	Pedro	

ID	NOMBRE
1	Juan

Ejemplos Prácticos Producto Cartesiano

El **Producto Cartesiano** combina todas las tuplas de dos relaciones, creando todas las combinaciones posibles.

$$R \times S$$

ID	NOMBRE	
1	Juan	
2	María	

ID	PRODUCTO	
1	Televisor	
2	Celular	

ID_R	NOMBRE	ID_S	PRODUCTO	
1	Juan	1	Televisor	
1	Juan	2	Celular	
2	María	1	Televisor	
2	María	2	Celular	

Ejemplos Prácticos Join

El **Join** (⋈) combina dos relaciones a través de una condición. El **Natural Join** une las tuplas cuando los atributos comunes tienen el mismo valor.

 $R \bowtie S$ on R.ID = S.ID

R es:

S es:

ID	NOMBRE	
1	Juan	
2	María	

ID	SUELDO
1	3500
3	4000

ID	NOMBRE	SUELDO
1	Juan	3500

Ejemplos Prácticos Árbol de Consultas

Un Árbol de Consultas representa cómo se ejecutan las operaciones en una consulta compleja.

πNOMBRE, SUELDO (σDNO=5 (EMPLEADO))

Tabla Empleado

El árbol de consultas sería:

D	NOMBRE	SUELDO	DNO
1	Juan	3500	5
2	María	2900	3
3	Pedro	↓ 4000	5

Aplicar **Selección** (σ DNO=5) para obtener las tuplas del departamento 5.

Aplicar **Proyección** (πNOMBRE, SUELDO) para seleccionar solo los campos NOMBRE y SUELDO.

NOMBRE	SUELDO
Juan	3500
Pedro	4000