Chapitre: Suites (correction)

Compétence : Calcul de terme d'une suite

Exercice 1 : Suite définie par une fonction

1. Soit (u_n) la suite définie sur \mathbb{N} par $u_n = n^2 + 2$. Déterminer les termes u_0, u_1, u_2 et u_{15} .

 $u_0 = 0^2 + 2 = 2$ $u_1 = 1^2 + 2 = 3$ $u_2 = 2^2 + 2 = 6$ $u_{15} = 15^2 + 2 = 227$

2. Soit (v_n) la suite définie sur \mathbb{N} par $v_n = \frac{1}{2}n + 3$. Déterminer les termes d'indices 2, 3 et 7.

 $v_2 = \frac{1}{2} \times 2 + 3 = 4$ $v_3 = \frac{1}{2} \times 3 + 3 = \frac{9}{2}$ $v_7 = \frac{1}{2} \times 7 + 3 = \frac{13}{2}$ 3. Soit (w_n) la suite définie sur \mathbb{N} par $w_n = \frac{1}{n+1}$. Calculer les cinq premiers termes.

Exercice 2 : Suite définie par une fonction

- 1. Soit (u_n) la suite définie pour tout entier naturel n, par $u_n = 3n^2 1$.
 - a. Calculer les trois premiers termes de la suite (u_n) .

 $u_2 = 3 \times 2^2 - 1 = 11$ $u_0 = 3 \times 0^2 - 1 = -1$ $u_1 = 3 \times 1^2 - 1 = 2$

b. Calculer le cinquième terme de la suite.

Le cinquième terme de la suite est $u_4=3\times 4^2-1=3\times 16-1=64-1=63$

- 2. Soit (v_n) la suite définie pour tout entier naturel n, par $v_n = -5n^2 + 2$.
 - a. Calculer les quatre premiers termes de la suite (u_n) .

 $v_0 = -5 \times 0^2 + 2 = 2$ $v_1 = -5 \times 1^2 + 2 = -3$ $v_2 = -5 \times 2^2 + 2 = -18$ $v_3 = -5 \times 3^2 + 2 = -43$

b. Calculer le huitième terme de la suite.

Le huitième terme de la suite est $v_7 = -5 \times 7^2 + 2 = -5 \times 49 + 2 = -245 + 2 = -243$

Exercice 3 : Suite définie par récurrence

1. Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 3$ et $u_{n+1} = 3u_n - 2$. Déterminer les termes u_1, u_2 et u_3 .

(10)	, , , , , , , , , , , , , , , , , , , ,	1. 2 3
$u_1=3u_0-2$	$u_2 = 3u_1 - 2$	$u_3 = 3u_2 - 2$
$u_1=3\times 3-2$	$u_1=3\times7-2$	$u_3=3\times 19-2$
$u_1 = 7$	$u_1 = 19$	$u_3 = 55$

2. Soit (v_n) la suite définie sur \mathbb{N} par $v_0=2$ et $v_{n+1}=1-v_n$. Déterminer les termes d'indices 1, 2, 3 et 5.

		701.2		
$v_1 = 1 - v_0$	$v_2 = 1 - v_1$	$v_3 = 1 - v_2$	$v_4 = 1 - v_3$	$v_5 = 1 - v_4$
$v_1 = 1 - 2$	$v_2 = 1 - (-1)$	$v_3 = 1 - 2$	$v_4 = 1 - (-1)$	$v_5 = 1 - 2$
$v_1 = -1$	$v_2 = 2$	$v_3 = -1$	$v_4 = 2$	$v_5 = -1$

Remarque: Dans une suite définie par récurrence, il faut (généralement) calculer tous les termes précédents pour obtenir un terme d'indice donné.

Soit (w_n) la suite définie sur \mathbb{N} par $w_0 = 5$, $w_1 = \frac{13}{6}$ et $w_{n+2} = \frac{5}{6}w_{n+1} - \frac{1}{6}w_n$.

Déterminer les termes w_2, w_3, w_4 et w_5 .

$w_2 = \frac{5}{6}w_1 - \frac{1}{6}w_0$	$w_3 = \frac{5}{6}w_2 - \frac{1}{6}w_1$	$w_4 = \frac{5}{6}w_3 - \frac{1}{6}w_2$	$w_5 = \frac{5}{6}w_4 - \frac{1}{6}w_3$
$w_2 = \frac{5}{6} \times \frac{13}{6} - \frac{1}{6} \times 5$	$w_3 = \frac{5}{6} \times \frac{35}{36} - \frac{1}{6} \times \frac{13}{6}$	$w_4 = \frac{5}{6} \times \frac{97}{216} - \frac{1}{6} \times \frac{35}{36}$	$w_5 = \frac{5}{6} \times \frac{275}{1296} - \frac{1}{6} \times \frac{97}{216}$
$w_2 = \frac{35}{36}$	$w_3 = \frac{97}{216}$	$w_4 = \frac{275}{1296}$	$w_5 = \frac{793}{7776}$

Exercice 4 : Suite définie par récurrence

- 1. Soit (u_n) la suite définie pour tout entier naturel n, par $u_0 = 1$ et $u_{n+1} = 3u_n^2 + 1$.
 - a. Calculer les trois premiers termes de la suite (u_n) .

$u_0 = 1$	$u_1 = 3u_0^2 + 1$	$u_2 = 3u_1^2 + 1$
	$u_1 = 3 \times 1^2 + 1$	$u_2 = 3 \times 4^2 + 1$
	$u_1 = 4$	$u_2 = 49$

b. A l'aide de la calculatrice, déterminer le septième terme de la suite.

En utilisant le mode RECUR, on trouve $u_6 \approx 1,59 \times 10^{34}$

- 2. Soit (v_n) la suite définie pour tout entier naturel n, par $v_0 = -2$ et $v_{n+1} = 3v_n + 7$.
 - a. Calculer les trois premiers termes de la suite (v_n) .

$v_0 = -2$	$v_1 = 3v_0 + 7$	$v_2 = 3v_1 + 7$
	$v_1 = 3 \times (-2) + 7$	$v_2 = 3 \times 1 + 7$
	$v_1 = 1$	$v_2 = 10$

b. A l'aide de la calculatrice, déterminer le quinzième terme de la suite.

En utilisant le mode RECUR, on trouve = 7174450

Exercice 5 : Suite définie par récurrence

- 1. Soit (u_n) la suite définie par son premier terme $u_0 = 1$, et telle qu'en multipliant un terme par 3, on obtienne le terme suivant.
 - a. Déterminer les termes u_1 , u_2 et u_3 .

$$u_1 = 3u_0 = 3 \times 1 = 3$$
 $u_2 = 3u_1 = 3 \times 3 = 9$ $u_3 = 3u_2 = 3 \times 9 = 27$

b. Donner une relation reliant u_{n+1} et u_n .

Pour tout entier naturel n, on a $u_{n+1} = 3u_n$

On appellera plus tard ce genre de suite une suite géométrique (de premier terme 1 et de raison q=3)

- 2. Soit (v_n) la suite définie par son premier terme $v_0=5$, et telle qu'en ajoutant 2 à un terme, on obtienne le terme suivant.
 - a. Déterminer les termes v_1 , v_2 et v_3 .

$$v_1 = v_0 + 2 = 5 + 2 = 7$$
 $v_2 = v_1 + 2 = 7 + 2 = 9$ $v_3 = v_2 + 2 = 9 + 2 = 11$

b. Donner une relation reliant v_{n+1} et v_n .

Pour tout entier naturel n, on a $v_{n+1} = v_n + 2$

On appellera plus tard ce genre de suite une suite arithmétique (de premier terme 5 et de raison r=2)

- 3. Soit (w_n) la suite définie par son premier terme $w_0 = 2$, et telle qu'en multipliant un terme par 2 puis en luis ajoutant -1, on obtienne le terme suivant.
 - a. Déterminer les termes w_1 , w_2 et w_3 .

$$w_1 = 2w_0 - 1 = 2 \times 2 - 1 = 3$$
 $w_2 = 2w_1 - 1 = 2 \times 3 - 1 = 5$ $w_3 = 2w_2 - 1 = 2 \times 5 - 1 = 9$

b. Donner une relation reliant w_{n+1} et w_n .

Pour tout entier naturel n, on a $w_{n+1} = 2w_n - 1$

On appellera plus tard ce genre de suite une suite arithmético-géométrique.

Exercice 6: Algorithme et suite

La suite (u_n) est définie par $u_0 = A$ et l'algorithme suivant permettant d'afficher le terme d'indice N.

Variables A est un réel, N et I sont des entiers.

Saisir *A* et *N*.

Entrée Pour *I* allant de 1 à *N* faire

Traitement A prend la valeur $2 \times A - 1$

Fin Pour

Sortie Afficher *A*

1. Quelle valeur de A sera affichée après exécution de l'algorithme :

a. Si on saisit
$$A = 1$$
 et $N = 5$?

b. Si on saisit
$$A = 2$$
 et $N = 3$?

N	0	1	2	3	4	5
u_n	A = 1	$2 \times 1 - 1 = 1$	$2\times 1-1=1$			
u_n	A = 2	$2 \times 2 - 1 = 3$	$2 \times 3 - 1 = 5$	$2\times 5-1=9$		

2. Quelle valeur de N faut-il saisir pour obtenir le $3^{\text{ème}}$ terme ?

Le 3^{ème} terme est u_2 ainsi il faut mettre N=2.

3. Modifier l'algorithme pour qu'il affiche les terme de u_1 à u_N .

Il suffit de déplacer le « Afficher A » avant le Fin Pour.

4. Déterminer u_1, u_2, u_3 et u_4 quand A = 3.

Ī	N	0	1	2	3	4
	u_n	A = 3	$2 \times 3 - 1 = 5$	$2 \times 5 - 1 = 9$	$2 \times 9 - 1 = 17$	$2 \times 17 - 1 = 33$

5. Exprimer u_{n+1} en fonction de u_n

Pour tout entier naturel n, on a $u_{n+1} = 2u_n - 1$.

Exercice supplémentaire : Tableur et suite explicite

 (u_n) est une suite définie par une relation explicite. On construit la feuille de calcul d'un tableur ci-contre.

Dans chaque cas, trouver la formule qu'il faut mettre dans la cellule B2 pour que, quand on la recopie vers le bas, les termes de la suite se calculent.

	Α	В
	rang	terme
1	n	Un
2	0	
3	1	
4	2	

1. $u_n = 3n + 1$	= 3 * A2 + 1
2. $u_n = (-1)^n$	$= (-1)^{\wedge}A2$
3. $u_n = n^2$	$=A2^2$
4. $u_n = n(n+1)$	=A2*(A2+1)
5. $u_n = 5^n$	$= 5^{A2}$

Exercice supplémentaire : Tableur et suite récurrente

 (u_n) est une suite définie par son premier terme $u_0=3$ et une relation de récurrence. On construit la feuille de calcul d'un tableur ci-contre.

Dans chaque cas, trouver la formule qu'il faut mettre dans la cellule B3 pour que, quand on la recopie vers le bas, les termes de la suite se calculent.

	А	В
	rang	terme
1	n	Un
2	0	3
3	1	
4	2	

1. $u_{n+1} = \frac{1}{2}u_n$	=1/2*B2
2. $u_{n+1} = u_n - 2$	=B2-2
3. $u_{n+1} = u_n^5$	$=B2^5$
4. $u_{n+1} = 2u_n + n$	=2B2+A2

Exercice supplémentaire : Représentation graphique.

1. Soit (u_n) la suite définie pour tout entier naturel n, par $u_0=1$ et la relation $u_{n+1}=2u_n-3$. Représenter graphiquement les cinq premiers termes de cette suite dans un repère.

Méthode: On a $u_{n+1} = f(u_n)$ avec f(x) = 2x - 3

- On trace la droite d'équation y = x
- On trace la courbe d'équation y = f(x)
- On place $u_0 = 1$ sur l'axe des abscisses.
- On cherche l'image de u_0 , c'est u_1 .
- Pour revenir sur l'axe des abscisses on se sert de la droite d'équation y = x.
- On recommence...

2. Soit (v_n) la suite définie pour tout entier naturel n, par $v_n=n^2-3n+5$.

Représenter graphiquement les huit premiers termes de cette suite dans un repère.

Méthode: On a $u_n = f(n)$ avec $f(x) = x^2 - 3x - 5$

Il suffit de calculer les images avec n un entier, cela crée des <u>points.</u>

Compétence : Sens de variations d'une suite

Exercice 7 : Sens de variations d'une suite

1. Soit (u_n) une suite décroissante. Comparer u_4 et u_5 .

 (u_n) est une suite décroissante ainsi pour tout entier naturel n, on $u_{n+1} \leq u_n$. Ainsi $u_5 \leq u_4$.

2. Soit (v_n) une suite croissante. Déterminer le signe de $u_{11}-u_{10}$

 (v_n) est une suite croissante ainsi pour tout entier naturel n, on $u_{n+1} \geq u_n$. Ainsi $u_{11} \geq u_{10}$ donc $u_{11} - u_{10} \geq 0$.

Exercice 8 : Sens de variations d'une suite (récurrente)

Dans chacun des cas suivants, déterminer le sens de variation de la suite (u_n) .

	2	$ \begin{cases} u_0 = 1 \\ u_{n+1} = u_n + n^2 \end{cases} $	Pour tout entier naturel n , on a : $u_{n+1}-u_n=n^2\geq 0$
a.	a.		$u_{n+1} \geq u_n$. Ainsi la suite (u_n) est croissante.
h	b.	$\begin{cases} u_0 = 9 \\ u_{n+1} = u_n - n^2 \end{cases}$	Pour tout entier naturel n , on a : $u_{n+1}-u_n=-n^2\leq 0$
			$u_{n+1} \leq u_n$. Ainsi la suite (u_n) est décroissante.
	c.	$\begin{cases} u_0 = -7 \\ u_{n+1} = u_n - 7n \end{cases}$	Pour tout entier naturel n , on a : $u_{n+1}-u_n=-7n\leq 0$
			$u_{n+1} \leq u_n$. Ainsi la suite (u_n) est décroissante.
	٨	$ \begin{cases} u_0 = -1 \\ u_{n+1} = u_n + n^2 - n + 3 \end{cases} $	Pour tout entier naturel n , on a : $u_{n+1}-u_n=n^2-n+3$
	u.	$u_{n+1} = u_n + n^2 - n + 3$	Il faut chercher le signe de la fonction f définie par $f(x) = x^2 - x + 3$.
			$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 3 = -11 < 0$
			Et $a=1>0$ ainsi pour tout réel x , $f(x)>0$. Ainsi $n^2-n+3>0$.
			$u_{n+1} > u_n$. Ainsi la suite (u_n) est strictement croissante.

Exercice supplémentaire : Sens de variations d'une suite

1. a. Rappeler les variations de la fonction inverse sur l'intervalle]0; $+\infty[$.

La fonction inverse est décroissante sur l'intervalle]0; $+\infty[$.

b. En déduire le sens de variation de la suite (i_n) définie pour tout entier naturel n non nul par $i_n = \frac{1}{n}$.

Pour tout entier naturel n non nul on a $i_n = \frac{1}{n} = f(n)$ où f est la fonction inverse.

Comme la fonction inverse est décroissante sur l'intervalle]0; $+\infty[$, la suite (i_n) est décroissante sur \mathbb{N} .

2. a. Rappeler les variations de la fonction carré sur l'intervalle $[0; +\infty[$.

La fonction carré est croissante sur l'intervalle $[0 : +\infty[$.

b. En déduire le sens de variation de la suite (c_n) définie pour tout entier naturel n par $c_n = n^2$.

Pour tout entier naturel n on a $c_n = n^2 = f(n)$ où f est la fonction carré.

Comme la fonction carré est croissante sur l'intervalle $[0; +\infty[$, la suite (c_n) est croissante sur \mathbb{N} .

Exercice 9: Sens de variations d'une suite (explicite)

Dans chacun des cas suivants, déterminer le sens de variation de la suite (u_n) .

a. $u_n=2n$ $u_n=f(n)$ où f est une fonction linéaire croissante sur $[0;+\infty[$ $(a=2>0).$ Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ b. $u_n=n^2$ $u_n=f(n)$ où f est la fonction carré croissante sur $[0;+\infty[$. Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ c. $u_n=1-5n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-5<0).$ Ainsi la suite (u_n) est décroissante sur $\mathbb{N}.$ d. $u_n=n^2+3n-1$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=1>0)$ et $-\frac{b}{2a}=-\frac{3}{2}).$ Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=3>0)$ et $-\frac{b}{2a}=0.$ Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur $[0;+\infty[$ $(m=5>0).$ Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ g. $u_n=-3n^2-2n+1$ $u_n=f(n)$ où f est une fonction du second degré décroissante sur $[0;+\infty[$ $(a=3<0)$ et $-\frac{b}{2a}=-\frac{2}{6}.$ Ainsi la suite (u_n) est décroissante sur $[0;+\infty[$ $(m=-2<0).$ Ainsi la suite (u_n) où f est une fonction affine décroissante sur f		
b. $u_n=n^2$ $u_n=f(n)$ où f est la fonction carré croissante sur $[0;+\infty[$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . c. $u_n=1-5n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-5<0)$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . d. $u_n=n^2+3n-1$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=1>0)$ et $-\frac{b}{2a}=-\frac{3}{2}$). Ainsi la suite (u_n) est croissante sur \mathbb{N} . e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=3>0)$ et $-\frac{b}{2a}=0$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur $[0;+\infty[$ $(m=5>0)$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . g. $u_n=-3n^2-2n+1$ $u_n=f(n)$ où f est une fonction du second degré décroissante sur $[0;+\infty[$ $(a=-3<0)$ et $-\frac{b}{2a}=-\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n=3-2n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-2<0)$.	a. $u_n = 2n$	
Ainsi la suite (u_n) est croissante sur \mathbb{N} . c. $u_n=1-5n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-5<0)$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . d. $u_n=n^2+3n-1$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=1>0)$ et $-\frac{b}{2a}=-\frac{3}{2}$). Ainsi la suite (u_n) est croissante sur \mathbb{N} . e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=3>0)$ et $-\frac{b}{2a}=0$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur $[0;+\infty[$ $(m=5>0)$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . g. $u_n=-3n^2-2n+1$ $u_n=f(n)$ où f est une fonction du second degré décroissante sur $[0;+\infty[$ $(a=-3<0)$ et $-\frac{b}{2a}=-\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n=3-2n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-2<0)$.		Ainsi la suite (u_n) est croissante sur \mathbb{N} .
c. $u_n=1-5n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-5<0).$ Ainsi la suite (u_n) est décroissante sur $\mathbb{N}.$ d. $u_n=n^2+3n-1$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=1>0)$ et $-\frac{b}{2a}=-\frac{3}{2}$). Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ $(a=3>0)$ et $-\frac{b}{2a}=0$. Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur $[0;+\infty[$ $(m=5>0).$ Ainsi la suite (u_n) est croissante sur $\mathbb{N}.$ g. $u_n=-3n^2-2n+1$ $u_n=f(n)$ où f est une fonction du second degré décroissante sur $[0;+\infty[$ $(a=-3<0)$ et $-\frac{b}{2a}=-\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur $\mathbb{N}.$ h. $u_n=3-2n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[$ $(m=-2<0).$	b. $u_n = n^2$	$u_n = f(n)$ où f est la fonction carré croissante sur $[0; +\infty[$.
Ainsi la suite (u_n) est décroissante sur \mathbb{N} . d. $u_n = n^2 + 3n - 1$ $u_n = f(n)$ où f est une fonction du second degré croissante sur $[0; +\infty[$ ($a=1>0$) et $-\frac{b}{2a} = -\frac{3}{2}$). Ainsi la suite (u_n) est croissante sur \mathbb{N} . e. $u_n = 3n^2 - 4$ $u_n = f(n)$ où f est une fonction du second degré croissante sur $[0; +\infty[$ ($a=3>0$) et $-\frac{b}{2a} = 0$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . f. $u_n = 5n - 8$ $u_n = f(n)$ où f est une fonction affine croissante sur $f(n) = f(n)$ où $f(n) = f(n)$ o		Ainsi la suite (u_n) est croissante sur \mathbb{N} .
d. $u_n = n^2 + 3n - 1$ $u_n = f(n)$ où f est une fonction du second degré croissante sur $[0; +\infty[$ ($a=1>0$) et $-\frac{b}{2a} = -\frac{3}{2}$). Ainsi la suite (u_n) est croissante sur \mathbb{N} . e. $u_n = 3n^2 - 4$ $u_n = f(n)$ où f est une fonction du second degré croissante sur $[0; +\infty[$ ($a=3>0$) et $-\frac{b}{2a} = 0$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . f. $u_n = 5n - 8$ $u_n = f(n)$ où f est une fonction affine croissante sur $[0; +\infty[$ ($m=5>0$). Ainsi la suite (u_n) est croissante sur \mathbb{N} . g. $u_n = -3n^2 - 2n + 1$ $u_n = f(n)$ où f est une fonction du second degré décroissante sur $[0; +\infty[$ ($a=-3<0$) et $-\frac{b}{2a} = -\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n = 3-2n$ $u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ ($m=-2<0$).	c. $u_n = 1 - 5n$	$u_n = f(n)$ où f est une fonction affine décroissante sur $[0;+\infty[(m=-5<0).$
e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur \mathbb{N} . f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur f (f) f) f est une fonction affine croissante sur f (f) f) f est une fonction affine croissante sur f (f) f est une fonction affine croissante sur f (f) f est une fonction du second degré décroissante sur f (f) f est une fonction du second degré décroissante sur f (f) f est une fonction du second degré décroissante sur f (f) f est une fonction du second degré décroissante sur f (f) f est une fonction affine décroissante sur f (f) f est une fonction affine décroissante sur f (f) f 0 est une fonction affine décroissante sur f 0 est f 0.		Ainsi la suite (u_n) est décroissante sur \mathbb{N} .
e. $u_n=3n^2-4$ $u_n=f(n)$ où f est une fonction du second degré croissante sur $[0\ ; +\infty[$ ($a=3>0$ et $-\frac{b}{2a}=0$. Ainsi la suite (u_n) est croissante sur $\mathbb N$. f. $u_n=5n-8$ $u_n=f(n)$ où f est une fonction affine croissante sur $[0\ ; +\infty[$ ($m=5>0$). Ainsi la suite (u_n) est croissante sur $\mathbb N$. g. $u_n=-3n^2-2n+1$ $u_n=f(n)$ où f est une fonction du second degré décroissante sur $[0\ ; +\infty[$ ($a=-3<0$ et $-\frac{b}{2a}=-\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur $[0\ ; +\infty[$ h. $u_n=3-2n$ $u_n=f(n)$ où f est une fonction affine décroissante sur $[0\ ; +\infty[$ ($m=-2<0$).	d. $u_n = n^2 + 3n - 1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		et $-rac{b}{2a}=-rac{3}{2}$). Ainsi la suite (u_n) est croissante sur $\mathbb N$.
f. $u_n = 5n - 8$ $u_n = f(n)$ où f est une fonction affine croissante sur $[0; +\infty[$ $(m = 5 > 0)$. Ainsi la suite (u_n) est croissante sur \mathbb{N} . g. $u_n = -3n^2 - 2n + 1$ $u_n = f(n)$ où f est une fonction du second degré décroissante sur $[0; +\infty[$ $(a = -3 < 0 \text{ et } -\frac{b}{2a} = -\frac{2}{6}$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n = 3 - 2n$ $u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ $(m = -2 < 0)$.	e. $u_n = 3n^2 - 4$	$u_n=f(n)$ où f est une fonction du second degré croissante sur $[0;+\infty[$ ($a=3>0$
Ainsi la suite (u_n) est croissante sur \mathbb{N} . g. $u_n = -3n^2 - 2n + 1$ $u_n = f(n)$ où f est une fonction du second degré décroissante sur $[0; +\infty[$ $(a = -3 < 0 \text{ et } -\frac{b}{2a} = -\frac{2}{6}.$ Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n = 3 - 2n$ $u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ $(m = -2 < 0).$		$\det -rac{b}{2a}=0$. Ainsi la suite (u_n) est croissante sur $\mathbb N$.
g. $u_n = -3n^2 - 2n + 1$ $u_n = f(n)$ où f est une fonction du second degré décroissante sur $[0; +\infty[$ $(a = -3 < 0 \text{ et } -\frac{b}{2a} = -\frac{2}{6}.$ Ainsi la suite (u_n) est décroissante sur \mathbb{N} . h. $u_n = 3 - 2n$ $u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ $(m = -2 < 0).$	f. $u_n = 5n - 8$	$u_n = f(n)$ où f est une fonction affine croissante sur $[0 \ ; \ +\infty[$ $(m=5>0).$
$(a = -3 < 0 \text{ et } -\frac{b}{2a} = -\frac{2}{6}. \text{ Ainsi la suite } (u_n) \text{ est décroissante sur } \mathbb{N}.$ $h. u_n = 3 - 2n \qquad \qquad u_n = f(n) \text{ où } f \text{ est une fonction affine décroissante sur } [0; +\infty[(m = -2 < 0).]$		Ainsi la suite (u_n) est croissante sur \mathbb{N} .
h. $u_n = 3 - 2n$ $u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ $(m=-2<0).$	g. $u_n = -3n^2 - 2n + 1$	$u_n = f(n)$ où f est une fonction du second degré décroissante sur $[0 \; ; \; +\infty[$
		$(a=-3<0 ext{ et } -rac{b}{2a}=-rac{2}{6}.$ Ainsi la suite (u_n) est décroissante sur $\mathbb N$.
Ainsi la suita (11) est décroissante sur N	h. $u_n = 3 - 2n$	$u_n = f(n)$ où f est une fonction affine décroissante sur $[0; +\infty[$ $(m=-2<0).$
Allisi la sulte (u_n) est decroissante sul n .	·	Ainsi la suite (u_n) est décroissante sur $\mathbb N$.

Compétence : Recherche de seuils (BONUS : à ne pas réviser !!!)

Exercice 10 : Recherche de seuils

Soit (u_n) la suite définie par $u_n = n - 0.25$.

1. Résoudre l'inéquation $u_n \ge 5000$.

$u_n \geq 5000 \Leftrightarrow n-0, 25 \geq 5000 \Leftrightarrow n \geq 5000, 25$

2. En déduire le plus petit entier n_0 tel que pour tout n supérieur à n_0 , $u_n \ge 5000$.

Ainsi le plus petit entier n_0 tel que pour tout n supérieur à n_0 , $u_n \geq 5000$ est $n_0 = 5001$.

Exercice 11 : Recherche de seuils

Soit (v_n) la suite définie pour tout entier naturel n par $v_n = \frac{1}{n+1}$.

Déterminer un entier N tel que, pour tout n supérieur ou égal à N, $0 < v_n \le 0.001$.

n+1
eq 0 ainsi (v_n) est bien définie sur $\mathbb N$ et $v_n>0$ pour tout entier naturel n.

$$v_N \leq 0,001 \Leftrightarrow \frac{1}{N+1} \leq 0,001 \Leftrightarrow N+1 \geq \frac{1}{0,001} \Leftrightarrow N+1 \geq 1000 \Leftrightarrow N \geq 999$$
.

Ainsi le plus petit entier N tel que pour tout n supérieur ou égal à N, $0 < v_n \le 0$, 001 est N = 999

Exercice 12 : Conjecture du comportement d'une suite

Représenter la suite et conjecturer le sens de variation et le comportement de la suite lorsque n tend vers $+\infty$.

a)
$$u_0 = 1$$
 et pour tout $n \in \mathbb{R}$, $u_{n+1} = \frac{1}{2}u_n + 1$

On conjecture que la suite (u_n) est croissante et que la suite (u_n) tend vers 2 lorsque n tend vers $+\infty$.

b)
$$u_0 = 9$$
 et pour tout $n \in \mathbb{R}$, $u_{n+1} = \frac{u_n^2}{10}$

On conjecture que la suite (u_n) est décroissante et que la suite (u_n) tend vers 0 lorsque n tend vers $+\infty$.

c)
$$u_0 = \frac{1}{4}$$
 et pour tout $n \in \mathbb{R}$, $u_{n+1} = \sqrt{u_n}$

On conjecture que la suite (u_n) est croissante et que la suite (u_n) tend vers 1 lorsque n tend vers $+\infty$.

d)
$$u_0 = 2$$
 et pour tout $n \in \mathbb{R}$, $u_{n+1} = \frac{1}{u_n}$

On conjecture que la suite (u_n) est alternée et que la suite (u_n) n'a pas de limite lorsque n tend vers $+\infty$.

e) $u_0 = 6$ et pour tout $n \in \mathbb{R}$, $u_{n+1} = -\frac{1}{2}u_n + 2$

On conjecture que la suite (u_n) est alternée et que la suite (u_n) tend vers $\frac{4}{2}\approx 1,\overline{33}$ lorsque n tend vers $+\infty$.

Exercice 13 : Cas d'une limite finie à l'infini

La suite (u_n) a pour limite L (à conjecturer à l'aide de la calculatrice) quand n tend vers $+\infty$.

Trouver un indice m tel que, lorsque n > m, les termes u_n appartiennent à l'intervalle I proposé.

a)
$$u_n = \frac{1}{\sqrt{n}} \text{ et } I =]0; 10^{-4}[.$$

On conjecture que la suite (u_n) tend vers 0 quand n tend vers $+\infty$.

 (u_n) est bien définie sur \mathbb{N}^* et $u_n>0$ pour tout entier naturel n non nul.

$$u_m < 10^{-4} \Leftrightarrow \frac{1}{\sqrt{m}} < 10^{-4} \Leftrightarrow \sqrt{m} > 10^4 \Leftrightarrow m > 10^8$$

Ainsi le plus petit entier m tel que pour tout n>m, $u_n\in]0$; $10^{-4}[$ est $m=10^8+1$.

b)
$$u_n = \frac{1}{n+5}$$
 et $I =]0$; 10^{-5}

On conjecture que la suite (u_n) tend vers 0 quand n tend vers $+\infty$.

n+5
eq 0 ainsi (u_n) est bien définie sur $\mathbb N$ et $u_n>0$ pour tout entier naturel n.

$$u_m < 10^{-5} \Leftrightarrow \frac{1}{m+5} < 10^{-5} \Leftrightarrow m+5 > 10^5 \Leftrightarrow m > 10^5-5$$

Ainsi le plus petit entier m tel que pour tout n>m, $u_n\in]0$; $10^{-5}[$ est $m=10^5-4=99996.$

c)
$$u_n = \frac{1}{2} + \frac{3}{2n}$$
 et $I =]0,49$; 0,51[

On conjecture que la suite (u_n) tend vers $\frac{1}{2}$ quand n tend vers $+\infty$.

 (u_n) est définie sur \mathbb{N}^* .

$$0,49 < u_m < 0,51 \Leftrightarrow 0,49 < \frac{1}{2} + \frac{3}{2m} < 0,51 \Leftrightarrow -0,01 < \frac{3}{2m} < 0,01$$

Comme m>0, pour que ces conditions soient vérifiées, il suffit que $rac{3}{2m}<0$, 01 soit $rac{2m}{3}>100$ soit m>150

Ainsi le plus petit entier m tel que pour tout n > m, $u_n \in]0,49$; 0,51[est m=151.d) $u_n = 3 + \frac{1}{n}$ et $I =]3 - 10^{-4}$; $3 + 10^{-4}[$

d)
$$u_n = 3 + \frac{1}{n} \text{ et } I =]3 - 10^{-4}; 3 + 10^{-4}[$$

On conjecture que la suite (u_n) tend vers 3 quand n tend vers $+\infty$.

$$3 - 10^{-4} < u_m < 3 + 10^{-4} \Leftrightarrow 3 - 10^{-4} < 3 + \frac{1}{m} < 3 + 10^{-4} \Leftrightarrow -10^{-4} < \frac{1}{m} < 10^{-4}$$

Comme m>0, pour que ces conditions soient vérifiées, il suffit que $\frac{1}{m}<10^{-4}$ soit $m>10^4$

Ainsi le plus petit entier m tel que pour tout n>m, $u_n\in]3-10^{-4}$; $3+10^{-4}$ [est m=10001.

Exercice 14 : Cas d'une limite infinie à l'infini

Dans chacun des cas suivants :

- Donner, en justifiant, les variations de (u_n)
- Trouver un indice m tel que , lorsque $n \ge m$, les les termes u_n appartiennent à l'intervalle I donné.

a)
$$u_n = \sqrt{2n+1}$$
 et $I = [10^5; +\infty[$.

<u>1ère</u> étape : $u_n = f(n)$ où f est une fonction définie et croissante sur $[-\frac{1}{2}; +\infty[$ donc aussi sur $[0; +\infty[$.

f est définie si et seulement si $2x + 1 \ge 0$ ssi $x \ge -\frac{1}{2}$.

On pose g(x) = 2x + 1, la fonction g est une fonction affine croissante sur $[0; +\infty[$ (m = 2 > 0).

Comme la fonction racine carré est croissante sur $[0; +\infty[$, la fonction f est croissante sur $[0; +\infty[$.

Ainsi la suite (u_n) est croissante sur \mathbb{N} .

2ème étape :

$$u_m \geq 10^5 \Leftrightarrow \sqrt{2m+1} \geq 10^5 \Leftrightarrow 2m+1 \geq 10^{10} \Leftrightarrow m \geq 5 \times 10^9 - \frac{1}{2}$$

Ainsi le plus petit entier m tel que pour tout $n \ge m$, $u_n \in [10^5 ; +\infty[$ est $m=5 \times 10^9$

b)
$$u_n = \frac{2-n}{3} \text{ et } I =]-\infty; -10^5]$$

<u>1^{ère} étape</u>: $u_n = f(n)$ où f est une fonction affine décroissante (m = -1 < 0) sur \mathbb{R} donc aussi sur $[0; +\infty[$. Ainsi la suite (u_n) est décroissante sur \mathbb{N} .

2^{ème} étape :

$$\overline{u_m \leq -10^5} \Leftrightarrow \frac{2-m}{3} \leq -10^5 \Leftrightarrow 2-m \leq -3 \times 10^5 \Leftrightarrow -m \leq -3 \times 10^5 - 2 \Leftrightarrow m \geq 3 \times 10^5 + 2.$$

Ainsi le plus petit entier m tel que pour tout $n \geq m$, $u_n \in]-\infty$; -10^5 est $m=3 \times 10^5+2$

c)
$$u_n = \frac{2}{3}n^2$$
 et $I = [10^6; +\infty[$

 $\underline{\mathbf{1}^{\mathrm{ère}}}$ étape : $u_n = \frac{2}{3}f(n)$ où f est la fonction carré croissante sur $[0; +\infty[$ et $\frac{2}{3} > 0$.

Ainsi la suite (u_n) est croissante sur \mathbb{N} .

2ème étape :

$$u_m \ge 10^6 \Leftrightarrow \frac{2}{3}m^2 \ge 10^6 \Leftrightarrow m^2 \ge \frac{3}{2} \times 10^6 \Leftrightarrow m \ge \sqrt{\frac{3}{2}} \times 10^3.$$

Ainsi le plus petit entier m tel que pour tout $n \geq m$, $u_n \in [10^5 \; ; \; +\infty[$ est m=1225

d)
$$u_n = \frac{5^n}{2^{n+1}}$$
 et $I = [10^5; +\infty[$

 $\underline{\mathbf{1}}^{\mathsf{ère}}$ étape : $u_n = \frac{1}{2} \times \left(\frac{5}{2}\right)^n$, pour tout entier naturel n, on a :

$$u_{n+1} - u_n = \frac{1}{2} \times \left(\frac{5}{2}\right)^{n+1} - \frac{1}{2} \times \left(\frac{5}{2}\right)^n = \frac{1}{2} \times \left(\frac{5}{2}\right)^n \left(\frac{5}{2} - 1\right) \ge 0. \text{ Ainsi } u_{n+1} \ge u_n.$$

Ainsi la suite (u_n) est croissante sur \mathbb{N} .

2ème étape :

$$u_m \geq 10^5 \Leftrightarrow \frac{1}{2} \times \left(\frac{5}{2}\right)^m \geq 10^5 \Leftrightarrow \left(\frac{5}{2}\right)^m \geq 2 \times 10^5.$$

A partir de ce calcul, nous ne pouvons plus le faire sans calculatrice (vous verrez la méthode avec la fonction logarithme népérien en Terminal).

On trouve à la calculatrice :

$$u_{10} \approx 4768 < 10^5 \ {
m et} \ u_{11} \approx 11921 > 10^5$$

Ainsi le plus petit entier m tel que pour tout $n \ge m$, $u_n \in [10^5; +\infty[$ est m=11.

e)
$$u_n = -2 \times 5^n \text{ et } I =]-\infty;-10^6]$$

$1^{\text{ère}}$ étape : Pour tout entier naturel n, on a :

$$u_{n+1} - u_n = -2 \times 5^{n+1} - (-2 \times 5^n) = -2 \times 5^n (5-1) \le 0$$
. Ainsi $u_{n+1} \le u_n$.

Ainsi la suite (u_n) est décroissante sur \mathbb{N} .

2^{ème} étane :

$$u_m \le -10^6 \Leftrightarrow -2 \times 5^m \le -10^6 \Leftrightarrow 5^m \ge 5 \times 10^5$$
.

A partir de ce calcul, nous ne pouvons plus le faire sans calculatrice.

On trouve à la calculatrice :

$$u_8 \approx -781250 > -10^6$$
 et $u_9 \approx -3906250 < -10^6$

Ainsi le plus petit entier m tel que pour tout $n \ge m$, $u_n \in]-\infty$; -10^5 est m=9

Exercice 15: Modélisation

Dans un étang, pendant l'hiver 2015, la population des gardons était estimée à 600 kg. Mais, chaque année la quantité de gardons diminue du quart de sa valeur.

Pour compenser cette diminution, on réintroduit chaque automne 200 kg de gardons.

On note u_n la quantité de gardons, exprimée en kg, au début de l'hiver de l'année 2015 + n.

On a ainsi $u_0 = 600$ et pour tout entier naturel n :

$$u_{n+1} = \frac{3}{4}u_n + 200$$

1. Déterminer la quantité u_1 de gardons présents l'hiver 2016, puis la quantité de gardons u_2 l'hiver 2017.

$u_1 = \frac{3}{4}u_0 + 200$	$u_2 = \frac{3}{4}u_1 + 200$
$u_1 = \frac{3}{4} \times 600 + 200$	$u_2 = \frac{3}{4} \times 650 + 200$
$u_1 = 650$	$u_2 = 687, 5$

2. A l'aide d'un tableur, ou d'une calculatrice, déterminer la quantité de gardons présents dans l'étang au début de l'hiver 2025.

On utilise le mode RECUR de la calculatrice et on trouve $u_{10} pprox 789$