

Tipos de dados e Operadores

Revisão

Lógica: sequência de raciocínio que permita a você utilizar de <u>premissas</u> e <u>informações</u> para ser possível obter uma **conclusão**.

Lógica de Programação: técnica de encadear pensamento para atingir um determinado objetivo.

→ Algoritmo: sequência lógica, um conjunto de passos a serem executados.

As 3 partes de um algoritmo

```
Declaração de Variáveis

inteiro a, b
escreva ("Digite o valor de a: ")
leia(a)
escreva ("Digite o valor de b: ")
leia(b)
a = b
Processamento
b = a
escreva("\n a = ", a)
escreva("\n b = ", b)
Saída de Dados
```

Revisão

ALGORITMO = Sequência lógica

Algoritmo <nome_do_algoritmo>

<declaração_de_variáveis>

<subalgoritmos>

Início

<corpo_do_algoritmo>

Fim.

Algoritmo/Pseudocódigo

- 1. algoritmo Calcular Media
- 2. var
- 3. nota1, nota2, nota3, media: real
- 4.
- 5. início
- 6. escrever ("Digite a primeira nota:")
- 7. ler (nota1)
- 8. escrever ("Digite a segunda nota:")
- 9. ler (nota2)
- 10. escrever ("Digite a terceira nota:")
- 11. ler (nota3)
- 12. media <- (nota1+nota2+nota3)/3
- 13. escrever (media)
- 14. se media >= 7 então
- 15. escrever ("Aprovado")
- 16. senão
- 17. escrever ("Reprovado")
- 18. fimse
- 19. fim.

Teste de Mesa

LINHA	NOTA1	NOTA2	NОТАЗ	MEDIA
1	?	?	?	?
2	[8]	?	?	?
3	8	?	?	?
4	8	[5]	?	?
5	8	5	?	?
6	8	5	[8]	?
7	8	5	8	7
8	8	5	8	{7}

Ouadro 3 - Exemplo de teste de mesa 2

Variáveis

são endereços/posições de memória RAM

1-Identificador2-Valor3-Tipo de Dado

Identificador (nomes dados pelo programador à variável)

- a) Palavras: palavras com letras maiúsculas ou minúsculas, sem espaço e sem acento.
- b) Números: podem ser utilizados desde que apareçam após uma ou mais letras.
- c) Underline (_) e cifrão (\$): são considerados caracteres válidos e são aceitos em qualquer local do identificador. Estes caracteres <u>não são muito utilizados</u>, porém, algumas poucas linguagens utilizam o underline para identificar variáveis que tenham espaço no nome.

Armário ↔ Memória do computador

Convenção Mundial (padrão): "minusculo Maiusculo"

nome
nomeCompleto
valorDescontoCedido

Exemplos de nomes de variáveis:

Salario - correto ;

1ANO - errado (não começou uma letra);

ANO1 - correto;

a casa - errado (contém espaço em branco);

SAL/HORA - errado (contém caracte especial "/")

SAL_HORA _DESCONTO - correto;

Variáveis

são endereços/posições de memória RAM

1-Identificador

2-Valor

3-Tipo de Dado

Variáveis

são endereços/posições de memória RAM

1-Identificador

2-Valor

3-Tipo de Dado

Tipo de Dado lefine que tipos de valores a variável poderá receber)

Tipos de declarações de variáveis:

- Variável Global: todo o código poderá acessá-la.
- Variável Locais: possui um acesso mais restrito, declarada dentro de um bloco de código especifico.

Reduzindo o escopo das variáveis torna o código mais seguro a bugs. A solução básica é utilizando variáveis locais e funções com passagem de valor.

- → Existem <u>Linguagens de Programação</u> **Tipadas** (Java, C++ e C#) e as **não tipadas** (Javascript e PHP).
- → Constantes: são variáveis com valores fixos, imutáveis, que devem ser definidos no início do algoritmo.

Variáveis

são endereços/posições de memória RAM

1-Identificador

2-Valor

3-Tipo de Dado

Tipo de Dado lefine que tipos de valores a variável poderá receber)

Tipada (Fortemente Tipada)

Definição de variáveis em algoritmos

VAR NOME: literal

IDADE: inteiro

SALARIO: real

TEM_FILHOS: lógico

Não tipada (Fracamente tipada / dinamicamente tipada):

x = 15

y = "Rogerão Araújo"

z = 1.84

Variáveis

são endereços/posições de memória RAM

1-Identificador

2-Valor

3-Tipo de Dado

Tipo de Dado define que tipos de valores a variável poderá receber)

Os 4 tipos de dados base:

- **Inteiro:** tipo numérico que define números inteiros negativos e positivos;
- **Real:** tipo numérico que define números decimais com vírgula negativos e positivos;
- **Lógico:** tipo de dado que aceita apenas dois valores, verdadeiro (1) ou falso (0);
- **Literal:** tipo de dado que define cadeias de caracteres, aceitando letras, números e símbolos.

Cada tipo ocupa um espaço de memória → Otimização

Variáveis

são endereços/posições de memória RAM

Tipo de DadoNuméricos:

Conjuntos Numéricos

Quando usar cada tipo?

- Quantidade de filhos
- Idade
- Altura
- Salário
- Nota

- Média
- largura
- Gramas
- Km
- Contador

Se eu preciso calcular alguma média ou realizar algum cálculo com virgula, então usar REAL

Variáveis

são endereços/posições de memória RAM

Tipo de Dado

Definição de variáveis em algoritmos

VAR NOME: literal

IDADE: inteiro

SALARIO: real

TEM_FILHOS: lógico

Forma Geral: <tipo_de_dado> <Identificador>

Exemplos:

- inteiro idade
- real nota1, nota2, nota3
- caracter conceito
- cadeia sobrenome

Exercícios:

1- Identifique o tipo de dados dos seguintes valores:

- (a) "9 de agosto de 1968"
- (b) 1.3
- (c) Falso
- (d) -31
- (e) "?"

2- Escreva o tipo de dado ideal para se representar cada uma das seguintes informações:

- (a) O nome de uma rua
- (b) Número de quartos de uma casa.
- (c) Se uma pessoa é diabética ou não
- (d) O saldo de uma conta bancária
- (e) O resultado de uma operação de raiz quadrada

Variáveis

são endereços/posições de memória RAM

Tipo de Dado

Exercícios:

1- Identifique o tipo de dados dos seguintes valores:

- (a) "9 de agosto de 1968"
- Literal

- (b) 1.3 R
- (c) Falso Lógico
- (d) -31 Inteiro
- (e) "?" Literal

2- Escreva o tipo de dado ideal para se representar cada uma das seguintes informações:

- (a) O nome de uma rua Literal
- (b) Número de quartos de uma casa. Inteiro
- (c) Se uma pessoa é diabética ou não Lúgico
- (d) O saldo de uma conta bancária
- (e) O resultado de uma operação de raiz quadrada Real

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão.

Quatro tipos principais:

Operadores de Atribuição

Usado para passar um valor para uma variável.

 \leftarrow

v1 <- 5 v2 <- 7

```
v1 := 5
v1 := 7
```

```
ALGORITMO Programa_Soma
VAR num1, num2, soma : INTEIRO;
INICIO

num1 <- 0;
num2 <- 0;
soma <- 0;
ESCREVER "Digite o primeiro número : ";
LER (num1);
ESCREVER "Digite o segundo número : ";
LER (num2);
soma <- num1 + num2;
ESCREVER "A soma é: ", soma;
FIM.
```

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores de Atribuição

Exercício: Analise os algoritmos feitos em **Diagrama de Chapin** abaixo e diga o que será impresso na tela ao serem executados:

a)

,	
A ← 10	
B ← 20	
Escrever B	
B ← 5	
Escrever A, B	

		TESTE DE MESA		
LINHA	COMANDO	LINHA	А	В
5	A ← 10	5	[10]	?
6	B ← 20	6	10	[20]
7	Escrever B	7	10	{20}
8	B ← 5	8	10	[5]
9	Escrever A, B	9	{10}	{5 }

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores de Atribuição

Exercício: Analise os algoritmos feitos em **Diagrama de Chapin** abaixo e diga o que será impresso na tela ao serem executados:

b)	
	A ← 30
	B ← 20
	$C \leftarrow A + B$
	Escrever C
	B ←10
]	Escrever B, C
	$C \leftarrow A + B$
Es	screver A, B, C

c)
A ← 10
B ← 20
$C \leftarrow A$
$B \leftarrow C$
$A \leftarrow B$
Escrever A, B, C

a)		
	A ←10	
	$B \leftarrow A + 1$	
	$A \leftarrow B + 1$	
	$B \leftarrow A + 1$	
	Escrever A	
	$A \leftarrow B + 1$	
	Escrever A, B	

e)
A ← 10
B ← 5
$C \leftarrow A + B$
B ← 20
A ← 10
Escrever A, B, C

f)	
X ← 1	
Y ← 2	
$Z \leftarrow Y - X$	
Escrever Z	
X ← 5	
$Y \leftarrow X + Z$	
Escrever X, Y, Z	

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Aritméticos

OPERADOR	SÍMBOLO	EXEMPLO
Adição	+	2+2
Subtração	-	2-2
Multiplicação	*	2*2
Divisão de inteiro	DIV	2 DIV 2
Divisão de real	1	2/2
Módulo	MOD	4%3

 $35 \div 4 = 9$ $35 \div 5 = 8.75$

soma1 <- 5 + 10 soma2 <- 10 + 15 + 20

multiplicacao <- 10 * 4

Regras de prioridade da matemática:

1º – Parênteses;

2º – Módulo, divisão e multiplicação;

3º - Adição e subtração.

5* (3+4)+4 5*7 + 4 35+4 39 5*4/2 MOD 6 20/2 MOD 6 10 MOD 6 4

subtracao <- 10 - 3

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão.

Operadores Aritméticos

Os pares de instruções abaixo produzem o mesmo resultado?

$$A \leftarrow (4/2)+(2/4)$$
 e $A \leftarrow 4/2+2/4$

$$B \leftarrow 4/(2+2)/4$$
 e $B \leftarrow 4/2+2/4$

$$C \leftarrow (4+2)*2-4$$
 e $C \leftarrow 4+2*2-4$

Exercício: Reescreva as instruções abaixo com o mínimo de parênteses possível, mas sem alterar o resultado:

$A \leftarrow 6*(3+2)$	$F \leftarrow (6/3) + (8/2)$
$B \leftarrow 2 + (6*(3+2))$	$G \leftarrow ((3+(8/2))*4)+(3*2)$
C ← 2+(3*6)/(2+4)	H ← (6*(3*3)+6)-10
$D \leftarrow 2*(8/(3+1))$	I ← (((10*8)+3)*9)
$E \leftarrow 3 + (16 - 2)/(2*(9 - 2))$	J ← ((-12)*(-4))+(3*(-4))

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Aritméticos

Os pares de instruções abaixo produzem o mesmo resultado?

$$A \leftarrow (4/2)+(2/4)$$
 e $A \leftarrow 4/2+2/4$

Exercício: Reescreva as instruções abaixo com o mínimo de parênteses possível, mas sem alterar o resultado:

A ← 6*(3+2)	Ø	$F \leftarrow (6/3) + (8/2)$	6/3 + 8/2
$B \leftarrow 2 + (6*(3+2))$	2 + 6 * (3+2)	$G \leftarrow ((3+(8/2))*4)+(3*2)$	(3 + 8/2)*4 + 3*2
C ← 2+(3*6)/(2+4)	2 + 3*6/(2+4)	H ← (6*(3*3)+6)-10	6*3*3 + 6 -10
$D \leftarrow 2*(8/(3+1))$	2*8/(3+1)	I ← (((10*8)+3)*9)	(10*8 + 3)*9
$E \leftarrow 3 + (16 - 2)/(2*(9 - 2))$	Ø	J ← ((-12)*(-4))+(3*(-4))	(-12)*(-4) + 3*(-4)

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Aritméticos

Exercício: Escreva um algoritmo para ler um valor (do teclado) e escrever (na tela) o seu antecessor.

```
ALGORITMO Antecessor1
VAR num, antecessor: INTEIRO;
INICIO
      num <- 0;
      antecessor <- 0;
      ESCREVER "Digite um número: ";
      LER (num);
      antecessor <- num - 1;
      ESCREVER "O seu antecessor é: ", antecessor;
FIM.
```

2 variáveis e 6 linhas

```
ALGORITMO Antecessor2
VAR num: INTEIRO;
                                   FIM.
INICIO
      num <- 0:
      ESCREVER "Digite um número: ";
      LER (num);
      num <- num - 1;
      ESCREVER "O seu antecessor é: ", num;
FIM.
```

```
1 variável e 5 linhas
```

```
ALGORITMO Antecessor3
VAR num: INTEIRO;
INICIO
     num <- 0;
     ESCREVER "Digite um número: ";
     LER (num);
     ESCREVER "O seu antecessor é: ", num - 1;
```

1 variável e 4 linhas

Diagrama de Chapin: Antecessor1

```
num \leftarrow 0;
   antecessor \leftarrow 0
       LER num
antecessor ← num - 1
ESCREVER antecessor
```

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Relacionais

OPERADOR	SÍMBOLO	EXEMPLO
lgualdade	=	5=5
Diferença	♦	5<>4
Menor que	<	4<5
Menor ou igual que	<=	5 <= 5
Maior que	>	5>4
Maior ou igual que	>=	5>=5

se media >= 7 entáo
escrever ("Aprovado")
senáo
escrever ("Reprovado")

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Lógicos

E, OU, NÃO, XOU

a E b				
a	b	Resultado		
Verdadeiro	Verdadeiro	Verdadeiro		
Verdadelro	Falso	Falso		
Falso	Verdadeiro	Falso		
Falso	Falso	Falso		

a OU b					
a	b	Resultado			
Verdadelro	Verdadeiro	Verdadeiro			
Verdadeiro	Falso	Verdadeiro			
Falso	Verdadeiro	Verdadeiro			
Falso	Falso	Falso			

а	Resultado NÃO
Verdadeiro	Falso
Falso	Verdadeiro

Regras de prioridade:

1° - NÃO;

2° - E;

3° - OU.

	a XOU b	
a	b	Resultado
Verdadeiro	Verdadeiro	Falso
Verdadelro	Falso	Verdadeiro
Falso	Verdadeiro	Verdadeiro
Falso	Falso	Falso

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores

Usadas para representar expressões de cálculo, comparação, condição e expressão. Quatro tipos principais:

Operadores Lógicos E , OU, NÃO, XOU

Exemplos:

```
3*3 < 8 E 7*3/3 = 7
9 < 8 E 7*1 = 7
9 < 8 E 7 = 7
false E true
false
```

```
5 + 5 < 10 * (17 – 15) E NÃO 4 > 3 E 5 <> 4 OU 7 MOD 3 < 8 DIV 3
5 + 5 < 10 * 2 E NÃO 4 > 3 E 5 <> 4 OU 7 MOD 3 < 8 DIV 3
10 < 20 E NÃO 4 > 3 E 5 <> 4 OU 1 < 2
verdadeiro E NÃO verdadeiro E verdadeiro OU verdadeiro
verdadeiro E falso E verdadeiro OU verdadeiro
falso E verdadeiro OU verdadeiro
falso OU verdadeiro
VERDADEIRO
```

Teste de Mesa

Ponto de Interrogação (?): significa que nesta linha ainda não foi definido um valor para a varável.

Valor entre colchetes ([]): significa que a variável foi lida, ou seja, o valor foi obtido a partir de uma entrada de dados.

Valor entre chaves ({}): significa que o valor da variável foi escrito, ou seja, o valor foi apresentado por meio de uma saída de dados.

Neste Teste de Mesa foram inseridos no programa (o programa leu) os valores

Teste de Mesa

LINHA	a	b
7	(12)	?
9		(3)
10	3	5 - 7. 1 1 7.
11		3
12	{3}	
13		{3}

Nota-se que o RESULTADO exibido pelo programa é INVÁLIDO, ou seja, não atende ao enunciado. O programa deveria ter exibido 3 e 12.

O teste de mesa cumpriu seu objetivo que foi "detectar" o ERRO.

Teste de Mesa

Ponto de Interrogação (?): significa que nesta linha ainda não foi definido um valor para a varável.

Valor entre colchetes ([]): significa que a variável foi lida, ou seja, o valor foi obtido a partir de uma entrada de dados.

Valor entre chaves ({}): significa que o valor da variável foi escrito, ou seja, o valor foi apresentado por meio de uma saída de dados.

Teste de Mesa

LINHA	а	b	aux
7	(12)	?	?
9		(3)	
10			12
11	3		
12		12	
13	{3}		
14		{12}	

Para efetuar a troca necessita-se de uma TERCEIRA variável (auxiliar)

Teste de Mesa

Ponto de Interrogação (?): significa que nesta linha ainda <u>não foi definido um valor</u> para a varável.

Valor entre colchetes ([]): significa que a variável foi <u>lida</u>, ou seja, o valor foi obtido a partir de uma entrada de dados.

Valor entre chaves ({}): significa que o valor da variável foi **escrito**, ou seja, o valor foi apresentado por meio de uma saída de dados.

Neste Teste de mesa foram <u>inseridos</u> no programa (o programa <u>leu</u>) os valores 8 para Nota1, 5 para Nota2 e 8 para a Nota3. O valor 7 é <u>escrito</u> na tela na linha 8

LINHA	NOTA1	NOTA2	NОТАЗ	MEDIA
1	?	?	?	?
2	[8]	?	?	?
3	8	?	?	?
4	8	[5]	?	?
5	8	5	?	?
6	8	5	[8]	?
7	8	5	8	7
8	8	5	8	{7}

Quadro 3 - Exemplo de teste de mesa 2

Algoritmo

- 1. algoritmo CalcularMedia
- 2. var
- 3. nota1, nota2, nota3, media: real
- 4.
- 5. início
- 6. escrever ("Digite a primeira nota:")
- 7. ler (nota1)
- 8. escrever ("Digite a segunda nota:")
- 9. ler (nota2)
- 10. escrever ("Digite a terceira nota:")
- 11. ler (nota3)
- 12. media <- (nota1+nota2+nota3)/3
- 13. escrever (media)
- 14. se media >= 7 então
- 15. escrever ("Aprovado")
- 16. senão
- 17. escrever ("Reprovado")
- 18. fimse
- 19. fim.

Teste de Mesa

Agora sua vez!

Ponto de Interrogação (?): significa que nesta linha ainda <u>não foi definido um valor</u> para a varável.

Valor entre colchetes ([]): significa que a variável foi <u>lida</u>, ou seja, o valor foi obtido a partir de uma entrada de dados.

Valor entre chaves ({}): significa que o valor da variável foi **escrito**, ou seja, o valor foi apresentado por meio de uma saída de dados.

Neste Teste de mesa serão <u>inseridos</u> no programa os valores 6 para Nota1, 8 para Nota2 e 3 para a Nota3.

Linha	NOTA1	NOTA2	NOTA3	MEDIA
1	?	?	?	?
2	?	?	?	?
3	?	?	?	?
4	?	?	?	?
5	?	?	?	?
6	?	?	?	?
7	?	?	?	?
8	?	?	?	?

Teste de Mesa

Algoritmo

- 1. algoritmo Calcular Media
- 2. var
- 3. nota1, nota2, nota3, media: real
- 4.
- 5. início
- 6. escrever ("Digite a primeira nota:")
- 7. ler (nota1)
- 8. escrever ("Digite a segunda nota:")
- 9. ler (nota2)
- 10. escrever ("Digite a terceira nota:")
- 11. ler (nota3)
- 12. media <- (nota1+nota2+nota3)/3
- 13. escrever (media)
- 14. se media >= 7 então
- 15. escrever ("Aprovado")
- 16. senão
- 7. escrever ("Reprovado")
- 18. fimse
- 19. fim.

Teste de Mesa

```
Algoritmo
001 ALGORITMO CaluloEstranho
002 VAR num1, num2, resultado : inteiro;
003 INICIO
004 resultado = 0:
005 num1 = 0;
006 num2 = 0;
007 ESCREVA ("Digite o num1: ");
800
     Leia (num1);
009 resultado = 10 + num1;
010 Escreva ("Digite o num2: ");
011
     Leia (num2);
012 resultado = resultado + num2;
013 ESCREVA ("O resultado será: " resultado);
014 resultado = resultado * 2;
015 ESCREVA ("O dobro do resultado será: " resultado);
016 FIM
```

Teste de Mesa

Para realizar o teste vamos simular que o usuário digitou 20 para o num1 e depois digitou 30 para num2

Linha	num1	num2	resultado	Escreve
002	?	?	?	?
003	?	?	?	?
004	?	?	0	?
005	0	?	0	?
006	0	0	0	?
007	0	0	0	Digite o num1:
800	20	0	0	?
009	20	0	30	?
010	20	0	30	Digite o num2:
011	20	30	30	?
012	20	30	60	?
013	20	30	60	O resultado será: 60
014	20	30	120	?
015	20	30	120	O dobro do resultado será : 120
016	Fim do pro	grama		

Agora sua vez!

Para verificar se entendeu, você poderia refazer esse teste de mesa com duas outras entradas e enviar aqui como resposta a tabela. Por exemplo, **5 para num1 e 100 para num2**.

Teste de Mesa

Agora sua vez!

```
Algoritmo
001 ALGORITMO Calulo Estranho
002 VAR num1, num2, resultado: inteiro;
003 INICIO
004 resultado = 0;
005 num1 = 0;
006 num2 = 0;
007 ESCREVA ("Digite o num1: ");
     Leia (num1);
008
009 resultado = 10 + num1;
010 Escreva ("Digite o num2: ");
011
      Leia (num2);
012 resultado = resultado + num2;
013 ESCREVA ("O resultado será: " resultado);
014 resultado = resultado * 2;
015 ESCREVA ("O dobro do resultado será: " resultado);
016 FIM
```

Para realizar o teste vamos simular que o usuário digitou <u>5</u> para o num1 e depois digitou <u>100</u> para num2

Linha	num1	num2	resultado	Escreve
002	?	?	?	?
003	?	?	?	?
004	?	?	?	?
005	?	?	?	?
006	?	?	?	?
007	?	?	?	?
800	?	?	?	?
009	?	?	?	?
010	?	?	?	?
011	?	?	?	?
012	?	?	?	?
013	?	?	?	?
014	?	?	?	?
015	?	?	?	?
016	Fim do progr	ama		

Estudando Lógica de Programação

Algoritmos não se aprendem Copiando algoritmos / Estudando algoritmos

Algoritmos só se aprendem Construindo algoritmos / Testando algoritmos

Lista de exercícios – Estrutura Sequencial https://wiki.python.org.br/EstruturaSequencial

Atividade proposta:

Título: Cálculo IR com declaração de variáveis em diferentes linguagens

SA1 - Atividade 4 - Presencial - Linguagens de programação com variáveis tipadas e não tipadas.

Entre as seis linguagens de programação pesquisadas na atividade anterior, em grupo, você e seus colegas deverão selecionar uma linguagem com variáveis tipadas e outra sem variáveis tipadas. Para cada uma dessas linguagens, deverão realizar a implementação de um exemplo com o cálculo solicitado e a declaração de variáveis que representem informações referentes a uma pessoa, utilizando os tipos de dados para otimizar o consumo de memória. Variáveis que devem ser declaradas:

- Nome;
- Data de Nascimento (Considerar barras);
- Idade;
- Telefone;

- CPF (Considerar pontos e hífen);
- RG (Considerar pontos e hífen);
- Endereço;
- E-mail;

- Telefone;
- Sexo;
- Salário;
- Empregado Ativo (true ou false).

Essas informações devem ser fictícias. Observe que, no caso da linguagem tipada, para cada tipo de informação deve ser indicado o tipo de dado específico. Por exemplo, a informação para a variável idade é do tipo inteiro.

Após a inserção dos dados simule <u>o cálculo do imposto de renda considerando taxa de 15%</u>.

Exemplo: Imposto de Renda <- Salário * 0.15

Após a conclusão da atividade com as declarações das variáveis solicitadas e a simulação do cálculo do Imposto de Renda, faça alguns testes. <u>Tente implementar um "Hello World"</u> da linguagem, faça algumas operações e tente exibi-las.

Atividade proposta:

Título: Cálculo IR com declaração de variáveis em diferentes linguagens

Desenvolvimento de algoritmos com cálculo proposto (IR) e declaração de variáveis solicitadas no enunciado.

RESUMO (Quais são os Requisitos?):

- •Selecionar uma linguagem com variáveis tipadas e outra sem variáveis tipadas. Realizar em ambas linguagens:
 - •Declarar as variáveis listadas com os tipos de dados específicos
 - •Simule o cálculo do imposto de renda considerando taxa de 15%.
 - •Faça alguns testes. <u>Tente implementar um "Hello World"</u> da linguagem, faça algumas operações e tente exibi-las.

Resultados Esperados na Atividade: Que a partir dos conceitos essenciais e apoio do livro didático, o aluno seja capaz de elaborar ao menos dois algoritmos com implementação do cálculo proposto e as declarações das variáveis, conforme enunciado e descrição da Situação de Aprendizagem 1.

Dicas para a Atividade

- IDE Online Python: https://www.programiz.com/python-programming/online-compiler/
- IDE Online Java: https://repl.it/languages/java10
- IDE Online JavaScript: https://www.w3schools.com/js/tryit.asp?filename=tryjs_default

6 compiladores online para estudantes e profissionais de programação https://elias.praciano.com/2016/12/6-compiladores-online-para-estudantes-de-programacao/

Seguem alguns sites oficiais com a documentação das linguagens:

- o Python: https://www.python.org
- Java: <a href="https://www.oracle.com/br/java/technologies/javase/javase-
- Microsoft C++, C e Assembler: https://docs.microsoft.com/pt-br/cpp/?view=msvc-160
- PHP: https://www.php.net/manual/pt BR/index.php
- JavaScript: https://developer.mozilla.org/pt-BR/docs/Web/JavaScript
- o Ruby: https://www.ruby-lang.org/pt/documentation/
- Lua: https://www.lua.org/
- Swift: https://swift.org/

Dicas para a Atividade

Calculo imposto de renda a lógica é bem semelhante

```
ALGORITMO Antecessor1
VAR num, antecessor: INTEIRO;
INICIO
   ESCREVER "Digite um número: ";
   LER (num);
   antecessor <- num - 1;
    ESCREVER "O seu antecessor é: ", antecessor;
FIM.
```

Aula 3 - Algoritmos computacionais - parte 1 https://pt.slideshare.net/henriquecarmona/aula-3-algoritmos-computacionais-parte1

Aula 3 - Algoritmos computacionais - parte 2 (exercícios resolvidos) https://pt.slideshare.net/henriquecarmona/aula-3-algoritmos-computacionais-parte-2

RedMonk – site que divulga o ranking anual das linguagens de programação mais utilizadas no mundo: https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20/

Tecnoblog – artigo recente sobre as linguagens mais populares: https://tecnoblog.net/378494/javascript-python-linguagens-programacao-mais-populares/

Lógica de Programação com VisualG- Prof. Thiago de Oliveira (Vários

conteúdos para estudo e aprofundamento)

https://sites.google.com/a/ifmg.edu.br/troliveira/disciplinas/logica-de-programacao

