Arquitetura de Computadores

Arquitetura e Funcionamento dos Computadores

Parte 008

Introdução Análise dos Números

Régua Ajuda Conversões

Números Decimais

Decomposição:

1359 - Base (10)

$$1 \times 10^3 + 3 \times 10^2 + 5 \times 10^1 + 9 \times 10^0$$

$$1000 + 300 + 50 + 9$$

E em Binário:

000101101

$$1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} =$$

$$32 + 0 + 8 + 4 + 0 + 1 = 45$$

375 (decimal) – qual é a sua representação em binário:

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1

123 (decimal) para binário:

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1
0	0	0	1	1	1	1	0	1	1

Régua Ajuda Conversões

Linguagem Binária – Base 2 - Múltiplos de 2

		 2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
										128	64	32	16	8	4	2	1

E assim sucessivamente (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, etc.)