

APPLICATION FOR UNITED STATES LETTERS PATENT

for

**OLEAGINOUS DRILLING FLUID THAT PRODUCES A USEFUL SOIL AMENDMENT,
METHOD OF USE AND BIO-REMEDIATION OF THE SAME AND RESULTING SOLIDS**

by

Frederick Growcock

Wray Curtis

John Candler

Stephen Rabke

Sonya Ross

Jonathan Getliff

and

Greg McEwan

CERTIFICATE OF EXPRESS MAIL

NUMBER EL 830940321 US

DATE OF DEPOSIT Feb. 14, 2002

I hereby certify that this paper or fee is being deposited with the United States Postal Service
"EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated
above and is addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231.

Barbi Sofia
Signature

10/075747
AW

3-18-03

1 This application claims the priority benefit of U.S. Provisional Application No.
2 60/268,635, filed February 14, 2001, and U.S. Provisional Application No. 60/269,204,
3 filed February 15, 2001, and U.S. Provisional Application No. 60/269,752, filed February
4 19, 2001, and U.S. Provisional Application No. 60/298,765, filed June 16, 2001.

5 **BACKGROUND OF THE INVENTION**

6 Drill cuttings are the earth, rock and other solid materials generated during the
7 rotary drilling of subterranean wells. The drill cuttings are removed from beneath the
8 drill bit by a stream of drilling fluid that suspends the solids and carries the solids to the
9 surface. On the surface, the drill cuttings are separated from the drilling fluid in a drilling
10 cuttings separator or shaker and the drill cuttings are collected at the drill site for
11 subsequent treatment.

12 Traditional oleaginous drilling fluids, also known as oil-based drilling fluids or
13 invert emulsion drilling fluids (if they contain an internal non-oleaginous phase), may be
14 harmful to marine life due to the presence of aromatic hydrocarbons in the diesel fuel or
15 other similar petroleum fractions used as the continuous phase. The development of low-
16 toxicity mineral oil-based drilling fluids – with very low fractions of aromatic compounds
17 -- allayed much, but not all, of the concern over acute toxicity effects on marine flora and
18 fauna. However, discharge of mud-laden cuttings still produces a mound of cuttings on
19 the ocean floor that may smother any marine life that resides on the seabed.

20 Development of synthetic-based drilling fluids as alternatives to conventional oil-
21 based drilling fluids in offshore operations was precipitated by residual toxicity and
22 biodegradability concerns. These developments focused on the fate and effects of oil-
23 coated drilled cuttings discharged into the sea, as well as worker safety. For onshore
24 applications, cuttings disposal is also of importance. However, since the drilled cuttings
25 are disposed of on land, the environmental issues focus primarily on subsequent usability
26 of the land and contamination of ground water. Although the advent of synthetic-based
27 fluids has greatly improved the environmental acceptability of non-aqueous drilling fluids
28 both offshore and onshore, current synthetic-based fluid formulations still present
29 problems for direct land treatment of oil-coated cuttings resulting from onshore

20470666@36203! .DOC

1 operations. The concerns with pollution of soil and groundwater by synthetic based fluids
2 and oil-based fluids have led to increasingly strict government regulations.

3 Oily drill cuttings can have severe impacts on their receiving environment and
4 should be cleaned or treated to minimize their environmental impact and the operator's
5 long term liability. The primary purpose of each of these methods is to somehow destroy
6 or remove the drilling fluid residue from the earth solids. In addition to the above
7 mentioned method of land treatment (spreading and farming), there is a litany of other
8 ways to treat oil-coated cuttings from drilling operations. These include landfill disposal;
9 bio-remediation; stabilization/solidification (briquetting, fixation with silicates or fly
10 ash); extraction or washing (oil, detergents, and solvents); and thermal treatment
11 (incineration and distillation, including thermal desorption and hammer mill). The
12 treatment of drill cuttings is the subject of a number of patent applications and literature
13 disclosures that include U.S. Patents No. 6,187,581; 6,020,185; 5,720,130; 6,153,017;
14 5,120,160; 5,545,801; 4,696,353; 4,725,362; 4,942,929; 5,132,025. These patents
15 describe various methods of treating oily drill cuttings including incineration; reinjection
16 of the slurrified cuttings into another subterranean formation; chemical washing and
17 landfill disposal; and other methods. As noted above, the primary purpose of each of
18 these methods is to somehow destroy or remove the drilling fluid's residue from the earth
19 solids.

20 Despite considerable research conducted in the area of drill cuttings disposal,
21 there remains an unmet need for a clean, inexpensive and environmentally friendly
22 drilling fluid and method of treating the drill cuttings such that they produce an end
23 product that may have a beneficial use.

24 **SUMMARY OF THE INVENTION**

25 The present invention is generally directed to a drilling fluid, a method of drilling,
26 and a method of treating drilling fluid waste. In particular, the present invention provides
27 a biodegradable, low-toxicity drilling fluid which enables bio-remediation of drill cuttings
28 into a beneficial product using land spreading or farming with optional pre-treatment in
29 bioreactors or through composting.

1 An oleaginous drilling fluid has been developed that possesses the drilling
2 properties of conventional oil-based and synthetic-based drilling fluids but which can be
3 discharged (as fluid-coated drilled cuttings) onto land to provide minimal detrimental
4 effects on animal and plant life. The individual components of this environmentally
5 friendly fluid – base fluid, internal non-oleaginous phase (if the oleaginous drilling fluid
6 is an invert emulsion), emulsion stabilizers, wetting agents, fluid-loss reducing agents and
7 weighting agent -- also possess these attractive features.

8 The drilling fluid may be used without any treatment of the drilled cuttings in
9 areas where restrictions on farming or spreading of the cuttings on land have prohibited
10 use of a typical synthetic-based fluid or oil-based fluid. For areas where restrictions are
11 even more severe, e.g. where essentially zero discharge is required, the drilling fluid may
12 be used in conjunction with rapid bio-remediation or other pre-treatment to produce
13 cuttings with less than 1% residual base fluid.

14 The present invention also encompasses methods of bioremediation of the drilling
15 cuttings generated during drilling operations using the fluids disclosed herein. IN one
16 such preferred illustrative embodiment, drilling cuttings are mixed with sawdust and
17 transported to a bioremediation site. At the bioremediation site, the mixture of drilling
18 cuttings and sawdust is mixed with paunch waste and then applied to windrows designed
19 for vermi-composting.

20

21 BRIEF DESCRIPTION OF THE DRAWINGS

22 **Figure 1** is a graphical representation of exemplary sample data showing the
23 effect of temperature on biodegradation rate of linear paraffin based drilling fluid on
24 simulated cuttings in a bioreactor.

25 **Figure 2** is a graphical representation of exemplary sample data showing the
26 effect of time on oxygen uptake rate (OUR) and % oil and/or synthetic drilling fluid on
27 cuttings (ROC) of an linear paraffin based drilling fluid on simulated cuttings in a
28 bioreactor at 25 °C.

29 **Figure 3** is graphical representation of exemplary sample data showing
30 chromatographic analysis of hydrocarbon content of cuttings in a composting trial over a

1 period of 42 days in which the seven groups correspond to the seven linear paraffins used
2 in the base fluid.

3 **Figure 4** is graphical representation of the exemplary sample data showing total
4 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the first test
5 of vermicomposting.

6 **Figure 5** is graphical representation of exemplary sample data showing the total
7 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the control
8 sample of the second test of vermicomposting.

9 **Figure 6** is graphical representation of exemplary sample data showing the total
10 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the 30%
11 w/w application rate sample of the second test of vermicomposting.

12 **Figure 7** is graphical representation of exemplary sample data showing the total
13 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the 50%
14 w/w application rate sample of the second test of vermicomposting.

15 **Figure 8** is graphical representation of exemplary sample data showing the total
16 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the 70%
17 w/w application rate sample of the second test of vermicomposting.

18 **Figure 9** is graphical representation of exemplary sample data showing the total
19 petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) from the 100%
20 w/w application rate sample of the second test of vermicomposting.

21 **Figure 10** is graphical representation of exemplary sample data of the average
22 total petroleum hydrocarbon content detected by GC-FID (mg/kg dry weight) for all
23 application rates of the second test of vermicomposting.

24 **Figure 11** is graphical representation of exemplary data of the soil pH values at
25 the initial starting point (T=0) and endpoint (T=60 days).

26 **Figure 12** is graphical representation of exemplary data of the soil electrical
27 conductivity values at the initial starting point (T=0) and endpoint (T=60 days).

28 **Figure 13** is graphical representation of exemplary data of the soil soluble salt
29 content values at the initial starting point (T=0) and endpoint (T=60 days).

1 **Figure 14** is graphical representation of exemplary data of the soil ammonium
2 nitrogen concentration values at the initial starting point (T=0) and endpoint (T=60 days).

3 **Figure 15** is graphical representation of exemplary data of the soil nitrate nitrogen
4 concentration values at the initial starting point (T=0) and endpoint (T=60 days).

5 **Figure 16** is graphical representation of exemplary data of the soil nitrite nitrogen
6 concentration values at the initial starting point (T=0) and endpoint (T=60 days).

7 **Figure 17** is graphical representation of exemplary data of the soil phosphate
8 phosphorous concentration values at the initial starting point (T=0) and endpoint (T=60
9 days).

10 **Figure 18** is graphical representation of exemplary data of the soil barium
11 concentration values at the initial starting point (T=0) and endpoint (T=60 days).

12 **Figure 19** is graphical representation of exemplary data of the soil heavy metal
13 concentration values at the initial starting point (T=0) and endpoint (T=60 days).

14 **Figure 20** is graphical representation of exemplary data of the hydrocarbon
15 concentration values determined by GC-FID (mg/kg dry weight) over time. of the third
16 test of vermicomposting.

17

18

DETAILED DESCRIPTION OF THE INVENTION

19 A new synthetic-based fluid has been developed that minimizes environmental
20 impact and actually provides needed soil nutrients by replacing one or more of these four
21 major components with environmentally friendly materials. This fluid maintains the
22 excellent drilling engineering properties of conventional synthetic-based fluids and oil-
23 based fluids.

24 The following terms and phrases are used herein and are intended to have the
25 following meaning:

26 “ES” is Electrical Stability (API RP 13B-2), V;

27 “GC-FID” is Gas Chromatograph with Flame Ionization Detector;

28 “HTHP” is High Temperature, High Pressure;

29 “IC₅₀” is Concentration of Test Material at which the rate of bioluminescence of
30 bacteria used in a Microtox test is reduced by 50%;

1 "LP" is Linear Paraffin;
2 "OUR" is Oxygen Uptake Rate, mg/L/min;
3 "OWR" is ratio of [% Oleaginous Fluid] / [% Water], calculated so that the sum
4 of the two phases = 100%;
5 "ROC" is Retained Fluid on dried Cuttings, %w/w, and
6 "SOC" is Synthetic Fluid on Dried Cuttings, % w/w.

7 The present invention is directed to a biodegradable, low-toxicity drilling fluid to
8 facilitate (1) drilling a wellbore and (2) bio-remediation of the drill cuttings.

9 Oleaginous drilling fluids generally contain some components, such as excess
10 lime and clays, which are intrinsically beneficial to many soils. Low pH (< 5.5) is
11 detrimental to most agricultural crops, and often soil needs to be treated with an alkaline
12 material like lime to counter-act the effects of low pH. Clays can act as soil conditioners,
13 especially for sandy soil, by improving its texture and increasing its water-holding
14 capacity. In addition, some organics, especially those similar to humus, serve as nutrients
15 and conditioners.

16 The major components of conventional prior art oleaginous drilling fluids, on the
17 other hand, may not be so beneficial. Such components may include (a) oleaginous base
18 fluid; (b) non-oleaginous fluid; (c) emulsifier/surfactant package; and (d) weighting
19 agent. Any one of these may affect seed germination, plant growth and/or the life cycle
20 of native fauna, e.g. earthworms. The present invention overcomes these limitations by
21 formulating an invert emulsion drilling fluid that is suitable for bio-remediation.

22 The amount of oleaginous base fluid in the drilling fluid of the present invention
23 may vary depending upon the particular oleaginous fluid used, the particular non-
24 oleaginous fluid used, and the particular application in which the drilling fluid is to be
25 employed. However, generally the amount of oleaginous base fluid must be sufficient to
26 form a stable emulsion when utilized as the continuous phase. Typically, the amount of
27 oleaginous base fluid is at least about 30, preferably at least about 40, more preferably at
28 least about 50 percent by volume of the total fluid. The oleaginous base fluid may be any
29 oleaginous base fluid suitable for use in formulating an invert emulsion drilling fluid base
30 fluid, however it is important the oleaginous fluid be compatible with the bio-remediation

1 and biodegradation goals of the present invention. With this proviso in mind, the
2 oleaginous base fluid may include substances such as diesel oil, mineral oil, synthetic oil,
3 saturated and unsaturated paraffins, branched paraffins, ester oils, glycerides of fatty
4 acids, aliphatic esters, aliphatic ethers, aliphatic acetals, or other such hydrocarbons and
5 combinations of these fluids suitable for use in a drilling fluid. However, such a fluid
6 should preferably be substantially composed of paraffin. That is to say the predominant
7 component is preferably paraffin. Especially preferred are linear paraffins, and more
8 preferably linear paraffin having 11 to 18 carbon atoms. One preferred illustrative
9 embodiment of the present invention utilizes a commercially available C₁₁-C₁₈ linear
10 paraffin material sold under the tradename BIO-BASE 560, available from M-I LLC. of
11 Houston, Texas. Another preferred illustrative embodiment utilizes a commercially
12 available C₁₂-C₁₃ linear paraffin sold by Sasol.

13 The amount of non-oleaginous fluid in the drilling fluid of the present invention
14 may vary depending upon the particular fluid used, the particular oleaginous fluid used,
15 and the particular application in which the drilling fluid is to be employed. However,
16 generally the amount of non-oleaginous fluid must be sufficient to form a stable emulsion
17 when utilized as the internal phase, also known as the discontinuous phase, of the drilling
18 fluid. The internal non-oleaginous fluid generally is an aqueous solution containing one
19 or more of the following: a non-electrically conductive material, e.g. an alcohol including
20 glycerin, glycols, polyols; a salt containing a biodegradable anion, preferably formate ion
21 more preferably in the form of sodium formate, or acetate such as calcium magnesium
22 acetate (CMA); a salt containing a soil-nutrient-anion and possibly cation, preferably
23 nitrate ion in the form of calcium nitrate, ammonium calcium nitrate, or phosphate ion
24 preferably potassium pyrophosphate. In one preferred and illustrative embodiment of the
25 present invention, the non-oleaginous fluid is substantially free of halide ion. That is to
26 say, the amount of halide ion is such that the halide content is suitable for bio-remediation
27 and biodegrading of the drilling fluid or any resulting cuttings. In one illustrative
28 embodiment, the fluid is formulated such that halide-containing salts typically used in
29 drilling fluid formulation, (e.g. potassium chloride, potassium bromide, and other halide
30 salts) are not used in the formulation of the non-oleaginous phase. This results in a non-

1 oleaginous phase that does not substantially increase the halide salt content of the soil
2 into which the biodegraded drilling fluid or cuttings are applied. Typically the amount of
3 non-oleaginous fluid is less than about 90, preferably less than about 70, more preferably
4 less than about 50 percent by volume of the total fluid.

5 One illustrative version of the non-oleaginous fluid internal phase is a nitrate
6 brine. Another illustrative version uses acetate brine as the internal phase. A third
7 illustrative version of the internal phase is a blend of the nitrate and acetate brines. A
8 blend of acetate and nitrate salts of one illustrative embodiment was found to be
9 particularly suited for direct land treatment of muddy cuttings, inasmuch as the acetate is
10 intrinsically biodegradable while the nitrate accelerates the overall biodegradation
11 process.

12 As with the other components of the inventive drilling fluid formulation, the
13 emulsifier package utilized to stabilize the invert emulsion and maintain oil-wetting
14 character of the drilling fluid should be biocompatible and not adversely affect the
15 bioremediation process. That is to say the emulsifier package used to stabilize the
16 emulsion drilling fluid should be a biodegradable material. Further, the emulsifier should
17 be present in an amount sufficient to stabilize the invert emulsion so that the invert
18 emulsion can be used as a drilling fluid. Especially preferred in one illustrative
19 embodiment is euricid diglyceride, but other emulsifiers suitable for forming oleaginous
20 drilling fluids may also be used. Thus, in one illustrative embodiment, blends of
21 commercial emulsifiers, such as NOVAMUL and VERSAWET both available from M-I
22 Houston, Texas with euricid diglyceride are used to form stable invert emulsion suitable
23 for use as an invert emulsion drilling fluid.

24 In addition to the oleaginous fluid, non-oleaginous fluid and emulsifier package
25 used in the drilling fluids of the present invention, other components typical of oleaginous
26 drilling fluids, and well known in the art, may be used. For example, in one illustrative
27 embodiment, viscosifying agents, for example, organophilic clays, are employed in the
28 invert drilling fluid compositions utilized as part of the present invention. Other
29 viscosifying agents, such as oil soluble polymers, polyamide resins, polycarboxylic acids
30 and fatty acid soaps may also be employed. The amount of viscosifying agent used in the

1 composition will necessarily vary depending upon the end use of the composition.
2 Usually such viscosifying agents are employed in an amount which is at least about 0.1,
3 preferably at least about 2, more preferably at least about 3 percent by weight to volume
4 of the total fluid. In one exemplary drilling fluid an organophilic clay is used, preferably
5 an organophilic clay that is a high yield clay and tolerant to high temperatures. Especially
6 preferred in this illustrative embodiment is BENTONE 38 available from M-I Houston,
7 Texas.

8 Another typical additive to oleaginous drilling fluids that may optionally be
9 included in the oleaginous drilling fluids of the present invention are fluid loss control
10 agents such as modified lignite, polymers, oxidized asphalt and gilsonite. Usually such
11 fluid loss control agents are employed in an amount which is at least about 0.1, preferably
12 at least about 1, more preferably at least about 3 percent by weight to volume of the total
13 fluid. The fluid-loss reducing agent should be tolerant to elevated temperatures, and inert
14 or biodegradable. Especially preferred is ECOTROL available from M-I, Houston,
15 Texas.

16 The illustrative invert oleaginous fluids used and disclosed as being within the
17 present invention may optionally contain a weighting agent. The quantity and nature of
18 the weight material depends upon the desired density and viscosity of the final
19 composition. In one such illustrative embodiment, the weight materials utilized include,
20 but are not limited to, hematite, barite, ilmenite, calcite, mullite, gallena, manganese
21 oxides, iron oxides, mixtures of these and the like. The weight material is typically added
22 in order to obtain a drilling fluid density of less than about 24, preferably less than about
23 21, and most preferably less than about 19.5 pounds per gallon. The weighting agent
24 should be inert or innocuous to the conditions of bioremediation especially if the product
25 is to be dissolved by low-pH soil. In one such illustrative embodiment, hematite (FER-
26 OX) or calcium carbonate (SAFE-CARB) are selected as preferred weighting agent.
27 Hematite may provide iron to iron-poor soils. Barite as a weighting agent is less desirable
28 than other weighting agents especially if a formate salt is used in the internal phase. In
29 the presence of formate ion some soluble barium are formed (400 ppm was measured at
30 room temperature). Likewise, some dissolution barite may occur in low-pH

1 environments, such as acid soils, making the use of barite as a weighting agent less
2 desirable than other potential weighting agents.

3 One skilled in the art may readily identify whether the appropriate ingredients and
4 amounts have been used to form a useful oleaginous drilling fluid by performing the
5 following test:

6 OLEAGINOUS SLURRY TEST: A small portion of the formulated slurry is placed in a
7 beaker that contains an oleaginous fluid. If the slurry is an oleaginous, it will disperse in
8 the oleaginous fluid. Visual inspection will determine if it has so dispersed.

9 Alternatively, the electrical stability of the formulated slurry may be tested using a
10 typical emulsion stability tester. For this test, the voltage applied across two electrodes is
11 ramped upward, and, if the slurry is an invert emulsion, a surge of current will flow at the
12 voltage where the emulsion breaks. The voltage required to break the emulsion is a
13 common measure of the stability of such an emulsion. One of skill in the art should know
14 and understand that as the breakdown voltage increases, the stability of the invert
15 emulsion increases. Other tests for determining the formation and stability of an invert
16 emulsion drilling fluids are described on page 166 of the book, Composition and
17 Properties of Drilling and Completion Fluids, 5th Edition, H. C. H. Darley and George
18 Gray, Gulf Publishing Company, 1988, the contents of which are hereby incorporated by
19 reference.

20 One illustrative method of bioremediation of the drilling fluids and drilling
21 cuttings generated by using the fluids of the present invention includes the use of a
22 bioreactor. Bioreactor treatment is designed to provide accelerated aerobic or anaerobic
23 biodegradation in a controlled environment, and generally involves slurrification of the
24 biodegradable waste in water or other carrier fluid. In one such illustrative aerobic
25 bioreactor operation, the oleaginous drilling fluid-coated drill cuttings are dispersed in a
26 quantity of water, spiked with a bacterium designed to metabolize hydrocarbons, and the
27 entire slurry aerated continuously with air. The biodegradation rate is determined from
28 measurements of Dissolved Oxygen (DO) and Oxygen Uptake Rate (OUR).

29 The biodegradation process exhibits an induction period as the bacteria population
30 increases. This is manifested in the rapid increase of the Oxygen Uptake Rate. In one

1 illustrative example, simulated drill cuttings coated with a lab-prepared oleaginous slurry
2 prescribed by this invention were treated in an aerobic bioreactor at room temperature (e.g.
3 25 °C) using no additional nutrient and only moderate aeration. When the fuel (fluid on
4 the cuttings) depleted to a synthetic oil fluid on cuttings (ROC) of about 3% w/w (after
5 about 7 days), the rate of biodegradation peaked and began to fall rapidly. By 15 days,
6 ROC had fallen to < 1% w/w, and the rate had reached a plateau beyond which little
7 reduction in ROC is observed. By contrast, cuttings coated with a conventional diesel-
8 based mud with CaCl_2 brine internal phase exhibits a ROC of about 7% w/w even after
9 21 days.

10 Temperature is an important factor in optimizing the bioreactor process. Indeed,
11 increasing the temperature by about 10 °C (to 35 °C) cuts the time required for OUR to
12 drop to near-baseline levels (and ROC < 1% w/w) as shown in the graphical
13 representation of the exemplary data given in Figure 1. Increasing the temperature
14 beyond 35 °C results in little gain for most bacteria, and above 40 °C, hydrocarbon-
15 metabolizing bacteria generally begin to lose activity.

16 As important as the operating temperature is, efficient transport of oxygen and the
17 presence of other nutrients are equally important to efficient operation of a bioreactor.
18 Modifying the flow of air to ensure higher and more homogeneous values of Dissolved
19 Oxygen increases the biodegradation rate. Similarly, comminution of the cuttings and/or
20 introducing mechanical mixing can enhance the rate. Various nutrients, especially nitrate,
21 can also play a role in the degradation process. Spiking the mixture with a general-
22 purpose fertilizer (containing potassium and phosphate along with nitrate) produces
23 enhanced biodegradation rates, and maintaining a high fertilizer content produces higher
24 sustained biodegradation rates..

25 Another illustrative method of bio-remediation of the drilling fluid solids and
26 cuttings generated by using the fluids of the present invention is conventional
27 composting. During conventional composting, heat generated by microbial
28 decomposition is retained within a pile or compost vessel, and degradation of the material
29 occurs in a number of distinct phases according to the dominant types of bacteria at any
30 given time. The pile/vessel is initially colonized by mesophilic organisms that grow best

1 at ambient temperatures, but as the material degrades and heat builds up in the pile/vessel
2 (usually rising to 50°C within two to three days), they are superseded by thermophilic
3 organisms that thrive at high temperatures (50-60°C). These higher temperatures are
4 more favorable for rapid biodegradation and are used in some composts to kill potentially
5 harmful pathogens in a process similar to pasteurization. As only thermo-tolerant
6 organisms can survive at the higher temperatures, the microbial numbers start to decline,
7 and the composting material cools. At this stage anaerobic conditions may develop,
8 unless sufficient air is introduced. In the third stage, the material continues to cool and
9 the microorganisms compete for the remaining organic material, leading to a breakdown
10 of cellulose and lignins etc. During the final, maturation stage, levels of microbial
11 activity continue to decline as the remaining food is used up and the microorganisms die
12 off.

13 Whereas bioreactor treatment is generally a fluid process (slurrification of solid or
14 liquid biodegradable material), conventional composting primarily involves solids.
15 Windrowing (mechanical or manual turning of the material) and forced aeration of static
16 biopiles are the commonest methods, although there are also methods of mixing and
17 aerating the material based on rotating reactors. The rotary composting vessel has a small
18 footprint and can be used to continuously process the cuttings waste stream. The mixing
19 imparted by the gradual rotation of the drum (0.5 rpm) is enough to ensure adequate
20 aeration of the composting mixture. Use of an insulated drum improves heat retention of
21 the composting mixture and increases the rate of degradation. Oil-coated drill cuttings
22 may be mixed together with another solid organic substance that is also reasonably
23 readily degraded, e.g. straw or wood chips. This mixture may be supplemented with
24 nitrogen, phosphorous and possibly other organic nutrients.

25 The present invention is also directed to a method of bio-remediation of drill
26 cuttings using vermiculture, also called worm culture or vermicomposting. In particular,
27 the present illustrative embodiment provides a high efficiency process for the
28 biodegradation of drill cuttings using vermiculture and vermicomposting beds.
29 Vermiculture can provide worms as a raw material for an animal feed ingredient, live
30 worms for sport fishing, or for other product uses. Vermicomposting is the use of worms

1 to break down waste materials such as livestock manure and municipal waste. Generally,
2 worms consume inorganic and organic matter, digest and absorb largely organic matter,
3 and pass the remainder back to the soil. As a result of their feeding behavior, worms aid
4 in the breaking down of organic material within the material they consume. The activity
5 of worms also ventilates the soil and promotes bacterial and other microbial
6 decomposition processes.

7 Large-scale vermiculture typically uses beds in which large quantities of organic
8 material are worked by worms in a relatively stationary mode. The vermicomposting beds
9 also called windrows are tended to and the materials are provided in a batch process.
10 Turning or "freshening" of the beds by introduction of bedding materials is carried out
11 using specialized vermiculture farm machines well known to one of skill in the art. After
12 the organic material is substantially broken down, the worms and digested material are
13 separated and harvested.

14 The term "vermicomposting" as used here is understood to be the breakdown of
15 organic matter by the ingestion and digestion of the matter by worms. Vermicomposting
16 also includes the collateral biotransformation of such organic matter from the bacterial
17 action inherent in such systems. As such the present invention is also an apparatus and
18 process for worm production by exposing the worms to the compositions of the present
19 invention. There is believed to be at least hundreds of species of what are commonly
20 known as "red" worms in the vermicomposting technology. One example is the
21 *Lumbricus rubellus* another is *Esenia foetida*. Generally, the species of red worm is not
22 important to vermicomposting and while the red worms used to demonstrate the present
23 invention were *Esenia foetida*, other types will work equally, depending somewhat upon
24 the type of organic matter and environment. That is to say that other species of
25 earthworm may be used in addition or instead of "red" worms such as *Esenia foetida*. As
26 the term is used in the present description, "worm" is intended to include all types and
27 specie of earthworm that can be utilized in the vermi-composting of organic materials.

28 Methods of vermicomposting and vermiculture should be well known to one of
29 ordinary skill in the art. For example, U.S. Patent No. 2,867,005; 3,635,816; 4,262,633;
30 4,187,940; 5,451,523; 6,223,687; 6,654,903 all describe differing methods of

1 vermicomposting and vermiculture. The contents of each of these patents are hereby
2 incorporated herein by reference.

3 In the practice of the present illustrative embodiment, drill cuttings are blended
4 with a bulking agent to facilitate transport to the treatment site. Examples of such
5 bulking agent include: sawdust, wood shavings, rice hulls, canola husks, shredded
6 newsprint/paper; shredded coconut hulls, cotton seed hulls, mixtures of these and other
7 similar materials. The cuttings and bulking agent are preferably blended with a
8 compostable waste material prior to further treatment at the treatment site. Examples of
9 suitable compostable waste include yard or household wastes, food preparation or
10 processing wastes, paunch or rumen material or similar animal rendering wastes, sewage
11 sludge from a water treatment facility and mixtures of these and other similar materials.
12 The mixing process is carried out so as to give the optimum carbon:nitrogen:moisture
13 balance prior to spreading. Because the bio-remediation of the mixture is an aerobic
14 process, the optimum conditions for worm driven waste management of these materials is
15 75% (w/w) moisture, with a carbon nitrogen ratio of 25:1.

16 The mixture of drill cuttings and nitrogenous materials is then vermicomposted.
17 Preferably this is carried out by spreading the mixture onto windrows or
18 specialized/mechanical worm beds where the worms ingest the material further degrading
19 the cuttings and excreting the resulting worm cast which is collected and subsequently
20 used as a fertilizer or soil conditioner.

21 An optional intermediate stage carried out prior to spreading is to pre-compost the
22 cuttings mixture. Such pre-vermiculture pre-composting is carried out in a traditional
23 manner of composting organic materials. Such pre-composting treatment may be desired
24 for a number of reasons including: a) increase the rate of remediation by the action of
25 thermolytic micro-organisms and enzymes which make the organic material more
26 available to the degrading organisms; b) reduce the number of pathogenic micro-
27 organisms present in any of the other components of the mixture; c) to reduce the risk of
28 overheating (within the worm beds) through microbial action and thus reduce the activity
29 of the worms.

1 The methods of the present illustrative embodiment may be equally applied to the
2 treatment of either water-based or oil-based drilling fluids. Such fluids may typically
3 contain olefin, esters, acetals, glycol, starch, cellulose, fish and vegetable oils and
4 mixtures of these and other organic materials that require treatment prior to disposal. It is
5 important to note that the selection of such materials should preferably be limited to
6 materials that are not excessively saline or toxic to the worms. Treatment of such oilfield
7 wastes containing hydrocarbons or any other suitable organic components using the
8 methods of the present invention may be enhanced by a pre- or co-composting stage as
9 previously described.

10 It may also be possible to effect the scavenging of heavy metals from soils and
11 oilfield wastes based upon the worm's ability to bioaccumulate heavy metals. Preferably
12 this operation would be carried out prior to disposal and would work in a similar manner
13 to phytoremediation.

14 Use of alternative organisms and species, e.g. nematodes or other worm types is
15 also contemplated and is considered with the scope of the present invention. Such
16 alternative organisms include genetically modified worms with either enzymes for
17 degradation of problem pollutants or worms containing genetically modified bacteria able
18 to degrade problem pollutants at higher rates. Marine vermiculture utilizing organisms
19 able to work at much higher salt concentration and degrade marine pollutants is also
20 contemplated as being within the scope of the present invention.

21 The following examples are included to demonstrate illustrative embodiments of
22 the invention. It should be appreciated by those of skill in the art that the compositions,
23 formulations, and techniques disclosed in the examples which follow represent
24 techniques discovered by the inventors to function well in the practice of and thus are
25 illustrative of the present invention. As such the following examples can be considered to
26 be illustrative of the present invention and constitute preferred illustrative modes for its
27 practice. However, those of skill in the art should, in light of the present disclosure,
28 appreciate that many changes can be made in the illustrative embodiments which are
29 disclosed and still obtain a like or similar result without departing from the scope of the
30 invention.

1 All values associated with the formulations described below are grams unless
2 otherwise specified.

3 Example 1.

4 The following illustrative embodiment of the present invention demonstrates a
5 method of preparing the oleaginous drilling fluid, a suitable test procedure for operation
6 and monitoring of a lab-scale bioreactor, and biodegradability test results of oleaginous
7 base fluids.

8 Drilling Fluid Mixing & Testing Procedure

9 Test fluids were mixed with a Hamilton Beach (HB) mixer over a period of 1 hr,
10 and then exposed to high shear with a Silverson mixer set at 7000 rpm until the slurry
11 reached 150 °F. Property measurements consisted of initial API Electrical Stability (ES)
12 and API standard rheology at 150 °F. After heat-aging (rolling) the fluids for 16 hr at 250
13 °F, ES, rheology (again at 150 °F) and API standard HTHP fluid loss at 250 °F were
14 measured. The fluid density was approximately 13.0 lb/gal, OWR = 70/30, and the water
15 activity of the internal water phase = 0.86 to 0.76 (equivalent to 18 to 24% CaCl₂).

16 More rigorous testing included prolonged stability at 300 °F and resistance to the
17 following contaminants: drilled solids (35 lb/bbl OCMA Clay), seawater (10% v/v) and
18 weighting agent (increase of density from 13 to 15 lb/gal). For these tests the base fluid
19 was mixed in small amounts over a period of 1 hr on the Silverson at 7000 rpm,
20 maintaining the temperature at or below 150 °F. To three of the portions of base fluid,
21 one of the contaminants was added and mixed in with the HB mixer for 10 min. As
22 before, initial ES and rheology measurements were followed by heat-aging at 250 °F for
23 16 hr, then ES and rheology (at 150 °F) and HTHP fluid loss at 250 °F on half of a lab
24 bbl. The other half of a lab bbl of each sample was heat-aged at 300 °F for an additional
25 16 hr, and again ES, rheology (at 150 °F) and HTHP fluid loss (at 300 °F) were
26 determined.

27 Bioreactor Test Procedure

28 The bioreactor treatment is designed to provide accelerated aerobic
29 biodegradation in a controlled environment, and generally involves slurrification of the
30 biodegradable waste. Simulated soil is mixed with the drilling fluid to produce muddy

1 "cuttings", dispersed in a quantity of water, spiked with a bacterium designed to
2 metabolize hydrocarbons, and the entire slurry aerated continuously with air. The
3 biodegradation rate is determined from measurements of Dissolved Oxygen (DO) and
4 Oxygen Uptake Rate (OUR). The experimental procedure is as follows:

- 5 • Formulate 4.5 kg of simulated cuttings consisting of 1/3 Texas bentonite, 1/3 Rev
6 Dust and 1/3 Blast Sand #5 (70-140 mesh).
- 7 • Spike the cuttings with 1125 mL (1755 g) of mud.
- 8 • Add 10 L of aged tap water into the bioreactor, an inverted 5-gal water bottle with the
9 bottom cut out.
- 10 • Add 10 g of bacteria / L (~150 g).
- 11 • Slurry 900 g spiked soil with 10 L de-chlorinated tap water initially, add 900 g on day
12 2 and 1800 g on day 4 for a total concentration of about 3600 g/ 15 L or about 240 g/L
13 (18% solids w/w or 34% w/v).
- 14 • Provide vigorous aeration with aeration device that can provide up to 60 L/min of air.
- 15 • Conduct standard API retort analysis of cuttings to determine oil content on solids at
16 beginning and end of test.
- 17 • Conduct solvent extraction to determine oil content at the beginning and end of the
18 test for comparison with retort analysis.
- 19 • Determine OUR approximately once a day from measurements of Dissolved Oxygen,
20 using a Dissolve Oxygen meter.
- 21 • Once a week check pH and maintain in 6 - 9 range.
- 22 • Periodically check nitrogen, along with other potential nutrients.
- 23 • Continue running the retort until OUR drops to a negligible level.

24 All values associated with the formulations described below are grams unless
25 otherwise specified.

26 Environmental tests were carried out on the base fluids, several muds, and a few
27 samples of mud-coated cuttings before and after treatment in a bioreactor. The tests
28 consisted of the following: (a) biodegradability (respiration rate and hydrocarbon loss in
29 a reference moist soil); (b) phyotoxicity (alfalfa seed emergence and root elongation); (c)

1 earthworm survival; (d) springtail survival; and (e) Microtox (IC-50 on bioluminescent
2 bacterium *Photobacterium phosphoreum*).

Base Fluid Biodegradability Tests:

Tables 1 and 2 indicate the relative biodegradability and toxicity of various Base Fluids.

Table 1
Biodegradability of Various Base Fluids

Biodegradability of Various Base Fluids		
Treatment	% Reduction of Hydrocarbons	Biodegradability Rank
C ₁₁₋₁₄ LP	97	1
C ₁₂₋₁₇ LP	94	2
Ester	91	3
Isomerized tetradecene C ₁₄ (IO)	83	4
Diesel	61	5
Branched Paraffin	43	6

Table 2
Toxicity of Various Base Fluids*

Toxicity of Various Base Fluids*					
Treatment	Water Toxicity	Animal Toxicity	Alfalfa Phytotoxicity		Toxicity Rank
	Microtox IC ₅₀	% Earthworm Survival	% Seed Emergence	% Root Elongation	
Branched Paraffin	106	100	95	107	1
C ₁₁₋₁₄ LP	98.5	100	96	134	2
C ₁₂₋₁₇ LP	65.9	100	95	120	3
Isomerized tetradecene C ₁₄ (IO)	61.7	100	101	144	4
Diesel	10.3	0	7	2	5
Ester	5.9	0	0	0	6

* Seed Emergence and Root Elongation test results are normalized to Control test values of 100.

8 One of skill in the art will appreciate that the results of Table 1 indicate that diesel
9 and the branched paraffins are more resistant to rapid biodegradation than the other four
10 fluids. The toxicity data in Table 2 shows that the diesel, and unexpectedly the ester, are
11 considerably more toxic than the branched paraffin, linear paraffins (LP's) or isomerized
12 tetradecene internal olefin (IO) in all five tests. The Microtox test also showed some
13 differentiation between the C₁₂₋₁₇ LP and IO (higher toxicity) and C₁₁₋₁₄ LP and branched
14 paraffin (lower toxicity). This may occur inasmuch as higher molecular weight branched
15 fluids tend to exhibit lower acute toxicity in tests that focus on water-column toxicity.

The toxicity of the ester may be explained by its biodegradation behavior. GC-FID analysis of soil extracts from all six fluids shows that only the ester produces non-volatile

intermediate degradation products, including toxic materials like hexanol, 2-ethyl hexanol, 2-ethyl hexanoic acid and 2-ethylhexyl 2-ethylhexanoate. These intermediate products constituted about 30% of the ester lost through biodegradation.

4 Example 2

5 The following illustrative embodiment of the present invention demonstrates that
6 the oleaginous drilling fluids of the present invention are useful as drilling fluids.

7 Standard fluid properties of three 13 lb/gal, 70/30 SWR (Synthetic/Water Ratio)
8 formulations, one with an acetate brine (Formulation A), one with a nitrate brine
9 (Formulation N) and the other a nitrate/acetate blended brine (Formulation NA) are
10 shown in Table 3. A conventional high-performance diesel-based mud with CaCl_2 brine
11 internal phase gives standard properties that are very similar. The three formulations in
12 Table 3 were also hot-rolled for 16 hr at 300 °F, as well as 250 °F with essentially no
13 degradation in rheology or electrical stability (ES).

Biodegradability and toxicity of Formulations A and N are contrasted with those of typical diesel/CaCl₂/barite fluid in Table 4. The leading rate on the test soil in Table 4 was 6% w/w. These results show that fluids A and N both are consistently more biodegradable and much less toxic than the diesel mud. In comparing formulation A with a similar formulation weighted with barite (instead of hematite), biodegradability and toxicity appear to be similar for the two fluids. However, a soil-enhancing iron source is considered desirable for its long-term potential benefits.

Except for the Springtail survival data, Formulation A showed consistently lower toxicity than Formulation N. This trend appears to correlate with the trend in electrical conductivity (EC) measured after the biodegradation test, i.e. after 65 days. Thus, a fluid with a higher EC may generally give a higher toxicity, i.e. toxicity increases with increasing ionic strength. That Formulation A gives such a low EC is thought to be the result of relatively rapid biodegradation of the acetate ion.

The toxicity data for the fluid formulation in Table 4 indicate that the % Root Elongation observed for Formulation A is nearly 50% greater than or the control. This suggests that Formulation A may serve to enhance some aspects of the quality of the soil.

204120 "24125200T.7

1

Table 3
Standard Properties of two Paraffin-Based Fluids

Component (g)	Formulation A	Formulation NA	Formulation N			
BIO-BASE 560	144	143.7	143.5			
BENTONE 38	5.0	5.0	5.0			
Lime	3.0	3.0	3.0			
ECOTROL	5.0	5.0	5.0			
NOVAMUL	8.0	8.0	8.0			
VERSAWET	2.0	2.0	2.0			
CMA Brine	97.0	-	-			
50/50 Brine Blend at 1.27 SG (28% by wt CMA and 50% by wt ENVIROFLOC)	-	115.1	-			
ENVIROFLOC Brine (40% by wt at 1.20 SG)	-	-	112.9			
FER-OX	283	267.1	263.9			
Rheology at 150°F	Initial	Hot Rolled*	Initial	Hot Rolled*	Initial	Hot- Rolled*
600 rpm	55	50	61	51	52	42
300 rpm	31	28	39	30	30	23
200 rpm	24	22	31	22	21	15
100 rpm	15	14	21	14	15	10
6 rpm	6	5	9	5	6	4
3 rpm	5	4	8	4	5	3
PV, cp	24	22	22	21	22	19
YP, lb/100 ft ²	7	6	17	9	8	4
10-Second Gel	6	6	8	6	6	5
10-Minute Gel	9	7	10	6	6	5
Electrical Stability, Volts	171	199	320	263	314	242
Internal Phase Water Activity	0.86		0.76		0.77	
HTHP Filtrate at 250°F, mL	-	1.8 est.	-	2.0	-	0.8
Filtrate Water, mL		Trace		Nil		Nil

2 * Hot-Rolled for 16 hr at 250 °F

3 One of skill in the art will appreciate that the fluids above may be useful in
4 drilling a wellbore.

5 Example 3

6 The following illustrative embodiment of the present invention demonstrates the
7 use of a bioreactor for the bioremediation of drilling cuttings.

8 Simulated drill cuttings thoroughly coated with Formulation N were slurried and
9 treated in the lab bioreactor at room temperature (25 °C). No nutrients were added and
10 only moderate aeration was used. The level of retained fluid on cuttings (ROC) was
11 initially about 11 % w/w. A graphical representation of the exemplary results is shown in

1 Figure 2. Ecotoxicity data, with a loading rate on the test soil of 6% w/w are shown in
 2 Table 4
 3

Table 4 Biodegradability, Toxicity & Electrical Conductivity of Formulations and Treated Cuttings 6% w/w Loading on Topsoil from Southern Alberta Grassland							
	Biodegrad -ability (65 days)	Animal Toxicity		Alfalfa Phytoxicity*			Relative Electrical Conductivity (after 65 days)
System	% Loss of Extractable Hydro- carbons	% Springtail Survival	% Earthworm Survival	% Seed Emergence	% Root Elongation	% Shoot Mass	
Formulation A	98	80	100	100	149	97	1.0
Formulation N	98	87	93	4	11	47	4.0
Std. Diesel/ CaCl ₂ / Barite Formulation	68	0	0	3	8	25	4.9
Formulation A with Barite	99	90	100	100	108	105	0.8
Bioreactor-Treated Cuttings, Form. NA	-	93	100	109	134	129	-
Bioreactor-Treated Cuttings, Form.N	-	73	100	113	116	121	3.9

4 *Phytotoxicity test results are normalized to Control test values of 100.

5 One skilled in the art may appreciate that the biodegradation process exhibits an
 6 induction period as the bacteria population increases. This may be manifested in the
 7 rapid increase of the Oxygen Uptake Rate (OUR). When the fuel (mud on the cuttings)
 8 depletes to an ROC of about 3% w/w (after about 7 days), the rate of biodegradation
 9 peaks and begins to fall rapidly. By 15 days, ROC has fallen to < 1% w/w, and the rate
 10 has reached a plateau beyond which little reduction in ROC is observed. By contrast, a
 11 conventional diesel-based mud with CaCl₂ brine internal phase exhibited a ROC of about
 12 7% w/w even after 21 days. The phytotoxicity results indicate that both sets of cuttings,
 13 when pre-treated in the bioreactor, may promote germination and growth of alfalfa seeds.
 14 Bioreactor-treating cuttings appear to enhance the quality of the soil.

1 Example 4

2 The following illustrative embodiment of the present invention demonstrates the
3 use of a bioreactor for the bioremediation of drill cuttings from the field.

4 In a field trial, a C₁₂₋₁₃ LP-based drilling fluid was used to drill three intervals (16"
5 to 8-1/2") of a well in record time. The fluid had OWR of 75/25 and was weighted up to
6 16 lb/gal with barite. To determine the suitability of direct land treatment of the drilled
7 cuttings, a batch of the mud-laden cuttings from the shale shaker was subjected to alfalfa
8 seed germination tests. The cuttings were determined to have an initial loading of about
9 6% base fluid (ROC) by dry weight of cuttings. The 6-day long tests were run in
10 triplicate with 20 seedlings each, using 100% soil as a control and three ratios of % Soil /
11 % Cuttings: 95/5, 75/25 and 50/50. Seedling survival rates (% Viability) and growth
12 rates (% Length) are reported relative to the cuttings-free soil sample in Table 5. The
13 statistical t-test probability figures assume a two-tail distribution of the data; numbers less
14 than about 0.05 are considered significant. The results indicate that there is little or no
15 effect of the cuttings on the health of the alfalfa seedlings until the % Soil / % Cuttings
16 ratio reaches 50/50. Slight reductions in survival and growth rates for the cuttings-loaded
17 soil samples, though not highly significant (statistically), may be related to change in the
18 soil texture, a condition which could be improved by addition of sand and peat.

Table 5 Untreated Field Cuttings from New Zealand Field Trial with Formulation N (with Barite)							
	Control	% Soil : % Cuttings					
		95:5		75:25		50:50	
		Untreated	Treated	Untreated	Treated	Untreated	Treated
Avg. Viability (%)	100	94	98	100	94	88	86
Avg. Plant Length (%)	100	109	96	88	91	40	91
Probability that Deviation from Control due to Chance	1.0	0.62	.23	0.19	.08	0.00005	.08

19

20 Alfalfa seed germination tests were conducted on the bioreactor-treated field
21 cuttings. As shown in Table 5, pre-treatment of the cuttings in the bioreactor did not
22 significantly affect the viability or growth rate in the 95/5 and 75/25 tests, but it
23 significantly improved the growth rate of the seedlings for the problematic 50/50 case.
24 Thus, up to a loading of at least 75/25, pre-treatment of the cuttings is probably not

1 necessary, whereas higher loadings may require the kind of pretreatment afforded by a
2 bioreactor.

3 Example 5The following illustrative example of the present invention demonstrates the
4 use of conventional thermal composting processes in the bioremediation of drilling
5 cuttings.

6 Muddy drilled cuttings are mixed together with another solid organic substance
7 that is also reasonably readily degraded, e.g. straw or wood chips. This mixture is
8 supplemented with nitrogen, phosphorous and other organic nutrients. Drill cuttings
9 (Oxford Shale 5-10 mm diameter) were coated with 10% w/w drilling fluid (Formulation
10 N), 40% moisture content, and a carbon to nitrogen ratio of approximately 30:1.
11 Naturally-occurring bacteria were used for these tests. Graphical representations of
12 exemplary results are shown in Figure 3. One of skill in the art will appreciate that the
13 results show reduction in the hydrocarbon content of the composted cuttings over a period
14 of 42 days and show signs of the life cycle described earlier.

15 **Vermi-composting:** The fluids of the following illustrative and exemplary
16 embodiments generate drill cuttings that were tested for biodegradation using vermi-
17 composting. The drilling fluids of the present invention were evaluated for their technical
18 performance and thoroughly tested for drilling performance prior to environmental testing
19 which included the following tests:

20 Alfalfa seed emergence and root elongation.

21 Earthworms (*Esenia fetida*) toxicity

22 Springtail (*Folsomia candida*) toxicity.

23 Microtox toxicity

24 Biodegradability (Respiration rate and hydrocarbon loss in moist soil.)

25 The primary selection factor for the drilling fluid was enhancement of production
26 from tight gas sands, an additional criteria being the increased shale inhibition available
27 from the use of synthetic fluids when compared to water-based fluids. This reduces the
28 risk of well bore stability problems that had been experienced in previous wells.
29 Additional benefits include increased rates of penetration and the provision of fluid
30 stability for high-pressure formations and subsequent high-weight requirements.

1 Example 6. The following illustrative example demonstrates the utility of the
2 drilling fluids of the present invention in drilling subterranean wells. A synthetic-based
3 drilling fluid used employed a linear paraffin as the base fluid, calcium ammonium nitrate
4 brine as the internal phase, eurisic diglyceride as the emulsifier and barite as the
5 weighting material. The fluid formulation is provided below in Table 6 in which the
6 amounts are given in pounds per barrel (ppb).

7

Table 6

<u>Fluid Formulation</u>			A	B
Base Oil	Sasol C ₁₂ -C ₁₃ paraffin,	ppb	160.17	158.99
Primary Emulsifier	Novamul,	ppb	8.00	8.00
Wetting Agent	Versawet,	ppb	2.00	2.00
Fluid Loss Additive	Novatec F,	ppb	1.00	1.00
Rheology Modifier	Versamod,	ppb	1.00	2.00
Organophillic Clay	VG-Plus,	ppb	6.00	8.00
Alkalinity Control	Lime,	ppb	6.00	6.00
Water	Water,	ppb	47.77	47.42
Other	NH ₄ Ca(NO ₃) ₃ ,	ppb	32.30	31.96
Weight Material	M-I Bar,	ppb	239.87	238.63

8

9

In the above formulation:

10 Sasol C₁₂-C₁₃ paraffin is a mixture of linear C₁₂₋₁₃ parafin available commercially
11 from Sasol.

12 NOVAMUL is a emulsifing agent used with the NOVA PLUS system available
13 commercially from M-I LLC of Houston Texas.

14 VERSAWET is a wetting agent available commercially from M-I LLC of
15 Houston Texas.

16 VERSAMOD is a LSRV agent available commercially from M-I LLC of Houston
17 Texas.

18 NOVATECH F is a fluid loss control agent available commercially from M-I LLC
19 of Houston Texas

20 VG-Plus is an organophilic clay viscosifying agent available commercially from
21 M-I LLC of Houston, Texas.

1 MI Bar is a barite based weighting agent available commercially from M-I LLC of
2 Houston Texas.

3 Lime is commercially acceptable grade of calcium hydroxide commonly available.

4 Calcium Ammonium Nitrate is a commercially acceptable grade commonly a
5 available.

6 The technical performance of the new fluid system was assessed in the laboratory
7 prior to use in the field. These tests were conducted substantially in accordance with the
8 procedures in API Bulletin RP 13B-2, 1990 which is incorporated herein by reference.
9 The following abbreviations may be used in describing the results of experimentation:

10 "E.S." is electrical stability of the emulsion as measured by the test described in
11 Composition and Properties of Drilling and Completion Fluids, 5th Edition, H. C. H.
12 Darley, George R. Gray, Gulf Publishing Company, 1988, pp. 116, the contents of which
13 are hereby incorporated by reference. Generally, the higher the number, the more stable
14 the emulsion.

15 "PV" is plastic viscosity that is one variable used in the calculation of viscosity
16 characteristics of a drilling fluid, measured in centipoise (cP) units.

17 "YP" is yield point that is another variable used in the calculation of viscosity
18 characteristics of drilling fluids, measured in pounds per 100 square feet ($\text{lb}/100\text{ft}^2$).

19 "AV" is apparent viscosity that is another variable used in the calculation of
20 viscosity characteristic of drilling fluid, measured in centipoise (cP) units.

21 "GELS" is a measure of the suspending characteristics, or the thixotropic
22 properties of a drilling fluid, measured in pounds per 100 square feet ($\text{lb}/100\text{ ft}^2$).

23 "API F.L." is the term used for API filtrate loss in milliliters (ml).

24 "HTHP" is the term used for high temperature high pressure fluid loss at 200°F,
25 measured in milliliters (ml) according to API bulletin RP 13 B-2, 1990.

26 The initial properties of the fluid were measured and then the fluid was aged at
27 250 °F for 16 hours with rolling. The rheology of the initial fluid and the aged fluid were
28 measured at 120 °F. Representative data is given below in Table 7:

Table 7

Fluid Properties	Fluid A Initial	Fluid A Aged	Fluid B Initial	Fluid B Aged
Mud Weight (SG)	1.44	1.44	1.44	1.44
600 rpm Rheology	44	41	55	54
300 rpm Rheology	29	26	35	33
200 rpm Rheology	19	19	27	25
100 rpm Rheology	14	12	19	16
6 rpm Rheology	6	5	10	7
3 rpm Rheology	6	5	9	7
PV., cP	15	15	20	21
YP, lb/100 Ft ²	14	11	15	12
10 s. Gel, lb/100 ft ²	8	7	14	11
10 min, Gel, lb/100 t ²	11	11	19	20
HTHP @ 250°F, cc/30	2.4	2.0	2.8	2.4
ES @ 120°F, Volts	658	210	795	422

1

2 Upon review of the above data, one of ordinary skill in the art should appreciate
3 that the above formulated fluid is useful as an oleaginous drilling fluid.

4 The fluid was introduced in a field where high weight water-based muds from 16
5 – 19 lb/gal were traditionally used at depths from around 1000 m with hole problems
6 experienced, including but not limited to: extremely reactive plasticene clays, squeezing
7 up the inside of the casing; formation of “mud rings”; significant borehole ballooning;
8 high background gas and gas kicks; numerous hole packoffs due to tectonics, *e.g.* 3 – 4-
9 in. pieces of wellbore popping off into the annulus; minimal hole tolerance to formation
10 pressure balance, *i.e.* a fine line between gains and losses; fluid rheology problems at high
11 weights; induced fractures due to ECD’s; water flows; no logs successfully run; difficulty
12 in running casing; and / or resultant fluid cost contributed to 30% of the AFE Total well
13 budget

14 Eleven wells had been drilled in the area with water-based mud and all
15 experienced extensive hole problems. Alternative systems were considered and the newly
16 engineered “bioremediation friendly” drilling fluid of the present invention was chosen
17 based on the selection criteria discussed previously.

1 Well 1 was drilled using a prior art silicate-based system and resulted in three
2 stuck pipe incidents, two sidetracks, significant torque and overpull, ballooning from
3 plastic clays, numerous packoffs, high rheologies due to excessive MBTs, and difficult
4 wiper trips. The well never reached total depth and had to be plugged and abandoned due
5 to poor hole conditions. It took 28 days to drill to 1150 m.

6 Well 2 was drilled with a drilling fluid formulated according to the teachings of
7 the present invention as noted above. The results surpassed reasonable expectations of
8 performance by one of skill in the art. A depth of 2544 m was achieved in only 34 days.
9 No drilling problems were experienced and torque and drag was reduced. The hole was
10 successfully logged with the caliper indicating gauge hole, and hole integrity was
11 maintained during a five-day, open-hole testing program. This had not been achieved in
12 previous wells and was unexpected and surprising.

13 Additional wells have since been drilled in this area using the same fluid and with
14 minimal hole problems and cheaper overall drilling fluid costs compared to the previous
15 water-based muds wells. The paleontology results are the best the operator has seen and
16 all holes have reached total depth with efficient casing runs and logging. Hole conditions
17 are still difficult but the combination of experience; good drilling practice and the
18 “bioremediation friendly” synthetic mud system has contributed to a successful ongoing
19 drilling program. Skin irritation levels are very low by comparison with other synthetic
20 and oil-based systems that have been used in other countries. However, strict adherence
21 to a good occupational hygiene program including barrier cream, nitrile gloves and
22 disposable coveralls greatly reduces the chances of irritations. The resulting drill cuttings
23 were mixed with sawdust and/or wood shavings (45% w/w) at the rig site to facilitate
24 transport and then delivered for bioremediation.

25 Example 7

26 The present illustrative example demonstrates the utility of using the drilling
27 fluids of the present invention in drilling subterranean wells. An advantage of this
28 illustrative example was the fact that the fluid was used in an 8½-in. sidetrack of a
29 wellbore, originally drilled with a potassium chloride/Glycol water-based mud, thus
30 permitting direct comparison of conditions and performance.

1 According to prior field practice, drilling fluid weights for wells in this area are
2 9.2 – 11 pounds/gallon (lb/gal.) using highly inhibitive water-based muds. Although hole
3 problems were generally less in this area compared to the area drilled in the Example A,
4 there were still significant challenges that were difficult to overcome using the prior
5 practice including: highly reactive, tectonically stressed shale bands, causing excessive
6 cavings; interbedded clays dispersing into the system and creating concerns with
7 rheology; slow rate of penetration through the lower section of the hole; considerable
8 borehole breakout due to openhole exposure time; seepage losses to limestone; coal
9 stringers; excessive trip times due to reaming and back reaming of open hole sectioning.

10 Using a prior art water-based drilling mud, an 8½-in. hole was drilled in 47 days
11 using a water-based mud, including a four-day fishing run, with a section length of 3005
12 m. Average rate of penetration through the lower section of the hole was 2 – 4 m/hr.
13 Hole washout was extensive and difficult trips were experienced. The logs could not be
14 run to the bottom. The high MBT of the system required increased dilution requirements.

15 After plugging back the well and displacing to the fluids of the present invention,
16 the hole was drilled ahead. A synthetic-based drilling fluid was used and employed a
17 linear paraffin as the base fluid, calcium ammonium nitrate brine as the internal phase,
18 and barite as the weighting material. The fluid formulation is provided in the previous
19 example.

20 Drilling was fast and 22 days into drilling, the depth was greater than that of the
21 original well, reducing 26 days off the previous time curve. By day 25, the well had
22 reached a depth of 4800 m with no hole problems experienced, minimal overpull and
23 drag, and no logging or tripping incidents. The logs revealed an in-gauge hole. The
24 drilling mud formulation and fluid system was stable. The cuttings were collected in a
25 direct collection bin at the base of the auger outlet and transferred to a truck after
26 blending with bulking material (sawdust and/or wood shavings) to facilitate transport.
27 The resultant reduction in rig downtime considerably offset the costs incurred by using
28 the drilling fluids of the present invention. The resulting drill cuttings were mixed with
29 sawdust and/or wood shavings (45% w/w) at the rig site to facilitate transport and then
30 delivered for bioremediation.

1 Example 8.

2 Vermicomposting of Drill Cuttings

3 The following illustrative test examples demonstrate the feasibility of utilizing
4 vermicomposting for the bioremediation of drilling cuttings. Drill cuttings were
5 recovered in a routine manner from the drilling of above noted test wells. Components of
6 the drilling fluid have been previously discussed above.

7 **First Test:** This first test was conducted to determine the viability of
8 vermicomposting for the bioremediation of drilling cuttings. The drill cuttings were
9 mixed with sawdust and/or wood shavings (45 % w/w) or other similar cellulose based
10 material to facilitate transport and then delivered to the vermiculture site where they were
11 blended with paunch waste from a slaughter house before being fed to the worm beds.
12 The mixture of drill cuttings, saw dust and paunch waste is formulated to ensure that the
13 correct proportion of carbon, nutrients and moisture are present. This blending step is an
14 important precursory step in the vermicast production as the quality of the “feedstock”
15 ultimately impacts upon the potential for optimal conditions to exist during the resultant
16 vermicasting process. Because the bio-remediation of the mixture is an aerobic process,
17 the optimum conditions for worm driven waste management of these materials is 75%
18 (w/w) moisture, with a carbon nitrogen ratio of 25:1

19 Once the blended material has been prepared it is loaded into a watertight wagon
20 for application as “feedstock” for the worms to process in mounds referred to as
21 “windrows”. Each of these windrows is approximately 88 meters long by approximately
22 3 meters wide. There are approximately two meters wide access tracks between each of
23 the windrows for access of the feed-out wagon to apply the mixed material, and also to
24 allow for ongoing maintenance of the windrows and the subsequent vermiculture
25 production processes.

26 The blended material is applied to the center/top of windrows, typically at an
27 average depth of 15-30mm on a weekly basis. The exact application rate depending upon
28 climatic conditions. Generally the application rate was higher in summer than winter.
29 The worms work the top 100mm of each windrow, consuming the applied material over a
30 five to seven-day period.

1 The windrows are aerated prior to each feeding procedure ensuring aerobic
2 conditions within all of the beds. This aerator is attached to the linkage on the tractor and
3 side arms guide any material (vermicast) back onto the beds ensuring no windrow
4 exceeds the width to be covered by the covers themselves

5 Each of the windrows is covered with a windrow cover, preferably a fiber mat
6 with polypropylene backing. The covering allows for the necessary exclusion of light and
7 avoids excessive wetting conditions occurring within the windrow, thus assisting in
8 maintaining an optimally controlled environment in which the worms produce their
9 castings. Controlled irrigation systems are periodically used on each the windrows to
10 keep the covers moist to maintain a damp but not "wet" environment. The covering
11 should be secured to prevent the cover from being removed by the elements. For
12 example, each side of the preferred polypropylene/fiber matting is fitted with a D12 steel
13 rod to act as a weight to stop wind lifting the covers off the bed.

14 Consumption rates can vary and are 100% of the worms body weight/day in the
15 seasons of spring and autumn and 40% during the extremes of winter and summer. As a
16 result, the volume and feed application rates and other important potential variables
17 including the temperature, moisture content, pH, population dynamics, aerobic
18 maintenance, and vermicast extraction techniques, are each required to be carefully
19 monitored and varied accordingly. One of skill in the art of vermicomposting and
20 vermiculture should be able to systematically vary each of these parameters in order to
21 optimize the conditions within any particular windrow to maximize the bio-remediation
22 process.

23 **First Test Sampling and Analytical Procedures:** 50-cc Grab samples were
24 taken at time zero and then at approximately weekly intervals throughout the course of
25 the test. Samples were transported by overnight courier to the analytical laboratory where
26 they were stored at 4°C prior to analysis. Tests for total petroleum hydrocarbons content
27 according to the New Zealand Oil Industries Environmental Working Group (OIEWG)
28 guidelines and recommendations.

29 Once in the laboratory the samples were ground with dry ice (Cryogrinding) prior
30 to sub-sampling and subsequent analysis. Samples for total petroleum hydrocarbons

1 determination were extracted using dichloromethane and sonication. The extracted
2 samples were then dried with silica prior to analysis by GC-FID the detection limit of the
3 procedure used by the laboratory being 60 mg/kg.

4 Data that is exemplary of the results of this study is presented below in Table 8

5

Table 8

Hydrocarbon content (GC-FID) (OIEWG carbon bands; mg/kg dry wt.)									
	Cuttings + Sawdust	0	4	10	13	19	21	28	Days
C ₇ -C ₉	<600	<80	<50	<8	<7	<7	<20	<20	
C ₁₀ -C ₁₄	41300	4600	2700	140	127	82	<30	<40	
C ₁₅ -C ₃₆	<2000	<300	<200	<30	40	<30	<60	<80	
Total	41000	4600	2700	150	170	110	<100	<100	

6

7 The data from Table 8 for the total hydrocarbon content is shown graphically in
8 Figure 4.

9 **First Test Results:** In the first test the hydrocarbon concentrations decreased
10 from 4600 mg /kg (dry wt) to less than 100 mg/kg (dry wt) in under 28 days with less
11 than 200 mg/kg (dry wt) remaining after 10 days in what appears to be a fairly typical
12 exponential type degradation curve Figure 4.

13 The bulk of the hydrocarbons detected comprised C₁₀ – C₁₄ aliphatic
14 hydrocarbons which is in good agreement with the carbon chain length distribution of the
15 C₁₂ – C₁₇ linear paraffin blend used in this drilling fluid and indicates that there were no
16 external sources of contaminating hydrocarbons.

17 There was no detectable excess mortality amongst the worms that the drill
18 cuttings were fed to and although the numbers were not quantified, there appeared to be a
19 definite preference among the worms for the area where the cuttings and paunch feed had
20 been applied. It is not clear if this was due to the hydrocarbons attracting the worms or
21 the increased availability of easily assimilated organic carbon/microbial biomass that
22 would be associated with the highly biodegradable linear paraffins of the drill cuttings.

23 It was also noted that there was complete physical degradation of the cuttings by
24 the vermidigestion process and none of the original intact cuttings could be found, the
25 original cuttings size being 5 –10 mm in diameter.

Upon review of the above data, one of ordinary skill in the art of bio-remediation should understand and appreciate that the vermicomposting process of the present invention has substantially reduced the hydrocarbon content of the drill cuttings.

Second Test: In this second test, variable amounts of drilling cuttings were mixed with the rumen material so as to determine the most suitable conditions for vermicomposting of drilling cuttings. The drilling cuttings utilized were conventionally recovered from the test wells noted above and processed to form vermicultre feed mixtures. The varying mixtures were applied to the windrows during vermiculture sites local Summer time as indicated below in Table 9.

Table 9 Experimental design summary		
		Description
Treatment 1	Bed #4	Control, no drill cuttings, Paunch only
Treatment 2	Bed #2	30:70 (w/w) drill cuttings: paunch material
Treatment 3	Bed #3	50:50 (w/w) drill cuttings: paunch material
Treatment 4	Bed #5	70:30 (w/w) drill cuttings: paunch material
Treatment 5	Bed #1	100% drill cuttings; no paunch

Drill cuttings were mixed with sawdust (45% w/w) to facilitate transport and then delivered to the vermiculture site. At the vermiculture site the drill cuttings mixed with sawdust was blended with paunch waste (undigested grass) from a slaughterhouse before being fed to the worm beds using an agricultural feed-out wagon of the sort used for feeding silage to livestock.

Successful degradation of organic materials by worms was obtained by providing optimum environmental conditions for the worms, including a carbon nitrogen ratio (25:1) and moisture content (75%). The drill cuttings were blended and mixed with the paunch material at variable ratios and then combined with water giving a 50:50 v/v water: solids slurry that could be evenly distributed from the feedout wagon. Blending and mixing of the drill cuttings, paunch wastes, green wastes and water was performed on a bunded concrete pad that is approximately 30 m by 15 m in diameter, giving 450 m² for controlled waste mixing and was carried out in a Marmix combined mixing and feedout wagon, the three internal augers of the trailer being used to ensure thorough mixing.

1 Once the blended material had been prepared it was loaded into a watertight "feed
2 out" wagon for application as "feedstock" for the worms to process in mounds referred to
3 as "windrows". The windrows were 88 m in length by 3 m wide. There are two meter-
4 wide access tracks between each of the windrows for access of the feed-out wagon to
5 apply the mixed material, and also to allow for ongoing maintenance of the windrows and
6 the subsequent vermiculture production processes.

7 The blended material was applied to the center/top of the windrows, usually once
8 a week at an average depth of 15-30 mm. The exact application rate depends upon
9 climatic conditions and is higher in summer than winter. The worms "work" the top 100
10 mm of each windrow, consuming the applied material over a five to seven-day period.
11 Once the test materials had been applied the worm beds were fed on a weekly basis with
12 unamended paunch material as part of the normal worm driven waste management
13 routine carried out at the site.

14 Each of the windrows was covered completely by a polypropylene-backed felt mat
15 which excludes light from the worm bed and, although semi permeable to water, the
16 polypropylene backing deflects heavy rainfall away from the surface of the bed and
17 prevents the windrow from becoming waterlogged. This preferred practice maintains an
18 optimum aerobic environment the worms to work in.

19 The windrows were also fitted with a controlled irrigation system that could be
20 used to keep the covers moist and maintain the correct moisture content during periods of
21 low rainfall.

22 As the use of worms for degradation of the mixture is an aerobic process the
23 windrows are aerated prior to each feeding procedure to ensure aerobic conditions within
24 all of the beds and maintain optimum conditions for the worms and their associated
25 microbial processes. The aerator is attached to the power take-off linkage on the tractor
26 and side arms guide any material (vermicast) back onto the beds, ensuring no windrow
27 exceeds the width to be covered by the felt mat.

28 Once the worms had degraded the waste and converted the applied material into
29 vermicastings (worm castings), the vermicast organic fertilizer was harvested using an

1 industrial digger and was then packaged for distribution and use on agricultural and
2 horticultural land as a beneficial fertilizer and soil conditioner.

3 **Second Test Sampling and Analytical Procedures:** Triplicate core samples
4 were taken randomly and on an approximately weekly basis from a (6m x 3m) sub section
5 of each of the 5 research windrows using 60 mm diameter plastic core tubes. The core
6 tubes were "screwed" all the way to the base of the windrow to ensure the sample
7 contained any hydrocarbon material that might have migrated vertically down through the
8 windrow, either as a result of leaching or mechanical or biological movement and
9 transport.

10 All samples were analysed for total petroleum hydrocarbons content with more
11 detailed soil chemistry and heavy metal analysis being performed on the time zero and
12 60-day (termination) samples to study the effect of the process on nutrient and heavy
13 metal concentrations. Seasonal variations in temperature were recorded, as they are
14 climatic factors that could influence rates of hydrocarbon degradation in the worm beds.

15 The following Table 10 gives a summarized description of the methods used to
16 conduct the analyses in this illustrative example. The detection limits given below are
17 those attainable in a relatively clean matrix. Detection limits may be higher for individual
18 samples should insufficient sample be available, or if the matrix requires that dilutions be
19 performed during analysis.

20

Table 10

Parameter	Method Used	Detection Limit
pH	1:2 water extraction of dried sample. pH read directly.	0.1 pH Units
Electrical Conductivity (EC)	1:2 water extraction of dried sample. Measured conductivity at 25 °C	0.05 mS/cm in extract
Soluble Salts*	Calculation: measured EC (mS/cm) x 0.35.	0.02 g/100g
Total Nitrogen*	Determined by Dumas combustion procedure using Elementar VarioMAX instrument.	0.02 g/100g dry wt
Total Carbon*	Determined by Dumas combustion procedure using Elementar VarioMAX instrument.	0.05 g/100g dry wt
Zinc	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.1 mg/kg dry wt
Copper	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.05 mg/kg dry wt
Ammonium-N*	1:2 water extraction on dried sample. FIA colorimetric determination.	0.1 mg/L in extract
Nitrate-N	1:2 water extraction on dried sample. FIA colorimetric determination.	0.2 mg/L in extract
Nitrite-N	1:2 water extraction on dried sample. FIA colorimetric determination.	0.02 mg/L in extract
Phosphate-P	1:2 water extraction on dried sample. FIA colorimetric determination.	0.04 mg/L in extract
Arsenic	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.1 mg/kg dry wt
Mercury	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.01 mg/kg dry wt
Barium	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.01 mg/kg dry wt
Cadmium	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.005 mg/kg dry wt
Chromium	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.1 mg/kg dry wt
Nickel	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.1 mg/kg dry wt
Lead	Nitric/hydrochloric acid digestion. ICP-MS determination.	0.03 mg/kg dry wt

1

2 All samples were analyzed for total petroleum hydrocarbons content with more
 3 detailed soil chemistry and heavy metal analysis being performed on the time zero and
 4 termination samples to study the effect of the process on nutrient and heavy metal
 5 concentrations. Seasonal variations in temperature were also recorded.

1 **Second Test Results:** There was no visual mortality among the treated earth
2 worms and the hydrocarbon “fingerprint” matched the applied base fluid. It was also
3 apparent that the applied drill cuttings mix caused the worms to actively seek out the
4 clumps on material containing drill cuttings.

5 Total petroleum hydrocarbons: From the results shown in Figure 5 it can be seen
6 that the background hydrocarbon samples were around the detection levels for the method
7 for the duration of the test indicating that there were no significant external sources of
8 hydrocarbons being added to the worm beds apart from the test material

9 Due to the heterogeneous manner in which the cuttings were applied to the worm
10 bed some of the initial samples taken were very variable and this is reflected in the total
11 petroleum hydrocarbons results shown in Figures 5, 6, 7, 8 and 9. However taken overall
12 (Figure 10) a number of general trends can be seen. The hydrocarbons in the cuttings
13 applied at 30% w/w decreased from an average of 1900 mg/kg to less than 60 mg/kg
14 within 45 days. The hydrocarbons in the cuttings applied at 50% w/w decreased from an
15 average of 2100 mg/kg to the detection limit within 45 days but then showed a slight
16 increase for some, unknown reason, although it may be related to the heterogeneity of the
17 worm bed and sampling variation.

18 The hydrocarbons in the cuttings applied at 70% w/w showed quite a clear trend
19 and decreased from an average of 20,000 mg/kg to 1500 mg/kg within 45 days but there
20 was no subsequent reduction in the hydrocarbon concentration after this time. After the
21 initial degradation it was found that the clumps of cuttings and feed mixture within the
22 worm bed had dried out and become compacted making them unpalatable to the worms.
23 This suggests that, as the worms are not breaking down the cuttings, that the degradation
24 is no longer worm driven but purely microbial and this is not expected to be particularly
25 fast given the unfavorable conditions and lack of moisture within the cutting/feed mix
26 clumps. This also means that as the worm beds were regularly fed with unamended
27 paunch material that the cuttings will move out of the worms feeding zone further
28 reducing the rate of degradation

29 The hydrocarbons in the cuttings applied at 100% w/w (without any paunch
30 amendments) did not show any obvious degradation throughout the course of the test (60

1 days). It is thought that this is because the consistency of the cuttings (mixed with
2 sawdust to facilitate transport) combined with that lack of paunch material (which
3 constitutes a large part of the worm "normal" diet) makes the cuttings very "unappealing"
4 to the worms and prevents the worms from degrading the material

5 Overall the rates of hydrocarbon degradation were slower in the second test than
6 in the first and this is thought to be due to the prevailing weather and climatic conditions.

7 The importance of the worms in enhancing the rates of hydrocarbon degradation is
8 shown by the much slower rates of decrease in hydrocarbon concentration in samples of
9 cuttings blended with paunch material that were in parts of the windrow that were
10 inaccessible to the worms and were not tilled and aerated

11 Soil Chemistry: Looking at the pH data shown in Figure 11 it can be seen that
12 there is slight increase in pH as more cuttings are applied to the worm bed and that the pH
13 tends to be slightly higher at the end of the experiment. This would be caused by the
14 slightly alkaline nature of the drill cuttings and base fluid and the release of the lime from
15 the drilling fluid emulsion as it is broken down. The increase in pH is not sufficiently
16 high the adversely affect the earth worms.

17 The remaining soil chemistry results are given in Figures 12 to 17. Electrical
18 conductivity is a measure of the total salt or ion content within the sample and can have
19 significant effects of soil properties such as the cation exchange capacity etc. At time zero
20 the electrical conductivity can be seen to generally increase (see Figure 12) as more
21 cuttings are applied. This probably reflects the use of calcium ammonium nitrate in the
22 brine phase of the drilling fluid, the more cuttings added the higher the electrical
23 conductivity. At the end of the test the electrical conductivity is constant for all the
24 windrows to which drill cuttings were added, suggesting that if this is the case, that either
25 the bacteria have utilized the calcium ammonium nitrate or the earthworms involved in
26 the remediation process. This is confirmed by the other soil chemistry data for nitrogen
27 containing materials (see Figures 14, 15, 16). It is not clear why the electrical
28 conductivity in the control (no added drill cuttings) should differ at the start and finish of
29 the test as these would be expected to be the same unless the worm driven waste
30 management process results in the mobilization of salts, which are subsequently re-used

1 at a faster rate in the treated worm beds and which are assumed to have a more dynamic
2 microbial population because of the presence of the readily biodegradable linear
3 paraffins.

4 As mentioned previously the nitrogen and phosphorous containing compounds
5 when taken overall one of ordinary skill in the art should conclude that the concentration
6 of these elements, which are essential for microbial degradation and growth decrease over
7 the course of the test as they are used up by the bacteria involved in the degradation
8 process and converted into microbial and earth worm biomass.

9 Heavy Metals: The barium concentrations shown in Figure 18 were used as a
10 conservative marker to ensure that the hydrocarbons were being degraded within the
11 cuttings pile and that there was no loss of the cuttings through physical removal. Looking
12 at the results one of skill in the art should see that as more cuttings are added to the worm
13 bed, the barium concentration increases. It is however, interesting to note that the barium
14 concentration in the highest application rate is lower at the end of the test than at the start.
15 Currently we do not have an explanation for this phenomenon but it is interesting to note
16 that the decrease in barium concentration occurred in the windrow with the least
17 microbial and earth worm degradation of the drill cuttings (100%w/w application with no
18 added paunch material) suggesting that it could be linked to bioaccumulation of the
19 metal.

20 Heavy metal bioaccumulation: As earthworms are known to accumulate heavy
21 metals within their tissues, samples of earth worms were analyzed for heavy metal
22 content at the end of the experiment. Looking at the results shown in Figure 19 it can be
23 seen that while most of the metal concentrations remain fairly constant at the different
24 cuttings application rates, there is a slight increase in the lead concentration within the
25 earth worm's tissues coupled with a more obvious increase in the barium concentration in
26 the 30%, 50% and & 70% w/w additions. It is interesting to note that the barium and lead
27 levels show a slight decrease at highest rate of addition (where there was very little
28 biological "working" of the cuttings), presumably because the worms were not ingesting
29 the cuttings in large amounts therefore there was less bioaccumulation. This reduced rate

1 of activity in the 100% addition may also explain some of the other variations in nutrient
2 levels etc

3 **Third Test:** The third test was conducted utilizing 30% and 50% w/w drill
4 cuttings mixture were repeated during local Winter time at the vermiculture facility. The
5 same methods described above in the previous were utilized.

6 **Third Test Sampling and Analytical Procedures:** Initially six core samples
7 were taken from each of the treatment areas (total sample weight approximately 1 KG),
8 and combined together at the test site in large mixing container where they were
9 thoroughly mixed prior to sub-sampling a 250-300gm composite sample, which was
10 subsequently sent for analysis. After five days the number of core samples was reduced to
11 four but the mixing and sub-sampling procedure remained the same.

12 **Third Test Results:** Upon review of the results of the present test, one of skill in
13 the art should understand and appreciate that the climatic conditions for the winter test
14 (Test2) did not favor maximum rates of degradation in the worm beds and the sample
15 variability needed to be reduced. Thus it was decided to repeat the test a third time under
16 more favorable environmental conditions using a modified sampling procedure as
17 discussed above.

18 Again there was no visual mortality of the worms and they appeared to actively
19 seek out the clumps of drill cuttings.

20 **Total Petroleum Hydrocarbons:** As in previous experiments no significant
21 amounts of hydrocarbons were found in the windrows that did not have cuttings applied
22 (see Figure 20) while the 30 and 50% application rates showed significant degradation of
23 hydrocarbons to background levels within 30 days. The initial results for the cuttings
24 applied at 30% w/w are somewhat erroneous due to incorrect analytical procedures being
25 used for these samples resulting in the loss of some of the volatile hydrocarbon fractions.
26 However, one of skill in the art will notice that a clear decrease in hydrocarbon
27 concentration can still be seen.

28 **Soil Chemistry:** The soil chemistry parameters for the third test were also
29 somewhat inconclusive although there did appear to be similar trends to those observed in

1 the second test, i.e. a general decrease in the nitrogen and phosphorous containing
2 compounds as they are used up in the microbial degradation process.

3 Heavy Metals: As in the second test barium concentrations in the samples
4 increased when drill cuttings were applied, but the limited number of samples analyzed
5 for barium at the start and finish of the test make it difficult to draw any firm conclusions.

6 The worms did show an increase in a number of heavy metals after feeding on
7 material containing drill cuttings and barite weighting material but it is not clear if the
8 heavy metals were found in the worm's gut or tissues even though the worms were fasted
9 for 24 hours before sampling. This length of time might not be long enough to purge the
10 gut contents, but as this is an important question it is intended to be the subject of further
11 studies aimed at better understanding the degradation process and bioaccumulation or
12 change in the bioavailability of the heavy metals.

13 The results of the above series of tests should indicate to one of ordinary skill in
14 the art that under suitable conditions there is substantial degradation of the hydrocarbons
15 within the worm bed. Factors such as temperature effect rates of hydrocarbon
16 degradation. Good husbandry of the worms appears to be important to the success of the
17 process and this is shown by the use of a 30—50% cuttings addition. Any higher and the
18 cuttings and hydrocarbons are less available to the worms or are unpalatable (100% w/w)
19 and are not degraded. Cuttings which are unpalatable to the worms will eventually
20 become buried in the worm cast as more food is applied to the worms beds and move out
21 of the feeding zone, meaning that the degradation is no longer worm driven. Upon
22 consideration and review by one of ordinary skill in the art, optimum benefit is obtained
23 from the synergistic use of drilling fluids designed for bioremediation and vermiculture
24 technology, the worms being used to add value to the cleaned cuttings and further
25 reducing disposal costs.

26 In view of the above disclosure and examples, one of ordinary skill in the art
27 should appreciate that one illustrative embodiment of the present invention includes a
28 biodegradable wellbore fluid, suitable for drilling subterranean wells, with an oleaginous
29 phase including a linear paraffin having 11-18 carbon atoms, a non-oleaginous phase
30 containing a salt of a biodegradable anion, and an emulsifying agent in a concentration

1 capable of forming an oleaginous fluid suitable for use as a drilling fluid. A weighting
2 agent, fluid-loss reducing agent, and viscosifying agent may also be present. The
3 oleaginous phase may comprise from about 30 to 99% by volume of the wellbore fluid,
4 and the non-oleaginous phase may comprise from about 1% to about 70% by volume off
5 the wellbore fluid. The non-oleaginous phase may be selected from fresh water, a brine
6 containing organic or inorganic dissolved salts, a liquid containing water-miscible organic
7 compounds, or combinations thereof. The emulsifying agent is preferably an eurisic
8 diglyceride or other chemically similar compounds. The weighting agent may be selected
9 from calcium carbonate, hematite, ilmenite, barite, mullite, gallena, magnanese oxides,
10 iron oxides and combinations thereof. The viscosifying agent may be an organophilic
11 clay.

12 One of skill in the art should appreciate that another illustrative embodiment of
13 the present invention includes a method of producing a biodegradable wellbore fluid by
14 blending an oleaginous phase with a linear paraffin having 11-18 carbon atoms, a non-
15 oleaginous phase containing a salt of a biodegradable anion and substantially free of
16 halogen ions, and an emulsifying agent in a concentration capable of forming an
17 oleaginous suitable for use as a drilling fluid.

18 A further illustrative embodiment of the present invention involves drilling a
19 subterranean well by attaching a cutting bit to a length of drill pipe, rotating the cutting
20 bit, and removing cuttings from around the bit with a drilling fluid which is a
21 biodegradable fluid. This fluid contains an oleaginous phase with a linear paraffin having
22 11-18 carbon atoms, a non-oleaginous phase containing a salt of a biodegradable anion,
23 and an emulsifying agent in a concentration capable of forming an oleaginous suitable for
24 use as a drilling fluid. The cuttings removed from the well may be bioremediated using ,
25 land farming, conventional composting, a bioreactor or by vermi-compositng.

26 Another illustrative embodiment of the present invention is a method of bio-
27 remediation involving the drilling of a subterranean well with a fluid containing an
28 oleaginous phase with a linear paraffin having 11-18 carbon atoms, a non-oleaginous
29 phase containing a salt of a biodegradable anion and substantially free of halogen ions,
30 and an emulsifying agent in a concentration capable of forming an oleaginous fluid

1 suitable for use as a drilling fluid. The cuttings are removed from the well, transported to
2 a remediation site, and blended with nutrients to create a treatment feed. This treatment
3 feed is spread on land for composting, or placed in a bioreactor for bacteria to perform the
4 remediation. The treatment feed may also be pretreated in a bioreactor or compost vessel
5 before it is spread on land.

6 Additionally, one of skill in the art should recognize that another illustrative
7 embodiment of the present invention involves a soil amendment made from cuttings from
8 a wellbore which was drilled using a fluid of the present invention and sawdust, wood
9 shavings, paunch waste or mixtures thereof. The soil amendment may be created by
10 drilling a subterranean well with a drilling fluid containing an oleaginous phase with a
11 linear paraffin having 11-18 carbon atoms, a non-oleaginous phase containing a salt of a
12 biodegradable anion, and an emulsifying agent in a concentration capable of forming an
13 oleaginous fluid suitable for use as a drilling fluid. The cuttings are removed from the
14 well and transported to a remediation site where nutrients are blended in to create a
15 treatment feed. The treatment feed is spread on a land-farm where bacteria perform the
16 remediation. The treatment feed may be pretreated in a bioreactor or composting vessel
17 prior to land remediation.

18 In further view of the above disclosure, one of ordinary skill in the art should
19 understand and appreciate that one illustrative embodiment of the present invention
20 includes a method of biodegrading drilling cuttings coated with a drilling fluid by
21 vermicomposting. The drilling fluid formulation utilized in such an illustrative method
22 includes a linear paraffin having 11-18 carbon atoms, a non-oleaginous phase, and an
23 emulsifying agent. The drilling fluid is formulated such that it is biocompatible with
24 vermicomposting. In one illustrative embodiment, the method includes mixing the
25 drilling cuttings with a compostable waste material so as to provide a compostable
26 balance of nitrogen and carbon content. Within one such illustrative embodiment the
27 nitrogen and carbon content have a ratio of about 2:1 to about 100:1 and more preferably
28 the nitrogen and carbon content has a ratio of about 25:1. In one embodiment of the
29 present invention, the vermicomposting is carried out in a bioreactor and in such
30 instances the vermiculture bioreactor is selected from a bin vermicomposter, a rotating

1 drum vermicomposter, windrows, covered windrows and combinations of these. The
2 drilling fluid utilized in the above noted illustrative embodiment should be formulated
3 such that it is useful in the drilling of subterranean wells. In one such instance the drilling
4 fluid includes a weighting agent, a fluid loss control agent and/or similar such compounds
5 typically utilized in the formulation of drilling fluids. Of importance is that such
6 alternative components of the drilling fluid should not substantially harm the
7 biocompatibility of the drill cuttings with vermiculture. Likewise, the non-oleaginous
8 fluid utilized in the above illustrative embodiment should not substantially harm the
9 biocompatibility of the drill cuttings with vermiculture. In one preferably illustrative
10 embodiment, the non-oleaginous fluid is selected from fresh water, sea water, a brine
11 containing organic or inorganic dissolved salts, a liquid containing water-miscible organic
12 compounds, combinations of these and similar compounds. As previously noted, the
13 emulsifying agent utilized in the formulation of the drilling fluids used in the above noted
14 illustrative embodiments can be selected from a wide range of suitable emulsifying
15 agents. However, such selection is made such that the emulsifying agent is does not
16 substantially harm the biocompatibility of the drill cuttings with vermiculture. One such
17 preferred emulsifying agent is an euricid diglyceride.

18 The present invention also includes a method for biodegrading drilling cuttings
19 coated with a drilling fluid. One such illustrative method that should be apparent to one
20 of ordinary skill in the art is a method including exposing the drilling cuttings to a
21 vermicomposting environment for a sufficient period of time to permit the worms to
22 biodegrade the organic components of the drilling fluid. Within such an illustrative
23 method the drilling fluid is formulated to include linear paraffin having 11-18 carbon
24 atoms, a non-oleaginous phase, and an emulsifying agent. In one illustrative
25 embodiment, the method includes mixing the drilling cuttings with a compostable waste
26 material so as to provide a compostable balance of nitrogen and carbon content. Within
27 one such illustrative embodiment the nitrogen and carbon content have a ratio of about
28 2:1 to about 100:1 and more preferably the nitrogen and carbon content has a ratio of
29 about 25:1. In one embodiment of the present invention, the vermicomposting is carried
30 out in a bioreactor and in such instances the vermiculture bioreactor is selected from a bin

1 vermicomposter, a rotating drum vermicomposter, windrows and combinations of these.
2 The drilling fluid utilized in the above noted illustrative embodiment should be
3 formulated such that it is useful in the drilling of subterranean wells. In one such instance
4 the drilling fluid includes a weighting agent, a fluid loss control agent and/or similar such
5 compounds typically utilized in the formulation of drilling fluids. Of importance is that
6 such alternative components of the drilling fluid should not substantially harm the
7 biocompatibility of the drill cuttings with vermiculture. Likewise, the non-oleaginous
8 fluid utilized in the above illustrative embodiment should not substantially harm the
9 biocompatibility of the drill cuttings with vermiculture. In one preferably illustrative
10 embodiment, the non-oleaginous fluid is selected from fresh water, sea water, a brine
11 containing organic or inorganic dissolved salts, a liquid containing water-miscible organic
12 compounds, combinations of these and similar compounds. As previously noted, the
13 emulsifying agent utilized in the formulation of the drilling fluids used in the above noted
14 illustrative embodiments can be selected from a wide range of suitable emulsifying
15 agents. However, such selection is made such that the emulsifying agent is does not
16 substantially harm the biocompatibility of the drill cuttings with vermiculture. One such
17 preferred emulsifying agent is an eurisic diglyceride.

18 The present invention also includes a method of vermicular bio-remediation of oil
19 contaminated solids. One such illustrative embodiment includes a method including
20 providing the oil contaminated solids to a vermicular bioreactor, and allowing the worms
21 within the vermicular bioreactor to biodegrade the oil contaminated solids. The drilling
22 fluid is formulated such that it is biocompatible with vermicomposting. Within such an
23 illustrative method, the drilling fluid is formulated to include linear paraffin having 11-18
24 carbon atoms, a non-oleaginous phase, and an emulsifying agent. In one illustrative
25 embodiment, the method includes mixing the drilling cuttings with a compostable waste
26 material so as to provide a compostable balance of nitrogen and carbon content. Within
27 one such illustrative embodiment the nitrogen and carbon content have a ratio of about
28 2:1 to about 100:1 and more preferably the nitrogen and carbon content has a ratio of
29 about 25:1. In one embodiment of the present invention, the vermicomposting is carried
30 out in a bioreactor and in such instances the vermiculture bioreactor is selected from a bin

1 vermicomposter, a rotating drum vermicomposter, windrows and combinations of these.
2 The drilling fluid utilized in the above noted illustrative embodiment should be
3 formulated such that it is useful in the drilling of subterranean wells. In one such instance
4 the drilling fluid includes a weighting agent, a fluid loss control agent and/or similar such
5 compounds typically utilized in the formulation of drilling fluids. Of importance is that
6 such alternative components of the drilling fluid should not substantially harm the
7 biocompatibility of the drill cuttings with vermiculture. Likewise, the non-oleaginous
8 fluid utilized in the above illustrative embodiment should not substantially harm the
9 biocompatibility of the drill cuttings with vermiculture. In one preferably illustrative
10 embodiment, the non-oleaginous fluid is selected from fresh water, sea water, a brine
11 containing organic or inorganic dissolved salts, a liquid containing water-miscible organic
12 compounds, combinations of these and similar compounds. As previously noted, the
13 emulsifying agent utilized in the formulation of the drilling fluids used in the above noted
14 illustrative embodiments can be selected from a wide range of suitable emulsifying
15 agents. However, such selection is made such that the emulsifying agent is does not
16 substantially harm the biocompatibility of the drill cuttings with vermiculture. One such
17 preferred emulsifying agent is an euricid diglyceride.

18 One of ordinary skill in the art should also appreciate and understand that the
19 present invention also includes a vermiculture feed composition. One such illustrative
20 vermiculture feed composition includes oil-contaminated solids, a bulking agent, and a
21 compostable nitrogen source.

22 Within such an illustrative embodiment, the oil-contaminated solids are selected
23 from drill cuttings, drilling mud, oil contaminated soil, combinations of these and similar
24 compositions in which a biocompatible material is contaminated with oil. The illustrative
25 vermiculture feed composition preferably includes a cellulose based bulking agent such
26 as sawdust, wood shavings, rice hulls, canola husks, shredded newsprint/paper; shredded
27 coconut hulls, cotton seed hulls, mixtures of these and similar materials. Similarly, the
28 illustrative vermiculture feed composition preferably includes a compostable nitrogen
29 source preferably selected from yard or household wastes, food preparation or processing
30 wastes, paunch or rumen material or similar animal rendering wastes, sewage sludge from

1 a water treatment facility and mixtures of these and other similar materials. The
2 illustrative vermiculture compositions preferably have a carbon to nitrogen ratio and a
3 moisture content that is compatible with vermicomposting of the compositions. More
4 preferably the carbon to nitrogen ratio is about 25:1 and the moisture content is about
5 75% by weight. In one illustrative embodiment, the vermiculture composition also
6 includes pretreated or pre-composted materials such as municipal waste or industrial
7 waste materials. Alternatively, the vermiculture composition is pre-treated or pre-
8 composed prior to being used in vermiculture.

9 The present invention also includes the products of the process disclosed herein.
10 That is to say the present invention includes a vermicast composition including: vermicast
11 and biodegraded drill cuttings. Such composition is useful as organic material or
12 compost material for domestic gardening or commercial farming.

13 While the apparatus, compositions and methods of this invention have been
14 described in terms of preferred or illustrative embodiments, it will be apparent to those of
15 skill in the art that variations may be applied to the process described herein without
16 departing from the concept and scope of the invention. All such similar substitutes and
17 modifications apparent to those skilled in the art are deemed to be within the scope and
18 concept of the invention.

19