课程名称: 线性代数与解析几何

一、(每小题 4 分, 共 60 分)填空题

1. 设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 2 \end{pmatrix}$$
, 则 $AA^T = \underline{}$

2. 设 $A = [\alpha, \gamma_1, \gamma_2]$ 和 $B = [\beta, \gamma_1, \gamma_2]$ 都为三阶方阵, $\alpha, \beta, \gamma_1, \gamma_2$ 都是三元列向量,|A| = 2, |B| = 3,则 $|\alpha + \beta, \gamma_1, \gamma_1 + 2\gamma_2| =$

3.
$$\begin{vmatrix} 2+k & k & k & k \\ k & 1+k & k & k \\ k & k & 1+k & k \\ k & k & k & 1+k \end{vmatrix} = \underline{\hspace{1cm}}$$

4. 在空间直角坐标系下,经过点(1,0,-1)且垂直于直线

$$\begin{cases} x - y + z = 0 \\ x + y - 2z = 2 \end{cases}$$
的平面的方程为_____

- 5. 设方阵A满足 $A^2 2A = 0$,则 $(A + E)^{-1} =$
- 6. 设向量组 a_1, a_2, a_3 线性无关,向量组 $b_1 = a_1 a_2, b_2 = a_2 + a_3$, $b_3 = ka_1 + a_2 + 3a_3$ 线性相关,则k =

7.
$$abla A = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$$
, $r(A) = 3, \emptyset k =$ _____

8. 设 A 为三阶方阵,r(A) = 2, $u_1 = (2,-1,1)^T$ 和 $u_2 = (1,0,0)^T$ 都 是方程组 Ax = b 的解,则方程组 Ax = b 的通解为

- 9. 设 $\mathbf{a}_1 = \begin{pmatrix} 1,1,0 \end{pmatrix}^T$, $\mathbf{a}_2 = \begin{pmatrix} 1,k,-1 \end{pmatrix}^T$, $\mathbf{a}_3 = \begin{pmatrix} 1,0,1 \end{pmatrix}^T$ 所生成的向量空间的维数为2,则k =
- 10. 设 α 是单位列向量, $A = E + k\alpha\alpha^T$ 是正交矩阵,则k 需满足条件
- 11. 二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + (k-1)x_3^2 + 2kx_1x_2$ 为正定 二次型的充要条件是 k 满足
- **12.** Oyz 面上的抛物线 $y^2 = z$ 绕着 z 轴旋转一周所形成的旋转面的方程为_____
- 13. 设A为三阶方阵, $A^2 + A = 0, r(A) = 2, 则 A$ 的相似标准形为_____
- 14. 设 α 与 β 是正交的三元单位列向量, $A = \alpha \beta^T + \beta \alpha^T$,则 $A^2 + E =$ ____
- 15. 设 -2,2,2 为三阶实对称矩阵 A 的特征值, $p_1 = \begin{bmatrix} 1,-1,0 \end{bmatrix}^T$ 为 -2 对应的特征向量,则 A =
- 二、(每小题2分,共10分)选择题
- 1. 设A为 3 阶方阵,对调A的1,2 行得到B,再将B的第 2 列加

到第3列得到单位矩阵,记
$$\mathbf{P}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

则A = ()

(A) P_1P_2 (B) P_2P_1 (C) $P_1P_2^{-1}$ (D) $P_2^{-1}P_1$

2. 设 A, B 都是 n 阶方阵, E 为 n 阶单位矩阵,且 $A \neq E, B \neq E$,
AB + E = A + B, 则必有 ()
$(\mathbf{A}) \mathbf{A} - \mathbf{E} = 0, \mathbf{B} - \mathbf{E} = 0 $ (B) $ \mathbf{A} - \mathbf{E} = 0, \mathbf{B} - \mathbf{E} \neq 0$
(C) $ \mathbf{A} - \mathbf{E} \neq 0, \mathbf{B} - \mathbf{E} = 0$ (D) $ \mathbf{A} - \mathbf{E} \neq 0, \mathbf{B} - \mathbf{E} \neq 0$
3. 若向量组 α, β, γ 线性无关, α, β, δ 线性相关,则下列选项中
正确的是()
(A) α 必可由 β , γ , δ 线性表示
(B) β 必可由 α, γ, δ 线性表示
(C) γ 必可由 α, β, δ 线性表示
(D) δ 必可由 α, β, γ 线性表示
4. 设 A 为 $m \times n$ 矩阵, B 为 $n \times k$ 矩阵,则下列选项中正确的
是 ()
(A) 当 $m > n$ 时,方程组 $(AB)x = 0$ 有非零解
(B) 当 $m > k$ 时,方程组 $(AB)x = 0$ 只有零解
(C) 当 $k > n$ 时,方程组 $(AB)x = 0$ 有非零解
(D) 当 $k > m$ 时,方程组 $(AB)x = 0$ 只有零解
5. 设 A 为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三元列向量组,
$A\alpha_1 = \alpha_1$, $A\alpha_2 = \alpha_2$, $A\alpha_3 = -\alpha_3$, $P^{-1}AP = \begin{bmatrix} -1 & 1 & 1 \\ & 1 & 1 \end{bmatrix}$,
则 $P = ($)
(A) $(\alpha_1, \alpha_2, \alpha_3)$ (B) $(2\alpha_3, -\alpha_1, 3\alpha_1 - \alpha_2)$
(C) $(\alpha_3, \alpha_1 - \alpha_2, \alpha_2 - \alpha_1)$ (D) $(-\alpha_3, \alpha_1, \alpha_2 + \alpha_3)$

$$\Xi$$
 (10分) 设 $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 0 \end{bmatrix}$, $AXA^{-1} = E - 2XA^{-1}$, 求 X .

四(12 分)当
$$k$$
 满足什么条件时,方程组
$$\begin{cases} x_1+x_2+x_3=1\\ x_1+kx_2+2x_3=0\\ kx_1+x_2-x_3=3 \end{cases}$$

有唯一解; 无解; 有无穷多解? 在有无穷多解时, 求出其通解.

五(8 分)设A为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三元列向量组, $A\alpha_1=\alpha_1$, $A\alpha_2=\alpha_1-\alpha_2$, $A\alpha_3=\alpha_1-\alpha_3$,证明:A一定可相似对角化。