LEAD SCORING CASE STUDY

BY MAYANK TUSHAR & SUHANI SHUKLA

LEAD CONVERSION PROCESS

Lead Conversion Process – Demonstrated as a funnel

PROBLEM STATEMENT

- Create a model in such a way that the customers with high lead score have higher conversion chance and low lead score have lower conversion chance. The ballpark of the target lead conversion rate is around 80%.
- Also the model should be able to adjust if the company's requirement changes in near future.

APPROACH OF THE ANALYSIS

Points to be concluded from the graph on the right side.

- We started our analysis with our cleaned dataset by converting all the binary variables to '0' and '1' and multiple categories into dummy variables.
- Next, we checked the outliers of the dataset. The visualization of those outliers we can see on the graph attached on the right side.
- Outliers in logistic model is very sensitive hence we need to deal with it without losing our valuable information. This can be achieved by creating bins. Hence, we did it..

CORRELATION

Points to be concluded from the graph

- After fixing the outliers and dummy creation we proceed with our next preparation.
- We split the dataset into train and test set and do standardization on the features.
- Standardization is required in order to keep all the variables in same scale which will help us in computation in more efficient way.
- Checked the correlation of the dataset. Attached heatmap is showing the correlation of all features present in the dataset.
- There are some high correlations in the heatmap which we dropped.

Total Time Spent on Website Lead Origin_Lead Add Form Lead Origin_Quick Add Form Lead Source_Click2call Lead Source_Facebook Lead Source_Live chat Lead Source_Olark chat Lead Source_Pay per click ads Lead Source_Reference Lead Source_Social media Lead Source_Weleam Lead Source_Welingak website Last Activity_Converted to Lead Last Activity Email Link Clicked Last Activity Email Opened Last Activity_Form Submitted on Website Last Activity_Olark Chat Conversation Last Activity Resubscribed to emails Last Activity Unreachable Last Activity_View in browser link Clicked What is your current occupation_Housewife What is your current occupation_Student What is your current occupation Working Professional What matters most to you in choosing a course. Other Last Notable Activity_Email Link Clicked Last Notable Activity_Email Opened Last Notable Activity_Form Submitted on Website Last Notable Activity_Modified Last Notable Activity_Page Visited on Website Last Notable Activity_SMS Sent Last Notable Activity_Unsubscribed TotalVisits_0_50 TotalVisits_100_150 Page Views Per Visit_0_10 Page Views Per Visit 20_30

CORRELATION

Points to be concluded from the graph

- After dropping those high correlations features, we plotted again a heatmap to check and it was confirmed that those highly correlated variables were dropped.
- There are still few left, but we will check them after creating our model to verify how much they are impacting, as from the plot on the right it is not quite understandable which variable is having high correlation.

Lead Origin_Landing Page Submission Lead Origin_Lead Import Lead Source Blog Lead Source Direct traffic Lead Source_Google Lead Source_Nc_edm Lead Source_Pay per click ads Lead Source_Reference Lead Source Social media Lead Source_Weleam Lead Source_Welingak website Last Activity_Converted to Lead Last Activity_Email Link Clicked Last Activity_Email Opened Last Activity_Form Submitted on Website Last Activity_Olark Chat Conversation Last Activity_Resubscribed to emails Last Activity_Unreachable Last Activity View in browser link Clicked What is your current occupation_Housewife What is your current occupation Student What matters most to you in choosing a course_Flexibility & Convenience Last Notable Activity_Email Bounced Last Notable Activity Email Marked Spam Last Notable Activity_Email Received Last Notable Activity Had a Phone Conversation Last Notable Activity_Olark Chat Conversation Last Notable Activity_Resubscribed to emails Last Notable Activity_Unreachable Last Notable Activity_View in browser link Clicked TotalVisits_250_300 Page Views Per Visit_10_20 Page Views Per Visit 50 60

BUILDING A MODEL - RFE 1

- We build a model with all the features included and found there were many insignificant variables present in our model.
- We need to drop them, but we can't do it one by one as it is time consuming and not an efficient way to do so.
- Hence, we started with RFE method to deduct those insignificant variables. We choose with RFE count 19 and 15.
- We did two rfe count because we want to find out our final model stability.
- We started creating our model with rfe count 19 and went dropping variables one by one until we reach the point where the model is having all significant variables and low VIF values.
- Now we evaluated our model by first predicting it. We created new dataset with original converted values and the prediction values.

FINAL MODEL VISUALIZATION WITH VIF(RFE 1)

Points to be concluded from the data on the right.

• As confirmed earlier, no sign of multicollinearity shown from above VIF data frame hence Reg_5 is our final model and we are going to use it predict the X train dataset.

13	Last Notable Activity_Modified	2.27
4	Lead Source_Google	1.74
12	Last Notable Activity_Email Opened	1.71
3	Lead Source_Direct traffic	1.70
2	Lead Origin_Lead Add Form	1.44
9	Last Activity_Olark Chat Conversation	1.35
5	Lead Source_Organic search	1.28
7	Lead Source_Welingak website	1.23
8	Last Activity_Converted to Lead	1.23
1	Total Time Spent on Website	1.22
0	Do Not Email	1.19
10	What is your current occupation_Working Profes	1.16
14	Last Notable Activity_Page Visited on Website	1.10
6	Lead Source_Referral sites	1.04
11	Last Notable Activity_Email Link Clicked	1.04

EVALUATING THE MODEL(RFE 1 TEST)

Points to be concluded from the graph on the right side.

- •After building the final model making prediction on it(on train set), we created ROC curve to find the model stability with auc score(area under the curve) As we can see from the graph plotted on the right side, the area score is 0.88 which is a great score.
- •And our graph is leaned towards the left side of the border which means we have good accuracy.

FINDING THE OPTIMAL CUTOFF POINT

Points to be concluded from the graph on the right side.

- •Now, we have created range of points for which we will find the accuracy, sensitivity and specificity for each points and analyze which point to chose for probability cutoff.
- We found that on 0.4 point all the score of accuracy, sensitivity and specificity are in a close range which is the ideal point to select and hence it was selected.
- •To verify our answer we plotted this in a graph – line plot which is on the right side and we stand corrected that the meeting point is close to 0.4 and hence we choose 0.4 as our optimal probability cutoff.

PRECISION AND RECALL

- We used this cutoff point to create a new column in our final dataset for predicting the outcomes.
- After this we did another type of evaluation which is by checking Precision and Recall
- As we all know, Precision and Recall plays very important role in build our model more business oriented and it also tells how our model behaves.
- Hence, we evaluated the precision and recall for this model and found the score as 0.74 for precision and 0.79 for recall.
- Now, recall our business objective the recall percentage I will consider more valuable because it is okay if our
 precision is little low which means less hot lead customers but we don't want to left out any hot leads which are
 willing to get converted hence our focus on this will be more on Recall than Precision.
- i.e We get more relevant results as many as hot lead customers from our model .

PRECISION AND RECALL TRADE-OFF

Points to be concluded from the graph on the right side.

•We created a graph which will show us the tradeoff between Precision and recall.
☐ We found that there is a trade off between Precision and Recall and the meeting point is approximately at 0.5.

BUILDING A MODEL - RFE 2

- After completing our model evaluation from RFE 1, we proceeded with our second RFE 2 method with count 15.
- We did that same steps as were mentioned in RFE 1, like creating a model and checking the insignificant values and VIFs and dropping those and running again until we reach our model with no insignificant variables and low VIFs.
- Ultimately, we found out last final model with all significant values and low VIFs.
- We predicted the final model in train set and created a new dataset with original converted values and prediction values.
- After this want to verify which final model is the best one that was created with 19 variables or the one created with 15 variables.

RFE 1 VS RFE 2

Points to be concluded from the graph on the right.

- We want to choose our final model for test dataset prediction and in order to do that we plotted ROC curve for the RFE 2 model and compared these two graphs
- Attached graph plotted for the RFE2 on the right.
- What we found was the auc score(area under the curve) in RFE 2 was 0.87 which was less than auc score generated in RFE 1.
- As we all know that the auc score shows the model accuracy and stability, we found that the final model created by RFE 1 is more stable and accurate than the final model created by RFE 2.

PREDICTION ON TEST SET

- Before predicting on test set, we need to standardize the test set and need to have exact same columns present in our final train dataset.
- After doing the above step, we started predicting the test set and the new predictions values were saved in new data frame.
- After this we did model evaluation i.e. finding the accuracy, precision and recall.
- The accuracy score we found was 0.82, precision 0.76 and recall 0.79 approximately.
- This shows that our test prediction is having accuracy, precision and recall score in an acceptable range.
- This also shows that our model is stable with good accuracy and recall/sensitivity.
- Lead score is created on test dataset to identify hot leads high the lead score higher the chance of converted, low the lead score lower the chance of getting converted.

CONCLUSION

Valuable Insights -

- The Accuracy, Precision and Recall score we got from test set in acceptable range.
- We have high recall score than precision score which we were exactly looking for.
- In business terms, this model has an ability to adjust with the company's requirements in coming future.
- This concludes that the model is in stable state.
- Important features responsible for good conversion rate or the ones' which contributes more towards the probability of a lead getting converted are:
- Last Notable Activity_Modified
- Last Activity_Converted to Lead
- Last Notable Activity_Email Link Clicked

