Cryptosystems and Symmetric Encryption/Decryption)

Need for improved Security

Finite Fields and Number Theory

- will now introduce finite fields
- of increasing importance in cryptography
 - AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
 - where what constitutes a "number" and the type of operations varies considerably
- start with concepts of groups, rings, fields from abstract algebra

Group

- a set of elements or "numbers"
- with some operation whose result is also in the set (closure)
- obeys:
 - associative law: (a.b).c = a.(b.c)
 - has identity e: e.a = a.e = a
 - has inverses a^{-1} : $a \cdot a^{-1} = e$
- if commutative a.b = b.a
 - then forms an abelian group
- $x^n=x^*x^*...^*x$ (n times) for $n \in Z^+$
- $X^{-n}=(x^{-1})^{|n|}=x^{-1}*x^{-1}*x^{-1}*...*x^{-1}.(n \text{ times}), \text{ for } n \in Z^{-1}$

Cayley table of a group (* operation)

*	e	a	b	c
e	e	a	b	c
a	a	b	С	e
b	b	c	e	a
С	С	е	a	b

 a^1 =a, a^2 =b, a^3 =c ve a^4 =e ' $b=a^2=a^6=a^{-2}$.

Each elements of {e,a,b,c} can be defined as aⁿ a is a generator of group.

Cyclic Group

define exponentiation as repeated application of operator

```
- example: a^3 = a.a.a
```

- and let identity be: e=a⁰
- a group is cyclic if every element is a power of some fixed element
 - ie $b = a^k$ for some a and every b in group
- a is said to be a generator of the group

Ring

- a set of "numbers"
- with two operations (addition and multiplication) which form: {R,+,X)
- an abelian group with addition operation
- and multiplication:
 - has closure
 - is associative
 - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an **integral domain**

Ring

- (H_1) Closure, if $a,b \in R$, $ab \in R$.
- (H_2) associative law. For $\forall a,b,c \in R$, a(bc) = (ab)c.
- (H₃) Distributive,, a(b+c) = ab + ac, (a+b)c = ac
 +bc for ∀a,b,c∈R.
- (H_4) Commutative., ab = ba, $for \forall a,b \in R$.
- integral domain.
- (H₅) ineffective elm. a1 = 1a =a for \forall a \in R.
- (H₆) Not zero divider if ab=0, a=0 or b=0, for∀a,b ∈ R

Field

- a set of numbers
- with two operations which form:
 - abelian group for addition
 - abelian group for multiplication (ignoring 0)
 - ring
- have hierarchy with more axioms/laws
 - group -> ring -> field

Field Axioms

- (F,+,X), a F field is a set proving the following axioms with addition and multiplication for $\forall a,b,c \in F$.
- Group (G₁-G₅) and Ring axioms(H₁-H₆)
- integral domain.
- (H₇) Multiplicative invers . For $\forall a \in F$ (except zero) $a^{-1} \in F$ and $aa^{-1} = (a^{-1})a = 1$.

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
- use the term congruence for: a = b mod n
 - when divided by n, a & b have same remainder
 - eg. $100 = 34 \mod 11$
- b is called a residue of a mod n
 - since with integers can always write: a = qn + b
 - usually chose smallest positive remainder as residue
 - ie. $0 \le b \le n-1$
 - process is known as modulo reduction
 - eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$

Divisors

- say a non-zero number b divides a if for some m
 have a=mb (a, b, m all integers)
- that is b divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24
- if a | 1, $a = \pm 1$
- if a | b and b | a , a = ±b .
- any b ≠ 0 divides zero.
- if, b|g and b|h, for any integer m,n b|(mg +nh)

Modular Arithmetic Operations

- is 'clock arithmetic'
- uses a finite number of values, and loops back from either end
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, ie

```
-a+b \mod n \equiv [a \mod n + b \mod n] \mod n
```

- if, n|(a-b) then $a \equiv b \mod n$.
- $a \equiv b \mod n$, means $b \equiv a \mod n$.
- $a \equiv b \mod n$ and $b \equiv c \mod n$, means $a \equiv c \mod n$

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Properties of Mod operation

- Add (a+b) mod $n \equiv [(a \mod n) + (b \mod n)] \mod n$
- Sub (a-b) mod $n \equiv [(a \mod n) (b \mod n)] \mod n$
- Mult. axb mod $n \equiv [(a \mod n) \times (b \mod n)] \mod n$
- Derived with repeated addition
- Neither a nor b not equal zero may be a.b modn =0
 - Ex. 2.5 mod 10
- Div. a/b mod n
- Like multiply inverse of b: $a/b \equiv a.b^{-1} \mod n$
- If n prime there is b^{-1} mod n and $b.b^{-1} \equiv 1$ mod n
 - Ex. $2.3 \equiv 1 \mod 5$ so, $4/2=4.3 \equiv 2 \mod 5$.

Modular Arithmetic

- can do modular arithmetic with any group of integers: $Z_n = \{0, 1, ..., n-1\}$
- Z_n is defined as residue class [r] = { a : a integer;
 such as a ≡ r mod n
- form a commutative ring for addition
- with a multiplicative identity
- note some peculiarities
 - if $(a+b) \equiv (a+c) \mod n$ then b=c mod n
 - but if (a.b) ≡ (a.c) mod n
 then b ≡ c mod n only if a is relatively prime to n

properties

property	description
Commutative	$(a + b) \mod n \equiv (b + a) \mod n$
	$(a \times b) \mod n \equiv (b \times a) \mod n$
Associative	$[(a+b) +c] \mod n \equiv [a + (b + c)] \mod n$
	[(axb) x c] mod n \equiv [a x(b x c)] mod n
Distributive	$[ax(b + c)] \mod n \equiv [(axb) + (axc)] \mod n$
Identity element	$(0 + a) \mod n \equiv a \mod n$
	(1xa) mod $n \equiv a \mod n$
Additive invers(-a)	For $\forall a \ Z_n$ there is a b such as; $a + b \equiv 0 \mod n$.

if order of finite field is pⁿ, (p prime number)
This field called **Galois Field modulo p** and shown as **GF(pⁿ)**

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - -GCD(a,b) = GCD(b, a mod b)
- Euclidean Algorithm to compute GCD(a,b) is:
- GCD (a,n) is given by:
- let $g_0 = n$ $g_1 = a$
- $g_{i+1} = g_{i-1} \mod gi$
- when g_i=0 then GCD(a,n) = gi-1
- ex. Find GCD (56,98) '.
- g_0 =98 g_1 =56 g_2 = 98 mod 56 = 42 g_3 = 56 mod 42 = 14 g_4 = 42 mod 14 = 0 as a result GCD(56,98)=14

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                              gcd(1066, 904)
1066 = 1 \times 904 + 162
                              gcd(904, 162)
904 = 5 \times 162 + 94
                              gcd(162, 94)
162 = 1 \times 94 + 68
                             gcd (94, 68)
94 = 1 \times 68 + 26
                             gcd(68, 26)
68 = 2 \times 26 + 16
                              gcd(26, 16)
26 = 1 \times 16 + 10
                              gcd(16, 10)
                              gcd(10, 6)
16 = 1 \times 10 + 6
10 = 1 \times 6 + 4 \quad gcd(6, 4)
6 = 1 \times 4 + 2
                              gcd(4, 2)
4 = 2 \times 2 + 0
                              gcd(2, 0)
```

Galois Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- in particular often use the fields:
 - -GF(p)
 - $-GF(2^n)$

Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

GF(7)additive and multip. inverse For $\forall w \in Z_p$ there is z in Z_p and $WxZ=1 \mod p$

W	-W	\mathbf{W}^{-1}
0	0	_
1	6	1
2	5	4
3	4	5
4	3	2
23456	2	3
6	1	6

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coords mod p
 - poly arithmetic with coords mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- Eg

•
$$f(x) = \sum a_i x^{i (i=1,n)}$$
, $g(x) = \sum b_j x^{j (j=1,m)}$
let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1

- eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$

$$f(x) + g(x) = x^3 + x + 1$$

$$f(x) \times g(x) = x^5 + x^2$$

Polynomial Division

- can write any polynomial in the form:
 - -f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $-r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is **irreducible** (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

EUCLID[a(x), b(x)]

- **1.** A(x) = a(x); B(x) = b(x)
- **2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
- **3.** $R(x) = A(x) \mod B(x)$
- **4.** $A(x) \leftarrow B(x)$
- **5.** $B(x) \leftarrow R(x)$
- **6. goto** 2

Modular Polynomial Arithmetic

- can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$011 \\ x + 1$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	x	1	0

(a) Addition

	×	000	001	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	х	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	χ^2	x + 1

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in GF(2³) have (x^2+1) is $101_2 \& (x^2+x+1)$ is 111_2
- so addition is
 - $-(x^2+1) + (x^2+x+1) = x$
 - $-101 \text{ XOR } 111 = 010_2$
- and multiplication is
 - $-(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 1111₂
- polynomial modulo reduction (get q(x) & r(x)) is
 - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

Using a Generator

- equivalent definition of a finite field
- a **generator** g is an element whose powers generate all non-zero elements
 - in F have 0, g^0 , g^1 , ..., g^{q-2}
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator

Prime Numbers

- prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
```

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: $n=a \times b \times c$
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the **prime factorisation** of a number $\mathbf n$ is when its written as a product of primes

-eg. 91=7x13 ; 3600=
$$2^4$$
x3 2 x5 2 $a = \prod_{p \in P} p^{a_p}$

Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8
 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - eg. $300=2^1 \times 3^1 \times 5^2$ $18=2^1 \times 3^2$ hence GCD $(18,300)=2^1 \times 3^1 \times 5^0=6$

Fermat's Theorem

- a^{p-1} = 1 (mod p)
 where p is prime and gcd (a, p) = 1
- also known as Fermat's Little Theorem
- also $a^p = a \pmod{p}$
- useful in public key and primality testing

- If elements of Z_p multiply with {0,1,...,(p-1)} a, modulo p residues sequences of Z_p. In addition, a x 0 = 0mod p., So array of { amod p, 2amodp, ...,(p-1)amod p } is (p-1) number {0,1,...,(p-1)}.
- ax2ax ... x ((p-1)a) = [(a modp) x (2amodp) xx((p-1)a modp]modp
- $= [1 \times 2 \times ... \times (p-1)] \mod p$
- $= (p-1)! \mod p$
- But, $a \times 2a \timesx((p-1)a) = (p-1)!a^{p-1}$.
- So, $(p-1)!a^{p-1} = (p-1)!$ Modp. Here we can cancel (p-1)! 'As a result:
- $a^{p-1} = 1 \mod p$

Euler Totient Function Ø (n)

- when doing arithmetic modulo n
- complete set of residues is: 0 . . n−1
- reduced set of residues is those numbers (residues)
 which are relatively prime to n
 - eg for n=10,
 - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function Ø (n)

- to compute ø(n) need to count number of residues to be excluded
- in general need prime factorization, but

```
- for p (p prime) \varnothing (p) = p-1

- for p.q (p,q prime) \varnothing (pq) = (p-1) x (q-1)
```

• eg.

```
\emptyset (37) = 36

\emptyset (21) = (3-1) x (7-1) = 2x6 = 12
```

Primitive Roots

- from Euler's theorem have $a^{\varnothing(n)} \mod n=1$
- consider $a^m=1 \pmod{n}$, GCD (a,n)=1
 - must exist for $m = \emptyset(n)$ but may be smaller
 - once powers reach m, cycle will repeat
- if smallest is $m = \emptyset(n)$ then a is called a **primitive** root
- if p is prime, then successive powers of a "generate"
 the group mod p
- these are useful but relatively hard to find

$\phi(n)$ values for n=30

n	φ(n)	n	φ(n)	n	φ(n)
1	1	11	10	21	12
2	1	12	4	22	10
3	2	13	12	23	22
4	2	14	6	24	8
5	4	15	8	25	20
6	2	16	8	26	12
7	6	17	16	27	18
8	4	18	6	28	12
9	6	19	18	29	28
10	4	20	8	30	8

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{g(n)} = 1 \pmod{n}$ • for any a, n where gcd(a, n) = 1
- eg.

```
a=3; n=10; \varnothing (10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \varnothing (11)=10;
hence 2^{10}=1024=1 \mod 11
```

Primality Testing

- often need to find large prime numbers
- traditionally sieve using trial division
 - ie. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic primality test

Miller Rabin Algorithm

- a test based on Fermat's Theorem
- algorithm is:

```
TEST (n) is:
```

- 1. Find integers k, q, k > 0, q odd, so that $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("maybe prime");
- 4. **for** j = 0 **to** k 1 **do**
 - 5. if $(a^{2^{j}q} \mod n = n-1)$

then return(" maybe prime ")

6. return ("composite")

Probabilistic Considerations

- if Miller-Rabin returns "composite" the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is < ¹/₄
- hence if repeat test with different random a then chance n is prime after t tests is:
 - Pr(n prime after t tests) = $1-4^{-t}$
 - eg. for t=10 this probability is > 0.99999

Prime Distribution

- prime number theorem states that primes occur roughly every (ln n) integers
- but can immediately ignore evens
- so in practice need only test 0.5 ln(n) numbers of size n to locate a prime
 - note this is only the "average"
 - sometimes primes are close together
 - other times are quite far apart

Discrete Logarithms

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- that is to find x such that $y \equiv g^x \pmod{p}$
- this is written as $x \equiv \log_q y \pmod{p}$
- if g is a primitive root then it always exists, otherwise it may not, eg.
 - $x \equiv \log_3 4 \mod 13$ has no answer $x \equiv \log_2 3 \mod 13 = 4$ by trying successive powers
- while exponentiation is relatively easy, finding discrete logarithms is generally a **hard** problem

Chinese Remainder Theorem

- used to speed up modulo computations
- if working modulo a product of numbers

```
- eg. mod M = m_1 m_2 ... m_k
```

- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem: For relatively prime moduli m and n, the congruences x ≡ a (mod m)
 x ≡ b (mod n)

have a unique solution x modulo mn. Our example problem would have a unique solution modulo .

• $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$

Our example problem would have a unique solution modulo 27.16

Chinese Remainder Theorem

- can implement CRT in several ways
- to compute A (mod M)
 - first compute all $a_i = A \mod m_i$ separately
 - determine constants C_i below, where $M_i = M/m_i$
 - then combine results to get answer using:

$$A \equiv \left(\sum_{i=1}^k a_i c_i\right) \pmod{M}$$

$$c_i = M_i \times (M_i^{-1} \mod m_i)$$
 for $1 \le i \le k$

Chinese Remainder Theorem example:

- study of how hard a problem is to solve in general
- allows classification of types of problems
- some problems intrinsically harder than others, eg
 - multiplying numbers O(n²)
 - multiplying matrices O(n(2)(2n-1)) $(n^{2}(2n-1))$
 - solving crossword o(26^(n))
 - recognizing primes O(n^(log log n))
- deal with worst case complexity
 - may on average be easier

- an instance of a problem is a particular case of a general problem
- the input length of a problem is the number n of symbols used to characterize a particular instance of it
- the order of a function f(n) is some O(g(n)) of some function g(n) s.t.
 - -f(n)<=c.|g(n)|, for all n>=0, for some c

Polynomial Time

- An algorithm is said to be **polynomial time** if its running time is <u>upper bounded</u> by a <u>polynomial</u> in the size of the <u>input</u> for the algorithm, i.e., $T(n) = O(n^k)$ for some constant k..
- The <u>quicksort</u> sorting algorithm on n integers performs at most An^2 operations for some constant A. Thus it runs in time $O(n^2)$ and is a polynomial time algorithm.
- Maximum matchings in graphs can be found in polynomial time

- a polynomial time algorithm (P) is one which solves any instance of a particular problem in a length of time O(p(n)), where p is some polynomial on input length
- an exponential time algorithm (E) is one whose solution time is not so bounded
- a non-deterministic polynomial time algorithm
 (NP) is one for which any guess at the solution of
 an instance of the problem may be checked for
 validity in polynomial time

- NP-complete problems are a subclass of NP problems for which it is known that if any such problem has a polynomial time solution, then all NP problems have polynomial solutions. These are thus the hardest NP problems
- Co-NP problems are the complements of NP problems, to prove a guess at a solution of a Co-NP problem may well require an exhaustive search of the solution space

Some Unknowns in Complexity Theory:

- i) NP = P
- ii) NP = CONP
- iii) P = CONP = NP