Today

- Data science: classes of algorithms
- Training algorithm
- Scientific coding in Python with numpy, matplotlib, pandas

Assignments

- Yay to using functions already!
- Pay attention to indenting
- If you use LLMs, make sure you know what they're doing
 - ask it to explain the code line by line
 - if you get syntax or libraries we haven't covered in class, it's probably not what you want. Ask for a minimal example.

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm

Workflow algorithms

- Model algorithm
 - Intrinsic stochasticity (e.g. movement)
 - Deterministic equations + noise
 - Has parameters
- Training algorithm
- Inference algorithm

- Model algorithm
- Training algorithm
 - An algorithm to train a model algorithm on data
 - syn. model fitting, calibration
 - e.g. least squares, maximum likelihood
 - try typing Im into the R console
- Inference algorithm

- Model algorithm
- Training algorithm
- Inference algorithm
 - looking back: considering all the ways data could have happened
 - looking forward: predicting new data and testing against them

Workflow algorithms in DS

Pipelines, standard conventions ...

Overall Data Science Algorithm

Generate alternative models Simulate models, exploration Design data acquisition Confront models with data

Training algorithms

Training algorithm

aka model fitting, model calibration

Big idea in data science

Legendre 1805: comet orbits, SSQ Use one algorithm (training algorithm) to train another (model algorithm) on data

General algorithmic idea:

General algorithmic idea:

General algorithmic idea:

General algorithmic idea:

Optimization algorithms

- Systematically try all combinations for β_0 and β_1 Grid search algorithms
- Narrowing in: keep changing parameters in the direction that leads to lower SSQ - Descent algorithms
- Try random values for β_0 and β_1 Monte Carlo algorithms
- Solve for parameters using math Analytical or numerical algorithms

Develop a training algorithm: an example

Key points:

Pseudocode

3 Phases

Top down refinement

For each value of β_0 For each value of β_1 Calculate sum of squares

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1

For each value of β_0

For each value of β_1

Calculate sum of squares

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Read in data

Set up values of β_0 and β_1 to try

Set up storage for ssq, β_0 , β_1

For each value of β_0

For each value of β_1

Calculate sum of squares

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Plot fitted model with the data

Initialization phase

Calculation phase

Termination phase

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1

Top down refinement

For each value of β_0

For each value of β_1

Calculate sum of squares

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1

Top down refinement

For each value of β_0

For each value of β_1

Calculate model predictions

Calculate deviations

Sum squared deviations

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1 For each value of β_0

Translate this to Python and use it to train the model with your data

For each value of β_1

Calculate model predictions
Calculate deviations
Sum squared deviations

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1