MAGNITUDE COMPARATOR

MAGNITUDE COMPARATOR: DIGITAL COMPARATOR

- It is a combinational logic circuit.
- Digital Comparator is used to compare the value of two binary digits.
- There are two types of digital comparator (i) Identity Comparator
 (ii) Magnitude Comparator.
- IDENTITY COMPARATOR: This comparator has only one output terminal for when A=B, either A=B=1 (High) or A=B=0 (Low)
- MAGNITUDE COMPARATOR: This Comparator has three output terminals namely A>B, A=B, A<B. Depending on the result of comparison, one of these output will be high (1)
- Block Diagram of Magnitude Comparator is shown in Fig. 1

BLOCK DIAGRAM OF MAGNITUDE COMPARATOR

Fig. 1

1- Bit Magnitude Comparator:

- This magnitude comparator has two inputs A and B and three outputs A<B, A=B and A>B.
- This magnitude comparator compares the two numbers of single bits.
- Truth Table of 1-Bit Comparator

INPUTS		OUTPUTS			
A	В	Y ₁ (A <b)< td=""><td>Y₂ (A=B)</td><td>Y₃ (A>B)</td></b)<>	Y ₂ (A=B)	Y ₃ (A>B)	
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

K-Maps For All Three Outputs:

K-Map for
$$Y_1 : A < B$$

 $Y_1 = \overline{A}B$

K-Maps For All Three Outputs:

K-Map for
$$Y_1 : A < B$$

 $Y_1 = \overline{AB}$

K-Maps For All Three Outputs:

K-Map for
$$Y_1 : A < B$$

 $Y_1 = \overline{A}B$

K-Map for
$$Y_2 : A=B$$

 $Y_2 = \overline{AB} + AB$

 $Y_3 = AB$

K-Map for
$$Y_2 : A>B$$

Realization of One Bit Comparator

$$Y_{1} = \overline{AB}$$

$$Y_{2} = \overline{AB} + AB$$

$$Y_{3} = A\overline{B}$$

Realization of by Using AND, EX-NOR gates

2-Bit Comparator:

- A comparator which is used to compare two binary numbers each of two bits is called a 2-bit magnitude comparator.
- Fig. 2 shows the block diagram of 2-Bit magnitude comparator.
- It has four inputs and three outputs.
- Inputs are A_0 , A_1 , B_0 and B_1 and Outputs are Y_1 , Y_2 and Y_3

GREATER THAN (A>B)

A_1	A_0	\mathbf{B}_1	B_0
1	0	0	1
1	1	1	0
0	1	0	0

- 1. If $A_1 = 1$ and $B_1 = 0$ then A > B
- 2. If A_1 and B_1 are same, i.e $A_1=B_1=1$ or $A_1=B_1=0$ and $A_0=1$, $B_0=0$ then A>B

LESS THAN (A<B)

Similarly,

1. If
$$A_1 = B_1 = 1$$
 and $A_0 = 0$, $B_0 = 1$, then $A < B$

2. If
$$A_1 = B_1 = 0$$
 and $A_0 = 0$, $B_0 = 1$ then A

TRUTH TABLE

INPUT			OUTPUT			
A_1	A_0	B_1	B_0	$Y_1 = A < B$	$Y_2 = (A = B)$	$Y_3=A>B$
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

K-Map for A<B:

K-Map for A=B:

$A_1 A_0 = 00$ 01 11 10							
A_1A_0	00	01	11	10			
00	0		1)	1			
01	0	0	. 1	1			
11	0	0	0	0			
10	0	0	1	0			
•							

$A_1 A_0 B_1 B_0$ 00 01 11 10							
11110	00	01	11	10			
00	1	0	0	0			
01	0	1	0	0			
11	0	0	1	0			
10	0	0	0	1			

For A<B

$$\mathbf{Y}_1 = \overline{\mathbf{A}_1} \ \overline{\mathbf{A}_0} \ \mathbf{B}_0 + \overline{\mathbf{A}_1} \ \mathbf{B}_1 + \overline{\mathbf{A}_0} \ \mathbf{B}_1 \ \mathbf{B}_0$$

For A=B

$$Y_{2} = \overline{A_{1}} \ \overline{A_{0}} \ \overline{B_{1}} \ \overline{B_{0}} + \overline{A_{1}} \ A_{0} \ \overline{B_{1}} \ B_{0} + A_{1} A_{0} B_{1} B_{0} + A_{1} \ \overline{A_{0}} \ B_{1} \ \overline{B_{0}}$$

K-Map For A>B

$$\mathbf{Y}_3 = \mathbf{A}_0 \ \overline{\mathbf{B}_1} \ \overline{\mathbf{B}_0} + \mathbf{A}_1 \ \overline{\mathbf{B}_1} + \mathbf{A}_1 \mathbf{A}_0 \ \overline{\mathbf{B}_0}$$

For A=B From K-Map

$$\begin{aligned} Y_{2} &= \overline{A_{1}} \, \overline{A_{0}} \, \overline{B_{1}} \, \overline{B_{0}} + \overline{A_{1}} \, A_{0} \, \overline{B_{1}} \, B_{0} + \underline{A_{1}} \underline{A_{0}} B_{1} B_{0} + A_{1} \, \overline{A_{0}} \, B_{1} \, \overline{B_{0}} \\ Y_{2} &= \overline{A_{0}} \, \overline{B_{0}} (\overline{A_{1}} \, \overline{B_{1}} + A_{1} B_{1}) + A_{0} B_{0} (\overline{A_{1}} \, \overline{B_{1}} + A_{1} B_{1}) \\ Y_{2} &= (\overline{A_{1}} \, \overline{B_{1}} + A_{1} B_{1}) \, (\overline{A_{0}} \, \overline{B_{0}} + A_{0} B_{0}) \\ Y_{2} &= (A_{1} \odot B_{1}) \, (A_{0} \odot B_{0}) \end{aligned}$$

LOGIC DIAGRAM OF 2-BIT COMPARATOR:

THANK YOU

Quick Quiz (Poll 1)

- If two numbers are not equal then binary variable will be
 - a) 0
 - b) 1
 - c) A
 - d) B

Quick Quiz (Poll 2)

Comparators are used in ______

- a) Memory
- b) CPU
- c) Motherboard
- d) Hard drive