Université libre de Bruxelles 2025

Examen MATH-F211

24 janvier 2025

Nom:									
Prénom	:								
porte reils N'ap L'exa cas-la	z pas de télectronic portez pa amen durc à, levez la	trousse, de ques. s de papie s 3 heures main et r	e règle, de er à l'exam	e tipp-ex, comen. , vous pous.	le smartph	one, de sr	e d'eau (un martwatch d vous avez	ou d'autre	s appa-
			Ne remp	olissez qu'a	u-dessus de	cette ligne	!		
	1–5	5–10	11	12	13	14	15	Σ	

Note:

Partie A

Veuillez écrire vos réponses dans cette partie directement sous chaque exercice. Temps estimé : 20 min.
Exercice 1 (2P). Finir la définition suivante : Soit (X, \mathcal{T}) un espace topologique. <i>Une base de la topologie</i> est
Exercice 2 (2P). Finir la définition suivante : Un espace topologique (X, \mathcal{T}_X) est dit <i>connexe</i> , si
Exercice 3 (2P). Formuler le théorème des valeurs extrêmes (pour les fonctions sur un espac compact).

Partie B

Dans cette partie, choisissez une réponse dans la liste fournie. Vous ne devez pas fournir de solution ou de justification.

Temps estimé : 20 min.
Exercice 6 (2P). Soit $X = \mathbb{R}$ muni de la topologie cofinie. La fonction $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x \dots$ [] est continue. [] est ouverte. [] est fermée. [] n'a aucune des propriétés listées précédemment.
Exercice 7 (2P). On définit la fonction $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ par $d(x,y) := x^4 - y^4 $. Choisir une vraie affirmation dans la liste suivante :
 [] d est une métrique sur ℝ. [] d n'est pas une métrique sur ℝ parce que l'inégalité triangulaire n'est pas satisfaite. [] d n'est pas une métrique sur ℝ parce qu'il existe un x ∈ ℝ tel que d(x, x) ≠ 0. [] d n'est pas une métrique sur ℝ pour une raison non mentionnée ci-dessus.
Exercice 8 (2P). Soit X un espace qui consiste de deux points distincts : $X = \{a, b\}$. Considérons $\mathcal{T} = \{\varnothing, \{a\}, \{a, b\}\}$. Choisir une vraie affirmation dans la liste suivante :
 [] T n'est pas une topologie sur X. [] T est une topologie Hausdorff. [] T n'est pas une topologie Hausdorff, mais tout singleton dans X est fermé. [] Aucune des réponses ci-dessus n'est vraie.
Exercice 9 (2P). Soit $\mathbb T$ le tore et $A\subset \mathbb T$ un sous-ensemble fini non-vide. Choisir une vraie affirmation dans la liste suivante :
 [] T \ A est connexe seulement dans le cas où A contient un point. [] T \ A est connexe seulement dans le cas où A contient un ou deux points. [] T \ A est toujours connexe. [] Aucune des réponses ci-dessus n'est vraie.
Exercice 10 (2P). Soit \mathbb{RP}^n l'espace projectif. Choisir une vraie affirmation dans la liste suivante : $[\]\mathbb{RP}^n$ est compact, connexe et Hausdorff. $[\]\mathbb{RP}^n$ est compact et connexe, mais il n'est pas Hausdorff. $[\]\mathbb{RP}^n$ est compact et Hausdorff, mais il n'est pas connexe. $[\]$ Aucune des réponses ci-dessus n'est vraie.

Partie C

Veuillez écrire vos solutions aux exercices des parties C et D sur les feuilles blanches fournies. Temps estimé : 1 h 20 min.

Exercice 11 (10P). Soit (M, d) un espace métrique et A et B deux sous-ensembles compacts disjoints. Démontrer qu'il existe des ouverts U et V disjoints tels que $A \subset U$ et $B \subset V$.

Exercice 12 (10P). Soit X un espace topologique et $A \subset X$ un sous-espace connexe. Démontrer que \bar{A} est connexe aussi.

Exercice 13 (10P). Démontrer que le produit de deux espaces compacts est un espace compact.

Partie D

Temps estimé : 1 h.

Exercice 14 (10P). Soit (X, \mathcal{T}) un espace topologique et $f: X \to [0, 1]$ une fonction. On munit [0, 1] avec la topologie induite de \mathbb{R} . Démontrer que f est continue si et seulement si $f^{-1}([0, a))$ et $f^{-1}([0, 1])$ sont des ouverts de X pour tous $a, b \in (0, 1)$.

Exercice 15 (10P). Soit $f \colon S^1 \to S^1$ une application continue telle que $f(p_0) = p_0$, où $p_0 = (1,0)$. Supposons que le morphisme induit $f_* \colon \pi_1(S^1,p_0) \to \pi_1(S^1,p_0)$ est trivial. Démontrer que f est homotope à l'application constante, c'est-à-dire, il existe une application $h \colon S^1 \times I \to S^1$ continue telle que

$$h(p,0) = f(p) \qquad \forall p \in S^1,$$

$$h(p,1) = x_0 \qquad \forall p \in S^1,$$

$$h(x_0,s) = x_0 \qquad \forall s \in I.$$