Statistical modelling

#2.b Linear transformations

Dr. Léo Belzile HEC Montréal

Linear transformations

Consider the log number of Bixi rentals per day as a function of the temperature in degrees Celcius (or in Farenheit).

Suppose that the true effect of temperature on log of bike rentals is

$$lognuser = \alpha_0 + \alpha_1 celcius + \varepsilon.$$

+ The interpretation of α_1 : the average increase in the number of log rental per day when temperature increases by $1^{\circ}C$.

The model for log-rentals with temperature expressed in Farenheits is

$$exttt{lognuser} = \gamma_0 + \gamma_1 exttt{farenheit} + arepsilon.$$

SAS output

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
Intercept	8.844327052	0.02819099	313.73	<.0001
celcius	0.048566261	0.00135205	35.92	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7.980926861	0.05132678	155.49	<.0001
farenheit	0.026981256	0.00075114	35.92	<.0001

The two units are **linearly** related,

1.8celcius +32 = farenheit.

so we find that $lpha_0=\gamma_0+32\gamma_1$ and $lpha_1=1.8\gamma_1$.

Uniqueness of the solution

The parameters of the postulated linear model with both predictors,

$$lognuser = \beta_0 + \beta_c celcius + \beta_f farenheit + \varepsilon,$$

are not **identifiable**, since any linear combination of the two solutions give the same fitted values.

For
$$k\in\mathbb{R}$$
, $eta_0=klpha_0+(1-k)\gamma_0$, $eta_1=klpha_1$ and $eta_2=(1-k)\gamma_1$ are equivalent.

The rank of \mathbf{X} is 2, but the design matrix has 3 columns

- $+ \mathbf{X}^{\top} \mathbf{X}$ is not invertible.
- + the solution to the normal equation is **not unique**.

Collinearity

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	8.844327052	В	0.02819099	313.73	<.0001
celcius	0.048566261	В	0.00135205	35.92	<.0001
farenheit	0.000000000	В			

SAS prints a warning if the data are exactly collinear.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.