SAS and MSc Business Analytics - AUEB

Joint Certificate in

SAS Programming and Data Mining

Milestone Project

Erasmia Kornelatou f2821907

A. Objective of the project

This Milestone Project is part of the required procedure for obtaining the SAS Joint Certificate in SAS Programming and Data Mining.

The objective of the project is to apply techniques for accessing, processing, managing and mining of real world data and to provide solutions to business problems that today's organizations face through the use of Base SAS Programming and SAS Enterprise Miner.

In order to accomplish the above objectives we are given a set of real world POS data that are related to sales of a retail company along with other related data.

We are asked to analyze the given data through the use of Base SAS and SAS Enterprise Miner and to write a relevant report (deliverable) to be handed to the management team of the organization by answering the question that follow.

Datasets description

The datasets consist of POS data from a retail store.

The available data are included in the following tables. The first one of them is related to data about customers and is entitled Customer, the second and the third are related to POS data and are entitled Invoice & Basket respectively, the fourth contains the coding of the payment method done and is entitled Payment_Method, the fifth contains the coding of the promotional activities running and is entitled Promotions, the sixth contains the coding of the suppliers and is entitled Suppliers and finally the seventh contains the coding of the product origin and is entitled Product_Origin

Customer table

CustomerID	CustomerCountry	Day_Of_Birth	Month_Of_Birth	Year_Of_Birth	Gender
12431	Australia	7	9	1979	Male
12433	Norway	4	10	1987	Male
12583	France	13	11	1956	Male

This table is related to the data about the customers and contains the following columns:

• **CustomerID:** Customer ID, (unique for every customer)

• **CustomerCountry:** The country of origin of each customer

• Day_Of_Birth: The day when the customer was born

• Month_Of_Birth: The month when the customer was born

• Year_Of_Birth: The year when the customer was born

• **Gender:** The gender of the customer

Invoice table

InvoiceNo	InvoiceDate	InvoiceTime	CustomerID	Operation	Payment_Method
536365	12/1/2010	8:26 πμ	17850	500	2
536365	12/1/2010	8:26 πμ	17850	500	2
536365	12/1/2010	8:26 πμ	17850	500	2

This table contains data about the issued invoice (sale or return) and contains the following columns:

• **InvoiceNo:** The issue number of the invoice (unique for every invoice)

• **InvoiceDate:** The date when the invoice was issued

• **InvoiceTime:** The time when the invoice was issued

• **CustomerID:** Customer ID, (unique for every customer)

• Operation: Denotes whether the invoice is related to Sales (500) or Return (501)

• Payment_Method: The code of the payment method

We make the assumption that an invoice can be paid with more than one payment methods. The invoice_table data set contains duplicates. In order to proceed correctly with the project you have to remove them. The correct number of deduplicated observations is 24,517.

Basket table

InvoiceNo	SKU	Description	Product_Origin	Quantity	Unit_Price
536365	58720443050301	WHITE HANG	1	6	2,55
536365	85449120050011	WHITE METAL	2	6	3,39
536365	85449230050011	CREAM CUPID	2	8	2,75

This table contains the following columns:

• **InvoiceNo:** The issue number of the invoice (unique for every invoice)

• **SKU:** The Stock Keeping Unit of the product

• **Description:** The product name

• **Product_Origin:** The code that denotes the origin of the product

• Quantity: The quantity of the product sold

• Unit_Price: The price per unit of the product

Payment Method table

Code	Method
1	Cash
2	Credit Card
3	Pay Pal
4	Debit Card

This table contains the following columns:

• **Code:** The code of the payment method

• **Method:** The method used b the customer to pay the invoice

Promotion table

Promotion_Code Promotion_Type

0	No Promotion
1	5% Off
2	10% Off

This table contains the following columns:

• **Promotion_Code:** The code of the promotion

• **Promotion_Type:** The type of the promotion

Suppliers table

Supplier_ID	Supplier_Name
1	J&J
9	Dragon

This table contains the following columns:

• **Supplier_ID:** The ID of the supplier

• **Supplier_Name:** The name of the supplier

Product Origin table

Region	Code
China	1
Asia (Except China)	2
Europe	3

This table contains the following columns:

• **Region:** The region of origin of the product

• Code: The code of the region of origin of the product

Customer table

CustomerID	CustomerCountry	Day_Of_Birth	Month_Of_Birth	Year_Of_Birth	Gender
12431	Australia	7	9	1979	Male
12433	Norway	4	10	1987	Male
12583	France	13	11	1956	Male

This table is related to the data about the customers and contains the following columns:

• **CustomerID:** Customer ID, (unique for every customer)

• **CustomerCountry:** The country of origin of each customer

• Day_Of_Birth: The day when the customer was born

• Month_Of_Birth: The month when the customer was born

• Year_Of_Birth: The year when the customer was born

• **Gender:** The gender of the customer

Invoice table

InvoiceNo	InvoiceDate	InvoiceTime	CustomerID	Operation	Payment_Method
536365	12/1/2010	8:26 πμ	17850	500	2
536365	12/1/2010	8:26 πμ	17850	500	2
536365	12/1/2010	8:26 πμ	17850	500	2

This table contains data about the issued invoice (sale or return) and contains the following columns:

• **InvoiceNo:** The issue number of the invoice (unique for every invoice)

• **InvoiceDate:** The date when the invoice was issued

• InvoiceTime: The time when the invoice was issued

• **CustomerID:** Customer ID, (unique for every customer)

• Operation: Denotes whether the invoice is related to Sales (500) or Return (501)

Payment_Method: The code of the payment method

We make the assumption that an invoice can be paid with more than one payment methods. The invoice_table data set contains duplicates. In order to proceed correctly with the project you have to remove them. The correct number of deduplicated observations is 24,517.

Basket table

InvoiceNo	SKU	Description	Product_Origin	Quantity	Unit_Price
536365	58720443050301	WHITE HANG	1	6	2,55
536365	85449120050011	WHITE METAL	2	6	3,39
536365	85449230050011	CREAM CUPID	2	8	2,75

This table contains the following columns:

• **InvoiceNo:** The issue number of the invoice (unique for every invoice)

• **SKU:** The Stock Keeping Unit of the product

• **Description:** The product name

• **Product_Origin:** The code that denotes the origin of the product

• Quantity: The quantity of the product sold

• **Unit_Price**: The price per unit of the product

Payment Method table

Code	Method
1	Cash
2	Credit Card
3	Pay Pal
4	Debit Card

This table contains the following columns:

• **Code:** The code of the payment method

• **Method:** The method used b the customer to pay the invoice

Promotion table

Promotion_Code	Promotion_Type
0	No Promotion
1	5% Off
2	10% Off

This table contains the following columns:

• **Promotion_Code:** The code of the promotion

• **Promotion_Type:** The type of the promotion

Suppliers table

Supplier_ID	Supplier_Name	
1	1&1	
9	Dragon	

This table contains the following columns:

• **Supplier_ID:** The ID of the supplier

• **Supplier_Name:** The name of the supplier

Product Origin table

Region	Code
China	1
Asia (Except China)	2
Europe	3

This table contains the following columns:

• **Region:** The region of origin of the product

• Code: The code of the region of origin of the product

B. Base SAS Programming

The following tasks require the use of Base SAS. Please take into account the following:

- The data sets should be transformed to SAS format with the use of the data step or through the File -- > Open (for Excel files) and File -- > Import (for raw data files).
- Proc sql can be used only in answering questions where it is explicitly mentioned, where as
 in any other case it is obligatory to use only the data step or any other procedure except
 proc sql (e.g. proc means).

<u>Attention</u>: In order to avoid errors when transforming data sets to SAS format, read the variables that will not be used as numbers (e.g. SKU, BasketID) in string type. Also all the new data set to be produced in Base SAS during the project should be stored in the RSULTS library.

We make the assumption that an invoice can be paid with more than one payment methods. The invoice_table data set contains duplicates. In order to proceed correctly with the project you have to remove them. The correct number of deduplicated observations is 24,257.

1. Data pre – processing:

For every invoice calculate the total number of SKU's that are related to it 'Invoice total items'. Save the output in a new SAS data set and print the first 10 observations of it. Only the data step can be used for merging data sets. Proc sql can be used for the statistics. It is suggested to use noprint option in proc sql because the new data set will be large.

InvoiceNo	COUNT_of_SKU
573585	1114
581219	749
581492	731
580729	721
558475	705
579777	687
581217	676
537434	675
580730	662
538071	652

Figure 1 - Top 10 invoices containing most items

Profession For every invoice calculate the total value of the SKU's that are related to it 'Invoice total value. Save the output in a new SAS data set. For this task use the proc means with the output statement.

	InvoiceNo	⊚ _TYPE_	⊚ _FREQ_	Invoice_total_ value
1		7 0	539701	2464991.7
2	536365	1	7	27.37
3	536366	1	2	3.7
4	536367	1	12	58.24
5	536368	1	4	19.1
6	536369	1	1	5.95
7	536370	1	20	55.29
8	536371	1	1	2.55
9	536372	1	2	3.7
10	536373	1	16	53.11
11	536374	1	1	10.95
12	536375	1	16	53.11
13	536376	1	2	6
14	536377	1	2	3.7
15	536378	1	19	33.35
16	536380	1	1	1.45
17	536381	1	35	88.2
18	536382	1	12	71.65
19	536384	1	13	62.15
20	536385	1	7	39
21	536386	1	3	8.25
22	536387	1	5	13.26
23	536388	1	14	47.27
24	536389	1	14	73.9
25	536390	1	24	58.87
26	536392	1	10	183.99
27	536393	1	1	9.95
28	536394	1	11	24.07
29	536395	1	14	35.99
30	536396	1	18	93.81
31	536397	1	2	9.3
32	536398	1	17	63.79
33	536399	1	2	3.7
34	536400	1	1	1.45
35	536401	1	64	207.04
36	536402	1	3	9.35
37	536403	1	2	16.85

Figure 2 - Total Value Per Invoice

Divide the observations of the table 'Invoice' into two new tables where in the one the Sales transactions will be stored where as in the second the Returns transactions will be stored. This division must be done using the variable 'Operation'.

	A InvoiceNo	InvoiceDate	InvoiceTime		Operation	A Payment_M
1	536365	01DEC2010	8:26:00 AM	17850	500	2
2	536366	01DEC2010	8:28:00 AM	17850	500	3
3	536367	01DEC2010	8:34:00 AM	13047	500	4
4	536368	01DEC2010	8:34:00 AM	13047	500	1
5	536369	01DEC2010	8:35:00 AM	13047	500	4
6	536370	01DEC2010	8:45:00 AM	12583	500	2
7	536371	01DEC2010	9:00:00 AM	13748	500	2
8	536372	01DEC2010	9:01:00 AM	17850	500	1
9	536373	01DEC2010	9:02:00 AM	17850	500	3
10	536374	01DEC2010	9:09:00 AM	15100	500	3
11	536375	01DEC2010	9:32:00 AM	17850	500	3
12	536376	01DEC2010	9:32:00 AM	15291	500	1
13	536377	01DEC2010	9:34:00 AM	17850	500	2
14	536378	01DEC2010	9:37:00 AM	14688	500	2
15	536380	01DEC2010	9:41:00 AM	17809	500	2
16	536381	01DEC2010	9:41:00 AM	15311	500	2
17	536382	01DEC2010	9:45:00 AM	16098	500	2
18	536384	01DEC2010	9:53:00 AM	18074	500	2
19	536385	01DEC2010	9:56:00 AM	17420	500	2
20	536386	01DEC2010	9:57:00 AM	16029	500	2
21	536387	01DEC2010	9:58:00 AM	16029	500	2
22	536388	01DEC2010	9:59:00 AM	16250	500	2
23	536389	01DEC2010	10:03:00 AM	12431	500	3
24	536390	01DEC2010	10:19:00 AM	17511	500	1
25	536392	01DEC2010	10:29:00 AM	13705	500	2
26	536393	01DEC2010	10:37:00 AM	13747	500	4
27	536394	01DEC2010	10:39:00 AM	13408	500	2
28	536395	01DEC2010	10:47:00 AM	13767	500	3
29	536396	01DEC2010	10:51:00 AM	17850	500	1
30	536397	01DEC2010	10:51:00 AM	17924	500	3
31	536398	01DEC2010	10:52:00 AM	13448	500	1
32	536399	01DEC2010	10:52:00 AM	17850	500	2
33	536400	01DEC2010	10:53:00 AM	13448	500	4
34	536401	01DEC2010	11:21:00 AM	15862	500	3
35	536402	01DEC2010	11:22:00 AM	15513	500	3
36	536403	01DEC2010	11:27:00 AM	12791	500	4

Figure 3 - Sales Transactions

	InvoiceNo	InvoiceDate	InvoiceTime	Operation	Payment_M
1	537425	06DEC2010	3:35:00 PM	501	1
2	537432	06DEC2010	4:10:00 PM	501	2
3	538072	09DEC2010	2:10:00 PM	501	3
4	538161	09DEC2010	5:25:00 PM	501	2
5	538162	09DEC2010	5:25:00 PM	501	2
6	540012	04JAN2011	11:14:00 AM	501	4
7	540564	10JAN2011	10:36:00 AM	501	3
8	540638	10JAN2011	12:14:00 PM	501	1
9	540978	12JAN2011	3:04:00 PM	501	4
10	541685	20JAN2011	3:41:00 PM	501	2
11	541687	20JAN2011	3:42:00 PM	501	4
12	542225	26JAN2011	1:10:00 PM	501	1
13	543259	04FEB2011	4:07:00 PM	501	1
14	543262	04FEB2011	4:08:00 PM	501	3
15	543827	14FEB2011	9:44:00 AM	501	2
16	545236	01MAR2011	10:32:00 AM	501	1
17	545857	07MAR2011	1:56:00 PM	501	3
18	545990	08MAR2011	1:07:00 PM	501	2
19	546010	08MAR2011	3:55:00 PM	501	2
20	546016	08MAR2011	5:21:00 PM	501	3
21	546018	08MAR2011	5:23:00 PM	501	4
22	546020	08MAR2011	5:27:00 PM	501	4
23	546021	08MAR2011	5:27:00 PM	501	1
24	546023	08MAR2011	5:29:00 PM	501	2
25	546124	09MAR2011	2:50:00 PM	501	4
26	546126	09MAR2011	2:52:00 PM	501	2
27	546129	09MAR2011	3:07:00 PM	501	3
28	546130	09MAR2011	3:08:00 PM	501	3
29	546137	09MAR2011	4:33:00 PM	501	2
30	546142	09MAR2011	4:37:00 PM	501	4
31	546147	09MAR2011	4:42:00 PM	501	3
32	546152	09MAR2011	5:25:00 PM	501	4
33	546407	11MAR2011	4:24:00 PM	501	3
34	546409	11MAR2011	4:27:00 PM	501	4
35	547336	22MAR2011	11:45:00 AM	501	1
36	547559	23MAR2011	5:27:00 PM	501	3

Figure 4 - Return Transactions

Create a new table that will contain customers for which there exists a birth date (no one of the fields Day_Of_Birth, Month_Of_Birth, Year_Of_Birth should be NULL). Then calculate the customer's age based on the fact that today's date is 01/01/2019 and store it into a new variable (check the validity of the dates e.g. birth year less than 1920).

	CustomerII				Year_Of_Birth		Date_Of_Birth	_
1	12431	Italy	7	9	1979	Male	09/07/1979	39
2	12433	Netherlands	4	10	1987	Male	10/04/1987	31
3	12583	United Kingdom	13	11	1956	Male	11/13/1956	62
1	12662	Greece	2	6	1966	Female	06/02/1966	53
5	12748	Germany	4	9	1970	Male	09/04/1970	48
ô	12838	Germany	20	1	1976	Male	01/20/1976	43
7	12868	Germany	5	4	1954	Female	04/05/1954	65
3	13047	United Kingdom	11	8	1950	Female	08/11/1950	68
9	13255	Brazil	4	5	1965	Male	05/04/1965	54
10	13408	Brazil	29	7	1967	Female	07/29/1967	51
11	13448	Germany	3	7	1979	Male	07/03/1979	39
12	13694	Germany	10	6	1960	Female	06/10/1960	59
13	13705	Germany	8	4	1982	Female	04/08/1982	37
14	13747	Greece	22	11	1964	Female	11/22/1964	54
15	13748	Germany	22	5	1983	Male	05/22/1983	36
16	13767	Belgium	30	10	1961	Female	10/30/1961	57
17	14001	Greece	22	1	1949	Male	01/22/1949	70
18	14045	Belgium	29	12	1964	Male	12/29/1964	54
19	14078	Brazil	6	7	1963	Male	07/06/1963	55
20	14237	Ukraine	19	4	1954	Female	04/19/1954	65
21	14307	Greece	27	8	1968	Female	08/27/1968	50
22	14527	United Kingdom	7	5	1960	Female	05/07/1960	59
23	14594	Greece	16	5	1976	Male	05/16/1976	43
24	14688	Greece	13	7	1960	Male	07/13/1960	58
25	14729	Belgium	5	10	1973	Male	10/05/1973	45
26	14849	Belgium	1	9	1982	Female	09/01/1982	36
27	14911	Greece	11	11	1966	Male	11/11/1966	52
28	15012	Greece	19	5	1967	Male	05/19/1967	52
29	15100	France	12	2	1941	Male	02/12/1941	78
30	15165	Iceland	11	7	1979	Male	07/11/1979	39
31	15291	Greece	1	12	1962	Female	12/01/1962	56
32	15311	Netherlands	5	5	1954	Male	05/05/1954	65
33	15350	Greece	19	12	1956	Male	12/19/1956	62
34	15485	Cyprus	27	4	1960	Female	04/27/1960	59
35	15513	Greece	1	6	1968	Female	06/01/1968	51
36	15525	Germany	12		1956		02/12/1956	63
37	15605	Germany	2	1		Female	01/02/1948	71

Figure 5 - Table containing Age Of Customers

- 2. Describe and explain using graphs who is your customer. What is the profile of the audience to which the company's products are targeted?
 - What are the demographic characteristics i.e. age, gender and country of the company's customers?

				Gender
1	12346	40	Germany	Male
2	12347	56	Italy	Female
3	12348	43	Iceland	Male
4	12349	69	Germany	Male
5	12350	79	Brazil	Female
6	12352	54	Greece	Male
7	12353	53	Greece	Female
8	12354	66	Germany	Female
9	12355	67	Greece	Female
10	12356	39	Singapore	Female
11	12357	52	Ukraine	Male
12	12358	42	Italy	Male
13	12359	38	Belgium	Male
14	12360	56	United Kingdom	Female
15	12361	64	Belgium	Female
16	12362	52	Brazil	Female
17	12363	37	Iceland	Female
18	12364	29	Ukraine	Female
19	12365	55	Cyprus	Female
20	12367	41	Germany	Female
21	12370	54	Italy	Female
22	12370	49	Iceland	Male
23	12371	69	Brazil	Female
24	12372	85	Belgium	Female
25	12373	65	Belgium	Male
26	12374	45	Germany	Male
27	12375	44	Iceland	Male
28	12377	55	Germany	Female
29	12378	49	Iceland	Female
30	12379	66	France	Female
31	12380	44	Germany	Male
32	12381	30	Netherlands	Male
33	12383	65	Cyprus	Male
34	12384	37	France	Female
35	12386	58	Belgium	Female
36	12388	51	Netherlands	Female
37	12390	50	Germany	Female

Figure 6 - Demographic Characteristics Of Customers

Based on the age variable, create a new variable entitled Age_Range that takes the

following values:

<18 -- > "Under 18"

18 - 25 -- > "Very Young"

26 - 35 -- > "Young"

36 - 50 -- > "Middle Age"

51 - 65 -- > "Mature"

66 - 75 -- > "Old"

>= 76 --> "Very Old"

(Attention: do not format the values of the existing variable but create a new variable entitled Age _Range).

	CustomerID	CustomerCountry	Day_Of_Birth	Month_Of_Birth	Year_Of_Birth	Gender	Date_Of_Birth	Age	Age_Range
1	12431	Italy	7	9	1979	Male	09/07/1979	39	Middle Age
2	12433	Netherlands	4	10	1987	Male	10/04/1987	31	Young
3	12583	United Kingdom	13	11	1956	Male	11/13/1956	62	Mature
4	12662	Greece	2	6	1966	Female	06/02/1966	53	Mature
5	12748	Germany	4	9	1970	Male	09/04/1970	48	Middle Age
6	12838	Germany	20	1	1976	Male	01/20/1976	43	Middle Age
7	12868	Germany	5	4	1954	Female	04/05/1954	65	Mature
8	13047	United Kingdom	11	8	1950	Female	08/11/1950	68	Old
9	13255	Brazil	4	5	1965	Male	05/04/1965	54	Mature
10	13408	Brazil	29	7	1967	Female	07/29/1967	51	Mature

Figure 7 - Table Containing Age Range

What are the behavioral characteristics of each age group? (visits to the stores, number of SKU's purchased, total cost of purchases, average cost, minimum cost, maximum cost etc). The merging of the data sets must be done using exclusively the data step but the calculation of the statistics e.g. visits, total cost of purchases etc can be done using proc sql. Create a pie chart and a frequency table with the percentages of customers that belong to each age group. Augment your analysis by providing pie charts for the behavioral characteristics for each age group.

	Age_Range	1	STORE_VISITS
1	Mature]	179976
2	Middle Age		163134
3	Old		37915
4	Young		13229
5	Very Old		6878
6	Very Young		230
7	Under 18		220

Figure 8 - Store Visits Per Age Group

Age_Range	SKU_purchased	total_cost_purchased	avg_cost_purchased	min_cost_purchased	max_cost_purchased
Mature	175890	47850406	272.0473	0	168717
Middle Age	159896	42398326	265.1619	0	814275
Old	36920	9748966	264.0565	0	11363
Under 18	218	51906	238.1009	19	1495
Very Old	6681	2949314	441.448	0	394932
Very Young	217	40682	187.4747	19	1195
Young	13045	3114999	238.7887	0	3995

Figure 9 - Cost Measures of Purchased Items Per Age Group

The FREQ Procedure

Age_Range	Frequency	Percent		Cumulative Percent
Mature	1841	42.72	1841	42.72
Middle Age	1729	40.13	3570	82.85
Old	493	11.44	4063	94.29
Under 18	2	0.05	4065	94.34
Very Old	79	1.83	4144	96.17
Very Young	7	0.16	4151	96.33
Young	158	3.67	4309	100.00

Figure 10 – Customers Per Age Group

Customer Age Group Percentage Pie Chart

Figure 11 - Customers Per Age Group

SKU Purchased Per Age Group

Figure 12 - Items Purchased Per Age Group

Total Cost Purchased Per Age Group

Figure 13 - Total Cost of Items Purchased Per Age Group

Average Cost Purchased Per Age Group

Figure 14 - Average Cost of Items Purchased Per Age Group

Max Cost Purchased Per Age Group

Figure 15 - Max Cost of Items Purchased Per Age Group

Figure 16 - Min Cost of Items Purchased Per Age Group

Figure 17 - Store Visits Per Age Group

From Figure 10 and Figure 11, it is clear that most of the customers are mature whereas the fewest are under 18.

From Figure 9 and Figure 12 – Figure 16, we observe that mature customers have purchased the most items with the biggest total and average cost. However, the maximum cost has been made by middle Age 'whereas the biggest min cost has been made byvery young customers and customers under 18. This may occur due to outliers.

Based on Figure 8 and Figure 17, we consider that the most visits have been made by middle-aged people while the fewest by minors.

3. Exploration and understanding of sales:

What was the level of Sales and Returns? The variable 'Operation' of the 'Invoice table takes the values '500 and 501'. Create a bar chart with the monetary values and a frequency table by creating a custom format for which 500=Sale and 501=Cancellation.

Figure 18 - Total Monetary Value per Operation

The FREQ Procedure						
Operation Frequency Percent Cumulative Cumulative Percent						
500	20104	82.88	20104	82.88		
501	4153	17.12	24257	100.00		

Figure 19 - Frequency Table

From figures 18 and 19, it seems that in comparison with the sales, there are few cancellations and due to that the total monetary value of them is low.

Create graphs for the average basket size i.e. number of SKU's, total monetary value, etc and comment on your findings. Proc sql can be used only for the calculation of the statistics e.g. of the average basket and not e.g. for merging data sets (for this data step should be used).

	Avg_num_of_SKU	Avg_price_of_bsk
1	21.513991567	18261

Figure 20 - Average Basket Size

The average basket has 22 items and costs 18261.

- 4. Zoom in further to the sales transactions and describe the way that the customers pay for their purchases (cash, credit card, pay pal, debit card) and identify their preferences concerning the origin of the products they buy (irrespective of their age group). We make the assumption that an invoice can be paid by more than one payment method.
 - Create pie charts for the variable 'Payment Method' for every value of the variable 'Movement' of the 'Basket' table. In the graphs show the type of the payment method and not its code e.g. credit card 20%.

Figure 21 - Frequency Per Payment Method

Which payment method is the most popular (it is used most by the customers)? Which payment method brings the biggest revenues for the company? (Use graphs).

From figures 21 and 22 it appears that customers slightly prefer debit card payments and due to that the revenue is a bit higher than other payment methods.

Figure 22 - Revenues Per Payment Method

Products of what origin do the customers prefer (use graphs)? Products of which origin bring the biggest revenues to the retailer and what is the amount of the revenues for each origin (use graphs and tables).

Figure 23 - Frequency Of Products Purchased Per Product Origin

?

24

Figure 24 - Revenues Of Products Purchased Per Product Origin

Region	1	Revenues		
China		3279463.61		
Europe	3073977.171			
Asia (Except C		2555388.223		
South America		426031.46		
US		413886.79		
	China Europe Asia (Except C South America	China Europe Asia (Except C South America		

Figure 25 - Table Of Revenues Per Product Origin

From Figures 23, 24 and 25, it seems that most of the purchased products are made in China and these products bring the biggest revenues.

- 5. It should be mentioned that the SKU of each product contains "hidden" information. The twelfth (12th) digit indicates the promotional activity that is attached to the product. In order to unhide this piece of information use relevant functions and then store it to a new column. If we assume that an SKU is 58720443050301, then the promotional activity code is 3.
 - What is the percentage of products that are sold without promotion and what is the percentage of products sold with promotion (use graphs).

Figure 26 - Frequency of Purchased Products Per Promotion Category

The percentage of products sold without promotion is equal to $94.28\,\%$ whereas the percentage of products sold with promotion is equal to $5.72\,\%$.

Create pie charts to show the percentage of products that are sold on each promotion type (use the description of the promotion and not its code). Do not include the products sold without promotion.

From Figure 27, we conclude that when a product has promotion, there is much likelihood of having a 15% discount.

Figure 27 - Percentages of purchased Products Per Promotion Type

How many products are sold with promotion over or equal to 15%? What is the revenue of the sale of these products?

Figure 28 - Frequency and Revenues of Products With more than 15 % discount

Based on Figure 28, 136502 products are sold with more than 15% discount with total revenue equal to 199271.

Which customers buy more times products that are on promotion? Provide their demographic characteristics (i.e. gender, age group, country).

Figure 29 - Frequency Of Sold Products per Gender

	CustomerCountry	times_customers_bought_promotion
1	Germany	5584
2	Greece	4959
3	United Kingdom	1616
4	Netherlands	1583
5	Brazil	1303
6	Belgium	1201
7	Singapore	1114
8	Ukraine	1108
9	Italy	1051
10	Cyprus	1038
11	Iceland	978
12	France	951

Figure 30 - Frequency Of Sold Products per Customer's Country

The FREQ Procedure

Age_Range	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Mature	1841	42.72	1841	42.72
Middle Age	1729	40.13	3570	82.85
Old	493	11.44	4063	94.29
Under 18	2	0.05	4065	94.34
Very Old	79	1.83	4144	96.17
Very Young	7	0.16	4151	96.33
Young	158	3.67	4309	100.00

Figure 31 - Frequency of Sold Products per Age Group

From Figures 29, 30 and 31, we conclude that Mature German women buy most products at a discount.

- 6. It should be also mentioned that the SKU of each product contains more "hidden" information. The sixth (6th) digit indicates the company that supplied the product (supplier). In order to unhide this piece of information use relevant functions and then store it to a new column. If we assume that an SKU is 58720443050301, then the supplier code is 4.
 - Create graphs to show the percentage of products sold by each supplier (use the name of the supplier and not its code).

Figure 32 - Purchased Products Per Supplier Name

Create graphs to show the percentage and actual revenues of products sold by each supplier (use the name of the supplier and not its code).

Figure 33 - Purchased Product Revenues Per Supplier Name

• Create a cross tabulation table to show the total revenue of the company with respect to the origins of the products sold by each supplier (Use the names of the suppliers and the names of the countries of origins and not their codes. Put the total revenue in the middle of the cross tabulation, the origin in the rows and the suppliers in the columns). For this task you have to use proc tabulate (find relevant instructions in the web or in sas help).

	Total_Revenue Supplier								
Centro Campisti Dragon Future Delphi Ltd J&J John Taylor & Co Original Technology					Original Technology	Pilot	Power SA	Trek Ltd	
Region									
Asia (Except China)	69995.64	111359.44	95299.25	411137.19	447229.21	238580.19	377142.62	254439.53	396460.91
China	105662.76	163297.08	78903.28	445183.06	488652.28	305154.16	291131.07	350386.72	482174.29
Europe	114614.18	94599.75	77441.09	402572.54	507049.31	373384.44	324673.96	327630.51	470255.85
South America	10714.58	10481.89	19921.01	115248.58	60707.31	29129.76	52896.95	223052.57	29106.88
US	4562.52	20702.07	4042.25	28281.21	81132.00	40438.75	87322.42	53742.51	62490.55

Figure 34 - Tabulation Table Product Origins - Supplier Names

Based on Figures 32,33 and 35, most of the Products are supplied by John Taylor & Co and most of them are made in Europe. The biggest revenues are earned by them, as well.

7. The company wants to focus on its sales so as to conduct promotional activities in store.

What days would you propose that these activities should take place and why?

② What is the distribution of purchases per day of the week? Is there any difference among the various days (e.g. basket size, number of products per invoice etc). In order to find the day of the week when the sale takes place use the weekday function.

Figure 35 - Sales Per Day of Week

Figure 36 - Basket Size Per Day of Week

Based on Figure 35, most purchases are made on Friday which means that there is more traffic. From Figure 36, we consider that Friday contributes a lot to the turnover. For the above reasons, I would recommend promotional activities in store to be conducted on Friday.

8. The company wants to profile its customers based on their importance so as to offer them personalized services and products. The customer segmentation is asked to be done based on the three parameters of the RFM model. Before the application of the RFM model the RFM data set should be created. It is reminded that the RFM model is based on the following three parameters:

Recency - How recently did the customer purchase?

Frequency - How often do they purchase?

MonetaryValue - How much do they spend?

For this task proc sql can be used. For the calculation of R, F, M the following functions will be useful: max, sum, count and intck (For the intck use the argument week and the argument 16/12/2011 for today's date).

For the creation of the variable Monetary, the price, quantity and promotion variables should be used.

Figure 37 – Recency, Frequency, Monetary Value

D. SAS Enterprise Miner (In some questions Base SAS Programming should also be used)

9. Create customer segments by analyzing the RFM data set from the previous question using SAS Enterprise Miner and the three parameters of the RFM model. In order to access the RFM data set you must create a library named RESULTS in SAS Enterprise Miner that should be connected with the same path that the RESULTS library in SAS Studio is connected. It should be underlined that in order for the cluster analysis to produce logical results the customers with extreme values of the variables R, F, M should be excluded from the analysis. In order to do that, descriptive statistics tasks (e.g. proc univariate with the percentiles output) should be used in Base SAS. After the clusters are created in SAS Enterprise Miner the RFM data set with the newly created cluster column should be exported to a library and then by using Base SAS Programming the demographic data (age, gender and country) of the two most important clusters (justify why the selected ones are the most important) should be described.

Based on percentile tables, we keep only rows where recency is less than or equal to 38 and frequency is less than or equal to 208 and monetary value is less than or equal to 3619.424. This way, we are getting rid of extreme values.

After that, we load the data into Enteprise Miner (RFM button), we do clustering (Cluster button) and we save the results (Save Data button).

Figure 38 - Enterprise Miner - Clustering

Figure 39 - Clustering Results

After the clusters are created in SAS Enterprise Miner, we create the below table:

Cluster	Recency	Frequency	Monetary	Description
1	-			Churners
2		-	-	First Time Uncertain
3	1			Churners
4	1	-	-	Worst
5	-	-	-	Worst
6	1	•	1	First Time Uncertain
7			1	Best
8		•	1	First Time Uncertain
9	•			Churners
10			1	Best

Figure 40 - Cluster Descriptions

<u>Worst Customers:</u> The customers with lowest frequency of purchases in the past six months, and who spend less money than average on their transactions. The probability to gain this cluster of people back are minimal, and their habits does not make it worth to take actions in order to approach them.

<u>First Time Uncertain</u>: Customers, who made a recent purchase but in the past six months have not made many of them. For the specific segment, we could make promotion offers to let them better evaluate our company's pros and build a more stable relationship.

<u>Churners</u>: Customers who spend frequently more money than average, but they have quite a time to make a purchase. We have to send them a questionnaire in order to figure out how their experience in our shop is, whether they have some complaints and do not want to buy from us anymore.

<u>Best Customers</u>: Customers who spend the most money, most frequently than any other cluster. The marketing strategy for this group of customers could be to send a letter to express our appreciation for their preference to us, with a reward discount coupon for their next purchase.

We are going to visualize the demographic characteristics of cluster 2 (first time uncertain) and cluster 9 (churner) which fall into different categories. We consider them as important since they are more likely to become good customers. It does not make sense to visualize best customers

clusters (cluster 7 and cluster 10) since they are already good. We will not choose worst customers clusters (cluster 4 and cluster 5) as it is more difficult to turn them into good customers.

Figure 41 - Customers of Cluster 2 per Gender

Figure 42 - Customers of Cluster 2 per Country

Figure 43 - Customers of Cluster 2 per Age Group

From figures 41-43, we consider that the majority of first time uncertain customers are middle-aged men from Greece.

Figure 44 - Customers of Cluster 9 per Gender

Figure 45 - Customers of Cluster 9 per Country

Figure 46 - Customers of Cluster 9 per Age Group

From figures 44-46, we consider that the majority of churner customers are mature women from Greece.

10. The company is interested to change internally the store based on the products that tend to be bought together. In order to apply this initiative the company must be sure about the associations among the product names. You are asked to find which products are bought together (associations of product names) in the whole data set. Then find the associations among products in the two most important clusters (according to your business thinking) previously identified so if a customer is found to belong in one of them to receive the most suitable/ best proposals/ offers. For this task Base SAS should be used to filter the customers that belong to the two most important clusters, create the two relevant data sets and then these data sets to be analyzed using association rules through SAS Enterprise Miner.

Relations •	Expected Confidenc e(%)	Confidenc e(%)	Support(%)	Lift	Transactio n Count	Rule	Left Hand of Rule	Right Hand of Rule	Rule Item 1	Rule Item 2	Rule Item 3	Rule Item 4	Rule Item 5	Rule Index	Transpose Rule
2														5	
2										=====				6	
2										=====				33	
2										=====				34	
2										======				149	
2										=====				150	
2										. ======				171	
2										. =====				172	
2														175	
2										=====				176	
2														183	
2														186	
3														3	
3										.DOLLY				4	
3		77.78								. ======				36	
3														37	
3										. ======				35	
3		100.00	0.49	165.33	22.00	HERB M	HERB M	HERB M	. HERB M	. HERB M		HERB M		43	
3										. HERB M				44	
3		100.00	0.45	165.33	20.00	HERB M	HERB M	HERB M	. HERB M	HERB M		HERB M		45	
3										.DOLLY				53	
3		77.27	0.38	164.26	17.00	DOLLY	DOLLY	SPACEB	.DOLLY	======	SPACEB	DOLLY		54	
3	0.54	88.00	0.49	163.68	22.00	HERB M	HERB M	HERB M	. HERB M	HERB M	=====	HERB M		62	
3		88.00	0.49	163.68	22.00	HERB M	HERB M	HERB M	. HERB M	HERB M	======	HERB M		64	
3	0.56	91.67	0.49	163.68	22.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		63	
3		91.67	0.49	163.68	22.00	HERB M	HERB M	HERB M	. HERB M	======	HERB M	HERB M		61	
3	0.45	71.43	0.45	159.43	20.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		91	
3		75.00	0.47	159.43										98	
3	0.49	78.57	0.49	159.43	22.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		96	
3	0.49	78.57	0.49	159.43	22.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		94	
3	0.63	100.00	0.49	159.43	22.00	HERB M	HERB M	HERB M	. HERB M	HERB M		HERB M		95	
3	0.63	100.00	0.49	159.43	22.00	HERB M	HERB M	HERB M	. HERB M	HERB M	======	HERB M		97	
3	0.63	100.00	0.47	159.43	21.00	HERB M	HERB M	HERB M	. HERB M	HERB M		HERB M		99	
3	0.63	100.00	0.45	159.43	20.00	HERB M	HERB M	HERB M	. HERB M	HERB M	======	HERB M		100	
3	0.60	96.15	0.56	158.97						HERB M				112	
3	0.58	92.59	0.56	158.97	25.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		111	
3	0.60	96.00	0.54	158.72	24.00	HERB M	HERB M	HERB M	. HERB M	HERB M	======	HERB M		114	
3	0.60	96.00	0.54	158.72	24.00	HERB M	HERB M	HERB M	. HERB M	HERB M	======	HERB M		116	
3	0.56	88.89	0.54	158.72						======				115	
3	0.56	88.89	0.54	158.72	24.00	HERB M	HERB M	HERB M	. HERB M		HERB M	HERB M		113	
3		95.65	0.49	158.14						HERB M				122	
3	0.52			158.14						. ======				121	
3	0.54	84.62	0.49	157.38						HERB M				134	
3	0.58				22.00	HERB M	HERB M	HERB M	. HERB M	. ======	HERB M	HERB M		133	
3	0.45	68.97	0.45	153.93	20.00	HERB M	HERB M	HERB M	HERB M	. ======	HERB M	HERB M		151	
3	0.65			153.93						HERB M				154	
3										HERB M				155	
3										HERB M				156	
3		72.41								======				164	
3										=====::				163	
3					25.00	HERB M	HERB M	HERB M	HERB M		HERB M	HERB M		173	
3					25.00	HERB M	HERB M	HERB M	HERB M	HERB M		HERB M		174	
	0.00	05.10	0.00	150.00	20.00	LIEDD M								470	

Performing Market Basket Analytics, we can find any associations between the customers' purchases. We checked to node 'Association' in Semma's toolbar Explore tab of the diagram we already produced. From the results, we checked the View-> Rules-> Rules Table, to produce the table showing the 'Left Hand of Rule', 'Right Hand of Rule' and the metrics 'Support Confidence %', 'Expected Confidence %' and 'Lift'. Those data were imported to Excel. Using filters we could identify the associations we are interested in. The associations were sorted judged based on 'Lift'. This is because

it measures the strength of the association between two products, by how many times more possible it is for a customer who bought a product for the left relationship, to buy a product on the right hand of the relationship, compared to all the other products. This process is performed for cluster 2 and cluster 9 which were considered as important in question 9. The findings based on the metric described above are:

- HERB MARKER THYME ==> HERB MARKER ROSEMARY & HERB MARKER CHIVES & HERB MARKER BASIL (lift 168.00, cluster 2)
- REGENCY TEA PLATE ROSES & REGENCY MILK JUG PINK ==> REGENCY TEA PLATE GREEN & REGENCY SUGAR BOWL GREEN (lift 122.00, cluster 9)

Appendix

```
/* getting rid of duplicate lines in Invoice table */
proc sort data = RSULTS.INVOICE nodupkey;
by _all_;
run;
/* Question1 */
/* a) • For every invoice calculate the total number of SKU's that are related to it 'Invoice total items'.
  Save the output in a new SAS data set and print the first 10 observations of it. Only the data step
  can be used for merging data sets. Proc sql can be used for the statistics. It is suggested to use
  noprint option in proc sql because the new data set will be large. */
proc sql noprint;
CREATE TABLE RSULTS.Invoice_total_items AS
select InvoiceNo, COUNT(SKU) AS COUNT of SKU
        from RSULTS.BASKET
         group by InvoiceNo
   order by COUNT of SKU desc;
QUIT;
/* printing the first 10 observations of the above table.*/
proc sql outobs=10;
select InvoiceNo,COUNT of SKU
        from RSULTS.Invoice_total_items
QUIT;
```


/* b) • For every invoice calculate the total value of the SKU's that are related to it 'Invoice total value.

Save the output in a new SAS data set. For this task use the proc means with the output statement. */

```
proc means data=RSULTS.Basket noprint;
var UnitPrice;
class InvoiceNo;
Output Out= RSULTS.Invoice_total_value sum= Invoice_total_value;
run;
/* c) • Divide the observations of the table 'Invoice' into two new tables where
  in the one the Sales transactions will be stored where as in the second the Returns
  transactions will be stored. This division must be done using the variable 'Operation'. */
data RSULTS.Sales RSULTS.Returns;
 set RSULTS.INVOICE;
 if Operation = '500' then output RSULTS. Sales;
 else output RSULTS.Returns;
run;
/* d • Create a new table that will contain customers for which there exists a birth date (no one of the
  fields Day Of Birth, Month Of Birth, Year Of Birth should be NULL). Then calculate the customer's age
based
  on the fact that today's date is 01/01/2019 and store it into a new variable (check the validity of the dates
e.g.
  birth year less than 1920).*/
/* converting month, day and year of birth to date of birth */
DATA RSULTS.DATES;
  SET RSULTS.CUSTOMER;
  Date_Of_Birth = MDY(Month_Of_Birth, Day_Of_Birth, Year_Of_Birth);
  FORMAT Date_Of_Birth MMDDYY10.;
        If Date Of Birth= '-' or Year Of Birth< '1920' then delete;
RUN;
/* calculating age and rounding it*/
DATA RSULTS.DATES;
  SET RSULTS.DATES;
  Age = YRDIF(Date_Of_Birth,input('01/01/2019', mmddyy10.), 'Actual');
  Age = strip(put(round(Age,1),10.1));
RUN;
/* Question2 */
/* a) What are the demographic characteristics i.e. age, gender and country of the
  company's customers? */
proc sql noprint;
create table RSULTS. Demographic as
select CustomerID, AGE, CustomerCountry, Gender
        FROM RSULTS.DATES
        ORDER BY CustomerID;
quit;
```

/* b) • Based on the age variable, create a new variable entitled Age_Range that takes the following values:

by CUSTOMERID;


```
<18 -- > "Under 18"
18 - 25 -- > "Very Young"
26 - 35 -- > "Young"
36 - 50 -- > "Middle Age"
51 - 65 -- > "Mature"
66 - 75 -- > "Old"
>= 76 --> "Very Old"
(Attention: do not format the values of the existing variable but create a new variable entitled Age _Range).
data RSULTS.DATES;
 SET RSULTS.DATES;
 length Age_Range $12;
 if Age<18 then Age Range='Under 18';
 else if Age<=25 then Age_Range='Very Young';
 else if Age<=35 then Age_Range='Young';
 else if Age<=50 then Age_Range='Middle Age';
 else if Age<=65 then Age Range='Mature';
 else if Age<=75 then Age Range='Old';
 else if Age>75 then Age_Range='Very Old';
run;
/* c) • What are the behavioral characteristics of each age group? (visits to the stores,
 number of SKU's purchased, total cost of purchases, average cost, minimum cost, maximum cost etc).
 The merging of the data sets must be done using exclusively the data step but the calculation of the
 statistics e.g. visits, total cost of purchases etc can be done using proc sql. Create a pie chart and
 a frequency table with the percentages of customers that belong to each age group. Augment your analysis
 by providing pie charts for the behavioral characteristics for each age group.*/
PROC SORT DATA=RSULTS.DATES;
BY CustomerID;
RUN;
PROC SORT DATA=RSULTS.INVOICE;
BY CustomerID;
RUN:
data RSULTS.DATES INVOICE;
merge RSULTS.DATES(IN=A) RSULTS.INVOICE(IN=B);
by CUSTOMERID;
IF A AND B;
run:
PROC SORT DATA=RSULTS.SALES;
BY CustomerID;
RUN;
data RSULTS.DATES_SALES;
merge RSULTS.DATES(IN=A) RSULTS.SALES(IN=B);
```



```
IF A AND B;
run;
PROC SORT DATA=RSULTS.BASKET;
BY InvoiceNo;
RUN;
PROC SORT DATA=RSULTS.DATES_INVOICE;
BY InvoiceNo;
RUN;
data RSULTS.BASKET_DATES_INVOICE;
merge RSULTS.BASKET(IN=A) RSULTS.DATES INVOICE(IN=B);
by InvoiceNo;
IF A AND B;
run;
PROC SORT DATA=RSULTS.DATES_SALES;
BY InvoiceNo;
RUN;
data RSULTS.BASKET_DATES_SALES;
merge RSULTS.BASKET(IN=A) RSULTS.DATES_SALES(IN=B);
by InvoiceNo;
IF A AND B;
run;
PROC SORT DATA=RSULTS.BASKET_DATES_INVOICE;
BY Age_Range;
RUN;
proc sql noprint;
CREATE TABLE RSULTS. Visits AS
select Age_Range, COUNT(InvoiceNo) AS STORE_VISITS
       from RSULTS.BASKET_DATES_INVOICE
        group by Age Range
  order by STORE_VISITS desc;
quit;
proc sql noprint;
CREATE TABLE RSULTS. Purchase metrics AS
select Age_Range, COUNT(SKU) AS SKU_purchased,
   SUM(UNITPrice) AS total_cost_purchased, AVG(UNITPrice) AS avg_cost_purchased,
         MIN(UNITPrice) AS min_cost_purchased, MAX(UNITPrice) AS max_cost_purchased
       from RSULTS.BASKET_DATES_SALES
        group by Age_Range
  order by Age_Range;
QUIT;
proc freq data = RSULTS.DATES;
tables AGE_RANGE;
run;
```


PROC GCHART DATA = RSULTS.DATES;

```
PIE
               Age_Range /
       SUMVAR=Percent
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
  NOHEADING;
RUN;
QUIT
/* CALCULATE FREQUENCIES */
proc freq data = RSULTS.DATES;
ods output onewayfreqs=RSULTS.frequency_table;
tables AGE_RANGE;
run;
/* Customer Age Group Percentage Pie Chart */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.Percent
       FROM RSULTS.FREQUENCY_TABLE as T
QUIT;
TITLE;
TITLE1 "Customer Age Group Percentage Pie Chart";
FOOTNOTE;
PROC GCHART DATA = WORK. SORTTempTableSorted
               Age_Range /
       SUMVAR=Percent
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* SKU Purchased Per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.SKU_purchased
       FROM RSULTS.Purchase_metrics as T
```



```
QUIT;
TITLE;
TITLE1 "SKU Purchased Per Age Group";
FOOTNOTE;
PROC GCHART DATA = WORK. SORTTempTableSorted
               Age_Range /
       SUMVAR=SKU_purchased
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* Total Cost Purchased Per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.total_cost_purchased
       FROM RSULTS.Purchase metrics as T
QUIT;
TITLE;
TITLE1 "Total Cost Purchased Per Age Group";
FOOTNOTE;
PROC GCHART DATA = WORK. SORTTempTableSorted
                Age_Range /
       PIE
       SUMVAR=total_cost_purchased
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* Avg Cost Purchased Per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.avg_cost_purchased
       FROM RSULTS.Purchase_metrics as T
QUIT;
TITLE1 "Average Cost Purchased Per Age Group";
FOOTNOTE;
PROC GCHART DATA = WORK. SORTTempTableSorted
```



```
;
       PIE
               Age Range /
       SUMVAR=avg_cost_purchased
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* Max Cost Purchased Per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.max_cost_purchased
       FROM RSULTS.Purchase metrics as T
QUIT;
TITLE;
TITLE1 "Max Cost Purchased Per Age Group";
PROC GCHART DATA = WORK. SORTTempTableSorted
               Age Range /
       SUMVAR=max_cost_purchased
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* Min Cost Purchased Per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age Range, T.min cost purchased
       FROM RSULTS.Purchase_metrics as T
QUIT;
TITLE;
TITLE1 "Min Cost Purchased Per Age Group";
PROC GCHART DATA = WORK. SORTTempTableSorted
               Age_Range /
       SUMVAR=min_cost_purchased
       TYPE=SUM
       NOLEGEND
       SLICE=OUTSIDE
       PERCENT=NONE
       VALUE=OUTSIDE
```



```
OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN; QUIT;
/* store visits per Age Group */
PROC SQL;
       CREATE VIEW WORK.SORTTempTableSorted AS
               SELECT T.Age_Range, T.STORE_VISITS
       FROM RSULTS.VISITS as T
QUIT;
Legend1
       FRAME
       POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Store Visits per Age Group";
FOOTNOTE;
PROC GCHART DATA = WORK. SORTTempTableSorted
       PIE3D Age_Range /
       SUMVAR=STORE_VISITS
       TYPE=SUM
       LEGEND=LEGEND1
       SLICE=OUTSIDE
       PERCENT=OUTSIDE
       VALUE=OUTSIDE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* Question3 */
/* What was the level of Sales and Returns? The variable 'Operation' of the 'Invoice table takes the values '500
and 501'.
Create a bar chart with the monetary values and a frequency table by creating a custom format for which
500=Sale and 501=Cancellation.*/
/* a) make new column with Sales and Cancellations based on 500 and 501 operations */
proc format;
value names 500 = 'Sales'
           501 = 'Cancellations';
run;
DATA RSULTS.BASKET_DATES_INVOICE;
```



```
SET RSULTS.BASKET_DATES_INVOICE;
Operation name = Operation;
format Operation_name names.;
run;
/* level of Sales and Returns */
PROC SQL;
        CREATE VIEW WORK.SORTTEMPTABLESORTED_0003 AS
                SELECT T.Operation_name
        FROM RSULTS.BASKET DATES INVOICE as T
QUIT;
Axis1
        STYLE=1
        WIDTH=1
        MINOR=
        (NUMBER=1
Axis2
        STYLE=1
        WIDTH=1
TITLE;
TITLE1 "Level Of Sales and Returns";
FOOTNOTE;
PROC GCHART DATA=WORK.SORTTEMPTABLESORTED_0003
        VBAR
        Operation_name
        CLIPREF
FRAME TYPE=FREQ
        COUTLINE=BLACK
        RAXIS=AXIS1
        MAXIS=AXIS2
RUN; QUIT;
/* creating a frequency table custom format for which 500=Sale and
501=Cancellation */
proc freq data = RSULTS.INVOICE;
tables OPERATION;
run;
/* Create graphs for the average basket size i.e. number of SKU's, total monetary value, etc and
comment on your findings. Proc sql can be used only for the calculation of
the statistics e.g. of the average basket and not e.g. for merging data sets (for this data step should be used).*/
proc sql noprint;
CREATE TABLE RSULTS.basket_statistics_tmp AS
select count(SKU) AS Number_of_SKU, count(UnitPrice) AS Total_price_of_Bsk
```


data RSULTS.BASKET_INVOICE_PAYMENT;


```
FROM RSULTS.BASKET_DATES_SALES
        where Description <> 'Adjust bad debt'
        GROUP BY InvoiceNo;
quit;
proc sql print;
CREATE TABLE RSULTS.basket_size AS
select avg(Number_of_SKU) AS Avg_num_of_SKU, count(Total_price_of_Bsk) AS Avg_price_of_bsk
        FROM RSULTS.basket_statistics_tmp
        ORDER BY Avg_num_of_SKU;
quit;
/* Question4 */
/* Create pie charts for the variable 'Payment Method' for every value of the variable 'Movement'
the 'Basket' table. In the graphs show the type of the payment method and not its code e.g. credit card 20%.
• Which payment method is the most popular (it is used most by the customers)? Which payment method
brings the
biggest revenues for the company? (Use graphs).
• Products of what origin do the customers prefer (use graphs)? Products of which origin bring the biggest
revenues to
the retailer and what is the amount of the revenues for each origin (use graphs and tables). */
/* calculating Quantity price */
DATA RSULTS.BASKET_DATES_SALES;
  SET RSULTS.BASKET DATES SALES;
  QuantityPrice = Quantity*UnitPrice;
RUN;
PROC SORT DATA=RSULTS.BASKET;
BY
        InvoiceNo;
RUN;
PROC SORT DATA=RSULTS.INVOICE;
BY InvoiceNo;
RUN;
data RSULTS.BASKET INVOICE;
merge RSULTS.BASKET(IN=A) RSULTS.INVOICE(IN=B);
by InvoiceNo;
IF A AND B;
run;
PROC SORT DATA=RSULTS.Payment_Method;
BY
        Code;
RUN;
PROC SORT DATA=RSULTS.BASKET INVOICE;
BY Payment_Method;
RUN;
```


RUN;


```
Merge RSULTS.BASKET_INVOICE RSULTS.PAYMENT_METHOD (rename=(CODE=PAYMENT_METHOD));
by PAYMENT METHOD;
run;
PROC SORT DATA=RSULTS.BASKET;
BY 'Product Origin'n;
RUN;
PROC SORT DATA=RSULTS.Product Origin;
BY Code;
RUN:
data RSULTS.BASKET PRODUCT;
Merge RSULTS.BASKET RSULTS.PRODUCT_ORIGIN (rename=(CODE='Product Origin'n));
by 'Product Origin'n;
run;
proc sql noprint;
create table RSULTS. Revenues Origin as
select Region, sum(QuantityPrice) AS Revenues
       FROM RSULTS.Basket_Product
 GROUP BY Region
       ORDER BY Revenues DESC;
quit;
/* Transaction Percentages per Payment Method */
PROC SQL;
       CREATE VIEW RSULTS. SORTTempTableSorted AS
              SELECT T.Method
       FROM RSULTS.BASKET_INVOICE_PAYMENT as T
QUIT;
Legend1
       FRAME
       POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Transaction Percentages per Payment Method";
FOOTNOTE:
PROC GCHART DATA =RSULTS.SORTTempTableSorted
       PIE3D Method /
       TYPE=PCT
       LEGEND=LEGEND1
       SLICE=OUTSIDE
       PERCENT=OUTSIDE
       VALUE=NONE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
```



```
QUIT:
/* Revenues Percentages per Payment Method */
PROC SQL;
      CREATE VIEW RSULTS.SORTTempTableSorted AS
             SELECT T.Method, T.QuantityPrice
      FROM RSULTS.BASKET_INVOICE_PAYMENT as T
QUIT;
Legend1
      FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE1 "Revenues Percentages per Payment Method";
FOOTNOTE;
PROC GCHART DATA = RSULTS. SORTTempTableSorted
      PIE3D Method /
      SUMVAR=QuantityPrice
      TYPE=SUM
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=NONE
      OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* Frequency Percentages per Product Region */
PROC SQL;
      CREATE VIEW WORK.SORTTempTableSorted AS
             SELECT T.Region
      FROM RSULTS.BASKET_PRODUCT as T
QUIT;
Legend1
      FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Frequency Percentages per Product Region";
PROC GCHART DATA = WORK. SORTTempTableSorted
      PIE3D Region /
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=NONE
      OTHER=4
       OTHERLABEL="Other"
```



```
COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* Revenues per Product Origin */
PROC SQL;
      CREATE VIEW WORK.SORTTempTableSorted AS
             SELECT T.Region, T.QuantityPrice
      FROM RSULTS.BASKET_PRODUCT as T
QUIT;
Legend1
      FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Revenues per Product Origin";
FOOTNOTE;
PROC GCHART DATA =WORK.SORTTempTableSorted
      PIE3D Region /
      SUMVAR=QuantityPrice
      TYPE=SUM
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=OUTSIDE
      OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
```

```
/* Question5 */
```

^{/*} It should be mentioned that the SKU of each product contains "hidden" information. The twelfth (12th) digit indicates the promotional activity that

is attached to the product. In order to unhide this piece of information use relevant functions and then store it to a new column. If we assume that an SKU is 58720443050301, then the promotional activity code is 3.

[•] What is the percentage of products that are sold without promotion and what is the percentage of products sold with promotion (use graphs).

- Create pie charts to show the percentage of products that are sold on each promotion type (use the description of the promotion and not its code). Do not include the products sold without promotion.
- How many products are sold with promotion over or equal to 15%? What is the revenue of the sale of these products?
- Which customers buy more times products that are on promotion? Provide their demographic characteristics (i.e. gender, age group, country).*/

```
data RSULTS.BASKET_DATES_SALES;
SET RSULTS.BASKET DATES SALES;
'Promotion Code'n = SUBSTR(SKU, 12, 1);
SupplierID = SUBSTR(SKU,6, 1);
run;
data RSULTS.BASKET_DATES_SALES;
 SET RSULTS.BASKET_DATES_SALES;
 if 'Promotion Code'n = 0 then Promotion Category = 'No Promotion';
 else Promotion_Category ='Promotion';
 run;
PROC SORT DATA=RSULTS.BASKET_DATES_SALES;
BY 'Promotion Code'n;
RUN:
data RSULTS.BASKET_DATES_SALES;
merge RSULTS.BASKET_DATES_SALES(IN=A) RSULTS.PROMOTION(IN=B);
by 'Promotion Code'n;
IF A AND B;
run:
proc sql noprint;
create table RSULTS.promoted as
select 'Promotion Code'n, 'Promotion Type'n
        FROM RSULTS.Basket Dates Sales
  WHERE 'Promotion Code'n NE '0';
quit;
data RSULTS.Basket Dates Sales;
        SET RSULTS.Basket_Dates_Sales;
        dis= scan('Promotion Type'n,1,'%');
run;
data RSULTS.BASKET DATES SALES;
set RSULTS.BASKET DATES SALES;
if dis NE 'No Promotion' then Discount =input(dis,2.0);
else Discount = 0;
Real Price = QuantityPrice*(1- Discount/100);
drop dis;
RUN;
proc sql noprint;
create table RSULTS.PRODUCTSDIS15 as
select SKU AS Upper15Dis__Sold_Products,sum(Quantity) AS Number_Of_Products,
   sum(Real Price) AS Revenue Of Products
        FROM RSULTS.Basket Dates Sales
  WHERE Discount >= 15
  GROUP BY SKU
        ORDER BY Revenue_Of_Products DESC;
quit;
```



```
/* The demographic characteristics with promotion: age, gender and country of the
customer. */
proc sql noprint;
create table RSULTS.DemographicProm as
select CustomerID, AGE, CustomerCountry, Gender
        FROM RSULTS.BASKET_DATES_SALES
        Where 'Promotion Type'n = 'Promotion'
        ORDER BY CustomerID;
quit;
proc sql noprint;
create table RSULTS.prom age as
select Age_Range,count(customerID) as times_customers_bought_promotion
        FROM RSULTS.Basket_Dates_Sales
  WHERE Promotion_Category = 'Promotion'
  Group by Age_Range
        order by times_customers_bought_promotion DESC;
quit;
proc sql noprint;
create table RSULTS.prom gender as
select Gender,count(customerID) as times_customers_bought_promotion
        FROM RSULTS.Basket_Dates_Sales
  WHERE Promotion_Category = 'Promotion'
  Group by Gender
        order by times_customers_bought_promotion DESC;
quit;
proc sql noprint;
create table RSULTS.prom_Cust_Country as
select CustomerCountry,count(customerID) as times_customers_bought_promotion
        FROM RSULTS.Basket Dates Sales
  WHERE Promotion_Category = 'Promotion'
  Group by CustomerCountry
        order by times customers bought promotion DESC;
quit;
/*Question6 */
```

/* It should be also mentioned that the SKU of each product contains more "hidden" information. The sixth (6th) digit indicates the company that supplied the product (supplier). In order to unhide this piece of information use relevant functions and then store it to a new column. If we assume that an SKU is 58720443050301, then the supplier code is 4.

- Create graphs to show the percentage of products sold by each supplier (use the name of the supplier and not its code).
- Create graphs to show the percentage and actual revenues of products sold by each supplier (use the name of the supplier and not its code).
- Create a cross tabulation table to show the total revenue of the company with respect to the origins of the products sold by each supplier (Use the names of the suppliers and the names of the countries of origins and not their codes. Put the total revenue in the middle of the cross tabulation, the origin in the rows and the suppliers in the columns). For this task you have to use proc tabulate (find relevant instructions in the web or in sas help). */


```
PROC SORT DATA=RSULTS.BASKET DATES SALES;
BY SupplierID;
RUN;
data RSULTS.BASKET_DATES_SALES;
merge RSULTS.BASKET_DATES_SALES RSULTS.SUPPLIER;
by SupplierID;
run;
/* Pie Chart Percentage of products Per Supplier Name */
PROC SQL;
       CREATE VIEW RSULTS.SORTTEMPTABLESORTED_0000 AS
               SELECT T. "Supplier Name"n
       FROM RSULTS.BASKET_DATES_SALES as T
QUIT;
Legend1
       FRAME
       POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Percentages of products sold per Supplier Name";
FOOTNOTE;
PROC GCHART DATA =RSULTS.SORTTEMPTABLESORTED 0000
       PIE3D
               "Supplier Name"n /
       TYPE=PCT
       LEGEND=LEGEND1
       SLICE=OUTSIDE
       PERCENT=OUTSIDE
       VALUE=NONE
       OTHER=4
       OTHERLABEL="Other"
       COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* b */
/* Pie Chart Percentage and Revenue of products Per Supplier Name */
PROC SQL;
       CREATE VIEW RSULTS.SORTTEMPTABLESORTED_0000 AS
               SELECT T. "Supplier Name"n, T.Real_Price
       FROM RSULTS.BASKET_DATES_SALES as T
QUIT;
Legend1
       FRAME
       POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Percentage & Actual Revenues of Products sold per Supplier Name";
```



```
FOOTNOTE;
FOOTNOTE1 "Generated by the SAS System (& SASSERVERNAME, &SYSSCPL) on %TRIM(%QSYSFUNC(DATE(),
NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMPM12.))";
PROC GCHART DATA =RSULTS.SORTTEMPTABLESORTED_0000
                "Supplier Name"n /
        PIE3D
        SUMVAR=Real_Price
        TYPE=SUM
        LEGEND=LEGEND1
        SLICE=OUTSIDE
        PERCENT=OUTSIDE
        VALUE=OUTSIDE
        OTHER=4
        OTHERLABEL="Other"
        COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* c tabulate table */
PROC SORT DATA=RSULTS.BASKET DATES SALES;
BY 'Product Origin'n;
RUN:
data RSULTS.BASKET DATES SALES;
Merge RSULTS.BASKET_DATES_SALES RSULTS.PRODUCT_ORIGIN (rename=(CODE='Product Origin'n));
by 'Product Origin'n;
proc tabulate data=RSULTS.BASKET_DATES_SALES;
class 'Supplier Name'n Region;
var Real_Price;
table Region='Region',
    sum=' 'Real_Price='Total_Revenue''Supplier Name'n='Supplier';
run;
/* Question7 */
/* What is the distribution of purchases per day of the week?
Is there any difference among the various days (e.g. basket size,
number of products per invoice etc). In order to find the day of the
week when the sale takes place use the weekday function. */
/* a */
data RSULTS.BASKET_DATES_SALES;
```



```
SET RSULTS.BASKET_DATES_SALES;
       DayOfWeek = weekday(InvoiceDate);
run:
PROC SQL;
       CREATE TABLE RSULTS.BASKET DATES SALES CLEAN AS
       SELECT *
       FROM RSULTS.BASKET_DATES_SALES
               where DayOfWeek <> .;
QUIT:
data RSULTS.BASKET DATES SALES CLEAN;
 SET RSULTS.BASKET DATES SALES CLEAN;
 length Day of the week $12;
 if DayOfWeek = 0 then Day of the week='Sunday';
 else if DayOfWeek= 1 then Day_of_the_week='Monday';
 else if DayOfWeek = 2 then Day_of_the_week='Tuesday';
 else if DayOfWeek = 3 then Day of the week='Wednesday';
 else if DayOfWeek = 4 then Day_of_the_week='Thursday';
 else if DayOfWeek = 5 then Day_of_the_week='Friday';
 else if DayOfWeek = 6 then Day of the week='Saturday';
run;
PROC SQL;
       CREATE TABLE RSULTS.DATE RESULTS AS
       SELECT COUNT(InvoiceNo) AS NUMBER_OF_PURCHASES, Day_of_the_week
       FROM RSULTS.BASKET_DATES_SALES_CLEAN
       GROUP BY Day_of_the_week
       ORDER BY NUMBER OF PURCHASES desc;
QUIT:
/* b */
PROC SQL;
       CREATE TABLE RSULTS.DATES_BASKET AS
       SELECT COUNT(SKU) AS Basket Size, SUM(Quantity) AS Number of product,
  SUM(Real price) AS Total revenue, Day of the week
       FROM RSULTS.BASKET_DATES_SALES_CLEAN
       GROUP BY Day_of_the_week, InvoiceNo;
quit;
PROC SQL;
       CREATE TABLE RSULTS.AVERAGE_BASKET_RESULTS AS
       SELECT AVG(Basket_Size) AS avg_Basket_Size, AVG(Number_of_product) AS
avg Number of product,
  AVG(Total revenue) AS avg Total revenue, Day of the week
       FROM RSULTS.DATES BASKET
       GROUP BY Day_of_the_week;
quit;
/* Question8 */
```

^{/*} The company wants to profile its customers based on their importance so as to offer them personalized services and products. The customer segmentation is asked to be done based on the three parameters of the RFM model. Before the application of the RFM model the RFM data set should be created. It is reminded that the RFM model is based on

quit;

the following three parameters:

```
Recency - How recently did the customer purchase? Frequency - How often do they purchase? MonetaryValue - How much do they spend?
```

For this task proc sql can be used. For the calculation of R, F, M the following functions will be useful: max, sum, count and intck (For the intck use the argument week and the argument 16/12/2011 for today's date). For the creation of the variable Monetary, the price, quantity and promotion variables should be used. */

```
proc sql noprint;
create table RSULTS.RFM as
select CustomerID, intck('WEEK', max(InvoiceDate),'16DEC2011'd) AS Recency, COUNT(*) AS Frequency,
SUM(RealPrice) AS Monetary
        FROM RSULTS.BASKET_DATES_SALES
        GROUP BY CustomerID
        ORDER BY CustomerID;
quit;
/* Question 9*/
It should be underlined that in order for the cluster analysis to produce logical results the customers with
extreme values
of the variables R, F, M should be excluded from the analysis. In order to do that, descriptive statistics tasks
(e.g. proc univariate with the percentiles output)
should be used in Base SAS. After the clusters are created in SAS Enterprise Miner the RFM data set with the
newly created cluster column should be exported to a library
and then by using Base SAS Programming the demographic data (age, gender and country) of the two most
important clusters (justify why the selected ones are the most important)
should be described.
*/
PROC UNIVARIATE data=RSULTS.RFM;
VAR RECENCY FREQUENCY MONETARY;
RUN:
DATA RSULTS.RFM;
SET RSULTS.RFM;
IF RECENCY <= 38 AND FREQUENCY <= 208 AND MONETARY <= 3619.424;
RUN:
/* clusters 2 and 9 and demographics*/
proc sql noprint;
create table RSULTS.CHOSEN CLUSTERS as
select *
        FROM RSULTS.rfmresults train
        where _SEGMENT_ = 2 OR _SEGMENT_ = 9;
```


VALUE=NONE


```
PROC SORT DATA= RSULTS.CHOSEN CLUSTERS;
BY CustomerID;
RUN;
PROC SORT DATA=RSULTS.BASKET_DATES_SALES_CLEAN;
BY CustomerID;
RUN;
data RSULTS.CLUSTER_DEMOGRAPHICS;
merge RSULTS.CHOSEN_CLUSTERS(IN=A) RSULTS.BASKET_DATES_SALES_CLEAN(IN=B);
by CustomerID;
IF A AND B;
run;
proc sql noprint;
create table RSULTS.DEMOGRAPHICS_OF_CLST_as
select AGE_Range, GENDER, CUSTOMERCOUNTRY, _SEGMENT_
      FROM RSULTS.CLUSTER_DEMOGRAPHICS;
quit;
proc sql noprint;
create table RSULTS.DEMOGRAPHICS OF CLST2 as
select AGE_Range, GENDER, CUSTOMERCOUNTRY, _SEGMENT_
FROM RSULTS.CLUSTER_DEMOGRAPHICS
where _segment_=2;
quit;
proc sql noprint;
create table RSULTS.DEMOGRAPHICS_OF_CLST9 as
select AGE_range, GENDER, CUSTOMERCOUNTRY, _SEGMENT_
FROM RSULTS.CLUSTER DEMOGRAPHICS
where _segment_=9;
quit;
/*Charts for segment 2*/
/* Customers of Cluster 2 per Country */
PROC SQL;
      CREATE VIEW WORK.SORTTEMPTABLESORTED 0001 AS
             SELECT T.CustomerCountry
      FROM RSULTS.DEMOGRAPHICS_OF_CLST2 as T
QUIT;
Legend1
       FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Customers of Cluster 2 per Country";
FOOTNOTE;
PROC GCHART DATA = WORK.SORTTEMPTABLESORTED_0001
      PIE3D CustomerCountry /
      TYPE=PCT
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
```


PROC SQL;


```
OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/* Customers of Cluster 2 per Gender */
PROC SQL;
      CREATE VIEW WORK.SORTTEMPTABLESORTED_0001 AS
             SELECT T.Gender
      FROM RSULTS.DEMOGRAPHICS_OF_CLST2 as T
QUIT;
Axis1
      STYLE=1
      WIDTH=1
      MAJOR=NONE
      MINOR=NONE
Axis2
      STYLE=1
      WIDTH=1
TITLE;
TITLE1 "Customers of Cluster 2 per Gender";
FOOTNOTE;
PROC GCHART DATA=WORK.SORTTEMPTABLESORTED_0001
      VBAR3D
       Gender
      SHAPE=BLOCK
FRAME TYPE=PCT
PCT
      LEGEND=LEGEND1
      COUTLINE=BLACK
      RAXIS=AXIS1
      MAXIS=AXIS2
PATTERNID=MIDPOINT
RUN;
QUIT;
/* Customers of Cluster 2 per Age Group */
```



```
CREATE VIEW WORK.SORTTEMPTABLESORTED 0000 AS
             SELECT T.Age_Range
      FROM RSULTS.DEMOGRAPHICS_OF_CLST2_10 as T
QUIT;
Legend1
      FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Customers of Cluster 2 per Age Group";
FOOTNOTE;
PROC GCHART DATA = WORK.SORTTEMPTABLESORTED_0000
      PIE3D Age_Range /
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=NONE
      OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN;
QUIT;
/*Customers of Cluster 9 per Gender */
PROC SQL;
      CREATE VIEW WORK.SORTTEMPTABLESORTED_0001 AS
             SELECT T.Gender
      FROM RSULTS.DEMOGRAPHICS_OF_CLST9 as T
QUIT;
Axis1
      STYLE=1
      WIDTH=1
      MAJOR=NONE
      MINOR=NONE
Axis2
      STYLE=1
      WIDTH=1
```



```
TITLE;
TITLE1 "Customers of Cluster 9 per Gender";
FOOTNOTE;
PROC GCHART DATA=WORK.SORTTEMPTABLESORTED_0001
      VBAR3D
       Gender
      SHAPE=BLOCK
FRAME TYPE=FREQ
PCT
      LEGEND=LEGEND1
      COUTLINE=BLACK
      RAXIS=AXIS1
      MAXIS=AXIS2
PATTERNID=MIDPOINT
RUN;
QUIT;
/* Customers of Cluster 9 per Country */
PROC SQL;
      CREATE VIEW WORK.SORTTEMPTABLESORTED_0001 AS
             SELECT T.CustomerCountry
      FROM RSULTS.DEMOGRAPHICS_OF_CLST9 as T
QUIT;
TITLE;
TITLE1 "Customers of Cluster 9 per Country";
FOOTNOTE;
PROC GCHART DATA = WORK.SORTTEMPTABLESORTED_0001
      PIE3D CustomerCountry /
      NOLEGEND
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=NONE
      OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN:
QUIT;
/* Customers of Cluster 9 per Age Group */
PROC SQL;
      CREATE VIEW WORK.SORTTEMPTABLESORTED_0001 AS
             SELECT T.Age_Range
      FROM RSULTS.DEMOGRAPHICS_OF_CLST9_10 as T
```



```
QUIT:
Legend1
      FRAME
      POSITION = (BOTTOM CENTER OUTSIDE)
TITLE;
TITLE1 "Customers of Cluster 9 per Age Group";
FOOTNOTE:
PROC GCHART DATA = WORK.SORTTEMPTABLESORTED 0001
      PIE3D Age Range /
      LEGEND=LEGEND1
      SLICE=OUTSIDE
      PERCENT=OUTSIDE
      VALUE=NONE
      OTHER=4
      OTHERLABEL="Other"
      COUTLINE=BLACK
NOHEADING
RUN:
QUIT:
/* Question 10*/
/*The company is interested to change internally the store based on the
products that tend to be bought together. In order to apply this initiative
the company must be sure about the associations
among the product names. You are asked to find which products are bought
together (associations of product names) in the whole data set. Then find
the associations among products in the two most important
clusters (according to your business thinking) previously identified so if
a customer is found to belong in one of them to receive the most suitable/
best proposals/ offers. For this task Base SAS should be
used to filter the customers that belong to the two most important
clusters, create the two relevant data sets and then these data sets to be
analyzed using association rules through SAS Enterprise Miner.*/
PROC SORT DATA=RSULTS.BASKET SALES;
  BY CUSTOMERID;
PROC SORT DATA=RSULTS.rfmresults TRAIN;
  BY CustomerID;
RUN:
data RSULTS.BASKET SALES RFM;
merge RSULTS.BASKET SALES(IN=A) RSULTS.rfmresults TRAIN(IN=B);
by CustomerID;
if a and b;
run;
proc sql noprint;
create table RSULTS.SEGMENT 2 as
select InvoiceNo, SKU, Description, CustomerId
     FROM RSULTS.BASKET SALES RFM
      where SEGMENT = \frac{2}{2};
quit;
```



```
proc sql noprint;
create table RSULTS.SEGMENT_9 as
select InvoiceNo, SKU, Description, CustomerId
     FROM RSULTS.BASKET_SALES_RFM
     where _SEGMENT_ = 9;
quit;
```