LINEAR MODELS

- P-value: if p≤0.05 → Reject H_0 (RH). // if p>0.05 → Do not reject H_0 (NRH).
- R²: always between 0 and 1. Percentage of variance explained.
- F-statistic p-value (< 0.05): Tests overall model significance.
- Multicollinearity: vif(model)> 4 → take out the last significant variable, and test it again.
 - **Influential observations:** Strange value of Y conditioned to X. Stays far away from the rest.
 - → Priori: Leverage (X'X) → Don't take them out of the model. Not necessarily affecting Y. influencePlot(model)

hatvalues (model) threshold $\rightarrow R > \frac{2^*p}{n}$ p \rightarrow number of parameters n \rightarrow number of observations. **Z-score** > |3| (rstudent())

- ightharpoonup Posteriori: Cook's distance cooks.distance (model) threshold ightharpoonup Chatterjee and Hadi $D_i > 4/(n-p) D_i > 0.5$
- Model selection: The lower AIC / BIC AIC(model,k=log(nrow(data.frame))) the better the model is.
 - → Forward → null and increasing (specify in R).
 - → Backward → complete and remove.

ANCOVA

- **Combinació** de: Y dependent (numèrica), *Factors* (categòriques) i *Covariavbles* (numèriques).
- Objectiu: veure si el factor segueix sent rellevant controlant per la covariable.
- Reparametrization:
 - Baseline: One category is set as a reference level. The model estimates relative to this baseline.

Restriction
$$\alpha_{_1} = 0$$
 , $n^{\underline{o}}$ of categories -1

→ **Zero-sum:** restriction
$$\sum_{i=1}^{I} \alpha_i = 0$$
 (o $\alpha_I = -\sum_{i=1}^{I-1} \alpha_i$), $\alpha_1 + \alpha_2 + \alpha_3 = 0$

Model	Fórmula	Interpretació 🗇
M0 – Null Model	$Y_{ijk} = \mu + arepsilon_{ijk}$	Només la mitjana global. Sense factors ni covariables.
M1 – Full Model (Two-Way amb interacció)	$Y_{ijk} = \mu + lpha_i + eta_j + \gamma_{ij} + arepsilon_{ijk}$	ANOVA de dos factors A i B amb interacció entre ells.
M2 – Additive Model (Two-Way sense interacció)	$Y_{ijk} = \mu + lpha_i + eta_j + arepsilon_{ijk}$	ANOVA de dos factors A i B sense interacció, només efectes principals.
M3 – One-Way A only	$Y_{ik} = \mu + lpha_i + arepsilon_{ik}$	ANOVA simple (One-Way) pel factor A.
M4 – One-Way B only	$Y_{jk} = \mu + eta_j + arepsilon_{jk}$	ANOVA simple (One-Way) pel factor B.
ANCOVA amb interacció	$Y_{ik} = \mu + lpha_i + (\eta + heta_i) \cdot x_{ik} + arepsilon_{ik}$	ANCOVA amb pendent diferent per grup (interacció entre X i el factor).
ANCOVA additiu	$Y_{ik} = \mu + lpha_i + \eta \cdot x_{ik} + arepsilon_{ik}$	ANCOVA amb mateixa pendent per a tots els grups.
Regressió simple	$Y_{ik} = \mu + \eta \cdot x_{ik} + arepsilon_{ik}$	Només covariable X, sense tenir en compte cap grup.
ANOVA One-Way (sense X)	$Y_{ik} = \mu + lpha_i + arepsilon_{ik}$	Només factor A, com a comparació de mitjanes entre grups.

anova(m0,m4) → Only Nested models. The lower the residual sum of squares (RSS), the better the model is. P-value.

BINARY

- ⇒ Variables amb resposta binària (0/1) → predicció d'una probabilitat [0, 1]
 - → Distribució Bernoulli → Disgregades: cada fila un individu. Cada observació 0 o 1.
 - → Distribució Binomial → Agregades: Agrupació d'individus que tenen les mateixes variables explicatives. Probabilitat d'obtenir K èxits en M intents.
- Odds: quentes vegades és més probable que passi? $odds = \frac{\pi \left(probabilitat \, que \, passi \right)}{1 \pi \left(probabilitat \, de \, que \, NO \, passi \right)} = e^{\beta} (per \, un \, coeficient, \, es \, multipliquen \, els \, odds)$ odds $= 1 \rightarrow p = 0.5$, odds $> 1 \rightarrow probable$, odds $< 1 \rightarrow probable$.
- 🗘 Logit Link (Y): resultat de la combinació lineal dels regressors. β indica efecte sobre el logit. Després transformem a probabilitat [0, 1].

 $\eta = log(\frac{\pi}{1-\pi}) \rightarrow (g) \rightarrow de \text{ probabilitat } [0,1] \text{ a un valor real } (-\infty,\infty) \text{ (logaritme dels odds)}$

 $\pi = \frac{exp(\eta)}{1 + exp(\eta)}$ \rightarrow (g-1) de valor real $(-\infty, \infty)$ a probabilitat [0, 1]

 \Rightarrow **Probit link:** Uses the inverse of the standard of normal distribution. Transforma π segons distribució normal estàndard.

$$\Phi(\eta) \ // \ \eta = g_2(\pi) = \Phi^{-1}(\pi) \ // \ \pi_2(\eta) = g_2^{-1}(n) = \Phi(n)$$

- \Rightarrow Values of η and π :
 - \rightarrow If the value is 0 on the functions \rightarrow probability π = 0.50 because both functions are centered.
 - → Higher values than 0 → higher probabilities than 0.50
 - → Lower values than 0 → lower probabilities than 0.50.
- □ Unnested models → AIC is used to compare. The lower the AIC, the better the model is.
- Nested models → We use deviance to compare. The lower the deviance, the better the model is.
 - → **Null deviance** is the deviance associated with the **null model**, with no regressors, only the intercept.
 - Residual deviance is the deviance associated with the full model (with all predictors). Same or lower than the simpler model.
 - ightharpoonup $\Delta D = D_{null} D_{full} > 0$ compare whether a particular regressor affects the output. $\Delta D \sim \chi^2
 ightharpoonup$ p-value
- Arr Matriu de confusió: compara el que el model ha predit (\hat{Y}) amb el que realment ha passat (Y) threshold → 0.5. TP (a), FP (b), FN (c), TN (d).
- Evaluation metrics:
 - → Accuracy = (TP + TN) / Total → Percentage total d'encerts
 - → Precision = TP / (TP + FP) → How many predicted positives are actually positive
 - → Recall (Sensitivity) = TP / (TP + FN) → How many actual positives were caught
 - → Specificity = TN/(TN + FP) → How many actual negatives were caught
- ROC: sensibilitat vs 1–especificitat; AUC = àrea sota la corba. AUC = 1 perfecte, AUC = 0.5 aleatori, AUC < 0.5 pitjor que aleatori.
- Linear model? Or do we search for other model options?
 - → resiudalPlots(m) → no linearitat / punts infuents
 - → marginalModelPlots(m) → importància marginal del predictor
 - avPlots(m) → contribució real de cada variable (recta amb pendent millor contribució)
 - → crPlots(m) → no linearitat més suau i detallada que els residuals

CLUSTERING

- Agrupa individus amb alta similitud dins del clúster i gran diferència entre clústers.
- → Mètodes de partició: Ex: K-means. Necessites fixar prèviament el nombre de grups (K) → input. Assigna individus als clústers segons la distància a un centre i actualitza. Es ràpid i senzill però sensible a outliers i assumeix formes esfèriques.
- → Mètodes jeràrquics (Hierarchical): no cal fixar K, genera dendograma → ascendents (fusió) o descendents (divisió) → tallar a certa alçada = obtenció de grups. Les fulles del dendograma son els individus.
 - → Criteris d'agregació: Ward: agrupa minimitzant la pèrdua d'inèrcia (la variància que expliquen) intra-grup (molt usat). Equilibrats.
 - → Distància per variables mixtes: Gower → combina distàncies normalitzades segons tipus de variable.

PROFILING

- Tècnica per descriure i entendre els grups trobats mitjançant variables qualitatives i quantitatives.
- - → Trobar variables significatives: p-value < 0.05 → variable significativa
 - Variables qualitatives: χ^2 independence test / Multiple box plot

 H_0 : X,Y are independent

 H_1 : X,Y are associated

LeBart test: Detecta si una modalitat específica és significativa en un grup concret.

 H_0 : $\mu_{\nu} = \mu$ (the mean of my group (k) is the same of the hole) \rightarrow pval < 0.05 \rightarrow presència/absència rellevant

- Variables quantitatives: ANOVA test (diferència entre mitjanes entre grups) / Multiple bar plot / Mean plot
- → Descriure les diferències entre els grups
- Describe the groups:
 - Fer una taula resum de les variables significatives per grup
 - Frases clau per interpretar
 - Assignar etiqueta significativa a cada grup
- Aplicacions profiling:
 - → Màrqueting: segmentar clients, crear perfils de consumidor
 - → Polítiques públiques: detectar col·lectius vulnerables
 - → Prevenció de riscos: identificar grups amb alt risc (ex: impagaments)
- 🗢 El profiling NO sempre requereix clustering. Qualsevol variable categòrica pot definir grups i aplicar el profiling a partir d'aquí.

PCA (Principal Component Analysis)

- Redueix la dimensionalitat de dades numèriques mantenint la màxima variància possible.
- Transforma variables originals en noves variables (components principals, PC), ortogonals i no correlacionades. PC1 explica la màxima variància, PC2 la següent, etc.
- □ Cada component és una combinació lineal de les variables originals → càrregues factorials (pc1\$rotation). Com més càrrega factorial (en valor absolut) més pes en el component, més explica. Each component has a little portion of all the original variables, but not all the components contain the same contribution of each component. ONLY NUMERICAL VARIABLES.
- Passos previs:
 - → **Centrar dades**: restar la mitjana (x μ).
 - Normalitzar (si unitats diferents): dividir per la desviació estàndard.
- ⇒ sdev² = variància (inèrcia) explicada per component (eigenvalue).
- Scree plot → decideix quants components conservar (fins a 80% variància acumulada).
- ➡ Biplot (gràfic de variables): fletxes = variables originals:
 - → Direcció → cap on augmenta la variable.
 - → Longitud → importància (variància explicada).
 - Fletxes juntes → correlació positiva.
 - → Fletxes oposades → correlació negativa.
 - → Fletxes amb un angle gran → no correlacionades.
- Modalitats categòriques: es projecten com a centres de gravetat → relacions entre modalitats i variables.
- Each dimension has different contributions, not all the plots have the same quantity of information.
- Les noves variables (PCs) es calculen combinant les dades centrades amb els vectors propis (eigenvectors). PC1 = Xs(1) · (-0.707) + Xs(2) · 0.707
- Usos del PCA:
 - → Visualization of multidimensional data
 - Associative method of variables
 - Relations between variables (numeric and categorical)
 - Preprocessing data method
 - Latent variables (Variables that can not be measured: freedom, happiness, richness)
 - Reduccion of dimensionality

⇔ Conclusions:

- → Relacions entre variables → fletxes juntes.
- → Associació entre modalitats → pròximes a fletxes.
- → Detecció d'individus extrems multivariants/Multivariate outliers (Multivariate: an observation that looks normal in individual variables but is unusual when considering multiple variables together).
- Descobrir variables latents (ex: Ilibertat, happiness → combinacions de las variables en una dimensió).
- → Detecció de les variables amb més contribució a cada eix.