Universidad Nacional de Río Negro Física III B - 2020

Unidad 04

Clase U04 C07 / 28

Fecha 25 Jun 2020

Cont Tópicos finales

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b

Contenidos: Termodinámica alias Física IIIB, alias Física IVA

Unidad 2 Unidad 1 Unidad 4 Unidad 3 Primer principio **El Calor** Segundo Principio **Aplicaciones** Es lo que hay Todo se transforma Nada es gratis Hace calor

Bloque 2 - Unidad 4: Aplicaciones Del de 02/Jun al 25/Jun (8 encuentros)

Transferencia de calor: radiación, conducción y convección. Ley de Newton. Conductores y aislantes del calor. Ley de Fourier. Aplicaciones hogareñas. Termodinámica de la vida. Energía y humanidad. Calentamiento global.

Demanda anual de energia (x 1018 J)

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Un "pequeño detalle" Quemar un barril de petróleo libera ~300 kg de CO₂ El año pasado quemamos ~70 mil millones de barriles y liberamos ~25 billones de kg de CO₂ que terminaron en la atmósfera

Todo junto.... ¿¿yo no fui??

Efecto invernadero

Todo tiende al equilibrio

La Tierra se calienta y alcanza un nuevo equilibrio térmico!

Steffan-Boltzman

 $L = A \sigma T^4$

20

Cambio observado en el promedio de la Temperatura en superficie (1901-2012)

"El calentamiento del sistema climático es inequívoco, y desde 1950s, muchos de los cambios observados no tienen precedentes en tiempos de décadas a milenios. La atmósfera y el océano se han calentado, las cantidades de nieve y hielo se han reducido, el nivel del mar ha aumentado, y las concentraciones de gases invernadero se han incrementado." AR5 WG1, IPCC, 2013

Tendencia (°C sobre todo el período)

¿¿¿YO NO FUJ???? ¿En serio?

La influencia humana ha sido detectada en el calentamiento de la atmósfera y del océano, en cambios en el ciclo global del agua, en las reducciones de la nieve y del hielo, en el aumento medio global del nivel del mar y en algunos climas extremos [...] Es extremadamente posible (95%-100%) que la influencia humana haya sido la causa dominante del calentamiento observado desde mediados del siglo XX.

Fuente: IPCC (2013) http://www.ipcc.ch/40 Mientras esperamos que los gobiernos tomen conciencia y verdaderas acciones...

Analice sus acciones y actúe a conciencia ///

Incluya en el cálculo de la rentabilidad de su proyecto el costo real de la reparación total ambiental Penalice con su consumo y con su voto

Estamos a tiempo

Recicla

Reforesta

Responsabilízate

Reusa

Reduce

Reflexiona

Los cuatro jinetes (Apocalipsis, Viktor Vasnetsov, 1887)

Principio Cero de la Termodinámica: Equilibrio térmico -> temperatura

- Principio → es una regla que cuyo cumplimiento se verifica experimentalmente y que aún no ha podido refutarse, pero tampoco probarse
- Principio cero:

Si dos objetos están en equilibrio térmico con un tercer objeto, entonces los tres están en equilibrio térmico entre sí.

Esta definición → escala de temperaturas

Primer principio de la termodinámica: Conservación de la energía → energía interna

• La conservación de la energía para un sistema termodinámico se expresa de la siguiente forma

Primer principio de la termodinámica

Nada se gana, nada se pierde, todo se transforma

Segundo principio de la termodinámica: irreversibilidad de sistemas físicos → entropía

- Si consideramos → Universo = Sistema + Medio
- → el universo es un sistema aislado, luego

$$\Delta S_{U} = \Delta S_{SIS} + \Delta S_{AMB} \ge 0$$

$$\Delta S_U > 0$$
 irreversible $\Delta S_U = 0$ reversible $\Delta S_U < 0$ imposible

Tercer principio de la termodinámica: estado de mínima entropía → desorden

 S, la entropía del sistema tiende a un valor constante (que podría ser cero), a medida que la temperatura tiende a cero

(si S no es cero → entropía residual)

- A temperatura cero el sistema debe estar en su estado de mínima energía
 - → menor desorden → único microestado

$$S=k_B \ln \Omega$$

Potenciales termodinámicos

- Son funciones de estado (extensivas) que se relacionan con la cantidad de energía potencial disponible en un sistema termodinámico sujeto a ciertas restricciones
 - Las restricciones definen el tipo de potencial
 - Los potenciales definen si un proceso será espontáneo o necesitará aporte externo de energía para su ocurrencia

Potenciales termodinámicos

Potencial	Símbolo	Ecuación	Concepto
Energía interna	U	dU = Tds - pdV	Energía contenida en el sistema
Energía libre de Helmholtz	Α	A=U-TS	Energía disponible en el sistema para realizar trabajo
Entalpía	Н	H=U+pV	Energía intercambiada por el sistema con el medio
Energía de Gibbs	G	G=U+pV-TS	Máxima cantidad de energía que puede ser extraida de un sistema cerrado

Un sistema biológico es...

- Como un sistema termodinámico, un ser vivo es:
 - ¿abierto o cerrado?
 - ¿cíclico o una contínua sucesión de estados?
 - ¿en equilibro o fuera de equilibrio?

Un sistema biológico es...

- Como un sistema termodinámico, un ser vivo es:
 - ¿abierto o cerrado? → abierto
 - ¿cíclico o una contínua sucesión de estados? → cíclico
 - ¿en equilibro o fuera de equilibrio? → **fuera de equilibrio**

El señor Juan Carlos Irreversible

- Juan Carlos Irreversible tiene 25 años
- Juan Carlos Irreversible mide h=1.75m y masa m=80kg
- Juan Carlos Irreversible tiene una superficie

$$\text{Área} = \sqrt{\frac{(m/kg)(h/cm)}{3600}} \simeq 2m^2$$

Juan Carlos Irreversible trabaja y necesita 3000 kcal/día

$$P=3000 \frac{\text{kcal}}{\text{día}} \times 4184 \frac{\text{kJ}}{\text{kcal}} \times \frac{1 \text{día}}{86400 \text{ s}} \approx 150 \text{ W}$$

Sé como Juan Carlos, se Irreversible

¿Es JCI una máquina térmica irreversible?

• ¿Qué les parece? ¿¿¿Podemos representar a JCI así...

Si lo fuera → primer aproximación →

$$Q_c = 150J$$
, W = 50J; $Q_F = 100J \rightarrow \eta = W/Q_c \sim 33\%$.

- ¿Qué pasa si el trabajo es sedentario? ¿Cómo medimos W?
- ¿Qué pasa con la eficiencia de Carnot? $T_F=293K \rightarrow T_C=437K$ (!!)

H. Asorey - F3B 2020

¿Combustión? ¿Dónde está la caldera?

- ¿Es posible pensar a un ser vivo como máquina térmica?
- Máquina térmica → liberación energía por combustión
- ¿Hay combustión en el cuerpo?

¿Pila química?

- ¿Es posible pensar a un ser vivo como máquina térmica?
- ¿Acaso no almacenamos la energía en forma química?
- JCI: O.2 mol ATP ~ 100 g ATP (reciclamos 70kg/día de ATP)

 Si, es cierto, al igual que un auto almacena combustible en el tanque...

Veamos el proceso Glucosa+ADP+O $_2$ \rightarrow ATP+CO $_2$

Glicólisis

La versión corta:

Glucosa + 2 [NAD] + + 2 ADP + 2[P]_i
$$\rightarrow$$

$$\rightarrow$$
 2 Piruvato + 2 [NADH] + 2 H⁺ + 2 H₂O + 2 ATP

- Está catalizada por 10 encimas: encimas → catalizan una reacción
- En la literatura se menciona que la vida está "catalizada" (por procesos encimáticos) y esto lleva a un

catálisis → aumento de eficiencia → falso.

Encimas → aumentan la velocidad de la reacción (hasta 10¹¹).

ATP-sintasa (hasta 400 vueltas por segundo)

(ver u04c06-aip-siniteitasa-es.mp4)

Mitocondría → la caldera

Respiración celular (aeróbica)

Luego el piruvato, en presencia de O₂:

- Parte del calor Q liberado es almacenado en forma de enlaces químicos en el proceso ADP → ATP
- Este proceso permite almacenar químicamente la energía liberada en la combustión de la glucosa (**no hubo calor aquí**)

36 ADP + 2 [P]_i + C₆H₁₂O₆ + 6 O₂
$$\rightarrow$$
 6 CO₂ + 6H₂O + 36 ATP + Q

• ¡Pero en el proceso SI se libera calor en el citoplasma, y mucho, y de forma irreversible!

iiiLa mitocondria sería óptima a T~50°C (323K)!!!

https://www.bjorxiv.org/content/10.1101/133223v2

Mitocondria: radiadores celulares

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784886/

- El ATP es inestable y altamente soluble en agua. Las células mantienen la proporción ATP:ADP ~ 10¹⁰ fuera de equilibrio
- En la ATP-sintasa, había una concentración de protones fuera de equilibrio
- La concentración de gases de glicolisis está fuera de equilibrio
- •
- El verdadero problema aquí es que la vida funciona manteniendo estados fuera de equilibrio...
- ... y la termodinámica estudia estados en equilibrio: la temperatura y la entropía del sistema están definidas para estados en equilibrio termodinámico

- Los procesos metabólicos producen la oxidación de la glucosa, liberando energía
- La energía liberada es almacenada en forma de ATP
- La energía se transforma de química en química
- Se libera calor en el proceso
- ¿Qué pasa al consumir ATP?

¿y el trabajo? Miosina, contracción muscular

(ver u04c06-miosina-subs-es.mp4)

H. Asorey - F3B 2020

Energía química → trabajo mecánico, sin calor

- Las células musculares continen actina y miosina
- El ATP es usado para contraer el músculo, "jalando" fibras de actina mediante conexiones de miosina
- La energía química almacenada en el ATP es utilizada para contraer el músculo, produciendo trabajo mecánico
- Pero en el proceso se libera calor

Y el calor es transferido al ambiente (cuya temperatura puede variar)

Aplicando los principios

39/40

- La energía se conserva → en situación de no engordar ni adelagazar → JCI intercambia 150 J/s al ambiente
- El intercambio irreversible de calor produce entropía
- La termoregulación asegura T_{sis}=constante=310K
- Y por construcción, T_{amb}=constante=293K (pero clima)
- En un segundo (esto es demasiado aproximado):

Jun

$$\Delta S_{U} = \Delta S_{sis} + \Delta S_{med}$$

$$\Delta S_{U} = -Q/T_{sis} + Q/T_{med} = 0.03 J/K > 0$$

$$si T_{sis} > T_{med}$$

