29 실내 지도 데이터 생성 로봇

소속 정보컴퓨터공학부

분과 C

팀명 참새크면비둘기

참여학생 최호진, 조창현, 박지호

지도교수 김원석

과제 목표

LiDAR 센서를 활용한 실내 지도 데이터 생성 로봇 개발

- > 아두이노를 기반으로 하는 데이터 수집장치 제작
- ➤ Node.js 기반의 서버 구현 및 장치-서버 통신(http) 구현
- > Python을 활용하여 알고리즘(길찾기, 전처리) 개발
- ➤ Unity를 활용한 모델링 툴 제작
- ➤ DB를 활용하여 지도 데이터 관리

연구 내용

데이터 측정 및 장치이동

- 데이터 측정 과정 중 끊어진 점을 활용하여 다음 이동 위치를 특정
- ➤ 끊어진 양 끝점의 중간 점에서 반시계 방향으로 20cm 떨어진 지점을 벡터 회전을 통해 반환

데이터 전처리

- ➤ 데이터의 쓸모없는 값을 줄이기 위한 Downsampling 및 선분을 특정하기 위한 내각 측정
- ➤ 선분을 특정하기 위해 Point의 집합에서 X, Y 변화량을 확인하여 한 직선에 대한 Point들을 모아서 Curvefitting을 진행후, 최종 데이터를 위해 데이터를 정합

시각화

- b a {"Lidar_x":[83, 83, 83, 83, 83, 83, 83, 83, 83, ...
 b {"Lidar_x":[83, 83, 83, 83, 83, 83, 83, 83, ...
 c {"Lidar_x":[83, 83, 83, 83, 83, 83, 83, 83, ...
 d {"Lidar_x":[83, 83, 83, 83, 83, 83, 83, 83, ...
 e {"Lidar_x":[83, 83, 83, 83, 83, 83, 83, 83, 83, ...
- ➤ Unity를 활용하여 수집된 데이터를 기반으로 모델링 및 웹에서 작동할 수 있도록 WebGL로 빌드하여 배포
- ➤ DB와 연동하여 저장된 데이터 Load 및 신규 데이터 Upload

연구 결과

실제/측정		_	2
가로	117/114	117/120	117/121
세로	112/116	230/240	230/245
장애물	X	50/48	50/48, 45/42

결과 분석

- ▶실제 값과 측정 값 사이에 3 ~15의 오차가 발생하며 이는 최대 10%의 차이가 발생
- ▶알고리즘의 큰 복잡도로 인한 실시간 보장X

개선 방향

- ➤ 성능 개선을 위한 FOV가 넓은 LiDAR 센서 활용
- ➤ CNN 활용 및 알고리즘 복잡도 개선

시연 영상

