Esercizi TDI - Foglio 5

Davide Peccioli

24 maggio 2025

1 Esercizio 1

Let E be an equivalence relation on a Polish space X. A set $A \subseteq X$ is called E-invariant if $x \in A$ and $y \in X$ implies $y \in A$, for all $x, y \in X$. Suppose that E is analytic, that is, $E \in \Sigma^1_1(X^2)$. Show that if $A, B \subseteq X$ are disjoint analytic E-invariant sets, then there is a Borel E-invariant set $C \subseteq X$ separating A from B, that is, $A \subseteq C$ and $C \cap B = \emptyset$.

Hint: Recursively define sets A_n , $C_n \subseteq X$ so that $A_0 = A$, C_n is a Borel set separating A_n from B, and $A_{n+1} \supseteq C_n$ is E-invariant, analytic, and disjoint from B.

1.1 Soluzione

Claim: Esistono due famiglie $(A_n)_{n\in\omega}, (C_n)_{n\in\omega}$ di sottoinsiemi di X, tali che

- $A_0 = A$;
- $\forall n \in \omega$: $A_n \subseteq C_n \subseteq A_{n+1}$;
- $\forall n \in \omega : C_n \in \mathbf{Bor}(X) \in C_n \cap B = \emptyset$
- $\forall n \in \omega$: A_n è *E*-invariante, analitico

Se tali famiglie esistono, sia $C := \bigcup_{n \in \omega} C_n$.

- C è E-invariante. Infatti, siano $x, y \in X$, con $x \in Y$. Se $x \in C$, allora esiste $n \in \omega$ tale che $x \in C_n \subseteq A_{n+1}$; poiché A_{n+1} è E-invariante, allora $y \in A_{n+1} \subseteq C_{n+1} \subseteq C$, e pertanto $y \in C$.
- $C \in \mathbf{Bor}(X)$, poiché unione numerabile di Boreliani.
- $A \subseteq C$; infatti $A = A_0 \subseteq C_0 \subseteq C$.
- $C \cap B = \emptyset$, poiché ciascun C_n è disgiunto ta B.

Dimostazione del claim: si procede per induzione.

a. Sia $A_0 := A$, E-invariante e analitico. Allora $A_0, B \subseteq X$ sono due insiemi analitici disgiunti, e pertanto esiste, per il Teorema 3.2.1, un Boreliano $C_0 \subseteq X$ tale che

$$A_0 \subseteq C_0; \quad C_0 \cap B = \emptyset.$$

b. Per il passo induttivo, si supponga di aver costruito $(A_i)_{i \leq n}$ e $(C_i)_{i \leq n}$. Si costruiscono A_{n+1}, C_{n+1} .

<u>L'insieme</u> A_{n+1} è definito chiudendo C_n rispetto alla relazione di equivalenza E, ovvero

$$C_n \subseteq A_{n+1} := \left\{ x \in X \mid \exists y \in C_n \ (x E y) \right\}.$$

- Ovviamente $A_n \subseteq C_n \subseteq A_{n+1}$, poiché E è riflessiva.
- A_{n+1} è E-invariante per definizione, poiché E è transitiva e simmetrica.
- A_{n+1} è analitico, poiché $(X \times C_n) \cap E$ è analitico, e A_{n+1} è

$$\pi_1\left((X\times C_n)\cap E\right)$$

dove $\pi_1: X \times X \to X$ è la proiezione sul primo fattore (per la proposizione 3.1.5).

L'insieme $(X \times C_n) \cap E$ è analitico poiché Σ_1^1 è chiusa per intersezioni finite e:

- -E è analitico per ipotesi;
- C_n è Boreliano per ipotesi, dunque analitico, e, detta $\pi_2: X \times X \to X$ la proiezione sul secondo fattore,

$$X \times C_n = \pi_2^{-1}(C_n)$$

e siccome Σ_1^1 è chiusa per retroimmagini continue, anche $X \times C_n$ è analitico.

• Si nota che $A_{n+1} \cap B = \emptyset$ poiché, se per assurdo esistesse $x \in A_{n+1} \cap B$ allora ci sarebbe $y \in C_n$ tale che

e siccome B è E-invariante, allora $y \in B$. Dunque $y \in B \cap C_n \neq \emptyset$. Assurdo.

Dunque gli insiemi $A_{n+1}, B \subseteq X$ sono analitici e disgiunti, e pertanto esiste, per il Teorema 3.2.1, un Boreliano $C_{n+1} \subseteq X$ tale che

$$A_{n+1} \subseteq C_{n+1}; \quad C_{n+1} \cap B = \emptyset$$

2 Esercizio 2

Let E be an equivalence relation on a Polish space X. A **partial transversal** for E is a set $T \subseteq X$ meeting each E-equivalence class in at most one point. Show that the following are equivalent:

- a. E admits an uncountable analytic partial transversal;
- b. E admits an uncountable Borel partial transversal;
- c. there is a Borel function $f: \mathbb{R} \to X$ such that $f(r_0) \not \!\! E f(r_1)$ for all distinct $r_0, r_1 \in \mathbb{R}$.

2.1 Soluzione

2.1.1 a. implica b.

Osservazione: se $T \subseteq X$ è un insieme trasversale parziale, allora ogni $T' \subseteq T$ è ancora un insieme trasversale parziale.

Inoltre, ogni insieme analitico A non numerabile ammette un sottoinsieme Boreliano B non numerabile, in quanto:

- siccome A è analitico, allora A ha la PSP (per il Teorema 3.4.1);
- siccome A è non numerabile, allora esiste

$$\iota: 2^{\omega} \to A$$

una immersione topologica, ovvero ι continua e iniettiva;

• pertanto, per il Corollario 3.2.7, $B := \iota(2^{\omega}) \subseteq T$ è Boreliano (poiché $2^{\omega} \in \mathbf{Bor}(2^{\omega})$ e ι iniettiva) ed è ovviamente non numerabile, poiché ha cardinalità $2^{\aleph_0} > \aleph_0$.

Pertanto l'insieme analitico trasversale parziale T ammette un sottoinsieme Boreliano non numerabile $T' \subseteq T$, e per l'Osservazione iniziale, T' è un insieme trasversale parziale.

2.1.2 b. implica a.

Questo è ovvio, poiché $\mathbf{Bor}(X) \subseteq \Sigma_1^1(X)$ per il Corollario 3.1.4.

2.1.3 b. implica c.

Sia $T' \subseteq X$ un insieme Boreliano trasversale parziale. Allora, per il Corollario 3.2.7 esiste un chiuso $F \subseteq \omega^{\omega}$ e una funzione continua e iniettiva

$$g: F \subseteq \omega^{\omega} \to X$$

tale che g(F) = T'.

Inoltre, per il Teorema 1.3.17, esiste una biiezione continua

$$h: F \subseteq \omega^{\omega} \to \mathbb{R}.$$

In particolare, per il Corollario 3.2.6, h è un Borel-isomorfismo, e pertanto $h^{-1}: \mathbb{R} \to F$ è una funzione Boreliana.

Si pone quindi $f := g \circ h^{-1}$. Questa è una funzione Boreliana iniettiva (poiché composizione di funzioni iniettive)

$$f: \mathbb{R} \to X$$
.

Siano dunque $r_0 \neq r_1 \in \mathbb{R}$. Allora $f(r_0) \neq f(r_1)$, e $f(r_0), f(r_1) \in T'$. Se per assurdo

$$f(r_0) E f(r_1)$$

si avrebbe che T' contiene due elementi distinti della stessa classe di E-equivalenza. Assurdo.

Pertanto, se $r_0 \neq r_1 \in \mathbb{R}$, allora $f(r_0) \not \!\! E f(r_1)$.

2.1.4 c. implica b.

La funzione f è necessariamente <u>iniettiva</u>, poiché se per assurdo esistessero $r_0 \neq r_1 \in \mathbb{R}$ tali che $f(r_0) = f(r_1)$, allora per la riflessività di E:

$$f(r_0) E f(r_1)$$

e questo contraddice l'ipotesi.

Si consideri dunque $A \subseteq \mathbb{R}$ non numerabile, $A \in \mathbf{Bor}(\mathbb{R})$: allora $f(A) \subseteq X$ è Boreliano per il Corollario 3.2.7, ed è inoltre un insieme trasversale parziale per E: infatti se per assurdo vi fossero $x \neq y \in f(A)$ tali che $x \in Y$ allora, siccome f è iniettiva, esistono $x_0 \neq y_0 \in A$ tali che $x = f(x_0)$, $y = f(y_0)$, ovvero

$$f(x_0) E f(y_0).$$

Questo contraddice l'ipotesi.

3 Esercizio 3

Let E be an equivalence relation on a Polish space X. A **transversal** for E is a set $T \subseteq X$ meeting every E-equivalence class in exactly one point. A **selector** for E is a map $s: X \to X$ selecting one element from each E-equivalence class, that is, $s(x) \in [x]_E$ and s(x) = s(y) if $x \in Y$. Show that if E is analytic, then the following are equivalent:

- a. E admits an analytic transversal;
- b. E admits a Borel transversal;
- c. E admits a Borel selector.

3.1 Soluzione

3.1.1 c. implica b.

Sia $s: X \to X$ un selettore Boreliano per E e sia T := s(X).

Allora T è trasversale. Infatti incontra ogni classe di E-equivalenza esattamente una volta.

- Almeno una volta: Per ogni $x \in X$ esiste $t \in T$ tale che x R t: t = s(x).
- Al più una volta: Siano $x \neq y \in T$ e siano $x_0, y_0 \in X$ tali che

$$s(x_0) = x, \quad s(y_0) = y.$$

Per definizione $x \ E \ x_0$ e $y \ E \ y_0$. Se per assurdo $x \ E \ y$ allora $x_0 \ E \ y_0$ per transitività di E. Per definizione, allora

$$s(x_0) = s(y_0)$$

ovvero x = y. Assurdo.

Inoltre, sia

$$f: X \longrightarrow X \times X$$

 $x \longmapsto (x, s(x))$

Questa è una funzione Boreliana, poiché s è Boreliana: $f = \operatorname{Id}_X \times s$ e per le proprietà di pag. 54, f è Boreliana.

Allora, detta $D \subseteq X \times X$ la diagonale,

$$D \coloneqq \{(x, x) \mid x \in X\}$$

si ha che D è chiuso, poiché X è metrizzabile e quindi Haussdorf. Inoltre $T=f^{-1}(D)$

- (\subseteq): Se $t \in T$, allora s(t) = t, poiché altrimenti $s(t) \in T$ sarebbe un elemento distinto da t della classe $[t]_E$. Pertanto $f(t) = (t, s(t)) = (t, t) \in D$.
- (\supseteq): Se $t \in f^{-1}(D)$ allora s(t) = t e quindi $t \in s(X) = T$.

Dunque, siccome f è Boreliana e D è chiuso, T è un Boreliano.

3.1.2 b. implica a.

Questo è ovvio, poiché $\mathbf{Bor}(X) \subseteq \Sigma_1^1(X)$ per il Corollario 3.1.4.

3.1.3 a. implica c.

Sia $T \subseteq X$ un insieme analitico trasversale per E.

Siccome T è trasversale per E, allora è ben definita la funzione

$$\varphi: X/E \longrightarrow T$$
$$[x]_E \longmapsto t \in [x]_E.$$

poiché per ogni classe di E-equivalenza esiste un unico elemento $t \in T$ tale che $t \in [x]_E$.

Si definisce dunque la funzione $s: X \to T: x \mapsto \varphi([x]_E)$. Questa è un <u>selettore</u>, poiché:

- per ogni $x \in X$: $s(x) = \varphi([x]_E) = t \in [x]_E$;
- se x E y allora $[x]_E = [y]_E$ e pertanto

$$s(x) = \varphi([x]_E) = \varphi([y]_E) = s(y).$$

Resta da dimostrare che s sia Boreliana. Sfruttando il Teorema 3.2.4 è sufficiente dimostrare che graph $(s) \subseteq X \times X$ sia analitico. Si ha che

$$graph(s) = E \cap (X \times T)$$

infatti:

• se $(x,y) \in \text{graph}(s)$ allora y = s(x), e poiché s è un selettore: $x \in S(x)$ e quindi $(x,y) \in E$; inoltre $x \in X$ e $y = s(x) \in T$;

• viceversa, se $(x,y) \in E \cap (X \times T)$ allora $y \in T$ e $x \in Y$; inoltre y è l'unico elemento di T tale che $x \in Y$, e pertanto, per definizione y = s(x).

Sia T che E sono analitici per ipotesi. Inoltre $X \times T = \pi_2^{-1}(T)$ è analitico, in quanto retroimmagine continua di un analitico (per la Proposizione 3.1.5), e dunque $E \cap (X \times T) = \text{graph}(s)$ è analitico.

4 Esercizio 4

Prove the following theorem:

Let X be a Polish space. Then every $A \in \Pi_1^1(X)$ can be written as $A = \bigcup_{\xi < \omega_1} A_{\xi}$, where A_{ξ} is Borel for every $\xi < \omega_1$.

by completing the details of the following steps:

- a. First prove the theorem for X = LO and A = WO as follows:
 - Given $\omega \leq \xi < \omega_1$, let WO_{ξ} be the set of codes for well-orders of ω with order type $\leq \xi$. Show that each WO_{ξ} is analytic.
 - Argue that there is a Borel set A_ξ such that WO_ξ ⊆ A_ξ ⊆ WO.
 Optional: Show that WO_ξ itself is Borel by showing that its complement is analytic as well.
 - Conclude that WO = $\bigcup_{\xi < \omega_1} A_{\xi}$.
- b. Use the fact that WO is Π_1^1 -complete to prove the theorem for $X = \omega^{\omega}$ and an arbitrary $A \in \Pi_1^1(\omega^{\omega})$.
- c. Use the Borel isomorphism theorem for Polish spaces to transfer the result to an arbitrary uncountable Polish space X.
- d. What happens if X is a countable Polish space?

4.1 Soluzione

4.1.1 Parte a.

Si consideri lo spazio polacco $X := \mathrm{LO} \subseteq 2^{\omega \times \omega}$ e si adotti la notazione dell'Esempio 3.1.8: l'insieme NWO è analitico, mentre l'insieme WO è coanalitico. È dunque possibile porre

$$A := WO \in \mathbf{\Pi}_1^1(LO)$$
.

• Sia $\omega \leq \xi < \omega_1$ fissato. Sia WO $_{\xi}$ l'insieme di tutti gli elementi di WO con order type $\leq \xi$: un buon ordine $\langle A, \preceq \rangle$ ha order type ξ' se e solo se esiste una biiezione $f: A \to \xi'$ tale che, per ogni $a, b \in A$

$$a \leq b \iff f(a) < f(b)$$

Dunque $x \in WO$ ha order type ξ' se e solo se esiste una funzione biiettiva $f : \omega \to \xi'$ tale che per ogni $m, n \in \omega$:

$$x(m,n) = 1 \iff f(m) < f(n)$$

Si consideri quindi $WO^{=\xi'}$ l'insieme di tutti gli elementi di WO con order type esattamente ξ' : per ogni $x \in WO$:

$$x \in WO^{=\xi'} \iff \exists f \in (\xi')^{\omega} \text{ bijettiva } \forall m, n \in \omega \ \left(x(m,n) = 1 \iff f(m) < f(n)\right).$$

Inoltre, se $x \in LO$, la condizione di destra garantisce che $x \in WO$, poiché la biiezione f è un isomorfismo di ordini e ξ' è ben ordinato (in quanto ordinale). Pertanto, per ogni $x \in LO$:

$$x \in WO^{=\xi'} \iff \exists f \in (\xi')^{\omega} \text{ bijettiva } \forall m, n \in \omega \ (x(m,n) = 1 \iff f(m) < f(n)).$$

Osservazione 1: per ogni $\xi' < \omega_1 = \omega^+$, si ha che $|\xi| = \aleph_0$, e pertanto ξ' è numerabile.

Osservazione 2: per ogni $\xi' < \omega_1, \, \xi'$ è uno spazio polacco; infatti ogni ordinale numerabile è omeomorfo ad un sottoinsieme chiuso e numerabile di \mathbb{R} e pertanto è polacco. Siccome prodotto numerabile di spazi polacchi è ancora polacco, $(\xi')^{\omega}$ è uno spazio polacco.

Si definisce quindi:

$$A_{m,n} := \left\{ (x,f) \in \mathrm{LO} \times (\xi')^{\omega} \mid \left(x(m,n) = 1 \iff f(m) < f(n) \right) \land f \text{ biiettiva} \right\}$$

Questo è un insieme **Bor** (LO \times (ξ') $^{\omega}$), poiché tutte le condizioni sono Boreliane:

$$(x,f) \in A_{m,n} \iff \left[x(m,n) = 1 \iff f(m) < f(n) \right] \land$$

$$\land \left[\forall \lambda, \mu \in \omega \left(f(\lambda) = f(\mu) \right) \iff (\lambda = \mu) \right] \land$$

$$\land \left[\forall \lambda < \xi' \ \exists \ k \in \omega \ \left(f(k) = \lambda \right) \right]$$

Le quantificazioni sono tutte numerabili in virtù dell'Osservazione 1.

Pertanto

$$A_{m,n} \in \mathbf{Bor}\left(\mathrm{LO} \times (\xi')^{\omega}\right) \subseteq \Sigma_1^1\left(\mathrm{LO} \times (\xi')^{\omega}\right),$$

e dunque anche $\bigcap_{m,n\in\omega} A_{m,n}$ è Σ_1^1 (LO × $(\xi')^{\omega}$).

Definita

$$\pi_{LO}: LO \times (\xi')^{\omega} \to LO$$

la proiezione sul primo fattore, allora

$$WO^{=\xi'} = \pi_{LO} \left(\bigcap_{m,n \in \omega} A_{m,n} \right).$$

Dunque applicando la Proposizione 3.1.5 (per l'osservazione precedente $(\xi')^{\omega}$ è Polacco) si ottiene che WO^{= ξ'} è $\Sigma_1^1(LO)$.

Inoltre,

$$WO_{\xi} = \bigcup_{\xi' \le \xi} WO^{=\xi'}$$

e pertanto questo dimostra che $WO_{\xi} \in \Sigma_1^1(LO)$, poiché Σ_1^1 è chiuso per unioni numerabili (per la Proposizione 3.1.5) e ξ numerabile per l'Osservazione 1.

• Sia $\omega \leq \xi < \omega_1$ fissato. È possibile applicare il Teorema 3.2.1 a WO $_{\xi}$ e NWO (infatti sono entrambi analitici e WO $_{\xi} \cap$ NWO \subseteq WO \cap NWO = \emptyset): esiste A_{ξ} Boreliano tale che:

$$WO_{\xi} \subseteq A_{\xi}, \qquad A_{\xi} \cap NWO = \emptyset$$

Siccome NWO = $X \setminus WO$ si ha che $A_{\xi} \subseteq WO$:

$$WO_{\xi} \subseteq A_{\xi} \subseteq WO.$$

Per ogni $\xi < \omega$ si pone $A_{\xi} = \emptyset \in \mathbf{Bor}(\mathrm{LO})$.

• Vale la seguente uguaglianza: WO = $\bigcup_{\omega \leq \xi < \omega_1}$ WO $_{\xi}$. (\supseteq): è ovvio, poiché per ogni $\omega \leq \xi < \omega_1$ si ha WO $_{\xi} \subseteq$ WO. (\subseteq): ciascun buon ordine lineare ha order type minore di ω_1 , e pertanto se $x \in$ WO allora esiste $\xi < \omega_1$ tale che $x \in$ WO $_{\xi}$.

Pertanto si ha che

$$WO = \bigcup_{\omega \le \xi < \omega_1} WO_{\xi} \subseteq \bigcup_{\omega \le \xi < \omega_1} A_{\xi} = \bigcup_{\xi < \omega_1} A_{\xi}$$

ed inoltre, per ogni $\xi < \omega_1, A_{\xi} \subseteq WO$ e dunque

$$\bigcup_{\xi < \omega_1} A_{\xi} \subseteq WO$$

Per doppia inclusione si ha proprio WO = $\bigcup_{\xi < \omega_1} A_{\xi}$.

4.1.2 Parte b.

Sia $X := \omega^{\omega}$ e $A \in \mathbf{\Pi}_1^1(X)$.

Siccome WO è Π_1^1 -completo, allora esiste una funzione continua

$$f:\omega^{\omega}\to \mathrm{LO}$$

tale che $f^{-1}(WO) = A$.

Per il punto precedente è possibile scrivere WO = $\bigcup_{\xi < \omega_1} B_{\xi}$ con $B_{\xi} \in \mathbf{Bor}(LO)$, e quindi

$$A = f^{-1}(WO) = f^{-1}\left(\bigcup_{\xi < \omega_1} B_{\xi}\right) = \bigcup_{\xi < \omega_1} f^{-1}(B_{\xi}).$$

Posto $A_{\xi} := f^{-1}(B_{\xi})$, si ha che $A_{\xi} \in \mathbf{Bor}(X)$ poiché $B_{\xi} \in \mathbf{Bor}(LO)$ e f continua. Pertanto

$$A = \bigcup_{\xi < \omega_1} A_{\xi}$$

con A_{ξ} Boreliani.

4.1.3 Parte c.

Sia X uno spazio polacco non numerabile, e sia $A \in \Pi^1_1(X)$. Per il Teorema 3.2.9 esiste un isomorfismo Boreliano:

$$F:\omega^\omega\to X$$

In particolare $B := F^{-1}(A) \in \Pi_1^1(X)$ per il Corollario 3.1.16, poiché F è Boreliana. Per il punto precedente,

$$B = \bigcup_{\xi < \omega_1} B_{\xi}$$

 $\operatorname{con} B_{\xi} \in \mathbf{Bor}(\omega^{\omega})$

Siccome F è una biiezione, allora A = F(B):

$$A = F(B) = F\left(\bigcup_{\xi < \omega_1} B_{\xi}\right) = \bigcup_{\xi < \omega_1} F(B_{\xi}).$$

Posto ora $A_{\xi} := F(B_{\xi})$, questi sono Boreliani per il Corollario 3.2.7, poiché F Boreliana iniettiva e B_{ξ} Boreliano.

4.1.4 Parte d.

Se X è numerabile allora il teorema è banale: ogni sottoinsieme di X è unione numerabile di singoletti, che sono chiusi, e pertanto ogni sottoinsieme di X è un Boreliano.