AutoML: Meta-Learning

Learning model priors

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer <u>Joaquin Vanschoren</u>

What can we learn to learn?

3 pillars

Terminology (reminder)

Strategy 1: bilevel optimization

parameterize some aspect of the learner that we want to learn as meta-parameters θ meta-learn θ across tasks

 $\Theta(Prior)$, could encode an initialization ϕ , the hyperparameters λ , the optimizer,...

Learned θ^* should learn T_{new} from small amount of data, yet generalize to a large number of tasks

Meta-learning with bilevel optimization

Strategy 2: black-box models

black box meta-model g_{θ} predicts ϕ given D_{train} (theta is hidden) hypernetwork where input embedding learned across tasks

Example: few-shot classification

4

Example: few-shot classification

Example: meta-reinforcement learning

Example: meta-reinforcement learning

Taxonomy of meta-learning methods

like base-learners, meta-learners consist of a representation, an objective, and an optimizer

Taxonomy of meta-learning methods

like base-learners, meta-learners consist of a representation, an objective, and an optimizer

Taxonomy of meta-learning methods

like base-learners, meta-learners consist of a representation, an objective, and an optimizer

