Rozdział 2 Ciągi 2.2

1 Własności ciągów liczbowych

1.1 Granica iloczynu ciągów jest równa iloczynowi granic tych ciągów

Twierdzenie 1 Jeżeli $\lim_{n\to\infty} x_n = x$ i $\lim_{n\to\infty} y_n = y$ to $\lim_{n\to\infty} (x_n y_n) = xy$.

1.2 Dowód, że $\lim_{n\to\infty}(x_n+y_n)=x+y$

Niech x_n oraz y_n będą ciągami o wyrazach rzeczywistych lub zespolonych.

Twierdzenie 2 Jeżeli $\lim_{n\to\infty} x_n = x$ i $\lim_{n\to\infty} y_n = y$ to $\lim_{n\to\infty} (x_n + y_n) = x + y$.

Chcemy okazać, że dla dowolnej liczby rzeczywistej większej niż zero, istnieje jakaś liczba naturalna, taka, że dla n równego bądź większego niż ta liczba, spełniona jest nierówność:

$$|(x_n + y_n) - (x + y)| < Dowolna liczba rzeczywista większa od zera$$

Niech $\epsilon > 0$ będzie ustaloną liczbą rzeczywistą. Przyjmijmy, że $\delta = \frac{\epsilon}{2}$. Wiemy, że $\delta > 0$. Z założeń wiemy, że oba ciągi są zbieżne, więc dla każdego z tych dwóch ciągów istnieją liczby naturalne $l, m \in \mathbb{N}$ takie że:

$$\bigwedge_{n \ge l} |x_n - x| < \delta$$

$$\bigwedge_{n \ge m} |y_n - y| < \delta$$

Oznaczmy $n_0 = \max\{l, m\}$. n_0 jest liczbą, która gwarantuje nam, że gdy $n \ge n_0$, od tego miejsca te dwie nierówności są jednocześnie spełnione. Mamy wtedy:

$$\bigwedge_{n \ge n_0} (|x_n - x| < \delta \land |y_n - y| < \delta) \tag{1.1}$$

Z 1.1 uzyskujemy:

$$\bigwedge_{n > n_0} |x_n - x| + |y_n - y| < 2\delta \tag{1.2}$$

Skorzystamy z nierówności trójkąta i rozwiniemy wyrażenie $|(x_n + y_n) - (x + y)|$:

$$|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y|$$

Widzimy, że dla dowolnego $n \ge n_0$:

$$|(x_n + y_n) - (x + y)| < 2\delta = 2 \cdot \frac{\epsilon}{2} = \epsilon$$

Dla dowolnego $\epsilon > 0$ istnieje takie n_0 , że $\bigwedge_{n \geq n_0} |(x_n + y_n) - (x + y)| < \epsilon$. Zatem x + y jest granicą $(x_n + y_n)$.

2 Ciągi liczb rzeczywistych

W tym rozdziale każdy rozważany ciąg jest o wyrazach rzeczywistych.

Twierdzenie 3 Ciąg monotoniczny jest zbieżny wtedy i tylko wtedy, gdy jest ograniczony.

Każdy ciąg zbieżny jest ograniczony (np. Rudnicki Twierdzenie 3 Punkt 2.1.3). W jedną stronę dowód jest w takim razie gotowy. Pokażemy zatem, że ciąg który jest monotoniczny i ograniczony jest zbieżny.

Załóżmy, że ciąg (x_n) jest nierosnący (ciąg nazywamy monotonicznym gdy jest niemalejący lub nierosnący) oraz, że jest ograniczony. Niech:

$$A = \{x_n : n \in \mathbb{N}\}.$$

Zauważmy, że A jest zbiorem ograniczonym. Co to znaczy, że zbiór jest ograniczony? Mówimy, że zbiór A jest ograniczony jeśli jest ograniczony z góry i z dołu. Mało pomocne, ale nie panikujmy!

Zbiór A jest ograniczony z góry gdy:

$$\bigvee_{M\in\mathbb{R}}\bigwedge_{x\in A}x\leq M$$

Zbiór A jest ograniczony z dołu gdy:

$$\bigvee_{m \in \mathbb{R}} \bigwedge_{x \in A} x \ge m$$

Wcześniej założyliśmy, że ciąg (x_n) jest ograniczony. Niech M>0 będzie liczbą, która dla dowolnego n speł