Etapa Ensino Fundamental Anos Finais

Matemática

Volume de prismas e cilindros - II

9º ANO Aula 21 – 4º Bimestre

 Volume de prismas e cilindros.

Objetivos

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo volume de prismas e cilindros.

Sabe essa?

A seguir, apresentamos dois objetos, um no formato de um paralelepípedo e outro, no formato de um cilindro. Com os conhecimentos que você já possui sobre volume, calcule o volume de cada um.

Sabe essa?

A seguir, apresentamos dois objetos, um no formato de um paralelepípedo e outro, no formato de um cilindro. Com os conhecimentos que você já possui sobre volume, calcule o volume de cada um.

4 cm 6 cm

Volume do paralelepípedo: $V = 3 \cdot 4 \cdot 6 = 72 \text{ cm}^3$

Volume do cilindro: $V = \pi \cdot 4^2 \cdot 6 = 96 \pi \text{ cm}^3$

Foco no conteúdo

Para calcular o volume de prismas e cilindros retos, utilizam-se fórmulas específicas, que variam de acordo com a forma do sólido. Vejamos as fórmulas para ambos:

 Volume do prisma: um prisma é um sólido tridimensional que possui duas bases paralelas idênticas e faces laterais retangulares (ou quadradas).

Volume do prisma = área da base x altura

 Volume do cilindro: um cilindro é um sólido tridimensional que possui duas bases circulares paralelas e uma superfície lateral curva.

Volume do cilindro = área da base x altura

Sistema Internacional de Medidas (SI)

É o sistema usado em quase o mundo todo, criado para uniformizar e facilitar as medições de grandezas, como distâncias, tempo, massa, temperatura etc.

A unidade base para se medir o volume, no SI, é o metro cúbico (m³), que é o espaço que ocupa um cubo de arestas medindo 1 m. Vamos ver, a seguir, os múltiplos e submúltiplos dessa unidade.

Todo mundo escreve

Unidades de Medida de Volume											
Nome	Quilômetro cúbico	Hectômetro cúbico	Decâmetro cúbico	Metro cúbico	Decímetro cúbico	Centímetro cúbico	Milímetro cúbico				
Símbolo	km³	hm³	dam³	m³	dm³	cm³	mm³				
	0,000 000 001	0,000 001	0,001	1	1 000	1 000 000	1 000 000 000				
Ex. 1					5						
Ex. 2	2										

Procedimento: a partir da unidade de medida de volume é que se encontra o valor: para transformar uma unidade de medida que seja submúltiplo do metro, multiplique por 1000 (10³); para transformar em um múltiplo do metro, basta dividir por 1000 (10 ³).

Foco no conteúdo Correção

Unidades de Medida de Volume											
Nome	Quilômetro cúbico	Hectômetro cúbico	Decâmetro cúbico	Metro cúbico	Decímetro cúbico	Centímetro cúbico	Milímetro cúbico				
Símbolo	km³	hm³	dam³	m³	dm³	cm³	mm³				
	0,000 000 001	0,000 001	0,001	1	1 000	1 000 000	1 000 000 000				
Ex. 1	0,000 000 000 005	0,000 000 005	0,000 005	0,005	5	5 000	5 000 000				
Ex. 2	2	2 000	2 000 000	2 000 000 000	2 000 000 000 000	2 . 10 ¹⁵	2 . 10 ¹⁸				

Curiosidade: você sabia que 1 dm³ equivale a 1 litro?

Todo mundo escreve

Na prática ATIVIDADE 1

Um tijolo possui como base um retângulo com área de 406 cm². Sabendo que o volume desse tijolo é de 7714 cm³, qual é sua altura, em centímetros?

Na prática Correção ATIVIDADE 1

Um tijolo possui como base um retângulo com área de 406 cm². Sabendo que o volume desse tijolo é de 7714 cm³, qual é sua altura, em centímetros?

Como o volume é calculado pelo produto da área da base pela altura, temos a seguinte expressão:

$$7714 = 406 \cdot h$$

$$h = \frac{7714}{406}$$

$$h = 19 cm$$

Todo mundo escreve

ATIVIDADE 2

Deseja-se construir um reservatório cilíndrico, de maneira que o diâmetro da base tenha 5 m e sua capacidade máxima seja $50 \ 000 \ L$. Qual deve ser a altura desse reservatório? Use $\pi \ \text{como} \ 3,14$.

■ Na prática Correção

ATIVIDADE 2

Deseja-se construir um reservatório cilíndrico, de maneira que o diâmetro da base tenha 5 m e sua capacidade máxima seja 50 000 L. Qual deve ser a altura desse reservatório?

Como temos que $1m^3 = 1 000L$, então 50 000 L são equivalentes a $50 m^3$, e o volume do cilindro é dado por $V = \pi r^2 h$

diâmetro da base mede 5 m. Como o raio é a metade da medida do diâmetro, então $r = \frac{5}{2}m$.

$$V = \pi \cdot r^2 \cdot h$$

$$50 = \pi \cdot \left(\frac{5}{2}\right)^2 \cdot h$$

$$50 = \pi \cdot \frac{25}{4} \cdot h$$

$$50 \cdot 4 = 25\pi h$$

$$200 = 25\pi h$$

$$25\pi h = 200$$

$$h = \frac{200}{25\pi}$$

$$h = \frac{8}{\pi} m$$

$$h \cong \frac{8}{3.14}$$

$$h \cong 2,55 m$$

Aplicando

Determine, em litros, o volume de água que cabe dentro de uma mangueira cilíndrica de comprimento 12,5 m e raio de 1,5 cm. (Use $\pi = 3,14$.)

Aplicando Correção

Determine, em litros, o volume de água que cabe dentro de uma mangueira cilíndrica de comprimento $12.5\,m$ e raio de $1.5\,cm$. (Use $\pi=3.14$.)

Dados:

raio: 0,015 *m*

comprimento:

12,5 *m*

 $\pi = 3,14$

 $V = \pi r^2 h$

 $V = 3,14 \cdot (0,015)^2 \cdot 12,5$

 $V = 3,14 \cdot 0,000225 \cdot 12,5$

 $V = 0.0007065 \cdot 12.5$

 $V = 0.00883125 \, m^3$

Como $1m^3 = 1 000 L$, então, $0,00883125 \cdot 1 000 = 8,83125 litros$

O que aprendemos hoje?

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo o volume de prismas e cilindros.

Tarefa SP

Localizador: 101927

- 1. Professor, para visualizar a tarefa da aula, acesse com seu login: <u>tarefas.cmsp.educacao.sp.gov.br</u>.
- 2. Clique em "Atividades" e, em seguida, em "Modelos".
- 3. Em "Buscar por", selecione a opção "Localizador".
- 4. Copie o localizador acima e cole no campo de busca.
- 5. Clique em "Procurar".

Vídeo tutorial: http://tarefasp.educacao.sp.gov.br/

Referências

LEMOV, Doug. **Aula nota 10 2.0**: 62 técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso, 2018.

PARANÁ (ESTADO). Secretaria da Educação. **Material de Apoio ao Professor**. Paraná, 2022.

SÃO PAULO (ESTADO). Secretaria da Educação. **Currículo Paulista do Ensino Fundamental**. São Paulo, 2019.

Lista de imagens e vídeos

Slides 5 – https://pixabay.com/pt/vectors/homem-professor-professor-%c3%b3culos-6719392/

Slides 11 e 13 -

https://drive.google.com/file/d/1AIFrjG20LU1m QepUOqAeyWAiz 1fkieu/view

Slides 9 e 10 – https://pixabay.com/pt/vectors/retangular-bloco-oco-construir-307397/

Demais imagens produzidas pelo autor.