

Niche-based grouping for mixed species growth and yield models: A preliminary exploration.

Quentin Boccaleri¹, Bronson Bullock², Stephen Kinane³, Pete Bettinger⁴

¹PMRC PhD Student, University of Georgia

²PMRC Director & Professor, University of Georgia

³PMRC Professor, University of Georgia

⁴Eyield Lead & Professor, University of Georgia

eYield V.2 Project

- Decision support system for small and medium-sized forest landowners in the southern US.
- Hardwood and natural pine.
- Seven models currently in use, three of which are hardwoods.
- Dr. Pete Bettinger is leading a four-year project to update to V.2: which will expand mix-species hardwoods models.
- Partnership of UGA, UTK, Southern Regional Extension Forestry, and MSU staff.
- Website: https://eyield.sref.info

eYield V.2 Project

GROWTH & HARVEST REPORT

STAND NAME: LOBLOLLY PINE ACREAGE: 120*

			Standing			Harvested			Residual	
	DBH	ВА	TPA	%	ВА	TPA	%	ВА	TPA	%
2028	3	0	0	0	0	0	0	-	-	-
	4	0.3	3.44	0.27	0.3	3.44	0.74	-	-	-
	5	1.42	10.41	1.29	1.42	10.41	3.52	-	-	-
	6	3.12	15.89	2.83	3.12	15.89	7.74	-	-	-
	7	6.17	23.09	5.59	6.17	23.09	15.31	-	2	-
	8	9.74	27.9	8.83	9.74	27.9	24.16	-	2	-
	9	10.65	24.11	9.65	10.65	24.11	26.42	-	-	-
	10	12.29	22.53	11.14	8.92	16.35	22.13	3.37	6.18	4.81
	11	13.87	21.02	12.57		-	-	13.87	21.02	19.81
	12	11.9	15.15	10.79	-	-		11.9	15.15	17
	13	10.19	11.06	9.24	-	-	-	10.19	11.06	14.56
	14	9.21	8.62	8.35	-	-		9.21	8.62	13.16
	15	8.02	6.54	7.27	-	-	-	8.02	6.54	11.46
	16	5.1	3.65	4.62	-	-	-	5.1	3.65	7.29
	17	3.67	2.33	3.33	-	-	-	3.67	2.33	5.24
	18	2.74	1.55	2.48	-	-		2.74	1.55	3.91
	19	1.93	0.98	1.75	-	-	-	1.93	0.98	2.76

The eYield website is still in its testing phase. All information in this report is provided "as is" and "as available".

PM EST

* All values are calculated on a per-acre basis. Page 12 of 18

https://eyield.sref.info

Why mix-species forests?

- Over 50% of Georgia forests are owned by non-industrial private landowners.
- Mix-species and uneven stands are complex to model and under-represented in the literature.
 - Over 250 unique native tree species in the state of Georgia.
- Difficult for landowners to develop a management timeline.

The Great Struggle... Data!

Going back to square one!

Methods

Use Forest Inventory Analysis (FIA) data to develop growth curves for a variety of species.

- FIA Data from Georgia.
 - Loblolly, Shortleaf, Longleaf
 - 1998 to 2023
 - 3 or more observations for each tree.
 - 5113 unique trees.
 - Relative growth based on net volume.

Results

$$RM = \left(\frac{V_c - V_l}{V_f}\right) / Y_B$$

Where RM is relative measure, V_c is current volume, V_l is pervious volume, and V_f is first measured volume. Y_B is years between measurements.

Results

Results

```
## Linear mixed model fit by RFML ['lmerMod']
## Formula: RM2 ~ CDIA + CHT + Years_Passed + (1 | Unique_Tree_Identifier)
## Data: dat2
##
## REML criterion at convergence: -42251.2
##
```

Fixed Effects Estimates			
Term	Estimate	Std_Error	t_value
(Intercept)	-0.0067720	0.0042950	-1.577
CDIA	0.0014830	0.0004080	3.634
СНТ	0.0009495	0.0000918	10.346
Years_Passed	0.0014620	0.0001456	10.045

Histogram of Residuals

Future Work

- Non-linear regression.
 - Adjustments to RM Value.
- Clustering Growth Curves.
 - Grouping site and regional parameters.
- Apply and adjusting modeling framework to hardwoods species.
- Considerations and Trail Markers.
 - Dr. Montes UGA lecture.
 - Ogana et al. (2025)

Acknowledgements

A special thank you to: Dr. Bullock and Kinane, Dr. Pete Bettinger, Dr. Ivan Raigosa-Garcia, and the PMRC for their help and guidance.

This project is funded by USDA Forest Service Grant Award No. 2018-68006-28095

