

Conjunto de Mandelbrot

Contenido de esta página:

- 1. Introducción al Conjunto de Mandelbrot
- 2. Ejemplos de un punto que está en Mandelbrot y de otro que no lo está
- 3. Demostración de la definición equivalente a la de Conjunto de Mandelbrot
- 4. Función de MatLab para representar el fractal y ejemplos
- 5. <u>Imágenes de Conjuntos Multibrot</u>

Un punto $c \in \mathbb{C}$ es un punto de \mathcal{M} si

$$\lim_{n \to \infty} ||z_{n+1} = z_n^2 + c|| \neq \infty, \ z_0 = 0$$

O, dicho de otro modo,

$$\mathcal{M} = \{c \in \mathbb{C} : |z_n| \nrightarrow \infty\}$$

siendo z_n la sucesión definida por:

$$z_{n+1} = z_n^2 + c$$
; $z_0 = 0$

Es decir, el punto c está en $\mathcal M$ si los módulos de la sucesión que genera (definida anteriormente) está acotada.

En la imagen, el conjunto de Mandelbrot es la región coloreada de azul. Los otros puntos corresponden a puntos c que no están en \mathcal{M} , pero se colorean según la rapidez con la que los módulos de las sucesiones divergen.

En esta página vamos a demostrar que podemos definir el conjunto de Mandelbrot como

Definición 2

$$\mathcal{M} = \{c \in \mathbb{C} : \forall n \in \mathbb{N}, |z_n| \le 2\}$$

Es decir, el conjunto de Mandelbrot está formado exactamente por todos los puntos cuyas sucesiones tienen módulo menor o igual que 2.

También, escribiremos una función en MatLab para poder graficar los conjuntos de Mandelbrot.

Y para terminar, hablaremos sobre los Conjuntos Multibrot, que son una generalización del de Mandelbrot.

Ahora vamos a ver un ejemplo de un punto c que está en \mathcal{M} y otro que no lo está.

2. Ejemplos de puntos

Mostrar

Utilizaremos MatLab para calcular las iteraciones:

Escribimos z(n) para referirnos a z_n y $c\theta$ y z1 para referirnos a c y a z_θ (no podemos usar el índice n = 0), respectivamente.

Calculamos los primeros 40 términos (y su módulo) de la sucesión que genera el punto

$$c0 = 0.25 + 0.54i$$

n	z_n	$ z_n $	
1	0.2500 - 0.5400i	0.5951	
2	0.0209 - 0.8100i	0.8103	
3	-0.4057 - 0.5739i	0.7028	
4	0.0852 - 0.0744i	0.1132	
5	0.2517 - 0.5527i	0.6073	
6	0.0079 - 0.8183i	0.8183	
7	-0.4195 - 0.5529i	0.6940	
8	0.1202 - 0.0761i	0.1423	
9	0.2587 - 0.5583i	0.6153	
10	0.0052 - 0.8288i	0.8288	
11	-0.4369 - 0.5486i	0.7014	
12	0.1399 - 0.0606i	0.1525	
13	0.2659 - 0.5570i	0.6172	
14	0.0105 - 0.8362i	0.8363	
15	-0.4491 - 0.5576i	0.7159	
16	0.1408 - 0.0392i	0.1462	
17	0.2683 - 0.5510i	0.6129	
18	0.0183 - 0.8357i	0.8359	
19	-0.4480 - 0.5707i	0.7255	
20	0.1251 - 0.0287i	0.1283	
21	0.2648 - 0.5472i	0.6079	
22	0.0207 - 0.8298i	0.8301	
23	-0.4381 - 0.5744i	0.7224	
24	0.1120 - 0.0366i	0.1179	
25	0.2612 - 0.5482i	0.6073	
26	0.0177 - 0.8264i	0.8266	
27	-0.4326 - 0.5692i	0.7150	
28	0.1131 - 0.0475i	0.1227	
29	0.2605 - 0.5507i	0.6093	
30	0.0146 - 0.8270i	0.8271	
31	-0.4337 - 0.5641i	0.7115	
32	0.1199 - 0.0507i	0.1302	
33	0.2618 - 0.5522i	0.6111	
34	0.0137 - 0.8291i	0.8292	
35	-0.4372 - 0.5626i	0.7126	
36	0.1246 - 0.0480i	0.1335	
unto Mandalheat definiciones terrores sisseres sisseres			

37	0.2632 - 0.5520i	0.6115
38	0.0146 - 0.8306i	0.8307
39	-0.4396 - 0.5643i	0.7154
40	0.1248 - 0.0438i	0.1323

Nota: aproximadamente, a partir de la iteración n = 4 se repite la secuencia 0.1, 0.6, 0.8 y 0.7 en los módulos.

En efecto, la representación de los puntos es

Podemos intuir que los módulos de todos los términos de la sucesión están acotados y, por tanto, c es un punto del conjunto de Mandelbrot.

Sin embargo, no ocurre lo mismo cuando tomamos el punto

$$c0 = 0.95 + 1.75i$$

Los 5 primeros términos de la sucesión (y sus módulos) son

n	z_n	$ z_n $
1	0.9500 + 1.7500i	1.9912
2	-1.2100 + 5.0750i	5.2173
3	-23.3415-10.5315i	25.6074
4	434.86 + 493.39i	657.68
5	-54330 + 429120i	432540

Casi con toda seguridad, el punto c = 0.95 + 1.75i no está en el conjunto de Mandelbrot (realmente, no lo está por tener módulos mayores que 2).

A continuación probaremos una propiedad tan importante del conjunto de Mandelbrot que puede usarse como su definición:

3. Demostración de la definición equivalente

Mostrar

4. Función para MatLab

Mostrar

Vamos a escribir una función en MatLab para representar el conjunto de Mandelbrot.

El funcionamiento de la función es:

- 1. Definimos una matriz, (x,y), que será una rejilla del plano complejo. Es decir, la matriz contiene, de forma ordenada, puntos del plano. Estos puntos serán los puntos c que queremos saber si son o no del conjunto de Mandelbrot.
- 2. Definimos una matriz z que contiene, para cada iteración, los términos z_n que generaran cada uno de los puntos c de la matriz [x,y].
- 3. Definimos la matriz m que contiene el menor número de iteraciones, n, necesarias para que el módulo del término z_n (de cada elemento de la matriz z) sea mayor que 2.

Si no se alcanza en un número de iteraciones estipulado (iter), entonces se le da el valor 0 (estos puntos son los que pertenecen al conjunto de Mandelbrot).

La matriz m nos permite saber qué números c divergen más o menos rápido.

4. Representamos la matriz m y la coloreamos en una escala de colores. Los puntos que divergen rápidamente, tendrán un color más claro. Los que no divergen, tendrán un color oscuro.

```
function Mandelbrot(n, iter)
   % n es el número de particiones
   % x_a (x_b) es el extremo inferior (superior)
   % para la parte real
   % y_a (y_b) es el extremo inferior (superior)
   % para la parte imaginaria
   % iter es el número de iteraciones
   xa = -2.5; xb = 1.5;
   ya = -2; yb = 1.5;
   v=linspace(xa, xb, n);
11 w=linspace(ya, yb, n);
   [x,y] = meshgrid(v, w);
   c = x + 1i * y;
   z = zeros(size(c));
15
   m=z;
   for p = 1:1:iter
```

```
17
      z = z.^2 + c;
m(abs(z) > 2 & m == 0) = iter - p;
18
19 end
20 figure
21 imagesc(m)
```

Veamos algunos ejemplos:

5. Imágenes de Conjuntos Multibrot

Estos conjuntos se obtienen de la generalización del conjunto de Mandelbrot:

En lugar de la sucesión

$$z_{n+1} = z_n^2 + c$$

Usaremos la sucesión

$$z_{n+1} = z_n^d + c \,$$

Veamos algunos ejemplos de estos fractales:

$$z_{n+1} = z_n^{20} + c$$

$$z_{n+1} = z_n^{-2} + c$$

$$z_{n+1} = z_n^{-3} + c$$

$$z_{n+1}=z_n^{-4}+c$$

$$z_{n+1} = z_n^{-5} + c$$

¿Necesitas ayuda? Accede al foro de mates∮acil

(CC) BY-NC

Matesfacil.com by J. Llopis is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.