

Investigating Simulations of Emission Lines from the Narrow Line Region of Seyferts and LINERS

Christopher Greene^{1*}, Chris Richardson^{1*} ¹Elon University *cgreene11@elon.edu, crichardson17@elon.edu

Background

- Low-Ionization Nuclear Emission Region (LINER) galaxies are possibly subset of Active Galactic Nuclei (AGN).
- Computational modeling of LINERs has proven difficult due to a lack of understanding of the physical mechanism that drives LINER activity.
- Photoionization models of Seyfert galaxies have proven successful and this project looked to examine the viability of photoionization models for LINERs using an AGN continuum..

Methods

We set up the incident radiation curve from:

$$f_{\nu} = \nu^{\alpha_{uv}} (-h\nu/kT_{bb}) e^{-kT_{IR}/h\nu} + \alpha \nu^{\alpha_x}$$

- For baseline curve, the blackbody temperature $T_{\rm BB}$ is set to 10⁶ K based off of previous photoionization models.
- Spectral indices are determined from the average value of observations, α_{x} = -1.59, $\alpha_{uv} = -0.6$, $\alpha_{ox} = -1.42$ (Grupe et al. 2010).
- Photon flux and hydrogen density of a simulated cloud constrain the degree of ionization within the cloud. The ratio of photon flux to hydrogen density is the ionization parameter.
- Values for metallicity are provided to the simulation relative to solar
- The stopping boundary condition for the simulation is based on electron fraction: $\frac{n_e}{n(H)} = 0.01$
- We fit the values of α_x and α_{uv} using Ordinary Least Squares regression, producing the line:

$$\alpha_{uv} = -0.3476\alpha_x + 1.1365$$

- We run simulations varying $T_{\rm BB}$ between 10^4 K and 10^7 K
- The value of α_x is varied according to the standard deviation of the mean, 0.51, and the value of α_{ij} is changed accordingly, while α_{ox} is kept constant at -1.42 for all simulations.
- Optical data is obtained via the Sloan Digital Sky Survey (SDSS) DR12

Results

- Our initial photoionization models were designed to simulate Seyfert galaxies.
- The BPT diagram and diagnostics from empirically derived from Osterbrock & Veilleux (1983) were produced, as well as plots of ratios found by Lamareille (2010) and Kewley et al (2006), with log U = -2.5.

References

Baldwin J. A., Phillips M.M., Telervich R., 1981, PASP, 93, 5 Grupe, D., Komassa, S., Leighly, K., Page, K., 2010, ApJS, 187, 64 Groves, B., Dopita, Michael., Sutherland, R. 2004, ApJS, 153, 75 Groves B. A., Heckman T.M., Kauffmann G., 2006, MNRAS, 371, 1559 Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35 Ryden, B., Peterson, B., 2010, Foundations of Astrophysics, (Addison-Wesley)

Ferland, G. J.; Porter, R. L.; van Hoof, P. A. M.; Williams, R. J. R.; Abel, N. P.; Lykins, M. L.; Shaw, G.; Henney, W. J.; Stancil, P. C., 2013, RevMexAA, 49, 137

OsterbrockD. E., FerlandG. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. University Science Books,

Lamareille, F. 2010, A&A, 509, A53 Peterson, B. M. 1993, PASP, 105, 247

Richardson C. T., Allen J. T., Baldwin J. A., Hewett P. C., Ferland G. J., 2014, MNRAS, 437, 2376

Shirazi, M., & Brinchmann, J. 2012, MNRAS, 421, 1043 Veilleux S., Osterbrock D. E., 1987, ApJS, 63, 295 (VO87)

The ratio [O II] 3727/ [N II] 6584 is sensitive to elemental abundances, and was used to constrain our abundance set.

- At a metallicity of 1.5, it appears that [O II] 3727/ [N II] 6584 is slightly underpredicted when compared to [S II] 6716 / [S II] 6731, which constrains the density.
- Variation in α_x and T_{BB} does not significantly affect the simulated values.

 After constraining metallicity and density, diagnostic plots of excitation mechanism were produced, with $\log U = -3.5$.

Acknowledgements

I would like to thank the Elon College Fellows program, my research mentor Dr. Chris Richardson, and the Elon Department of Undergraduate Research.

This project was conducted as a part of Elon University's Summer Undergraduate Research Experience, 2016.

- [N II] 6584 appears at the fringe of observed LINERs, indicating that our metallicities may be overestimated.
- [S II] 6720 also falls close to the edge of our observational data, falling off the group of data with larger T_{bb}
- To examine these peculiarities, plots of the ionization structure and emissivity of nitrogen, oxygen, and sulfur were produced.

- The high emissivity of O I is typical of LINER emission.
- Increasing α_x decreases the depth of peak emissivity, while increasing T_{bb} increases how deep the elements will emit.

 S II and S III have the most interesting ionization structure, with higher temperatures significantly lengthening the depth where there is more S II and S III. This could explain the overprediction in our diagnostic diagrams.

Conclusions

- Ionization structure profiles indicate that our simulations overestimate nitrogen abundance.
- Emissivity and Ionization Fraction profiles are most affected by T_{BB} but also varies with α_x our emissivity plots show that a combination of $\alpha_x = 1.42$ and $T_{bb} = 10^7$ produce the strongest O I and S II emissions
- After adjusting metallicity in new simulations, the spread in the emission line ratios of LINERs could possibly be explained by variations in the AGN SED.

Future Work

- Adjust metallicity scaling to fit observational data.
- Examine T_{bb} ranges between 10⁶ and 10⁷ K to determine the cause of the elongation of emissivity and ionization.