Clustering Problems

- 1. Cluster the following data using k-means clustering algorithm. Consider k=2 . Dataset={2,4,10,12,3,20,30,11,25} **Solution:**
 - Randomly assign means: $m_1 = 3$, $m_2 = 4$ 1.
 - The numbers which are close to mean $m_1 = 3$ are grouped into cluster K_1 an numbers which are close to mean $m_2 = 4$ are grouped into cluster K_2 . 2.
 - Again calculate the new mean for new cluster groups. 3.
 - $K_1 = \{2,3\}, K_2 = \{4,10,12,20,30,11,25\}, m_1 = 2.5, m_2 = 16$ 4.
 - $K_1 = \{2,3,4\}, K_2 = \{10,12,20,30,11,25\}, m_1 = 3, m_2 = 18$ 5.
 - $K_1 = \{2,3,4,10\}, K_2 = \{12,20,30,11,25\}, m_1 = 4.75, m_2 = 19.6$ 6.
 - $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,30,25\}, m_1 = 7, m_2 = 25$ 7.
 - $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,30,25\}$ 8.
 - Stop as the clusters with these means (in step 7 and 8) are the same. The clust 9. in the last two groups are identical.
 - So the final answer is $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,30,25\}$ 10.
- 2. For the following distance matrix, draw single link and complete link dendogram.

	1	2	3	4	5
1	0				
2	2	0			
3	6	3	0		
4	10	9	7	0	
5	9	8	5	4	0

Solution:

Single Link:

$$d_{(1,2)3} = \min \{d_{1,3}, d_{2,3}\} = \min \{6, 3\} = 3$$

$$d_{(1,2)4} = \min \{d_{1,4}, d_{2,4}\} = \min \{10, 9\} = 9$$

$$d_{(1,2)5} = min \{d_{1,5}, d_{2.5}\} = min \{9, 8\} = 8$$

$$d_{(1,2,3),4} = \min \{d_{(1,2),4}, d_{3,4}\} = \min \{9, 7\} = 7$$

$$d_{(1,2,3)5} = \min \{d_{(1,2),5}, d_{3,5}\} = \min \{8, 5\} = 5$$

$$\begin{array}{c|cccc}
(1,2,3) & 4,5 \\
(1,2,3) & 0 \\
(4,5) & 5 & 0
\end{array}$$

$$d_{(1,2,3),(4,5)} = \min \{d_{(1,2,3),4}, d_{(1,2,3),5}\} = \min \{7, 5\} = 5$$

Complete Link:

Step 1:

$$\begin{aligned} d_{(1,2),3} &= \max \{d_{1,3}, d_{2,3}\} = \max \{6, 3\} = 6 \\ d_{(1,2),4} &= \max \{d_{1,4}, d_{2,4}\} = \max \{10, 9\} = 10 \\ d_{(1,2),5} &= \max \{d_{1,5}, d_{2,5}\} = \max \{9, 8\} = 9 \end{aligned}$$

Step 2:

$$d_{(1,2),(4,5)} = \max \{d_{(1,2),4}, d_{(1,2),5}\} = \max \{10, 9\} = 10$$

$$d_{3,(4,5)} = \max \{d_{3,4}, d_{3,5}\} = \max \{7, 5\} = 7$$

Step 3:

1 2 3 4 5

1
$$\begin{bmatrix} 0 \\ 2 & 0 \\ 6 & 3 & 0 \\ 10 & 9 & 7 & 0 \\ 9 & 8 & 5 & 4 & 0 \end{bmatrix}$$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \\ 9 & 5 & 4 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \\ 9 & 5 & 4 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \end{bmatrix}$
 $(1, 2) \begin{bmatrix} 0 \\ 6 & 0 \\ 10 & 7 & 0 \end{bmatrix}$
 $(1, 2, 3) \begin{bmatrix} 0 \\ 4, 5 \end{bmatrix} \begin{bmatrix} 0 \\ 10 & 0 \end{bmatrix}$

3. Apply DBSCAN clustering algorithm to cluster following dataset. Consider Eps=1.9 and Minpts=4

Point	х	Y		
P1	7	4		
P2	6	4		
P3	5	6		
P4	4	2		
P5	6	3		
P6	5	2		
P7	3	3		
P8	4	5		
P9	6	5		
P10	3	6		
P11	4	4		
P12	8	2		

Solution:

Step1: Find distance matrix using Euclidean distance

P1	0.00												Eps=	=1.9
P2	1.00	0.00											Min	Dtc
Р3	2.83	2.24	0.00										IVIIII	r 13
P4	3.61	2.83	4.12	0.00										
P5	1.41	1.00	3.16	2.24	0.00									
P6	2.83	2.24	4.00	1.00	1.41	0.00								
P7	4.12	3.16	3.61	1.41	3.00	2.24	0.00							
P8	3.16	2.24	1.41	3.00	2.83	3.16	2.24	0.00						
P9	1.41	1.00	1.41	3.61	2.00	3.16	3.61	2.00	0.00					
P10	4.47	3.61	2.00	4.12	4.24	4.47	3.00	1.41	3.16	0.00				
P11	3.00	2.00	2.24	2.00	2.24	2.24	1.41	1.00	2.24	2.24	0.00			
P12	2.24	2.83	5.00	4.00	2.24	3.00	5.10	5.00	3.61	6.40	4.47	0.00		
	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11	P12		

Step 2: Find E-neighborhood of each data point

P1: P2,P5, P9	P2:P1, P5, P9	P3:P8, P9	P4: P6, P7
P5:P1,P2,P6	P6:P4, P5	P7: P4, P11	P8:P3, P10, P11
P9:P1, P2, P3	P10:P8	P11: P7, P8	P12:

Border

Border

Border

Border

Step3: Identify core points, border points and Noise points

https://www.youtube.com/watch?v=S5OvKmWIdZA