FIG. 1

1

FIG. 4

FIG. 5A

FIG. 5B

IMPURITY ION IMPLANTATION AND LASER LIGHT IRRADIATION

FIG. 5D

FIG. 6A

IRRADIATING LASER LIGHT TO ONE GLASS SUBSTRATE FORMED ON CRYSTALLINE SILICON FILM

FIG. 6B

MEASURING REFRACTIVE INDEX OF CRYS-TALLINE SILICON FILM TO WHICH LASER LIGHT HAS BEEN IRRADIATED, BY ELLIPSOMETRY

FIG. 6C

INCREASING IRRADIATION ENERGY OF LASER LIGHT, IN CASE THAT REFRACTIVE INDEX OBTAINED BY THE FOREGOING IS LARGER THAN PRESCRIBED REFRACTIVE INDEX

BACK TO FIG.6A

FIG. 7A

IRRADIATING LASER LIGHT TO SOURCE/DRAIN REGION OF THIN FILM TRANSISTOR FORMED ON GLASS SUBSTRATE TO PERFORM ANNEALING

FIG. 7B

IRRADIATING LASER LIGHT TO CRYSTALLINE SILICON FILM EVERY AFTER COMPLETING TREATMENT FOR ONE SUBSTRATE, AND MEASURING REFRACTIVE INDEX OF CRYSTALLINE SILICON FILM AFTER IRRADIATION, BY ELLIPSOMETRY

FIG. 7C

INCREASING IRRADIATION ENERGY OF LASER LIGHT IN CASE THAT THE FOREGOING REFRACTIVE INDEX IS LARGER THAN PRESCRIBED VALUE, AND DECREASING IRRADIATION ENERGY OF LASER LIGHT IN CASE THAT THE FOREGOING REFRACTIVE INDEX IS SMALLER THAN THE PRESCRIBED VALUE

BACK TO FIG.7A