Deep Learning on Graphs with Graph Convolutional Networks

Thomas Kipf, 6 April 2017

joint work with Max Welling (University of Amsterdam)

The success story of deep learning

The success story of deep learning

Deep neural nets that exploit:

- translation invariance (weight sharing)
- hierarchical compositionality

Euclidean data: grids, sequences...

Euclidean data: grids, sequences...

Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs)

Recurrent neural networks (RNNs)

Traditional vs. "deep" learning

Traditional approach

Traditional vs. "deep" learning

Traditional approach

End-to-end learning

Single CNN layer with 3x3 filter:

Single CNN layer with 3x3 filter:

Single CNN layer with 3x3 filter:

Single CNN layer with 3x3 filter:

Update for a single pixel:

- Transform messages individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

Single CNN layer with 3x3 filter:

Update for a single pixel:

- Transform messages individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

Full update:
$$\mathbf{h}_4^{(l+1)} = \sigma \left(\mathbf{W}_0^{(l)} \mathbf{h}_0^{(l)} + \mathbf{W}_1^{(l)} \mathbf{h}_1^{(l)} + \dots + \mathbf{W}_8^{(l)} \mathbf{h}_8^{(l)} \right)$$

What if our data looks like this?

What if our data looks like this?

What if our data looks like this?

Real-world examples:

- Social networks
- World-wide-web
- Protein-interaction networks
- Telecommunication networks
- Knowledge graphs
- ...

Graph: $G = (\mathcal{V}, \mathcal{E})$

Adjacency matrix: A

Graph: $G = (\mathcal{V}, \mathcal{E})$

Adjacency matrix: A

Model wish list:

- Trainable in $\mathcal{O}(|\mathcal{E}|)$ time
- Applicable even if the input graph changes

- Take adjacency matrix ${f A}$ and feature matrix ${f X}$
- Concatenate them $\mathbf{X}_{\mathrm{in}} = [\mathbf{A}, \mathbf{X}]$
- Feed them into deep (fully connected) neural net

Done?

input laver

hidden layer 1 hidden layer 2 hidden layer 3

- Take adjacency matrix ${f A}$ and feature matrix ${f X}$
- Concatenate them $\mathbf{X}_{\mathrm{in}} = [\mathbf{A}, \mathbf{X}]$
- Feed them into deep (fully connected) neural net

Problems:

- Huge number of parameters $\mathcal{O}(N)$
- Re-train if graph changes

- Take adjacency matrix ${f A}$ and feature matrix ${f X}$
- Concatenate them $\mathbf{X}_{\mathrm{in}} = [\mathbf{A}, \mathbf{X}]$
- Feed them into deep (fully connected) neural net

Problems:

- Huge number of parameters $\mathcal{O}(N)$
- Re-train if graph changes

- Take adjacency matrix ${f A}$ and feature matrix ${f X}$
- Concatenate them $\mathbf{X}_{\mathrm{in}} = [\mathbf{A}, \mathbf{X}]$
- Feed them into deep (fully connected) neural net

Problems:

- Huge number of parameters $\mathcal{O}(N)$
- Re-train if graph changes

(related idea was first proposed in Scarselli et al. 2009)

Consider this undirected graph:

(related idea was first proposed in Scarselli et al. 2009)

Consider this undirected graph:

Calculate update for node in red:

(related idea was first proposed in Scarselli et al. 2009)

Consider this undirected graph:

Calculate update for node in red:

(related idea was first proposed in Scarselli et al. 2009)

Consider this undirected graph:

Calculate update for node in red:

$$\begin{array}{ll} \textbf{Update} \\ \textbf{rule:} & \mathbf{h}_i^{(l+1)} = \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right) & \mathcal{N}_i \text{ : neighbor indices} \\ c_{ij} \text{: norm. constant} \\ \text{(per edge)} \end{array}$$

Note: We could also choose simpler or more general functions over the neighborhood

GCN model architecture

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

$$\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$

[Kipf & Welling, ICLR 2017]

What does it do? An example.

Forward pass through untrained 3-layer GCN model

A "classical" approach for node feature assignment

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)

until stable node coloring is reached;

A "classical" approach for node feature assignment

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)

until stable node coloring is reached;

A "classical" approach for node feature assignment

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)

Useful as graph isomorphism check for most graphs

(exception: highly regular graphs)

A "classical" approach for node feature assignment

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)

Useful as graph isomorphism check for most graphs

(exception: highly regular graphs)

A "classical" approach for node feature assignment

Useful as graph isomorphism check for most graphs

(exception: highly regular graphs)

Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Standard approach:

graph-based regularization [Zhu et al., 2003]

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{ ext{reg}} \quad ext{with} \quad \mathcal{L}_{ ext{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2$$

assumes: connected nodes likely to share same label

Embedding-based approaches

Two-step pipeline:

- 1) Get embedding for every node
- 2) Train classifier on node embedding

Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016]

Embedding-based approaches

Two-step pipeline:

- 1) Get embedding for every node
- 2) Train classifier on node embedding

Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016]

Problem: Embeddings are not optimized for classification!

Embedding-based approaches

Two-step pipeline:

- 1) Get embedding for every node
- 2) Train classifier on node embedding

Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016]

Problem: Embeddings are not optimized for classification!

Idea: Train graph-based classifier end-to-end using GCN

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{V}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

 \mathcal{Y}_L set of labeled node indices

Y label matrix

Z GCN output (after softmax)

Toy example (semi-supervised learning)

Toy example (semi-supervised learning)

Application: Classification on citation networks

Input: Citation networks (nodes are papers, edges are citation links, optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Experiments and results

Model: 2-layer GCN
$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

Dataset statistics

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Experiments and results

Model: 2-layer GCN
$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

Dataset statistics

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Classification results (accuracy)

	Method	Citeseer	Cora	Pubmed	NELL
	ManiReg [3]	60.1	59.5	70.7	21.8
	SemiEmb [24]	59.6	59.0	71.1	26.7
	LP [27]	45.3	68.0	63.0	26.5
no input features	DeepWalk [18]	43.2	67.2	65.3	58.1
	Planetoid* [25]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
	GCN (this paper)	70.3 (7s)	81 .5 (4s)	79.0 (38s)	66.0 (48s)
	GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Experiments and results

Model: 2-layer GCN
$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

(Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017)

Other recent applications

Molecules

[Duvenaud et al., NIPS 2016]

Shapes

[Monti et al., 2016]

Knowledge Graphs

Link prediction with Graph Auto-Encoders

Kipf & Welling, NIPS Bayesian Deep Learning Workshop, 2016

Encoder Z = GCN(X, A)

Decoder
$$\hat{\mathbf{A}} = \sigma(\mathbf{Z}\mathbf{Z}^{ op})$$

Further reading

Blog post Graph Convolutional Networks:

http://tkipf.github.io/graph-convolutional-networks

Code on Github:

http://github.com/tkipf/gcn

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017: https://arxiv.org/abs/1609.02907

Kipf & Welling, Variational Graph Auto-Encoders, NIPS BDL Workshop, 2016: https://arxiv.org/abs/1611.07308

You can get in touch with me via:

E-Mail: T.N.Kipf@uva.nl

Twitter: @thomaskipf

Web: http://tkipf.github.io

