EE6367: Topics in Data Storage and Communications

2023

Lecture 18: 06 November 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

18.1 DME With Known Distribution on Inputs

Consider the DME problem where users U_i have samples X_i which are iid from a distribution with unknown mean. Suppose that each user sends one bit of information Y_i . We require to minimize the maximum MSE, defined as

$$MaxMSE \triangleq \max_{\mu \in \mathbb{M}} |\hat{\mu} - \mu|^2.$$
 (18.1)

18.1.1 Location Family

Let f_X denote a pdf with zero mean. Then, the location family corresponding to f_X is given by.

$$\mathcal{L}(f_X) \triangleq \{f_{X,\mu}(x) = f_X(x - \mu)\}, \ \mu \in \mathbb{M}.$$

$$(18.2)$$

Thus, $cL(f_X)$ is a collection of pdfs where μ is the *only* unknown variable.

18.1.2 DME From MSE

In this situation, we have

$$MSE(\mu) = \frac{1}{m^2} \mathbb{E} \left[\sum_{i=1}^{m} \left(\hat{X}_i - \mu \right) \right]^2$$
(18.3)

$$= \frac{1}{m^2} \mathbb{E} \left[\sum_{i=1}^m \left(\hat{X}_i - \mu \right)^2 + \sum_{i=1}^m \sum_{\substack{j=1 \ j \neq i}}^m \left(\hat{X}_i - \mu \right) \left(\hat{X}_j - \mu \right) \right]$$
 (18.4)

$$= \frac{1}{m} \mathbb{E}\left[\left(\hat{X}_1 - \mu\right)^2\right] + \frac{m-1}{m} \left(\mathbb{E}\left[\hat{X}_1 - \mu\right]\right)^2. \tag{18.5}$$

Consider an encoder

$$Y_i = \begin{cases} 1 & X_i \le \theta \\ 0 & X_i > \theta \end{cases}$$
 (18.6)

Thus, if F_X is invertible,

$$\frac{1}{m} \sum_{i=1}^{m} Y_i \xrightarrow{P} F_X (\theta - \mu) \tag{18.7}$$

$$\frac{1}{m} \sum_{i=1}^{m} Y_i \xrightarrow{P} F_X (\theta - \mu) \tag{18.7}$$

$$\implies \hat{\mu} = \theta - F_X^{-1} \left(\frac{1}{m} \sum_{i=1}^{m} Y_i \right)$$
(18.8)