# Private Fiscal Information and Sovereign Default Risk

Siming Liu <sup>1</sup> Ruoyun Mao <sup>2</sup> Hewei Shen <sup>3</sup>

<sup>1</sup>Shanghai University of Finance and Economics

<sup>2</sup>Grinnell College

<sup>3</sup>University of Oklahoma

June, 2021

### Motivation

Bond yields decouple across European countries after 2008.



Figure 1: Government bond yields: 10-year

### Main Questions

- 1. What cross-country heterogeneity can explain the divergence of bond yields after 2008 financial crisis?
- 2. How does the cross-country heterogeneity hide from 2000 to 2008?

### Motivation

▶ No obvious decoupling in fundamentals.



Figure 2: GDP growth rate: core and periphery

## This paper

- introduce private fiscal information into sovereign default model
- Two types of governments
  - ▶ credible: commit future tax rates ⇒ "Type C government"
  - ightharpoonup non-credible: discretionary tax rates  $\Rightarrow$  " Type D government"

## This paper

- introduce private fiscal information into sovereign default model
- Two types of governments
  - ▶ credible: commit future tax rates ⇒ "Type C government"
  - ▶ non-credible: discretionary tax rates ⇒ "Type D government"
- Credible government can borrow at a more favorable bond price schedule.
- Type unknown to the foreign investor, to enjoy a more favorable bond price motivation
  - Type D wants to hide its type
  - Type C wants to signal its type

# This paper (Cont'd)

- During normal times, type D and type C are indistinguishable in equilibrium.
  - " Pooling Equilibrium"
- During crisis when debt market environment changes, government type is revealed in equilibrium.
  - "Separating Equilibrium"
    - impatient government
    - low default tolerance

#### Model Environment

- ightharpoonup two periods, t = 1, 2
- a sovereign borrower and risk neutral foreign investors
- private consumption good c and public consumption good g, valued by
  - $u(g_1) = \frac{g_1^{1-\sigma}}{1-\sigma}$
  - $u(c_2, g_2) = (1 \pi) \frac{c_2^{1-\sigma}}{1-\sigma} + \pi \frac{g_2^{1-\sigma}}{1-\sigma}$

#### Model Environment

- ightharpoonup two periods, t = 1, 2
- a sovereign borrower and risk neutral foreign investors
- private consumption good c and public consumption good g, valued by
  - $u(g_1) = \frac{g_1^{1-\sigma}}{1-\sigma}$
  - $u(c_2, g_2) = (1 \pi) \frac{c_2^{1-\sigma}}{1-\sigma} + \pi \frac{g_2^{1-\sigma}}{1-\sigma}$
- ightharpoonup t = 1, no endowment; t = 2, stochastic endowment  $y_2$ 
  - ▶ t = 1, issues one period bond  $b_2$  to finance public consumption  $g_1$ ;
  - ▶ t = 2, to repay debt and finance consumption, choose default or collect an income tax  $\tau$ ;

### Model Environment

- ightharpoonup two periods, t = 1, 2
- a sovereign borrower and risk neutral foreign investors
- private consumption good c and public consumption good g, valued by
  - $\qquad \qquad u(g_1) = \frac{g_1^{1-\sigma}}{1-\sigma}$
  - $u(c_2, g_2) = (1 \pi) \frac{c_2^{1-\sigma}}{1-\sigma} + \pi \frac{g_2^{1-\sigma}}{1-\sigma}$
- ightharpoonup t = 1, no endowment; t = 2, stochastic endowment  $y_2$ 
  - ightharpoonup t = 1, issues one period bond  $b_2$  to finance public consumption  $g_1$ ;
  - ▶ t = 2, to repay debt and finance consumption, choose default or collect an income tax  $\tau$ ;
- ▶ Tax rate  $\tau$  is chosen and announced at t = 1.
  - ightharpoonup Credible government: implement au regardless
  - Non-credible government: if defaults, it is able to implement ex post optimal tax rate  $\tau^*$

## **Event Timing**

- 1. Government chooses tax rate  $\tau$  to be implemented next period and borrows to finance government consumption;
- 2. Nature draws  $y_2$ ;
- 3. Given endowment realization and announced tax rates, the government chooses to default or not.
  - ▶ If type C, implements  $\tau$ ;
  - ▶ If type D defaults, it can choose and implement  $\tau^*$ ;

# Full Information Benchmark: Optimization Problem

Period 1 problem for type C:

$$V_1^C = \max_{b_2, \tau} u(g_1) + \beta \mathbb{E}[V_2^C(b_2, \tau, y_2)]$$
  
s.t.  $g_1 = b_2 q^C(b_2, \tau)$ 

where

$$V_2^C(b_2, \tau, y_2) = \max\{V_2^{RC}(b_2, \tau, y_2), V_2^{DC}(\tau, y_2)\}$$

$$V_2^{RC}(b_2, \tau, y_2) = u((1 - \tau)y_2, \tau y_2 - b_2)$$

$$V_2^{DC}(\tau, y_2) = u((1 - \tau)\phi y_2, \tau \phi y_2)$$

# Full Information Benchmark: Optimization Problem

Period 1 problem for type D:

$$V_1^D = \max_{b_2, \tau} u(g_1) + \beta \mathbb{E}[V_2^D(b_2, \tau, y_2)]$$
  
s.t.  $g_1 = b_2 q^D(b_2, \tau)$ 

where

$$V_2^D(b_2, \tau, y_2) = \max\{V_2^{RD}(b_2, \tau, y_2), V_2^{DD}(\tau, y_2)\}$$

$$V_2^{RD}(b_2, \tau, y_2) = u((1 - \tau)y_2, \tau y_2 - b_2)$$

$$V_2^{DD}(y_2) = \max_{\tau^*} u((1 - \tau^*)\phi y_2, \tau^*\phi y_2)$$

## Full Information Benchmark: Bond price



# Full Information Benchmark: Optimal Tax



Figure 3: Life-value as functions of au

- ► Type C government: high tax rate
- ► Type D government: low tax rate

# Private Information on Government Type

- Government has private information about its own type;
- Foreign investors don't know the type and have a prior  $\mathbb{P}(type = C) = \alpha$ ;
- ► Foreign investors observe government's announcement of the tax rate and update their belief about the type.

# Private Information on Government Type

- Government has private information about its own type;
- Foreign investors don't know the type and have a prior  $\mathbb{P}(type = C) = \alpha$ ;
- Foreign investors observe government's announcement of the tax rate and update their belief about the type.
- ► To win a favorable price schedule,
  - Type-D government has incentive to announce a higher tax rate to hide its type.
  - Type-C government has incentive to announce a higher tax rate to signal its type.

# Private Information: Bayesian Updating

In period 1, type-C government's problem:

$$V_1^C = \max_{b_2, \tau} u(g_1) + \beta \mathbb{E} V_2^C(b_2, \tau, y_2)$$
  
s.t.  $g_1 = b_2 q(b_2, \tau, \mu(\tau))$ 

where

$$\mu(\tau) = \mathbb{P}(type = C|\tau) = \frac{\mathbb{P}(\tau|type = C)\alpha}{\mathbb{P}(\tau|type = C)\alpha + \mathbb{P}(\tau|type = D)(1 - \alpha)}$$

Bond price is determined by:

$$q(b_2, \tau, \mu) = 1 - [\mathbb{P}(d(b_2, \tau) = 1 | typeC)\mu(\tau) + \mathbb{P}(d(b_2, \tau) = 1 | typeD)(1 - \mu(\tau))]$$

# Equilibrium: pooling v.s. separating

- Two kinds of equilibria:
  - separating equilibrium: fully revealed type
  - pooling equilibrium: zero new information from government's behavior
- Equilibrium is selected by Type C government's utility, given Type D government's incentive to mimic.
  - pool equilibrium: Type C government finds it too costly to separate.

# Equilibrium: pooling v.s. separating



Figure 4: Equilibrium selection: Separating vs pooling

Note:  $\beta=2$  in the left panel and  $\beta=5$  in the right panel.  $\alpha=$  0.6,  $\phi=$  0.62

# Equilibrium: Pooling v.s. Separating

Table 1: Pooling V.S. Separating

|                 | Pooling |        | Separating |        |
|-----------------|---------|--------|------------|--------|
| Low $\beta$     | type-C  | type-D | type-C     | type-D |
| tax rate        | 0.62    | 0.62   | 0.67       | 0.61   |
| life-time value | -11.05  | -10.40 | -10.14     | -11.64 |
| High $\beta$    | type-C  | type-D | type-C     | type-D |
| tax rate        | 0.59    | 0.59   | 0.66       | 0.59   |
| life-time value | -17.68  | -16.75 | -18.01     | -17.56 |

# Comparative Statics: Impatience



Figure 5: Level of impatience

- ► Impatience increases ⇒ More borrowing ⇒ Larger incentive for Type D government to pool ⇒ Larger incentive for Type C government to separate
- ▶ The separating incentive dominates.

# Comparative Statics: Debt Tolerance



Figure 6: Debt Intolerance (1- $\phi$  is the cost)

▶ high  $\phi$  ⇒ low default cost ⇒ default incentive increases ⇒ the value of fiscal commitment increases ⇒ Type C government's incentive to separate becomes stronger

### Conclusions and Future Works

#### Conclusions:

- ► Introduce signaling game into sovereign default model to explain the yield decoupling observed in Euro zone after 2008.
- Interpret the observed decoupling as a change from a pooling equilibrium to a separating equilibrium, as market conditions change.

### Conclusions and Future Works

#### Conclusions:

- Introduce signaling game into sovereign default model to explain the yield decoupling observed in Euro zone after 2008.
- Interpret the observed decoupling as a change from a pooling equilibrium to a separating equilibrium, as market conditions change.

#### Future Works

- Current model is too simple for quantitative analysis.
- ▶ One shot game: once the type is revealed, it's known.

### Motivation



Figure 7: EC's Forecast Error of Primary Surplus (absolute values, 2003-2013) back