Projeto Aplicado II

Análise de dados para a agência de viagens "Boa Viagem"

https://github.com/OhashiMarina/Projeto-Aplicado-II

Andrei Souza de Oliveira - TIA: 22520600

Daniele dos Santos Rosa - TIA: 22510631

Gabriela Ohashi de Souza - TIA: 22521097

Marina Ohashi de Souza - TIA: 22520971

Miguel Maurício T. Pitali da Silva - TIA: 22507310

Introdução

A agência de viagens "Boa Viagem" está empenhada em melhorar seus serviços e aumentar a satisfação do cliente por meio da análise de dados relacionados às reservas de passagens aéreas. Com um extenso conjunto de dados que abrange informações sobre passageiros, voos, destinos e comportamento de reserva, o projeto visa aplicar técnicas como análise descritiva, segmentação de clientes, análise de tendências temporais, previsão de demanda por destino e avaliação do desempenho de voos.

Premissas

Com uma bordagem data-driven, permite que a "Boa Viagem" tome melhores decisões, com propósito de antecipar as necessidades dos clientes e se destacar no cenário dinâmico do setor.

Airline dataset, disponível em:

https://www.kaggle.com/datasets/iamsouravbanerjee/airline-dataset

Objetivos e Metas

- Análise de Demanda por Destino: Analisar a demanda por destinos específicos com base nas reservas de passagens aéreas, identificando os destinos mais populares e os segmentos de mercado mais relevantes.
- Segmentação de Clientes: Segmentar os clientes com base em critérios como idade, gênero, nacionalidade e preferências de viagem para oferecer pacotes de viagens mais personalizados.
- Análise de Desempenho de Voos: Avaliar o desempenho de voos com base no status do voo e identificar áreas de melhoria na eficiência das operações de voo.
- Análise de Desempenho de Voos: Avaliar o desempenho de voos com base no status do voo e identificar áreas de melhoria na eficiência das operações de voo.

Aquisição do Dataset

Base de Dados:

https://www.kaggle.com/datasets/iamsouravbanerjee/airline-dataset

Ol Shape: 98619 linhas, 15 colunas

02 235 países avaliados

03 6 Continentes

Análise Exploratória dos Dados

Avaliação Primária

Identificou-se as colunas:

Passenger ID: identificação de cada passageiro

First Name: Primeiro nome do passageiro

Last Name: Último nome do passageiro

Gender: Gênero

Age: Idade do passageiro

Nationality: Nacionalidade do passageiro

Airport Name: Nome do aeroporto

Airport Country Code: Código do país do aeroporto

Country Name: Nome do país que o voo pertence

Airport Continent: Abreviação do continente que

País pertence

Continents: Continente do País pertence

Depature Date: Data de partida do voo

Arrival Airport: Abreviação do aeroporto de chegada

Pilot Name: Nome do piloto responsável pelo voo

Flight Status: Situação/condição do voo

Análise Exploratória dos Dados

Insights

Através de linhas de códigos para geração de gráficos, conseguimos identificar algumas informações importantes para a agência de viagens "Boa Viagem.

As demandas por "Continentes" e pelos principais "Países" de destino foram investigadas, com a utilização de gráficos de barras, proporcionando insights sobre as preferências dos passageiros e auxiliando nas estratégias de marketing e expansão.

Demanda por continentes

Demanda pelos 10 principais destinos (país)

10 Melhores Desempenhos por País de Destino (valor absoluto)

Eficiência das Operações

Piores Desempenhos por País de Destino

Insights

Através dos dados e gráfico notamos que o Coninente de maior demanda para a agência "Boa viagem" é North America (América do Norte.

Insights

O principal destino dos voos da "Boa viagem" no aspecto país é Estados Unidos. O top 3 destinos é composto por dois países do continente Norte Americano (líder em demanda no aspecto continetal)

Os 10 Melhores Desempenhos por País de Destino (valor absoluto)

Insights

No aspecto eficiência de voos, esses com maiores países quantidades de voos "On Time", ou foram cancelados houveram nem atrasos.

Eficiência das Operações - Top 10 Países com Maior Percentual de Voos "On Time"

Insights

Decidimos analisar a eficiência dos voos proporcinalmente, visto que EUA tinha mais voos e isso não significava que por terem mais dados "on time" eram o país com mais voos eficiente. Com isso, descobrimos que o país com maior eficiência é Mônaco

Piores Desempenhos por País de Destino (Cancelled e Delayed) - valor absoluto

Insights

Apesar dos EUA apresentar a maior quantidade de voos "On time", em proporção é o país com maior proporção no quesito ineficiência, ou seja, status de voos "Cancelled ou "Delayed" (cancelados ou com atrasaos

Modelo ML para Análise de Demanda por Destino

Modelo: Regressão Linear

Medidas de acurácia: Erro Quadrático Médio (MSE), Coeficiente de Determinação (R²)

Codificação e Contagem do Modelo:

Inicialmente, para aplicação do medelo a codificação da variável categórica "Nome do País" foi realizada usando Label Encoding. Em seguida, o número de registros para cada país de destino foi calculado, resultando em um DataFrame com as colunas "Nome do País" e "Contagem de Passageiros".

Preparação e Treinamento do Modelo:

Os dados foram preparados para o treinamento do modelo de regressão linear. A variável independente (X) é definida como "Nome do País", enquanto a variável dependente (y) é "Contagem de Passageiros". A eficácia do modelo foi avaliada com a divisão dos dados em conjuntos de treinamento (80%) e teste (20%). O modelo foi treinado usando a biblioteca scikit-learn, permitindo previsões com base nos dados de teste. Visualmente, um gráfico de dispersão foi gerado para comparar dados reais (azul) e previsões do modelo (vermelho, marcadas com 'x').

Resultado da Regressão Linear

Obrigado

