

Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data

Hao Zhang¹ Gunhee Kim² Eric P. Xing¹

- ¹: School of Computer Science, Carnegie Mellon University
- ²: Department of Computer Science and Engineering, Seoul National University

Outline

- Introduction
- Model
- Learning and Inference
- Evaluation
- Visualization -- Dynamics and Competitions
- Conclusion

Background

The increasing pervasiveness of the Internet has lead to a wealth of consumercreated data over a multitude of online platforms

What can we learn?

General public's experience towards different companies' products and service

Performance evaluations in different market conditions (time, location etc.)

Background

The increasing pervasiveness of the Internet has lead to a wealth of consumercreated data over a multitude of online platforms

What does marketers want to see?

- **Detection:** Listen in consumers' opinions towards their products and their competitors
- **Summarization:** Summarize/visualize how a shared market is occupied by different brands
- **Dynamics:** Monitoring the changes of market competition over time

Problem Statement

SuperBowl + beer

Watch + luxury

Problem Statement

(a) Input: Tweets and associated images of competing brands

#Style #**Prada** Black Leather & Nylon Tessuto Saffiano Shoulder #**Bag** http://dlvr.it/8WZKM2 #Forsale #Auction

Coat from @ASOS, top from @FreePeople, jeans from Rag & Bone, boots from #ChristianLouboutin & bag from @Prada.

• • • •

Gucci

What is the most beautifully-designed perfume bottle? Tell us on the blog here: http://smarturl.it/ie2fka and win **Gucci**

Designer Kate Spade, Invicta, **Gucci** & More Watches from \$22 & Extra 20% Off http://www.dealsplus.com/t/1zr85Y

. 🗂

Chanel

The latest crop of #**Chanel** Pre-Spring bags have arrived! See the full collection now: http://bit.ly/1z3PnKG

Pretty In Pink: From @Chanel to @nailsinc, the best petal-hued make-up launches this spring http://vogue.uk/8p6UOi

• • • •

Problem Statement

(b) Output: Temporal evolution of topics and brands' proportion over the topics

Topics (text / visual words) Brands over topics

watch+diamond

rolex, watch, gold, dial, mens, datejust, ladies, steel, diamond, oyster, stainless, 18k

watch+diamond

watch, gold, white date, ladies, dial gift, rolex #deals_us, blue, vintage, bracelet, omega,

glasses

chanel, giorgio, sunglasses, classic, glasses, reading, women's, #burberrygifts

chanel, sunglasses, listen, green, funny, dark, xmas, womens, Armani, excellent, Havana. lacoste

bags

bag, leather, gucci, handbag, tote, clothing, shoulder, canvas, reading, women's.

72%

bags

authentic, leather, bag, shoes, gucci, handbag, prada, tote, deals, brown, wallet

Ī

t+1

Timeline

chanel

Our Approach: Joint Analysis of Text and Images

Take advantage of the pervasiveness of images on the social media

• No previous attempts so far to jointly leverage text and pictures for online market intelligence

Why are *joint interpretation of text and images* helpful for online market intelligence?

A large portion of tweets simply show images&links without any meaningful text in them. Images play an important role for representing topics in this type of documents

Oh, it's really the most beautifully-designed perfume bottle I have ever seen!!!

Our Approach: Joint Analysis of Text and Images

Take advantage of the pervasiveness of images on the social media

• No previous attempts so far to jointly leverage text and pictures for online market intelligence

Why are *joint interpretation of text and images* helpful for online market intelligence?

Many users prefer to use images to deliver their idea more clearly and broadly, and thus the topic detection with images reflects users' intents better.

Our Approach: Joint Analysis of Text and Images

Take advantage of the pervasiveness of images on the social media

• No previous attempts so far to jointly leverage text and pictures for online market intelligence

Why are *joint interpretation of text and images* helpful for online market intelligence?

The joint use of images with text also helps marketers interpret the discovered topics.

140 characters limit

marketers may need to see the associated images to understand key ideas of tweets easier and quicker

Related Work

Online Market Intelligence

BrandPluse[KDD05]

Market-Structure[2012]

Brand Monitoring[2011]

Show me the money! [KDD 2007]

Competitive Intelligence[2011]

- Competitive brands on latent topics
- Jointly leverage text and images

Topic Model for Econometrics

Financial TM [2009]

Purchase Behavior [2009]

Geo TM [2013]

Topic Sentiment Mixture [2007]

Online Reviews TM [2008]

- Modeling brands and competitions
- Jointly leverage text and images

Related Work

Dynamic and Multi-view Topic Models

Dynamic TM[2006]

Topic Models for Image Annotation and Text illustraction[2010] **Latent Subspace Learning** [2012]

Bilateral Correspondence Model [2014]

- Directly modeling the competition of multiple entities (e.g. brands) over shared topic spaces
- Modeling the interaction between multiple brands and entities

• Input:

- $-\mathbf{\mathcal{B}} = \{1, \dots, \mathbf{\mathcal{B}}^L\}$ a set of competition brands of interest
- $-\mathbf{\mathcal{B}}^{L}$ is a set of documents related with brand l
- $-d = \{u_d, v_d, g_d\} \in \mathcal{B}^L$ is a document consisting of text and images
- $-u_d$ vector representation of the text document
- $-\boldsymbol{v}_d$ vector representation of the images
- $-\boldsymbol{g}_d \in R^L$ vector notation which brands are associated with document d

Dataset

- We collect raw tweets and associated images using Twitter REST API
- Two groups of bands: *Luxury* (13 brands) and *Beer* (12 brands)
- Total **6.6 million** of tweets and **7.5 million** of images, ranging from *10/20/2014* to *02/01/2015*
- Get the vector representations

Base Model: Sparse Topical Coding

Advantages:

- We encourage each document to be associated with only a small number of strong topics for better analysis of the interaction between multiple brands
- Sparsity leads to a more robust text/image representation in topic space, especially for short documents like tweets (140 characters' limt)

Multi-view Extension

- Both text and image words share a same document code $\boldsymbol{\theta}$
- γ : visual topic-word matrix
- Define the distributions as follows: sample the prior $p(\boldsymbol{\theta}) \propto \exp(-\lambda \|\boldsymbol{\theta}\|_1)$ sparsity on document code $p(\boldsymbol{\theta}) \propto \exp(-\lambda \|\boldsymbol{\theta}\|_1)$

sample the word code

$$p(z_{dn}|\boldsymbol{\theta}_d) \propto \exp(-\delta_u ||z_{dn} - \theta_d||_2^2 - \rho_u ||z_{dn}||_1)$$

$$p(y_{dm}|\boldsymbol{\theta}_d) \propto \exp(-\delta_v ||y_{dm} - \theta_d||_2^2 - \rho_v ||y_{dm}||_1)$$

sample the word count

$$p(u_{dn}|\mathbf{z}_{dn},\boldsymbol{\beta}) \propto N(u_{dn}; z_{dn}^T\boldsymbol{\beta}_{.n}, \sigma_u^2 \mathbf{I})$$

$$p(v_{dm}|\mathbf{y}_{dm},\boldsymbol{\gamma}) \propto N(v_{dm}; y_{dm}^T\boldsymbol{\gamma}_{.m}, \sigma_v^2 \mathbf{I})$$
exponential family

• Dynamic extension

- Based on the discrete dTM [Blei06]
- Divide a corpus of documents into sequential groups, so that β and γ change over time
- State space model with a Gaussian noise:

$$p(\boldsymbol{\beta}_{k.}^{t}|\boldsymbol{\beta}_{k.}^{t-1}) = N(\boldsymbol{\beta}_{k.}^{t-1}, \sigma_{\beta}^{2}I)$$
$$p(\boldsymbol{\gamma}_{k.}^{t}|\boldsymbol{\gamma}_{k.}^{t-1}) = N(\boldsymbol{\gamma}_{k.}^{t-1}, \sigma_{\gamma}^{2}I)$$

bridge

• Competition:

 $\phi : R^{K \times L}$, proportions of brands on latent topics, $g_d \in R^L$ brand vector for document $d, r_{db} \in R^K$ brand code in topic space

• Dynamics:

 ϕ is evolved over time using Gaussian state space model

• Distributions:

$$p(r_{db}|\boldsymbol{\theta}_d) \propto \exp(-\delta_b ||r_{db} - \theta_d||_2^2 - \rho_b ||r_{db}||_1)$$

$$p(g_{db}|\boldsymbol{r}_{db}, \boldsymbol{\phi}) \propto N(g_{db}; r_{db}^T \boldsymbol{\phi}_{.b}, \sigma_b^2 \boldsymbol{I})$$

$$p(\boldsymbol{\phi}_{k.}^t | \boldsymbol{\phi}_{k.}^{t-1}) = N(\boldsymbol{\phi}_{k.}^{t-1}, \sigma_{\boldsymbol{\phi}}^2 \boldsymbol{I})$$

Competition Extension

bridge

For each time slice t:

- 1. Draw a text topic matrix $\boldsymbol{\beta}^t | \boldsymbol{\beta}^{t-1} \sim \overline{\mathcal{N}}(\boldsymbol{\beta}^{t-1}, \sigma_{\beta}^2 I)$.
- 2. Draw an image topic matrix $\gamma^t | \gamma^{t-1} \sim \mathcal{N}(\gamma^{t-1}, \sigma_{\gamma}^2 I)$.
- 3. Draw a brand topic matrix with two options: (i) dynamic $\phi^t | \phi^{t-1} \sim \mathcal{N}(\phi^{t-1}, \sigma_{\phi}^2 I)$, or (ii) independent $\phi^t \sim Unif(0, 1)$.
- 4. For each document $d = (\boldsymbol{u}, \boldsymbol{v})$ in D^t ,
- (a) Sample a document code $\theta_d \sim \text{prior } p(\theta)$.
- (b) For each observed text word $n \in N$,
 - i. Sample a word code $z_{dn} \sim p(z_{dn}|\theta_d)$.
 - ii. Sample a word count $u_{dn} \sim p(u|\mathbf{z}_{dn}, \boldsymbol{\beta})$.
- (c) If M is not an empty set:
 - i. For each observed visual word $m \in M$,
 - A. Sample a visual word code $y_{dm} \sim p(y_{dm}|\boldsymbol{\theta}_d)$.
 - B. Sample a visual word count $v_{dm} \sim p(v|\boldsymbol{y}_{dm}, \boldsymbol{\gamma})$.
- (d) For each observed brand $b \in B$,
 - i. Sample a latent brand code $r_{db} \sim p(r_{db}|\boldsymbol{\theta}_d)$
 - ii. Sample a brand association $g_{db} \sim p(g|\mathbf{r}_{db}, \boldsymbol{\phi})$

Map Formulation

Joint Probability

$$p(\theta, z, u, y, v, r, g | \beta, \gamma, \phi)$$

$$= p(\theta) \prod_{n \in N} p(z_n | \theta) p(u_n | z_n, \beta) \prod_{m \in M} p(y_m | \gamma) p(v_m | y_m, \gamma)$$

$$\prod_{b \in B} p(r_b | \phi) p(g_b | r_b, \phi)$$

- Denote $\Theta^t = \{\theta_d^t, z_d^t, y_d^t, r_d^t\}_{d=1}^{D^t}$ (i.e., add the superscript t)
- Negative log posterior

$$-\log p(\Theta^t, \boldsymbol{\beta}^t, \boldsymbol{\gamma}^t, \boldsymbol{\phi}^t | \left\{ u_d^t, v_d^t, g_d^t \right\}_{d=1}^{D^t})$$

$$\propto -\log p(\Theta^t, \left\{ u_d^t, v_d^t, g_d^t \right\}_{d=1}^{D^t} | \boldsymbol{\beta}^t, \boldsymbol{\gamma}^t, \boldsymbol{\phi}^t)$$

• Minimize the negative log posterior:

$$\min_{\{\boldsymbol{\Theta}^t, \boldsymbol{\beta}^t, \boldsymbol{\gamma}^t, \boldsymbol{\phi}^t\}_{t=1}^T} \sum_{t=1}^T \sum_{d=1}^D \lambda ||\boldsymbol{\theta}_d^t||_1$$
 sparse term for document code evolving chain
$$+ \sum_{t=1}^T (\pi_1 ||\boldsymbol{\beta}^t - \boldsymbol{\beta}^{t-1}||_2^2 + \pi_2 ||\boldsymbol{\gamma}^t - \boldsymbol{\gamma}^{t-1}||_2^2 + \pi_3 ||\boldsymbol{\phi}^t - \boldsymbol{\phi}^{t-1}||_2^2)$$

$$+ \sum_{t=1}^T \sum_{d=1}^D \sum_{n \in N_d^t} (v_1 ||\boldsymbol{z}_{dn}^t - \boldsymbol{\theta}_d^t||_2^2 + \rho_1 ||\boldsymbol{z}_{dn}^t||_1 + L(\boldsymbol{z}_{dn}^t, \boldsymbol{\beta}^t))$$
 text
$$+ \sum_{t=1}^T \sum_{d=1}^D \sum_{m \in N_d^t} (v_2 ||\boldsymbol{y}_{dm}^t - \boldsymbol{\theta}_d^t||_2^2 + \rho_2 ||\boldsymbol{y}_{dm}^t||_1 + L(\boldsymbol{y}_{dm}^t, \boldsymbol{\gamma}^t))$$
 image
$$+ \sum_{t=1}^T \sum_{d=1}^D \sum_{b \in B_d^t} (v_3 ||\boldsymbol{r}_{db}^t - \boldsymbol{\theta}_d^t||_2^2 + \rho_3 ||\boldsymbol{r}_{db}^t||_1 + L(\boldsymbol{r}_{db}^t, \boldsymbol{\phi}^t))$$
 s. $t. \ \boldsymbol{\theta}_d^t > 0, \forall d, t. \ \boldsymbol{z}_{dn}^t, \boldsymbol{y}_{dm}^t, \boldsymbol{r}_{db}^t > 0, \forall d, n, m, b, t$ brand
$$\boldsymbol{\beta}_k^t \in P_U, \boldsymbol{\gamma}_k^t \in P_V, \boldsymbol{\phi}_k^t \in P_B, \forall k, t \leftarrow \text{ simplex constraint}$$

$$\begin{aligned} & \min_{\{\Theta^{t}, \boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}, \boldsymbol{\phi}^{t}\}_{t=1}^{T}} \sum_{t=1}^{D} \sum_{d=1}^{D} \lambda ||\boldsymbol{\theta}_{d}^{t}||_{1} \\ & + \sum_{t=1}^{T} (\pi_{1} || \boldsymbol{\beta}^{t} - \boldsymbol{\beta}^{t-1} ||_{2}^{2} + \pi_{2} || \boldsymbol{\gamma}^{t} - \boldsymbol{\gamma}^{t-1} ||_{2}^{2} + \pi_{3} || \boldsymbol{\phi}^{t} - \boldsymbol{\phi}^{t-1} ||_{2}^{2}) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{n \in N_{d}^{t}} (\nu_{1} || \mathbf{z}_{dn}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{1} || \mathbf{z}_{dn}^{t} ||_{1} + L(\mathbf{z}_{dn}^{t}, \boldsymbol{\beta}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{m \in N_{d}^{t}} (\nu_{2} || \mathbf{y}_{dm}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{2} || \mathbf{y}_{dm}^{t} ||_{1} + L(\mathbf{y}_{dm}^{t}, \boldsymbol{\gamma}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{b \in B_{d}^{t}} (\nu_{3} || \mathbf{r}_{db}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{3} || \mathbf{r}_{db}^{t} ||_{1} + L(\mathbf{r}_{db}^{t}, \boldsymbol{\phi}^{t})) \\ & s.t. \, \boldsymbol{\theta}_{d}^{t} > 0, \forall d, t. \, \mathbf{z}_{dn}^{t}, \mathbf{y}_{dm}^{t}, \mathbf{r}_{db}^{t} > 0, \forall d, n, m, b, t \\ & \boldsymbol{\beta}_{b}^{t} \in P_{H}, \boldsymbol{\gamma}_{b}^{t} \in P_{V}, \boldsymbol{\phi}_{b}^{t} \in P_{B}, \forall k, t \end{aligned}$$

$$\begin{aligned} & \min_{\{\Theta^{t}, \boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}, \boldsymbol{\phi}^{t}\}_{t=1}^{T}} \sum_{t=1}^{T} \sum_{d=1}^{D} \lambda ||\boldsymbol{\theta}_{d}^{t}||_{1} \\ & + \sum_{t=1}^{T} (\pi_{1} || \boldsymbol{\beta}^{t} - \boldsymbol{\beta}^{t-1} ||_{2}^{2} + \pi_{2} || \boldsymbol{\gamma}^{t} - \boldsymbol{\gamma}^{t-1} ||_{2}^{2} + \pi_{3} || \boldsymbol{\phi}^{t} - \boldsymbol{\phi}^{t-1} ||_{2}^{2}) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{n \in N_{d}^{t}} (\nu_{1} || \mathbf{z}_{dn}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{1} || \mathbf{z}_{dn}^{t} ||_{1} + L(\mathbf{z}_{dn}^{t}, \boldsymbol{\beta}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{m \in N_{d}^{t}} (\nu_{2} || \mathbf{y}_{dm}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{2} || \mathbf{y}_{dm}^{t} ||_{1} + L(\mathbf{y}_{dm}^{t}, \boldsymbol{\gamma}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{b \in B_{d}^{t}} (\nu_{3} || \mathbf{r}_{db}^{t} - \boldsymbol{\theta}_{d}^{t} ||_{2}^{2} + \rho_{3} || \mathbf{r}_{db}^{t} ||_{1} + L(\mathbf{r}_{db}^{t}, \boldsymbol{\phi}^{t})) \\ & s.t. \, \boldsymbol{\theta}_{d}^{t} > 0, \forall d, t. \, \mathbf{z}_{dn}^{t}, \mathbf{y}_{dm}^{t}, \mathbf{r}_{db}^{t} > 0, \forall d, n, m, b, t \\ & \boldsymbol{\beta}_{b}^{t} \in P_{H}, \boldsymbol{\gamma}_{b}^{t} \in P_{H}, \boldsymbol{\phi}_{b}^{t} \in P_{B}, \forall k, t \end{aligned}$$

$$\begin{aligned} & \min_{\{\Theta^{t}, \boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}, \boldsymbol{\phi}^{t}\}_{t=1}^{T}} \sum_{t=1}^{D} \lambda ||\boldsymbol{\theta}_{d}^{t}||_{1} \\ & + \sum_{t=1}^{T} (\pi_{1}||\boldsymbol{\beta}^{t} - \boldsymbol{\beta}^{t-1}||_{2}^{2} + \pi_{2}||\boldsymbol{\gamma}^{t} - \boldsymbol{\gamma}^{t-1}||_{2}^{2} + \pi_{3}||\boldsymbol{\phi}^{t} - \boldsymbol{\phi}^{t-1}||_{2}^{2}) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{n \in N_{d}^{t}} (\nu_{1}||\boldsymbol{z}_{dn}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{1}||\boldsymbol{z}_{dn}^{t}||_{1} + L(\boldsymbol{z}_{dn}^{t}, \boldsymbol{\beta}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{m \in N_{d}^{t}} (\nu_{2}||\boldsymbol{y}_{dm}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{2}||\boldsymbol{y}_{dm}^{t}||_{1} + L(\boldsymbol{y}_{dm}^{t}, \boldsymbol{\gamma}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{b \in B_{d}^{t}} (\nu_{3}||\boldsymbol{r}_{db}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{3}||\boldsymbol{r}_{db}^{t}||_{1} + L(\boldsymbol{r}_{db}^{t}, \boldsymbol{\phi}^{t})) \\ & s.t. \, \boldsymbol{\theta}_{d}^{t} > 0, \forall d, t. \, \boldsymbol{z}_{dn}^{t}, \boldsymbol{y}_{dm}^{t}, \boldsymbol{r}_{db}^{t} > 0, \forall d, n, m, b, t \\ & \boldsymbol{\beta}_{b}^{t} \in P_{IJ}, \boldsymbol{y}_{b}^{t} \in P_{V}, \boldsymbol{\phi}_{b}^{t} \in P_{B}, \forall k, t \end{aligned}$$

$$\begin{aligned} & \min_{\{\Theta^{t}, \boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}, \boldsymbol{\phi}^{t}\}_{t=1}^{T}} \sum_{t=1}^{D} \lambda ||\boldsymbol{\theta}_{d}^{t}||_{1} \\ & + \sum_{t=1}^{T} (\pi_{1}||\boldsymbol{\beta}^{t} - \boldsymbol{\beta}^{t-1}||_{2}^{2} + \pi_{2}||\boldsymbol{\gamma}^{t} - \boldsymbol{\gamma}^{t-1}||_{2}^{2} + \pi_{3}||\boldsymbol{\phi}^{t} - \boldsymbol{\phi}^{t-1}||_{2}^{2}) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{n \in N_{d}^{t}} (v_{1}||\boldsymbol{z}_{dn}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{1}||\boldsymbol{z}_{dn}^{t}||_{1} + L(\boldsymbol{z}_{dn}^{t}, \boldsymbol{\beta}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{m \in N_{d}^{t}} (v_{2}||\boldsymbol{y}_{dm}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{2}||\boldsymbol{y}_{dm}^{t}||_{1} + L(\boldsymbol{y}_{dm}^{t}, \boldsymbol{\gamma}^{t})) \\ & + \sum_{t=1}^{T} \sum_{d=1}^{D^{t}} \sum_{b \in B_{d}^{t}} (v_{3}||\boldsymbol{r}_{d}^{t} - \boldsymbol{\theta}_{d}^{t}||_{2}^{2} + \rho_{3}||\boldsymbol{r}_{db}^{t}||_{1} + L(\boldsymbol{r}_{db}^{t}, \boldsymbol{\phi}^{t})) \\ & s.t. \, \boldsymbol{\theta}_{d}^{t} > 0, \forall d, t. \, \boldsymbol{z}_{dn}^{t}, \boldsymbol{y}_{dm}^{t}, \boldsymbol{r}_{db}^{t} > 0, \forall d, n, m, b, t \\ & \boldsymbol{\beta}_{k}^{t} \in P_{H}, \boldsymbol{\gamma}_{k}^{t} \in P_{V}, \boldsymbol{\phi}_{k}^{t} \in P_{B}, \forall k, t \end{aligned}$$

As a Topic Model: Topic Quality Evaluation

- -Argument 1: Lower perplexity ≠ higher quality [J. Chang 2009]
- -Argument 2: Perplexity is not a fair metric for models with different distributions
- We directly evaluate the *Coherence* and *Validity* of the learned topics [Xie 2013]
 - -Define the **Coherence Measure (CM)**:

$$CM = \frac{\# of \ relevant \ words}{\# of \ words \ in \ valid \ topics}$$

-Define the **Validity Measure (VM)**:

$$VM = \frac{\# of \ valid \ topics}{\# of \ topics}$$

• Both textual and visual topics are evaluated on the Amazon Mechanical Turk

As a Topic Model: Topic Quality Evaluation

Average VM/CM on text topics

	VM (Beer / Luxury)	CM (Beer / Luxury)
dLDA	0.53 / 0.68	0.55 / 0.52
STC + dyn	0.44 / 0.66	0.57 / 0.57
cdSTC + multi	0.51 / 0.70	0.63 / 0.59
cdSTC + text	0.605 / 0.71	0.61 / 0.59

Average VM/CM on visual topics

	VM (Beer / Luxury)	CM (Beer / Luxury)
Kmeans	0.39 / 0.56	0.59 / 0.64
LDA + multi	0.57 / 0.63	0.51 / 0.69
cdSTC + multi	0.57 / 0.65	0.66 / 0.71

As a Topic Model: Evaluation on Prediction

• Task I: Given a novel tweet, can we predict its most associated brand?

novel tweets

- Supervised dSTC (sdSTC): infer the most associated brand

$$\max_{\{\Theta^t, \boldsymbol{\mathcal{M}}^t, \boldsymbol{\eta}^t\}_{t=1}^T} \sum_{t=1}^T f(\Theta^t, \boldsymbol{\mathcal{M}}^t, D^t) + CR(\Theta^t, \boldsymbol{\eta}^t) + \frac{1}{2} \|\boldsymbol{\eta}^t\|_2^2$$

$$s. t. \boldsymbol{\theta}_d^t > 0, \forall d, t. \boldsymbol{z}_{dn}^t, \boldsymbol{y}_{dm}^t > 0, \forall d, n, m, t$$

$$\beta_k^t \in P_U, \gamma_k^t \in P_V, \forall k, t$$

where *R* is the multi-class hinge loss.

Solved using coordinated descent

As a Topic Model: Evaluation on Prediction

• Task I-I:

- Randomly split data in every time slice into 90% for training and 10% for testing
- Motivation: let the model see data in every time slice
- Text and images complement each other to detect more representative topics

As a Topic Model: Evaluation on Prediction

• Task I-II:

- Use the data in [1, t 1] for training, [t 1, t] for testing
- Motivation: let the model only see data in past time slices
- Image data is very helpful to predict the *future*

As a Topic Model: Evaluation on Prediction

• Task II: given an unseen past document, can we predict which time slice it is likely to belong?

$$\max_t \ p(d|\boldsymbol{\mathcal{M}}^t), where$$

$$p(d|\boldsymbol{\mathcal{M}}^t) = \prod_{n \in N_d} p(u_n|\boldsymbol{\beta}^t) \prod_{m \in M_d} p(v_m|\boldsymbol{\gamma}^t) \prod_{b \in B_d} p(g_b|\boldsymbol{\phi}^t)$$

As a Topic Model: Evaluation on Prediction

Task II

- Randomly split the data of every time slice into 90% for training and 10% for localization test.
- The explicit modeling of brand information does help improve the performance

An Interesting Prediction Task

- **Task III:** what if we want to predict the future competition trends according to past data?
- How? Given past data, we evolve the occupation matrix ϕ over time

An Interesting Prediction Task

Task III

- Evaluated using the KL divergence

Monitoring Competitions and Dynamics

As a monitor, we aim to answer:

- **Static:** how brands occupy the market in one time slice?
- Dynamic:
 - how each textual/visual topic evolves over time?
 - how each brand's occupation changes over time? (local)
 - how's the competition trends between multi-brands like over time?(global)

easy

difficult

Monitoring Competitions and Dynamics

Topic: **beauty**

Monitoring Competitions and Dynamics

Topic: beauty

Monitoring Competitions and Dynamics

Monitoring Competitions and Dynamics

Topic: fake+bad

Monitoring Competitions and Dynamics

Topic: fake+bad

Monitoring Competitions and Dynamics

Topic: fake-bad

Monitoring Competitions and Dynamics

Topics: woman + dress

Topics: girl + waste

Conclusion

- First attempt so far to propose a principled topic model to
 - Discover the topics that are competitively shared between multiple brands
 - -Track the temporal evolution of dominance of brands over topics by leveraging both text and image data
- We propose a novel dynamic topic model to correctly address three major challenges:
 - Multi-view representation of text and images
 - Modeling of latent topics that are competitively shared by multiple brands
 - Tracking temporal evolution of the topics and brand occupations

Conclusion

- We evaluate our algorithm using newly collected dataset from Twitter from October 2014 to February 2015:
 - 10 million tweets with 8 million of associated images
 - Superior performance for dynamic topic modeling and three prediction tasks:
 - Prediction of the most associated brands
 - Most-likely created time
 - Competition trends for unseen tweet
 - Visualizations of competition trends extracted from tons of data

Various potential applications

- Social media monitoring and visualization
- Joint analysis of online multi-modal data
- Online market intelligence

Thank You! Q & A