02244 Language-Based Security Part 1: Security Protocols: Syntax and Semantics

Sebastian Mödersheim

March 2018

Protocol Security

Date	Торіс			
12. March	Modeling Protocols: Syntax and Semantics I			
	Announcement of the second project report.			
19. March	Modeling Protocols: Syntax and Semantics II			
9. April	Overview: Automated Reasoning for Security Protocol			
16. April	Protocol Analysis: The Lazy Intruder			
23. April	Protocol Analysis: Abstraction			
30. April	Channels and Protocol Composition			
7. May	Case Studies			
	Hand in of second project report at noon			

Roadmap

Introduction to:

- Black-box models of cryptography
- Security protocols
- AnB and OFMC

Programme:

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- The Dolev-Yao Intruder Model
- Transition Systems
- Security Goals

Textbook

- There are some textbooks on security protocols
 - ★ do not cover all topics of the course.
- There are some research papers on protocol verification
 - ★ tough to read.
- Protocol Verification Tutorial: an introduction to protocol verification that comes with the tool OFMC.
 - ★ We currently extend it to cover all topic of the protocol part of the course (and some topics we cannot cover in the course).
 - ★ Hopefully a nice way for you to read up on all topics.
 - ★ Questions, comments and feedback most welcome!

Construction of a key-exchange protocol

- Inspired by the first chapter in Boyd and Mathuria: Protocols for Authentication and Key Establishment
- We write the protocols in AnB and use OFMC to find attacks in them.
- Addition: using Diffie-Hellman in the key-exchange.

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- 5 The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

AnB Syntax

```
Protocol:
              NSSK
Types:
              Agent A,B,s;
              Number NA, NB;
              Symmetric_key KAB;
              Function sk, pre
Knowledge:
             A: A,B,s,sk(A,s),pre;
              B: A,B,s,sk(B,s),pre;
              s: A,B,s,sk(A,s),sk(B,s),pre
Actions:
  A \rightarrow s: A, B, NA
  s\rightarrow A: \{| KAB,B,NA, \{| KAB,A |\}sk(B,s) |\}sk(A,s)
  A \rightarrow B: \{ | KAB, A | \} sk(B,s) 
  B->A: \{| NB |\} KAB
  A->B: {| pre(NB) |}KAB
Goals:
  A authenticates s on KAB, B
  B authenticates s on KAB, A
```

AnB: Things to Note

- Identifiers that start with uppercase: variables (E.g., A, B, KAB)
- Identifiers that start with lowercase: constants and functions (E.g., s, pre, sk)
- One should declare a type for all identifiers; OFMC can search for type-flaw attacks when using the option -untyped (in which case all types are ignored).
- The (initial) knowledge of agents MUST NOT contain variables of any type other than Agent.
 - \star For long-term keys, passwords, etc. use functions like sk(A, B).
- Each variable that does not occur in the initial knowledge is freshly created during the protocol by the first agent who uses it.
 - ★ In the NSSK example, A creates NA, s creates KAB, and B creates NB.

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- 5 The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

AnB Protocol Specification

NSSK as Message Sequence Chart

Strands and Roles

- Strand: sequence of send and receive events.
- Intuitive graphical representation, also very suitable for proofs.
- Represents one protocol execution ("session") from the point of view of one (honest) agent.
- Role: a strand with variables in messages
 - ★ Like a program (or process) for executing one protocol session.
 - ★ Representing what form of messages an agent is willing to receive, and how it will answer them.

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

To run this, we must first choose any agent names A and B, and a fresh nonce NA (a unique constant). Replace all occurrences of these variables with the chosen values.

Then we can send the first message.

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Wait for an incoming message of the form $\{ \dots \}_{sk(A,s)}$.

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Wait for an incoming message of the form $\{ \dots \}_{sk(A,s)}$.

• Accept only if encrypted with sk(A, s)

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Wait for an incoming message of the form $\{ \dots \}_{sk(A,s)}$.

- Accept only if encrypted with sk(A, s)
- KAB can be anything, we learn it from this message.

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

Wait for an incoming message of the form $\{ \dots \}_{sk(A,s)}$.

- Accept only if encrypted with sk(A, s)
- KAB can be anything, we learn it from this message.
- B and NA must be the same value as in the first message.

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

What about the subterm $\{|KAB, A|\}_{sk(B,s)}$?

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

What about the subterm $\{|KAB, A|\}_{sk(B,s)}$?

• This is not right! Role A did not know the key sk(B, s).

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

What about the subterm $\{|KAB, A|\}_{sk(B,s)}$?

- This is not right! Role A did not know the key sk(B, s).
- There is no way that A can check the decryption!

Split a message sequence chart into a set of roles: (Ex. NSSK role A)

What about the subterm $\{|KAB, A|\}_{sk(B,s)}$?

- This is not right! Role A did not know the key sk(B, s).
- There is no way that A can check the decryption!
- We model this by a new variable *X* that represents an arbitrary message at this place!

- Translation from AnB to roles must take care of
 - ★ what agents can actually check on incoming messages
 - ★ how they can generate outgoing messages

- Translation from AnB to roles must take care of
 - ★ what agents can actually check on incoming messages
 - ★ how they can generate outgoing messages
- This depends on the concrete knowledge that an agent has at a given point, as well as the properties of cryptographic operations (e.g. Diffie-Hellman is subtle).

- Translation from AnB to roles must take care of
 - ★ what agents can actually check on incoming messages
 - ★ how they can generate outgoing messages
- This depends on the concrete knowledge that an agent has at a given point, as well as the properties of cryptographic operations (e.g. Diffie-Hellman is subtle).
- For details: see Protocol Security Verification Tutorial, section 10.

AnB Roles: Instantiation

Roles can contain three kinds of variables:

- 1 Variables that occur in the knowledge section
 - ★ These MUST be of type agent.
 - ★ They are initially instantiated with concrete agent names, including the intruder *i*.
 - ★ In attack traces of OFMC, you often may see variables here (when the concrete value does not matter for the attack).
- 2 Variables that represent freshly generated constants
 - ★ Variables that first occur in a sent message by the role
 - ★ Are initially instantiated in with a fresh constant (that did not occur before).
 - ★ In OFMC they are denoted by N(i) where N is the name in the AnB specification, and i is a (step) number.
- 3 Variables that represent received message parts
 - ★ All remaining variables of a role.
 - ★ Instantiated upon receiving a message.

- Protocol with two roles A and B,
- consider two sessions, and
- let us fix the set of all existing agents to $\{a, b, i\}$

What instantiations can we have?

- Protocol with two roles A and B,
- consider two sessions, and
- let us fix the set of all existing agents to $\{a, b, i\}$

What instantiations can we have?

• Choosing: $A_1, B_1, A_2, B_2 \in \{a, b, i\}$

- Protocol with two roles A and B,
- consider two sessions, and
- let us fix the set of all existing agents to $\{a, b, i\}$

What instantiations can we have?

- Choosing: $A_1, B_1, A_2, B_2 \in \{a, b, i\}$
- That's 3⁴ session instances to consider...

- Protocol with two roles A and B,
- consider two sessions, and
- let us fix the set of all existing agents to $\{a, b, i\}$

What instantiations can we have?

- Choosing: $A_1, B_1, A_2, B_2 \in \{a, b, i\}$
- That's 3⁴ session instances to consider...
- OFMC: leave variables uninstantiated as long as concrete name does not matter for the attack. (This is why you see variables in attack traces.)

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

Message Term Algebra

for security protocols

Symbol	Arity	Meaning	Public
i	0	name of the intruder	yes
inv	1	private key of a given public key	no
crypt	2	asymmetric encryption	yes
		in AnB: write $\{m\}_k$ for crypt(k, m)	
scrypt	2	symmetric encryption	yes
		in AnB: write $\{m\}_k$ for scrypt(k, m)	
pair	2	pairing/concatenation	yes
		in AnB: write m, n for pair(m, n)	
$\exp(\cdot,\cdot)$	2	exponentiation modulo fixed prime p	yes
a, b, c, \dots	0	User-defined constants	User-def.
$f(\cdot)$	*	User-defined function symbol f	User-def.

- Call Σ the set of all function symbols and Σ_p the public ones.
- Public functions can be applied by every agent
- inv is not public: the private key of a given public key.

Terms

Definition (Signature)

A signature Σ is a set of function symbols with an arity.

Constant: function symbol with arity 0

Terms

Definition (Signature)

A signature Σ is a set of function symbols with an arity.

Constant: function symbol with arity 0

Definition (Terms)

Let $V = \{X, Y, Z, ...\}$ be variable symbols.

Define the terms (over Σ and V), denoted $\mathcal{T}_{\Sigma}(V)$:

- All variables of V are terms
- If t_1, \ldots, t_n are terms and $f/n \in \Sigma$ (for some $n \ge 0$), then also $f(t_1, \ldots, t_n)$ is a term.

Terms

Definition (Signature)

A signature Σ is a set of function symbols with an arity.

Constant: function symbol with arity 0

Definition (Terms)

Let $V = \{X, Y, Z, ...\}$ be variable symbols. Define the terms (over Σ and V), denoted $\mathcal{T}_{\Sigma}(V)$:

- All variables of V are terms
- If t_1, \ldots, t_n are terms and $f/n \in \Sigma$ (for some $n \ge 0$), then also $f(t_1, \ldots, t_n)$ is a term.

Example: $\Sigma = \{scrypt/2, pair/2, i/0, k/0\}$ $\mathcal{T}_{\Sigma}(\{X,Y\})$ contains the *atomic* terms X,Y,i,k; composed terms can be obtained with *scrypt* and *pair*, e.g. scrypt(k,X), or scrypt(k,pair(scrypt(X,Y),i)).

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

This model has some desirable properties:

• Easy to compute with...

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

This model has some desirable properties:

- Easy to compute with...
- $a \neq b$ for any distinct constants a and b

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

This model has some desirable properties:

- Easy to compute with...
- $a \neq b$ for any distinct constants a and b
- If $m_1 \neq m_2$ then also $h(m_1) \neq h(m_2)$.

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

This model has some desirable properties:

- Easy to compute with...
- $a \neq b$ for any distinct constants a and b
- If $m_1 \neq m_2$ then also $h(m_1) \neq h(m_2)$. (Thus: hash functions are collision free)

It is standard to interpret messages in the free algebra:

- Two terms are equal iff they are syntactically equal.
- We thus do not consider any algebraic equations like f(a,b) = f(b,a).
- Terms have no "deeper meaning" attached.

This model has some desirable properties:

- Easy to compute with...
- $a \neq b$ for any distinct constants a and b
- If $m_1 \neq m_2$ then also $h(m_1) \neq h(m_2)$. (Thus: hash functions are collision free)

Some properties are not so nice:

- We cannot define a decryption function with the property dcrypt(k, scrypt(k, m)) = m.
- We cannot model algebraic properties of operators that we need for instance for Diffie-Hellman.

Substitutions

Definition (Substitution)

A substitution has the form

$$\sigma = [X_1 \mapsto t_1, \dots, X_n \mapsto t_n]$$

where the X_i are variables and the t_i are terms.

We call the set $\{X_1, \ldots, X_n\}$ the domain of σ .

A substitution σ represents a function on terms in general:

- Every variable X_i in the domain is mapped to the respective t_i.
- For any variable X that is not in the domain: $\sigma(X) = X$.
- For a composed term $f(t_1, \ldots, t_n)$ we define:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n))$$

Substitutions

Example

$$\sigma = [X \mapsto f(Z), Y \mapsto Z]$$

$$\sigma(g(Z,Y,f(X))) =$$

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

Danny Dolev & Andrew C. Yao

On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

- Every user has a public/private key pair.
- Every user knows the public key of every other user.

Danny Dolev & Andrew C. Yao

On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

- Every user has a public/private key pair.
- Every user knows the public key of every other user.
- The Dolev-Yao intruder:
 - ★ The intruder is also a user with his own key pair.
 - ★ The intruder can decrypt only messages that are "meant" for him, i.e., that are encrypted with his public key.
 - ★ The intruder controls the network (read, intercept, send)

Black-box model of cryptography

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.

Kerckhoffs's principle

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?
 - ★ Worst-case assumption (what is not secured may be infected)

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?
 - ★ Worst-case assumption (what is not secured may be infected)
- The intruder can act as a participant. Why that?

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?
 - ★ Worst-case assumption (what is not secured may be infected)
- The intruder can act as a participant. Why that?
 - ★ Modeling a dishonest participant.

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?
 - ★ Worst-case assumption (what is not secured may be infected)
- The intruder can act as a participant. Why that?
 - ★ Modeling a dishonest participant.
 - ★ Some attacks do not work when all participants are honest.

- Black-box model of cryptography
 - ★ There simply is no "break-crypto" or "flip some bits" operation.
- Kerckhoffs's principle
 - ★ Encryption and decryption algorithms are not secret
- Intruder controls entire communication medium. Realistic?
 - ★ Worst-case assumption (what is not secured may be infected)
- The intruder can act as a participant. Why that?
 - ★ Modeling a dishonest participant.
 - ★ Some attacks do not work when all participants are honest.
- Nowadays, many similar Dolev-Yao-style models are used:
 - ★ Term Algebra to model messages
 - ★ Sometimes considering some Algebraic Properties
 - ★ Intruder Deduction Relation ⊢ on terms.

The core of the Dolev-Yao model is a definition what the intruder can do with messages.

- We define a relation $M \vdash m$ where
 - \star *M* is a set of messages
 - ★ *m* is a message
 - \star expressing that the intruder can derive m, if his knowledge is M.

Example

$$M = \{ k_1, \{ |m_1| \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \}$$

Then for instance we should have:

- $M \vdash m_1$
- $M \nvdash m_3$
- $M \vdash \{|\langle m_1, m_2 \rangle|\}_{k_1}$

• . . .

Sebastian Mödersheim

Doley-Yao Closure

Definition

We define \vdash as the *least* relation that satisfies the following rules:

$$\frac{M \vdash m \text{ if } m \in M \text{ (Axiom)}}{M \vdash m_1 \dots M \vdash m_n \text{ if } f/n \in \Sigma_p \text{ (Compose)}}$$

$$\frac{M \vdash \langle m_1, m_2 \rangle}{M \vdash m_i} \text{ (Proj}_i) \quad \frac{M \vdash \{|m|\}_k \quad M \vdash k}{M \vdash m} \text{ (DecSym)}$$

$$\frac{M \vdash \{m\}_k \quad M \vdash \text{inv}(k)}{M \vdash m} \text{ (DecAsym)} \quad \frac{M \vdash \{m\}_{\text{inv}(k)}}{M \vdash m} \text{ (OpenSig)}$$

Here, we write $\langle m_1, m_2 \rangle$ for $pair(m_1, m_2)$ to be close to the nice notation of AnB, but having an explicit symbol for the pair operation.

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(i)} \quad M \vdash \mathsf{inv}(\mathsf{pk}(i))}{M \vdash \langle na, a \rangle \quad M \vdash \mathsf{pk}(b)}$$

$$M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(b)}$$

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{M \vdash \{\langle na, a \rangle\}_{pk(i)} \quad \overline{M \vdash inv(pk(i))}}{M \vdash \langle na, a \rangle \quad \overline{M \vdash pk(b)}}$$

$$\frac{M \vdash \langle na, a \rangle}{M \vdash \{\langle na, a \rangle\}_{pk(b)}}$$

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{M \vdash \{\langle na, a \rangle\}_{pk(i)}}{M \vdash \langle na, a \rangle} \frac{M \vdash \mathsf{inv}(\mathsf{pk}(i))}{M \vdash \mathsf{pk}(b)}$$

$$\frac{M \vdash \langle na, a \rangle}{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(b)}}$$

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(i)} \quad \overline{M \vdash \mathsf{inv}(\mathsf{pk}(i))}}{\underbrace{\frac{M \vdash \langle na, a \rangle}{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(b)}}}}$$

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(i)} \quad \overline{M \vdash \mathsf{inv}(\mathsf{pk}(i))}}{\underline{M \vdash \langle na, a \rangle} \quad \underline{M \vdash \mathsf{pk}(b)}}$$

$$\frac{M \vdash \langle na, a \rangle}{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(b)}}$$

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

$$\frac{\overline{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(i)}} \quad \overline{M \vdash \mathsf{inv}(\mathsf{pk}(i))}}{\underline{M \vdash \langle na, a \rangle} \quad \overline{M \vdash \mathsf{pk}(b)}}$$

$$\frac{M \vdash \langle na, a \rangle}{M \vdash \{\langle na, a \rangle\}_{\mathsf{pk}(b)}}$$

Automation?

- How can we prove negative statements?
 - ★ in the previous example for instance that $M \not\vdash \text{inv}(pk(a))$
- Can one build an algorithm that
 - \star given a set M and a term t
 - ★ check whether or not $M \vdash t$?
- What would be the complexity of such an algorithm?

Diffie-Hellman

Development of a simple Diffie-Hellman based protocol in AnB.

- Exponentiation in a group g modulo prime p (we always omit modulus p in the AnB notation).
- A creates a fresh secret X, and computes public value $\exp(g, X)$.
- B creates Y and computes $\exp(g, Y)$.
- A and B somehow exchange the public values in an authentic way.
- A computes $K_A = \exp(\exp(g, Y), X)$
- B computes $K_B = \exp(\exp(g, X), Y)$
- They now have a shared secret key $K_A = K_B$.

This requires, however, that AnB/OFMC understands the algebraic property

$$\exp(\exp(g, X), Y) \approx \exp(\exp(g, Y), X)$$

Such an equation makes all reasoning much harder!

Doley-Yao Closure

Definition

We define \vdash as the *least* relation that satisfies the following rules:

$$\frac{M \vdash m}{M \vdash m} \text{ if } m \in M \text{ (Axiom)}$$

$$\frac{M \vdash m_1 \dots M \vdash m_n}{M \vdash f(m_1, \dots, m_n)} \text{ if } f/n \in \Sigma_p \text{ (Compose)}$$

$$\frac{M \vdash \langle m_1, m_2 \rangle}{M \vdash m_i} \text{ (Proj}_i) \quad \frac{M \vdash \{|m|\}_k \quad M \vdash k}{M \vdash m} \text{ (DecSym)}$$

$$\frac{M \vdash \{m\}_k \quad M \vdash \text{inv}(k)}{M \vdash m} \text{ (DecAsym)} \quad \frac{M \vdash \{m\}_{\text{inv}(k)}}{M \vdash m} \text{ (OpenSig)}$$

$$\frac{M \vdash s}{M \vdash t} \text{ if } s \approx_E t \text{ (Algebra)}$$

Example

$$M = \{ x, \{ [b, \exp(g, y)] \}_k, k, m \}$$
$$M \vdash \{ [m] \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{ \{ b, \exp(g, y) \} \}_{k} \quad \overline{M \vdash k} }{\underline{M \vdash \langle b, \exp(g, y) \rangle} \quad \overline{M \vdash x}}$$

$$\underline{M \vdash \exp(g, y) \quad \overline{M \vdash x}}$$

$$\underline{M \vdash \exp(\exp(g, y), x)}$$

$$\underline{M \vdash \exp(\exp(g, y), y)}$$

$$\underline{M \vdash \{ \{ m \} \}_{\text{exp}}(\exp(g, y), y) }$$

Example

$$M = \{ x, \{ |b, \exp(g, y)| \}_k, k, m \}$$

$$M \vdash \{ |m| \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{ [b, \exp(g, y)] \}_{k} \quad \overline{M \vdash k}}{\underbrace{\frac{M \vdash \langle b, \exp(g, y) \rangle}{M \vdash \exp(g, y)} \quad \overline{M \vdash x}}_{\underbrace{M \vdash \exp(\exp(g, y), x)}_{\underbrace{M \vdash \exp(\exp(g, x), y)} \quad \overline{M \vdash m}}_{\underbrace{M \vdash \{ [m] \}_{k \in \mathbb{N}} }_{\underbrace{M \vdash m}}}$$

Example

$$M = \{ x, \{ [b, \exp(g, y)] \}_k, k, m \}$$
$$M \vdash \{ [m] \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{ [b, \exp(g, y)] \}_{k} \quad \overline{M \vdash k}}{\underbrace{\frac{M \vdash \langle b, \exp(g, y) \rangle}{M \vdash \exp(g, y)} \quad \overline{M \vdash x}}_{M \vdash \exp(\exp(g, y), x)}}_{M \vdash \exp(\exp(g, y), x)} \\
\underbrace{\frac{M \vdash \exp(\exp(g, y), x)}{M \vdash \exp(\exp(g, y), y)} \quad \overline{M \vdash m}}_{M \vdash \{ [m] \} \exp(\exp(g, y), y)}$$

Example

$$M = \{ x, \{ |b, \exp(g, y)| \}_k, k, m \}$$

$$M \vdash \{ |m| \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{ [b, \exp(g, y)] \}_{k} \quad \overline{M \vdash k}}{M \vdash \langle b, \exp(g, y) \rangle} \\
\underline{M \vdash \langle b, \exp(g, y) \rangle}_{M \vdash \exp(g, y)} \\
\underline{M \vdash \exp(\exp(g, y), x)}_{M \vdash \exp(\exp(g, x), y)} \\
\underline{M \vdash \exp(\exp(g, x), y)}_{M \vdash m}$$

Example

Example
$$M = \{ x, \{ [b, \exp(g, y)] \}_k, k, m \}$$

$$M \vdash \{ [m] \}_{\exp(\exp(g, x), y)} ?$$

$$\frac{M \vdash \{ | b, \exp(g, y) \} \}_{k} \quad M \vdash k}{M \vdash \langle b, \exp(g, y) \rangle} \\
\underline{M \vdash \langle b, \exp(g, y) \rangle}_{M \vdash \exp(g, y)} \\
\underline{M \vdash \exp(\exp(g, y), x)}_{M \vdash \exp(\exp(g, x), y)} \\
\underline{M \vdash \exp(\exp(g, x), y)}_{M \vdash \exp(\exp(g, x), y)}$$

Example

$$M = \{ x, \{ |b, \exp(g, y)| \}_k, k, m \}$$

$$M \vdash \{ |m| \}_{\exp(\exp(g, x), y)} ?$$

$$\frac{M \vdash \{|b, \exp(g, y)|\}_{k} \quad \overline{M \vdash k}}{M \vdash \langle b, \exp(g, y) \rangle \atop M \vdash \exp(g, y)} \quad \overline{M \vdash x} \atop
\underline{M \vdash \exp(\exp(g, y), x)} \atop
\underline{M \vdash \exp(\exp(g, y), x)} \atop
\underline{M \vdash \exp(\exp(g, x), y)} \quad \overline{M \vdash m}$$

Example

$$M = \{ x, \{ |b, \exp(g, y)| \}_k, k, m \}$$

$$M \vdash \{ |m| \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{|b, \exp(g, y)|\}_{k} \quad \overline{M \vdash k}}{\frac{M \vdash \langle b, \exp(g, y) \rangle}{M \vdash \exp(g, y)} \quad \overline{M \vdash x}}$$

$$\frac{M \vdash \exp(\exp(g, y))}{\frac{M \vdash \exp(\exp(g, y), x)}{M \vdash \exp(\exp(g, x), y)}}$$

$$\frac{M \vdash \exp(\exp(g, x), y)}{\frac{M \vdash \exp(\exp(g, x), y)}{M \vdash \exp(\exp(g, x), y)}}$$

Example

$$M = \{ x, \{ |b, \exp(g, y)| \}_k, k, m \}$$

$$M \vdash \{ |m| \}_{\exp(\exp(g, x), y)}?$$

$$\frac{M \vdash \{|b, \exp(g, y)|\}_{k} \quad \overline{M \vdash k}}{\frac{M \vdash \langle b, \exp(g, y) \rangle}{M \vdash \exp(g, y)} \quad \overline{M \vdash x}}$$

$$\frac{M \vdash \exp(\exp(g, y), x)}{\frac{M \vdash \exp(\exp(g, y), x)}{M \vdash \exp(\exp(g, x), y)}}$$

Example

$$M = \{ x, \{ [b, \exp(g, y)] \}_k, k, m \}$$

$$M \vdash \{ [m] \}_{\exp(\exp(g, x), y)}?$$

$$\frac{\overline{M \vdash \{ [b, \exp(g, y)] \}_k} \quad \overline{M \vdash k}}{\underline{M \vdash \langle b, \exp(g, y) \rangle}}$$

$$\overline{M \vdash x}$$

$$\frac{\frac{M \vdash \langle b, \exp(g, y) \rangle}{M \vdash \langle b, \exp(g, y) \rangle}}{\frac{M \vdash \exp(g, y)}{M \vdash \exp(\exp(g, y), x)}} \frac{\overline{M \vdash x}}{M \vdash \exp(\exp(g, x), y)} \frac{\overline{M \vdash m}}{M \vdash \{|m|\}_{\exp(\exp(g, x), y)}}$$

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- 5 The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

Strands

Definition

A strand is a sequence of steps where each step is either

- Snd(t) for sending a message t.
- Rcv(t) for receiving a message t.
- $s \doteq t$ for checking whether two terms s and t are equal.
- Evt(t) generates a special event t

Graphical Notation

E.g. the strand $Rcv(X).Snd(f(X)).Rcv(Y).X \doteq h(Y).Evt(finished(Y))$:

From AnB to Strands

The AnB specification of a protocol describes the behavior of honest agents:

Input AnB specification:

Knowledge:

A: A, B, pk(A), pk(B), inv(pk(A))B: A, B, pk(A), pk(B), inv(pk(B))

Actions:

 $A \rightarrow B$: $\{NA, A\}_{pk(B)}$ $B \rightarrow A$: $\{NA, NB\}_{pk(A)}$ $A \rightarrow B$: $\{NB\}_{pk(B)}$

Goals:

...

Output Strand for role A:

Instantiating Variables

For executing a role we need to

 Instantiate all parameters with agent names

★ E.g.
$$\sigma = [A \mapsto a, B \mapsto i]$$

Instantiate all fresh variables with unique constants

$$\star$$
 E.g. $\sigma = [NA \mapsto n17]$

- All remaining variables first occur in incoming messages.
 - ★ They are bound when this message is received.

Instantiating Variables

For executing a role we need to

 Instantiate all parameters with agent names

★ E.g.
$$\sigma = [A \mapsto a, B \mapsto i]$$

Instantiate all fresh variables with unique constants

$$\star$$
 E.g. $\sigma = [NA \mapsto n17]$

- All remaining variables first occur in incoming messages.
 - ★ They are bound when this message is received.

Free and Bound Variables

Definition

Let $S = S_1.\text{Rcv}(t).S_2$ be a strand, and let X be a variable that occurs in t but not in S_1 .

- Then we say X is bound in S by the receive step Rcv(t).
- We say that all variables that are not bound by such a receive step are free variables of S.
- We say that a strand is closed if it does not have free variables.

For all parts of the course – except for the lazy intruder technique – we will consider only closed strands.

State Transition Systems

Evolution of an abstract model of the world:

- It has an initial state: Any number of instantiations of the protocol roles
- There are several transitions, i.e., ways the world can evolve from one state into a different state
 - ★ An honest agent sending a message
 - ★ An honest agent receiving a message
 - ★ An honest agent checking a condition
 - ★ An honest agent generating an event
 - ★ Actions of the intruder
- Every state consists of
 - ★ Local states of the honest agents
 - ★ The knowledge of the intruder
 - ★ Special events that we use to formulate the goals/attack states
- Define which states count as attack states

The Initial State

- For honest agents, we consider a number of role descriptions where agent names and fresh values are instantiated.
- There can be more any number of sessions between the same participants.
- There are thus infinitely many possible sessions.

The Initial Intruder Knowledge

In all sessions of the honest agents where the intruder plays one
of the roles, he gets the appropriate instance of the role's
knowledge.

```
Knowledge B: A, B, pk(A), pk(B), inv(pk(B))
Instance [A \mapsto a, B \mapsto i].
Then the intruder gets a, i, pk(a), pk(i), inv(pk(i)).
```

Transition: honest agents sending

The intruder immediately learns the sent message m_1 .

Transition: honest agents receiving

All messages that honest agents receive are chosen by the intruder.

Find all substitutions
$$\sigma$$
 such that $M \vdash \sigma(\{na17, NB\}_{pk(a)})!$ $\sigma(NB) = ?$

Find all substitutions σ such that $M \vdash \sigma(\{na17, NB\}_{pk(a)})!$ $\sigma(NB) = ?$

• *nb*3 (using the encrypted message)

Find all substitutions σ such that $M \vdash \sigma(\{na17, NB\}_{pk(a)})!$ $\sigma(NB) = ?$

- *nb*3 (using the encrypted message)
- na5 or nb17 (construct himself)

Find all substitutions σ such that $M \vdash \sigma(\{na17, NB\}_{pk(a)})!$ $\sigma(NB) = ?$

- nb3 (using the encrypted message)
- na5 or nb17 (construct himself)
- $a, b, i, pk(a), \{na17, nb3\}_{pk(a)}, \dots$
 - ★ "ill-typed" messages, the intruder can actually use any message he can construct.
 - ★ infinite number of possible choices!

Transition: checking equations

... otherwise this agent is stuck!

Transition: Events

Events are simply collected when they occur.

NSPK Protocol Roles:

One possible instance:

- For role A: $\sigma_A = [A \mapsto a, B \mapsto i, NA \mapsto n17]$.
- For role $B: \sigma_B = [B \mapsto b, A \mapsto a, NB \mapsto n18].$

Initial intruder knowledge:

$$M_0 = \{a, b, i, pk(a), pk(b), pk(i), inv(pk(i))\}$$

Possible transition: A sends out her first message

Intruder knowledge: $M = \{..., \{n17, a\}_{pk(i)}\}$

Possible transition: the intruder sends to B the message $\{n17, a\}_{pk(b)}$:

Now b can send out his reply, adding $\{n17, n18\}_{pk(a)}$ to the intruder knowledge. He cannot decrypt that, but send it to a:

Now b can send out his reply, adding $\{n17, n18\}_{pk(a)}$ to the intruder knowledge. He cannot decrypt that, but send it to a:

Next, the intruder will learn $\{n18\}_{pk(i)}$, and thus get the secret n18.

Now b can send out his reply, adding $\{n17, n18\}_{pk(a)}$ to the intruder knowledge. He cannot decrypt that, but send it to a:

Next, the intruder will learn $\{n18\}_{pk(i)}$, and thus get the secret n18. The intruder can also complete the run with b, because he can produce $\{n18\}_{pk(b)}$.

Roadmap

- 1 Construction of a key-exchange protocol
- 2 The Syntax of AnB
- 3 From AnB to strands: intuition
- 4 Term Algebra and all that
- 5 The Dolev-Yao Intruder Model
- **6** Transition Systems
- Security Goals

Protocol Goals

Goals what the protocol should achieve, e.g.

- Authenticate messages, binding them to their originator:
 B weakly authenticates A on Key
- Ensure timeliness of messages (recent, fresh, ...):
 B authenticates A on Key
- Guarantee secrecy of certain items (e.g. generated keys):
 Key secret between A,B

Other goals

 sender invariance, anonymity, non-repudiation (of receipt, submission, delivery), fairness, availability, ...

Events for Secrecy

Definition (Secrecy, informally)

The intruder cannot discover the data that is intended to be secret from him.

Events

- Goal M secret between A₁,..., A_n
- Insert the signal event

$$secret(M, \{A_1, \ldots, A_n\})$$

at the end of each role A_i .

• Expressing: A_i believes at this point that M is a secret shared with A_1, \ldots, A_n .

Secrecy Events: example

For NSPK with the given secrecy goals we have:

Formalization of Secrecy

Definition (Secrecy)

An attack on secrecy is defined by a state

- where the signal $secret(M, \{A_1, ..., A_n\})$ has occurred
- the intruder knows M
- the intruder is none of the A_i.

Formalization of Secrecy

Definition (Secrecy)

An attack on secrecy is defined by a state

- where the signal $secret(M, \{A_1, ..., A_n\})$ has occurred
- the intruder knows M
- the intruder is none of the A_i.

Example: $secret(n_{n17}, \{a, i\})$ and $secret(n_{n18}, \{b, a\})$ occurred, then the intruder is clear to know n_{n17} , but not n_{n18} .

Events for Authentication

Two events for the goal B (weakly) authenticates A on M:

- In role A insert the event witness(A, B, pABM, M).
- Position: as soon as A can construct M.
- In role B insert the event request(B, A, pABM, M, ID).
- Position: at B's last send or receive event.
- The constant p identifies the goal (in case there are several authentication goals)
- The variable ID is a unique identifier for the request

Events for Authentication: Example

Formalizing Authentication

Definition

An attack on weak authentication is any state in which

- request(B, A, p, M, ID) has occurred for some $A \neq i$ and
- the event witness(A, B, p, M) has never occurred.

Definition

An attack on strong authentication is any state that is an attack on weak authentication or:

• Both request(B, A, p, M, ID) and request(B, A, p, M, ID') have occurred for $ID \neq ID'$ and $A \neq i$.

Example: NSPK

Consider this instantiation of the roles:

Example: NSPK

Our previous run gives $NA \mapsto n_{17}$ and $NB \mapsto n_{18}$:

• $request(a, i, p_2, n_{18})$ does not matter since sender is i.

Example: NSPK

Our previous run gives $NA \mapsto n_{17}$ and $NB \mapsto n_{18}$:

- $request(a, i, p_2, n_{18})$ does not matter since sender is i.
- $request(b, a, p1, n_{17})$ violates (weak) authentication.

Bibliography: Books

- Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment, Springer, 2003.
- John Clark and Jeremy Jacob. A survey of authentication protocol literature, 1997. http://www.cs.york.ac.uk/ jac/
- Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996. http://www.cacr.math.uwaterloo.ca/hac
- Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
- Claude Kirchner, Hélène Kirchner. Rewriting, Solving, Proving. http://www.loria.fr/~ckirchne/=rsp/rsp.pdf, 1999.

Bibliography: Research Articles

- Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, Andre Scedrov. A comparison between strand spaces and multiset rewriting for security protocol analysis. Journal of Computer Security 13(2), 2005.
- Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols. IEEE Trans. Inf. Th., 1983.
- Gavin Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th IEEE Computer Security Foundations Workshop (CSFW'97), pages 31–43. IEEE CS Press, 1997.
- Sebastian Mödersheim. Algebraic Properties in Alice and Bob Notation. Proceedings of Ares'09. IEEE Computer Society, 2009.
- Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, Bill Roscoe.
 Modeling and Analysis of Security Protocols. Addison-Wesley, 2000.
- F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999