PROF: ATMANI NAJIB

Tronc CS

Géométrie dans l'espace

Leçon : Géométrie dans l'espace

Présentation globale

I) Axiomes

II. Positions relatives de droites et de plans

III. Parallélisme

IV) Orthogonalité

I. Axiomes

Axiomes sur lesquels reposent les raisonnements de géométrie dans l'espace

- 1. Par 2 points distincts de l'espace, il passe une et une seule **droite**.
- 2. Par 3 points non alignés de l'espace, il passe un et un seul **plan**.
- 3. Si un plan contient deux points A et B, alors ce plan contient tous les points de la **droite** (AB)
- 4. Si deux plans distincts ont un point en commun alors leur intersection est une **droite** passant par ce **point**.
- 5. Axiome d'Euclide : par un point A donné et une droite D donnée, il ne passe qu'une et une seule droite parallèle à D.

II. Positions relatives de droites et de plans

1) Positions relatives de deux droites

<u>Propriété</u>: Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

Exemple:

ABCDEFGH est un cube.

- Les droites (EG) et (FG) appartiennent au même plan (EFG) et sont sécantes en G.
- Les droites (AD) et (FG) appartiennent au même plan (ADG) et sont parallèles.
- Les droites (AD) et (CG) sont non coplanaires.

2) Positions relatives de deux plans

Propriété : Deux plans de l'espace sont soit sécants soit parallèles.

Exemple:

ABCDEFGH est un parallélépipède rectangle.

- Les plans (BCG) et (BCE) sont sécants suivant la droite (BC).
- Les plans (ABC) et (EFG) sont parallèles

3) <u>Positions relatives d'une droite et d'un plan</u>

<u>Propriété</u>: Une droite et un plan de l'espace sont soit sécants soit parallèles.

d et P sont sécants en un point I

d et P sont parallèles

d est incluse dans P

d et P sont strictement parallèles

Exemple:

ABCDEFGH est un cube.

- La droite (GI) et le plan (ABC) sont sécants en I.
- La droite (EG) est incluse dans le plan (EFG).
- La droite (EG) et le plan (ABC) sont parallèles.

III. Parallélisme

1) Parallélisme d'une droite avec un plan

2) Parallélisme de deux plans

Propriété: Si un plan *P* contient deux droites sécantes *d* et *d* parallèles à un plan *P'* alors **les plans** *P* et *P'* **sont parallèles**.

2) Parallélisme de deux droites

<u>Propriété</u>: Si deux plans sont parallèles alors tout plan sécant à l'un est sécant à l'autre et **leurs intersections sont deux droites parallèles**.

<u>Méthode</u>: Tracer l'intersection de deux plans Construire l'intersection du plan (IMJ) avec le cube ABCDEFGH.

On construit la parallèle à (IJ) passant par M. En effet, les faces ABFE et DCGH sont parallèles donc le plan (IMJ) sécant à la face ABFE coupe la face DCGH en une droite parallèle à (IJ).

De même, on trace la parallèle à (IM) passant par J.

On obtient les points K et L et ainsi l'intersection cherchée

Théorème du toit : P_1 et P_2 sont deux plans sécants.

Si une droite d_1 de P_1 est parallèle à une droite d_2 de P_2 alors la droite d'intersection Δ de P_1 et P_2 est parallèle à d_1 et d_2 .

Méthode : Appliquer le théorème du toit

ABCD est une pyramide. Le segment [FG] est parallèle à l'arête [BC].

E est un point du plan (ABC).

Construire l'intersection du plan (EFG) avec la pyramide.

(BC) est une droite du plan (ABC) et (FG) est une droite du plan (EFG).

Les droites (FG) et (BC) étant parallèles, on peut appliquer le théorème du toit pour en déduire que les plans (ABC) et (EFG) se coupent suivant une droite *d* passant par E et parallèle à (FG) et (BC). Cette droite coupe [AC] en H et [AB] en I.

Il suffit enfin de tracer le quadrilatère FGHI : intersection du plan (EFG) avec la

pyramide.

IV). Orthogonalité

1) Orthogonalité de deux droites

sont

Exemple:

ABCDEFGH est un cube.

- Les droites (EH) et (EF) sont perpendiculaires.
- Les droites (BC) et (EF) sont orthogonales.

Remarques:

- Deux droites perpendiculaires sont coplanaires et sécantes.
- Deux droites perpendiculaires sont orthogonales. La réciproque n'est pas vraie car deux droites orthogonales ne pas nécessairement coplanaires et sécantes.

Propriété: Si une droite *d* est orthogonale à un plan *P* alors elle est orthogonale à toutes les droites de *P*.

Exemple:

ABCDEFGH est un cube.

(AE) est perpendiculaire aux droites (AD) et (AB).

(AB) et (AD) sont sécantes et définissent le plan (ABC).

Donc (AE) est orthogonal au plan (ABC).

3) Orthogonalité de deux plans

Propriété: Deux plans sont perpendiculaires lorsque l'un contient une droite orthogonale de l'autre.

Méthode : Démontrer que des droites sont orthogonales

ABC est un triangle équilatéral. E est le point d'intersection de ses médianes.

La droite *d* passant par E est orthogonal au plan (ABC).

La pyramide ABCD est telle que D soit un point de la droite *d*.

Démontrer que les droites (BD) et (AC) sont orthogonales.

Solution:

La droite *d* est orthogonal au plan (ABC).

Comme la droite (AC) appartient au plan (ABC), la droite (AC) est orthogonale à la droite *d*.

Par ailleurs, la droite (AC) est perpendiculaire à la droite (BE) car dans un triangle équilatéral, les médianes et les hauteurs sont confondues.

La droite (BD) appartient au plan (BED) donc la droite (AC) est perpendiculaire à la droite (BD).

