## CHEM352: Physical Chemistry I Homework Set IV - due XXX of Nov, $5.00~{\rm PM}$

Instructor: Dr. Mateusz Marianski Room#: HN-1321B

email: mmarians@hunter.cuny.edu

Lecture: Tue, 2.10-3.25 pm & Fri 2.10-3.25 pm, C111

Office hours: Thu, 4-6 pm, HB - 1321B

Problem 1 CH9/5pts

1. Eplain all features of the following diagrams that are not observed for real substances:



2. Eplain all features of the following diagrams that are not observed for real substances:



Problem 2 CH9/5pts

Using the 'bunny-ear' diagram below, list all phases present (including an estimate for the composition) and phase transitions that occur when increasing temperature along lines 1, 2 and 3.



Problem 3 CH10/5Pts

Calculate the pH of a buffer solution that is 0.200 molal in  $CH_3COOH$  and 0.15 molal in  $CH_3COONa$  using the Davies equation to calculate  $\gamma_{\pm}$ . What would be the pH if  $\gamma_{\pm} = 1$  was assumed?

Problem 4 CH10/5pts

At 298.15 K, the pKa for acetic acid is equal 4.8. Using Debye-Hückel limiting law, calculate the degree of dissociation in 0.15 m and 1.50 m solutions. Compare these values with (1) situation when the ionic interactions have been ignored and (2)  $\gamma_{pm}$  for the acid is equal 1.

Problem 5 CH11/5pts

1. Determine  $E^{\circ}$  for the reaction:

$$Cr^{2+}(aq) + 2e^- \rightarrow Cr(s)$$
 (1)

using one electron reduction and three electron reduction reactions of  $Cr^{3+}$ .

2. Determine the activity of  $Sn^{4+}(aq)$  in the following reaction at 298.15K at equilibrium:

$$Sn(s) + Sn^{4+}(aq) \rightleftharpoons 2Sn^{2+} \tag{2}$$

The  $a_{Sn^{2+}} = 0.25$ .

3. Determine  $K_{sp}$  for AgBr at 298.15K using the electrochemical cell descibed by:

$$Ag(s)|Ag^{+}(aq, a_{Ag^{+}})||Br^{-}(aq, a_{Br^{-}})|AgBr(s)|Ag(s)$$
 (3)

You can find respective chemical potentials in Table 11.2 in the appendix or use your favorite web-search protocol.