Izomorfizm Curry'ego-Howarda

Rafał Szczerski

2018 Październik

1 Implikatywna logika minimalna

1.1 Język

Definicja 1.

• Zbiorem Φ → formuł implikatywnej logiki minimalnej NJ(→) nazywamy język generowany przez gramatykę

$$\Phi_{\rightarrow} := V \mid (\Phi_{\rightarrow} \rightarrow \Phi_{\rightarrow}) \mid \bot$$
$$V := p \mid V'$$

- Wyrażenia powstałe z produkcji V nazywamy zmiennymi zdaniowymi. Zmienne zdaniowe oraz ⊥ są formułami atomowymi. Pozostałe wyrażenia nazywamy formułami złożonymi.
- Konwencje:
 - 1. W języku podmiotowym wprowadzamy następujące oznaczenia

$$\neg \varphi \coloneqq \lceil \varphi \to \bot \rceil$$
$$\top \coloneqq \lceil \bot \to \bot \rceil$$

- 2. Zamiast p', p'', p''', ... używamy kolejno liter p, q, r, ...
- 3. Za zmienne podmiotowe dla oznaczeń formuł zdaniowych obieramy późniejsze litery alfabetu greckiego, tj. φ , ψ , θ ...
- 4. \rightarrow jest łączna w prawo.
- 5. ma najwyższy priorytet, \rightarrow najniższy.
- 6. Pomijamy najbardziej zewnętrzne nawiasy.
- Każdą parę $(\Gamma, \varphi) \in \mathcal{P}(\Phi_{\rightarrow}) \times \Phi_{\rightarrow}$, gdzie Γ jest zbiorem skończonym nazywamy sqdem (asercjq) i oznaczamy $\Gamma \vdash \varphi$.

Piszemy:

- $-\varphi_1, \varphi_2 \vdash \psi \text{ zamiast } \{\varphi_1, \varphi_2\} \vdash \psi,$
- $-\Gamma, \varphi \text{ zamiast } \{\Gamma \cup \varphi\},\$
- $-\Gamma, \Delta \text{ zamiast } \{\Gamma \cup \Delta\},\$
- $\vdash \varphi \text{ zamiast } \varnothing \vdash \varphi.$
- Na zbiorze sądów $\mathcal{P}(\Phi_{\rightarrow}) \times \Phi_{\rightarrow}$ wprowadzamy relacje okreslające reguły wyprowadzania

1

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \ (\to\! I), \quad \ \frac{\Gamma \vdash \varphi \to \psi \quad \ \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ (\to\! E).$$

oraz wybieramy spośród sądów jeden aksjomat postaci $\Gamma, \varphi \vdash \varphi$ (Ax).

- - 1. W korzeniu drzewa znajduje się dowodzony sąd $\Gamma \vdash \varphi$.
 - 2. Liście są aksjomatami, tj. sądami postaci $\Gamma, \varphi \vdash \varphi$.
 - Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania nowych sądów.

Jeśli istnieje dowód sądu $\Gamma \vdash \varphi$ to mówimy, że formuła φ jest *wyprowadzalna* ze zbioru *przesłanek* Γ i piszemy $\Gamma \vdash_N \varphi$. Formułę φ nazywamy wówczas *tezą* systemu $\mathrm{NJ}(\to)$.

Lemat 1. $NJ(\rightarrow)$ jest zamknięty ze względu na

- (a) osłabianie: jeśli $\Gamma \vdash \varphi$, to tym bardziej Γ , $\psi \vdash \varphi$.
- (b) podstawianie: jeśli $\Gamma \vdash \varphi$, to $\Gamma[p/\psi] \vdash \varphi[p/\psi]$.

1.2 Semantyka

Twierdzenie 1. (O pełności) System dedukcyjny $NJ(\rightarrow)$ jest pełny względem modeli Kripkego.

2 Typy proste w stylu Churcha

2.1 Język

Definicja 2.

- Typami prostymi T nazywamy zbiór Φ_{\rightarrow} wszystkich formuł języka logiki NJ(\rightarrow). Zamiast mówić o zmiennych zdaniowych, będziemy używali określenia zmienne typowe. Za zmienne podmiotowe dla oznaczeń formuł zdaniowych obieramy późniejsze litery alfabetu greckiego, tj. σ , τ , ρ ...
- Pseudotermami nazywamy język $\Lambda_{\rm T}$ generowany przez gramatykę

$$\Lambda_{\mathrm{T}}^{-} \coloneqq \mathrm{V} \mid \left(\lambda V^{\mathrm{T}}.\Lambda_{\mathrm{T}}^{-}\right) \mid \left(\Lambda_{\mathrm{T}}^{-}\Lambda_{\mathrm{T}}^{-}\right)$$

gdzie V to przeliczalny zbiór λ -zmiennych x, y, \dots

W języku podmiotowym będziemy używali późniejszych liter alfabetu łacińskiego pisanych kursywą (M, N, O, \ldots) oznaczając pseudotermy.

- Otoczeniem typowym nazywamy skończoną funkcję częściową $\Gamma: V \to T$ przeprowadzającą zbiór λ -zmiennych w zbiór typów prostych. Nadużywając notacji piszemy
 - $-\Gamma = \{x_1 : \tau_1, \ldots, x_n : \tau_n\}$
 - $-\operatorname{dom}(\Gamma) = \{x \in V \mid \exists \tau. (x : \tau) \in \Gamma\}$
 - $-\operatorname{rg}(\Gamma) = \{ \tau \in \Phi_{\rightarrow} \mid \exists x. (x : \tau) \in \Gamma \}$
- Dla pseudotermu M następująco określamy zbiór termów wolnych FV:

$$FV(x) = \{x\}$$

$$FV(\lambda x^{\sigma}. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

• Podstawieniem [x/N] pseudotermu N za λ -zmienną x w M nazwamy zdefiniowane następująco przekształcenie:

$$x[x/N] = N,$$

$$y[x/N] = y,$$
 o ile $x \neq y$,
$$(PQ)[x/N] = P[x/N]Q[x/N],$$

$$(\lambda y^{\sigma}. P)[x/N] = \lambda y^{\sigma}. P[x/N],$$
 gdzie $x \neq y$ i $y \notin FV(N)$.

Jesli $FV(M) = \emptyset$, to pseudoterm M nazywamy zamkniętym.

Fakt 1.

- (a) Jeśli $x \notin FV(M)$, to M[x/N] jest poprawnym podstawieniem i M[x/N] = M.
- (b) Jeśli M[x/N] jest poprawnym podstawieniem, to $y \in FV(M[x/N])$ wtw, gdy albo $y \in FV(M)$ i $x \neq y$, albo $y \in FV(N)$ i $x \in FV(M)$.
- (c) Podstawienie M[x/x] jest poprawne i M[x/x] = M.
- (d) Jeśli M[x/y] jest poprawnym podstawieniem, to M[x/y] ma tę samą długość, co M.

Fakt 2. Powiedzmy, że M[x/N] jest poprawnym podstawieniem i N[y/L] i M[x/N][y/L] są poprawnymi podstawieniami, gdzie $x \neq y$. Jeśli $x \notin FV(L)$ lub $y \notin FV(M)$, to M[y/L] i M[y/L][x/N[y/L]] jest poprawnym podstawieniem oraz

$$M[x/N][y/L] = M[y/L][x/N[y/L]].$$

Fakt 3. Jesli M[x/y] jest poprawnym postawieniem i $y \notin FV(M)$, to M[x/y][y/x] jest poprawnym podstawieniem oraz M[x/y][y/x] = M.

- α -konwersją = $_{\alpha}$ nazywamy najmniejszą w sensie mnogościowym relację zwrotną i przechodnią określoną na zbiorze pseudotermów $\Lambda_{\rm T}^-$ spełniającą poniższe warunki:
 - (a) Jeśli $y \notin FV(M)$ i M[x/y] jest poprawnym podstawieniem, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$.
 - (b) Jeśli $M =_{\alpha} N$, to dla każdej λ -zmiennej x mamy $\lambda x. M =_{\alpha} \lambda x. N$.
 - (c) Jeśli $M=_{\alpha}N,$ to $MZ=_{\alpha}NZ.$
 - (d) Jeśli $M =_{\alpha} N$, to $ZM =_{\alpha} ZN$.

Fakt 4. $Relacja =_{\alpha} jest symetryczna$.

Fakt 5. = $_{\alpha}$ jest relacją równoważności.

Fakt 6. Jeśli $M =_{\alpha} N$, to FV(M) = FV(N).

• λ -termami w stylu Churcha nazywamy zbiór ilorazowy $\Lambda_{\rm T}$ relacji α -konwersji

$$\Lambda_{\mathrm{T}} = \{ [M]_{\alpha} \, | \, M \in \Lambda_{\mathrm{T}}^- \}$$

• $Sqdem\ (asercjq)$ nazywamy każdą trójkę $(\Gamma, M, \sigma) \in \mathcal{P}(V \times T) \times \Lambda_T \times T$, gdzie Γ jest otoczeniem typowym i oznaczamy $\Gamma \vdash M^{\sigma}$.

Piszemy:

- $-\varphi_1, \varphi_2 \vdash \psi \text{ zamiast } \{\varphi_1, \varphi_2\} \vdash \psi,$
- $-\Gamma, x^{\varphi}$ zamiast $\Gamma \cup \{x^{\varphi}\}$, o ile $x^{\varphi} \notin \Gamma$.
- $-\Gamma, \Delta \text{ zamiast } \{\Gamma \cup \Delta\}, \text{ o ile } \Gamma \cap \Delta = \emptyset.$
- $\vdash \varphi \text{ zamiast } \varnothing \vdash \varphi.$

• Na zbiorze sądów wprowadzamy relacje określające reguły wyprowadzania termów

$$\frac{\Gamma, x^{\varphi} \vdash M^{\psi}}{\Gamma \vdash (\lambda \, x^{\varphi}. \, M)^{\varphi \to \psi}} \text{ (Abs)}, \quad \frac{\Gamma \vdash M^{\varphi \to \psi} \quad \Gamma \vdash N^{\varphi}}{\Gamma \vdash (MN)^{\psi}} \text{ (App)}.$$

oraz wybieramy spośród sądów jeden aksjomat postaci $\Gamma, x^\tau \vdash x^\tau$ (Var).

Dowód sądu określamy analogicznie jak w logince $\mathrm{NJ}(\to)$.

Mówimy, że M jest termem typu τ w otoczeniu Γ , jeśli istnieje dowód sądu $\Gamma \vdash M^{\tau}$ w powyższym systemie dedukcyjnym.

Literatura