

Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

Thomas M. Lavelle
NASA GRC
Jeffryes W. Chapman
Vantage Partners
Ryan D. May
Vantage Partners
Jonathan S. Litt and Ten-Huei Guo
NASA GRC

Team

Thomas M. Lavelle

NASA Glenn Research Center, Cleveland, OH 44135

Jeffryes W. Chapman

Vantage Partners, LLC. Cleveland, OH 44135

Ryan D. May

Vantage Partners, LLC. Cleveland, OH 44135

Jonathan S. Litt

NASA Glenn Research Center, Cleveland, OH 44135

Ten-Huei Guo

NASA Glenn Research Center, Cleveland, OH 44135

Goal

- Increase flexibility of T-MATS
- Cantera increases flexibility of thermodynamics
 - Can model any flow
- M-file elements allow users to prototype engineering elements
- Slower than standard T-MATS

T-MATS

- Simulink code
- Library of thermodynamic elements
 - Standard library includes elements typical of aeropropulsion
- Newton Raphson solver
- Default thermodynamic table is air, water, and a hydrocarbon fuel
- Systems can be modeled outside the standard elements/thermo
 - Create new thermo tables
 - Create elements

Cantera

- Object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport properties
- C++ based code with interfaces for python, matlab,
 C, and fortran 90
- https://code.google.com/p/cantera/

Integration of T-MATS with Cantera

- Allows any fluid combination to be modeled
- Specify the thermodynamics of the possible products
 - Similar to CEA thermo.inp file
- Requires specification of all "reactants" for the simulation
 - Similar to CEA reactant cards
 - Specify the different possible starting flows by composition


```
Species = { .7547 .232 .0128 0 0 0;

1 0 0 0 0 0;

.922189 .077811 0 0 0 0 0;

0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0};

Name = { 'N2' 'O2' 'AR' " " ";

'H2O' " " " " "; 'CH2' 'CH' " " ";
```

- Species and Name arrays need to be defined
- A model with this definition can run with mixtures of Air, Water, and JP-7
- Allows for models of aircraft engines with humidity

T-MATS Cantera Fluid Arrays

Information	Index	Description
W	1	Weight of the flow
Tt	2	Total temperature
Pt	3	Total pressure
ht	4	Totalenthalpy
comp1 (to) comp10	5-14	Percentage of flow composition for reactants 1 to 10
s	15	Entropy
rhot	16	Total density
Ts	17	Static temperature
Ps	18	Static pressure
hs	19	Static enthalpy
rhos	20	Static density
Vflow	21	Flow velocity
MN	22	Flow Mach number
A	23	Flow area
gamt	24	Total gamma
gams	25	Static gamma

 Each fluid location in a thermodynamic model is represented by an array that contains all the fluid properties at a given location

T-MATS Cantera Fluid Functions

Function	Description	
add(flow1,flow2)	Add add flow1 and flow2 together, conserving enthalpy and mass	
copyFlow(flow)	Copy the information from flow to another flow	
getMassFraction(flow,c)	Return the mass fraction of compound c in the object flow	
set_hP(flow,ht,Pt)	Set the total conditions based on flow, total enthalpy and total pressure	
set_MN1(flow)	Set the static conditions to sonic based on flow conditions	
set_MNPs(flow,Ps)	Set the static conditions based on <i>flow</i> and input static pressure	
set_SP(flow,S,Pt)	Set the total conditions based on <i>flow</i> and input entropy and total pressure	
set_TP(flow,Tt,Pt)	Set the total conditions based on flow, total temperature and total pressure	
set_TsPsMN(flow,Ts,Ps,MN)	Set the conditions based on <i>flow</i> , static temperature, static pressure and Mach	

- All communication between Cantera and T-MATS is handled by these functions
- Functions return a new Cantera Fluid Array based on inputs (see previous slide)

T-MATS Element Files

- Library of standard elements released in Simulink mfile format
- Allows for development and prototyping
- Elements are interpreted
 - No need to compile
- Engineers can quickly create new elements
- Block sets are released with T-MATS Cantera package

Instance Information

- Needed a way to store instance information from one pass to another
- Created to functions to store and retrieve information from one pass to another
 - Variables are stored in the MATLAB workspace with the object instance name attached to the variable instance name
- setV sets the value or a variable in the workspace
- getV gets the value of a variable from the workspace

```
path = stripchar( gcb() );
setV( 's_C_Nc', path, s_C_Nc );
s_C_Nc = getV( 's_C_Nc', path );
```


Some Examples from Compressor Element

Setting the exit conditions

```
FOideal = set_SP( FI, FI(s), PtOut );
htOut = FI(ht) + ( FOideal(ht) - FI(ht) )/eff;
% set the exit conditions to known enthalpy and
%pressure
FO = set_hP( FI, htOut, PtOut );
```


Some Examples from Compressor Element

Design Point Scaling

```
if IDes < .5
  s_eff = effDes / effMap;
  s_PR = (PRdes - 1)/(PRmap - 1);
  s Wc = WcIn/ WcMap;
  setV('s eff', path, s eff);
  setV( 's_Wc', path, s_Wc );
  setV('s PR', path, s PR);
elseif IDes < 1.5
  % get the maps scalars from the workspace
  s_eff= getV( 's_eff', path );
  s_Wc= getV( 's_Wc', path );
  s_PR= getV( 's_PR', path );
else
  % use the input values
  s eff = s eff in;
  s Wc = s Wc in;
  s PR = s PR in;
end
```


Simulink Objects

- Mask appearance
- Describes port labels and colors
- Label colors are standard based on T-MATS style

- Parameter list
- Lists the variables that can be input by the user to the dialog box

- S-function block parameters
- Utilizes m-file to create S-function
- Maps parameter dialog box to m-file

Turbofan Model -JT9D

Turbofan Model –JT9D

	NPSS with JANAF	TMATS Cantera
	Output	Output
Altitude	34000 ft	34000 ft
Mach	.8	.8
number		
Weight flow	674 lbm/sec	674 lbm/sec
Thrust	11194 lbf	11182 lbf
SFC	.6113	.6116

Fuel Cell Model

Reactants are Air, H2, O2, and H20

Fuel Cell Model

Specifying the reactants:

Getting the mass fractions of an element:

```
xN2_cOut = getMassFraction(Fl_O2, 'N2');
xO2_cOut = getMassFraction(Fl_O2, 'O2');
```


Fuel Cell Model

Removing oxygen from the flow:

```
xO2_Cathode1 = getMassFraction(Fl_Cathode1, 'O2')
%Composition as mass flow (g/sec)
wO2 Cathode1 = xO2 Cathode1 * w Cathode1
%Composition as molar flow rate (mol/sec)
M_02_Cathode1 = w02_Cathode1/32.
%Calculates composition after electrochemistry...
M O2 Cathode2 = M O2 Cathode1 - ((M H2 Anode1/2.0) * pctH2util);
M_O2_Cathode2 = M_O2_Cathode1 - ((M_H2_Anode1 / 2.0) * pctH2util);
wO2_lost = (M_O2_Cathode1 - M_O2_Cathode2)*32. * 0.002205 % lb/sec
FI_{tempO2(8)} = 1;
Fl_{tempO2(W)} = -wO2_{lost};
Fl_tempO2= set_TP(Fl_tempO2, Fl_Cathode2(Tt), Fl_Cathode2(Pt));
```


Conclusion

- Cantera has been integrated with T-MATS
 - Capable of modeling any thermodynamic flow
- Simulink block sets and MATLAB m-files
 - Allows for prototyping
- Greatly increases the flexibility of T-MATS
- Slower than standard T-MATS

 Download information may be found at: https://github.com/nasa/T-MATS/releases/