ĐIỆN TỬ CÔNG SUẤT

Giáp Quang Huy gqhuy@dut.udn.vn

CHƯƠNG VI: THIẾT BỊ NGHỊCH LƯU

1

6.1. Khái niệm chung - phân loại

- Chức năng: chuyển đổi năng lượng từ nguồn điện một chiều không đổi sang dạng năng lượng điện xoay chiều.
- Úng dụng:
 - Cung cấp năng lượng cho tải xoay chiều.
 - Các bộ nghịch lưu tạo thành bộ phận chủ yếu trong cấu tạo của bộ biến tần...
- > Phân loại:

Theo số lượng pha

- Một pha
- Ba pha
- Nhiều pha

Theo sơ đồ

- Hình cầu
- Hình tia

Theo đặc điểm nguồn

- Nguồn áp
- Nguồn dòng

6.2. Bộ nghịch lưu áp

- Mang tính chất nguồn áp: Tạo ra điện áp xoay chiều. Đại lượng được điều khiển ở ngõ ra là điện áp. Dòng điện đầu ra phụ thuộc vào tải.
- Đầu vào của bộ nghịch lưu áp là nguồn điện áp một chiều.

6.2.1. Nghịch lưu áp cầu 1 pha Cấu tạo :

- Nguồn 1 chiều không đổi U_d
- 4 khóa bán dẫn mắc dạng cầu H
- Bốn diode mắc song song ngược.

Hoạt động (xét ở trạng thái xác lập):

Các cặp van bán dẫn (S_1, S_4) , (S_3, S_2) hoạt động theo nguyên tắc kích đóng đối nghịch.

 $\psi_{\scriptscriptstyle S}$ góc thông dòng của các bộ khóa.

 $\psi_{\scriptscriptstyle D}$ góc thông dòng của các diode ngược

 $\psi~$ góc dự kiến thông dòng của các bộ khóa.

$$\psi = \psi_S + \psi_D = \pi$$

Nhịp S₁ S₂: Đưa xung điều khiển ON vào S_1, S_2 .

Điện áp tải: $u_Z = U_d$ Dòng điện tải:

$$i_Z = \frac{U_d}{R} + C_1 \cdot e^{-\frac{t}{\tau}}$$
, $\tau = \frac{L}{R}$

 \Rightarrow Dòng $i_Z=i_{S_1}=i_{S_2}$ tăng theo đường cong hàm mũ về giá trị bão hòa $\ U_d/R$

Nhịp D₃ D₄: Ngắt xung điều khiển ON ở $S_1 S_2$, đưa xung điều khiển On vào $S_3 S_4$

Dòng vẫn duy trì theo chiều cũ và đi qua $D_3 D_4^{I_{ZMAX}}$, $S_3 S_4$ không thông dòng

Điện áp tải $u_z = -U_d$

Dòng tải:

$$i_Z = -\frac{U_d}{R} + C_2 e^{\frac{t-T/2}{\tau}} \quad , \; \tau = \frac{L}{R}$$

⇒ Dòng tải giảm theo đường cong hàm mũ về giá trị bão hòa $-U_{\scriptscriptstyle d}/R$

Nhịp D_3 , D_4 kết thúc khi i_Z giảm về 0.

Nhịp S₃ S₄: Xung điều khiển ON vẫn được duy trì ở $S_1 S_2 D_3 D_4$ ngắt dòng, S_3 , S_4 thông dòng.

Điện áp tải $u_{\rm Z} = -U_{\rm d}$

Dòng $-i_Z=i_{S_3}=i_{S_4}$ giảm theo đường cong hàm mũ về giá trị bão hòa $-U_d/R$

Nhịp $S_{\it 3}$, $S_{\it 4}$ kết thúc khi $i_{\it Z}$ đạt giá trị $I_{\it Z\,min}$

Nhịp D₁ D₂: Ngắt xung điều khiển ON ở $S_3 S_4$, đưa xung điều khiển ON vào $S_1 S_2$

Dòng vẫn duy trì theo chiều cũ và đi qua $\mathrm{D_1}\,\mathrm{D_2}$

Điện áp tải $u_Z = U_d$

Dòng điện $-i_Z=i_{S_3}=i_{S_4}$ tăng theo đường cong hàm mũ về giá trị bão hòa U_d/R

Nhịp D_1 , D_2 kết thúc khi i_Z tăng (theo chiều âm) về giá trị 0.

Xác định I_{Z Max}, I_{Z Min}

Xét điều kiện ban đầu tại các thời điểm

$$i_Z(t=0) = i_Z(t=T) = I_{ZMin}$$

$$i_Z(t = T/2) = I_{ZMax}$$

$$i(0) = I_{\min} \Rightarrow C_1 = I_{\min} - \frac{U_d}{R}$$
 (1)

$$i(T/2) = I_{\text{max}} \Rightarrow C_2 = I_{\text{max}} + \frac{U_d}{R}$$
 (2)

$$i(T) = I_{\min} \Rightarrow -\frac{U_d}{R} + C_2 \cdot e^{\frac{T/2}{\tau}} = I_{\min}$$
 (3)

$$I_{\max} = -I_{\min} \tag{4}$$

$$\Rightarrow I_{\text{max}} = -I_{\text{min}} = \frac{U}{R} \left[\frac{1 - e^{-\frac{T}{2\tau}}}{1 + e^{-\frac{T}{2\tau}}} \right]$$

6.2.2. Nghịch lưu áp tia 1 pha

Cấu tạo:

- Nguồn 1 chiều không đổi $\rm U_d$
- Van bán dẫn điều khiển hoàn toàn S_1 , S_2
- Diode D_1 , D_2 mắc đối song với S_1 , S_2
- Tải cách ly qua máy biến áp với cuộn sơ cấp phân chia.

Hoạt động (xét ở trạng thái xác lập):

$$\psi = \psi_S + \psi_D = \pi$$

Nhịp $\mathbf{S_1}$: Đưa xung điều khiển ON vào $\mathbf{S_1}$ $u_Z = u_a = U_d$ $i_Z = i_{S_1} = i_d \quad \text{tăng theo hàm mũ}.$

Nhịp \mathbf{S}_1 kết thúc khi ngắt xung điều khiển đưa vào \mathbf{S}_1 .

Nhịp D₂: Ngắt xung điều khiển đưa vào S_1 và đưa xung điều khiển ON vào S_2 .

$$\begin{aligned} u_{Z} = & u_{b} = -U_{d} \\ i_{Z} = & i_{D_{2}} = -i_{d} \quad \text{giảm theo đường} \\ & \quad \text{cong hàm mũ} \end{aligned}$$

Nhịp D_2 kết thúc khi dòng tải giảm về đến giá trị 0

Nhịp S₂: Xung điều khiển đưa vào S₂ ngay sau khi khóa S₁. Khi D₂ đóng, dòng i_d sẽ đảo chiều, chảy qua S₂. Điện áp trên tải vẫn không đổi, tuy nhiên dòng.

$$u_Z=u_b=-U_d$$

$$-i_Z=i_{S_2}=i_d \quad {\rm tăng\ theo\ dường\ cong\ hàm}$$
 mũ với chiều ngược lại

Nhịp S2 kết thúc khi ngắt xung điều khiển đưa vào $\rm S_2$ và bắt đầu đưa xung điều khiển vào $\rm S_1$

Nhịp D₁: Ngắt xung điều khiển đưa vào S₂

$$\begin{aligned} u_{\rm Z} = & u_a = U_d \\ -i_{\rm Z} = & i_{\rm D_1} = -i_d & {\rm tăng~theo~d\mathring{u}\grave{o}ng} \\ & {\rm cong~h\grave{a}m~m\~u} \end{aligned}$$

Nhịp D_1 kết thúc khi dòng tăng lên (theo chiều âm) đến giá trị 0.

6.2.3. Nghịch lưu áp cầu 3 pha Cấu tạo :

- $\begin{tabular}{ll} & \blacktriangleright & 6 \mbox{ van bán dẫn S_1, $S_2...$$$ S_6} \\ & \rightarrow \mbox{Các cặp van chung nút tải (S_1, S_4),} \\ & (S_3, S_6), (S_5, S_2) \end{tabular}$
- ➢ 6 diode D₁, D₂...D₀ mắc đối song.
- Tải ba pha có thể mắc ở dạng hình sao hoặc dạng tam giác

Hoạt động:

- Thứ tự kích đóng các công tắc được biểu diễn trên hình.
- Bất kỳ thời điểm nào cũng có 2 hoặc 3 van dẫn điện.
- Các cặp van chung nút tải được kích mở đối nghịch.

$$\pi/3 < \psi \leq \pi$$

> Hoạt động của diode hoàn năng lượng khi tải ở chế độ máy phát

6.2.4. Điều khiển nghịch lơu áp cầu 3 pha

Nguyên tắc thay đổi tần số xung

Nguyên tắc điều biến độ rộng xung - PWM (Pulse Width Modulation)

- S1, S3, S5
- S2, S4, S6

$$u_{Z1} = u_{Z2} = u_{Z3} = 0$$

