Fourier-2D

Görüntünün 2D Fourier dönüşümü

I(r,c), R satır ve C sütuna sahip tek kanallı bir görüntü olsun. O zaman I(r,c)'nin Fourier sunumu

$$I(r,c) = \sum_{u=0}^{R-1} \sum_{v=0}^{C-1} \mathbf{I}(u,v) e^{+i2\pi \left(\frac{ur}{R} + \frac{vc}{C}\right)},$$

burada

Bu karmaşık üsteller 2D sinuzoidlerdir.

R x C Fourier katsayılarıdır.

2D sinüzoid nedir?

$(0,0) \quad \omega \cos \theta \\ \omega \\ u \quad (u,v)$

Düşün

$$e^{\pm i2\pi\left(\frac{ur}{R}+\frac{vc}{C}\right)}=e^{\pm i2\pi\omega\left(\frac{r\sin\theta}{R}+\frac{c\cos\theta}{C}\right)}$$

burada

$$u = \omega \sin \theta$$
, $v = \omega \cos \theta$, $\omega = \sqrt{u^2 + v^2}$, and $\theta = \tan^{-1} \left(\frac{-u}{v}\right)$.

Farz etki R = C = N. O zaman

$$e^{\pm i2\pi\left(\frac{ur}{R} + \frac{vc}{C}\right)} = e^{\pm i\frac{2\pi\omega}{N}\left(r\sin\theta + c\cos\theta\right)} = e^{\pm i\frac{2\pi}{\lambda}\left(r\sin\theta + c\cos\theta\right)}$$

burada

$$\lambda = N/\omega$$
.

2D sinüzoid nedir?

Euler ilişkisini kullanarak,

$$e^{\pm i2\pi \frac{1}{\lambda}(c\cos\theta - r\sin\theta)} = \cos\left[\frac{2\pi}{\lambda}(c\cos\theta - r\sin\theta)\right] \pm i\sin\left[\frac{2\pi}{\lambda}(c\cos\theta - r\sin\theta)\right]$$

bunun gerçel kısmı

$$\operatorname{Re}\left\{e^{\pm i2\pi\frac{1}{\lambda}(c\cos\theta - r\sin\theta)}\right\} = +\cos\left[\frac{2\pi}{\lambda}(c\cos\theta - r\sin\theta)\right]$$

sanal kısmı

$$\operatorname{Im}\left\{e^{\pm i2\pi\frac{1}{\lambda}\left(c\cos\theta-r\sin\theta\right)}\right\} = \pm i\sin\left[\frac{2\pi}{\lambda}\left(c\cos\theta-r\sin\theta\right)\right]$$

birim genlikli, λ periyotlu ve θ yönlü sinüzoidlerdir.

2D sinüzoid:

$$I(r,c) = \frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} (c \cdot \cos \theta - r \cdot \sin \theta) + \phi \right] + 1 \right\}$$

... grayscale genlikli düzlem dalgalarıdır.

 φ = faz kayması

2D Sinüzoidler:

... belirli dönmeler ve, faz kaymaları

Bir Görüntünün FT'si

Fourier Düzlemindeki Noktalar

u sütun ve v satır frekansındaki bir nokta ω dalga boylu ve θ açı değerli bir sinüzoiddir.

ω = 2π/λ, burada λ dalga boyudur.

Fourier Düzlemindeki Noktalar

 \mathcal{X}

Bu nokta, bu özel sinüzoidi sunar

28 January 2015

Genlik ve faz sunumu onu daha anlaşılır yapar

Bu nedenle, Fourier düzlemindeki (u,v)

...w frekanslı ve θ yönelimli bir sinüzoidi sunar.

(u,v) nin FT'u karmaşık değerli F(u,v) dur.

...sinüzoidin genlik A, ve fazı ϕ değerini sunar.

Görüntünün FT si (Genlik+ Faz)

I

 $\log\{|\mathcal{F}\{I\}|^2+1\}$

 $\angle[\mathcal{F}\{I\}]$

FT'nin Gerçel + Sanal değerleri

I

 $Re[\mathcal{F}\{I\}]$

 $\operatorname{Im}[\mathscr{F}\{I\}]$

Güç Spektrumu

Güç spektrumu, sinyal genliğinin karesidir.

Genellikle görüntülemede güç spektrumun log sunumu tercih edilir.

$$|\mathbf{I}(u,v)|^{2} = \mathbf{I}(u,v)\mathbf{I}^{*}(u,v)$$

$$= [\operatorname{Re}\mathbf{I}(u,v) + i\operatorname{Im}\mathbf{I}(u,v)][\operatorname{Re}\mathbf{I}(u,v) - i\operatorname{Im}\mathbf{I}(u,v)]$$

$$= [\operatorname{Re}\mathbf{I}(u,v)]^{2} + [\operatorname{Im}\mathbf{I}(u,v)]^{2}.$$

Her bir (u,v) noktası, karesel yoğunluklu frekans bileşenini işaret eder. Bu frekans $\lambda = 1/\sqrt{u^2 + v^2}$ periyotlu ve $\theta = \tan^{-1}(v/u)$ yönelimlidir.

Matlab:

PS = fftshift(2*log(abs(fft2(I))+1));

Güç spektrumun hesabı üzerine

Güç spektrumu $PS(I) = |\mathbf{F}\{I(u,v)\}|^2$ olarak tanımlanır.

Onu görüntülemek için e tabanında logaritma kullanılır. Aksi halde onun dinamik aralığı çok geniş olduğundan her şeyin birlikte görünmesini engeller. İlk olarak ona 1 eklenir ki, minimum logaritma sonucu sıfır olsun (hatırlayalım ki, $\log(f^2) = 2\log(f)$)

Eğer PS görüntülenmek istenirse, iki ile çarpmaya gerek duyulmaz. Çünkü onu 0-255 aralığına dönüştürmek gerekir. Eğer orijin merkezdeyse o zaman Fourier yapılarını görmek daha kolaydır. Bu nedenle genellikle fftshift kullanılır.

```
>> PS = fftshift(log(abs(fft2(I))+1));
>> M = max(PS(:));
>> image(uint8(255*(PS/M)));
```

Eğer PS sonraki hesaplamalar için kullanılacaksa (örneğin bir fonksiyonun oto korelasyonu, fonksiyonun PS sinin ters FT dir), aşağıdaki gibi hesaplanmalı.

```
>> PS = abs(fft2(I)).^2;
```

Belirsizlik ilişkisi

∆u∆vfrekansalandaboyutla

$$\Delta x \Delta y \cdot \Delta u \Delta v \ge \frac{1}{16\pi^2}$$

Uzayda küçük bir nesne yüksek bir frekans etkisine sahiptir (tersi de geçerli).

Belirsizlik ilişkisi

Hatırla ki: Frekans alanda bir çift simetrik impulse uzaysal alanda bir sinüzoid olur.

Frekans alanda simetrik bir çift çizgi uzaysal alanda sinüzoidal bir çizgi olur.

Bir kenarın Fourier dönüşümü

Kalın bir çubuğun FT si

FFT'nin koordinat merkezi

Center = (floor(R/2)+1, floor(C/2)+1)

Matlabda fftshift ve ifftshift

burada $\lfloor x \rfloor = floor(x) = x'den daha küçük en büyük tam sayı$

Matlabda fftshift ve ifftshift

```
J = \text{fftshift}(I):
I(1,1) \rightarrow J(\lfloor R/2 \rfloor + 1, \lfloor C/2 \rfloor + 1)
I = \text{ifftshift}(J):
J(\lfloor R/2 \rfloor + 1, \lfloor C/2 \rfloor + 1) \rightarrow I(1,1)
```

burada $\lfloor x \rfloor = floor(x) = x'den daha küçük en büyük tam sayı$