Consommation d'électricité (compléments du Chapitre 10)

Yves Aragon* Université Toulouse 1 Capitole

16 août 2016

Exercice 10.1

Superposer les chronogrammes de u, défini section 1 et u.3c. Commenter.

Réponse.

```
> require(caschrono)
```

> data(khct)

Nous formons le data frame des variables de la période d'apprentissage :

```
> khct.df \leftarrow as.data.frame(window(cbind(khct, time(khct), time(khct), time(khct)-1977)^2), end = c(1983, 12))
> colnames(khct.df) \leftarrow c("kwh", "htdd", "cldd", "t1", "t1.2")
et réestimer (10.1).
> mod2 = lm(sqrt(kwh) \sim htdd + cldd + t1 + t1.2, data = khct.df)
> u = ts(residuals(mod2), start = c(1970, 1), frequency = 12)
```

$$\sqrt{\text{kwh}_t} = -673.06 + 0.00066 \, \text{htdd}_t + 0.01 \, \text{cldd}_t + 0.3456 \, \text{temps}_t - 0.0059 \, (\text{temps} - 1977)_t^2 + u_t. \tag{10.1}$$

Nous avons besoin du détail de l'estimation conduisant à u.3c:

```
> kwh1rc <- window(sqrt(khct[,"kwh"]), end = c(1983,12))
> xreg1 <- khct.df[,c("htdd", "cldd", "t1", "t1.2")]
> xreg2 <- xreg1[,-4]
> require("forecast")
> (mdarx3c <- Arima(kwh1rc, order = c(1, 0, 0), seasonal = list(order = c + xreg = xreg2))</pre>
```

^{*}yves.aragon@gmail.com

```
Series: kwh1rc
ARIMA(1,0,0)(1,0,1)[12] with non-zero mean
Coefficients:
         ar1
                 sar1
                          sma1
                                intercept
                                             htdd
                                                      cldd
      0.6323
              0.9840
                       -0.7766
                                -680.9117
                                            6e-04
                                                    0.0073
      0.0605
              0.0138
                        0.0912
                                   24.8211
                                            1e-04
                                                    0.0005
s.e.
          t1
      0.3496
      0.0126
s.e.
sigma^2 estimated as 0.03678:
                                log likelihood=33.47
AIC=-50.94
             AICc=-50.03
                            BIC=-25.95
> u.3c <- kwh1rc - as.matrix(xreg2)%*%as.matrix(mdarx3c$coef[5:7]) - mdarx
Enfin nous superposons les deux résidus :
> plot.ts(cbind(u,u.3c), plot.type = "single", lty=1:2)
> abline(h=0)
```


Fig. 1 – Chronogrammes superposés des résidus u et u.3c.

On observe que les résidus u et u.3c sont très proches (fig. 1) alors qu'il y a une variable explicative de la régression MCO t1.2 absente de la régression MCG avec erreur $SARMA(1,0)(1,1)_{12}$.

Exercice 10.2

Tester que le coefficient de cldd est 10 fois plus grand que celui de htdd, dans (10.2).

Réponse. Le modèle estimé :

$$\begin{split} \sqrt{\text{kwh}_t} &= -680.9117 + 0.00057 \text{ htdd}_t + 0.0073 \text{ cldd}_t + \\ & 0.3496 \text{ temps}_t + u_t, \ t = 1, \cdots, 168 \\ u_t &= \frac{1 - 0.7766 \, \text{B}^{12}}{(1 - 0.6323 \, \text{B})(1 - 0.984 \, \text{B}^{12})} z_t, \qquad \widehat{\text{var}}(z_t) = 0.03524 \end{split} \tag{10.2}$$

est contenu dans l'objet mdarx3c. Cet objet contient également la matrice des covariances estimée des estimateurs des paramètres. Notons Σ la sous-matrice des covariances des estimateurs de β_{cldd} et β_{hldd} .

Sous l'hypothèse : $\beta_{cldd}=10~\beta_{htdd},~\widehat{\beta}_{cldd}-10~\widehat{\beta}_{htdd}\sim AN(0,\sigma^2)$ où

$$\sigma^2 = \begin{bmatrix} 1 & -10 \end{bmatrix} \Sigma \begin{bmatrix} 1 \\ -10 \end{bmatrix}$$

D'où la statistique de test :

$$t = \frac{\widehat{\beta}_{cldd} - 10 \, \widehat{\beta}_{htdd}}{\widehat{\sigma}}$$

sous H_0 elle suit approximativement une loi $\mathcal{N}(0,1)$. On remplace dans σ^2 , tous les paramètres par leurs estimations. On rejettera l'hypothèse nulle pour de grandes valeurs absolues de t. Nous sommes maintenant en mesure de calculer t. Par str (mdarx3c) nous repérons les estimations des paramètres, élément mdarx3c\$coef, et leur matrice des covariances estimées, élément mdarx3c\$var.coef.

La p.value est supérieure à 18%; on peut conserver cette hypothèse.