A brief intro to Machine Learning

Daniel Eftekhari daniel.eftekhari@ibm.com

Today

- Essential ML concepts
- Introduction to two ML algorithms

How to evaluate ML algorithms

What is Machine Learning

 "... algorithms that can learn from and make predictions on data ..." (Wikipedia)

• Statistical pattern recognition

[1] https://inovancetech.com/buzzwords.html

Machine Learning Subcategories

- Supervised Learning
 - Learn relation between data and known labels/outcomes
 - $X \to Y$
- Unsupervised Learning
 - Learn patterns in data no labels/outcomes given
- Reinforcement Learning
 - Learn what actions maximize reward
 - Ex: robot-training, understanding biological decision-making

Today's focus – Supervised Learning

- Brief introduction to
 - Linear regression
 - Logistic regression
 - Validating results
- Knowledge of the above is good preparation for future encounters with supervised learning

Before we start

- Some general advice:
 - Occam's razor: "Among competing hypotheses, the one with the fewest assumptions should be selected." (Wikipedia)
 - Be wary: very easy to treat ML algorithms as black boxes
 - Particularly true as there are libraries dedicated to making life easy in many programming languages
 - Invariably leads to sub-optimal algorithm selection and/or design
 - Algorithm of choice is almost always problem-specific
 - Before applying ML algorithms
 - Understand the nature of your data -> how was it obtained?
 - Visualize your data -> is there a class bias in your data?
 - Develop baseline models -> will serve as a metric when using more advanced algorithms

Linear Regression

Linear Regression - Essentials

- Used for prediction
 - Maps input to continuous outputs
 - ex: house prices, customer ratings
 - $y \rightarrow$ Known label

•
$$\widehat{y} = X\beta + \epsilon$$

- $\hat{y_i} \rightarrow dependent \ variable$
- $x_{i1} ... x_{im} \rightarrow independent variables$
- $\beta \rightarrow parameter\ vector$
- $\epsilon_i \rightarrow noise$

Linear Regression - Essentials

- Key Assumptions of Linear Regression
 - Linearity (not in the way you think)
 - Linear in β

•
$$\hat{y}_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_m x_i^m + \epsilon_i$$

- Constant variance in error (homoscedasticity)
 - Often a flawed assumption
- Linear independence of predictors

Linear Regression - Optimization

- Loss Function
 - Metric for evaluating how well model fits data

Ordinary Least Squares

•
$$loss = \frac{1}{2}(\mathbf{y} - \widehat{\mathbf{y}})^2$$

Linear Regression — Analytical Solution

• Minimize loss w.r.t. β

•
$$loss = \frac{1}{2}(\mathbf{y} - \widehat{\mathbf{y}})^2$$

•
$$loss = \frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^2$$

•
$$loss = \frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^2$$

• $\frac{\partial loss}{\partial \boldsymbol{\beta}} = \frac{\partial}{\partial \boldsymbol{\beta}}(\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^2)$

•
$$0 = -X^T(y - X\beta)$$

•
$$X^T y = X^T X \beta$$

•
$$\beta = (X^T X)^{-1} X^T y$$

• Problem:

- Computational complexity: $O(M^2N)$
 - M = number of features, N = number of samples

Linear Regression – Gradient Descent

- Algorithm
 - 1. Initialize β randomly
 - 2. Repeat until convergence

$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \lambda \frac{\partial loss}{\partial \boldsymbol{\beta}}$$

- λ = learning rate (0 < λ < 1)
 - Too low:
 - slow to converge
 - trapped in local minima
 - Too high
 - divergence

Linear Regression – Gradient Descent

Can use momentum to overcome.

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

[1]

Linear Regression – Gradient Descent

Batch updates:

•
$$\beta \leftarrow \beta + \lambda \sum_{n=1}^{N} [(y^{(n)} - \hat{y}(x^{(n)}))x^{(n)}]$$

- Stochastic Gradient Descent
 - Computationally faster (do not need to hold entire dataset in memory)
 - Update weights for each training case
 - for i = 1 to N $\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} + \lambda(y^{(n)} - \hat{y}(x^{(n)}) x^{(n)})$
 - Can use mini-batches: balance between performance and speed

Linear Regression – Under/Overfitting

[1]

Underfitting

 Model does not capture complexity of problem

Overfitting

 Model is too powerful – does not generalize to unseen data

Linear Regression – Regularization

- Problem
 - As we increase model power, weights increase in magnitude to compensate for noise
- Solution: Regularization
 - Restrict magnitude of β by penalizing large weights
- Ridge regression
 - $loss = \frac{1}{2}(X\beta y)^2 + \frac{\alpha}{2}\beta^T\beta$
 - α = regularization term (0 < α < 1)

Linear Regression – Regularization

Analytical solution:

•
$$\boldsymbol{\beta} = (X^TX + \alpha I)^{-1}X^Ty$$

Gradient descent:

•
$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} + \lambda \sum_{n=1}^{N} [(y^{(n)} - \hat{y}(x^{(n)}))x^{(n)} - \alpha \boldsymbol{\beta}]$$

Linear Regression – Key Concepts

- Used for prediction
- Model assumptions
- Loss function
- Analytical solution vs. gradient descent
- Under/overfitting
- Hyperparameter tuning

Logistic Regression

Logistic Regression - Essentials

- Used for classification
 - Maps input to binary output
 - ex: medical diagnostics
 - We will focus on binary classification
- Linear regression (blue line) isn't a good solution
 - The sign function (dotted line), is more appropriate

Logistic Regression – Sigmoid Function

- The sign function is an extreme case of the sigmoid function
 - Sigmoid properties:
 - probabilistic outputs
 - continuous and differentiable everywhere
 - maintains classification property

•
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

[1] https://en.wikipedia.org/wiki/Sigmoid function

[2] http://www.gnuplotting.org/defining-piecewise-functions/

Logistic Regression – Binary Classification

•
$$\hat{y}(\mathbf{x}) = \sigma(\boldsymbol{\beta}^T \mathbf{x} + \beta_0)$$

• $p(C = 0|\mathbf{x}) = \sigma(\boldsymbol{\beta}^T \mathbf{x} + \beta_0)$

•
$$p(C = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\beta}^T \mathbf{x} + \beta_0)$$

Decision boundary:

•
$$\boldsymbol{\beta}^T \boldsymbol{x} + \beta_0 = 0$$

- Linear Regression
 - sensitive to outliers

[1] Zemel, Urtasun, Fidler (UofT), CSC411 Fall 2016

Logistic Regression – Optimization

- Assume training examples are sampled I.I.D. (Independent and Identically Distributed)
- Likelihood Function: $L(\boldsymbol{\beta}) = \prod_{i=1}^{N} p(y^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\beta})$
- Define the loss function as the negative log of the likelihood function, and use gradient descent to solve for optimal $\pmb{\beta}$
 - Negative to make it a minimization problem
 - Log for numerical reasons
- Tune learning rate and regularization parameters

Logistic Regression – Optimization

•
$$p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\beta}) = (1-p(\hat{y}=0|\mathbf{x}^{(i)};\boldsymbol{\beta}))^{y^{(i)}} (p(\hat{y}=0|\mathbf{x}^{(i)};\boldsymbol{\beta}))^{1-y^{(i)}}$$

•
$$L(\boldsymbol{\beta}) = \prod_{i=1}^{N} (1 - p(\hat{y} = 0 | \boldsymbol{x}^{(i)}; \boldsymbol{\beta}))^{y^{(i)}} (p(\hat{y} = 0 | \boldsymbol{x}^{(i)}; \boldsymbol{\beta}))^{1-y^{(i)}}$$

- $loss(\boldsymbol{\beta}) = -log(L(\boldsymbol{\beta}))$
- $loss(\beta) = -\sum_{i=1}^{N} (y^{(i)}) \log (1 p(\hat{y} = 0 | x^{(i)}; \beta)) \sum_{i=1}^{N} (1 y^{(i)}) \log (p(\hat{y} = 0 | x^{(i)}; \beta))$
- $loss(\beta) = \sum_{i=1}^{N} log(1 + exp(-z^{(i)})) + \sum_{i=1}^{N} y^{(i)} z^{(i)}$
 - Where $z = \beta^T x + \beta_0$

• Convex function in $oldsymbol{eta}$ – therefore we should be able to find the global optimum

•
$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \lambda \frac{\partial loss}{\partial \boldsymbol{\beta}}$$

Logistic Regression – Regularization

- Define priors over the weights
 - $\max\{\log[p(\boldsymbol{\beta})\prod_{i=1}^N p(y^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\beta})]\}$ w.r.t. $\boldsymbol{\beta}$, where $p(\boldsymbol{\beta})=N(0,\alpha^{-1}\boldsymbol{I})$

Prior biases the weights towards zero -> prevents weights from growing too large

Classification – Other Algorithms

- Popular ones
 - Decision Trees
 - Random Forests -> Xbox Kinect!
 - k-Nearest Neighbour (kNN)
 - Recommender Systems
 - Naïve Bayes
 - Spam Detection
 - Neural Networks
 - Image & Speech Recognition, Machine Translation
 - Support Vector Machines (SVM)
 - Similar use cases as neural networks
 - Mixture of Experts
 - Combines decisions of different algorithms
 - Netflix recommender system!

Validating Results

Cross Validation – Hyperparameter Tuning

- Need 3 things
 - Training set
 - Validation set
 - Test set

- Use training set to optimize $oldsymbol{eta}$
- Use validation set to optimize for hyperparameters (ex: λ , α)
- Use test set to evaluate results on unseen data set
 - DO NOT over-test on the test set

Cross Validation - Techniques

- Widely used: k-fold cross validation
 - Increases data set utility
 - Only used to evaluate a single model's performance, not to tune hyperparameters... (see below)

Alternative: nested k-fold cross validation

K = 1K = 2K = 3K = 4K = 5K = 6[1] K = 7Training folds Test fold Outer loop Train with optimal parameters Training fold Validation fold Inner loop [2] Tune parameters

[1] https://www.analyticsvidhya.com/blog/2016/02/7-important-model-evaluation-error-metrics/

[2] https://sebastianraschka.com/faq/docs/evaluate-a-model.html

Metrics for Binary Classification

- Sensitivity: proportion of positives correctly identified
- Specificity: proportion of negatives correctly identified

•
$$Sensitivity = Recall = \frac{TP}{TP + FN} = \frac{TP}{all\ ground\ truth\ positive\ cases}$$

•
$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{all\ ground\ truth\ negative\ cases}$$

•
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{all\ correct\ predictions}{all\ predictions\ made}$$

Metrics for Binary Classification

- Recall: fraction of relevant instances that are retrieved
- Precision: fraction of retrieved instances that are relevant

•
$$Recall = \frac{TP}{TP + FN} = \frac{TP}{all \ ground \ truth \ positive \ cases}$$

•
$$Precision = \frac{TP}{TP + FP} = \frac{TP}{all\ cases\ predicted\ as\ positive}$$

•
$$F1 = 2 \frac{P*R}{P+R}$$

Receiver Operating Characteristic

[1] Zemel, Urtasun, Fidler (UofT), CSC411 Fall 2016

Conclusions

- We examined two supervised learning algorithms
 - Linear Regression
 - Logistic Regression
- We examined how to build ML algorithms from the ground up
- We saw that in supervised learning, we use ML algorithms to find $oldsymbol{eta}$
 - It's still up to us to acquire input data $m{X}$ and ground truth labels $m{y}$
- We examined how to validate ML models and how to measure performance

