

SEQUENCE LISTING

<110> DARRROW, ANDREW LAWRENCE
QI, JIAN-SHEN
CHEN, CAILIN
ANDRADE-GORDON, PATRICIA

<120> HUMAN PRSS11-LIKE S2 SERINE PROTEASE AND USES THEREOF

<130> ORT-1644-CIP

<140> 10/617,443
<141> 2003-07-02

<150> 10/189,099
<151> 2002-07-03

<160> 31

<170> PatentIn Ver. 3.3

<210> 1
<211> 3006
<212> DNA
<213> Homo sapiens

<400> 1
cagggactcg aagtttgcag tcctccacac tcaagtccca cagatgtggt aggagggcat 60
attcagtccc atttttcaga tgaggagttg aggcccagag aacgtaagta atctgtctga 120
ggccacacag cttagaaagca gccaggccca gccgaacccc tggtgtgtgc agccccccagc 180
ccagttgctc attgcggggc tcgggagcca cgagcgaggc tgagcagcat gtgttccaga 240
tggtggaac tggagagagc ccggcacagg cccgtgcagg gaaccccgag ggctgttaggc 300
ccctgtccac tgcattgcctc aggctgtgg tcctggcagc cacagccct actgctgacg 360
gcagcaggaa tctgagcccg ggaagggtcc agggaaagttc gtgaaccatc tagcaagtcg 420
ggctgggtg tggcaagtt agacacatg ttagggccct gtggactcag aaattggcag 480
ctcttttggc ccagaggggc cacgtgtgt cccggcctgg ttagtcaga agggtcacct 540
gggggtcttc cactacaccc ccgcctggac actgtgttag ccccagggtc cggagggacc 600
agctggagcc catgaggaga gggccagttc ttcctgtaa gggtattgtc ttagcatgag 660
ggaacagaca aggcccaggg ggactaaccg gagatccagc cccggcctca ctcccgtgtg 720
gctcacggca atatcctaac ctctctgtc gcctcctgcc cagcttagca gggtccagtg 780
aggggggtga ggaagcccg cacgttggaa ctttttaac cattctcggt gtgagcgagc 840
cccttcccaa atgcctggc tcactgcact gctgtgtgt agggggtccc caacgggctc 900
agtgtggct gaggctggc ctgaactggg acaggggtct caggaagagc ctccctctcc 960
tgcccaactgg gcataggct ctgggagctg gcagcatgt gatctactg atgcacctgg 1020
cccttccgc cagcgcaggc ctccaccaggc tgagcagccc ggcctacaag ttcaacttca 1080
ttgctgacgt ggtggagaag atgcaccagg cggtggtcca catagagctc ttcctgagac 1140
acccgctgtt tggccgcaac gtgcccctgt cagcggttc tggcttcatc atgtcagagg 1200
ccggcctgtat catcacaat gcccacgtgg tgtccagcaa cagtgctgcc ccgggcaggc 1260
agcagctcaa ggtgcagcta cagaatgggg actccatataa ggcaccatc aaagacatcg 1320
acaagaagtc ggacattgcc accatcaaga tccatcccaa gaaaaagctc cctgtgttgt 1380
tgctgggtca ctggccgcac ctgcggcctg gggagttgt ggtggccatc ggcagtcct 1440
tcgcccataca gaacacagtg acaacggca tcgtcagcac tgcccagcgg gagggcaggc 1500
agctgggcct ccgggactcc gacatggact acatccagac ggatgccatc atcaactacg 1560
ggaactccgg gggaccactg gtgaacctgg atggcgaggc cattggcattc aacacgctca 1620
aggtcacggc tggcatctcc tttgcccattc cctcagaccc catcacacgg ttccctcacag 1680
agttccaaga caagcagatc aaagactgg aagaagcgctt catcgccata cggatgcggc 1740
cgatcacacc aaggcctggc gatgagctg aaggcagcaa cccggacttc ccagaggtca 1800
gcagtggaat ttatgtccaa gaggttgcgc cgaattcacc ttctcagaga ggcggcatcc 1860

aagatggta catcatcgta aaggtaaacg ggcttcctct agtggactcg agtgagctgc 1920
 aggaggccgt gctgaccgag tctcctctcc tactggaggt gcggccccgg aacgacgacc 1980
 tcctttcaag catcgacacct gaggtggta tggagggggc gcatttcctcc agcgccaagc 2040
 gtcagacccgcgacaaacg gagggcagcg ccccccggag atcaggacga aggaccaccc 2100
 tcggtcctca gcagggccggc agccttcctcc tggctgtccg gggcagagcg gaggctggc 2160
 ttggccaggc gcccgaattt ccgcctgggg agtgttggat ccacatccccg gtgccgggaa 2220
 gggaaagccca acatccctt gtacagatga tcctgaaagt cacttccaag ttctccggat 2280
 attcacaaaa ctgccttcca tggaggccc ctcccttcctt agcttccgc ctctgcccct 2340
 gtgaacaccc atctgcagta tcccctgctc ctgcccctcc tactgcaggt ctggctgccc 2400
 aagcttcttc ccccttgaca aacgcccacc tgacctgagg ccccaagcttc cctctgcccct 2460
 aggacttacc aagctgttagg gccaggcgtc ctgcctgcca gcctgggtc cctggaggac 2520
 aggtcacatc tggatccctt ggggtgcggg ggtgggggtcc agcccaagagc aggcaactgag 2580
 tgaatgcccc ctggctgcgg agctgagccc cgccctgcca tgagggttttc ctccccaggc 2640
 aggccaggagg ccgcggggggag cacgtggaaa gttggctgtc gcctggggaa gcttcttc 2700
 cccaaggccgg ccatggggca gcctgcagag gacagtggac gtggagctgc ggggtgtgag 2760
 gactgagccg gcttccctt cccacgcgc tctggatgc agcagccgcgct cgcacggaaag 2820
 tgccgcccag aggcatgcag gctgctgggc accacccccc catccaggaa acgagtgtgt 2880
 ctcaaggggc atttgtgagc tttgctgtaa atggattccc agtgttgctt gtactgtatg 2940
 ttctctact gtatggaaaaaa taaagtttac aagcacacgg ttctcagcca aaaaaaaaaaa 3000
 aaaaaaaaaa 3006

<210> 2
<211> 334
<212> PRT
<213> Homo sapiens

<400> 2
Met His Leu Ala Leu Pro Ala Ser Ala Gly Leu His Gln Leu Ser Ser
1 5 10 15
Pro Arg Tyr Lys Phe Asn Phe Ile Ala Asp Val Val Glu Lys Ile Ala
20 25 30
Pro Ala Val Val His Ile Glu Leu Phe Leu Arg His Pro Leu Phe Gly
35 40 45
Arg Asn Val Pro Leu Ser Ser Gly Ser Gly Phe Ile Met Ser Glu Ala
50 55 60
Gly Leu Ile Ile Thr Asn Ala His Val Val Ser Ser Asn Ser Ala Ala
65 70 75 80
Pro Gly Arg Gln Gln Leu Lys Val Gln Leu Gln Asn Gly Asp Ser Tyr
85 90 95
Glu Ala Thr Ile Lys Asp Ile Asp Lys Lys Ser Asp Ile Ala Thr Ile
100 105 110
Lys Ile His Pro Lys Lys Leu Pro Val Leu Leu Leu Gly His Ser
115 120 125
Ala Asp Leu Arg Pro Gly Glu Phe Val Val Ala Ile Gly Ser Pro Phe
130 135 140
Ala Leu Gln Asn Thr Val Thr Thr Gly Ile Val Ser Thr Ala Gln Arg
145 150 155 160

Glu Gly Arg Glu Leu Gly Leu Arg Asp Ser Asp Met Asp Tyr Ile Gln
 165 170 175
 Thr Asp Ala Ile Ile Asn Tyr Gly Asn Ser Gly Gly Pro Leu Val Asn
 180 185 190
 Leu Asp Gly Glu Val Ile Gly Ile Asn Thr Leu Lys Val Thr Ala Gly
 195 200 205
 Ile Ser Phe Ala Ile Pro Ser Asp Arg Ile Thr Arg Phe Leu Thr Glu
 210 215 220
 Phe Gln Asp Lys Gln Ile Lys Asp Trp Lys Lys Arg Phe Ile Gly Ile
 225 230 235 240
 Arg Met Arg Thr Ile Thr Pro Ser Leu Val Asp Glu Leu Lys Ala Ser
 245 250 255
 Asn Pro Asp Phe Pro Glu Val Ser Ser Gly Ile Tyr Val Gln Glu Val
 260 265 270
 Ala Pro Asn Ser Pro Ser Gln Arg Gly Gly Ile Gln Asp Gly Asp Ile
 275 280 285
 Ile Val Lys Val Asn Gly Arg Pro Leu Val Asp Ser Ser Glu Leu Gln
 290 295 300
 Glu Ala Val Leu Thr Glu Ser Pro Leu Leu Glu Val Arg Arg Gly
 305 310 315 320
 Asn Asp Asp Leu Leu Phe Ser Ile Ala Pro Glu Val Val Met
 325 330

<210> 3
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 3
 cagccgtgac cttgagcgtg ttg

23

<210> 4
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 4
 ggccgagtga cccagcaaca ac

22

```

<210> 5
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 5
cgtgtctaga gccatgcacc tggcccttcc cgcc          34

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 6
gcgctctaga catgaccacc tcaggtgcga          30

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 7
gcaagtctggg ctggggtgtgtg          20

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 8
caggagactt ttctttggga tgga          24

<210> 9
<211> 480
<212> PRT
<213> Homo sapiens

```

<400> 9
 Met Gln Ile Pro Arg Ala Ala Leu Leu Pro Leu Leu Leu Leu Leu
 1 5 10 15
 Ala Ala Pro Ala Ser Ala Gln Leu Ser Arg Ala Gly Arg Ser Ala Pro
 20 25 30
 Leu Ala Ala Gly Cys Pro Asp Arg Cys Glu Pro Ala Arg Cys Pro Pro
 35 40 45
 Gln Pro Glu His Cys Glu Gly Gly Arg Ala Arg Asp Ala Cys Gly Cys
 50 55 60
 Cys Glu Val Cys Gly Ala Pro Glu Gly Ala Ala Cys Gly Leu Gln Glu
 65 70 75 80
 Gly Pro Cys Gly Glu Gly Leu Gln Cys Val Val Pro Phe Gly Val Pro
 85 90 95
 Ala Ser Ala Thr Val Arg Arg Arg Ala Gln Ala Gly Leu Cys Val Cys
 100 105 110
 Ala Ser Ser Glu Pro Val Cys Gly Ser Asp Ala Asn Thr Tyr Ala Asn
 115 120 125
 Leu Cys Gln Leu Arg Ala Ala Ser Arg Arg Ser Glu Arg Leu His Arg
 130 135 140
 Pro Pro Val Ile Val Leu Gln Arg Gly Ala Cys Gly Gln Gly Gln Glu
 145 150 155 160
 Asp Pro Asn Ser Leu Arg His Lys Tyr Asn Phe Ile Ala Asp Val Val
 165 170 175
 Glu Lys Ile Ala Pro Ala Val Val His Ile Glu Leu Phe Arg Lys Leu
 180 185 190
 Pro Phe Ser Lys Arg Glu Val Pro Val Ala Ser Gly Ser Gly Phe Ile
 195 200 205
 Val Ser Glu Asp Gly Leu Ile Val Thr Asn Ala His Val Val Thr Asn
 210 215 220
 Lys His Arg Val Lys Val Glu Leu Lys Asn Gly Ala Thr Tyr Glu Ala
 225 230 235 240
 Lys Ile Lys Asp Val Asp Glu Lys Ala Asp Ile Ala Leu Ile Lys Ile
 245 250 255
 Asp His Gln Gly Lys Leu Pro Val Leu Leu Leu Gly Arg Ser Ser Glu
 260 265 270
 Leu Arg Pro Gly Glu Phe Val Val Ala Ile Gly Ser Pro Phe Ser Leu
 275 280 285
 Gln Asn Thr Val Thr Thr Gly Ile Val Ser Thr Thr Gln Arg Gly Gly
 290 295 300

Lys Glu Leu Gly Leu Arg Asn Ser Asp Met Asp Tyr Ile Gln Thr Asp
 305 310 315 320

Ala Ile Ile Asn Tyr Gly Asn Ser Gly Gly Pro Leu Val Asn Leu Asp
 325 330 335

Gly Glu Val Ile Gly Ile Asn Thr Leu Lys Val Thr Ala Gly Ile Ser
 340 345 350

Phe Ala Ile Pro Ser Asp Lys Ile Lys Lys Phe Leu Thr Glu Ser His
 355 360 365

Asp Arg Gln Ala Lys Gly Lys Ala Ile Thr Lys Lys Tyr Ile Gly
 370 375 380

Ile Arg Met Met Ser Leu Thr Ser Ser Lys Ala Lys Glu Leu Lys Asp
 385 390 395 400

Arg His Arg Asp Phe Pro Asp Val Ile Ser Gly Ala Tyr Ile Ile Glu
 405 410 415

Val Ile Pro Asp Thr Pro Ala Glu Ala Gly Gly Leu Lys Glu Asn Asp
 420 425 430

Val Ile Ile Ser Ile Asn Gly Gln Ser Val Val Ser Ala Asn Asp Val
 435 440 445

Ser Asp Val Ile Lys Arg Glu Ser Thr Leu Asn Met Val Val Arg Arg
 450 455 460

Gly Asn Glu Asp Ile Met Ile Thr Val Ile Pro Glu Glu Ile Asp Pro
 465 470 475 480

<210> 10
 <211> 458
 <212> PRT
 <213> Homo sapiens

<400> 10
 Met Ala Ala Pro Arg Ala Gly Arg Gly Ala Gly Trp Ser Leu Arg Ala
 1 5 10 15

Trp Arg Ala Leu Gly Gly Ile Arg Trp Gly Arg Arg Pro Arg Leu Thr
 20 25 30

Pro Asp Leu Arg Ala Leu Leu Thr Ser Gly Thr Ser Asp Pro Arg Ala
 35 40 45

Arg Val Thr Tyr Gly Thr Pro Ser Leu Trp Ala Arg Leu Ser Val Gly
 50 55 60

Val Thr Glu Pro Arg Ala Cys Leu Thr Ser Gly Thr Pro Gly Pro Arg
 65 70 75 80

Ala Gln Leu Thr Ala Val Thr Pro Asp Thr Arg Thr Arg Glu Ala Ser
 85 90 95

Glu Asn Ser Gly Thr Arg Ser Arg Ala Trp Leu Ala Val Ala Leu Gly
 100 105 110
 Ala Gly Gly Ala Val Leu Leu Leu Trp Gly Gly Arg Gly Pro
 115 120 125
 Pro Ala Val Leu Ala Ala Val Pro Ser Pro Pro Pro Ala Ser Pro Arg
 130 135 140
 Ser Gln Tyr Asn Phe Ile Ala Asp Val Val Glu Lys Thr Ala Pro Ala
 145 150 155 160
 Val Val Tyr Ile Glu Ile Leu Asp Arg His Pro Phe Leu Gly Arg Glu
 165 170 175
 Val Pro Ile Ser Asn Gly Ser Gly Phe Val Val Ala Ala Asp Gly Leu
 180 185 190
 Ile Val Thr Asn Ala His Val Val Ala Asp Arg Arg Arg Val Arg Val
 195 200 205
 Arg Leu Leu Ser Gly Asp Thr Tyr Glu Ala Val Val Thr Ala Val Asp
 210 215 220
 Pro Val Ala Asp Ile Ala Thr Leu Arg Ile Gln Thr Lys Glu Pro Leu
 225 230 235 240
 Pro Thr Leu Pro Leu Gly Arg Ser Ala Asp Val Arg Gln Gly Glu Phe
 245 250 255
 Val Val Ala Met Gly Ser Pro Phe Ala Leu Gln Asn Thr Ile Thr Ser
 260 265 270
 Gly Ile Val Ser Ser Ala Gln Arg Pro Ala Arg Asp Leu Gly Leu Pro
 275 280 285
 Gln Thr Asn Val Glu Tyr Ile Gln Thr Asp Ala Ala Ile Asp Phe Gly
 290 295 300
 Asn Ser Gly Gly Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly Val
 305 310 315 320
 Asn Thr Met Lys Val Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp
 325 330 335
 Arg Leu Arg Glu Phe Leu His Arg Gly Glu Lys Lys Asn Ser Ser Ser
 340 345 350
 Gly Ile Ser Gly Ser Gln Arg Arg Tyr Ile Gly Val Met Met Leu Thr
 355 360 365
 Leu Ser Pro Ser Ile Leu Ala Glu Leu Gln Leu Arg Glu Pro Ser Phe
 370 375 380
 Pro Asp Val Gln His Gly Val Leu Ile His Lys Val Ile Leu Gly Ser
 385 390 395 400

Pro Ala His Arg Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile
 405 410 415
 Gly Glu Gln Met Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg
 420 425 430
 Thr Gln Ser Gln Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu
 435 440 445
 Thr Leu Tyr Val Thr Pro Glu Val Thr Glu
 450 455

<210> 11
 <211> 353
 <212> PRT
 <213> Homo sapiens

<400> 11
 Cys Ala Leu Gln Ala Ala Ser Arg Arg Ala Leu Gln Leu Ser Gly Thr
 1 5 10 15
 Pro Val Arg Gln Leu Gln Lys Gly Ala Cys Pro Leu Gly Leu His Gln
 20 25 30

Leu Ser Ser Pro Arg Tyr Lys Phe Asn Phe Ile Ala Asp Val Val Glu
 35 40 45

Lys Ile Ala Pro Ala Val Val His Ile Glu Leu Phe Leu Arg His Pro
 50 55 60

Leu Phe Gly Arg Asn Val Pro Leu Ser Ser Gly Ser Gly Phe Ile Met
 65 70 75 80

Ser Glu Ala Gly Leu Ile Ile Thr Asn Ala His Val Val Ser Ser Asn
 85 90 95

Ser Ala Ala Pro Gly Arg Gln Gln Leu Lys Val Gln Leu Gln Asn Gly
 100 105 110

Asp Ser Tyr Glu Ala Thr Ile Lys Asp Ile Asp Lys Ser Asp Ile
 115 120 125

Ala Thr Ile Lys Ile His Pro Lys Lys Leu Pro Val Leu Leu Leu
 130 135 140

Gly His Ser Ala Asp Leu Arg Pro Gly Glu Phe Val Val Ala Ile Gly
 145 150 155 160

Ser Pro Phe Ala Leu Gln Asn Thr Val Thr Thr Gly Ile Val Ser Thr
 165 170 175

Ala Gln Arg Glu Gly Arg Glu Leu Gly Leu Arg Asp Ser Asp Met Asp
 180 185 190

Tyr Ile Gln Thr Asp Ala Ile Ile Asn Tyr Gly Asn Ser Gly Gly Pro
 195 200 205

Leu Val Asn Leu Asp Gly Glu Val Ile Gly Ile Asn Thr Leu Lys Val
 210 215 220
 Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp Arg Ile Thr Arg Phe
 225 230 235 240
 Leu Thr Glu Phe Gln Asp Lys Gln Ile Lys Asp Trp Lys Lys Arg Phe
 245 250 255
 Ile Gly Ile Arg Met Arg Thr Ile Thr Pro Ser Leu Val Asp Glu Leu
 260 265 270
 Lys Ala Ser Asn Pro Asp Phe Pro Glu Val Ser Ser Gly Ile Tyr Val
 275 280 285
 Gln Glu Val Ala Pro Asn Ser Pro Ser Gln Arg Gly Gly Ile Gln Asp
 290 295 300
 Gly Asp Ile Ile Val Lys Val Asn Gly Arg Pro Leu Val Asp Ser Ser
 305 310 315 320
 Glu Leu Gln Glu Ala Val Leu Thr Glu Ser Pro Leu Leu Leu Glu Val
 325 330 335
 Arg Arg Gly Asn Asp Asp Leu Leu Phe Ser Ile Ala Pro Glu Val Val
 340 345 350

Met

<210> 12		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 12		
ggcgcctggccc gttgggttaag cgctcgaaaa		30
<210> 13		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 13		
ttcccgccag cgcaggatctc caccagctga		30
<210> 14		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 14		
agagctcttc ctgaggtggg tgaatacccc		30

<210> 15
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 15
 tctccctggc tgcagacacc cgctgttgg 30

<210> 16
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 16
 agagctcttc ctgaggtggg tgaatacccc 30

<210> 17
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 17
 tctccctggc tgcagacacc cgctgttgg 30

<210> 18
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 18
 aagatccatc ccaaggtggg tgggcgtggg 30

<210> 19
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 19
 cttctctct cctagaaaaa gtcctgtg 30

<210> 20
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 20
 gatgccatca tcaacgttag tcccaggac 30

<210> 21
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 21		
ttcctccctt tgcagtacgg gaactccggg		30
<210> 22		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 22		
ccactggtaa acctggtaag tgtccctag		30
<210> 23		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 23		
tacccctgtt cccaggatgg cgaggtcatt		30
<210> 24		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 24		
acaaggcat caaaggtaaa gagtcacct		30
<210> 25		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 25		
gtgtttcatt tccagactgg aagaagcgct		30
<210> 26		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 26		
gacgatcaca ccaaggtagt gttctgaaga		30
<210> 27		
<211> 30		
<212> DNA		
<213> Homo sapiens		
<400> 27		
gcagactttt tccagcctgg tggatgagct		30

<210> 28
<211> 30
<212> DNA
<213> Homo sapiens

<400> 28
ttcaccttct cagaggtagg ctctgccaga

30

<210> 29
<211> 30
<212> DNA
<213> Homo sapiens

<400> 29
ctctcctgtt ggcagaggcg gcatccaaga

30

<210> 30
<211> 6
<212> PRT
<213> Homo sapiens

<400> 30
Thr Asn Ala His Val Val
1 5

<210> 31
<211> 16
<212> PRT
<213> Homo sapiens

<400> 31
Gly Asn Ser Gly Gly Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly
1 5 10 15