Processo Seletivo Extraordinário

Luis Eduardo C. M. de Lima 2022-01

Brasília 22 de setembro de 2022

Autor:

Luis Eduardo Castro Mendes de Lima 221008285

Resumo:

Tendo em vista a necessidade da Equipe de Robótica Area (EDRA) da Universidade de Brasília (UnB) e o interesse do estudante de engenharia Luis Eduardo Castro Mendes de Lima foi proposto um processo seletivo extraordinário. Este procedimento de seleção visa avaliar o aluno para possivelmente o mesmo ingressar na equipe de competição e capacitar o aluno em sua área de interesse, manufatura aditiva para a indústria aeroespacial.

Desse modo foi solicitado ao aluno em estágio de trainee realizasse um documento por escrito com os seguintes conteúdos:

Um manual de uso para impressoras 3D, explicando desde da concepção da peça até os processos necessários para a impressão.

Um estudo teórico sobre filamentos para impressão 3D, a análise das propriedades mecânicas e químicas dos materiais utilizados para a manufatura aditiva.

Um relatório sobre as áreas da EDRA e suas interligações.

Sumário

1	Manual Prático		
	1.1	Introdução ao Manual	
	1.2	Onde tudo começa	;
	1.3	A peça perfeita	9
	1.4	Funcionamente de uma impressora 3D	4
	1.5	Softwares necessários	4
		1.5.2 Ultimaker Cura	
	1.6	Processo do CAD	6
		1.6.1 Boas práticas dentro do CAD	6
	1.7	Qual arquivo usar para a impressao?	7
		1.7.1 Salvando em .STL no Fusion 360	8
	1.8	Escolha do material	8
	1.9	Escolha da impressora 3D	Ć
	1.10	Configurando o Cura	10
		1.10.1 Escolhendo a impressora	
		1.10.2 Abrindo arquivos	11
		1.10.3 Escolhendo o material e diâmetxro de bico	11
		1.10.4 Configurando parâmetros	11
		1.10.5 Salvando o gcode	
	1.11	Imprimindo	14
2	Tr.4.	ada tadaisa da Glamantas mana imanasa a 2D	1 5
2		ido teórico de filamentos para impressão 3D	15
	2.1 2.2	Contextualização	
		impressão 3D de drones	
	2.3	Os clássicos	
	2.4	2.3.2 Poli Estireno Tereftalato com Glicol(PETG)	
	$2.4 \\ 2.5$	PetG com Adicional de Fibras de Carbono	
	$\frac{2.5}{2.6}$	Termoplástico Poliuretano(TPU)	
	2.0 2.7		
		Poliácido de metileno-acetal(POM)	
	2.8	Nylon	10
3	Rela	atório sobre as Áreas da Edra	20
	3.1	Design Estrutural	20
	3.2	Aerodinâmica e propulsão	20
	3.3		21
	3.4	Controle e Estabilidade	21
	3.5	Integração entre as Áreas	

1 Manual Prático

:

1.1 Introdução ao Manual

É importante ressaltar que:

Este manual tem caráter prático, dessa forma, não teremos aprofundamento teórico sobre os temas tratados.

Partimos do pressuposto que a impressora está pronta para uso, isto é, devidamente montada e calibrada.

Trataremos apenas de impressoras do estilo de produção por fundição por deposição de material(FDM).

Neste Manual usaremos os Softwares mais comumente utilizados no meio da impressão 3D, o Fusion 360 para a modelagem e o Ultimaker Cura para o fatiamento da peça.

Não será ensinado a modelar peças do zero, serão apenas ressaltadas mudanças em CAD que otimizam o processo de impressão 3D.

1.2 Onde tudo começa

.

Antes de começarmos a produzir algo precisamos nos questionar sobre a finalidade daquilo que iremos produzir, tudo possui uma finalidade, um conceito, uma função, seja estética, de acabamento, estrutural, de praticidade, otimização de processo, entre outros exemplos...

"O fim da peça dita o começo"

1.3 A peça perfeita

Todos nós estamos à procura da peça perfeita, a peça mais resistente, mais leve, mais bonita, mais produzível, mais barata, entretanto é importante sabermos que esta peça não existe! Bom, não existe como normalmente pensamos, algo que atenda tudo e todos, a peça perfeita que realmente existe é a peça que atende a sua finalidade da melhor maneira possível!

1.4 Funcionamente de uma impressora 3D

Para melhor experiência de uso de um equipamento é necessário entender a maneira que o mesmo funciona.

Simplicando ao máximo, uma impressora 3D atua de forma similar à uma pistola de cola quente que deposita cola sob cola com finalidade de criar um objeto 3D.

Em suma, uma impressora 3D é uma extrusora ("pistola de cola quente") controlada numéricamente por computador em torno dos eixos x,y e z. A cabeça de extrusão percorre uma trajetória pré determinada em software enquanto o bico aquecido deposita material derretido, produzindo através de sobposição de camadas, objetos 3D.

Figura 1: Esquemático do funcionamento de uma impressora 3D

1.5 Softwares necessários

.

Para realizar todo o processo de impressão de uma peça em 3D, é necessário o uso de um software para a modelagem 3D e um para o fatiamento do modelo 3D.

O processo de fatiamento consiste em dividir uma peça em diversas camadas de mesma altura, possibilitando a impressão da mesma.

Figura 2: Peça pré fatiamento

Figura 3: Peça pós fatiamento

Neste Manual usaremos os programas mais utilizados entre os usuários de impressoras 3D. O fusion 360 para modelagem e o Ultimaker Cura para o fatiamento.

1.5.1 Fusion 360

O fusion 36O é um software de modelagem 3D paramétrica e orgânica criado pela Autodesk, com ele é possivel criar projetos extremamentes complexos e peças simples.

Possui licença de uso estudantil e de uso Hobbista.

Figura 4: Exemplo de projeto criado no Fusion 360

Para realizar o download do mesmo basta acessar o link abaixo:

https://www.autodesk.com/products/fusion-360/free-trial

1.5.2 Ultimaker Cura

:

Ultimaker Cura é o software fatiador mais usado do mundo, desenvolvido pela Ultimaker*, com intuito de disseminar a impressão 3D para o público menos técnico, sendo assim, o fatiador mais simples de ser utilizado.

É possível fazer dowload oficialmente do mesmo através do link:

https://ultimaker.com/software/ultimaker-cura

Figura 5: Exemplo de peça fatiada pelo Cura

*Ultimaker é uma empresa americana dominante no mercado de impressão 3D.

1.6 Processo do CAD

O processo de criação do modelo 3D é similar aos processo tradicional, entretanto, visando a otimização da impressão 3D é necessário tomar alguns cuidados ao se realizar o CAD.

1.6.1 Boas práticas dentro do CAD

Dimensionar as estruturas da peça no eixo Z com base em múltiplos da altura de camada

A altura de camada, como o próprio nome já diz, é a altura de uma camada de material depositada, é necessário que o comprimento no eixo Z da peça seja um múltiplo da altura de camada, caso a divisão entre ambos não seja de resto zero, esta última camada, o resto da divisão, não será depositada, criando assim, uma peça com fuga na dimensão original.

Por exemplo, se criarmos uma peça com 21,3 mm de altura e usarmos uma altura de camada de 0.2 mm, seria necessário 106.5 ($21.3 \div 0.2 = 106.5$) camadas para imprimir por completo a peça, entretanto seriam contabilizadas somente 106 camadas, ficando assim com uma altura de 21,2 mm. ($106 \times 0.2 = 21,2$)

Dimensionar as estruturas da peça nos eixos x e y com base em múltiplos do diâmetro do bico

Exatamente como ocorre no eixo Z, a divisão entre a largura nos eixos x e y e o diâmetro do bico da extrusora, deve ser de resto zero, caso contrário, a camada restante da divisão não será realizada e o objeto terá fuga dimensional.

Por padrão as impressoras de mesa de impressão ate 33x33 cms usam bico de diâmetro 0.4 mm, em caso de duvida, realize a inspeção visual do componente.

O software fatiador tenta virtualmente compensar camadas de valores "quebrados", entretanto não possui total eficiência.

Trabalhar com ângulos menores de 55 graus

É intrínseco do processo de impressão 3D que as camadas superiores tenham camadas inferiores para se apoiarem, seguindo essa logica, apenas conseguiríamos imprimir peças sem angulatura alguma, entretanto, é possível sobpocionar camadas de forma a extremidade da camada superior não tenha contato com a inferior, criando assim, ângulos. Essa técnica funciona com ate um angulo limite, o dito, OverHang.

Figura 6: Camadas com angulatura

Figura 7: OverHang - Partes em vermelho

O Overhang depende de cada maquinario, mas em geral está entre 50 e 60 graus.

Desse modo, é aconselhado que no processo de CAD trabalhe apenas com ângulos menores que 60 graus

Algumas geometrias são apenas possíveis de imprimir com o auxilio de suportes, que são, estruturas criadas durante o processo de impressão com o único intuito de apoiar as partes da peça original que não teriam camadas inferiores para apoio, este tópico será melhor abordado nos parâmetros de impressao.

1.7 Qual arquivo usar para a impressao?

Devido ao sistema de movimentação cartesiano, não é possível realizar uma curva em sua real totalidade, desse modo, para imprimir peças com curvaturas, é necessário subdividi-la em

diversas retas.

Todo circulo é um polígono de N lados

Para imprimir um modelo 3D é necessário converte-lo em uma malha poligonal, o formato .stl ,que significa Standard Triangle Language, no portugues, linguagem universal dos triângulos.

1.7.1 Salvando em .STL no Fusion 360

Em geral, os softwares de modelagem 3D já possuem o fomarto .stl em sua aba de:

"Salvar como" ou "Exportar"

O Fusion 360 possui uma aba exclusiva com essa finalidade.

Basta clicar em FILE — 3D PRITNG — Selecionar o objeto que deseja — OK

Figura 8: FILE –; 3D priting

1.8 Escolha do material

Existem diversos tipos de materias para impressao 3D, entretanto os 3 principais sao:

Figura 9: Selecionar o objeto -; Ok

PLA - Maior facilidade de impressão, menor temperatura de fusão, cerca de 100 reais o KG, baixa resistência a raios UVs, propriedades mecânicas e químicas satisfatórias.

ABS - Maior dificuldade de impressão (requer impressora fechada), temperatura de impressão elevada, cerca de 90 reais o quilo, relativa resistência a raios UVs, propriedades mecânicas e químicas boas, facilidade em acabamento pós impressão (lixar, polir...)

PETG - relativa facilidade de impressão, temperatura de impressão alta, cerca de 130 reais o quilo, boa resistência a raios UVs, propriedades mecânicas e químicas ótimas, relativa facilidade para acabamento pós impressão.

1.9 Escolha da impressora 3D

Escolher uma impressora 3D depende basicamente de dois fatores:

o material a ser utilizado e o tamanho da peça.

Alguns materiais possuem uma maior complexidade de impressão, como por exemplo o ABS, que possui uma contração muito alta, por isso, é recomendável impressoras com ambiente de impressão fechado. Policarbonato, PC, por exemplo, possui temperatura de extrusão mais elevadas, sendo necessário impressoras com alta capacidade de aquecimento da extrusora.

Outro fator decisivo, é o volume de impressão, caso a peça seja maior que a área de impressão, não será possível produzi-la no maquinário

Desse modo fica evidente que a capacidade volumétrica de impressão do seu maquinário deve ser compatível com o tamanho das peças que deseja manufaturar.

Entretanto é importante ressaltar que:

A melhor ferramenta é aquela que nos temos

Exemplo de impressora com ambiente de impressão Aberto:

Figura 10: Impressora Ender 3

Exemplo de impressora com alta capacidade de aquecimento da extrusora:

Figura 11: Impressora Makerbot Replicator

Exemplo de impressora com ambiente de impressão fechado:

Figura 12: Impressora Cr-200 B

1.10 Configurando o Cura

Para as configurações iniciais, clicamos no ícone escrito "PREPARE" no canto superior direito, através dele escolhemos a impressão, o material e alteramos os parâmetros, caso necessário.

Figura 13: Interface inicial do cura

1.10.1 Escolhendo a impressora

No cura possuímos perfis de impressoras criados pela fabricantes da mesma, esses perfis são basicamente o conjunto de parâmetros ideais para a impressão naquele maquinário.

1.10.2 Abrindo arquivos

É possível abrir um ou mais arquivos através ícone em formato de pasta, o primeiro da esquerda para a direita.

Figura 14: Abas secundarias do cura

Figura 15: Abas secundarias do cura

1.10.3 Escolhendo o material e diâmetxro de bico

Na figura 15, na segunda fileira é possível ver o local responsável pela escolha do material e o diâmetro do bico.

1.10.4 Configurando parâmetros

A terceira coluna da figura 15 diz respeito aos parâmetros de impressão, é possível alterar manualmente qualquer parâmetro que deseje, entretanto focaremos apenas nos mais importantes.

Figura 16: Aba para escolher o perfil da impressora

Altura de camada

A altura de camada definira a qualidade superficial da sua peça, em geral, quanto menor a altura mais qualidade e quanto maior menos qualidade, todavia, quanto menor, mais tempo será necessário para a impressão e vice versa.

Figura 17: Aba responsável pelo valor de altura de camada

Em geral, a menor altura de camada das impressoras é $0.12~\mathrm{mm}$

Espessura de parede

É possível configurar a espessura de parede da peça, quantos mais perímetros, mais resistência, entretanto, aumenta-se o peso e o tempo de impressão.

Figura 18: Aba responsável pela escolha da espessura de parede

Preenchimento

É possível configurar o preenchimento da peça, quantos mais perímetros, mais resistência, entretanto, aumenta-se o peso e o tempo de impressão

Também é possível configurar o padrão de preenchimento da peça

Figura 19: Aba responsável pelo valor de preenchimento

Adesão da peça na mesa

Em geral usamos duas maneiras de fixação da peça na mesa

Skirt - imprime-se uma linha com um certo espaçamento ao redor da peça

Brim - Similar ao skit, mas possui contato direto com a peça, sendo necessário sua remoção pôs impressão.

Em geral, o Skirt tem função apenas de despejar o filamento sobressalente na extrusora de impressões anteriores, já o Brim, aumenta a área de contato da peça na mesa de impressão, sendo necessário em casos que a peça possui pouca área de contato com a mesa, imprimir materiais com a contração alta (ABS).

Suporte

Estrutura usada para sustentar camadas de impressão que originalmente não possuiria apoio, é possível configurar o angulo que começará a ter o uso de suportes, na aba denominada Suport OverHang.

Figura 20: Caption

1.10.5 Salvando o gcode

Após realizar o processo de fatiamento, é necessário este arquivo no formato .gcode, que é basicamente as linhas de código que se comunicam diretamente com a impressora.

Para isso basta adicionar a mídia removível do computador, geralmente as impressoras 3D trabalham com cartão microSD e clicar no botão azul escrito "Save removable media".

1.11 Imprimindo

Com sua mídia removível em mãos, basta coloca-la na impressora desejada e em sua interface procurar por "printing for media"

e clicar no arquivo desejado.

Cada interface de maquinário é diferente, entretanto processo é bem similar.

2 Estudo teórico de filamentos para impressão 3D

2.1 Contextualização

É intrínseco do processo de produção a necessidade de matéria prima. A manufatura aditiva através de fusão de filamento depositado, a impressão 3D, usa como material base os polímeros termoplásticos, que basicamente são polímeros que a certa temperatura se tornam viscosos("derretem") e ao serem

resfriados a temperatura ambiente, se tornam sólidos novamente.

Em geral, o material para impressão 3D, popularmente chamado de filamento, é vendido em quilos, em formato de fio, de 1,75 mm de diâmetro, enrolado em um carretel.

2.2 impressão 3D de drones

A manufatura aditiva possibilita a produção de peças com geometrias complexas, com o preenchimento interno de padrões otimizados e a prototipagem consideravelmente rápida. Tendo em vista essas caracterizas, a impressão 3d se torna uma forte aliada para a criação de drones para competição, pois é possível confeccionar peças que atendem as necessidades de otimização dos drones.

Com o surgimento de novos filamentos com propriedades especificas, o uso de impressão 3D para o mundo dos drones se tornou ainda mais comum.

2.3 Os clássicos

Por volta de 2017, houve uma forte populariza-o de impressoras para o mercado residencial. Essas impressoras foram constituídas para serem capaz de processarem os 3 principais tipos de filamento do mercado, desse modo, o mercado se limitou a filamentos específicos durante alguns anos.

Tais filamentos eram, Poli Ácido Lático(PLA), Acrilonitrila Butadieno Estireno (ABS) e Poli Estireno Tereftalato com Glicol(PETG).

Poli Acido Lático(PLA)

O Poliácido láctico ou Acido Polilactitco, tem sua origem a partir da repetição de diversas cadeias químicas de acido lático, que é obtido a partir da fermentação de alimentos ricos em amido.

Nas condições corretas pode ser Biodegradável.

Amplamente usado para impressão pela sua facilidade de manuseio

.

Com densidade de 1,27 g/cm³, resistência à Flexão entre 65 – 75 MPa, resistência à Tração entre 55 - 65 MPa e temperatura máxima de trabalho de 50 graus. O PLA possui uso mais voltado a peças sem grandes esforços, peças estéticas ou de acabamento, por exemplo, uma de suas principais vantagens é a alta dureza, sendo usado também para peças e objetos que não podem sofre deformação e sua relativa baixa temperatura máxima de trabalho o impede de ser usado para aplicações externas ou com elevado atrito.

Uma das vantagens do Pla é seu custo beneficio, sendo vendido por cerca de 100 reais o quilo.

2.3.1 Acrilonitrila Butadieno Estireno (ABS)

O ABS é um copolímero composto pela fusão de acrilonitrila, butadieno e estireno, a proporção de cada componente pode variar de 15% a 35% de acrilonitrila e 40% a 60% de estireno, com 5% a 30% de butadieno, formando assim, uma cadeia longa de polibutadiaeno com interligações de cadeias curtas de estireno e acrilonitrila.

Com densidade de 1,05 g/cm³, resistência à Flexão de 77 MPa, resistência à Tração de 46 MPa e Temperatura de Deflexão

Térmica de 88 °C. Por possuir elevada temperatura máxima de trabalho, o abs. possui aplicações voltadas a peças que estarão em ambientes externos, entretanto, sua relativa ductibilidade pode ocasionar em pequenas deformações caso sofra esforços elevados.

O ABS possui uma contração muito elevada, sendo assim, um material de alta dificuldade para impressão, pois ele tende a descolar da mesa de impressão caso resfrie rapidamente, desse modo, sendo necessário impressoras de ambiente de impressão fechadas para realizar seu processamento.

Com custo um pouco inferior ao PLA, o abs. é comercializado por cerca de 85 reais o quilo.

2.3.2 Poli Estireno Tereftalato com Glicol(PETG)

O PetG é uma junção de polímeros formados à parir da reação do terá ftálico e etileno Glicol, tem sua origem à partir da derivados da produção de petróleo e de gás natural.

Com densidade de 1,26 g/cm³, resistência à flexão de 65 MPa, resistência à tração de 48 MPa e temperatura de deflexão .

térmica de 72 °C. O Petg é o intermédio entre o ABS e o PLA, não é tão dúctil quanto o ABS e nem tão duro quanto o PLA e possui uma temperatura de trabalho relativamente alta, sendo assim, sua aplicação principal é para peças externas ou internas que sofreram algum tipo de esforço mecânico mas que não podem sofrer deformação em excesso.

Certa facilidade para impressão, é recomendável impressora de ambiente de impressão fechado mas não é algo imprensincidivel.

Com custo mais elevado que o PLA e ABS o petg é comercializado por cerca de 120 reais o quilo.

2.4 Os novos 4

Com o amadurecimento do mercado de impressão 3D, os usuários sentiram necessidade de filamentos com características mecânicas e químicas melhoradas, naturalmente essa necessidade foi a entidade pelas empresas vendedoras de material para impressão.

Desse modo, houve a popularização de 4 novos tipos de filamentos, O Termoplástico Poliuretano(TPU), O Poliácido de Metileno-Acetal(POM), A poliamida ou Nylon e o PetG com adicional de Fibras de Carbono.

2.5 PetG com Adicional de Fibras de Carbono

Materiais compósitos são matérias que separados possuem propriedades diferentes mas quando juntos melhoram as suas características, sempre são formados por uma base e um reforço, nesse caso a base é o Petg e o reforço são partículas de fibras de Carbono.

Com densidade de 1,29 g/cm³, resistência à flexão de 93 MPa, resistência à tração de 66 MPa e temperatura de deflexão.

térmica de 90 °C. O petg com adicional de fibra de carbono é recomendável para peças com grandes esforços mecânicos, sendo um material muito importante para a o mundo aeroespacial, levando em consideração sua relativa baixa densidade e alta resistência.

Por ter como base o PetG, possui a mesma relativa facilidade de impressão, entretanto um material muito mais abrasivo, possivelmente sendo necessário a troca do bico extrusor por abrasão.

De custo relativamente elevado, o PetG com adicional de fibra de Carbono por é comercializado por cerca de 220 reais 800 gramas.

2.6 Termoplástico Poliuretano(TPU)

O termoplástico Poliuretano consiste na repetição de diversas cadeias químicas de uretanos, tendo sua produção com base em derivados do petróleo. Com características de deformação

interessantes o poliuretano já um velho conhecido da indústria plástica.

Com densidade de 1,22 g/cm³, resistência à flexão de 14 MPa, resistência à tração de 50 MPa e incríveis 550% de alongamento a ruptura. O TPU possui amplo uso para peças com altíssimas deformações e resistência a impacto.

De certa facilidade de impressão, se recomenda desabilitar o parâmetro de retração caso seja utilizado por impressoras com extrusoras do tipo Bowlden.

Tem seu valor comercial por volta de 200 reais o quilo.

2.7 Poliácido de metileno-acetal(POM)

Poliácido de metileno-aceta ou Poliacetal, provém do formol de aldeído e grupos de acetato. Por causa de suas características químicas, semicristalino, o faz ser branco e opaco. Por ter características de baixo atrito, possui amplo uso na industrial plástica de injeção.

Com um Índice de Fluidez de 9 ± 1 g/10min, resistência à flexão de 85 MPa e tensão de escoamento à Tração de 62 MPa. O POM possui amplo uso para peças com necessidade de baixa fricção, boa estabilidade dimensional e elevada rigidez, engrenagens e conjuntos mecânicos por exemplo.

Alta dificuldade para aderir a mesa de impressão, certa necessidade de conhecimento técnico e testes com o maquinário.

Com custo de mercado de cerca de 180 reais o quilo.

2.8 Nylon

Nylon ou Poliamida é um composto polimérico formado por ligações peptídicas de amidas, logo apos sua criação teve amplo uso como fibra sintética entretanto logo passou a indústria plástica pelas suas propriedades.

Com densidade relativa de 1,157 g/cm³, resistência à flexão de 84,9 MPa, resistência à tração de 64,6 MPa e temperatura de deflexão .

térmica de 75 °C. O nylon é um excelente filamento para peças que buscam flexibilidade e resistência.

Um filamento extremamente hidrofílico, requer armazenamento em local seco e de relativa facilidade de uso.

De custo beneficio alto o Nylon é vendido por volta de 200 reais o quilo.

3 Relatório sobre as Áreas da Edra

A Edra é uma equipe de competição criada em 2017 por estudantes de engenharia da Universidade de Brasília, com um experiencia no ramo de produção de drones para competição, tendo em vista a extrema complexidade desse trabalho, se vê necessário a divisão das tarefas em áreas com funções especificas, sendo elas:

3.1 Design Estrutural

A área de design estrutural é responsável pelo frame do drone, a estrutura base, onde irão fixados todo os demais componentes, (fazendo uma analogia com o corpo humano, seria o esqueleto).

Durante uma decolagem, voo e pouso, um drone sofre diversos esforços,

o frame do drone deve ser capaz de suportar todos esses esforços sem danificar nenhum componente, para isso é necessário o trabalho de modelagem e simulação de forças.

O trabalho de modelagem consiste em criar peças em 3D visando atender as necessidades estruturais do drone, esse processo é feito através de softwares CAD, como solidWorks, Cátia e Fusion 360.

Em geral, os drones da Edra são quadrirrotores, sendo assim suas estruturas consistem em 4 hastes onde irão os motores e uma placa central para os eletrônicos.

É necessário validar o frame via simulação de esforços, esse processo consiste em virtualmente aplicar uma força determinada em um conjunto de peças ou em uma peça especifica e analisar a maneira que a mesma reage.

3.2 Aerodinâmica e propulsão

A área de Aerodinâmica e propulsão é responsável por todo o sistema propulsivo do drone, todo o conjunto encarregado de gerar empuxo para a o voo do drone.

Diversos fatores são responsáveis pela geração de empuxo em um drone, alguns deles são:

O sistema motor hélice, o perfil de aerofólio da hélice e a potencia do motor interferem diretamente na capacidade de empuxo que esse conjunto pode gerar.

O conjunto bateria e esc., esc. é a placa controladora de velocidade do motor, ela é responsável por regular a potencia do motor, a bateria é a encarregada por alimentar todo esse sistema com energia, a capacidade energética da bateria influencia diretamente no tempo de voo de um drone.

Dessa maneira, a área de aero propulsão é a responsável por escolher todo esses componentes minuciosamente e realizar testes com os mesmos.

3.3 Eletro - software

Eletro Software é a fusão entre duas áreas, software e eletrônica.

A Area de Software é responsável por desenvolver aplicações para o drone, por exemplo, mapeamento aéreo e reconhecimento de objetos. Usando ferramentas como Python, uma linguagem de programação de auto nível, OpenCV, uma multiplataforma para desenvolvimento de visão computacional e Tensor Flow, uma biblioteca de código aberto para aprendizado de máquina.

A área de Eletrônica é responsável pelo radio controlador, instrumento usado para comunicação do piloto com o drone e todo o sistema de periféricos, isso engloba os módulos de telemetria, uma tecnologia que permite a medição e comunicação de informações, modulo GPS, usado pelo drone para se localizar no espaço, uma gama de sensores, como câmera, acelerômetro, dentre outros.

O conhecimento técnico sobre leitura de datasheets e componentes eletrônicos é vital para o bom funcionamento da área, assim como a habilidade de soldagens de componentes com estanho.

3.4 Controle e Estabilidade

A Area de controle é responsável por desenvolver e aprimorar o sistema embarcado de controle do drone, isto é feito através de modelos matemáticos para prever a maneira de comportamento da aeronave, desse modo é simulado matemáticamente e realizado teste para analisar o desempenho do físico do drone em relação ao simulado matemático.

3.5 Integração entre as Áreas

Apesar da enorme diferença entre funções e tarefas de cada Area da Edra, todas possuem uma enorme comunicação e interdependência.

A comunicação entre as áreas ocorre de diversas maneiras, todas as áreas de correlacionam no drone como um todo, entretanto alguns sistemas e subsistemas estão intrinsicamente ligados, como por exemplo:

A área de software depende das escolhas de componentes feitos pela área de eletrônica, caso a área de software deseje realizar um reconhecimento de objeto com base em imagens, é necessário que o sensor ótico cumpra com as necessidades da área de software.

A área de aerodinâmica e propulsão depende da área de estrutura, caso a área de aero propulsão escolha um determinado conjunto motor hélice e bateria, é necessário que o frame do drone possua o espaço física necessário para a acoplagem desses componentes.

Na engenharia Aeroespacial, todo os sistemas est \tilde{a} o interligados, isto fica muito evidente da Edra.