18-220 Exam Review

Michael You

Bunch of practice problems for 18-220. Problems are sorted by lecture, and can be focused on

- Lab
- Lecture
- Homework problems

Lecture 13

Introduction to RFID circuits.

- 1. Draw an RFID scanner tag circuit schematic for tha scanner and tag side
- 2. Why do we need to tune the RFID tags to be at the resonant frequency of the scanning circuit?
- 3. What is amplitude modulation and how do we use it to transmit data? Why don't we just send the bits directly instead of modulating them?
- 4. Know that geometry (number of turns, width, height, shape) dictates the inductance of your coil. Also know what would increase/decrease your inductance. You might get a question about "hey this person made an inductor but is getting X response on the plot. What do you suggest they do to make their scanning circuit more accurate?"

Lecture 14

- 1. What are the steps to demodulate a signal?
- 2. What is the 3 dB point? Why is it named that, and what does it indicate about your Bode plot?
- 3. Make a circuit that is
 - (a) Low-pass, using
 - i. RC
 - ii. RL
 - (b) High-pass, using
 - i. RC
 - ii. RL
 - (c) Band-pass, using RLC
- 4. What is the difference between an active and a passive filter?

18-220 Exam Review Michael You

Lecture 15

Important lecture as bode plots/transfer functions/feedback are fundamental to this entire unit. Know how to draw bode plots. If you have your Bode plots down, they are free points on an exam.

- 1. Using an op-amp and R, L, C, make
 - (a) A low-pass filter
 - (b) A high-pass filter
 - (c) A bandpass filter
- 2. Why do op-amp filters allow us to concatenate filters together?
- 3. What is a limitation of lower-order filters, and why might we want to use a higher-order filter?
- 4. Given

$$\frac{10j\omega(1+\frac{j\omega}{100})}{(1+\frac{j\omega}{10})(1+\frac{j\omega}{10^4})(1+\frac{j\omega}{10^4})},\tag{1}$$

find the

- (a) Gain at $\omega = 1 \,\mathrm{rad/s}$
- (b) Gain at $\omega = 100 \, \mathrm{kHz}$
- (c) List all the poles (including multiplicity)
- (d) List all the zeros (including multiplicity)
- (e) Sketch the Bode plots for both magnitude and phase
- (f) What is the phase and gain margin?
- 5. For the following circuit,

- (a) Find the transfer function.
- (b) Find all poles an zeros.
- (c) What type of filter is this?
- (d) Draw the Bode plot for magnitude and phase
- (e) What is the phase and gain margin?

Lecture 16/17

There's some review on bode plots but the main focus for this one should be op-amp limitations and how feedback comes in for analysis of non-ideal opamps. This is also a meaty topic for exam questions.

1. Describe the assumptions for an ideal opamp.

18-220 Exam Review Michael You

- 2. Why would the opamp behavior change with temperature variation?
- 3. Why do we say an ideal op-amp is like a voltage controlled voltage source (VCVS)?
- 4. Why do we not want positive gain at 180°?
- 5. Draw a general feedback diagram with labels, and derive the equation for v_0/v_i
- 6. Describe the process for finding the following. Draw diagrams too!
 - (a) Loop gain
 - (b) Open loop gain
 - (c) Closed loop gain
 - (d) Write the equation that relates LG, OLG, CLG (Black's formula)
- 7. How can compensation capacitors help with stability?
- 8. Write the feedback functions for a Butterworth Filter

Figure 1: Butterworth Filter

- (a) OLG
- (b) LG
- (c) CLG
- (d) Ideal opamp gain
- 9. For an ideal opamp, what do we want of the
 - (a) Input impedance
 - (b) Output impedance

Lecture 18

Linearization, why we do it and why it's important.

- 1. Why do we prefer to have all of our elements to be linear in analysis?
- 2. Describe the process for finding (this is more of a review question)
 - (a) Thevenin equivalent
 - (b) Norton Equivalent
 - (c) Input impedance
 - (d) Output impedance
- 3. Understand why you might use a Taylor series for a nonlinear element
- 4. Briefly understand what the Newton method is doing

18-220 Exam Review Michael You

Lecture 19

Operating circuits at AC around a DC operating point, small signal analysis.

1. Given the following circuit,

Assume the diode can be modified with the standard diode equation, with $V_{\rm T}=0.026\,{\rm V},I_{\rm S}=1\times10^{-12}\,{\rm A}$

- (a) If $V_{\rm DC}=5\,{\rm V}$, find the required R to achieve a bias current of 30 mAthrough the diode.
- (b) At this DC operating point, what is the change in current with respect to the change in voltage?
- (c) What is the change in current with respect to the change in the operating voltage point?
- (d) If we want to increase $V_{\rm DC} = 12\,\mathrm{V}$ and still maintain 30 mAthrough the diode, what resistor can we add in parallel to R to get our desired operating point?
- (e) We observed two operating points in this problem, $V_{\rm DC} = 5 \, \rm V, 12 \, \rm V$. Which operating point gives a bigger current swing?

Formulas

• Resonant frequency of LC circuit

$$\omega = \frac{1}{\sqrt{LC}} \tag{2}$$

• Decibel to absolute gain relation

$$Gain(dB) = 20 \log_{10} \frac{V_{out}}{V_{in}}$$
(3)

• Canonical transfer function

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{-Aj\omega\omega/\omega_{z}}{(1+j\omega/\omega_{1})(1+j\omega/\omega_{2})}$$
(4)