Monetary Policy & Anchored Expectations An Endogenous Gain Learning Model

Laura Gáti

Boston College

Boston University

Macro Reading Group

August 25, 2020

Policymakers came out of the Great Inflation era with a clear understanding that it was essential to anchor inflation expectations at some low level.

Jerome Powell, Chairman of the Federal Reserve ¹

Figure: Market-based inflation expectations, 10 year, average, %

¹Federal Reserve "Challenges for Monetary Policy," August 23, 2019.

This project

- How to conduct optimal monetary policy in interaction with the anchoring expectation formation?
- Model of anchoring expectation formation as an endogenous gain adaptive learning scheme

• Estimation of the anchoring function: when do expectations become unanchored?

Preview of results

• 1 pp forecast error unanchors expectations

Optimal monetary policy responsiveness time-varying

→ Optimal policy aggressive when expectations unanchor, dovish when anchored

Related literature

 Optimal monetary policy in New Keynesian models Clarida, Gali & Gertler (1999), Woodford (2003)

• Econometric learning

Evans & Honkapohja (2001, 2006), Bullard & Mitra (2002), Preston (2005, 2008), Ferrero (2007), Molnár & Santoro (2014), Eusepi & Preston (2011), Milani (2007, 2014), Lubik & Matthes (2018), Mele et al (2019)

• Anchoring and the Phillips curve

Sargent (1999), Svensson (2015), Hooper et al (2019), Afrouzi & Yang (2020), Reis (2020), Gobbi et al (2019), Carvalho et al (2019)

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Unanchoring in the data

Figure: Learning gain as a function of forecast errors in inflation (pp)

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Households: standard up to $\hat{\mathbb{E}}$

Maximize lifetime expected utility

$$\hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[U(C_T^i) - \int_0^1 v(h_T^i(j)) dj \right]$$
 (1)

Budget constraint

$$B_t^i \le (1 + i_{t-1})B_{t-1}^i + \int_0^1 w_t(j)h_t^i(j)dj + \Pi_t^i(j)dj - T_t - P_tC_t^i$$
 (2)

▶ Consumption, price level

Firms: standard up to $\hat{\mathbb{E}}$

Maximize present value of profits

$$\hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \alpha^{T-t} Q_{t,T} \left[\Pi_{t}^{j}(p_{t}(j)) \right]$$
(3)

subject to demand

$$y_t(j) = Y_t \left(\frac{p_t(j)}{P_t}\right)^{-\theta} \tag{4}$$

▶ Profits, stochastic discount factor

Expectations: $\hat{\mathbb{E}}$ instead of \mathbb{E}

• If use \mathbb{E} (rational expectations, RE)

Model solution

$$s_t = h s_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma)$$
 (5)

$$y_t = gs_t \tag{6}$$

 $s_t \equiv \text{states}$

 $y_t \equiv \text{jumps}$

 $\epsilon_t \equiv \text{disturbances}$

Expectations: $\hat{\mathbb{E}}$ instead of \mathbb{E}

• If use \mathbb{E} (rational expectations, RE)

Model solution

$$s_t = h s_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma)$$
 (5)

$$y_t = gs_t \tag{6}$$

 $s_t \equiv \text{states}$ $y_t \equiv \text{jumps}$ $\epsilon_t \equiv \text{disturbances}$

- If use $\hat{\mathbb{E}} \to \text{private sector does not know (6)}$
 - \hookrightarrow estimate using observed states & knowledge of (5)

• Postulate linear functional relationship instead of (6):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{7}$$

• Postulate linear functional relationship instead of (6):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{7}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

• Postulate linear functional relationship instead of (6):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{7}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

Note: misspecified → not model-consistent (not RE)

• Postulate linear functional relationship instead of (6):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{7}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

- Note: misspecified → not model-consistent (not RE)
- Estimate *a*, *b* using recursive least squares (RLS)

Recursive least squares

Jumps are: $(\pi, x, i)'$

Recursive least squares

Jumps are: $(\pi, x, i)'$

Special case: learn only intercept of inflation:

$$a_{t-1} = (\bar{\pi}_{t-1}, 0, 0)', \quad b_{t-1} = g h \quad \forall t$$
 (8)

Recursive least squares

Jumps are: $(\pi, x, i)'$

Special case: learn only intercept of inflation:

$$a_{t-1} = (\bar{\pi}_{t-1}, 0, 0)', \quad b_{t-1} = g h \quad \forall t$$
 (8)

$$\rightarrow RLS$$

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})\right)}_{\equiv fe_{t|t-1}, \text{ forecast error}}$$
(9)

 $k_t \in (0,1)$ gain b_1 first row of b

Anchoring mechanism: endogenous gain

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{k_t}{k_t} (\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1}))$$
(10)

$$k_t = \mathbf{g}(fe_{t|t-1})$$
: anchoring function

Anchoring mechanism: endogenous gain

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1}) \right) \tag{10}$$

 $k_t = \mathbf{g}(fe_{t|t-1})$: anchoring function

$$\mathbf{g}(fe_{t|t-1}) = \alpha b(fe_{t|t-1}) \tag{11}$$

 $b(fe_{t|t-1}) = \text{basis}$, here: second order spline (piecewise linear)

 $\alpha =$ approximating coefficients, here: use $\hat{\alpha}$ from estimation

▶ Functional forms in literature

Model summary

• IS- and Phillips curve:

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (12)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=1}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (13)

- Expectations evolve according to RLS with the endogenous gain given by (11)
- \rightarrow How should $\{i_t\}$ be set?

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Ramsey problem

$$\min_{\{y_t, \bar{\pi}_{t-1}, k_t\}_{t=t_0}^{\infty}} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} (\pi_t^2 + \lambda_x x_t^2)$$

- s.t. model equations
- s.t. evolution of expectations

- \mathbb{E} is the central bank's (CB) expectation
- Assumption: CB observes private expectations and knows the model

Target criterion

Result

In the model with anchoring, monetary policy optimally brings about the following target relationship between inflation and the output gap

$$\pi_t = -\frac{\lambda_x}{\kappa} x_t + \frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + ((\pi_t - \bar{\pi}_{t-1} - b_1 s_{t-1})) \mathbf{g}_{\pi,t} \right)$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}, \mathbf{t}+\mathbf{j}})\right)$$

where $\mathbf{g}_{z,t} \equiv \frac{\partial \mathbf{g}}{\partial z}$ at t, $\prod_{i=0}^{0} \equiv 1$ and b_1 is the first row of b.

Two layers of intertemporal stabilization tradeoffs

$$\begin{aligned} & \boldsymbol{\pi_t} = & -\frac{\lambda_x}{\kappa} \boldsymbol{x_t} + \frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + f e_{t|t-1} \mathbf{g}_{\pi,t} \right) \mathbb{E}_t \sum_{i=1}^{\infty} \boldsymbol{x_{t+i}} \\ & -\frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + f e_{t|t-1} \mathbf{g}_{\pi,t} \right) \mathbb{E}_t \sum_{i=1}^{\infty} \boldsymbol{x_{t+i}} \prod_{j=0}^{i-1} (k_{t+1+j} + f e_{t+1+j|t+j} \mathbf{g}_{\bar{\pi},t+j}) \end{aligned}$$

Intratemporal tradeoffs in RE (discretion)

Intertemporal tradeoff: current level and change of the gain

Intertemporal tradeoff: future expected levels and changes of the gain

Lemma

The discretion and commitment solutions of the Ramsey problem coincide.

▶ Why no commitment?

Corollary

Optimal policy under adaptive learning is time-consistent.

 \hookrightarrow Foreshadow: optimal policy aggressiveness time-varying

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Solution procedure

Solve system of model equations + target criterion

 \hookrightarrow solve using parameterized expectations (PEA) and value function iteration (VFI)

 \hookrightarrow obtain a cubic spline approximation to optimal policy function

Calibration

β	0.99	stochastic discount factor
σ	1	intertemporal elasticity of substitution
α	0.5	Calvo probability of not adjusting prices
κ	0.0842	slope of the Phillips curve
ψ_{π}	1.5	coefficient of inflation in Taylor rule*
$\overline{\psi_x}$	0	coefficient of the output gap in Taylor rule*
\bar{g}	0.145	initial value of the gain
$\overline{\rho_r}$	0	persistence of natural rate shock
$\overline{\rho_i}$	0	persistence of monetary policy shock*
ρ_u	0	persistence of cost-push shock
σ_r	0.1	standard deviation of natural rate shock
σ_i	2	standard deviation of monetary policy shock*
σ_u	0.5	standard deviation of cost-push shock
λ_x	0.05	weight on the output gap in central bank loss
$\hat{\alpha}$	(1; 0.5; 0; 0.5; 1)	approximating coefficients in anchoring function

Optimal policy I - responding to unanchoring

Figure: Comparative statics of the policy function: $\partial i/\partial \bar{\pi}$

Optimal policy II - a particular history

Figure: Observables conditional on a particular evolution of shocks

The intertemporal volatility tradeoff

Figure: Impulse responses after a contractionary monetary policy shock

Optimal policy III - optimal Taylor-rule coefficients

Figure: CB loss as a function of inflation-coefficient in Taylor rule (ψ_{π}) , for $\lambda_x = 0$

The intertemporal volatility tradeoff - again

Conclusion

Interaction between monetary policy and anchoring

- Optimal policy conditions on stance of current and expected future anchoring
 - \hookrightarrow determine intertemporal tradeoffs
- Frontloads aggressive interest rate response to suppress potential unanchoring

• For a 1 pp positive (negative) forecast error, raises (lowers) interest rate by 11.61 pp

Correcting the TIPS from liquidity risk

Figure: Market-based inflation expectations, 10 year, average, %

Oscillatory dynamics in adaptive learning

Consider a stylized adaptive learning model in two equations:

$$\pi_t = \beta f_t + u_t \tag{14}$$

$$f_t = f_{t-1} + k(\pi_t - f_{t-1}) \tag{15}$$

Solve for the time series of expectations f_t

$$f_t = \underbrace{\frac{1 - k^{-1}}{1 - k^{-1}\beta}}_{\approx 1} f_{t-1} + \frac{k^{-1}}{1 - k^{-1}\beta} u_t \tag{16}$$

Solve for forecast error $fe_t \equiv \pi_t - f_{t-1}$:

$$fe_{t} = \underbrace{-\frac{1-\beta}{1-k\beta}}_{\lim_{t \to 1} = -1} f_{t-1} + \frac{1}{1-k\beta} u_{t}$$
(17)

Functional forms for g in the literature

• Smooth anchoring function (Gobbi et al, 2019)

$$p = h(y_{t-1}) = A + \frac{BCe^{-Dy_{t-1}}}{(Ce^{-Dy_{t-1}} + 1)^2}$$
(18)

 $p \equiv Prob(\text{liquidity trap regime})$ y_{t-1} output gap

• Kinked anchoring function (Carvalho et al, 2019)

$$k_t = \begin{cases} \frac{1}{t} & \text{when } \theta_t < \bar{\theta} \\ k & \text{otherwise.} \end{cases}$$
 (19)

 θ_t criterion, $\bar{\theta}$ threshold value

Choices for criterion θ_t

• Carvalho et al. (2019)'s criterion

$$\theta_t^{CEMP} = \max |\Sigma^{-1}(\phi_{t-1} - T(\phi_{t-1}))|$$
 (20)

 Σ variance-covariance matrix of shocks $T(\phi)$ mapping from PLM to ALM

CUSUM-criterion

$$\omega_t = \omega_{t-1} + \kappa k_{t-1} (f e_{t|t-1} f e'_{t|t-1} - \omega_{t-1})$$
(21)

$$\theta_t^{CUSUM} = \theta_{t-1} + \kappa k_{t-1} (f e'_{t|t-1} \omega_t^{-1} f e_{t|t-1} - \theta_{t-1})$$
 (22)

 ω_t estimated forecast-error variance

Recursive least squares algorithm

$$\phi_t = \left(\phi'_{t-1} + k_t R_t^{-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \left(y_t - \phi_{t-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \right)' \right)'$$
 (23)

$$R_t = R_{t-1} + k_t \begin{pmatrix} 1 \\ s_{t-1} \end{pmatrix} \begin{bmatrix} 1 & s_{t-1} \end{bmatrix} - R_{t-1}$$

$$(24)$$

Actual laws of motion

$$s_t = h s_{t-1} + \epsilon_t$$

 $y_t = A_1 f_{a,t} + A_2 f_{b,t} + A_3 s_t$

where

$$y_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix} \qquad s_t \equiv \begin{pmatrix} r_t^n \\ u_t \end{pmatrix} \tag{27}$$

(25)

(26)

and

$$f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} y_{T+1} \qquad f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\beta)^{T-t} y_{T+1}$$
 (28)

No commitment - no lagged multipliers

Simplified version of the model: planner chooses $\{\pi_t, x_t, f_t, k_t\}_{t=t_0}^{\infty}$ to minimize

$$\mathcal{L} = \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left\{ \pi_t^2 + \lambda x_t^2 + \varphi_{1,t} (\pi_t - \kappa x_t - \beta f_t + u_t) + \varphi_{2,t} (f_t - f_{t-1} - k_t (\pi_t - f_{t-1})) + \varphi_{3,t} (k_t - \mathbf{g}(\pi_t - f_{t-1})) \right\}$$

$$2\pi_t + 2\frac{\lambda}{\kappa} x_t - \varphi_{2,t}(k_t + \mathbf{g}_{\pi}(\pi_t - f_{t-1})) = 0$$
 (29)

$$-2\beta \frac{\lambda}{\kappa} x_t + \varphi_{2,t} - \varphi_{2,t+1} (1 - k_{t+1} - \mathbf{g_f}(\pi_{t+1} - f_t)) = 0$$
 (30)

Target criterion system for anchoring function as changes of the gain

$$\varphi_{6,t} = -cfe_{t|t-1}x_{t+1} + \left(1 + \frac{fe_{t|t-1}}{fe_{t+1|t}}(1 - k_{t+1}) - fe_{t|t-1}\mathbf{g}_{\bar{\pi},t}\right)\varphi_{6,t+1} - \frac{fe_{t|t-1}}{fe_{t+1|t}}(1 - k_{t+1})\varphi_{6,t+2}$$
(31)

$$0 = 2\pi_t + 2\frac{\lambda_x}{\kappa} x_t - \left(\frac{k_t}{f e_{t|t-1}} + \mathbf{g}_{\pi,t}\right) \varphi_{6,t} + \frac{k_t}{f e_{t|t-1}} \varphi_{6,t+1}$$
(32)

 $\varphi_{6,t}$ Lagrange multiplier on anchoring function

The solution to (32) is given by:

$$\varphi_{6,t} = -2 \, \mathbb{E}_t \sum_{i=0}^{\infty} (\pi_{t+i} + \frac{\lambda_x}{\kappa} x_{t+i}) \prod_{j=0}^{i-1} \frac{\frac{k_{t+j}}{f_{e_{t+j|t+j-1}}}}{\frac{k_{t+j}}{f_{e_{t+j|t+j-1}}} + \mathbf{g}_{\pi,t+j}}$$
(33)

Details on households and firms

Consumption:

$$C_t^i = \left[\int_0^1 c_t^i(j)^{\frac{\theta - 1}{\theta}} dj \right]^{\frac{\sigma}{\theta - 1}}$$
(34)

 $\theta > 1$: elasticity of substitution between varieties

Aggregate price level:

$$P_t = \left[\int_0^1 p_t(j)^{1-\theta} dj \right]^{\frac{1}{\theta-1}}$$
 (35)

Profits:

$$\Pi_t^j = p_t(j)y_t(j) - w_t(j)f^{-1}(y_t(j)/A_t)$$
(36)

Stochastic discount factor

$$Q_{t,T} = \beta^{T-t} \frac{P_t U_c(C_T)}{P_T U_c(C_t)}$$
(37)

Derivations

Household FOCs

$$\hat{C}_{t}^{i} = \hat{\mathbb{E}}_{t}^{i} \hat{C}_{t+1}^{i} - \sigma(\hat{i}_{t} - \hat{\mathbb{E}}_{t}^{i} \hat{\pi}_{t+1})$$
(38)

$$\hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{C}_t^i = \omega_t^i + \hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{Y}_t^i$$
(39)

where 'hats' denote log-linear approximation and $\omega_t^i \equiv \frac{(1+i_{t-1})B_{t-1}^i}{P_tY^*}$.

- 1. Solve (38) backward to some date *t*, take expectations at *t*
- 2. Sub in (39)
- 3. Aggregate over households *i*
- \rightarrow Obtain (12)

