Introdução Particionamento Quick-Sort Conquista (esquerda) Quick-Sort Conquista (direira) Complexidade

Estrutura de Dados I

Algoritmos básicos de

Ordenação: Quick-Sort

Prof. Rodrigo Minetto

Universidade Tecnológica Federal do Paraná

Introdução
Particionamento
Quick-Sort
Conquista (esquerda)
Quick-Sort
Conquista (direira)
Complexidade

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

Quick Sort

- Quicksort é o algoritmo de ordenação mais rápido que se conhece para uma ampla variedade de situações;
- É provavelmente o algoritmo mais utilizado para ordenação;
- Inventado em 1960 (Tony Hoare).
- Algoritmo de ordenação não estável.

Ordenação

Problema: ordenar um vetor em ordem crescente.

- Entrada: um array A[0 . . . n-1]
- Saída: array A[0 . . . n-1] rearranjado em ordem crescente

Quick Sort - Ideia

Segue o paradigma de divisão-e-conquista:

Divisão: divida o array A em dois subvetores

A[esq...pivot - 1] e A[pivot + 1...dir] tais que:

esq pivot dir
$$\leq x$$
 x \times

$$A[I \dots pivot - 1] \le A[pivot] < A[pivot + 1 \dots r]$$

Conquista: ordene os dois subarrays recursivamente utilizando o Quick Sort.

Partição

Problema: Rearranjar um array A[esq...dir] e devolver um índice pivot(p), onde $e \le p \le d$, tal que:

$$A[e \dots p-1] \leq A[p] < A[p+1 \dots d] \quad (1)$$

Exemplo: entrada

Saída:

_				P					ď
33	11	33	22	44	55	88	66	77	99

n

Introdução
Particionamento
Quick-Sort
Conquista (esquerda)
Quick-Sort
Conquista (direira)

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

```
99 33 55 77 11 33 88 66 22 44
      e
    PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[i];
7:
             fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
99 | 33 | 55 | 77 | 11 | 33 | 88 | 66 | 22 |
      e
     PARTICIONE (A, e, d)
          \triangleright p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
          i \leftarrow e - 1:
 3:
           Para i \leftarrow e até d-1 faça
 4:
                Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
 6:
                   A[i] \leftrightarrow A[i];
 7:
               fim
          fim
 9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

99 33 55 77 11 33 88 66 22 e PARTICIONE (A, e, d) $p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}$ 2: $\triangleright i \leftarrow e - 1$: 3: Para $j \leftarrow e$ até d-1 faça 4: Se $A[j] \leq p$ então 5: $i \leftarrow i + 1$: 6: $A[i] \leftrightarrow A[j];$ 7: fim fim 9: $A[i+1] \leftrightarrow A[d]$; 10: Retorne i + 1: 11:

i j p

33 99 55 77 11 33 88 66 22 44

e d

PARTICIONE(
$$A, e, d$$
)

 $p \leftarrow A[d]; \{p \in o \text{ "pivo"}\}$
 $i \leftarrow e - 1;$

Para $j \leftarrow e \text{ até } d - 1 \text{ faça}$

Se $A[j] \leq p \text{ então}$
 $i \leftarrow i + 1;$
 $A[i] \leftrightarrow A[j];$

fim

 $A[i + 1] \leftrightarrow A[d];$

Retorne $i + 1;$


```
33 | 11 | 33 | 22 | 99 | 55 | 88 | 66 | 77 |
       e
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
          i \leftarrow e - 1:
 3:
           Para j \leftarrow e até d-1 faça
 4:
                Se A[j] \leq p então
 5:
                    i \leftarrow i + 1:
 6:
                    \triangleright A[i] \leftrightarrow A[i];
 7:
               fim
          fim
 9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```


Introdução
Particionamento
Quick-Sort
Conquista (esquerda)
Quick-Sort
Conquista (direira)

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

 r_0

Quick-Sort (A, e, d)

 r_0

Quick-Sort (A, e, d)

Introdução
Particionamento
Quick-Sort
Conquista (esquerda)
Quick-Sort
Conquista (direira)
Complexidade

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

```
33 | 11 | 33 | 22 | 44 | 55 | 88 | 66 | 77 |
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
           Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
          fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

2:

6:

9:

```
33 | 11 | 33 | 22 | 44 | 55 | 88 | 66 | 77 |
     PARTICIONE (A, e, d)
          \triangleright p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
          i \leftarrow e - 1:
 3:
           Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
                   A[i] \leftrightarrow A[j];
 7:
               fim
          fim
          A[i+1] \leftrightarrow A[d];
     Retorne i + 1:
11:
```

33 | 11 | 33 | 22 | 44 | 55 | 88 | 66 | 77 | PARTICIONE(A, e, d) $p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}$ 2: $\triangleright i \leftarrow e - 1$: 3: Para $j \leftarrow e$ até d-1 faça 4: Se $A[j] \leq p$ então 5: $i \leftarrow i + 1$: 6: $A[i] \leftrightarrow A[i]$; 7: fim fim 9: $A[i+1] \leftrightarrow A[d]$; 10: Retorne i+1: 11:

```
33 | 11 | 33 | 22 | 44 | 55 | 88 | 66 | 77 |
     PARTICIONE(A, e, d)
          p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
 3:
          \triangleright Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
 6:
                   A[i] \leftrightarrow A[j];
 7:
               fim
          fim
 9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

```
33 | 11 | 33 | 22 | 44 | 55 | 88 | 66 | 77 |
     PARTICIONE(A, e, d)
          p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
 3:
           Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   \triangleright i \leftarrow i + 1:
 6:
                   A[i] \leftrightarrow A[i];
 7:
               fim
          fim
 9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

2:

6:

7:

9:

10:

```
11 33 33 22 44 55 88 66 77
    PARTICIONE (A, e, d)
        p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
        i \leftarrow e - 1:
3:
         Para i \leftarrow e até d-1 faça
4:
              Se A[j] \leq p então
5:
                 i \leftarrow i + 1:
                 \triangleright A[i] \leftrightarrow A[i];
             fim
        fim
        A[i+1] \leftrightarrow A[d];
    Retorne i+1:
```

```
11 33 33 22 44 55 88 66 77
     PARTICIONE(A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
         \triangleright Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[j];
7:
              fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

2:

5:

6:

7:

9:

10:

```
11 33 33 22 44 55 88 66 77
    PARTICIONE(A, e, d)
        p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
        i \leftarrow e - 1:
3:
         Para j \leftarrow e até d-1 faça
4:
             \triangleright Se A[i] < p então
                 i \leftarrow i + 1:
                 A[i] \leftrightarrow A[j];
             fim
        fim
        A[i+1] \leftrightarrow A[d];
    Retorne i+1:
```

2:

6:

7:

9:

10:

```
11 33 33 22 44 55 88 66 77
    PARTICIONE(A, e, d)
        p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
        i \leftarrow e - 1:
3:
        \triangleright Para i \leftarrow e até d-1 faça
4:
             Se A[j] \leq p então
5:
                 i \leftarrow i + 1:
                 A[i] \leftrightarrow A[j];
             fim
        fim
        A[i+1] \leftrightarrow A[d];
    Retorne i+1:
```

2:

6:

9:

10:

```
1+1
   11 33 33 22 44 55 88 66 77
    PARTICIONE (A, e, d)
        p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
        i \leftarrow e - 1:
3:
         Para i \leftarrow e até d-1 faça
4:
              Se A[j] \leq p então
5:
                 i \leftarrow i + 1:
                 A[i] \leftrightarrow A[i];
7:
             fim
        fim
        \triangleright A[i+1] \leftrightarrow A[d];
    Retorne i+1:
```

```
1+1
    11 22 33 33 44 55 88 66 77
     PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
          Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
         fim
9:
         \triangleright A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

```
1+1
    11 22 33 33 44 55 88 66 77
    PARTICIONE(A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
          Para i \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[j];
7:
             fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

Introdução
Particionamento
Quick-Sort
Conquista (esquerda)
Quick-Sort
Conquista (direira)

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

 r_0

Quick-Sort (A, e, d)

 r_0

Quick-Sort (A, e, d)

r_0		Qui								
		2.	р	ro	0.0					
$r_1)r_2)$		3.	Qι	$r_2 = 0,0$						
		4.	Qι	$r_1 = 0,3$						
								r_0	0,9	
				pi (recı	lha ırsão)					
	d e	p_1			p_0					·
A =	11	22	33	33	44	55	88	66	77	99
	0	1	2	3	4	5	6	7	8	9

$r_0)$		Quick-Sort $(A, \mathbf{e}, \mathbf{d})$									
		1. s	se e <								
\triangleright		2.	p		2 2						
$r_1)$		3.	Qι	uick-S	1);	r 3	2,3				
r_3)		4.	Qι	uick-S	r_1	0,3					
					r_0	0,9					
					pi (recu	lha ırsão)					
		p_1	e	<i>p</i> ₃	p_0						
A =	11	22	33	33	44	55	88	66	77	99	
	0	1	2	3	4	5	6	7	8	9	

r_0		Quick-Sort $(A, \mathbf{e}, \mathbf{d})$								
		1. s	se e <	<i>r</i> ₄	2,2					
		2.	р							
$(r_1)r_4$)	3.	Qι	$r_3 = 2,3$						
r_3)		4. Quick-Sort $(A, \mathbf{p} + 1, \mathbf{d})$;								0,3
									r_0	0,9
										lha ırsão)
		p_1	d e	p ₃	p_0					
$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	11	22	33	33	44	55	88	66	77	99
	0	1	2	3	4	5	6	7	8	9

$r_0)$		Qui									
\triangleright									r_4	2,2	
	2. $\mathbf{p} = \text{Particione } (A, \mathbf{e}, \mathbf{d});$						1);	- '			
$r_1)r_2$	4)	3.	Qι	r_3 2,3							
r_3)		4.	Qι	$r_1 = 0.3$							
									<i>r</i> ₀	0,9	
		p_1	d	p ₃	p ₀				pi (recu	lha ırsão)	
<i>A</i> =	11	22	33	33	44	55	88	66	77	99	
	0	1	2	3	4	5	6	7	8	9	

$r_0)$		Qui	ck-So								
\triangleright									r_5 4,3		
2. $\mathbf{p} = \text{Particione } (A, \mathbf{e}, \mathbf{c})$,	ro	2 3			
$r_1)$		3.	Qι	$r_3 = 2,3$							
$r_3)r_5)$		4.	Qι	$r_1 = 0.3$							
							r_0	0,9			
							pi (recı	lha ırsão)			
		p_1		p_3	<i>p</i> ₀ e						
A =	11	22	33	33	44	55	88	66	77	99	
	0	1	2	3	4	5	6	7	8	9	

Introdução Particionamento Quick-Sort Conquista (esquerda) Quick-Sort Conquista (direira) Complexidade

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

```
11 22 33 33 44 55 88 66 77 99
                                       e
    PARTICIONE(A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
        i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[i];
7:
             fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

```
11 22 33 33 44 55 88 66 77 99
                                         e
     PARTICIONE (A, e, d)
         \triangleright p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i+1:
11:
```

2:

5:

6:

7:

9:

10:

2:

6:

7:

9:

10:

2:

5:

6:

7:

9:

10:

2:

5:

6:

7:

9:

10:


```
١, ا
          e
    PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
        i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 \triangleright i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[i];
7:
             fim
8:
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
١, ا
          e
    PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 i \leftarrow i + 1:
6:
                 \triangleright A[i] \leftrightarrow A[i];
7:
             fim
8:
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```


2:

5:

6:

7:

8:

9:

10:

```
e
   PARTICIONE (A, e, d)
        p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
       i \leftarrow e - 1:
3:
         Para j \leftarrow e até d-1 faça
4:
            \triangleright Se A[i] < p então
                i \leftarrow i + 1:
                A[i] \leftrightarrow A[i];
            fim
        fim
       A[i+1] \leftrightarrow A[d];
    Retorne i + 1:
```

```
e
    PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
        i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                 \triangleright i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[i];
7:
             fim
8:
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
|22|33|33|44|55|88|66|77|99
                                          e
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
           Para j \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
6:
                   \triangleright A[i] \leftrightarrow A[i];
7:
              fim
          fim
9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
|22|33|33|44|55|88|66|77|99
                                          e
     PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
         \triangleright Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
| 22 | 33 | 33 | 44 | <mark>55 | 88 | 66 | 77 |</mark>
                                              e
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
          i \leftarrow e - 1:
 3:
            Para j \leftarrow e até d-1 faça
 4:
                \triangleright Se A[i] < p então
 5:
                     i \leftarrow i + 1:
 6:
                    A[i] \leftrightarrow A[i];
 7:
                fim
          fim
 9:
          A[i+1] \leftrightarrow A[d];
10:
      Retorne i + 1:
11:
```

```
e
    PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
          Para j \leftarrow e até d-1 faça
 4:
              Se A[j] \leq p então
 5:
                  \triangleright i \leftarrow i + 1:
6:
                 A[i] \leftrightarrow A[i];
7:
             fim
8:
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
|22|33|33|44|55|88|66|77|
                                           e
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
           Para j \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
6:
                   \triangleright A[i] \leftrightarrow A[i];
7:
              fim
8:
          fim
9:
          A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
|22|33|33|44|55|88|66|77|99
                                          e
     PARTICIONE (A, e, d)
          p \leftarrow A[d]; \{ p \text{ \'e o "piv\^o"} \}
 2:
         i \leftarrow e - 1:
3:
          \triangleright Para i \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
8:
          fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
+1
          |22|33|33|44|55|88|66|77|99
                                          e
     PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
           Para j \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                   i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
8:
         fim
9:
         \triangleright A[i+1] \leftrightarrow A[d];
10:
     Retorne i + 1:
11:
```

```
+1
          |22|33|33|44|55|88|66|77|99
                                          e
     PARTICIONE (A, e, d)
         p \leftarrow A[d]; \{p \text{ \'e o "piv\^o"}\}
 2:
         i \leftarrow e - 1:
3:
           Para j \leftarrow e até d-1 faça
 4:
               Se A[j] \leq p então
 5:
                  i \leftarrow i + 1:
6:
                  A[i] \leftrightarrow A[i];
7:
              fim
8:
         fim
9:
         A[i+1] \leftrightarrow A[d];
10:
     \triangleright Retorne i+1:
11:
```

Introdução Particionamento Quick-Sort Conquista (esquerda) Conquista (direira) Complexidade

Sumário

- Introdução
- 2 Particionamento
- Quick-Sort
- 4 Conquista (esquerda)
- Quick-Sort
- 6 Conquista (direira)
- Complexidade

Complexidade

O algoritmo Quick-Sort tem o seu **pior** caso quando as divisões produzem sub-divisões extremamente desbalanceadas (por exemplo a escolha de um pivô como menor ou maior elemento do vetor), sendo sua equação de recorrência neste caso dada por:

$$T(\mathbf{n}) = \left\{ egin{array}{ll} \Theta(1) & ext{se} & \mathbf{n} = 1, \\ T(n-1) + T(1) + \Theta(\mathbf{n}) & ext{se} & \mathbf{n} > 1. \end{array}
ight.$$

Complexidade de tempo: $\Theta(n^2)$.

Complexidade de espaço: $\Theta(n)$.