

MLOps: why and how to build endto-end product teams

Daniël Willemsen

Machine Learning Engineer *At Xebia*

DS @ 2023: Building an ML model is easy...

But many ML products get stuck before prod!

Machine learning in production is hard...

Why Production Machine Learning Fails — And How To Fix It

Source: Monte Carlo

Why do 87% of data science projects never make it into production?

Source: Venturebeat

But MLOps is here to save us!

MLOps is a set of practices that aims to deploy and maintain machine learning models in production reliably and efficiently.

MLOps is overwhelming...

MLOps is overwhelming... In tools

MLOps is overwhelming... In tools

Source: https://valohai.com/mlops-or-pokemon/

Question 1 20

Yay! The Peltarion Platform empowers anyone to design & deploy Al without a single line of code

NEXT QUESTION!

Question 1 20

ONIX is

A POKÉMON

or

AN MLOPS TOOL

VOLUMBINATION OF THE PROPERTY OF THE PROPERTY

Question 1 20

Yay! Onix is a dual rock/ground type Pokémon composed of a giant chain of gray boulders that become smaller towards the tail. Its length makes it the tallest Rock-type Pokémon.

NEXT QUESTION!

VOKOMO OR MLOPS

Question 1 20

ONNX

Yay! Onix is a dual rock/ground type Pokémon composed of a giant chain of gray boulders that become smaller towards the tail. Its length makes it the tallest Rock-type Pokémon.

NEXT QUESTION

MLOps is overwhelming..... In concepts

Experiment tracking

CI/CD

Data versioning

Logging

Model governance

Model versioning

ML Metadata

Orchestration

Continuous training

Deployment

Automated Machine Learning Pipelines

Drift monitoring

Data Validation

MLOps is overwhelming...

... where do you start?

Let's look at Data Scientist Daisy's work

Daisy Data Scientist @ GoDataMarkets

Tasked with helping the business improve their sales forecasts for supply-chain reasons.

Ideate with business to define use case & value

Explore data to find possible relationships

Create predictive model in a notebook

Now what?

"We often have too few or too many umbrellas in stock, resulting in \$1M lost sales or overfull warehouses"

Weather forecasts might be a good predictor of umbrella sales!

Processing the weather data & using the rain feature as input for a simple regression results in better forecasts

Let's look at Engineer Eddy's work

Eddy Engineer in IT Ops team @GoDataMarkets

Tasked with bringing Daisy's predictive model into production & operating it

Rewrite Daisy's code into a java application, loading in her trained model

Deploy the code into production

Model performance starts to become worse

Now what?

1. Machine learning systems are complex

ML Systems are complex

Source: MLOps.org

ML Systems are complex

1. Machine learning systems are complex

- 1. Machine learning systems are complex
- 2. Machine learning product is immature

Iterate on model

- 1. Machine learning systems are complex
- 2. Machine learning product is immature

- 1. Machine learning systems are complex
- 2. Machine learning product is immature
- 3. Two sides of the handover speak different languages

Differences in people*

^{*}roles/expertise

Differences in tools

Differences in processes

- 1. Machine learning systems are complex
- 2. Machine learning product is immature
- 3. Two sides of the handover speak different languages

How to get rid of the handover and close the gap?

We've been here before

People: Having the right roles & responsibilities

Data Scientist

Collaborates closely with stakeholders to build production-ready ML models that solve key business problems.

ML Engineer

Combines a strong software engineering background with a keen knowledge of ML to support building robust ML systems.

Together, they grasp the entire ML system

Together, they grasp the entire ML system

Iterate on model

Iterate on model

Process: Enable ownership over the entire ML life-cycle

Technology: support the product with the right tools & platform

Technology: support the product with the right tools & platform

MLOps is not Just about tooling

Daniël Willemsen

Machine Learning Engineer *Xebia*

MLOps is not Just about tooling

... it's about enabling end-to-end responsibility

Daniël Willemsen

Machine Learning Engineer *Xebia*