

planetmath.org

Math for the people, by the people.

relative homology groups

Canonical name RelativeHomologyGroups

Date of creation 2013-03-22 13:14:47 Last modified on 2013-03-22 13:14:47

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 5

Author bwebste (988) Entry type Definition Classification msc 55N10 If X is a topological space, and A a subspace, then the inclusion map $A \hookrightarrow X$ makes $C_n(A)$ into a subgroup of $C_n(X)$. Since the boundary map on $C_*(X)$ restricts to the boundary map on $C_*(A)$, we can take the quotient complex $C_*(X, A)$,

$$\leftarrow$$
 $\stackrel{\partial}{-}$ $C_n(X)/C_n(A) \leftarrow$ $\stackrel{\partial}{-}$ $C_{n+1}(X)/C_{n+1}(A) \leftarrow$ $\stackrel{\partial}{-}$

The homology groups of this complex $H_n(X, A)$, are called the relative homology groups of the pair (X, A). Under relatively mild hypotheses, $H_n(X, A) = H_n(X/A)$ where X/A is the set of equivalence classes of the relation $x \sim y$ if x = y or if $x, y \in A$, given the quotient topology (this is essentially X, with A reduced to a single point). Relative homology groups are important for a number of reasons, principally for computational ones, since they fit into long exact sequences, which are powerful computational tools in homology.