

Classe: 4^{ème} Math & 4^{ème} Sc-exp

Série physique:

Dipôle RC 3

Prof: Hileli Adel

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1: 30min

On se propose d'étudier la charge d'un condensateur à travers deux résistors, pour cela on réalise le circuit de la **figure 2** formé d'un générateur de tension de fem E, d'un condensateur de capacité C initialement déchargé, d'un interrupteur K et de deux résistors de résistances R_1 = 500 Ω et R_2 inconnue.

- 1- Représenter les connexions à effectuer pour visualiser sur un oscilloscope à mémoire les tensions $\mathbf{u_c}$ sur la voie 1 et $\mathbf{u_{R1}}$ sur la voie 2.
- 2- Lorsqu'on ferme l'interrupteur K, à t =0, on observe sur l'oscilloscope à mémoire les deux courbes (a) et (b) suivantes :

- **b-** Montrer qu'à l'instant t = 0, la tension $\mathbf{u_{R1}}$ est donnée par la relation $\mathbf{u_{R1}} = \mathbf{E} \frac{R_1}{R_1 + R_2}$
- 3- a- Etablir l'équation différentielle relative à $u_c(t)$.
- **b-** En déduire qu'en régime Permanent u_c = **E.** Donner sa valeur
- c- Vérifier que $u_c(t) = Ae^{\alpha t} + B$

Figure 2

- est solution de cette équation différentielle avec A , α et B des constantes à déterminer
- 4- a- Déterminer la valeur de R₂
 - **b-** Déterminer graphiquement τ . En déduire la valeur de C.
- 5- a- Déterminer les expressions en fonction du temps des tensions u_{R1} et de u_{R2}
 - **b-** Représenter sur le même graphe $u_{R2}(t)$.

Exercice 2:

(5) 50 min

Un circuit électrique est constitué des éléments suivants :

- ♣ Un générateur de tension idéale de fem E.
- Deux résistors R₁ et R₂.
- Un condensateur de capacité C initialement déchargé.
- \bot A l'instant de date **t=0**, on ferme l'interrupteur K.
- Un interrupteur K

A l'instant de date $\mathbf{t} = \mathbf{0}$, on ferme l'interrupteur K. Un système d'acquisition approprié permet d'obtenir les courbes (a) et (b) d'évolution des tensions $\mathbf{u}_{R2}(\mathbf{t})$ aux bornes du résistor R_2 et et $\mathbf{u}_{C}(\mathbf{t})$ aux bornes du condensateur.

- 1°) a- Représenter le circuit et faire les connexions avec l'oscilloscope, pour visualiser la tension aux bornes du condensateur sur la **voie A** et celle aux bornes du résistor **R**₂ sur la **voie B**, en précisant les précautions nécessaires à prendre.
 - b- En justifiant la réponse attribuée à chaque courbe la tension qui lui convient.
- 2°) a- Montrer que l'équation différentielle régissant l'intensité du courant électrique qui circule dans le circuit s'ecrit sous la forme : $i(t) + (R_1 + R_2)C\frac{di(t)}{dt} = 0$.
- **b-** L'équation différentielle précédente admet pour solution : $i(t) = \mathbf{B} e^{-\alpha t}$. \mathbf{B} et α sont des constantes.
 - ♣ Déterminer l'expression α

 - \perp Écrire l'expression de i(t).
 - a- En déduire les expressions des tensions $u_{R2}(t)$ et $u_{C}(t)$.
 - 3°) A partir du graphe déterminer :
 - a- La fem E du générateur.
 - **b-** La constante du temps τ du dipôle (R_1 , R_2 , C).
 - c- Déterminer la valeur I₀ de l'intensité de courant à t=0s.
 - **d-** Montrer que $\frac{R_2}{R_1 + R_2} = \frac{12}{13}$.
 - 4°) A un instant de date t_1 tel que $u_C(t_1) = u_{R2}(t_1)$, l'énergie emmagasinée par le condensateur est : $E_C = 96, 1.10^{-6} J$.
 - a- Déterminer graphiquement la valeur de la tension $\mathbf{u}_{\mathrm{C}}(\mathbf{t}_{1})$.
 - **b-** En déduire que la capacité du condensateur $C = 20\mu F$.
 - c- Déterminer les valeurs de R₁ et R₂.
 - **d-** Déterminer, graphiquement, la valeur de **t**₁.
 - e- Retrouver cette date t₁ par le calcul.
- 5°) On considère le même circuit mais en remplaçant les deux résistors précédents par deux autres résistors de valeurs respectives **R**'1 et **R**'2. Le condensateur est initialement déchargé.

Une étude expérimentale a permis, après avoir effectué les calculs nécessaires, de représenter la courbe cicontre donnant l'évolution de $\mathbf{Ln}(u_{R_2'})$ en fonction du **temps** avant d'atteindre le régime permanent.

- a- Justifier théoriquement l'allure de la courbe.
- **b-** En déduire la valeur de la constante du temps τ '
- c- Déterminer les valeurs de R'1 et R'2.

