Inteligencia Artificial
2017-II
Examen Final
2017-11-30
Tiempo Límite: 3 horas

Nombre: _____

Profesor: Mg. Diego Benavides

El examen contiene 2 páginas (incluyendo esta) y 6 preguntas. El total de puntaje es 20.

Tabla de puntaje (uso del profesor)

	0 (
Question	Points	Score
1	2	
2	4	
3	4	
4	4	
5	3	
6	3	
Total:	20	

1. (2 points) Dada las variables aleatorias contínuas y y x demostrar que

$$P(y|x) = \frac{P(x|y)P(y)}{\int_{y} P(x|y)P(y)}$$

- 2. (4 points) Los doctores encuentran que la gente con la enfermedad Kreuzfeld-Jacob (KJ) casi invariablemente comía hamburguesas, tal que P(Hamburguesa|KJ) = 0.9, donde la variable Hamburguesa representa al comedor de hamburguesas. Además la probabilidad de que un individuo tenga KJ es actualmente bastante baja, aprox. 1 en 100000.
 - 1. Cuál es la probabilidad de que un comedor de hamburguesas tendrá la enfermedad KJ (es decir, P(KJ|Hamburguesa)) dado que P(Hamburguesa) = 0.5.
 - 2. Si P(Hambuerguesa) = 0.001 ¿Cuál sería el resultado? Concluya la variación que observa respecto a las variables aleatorias y al caso de estudio.
- 3. (4 points) Sean f y g que perteneces a \mathbb{H} (EHKR) y sean (f_n) y (g_n) dos sucesiones de Cauchy en \mathbb{H}_0 (cualquier subespacio de \mathbb{C}^E , E abstracto) que converge puntualmente a f y g respectivamente. Entonces la sucesión $\langle f_n, g_n \rangle_{\mathbb{H}_0}$ es convergente y su límite solo depende f y g.

- * Tomar en cuenta que para cualquier función $f \in \mathbb{H}_0$ y cualquier sucesión de Cauchy $(f_n) \in \mathbb{H}_0$, puntualmente convergente a f, (f_n) converge también a f en el sentido de norma.
- 4. (4 points) Sea $\mathbb{H} = L_2([0,1])$, con la métrica

$$||f_1 - f_2||_{L_2([0,1])} = \left(\int_0^1 |f_1(x) - f_2(x)|^2\right)^{1/2}$$

y considerando la sucesión de funciones $\{q_n\}_{n=1}^{\infty}$ donde $q_n = x^n$. Demostrar que las evaluaciones funcionales no son contínuas en todos los casos respecto de q_n .

- 5. (3 points) Considere $E = \mathbb{R}^2$ y $k(x,y) = \langle x,y \rangle^2$. Demostrar que existen al menos dos representaciones de $\phi(x)$ asociados a diferentes espacios característicos. Explicar que pasa con la unicidad del EHKR en este caso.
- 6. (3 points) Explicar la relación subyacente a los problemas (1) y (2)

$$\inf_{f \in \mathbb{H}} \lambda ||f||_{\mathbb{H}}^2 + R_{L,D}(f)$$
 y (1)

$$\min_{(w,b)\in\mathbb{H}_0\times\mathbb{R}}\lambda\langle w,w\rangle + \frac{1}{n}\sum_{i=1}^n L(y_i, f_{(w,b)}(x_i))$$
(2)

donde $L(y_i, f_{(w,b)}(x_i)) = \max\{0, 1 - y_i(\langle w, \phi(x_i) \rangle + b)\} = \xi_i \text{ y } f_{(w,b)}(x_i) = \langle w, \phi(x_i) \rangle + b.$