Simulating neural computation and information processing (with *Brian*)

Marcel Stimberg
Institut de la Vision/Sorbonne Université

marcel.stimberg@inserm.fr

Course material

The jupyter notebooks for the practical introductions to neural simulation will be made available at:

https://github.com/brian-team/brian-material/tree/master/2022-TD-Brian-Sorbonne

Plan for today

Practical introduction to neural modeling

Part 1: neurons

Part 2: networks of neurons

Part 3: case study (binaural sound localisation)

Each part:

some slides + practical simulation in Brian

Part 1: Neurons

Modelling neurons

Detailed neuronal morphologies → point-neuron models

Modelling neurons

Point-neuron models

Hodgkin-Huxley formalism

integrate-and-fire model

firing rate models

Modelling neurons

Point-neuron models

Integrate-and-fire neuron

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(V_{\text{rest}} - V) + I_{\text{stim}}$$

$$V(t) > V_{\rm threshold} \rightarrow {\rm spike} + V(t) = V_{\rm reset}$$

Computing with spikes

• An argument that is sometimes made:

"Spike timing in individual neurons is unreliable ('noisy'). Therefore, only the firing rate (averaged over neurons or over time) matters, not the time of individual spikes."

• Is spike timing really "unreliable"?

Computing with spikes

Constant current injection = **unreliable** spike times

Computing with spikes

Constant current injection = **unreliable** spike times **Fluctuating** current injection = **reliable** spike times

The Simulator

Brian's approach

- Philosophy: Mathematical model descriptions
 - Flexible system to define models with equations
 - Takes care of numerical integration / synaptic propagation
 - Physical units
- Technology: Code generation
 - High-level descriptions transformed into low-level code
 - Transparent to user

More info

Website: https://briansimulator.org

Documentation: https://brian2.readthedocs.io

Discussion forum: https://brian.discourse.group

Articles:

Stimberg, Marcel, Romain Brette, and Dan FM Goodman. "Brian 2, an Intuitive and Efficient Neural Simulator." ELife 8 (2019): e47314. https://doi.org/10.7554/eLife.47314.

Stimberg, Marcel, Dan F. M. Goodman, Victor Benichoux, and Romain Brette. "Equation-Oriented Specification of Neural Models for Simulations." Frontiers in Neuroinformatics 8 (2014). https://doi.org/10.3389/fninf.2014.00006

Part 2: **Networks**

Modelling networks of neurons

Synapses

Why can we talk about excitatory/inhibitory *neurons* and not just synapses?

→ "Dale's law"
Neurons release the same neurotransmitter(s) on every synapse

© 2000 UTHSCH

Synaptic models

t (ms)

Synaptic models

Synapses

For each spike: increase I_{syn} by J_{ij}

Between spikes: I_{syn} exponentially decays to 0

synaptic current membrane potential

Current-based synapse

Synaptic models

Synapses

 $I_{syn} = g_{syn} (E_{syn} - V_m)$

For each spike:

increase g_{syn} by J_{ij}

Between spikes:

 q_{\perp} exponentially decays to O

synaptic current membrane potential

exponential conductance-based

Input integration in neurons

- Cortical neurons: ~10000 synapses
- If spikes at synapses are independent
 - → total input relatively constant
 - → neuron should fire regularly

Note: "regularly" and "reliable" are different things!

Irregularity of spike trains

Cortical neurons fire irregularly (in vivo)

Mean-driven vs. fluctuation-driven

Mean-driven

$$\left\langle I \right\rangle$$
 > $I_{\mathrm{threshold}}$ Small variability (average of many inputs)

Fluctuation-driven

$$\langle I \rangle < I_{\rm threshold}$$

Let's try with

Part 3: Case study Binaural sound localisation

Binaural sound localisation

The Jeffress model

Interaural time delay (ITD)

Binaural sound localisation

Anatomical structures from the ear to the brainstem

