

www.preparadorinformatica.com

PRÁCTICA 2 PLANIFICACIÓN DE PROCESOS

(SOLUCIONES Ejercicios 13 a 23)

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Tiempo de creación	Tiempo de CPU
Α	4	1
В	0	5
C	1	4
D	8	3
E	12	2

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo Round Robin con quantum = 4 para planificación de procesos.

Calcula también el tiempo medio de respuesta (retorno), tiempo medio de espera y tiempo de retorno normalizado (cociente entre tiempo de retorno y tiempo de servicio (uso de cpu)

EJERCICIO 13. SOLUCIÓN PROPUESTA

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α									Х						
В	Х	Х	Х	Х	5					Х					
С					Х	Х	Х	Х							
D					4					-	Х	Х	Х		
F														Χ	Χ

Preparador Informática

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

$$A = 9 - 4 = 5$$

$$B = 10 - 0 = 10$$

$$C = 8 - 1 = 7$$

$$D = 13 - 8 = 5$$

$$E = 15 - 12 = 3$$

Tiempo medio de retorno = (5+10+7+5+3) / 5 = 6

Tiempo de espera:

(Restamos el tiempo de retorno menos el tiempo que de servicio del proceso)

$$A = 5 - 1 = 4$$

$$B = 10 - 5 = 5$$

$$C = 7 - 4 = 3$$

$$D = 5 - 3 = 2$$

$$E = 3 - 2 = 1$$

Tiempo medio de espera = (4+5+3+2+1) / 5 = 3

Tiempo de retorno normalizado (También llamado "penalización"):

(Dividimos el tiempo de retorno y el tiempo de servicio de cada proceso)

$$A = 5/1 = 5$$

$$B = 10/5 = 2$$

$$C = 7/4 = 1,75$$

$$D = 5/3 = 1,67$$

$$E = 3/2 = 1.5$$

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Tiempo de creación	Tiempo de CPU
Α	0	3
В	1	1
С	3	12
D	9	5
E	12	5

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo FCFS para planificación de procesos.

Calcula también el tiempo medio de respuesta (retorno), tiempo medio de espera y tiempo de retorno normalizado (cociente entre tiempo de retorno y tiempo de servicio (uso de cpu)

EJERCICIO 14. SOLUCIÓN PROPUESTA

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

$$A = 3 - 0 = 3$$

$$B = 4 - 1 = 3$$

$$C = 16 - 3 = 13$$

$$D = 21 - 9 = 12$$

$$E = 26 - 12 = 14$$

Tiempo medio de retorno = (3+3+13+12+14) / 5 = 9

Tiempo de espera:

(Restamos el tiempo de retorno menos el tiempo que de servicio del proceso)

$$A = 3 - 3 = 0$$

$$B = 3 - 1 = 2$$

$$C = 13 - 12 = 1$$

$$D = 12 - 5 = 7$$

$$E = 14 - 5 = 9$$

Tiempo medio de espera = (0+2+1+7+9) / 5 = 3.8

Tiempo de retorno normalizado (También llamado "penalización"):

(Dividimos el tiempo de retorno y el tiempo de servicio de cada proceso)

$$A = 3/3 = 1$$

$$B = 3/1 = 3$$

$$C = 13/12 = 1.08$$

$$D = 12/5 = 2.4$$

$$E = 14/5 = 2.8$$

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	3
В	1	5
С	4	2
D	5	6
E	8	4

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo Round Robin de quantum = 1 para planificación de procesos.

Y calcula también el tiempo de retorno medio y el tiempo de espera medio.

EJERCICIO 15. SOLUCIÓN PROPUESTA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Α	Х		Χ		Χ						4			K						
В		Χ		Х			X		П	X			Х	K						
С						Х	7		Х				J.	ŀ						
D								Х				Х			Х		Х		Х	Х
Е											Χ		-	Χ		Χ		Х		

Preparador Informática

RECORDAD QUE:

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

Tiempo de espera:

Proceso	Llegada	T.Ejecución	Finaliza	T retorno	T Espera
Α	0	3	5	5	2
В	1	5	13	12	7
С	4	2	9	5	3
D	5	6	20	15	9
E	8	4	18	10	6
				9.4	5.4

Repite el ejercicio anterior para quantum = 3.

EJERCICIO 16. SOLUCIÓN PROPUESTA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Α	Χ	Χ	Χ																	
В				Χ	Χ	Х						Χ	Χ							
С							Х	Х												
D									Х	Χ	Χ						Χ	Х	Х	
Е								-			1		1	Χ	Χ	Χ				Х

RECORDAD QUE:

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

Tiempo de espera:

Proceso	Llegada	T.Ejecución	Finaliza	T retorno	T Espera
Α	0 1 6	pag av	3	3	0.0
В	1	5	13	12	7
С	4	2	8	4	2
D	5	6	19	14	8
E	8	4	20	12	8
				9	5

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	5
В	1	4
С	3	2
D	9	6
E	11	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo SJF para planificación de procesos.

Y calcula también el tiempo de retorno medio y el tiempo de espera medio.

EJERCICIO 17. SOLUCIÓN PROPUESTA

RECORDAD QUE:

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

Tiempo de espera:

Proceso	Llegada	T.Ejecución	Finaliza	T retorno	T Espera
Α	0	5	5	5	0
В	1	4	11	10	6
С	3	2	7	4	2
D	9	6	20	11	5
E	11	3	14	3	0
				6.6	2.6

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	5
В	1	4
С	3	2
D	9	6
E	11	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo SRT para planificación de procesos.

Y calcula también el tiempo de retorno medio y el tiempo de espera medio.

EJERCICIO 18. SOLUCIÓN PROPUESTA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Α	Χ	Χ	Χ	Χ	Х									I						
В							5	Х	Х	Х	Χ									
С						Х	X													
D							4)	Х	Χ	Х	Χ	Х	Χ
Е												X	Χ	Χ						

Preparador Informática

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

Tiempo de espera:

Proceso	Llegada	T.Ejecución	Finaliza	T retorno	T Espera
Α	0	5	5	5	0
В	1	4	11	10	6
С	3	2	7	4	2
D	9	6	20	11	5
E	11	3	14	3	0
				6.6	2.6

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	5
В	1	4
С	3	2
D	9	6
E	11	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo FCFS para planificación de procesos.

Y calcula también el tiempo de retorno medio y el tiempo de espera medio.

EJERCICIO 19. SOLUCIÓN PROPUESTA

RECORDAD QUE:

Tiempo de retorno:

(Restamos cuando termina menos cuando llega) (Tfinal – Tinicial)

Tiempo de espera:

Proceso	Llegada	T.Ejecución	Finaliza	T retorno	T Espera	
Α	0	5 5		5	0	
В	1	4	9	8	4	
С	3	2	11	8	6	
D	9	6	17	8	2	
E	11	3	20	9	6	
				7.6	3.6	

Sean los seis procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución	Prioridad
Α	0	8	5
В	2	4	7
С	4	2	3
D	6	3	8
E	8	6	1
F	10	4	5

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo de Planificación por Prioridades APROPIATIVO para planificación de procesos.

EJERCICIO 20. SOLUCIÓN PROPUESTA

Sean los cinco procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución	Prioridad
Α	0	2	4
В	1	4	3
С	3	4	2
D	5	1	1
E	6	2	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo de Planificación por Prioridades APROPIATIVO para planificación de procesos.

EJERCICIO 21. SOLUCIÓN PROPUESTA

Sean los cuatro procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	8
В	2	4
С	5	9
D	12	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo SJF para planificación de procesos.

EJERCICIO 22. SOLUCIÓN PROPUESTA

Sean los cuatro procesos descritos en la tabla siguiente:

Proceso	Llegada	T.Ejecución
Α	0	8
В	2	4
С	5	9
D	12	3

Muestra cómo sería la ejecución de los mismos si se utiliza el algoritmo SRT para planificación de procesos.

EJERCICIO 23. SOLUCIÓN PROPUESTA

	0	1	2	3	4	5	6	7	8	9	1	1	1			1								
Α	Χ	Χ					Χ	Χ	Χ	Χ	Х	X												
В			Χ	Χ	Χ	Χ				-						J								
С																Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
D													X	Х	Х			ľ						