HL Tau周囲の原始惑星系円盤の 多波長輻射平衡モデル

持田一貴, 花輪 知幸(千葉大)

HL Tau周囲の原始惑星系円盤の 多波長輻射平衡モデル

持田一貴, 花輪 知幸(千葉大)

目的

(1) ダストのオパシティー κ_{abs} と κ_{sca} に制限を与えられるか?

(2) フレアした円盤大気 はミリ波の放射に影響 を与えるか?

 κ_{abs} , κ_{sca} , $\rho(r,z)$?

H band

Stokes I

Stokes I

A

Outset Dec (accec)

Flared IR-disk Murakawa+06

モデルの概要

- 1. 輻射平衡モデルの作成
 - 1a. 密度分布を与える
 - 1b. 星からの直接光
 - 1c. 円盤の散乱光と熱放射の輻射輸送 (M1 model)
 - 1d. ダスト熱平衡温度

擬似観測 Infalling Jet 熱放射 Envelope 直接光 mm-wave disk HL Tau Flared IR disk

1cと1dを反復計算

計算領域: $20 \text{ AU} \leq r \leq 140 \text{AU}$

密度分布
$$\rho(r,z) = \begin{cases}
\rho_{mm} = \rho_0 \exp\left(-\frac{z^2}{2H_0^2}\right) & |z| \le \alpha H_0 \\
\rho_{IR} = \rho_0 \exp\left(-\frac{\alpha^2}{2} - \frac{z - \alpha}{H_1}\right) & \alpha H_0 < |z| < z_{\text{max}} \\
\rho_{min} = 10^{-18} & |z| \ge z_{\text{max}}
\end{cases}$$

parameter

$$\alpha = 3$$
, $H_0 = 0.05 \, r$, $H_1 = 0.2 r$, $z_{max} = \left(\frac{r}{200} \,\text{AU}\right)^{0.5} r$
 $\Sigma(r) = 24.9 f\left(\frac{R}{78.9 \,\text{AU}}\right)^{0.22} \exp\left[1 - \left(\frac{R}{78.9 \,\text{AU}}\right)^{2.22}\right] \,\text{g cm}^{-2}$

$$f = 1 \text{ (Kwon+11)}$$

星からの直接光

 $0.1 \mu \text{m} \le \lambda \le 3.16 \text{mm}$ $\Delta \log \lambda = 0.02 \text{ (226 color)}$

$$\tau_{\nu}(r,z) = \int_{0}^{r} \left(\kappa_{\nu}^{abs} + \kappa_{\nu}^{sca}\right) \rho\left(r', \frac{zr'}{r}\right) \sqrt{1 + \left(\frac{z}{r}\right)^{2}} dr'$$

$$E_{\nu,star}(r,z) = \frac{R_{star}^{2}}{c(r^{2} + z^{2})} B_{\nu}(T_{star}) \exp\left[-\tau_{\nu}(r,z)\right]$$

$$\mathbf{F}_{\nu,star}(r,z) = \frac{c}{\sqrt{r^{2} + z^{2}}} \binom{r}{z} E_{\nu,star}(r,z)$$

直接光

HL Tau

• $R_{\rm star} = 6.9 \, \rm R_{\odot}$,

• $T_{\rm eff} = 4000 \, \rm K$,

• $L = 11 \, \rm L_{\odot}$ (Men'shchikov+99)

Infalling Envelope

円盤の散乱光と熱放射の輻射輸送(M1モデル)

計算領域: 20 AU

オパシティー

擬似観測

" a_{max} = 1 mm, $0.1 \times \kappa_{sca}$ "だけがALMAの観測を再現する

ダストのオパシティーκ_{abs}とκ_{sca}に制限を与えられるか?

$a_{\text{max}} = 1 \, \mu \text{m}$

等高線:温度

カラー:密度

T_{mid}: 赤道面の温度

 T_n :プランク温度

- ・T_{mid}がかなり低い
- ・面密度を上げると T_{mid} が下がっていく
- → ALMAの観測を再現できない

$a_{\text{max}} = 100 \ \mu\text{m}$

20AUの付近で T_{mid} がALMAの T_p を下回る

→ ALMAの観測を再現できない

$a_{\text{max}} = 1 \text{ mm (normal scattering)}$

- T_{mid} は十分高いが T_{p} はかなり低い
- · Gapがぼやける
- → 強い散乱が原因

$a_{max} = 1$ mm, $0.1 \times \kappa_{sca}$ (reduced scattering)

Reduced scattering model can reproduce ALMA images.

散乱を0.1倍にすると T_{mid} は変わらないGapを再現できる

Disc is geometrically thin. cf. Pinte+15

フレアした円盤はミリ波の放射 に影響を与えるか

赤道面の温度は T_{mid} はIR diskの形状に依存する

まとめ

- ・散乱は円盤を暗くさせ、Gapをぼやけさせる
 - → 散乱が強くてはいけない
- ・一方でALMAの観測を再現するには ダストサイズが大きい方が良い

・密度の低いフレアした円盤が ミリ波の放射に影響を与える