1 Grundlagen

1.1 Eigenschaften

Eigenschaften LTI-Systeme

1. Stabilität $|x(t)| < M < \infty \Rightarrow |y(t)| < N < \infty$

2. Linearität $W\left\{\sum_{k=1}^N a_n x_n(t)\right\} = \sum_{n=1}^N W\{a_n x_n(t)\}$

3. Zeitinvarianz $W\{x(t-t_0)\} = y(t-t_0)$

4. Kausalität $t < 0 \Rightarrow x(t) = 0 \land y(t) = 0$

1.2 Systemantwort

Die Sprung-/Impulsantwort beschreibt Systemantwort vollständig

$$y(t) = \int_{-\infty}^{\infty} a(t - \tau)x'(\tau) d\tau$$

$$a(t - \tau) = W\{s(t - \tau)\}$$
(1)

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau)x(\tau) d\tau$$

$$h(t - \tau) = W\{\delta(t - \tau)\}$$
(2)

1.3 Abtasttheorem

Durch die Abtastung wird das Spektrum von f(t) unendlich oft um die Frequenzen $n \cdot \omega_a$ reproduziert.

$$F_A(\omega) = \frac{1}{T_A} \sum_{n = -\infty}^{\infty} F(\omega - n\omega_A)$$

$$2\omega_a \le \omega_A$$
(3)

2 Systemtechnik

2.1 Modellbildung

Hinweise zum aufstellen der Differentialgleichung eines Systems:

- 1. Bestimmung der Ein- und Ausgangsgrößen
- 2. Suche nach dem beschreibenden Gleichgewicht
- 3. In der Gleichung dürfen nur Konstanten, sowie die Ein- und Augangsgrorßen in beliebiger Ableitung vorkommen
- 4. Andere Variablen müssen durch erlaubte Größen ersetzt werden (Dazu können i.a. physikalische Gleichungen benutzt werden)

2.2 Signalflussplan/Blockschaltbild

Erzeugung des Signalflussplans aus der Zugehörigen DGL.

für technische Realissierung gilt: m < n;

Dgl. nach höchster Ableitung der Ausgangsgröße auflösen

höchste Ableitung der Ausgangsgröße geht auf den Eingan des ersten Integrators

(Laplace-Trans ersetzt das Intergrieren mit einer Division mit "s")

Erzeugung des Signalflussplans eines Systems mit der Dgl.:

$$a_n \overset{(n)}{x_a} + \ldots + a_2 \ddot{x}_a + a_1 \dot{x}_a + a_0 x_a = b_m \overset{(m)}{x_e} + \ldots + b_2 \ddot{x}_e + b_1 \dot{x}_e + b_0 x_e$$

Signalflussplan kann allgemein gezeichnet werden:

2.3 Stabilität

BIBO-Stabiliät (Bounded Input/ Bounded Output-> begrenzt):

ein dynamisches System ist stabil, wenn gilt: für ein begrenztes x_e gibt es immer ein begrenztes x_a

2.4 Ortskurven und Frequenzkennlinien

Ortskurvendarstellung:

Für wachsendes ω werden die komplexen Werte $F(j\omega)$ in die komplexe F-Ebene eingetragen und zur Ortskurve verbunden.

Jeder Ortskurvenpunkt kann jetzt als Zeiger gedeutet werden.

Bodediagrammdarstellung:

Der Amplitudengang $A(\omega)$ wird in doppeltlogarithmischer Darstellung aufgetragen,

der Phasengang y(ω)) halblogarithmisch. Gemeinsame Abszisse ist ω .

Bei diesem Beispiel (PT1-Glied) ist deutlich der Tiefpass-Charakter zu erkennen.

Verkettete Funktionen im Bodediagramm resultieren als Produkt der Einzelübertragungsfunktionen.

D.h. Verstärkung wird multipliziert und Phasenverschiebung addiert. Das heißt: Sowohl Phasengang (halblogarithmische Darstellung) und Amplitudengan (logarithmische Darstellung) werden graphisch addiert!

2.5 F(s) in Pol- und Nullstellenform

Zähler- und Nennerpolynom von F(s) besitzt Nullstellen. Diese sind von a_v und b_u abhängig.

Nullstellen des Zählers sind Nullstellen von F(s)

Nullstellen des Nenners sind Polstellen von F(s)

Wenn Pole $s_p v$ und Nullstellen $s_n u$ bekannt, kann man F(s) mit dem Faktor Q in faktorisierter Form darstellen.

$$F(s) = Q \cdot \frac{\prod_{\mu=1}^{m} (s - s_{N\mu})}{\prod_{\nu=1}^{n} (s - s_{P\nu})} \quad \text{mit } Q = \frac{b_m}{a_n}$$

Die Stabilität von F(s) kann anhand der Lage der Pole $s_p v$ in der s-Ebene beurteilt werden.

 $\mathbf{F}(\mathbf{s})$ ist stabil, wenn alle Pole $s_p v$ in der linken s-Halbebene liegen.

Instabile Pole in der Rechten Halbebene lassen sich nicht durch Reihenschaltung mit entsprechender Nullstelle kompensieren!

Bedeutung Polstelle:

Pole bewirken ein zeitverzögertes Verhalten, je weiter links sie sich befinden, desto schneller ist der Einschwingvorgang.

=> Wenn Pole deutlich weiter links liegen als andere andere, kann man sie ohne großen Fehler vernachlässigen.

Bedeutung Nullstelle:

NS bewirken ein differenzierendes Verhalten (Beschleunigung des Systems) Einfluss weit links in der s-Ebene kann häufig vernachlässigt werden.

2.6 Signalflussplanalgebra

Kettenstruktur:

$$\begin{array}{c|c} X_{e}(s) & X_{a1}(s) = X_{e2}(s) \\ \hline F_{1}(s) & X_{a}(s) = X_{e2}(s) \\ \hline \end{array} \begin{array}{c} X_{a}(s) & X_{a}(s) = F_{2}(s) \cdot F_{1}(s) \cdot X_{e}(s) \\ \hline F_{Reiline}(s) = F_{1}(s) \cdot F_{2}(s) \end{array}$$

Parallelstruktur:

Kreisstruktur:

Verschieben einer Additionsstelle:

Verschieben einer Verzweigung:

3 Zusammenwirken mehrerer Systeme

3.1 Regelkreis

Anforderungen:

Stabilität: Regelkreis muss stabiles Verhalten zeigen (gilt auch für instabile Systeme)

Gutes Führungsverhalten: Die Differenz zw. Sollwert w(t) und Istwert x(t) muss schnell klein werden.

Gutes Störverhalten: Einfluss von Störgrößen soll vermindert werden.

Grundstruktur deseinschleifigen Regelkreises

	$F_R(s)$	Regelstrecke $F_S(s)$	bleibende Regeldifferenz e (oder x_d)	
Regler			für $x_e = a \cdot \sigma(t)$ (Sprung) mit Rückführverstärkung K_r	für $x_e = a \cdot t$ (Rampe) mit Einheitsrückführung
P (D)	K_{P}		$a\frac{1}{1+K_p\cdot K_S\cdot K_r}$	∞
ı	$\frac{K_I}{s}$	P-Verhalten (P, PT1, PT2,)	0	$a\frac{1}{K_I \cdot K_S}$
PI (D)	$K_P + \frac{K_I}{s}$	$F_s(s) = K_s \frac{(1 +s)}{(1 +s)}$	0	$a\frac{1}{K_t \cdot K_s}$
l ²	$\frac{K_I}{s^2}$		0	0
P (D)	K_P	1- Verrianeri	0	$a\frac{1}{K_P \cdot K_S}$
ı	$\frac{K_I}{s}$	$(I, PI, ITI,)$ $F_S(s) = K_S \frac{(1 +s)}{\underline{s}(1 +s)}$	0	0
PI (D)	$K_P + \frac{K_I}{s}$	<u>s</u> (1+s)	o	0

Wurzelortskurven (WOK)-Verfahren 3.2

Reglerfunktion F_R in Reglerverstärkung und Reglerdynamik aufspalten: $F_R = K \cdot F_R'$

Dabei ist $F_o = F_R \cdot F_S \cdot F_r$ die Übertragungsfunktion des offenen Regelkreises. F_o kann auch in faktorisierter Form angegeben werden:

$$F_w(s) = F_R(s) \cdot F_S(s) \cdot F_r(s)$$

$$= K \cdot F_R'(s) \cdot F_S(s) \cdot F_r(s)$$

$$= K \cdot Q \cdot \frac{\prod_{u=1}^m (s - s_{\text{Nou}})}{\prod_{v=1}^n (s - s_{\text{pov}})}$$

Für eine Polstele, muss der Nenner von $F_w(s)$ Null werden:

$$\frac{F_R(s) \cdot F_S(s)}{1 + F_o(s)} \Rightarrow 1 + F_o(s) \stackrel{!}{=} 0$$

Daraus folgt:

$$\Rightarrow 1 + K \cdot Q \cdot \frac{\prod_{M=1}^{m} (s - s_{\text{Nou}})}{\prod_{v=1}^{n} (s - s_{\text{por}})}$$
$$\Rightarrow \frac{\prod_{v=1}^{n} (s - s_{\text{pov}})}{\prod_{v=1}^{m} (s - s_{\text{Nou}})} \stackrel{!}{=} -K \cdot Q$$

3.3 Konstruktion der WOK

- 1. Alle n Äste der WOK beginnen mit K=0 in den n Polen $s_p ov$ des offenen Regelkreises.
- 2. m Äste der WOK enden für $K \to \pm \infty$
- 3. n -m Äste der WOK enden für K $\rightarrow \pm \infty$ im Unendlichen
- 4. Die n-m ins Unendliche strebende Äste der WOK haben Asymptoten, die
 - a) im Wurzelschwerpunkt

$$S_w = \frac{\sum_{v=1}^{n} s_{pov} - \sum_{u=1}^{m} s_{Nop}}{n - m}$$

beginnen und die dabei

b) mit der reellen Achse die Winkel

b) mit der reellen Achse die Winkel
$$\varphi_k = \frac{(2k-1)\cdot 180^\circ}{n-m} \text{ für KQ} > 0 \text{ bzw. } \varphi_k = \frac{(2k-2)\cdot 180^\circ}{n-m}$$
 für KQ < 0 mit k = 1,2,3,...,n-m

- 5. Die Punkte der WOk liegen entweder auf der reelen Achse, oder symmetrisch zur reelen Achse
- 6. Ein Punkt s auf der reellen Achse ist dann ein Punkt der WOK, wenn sich bei KQ > 0 (KQ < 0) rechts von ihm eine ungerade (gerade) Anzahl von Polen s_{pov} und (+) Nullstellen s_{Nov} befindet.

Achtung: WOK ist nicht anwendbar, wenn es sich um nicht rationale Übertragungsfunktionen handelt. (z.B. Regelkreis mit Totzeitverhalten!)

3.4 Nyquist Kriterium

Frequenzgangfunktion des offenen Regelkreises:

$$F_o(j\omega) = F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega)$$

Ausgangssignal:

$$x_a(t) = -F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega) \cdot x_{e0} \sin(\omega t) = -F_0(j\omega) \cdot x_e(t)$$

Regler und seine Parameter werden so gewählt, dass $\omega = \omega_{krit}$

Grundlagen 4

4.1 Eigenschaften

Eigenschaften LTI-Systeme

1. Stabilität

$$|x(t)| < M < \infty \Rightarrow |y(t)| < N < \infty$$

- 2. Linearität $W\left\{\sum_{k=1}^N a_n x_n(t)\right\} = \sum_{n=1}^N W\{a_n x_n(t)\}$
- 3. Zeitinvarianz $W\{x(t-t_0)\} = y(t-t_0)$
- 4. Kausalität $t<0 \Rightarrow x(t)=0 \land y(t)=0$

4.2 Systemantwort

Die Sprung-/Impulsantwort beschreibt Systemantwort vollständig

$$y(t) = \int_{-\infty}^{\infty} a(t - \tau)x'(\tau) d\tau$$

$$a(t - \tau) = W\{s(t - \tau)\}$$
(4)

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) x(\tau) d\tau$$

$$h(t - \tau) = W\{\delta(t - \tau)\}$$
(5)

4.3 Abtasttheorem

Durch die Abtastung wird das Spektrum von f(t) unendlich oft um die Frequenzen $n \cdot \omega_a$ reproduziert.

$$F_A(\omega) = \frac{1}{T_A} \sum_{n = -\infty}^{\infty} F(\omega - n\omega_A)$$

$$2\omega_g \le \omega_A$$
(6)

5 Zusammenwirken mehrerer Systeme

5.1 Fourierreihe

$$f(t) = \sum_{n=0}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_0 t) dt$$
(7)

5.2 Fourierreihe, komplex

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} dt$$
(8)

5.3 Fourierintegral

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
 (9)

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$
 (10)

5.3.1 Eigenschaften

- 1. Linearität $af_1(t) + bf_2(t) \circ \bullet aF_1(\omega) + bF_2(\omega)$
- 2. Zeitverschiebung $f(t-t_0) \circ -F(\omega) e^{-j\omega t_0}$
- 3. Frequenzverschiebung $f(t)e^{\pm j\omega_0 t} \circ F(\omega \mp \omega_0)$
- 4. Faltung $f_1(t) * f_2(t) \circ \bullet F_1(\omega) \cdot F_2(\omega)$ $f_1(\omega) \cdot f_2(\omega) \circ \bullet \frac{1}{2\pi} F_1(t) * F_2(t)$

5.4 DFT

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{i2\pi kn/N}$$
 (11)

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi kn/N}$$
 (12)

5.4.1 FFT

Abbildung 1: FFT

5.5 Hilbert Transformation

$$x_{\rm ht}(t) = x_{\rm r}(t) * h(t) \tag{13}$$

$$H(\omega) = -j\operatorname{sgn}(\omega) \tag{14}$$

5.6 z Transformation

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$
(15)

$$x(n) = \frac{1}{2\pi j} \oint_c X(Z) z^{n-1} dz$$
 (16)

5.6.1 Übertragungsfunktion

$$H(Z) = \frac{Y(Z)}{X(z)} = \frac{\sum_{k=0}^{q} b_k z^{-k}}{\sum_{k=0}^{p} a_k z^{-k}} = k \frac{\prod_{k=1}^{q} (1 - z_k z^{-1})}{\prod_{k=1}^{p} (1 - p_k z^{-1})}$$
(17)

5.6.2 Verschiebung im Zeitbereich

$$Y(z) = \sum_{n=0}^{\infty} [x(n-m)]z^{-n} = z^{-m}X(z)$$
 (18)

$$Y(z) = \sum_{n=0}^{\infty} [x(n+m)]z^{-n} = z^m \left[x(t) - \sum_{n=0}^{m-1} x(n)z^{-n} \right]$$
(19)

6 Digitale Regler

6.1 FIR

$$y[n] = \sum_{k=0}^{q} b_k x(n-k)$$
 (20)

6.2 IIR

$$y[n] = \sum_{k=0}^{q} b_k x(n-k) - \sum_{k=1}^{p} a_k y(n-k)$$
 (21)

Abbildung 2: Direkt Form 1

Abbildung 3: Direkt Form 2

7 Systembeschreibung im Zustandsraum

7.1 Allgemein (Mehrgrößensystem MIMO)

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t); \quad x(0) = x_0; \vec{y}(t) = C\vec{x}(t) + D\vec{u}(t)$$
(22)

Abbildung 4: Signalflussplan

$$\begin{split} \dot{x}_1 &= 0*x_1 + 0*x_2 + 0*x_3 + 1*u_1 + 0*u_2 \\ \dot{x}_2 &= K*x_1 + 0*x_2 + 0*x_3 + 0*u_1 + 0*u_2 \\ \dot{x}_3 &= 0*x_1 + 0*x_2 + 0*x_3 + H*J*u_1 + J*u_2 \\ \dot{y}_1 &= 0*x_1 + 1 + x_2 + 0*x_3 + 0*u_1 + 0*u_2 \\ \dot{y}_2 &= 0*x_1 + 0*x_2 + l*x_3 + 0*u_1 + 0*u_2 \end{split}$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ K & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & l \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ H \cdot J & J \end{bmatrix} \ D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

7.2 Programmtechnische Umsetzung

Zaehler und Nenner der z-Uebertragungsfunktion durch die hoechste Potenz teilen

```
while(1){
  waitinterrupt();
  xout2 = xout1;
  xout1 = xout;
  xin2 = xin1;
  xin1 = xin;
  input(xin);
  xout = k*xout2 - j*xin1 + o*xout1;
  output(xa);
}
```