Universidad de La Habana Facultad de Matemática y Computación

Título de la tesis

Autor:

Nombre del autor

Tutores:

Nombre del primer tutor Nombre del segundo tutor

Trabajo de Diploma presentado en opción al título de Licenciado en (Matemática o Ciencia de la Computación)

Fecha

github.com/username/repo

Dedicación

Agradecimientos

Agradecimientos

Opinión del tutor

Opiniones de los tutores

Resumen

Resumen en español

Abstract

Resumen en inglés

Índice general

Introducción			
1.	Mar	co teórico-conceptual	6
	1.1.	Plantas: una visión general desde la medicina tradicional	6
		1.1.1. Nomenclatura y clasificación	8
	1.2.	Procesamiento del Lenguaje Natural: fundamentos y aplicaciones	9
		1.2.1. Information Extraction (IE, por sus siglas en inglés)	11
		1.2.1.1. Template Filling	12
		1.2.2. Information Retrieval (IR)	14
	1.3.	Bases de Datos: de los sistemas tradicionales a las soluciones modernas	18
2.	Con	cepción y diseño de la solución	24
	2.1.	Contexto de la solución	25
	2.2.	Modelación del Problema	26
	2.3.	Diseño de la solución	26
		2.3.1. Extracción de la información	26
		2.3.2. Sistema de gestión y visualización	26
3.	Imp	lementación y experimentación	27
Conclusiones			

Recomendaciones	29
Bibliografía	30

Índice de figuras

Ejemplos de código

Introducción

Desde la prehistoria, la relación entre la humanidad y las plantas ha sido fundamental para la supervivencia y el desarrollo cultural de las civilizaciones. Las plantas han servido como fuente de alimento, medicina y recursos básicos, un conocimiento que se ha transmitido a través de generaciones, incorporándose en muchas culturas, donde su uso se extiende desde el tratamiento de enfermedades hasta prácticas espirituales y rituales.

El surgimiento de la agricultura durante el período neolítico revolucionó la historia, transformando el modo de vida y la supervivencia humana [10]. Gracias a la acumulación de conocimientos previos, las sociedades comenzaron a cultivar plantas con fines específicos, tanto culinarios como medicinales. Esta práctica sentó las bases del conocimiento en antiguas civilizaciones como la griega y la romana, donde las plantas no solo formaban parte de la medicina, sino de la mitología y la literatura.

En el contexto iberoamericano, las plantas medicinales han adquirido un valor estratégico tanto cultural como económico. La herencia de tradiciones ancestrales ha contribuido al auge del «consumo verde» a nivel mundial, revitalizando el interés por los remedios naturales y reconociendo así el potencial terapéutico de la naturaleza [20].

La medicina natural y tradicional ha sido, desde hace siglos, un elemento clave en la cultura y la identidad del pueblo cubano. Ante cualquier dolencia, es común encontrar quien recomiende un remedio casero, cultive su propio huerto medicinal o domine el arte de preparar cocimientos con propiedades terapéuticas. Estas prácticas, profundamente arraigadas, tienen sus raíces en la mezcla de tradiciones europeas, africanas y asiáticas, que confluían en el archipiélago desde la época colonial.

Con el paso de los años, esta riqueza cultural se integró en el sistema de salud

cubano, ganando un respaldo institucional a partir de eventos clave. La Organización Mundial de la Salud (OMS), al finalizar la Conferencia Internacional sobre Atención Primaria, celebrada en 1978, emitió su conocida Declaración de Alma Ata, la que entre diversas propuestas, realizó un llamado para incorporar las medicinas alternativas y terapias tradicionales con eficacia científicamente demostrada, a los Sistemas Nacionales de Salud [20]. Sin embargo, fue durante el "Período Especial", tras la caída del campo socialista en 1991, cuando el uso organizado de las plantas medicinales adquirió una nueva dimensión en Cuba. Frente a la escasez de medicamentos en el país, se llevó a cabo de un Programa de Plantas Medicinales, estableciendo bases científicas para su producción y utilización. Este programa no solo respondió a una necesidad urgente, sino que también consolidó una tradición médica que fusionaba raíces populares y científicas [24].

El conocimiento acumulado a lo largo de la historia no habría sido posible sin la labor de destacados investigadores, como Juan Tomás Roig y Mesa, quien en el prólogo de su libro "Plantas medicinales, aromáticas o venenosas de Cuba" [19], publicado en 1945, detalla su propósito de documentar y sistematizar el uso de especies vegetales con aplicaciones medicinales, culturales y económicas en Cuba.

Según Roig, su obra pretende ofrecer información "lo más completa y exacta que sea posible acerca de nuestras plantas medicinales o venenosas" y, además, servir como fuente de consulta para estudiantes y científicos en disciplinas como botánica, farmacia y medicina, estimulando el estudio metódico de la flora médica del país. Además, subraya el potencial impacto económico de estas plantas al señalar que su estudio podría conducir "a la creación de una industria farmacéutica, que podría proporcionar trabajo a muchos obreros en el campo, y empleo a numerosas personas en los laboratorios y oficinas comerciales". Esta visión demuestra el compromiso del autor no solo con la preservación del conocimiento, sino también con el desarrollo económico y social basado en los recursos naturales.

El esfuerzo de Roig por incluir aspectos como los nombres científicos y vulgares, descripciones botánicas y aplicaciones medicinales demuestra su interés por hacer el conocimiento accesible tanto para científicos como para el público en general. Su obra trasciende como un legado fundamental en la sistematización del uso de plantas medicinales en Cuba, contribuyendo al conocimiento científico y práctico, e inspirando iniciativas dedicadas a la conservación y estudio de la biodiversidad cubana.

Los esfuerzos históricos de preservación y sistematización del conocimiento sobre la flora cubana culminaron en la fundación del Jardín Botánico Nacional de Cuba el 24 de marzo de 1968. Esta institución emblemática forma parte de la Universidad de La Habana y combina la conservación de la flora con la educación ambiental. Se extiende por aproximadamente 600 hectáreas y alberga más de 4,000 especies vegetales, convirtiéndose en uno de los jardines botánicos más grandes y completos del mundo [7].

El Jardín Botánico Nacional tiene como misión principal promover el conocimiento sobre la flora cubana y tropical, enfatizando la importancia de la conservación ambiental. Su enfoque educativo busca involucrar a la población en general, ofreciendo un espacio donde se combinan actividades recreativas con la enseñanza sobre el medio ambiente, perpetuando los ideales de preservación, educación y aprovechamiento sostenible de los recursos naturales [13].

En este contexto, la integración de soluciones tecnológicas que permitan gestionar y analizar la información sobre plantas medicinales cubanas se vuelve una necesidad estratégica. La sistematización digital del conocimiento no solo facilitaría el acceso a datos esenciales para investigadores y estudiantes, sino que también podría impulsar nuevas líneas de investigación en biotecnología, farmacología y sostenibilidad ambiental. Por ello, aprovechar herramientas modernas como los sistemas de Inteligencia de Negocios representa una oportunidad para transformar la gestión de estos datos.

Los sistemas de BI ofrecen funcionalidades que mejoran significativamente la gestión y el análisis de datos, destacando el acceso en tiempo real a información actualizada [14]. Esta capacidad no solo permite superar los desafíos asociados a la dispersión y el formato físico de los datos, sino que también optimiza de manera sustancial la toma de decisiones informadas.

Bajo esta visión, el Jardín Botánico Nacional busca desarrollar una solución computacional que integre y gestione la información contenida en la obra de Juan Tomás Roig Mesa. Esta herramienta facilitará el acceso y organización de datos sobre las plantas medicinales cubanas, contribuyendo al reconocimiento de su importancia cultural y científica. Además, permitirá a los investigadores y especialistas disponer de una base estructurada para profundizar en el estudio y aplicación de estas plantas en áreas de interés económico y social, fortaleciendo el rol del Jardín Botánico como un centro de referencia en el ámbito de la medicina natural y la biodiversidad.

La situación descrita permite definir el siguiente **problema científico**: el diseño e implementación de una solución computacional que permita extraer la información que ofrece la obra de Juan Tomás Roig y Mesa, en concreto: "Plantas medicinales, aromáticas o venenosas de Cuba"; y posteriormente facilitar el acceso y manipulación de la información científica presente en la misma.

A partir del problema planteado, se enuncia la siguiente **hipótesis**: la implementación de un sistema computacional para la gestión de la información científica basado en la obra de Juan Tomás Roig y Mesa mencionada anteriormente, bajo la concepción del desarrollo web y que utilice técnicas de Procesamiento de Lenguaje Natural para la manipulación de la información, permitirá extraer el conocimiento científico de la obra de Roig y resultará en un sistema de gestión de la información que brinde facilidades en cuanto al acceso y manipulación de los datos.

El objetivo general de este trabajo de diploma es implementar técnicas de Procesamiento de Lenguaje Natural para la obtención y estructuración de la información contenida en la obra "Plantas medicinales, aromáticas o venenosas de Cuba" de Juan Tomás Roig y Mesa, y su posterior manejo e integración como base inicial de conocimiento en un sitio web nacional para la gestión de la información sobre plantas medicinales cubanas, administrado por el Jardín Botánico Nacional de Cuba.

Para alcanzar el cumplimiento del objetivo general del trabajo de diploma, se pueden definir un conjunto de objetivos específicos:

- 1. Profundizar en los elementos teórico-conceptuales y prácticos vinculados al procesamiento del lenguaje natural, la minería de textos y el paradigma de bases de datos no relacionales, en especial las bases de datos orientadas a documentos, que posibiliten la fundamentación teórico-metodológica de la propuesta.
- 2. Diseñar los modelos de datos y procesos que respondan a los requerimientos informacionales en función de los intereses de los especialistas de Botánica, Farmacia, Medicina, Agronomía y Veterinaria.
- 3. Diseñar, implementar y evaluar un prototipo de línea de trabajo que permita la digitalización, estructuración y almacenamiento de la información contenida en la obra de Juan Tomás Roig y Mesa respecto a plantas medicinales cubanas.

4. Diseñar, implementar y evaluar un prototipo de solución computacional que permita la gestión y organización de los datos, además de enriquecer la visualización de los resultados.

A continuación se expone la estructura del documento, que consta de otros tres capítulos en los que se detallan las bases, el diseño y la implementación de la solución adoptada.

Capítulo 1 - "Marco teórico-conceptual": Aborda las bases teóricas que fueron objeto de estudio para fundamentar los métodos utilizados durante el diseño y puesta en práctica de la solución computacional al problema presentado.

Capítulo 2 - "Concepción y diseño de la solución": Expone y caracteriza las elecciones en cada parte del proceso de concepción y diseño de la solución computacional, desde el punto de vista teórico.

Capítulo 3 -*İmplementación y experimentación*": Detalla los aspectos técnicos de la solución práctica, y se evalúan los resultados.

Posteriormente se presenta un apartado con las conclusiones del trabajo realizado, así como la sección de recomendaciones, donde se proponen ideas que pueden ser objetivo de investigación para extender la funcionalidad del software, y dotarlo de un mayor valor de uso.

Para finalizar, se incluyen las referencias bibliográficas que respaldan la base científica de la solución propuesta, así como los anexos.

Capítulo 1

Marco teórico-conceptual

La creciente necesidad de preservar y sistematizar el conocimiento sobre la flora cubana requiere del uso de tecnologías computacionales para facilitar su organización, acceso y análisis. La digitalización de datos no solo mejora la estructuración de la información, sino también su consulta y utilización en la investigación científica y la práctica médica. En este contexto, el Procesamiento de Lenguaje Natural (NLP, por sus siglas en inglés) y las bases de datos se presentan como herramientas clave para gestionar de manera eficiente y dinámica este conocimiento. El presente capítulo explora los fundamentos teóricos y metodológicos que respaldan el desarrollo de una solución computacional destinada a integrar y gestionar dicha información.

1.1. Plantas: una visión general desde la medicina tradicional

Las plantas son la base de la vida en la Tierra. Son los principales productores de oxígeno y alimento para la mayoría de los ecosistemas, jugando un papel fundamental en el equilibrio de nuestro planeta. Además, desde tiempos antiguos, las plantas han sido mucho más que alimento: han representado una fuente inagotable de remedios naturales, esenciales para la salud y el bienestar humano.

La flora de Cuba es un tesoro de la naturaleza, rica en diversidad y con alto nivel de endemismo. La ubicación geográfica de la isla ha generado una evolución

única de las plantas, creando un gran número de especies que no se encuentran en ninguna otra parte del mundo. La isla ha actuado como un laboratorio natural, donde la flora ha podido desarrollarse a lo largo de millones de años, dando lugar a una gran variedad de formas y colores. Algunas de estas plantas están adaptadas a las condiciones específicas de cada región de la isla, desde las zonas costeras hasta las montañas. La flora cubana es un ejemplo fascinante de la capacidad de la naturaleza para generar vida en entornos únicos e invita a la exploración y la conservación de este patrimonio natural [23].

Las plantas medicinales han sido, y continúan siendo, una fuente invaluable de compuestos químicos con aplicaciones diversas en la salud humana. Desde aliviar síntomas menores hasta tratar enfermedades complejas, sus usos abarcan un amplio espectro terapéutico, incluyendo analgésicos, antiinflamatorios, antibióticos y tratamientos para afecciones cardiovasculares, digestivas y respiratorias.

Según el Dr. Francisco J. Morón Rodríguez en su artículo "Necesidad de investigaciones sobre plantas medicinales" [26], el botánico norteamericano James A. Duke estima que menos del 1% de las más de 90 mil especies de plantas de bosques de América Latina han sido investigadas químicamente. Además, el autor expresa:

"Las cifras del Dr. Duke, nos hacen reflexionar en que apenas conocemos las potencialidades terapéuticas de las plantas medicinales, el clásico símil del iceberg, para expresar la relación entre lo que conocemos o vemos que es mucho menor que lo oculto o desconocido, resulta insuficiente, porque esos témpanos de hielo flotando a la deriva muestran aproximadamente un cuarto de su masa total."

El autor, también subraya el prólogo del libro "Plantas medicinales, aromáticas o venenosas de Cuba" [19] de Juan Tomás Roig y Mesa, donde hace un llamado a la comunidad científica a comprobar, mediante investigaciones multidisciplinarias, los efectos de las plantas medicinales tradicionales.

Si bien la investigación científica continúa explorando y validando sus propiedades, la tradición ancestral en el uso de plantas medicinales ofrece un rico acervo de conocimiento para el desarrollo de nuevos fármacos y terapias. La obra "Plantas medicinales, aromáticas o venenosas de Cuba" [19] de Juan Tomás Roig y Mesa representa un hito fundamental en el estudio de la flora medicinal cubana. Su exhaustiva compilación de información de las plantas, junto con descripciones botánicas detalladas y usos tradicionales, constituye una base inestimable para investigaciones posteriores. La obra de Roig no solo documentó un vasto conocimiento popular sobre las plantas medicinales cubanas, sino que también sentó las bases para la investigación científica rigurosa en este campo, dejando un legado invaluable para la fitoterapia y la conservación del patrimonio botánico de la isla.

Como parte del prólogo a la primera edición de la obra, Roig hace un llamado a los hombres de ciencia para que emprendan el estudio metódico de la flora médica y toxicológica cubana. Además, resalta la utilidad de algunas secciones pensando en una posible cultivación a escala comercial para la exportación.

A pesar de los avances científicos logrados en más de 60 años desde la primera publicación de la obra de Roig, la afirmación del Dr. en Ciencias Biológicas Víctor R. Fuentes Fiallo – "el viejo sueño del doctor Juan Tomás Roig sigue siendo eso: un sueño" – [8] pone de manifiesto que la ambiciosa visión que tenía Roig, aún no se ha materializado plenamente.

1.1.1. Nomenclatura y clasificación

Todas las especies de seres vivos conocidas por la humanidad se nombran según un sistema científico que regula la nomenclatura biológica. Este sistema estandarizado, establecido por organismos internacionales, busca asegurar que cada especie tenga un nombre único y universalmente aceptado, lo que facilita su identificación y clasificación dentro de la comunidad científica. En el caso de las plantas, la nomenclatura científica está regulada por el Código Internacional de Nomenclatura para Algas, Hongos y Plantas [17]. Cada nombre científico debe estar en latín y consta de tres partes fundamentales: un nombre genérico que identifica el género, un epíteto específico que distingue a la especie dentro del género y el nombre del autor o autores que describe oficialmente la especie.

Además de las tres categorías anteriores, algunos nombres científicos pueden incluir otras categorías para definir subgrupos dentro de una especie. Cuando una especie tiene diferencias geográficas, morfológicas o ecológicas significativas pero aún pertenece a la misma especie, se clasifica en subespecies. La variedad es una categoría que agrupa individuos con variaciones de carácter local que pueden aparecer dentro de una misma población. La forma es una categoría taxonómica que representa una modificación ocasional de la especie, asociada o no a la distribución geográfica. La familia es un rango de clasificación taxonómica, que constituye un conjuntos de géneros entre los que se reconocen varios caracteres comunes importantes, y una subfamilia es una subdivisión dentro de una familia. [32]

Las plantas a menudo reciben diferentes nombres vulgares según la región y la cultura, reflejo de observaciones locales sobre sus propiedades, apariencia o historia. Esta diversidad de nombres, transmitidos oralmente, enriquece el conocimiento tradicional, pero puede complicar su identificación científica.

1.2. Procesamiento del Lenguaje Natural: fundamentos y aplicaciones

La complejidad y diversidad del lenguaje humano nos diferencia del resto de las especies. Nuestra capacidad de comunicarnos a través del lenguaje ha sido fundamental para el desarrollo de la civilización, permitiendo la transmisión de conocimiento cultural, científico y tecnológico.

El Procesamiento del Lenguaje Natural (NLP, por sus siglas en inglés) es un campo de la ciencia de la computación que busca dotar a las computadoras de la capacidad de entender, interpretar y generar lenguaje humano. Esto es importante porque nos permite que las computadoras puedan comunicarse con nosotros de forma natural, aprender de la inmensa cantidad de información escrita en nuestro idioma, y profundizar nuestra comprensión científica de cómo funciona el lenguaje [27].

Como parte del desarrollo de esta rama de la ciencia de la computación, y anterior al auge de los últimos años de los randes modelos de lenguaje (LLM, por sus siglas en inglés), se identificaron tareas comunes que buscan permitir a las computadoras entender, interpretar y generar lenguaje humano. Siguiendo la convención establecida en el libro "Artificial intelligence: A modern approach" de Russell y Norvig [27], se conservará la terminología original en inglés para describir cada una de ellas.

- Speech recognition: El reconocimiento de voz consiste en convertir el habla humana en texto escrito. Los sistemas modernos tienen una tasa de error bastante baja (entre un 3% y 5%), comparable a la de un transcriptor humano.
- Text-to-speech: Es el proceso inverso al reconocimiento de voz: transformar texto escrito en habla. El objetivo es que la voz generada suene natural, con pausas y énfasis apropiados. Se está avanzando en la creación de voces con diferentes acentos e incluso imitando voces de celebridades.
- Machine translation: La traducción automática implica la traducción de texto de un idioma a otro. Los sistemas de traducción aprenden a partir de grandes conjuntos de textos en dos idiomas (corpus bilingües) y se enfocan en traducir no solo palabras individuales, sino también el significado y la estructura gramatical de las oraciones.
- Information extraction: Consiste en extraer información específica de un texto. Por ejemplo, se puede utilizar para resumir textos, extraer direcciones de páginas web o información meteorológica de informes o datos de tablas. La dificultad de la tarea depende de la estructura del texto; un texto bien estructurado es más fácil de procesar que un texto no estructurado.
- Information retrieval: La recuperación de información se enfoca en encontrar documentos relevantes para una consulta dada. Los motores de búsqueda de internet son un ejemplo claro de sistemas que realizan esta tarea a gran escala. El objetivo es devolver los documentos más pertinentes a la búsqueda del usuario.
- Question answering: A diferencia de la recuperación de información, esta tarea busca responder preguntas específicas en lugar de simplemente mostrar una lista de documentos. Los sistemas modernos utilizan técnicas complejas para comprender el significado de la pregunta y encontrar la respuesta correcta en una base de datos de información o en Internet.

En años recientes, los LLM han revolucionado el campo del NLP al demostrar capacidades sobresalientes en tareas como la respuesta a preguntas, la traducción automática y la generación de texto.

El artículo "Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts" [9] analiza el impacto significativo de estos modelos, destacando su capacidad para generar texto coherente y contextualmente relevante, traducir idiomas y responder preguntas complejas, superando con creces a sistemas anteriores. Si bien este avance ha impulsado aplicaciones más sofisticadas y accesibles, también ha planteado nuevos desafíos relacionados con la eficiencia computacional, el sesgo en los datos y la ética de su uso.

1.2.1. Information Extraction (IE, por sus siglas en inglés)

En la era digital actual, nos enfrentamos a una inmensa cantidad de datos: 2.5 quintillones de bytes diariamente. Esta explosión de información, proveniente de fuentes tan diversas como las redes sociales y la literatura científica, ha hecho de la IE un campo crucial dentro del NLP. Se centra en la automatización del proceso de identificar y extraer información estructurada a partir de texto no estructurado o semiestructurado. Este proceso transforma datos complejos en formatos analíticamente útiles, facilitando la búsqueda, visualización y el aprovechamiento de la inmensa cantidad de conocimiento latente en el texto, con implicaciones significativas en diversas áreas como la inteligencia de negocios [22].

Desde sus inicios en la década de 1950, la IE ha evolucionado gracias a iniciativas como las Conferencias de Comprensión de Mensajes, logrando sistemas capaces de extraer información con precisión razonable, aunque con margen de mejora en cuanto a la complejidad del lenguaje y la inferencia [11]. Con el tiempo, se han desarrollado una serie de técnicas fundamentales que son esenciales en el campo de la IE [16]:

- Named Entity Recognition: Esta técnica consiste en identificar entidades (nombres de personas, organizaciones, lugares, fechas) en un texto. Se puede hacer usando reglas predefinidas, métodos estadísticos que analizan la probabilidad de que una palabra sea una entidad, o modelos de aprendizaje profundo que aprenden de grandes cantidades de texto.
- Relation Extraction: Aquí se busca identificar las conexiones entre las entidades nombradas. Se pueden usar reglas, modelos de aprendizaje automático que aprenden de ejemplos, o modelos que utilizan grandes bases de datos como

fuente de entrenamiento. Las redes neuronales también se aplican para clasificar las relaciones entre entidades.

- Event Extraction: Esta técnica consiste en identificar eventos que ocurren en un texto, como accidentes o reuniones, y los elementos involucrados (participantes, lugar, tiempo). Esto se puede lograr usando plantillas predefinidas, modelos de aprendizaje automático que aprenden a identificar eventos a partir de ejemplos, o redes neuronales que analizan la estructura del texto para comprender el evento.
- Correference Resolution: Se trata de identificar cuando diferentes palabras o frases en un texto se refieren a la misma entidad. Se usan reglas, modelos de aprendizaje automático que analizan características del lenguaje, o redes neuronales que aprenden a seguir las referencias a través del texto.
- Template Filling: Esta técnica consiste en extraer información específica de un texto para completar una plantilla predefinida. Se puede lograr utilizando reglas, modelos de aprendizaje automático que clasifiquen la información, o una combinación de ambos.
- Open Information Extraction: Esta técnica busca extraer información de una manera más flexible, sin necesidad de definir de antemano las relaciones que se buscan. Se basa en identificar patrones en el texto o mediante modelos estadísticos y de aprendizaje profundo para encontrar relaciones entre las palabras.

1.2.1.1. Template Filling

Se ha dicho anteriormente que el *Template Filling* es una técnica de extracción de información que utiliza una plantilla predefinida para estructurar la información extraída de un texto. Esta plantilla actúa como un molde, con espacios o 'slots' que deben ser rellenados con información específica extraída del texto.

En el libro "Encyclopedia of Systems Biology" [25], se aborda el tema de "Template Filling, Text Mining", donde se resaltan y definen las dos componentes fundamentales que nombran esta técnica: la plantilla (template) y las reglas de llenado (fill rules).

Una plantilla es un esquema abstracto que se define en un dominio de interés, el que a su vez, determina la información genérica a extraer y el formato de la salida. Las reglas de llenado, por su parte, describen el proceso de extracción de la información, actuando como guía para completar la plantilla.

El diseño de una plantilla para extraer información depende del dominio de interés y la naturaleza de la tarea. En dependencia del tamaño y la complejidad del conjunto de datos a analizar, dos tipos de plantillas son las utilizadas comúnmente: las plantillas planas y las plantillas orientadas a objetos. La estructura de las plantillas planas consiste en una serie de espacios (que constituyen los atributos), cada uno con cero, una, o más de una posibilidad de llenado, que pueden completarse con texto, números, o símbolos de un conjunto definido. Las plantillas orientadas a objetos son estructuras de datos que representan información compleja mediante la organización de la misma en subplantillas u "objetos". A diferencia de las plantillas planas, que simplemente listan atributos, las plantillas orientadas a objetos permiten modelar escenarios más complejos y relaciones entre datos distribuidos en diferentes atributos o subplantillas, facilitando la gestión de información con interdependencias.

En el diseño de plantillas para la extracción de información, se identifican tres puntos que, según lo expuesto en "Template Filling, Text Mining", son necesarios para definir la sintaxis y la semántica de la plantilla, así como para el proceso de llenado de la misma:

- La definición de la plantilla establece la estructura y el formato para la extracción de datos, especificando las entidades, atributos y su representación. Se centra en la creación de un esquema claro y consistente que guía el proceso, minimizando la ambigüedad y asegurando la uniformidad en la recolección de información. Un diseño preciso de la plantilla es fundamental para la eficiencia y la calidad del proceso de extracción.
- Las **reglas de interpretación** son instrucciones precisas que mapean la información contenida en los documentos fuente a los campos definidos en la plantilla. Estas reglas, que pueden basarse en patrones, ubicación, contexto o combinaciones de éstos, son cruciales para automatizar y estandarizar la extracción, minimizando la intervención humana y maximizando la precisión del proceso.

■ La documentación de casos ("case law") consiste en un registro de ejemplos concretos de documentos procesados, incluyendo la información extraída y la resolución de cualquier ambigüedad o conflicto encontrado. Este registro funciona como una base de conocimiento para el perfeccionamiento de las reglas de interpretación, el entrenamiento de sistemas de aprendizaje automático y la evaluación del rendimiento general del proceso de extracción de información.

Existen distintas técnicas para abordar las tareas relacionadas con el Template Filling. Si bien los métodos basados en reglas ofrecen control y transparencia, su escalabilidad y adaptación a nuevos datos son limitadas. Por otro lado, los enfoques de aprendizaje automático, como los modelos de lenguaje, ofrecen mayor flexibilidad y capacidad de generalización, aunque a costa de una menor interpretabilidad. Finalmente, los métodos híbridos combinan las fortalezas de ambas aproximaciones, aprovechando las reglas para gestionar casos específicos y el aprendizaje automático para manejar la variabilidad y la generalización, logrando un sistema más robusto y adaptable para diversas tareas.

1.2.2. Information Retrieval (IR)

Durante muchísimos años, la humanidad ha organizado la información para su posterior recuperación y uso: los antiguos romanos y griegos registraban información en rollos de papiro, algunos de los cuales tenían etiquetas adjuntas que contenían un breve resumen para ahorrar tiempo al buscarlos. Los índices o tablas de contenido aparecieron por primera vez en los rollos griegos.

El primer representante de repositorios digitales de documentos para búsqueda fue el Sistema SMART de Cornell, desarrollado en la década de 1960 [28]. Los primeros sistemas de RI fueron utilizados principalmente por bibliotecarios especializados, quienes preparaban un conjunto de consultas o solicitudes de búsqueda, las enviaban al sistema todas juntas y luego esperaban a que se procesaran para recibir los resultados. Este enfoque no permitía ajustes inmediatos ni respuestas instantáneas, algo que hoy es común en cualquier buscador moderno.

El nacimiento de la World Wide Web [31] en 1989 y las computadoras modernas marcaron un cambio permanente en los conceptos de almacenamiento, acceso y bús-

queda de colecciones de documentos, haciéndolos accesibles al público en general e indexándolos para una recuperación precisa y de gran cobertura.

Este avance en la gestión de información sentó las bases para lo que hoy conocemos como IR, un campo clave en la búsqueda y acceso eficiente a datos. Según la definición planteada en el libro "Introduction to Information Retrieval" [18], "la recuperación de información consiste en encontrar material (generalmente documentos) de naturaleza no estructurada (usualmente texto) que satisfaga una necesidad de información dentro de grandes colecciones (generalmente almacenadas en computadoras)".

Sin embargo, la IR puede abarcar otros tipos de datos y problemas informáticos más allá de lo especificado en la definición antes mencionada. Con el tiempo, la recuperación de información ha evolucionado hasta convertirse en la forma dominante de acceder a la información, superando incluso a la búsqueda en bases de datos tradicionales, donde era necesario proporcionar identificadores específicos.

Esta disciplina no solo se limita a datos estructurados, como en las bases de datos relacionales, sino que también abarca datos no estructurados, como los textos, que aunque no siempre tienen una estructura evidente, presentan organización subyacente como títulos, párrafos y notas al pie. Además, también puede abarcar otros tipos de datos y problemas informáticos más allá de lo especificado en la definición central mencionada, como la búsqueda en datos semi-estructurados. Un ejemplo de esto es cuando se busca un documento que contenga ciertas palabras clave en su título y cuerpo. Además de la búsqueda, la recuperación de información incluye el apoyo al usuario en la navegación y filtrado de colecciones de documentos, así como el procesamiento de los resultados obtenidos. Esto puede incluir tareas como la agrupación de documentos basados en su contenido o la clasificación automática según categorías predeterminadas [18].

Para implementar estos procesos IR, se han desarrollado los Sistemas de Recuperación de Información (IRS, por sus siglas en inglés), que son conjuntos de herramientas y procesos diseñados para almacenar, organizar, recuperar y presentar información de manera eficiente en respuesta a las consultas del usuario. Los IRS están orientados a facilitar el acceso a grandes volúmenes de datos, tanto estructurados como no estructurados, como documentos, imágenes, videos y otros tipos de contenido digital. Su función principal es ayudar a los usuarios a encontrar información relevante dentro de un conjunto de datos, basándose en consultas o búsquedas [3].

Las estrategias de recuperación de información asignan una medida de similitud entre una consulta y un conjunto de documentos. Estas estrategias se basan en la idea de que cuán frecuentes aparecen los mismos términos en ambos.

Sin embargo, para lidiar con las ambigüedades inherentes al lenguaje, como la posibilidad de que un mismo concepto sea expresado con diferentes términos, algunas estrategias implementan medidas adicionales. Asimismo, un término puede tener múltiples significados dependiendo de su contexto, lo que requiere técnicas especializadas para garantizar que se interpretan correctamente los conceptos.

En cuanto a su definición formal, una estrategia de recuperación es un algoritmo que toma una consulta Q y un conjunto de documentos $D_1, D_2, ..., D_n$, y define una función de ranking, que Grossman asume como el Coeficiente de Similitud $SC(Q, D_i)$ para cada uno de los documentos $1 \le i \le n$ [12].

Existen diversas estrategias de recuperación, y la elección del modelo adecuado depende de las características del sistema y los requisitos específicos de la consulta. A continuación, se presentan algunos de estos enfoques [1].

El Modelo Booleano está basado en la teoría de conjuntos y el álgebra de Boole. Las consultas se formulan mediante expresiones booleanas, utilizando conectores lógicos como not, and y or, las cuales tienen una semántica precisa y pueden representarse en forma normal disyuntiva. Sin embargo, presenta limitaciones importantes. Al basarse en un criterio binario de relevancia, carece de una escala de gradación que permita medir la relevancia de manera más precisa, lo que puede resultar en la recuperación de muy pocos o demasiados documentos. Además, aunque las expresiones booleanas son formalmente claras, a menudo resulta difícil y poco intuitivo para los usuarios formular consultas complejas que reflejen sus necesidades de información.

A pesar de sus limitaciones, el modelo Booleano sigue siendo relevante en ciertos contextos debido a su simplicidad, especialmente para usuarios nuevos en el campo de la recuperación de información o en sistemas que no requieren un alto nivel de complejidad.

El Modelo de Espacio Vectorial (VSM, por sus siglas en inglés) propone una mejora sobre el modelo booleano al permitir coincidencias parciales mediante el uso de pesos no binarios asignados a los términos tanto en las consultas como en los documentos. Estos pesos permiten calcular un grado de similitud entre cada documento

almacenado en el sistema y la consulta del usuario. Al ordenar los documentos recuperados en función de este grado de similitud, el modelo logra resultados más precisos y relevantes, ajustándose mejor a las necesidades de información del usuario.

En el VSM, tanto los documentos d_j como las consultas q se representan como vectores t-dimensionales, donde cada dimensión corresponde a un término índice en el sistema. Cada componente del vector de un documento \mathbf{d}_j y de una consulta \mathbf{q} está ponderada por los valores $w_{i,j}$ y $w_{i,q}$, respectivamente, con $w_{i,j} \geq 0$ y $w_{i,q} \geq 0$. La similitud entre un documento y una consulta se calcula mediante el coseno del ángulo entre sus vectores, utilizando la fórmula:

$$sim(d_j, q) = \frac{\sum_{i=1}^{t} w_{i,j} \cdot w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^2} \cdot \sqrt{\sum_{i=1}^{t} w_{i,q}^2}}$$

Aquí, $|d_j|$ y |q| representan las normas de los vectores, donde el factor |q| no afecta el ordenamiento de los documentos, ya que es constante para todos ellos, mientras que $|d_j|$ proporciona una normalización en el espacio de documentos. El valor de similitud $\sin(d_j,q)$ oscila entre 0 y 1, indicando el grado de correlación entre el documento y la consulta. Este enfoque no predice directamente si un documento es relevante, sino que clasifica los documentos en función de su grado de similitud con la consulta. De este modo, un documento puede ser recuperado incluso si solo coincide parcialmente con la consulta. Además, es posible establecer un umbral de similitud para filtrar únicamente los documentos cuya similitud exceda dicho valor. Para determinar estos valores de similitud, es necesario definir cómo se calculan los pesos de los términos índice.

Para calcular estos pesos, se emplea el factor de frecuencia de término (TF), que mide la frecuencia con la que un término k_i aparece en un documento d_j , reflejando cuán representativo es dicho término para el contenido del documento. A esto se le añade la frecuencia inversa de documento (IDF), que ajusta la relevancia de un término en función de cuán común o raro es en la colección completa. La frecuencia inversa de documento es especialmente útil para reducir la importancia de los términos que aparecen con demasiada frecuencia, ya que no contribuyen significativamente a la diferenciación de los documentos. La fórmula para calcular el peso TF-IDF es:

TF-IDF
$$(k_i, d_j) = \frac{f_{i,j}}{\max_i(f_{i,j})} \times \log\left(\frac{N}{n_i}\right),$$

donde $f_{i,j}$ es la frecuencia bruta del término k_i en el documento d_j ; $\max_i(f_{i,j})$ es la frecuencia máxima de cualquier término en el documento d_j ; N es el número total de documentos en la colección y n_i es el número de documentos en los que aparece el término k_i .

Gracias a la combinación de los factores TF y IDF, este modelo mejora la precisión en la clasificación de documentos. Sin embargo, el VSM presenta una limitación teórica importante: asume que los términos dentro de un documento son independientes entre sí, lo que puede no reflejar la realidad en documentos donde los términos están relacionados o dependen unos de otros. A pesar de esta suposición, el modelo sigue siendo uno de los enfoques más utilizados en sistemas de búsqueda debido a su simplicidad y efectividad.

El Modelo de Indexación Semántica Latente (LSI, por sus siglas en inglés) es una variante del VSM que aborda problemas como la sinonimia y la polisemia, que afectan los modelos clásicos basados en términos índice. LSI utiliza una técnica matemática llamada Descomposición en Valores Singulares (SVD), que permite representar los datos de una manera más compacta y significativa. Mediante SVD, el modelo transforma la matriz de términos y documentos en un espacio de menor dimensión, capturando las relaciones semánticas subyacentes entre términos, en lugar de simplemente emparejar palabras exactas. Este proceso ayuda a eliminar dimensiones que no aportan valor relevante, permitiendo una mejor comprensión y recuperación de la información.

El resultado es un modelo más eficiente que captura solo las características más relevantes del texto, facilitando el análisis y la recuperación de información pertinente.

1.3. Bases de Datos: de los sistemas tradicionales a las soluciones modernas

A lo largo de la historia, la necesidad de almacenar y organizar datos ha sido fundamental para el avance de la civilización, facilitando la transmisión de conocimientos y el desarrollo de la ciencia y la tecnología. Desde sus inicios, los seres humanos han utilizado sistemas de almacenamiento, como bibliotecas y librerías, que resguardaban grandes cantidades de información en libros y documentos.

La transición de los sistemas tradicionales de almacenamiento a soluciones digitales surgió como respuesta al crecimiento exponencial de la información. Con la llegada de la era digital, se presentó la necesidad no solo de almacenar grandes volúmenes de datos, sino de gestionarlos de manera eficiente, escalable y accesible.

El concepto de base de datos tiene sus raíces mucho antes de la llegada de las primeras computadoras electrónicas. Vannevar Bush, con su visión sobre la organización de la información, propuso estructuras para almacenar datos de manera más flexible, sin depender de configuraciones específicas de hardware, lo que influyó en el diseño de sistemas de almacenamiento y procesamiento de datos más avanzados [30].

Esta necesidad de un control más eficiente y escalable sobre los datos dio origen a la idea de separar la gestión de los datos de la lógica de las aplicaciones, lo que resultó en la creación de los Sistemas de Gestión de Bases de Datos (SGBD). Estos sistemas actúan como intermediarios entre las aplicaciones y los datos, proporcionando herramientas esenciales para definir, crear, consultar, actualizar y administrar la información.

En este contexto, Allen Taylor ofrece su propia definición de base de datos:

"Una base de datos es una colección autodescriptiva de registros integrados. Por autodescriptiva, me refiero a que contiene una descripción de su propia estructura como parte de los datos que almacena. Cuando digo que los registros en una base de datos son integrados, me refiero a que existen relaciones entre ellos que los vinculan, formando un sistema lógico y cohesivo" [5].

La propuesta de Allen Taylor encontró su expansión en la base teórica de Edgar Codd, quien en 1970 introdujo el modelo relacional de bases de datos en su artículo titulado "A Relational Model of Data for Large Shared Data Banks" [6], en el que presentó una nueva teoría sobre la organización y gestión de los datos.

Las bases de datos relacionales se basan en un modelo matemático formal que organiza los datos y las relaciones entre ellos a través de tablas, donde cada tabla representa una relación entre los diferentes elementos almacenados. Cada tabla contiene

filas (tuplas) y columnas (atributos), donde cada columna representa un atributo específico y cada fila almacena los valores correspondientes a esos atributos para una entidad particular [4]. Este modelo se define a través de un esquema que establece la estructura de las tablas, los atributos y las relaciones entre ellas. En relación con esto, Codd introduce el concepto de consistencia, que se refiere al estado que alcanza una base de datos cuando satisface un conjunto de restricciones, conocidas como restricciones de integridad, que son utilizadas para garantizar la estabilidad y fiabilidad de los datos en la base de datos durante la ejecución de operaciones que los modifican.

Los SGBD relacionales se caracterizan por el procesamiento transaccional de los datos, es decir, por un conjunto de operaciones que modifican el estado de la base de datos. Estos sistemas están construidos sobre los principios ACID, que garantizan la consistencia y fiabilidad en la gestión de las transacciones:

- Atomicity (A): Las transacciones son indivisibles; o se completan en su totalidad o no se realizan en absoluto.
- Consistency (C): Después de cada transacción, la base de datos pasa de un estado consistente a otro.
- Isolation (I): Las transacciones no deben interferir entre sí, es decir, el estado intermedio de una transacción no es visible por el resto de transacciones.
- Durability (D): Una vez completada una transacción, sus cambios son permanentes, incluso ante fallos del sistema.

A pesar de la robustez que ofrece el modelo relacional, su aplicación universal ha comenzado a mostrar limitaciones significativas. Entre los problemas más comunes se encuentran: el alto costo de las lecturas, ya que las consultas que involucran operaciones de unión (JOIN) entre tablas pueden ser costosas en términos de tiempo de ejecución y recursos de cómputo; la sobrecarga de transacciones, que pueden afectar el rendimiento si no se requieren para garantizar la integridad de los datos; la dificultad para escalar horizontalmente, ya que los SGBD relacionales no están diseñados para distribuir datos eficientemente entre varios servidores; y la ineficiencia al representar algunos dominios complejos, como los modelos orientados a objetos o las redes sociales, que no se ajustan bien al modelo relacional [2].

Con el objetivo de superar las limitaciones del modelo relacional, surgieron las bases de datos NoSQL, que adoptan un enfoque diferente a la gestión de datos. En lugar de basarse en las garantías de consistencia estrictas que ofrece ACID, los SGBD NoSQL priorizan la disponibilidad del sistema, fundamentándose en los principios BASE [29]

- Basically Available (BA): Garantiza que el sistema esté disponible para consultas y operaciones de escritura en todo momento, permitiendo la accesibilidad simultánea por parte de los usuarios sin necesidad de esperar a que otros finalicen sus transacciones para actualizar los registros, incluso si no todas las réplicas están al día.
- Soft state (S): Hace referencia a la noción de que los datos pueden tener estados transitorios o temporales que pueden cambiar con el tiempo, incluso sin nuevas entradas. Describe el estado de transición del registro cuando varias aplicaciones lo actualizan en simultáneo. El valor del registro se finaliza solo después de que se hayan completado todas las transacciones.
- Eventual consistency (E): Asegura que, aunque no haya consistencia inmediata, todas las réplicas del sistema alcanzarán eventualmente un estado consistente.

Esto se alinea con las restricciones establecidas por el Teorema CAP [15], cuya conjetura fue enunciada por Eric Brewer. Establece que un sistema distribuido no puede ofrecer simultáneamente las tres garantías clave de consistencia, disponibilidad y tolerancia a particiones. Los SGBD NoSQL, al priorizar la disponibilidad y la tolerancia a particiones sobre la consistencia, ofrecen una solución flexible y escalable para el manejo de grandes volúmenes de datos, lo que los hace especialmente adecuados para aplicaciones modernas, como los sistemas distribuidos y aplicaciones web de alto tráfico.

Los SGBD NoSQL generalmente se diferencian según la forma en que almacenan los datos, es decir, el modelo de datos empleado para el almacenamiento. Existen cuatro modelos de datos principales implementados en los SGBD NoSQL [21]. La descripción de cada uno de estos modelos se presenta a continuación:

Las Bases de datos clave-valor son uno de los sistemas NoSQL más simples, donde los datos se almacenan en una tabla sin esquema rígido, con cada fila asociada a una clave única y un valor autodescrito, que puede adoptar diversos formatos como cadenas, JSON o XML. Los datos se almacenan en pares donde cada clave única está asociada a un valor, el cual puede ser un conjunto de datos relacionados, denominado agregado. Este agregado se maneja como una unidad completa, lo que significa que al recuperar los datos usando una clave, se obtiene todo el conjunto asociado a esa clave. La opacidad del agregado implica que el sistema no interpreta ni descompone su contenido; lo ve simplemente como un bloque de bits. Debido a esta opacidad, no es posible realizar recuperaciones parciales de los datos dentro del agregado, es decir, si solo se necesita una parte de la información almacenada, se debe recuperar todo el conjunto de datos asociado a la clave, sin posibilidad de acceder a elementos específicos de manera individual.

Las Bases de datos columnares almacenan los datos de manera similar a las bases de datos clave-valor. En este modelo, los datos se organizan en una tabla sin una estructura rígida, donde cada fila está asociada a una clave única y contiene varias familias de columnas. Cada familia de columnas es un conjunto de columnas autodescritas, y puede contener solo las columnas relevantes para esa clave, lo que proporciona una gran flexibilidad. Además, los datos dentro de una familia de columnas se acceden frecuentemente juntos, y debido a que estas columnas contienen sus claves, es posible realizar recuperaciones parciales a través de los índices de las columnas.

Las Bases de datos orientada a documentos almacenan los datos en formato de documento como XML, JSON o PDF. Los documentos permiten recuperaciones parciales gracias a su estructura autodescrita; y pueden contener diferentes atributos para cada clave, permitiendo almacenar datos estructurados y semi-estructurados. Es flexible y permite la definición de índices sobre los contenidos de los documentos, lo que facilita realizar operaciones específicas sobre sus elementos.

Las Bases de datos orientadas a grafos son particularmente útiles para representar relaciones complejas entre los datos y son eficientes para identificar patrones. Aquí los datos se representan como nodos (entidades) y aristas (relaciones entre entidades). En cuanto a las características de los modelos de datos presentados hasta ahora, la flexibilidad en la representación de los datos debido a la ausencia de un

esquema fijo es una de las pocas similitudes entre las bases de datos orientadas a grafos y los otros modelos de datos mencionados, ya que tanto los vértices como los nodos pueden contener atributos diferentes entre sí.

La elección entre un modelo relacional y uno NoSQL depende de las necesidades específicas del sistema y las características de los datos a manejar. Mientras que los SGBD relacionales son ideales para aplicaciones que requieren integridad, consistencia y transacciones complejas, los sistemas NoSQL resultan más adecuados para manejar grandes volúmenes de datos distribuidos, con alta disponibilidad y escalabilidad, especialmente en entornos con datos semi-estructurados o no estructurados.

Capítulo 2

Concepción y diseño de la solución

En este capítulo se describe la concepción de la solución propuesta para el desarrollo del sistema destinado a la gestión de la información científica sobre las plantas medicinales cubanas, con base de conociemiento inicial en el libro de Tomás Roig. El capítulo está estructurado en tres secciones principales.

En primer lugar, se presenta el contexto en que se desarrolla la solución, explicando las motivaciones y necesidades que llevaron a su concepción. Posteriormente, se expone la modelación del problema, detallando cómo se definió y estructuró la problemática a resolver. Finalmente, se describe el diseño de la solución, dividida en dos subproblemas específicos, abordando el enfoque adoptado para dar respuesta a cada uno de ellos. Este análisis establece las bases conceptuales y técnicas necesarias para la posterior implementación y experimentación del sistema.

2.1. Contexto de la solución

La iniciativa para desarrollar el presente sistema surge a partir de un diagnóstico conjunto realizado entre la Universidad de La Habana y el Jardín Botánico Nacional de Cuba, en el contexto de un acuerdo de colaboración científica. Este acuerdo tiene como objetivo principal la creación de soluciones que apoyen la preservación, organización y difusión del conocimiento botánico en el país, un campo que reviste gran importancia tanto para la investigación científica, como para la educación y el conociemiento general de las personas.

Durante este diagnóstico, se identificó que uno de los recursos más valiosos en el ámbito de la botánica cubana, el libro "Plantas medicinales, aromáticas o venenosas de Cuba" de Tomás Roig y Mesa, enfrentaba múltiples desafíos relacionados con su accesibilidad y aprovechamiento. Este libro, publicado originalmente en 1945, constituye una obra de referencia fundamental que recopila una vasta cantidad de información científica sobre la flora medicinal de Cuba, incluyendo descripciones botánicas, usos terapéuticos y distribución geográfica de las plantas documentadas. Sin embargo, a pesar de su relevancia, el acceso a esta información sigue siendo limitado debido a varios factores:

- Formato físico predominantemente tradicional: Aunque existen versiones digitales del libro, estas no cuentan con un diseño modular que facilite su consulta o análisis de la información. Esto reduce significativamente su usabilidad en contextos modernos donde predominan las herramientas tecnológicas.
- Pérdida potencial del conocimiento: El envejecimiento de los ejemplares físicos y la falta de iniciativas de conservación digital de alta calidad ponen en riesgo la preservación de este importante recurso.
- Falta de integración en sistemas modernos de información: Los datos contenidos en el libro no están organizados de manera que puedan ser utilizados en aplicaciones automatizadas, análisis de datos o sistemas de consulta avanzada.

A partir de esta realidad, el Jardín Botánico Nacional planteó la necesidad de desarrollar un sistema que no solo permitiera la digitalización de esta información,

sino que también la estructurara en un formato accesible y flexible, capaz de responder a las demandas de diferentes tipos de usuarios. Este sistema debía estar alineado con el interés institucional de promover la conservación del patrimonio científico y natural de Cuba, a la vez que facilitara su divulgación a nivel nacional.

La Universidad de La Habana, como institución de referencia en la formación de profesionales en ciencias y tecnología, asumió el reto de apoyar esta iniciativa mediante el desarrollo de una solución tecnológica que integre técnicas de recuperación de información y bases de datos científicas. Este proyecto, en particular, representa un esfuerzo no solo por preservar los recursos botánicos, sino también por sentar las bases para la creación de sistemas similares que puedan aplicarse a otros ámbitos del conocimiento.

2.2. Modelación del Problema

2.3. Diseño de la solución

2.3.1. Extracción de la información

2.3.2. Sistema de gestión y visualización

Capítulo 3

Implementación y experimentación

Conclusiones

Conclusiones

Recomendaciones

Recomendaciones

Bibliografía

- [1] Ricardo Baeza-Yates. «Modern Information Retrieval». En: 1999, págs. 24-46 (vid. pág. 16).
- [2] Erick Camacho. NoSQL la evolución de las bases de datos. Disponible en: https://sg.com.mx/revista/28/nosql-evolucion-bases-datos. Accedido el 22 de diciembre de 2024. URL: https://sg.com.mx/revista/28/nosql-evolucion-bases-datos (vid. pág. 20).
- [3] Stefano Ceri. En: Web Information Retrieval. Springer, 2013. Cap. An Introduction to Information Retrieval, págs. 3-11. DOI: 10.1007/978-3-642-39314-3_1 (vid. pág. 15).
- [4] «History of Databases». En: The Relational Model. Ed. por P. S. Chen y D. G. Lockwood. Springer, 2016, págs. 278-281. DOI: 10.1007/978-3-319-33138-6_20. URL: https://doi.org/10.1007/978-3-319-33138-6_20 (vid. pág. 20).
- [5] E. F. Codd. «A Relational Model of Data for Large Shared Data Banks». En: IBM Research Laboratory (1970). Artículo disponible en: https://www.seas.upenn.edu/zives/03f/cis550/codd.pdf. URL: https://www.seas.upenn.edu/~zives/03f/ cis550/codd.pdf (vid. pág. 19).
- [6] E. F. Codd. «A Relational Model of Data for Large Shared Data Banks». En: IBM Research Laboratory (1970). Artículo disponible en: https://www.seas.upenn.edu/zi-ves/03f/cis550/codd.pdf. URL: https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf (vid. pág. 19).
- [7] EcuRed. Jardín Botánico Nacional de Cuba. Disponible en: https://www.ecured.cu/. Accedido el 9 de diciembre de 2024. URL: https://www.ecured.cu/ (vid. pág. 3).

- [8] Víctor R. Fuentes Fiallo. «La Flora Medicinal de Cuba: un sueño de Roig no alcanzado». es. En: Revista Cubana de Plantas Medicinales 14 (sep. de 2009). Accedido el 20 de diciembre de 2024. ISSN: 1028-4796. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962009000300001&nrm=iso (vid. pág. 8).
- [9] Fan Gao. «Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts». En: ArXiv abs/2308.10410 (2023). Disponible en: https://api.semanticscholar.org/CorpusID:261049765. URL: https://api.semanticscholar.org/CorpusID:261049765 (vid. pág. 11).
- [10] Cristina Crespo Garay. ¿Cuál fue el origen de la agricultura? Disponible en: https://www.nationalgeographic.es/historia/2022/01/cual-fue-el-origen-de-la-agricultura. Accedido el 3 de diciembre de 2024. 2022 (vid. pág. 1).
- [11] Ralph Grishman. «Information Extraction: Techniques and Challenges». En:

 International Summer School on Information Extraction. Disponible en: https://api.semanticsch
 1997. URL: https://api.semanticscholar.org/CorpusID:17479975 (vid.
 pág. 11).
- [12] David A. Grossman. Information Retrieval: Algorithms and Heuristics. 2nd. Disponible en: https://doi.org/10.1007/978-1-4020-3005-5. Citado en la página 9. 2004. ISBN: 978-1-4020-3004-8. DOI: 10.1007/978-1-4020-3005-5 (vid. pág. 16).
- [13] Redacción Cadena Habana. Jardín Botánico Nacional. Disponible en: https://www.cadenahabanbotanico-nacional-03082022/. Accedido el 9 de diciembre de 2024. 2022. URL: https://www.cadenahabana.icrt.cu/jardin-botanico-nacional-03082022/ (vid. pág. 3).
- [14] IBM. Business Intelligence. Disponible en: https://www.ibm.com/mx-es/topics/business-intelligence. Accedido el 12 de diciembre de 2024. URL: https://www.ibm.com/mx-es/topics/business-intelligence (vid. pág. 3).
- [15] IBM. Teorema CAP. Disponible en: https://ibm.com/mx-es/topics/cap-theorem. Accedido el 23 de diciembre de 2024. URL: https://ibm.com/mx-es/topics/cap-theorem (vid. pág. 21).

- [16] Information Extraction in NLP. Disponible en: https://www.geeksforgeeks.org/information-extraction-in-nlp. Accedido el 13 de diciembre de 2024. Jun. de 2024. URL: https://www.geeksforgeeks.org/information-extraction-in-nlp (vid. pág. 11).
- [17] «International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011». En: vol. 154. Dic. de 2012, págs. 1-240. ISBN: 978-3-87429-425-6 (vid. pág. 8).
- [18] Christopher D. Manning. «Introduction to Information Retrieval». En: Cambridge University Press, 2008, págs. 1-3. ISBN: 978-0-511-41405-3 (vid. pág. 15).
- [19] Juan Tomás Roig y Mesa. Plantas medicinales, aromáticas o venenosas de Cuba. Vol. I-II. La Habana, Cuba: Editorial Científico-Técnica, 1945 (vid. págs. 2, 7, 8).
- [20] Rafael Angel Ocampo. «Situación actual del comercio de plantas medicinales en América Latina». En: Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas (2002). Artículo disponible en: http://www.redalyc.org/articulo.oa?id=85610403 (vid. págs. 1, 2).
- [21] Vitor F. de Oliveira. «SQL and NoSQL Databases in the Context of Industry 4.0». En: (2021). Disponible en: https://www.mdpi.com/2075-1702/10/1/20, págs. 3-7. DOI: 10.3390/machines10010020. URL: https://www.mdpi.com/2075-1702/10/1/20 (vid. pág. 21).
- [22] Gursev Pirge. The Complete Guide to Information Extraction from Texts with Spark NLP and Python. Accedido el 13 de diciembre de 2024. Mayo de 2023 (vid. pág. 11).
- Tamás Pôcs. «BIOGEOGRAPHY OF THE CUBAN BRYOPHYTE FLORA».
 En: TAXON 37.3 (1988). Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.2307/1221
 pages 615-621. DOI: https://doi.org/10.2307/1221103. URL: https://onlinelibrary.wiley.com/doi/abs/10.2307/1221103 (vid. pág. 7).
- [24] Pedro López Puig. «Integración de la medicina natural y tradicional cubana en el sistema de salud». En: Revista Cubana de Salud Pública (2019). Artículo disponible en: https://revsaludpublica.sld.cu/index.php/spu/article/view/1168/1240,

- págs. 3-5. URL: https://revsaludpublica.sld.cu/index.php/spu/article/view/1168/1240 (vid. pág. 2).
- [25] Kalpana Raja. «Template Filling, Text Mining». En: Encyclopedia of Systems Biology. Ed. por Werner Dubitzky et al. Springer New York, 2013, págs. 2150-2154. ISBN: 978-1-4419-9863-7. DOI: 10.1007/978-1-4419-9863-7_173. URL: https://doi.org/10.1007/978-1-4419-9863-7_173 (vid. pág. 12).
- [26] Dr. Francisco J. Morón Rodríguez. «Necesidad de investigaciones sobre plantas medicinales». En: Revista Cubana de Plantas Medicinales (dic. de 2007). Accedido el 20 de diciembre de 2024. ISSN: 1028-4796. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962007000400001&nrm=iso (vid. pág. 7).
- [27] Stuart J Russell. «Artificial intelligence: A modern approach». En: Pearson, 2020, págs. 849-851 (vid. pág. 9).
- [28] G. Salton. «The Automatic Analysis of Document Collections: An Experiment in Bibliographic Description». En: Communications of the ACM 8.6 (1965). Disponible en: https://dl.acm.org/doi/10.1145/364955.364990, pages 391-398. DOI: 10.1145/364955.364990 (vid. pág. 14).
- [29] Amazon Web Services. The Difference Between ACID and BASE Database. Disponible en: https://aws.amazon.com/es/compare/the-difference-between-acid-and-base-database/. Accedido el 23 de diciembre de 2024. URL: https://aws.amazon.com/es/compare/the-difference-between-acid-and-base-database/ (vid. pág. 21).
- [30] Allen G. Taylor. Database Development For Dummies. Se consultó el Capítulo 1. Indianapolis, Indiana: Wiley Publishing, Inc., 2001. ISBN: 0-7645-0752-4. URL: https://books.google.com/books/about/Database_Development_For_Dummies.html?id=p580YKP6Pg4C (vid. pág. 19).
- [31] Wikipedia. World Wide Web. Accedido el 24 de diciembre de 2024. URL: https://en.wikipedia.org/wiki/World_Wide_Web/ (vid. pág. 14).
- [32] C. Romero Zarco. *Principios de Botánica Sistemática*. Accedido el 10 de enero de 2025. 2017. URL: https://personal.us.es/zarco/PIM-Botanica/Temas/PIM_t1/T1_2A_Taxonomia.html (vid. pág. 9).