

COMP9020

Foundations of Computer Science Term 3, 2024

Lecture 11: Recursion

Recursion in Computer Science

Fundamental concept in Computer Science

- Defining complex objects from simpler ones
- Unbounded complexity with a finite description

Recursive Data Structures:

Finite definitions of arbitrarily large objects

- Natural numbers
- Words
- Linked lists
- Formulas
- Binary trees

Recursion in Computer Science

Recursive Algorithms:

Solving problems/calculations by reducing to smaller cases

- Factorial
- Euclidean gcd algorithm
- Towers of Hanoi
- Mergesort, Quicksort

Recursion in Computer Science

Recursive Algorithms:

Solving problems/calculations by reducing to smaller cases

- Factorial
- Euclidean gcd algorithm
- Towers of Hanoi
- Mergesort, Quicksort

Analysis of Recursion:

Reasoning about recursive objects

- Induction, Structural Induction
- Recursive sequences (e.g. Fibonacci sequence)
- Asymptotic analysis of recursive functions

Outline

Recursion

Recursive Data Structures

Recursive Programming

Solving Recurrences

Outline

Recursion

Recursive Data Structures

Recursive Programming

Solving Recurrences

Recursion

Consists of a basis (B) and recursive process (R).

A sequence/object/algorithm is recursively defined when (typically)

- (B) some initial terms are specified, perhaps only the first one;
- (R) later terms stated as functional expressions of the earlier terms.

Take Notice

(R) also called recurrence formula (especially when dealing with sequences)

Example: Factorial

Example

```
Factorial:

(B) 0! = 1

(R) (n+1)! = (n+1) \cdot n!

fact(n):

(B) if(n = 0): 1

(R) else: n * fact(n-1)
```

Example: Euclid's gcd algorithm

Example

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

- There are 3 towers (pegs)
- n disks of decreasing size placed on the first tower
- You need to move all disks from the first tower to the last tower
- Larger disks cannot be placed on top of smaller disks
- The third tower can be used to temporarily hold disks

Try it out here

Questions

- Describe a general solution for *n* disks
- How many moves does it take?

Questions

- ullet Describe a general solution for n disks
- How many moves does it take?

Questions

- \bullet Describe a general solution for n disks
- How many moves does it take? $M(n) \le 2M(n-1) + 1$

Outline

Recursion

Recursive Data Structures

Recursive Programming

Solving Recurrences

Example: Natural numbers

Example

A natural number is either 0 (B) or one more than a natural number (R).

Formal definition of \mathbb{N} :

- (B) 0 ∈ N
- (R) If $n \in \mathbb{N}$ then $(n+1) \in \mathbb{N}$

Example: Odd/Even numbers

Example

The set of even numbers can be defined as:

- (B) 0 is an even number
- (R) If n is an even number then n+2 is an even number

Example: Odd/Even numbers

Example

The set of odd numbers can be defined as:

- (B) 1 is an odd number
- (R) If n is an odd number then n+2 is an odd number

Example: Fibonacci numbers

Example

The Fibonacci sequence starts $0, 1, 1, 2, 3, \ldots$ where, after 0, 1, each term is the sum of the previous two terms.

Formally, the sequence of Fibonacci numbers: F_0, F_1, F_2, \ldots where the *n*-th Fibonacci number F_n is defined as:

- (B) $F_0 = 0$,
- (B) $F_1 = 1$,
- (R) $F_n = F_{n-1} + F_{n-2}$

Take Notice

Could also define the Fibonacci sequence as a function $FIB: \mathbb{N} \to \mathbb{F}$.

Example: Linked lists

Example

A linked list is zero or more linked list nodes:

Example: Linked lists

Example: Linked lists

Example

We can view the linked list **structure** abstractly. A linked list is either:

- (B) an empty list, or
- (R) an ordered pair (Data, List).

Example: Words over Σ

Example

A word over an alphabet Σ is either λ (B) or a symbol from Σ followed by a word (R).

Formal definition of Σ^* :

- (B) $\lambda \in \Sigma^*$
- (R) If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$

Take Notice

This matches the recursive definition of a Linked List data type.

Example: Expressions in the Proof Assistant

Example

- (B) $A, B, \ldots, Z, a, b, \ldots z$ are expressions
- ullet (B) \emptyset and ${\mathcal U}$ are expressions
- (R) If E is an expression then so is (E) and E^c
- (R) If E_1 and E_2 are expressions then:
 - $(E_1 \cup E_2)$,
 - $(E_1 \cap E_2)$,
 - $(E_1 \setminus E_2)$, and
 - $(E_1 \oplus E_2)$ are expressions.

Example: Propositional formulas

Example

A well-formed formula (wff) over a set of propositional variables, PROP is defined as:

- \bullet (B) \top is a wff
- (B) \perp is a wff
- (B) p is a wff for all $p \in PROP$
- (R) If φ is a wff then $\neg \varphi$ is a wff
- \bullet (R) If φ and ψ are wffs then:
 - $(\varphi \wedge \psi)$,
 - $(\varphi \lor \psi)$,
 - \bullet $(\varphi \to \psi)$, and
 - \bullet $(\varphi \leftrightarrow \psi)$ are wffs.

Exercises

Exercises

RW: 4.4.4 (a) Give a recursive definition for the sequence

$$(2, 4, 16, 256, \ldots)$$

(b) Give a recursive definition for the sequence

$$(2, 4, 16, 65536, \ldots)$$

Exercises

Exercises

RW: 4.4.4 (a) Give a recursive definition for the sequence

$$(2, 4, 16, 256, \ldots)$$

To generate $a_n = 2^{2^n}$ use $a_n = (a_{n-1})^2$. (The related "Fermat numbers" $F_n = 2^{2^n} + 1$ are used in cryptography.)

(b) Give a recursive definition for the sequence

$$(2, 4, 16, 65536, \ldots)$$

Exercises

Exercises

RW: 4.4.4 (a) Give a recursive definition for the sequence

$$(2, 4, 16, 256, \ldots)$$

To generate $a_n = 2^{2^n}$ use $a_n = (a_{n-1})^2$. (The related "Fermat numbers" $F_n = 2^{2^n} + 1$ are used in cryptography.)

(b) Give a recursive definition for the sequence

$$(2, 4, 16, 65536, \ldots)$$

To generate a "stack" of n 2's use $b_n = 2^{b_{n-1}}$.

Outline

Recursion

Recursive Data Structures

Recursive Programming

Solving Recurrences

Recursive datatypes make recursive programming/functions easy.

Example

The factorial function:

```
fact(n):

(B) if(n = 0): 1

(R) else: n * fact(n - 1)
```

Recursive datatypes make recursive programming/functions easy.

Example

Summing the first *n* natural numbers:

```
\begin{array}{cc} \operatorname{sum}(n): \\ (B) & \operatorname{if}(n=0): 0 \\ (R) & \operatorname{else:} n + \operatorname{sum}(n-1) \end{array}
```

Recursive datatypes make recursive programming/functions easy.

Example

Summing elements of a linked list:

```
sum(L):
(B)     if(L.isEmpty()):
        return 0
(R)     else:
        return L.data + sum(L.next)
```

Recursive datatypes make recursive programming/functions easy.

Example

Sorting elements of a linked list (insertion sort):

```
sort(L):

(B) if(L.isEmpty()):
    return L

else:

(R) L2 = sort(L.next)
    insert L.data into L2
    return L2
```

Recursive datatypes make recursive programming/functions easy.

Example

Concatenation of words (defining wv):

For all
$$w, v \in \Sigma^*$$
 and $a \in \Sigma$:

(B)
$$\lambda v = v$$

(B)
$$\lambda v = v$$

(R) $(aw)v = a(wv)$

Recursive datatypes make recursive programming/functions easy.

Example

Length of words:

$$\begin{array}{ll} (B) & \operatorname{length}(\lambda) = 0 \\ (R) & \operatorname{length}(aw) = 1 + \operatorname{length}(w) \end{array}$$

Recursive datatypes make recursive programming/functions easy.

Example

"Evaluation" of a propositional formula

Exercise

Exercise

Let Σ be a finite set.

Define append : $\Sigma^* \times \Sigma \to \Sigma^*$ by

$$append(w, a) = wa$$

Give a (direct) definition of append [i.e. only concatenates symbols on the left].

Exercise

Exercise

Let Σ be a finite set.

Define append : $\Sigma^* \times \Sigma \to \Sigma^*$ by

$$append(w, a) = wa$$

Give a (direct) definition of append [i.e. only concatenates symbols on the left].

For all
$$w \in \Sigma^*$$
 and $a, x \in \Sigma$:

- (B) append $(\lambda, x) = x$
- (R) append $(aw, x) = a \operatorname{append}(w, x)$

Pitfall: Correctness of Recursive Definition

A recurrence formula is correct if the computation of any later term can be reduced to the initial values given in (B).

Example (Incorrect definition)

• Function g(n) is defined recursively by

$$g(n) = g(g(n-1)-1)+1,$$
 $g(0) = 2.$

The definition of g(n) is incomplete — the recursion may not terminate:

Attempt to compute g(1) gives

$$g(1) = g(g(0) - 1) + 1 = g(1) + 1 = \dots = g(1) + 1 + 1 + 1 + \dots$$

When implemented, it leads to an overflow; most static analyses cannot detect this kind of ill-defined recursion.

Pitfall: Correctness of Recursive Definition

Example (continued)

However, the definition could be repaired. For example, we can add the specification specify g(1)=2.

Then
$$g(2) = g(2-1) + 1 = 3$$
,
 $g(3) = g(g(2) - 1) + 1 = g(3-1) + 1 = 4$,
...

In fact, by induction ... g(n) = n + 1

Pitfall: Correctness of Recursive Definition

Check your base cases!

Example

Function f(n) is defined by

$$f(n) = f(\lceil n/2 \rceil), \quad f(0) = 1$$

When evaluated for n = 1 it leads to

$$f(1) = f(1) = f(1) = \dots$$

This one can also be repaired. For example, one could specify that f(1) = 1.

This would lead to a constant function f(n) = 1 for all $n \ge 0$.

Mutual Recursion

Sometimes recursive definitions use more than one function, with each calling each other.

Example (Fibonacci, again)

Recall:

- (B) f(0) = 0; f(1) = 1,
- (R) f(n) = f(n-1) + f(n-2)

Mutual Recursion

Sometimes recursive definitions use more than one function, with each calling each other.

Example (Fibonacci, again)

Recall:

- (B) f(0) = 0; f(1) = 1,
- (R) f(n) = f(n-1) + f(n-2)

Alternative, mutually recursive definition:

- (B) f(1) = 1; g(1) = 0
- (R) f(n) = f(n-1) + g(n-1)
- (R) g(n) = f(n-1)

Mutual Recursion

Sometimes recursive definitions use more than one function, with each calling each other.

Example (Fibonacci, again)

Recall:

- (B) f(0) = 0; f(1) = 1,
- (R) f(n) = f(n-1) + f(n-2)

Alternative, mutually recursive definition:

- (B) f(1) = 1; g(1) = 0
- (R) f(n) = f(n-1) + g(n-1)
- (R) g(n) = f(n-1) $\begin{pmatrix} f(n) \\ g(n) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f(n-1) \\ g(n-1) \end{pmatrix}$

Outline

Recursion

Recursive Data Structures

Recursive Programming

Solving Recurrences

Solving recurrences

Question

How can we (asymptotically) compare recursively defined functions?

Solving recurrences

Question

How can we (asymptotically) compare recursively defined functions?

Some practical approaches:

- Unwinding the recurrence
- Approximating with big-O
- The Master Theorem

Take Notice

Each approach gives an informal "solution": ideally one should prove a solution is correct (using e.g. induction).

Example (Unwinding)

$$f(0) = 1$$
 $f(n) = 2f(n-1)$

Example (Unwinding)

$$f(0) = 1$$
 $f(n) = 2f(n-1)$

Unwinding:

$$f(n) = 2f(n-1)$$

$$= 2(2f(n-2)) = 4f(n-2)$$

$$= 4(2f(n-3)) = 8f(n-3)$$

$$\vdots \quad \vdots$$

$$= 2^{i}f(n-i)$$

$$\vdots \quad \vdots$$

$$= 2^{n}f(0) = 2^{n}$$

Example (Unwinding)

$$f(1) = 0$$
 $f(n) = 1 + f\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$

Example (Unwinding)

$$f(1) = 0$$
 $f(n) = 1 + f\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$

Unwinding:

$$f(n) = 1 + f(n/2)$$

$$= 1 + (1 + f(n/4)) = 2 + f(n/4)$$

$$= 2 + (1 + f(n/8))$$

$$\vdots \quad \vdots$$

$$= i + f(n/2^{i})$$

$$\vdots \quad \vdots$$

$$= \log(n) + f(0) = \log(n)$$

Example (Approximating with big-0)

$$f(0) = 1$$
 $f(1) = 1$ $f(n) = f(n-1) + f(n-2)$

Example (Approximating with big-0)

$$f(0) = 1$$
 $f(1) = 1$ $f(n) = f(n-1) + f(n-2)$

Assuming f(n) is increasing:

$$f(n-2) \le f(n-1)$$

Example (Approximating with big-0)

$$f(0) = 1$$
 $f(1) = 1$ $f(n) = f(n-1) + f(n-2)$

Assuming f(n) is increasing:

$$f(n-2) \le f(n-1)$$

so:

$$f(n) \leq 2f(n-1)$$

Example (Approximating with big-0)

$$f(0) = 1$$
 $f(1) = 1$ $f(n) = f(n-1) + f(n-2)$

Assuming f(n) is increasing:

$$f(n-2) \leq f(n-1)$$

so:

$$f(n) \leq 2f(n-1)$$

so (by unwinding):

$$f(n) \leq 2^n$$

Example (Approximating with big-0)

$$f(0) = 1$$
 $f(1) = 1$ $f(n) = f(n-1) + f(n-2)$

Assuming f(n) is increasing:

$$f(n-2) \le f(n-1)$$

so:

$$f(n) \leq 2f(n-1)$$

so (by unwinding):

$$f(n) \leq 2^n$$

so:

$$f(n) \in O(2^n)$$

Master Theorem

The following result covers many recurrences that arise in practice (e.g. divide-and-conquer algorithms)

Theorem

Suppose

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

where $f(n) \in \Theta(n^c(\log n)^k)$.

Let $d = \log_b(a)$. Then:

Case 1: If c < d then $T(n) = \Theta(n^d)$

Case 2: If c = d then $T(n) = \Theta(n^c(\log n)^{k+1})$

Case 3: If c > d then $T(n) = \Theta(f(n))$

Example (Master Theorem)

$$T(n) = T(\frac{n}{2}) + n^2, \quad T(1) = 1$$

Example (Master Theorem)

$$T(n) = T(\frac{n}{2}) + n^2, \quad T(1) = 1$$

Here a = 1, b = 2, c = 2, k = 0 and d = 0. So we have Case 3 and the solution is

$$T(n) = \Theta(n^c) = \Theta(n^2)$$

Example (Master Theorem)

Mergesort has

$$T(n) = 2T\left(\frac{n}{2}\right) + (n-1)$$

for the number of comparisons.

Example (Master Theorem)

Mergesort has

$$T(n) = 2T\left(\frac{n}{2}\right) + (n-1)$$

for the number of comparisons.

Here a=b=2, c=1, k=0 and d=1. So we have Case 2, and the solution is

$$T(n) = \Theta(n^c \log(n)) = O(n \log(n))$$

Example (Master Theorem)

Unwinding example:

$$T(1) = 0$$
 $T(n) = 1 + T(\lfloor \frac{n}{2} \rfloor)$

Example (Master Theorem)

Unwinding example:

$$T(1) = 0$$
 $T(n) = 1 + T(\lfloor \frac{n}{2} \rfloor)$

Here a=1, b=2, c=0, k=0, and d=0. So we have Case 2, and the solution is

$$T(n) = \Theta(\log(n))$$

The Master Theorem: Pitfalls

Take Notice

- a, b, c, k have to be constants (not dependent on n).
- Only one recursive term.
- Recursive term is of the form T(n/b), not T(n-b).
- Solution is only an asymptotic bound.

Examples

The Master theorem does not apply to any of these:

$$T(n) = 2^n T(n/2) + n^2$$

 $T(n) = T(n/5) + T(7n/10) + n$
 $T(n) = 2T(n-1)$

The Master Theorem: Linear differences

Take Notice

The Master Theorem applies to recurrences where T(n) is defined in terms of T(n/b); not in terms of T(n-1).

However, the following is a consequence of the Master Theorem:

Theorem

Suppose

$$T(n) = a \cdot T(n-1) + bn^k$$

Then

$$T(n) = \left\{ egin{array}{ll} O(n^{k+1}) & & \mbox{if } a = 1 \ O(a^n) & & \mbox{if } a > 1 \end{array}
ight.$$

Exercise

Exercise

Solve
$$T(n) = 3^n T(\frac{n}{2})$$
 with $T(1) = 1$

Exercise

Exercise

Solve
$$T(n) = 3^n T(\frac{n}{2})$$
 with $T(1) = 1$

Let $n \ge 2$ be a power of 2 then

$$T(n) = 3^n \cdot 3^{\frac{n}{2}} \cdot 3^{\frac{n}{4}} \cdot 3^{\frac{n}{8}} \cdot \ldots = 3^{n(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots)} = O(3^{2n})$$