

Prof. Ben Lee
Oregon State University
School of Electrical Engineering and Computer Science

1

Chapter Goals

- Understand the organization of a computer system and its components.
- Understand how assembly instructions are executed on the processor.

Ch. 3: Computer Organization Fundamentals

Computer Organization

Ch. 3: Computer Organization Fundamentals

Memory

- Random Access Memory
- Holds instrutions (program) and data
 - Unified
 - Separate instruction and data memory
- Organized into consecutive addressable memory words.
- I memory word
 - Memory data size
 - Size of the information accessed by the CPU (CPU register
 - Manufacturer's definition

Ch. 3: Computer Organization Fundamentals

Registers

Some important registers:

- PC (Program Counter) holds the address of the next inst. to be fetched from memory
- MAR (Memory Address Register) holds the address of the next instruction or data to be fetched from memory.
- MDR (Memory Data Register) hold the information (word) to be sent to/from memory.
- AC (accumulator) a special register which holds the data to be manipulated by the ALU.
- IR (Instruction Register) holds the instruction to be decoded by the Control Unit (CU).

Ch. 3: Computer Organization Fundamentals

5

5

A Pseudo-CPU Instruction Format opcode address ALU AC Internal Data Bus PC MDR MAR Internal CU To/from memory control and I/O devices External control signals Ch. 3: Computer Organization Fundamentals

/

Fetch and Execute Cycle

- A series of steps (i.e., micro-operations) a computer takes to fetch *and* execute one instruction.
 - Each micro-operation requires a clock cycle.
- Fetch and execute cycle => Instruction Cycle.
- Number of micro-operations required to fetch an instruction is usually the same.
- Number of micro-operations required to execute each instruction differs depending on
 - Complexity of the instruction
 - e.g., Multiply takes longer than Add
 - Available hardware
 - e.g., Multiplier vs. no multiplier hardware

Ch. 3: Computer Organization Fundamentals

9

9

Fetch Cycle

- Need to describe what has to happen in each cycle.
- Will use register transfer operations to describe the movement of data.

Fetch Cycle

 $\mathsf{Cycle}\ \mathsf{I}\!:\!\mathsf{MAR} \leftarrow \mathsf{PC}$

Cycle 2: $MDR \leftarrow M[MAR]$; Read the content of memory

; location pointed to by MAR

Cycle 3: $IR \leftarrow MDR(opcode)$, $MAR \leftarrow MDR(address)$

Cycle 4: $PC \leftarrow PC + I$

Go to beginning of Execute cycle

Note: Cycles 2 and 4 can be performed at the same time.

Ch. 3: Computer Organization Fundamentals

Execute Cycle

- Execute cycle depends on the instruction
- Will describe execute cycle based on instruction in the pseudo-ISA:
 - Data transfer Instructions
 - LDA x (Load Accumulator) ✓
 - STA x (Store Accumulator) ✓
 - Arithmetic and Logical Instructions
 - ADD x (Add to accumulator) ✓
 - SUB x (Subtract from accumulator)
 - NAND x (Logical NAND to accumulator)
 - SHFT (Shift accumulator)
 - Control Transfer
 - J x (Jump to x) \checkmark
 - BNE x (Branch conditionally to x) \checkmark

Ch. 3: Computer Organization Fundamentals

