Social Influence Learning for Recommendation Systems

申健强 2313119

2025 年 4 月 6 日

- ① 研究动机与挑战
- ② 模型方法
- ③ 实验结果
- 4 结论与展望

- ① 研究动机与挑战
- ② 模型方法
- ③ 实验结果
- 4 结论与展望

研究动机

- 社交推荐利用社交关系缓解冷启动与稀疏性。
- 现有方法多将社交图视为静态辅助, 忽略深层影响模式。
- 本工作目标:挖掘并优化潜在社会影响,提升推荐效果。

三大挑战

• 多样性: 多种社交关系类型, 无标签难区分。

• 传播: 邻居层次近不等于影响强, 应自适应加权。

• 探索: 挖掘隐式弱连边, 需防止表示塌陷。

图: 社会影响的多样性、传播与探索示例

- ① 研究动机与挑战
- ② 模型方法
- ③ 实验结果
- 4 结论与展望

EIISRS 模型框架

双塔架构:用户─物品二分图 + 用户社交图

• 三大组件: LGE-VAE、层次注意力、双重采样

• 双重掩码: 每层卷积前筛选关键信息

图: EIISRS 整体框架示意

双塔架构与掩码预处理

二分图路径

- 聚合用户—物品交互信息
- 多层 GCN 更新: $\mathbf{h}_{u}^{(l+1)} = \sigma(\sum_{i} w_{ui} \mathbf{h}_{i}^{(l)} + b)$

社会图路径

- 聚合社交邻居影响
- 多层 GCN 更新: $\mathbf{h}_{u}^{(l+1)} = \sigma(\sum_{v} w_{uv} \mathbf{h}_{v}^{(l)} + b)$

掩码预处理: $\mathbf{M}_r^{(l)}, \mathbf{M}_s^{(l)} \in \{0,1\}$ 控制边信息传递,过滤噪声。

组件一: Layerwise Graph-Enhanced VAE

- 輸入: 每层社交卷积输出 P_s^(l)
- 编码: $\mu^{(l)}, \sigma^{(l)} = \text{MLP}(P_s^{(l)})$
- 采样: $Z_s^{(l)} = \mu^{(l)} + \sigma^{(l)} \odot \epsilon, \ \epsilon \sim \mathcal{N}(0, I)$
- 解码重构, β-VAE 损失平衡重构与 KL 散度

组件二:层次图注意力

• 对所有层 $Z_s^{(l)}$ 计算注意力得分

$$\alpha_l = \frac{\exp(a^\top W_{\text{att}} Z_s^{(l)})}{\sum_j \exp(a^\top W_{\text{att}} Z_s^{(j)})}$$

• 聚合: $\widetilde{P}_s = \sum_l \alpha_l Z_s^{(l)}$

• 目的: 自适应选择最有信息的社交层次

组件三: Dual Sampling

Gumbel 采样

• 从用户一物品表示 P_r 中采样 K 隐式 邻居候选

Bernoulli 采样

- 将显式与隐式邻居合并,按 Bernoulli 分布筛选
- 动态更新社交图, 避免表示塌陷

- ① 研究动机与挑战
- ② 模型方法
- ③ 实验结果
- 4 结论与展望

数据集与对比方法

- 数据集: LastFM / Flickr / Yelp
- 对比模型: BPR, SBPR, CDAE, Multi-VAE, NGCF, LightGCN, DiffNet++, ESRF

推荐性能对比

Model	LastFM				Flickr				Yelp			
	P@10	R@10	F1@10	N@10	P@10	R@10	F1@10	N@10	P@10	R@10	F1@10	N@10
BPR	0.1157	0.1180	0.1168	0.1452	0.0019	0.0020	0.0019	0.0021	0.0019	0.0071	0.0030	0.0045
SBPR	0.1559	0.1564	0.1561	0.2019	0.0018	0.0018	0.0013	0.0024	0.0032	0.0121	0.0051	0.0074
CDAE	0.0364	0.0755	0.0491	0.0682	0.0013	0.0034	0.0019	0.0026	0.0013	0.0110	0.0023	0.0054
/ulti-VAE	0.0950	0.1825	0.1250	0.1607	0.0015	0.0044	0.0022	0.0031	0.0028	0.0232	0.0050	0.0118
NGCF	0.1662	0.1708	0.1685	0.2079	0.0026	0.0034	0.0030	0.0034	0.0041	0.0162	0.0066	0.0098
ightGCN	0.1631	0.1676	0.1653	0.2137	0.0033	0.0039	0.0036	0.0044	0.0061	0.0238	0.0097	0.0149
DiffNet++	0.1722	0.1751	0.1736	0.2069	0.0030	0.0032	0.0031	0.0038	0.0049	0.0179	0.0076	0.0111
ESRF	0.1913	0.1968	0.1940	0.2465	0.0033	0.0046	0.0039	0.0047	0.0055	0.0209	0.0088	0.0130
EIISRS	0.1953	0.2004	0.1978	0.2532	0.0036	0.0047	0.0041	0.0051	0.0066	0.0244	0.0103	0.0153
Improv.	2.1%	1.8%	2.0%	2.7%	9.1%	2.2%	5.1%	7.8%	8.2%	2.5%	6.2%	2.7%

图: Precision@10 & NDCG@10 对比

● EIISRS 相对次优提升 1.8%-9.1%

消融实验

图: 移除 SIP/SID/SIE 后性能变化

• SID (多样性模拟) 对性能影响最大

案例分析:表示塌陷

图: t-SNE 可视化: EIISRS 缓解表示塌陷

- ① 研究动机与挑战
- ② 模型方法
- ③ 实验结果
- 4 结论与展望

结论

- EIISRS 系统性解决三大社交影响挑战
- 三大组件协同,端到端联合优化
- 在多稀疏度场景下均显著优于基线

未来工作

- 自动调节超参数,减少人工干预
- 引入时序/上下文信息,提升隐式采样质量
- 优化训练策略, 支持超大规模社交图

感谢聆听

欢迎讨论!