

SN2021aaev: a H-Rich Superluminous SNe with Early Flash and Long-Lived Circumstellar Interaction in an Unusual Host Environment

Y. Hu¹, R. Lunnan¹, P. J. Pessi¹, A. Saldana-Lopez¹, A. Jerkstrand¹, J. Sollerman¹, S. Schulze², ZTF collaboration, ePESSTO+ collaboration

1. The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 2. Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 1800 Sherman Ave, Evanston, IL 60201, USA

KEY FINDINGS

- Peak luminosity: SN 2021aaev (SLSN-IIn) reached -21.35 mag in o band, radiating $\sim 1.41 \times 10^{51}$ erg.
- Spectral Evolution: narrow Balmer lines persisted for ~ 100 days.
- o Flash Ionisation: He II, C III and/or N III in early spectra. The first known SLSN-IIn flasher.
- Powering source: Long-lived CSM interaction from 1-2 M_{\odot} ejecta ploughing into massive (10- $20~M_{\odot}$), extensive (1.3-2.0×10¹⁶ cm) CSM
- Progenitor ambiguity: eruptive mass-loss episodes from LBV; obscuration of massive CSM means a Type Ia-CSM origin cannot be ruled out.
- Unusual host: star-forming spiral with a quiescent red substructure (SFR= $0.02^{+0.13}_{-0.02}M_{\odot}$ yr^{-1}); a dwarf satellite/merging companion
- Significance: expands the diversity within the SLSN-IIn subclass.

HOST GALAXY

 $\log M^{\text{galaxy}} = 10.81^{+0.14}_{-0.14} M_{\odot}$ $\log M^{\text{clump}} = 9.75^{+0.17}_{-0.18} M_{\odot}$ $SFR^{galaxy} = 8.77^{+8.43}_{-6.12} M_{\odot} \text{ yr}^{-1}$ $SFR^{clump} = 0.03^{+0.16}_{-0.02} M_{\odot} \text{ yr}^{-1}$

 $A_{v}^{\text{galaxy}} = 1.06^{+0.47}_{-0.57} \text{ mag}$ $A_v^{\text{clump}} = 1.67^{+0.25}_{-0.42} \text{ mag}$ $\rightarrow E(B - V)^{\text{clump}} = 0.54 \text{ mag}$

➤ Host Mg II lines have a secondary component with velocity offset 139 ± $21 \, \text{km s}^{-1}$ ➤ Na I doublets give

 $E(B-V)^{\text{host}} =$ $0.086 \pm 0.032 \,\mathrm{mag}$ < that from the **PYSERSIC** modelling

PHOTOMETRY

Colour:

blue to red, re-bluen at 200 days

➤ Continued/renewed interaction

Model:

- Heavy CSM, interior breakout scenario
- Spin-down of a magnetar

*, ** have different pre-set ε			Best-fit parameters						
Model	ϵ	$M_{ m ej}$	$v_{ m ej}$	$M_{ m CSM}$	R_{CSM}	k_0	s	B_p	P_0
		$[M_{\odot}]$	$[10^3 \text{ km s}^{-1}]$	$[M_{\odot}]$	$[10^{16} \mathrm{cm}]$			$[10^{14} \text{ G}]$	[ms]
CSM^*	0.87	$1.34^{+0.06}_{-0.06}$	11	$12.9^{+3.8}_{-3.9}$	$1.57^{+0.35}_{-0.29}$	$0.85^{+0.10}_{-0.11}$	$1.55^{+0.98}_{-1.02}$	-	-
CSM^{**}	0.60	$1.96^{+0.09}_{-0.08}$	11	$14.4^{+4.4}_{-4.1}$	$1.78^{+0.36}_{-0.31}$	$0.85^{+0.10}_{-0.10}$	$1.51^{+1.03}_{-1.04}$	-	-
Magnetar	-	$1.17^{+0.05}_{-0.05}$	$9.85^{+0.13}_{-0.14}$	-	-	-	-	$1.53^{+0.96}_{-0.45}$	$3.95^{+0.56}_{-0.56}$

SPECTROSCOPY

Flash features in SN 2021aaev:

- 1) Broad, 'ledge' feature because
 - it is a blend of highly-ionized He, C, N,
 - > this feature broadens as it evolves (see purple)
- Lorentzian wing

1.75

1.50

근 1.25

1.00

5 0.75

- \blacktriangleright Electron scattering from $\sim \tau = 3$
- 3) Long flash timescale

Wavelength centered on $H\alpha$ [Å]

> positive correlation with peak abs mag Pearson = -0.835 (p = 0.000003)

> C III/N III + He II flash - τ=1.0 --- τ=3.0, (C III / N III ~4641 Å) --- $\tau = 10.0$ -- $\tau = 5.0$ τ=3.0, (He II 4686 Å) --- τ=20.0 — X-shoote

> > Rest wavelength [Å]

