

ANSYS PROJECT

ME 352 MACHINE DESIGN SESSIONAL

STRUCTURE ANALYSIS OF L SHAPED BEAM WITH UNIFORM CIRCULAR CROSS SECTIONAL AREA

PRESENTED BY -

- ISTIAQUE AHMED (1510069)
- ENAMUL HASAN ROZIN (1510070)
- HASIB AHMED PRINCE (1510077)

OBJECTIVES:

- Stress strain analysis of L shaped beam with uniform circular cross sectional area.
- Variation of equivalent stress with various aspect ratios (L' / L).
- Variation of equivalent stress with forces.
- Variation of equivalent stress with temperature.
- Variation of equivalent stress with different materials.

GEOMETRY

MESHED GEOMETRY

Minimum mesh size used is 0.015 and for finer mesh, refinement value is 3

CONSTITUTIVE EQUATION:

Von Mises Stress,

$$\sigma' = \frac{1}{\sqrt{2}} \left(\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + \left(\sigma_z - \sigma_x \right)^2 \right)^{1/2} + 6 \left(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2 \right)^2$$

VALIDATION:

For validation, problem no 3-45 from Shigley's Mechanical Engineering Design is taken.

3-45 (a)
$$L = 10$$
 in. Element A:

$$\sigma_A = -\frac{My}{I} = -\frac{-(1000)(10)(0.5)}{(\pi/64)(1)^4} (10^{-3}) = 101.9 \text{ kpsi}$$

$$\tau_A = \frac{VQ}{Ib}, \quad Q = 0 \quad \Rightarrow \quad \tau_A = 0$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2} = \sqrt{\left(\frac{101.9}{2}\right)^2 + (0)^2} = 50.9 \text{ kpsi}$$

$$= 351 \text{ MPa}$$

Maximum Shear Stress Here in point A is found 351 MPa .

From Ansys Simulation the result is around 356 MPa.

So , the simulation procedure and simulation code is correct.

RESULT & DISCUSSION: FOR SAFETY FACTOR 01 1) STRUCTURE ANALYSIS:

ANSYS simulation result for equivalent (von mises) STRESS:

ANSYS simulation result for equivalent STRAIN:

ANSYS simulation result for total DEFORMATION:

2) Variation of equivalent stress with various aspect ratios (L' / L):

MATERIAL: STRUCTURED STEEL

3) Variation of equivalent stress with FORCES:

ASPECT RATIO (L'/L): 02, MATERIAL: STRUCTURED

STEEL

4) Variation of equivalent stress with TEMPERATURE:

ASPECT RATIO (L'/L): 02, MATERIAL: STRUCTURED STEEL

5) Variation of maximum equivalent stress with different MATERIALS:

ASPECT RATIO (L'/L): 02

MATERIALS	MAX. EQUIVALENT STRESS	S _y
Stainless steel	200.8 MPa	207 MPa
Aluminium Alloy	201 MPa	280 MPa
Copper Alloy	202.46 MPa	280 MPa
Structure Alloy	238 MPa	250 MPa

ACKNOWLEDGEMENT:

Special thanks to our course teacher –

Md. Raihan Ali Khan Lecturer , ME , BUET.

THANK YOU ALL!