Research Update

Joey Doll Worm Touch Meeting 6/17/2009

Overview

- Motivation / Device Overview
- What I've Been Up To
- Current Status

Motivation

Worm TRNs

Turtle hair cell

Performance Goals

- 100 pN force resolution in 1 Hz 50 kHz bandwidth
- 10 microsecond rise time, 500nm tip displacement
- Closed loop force control
- Operation in fluid
- (Aiming for the mammalian hair cell)

Why MEMS?

- Small → high frequency, low stiffness
- Batch fabrication
- All electronic (no optics required)
- Can design devices over a range of size, stiffness (lithographic process)
- Easy manipulation of probe position

Force Sensing Techniques

Piezoresistivity in Silicon

 Resistor elements fabricated by selectively introducing impurities (doping)

 Resistance of a doped silicon region is given by

$$R = \rho \frac{L}{wt}$$

 In piezoresistive materials like doped Si, ρ is stress-dependent

$$\frac{\Delta \rho}{\rho} = \pi_l \sigma_l + \pi_t \sigma_t$$

- Where π_l is the **longitudinal** piezoresistive coefficient
- And π_i is the **transverse** piezoresistive coefficient

The simplest case: piezoresistors patterned so current flows in the direction of the uniaxial stress - only longitudinal components need to be considered.

Piezoresistive Force Sensing

$$V_{out} \cong G \frac{V_B \Delta R}{4R} \cong G \frac{3V_B \pi_L L}{2bh^2} F = GSF$$
 $(S = \frac{3V_B \pi_L L}{2bh^2})$

$$\frac{\Delta R}{R} \cong \pi_L \sigma \cong \frac{6\pi_L L}{bh^2} F$$

Piezoresistor Design

Choices

- Cantilever dimensions
- Piezoresistor dimensions and process parameters
- Dopant concentration
- Bias voltage
- Given constraints
 - Frequency range
 - Measurement bandwidth

Example Device

oxide

so 50

15

16

17

18

19

20

Log of Boron Concentration (cm⁻³)

- •89 nm thick
- •500 fN resolution from 10Hz to 1kHz

The Device

Piezoresistive force detection Piezoelectric actuation

The Plan

Characterization Prep Work and Integration Experiments **Fabrication** Noise and sensitivity Piezoresistor design **Cochlear Hair Piezoresistive** Cells cantilevers **Material properties** Initial piezoelectric Piezoelectric **Touch Receptor** characterization cantilevers Neurons Above + cross-talk **Fabrication** Combined Feedback, microscope process flow devices Summer - Fall 2008 Current Fall 2008

Piezoresistor Design

Piezoresistive Cantilevers

- Fabricated force sensors (no built-in actuation) using the design tool
- Performance is mostly there, still need to do some additional measurements
- Small (high freq) cantilevers not so good, need to do additional experiments / update model.

Design	t	w	l	l_{pr}	Wpr	$\mathbf{f_0}$
#	(nm)	(µm)	(µm)	(µm)	(µm)	(kHz)
1	320	6	123	34	3	25.5
2	320	10	88	24	5	49.8
3	320	2	47	25	1	174.7
4	320	2	35	6	1	315

Design	$\mathbf{f_0}$	f _{max}	R	F _{min}	F _{min}
#	(kHz)	(kHz)	(kΩ)	Theory (pN)	Exp. (pN)
1	22	5	4.2	7.8	5.2
2	66.4	10	2.5	17.1	51.7
3	187.3	50	8.4	28.8	298
4	419.5	100	3.5	35.9	678

Piezoelectric Actuation

- Piezoelectrics are tricky to fabricate in MEMS processes (e.g. contamination)
- Needed a 'clean' process
- Developed/characterized a process for aluminum nitride (AIN) on Ti
- Paper almost ready to submit

Piezoelectric Actuation

Summary So Far

Pieces work well separately

- Piezoresistor
- Piezoelectric
- What about together?
- Potential problems
 - Cross-talk
 - Fabrication incompatibilities
 - Feedback circuitry

PE – PE Cross-Talk

PE – PE Cross-Talk

Process Compatibility

- Everything worked surprisingly well
- Some potential problems
 - Instrinsic stress
 - Piezoresistor etching
- Will have answer in next couple of weeks
- Worst case, another fab run is required → 2-3 months
 - Other improvements could be made

Things Left To Do

- Layout printed circuit boards
 - Head stage amplifier
 - Feedback force control
- Test feedback operation in air
- Validate underwater operation using parylene passivation
- More investigation into cross-talk and model the experimental results

Timeline

- Jan-May: Device characterization
- June-August: System integration

Experimental Setup

Things to Measure

