AD-779 291

THE ENTROPY OF A MARKOV INFORMATION SOURCE

S. Kullback

George Washington University

Prepared for:

Office of Naval Research

19 April 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Security Classification

AD-779291

DOCUMENT CONT					
THE GEORGE WASHINGTON UNIVERSITY	umothton plust be g	28. REPORT SECURITY CLASSIFICATION 26. SROUP			
DEPARTMENT OF STATISTICS WASHINGTON, D.C. 20006					
THE ENTROPY OF A MARKOV INFORMATIO	N SOURCE				
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) TECHNICAL REPORT		The second secon			
S. KULLBACK					
6 REPORT DATE	74. TOTAL NO OF	PAGES	16 NO OF REFS		
April 19, 1974	12		0		
N00014-67-A-0214-0015 b. PROJECT NO NR-042-267	9a. ORIGINATOR'S	18	E R(5)		
d.	9b OTHER REPOR this report)	RT NO(S) (Any of	her numbers that may be assigned		
Unilmited. Reproduction in whole or in part is permitted for any purpose of the United States Government.					
OFFICE OF NAVAL RESEARCH STATISTICS & PROBABILITY PROGRAM ARLINGTON, VIRGINIA 22217					
13 ABSTRACT					

For a first-order and m-th order Markov source with a finite alphabet there are derived various relations and limiting behavior of expressions for the entropy.

Reproduced by
INATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield VA 22151

DD FCAM 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED

Security Classification

14	Security Classification	LINK & LINK B				LINK C		
	KEY WORDS	HOLE	W T	ROLE	w T	POLE	wr	
]	MARKOV SOURCE	[,					
i I		1) 1			
ů.	ENTROPY STATIONARY DISTRIBUTION							
				,				
1						}		
1			[-			
						}		
í					!			
1								
1				!		ļ		
l		ĺ						
						Ì		
•								
ļ				ļ				
ì			:					
				i				
		l:					1	
					,			
							1	
				_				
				1		ı		
ŀ								
		ľ				ì		
	Δ'							
			1					
	ł							

DD FORM .. 1473 (BACK)
(PAGE: 2)

UNCLASSIFIED

Security Classification

THE ENTROPY OF A MARKOV INFORMATION SOURCE

by

S. KULLBACK

TECHNICAL REPORT NO. 18

APRIL 19, 1974

PREPARED UNDER CONTRACT N00014-67-A-0214-0015
(NR-042-267)

OFFICE OF NAVAL RESEARCH

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF STATISTICS

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, D.C. 20006

S. Kullback

THE ENTROPY OF A MARKOV INFORMATION SOURCE

Let S be a first-order Markov source with alphabet $\{s_1, s_2, \ldots, s_q\}$, time-nomogeneous transition probabilities $P(s_i \mid s_j)$ and stationary distribution $p_i = Prob(s = s_i)$, $i = 1, 2, \ldots, q$. These define a simple stationary Markov chain with the matrix of transition probabilities

$$(1) \quad \underline{P} = \begin{pmatrix} P(s_{1} | s_{1}) & P(s_{2} | s_{1}) & \dots & P(s_{q} | s_{1}) \\ P(s_{1} | s_{2}) & P(s_{2} | s_{2}) & \dots & P(s_{q} | s_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ P(s_{1} | s_{q}) & P(s_{2} | s_{q}) & \dots & P(s_{q} | s_{q}) \end{pmatrix}$$

where

(2)
$$P(s_1 | s_1) + P(s_2 | s_1) + ... + P(s_q | s_1) = 1, \quad j = 1, 2, ..., 4$$

and

(3)
$$p_j = p_j P(s_j | s_j) + p_s P(s_j | s_s) + ... + p_q P(s_j | s_q), \quad j = 1, 2, ..., q$$

If we set $\underline{p}' = (p_1, p_2, \dots, p_q)$ then in matrix notation the relations are expressed by

$$(4) \quad \underline{p}'\underline{P} = \underline{p}'$$

If the source is in state s_1 then its transitions to the different states s_1 , $j=1,2,\ldots,q$ form a finite scheme

(5)
$$\frac{s_1}{P(s_1 \mid s_1)} \frac{s_2}{P(s_2 \mid s_1)} \dots \frac{s_q}{P(s_q \mid s_1)} , P(s_1 \mid s_1) + \dots + P(s_q \mid s_1) = 1$$

The entropy of the finite scheme in (5) we write as

(6)
$$H(S|S_i) = -\sum_{j=1}^{q} P(S_j|S_i) \log P(S_j|S_i)$$

and may be regarded as a <u>measure of the amount of information</u> obtained when the source (Markov process) advances one step forward, starting from the state s_i. The mean value of the quantity in (6) over all states s_i, that is,

(7)
$$H(S|S) = \sum_{i=1}^{n} p_i H(S|s_i) = -\sum_{i=1}^{n} \sum_{j=1}^{n} p_j P(s_j|s_i) \log P(s_j|s_i)$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{n} P(s_i,s_j) \log \frac{P(s_i,s_j)}{p_i}$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{n} P(s_i,s_j) \log P(s_i,s_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} P(s_i,s_j) \log p_i$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{n} P(s_i,s_j) \log P(s_i,s_j) + \sum_{i=1}^{n} p_i \log p_i$$

$$= H(S \times S) - H(S) = H(S^2) - H(S)$$

may be regarded as a measure of the mean amount of information obtained when the source (Markov process) moves one step ahead.

The quantity H(S|S) which we shall call the entropy of the source obviously characterizes the source,

and is uniquely determined by the absolute probabilities p_i and the conditional probabilities $P(s_i \mid s_i)$, $1 \le i \le q$, $1 \le j \le q$.

Note that (7) may be written as

(8)
$$H(S^2) = H(S) + H(S|S)$$
,

which is essentially a special case of the general result

(9)
$$H(\chi, \psi) = H(\chi) + H(\psi | \chi)$$
.

It had been shown that generally

(10)
$$H(\mu) \ge H(\mu|\chi)$$

which in this case of a Markov source becomes

(11)
$$\log q \geq H(S) \geq H(S|S)$$
.

If we now consider sequences of (n + 1) successive signals which we may also consider as constituted of the pair consisting of a sequence of n signals and a single signal then we have

(12)
$$H(S^{n+1}) = H(S^n, S) = H(S^n) + H(S|S^n)$$
.

But the Markov chain property that the conditional probability of a state depends only on the immediately preceding state implies that

$$(13) \quad H("Sn) = H(S|S)$$

or

$$(14) \quad H(S^{n+1}) = H(S^n) + H(S|S)$$

and by successive application of (14) we get

(15)
$$H(s^{n+1}) = H(S) + nH(S|S)$$
, that is

(16)
$$H \Gamma(n+1) - t_{i,ple} = H(single) + n H(transition)$$

We may also write

(17)
$$H(S^{n+1}) = H(S,S^n) = H(S) + H(S^n|S)$$

so that comparing (15) and (17), we see that

$$(18) \quad H(S^n \mid S) = n \ H(S \mid S)$$

and

(19)
$$H(S^{n+n}|S) = (m+n)H(S|S) = m H(S|S) + nH(S|S) = H(S^{n}|S) + H(S^{n}|S)$$

that is, the entropy in (m + n) transitions is the sum of the

entropy in m and n transitions.

From (15) we see that

(20)
$$\frac{1}{n+1}$$
 $H(S^{n+1}) = \frac{1}{n+1} H(S) + \frac{n}{n+1} H(S|S)$

so that

$$(21) \quad \lim_{n \to \infty} \frac{1}{n+1} \quad \mathrm{H}(S^{n+1}) = \mathrm{H}(S \mid S),$$

that is, the mean entropy per signal in a long sequence of signals is simply the entropy of the Markov source.

For a source without memory (independence) we have that

$$(22) \quad H(S^2) = 2H(S)$$

and for a Markov (order 1) source we have that

(23)
$$H(S^2) = H(S) + H(S|S)$$
.

Since we had in (11) that $H(S) \ge H(S|S)$, a measure of the correlation between successive signals may be taken as

$$(24)$$
 $2H(S) - H(S) - H(S|S) = H(S) - H(S|S) = 2H(S) - H(S^2).$

Note that

(25)
$$I = \sum_{i,j} P(s_i, s_j) \log \frac{P(s_i, s_j)}{p_i p_j} \ge (\sum_{i,j} P(s_i, s_j)) \log \frac{\sum_{i,j} P(s_i, s_j)}{\sum_{i,j} p_i p_j} = 0$$

and

(26)
$$I = \sum_{i,j} P(s_i, s_j) \log P(s_i, s_j) - \sum_{i,j} P(s_i, s_j) \log p_i - \sum_{i,j} P(s_i, s_j) \log p_j$$

$$= \sum_{i,j} P(s_i, s_j) \log P(s_i, s_j) - \sum_{i} p_i \log p_i - \sum_{j} p_j \log p_j$$

$$= -H(S^2) + 2H(S) = H(S) - H(S|S),$$

where $I = O \Leftrightarrow P(s_i, s_j) = p_i p_j$, that is, no memory.

The reader is reminded that all the preceding was relative to a first-order Markov source.

Let us now turn our attention to the case of an m-th order Markov source, that is, the conditional probability of a signal value or state depends only on the preceding m signal values or states. As before we have the relation in (12) (which we repeat here)

(12)
$$H(S^{n+1}) = H(S^n, S) = H(S^n) + H(S|S^n)$$

but now the specification of an m-th order source implies that

$$(27) \quad H(S|S^n) = H(S|S^m) \qquad n \ge m$$

or

$$(28) \quad H(S^{n+1}) = H(S^n) + H(S|S^n)$$

and by successive application of (28) we get

(29)
$$H(S^{n+1}) = H(S^{n}) + (n - m + 1) H(S|S^{n}), n \ge m.$$

As in (11) we may also write

(30)
$$H(S^{n+1}) = H(S^n, S^{n-m+1}) = H(S^n) + H(S^{n-m+1}|S^n)$$

so that comparing (29) and (30) we see that

(31)
$$H(S^{n-m+1}|S^m) = (n-m+1) H(S|S^m), n \ge m$$

and

From (29) we see that

(33)
$$\frac{1}{n+1} H(S^{n+1}) = \frac{1}{n+1} H(S^n) + \frac{n-m+1}{n+1} H(S|S^n), \quad n \ge m$$

so that

$$(34)$$
 $\lim_{n\to\infty} \frac{1}{n+1} H(S^{n+1}) = H(S|S^n),$

प्

that is, the mean entropy per signal in a long sequence of signal: is simply the entropy of the m-th order Markov source.

If we use the notation $P(\mathbb{S}^n)$ to represent the probability of a sequence of n successive signals, then by the convexity property

(35)
$$I = \sum_{S^{m}S} P(S^{m}, S) \log \frac{P(S^{m}, S)}{P(S^{m})P(S)} \geq \sum_{S^{m}S} P(S^{m}, S) \log \frac{\sum_{S^{m}} \sum_{S} P(S^{m}, S)}{\sum_{S^{m}} P(S^{m}) \sum_{S} P(S)}$$
$$= 1 \log \frac{1}{1} = 0, \text{ or }$$

(36)
$$\sum_{S^n} \sum_{S} P(S^n, S) \log P(S^n, S) - \sum_{S^n} \sum_{S} P(S^n, S) \log P(S^n) - \sum_{S^n} \sum_{S} P(S^n, S) \log P(S)$$

$$= \sum_{S^n+1} P(S^{n+1}) \log P(S^{n+1}) - \sum_{S^n} P(S^n) \log P(S^n) - \sum_{S} P(S) \log P(S)$$

$$= -H(S^{n+1}) + H(S^n) + H(S) = -H(S^n) - H(S^n) + H(S^n) + H(S)$$

so that

$$(37) I = H(S) - H(S|S^{m}) \ge 0$$

with $I = 0 \Leftrightarrow$ a signal is independent of the preceding m signals, is a measure of the relation between a signal and the preceding m signals in an m-th order Markov source.

To assist the reader to relate the exposition and notation in these notes with that in the text by Abramson we indicate equivalent values and results in the following table

Α	ħ	r	am	S	()	n

Kullback

H(S)	H(S S) order 1 source
H(S)	H(S S*) order m source
$H(\overline{S})$	H(S)
$H(\overline{\mathbb{S}^n})$	$H(S^n)$
$H(S^n)$	H(S" S) order 1 source
H(S ⁿ)	$H(S^n \mid S^n)$ order m source
(2-29) p. 28	(11)
(2-37) p. 31	(18)
(2-41) p. 31, (2-40) p. 31	(15)
(2-42) p. 31	(29)
(2-45) p. 32	(34)
(2-44) p. 32	(10) with $\mu = S^n$, $\chi = S^n$, oracle m source

Cf. On the entropy of Markov chains by G.A. Ambarcumjan 12v. Akad. Nauk. Armjan. SSR Ser. Fiz. Mat. Nauk. 11(1958) no. 7, 31-40. Selected Papers in Math. Statist. and Probability, Vol. 4 (1963), pp. 1-11.

EXAMPLE - Entropy Markov Chain

	S	S ₂	S ₃	S ₄	DATE LES	E. C.	
S	.2	.8	0	0	-		Stationary Probabilities
2 2	0	0 .	.1	.9			$.2p_1 + .7p_4 = p_1$
Sa	0	0.	.2	.8			$.8p_1 + .3p_4 = p_2$
S ₄	.7	.3	0	Ο			$.1p_3 + .2p_3 = p_3$
iic i	ng ('	7)					$.9p_{g} + .8p_{3} = p_{4}$
()51	11B /	()					$-8p_1 + 7p_4 = 0$
H(S	S) :	= 7/2	24H	(.2,	.8) + 1/ 3H(.9,	.1)	$p_3 - 8p_3 = 0$
+	1/24	н(.2,	, .8)) + =	L/3H(.7,3)		$72p_3 + 8p_3 = 10p_4$
=	7/24	(.72]	1928	3 + 3	L/3(.468996)		$8p_3 = p_4 = p_2$
+	1/24	(.72]	1928	8)+1,	/3(.881291)	bits	$7/8p_4 + p_4 + 1/8p_4 + p_4 = 1$
=	.69	0738	b i 1	ts			$p_4 = 1/3, p_1 = 7/24$
							$p_{2} = 1/3, p_{3} = 1/24$
H(S) =	7/24	log	g 24,	/7 + 1/3 log	3 + 1/2	$4 \log 2^{14} + 1/3 \log 3$
	=	1/3 1	log	24 -	+ 2 / 3 log 3	- 7/24 1	og 7

= 1/3(4.584962) + 2/3(1.584962) - 7/24(2.807355) bits

= 1.76615 bits

s		m	n log ₂ n
s, s,	.2(7/24) = 14/240	14	53.30297
s, s,	.8(7/24) = 56/240	56	325.2119
s, s,	0	8	24.0000
s, s,	0	72	444.2346
s ₂ s ₁	0	, 2	2.0000
S ₂ S ₂	0	24	110.0391
s, s,	.1(1/3) = 8/240	4.	
S, S,	.9(1/3) = 72/240	2H(S) - H	(S ²) =
s, s,	0		
s, s,	0	3.5323 0 -2.4568 9	
s, s,	.2(1/24) = 2/240	1.07541	
S, S,	.8(1/24) - 8/240	H(S) - H(S	S(S)
s, s,	.7(1/3) = 56/240	- 1.76615	
S, S,	.3(1/3) = 24/240	69074 1.07541	-
S4 S3	0		
S4 S4	0		
H(S³)	$= \frac{14}{240} \log \frac{240}{14} + \frac{56}{240} \log \frac{240}{56} + \frac{8}{24}$	$\frac{1}{0} \log \frac{240}{8} +$	$\frac{72}{240} \log \frac{240}{72}$
	$+\frac{2}{240}\log\frac{240}{2}+\frac{8}{240}\log\frac{240}{8}+\frac{56}{240}$	$\frac{100}{56}$ 100 $\frac{240}{56}$ +	$\frac{24}{240} \log \frac{240}{24}$
	$= \log 240 - \frac{1308.0005}{240}$		
	= 5.321928 + 2.584962 - 5.45 bits	s = 2.45689	bits
H(S ²)	- H(S) = 2.45689 - 1.76615 = .690	074 bits	