FORMULAIRE DE PROBABILITES

VARIABLES ALEATOIRES REELLES

	Cas discret	Cas continu
Caractérisation de la loi de X	$Pr(X = x)$ $x \in X(\Omega)$	$f(x) x \in \mathbb{R}$
Fonction de répartition de X $\forall x \in \mathbb{R}$ $F(x) = Pr(X \le x)$	$F(x) = \sum_{u \in X(\Omega)} \Pr(X = u)$	$F(x) = \int_{-\infty}^{x} f(u) du$
E(X)	$\sum_{x \in X(\Omega)} x \Pr(X = x)$	$\int_{-\infty}^{+\infty} x f(x) dx$
v(x)	$\sum_{x \in X(\Omega)} \left[x - E(X) \right]^2 Pr(X = x)$	$\int_{-\infty}^{+\infty} \left[x - E(X) \right]^2 f(x) dx$

PROPRIETES DE L'ESPERANCE

$$E(a + b X + c Y) = a + b E(X) + c E(Y)$$
 a,b,c sont des constantes

PROPRIETES DE LA VARIANCE ET DE LA COVARIANCE

$$V(X) = E\left[\left(X - E(X)\right)^{2}\right] = E\left(X^{2}\right) - \left[E(X)\right]^{2}$$

$$Cov(X,Y) = E\left[\left(X - E(X)\right)\left(Y - E(Y)\right)\right] = E(XY) - E(X)E(Y)$$

$$V(aX) = a^{2}V(X) \qquad \text{a est une constante}$$

$$V(a) = 0$$

$$V(X+Y) = V(X) + V(Y) + 2Cov(X,Y) \qquad \text{Si X et Y sont indépendantes,} \qquad V(X+Y) = V(X) + V(Y)$$

PROBABILITE CONDITIONNELLE – INDEPENDANCE

$$Pr(A \cap B) = Pr(A/B).Pr(B) = Pr(B/A).Pr(A)$$

Si A et B sont incompatibles,
$$Pr(A \cup B) = Pr(A) + Pr(B)$$
 Si A et B sont indépendants, $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

• LOIS DISCRETES

Loi	Pr(X = x)	E(X)	v(x)	Domaine
Bernoulli Ber (1;p)	$p_0 = 1 - p$ et $p_1 = p$	р	p(1-p)	{0;1}
p ∈]0 ;1[$\rho_0 = 1 - \rho$ et $\rho_1 = \rho$	۲	ρ(1-ρ)	
Binomiale B(n;p)	$C^{x} p^{x} (1 p)^{n-x}$	np	n p (1 – p)	[[0;n]]
n∈N* p∈]0;1[$C_n^x p^x (1-p)^{n-x}$	пр	πρ(1-ρ)	[[0,11]
Binomiale Négative BN(k;p)	C ^x n ^k (1 n) ^x	k (1-p)	$\frac{k(1-p)}{p^2}$	N
k∈N* p∈]0;1[$C_{x+k-1}^{x} p^{k} (1-p)^{x}$	р	p^2	
Géométrique G(p)	- (4)x-1	<u>1</u> p	$\frac{1-p}{p^2}$	N
p∈]0;1[$p\left(1-p\right)^{x-1}$			
Hypergéométrique $H(N;n;p)$	$C_{Np}^{x} C_{N(1-p)}^{n-x}$	nn	N-n	[a·0]
$(N, n, p) \in (\mathbb{N}^*)^2 \times]0;1[$	$\frac{C_{Np}^{x} C_{N(1-p)}^{n-x}}{C_{N}^{n}}$	np	$n p (1-p) \frac{N-n}{N-1}$	[[0;n]]
Pascal Pa(k;p)	Ck-1 nk (4 n) ^{x-k}	k	k (1-p)	[k;+∞[
$k \in \mathbb{N}^* p \in]0;1[$	$C_{x-1}^{k-1} p^k (1-p)^{x-k}$	<u>k</u> p	p^2	[[^ ,+~[
Poisson $P(\mu)$	<u>e</u> -μ μ ^x	μ	μ	N
$\mu \in \mathbb{R}^*$	x!	μ	μ	1.//
Uniforme Discrète U(n)	1 1	<u>n + 1</u>	<u>n² – 1</u>	[[1;n]]
n ∈ N *	n	2	12	П , П

• LOIS CONTINUES

Loi	f(x)	E(X)	v(x)	Domaine
Exponentielle $E(\lambda)$ $\lambda \in \mathbb{R}^*$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\mathbb{R}_{_{+}}$
Fisher Snedecor $F(v_1; v_2)$ $v_1 \in \mathbb{N}^* v_2 \in \mathbb{N}^*$	$\frac{\mathbf{v}_{2} \chi^{2} \left(\mathbf{v}_{1}\right)}{\mathbf{v}_{1} \chi^{2} \left(\mathbf{v}_{2}\right)}$	$\frac{v_2}{v_2 - 2} \text{si} v_2 > 2$	$\frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)} \text{si} v_2 > 4$	$\mathbb{R}_{_{+}}$
Gamma $\gamma(\alpha;\beta)$ $\alpha \in \mathbb{R}_{+}^{*} \beta \in \mathbb{R}_{+}^{*}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} \mathbf{x}^{\alpha-1} \mathbf{e}^{-\beta \mathbf{x}}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\mathbb{R}_{_{+}}$
Khi-Deux $\chi^2(v)$ $v\in\mathbb{N}^*$	$x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}} / \Gamma\left(\frac{\nu}{2}\right)2^{\frac{\nu}{2}}$	ν	2ν	\mathbb{R}_{+}
Log-Normale LN $(\mu;\sigma)$ $\mu\in\mathbb{R}$ $\sigma\in\mathbb{R}_{+}^{*}$	$\frac{1}{x \sigma \sqrt{2\pi}} \exp \left(-\frac{\left(\ln x - \mu\right)^2}{2 \sigma^2}\right)$	$e^{\mu + \frac{\sigma^2}{2}}$	$\left(e^{\sigma^2}-1\right)e^{2\mu+\sigma^2}$]0;+∞[
Normale $N(\mu;\sigma)$ $\mu \in \mathbb{R} \sigma \in \mathbb{R}^*$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right)$	μ	σ^2	\mathbb{R}
Student $T(v)$ $v \in \mathbb{N}^*$	$\Gamma\left(\frac{\nu+1}{2}\right)\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$ $\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi}$	0 si v>1	$\frac{v}{v-2}$ si $v > 2$	\mathbb{R}
Uniforme Continue $U(a;b)$ $(a,b) \in \mathbb{R}^2$ $a < b$	1 b – a	$\frac{a+b}{2}$	$\frac{\left(b-a\right)^2}{12}$	[a;b]
Weibull $W(\beta;\eta;\gamma)$ $\beta \in \mathbb{R}_{+}^{*} \eta \in \mathbb{R}_{+}^{*} \gamma \in \mathbb{R}$	$\frac{\beta}{\eta} \left(\frac{x - \gamma}{\eta} \right)^{\beta - 1} exp \left(- \left[\frac{x - \gamma}{\eta} \right]^{\beta} \right)$	$\gamma + \eta \Gamma \left(1 + \frac{1}{\beta} \right)$	$\eta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^2 \right]$	[γ;+∞[

REMARQUES:

Fonction Gamma ou fonction eulérienne :

$$\Gamma\left(x\right) = \int_{0}^{\infty} e^{-u} \, u^{x-1} \, du \qquad \qquad \forall \ n \in \mathbb{N} * \qquad \Gamma\left(n\right) = \left(n-1\right)!$$

Si deux variables X et Y sont indépendantes et suivent une loi binomiale, leur somme X + Y suit une loi binomiale.

Si deux variables X et Y sont indépendantes et suivent une loi normale, leur somme X + Y suit une loi normale.

Si X et Y sont indépendantes et suivent une loi log-normale, alors leur produit X.Y suit une loi log-normale.

Si σ est petit, alors la loi log-normale est proche de la loi normale.

APPROXIMATION DE LA LOI BINOMIALE PAR LA LOI DE POISSON

Si n est grand et p faible

$$n p (1-p) \le 10$$

 $np(1-p) \le 10$ ou $p \le 0,1$ et $1 \le np \le 10$

$$B(n;p) \rightarrow P(\mu)$$
 avec $\mu = np$

APPROXIMATION DE LA LOI BINOMIALE PAR LA LOI NORMALE

Si n est grand et p proche de 0,5 $np \ge 5$ et $n(1-p) \ge 5$

$$n p \ge 5$$
 et $n(1-p) \ge 5$

$$B(n;p) \rightarrow N(\mu;\sigma) \qquad \text{avec} \quad \mu = np \quad \text{et} \quad \sigma = \sqrt{np(1-p)}$$

Correction de continuité (approximation d'une loi discrète par une loi continue) :

$$\Pr\left(X = x\right) \cong \Pr\left(\frac{x - 0, 5 - np}{\sqrt{np(1-p)}} < U \le \frac{x + 0, 5 - np}{\sqrt{np(1-p)}}\right)$$

$$\Pr(X \le X) \cong \Pr\left(U \le \frac{x + 0, 5 - np}{\sqrt{np(1-p)}}\right)$$