Alice Dinsenmeyer

Doctorante (1ère année)

alice.dinsenmeyer@insa-lyon.fr 1^{er} étage, Bât. J. Jacquard

Licence et master acoustique du Mans (2011-2016)

- Ondes Traitement du signal Méthodes numériques
 - Imagerie US Psychoacoustique

Méthodes inverses par approche bayésienne pour l'identification de sources aéroacoustique depuis juillet 2017

Direction : Jérôme Antoni (LVA), Chritophe Bailly (LMFA), Quentin Leclère (LVA)

Financements : CeLyA + INSAVALOR (projet européen **AD**vanced **A**eroacoustic **P**rocessing **T**echniques, ADAPT)
Collaborations : LVA, LMFA, MicrodB, PSA3, Airbus

- Réduction du bruit des avions : aérodynamique et turbomachines (conception et validation)
 - \hookrightarrow fluctuation de pression acoustique et aérodynamique
- ► Méthodes actuelles : formation de voies & déconvolution
 - Avantages : flexible, simple et rapide
 - Limites : connaissance du modèle de sources, sources corrélées, niveaux

Beamforming, M=0.17, Sijtsma 2007

Axes de la thèse

- 1. Débruitage des mesures : $S_{pp} = S_{acoustique} + S_{turbulence}$
 - ► Approche probabiliste
 - Connaissances a priori : physique des sources (expériences, modèle numérique/analytique)
 - ► Critères de qualité?
- 2. Localisation des sources
 - ► Approche bayésienne
 - ► Contraindre l'inversion : physique des sources
 - Critère de qualité? (qualitatif et quantitatif)

Imagerie ultrasonore de soudures par inversion de formes d'onde

Alice DINSENMEYER

encadrée par Romain BROSSIER & Ludovic MOREAU Maîtres de conférences, ISTerre

mars-juillet 2016

Institut des sciences de la Terre, Grenoble

- ▶ 280 personnes, dont 108 chercheurs et 80 doctorants (2016)
- ► Géochimie (géologie, minéralogie)
- ► Géophysique (mécanique, ondes, tectonique, cycle sismique, magnétisme)
- ► Risque et environnement

Imagerie US vs localisation de sources

► Localisation de sources acoustiques

-

Imagerie US vs localisation de sources

► Localisation de sources acoustiques

► Imagerie par ultrasons

Projet Seiscope

- ightharpoonup pprox 20 personnes à ISTerre
- ► Sponsors : industrie du gaz et pétrole

Acquisition à Valhall, *Sirgue et al. 2009* 120 km de câbles, 2414 hydrophones 50000 excitations par canon à air (45 km²)

Profondeur : 150 m Profondeur : 1050 m En haut : tomographie des temps en réflexion En bas : Inversion de forme d'ondes

Contrôle sur pipeline

Exemple de test en réflexion

Contrôle et évaluation de soudures :

- ▶ de centrales nucléaires (système de refroidissement)
- ▶ de pipelines
- → porosité, fissure, manque de fusion, corrosion, corps étrangers,...

Image extraite de Consonni et al., Insight, 2011

Spécificité de l'imagerie de soudure

▶ 2 surfaces libres : réflexions multiples ↔ problème mal posé

Spécificité de l'imagerie de soudure

- ▶ 2 surfaces libres : réflexions multiples ↔ problème mal posé
- ► Acquisition de surface : limitation de la résolution

Spécificité de l'imagerie de soudure

- ▶ 2 surfaces libres : réflexions multiples ↔ problème mal posé
- ► Acquisition de surface : limitation de la résolution
- lacktriangledown Anisotropie ightarrow inversion multiparamétrique ($C_{ij} imes 6$: soudure + défaut)

Macrographie d'une soudure austénitique

- méthodes par sommation cohérente des signaux (ex : FTP)
- Décomposition des matrices de covariance (ex : DORT)

Forte anisotropie imprévisible

Macrographie d'une soudure austénitique

Méthodes DORT (gauche) et FTP (droite) sur modèle EF de soudure anisotrope

- méthodes par sommation cohérente des signaux (ex : FTP)
- Décomposition des matrices de covariance (ex : DORT)

- x requièrent une connaissance a priori de la vitesse
- x sujettes aux artefacts

Forte anisotropie imprévisible

Macrographie d'une soudure austénitique

Camingham et al., 170c. N. 30c., 2010

Méthodes DORT (gauche) et FTP (droite) sur modèle EF de soudure anisotrope

- méthodes par sommation cohérente des signaux (ex : FTP)
- Décomposition des matrices de covariance (ex : DORT)
- Résolution d'un problème d'optimisation

- X requièrent une connaissance a priori de la vitesse
- x sujettes aux artefacts
- ✓ reconstruction d'un ensemble de paramètres : FWI

► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$

- ► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$
- ▶ Optimisation locale : modèle optimal quand $C'(m + \Delta m) = 0$

- ► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$
- ▶ Optimisation locale : modèle optimal quand $C'(\boldsymbol{m} + \boldsymbol{\Delta} \boldsymbol{m}) = 0$
- ▶ Perturbation du modèle : $\Delta m = -(C'')^{-1} C'$

C'': approx. à partir de C' (L-BFGS) C':?

ullet Fonction de coût : $C(oldsymbol{m}) = rac{1}{2}||oldsymbol{d}_{obs} - oldsymbol{d}_{cal}(oldsymbol{m})||^2$

- ► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$
- ► Expression du gradient

$$\frac{\partial C(\boldsymbol{m})}{\partial m_i} = -\frac{t}{d} \left(\frac{\partial \boldsymbol{d}_{cal}(\boldsymbol{m})}{\partial m_i} \right) (\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal}(\boldsymbol{m}))$$

- ► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$
- ► Expression du gradient

$$\begin{split} \frac{\partial C(\boldsymbol{m})}{\partial m_i} &= -\frac{^t}{\left(\frac{\partial \boldsymbol{d}_{cal}(\boldsymbol{m})}{\partial m_i}\right)}(\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal}(\boldsymbol{m})) \\ C' &= {^t}\boldsymbol{d}_{cal} \stackrel{t}{\left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right)} \underbrace{\boldsymbol{A}^{-1}(\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal})}_{\text{résidus rétropopagés}} \end{split}$$

- ► Fonction de coût : $C(\boldsymbol{m}) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$
- ► Expression du gradient

$$\begin{split} \frac{\partial C(\boldsymbol{m})}{\partial m_i} &= -\frac{^t\!}{\left(\frac{\partial \boldsymbol{d}_{cal}(\boldsymbol{m})}{\partial m_i}\right)}(\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal}(\boldsymbol{m})) \\ C' &= {^t\!}\boldsymbol{d}_{cal} \left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right) \underbrace{\boldsymbol{A}^{-1}(\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal})}_{\text{résidus rétropopagés}} \end{split}$$

Le gradient découle du calcul de 2 problèmes directs :

$$m{A}(m{m})m{d}_{cal}(m{m}) = m{s}$$
 et $m{A}(m{m})m{\lambda}(m{m}) = (m{d}_{obs} - m{d}_{cal}(m{m})),$

$$C' = \underbrace{\frac{d_{cal}}{c_{ ext{hamp incident}}}}^t \left(rac{\partial oldsymbol{A}}{\partial m_i}
ight) \quad \underbrace{oldsymbol{\lambda}}_{ ext{r\'esidus r\'etropopag\'es}} \ \sim \ \Re \left(e^{jk_0 oldsymbol{s} \cdot oldsymbol{x}}
ight) \quad \sim \ \Re \left(e^{jk_0 oldsymbol{r} \cdot oldsymbol{x}}
ight)$$

$$C' = \underbrace{t d_{cal}}_{ ext{champ incident}} \overset{t}{\left(rac{\partial oldsymbol{A}}{\partial m_i}
ight)} \underbrace{oldsymbol{\lambda}}_{ ext{résidus rétropopagés}} \ \sim \ \Re \left(e^{jk_0 oldsymbol{s} \cdot oldsymbol{x}}
ight) \ \sim \ \Re \left(e^{jk_0 oldsymbol{r} \cdot oldsymbol{x}}
ight)$$

► Résolution du gradient :

$$k = k_0 |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2 \cos\left(\frac{\theta}{2}\right)$$
 (1)

 \hookrightarrow maximale $(\lambda/2)$ en HF et pour $\theta=0$

$$C' = \underbrace{ \stackrel{t}{d_{cal}}}_{ ext{champ incident}} \stackrel{t}{\left(\frac{\partial m{A}}{\partial m_i} \right)} \underbrace{m{\lambda}}_{ ext{r\'esidus r\'etropopag\'es}} \ \sim \Re \left(e^{jk_0 m{s}.m{x}}
ight) \qquad \sim \Re \left(e^{jk_0 m{r}.m{x}}
ight)$$

► Résolution du gradient :

$$k = k_0 |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2 \cos\left(\frac{\theta}{2}\right)$$
 (1)

 \hookrightarrow maximale ($\lambda/2$) en HF et pour $\theta=0$

$$C' = \underbrace{\frac{t}{d_{cal}}}_{ ext{champ incident}} \underbrace{\left(rac{\partial m{A}}{\partial m_i}
ight)}_{ ext{r\'esidus r\'etropopag\'es}} \underbrace{m{\lambda}}_{ ext{r\'esidus r\'etropopag\'es}} \ \sim \ \Re\left(e^{jk_0m{r}.m{x}}
ight) \ \sim \ \Re\left(e^{jk_0m{r}.m{x}}
ight)$$

► Résolution du gradient :

$$k = k_0 |s + r| = \frac{\omega}{c} 2 \cos\left(\frac{\theta}{2}\right)$$
 (1)

 \hookrightarrow maximale $(\lambda/2)$ en HF et pour $\theta=0$

► Rayonnement des paramètres :

Inversions en milieu isotrope

- ► Milieu 2D, isotrope, acoustique
- ► Paramétrisation : vitesse + masse volumique

Inversions en milieu isotrope

- ► Milieu 2D, isotrope, acoustique
- ► Paramétrisation : vitesse + masse volumique
- ► Excitation : Ricker centré à 2 MHz

▶ pour contraindre le problème, lever les ambiguïtés de phase

 pour contraindre le problème, lever les ambiguïtés de phase

2 critères hiérarchiques :

▶ influence des paramètres sur les données

Données issues d'une masse volumique homogène

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

2 critères hiérarchiques :

► influence des paramètres sur les données

Données issues d'une masse volumique homogène

Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

2 critères hiérarchiques :

- ▶ influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

2 critères hiérarchiques :

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

t∼ 200 kHz Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

r∼ 300 kHz
Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

r∼ 450 kHz
Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

 $\mbox{f}{\sim}~675~\mbox{kHz}$ Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ▶ influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

 $m f{\sim 1000~kHz}$ Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

 $\mbox{f}{\sim}~1500~\mbox{kHz}$ Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

 pour contraindre le problème, lever les ambiguïtés de phase

- ► influence des paramètres sur les données
- ► contenu fréquentiel

Données issues d'une masse volumique homogène

 $f{\sim}~2200~kHz$ Construction d'un modèle de vitesse lissé

Données issues de la vraie masse volumique

Inversions en milieu isotrope

▶ 9 inversions successives de 200 kHz à 3 MHz

Conclusion

▶ Inversion multiparamètre : corrige les artefacts

Conclusion

- ▶ Inversion multiparamètre : corrige les artefacts
- ► Régularisation empirique hiérarchique :
 - ► Gamme fréquentielle
 - ► Paramétrisation
 - ► Sources et récepteurs
 - Filtrage temporel

Conclusion

- ▶ Inversion multiparamètre : corrige les artefacts
- ► Régularisation empirique hiérarchique :
 - ► Gamme fréquentielle
 - ► Paramétrisation
 - ► Sources et récepteurs
 - ► Filtrage temporel
- ► Temps de calcul (2D) :
 - 9 fréq. \times 20 perturbations = 180 inversions
 - 5 min/inversion \rightarrow 15h
 - VS beamforming: 10 min sur pc

Perspectives

lacktriangle Prise en compte de l'anisotropie, 3D : $6 \times C_{ij}$

Images extraites de Ogilvy, 1986

(a) Modèle d'orientation des grains

(b) Courbure des rayons (ondes de compressions)

Perspectives

lacktriangle Prise en compte de l'anisotropie, 3D : $6 \times C_{ij}$

(a) Modèle d'orientation des grains

- (b) Courbure des rayons (ondes de compressions)
- ▶ Élaboration d'un modèle initial fiable

Perspectives

▶ Prise en compte de l'anisotropie, 3D : $6 \times C_{ij}$

(a) Modèle d'orientation des grains

- (b) Courbure des rayons (ondes de compressions)
- ► Élaboration d'un modèle initial fiable
- ► Application à des données expérimentales

Codes ouverts (FORTRAN 90) : http://seiscope2.osug.fr \hookrightarrow optimization toolbox + codes pb direct/inverse

Transport optimal (norme de Kantorovich-Rubinstein), Métivier 2016 Prior informations, Asnaashari 2013