Algèbre II Clément Chivet

TD0: Anneaux et Idéaux

11/09/2024

Sauf mention explicite du contraire, les anneaux seront toujours supposés commutatifs et unitaires. Un morphisme d'anneaux $f: A \to A'$ vérifiera toujours $f(1_A) = 1_{A'}$.

On rappelle les définitions suivantes :

Définition 1. Un idéal I d'un anneau A est un sous-groupe additif de A stable par multiplication par A. On dit qu'un idéal est

- premier si c'est un idéal propre et $\forall a, b \in A, ab \in I \Rightarrow (a \in I) \lor (b \in I)$.
- maximal si c'est un élément maximal de l'ensemble des idéaux propres de A pour la relation \subseteq .
- de type fini si il est engendré par un nombre fini d'élements, et principal si il est engendré par un seul élément.

Exercice 1 : Idéaux premiers et maximaux

- 1. Soit A un anneau et I un idéal. Montrer que I est premier (resp. maximal) si et seulement si A/I est un anneau intègre (resp. un corps).
- **2.** Soit A un anneau et I un idéal. Montrer que I est premier (resp. maximal) si et seulement si il est le noyau d'un morphisme (resp. d'un morphisme surjectif) $\phi: A \to B$ où B est un anneau intègre (resp. un corps).

Exercice 2 : Etude de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \ge 2$.

- 1. Quels sont les éléments inversibles, les éléments nilpotents, les diviseurs de 0 de $\mathbb{Z}/n\mathbb{Z}$?
- 2. Quels sont les idéaux, les idéaux premiers, les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$?
- **3.** Quels sont les morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{Z} ? de \mathbb{Z} dans $\mathbb{Z}/n\mathbb{Z}$? de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$ pour $n, m \in \mathbb{N}$?

Exercice 3 : Principalité de A[X]

Soit A un anneau. Montrer que A[X] est principal si et seulement si A est un corps.

Exercice 4 : Éléments inversibles de A[X]

- 1. Vérifier que si A est un anneau intègre, alors A[X] est intègre et $A[X]^{\times} = A^{\times}$.
- **2.** A est désormais un anneau quelconque, et $f := \sum_{i=0..n} a_i X^i$ un élément de A[X].
- a. Montrer que si a_0 est inversible dans A et a_1, \ldots, a_n sont nilpotents, alors f est inversible dans A[X].
- b. Réciproquement, supposant f inversible dans A[X], montrer successivement que $a_0 \in A^{\times}$, puis $a_n \in \text{Nil}(A)$, puis $a_{n-1}, \ldots, a_1 \in \text{Nil}(A)$.
- c. Retrouver le résultat précédent en utilisant le fait que Nil(A) est l'intersection des idéaux premiers de A.

Exercice 5: Un exemple d'idéal premier mais non maximal

Montrer que l'idéal (x^2-2) est premier mais pas maximal dans $\mathbb{Z}[x]$.

Exercice 6: Image réciproque d'un idéal maximal

Soient $f: A \to B$ un homomorphisme d'anneaux et M un idéal maximal de B. Soit $N:=f^{-1}(M)$. Montrer que N n'est pas nécessairement un idéal maximal de A, mais que c'est le cas si f est surjectif.

Algèbre II Clément Chivet

Exercice 7: Entiers algébriques

Soit $x \in \mathbb{C}$. Montrer que les propositions suivantes sont équivalentes :

- (i) x est racine d'un polynôme non nul unitaire à coefficients dans \mathbb{Z} .
- (ii) $\mathbb{Z}[x]$ est un groupe abélien de type fini.

En déduire que l'ensemble des entiers algébriques de \mathbb{C} est un anneau.

Exercice 8: Division euclidienne

Soit A un anneau et A[X] l'anneau des polynômes à coefficients dans A.

1. Montrer que si $D \in A[X]$ a un coefficient dominant inversible, alors pour $P \in A[X]$ il existe $R, Q \in A[X]$ tel que P = QD + R et $\deg R < \deg D$. Si A est intègre, montrer que le couple P, Q est unique.

Exercice 9 : Une caractérisation de l'intégrité

Soit A un anneau distinct de $\{0\}$, de $\mathbb{Z}/4\mathbb{Z}$, et de $\mathbb{F}_2[X]/(X^2)$. Montrer que les propriétés suivantes sont équivalentes :

- (i) A est intègre.
- (ii) Tout polynôme unitaire de degré n à coefficients dans A a au plus n racines dans A.
- (iii) Tout polynôme unitaire de degré 2 à coefficients dans A a au plus 2 racines dans A.

Exercice 10: Anneaux d'entiers

Montrer que si un nombre rationnel est racine d'un polynôme non nul unitaire à coefficients entiers, alors c'est un entier.

Exercice 11: Théorème des deux carrés

On rappelle que les anneaux des entiers de Gauss est l'anneau $\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}$. On définit $N : \mathbb{Z}[i] \to \mathbb{N}$ par $N(z) := |z|^2$.

Ι.

a. Montrer que N est multiplicative, i.e. pour tous $z, z' \in \mathbb{Z}[i]$ on a

$$N(zz') = N(z)N(z')$$

- b. Montrer que $\mathbb{Z}[i]^{\times} = \{z \in \mathbb{Z}[i], N(z) = 1\}.$
- **2.** Soit p un nombre premier différent de 2.
 - a. Montrer que -1 est un carré modulo p si et seulement si $p \equiv 1[4]$.
 - b. Montrer l'équivalence des propriétés suivantes :
- (i) p est irréductible dans $\mathbb{Z}[i]$.
- (ii) $p \equiv 3[4]$
- (iii) p n'est pas somme de deux carrés d'entiers naturels.

Exercice 12 : Exemples d'entiers algébriques?

Parmi ces nombres algébriques, lesquels sont des entiers algébriques?

$$\frac{3+2\sqrt{6}}{(1-\sqrt{6})}, \frac{\sqrt{3}+\sqrt{5}}{2}, \frac{\sqrt{3}+\sqrt{7}}{2}, \frac{1+3\sqrt{10}+3\sqrt{100}}{3}, \frac{1+i}{2}, \frac{\sqrt{a}+\sqrt{b}}{n}$$

avec $a, b \in \mathbb{Z} \setminus \{0, 1\}$ des entiers distincts sans facteur carré et $n \in \mathbb{N}^*$.