

SRM Institute of Science and Technology Ramapuram Campus Department of Mathematics 18MAB101T – Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - I

MATRICES

Part – A

1.	The sum of the eigen values of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is	1 Mark		
	(a) 2 (b) 4 (c) -3 (d) 0	Ans (a)	(CLO – 1Apply)	
2.	The eigen values of A^{-1} , if $A = \begin{pmatrix} 1 & 5 & -1 \\ 0 & 3 & 2 \\ 0 & 0 & 4 \end{pmatrix}$ are		1 Mark	
	(a) 2, 3, 4 (b) 2, 5, -1 (c) 0, 0, 0 (d) $1, \frac{1}{3}, \frac{1}{4}$	Ans (d)	(CLO -1Apply)	
3.	If two eigen values of $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$ are			
	3 and 15, then the third eigen value is	1 Mark		
	(a) 1 (b) 0 (c) 2 (d) 3	Ans (b)	(CLO -1 Apply)	
	If -1 , -1 , 2 are the eigen values of a matrix			
4.	$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \text{ then the eigen values of A}^{T} \text{ are}$	1 Mark		
	(a) $-1, -1, 2$ (b) $1, 1, 1/2$ (c) $1, 1, 4$ (d) $-1, -1, -2$	Ans (a)	(CLO - 1 Apply)	

5.	The sum of eigen values of the identity matrix of order 3 is	1 Mark		
	(a) 0 (b) 1 (c) 2 (d) 3	Ans (d) (CLO - 1 Remember)		
6.	The product of the two eigen values of the matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 4. Then the third eigen value is	1 Mark		
	(a) 2 (b) 1 (c) 3 (d) 8	Ans (a) (CLO - 1 Apply)		
7.	The index of the canonical form $Q = -y_1^2 + y_2^2 + 4y_3^2$ is	1 Mark		
	a) 3 (b) 2 (c) 1 (d) 0	Ans (b) (CLO -1 Apply)		
8.	If the eigen values of the matrix of the quadratic form $2x_1^2 + 6x_2^2 + 2x_3^2 + 8x_1x_3$ are -2 , 6, 6, then the nature of the quadratic form is	1 Mark		
	(a) positive semi-definite (b) indefinite (c) negative definite (d) positive definite	Ans (a) (CLO - 1 Apply)		
9.	The matrix corresponding to the quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 2x_2x_3 + 6x_3x_1 + 2x_1x_2$ is	1 Mark		
	(a) $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & 2 \\ 3 & 2 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 4 & 4 \\ 4 & 5 & 3 \\ 4 & 3 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 4 & 3 \\ 4 & 5 & 4 \\ 3 & 4 & 1 \end{pmatrix}$	Ans (a) (CLO - 1 Apply)		
10.	A homogeneous polynomial of the degree in any number of variables is called a quadratic form.	1 Mark		

	(a) first (b) second (c) third (d) fourth	Ans (b)	(CLO - 1 Remember)	
11.	A square matrix A is called orthogonal if	1 Mark		
	(a) $A = A^2$ (b) $A = A^{-1}$ (c) $A^T = A^{-1}$ (d) $AA^{-1} = I$	Ans (c)	(CLO - 1 Remember)	
12.	The sum of the squares of the eigen values $\begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$ is		1 Mark	
	(a) 10 (b) 38 (c) 45 (d) 20	Ans (b)	(CLO - 1 Apply)	
13.	All the eigen values of a symmetric matrix with real elements are		1 Mark	
	(a) distinct (b) real (c) equal (d) conjugate complex numbers	Ans (a)	(CLO - 1 Remember)	
14.	If the sum of two eigen values and trace of a 3 x 3 matrix A are equal, then the value of det (A) is		1 Mark	
	(a) 0 (b) 1 (c) -1 (d) 2	Ans (a)	(CLO - 1 Apply)	
15.	If the canonical form of a quadratic form is $-y_1^2 + y_2^2 + 2y_3^2$, then the signature of the quadratic form is	1 Mark		
	(a) 2 (b) 1 (c) 0 (d) 3	Ans (b)	(CLO - 1Apply)	
16.	Find the sum and product of the eigen values of $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$		1 Mark	

		1	ı	
	(a) 5, 3 (b) 3, 5 (c) 2, 1 (d) 0, 1	Ans (b)	(CLO - 1 Apply)	
17.	The eigen vectors corresponding to the distinct eigen values of a real symmetric matrix are	1 Mark		
	(a) imaginary (b) non-orthogonal (c) real (d) orthogonal	Ans (d)	(CLO - 1 Remember)	
18.	The eigen values of a skew symmetric matrix are	1 Mark		
	(a) real (b) imaginary (c) unitary (d) orthogonal	Ans (b)	(CLO - 1 Remember)	
19.	Find the characteristic equation of the matrix $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$	1 Mark		
	(a) $\lambda^2 - 7\lambda + 6 = 0$ (b) $\lambda^2 + 7\lambda + 6 = 0$ (c) $\lambda^2 - 7\lambda - 6 = 0$ (d) $\lambda^2 - 7\lambda + 5 = 0$	Ans (a)	(CLO - 1 Apply)	
20.	The eigen values of an orthogonal matrix have the absolute value	1 Mark		
	(a) 0 (b) 1 (c) 2 (d) 3	Ans (b)	(CLO -1 Remember)	
21.	The number of positive terms in the canonical form is called	1 Mark		
	(a) Signature (b) Index (c)quadratic (d)positive definite	Ans (b)	(CLO - 1Remember)	
22.	The difference between the positive terms and negative terms in the canonical form is called	1 Mark		
	(a) Signature (b) Index (c)quadratic (d)positive definite	Ans (a)	(CLO - 1 Remember)	

23.	Find the eigen values of A^2 if $A = \begin{pmatrix} 3 & 2 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.	1 Mark		
	(a) 6, 4, 10 (b) 9, 4, 25 (c) 9, 2, 5 (d) 3, 2, 5	Ans (b) (CLO - 1 Apply)		
24.	Find the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$	1 Mark		
	(a)Positive definite (b) Negative definite (c) Positive semi-definite (d) Indefinite	Ans (b) (CLO – 1 Apply)		
25.	Find the eigen values of A^{10} if $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$	1 Mark		
	(a) $1,3^{10}$ (b) $1,3$ (c) $3^2,1^{10}$ (d) $1,10$	Ans (a) (CLO - 1 Apply)		
26.	Find the eigen values of the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.	1 Mark		
	(a) 1, -3 (b) 3, 1 (c) 2, 1 (d) 1, 2	Ans (b) (CLO - 1 Apply)		
27.	If the sum of two eigen values and trace of a 3 x 3 matrix A are equal, then the value of determinant of A is	1 Mark		
	(a) 0 (b) 1 (c) -1 (d) 2	Ans (a) (CLO - 1 Apply)		
28.	Find the eigen values of the matrix $A^3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.	1 Mark		

	(a) 1, -3	(b) 3, 1	(c) 1,9	(d) 1, -9	Ans (c)	(CLO - 1Apply)		
29.	The eigen values of the matrix $A^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$				1 Mark			
	(a) 4,3	(b) 3, 1	(c) -2, 1	(d) 1, 2	Ans (a)	(CLO - 1 Apply)		
30.	Find the sum an matrix $A = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$		he eigen values	s of the	1 Mark			
	(a) 4,3				Ans (a)	(CLO - 1 Apply)		
31.	Find the eigen v	values of A =	$ \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix} $		1 Mark			
	(a) 1,3,-4	(b) 1,-3,-4	(c) 1,-3,4	(d) -1,3,-4	Ans (a)	(CLO - 1 Apply)		
32.	Two eigen valu	$\left(-\right)$	1 - 5 - 2	re equal and	1 Mark			
	(a) 1, 2, 2 (b)) 2, 1, 1 (c)) 2, 0, 1 (d) 1	, 2, 3	Ans (a)	(CLO - 1Apply)		
33.	The eigen value elements of the		al matrix are the	2	1 Mark			

	(a) diagonal (b) upper triangular (c) zero (d) unity	Ans (a)	(CLO - 1 Remember)		
34.	Cayley-Hamilton theorem states that "Every matrix satisfies its own characteristic equation".	1 Mark			
	(a) square (b) column (c) row (d) zero	Ans (a)	(CLO - 1Remember)		
35.	Find rank and index of the QF whose canonical form is $3x^2 - 3y^2$.	1 Mark			
	(a) 2, 1 (b) 1, 2 (c) 0, 1 (d) 0, 2	Ans (a)	(CLO – 1 Apply)		
36.	Write the Q.F. defined by the matrix $A = \begin{pmatrix} 6 & 1 & -7 \\ 1 & 2 & 0 \\ -7 & 0 & 1 \end{pmatrix}$	1 Mark			
	(a) $6x^2 + 2y^2 + z^2 + 2xy - 14xz$ (b) $6x + y^2 + 6z^2 + xy - 7xz$ (c) $6x^2 + 2y^2 + z^2 + 2xy + 14xz$ (b) $6x + y^2 + 6z^2 + xy - 14xz$	Ans (a)	(CLO -1Apply)		

SRM Institute of Science and Technology Ramapuram Campus Department of Mathematics 18MAB101T – Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - I

MATRICES

Part - B

1. Find the characteristic equation of the matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$.

$$(\mathbf{A})\,\lambda^2 - 3\lambda + 2 = 0$$

$$(B) \lambda^2 + 3\lambda + 2 = 0$$

(C)
$$\lambda^2 - 3\lambda - 2 = 0$$

(D)
$$\lambda^2 + 3\lambda - 2 = 0$$

Solution: Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$. Its characteristic equation is $\lambda^2 - S_1 \lambda + S_2 = 0$ where $S_1 = sum\ of\ the\ main\ diagonal\ elements = 1 + 2 = 3$,

$$S_2 = Determinant \ of \ A = |A| = 1(2) - 2(0) = 2$$

Therefore, the characteristic equation is $\lambda^2 - 3\lambda + 2 = 0$ (**Option A**)

2. Find the characteristic equation of $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.

$$(\mathbf{A}) \lambda^3 - 18\lambda^2 + 45\lambda = 0$$

(B)
$$\lambda^3 - 28\lambda^2 + 45\lambda = 0$$

(C)
$$\lambda^3 - 18\lambda^2 + 35\lambda = 0$$

(D)
$$\lambda^3 - 18\lambda^2 - 45\lambda = 0$$

Solution: Its characteristic equation is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$, where $S_1 = sum\ of\ the\ main\ diagonal\ elements = 8 + 7 + 3 = 18, S_2 =$

Sum of the minors of the main diagonal elements $= \begin{vmatrix} 7 & -4 \\ -4 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix} = 5 + \frac{1}{2} + \frac{1}{2$

$$20 + 20 = 45, S_3 = \textit{Determinant of } A = \ |A| = 8(5) + 6(-10) + 2(10) = 40 - 60 + 20 = 0$$

Therefore, the characteristic equation is $\lambda^3 - 18\lambda^2 + 45\lambda = 0$ (**Option A**)

3. Find the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$.

(A) 2, -2

(B) 1, -1

(C) 3, -3

(D) 2, 2

Solution: Let $A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$ which is a non-symmetric matrix.

The characteristic equation of A is $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = sum\ of\ the\ main\ diagonal\ elements = 1 - 1 = 0$,

$$S_2 = Determinant \ of \ A = |A| = 1(-1) - 1(3) = -4$$

Therefore, the characteristic equation is $\lambda^2 - 4 = 0$ i.e., $\lambda^2 = 4$ or $\lambda = \pm 2$

Therefore, the eigen values are 2, -2. (Option A)

4. Find the sum and product of the eigen values of the matrix $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.

(A) -3, 4

(B) -3, -4

(C) 3.4

(D) -3, -4

Solution: Sum of the eigen values = Sum of the main diagonal elements = -3

Product of the eigen values = |A| = -1 (1 - 1) - 1(-1 - 1) + 1(1 - (-1)) = 2 + 2 = 4

(Option A)

5. Find the sum and product of eigen values of the matrix A^T where $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.

(A) 18, 0

(B) 18, 2

(C) 28, 0

(D) 18, -2

Solution: Since matrix A is symmetric, A and A^{T} have same eigen values.

Sum of Eigen value of A^{T} = trace(A) = 8+7+3=18

Product of Eigen value of $A^T = |A| = 8(5) + 6(-10) + 2(10) = 40 - 60 + 20 = 0$ (**Option A**)

6. If 1, 1, 5 are the eigen values of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, find the eigen values of 5A.

- (A) 5, 5, 2
- (B) 5, 5, 25
- (C) 2, 3, 2
- (D) 7, 8, 7

Solution: By the property "If λ_1 , λ_2 , λ_3 are the eigen values of A, then $k\lambda_1$, $k\lambda_2$, $k\lambda_3$ are the eigen values of kA, the eigen values of 5A are 5(1), 5(1), 5(5) ie., 5,5,25. (**Option B**)

7. Find the eigen values of the matrix $2A^{-1}$ where $A = \begin{pmatrix} 3 & 8 & 9 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}$.

- (A) $\frac{2}{3}$, 2, -1 (B) $\frac{1}{3}$, 2, -4 (C) $\frac{2}{3}$, 2, 1
- (D) $\frac{2}{2}$, 1, -2

Solution: Since given matrix is triangular matrix, the Eigen values are its diagonal elements.

$$\therefore \quad \lambda_1 = 3, \ \lambda_2 = 1, \ \lambda_3 = -2$$

Eigen values of $2A^{-1}$ are $\frac{2}{3}$, 2, -1 (Option A)

8. If the sum of two eigen values and trace of a 3×3 matrix A are equal, find the value of |A|.

- (A) 5
- (B) 25
- (C)2
- $(\mathbf{D}) \mathbf{0}$

Solution: Sum of the eigen values = $\lambda_1 + \lambda_2 + \lambda_3$ = sum of the diagonal elements

Given $\lambda_1 + \lambda_2 = \text{trace of A}$.

i.e.,
$$\lambda_1 + \lambda_2 = \lambda_1 + \lambda_2 + \lambda_3$$

Therefore $\lambda_3 = 0$. Then $|A| = \text{Product of Eigen values} = \lambda_1 \lambda_2 \lambda_3 = 0$ (**Option D**)

9. Write the matrix corresponding to the quadratic form $x^2 + 2yz$.

$$(\mathbf{A}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix} (\mathbf{B}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix} (\mathbf{C}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} (\mathbf{D}) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

Solution: Given $X^T A X = x^2 + 2yz$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 (**Option C**)

10. If 2, 3, -1 are the eigen values of 3×3 matrix, find rank, index and signature of the quadratic form.

- (A) 5, 5, 2
- (B) 5, 5, 25
- (C) 3, 2, 1
- (D) 1, 2, 3

Solution:

Rank (r) = number of non zero terms in canonical form = 3

Index (p) = Number of positive terms in canonical form = 2

Signature (s) = Difference between number of positive terms and negative terms

$$=2p-r$$

$$=4-3$$

= 1 **(Option C)**

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - I

MATRICES

Part - C

1. Find the eigen values of
$$A = \begin{bmatrix} 2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3 \end{bmatrix}$$
.

Solution:

Its characteristic equation can be written as $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$ where

 $S_1 = sum \ of \ the \ main \ diagonal \ elements = 2 + 1 - 3 = 0$

 $S_2 = Sum of the minors of the main diagonal elements$

$$=\begin{vmatrix} 1 & 2 \\ 1 & -3 \end{vmatrix} + \begin{vmatrix} 2 & -7 \\ 0 & -3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix} = -5 + (-6) + (-2) = -5 - 6 - 2 = -13$$

$$S_3 = Determinant \ of \ A = |A| = 2 (-5)-2 (-6) -7(2) = -10 + 12 - 14 = -12$$

Therefore, the characteristic equation of A is $\lambda^3 - 13\lambda + 12 = 0$

$$(\lambda - 3)(\lambda^2 + 3\lambda - 4) = 0$$

$$\Rightarrow \lambda = 3 , \lambda = \frac{-3 \pm \sqrt{3^2 - 4(1)(-4)}}{2(1)} = \frac{-3 \pm \sqrt{25}}{2} = \frac{-3 \pm 5}{2} = \frac{-3 + 5}{2} , \frac{-3 - 5}{2} = 1, -4$$

Therefore, the eigen values are $\lambda = 3$, 1 and -4.

2. The product of two eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigen value.

Solution: Let the eigen values of the matrix be $\lambda_1, \lambda_2, \lambda_3$.

Given
$$\lambda_1 \lambda_2 = 16$$

We know that $\lambda_1 \lambda_2 \lambda_3 = |A|$ (Since product of the eigen values is equal to the determinant of the matrix)

$$\lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 6(9-1)+2(-6+2)+2(2-6) = 48-8-8 = 32$$

Therefore,
$$\lambda_1 \lambda_2 \lambda_3 = 32 \Rightarrow 16\lambda_3 = 32 \Rightarrow \lambda_3 = 2$$

3. Show that the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ satisfies its own characteristic equation.

Solution: Let $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$. The characteristic equation of A is $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = Sum\ of\ the\ main\ diagonal\ elements = 1 + 1 = 2$,

$$S_2 = |A| = 1 - (-4) = 5$$

The characteristic equation is $\lambda^2 - 2\lambda + 5 = 0$

To prove
$$A^2 - 2A + 5I = 0$$

$$A^2 = A(A) = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix}$$

$$A^{2} - 2A + 5I = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix} - \begin{bmatrix} 2 & -4 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore, the given matrix satisfies its own characteristic equation.

4. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$ write A^2 interms of A and I, using Cayley – Hamilton theorem.

Solution: Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation.

The characteristic equation of A is $\lambda^2 - S_1 \lambda + S_2 = 0$ where

$$S_1 = Sum \ of \ the \ main \ diagonal \ elements = 6 \ S_2 = |A| = 5$$

Therefore, the characteristic equation is $\lambda^2 - 6\lambda + 5 = 0$

By Cayley-Hamilton theorem,
$$A^2 - 6A + 5I = 0$$

(i.e.)
$$A^2 = 6A - 5I$$

5. Determine A^4 If $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, using Cayley – Hamilton theorem.

Solution: Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation.

The characteristic equation of A is $\lambda^2 - S_1 \lambda + S_2 = 0$ where

 $S_1 = Sum \ of \ the \ main \ diagonal \ elements = 0$

$$S_2 = |A| = -5$$

Therefore, the characteristic equation is $\lambda^2 - 5 = 0$

By Cayley-Hamilton theorem, $A^2 - 5I = 0$ (i.e.) $A^2 = 5I$

$$A^{2} = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$$
Therefore
$$A^{4} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$$

6. Given $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$, Find A^{-1} using Cayley – Hamilton theorem.

Solution: The characteristic equation of A is $\lambda^2 - S_1 \lambda + S_2 = 0$,

Here,
$$S_1 = 4$$
 and $S_2 = -5 \implies \lambda^2 - 4\lambda - 5 = 0$.

By Cayley – Hamilton theorem $A^2 - 4 A - 5I = 0$.

Multiply by
$$A^{-1}$$
, we get $A - 4I - 5A^{-1} = 0$ $\therefore A^{-1} = \frac{1}{5}[A - 4I] = \begin{bmatrix} \frac{-3}{5} & \frac{2}{5} \\ \frac{4}{5} & \frac{-1}{5} \end{bmatrix}$

7. Determine the nature of the following quadratic form $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2$.

Solution: The matrix of the quadratic form is
$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The eigen values of the matrix are 1, 2, 0

Therefore, the quadratic form is Positive Semi-definite.

8. Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$ without reducing it to canonical form.

Solution: The matrix of the quadratic form is $Q = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

$$D_1 = 2(+ve)$$

$$D_2 = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5(+ve)$$

$$D_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 2(6-0) - 1(2-0) + 0 = 12 - 2 = 10(+ve)$$

Therefore, the quadratic form is positive definite.

9. Find the quadratic form of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 2 \\ -1 & 2 & 5 \end{bmatrix}$.

Solution: Let
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

Quadratic form is $X^T A X$, where $X^T = (x, y, z)$

Therefore, Q.F=
$$\begin{pmatrix} x & y & z \end{pmatrix}$$
 $\begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 2 \\ -1 & 2 & 5 \end{bmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = 2 $x^2 + 3y^2 + 5z^2 - 2 zx + 4yz$

10. If the eigen vectors of a 2 × 2 matrix A are $X_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, then verify that they are mutually orthogonal. Also find normalized matrix N.

Solution: X_1 and X_2 are said to be mutually orthogonal if $X_1^T X_2 = 0$.

$$\begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 0$$

$$\label{eq:Modal matrix M} \text{Modal matrix M=} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \text{. Normalized matrix N=} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

* * * * *