Uniwersytet Rzeszowski			
Przedmiot: Systemy Operacyjne 2 – Laboratorium			
Prowadzący: mgr inż. Marcin Chyła			
Nazwisko i imię	Laboratorium nr 1	Data wykonania:	
Kula Michał		11.10.2022	

Zadanie 1.

Napisz program InputOutput odczytujący z terminala i wypisujący na konsoli kolejno wartości typu: całkowitego, zmienno-przecinkowego float i napis.

```
pint main(){
    //Zad. 1
    int a;
    float b;
    char c[20];
    printf( format: "Podaj int: ");
    scanf( format: "%d", &a);
    printf( format: "a = %d\n", a);
    printf( format: "Podaj float: ");
    scanf( format: "%f", &b);
    printf( format: "b = %f\n", b);
    getchar();
    printf( format: "Podaj napis: ");
    fgets( Buf: c, MaxCount: 20, File: stdin);
    printf( format: "c = ");
    puts( Str: c);
    return 0;
```

```
Podaj int:20
a = 20
Podaj float:0.5
b = 0.500000
Podaj napis:Ala ma kota
c = Ala ma kota

Process finished with exit code 0
```

Zad. 1.1 *

Odczytaj i wypisz na konsoli wartość zmienno-przecinkową typu double.

```
#include <stdio.h>

int main(){
    //Zad. 1.1
    double a;
    printf( format: "Podaj a: ");
    scanf( format: "%lf", &a);
    printf( format: "a = %f", a);

printf( format: "a = %f", a);
```

```
"D:\OneDrive - Uniwersytet Rzeszowski\III Rok\S02\Lab1\cmake-build-debug\Lab1.exe"

Podaj a:5.342

a = 5.342000

Process finished with exit code 0
```

Zad. 1.2 *

Odczytaj i wypisz na konsoli cały napis "ala ma kota" przy pomocy funkcji scanf.

```
#include <stdio.h>

int main(){
    //Zad. 1.2
    char a[20];
    printf( format: "Podaj napis: ");
    scanf( format: "%19[^\n]", a);
    printf( format: "Napis: %s", a);
    return 0;

}
```

```
"D:\OneDrive - Uniwersytet Rzeszowski\III Rok\SO2\Lab1\cmake-build-debug\Lab1.exe"

Podaj napis:ala ma kota

Process finished with exit code 0
```

Zad. 1.3

Odczytaj i wypisz na konsoli cały napis "ala ma kota" przy pomocy funkcji fgets.

```
#include <stdio.h>

int main(){
    //Zad. 1.3
    char a[20];
    printf( format: "Podaj napis: ");
    fgets( Buf: a, MaxCount: 20, File: stdin);
    printf( format: "Napis: %s", a);
    return 0;
```

```
"D:\OneDrive - Uniwersytet Rzeszowski\III Rok\SO2\Lab1\cmake-build-debug\Lab1.exe"

Podaj napis:ala ma kota

Process finished with exit code 0
```

Zad. 2

Napisz program Fibo wyliczający wartości ciągu Fibonacciego przy pomocy trzech funkcji.

```
int fibo1(int n) {
   int r0 = 0;
   int r1 = 1;
   int r2 = 2;

if (n == 0)
     return r0;
   if (n == 1)
     return r1;
   if (n == 2)
     return r2;

int i;
   for (i = 1; i <= n - 2; i++) {
     r0 = r1;
     r1 = r2;
     r2 = r0 + r1;
}

return r2;</pre>
```

```
int main() {
    //Zad. 2
    int n = 10;
    printf( format: "Ciag fibonacciego dla n = 10\n");
    printf( format: "fibo1 (10) = %d\n", fibo1(n));
    printf( format: "fibo2 (10) = %d\n", fibo2(n));
    printf( format: "fibo3 (10) = %ld", fibo3(n));
    return 0;
```

```
Ciag fibonacciego dla n = 6
fibo1 (6) = 8
fibo2 (6) = 8
fibo3 (6) = 8
Process finished with exit code 0
```

- podaj definicję ciągu Fibonacciego

Ciąg liczb naturalnych określony rekurencyjnie w sposób następujący:

Pierwszy wyraz jest równy 0 bądź 1 (zależnie od przyjętej definicji), drugi jest równy 1, każdy następny jest sumą dwóch poprzednich.

Wzór ogólny:

```
a(0) = 0

a(1) = 1

a(n) = a(n-2) + a(n-1), dla n > 1
```

1 1 2 3 5 8 13 wartosci

Zad. 2.1

Funkcja fibo1 - metoda dziel i zwyciężaj.

$$f(0) = 1$$

$$f(1) = 1$$

$$f(n) = f(n-1) + f(n-2)$$

- dokonaj analizy wywołania fibo1(4).

f(4) = f(3) + f(2)	3 + 2 = 5
f(3) = f(2) + f(1)	2 + 1 = 3
f(2) = f(1) + f(0)	1 + 1 = 2
f(1) = 1	
f(0) = 1	

- narysuj drzewo wywołań dla fibo1(4).

Zad. 2.2

Funkcja fibo2 - metoda programowania dynamicznego z ramką trójzębną.

Przesunięcie ramki w prawo:

r2 = r1 + r0

ile razy należy przesunąć ramkę w prawo, aby wyznaczyć wartość n-tego wyrazu ciągu
 Fibonacciego w funkcji fibo2 dla n >= 3 ?

odp. n-1 razy

- dokonaj analizy wywołania fibo2(4).

```
fibo2(4) = 5
  r0 = 1
  r1 = 1

4 == 0  false
4 == 1  false

i
  i = 2
2 <= 4    pom = 1
        r0 = 1
        r1 = 1 + 1 = 2   i = 3

3 <= 4    pom = 1
        r0 = 2
        r1 = 1 + 2 = 3   i = 4

4 <= 4    pom = 2
        r0 = 3
        r1 = 2 + 3 = 5

return r1 = 5</pre>
```

- narysuj graf obliczeń dla fibo2(4).

Zad. 2.3 *

Funkcja fibo3 - metoda programowania dynamicznego z ramką dwuzębną.

r0 r1

Przesunięcie ramki w prawo:

pom = r0

r0 = r1

str. 8

```
r1 = r0 + pom
```

ile razy należy przesunąć ramkę w prawo, aby wyznaczyć wartość n-tego wyrazu ciągu
 Fibonacciego w funkcji fibo3 dla n >= 2 ?

odp. n-2 razy

- dokonaj analizy wywołania fibo3(4).

```
* f1(4) = 5
    return f2(3) + f (2) = 3 + f7(2) = 3 + 2 = 5
* f2(3) = 3
    return f3(2) + f (1) = 2 + f6(1) = 2 + 1 = 3
* f3(2) = 2
    return f4(1) + f (0) = 1 + f5(0) = 1 + 1 = 2
* f4(1) = 1
    return 1
* f5(0) = 1
    return 1
* f6(1) = 1
    return 1
* f7(2) = 2
    return f8(1) + f (0) = 1 + f9(0) = 1 + 1 = 2
* f8(1) = 1
    return 1
* f9(0) = 1
    return 1
```

- narysuj graf obliczeń dla fibo3(4).

- która funkcja ma mniejszą złożoność obliczeniową fibo2 czy fibo3?

Odp. Fibo3

Przykładowa sesja:

fibo1(4) = 5

fibo2(4) = 5

fibo3(4) = 5

Zad. 2.4 *

Podaj cztery inne funkcje wyliczające rekurencyjnie wartości ciągu Fibonacciego.

1.

$$f(n) = 0$$
, dla $n = 0$

$$f(n) = 1$$
, dla $n = 1$

$$f(n-1) + f(n-2) dla n > 1$$

2.

$$f(n) = 1$$
, dla $n < 2$

$$f(n-1) + f(n-2) dla n >= 1$$

3.

$$f(n) = n, dla n < 2$$

$$f(n-1) + f(n-2) dla n > = 2$$

4.

$$f(n) = n+1$$
, dla $n = 0$

$$f(n) = n, dla n = 1$$

$$f(n-1) + f(n-2) dla n > 1$$

Zad. 3 *

Napisz program Sequence wyliczający wartości ciągu {an} przy pomocy trzech funkcji. Ciąg zdefiniowany jest rekurencyjnie:

$$a(0) = 1$$

$$a(1) = 4$$

$$a(n) = 2*a(n-1) + 0.5*a(n-2)$$

```
#include <stdio.h>

double sequence(int a){
    if(a == 0)
        return 1;
    if(a == 1)
        return 4;
    else

    return 2 * sequence( a: a-1) + 0.5 * sequence( a: a-2);

int main(){
    printf( format: "a(5) = %lf", sequence( a: 5));
    return 0;
}
```

- wylicz dziesięć pierwszych wyrazów ciągu {an} w programie Excel

Α	В
a = 0	1
a = 1	4
a = 2	8,5
a = 3	19
a = 4	42,25
a = 5	94
a = 6	209,125
a = 7	465,25
a = 8	1035,06
a = 9	2302,75
a = 10	5123,03

Zad. 3.1 *

Funkcja a1 - metoda dziel i zwyciężaj.

- dokonaj analizy wywołania a1(4).

$$a(4) = 2 * a(3) + 0.5 * a(2)$$

 $a(3) = 2 * a(2) + 0.5 * a(1)$ $a(3) = 17 + 2 = 19$
 $a(2) = 2 * a(1) + 0.5 * a(0)$ $a(2) = 8 + 0.5 = 8,5$
 $a(1) = 4$
 $a(0) = 1$

- narysuj drzewo wywołań dla a1(4)

