Übungsserie 10

Aufgabe 1: Vergrößerung des Potentialtopfs (2+4+4 Punkte)

Betrachten Sie ein Proton im Grundzustand in einer Magneto-Optischen Falle. Diese Falle kann ein starkes Potential verursachen, das durch einen unendlichen Potentialtopf mit Länge L angenähert werden kann. Da wir die Falle manipulieren können, ändern wir das Potential, sodass wir einen Potentialtopf der Länge 2L erhalten. Die Wellenfunktion des Protons ändert sich von dem Zustand ψ_L zu ψ_{2L} mit der Wahrscheinlichkeit $P = |\langle \psi_{2L} | \psi_L \rangle|^2$.

- a) Berechnen Sie (selbst) die Wahrscheinlichkeit, dass das Proton im Grundzustand des größeren Topfes gefunden wird.
- b) Finden Sie den wahrscheinlichsten Zustand in dem das Proton nach der Vergrößerung des Topfes gefunden wird.
- c) Anstatt den Topf zu vergrößern, schalten wir das Potential aus, sodass das Proton frei wird. Berechnen Sie die Impulswahrscheinlichkeitverteilung des Protons.

Aufgabe 2: BONUS: Treffen Sie Herrn Feynman (1 Punkt)

Sehen Sie sich das Video "Richard Feynman - Quantum Mechanics" auf Youtube an und Sie bekommen einen Weihnachtsgeschenkpunkt. Haben Sie es angeschaut?

Aufgabe 3: Harmonischer Oszillator (1+1+3+3+3 Punkte)

Betrachten Sie einen harmonischen Oszillator mit der Masse m und der Frequenz ω der sich zur Zeit t=0 im Zustand

$$\Psi(0) = \sum_{n} c_n \psi_n$$

befindet. Hierbei sind ψ_n die stationären Zustände zu den Eigenwerten $(n+\frac{1}{2})\hbar\omega$.

- a) Mit welcher Wahrscheinlichkeit P erhält man bei einer Energiemessung zum Zeitpunkt t=0 ein Ergebnis größer als $2\hbar\omega$
- b) Welche Koeffizienten c_n verschwinden, wenn P aus Aufgabe \mathbf{a} gleich null ist.
- c) Nehmen Sie an, dass nur c_0 und c_1 ungleich null sind. Berechnen Sie die Normierungsbedingung für $\Psi(0)$ sowie den Energieerwartungswert $\langle \hat{H} \rangle$ in Abhängigkeit der beiden Koeffizienten an. Berechnen Sie $|c_0|^2$ sowie $|c_1|^2$ wenn $\langle \hat{H} \rangle = \hbar \omega$ ist.
- d) Der normierte Zustand ist zunächst nur bis auf einen globalen Phasenfaktor bestimmt. Legen

Sie diesen Faktor fest, indem Sie c_0 reell und positiv wählen. Setzen Sie nun $c_1 = |c_1|e^{i\theta_1}$. Berechnen Sie θ_1 für den Fall, dass für den Erwartungswert des Ortes

$$\langle \hat{x} \rangle = \frac{1}{2} \sqrt{\frac{\hbar}{m\omega}}$$

gilt.

e) Berechnen Sie den Zustand $\Psi(t)$ für t>0, wenn $\Psi(0)$ wie in **d** gegeben ist. Berechnen Sie hieraus $\langle \hat{x} \rangle (t)$.