Concours d'Entrée

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Durée: 4 heures

Calculatrice non autorisée

L'épreuve est composée de 3 exercices indépendants

EXERCICE 1:

1. Soit *n* un entier supérieur ou égal à *I* . Pour *x* réel supérieur à *I* on définit l'intégrale $G_n(x)$ par :

$$G_n(x) = \int_x^{\infty} \frac{\left[ln\left(\frac{u}{x}\right)\right]^n}{u^2 ln(u)^n} du$$

Montrer que l'intégrale $G_n(x)$ est convergente.

Dans le suite la fonction $G_n(x)$ est étudié sur l'intervalle $[1,\infty)$

2. Pour n entier supérieur ou égal à 1 et pour x strictement supérieur à 1 montrer que la fonction $G_n(x)$ est dérivable et montrer la relation :

$$G_n(x) - G_{n-1}(x) = \frac{x \ln(x)}{n} G_n'(x)$$
 (1)

Montrer que la fonction $x \to G_n(x)$ est décroissante sur $[1, \infty)$. Donner sa limite quand x tend vers $+\infty$.

- 3. Etude de la suite $n \to G_n(x)$ pour x supérieur ou égal à 1.
 - a- Montrer que la suite $n \rightarrow G_n(1)$ est stationnaire. Donner son expression.
 - b- Déduire de 2. que la suite $n \to G_n(x)$ est décroissante.
 - c- Montrer que la suite $n \to G_n(x)$ est convergente et que pour x > 1 cette limite est nulle.

Indication: On pourra écrire $\int_{\infty}^{\infty} \frac{\left[\ln\left(\frac{u}{u}\right)\right]^{n}}{u^{2}\left[\ln\left(u\right)\right]^{n}} du = \int_{\infty}^{\infty+\alpha} \frac{\left[\ln\left(\frac{u}{u}\right)\right]^{n}}{u^{2}\left[\ln\left(u\right)\right]^{n}} du + \int_{\infty+\alpha}^{\infty} \frac{\left[\ln\left(\frac{u}{u}\right)\right]^{n}}{u^{2}\left[\ln\left(u\right)\right]^{n}} du \quad et \ choisir \ \alpha \ de \ manière judicieuse.$

- 4. Soit *n* entier supérieur ou égal à 1:
 - a- Montrer la relation :

$$\frac{n}{n+1}G'_{n+1}(x) - G'_{n}(x) = \frac{G_{n}(x)}{x} \quad (2)$$

b- Déduire des relations (1) et (2) que pour n entier supérieur ou égal à 1 la fonction $G_n(x)$ est dérivable deux fois sur $]1,\infty)$ et que ses dérivées première et seconde $G'_n(x)$ et $G''_n(x)$ vérifient :

$$x^{2} \ln(x) G_{n}^{n}(x) + 2x \ln(x) G_{n}^{n}(x) - nG_{n}(x) = 0$$

5. Pour n entier supérieur ou égal à 1 on note E_n l'ensemble des fonctions y(x) définie sur $]1,\infty)$ et telles que :

$$\kappa^2 \ln(\kappa) y''(\kappa) + 2\kappa \ln(\kappa) y^t(\kappa) - ny(\kappa) = 0$$

- a- Déterminer des éléments de E_n qui s'écrivent sous la forme d'un polynôme de degré n en ln(x). Expliciter ces polynômes pour n=1 et n=2.
- b- En déduire la forme générale des éléments de E_n .

EXERCICE 2:

Préliminaire:

- Soit {u_n, n ∈ N} une suite numérique telle que la suite {v_n = u_n u_{n-1}, n ∈ N*} soit décroissante. Montrer que la suite {u_n, n ∈ N} admet au plus un maximum strict.
- 2. Une entreprise commerciale est confrontée au problème d'optimisation suivant :

Chacun des jours d'une période de N jours elle propose à la vente un nombre entier constant (noté k) de produits. Le prix de vente d'un produit est noté α et son prix de fabrication est notée β . A la fin de chaque jour les produits invendus sont détruits.

La demande journalière est supposée connue et déterminée par la donnée d'une suite finie $\{f_n, n = 1, ..., N\}$ d'entiers strictement positifs.

L'entreprise désire calculer le nombre k de produits à mettre en vente chaque jour de manière à maximiser son bénéfice calculé sur toute la période des N jours.

- a- Montrer que le bénéfice de l'entreprise (noté B(k)) ne dépend par de l'ordre des demandes journalières.
- b- On supposera par la suite que la suite finie $\{f_n, n = 1, \dots, N\}$ est croissante et on note, pour k positif ou nul, g(k) l'entier défini par :

$$g(k) = \begin{bmatrix} Max\{n, f_n \le k\} & \text{st } f_1 \le k \\ \\ 0 & \text{st non} \end{bmatrix}$$

Exprimer en fonction de k, de α et de la suite $\{l_n, n = 1, ..., N\}$ le cumul sur la période [1, ..., N] du montant notée M(k) des ventes.

Montrer la relation:

$$M(k + 1) - M(k) = \infty (N - g(k)).$$

- c- On suppose que $N\left(1-\frac{E}{\alpha}\right)$ n'est pas un entier .En introduisant le cumul des coûts de fabrication sur la période montrer qu'il existe un unique entier k maximisant le bénéfice B(k). Donner l'expression de cet entier k en fonction de α , β et de la suite des B(k).
- d- Pour N=4 $\alpha=2$; $\beta=1$; $j_n=2n$ calculer les suites g(k); M(k); B(k). Donner les solutions possibles au problème d'optimisation.
- 3. Soit j une fonction définie sur l'intervalle [0,T] strictement positive, strictement croissante et dérivable. On définit la fonction m ainsi ;

$$m(x) = \int_{0}^{\tau} m ln(f(t), x) dt$$

Montrer que la fonction m(x) est dérivable. Donner l'expression de sa dérivée.

Pour $0 \le \beta \le \alpha$ on introduit la fonction B(x) par :

$$B(x) = \infty m(x) - \beta Tx$$

Montrer que la fonction B s'annule en un unique point x_{θ} dont on donnera l'expression en fonction de $\alpha \square$ et de \square β et de la fonction j. Montrer que G est maximum en ce point.

4. Expliquer en quoi les questions 2. et 3. traitent du même problème d'optimisation mais dans des hypothèses temporelles et monétaires différentes. Que faudrait-il démontrer pour que les résultats de la question 3 aient le même degré de généralité que ceux de la question 2 ?.

EXERCICE 3

On note $M_n(R)$ l'ensemble des matrices carrées d'ordre n dont les éléments sont des réels. On exprimera qu'une matrice A de $M_n(R)$ a tous ses éléments positifs par la notation $A \ge 0$ (A est dite alors matrice positive). De même on exprimera que la matrice A a tous ses éléments strictement positifs par la notation A > 0.

On note $M_n(C)$ l'ensemble des matrices carrées d'ordre n dans les éléments sont des nombres complexes. Pour A de $M_n(C)$ on note |A| la matrice positive dont les éléments sont les modules des éléments de A.

- 1. Etude de quelques propriétés des matrices positives :
 - a- Si on a $A \ge 0$ et $A \ne 0$ peut on affirmer : A > 0?
 - b- Montrer que pour $A \ge 0$ et B > 0 l'égalité AB = 0 implique A = 0.
 - c- Montrer que si A > 0 et B de $M_n(C)$ telles que |A.B| = A.|B| alors il existe n réels $\theta_1, \theta_2...\theta_n$ tels que : B = |B|D où D est une matrice diagonale dont les éléments diagonaux sont $e^{i\theta_1}$,, $e^{i\theta_n}$

Pour cela on pourra démontrer et utiliser le résultat suivant : Si $z_1,...,z_n$ sont des nombres complexes tels que :

$$\Sigma_{-1}^n z_t = \sum_{i=1}^n |z_i| a$$
 alors il existe un réel θ tel que pour tout i de $[1,..,n]$ $z_t = |z_t|e^{i\theta}$

- 2. On note P_n l'ensemble des matrices carrées d'ordre n positives et dont la somme des lignes est égale à 1.
 - Soit X la matrice colonne à n lignes dont tous les éléments sont égaux à 1.
 - a- Pour une matrice A positive montrer que AX=X si et seulement $A \in \mathbb{R}_n$.
 - b- En déduire que si A et B sont des matrice de P_n alors leur produit AB appartient à P_n .
- 3. Soit une A une matrice de P_n .
 - a- Montrer que les valeurs propres de A réelles ou complexes sont toutes de module inférieur à 1.
 - b- On suppose que A est diagonalisable. Montrer que la suite de matrices $\{A^k, k \in N\}$ converge si et seulement si la valeur propre 1 est la seule valeur propre de module 1.
