Momentum Exchange Devices

ASEN 5010

Prof. H. Schaub hanspeter.schaub@colorado.edu

Outline

- Momentum Control Devices
- Equations of motion of VSCMG
 - single VSCMG
 - motor torque calculation
 - cluster of VSCMG
- Momentum Device Control
 - Overview of RW control solution

Momentum Control Devices

Spinning hardware "thingies" to rotate the spacecraft...

Reaction Wheels (RW)

 By increasing or decreasing the spin of a disk, a torque is applied onto the spacecraft.

- The torque is parallel to the disk spin axis.
- Simple mechanical device.
- Multiple disks can generate arbitrary torque.
- Wheels can saturate (reach a maximum spin speed.

ITHACO's low-cost but highly reliable reaction wheel designs keep spacecraft correctly oriented as they spin through space. (company description of device) http://www.sti.nasa.gov/tto/spinoff1997/t2.html

Inside CTA Space System's High Torque Reaction/Momentum Wheel is an innovative flywheel/bearing arrangement that allows the entire rotating system to be balanced after it is assembled. (company description) http://www.sti.nasa.gov/tto/spinoff1997/t3.html

Honeywell's reaction wheel assemblies (RWA) and momentum wheel assemblies (MWA) are reliable, lightweight solutions to a variety of momentum control needs, providing stability and attitude-control for small to very large, heavy spacecraft. Earth-pointing satellites and multiple-satellite communication networks are examples of applications that require the fine attitude control that Honeywell RWAs provide. RWAs and MWAs from Honeywell have accumulated more than 9 million hours, or more than a thousand years, in space and have never caused a mission to end prematurely.

Control Moment Gyroscope (CMG)

- Another popular attitude control device.
- A disk is spinning at a constant rate.
- By rotating this disk (called gimbaling), a torque is applied through the gyroscopic effect.
- For a small torque to gimbal the disk, a large torque is produced onto the spacecraft.

Control Moment Gyroscope (CMG)

- Mechanically more complex device than RWs
- Control laws are much more complicated.
- Very large torques can be produced (good for rapid reorientation or large spacecraft such as space station)
- Singular configurations exist where the required torque cannot be produced.

A CMG contains two torque motors. One to keep the disk spinning at a constant rate, the other to gimbal the spinning disk.

A typical CMG setup has 4 devices aligned in a pyramid configuration.

Equations of Motion

Let's learn to be one with the truth of gyroscopics...

Spacecraft with 1 VSCMG

- A Variable-Speed CMG is a classical CMG device where the disk speed is left to be variable.
- Think of a VSCMG device as a hybrid CMG/RW.
- Convenient when developing the equations of motion, since we get both the CMG and RW equations of motion by doing the work only once!!
- Researchers have started to look into actually building and flying a VSCMG devices.
 - Avoids classical CMG singularities
 - Highly redundant system (more robust to component failure)
 - · Can be used as a combined power storage/attitude control device.

Battle Plan...

• To derive the equations of motion of a spacecraft with a single VSCMG, we recall Euler's equation

$$\dot{m{H}}=m{L}$$

- We will need to find the total angular momentum vector *H* for the combined spacecraft/VSCMG system. Once we have this expression, we can then differentiate it to get the desired equations of motion.
- To manage all this algebra, we will break up the whole system into the spacecraft part, the CMG momentum and the RW momentum.

VSCMG Frames

- The VSCMG spin axis is $\hat{m{g}}_s$
- The gimbal axis is $\hat{m{g}}_g$
- The disk spin rate is $\Omega(t)$
- The gimbal rate is $\dot{\gamma}(t)$
- The gimbal coordinate frame G is

$$\mathcal{G}: \{\hat{oldsymbol{g}}_s, \hat{oldsymbol{g}}_t, \hat{oldsymbol{g}}_g\}$$

VSCMG Frames

- Note that the gimbal axis is fixed with respect to the spacecraft body frame *B*.
- The gimbal frame G angular velocity is

$$oldsymbol{\omega}_{\mathcal{G}/\mathcal{B}} = \dot{\gamma} \hat{oldsymbol{g}}_g$$

• Let W be a frame that tracks the motion of the reaction wheel.

$$\mathcal{W}:\{\hat{oldsymbol{g}}_{s},\hat{oldsymbol{w}}_{t},\hat{oldsymbol{w}}_{g}\}$$

It's angular velocity is

$$oldsymbol{\omega}_{\mathcal{W}/\mathcal{G}} = \Omega \hat{oldsymbol{g}}_{\scriptscriptstyle S}$$

VSCMG Inertias

Let the gimbal frame inertia be

$$[I_G] = {}^{\mathcal{G}}[I_G] = \left[egin{array}{cccc} I_{G_s} & 0 & 0 \ 0 & I_{G_t} & 0 \ 0 & 0 & I_{G_g} \end{array}
ight]$$

The wheel (disk) inertia is

Why I_W equal I_G matrix?

$$[I_W] = {}^{\mathcal{W}}[I_W] = egin{bmatrix} I_{W_s} & 0 & 0 \ 0 & I_{W_t} & 0 \ 0 & 0 & I_{W_t} \end{bmatrix}$$

Due to symmetry of the disk, we find that

$${}^{\mathcal{W}}[I_W] = {}^{\mathcal{G}}[I_W]$$

Assuming the gimbal frame unit vectors are expressed in body frame vector components, then the
rotation matrix [BG] can be expressed through

$$[BG] = \left[\hat{\boldsymbol{g}}_s \; \hat{\boldsymbol{g}}_t \; \hat{\boldsymbol{g}}_g \right]$$

• The gimbal frame and disk inertias (which were given in gimbal frame components), can be written in body frame components using

$${}^{\mathcal{B}}[I_G] = [BG]^{\mathcal{G}}[I_G][BG]^T = I_{G_s}\hat{\boldsymbol{g}}_s\hat{\boldsymbol{g}}_s^T + I_{G_t}\hat{\boldsymbol{g}}_t\hat{\boldsymbol{g}}_t^T + I_{G_g}\hat{\boldsymbol{g}}_g\hat{\boldsymbol{g}}_g^T$$

$${}^{\mathcal{B}}[I_W] = [BG]^{\mathcal{G}}[I_W][BG]^T = I_{W_s}\hat{\boldsymbol{g}}_s\hat{\boldsymbol{g}}_s^T + I_{W_t}\hat{\boldsymbol{g}}_t\hat{\boldsymbol{g}}_t^T + I_{W_g}\hat{\boldsymbol{g}}_g\hat{\boldsymbol{g}}_g^T$$

Angular Momentum...

· We are now ready to express the total angular momentum of the system using

$$oldsymbol{H} = oldsymbol{H}_B + oldsymbol{H}_G + oldsymbol{H}_W$$

• H_B is the angular momentum of the spacecraft itself, H_G is the angular momentum of the gimbal frame, while H_W is the angular momentum of the spinning disk.

The spacecraft angular momentum is simply that of a rigid body:

$$\boldsymbol{H}_B = [I_s] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}}$$

The inertial angular momentum of the rigid gimbal frame is

$$oldsymbol{H}_G = [I_G] oldsymbol{\omega}_{\mathcal{G}/\mathcal{N}}$$

• where $\omega_{\mathcal{G}/\mathcal{N}}=\omega_{\mathcal{G}/\mathcal{B}}+\omega_{\mathcal{B}/\mathcal{N}}$. This can now be rewritten as

$$\boldsymbol{H}_{G} = \left(I_{G_s}\hat{\boldsymbol{g}}_s\hat{\boldsymbol{g}}_s^T + I_{G_t}\hat{\boldsymbol{g}}_t\hat{\boldsymbol{g}}_t^T + I_{G_g}\hat{\boldsymbol{g}}_g\hat{\boldsymbol{g}}_g^T\right)\boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + I_{G_g}\dot{\gamma}\hat{\boldsymbol{g}}_g$$

• Let use introduce the angular velocity components taken along the gimbal frame axis directions:

This allows us to write the gimbal frame angular momentum expression as

$$\boldsymbol{H}_{G} = I_{G_{s}}\omega_{s}\hat{\boldsymbol{g}}_{s} + I_{G_{t}}\omega_{t}\hat{\boldsymbol{g}}_{t} + I_{G_{q}}\left(\omega_{g} + \dot{\gamma}\right)\hat{\boldsymbol{g}}_{g}$$

The inertial angular momentum of the disk is

$$oldsymbol{H}_W = [I_W] oldsymbol{\omega}_{\mathcal{W}/\mathcal{N}}$$

• where
$$\omega_{\mathcal{W}/\mathcal{N}} = \omega_{\mathcal{W}/\mathcal{G}} + \omega_{\mathcal{G}/\mathcal{B}} + \omega_{\mathcal{B}/\mathcal{N}}$$

The momentum expression can be expanded using

$$\boldsymbol{H}_W = [I_W]\boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [I_W]\boldsymbol{\omega}_{\mathcal{G}/\mathcal{B}} + [I_W]\boldsymbol{\omega}_{\mathcal{W}/\mathcal{G}}$$

It is implied that all vectors are added with components in the same frame.

The first term can be written as

$$[I_W]\boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} = (I_{W_s}\hat{\boldsymbol{g}}_s\hat{\boldsymbol{g}}_s^T + I_{W_t}\hat{\boldsymbol{g}}_t\hat{\boldsymbol{g}}_t^T + I_{W_t}\hat{\boldsymbol{g}}_g\hat{\boldsymbol{g}}_g^T)\boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}}$$

$$= I_{W_s}\omega_s\hat{\boldsymbol{g}}_s + I_{W_t}\omega_t\hat{\boldsymbol{g}}_t + I_{W_g}\omega_g\hat{\boldsymbol{g}}_g$$

The second two terms can be written as

$$[I_W]\boldsymbol{\omega}_{\mathcal{G}/\mathcal{B}} = \begin{bmatrix} I_{W_s} & 0 & 0 \\ 0 & I_{W_t} & 0 \\ 0 & 0 & I_{W_t} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{\gamma} \end{pmatrix} = I_{W_t} \dot{\gamma} \hat{\boldsymbol{g}}_g$$

$$[I_W] oldsymbol{\omega}_{\mathcal{W}/\mathcal{G}} = egin{bmatrix} I_{W_s} & 0 & 0 \ 0 & I_{W_t} & 0 \ 0 & 0 & I_{W_t} \end{bmatrix} egin{bmatrix} \Omega \ 0 \ 0 \end{pmatrix} = I_{W_s} \Omega \hat{oldsymbol{g}}_s$$

· Combining all these results, the spinning wheel inertial angular momentum is written as

$$\boldsymbol{H}_{W} = I_{W_s} (\omega_s + \Omega) \,\hat{\boldsymbol{g}}_s + I_{W_t} \omega_t \hat{\boldsymbol{g}}_t + I_{W_t} (\omega_g + \dot{\gamma}) \,\hat{\boldsymbol{g}}_g$$

Some final preparation...

- Before we begin to differentiate the system angular momentum vectors, we need to establish some useful relationships.
- The gimbal frame direction vectors can be written in terms of their initial orientations as

$$\hat{\boldsymbol{g}}_{s}(t) = \cos(\gamma(t) - \gamma_{0}) \,\hat{\boldsymbol{g}}_{s}(t_{0}) + \sin(\gamma(t) - \gamma_{0}) \,\hat{\boldsymbol{g}}_{t}(t_{0})$$

$$\hat{\boldsymbol{g}}_{t}(t) = -\sin(\gamma(t) - \gamma_{0}) \,\hat{\boldsymbol{g}}_{s}(t_{0}) + \cos(\gamma(t) - \gamma_{0}) \,\hat{\boldsymbol{g}}_{t}(t_{0})$$

$$\hat{\boldsymbol{g}}_{q}(t) = \hat{\boldsymbol{g}}_{q}(t_{0})$$

Note that the B frame derivatives of the gimbal frame unit vectors are

$$\frac{\mathcal{B}_{d}}{dt}(\hat{\boldsymbol{g}}_{s}) = \dot{\gamma}\hat{\boldsymbol{g}}_{t} \qquad \frac{\mathcal{B}_{d}}{dt}(\hat{\boldsymbol{g}}_{t}) = -\dot{\gamma}\hat{\boldsymbol{g}}_{s} \qquad \frac{\mathcal{B}_{d}}{dt}(\hat{\boldsymbol{g}}_{g}) = 0$$

The inertial derivatives of these vectors are

$$\dot{\hat{g}}_{s} = \frac{\mathcal{B}_{d}}{dt} (\hat{g}_{s}) + \boldsymbol{\omega} \times \hat{g}_{s} = (\dot{\gamma} + \omega_{g}) \hat{g}_{t} - \omega_{t} \hat{g}_{g}$$

$$\dot{\hat{g}}_{t} = \frac{\mathcal{B}_{d}}{dt} (\hat{g}_{t}) + \boldsymbol{\omega} \times \hat{g}_{t} = -(\dot{\gamma} + \omega_{g}) \hat{g}_{s} + \omega_{s} \hat{g}_{g}$$

$$\dot{\hat{g}}_{g} = \frac{\mathcal{B}_{d}}{dt} (\hat{g}_{g}) + \boldsymbol{\omega} \times \hat{g}_{g} = \omega_{t} \hat{g}_{s} - \omega_{s} \hat{g}_{t}$$

use ${}^{\mathcal{G}}\boldsymbol{\omega}=\omega_s\hat{\boldsymbol{g}}_s+\omega_t\hat{\boldsymbol{g}}_t+\omega_g\hat{\boldsymbol{g}}_g$ to derive this result.

• Finally, the following expressions are derived:

$$egin{align} \dot{\omega}_s &= \dot{\hat{oldsymbol{g}}}_s^T oldsymbol{\omega} + \hat{oldsymbol{g}}_s^T \dot{oldsymbol{\omega}} &= \dot{\gamma} \omega_t + \hat{oldsymbol{g}}_s^T \dot{oldsymbol{\omega}} \ \dot{\omega}_t &= \dot{\hat{oldsymbol{g}}}_t^T oldsymbol{\omega} + \hat{oldsymbol{g}}_t^T \dot{oldsymbol{\omega}} &= -\dot{\gamma} \omega_s + \hat{oldsymbol{g}}_t^T \dot{oldsymbol{\omega}} \ \dot{\omega}_g &= \dot{\hat{oldsymbol{g}}}_g^T oldsymbol{\omega} + \hat{oldsymbol{g}}_g^T \dot{oldsymbol{\omega}} &= \hat{oldsymbol{g}}_g^T \dot{oldsymbol{\omega}} \end{aligned}$$

• The following combined gimbal and spinning disk inertia matrix will be useful to simplify some results:

$$[J] = [I_G] + [I_W] = \begin{bmatrix} J_s & 0 & 0 \\ 0 & J_t & 0 \\ 0 & 0 & J_g \end{bmatrix}$$

And now, the fun...

• At this point we are ready to compute the terms in Euler's equation H=L. We have all the required expressions and need to simply carry out the required algebra.

• Taking the inertial derivative of the spinning wheel angular momentum expression H_W , we find

$$\dot{\boldsymbol{H}}_{W} = \hat{\boldsymbol{g}}_{s} \left[I_{W_{s}} \left(\dot{\Omega} + \hat{\boldsymbol{g}}_{s}^{T} \dot{\boldsymbol{\omega}} + \dot{\gamma} \omega_{t} \right) \right] + \hat{\boldsymbol{g}}_{t} \left[I_{W_{s}} \left(\dot{\gamma} (\omega_{s} + \Omega) + \Omega \omega_{g} \right) \right. \\
+ \left. I_{W_{t}} \hat{\boldsymbol{g}}_{t}^{T} \dot{\boldsymbol{\omega}} + \left(I_{W_{s}} - I_{W_{t}} \right) \omega_{s} \omega_{g} - 2 I_{W_{t}} \omega_{s} \dot{\gamma} \right] \\
+ \left. \hat{\boldsymbol{g}}_{g} \left[I_{W_{t}} \left(\hat{\boldsymbol{g}}_{g}^{T} \dot{\boldsymbol{\omega}} + \ddot{\gamma} \right) + \left(I_{W_{t}} - I_{W_{s}} \right) \omega_{s} \omega_{t} - I_{W_{s}} \Omega \omega_{t} \right]$$

• Taking the derivative of the gimbal frame angular momentum expression H_G , we find

$$\dot{\boldsymbol{H}}_{G} = \hat{\boldsymbol{g}}_{s} \left(\left(I_{G_{s}} - I_{G_{t}} + I_{G_{g}} \right) \dot{\gamma} \omega_{t} + I_{G_{s}} \hat{\boldsymbol{g}}_{s}^{T} \dot{\boldsymbol{\omega}} + \left(I_{G_{g}} - I_{G_{t}} \right) \omega_{t} \omega_{g} \right)
+ \hat{\boldsymbol{g}}_{t} \left(\left(I_{G_{s}} - I_{G_{t}} - I_{G_{g}} \right) \dot{\gamma} \omega_{s} + I_{G_{t}} \hat{\boldsymbol{g}}_{t}^{T} \dot{\boldsymbol{\omega}} + \left(I_{G_{s}} - I_{G_{g}} \right) \omega_{s} \omega_{g} \right)
+ \hat{\boldsymbol{g}}_{g} \left(I_{G_{g}} \left(\hat{\boldsymbol{g}}_{g}^{T} \dot{\boldsymbol{\omega}} + \ddot{\gamma} \right) + \left(I_{G_{t}} - I_{G_{s}} \right) \omega_{s} \omega_{t} \right)$$

• Finally, the spacecraft angular momentum inertial derivative is

$$\dot{\boldsymbol{H}}_B = [I_s]\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times [I_s]\boldsymbol{\omega}$$

• Let us define the time-varying total spacecraft inertia matrix [/]:

$$[I] = [I_s] + [J]$$

• Adding up all the terms, and substituting them into Euler's equation $\dot{H}=L$, we finally arrive at the desired equations of motion of a spacecraft with a single VSCMG.

$$[I]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I]\boldsymbol{\omega} - \hat{\boldsymbol{g}}_s \left(J_s \dot{\gamma} \omega_t + I_{W_s} \dot{\Omega} - (J_t - J_g) \omega_t \dot{\gamma} \right) - \hat{\boldsymbol{g}}_t \left((J_s \omega_s + I_{W_s} \Omega) \dot{\gamma} - (J_t + J_g) \omega_s \dot{\gamma} + I_{W_s} \Omega \omega_g \right) - \hat{\boldsymbol{g}}_g \left(J_g \ddot{\gamma} - I_{W_s} \Omega \omega_t \right) + \boldsymbol{L}$$

These equations of motion are valid for both a RW or CMG device!

Comments...

- By changing the wheel speed or by gimbaling the CMG devices, a torque is applied to the spacecraft and the corresponding attitude is changed.
- RW devices are simpler, but have limits on how large the spin speed Ω can grow.
- Adding the gimbaling mode clearly makes the mathematics much more fun and interesting :-)
- To generally control a spacecraft attitude, three of more of these devices would have to be attached to the spacecraft.

RW Motor Torque

 The equations of motion of only the spinning disk could be found by solving Euler's equations for this disk

$$\dot{m{H}}_W = m{L}_w$$

Note that this is the inertial derivative of the inertial disk angular momentum. We have already
found this to be

$$\dot{\boldsymbol{H}}_{W} = \hat{\boldsymbol{g}}_{s} \left[I_{W_{s}} \left(\dot{\Omega} + \hat{\boldsymbol{g}}_{s}^{T} \dot{\boldsymbol{\omega}} + \dot{\gamma} \omega_{t} \right) \right] + \hat{\boldsymbol{g}}_{t} \left[I_{W_{s}} \left(\dot{\gamma} (\omega_{s} + \Omega) + \Omega \omega_{g} \right) \right. \\
+ \left. I_{W_{t}} \hat{\boldsymbol{g}}_{t}^{T} \dot{\boldsymbol{\omega}} + \left(I_{W_{s}} - I_{W_{t}} \right) \omega_{s} \omega_{g} - 2 I_{W_{t}} \omega_{s} \dot{\gamma} \right] \\
+ \left. \hat{\boldsymbol{g}}_{g} \left[I_{W_{t}} \left(\hat{\boldsymbol{g}}_{g}^{T} \dot{\boldsymbol{\omega}} + \ddot{\gamma} \right) + \left(I_{W_{t}} - I_{W_{s}} \right) \omega_{s} \omega_{t} - I_{W_{s}} \Omega \omega_{t} \right] \right.$$

• The only external torque being applied to the spinning disk is through the RW motor.

$$\dot{\boldsymbol{H}}_W = \boldsymbol{L}_W = u_s \hat{\boldsymbol{g}}_s + \tau_{w_t} \hat{\boldsymbol{g}}_t + \tau_{w_g} \hat{\boldsymbol{g}}_g$$

• Thus, equating the $\hat{m{g}}_s$ directions yields:

$$u_s = I_{W_s} \left(\dot{\Omega} + \hat{\boldsymbol{g}}_s^T \dot{\boldsymbol{\omega}} + \dot{\gamma} \omega_t \right)$$

Given the current disk angular acceleration, spacecraft angular acceleration, or the current gimbal rate, this formula shows how hard the RW motor has to work.

CMG Motor Torque

 The compute the motor torque of the CMG gimbal mode, we need to look at both the disk and the gimbal frame as one unit.

$$\dot{m{H}}_G + \dot{m{H}}_W = m{L}_G$$

 Again, we have already computed these inertial angular momentum derivatives. The gimbal momentum rate is:

$$\dot{\boldsymbol{H}}_{G} = \hat{\boldsymbol{g}}_{s} \left(\left(I_{G_{s}} - I_{G_{t}} + I_{G_{g}} \right) \dot{\gamma} \omega_{t} + I_{G_{s}} \hat{\boldsymbol{g}}_{s}^{T} \dot{\boldsymbol{\omega}} + \left(I_{G_{g}} - I_{G_{t}} \right) \omega_{t} \omega_{g} \right)
+ \hat{\boldsymbol{g}}_{t} \left(\left(I_{G_{s}} - I_{G_{t}} - I_{G_{g}} \right) \dot{\gamma} \omega_{s} + I_{G_{t}} \hat{\boldsymbol{g}}_{t}^{T} \dot{\boldsymbol{\omega}} + \left(I_{G_{s}} - I_{G_{g}} \right) \omega_{s} \omega_{g} \right)
+ \hat{\boldsymbol{g}}_{g} \left(I_{G_{g}} \left(\hat{\boldsymbol{g}}_{g}^{T} \dot{\boldsymbol{\omega}} + \ddot{\gamma} \right) + \left(I_{G_{t}} - I_{G_{s}} \right) \omega_{s} \omega_{t} \right)$$

• The only external torque being applied to this two-body system is through the gimbal axis motor.

$$\dot{\boldsymbol{H}}_G + \dot{\boldsymbol{H}}_W = \boldsymbol{L}_G = \tau_{G_s} \hat{\boldsymbol{g}}_s + \tau_{G_t} \hat{\boldsymbol{g}}_t + u_g \hat{\boldsymbol{g}}_g$$

• Thus, equating the $\hat{m{g}}_g$ directions yields:

$$u_g = J_g \left(\hat{\boldsymbol{g}}_g^T \dot{\boldsymbol{\omega}} + \ddot{\gamma} \right)$$
$$- \left(J_s - J_t \right) \omega_s \omega_t - I_{W_s} \Omega \omega_t$$

Given a commanded gimbal time history $\gamma(t)$, this equation shows us how to compute the actual torque that the gimbal motor must apply.

Example: single RW device

$$\dot{\gamma} = 0$$
 $\ddot{\gamma} = 0$

$$[I]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I]\boldsymbol{\omega} - \hat{\boldsymbol{g}}_s J_s \dot{\Omega}$$
$$-J_s \Omega(\omega_g \hat{\boldsymbol{g}}_t - \omega_t \hat{\boldsymbol{g}}_g) + \boldsymbol{L}$$

using:

$$\boldsymbol{\omega} \times \hat{\boldsymbol{g}}_s = (\omega_s \hat{\boldsymbol{g}}_s + \omega_t \hat{\boldsymbol{g}}_t + \omega_g \hat{\boldsymbol{g}}_g) \times \hat{\boldsymbol{g}}_s = -\omega_t \hat{\boldsymbol{g}}_g + \omega_g \hat{\boldsymbol{g}}_t$$

$$[I]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I]\boldsymbol{\omega} - \hat{\boldsymbol{g}}_s J_s \dot{\Omega} - \boldsymbol{\omega} \times J_s \Omega \hat{\boldsymbol{g}}_s + \boldsymbol{L}$$

Motor torque:

$$u_s = J_s \left(\dot{\Omega} + \hat{oldsymbol{g}}_s^T \dot{oldsymbol{\omega}}
ight)$$

Inertia of spacecraft and non-spin RW axis:

$$[I_{RW}] = [I_s] + J_t \hat{oldsymbol{g}}_t \hat{oldsymbol{g}}_t^T + J_g \hat{oldsymbol{g}}_g \hat{oldsymbol{g}}_g^T$$

Example: single CMG device

An inner-servo loop is holding the wheel spin rate fixed:

$$\dot{\Omega} = 0$$

$$[I]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I]\boldsymbol{\omega} - \hat{\boldsymbol{g}}_s \left(J_s \dot{\gamma} \omega_t - (J_t - J_g) \omega_t \dot{\gamma}\right)$$
$$-\hat{\boldsymbol{g}}_t \left(J_s \left(\omega_s + \Omega\right) \dot{\gamma} - (J_t + J_g) \omega_s \dot{\gamma} + J_s \Omega \omega_g\right)$$
$$-\hat{\boldsymbol{g}}_g \left(J_g \ddot{\gamma} - J_s \Omega \omega_t\right) + \boldsymbol{L}$$

CMG controls are discussed shortly...

Multiple VSCMGs

 To accommodate a spacecraft with N VSCMG devices, we need to employ a little "book-keeping" to account for the various momentum contributions:

We define the 3xN matrices:

$$[G_s] = [\hat{\boldsymbol{g}}_{s_1} \cdots \hat{\boldsymbol{g}}_{s_N}]$$
 $[G_t] = [\hat{\boldsymbol{g}}_{t_1} \cdots \hat{\boldsymbol{g}}_{t_N}]$ $[G_g] = [\hat{\boldsymbol{g}}_{g_1} \cdots \hat{\boldsymbol{g}}_{g_N}]$

New inertia matrix definition:

$$[I] = [I_s] + \sum_{i=1}^{N} [J_i] = [I_s] + \sum_{i=1}^{N} J_{s_i} \hat{\boldsymbol{g}}_{s_i} \hat{\boldsymbol{g}}_{s_i}^T + J_{t_i} \hat{\boldsymbol{g}}_{t_i} \hat{\boldsymbol{g}}_{t_i}^T + J_{g_i} \hat{\boldsymbol{g}}_{g_i} \hat{\boldsymbol{g}}_{g_i}^T$$

$$oldsymbol{ au}_s = egin{bmatrix} J_{s_1} \left(\dot{\Omega}_1 + \dot{\gamma}_1 \omega_{t_1}
ight) - \left(J_{t_1} - J_{g_1}
ight) \omega_{t_1} \dot{\gamma}_1 \ dots \ J_{s_N} \left(\dot{\Omega}_N + \dot{\gamma}_N \omega_{t_N}
ight) - \left(J_{t_N} - J_{g_N}
ight) \omega_{t_N} \dot{\gamma}_N \end{bmatrix}$$

Torque-like vectors:

$$\boldsymbol{\tau}_{t} = \begin{bmatrix} J_{s_{1}} \left(\Omega_{1} + \omega_{s_{1}}\right) \dot{\gamma}_{1} - \left(J_{t_{1}} + J_{g_{1}}\right) \omega_{s_{1}} \dot{\gamma}_{1} + J_{s_{1}} \Omega_{1} \omega_{g_{1}} \\ \vdots \\ J_{s_{N}} \left(\Omega_{N} + \omega_{s_{N}}\right) \dot{\gamma}_{N} - \left(J_{t_{N}} + J_{g_{N}}\right) \omega_{s_{N}} \dot{\gamma}_{N} + J_{s_{N}} \Omega_{N} \omega_{g_{N}} \end{bmatrix}$$

$$m{ au}_g = egin{bmatrix} J_{g_1} \ddot{\gamma}_1 - J_{s_1} \Omega_1 \omega_{t_1} \ & \vdots \ J_{g_N} \ddot{\gamma}_N - J_{s_N} \Omega_N \omega_{t_N} \end{bmatrix}$$

EOM of spacecraft with N VSCMGs:

$$[I]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I]\boldsymbol{\omega} - [G_s]\boldsymbol{\tau}_s - [G_t]\boldsymbol{\tau}_t - [G_g]\boldsymbol{\tau}_g + \boldsymbol{L}$$

Energy expression:

$$T = \frac{1}{2} \boldsymbol{\omega}^{T} [I_{s}] \boldsymbol{\omega} + \frac{1}{2} \sum_{i=1}^{N} J_{s_{i}} (\Omega_{i} + \omega_{s_{i}})^{2} + J_{t_{i}} \omega_{t_{i}}^{2} + J_{g_{i}} (\omega_{g_{i}} + \dot{\gamma}_{i})^{2}$$

After much algebra, or by using the work-energy-principle...

$$\dot{T} = \boldsymbol{\omega}^T \boldsymbol{L} + \sum_{i=1}^N \dot{\gamma}_i u_{g_i} + \Omega_i u_{s_i}$$

Example: multiple RW devices

Inertia matrix definition:

$$[I_{RW}] = [I_s] + \sum_{i=1}^{N} (J_{t_i} \hat{\boldsymbol{g}}_{t_i} \hat{\boldsymbol{g}}_{t_i}^T + J_{g_i} \hat{\boldsymbol{g}}_{g_i} \hat{\boldsymbol{g}}_{g_i}^T)$$

Let us define the momentum vector h_s as:

$$m{h}_s = \left(egin{array}{c} dots \ J_{s_i} \left(\omega_{s_i} + \Omega_i
ight) \ dots \end{array}
ight)$$

The equations of motion then become:

$$[I_{RW}]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I_{RW}]\boldsymbol{\omega} - \boldsymbol{\omega} \times [G_s]\boldsymbol{h}_s - [G_s]\boldsymbol{u}_s + \boldsymbol{L}$$

For the special case with 3 RWs aligned with the principal axis, $[G_s]$ becomes an identity matrix and the EOM reduce to

$$[I_{RW}]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I_{RW}]\boldsymbol{\omega} - \boldsymbol{\omega} \times \boldsymbol{h}_s - \boldsymbol{u}_s + \boldsymbol{L}$$

Momentum-Device Control Laws

This is where the pudding starts to come together...

RW Control Devices

 First let us develop a feedback control law for a spacecraft with N reaction wheels with general orientation.

EOM:

EOM:
$$[I_{RW}]\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times [I_{RW}]\boldsymbol{\omega} - \boldsymbol{\omega} \times [G_s]\boldsymbol{h}_s - [G_s]\boldsymbol{u}_s + \boldsymbol{L} \quad \text{with} \qquad \boldsymbol{h}_s = \begin{pmatrix} \vdots \\ J_{s_i}\left(\omega_{s_i} + \Omega_i\right) \\ \vdots \end{pmatrix}$$

Inertia Matrix:

$$[I_{RW}] = [I_s] + \sum_{i=1}^{N} (J_{t_i} \hat{\boldsymbol{g}}_{t_i} \hat{\boldsymbol{g}}_{t_i}^T + J_{g_i} \hat{\boldsymbol{g}}_{g_i} \hat{\boldsymbol{g}}_{g_i}^T)$$

The RW motor control torque vector is:

$$oldsymbol{u}_s = \left(egin{array}{c} dots \ J_{s_i} \left(\dot{\Omega}_i + \hat{oldsymbol{g}}_{s_i}^T \dot{oldsymbol{\omega}}
ight) \ dots \ dots \end{array}
ight)$$

Spacecraft Tracking Errors:

 σ - MRP vector of body frame relative to reference frame

 $\delta \omega = \omega - \omega_r$ - body angular velocity tracking error vector

Lyapunov Function:

$$V(\boldsymbol{\sigma},\delta\boldsymbol{\omega}) = rac{1}{2}\delta\boldsymbol{\omega}^T[I_{RW}]\delta\boldsymbol{\omega} + 2K\ln\left(1+\boldsymbol{\sigma}^T\boldsymbol{\sigma}
ight)$$
 components taken in the B frame

Let's set the Lyapunov Rate to:

$$[G_s]oldsymbol{u}_s = Koldsymbol{\sigma} + [P]\deltaoldsymbol{\omega} - [ilde{oldsymbol{\omega}}]([I_{
m RW}]oldsymbol{\omega} + [G_s]oldsymbol{h}_s) \ - [I_{
m RW}](\dot{oldsymbol{\omega}}_r - oldsymbol{\omega} imes oldsymbol{\omega}_r) + oldsymbol{L}$$

Control condition:

$$[G_s]\boldsymbol{u}_s = \boldsymbol{L}_r$$

Case 1: 3 RWs aligned with principal axes of spacecraft.

$$oldsymbol{u}_s = oldsymbol{L}_r$$

Case 2: N RWs aligned generally.

$$m{u}_s = [G_s]^T \left([G_s] [G_s]^T
ight)^{-1} m{L}_r$$
 minimum-norm inverse

Energy rate:

$$\dot{T} = \boldsymbol{\omega}^T \boldsymbol{L} + \sum_{i=1}^N \Omega_i u_{s_i}$$

work/energy principle

The End...

