

Grado en Ingeniería Informática

Curso 2021-2022

Algoritmos Genéticos y Evolutivos

Práctica 2 Calibración de motores automática mediante Estrategias Evolutivas

Índice

1.	Introducción	4
2.	Codificación y Función de fitness	4
3.	Programación Estrategia Evolutiva (1+1)	5
	3.1. Operadores genéticos	5
	3.1.1. Población inicial	5
	3.1.2. Mutación	5
	3.1.3. Inserción y Remplazo	6
	3.2. Aproximación 4 motores	6
	3.3. Aproximación 10 motores	10
	3.4. Resultado	12
4.	Conclusiones	14

Índice de figuras

1.	Diagrama brazo robótico	4
2.	Valores de Fitness: 4_5-20_10	7
3.	Fitness vs. Evaluaciones: 4_5000_0.98_6	8
4.	Ángulos: 4_5000_0.98_6	8
5.	Valores de Fitness: 4_5-20_100	9
6.	Valores de Fitness: 10_5-20_10	10
7.	Ciclos hasta mejor resultado: 10_5-20_10	11
8.	Valores de Fitness: 10_5-20_100	11
9.	Valores de Fitness: 10_5-20_10	12
10.	Fitness vs. Evaluaciones: 10_0.98_5-20_10	13
11	Ángulos: 10, 0,98, 5,20, 10	14

Índice de tablas

1.	Fitness iniciales 4 motores	7
2.	Fitness 4 motores y 100 generaciones modificar varianzas	9
3.	Fitness 10 motores, varianzas 5-20 y c considerando 10 generaciones	10
4.	Fitness 10 motores, varianzas 5-20 y c considerando 100 generaciones	11
5.	Fitness 10 motores, varianzas 5-100 y c considerando 10 generaciones	12

Introducción

Este proyecto trata sobre encontrar una aproximación mediante estrategias evolutivas al problema de calibrar motores de un brazo robótico utilizando solo un láser, una cámara y un objeto de referencia. El robot deberá ser preciso en sus movimientos, dado que será utilizado para realizar soldaduras de alta precisión.

Para comenzar se trabajará sobre un brazo compuesto solo por 4 motores para podernos acercar al problema de una manera más gradual, en cuanto se haya comprobado que es factible esta simplificación del problema se pasara a un caso más realista con un brazo de 10 motores.

Codificación y Función de fitness

Al emplear estrategias evolutivas la codificación de los individuos de este problema consistirá en un vector de codificación compuesto por 4 o 10 números reales (según el número de motores) y un vector de varianzas de la misma longitud que el de codificación.

Los valores del vector de codificación estarán centrados en 0 representando que no se ha realizado ningún giro y podrán rotar tanto como quieran en sentido positivo como negativo, aunque llegado un punto girar mucho en un sentido equivale a movimientos más cortos. Lo ideal es que los valores se muevan entre -180 y 180 grados representando un giro completo de 360 grados, aunque no se restringirán los valores que puede tomar. En la Figura 1 se puede ver un diagrama de cómo es el sistema.

Figura 1: Diagrama brazo robótico

En cuanto a la función de fitness que se empleará para saber si una solución es buena o no, esta tendrá en cuenta el error que comente el soldador en un simulador, según como de dispersos y desviados sean con respecto al centro dará un valor mayor cuanto peor lo haga y menor cuanto más preciso sea. Por lo que el objetivo del problema es minimizar la función de fitness.

Para conocer el error para cada una se las soluciones se hará una llamada get a un servicio que se encuentra en un servidor de la universidad, http://memento.evannai.inf.uc3m.es/age/robot4?, seguido de cX=GradosDeX para cada uno de los 4 motores y separados por un &, en el caso de los 10 motores será igual, aunque con otro servicio http://memento.evannai.inf.uc3m.es/age/robot10? y 10 valores de grados.

Programación Estrategia Evolutiva (1+1)

Para este proyecto entre las posibles implementaciones de las estrategias evolutivas se ha elegido la (1+1)-EE y a continuación se describirán las características de esta.

El programa se ha desarrollado en el lenguaje Python, el procesamiento principal del programado se encuentra en la función *EE1plus1(c, cycles, test_iteration)*, donde recibirá como parámetros el valor por el que se multiplicaran las varianzas, el número de generaciones máximas del programa y la iteración en la que se encuentra el programa (se incluye para realizar las pruebas de ejecutar múltiples veces).

El proceso que sigue esta función es el siguiente:

- 1. Generar el individuo inicial.
- 2. Evaluar el individuo generado de la población inicial.
- 3. Repetir hasta cumplir el criterio de convergencia:
 - a) Generar una nueva solución a partir del único individuo de la población, mutando el vector de codificación del descendiente.
 - b) Evaluar el individuo generado.
 - c) Eliminar el individuo cuyo valor de adecuación sea mayor, tratamos de minimizar el fitness.
 - d) Si el individuo que queda es el nuevo, se aumenta la frecuencia de éxitos y si no se disminuye.
 - e) Mutar el vector de varianzas del individuo elegido de acuerdo con la regla 1/5.

Además de lo relacionado con la generación de individuos, también se ha incluido código que nos permita almacenar la salida de los modelos para poderlos evaluar.

Operadores genéticos

Población inicial

El individuo inicial es generado aleatoriamente, para su vector de codificación se sigue una gaussiana centrada en 0 y con desviación 100, de esta manera los valores serán tanto positivos como negativos y mayoritariamente centrados alrededor de 0, por otro lado el vector de varianzas se genera mediante valores reales positivos entre 5 y 20, aunque se realizarán pruebas con valores mayores.

Este proceso es realizado por la función *initial_individual()*, devolviendo un individuo en forma de matriz con dimensiones NumeroDeMotores x 2.

Mutación

Para los algoritmos evolutivos este operador se realiza en dos partes una para el vector de codificación y otra para el de varianzas.

Para el vector de codificación, el nuevo individuo tendrá como valores los del progenitor más un valor de la normal según la varianza de ese valor para el padre, es decir $x_{hijo} = x_{padre} + N_0(\sigma_{padre})$, esta operación se repite para todos los valores del vector.

En cuanto al vector de varianzas, se realizará sobre el individuo seleccionado para la siguiente generación, y consiste en modificar sus varianzas en función de la regla 1/5, que se guía por el porcentaje de mejoras de las últimas generaciones.

Esta regla se aplicará teniendo en cuenta las últimas generaciones, las variaciones vendrán dadas por:

- Si el número de mejoras es superior al 20 %, se aumenta la varianza $\frac{\sigma}{a}$.
- Si el número de mejoras es inferior al 20 %, se reduce la varianza $\sigma \cdot c$.
- Si el número de mejoras es igual al 20 %, se mantiene σ .

Lo que dice la regla es que si mejora con frecuencia es que todavía estamos lejos de la solución óptima, por lo que aumentaremos la varianza, y si no mejora es que estamos cerca, entonces nos movemos poco a poco.

Esta funcionalidad se recoge en *mutate_codification(individual)* para el vector de codificación, muta al progenitor y devuelve al sucesor, y en *individual_next_generation(individual, son, improvements_counter, iteration, c)* para el vector de varianzas, se encuentran separadas porque hasta que no se conoce el individuo de la siguiente generación no se mutan las varianzas.

Inserción y Remplazo

Al tratarse del tipo (1+1) la población está formada por un solo individuo y también se generará un solo individuo, por lo que entre el individuo de la población y el nuevo se elegirá el mejor, en este caso el de menor fitness.

Cuando se elija al descendiente se considera una mejora y se tendrá en cuanta en la frecuencia de mejoras, si no, se considera que no ha mejorado. Tras elegir el individuo que formará la población se mutará su vector de varianzas como se ha definido antes.

La función que recoge la inserción y remplazo, además de la mutación de las varianzas es la que se mencionó antes, individual_next_generation(individual, son, improvements_counter, iteration, c), que evalúa ambos individuos, elige el mejor, actualiza el contador de mejoras y aplica la mutación en función del parámetro c que se le pasa. La función devuelve el individuo elegido, su fitness y el contador de mejoras actualizado.

Aproximación 4 motores

Comenzaremos realizando pruebas en la versión simplificada del problema, en el que solo se consideraran 4 motores para el brazo soldador.

Estos primeros modelos que se generaran consistirán en la variación del valor c, el que determina cuanto cambiara la varianza de los individuos. Es conocido que el valor debe ser inferior a 1 y que el recomendable es 0,82, pero en busca de mejores resultados se ha probado además con 0,98, 0,92, 0,72 y 0,62. No se han variado más estos valores, porque la selección de valores más bajos provocaría que los valores de varianza se movieran muy rápido.

Todos los modelos se han ejecutado durante 5000 generaciones, que son 10000 evaluaciones, y se han realizado 10 ejecuciones para cada modelo para evitar el sesgo de la aleatoriedad a la hora de inicializar el modelo.

Los modelos han sido nombrados siguiendo el siguiente patrón: evolution_strategy_XX_YY_A-B_C

- XX: Indica el número de motores que se consideran y para los que se ajustaran los ángulos.
- YY: Indica el valor de c, el cual determina como se modificarán las varianzas.
- A-B: Indica el rango de valores entre los que se generan aleatoriamente las varianzas.
- C: Indica el número de generaciones que tiene en cuanta para medir la frecuencia de mejora.

En la Figura 2 y Tabla 1 se pueden ver los resultados de fitness obtenidos en las **10 ejecuciones para los 5 modelos**, junto a la media de cada modelo que es la que utilizaremos para comparar.

Figura 2: Valores de Fitness: 4_5-20_10

Modelo	1	2	3	4	5	6	7	8	9	10	Media
4_0,98_5-20_10	399,8967664	21,88903367	20,89403404	1,989918114	2,984877171	0,994959057	243,1577278	13,92939149	49,74695184	5,969749305	76,14534088
4_0,92_5-20_10	115,4108682	86,56039686	587,9440061	654,4753316	51,73723573	25,86868199	35,81824234	125,3603064	2081,267141	4,974790248	376,9417
4_0,82_5-20_10	34,8234203	1053,037537	98,49807057	263,6453657	79,59564625	270,6192328	1955,329393	1649,132003	193,0126789	361,1448922	595,8838239
4_0,72_5-20_10	134,6082641	887,2371193	758,3690516	1232,534402	731,1155627	161,1833393	208,9351831	808,6563643	1438,833559	993,6769101	735,5149756
4_0,62_5-20_10	1342,19067	58,71220968	24,87415781	1391,691525	1691,348176	1280,418402	443,7601042	692,0338572	1812,167475	113,4223726	885,061895

Tabla 1: Fitness iniciales 4 motores

Se puede ver que los mejores resultados se han obtenido para una c de 0,98 y que según se van reduciendo progresivamente, las evaluaciones van empeorando. En la Figura 2 solo se ve el valor para la media, pero en la Tabla 1 se puede apreciar que los valores normalmente son bajos y los que la suben son unas pocas ejecuciones que dan valores más altos.

Aun con esto, el mejor resultado se ha obtenido en la que da mejor media, que es **c** de **0,98** y una ventana de **varianzas entre 5 y 20**. El resultado que nos proporciona el modelo es de **0,994959057 de fitness**, que le lleva **1998 evaluaciones**, que para el caso son 999 generaciones de las 5000 dadas.

De media este modelo requiere 2670 evaluaciones para alcanzar su mejor resultado, que es de media 76,14534088 de fitness.

En la siguiente página se puede ver en la Figura 3 el progreso del fitness y en la Figura 4 el de los ángulos a lo largo de las 1998 evaluaciones. Al comienzo como los valores de partida son aleatorios el error es muy alto y rápidamente decrece hasta converger, en este caso en torno al 1. En cuanto a los grados se aprecia un comportamiento parecido, se van moviéndose rápidamente hasta llegar a un valor en el que converge en este caso los valores son:

Motor 1: 9,128498158310796
Motor 2: 5,9876539870877865
Motor 3: 3,6666659795960044
Motor 4: 1,7654321185803394

Figura 3: Fitness vs. Evaluaciones: 4_5000_0.98_6

Figura 4: Ángulos: 4_5000_0.98_6

Después de ver esto, pasamos a probar aumentando el número de generaciones que se tienen en cuenta para la regla 1/5, pasaremos de 10 generaciones a 100, de esta manera se intentará suavizar un poco que pase de aumentar a reducir las varianzas. Se repiten de nuevo las pruebas anteriores para ver si este cambio supone una mejora en general en los modelos que se habían considerado.

Los resultados que obtenemos durante **10 ejecuciones para 4 motores, c variable y teniendo en cuenta 100 generaciones** para las varianzas se describen en la Figura 5 y la Tabla 2.

Figura 5: Valores de Fitness: 4_5-20_100

Modelo	1	2	3	4	5	6	7	8	9	10	Media
4_0,98_5-20_100	5,969749305	21,8889931	9,949580495	4,974790248	5,969749305	5,969749305	1,989918114	6,964708362	2,984877171	3,979836228	7,064195163
4_0,92_5-20_100	5,542532418	14,74571547	84,98910986	37,81101029	5,011906134	36,82614644	34,11110903	10,47056077	53,73206948	27,85876286	31,10989227
4_0,82_5-20_100	9,809572078	41,36192181	99,24012352	339,3468103	42,84572441	36,74907856	18,86484429	30,76219558	20,6740378	28,65534023	66,83096486
4_0,72_5-20_100	263,4369112	67,53778001	119,6652832	29,2806866	22,87188578	107,3685088	277,6832855	27,53812501	187,4785023	103,624326	120,6485294
4_0,62_5-20_100	67,02456414	60,89633218	280,0429631	63,05976061	42,89979308	28,0932833	76,75306751	478,2493174	43,57174374	34,51221151	117,5103037

Tabla 2: Fitness 4 motores y 100 generaciones modificar varianzas

Se puede ver que los modelos mantienen la misma distribución que en la experimentación previa, es decir que los resultados son mejores cuanto mayor es el c, pero en este caso se reducen en general los valores de fitness.

La media del **fitness es 10 veces más pequeño** que su equivalente de la prueba anterior y esto se repite de la misma manera para los otros modelos. El mejor modelo en este caso tiene de **media 7,064195163 de fitness**.

Aunque de manera general se han reducido las evaluaciones, el mejor resultado obtenido no es mejor que el previo.

El mejor resultado se sigue correspondiendo con una c de 0,98 valores de varianza iniciales entre 5 y 20, pero en esta prueba en particular se han tenido en cuenta 100 generaciones para la regla 1/5. El valor de fitness de este modelo es 1,989918114, que lo alcanza en la evaluación 1990, al igual que el otro esta evaluación está lejos del límite máximo de evaluaciones y le ha dado tiempo a converger correctamente. De media el mejor resultado para este modelo se obtiene en la evaluación 1962. Esta solución se corresponde con:

• **Motor 1:** 1,98991811419

• Motor 2: 9,128498154683596

• **Motor 3:** 4,99269532895493

• **Motor 4:** 1,7654320755166042

Con estas dos pruebas se ha podido ver que este método es factible para el problema y alcanza valores realmente buenos, cercanos al 0. En cuanto a la cantidad de generaciones que considerar para modificar las varianzas parecen mejor 100, pero en ejecuciones puntuales 10 también es buena, por lo que en la siguiente sección con 10 motores se repetirán los experimentos para ver si se puede concluir lo mismo.

Aproximación 10 motores

Tras haber realizado unas pruebas iniciales con una versión simplificada para ver que es factible emplear esta técnica al problema pasamos al problema real, un brazo robótico de soldadura de 10 motores o articulaciones que se mueven de manera independiente y con el que tendremos que tratar de alcanzar la mejor configuración para que sea preciso.

Se volverá a probar con **5 valores de c** (**0,98, 0,92, 0,72 y 0,62**) como se hizo en la sección anterior, pero en este caso como se van a configurar **10 motores** se le dejaran **10000 generaciones, 20000 evaluaciones**, para que el de tiempo a converger y se haya obtenido el mejor resultado de la ejecución.

A continuación en la Figura 6 se muestran los resultados de **10 ejecuciones teniendo en cuenta las 10 generaciones previas** para modificar las varianzas, además de la Tabla 3 con sus correspondientes valores para poder consultar mejor las ejecuciones individualmente:

Figura 6: Valores de Fitness: 10_5-20_10

Modelo	1	2	3	4	5	6	7	8	9	10	Media
10_0,98_5-20_10	80,59085566	54,72242403	122,3772289	88,55070259	126,3554685	124,3677632	82,57983737	162,1761055	31,83857359	75,61582174	94,91747811
10_0,92_5-20_10	493,4360219	89,54541129	318,3774674	368,0959481	990,6158079	562,034782	366,1135179	226,8463152	358,1536415	335,2929881	410,8511901
10_0,82_5-20_10	90,54006087	286,540584	179,0891408	105,4647007	235,7979006	199,9825131	183,0700586	767,0202184	498,4540123	879,2901677	342,5249357
10_0,72_5-20_10	196,5927933	637,7053161	249,7252972	153,2220596	264,6538342	181,0785194	425,8250794	749,1551409	239,7793379	436,7709423	353,450832
10_0,62_5-20_10	310,4180872	335,2775147	362,1496302	604,8171685	164,1662712	293,4897782	416,866646	417,8427783	725,2770965	550,1775361	418,0482507

Tabla 3: Fitness 10 motores, varianzas 5-20 y c considerando 10 generaciones

Se puede ver que aun aumentando el número de motores a 10, la distribución de resultados sigue siendo parecida, con la excepción del modelo con c de 0,92, que este caso ha empeorado siendo peor que el modelo de 0,82 y 0,72. Se profundizará en la sección 3.4. Resultado más en estos modelos.

Además, los fitness del **mejor modelo de esta prueba**, **10_0,98_5-20_10**, **son bastante consistentes** entre ejecuciones. En la Figura 7 se observa que el número de evaluaciones que requiere cada modelo para alcanzar su mejor resultado son bastante parecidos, lo que nos permite ver que todos convergen igual de rápido, pero no en los mejores resultados.

Figura 7: Ciclos hasta mejor resultado: 10_5-20_10

Ahora pasamos a probar si **aumentando el número de generaciones a considerar para modificar las varianzas** mejoran los resultados como ocurría en el caso de los 4 motores.

Figura 8: Valores de Fitness: 10_5-20_100

Modelo	1	2	3	4	5	6	7	8	9	10	Media
10_0,98_5-20_100	50,74259284	81,58612136	213,9061234	77,60612079	197,9927287	196,9949114	113,4239113	41,78817447	57,08071544	90,54067699	112,1662077
10_0,92_5-20_100	418,851877	245,7473547	255,6940882	222,8678002	143,2442372	733,1081525	284,5502886	373,0604005	212,9140302	380,0423028	327,0080532
10_0,82_5-20_100	85,56587251	141,282387	129,4266779	261,6562212	275,588287	196,9962121	264,6484531	78,60131111	91,53563694	307,4233739	183,2724433
10_0,72_5-20_100	134,3723279	148,3272106	240,7722142	80,59637497	153,2277586	362,1933594	122,4410243	263,7641307	180,1514111	347,3048804	203,3150692
10_0,62_5-20_100	284,001316	238,3567998	123,5151397	231,8477615	504,8815338	289,2721911	621,3900092	767,7025742	275,3068091	545,6359119	388,1910046

Tabla 4: Fitness 10 motores, varianzas 5-20 y c considerando 100 generaciones

Como se esperaba, en general **los resultados han mejorado** con respecto a la prueba anterior, con excepción del modelo de c 0,98 que ha empeorado ligeramente. Además, mantiene la distribución de la prueba previa, siendo mejores cuanto mayor c y empeorando en c 0,92.

Nuestro mejor modelo previo era el de c 0,98 con una media de 94,91747811 de fitness y en este nuevo caso es también el de c 0,98 con una media de 112,1662077 de fitness. Aparte de obtener mayor fitness, el nuevo modelo requiere 3278 evaluaciones de media para alcanzar el mejor resultado y el otro 3186 evaluaciones.

Hasta este punto se puede concluir que los mejores modelos se obtienen con una c de 0,98 o 0,82 y considerando 10 generaciones para mutar la varianza.

Ahora se pasará a probar para estos 2 modelos mejores modelos una **ventana de varianzas de entre 5 y 100**, además se aumentará el número de **generaciones máximas a 20000** para que puedan converger adecuadamente. Los resultados que se han obtenido son mostrados en la Figura 9 y la Tabla 5.

Figura 9: Valores de Fitness: 10_5-20_10

Modelo	1	2	3	4	5	6	7	8	9	10	Media
10_0,98_5-100_10	736,0960491	1983,36103	577,9290908	69,64607244	236,790299	134,3176337	1273,989951	1787,181803	71,63674394	710,1923834	758,1141056
10_0,82_5-100_10	320,620507	589,2224645	1587,550479	41,78811602	442,778636	784,7749207	108,4492238	150,2370648	293,4932953	2473,840677	679,2755384

Tabla 5: Fitness 10 motores, varianzas 5-100 y c considerando 10 generaciones

Como se puede ver, realizando esta modificación de los valores con los que se pueden inicializar las varianzas **no produce mejores modelos**. Aun no produciendo modelos mejores en una ejecución particular alcanzó un fitness de 41,7881 que no está muy lejos del mejor modelo para los 10 motores, 31,8385.

Con todo esto se pasa a describir el mejor modelo que se ha obtenido.

Resultado

Tras todas las pruebas que se han realizado en las secciones 3.3. Aproximación 10 motores y 3.2. Aproximación 4 motores, se describirá en esta sección cuál es el mejor modelo que se ha obtenido para resolver el problema de hallar los ángulos para un brazo soldador de 10 motores.

El modelo que mejores fitness de media nos ha proporcionado y de una manera bastante consistente en comparación con el resto ha sido el que tiene los siguientes parámetros:

- Motores: 10
- Valores de inicialización de las varianzas: Entre 5 y 20
- c: 0.98
- Generaciones consideradas: 10

El fitness medio ha sido de 94,91747811, que se ha alcanzado en 3186,2 evaluaciones de media de las 20000 que se le ha dejado ejecutando.

En la sección 3.3. Aproximación 10 motores se puede ver la consistencia del fitness con la Figura 6 y la del número de evaluaciones en la Figura 7.

Analizaremos ahora la mejor ejecución de este modelo, que se corresponde con la novena ejecución y que nos proporciona los siguientes ángulos para el brazo del robot:

- **Motor 1:** 2,2284984784501773
- **Motor 2:** 5,477566084188264
- Motor 3: 1,3246628300371095
- Motor 4: -0,22448014101449237
- Motor 5: 1,4274017184920664
- Motor 6: -3,9797837284309523
- **Motor 8:** -0,6517585124073262
- Motor 7: -1,055368413073764
- Motor 9: -0,7604292115674011
- Motor 10: 3,938239892255979

Esta secuencia de ángulos nos da un **fitness de 31,83857359** que se alcanza en **3180 evaluaciones**, que equivalen a 1590 generaciones de las 10000 que se dejaron.

En la Figura 10 se puede ver la progresión del fitness desde la primera evaluación hasta que se encuentra el mejor fitness, de esta manera se evita prolongar la gráfica en exceso para el mismo valor.

Figura 10: Fitness vs. Evaluaciones: 10_0.98_5-20_10

De la misma manera que en la Figura 10 se puede ver en la Figura 11 como van convergiendo los ángulos al ajustarse y encontrar un valor cuasi-óptimo.

Figura 11: Ángulos: 10_0.98_5-20_10

Conclusiones

En este proyecto se ha abordado el problema de ajustar los ángulos de un brazo robótico de soldadura para que alcanzara una precisión aceptable para soldadura profesional mediante estrategias evolutivas.

Se comenzó con una aproximación reducida con 4 motores para ver como aproximarnos al problema real y ver si esta técnica era viable para este problema específico, se puedo ver que se alcanzaban valores muy buenos menores que 1 de error.

Tras comprobar que esta aproximación es buena se pasó a problema real, 10 motores, aplicando los conocimientos adquiridos de la versión reducida. Se obtuvieron resultados con más error, cosa que se esperaba dado que cuantas más articulaciones tiene un brazo más difícil es poder calibrarlo, puesto que cualquier cambio afecta a la posición global sobre todo los más alejados de la punta del solador.

Esta práctica ha servido para ver una aplicación en primera mano de las estrategias evolutivas y ver que son una técnica potente para la resolución de problemas.