GROUP 40

Name	Student Number	Registration Number
Madete Hector	2400725933	24/U/25933/EVE
Komukama Tracy	2400706151	24/U/06151/EXT
Nabaggala Marion	2400724336	24/U/24336/PS
Anguzu Emmanuel	2400725862	24/U/25862/EVE
Kato Agaba Arnold	2400705464	24/U/05464/EVE

Case for an Automated Traffic Light Management System with Embedded Image Processing to Reduce Traffic Delays in Kampala. Problem Statement.

Kampala, Uganda's capital, suffers from severe traffic congestion, with peak-hour delays averaging 20-30 minutes at major intersections like Clock Tower, Wandegeya, and Jinja Road (KCCA, 2022). The city's vehicle population, exceeding 1.5 million and growing at 7% annually (UBOS, 2023), overwhelms fixed-time traffic light systems that fail to adapt to real-time traffic variations. This has led to over reliance on traffic police men who are not very effective due to lack of real-time coordination. Without adaptive, data-driven traffic management, Kampala's congestion will worsen as urbanization accelerates, exacerbating delays and environmental degradation.

Solution: Automated Traffic Light Management System with Embedded Image Processing.

An automated traffic light management system using embedded image processing technology offers a cost-effective, scalable solution to reduce traffic delays in Kampala. By leveraging cameras and micro-controllers to monitor real-time vehicle density, the system dynamically adjusts traffic light timings to optimize flow, prioritizing high-traffic directions and minimizing wait times at key intersections. System Components and Functionality

1. Embedded Cameras with Image Processing:

- Description: High-resolution cameras (720p or higher, e.g., Raspberry Pi Camera Module or USB webcams) are installed at intersections to capture real-time images or video of traffic.
- Function: Cameras feed data to an embedded processor running OpenCV or a lightweight YOLOv5-nano model to count vehicles (cars, boda-bodas, trucks) and assess lane density. For example, the system detects if one lane has 10 vehicles while another has 2, allocating it more time to the busier lane.
- Communication: Cameras connect to a microcontroller via wired (Ethernet) or wireless (Wi-Fi/LoRaWAN) protocols, suitable for Kampala's patchy connectivity. LoRaWAN supports long-range communication (up to 10 km) in urban environments ().

2. Microcontroller or Single-Board Computer:

- Description: A Raspberry Pi 4 (490k) processes image data and controls traffic lights.
- Function: The microcontroller analyzes vehicle counts and adjusts light timings using predefined logic (e.g., green light for 20 seconds if >5 vehicles detected, 10 seconds if fewer). It prioritizes high-traffic lanes during peak hours (7-9 AM, 5-7 PM).
- Integration: Interfaces with traffic light controllers via GPIO pins or relay modules for seamless actuation of red, yellow, and green lights.

3. Traffic Light System:

- Description: Existing traffic lights are retrofitted with IoT-enabled controllers, or new LED-based lights (\$10-15 per set) are installed for energy efficiency.
- Function: Lights adjust dynamically based on vehicle density, reducing wait times in congested lanes while maintaining flow in lighter ones.
- Adaptability: Handles Kampala's mixed traffic (40% boda-bodas) by tuning detection algorithms to recognize smaller vehicles, ensuring flexible timings.

4. Additional Features:

- Solar Power: Solar panels (\$100-200 per intersection) ensure reliability amid Kampala's frequent power outages, leveraging Uganda's 5-6 kWh/m²/day sunlight (UNDP, 2022).
- Mobile App/SMS Alerts: A simple app or SMS interface (using Uganda's 80% mobile phone penetration, GSMA, 2024) allows traffic managers to monitor congestion and override timings, aligning with your interest in mobile solutions (Feb 28, 2025 conversation).
- Cloud Integration: Aggregates data from multiple intersections for citywide optimization, using Kampala's improving 4G coverage.

Benefits for Reducing Traffic Delays

- Reduced Delays: Real-time vehicle detection can cut wait times by 20-30%, as seen in adaptive traffic systems in Nairobi, which reduced delays by 25% in similar urban settings (IBM, 2021). For example, optimizing Jinja Road's green light could save 5-10 minutes per trip.
- Improved Traffic Flow: Dynamic timings increase intersection throughput by 15-20%, based on studies of camera-based traffic systems (), reducing bottlenecks at high-traffic junctions like Nakawa.
- Economic Savings: Reduced delays save \$200-300 million annually in fuel and productivity losses, scaled from World Bank estimates (2020).

- Environmental Impact: Shorter idling times cut CO2 emissions by 10-15%, addressing Kampala's air pollution, which exceeds WHO limits by 20% during peak hours (UNEP, 2022).
- Scalability: Low-cost components (\$500-1,000 per intersection) enable deployment at Kampala's 100+ signaled intersections, starting with highpriority areas like City Square.
- Labor Efficiency: Automation reduces reliance on traffic police, common at congested junctions, freeing resources for other tasks.

Evidence from Recent Studies

- Delay Reduction: A 2024 study in Nairobi showed camera-based traffic systems reduced delays by 25% (), applicable to Kampala's similar urban density.
- Vehicle Detection Accuracy: YOLOv5-nano achieves 90% accuracy in detecting mixed traffic (cars, motorcycles) on embedded systems (), suitable for Kampala's boda-heavy roads.
- Cost-Effectiveness: IoT traffic systems in Indian cities reduced congestion by 15-20% using \$1,000 per intersection (), achievable with Kampala's budget constraints.
- Scalability: LoRaWAN-based systems in Lagos enabled city-wide coordination, cutting congestion by 18% (), a model for Kampala's sprawling layout.

Cost.

- Raspberry pi : 490,000, Raspberry camera module : 180,000/USB cam: 80,000, USB power adapter for raspberry : 25,000 , toy cars: 50,000
- Total Cost: 700,000 800,000 UGX (to be raised by the group members).