

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Course Name:	EEEE	Semester:	I
Date of Performance:	8/11/2024	Batch No:	C5-2
Student Name:	Nidhesh Gomai	Roll No:	16014224025
Faculty Sign & Date:		Grade/Marks:	

Experiment No: 5

Title: Power factor improvement (series)

Aim and Objective of the Experiment:

To improve power factor of a single phase inductive AC circuit using capacitor in series with it.

Requirements:

Inductor box, 1 KΩ-3W Resistor, Capacitor box, AC Ammeter and AC Voltmeter.

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

Theory:

When we need to convert electrical energy to mechanical energy, electric motors are used for it. These AC motors converts electric energy in two forms namely mechanical energy in the form of rotary motion and other is magnetic field. Magnetizing currents are lagging to the supply voltage. This magnetic energy is not a mechanical energy so it is kind of wastage, but without which motor will not run and convert electric energy into mechanical energy. Such form of energy is called as reactive power. Reactive power must be as less as possible so that the load will utilize maximum power and current requirement will be less for the same amount power. As the current requirement is less, so wire thickness will be small in diameter. Installation cost and energy cost will be also reduced. To reduce reactive power of the circuit, different power factor improvement methods are used. One of the most familiar method is the use of capacitor bank. We can use capacitor in series with the load or across the load. Following diagrams are illustrating effect of PF on active power.

(A Constituent College of Somaiya Vidyavihar University)

In the above figure instantaneous and average power calculated from AC voltage and current with a zero power factor. The blue line shows all the power is stored temporarily in the load during the first quarter cycle and returned to the grid during the second quarter cycle, so no real power is consumed by the load which is shown by sky-blue colour line.

In the above figure instantaneous and average power calculated from AC voltage and current with a unity power factor. The gray part shows all the power is absorbed in the load during the first half cycle as well as the second half cycle, so real power is fully consumed.

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

When power factor is between zero and unity, then real power consumed by the load depends upon PF of the circuit. Greater the power factor is always better to consume power.

Power Factor=
$$\frac{\text{True Power}}{\text{Apparent Power}}$$

Power Factor =
$$\cos \Phi = \frac{kW}{kVA}$$

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Somanyar TRUST

Stepwise-Procedure:

- **1.** Connect series R and L circuit across 230V, 1ø, 50 Hz AC supply and note down circuit voltage and current.
- **2.** Calculate practical value of circuit power factor by taking ratio of active power (P) and apparent power (S).
- **3.** Connect required value of capacitor in series with R-L load and switch on power supply to note circuit current.
- **4.** Calculate practical value of circuit power factor by taking ratio of active power (P) and apparent power (S).
- **5.** Compare theoretical and practical values of PF before connecting the capacitor and after connecting capacitor.

Observation Table:

Sr No	Type of load	Voltage (V)		Current (mA)		P (W)		S (VA)		Power factor	
		Th	Pr	Th	Pr	Th	Pr	Th	Pr	Th	Pr
	R-L	40	40	15.87	15.6	0.496	0.487	0.634	0.624	0.781	0.78
	R-L-C	40	40	18.27	17.3	0.657	0.622	0.730	0.692	0.9	0.89

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Sample Calculations:

$$XL = 2\pi\{L$$

$$= 2\pi \times 50 \times 5$$

$$= 1570 \cdot 2$$

$$Z = (1970 + 1)570) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5) \cdot 2$$

$$Z = (2519 - 08 + 286 \cdot 5)$$

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Post Lab Subjective/Objective type Questions:

1. What are benefits of connecting capacitor across the load to improve circuit PF?
Ans.
1.Reduce power loss: A low power factor causes more current, leading to higher power loss. By
improving power factor, current is reduced and power is reduced
improving power ractor, carrent is reduced talk power is reduced
2 In among load composity. Improved D.E. macons loss symment in singuit is a singuit can bondle many load
2.Increses lead capacity: Improved P.F. means less current in circuit i.e. circuit can handle more load
without the need of upgrading the circuit.
3. Voltage Stabilization: Reducing the reactive component of current results in more stable voltage profile
across the circuit.
Conclusion:
We improve the P.F to reduce reactive power and lower energy bill. P.F was improved after
connecting a capacitor in series.
connecting a capacitor in series.

Signature of faculty in-charge with Date: