LYRICS ANALYSIS

Tamer Hosny

TEAM PROJECT

- 1 Mahmoud Rady
- 2 Youssef Mahmoud
- 3 Hamza Hesham
- 4 Mohamed Soffar

Under the supervision of: Dr. Walid Gomaa

INTRODUCTION

- This project applies deep learning and natural language processing to analyze the lyrics of Tamer Hosny, a prominent figure in Arabic pop music.
- The goal is to uncover patterns in emotion, sentiment, and collaboration within his songs.
- By leveraging data-driven techniques, we aim to gain new insights into the artistic and linguistic features that define his work.

BACKGROUND

Tamer Hosny is a leading figure in Arabic pop music, known for his emotionally resonant lyrics and influential collaborations. Understanding the patterns and themes in his lyrics can provide deeper cultural and artistic insights.

PROJECT OVERVIEW

1. Data Collection

2. Data Preprocessing

3. Data Analysis

4. LLM

DATA COLLECTION

- Dataset Size:
 - Collected a total of 140 songs by Tamer Hosny.
- Diversity of Contributors:
 - 31 different composers
 - 54 different lyricists
 - 3515 Distinct words
- Data Source & Method:
 - Song lyrics and metadata were acquired using web scraping techniques from Genius.com, a widely used platform for music lyrics.

DATA PREPROCESSING

- Key Steps:
 - Text Normalization
 - Stopword Removal
 - Tokenization

TEXT NORMALIZATION

- Removed diacritics, punctuation, and numbers using arabicStemR.
- Standardized Arabic character variations (e.g., $\delta \to 0$) to resolve ambiguities.
- Applied CAMeL-Tools for advanced normalization (Unicode, Alef/Yeh unification).

STOPWORD REMOVAL

- Filtered 800+ Arabic stopwords (e.g., צ', צ'ט and dialect-specific terms using a custom list.
- The custom list was a combination of most well-known Arabic Stopwords Libraries: NLTK, AraNLP.

TOKENIZATION

- Split lyrics into 1-grams using tidytext in R.
- Handled compound Arabic phrases (e.g., "على قد") as single tokens where applicable.

• Mean, Mode & Median for Lyrics Length per song.

Estimating Density of Lyrics Length:

Distribution of Word Length:

Top words per Decade:

Lexical Diversity/ Density over a Decade:

TF-IDF Results:

Entropy Results:

LLM ANALYSIS USING TEXT

Emotion Classification. Model used Qwen3:4B

LLM ANALYSIS USING VOICE

Emotion Classification. Model used Qwen3:4B

CNN-BASED SINGER CLASSIFICATION: IDENTIFYING TAMER HOSNY'S VOICE

- Developed and trained a Convolutional Neural Network (CNN) to classify audio tracks based on the singer's identity.
- Focused on binary classification: distinguishing between Tamer Hosny and other artists.
- Processed audio data into spectrograms for input into the CNN, enabling effective learning of vocal features.
- Achieved 80% accuracy on the test set, demonstrating the model's ability to identify Tamer Hosny's voice.

DATA SPLITTING DISTRIBUTION

CONFUSION MATRIX

