Definitions

Vector Space

Assume that u, v, w are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

• u + v = v + u

Associativity:

- (u + v) + w = u + (v + w)
- (ab)v = a(bv)

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity:

• for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties:

- a(u + v) = au + av
- (a+b)v = av + bv

Linear Combination

A linear combination of a list of vectors $v_1, ..., v_n$ is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , or $\mathrm{Span}(v_1, \ldots, v_n)$. Defined as:

$$\mathrm{span}(v_1, ..., v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1, ..., a_m \in \mathbb{R}\}\$$

If the span is equal to some space $\operatorname{span}(\nu_1, \dots, \nu_n) = V$, then you could say that ν_1, \dots, ν_n spans V.

Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors v_1, \dots, v_n is called **linearly independent** when

$$a_1 = \cdots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

Basis

A **basis** of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^{\ltimes} is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation, as:

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim \mathbb{R}^n = n$$

Inner Product

For a pair of vectors $u, v \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined as:

$$u\cdot v=u_1v_1+...+u_nv_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of u and v must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}}\cdot \nu_{\{n\times 1\}}$$

The **Inner Product** is also a function $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$. The input is an ordered pair of vectors, and the output is a number. Inner products have the following properties:

Positivity:

• $\langle v, v \rangle \ge 0$ for all $v \in V$

Definiteness:

• $\langle v, v \rangle = 0$ if and only if v = 0

Additivity in First Slot:

• $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$

Homogeneity in First Slot:

• $\langle au, v \rangle = a \langle u, v \rangle$ for all $a \in \mathbb{R}$ and all $u, v \in V$

PROOFS 2

In another definition of the Inner Product, the concepts of "additivity" and "homogeneity" are combined into a concept called "linearity". **Bilinearity** is when there is linearity in both the First and Second slots. Additionally, there is a concept called **Symmetry** for all real numbers.

For $x, y, z \in V$ and $a, b \in \mathbb{R}$:

Bilinearity:

- Additivity and Homogeneity in First and Second Slot:
- $\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle$
- $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$

Symmetry:

• $\langle x, y \rangle = \langle y, x \rangle$

Norm

The Norm of a vector \mathbf{x} is defined as the square root inner product of \mathbf{x} with itself:

$$||x|| = \sqrt{\langle x, x \rangle}$$

The Euclidean Norm, also called 2-norm, is defined:

$$\|\mathbf{x}\|_2 = \sqrt{{\mathbf{x_1}}^2 + \ldots + {\mathbf{x_n}}^2}$$

which has the following properties:

Positivity:

- $||x|| \ge 0$
- ||x|| = 0 if and only if x = 0

Homogeneity:

• $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$

Triangle Inequality:

• $||x + y|| \le ||x|| + ||y||$

Orthogonal

Two vectors $u, v \in V$ are called **orthogonal** if the inner product between them is 0,

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$

you could also say " $\mathfrak u$ is orthogonal to $\mathfrak v$ ". Orthogonal is another way of saying "at right angles to each other", or "perpendicular".

Linear Map

A linear map from vector space V to vector space W is a function $T: V \to W$ with the following properties:

Additivity

• T(u + v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity

• $T(\alpha \nu) = \alpha(T\nu)$ for all $\alpha \in \mathbb{R}$ and all $\nu \in V$

Linear Maps and Matrices

Suppose M is a linear map $f: \mathbb{R}^a \to \mathbb{R}^b$, then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,\alpha} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,\alpha} \end{bmatrix}$$

Proofs

Law of Cosines

TODO

Triangle Inequality

TODO

Cauchy-Schwartz Inequality

TODO

Other

For vectors $u, v \in V$ such that:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Show that u, v are orthogonal when $\theta = 0$.