

Using block ciphers

Modes of operation: one time key

example: encrypted email, new key for every message.

Using PRPs and PRFs

Goal: build "secure" encryption from a secure PRP (e.g. AES).

This segment: one-time keys

1. Adversary's power:

Adv sees only one ciphertext (one-time key)

3. Adversary's goal:

Learn info about PT from CT (semantic security)

Next segment: many-time keys (a.k.a chosen-plaintext security)

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

- if
$$m_1=m_2$$
 then $c_1=c_2$

In pictures

Semantic Security (one-time key)

 $Adv_{ss}[A,OTP] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$ should be "neg."

ECB is not Semantically Secure

ECB is not semantically secure for messages that contain more than one block.

Dan Boneh

Secure Construction I

Deterministic counter mode from a PRF F: 2 > [0,1] - [0,1]

⇒ Stream cipher built from a PRF (e.g. AES, 3DES)

Det. counter-mode security

Theorem: For any L>0,

If F is a secure PRF over (K,X,X) then

 E_{DETCTR} is sem. sec. cipher over (K, X^L, X^L) .

In particular, for any eff. adversary A attacking E_{DETCTR} there exists a n eff. PRF adversary B s.t.:

$$Adv_{SS}[A, E_{DETCTR}] = 2 \cdot Adv_{PRF}[B, F]$$

 $Adv_{PRF}[B, F]$ is negligible (since F is a secure PRF)

Hence, $Adv_{SS}[A, E_{DETCTR}]$ must be negligible.

Proof

End of Segment