Rfoot Page 1/?? Rhead

Renewcommand $\vee \wedge$

1. Soit $n, p \ge 2$ avec $n \ne p$. Soit O un ouvert de $\mathbb{R}^n \times \mathbb{R}^p$, et $f: O \to \mathbb{R}^n$ une fonction. Soit $(a, b) \in \mathbb{R}^n \times \mathbb{R}^p$. On peut appliquer le théorème des fonctions implicites à f au point (a, b) si :

Réponse – Vrai

f est de classe \mathcal{C}^k , $f(a,b) = 0_{\mathbb{R}^n}$, et $d[f(\cdot,b)]_a$ est inversible.

Réponse – Faux

f est de classe \mathcal{C}^k , $f(a,b) = 0_{\mathbb{R}^p}$, et $d[f(a,\cdot)]_b$ est inversible.

Réponse – Faux

f est de classe C^k , $f(a,b) = 0_{\mathbb{R}^n}$, et $\partial_2 f(a,b) \neq 0$.

Réponse – Faux

f est de classe \mathcal{C}^k , $f(a,b) = 0_{\mathbb{R}^p}$, et $\partial_1 f(a,b) \neq 0$.

2. Dans quel cas regarde-t-on une des dérivées partielles de $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$ pour appliquer le théorème des fonctions implicites plutôt que de regarder la jacobienne de f?

Réponse – Vrai

Quand p = 1.

Réponse – Faux

Quand n = 1.

Réponse – Faux

Quand p = n.

Réponse – Faux

Quanq n > p.

3. Du coup, c'est quoi le R dans la formule PV = nRT? Réponse – Vrai La constante des gaz parfaits. Réponse – Faux Le rotationnel. Réponse – Faux La constante d'Avogadro. Réponse – Faux La constante de Planck. 4. Pourquoi on a appliqué le théorème des fonctions implicites à la variable x plutôt qu'aux varibles $a_0, a_1, ..., a_n$ dans l'application pour trouver les racines des polynômes? Réponse – Vrai Parce qu'on veut savoir comment les racines du polynômes bougent en fonction des coefficients. Réponse – Faux Parce que les autres dérivées partielles f ne s'annulent pas. Réponse – Faux Parce que les autres dérivées partielles f ne sont pas de classe \mathcal{C}^k . Réponse – Faux C'était un choix arbitaire. 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 , et $(a,b) \in \mathbb{R}^2$ tels que f(a,b) = 0. Quand on cherche un ouvert $U \subseteq \mathbb{R}$ et une fonction $\phi: U \to \mathbb{R}$ telle que $f(\phi(x), x) = 0$ sur U pour pouvoir appliquer le théorème des fonctions implicites, on regarde: Réponse – Vrai $\partial_1 f$ Réponse – Faux $\partial_2 f$ Réponse – Faux $\partial_1 f$ et $\partial_2 f$

Réponse – Faux

La copie du voisin.

6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . Pourquoi a-t-on le droit de dériver l'expression f(x,y) = 0 par rapport à x au voisinage de (x_0,y_0) quand $f(x_0,y_0) = 0$ et $\partial_2 f(x_0,y_0) \neq 0$?

Réponse – Vrai

Parce que $y = \phi(x)$ sur un ouvert U qui contient x, donc on peut dériver l'expression par rapport à x.

Réponse – Faux

Parce que si une fonction s'annule en un point, sa dérivée s'annule aussi en ce point.

Réponse – Faux

Parce que la fonction f est nulle pour tous les couples (x, y) au voisinaage de (x_0, y_0) et que la dérivée d'une fonction nulle est nulle.

Réponse – Faux

On n'a pas le droit.

7. Pourquoi calcule-t-on un développement limité de ϕ dans l'exercice fait en cours plutôt que de donner l'expression de ϕ ?

Réponse – Vrai

Parce qu'on ne peut pas donner l'expression explicite de ϕ .

Réponse – Faux

Parce que c'est plus facile.

Réponse – Faux

Parce que ϕ n'est pas de classe \mathcal{C}^{∞} .

Réponse – Faux

Il faut calculer les dérivées secondes de f pour donner une expression explicite de $\phi.$