

CAPSULE GRAPH NEURAL NETWORK

ICLR 2019

Zhang Xinyi, Lihui Chen

School of Electrical and Electronic Engineering Nanyang Technological University, Singapore xinyi001@e.ntu.edu.sg, elhchen@ntu.edu.sg

https://github.com/benedekrozemberczki/CapsGNN

- GCN
 - CNN输入模型的局限
 - GCN中卷积的计算方式
 - GCN如何传导
- Capsule net
 - CNN的缺陷
 - 输入与CNN有何不同
 - cell之间如何传导
 - CapsNet architecture

Dynamic Routing Between Capsules

Sara Sabour

Nicholas Frosst

Geoffrey E. Hinton
Google Brain
Toronto
{sasabour, frosst, geoffhinton}@google.com

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl Max Welling
University of Amsterdam
Canadian Institute for Advanced Research (CIFAR)
M.Welling@uva.nl

• CNN输入模型的局限

Cora dataset

- GCN中卷积的计算方式
 - 欧拉公式

对于 $\theta \in \mathbb{R}$,有 $e^{i\theta} = cos\theta + isin\theta$ 。

• 傅里叶级数

$$f(x) = C + \sum_{n=1}^{\infty} \left(a_n cos(rac{2\pi n}{T}x) + b_n sin(rac{2\pi n}{T}x)
ight), C \in \mathbb{R}$$

• 傅里叶变换

$$\mathcal{F}\{f\}(v)=\int_{\mathbb{D}}f(x)e^{-2\pi ix\cdot v}dx$$

• 傅里叶逆变换
$$\mathcal{F}^{-1}\{f\}(x) = \int_{\mathbb{R}} f(v)e^{2\pi ix\cdot v}dv$$

卷积公式

$$(fst g)(t)=\int_{\mathbb{R}}f(x)g(t-x)dx$$

变换后的卷积 $f * g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}$

- GCN中卷积的计算方式
 - Laplacian算子
 - 图中Laplacian算子
 - 标准化
 - 图中Laplacian算子分解
 - 图中傅里叶变换
 - 图中傅里叶逆变换

$$\Delta f(x) = \lim_{h o 0} rac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

$$L = D - A$$

$$L = I_N - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

$$L = U \Lambda U^T$$
 其中 Λ 是特征值组成的对角矩阵 $U = [u_1 \ldots u_n]$

$$\mathcal{GF}\{f\}(\lambda_l) = \sum_{i=1}^n f(i)u_l^*(i) \quad \mathcal{GF}\{x\} = U^Tx \ x = (f(1)\dots f(n)) \in \mathbb{R}^n \ \mathcal{IGF}\{\hat{f}\}(i) = \sum_{l=0}^{n-1} \hat{f}\left(\lambda_l\right)u_l(i) \quad \mathcal{IGF}\{x\} = Ux$$

UNIVERSIT

- GCN中卷积的计算方式
 - 图卷积公式 $g*x = U(U^Tg \cdot U^Tx)$
 - 利用Laplacian矩阵实现类似CNN的局部性 定义g为Laplacian矩阵的函数g(L)
 - 改写后 $g_{ heta} * x = U g_{ heta} U^T x = U g_{ heta'}(\Lambda) U^T x$
 - ・ 化管 $g_{ heta'}*xpprox heta(I_N+L)x \ = heta(I_N+D^{-rac{1}{2}}AD^{-rac{1}{2}})x$
 - 加上激活函数 $H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$

• GCN如何传导

Step1 send

• GCN如何传导

Step2 receive

• GCN如何传导

Step3 transform

• CNN的缺陷

• 输入与CNN有何不同

	Capsule	vs. Traditional Neu	ron	
Input from low-level capsule/neuron		$\operatorname{vector}(\mathbf{u}_i)$	$\operatorname{scalar}(x_i)$	
	Affine Transform	$\widehat{\mathbf{u}}_{j i} = \mathbf{W}_{ij}\mathbf{u}_i$	-	
Operation	Weighting	$\mathbf{s}_{j} = \sum_{i} c_{ij} \widehat{\mathbf{u}}_{j i}$	$a_j = \sum_i w_i x_i + b$	
	Sum			
	Nonlinear Activation	$\mathbf{v}_{j} = rac{\ \mathbf{s}_{j}\ ^{2}}{1+\ \mathbf{s}_{j}\ ^{2}} rac{\mathbf{s}_{j}}{\ \mathbf{s}_{j}\ }$	$h_j = f(a_j)$	
Output		$vector(\mathbf{v}_j)$ $scalar(h_j)$		

• cell之间如何传导

$$\mathbf{s}_{j} = \sum_{i} c_{ij} \hat{\mathbf{u}}_{j|i} , \qquad \hat{\mathbf{u}}_{j|i} = \mathbf{W}_{ij} \mathbf{u}_{i}$$
SOUTHWEST

• 动态路由

Procedure 1 Routing algorithm.

```
1: procedure ROUTING(\hat{\boldsymbol{u}}_{j|i}, r, l)
2: for all capsule i in layer l and capsule j in layer (l+1): b_{ij} \leftarrow 0.
3: for r iterations do
4: for all capsule i in layer l: \mathbf{c}_i \leftarrow \text{softmax}(\mathbf{b}_i) \triangleright \text{softmax} computes Eq. 3
5: for all capsule j in layer (l+1): \mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}
6: for all capsule j in layer (l+1): \mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j) \triangleright \text{squash} computes Eq. 1
7: for all capsule i in layer i and capsule i and
```

softmax
$$c_{ij} = \frac{\exp(b_{ij})}{\sum_{k} \exp(b_{ik})}$$

• Squash激活函数

$$\mathbf{v}_j = \frac{\|\mathbf{s}_j\|^2}{1 + \|\mathbf{s}_j\|^2} \frac{\|\mathbf{s}_j\|}{\|\mathbf{s}_j\|}$$

CapsNet architecture

Caps num = 32 Kernel = $8 \times 9 \times 9 \times 256$ (conv2d)

CapsNet reconstruction result

```
7210414959
```


improvement

- Vector较scale能更有效的保存信息
- Routing能够保证没有信息丢失

Network

Primary capsules

Graph capsules

attention module

$$egin{aligned} scaled(oldsymbol{s}_{(n,i)}) = rac{F_{attn}(ilde{oldsymbol{s}_n})_i}{\sum_{n} F_{attn}(ilde{oldsymbol{s}_n})_i} oldsymbol{s}_{(n,i)} \\ ilde{oldsymbol{s}_n} \in \mathbb{R}^{1 imes C_{alid}} oldsymbol{s}_{(n,i)} \in \mathbb{R}^{1 imes C_{alid}} oldsymbol{IIII} oldsymbol{s}_{(n,i)} \end{aligned}$$

Calculate votes

Cpas num = P Kernel = $d \times 1 \times 1 \times d$

Dynamic Routing

Input: N × C_{all} × d × P = P × (NC_{all}d) (dim: 4 -> 2)

W : shape $(P \times P)$ Out: shape $(P \times d')$

Class Capsules

Class num = K

Input: $P \times d$

 $W: P \times K$

Output: $K \times d$

Classification Loss

$$Loss_c = \sum_k \{T_k \max(0, m^+ - \|\boldsymbol{c}_k\|)^2 + \lambda(1 - T_k) \max(0, \|\boldsymbol{c}_k\| - m^-)^2\}$$
 同类时,分类概率必须大于m+ 异类时,分类的概率必须小于m-use $\lambda = 0.5$

 $m^+ = 0.9$, $m^- = 0.1$ and $T_k = 1$ iff the input graph belongs to class k.

Classification Experiment result

Table 1: Experiment Result of Biological Dataset

Algorithm	MUTAG	NCI1	PROTEINS	D&D	ENZYMES
WL GK RW	82.05 ± 0.36 81.58 ± 2.11 79.17 ± 2.07	82.19 ± 0.18 62.49±0.27 >3days	74.68 ± 0.49 71.67 ± 0.55 74.22 ± 0.42	79.78 ± 0.36 78.45±0.26 >3days	52.22 ± 1.26 32.70 ± 1.20 24.16 ± 1.64
Graph2vec AWE DGK	83.15±9.25 87.87 ± 9.76 87.44±2.72	73.22±1.81 - 80.31±0.46	73.30±2.05 - 75.68±0.54	71.51 ± 4.02 73.50 ± 1.01	35.77±5.93 53.43±0.91
PSCN DGCNN ECC GCAPS-CNN	88.95 ± 4.37 85.83±1.66 76.11	76.34±1.68 74.44±0.47 76.82 82.72 ± 2.38	75.00±2.51 75.54±0.94 - 76.40 ± 4.17	76.27±2.64 79.37 ± 0.94 72.54 77.62±4.99	- 51.00±7.29 45.67 61.83 ± 5.39
CapsGNN	86.67±6.88	78.35±1.55	76.28±3.63	75.38±4.17	54.67±5.67

Classification Experiment result

Table 2: Experiment Result of Social Dataset

Algorithm	COLLAB	IMDB-B	IMDB-M	RE-M5K	RE-M12K
****	- 0.00 4 - -	= 2 40 1 4 62	40.00 + 4.77	10 11 1 2 26	20.10.1.20
WL	$79.02{\pm}1.77$	$73.40{\pm}4.63$	49.33 ± 4.75	49.44 ± 2.36	38.18 ± 1.30
GK	72.84 ± 0.28	65.87 ± 0.98	43.89 ± 0.38	41.01 ± 0.17	31.82 ± 0.08
DGK	73.09 ± 0.25	66.96 ± 0.56	44.55 ± 0.52	41.27 ± 0.18	32.22 ± 0.10
AWE	73.93 ± 1.94	74.45 ± 5.83	51.54 ± 3.61	$50.46{\pm}1.91$	39.20 ± 2.09
PSCN	72.60 ± 2.15	71.00 ± 2.29	45.23 ± 2.84	49.10 ± 0.70	41.32 ± 0.42
DGCNN	73.76 ± 0.49	70.03 ± 0.86	47.83 ± 0.85	48.70 ± 4.54	-
GCAPS-CNN	77.71 ± 2.51	71.69 ± 3.40	48.50 ± 4.10	50.10 ± 1.72	-
CapsGNN	79.62 ± 0.91	73.10 ± 4.83	$50.27{\pm}2.65$	52.88 ± 1.48	46.62 ± 1.90

欧拉公式推导

n阶泰勒公式

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$$

$$sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots$$

$$cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots \quad \text{Fix} = i\theta \text{Fix}$$

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \frac{(i\theta)^8}{8!} + \dots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \frac{\theta^8}{8!} + \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \frac{\theta^8}{8!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right)$$

$$= \cos\theta + i\sin\theta$$

UNIVERSITY

卷积傅里叶变换推导

$$egin{aligned} h(z) &= \int_{\mathbb{R}} f(x)g(z-x)dx \ &\mathcal{F}\{f*g\}(v) = \mathcal{F}\{h\}(v) \ &= \int_{\mathbb{R}} h(z)e^{-2\pi iz\cdot v}dz \ &= \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(z-x)e^{-2\pi iz\cdot v}dxdz \ &= \int_{\mathbb{R}} f(x)(\int_{\mathbb{R}} g(z-x)e^{-2\pi iz\cdot v}dz)dx \end{aligned}$$
 $\stackrel{ ext{\tiny $\#$}}{=} \lambda y = z - x : dy = dz \ &\mathcal{F}\{f*g\}(v) = \int_{\mathbb{R}} f(x)(\int_{\mathbb{R}} g(y)e^{-2\pi i(y+x)\cdot v}dy)dx \ &= \int_{\mathbb{R}} f(x)e^{-2\pi ix\cdot v}(\int_{\mathbb{R}} g(y)e^{-2\pi iy\cdot v}dy)dx \ &= \int_{\mathbb{R}} f(x)e^{-2\pi ix\cdot v}dx \int_{\mathbb{R}} g(y)e^{-2\pi iy\cdot v}dy \end{aligned}$

 $= \mathcal{F}\{f\}(v) \cdot \mathcal{F}\{g\}(v)$

图卷积公式化简

化简前图卷积公式

$$g_{ heta} * x = U g_{ heta} U^T x = U g_{ heta'}(\Lambda) U^T x$$

$$g_{ heta'}(\Lambda) pprox \sum_{k=0}^K heta'_k T_k(ilde{\Lambda})$$

$$\tilde{\Lambda} = \frac{2}{\lambda_{\text{max}}} \Lambda - I_N$$

 $\lambda_{\rm max}$ denotes the largest eigenvalue of L

其中 T_k 是Chebyshev多项式。这里可以把简单 $g_ heta(\Lambda)$ 简单看成是 Λ 的多项式。

因为
$$U\Lambda^kU^T=(U\Lambda U^T)^k=L^k$$

$$g_{ heta'}(\Lambda) pprox \sum_{k=0}^K heta'_k T_k(ilde{L})$$

$$ilde{L} = rac{2}{\lambda_{ ext{max}}} L - I_N$$

设定 K=1 那卷积公式可以简化为

$$egin{aligned} g_{ heta'} * x &pprox heta(I_N + L)x \ &= heta(I_N + D^{-rac{1}{2}}AD^{-rac{1}{2}})x \end{aligned}$$

