Álgebra Relacional

Prof: Aldelir Fernando Luiz

Disciplina: Banco de Dados I Turma: 3ºsemestre

Curso: Bacharelado em Ciência da Computação

Semestre 01/

Tópicos

- Conceitos Básicos
- Álgebra Relacional
- Estudos de caso

Conceitos Básicos

- Um banco de dados relacional consiste num conjunto de relações
- A estrutura de uma relação é definida pelo seu schema
- Uma relação pode ser representada como uma tabela de duas dimensões (i.e., linhas e colunas)
 - Relação R com atributos $A_1, A_2, ..., A_n = R(A_1, A_2, ..., A_n)$
- Uma tupla corresponde a uma linha/ocorrência da relação
 - $t = \langle v_1, v_2, ..., v_n \rangle$, onde v_i é um valor para o atributo A_i
- Um atributo Ai da relação R é denotador por
 - R.A_i

Conceitos Básicos

• Exemplo de relação, segundo o modelo relacional

Exemplo

Relação: Aluno (#cod_mat_aluno, nom_aluno, des_endereco)

Ocorrêcia: $t = \langle 123, \text{Aldelir Fernando, Blumenau/SC} \rangle$

Atributo: Aluno.nom_aluno

Introdução à Álgebra Relacional

- Um modelo de dados, além de definir estruturas e restrições, deve definir um conjunto de operações para manipular os dados
- A álgebra relacional consiste num conjunto básico de operações do modelo relacional de dados
- As operações permitem especificar requisições para a recuperação de dados, de modo que o resultado de uma operação é uma nova relação, constituída a partir de uma ou mais relações
- As requisições para a recuperação de dados são realizadas por meio de expressões da álgebra relacional

Operações da Álgebra Relacional

- As operações da álgebra relacional pode ser agrupadas em duas categorias
- Operadores Relacionais
 - Seleção $\rightarrow \sigma$
 - Projeção $\rightarrow \pi$
 - Junção → ⋈
 - Divisão → ÷
 - Renomeamento $\rightarrow \rho$
- Operadores de Conjuntos
 - União → ∪
 - Interseção → ∩
 - Diferenciação → −
 - Produto Cartesiano $\rightarrow \times$

Operações da Álgebra Relacional

- Outros operadores também empregados na álgebra relacional
 - Operador de Atribuição: ←
 - Operadores de Comparação: $>, <, \leq, \geq, \neq, =$
 - Operadores Lógicos: ∨, ∧, ¬
- Operações Unárias
 - Projeção (π) e Seleção (σ)
- Operações Binárias
 - União (∪), Interseção (∩) e Diferença (−)
 - Produto Cartesiano (×)
 - Junção (⋈) e Divisão (÷)

INSTITUTO FEDERAL Álgebra Relacional - Operador de Selecão

- A operação Seleção é utilizada para selecionar um conjunto de tuplas de uma relação, i.e., elimina linhas de uma relação
- Isto é, ela constrói um subconjunto horizontal de uma relação, a partir das tuplas que satisfazem uma determinada condição
- Sintaxe Básica:

 $\sigma \langle condicao \rangle (Relacao)$

- A condição (ou condições) consiste em um ou mais predicados, e relação consiste no conjunto de dados onde será aplicada a operação
- Assim, ela pode ter operadores de comparação $(<,>,\leq,\geq,\neq,...)$ e também ser composta com os conectivos lógicos ∨, ∧ e ¬

 Exemplo: A partir da relação veículo, selecionar todos os veículos da marca GM

Exemplo

 $\sigma_{Marca='GM'}(Veiculo)$

Veiculo			
Matricula Marca Modelo Ano/Model			
VX0281	VW	Polo	2013/2013
GX9231	GM	Sonic	2016/2016
FX2655	Ford	Fusion	2011/2011
GX7177	GM	Cruize	2017/2018
HX9811	Hyunday	HB20	2016/2016

 Exemplo: A partir da relação veículo, selecionar todos os veículos da marca GM

Exemplo

 $\sigma_{Marca='GM'}(Veiculo)$

Veiculo			
Matricula Marca Modelo Ano/Modelo			
VX0281	VW	Polo	2013/2013
GX9231	GM	Sonic	2016/2016
FX2655	Ford	Fusion	2011/2011
GX7177	GM	Cruize	2017/2018
HX9811	Hyunday	HB20	2016/2016

INSTITUTO FEDERAL Álgebra Relacional – Operador de Selecão

- Como a seleção é uma operação unária, ela só pode ser aplicada sobre uma única relação
- Não é possível realizar a operação sobre tuplas de relações distintas
- A operação é comutativa, isto é, a ordem das operações não afeta o resultado final

```
\sigma \langle condicao1 \rangle (\sigma \langle condicao2 \rangle (Relacao)) =
\sigma \langle condicao2 \rangle (\sigma \langle condicao1 \rangle (Relacao))
```

 É possível combinar uma série de operações de Seleção em cascada, numa única operação de Seleção

```
\sigma \langle condicao1 \rangle (\sigma \langle condicao2 \rangle (\sigma \langle condicao3 \rangle (Relacao))) =
\sigma \langle condicao1 \rangle \wedge \langle condicao2 \rangle \wedge \langle condicao3 \rangle (Relacao)
```

- A operação Seleção é utilizada para selecionar um conjunto de atributos de uma relação, de modo que ela elimina colunas da mesma
- Isto é, ela constrói um subconjunto vertical de uma relação, a partir dos atributos desejados
- Sintaxe Básica:

 $\pi \langle atributos \rangle (Relacao)$

 Os atributos na expressão consistem numa lista de atributos dentre aqueles existentes na relação, onde Relacao é o nome de alguma relação existente

INSTITUTO FEDERAL Álgebra Relacional – Operador de Projeção

• Exemplo: A partir da relação veículo, exibir a marca e o modelo para todos os veículos

Exemplo

 $\pi_{Marca,Modelo}(Veiculo)$

Veiculo			
Matricula Marca Modelo Ano/Mode			Ano/Modelo
VX0281	VW	Polo	2013/2013
GX9231	GM	Sonic	2016/2016
FX2655	Ford	Fusion	2011/2011
GX7177	GM	Cruize	2017/2018
HX9811	Hyunday	HB20	2016/2016

 Exemplo: A partir da relação veículo, listar a marca e o modelo para todos os veículos

Exemplo

 $\pi_{Marca,Modelo}(Veiculo)$

Veiculo			
Matricula Marca Modelo Ano/Model			
VX0281	VW	Polo	2013/2013
GX9231	GM	Sonic	2016/2016
FX2655	Ford	Fusion	2011/2011
GX7177	GM	Cruize	2017/2018
HX9811	Hyunday	HB20	2016/2016

INSTITUTO FEDERAL Álgebra Relacional - Operador de Projeção

- Tal como ocorre com a seleção, a projeção é uma operação unária, razão pela qual ela só pode ser aplicada numa única relação
- Se porventura a lista de atributos incluir apenas atributos não-chave da relação, pode ocorrer tuplas duplicadas
 - A Projeção elimina tuplas duplicadas/repetidas, de modo que o resultado seja uma relação válida – o modelo relacional não admite tuplas repetidas
- A operação não é comutativa; logo, pode-se dizer que

 $\pi \langle lista1 \rangle (\pi \langle lista2 \rangle (Relacao)) \neq \pi \langle lista2 \rangle (\pi \langle lista1 \rangle (Relacao))$

INSTITUTO FEDERAL Álgebra Relacional – Operador de Renomeamento

- A operação de renomeação (ou renomeamento) é utilizada para renomear uma relação ou atributos desta, de modo que produz uma relação idêntica a original, mas designada por um novo nome
- A sintaxe básica da operação é $\rho_{N(c_1,c_2,...,c_n)}(Relacao)$ ou $\rho_N(Relacao)$ ou $\rho_{(c_1,c_2,...,c_n)}(Relacao)$
- N é o novo nome da relação, $\langle c_1, c_2, ..., c_n \rangle$ são os novos nomes dos atributos e relação consiste na relação sobre a qual será realizada a operação
- Quanto à sintaxe, a primeira expressão renomeia a relação e os atributos, a segunda renomeia apenas a relação e a terceira renomeia apenas os atributos

INSTITUTO FEDERAL Álgebra Relacional - Operador de Renomeamento

• Exemplo: A partir da relação veículo, listar a marca e o modelo para todos os veículos da marca GM

Exemplo

 $\rho(NomeMarca,NomeModelo)(\pi_{Marca,Modelo}(\sigma_{Marca='GM'}(Veiculo)))$

Veiculo			
Matricula Marca Modelo Ano/Mode			
VX0281	VW	Polo	2013/2013
GX9231	GM	Sonic	2016/2016
FX2655	Ford	Fusion	2011/2011
GX7177	GM	Cruize	2017/2018
HX9811	Hyunday	HB20	2016/2016

INSTITUTO FEDERAL Álgebra Relacional - Operador de Renomeamento

• Exemplo: A partir da relação veículo, listar a marca e o modelo para todos os veículos da marca GM

Exemplo

 ρ (NomeMarca,NomeModelo)(π Marca,Modelo(σ Marca=' σ M'(Veiculo)))

Veiculo		
NomeMarca NomeModelo		
GM	Sonic	
GM	Cruize	

INSTITUTO FEDERAL Álgebra Relacional - Operador de Renomeamento

• Exemplo: Modificar o nome da relação veículo para automóvel

Exemplo

Relação Original Veículo

Veiculo			
Matricula Marca Modelo Ano/Modelo			
HX9811	Hyunday	HB20	2016/2016

$\rho_{Automovel}(Veiculo)$

Automovel			
Matricula Marca Modelo Ano/Modelo			
HX9811	Hyunday	HB20	2016/2016

- A álgebra relacional permite especificar expressões que contenham diversas operações, uma após a outra, isto é, numa sequencia de operações
 - É possível especificar/escrever as operações numa única expressão ou aplicar uma operação por vez, com relações de resultado intermediário
 - No segundo caso, deve-se utilizar o operador de atribuição (←) para criar as relações intermediárias
- A expressão de renomeamento apresentada da lâmina 18 é um exemplo de diversas operações numa mesma expressão
- Exemplo: listar a marca e modelo para todos os veículos da marca GM

 ρ (NomeMarca,NomeModelo)(π Marca,Modelo(σ Marca='GM'(Veiculo)))

 O mesmo exemplo, porém, com sequenciamento de operações e relações intermediárias seria especificado da seguinte maneira

```
R_1 \leftarrow \sigma_{Marca='GM'}(Veiculo)

R_2 \leftarrow \pi_{Marca,Modelo}(R_1)

\rho(NomeMarca,NomeModelo)(R_2)
```

- Note que, para este caso, foram criadas duas relações intermediárias, R₁ e R₂
- Observe que primeiro deve(m) ser executada(s) a(s) operação(ões) mais internas (ou aninhadas)

- A sequencia de operações também pode ser usada para renomear os atributos das relações intermediárias, sem a necessidade de utilizar explicitamente o operador de renomeamento
- No caso do exemplo anteriormente apresentado, teríamos o seguinte

```
R_1 \leftarrow \sigma_{Marca='GM'}(Veiculo)

R_2(NomeMarca, NomeModelo) \leftarrow \pi_{Marca, Modelo}(R_1)
```


- Em relação ao renomeamento de atributos por meio de uma sequencia de operações, dois aspectos importantes devem ser mencionados
 - Caso nenhuma operação de renomeamento seja efetuada numa Seleção, os nomes dos atributos na relação intermediária (ou resultante) serão os mesmos da relação original e estarão disposto na mesma ordem
 - No caso de uma operação de projeção sem renomeamento, a relação intermediária (ou resultante) será composta pelos mesmos nomes dos atributos especificados na lista de projeção e na ordem relativa à operação

Álgebra Relacional – Operações Teóricas de Conjuntos

- Conforme mencionado anteriormente, a álgebra relacional dispõe de um grupo de operadores matemáticos, nos termos da teoria dos conjuntos
 - Operadores binários que envolvem duas relações
 - Algumas operações requerem que as relações possuam as mesmas especificações (ou schema), a fim de que as tuplas sejam do mesmo tipo, e, portanto, compatíveis com a operação
- Nestes termos, duas relações R₁(a₁, a₂, ..., a_n) e R₂(c₁, c₂, ..., c_n) são compatíveis para união (∪), interseção (∩) ou diferenciação (−) se possuirem o mesmo grau "n" (i.e., o mesmo número de atributos) e se dominio(R₁) = dominio(R₂): 1 ≤ i ≤ n
- A união e interseção são comutativas, enquanto que a diferenciação não

- A união de duas relações R₁ e R₂ consiste no conjunto de todas as tuplas pertencentes a relação R₁ ou pertencentes a relação R₂, de modo que tuplas duplicadas são suprimidas
- Assim, a união de R₁ e R₂ (i.e., R₁ ∪ R₂) é o conjunto dos elementos que estão em R₁ ou R₂ ou ambos, com a supressão dos elementos (iguais) que estão presentes em R₁ e R₂

INSTITUTO FEDERAL Álgebra Relacional - Operação de União

Relações

 R_1

Marca	Modelo
GM	Sonic
Ford	Fusion
GM	Cruize

 R_2

Marca	Modelo
Hyunday	HB20
Ford	Focus
GM	Cruize
Ford	Fusion

União

 $R_1 \cup R_2$

Marca	Modelo
GM	Sonic
Ford	Fusion
GM	Cruize
Hyunday	HB20
Ford	Focus

- A interseção de duas relações R₁ e R₂ consiste no conjunto de todas as tuplas pertencentes a relação R₁ e também pertencentes a relação R₂
- Isto é, a interseção é designada pelo conjunto dos elementos que estão em ambas as relações R₁ e R₂

INSTITUTO FEDERAL Álgebra Relacional - Operação de Interseção

Relações

 R_1

Marca	Modelo
GM	Sonic
Ford	Fusion
GM	Cruize

 R_2

Marca	Modelo
Hyunday	HB20
Ford	Focus
GM	Cruize
Ford	Fusion

Interseção

 $R_1 \cap R_2$

Marca	Modelo
Ford	Fusion
GM	Cruize

INSTITUTO FEDERAL Álgebra Relacional – Operação Catarinense Campus Blumenau de Diferença

A diferença (ou diferenciação) de duas relações R₁ e R₂ consiste no conjunto de todas as tuplas pertencentes a relação R₁ e não pertencentes a relação R₂

INSTITUTO FEDERAL Álgebra Relacional - Operação de Diferença

Relações

Marca	Modelo
Hyunday	HB20
Ford	Focus
GM	Cruize
Ford	Fusion

 R_2

Marca	Modelo
GM	Sonic
Ford	Fusion
GM	Cruize

Diferença

 $R_1 - R_2$

Marca	Modelo
Hyunday	HB20
Ford	Focus

Álgebra Relacional – Produto Cartesiano

- O produto cartesiano de duas relações R₁ e R₂ consiste no conjunto de todas originadas da concatenação das tuplas pertencentes a relação R₁ e das tuplas pertencentes a relação R₂
- Isto é, é uma combinação de todas as tuplas da relação R₁ com todas as tuplas da relação R₂
- Para o produto cartesiano, não é requerido que as relações tenham as mesmas especificações, tampouco atributo(s) comum(ns)

Álgebra Relacional – Produto Cartesiano

Relações

 R_1

Marca Modelo	
Opel	Captiva
Ford	Focus
Opel	Cruize
Opel	Sonic
Ford	Fusion

 R_2

Fabrica	Pais
Opel	Alemanha
Ford	EUA

Produto Cartesiano

 $R_1 \times R_2$

Marca	Modelo	Fabrica	Pais
Opel	Captiva	Opel	Alemanha
Ford	Focus	Opel	Alemanha
Opel	Cruize	Opel	Alemanha
Opel	Sonic	Opel	Alemanha
Ford	Fusion	Opel	Alemanha
Opel	Captiva	Ford	EUA
Ford	Focus	Ford	EUA
Opel	Cruize	Ford	EUA
Opel	Sonic	Ford	EUA
Ford	Fusion	Ford	EUA

INSTITUTO FEDERAL Álgebra Relacional – Operação de Juncão

- A junção consiste num subconjunto do produto cartesiano de duas relações R_1 e R_2 , que possuem um atributo comum, cujos valores dos elementos do atributo comum sejam iquais em ambas as relações
- A junção permite combinar tuplas de duas relações que obedecem a uma condição de junção – equivalente ao produto cartesiano + seleção

$$R_3 \leftarrow R_1 \bowtie_{condicao} R_2$$

ou

$$R_3 \leftarrow \sigma_{condicao}(R_1 \times R_2)$$

 A condição pode ser desprezada quando o(s) atributo(s) comum(ns) das relações tem o mesmo nome

$$R_3 \leftarrow R_1 \bowtie R_2$$

de Junção

Relações

Marca	Modelo
Opel	Captiva
Ford	Focus
Opel	Cruize
Opel	Sonic
Ford	Fusion

Fabrica	Pais
Opel	Alemanha
Ford	EUA

Junção

 $R_1 \bowtie_{Marca=Fabrica} R_2$

Marca	Modelo	Fabrica	Pais
Opel	Captiva	Opel	Alemanha
Ford	Focus	Ford	EUA
Opel	Cruize	Opel	Alemanha
Opel	Sonic	Opel	Alemanha
Ford	Fusion	Ford	EUA

INSTITUTO FEDERAL Álgebra Relacional - Operação de Junção

Relações

Marca	Modelo
Opel	Captiva
Ford	Focus
Opel	Cruize
Opel	Sonic
Ford	Fusion

Marca	Pais
Opel	Alemanha
Ford	EUA

Junção

 $R_1 \bowtie R_2$

Marca	Modelo	Marca	Pais
Opel	Captiva	Opel	Alemanha
Ford	Focus	Ford	EUA
Opel	Cruize	Opel	Alemanha
Opel	Sonic	Opel	Alemanha
Ford	Fusion	Ford	EUA

- A operação de junção (comum) também pode ser designada por junção interna – isto é, onde a condição é uma relação de igualdade entre atributos das relações envolividas
- Uma operação de junção (interna) na qual os atributos (comuns) de comparação possuem o mesmo nome, é designada por junção natural – isto é, a condição é implícita e correspondente à igualdade dos atributos com o mesmo nome, existente nas relações envolvidas

- A operação de junção comum (ou junção interna) requer a equivalência (ou igualdade) dos valores contidos nos atributos comuns das relações envolvidas
- Por outro lado, um caso particular de junção denominado junção externa não requer que tuplas das relações envolvidas tenham equivalência de valores para os atributos comuns das mesmas
- Isto é, mesmo que não haja correspondência de valores no atributo comum de uma das relações, as tuplas daquela relação passam a fazer parte do resultado

INSTITUTO FEDERAL Álgebra Relacional - Operação de Junção Externa

Relações

 $R_1 = funcionario$

Matricula	Nome
123	João
234	Maria
345	José
456	Pietra

 R_2 = dependente

Nome	Matricula	
Pedro	123	
Saulo	456	

Junção

 $R_1 \bowtie R_2$

Matricula	Nome	Nome	Matricula
123	João	Pedro	123
234	Maria		
345	José		
456	Pietra	Saulo	456

de Junção

• Encontrar os funcionários que não têm dependentes

Relações

 $R_1 = funcionario$

Matricula	Nome
123	João
234	Maria
345	José
456	Pietra

 $R_2 = dependente$

Nome	Matricula
Pedro	123
Saulo	456

Junção

 $\sigma_{Nome=\perp}(R_1 \bowtie R_2)$

Matricula	Nome	Nome	Matricula
234	Maria		
345	José		

Catarinense Campus Blumenau

INSTITUTO FEDERAL Álgebra Relacional - Operação de Junção

 Exibir os nomes dos funcionários que não têm dependentes

Relações

$$R_1 = funcionario$$

Matricula	Nome
123	João
234	Maria
345	José
456	Pietra

$R_2 = dependente$

Nome	Matricula
Pedro	123
Saulo	456

Juncão

$$R_{tmp} \leftarrow \sigma_{Nome=\perp}(R_1 \bowtie R_2)$$

 $R_{aux} \leftarrow \rho_{(Mat,Nome,Func,Cod)}(R_{tmp})$
 $\pi_{Nome}(R_{aux})$

Nome
Maria
José

INSTITUTO FEDERAL Álgebra Relacional - Operação de Divisão

- A divisão consiste num conjunto dos elementos x com os pares (x, y) pertencentes a relação R_1 para todos os valores y pertencentes a relação R₂
- A divisão requer que o número de atributos de R₁ seja maior que o número de atributos de R_2 , isto é, para $R_1(X) \div R_2(Y), Y \subseteq X$

$$R_3 \leftarrow R_1 \div R_2$$

- Sejam n_1 e n_2 os números de atributos de R_1 e R_2 , respectivamente
 - o resultado da divisão será uma relação contendo o conjunto de atributos de R_1 que não são atributos de R_2 , isto é, os $n_1 - n_2$ atributos
- O resultado será composto por todas as tuplas de R₁ que tenham correspondência com **todas** as tuplas de R_2

INSTITUTO FEDERAL Álgebra Relacional - Operação de Divisão

Quais universidades existem em todas as cidades?

Relações

 $R_1 = universidade$

Nome	Cidade
UFSC	Florianópolis
UFFS	Joinville
UFSC	Blumenau
UFFS	Blumenau
UFSC	Joinville

 $R_2 = cidade$

Cidade
Joinville
Blumenau
Florianópolis

 $R_1 \div R_2$

Nome **UFSC**

Exercícios – 1ª Parte

- A partir do conjunto de relações fornecidas a seguir, especificar as operações da álgebra relacional a fim de obter o seguinte
 - A denominação dos fornecedores que fornecem o produto de código P5
 - 2 A denominação dos fornecedores que fornecem algum produto cujo tipo é Eletrônico
 - 3 A denominação dos produtos do tipo **Alimentício**, que tiveram pedidos com quantidade superior a 500 unidades
 - A denominação dos fornecedores que fornecem todos os produtos já comercializados
 - 6 A denominação dos fornecedores que fornecem produtos de todos os tipos

FORNECEDOR (#cod_fornecedor, den_fornecedor, #cod_municipio)
PRODUTO (#cod_produto, den_produto, #cod_un_medida, #cod_tipo)
UNIDADE MEDIDA (#cod_un_medida, den_un_medida)

MUNICIPIO (#cod_municipio, nom_municipio)

TIPO (#cod_tipo, den_tipo)

PEDIDO (#cod_fornecedor, #cod_produto, qtd_vendida)

Exercícios – 2ª Parte

- A partir do conjunto de relações fornecidas a seguir, especificar as operações da álgebra relacional a fim de obter o seguinte
 - Os nomes dos alunos que tiveram nota superior a 7 nas disciplinas BDD1 e PGM3
 - Os nomes dos alunos que cursaram todas as disciplinas de carga horária maior que 72 horas, com nota superior a 6
 - 3 A denominação da(s) disciplina(s) que todos os alunos que a(s) cursou(aram), obtiveram nota superior a 5
 - Os nomes dos alunos oriundos de Blumenau que obtiveram nota superior a 8 nas disciplinas com carga horária superior a 60 horas
 - Os nomes dos alunos que tiveram frequência superior a 75% e nota maior que 7 em todas as disciplinas cursadas

ALUNO (#num_matricula, nom_aluno, #cod_municipio, #cod_turma)
MUNICIPIO (#cod_municipio, nom_municipio)

TURMA (#cod_turma, des_sigla, num_serie)

DISCIPLINA (#cod_disciplina, den_disciplina, vlr_ch_horaria, num_serie_fase)
HISTORICO (#num_matricula, #cod_disciplina, vlr_nota, pct_frequencia)

Álgebra Relacional

Obrigado!?