# Identifying Gestures through EMG signals

Sam Voisin

# Background



#### The Problem

- Dependable gesture recognition & prediction provides intuitive alternatives for a wide range of applications:
  - Consumer Prosthetics, Human-computer interface, etc.
  - 2. Military & industrial Exoskeleton, remote robotic control, etc.

- Modest results despite ample researcher attention:
  - 1. Imprecise readings dependent on superficial user characteristics
  - 2. Incongruous data sets leads to small training sets & overfitting
  - 3. Onboard computing resources limited

#### Solution

- Computationally feasible data pipeline comprised of two parts:
  - Filtering component: Remove superficial noise irrelevant to all gesture classes
  - Classifying component: Classify gesture as early as possible in cycle



#### Data

- 36 Test Subjects
- 8 Sensors: 5 are placed directly on main muscles



- 6 Gestures: 4 simple (e.g. "left") and
  2 compound (e.g. "left + up")
- Perform gesture for 3 sec.



#### Data

#### Between subject performance variability





#### Data

#### Within subject performance variability





# **Exploratory Analysis - Dimension Reduction**

- Principal Components Analysis:
  - First 3 PCs: 80% of variance



Multidimensional Scaling



## Identifying Important Characteristics

- What characteristics are important for classification?
  - Identifying peaks & valleys will be unique to a gesture
  - Characteristics common to all gestures may be removed without information loss
- Persistent homology may help to answer this question
  - Vietoris-Rips Complex calculated for 1-D homology group on 5-channel time series
  - $\circ$  20x20 pixel persistence images generated with  $\sigma$  = 1e-5







# Persistence Images



# Combining Persistence Images

- Want to determine which qualities are shared within a gesture class
- Normalized sum of normalized persistence images,  $P_n$

Let  $\mathbf{v}_k$  be a persistence image of class  $k \in \mathcal{K}$ . Let K be the set of observations from  $\mathcal{K}$ .

$$\mathbf{u}_k := rac{\mathbf{v}_k}{\sum_i \mathbf{v}_k} \quad P_n = rac{\sum_{k \in K} \mathbf{u}_k}{\sum_i \sum_{k \in K} \mathbf{u}_{k,i}}$$



# Aside: Using $P_n$ to classify persistence images

- These vectors provide a baseline classification rate
- In-sample accuracy: 57.1%
  - Remarkably high for extremely low compute cost
  - Expect 25% for random assignment
  - Out-of-sample accuracy is hit & miss some subjects have more influence than others



# Inverse Images - Logistic Regression

Another method for determining feature importance: Fit logistic regression;
 extract coefficients and reform as inverse persistence image









- In-sample performance: 99.57% accuracy
- Out-of-sample performance: 52.59% accuracy

# Inverse Images - LASSO

- ullet Regularize & sparsify with  $L_1$  penalty:  $egin{array}{c} rgmin \ eta \in \mathbb{R}^p \end{array} f(Y|X,eta) + \lambda ||eta||_1$
- More aggressive filtering









- In-sample performance: 81.96% accuracy
- Out-of-sample performance: 59.48% accuracy

# Inverse Images - Compare

Inverse Persistence Image for Gesture: 1

Inverse Persistence Image for Gesture: 1



Inverse Persistence Image for Gesture: 2



Inverse Persistence Image for Gesture: 4



Inverse Persistence Image for Gesture: 3



Inverse Persistence Image for Gesture: 3



Inverse Persistence Image for Gesture: 4



Inverse Persistence Image for Gesture: 2



#### Persistence Filter

- Is it possible to construct a filter in this manner?
- Important information provided by less persistent 1-cycles.
- Cannot remove larger 1-cycles without loss of critical 1-cycles.



#### SSM - Classifier

#### What and How?

- Generate self-similarity matrix (SSMs) for time-ordered point cloud (TOPC) for each channel (modality)
- Derive self-similarity template through similarity network fusion (SNF); Use normalized SSMs to randomly walk over TOPC as a graph.
- Use features of fused SSMs to classify gestures.





## Classifier - Challenges

High one-time compute cost (size & time complexity)

```
\circ 36 x 5 x 4 = 720 SSMs of size (n \times n)
```

- Varying sized TOPCs require dynamic time-warping
  - $\circ$  Complexity:  $\mathcal{O}(n^2)$  where 1500 < n < 3000

# Moving Forward

- Separate gestures into phases: begin, hold, release
- Perform sparse sampling of time series
- More work with SW1Pers:
  - Difficult to obtain topological evidence of cycles due to noise
  - More work needed to tune sliding window parameters
- Computing resources are available for SNF
  - Duke cluster
  - Google cloud environments

#### Sources

- Daniel. "Myo Gesture & Motion Control Armband." Gadgetsin, 21 July 2014, https://gadgetsin.com/myo-gesture-motion-control-armband.htm.
- "Surface EMG Sensor.", Amplifier and Electrodes | Biometrics Ltd, http://www.biometricsltd.com/surface-emg-sensor.htm.
- Lobov, Sergey, et al. "Latent Factors Limiting the Performance of SEMG-Interfaces." *Sensors*, vol. 18, no. 4, June 2018, p. 1122., doi:10.3390/s18041122.
- Phinyomark, Angkoon, et al. "Navigating Features: a Topologically Informed Chart of Electromyographic Features Space." Journal of The Royal Society Interface, vol. 14, no. 137, June 2017, p. 20170734., doi:10.1098/rsif.2017.0734.
- Tralie, Christopher J., et al. "Geometric Cross-Modal Comparison of Heterogeneous Sensor Data." 2018 IEEE Aerospace Conference, 2018, doi:10.1109/aero.2018.8396789.
- Tralie, Christopher J., et al. "Multi-Scale Geometric Summaries for Similarity-Based Sensor Fusion." 2019 IEEE Aerospace Conference, 2019, doi:10.1109/aero.2019.8741399.
- Holt, G.A., et al. "Gesture Recognition Using Skeleton Data with Weighted Dynamic Time Warping." Proceedings of the International Conference on Computer Vision Theory and Applications, 2013, doi:10.5220/0004217606200625.
- <u>Phinyomark Angkoon, Khushaba Rami</u> N., <u>Ibáñez</u>-Marcelo Esther, <u>Patania</u> Alice, Scheme Erik and <u>Petri</u> Giovanni Navigating features: a topologically informed chart of <u>electromyographic</u> features <u>space14J</u>. R. Soc. Interface