信息论公理系统一复习答案

公理系统

公理系统一:

- 1. (a) **连续性**: $H(p_1,...,p_n)$ 是关于概率分布 $(p_1,...,p_n)$ 的连续函数
 - (b) **等概率极大性**: 在固定 n 时,当所有概率相等 $p_i = \frac{1}{n}$,熵取最大值
 - (c) **组合性**: 系统熵 = 子系统划分熵 + 各子系统熵的加权平均 即: $H(p_1,...,p_n) = H(Q_1,...,Q_m) + \sum_{i=1}^m Q_i H\left(\frac{p_{i1}}{Q_i},...,\frac{p_{ik_i}}{Q_i}\right)$ 其中 $Q_i = \sum_{j \in S_i} p_j$

柯西方程证明:

- 2. (a) 整数: f(1) = k, $f(n) = f(1 + \dots + 1) = nf(1) = nk$
 - (b) **有理数**: 设 $q = \frac{m}{n}$, 则 $f(q) = f(\frac{m}{n}) = \frac{m}{n}f(1) = kq$
 - (c) **无理数**:设 $x \in \mathbb{R}$,取有理序列 $\{q_n\} \to x$ 由连续性: $f(x) = \lim f(q_n) = \lim kq_n = kx$

或由单调性: 若存在 x 使 $f(x) \neq kx$, 则破坏单调性

 $\therefore f(x) = kx$ 是唯一解 \Box

熵的性质证明

连续性证明:

- 3. (a) 设 $\{p^{(n)}\}\to p$,需证 $H(p^{(n)})\to H(p)$
 - (b) 对任意 $\varepsilon > 0$,找足够细的有理划分: 设 $q_i = \lceil 2^N p_i \rceil / 2^N$ 满足 $|q_i p_i| < \frac{\varepsilon}{2N \log N}$
 - (c) 由熵定义:

$$|H(p) - H(q)| \le \sum |p_i \log p_i - q_i \log q_i|$$

- (d) 分析函数 $f(x) = x \log x$ 在 [0,1] 一致连续 当 $|p_i q_i| < \delta$ 时 $|f(p_i) f(q_i)| < \frac{\varepsilon}{2N}$
- (e) 则:

$$|H(p) - H(q)| \le \sum |f(p_i) - f(q_i)| < \frac{\varepsilon}{2}$$

- (f) 同理 $|H(p^{(n)}) H(q^{(n)})| < \frac{\varepsilon}{2}$
- (g) 对足够大 n > N, $|q_i^{(n)} q_i| < \delta$, 故 $|H(q^{(n)}) H(q)| < \frac{\varepsilon}{2}$
- (h) 综合得 $|H(p^{(n)}) H(p)| < \varepsilon$ \square

单调性证明:

$$H_n = \log n$$

$$H_{n+1} = \log(n+1)$$

$$H_{n+1} - H_n = \log \frac{n+1}{n} = \log\left(1 + \frac{1}{n}\right) > 0$$

$$\because \frac{n+1}{n} > 1, \ \ \text{故 } \log(1 + \frac{1}{n}) > 0$$

$$\therefore H_{n+1} > H_n \quad \Box$$

组合原理:设 X 取值空间划分为 m 个子集 S_1, \ldots, S_m , 令:

$$Q_i = \sum_{x \in S_i} p(x), \quad p_i(x) = \frac{p(x)}{Q_i} \ (x \in S_i)$$

则:

$$H(X) = H(Q_1, \dots, Q_m) + \sum_{i=1}^{m} Q_i H(X|S_i)$$

其中 $H(X|S_i)$ 是条件分布 $p_i(x)$ 的熵。

5

组合原理证明:

$$H(X) = -\sum_{x} p(x) \log p(x)$$

$$= -\sum_{i=1}^{m} \sum_{x \in S_{i}} p(x) \log p(x)$$

$$= -\sum_{i=1}^{m} Q_{i} \sum_{x \in S_{i}} \frac{p(x)}{Q_{i}} \log(Q_{i} \cdot \frac{p(x)}{Q_{i}})$$

$$= -\sum_{i=1}^{m} Q_{i} \left[\sum_{x \in S_{i}} \frac{p(x)}{Q_{i}} \log Q_{i} + \sum_{x \in S_{i}} \frac{p(x)}{Q_{i}} \log \frac{p(x)}{Q_{i}} \right]$$

$$= -\sum_{i=1}^{m} Q_{i} \left[\log Q_{i} + H(X|S_{i}) \right]$$

$$= -\sum_{i=1}^{m} Q_{i} \log Q_{i} + \sum_{i=1}^{m} Q_{i} H(X|S_{i})$$

$$= H(Q_{1}, \dots, Q_{m}) + \sum_{i=1}^{m} Q_{i} H(X|S_{i}) \quad \Box$$

6.