Numpy Tutorial and Cosine Similarity

Numpy

- Open notebook in github repo using google colab
 - Go to file 'import notebook' and pass in the github repo url
- Or create a virtual env in which you install jupyter and numpy
 - Python3 –m venv __name__
 - Source __name__/bin/activate
 - Pip install jupyter numpy
 - Deactivate (to leave env)
- You can also use the conda command but you need to install miniconda first
- Then you can do:
 - Conda create --name ___name___ python=3.9
 - Conda activate __name___
 - Conda install jupyter numpy
 - conda deactivate (to leave env)

Vector Norm – Euclidian Norm

How can we calculate the length of a vector ?

•
$$\| \boldsymbol{a} \| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

• Euclidian norm or L² norm

Measures the shortest distance rom the origin

Manhattan Norm

•
$$\| \mathbf{a} \| = |a_1| + |a_2| + \dots + |a_n|$$

• L₁ norm or Manhattan norm

• Sum of the absolute values of the components of the vector

Law of Cosines and the Dot Product

 Now you know about vector norms, another way of expressing the dot product that we haven't seen is:

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

This comes from the law of cosines

• See here for proof!

New intuition about the dot product

- The result of the dot product is therefore impacted by
 - the vectors' magnitude
 - their direction/the angle between them

• When $\theta < 90^{\circ}$ dot product is positive

• When $\theta = 90^{\circ}$ dot product = 0

• When $90^{\circ} < \theta < 180^{\circ}$ dot product is negative

Cosine Similarity

- Cosine similarity measures the similarity between two vectors.
- It is measured by the cosine of the angle between two vectors and determines whether two vectors are pointing in roughly the same direction.
- It is often used to measure document similarity in text analysis.

https://www.sciencedirect.com/topics/computer-science/cosine-similarity

Cosine Similarity

Similarity
$$(a, b) = \cos \theta = \frac{a \cdot b}{\|a\| \|b\|}$$

Remember

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

Transfroming sentences into vectors

- Now we've seen these fancy mathematical tools, we want to use them!
- But how de we transform text into numerical data...?
- One of the easiest ways to do this is to represent a sentence or document with attributes (or vector dimensions) which record the frequency of the words that appear in that particular sentence/doc!
- Each document is then represented by an object called a **term-frequency vector.**

Term-Frequency Vector Example

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

https://www.sciencedirect.com/topics/computer-science/cosine-similarity

Do you see any potential problems with such a representation ?

- These vectors are very *sparse*:
 - They are full of zeros!
 - And usually very long
- In order for the dot product to work, the vector representations must have the same number of dimensions, which typically equals the number of words found in the vocab used...

 \mathbb{R}^{vocab}

Calculating the cosine similarity between 2 term-frequency vectors by hand

$$\boldsymbol{x} = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

How similar are the vectors x and y?

Implementing cosine similarity with numpy

• See the github repo