Claims:

A compound of general formula (I):

$$X_3$$
 X_2 X_2 X_1 X_5 X_7 X_1 X_2 X_2 X_1 X_1

5

10

15

20

25

wherein A is selected from the group consisting of O, S, SO, SO₂, Se, Te, NR₈, CR₉R'₉, N \rightarrow O and C(O);

and, when A is O and q is 1, one of R_1 and R_2 is selected from the group consisting of hydrogen, optionally substituted C_{1-3} or $>C_{30}$ alkyl, alkyl when interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted C2-3 or >C30 alkenyl, alkenyl when interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR7 and $-(Y)_mC=(Z)(T)_n-$, optionally substituted aralkyl which may be interrupted within the alkyl moiety by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted acyl, optionally substituted aryl, optionally substituted heterocyclic and a carbohydrate moiety, while the other of R_1 and R_2 is selected from the group consisting of hydrogen, optionally substituted alkyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted alkenyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-,

optionally substituted aralkyl which may be interrupted within the alkyl moiety by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇ and -(Y)_mC=(Z)(T)_n-, optionally substituted

aryl, optionally substituted heterocyclic, optionally substituted acyl and a carbohydrate moiety;

but, when A is S, SO, SO₂, Se, Te, NR₈, CR₉R₉', N \rightarrow O or C(O) and q is 1 or A is O, S, SO, SO₂, Se, Te, NR₈, CR_9R_9' , N \rightarrow O or C(0) and q is O, then R_1 and R_2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl which may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR7 and $-(Y)_mC=(Z)(T)_n-$, optionally substituted alkenyl which 10 may be interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR_7 and -(Y)_mC=(Z)(T)_n-, optionally substituted aralkyl which may be interrupted within the alkyl moiety by one or more heteroatoms or functional groups selected 15 from the group consisting of O, S, -N=, NR_7 and - $(Y)_{m}C=(Z)(T)_{n}$, optionally substituted aryl, optionally substituted acyl and a carbohydrate moiety, or R1 and R2 together with the nitrogen atom from which they depend form a saturated or unsaturated, optionally substituted 20 heterocyclic group which may include additional heteroatoms selected from the group consisting of O, N and S;

 $X_1 \text{ is selected from the group consisting of } OR_3, \\ SR_3, NR_3R'_3, hydrogen, halogen, -(Y)_mC=(Z)(T)_nR_3, - \\ N(C=(Z)(T)_nR_3)_2, N_3, CN, OCN, SCN, OSO_3R_3, OSO_2R_3, OPO_3R_3R'_3, \\ OPO_2R_3R'_3, S(O)R_3, S(O)_2R_3, S(O)_2OR_3, PO_3R_3R'_3, NR_3NR'_3R''_3, \\ SNR_3R'_3, NR_3SR'_3, SSR_3 \text{ and } R_3, \text{ or is an oxo group, } =S, =NOR_3 \\ or =CR_3R'_3 \text{ and } X_1' \text{ is absent;}$

30

35

 X_2 is selected from the group consisting of OR_4 , SR_4 , $NR_4R'_4$, hydrogen, halogen, $-(Y)_mC=(Z)(T)_nR_4$, $-N(C=(Z)(T)_nR_4)_2$, N_3 , CN, OCN, SCN, OSO_3R_4 , OSO_2R_4 , $OPO_3R_4R'_4$, $OPO_2R_4R'_4$, $S(O)_2R_4$, $S(O)_2R_4$, $S(O)_2OR_4$, $PO_3R_4R'_4$, $NR_4NR'_4R''_4$, $SNR_4R'_4$, $NR_4SR'_4$, SSR_4 and R_4 , or is an oxo group, =S, $=NOR_4$ or $=CR_4R'_4$ and X_2 is absent;

 X_3 and $X_3{}^{_1}$ are independently selected from the group consisting of $OR_5,\ SR_5,\ NR_5R'_5,\ hydrogen,\ halogen, -$

 $(Y)_{m}C=(Z)(T)_{n}R_{5}$, $-N(C=(Z)(T)_{n}R_{5})_{2}$, N_{3} , CN, OCN, SCN, $OSO_{3}R_{5}$, $OSO_{2}R_{5}$, $OPO_{3}R_{5}R'_{5}$, $OPO_{2}R_{5}R'_{5}$, $S(O)_{2}R_{5}$, $S(O)_{2}R_{5}$, $S(O)_{2}OR_{5}$, $PO_{3}R_{5}R'_{5}$, $NR_{5}NR'_{5}R''_{5}$, $SNR_{5}R'_{5}$, $NR_{5}SR'_{5}$, SSR_{5} and R_{5} , or X_{3} is =O, =S, $=NOR_{5}$ or $=CR_{5}R'_{5}$ and X_{3} is absent;

 X_4 is selected from the group consisting of OR_6 , SR_6 , $NR_6R'_6$, hydrogen, halogen, $-(Y)_mC=(Z)(T)_nR_6$, $-N(C=(Z)(T)_nR_6)_2$, N_3 , CN, OCN, SCN, OSO_3R_6 , OSO_2R_6 , $OPO_3R_6R'_6$, $OPO_2R_6R'_6$, $S(O)_2R_6$, $S(O)_2OR_6$, $PO_3R_6R'_6$, $NR_6NR'_6R''_6$, $SNR_6R'_6$, $NR_6SR'_6$, SSR_6 and R_6 , or is an oxo group, =S, $=NOR_6$ or $=CR_6R'_6$ and X_4 is absent;

5

10

15

20

25

35

 X_5 is selected from the group consisting of hydrogen, CN, -C=(Z) (T)_nR₁₁, S(O)R₁₁, S(O)₂R₁₁, S(O)₂OR₁₁, PO₃R₁₁R'₁₁, optionally substituted alkyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aryl, and optionally substituted acyl;

 X_1 ', X_2 ', X_4 ' and X_5 ' are the same or different and are selected from the group consisting of hydrogen, CN, optionally substituted alkyl, optionally substituted alkaryl, optionally substituted aryl, optionally substituted acyl;

or one of X₁ and X₂, X₂ and X₅', X₅' and A when A contains a carbon or nitrogen atom, X₅ and A when A contains a carbon or nitrogen atom, and X₅ and X₁ together constitute a double bond, or X₅' and X₄ or X₃ and X₄ together constitute a double bond, or R₁ and X₁, R₂ and X₁, R₁ and X₂, R₂ and X₂, R₁ and X₅, R₂ and X₅, R₁ and X₅', R₂ and X₅', X₁ and X₂, X₂ and X₃, X₂ and X₄, X₃ and X₄, X₁ and X₁', X₂ and X₂', X₃ and X₃' or X₄ and X₄' together form part of a ring structure which optionally includes at least one heteroatom selected from O, S and N and is optionally substituted;

m, n and q are independently 0 or 1 and Y, Z and T are independently selected from the group consisting of O, S, and NR_{10} ;

 $R_3,\ R'_3,\ R''_3,\ R_4,\ R'_4,\ R''_4,\ R_5,\ R'_5,\ R''_5,\ R_6,\ R'_6,$ $R''_6,\ R_7,\ R_8,\ R_9,\ R'_9,\ R_{10},\ R_{11}\ and\ R'_{11}\ are\ the\ same\ or$

different and are selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted acyl and a carbohydrate moiety;

with the proviso that at least two of X_1 , X_2 , X_3 and X_4 are other than hydrogen or a group linked to the ring through a carbon-carbon bond and the further proviso that the compound of general formula (I) is not 1-(9H-purinyl)-S-(3-deoxy-pentafuranosyl)sulfenamide 5-formamido-2',3',5'-tri-O-formyl-1-(β -D-ribofuranosylthio)imidazole-4-carboxamide, N-phenyl-S-(2,3:5,6-di-O-isopropylidenyl- β -D-mannofuranosyl)sulfenamide or

15 N, N-diethyl-S-(2,3,5,6-tetra-O-benzoyl- β -D-qalactofuranosyl) sulfenamide;

10

20

35

or a pharmaceutically acceptable salt thereof.

- 2. A compound as claimed in claim 1 wherein q is 0 or q is 1 and A is selected from S, SO, SO₂, Se, Te, NR₈, $CR_9R^1_9$, N \rightarrow O or C(O) and one or both of R₁ and R₂ is alky1.
- 3. A compound as claimed in claim 2 wherein one or both of R_1 and R_2 is C_{4-30} alkyl.
- 4. A compound as claimed in claim 3 wherein one or 25 both of R_1 and R_2 is C_{6-12} alkyl.
 - 5. A compound as claimed in claim 4 wherein one or both of R_1 and R_2 is C_{8-10} alkyl.
 - 6. A compound as claimed in claim 1 wherein one or both or R_1 and R_2 is aralkyl.
- 30 7. A compound as claimed in claim 6 wherein one or both R_1 and R_2 is $(CH_2)_r$ Ph where Ph is phenyl and r is an integer in the range 1 to 12 inclusive.
 - 8. A compound as claimed in claim 1 wherein one or both of R_1 and R_2 is alkyl interrupted by one or more heteroatoms or functional groups selected from the group consisting of O, S, -N=, NR₇, and -(Y)_mC=(Z)(T)_n.
 - 9. A compound as claimed in claim 8 wherein one or

both of R_1 and R_2 is alkyl interrupted by one or more oxygen atoms.

- 10. A compound as claimed in claim 9 wherein one or both of R_1 and R_2 is $CH_3(CH_2)_x O(CH_2)_y O(CH_2)_z$ wherein x is an integer in the range 0 to 12 inclusive and y and z are independently integers in the range 1 to 12 inclusive.
- 11. A compound as claimed in claim 1 wherein q is 0 or q is 1 and A is selected from S, SO, SO₂, Se, Te, NR₈, CR_9R_{9} , N \rightarrow O or C(O) and one or both of R₁ and R₂ is alkenyl.

10

- 12. A compound as claimed in claim 1 wherein R_1 and R_2 together with the nitrogen atom from which they depend form an optionally substituted saturated or unsaturated heterocyclic group.
- 13. A compound as claimed in claim 12 wherein R_1 and R_2 together with the nitrogen atom from which they depend form a cyclic imide or a lactam.
 - 14. A compound as claimed in any one of claims 1 to 13 wherein X_1 is OR_3 .
- 20 15. A compound as claimed in claim 14 wherein R_3 is hydrogen or optionally substituted acyl.
 - 16. A compound as claimed in any one of claims 1 to 15 wherein X_2 is OR_4 .
- 17. A compound as claimed in claim 16 wherein R4 is hydrogen or optionally substituted acyl.
 - 18. A compound as claimed in any one of claims 1 to 17 wherein X_3 is OR_5 .
 - 19. A compound as claimed in claim 18 wherein R_5 is hydrogen or optionally substituted acyl.
- 20. A compound as claimed in any one of claims 1 to 19 wherein X_4 , when present, is OR_6 .
 - 21. A compound as claimed in claim 20 wherein R_6 is hydrogen or optionally substituted acyl.
- 22. A compound selected from the group consisting 35 of:

N-benzyl-S-(2,3,5,6-tetra-O-benzoyl- β -D-galactofuranosyl) sulfenamide

N,N-dibenzyl-S-(2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl) sulfenamide

N,N-dicyclohexyl-S-(2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl) sulfenamide

5 $N, N-di(2-methoxyethoxyethyl) - S-(2,3,5,6-tetra-O-acetyl-\beta-p-galactofuranosyl) sulfenamide$

 $1-(2,2,6,6-\text{tetramethylpiperidinyl})-S-(2,3,5,6-\text{tetra-}O-\text{acetyl-}\beta-D-\text{galactofuranosyl})$ sulfenamide

N, N-dioctyl-S-(2, 3-di-O-acetyl-5-0-[tert-

butyldiphenylsilyl] - α -D-arabinofuranosyl) sulfenamide

N, N-Dibenzyl-S- (β -D-galactofuranosyl) sulfenamide N, N-Di (2-methoxyethoxyethyl) -S- (β -D-

galactofuranosyl) sulfenamide

20

(II):

23. A method of preparation of a compound of general 15 formula (I):

$$X_3$$
 X_2 X_2 X_1 X_5 X_5 X_5 X_5 X_5 X_5 X_5 X_5 X_1 X_1 X_2 X_2 X_1 X_1

comprising reacting a compound of general formula

$$X_3$$
 $(X_4X_4'C)_q$ X_5 X_5 X_5 X_5 X_5 X_5 X_1 X_1

wherein L is a leaving group, preferably acetyl and X_1 , X_1 , X_2 , X_2 , X_3 , X_3 , X_4 , X_4 , X_4 , X_5 and X_5 , are as defined;

with a compound of general formula (III):

$$H-N$$
 $\begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$

wherein R_1 and R_2 are as defined above; in the presence of a bis-activated alkyl halide.

- 24. A method for the treatment of a microbial infection, comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of general formula (I) as claimed in any one of claims 1 to 22.
- 25. The use of a compound of general formula (I) as
 10 claimed in any one of claims 1 to 22 in the manufacture of
 a medicament for use in the treatment of a microbial
 infection.
 - 26. A pharmaceutical composition comprising a compound of general formula (I) as claimed in any one of claims 1 to 22 and a pharmaceutically acceptable carrier.

15

27. A method of killing a microorganism, comprising exposing said microorganism to a compound of general formula (I) as claimed in any one of claims 1 to 22.