Zadanie nr N - nazwa zadania

Cyfrowe Przetwarzanie Sygnałów

Imię Nazwisko, Nr albumu Imię Nazwisko, Nr albumu data oddania zadania

1 Cel zadania

Opis celu zadania (proszę nie przepisywać treści instrukcji!). Sprawozdanie należy wykonać na podstawie szablonu LATFX-owego sprawozdanie-wzor.tex.

2 Wstęp teoretyczny

Krótki opis wykorzystywanych metod [?]. Proszę nie umieszczać ogólnie znanych z literatury wzorów oraz definicji. Należy podać jaka metoda została zastosowana, dlaczego oraz podać wykorzystaną literaturę (korzystając z odwołań do pozycji bibliografii [?]).

Przygotowując bibliografię należy korzystać z podanego szablonu BIBT_EX-owego bibliografia-wzor.bib.

3 Eksperymenty i wyniki

Opis wykonywanych eksperymentów. Wymagane jest ilustrowanie przeprowadzanych doświadczeń wykresami oraz tabelami.

3.1 Eksperyment nr 1

Eksperyment nr 1...

Identycznościowa funkcja aktywacji ma postać:

$$\forall s \in \mathbb{R} \quad f(s) = s \tag{1}$$

Jak widać z definicji (??) funkcja ta...

3.1.1 Założenia

3.1.2 Przebieg

3.1.3 Rezultat

Rezultaty badań eksperymentalnych przedstawione są w Tab. ??.

Tabela 1: Rezultaty eksperymentu nr 1

Przypadek	Metoda 1	Metoda 2	Metoda 3
1	50	837	970
2	47	877	230
3	31	25	415
4	35	144	2356
5	45	300	556

Jak widać w Tab. ??...

Graficzna interpretacja wyników z Tab. ?? przedstawiona jest na wykresie Rys. ?? gdzie można zauważyć, że...

Rysunek 1: Wykres dla wyników eksperymentu pierwszego

Jak widać z wykresu Rys. ??...

3.2 Eksperyment nr 2

Eksperyment nr 2 polegał na... Sigmoidalna funkcja aktywacji ma postać:

$$\forall s \in \mathbb{R} \quad f(s) = \frac{1}{1 + e^{-\beta \cdot s}}, \quad \text{gdzie } \beta \in \mathbb{R}_+$$
 (2)

Jak widać z równania definicyjnego (??) funkcja¹ ta ma wykres przedstawiony na rysunku Rys. ??, gdzie paramater β ...

Rysunek 2: Wykres funkcji sigmoidalnej

3.2.1 Założenia

3.2.2 Przebieg

3.2.3 Rezultat

Rezultaty badań eksperymentalnych przedstawione są w Tab. ??.

Tabela 2: Rezultaty eksperymentu nr 2

Przypadek	Metoda 1	Metoda 2
1	50	837
2	47	877
3	45	300

Jak widać w Tab. ??...

Wyniki w Tab. ?? świadczą o tym, że...

¹ang. sigmoidal function lub unipolar function

3.3 Eksperyment nr n

Eksperyment nr n zakładał, iż...

Dla dowolnej liczby $N\in\mathbb{N}$ funkcję $F_N:\mathbb{C}^N\to\mathbb{C}^N$ zdefiniowaną w następujący sposób:

$$\forall \mathbf{x} \in \mathbb{C}^{N} \quad \forall k \in \{0, \dots, N-1\} \quad F_{N}(\mathbf{x})_{k} \stackrel{\Delta}{=} \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_{n} \cdot e^{-j2\pi nk/N} \quad (3)$$

nazywamy N – punktowym prostym jednowymiarowym dyskretnym przekształceniem Fouriera. Na Rys. ?? przedstawiono szybki algorytm obliczania dyskretnego przekształcenia Fouriera².

Rysunek 3: Szybkie przekształcenie Fouriera

- 3.3.1 Założenia
- 3.3.2 Przebieg
- 3.3.3 Rezultat

²ang. Fast Fourier Transform

4 Wnioski

Wnioski z przeprowadzonych eksperymentów dowodzą, że...

$5\quad Załączniki^*$

Opcjonalnie, w zależności od zadania, np. fragment kodu źródłowego.