Logika (MSc)

A tablók módszere – tablókalkulus – szemantikus tabló

Tartalom

Bevezetés

Tablókalkulus ítéletlogikában

Tablókalkulus klasszikus elsőrendű logikábar

Bevezetés

A tablókalkulus egy formula kielégíthetetlensének igazolására szolgáló **szintaktikus kalkulus**. Itéletlogikában a kalkulus háttere az igazságértékelés függvény (Tk.61-63. o.). Az elsőrendű logikában ez kiegészül a kvantorokra vonatkozó igazságértékelés függvény definiálásával.

Megállapíthatjuk, hogy mi a formula igazhalmaza, de ez nehéz. Mivel arról kell dönteni, hogy egy Q formula kielégíthetetlen-e (a) vagy hogy tautólogia-e (b), ezért az (a) esetben $\varphi(Q)^i$ -vel a (b) esetben a $\varphi(\neg Q)^i$ -vel dolgozva keressük, hogy a kapott feltételek kielégíthetetlenek-e.

Tartalom

Bevezetés

Tablókalkulus ítéletlogikában

Tablókalkulus klasszikus elsőrendű logikában

Igazságértékelés fa példa

Megállapíthatjuk, hogy formula hamissá válásának feltételei nem teljesíthetők, tehát a formula tautológia.

5/44

Jelölt formulák

Definíció

Vezessük be a nyelvbe a T, F szimbólumokat. **Jelölt formulának** nevezzük a TA, FA kifejezéseket, ahol A jelöletlen formula.

(Ezek olvasata TA - A igaz; FA - A hamis.)

Egy interpretációban TA igaz, ha A igaz, és hamis, ha A hamis; és FA igaz, ha A hamis, és hamis, ha A igaz.

Logikai műveletek igazságtáblája

Vizsgáljuk, hogy mely kétváltozós logikai műveletek írhatók fel két komponens konjunkciójaként és melyek két komponens diszjunkciójaként.

		1.	2.	3.	4.	5.	6.
A	B	$A \wedge B$	$\neg (A \lor B)$	$\neg (A \supset B)$	$\neg (A \wedge B)$	$A \vee B$	$A\supset B$
		$TA \wedge B$	$FA \lor B$	$FA\supset B$	$FA \wedge B$	$TA \vee B$	$TA\supset B$
i	i	i	h	h	h	i	i
i	h	h	h	i	i	i	h
h	i	h	h	h	i	i	i
h	h	h	i	h	i	h	i

A logikai műveletek igazságtáblája jelölt és jelöletlen felírás.

- Az 1., 2., 3. oszlopokban lévő műveletek egyetlen igazságkiértékelésre veszik fel az igaz értéket, tehát az igazzá válásuk a **két argumentumra együttesen** megadott feltételtől függ.
- A 4., 5., 6. oszlopokban lévő formulák három igazságkiértékelésre veszik fel az igaz értéket, tehát az igazzá válásuk a **két argumentumra egymástól függetlenül** megadott két feltételtől függ.

A formulák típusai

Példák a táblázatból:

- 1. oszlop. Ha A is és B is igaz, akkor $A \wedge B$ igaz. Vagyis $\{A, B\} \models_0 A \wedge B$.
- 5. oszlop. Ha A igaz vagy ha B igaz, akkor $A \vee B$ igaz. Vagyis $\{A\} \models_0 A \vee B$ és $\{B\} \models_0 A \vee B$.
- Az 1., 2., 3. oszlopokban lévő formulákat/műveleteket α -**típusú**, (lényegében konjukciós);
- a 4., 5., 6. oszlopokban lévő formulákat β -**típusú** (lényegében diszjunkciós) formuláknak/műveleteknek nevezzük.

A formulák típusai II.

Az α -típusú formulák átalakíthatók $\alpha_1 \wedge \alpha_2$ alakú fomulává. A β -típusú formulák átalakíthatók $\beta_1 \vee \beta_2$ alakú fomulává. Az α_1, α_2 az α ; a β_1, β_2 a β típusú formulák közvetlen részformulái.

Ez nem mindig esik egybe a formulák eredeti alakjában lévő közvetlen részformulákkal.

P'eld'aul: $\neg(A \lor B)$ közvetlen részformulája $A \lor B$, de mint α -típusú formulának már $\neg A, \neg B$ a két közvetlen részformulája.

α és β típusú formulák táblázata

A táblázat mutatja az egyes formulákhoz tartozó α_1,α_2 és β_1,β_2 argumentumokat.

α	α_1	α_2	β	β_1	β_2
$A \wedge B$	A	B	$\neg (A \land B)$	$\neg A$	$\neg B$
$\neg (A \lor B)$	$\neg A$	$\neg B$	$A \vee B$	A	B
$\neg(A\supset B)$	A	$\neg B$	$A\supset B$	$\neg A$	B

Tehát, ha α_1 is és α_2 is igaz, akkor α igaz.

Azaz
$$\{\alpha_1, \alpha_2\} \models_0 \alpha$$
.

Ha β_1 igaz vagy ha β_2 igaz, akkor $\beta_1 \vee \beta_2$ igaz.

Azaz
$$\{\beta_1\} \models_0 \beta \text{ vagy } \{\beta_2\} \models_0 \beta.$$

Bevezetünk az igazságértékelés függvényt megvalósító szabályokat formulákra (formulafajtákra is). Ezeket a formulák közvetlen tablójának nevezzük.

Közvetlen tablók jelöletlen α és β formulákra

Jelölt és jelöletlen tabló

A jelöletlen tablóbeli levezetési szabályok (közvetlen tablók) a feldolgozott formula igazzá válásának feltételeit, míg a jelölt formulák esetében a közvetlen tabló a jelöltnek megfelelő igazságértéket biztosító feltételeket biztosítja.

Analitikus tabló

Definíció

Egy C ítéletlogikai formula **analitikus tablója** egy olyan bináris fa, melynek csúcsai "jelöletlen" ítéletlogikai formulák. A fa gyökere a C formula. Előállítjuk C közvetlen tablóját a táblázat alapján. Tegyük fel, hogy C-nek egy T tablója adott. Legyen T-ben D egy levélcsúcs. Ekkor a T tabló *közvetlen kiterjesztése* a következő lehet:

- (A) Ha van még nem "feldolgozott" α -formula a gyökérből a D csúcsba vezető úton, akkor kapcsoljuk D-hez rendre ezen út folytatásaként az α formula közvetlen tablója szerint nyert α_1 és α_2 formulákat mint új csúcsokat.
- (B) Ha van még nem "feldolgozott" β -formula a gyökérből a D csúcsba vezető úton, akkor D-ben elágazik a tabló, és a bal oldali rákövetkező csúcsba β közvetlen tablójából β_1 , a jobb oldali rákövetkezőbe pedig β_2 kerül.

Közvetlen tablók jelölt formulákra

Jelölt tabló

Definíció

Egy C formula jelölt tablója egy olyan fa, melynek csúcsai jelölt formulák. A fa gyökere a C formula. Előállítjuk C közvetlen tablóját. Tegyük fel, hogy C-nek egy T tablója adott. Legyen T-ben D csúcs egy levél, ekkor a T tabló közvetlen kiterjesztése a következő lehet:

- (A) Ha van még nem "feldolgozott" $TA \wedge B$, $FA \vee B$, $FA \supset B$ alakú formula a gyökértől a D csúcsba vezető úton, akkor kapcsoljuk D-hez az út folytatásaként a megfelelő formula közvetlen tablójából nyert jelölt formulákat, mint új csúcsokat.
- (B) Ha van még nem "feldolgozott" $FA \wedge B$, $TA \vee B$, $TA \supset B$ alakú formula formula a gyökértől a D csúcsba vezető úton, akkor a D-ben elágazik a tabló kapcsoljuk a megfelelő formula közvetlen tablójából nyert formulákat a bal ágra illetve, a jobb ágra.
- (C) Ha van még nem "feldolgozott" $T \neg A$, $F \neg A$ alakú formula a gyökértől a D csúcsba vezető úton, akkor kapcsoljuk a D-hez, az út folytatásaként a közvetlen tabló szerinti jelölt formulát.

Zárt tabló

A tabló egy ága zárt, ha megjelenik rajta egy már nem feldolgozható formula és annak a negáltja is. Egy tabló zárt, ha minden ága zárt.

A tablókalkulus megállási feltétele, a tabló lezárása. Ha a tabló zárt, akkor azt mondjuk, hogy a formulának van **tablócáfolat**a.

Analitikus tabló előállítása – példa

A tablókalkulus helyessége

Ha egy C formula kielégíthető, akkor a közvetlen tablójának mindkét formulája (α formula), vagy legalább az egyik formulája igaz az eredeti formulát kielégítő interpretációban (β formula). Ekkor a C formula tablójának lesz legalább egy ága, amelyen kielégíthető formulák szerepelnek. Egy ilyen ágat igaz ágnak nevezünk (nincs rajta komplemens pár formula).

Tétel – helyesség

Ha egy ${\cal C}$ formulának van tablócáfolata (tablója zárt), akkor ${\cal C}$ kielégíthetetlen.

Bizonyítás: Tfh. Bár C tablója zárt, de C kielégíthető, ekkor C tablójában kell lenni legalább egy igaz ágnak – tehát nem lehet zárt.

A tablókalkulus teljessége

Tétel – teljesség

Ha C kielégíthetetlen, akkor T tablója zárt.

Bizonyítás: Tfh. C kielégíthetetlen, de tablójának van nyitott (igaz) ága. Nézzük, hogy milyen formulák jelennek meg a tabló egy ágán. Ha egy ágon szerepel egy α formula, akkor szerepel az α_1 és az α_2 formula is. Ha pedig egy β formula szerepel, akkor szerepel a β_1 β_2 egyike. Egy ilyen szerkezetű formulahalmaz pedig kielégíthető (következő tétel), tehát egy ilyen ág minden formulája, tehát C is kielégíthető.

Lefele zártnak nevezünk egy ítéletlogiai formulákat tartalmazó tetszőleges S formulahalmazt, ha a következő tulajdonságokkal bír. Tetszőleges α valamint β típusú formulákra:

- **2** $\beta \in S \Rightarrow \beta_1 \in S \text{ vagy } \beta_2 \in S$

Hintikka halmaz

Hintikka halmaznak nevezünk egy formulahalmazt, ha *lefele zárt* és *nem tartalmaz komplemens párt*.

Tétel

Egy H Hintikka halmaz kielégíthető.

Bizonyítás: Mivel a formulahalmaz lefele zárt, a benne szereplő ítéletváltozók vagy csak negálatlanul, vagy csak negáltan fordulnak elő. Gyűjtsük ki az összes ítéletváltozót és állítsuk elő a kövekező $\mathcal I$ interpretációt. Ha X negálatlan, akkor $\mathcal I(X)=i$. Ha X negált, akkor $\mathcal I(X)=h$. Megmutatjuk, hogy $\mathcal B_{\mathcal I}(C)=i$.

Ha egy L literál eleme H-nak, akkor $\mathcal{B}_{\mathcal{I}}(L)=i$.

Tfh. a H halmazban a tétel fennáll n logikai összetettségig, megmutatjuk, hogy akkor fennáll n+1 logikai összetetségre is.

Ha a formula α típusú, akkor H tartalmazza az α_1 és az α_2 formulákat is, ezek n+1-nél kisebb logikai összetettségűek, tehát igazak $\mathcal I$ -ben, de emiatt a vizsgált α formula is igaz $\mathcal I$ -ben.

Ha a formula β típusú, akkor H tartalmazza a β_1 β_2 egyikét, ami ha eleme H-nak, akkor \mathcal{I} -ben igaz – β pedig igaz \mathcal{I} -ben, mivel ez a komponense igaz \mathcal{I} -ben.

Tablókalkulus – megjegyzések

A tabló egy nyitott ágán Hintikka halmaz áll elő, ami kielégíthető.

A tablókalkulus helyes és teljes kalkulus.

Formulahalmaz tablója:

Egy véges formulahalmaz tablója gyökerében az

 F_1

 F_2

. . .

 F_n

szerepel és a tablót a szokásos módon formulánként építjük.

Végtelen formulahalmaz tablóját ugyanígy állítjuk elő a formulák sorrendjének megfelelően.

Tartalom

Bevezetés

Tablókalkulus ítéletlogikában

Tablókalkulus klasszikus elsőrendű logikában

Közvetlen tablók elsőrendben

Elsőrendben a kvantált formulákra is megadjuk a φA^i függvényt.

Tabló a klasszikus elsőrendű logikában. Közvetlen tablók (C és D szabályok):

Példa – egy elsőrendű formula tablója

Vizsgáljuk meg, hogy a $(\forall xA \supset B) \supset \exists x(A \supset B)$ zárt formula logikailag igaz-e. A vizsgálandó formula zárt, tehát $x \notin Par(B)$.

Termek nélküli elsőrendű nyelv

Mint láttuk, a klasszikus tablószabályok biztosítják, hogy az interpretáló struktúra univerzumának megfelelő eleme bekerüljön a kvantált formula magjába az $x \parallel t$ tetszőleges term és az $x \parallel y$ kritikus változó helyettesítéssel.

Annak érdekében, hogy a tárgyalás egyszerűbb legyen, az elsőrendű nyelv ábécéjében biztosítjuk az univerzumelemek term nélküli kezelhetőségét.

Az elsőrendű nyelv ábécéje a következő.

- Logikán kívüli rész
 - Predikátumszimbólumok aritással (minden argumentumszámhoz megszámlálhatóan végtelen sok predikátumszimbólum)
 - Indivíduum paraméterek megszámlálható sorozata
- Logikai rész
 - Indivíduum változók megszámlálható sorozata
 - Egyenlőség predikátumszimbólum.
 - Logikai összekötőjelek
 - Kvantorok
 - Szintaxis

Term, formula

Definíció

Term: minden indivíduum változó és indivíduum paraméter.

Definíció

Formula:

- **1** Ha P n-változós predikátumszimbólum, $t_1, \ldots t_n$ termek, akkor $P(t_1, \ldots, t_n)$ formula (atomi formula)
- **2** Ha A, B formulák, akkor $\neg A$ és $(A \circ B)$ (\circ az $\{\land, \lor, \supset\}$ valamelyike) formulák.
- 3 Ha A formula, akkor $\forall xA$ és $\exists xA$ formulák

A paramétert nem tartalmazó formulákat *tiszta formuláknak* nevezzük.

Univerzális és egzisztenciális típusú formulák

Az α és a β típusú formulák mellett két új formulatípus jelenik meg:

 $\forall xA$ és $\neg \exists xA - \gamma$ **típusú** (univerzális típus),

 $\exists xA$ és $\neg \forall xA - \delta$ típusú (egzisztenciális típus).

A γ és a δ formulák magjába az a indivíduum paraméter behelyettesítését $\gamma(a)$ és $\delta(a)$ jelöli.

A megkötéssel azt fejezi ki, hogy a paraméter nem fordulhat elő addig már feldolgozott formulában.

Közvetlen tablók jelöletlen formulákra

Közvetlen tablók jelölt formulákra

Elsőrendű analitikus tabló definíciója I.

Egy C elsőrendű tiszta formula analitikus tablója egy olyan bináris fa, melynek csúcsai "jelöletlen" elsőrendű formulák. A fa gyökere a C formula. Előállítjuk C közvetlen tablóját. Tegyük fel, hogy C-nek egy T tablója adott. Legyen T-ben D egy levélcsúcs. Ekkor a T tabló közvetlen kiterjesztése a következők valamelyike:

- (A) Ha van még nem "feldolgozott" α -formula a gyökérből a D csúcsba vezető úton, akkor kapcsoljuk D-hez rendre ezen út folytatásaként az α formula közvetlen tablója alapján nyert α_1 és α_2 formulákat mint új csúcsokat.
- (B) Ha van még nem "feldolgozott" β -formula a gyökérből a D csúcsba vezető úton, akkor D-ben elágazik a tabló, és a bal oldali rákövetkező csúcsba β közvetlen tablójából β_1 , a jobb oldali rákövetkezőbe pedig β_2 kerül.

Elsőrendű analitikus tabló definíciója II.

- (C) Ha van γ -formula a gyökérből a D csúcsba vezető úton, akkor D-hez kapcsoljunk ezen út folytatásaként egy a γ közvetlen tablója szerint nyert $\gamma(a)$ formulát mint új csúcsot, ahol a tetszőleges paraméterszimbólum.
- (D) Ha van δ nem "feldolgozott" formula a gyökérből a D csúcsba vezető úton, akkor D-hez kapcsoljuk ezen út folytatásaként a δ közvetlen tablója szerint nyert $\delta(a)$ -t mint új csúcsot, ahol a gyökérből a D csúcsba vezető úton az a paraméterszimbólum nem fordul elő, azaz a egy kritikus paraméterszimbólum.

Példa elsőrendű analitikus tablóra

Formula kielégíthetősége elsőrendű tablón

Ha egy G formula kielégíthető, akkor a G formula tablójának lesz legalább egy ága, amelyen kielégíthető formulák szerepelnek. Az A és B szabályok esetén ezt az ítéletlogikában már beláttuk. Megmutatjuk, hogy a $\mathbf C$ és $\mathbf D$ szabályokkal való tabló kiterjesztéssel is kielégíthetőek maradnak a kielégíthető ágak.

Legyen θ a T tabló egy kielégíthető ága.

- Ha ${\bf C}$ szabállyal történt a közvetlen kiterjesztés, akkor a megfelelő γ formula igaz volt az ágat kielégítő interpretációban, de emiatt a $\gamma(a)$ is igaz lesz ebben az interpretációban.
- Ha ${f D}$ szabállyal történt a közvetlen kiterjesztés, akkor a megfelelő δ formula igaz volt az ágat kielégítő interpretációban, de amiatt, hogy a $\delta(a)$ -ban az a paraméter új, ezért a $\delta(a)$ is igaz lesz.

Elsőrendű tabló helyessége

Tétel – a tabló módszer helyessége

Ha az elsőrendű ${\it G}$ formula tablója zárt, akkor ${\it G}$ kielégíthetetlen.

Bizonyítás: Tegyük fel, hogy G tablója zárt, de G kielégíthető egy σ_0 interpretációban. Ebben az esetben G formula tablójának lesz legalább egy nyitott ága, amelynek miden formulája igaz a σ_0 interpretációban. Tehát G is igaz. G tablója nem lehet zárt.

Elsőrendű Hintikka halmaz

A tabló módszer teljességének igazolásához szükség lesz az elsőrendű Hintikka halmaz fogalmára.

Elsőrendű Hintikka halmaz

Egy $\,U\,$ univerzum feletti elsőrendű Hintikka halmaznak nevezik azt az $\,S\,$ formulahalmazt, amelyre fennállnak az alábbi tulajdonságok.

H0 Komplemens pár nem fordul elő benne. (U feletti atom és a negáltja)

H1
$$\alpha \in S \Rightarrow \alpha_1 \in S$$
 és $\alpha_2 \in S$

$$\mathsf{H2}\ \beta \in S \Rightarrow \beta_1 \in S \ \mathsf{vagy}\ \beta_2 \in S$$

H3
$$\gamma \in S \Rightarrow \gamma(k) \in S$$
 minden $k \in U$ -ra

H4
$$\delta \in S \Rightarrow \delta(k) \in S$$
 legalább egy $k \in U$ -ra

Hintikka lemma elsőrendű logikában

Lemma

Minden az U feletti S Hintikka halmaz elsőrendben kielégíthető (az U felett).

Bizonyítás: Bonyolultság szerinti indukcióval. Tekintsük azt az atomi kiértékelést, ami a $P(\xi_1,\xi_2,\ldots,\xi_n)$ -hez igazat rendel, ha $TP(\xi_1,\xi_2,\ldots,\xi_n)\in S$; és hamisat, ha $FP(\xi_1,\xi_2,\ldots,\xi_n)\in S$. α és β típusú formulákra már láttuk a kielégíthetőséget. Tekintsünk egy γ formulát, ekkor $\mathbf{H3}$ miatt minden $k\in U$ -ra $\gamma(k)\in S$ és az indukciós feltétel miatt mindegyik igaz. Ennélfogva γ igaz. Tekintsünk egy δ formulát, ekkor $\mathbf{H4}$ miatt $\delta(k)\in S$, legalább egy $k\in U$ -ra. Az indukciós feltétel miatt $\delta(k)$ igaz. Ennélfogva δ igaz.

Elsőrendű tabló teljessége

Tétel – a tabló módszer teljessége

Ha az elsőrendű ${\cal G}$ formula kielégíthetetlen, akkor ${\cal G}$ tablója zárt.

Bizonyítás: (indirekt) Tegyük fel, hogy G kielégíthetetlen, de G tablója nem zárt (van nyitott ága). Egy nyitott ágon Hintikka halmaz áll elő, ami kielégíthető és G is eleme. Tehát G nem lehet kielégíthetetlen.

Szisztematikus tabló

G szisztematikus tablójának nevezzük azt a tablót, ahol a tablóépítési stratégia biztosítja, hogy minden teljes nyitott ágon Hintikka halmaz álljon elő, ahol U a kritikus paraméterek halmaza.

- Az A, B, D szabályok végrehajtása, amíg lehet.
- A **C** szabály végrehajtása, ahol a $\gamma(a)$, γ formulák kerülnek be az ág végére.

Befejezett szisztematikus tablónak nevezzük azt a szisztematikus tablót, amelynek nyitott ága vagy végtelen vagy véges, de további kiterjesztés már nem lehetséges (minden nem atomi formula már fel van dolgozva).

Tétel (Löwenheim)

 $\mbox{Ha}\ G$ kielégíthető egyáltalán, akkor kielégíthető legfeljebb megszámlálható univerzumon.

Bizonyítás: Legyen T a G befejezett szisztematikus tablója. Mivel G kielégíthető, a T-nek van nyitott ága. Egy nyitott ágon véges sok vagy megszámlálhatóan végtelen kritikus paraméter fordul elő. A kapott halmaz Hintikka halmaz, így a G is ezen a halmazon kielégíthető.

Kompaktsági probléma

Kompaktsági tétel

Ha az S megszámlálható formulahalmaz minden véges részhalmaza kielégíthető, akkor S kielégíthető.

Bizonyítás: Rendezzük az S formulahalmaz formuláit egy A_1, A_2, \ldots sorozatba. Tfh. $\{A_1,A_2,\ldots,A_n\}$ minden n-re kielégíthető. Állítsuk elő A_1 teljes tablóját. Ez a tabló nem zárt, mivel A_1 kielégíthető. Ezután kapcsoljuk hozzá minden nyitott ághoz A_2 tablóját. Ebben az esetben is lesz legalább egy nyitott ága a tablónak, mivel $\{A_1, A_2\}$ kielégíthető. Folytassuk az A_3 tablójának, majd az A_4, A_5, \ldots tablójának a nyitott ágakhoz való kapcsolásával. A kapott tabló mindig nyitott lesz a feltétel miatt. Ily módon egy végtelen fát kapunk. Mivel a tabló végesen generált fa, König lemmája miatt van legalább egy végtelen nyitott ága, legyen ez Θ . Világos, hogy Θ tartalmaz minden A_i -t és a Θ ágban szereplő formulák halmaza Hintikka-halmaz, amely tartalmazza S-t is. A Hintikka halmaz kielégíthető és tartalmazza S-et is, ezért S is kielégíthető.

 $\it Megjegyzés$: A kompaktsági tétel megfordítható: ha az $\it S$ formulahalmaz kielégíthető, akkor minden véges részhalmaza is az. Továbbá a kompaktsági tétel igaz marad megszámlálhatónál nagyobb számosságú formulahalmazra is.