Not All Languages are Recognizable

 ${\it TMCODE} \ = \ \{x \mid x \ \in \ \{0,1\}^* \ \text{is a valid encoding of a } 1-\text{tape Turing machine}\}.$

 \mathcal{L} : the set of all *languages* over Σ .

TMCODE is countably infinite (subset of a countably infinite set)

but

 ${\cal L}$ is uncountably infinite.

Universal Turing Machines

A TM U with input:

```
description e(M) of a 1-tape DTM M=(Q,\Sigma,\Gamma,\delta,q_0,q_a,q_r) description e(w) of a string w\in\Sigma^*
```

U simulates M and accepts e(M)e(w) iff M accepts its input w.

Universal Turing Machines

A universal Turing machine U takes as input e(M)e(w). M is a 1-tape DTM and w is a string over M's input alphabet. U simulates M on input w using three tapes:

Tape 1: e(M)e(w).

Tape 2: Contents of the tape of M.

Tape 3: Current state of M.

Copy e(w) from Tape 1 to Tape 2;

Write e(start state) of M on Tape 3;

Simulate M:

Use the current state of M (Tape 3) and the current symbol (Tape 2) to find the next state q, symbol a, and direction D from Tape 1;

Write the next state q on Tape 3;

Write the symbol a on Tape 2;

Move in the direction D on Tape 2;

Halt and reject if M rejects;

An Undecidable Language

 $A_{\mathrm{TM}} \ = \ \{e(M)e(w) \mid M \text{ is a Turing machine that accepts } w\}.$

The Acceptance problem for TMs.

(Text calls it the Halting problem.)

 $A_{\rm TM}$ is recognizable.

An Undecidable Language

 $A_{\mathrm{TM}} \text{ is undecidable.}$ Suppose not. Let H be a decider for A_{TM} . H on input $e_H(M, e_M(w))$: $Accepts \ e_H(M, e_M(w)) \text{ if } M \text{ accepts } w \text{ .}$ Rejects $e_H(M, e_M(w))$ if M does not accept w. $Construct \text{ a TM } D \text{ that on input } e_D(M) \text{ } (M \text{ is a TM}) \text{ functions as follows:}$ Run H on input $e_H(M, e_M(M))$. $Accept \ e_D(M) \text{ if } H \text{ rejects } e_H(M, e_M(M)).$ Reject $e_D(M) \text{ if } H \text{ accepts } e_H(M, e_M(M)).$ When does D accept $e_D(M)$? If H rejects $e_H(M, e_M(M))$ - that is if M does not accept $e_M(M)$. When does D reject $e_D(M)$?

If H accepts $e_H(M, e_M(M))$ - that is if M accepts $e_M(M)$.

An Undecidable Language

The decider D exists since we assumed H exists.

Now, run D on $e_D(D)$.

D accepts $e_D(D)$ if D does not accept $e_D(D)$.

D rejects $e_D(D)$ if D accepts $e_D(D)$.

Contradiction. Therefore, our assumption is wrong: H doesn't exist.

 $A_{\rm TM}$ is undecidable.

When is a Recognizable Language Decidable?

If and only if the language and its complement are both recognizable.

One direction follows:

L is decidable $\Rightarrow \overline{L}$ is decidable.

A decidable language is recognizable.

Suppose L and \overline{L} are recognizable. To show that they are decidable.

Let M_1 accept L and M_2 accept \overline{L} .

A decider for L runs M_1 and M_2 in parallel.

On input w:

- $1. \ K \leftarrow 1;$
- 2. Run M_1 on w for K steps.
- 3. If M_1 accepts then halt and accept.
- 4. If M_1 rejects then halt and reject.
- 5. Run M_2 on w for K steps.
- 6. If M_2 accepts then halt and reject.
- 7. If M_2 rejects then halt and accept.
- 8. Increment K and repeat from step 2.

A decider because M_1 or M_2 will halt on w.

A Language that is not Recognizable

The complement $\overline{A_{\rm TM}}$ of $A_{\rm TM}$.