

Data Description

Source: Kaggle "Bike-Share Usage in London and Taipei Network"

• **Data size:** 5.07 GB

Data files:

- <u>london.csv:</u> Usage based, includes the duration, start time & station, end time & station of each usage.
- o <u>london station.csv:</u> Station based, includes all the bike-share stations and their coordinates.

Data Analytic Goal

Analytical goal:

- 1. Understand the time pattern of bike users
- 2. Bike rental duration distribution
- 3. Analyze relationship between startstation and duration
- 4. Bike rental spatial distribution

Bike Rental Time Pattern

Analytical goal: Understand the time pattern of bike users

- Bike rentals on different month, hour and week of days
- Heatmap of time pattern

Month Distribution

Bike Sharing Counts on Different Months

Hours Distribution

Bike Sharing Counts on Different Hours

Week of Days Distribution

Bike Sharing Counts on Different Week of Days

Heatmap on Week of Days and Hours

Bike Rental Duration Distribution

Analytical goal: can be used to make tiered price decision.

- Distribution of whole data
- Distribution of duration within 2h

Whole Data

bike share rental duration distribution of whole data

Duration within 2 hours

• [19]: print (time.time() - start_time)
Last executed at 2021-12-08 21:21:03 in 73ms

• Spark Job Progress

450.34646940231323

bike share rental duration distribution within 2h

Bike Rental Duration and Start Station Location Distribution

Average of duration represents how far that people go with bike sharing from the start station position

Help us planning the facilities like distribution of water fountains spot and charger stations, etc.

For the start location which spend long avg duration means they may travel for longer distance, like weekends they may spend time to hanging around the parks.

Average duration for each start station

Parks HERE!!

Bike Rental Spatial Distribution

- Where and when people are more likely to use sharing bikes?
 - Count and hour mode of start station on map
 - Count and hour mode of end station on map

Start Station Start Station HTML

End Station End Station HTML

Start Station with Mode Hours

Start Hour HTML

End Station with Max Hour

End Hour HTML

Execution Time-Four plots in total

```
endtime = time.time()
endtime- startime

Last executed at 2021-12-08 13:22:02 in 65ms

699.091676235199
```

Efficiency Improvement - Experiment

```
## Testing efficiency
start_group1 = time.time()|
data_tidy = data_rdd.map(lambda x:parse_csv(x)).filter(lambda x:x[1]!='').filter(lambda x:int(float(x[1]))>0)
f = data_tidy.first()
c = data_tidy.count()
end_group1 = time.time()

Last executed at 2021-12-08 16:51:11 in 5m 38.14s

start_group2 = time.time()
data_tidy = data_rdd.map(lambda x:parse_csv(x)).filter(lambda x:x[1]!='').filter(lambda x:int(float(x[1]))>0)
data_tidy.cache()
f = data_tidy.first()
c = data_tidy.count()
end_group2 = time.time()

Last executed at 2021-12-08 16:53:39 in 2m 27.63s
```

Efficiency Improvement - Result

The execution time for Group 1 is 336.19 seconds.

The execution time for Group 2 is 146.50 seconds.

We save 189.69 seconds every time we use data_tidy starting from the second action.

Member Cluster settings

Clusters:

	0	msds694-emr	j-30EXQQ2BTN5EX	Starting	
•	0	msds694-emr	j-1KP5LBR05M46B	Starting	
F	•	msds694-emr	j-1QWEDHKR59UXK	Waiting Cluster ready	

Notebooks:

msds694-nn	Ready	j-1KP5LBR05M46B
notebook-yunhe	Stopped	j-1QWEDHKR59UXK
meilin2333	Ready	j-1QWEDHKR59UXK
msds694-yoli	Stopped	j-3MYUG5P1HL4QN

Lesson Learned

- Spark is really helpful for big data analysis and each team member can work together on EMR.
- Building a data pipeline in the beginning of the project can save a lot of time.