Лекция 10. Производная функции

Пусть функция y = f(x) определена на интервале (a;b) и $x \in (a;b)$. Пусть Δx произвольное число такое, что $x + \Delta x \in (a;b)$. Число $\Delta y = f(x + \Delta x) - f(x)$ называется приращением функции y = f(x) в точке x.

Определение. Если существует предел $\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$, то он называется **производной** функции y = f(x) в точке x и обозначается f'(x) или y'.

Определение. Если существует предел $\lim_{\Delta x \to +0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$, то он называется **правой производной** функции y=f(x) в точке x и обозначается f'(x+0) или y'.

Определение. Если существует предел $\lim_{\Delta x \to -0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$, то он называется **левой** производной функции y = f(x) в точке x и обозначается f'(x-0) или y'.

По свойству пределов, производная в точке существует тогда и только тогда, когда в этой точке существуют правая и левая производные и они равны.

Определение. Функция y = f(x) называется дифференцируемой в точке x, если её приращение в этой точке можно представить в виде $\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$. А не зависит от Δx

По определению о-малое, получаем $\Delta y = A \cdot \Delta x + o(\Delta x), \Delta x \to 0$. В самой точке $\Delta x = 0$ функция $\alpha(\Delta x)$ может быть и не определена. Ей можно приписать любое значение. Для дальнейшего удобно считать, что $\alpha(0) = 0$. При такой договорённости эта функция будет непрерывна в точке 0.

Теорема. Если функция дифференцируема в точке x_0 , то она непрерывна в этой точке.

Доказательство. Имеем

$$f(x)-f(x_0)=f(x_0+(x-x_0))-f(x_0)=A\cdot(x-x_0)+lpha((x-x_0))\cdot(x-x_0).$$
 Так как $\lim_{x\to x_0}lpha(x-x_0)=0$, то $\lim_{x\to x_0}f(x)=f(x_0).$ Теорема доказана.

Теорема. Для того чтобы функция y = f(x) была дифференцируемой в точке x, необходимо и достаточно, чтобы она имела в этой производную.

Доказательство. Пусть функция дифференцируема, тогда $\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$. Отсюда

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} A + \alpha(\Delta x) = A.$$

Следовательно, производная в точке x существует и равна A. Обратно, пусть существует производная в точке x. Тогда $\exists\lim_{\Delta x\to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=f'(x)$. Следовательно, если обозначить $\alpha(\Delta x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}-f'(x)$, то $\lim_{\Delta x\to 0} \alpha(\Delta x)=0$ и

 $\Delta y = f'(x) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$. Теорема доказана.

Пусть функция y = f(x) дифференцируема в точке x. Тогда, по доказанной теореме, имеем $\Delta y = f'(x)\Delta x + o(\Delta x), \ \Delta x \to 0.$ Следовательно, линейная функция $f'(x)\Delta x$ переменной Δ х является главной частью приращения функции y=f(x) в точке x. Эта линейная функция называется **дифференциалом** функции y = f(x) в точке x и обозначается $dy = f'(x)\Delta x$. Обозначим Δx как dx и назовём **дифферен**циалом независимой переменной.

Теорема. Если каждая из функций f(x)g(x) дифференцируемы в точке , то сумма, разность, произведение и частное (при условии $q(x) \neq 0$) также дифференцируемы в точке x, причем имеют место формулы:

1.
$$(f \pm g)'(x) = f'(x) \pm g'(x)$$
;

2.
$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x);$$

3.
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$
.

Доказательство. Докажем для частного. Имеем

$$\frac{1}{\Delta x} \left(\frac{f(x+\Delta x)}{g(x+\Delta x)} - \frac{f(x)}{g(x)} \right) = \frac{1}{\Delta x} \left(\frac{\Delta f + f(x)}{\Delta g + g(x)} - \frac{f(x)}{g(x)} \right) = \frac{1}{\Delta x} \left(\frac{\Delta f g(x) - \Delta g f(x)}{g(x+\Delta x)g(x)} \right) = \frac{\frac{\Delta f}{\Delta x} g(x) - \frac{\Delta g}{\Delta x} f(x)}{g(x+\Delta x)g(x)}$$

Отсюда получаем утверждение теоремы. Теорема доказана.

Следствие. Если функции f(x)g(x) удовлетворяют условиям предыдущей теоремы, то:

$$d(f \pm g) = df \pm dg;$$

$$d(f \cdot g) = g \cdot df + f \cdot dg;$$

$$d(\frac{f}{g}) = \frac{g \cdot df - f \cdot dg}{g^2}.$$

Теорема. Пусть функция $x = \phi(t)$ дифференцируема в точке t_0 , а функция $y = \phi(t_0)$, следовательно она определена в некоторой окрестности $W(x_0)$ точки x_0 . Функция $x = \phi(t)$ дифференцируема в точке t_0 , следовательно, она непрерывна в этой точке. Поэтому $\exists U(t_0) : \phi(U(t_0)) \subset W(x_0)$.