ЛАБОРАТОРНАЯ РАБОТА №15

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ

Поляков Даниил, 19.Б23-ф3

Цель работы: методом отрыва кольца измерить коэффициент поверхностного натяжения дистиллированной воды, исследовать зависимость коэффициента поверхностного натяжения от концентрации спирта в воде и от температуры воды.

Схемы установок

Рисунок 1. Установка для измерения силы натяжения дистиллированной воды и спиртовых растворов

- 1 кювета объёмом 300 мл;
- 2 металлическое кольцо;
- 3 датчик силы;
- 4 блок сбора данных CASSY Lab;
- 5 подвижный столик.

Рисунок 2. Установка для измерения силы натяжения дистиллированной воды при различных температурах

- 1 стакан объёмом 600 мл;
- 2 металлическое кольцо;
- 3 датчик силы;
- 4 блок сбора данных CASSY Lab;
- 5 подвижный столик;
- 6 спиртовой термометр.

Расчётные формулы

• Коэффициент поверхностного натяжения:

$$\sigma = rac{F}{\pi \left(D_1 + D_2
ight)}$$
 F — сила поверхностного натяжения; D_1 — внутренний диаметр кольца; D_2 — внешний диаметр кольца; K_0 — постоянная Этвёша; $V_0 = 22.4 \ \pi/\text{моль}$ — молярный объём жидкости; T_c — температура жидкости в критической точке; T — температура жидкости.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{x}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)} + (\Delta_{x,\text{сист}})^2} \qquad \begin{array}{c} n - \text{количество измерений;} \\ t - \text{коэффициент Стьюдента;} \\ \Delta_{x,\text{сист}} - \text{систематическая погрешность.} \end{array}$$

• Абсолютная погрешность косвенных измерений:

Порядок измерений

- 1. Измеряем внутренний D_1 и внешний D_2 диаметры металлического кольца с помощью штангенциркуля. Подвешиваем кольцо на цифровой динамометр. Ставим кювету на столик и наливаем в неё дистиллированной воды. Запускаем программу CASSY Lab и устанавливаем нулевое значение силы в данный момент, пока кольцо находится в подвешенном состоянии под действием силы тяжести, чтобы не учитывать её в последующих расчётах.
- 2. Запускаем измерения в CASSY Lab. Поднимаем подвижный столик, чтобы кольцо погрузилось в воду. Медленно опускаем столик до тех пор, пока кольцо не оторвётся от поверхности воды. Снимаем максимальное из зафиксированных программой значений силы F, действующей на динамометр. Повторяем измерение еще 4 раза.
- 3. С помощью рефрактометра измеряем показатель преломления n дистиллированной воды и 4-ёх исследуемых спиртовых растворов. Далее поочерёдно меняем раствор в кювете и выполняем для каждого из них измерения, описанные в пункте 2.
- 4. Ставим стакан на столик и устанавливаем в него спиртовой термометр. Наливаем в него горячей воды. По мере остывания воды проводим однократные измерения, описанные в пункте 2, и снимаем температуру воды T в момент отрыва кольца. Измеряем таким образом силу поверхностного натяжения F для 6 различных температур.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

Приборную погрешность измерения силы принимаем равной половине цены деления динамометра: $\Delta_{F,\,{\rm сист}}=0.05\,{\rm mH}.$

Погрешность измерений диаметра штангенциркулем считаем равной цене деления прибора: $\Delta_D = 0.05 \text{ мм}$.

Внутренний диаметр кольца: D_1 = 57.60 \pm 0.05 мм.

Внешний диаметр кольца: D_2 = 59.70 ± 0.05 мм.

1. Коэффициент поверхностного натяжения дистиллированной воды

Таблица 1. Сила поверхностного натяжения воды, действующая на кольцо

No

1

2

3

4

5

Среднее

Δ

Рассчитываем коэффициент поверхностного натяжения дистиллированной воды:

$$\sigma = 82 \pm 2 \text{ MH/M}$$

Табличное значение (см. **Таблица 5**) поверхностного натяжения воды при температуре 20 °C:

$$\sigma = 72.75 \text{ MH/M}$$

30.7 29.6 29.6 30.3 30.4 **30.1** 0.6

F, MH

Разница между экспериментально полученным и табличным значениями достаточно существенная. Вероятнее всего, исследованная вода всё-таки содержала примеси, либо датчик силы не был откалиброван.

2. Коэффициенты поверхностного натяжения спиртовых растворов

Таблица 2. Зависимость силы поверхностного натяжения между спиртовым раствором и кольцом от концентрации спирта

n	<i>C</i> , %	<i>F</i> , мН	$ar{F}$, мН	σ, мН/м
1.3385	10	15.8		
		15.5	15 0	42.0
		16.1	15.8 ± 0.3	42.8 ± 0.8
		15.7		1 0.8
		15.7		
	20	13.0		
1.3445		13.5	13.0	35.3
		13.0	± 0.4	± 1.0
		12.9	± 0.4	
		12.7		
	42	10.8		
		10.9	10.8	29.4
1.3555		10.9	± 0.2	± 0.5
		10.6	± 0.∠	1 0.5
		11.0		
1.3600	60	10.2		
		9.8	10.1	27.5
		10.0	± 0.4	± 1.0
		10.0	± ∪.4	1.0
		10.6		

Изобразим график полученной экспериментальной зависимости и нанесём табличные значения при температуре 20 °C (см. **Таблица 4**). Интерполируем табличные значения для большей наглядности.

График 1. Зависимость силы поверхностного натяжения между спиртовым раствором и кольцом от концентрации спирта

С ростом концентрации спирта уменьшается поверхностное натяжение воды, причём наибольшее изменение происходит при малых значениях концентрации. Это связано с тем, что спирт является поверхностно-активным веществом по отношению к воде, и происходит концентрация молекул спирта на поверхности воды, из-за чего поверхностное натяжение значительно уменьшается при незначительной добавке спирта. Экспериментальные значения немного отклоняются от табличных, возможно, из-за наличия других примесей в растворе.

3. Температурная зависимость коэффициента поверхностного натяжения дистиллированной воды

Таблица 3. Зависимость силы поверхностного натяжения между дистиллированной водой и кольцом от температуры

T, °C	<i>F</i> , мН	σ, мН/м		
37	30.4	82 ± 2		
45	27.8	75 ± 2		
48	28.2	77 ± 2		
55	28.5	77 ± 2		
60	24.6	67 ± 2		
80	25.6	69 ± 2		

В данной части работы погрешность измерения силы во всех случаях принимаем равной вычисленной погрешности из первой части работы: $\Delta_F = 0.6 \text{ мH}$.

Изобразим график полученной экспериментальной зависимости вместе с табличными значениями. Линейно аппроксимируем обе зависимости и найдём значение постоянной Этвёша из экспериментальной зависимости:

График 2. Зависимость силы поверхностного натяжения между дистиллированной водой и кольцом от температуры

Экспериментальные точки получились очень хаотичными. Результат аппроксимации:

$$a = -0.3 \pm 0.3 \text{ мH/(м} \cdot ^{\circ}\text{C})$$
 $b = 90 \pm 20 \text{ мH/м}$ $K_0 = (2 \pm 3) \cdot 10^{-5} \text{ Дж/(моль}^{2/3} \cdot \text{K})$

Удалось определить лишь порядок постоянной Этвёша — погрешность полученной величины очень велика.

Выводы

Полученное значение коэффициента поверхностного натяжения дистиллированной воды:

$$\sigma = 82 \pm 2 \text{ MH/M}$$

Разница между полученным и табличным (72.75 мH/м) значениями достаточно существенная. Вероятнее всего, исследованная вода всё-таки содержала примеси, либо датчик силы не был откалиброван.

С ростом концентрации спирта в воде уменьшается поверхностное натяжение раствора (**График 1**), причём наибольшее изменение происходит при малых значениях концентрации. Это связано с тем, что спирт является поверхностно-активным веществом по отношению к воде, и происходит концентрация молекул спирта на поверхности воды, из-за чего поверхностное натяжение значительно уменьшается при незначительной добавке спирта. Экспериментальные значения немного отклоняются от табличных, возможно, из-за наличия других примесей в растворе.

При исследовании температурной зависимости поверхностного натяжения воды (**График 2**) мы подтвердили, что коэффициент поверхностного натяжения воды убывает с ростом температуры.

Приложение

Таблица 4. Коэффициент поверхностного натяжения (мН/м) раствора спирта и воды в зависимости от концентрации спирта и температуры

Концентрация спирта	0 °C	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C
20 %	40	38	36	33	31	29	27
40 %	32	30	28	26	24	22	19
60 %	28	27	25	23	22	20	18
80 %	26	25	23	21	20	18	16
100 %	24	22.3	20.6	19	17.3	15.5	13.4

Таблица 5. Коэффициент поверхностного натяжения дистиллированной воды в зависимости от температуры

σ, мН/м		
75.60		
74.90		
74.22		
73.49		
73.05		
72.75		
71.97		
71.18		
69.56		
67.91		
66.18		
64.40		
62.60		
58.90		