Final Assessment Test - November 2019

Course: ECE2002 - Analog Electronic Circuits

Class NBR(s): 0853 / 0861 / 0864 / 0866 / 0870 / 0880 / 6877

Slot: D1

Time: Three Hours

Max. Marks: 100

KEEPING MOBILE PHONE/SMART WATCH, EVEN IN 'OFF' POSITION, IS EXAM MALPRACTICE Answer ALL Questions

- (i) How the diode will behave when a small low frequency signal and high frequency signal are
- (ii) A PN Junction operating in the forward-bias region with a current I of 1 mA is found to have a diffusion operating in the forward-bias region with at I = 1 mag acitance of 10pF. What diffusion capacitance do you expect this junction to have at I = 1mA? What is the mean transit time for this junction?
- 1. b) Derive the expression for voltage gain (A_M) and upper cutoff frequency f_H using hybrid π model of [10]
- Given $I_C = 0.8$ mA, $R_1 = 68$ K Ω , $R_2 = 27$ K Ω , $R_C = 4.7$ K Ω , $R_E = 2.2$ K Ω , $R_{sig} = 10$ K Ω , $R_L = 10$ K Ω , $R_0 = 200$, R_0 2/4 $C_{\mu} = 0.8$ pF, $f_{T} = 1$ GHz. Neglect the effect of r_{x} and r_{o} . Find the midband gain and upper-3dB frequency of the CE amplifier. Also calculate the value of R_L that reduce the midband gain to half the value, and hence find the upper-3dB frequency of the CE amplifier for the reduced gain. 3.
- Find the C_{C1} , C_{C2} and C_S for a CS amplifier for which R_G = 4.7 M Ω , R_D = R_L = 5k Ω , R_{sig} = 100k Ω , r_{o} =70 Ω and g_{m} = 1mA. It is required to have f_{l} at 100Hz . 4. [10]
- For a N-channel MOSFET with $t_{ox}=25$ nm, L=2 μ m; W=20 μ m, $L_{ov}=0.07$ μ m, $V_{o}=0.55$ V, $C_{sbo} = C_{dbo} = 15$ fF, $V_{SB} = 1.2$ V and $V_{DS} = 2.5$ V. Determine a) Oxide capacitance, b) Overlap capacitance, c) Gate-Source capacitance, d) Gate-Drain capacitance, e) Source-Bulk capacitance and [10] 5.
- The class-A amplifier shown in Fig.1 is biased at V_{CE} = 12 V. The output voltage is the maximum [10]
 - (a) the average power from the dc supply,
 - (b) the average power delivered to the load,
 - (c) the efficiency,
 - (d) Draw the transfer characteristics of the amplifier showing the load lines and locate the Q-point.

- (a) Find V_{OV} and V_{GS} for each transistor.
- (b) For $V_{CM} = 0$, find v_s , i_{Dl} , i_{D2} , V_{Dl} , and V_{D2} .
- (c) Repeat (b) for $V_{CM} = +1 V$.
- (d) Repeat (b) for $V_{CM} = -1 V$.

05

(e) What is the highest value of V_{CM} for which Q_1 and Q_2 remain in saturation?

- At an instance, consider a class B amplifier provides a 10 V peak signal to a 4 Ω load and a power [10] supply of 12 V,
 - a) Determine the input power, output power and efficiency of the amplifier.
 - b) What will be the peak output voltage when the class B amplifier provides efficiency of 78.54%?
 - c) Compute the maximum input power, maximum output power and maximum efficiency of the amplifier.
- d) Estimate the maximum power dissipated by each transistors of the amplifier.
- Explain Wilson MOS current mirrors with necessary circuit diagrams. [5] .7.
 - Derive the differential mode gain, common mode gain and CMRR of the MOS differential pair, with [10] neat sketch.
- Derive the expression for frequency of oscillation, gain of the amplifier and feedback gain to obtain [10] 9. sustained oscillation of a MOSFET RC phase shift oscillator.
- Explain the effect of feedback connection on input and output impedance for voltage series and [5] 10. voltage shunt and configuration.
- Determine the voltage gain, input and output impedance with feedback for voltage series feedback 11. [5] having A = -100, R_i=10k Ω and R_o = 20k Ω for feedback of β = -0.5.
- Explain the recent trends and techniques used in analog electronic circuits. [5] 12.