

Meng-Gen Tsai plover@gmail.com

July 16, 2021

Contents

Chapter I: Algebraic Integers	
I.1. The Gaussian Integers	
Exercise I.1.1	
Exercise I.1.4	
Exercise I.1.5	
I.2. Integrality	
Exercise I.2.1	
Exercise I.2.4	
Exercise I.2.7. (Stickelberger's discriminant relation)	

Chapter I: Algebraic Integers

I.1. The Gaussian Integers

Exercise I.1.1.

 $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise I.1.4.

Show that the ring $\mathbb{Z}[i]$ cannot be ordered.

Proof. Similar to the fact that i cannot be ordered in \mathbb{C} . Thus i cannot be ordered in $\mathbb{Z}[i]$ either. \square

Exercise I.1.5.

Show that the only units of the ring $\mathbb{Z}[\sqrt{-d}] = \mathbb{Z} + \mathbb{Z}\sqrt{-d}$, for any rational integer d > 1, are ± 1 .

Proof.

(1) Define the norm N on $\mathbb{Z}[\sqrt{-d}]$ by

$$N(x + y\sqrt{-d}) = (x + y\sqrt{-d})(x - y\sqrt{-d}) = x^2 + y^2d,$$

i.e., by $N(z) = |z|^2$. It is multiplicative.

(2) Similar to Exercise I.1.1,

$$x+y\sqrt{-d}\in\mathbb{Z}[\sqrt{-d}]$$
 is a unit $\Longleftrightarrow N(x+y\sqrt{-d})=x^2+y^2d=1$ $\iff x^2=1$ and $y=0$ $\iff x=\pm 1$ and $y=0$.

Hence the only units of the ring $\mathbb{Z}[\sqrt{-d}]$ are ± 1 (d > 1).

I.2. Integrality

Exercise I.2.1.

Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?

Proof.

- (1) $\alpha := \frac{3+2\sqrt{6}}{1-\sqrt{6}} = -3-\sqrt{6}$. Since the set of all algebraic integers is a ring, α is an algebraic integer.
- (2) Or show that α satisfies a monic equation $x^2 + 6x + 3 = 0 \in \mathbb{Z}[x]$.

Exercise I.2.4.

Let D be a squarefree rational integer $\neq 0,1$ and d the discriminant of the quadratic number field $K=\mathbb{Q}(\sqrt{D})$. Show that

$$d = \begin{cases} D & \text{if } D \equiv 1 \pmod{4}, \\ 4D & \text{if } D \equiv 2, 3 \pmod{4}. \end{cases}$$

and that an integral basis of K is given by $\{1, \sqrt{D}\}$ in the second case, by $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ in the first case, and by $\left\{1, \frac{d+\sqrt{d}}{2}\right\}$ in both case.

Proof.

(1) The Galois group of $K|\mathbb{Q}$ has two elements, the identity and an automorphism sending \sqrt{D} to $-\sqrt{D}$.

(2) Note that $\alpha \in \mathcal{O}_K$ iff $\operatorname{Tr}_{K|\mathbb{Q}}(\alpha), N_{K|\mathbb{Q}}(\alpha) \in \mathbb{Z}$ (by noting that the equation $x^2-\mathrm{Tr}_{K|\mathbb{Q}}(\alpha)x+N_{K|\mathbb{Q}}(\alpha)=0 \text{ has a root } x=\alpha). \text{ So given } \alpha=x+y\sqrt{D}\in$ \mathcal{O}_K , we have

$$\operatorname{Tr}_{K|\mathbb{Q}}(\alpha) = 2x \in \mathbb{Z},$$

 $N_{K|\mathbb{Q}}(\alpha) = x^2 - Dy^2 \in \mathbb{Z}.$

- (3) So $4(x^2 Dy^2) = (2x)^2 D(2y)^2 \in \mathbb{Z}$. So $D(2y)^2 \in \mathbb{Z}$ since $2x \in \mathbb{Z}$. So $2y \in \mathbb{Z}$ since D is squarefree $\neq 0, 1$. Let r = 2x, s = 2y. Then $r^2 - Ds^2 \equiv 0$ (mod 4). Note that a square $\equiv 0, 1 \pmod{4}$.
- (4) If $D \equiv 1 \pmod{4}$, then

$$r^2 - Ds^2 \equiv r^2 - s^2 \pmod{4}$$

 $\implies r$ and s has the same parity

$$\Rightarrow \mathcal{O}_K = \left\{ \frac{r + s\sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_K = \left\{ \frac{r - s}{2} + s \cdot \frac{1 + \sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_K = \mathbb{Z} + \mathbb{Z} \frac{1 + \sqrt{D}}{2}.$$

 $\Longrightarrow \mathcal{O}_K = \mathbb{Z} + \mathbb{Z} \frac{1 + \sqrt{D}}{2}.$

So $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \frac{1+\sqrt{D}}{2} \\ 1 & \frac{1-\sqrt{D}}{2} \end{vmatrix}^2 = D.$$

(5) If $D \equiv 2, 3 \pmod{4}$, then

$$r^2 - Ds^2 \equiv r^2 + 2s^2 \text{ or } r^2 + s^2 \pmod{4}$$

 \implies both r and s are even

 \implies both x and y are rational integers

$$\Longrightarrow \mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{D}.$$

So $\{1, \sqrt{D}\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{vmatrix}^2 = 4D.$$

(6) By (4)(5), $\left\{1, \frac{d+\sqrt{d}}{2}\right\}$ is an integral basis of K for any case.

Exercise I.2.7. (Stickelberger's discriminant relation)

The discriminant d_K of an algebraic number field K is always $\equiv 0 \pmod{4}$ or $\equiv 1 \pmod{4}$. (Hint: The discriminant $\det(\sigma_i\omega_j)$ of an integral basis ω_j is a sum of terms, each prefixed by a positive or a negative sign. Writing P (resp. N) for the sum of the positive (resp. negative) terms, one find $d_K = (P - N)^2 = (P + N)^2 - 4PN$.)

Proof (Hint).

(1) Let S_n be the symmetric group of degree n, and A_n be the alternating group of degree n. So

$$\det(\sigma_i \omega_j) = \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n \sigma_i \omega_{\pi(i)} \right)$$
$$= \sum_{\substack{\pi \in A_n \\ :=P}} \prod_{i=1}^n \sigma_i \omega_{\pi(i)} - \sum_{\substack{\pi \in S_n - A_n \\ :=N}} \prod_{i=1}^n \sigma_i \omega_{\pi(i)}.$$

- (2) Note that $\sigma_i(P+N) = P+N$ and $\sigma_i(PN) = PN$ for all σ_i . Hence $P+N, PN \in \mathbb{Q}$. Therefore $P+N, PN \in \mathbb{Q} \cap \mathcal{O}_K = \mathbb{Z}$.
- (3) By (1)(2),

$$\begin{aligned} d_K &= \det(\sigma_i \omega_j)^2 \\ &= (P-N)^2 \\ &= (P+N)^2 - 4PN \\ &\equiv 0, 1 \pmod{4}. \end{aligned}$$