Lista 2

Weronika Jakimowicz

07.03.2024

Zadanie 1.

Rozważmy relację R(A, B, C). Napisz zapytanie algebry relacji oraz zapytanie rrd/rrk, które zwróci pusty wynik wtedy i tylko wtedy gdy para atrybutów A, B jest kluczem relacji R.

Rozwiązanie.

ALGEBRA RELACJI

Pytamy, kiedy to co jest w kolumnach A i B nie jest unikalne dla danej krotki (nie jest kluczem). Ilość krotek mających daną parę w kolumnach A i B liczymy zapytaniem gamma A, B, C; count C -> nr (R). Chcemy zwracać pusty wynik, kiedy w kolumnie nr widzimy 1, czyli wystarczy zrobić sigma nr>1 (...) i mamy gotowy wynik. W całości zapytanie algebry relacji prezentuje się następująco:

```
sigma nr > 1 (
  gamma A, B, C; count C -> nr (R)
)
```

RRK

W tym przypadku mamy troszkę szybsze rozwiązanie, bo od razu możemy spytać, czy istnieje inny element który spełnia pewne warunki:

$$\{x \in R : (\exists y \in R \setminus \{x\}) \text{ y.A} = x.A \land y.B = x.B \land y.C \neq x.C\}$$

RRD

Tutaj jest jeszcze szybciej, ale wolałam RRK

$$\{a,b,c: R(a,b,c) \land (\exists c') c \neq c' \land R(a,b,c')\}$$

Zadanie 2.

Rozważmy relację R(A, B, C) oraz S(X, Z), przy czym atrybut A jest kluczem w R. Napisz zapytanie algebry relacji oraz zapytanie rrk/rrd, które zwróci pusty wynik wtedy i tylko wtedy, gdy atrybut Z relacji S jest kluczem obcym wskazującym na atrybut A relacji R.

Rozwiązanie.

ALGEBRA RELACJI

Klucz obcy, to np. indeks studenta w tabeli ocen - wskazuje on wtedy na osobę w tabeli

aktywnych studentów uniwersytetu, ale może się powtarzać w tabeli ocen.

Możemy zacząć od znalezienia krotek, które mają ten sam element w kolumnie A i kolumnie S przy pomocy joina: R join A=Z S. Nas interesują wszystkie te wpisy z relacji S, w których ta równość nie zachodzi. Rzutujemy więc wynik join na kolumny X i Z i odejmujemy wynik od S: S - (pi X, Z (...)). W całości dostajemy

```
S - (pi X, Z (
R join A=Z S
)
```

RRK

Wystarczy sprawdzić, czy nie istnieje element w R, który zgadza się z aktualnym elementem na kolumnie Z. Można skorzystać z praw de Morgana

$$\{x \in S : \neg(\exists y \in R) \ x.Z = y.A\} = \{x \in S : (\forall y \in R) \ x.Z \neq y.A\}$$

RRD

Tutaj nieco mniej elegancko jest zapisać przy pomocy ∀ moim zdaniem:

$$\{x, z : S(x, z) \land \neg[(\exists a, b, c) R(a, b, c) \land a = z]\} =$$

= $\{x, z : S(x, z) \land (\forall a, b, c) \neg R(a, b, c) \lor a \neq z\}$

Zadanie 3.

Dane są relacje R, S i T o schematach R = AB, S = B_1B_2 i T = BC. Przeanalizuj znaczenie poniższych zapytań i postaraj się znaleźć naturalną interpretację dla relacji i zapytań w języku polskim. Zastanów się, czy są to formuły niezależne od dziedziny. Zapisz równoważne im formuły w algebrze relacji zawsze jeśli to możliwe.

```
1. {a : (\exists b) (R(a,b) \land \neg((\exists a') a' > a \land (\exists b') R(a',b')))}
```

2.
$$\{a, b : (\forall c) (T(c, a) \lor T(c, b) \lor (\forall d) \neg T(c, d))\}$$

Rozwiązanie.

```
1. {a : (\exists b) (R(a,b) \land \neg((\exists a') a' > a \land (\exists b') R(a',b')))}
```

Wszystkie te elementy $a \in A$, dla których nie istnieje inny element (a', b') dla którego a' > a. Czyli zwraca to największy element kolumny A.

To chyba nie jest niezależne od dziedziny? Bo jeśli

R=A, B	
A=Stopień	B=Przedmiot
3	B.D.
2	AnalMat

To dziedzina aktywna ma B = $\{(3, "B.D."), (2, "AnalMat"))\}$ i możemy wziąć D_1 która ma dziedzinę aktywną z dodatkiem $B \cup \{(5, "Euler"\} \text{ a jako } D_2 \text{ wziąć } B \cup \{(4, "RP1R"\} \text{ i wtedy wynik jest różny?}\}$

Napisanie tego wyżej w języku algebry relacji to

```
pi R.A - (
  pi R.A
  (R join R.A < R.a
       (rho R.a <- R.A, R.b <-R.B (R)
  )
)</pre>
```

```
2. \{a, b : (\forall c) (T(c, a) \lor T(c, b) \lor (\forall d) \neg T(c, d))\}
```

To są pary elementów (a, b), gdzie $a, b \in C$ które albo zawsze pojawiają się w drugiej kolumnie, albo jeśli nie pojawiają się dla pewnej krotki w drugiej kolumnie, to ten element nigdy nie jest na pierwszym miejscu?

Zwraca te elementy kolumny C, które pojawiają się w drugiej kolumnie T dla wszystkich elementów z B stojących na pierwszym miejscu kolumny T. I tutaj jeśli weźmiemy sobie T = \emptyset , to dla każdego c \in B i dla każdego d \in C mamy \neq T(c, d), czyli jest to prawdą nawet jak wtłoczymy coś nieskończonego.