Lecture 1 Introduction to the Seroanalytics Workshop

21 May 2025

Seroanalytics Training Blantyre, Malawi

Welcome from the instructor team!

Sonia Hegde (JHU)

Sophie Berube (Florida)

Sarah Lapidus (JHU)

Alyssa Sbarra (JHU)

Megan O'Driscoll (Geneva)

Mika Malouf (LSHTM)

Upendo Mseka (MLW)

Cebile Lekhuleni (NICD)

Goals of the course

- To learn the **core concepts** to pre-process, visualize, analyze, and interpret serological data.
- To learn the applied techniques to conduct the above steps using R.
- To apply learnings to participants' own research questions and data sets.
- To build a network with other participants from around the world who are also conducting serological data analyses.

Course Overview

Part 1: Introduction to the Seroanalytics Workshop

Part 2: Introduction to serological data analyses in R

Part 3: Pre-processing serological data

Part 4: Visualizing and standardizing serological data

Part 5: Determining serostatus and estimating seroprevalence

Part 6: Inferring transmission dynamics from seroprevalence data

- + Time to work on individual projects
- + Extra lectures on advanced topics

Traditional surveillance data may provide an incomplete picture of transmission and disease burden

- Existence of asymptomatic or sub-clinical infections
- Incomplete understanding of factors leading to symptomatic disease
- Differences in testing and reporting practices between and within locations, and over time
- These may be complicated by immunity

Serologic Cohort Data

Infections THE TREE TO THE TR

Use cases of serology at individual and population levels

• At the **individual** level:

- To indirectly diagnose recent or prior infection
- To hypothetically ascertain who is protected
 - e.g., screening health care workers for measles antibody titers
- To measure as a surrogate outcome in vaccine trials

• At the **population** level:

- To quantify cumulative incidence or immunity in a population (Part 5)
- To obtain biomarkers of additional metrics
 - e.g., recency or frequency of exposures (using quantitative responses)
- To parametrize mechanistic transmission models

Serology is the gold standard to quantify infections in a population

- Antibodies allow for estimation of key disease transmission parameters
 - Natural history: case-ascertainment ratio, infection-fatality ratio
 - **Epidemiology**: attack rate, R0, force of infection (Part 6)
- However, this requires having an appropriate serological assay and adequate interpretation.

Deaths
Severe cases
Symptomatic
Mild cases
Asymptomatic

Kinetics of the antibody response: for this course,

we focus on IgG

There are many public health use cases of sero-epidemiology

Use Case	Example Pathogens
1. Burden and distribution of infections	Campylobacter, Chagas, chikungunya, cholera, Cryptosporidium, cysticercosis, Giardia, neglected tropical diseases, Plasmodium species (some), strongyloidiasis, yaws, HIV
2. Identification of emerging and re-emerging infections	Ebola, Lassa, Marburg, Mpox, SARS-CoV-2, Zika
3. Identification of vaccine program reach or gaps	Measles, polio, rubella, SARS-CoV-2, yellow fever
4. Assessing infection changes due to behavioral, environmental, or pharmaceutical interventions or environmental changes	Chikungunya, dengue, malaria, PCV13 (must be able to distinguish between vaccine- and infection-derived immunity), Typhoid
5. Monitoring peri- and post-elimination surveillance settings	Guinea worm, human African trypanosomiasis, Lymphatic filariasis, malaria (sub-national levels), onchocerciasis, trachoma, visceral leishmaniasis, yaws
6. Research	Many!

1st Serosurveillance Summit meeting report, March 2023

Use case 1: Burden and distribution of infections

- Fills gaps in existing surveillance systems
- Identifies population levels of susceptibility or immunity
- Provides "true" number and distribution of infections
- Particularly useful for diseases
 with asymptomatic or mild infections, poor
 diagnostics for acute infections, and areas
 where there is poor access to care

Use case 2: Identification of emerging and re-emerging infections

- Allows identification of previously undetected infections
- Tracks outbreaks
- Monitors changes in types or magnitude of response required

SARS-CoV-2 in Mexico

Basto-Abreu, et al. Nat Comm (2022)

Use case 3: Identification of vaccine program reach or gaps

- Geographic and demographic reach of vaccination or gaps in vaccination can be used:
 - To determine age of first routine vaccination
 - To estimate routine vaccination coverage
 - To identify the need for a vaccination campaign
 - To evaluate the impact of a vaccination campaign

Measles and rubella in India

Murhekar, et al. Lancet Glob Health (2022)

Use case 4: Assessing effectiveness of behavioral, environmental or pharmaceutical interventions

- Evaluates the effect of interventions other than vaccination (e.g., bed nets, water, sanitation and hygiene interventions)
- However, IgG may not always be the best way to measure changes for some interventions – e.g., antibiotics

Malaria in Mozambique

Plucinski, et al. PLoS Negl Trop Dis (2018)

Use case 5: Monitoring peri- and post-elimination surveillance settings

- Diseases where elimination of transmission is the target
- Can be used for validation of elimination as well, such as for NTDs
- Monitoring to ensure no reemergence of disease

Onchocerciasis in Uganda

Oguttu, et al. AJTMH (2014)

What is the promise of **multiplex** serology?

Multiplex serology enables:

- Simultaneous estimation of antibody prevalence for multiple pathogens (i.e., maximizes specimen efficiency)
- Lower marginal testing cost and time (i.e., easy to include pathogens not routinely surveilled)

What are the use cases of **multiplex** serosurveillance?

- 1. To identify geographic areas that have **high exposure to multiple pathogens or low coverage to multiple vaccine preventable diseases** (to inform surveillance systems, programmatic decision-making, and horizontally aligned interventions like WASH, vaccines)
- 2. To identify **vulnerable sub-populations** (e.g., immunity to measles among people living with HIV)
- 3. To more **accurately monitor intervention effectiveness** by measuring serological responses to multiple antigens from a single pathogen
- 4. To estimate **exposure history for pathogens that exhibit cross-reactivity** with increased specificity, by simultaneously measuring serological responses to antigens from cross-reacting pathogens

Study designs commonly used in seroepidemiology

- Cross-sectional serosurvey (single or serial)
- Longitudinal cohort study

Sero-prevalence: single cross-sectional study

Attack rate (serial cross-sectional, or longitudinal cohort)

Longitudinal antibody dynamics

Pre- and post-infection antibody dynamics

Laboratory assays commonly used in seroepidemiology

Serological assays commonly used for serosurveillance and for research

- Enzyme immunoassays (EIA, ELISA)
- Multiplex bead assays (MBA; e.g., Luminex)
- Electrochemiluminescence assays (ECL; e.g., MSD)
- (Hem)agglutination (inhibition) assays (HI/HAI)**
- Neutralization assays** (e.g., vibriocidal for cholera)

Serological assays used for research

- Protein microarrays
- Phage display
- •

^{**}Functional assays

Laboratory assays commonly used in seroepidemiology

Serological assays commonly used for serosurveillance and for research

- Enzyme immunoassays (EIA, ELISA)
- Multiplex bead assays (MBA; e.g., Luminex)
- Electrochemiluminescence assays (ECL; e.g., MSD)
- (Hem)agglutination (inhibition) assays (HI/HAI)**
- Neutralization assays** (e.g., vibriocidal for cholera)

Serological assays used for research

- Protein microarrays
- Phage display
- ...

^{**}Functional assays

Multiplex bead assays (MBAs) produce median fluorescence intensity (MFI) values

- MFI is a morphological measurement
- Raw MFIs contain biological and technical variation

Biological variability:

- Differences across samples (natural person-to-person variability)
- Differences across disease condition

Analyte Capture Antibody Luminex Bead

<u>Laboratory variability:</u>

- Sample and reagent storage
- Time since last machine calibration, maintenance, cleaning
- Pipetting precision

'Chemical' variability:

- Cross-reactivity or chemical interference with binding
- Presence of tags (e.g. GST) interfering with binding

We will discuss this in Part 3

From blood vials to seroepidemiological data

Considerations

Testing Procedures

Specimen type and storage conditions

Choice and biological/epidemiological interpretation of biomarker(s)

Choice of assay (test performance characteristics, assay noise)

Normalization & Standardization of Lab Data

Background noise correction (i.e., use normalization pipelines to adjust)

QC & within-lab batch effects (i.e., use controls to standardize)

Measurement agreement between replicates

Censoring (i.e., upper and lower limit of detection; interval-based titers)

Classification of Serostatus

Choice of control samples (positives, negatives; relevance to epidemiological characteristics in sample population)

Classification algorithm and choice of threshold

Hay, Routledge, Takahashi. *Epidemics* (2024)

Quantitative data

Testing Procedures

Specimen type and storage conditions

Choice and biological/epidemiological interpretation of biomarker(s)

Choice of assay (test performance characteristics, assay noise)

Normalization & Standardization of Lab Data

Background noise correction (i.e., use normalization pipelines to adjust)

QC & within-lab batch effects (i.e., use controls to standardize)

Measurement agreement between replicates

Censoring (i.e., upper and lower limit of detection; interval-based titers)

Classification of Serostatus

Choice of control samples (positives, negatives; relevance to epidemiological characteristics in sample population)

Classification algorithm and choice of threshold

Estimating relevant parameters

Estimating population seroprevalence (or seroincidence) and associated uncertainty

Inferring transmission dynamics (force of infection)

Data sharing

Visualize data to better inform inference

Present and interpret results for policy-relevant decision making

What we'll cover in this course

We will **not** be covering study design in the lectures (e.g., sample size calculation)

Course Overview

Part 1: Introduction to the Seroanalytics Workshop

Part 2: Introduction to serological data analyses in R

Part 3: Pre-processing serological data

Part 4: Visualizing and standardizing serological data

Part 5: Determining serostatus and estimating seroprevalence

Part 6: Inferring transmission dynamics from seroprevalence data

- + Time to work on individual projects
- + Extra lectures on advanced topics

