Álgebra Lineal

Curso 2019/20Boletín $n^{\underline{o}}$ 2

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

Los ejercicios marcados con (*) se consideran de mayor dificultad. El resto son ejercicios para practicar procedimientos estándar.

- 1. Determinar la dimensión y una base de cada uno de los siguientes subespacios vectoriales de \mathbb{R}^4 :
 - a) $U_1 = \{(x, y, z, t) / x = t, y = z = 0\}.$
 - b) $U_2 = \{(x, y, z, t) / x + y + t = y + z = 0\}.$
- 2. Calcular la dimensión y una base de los siguientes subespacios vectoriales de $\mathcal{M}_{2\times 2}(\mathbb{R})$:
 - a) $U_1 = \{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) / AB = BA\}$, donde $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
 - b) $U_2 = \{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) / MA \text{ es simétrica} \}, \text{ donde } M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$
- 3. (*) Calcular la dimensión de los siguientes subespacios vectoriales de $\mathcal{M}_{n\times n}(\mathbb{R})$:
 - a) $U_1 = \{ A \in \mathcal{M}_{n \times n}(\mathbb{R}) / \operatorname{tr}(A) = 0 \}.$
 - b) $U_2 = \{ A \in \mathcal{M}_{n \times n}(\mathbb{R}) / A^t = A \}.$
- 4. En \mathbb{R}^3 se considera el conjunto $\mathcal{B} = \{(1,1,1),(1,1,0),(1,0,0)\}.$
 - a) Probar que \mathcal{B} es una base de \mathbb{R}^3 .
 - b) Hallar $P_{\mathcal{CB}}$, donde \mathcal{C} es la base canónica de \mathbb{R}^3 .
 - c) Hallar las coordenadas de v = (2, 0, -3) respecto de la base \mathcal{B} .
 - d) Hallar la matriz de cambio de base de \mathcal{B}' a \mathcal{B} , donde

$$\mathcal{B}' = \{(1,-1,1), (1,1,-1), (-1,1,1)\}.$$

5. Sea $\mathcal{B} = \{w_1, w_2\}$ una base de \mathbb{R}^2 de la que se sabe que la matriz de cambio de coordenadas de la base canónica \mathcal{C} de \mathbb{R}^2 a la base \mathcal{B} es

$$P_{\mathcal{CB}} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

- a) Hallar la matriz $P_{\mathcal{BC}}$ de cambio de coordenadas de \mathcal{B} a \mathcal{C} .
- b) Calcular el vector $w = w_1 + w_2$.
- 6. Se considera el plano de \mathbb{R}^3 dado por

$$U = \{(x, y, z) \in \mathbb{R}^3 / x = y + 2z\}.$$

- a) Hallar una base ortonormal de U.
- b) Calcular la matriz P de proyección ortogonal sobre U.
- c) Hallar la distancia de v = (1, 1, 1) a U.
- 7. (*) Se considera la rotación de α grados en \mathbb{R}^2 , en el sentido positivo de giro (contrario al movimiento de las agujas de un reloj).
 - a) Calcular la matriz asociada a la transformación lineal.
 - b) Obtener las fórmulas de la rotación.
- 8. (*) Se considera la aplicación lineal $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por L(v) = Av, donde

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

Hallar la expresión matricial de L respecto de la base $\mathcal{B} = \{(1,1),(1,-1)\}.$

SOLUCIONES

Observación importante: Las bases de un espacio vectorial no son únicas, así que podríais obtener resultados diferentes pero que podrían ser correctos.

1. a)
$$\dim(U_1) = 1$$
 y una base es $B_1 = \{(1, 0, 0, 1)\}.$

b)
$$\dim(U_2) = 2$$
 y una base es $B_2 = \{(1, 0, 0, -1), (0, 1, -1, -1)\}.$

2.
$$a$$
) dim $(U_1) = 2$ y una base es $B_1 = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.

b) dim
$$(U_2) = 3$$
 y una base es $B_2 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$

4. b)
$$P_{\mathcal{CB}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

c)
$$v = (-3, 3, 2)_{\mathcal{B}}$$
.

d)
$$P_{\mathcal{B}'\mathcal{B}} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & 0 \\ 2 & 0 & -2 \end{pmatrix}$$
.

5. a)
$$P_{\mathcal{BC}} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$
.

b)
$$w = (1,0)$$
.

6. a) Base ortonormal de
$$U: B = \{ (1/\sqrt{2}, 1/\sqrt{2}, 0), (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3}) \}$$
.

b)
$$P = \frac{1}{6} \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{pmatrix}$$
.

c)
$$d(v,U) = ||Pv - v|| = \frac{\sqrt{6}}{3}$$
.