18.745 Introduction to Lie Algebras

November 30, 2010

Lecture 22 — The Universal Enveloping Algebra

Prof. Victor Kac Scribe: Aaron Potechin

Definition 22.1. Let g be a Lie algebra over a field F. An enveloping algebra of g is a pair (φ, U) , where U is a unital associative algebra and $\varphi: g \to U_-$ is a Lie algebra homomorphism, where U_- stands for U with the bracket [a, b] = ab - ba.

Example 22.1. Let $\varphi : g \to \text{End } V$ be a representation of g in a vector space V. Then the pair $(\text{End } V, \varphi)$ is an enveloping algebra of g.

Definition 22.2. The universal enveloping algebra of g is an enveloping algebra $(\Phi, U(g))$ which has the following universal mapping property: for any enveloping algebra (φ, U) of g there exists a unique associative algebra homomorphism $f: U(g) \to U$ such that $\varphi = f \circ \Phi$.

Exercise 22.1. Prove that the universal enveloping algebra is unique (if it exists).

Solution: Assume $(\Phi_1, U_1(g))$ and $(\Phi_2, U_2(g))$ are both universal enveloping algebras of g. Then by the universal mapping property of the universal enveloping algebra, we have unique maps $f_{11}, f_{12}, f_{21}, f_{22}$ such that for $i, j \in \{1, 2\}$, $\Phi_i = f_{ij} \circ \Phi_j$. Now $\Phi_i = id \circ \Phi_i$, so by uniqueness, $f_{ii} = id$. $\Phi_i = f_{ij} \circ f_{ji} \circ \Phi_i$, so by uniqueness $f_{ij} \circ f_{ji} = f_{ii} = id$. $f_{12} = f_{21}^{-1}$, so $(\Phi_1, U_1(g))$ and $(\Phi_2, U_2(g))$ are isomorphic, as needed.

Existence of universal enveloping algebras:

Let T(g) be the free unital associative algebra on a basis a_1, a_2, \cdots of g and let J(g) be the two-sided ideal of T(g) generated by the elements $a_i a_j - a_j a_i - [a_i, a_j]$. Then U(g) = T(g)/J(g). Define $\Phi: g \to U(g)_-$ by letting $\Phi(a_i) =$ the image of a_i in U(g) and extending linearly.

Remark: T(g) is called the tensor algebra over the vector space g. $T(g) = F \oplus g \oplus (g \otimes g) \oplus (g \otimes g \otimes g) \oplus \cdots$ with the concatenation product. Good linear algebra textbooks: Artin, Vinberg.

Exercise 22.2. Prove that $(\Phi, U(g))$ is the universal enveloping algebra (i.e the universality property holds).

Solution: First, we will show that $(\Phi, U(g))$ is an enveloping algebra. T(g) is a unital associative algebra, so U(g) = T(g)/J(g) is a unital associative algebra. To check that Φ is a Lie algebra homomorphism, by linearity, it suffices to check that for all i, j, $\Phi([a_i, a_j]) = [\Phi(a_i), \Phi(a_j)]$. But this is clear, as $\Phi([a_i, a_j]) - [\Phi(a_i), \Phi(a_j)] = [a_i, a_j] - a_i a_j - a_j a_i$ is in J(g), so it is zero in U(g).

Now let (U, φ) be another enveloping algebra. Define the map $f: T(g) \to U$ by taking $f(\prod_{k=1}^l a_{i_k}) = \prod_{k=1}^l \varphi(a_{i_k})$ and extending linearly. This is clearly a well-defined unital associative algebra homomorphism.

Now for all $i, j, f([a_i, a_j] - a_i a_j - a_j a_i) = \varphi([a_i, a_j]) - \varphi(a_i)\varphi(a_j) - \varphi(a_j)\varphi(a_i) = 0$ because $\varphi : g \to U_-$ is a Lie algebra homomorphism. Thus, $J(g) \subseteq \ker(f)$, so $f : U(g) \to U$ is a well-defined unital associative algebra homomorphism.

For all i, $(f \circ \Phi)(a_i) = f(a_i) = \varphi(a_i)$, so by linearity $\varphi = f \circ \Phi$.

Assume that $f': U(g) \to U$ is another unital associative algebra homomorphism with $\varphi = f' \circ \Phi$. Then f'(1) = f(1) = 1 and for all i, $f(a_i) = \varphi(a_i) = (f' \circ \Phi)(a_i) = f'(a_i)$. $1, a_1, a_2, \cdots$ generate U(g) as a unital associative algebra, so f = f'. Thus, f is unique, as needed.

Corollary 22.1. Any representation $\pi: g \to End\ V$ extends uniquely to a homomorphism of associative algebras $U(g) \to End \ V$ (so that $a_i \mapsto \pi(a_i)$).

Theorem 22.2. Poincaré-Birkhoff-Witt (PBW) theorem: Let a_1, a_2, \cdots be a basis of g. Then the monomials (*) $a_{i_1}a_{i_2}\cdots a_{i_s}$ with $i_1 \leq i_2 \leq \cdots \leq i_s$ form a basis of U(g).

Proof. Easy part: the monomials(*) span U(g).

Proof is by induction on the pair (s, N), where s is the degree of the monomial and N is the number of inversions, i.e. number of pairs i_m, i_n for which m < n but $i_m > i_n$, lexicographically ordered, i.e. ((s, N) > (s', N')) if s > s' or s = s' and N > N'

For N = 0 there is nothing to prove.

If $N \geq 1$, then in the monomial we have $a_{i_t}a_{i_{t+1}}$ where $i_t > i_{t+1}$, as otherwise the monomial is already in our set of monomials(*).

But we have the relation $a_{i_t}a_{i_{t+1}} = a_{i_{t+1}}a_{i_t} + [a_{i_t}, a_{i_{t+1}}]$, so that in U(g):

 $a_{i_1}a_{i_2}\cdots a_{i_s} = a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots a_{i_s} + a_{i_1}\cdots a_{i_{t-1}}[a_{i_t},a_{i_{t+1}}]a_{i_{t+2}}\cdots a_{i_s}$. The first term is a monomial of degree s and N-1 inversions, and the second term is the sum of monomials with degree s-1. Thus, by the inductive hypothesis, each of these monomials is generated by the monomials(*), so $a_{i_1}a_{i_2}\cdots a_{i_s}$ is also generated by these monomials, as needed.

The hard part: why are the monomials(*) linearly independent?

Let B_s be the vector space over F with basis $b_{i_1} \cdots b_{i_s}$ with $i_1 \leq i_2 \leq \cdots i_s$.

Take $B_0 = F$ and let $B = \bigoplus_{s \geq 0} B_s$. We shall construct a linear map $f: T(g) \to B$ such that $J(g) \subseteq \ker(f)$ and $f(a_{i_1} \cdots a_{i_s}) = (b_{i_1} \cdots b_{i_s})$ if $i_1 \le i_2 \le \cdots \le i_s$.

This will induce a linear map $f: U(g) = T(g)/J(g) \to B$. Hence the monomials(*) are linearly independent because $b_{i_1} \cdots b_{i_s}$, $i_1 \leq i_2 \leq \cdots i_s$ are linearly independent.

Construction:
$$f(1) = 1$$
, $f(a_{i_1} \cdots a_{i_s}) = (b_{i_1} \cdots b_{i_s})$ if $i_1 \le i_2 \le \cdots \le i_s$, and (1) $f(a_{i_1} \cdots a_{i_t} a_{i_{t+1}} \cdots a_{i_s}) = f(a_{i_1} \cdots a_{i_{t+1}} a_{i_t} \cdots a_{i_s}) + f(a_{i_1} \cdots a_{i_{t-1}} [a_{i_t}, a_{i_{t+1}}] a_{i_{t+2}} \cdots a_{i_s})$ if $i_t > i_{t+1}$

By induction on (s, N), we can use the inversion (1) to reduce $f(a_{i_1} \cdots a_{i_s})$ to a sum of terms of the form $f(a_{j_1} \cdots a_{j_{s'}})$, where $j_1 \leq j_2 \leq \cdots j_{s'}$. We just need to check that the final expression is independent of which sequence of inversions we choose. We do this by induction on (s, N).

Case 1:

 $a_{i_1} \cdots a_{i_s} = a_{i_1} \cdots a_{i_t} a_{i_{t+1}} \cdots a_{i_r} a_{i_{r+1}} \cdots a_{i_s}$, where $i_t > i_{t+1}$ and $i_r > i_{r+1}$ Using the left inversion first gives us

 $f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots a_{i_r}a_{i_{r+1}}\cdots a_{i_s})+f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]\cdots a_{i_r}a_{i_{r+1}}\cdots a_{i_s})$

By the inductive hypothesis, we may use any sequence of inversions (1) to evaluate this, so using the right inversion on each term, we get

$$f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots a_{i_{r+1}}a_{i_r}\cdots a_{i_s}) + f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots [a_{i_r},a_{i_{r+1}}]\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]\cdots a_{i_{r+1}}a_{i_r}\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]\cdots [a_{i_r},a_{i_{r+1}}]\cdots a_{i_s})$$

Using the right inversion first gives us

$$f(a_{i_1}\cdots a_{i_t}a_{i_{t+1}}\cdots a_{i_{r+1}}a_{i_r}\cdots a_{i_s})+f(a_{i_1}\cdots a_{i_t}a_{i_{t+1}}\cdots [a_{i_r},a_{i_{r+1}}]\cdots a_{i_s}).$$

By the inductive hypothesis, we may use any sequence of inversions (1) to evaluate this, so using the left inversion on each term, we get

$$f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots a_{i_{r+1}}a_{i_r}\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]\cdots a_{i_{r+1}}a_{i_r}\cdots a_{i_s}) + f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}\cdots [a_{i_r},a_{i_{r+1}}]\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]\cdots [a_{i_r},a_{i_{r+1}}]\cdots a_{i_s})$$

These expressions are the same, so we get the same result whether we begin with the left inversion or the right inversion.

Case 2: Inversions overlap

$$a_{i_1} \cdots a_{i_s} = a_{i_1} \cdots a_{i_t} a_{i_{t+1}} a_{i_{t+2}} \cdots a_{i_s}$$
 with $i_t > i_{t+1} > i_{t+2}$.

Exercise 22.3. Show that we get the same result whether we start with the inversion on $a_{i_t}a_{i_{t+1}}$ or the inversion on $a_{i_{t+1}}a_{i_{t+2}}$.

Solution: First using the left inversion gives us

$$f(a_{i_1}\cdots a_{i_{t+1}}a_{i_t}a_{i_{t+2}}\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]a_{i_{t+2}}\cdots a_{i_s})$$

Using the inversion on $a_{i_t}a_{i_{t+2}}$ in the first term, we get

$$f(a_{i_1}\cdots a_{i_{t+1}}a_{i_{t+2}}a_{i_t}\cdots a_{i_s})+f(a_{i_1}\cdots a_{i_{t+1}}[a_{i_t},a_{i_{t+2}}]\cdots a_{i_s})+f(a_{i_1}\cdots [a_{i_t},a_{i_{t+1}}]a_{i_{t+2}}\cdots a_{i_s})$$

Using the inversion on $a_{i_{t+1}}a_{i_{t+2}}$ in the first term, we get

$$f(a_{i_1} \cdots a_{i_{t+2}} a_{i_{t+1}} a_{i_t} \cdots a_{i_s}) + f(a_{i_1} \cdots [a_{i_{t+1}}, a_{i_{t+2}}] a_{i_t} \cdots a_{i_s}) + f(a_{i_1} \cdots a_{i_{t+1}} [a_{i_t}, a_{i_{t+2}}] \cdots a_{i_s}) + f(a_{i_1} \cdots [a_{i_t}, a_{i_{t+1}}] a_{i_{t+2}} \cdots a_{i_s})$$

First using the right inversion gives us

$$f(a_{i_1} \cdots a_{i_t} a_{i_{t+2}} a_{i_{t+1}} \cdots a_{i_s}) + f(a_{i_1} \cdots a_{i_t} [a_{i_{t+1}}, a_{i_{t+2}}] \cdots a_{i_s})$$

Using the inversion on $a_{i_t}a_{i_{t+2}}$ in the first term, we get

$$f(a_{i_1}\cdots a_{i_{t+2}}a_{i_t}a_{i_{t+1}}\cdots a_{i_s}) + f(a_{i_1}\cdots [a_{i_t},a_{i_{t+2}}]a_{i_{t+1}}\cdots a_{i_s}) + f(a_{i_1}\cdots a_{i_t}[a_{i_{t+1}},a_{i_{t+2}}]\cdots a_{i_s})$$

Using the inversion on $a_{i_t}a_{i_{t+1}}$ in the first term, we get

$$f(a_{i_1} \cdots a_{i_{t+2}} a_{i_{t+1}} a_{i_t} \cdots a_{i_s}) + f(a_{i_1} \cdots a_{i_{t+2}} [a_{i_t}, a_{i_{t+1}}] \cdots a_{i_s}) + f(a_{i_1} \cdots [a_{i_t}, a_{i_{t+2}}] a_{i_{t+1}} \cdots a_{i_s}) + f(a_{i_1} \cdots a_{i_t} [a_{i_{t+1}}, a_{i_{t+2}}] \cdots a_{i_s})$$

Now look at equation (1).

$$f(a_{i_1} \cdots a_{i_t} a_{i_{t+1}} \cdots a_{i_s}) = f(a_{i_1} \cdots a_{i_{t+1}} a_{i_t} \cdots a_{i_s}) + f(a_{i_1} \cdots [a_{i_t}, a_{i_{t+1}}] \cdots a_{i_s})$$
 if $i_t > i_{t+1}$
By skew-symmetry, this gives

$$f(a_{i_1} \cdots a_{i_{t+1}} a_{i_t} \cdots a_{i_s}) = f(a_{i_1} \cdots a_{i_t} a_{i_{t+1}} \cdots a_{i_s}) - f(a_{i_1} \cdots [a_{i_t}, a_{i_{t+1}}] \cdots a_{i_s})$$

$$= f(a_{i_1} \cdots a_{i_t} a_{i_{t+1}} \cdots a_{i_s}) + f(a_{i_1} \cdots [a_{i_{t+1}}, a_{i_t}] \cdots a_{i_s})$$

Thus, (1) holds regardless of whether $i_t > i_{t+1}$ or $i_{t+1} > i_t$. By the inductive hypothesis, we may use this relation freely for monomials of dimension s-1 and it will not change the result. By linearity, we have that for any $b, c \in g$

$$f(a_{i_1}\cdots bc\cdots a_{i_{s-1}}) - f(a_{i_1}\cdots cb\cdots a_{i_{s-1}}) = f(a_{i_1}\cdots [b,c]\cdots a_{i_{s-1}}).$$

Applying this, we find that the difference between the first expression and the second expression above is

$$f(a_{i_1}\cdots[[a_{i_{t+1}},a_{i_{t+2}}],a_{i_t}]\cdots a_{i_s})+f(a_{i_1}\cdots[a_{i_{t+1}},[a_{i_t},a_{i_{t+2}}]]\cdots a_{i_s})+f(a_{i_1}\cdots[[a_{i_t},a_{i_{t+1}}],a_{i_{t+2}}]\cdots a_{i_s})$$

Using skew-symmetry, this is

$$f(a_{i_1}\cdots[[a_{i_{t+1}},a_{i_{t+2}}],a_{i_t}]\cdots a_{i_s})+f(a_{i_1}\cdots[[a_{i_{t+2}},a_{i_t}],a_{i_{t+1}}]\cdots a_{i_s})+f(a_{i_1}\cdots[[a_{i_t},a_{i_{t+1}}],a_{i_{t+2}}]\cdots a_{i_s})$$

which is 0 by the Jacobi identity.

Thus, we get the same result regardless of which inversion we start with.

By induction, for any monomial $a_{i_1} \cdots a_{i_s}$, the evaluation of $f(a_{i_1} \cdots a_{i_s})$ is independent of the sequence of inversions(1) that we use, so $f(a_{i_1} \cdots a_{i_s})$ is well-defined. Thus, $f: T(g) \to B$ is welldefined.

It remains to show that $J(g) \subseteq \ker(f)$. By linearity, it suffices to show that for all i, j, for all $A, B \in T(g), f(A(a_i a_j - a_j a_i - [a_i, a_j])B) = 0.$ If i > j, this is just the equation (1). If i < j, the egation (1) gives

$$f(Aa_{j}a_{i}B) = f(Aa_{i}a_{j}B) + f(A[a_{j}, a_{i}]B). \text{ Using skew-symmetry,}$$

$$f(Aa_{i}a_{j}B) = f(Aa_{j}a_{i}B) - f(A[a_{j}, a_{i}]B) = f(Aa_{j}a_{i}B) + f(A[a_{i}, a_{j}]B).$$

$$f(A(a_{i}a_{j} - a_{j}a_{i} - [a_{i}, a_{j}])B) = 0, \text{ as needed. This completes the proof.}$$

The Casimir Element of U(q)

We assume that dim $q < \infty$ and q carries a non-degenerate symmetric invariant bilinear form (\cdot,\cdot) (e.g. g is semi-simple and (a,b)=K(a,b))

Choose a basis $\{a_i\}$ of g and let b_i be the dual basis i.e. $(a_i,b_j)=\delta_{ij}$. The Casimir element is the following element of U(g): $\Omega = \sum_{i=1}^{\dim g} a_i b_i$.

Exercise 22.4. Show that Ω is independent of the choice of the basis $\{a_i\}$.

Solution: From linear algebra, to go from one basis to another, it is sufficient to use the following three operations:

- 1. $a'_i = a_i$ if $i \neq j$, $a'_j = ca_j$ where $c \in F$, $c \neq 0$
- 2. $a'_{i} = a_{i}$ if $i \neq j$, $i \neq k$. $a'_{j} = a_{k}$, $a'_{k} = a_{j}$ 3. $a'_{i} = a_{i}$ if $i \neq j$. $a'_{j} = a_{j} + ca_{k}$, where $c \in F$

To show that Ω is independent of the choice of the basis $\{a_i\}$, it is sufficient to show that Ω is invariant under these three operations. For these three operations, the dual basis changes as follows:

- 1. $b'_i = b_i \text{ if } i \neq j, b'_j = \frac{1}{c}a_j$
- 2. $b'_{i} = b_{i}$ if $i \neq j$, $i \neq k$. $b'_{j} = b_{k}$, $b'_{k} = b_{j}$ 3. $b'_{i} = b_{i}$ if $i \neq k$. $b'_{k} = b_{k} cb_{j}$

In all three cases, it is easily verified that $\Omega' = \sum_{i=1}^{\dim g} a'_i b'_i = \sum_{i=1}^{\dim g} a_i b_i = \Omega$.

Lemma on dual basis:

Lemma 22.3. For any $a \in g$ write

(2)
$$[a, a_i] = \sum_j \alpha_{ij} a_j$$
, (3) $[a, b_i] = \sum_j \beta_{ij} b_j$, $\alpha_{ij}, \beta_{ij} \in F$. Then $\alpha_{ij} = -\beta_{ji}$.

Proof. Taking the inner product of (2) with b_i and of (3) with a_i , we get

$$([a, a_i], b_j) = \alpha_{ij}$$
 and $([a, b_i], [a_j]) = \beta_{ij}$. We also have $([a, a_i], b_j) = (a, [a_i, b_j])$ and $([a, b_i], [a_j]) = (a, [b_i, a_j]) = -(a, [a_j, b_i])$, hence $\alpha_{ij} = -\beta_{ji}$.

Definition 22.3. Let g be a Lie algebra, and V be a g-module.

(We used the language of a representation π of g in V, notation $\pi(g)V$, $g \in g$, $v \in V$. A little more

convenient is the equivalent language of a g-module V, notation: gV) A 1-cocycle of g with coefficients in a g-module V is a linear map $f:g\to V$ such that $(4)\ f([a,b])=af(b)-bf(a)$

Example: Trivial 1-cocycle: for $v \in V$, let $f_v(a) = av$.

Exercise 22.5. Show that $f_v: g \to V$ is a 1-cocycle.

Solution: f_v is clearly linear, and f([a,b]) = [a,b](v) = a(b(v)) - b(a(v)) = af(b) - bf(a), as needed. Thus, f_v is a 1-cocycle of g.

Denote by $Z^1(g, V)$ the space of all 1-cocycles of g with coefficients in V. Then by exercise 22.5, trivial cocycles form a subspace denoted by $B^1(g, V)$.

Definition 22.4. $H^1(g,V) = Z^1(g,v)/B^1(g,V)$ is called the first coboundary.

Note that $H^1(g, V) = 0$ just means that any 1-cocycle of g, i.e. any linear map $f : g \to V$ satisfying (4) is trivial, i.e. of the form $f = f_v$ for some V.

Theorem 22.4. If g is a semi-simple Lie algebra over a field F of characteristic 0 and V is a finite-dimensional g-module, then $H^1(g, V) = 0$

Lemma 22.5. If $\{a_i\}$ and $\{b_j\}$ are dual bases of g and f is a 1-cocycle of g with values in V then for any $a \in g$ we have $a(\sum_i a_i f(b_i)) = \Omega f(a)$

Exercise 22.6. Prove this using Lemma 1.

Solution: The equation (4) gives that for all $a, b \in g$, af(b) = bf(a) + f([a, b]).

$$a(\sum_{i} a_{i} f(b_{i})) = \sum_{i} a(a_{i} f(b_{i}))$$

$$= \sum_{i} a(f([a_{i}, b_{i}])) + \sum_{i} a(b_{i} f(a_{i}))$$

$$= \sum_{i} f([a, [a_{i}, b_{i}]]) + \sum_{i} [a_{i}, b_{i}](f(a)) + \sum_{i} a(b_{i} f(a_{i}))$$

By the Jacobi identity, for all $a, b, c \in g$, [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, so [a, [b, c]] = [b, [a, c]] - [c, [a, b]].

$$\sum_{i} f([a, [a_{i}, b_{i}]]) = \sum_{i} f([a_{i}, [a, b_{i}]]) - \sum_{i} f([b_{i}, [a, a_{i}]])$$

$$= \sum_{i} \sum_{j} f([a_{i}, \beta_{ij}b_{j}]) - \sum_{i} \sum_{j} f([b_{i}, \alpha_{ij}a_{j}])$$

$$= \sum_{i} \sum_{j} \beta_{ij} f([a_{i}, b_{j}]) + \sum_{j} \sum_{i} \alpha_{ji} f([a_{i}, b_{j}]) = 0 \text{ by Lemma 1}$$

$$a(\sum_{i} a_{i} f(b_{i})) = \sum_{i} [a_{i}, b_{i}](f(a)) + \sum_{i} a(b_{i} f(a_{i}))$$

$$= \sum_{i} a_{i} b_{i}(f(a)) - \sum_{i} b_{i} a_{i}(f(a)) + \sum_{i} a(b_{i} f(a_{i}))$$

$$= \Omega f(a) - \sum_{i} b_{i} a(f(a_{i})) - \sum_{i} b_{i} f([a_{i}, a]) + \sum_{i} a(b_{i} f(a_{i}))$$

$$= \Omega f(a) + \sum_{i} b_{i} f([a, a_{i}]) + \sum_{i} a(b_{i} f(a_{i})) - \sum_{i} b_{i} a(f(a_{i}))$$

$$= \Omega f(a) + \sum_{i} \sum_{j} b_{i} f(\alpha_{ij} a_{j}) + \sum_{i} [a, b_{i}] f(a_{i})$$

$$= \Omega f(a) + \sum_{i} \sum_{j} \alpha_{ij} b_{i} f(a_{j}) + \sum_{i} \sum_{j} \beta_{ij} b_{j} f(a_{i}) = \Omega f(a) \text{ by Lemma 1}$$