Spatial network analysis

Spatial Data Analysis and Simulation modelling, 2020, Dr. Simon Scheider, Dr. Zhiyong Wang

Outline

- Basic concepts for spatial networks
 - Transport network data models in GIS
 - Transport network analysis
 - OD matrices
 - Networks as core concepts
 - Spatial network transformations
 - Computational diagram for spatial networks
- Accessibility analysis
- Flow analysis

Basic concepts for spatial networks

Networks and GIS (1)

A geometric network contains the geometric points and lines of a network.

Used for network «mapping»

Why is this not yet a GIS network?

Points

ID	Geometry		
А	Point		
В	Point		
С	Point		
D	Point		

Lines

-		
ID	Geometry	
1	Polyline	
2	Polyline	
3	Polyline	

Networks and GIS (2)

A logical network contains neighborhood information (junctions) between nodes and edges

- called "graph"
- can be used to compute paths

٨	L	\cap	^	ł	_
ı٦					

Feature_ID	Element_ID
Α	j1
В	j2
С	j3
D	j4

Edge

Feature_ID	Element_I D		
1	e5		
2	e6		
3	e7		

Connectivity Table

Junction	Adjacent elements
J1	J2,e5
J2	J1,e5
J2	J4,e6
j2	J3,e7

However: Is it really the case that spatial networks are just graphs with some embedding in space?

Transport network analysis

- Shortest or quickest path in a network
- Shortest: Based on distance
- Quickest: Based on time (using distance and speed)
- Using e.g.
 Dijkstra's algorithm

Transport network analysis

- Shortest or quickest path in a network
- Allows us to compute
 - zones

Zoning in minutes:

Yellow: 0-10

Olive: 10-20

Green 20-30

Transport network analysis

- Shortest or quickest path in a network
- Allows us to compute
 - zones
 - districts (catchment areas)
- The latter can be used to allocate services to a network (e.g. medical services etc.)

Spatial interaction data/ OD matrix

Allows us to do accessibility and flow analysis

Network analysis: some important methods

1/11/2020

Networks as a core concept (CCD)

- Networks understood as quantified relations between objects
- Network quantifications can be either extensive (e.g. flow) or intensive (e.g. distance), or be on some other measurement level
- Object qualities can likewise be extensive (amount) or intensive (e.g. distance to nearest...) or be on some other measurement level
- -> Spatial networks are more than embedded graphs!

Measured quality	Unary concept	CCD type	Binary	CCD type
S (spatial	OS (object	ObjectQ $RegionA/$	OSO (path	NetworkQ LineA
region) B (boolean	regions) OB (boolean	Line A $Object Q$ $Boolean A$	network) OBO (boolean	NetworkQ $BooleanA$
quality) N (nominal	object quality) ON (nominal	ObjectQ $NominalA$	network) ONO (nominal	NetworkQ
quality) I (intensive	object quality) OI (intensive	NominalA $ObjectQ$	network) OIO (intensive	Nominal A $Network Q$
quality) E	object quality) OE	IRA $ObjectQ$	network) OEO	IRA $NetworkQ$
(extensive quality)	(extensive object quality)	ERA	(extensive network)	ERA

Spatial network transformations

- Methods transform between intensive/extensive object and network qualities
- For example, catchment area methods transform intensive network q. (distance) with extensive objects q. (service potential, origins) into intensive object qualities (distance to the closest service)
- And gravity models transform intensive network qualities (distances) between extensive object q. (amount of residents) into extensive network qualities (flow)

Computational diagram for spatial networks

Accessibility analysis

Catchment areas of hospitals in Friesland

Thiessen polygons vs. Catchment areas

(Thiessen polygons are the Euclidean version of catchment

areas)

Accessibility of Health care centers in Mozambique

Luis, Cabral 2016: Geographic accessibility to primary healthcare centers in Mozambique

Ambulance Service Location Planning (Rijnmond)

Maximize Competition

Spatial Efficiency

Average Time: 5.7 min

Worst Case: 32 min

Customers: **67820**-174120

Minimize Worst Case

Spatial Equity

Average Time: 7.2 min

Worst Case: 12 min

Customers: 9320-376280

Threshold amount/distance

- Amount reachable at some maximal distance
- Distance needed to reach some minimal amount

Threshold potential map for Dutch soccer clubs.

Red: 5100 tickets within 5 minutes

Orange:.. within 10 minutes
Yellow: ... within 15 minutes

Flow analysis

Minard's 1858 map of world migration

Desire line maps =
Lines representing
movement of
people or goods
between
regions

The refugee project (http://www.therefugeeproject.org)

Gravity models

 Estimate flows from object amounts and distance networks (=flow matrix estimation)

Gravity model used to assess flows of soccer fans to Dutch soccer clubs

Trade area analysis

- Trade areas are regions encompassing some percentage of the overall flow towards a service center.
- For example, the areas with the nearest 60% of all trips

Flow assignment in Friesland

Flow Assignment in Zeeland Effect of Westerschelde Tunnel on Commuter flows

Before Tunnel After

Functional regions of the Netherlands (based on flow matrix)

regions (flow matrix)

Questions? (online Q&A session)

http://flowmap.geo.uu.nl/

References

- Geertman, Stan, Tom de Jong, and Coen Wessels (2003). "Flowmap: A support tool for strategic network analysis." *Planning support systems in practice*. Springer Berlin Heidelberg. 155-175
- Burrough, P. A., & McDonnell, R. A. (1998). Principles of Geographical Information Systems.
 Oxford University Press. Chapter 6.5 Network Analysis,
 http://www.gdmc.nl/oosterom/PoGISHyperlinked.pdf
- Ingram, D.R., (1971). The concept of accessibility: a search for an operational form. Re-gional studies, 5 (2), 101–107.
- Moseley, M.J., (1979). Accessibility: the rural challenge. Technical report.