1ª Prova

1) Considere o robô móvel esquematizado na figura abaixo. O mesmo possui duas rodas traseiras padrão fixas, coaxiais, mas independentes e não tracionadas, assim como uma roda dianteira padrão direcional e tracionada. Determine o modelo cinemático que relaciona a velocidade de rotação da roda tracionada ω_T(t) e o ângulo de direção da mesma α(t) com as componentes das velocidades lineares dx(t)/dt, dy(t)/dt e com a velocidade angular do robô ω(t) = dθ(t)/dt. Na figura, b é a distância entre as rodas traseiras Esquerda e Direita (comprimento do eixo traseiro); L é o comprimento do robô (distância do eixo traseiro à roda de Tração dianteira; r_T, r_E e r_D são, respectivamente, o raio da roda de Tração dianteira, o raio da roda Esquerda traseira e o raio da roda Direita traseira.

- 2) Para o robô móvel da questão anterior, dados os raios das três rodas $r_T = r_D = r_E = 10$ cm, o comprimento do eixo b = 50 cm e o comprimento do robô L = 50 cm, considere que a roda dianteira é acionada a uma velocidade angular $\omega_T = 2$ rad/s e que $\alpha = 45^\circ$. Para estas condições, calcule a velocidade linear, a velocidade angular do robô e o raio de giro da curva executada pelo mesmo.
- 3) Considere um robô móvel que parte da posição $(x_i,y_i)=(0,0)$, em metros, com orientação inicial $\theta_i=0^\circ$. Deseja-se que o mesmo atinja a posição final $(x_f,y_f)=(10,10)$, em metros, com orientação final $\theta_f=45^\circ$. Determine os polinômios interpoladores de 3° grau $x(\lambda)$ e $y(\lambda)$, (com $\lambda \in [0,1]$), necessários para gerar um caminho suave, sem máximos ou mínimos em x e y, dentro do intervalo considerado. Determine a posição (x,y) e a orientação θ para $\lambda=0,5$. Determine a curvatura do caminho (inverso do raio de curvatura) para $\lambda=0,\lambda=0,5$ e $\lambda=1$.