Machine Learning Unit 4

Bayesian Learning

Exercise 1 : Probability Basics (Conditional Independence)

There are eight boxes containing different colored balls as shown in the illustration below:

The balls can be green, blue, yellow, or red (also marked a, b, c, d in the figure). When picking one of the eight boxes at random, let A refer to the event "box contains a green ball," B to the event "box contains a blue ball," C to the event "box contains a yellow ball," and D to the event "box contains a red ball." Hence, $A \cap B$ is the event "box contains both a green and a blue ball," etc.

- (a) Calculate P(A), P(B), P(C), and P(D).
- (b) Calculate $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$, and $P(B \cap D)$.
- (c) Check all that apply:
 - \square The events A and B are statistically independent.
 - \square The events A and C are statistically independent.
 - \square The events B and C are statistically independent.
 - \square The events B and D are statistically independent.
- (d) Calculate $P(A \mid C)$, $P(B \mid C)$, and $P(A \cap B \mid C)$.
- (e) Calculate $P(B \mid D)$, $P(C \mid D)$, and $P(B \cap C \mid D)$
- (f) Check all that apply:
 - \square The events A and B are conditionally independent given C.
 - \square The events B and C are conditionally independent gived D.

Exercise 2: Bayes' Rule

A hospital database contains diagnoses (diseases) along with observed symptoms:

Patient	Diagnosis	Symptoms								
		$\overline{S_1}$	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9
1	C_1	√		✓		✓				
2	C_2		\checkmark		\checkmark	\checkmark		\checkmark		
3	C_3	\checkmark		\checkmark			\checkmark		\checkmark	
4	C_4		\checkmark		\checkmark	\checkmark		\checkmark		
5	C_3	\checkmark		\checkmark					\checkmark	
6	C_5					\checkmark				\checkmark
7	C_3	\checkmark		\checkmark			\checkmark			
8	C_2		✓					✓		

- (a) Compute the prior probabilities $P(C_i)$.
- (b) Compute the posterior probabilities $P(C_i \mid S_4)$ of the diagnoses C_i given symptom S_4 .

Exercise 3 : Naïve Bayes

Given is the following dataset to classify whether a dog is dangerous or well-behaved in character:

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

- (a) Determine the parameters for a Naïve Bayes classifier on this dataset.
- (b) Classify the new example (Color=black, Fur=ragged, Size=small) using your Naïve Bayes classifier.