User Total Active Time as Metric

```
In [629]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from scipy import stats
In [630]: # reading the data sets
          t1 user active min = pd.read csv("t1 user active min.csv")
          t2_user_variant
                               = pd.read_csv("t2_user_variant.csv")
          t3 user active min pre = pd.read csv("t3 user active min pre.csv")
          t4_user_attributes = pd.read_csv("t4_user_attributes.csv")
```

Use table 1 and 2

```
In [631]: t1_user_active_min.head()
Out[631]:
               uid
                          dt active_mins
                0 2019-02-22
                                    5.0
                0 2019-03-11
                                    5.0
                0 2019-03-18
                                    3.0
                0 2019-03-22
                                    4.0
               0 2019-04-03
                                    9.0
In [632]: t2_user_variant.head()
Out[632]:
```

	uid	variant_number	dt	signup_date
0	0	0	2019-02-06	2018-09-24
1	1	0	2019-02-06	2016-11-07
2	2	0	2019-02-06	2018-09-17
3	3	0	2019-02-06	2018-03-04
4	4	0	2019-02-06	2017-03-09

```
In [633]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da
          t1 user active min = t1 user active min[t1 user active min.active mins <
          = 24*601
```

```
In [634]: # Total minutes per user
            t1 user active min total = t1 user active min.groupby(by=['uid'], as ind
            ex=False).sum()
In [635]: # merge t1 and t2 by uid
            t12 = pd.merge(t2_user_variant, t1_user_active_min_total, on='<mark>uid</mark>')
In [636]: t12.head()
Out[636]:
               uid variant_number
                                        dt signup_date active_mins
            0
                0
                              0 2019-02-06
                                            2018-09-24
                                                            43.0
            1
                              0 2019-02-06
                                            2016-11-07
                                                         15205.0
                2
                              0 2019-02-06
                                            2018-09-17
                                                            17.0
                              0 2019-02-06
                                            2018-03-04
                                                            77.0
                              0 2019-02-06
                                            2017-03-09
                                                            39.0
In [637]: t12.variant_number.value_counts()
Out[637]: 0
                 37425
            1
                  9208
           Name: variant_number, dtype: int64
```

Compute confidence interval on difference of means.

```
In [638]: | stats12 = t12.groupby(['variant_number'])['active_mins'].agg(['mean', 'c
           ount', 'std','var'])
           stats12
Out[638]:
                                  count std
                        mean
                                                  var
           variant number
                      0 458.221162 37425 1653.447132 2.733887e+06
                      1 458.402476
                                  9208 1680.571091 2.824319e+06
In [639]: | sigma_diff = np.sqrt(stats12.loc[0]['var'] / stats12.loc[0]['count'] +
                                 stats12.loc[1]['var'] / stats12.loc[1]['count'])
           upper = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) + (1.96 * sigm
           lower = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) - (1.96 * sigm
           a diff)
           print([lower, upper])
```

[-38.01476992103114, 38.37739748719736]

Perform a t-test:

```
In [640]: stats.ttest_ind(t12.active_mins[t12.variant_number==1], t12.active_mins[
    t12.variant_number==0], equal_var =False)
Out[640]: Ttest_indResult(statistic=0.009303964709989936, pvalue=0.99257675062736
    44)
```

The high p-value suggests INSUFFICIENT evidence for the new UI design to make a positive impact on total active time per user.

Add Table 3

```
In [641]: t3_user_active_min_pre.head()
Out[641]:
              uid
                        dt active_mins
               0 2018-09-24
                                 3.0
               0 2018-11-08
                                 4.0
               0 2018-11-24
                                 3.0
           3
               0 2018-11-28
                                 6.0
               0 2018-12-02
                                 6.0
In [642]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da
           t3 user active min pre = t3 user active min pre[t3 user active min pre.a
           ctive mins <= 24*60]
In [643]: # Total minutes per user
           t3 user active min pre total = t3 user active min pre.groupby(by=['uid'
           ], as index=False).sum()
In [644]: t123 = pd.merge(t12, t3 user active min pre total, on='uid', suffixes=(
           '_post', '_pre'))
```

```
In [645]:
            t123.head()
Out[645]:
                uid variant number
                                             signup_date active_mins_post active_mins_pre
             0
                 0
                               0 2019-02-06
                                                                                  70.0
                                              2018-09-24
                                                                   43.0
             1
                 1
                                0 2019-02-06
                                              2016-11-07
                                                                 15205.0
                                                                               19158.0
             2
                 2
                               0 2019-02-06
                                              2018-09-17
                                                                   17.0
                                                                                  37.0
             3
                 3
                               0 2019-02-06
                                              2018-03-04
                                                                   77.0
                                                                                 108.0
                               0 2019-02-06
                                              2017-03-09
                                                                   39.0
                                                                                  66.0
In [646]:
           t123['active mins diff'] = t123['active mins post'] - t123['active mins
            pre']
            stats123 = t123.groupby(['variant number'])['active mins post', 'active_
In [648]:
            mins_pre', 'active_mins_diff'].agg(['mean', 'count', 'std','var'])
            stats123
Out[648]:
                           active_mins_post
                                                                     active_mins_pre
                           mean
                                      count std
                                                                     mean
                                                                               count std
                                                        var
             variant_number
                                                        2.741501e+06 506.84027
                         0 459.544824
                                      37313
                                             1655.747990
                                                                               37313
                                                                                     1874.763969
                                       9165 1684.238222 2.836658e+06 295.81102
                         1 460.465139
                                                                                9165 1118.898491 1
```

Difference in difference

For each user, first obtain difference in post-test total time and pre-test total time: $\Delta x_1 \equiv x_{1,post} - x_{1,pre}$ and $\Delta x_2 \equiv x_{0,post} - x_{0,pre}$

Then obtain the difference in mean: $\overline{\Delta x_1} - \overline{\Delta x_2}$

Standard Error:
$$\sqrt{\frac{s_{\Delta x_1}^2}{n_1} + \frac{s_{\Delta x_2}^2}{n_1}}$$

[188.86398661059266, 235.03514450519842]

Perform a t-test:

The low p-value suggests high evidence for the new UI design to make a positive impact on total active time per user.

Distribution of Post/Pre-Test Difference in Total Active Miniutes

Add Table 4

```
In [654]: t4_user_attributes.head()
```

Out[654]:

	uid	gender	user_type
0	0	male	non_reader
1	1	male	reader
2	2	male	non_reader
3	3	male	non_reader
4	4	male	non_reader

```
In [655]: t1234 = pd.merge(t4_user_attributes, t123, on='uid')
```

```
In [656]:
            t1234.head()
Out[656]:
                             user_type variant_number
                                                         dt signup_date active_mins_post active_mins_pr
                uid gender
                                                      2019-
             0
                  0
                                                   0
                                                              2018-09-24
                                                                                    43.0
                                                                                                    70.
                       male
                            non_reader
                                                      02-06
                                                      2019-
             1
                       male
                                                              2016-11-07
                                                                                 15205.0
                                                                                                 19158.
                                reader
                                                      02-06
                                                      2019-
             2
                  2
                                                   0
                                                              2018-09-17
                                                                                    17.0
                                                                                                    37.
                       male
                            non_reader
                                                      02-06
                                                      2019-
             3
                  3
                                                   0
                                                              2018-03-04
                                                                                    77.0
                                                                                                   108.
                       male
                            non_reader
                                                      02-06
                                                      2019-
                       male
                            non_reader
                                                              2017-03-09
                                                                                    39.0
                                                                                                    66.
                                                      02-06
In [657]:
            pd.crosstab(t1234['variant number'],t1234['gender']).apply(lambda r: r/r
             .sum(), axis=1)
Out[657]:
             gender
                            female
                                      male
                                               unknown
             variant number
                            0.286737
                                      0.561493
                                               0.151770
                            0.282815
                                      0.559083
                                               0.158101
In [658]:
            pd.crosstab(t1234['variant_number'],t1234['user_type']).apply(lambda r:
             r/r.sum(), axis=1)
Out[658]:
             user_type
                            contributor new_user non_reader reader
             variant_number
                         0
                              0.024415
                                        0.061185
                                                    0.735240 0.17916
                          1
                              0.013857
                                        0.084015
                                                    0.764648 0.13748
In [659]:
            pd.crosstab(t1234['gender'],t1234['user_type']).apply(lambda r: r/r.sum
             (), axis=1)
Out[659]:
             user_type contributor new_user non_reader reader
                gender
                female
                         0.018734
                                   0.074637
                                               0.745166 0.161463
                                   0.055801
                  male
                         0.025849
                                               0.732579
                                                       0.185772
                         0.016170
                                   0.085208
                                               0.764342 0.134280
              unknown
```

Gender

```
In [660]: stats1234_gender = t1234.groupby(['variant_number', 'gender'])['active_mi
          ns_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'count',
          'var'])
          stats1234_gender
```

Out[660]:

		active_mins_post			active_mins_pre			ac
		mean	count	var	mean	count	var	me
variant_number	gender							
	female	347.295635	10699	1.775838e+06	388.001309	10699	2.291656e+06	-4
0	male	555.593957	20951	3.547350e+06	602.397213	20951	4.430440e+06	-4
	unknown	316.268939	5663	1.506830e+06	377.835246	5663	2.361617e+06	-6
	female	355.527778	2592	1.705491e+06	224.615741	2592	6.196977e+05	13
1	male	534.548009	5124	3.581443e+06	341.800546	5124	1.663136e+06	19
	unknown	386.204969	1449	2.184961e+06	260.536922	1449	9.123354e+05	12

```
In [714]: def ConfidenceInterval(stats, attribute):
              mean did = stats.loc[1, attribute]['active mins diff', 'mean'] - sta
          ts.loc[0,attribute]['active_mins_diff', 'mean']
              SE_did = np.sqrt(stats.loc[1, attribute]['active_mins_diff','var'] /
          stats.loc[1, attribute]['active_mins_diff','count'] +
                               stats.loc[0, attribute]['active mins diff','var'] /
          stats.loc[0, attribute]['active mins diff', 'count'])
              upper = mean_did + (1.96 * SE_did)
              lower = mean did - (1.96 * SE did)
              return [lower, upper]
```

```
In [715]: | intervals = {}
          for g in set(t4 user attributes['gender']):
              intervals[g] = ConfidenceInterval(stats1234 gender, g)
              print(g, ':', ConfidenceInterval(stats1234 gender, g))
```

unknown: [136.26857431526759, 238.20013476417938] female: [134.88598802514008, 208.34943290378027] male: [205.61842607578922, 273.4830101924954]

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Male)

User Type

```
In [664]: stats1234_user_type = t1234.groupby(['variant_number','user_type'])['act
    ive_mins_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'cou
    nt', 'var'])
    stats1234_user_type
```

Out[664]:

		active_mins_post			active_mins_pre			
		mean count		var	mean		var	
variant_number	user_type							
	contributor	4309.835346	911	3.489298e+07	4967.092206	911	4.838156e+07	
0	new_user	29.132720	2283	2.346789e+04	6.105563	2283	8.846519e+01	
Ü	non_reader	104.923671	27434	1.121262e+05	108.010352	27434	9.982839e+04	
	reader	1537.135378	6685	6.323741e+06	1706.748691	6685	7.733619e+06	
	contributor	4708.031496	127	5.280503e+07	3231.299213	127	2.824765e+07	
1	new_user	54.623377	770	4.513559e+04	6.487013	770	7.679892e+01	
ı	non_reader	164.454623	7008	1.961370e+05	99.442066	7008	3.998564e+04	
	reader	1926.734127	1260	9.683510e+06	1268.926984	1260	3.980188e+06	

```
In [716]: for g in set(t4_user_attributes['user_type']):
    intervals[g] = ConfidenceInterval(stats1234_user_type, g)
    print(g, ':', ConfidenceInterval(stats1234_user_type, g))
```

contributor : [1284.297301979685, 2983.680986134959]
non_reader : [58.15701884268577, 78.04145683476409]

reader : [710.25891739744, 944.5819950932107]
new user : [8.967288343457433, 41.2511244308029]

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User)

Gender and User Type

Out[706]:

			active_mins_post			active_mins_pre			
			mean count var		mean	count	var		
variant_number	user_type	gender							
		female	2891.901345	223	1.919445e+07	3680.219731	223	2.7	
	contributor	male	4959.790541	592	4.056130e+07	5466.097973	592	5.5	
		unknown	3595.520833	96	2.918201e+07	4879.187500	96	4.7	
		female	28.274590	732	2.253973e+04	5.845628	732	5.3	
	new_user	male	30.543119	1090	2.800025e+04	6.227523	1090	8.6	
0		unknown	27.160521	461	1.430522e+04	6.229935	461	1.4	
Ü		female	91.746596	7932	1.876154e+05	97.312532	7932	2.0	
	non_reader	male	115.496277	15175	9.035496e+04	116.640461	15175	5.7	
		unknown	92.000462	4327	4.926881e+04	97.354749	4327	5.4	
	reader	female	1281.672737	1812	5.308603e+06	1409.699227	1812	6.4	
		male	1689.815584	4094	7.074096e+06	1858.350513	4094	8.4	
		unknown	1328.952503	779	4.437375e+06	1600.966624	779	6.6	
		female	3514.038462	26	2.606714e+07	2304.115385	26	5.3	
	contributor	male	5354.695122	82	6.312565e+07	3830.280488	82	3.9	
		unknown	3551.052632	19	4.398827e+07	1915.000000	19	7.1	
		female	50.650000	260	1.585127e+04	6.334615	260	6.6	
	new_user	male	58.923288	365	6.926217e+04	6.487671	365	8.0	
1		unknown	50.924138	145	3.735781e+04	6.758621	145	8.6	
ı		female	137.462475	1972	1.131500e+05	80.724645	1972	2.4	
	non_reader	male	184.613955	3927	2.676727e+05	108.973262	3927	4.0	
		unknown	141.066727	1109	8.735659e+04	98.974752	1109	6.7	
		female	1634.485030	334	7.857262e+06	1082.218563	334	3.0	
	reader	male	2071.270667	750	1.057237e+07	1342.662667	750	4.2	
		unknown	1865.420455	176	9.208636e+06	1309.034091	176	4.7	

```
In [711]: covariates = [[a,b] for a in set(t4_user_attributes['user_type']) for b
   in set(t4_user_attributes['gender'])]
   len(covariates)
```

```
In [712]: def ConfidenceInterval_covariate(stats, covariate):
               mean did = stats.loc[1, covariate[0], covariate[1]]['active mins dif
           f', 'mean'] - stats.loc[0, covariate[0], covariate[1]]['active mins dif
           f', 'mean']
               SE_did = np.sqrt(stats.loc[1, covariate[0], covariate[1]]['active_mi
           ns_diff','var'] / stats.loc[1, covariate[0], covariate[1]]['active_mins_
          diff','count'] +
                                 stats.loc[0, covariate[0], covariate[1]]['active mi
          ns diff','var'] / stats.loc[0, covariate[0], covariate[1]]['active mins
           diff','count'])
               upper = mean_did + (1.96 * SE_did)
               lower = mean_did - (1.96 * SE_did)
               return [lower, upper]
In [717]: for c in covariates:
               intervals['_'.join(c)] = ConfidenceInterval_covariate(stats1234, c)
               print(c, ':', ConfidenceInterval_covariate(stats1234, c))
           ['contributor', 'unknown'] : [653.6048080357796, 5185.8337884554485]
           ['contributor', 'female'] : [343.4674981069095, 3653.0154270396924]
          ['contributor', 'male'] : [925.4251510097495, 3136.018982147799]
          ['non_reader', 'unknown'] : [28.39717566566377, 66.49534790818825]
           ['non_reader', 'female'] : [49.22753265482336, 75.3799974770583]
           ['non_reader', 'male'] : [61.20339354405016, 92.36636076534171]
           ['reader', 'unknown'] : [545.8458322158888, 1110.9551363918833]
           ['reader', 'female'] : [460.6913673558314, 899.8945469083554]
          ['reader', 'male']: [739.678278996958, 1054.607579332304]
           ['new_user', 'unknown'] : [-9.935825860614052, 56.405688976778315]
           ['new_user', 'female'] : [3.262515103845068, 40.5103306296564]
['new_user', 'male'] : [-0.4068322301028964, 56.646872446264766]
In [718]: df intervals = pd.DataFrame(intervals)
```

```
In [769]: for c in covariates:
              build_dist(t1234[(t1234.variant_number==1) & (t1234.user_type==c[0])
          & (t1234.gender==c[1]) &
                           (t1234.active mins diff < t1234.active mins diff.quantil
          e(0.90)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.10))],
                     t1234[(t1234.variant number==0) & (t1234.user_type==c[0]) & (
          t1234.gender==c[1]) &
                           (t1234.active_mins_diff < t1234.active_mins_diff.quantil</pre>
          e(0.90)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.1))],
                      "active_mins_diff", "active_mins_diff", "Difference in Total Ac
          tive Mins " + '(' + c[0].title() + ', ' + c[1].title() + ')', "Treatmen
          t", "Control",
                      title='Distribution of Post/Pre-Test Difference in Total Acti
          ve Miniutes ' + '(' + c[0].title() + ', ' + c[1].title() + ')')
```

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New User, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User, Male)


```
In [771]: for u in set(t4_user_attributes.user_type):
    plt.figure()
    plt.title('Confidence Intervals of Difference in User Total Time')
    plt.grid()
    plt.vlines(0, -1, 4, colors='r')
    for i in df_intervals.columns[df_intervals.columns.str.startswith(u
)]:
        plt.hlines(i, df_intervals[i][0], df_intervals[i][1], colors='g'
        , alpha=0.8, linestyles='solid', label=i, linewidth=5.0)
```


