Feuille 4.1 - Sous-variétés, introduction

Exercice 1 – Quelques exemples (1). Les dessins suivants représentent des parties de \mathbb{R}^2 ou \mathbb{R}^3 . Dites, sans justification rigoureuse, lesquelles sont des sous-variétés C^{∞} .

Exercice 2 — Quelques exemples (2). Les sous-ensembles V de \mathbb{R}^2 ou \mathbb{R}^3 qui suivent sont-ils des sous-variétés ? Et $V \setminus \{0\}$?

- a) $V=\mathbb{R}^2$
- **b)** $V = \{(t,0) \in \mathbb{R}^2 / t \in [0,1[\};$
- c) $V = \{(x, y) \in \mathbb{R}^2, y = |x|\}.$
- **d)** $V = \{(x, y, z) \in \mathbb{R}^3, \quad x^2 + y^2 = z^2\};$

Exercice 3 – Le cas du tore. Montrer que $E = \{(x,y) \in \mathbb{R}^2, \quad x^2 + 2y^2 = 1\}$ est une sous-variété de \mathbb{R}^2 . Montrer que $E' = \{(x,y,z) \in \mathbb{R}^3, \quad x^2 + y^2 + 2z^2 = 1\}$ est une sous-variété de \mathbb{R}^3 . Montrer qu'un tore dans \mathbb{R}^3 est une sous-variété de \mathbb{R}^3 (on pourra considérer le cas du tore symétrique par rapport à l'axe z, d'équation $(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$).

Exercice 4 - Inversibilité et sous-variété.

- a) Montrer que l'ensemble $A=\{(x,y)\in\mathbb{R}^2|x=0\ \text{et}\ 0\leqslant y<\frac{1}{2},\ \text{ou}\ 0\leqslant 0<\frac{1}{2}\ \text{et}\ y=0\}$ n'est pas une sous-variété C^∞ de \mathbb{R}^2 .
- **b)** Donner cependant un exemple d'application C^{∞} d'un intervalle de \mathbb{R} dans \mathbb{R}^2 d'image A.

Exercice 5 – Lignes de niveaux et sous-variétés. Montrer que les lignes de niveau de la fonction suivante sont des sous-variétés \mathbb{R}^3 :

$$F(x, y, z) = \frac{x^2 + y^2}{x^2 + y^2 + z^2 + (1 - x^2 - y^2)^2}$$

(Préciser leur dimension)