SS 2001 Lösungsblatt 1 Klausur 23. Juni 2001

Diskrete Strukturen II

Aufgabe 1

(2 Punkte)

Wie lautet der Satz von der totalen Wahrscheinlichkeit?

Lösung Sei $(\Omega, \Pr[\cdot])$ ein diskreter Wahrscheinlichkeitsraum. Seien $\{A_i\}_{i\in I}$ endlich viele (oder abzählbar viele, falls $|\Omega| = |\mathbb{N}|$) paarweise disjunkte Ereignisse mit

$$\biguplus_{i\in I} A_i = \Omega,$$

Dann gilt für jedes Ereignis $B \subset \Omega$

$$\Pr[B] = \sum_{i \in I} \Pr[B \cap A_i] = \sum_{i \in I} \Pr[B|A_i] \Pr[A_i].$$

Aufgabe 2

(2+2+2 Punkte)

Sei $\Omega = \{0, 1\}^3$, und alle Elementarereignisse (Folgen $\omega = (\omega_1, \omega_2, \omega_3)$) seien gleich wahrscheinlich.

$$A_1 := \{ \omega | \omega_2 = 1, \omega_3 = 1 \} \text{ (symbolisch `*11')}$$

$$A_2 := \{ \omega | \omega_1 = 1, \omega_3 = 1 \}$$
 (symbolisch '1*1')

$$A_3 := \{ \omega | \omega_1 = 1, \omega_2 = 1 \}$$
 (symbolisch '11*')

- a) Sind A_1, A_2, A_3 unabhängig? Begründen Sie Ihre Antwort.
- b) Wie lautet die Siebformel für $Pr[A_1 \cup A_2 \cup A_3]$?
- c) Wie groß ist $Pr[A_1 \cup A_2 \cup A_3]$?

Lösung

zu a) Nicht unabhängig. Jedes Ereignis A_i hat offenbar WS 1/4, weil es aus jeweils zwei von insgesamt acht Elementarereignissen besteht. Aber es gilt

$$\Pr[A_1 \cap A_2] = \Pr[`111'] = 1/8 \neq 1/4 \cdot 1/4 = \Pr[A_1]\Pr[A_2].$$

zu b)
$$\Pr[A_1 \cup A_2 \cup A_3] = \Pr[A_1] + \Pr[A_2] + \Pr[A_3] - \Pr[A_1 \cap A_2] - \Pr[A_2 \cap A_3] - \Pr[A_3 \cap A_1] + \Pr[A_1 \cap A_2 \cap A_3].$$

zu c) Einsetzen in die Formel aus b) ergibt

$$\Pr\left[A_1 \cup A_2 \cup A_3\right] = 3 \cdot 1/4 - 3 \cdot 1/8 + 1/8 = 1/2.$$

Dieses Ergebnis kann man auch elementar begründen, denn $A_1 \cup A_2 \cup A_3 = \{\text{`111'}, \text{`011'}, \text{`101'}, \text{`110'}\}$ umfaßt die Hälfte aller Elementarereignisse.

Aufgabe 3

(2+2 Punkte)

- a) Wie und unter welchen Voraussetzungen ist die bedingte Wahrscheinlichkeit $\Pr[A|B]$ definiert?
- b) Seien A und B nun zwei nichtleere disjunkte Ereignisse. Was ist Pr[A|B]?

Lösung

zu a) Wenn $B \neq \emptyset$ gilt

$$\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]}.$$

zu b) Nach der in a) wiederholten Definition ist in diesem speziellen Falle (wenn also $A \cap B = \emptyset, A \neq \emptyset, B \neq \emptyset$)

$$\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[\emptyset]}{\Pr[B]} = 0.$$

Aufgabe 4

(2 Punkte)

Geben Sie die Varianz der Summe von k unabhängigen Bernoulli-Zufallsvariablen mit Erfolgswahrscheinlichkeit p an.

 $\mathbf{L\ddot{o}sung}$ Für eine Bernoulli-Variable X_i mit Erfolgswahrscheinlichkeit p ist

$$Var[X_i] = (1-p)^2(1-p) + (0-p)^2p = p(1-p).$$

Sei $X = \sum_{i=1}^{k} X_i$. Weil die X_i unabhängig sind, gilt

$$Var[X] = Var\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} Var[X_i] = kp(1-p).$$

Aufgabe 5

(3+3) Punkte

In Urne 1 liegen zwei weiße und zwei schwarze Kugeln, in Urne 2 eine weiße und fünf schwarze Kugeln. Urne 1 werde mit Wahrscheinlichkeit 1/5 gewählt, anderenfalls Urne 2. Dann wird jeweils eine Kugel aus der gewählten Urne gezogen.

(Es gilt also
$$\Pr[S|U_1] = 1/2, \Pr[S|U_2] = 5/6, \Pr[U_1] = 1/5.$$
)

- a) Wie groß ist die Wahrscheinlichkeit Pr[S], daß eine schwarze Kugel gezogen wird?
- b) Was ist die Wahrscheinlichkeit $Pr[U_2|S]$, daß also Urne 2 gewählt wurde, unter der Bedingung, daß eine schwarze Kugel gezogen wurde?

Lösung

zu a) Es gilt der Satz von der totalen WS, weil $\Omega = U_1 \uplus U_2$ - entweder U_1 oder U_2 tritt ein.

$$\Pr[S] = \Pr[S|U_1]\Pr[U_1] + \Pr[S|U_2]\Pr[U_2] = 1/2 \cdot 1/5 + 5/6 \cdot 4/5 = 23/30.$$

zu b) Wir können entweder den Satz von Bayes verwenden, oder die obige Gleichung einfach auflösen nach $\Pr[S|U_2]$, und danach benutzen, daß (Definition der bedingten WS!)

$$\Pr\left[U_2|S\right] = \frac{\Pr\left[U_2 \cap S\right]}{\Pr\left[S\right]} \cdot \frac{\Pr\left[U_2\right]}{\Pr\left[U_2\right]} = \Pr\left[S|U_2\right] \cdot \frac{\Pr\left[U_2\right]}{\Pr\left[S\right]}.$$

(Was äquivalent ist.)

$$\Pr[S|U_2] = \frac{\Pr[S] - \Pr[S|U_1]\Pr[U_1]}{\Pr[U_2]}.$$

Insgesamt folgt also

$$\Pr[U_2|S] = \frac{\Pr[S] - \Pr[S|U_1]\Pr[U_1]}{\Pr[U_2]} \frac{\Pr[U_2]}{\Pr[S]} = \frac{\Pr[S] - \Pr[S|U_1]\Pr[U_1]}{\Pr[S]}$$
$$= 1 - \frac{1/2 \cdot 1/5}{23/30} = 20/23$$

Aufgabe 6

(2+2+2 Punkte)

- a) Seien X, Y Zufallsvariablen mit bekannten Erwartungswerten $\mathbb{E}[X]$ und $\mathbb{E}[Y]$. Berechnen Sie $\mathbb{E}[\mathbb{E}[Y] \cdot X + 2Y 3]$.
- b) Ist für Ihre Rechnung in a) die Unabhängigkeit von X und Y Voraussetzung?
- c) Die Zufallsvariable Z nehme die Werte in $\{1, 3, 5, 7\}$ mit gleicher Wahrscheinlichkeit an. Berechnen Sie $\mathbb{E}[Z]$.

Lösung

zu a) Man beachte, daß $\mathbb{E}[Y]$ einfach eine reelle Zahl ist. Wegen der Linearität des Erwartungswertes ist. Außerdem müssen wir die '3' als eine konstante Zufallsvariable interpretieren, die für alle ω den Wert 3 annimmt. Also ist

$$\mathbb{E}\left[\mathbb{E}\left[Y\right] \cdot X + 2Y - 3\right] = \mathbb{E}\left[Y\right]\mathbb{E}\left[X\right] + 2\mathbb{E}\left[Y\right] - 3.$$

zu b) Nein! Denn der Erwartungswert ist linear für beliebig abhängige Zufallsvariablen (mit gemeinsamem Definitionsbereich Ω). zu c) Es gilt

$$\mathbb{E}[Z] \stackrel{\text{def.}}{=} \sum_{z \in W_Z} z \cdot \Pr[Z = z] = 1 \cdot 1/4 + 3 \cdot 1/4 + 5 \cdot 1/4 + 7 \cdot 1/4 = 4.$$

Aufgabe 7

(5 Punkte)

Sei $n \geq 3$. Geben Sie die Werte der Binomialverteilung b(j; n, 3/n) an für j = 0, 1, 2 und j = n. Was ist jeweils der Grenzwert für $n \to \infty$?

Lösung

$$b(0; n, 3/n) = \binom{n}{0} (3/n)^0 (1 - 3/n)^{n-0} = (1 - 3/n)^n \to e^{-3} = \text{Po}_3(0)$$

$$b(1; n, 3/n) = \binom{n}{1} (3/n)^1 (1 - 3/n)^{n-1} = 3(1 - 3/n)^{n-1} \to 3e^{-3} = \text{Po}_3(1)$$

$$b(2; n, 3/n) = \binom{n}{2} (3/n)^2 (1 - 3/n)^{n-2} = \frac{n(n-1)}{2} (3/n)^2 (1 - 3/n)^{n-2} \to \frac{3^2}{2!} e^{-3} = \text{Po}_3(2)$$

$$b(n; n, 3/n) = \binom{n}{n} (3/n)^n (1 - 3/n)^{n-n} = (3/n)^n \to 0.$$

Aufgabe 8

(2+2+2+3 Punkte)

Wir konstruieren folgendermaßen einen zufälligen Graphen: Es werden alle Kanten des vollständigen Graphen K_n jeweils unabhängig mit Wahrscheinlichkeit $p = \frac{c}{n-1}$ markiert. Dann werden alle unmarkierten Kanten entfernt. (Man schreibt auch $G \in \mathcal{G}_{n,\frac{c}{n-1}}$.)

- a) Berechnen Sie Erwartungwert und Varianz der Zufallsvariablen X, welche die Anzahl Kanten in G zählt.
- b) Berechnen Sie eine obere Schranke für die Wahrscheinlichkeit, daß X um mehr als 10% von $\mathbb{E}[X]$ abweicht? (Chebychev!)
- c) Sei nun Y die Anzahl von Dreiecken in G. Schreiben Sie Y als eine geeignete Summe von Indikatorvariablen und berechnen Sie damit $\mathbb{E}[Y]$.
- d) Schätzen Sie $\Pr[Y \ge 1]$ mit der Markovungleichung ab. Genügt das Ergebnis, um $\lim_{n\to\infty} \Pr[Y=0]$ zu berechnen?

Lösung

zu a) Wir schreiben $X = \sum_{e \in E(K_n)} X_e$, wobei die X_e 's unabhängige Bernoulli-Variablen sind mit Erfolgswahrscheinlichkeit $p = \frac{c}{n-1}$. Es ist X_e genau dann gleich eins, wenn die Kante e 'eingeschaltet' ist. Insgesamt gibt es genau $\binom{n}{2}$ Kanten e im K_n , deshalb ist der Erwartungswert

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{e \in E(K_n)} X_e\right] = \sum_{e \in E(K_n)} \mathbb{E}[X_e] = \frac{n(n-1)}{2} \frac{c}{n-1} = \frac{c}{2}n,$$

und die Varianz (vgl. Aufgabe 4!)

$$Var[X] = \frac{n(n-1)}{2} \frac{c}{n-1} (1 - \frac{c}{n-1}) \sim \mathbb{E}[X](1 - o(1)).$$

zu b) Anwendung der Ungleichung von Chebychev mit den Werten aus a) liefert.

$$\Pr[|X - \mathbb{E}[X]| \ge \mathbb{E}[X]/10] \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X]/10)^2} = \frac{100(1 - o(1))}{\mathbb{E}[X]} = 100\frac{2}{cn}(1 - o(1)).$$

zu c) Es gibt $\binom{n}{3}$ dreielementige Teilmengen M der Knotenmenge V. Wir schreiben

$$Y = \sum_{M \in \binom{V}{3}} Y_M.$$

Dabei ist Y_M genau dann gleich eins, wenn das Dreieck induziert von den Knoten in $M = \{m_1, m_2, m_3\}$ vollständig 'eingeschaltet' ist. Also ist Y_m genau dann eins, wenn die Kanten $\{m_1, m_2\}$, $\{m_2, m_3\}$ und $\{m_3, m_1\}$ eingeschaltet sind, was mit Wahrscheinlichkeit $(\frac{c}{n-1})^3$ geschieht (die unabhängigen Indikatorvariablen $X_{\{m_1, m_2\}}$, $X_{\{m_2, m_3\}}$ und $X_{\{m_3, m_1\}}$ müssen alle eingeschaltet sein!). Man beachte, daß die Y_M 's nicht unabhängig sind! Aber dennoch gilt die Linearität des Erwartungswertes, und wir erhalten

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{M \in \binom{V}{3}} Y_M\right] = \sum_{M \in \binom{V}{3}} \mathbb{E}[Y_M] = \binom{n}{3} \left(\frac{c}{n-1}\right)^3 = \frac{c^3 n(n-2)}{6(n-1)^2}.$$

zu d) Wir hatten in der Übungsaufgabe mit den K_4 's gesehen, daß deren erwartete Anzahl gegen Null geht und deshalb mit WS 1-o(1) keine K_4 's vorkommen, mit $n\to\infty$. Bei Dreiecken versagt dieses Argument, denn

$$\Pr[Y \ge 1] \stackrel{\text{Markov}}{\le} \frac{\mathbb{E}[Y]}{1} = \frac{c^3}{6} (1 - o(1)).$$

Dieser Wert konvergiert nicht gegen Null!.

Bem.: Tatsächlich gibt es im $G \in \mathcal{G}_{n,\frac{c}{n-1}}$ mit WS 1-o(1) keine K_4 's aber $Z \sim \operatorname{Po}_{\frac{c^3}{6}}(\cdot)(1-o(1))$ viele Dreiecke. Demnach ist die WS, daß es keine Dreiecke gibt, gleich

$$\Pr\left[Z=0\right] = \left(1 - \Pr_{\frac{c^3}{6}}(0)\right)\left(1 - o(1)\right) = \left(1 - e^{-\frac{c^3}{6}}\right)\left(1 - o(1)\right).$$

Die Abschätzung aus der Markov-Ungleichung ergibt hier einen Wert, der echt größer ist als der wahre Wert, denn es ist $1 - e^x < x$, für alle x > 0.