

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Bipolar Junction Transistors (BJT) - Basics

Instructor: Debanjan Bhowmik

Reference: Donald Neamen's 'Electronic Circuit Analysis'

Chapter 3 (BJT)

Bipolar Junction Transistor

- Three terminal device
- Transistor: Transfer of resistance
- Two pn junctions in close proximity
- Achieved by sandwiching a narrow n(p) type material between two p(n)-type material sections.
- Bipolar: Both electrons and holes contribute in curren
- Type: npn or pnp

Bipolar Junction Transistor

- Three terminal device
- Transistor: Transfer of resistance.
- Two pn junctions in close proximity.
- Achieved by sandwiching a narrow n(p) type material between two p(n)-type material sections.
- Bipolar: Both electrons and holes contribute in curren
- Type: npn or pnp

$$T_{collector} > T_{emitter} > T_{base}$$

Planar structure

Bipolar Junction Transistor: Symbol

Emitter lead is identified by an arrow pointing in the direction of 'positive' charge flow in normal operation.

Mode	V_{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	

Mode	V_{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	

- 1. Forward bias of EB Jn causes electrons to diffuse from emitter into base.
- 2. As base region is very thin, the majority of electrons diffuse to the edge of the depletion region of CB Jn, and then are swept to the collector by the electric field of the reverse-biased CB Jn. (Collected electrons recombine with 'holes' provided by VCB supply.) $i_C = \alpha I_E$

Mode	V _{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	

- 1. Forward bias of EB Jn causes electrons to diffuse from emitter into base.
- 2. As base region is very thin, the majority of electrons diffuse to the edge of the depletion region of CB Jn, and then are swept to the collector by the electric field of the reverse-biased CB Jn. (Collected electrons recombine with 'holes' provided by VCB supply.) $i_C = \alpha I_E$
- 3. Small fraction of the electrons recombine with holes in base region.

Mode	V_{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	

- 1 . Forward bias of EB Jn causes electrons to diffuse from emitter into base.
- 2. As base region is very thin, the majority of electrons diffuse to the edge of the depletion region of CB Jn, and then are swept to the collector by the electric field of the reverse-biased CB Jn. (Collected electrons recombine with 'holes' provided by VCB supply.) $i_C = \alpha I_E$
- 3. Small fraction of the electrons recombine with holes in base region.
- 4. Holes are also injected from base to emitter region. (4) << (1).

The two-carrier flow from [(1)] and (4) forms the emitter current (I_E)

Mode	V_{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	

- 1 . Forward bias of EB Jn causes electrons to diffuse from emitter into base.
- 2. As base region is very thin, the majority of electrons diffuse to the edge of the depletion region of CB Jn, and then are swept to the collector by the electric field of the reverse-biased CB Jn. (Collected electrons recombine with 'holes' provided by VCB supply.) $i_C = \alpha I_E$
- 3. Small fraction of the electrons recombine with holes in base region.
- 4. Holes are also injected from base to emitter region. (4) << (1).

The two-carrier flow from [(1) and (4)] forms the emitter current (I_E)

Ic is almost independent of the magnitude of VCB and (Ic = α Ie, α =0.9~0.99)

BJT- Carrier Motion

Biasing conditions

Mode	V _{BE}	V _{BC}
Forward active	Forward bias	Reverse Bias
Reverse active	Reverse Bias	Forward Bias
Saturation	Forward bias	Forward bias
Cut off	Reverse Bias Reverse B	

Mode	V _{BE}	V _{BC}
Forward active	Forward bias	Reverse Bias
Reverse active	Reverse Bias	Forward Bias
Saturation	Forward bias	Forward bias
Cut off	Reverse Bias	Reverse Bias

Amplifier (less effective)

Biasing	conditions

Mode	V _{BE}	V _{BC}
Forward active	Forward bias	Reverse Bias
Reverse active	Reverse Bias	Forward Bias
Saturation	Forward bias	Forward bias
Cut off	Reverse Bias	Reverse Bias

Amplifier
Amplifier (less effective)
Small drop between E-B and Ic independent of Ib (Switch ON)

Biasing con	ditions
-------------	---------

Mode	V _{BE}	V _{BC}
Forward active	Forward bias	Reverse Bias
Reverse active	Reverse Bias	Forward Bias
Saturation	Forward bias	Forward bias
Cut off	Reverse Bias	Reverse Bias

Amplifier
Amplifier (less effective)
Switch ON
Only ICBO flows in collector
(SWITCH OFF)

 I_E , I_B , I_C are the currents flowing through emitter, base and collector terminal

$$I_E = I_B + I_C$$

 I_E , I_B , I_C are the currents flowing through emitter, base and collector terminal.

$$I_E = I_B + I_C$$

 I_C is around 96% - 99.5% of I_E

$$I_C = \alpha I_E$$

α is emitter to collector gain. It lies between 0.96 to 0.995.

 I_E , I_B , I_C are the currents flowing through emitter, base and collector terminal

$$I_E = I_B + I_C$$

T_E C T_C

 I_C is around 96% - 99.5% of I_E

$$I_C = \alpha I_E$$

α is emitter to collector gain. It lies between 0.96 to 0.995.

 I_C is approximately equal to I_E , but due to reverse biased C-B jn, a small reverse saturation current flows (I_{CBO}).

collector-to-base leakage current with emitter open circuit

$$I_E = I_B + I_C$$
$$I_C = \alpha I_E + I_{CBO}$$

$$I_E = I_B + I_C$$
$$I_C = \alpha I_E + I_{CBO}$$

$$I_C = \alpha(I_C + I_B) + I_{CBO}$$
$$(1 - \alpha)I_C = \alpha I_B + I_{CBO}$$

$$I_E = I_B + I_C$$
$$I_C = \alpha I_E + I_{CBO}$$

$$I_C = \alpha(I_C + I_B) + I_{CBO}$$
$$(1 - \alpha)I_C = \alpha I_B + I_{CBO}$$

$$I_C = \left(\frac{\alpha}{1-\alpha}\right)I_B + \left(\frac{1}{1-\alpha}\right)I_{CBO}$$

$$I_E = I_B + I_C$$
$$I_C = \alpha I_E + I_{CBO}$$

$$I_C = \alpha(I_C + I_B) + I_{CBO}$$
$$(1 - \alpha)I_C = \alpha I_B + I_{CBO}$$

$$I_C = \left(\frac{\alpha}{1-\alpha}\right)I_B + \left(\frac{1}{1-\alpha}\right)I_{CBO}$$

$$I_C = eta I_B + (eta + 1) I_{CBO}$$
 B, base-to-collector current gain (assuming no leakage)

$$I_E = I_B + I_C$$
$$I_C = \alpha I_E + I_{CBO}$$

$$I_C = \alpha(I_C + I_B) + I_{CBO}$$
$$(1 - \alpha)I_C = \alpha I_B + I_{CBO}$$

$$I_C = \left(\frac{\alpha}{1-\alpha}\right)I_B + \left(\frac{1}{1-\alpha}\right)I_{CBO}$$

$$I_C=eta I_B+(eta+1)I_{CBO}$$
 B, base-to-collector current gain (assuming no leakage)

I_{CEO}, reverse saturation current in CE configuration

BJT configurations

Common base configuration

Common collector configuration

Common emitter configuration

BJT configurations: CB

Common base configuration

- Base is grounded/fixed.
- Base connected to both input and output side
- Input Emitter terminal, Output Collector terminal

BJT configurations: CB

Common base configuration

- Base is grounded/fixed.
- Base connected to both input and output side
- Input Emitter terminal, Output Collector terminal
- $I_e = I_c + I_b$, $I_c < I_e$
- CAN be used for voltage amplification.

$$A = \frac{I_c R_L}{I_e R_{IN}} \gg 1, R_L \gg R_{IN}$$

- Does not do current amplification (in fact attenuates)
- Low Zin, High Zout, Low power gain

BJT configurations: CE

Common emitter configuration

- Emitter is grounded/fixed. Collector connected to load.
- $V_C > V_E$, (for npn) (Hint: $V_{CE} - V_{BE} > 0$, $V_{BE} > 0$)
- Input Base terminal, Output Collector terminal

BJT configurations: CE

Common emitter configuration

- Emitter is grounded/fixed. Collector connected to load
- $V_C > V_E$, (for npn)

(Hint:
$$V_{CE} - V_{BE} > 0$$
, $V_{BE} > 0$)

- Input Base terminal, Output Collector terminal
- $I_e = I_c + I_b, I_c \gg I_b$
- Can be used for current amplification

$$A = \frac{I_c}{I_b} \gg 1,$$

- Can also be used as voltage amplifier but amplification less than CB mode, and gives 180 degree phase shift (inversion)
- Medium Zin, Zout; High Power Gain

BJT configurations: CC

Common collector configuration

- Collector is grounded at fixed reference. Emitter connected to load.
- Input Base terminal, Output Emitter terminal

BJT configurations: CC

Common collector configuration

- Collector is grounded at fixed reference. Emitter connected to load.
- Input Base terminal, Output Emitter terminal
- $I_e = I_L = I_c + I_b$,
- Can be used for current amplification

$$A = \frac{I_e}{I_b} \gg 1,$$

- But, voltage gain is almost unity only.
- Voltage follower or buffer (zero phase difference)
- High Zin, Low Zout, Medium Power Gain

BJT configurations: Qualitative Summary

Characteristic	Common Base	Common Emitter	Common Collector
Input Impedance	Low	Medium	High
Output Impedance	Very High	High	Low
Phase Shift	00	180°	00
Voltage Gain	High	Medium	Low
Current Gain	Low	Medium	High
Power Gain	Medium	Very High	Medium
	Preamplifie r	Most Common	Buffer