

Figure 6.3: Let  $f: E \to F$  be the linear map from  $\mathbb{R}^3$  to  $\mathbb{R}^2$  given by f(x,y,z) = (x,y). Then  $s: \mathbb{R}^2 \to \mathbb{R}^3$  is given by s(x,y) = (x,y,x+y) and maps the pink  $\mathbb{R}^2$  isomorphically onto the slanted pink plane of  $\mathbb{R}^3$  whose equation is -x-y+z=0. Theorem 6.16 shows that  $\mathbb{R}^3$  is the direct sum of the plane -x-y+z=0 and the kernel of f which the orange z-axis.

*Proof.* Recall that U+V is the image of the linear map

$$a: U \times V \to E$$

given by

$$a(u, v) = u + v$$

and that we proved earlier that the kernel Ker a of a is isomorphic to  $U \cap V$ . By Theorem 6.16,

$$\dim(U \times V) = \dim(\operatorname{Ker} a) + \dim(\operatorname{Im} a),$$

but  $\dim(U \times V) = \dim(U) + \dim(V)$ ,  $\dim(\operatorname{Ker} a) = \dim(U \cap V)$ , and  $\operatorname{Im} a = U + V$ , so the Grassmann relation holds.

The Grassmann relation can be very useful to figure out whether two subspace have a nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in  $\mathbb{R}^5$ , there are subspaces U and V with  $\dim(U)=3$  and  $\dim(V)=2$  such that  $U\cap V=(0)$ ; for example, let U be generated by the vectors (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), and V be generated by the vectors (0,0,0,1,0) and (0,0,0,0,1). However, we claim that if  $\dim(U)=3$  and  $\dim(V)=3$ , then  $\dim(U\cap V)\geq 1$ . Indeed, by the Grassmann relation, we have

$$\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V),$$

namely

$$3 + 3 = 6 = \dim(U + V) + \dim(U \cap V),$$