# Геометрия и топология

Солынин А. А.1

11.09.2023 - ...

 $<sup>^1</sup>$  "Конспекты были честно украдены, пожалуйста, не бейте. Ссылка "

# Оглавление

| 1                                 | Векторное пространство |                                                            | <b>2</b>   |  |
|-----------------------------------|------------------------|------------------------------------------------------------|------------|--|
|                                   | 1.1                    | Определение векторного пространства                        | 2          |  |
|                                   | 1.2                    | Линейная комбинация, линейная зависимость и линейная неза- |            |  |
|                                   |                        | висимость                                                  | 3          |  |
|                                   | 1.3                    | Матрицы                                                    | 7          |  |
|                                   | 1.4                    | Скалярное произведение                                     | 10         |  |
|                                   | 1.5                    | Построение ортонормированного базиса                       | 11         |  |
|                                   | 1.6                    | Ориентация базиса                                          | 12         |  |
|                                   |                        |                                                            |            |  |
| Лекция 1: Векторное пространство  |                        |                                                            |            |  |
| Tongin I. Bontophic aportpatierbo |                        |                                                            | na na 2023 |  |

# Глава 1

# Векторное пространство

## 1.1 Определение векторного пространства

```
Определение 1. Пусть V - множество; +: V \times V \longrightarrow V \cdots : \mathbb{R} \times V \longrightarrow V \forall u, w, v \in V : \forall \alpha, \beta 1. (u+v)+w=(u+v)+w (ассоциативность сложения) 2. u+v=v+u (коммутативность сложения) 3. \exists ! 0 \in V : u+0=0+u=u (нейтральный элемент по сложению) 4. \exists u; -u: u+(-u)=0 (обратный элемент по сложению) 5. \alpha(u+v)=\alpha u+\alpha v (дистрибутивность) 6. (\alpha \cdot \beta)u=\alpha(\beta \cdot u) (ассоциативность умножения) 7. 1 \cdot u=u (нейтральный элемент по умножению) Если 1-8 выполняются, то V - (вещественное) векторное пространство.
```

```
Пример. 1. \mathbb{R}^n=\mathbb{R}\times\mathbb{R}\times...\times\mathbb{R} - n-мерное пространство (a_1...a_n)+(b_1...b_n)=(a_1+b_1...a_n+b_n)
```

- 2. Множество многочленов V Множество многочленов n степени не веркторное пространство, т. к.  $(x^n+1)+(-x^n+x)=x+1$  сложение не определено Множество многочленов степени  $n\leqslant n$  векторное пространство.
- 3. Множество определенных на [a..b], непрерывных и имеющих непрерывную производную функций векторное пространство.
- 4. Матрицы  $n \times m$  векторное пространство.

5. Множество вращений шара (сложение — композиция, умножение — умножение угла на число на число) — не векторное пространство. (Упражнение: докажите почему)

Свойство. (Доказуемые свойства)

- 1.  $\overline{1}$  единственный.
- 2.  $\begin{cases} u + v = 0 \\ u + w = 0 \end{cases} \Rightarrow v = w$
- $3. \ -\overline{1} \cdot u = -u$
- 4.  $u \cdot 0 = 0$

# 1.2 Линейная комбинация, линейная зависимость и линейная независимость

**Определение 2.** V - векторное пространство и векторы  $v_1, v_2, v_3, ..., v_n \in V$ . Система  $v_1, ..., v_n$  называется линейно независимой (ЛНЗ), если из  $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \alpha_2 = ... = \alpha_n = 0$ .

Определение 3. Если  $\alpha_1, ..., \alpha_n \in \mathbb{R}, v_1, ..., v_n \in V$ . То  $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$  – линейная комбинация (ЛК) векторов  $v_1, ..., v_n$ .

**Определение 4.** Если  $\exists \alpha_1,...,\alpha_n$ , не все =0, но  $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n=0$ , то система  $v_1,...,v_n$  называется линейно зависимой (ЛЗ).

**Теорема 1.**  $v_1,...,v_n$  – ЛЗ  $\Leftrightarrow$  один из этих векторов можно представить как ЛК остальных.  $\exists i: v_i = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_{i-1} v_{i-1} + \alpha_{i+1} v_{i+1} + ... + \alpha_n v_n$ 

Доказательство.  $\Rightarrow$ :  $\exists \alpha_1,...,\alpha_n (\exists i: \alpha_i \neq 0)$ 

$$\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n = 0$$
 
$$\alpha_iv_i = -\alpha_1v_1 - \alpha_2v_2 - \ldots - \alpha_{i-1}v_{i-1} - \alpha_{i+1}v_{i+1} - \ldots - \alpha_nv_n$$
 
$$\alpha_i \neq 0 \quad v_i = -\frac{\alpha_1}{\alpha_i}v_1 - \ldots - \frac{\alpha_n}{\alpha_i}v_n$$
 
$$\Leftarrow: v_i = \alpha_1v_1 + \ldots + \alpha_nv_n \text{ без } i\text{-ого слагаемого}$$
 
$$\alpha_1v_1 + \alpha_2v_2 + \ldots + (-1)v_i + \ldots + \alpha_nv_n = 0$$
 
$$\mathsf{JK} = 0 \text{ не все коэффициенты} = 0$$

**Предположение 1.**  $v_1, ..., v_n$  – ЛНЗ, то любой его поднабор тоже ЛНЗ.  $v_1, ..., v_n$  – ЛЗ, то при добавлении векторов, набор останется ЛЗ.

**Теорема 2.**  $v_1, ..., v_n$  – ЛНЗ  $\Leftrightarrow$  если

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$$
  

$$\Rightarrow \alpha_1 = \beta_1; \alpha_2 = \beta_2; \dots; \alpha_n = \beta_n$$

Доказательство.

$$(\alpha_1 - \beta_1)v_1 + (\alpha_2 - \beta_2)v_2 + \dots + (\alpha_n - \beta_n)v_n = 0$$
  
 $\alpha_i - \beta_i = 0 \Leftrightarrow v_1, \dots, v_n$ - ЛНЗ

Лекция 2: Базис векторого пространства

18.09.2023

Пусть у - Это конечно мерно пространство

**Определение 5.** Набор  $v_1, v_2, ..., v_n$  называется порождающим для V, если  $\forall w \in V \exists \alpha_1, ..., \alpha_n : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ 

**Замечание.** Если к порождающему набору прибавить вектор, то он останется порождающим. Если убрать векторы из непорождающего набора векторы, то набор останется непорождающим.

**Определение 6.**  $v_1, v_2, ..., v_n$  называется базисом V, если этот набор ЛНЗ и порождающий.

Теорема 3 (О базисе). Следующие определения базиса равносильны:

- 1. ЛНЗ и порождающий набор
- 2. Минимальный порождающий набор (минимальный по включениям)
- 3. Максимальный ЛНЗ набор (максимальный по включениям)
- 4. Порождающий набор  $\forall w \in V \exists ! \alpha_1,...,\alpha_2 : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Доказательство. Цепочка доказательств:



 $1 \to 2$ . Дан  $v_1,...,v_n$  – ЛНЗ и порождающий набор. Доказать, что он минимальный порождающий.

Допустим, что  $v_i$  выкинули, оставшийся набор остался порождающим  $\Rightarrow v_i$  – ЛК остальных  $\Rightarrow$  ЛЗ.

 $2 \to 4$ . Дан  $v_1,...,v_n$  – минимальный порождающий набор. Доказать  $v_1,...,v_n$  – порождающий с единственностью коэффициентов.

Допустим противное:  $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \beta_1 v_1 + ... + \beta_n v_n$ 

$$\alpha_i \neq \beta_i$$

$$(\alpha_i - \beta_i)v_i = (\beta_1 - \alpha_1)v_1 + \dots \text{ (без $i$-oro)} + (\beta_n - \alpha_n)v_n$$

$$v_i = \frac{\beta_1 - \alpha_1}{\alpha_i - \beta_i} + \dots \text{ (без $i$-oro)} + \frac{\beta_n - \alpha_n}{\alpha_i - \beta_i}$$

 $v_i$  – выкинем. В любой ЛК с  $v_i$  заменим  $v_i$  на выражение выше  $\Rightarrow$  набор порождающий. Значит без единственности коэффициентов получаем противоречие с дано

 $4 \to 3$ . Дан  $v_1, ..., v_n$  – порождающий набор с единственностью коэффициентов. Доказать:  $v_1, ..., v_n$  – максимальный ЛНЗ (ЛНЗ уже доказана)

Допустим противное:  $v_1, v_2, ..., v_n; u$  – ЛНЗ набор

$$u = \alpha_1 v_1 + ... + \alpha_n v_n(\alpha_1, ... \alpha_n \exists !) \Rightarrow v_1, ..., v_n, u - J3$$

 $3\to 1.$  Дан  $v_1,...,v_n$  – максимальный ЛНЗ. Доказать  $v_1,...,v_n$  – ЛНЗ и порождающий набор.

$$\forall w \in V \qquad \qquad v_1, v_2, ..., v_n, w - \text{ЛЗ набор} \\ \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n + \beta w = 0 \\ \text{Если } \beta = 0 \Rightarrow \qquad \qquad \alpha_1 v_1 + ... + \alpha_n v_n = 0 \\ \text{ не все коэффициенты } = 0 (\alpha_i \neq 0) \\ \Rightarrow v_1, ..., v_n - \text{ЛЗ} \\ \beta \neq 0 \Rightarrow \qquad w = -\frac{\alpha_1}{\beta} v_1 - \frac{\alpha_2}{\beta} v_2 - ... - \frac{\alpha_n}{\beta} v_n$$

**Замечание.** (Следствия) Любую конечную порождающую систему можно сузить до базиса.

Если есть конечный порождающий набор, то любую ЛНЗ систему можно расширить до базиса.

**Определение 7.** Размерность пространства равна количеству элементов в базисе. (пока нет доказательств корректности)

**Лемма 1.** Система линейных уравнений:  $(a_{ij} \in \mathbb{R}; x_i \in \mathbb{R}; 0 \in \mathbb{R})$ 

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Имеет ненулевые решения, если n > k.

**Доказательство.** Индукция по k. База k=1:

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
 Пусть  $a_{11}\neq 0\Rightarrow x_1=-\frac{a_{12}}{a_{11}}x_2-\frac{a_{13}}{a_{11}}x_3-\ldots-\frac{a_{1n}}{a_{11}}x_n$   $\forall x_2,\ldots,x_n:x_1$  выражается через них 
$$a_{11}=0\Rightarrow x_1=1;x_2=x_3=\ldots=x_n=0$$

Переход

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
  $\exists i:a_{1i}\neq 0,$  иначе выкинем предыдущее уравнение  $x_i=-rac{a_{11}}{a_{1i}}x_1-\ldots$  (без  $i ext{-oro})--rac{a_{1n}}{a_{1i}}x_n$ 

Подставим выраженное  $x_i$  во все остальные уравнения. Уравнений на 1 меньше, переменных на 1 меньше.

#### **Теорема 4.** Если $v_1,...,v_k$ и $w_1,...,w_n$ базисы $\in V$ , то k=n.

**Доказательство.**  $v_1, ..., v_n$  – порождающая система.

$$w_1 = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \dots + a_{k1}v_k$$

$$w_2 = a_{12}v_1 + a_{22}v_2 + a_{32}v_3 + \dots + a_{k2}v_k$$

$$\dots$$

$$w_n = a_{1n}v_1 + a_{2n}v_2 + a_{3n}v_3 + \dots + a_{kn}v_k$$

$$x_1 w_1 + x_2 w_2 + \dots + x_n w_n = 0, x_i \in \mathbb{R}$$
 (1.1)

т.к.  $w_1,...,w_n$  – ЛНЗ  $\Rightarrow$  все  $x_i=0$ 

$$x_1(a_{11}v_1 + a_{21}v_2 + \dots + a_{k1}v_k) + x_2(a_{12}v_1 + a_{22}v_2 + \dots + a_{k2}v_k)$$

$$+ \dots + x_n(a_{1n}v_1 + a_{2n}v_2 + \dots + a_{kn}v_k) = 0$$

$$v_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) + v_2(a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n)$$

$$+ \dots + v_k(a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n) = 0$$

 $v_1, v_2, ..., v_k$  – ЛНЗ  $\Rightarrow$  все коэффициенты равны 0.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Если  $n>k\Rightarrow \exists$  ненулевые решения  $\Rightarrow$  противоречие с (1.1) и ЛНЗ  $w_i\Rightarrow n\le k$ . Аналогично  $k\le n\Rightarrow n=k$ .

## Лекция 3: Матрицы

25.09.2023

### 1.3 Матрицы

**Определение 8.** Пусть V — конечное мерное пространство

$$v_1 \dots v_n$$
 - базис V

$$w \in V \Rightarrow \exists! \alpha_1, \alpha_2, \dots, \alpha_n :$$

$$w = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \ldots + \alpha_n \cdot v_n$$

Тогда  $\alpha_1, \alpha_2, \dots \alpha_n$  — координаты w в базисе  $u_1 \dots u_n$ 

- $w \Leftrightarrow (\alpha_1, \alpha_2 \dots \alpha_n)$
- $u \Leftrightarrow (\beta_1 \dots \beta_n)$
- $u + w \Leftrightarrow (\alpha_1 + \beta_1 \cdot \alpha_2 + \beta_2 \dots \alpha_n \beta_n)$
- $f \cdot w \Leftrightarrow (f \cdot \alpha_1, f \cdot \alpha_2 \dots f \cdot \alpha_n)$

Определение 9. Пусть  $v_1 \dots v_n$  и  $u_1, u_2, \dots u_n$  — базисы

Тогда w может выражаться как:

$$w = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \alpha_n \cdot v_n = \beta_1 \cdot u_1 + \ldots + \beta_n \cdot u_n$$



Определение 10. (\*) Пусть 
$$v_1 \dots v_n$$
 и  $u_1, u_2, \dots u_n$  — базисы Выразим базис  $u_1 \dots u_n$  через  $v_1 \dots v_n$ :  $u_1 = a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n$   $u_2 = a_2 \cdot v_1 + a_2 \cdot v_2 + \dots + a_{2n} \cdot v_n$   $\vdots$   $u_n = a_n \cdot v_1 + a_{n2} \cdot v_2 + \dots + a_{nr} \cdot v_n$  Тогда  $A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}$  — матрица перехода от  $v_1 \dots v_n$  к  $u_1 \dots u_n$ 

Определение 11. Пусть есть 
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nk} \end{pmatrix} - \text{Матрица } n \times K$$

$$B = \left( egin{array}{cccc} b_{11} & b_{12} & \dots & b_{1l} \\ b_{21} & b_{22} & \dots & b_{2l} \\ dots & dots & \ddots & dots \\ b_{n1} & \dots & \dots & b_{nl} \end{array} 
ight) - ext{Матрица } k imes l$$
 Умножение матриц определяется как:

 $A \cdot B := \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1l} \\ c_{21} & c_{22} & \dots & c_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k1} & \dots & \dots & c_{kl} \end{pmatrix}$ 

Элементы матрицы равны:

 $c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + \dots + a_{1k} \cdot b_{kl}$  $c_{12} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22} + \dots + a_{1k} \cdot b_{k2}$ 

:

 $c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{ik} \cdot b_{kj}$ 

:

Замечание. Выражение базиса через базис можно записать так:

$$\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

**Теорема 5.** Пусть  $v_1 \dots v_n$  и  $u_1, u_2, \dots u_n$  — базисы.

A — матрица перехода от  $v_1 \dots v_n$  к  $u_1 \dots u_n$ 

 $\mathrm{B}-\mathrm{матрица}$  перехода от  $w_1\ldots w_n$  к  $v_1\ldots v_n$ 

Тогда матрица перехода от  $w_1 \dots w_n$  к  $u_1 \dots u_n$  равна  $A \times B$ 

**Доказательство.** Выразим базис  $v_1 \dots v_n$  через  $w_1 \dots w_n$ :

$$v_1 = b_{11}w_1 + \ldots + b_{1n}w_n$$
:

:

 $v_1 = b_{n1}w_1 + \ldots + b_{nn}w_n$ 

Выразим базис  $u_1 \dots u_n$  через  $v_1 \dots v_n$ :

 $u_1 = a_{11}(b_{11}w_1 + \ldots + b_{1n}w_n) + \ldots + a_{1n}(b_{n1}w_1 + \ldots + b_{nn}w_n) = w_1(a_{11}b_{11} + a_{12}b_{21} + \ldots + a_{1n}b_{n1}) + \ldots + w_1(a_{n1}b_{1n} + a_{n2}b_{2n} + \ldots + a_{nn}b_{nn})$ 

Мы видим, что базис  $u_1 \dots u_n$  выражается через  $w_1 \dots w_n$ , а матрица перехода —  $A \times B$ .

#### **Теорема 6.** A(BC) = (AB)C

Умножение матриц не коммутативно, но ассоциативно.

$$E = \left( egin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & 1 \end{array} 
ight)$$
 - единичная матрица

Замечание. 
$$u_1 \dots u_n, \ v_1 \dots v_n$$
 — базисы, выражаются как: 
$$\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = A \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
 
$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = B \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
 
$$A \times B = E$$
 
$$B \times A = E$$
 (A и B) — обратные матрицы

## 1.4 Скалярное произведение

**Определение 12.** V - векторное пространство

$$(\cdot,\cdot):V\times V\to\mathbb{R}$$

$$1.\ (u,\,u)\geq 0\ (u,\,u)=0 \Leftrightarrow U=0$$

2. 
$$(u_1 + u_2; v) = (u_1, v_1) + (u_2, v) (u, v_1 + v_2) = (u_1v_1) + (u_1v_2)$$

3. 
$$\alpha(u, v) = (\alpha u, v) = (u, \alpha v)$$

4. 
$$(u, v) = (v, u)$$

V - евклидово пространство  $(\cdot,\cdot)$  - скалярное произведение

Пример. 1. 
$$V = \mathbb{R}^n$$
  $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) := a_1b_1 + a_2b_2 + \dots + a_nb_n$   $(a_1 \dots a_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ 

2. V - пространство функций  $(\dots)~(f(x),g(x)):=\int_a^b f(x)g(x)dx$ 

Определение 13. Пусть V - евклидово пространство, 
$$v \in V$$
  $|v| := \sqrt{(v,v)}$   $\cos \angle (u,v) := \frac{(u,w)}{|u|\cdot|v|}$ 

**Теорема 7.** (Неравенство Коши-Буняковского-Шварца (КБШ)) 
$$|(u,w)| \leq |u| \cdot |v|$$

#### Доказательство.

$$(u + tv, u + tv) \ge 0 \quad \forall t$$

$$(u, u) + (u, tv) + (tv, u) + (tv, tv) \ge 0$$

$$|u|^2 + 2t(u, v) + t^2|v|^2 \ge 0 \quad \forall t$$

$$\frac{D}{4} \le 0 \quad (u, v)^2 - |u|^2|v|^2 \le 0$$

$$|(u, v)| \le |u||v|$$

Вывод. (Следствие из КБШ)

- 1.  $|a_1b_1 + a_2b_2 + \ldots + a_nb_n| \le \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2} \sqrt{b_1^2 + b_2^2 + \ldots + b_n^2}$
- 2.  $\left(\int_a^b f(x)g(x)dx\right)^2 \le \left(\int_a^b g(x)dx\right) \cdot \left(\int_a^b f(x)dx\right)$

**Определение 14.**  $u \perp v$ , если (u,b) = 0

**Определение 15.**  $v_1 \dots v_n$  — ортогональная система, если:  $\forall v_i, v_i : v_i \perp v_j, (i \neq j)$ 

**Теорема 8.**  $v_1 \dots v_n$  - ортогональная система и в ней нет нулевых векторов  $\Rightarrow v_1 \dots v_n$  линейно не зависимы.

Доказательство.

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$$

$$\alpha_1(v_1 v_i) + \alpha_2(v_2, v_i) + \ldots + \alpha_i(v_i, v_i) + \ldots = 0$$

$$a_i |v_i|^2 = 0$$

$$\alpha_i = 0$$

Определение 16. u — нормированый или единичный если |u|=1  $v_1\dots v_n$  — ортонормированные системы, если  $v_i\perp v_j$  и  $|v_i|=1$   $v_1...v_i$  — ОНБ ортонормированный базис

# Лекция 4: Ортонормированный базис и ориентация базиса

02.10.2023

# 1.5 Построение ортонормированного базиса

Теорема 9. Ортонормированный баис существует.

**Доказательство.** (Ортогонализация Грама-Шмидта) Есть  $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n - \mathrm{ЛНЗ}$ 

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} \qquad |\mathbf{u}_1| = 1$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \alpha \mathbf{u}_1 \qquad \mathbf{w}_2 \perp \mathbf{u}_1 \qquad \mathbf{u}_2 = \frac{\mathbf{w}_2}{|\mathbf{w}_2|}$$

$$|\mathbf{u}_2| = 1 \qquad \mathbf{u}_2 \perp \mathbf{u}_1$$

$$(\mathbf{u}_1, \mathbf{w}_2) = 0$$

$$(\mathbf{u}_1, \mathbf{v}_2 - \alpha \mathbf{u}_1) = 0$$

$$(\mathbf{u}_1, \mathbf{v}_2) - \alpha(\mathbf{u}_1, \mathbf{u}_1) = 0$$

$$\alpha = (\mathbf{u}_1, \mathbf{v}_2)$$

Пусть  $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{k-1}$  построены Построим  $\mathbf{u}_k$ 

$$\mathbf{w}_{k} = \mathbf{v}_{k} - \alpha_{1}\mathbf{u}_{1} - \alpha_{2}\mathbf{u}_{2} - \dots - \alpha_{k-1}\mathbf{u}_{k-1}$$

$$\mathbf{w}_{k} \perp \mathbf{u}_{i} \qquad (i \leq k-1)$$

$$0 = (\mathbf{w}_{k}, \mathbf{u}_{i}) = (\mathbf{v}_{k}, \mathbf{u}_{i}) - \alpha_{i}(\mathbf{u}_{i}, \mathbf{u}_{i})$$

$$\alpha_{i} = (\mathbf{v}_{k}, \mathbf{u}_{i})$$

$$\mathbf{u}_{k} = \frac{\mathbf{w}_{k}}{|\mathbf{w}_{k}|}$$

Строим  $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$  с помощью данного алгоритма.

Замечание.  $\mathbf{u}_i - \mathrm{ЛK} \ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_i$ 

**Вывод.** Если  $\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n$  – базис  $\Rightarrow \mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_n$  — ОНБ, т.е. если  $\dim V=n,\ \mathrm{TO}\ \exists\ \mathrm{OHB}$ 

Пусть V - евклидово пространство,  $\dim V = n, \mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$  – ОНБ,  $\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + ... + a_n\mathbf{u}_n$ , то можем записать  $\mathbf{w} = (a_1, ..., a_n)$ , соответственно  $\mathbf{v} = b_1\mathbf{u}_1 + b_2\mathbf{u}_2 + ... + b_n\mathbf{u}_n$ , тогда

$$(\mathbf{w}, \mathbf{v}) = (a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_n \mathbf{u}_n, b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \dots + b_n \mathbf{u}_n) =$$

$$= a_1 b_1(\mathbf{u}_1, \mathbf{u}_1) + a_1 b_2(\mathbf{u}_1, \mathbf{u}_2) + \dots + a_1 b_n(\mathbf{u}_1, \mathbf{u}_n) +$$

$$+ a_2 b_1(\mathbf{u}_2, \mathbf{u}_2) + a_2 b_2(\mathbf{u}_2, \mathbf{u}_2) + \dots + a_2 b_n(\mathbf{u}_2, \mathbf{u}_n) +$$

$$+ a_n b_1(\mathbf{u}_n, \mathbf{u}_2) + a_n b_2(\mathbf{u}_n, \mathbf{u}_2) + \dots + a_n b_n(\mathbf{u}_n, \mathbf{u}_n) =$$

$$= a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

# 1.6 Ориентация базиса

**Определение 17** (Неформальное). На плоскости:  $\mathbf{a} = (a_1, a_2); \mathbf{b} = (b_1, b_2)$ 

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = S_{\mathbf{a}, \mathbf{b}}$$
 (ориентированная площадь)

В пространстве:  $\mathbf{a} = (a_1, a_2, a_3); \mathbf{b} = (b_1, b_2, b_3); \mathbf{c} = (c_1, c_2, c_3)$ 

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = V_{\mathbf{a},\mathbf{b},\mathbf{c}} \text{ (ориентированный объем)}$$

Определение 18 (Формальное).

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_1 b_3 c_2 - a_2 b_1 c_3 - a_3 b_2 c_1$$

Мнемоническое правило:



По бирюзовой стрелке сложение, по зеленой – вычитание.

Замечание. Данные свойства справедливы для матриц любого порядка.

#### Свойства.

- 1. Если строку или столбец умножить на  $\alpha$ , то определитель тоже умножится на  $\alpha$ .
- 2. Если меняем 2 строки или столбца, то знак определителя меняется
- 3. Если есть 2 одинаковых строки, то определитель равен 0.
- 4. Если к одному из векторов прибавить вектор кратный другому, то определитель не поменяется.
- 5. Определитель единичной матрицы равен 1.

$$\begin{vmatrix} a_1 + \alpha b_1 & a_2 + \alpha b_2 & a_3 + \alpha b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} =$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \alpha \begin{vmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Теорема 10. (Доказательство будет на алгебре)

$$\exists ! f : M_n(\mathbb{R}) \mapsto \mathbb{R}$$

такая, что, удовлетворяет свойствам 1-5.

Теорема 11.

$$\det(AB) = \det A \cdot \det B$$

**Определение 19** (Ориентация).  ${\bf i}, {\bf j}, {\bf k}$  — ОНБ («правая тройка»),  ${\bf a}, {\bf b}, {\bf c}$  — векторы.

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
  

$$\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$$
  

$$\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$$

Если  $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} > 0$ , то  $(\mathbf{a},\mathbf{b},\mathbf{c})$  называется правой тройкой векторов.

Если  $\det < 0$ , то  $(\mathbf{a}, \mathbf{b}, \mathbf{c})$  называется левой тройкой векторов.

Если  $\det = 0$ , то  $(\mathbf{a}, \mathbf{b}, \mathbf{c}) - \Pi 3$ .

#### Выводы:

- 1. Ориентация бывает только у ЛНЗ троек у базисов.
- 2. Ориентаций бывает ровно 2.
- 3. Одинаковость ориентаций является эквивалентностью.