Gestión de Proyectos Tema 4 - Gestión del tiempo

Ejercicio T4E01

Realizar el diagrama de red del proyecto anterior, según las dependencias definidas.

NUM	Nombre de tarea	Dependencia
1	Proyecto	
2	Definición de requisitos	
3	Requisitos funcionales	
4	Requisitos no funcionales	3
5	Análisis y diseño	
6	Modelado de Base de Datos	4
7	Análisis y diseño back-office	6FC + 2d
8	Análisis y diseño aplicación móvil	6FC - 2d
9	Construcción	
10	Construcción Base de Datos	5
11	Construcción back-office	10
12	Construcción aplicación móvil	
13	Versión IOS	10
14	Versión ANDROID	10

Definir la duración de las tareas mediante un método mixto.

- Definir para cada actividad un T. optimista, T. probable, T. pesimista (medido en días de trabajo) y calculará el T. estimado por tarea.
- Realizar las estimaciones en días de trabajo (8 horas).
- Utilizaremos las estimaciones de 4 o 5 personas para obtener un valor medio. (Os daré un n^{0} de grupo).

Proyecto: Desarrollar un sistema WEB para la gestión de conferencias a alumnos de la universidad.

- El sistema dispondrá de un sistema de back-end, accesible sólo a los administradores, donde se gestiona la información sobre las conferencias. Título, Ponente, Fecha y Hora, Aula, Plazas disponibles, etc. El administrador podrá dar alta/modificación/baja las conferencias.
- El administrador podrá acceder a la lista de alumnos inscritos en cada conferencia. El sistema priorizará a los alumnos según sus características. El administrador podrá incluir/borrar un alumno de la lista de admitidos.
- Una vez realizada la conferencia, el administrador podrá indicar si los alumnos inscritos han asistido o no, para llevar un registro de faltas.
- El administrador podrá acceder al histórico de conferencias a los que se ha inscrito un alumno y las faltas que ha cometido.
- En la parte de front-end, los alumnos podrán acceder al listado de conferencias disponibles, darse de alta/baja de una conferencia, y consultar las asistencias a las que ha sido admitido o rechazado y las penalizaciones por falta de asistencia.
- Los alumnos y el administrador accederán a través de su usuario/password de la universidad.

Una empresa ha recibido dos peticiones para el desarrollo de dos aplicaciones a medida diferentes, pero sólo tiene capacidad para desarrollar una de ellas. La primera se desarrollará en COBOL y la segunda en C. ¿Qué desarrollo supone un mayor número de líneas de código? El JP ha evaluado que cada desarrollo consta de los siguientes elementos.

APLICACIÓN 1	SIMPLE	MEDIA	COMPLEJA
Entrada externa	2	2	
Salida externa	4	1	1
Consultas	2		1
Ficheros externos		1	1
Ficheros internos	3	2	

A su vez los factores de complejidad técnica obtenidos son:

Factor	APLIC 1	APLIC 2
1 Comunicación de datos	2	1
2 Datos o procesamiento distribuido	2	3
3 Objetivos de rendimiento	3	2
4 Configuración usada masivamente	4	3
5 Tasa de transacción	4	3
6 Entrada de datos on-line	2	2
7 Eficiencia para el usuario	5	1
8 Actualización on-line	3	1
9 Procesamiento complejo	5	5
10 Reutilización	5	5
11 Facilidad de operación	3	1
12 Facilidad de instalación y conversión	4	2
13 Puestos múltiples	1	3
14 Facilidad de cambio	4	1
Suma	47	33

APLICACIÓN 2	SIMPLE	MEDIA	COMPLEJA
Entrada externa	3		1
Salida externa	2	2	1
Consultas		4	
Ficheros externos		2	
Ficheros internos		2	3

Para obtener los Puntos de función no ajustados:

$$PF_{NoAjustados} = \sum_{i=1}^{15} numElementos_i \cdot peso_i$$

Para el número de elementos nos fijaremos en la tabla que hay a la izquierda (simple, media y compleja). Estas van multiplicadas por pesos asignados a cada tipo de elemento funcional según el estándar utilizado. Aquí una tabla del estándar que vamos a utilizar:

Entradas Externas: Simple: 3 Media: 4 Compleja: 7	Salidas Externas: Simple: 4 Media: 5 Compleja: 7	Consultas: Simple: 4 Media: 4 Compleja: 6
Ficheros Externos: Simple: 7 Media: 10 Compleja: 15	Ficheros Internos: Simple: 5 Media: 7 Compleja: 10	

Para sacar el PCA usaremos la siguiente fórmula:

$$PCA = 0.65 + \left(0.01 \cdot \sum_{i=1}^{14} F\right)$$

Siendo $\sum_{i=1}^{14} F$ la suma de los factores de complejidad de la tabla. Con las fórmulas anteriores podemos obtener el

$$PF_{Ajustado} = PF_{NoAjustado} \cdot PCA$$

Aplicación 1:

 $PF_{NoAjustados}$:

$$(2 \cdot 3) + (4 \cdot 4) + (2 \cdot 4) + (3 \cdot 5) + (2 \cdot 4) + (1 \cdot 5) + (1 \cdot 10) + (2 \cdot 7) + (1 \cdot 7) + (1 \cdot 6) + (1 \cdot 15) = 108$$

PCA: $(47 \cdot 0.01) + 0.65 = 0.99$

 $PF_{Ajustados}$: $108 \cdot 0.99 = 106.92$

Aplicación 2:

 $PF_{NoAjustados}$:

$$(3 \cdot 3) + (2 \cdot 4) + (2 \cdot 5) + (4 \cdot 4) + (2 \cdot 10) + (2 \cdot 7) + (1 \cdot 7) + (1 \cdot 7) + (3 \cdot 10) = 122.44$$

PCA: $(33 \cdot 0.01) + 0,65 = 0.98$

 $PF_{Ajustados}$: 122.44 · 0.98 = 120

Se **estiman las líneas de código** mediante unas tablas que muestran el número medio de líneas de código por punto de función.

Lenguaje	Media Lo	C/PI
Lenguaje ensambla	dor	320
C		128
Cobol		105
Fortran		105
Pascal		90
Ada		70
Java, C++		53
Generadores de có	digo	15
Hojas de cálculo		6
Lenguajes gráficos		4

$$LoC = PF_{Ajustados} \cdot LoC_{PF}$$

<u>Líneas Aplicación 1 (COBOL)</u>:

$$LoC = 106.92 \cdot 105 = 11226.6$$

Líneas Aplicación 2 (C):

$$LoC = 120 \cdot 128 = 15360$$

Realizar un diagrama de PERT, obtener los tiempos tempranos y tardíos y los caminos críticos.

ACTIVIDAD	A	В	С	D	Е	F	G	Н
DURACIÓN	1	3	6	2	2	3	4	5
PRECEDENCIA	-	A	A	В	$_{\mathrm{C,D}}$	$_{\mathrm{C,D}}$	E	F

Para hacer el *Forward pass*, empezando de izquierda a derecha calculamos el tiempo temprano de cada nodo, sumando los predecesores; tomando el **máximo** de estos.

Para hacer el *Backward pass*, empezamos de derecha a izquierda, calculamos el tiempo tardío de cada nodo, restando los predecesores; tomando el **mínimo** de estos.

El *camino crítico* es aquel cuya holgura es 0. Es el camino marcado en rojo.

Ruta crítica: $A \to C \to F \to H$ Tiempo total del proyecto: 15

https://creadorpertcpm.es/public/

https://www.plandemejora.com/herramienta-online-ruta-critica-diagrama-pert-cpm/

Realizar el diagrama de PERT, obtener los tiempos tempranos y tardíos y los caminos críticos (Tiene actividades ficticias).

ACTIVIDAD	A	В	С	D	Е	F	G	Н	I	J
DURACIÓN	2	4	1	5	2	3	3	1	2	6
PRECEDENCIA	-	-	A	В	С	А,В	D	D	E,F	G,H

Para hacer el *Forward pass*, empezando de izquierda a derecha calculamos el tiempo temprano de cada nodo, sumando los predecesores; tomando el **máximo** de estos.

Por ejemplo para F, tenemos A con un valor de 2 y B con un valor de 4. Como F vale 3, vamos a probar para cada caso, 2(A) + 3(F) = 5 y por otro lado 4(B) + 3(F) = 7, como 7 > 5 nos quedamos con el 7.

Para hacer el *Backward pass*, empezamos de derecha a izquierda, calculamos el tiempo tardío de cada nodo, restando los predecesores; tomando el **mínimo** de estos.

Por ejemplo para D, tenemos H con un valor de 1 y G con un valor de 3. Como D vale 5, vamos a probar para cada caso, 11(H) - 5(D) = 6 y por el otro lado 9(G) - 5(D) = 4, como 4 < 6 nos quedamos con el 4.

El camino crítico es aquel cuya holgura es 0. Es el camino marcado en rojo.

Ruta crítica: $B \to D \to G \to J$ Tiempo total del proyecto: 18

Nivela el siguiente diagrama de PERT.

Obtenemos que:

*N*1:2, *N*2:1,3, *N*3:4,6, *N*4:5,9, *N*5:8, *N*6:7

	1	2	3	4	5	6	7	8	9
1				1					
2	1		1						
3						1			
4					1		1		
5							1		
6					1				1
7									
8							1		
9								1	

Se pone en la fila 2 el 1 y el 3, porque la bola 2 va hacia 1 y 3. Al igual con el resto, pues 1 va hacia 4, y se marca 4.

Como la fila 7 no tiene ningún número, esa será nuestra V1, lo que hacemos es agrupar por cada fila, por ejemplo en la fila 2 sumamos el 1 de la columna y el 1 de la columna 3, entonces en la tabla, en la columna V1 fila 2 pondremos un 2 (1+1). Una vez calculado con todos tachamos entera la columna del 7 y procedemos a V2, donde a continuación tacharemos la columna 8 por quedarse vacía la fila 8, después de tachar la columna 7.

_	V1	V2	V3	V4	V5	V6
1	1	1	1	1	0	-1
2	2	2	2	2	2	0
3	1	1	1	1	0	-1
4	2	1	1	0		
5	2	1	0			
6	2	2	2	0		
7	0	-1				
8	1	0				
9	1	1	0			
N	7	8	5 9	4	1	2

Un proyecto tiene los siguientes tiempos de duración estimados (días):

- a) Dibujar su diagrama PERT asociado y determinar los caminos críticos.
- b) Calcular la fecha de término del proyecto si queremos tener una probabilidad de éxito del 95%.
- c) Calcula cual sería la probabilidad de éxito si decidimos acabar en 36 días.

Actividad	Nodo _i	Nodo _j	t_o	t_m	t_p
A	1	2	5	7	15
В	1	3	2	5	20
C	2	4	4	8	18
D	2	5	1	2	3
E	3	5	2	3	10
F	3	6	4	6	8
G	4	7	3	6	15
Н	4	8	2	4	12
I	5	8	4	9	26
J	6	8	2	3	4
K	7	9	1	3	5
L	8	9	3	7	23

Recuerda:

$$t_e = \frac{t_o + 4 \cdot t_m + t_p}{6}$$

$$\sigma^2 = \left(\frac{t_p - t_o}{6}\right)^2$$

Primero calculamos los tiempos estimados con t_e :

Actividad	A	В	С	D	Е	F	G	Н	I	J	К	L
Tiempo	8	7	9	2	4	6	7	5	11	3	3	9

Caminos críticos:

B-E-I-L = 31 OK

A-C-H-L = 31 OK

A-D-I-L = 30 NO

Arreglo del camino crítico:

b) Calcular la fecha de término del proyecto si queremos tener una probabilidad de éxito del 95%.

Sacamos sigma de cada camino crítico y nos quedamos con el de mayor valor.

$$t_e = 31$$

$$\sigma^2(ACHL) = 2.78 + 5.44 + 2.78 + 11.11 = 22.11$$

$$\sigma^2(BEIL) = 9 + 1.78 + 13.44 + 11.11 = 35.33$$

it? si
$$P(t) = 95\% \rightarrow t > 31$$

$$Z' = -Z \rightarrow P(Z') = 1 - P(Z)$$

 $P(Z') = 1 - 0.95 = 0.05$
 $Tabla\ Z' = -1.64 \rightarrow Z = 1.64$

$$Z = \frac{t - t_e}{\sigma} \rightarrow 1.64 = \frac{t - 31}{\sqrt{35.33}} \rightarrow \boxed{t = 40.78 \text{ dias}}$$

c) P(t)? si $t = 36 \rightarrow P(t) > 50\%$

Realizamos un cambio de variable:

$$Z' = -Z \rightarrow P(Z') = 1 - P(Z)$$

Aplicamos la fórmula de Z:

$$Z = \frac{t - t_e}{\sigma} \rightarrow Z = \frac{36 - 31}{\sqrt{35.33}} = 0.841 \rightarrow Z' = -0.841$$

Buscamos en la tabla el valor de P(Z'):

$$P(Z') = 0.2005$$

 $P(Z) = 1 - P(Z') = 1 - 0.2005 = 0.7995$
 $P(t) \approx P(Z) = 0.7995$
 $Probabilidad = 79.95\%$

Tenemos el siguiente diagrama de PERT. Representa el diagrama de Gantt con las holguras de las tareas, y balancea los recursos.

	M1	M2	М3	M4	M5	M6	M7	M8	M9
A	X	X							
В	X	X	X	X					
С	X	X	X						
D	X	X							
E					X	X	X		
F			X	X	X				
G				X	X				
Н						X	X		
I								X	X
REC	4	4	3	3	3	2	2	1	1

Balanceamos los recursos:

	M1	M2	M3	M4	M5	M6	M7	M8	M9
A	X	X							
В	X	X	X	X					
С			X	X	X				
D	X	X							
E					X	X	X		
F			X	X	X				
G						X	X		
Н								X	X
I								X	X
REC	3	3	3	3	3	2	2	2	2