

Obs.: _Trabalho em grupo (máximo três alunos por grupo)

_Entregar a solução dos problemas no balcão de atendimento do CRA, até 15/04.

_Assinar a lista de entrega, na entrega do trabalho.

Determinar uma equação vetorial da reta r definida pelos pontos A(2, -3, 4) e B(1, -1, 2). Verifique se os pontos C(⁵/₂, -4, 5) e D(-1, 3, 4) pertencem a r.
 Resp.: (x, y, z) = (2, -3, 4) + t(-1, 2, -2); C∈ r; D ∉ r.

Resp.:
$$(x, y, z) = (2, -3, 4) + t(-1, 2, -2); C \in r; D \notin r$$

- 2) Dada a reta r:(x, y, z) = (-1, 2, 3) + t(2, -3, 0), escrever as equações paramétricas de r. Resp.: x = -1+2t; y = 2 - 3t; z = 3
- 3) Escrever as equações paramétricas da reta r que passa por A(1, 2, 3) e é paralela à reta s:(x, y, z) = (1, 4, 3) + t(0, 0, 1)

Resp.:
$$x = 1$$
; $y = 2$; $z = 3 + t$

- 4) Seja r a reta determinada pelos pontos A(1, 0, 1) e B(3, -2, 3).
 - a) obtenha as equações de r na forma vetorial, paramétrica e simétrica;
 - b) verifique se o ponto P(-9, 10, -9) pertence a r;

Resp.: a)
$$(x, y, z) = (1, 0, 1) + \lambda(-2, 2, -2)$$
 b) $P \in r$

$$x = 1 - 2\lambda; y = 2\lambda; z = 1 - 2\lambda$$

$$\frac{x - 1}{-2} = \frac{y}{2} = \frac{z - 1}{-2}$$

5) Ache as equações nas formas vetorial, paramétrica e simétrica da reta que passa pelos pontos A(1, 0, 1) e B(0, 1, 0) e tem a direção do vetor \overrightarrow{AB} .

Resp.: Eq. vetorial:
$$(x, y, z) = (1, 0, 1) + t(-1, 1, -1)$$

Eq. paramétrica: $x = 1 - t$; $y = t$; $z = 1 - t$
Eq. simétrica: $\frac{x-1}{-1} = y = \frac{z-1}{-1}$

- 6) Verifique se o ponto P(4, 1, -1) pertence à reta r: $(x, y, z) = (1, 0, 1) + \lambda(2, 1, 1)$ ($\lambda \in \mathbb{R}$). Resp.: $P(4, 1, -1) \notin r$.
- 7) Determine as equações simétricas das retas r e s e ache o ângulo formado entre elas. Sabe-se que:
- A reta r contém o ponto A(2, 3, -1) e é paralela ao eixo OZ.
- A reta s contém o ponto B(-1, 0, 2) e seu vetor diretor tem módulo 6 e ângulos diretores $\alpha = 60^{\circ}$, $\beta = 120^{\circ}$

Resp.:
$$r : x = 2$$
; $y = 3$; $z + 1$ e $s : \frac{x+1}{3} = \frac{y}{3\sqrt{2}} = \frac{z}{3\sqrt{2}}$; $\theta = 45^{\circ}$.

- 8) Sejam os pontos P1(2, 2, -4), P2(6, -2, 4) e P3(-5, 1, 2). Determine:
- a) as equações reduzidas da reta r que passa pelos pontos p1 e P2, tendo y como variável independente;

Resp.:
$$r$$
:
$$\begin{cases} x = -y + 4 \\ z = -2y \end{cases}$$

9) Uma reta s passa pelos pontos A(3, 1, -2) e B(4, 0, m). Determine o valor de m para que:

9) Uma reta s passa pelos pontos A(3, 1, -2) e B(4, 0, m). Determine o valor de a) a reta s faça um ângulo de 60° com a reta
$$r$$
:
$$\begin{cases} x = 1 + 2t \\ y = t \end{cases}$$
; Resp.: $m = -4$; b) a reta s seja paralela à reta t : $2x + 2 = -2y = \frac{z}{2}$. Resp.: $m = 2$

$$\int x = 4 + 2c$$

- 10) Seja a reta (s) $\begin{cases} x x + 2\alpha \\ y = -3 + \alpha \end{cases}$ $(\alpha \in \Re)$ e a reta (r) determinada pelos pontos A(2,0,3) e B(2,4,0). Pede-se:
- a) Determine a equação simétrica da reta (s) e faça um esboço da sua representação gráfica.
- b) Calcule o ângulo formado pelas retas (r) e (s).
- c) Encontre, caso exista, o ponto de interseção das retas (r) e (s).

Respostas:

interseção da reta
$$s:\begin{cases} x=2\\ z=y+3 \end{cases}$$
 com o plano xz.

Respostas:
$$x - 2 = y = \frac{z - 3}{2}$$

- Passa pelo ponto de interseção da reta $s:\begin{cases} y=x+3\\ z=-x+2 \\ z=-x+2 \end{cases}$ com o plano xz.
 É simultâneamente ortogonal às reta $r_1:\begin{cases} y=3\\ z=2 \\ e \end{cases}$ $r_2:\begin{cases} x=-2y\\ z=y+3 \end{cases}$ **Resposta:** $r: x=-3, \frac{y}{-1}=z-5$

13) (21/10/2014) Considere as retas
$$(r)$$

$$\begin{cases} x = 4 - \alpha \\ y = -4 + 2\alpha \ (\alpha \in \Re) \end{cases} e (s) \begin{cases} \frac{x-1}{1} = \frac{y-2}{-2} \\ z = 1 \end{cases} e \text{ o ponto A}(5,5;-3;4).$$

Pede-se:

- a) faça um gráfico representando a reta (s) no espaço;
- b) determine, caso exista, o ponto de interseção da reta (r) com a reta (s):

Respostas:

14) A reta r passa pelo ponto A(-1, 0, 3) e tem a direção do vetor \vec{v} cujos ângulos diretores são α =68°, β =124° e γ . Determinar as equações reduzidas da reta r, tendo z como variável independente. Obs.: usar duas casas decimais.

Resposta:
$$r:\begin{cases} x = 0.5z - 2.5 \\ y = -0.76z + 2.27 \end{cases}$$