Задачі про розфарбування

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

16 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

Задача

Скількома способами можна розфарбувати сидіння каруселі на малюнку, якщо є фарби трьох кольорів?

Геометрично однакові розфарбування:

Геометрично різні розфарбування:

Група G — група Π_6 поворотів правильного шестикутника.

Множина M — множина розфарбованих у три кольори правильних шестикутників.

Група G діє на множині M.

Кількість геометрично різних розфарбувань = кількості орбіт дії (G, M):

$$\frac{1}{6} \sum_{g \in \Pi_6} \chi(g).$$

g	Цикловий тип	χ(g)
0	$(\bullet)(\bullet)(\bullet)(\bullet)(\bullet)(\bullet)$	3 ⁶
$\frac{\pi}{3}$	(•••••)	3
$\frac{\frac{\pi}{3}}{\frac{2\pi}{3}}$	(•••)(•••)	3 ²
π	(••)(••)(••)	3 ³
$\frac{\frac{4\pi}{3}}{\frac{5\pi}{3}}$	(•••)(•••)	3 ²
$\frac{5\pi}{3}$	(•••••)	3

Кількість геометрично різних розфарбувань:

$$\frac{1}{6} \sum_{g \in \Pi_6} \chi(g) = \frac{3^6 + 3 + 3^2 + 3^3 + 3^2 + 3}{6} = 130.$$

Задача

Скільки різних разків намиста можна скласти, якщо у вас є 2 жовтні та 4 сині намистини?

Група G — група D_6 рухів правильного шестикутника.

Множина M — множина розфарбованих у два кольори правильних шестикутників, у яких дві вершині жовті, а чотири сині.

Група G діє на множині M.

Кількість геометрично різних розфарбувань = кількості орбіт дії (G, M):

$$\frac{1}{12}\sum_{g\in D_6}\chi(g).$$

g	Цикловий тип	χ(g)
0	$(\bullet)(\bullet)(\bullet)(\bullet)(\bullet)(\bullet)$	$\binom{6}{2}$
$\frac{\pi}{3}$, $\frac{5\pi}{3}$	(•••••)	0
$\frac{2\pi}{3}$, $\frac{4\pi}{3}$	(•••)(•••)	0
π	(••)(••)(••)	3
$3 \times s_1$	(••)(••)(••)	3
3 × <i>s</i> ₂	(•)(•)(••)(••)	3

Кількість геометрично різних розфарбувань:

$$\frac{1}{12} \sum_{g \in D_6} \chi(g) = \frac{15 + 3 + 3 \cdot 3 + 3 \cdot 3}{12} = 3.$$

Дихлорбензол $C_6H_4Cl_2$

Задача

Скількома геометрично різними способами можна розфарбувати ребра куба, якщо ϵ фарби k кольорів?

Група G — група поворотів куба.

Множина M — множина розфарбованих у k кольорів кубів.

Група G діє на множині M.

Кількість геометрично різних розфарбувань = кількості орбіт дії (G, M):

$$\frac{1}{24}\sum_{g\in G}\chi(g).$$

g	Кількість	Цикловий тип	χ(g)
0	1	(•)(•)(•)	k ¹²
$\frac{\pi}{2}$	3	(••••)(••••)(••••)	k ³
π	3	$(\bullet \bullet)(\bullet \bullet)(\bullet \bullet)(\bullet \bullet)(\bullet \bullet)(\bullet \bullet)$	k ⁶
$\frac{3\pi}{2}$	3	(••••)(••••)(••••)	k ³
$\frac{2\pi}{3}$	4	$(\bullet \bullet \bullet)(\bullet \bullet \bullet)(\bullet \bullet \bullet)(\bullet \bullet \bullet)$	k ⁴
$\frac{4\pi}{3}$	4	$(\bullet \bullet \bullet)(\bullet \bullet \bullet)(\bullet \bullet \bullet)(\bullet \bullet \bullet)$	k ⁴
π	6	$(\bullet)(\bullet)(\bullet\bullet)(\bullet\bullet)(\bullet\bullet)(\bullet\bullet)(\bullet\bullet)$	k ⁷

$$\frac{1}{24} \sum_{g \in G} \chi(g) = \frac{k^{12} + 6k^3 + 3k^6 + 8k^4 + 6k^7}{24}.$$