Using Synthetic Aperature Radar (SAR) to Examine Time-Series

Nicolas Vuille-dit-Bille

20.07.2020

Reference

https://asf.alaska.edu/how-to/data-recipes/how-to-map-regional-inundation-with-spaceborne-l-band-sar-using-arcgis/

Outlining process

- 1) Iterate Rasters Using In-Line Variable Substitution in Model Builder
- 2) Construct a Raster Function Chain to Pre-process
- 3) Batch Copy Raster
- 4) Classify and Reclassify
- 5) Reclassify to Water/NotWater and Sum

Material

• Tif HH files from Synthetic Aperature Radar (SAR)

-> Reference: https://asf.alaska.edu/how-to/data-recipes/how-to-map-regional-inundation-with-spaceborne-l-band-sar-using-arcgis/

Location: Amazon rain forest

Spatial resolution

-> Cell size X: 12.5m

-> Cell size Y: 12.5m

Spectral resolution: 1 band

• Pixel depth: 32 bit

Aim

 Produce an innundation map from SAR time series data in order to classify and quantify area with permanent/semi-permanent water and area without water

1) Iterate Rasters Using In-Line Variable Substitution in Model Builder

- HH tif files directory are defined as input in the nlue circle
- Iterate function (orange polygon)
 allows to iterate the same raster
 transformation for each tif file of the
 directory
- Raster transformation (yellow square) to convert HH to decibels
- -> Transformation: 10.* Log10(Raster)
- Final output is represented by green circle

1) Iterate Rasters Using In-Line Variable Substitution in Model Builder

Final report of the Model builder process

 Messages inside the iterate rasters and the raster calculator processes indicate that everything has gone well during the running process

2) Construct a Raster Function Chain to Preprocess

• Raster input

- Raster transformation (yellow square) to convert HH to decibels
- -> Transformation: 10.* Log10(Raster)

Speckle Correction using enhanced Lee filter

2) Batch Copy Raster of HH files

- History of Batch of copy raster tool
- Everything goes well with no error message

4) Classify and Reclassify: Statistic calculation for each HH files

Reviewer Workflow

f Preprocess_SAR2.rft.xml

Rules Manager *

👸 Nicolas (UC Davis Continuing and Professional Education) 🔻 🛆

Primary symbology

Classify

Depth Drawing

No fields

Priority Mode Clipping

Navigation

 \equiv

Import Thumbnail

Week5_Remote_Sensing_SAR - Map - ArcGIS Pro

Reset Catalog Catalog Contents Geoprocessing Python Tasks

Link

Convert

Drawing Order

- Batch history of calculate statistic tool
- Everything goes well with no error message

After statistic calculation on raster HH file, it allows to classify values thanks to histogram

4) Classify and Reclassify: classification of the symbology

- Classification with 3 manual intervals
- -> Water (Blue)
- -> Ground (Black)
- -> Atmospheric artefacts (light brown)
- Breaks on the histogram can be adjusted to symbolize different environmental component

4) Classify and Reclassify: reclassification step

- Classified HH file with 3 manual intervals is then processed in the reclassify geoprocessing tool
- One unique value (1, 2 and 3) will be attributed to each class with the first reclassification

5) Reclassify to Water/NotWater and Sum

- Batch history of Reclassify tool
- Everything goes well with no error message

One unique value (1 and 2) will be attributed to no water and water class with the second reclassification

5) Reclassify to Water/NotWater and Sum

- History of Raster calculator tool
- Everything goes well with no error message

- Final output with the sum of the raster values compiled on one raster using the raster calculator tool
- Blue color indicates water presence in most of the raster time periods while red color indicates less water affluence on the several time periods provided by the raster
- Yellow/green color indicates areas with water in some time periods