NERRS/SWMP

Training Workshop: R Intro & SWMPr

October 25, 2015

SWMPr overview, retrieve, and organize

Marcus W. Beck¹ Todd D. O'Brien²

¹ORISE, USEPA NHEERL Gulf Ecology Division Email: beck.marcus@epa.gov

> ²NOAA/NMFS COPEPOD Project Email: todd.obrien@noaa.gov

Objectives and agenda

- Objectives
 - What are the various ways data are obtained from SWMP?
 - ▶ What are some issues that need to be addressed before importing into a statistical program for time series analysis?

Objectives and agenda

Objectives

- ▶ What are the various ways data are obtained from SWMP?
- ▶ What are some issues that need to be addressed before importing into a statistical program for time series analysis?

Agenda

- Brief overview of SWMP network and available data
- Format and potential issues with output data
- Retrieving and importing the data

Interactive portion

You can follow along later in this module:

- dataset1
- script1

Interactive!

Overview of SWMP and available data

SWMP - System Wide Monitoring Program, initiated in 1995 to provide continuous monitoring data at over 300 stations in 28 US estuaries

Overview of SWMP and available data

CDMO (link) is your one-stop shop for retrieving SWMP data

Overview of SWMP and available data

A wide range of data can be requested... a few records for one site to all records for multiple sites

Requests can return a lot of data so make sure you have clear objectives

Check the available data before making a request!

- station names
- data types
- date ranges
- parameters

To orient yourself, understand the NERRS/SWMP naming convention

Site (reserve), **station**, and **parameter type** are identified by a 7 or 8 character name

To orient yourself, understand the NERRS/SWMP naming convention

Site (reserve), **station**, and **parameter type** are identified by a 7 or 8 character name

E.g., elkcwmet

To orient yourself, understand the NERRS/SWMP naming convention

Site (reserve), **station**, and **parameter type** are identified by a 7 or 8 character name

E.g., elkcwmet

- elk: site, Elkhorn Slough
- cw: station, Caspian Weather Station
- met: parameter type (weather)

The fundamental unit of data is the 'station' defined by a parameter type

The parameters for a station are specific to the parameter type

The fundamental unit of data is the 'station' defined by a parameter type

The parameters for a station are specific to the parameter type

Nutrients	Water quality	Meteorology
po4f, chla_n, no3f, no2f, nh4f, no23f, ke_n, urea	temp, spcond, sal, do_pct, do_mgl, depth, cdepth, level, clevel, ph, turb, chlfluor	atemp, rh, bp, wspd, maxwspd, wdir, sdwdir, totpar, totprcp, cumprcp, totsorad

The raw data will look like this...

Δ	Α	В	С	D	E	F	G	Н	I	J	K	L
1	StationCo	isSWMP	DateTimeStamp	Historical	Provisiona	CollMetho	REP	F_Record	PO4F	F_PO4F	NH4F	F_NH4F
2	apacpnut	P	1/10/2012 10:20	0	1	1	1		0.003	<-4>[SBL]	0.03	<0>
3	apacpnut	P	2/7/2012 11:41	0	1	1	1		0.005	<0>	0.019	<0>
4	apacpnut	P	3/5/2012 11:51	0	1	1	1		0.003	<-4>[SBL]	0.041	<0>
5	apacpnut	P	4/4/2012 10:30	0	1	1	1		0.003	<-4>[SBL]	0.043	<0>
6	apacpnut	P	5/9/2012 10:12	0	1	1	1		0.003	<0>	0.053	<0>
7	apacpnut	P	5/9/2012 10:15	0	1	1	2		0.003	<-4>[SBL]	0.022	<0>
8	apacpnut	P	5/9/2012 10:20	0	1	1	3		0.003	<0>	0.016	<0>
9	apacpnut	P	6/5/2012 8:30	0	1	1	1		0.003	<-4>[SBL]	0.04	<0>
10	apacpnut	P	7/3/2012 9:58	0	1	1	1	{CSM}	0.004	<0>	0.094	<0>
11	apacpnut	P	7/3/2012 9:59	0	1	1	2	{CSM}	0.004	<0>	0.066	<0>
12	apacpnut	P	7/3/2012 10:01	0	1	1	3	{CSM}	0.005	<0>	0.069	<0>
13	apacpnut	P	8/7/2012 9:53	0	1	1	1	{CSM}	0.003	<-4>[SBL]	0.05	<0>
14	apacpnut	P	9/5/2012 10:56	0	1	1	1		0.003	<-4>[SBL]	0.026	<0>
15	apacpnut	P	10/2/2012 9:22	0	1	1	1		0.003	<-4>[SBL]	0.042	<0>
16	apacpnut	P	10/2/2012 9:27	0	1	1	2		0.003	<-4>[SBL]	0.024	<0>
17	apacpnut	P	10/2/2012 9:32	0	1	1	3		0.003	<0>	0.042	<0>
18	apacpnut	P	11/6/2012 10:30	0	1	1	1		0.003	<-4>[SBL]	0.07	<0>
19	apacpnut	P	11/26/2012 11:39	0	1	1	1		0.003	<-4>[SBL]	0.041	<0>

What are the challenges for evaluating SWMP data??

Knowing what we want (I can't help with this)

- Knowing what we want (I can't help with this)
- Dealing with QAQC columns and removing 'bad' observations

- Knowing what we want (I can't help with this)
- Dealing with QAQC columns and removing 'bad' observations
- Data we don't want... extra columns or irrelevant parameters

- Knowing what we want (I can't help with this)
- Dealing with QAQC columns and removing 'bad' observations
- Data we don't want... extra columns or irrelevant parameters
- Combining data for comparison

- Knowing what we want (I can't help with this)
- Dealing with QAQC columns and removing 'bad' observations
- Data we don't want... extra columns or irrelevant parameters
- Combining data for comparison
- Issues inherent with time series, e.g., missing data

What are the challenges for evaluating SWMP data??

- Knowing what we want (I can't help with this)
- Dealing with QAQC columns and removing 'bad' observations
- Data we don't want... extra columns or irrelevant parameters
- Combining data for comparison
- Issues inherent with time series, e.g., missing data

We will learn how to handle most of these challenges!

What: An R package for retrieving, organizing and analyzing SWMP data

What: An R package for retrieving, organizing and analyzing SWMP data

Why: There are many challenges for working with SWMP data... a toolkit for addressing these challenges will be useful (I hope!)

What: An R package for retrieving, organizing and analyzing SWMP data

Why: There are many challenges for working with SWMP data... a toolkit for addressing these challenges will be useful (I hope!)

How:

- Install R/RStudio on your computer (done already!)
- Install the SWMPr package (dont already!)
- Use the SWMPr functions to retrieve, organize, and analyze SWMP data

This is where SWMPr lives - https://github.com/fawda123/SWMPr

What is provided in the SWMPr package?

R	eti	rie	VE
•	C.		

all_params
all_params_dtrng
single_param
import_local

Organize

qaqc.swmpr qaqcchk.swmpr subset.swmpr setstep.swmpr comb.swmpr

Analyze

aggregate.swmpr smoother.swmpr na.approx.swmpr plot.swmpr hist.swmpr lines.swmpr decomp.swmpr map_reserve

Built around the concept of *object-oriented programming* - retrieval functions return a data type with specific methods to organize and analyze

To view the help file for any function (including examples for most):

?all_params

all_params {SWMPr} R Documentation

Import current station records from the CDMO

Description

Import current station records from the CDMO starting with the most current date, CDMO equivalent of exportAllParamsXMLNew

Usage

all_params(station_code, Max = 100)

Arguments

station_code chr string of station, 7 or 8 characters

numeric value for number of records to obtain from the current date, maximum of 100

Value

Returns a swmpr object, all available parameters including QAQC columns

Let's get some data into R!

The *retrieval* functions do two things:

Import data directly from the CDMO:

all_params
all_params_dtrng
single_param

These functions require registering your IP address with CDMO

Import data from a local path:

import_local

Allows import of data obtained from (and only from) the zip downloads feature

After unzipping, data from zip downloads will have separate .csv files for each station and year

Name	Date modified	Туре	Size
apacpnut2011.csv	9/19/2014 7:04 AM	Microsoft Excel C	3 KE
apacpnut2012.csv	9/19/2014 7:04 AM	Microsoft Excel C	3 KE
apacpnut2013.csv	9/19/2014 7:04 AM	Microsoft Excel C	3 KE
apacpwq2011.csv	9/19/2014 7:06 AM	Microsoft Excel C	5,481 KE
apacpwq2012.csv	9/19/2014 7:06 AM	Microsoft Excel C	5,472 KE
apacpwq2013.csv	9/19/2014 7:06 AM	Microsoft Excel C	5,567 KE
apadbnut2011.csv	9/19/2014 7:06 AM	Microsoft Excel C	3 KE
apadbnut2012.csv	9/19/2014 7:06 AM	Microsoft Excel C	3 KE
apadbnut2013.csv	9/19/2014 7:06 AM	Microsoft Excel C	3 KE
apadbwq2011.csv	9/19/2014 7:08 AM	Microsoft Excel C	5,407 KE
apadbwq2012.csv	9/19/2014 7:08 AM	Microsoft Excel C	5,483 KE
apadbwq2013.csv	9/19/2014 7:08 AM	Microsoft Excel C	5,337 KE
apaebmet2011.csv	9/19/2014 7:10 AM	Microsoft Excel C	5,453 KE
apaebmet2012.csv	9/19/2014 7:10 AM	Microsoft Excel C	5,401 KE
apaebmet2013.csv	9/19/2014 7:11 AM	Microsoft Excel C	5,669 KE

Use the following to import some data into R...

Open script1.R, change the path to where you have the folder 'dataset1'

```
# get data for apacpwq, all years
# location of data
mypath <- 'C:/data/dataset1'
# import and assign to 'dat'
dat <- import_local(mypath, 'apacpwq', trace = T)</pre>
```

The console will return some informative text...

Now we have data in our 'workspace' that we can organize/analyze

```
head(dat)
            datetimestamp temp f_temp spcond f_spcond sal f_sal do_pct f_do_pct
     2011-01-01 00:00:00
                             11
                                   <0>
                                             44
                                                     <0>
                                                           28
                                                               <0>
                                                                          68
                                                                                  < 0>
     2011-01-01 00:15:00
                                             44
                                                     <0>
                                                                <0>
                                                                                  <0>
                             11
                                   <0>
                                                                          68
     2011-01-01 00:30:00
                             11
                                   <0>
                                             44
                                                     <0>
                                                           28
                                                               <0>
                                                                          68
                                                                                  < 0>
     2011-01-01 00:45:00
                             11
                                   <0>
                                             44
                                                     <0>
                                                           28
                                                               <0>
                                                                          68
                                                                                  <0>
     2011-01-01 01:00:00
                             11
                                   < 0>
                                             44
                                                     < 0>
                                                           29
                                                                < 0>
                                                                          68
                                                                                  < 0>
## 6 2011-01-01 01:15:00
                             11
                                   <0>
                                             44
                                                     < 0>
                                                           29
                                                                <0>
                                                                          67
                                                                                  <0>
##
     do mgl f do mgl depth f depth cdepth f cdepth level f level clevel f clevel
## 1
           6
                 < 0>
                                 < 0>
                                                  <3>
                                                           NA
                                                                 <-1>
                                                                            NΑ
                                                                                      NΑ
                                            2
## 2
                 <0>
                                 <0>
                                                  <3>
                                                                            NA
                                                                                      NA
           6
                                                           NA
                                                                 <-1>
## 3
                 <0>
                                 <0>
                                                  <3>
                                                           NA
                                                                 <-1>
                                                                            NA
                                                                                      NA
                 <0>
                                 <0>
                                                  <3>
                                                           NA
                                                                 <-1>
                                                                            NΑ
                                                                                      NA
## 5
                 <0>
                                 <0>
                                                  <3>
                                                           NA
                                                                 <-1>
                                                                            NA
                                                                                      NA
## 6
                 < 0>
                                 < 0>
                                                  <3>
                                                           NΑ
                                                                 <-1>
                                                                            NΑ
                                                                                      NΑ
     ph f_ph turb f_turb chlfluor f_chlfluor
      8 < 0>
                 3
                      <0>
                                  NA
##
                                           <-1>
## 2
      8 < 0>
                      <0>
                                  NΑ
                                           <-1>
## 3
      8 < 0>
                     <0>
                                  NA
                                           <-1>
      8 < 0>
                     <0>
                                  NA
## 4
                                           <-1>
      8 < 0>
                      < 0>
                                  NA
                                           <-1>
## 6
      8 <0>
                      <0>
                                  NA
                                           <-1>
```

NERRS/SWMP

Training Workshop: R Intro & SWMPr

October 25, 2015

Questions??