DERWENT-ACC-NO: 1980-67477C

DERWENT-WEEK:

200391

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE:

Removal of sulphur di:oxide from gases - using

native

zeolite sorbent after fragmentation and heat

and

sulphuric acid treatments

----- KWIC -----

Basic Abstract Text - ABTX (2):

Adsorptive capacity and mechanical strength are improved by

heating the

zeolite powder to 100-350 degrees C. for 30-90 min. before Al is removed.

1694

ou 715/24

Государстванный комитет СССР
. во делам изобретений и открытий

и зобретения

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 31.03.75 (21) 2118181/23-26

с присоединением заявки 🄏

(23)Приоритет

Опубликовано 15.02.80. Бюллетень №6

Дата опубликования описания 18.02.80

(51) M. Kл². В 01 D 53/02 с 01 B 17/60

(53) УДК 66.074. ,37(088.8)

(72) Авторы изобретения С. А. Ануров, Н. В. Кельцев, Н. С. Торочешников, В. И. Смола, Б. Г. Беренштейн и Н. Ф. Челищев

Московский ордена Ленина и ордена Трудового Красного Знамени химико-технологический институт им. Д. И. Менделеева, Государственный научно-исследовательский институт цветных метаплов и Институт минералогии, геохимии и кристаллохимии редких элементов

(71) Заявители

(54) СПОСОБ ПОЛУЧЕНИЯ АДСОРБЕНТА ИЗ ПРИРОДНОГО ЦЕОЛИТА

10

١

Изобретение относится к способам получения адсорбентов, используемых для очистки газов от двускиси серы.

Известен способ получения адсорбентов из природных цеолитов путем деалюминирования последних 0,25-0,1 н, серной кислотой при нагревании [1].

Недостатком известного способа является невысокая адсорбционная емкость целевого продукта.

Наиболее близким к предложенному способу по технической сущности является способ получения адсорбента из природного цеолита, включающий измельчение исходного продукта и деалюминирование его 1 н. раствором серной кислоты [2].

Недостаток способа — невысокая адсорбционная емкость (3,7 — 7,5 вес.%) и низкая механическая прочность адсорбента (76-83%).

Целью изобретения является повышение адсорбционной емкости и механической прочности адсорбента. 9

Цель достигается тем, что в способе получения адсорбента из природного цеолита, включающем измельчение исходного цеолита, последний подвергают термической обработке при 100-350°C в течение 30-90 мин с последующим деалюминированием серной кислотой.

Технология способа состоит в следующем.

Природный цеолит измельчают до 3-5 мм, затем проводят термическую обработку при 100-350°С (путем продувки горячими газами либо прокалкой цеолита в сушильных печах) в течение 30-90 мин с последующим деалюмированием 1 н. раствором серной кислоты.

В качестве природных цеолитов используют цеолит месторождений Ай-Дач, Дзегви и Морденитовое.

Цеолит дробят до размера частиц
3-5 мм в загружают в адсорбер диаметром 50 мм и высотой 65мм. Адсорбер

обогревают электрической печью и продувают горячим воздухом или азотом в течение 60 мин при 200° С.

После охлаждения адсорбента до комнатной температуры проводят деалюминирование 1 н. раствором серной кислоты в течение 30 мин. Затем адсорбент промывают водой и сущат в сущильном шкафу при 105° С.

Адсорбционную емкость полученного продукта проверяют на примере очистки газа от двуокиси серы и сравнивают с емкостью адсорбента. Полученные данные представлены в табл. 1.

Таблица 1

Обработка адсорбента	Емкость адсорбентов, полученных из цеолитов различных месторождений, вес.%		
	Ай-Даг	Дзегви	Морденитовое
Деалюминирование без термообработки	7,5	3,6	7,0
Деалюминирование с предварительной термообработкой, °С			:
100	8,2	3,9	7,6
150	8,6	4,3	7,9
200	9,2	4,5	8,4
250	9,6	4,8	8,6
300	10,4	5,1	8,9
350	10,8	5,6	9,2
400	10,5	5,1	8,7

В табл. 2 представлены данные по механической прочности адсорбента, по-

лученного предлагаемым способом в сравнении с известными.

Таблица 2

Вид обработки	Прочность адсорбентов, полученных из цеолитов различных месторождений, %		
	Ай-даг	Дзегви	Морденитовое
Деалюминирование без термообработки	76	70	83
Деалюминирование с термообработкой	85	7 9	95

Как видно из данных табл. 1 и 2, предлагаемый способ получения адсорбента из 55 природного пеолита позволяет увеличить адсорбинонную емкость в 2.-2,5 раза и в 1,3-1,6 раза повысить механическую прочность адсорбента.

Формула изобретения

Способ получения адсорбента из природного деолита, включающий измельчение исходного цеолита и деалюминирование его серной кислотой, о т л и ч а ющ и й с я тем, что, с целью повышения Источники информации, принятые во внимание при экспертизе 1. Пигузов Л. И. Высококремнеземные цеолиты и их применение в нефтепереработке и нефтехимии. М., "Химия", 1974, с. 12-13.

2.J.K.Tamboli,L.B.Sand. Proc and Jntern Clean Air Congr London,1971, с. 861–864 (прототип).

Редактор М. Недолуженко	Составитель Л. Андру Техред О. Легеза	жикоя Корректор М. Демчик
Ваказ 9602/1 ЦНИИПИ Госу	Тираж 809 ударственного комитета зобретений и открытий , Ж-35, Раушская паб.,	