Chapter 2 Data and Data Processing

Types of Data

Data Quality

Data Preprocessing

- Dimensionality Reduction, Feature Subset Selection
- Discretization and Binarization
- Variable Transformation

Measures of Similarity and Dissimilarity

- Similarity and Dissimilarity between Simple Attributes
- Similarity and Dissimilarity between Data Objects

Why Data Preprocessing?

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as instance, observation, point, case, record, entity, or example

Types of Attributes

Nominal

ID numbers, eye color, zip codes, ...

Ordinal

- rankings (e.g., taste of potato chips on a scale from 1~10);
- grades in {A, B, C, D, F};
- height in {tall, medium, short},
- ...

Interval

calendar dates, temperatures in Celsius or Fahrenheit, ...

Ratio

temperature in Kelvin, length, time, counts, ...

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

– Distinctness: = ≠

- Order: < >

Addition: + -

Multiplication: * /

- Properties for different attributes
 - Nominal: distinctness (eye color, sex); e.g., yellow ≠ red
 - Ordinal: distinctness & order (rankings, grade); e.g., A > B
 - Interval: distinctness, order & addition (calendar date); e.g., (June 3) + 1
 - Ratio: all 4 properties (length, height, weight); e.g., 100 cm = 2* 50cm

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. $(+, -, *, /)$	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent, variation

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Often represented as integer variables.
- Binary attributes are a special case of discrete attributes
- Examples:
 - zip codes, counts, or the set of words in a collection of documents

Continuous Attribute

- Has real numbers as attribute values
- Continuous attributes are typically represented as floating-point variables.
- Practically, real values can only be measured and represented using a finite number of digits.
- Examples:
 - temperature, height, or weight.

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Record Data

- Data that consists of a collection of records,
- Each record consists of a fixed set of attributes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

attributes (n)

	Projection of x Load	Projection of y load	Distance	Load	Thickness
objects{	10.23	5.27	15.22	2.7	1.2
•	12.65	6.25	16.22	2.2	1.1
(m)					

Document Data

- Transfer each document to become a 'term' vector,
 - each term (keyword) is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.
 - referred to as Vector Space Model (VSM) or Document-Term Matrix

- 1. Stemming (won→win, games→game, ...)
- 2. Remove stop words (of, the, a, ...)
- 3. Extract keywords (team, win, ...)
- 4. Form the keyword vector [team, coach, ..., season]
- 5. Convert documents to Document-Term matrix

Terms (keywords) of the document collection

documents	team	coach	pla y	ball	score	game	n Vi.	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Document similarity can be measured by:

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2|| = 0.1113$$

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - E.g., consider a grocery store.
 - The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
 - Application: frequently purchased itemsets,
 e.g., {Diaper, Milk} with support = 60% (i.e., 3/5)

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Ordered Data

- Sequences of transactions
 - Book checkouts, movie rental

- Pattern:
 E always follows D
- Application: marketing

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noises and outliers
 - missing values
 - duplicate data

```
t1: Tom, M, 400, 60000, Master, Sports, Engineering, ... t2: Mary, F, 30, 50000, , Music, Marketing, ...
```

Noises

- Noise refers to modification of original values
 - E.g., distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noises

Outliers

- Data objects with characteristics that are considerably different than most of the other data objects in the data set
- Can be legitimate data objects and be of interest E.g., in fraud and network intrusion detection, the goal is to find unusual objects or events.

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects
 - Ignore the missing value during analysis
 - Replace with
 - average of the dataset, average of the same class
 - mode of the dataset, mode of the same class, or
 - all possible values (weighted by their probabilities)

```
t1: Tom, M, 40, 40000, Master, Sports, Engineering, ..., Engineer t2: Mary, F, 25, , Music, Marketing, ..., Sales
```

mergè

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources

- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Preprocessing Techniques

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
 Discretization and Binarization
 Attribute Transformation
 Cleaning and Integration
 Data Mining
 Selection and Transformation
 Cleaning and Integration
 Data Warehouse
 Flat files

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc
 - More "stable" data
 - Aggregated data tends to have less variability, e.g., moving average.

Aggregation – Data Reduction

Reduce the number of attributes

 Weight	Height	:
 60	160	
 50	155	

 H/W Ratio	
 16/6	
 155/50	

Reduce the number of objects

ld	Score
Α	70
Α	90
В	80
В	60

ld	Avg-Score
Α	80
В	70

Aggregation – Change of Scale

- Change of Scale
 - Cities aggregated into regions, states, countries, etc.
 - Temp aggregated into cold, mild, hot

Location	Temp.
Taichung	25
Yunlin	26
Miaoli	24
Changhua	25
Tainan	33
Kaohsung	34
Pindon	36

	k.
	7

Location	Temp.	Count
Central_Taiwan	mild	4
Southern_Taiwan	hot	3

Aggregation – More Stable Data

- Aggregated data tends to have less variability (smoothing)
 - e.g., moving average.

Important Characteristics of Structured Data

Dimensionality

Curse of Dimensionality

Sparsity

Only presence counts

Resolution

Patterns depend on the scale

In the case of high dimensionality and high sparsity, cosine measure is better than Euclidean measure.

similarity		
=	$\cos(\theta)$	
=	$\frac{A \cdot B}{\ A\ \ B\ }.$	

	team	coach	pla y	ball	score	game	n Wi.	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Document-Term Matrix (Vector Space Model, or VSM)

Similarity between documents can be measured by inner product (or cosine index)

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Dataset A by randomly generating 500 data points
- Compute difference between max and min distance in the dataset A

max

Dimensionality Reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Others: supervised and non-linear techniques

A ₁	A_2	 	 	A_n

A ₁	A_2	 A _k

where k < n

Reduction from Two to One Dimension

Reduction by projection to X1-axis

$$[x_1 x_2] \rightarrow [x_1]$$
 e.g.

$$a = [1, 1] \rightarrow [1]$$

$$b = [1, 0.5] \rightarrow [1]$$

a and b become indistinguishable after projection.

Reduction by PCA

$$y_1 = a_{11}x_1 + a_{12}x_2$$
 (principle component)
 $y_2 = a_{21}x_1 + a_{22}x_2$

[x1 x2]
$$\rightarrow$$
 [y1 y2] \rightarrow [y1]
e.g.,
a = [1, 1] \rightarrow [1.414, 0] \rightarrow [1.414]
b = [1, 0.5] \rightarrow [1.2, -0.3] \rightarrow [1.2]

Y1 captures the largest amount of variation in the data.

Application of PCA—from 37 to 2 Dimensions

Haplogroup J - 37 STRs

A principal components analysis scatterplot of Y-STR haplotypes calculated from repeat-count values for 37 Y-chromosomal STR markers from 354 individuals. PCA has successfully found linear combinations of the different markers, that separate out different clusters corresponding to different lines of individuals' Y-chromosomal genetic descent.

Principal Component Analysis (PCA)

- Goal is to find a projection that captures the largest amount of variation in data
- Given N data vectors from k-dimensions, find $c \leq k$ orthogonal vectors that can be best used to represent data
 - The original data set is reduced to one consisting of N data vectors on c principal components (reduced dimensions)
- Each data vector is a linear combination of the c principal component vectors
- Works for numeric data only

...

$$[p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}] \rightarrow [c_{1} c_{2} c_{3}]$$

$$c_{1} = a_{11}p_{1} + a_{12}p_{2} + a_{13}p_{3} + a_{14}p_{4} + a_{15}p_{5} + a_{16}p_{6}$$

$$c_{2} = a_{21}p_{1} + a_{22}p_{2} + a_{23}p_{3} + a_{24}p_{4} + a_{25}p_{5} + a_{26}p_{6}$$

$$c_{3} = a_{31}p_{1} + a_{32}p_{2} + a_{33}p_{3} + a_{34}p_{4} + a_{35}p_{5} + a_{36}p_{6}$$

$$c_{4} = a_{41}p_{1} + a_{42}p_{2} + a_{43}p_{3} + a_{44}p_{4} + a_{45}p_{5} + a_{46}p_{6}$$

Calculate aii from training data

Training Data

- Construct covariance matrix of the training data
- 2. Find the eigenvectors of the covariance matrix
- 3. The eigenvectors define the new space, $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_6}$ where $\mathbf{a_i} = \langle a_{i1}, a_{i2}, ..., a_{i6} \rangle$.

Eigenvalues and Eigenvectors

Eigenvalues λ and eigenvectors v of a square matrix A:

$$Av = \lambda v$$

E.g.:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$

λ: 11, 2, 1

v: $[0\ 1\ 2]^T$, $[1\ 0\ 0]^T$, $[0\ 2\ -1]^T$

$$Trace(A) = 14$$

To obtain λ and v:

$$Av - \lambda v = 0,$$

 $(A - \lambda I)v = 0,$
 $det(A - \lambda I) = 0$

$$\det(A-\lambda I) = \det \begin{pmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{bmatrix} 2-\lambda & 0 & 0 \\ 0 & 3-\lambda & 4 \\ 0 & 4 & 9-\lambda \end{bmatrix}$$

$$= (2-\lambda) [(3-\lambda)(9-\lambda) - 16]$$

$$= -\lambda^3 + 14\lambda^2 - 35\lambda + 22 = 0$$
Therefore,
$$\lambda = 11, 2, \text{ or } 1$$

Trace(A): the sum of all its eigenvalues of matrix A; also the sum of the elements on the main diagonal.

Image Compression via Singular Value Decomposition

From 61 singular values

From 29 singular values

Original Image

- Grey levels of 1 pixel are represented by 8 bits (0~255).
- Image resolution: 340 × 280 pixels (= 95,200 pixels)
- File size: $340 \times 280 \times 8$ bits = 95,200 bytes

Compression by using SVD

- For 61 S.V.: $(1+340+280) \times 61 \times 8$ bits = 37,881 bytes.
- For 29 S.V.: $(1+340+280) \times 29 \times 8$ bits = 18,009 bytes.
- For 1 S.V.: $(1+340+280) \times 1 \times 8$ bits = 621 bytes.

Compression via Singular Value Decomposition

280 pixels

From 29 singular values

Singular Value Decomposition:

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

Keep only the first k terms:

$$M_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + ... + \sigma_k \mathbf{u}_k \mathbf{v}_k^T,$$
 where $k \le r$

- M_k is an approximation to M that corresponds to keeping only the first k singular values and the corresponding singular vectors.
- Note: singular vectors $\mathbf{u_i} \in R^{340}$, $\mathbf{v_i} \in R^{280}$.
- Original Image:

file size: $340 \times 280 \times 8$ bits = 95,200 bytes

• Compression by SVD For k = 29, file size: $(1+340+280) \times 29 = 18,009$ bytes

Singular Value Decomposition

• Every matrix (symmetric or not, square or not) has a factorization of the form $M = U\Sigma V^T$, where U and V are $m \times m$ and $n \times n$ orthogonal matrices, and Σ is an $m \times n$ "diagonal" matrix.

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix} \leftarrow \mathbf{V}_{r}^{T}$$

$$M = U\Sigma V^{T} = \sigma_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{T} + ... + \sigma_{r}\mathbf{u}_{r}\mathbf{v}_{r}^{T}$$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \sqrt{5} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \sqrt{0.2} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Size:

$$M = 4*5 = 20 \text{ bytes}$$

$$M_{k=1} = 10 \text{ bytes}$$

• Singular values in Σ , σ_1 , ..., σ_n , of $M_{m \times n}$ are the square roots of the eigenvalues of M^TM , denoted by σ_1 , ..., σ_n and $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n$.

Matrix Operations (Complimentary)

 M^{T} : Transpose of a matrix M

M⁻¹: Inverse of a matrix M

$$MM^{-1} = M^{-1}M = I$$

I = Identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{2\times 3} = \begin{bmatrix} 1 & 3 & 0 \\ 4 & 2 & 1 \end{bmatrix} \qquad M^{T}_{3\times 2} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 0 & 1 \end{bmatrix}$$
$$MM^{T} = ?$$

Dimension of $MM^T = ?$

Dimension of $M^TM = ?$

row vector :
$$q_{1\times 4} = \begin{bmatrix} 2 & 6 & 3 & 1 \end{bmatrix}$$

$$column\ vector: p_{4\times 1} = \begin{bmatrix} 4\\2\\3\\1 \end{bmatrix}$$

$$pq = ?$$
 $qp = ?$ // Product (or Multiplication) of two matrice $q \cdot p^T = ?$ // Dot product of two vectors

Orthogonal and Diagonal Matrix

- A square matrix $M_{m \times m}$ whose columns form an orthonormal set is called an orthogonal matrix. // orthonormal: perpendicular and unit length
- A square matrix M is orthogonal iff $M^{-1} = M^{T}$

$$UU^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \equiv I_4$$

$$VV^{7} = \begin{bmatrix} 0 & 0 & \sqrt{0.2} & 0 & -\sqrt{0.8} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{0.8} & 0 & \sqrt{0.2} \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \equiv I_{5}$$

- A matrix is diagonal if its nondiagonal entries are all zero.
- An identity matrix, denoted by *I*, is a matrix whose diagonal entries are all one and nondiagonal entries are all zero.

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- M⁻¹: inverse of M
- $MM^{-1} = I$
 - M^T: transpose of M

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - duplicate much or all of the information contained in one or more other attributes

e.g., purchase price of a product and the amount of sales tax paid

	Purchase price	Sale tax		
(77	3,000	300		
677	20,000	2,000		

- Irrelevant features
 - contain no information that is useful for the data mining task at hand

e.g.: students' ID and Name are often irrelevant to the task of predicting students' GPA

ID	Name		GPA
1	John	677	4.5
2	Mary	677	3.2

Feature Subset Selection Techniques

- Brute-force approach:
 - Try all possible feature subsets as input to data mining algorithm.
 (Problem: time complexity, e.g., pick 5 from 100 attributes)
- Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm (e.g. decision tree algorithm)
- Filter approaches:
 - Features are selected before data mining algorithm is run
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes

Heuristic Feature Selection Methods

- Several heuristic feature selection methods:
 - Best single features under the feature independence assumption: choose by significance tests.
 - Best step-wise feature selection:
 - The best single-feature is picked first
 - Then next best feature condition to the first, ...
 - Worst step-wise feature elimination:
 - Repeatedly eliminate the worst feature
 - Best combined feature selection and elimination:
 - Optimal branch and bound:
 - Use feature elimination and backtracking

{A1, A2, A3, A4, A5, A6}
forward selection
Selected: {A5}
{A1, A2, A3, A4, A6}
forward selection
Selected: {A5, A2}

Greedy strategy?

Backward Elimination

1. Eliminate A1? A2? A3? ...

2. Eliminate A1? A3? A4? ...

3.

{A1, A3, A4, A5, A6}

{A1, A3, A4, X A6}

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature Extraction
 - extract certain type of edges related with presence of faces
 - domain-specific
 - Feature Construction
 - combining features(e.g., BMI by Height / Weight)
 - Mapping Data to New Space
 - e.g, Fourier, Wavelet transform

Mapping Data to a New Space

Transform time domain to frequency domain by Fourier transformation

Conversion of A Categorical Attribute

- Some algorithms accepts only numeric values, e.g., neural networks.
- Convert ordinal values to integers.
- Convert nominal values to asymmetric binary attributes (or 1-of-k coding)
 - For nominal values: the semantics is lost. d(Coke, Pepsi) < d(Coke, Latte)?</p>

Ordinal values	Integer value
Awful	0
Poor	1
OK -	2
Good	3
Great	4

Nominal values	x1	x2	х3	х4	х5
Coke	1	0	0	0	0
Pepsi	0	1	0	0	0
Sprint ^I	0	0	1	0	0
Mocha	0	0	0	1	0
Latte	0	0	0	0	1

t1: Tom, M, 60, 60000, Good, Coke

t2: Mary, F, 30, 50000, Poor, Mocha

t1': Tom, 1, 0, 60, 60000, 3, 1, 0, 0, 0, 0

t2': Mary, 0, 1, 30, 50000, 1, 0, 0, 0, 1, 0

1-of-k coding

Discretization of Continuous Attributes

Some algorithms accept only discrete attributes, e.g., decision trees

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Binary discretizaiton

Multi-way discretizaiton

Discretization by Gini index:

- 1. Sort the values
- 2. Determine the discretization boundary by Gini value

Entropy-Based Discretization

Given a set of samples S, if S is partitioned into two intervals S1 and S2 using boundary T.

The boundary that minimizes the entropy function over all possible boundaries is selected as a binary discretization.

 If more partitions are desired, the process is recursively applied until some stopping criterion is met.

$$E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

$$\max_{i} (Ent(S) - E(S, T_i))$$

Discretize A3 by entropy of class labels:

- 1. Sort the values of A3
- 2. Determine the discretization boundary by entropy value of the Class attribute

Discretization Without Using Class Labels

D: { 2, 3, 4, 4, 5, 6, 10, 13, 14, 15, 25, 26, 30, 40, 41, 42, 43, 44, 45}

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value x can be identified with one of the new values
 - incremental functions: x^k , e^x , $\log_n(x)$
 - decreasing functions: x⁻ⁿ, e^{-x}

Order preserving (but range changed) transformations

e.g.: 0.000001, 0.001, 1000, 1000000 $\xrightarrow{\log(x)}$ -6, -3, 3, 6

Scale Problem: Normalization (or Standardization)

Why is normalization necessary? Which two are more similar? i.e., d(T1,T2) < d(T2,T3)?

	Age	Salary
T1	60	60000
T2	30	60000
Т3	30	61000

Scale Problem: Normalization (or Standardization)

z-score normalization

$$v' = \frac{v - mean_A}{stand _dev_A}$$

 μ : mean

 σ : standard deviation

	Age	Salary
T1	60	60000
T2	30	60000
Т3	30	61000

Age: $(\mu : 50, \sigma : 10)$ $60 \rightarrow v'$? $30 \rightarrow v''$?

min-max normalization (usually 0~1 or -1~1)

$$v' = \frac{v - min_A}{max_A - min_A} (new _max_A - new _min_A) + new _min_A$$

Age: $(0, 120) \rightarrow (0, 1)$ $60 \rightarrow v'$? $30 \rightarrow$?

Salary: $(20000, 100000) \rightarrow (0, 1) 60000 \rightarrow ?$

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 where j is the smallest integer such that Max(|v'|)<1

 $\{578, 85, 4627\} \rightarrow \{0.0578, 0.0085, 0.4627\}$

Distance between Two Objects

T1: Tom, M, 60, 60000, Good, Coke

T2: Mary, F, 30, 50000, Poor, Mocha

d(T1, T2)?

Convert categorical attributes

T1': Tom, 1, 0, 60, 60000, 3, 1, 0, 0, 0

T2': Mary, 0, 1, 30, 50000, 1, 0, 0, 0, 1, 0

d(T1', T2')?

Discard irrelevant attribute NAME, and normalize attributes. e.g. normalize the range of each attribute to (0, 1)

T1": 1, 0, 0.50, 0.50, 0.75, 1, 0, 0, 0, 0

0, 1, 0.25, 0.38, 0.25, 0, 0, 0, 1, 0

d(T1", T2")?

Note:

T2":

Other alternatives for categorical attributes are possible, e.g., use simple matching or distance hierarchy

Exercise

- 1. What are the distances d(T1,T2) and d(T2,T3) under z-score normalization? Assume mean and standard deviation for Age and Salary are (70, 10) and (50000, 1000), respectively.
- 2. What are the distances d(T1,T2) and d(T2,T3) by min-max normalization to the range (0, 1)? Assume (min, max) for Age and Salary are (0, 120) and (20000, 100000), respectively.
- 3. What are the distances d(T1,T2) and d(T2,T3) if normalization by decimal scaling is applied to Age and Salary, respectively?

	Age	Salary
T1	60	60000
T2	30	60000
Т3	30	61000