

SE3IA11/SEMIP12 Image Analysis

Image Compression – Revisited

Lecturer:

Prof. James Ferryman

Computational Vision Group

Email: j.m.ferryman@reading.ac.uk

Introduction

- In the first lecture on image compression we examined the general process and methods utilised for image data reduction
- This lecture continues the theme to:
 - Compare image compression methods
 - Examine image sequence coding (video compression)

Comparison of Compression Methods

- Transform-based methods
 - better preserve subjective image quality
 - less sensitive to statistical image property changes
- Prediction methods
 - can achieve larger compression ratios in a much less expensive way
 - tend to be much faster than transform-based or vector quantization compression schemes
 - easily realised in hardware

Comparison of Compression Methods

- If compressed images are transmitted, an important property is *insensitivity* to transmission channel noise
- <u>Transform-based techniques</u> are significantly less sensitive to channel noise
 - if transform coefficient is corrupted during transmission, resulting image distortion is homogeneously spread through the image and is not too detrimental

Comparison of Compression Methods

- Erroneous transmission of a difference value in prediction compression causes not only an error in a particular pixel, it influences values in the neighbourhood
 - the predictor involved has a considerable visual effect in a reconstructed image
- <u>Pyramid based schemes</u> have a natural compression ability and show potential for further improvement of compression ratios
 - suitable for dynamic image compression and for progressive and smart transmission approaches

Introduction to Video Compression

- Motivation:
 - Raw video contains an immense amount of data
 - Communication and storage capabilities are limited
- Example HTDV video signal:
 - 720 x 1820 pixels/frame, progressive scanning at 60 frames/s

$$\left(\frac{720 \times 1280 \text{ pixels}}{\text{frame}}\right)\left(\frac{60 \text{ frames}}{\text{sec}}\right)\left(\frac{3 \text{ colours}}{\text{pixel}}\right)\left(\frac{8 \text{ bits}}{\text{colour}}\right) = 1.3 \text{ Gb/s}$$

- 20 Mb/s HDTV channel bandwidth
- Requires compression by factor of ~ 70

Introduction to Video Compression

- Video is a sequence of frames (images) that are related
- Related along the temporal dimension
 - therefore, temporal redundancy exists
- Main addition over image compression studied previously
 - temporal redundancy
 - video coder must exploit the temporal redundancy

Temporal Processing

- Usually there exists a high frame rate
 - Significant temporal redundancy
- Possible representations along the temporal dimension include:
 - Transform methods
 - Good for constant velocity uniform global motion
 - Inefficient for non-uniform motion
 - real-world motion
 - Requires a large number of frame stores
 - leads to delay (+ memory cost)
 - Predictive methods
 - Good performance using only 2 frame stores
 - However, simple frame differencing is insufficient

Video Compression

- Main advantage over image compression:
 - Exploit the temporal redundancy
- Predict current frame based on previously coded frames
- 3 types of coded frames:
 - <u>I-frame</u>: Intra-coded frame, coded independently of all other frames
 - P-frame: Predictively coded frame, coded based on previously coded frame
 - B-frame: Bi-directionally predicted frame, coded based on both previous and future coded frames

Coded Frames

Temporal Processing

Motion-Compensated Prediction

- Simple frame differencing *fails* when there is motion
- Motion must be taken into account
 - Motion-compensated (MC) prediction
- MC prediction generally provides significant improvements
- However:
 - how can we estimate motion?
 - how can we form MC-prediction?

Temporal Processing: Motion Estimation

- The ideal situation is to:
 - Partition the video into moving objects
 - Describe the object motion
 In general, this is a very difficult task
- Practical approach: block-matching motion estimation
 - Partition each frame into blocks
 - Describe the motion of each block
 - Requires no object identification
 In general, good robust performance

Block Matching Motion Estimation

• Assumptions:

Translational motion within block:

$$f(n_1,n_2,k_{cur}) = f(n_1-m_{v1}, n_2-m_{v2}, k_{ref})$$

- All pixels within each block have the same motion

• ME Algorithm:

- Divide current frame into non-overlapping N₁ x N₂ blocks
- For each block, find the best matching block in reference frame
- MC-Prediction Algorithm:
 - Use best matching blocks of reference frame as prediction of blocks in current frame

Block Matching Motion Estimation

- For each block in the current frame we need to search for best matching block in the reference frame
- A number of metrics exist for the "best match", e.g.:

$$MSE = \sum_{(n_1, n_2) \in Block} \left[f(n_1, n_2, k_{cur}) - f(n_1 - mv_1, n_2 - mv_2, k_{ref}) \right]^2$$

- Candidate blocks include all blocks in e.g. (±32, ±32) pixel area
- Strategies for searching candidate blocks for best match include:
 - Full search: examine all candidate blocks
 - Partial (fast) search: examine a carefully selected subset
- Estimation of motion for best matching block: "motion vector"

Block Matching Motion Estimation

Motion Vectors and Motion Vector Field

- Motion vector
 - Expresses the relative horizontal and vertical offsets (mv_1 , mv_2), or motion, of a given block from one frame to another
 - Each block has its own motion vector
- Motion vector field
 - Collection of motion vectors for all the blocks in a frame

Block Matching: Summary

- The main issues to consider are:
 - Block size
 - Search range
 - Motion vector accuracy
- Motion typically estimated only from raw intensities
- Advantages:
 - Good, robust performance for compression
 - Resulting motion vector field is easy to represent (one MV per block) and useful for compression
 - Simple, periodic structure, easy hardware implementations
- Disadvantages:
 - Assumes translational motion model
 - Breaks down for more complex motion
 - Often produces blocking artifacts

Summary of Temporal Processing

- Use MC-prediction (P and B frames) to reduce temporal redundancy
- MC-prediction usually performs well
- MC-prediction provides:
 - Motion vectors
 - MC-prediction error or residual
 - Code error with conventional image coder
- Occasionally MC-prediction may perform badly
 - E.g.: complex motion, new imagery (occlusions)
 - Approach:
 - Identify blocks where prediction fails
 - Code block without prediction

Video Compression Architecture

- Exploits the redundancies that we have learnt:
 - Temporal: MC-prediction (P and B frames)
 - Spatial: Block DCT
 - Colour: Colour space conversion
- Scalar quantization of DCT coefficients
- Zigzag scanning, run length & Huffman coding of the non-zero quantized DCT coefficients

Example Video Encoder

Example Video Decoder

Acknowledgements

• HP – Image and Video Coding

Summary

- We have examined some additional aspects of image compression
- The next lecture today covers symbolic feature extraction