[19] 中华人民共和国国家知识产权局

[12] 发明专利申请公布说明书

[21] 申请号 200610047236.6

[51] Int. Cl.

CO7J 63/00 (2006. 01)

CO7J 53/00 (2006. 01)

A61K 31/56 (2006. 01)

A61P 35/00 (2006.01)

[43] 公开日 2007年1月3日

[11] 公开号 CN 1887899A

[22] 申请日 2006.7.19

[21] 申请号 200610047236.6

[71] 申请人 沈阳化工学院

地址 110142 辽宁省沈阳市经济技术开发区

11号

[72] 发明人 孟艳秋 刘 丹 赵 娟 王 趱

[74] 专利代理机构 沈阳技联专利代理有限公司 代理人 张志刚

权利要求书1页 说明书6页

[54] 发明名称

熊果酸化学修饰物氨基醇

[57] 摘要

熊果酸化学修饰物氨基醇,涉及一种天然产物及它的半合成物,由以下步骤制备: (1)熊果酸化合物(I)和乙酸酐反应是的3-乙酰氧基熊果酸(II); (2)3-乙酰氧基熊果酸与草酰氯反应,再与相应的氨基醇反应的化合物(III-VI); (3)化合物(III-VI)经水解得化合物(VII-X)。 将天然产物熊果酸进行化学修饰,得到一系列熊果酸的结构类似物,经过药理试验表明,它们对 HELA 人体宫颈癌细胞具有较好的抑制活性,且均优于母体化合物熊果酸。

1. 熊果酸化学修饰物氨基醇, 其特征在于结构式如下:

其中: R₁为羟基或乙酰基, R₂为取代氨基醇或羟基。

- 2. 根据权利要求 1 所述的熊果酸化学修饰物氨基醇,其特征在于由以下步骤制备:
- (1) 熊果酸化合物(I) 和乙酸酐反应是的 3-乙酰氧基熊果酸(Ⅱ):
- (2) 3-乙酰氧基熊果酸与草酰氯反应,再与相应的氨基醇反应的化合物(Ⅲ—Ⅵ);
 - (3) 化合物 (Ⅲ—Ⅵ) 经水解得化合物 (Ⅵ—X)。
- 3. 根据权利要求 1 所述的熊果酸化学修饰物氨基醇,其特征在于它们具有抗肿瘤活性,可用于治疗肿瘤疾病。

能果酸化学修饰物氨基醇

技术领域

本发明涉及一种天然产物及它的半合成物,特别是涉及一种具 有抗肿瘤活性的熊果酸化学修饰物氨基醇。

背景技术

熊果酸(ursolic acid, UA)(化合物 I)又名乌苏酸、乌索酸,属于五环三萜类化合物。它在自然界中分布广泛,且具有多种生物学效应,对神经系统具有明显安定和降温作用;体外对 G⁺和 G 菌及酵母菌均有抗菌活性;具有降血脂、抗动脉粥样硬化作用;还有保肝、抗肝炎作用。熊果酸的化学结构式为:

研究表明,熊果酸不仅对多种致癌、促癌物有抵抗作用,而且对多种恶性肿瘤如 P-388 和 L-1210 白血病细胞、A-549 人肺腺癌细胞有抑制生长作用;可诱导 F9 畸胎瘤细胞成为内胚层细胞;对 T 细胞淋巴瘤 Jurkat 细胞株具有杀伤抑制作用;此外,还具有抗肿瘤血管生成的作用。

发明内容

本发明的目的在于提供一种具有多种生物活性的熊果酸作为先

导化合物,设计出一种具有抗肿瘤活性的熊果酸化学修饰物氨基醇。

本发明的目的是通过以下技术方案实现的:

熊果酸化学修饰物氨基醇, 其结构式如下:

其中: R₁为羟基或乙酰基, R₂为取代氨基醇或羟基。

如上所述的熊果酸化学修饰物氨基醇,由以下步骤制备:

- (1) 熊果酸化合物(I) 和乙酸酐反应是的 3-乙酰氧基熊果酸(Ⅱ);
- (2) 3-乙酰氧基熊果酸与草酰氯反应,再与相应的氨基醇反应的 化合物(Ⅲ—Ⅵ):
 - (3) 化合物(Ⅲ—Ⅵ) 经水解得化合物(Ⅶ—X)。

如上所述的熊果酸化学修饰物氨基醇,它们具有抗肿瘤活性,可用于治疗肿瘤疾病。

本发明的优点与效果是:

本发明对天然产物熊果酸进行化学修饰,得到一系列熊果酸的结构类似物,经过药理试验表明,它们对HELA人体宫颈癌细胞具有较好的抑制活性,且均优于母体化合物熊果酸。

具体实施方式

下面对本发明进行详细说明。

本发明是通过下列步骤完成的:

- 1. 枇杷叶的乙醇提取浸膏以石油醚、1%氢氧化钠和水洗至洗出液无色,无水乙醇加热溶解,活性炭脱色,滤液放置析出白色结晶,以热甲醇重结晶得化合物 I。
 - 2. 化合物 I 与乙酸酐反应得化合物 Ⅱ

3. 化合物 II 与草酰氯在室温下反应,进一步于碱性条件下与氨基醇反应,得化合物Ⅲ-Ⅵ

其中: R₂为取代氨基醇

4. 化合物Ⅲ-Ⅵ经水解得化合物Ⅶ-X

其中: R₂为取代氨基醇

化合物	R_1	R_2
II ·	CH₃CO	ОН
III	CH ₃ CO	NHCH ₂ CH ₂ OH
IV	CH₃CO	NHCHCH₃CH₂OH
V	CH₃CO	NHCH ₂ CH ₂ CH ₂ OH
		CH ₂ OH HN ↓
VI	CH₃CO	
VII	ОН	NHCH₂CH₂OH
VIII	ОН	NHCHCH₃CH₂OH
IX	ОН	NHCH ₂ CH ₂ CH ₂ OH
		CH ₂ OH HN
X	ОН	

该类五环三萜类化合物进行抗肿瘤的药理试验,证明其对 HELA 人体宫颈癌细胞具有明显的抑制作用,熊果酸的结构修饰物抑制 HELA 活性均高于母体化合物熊果酸。人体癌细胞试验采用 MTT 法。 体外试验结果由表 1 所示。

表 1 熊果酸结构修饰物对 HELA 人体宫颈癌细胞株的抑制作用 (抑制率%)

化合物	浓度	10 ⁻⁵ mo1/1	$10^{-6} \text{mo} 1/1$	$10^{-7} \text{mol}/1$	10^{-8} mo $1/1$
Ι .		12. 36	2. 24	0. 26	0. 16
II		37. 83	6. 22	2. 76	2. 07
Ш		50. 34	33. 00	11.53	6. 54
IV		58. 38	13. 74	9. 95	7. 52

V	44. 64	18. 19	12. 03	5. 25
VI	77. 52	16. 08	11.72	7. 41
VII	34. 16	18. 07	8. 05	3.61
VIII	24. 74	17. 76	16. 74	8. 44
IX	26. 56	21. 92	16. 14	8. 28
X	25. 98	22. 40	20. 68	16. 33

下面举例说明:

实施例1

化合物 II 的制备:在 50ml 干燥的茄型瓶中加入 200mg 熊果酸 (0.44mmol),用 THF 溶解,加入 1ml 吡啶,少许 DMAP,室温下搅拌 4.5 小时,蒸除溶剂,残余物加入适量的水,用 2N 的盐酸调 pH $3\sim4$,抽滤,水洗滤饼至中性,柱层析纯化,得化合物 II (182mg,82.94%)。 「HNMR $(300\text{MHz},\text{CDCl}_3)$ δ : 5.23(1H,t,H-12), $4.47\sim4.52(1\text{H},\text{t},\text{H}_3)$, $2.04(3\text{H},\text{s},\text{CH}_3\text{CO})$, 1.07(3H,s)0.95(6H, s) 0.86(3H,s)0.84(6H, s) 0.76(3H,s) $(7\times\text{CH}_3)$ 。

实施例 2

化合物Ⅲ的制备: 90mg(0.18 mmo1)化合物Ⅱ加二氯甲烷溶解,加入 0.08ml 草酰氯,室温反应 24 小时,反应混合物减压蒸除二氯甲烷及反应产生的气体后,再加入二氯甲烷溶解残余物,加三乙胺调 pH 8~9,加乙醇胺 0.05ml,反应完毕,反应液中加入 4ml 水,以 2N 盐酸调 pH 3~4,减压蒸除二氯甲烷,剩余物减压过滤,水洗至中性,柱层析纯化得化合物Ⅲ(47mg,48%)。

'HNMR (300MHz, DMSO-d₆), δ : 7.05(1H, d, NH), 5.19(1H, t, H-12), 4.60 \sim 4.62(1H, s, CH₂OH), 4.37 \sim 4.40(1H, t, H-3)3.30 \sim 3.33(2H, t, CH₂OH), 3.00 \sim 3.09(1H, m, NHCH2)2.96 \sim 2.98(1H, m, NHCH2), 2.00(3H, s, CH3CO), 1.04(3H, s), 0.90(6H, s), 0.83(3H, s), 0.81(3H, s), 0.70(3H, s), (7×CH3).

实施例3

化合物VII的制备: 化合物III33mg 在甲醇/四氢呋喃的碱溶液中水解,反应完全,向混合物中加入适量的水,以 2N 盐酸调 pH 3~4,减压蒸除甲醇/四氢呋喃,剩余物减压过滤,水洗至中性,得化合物VII(26.7mg,87.8%)。

'HNMR (300MHz, DMSO-d₆), δ :7.05(1H, t, NH), 5.20(1H, t, H-12), 4.63(1H, t, CH₂OH), 4.29(1H, d, -OH 3 位), 3.6(1H, t, H-3), 3.6(2H, t, CH₂OH), 3.11(1H, m, NHCH₂), 2.99(1H, m, NHCH₂), 1.02(3H, s), 0.89(6H, s), 0.85(6H, s), 0.69(3H, s), 0.67(3H, s), (7×CH₃)。