Fiche d'entraînement sur les inéquations

Exercice 1: Inéquations « classiques »

Résoudre dans $\mathbb R$ les inéquations suivantes :

1)
$$(3x-1)(-2x+6) \le 0$$

2)
$$(3+6x)(5x+5) \ge 0$$

3)
$$\frac{2x+6}{(-5x-5)(-3x+12)} \le 0$$

4)
$$(x-2)(-2x+4) \ge 0$$

5)
$$\frac{2x-6}{-x+3} \le 0$$

6)
$$\frac{3x-10}{2x+4} \le 2$$

Exercice 2: Intersections et réunions

Déterminer l'intersection et la réunion des intervalles suivants :

1)
$$I = [-5; 1[\text{ et } J =]0; 4]$$

2)
$$I =]-\infty$$
; 2] et $J = [2; 7]$

3)
$$I = [-5; 2]$$
 et $J =]2; +\infty[$

Exercice 3 : Systèmes

Résoudre dans ℝ les systèmes d'inéquations suivants :

1)
$$\begin{cases} 2x - 4 \ge -3 \\ et \\ -3x + 20 > 8 \end{cases}$$

2)
$$\begin{cases} -4x - 8 \ge -3 \\ ou \\ 2x + 5 > 1 \end{cases}$$

Exercice 4: Choisir la bonne forme

Soit *f* la fonction définie sur \mathbb{R} par f(x) = (x-7)(x-3).

1) Vérifier que pour tout réel
$$x$$
, $f(x) = x^2 - 10x + 21 = (x - 5)^2 - 4$.

2) Résoudre chacune des inéquations suivantes en choisissant l'expression de f(x) la mieux adaptée :

a)
$$f(x) \le 0$$

b)
$$f(x) \le 12$$

c)
$$f(x) \le x^2 + 1$$

Exercice 5: Inéquations « plus compliquées »

Résoudre dans ℝ les inéquations suivantes :

1)
$$(4x-8)(-2x+1)-(4x-8)(-3x+5) \ge 0$$

2)
$$9x^2 - 49 \le 0$$

3)
$$(2x+1)^2 - (3x-5)^2 \ge 0$$

4)
$$\frac{2x-5}{x^2-1} \le 0$$

Correction

Exercice 1:

1)	х	$-\infty$		$\frac{1}{3}$		3		+∞
	3x - 1		_	0	+		+	
	-2x + 6		+		+	0	_	
	(3x-1)(-2x+6)		_	0	+	0	_	

$$S = \left] -\infty; \frac{1}{3} \right] \cup [3; +\infty[$$

$$S =]-\infty; -1] \cup \left[-\frac{1}{2}; +\infty\right]$$

3)	x	-∞	-3	7	-1		4		+∞
	2x + 6	(0)	0	+		+		+	
	-5x - 5			+	0	_		_	
	-3x + 12	+		+		+	0	_	
	$\frac{2x+6}{(-5x-5)(-3x+12)}$	-	0	+		_		+	

$$S =]-\infty; -3] \cup]-1; 4[$$

4)	X	$-\infty$		2		+∞
	x - 2		_	0	+	
	-2x + 4		+	0	_	
	(x-2)(-2x+4)		_	0	-	

5)	x	$-\infty$		3		+∞
	2x - 6		_	0	+	
	-x + 3		+	0	_	
	$\frac{2x-6}{-x+3}$		_		_	

$$S =]-\infty$$
; $3[\cup]3$; $+\infty[=\mathbb{R} \setminus \{3\}$

6)
$$\frac{3x-10}{2x+4} \le 2 \operatorname{donc} \frac{3x-10}{2x+4} - 2 \le 0 \operatorname{donc} \frac{3x-10}{2x+4} - \frac{2 \times (2x+4)}{2x+4} \le 0 \operatorname{donc} \frac{3x-10-4x-8}{2x+4} \le 0$$

 $\operatorname{donc} \frac{-x-18}{2x+4} \le 0$

x	$-\infty$		-18		-2	+∞
-x - 18		+	0	_		-07/
2x + 4		_		_	0	+
$\frac{-x-18}{2x+4}$		_	0	+4		-5/2

$$S =]-\infty; -18] \cup]-2; +\infty[$$

Exercice 2:

1)
$$I \cap J =]0; 1[$$

 $I \cup J = [-5; 4]$

2)
$$I \cap J = \{2\}$$
 $I \cup J =]-\infty$; 7[

3)
$$I \cap J = \emptyset$$

 $I \cup J = [-5; +\infty[$

Exercice 3:

1)
$$S_1 = \left[\frac{1}{2}; +\infty\right[\text{ et } S_2 =] - \infty; 4[\text{ donc } S = S_1 \cap S_2 = \left[\frac{1}{2}; 4\right[$$

2)
$$S_1 = \left[-\infty; -\frac{5}{4} \right]$$
 et $S_2 = \left[-2; +\infty \right[$ donc $S = S_1 \cup S_2 = \left[-\infty; +\infty \right] = \mathbb{R}$

Exercice 4:

1) •
$$f(x) = (x-7)(x-3) = x^2 - 3x - 7x + 21 = x^2 - 10x + 21$$

•
$$(x-5)^2 - 4 = x^2 - 2 \times x \times 5 + 5^2 - 4 = x^2 - 10x + 25 - 4 = x^2 - 10x + 21$$

Donc, au final, $f(x) = (x-7)(x-3) = x^2 - 10x + 21 = (x-5)^2 - 4$

2) a) On utilise la forme
$$f(x) = (x-7)(x-3)$$
:

x	$-\infty$		3		7		+∞
x - 7		_		_	0	+	
x - 3		_	0	+		+	
(x-7)(x-3)		+	0	_	0	+	

$$S = [3; 7]$$

b) On utilise la forme
$$f(x) = (x-5)^2 - 4$$
: $(x-5)^2 - 4 \le 12$ donc $(x-5)^2 - 4 \le 12$ donc $(x-5)^2 - 4 - 12 \le 0$ donc $(x-5)^2 - 16 \le 0$ donc $(x-5)^2 - 4^2 \le 0$ donc $(x-5+4)(x-5-4) \le 0$ donc $(x-1)(x-9) \le 0$:

x	$-\infty$		1		9	1	+∞
x-1		_	0	+		+	
<i>x</i> – 9		_	V	-	0	+	
(x-1)(x-9)		+	0		0	+	

$$S = [1; 9]$$

c) On utilise la forme
$$f(x) = x^2 - 10x + 21$$
:
 $x^2 - 10x + 21 \le x^2 + 1$ donc $x^2 - 10x + 21 - x^2 - 1 \le 0$ donc $-10x + 20 \le 0$ donc $-10x \le -20$ donc $x \ge 2$ et donc $S = [2; +\infty[$.

Exercice 5:

1) On factorise par (4x-8) et on obtient : $(4x-8)[(-2x+1)-(-3x+5)] \ge 0$ donc $(4x-8)(-2x+1+3x-5) \ge 0$ donc $(4x-8)(x-4) \ge 0$

x	$-\infty$		2		4		+∞
4x-8		_	0	+		+	
x - 4		_		_	0	+	
(4x-8)(x-4)		+	0	_	0	+	

$$S =]-\infty$$
; 2] \cup [4; $+\infty$ [

2) $9x^2 - 49 \le 0$ donc $(3x)^2 - 7^2 \le 0$ donc $(3x - 7)(3x + 7) \le 0$

x	$-\infty$		$-\frac{7}{3}$		$\frac{7}{3}$		+∞
3x - 7		_		_	0	+	
3x + 7		_	0	+		+	
(3x-7)(3x-7)		+	0	-	0	+	

$$S = \left[-\frac{7}{3} \; ; \; \frac{7}{3} \right]$$

3) $(2x+1)^2 - (3x-5)^2 \ge 0$ donc $[(2x+1) + (3x-5)] \times [(2x+1) - (3x-5)] \ge 0$ donc $(2x+1+3x-5)(2x+1-3x+5) \ge 0$ donc $(5x-4)(-x+6) \ge 0$

x	$-\infty$		$\frac{4}{5}$		6	+∞
5x-4		_	0	+		+0//
-x + 6		+		+	0	1-1
(5x-4)(-x+6)		_	0	+/	0	-5/

$$S = \left[\frac{4}{5} \; ; \; 6\right]$$

4) $\frac{2x-5}{x^2-1} \le 0$ donc $\frac{2x-5}{x^2-1^2} \le 0$ donc $\frac{2x-5}{(x-1)(x+1)} \le 0$

x		1	1	$\frac{5}{2}$		+∞
2x - 5	00/2	_	_	0	+	
x - 1		-	+		+	
x + 1	- 0	+	+		+	
$\frac{2x-5}{(x-1)(x+1)}$	<u> </u>	+	_	0	+	

$$S =]-\infty; -1[\cup]1; \frac{5}{2}$$