

School Name:	UDAAN
Test Name:	Weekly Assessment Class XII Week 1
Total Questions:	45
Marks:	45
Duration:	90 minutes

Instructions for Assessment:

- The test is of 11/2 hours (90 minutes) duration.
- The test consists of **45 questions**.
- There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 15 questions in each part of equal weightage.
- There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response.
- No candidate is allowed to use any textual material, printed or written, pager, mobile, any electronic device, etc

Section	: Physics
Questions: 15	Marks: 15

1.	Three charges are placed at the circumference of a circle of radius R at points A, B & C. The magnitude of force between charges at C & B is: $\frac{Kq^2}{36R^2}$ a. $\frac{Kq^2}{36R^2}$ b. $\frac{Kq^2}{9R^2}$ c. $\frac{Kq^2}{27R^2}$ d. $\frac{4Kq^2}{9R^2}$ Two equal negative charges –q and –q are fixed at (0, a) and (0, –a) any axis.	1.0
2.	A positive charge Q is released from rest at (2a, o) on x axis. The charge Q will a. Executive simple Harmonic motion about origin b. Move to infinity c. Move to origin and will remain at rest d. Execute oscillatory but not SHM	1.0
3.	The force between two identical metal balls of charges +2Q and -Q separated by distance r is F. The balls are then joined by a conducting wire which is removed afterwards. The force between then will now be: $ a. \frac{F}{8} \\ b. \frac{g_F}{8} \\ c. F \\ d. \frac{F}{2} $	1.0
4.	A proton of mass m_p initially at rest takes time t_1 to move through distance x in an electric field. Now an electron of mass m_e initially at rest is allowed to move through same distance x in time t_2 . The ratio of mass of proton to mass of electron is: a. $\left(\frac{\dot{t}_1}{\dot{t}_2}\right)^2$ b. Independent of t c. t d. $\left(\frac{\dot{t}_2}{\dot{t}_1}\right)^2$	1.0

5.	Three point charges q_1 , q_2 and q_3 are placed at equal distances along a straight line in such a way that q_2 and q_3 have equal magnitude but opposite sign. If the net force on q_3 is zero then the ratio $\frac{q_1}{q_2}$ is: a. -4 b. $+4$ c. $-\frac{1}{4}$ d. $+\frac{1}{4}$ A charge Q is places at each of the opposite corners of a square. A charge q is	1.0
6.	placed at each of the other two comers. If the net electrical force on Q is zero, then the $\frac{Q}{q}$ a. $-2\sqrt{2}$ b. -1 c. 1 d. $-\frac{1}{\sqrt{2}}$	1.0
7.	A charge Q is places at each of the opposite comers of a square. A charge q is placed at each of the other two comers. If the net electrical force on Q is zero, then the $\frac{Q}{q}$ a) $-2\sqrt{2}$ b) -1 c) 1 d) $-\frac{1}{\sqrt{2}}$	1.0
8.	The electrostatics potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where r is the distance from the centre; a , b are constants. Then the charge density inside ball is a) $-6a \varepsilon_0$ b) $-24 \pi a \varepsilon_0$ c) $-6a \varepsilon_0$ d) $-24 \pi a \varepsilon_0 r$	1.0
9.	Two point charges are kept at rest at a distance d from each after in a medium of dielectric constant 81. The distance between these two charges in air, to have new force between them as 5F is: a. $\frac{81}{5}d$ b. $\frac{\sqrt{5}}{9}d$ c. $\frac{9}{\sqrt{5}}d$ d. $\frac{d}{\sqrt{5}}$	1.0

10.	This question contains Statement 1 and Statement 2. Of the four choices given after the statements, choose the one that best describes the two statements. Statement 1: The temperature dependence of resistance is usually given as $R = R_0$ (1 + $\alpha\Delta t$). The resistance of a wire changes from 100 Ω to 150 Ω when its temperature is increased form 27°C to 227°C. This implies that $\alpha = 2.5 \times 10^{-3}$ /°C. Statement 2: $R = R_i$ (1 + $\alpha\Delta T$) is valid only when the change in the temperature ΔT is small and $\Delta R = (R - R_0) << R_0$. a) Statement 1 is true, Statement 2 is false b) Statement 1 is true, Statement 2 is true; Statement 2 is the correct explanation of Statement 1. c) Statement 1 is true, Statement 2 is true; Statement 2 is not the correct explanation of Statement 1. d) Statement 1 is false, Statement 2 is true	1.0
	A hollow metal sphere of radius 2.5cm is charged such chat potential on its surface is 20v. The	
	potential at the centre of sphere is:	
11.	a) Zero	1.0
	b) same as that on the surface	
	c) different from that on surface	
	d) half of that on surface	
	A conducting bubble of thickness t less than the radius of bubble has a potential v. If the bubble	
	collapses then the potential of the droplet to which bubble collapses is:	
12.	a) $\frac{va\frac{4}{3}}{(a)^{1}}$ b) $vt - \frac{1}{3}$	1.0
	a) $\frac{va^{\frac{2}{3}}}{(3t)^{\frac{1}{h}}}$ b) $vt - \frac{1}{3}$	
	c) $v\left(\frac{a}{3t}\right)\frac{1}{3}$ d) $vt-\frac{1}{2}$	
	c) $v\left(\frac{a}{3t}\right)\frac{1}{3}$ d) $vt-\frac{1}{2}$	
	Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is <i>r</i> . Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now becomes:	
	y y/2	
13.		1.0
13.	$a_{r}\left(\frac{2r}{r}\right)$	1.0
	$\begin{pmatrix} \sqrt{3} \\ 2r \end{pmatrix}$	
	b. $\left(\frac{2r}{3}\right)$	
	$\left(\frac{1}{2}\right)^2$	
	$\left\langle \begin{array}{c} \sqrt{2} \\ r \end{array} \right\rangle$	
	d. $\left(\frac{7}{\sqrt{2}}\right)$	
	I .	

	Two identical plane metallic plate are kept parallel to each other. The plates are separated by 2cm. First plate is raised to potential of 100v and outer surface of 2nd plate is ear tied as shown. The magnitude and direction of ϵ . Field between y & z is:	
14.	a) $5 \times 10^3 \frac{\text{V}}{m}$ direction y to z	1.0
1	b) $5 \times 10^3 \frac{\text{v}}{m}$ direction z to y	1.0
	c) $100 \frac{\text{v}}{m}$ direction y to z	
	d) $_{100}\frac{\mathrm{v}}{m}$ direction y to z	
	A spherical mass, m of an element ${}^A_Z X$, has a total of N atoms. The fraction, of electrons present in this mass of the element, that should be removed to give this sphere a charge of $+q \mu$ C, equals	
15.	a. $\frac{qZ}{1.6 N} \times 10^{-4}$ b. $\left(\frac{6.25 q}{7N}\right) \times 10^{-14}$	1.0
	c. $\left(\frac{2N}{2N}\right) \times 10^{-20}$	
	d. $\left(\frac{qZ}{1.6N}\right) \times 10^{-20}$	

Section:	Chemistry
Questions: 15	Marks: 15

	In a reaction, the concentration of a reactant (A) changes from 0.200 mol litre ⁻¹ to 0.150 mol litre ⁻¹ in 10 minutes. What is the average rate of a reaction during this interval?	
16.		1.0
	a. 0.001 mol L ⁻¹ min ⁻¹	1.0
	b. 0.002 mol L ⁻¹ min ⁻¹	
	c. 0.115 mol L ⁻¹ min ⁻¹	
	d. 0.005 mol L ⁻¹ min ⁻¹	
	The half time of first order decomposition of nitramide is 2.1 hour at 15°C	
	$NH_2NO_2(ar) \longrightarrow N_2O(g) + H_2O(r)$	
	If 6.2g of NH ₂ NO ₂ is allowed to decompose, what is the	
	a. Time taken for NH ₂ NO ₂ is decompose 99%	
17	b. Volume of dry N ₂ O produced at this point measured at STP.	1.0
17.	The state of the state of the particular of the state of	1.0
	a. 13.95 hour, 2.217 L	
	b. 19.85 hour, 16.17L	
	c. 31.25 hour, 18.62 L	
	d. 15.62 hour, 3.17L	
	A first order reaction : $A \longrightarrow B$ requires activation energy of 89 KJ/mol. When 20%	
	solution of A was kept at 27°C for 40 minutes, 25% decomposition took place. What	
	will be the percent decomposition in the same time in a 30% solution maintained at 37°C?	
	(the activation energy remains constant in this range of temperature)	
18.	, and a second s	1.0
	a. 50.0%	
	b. 60.0%	
	c. 70.0%	
	d. 80.0%	
	In an ore containing Uranium, the ratio of U ²³⁸ to Pb ²⁰⁶ nuclei is 3. Calculate the age	
	of the ore. assuming that all the lead present in the ore is the final stable product is U ²³⁸ .	
	The half life is of U ²³⁸ is 4.5×10^9 years.	
19.		1.0
17.	a. $0.85{ imes}10^{10}{ m years}$ b. $2{ imes}10^5{ m years}$	1.0
	b. 2×10° years	
	c. 1.85×10° years	
	d. 3.45×10^9 years	
	The activation energy of reaction:	
	A+B → products is 105.73 KJ/mol.	
	At 40°C, the products are formed at the rate of 0.133 mol L ⁻¹ min ⁻¹ . What will be rate of formation of products at 80°C?	
20.	or formation or products at our c:	1.0
	a 15 O mol# /min	
	a. 15.0 mol/L/min b. 13.3 mol/L/min	
	c. 14.0 mol/L/min d. 14.3 mol/L/min	
	u. 14.5 moru/mm	

	a. 3.08×10 ° m in ° b. 6.08×10 ⁻³ m in ⁻¹ c. 6.01×10 ⁻⁷ m in ⁻¹ d. 7.02×10 ⁻⁸ m in ⁻¹	
25.	The decomposition of N ₂ O ₅ according to following reactions is first order reactions: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ After 30 minutes from start of the decomposition in a closed vessel, the total pressure developed is found to be 250 mm of Hg and on complete decomposition, the total pressure is 500mm of Hg. What is the rate constant of the reaction? $a. \ \ 3.08 \times 10^{-5} \ min^{-1}$	1.0
	 c. 6.68 × 10⁸ atoms d. 6.66 × 10⁵ atoms 	
24.	a. 3.66 × 10 ⁵ atoms b. 5.66 × 10 ⁵ atoms	1.0
	The nucleonic ratio of $_1H^\circ$ to $_1H^\circ$ in a sample of water is 8.0×10^{-8} ; 1. Tritium undergoes decay with a half life period of 12.0 years. How many tritium atoms would a 10.0 gm of such sample contain 36 years after the original sample is collected?	
23.	initial concentration of A 0.1M and that of B was 6.0M? a. $5\times10^{-3}\mathrm{M}$ b. $6\times10^{-3}\mathrm{M}$ c. $7\times10^{-3}\mathrm{M}$ d. $8\times10^{-3}\mathrm{M}$	1.0
22.	10 ⁻³ mol L ⁻¹ sec ⁻¹ and 3×10^{-3} sec ⁻¹ respectively. If 0.5 moles of B are added to the equilibrium mixture, initially having 2 moles of A, what will be the time taken for concentration of B to become $\frac{3}{4}$ of the concentration of A at initial equilibrium? (The volume of mixture is 1L and remains constant) a. 89.24 sec b. 83.44 sec c. 94.18 sec d. 98.14 sec A certain reaction A + B \rightarrow Products; is first order w.r.t. each reactant with $k = 5 \times 10^{-3} \mathrm{M}^{-1} \mathrm{S}^{-1}$. What is the concentration of A remaining after 100s if the	1.0
21.	What will be the order of reaction given below? $NH_4CNO \longrightarrow NH_2CONH_2$ The reaction is completed in three steps as : i. $NH_4CNO \rightleftharpoons NH_4NCO \text{ (fast equilibrium)}$ ii. $NH_4NCO \rightleftharpoons NH_3 + H - N = C = O \text{ (fast equilibrium)}$ iii. $NH_3 + H - N = C = O \rightarrow NH_2CONH_2(slow)$ a. $\frac{d[urea]}{dt} = K^1[NH_4CNO]^2$ b. $\frac{d[urea]}{dt} = K^1[NH_4CNO]^3$ c. $\frac{d[urea]}{dt} = K^1[NH_4CNO]^3$ d. $\frac{d[urea]}{dt} = K^1[NH_4CNO]$ For the reversible reaction is equilibrium: $A \xrightarrow{K_1 \to K_2} B. \text{ The values of } K_1 \text{ and } K_2 \text{ are } 2 \times R_1 \text{ and } K_2 \text{ are } 2 \times R_2 \text{ and } K_2 \text{ are } 2 \times R_1 \text{ and } K_2 \text{ are } 2 \times R_2 \text{ are } 2 \times R_$	1.0

	Two second order reactions given below having identical frequency factors:	
	i. A \rightarrow products	
	ii. B \rightarrow products	
	The Ea for first reaction is 10.46 KJ/mol more than that of B. At 100°C, the reaction (i) is 30% completed	
26	after 60 minutes when initial concentration of A is 0.1 mol chm ⁻³ . How long will it take for reaction (ii) to	1.0
26.	reach 70% completion at the same temperature if initial concentration of B is 0.05 mol L^{-1} ?	1.0
	a. 44.4 min	
	b. 22.22 min	
	c. 66.6 min	
	d. 32.5 min	
	The activation energy of a non-catalysed reaction at 37°C is 200 KCal/mol and the activation energy of the same reaction when catalysed decreases to only 60.0 Kcal/mol. What is the ratio of rate constants of the two reactions?	
27.	7.090	1.0
	a. 10 ⁹⁰ b. 10 ⁸⁰	
	c. 10 ⁹⁸	
	d. 10 ²⁸	
	Activation energy of a reaction is	
	a. The energy released during the reaction.	
28.	 the energy evolved when activated complex is formed 	1.0
	 minimum amount of energy needed to form one mole of the product minimum amount of energy needed to overcome the potential barrier of reaction 	
	In the reaction $2A \xleftarrow{K_1}{K_2} B$, the rate of disappearance of A is equal to:	
	5 K ₁ 5 4 5 ²	
29.	a. $2\frac{K_1}{K_2}[A]^2$	1.0
	b. $-2K_1[A]^2 + 2K_2[B]$	
	$+2K_1[A]^2-2K_2[B]$	
	d. $(2K_1 - K_2)[A]$	
	The decomposition of Cl ₂ O ₇ at 400K in the gas phase to Cl ₂ and O ₂ is of I order. After	
	55 sec. at 400K, the pressure of $Cl_2O \rightarrow$ falls from 0.062 to 0.044 atm. What is the value of	
	a. the rate constant	
	b. pressure of Cl ₂ O _{7,} after 100 sec?	
30.		1.0
	a. $K = 6.023 \times 10^{-3} \text{ sec}^{-1}$, $P = 0.033 \text{ atm}$ b. $K = 6.044 \times 10^{-30} \text{ coc}^{-1}$, $P = 0.044 \text{ atm}$	
	b. $K = 6.044 \times 10^{-30} \text{ sec}^{-1}$, $P = 0.044 \text{atm}$ c. $K = 3.044 \times 10^{-20} \text{ sec}^{-1}$, $P = 0.144 \text{atm}$	
	d. $K = 1.66 \times 10^{-20} \text{ sec}^{-1}$, $P = 0.144 \text{atm}$	

Section: N	Mathematics
Questions: 15	Marks: 15

	Let a, b, c be such that $b(a + c) \neq 0$.	
31.	$\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^nc \end{vmatrix} = 0$ Then the value of 'n' is a. Zero b. any even integer c. any odd integer d. any integer	1.0
32.	Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ If det (A ²) = 25, then $ \alpha $ is Let a. $\frac{1}{5}$ b. $\frac{1}{5}$ c. $\frac{5}{5}$ d. 5^2	1.0
33.	If $A_r=\begin{bmatrix}r&r-1\\r-1&r\end{bmatrix}$ where r is a natural number. Then $ A_1 + A_2 ++ A_{2010} $ must be equal to $a. \ \ 2010$ $b. \ \ (2010)^2$ $c. \ \ 2011$ $d. \ \ \ (2010)^3$	1.0
34.	The value of θ lying between $\theta=0$ and $\theta=\frac{\pi}{2}$ and satisfying the equation $\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & \cos^2\theta & 1+4\sin 4\theta \end{vmatrix} = 0$ is $a. \frac{5\pi}{24}$ b. $\frac{7\pi}{24}$ or $\frac{11\pi}{24}$ c. $\frac{8\pi}{24}$ d. $\frac{8\pi}{24}$	1.0

	If the three linear equations $x + 4ay + ax = 0$, $x + 3by + bz = 0$ and $x+2cy + cz = 0$ have a non trivial solution, then a , b , c are in	
35.	a. H.P	1.0
	b. G.P	
	c. A.P	
	d. None of these	
	$ fD = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \text{ and } D' = \begin{vmatrix} a_1 + pb_1 & b_1 + qc_1 & c_1 + ra_1 \\ a_2 + pb_2 & b_2 + qc_2 & c_2 + ra_2 \\ a_3 + pb_3 & b_3 + qc_3 & c_3 + ra_3 \end{vmatrix}, $	
	$+ fD = \begin{vmatrix} a_2 & b_2 & c_2 \end{vmatrix}$ and $D' = \begin{vmatrix} a_2 + pb_2 & b_2 + qc_2 & c_2 + ra_2 \end{vmatrix}$.	
36.	then	1.0
	a. $D' = D(1+pqr)$	
	b. D' = D	
	c. $D' = D(1 - pqr)$ d. $D' = D(1 + p + q + r)$	
	Consider the system of equations	
	x-2y+3z=-1	
	-x + y - 2z = k	
	x-3y+4z=1	
	Statement-1: The system of equations has no solution for $k \neq 3$.	
	and	
37.		1.0
	Statement-2: The determinant $\begin{vmatrix} 1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1 \end{vmatrix} \neq 0$, for $k \neq 3$.	
	a. Statement-1 is true, Statement-2 is true; Statement-2 is a correct	
	explanation for Statement-1 b. Statement-1 is true, Statement-2 is true; Statement-2 is not correct	
	explanation for Statement-1	
	 c. Statement-1 is true, Statement-2 is false d. None of these 	
	If $\Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix}$, then	
	y 2y-z 2x-2y-z	
38.		1.0
30.	a. $(x + y)$ is a factor of Δ b. $(x - y)^2$ is a factor of Δ c. $(x + y + z)$ is a factor of Δ d. $(y - z)$ is a factor of Δ	1.0
	c. $(x-y)$ is a factor of Δ	
	d. $(y-z)$ is a factor of Δ	
-		
	$ T(X) = 3 + 4\sin X $ $ 4 + \sin X $	
39.	then the range of f(x) is	1.0
	a. (0, 1]	
	b. (0, 1) c. [-1, 1]	
	d. (-1, 1)	
		1

40.	The maximum value of the determinant $ \Delta = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{vmatrix} $ is $ a. 2 $ $ b. 1 $ $ c2 $	1.0
41.	The value of x for which $\begin{vmatrix} x & 2 & 2 \\ 3 & x & 2 \\ 3 & 3 & x \end{vmatrix} + \begin{vmatrix} 1-x & 2 & 4 \\ 2 & 4-x & 8 \\ 4 & 8 & 16-x \end{vmatrix} > 33$ is a. $x \in \left(-\frac{1}{7}, 1\right)$ b. $x \in \left(-\infty, -\frac{1}{7}\right] \cup \left[1, \infty\right)$ c. $x \in \left(-\infty, -\frac{1}{7}\right) \cup \left(1, \infty\right)$ d. $x \in \left(-\infty, -\frac{1}{7}\right) \cup \left(1, \infty\right)$	1.0
42.	The determinant $\Delta = \begin{vmatrix} a^2+x & ab & ac \\ ab & b^2+x & bc \\ ac & bc & c^2+x \end{vmatrix}$ is divisible by $\begin{vmatrix} a. & \chi^2 \\ b. & \chi^3 \\ c. & \left(a^2+b^2+c^2\right) \\ d. & \left(a^2+b^2+c^2-x\right) \end{vmatrix}$	1.0
43.	If $f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix}$ then $f(2x) - f(x)$ is divisible by a. χ^2 b. $(a + x)$ c. $(a + \chi)^2$ d. $(2a + 3x)ax$	1.0
44.	Vertices of a triangle are given as [P(P+1), (P+1)], [(P+1)(P+2), P+2] and [(P+2)(P+3), P+3]. Then area of triangle is a1 b. 1 c. 2 d2	1.0

	Area	of	a	triangle	whose	vertices	are	(O,	O)	(a tan θ, b cot θ),		
	(a sin 🖯	, bo	osθ) is								
45.	a.	ab(s	in θ	- cos θ)							1.0	
	b.	Inde	per	ndent of a								
	C.	Inde	pen	dent of b								
	d.	$\frac{1}{2}a$	b(si	n θ – cos θ)								

Key

Question	Correct Option	Question	Correct Option	Question	Correct Option
Number		Number		Number	
1.	С	16.	D	31.	С
2.	D	17.	Α	32.	В
3.	Α	18.	В	33.	В
4.	Α	19.	С	34.	В
5.	Α	20.	В	35.	Α
6.	Α	21.	D	36.	Α
7.	А	22.	Α	37.	A
8.	С	23.	Α	38.	В
9.	С	24.	D	39.	С
10.	А	25.	С	40.	D
11.	В	26.	В	41.	С
12.	С	27.	С	42.	A
13.	D	28.	D	43.	С
14.	А	29.	С	44.	В
15.	В	30.	Α	45.	D

Explanation

Question	Explanation
Number	
1.	$ F_{CB} = \frac{K\frac{q}{3}\frac{q}{3}}{(R\sqrt{3})^2}$ $ F_{CB} = \frac{K\frac{q}{3}\frac{q}{3}}{(R\sqrt{3})^2}$ $ SIN 60 = \frac{BC}{AB}$ $ BC = AB \sin 60 = \cancel{Z} \frac{R\sqrt{3}}{\cancel{Z}}$ $ E = \frac{Kq^2}{37R^2}$
2.	$F_{x} = 2F \cos q$ $= 2\frac{KqQ}{a^{2} + x^{2}} \frac{x}{\sqrt{a^{2} + x^{2}}}$ $= \frac{2KqQx}{(x^{2} + x^{2})^{\frac{1}{2}}}$ $F_{x} \text{ must be proportional to displacement for SHM but this is not being fulfilled.}$ However it will keep moving along CA and CB.

3.	$ \vec{F} = \frac{2KQ^2}{r^2}$ After redistribution of charge new charge $= \frac{2Q - Q}{2} = \frac{Q}{2}$ $ \vec{F} = K \frac{\frac{Q}{2} \frac{Q}{2}}{r^2} = \frac{KQ^2}{4r^2}$ $ \vec{F} = \frac{2KQ^2}{8r^2} = \frac{F}{8}$
4.	$s = ut + \frac{1}{2}at^2$ $a = \frac{F}{m}$ Force due to E is $F = eE$ $a = \frac{eF}{m}$ magnitude of charge on electron and proton is same $x = \frac{1}{2}\frac{eE}{m_p}t_1^2$ $x = \frac{1}{2}\frac{eE}{m_e}t_2^2$ $\frac{et}{m_b}t_1^2 = \frac{eE}{m_e}t_2^2$ $\frac{et}{m_b}t_1^2 = \frac{eE}{m_e}t_2^2$ $\frac{m_e}{m_p} = \frac{t_2^2}{t_1^2}$ $\frac{m_p}{m_e} = \frac{t_1^2}{t_2^2}$
5.	$ \overrightarrow{F}_{CB} = K \frac{q_2 q_3}{a^2}$ $ \overrightarrow{F}_{CA} = K \frac{q_1 q_3}{4a^2}$ $ F_{CB} + F_{CA} = 0$ $ \cancel{K} q_2 $

charges, is zero.We, therefore, have
$$\frac{1}{4\pi\epsilon_0} \frac{Qq}{a^2} (-\hat{i}) + \frac{1}{4\pi\epsilon_0} \frac{Qq}{a^2} (-\hat{j}) +$$

$$\frac{1}{4\pi\epsilon_0} \frac{QQ}{[(Q-a)^2 + (0-a)^2]^{3/2}} [(0-a)\hat{i} + (0-a)\hat{j}] = 00r$$

$$\left[\frac{Qq}{d^2} + \frac{Q^2}{2\sqrt{2}d^2} \right] \hat{i} + \left[\frac{Qq}{d^2} + \frac{Q^2}{2\sqrt{2}d^2} \right] \hat{j} = 0$$

6.

The coefficients of \hat{j} as well as \hat{j} have both to be zero each. These coefficients, being identical, the relevant condition is

$$\frac{Qq}{a^2} + \frac{Q^2}{2\sqrt{2}a^2} = 0 \text{ or } q + \frac{Q}{2\sqrt{2}} = 0 \longrightarrow \frac{Q}{q} = -2\sqrt{2}$$

The total force on the charge Q, taken as the origin, due to the other three charges, is zero

$$\frac{1}{4\pi\epsilon_{0}} \frac{Qq}{a^{2}} (-\hat{i}) + \frac{1}{4\pi\epsilon_{0}} \frac{Qq}{a^{2}} (-\hat{j})$$

$$+ \frac{1}{4\pi\epsilon_{0}} \frac{QQ}{[(Q-a)^{2} + (0-a)^{2}]^{3/2}} [(0-a)\hat{i} + (0-a)\hat{j}] = 0$$

or
$$\left[\frac{Qq}{a^2} + \frac{Q^2}{2\sqrt{2}a^2}\right]\hat{i} + \left[\frac{Qq}{a^2} + \frac{Q^2}{2\sqrt{2}a^2}\right]\hat{j} = 0$$

7.

The coefficients of \hat{i} as well as \hat{j} have both to be zero each. These coefficients, being identical, the relevant condition is

$$\frac{Qq}{a^2} + \frac{Q^2}{2\sqrt{2}a^2} = 0 \text{ or } q + \frac{Q}{2\sqrt{2}} = 0$$

$$\Rightarrow \frac{Q}{a} = -2\sqrt{2}$$

$E = -\frac{\partial \Phi}{\partial r}$ In the present case, $E = -\frac{\partial}{\partial r}(ar^2 + b) = -2ar$ Thus E increases in direct proportion to a . This implies that the charge density inside to spherical ball is constant, <i>i.e.</i> , the sphere is uniformly charged. Let Φ be the uniformly density of charge inside the spherical ball. Using Gauss's theorem, we get $1 \left[-(4\pi - a) \right]$
$E(r). 4 \varepsilon_0 r^2 = \frac{1}{\varepsilon_0} \left[\rho \left(\frac{4\pi}{3} r^3 \right) \right]$ $\varepsilon_0 = \frac{3E(r).\varepsilon_0}{r} = \frac{-6ar\varepsilon_0}{r} = -6a\varepsilon_0.$
$F = \frac{q_1 q_2}{81r^2}$ $r^2 = \frac{q_1 q_2}{81F}$ $5F = \frac{q_1 q_2}{r^{1/2}}$ $r^2 = \frac{q_1 q_2}{5F}$ $r' = \frac{5F}{5}$ $r'' = \frac{7 + q_2}{\sqrt{5}} r$
From $R = R_0$ (1 + α t), we get $\alpha = \frac{R - R_0}{R_0 t} = \frac{150 - 100}{100 \times (227 - 27)} \text{ °C} = 2.5 \times 10^{-3} \text{ °C}$ Hence statement (1) is correct. Statement (2) is, however, false, as it talks about the condition $\Delta R (= R - R_0) << R_0, \text{ which is not a valid condition.}$
The electric potential behaves as if whole charge is concentrated at the centre.
Let a be the radius of bubble $v=\frac{kq}{a}$ $q=\frac{va}{k} \hspace{1cm} \text{(1)}$ Let R be the radius of bubble $\frac{4}{3}\pi R^3 = \left(4\pi a^2\right) \times t$ $R^3 = 3a^2t$

	$R = (3a^2t) \frac{1}{3} $ (2)
	$\mathbf{v}' = \frac{kq}{R} \tag{3}$
	Potential of droplet to which bubble collapse
	Use 1 & 2 in 3
	$\mathbf{v}' = \frac{\cancel{k} \mathbf{v} a}{\cancel{k} \left(3a^2t\right)\frac{1}{3}} = \mathbf{v} \left(\frac{a}{3t}\right)^{\frac{1}{3}}$
	$T\sin\theta = \frac{q^2}{kr^2}$, $T\cos\theta = mg$.
13.	$ \begin{array}{c c} T\cos\theta & T \\ \hline & T\sin\theta \end{array} $
	$\tan \theta = \frac{q^2}{kr^2mg} = \frac{\frac{1}{2}}{y}r \propto y^{\frac{1}{3}}.$
	Therefore, if $y o rac{y}{2}$, then $r o rac{r}{\sqrt[3]{2}}$.
14.	$E = -\frac{d\mathbf{v}}{dt} = \frac{10000}{10^2} = 5 \times 10^3 \frac{\mathbf{v}}{m}$
	Direction is from y to z as ϵ .F points in the direction of decrease of potential.
15.	Each (neutral) atom, of the element A_ZX , has Z electrons. Total number of electrons in N atoms = ZN.To give the sphere a positive charge $+q(\mu C)$, the number, n , of electrons that need to be removed is $\eta = \frac{q \times 10^{-6}}{ \text{charge on the electron} } = \frac{q \times 10^{-6}}{1.6 \times 10^{-19}} = \left(\frac{q}{1.6}\right) \times 10^{-19}$. The required fraction is $= \left(\frac{q}{1.6}\right) \times \frac{10^{-13}}{ZN} = \left[\left(\frac{6.25q}{ZN}\right) \times 10^{-14}\right]$. Hence choice (2) is the correct choice.
16.	$[A]_{initial} = 0.200 \text{ mol } L^{-1} \text{ (given)}$ $[A]_{final} = 0.150 \text{ mol}^{-1} \text{ (given)}$ $Time = 10 \text{ minutes (given)}$ $\Rightarrow [A] = [A]_{final} - [A]_{initial}$ $= [0.150 - 0.200]$ $= -0.050 \text{ mol } L^{-1}$ $\Rightarrow t = 10 \text{ minutes}$ $Average rate of a reaction = -\frac{\Delta[A]}{\Delta t} = \frac{-(-0.050)}{10}$ $= \frac{0.050}{10} = 0.005 \text{mol} L^{-1} \text{min}^{-1}$

17.	For first order reaction: $t = \frac{2.303}{K} \log \frac{a}{(a-x)}$ If $t = \frac{t}{2}$, $x = \frac{a}{2}$ (1) $t_{1/2} = \frac{2.303}{k} \log \frac{a}{a - \frac{a}{2}}$ (1) $tf = t_{99\%} x = \frac{99a}{100}$ $t_{99\%} = \frac{2.303}{k} \log \frac{a}{a - \frac{aa}{100}}$ (ii) $t_{99\%} = \frac{\log 100}{\log 2} \times t_{1/2} - \frac{2}{0.3010} \times 2.1 = 13.95 \text{hour}$ Also, mole of N ₂ O formed = $\frac{99}{100} \times \text{mole}$ of NH ₂ NO ₂ taken $= \frac{99}{100} \times \frac{6.2}{62} = 0.099$ Volume of N ₂ O formed at STP $= 0.099 \times 22.4 = 2.217L$
18.	$ \begin{array}{l} \text{At } 27^{\circ}\text{C}, 20\% \text{ of A decomposes } 25\% \\ \text{Using first order equation we get,} \\ \text{kt} = 2.303 \text{lb} O_{210} \frac{\text{C}_{\circ}}{\text{C}_{\circ}} \\ \text{Where } \text{C}_{\circ} = \text{Initial concentration} \\ \text{Cr} = \text{final concentration} \\ \text{Cr} = \text{final concentration} \\ \text{Cr} = \frac{1}{1-\alpha} \frac{1}{1-\alpha} \\ = \ln \frac{1}{1-\alpha} \frac{1}{\alpha} = 0.25 \text{ (given)} \\ \text{K}(40) = \ln \frac{100}{75} \\ \Rightarrow \text{K}(\text{at } 300\text{K}) = \frac{1}{40} \ln \frac{4}{3} \text{min}^{-1} \\ \text{Using Arrhenius equation find K at } 310\text{K.} \\ \log D_{10} \left[\frac{\text{K}_{220}}{\text{K}_{200}} \right] = \frac{\text{Ea}}{2.303\text{R}} \left(\frac{\text{T}_{2} - \text{T}_{1}}{\text{T}_{1} \text{T}_{2}} \right) \\ \log D_{10} \frac{\text{K}_{320}}{\text{K}_{300}} = \frac{89 \times 10^{3}}{2.303 \times 8.301} \left(\frac{310 - 300}{310 \times 300} \right) = 0.5 \\ \text{K}(\text{at } 310\text{K}) = \text{K}(\text{at } 300\text{K}) \times \sqrt{10} \\ \text{Now calculate } \% \text{ decomposition at } 310\text{K using first order kinetics.} \\ \text{Kt} = 2.303 \log D_{00} \frac{\text{C}_{\circ}}{\text{C}_{\circ}} \\ \text{K} \times 40 = \ln \frac{1}{1-\alpha} \\ \ln \frac{1}{1-\alpha} = \left[\frac{1}{40} \ln \frac{4}{3} \right] \times \sqrt{10} \right] \times 40 \\ = 0.91 \\ \log D_{0} \frac{1}{1-\alpha} = \frac{0.91}{2.303} = 0.40 \\ \frac{1}{1-\alpha} = 2.5 \\ \Rightarrow \alpha = 0.6 = 60.0\% \text{ decomposition of A at } 310\text{K}. \\ \end{array}$

19.	$\begin{array}{l} U^{28} \rightarrow Pb^{206} \\ N_0 \equiv x - y \\ N_t \equiv x - y \\ \text{(initial conc. of product is always 0.)} \\ \Rightarrow \frac{N_\circ}{N_t} = \frac{x}{x - y} \\ \text{Using } \lambda t = 2.303 \log_{10} \frac{x}{x - y} \\ \text{Given } \frac{x - y}{y} = 3 \Rightarrow \frac{x}{x - y} = \frac{4}{3} \\ \Rightarrow t = \frac{2.303}{0.693} \times 4.5 \times 10^9 \log_{10} \frac{4}{3} \\ t = 1.85 \times 10^9 \text{years} \\ \text{Note - The radioactive decay follows first order kinetics.} \\ \text{Here, we take } N_\circ \equiv C_\circ, \ N_t \equiv C_t \ \text{ and } \lambda \equiv K. \end{array}$
20.	Let the rate law be defined as $ \begin{array}{l} \text{At } T_1, r_1 = K_1[A]^s [B]^T \\ \text{At } T_2 r_2 = K_2 [A]^s [B]^T \\ r_2 = r_1 \bigg(\frac{K_2}{K_1} \bigg) \\ \text{Using Arrhenius equation, find K at } 40^\circ \text{C.} \\ \log_{10} \frac{K_2}{K_1} = \frac{Ea}{2.03k} \bigg(\frac{T_2 - T_1}{T_1 T_2} \bigg) \\ = \log_{10} \frac{K_2}{K_1} = \frac{105.73 \times 10^3}{2.303 \times 8.31} \bigg(\frac{40}{313 \times 353} \bigg) \\ \log_{10} \frac{K_2}{K_1} = 2.0 \\ \frac{K_2}{K_1} = 100 \\ \frac{K_2}{K_1} = 100 \\ \frac{K_2}{K_1} = 0.133 \times 100 = 13.3 \text{mol} \text{L}^{-1} \text{min}^{-1} \\ \end{array} $
21.	$ \frac{d[urea]}{dt} = K[NH_3][HNCO](a) $ By step (ii) we have $ \frac{[NH_4][HNCO]}{[NH_4NCO]} = Kc_1(b) $ By step (i) we have, $ \frac{[NH_4][HNCO]}{[NH_4CNO]} = Kc_2(c) $ By equation (b) and (c) $ \frac{[NH_3][HNCO]}{[NH_3][HNCO]} = K_{c_1}.K_{c_2}[NH_4CNO](d) $ By equation (a) and (d) $ \frac{d[urea]}{dt} = K.K_{c_4}.K_{c_2}[NH_4CNO] $ $ \frac{d[urea]}{dt} = K.K_{c_4}.K_{c_2}[NH_4CNO] $

```
t = 0 2 mol L<sup>-1</sup> 0
                   At. Eq. (2-X)molL<sup>-1</sup>X
                  K_1 = 2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1} \text{ (zero order)}

K_2 = 3 \times 10^{-3} \text{ sec}^{-1} \text{ (1st order)}

\frac{dx}{dt} = K_1 [A]^2 - K_2 [B]^1
                   At equilibrium = \frac{K_1}{K_2} = \frac{2 \times 10^{-3}}{3 \times 10^{-3}} = 0.66 \text{ mol } L^{-1}
                   A \rightleftharpoons B
                   Initial Eq.
                                   1.34 0.66
                   Moles added at equilibrium 1.34 \quad 0.66 + 0.5 = 1.16
                   Addition of B will bring backward reaction at time tA \rightleftharpoons B
                   (134+x) (1.16-x)
                    [B] = \frac{3}{4}[A]_{t_{st}} = \frac{3}{4} \times 1.34 = 1.005
(1.16 - x) = 1.005
22.
                    Now, \frac{dx}{dt} = K_1 - K_2[x] = 0.66 \quad K_2 - K_2 X
                   = K_2 [0.66 - X]
\frac{dx}{(0.66 - x)} = K_2 dt
                   OR -2.303 \log(0.66 - x) = K_2.t + C
                   At t = 0, X = 0
                   C = -2.303 \log 0.66
                  K_2xt = 2.33 \log \frac{0.66}{0.66 - X}t = \frac{2.303}{3 \times 10^{-8}} \log \frac{0.66}{0.66 - 0.155}
                    = 89.24 \, \mathrm{sec.}
                   A + B → Products
                   Given : Rate = K [A] [B] (IInd order reaction)
                   Now, since [B] >> [A], [B] can be assumed to remain constant throughout the reaction. Thus, the rate law for the reaction, becon
                  Where K_a = K[B] = 5.0 \times 10^{-3} \times 6.05 S^{-1} = 3.0 \times 10^{-2} S^{-1}.
                   A + B \xrightarrow{\mathbb{K}} Products
                   0.1M 6.0M
                  0.1 - x = 6.0 - x
Using, 2.303 \log_{10} \frac{C_{\circ} A}{C_{\circ} A} = K_{\circ} t
23.
                  = 2.303 \log_{10} \frac{0.1}{C,A} = K_{\circ} t = 3
                  =\log_e \frac{0.1}{C_1A} = 3[\because \log_e x = 2.303 \log_{10} x]
                   = C_t A = 10e^{-3} = 5 \times 10^{-3} M
                   Approximation can be checked by
```

 $[B]_{\text{change}} = x = 0.1 - 5 \times 10^{-3} = 0.095 M$

 $%[B]_{\text{charge}} = \frac{0.095}{6} \times 100\% = 1.58\%$

24.	The ratio of tritium atoms to that of H-atoms will be same as the ratio of moles of T-atoms to that of H-atoms, since 1 mole of T_2O calculate the initial number of tritium atoms. $10gm \equiv \text{mass of } T_2O + \text{mass of } H_2O \\ = n_{T_2O} \times 22 + n_{H_2O} \times 18 \\ = \left(8 \times 10^{-38} \text{nH}_2O\right) \times 22 + n_{H_2O} \times 18 \\ \simeq n_{H_2O} \times 18 \\ \simeq n_{H_2O} = \frac{10}{18} = \frac{5}{9} \\ \simeq n_{H_2O} = \frac{5}{9} \times 8 \times 10^{-18} = \frac{40}{9} \times 10^{-18} \\ \times (N_7)_0 = \left(N_{T_{3O}}\right) \times 2 \Rightarrow \left(\frac{40}{9} \times 10^{-18} \times 6 \times 10^{23}\right) \times 2 \\ = 5.33 \times 10^6 \text{ atoms} \\ \text{No. of half lines} = \frac{36}{12} = 3 \\ \text{Use}: N_t = N_o \left(\frac{1}{2}\right)^8 = N_o \left(\frac{1}{2}\right)^3 \\ = \frac{1}{8} \times 5.33 \times 10^6 \text{ atoms} \\ = 6.66 \times 10^5 \text{ atoms}.$
25.	
26.	For I: $K = \frac{1}{t} \frac{x}{a(a-x)}$ (II) order reaction Given a = 0.1M

	$x = \frac{0.1 \times 30}{100}$
	=0.03, $t=60 min$
	$K_1 = \frac{1}{6.0 \times 0.1} \times \frac{0.03}{(0.1 - 0.03)} = 0.07 \text{min}^{-1}$
	Using Arrhenius equation,
	Also, For I : $ m K_1 = A m \ e^{-Ea/RT}$
	For II : $K_2 = A e^{-Ea/RT}$
	$\frac{K_1}{K_2} = e^{(E_a^1 - E_a)/RT}$
	$=e^{-10.46/RT}$
	$=e^{-10.46/8.314\times10^{-3}\times3+3}$
	OR
	$K_2 = \frac{K_1}{e^{-10.46/8.314 \times 10^{-3} \times 373}}$
	$= \frac{0.07}{0.0374} = 2.10 \mathrm{min}^{-1}$
	Now, for $II = K_2 = \frac{1}{t} \frac{x}{a(a-x)}$
	a = 0.05
	$x = \frac{0.05 \times 70}{100} = 0.035$
	$t = \frac{1}{(2.10 \times 0.05)} \times \frac{0.035}{\left(0.05 - \frac{0.05 \times 70}{100}\right)} = 22.22 \text{min}$
	$log_{10} \frac{K_{c}}{K} = \frac{1}{2.303RT} (E_{a} - E_{ac})$ $log_{10} \frac{K_{c}}{K} = \frac{1}{2.203 \cdot R} (200 \times 10^{3} - 60 \times 10^{3})$
27.	$\begin{split} \log_{10} \frac{K_{c}}{K} &= \frac{1}{2.303 RT} (E_{a} - E_{ac}) \\ \log_{10} \frac{K_{c}}{K} &= \frac{1}{2.303 \times 2 \times 310} (200 \times 10^{3} - 60 \times 10^{3}) \\ \log_{10} \frac{K_{c}}{K} &= 98.0 \\ \frac{K_{c}}{K} &= 10^{98} \end{split}$
28.	Activation energy is the minimum amount of energy by which reactant overcome their forces of attraction and proceeds

```
2A \xrightarrow{K_1} B
For 2A \xrightarrow{K_1} B
                 Rat of consumption of 'A' = -2 K_1[A]^2
                 For B \xrightarrow{K_s} 2A
29.
                 Rate of formation of 'A' = 2K_2 [B]
                 Net rate of disappearance of 'A'
                 = 2 K_1 [A]^2 - 2 K_2 [B]
                   Rate constant for reversible reaction can be calculated by
                   A \xrightarrow{\kappa_t} B
                   t = 0 [A]<sub>0</sub> O
                   t = t [A]_o - X
                   t = eq [A]_0 - X_{eq}
                   t = \frac{2.303}{(K_f + K_b)} log \left[ \frac{X_{eq}}{X_{eq}} \right]
                   If = [B] = [B]_0 \text{ at } t = 0
                   then \frac{t = 2.303}{K_t} \left[ \frac{[B]_0 + X_{eq}}{[A]_0 + [B]_0} \right] log \left[ \frac{X_{eq}}{X_{eq} - X} \right]
                   Cl_2O_7 \rightarrow Cl_2 + \frac{7}{2}O_2
30.
                   Mole at t = 55 sec (a-x) x \frac{7x}{3}
                       Since, pressure of Cl<sub>2</sub>O<sub>7</sub> is given and therefore,
                         a ∞ 0.062
                        (a - x) ∞ 0.044
                        K = \frac{2.303}{100} \log 10 \frac{a}{100}
                         \therefore K = \frac{2.303}{55} \log \frac{0.062}{0.044}
                       K = 6.23 \times 10^{-3} \text{ sec}^{-1}
Let at t = 100 sec, (a - x) \propto P
                         6.23 \times 10^{-3} = \frac{2.303}{100} \log \frac{0.062}{P}
                         P = 0.033 \text{ atm}
                 Consider
                  a \quad a+1 \quad a-1
                   -b \ b+a \ b-1
                                                        (1)
                  c - c - 1 - c + 1
                 Consider
                          a+1 b+1 c-1
                  (-1)n|a-1 b-1 c+1
                       a –b c
                            a+1 a-1 a
                 = (-1)^n |b+1 \quad b-1 \quad -b| (Interchanging rows and columns |A| = |A^T|
31.
                   =(-1)^{n+1}\begin{vmatrix} a+1 & a & a-1 \\ b+1 & -b & b-1 \end{vmatrix} (C_1 \leftrightarrow C_2|A|=(-1)|A| when two rows and
                          |c-1| c c+1
                  columns are interchanged)
                            \begin{bmatrix} a & a+1 & a-1 \end{bmatrix}
                 =(-1)^{n+2}\begin{bmatrix} b & b+1 & b-1 \end{bmatrix} (2) (C_1 \leftrightarrow C_3)
                               c c-1 c+1
                 Add (1) & (2)
                 If (-1)^{n+2} = -1
                 Then (1) + (2) = 0
                  (-1)^{n+2} = -1 when n+2 is odd integer.
```

32.	$det (A^{2}) = (det A)^{2}$ $A^{2} = \begin{vmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{vmatrix} \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{vmatrix}$ $= \begin{bmatrix} 25 & 25\alpha + 5\alpha^{2} & 2\alpha^{2} + 25\alpha \\ 0 & \alpha^{2} & 5\alpha^{2} + 25\alpha \\ 0 & 0 & 25 \end{bmatrix}$ $det (A^{2}) = \begin{vmatrix} 25 & 5\alpha(5+\alpha) & 25\alpha^{2} + 10\alpha \\ 0 & \alpha^{2} & 5\alpha(\alpha+5) \\ 0 & 0 & 25 \end{vmatrix}$ $= (25\alpha)^{2}$ $det (A^{2}) = 25$ $p (25\alpha)^{2} = 25$ $or \alpha^{2} = \frac{1}{25} \text{ or } \alpha = \frac{1}{5}$
33.	$\begin{vmatrix} A_r = \begin{vmatrix} r & r - 1 \\ r - 1 & r \end{vmatrix} = \left(r^2 - \left(r - 1\right)^2\right) = 2r - 1 A_1 = 2(1) - 1 A_2 = 2(2) - 1 A_2 = $
34.	Operate $R_1 \rightarrow R_1 - R_3$ and $R_2 \rightarrow R_2 - R_3$ $\begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0$ $\Rightarrow 1 + 4\sin 4\theta + \cos^2 \theta + \sin^2 \theta = 0$ $\Rightarrow \sin 4\theta = -1/2$ $\Rightarrow 4\theta = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$
35.	For a non trivial solution $\begin{vmatrix} 1 & 4a & a \\ 1 & 3b & b \end{vmatrix} = 0$ $\begin{vmatrix} 1 & 2c & c \end{vmatrix}$ Applying row transformations and solving we get $bc + ab - 2ac = 0$ Hence, a, b, c are in H.P
36.	$D' = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix} + pqr \begin{vmatrix} b_1 & c_1 & a_1 \\ b_1 & c_1 & a_2 \\ b_1 & c_2 & a_2 \end{vmatrix}$ $= D(1 + pqr)$

37.	$D = \begin{vmatrix} 1 & -2 & 3 \\ -1 & 1 & -2 \\ 1 & 3 & 4 \end{vmatrix} = 0 D_x = \begin{vmatrix} -1 & -2 & 3 \\ k & 1 & -2 \\ 1 & 3 & 4 \end{vmatrix} = 3 - k$ $D_y = \begin{vmatrix} -1 & k & -2 \\ 1 & 1 & 4 \end{vmatrix} = k - 3 D_z = 0 = 0 = 0$ $D_y = D_z = 0$ $D_z = 0$ $D_$
38.	$\Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix}$ $Applying R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1$ $\Delta = \begin{vmatrix} x & 2y - z & -z \\ y - x & 2(x - y) & 0 \\ y - x & 0 & 2(x - y) \end{vmatrix}$ $Taking (x - y) \text{ common from } R_2 \text{ and } R_3$ $\Delta = (x - y)^2 \begin{vmatrix} x & 2y - z & -z \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{vmatrix}$ $Expanding along R_1$ $= (x - y)^2 [x(4 - 0) - (2y - z)(-2) - z(0 + 2)]$ $= (x - y)^2 [4x + 4y - 2z - 2z]$ $= 4(x - y)^2 (x + y - z)$
39.	Solving the given determinant $f(x) = \begin{vmatrix} \sin 2x(1 + 2\cos x) & \sin 2x & \sin 3x \\ 3 + 4\sin x & 3 & 4\sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix}$ $Applying C_1 \rightarrow C_1 - C_2 - C_3$ $= \begin{vmatrix} \sin 2x + 2\cos x \sin 2x - \sin 2x - \sin 3x & \sin 2x \sin 3x \\ 0 & 3 & 4\sin x \\ 0 & \sin x & 1 \end{vmatrix}$ $Expanding along C_1 \qquad \text{We get}$ $= (2\cos x \sin 2x - \sin 3x)(3 - 4\sin^2 x)$ $using the formula \sin 2x = 2\sin x \cos x \text{ and } \sin 3x = 3\sin x - 4\sin^3 x \text{ We get}$ $= \left[2\cos x(2\sin x \cos x) - (3\sin x - 4\sin^3 x) \right] \times (3 - 4\sin^2 x)$ $= (4\sin x \cos^2 x - 3\sin x + 4\sin^3 x)(3 - 4\sin^2 x)$ $using \cos^2 x = 1 - \sin^2 x$ $= (4\sin x(1 - \sin^2 x) - 3\sin x + 4\sin^3 x)(3 - 4\sin^2 x)$ $= (4\sin x - 4\sin^3 x - 3\sin x + 4\sin^3 x)(3 - 4\sin^2 x)$ $= (4\sin x - 4\sin^3 x - 3\sin x + 4\sin^3 x)(3 - 4\sin^2 x)$ $= \sin x(3 - 4\sin^3 x - 3\sin x + 4\sin^3 x)(3 - 4\sin^2 x)$ $= \sin x(3 - 4\sin^3 x - 3\sin x + 4\sin^3 x) = \sin 3x$ $f(x) = \sin 3x$ and we know that $-1 \le \sin 3x \le 1$

```
Solving the determinant
                1+sin<sup>2</sup>x cos<sup>2</sup>x 4sin 2x
             \Delta = \sin^2 x + 1 + \cos^2 x + 4 \sin 2x
               sin<sup>2</sup> x cos<sup>2</sup> x 1+4 sin 2 x
             Applying C_1 \rightarrow C_1 + C_2
              2 \cos^2 x 4 \sin 2x
             = 2 1+cos<sup>2</sup> x 4 sin 2x
             1 cos2 x 1+4 sin 2 x
             Applying R_2 \rightarrow R_2 - R_1
             |R_3 \rightarrow R_3 - R_1|
              2 cos2x 4sin2x
             0 1 0
             -1 0
            Expanding along C
40.
            = 2(1-0) + (-1)[0-4\sin 2x]
            \Delta = 2 + 4 \sin 2x
            Maximum value is 2 + 4 = 6 option (4) because -1 \le \sin 2x \le 1.
            Solving the determinants separately
            x 2 2
            |3 \times 2| = x(x^2-6)-2(3x-6)+2(9-3x)
            l3 3 x
            = x^3 - 6x - 6x + 12 + 18 - 6x
            = x^3 - 18x + 30
                                                ...(1)
            1-x 2 4
             2 4-x 8
             4 8 16-x
            using property
            C_2 \rightarrow C_2 - 2C_1
            C_3 \rightarrow C_3 - 4C_1
             1 0 0 | -x 2
             2 -x 0 + 0 4-x 8
            4 0 -x 0 8 16-x
            Expanding along R
            1(x^2) + (-x)[(4-x)(16-x)-64]
            x^2 - x \left[ 64 - 4x - 16x + x^2 - 64 \right]
41.
            x^2 + 4x^2 + 16x^2 - x^3
            21x^2 - x^3
                                               ...(2)
            Adding (1) and (2)
            (x^3 - 18x + 30) + (21x^2 - x^3) > 33
            21x^2 - 18x + 30 > 33
            21x^2 - 18x - 3 > 0
            7x^2 - 6x - 1 > 0
            Factorizing
            (7x+1)(x-1) > 0
            So either \chi < -\frac{1}{7}, \chi > 1
```

42.	No Solution
43.	No Solution
44.	No Solution
45.	No Solution