Коллок по линалу

Пешехонов Иван. БПМИ1912

27 ноября 2019 г.

Оглавление

1	Опр	ределения
	1.1	Сумма двух матриц, произведение матрицы на скаляр
	1.2	Транспонированная матрица
	1.3	Произведение двух матриц
	1.4	Диагональная матрица, умножение на диагональную матрицу слева и справа
	1.5	Единичная матрица, её свойства
	1.6	След квадратной матрицы и его поведение при сложении матриц, умножении мат-
		рицы на скаляр и транспонировании
	1.7	След произведения двух матриц
	1.8	Совместные и несовместные системы линейных уравнений
	1.9	Эквивалентные системы линейных уравнений
		Расширенная матрица линейных уравнений
		Элементарные преобразования строк матрицы
		Ступенчатый вид матрицы
		Улучшеный ступенчатый вид матрицы
	1.14	Теорема о виде, к которому можно привести матрицу при помощи элементарных
		преобразований
		Общее решение совместной системы линейных уравнений
	1.16	Сколько может быть решений у системы линейных уравнений с действительными
		коэффициентами
	1.17	Однородная система линейных уравнений. Что можно сказать про её множество
		решений?
	1.18	Свойство однородной системы линейных уравнений, у которой число неизвестных
		больше числа уравнений
	1.19	Связь между множеством решений совместной системы линейных уравнений и мно-
		жеством решений соответсвующей ей однородной системы
		Обратная матрица
		Перестановки множества $\{1,2,\cdots,n\}$
		Инверсия в перестановке. Знак перестановки. Чётные и нечётный перестановки
		Произведение двух перестановок
		Тождественная перестановка и её свойства. Обратная перестановка и её свойства.
		Теорема о знаке произведения двух подстановок
		Транспозиция. Знак транспозиции
		Общая формула для определителя квадратной матрицы произвольного порядка .
		Определители 2-го и 3-го порядка
		Поведение определителя при разложении строки (столбца) в сумму двух
		Поведение определителя при перестановке двух строк (столбцов)
	1.31	Поведение определителя при прибавлению к строке (столбцу) другой строки (столб-
		ца), умноженного на скаляр
		Верхнетреугольный и нижнетреугольные матрицы
		Определитель верхнетреугольной (нижнетреугольной) матрицы
		Определитель диагональной матрицы. Определитель единичной матрицы
	1.35	Матрица с углом нулей и её определитель

1.36	Определитель произведения двух матриц	10
1.37	Дополнительный минор к элементу квадратной матрицы	10
1.38	Алгебраическое дополнение к элементу квадратной матрицы	10
1.39	Формула разложения определителя по строке (столбцу)	10
1.40	Лемма о фальшивом разложении определителя	10
1.41	Невырожденная матрица	10
1.42	Присоединённая матрица	10
	Критерий обратимости квадратной матрицы	10
1.44	Явная формула для обратной матрицы	10
1.45	Критерий обратимости произведения двух матриц. Матрица, обратная к произве-	
	дению двух матриц	11
1.46	Формулы Крамера	11
1.47	Что такое поле?	11
1.48	Алгебраическая форма комплексного числа. Сложение, умножение и деление ком-	
	плексных чисел в алгебраической форме.	11

Глава 1

Определения

1.1 Сумма двух матриц, произведение матрицы на скаляр

Сложение. $A, B \in \mathbb{R}^{n \times m}, A = (a_{ij}), B = (b_{ij})$

$$A + B = (a_{ij} + b_{ij}) = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & a_{m3} + b_{m3} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Умножение на скаляр. $A \in \mathbb{R}^{n \times m}, \lambda \in \mathbb{R}, A = (a_{ij}) \Rightarrow$

$$\lambda A = (\lambda a_{ij}) = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

1.2 Транспонированная матрица

Пусть $A \in \mathbb{R}^{n \times m}, A = (a_{ij})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

тогда транспонированная к A матрица (обозначается) A^T :

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

1.3 Произведение двух матриц

 $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{m}}$,ы $B \in \mathbb{R}^{m \times p}$

Тогда AB –такая матрица $C \in \mathbb{R}^{n \times p}$, что $c_{ij} = A_{(i)}B^{(j)} = \sum_{k=1}^n a_{ik}b_{kj}$

1.4 Диагональная матрица, умножение на диагональную матрицу слева и справа

 ${\color{blue} ext{K}}$ вадратная матрица $A\in {\color{blue} ext{$\mathbb{R}^n$}}$ называется диагональной \Leftrightarrow

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & a_n & \cdots & 0 \end{pmatrix} = diag(a_1, a_2, \dots, a_n)$$

То есть

$$\forall i, j \in \mathbb{N} \Rightarrow a_{ij} = \begin{cases} a_i & i = j \\ 0 & i \neq j \end{cases}$$

Пусть $A = diag(a_1, a_2, \cdots, a_n) \in \mathbb{R}^n$, тогда

$$(1)B\in {\rm I\!R}^{\rm n\times m}\Rightarrow AB=\begin{pmatrix} a_1B_{(1)}\\ a_2B_{(2)}\\ \vdots\\ a_nB_{(n)} \end{pmatrix} ({\rm Kaждая\ cтрокa\ }B\ {\rm умножается\ ha\ cooтветсвующий\ элемент}$$

столбца матрицы A)

 $(2)B \in \mathbb{R}^{n \times m} \Rightarrow BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \cdots & a_n B^{(n)} \end{pmatrix}$ (Каждый сролбец B умножается на соответсвующий элемент строки матрицы A)

1.5 Единичная матрица, её свойства

Матрица $A \in \mathbb{R}^n$ называется **единичной** $\Leftrightarrow A = diag(1,1,\cdots,1) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$, обозначается E (или I).

Свойства:

(1)
$$EA = AE = A, \forall A \in \mathbb{R}^n$$

$$(2) E = E^{-1}$$

1.6 След квадратной матрицы и его поведение при сложении матриц, умножении матрицы на скаляр и транспонировании

Следом матрицы называется сумма элементов её главной диагонали и обозначается tr(A).

Свойства:

$$(1) tr(A+B) = tr(A) + tr(B)$$

(2)
$$tr(\lambda A) = \lambda * tr(A)$$

(3)
$$tr(A) = tr(A^T)$$

1.7След произведения двух матриц

$$tr(AB)=tr(BA) orall A \in {\rm I\!R}^{
m n imes m}, B \in {\rm I\!R}^{
m m imes n}$$
 Доказательство.

Пусть
$$X = AB, Y = BA$$
, тогда $tr(X) = \sum_{i=1}^{n} x_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}b_{ji} = \sum_{j=1}^{m} \sum_{i=1}^{n} b_{ji}a_{ij} = \sum_{j=1}^{m} y_{jj} = tr(Y)$

1.8 Совместные и несовместные системы линейных уравнений

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Решением СЛУ является такой набор значений неизвестных, который является решением каждого уравнения в СЛУ.

СЛУ называется совместной если она имеет хотя бы одно решение. В противном случае СЛУ называется несовместной.

1.9 Эквивалентные системы линейных уравнений

Две СЛУ от одних и тех же переменных называются эквивалентыми если у них совпадают множества решений.

1.10Расширенная матрица линейных уравнений

$$(*) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Расширенной матрицей СЛУ (*) называется матрица вида
$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$
,

где A –матрица коэффициентов при неизвестных, а b –вектор-слобец правых частей уравнения СЛУ (*).

Элементарные преобразования строк матрицы 1.11

Элементарными преобразованиями называют следующие три преобразрования, меняющие вид матрицы:

1.12 Ступенчатый вид матрицы

Строка (a_1, a_2, \dots, a_i) называется **нулевой**, если $a_1 = a_2 = \dots = a_i = 0$, и **ненулевой** в обратном случае $(\exists i : a_i \neq 0)$.

Ведущим элементом называется первый ненулевой элемент нулевой строки.

Матрица $A \in \mathbb{R}^{n \times m}$ называется **ступенчатой** или имеет **ступенчатый вид**, если:

- 1) Номера ведущих элементов строго возрастают.
- 2) Все нулевые строки расположены в конце.

$$\begin{pmatrix} 0 & \heartsuit & * & * & * & \cdots & * & * \\ 0 & 0 & 0 & \heartsuit & * & * & \cdots & * \\ 0 & 0 & 0 & 0 & \heartsuit & * & \cdots & * \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \heartsuit \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

где * –что угодно, \heartsuit \neq 0

1.13 Улучшеный ступенчатый вид матрицы

Говорят, что матрица имеет улучшенный (усиленный) ступенчатый вид, если:

- 1) Она имеет ступенчатый вид.
- 2) Все ведущие элементы матрицы равны 1.

$$\begin{pmatrix} 0 & 1 & * & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & * & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

1.14 Теорема о виде, к которому можно привести матрицу при помощи элементарных преобразований

Теорема 1. Любую матрицу можно привести к ступенчатому виду. Доказательство:

1.15 Общее решение совместной системы линейных уравнений

Общим решением совместной СЛУ является множество наборов значений неизвестных, в которых главные неизвестные выражены через свободные (линейные комбинации от свободных неизвестных).

1.16 Сколько может быть решений у системы линейных уравнений с действительными коэффициентами

Всякая СЛУ с действительными коэффициентами либо несовместна, либо имеет ровно одно решение, либо имеет бесконечно много решений.

1.17 Однородная система линейных уравнений. Что можно сказать про её множество решений?

Однородной системой линейных уравнений (ОСЛУ) называется такая СЛУ, в которой каждое уравнение в правой части имеет 0. Расширенная матрица имеет вид (A|0).

Очевидно: вектор $x = (0, 0, 0, \cdots 0)$ является решением всякой ОСЛУ.

Всякая ОСЛУ имеет либо решение (нулевое), либо бесконечно много решений.

1.18 Свойство однородной системы линейных уравнений, у которой число неизвестных больше числа уравнений

Всякая OCЛУ, у которой число неизвестных больше числа уравнений имеет ненулевое решение \Rightarrow имеет бесконечно много решений.

1.19 Связь между множеством решений совместной системы линейных уравнений и множеством решений соответсвующей ей однородной системы

???

1.20 Обратная матрица

Обратной матрицей к матрице $A \in Mn$ называется такая квадратная матрица $B \in \mathbb{R}^n$, что: AB = BA = E. Матрица B обозначается как A^{-1} .

1.21 Перестановки множества $\{1, 2, \cdots, n\}$

Перестановкой множества $X = \{1, 2, \cdots, n\}$ называется упорядоченный набор (i_1, i_2, \cdots, i_n) , в котором каждое число от 1 до n встречается ровно один раз.

Подстановка (перестановка) из п элементов - это биективное отображение множества $\{1,2,\cdots,n\}$ в себя. Обозначается: $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ i_1 & i_2 & i_3 & \cdots & i_n \end{pmatrix}$.

1.22 Инверсия в перестановке. Знак перестановки. Чётные и нечётный перестановки.

Говорят, что неупорядоченная пара i,j образует **инверсию** в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак, т.е. либо i>j и $\sigma(i)<\sigma(j)$, либо i<j и $\sigma(i)>\sigma(j)$.

Знаком (сигнатурой) подстановки σ называется число $sgn\ \sigma$, такое что $sgn\ \sigma=(-1)^{inv\ \sigma}$, где $inv\ \sigma$ - число инверсий. Знак может принимать значения $1\ u\ -1$.

Подстановка называется **чётной**, если её знак равен 1, и **нечётной**, если её знак равен -1.

1.23 Произведение двух перестановок

Пусть даны две подстановки σ и $\tau \in S_n$. Произведением или (композицией) двух подстановок называется такая подстановка $\sigma\tau$, что $(\sigma\tau)(i) = \sigma(\tau(i)), \forall i \in \{1, 2, \cdots, n\}$

Тождественная перестановка и её свойства. Обратная пере-1.24становка и её свойства.

Тождественной (единичной) подстановкой называется подстановка вида $\begin{pmatrix} s1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix} \in$ S_n . Тождественная подстановка обозначается как id (или e). $id(i) = i, \forall i \in \{1, 2, \cdots, n\}.$

Свойство:

 $id * \sigma = \sigma * id = \sigma, \forall \sigma \in S_n$

 $id*\sigma = \sigma*id = \sigma, \forall \sigma \in S_n$ Пусть дана подстановка $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$, тогда **обратной подстановкой** к σ называется подстановка τ , вида $\begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$, и обозначается, как σ^{-1} .

Свойства:

- 1) σ^{-1} единственная
- 2) $\sigma * \sigma^{-1} = \sigma^{-1} * \sigma = id$.

1.25Теорема о знаке произведения двух подстановок

Теорема: Пусть даный $\sigma, \tau \in S_n$, тогда $sgn(\sigma\tau) = sgn(\sigma) * sgn(\tau)$

1.26 Транспозиция. Знак транспозиции.

Пусть дана подстановка $\tau \in S_n$, такая что $\tau(i) = j, \tau(j) = i, \tau(k) = k \forall k \neq i, j$. Такая подстановка 'tau называется **транспозицией**. $sgn(\tau) = -1$

1.27Общая формула для определителя квадратной матрицы произвольного порядка

Пусть дана матрица $A \in \mathbb{R}^n$, тогда $|A| = \sum_{\sigma \in S_n} (sgn\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$

Определители 2-го и 3-го порядка

Определителем 2-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{2 \times 2} =$ $=\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$

|A| = ad - bc.

Определителем 3-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{3 \times 3} =$

8

$$|A| = aek + bjg + cdh - ceg - afh - bdk$$

1.29 Поведение определителя при разложении строки (столбца) в сумму двух

???

1.30 Поведение определителя при перестановке двух строк (столбцов)

Элементарное преобразование второго типа, а именно перестановка двух строк (столбцов) местами меняет знак определителя и не меняет значение определителя.

1.31 Поведение определителя при прибавлению к строке (столбцу) другой строки (столбца), умноженного на скаляр

Элементарное преобразование первого типа, а именно прибавление к строке (столбцу) матрицы другой строки (столбца), умноженного на скаляр не меняет знак определителя и не меняет значение определителя.

1.32 Верхнетреугольный и нижнетреугольные матрицы

Верхнетреугольной матрицей называется такая квадратная матрица $A \in \mathbb{R}^{n \times n}$, у которой элементы, стоящие ниже главной диагонали равны нулю. Т.е. $a_{ij} = 0 \forall i, j = 0, \cdots, n : i > j$. **Нижнетреугольной матрицей** называется такая квадратная матрица $A \in \mathbb{R}^{n \times n}$, у которой элементы, стоящие выше главной диагонали равны нулю. Т.е. $a_{ij} = 0 \forall i, j = 0, \cdots, n : j > i$.

1.33 Определитель верхнетреугольной (нижнетреугольной) матрицы

Определитель верхнетреугольной матрицы равен определителю нижнетреугольной матрицы и равен произведению её элементов, стоящих на главной диагонали.

1.34 Определитель диагональной матрицы. Определитель единичной матрицы.

Диагональную матрицу можно считать частным случаем как верхнетреугольной, так и нижнетреугольной матрицы, и следовательно **определитель диагональной матрицы** равен произведению её элементов, стоящих на главной диагонали.

Определитель единичной матрицы, которая является частным случаем диагональной матрицы, по той же логике равен 1.

1.35 Матрица с углом нулей и её определитель

Матрицей с углом нулей называется квадратная матрицы
$$A \in \mathbb{R}^{n \times n}$$
 вида $A = \begin{pmatrix} P & Q \\ 0 & R \end{pmatrix}$ или $A = \begin{pmatrix} P & 0 \\ Q & R \end{pmatrix}$, где $P \in \mathbb{R}^{k \times k}$, $R \in \mathbb{R}^{(n-k) \times (n-k)}$. det $A = \det P \det R$.

1.36 Определитель произведения двух матриц.

Пусть даны две квадратные матрицы одного порядка $A, B \in \mathbb{R}^{n \times n}$. Тогда |AB| = |A| * |B|

1.37 Дополнительный минор к элементу квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Дополнительным минором к a_{ij} называется определитель матрицы порядка (n-1), получаемой удалением из исходной матрицы і-ой строки и ј-ого столбца. Обозначается \mathbf{M}_{ij} .

1.38 Алгебраическое дополнение к элементу квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Алгебраическим дополнением к a_{ij} называется число $A_{ij} = (-1)^{i+j} \mathrm{M}_{ij}$.

1.39 Формула разложения определителя по строке (столбцу)

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда для любого фиксированного $j \in \{1, \cdots, n\}$ $|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj} = \sum_{i=1}^n a_{ij}A_{ij}$ Аналогично для любой фиксированной строки.

1.40 Лемма о фальшивом разложении определителя

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда при любом $i, k \in \{1, \cdots, n\}, i \neq k$: $\sum_{j=1}^{n} a_{ij} A_{ik} = 0$. Аналогично для столбцов.

1.41 Невырожденная матрица

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда A называется **невырожденной** $\Leftrightarrow |A| \neq 0$, и **вырожденной** в противном случае.

1.42 Присоединённая матрица

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Присоединённой матрицей к A называется матрица $\hat{A} = (A_{ij})^T$.

$$\hat{A} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

1.43 Критерий обратимости квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда A является обратимой $\Leftrightarrow |A| \neq 0$.

1.44 Явная формула для обратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда матрица $B \in \mathbb{R}^{n \times n}$ называется **обратной к** $A \Leftrightarrow A$ - обратима. При этом $B = \frac{1}{|A|} \hat{A}$. Обозначается A^{-1} .

10

- 1.45 Критерий обратимости произведения двух матриц. Матрица, обратная к произведению двух матриц.
- 1.46 Формулы Крамера
- 1.47 Что такое поле?

Полем называется множество \mathbb{F} , на котором определены две операции:

- 1) Сложение: $(a,b) \longrightarrow a+b$
- 2) Умножение на скаляр $(a,b) \longrightarrow ab$

Причём $\forall a,b,c \in \mathbb{F}$ выполняются следующие аксиомы: 1) a+b=b+a

- 2) a + (b + c) = (a + b) + c
- 3) $\exists 0 : a + 0 = a$
- 4) $\exists -a : a + (-a) = 0$
- 5) (a+b)c = ac + bc
- 6) ab = ba
- 7) a(bc) = (ab)c
- 8) $\exists 1 : a * 1 = a$
- 9) $\exists a^{-1} : a * a^{-1} = 1$
- 1.48 Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в алгебраической форме.

Комлексное число $z \in \mathbb{C}$, представленное в виде z = a + bi, где $a, b \in \mathbb{R}$, а $i^2 = -1$, причём a называется действительной частью, числа z, а b называется мнимой часть.