Geography 4203 / 5203

GIS Modeling

Class 13: Uncertainty in "Source Data"

Some Updates

Last Lecture

- We finished the conceptual part of uncertainty and spatial data quality
- You have seen some examples where uncertainty lead to a lack of the fitness of the data for the intended use (hydro-charts, bogs, forest in historical maps)
- We talked about general aspects of SDQ and we discussed some first definitions of uncertainty/SDQ together with some examples
- We started with looking at errror models for source data such as CSE, Perkal band

Today's Outline

- We will continue with error models and uncertainty assessment
- After looking at measurable errors in position (or ratioscaled attributes) and methodological aspects how to assess these errors we will talk about categorical/nominal data that rather fit the perspective of raster-based modeling in a GIS
- We will go through the error table/confusion matrix and discuss some of the summary statistics available and where the limitations of using confusion matrices are
- You will see some examples of how to overcome these limitations

Learning Objectives

- You will understand the terms, concepts and meanings regarding uncertainty and spatial data quality
- You will be able to explain the differences between error,
 vagueness, ambiguity and what the elements of SDQ are
- You will know what the SDTS is and what stands behind the famous five points
- Finally you will be able to explain and use simple error models
 for positional and attribute accuracy (circular standard error,
 epsilon bands, confusion matrices)

Let's look at some Error Models

- Fit for the intended use? (we have seen 3 examples where they were not)
- Remember the definitions we have seen and the "diversity" of conceptual perspectives
- We will start with error assessment as the simplest set of methods available ("truth"?)
- Interval/ratio values: Positional & attribute accuracy (RMSE, CSE, Perkal)
- Nominal/ordinal: Attribute accuracy (Confusion matrices)

How Dependent and Systematic are my Errors?

- ... for **positional** and **attribute** uncertainty
- Land cover map -> change in land cover type moves boundary
- Chloropleth map -> Administrative boundary (position) predetermined - boundary won't change because of a change in an attribute
- For many classes, the class (attribute) is predetermined e.g. street names - class doesn't change because of positional uncertainty
- Systematic errors follow a pattern (constant or systematically varying) and are easy to correct

Random Errors in Points

For positions and attributes: RMSE: Root of the Mean of the Squared Error...!

error distance =
$$\sqrt{(x_t - x_d)^2 + (y_t - y_d)^2}$$

$$RMSE = \sqrt{\frac{e_1^2 + e_2^2 + ... + e_n^2}{n}} \partial$$

positional error

What is the difference between RMSE and standard deviation?

Error Distributions

•	No information on error distribution
	using RMSE (Gaussian often used
1	because it is easy)
 •	Assumption that errors are randomly

 Assumption that errors are randomly distributed... Why is this an implication???

_	×	×	×	(x	у	у	у	(у	sum
ID	(true)	(data)	differ-	differ-	(true)	(data)	differ-	differ-	× diff ² +
	(ence	ence)2	((33.1.)	ence	ence)2	y diff ²
1	12	10	2	4	288	292	-4	16	20
2	18	22	-4	16	234	228	6	36	52
3	7	12	-5	25	265	266	-1	1	26
4	34	34	0	0	243	240	3	9	9
5	15	19	-4	16	291	287	4	16	32
6	33	24	9	81	211	215	-4	16	97
7	28	29	-1	1	267	271	-4	16	17
8	7	12	-5	25	273	268	5	25	50
9	45	44	1	1	245	244	1	1	2
10	110	99	11	121	221	225	-4	16	137
11	54	65	-11	121	212	208	4	16	137
12	87	93	-6	36	284	278	6	36	72
13	23	22	1	1	261	259	2	4	5
14	19	24	-5	25	230	235	-5	25	50
15	76	80	-4	16	255	260	-5	25	41
16	97	108	-11	121	201	204	-3	9	130
17	38	43	-5	25	290	288	2	4	29
18	65	72	-7	49	277	282	-5	25	74
19	85	78	7	49	205	201	4	16	65
20	39	44	-5	25	282	278	4	16	41
21	94	90	4	16	246	251	-5	25	41
22	64	56	8	64	233	227	6	36	100
								Sum	1227

RMSE

Positional Errors of Points

- Circular Standard Error
- Say: $x \pm \delta x$, $y \pm \delta y$
- Using assumptions of a distribution we can make judgments about the point set and its accuracy
- Guess if a rabbit's location can be assumed to be within a polygon...

And what about Lines and Polygons?

Epsilon or Perkal Bands

Extension of the CSE to lines (their vertices) to produe constant areas around the lines

Back to the rabbit-polygon example

Categorical Data - Confusion Matrix

What can go wrong in a classification?

true value

•		wheat	corn	soy	alfalfa	grass	fallow	
data layer attribute value	wheat	14	4			4		22
	corn	2	12		1	3		18
	soy	1		18	2			21
	alfalfa		3	2	16	1		23
	grass	3	1		1	12		17
	fallow						20	20
		20	20	20	20	20	20	92

overall accuracy = $\frac{\text{sum of diagonal}}{\text{total number of samples}}$ = 92/120 = 76.7%

Summary Statistics

- Overall accuracy: Diagonal / Total
- Error of ommission (Producer's acc.): proportion of values in reality, which were interpreted as something else: Sum of column's non-diagonal elements / column total (e.g: corn 8/20 parcels were ommitted)
- Error of commission (User's acc.):
 proportion of values which were in
 reality found to belong to another
 class: Sum of row's non-diagonal
 elements / row total (e.g: For corn 6/18
 parcels were falsely assigned to
 another class

overall accuracy = $\frac{\text{sum of diagonal}}{\text{total number of samples}}$ = 92/120 = 76.7%

More Summary Statistics

- PCC does not take into account that a random classification will have an accuracy > 0
- Cohen' Kappa coefficient of agreement includes an estimation of agreement due to chance...

$$c_i c_i / c..$$

$$\kappa = \frac{\sum_{i=1}^{n} c_{ii} - \sum_{i=1}^{n} c_{i.} c_{.i} / c..}{c_{..} - \sum_{i=1}^{n} c_{i.} c_{.i} / c..}$$

where c_{ii} is the value on the diagonal on the ith row/column;

c_{i.} is the sum of row i;

c_{.i} is the sum of column i; and

c is the overall sum.

More Summary Statistics

Measure	Calculation
Prevalence	(a + c)/N
Overall diagnostic power	(b + d)/N
Correct classification rate	(a + d)/N
Sensitivity	a/(a+c)
Specificity	d/(b+d)
False positive rate	b/(b+d)
False negative rate	c/(a+c)
Positive predictive power	
(PPP)	a/(a+b)
Negative predictive power	
(NPP)	d/(c+d)
Misclassification rate	(b + c)/N
Odds-ratio	(ad)/(cb)
Kappa	[(a + d) - (((a + c)(a + b) + (b + d))]
	(c + d)/N)]/[N - (((a + c)(a + b) +
	(b + d)(c + d)/N)
NMI n(s)	[-a.ln(a)-b.ln(b)-c.ln(c)-d.ln(d)+
	$(a+b).\ln(a+b)+(c+d).\ln(c+d)]/[N.\ln(a+b)]$
	N - ((a+c).ln(a+c) + (b+d).ln(b+d))]

Kappa Example

	Forest on ground	Water on ground	Row total (C _{i.})
Forest in DB	1000	100	1100
Water in DB	200	700	900
Column total (C _{.i})	1200	800	2000

For comparison: Overall Accuracy = 0.85

How Different look the Summary Statistics?

- How conservative?
- Chance agreement?
- Consideration of classes with low or high proportions (robustness)

	Reference ma	ар	Original map		
	Pontresina	St. Moritz	Pontresina	St. Moritz	
Forest area (correct)	8350	8223	5853	6619	
Non-forest area (correct)	6486	11496	5649	10016	
Misclassified proportion	_	_	3334	3084	
PCC	_	_	0.76	0.84	
Kappa	_	_	0.55	0.67	
NMI	_	_	0.26	0.36	

First Example - Simple Accuracy Assessment

 Image extraction result to be evaluated against human inspection efforts

First Example - Simple Accuracy Assessment

	Hydro (Blue)	Elevation (Red)	Black Layer	Background (White)	Global
Recall	0.76	0.91	0.97	0.97	-
Precision	0.80	0.92	0.93	0.99	-
ACC	-	-	-	-	0.96
Kappa	-	-	-	-	0.93
NMI	-	-	-	-	0.81

What is lacking with summary statistics?

true value

		wheat	corn	soy	alfalfa	grass	fallow	
data layer attribute value	wheat	14	4			4		22
	corn	2	12		1	3		18
	soy	1		18	2			21
	alfalfa		3	2	16	1		23
	grass	3	1		1	12		17
	fallow						20	20
		20	20	20	20	20	20	92

= 92/120 = 76.7%

overall accuracy = $\frac{\text{sum of alaga-}}{\text{total number of samples}}$

What is lacking with summary statistics?

- Spatial orientation?
- Judgments for the local unit/entity?

= 92/120 = 76.7%

 Development of Geographical weighting, local summary statistics based on window operations

true value alfalfa fallow wheat grass corn data layer attribute value wheat 14 4 22 3 18 corn 1 soy 21 alfalfa 23 3 17 grass fallow 20 20 20 20 20 20 20

total number of samples

overall accuracy =

Example Geogr. Weighted Summary Statistics for House Prices

- Brundson & Fotheringham (2002)
- Two counties (Newburn and Washington) with characteristic "landscapes of housing prices"
- Of interest is how prices are different within the neighborhood and thus compared to aggregated data of prices

Local Summary Statistics

 Rough estimates for housing price trends using large Kernels to assess local statistics

How about local variation?

- Local summary statistics can be compared with actual point data for house prices
- Contrast of price with neighborhood using error tables
- Price ranges identifiable for geographical entities,...

Example Uncertainty Modeling

Global accuracy measures?

Like to apply knowledge to Siegfried Map other regions? Non-forest Forest St. Moritz Pontresina Reference Map Poblesina P. Non-forest Forest

Trying to explain uncertainty and how it is caused

- What are influences to think of
- Survey, access, exploragtion of the region
- Mountainous area, elevation, steepness

Modeling based on local summary statistics

Explanation of local uncertainty based on independent "explanatory" variables

Modeling based on local summary statistics

The Dependent Variable

 Spatially oriented local uncertainty

- Map comparison: local disagreement
- Bounded error rate (0=perfect fit; 1=no agreement at all)

Local uncertainty and the Statistical Model

- Generalized Linear Models (GLM)
- Response → [0,1]: uncertainty
- Link(Response) = LinearPredictors_{comb} $log(\mu / (1 - \mu)) = \alpha + X^T \beta$
- Crosswise calibration and testing

Mapping local uncertainty or quality

Summary

- The assessment of uncertainty of our source data is one of the basic requirements we should be aware of
- You have seen different error models such as CSE, Perkal or epsilon bands and their application for positional error assessment for points, lines and polygones
- We talked about the confusion matrix which represents the most prominent assessment approach for categorial/ nominal data in a classification process
- You have seen some examples how to use and how to overcome limitations of the summary statistics derived

References

- Burrough, P.A. and McDonnell, R.A. (1998):Principles of Geographical Information Systems. Second Edition. Oxford University Press.
- Jones, C.B. (1997): Geographical Information Systems and Computer Cartography. Longman.
- Longley et al. 2001. Geographic Information Systems and Science. Wiley.
- Fisher P 1999 Models of uncertainty in spatial data. In Longley P, Goodchild M F, Maguire D J, and Rhind D W (eds) Geographical Information Systems: Principles, Techniques, Management and Applications (Volume 1). New York, John Wiley and Sons: 191–205
- Fisher P 2003 Data quality and uncertainty: Ships passing in the night! In Shi W, Goodchild M F, and Fisher P (eds) Proceedings of the Second International Symposium on Spatial Data Quality. Hong Kong, Hong Kong Polytechnic University: 17–22
- Guptill S C and C Morrison J L (eds) 1995 Elements of Spatial Data Quality. Oxford, Pergamon
- ... if you like endless reference lists: Leyk et al., 2005 in TGIS