

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 09.12.2016

BESPRECHUNG

Blatt 7

WIEDERHOLUNG

Für Blatt 8

WIEDERHOLUNG: MEDWEDEW- UND MOORE-AUTOMAT

➤ Es gilt:

 $Medwedew-Automaten \subseteq Moore-Automaten$

- ➤ Damit folgt: Jeder Medwedew-Automat ist ein Moore-Automat, aber nicht jeder Moore-Automat ist ein Medwedew-Automat
- ➤ Wenn der aktuelle Zustand die Ausgabe ist —> Medwedew
- ➤ Wenn die Ausgabe nur vom aktuellen Zustand abhängt (aber evtl. codiert) —> Moore
- ➤ Ausgabe hängt vom Zustand und Eingabe ab —> Mealy

WIEDERHOLUNG: TOY-PROZESSOR GRUNDLAGEN

- ➤ Toyprozessor: minimalistischer Prozessor mit kleinem Befehlssatz (12 Befehle)
- ➤ Alle Befehle in einem Takt (2 PhasenTakt)

OP-Code			Adı	ess	e								
15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
4 Bit			12 Bi	t = 40	96 A	dress	en						

OP	Mnemonic	Bedeutung
0	STO <adresse></adresse>	speichere den Inhalt des ACCUs ins RAM
1	LDA <adresse></adresse>	lade den ACCU mit dem Inhalt der Adresse
2	BRZ <adresse></adresse>	springe nach Adresse, wenn der ACCU Null ist
3	ADD <adresse></adresse>	addiere den Inhalt der Adresse zum ACCU
4	SUB <adresse></adresse>	subtrahiere den Inhalt der Adresse vom ACCU
5	OR <adresse></adresse>	logisches ODER des ACCUs mit dem Inhalt der Adresse
6	AND <adresse></adresse>	logisches UND des ACCUs mit dem Inhalt der Adresse
7	XOR <adresse></adresse>	logisches ExODER des ACCUs mit dem Inhalt der Adresse
8	NOT	logisches NICHT der Bits im ACCU
9	INC	inkrementiere den ACCU
10	DEC	dekrementiere den ACCU
11	ZRO	setze den ACCU auf Null

WIEDERHOLUNG: TOY-PROZESSOR - INTERNER AUFBAU

LIVE-DEMO

Toyprozessor

PHYSIK TEIL I

Wiederholung elektrotechnischer Grundlagen

WIEDERHOLUNG: LADUNG & COULOMBSCHES GESETZ

➤ Kleinste unteilbare elektr. Ladungsmenge ist die Elementarladung e

$$e = 1.602 \cdot 10^{-19}C$$

- ➤ Die Einheit der Ladung ist Coulomb. Es gilt 1C = 1As.
- ➤ Zwischen zwei geladenen Teilchen, mit Ladung q1, q2 und Abstand r, herrscht eine Kraft, die mithilfe des Coulombschen Gesetzes beschrieben werden kann

$$\overrightarrow{F} = -\frac{1}{4\pi\epsilon_0} \frac{q_1 \cdot q_2}{r^2} \frac{\overrightarrow{r}}{r} \propto \frac{1}{r^2}$$

WIEDERHOLUNG: ELEKTRISCHE FELDSTÄRKE

- ➤ Im Raum verteilte elektrische Ladungen rufen ein elektrisches Feld hervor, das sich über den gesamten Raum erstrecken kann
- ➤ Auf eingebrachte Probeladungen in diesem Feld wirkt eine Kraft, die wie folgt beschrieben werden kann:

$$\overrightarrow{F}(\overrightarrow{r}) = \overrightarrow{E}(\overrightarrow{r}) \cdot q$$

➤ Es ergibt sich somit für die elektrische Feldstärke

$$\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2} \cdot \vec{r_0}$$

WIEDERHOLUNG: ÜBERLAGERUNG ELEKTRISCHER FELDER

➤ Elektrische Felder überlagern sich additiv (Vektoraddition)

$$\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2} + \dots + \overrightarrow{E_n}$$

WIEDERHOLUNG: ELEKTRISCHE FLUSSDICHTE

➤ Das Verhältnis zwischen Ladungsmenge und Fläche wird elektrische Flussdichte genannt. Bei homogener Ladungsverteilung gilt:

$$D = \frac{Q}{A}, [D] = \frac{C}{m^2}$$

➤ Bei inhomogener Verteilung wird über die Fläche integriert:

$$\int_{A} \int \overrightarrow{D} \cdot d\overrightarrow{A} = Q$$

WIEDERHOLUNG: KONDENSATOR

- ➤ Kondensator kann elektr. Ladung speichern —> Kapazität
- ➤ Besteht aus 2 Platten
- > Für die Feldstärke zwischen den Platten ergibt sich

$$E = E_1 + E_2 = \frac{1}{\varepsilon} \cdot \frac{Q}{2A} + \frac{1}{\varepsilon} \cdot \frac{Q}{2A} = \frac{Q}{\varepsilon \cdot A}$$

WIEDERHOLUNG: STROMSTÄRKE, SPANNUNG, WIDERSTAND

- ➤ Bewegen sich Ladungen in einem Leiter so spricht man von elektr. Strom
- ➤ Es gilt:

$$I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} = \dot{Q}, [I] = A = \frac{C}{s}$$

- ➤ Die elektrische Spannung ist eine Potenzialdifferenz
- ➤ Gibt die Arbeit W an, die notwendig ist, um eine Probeladung q von dem einen Messpunkt zu dem zweiten zu verschieben, dividiert durch die Ladung q

$$U = \frac{W}{q}$$

WIEDERHOLUNG: WIDERSTAND UND OHMSCHES GESETZ

- ➤ Der Widerstand R ist als Kehrwert des Leitwerts definiert
- ➤ Das Ohmsches Gesetz gibt den Zusammenhang zwischen Strom, Spannung und Widerstand an

$$I = \frac{U}{R}$$

WIEDERHOLUNG: ELEKTRISCHE NETZWERKE

➤ Ein Netzwerk besteht aus Zweigen, die in den Knoten miteinander verbunden sind

WIEDERHOLUNG: ELEKTRISCHE NETZWERKE

➤ Es gelten die Kirchhofschen Sätze

$$\sum_{i=0}^{n} I_i = 0 \text{ (Knotenregel)}$$

$$\sum_{i=0}^{n} U_i = 0 \text{ (Maschenregel)}$$

WIEDERHOLUNG: PARALLELSCHALTUNG

WIEDERHOLUNG: REIHENSCHALTUNG

$$I_1 = I_2 = I_3$$

 $U_1 = I \cdot R_1, U_2 = I \cdot R_2$

- ➤ Und dazu gebe es noch sehr viel mehr zu sagen
- ➤ Bei Interesse: Folien zu elektrotechnischen Grundlagen aus Experimental Physik II (Email an mich)