ESCOM - IPN

Fundamentos de Diseño Digital - 2CM2

Minimización Algebraíca

Reporte 2

ALUMNO:

Rosas Hernandez Oscar Andres PROFESOR:

Fernando Aguilar Sanchez

1. Comparador de Magnitud

1.1. Parte Teórica

ABCD	abcde J9	
0000	1 1 1 1 1 0	<u>a</u>
0001	0 1 1 0 0 0 0	fl 9 16
0010		e l lc
0100	0110011	
0101	1 0 1 1 0 1 1	d
0111	1 1 10661	
1000	1 1 1 0 1 1	
1010	x x y y y y z	
1001	× × × × × × × ×	
1101	< x × < < × ×	
1110	× × × × × × × × ×	
_	1. 1 1 1 1	
a = ≤(0,2,	3. S. F. R g) L 事 (10-15)	C= \(\(\cdot \), 3, 4, 5, 6, 7, 8, 9 \) + \(\int \) (10-15)
CD AG 011	17 6	(10-15)
1001 011	11 10	00 1 1 1 1
010	7 3	
10 1	20	01000
a= BD +A-	+C + BD	C=A+B+O+C
U= BD +11		
b=5 (0,1,2	.3,4, 7,8,9) + I (10-15)	d=\(\xi(0, 2,3,5,6,8) + \F(10-15)
co/ 00 01		(0) AB (10-15)
00 00 01	11 10	\ <u>00 01 11 10</u>
01 1 0	1 2	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10	X	101) 1 ×
1 . 1 ./	(1)	d = A + B D + B - ED + BC + CO
b= A+ B	3 + 60	a= H + B D 4 B CD + BC + CD

1.2. Parte Practica

2. De Código Binario a Código Grey

2.1. Parte Teórica

Binaria → C. Grey		274
BIN GREY ABC DO GREY O GREY	G3 = ABCD+ABCD+ABCD +ABCD + ABCD + ABCD + ABCD + ABCD + BCO + BCO + BCO + BCO ABCD + BCO + BCO + BCO ABCD + ABCD + ABCD + ABCD ABCD + ABCD + ABCD + ABCD ABCO + ABCD + ABCD + ABCD + ABCO + ABCD + ABCD + ABCO + ABCD + ABCD + ABCO + ABCD + ABCO + ABCD + ABCD + ABCO + ABCD + ABCO + ABCD + ABCO + ABCD + ABCO	
= A (BC + BC)+A (BC+BC)		

2.2. Parte Practica

3. De Código BCD a 7 Segmentos

3.1. Parte Teórica

ABCD a b c de J 9 0000 1 1 1 1 1 1 0 0001 0 1 1 0 0 0 0010 1 1 0 1 0	fl <u>g</u> b el_c d
00 0 1 1 10 0 0 1 0 1 1 10 0 0 1 0 1 1 1 10 0 1	C= \(\int (0, 1, 3, 4, 5, 6, 7, 8, 9) - \(\beta \) (10-15)
$b = \sum (0, 1, 2, 3, 4, 3, 8, 4) + I (10-15)$ $co \begin{vmatrix} 0 & 0 & 0 & 11 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0$	$d = \{(0, 7,3,5,6,8) \neq \text{$\mathbb{F}(10-15)$}$ $c > AB \\ 0 = 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$

3.2. Parte Practica

