

	✓	Congratulations! You passed!	Next Item			
~	1 / 1 point					
1. Which	notation w	rould you use to denote the 3rd layer's activations when the input is the 7th exa	mple from the 8th minibatch?			
	$a^{[8]\{3\}(7)}$					
	$a^{[8]\{7\}(3)}$					
	$a^{[3]\{7\}(8)}$					
0	$a^{[3]\{8\}(7)}$					
Corr	Correct					
~	1 / 1 point					
2. Which	of these st	atements about mini-batch gradient descent do you agree with?				
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.					
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).					
0	One itera	tion of mini-batch gradient descent (computing on a single mini-batch) is faster	than one iteration of batch gradient			
Corr	ect					
20.1	-3.					
~	1 / 1 point					

٥.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

	(all) to desire to			
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Un-selected is correct				
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Correct				
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			

Correct

1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

correptimization algorithms

Quiz, 10 questions

10/10 points (100%)

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

1/1 point

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1 = 10^o C$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup v_2=10$$
, $v_2^{corrected}=10$

1/1 point

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 $lpha=e^tlpha_0$

Correct

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

point

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

1/1 point

9

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try using Adam

Correct

· ~ P

←	Optimization algorithms আৰু মেণ্ডু মেণ্ডু মাধ্যমান্ত্ৰী the weights to zero	10/10 points (100%)				
Un-selected is correct						
	Try tuning the learning rate $lpha$					
Correct						
	Try better random initialization for the weights					
Correct						
	Try mini-batch gradient descent					
Correct						
1/1 point 10. Which of the following statements about Adam is False? We usually use "default" values for the hyperparameters β_1 , β_2 and ε in Adam ($\beta_1=0.9$, $\beta_2=0.999$, $\varepsilon=10^{-8}$) Adam combines the advantages of RMSProp and momentum Adam should be used with batch gradient computations, not with mini-batches.						
Corr						
0	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.					