Devre Analizine Giriş

BÖLÜM 4 OHM KANUNU, GÜÇ VE ENERJİ

BMB2012 – Elektronik Devreler ve Aygıtlar Ders Notları Bursa Uludağ Üniversitesi Bilgisayar Mühendisliği Bölümü 2023-2024 Bahar Yarıyılı

> Çeviren ve Düzenleyen: Prof. Dr. Kemal FİDANBOYLU

BÖLÜM HEDEFLERİ

- Ohm kanununun önemini ve çeşitli durumlarda nasıl uygulanacağını anlamak.
- Ohm kanununun grafiksel gösterimini anlamak.
- Güç, enerji ve verimlilik kavramlarının anlamak.

OHM KANUNU (1)

- Ohm kanunu elektrik devrelerinde öğrenilmesi gereken en önemli ve ilk kanunlardan biridir.
- DC devrelere, ac devrelere, dijital ve mikrodalga devrelere ve aslında her türlü sinyale uygulanabilir.
- Ek olarak, belirli bir süre boyunca veya anlık yanıtlar için uygulanabilir.

OHM KANUNU (2)

- Denklem, tüm fiziksel sistemler için aşağıdaki temel denklemden doğrudan türetilebilir:
- Etki = Neden/Direniş
- Enerjinin bir biçimden başka bir biçime dönüşümü bu denklemle ilişkilendirilebilir.
- Elektrik devrelerinde kurmaya çalıştığımız **etki**, elektron yük akışı veya akımdır.

OHM KANUNU (3)

- İki nokta arasındaki potansiyel fark veya voltaj nedendir ve karşılaşılan direnç direniştir.
- Özetle, bir elektrik devresinde uygulanan bir voltajın olmaması, sistemde reaksiyon olmamasına ve elektrik devresinde akım olmamasına neden olur.

OHM KANUNU (4)

- Akım, sistemi harekete geçiren faktör değil, uygulanan gerilime bir tepkidir.
- Analojiye devam etmek gerekirse, tıkaçtaki basınç ne kadar büyük olursa, hortumdan geçen su akış hızı da o kadar yüksek olur, tıpkı aynı devreye daha yüksek bir voltaj uygulanmasının daha yüksek bir akımla sonuçlanması gibi.

OHM KANUNU (5)

Şekil 4.2 Basit Bir Elektrik Devresi.

Akım = Potensiyel Fark/Direnç

$$I = \frac{E}{R}$$
 (amperes, A)

$$E = IR$$
 (volts, V)

$$R = \frac{E}{I} \qquad \text{(ohms, } \Omega\text{)}$$

$$I = \frac{V_R}{R} = \frac{E}{R}$$

OHM KANUNU (6)

 Herhangi bir direnç için, herhangi bir şebekede, bir direnç üzerinden akımın yönü, direnç boyunca voltaj düşüşünün polaritesini tanımlar.

Şekil 4.3 Dirençler Üzerindeki Polariteleri tanımlama.

OHM KANUNU (7)

- Örnek 4.3: Üzerindeki voltaj düşüşü 16 V ise, Şekil 4.4'teki 2 kΩ direnç üzerinden geçen akımı hesaplayın.

• Çözüm:
$$I = \frac{V}{R} = \frac{16 \text{ V}}{2 \times 10^3 \Omega} = 8 \text{ mA}$$

Şekil 4.4 Örnek 4.3.

OHM KANUNU (8)

- Örnek 4.4: Havya ucunun iç direnci 80 Ω ise, 1.5 A'lik bir akım oluşturmak için Şekil 4.5'teki havyaya uygulanması gereken voltajı hesaplayın.
- Çözüm:

Şekil 4.5 Örnek 4.4.

OHM KANUNUNUN GRAFİKSEL GÖSTERİMİ (1)

- Grafikler, karakteristikler, çizimler ve benzerleri, bir sistemin davranışının veya tepkisinin geniş resminin uygun bir şekilde görüntülenebildiği modlar olarak her teknik alanda önemli bir rol oynar.
- Bu nedenle, hem verileri okumak hem de bunları kolayca yorumlanabilecek şekilde grafiklerini oluşturmak için gerekli becerileri geliştirmek çok önemlidir.

OHM KANUNUNUN GRAFİKSEL GÖSTERİMİ (2)

Şekil 4.6 Tanımlanmış gerilim ve akımın bir çizim noktası üzerindeki etkisini gösterme.

OHM KANUNUNUN GRAFİKSEL GÖSTERİMİ (3)

$$R_{dc} = \frac{V}{I}$$

Şekil 4.8 Bir I-V grafiğinde direnç ne kadar düşükse, eğim o kadar diktir.

OHM KANUNUNUN GRAFİKSEL GÖSTERİMİ (4)

Şekil 4.9 Denklem 4.7'nin uygulanması.

GÜÇ (1)

- Genel olarak, güç terimi, belirli bir süre içinde ne kadar işin (enerji dönüşümü) gerçekleştirilebileceğinin bir göstergesini sağlamak için kullanılır; yani güç, iş yapma oranıdır.
- Enerji joule (J) ve zaman saniye (s) cinsinden ölçüldüğünden, güç jul/saniye (J/s) cinsinden ölçülür.

GÜÇ (1)

 Güç için elektriksel ölçüm birimi watt (W)'dir ve şu şekilde tanımlanır:

$$P = \frac{W}{t}$$

1 horsepower \approx 746 watts

 Şekil 4.13 Dirençli bir eleman üzerindeki gücü tanımlama.

$$P = \frac{W}{t} = \frac{QV}{t} = V\frac{Q}{t}$$
 $I = \frac{Q}{t}$ $P = VI$ $P = VI = V\left(\frac{V}{R}\right)$ $P = \frac{V^2}{R}$ $V = \sqrt{PR}$

$$P = VI$$
 $P = VI =$

$$P = \frac{V^2}{R}$$

$$P = VI = (IR)I \qquad P = I^2R$$

$$I=\sqrt{\frac{P}{R}}$$

GÜÇ (2)

 Herhangi bir beslemeyle ilişkili güç, yalnızca besleme geriliminin bir fonksiyonu değildir. Besleme voltajının ve maksimum akım derecesinin çarpımı ile belirlenir.

$$P = EI$$

GÜÇ (3)

- Örnek 4.6: Şekil 4.14'teki dc motora iletilen gücü bulun.
- Çözüm:
- P = EI = (120V)(5A) = 600W = 0.6kW

Şekil 4.14 Örnek 4.6.

GÜÇ (4)

 Örnek 4.8: Bir ampulün I-V özellikleri Şekil 4.15'te verilmiştir. Uygulanan voltaj ile ampulün direncinde geniş bir aralığı gösteren eğrinin doğrusal olmadığına dikkat edin. Nominal voltaj 120 V ise, ampulün watt değerini bulun. Ayrıca nominal koşullar altında ampulün direncini hesaplayın.

GÜÇ (5)

• Çözüm: 120 V'da, I = 0.625 AP = VI = (120V)(0.625A) = 75W

Şekil 4.15 75 W ampulün doğrusal olmayan I-V özellikleri.

ENERJİ (1)

- İş yapma oranı olan gücün herhangi bir biçimde enerji dönüşümü üretebilmesi için belirli bir süre boyunca kullanılması gerekir.
- İş yapma oranı olan güç için, örneğin bir enerji üretmek için bir motor, ağır bir yükü çalıştıracak beygir gücüne sahip olabilir, ancak motor belirli bir süre kullanılmadıkça, enerji dönüşümü olmayacaktır.

ENERJİ (2)

 Bu nedenle, herhangi bir sistem tarafından kaybedilen veya kazanılan enerji (W) şu şekilde belirlenir:

$$W = Pt$$
 (wattseconds, Ws, or joules)

 Bununla birlikte, vattsaniye, pratik amaçlar için çok küçük bir miktardır, bu nedenle vattsaat (Wh) ve kilovatsaat (kWh) yerine kullanılır.

```
Energy (Wh) = power (W) \times time (h)
```

Energy (kWh) =
$$\frac{\text{power (W)} \times \text{time (h)}}{1000}$$

ENERJİ (3)

- Kilovatsaat enerji seviyesi için bir anlam geliştirmek için, 1 kWh'nin 100 W'lık bir ampulün 10 saatte harcadığı enerji olduğunu düşünün.
- Örnek 4.11: 60 W'lık bir ampulü 1 yıl (365 gün) boyunca sürekli olarak yakmak için ne kadar enerji (kilovatsaat) gerekir?
- **Çözüm:** $W = \frac{Pt}{1000} = \frac{(60 \text{ W})(24 \text{ h/day})(365 \text{ days})}{1000} = \frac{525,600 \text{ Wh}}{1000}$ = 525.60 kWh

VERİM (1)

- Enerjinin korunumu, Enerji girişi = enerji çıkışı + sistem tarafından kaybedilen veya depolanan enerji olmasını gerektirir.
- İlişkinin her iki tarafını da t'ye bölersek,

$$\frac{W_{\text{in}}}{t} = \frac{W_{\text{out}}}{t} + \frac{W_{\text{lost or stored by the system}}}{t}$$

 P = W/t olduğundan dolayı, aşağıdaki sonucu elde ederiz:

$$P_i = P_o + P_{\text{lost or stored}} \tag{W}$$

VERİM (2)

 Daha sonra sistemin verimliliği (η) aşağıdaki denklem ile belirlenir:

Verim = Çıkış Gücü/Giriş Gücü

$$oldsymbol{\eta} = rac{P_o}{P_i}$$

VERİM (3)

- Örnek 4.15: 2 hp'lik bir motor %75
 verimle çalışır. Watt cinsinden güç girişi
 nedir? Uygulanan voltaj 220 V ise giriş
 akımı nedir?
- Çözüm:

$$\eta\% = \frac{P_o}{P_i} \times 100\%$$

$$0.75 = \frac{(2 \text{ hp})(746 \text{ W/hp})}{P_i}$$

$$P_i = \frac{1492 \text{ W}}{0.75} = 1989.33 \text{ W}$$

$$P_i = EI \qquad \text{or} \qquad I = \frac{P_i}{E} = \frac{1989.33 \text{ W}}{220 \text{ V}} = 9.04 \text{ A}$$