

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER			ANDIDATE IUMBER			
CHEMISTRY					062	20/32

Paper 3 Theory (Core)

October/November 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

- 1 This question is about solids, liquids and gases.
 - (a) The list gives the names of nine substances.

aqueous copper(II) sulfate
aqueous potassium manganate(VII)
aqueous sodium chloride
dilute hydrochloric acid
ethanol
hexene
mercury
octane
water

Answer the following questions about these substances. Each substance may be used once, more than once or not at all.

State which substance:

(i)	is an alkane	
		[1]
(ii)	is used, when acidified, to test for sulfur dioxide	
		[1]
(iii)	turns blue litmus red	
		[1]
(iv)	reacts with sodium to produce only aqueous sodium hydroxide and hydrogen	
		[1]
(v)	is produced by the addition of steam to ethene.	
		[4]

(b) Some changes of state of mercury are shown.

	melting		evaporation	
solid	-	liguid	· •	mercury
mercury		mercury		gas
	Δ	,	R	J

(i)	State the names of the changes of state represented by A and B .
	A
	В
	[2]
(ii)	Use the kinetic particle model to describe the motion and separation of the particles in:
	liquid mercury
	mercury gas
	[4]

2 Biogas is made by fermenting animal and vegetable waste.

(a) The table shows the percentage composition of the gases present in a sample of biogas.

	percentage
substance present	present in biogas
carbon dioxide	
hydrogen	1.0
methane	61.5
nitrogen	8.5
water vapour	2.2
other substances	0.1
total	100.0

-	- 4	-
	11	ı
		л.

Deduce the percentage of carbon dioxide present in this sample of biogas.

(b) (i) During the fermentation, carbon dioxide reacts with hydrogen to produce methane and water.

Complete the chemical equation for this reaction.

$$CO_2 +H_2 \rightarrow CH_4 +H_2O$$
 [2]

(ii) Methane and ethane are in the same homologous series.

(iii) Draw a dot-and-cross diagram to show the electron arrangement in a molecule of methane, CH₄. Show outer shell electrons only.

(c)	Helium and hydrogen can both be used to fill balloons.	
	Suggest one advantage of using helium rather than hydrogen to fill balloons.	11
(d)	The biogas fermentation mixture contains a small amount of compound C .	'.
	The structure of compound C is shown.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(i) On the structure shown, draw a circle around a functional group which reacts wit aqueous bromine.	:h 1]
	(ii) How many different types of atoms are present in compound C?	
	[1]
(e)	Ethanol is produced by fermentation of a mixture of plant sugars.	
	Describe how ethanol can be separated from the rest of the fermentation mixture by fractional distillation. In your answer:	al
	 describe how to do the fractional distillation explain how ethanol is separated from the rest of the fermentation mixture using fractions distillation. 	al
		••
		••
		••
		••
		••
	[4	ł]

[Total: 14]

3 (a) A student investigated the reaction of calcium carbonate with an excess of dilute hydrochloric acid by measuring the volume of carbon dioxide produced at 10 second intervals.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

The results are shown on the graph.

(i) Ho	ow long did it t	ake from the sta	rt of the ex	periment to	collect 30 cm ³	of carbon did	oxide?
--------	------------------	------------------	--------------	-------------	----------------------------	---------------	--------

																												s		[1	١.	ı
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	----	----	---

(ii) At which point on the graph, **P**, **Q**, **R** or **S**, was the rate of reaction fastest? Use the graph to explain your answer.

[2]

(iii) When 0.225 g of calcium carbonate is used, 54.0 cm³ of carbon dioxide is formed.

Determine the mass of calcium carbonate needed to form 216 cm³ of carbon dioxide.

mass of calcium carbonate = g [1]

(iv)	What effect do the following have on the rate of this reaction?	
	 Increasing the temperature of the reaction mixture. All other conditions are kept the same. 	
	Using larger pieces of calcium carbonate. All other conditions are kept the same.	
		[2]
(b) In	industry, calcium oxide is made from calcium carbonate by thermal decomposition.	
	$CaCO_3 \xrightarrow{heat} CaO + CO_2$	
(i)	Why is this described as thermal decomposition?	
		. [2]
(ii)	State one other use of calcium carbonate in industry.	
		. [1]
(iii)	Calcium oxide is used to treat acidic industrial waste.	
	State the type of chemical reaction that occurs.	
		. [1]
	[Total	: 10]

4

		⁴⁴ ₂₀ Ca		
a) (i)	Deduce the nu	ımber of protons, electrons aı	nd neutrons in this isotope of ca	alcium.
	number of prof	tons		
	number of elec	ctrons		
	number of neu	trons		
/:: \	Otata ana indi			
(ii)	State one indu	ıstrial use of radioactive isoto		
) Dr	aw the electronic	structure of a calcium atom.		
A) Th	o tablo shows (como information about the	reaction of four motals with d	Inv air at r
	ne table shows s mperature and or		reaction of four metals with d	lry air at r
		n heating.	I	Iry air at r
		n heating. reaction with dry air	reaction with	Iry air at r
	mperature and or	n heating.	I	Iry air at r
	mperature and or	reaction with dry air at room temperature	reaction with dry air on heating only burns when in the form	Iry air at r
	metal iron	reaction with dry air at room temperature	reaction with dry air on heating only burns when in the form of a fine wire or powder does not burn but the	Iry air at r
	metal iron copper	reaction with dry air at room temperature no reaction no reaction	reaction with dry air on heating only burns when in the form of a fine wire or powder does not burn but the surface oxidises slowly	Iry air at ro

[Total: 8]

[2]

- **5** This question is about the halogens and compounds of the halogens.
 - (a) The properties of some halogens are shown in the table.

element	melting point in °C	boiling point in °C	density of liquid at boiling point in g/cm³	colour
fluorine	-220	-188	1.51	
chlorine	-101		1.56	light green
bromine	-7	59	3.12	red-brown
iodine	114	184		grey-black

(i)	Coi	mplete the table to estimate:		
		the boiling point of chlorine the density of iodine.		

(ii)	Describe the trend in the melting points of the halogens down the group.	
		[1]
(iii)	Predict the physical state of bromine at –20 °C.	- 4 -
		[1]
(iv)	Which one of the following is most likely to be the colour of fluorine? Tick one box.	
	dark green	
	light grey-black	
	light yellow	
	purple	[1]
		Γ.1

[2]

(b) Chl	orine re	acts w	ith an aqueou	ıs potas	sium s	salt to form iodir	ne and	l a differen	t potassium	n salt.
(i)	Comple	ete the	e word equation	on for th	is rea	ction.				
chl	orine	+			$\bigg] \hspace{0.2cm} \rightarrow \hspace{0.2cm}$	iodine	+			
										[2]
(ii)	When a	aqueo	us sodium flu	oride is	added	I to chlorine, no	reacti	on occurs.		
	Explair	n, usin	g ideas about	the rea	ctivity	of the halogens	, why	no reactio	n occurs.	
										[1]
(iii)	State c	ne us	e of chlorine.							
										[1]
(c) Aqı	ueous si	lver ni	trate is used t	o test fo	r chlo	ride ions and io	dide id	ons.		
(i)	The so	lutions	s are first acid	ified wit	h dilut	e nitric acid.				
	Explair	n why	dilute hydroch	nloric ac	id is n	ot used to acidi	fy the	solutions.		
										[1]
(ii)	Comple	ete the	e table to show	w the ex	pecte	d observations.				
			ion			servations on acqueous silver nit				
		chlor	ride (C <i>l</i> -)							
		iod	ide (I ⁻)							
										[3]

(d) A compound of chlorine has the formula $C_6H_4Cl_2$.

Complete the table to calculate the relative molecular mass of $\rm C_6H_4C\it l_2$. Use your Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
carbon	6	12	6 × 12 = 72
hydrogen			
chlorine			

relative	molecul	lar mas	s =	 	
					[2]

[Total: 15]

This question is about compounds of nitrogen.

6

(a)	Aqu	ueous ammonia is alkal	ine.				
	(i)	Which one of the follo	wing pH	values co	uld be the	pH of aqueous ammo	onia?
		Draw a circle around t	he corre	ct answer			
		рН	1 p	Н 5	pH 7	pH 9	[1]
	(ii)	Ammonia has a strong A beaker of aqueous a At first, the students a After a few minutes the	ammonia t the bac	k of the cl	ass could r		
		Explain these observa	tions usi	ng the kin	etic particle	e model.	
/b\	۸m	monia is used in the m					[3]
(D)		monia is used in the ma				ha pragga	
	(i)	Balance the chemical	-		•	•	[41
	/!!\		Ü	$5O_2 \rightarrow$	NO + 6H	H ₂ O	[1]
	(ii)	The reaction is exothe	-				
		What is meant by the	term <i>exo</i>	tnermic?			
((iii)	The NO produced in to NO ₂ .				n oxygen to produce	
			2N	O + O ₂ -	→ 2NO ₂		
		How does this equation	n show t	hat NO is	oxidised?		
							[1]
	(iv)	Is nitrogen dioxide an Give a reason for your			asic oxide'	?	
							[1]

(c)	Oxides of nitrogen are atmospheric pollutants.	
	State one adverse effect of oxides of nitrogen on health.	
		[1]
(d)	Ammonia reacts with nitric acid to form a salt which is present in many fertilisers.	
	Name the salt formed when ammonia reacts with nitric acid.	
		[1]
	[Total:	10]

(a)	Со	ncentrat	ed hy	drochloric acid	is elec	ctrolysed using	graphite	e elec	trodes.	
	(i)	Name	the pr	oducts of this	electro	lysis at:				
		the pos	sitive (electrode						
		the neg	gative	electrode						
	/::\	Cuggo	ot one	about ation t	act ic n	nada at tha na	active of	aatra	do	[2]
	(ii)	Sugge	st one	observation the	ial is r					[4]
										[1]
(b)	Dil	ute hydro	ochlor	ric acid reacts	with zir	nc.				
	Со	mplete t	he wo	rd equation for	this re	eaction.				
	Z	zinc	+	hydrochloric acid	\rightarrow			+		
			J							[2]
(c)			_	tements are al		e procedure fo	or making	g crys	tals of hydrated zinc	sulfate
	A			ixture until no r			en.			
	B C			zinc to dilute s rate to the poi						
	D			ixture at room			more cry	stals.		
	E F			excess zinc. crystals and di	v hetw	veen filter nane	ers			
				its A , B , C , D ,						
				been done for			n order.			
			В							[2]

(d) Zinc is a metal.

(i)	Describe three physical properties which are characteristic of metals.	
	1	
	2	
	3	
		[3]
(ii)	An alloy of zinc, copper and nickel is used to make coins.	
	Suggest two reasons why an alloy is used to make coins and not pure copper alone.	
	1	
	2	
		[2]

[Total: 12]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

						5	ם		21101112							
							Grc	Group								
											≡	≥	>	>	=	■
						- I										2 He
			Key			hydrogen 1										helium 4
		σ	atomic number								2	9	7	80	6	10
		atoı	atomic symbo	loq							В	ပ	z	0	ш	Ne
		relat	name relative atomic mass	1SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	1										13	14	15	16	17	18
											Αl	S	₾	ഗ	Cl	Ar
											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Sc	j	>	ပ်	Mn	Fe	ဝိ	Z	Cn	Zu	Ga	Ge	As	Se	ğ	궃
	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
	>	Zr	g	Mo	ည	R	몺	Pd	Ag	<u>ප</u>	In	Sn	Sp	<u>a</u>	Н	Xe
	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
	57-71	72	73	74	75	92	77	78	62	80	81	82	83	84	85	98
10	anthanoids	Ξ	<u>Б</u>	>	Re	Os	'n	Ŧ	Au	Ε̈́	<i>1</i> L	Pb	B	Ъ	Ą	R
		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	molonium -	astatine -	radon
1	89–103	104	105	106	107	108	109	110	111	112		114		116		
	actinoids	꿉	g O	Sg	Bh	Hs	₩	Ds	Rg	S		Εl		_		
		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
- 1		-	-	-	ı	ı		ı	I	ı		ı		ı		

77	lutetium 175	103	۲	lawrencium	I
	ytterbium 173			_	
69 Tm	thulium 169	101	Md	mendelevium	I
88 7	erbium 167	100	Fm	fermium	I
67 CH	holmium 165	66	Es	einsteinium	I
99	dysprosium 163	86	ŭ	californium	I
cs Th	terbium 159	26	番	berkelium	I
² P.	gadolinium 157	96	Cm	curium	I
63 F.	europium 152	92	Am	americium	I
Sm	samarium 150	94	Pu	plutonium	I
61 Pm	promethium	93	δ	neptunium	I
09 N	ne	92	\supset	uranium	238
59 P		91	Ра	protactinium	231
88 G	cerium 140		드	thorium	232
57	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).