(3) a) P = ATA Q = AAT A=(mxn) size matrix [mxm] P is nixh madrix Q is mxm matrix y has dimensions nx1 yTPy = yTATAY = (Ay)TAY Ay is (m x1) matrix Let Ay = [a, a2 ,, an] (Ay) Ay = ai + ai ... + an · yT Py >0. Simil only z^TQ $z = z^TA A^Tz = (A^Tz)^TA^Tz$ ATZ is not marin Let ATZ = [b, be ... ba] $(A^{7}z)^{T}A^{7}z = b_{1}^{2} + b_{2}^{2} + ... b_{n}^{2}$ * Hence Proved.

P= ATA	
Let eigen verwy of ATA bex	
$A^{T}A \chi = \lambda \chi$	
2 is a nxl vec	107
Mustinly (1) by	X. T. C.
Multiply (1) by	77 to y = 1 to 1 to 1
$\alpha^T A^T A \alpha = \alpha^T A \alpha = A \alpha^T \alpha$	
$(Ax)^T Ax 7/0$	
1. Tax = 1. 500	
So for LEME 20, I has to be greated than	
: 6 K7,0	, , , , , , , , , , , , , , , , , , , ,
Similarly some proof for Q=AAT	
b) 17, Pu= Lu	14, Or = 1 Ur
Show= QAu = LAU	Show = PATV = MATV
$A^TAu = Au$	AATV = UV
Mutiply by A	
A AT Au = Aku	Multiply by A^{T} $A^{T}AA^{T}u = A^{T}Uv$
QAU= LAU	· PATZE LEATZ
Au is eigenvector of Q	ATU is eigenvector of P
with eigenvalue L	with eigenvalue 11
⇒ u is a (nx1) vector	=) v is a (m x1) vector
* tene Proved	

C) Qvi= kivi

· AATVi= Kivi

ui ATVille

To prove, Aui = vivi, where vi is reafond non-negative

Aui= AATvi = Livi = Yivi ||ATvilla ||ATvilla

 $\gamma_{i} = \lambda_{i}$ $||A^{T}v_{i}||_{2} \Rightarrow \left[||A^{T}v_{i}||_{2} > 0\right]$

non-negative in the first pant, therefore

So, rino + Henre Proved.

d) UTVT = [V1 V2 Vg. -1 Vm] 11ATV111 43 IIA TVn 11 = [v, 1v21 ... lvm] HATNIII 11ATVnII -[utuj = 0 for itj given Therefore, UTV" = A * Hence Proved.