Ile ma Mach, czyli Falentynistyka

Franciszek Hansdorfer Jacek Winiarczyk

Wydział fizyki doświadczalnej KFnrD

4 maja 2024

Co mogą zmierzyć mieszkańcy Falent?

- \bullet π
- e
- Prędkość dźwięku w powietrzu (1 Mach)
- ullet Przenikalność magnetyczna próżni (ϵ_0)
- Przenikalność elektryczna próżni (μ_0)
- Stała Coulomba (k_e)
- Prędkość światła (c)
- Stała Plancka (h)
- Zredukowana stała Plancka (ħ)

π - igła Buffona

// - długość igły

d - odległość między pionowymi liniami

n - liczba rzutów

R - liczba rzutów zakończonych przecięciem

$$p = \frac{2}{\pi} \frac{I}{d}$$

$$\frac{R}{n} = \frac{2}{\pi} \frac{I}{d}$$

$$\pi = \frac{2In}{dR}$$

$$\pi = \frac{2In}{dR}$$

e - całkowanie gumką

Prędkość dźwięku w powietrzu

Aparatura pomiarowa:

- Miarka 3m
- Laptop
- Dłonie Franka
- Dłonie Jacka
- Termometr i higrometr

Zasada działania

$$\Delta t = t_2 - t_1$$
$$v = \frac{2r}{\Delta t}$$

Dane

Redukcja danych

Pomiar	czas [s]	sigma [s]	liczba pomiarów
3	0.0534	0.00134	245
4	0.0533	0.00127	117
5	0.0544	0.00149	302
6	0.0548	0.00180	688
7	0.0550	0.00119	762

Wyniki i dyskusja błędu pomiarowego

Pomiar	temperatura [C]	wilgotność [%]	mach [m/s]
3	29.12	27.83	355.71 ± 8.90
4	31.35	22.14	356.22 ± 8.51
5	20.22	44.42	349.41 ± 9.57
6	18.25	51.11	346.48 ± 11.36
7	18.22	51.53	345.19 ± 7.46

Interpretacja wyników

Prędkość dźwięku rośnie wraz ze wzrostem temperatury.

Przenikalność magnetyczna próżni

indukcyjność cewki:

$$L = \frac{S\mu_0 n^2}{I}$$

S - pole przekroju cewki μ_0 - przenikalność magnetyczna próżni n-ilość zwojów I - długość cewki

$$\epsilon_c = -L \frac{dI}{dt}$$

Przenikalność magnetyczna próżni

$$I = \frac{\epsilon - \epsilon_c}{R}$$

$$IR = \epsilon + L\frac{dI}{dt}$$

$$\frac{dI}{dt} \frac{L}{IR - \epsilon} = 1$$

$$L \int \frac{dI}{IR - \epsilon} = \int dt$$

$$\frac{L}{R} \log(IR - \epsilon) = t + c_1$$

$$IR - \epsilon = c_2 e^{\frac{Rt}{L}}$$

$$I = \frac{\epsilon}{R} + c_3 e^{\frac{Rt}{L}}$$

$$I = \frac{\epsilon}{R} + c_3 e^{\frac{Rt}{L}}$$
$$I(0) = \frac{\epsilon}{R}$$
$$I = \frac{\epsilon}{R} + e^{\frac{Rt}{L}}$$

Przenikalność elektryczna próżni

Stała Plancka

Dalsze kontynuacje badań

- Stała Faradaya (F)
- Ładunek elementarny (e^-)
- ullet Odległość Ziemia-Księżyc $(d_{\oplus \mathbb{Q}})$
- ullet Promień Księżyca ($R_{\mathbb{C}}$)