

Troubles merging quantum with classical

Hardware

We remain at peak potential → always 5 years away

Software

- Error correction improvement and better adoption
- Integration → scheduling, interpretation,
- Simulations lack memory for large qubit counts

What's the plan?

- Still in NISQ, not yet Fault-Tolerant Quantum Computing (FTQC)
 - Microsoft just released their <u>roadmap</u> to FTQC for topological <u>quantum computer</u>
 - IQM has their <u>roadmap</u> with superconducting qubits
 - QuEra has <u>theirs</u> for neutral atoms
- The world is jumping on the band wagon
 - # ArXiv 'quantum physics' papers per year is doubling
 - Investors rich off Al boom want in on Quantum boom too

s doubling
tum boom too

1. GOALS

2. PROBLEMS

Credit: Ray Dalio

3. DIAGNOSIS

(100 logical qubits by 2026)

(40k qubits by 2030)

Troubles merging industry & academia

Bridging the quantum divide (2025) - Zappin et al.

- Hot potato & short lifespan of OS repositories
 - 91% of repos dead or docile
- Bugs appear with no bug spray in sight
 - Dead repo, tough integration & compatibility, platform islands → 39% report issues
 - 17% of repos have open issues regarding hybridization
- Academia & Industry don't have the same bug climate
 - Academia focuses quantum bugs, while industry faces classical bugs
 - Entanglement, qubit ordering **VS** library compatibilities, API changes, struggling support

Quantum platforms

- Qiskit dominant
- Pennylane & Strawberry Fields part of Xanadu ecosystem
- Azure QML integrates with the rest of Microsoft Azure cloud computing
 - D-Wave has monopoly
- on annealing TFQ is TensorFlow

Quantum, by Google

TFQ (TFQ)

Framework

Pennylane

Amazon

Azure OML

Google Cirq

Orquestra

Strawberry

Fields

D-Wave

Braket

Hybrid quantumclassical algorithms, **OML**

quantum

classical

Ouantum

Quantum

algorithms

Ouantum

Optimization

quantum-classical

Kev Focus

Hybrid

quantumclassical computation Quantum circuit design.

in ONN Wide algorithm

compatibility, source, large community support

Cloud-based, cloud, Hybrid quantum-

quantum programming, Hybrid

with ML annealing. annealing,

optimization solutions Quantum circuit design. OC with Python

software

Well-integrated with Google hardware, Focus on near-term quantum devices

Integrates with multiple frameworks, software

Fast

Quantum simulations, optimization, OML Hybrid quantumclassical algorithms.

hardware. Lack flexibility for largescale systems Complex setup, Requires strong understanding quantum systems

to

quantum systems, not

widely compatible

photonic

Limited

Credit: Tomar, Tripathi, Kumar

Oiskit

execution Quantum algorithms on

platform support (IONQ, D-Wave, Rigetti) Supports

Strengths

Integration

Scalable

Supports

TensorFlow,

deep quantum

quantum devices, Strong

various processors. Cloud-based, Integration

Ouantum optimization, quantum Best suited for quantum

with

Supports

circuits,

multiple

device

Open

multi-

OML, finance systems Only supports quantum Optimization problems, annealing, not suitable ML, QML, logistics

Typical Use Cases

chemistry simulations

quantum chemistry, RL

optimization, OML

Quantum optimization,

chemistry simulations.

optimization,

optimization.

quantum

chemistry.

photonic

OML,

OML,

QC,

simulation.

for general QC Limited to specific

Limitations

learning curve

quantum devices

larger systems

some algorithms

Limited

hardware support, High

May have integration

challenges with some

Limited scalability for

hardware variety for

Can be complex to

integrate with existing

quantum

quantum

Limited

development platform Focus on neural networks, QML lifecycle Quantum Photonic QC, Quantum Strong photonic computing. circuits quantum systems, Highoptimization, OML

quantum

More quantum software

- Qulacs and Yao: Fast simulators in Python and Julia
- <u>qBraid</u>
 - Extensions for Jupyter lab and VSCode, CLI, learning suite, own SDK
- MIMIQ-Circ by QPerfect
 - Uses Matrix Product States (MPS) and can simulate 100s of qubits
- <u>CUDA-Q</u> by Nvidia
 - Integrates <u>cuQuantum SDK</u> into the rest of CUDA
- <u>Classiq</u>: Great algorithm design with large algorithm ensemble
- Fire Opal by Q-CTRL
 - Impressive error suppression, integrated to qBraid, Classiq and others

Quantum landscape

- Largest focus on general hardware and software
- Lots more out there
- ...and everyone wants the Father of Quantum Mechanics' name
 - Planqc
 - PlanQK (Acquired by Kipu Quantum)
 - Max Planck Institute
- Checkout <u>Dealroom</u> for broad investor sentiment

Tech developments

- Record fidelity in superconducting qubit (2025)
- MIT Quantum Research
- 99.998% fidelity!
- Uses a 'fluxonium' (what?)
 - Superconducting qubit made of:
 - Capacitor
 - Josephson junction
 - A large "superinductor"
- Less environment noise → higher coherence
- Fastest (superconducting) gate in town

My thoughts on that...

Tech developments

- World's first open-source, full stack quantum computer (early 2026)
 - Open Quantum Design non-profit
 - Partnered with Xanadu, Haiqu, Unitary Foundation & Waterloo University
 - Ion-trap quantum computer, unknown qubits plan
 - Started 2024, launches 2026
 - Tools already online at <u>Github</u>
 - Atomic emulator
 - Analog emulator
 - Cloud server
 - Compiler infrastructure

Tech developments

_	6100 neutral atoms trapped in tweezers	Dec 2024
	- Also record coherence time of 12.6 seconds	
	- 12 000 sites for qubits	
	- Caltech	
-	5000+ two-qubit gate depth in superconducting	Nov 2024
	- IBM Quantum Heron R2 quantum processor with 156 qubits	
	- Took 2.2 hours on another 2880 gate benchmark	
-	Willow quantum processor does great error correction	Nov 2024
	- Don't need to describe, Google probably told you already	
-	Certified randomness - Quantinuum 56 qubit trapped-ion	Mar 2025
	- Things are definitely random this time (jury, lottery, security)	
-	Simulate QSVM with 784 qubits on 1 GPU!!	Jan 2025
	- <u>cuTN-QSVM</u> built on cuQuantum, plus MPI-enabled	

Industry expectations

2021

"While impact in the next 5 years is low, several high-impact use cases have been identified"

Challenge	Problem Domain	Company	Use Case	Impact
Engineering & Design	Machine Learning	AIRBUS	QC for Surrogate Modeling of Partial Differential Equations	High
	Optimization	AIRBUS	Wingbox Design Optimization	High
		Bosch	Software Testing and Correctness Proving	Medium
	Simulation	Bosch	Design Optimizations for Electric Drives Using Numerical Simulation and Finite Element Methods	Medium
		Merck	Identification and control of Actionable Parameters for Disease Spread Control	Unknown
Material Science	Optimization	Boehringer Ingelheim	Optimized Imaging – Quantum-Inspired Imaging Techniques	Medium
	Simulation	BASF	Quantum Chemistry – Prediction of Chemical Reactivity in Molecular Quantum Chemistry	High
		Boehringer Ingelheim	Molecular Dynamics – Simulation of the Dynamics of Molecules	High
		Merck	Development of Materials and Drugs Using Quantum Simulations	Medium
		Munich Re	Battery Cover – Performance Guarantees for eVehicle Batteries	Medium
		VW	Chemistry Calculation for Battery Research	High
Production & Logistics	Machine Learning	Siemens	QaRL – Quantum-assisted Reinforcement Learning – Applicable to many Industrial Use Cases	Medium
	Optimization	BASF	Fleet Management – On-site Truck and Machine Deployment and Routing	Medium
		BMW	Robot Production Planning – Robot path Optimization for Production Robots (e.g., PVC sealing robot)	Medium
		BMW	Vehicle Feature Testing – Optimizing Test Vehicle Option Configuration	Medium
		BMW	Shift Scheduling – Optimizing Labour Shift Assignments	Medium
		Infineon	Demand Capacity Match in Supply Chain – Decide on a Production Plan given Predicted Customer Demand	Medium
		Infineon	Using Infineon Sensors and Actuators to Optimize Supply Chain Processes on the Customer Side	Medium
		Munich Re	Transportation Cover – Insurance of Time-Critical Freight	Medium
		SAP	Logistics – Truck Loading	Medium
		SAP	Supply Chain Planning – Improved and Accelerated Sizing of Orders (Lot Sizing)	High
		Siemens	QoMP – Quantum-optimized Matrix Production – Realtime Shop Floor Optimization	Medium
		VW	Vehicle Routing Problem – Optimize Vehicle Utilization in a Transport Network	High
Post-Quantum Security	Cryptography	Munich Re	IoT Cyber Cover – Insurance of Post Quantum Cryptography	Medium

Industry developments

-	Waste management	2021
	- Tokyo reduces CO2 emissions by 57% with D-Wave annealing	
-	Portfolio optimization	2021
	- 60% Return On Investment (ROI) on real datasets with D-Wave	
-	Battery design	2024
	- Improved ground state energy computations - Volkswagen & IQM	
-	Quantum communication	2024
	 NASA wants to connect quantum systems globally from space 	
-	Medical	2024
	- Practical diamond quantum magnetometer for brain scanning	

Favorite media highlight

- <u>Jensen Chuang (Nvidia CEO) says quantum is decades away</u> (Jan 8)
 - Quantum stocks crash
- Alan Baratz (D-Wave CEO) slams back with practical applications (Jan 9)
 - Tries to dampen the fire
- <u>Nvidia has Quantum Day at GTC</u> (Mar 20)
 - Jensen admits he was wrong
 - "This whole session is going to be like a therapy session for me" Jensen
 - Announces development of NVIDIA Accelerated Quantum Research Center (NVAQC)
 - All the big players involved
 - Double down on CUDA-Q

Neutral atoms

3D neutral atom arrangement (2018)

- Up to 72 atoms (could be qubits)
- Any shape you wish
- Imagine e.g. strength testing applied...
- ISC24 and SC24: panelists had the most intrigue towards neutral atoms
- Global leader: QuEra

Atom to the naked eye

Strontium atom in ion trap, re-emitting color from laser in long exposure photo

David Nadlinger wins photography competition at EPSRC in 2018

Grand thoughts

Next generation ideas for quantum to solve:

- Simulate every tissue molecule in humans
- Unlock Artificial General Intelligence (AGI) via quantum
- A greener world via QRAM
- Unhackable everything
- Your GPS doesn't lead you into the lake (optimal routing)

Acknowledgement

Credit to Qureca for news in quantum

doitnov

Where will you put your money?