華 南 煮 煮 大 學 课程论文

关于双曲型偏微分方程求解方法的总结

姓 名 陈柏均

学 号 202225110102

学院 名称 数学与信息学院

专业班级 数学与应用数学1班

提 交 日 期 2025年7月2日

评阅分数 _____

本文系统地探讨了二阶线性偏微分方程,特别是双曲型方程的求解策略。首先,文章从特征理论出发,根据判别式 $\Delta = b^2 - 4ac$ 的符号将二阶线性方程分为双曲型、抛物型和椭圆型,并详细阐述了如何通过特征线进行坐标变换,将双曲型方程化为更易于分析的标准型。

对于线性问题,叠加原理是核心的分解工具。一个复杂的非齐次问题可以被分解为方程非齐次、初始条件非齐次和边界条件非齐次三个(或两个)更简单的子问题。针对这些子问题,本文介绍了两种关键的齐次化技术:第一,对于非齐次边界条件,利用多项式插值的思想构造辅助函数,将其转化为齐次边界条件,但代价是可能引入新的非齐次项和修正初始条件;第二,对于非齐次方程,应用Duhamel原理,将非齐次项的影响转移到初始条件上,从而将问题转化为求解一个参数化的齐次方程族。

在求解核心的齐次方程时,本文根据不同边界条件给出了多种方法。对于无界问题,通过求解传输方程引出求解波动方程的达朗贝尔(d'Alembert)公式。对于有界或半直线上的问题,若满足相容性条件,可通过反射法(奇偶延拓)将问题延拓至全空间,从而继续使用达朗贝尔公式。作为一种更普适的方法,分离变量法被详细介绍,它能系统地处理各种齐次边界条件下的有界问题,通过求解本征值问题将偏微分方程转化为常微分方程组。

目录

1	二阶线性偏微分方程按特征分类与标准化										
	1.1	二阶方程的特征理论	6								
	1.2	方程的分类与标准型	7								
		1.2.1 双曲型方程 $(\Delta > 0)$	8								
2	按达	安边界条件分类偏微分方程 11									
	2.1	有界	11								
		2.1.1 第一类边界	11								
		2.1.2 第二类边界	11								
		2.1.3 两种混合	11								
	2.2	半直线	12								
		2.2.1 第一边界	12								
		2.2.2 第二边界	12								
	2.3	无界	12								
3	叠加	叠加原理 12									
	3.1	方程非齐次	12								
	3.2	初始条件非齐次	13								
	3.3	边界条件非齐次	13								
4	边界	边界条件齐次化									
	4.1	第一边界条件齐次化	14								
	4.2	第二边界条件齐次化	15								
	4.3	第一混合边界条件齐次化	16								
	4.4	第二混合边界条件齐次化	16								
	4.5	总结	17								
5	Duhamamel原理之方程齐次化 17										
	5.1	有界非齐次方程	17								
	5.2	无界非齐次方程	18								
6	一阶	划线性方程之传输方程	20								
	6.1	波的传播求解常系数齐次传输方程	20								

		6.1.1	问题描述	20						
		6.1.2	通解	20						
		6.1.3	初值问题之特解	21						
	6.2	波的传	传播求解常系数非齐次传输方程	21						
		6.2.1	问题描述	21						
		6.2.2	求解	21						
7	一维无界齐次波动方程 22									
	7.1	d' Ale	embert 公式	22						
		7.1.1	问题描述	22						
		7.1.2	求解	22						
8	反射法解决各种边界条件的齐次波动方程 2:									
	8.1	第一边	也值条件半直线问题	23						
		8.1.1	问题描述	23						
		8.1.2	做奇延拓	23						
		8.1.3	边界条件与方程验证	24						
	8.2	第二边	位值条件半直线问题	26						
		8.2.1	问题描述	26						
		8.2.2	做偶延拓	26						
	8.3	有界第	等一边值条件之反射法	27						
		8.3.1	问题描述	27						
		8.3.2	核心思想	27						
		8.3.3	达朗贝尔公式的应用	27						
	8.4	有界第	5二边值条件之反射法	28						
	8.5	第一种	中有界混合边界问题之反射法	29						
	8.6	第二种	中有界混合边界问题之反射法	29						
9	有界	有界波动方程之分离变量法 29								
	9.1	第一边	也值条件之分离变量法	29						
		9.1.1	问题描述	29						
		9.1.2	核心思想	30						
		9.1.3	空间常微分方程的求解	30						
		9.1.4	时间常微分方程的求解	31						

参考文献	献		47
	9.4.7	例题	44
	9.4.6	初始条件求系数	43
	9.4.5	得偏微分方程通解	43
	9.4.4	时间常微分方程的求解	43
	9.4.3	空间常微分方程的求解	42
	9.4.2	核心思想	42
	9.4.1	问题描述	41
9.4	第二混	是合边界条件	41
	9.3.6	初始条件求系数	41
	9.3.5	得偏微分方程通解	40
	9.3.4	时间常微分方程的求解	40
	9.3.3	空间常微分方程的求解	39
	9.3.2	核心思想	39
	9.3.1	问题描述	39
9.3	第一混	是合边界条件	39
	9.2.6	初始条件求系数	38
	9.2.5	得偏微分方程通解	38
	9.2.4	时间常微分方程的求解	37
	9.2.3	空间常微分方程的求解	36
	9.2.2	核心思想	36
-	9.2.1		35
9.2		2值条件	35
	9.1.8	例题	34
	9.1.7	用数分知识求系数	33
	9.1.6	初始条件求系数	32
	9.1.5	得偏微分方程通解	32

1 二阶线性偏微分方程按特征分类与标准化

1.1 二阶方程的特征理论

考虑两个自变量的二阶拟线性偏微分方程的一般形式:

$$au_{xx} + bu_{xy} + cu_{yy} = F,$$
 (1.1.1)

其中系数 a, b, c 和非齐次项 F 都是 x, y, u, u_x, u_y 的已知函数。

假设 Γ 是平面 xoy 上的一条光滑曲线,我们在这条曲线上给定所谓的柯西初值条件,即函数 u 及其一阶偏导数的值:

这样的定解问题称为柯西问题。核心问题是: 定解问题 (1.1.1) 和 (1.1.2) 的解是否存在 且唯一?

为了回答这个问题,我们退一步思考:能否根据给定的方程和初值条件,唯一地确定解的所有二阶偏导数 u_{xx},u_{xy},u_{yy} 在曲线 Γ 上的值?如果连二阶导数都无法确定,解的存在唯一性就无从谈起。

设曲线 Γ 的参数方程为 $x=\varphi(s),y=\psi(s)$ 。那么,柯西条件 (1.1.2) 可以更具体地 写为:

$$\begin{cases} u|_{\Gamma} = u(\varphi(s), \psi(s)) = u^{0}(s), \\ u_{x}|_{\Gamma} = u_{x}(\varphi(s), \psi(s)) = p^{0}(s), \\ u_{y}|_{\Gamma} = u_{y}(\varphi(s), \psi(s)) = q^{0}(s), \end{cases}$$

$$(1.1.3)$$

其中 $u^0(s), p^0(s), q^0(s)$ 是已知的函数。

首先,这三个给定的函数并非完全独立。对 (1.1.3) 中第一个式子沿曲线 Γ 对参数 s 求导,根据链式法则有:

$$\frac{\mathrm{d}u^0(s)}{\mathrm{d}s} = \frac{\partial u}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}s} + \frac{\partial u}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}s} = u_x\varphi'(s) + u_y\psi'(s).$$

将 u_x 和 u_y 在 Γ 上的值代入,我们得到如下的相容性条件:

$$(u^{0}(s))' = p^{0}(s)\varphi'(s) + q^{0}(s)\psi'(s).$$
(1.1.4)

这表明初始数据必须满足此条件。

接下来,为了求出二阶导数,我们自然地想到对 (1.1.3) 中的后两个式子也沿 Γ 对 s 求导:

$$(p^{0}(s))' = \frac{\mathrm{d}u_{x}}{\mathrm{d}s} = u_{xx}\varphi'(s) + u_{xy}\psi'(s), \tag{1.1.5}$$

$$(q^{0}(s))' = \frac{du_{y}}{ds} = u_{yx}\varphi'(s) + u_{yy}\psi'(s). \tag{1.1.6}$$

假设解 u 是二次连续可微的,即 $u_{xy}=u_{yx}$ 。现在,我们将方程 (1.1.1) 本身(在曲线 Γ 上成立)与上面两个求导得到的式子 (1.1.5)、(1.1.6) 联立,得到一个关于三个未知量 u_{xx},u_{xy},u_{yy} 的线性方程组:

$$\begin{cases} au_{xx} + bu_{xy} + cu_{yy} = F, \\ \varphi'(s)u_{xx} + \psi'(s)u_{xy} = (p^{0}(s))', \\ \varphi'(s)u_{xy} + \psi'(s)u_{yy} = (q^{0}(s))'. \end{cases}$$
(1.1.7)

这个线性系统的系数行列式 D 为:

$$D = \begin{vmatrix} a & b & c \\ \varphi' & \psi' & 0 \\ 0 & \varphi' & \psi' \end{vmatrix} = a(\psi')^2 - b\varphi'\psi' + c(\varphi')^2.$$
 (1.1.8)

- 定义 1.1 (特征曲线). (i) 如果行列式 $D \neq 0$,则线性方程组有唯一解。这意味着我们可以在曲线 Γ 上唯一地确定所有二阶偏导数的值。这样的曲线 Γ 称为方程 (1.1.1) 的非特征曲线。
 - (ii) 如果行列式 D=0,则线性方程组的解不是唯一的(可能有无穷多解或无解,取决于右侧的常数项)。这意味着我们无法在 Γ 上唯一确定二阶导数。这样的曲线 Γ 称为方程 (1.1.1) 的特征曲线。

特征曲线满足的方程 D=0 称为特征方程:

$$a(\psi'(s))^{2} - b\varphi'(s)\psi'(s) + c(\varphi'(s))^{2} = 0.$$
(1.1.9)

注意到 $\varphi'(s) = \frac{dx}{ds}$ 且 $\psi'(s) = \frac{dy}{ds}$ 。用 $(ds)^2$ 除以上式,并考虑到在特征曲线上 $\frac{dy}{dx} = \frac{\psi'(s)}{\varphi'(s)}$,我们得到特征方程的微分形式:

$$a\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - b\frac{\mathrm{d}y}{\mathrm{d}x} + c = 0. \tag{1.1.10}$$

这是一个关于 🖞 的二次方程,解出它就得到了特征曲线的斜率。

1.2 方程的分类与标准型

二阶线性方程的分类是基于特征方程的性质,这在可逆的自变量变换下是不变的。 我们主要根据判别式 $\Delta = b^2 - 4ac$ 的符号来分类。

定义 1.2 (方程的分类). 对于方程 (1.1.1) (这里我们考虑系数 a,b,c 仅依赖于 x,y 的线性情况), 在某一点 (x,y) 定义其判别式为 $\Delta = b^2 - 4ac$ 。

- 若 $\Delta(x,y) > 0$,称方程在该点是双曲型。
- 若 $\Delta(x,y) = 0$,称方程在该点是抛物型。
- 若 $\Delta(x,y) < 0$,称方程在该点是椭圆型。

通过选择恰当的自变量变换,可以将方程化为最简形式,即标准型。这个变换的关键是利用特征曲线作为新的坐标线。

1.2.1 双曲型方程 ($\Delta > 0$)

当 $\Delta > 0$ 时,特征方程 (1.1.10) 有两个不同的实数解,对应两族实特征曲线。

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b + \sqrt{b^2 - 4ac}}{2a} \quad \text{fl} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b - \sqrt{b^2 - 4ac}}{2a}.$$

积分这两组常微分方程,得到两族特征曲线 $\varphi(x,y)=c_1$ 和 $\psi(x,y)=c_2$ 。我们选取新的 坐标变换:

$$\xi = \varphi(x, y), \quad \eta = \psi(x, y).$$

在此变换下,可以证明新坐标系下的系数 A=0 且 C=0,而 $B\neq 0$ 。原方程化为:

$$u_{\xi\eta} + (低阶项) = 0. \tag{1.2.1}$$

这称为双曲型方程的第一标准型。如果再做一个线性变换 $\tilde{x} = \xi + \eta, \tilde{y} = \xi - \eta$,则可以消去混合偏导项,得到:

$$u_{\tilde{x}\tilde{x}} - u_{\tilde{y}\tilde{y}} + (低阶项) = 0. \tag{1.2.2}$$

这称为双曲型方程的第二标准型, 典型的例子就是波动方程。

第一标准型变换验证. 我们来验证,当选取特征曲线 $\varphi(x,y)=c_1$ 和 $\psi(x,y)=c_2$ 作为新坐标 $\xi=\varphi(x,y)$ 和 $\eta=\psi(x,y)$ 时,新方程的系数 A 和 C 确实为零。

在新坐标系下,二阶偏导项的系数为:

$$A = a\varphi_x^2 + b\varphi_x\varphi_y + c\varphi_y^2$$

$$B = a\varphi_x\psi_x + \frac{b}{2}(\varphi_x\psi_y + \varphi_y\psi_x) + c\varphi_y\psi_y$$

$$C = a\psi_x^2 + b\psi_x\psi_y + c\psi_y^2$$

由于 $\varphi(x,y)=c_1$ 是一条特征曲线,它的梯度向量 (φ_x,φ_y) 与曲线的切线方向 $(\mathrm{d} x,\mathrm{d} y)$ 正交,即 $\varphi_x\,\mathrm{d} x+\varphi_y\,\mathrm{d} y=0$,所以 $\frac{\mathrm{d} y}{\mathrm{d} x}=-\frac{\varphi_x}{\varphi_y}$ 。

将此代入特征方程 (1.1.10):

$$a\left(-\frac{\varphi_x}{\varphi_y}\right)^2 - b\left(-\frac{\varphi_x}{\varphi_y}\right) + c = 0$$

两边同乘以 φ_y^2 (假设 $\varphi_y \neq 0$),得到:

$$a\varphi_x^2 + b\varphi_x\varphi_y + c\varphi_y^2 = 0.$$

这正是新系数 A 的表达式。因此,A=0。

同理,由于 $\psi(x,y)=c_2$ 也是一条特征曲线,可证 C=0。

对于系数 B,由于 φ 和 ψ 来自两个不同的特征根,它们是线性无关的,可以证明 $B \neq 0$ 。因此,方程成功化为只含混合偏导数 $u_{\xi\eta}$ 的第一标准型。

第二标准型变换验证. 我们从双曲型方程的第一标准型出发:

$$u_{\xi\eta} + D_0 u_{\xi} + E_0 u_{\eta} + G_0 u = F_0.$$

引入新的线性变换:

$$\tilde{x} = \xi + \eta, \quad \tilde{y} = \xi - \eta.$$

反过来, 我们有 $\xi = \frac{1}{2}(\tilde{x} + \tilde{y})$ 和 $\eta = \frac{1}{2}(\tilde{x} - \tilde{y})$ 。

我们的目标是计算 $u_{\xi\eta}$ 如何用新坐标 (\tilde{x}, \tilde{y}) 的偏导数来表示。首先,使用链式法则计算一阶导数:

$$u_{\xi} = \frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial \xi} + \frac{\partial u}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \xi} = u_{\tilde{x}} \cdot 1 + u_{\tilde{y}} \cdot 1 = u_{\tilde{x}} + u_{\tilde{y}},$$

$$u_{\eta} = \frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial \eta} + \frac{\partial u}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \eta} = u_{\tilde{x}} \cdot 1 + u_{\tilde{y}} \cdot (-1) = u_{\tilde{x}} - u_{\tilde{y}}.$$

接下来,计算混合偏导数 $u_{\xi\eta}$ 。 我们将算子 $\frac{\partial}{\partial\eta}$ 作用于 u_{ξ} :

$$u_{\xi\eta} = \frac{\partial}{\partial\eta}(u_{\xi}) = \frac{\partial}{\partial\eta}(u_{\tilde{x}} + u_{\tilde{y}})$$
$$= \frac{\partial(u_{\tilde{x}})}{\partial\eta} + \frac{\partial(u_{\tilde{y}})}{\partial\eta}.$$

再次应用链式法则:

$$\frac{\partial(u_{\tilde{x}})}{\partial \eta} = \frac{\partial(u_{\tilde{x}})}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial \eta} + \frac{\partial(u_{\tilde{x}})}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \eta} = u_{\tilde{x}\tilde{x}} \cdot 1 + u_{\tilde{x}\tilde{y}} \cdot (-1) = u_{\tilde{x}\tilde{x}} - u_{\tilde{x}\tilde{y}},$$

$$\frac{\partial(u_{\tilde{y}})}{\partial \eta} = \frac{\partial(u_{\tilde{y}})}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial \eta} + \frac{\partial(u_{\tilde{y}})}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \eta} = u_{\tilde{y}\tilde{x}} \cdot 1 + u_{\tilde{y}\tilde{y}} \cdot (-1) = u_{\tilde{y}\tilde{x}} - u_{\tilde{y}\tilde{y}}.$$

将这两部分加起来,并利用 $u_{\tilde{x}\tilde{y}} = u_{\tilde{y}\tilde{x}}$,我们得到:

$$u_{\xi\eta} = (u_{\tilde{x}\tilde{x}} - u_{\tilde{x}\tilde{y}}) + (u_{\tilde{y}\tilde{x}} - u_{\tilde{y}\tilde{y}}) = u_{\tilde{x}\tilde{x}} - u_{\tilde{y}\tilde{y}}.$$

现在,将 $u_{\xi\eta}$, u_{ξ} ,和 u_{η} 的新表达式代回第一标准型方程:

$$(u_{\tilde{x}\tilde{x}} - u_{\tilde{y}\tilde{y}}) + D_0(u_{\tilde{x}} + u_{\tilde{y}}) + E_0(u_{\tilde{x}} - u_{\tilde{y}}) + G_0u = F_0.$$

整理后得到:

$$u_{\tilde{x}\tilde{x}} - u_{\tilde{u}\tilde{y}} + (D_0 + E_0)u_{\tilde{x}} + (D_0 - E_0)u_{\tilde{y}} + G_0u = F_0.$$

这是一个只包含 $u_{\tilde{x}\tilde{x}}$ 和 $u_{\tilde{y}\tilde{y}}$ 作为二阶项的形式,即双曲型方程的第二标准型。

注记 1.3. 化为第二标准型就是我们的波动方程,由达朗贝尔公式可知,双曲线方程可以 写成第二标准型后两条特征线变量的组合,而且特征线变量不会杂糅到一起。

$$u(\xi, \eta) = F(\xi) + G(\eta)$$

例题 1.2.1. 判断下列方程的类型,并化成标准型:

$$3u_{xx} + 2u_{xy} - u_{yy} + u_x + u_y = 0.$$

解 1.2.1. 步骤1. 判断类型

系数 A=3, B=2, C=-1。判别式 $\Delta=B^2-4AC=2^2-4(3)(-1)=4+12=16>0$ 。方程为双曲型。

步骤2. 求解特征方程

特征方程为 $A(\frac{dy}{dx})^2 - B\frac{dy}{dx} + C = 0 \implies 3(\frac{dy}{dx})^2 - 2\frac{dy}{dx} - 1 = 0$ 。分解得 $(3\frac{dy}{dx} + 1)(\frac{dy}{dx} - 1) = 0$ 。特征方向为 $\lambda_1 = 1$ 和 $\lambda_2 = -1/3$ 。对应的特征线方程为 $y - x = C_1$ 和 $y + \frac{1}{3}x = C_2$ (或 $3y + x = C_2$)。

步骤3. 进行坐标变换

取新坐标 $\xi = y - x, \eta = 3y + x$ 。计算偏导数:

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x} = -u_{\xi} + u_{\eta}$$

$$u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y} = u_{\xi} + 3u_{\eta}$$

$$u_{xx} = \frac{\partial}{\partial x}(-u_{\xi} + u_{\eta}) = -(-u_{\xi\xi} + u_{\xi\eta}) + (-u_{\eta\xi} + u_{\eta\eta}) = u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}$$

$$u_{xy} = \frac{\partial}{\partial y}(-u_{\xi} + u_{\eta}) = -(u_{\xi\xi} + 3u_{\xi\eta}) + (u_{\eta\xi} + 3u_{\eta\eta}) = -u_{\xi\xi} - 2u_{\xi\eta} + 3u_{\eta\eta}$$

$$u_{yy} = \frac{\partial}{\partial y}(u_{\xi} + 3u_{\eta}) = (u_{\xi\xi} + 3u_{\xi\eta}) + 3(u_{\eta\xi} + 3u_{\eta\eta}) = u_{\xi\xi} + 6u_{\xi\eta} + 9u_{\eta\eta}$$

步骤4. 代入原方程化简

二阶項:
$$3u_{xx} + 2u_{xy} - u_{yy} = 3(u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}) + 2(-u_{\xi\xi} - 2u_{\xi\eta} + 3u_{\eta\eta}) - (u_{\xi\xi} + 6u_{\xi\eta} + 9u_{\eta\eta}) = (3 - 2 - 1)u_{\xi\xi} + (-6 - 4 - 6)u_{\xi\eta} + (3 + 6 - 9)u_{\eta\eta} = -16u_{\xi\eta} \circ$$
一阶項: $u_x + u_y = (-u_{\xi} + u_{\eta}) + (u_{\xi} + 3u_{\eta}) = 4u_{\eta} \circ$
合并得到 $-16u_{\xi\eta} + 4u_{\eta} = 0$ 。两边同除以 -4 ,得到标准型:

$$4u_{\xi\eta} - u_{\eta} = 0$$

2 按边界条件分类偏微分方程

一般的偏微分方程是由空间变量 $x \in \mathbb{R}$ 和时间变量 $t \ge 0$ 构成的问题,有三个条件: 方程,初始条件(t = 0),边界条件(x = 0, l = 0).

根据空间变量*x*的范围,即边界条件可以分类成三类问题,再根据每类问题的边界条件是原函数还是一阶导函数可分类子问题7个。

下面用波动方程举例,方程原则上可以算任意方程。

2.1 有界

有界指的是空间变量 $x \in [0, l]$ 和时间变量 $t \ge 0$.

x = 0, l = 0都有函数,可能都是原函数(第一类边界,也叫Dirichlet边界条件);可能都是一阶导函数(第二类边界);可能一个是原函数,另一个是一阶偏导函数(混合边界,有两个)。

2.1.1 第一类边界

x=0, l=0都是原函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u(0, t) = \mu_1(t), \ u(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(2.1.1)

2.1.2 第二类边界

x=0, l=0都是一阶偏导函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u_x(0, t) = \mu_1(t), \ u_x(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(2.1.2)

2.1.3 两种混合

第一种: x = 0处是原函数, l = 0是一阶偏导函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u(0, t) = \mu_1(t), \ u_x(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(2.1.3)

第二种: x = 0处是一阶偏导函数, l = 0是原函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u_x(0, t) = \mu_1(t), \ u(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(2.1.4)

2.2 半直线

半直线指空间变量 $x \ge 0$,时间变量 $t \ge 0$

故边界条件只有x = 0一个,再根据第一边界,第二边界就可以分成两类。

2.2.1 第一边界

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & x > 0, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & x > 0, \\ u(0, t) = \mu_1(t), & t \ge 0. \end{cases}$$
 (2.2.1)

2.2.2 第二边界

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & x > 0, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & x > 0, \\ u_x(0, t) = \mu_1(t), & t \ge 0. \end{cases}$$
 (2.2.2)

2.3 无界

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & x \in (-\infty, +\infty), \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), \ x \in (-\infty, +\infty) \end{cases}$$
(2.3.1)

3 叠加原理

叠加原理是一种思想,和分离变量法一样。对于三个非齐次条件都是线性的,就可以分解成三个方程的叠加。下面举第一边界条件的有界波动方程做例子.

对于问题(2.1.1),我们可以使用叠加原理将其分解为3个子问题.

3.1 方程非齐次

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = 0, \ u_t(x, 0) = 0, & 0 \le x \le l, \\ u(0, t) = 0, \ u(l, t) = 0, & t \ge 0. \end{cases}$$

$$(3.1.1)$$

注记 3.1. 对于方程(3.1.1)我们用Duhamamel原理,将方程齐次化,方程的函数转移到初始条件最高偏导函数上,与7个边界条件没有关系,化成方程(3.2.1).

3.2 初始条件非齐次

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < l, \ t > 0, \\ u(x,0) = \varphi(x), \ u_t(x,0) = \psi(x), & 0 \le x \le l, \\ u(0,t) = 0, \ u(l,t) = 0, & t \ge 0. \end{cases}$$
(3.2.1)

注记 3.2. 这个也是最基础的方程,方程(3.1.1)和(3.3.1)都可以齐次化成这样的方程,故这个方程是我们最终要解决的方程。

3.3 边界条件非齐次

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < l, \ t > 0, \\ u(x,0) = 0, \ u_t(x,0) = 0, & 0 \le x \le l, \\ u(0,t) = \mu_1(t), \ u(l,t) = \mu_2(t), & t \ge 0. \end{cases}$$
(3.3.1)

通过数值分析中的线性插值可以把任何边界条件其次化,转化成下面的方程:

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = \varphi_1(x), & v_t|_{t=0} = \psi_1(x), & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0. \end{cases}$$
(3.3.2)

注记 3.3. 对于问题(3.3.2),我们可以使用叠加原理将其分解为两个子问题,又回到上面的两个方程(3.1.1)和(3.2.1)

4 边界条件齐次化

本质上就是数值分析上的插值。知道两个端点的信息或者一个点的信息,用函数拟合插值。我这里不需要拟合,原则上可以选取任意满足边界条件的函数,为了方便后面的方程计算,我们一般选取牛顿插值法,即多项式插值。

因为我们只有两个条件,但是如果是多次,比如四次的多项式有4个未知数,而这些未知数我们可以随便取,故我们一般为简化后面的计算,让待定的最高的系数为0(原则上我们取多少次多项式都可以,但是为了后面的计算我们肯定是想让次数最低)

第一边界条件两个都是原函数,明显用一次,两个参数就可以被确定;第二边界条件两个都是导函数,明显用二次多项式,求导后为一次,两个参数可根据导函数确定;故混合边界条件一定不会超过二次。所以我们干脆混合边界条件直接全部取二次就好了,到时候让最高次待定系数为0就好(如果你看了后面,其实都是一次,我这里只是为了思路通畅)

4.1 第一边界条件齐次化

要想利用Duhamamel原理,我们首先将第一边界条件齐次化,即要找到一个恰当的变换将第一边界值变为零。对于第一类边界条件的有界波动方程(2.1.1):

由边界条件

$$u(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t), \quad t \ge 0.$$
 (4.1.1)

设U(x,t) = ax + b

$$\begin{cases} u(0,t) = \mu_1(t) = U(0,t) = b, \\ u(l,t) = \mu_2(t) = U(l,t) = al + \mu_1(t), \end{cases}$$
$$\begin{cases} a = \frac{1}{l}(\mu_2(t) - \mu_1(t)), \\ b = \mu_1(t). \end{cases}$$

对方程 (2.1.1)构造关于变量 x 的线性辅助函数 (直线方程):

$$U(x,t) = \mu_1(t) + \frac{x}{l}(\mu_2(t) - \mu_1(t)), \tag{4.1.2}$$

作变换:

$$v(x,t) = u(x,t) - U(x,t), (4.1.3)$$

代入方程(2.1.1),得到方程(4.1.4):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v(x, 0) = \varphi_1(x), & v_t(x, 0) = \psi_1(x), & 0 \le x \le l, \\ v(0, t) = 0, & v(l, t) = 0. \end{cases}$$

$$(4.1.4)$$

其中:

$$\begin{cases}
f_1(x,t) = f(x,t) - \mu_1''(t) - \frac{x}{l}(\mu_2''(t) - \mu_1''(t)), \\
\varphi_1(x) = \varphi(x) - \mu_1(0) - \frac{x}{l}(\mu_2(0) - \mu_1(0)), \\
\psi_1(x) = \psi(x) - \mu_1'(0) - \frac{x}{l}(\mu_2'(0) - \mu_1'(0)).
\end{cases} (4.1.5)$$

这样我们就完成了第一边界条件的齐次化

4.2 第二边界条件齐次化

为利用Duhamel原理,需将非齐次Neumann边界条件齐次化,即构造变换使边界导数归零。

以下我们仅考虑如下第二边界条件的有界波动方程(2.1.2):

设
$$U(x,t) = ax^2 + bx + c$$

$$\begin{cases} u_x(0,t) = \mu_1(t) = U_x(0,t) = b, \\ u_x(l,t) = \mu_2(t) = U_x(l,t) = 2al + b, \end{cases}$$

$$\begin{cases} a = \frac{1}{2l}(\mu_2(t) - \mu_1(t)) \\ b = \mu_1(t) \end{cases}$$

构造辅助函数:

$$U(x,t) = x\mu_1(t) + \frac{x^2}{2l} (\mu_2(t) - \mu_1(t)), \qquad (4.2.1)$$

作变换:

$$v(x,t) = u(x,t) - U(x,t), (4.2.2)$$

代入原方程(2.1.2),得到方程(4.2.3):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_2(x, t), & 0 < x < l, \ t > 0, \\ v(x, 0) = \varphi_2(x), & v_t(x, 0) = \psi_2(x), & 0 \le x \le l, \\ v_x(0, t) = 0, & v_x(l, t) = 0. \end{cases}$$

$$(4.2.3)$$

其中:

$$\begin{cases}
f_2(x,t) = f(x,t) - x\mu_1''(t) - \frac{x^2}{2l} \left(\mu_2''(t) - \mu_1''(t)\right) + \frac{a^2}{l} \left(\mu_2(t) - \mu_1(t)\right), \\
\varphi_2(x) = \varphi(x) - x\mu_1(0) - \frac{x^2}{2l} \left(\mu_2(0) - \mu_1(0)\right), \\
\psi_2(x) = \psi(x) - x\mu_1'(0) - \frac{x^2}{2l} \left(\mu_2'(0) - \mu_1'(0)\right),
\end{cases} (4.2.4)$$

4.3 第一混合边界条件齐次化

本质上就是数值分析上的插值,原理同上。对于问题(2.1.3) 由边界条件

$$u(0,t) = \mu_1(t), \quad u_x(l,t) = \mu_2(t), \quad t \ge 0.$$
 (4.3.1)

设 $u(x,t) = U(x,t) = ax^2 + bx + c$

$$\begin{cases} u(0,t) = \mu_1(t) = U(0,t) = c, \\ u_x(l,t) = \mu_2(t) = U_x(l,t) = 2al + b, \end{cases}$$

$$\begin{cases} a = 0(令最高次待定系数为0) \\ b = \mu_2(t) \\ c = \mu_1(t) \end{cases}$$

对方程 (2.1.3)构造关于变量 x 的线性辅助函数 (直线方程):

$$U(x,t) = \mu_2(t)x + \mu_1(t), \tag{4.3.2}$$

作变换:

$$v(x,t) = u(x,t) - U(x,t), \tag{4.3.3}$$

代入方程(2.1.3), 得到方程(4.3.4):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_3(x, t), & 0 < x < l, \ t > 0, \\ v(x, 0) = \varphi_3(x), & v_t(x, 0) = \psi_3(x), & 0 \le x \le l, \\ v(0, t) = 0, & v_x(l, t) = 0. \end{cases}$$

$$(4.3.4)$$

其中:

$$\begin{cases}
f_3(x,t) = f(x,t) - (\mu_2''(t)x + \mu_1''(t)), \\
\varphi_3(x) = \varphi(x) - (\mu_2(0)x + \mu_1(0)), \\
\psi_3(x) = \psi(x) - (\mu_2'(0)x + \mu_1'(0)).
\end{cases} (4.3.5)$$

4.4 第二混合边界条件齐次化

本质上就是数值分析上的插值,原理同上。对于问题(2.1.4) 由边界条件

$$u_x(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t), \quad t \ge 0.$$
 (4.4.1)

设
$$u(x,t) = U(x,t) = ax^2 + bx + c$$

$$\begin{cases} u_x(0,t) = \mu_1(t) = U_x(0,t) = b, \\ u(l,t) = \mu_2(t) = U(l,t) = al^2 + bl + c, \end{cases}$$

$$\begin{cases} a = 0 (\diamondsuit 最 高次待定系数为0) \\ b = \mu_1(t) \\ c = \mu_2(t) - \mu_1(t)l \end{cases}$$

对方程 (2.1.4)构造关于变量 x 的线性辅助函数 (直线方程):

$$U(x,t) = \mu_1(t)(x-l) + \mu_2(t), \tag{4.4.2}$$

作变换:

$$v(x,t) = u(x,t) - U(x,t), (4.4.3)$$

代入方程(2.1.4),得到方程(4.4.4):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_4(x, t), & 0 < x < l, \ t > 0, \\ v(x, 0) = \varphi_4(x), & v_t(x, 0) = \psi_4(x), & 0 \le x \le l, \\ v_x(0, t) = 0, & v(l, t) = 0. \end{cases}$$

$$(4.4.4)$$

其中:

$$\begin{cases}
f_4(x,t) = f(x,t) - \mu_1''(t)(x-l) - \mu_2''(t), \\
\varphi_4(x) = \varphi(x) - \mu_1(0)(x-l) - \mu_2(0), \\
\psi_4(x) = \psi(x) - \mu_1'(0)(x-l) - \mu_2'(0).
\end{cases} (4.4.5)$$

4.5 总结

由上可得其实就是第二边界条件需要设二次多项式,其他都是一次就可以了。

5 Duhamamel原理之方程齐次化

不管是第一边界条件,第二边界条件,混合边界条件,无界情况都一样。因为方程 齐次化只与方程和初始条件有关,与边界边界条件无关。下面只举第一边界,无界的。

5.1 有界非齐次方程

对于第一边界非齐次方程问题:

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0, \end{cases}$$

$$(5.1.1)$$

若 $W(x,t,\tau)$ 是以下定解问题的解:

$$\begin{cases} W_{tt} - a^2 W_{xx} = 0, & 0 \le x \le l, t > \tau, \\ W|_{t=\tau} = 0, & \frac{\partial W}{\partial t}|_{t=\tau} = f_1(x, \tau), & 0 \le x \le l, \\ W|_{x=0} = 0, & W|_{x=l} = 0, & t \ge 0, \end{cases}$$
(5.1.2)

引入新时间变量 $s = t - \tau$ 。则 w 的问题可以转化为关于 s 的标准初值问题:

$$\begin{cases} w_{ss} - w_{xx} = 0, & s > 0, \\ W|_{s=0} = 0, & \frac{\partial W}{\partial t}|_{s=0} = f_1(x, s), & 0 \le x \le l, \\ W|_{x=0} = 0, & W|_{x=l} = 0, & t \ge 0, \end{cases}$$
(5.1.3)

那么,原非齐次波动方程的解可以表示为:

$$v(x,t) = \int_0^t W(x,s) \, d\tau$$
 (5.1.4)

那方程的函数转移到初始条件最高偏导函数上,与7个边界条件没有关系.

所以我们最终要解决的就是初始条件非齐次,方程和边界条件齐次(4.2.3)这样的方程.

5.2 无界非齐次方程

对于无界区域中的非齐次波动方程:

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & -\infty < x < \infty, \ t > 0 \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & -\infty < x < \infty \end{cases}$$
(5.2.1)

假设 $W(x,t,\tau)$ 是以下齐次波动方程的解:

$$\begin{cases} W_{tt} - a^2 W_{xx} = 0, & -\infty < x < \infty, t > \tau, \\ W|_{t=\tau} = 0, & \frac{\partial W}{\partial t}|_{t=\tau} = f_1(x,\tau), & -\infty < x < \infty, \end{cases}$$

$$(5.2.2)$$

引入新时间变量 $s = t - \tau$ 。则 w 的问题可以转化为关于 s 的标准初值问题:

$$\begin{cases} w_{ss} - w_{xx} = 0, & -\infty < x < \infty, s > 0, \\ W|_{s=0} = 0, & \frac{\partial W}{\partial t}|_{s=0} = f_1(x, s), & -\infty < x < \infty, \end{cases}$$

$$(5.2.3)$$

那么,原非齐次波动方程的解可以表示为:

$$v(x,t) = \int_0^t W(x,s) \, d\tau$$
 (5.2.4)

证明. 证明Duhamamel原理

我们要验证函数 $v(x,t) = \int_0^t W(x,t,\tau) d\tau$ 确实是原非齐次问题的解。

1. 验证初始条件

当 t=0 时,积分上下限重合,显然有:

$$v(x,0) = \int_0^0 W(x,0,\tau) \, d\tau = 0.$$

接下来计算 $v_t(x,t)$ 。我们使用莱布尼茨积分法则:

$$\frac{d}{dt} \int_{a(t)}^{b(t)} f(t,\tau) d\tau = f(t,b(t)) \cdot b'(t) - f(t,a(t)) \cdot a'(t) + \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t}(t,\tau) d\tau.$$

应用到 v(x,t) 上:

$$v_t(x,t) = \frac{\partial}{\partial t} \int_0^t W(x,t,\tau) d\tau$$

$$= W(x,t,t) \cdot \frac{d}{dt}(t) - W(x,t,0) \cdot \frac{d}{dt}(0) + \int_0^t \frac{\partial W}{\partial t}(x,t,\tau) d\tau$$

$$= W(x,t,t) + \int_0^t W_t(x,t,\tau) d\tau.$$

根据辅助函数 W 的定义,在初始时刻 $t=\tau$ 时, $W(x,\tau,\tau)=0$ 。因此,W(x,t,t)=0。 所以,

$$v_t(x,t) = \int_0^t W_t(x,t,\tau) d\tau.$$

当 t=0 时,

$$v_t(x,0) = \int_0^0 W_t(x,0,\tau) d\tau = 0.$$

至此,两个零初始条件都得到了验证。

2. 验证偏微分方程

我们对 $v_t(x,t)$ 再次关于 t 求导:

$$v_{tt}(x,t) = \frac{\partial}{\partial t} \left(\int_0^t W_t(x,t,\tau) d\tau \right)$$
$$= W_t(x,t,t) + \int_0^t W_{tt}(x,t,\tau) d\tau.$$

根据辅助函数 W 的定义,在初始时刻 $t = \tau$ 时, $\frac{\partial W}{\partial t}\Big|_{t=\tau} = f_1(x,\tau)$ 。因此, $W_t(x,t,t) = f_1(x,t)$ 。代入上式得到:

$$v_{tt}(x,t) = f_1(x,t) + \int_0^t W_{tt}(x,t,\tau) d\tau.$$

现在计算空间二阶导数:

$$v_{xx}(x,t) = \frac{\partial^2}{\partial x^2} \int_0^t W(x,t,\tau) d\tau = \int_0^t W_{xx}(x,t,\tau) d\tau.$$

将 v_{tt} 和 v_{xx} 代入波动算子:

$$v_{tt} - a^2 v_{xx} = \left(f_1(x, t) + \int_0^t W_{tt}(x, t, \tau) d\tau \right) - a^2 \int_0^t W_{xx}(x, t, \tau) d\tau$$
$$= f_1(x, t) + \int_0^t \left(W_{tt}(x, t, \tau) - a^2 W_{xx}(x, t, \tau) \right) d\tau.$$

因为 W 是齐次波动方程的解,所以被积函数 $W_{tt} - a^2 W_{xx} = 0$ 。因此,

$$v_{tt} - a^2 v_{xx} = f_1(x, t) + 0 = f_1(x, t).$$

这验证了 v(x,t) 满足非齐次波动方程。

综上所述,
$$v(x,t) = \int_0^t W(x,t,\tau) d\tau$$
 是原问题的解。

6 一阶拟线性方程之传输方程

注记 6.1. 在直接求解二阶波动方程之前,我们先研究一个更简单的一阶方程——传输方程。它的解法和物理图像是理解更复杂的波动现象的基础,特别是,我们将会看到波动方程的算子可以分解为两个传输算子的乘积,这为求解波动方程提供了直接的途径。

6.1 波的传播求解常系数齐次传输方程

6.1.1 问题描述

在一阶线性方程中,有一种最简单的形如

$$u_t + b \cdot Du = 0, \quad x \in \mathbb{R}^n, \ t \in (0, \infty)$$
 (6.1.1)

的方程,称为传输方程,其中, $b=(b_1,b_2,\cdots,b_n)$ 是已知 n 维常向量,u=u(x,t), $Du=(u_{x_1},u_{x_2},\cdots,u_{x_n})$ 。

6.1.2 通解

$$\frac{\partial u}{\partial t} + b \frac{\partial u}{\partial x} = (1, b) \cdot \left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x} \right) = 0 \tag{6.1.2}$$

 $\left(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right)$ 为梯度,(1,b)为方向,一整个乘积为方向导数,方向导数为0意味着,u(t,x)=C在切向量为(1,b)这条曲线上,即

$$u(t,x)|_{\Gamma} = C \tag{6.1.3}$$

由方程的形式可以看出,u(x,t) 沿(b,1)微商等于零。事实上,固定一点 (x,t) ∈ \mathbb{R}^{n+1} ,记过该直线 Γ 的参数方程为 (x+bs,t+s),s ∈ \mathbb{R} ,考查函数 u 在该直线上的值。令

$$z(s) = u(x + bs, t + s), \quad s \in \mathbb{R}. \tag{6.1.4}$$

于是

$$\frac{dz}{ds} = Du(x + sb, t + s) \cdot b + u_t(x + sb, t + s) = 0, \tag{6.1.5}$$

因此,函数 z(s) 在过点 (x,t) 且具有方向 $(b,1) \in \mathbb{R}^{n+1}$ 的直线上取常数值,特征线上的取值和s没有关系(和下文中特征线法求解传输方程的(1,p(x,y))含义相同)。所以,如果我们知道解 u 在这条直线上一点的值,则就得到它沿此直线上的值。这就引出下面求解初值问题的方法。

6.1.3 初值问题之特解

设 $a \in \mathbb{R}^n$ 是已知常向量, $f: \mathbb{R}^n \to \mathbb{R}$ 是给定函数。考察传输方程的初值问题

$$\begin{cases} u_t + a \cdot Du = 0, & (x, t) \in \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = f(x), & x \in \mathbb{R}^n. \end{cases}$$

$$(6.1.6)$$

如上取定 (x,t),过点 (x,t) 且具有方向 (a,1) 的直线的参数式为 (x+as,t+s), $s \in \mathbb{R}$ 。当 s=-t 时,此直线与平面 $\Gamma:\mathbb{R}^n \times \{t=0\}$ 相交于点 (x-at,0)。由上文分析知 u 沿此直线取常数值,而由初值条件便得

$$u(x,t) = z(0) = z(-t) = u(x - at, 0) = f(x - at), \quad x \in \mathbb{R}^n, \ t > 0.$$
 (6.1.7)

注记 6.2. 这表示对于每一个特定的点都有一条特征线,他的函数为特定的f。取遍每个特征线就能取遍域内所有点,对于任意的点都有任意的函数表达式。因为上面的式子,at是任意的,所以x-at是任意的,可以取遍整个

所以,如果有解,必由上式子表示,因此解是唯一的,反之,若 f 一阶连续可微,则可直接验证由上式子表示的函数 u(x,t) 是问题的解。这就是齐次传输方程初值问题解的存在唯一性。

6.2 波的传播求解常系数非齐次传输方程

6.2.1 问题描述

考察非齐次传输方程的初值问题

$$\begin{cases} u_t + a \cdot Du = f, & x \in \mathbb{R}^n, t > 0, \\ u(x,0) = g(x) \end{cases}$$

$$(6.2.1)$$

6.2.2 求解

受齐次问题解法的启示,我们仍然先取定 $(x,t)\in\mathbb{R}^{n+1}$,对 $s\in\mathbb{R}$,令 z(s)=u(x+as,t+s),则

$$\frac{dz}{ds} = Du(x + as, t + s) \cdot a + u_t(x + as, t + s) = f(x + as, t + s).$$
 (6.2.2)

因此,

$$u(x,t) - u(x - at, 0) = u(x,t) - g(x - at)$$

$$= z(0) - z(-t) = \int_{-t}^{0} \frac{dz}{ds} ds$$

$$= \int_{-t}^{0} f(x + as, t + s) ds$$

$$= \int_{0}^{t} f(x + a(s - t), s) ds.$$
(6.2.3)

于是,得到问题的在 $x \in \mathbb{R}^n$, $t \ge 0$ 上的解

$$u(x,t) = g(x-at) + \int_0^t f(x+a(s-t),s) \,ds.$$
 (6.2.4)

在下一章,这个公式将被用来求解一维波动方程。

7 一维无界齐次波动方程

- 7.1 d' Alembert 公式
- 7.1.1 问题描述

先考察初值问题

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & x \in \mathbb{R}, t > 0, \\ u(x, 0) = \varphi(x), & u_t(x, 0) = \psi(x), & x \in \mathbb{R}. \end{cases}$$
 (7.1.1)

7.1.2 求解

由算子复合作用的概念, 易验证下述算子因式分解

$$\left(\frac{\partial}{\partial t} + a\frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - a\frac{\partial}{\partial x}\right) u = u_{tt} - a^2 u_{xx} = 0.$$
 (7.1.2)

$$v(x,t) = \left(\frac{\partial}{\partial t} - a\frac{\partial}{\partial x}\right)u. \tag{7.1.3}$$

$$v_t(x,t) + av_x(x,t) = 0, \quad x \in \mathbb{R}, t > 0.$$
 (7.1.4)

这是一维传输方程,且由(7.1.1)知 v满足初值条件

$$v(x,0) = \psi(x) - a\varphi'(x). \tag{7.1.5}$$

由 (6.1.7), 得

$$v(x,t) = \psi(x-at) - a\varphi'(x-at). \tag{7.1.6}$$

$$u_t(x,t) - au_x(x,t) = \psi(x-at) - a\varphi'(x-at),$$
 (7.1.7)

其中 $(x,t) \in \mathbb{R} \times (0,\infty)$ 。

对此非齐次传输方程,已知 $u(x,0) = \varphi(x)$,用公式(6.2.4)得到

$$u(x,t) = \varphi(x+at) + \int_0^t \left[\psi(x - 2as + at) - a\varphi'(x - 2as + at) \right] ds$$
 (7.1.8)

做变量替换,设 $y = x^2as + at$, dy = 2ads, s(0) = x + at, s(t) = x - at.

$$u(x,t) = \varphi(x+at) + \frac{1}{2a} \int_{x-at}^{x+at} [\psi(y) - a\varphi'(y)] dy$$

= $\frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(y) dy.$ (7.1.9)

称此式为 d'Alembert (达朗贝尔) 公式.

注记 7.1. 而且由后面的方程按特征分类可知,x + at,x - at为第二标准型双曲线方程的两条特征线。

注记 7.2. 由达朗贝尔公式可知,双曲线方程可以写成第二标准型后两条特征线变量的组合,而且特征线变量不会杂糅到一起。

$$u(\xi, \eta) = F(\xi) + G(\eta)$$

8 反射法解决各种边界条件的齐次波动方程

8.1 第一边值条件半直线问题

反射法的核心思想: 利用达朗贝尔公式把解延拓

8.1.1 问题描述

求解半直线 $\mathbb{R}_+ = \{x > 0\}$ 上的初边值问题:

$$\begin{cases} u_{tt} - u_{xx} = 0, & x \in \mathbb{R}_+, t > 0, \\ u(x, 0) = g(x), & u_t(x, 0) = h(x), & x \in \mathbb{R}_+, \\ u(0, t) = 0, & t \ge 0, \end{cases}$$
(8.1.1)

其中, q, h 是已知函数, 满足 q(0) = h(0) = 0。

8.1.2 做奇延拓

先把问题转换到全空间 $\mathbb R$ 上去。为此,对函数 u,g,h 作奇延拓(或称奇反射)如下:

$$\bar{u}(x,t) = \begin{cases} u(x,t), & x \ge 0, t \ge 0, \\ -u(-x,t), & x \le 0, t \ge 0, \end{cases}$$
(8.1.2)

$$\bar{g}(x) = \begin{cases} g(x), & x \ge 0, \\ -g(-x), & x \le 0, \end{cases}$$
 (8.1.3)

$$\bar{h}(x) = \begin{cases} h(x), & x \ge 0, \\ -h(-x), & x \le 0. \end{cases}$$
 (8.1.4)

8.1.3 边界条件与方程验证

设波动方程参数为a,考虑有限区间 $x \in [0, L]$ 的延拓问题。已知f, g为以2L为周期的奇函数,即满足:

$$\forall y \in \mathbb{R}, \begin{cases} f(y+2L) = f(y) \\ f(-y) = -f(y) \\ g(y+2L) = g(y) \\ g(-y) = -g(y) \end{cases}$$

$$(8.1.5)$$

达朗贝尔解表达式 延拓后的解可表示为:

$$u(x,t) = \frac{1}{2}[f(x+at) + f(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} g(y)dy$$
 (8.1.6)

边界点验证

• 左端点x = 0:

$$u(0,t) = \frac{1}{2}[f(at) + f(-at)] + \frac{1}{2a} \int_{-at}^{at} g(y)dy$$
$$= \frac{1}{2}[f(at) - f(at)] + 0 \quad (奇函数性质)$$
$$= 0$$

• 右端点x = L: 利用周期性与奇性

$$u(L,t) = \frac{1}{2}[f(L+at) + f(L-at)] + \frac{1}{2a} \int_{L-at}^{L+at} g(y)dy$$

$$= \frac{1}{2}[f(L+at) + f(-(at-L))] + \frac{1}{2a} \int_{-at}^{at} g(y+L)dy \quad (y \mapsto y-L)$$

$$= \frac{1}{2}[f(L+at) - f(at-L)] + \frac{1}{2a} \int_{-at}^{at} -g(-y+L)dy \quad (周期奇性)$$

$$= \frac{1}{2}[f(L+at) - f(L+at-2L)] + 0 \quad (积分对称性)$$

$$= 0 \quad (f的2L周期性)$$

方程验证

- **正半轴** $x \ge 0$: 直接满足原波动方程

$$\bar{u}(x,t) = -u(y,t) = -u(-x,t)$$

计算二阶导数:

$$\bar{u}_{xx}(x,t) = \frac{\partial^2}{\partial x^2} [-u(-x,t)] = -u_{xx}(-x,t)$$
 (8.1.7)

$$\bar{u}_{tt}(x,t) = \frac{\partial^2}{\partial t^2} [-u(-x,t)] = -u_{tt}(-x,t)$$
 (8.1.8)

验证波动方程:

$$\bar{u}_{tt} - a^2 \bar{u}_{xx} = -u_{tt}(-x, t) + a^2 u_{xx}(-x, t) = 0$$

则 $\bar{u}(x,t)$ 满足问题:

$$\begin{cases} \bar{u}_{tt} - \bar{u}_{xx} = 0, & (x, t) \in \mathbb{R} \times (0, \infty), \\ \bar{u}(x, 0) = \bar{g}(x), & \bar{u}_{t}(x, 0) = \bar{h}(x), & x \in \mathbb{R}. \end{cases}$$
(8.1.9)

区域分析

$$u(x,t) = \begin{cases} \frac{1}{2} \left[g(x+at) + g(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} h(s)ds, & x > at \ge 0\\ \frac{1}{2} \left[g(x+at) - g(at-x) \right] + \frac{1}{2a} \int_{at-x}^{x+at} h(s)ds, & 0 \le x < at \end{cases}$$
(8.1.10)

注记 8.1. 还可以用特征线法对问题 (3.1.1) 求解,即用初值问题中方程的特征线作自变量的变换,把方程化为双曲型的第二标准型 $u_{\xi\eta}=0$ 的形式,对它积分两次求出通解 $u=F(\xi)+G(\eta)$,其中,F 和 G 是任意二次光滑函数。然后利用初值条件确定通解中的两个任意函数,便得 d'Alembert 公式。

8.2 第二边值条件半直线问题

反射法的核心思想:利用达朗贝尔公式把解延拓

8.2.1 问题描述

求解半直线 $\mathbb{R}_+ = \{x > 0\}$ 上的初边值问题:

$$\begin{cases} u_{tt} - u_{xx} = 0, & x \in \mathbb{R}_+, t > 0, \\ u(x, 0) = g(x), & u_t(x, 0) = h(x), & x \in \mathbb{R}_+, \\ u_x(0, t) = 0, & t \ge 0, \end{cases}$$
(8.2.1)

其中, g,h 是已知函数, 满足 g'(0) = h'(0) = 0 (自然相容性条件)。

8.2.2 做偶延拓

先把问题转换到全空间 ℝ 上去。为此,对函数 u,g,h 作偶延拓(或称偶反射)如下:

$$\bar{u}(x,t) = \begin{cases} u(x,t), & x \ge 0, t \ge 0, \\ u(-x,t), & x \le 0, t \ge 0, \end{cases}$$
(8.2.2)

$$\bar{g}(x) = \begin{cases} g(x), & x \ge 0, \\ g(-x), & x \le 0, \end{cases}$$
 (8.2.3)

$$\bar{h}(x) = \begin{cases} h(x), & x \ge 0, \\ h(-x), & x \le 0. \end{cases}$$
 (8.2.4)

(验证过程省略)则 $\bar{u}(x,t)$ 满足问题:

$$\begin{cases} \bar{u}_{tt} - \bar{u}_{xx} = 0, & (x,t) \in \mathbb{R} \times (0,\infty), \\ \bar{u}(x,0) = \bar{g}(x), & \bar{u}_t(x,0) = \bar{h}(x), & x \in \mathbb{R}. \end{cases}$$
(8.2.5)

注记 8.2. 对于第二边值条件问题,需保证延拓后的函数 $\bar{g}(x)$ 和 $\bar{h}(x)$ 在 x=0 处满足导数连续的条件。通过偶延拓可自然满足 $u_x(0,t)=0$ 的边界条件。

8.3 有界第一边值条件之反射法

8.3.1 问题描述

考虑初边值问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u(0,t) = 0, \ u(L,t) = 0, & t \ge 0. \end{cases}$$
(8.3.1)

8.3.2 核心思想

为了满足奇偶延拓的条件,在边界处,初值条件要为0.

$$f(0) = 0, \quad f(L) = 0,$$

 $g(0) = 0, \quad g(L) = 0,$ (8.3.2)

则可将 f,g 延拓为实轴上以 2L 为周期的奇函数 (先做奇延拓再做周期延拓):

$$f(x) = -f(-x), \quad f(x+2L) = f(x),$$

$$g(x) = -g(-x), \quad g(x+2L) = g(x).$$
(8.3.3)

延拓后, $f,g \in C^2(\mathbb{R})$,代入达朗贝尔公式得到延拓问题的解,其在区间 [0,L] 上的限制即为原问题的解。

注记 8.3. 因为方程本身属于 C^2 ,所以我们的延拓点也需要满足一些可导的条件。(待补充) 8.3.3 达朗贝尔公式的应用

因为f,g是以2L为周期函数,而且是奇函数。故

$$g(y+L) = g(y-L) = -g(-y+L)$$
(8.3.4)

f(y+L)、q(y+L) 是奇函数。

达朗贝尔公式为:

$$u(x,t) = \frac{1}{2} \left[f(x+at) + f(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} g(y) \, dy \tag{8.3.5}$$

由于 f,g 为 \mathbb{R} 上以 2L 为周期的奇函数,代入边界点 x=0 和 x=L 验证: 对于 x=0:

$$u(0,t) = \frac{1}{2} \left[f(at) + f(-at) \right] + \frac{1}{2a} \int_{-at}^{at} g(y) \, dy = 0$$
 (8.3.6)

对于 x = L:

$$u(L,t) = \frac{1}{2} [f(L+at) + f(L-at)] + \frac{1}{2a} \int_{L-at}^{L+at} g(y) \, dy$$
$$= \frac{1}{2} [f(L+at) + f(L-at)] + \frac{1}{2a} \int_{-at}^{at} g(y+L) \, dy$$
$$= 0$$
 (8.3.7)

当 x > 0 时,一定满足波动方程。

当 x < 0 时,令 x = -y, y > 0,

$$\bar{u}(x,t) = \bar{u}(-y,t) = -u(y,t),$$

对于 $\bar{u}_{xx}(x,t)$:

$$\bar{u}_{xx}(x,t) = \bar{u}_{xx}(-y,t) = \frac{d^2}{dx^2}[-u(y,t)] = \frac{d^2}{dx^2}[-u(-x,t)]$$
$$= -u_{xx}(-x,t) = -u_{xx}(y,t).$$

对于 $\bar{u}_{tt}(x,t)$:

$$\bar{u}_{tt}(x,t) = \bar{u}_{tt}(-y,t) = \bar{u}_{tt}(y,t) = -u_{tt}(y,t).$$

验证波动方程:

$$\bar{u}_{tt} - \bar{u}_{xx} = -u_{tt}(y, t) + u_{xx}(y, t) = 0$$

故问题延拓到全平面上就可以用达朗贝尔公式,

$$\begin{cases} \bar{u}_{tt} - a^2 \bar{u}_{xx} = 0, & x \ge 0, \ t > 0, \\ \bar{u}(x,0) = \bar{f}(x), \ \bar{u}_t(x,0) = \bar{g}(x), & x \ge 0 \\ \bar{u}(0,t) = 0, \ u(L,t) = 0 \end{cases}$$

8.4 有界第二边值条件之反射法

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u_x(0,t) = 0, \ u_x(L,t) = 0, & t \ge 0. \end{cases}$$
(8.4.1)

对于第二边值条件,我们先做偶延拓,再做周期延拓。

相容性条件:

$$f'(0) = 0, \quad f'(L) = 0,$$

 $g'(0) = 0, \quad g'(L) = 0,$ (8.4.2)

8.5 第一种有界混合边界问题之反射法

x = 0处是原函数,l = 0是一阶偏导函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u(0,t) = 0, \ u_x(L,t) = 0, & t \ge 0. \end{cases}$$

$$(8.5.1)$$

相容性条件:

$$f(0) = 0, \quad f'(L) = 0,$$

 $g(0) = 0, \quad g'(L) = 0,$ (8.5.2)

注记 8.4. 为了满足连续性的条件,且是 C^2 解,在边界处,可能还要满足其他相容性条件。

奇延拓 (x=0) + 偶延拓 (x=L), 周期4L.

8.6 第二种有界混合边界问题之反射法

x = 0处是一阶偏导函数, l = 0是原函数。

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u_x(0,t) = 0, \ u(L,t) = 0, & t \ge 0. \end{cases}$$
(8.6.1)

相容性条件:

$$f'(0) = 0, \quad f(L) = 0,$$

 $g'(0) = 0, \quad g(L) = 0,$ (8.6.2)

注记 8.5. 为了满足连续性的条件,且是 C^2 解,在边界处,可能还要满足其他相容性条件。

偶延拓 (x = 0) + 奇延拓 (x = L), 周期4L.

9 有界波动方程之分离变量法

分离变量法是一种思想,和达朗贝尔公式这种正面求解出来的公式不同。

9.1 第一边值条件之分离变量法

9.1.1 问题描述

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0 \tag{9.1.1}$$

边界条件:

$$u(0,t) = 0$$
 $u(l,t) = 0$ $\forall t > 0$ (9.1.2)

初始条件:

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l$$
(9.1.3)

9.1.2 核心思想

核心思想:分离变量法把偏微分转成为两个常微分。

设 $u(x,t) = X(x) \cdot T(t)$, 假设解为乘积解。

代入方程:

$$\frac{\partial^2 u}{\partial t^2} = X \cdot T'' \qquad \frac{\partial^2 u}{\partial x^2} = X'' \cdot T \tag{9.1.4}$$

代入原方程:

$$X \cdot T'' = c^2 \cdot X'' \cdot T \tag{9.1.5}$$

转化为可分离变量方程:

$$\frac{T''}{c^2T} = \frac{X''}{X} \tag{9.1.6}$$

两个线性无关的变量相等,只能同为常数:

$$\frac{T''}{c^2T} = \frac{X''}{X} = k (9.1.7)$$

转化为两个常微分方程:

$$\begin{cases} X'' = kX \\ T'' = kc^2T \end{cases}$$
 (9.1.8)

9.1.3 空间常微分方程的求解

$$X'' - kX = 0 \quad X(0) = 0 \quad X(l) = 0 \tag{9.1.9}$$

情况 1 若 k > 0

通解为 $X(x) = C_1 \cdot \cosh \mu x + C_2 \cdot \sinh \mu x$,其中 $k = \mu^2, \mu > 0$ 代入初始条件

$$X(0) = C_1 = 0$$
 $X(l) = C_2 \cdot \sinh \mu l = 0$ $\therefore C_2 = 0$ (9.1.10)

注记 9.1. 当x > 0时sinhx > 0

则 X'' = 0

$$X(x) = C_1 x + C_2$$
 $\exists X(0) = 0$ $X(l) = 0$ (9.1.11)

$$\therefore C_1 = C_2 = 0 (9.1.12)$$

情况 3 若 k < 0

通解:

$$X = C_1 \cos \mu x + C_2 \sin \mu x \tag{9.1.13}$$

边界条件:

$$X(0) = C_1 = 0$$
 $X(l) = C_2 \sin \mu l = 0$ (9.1.14)

非平凡解要求:

$$\sin \mu l = 0$$
 : $\mu l = n\pi$ n 为任意正整数,因为 $\mu \ge 0$

特征值:

$$\mu_n = \frac{n\pi}{l} \tag{9.1.15}$$

特征函数:

$$X_n = C_2 \sin \frac{n\pi}{l} x$$
 $n = 1, 2, 3, \dots$ (C 吸收正负号) (9.1.16)

特征值:

$$k = -\mu^2 = -\left(\frac{n\pi}{l}\right)^2 \tag{9.1.17}$$

验证 1. 一阶导数:

$$X' = -C_1 \mu \sin \mu x + C_2 \mu \cos \mu x$$

二阶导数:

$$X'' = -C_1 \mu^2 \cos \mu x - C_2 \mu^2 \sin \mu x$$

满足方程:

$$X'' + \mu^2 X = 0$$

9.1.4 时间常微分方程的求解

$$T'' + \left(c \cdot \frac{n\pi}{l}\right)^2 \cdot T = 0 \implies T'' + (c\mu_n)^2 T = 0$$
,其中 $\lambda_n = c\mu_n = \frac{cn\pi}{l}$ 同理可得通解:

$$T = C_3 \cos \lambda_n t + C_4 \sin \lambda_n t \tag{9.1.18}$$

9.1.5 得偏微分方程通解

因此:

$$u_n(x,t) = X \cdot T = \sin \frac{n\pi}{l} x \cdot (a_n \cos \lambda_n t + b_n \sin \lambda_n t)$$
 (9.1.19)

由于方程为线性齐次,故可用叠加原理:

$$u(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi}{l} x \cdot (a_n \cos \lambda_n t + b_n \sin \lambda_n t)$$
 (9.1.20)

9.1.6 初始条件求系数

原函数初始条件求an

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \tag{9.1.21}$$

由初始条件:

$$u(x,0) = \sum_{n=1}^{\infty} \sin \frac{n\pi}{l} x \cdot a_n = f(x)$$
 (9.1.22)

利用内积公式(需要 $f \in L^2$):

$$a_n = \frac{\langle f(x), \sin\frac{n\pi}{l}x\rangle}{\langle \sin\frac{n\pi}{l}x, \sin\frac{n\pi}{l}x\rangle} = \frac{\int_0^l f(x) \cdot \sin\frac{n\pi}{l}x \, dx}{\int_0^l \sin^2\frac{n\pi}{l}x \, dx}$$
(9.1.23)

化简得:

$$a_n = \frac{2}{l} \cdot \int_0^l f(x) \cdot \sin \frac{n\pi}{l} x \, dx \tag{9.1.24}$$

偏导初始条件求b_n

对 u_n 求偏导:

$$\frac{\partial u_n}{\partial t}(x,t) = \sin\frac{n\pi}{l}x \cdot (-a_n\lambda_n\sin\lambda_n t + b_n\lambda_n\cos\lambda_n t)$$
 (9.1.25)

在 t=0 时:

$$\frac{\partial u_n}{\partial t}(x,0) = \sin\frac{n\pi}{l}x \cdot b_n \lambda_n \tag{9.1.26}$$

对总解求偏导:

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} \frac{\partial u_n}{\partial t}(x,0) = \sum_{n=1}^{\infty} b_n \lambda_n \sin \frac{n\pi}{l} x = g(x)$$
 (9.1.27)

利用内积公式(需要 $f \in L^2$):

$$b_n \lambda_n = \frac{\langle g(x), \sin \frac{n\pi}{l} x \rangle}{\langle \sin \frac{n\pi}{l} x, \sin \frac{n\pi}{l} x \rangle} = \frac{2}{l} \int_0^l g(x) \cdot \sin \frac{n\pi}{l} x \, dx \tag{9.1.28}$$

化简得:

$$b_n = \frac{2}{l\lambda_n} \cdot \int_0^l g(x) \cdot \sin\frac{n\pi}{l} x \, dx = \frac{2}{cn\pi} \int_0^l g(x) \cdot \sin\frac{n\pi}{l} x \, dx \tag{9.1.29}$$

9.1.7 用数分知识求系数

用数分知识求系数,条件和前面泛函内积不一样

考虑函数 f(t) 的傅里叶级数展开:

$$f = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (9.1.30)

计算 a₀:

$$\frac{a_0}{2} = f - \sum_{n=1}^{\infty} \left(a_n \cos nt + b_n \sin nt \right)$$
 (9.1.31)

$$a_0 = 2f - 2\sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (9.1.32)

对 a₀ 积分,若积分和求和可换序:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} a_0 dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f dt - \sum_{n=1}^{\infty} \frac{1}{\pi} a_n \int_{-\pi}^{\pi} \cos nt dt - \sum_{n=1}^{\infty} \frac{1}{\pi} b_n \int_{-\pi}^{\pi} \sin nt dt$$
 (9.1.33)

化简得:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f \, dt \tag{9.1.34}$$

计算 a_n :

$$f\cos nt = \frac{a_0}{2}\cos nt + \sum_{k=1}^{\infty} (a_k\cos kt + b_k\sin kt)\cos nt$$
 (9.1.35)

积分得, 若积分和求和可换序:

$$\int_{-\pi}^{\pi} f \cos nt \, dt = \int_{-\pi}^{\pi} \frac{a_0}{2} \cos nt \, dt + \sum_{k=1}^{\infty} \left(a_k \int_{-\pi}^{\pi} \cos kt \cos nt \, dt + b_k \int_{-\pi}^{\pi} \sin kt \cos nt \, dt \right)$$
(9.1.36)

化简得:

$$\int_{-\pi}^{\pi} f \cos nt \, dt = a_n \pi \tag{9.1.37}$$

因此:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nt \, dt \tag{9.1.38}$$

同理可得:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \sin nt \, dt \tag{9.1.39}$$

级数收敛性:

$$\sum_{n=1}^{\infty} a_n \cos nx < \infty \qquad \sum_{n=1}^{\infty} b_n \sin nx < \infty \tag{9.1.40}$$

收敛的详细条件可以去看我的傅里叶级数笔记

https://github.com/Albert-ChenO4/fourier-analysis-lecture-notes

9.1.8 例题

例题 9.1.1. 用分离变量法求解初边值问题:

$$\begin{cases} u_{tt} - 4u_{xx} = 0, & 0 < x < 1, \ t > 0, \\ u(x,0) = \frac{1}{2}\sin(\pi x), & u_t(x,0) = 0, \quad 0 \le x \le 1, \\ u(0,t) = 0, & u(1,t) = 0, & t \ge 0. \end{cases}$$

解 9.1.1. 步骤1. 分离变量

设解的形式为 u(x,t) = X(x)T(t)。代入方程 $u_{tt} - 4u_{xx} = 0$:

$$X(x)T''(t) - 4X''(x)T(t) = 0 \implies \frac{T''(t)}{4T(t)} = \frac{X''(x)}{X(x)} = -\lambda$$

其中 $-\lambda$ 是分离常数。由此得到两个常微分方程:

$$X''(x) + \lambda X(x) = 0, \quad 0 < x < 1$$

 $T''(t) + 4\lambda T(t) = 0, \quad t > 0$

步骤2. 求解空间本征值问题 空间方程的边界条件由原问题给出:

$$u(0,t) = X(0)T(t) = 0 \implies X(0) = 0u(1,t) = X(1)T(t) = 0 \implies X(1) = 0$$

我们求解 Sturm-Liouville 问题: $X'' + \lambda X = 0$, X(0) = 0, X(1) = 0。这是一个经典的本征值问题, 其非平凡解只在 $\lambda > 0$ 时存在。设 $\lambda = \mu^2 \ (\mu > 0)$, 方程通解为 $X(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x)$ 。

- 由 X(0) = 0 得 $C_1 = 0$ 。
- 由 X(1) = 0 得 $C_2 \sin(\mu) = 0$ 。为得到非平凡解,须 $C_2 \neq 0$,故 $\sin(\mu) = 0$ 。

因此 $\mu = n\pi \ (n = 1, 2, 3, ...)$ 。 本征值为 $\lambda_n = (n\pi)^2$ 。 对应的本征函数为 $X_n(x) = \sin(n\pi x)$ 。

步骤3. 求解时间方程

对于每个本征值 λ_n , 求解时间方程:

$$T_n''(t) + 4(n\pi)^2 T_n(t) = 0$$

其通解为:

$$T_n(t) = a_n \cos(2n\pi t) + b_n \sin(2n\pi t)$$

步骤4. 叠加并利用初始条件

根据叠加原理,解可以写成级数形式:

$$u(x,t) = \sum_{n=1}^{\infty} X_n(x)T_n(t) = \sum_{n=1}^{\infty} [a_n \cos(2n\pi t) + b_n \sin(2n\pi t)] \sin(n\pi x)$$

利用初始条件 $u(x,0) = \frac{1}{2}\sin(\pi x)$:

$$u(x,0) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) = \frac{1}{2}\sin(\pi x)$$

通过比较傅里叶级数的系数可知,只有当n=1时系数不为零:

$$a_1 = \frac{1}{2}, \quad a_n = 0 \quad \text{for } n \neq 1$$

对时间求导:

$$u_t(x,t) = \sum_{n=1}^{\infty} [-2n\pi a_n \sin(2n\pi t) + 2n\pi b_n \cos(2n\pi t)] \sin(n\pi x)$$

利用初始条件 $u_t(x,0) = 0$:

$$u_t(x,0) = \sum_{n=1}^{\infty} 2n\pi b_n \sin(n\pi x) = 0$$

因此,所有系数 $b_n = 0$ 。

步骤5. 写出最终解

将求得的系数 $a_1 = 1/2$, $a_n = 0 (n > 1)$, $b_n = 0$ 代回级数, 只有 n = 1 的项被保留:

$$u(x,t) = a_1 \cos(2\pi t) \sin(\pi x)$$

最终解为:

$$u(x,t) = \frac{1}{2}\cos(2\pi t)\sin(\pi x)$$

9.2 第二边值条件

求解过程一样,就是解不同,第一边界条件是把通解求出来,代入得系数,第二边界条件就还要求个导再代入。混合边界条件也是代入看系数如何,本质上思想一致不做详细说明。上面的第一边界条件只是说明一下思路。

9.2.1 问题描述

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0 \tag{9.2.1}$$

边界条件:

$$\frac{\partial u}{\partial x}(0,t) = 0 \quad \frac{\partial u}{\partial x}(l,t) = 0 \qquad \forall t > 0 \tag{9.2.2}$$

初始条件:

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l$$
(9.2.3)

9.2.2 核心思想

核心思想:分离变量法把偏微分转成为两个常微分。

设 $u(x,t) = X(x) \cdot T(t)$, 假设解为乘积解。

代入方程:

$$\frac{\partial^2 u}{\partial t^2} = X \cdot T'' \qquad \frac{\partial^2 u}{\partial x^2} = X'' \cdot T \tag{9.2.4}$$

代入原方程:

$$X \cdot T'' = c^2 \cdot X'' \cdot T \tag{9.2.5}$$

转化为可分离变量方程:

$$\frac{T''}{c^2T} = \frac{X''}{X} \tag{9.2.6}$$

两个线性无关的变量相等,只能同为常数:

$$\frac{T''}{c^2T} = \frac{X''}{X} = k (9.2.7)$$

转化为两个常微分方程:

$$\begin{cases} X'' = kX \\ T'' = kc^2T \end{cases}$$
 (9.2.8)

9.2.3 空间常微分方程的求解

$$X'' - kX = 0 \quad X'(0) = 0 \quad X'(l) = 0 \tag{9.2.9}$$

情况 1 若 k > 0

通解为 $X(x) = C_1 \cosh(\mu x) + C_2 \sinh(\mu x)$,其中 $k = \mu^2, \mu > 0$ 。其导数为 $X'(x) = C_1 \mu \sinh(\mu x) + C_2 \mu \cosh(\mu x)$ 。

代入边界条件

$$X'(0) = C_2\mu = 0 \implies C_2 = 0 \quad \text{以及} \quad X'(l) = C_1\mu\sinh(\mu l) = 0 \implies C_1 = 0 \quad (9.2.10)$$

得到平凡解 X(x) = 0,舍去。

则 X''=0。

$$X(x) = C_1 x + C_2$$
 \exists $X'(0) = 0, X'(l) = 0$ (9.2.11)

其导数 $X'(x) = C_1$ 。代入边界条件得 $C_1 = 0$ 。 C_2 可为任意常数。

$$\therefore X_0(x) = C_2 \quad (非平凡解) \tag{9.2.12}$$

这对应于特征值 $k_0 = 0$ 。

情况 3 若 k < 0

即 $X'' + \mu^2 X = 0$,其中 $k = -\mu^2, \mu > 0$ 。边界条件为 X'(0) = 0, X'(l) = 0。通解:

$$X(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x) \tag{9.2.13}$$

其导数为 $X'(x) = -C_1 \mu \sin(\mu x) + C_2 \mu \cos(\mu x)$ 。

边界条件:

$$X'(0) = C_2 \mu = 0 \implies C_2 = 0 \quad \text{UB} \quad X'(l) = -C_1 \mu \sin(\mu l) = 0$$
 (9.2.14)

非平凡解要求:

$$\sin(\mu l) = 0$$
 : $\mu l = n\pi$, n 为任意正整数

特征值:

$$\mu_n = \frac{n\pi}{l} \tag{9.2.15}$$

特征函数:

$$X_n(x) = C_1 \cos\left(\frac{n\pi x}{l}\right), \quad n = 1, 2, 3, \dots$$
 (9.2.16)

特征值:

$$k_n = -\mu_n^2 = -\left(\frac{n\pi}{l}\right)^2, \quad n = 1, 2, 3, \dots$$
 (9.2.17)

9.2.4 时间常微分方程的求解

对于每个特征值 k_n (n=0,1,2,...),我们求解 $T''-k_nc^2T=0$ 。令 $\lambda_n=c\mu_n=\frac{cn\pi}{l}$ (对于 $n\geq 1$) 且 $\lambda_0=0$ 。方程为 $T''_n+\lambda_n^2T_n=0$ 。

通解:

$$T_n(t) = \begin{cases} a_0 + b_0 t, & n = 0\\ a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t), & n \ge 1 \end{cases}$$
(9.2.18)

9.2.5 得偏微分方程通解

因此,对于每个 n 的解为 $u_n(x,t) = X_n(x)T_n(t)$ 。由于方程为线性齐次,故可用叠加原理:

$$u(x,t) = (a_0 + b_0 t) + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{l}\right) \left(a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)\right)$$
(9.2.19)

9.2.6 初始条件求系数

原函数初始条件求 an

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \tag{9.2.20}$$

由初始条件:

$$u(x,0) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{l}\right) = f(x)$$
 (9.2.21)

这是 f(x) 的傅里叶余弦级数展开。系数为:

$$a_0 = \frac{1}{l} \int_0^l f(x) \, dx \tag{9.2.22}$$

$$a_n = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx, \quad n \ge 1$$
 (9.2.23)

偏导初始条件求b_n

对 u(x,t) 求偏导:

$$\frac{\partial u}{\partial t}(x,t) = b_0 + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{l}\right) \left(-a_n \lambda_n \sin(\lambda_n t) + b_n \lambda_n \cos(\lambda_n t)\right)$$
(9.2.24)

在 t = 0 时:

$$\frac{\partial u}{\partial t}(x,0) = b_0 + \sum_{n=1}^{\infty} b_n \lambda_n \cos\left(\frac{n\pi x}{l}\right) = g(x)$$
(9.2.25)

这是 g(x) 的傅里叶余弦级数展开。系数为:

$$b_0 = \frac{1}{l} \int_0^l g(x) \, dx \tag{9.2.26}$$

$$b_n \lambda_n = \frac{2}{l} \int_0^l g(x) \cos\left(\frac{n\pi x}{l}\right) dx, \quad n \ge 1$$
 (9.2.27)

化简得:

$$b_n = \frac{2}{l\lambda_n} \int_0^l g(x) \cos\left(\frac{n\pi x}{l}\right) dx = \frac{2}{cn\pi} \int_0^l g(x) \cos\left(\frac{n\pi x}{l}\right) dx, \quad n \ge 1$$
 (9.2.28)

9.3 第一混合边界条件

9.3.1 问题描述

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0 \tag{9.3.1}$$

边界条件:

$$u(0,t) = 0 \quad \frac{\partial u}{\partial x}(l,t) = 0 \qquad \forall t > 0 \tag{9.3.2}$$

初始条件:

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l$$
(9.3.3)

9.3.2 核心思想

核心思想:分离变量法把偏微分转成为两个常微分。

设 $u(x,t) = X(x) \cdot T(t)$, 假设解为乘积解。

代入方程:

$$\frac{\partial^2 u}{\partial t^2} = X \cdot T'' \qquad \frac{\partial^2 u}{\partial x^2} = X'' \cdot T \tag{9.3.4}$$

代入原方程:

$$X \cdot T'' = c^2 \cdot X'' \cdot T \tag{9.3.5}$$

转化为可分离变量方程:

$$\frac{T''}{c^2T} = \frac{X''}{X} \tag{9.3.6}$$

两个线性无关的变量相等,只能同为常数:

$$\frac{T''}{c^2T} = \frac{X''}{X} = k (9.3.7)$$

转化为两个常微分方程:

$$\begin{cases} X'' - kX = 0 \\ T'' - kc^2T = 0 \end{cases}$$
 (9.3.8)

9.3.3 空间常微分方程的求解

$$X'' - kX = 0 \quad X(0) = 0 \quad X'(l) = 0 \tag{9.3.9}$$

情况 1 若 k > 0

通解为 $X(x) = C_1 \cosh(\mu x) + C_2 \sinh(\mu x)$, 其中 $k = \mu^2, \mu > 0$ 。代入 X(0) = 0 得 $C_1 = 0$ 。则 $X(x) = C_2 \sinh(\mu x)$ 。其导数 $X'(x) = C_2 \mu \cosh(\mu x)$ 。代入 X'(l) = 0 得 $C_2 \mu \cosh(\mu l) = 0$ 。因为 $\mu > 0, l > 0$, $\cosh(\mu l) > 0$,故 $C_2 = 0$ 。得到平凡解,舍去。

情况 2 若 k=0

则 X''=0,通解为 $X(x)=C_1x+C_2$ 。代入 X(0)=0 得 $C_2=0$ 。则 $X(x)=C_1x$ 。其导数 $X'(x)=C_1$ 。代入 X'(l)=0 得 $C_1=0$ 。得到平凡解,舍去。

情况 3 若 k < 0

即 $X'' + \mu^2 X = 0$,其中 $k = -\mu^2, \mu > 0$ 。 边界条件为 X(0) = 0, X'(l) = 0。 通解:

$$X(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x) \tag{9.3.10}$$

边界条件:

$$X(0) = C_1 = 0 \implies X(x) = C_2 \sin(\mu x)$$
 (9.3.11)

其导数 $X'(x) = C_2 \mu \cos(\mu x)$ 。代入第二个边界条件:

$$X'(l) = C_2 \mu \cos(\mu l) = 0 (9.3.12)$$

非平凡解要求:

$$\cos(\mu l) = 0$$
 : $\mu l = \frac{(2n-1)\pi}{2}$ n 为任意正整数

特征值:

$$\mu_n = \frac{(2n-1)\pi}{2l} \tag{9.3.13}$$

特征函数:

$$X_n(x) = C_2 \sin\left(\frac{(2n-1)\pi x}{2l}\right), \quad n = 1, 2, 3, \dots$$
 (9.3.14)

特征值:

$$k_n = -\mu_n^2 = -\left(\frac{(2n-1)\pi}{2l}\right)^2 \tag{9.3.15}$$

9.3.4 时间常微分方程的求解

令
$$\lambda_n = c\mu_n = \frac{c(2n-1)\pi}{2l}$$
。 时间方程为 $T''_n + \lambda_n^2 T_n = 0$ 。

同理可得通解:

$$T_n(t) = a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)$$
(9.3.16)

9.3.5 得偏微分方程通解

因此:

$$u_n(x,t) = X_n(t) \cdot T_n(t) = \sin\left(\frac{(2n-1)\pi x}{2l}\right) \left(a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)\right)$$
(9.3.17)

由于方程为线性齐次,故可用叠加原理:

$$u(x,t) = \sum_{n=1}^{\infty} \sin\left(\frac{(2n-1)\pi x}{2l}\right) \left(a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)\right)$$
(9.3.18)

9.3.6 初始条件求系数

原函数初始条件求a_n

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \tag{9.3.19}$$

由初始条件:

$$u(x,0) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{(2n-1)\pi x}{2l}\right) = f(x)$$
 (9.3.20)

利用傅里叶级数系数公式(基函数为 $\sin(\mu_n x)$):

$$a_n = \frac{\int_0^l f(x) \sin(\mu_n x) dx}{\int_0^l \sin^2(\mu_n x) dx} = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{(2n-1)\pi x}{2l}\right) dx$$
(9.3.21)

偏导初始条件求b_n

对 u(x,t) 求偏导并令 t=0:

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} b_n \lambda_n \sin\left(\frac{(2n-1)\pi x}{2l}\right) = g(x)$$
 (9.3.22)

利用傅里叶级数系数公式:

$$b_n \lambda_n = \frac{2}{l} \int_0^l g(x) \sin\left(\frac{(2n-1)\pi x}{2l}\right) dx \tag{9.3.23}$$

化简得:

$$b_n = \frac{2}{l\lambda_n} \int_0^l g(x) \sin\left(\frac{(2n-1)\pi x}{2l}\right) dx = \frac{4}{c(2n-1)\pi} \int_0^l g(x) \sin\left(\frac{(2n-1)\pi x}{2l}\right) dx$$
(9.3.24)

9.4 第二混合边界条件

9.4.1 问题描述

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0 \tag{9.4.1}$$

边界条件:

$$\frac{\partial u}{\partial x}(0,t) = 0 \quad u(l,t) = 0 \qquad \forall t > 0 \tag{9.4.2}$$

初始条件:

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l$$
(9.4.3)

9.4.2 核心思想

核心思想:分离变量法把偏微分转成为两个常微分。

设 $u(x,t) = X(x) \cdot T(t)$, 假设解为乘积解。

代入方程:

$$\frac{\partial^2 u}{\partial t^2} = X \cdot T'' \qquad \frac{\partial^2 u}{\partial x^2} = X'' \cdot T \tag{9.4.4}$$

代入原方程:

$$X \cdot T'' = c^2 \cdot X'' \cdot T \tag{9.4.5}$$

转化为可分离变量方程:

$$\frac{T''}{c^2T} = \frac{X''}{X} \tag{9.4.6}$$

两个线性无关的变量相等,只能同为常数:

$$\frac{T''}{c^2T} = \frac{X''}{X} = k (9.4.7)$$

转化为两个常微分方程:

$$\begin{cases} X'' - kX = 0 \\ T'' - kc^2T = 0 \end{cases}$$
 (9.4.8)

9.4.3 空间常微分方程的求解

$$X'' - kX = 0 \quad X'(0) = 0 \quad X(l) = 0 \tag{9.4.9}$$

情况 1 若 k > 0

通解为 $X(x) = C_1 \cosh(\mu x) + C_2 \sinh(\mu x)$, 其中 $k = \mu^2, \mu > 0$ 。其导数 $X'(x) = C_1 \mu \sinh(\mu x) + C_2 \mu \cosh(\mu x)$ 。代入 X'(0) = 0 得 $C_2 = 0$ 。则 $X(x) = C_1 \cosh(\mu x)$ 。代入 X(l) = 0 得 $C_1 \cosh(\mu l) = 0$ 。因为 $\cosh(\mu l) > 0$,故 $C_1 = 0$ 。得到平凡解,舍去。

情况 2 若 k=0

则 X'' = 0,通解为 $X(x) = C_1 x + C_2$ 。其导数 $X'(x) = C_1$ 。代入 X'(0) = 0 得 $C_1 = 0$ 。则 $X(x) = C_2$ 。代入 X(l) = 0 得 $C_2 = 0$ 。得到平凡解,舍去。

情况 3 若 k < 0

即 $X'' + \mu^2 X = 0$,其中 $k = -\mu^2, \mu > 0$ 。 边界条件为 X'(0) = 0, X(l) = 0。 通解:

$$X(x) = C_1 \cos(\mu x) + C_2 \sin(\mu x) \tag{9.4.10}$$

其导数 $X'(x) = -C_1 \mu \sin(\mu x) + C_2 \mu \cos(\mu x)$ 。

$$X'(0) = C_2 \mu = 0 \implies C_2 = 0$$
 (9.4.11)

则 $X(x) = C_1 \cos(\mu x)$ 。代入第二个边界条件:

$$X(l) = C_1 \cos(\mu l) = 0 (9.4.12)$$

非平凡解要求:

$$\cos(\mu l) = 0$$
 $\therefore \mu l = \frac{(2n-1)\pi}{2}$ n 为任意正整数

特征值:

$$\mu_n = \frac{(2n-1)\pi}{2l} \tag{9.4.13}$$

特征函数:

$$X_n(x) = C_1 \cos\left(\frac{(2n-1)\pi x}{2l}\right), \quad n = 1, 2, 3, \dots$$
 (9.4.14)

特征值:

$$k_n = -\mu_n^2 = -\left(\frac{(2n-1)\pi}{2l}\right)^2 \tag{9.4.15}$$

9.4.4 时间常微分方程的求解

令 $\lambda_n = c\mu_n = \frac{c(2n-1)\pi}{2l}$ 。 时间方程为 $T_n'' + \lambda_n^2 T_n = 0$ 。

同理可得通解:

$$T_n(t) = a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t) \tag{9.4.16}$$

9.4.5 得偏微分方程通解

因此:

$$u_n(x,t) = X_n(t) \cdot T_n(t) = \cos\left(\frac{(2n-1)\pi x}{2l}\right) \left(a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)\right)$$
(9.4.17)

由于方程为线性齐次,故可用叠加原理:

$$u(x,t) = \sum_{n=1}^{\infty} \cos\left(\frac{(2n-1)\pi x}{2l}\right) \left(a_n \cos(\lambda_n t) + b_n \sin(\lambda_n t)\right)$$
(9.4.18)

9.4.6 初始条件求系数

原函数初始条件求 a_n

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \tag{9.4.19}$$

由初始条件:

$$u(x,0) = \sum_{n=1}^{\infty} a_n \cos\left(\frac{(2n-1)\pi x}{2l}\right) = f(x)$$
 (9.4.20)

利用傅里叶级数系数公式(基函数为 $\cos(\mu_n x)$):

$$a_n = \frac{\int_0^l f(x) \cos(\mu_n x) dx}{\int_0^l \cos^2(\mu_n x) dx} = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{(2n-1)\pi x}{2l}\right) dx$$
(9.4.21)

偏导初始条件求bn

对 u(x,t) 求偏导并令 t=0:

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} b_n \lambda_n \cos\left(\frac{(2n-1)\pi x}{2l}\right) = g(x)$$
 (9.4.22)

利用傅里叶级数系数公式:

$$b_n \lambda_n = \frac{2}{l} \int_0^l g(x) \cos\left(\frac{(2n-1)\pi x}{2l}\right) dx$$
 (9.4.23)

化简得:

$$b_n = \frac{2}{l\lambda_n} \int_0^l g(x) \cos\left(\frac{(2n-1)\pi x}{2l}\right) dx = \frac{4}{c(2n-1)\pi} \int_0^l g(x) \cos\left(\frac{(2n-1)\pi x}{2l}\right) dx$$
(9.4.24)

9.4.7 例题

例题 9.4.1. 用分离变量法求解初边值问题:

$$\begin{cases} u_{tt} - u_{xx} = 0, & 0 < x < 1, \ t > 0, \\ u(x,0) = \cos\left(\frac{3\pi}{2}x\right), & u_t(x,0) = \cos\left(\frac{\pi}{2}x\right) + \cos\left(\frac{5\pi}{2}x\right), & 0 \le x \le 1, \\ u_x(0,t) = 0, & u(1,t) = 0, & t \ge 0. \end{cases}$$

解 9.4.1. 步骤1. 分离变量

设解的形式为 u(x,t) = X(x)T(t)。代入方程 $u_{tt} - u_{xx} = 0$:

$$X(x)T''(t) - X''(x)T(t) = 0 \implies \frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = -k$$

其中 - k 是分离常数。由此得到两个常微分方程:

$$X''(x) + kX(x) = 0$$
 for $T''(t) + kT(t) = 0$

步骤2. 求解空间本征值问题

空间方程的边界条件由原问题给出: $u_x(0,t) = X'(0)T(t) = 0 \implies X'(0) = 0$ 和 $u(1,t) = X(1)T(t) = 0 \implies X(1) = 0$ 。 我们求解 Sturm-Liouville 问题: X'' + kX = 0, X'(0) = 0, X(1) = 0。

- 情况一: k < 0. 设 $k = -\mu^2$ ($\mu > 0$),方程为 $X'' \mu^2 X = 0$,通解为 $X(x) = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)$ 。其导数为 $X'(x) = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)$ 。由 X'(0) = 0 得 $c_2 \mu = 0 \implies c_2 = 0$ 。由 X(1) = 0 得 $c_1 \cosh(\mu) = 0$ 。因 $\mu > 0$, $\cosh(\mu) > 1$,故 $c_1 = 0$ 。只有平凡解,舍去。
- 情况二: k=0. 方程为 X''=0, 通解为 $X(x)=c_1x+c_2$ 。 $X'(x)=c_1$ 。由 X'(0)=0 得 $c_1=0$ 。由 X(1)=0 得 $c_1\cdot 1+c_2=c_2=0$ 。只有平凡解,舍去。
- 情况三: k > 0. 设 $k = \mu^2$ $(\mu > 0)$,方程为 $X'' + \mu^2 X = 0$,通解为 $X(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x)$ 。 $X'(x) = -c_1 \mu \sin(\mu x) + c_2 \mu \cos(\mu x)$ 。由 X'(0) = 0 得 $c_2 \mu = 0 \implies c_2 = 0$ 。由 X(1) = 0 得 $c_1 \cos(\mu) = 0$ 。为得到非平凡解,须 $c_1 \neq 0$,故 $\cos(\mu) = 0$ 。因此 $\mu_n = \frac{\pi}{2} + n\pi = (n + \frac{1}{2})\pi$ for $n = 0, 1, 2, \ldots$ 。

本征值为 $k_n=\mu_n^2=((n+\frac{1}{2})\pi)^2$ 。 对应的本征函数为 $X_n(x)=\cos\left((n+\frac{1}{2})\pi x\right)$ 。

步骤3. 求解时间方程及叠加

时间方程 $T_n'' + k_n T_n = 0$ 的解为 $T_n(t) = a_n \cos(\mu_n t) + b_n \sin(\mu_n t)$ 。根据叠加原理,解的 形式为 $u(x,t) = \sum_{n=0}^{\infty} \left[a_n \cos(\mu_n t) + b_n \sin(\mu_n t) \right] \cos(\mu_n x)$ 。

步骤4. 利用初始条件确定系数

利用初始位移 $u(x,0) = \cos(\frac{3\pi}{2}x)$:

$$u(x,0) = \sum_{n=0}^{\infty} a_n \cos\left(\left(n + \frac{1}{2}\right)\pi x\right) = \cos\left(\frac{3\pi}{2}x\right)$$

通过比较傅里叶级数的系数,当 $(n+\frac{1}{2})\pi=\frac{3\pi}{2}$ \Longrightarrow n=1 时, $a_1=1$ 。其他所有 $a_n=0$ 。

对时间求导: $u_t(x,t) = \sum_{n=0}^{\infty} \left[-a_n \mu_n \sin(\mu_n t) + b_n \mu_n \cos(\mu_n t) \right] \cos(\mu_n x)$ 。 利用初始速度 $u_t(x,0) = \cos(\frac{\pi}{2}x) + \cos(\frac{5\pi}{2}x)$:

$$u_t(x,0) = \sum_{n=0}^{\infty} b_n \mu_n \cos(\mu_n x) = \cos\left(\frac{\pi}{2}x\right) + \cos\left(\frac{5\pi}{2}x\right)$$

比较系数:

- 对于 $\cos(\frac{\pi}{2}x)$ 项: n = 0, $\mu_0 = \frac{\pi}{2}$ o $b_0\mu_0 = 1 \implies b_0(\frac{\pi}{2}) = 1 \implies b_0 = \frac{2}{\pi}$ o
- 对于 $\cos(\frac{5\pi}{2}x)$ 项: n=2, $\mu_2=\frac{5\pi}{2}$ 。 $b_2\mu_2=1 \implies b_2(\frac{5\pi}{2})=1 \implies b_2=\frac{2}{5\pi}$ 。
- 其他所有 $b_n = 0$ (除了 n = 0, 2)。

步骤5. 写出最终解

将所有非零系数代回级数,得到最终解:

$$u(x,t) = a_1 \cos(\mu_1 t) \cos(\mu_1 x) + b_0 \sin(\mu_0 t) \cos(\mu_0 x) + b_2 \sin(\mu_2 t) \cos(\mu_2 x)$$
$$= \cos\left(\frac{3\pi}{2}t\right) \cos\left(\frac{3\pi}{2}x\right) + \frac{2}{\pi} \sin\left(\frac{\pi}{2}t\right) \cos\left(\frac{\pi}{2}x\right) + \frac{2}{5\pi} \sin\left(\frac{5\pi}{2}t\right) \cos\left(\frac{5\pi}{2}x\right)$$

参 考 文 献

- [1] 朱长江, 阮立志. 偏微分方程简明教程[M]. 2 版. 北京: 科学出版社, 2016.
- [2] 陈祖墀. 偏微分方程[M]. 4 版. 北京: 高等教育出版社, 2015.