Einführung in die Computergrafik

Aufgabenblatt 2

Aufgabe 1

Gegeben ist ein Oberflächenpunkt $(1,1,0)^t$ mit Normale $(0,1,0)^t$, eine Lichtquelle im Punkt $(0,4,0)^t$ und der Augenpunkt in (2,2,0). Berechnen Sie die Helligkeit des Oberflächenpunktes nach dem Phongschen Beleuchtungsmodell.

Aufgabe 2.

Interpretieren Sie das Lambertsche Beleuchtungsmodell als Lösung der Rendergleichung.

Aufgabe 3. Sei n ein Vektor, E die Ebene auf der n senkrecht steht und l ein Vektor mit $0 < \langle l, n \rangle < 1$. Zeigen Sie, dass für den an E reflektierten Vektor r von l die Formel

$$r = -l + 2 \cdot \langle n, l \rangle \cdot n \tag{1}$$

gilt.

Aufgabe 4.

Gegeben sind die Punkte $b_0 := \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$, $b_1 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $b_2 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ so wie die Bezierkurve $B(t) := \sum_{i=0}^2 B_i^2(t) \cdot b_i$. Berechnen Sie mit Hilfe des Algorithmus von de Casteljau $B(\frac{1}{4})$.