VİTMO

Факультет Систем Управления и Робототехники Управление в технических системах

Разработка системы управления бездатчиковым бесколлекторным двигателем постоянного тока

Сухих Даниил Андреевич

Научный руководитель: Власов Сергей Михайлович, доцент, кандидат технических наук

> 2024, Санкт-Петербург

Актуальность темы исследования ИТМО

Преимущество БДПТ перед ДПТ с щёточно-коллекторным узлом

Большое количество исследований

Популярность

Цель и задачи исследования

•**Цель исследования:** разработка алгоритма для управления бесколлекторными бездатчиковыми двигателями постоянного тока

•Задачи исследования:

- а) исследование алгоритмов и обзор существующих технических решений;
- б) разработка модели и синтез алгоритма управления;
- в) моделирования полученной системы;
- г) разработка стенда для проведения экспериментальных исследований;
- д) экспериментальные исследования

Принцип функционирования

VİTMO

Определение положения:

- по противо-ЭДС
- с помощью наблюдателя

Алгоритмы управления скоростью І/ІТМО

 ПИ (ПИД) регуляторы по контуру скорости и току

. Векторное управление

. Прямое управление моментом

Алгоритмы управления скоростью І/ІТМО

 ПИ (ПИД) регуляторы по контуру скорости и току

. Векторное управление

. Прямое управление моментом

Векторное управление

- ω_{ref} , i_{ref} заданные скорость и ток
- I_q , I_d токи после выполнения пр-я Парка
- V_{ds} , V_{qs} новые векторы напряжения в d-q с-ме координат

Прямое управление моментом

Разрабатываемое техническое решение

Важные аспекты алгоритма

- Робастность
- •Низкие вычислительные затраты
- •Использование только токов и напряжений фар

Выбранные **решения**

- •Прямое управление моментом
- •Наблюдатель положения и скорости на основе скользящих режимов

Наблюдатель скользящего режима ИТМО

•Основные уравнения:

$$\begin{split} \hat{\mathbf{i}}_{\alpha\beta(k+1)} &= A\hat{\mathbf{i}}_{\alpha\beta(k)} + Bv_{\alpha\beta(k)} - B\hat{e}_{\alpha\beta(k)} - \eta sign\big(\tilde{\mathbf{i}}_{\alpha\beta(k)}\big) \\ \hat{e}_{\alpha\beta(k+1)} &= \hat{e}_{\alpha\beta(k)} + B^{-1}g\left(\tilde{\mathbf{i}}_{\alpha\beta(k)} - A\tilde{\mathbf{i}}_{\alpha\beta(k-1)} + \eta sign\big(\tilde{\mathbf{i}}_{\alpha\beta(k-1)}\big)\right) \end{split}$$

•Оценка положения:

$$\hat{\theta}_{e(k)} = \arctan\left(-\frac{\hat{e}_{\alpha(k)}}{\hat{e}_{\beta(k)}}\right) + \pi$$

•Оценка скорости:

$$\widehat{\omega}_{m(k)} = \frac{\widehat{\theta}_{e(k)} - \widehat{\theta}_{e(k-1)}}{pT_s}$$

Наблюдатель скользящего режима ИТМО

•Оценка электромагнитного момента:

$$\widehat{M}_{e(k)} = \frac{3}{4} \left(\frac{\hat{e}_{\alpha}}{\omega_m} i_{\alpha} + \frac{\hat{e}_{\beta}}{\omega_m} i_{\beta} \right)$$

Выход ПИ регулятора	Электрическое положения ротора, рад					
	$\frac{11\pi}{6} - \frac{\pi}{6}$	$\frac{\pi}{6}-\frac{\pi}{2}$	$\frac{\pi}{2} - \frac{5\pi}{6}$	$\frac{5\pi}{6} - \frac{7\pi}{6}$	$\frac{7\pi}{6} - \frac{3\pi}{2}$	$\frac{3\pi}{2} - \frac{11\pi}{6}$
[0-1]	V_2	V_3	V_4	V_5	V_6	V_1
[-1-0)	V_5	V_6	V_1	V_2	V_3	V_4

Модель системы, Общая схема

Результаты моделирования

VİTMO

Экспериментальный стенд

VITMO

Результаты эксперимента

Заключение

 Был разработан алгоритм управления скоростью бесколлекторных бездатчиковых двигателей постоянного тока.

- Была составлена модель и проведено моделирование
- Был разработан экспериментальный стенд и проведено исследование его работы

Спасибо за внимание!

ITSMOre than a UNIVERSITY

312713@niuitmo.ru