

Learning from Low-Rank Tensor Data: A Random Tensor Theory Perspective

Mohamed El Amine Seddik¹ Malik Tiomoko² Alexis Decurninge²

Maxim Panov¹ Maxime Guillaud³

¹Technology Innovation Institute, United Arab Emirates

²Huawei Technologies, France

³Inria, France

Abstract

- Theoretical analysis of learning from data with hidden low-rank tensor structure.
- Quantification of performance gain between considering the low-rank tensor **structure** versus treating data as **vectors**.

Setting & Data Model

We consider n data points: $(\boldsymbol{x}_1 \otimes \boldsymbol{x}_2 \otimes \boldsymbol{x}_3)_{ijk} = x_{1i}x_{2j}x_{3k}$

$$\mathbf{X}_i \in \mathcal{C}_a \quad \Leftrightarrow \quad \mathbf{X}_i = (-1)^a \boldsymbol{\mu}_1 \otimes \cdots \otimes \boldsymbol{\mu}_k + \mathbf{Z}_i \in \mathbb{R}^{p_1 \times \cdots \times p_k}$$

where $[\mathbf{Z}_i]_{i_1...i_k} \sim \mathcal{N}(0,1)$ i.i.d. and denote $\mathbf{M} = \boldsymbol{\mu}_1 \otimes \cdots \otimes \boldsymbol{\mu}_k$.

- Generalizes the classical model (k = 1), i.e. $\boldsymbol{x}_i = (-1)^a \boldsymbol{\mu}_1 + \boldsymbol{z}_i$.
- Even for $k \geq 2$, the standard approach consists in **flattening** the data.
- What is the optimal classifier? Theoretical misclassification?

Supervised Setting

Given
$$\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_n] \in \mathbb{R}^{p_1 \times \dots p_k \times n}$$
 and $\mathbf{y} = [y_1, \dots, y_n] \in \{-1, 1\}^n$

Denote $X = X_{(k+1)} \in \mathbb{R}^{n \times P}$ with $P = \prod_{i=1}^k p_i$ and consider the Ridge classifier:

$$\min_{\boldsymbol{w}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|^2 + \gamma \|\boldsymbol{w}\|^2 \quad \Leftrightarrow \quad \boldsymbol{w}^* = \left(\boldsymbol{X}^\top \boldsymbol{X} + \gamma \boldsymbol{I}\right)^{-1} \boldsymbol{X}^\top \boldsymbol{y}$$

For some $\gamma \gg \|\mathbf{X}^{\top}\mathbf{X}\|$ (optimal for the above data model):

$$oldsymbol{w} = rac{1}{\sqrt{np}} oldsymbol{X}^ op oldsymbol{y}$$

where $p = \sum_{i=1}^{k} p_i$. In tensor notations, the decision function is:

$$f_{\mathsf{R}}(\tilde{\mathbf{X}}_i) = \langle \mathbf{W}, \tilde{\mathbf{X}}_i \rangle \overset{\mathcal{C}_1}{\underset{\mathcal{C}_2}{\leqslant}} 0 \qquad \mathbf{W} \equiv \frac{1}{\sqrt{np}} \mathbf{X} \times_{k+1} \mathbf{y}$$

with X_i a test datum independent of X.

Assumption: $p_i = \mathcal{O}(n)$ and $\|\mathbf{M}\| = \mathcal{O}(1)$.

Data Flattening Performance

Theorem: For X_i independent of X:

$$\frac{1}{\sigma} \left(f_{\mathbb{R}}(\tilde{\mathbf{X}}_i) - m_a \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1) \quad \Rightarrow \quad \mathcal{E} = Q \left(\frac{|m_a|}{\sigma} \right)$$

where $m_a = (-1)^a \|\mathbf{M}\|^2 \sqrt{\frac{n}{p}}$ and $\sigma = \sqrt{\frac{n}{p}} \|\mathbf{M}\|^2 + \frac{P}{p}$.

Tensor-based Classification

The weight tensor **W** is a **spiked random tensor**:

$$\mathbf{W} = \sqrt{\frac{n}{p}} \bigotimes_{i=1}^{k} \boldsymbol{\mu}_i + \frac{1}{\sqrt{p}} \mathbf{Z}$$

with $\mathbf{Z} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} y_i \mathbf{Z}_i$ (Universality with CLT).

Tensor-Ridge classifier is defined as:

$$f_{\mathsf{TR}}(\tilde{\mathbf{X}}_i) = \left\langle \lambda^* \bigotimes_{i=1}^k \boldsymbol{u}_i^*, \tilde{\mathbf{X}}_i \right\rangle \overset{\mathcal{C}_1}{\underset{\mathcal{C}_2}{\leqslant}} 0$$

where (best rank-one approximation of **W**):

$$\left(\lambda^*, \{oldsymbol{u}_i^*\}_{i=1}^k
ight) = \mathop{rg\min}_{\lambda \in \mathbb{R}^+, oldsymbol{u}_i \in \mathbb{S}^{p_i-1}} \left\|oldsymbol{\mathsf{W}} - \lambda \bigotimes_{i=1}^k oldsymbol{u}_i
ight\|_{\mathsf{\Gamma}}^2$$

Remark: The above MLE is **NP-hard** but feasible if $\|\mathbf{M}\| \geq \mathcal{O}(P^{1/4}/p^{1/2})$.

Tensor-based Performance

Theorem: For X_i independent of X:

$$\frac{1}{\sigma} \left(f_{\mathsf{TR}}(\tilde{\mathbf{X}}_i) - m_a \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1) \quad \Rightarrow \quad \mathcal{E} = Q \left(\frac{|m_a|}{\sigma} \right)$$

where $m_a=(-1)^a\sigma\|\mathbf{M}\|\prod_{j=1}^kq_j\left(\sigma\right)$ and $f\left(\sigma,\|\mathbf{M}\|\sqrt{\frac{n}{p}}\right)=0$ with q_j and f in [1].

Unsupervised Setting

Linear clustering: compute the left singular vector of:

$$oldsymbol{X} = oldsymbol{\mathsf{X}}_{(k+1)} = oldsymbol{y} \otimes oldsymbol{\mathsf{flatten}}(oldsymbol{\mathsf{M}}) + oldsymbol{Z} \in \mathbb{R}^{n imes P} \quad o \quad \hat{oldsymbol{y}}$$

Tensor-based clustering: compute the best rank-one approximation of:

$$\mathsf{X} = \mathsf{M} \otimes \boldsymbol{y} + \mathsf{Z} \in \mathbb{R}^{p_1 \times \cdots \times p_k \times n} \quad o \quad \hat{\boldsymbol{y}}$$

Theorem: The estimated class for X_i is given by $sign(\hat{y}_i)$:

$$\frac{1}{\sqrt{1-\alpha^2}} \left(\sqrt{n} \hat{y}_i^{\ell} - \alpha y_i \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) \quad \Rightarrow \quad \mathcal{E} = Q \left(\frac{\alpha}{\sqrt{1-\alpha^2}} \right)$$

• Linear: $\alpha = \kappa \left(\|\mathbf{M}\| \sqrt{\frac{n}{P+n}}, \frac{n}{P+n} \right)^{-1}$ with κ in [1].

• Tensor: $\alpha = q_{k+1}(\lambda^*)$ with $f\left(\lambda^*, \|\mathbf{M}\|\sqrt{\frac{n}{p+n}}\right) = 0$.

Simulations

Figure 1. n = 200, tensor shape (15, 30, 20) and $\|\mathbf{M}\| = 3$.

Linear ($\mathcal{E}=6.3\%$) Tensor ($\mathcal{E}=0.1\%$)

Figure 2. n = 200, tensor shape (15, 30, 20) and $\|\mathbf{M}\| = 3$.

Conclusion

- This work analyzes learning from low-rank tensor data and shows performance gains.
- It applies random tensor theory to evaluate simple learning methods.
- This paves the way for improving machine learning algorithms for tensor-structured data.

[1] MEA.Seddik, M.Guillaud, R.Couillet, "When Random Tensors meet Random Matrices", Annals of Applied Probability 2023.

