

EMT Bootcamp for BES IBR Studies
Part 2: System Impact Assessment
9/14/23

An initiative spearheaded by the Solar Energy Technologies Office and the Wind Energy Technologies Office

Thomas.McDermott@pnnl.gov

System-Level Session Agenda

- Course Completion Certificates from NERC
- Downloading Example Files
- NERC Guidelines for Use of EMT Models
 - Link: https://www.nerc.com/comm/RSTC/Pages/EMTTF.aspx and
 - https://www.nerc.com/comm/RSTC Reliability Guidelines/Reliability Guideline-EMT Modeling and Simulations.pdf
 - Comparison to IEEE P2800.2 Subgroup 3 Tests under Development
- Workflow Management for System Impact Studies
 - PSSE File Inputs
 - Common Information Model, IEC 61970-301 (network) and -302 (dynamics)
 - Dynamic Link Library (DLL) Models
- Technical Discussion: average, switching, and DC bus modeling
- Hands-on Sessions:
 - This meeting ends for all at 2:30 Eastern time; please join your tool-specific meeting then
 - Running IBR study cases in the IEEE 39-bus system
 - Tool-specific automation examples
 - Repository of Materials: https://github.com/pnnl/i2x/tree/develop/emt-bootcamp

Course Completion Certificates for 4-8 Hours.

- 1. Download: https://github.com/pnnl/i2x/blob/develop/emt-bootcamp/PDH Hours.xlsx
- 2. Complete the highlighted cells:

- 3. Email the xlsx file to Thomas.McDermott@pnnl.gov by 9/22/2023
- 4. You will receive an e-signed certificate from Ryan Quint of NERC
- 5. It's your responsibility to determine suitability for any state PE licensing requirements

EMT Modeling Adoption Visualized in Stages

EMT Modeling Adoption Visualized in Stages

Performance Tests

& plant model

Unit Model Validation

EMT Modeling Visualized by Functional Entities

Recommended EMT Model Requirements

- Establish EMT modeling requirements per FAC-002 for all new IBR resources
- Create a "checklist" of EMT model requirements for GO and equipment manufacturers
- Require high quality EMT models as a prerequisite of interconnection
- Require the EMT models accurately represent all pertinent controls, and protections that could affect the electrical output of the facility during and after grid disturbances
- Require all submitted EMT models include
 - Attestations by the equipment manufacturers and
 - Attestations by GO that aggregate model represents the entire plant and includes site-specific models, settings, protections, and controls
- Include change management requirements and protocols regarding how changes should be reflected in EMT models by the GO
- Clearly define the purview and duration of EMT simulations

Chapter 2: Principles of Model Quality

Chapter 2

- Principles of Model Quality
- Verification Processes

• Attestations – unit models & plant model

Unit Model Validation

Chapter 2: Model Quality Verification

Chapter 2

- Principles of Model Quality
- Verification Processes

Attestations – unit models & plant model

Unit Model Validation

Chapter 2: Model Quality Verification Processes

Figure 2.2: Model Quality Verification Processes, pg. 18

Chapter 4: EMT Study Use Cases

- Chapter 5: Other Relevant Topics
 - Benchmarking Positive Sequence Dynamic Models against the EMT Model
 - Resourcing for Future EMT Study Needs
 - Applicability and Use of IEEE 2800 Guidance
- Appendix A: EMT Model Terminology
 - Generic versus Equipment Specific Models
 - Equipment-Specific Model Types
 - Transparent EMT Models
 - o "Black Box" EMT Models
 - "Real Code" EMT Models
 - Detailed and Aggregate EMT Modeling
- Appendix B: References for EMT Model Requirements

- Help industry close EMT modeling knowledge gaps
- Provide a foundation of knowledge for new modeling requirements and practices
- Guidance to make quality-vetted EMT models available to TPs and PCs for the purposes of reliability studies – interconnection studies per FAC-002 and planning assessments per TPL-001
- Help industry close current gaps between interconnection studies and installed equipment

EMTTF Supporting EMT Adoption Across NA

- EMT Modeling Boot Camps (Virtual)
 - co-hosted by U.S. Department of Energy Interconnection Innovation e-Xchange (i2X) and NERC

Date	Time	Session
July 27, 2023	1 – 3 pm Eastern	Pre-session
August 3, 2023	1 – 5 pm Eastern	Boot Camp 1: Individual IBR Plant Performance Assessment
September 14, 2023	1 – 5 pm Eastern	Boot Camp 2: System Impact Assessment

Systematic fault simulations applied to a strong grid.

- Initial conditions don't change
- No facilities removed from service after the fault clears
- Fault duration is 0.3s, ride-through is not required for some faults

$$Z_{grid} = 10\angle 85^{\circ} = 0.8716 + j9.9619$$

 $L_{grid} = 9.9619/377 = 0.0264$

Retained Voltage	Lf [H]
80%	0.1057
50%	0.0264
25%	0.0088
1%	0.0001
80%	0.1057
50%	0.0264
25%	0.0088
1%	0.0001
80%	0.1057
50%	0.0264
25%	0.0088
1%	0.0001
	80% 50% 25% 1% 80% 50% 25% 1% 80% 50% 25%

Plant model testing framework on a weak grid; IEEE P2800.2 SG3 contemplates testing at SCR = 2.5, details in D0.5, clause 7.

For SCR=2.5 at the VSC terminal (reactance values at 230 kV)

Example	Xi	Хс	Хр	Xgrid	Xtotal	SCMVA
Solar	10.58	0.00	63.48	137.54	211.60	250.0
Wind	30.23	6.42	63.48	111.47	211.60	250.0

Maximum SCR at VSC when Xgrid≈0:

Example	Xplant	SCMVA
Solar	74.06	714.3
Wind	100.13	528.3

Model initialization, undervoltage, and control step tests are automated with IBR control references and fault parameters.

- **fs**: 14 flat-start tests to initialize *from zero* in 10s, remain stable for 10s
 - $P = inverter continuous rating (ICR) and <math>P_{min}$, 7 variations each:
 - $V_{ref}=1$; $Q_{ref}=[0.3287, 0, -0.3287]$; $pf_{ref}=[0.95, 1.0, -0.95]$
- uv: 15 undervoltage ride-through tests, fault duration=0.16s, all at P=ICR
 - 3 fixed Q values of 0.3287, 0, -0.3287 pu
 - 5 fault types [3ϕ sag to 50% voltage, 3ϕ g, 1ϕ g, 2ϕ g, 2ϕ]
- st: 4 control reference change tests plotted below

P2800.2 grid overvoltage, frequency change, and angle jump tests are implemented with controlled grid sources.

- ov: 3 overvoltage ride-through tests at P=ICR and 3 fixed Q values:
 - Q = 0, +0.3287, -0.3287
- **fr**: 4 frequency ride-through tests, over/under at P=ICR and P_{min} , fixed Q=0
- an: 4 angle ride-through tests, positive/negative at P=ICR and P_{min}, fixed Q=0

Short-circuit ratio (SCR) ramp-down tests transition between impedances during faults at 5-second intervals.

P2800.2/D0.5, Clause 7.3.5.1.2
POC SCR Change Informational Tests
Stable operation expected until SCR=2.5

SCR	X @ 230 kV
20	26.45
10	52.90
5	105.80
4	132.25
3	176.33
2.5	211.60
2	264.50
1.5	352.67
1	529.00
	20 10 5 4 3 2.5 2 1.5

This test is simulated manually, with sequenced faults and changes in source impedance.

Comparing NERC EMT Task Force and IEEE P2800.2 emphases.

P2800.2 Emphasis

- 1. Conformance of the hardware and controls to IEEE 2800-2022 requirements
- 2. Models to match unit and plant commissioning tests, also use in design evaluations NERC EMT Task Force Emphasis includes P2800.2, plus
- 1. Establish EMT modeling and IBR performance criteria, including ride-through, for new interconnection requirements.
- 2. Verifying model quality & accuracy, and conformance to new iX requirements.
- 3. Additional requirements on model accuracy and usability, adjustable and observable parameters, documentation, numerical robustness, Δt flexibility, etc.

Study engineers build and check models, organize simulations, and analyze the results.

PSSE files can help build the balance-of-system model for EMT.

- Many/most commercial EMT tools can import from PSSE files:
 - RAW positive sequence network bus and branch data for power flow
 - SEQ zero-sequence and negative-sequence data for short circuit solution
 - DYR dynamics data (machines, exciters, governors, stabilizers, IBR)
 - LOC bus locations for visualization
- Points to remember:
 - There may be some gaps in data for controls, non-linearities, etc.
 - Manual edits to the EMT model files will be decoupled from the original PSSE files
 - EMT tools may operate differently from PSSE, PSLF, PowerWorld, and TSAT

Common Information Model (CIM) has been used to maintain and exchange bulk electric system models, including dynamics.

https://openei.org/wiki/File:CIM_EMT_Article.pdf

- ENTSO-E (35 countries)
- ERCOT since 2009
- AEP, SCE, others adopting
- Sustained effort by EPRI

Fig. 5 French 225 kV grid after CIM import in EMTP

https://www.ipstconf.org/papers/Proc IPST2017/17IPST099.pdf

CIM can represent line impedances and coupling in detail; unbalanced distribution system models have been exchanged.

IEC 61970-302:2018 (CIM Dynamics) already supported machines.

WECC renewable models were added for 61970-302:2022

DER models were added to IEC 61970-302:2022 and IEEE 1547.2 (in ballot resolution). These models support EMT simulation of DER.

Dynamic Link Library (DLL) real-code model interfaces were developed by a joint IEEE AMPS / Cigre B4.82 task force.

Past IEEE/B4.82 presentations: http://www.electranix.com/ieee-pes-tass-realcodewg/ Some more Cigre Technical Brochures

- 1. TB 039, "Guidelines for representation of network elements when calculating transients", 1990.
- 2. TB 295, "Relay software models for use with electromagnetic transient analysis program", 2006.
- 3. TB 736, "Power system test cases for EMT-type simulation studies", 2018.
- 4. TB 881, "EMT simulation models for large-scale system impact studies in power systems having a high penetration of inverter-connected generation", 2022.

Average models use energy-conserving, controlled sources to produce the reference phase voltages.

Control modulation indices:

$$m_a = \sin(\omega t)$$

$$m_b = \sin(\omega t + 2\pi/3)$$

$$m_c = \sin(\omega t - 2\pi/3)$$

$$V_A = \frac{m_a V_{DC}}{2}$$

$$V_B = \frac{m_b V_{DC}}{2}$$

$$V_B = \frac{m_c V_{DC}}{2}$$

DC current source:

$$I_{DC} = \frac{m_a I_A + m_b I_B + m_c I_C}{2}$$

Check power balance:

$$I_{\scriptscriptstyle A} V_{\scriptscriptstyle A} + I_{\scriptscriptstyle B} V_{\scriptscriptstyle B} + I_{\scriptscriptstyle C} V_{\scriptscriptstyle C} = I_{\scriptscriptstyle DC} V_{\scriptscriptstyle DC}$$

Ref: Yazdani and Iravani, pp. 119-121

Switching (detailed) models are driven by the same reference voltages, or modulation indices, as the average models.

 $S_A = m_A > carrier$

 $S_B = m_B > carrier$

 $S_C = m_C > carrier$

DC bus modeling may be necessary to represent control system dynamics and protective functions accurately.

Converter model reference: https://doi.org/10.1109/ACCESS.2021.3086420

PV model references: https://doi.org/10.1109/TSTE.2012.2202294 and https://doi.org/10.1109/TSTE.2012.2202294 and https://doi.org/10.1109/TPEL.2009.2013862

Battery model reference: https://doi.org/10.1109/ACCESS.2019.2957698

Important Links and Instructions

- This meeting now "ends for all"
- Please join your tool-specific meeting from 2:30 5:00 Eastern time
 - That meeting will be on a separate invitation that you should have received
- Instructions, models, slides, videos, and other material: https://github.com/pnnl/i2x/tree/develop/emt-bootcamp
- Direct questions about software operation to your tool vendor
- Post questions about the bootcamp materials here:
 - https://github.com/pnnl/i2x/issues/16
 - You may benefit from the experience of others this way