

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY Faculty of Physics and Applied Computer Science

Master thesis

Mikołaj Gralczyk

major: medical physics

specialisation: dosimetry and electronics in medicine

Programming and testing of the high-speed data acquisition system based on USB standard

Supervisor: dr hab. inż. Bartosz Mindur

Cracow, July 2018

Aware of criminal liability for making untrue statements I declare that the following thesis was written personally by myself and that I did not use any sources but the ones mentioned in the dissertation itself.

The subject of the master thesis and the internship by Mikołaj Gralczyk, student of 5th year major in medical physics, specialisation in dosimetry and electronics in medicine

The subject of the master thesis: Programming and testing of the high-speed data acquisition system based on USB standard

Supervisor: dr hab. inż. Bartosz Mindur Reviewer: dr. inż. Paweł Hottowy A place of the internship: WFiIS AGH, Kraków

Programme of the master thesis and the internship

- 1. First discussion with the supervisor on a realization of the thesis.
- 2. Collecting and studying the references relevant to the thesis topic(s) (especially the OpalKelly's documentation).
- 3. The internship:
 - Familiarization with the electrical and functional diagram of the Opal Kelly XEM6310 module and its parameters.
 - Getting to know the API and trying to integrate the module with the computer.
 - Creating the first, simple programs, that communicate with the module.
 - Preparation of the internship report.
- 4. Developing the test environment both for PC and the module.
- 5. Performing tests on the module.
- 6. Final analysis of the results obtained, conclusions discussion with and final approval by the thesis supervisor.
- 7. Typesetting the thesis.

	non.	'C	Office	α	1177017	7 .
17	Call		office	uc	11 / 51 /	∕ .

(signature of the supervisor)

Pragnę podziękować mojemu promotorowi **dr hab. inż. Bartoszowi Mindurowi** za okazaną pomoc merytoryczną i cenne uwagi w trakcie powstawania niniejszej pracy.

Dziękuję również mojej **Rodzinie**, bez której ukończenie studiów nie byłoby możliwe.

Chciałbym również podziękować **Katarzynie Chmielewskiej** za emocjonalne wsparcie i nieustającą motywację w trakcie pisania pracy.

Contents

Li	st of	Figures	13
Li	st of	Tables	21
1	Intr	roduction	2 3
2	Des	scription of the system for neuroscience studies	25
3	The	eory	27
	3.1	Module for data transmission	27
	3.2	FrontPanel description	29
		3.2.1 Preface	29
		3.2.2 FrontPanel's Application Programming Interface	29
		3.2.3 FrontPanel's Hardware Description Language	30
		3.2.4 Endpoints	31
	3.3	First-in, first-out data structure	37
4	Pro		3 9
	4.1	Overview	39
	4.2	FPGA side implementation	41
		4.2.1 The core of the project's implementation on FPGA side	41
		4.2.2 Timer implementation	42
		4.2.3 Description of module responsible for generating data	43
		4.2.4 Description of module responsible for checking data	46
		4.2.5 LEDs application in the project	47
		4.2.6 FIFO instance in the project	48
	4.3	PC side implementation	49
		4.3.1 Overview	49
		4.3.2 The program's flow description	50
		4.3.3 Detailed description of the timer	51
		4.3.4 Description of pattern generators	53
	4.4	Description of script for results processing	57
	4.5	Project repository structure and description of the config file	58
5	Tes	ting the transfer	5 9
	5.1	Introduction to test	59
	5.2	Investigation of data pattern type impact on transfer speed	60
	5.3	Investigation of FIFO memory type impact on transfer speed	64
	5.4	Investigation of FIFO depth value impact on transfer speed	67
	5.5	Investigation of data pattern type impact on transfer speed in pseudo-duplex mode	70
	5.6	Research of the most optimal block size value for pseudo-duplex mode	72
6	Sun	nmary and conclusions	7 5
$\mathbf{R}_{\mathbf{c}}$	efere	nces	77

4	App	pendix	7 9
	A.1	Graphical presentation of results from the data pattern type impact investigation	
		subtest	79
		A.1.1 nonsym mode part of the subtest	79
		A.1.2 32bit mode part of the subtest	83
	A.2	Graphical presentation of results from the FIFO memory type impact investiga-	
		tion subtest	94
		A.2.1 nonsym mode part of the subtest	94
		A.2.2 32bit mode part of the subtest	106
	A.3	Graphical presentation of results from the FIFO depth value impact investigation	
		subtest	121
		A.3.1 nonsym mode part of the subtest	121
		A.3.2 32bit mode part of the subtest	125
	A.4	Graphical presentation of results from the data pattern type impact investigation	
		subtest in pseudo-duplex mode	134
	A.5	Graphical presentation of results from the best block size value research in pseudo-	
		duplex mode	135

List of Figures

1	Presentation of the system used in neuroscientific experiments [1]	25
2	Functional block diagram of the system for neuroscientific experiments after re-	
	placing the NI card with the OpalKelly module	26
3	Picture of OpalKelly XEM6310-LX45 [2]	27
4	Functional block diagram of OpalKelly XEM6310-LX45 [2]	28
5	Drawing of BRK6110 – the expansion board of OpalKelly XEM6310-LX45 [3]	28
6	Diagram that illustrates the structural relationships in FrontPanel HDL between	
	the various endpoints, the okWireOR, and okHost modules [4]	31
7	Timing diagram of okPipeIn [4]	34
8	Timing diagram of okPipeOut [4]	34
9	Timing diagram of okBTPipeIn [4]	35
10	Timing diagram of okBTPipeOut [4]	35
11	Data ordering in FIFO with write-to-read 1:4 (a) and 4:1 (b) proportions [5]	37
12	Timing diagram for FIFO with Common Clock [5]	38
13	Timing diagram for write module	41
14	Timing diagram for read module	41
15	Timing diagram for bidir module	42
16	Class diagram of <i>Timer</i> interface	50
17	Collaboration diagram of the PC program execution	51
18	Example chart that presents speed results from the test of data pattern impact	
	investigation in nonsym read mode without anomalies (blockram FIFO memory	
	type with 16 depth value)	60
19	Example chart that presents speed results from the test of data pattern impact	
	investigation in nonsym write mode without anomalies (blockram FIFO memory	
	type with 32 depth value)	60
20	Example chart that presents speed results from the test of data pattern impact	
	investigation in 32bit read mode without anomalies (blockram FIFO memory type	
	with 16 depth value)	61
21	Example chart that presents speed results from the test of data pattern impact	
	investigation in 32bit write mode without anomalies (blockram FIFO memory	
	type with 16 depth value)	61
22	Example chart that presents speed results from the test of data pattern impact	
	investigation in 32bit read mode with anomalies (shiftregister FIFO memory type	
	with 16 depth value)	62
23	Example chart that presents speed results from the test of data pattern impact	
	investigation in 32bit read mode with anomalies (shiftregister FIFO memory type	
	with <i>64</i> depth value)	62
24	Example chart that presents speed results from the test of FIFO memory type im-	
	pact investigation in nonsym read mode (16 FIFO depth value and counter_8bit	
	pattern type)	64
25	Example chart that presents speed results from the test of FIFO memory type im-	
	pact investigation in nonsym write mode (32 FIFO depth value and counter_8bit	
	pattern type)	64
26	Example chart that presents speed results from the test of FIFO memory type	
	impact investigation in 32bit read mode without anomalies	
	(256 FIFO depth value and counter_8bit pattern type)	65
27	Example chart that presents speed results from the test of FIFO memory type	
	impact investigation in 32bit write mode without anomalies	
	(16 FIFO depth value and counter_8bit pattern type)	65

28	Example chart that presents speed results from the test of FIFO memory type impact investigation in 32bit read mode with anomalies (16 FIFO depth value and counter_8bit pattern type)	66
29	Example chart that presents speed results from the test of FIFO memory type impact investigation in 32bit read mode with anomalies (64 FIFO depth value and counter_8bit pattern type)	66
30	Example chart that presents speed results from the test of FIFO depth value impact investigation in nonsym read mode (counter_8bit pattern type and blockram FIFO memory type)	67
31	Example chart that presents speed results from the test of FIFO depth value impact investigation in <i>nonsym write</i> mode (<i>counter_8bit</i> pattern type and <i>block-ram</i> FIFO memory type)	67
32	Example chart that presents speed results from the test of FIFO depth value impact investigation in 32bit read mode without anomalies (counter_8bit pattern type and blockram FIFO memory type)	68
33	Example chart that presents speed results from the test of FIFO depth value impact investigation in <i>write</i> mode without anomalies (<i>counter_8bit</i> pattern type and <i>blockram</i> FIFO memory type)	68
34	Example chart that presents speed results from the test of FIFO depth value impact investigation in 32bit read mode with anomalies (counter_8bit pattern type and shiftregister FIFO memory type)	69
35	Example chart that presents speed results from the test of FIFO depth value impact investigation in 32bit read mode with anomalies (counter_32bit pattern type and shiftregister FIFO memory type)	69
36	Transfer results for the test that investigates data pattern impact in <i>duplex</i> mode (blockram FIFO memory type, 16 block_size)	70
37	Transfer results for the test that investigates data pattern impact in <i>duplex</i> mode (<i>blockram</i> FIFO memory type, 64 <i>block_size</i>)	70
38	Transfer results for the test that investigates data pattern impact in <i>duplex</i> mode (<i>blockram</i> FIFO memory type, 256 <i>block_size</i>)	71
39	Transfer results for the test that investigates data pattern impact in duplex mode (blockram FIFO memory type, 1024 block_size)	71
40	Transfer results for the research of the most optimal block size value in duplex mode (counter_8bit pattern type, blockram FIFO memory type)	72
41	Transfer results for the research of the most optimal block size value in duplex mode (counter_32bit pattern type, blockram FIFO memory type)	72
42 43	Transfer results for the research of the most optimal block size value in <i>duplex</i> mode (<i>walking_1</i> pattern type, <i>blockram</i> FIFO memory type) Speed results for data pattern impact subtest in <i>nonsym read</i> mode (<i>blockram</i> FIFO	73
43 44	memory type with 16 depth value)	79
45	memory type with 64 depth value)	79
46	memory type with 256 depth value)	7 9
47	memory type with 1024 depth value)	79
48	memory type with 2048 depth value)	79
	memory type with 32 depth value)	79

49	FIFO memory type with 64 depth value)
50	Speed results for data pattern impact subtest in <i>nonsym write</i> mode (<i>blockram</i> FIFO memory type with 256 depth value)
51	Speed results for data pattern impact subtest in <i>nonsym write</i> mode (<i>blockram</i> FIFO memory type with 1024 depth value)
52	Speed results for data pattern impact subtest in <i>nonsym write</i> mode (<i>blockram</i> FIFO memory type with 2048 depth value)
53	Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 16 depth value)
54	Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 64 depth value)
55	Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 256 depth value)
56	Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 1024 depth value)
57	Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 2048 depth value)
58	Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 16 depth value)
59	Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 64 depth value)
60	Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 256 depth value)
61	Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 1024 depth value)
62	Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 2048 depth value)
63	Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 16 depth value)
64	Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 64 depth value)
65	Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 256 depth value)
66	Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 1024 depth value)
67	Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 2048 depth value)
68	Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 16 depth value)
69	Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 64 depth value)
70	Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 256 depth value)
71	Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 1024 depth value)
72	Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 2048 depth value)
73	Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 16 depth value)

74	Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 64 depth value)	86
75	Speed results for data pattern impact subtest in 32bit write mode (distributedram	00
	FIFO memory type with 256 depth value)	86
76	Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 1024 depth value)	86
77	Speed results for data pattern impact subtest in 32bit write mode (distributedram	
' '	FIFO memory type with 2048 depth value)	87
78	Speed results for data pattern impact subtest in 32bit write mode (shiftregister	
	FIFO memory type with 16 depth value)	87
79	Speed results for data pattern impact subtest in 32bit write mode (shiftregister	
	FIFO memory type with 64 depth value)	87
80	Speed results for data pattern impact subtest in 32bit write mode (shiftregister	
	FIFO memory type with 256 depth value)	87
81	Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 1024 depth value)	87
82	Speed results for data pattern impact subtest in 32bit write mode (shiftregister	01
02	FIFO memory type with 2048 depth value)	87
83	Speed results for FIFO memory type impact subtest in nonsym read mode (16 FIFO	•
	depth value and counter_8bit pattern type)	94
84	Speed results for FIFO memory type impact subtest in nonsym read mode (16 FIFO	
	depth value and <i>counter_32bit</i> pattern type)	94
85	Speed results for FIFO memory type impact subtest in nonsym read mode (16 FIFO	
	depth value and walking_1 pattern type)	94
86	Speed results for FIFO memory type impact subtest in nonsym read mode (16 FIFO	
	depth value and <i>asic</i> pattern type)	94
87	Speed results for FIFO memory type impact subtest in $nonsym\ read$ mode (64 FIFO	
	depth value and <i>counter_8bit</i> pattern type)	94
88	Speed results for FIFO memory type impact subtest in nonsym read mode (64 FIFO	
	depth value and <i>counter_32bit</i> pattern type)	94
89	Speed results for FIFO memory type impact subtest in nonsym read mode (64 FIFO depth value and walking_1 pattern type)	95
90	Speed results for FIFO memory type impact subtest in nonsym read mode (64	
	FIFO depth value and <i>asic</i> pattern type)	95
91	Speed results for FIFO memory type impact subtest in $nonsym\ read$ mode (256	
	FIFO depth value and <i>counter_8bit</i> pattern type)	95
92	Speed results for FIFO memory type impact subtest in nonsym read mode (256	
	FIFO depth value and <i>counter_32bit</i> pattern type)	95
93	Speed results for FIFO memory type impact subtest in nonsym read mode (256	0.5
94	FIFO depth value and walking_1 pattern type)	95
94	FIFO depth value and asic pattern type)	95
95	Speed results for FIFO memory type impact subtest in nonsym read mode (1024)	90
50	FIFO depth value and counter_8bit pattern type)	96
96	Speed results for FIFO memory type impact subtest in nonsym read mode (1024	
	FIFO depth value and <i>counter_32bit</i> pattern type)	96
97	Speed results for FIFO memory type impact subtest in nonsym read mode (1024	
	FIFO depth value and walking_1 pattern type)	96
98	Speed results for FIFO memory type impact subtest in nonsym read mode (1024	_
	FIFO depth value and <i>asic</i> pattern type)	96

99	Speed results for FIFO memory type impact subtest in <i>nonsym read</i> mode (2048 FIFO depth value and <i>counter_8bit</i> pattern type)	96
100	Speed results for FIFO memory type impact subtest in nonsym read mode (2048	
101	FIFO depth value and <i>counter_32bit</i> pattern type)	96
102	FIFO depth value and walking_1 pattern type)	97
103	FIFO depth value and <i>asic</i> pattern type)	97
104	FIFO depth value and <i>counter_8bit</i> pattern type)	97
105	FIFO depth value and counter_32bit pattern type)	97
106	FIFO depth value and walking_1 pattern type)	97
107	FIFO depth value and asic pattern type)	97
108	FIFO depth value and <i>counter_8bit</i> pattern type)	98
109	FIFO depth value and <i>counter_32bit</i> pattern type)	98
110	FIFO depth value and walking_1 pattern type)	98
111	FIFO depth value and <i>asic</i> pattern type)	98
112	FIFO depth value and <i>counter_8bit</i> pattern type)	98
113	FIFO depth value and <i>counter_32bit</i> pattern type)	98
114	FIFO depth value and walking_1 pattern type)	99
115	FIFO depth value and <i>asic</i> pattern type)	99
116	FIFO depth value and <i>counter_8bit</i> pattern type)	99
117	FIFO depth value and <i>counter_32bit</i> pattern type)	99
118	FIFO depth value and walking_1 pattern type)	99
119	FIFO depth value and <i>asic</i> pattern type)	99
	FIFO depth value and <i>counter_8bit</i> pattern type)	100
120	Speed results for FIFO memory type impact subtest in <i>nonsym write</i> mode (2048 FIFO depth value and <i>counter_32bit</i> pattern type)	100
121	Speed results for FIFO memory type impact subtest in <i>nonsym write</i> mode (2048 FIFO depth value and <i>walking_1</i> pattern type)	100
122	Speed results for FIFO memory type impact subtest in <i>nonsym write</i> mode (2048 FIFO depth value and <i>asic</i> pattern type)	100
123	Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO depth value and counter 8bit pattern type).	106

124	Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO	
	depth value and <i>counter_32bit</i> pattern type)	106
125	Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO depth value and walking_1 pattern type)	106
126	Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and counter_8bit pattern type)	106
127	Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and counter_32bit pattern type)	106
128	Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and walking_1 pattern type)	106
129	Speed results for FIFO memory type impact subtest in 32bit read mode (256 FIFO depth value and counter_8bit pattern type)	
130	Speed results for FIFO memory type impact subtest in 32bit read mode (256 FIFO depth value and counter_32bit pattern type)	
131	Speed results for FIFO memory type impact subtest in 32bit read mode (256	
132	FIFO depth value and walking_1 pattern type)	
133	FIFO depth value and <i>counter_8bit</i> pattern type)	
134	FIFO depth value and <i>counter_32bit</i> pattern type)	
135	FIFO depth value and walking_1 pattern type)	107
136	FIFO depth value and <i>counter_8bit</i> pattern type)	108
137	FIFO depth value and <i>counter_32bit</i> pattern type)	108
138	FIFO depth value and walking_1 pattern type)	108
	FIFO depth value and <i>counter_8bit</i> pattern type)	108
139	Speed results for FIFO memory type impact subtest in 32bit write mode (16 FIFO depth value and counter_32bit pattern type)	108
140	Speed results for FIFO memory type impact subtest in 32bit write mode (16 FIFO depth value and walking_1 pattern type)	108
141	Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and counter_8bit pattern type)	109
142	Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and counter_32bit pattern type)	109
143	Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and walking_1 pattern type)	
144	Speed results for FIFO memory type impact subtest in 32bit write mode (256 FIFO depth value and counter_8bit pattern type)	
145	Speed results for FIFO memory type impact subtest in 32bit write mode (256 FIFO depth value and counter_32bit pattern type).	
146	Speed results for FIFO memory type impact subtest in 32bit write mode (256	
147	FIFO depth value and walking_1 pattern type)	
148	FIFO depth value and <i>counter_8bit</i> pattern type)	110
	FIFO depth value and <i>counter_32bit</i> pattern type)	110

Speed results for FIFO memory type impact subtest in 32bit write mode (1024
FIFO depth value and walking_1 pattern type)
Speed results for FIFO memory type impact subtest in 32bit write mode (2048 FIFO depth value and counter_8bit pattern type)
Speed results for FIFO memory type impact subtest in 32bit write mode (2048)
FIFO depth value and counter_32bit pattern type)
Speed results for FIFO memory type impact subtest in 32bit write mode (2048)
FIFO depth value and walking_1 pattern type)
Speed results for FIFO depth value impact subtest in nonsym read mode (counter_8bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym read mode (counter_32bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym read mode (walking_1
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym read mode (asic pattern
type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym write mode (counter_8bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym write mode (counter_32bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym write mode (walk-
ing_1 pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in nonsym write mode (asic
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit pattern
type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit pattern
type and distributedram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit
pattern type and <i>shiftregister</i> FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter_32bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter_32bit
pattern type and distributedram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (counter 32bit
pattern type and <i>shiftregister</i> FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1
pattern type and distributedram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1
pattern type and <i>shiftregister</i> FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit
pattern type and blockram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit
pattern type and distributedram FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit
pattern type and <i>shiftregister</i> FIFO memory type)
Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit
pattern type and blockram FIFO memory type)

174	Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit
	pattern type and distributedram FIFO memory type)
175	Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit
	pattern type and <i>shiftregister</i> FIFO memory type)
176	Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1
	pattern type and blockram FIFO memory type)
177	Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1
	pattern type and distributedram FIFO memory type)
178	Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1
	pattern type and <i>shiftregister</i> FIFO memory type)

List of Tables

1	List of FrontPanel's endpoint types with their parameters
2	List of signals handled by okHost with their direction and description 30
3	FIFO's memory type characteristics
4	FIFO ports used in the project with description
5	Valid combinations of parameters with additional information about FIFO read
	and write ports width
6	The project's convention for endpoints
7	The fastest pattern types (values in square brackets are in MB/s) compared between depth values (nonsym mode, read direction, blockram FIFO memory
	type)
8	The fastest pattern types (values in square brackets are in MB/s) compared between depth values (nonsym mode, write direction, blockram FIFO memory
0	type)
9	The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, read direction, blockram FIFO memory type). 88
10	The fastest pattern types (values in square brackets are in MB/s) compared
10	between depth values (32bit mode, read direction, distributedram FIFO memory
	type)
11	The fastest pattern types (values in square brackets are in MB/s) compared
	between depth values (32bit mode, read direction, shiftregister FIFO memory
	type)
12	The fastest pattern types (values in square brackets are in MB/s) compared
	between depth values (32bit mode, write direction, blockram FIFO memory type). 92
13	The fastest pattern types (values in square brackets are in MB/s) compared
	between depth values (32bit mode, write direction, distributedram FIFO memory
1 /	type)
14	between depth values (32bit mode, write direction, shiftregister FIFO memory
1 =	type)
15	Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 16 depth value for read direction and the second one in
	the square bracket concerns 32 depth value for write direction
16	Speed results (in MB/s) for blockram memory type in nonsym mode. The first
	value in cells concerns 64 depth value for read direction and the second one in
	the square bracket concerns 64 depth value for write direction
17	Speed results (in MB/s) for blockram memory type in nonsym mode. The first
	value in cells concerns 256 depth value for read direction and the second one in
	the square bracket concerns 256 depth value for write direction
18	Speed results (in MB/s) for blockram memory type in nonsym mode. The first
	value in cells concerns 1024 depth value for read direction and the second one in
10	the square bracket concerns 1024 depth value for write direction
19	Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 2048 depth value for read direction and the second one in
	the square bracket concerns 2048 depth value for write direction
20	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, read direction, 16 depth value)
21	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, read direction, 64 depth value)

22	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, read direction, 256 depth value) 113
23	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, read direction, 1024 depth value) 114
24	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, read direction, 2048 depth value) 115
25	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, write direction, 16 depth value)
26	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, write direction, 64 depth value) 117
27	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, write direction, 256 depth value)
28	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, write direction, 1024 depth value) 119
29	The fastest memory types (values in square brackets are in MB/s) compared
	between pattern types (32bit mode, write direction, 2048 depth value) 120
30	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween pattern types (nonsym mode, read direction, blockram memory type) 123
31	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween pattern types (nonsym mode, write direction, blockram memory type) 124
32	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, read direction, counter_8bit pattern type) 128
33	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, read direction, counter_32bit pattern type) 129
34	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, read direction, walking_1 pattern type) 130
35	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, write direction, counter_8bit pattern type) 131
36	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, write direction, counter_32bit pattern type) 132
37	The fastest depth values (speeds in square brackets are in MB/s) compared be-
	tween memory types (32bit mode, write direction, walking_1 pattern type) 133
38	The fastest pattern types (values in square brackets are in MB/s) compared
	between block sizes (duplex mode)
39	Speed transfer (in MB/s) depending on the block size for counter_8bit pattern
	type
40	Speed transfer (in MB/s) depending on the block size for counter_32bit pattern
4 7	type
41	Speed transfer (in MB/s) depending on the block size for walking_1 pattern type.136

1. Introduction

Thanks to advances in computer development which started during the second half of the twentieth century, modern neuroscience has a significant knowledge database about the nervous system nowadays, especially in anatomical and physiological contexts. The technology allowed researchers to learn more about the activity of a single neuron, the anatomy of the central nervous system (CNS) and how it responds to some stimulus. However, a brain is such a complex structure of multiple neuron connections that is still not investigated very well. One of the hardest issue to study is the principle of cooperation between its different parts. Hence, a research team from Department of Physics and Applied Computer Science AGH UST in Krakow started to develop a microelectronic system for large-scale electrical stimulation and recording of brain activity based on multielectrode arrays (MEAs). This solution allows to record the activity of neurons on the behaving animals (like mouse or rat) in different parts of their brain as well as to stimulate cells to discover algorithms of signal processing in the brain circuits [1].

The purpose of this thesis is to use a dedicated OpalKelly's module that will be a part of the solution mentioned above. Its responsibility will be active data management. The module contains a primary interface that enables transferring data from and to PC using the USB 3.0 standard. The principal goal is to run this module and test its functionality and performance by building a dedicated environment on PC and module side.

The solution should meet the following requirements to achieve thesis goals:

- Data transfer should be *fast*. It means that transmission should have as highest data rate as possible. Moreover, the system requires asynchronous transfer, so the system should work in duplex mode. In practice, OpalKelly's modules that have USB 3.0 port allows synchronous data transfer up to 340 MB/s [2].
- Data transfer should be *efficient*. While transferring, no loss should be performed. OpalKelly's interface is intended to deliver 100% of the information. The cost of such solution is lack of isochronous transfer available for use as it is used for continuous error checking [6].
- The whole environment should be *universal and portable*. The solution should work with any modern computer (that is why USB port is used), independently from platform installed on it (Windows, Linux or macOS). An additional advantage will be the ability to reconfigure it in any way.

2. Description of the system for neuroscience studies

The system dedicated for studying brain activity (mentioned in section 1) is based on CMOS technology and has many elements that allow communication with PC. It has four fundamental components: ASIC¹ Board, Back Board, Interface Board and card connected to PC via PXI² interface (NI 6537 DIO). The first one is a sophisticated device that controls a matrix of electrodes implanted into an animal's brain. It can both stimulate and record neuronal activity using 64 independent channels. Analog signals from it go to the second component where ADC converts them to digital signals and then, after serialization, are transmitted to Interface Board using LVDS³ lines. Interface Board describilize signals and sends them via CMOS lines to NI card. Dedicated LabView application (that runs on PC) modifies signals into data understandable for neuroscientists. From the other perspective of the transmission, PC generates signals described in the previously mentioned application, which are sent then to Interface Board connected with NI card. After serialization, signals go to Back Board. There, they are describilized and transmitted to the ASIC Board. Figure 1 present the concept of this system.

Figure 1. Presentation of the system used in neuroscientific experiments [1].

The description above proves that the system is very complicated and needs very specialized devices which are expensive and difficult to handle. The most prominent advantage of this solution is high performance. However, some part of it can be simplified by replacing the NI card with a component that will work with any computer. This kind of solution may reduce costs and make the system more useful.

Hence, the NI card will be replaced by the OpalKelly's module (Figure 2 visualizes the system after replacement). Consequently, it will simplify the whole design and reduce costs of maintenance. Besides, the whole system will be more portable (as NI card requires a dedicated chassis). With plug&play interface, the system will be handier for neuroscientists, as their only duty will be inserting USB cable to port in their computers. The module will be a proxy between PC and Interface Board card. Thanks to expansion board BRK6110 provided with the module all CMOS lines will be directly connected with it. The module provides real-time data

¹Application-Specific Integrated Circuit – a semi-custom for a particular application integrated circuit [7].

²PCI eXtensions for Instrumentation – modular PC-based instrumentation platform for measurement and automation systems [8].

³Low-voltage differential signaling – a signaling method used for high-speed, low-power transmission of binary data over copper [9].

manipulation so no latency should be noticed. The only apparent difference will be lower data transfer speed.

Figure 2. Functional block diagram of the system for neuroscientific experiments after replacing the NI card with the OpalKelly module.

3. Theory

3.1. Module for data transmission

The OpalKelly XEM6310-LX45 device was used as the module for data transmission to achieve the goal of this thesis. The reason for this choice is the fact that it is relatively small to other devices used in neuroscientific experiments (which makes it portable) and has two essential components embedded in:

- Spartan-6 XC6SLX45-2FGG484 a special integrated circuit, made by Xilinx, known as Field-Programmable Gate Array (FPGA) that is fast, low-energy consuming, reprogrammable and cheaper than dedicated ASICs. Also, it can do some additional logic operations on data. It can convert signals from many wires to data transmitted by one USB cable in real-time.
- SuperSpeed USB 3.0 Universal Serial Port that is a general-purpose interface for all modern PCs. Additionally, the USB 3.0 can achieve simultaneous read and write speed up to 5 Gb/s [10]. It is also simple to use because it is a popular plug&play component for data transmission.

Figure 3. Picture of OpalKelly XEM6310-LX45 [2].

The module has an outside-world connection via USB 3.0. This port is used to connect the board with PC and is managed by Cypress FX3 microcontroller which is the host interface for the whole module and is responsible for data transfer, upload configuration file (which actually can be stored in 16 MiB system flash connected to the microcontroller) and debug. The connection between USB and FPGA provides the Host Interface Bus. The FPGA performs its operations with 100 MHz clock and coops with additional modules – a flash (where there can be stored some data even offline) and DDR2 SDRAM with the capacity of 128MiB. 5V DC voltage powers the whole module. A functional block diagram presented in Figure 4 shows all interconnections between components described above.

Figure 4. Functional block diagram of OpalKelly XEM6310-LX45 [2].

Samtec Expansion Connectors provides a direct connection with FPGA via 124 input/output ports. Expansion board BRK6110 can use these connectors and play a role as an extension for any electric device that can connect with FPGA. Also, the board has an additional XILINX JTAG port (for debugging) and power supply port. Although the board was not used in this thesis, after few modifications, it will be able to perform transfer between ASICs and FPGA.

Figure 5. Drawing of BRK6110 – the expansion board of OpalKelly XEM6310-LX45 [3].

3.2. FrontPanel description

3.2.1. Preface

FrontPanel is a platform formed by OpalKelly to manage any physical device of this company. It provides necessary tools for configuring the FPGA as well as all other integrated components, such as RAM. The idea of this platform is to simplify the process of project building, minimize its development time and efficiently handle data transfer.

The FrontPanel environment contains the following components:

- FrontPanel SDK (Software Development Kit) refers to all programming tools which are part of FrontPanel library.
- FrontPanel HDL (Hardware Description Language) a library for Verilog and VHDL languages. It is a complete toolkit for low-level implementation of FPGA behavior.
- FrontPanel API (Application Programming Interface) an interface for creating applications on PC which provides communication with the FPGA. The significant advantage of it is compatibility with many popular programming languages, such as C/C ++, C#, Python, Java, and Ruby.

FrontPanel is compatible with USB 2.0, USB 3.0 and PCI Express ports [11]. By using them (via PC), the user can freely configure the module and control data flow. The various data transfer speeds manifest the fundamental difference between these ports. The exact values of the clock controlling the transfer cause this distinction. In the case of the module used in this work, the clock frequency is 100.8 MHz (9.92 ns per period) due to the presence of USB 3.0 port [6].

3.2.2. FrontPanel's Application Programming Interface

The FrontPanel API is a cross-platform dynamically-linked library (written in C++) for PC applications that control OpalKelly module systems. It can be used with popular programming languages such as C/C++, Python, C#, Java, and Ruby. It provides compatibility with popular operating systems such as Windows, Linux or macOS (OS X) with both 32- and 64-bit architecture [12].

The FrontPanel API consists of several basic classes that allow managing the modules remotely. The most significant in the case of this work is the <code>okCFrontPanel</code> class. It is used to find and configure the device and to communicate directly with FPGA. One of the types of the <code>okCFrontPanel</code> class is <code>ErrorCode</code>. In case of an error event during usage, it allows identifying issue by returning its value in the form of a negative integer number.

Regarding functionality, the methods of the okCFrontPanel class are divided into three groups:

- Device interaction methods for opening communication ports between the module and the PC, as well as systematizing modules information data (if the number of devices connected is higher than one). The most notable method is OpenBySerial() with its optional argument serial number of the module which has to be connected. If it is not passed, the connection will be opened for the first detected device.
- Device configuration when the connection with the module is already established, the methods of this group allow configuring the FPGA and all additional elements connected to it (e.g., flash memory). The most important is ConfigureFPGA(), which sets the FPGA using bitfile passed as the function argument.
- FPGA configuration the methods of this group allow sending signals between FPGA and PC. The most important methods are described in 3.2.4 subsection.

3.2.3. FrontPanel's Hardware Description Language

One of the principal element of the FrontPanel's structure is the host interface. It is a software block that facilitates establishing communication between PC units and FPGA via USB bus. To be more specific, it controls the physical connection of the FPGA with the microcontroller managing the USB port.

Often, the FPGA implementations may require contact with PC application. As it is a very low-level operation, OpalKelly provides some high-level abstraction layer for developers. Therefore, FrontPanel uses the concept of endpoints. Somehow, they behave like external pins, but in fact, they play a role as ports for signals passing through the FPGA. Endpoints are divided into three group: wires, triggers, and pipes. Concerning the direction of data transfer, they are also classified into inputs (enter data into the device) and outputs (transfer data from the device) [13].

Endpoints and the host bus are permanently connected with each other. The designer can declare many of endpoints but must respect the naming rules which says that each endpoint type has a specific address range (see Table 1). The addresses can be sent in the form of an 8-bit signal via the ep_addr input port. Then, data can be transferred synchronously or asynchronously relative to the clock, depending on the type of endpoint.

Endpoint type	Address range	Synchronicity	Data type
Wire In	0x00 - 0x1F	No (asynchronous)	Signal state
Wire Out	0x20 - 0x3F	No (asynchronous)	Signal state
Trigger In	0x40 - 0x5F	Yes	One-shot signal
Trigger Out	0x60 - 0x7F	Yes	One-shot signal
Pipe In	0x80 - 0x9F	Yes	Multi-byte transfer
Pipe Out	0xA0 - 0xBF	Yes	Multi-byte transfer

In FrontPanel HDL, the host interface is known as the okHost module. This component is responsible for many aspects:

- On PC side handling input signal okUH from PC to USB microcontroller, output signal okHU from USB to PC and input/output signals okUHU and okAA.
- On FPGA side handling output signal okHE from USB microcontroller to the endpoints (via so-called target interface bus), input signal okEH from endpoints collected by okWireOR, and output signal okClk which is the clock for whole design (100.8 MHz).

Table 2. List of signals handled by okHost with their direction and description.

\mathbf{Signal}	Direction	Description
okUH[4:0]	okuh[4:0] Input Host interface input signals	
okHU[2:0]	Output	Host interface output signals
okUHU[31:0] Input/Output Host interface bidirectional signals		Host interface bidirectional signals
okAA	Input/Output	Host interface bidirectional signal
okHE[112:0]	Output	Controls signals to the target endpoints
okEH[64:0]	Input	Controls signals from the target endpoints
okClk	Output	Buffered copy of the host interface clock (100.8 MHz)

Listing 1. Instance of the okHost module.

```
okHost okHI (.okUH(okUH), okHU(okHU), .okUHU(okUHU), .okAA(okAA),
.okClk(okClk), .okHE(okHE), .okEH(okEH));
```

The okWireOR module is responsible for collecting all signals from all endpoints and transmit them to the okHost using the okEH output signal. By signal state, each endpoint is informed about permission to transfer its data. If the state is high, the permission is granted. In another case, the state is always low, and data transfer is interrupted. The okWireOR performs logical disjunctions (OR) on each bit of the interface bus and returns a result. Thus, many endpoints can share the bus at the same time.

A diagram presented in Figure 6 summarizes the FrontPanel HDL interface and shows all relations between modules described in this subsection.

Figure 6. Diagram that illustrates the structural relationships in FrontPanel HDL between the various endpoints, the okWireOR, and okHost modules [4].

3.2.4. Endpoints

Wire

The wires' purpose is to receive and send asynchronous signals that are a state of any element in the design (e.g., LED). Often, the components can transmit many data with high rate via wires, which can lead to bandwidth overload. So, FrontPanel interface applies the poll mechanism periodically and register all wires' states at the same time. The user can specify the flow of this component but must keep in mind that transfer also depends on PC capabilities. When the maximum rate (25 milliseconds) is applied, the bandwidth is still low consumed, so the user should not notice any performance penalty.

okWireIn transfers signal state to the project via single 32-bit bus interface output ep_datain. On the other side, okWireOut returns 32-bit signal via input ep_datain. Both of them work asynchronously. The proper instance of okWireIn and okWireOut is shown in Listing 2.

Listing 2. Instances of the okWire endpoint.

The user should use the method presented in Listing 3 to provide value to okWireIn.

Listing 3. SetWireInValue() function.

Arguments:

- ep address of okWireIn target.
- val value for okWireIn (32-bit digit number).
- mask target mask for the new value.

Values returned:

- NoError (0) process succeeded.
- DeviceNotOpen (-8) no access to the device (even if plugged in).
- InvalidEndpoint (-9) the address is out of the range specified for okWireIn.

All wire inputs have to be updated with the method presented in Listing 4 to deliver the given value.

Listing 4. UpdateWireIns() function.

```
okCFrontPanel::ErrorCode okCFrontPanel::UpdateWireIns();
```

All wire outputs need to be updated with the method presented in Listing 5 to receive value from okWireOut. After, the user should use the method shown in Listing 6 which returns a value of the target okWireOut endpoint of epAddr address.

Listing 5. UpdateWireOuts() function.

```
okCFrontPanel::UpdateWireOuts();
```

Listing 6. GetWireOutValue() function.

```
UINT32 okCFrontPanel::GetWireOutValue(int epAddr);
```

Trigger

Triggers are useful endpoints that synchronize connection between PC and FPGA. They can be used in transfer operations (e.g., launching transmission) or they can inform about the module's state. Their instances are presented in Listing 7.

Listing 7. Instances of the okTrigger endpoint.

Both okTriggerIn and okTriggerOut are synchronized with the clock by the ep_clk port. The input trigger is asserted for a single clock cycle and affects the FPGA's process. In contrast, output trigger triggers the PC when rising edge of a signal is detected. As the consequence of polling mechanism, the trigger's state remains till next poll gets it and resets. For both of modules, the trigger value can be passed using the 32-bit ep_trigger port. The user can trigger action from PC using the method presented in Listing 8.

Listing 8. ActivateTriggerIn() function.

```
okCFrontPanel::ErrorCode okCFrontPanel::ActivateTriggerIn(int epAddr, int bit);
```

Arguments:

- epAddr address of okTriggerIn target endpoint.
- bit determine which bit of the 32-bit frame should reach a high state.

Values returned:

- \bullet NoError (0) process succeeded.
- InvalidEndpoint (-9) the address is out of the range specified for okTriggeIn.

To check states of output triggers, the poll method presented in Listing 9 needs to be used.

Listing 9. UpdateTriggerOuts() function.

```
okCFrontPanel::ErrorCode okCFrontPanel::UpdateTriggerOuts();
```

Next, the method shown in Listing 10 allows to check if a specific trigger changed its state. It returns true if the trigger reaches high state. The mask parameter determines which bit need to be taken into account.

Listing 10. IsTriggered() function.

```
bool okCFrontPanel::IsTriggered(int epAddr, UINT32 mask);
```

Pipe

Pipes are endpoints for synchronous multi-byte data transfer between PC and FPGA. They must obey the host (which is always master for whole design) and receive data flow with rate 100.8 MHz. Data is accepted by okPipeIn (via 32-bit ep_dataout output port) when it receives on output port ep_write 1-bite high-level signal. When the signal is still high during next clock intervals, host accepts new data till low. Analogically, the same situation happens for okPipeOut. If the host wants to read data from FPGA, it asserts a high-level signal on an ep_read input port. However, only from next clock interval data is transmitted.

The fundamental condition of proper data flow is the high interface sensitivity for incoming and outgoing data. If the target needs to handle data in block fashion, then it is recommended to link pipes module with FIFO (generated using Xilinx CORE).

Instances of okPipe are presented in Listing 11 with visualization of work synchronously to clock in Figure 7 and 8.

Listing 11. *Instances of the* okPipe *endpoint*.

Figure 7. Timing diagram of okPipeIn [4].

Figure 8. Timing diagram of okPipeOut [4].

There is a variant of the okPipe module that can handle the signal in block fashion — Blok-Throttled Pipe. In its instance, some additional ports can be found — ep_blockstrobe and ep_ready. FPGA controls the ep_ready and should assign on it high signal whenever is ready to transfer the whole block of data without any interruption. If the signal on ep_ready is low, then no transfer will be performed. The main difference between block throttle and okPipe is that transfer can be interrupted while using the regular pipe if the transferred data size is higher than 8192 bytes. It is because firmware put limitations on the maximum length per transfer. However, API will continue transferring extensive data by multiplying transfers if needed. The length of the data array must be a multiplied integer of a minimum transfer size which is 16

in the case of USB 3.0. In case of block variation, the rule says that the block size must be a power of two and fit in the range depending on the subtype of USB:

• FullSpeed: <16, 64>.

• HighSpeed: <16, 1024>.

• SuperSpeed: <16, 16384>.

Instances of okBlokThrottledPipe are presented in Listing 12 with visualization of work synchronously to clock in Figure 9 and 10.

Listing 12. Instances of the okBTPipe endpoint.

Figure 9. Timing diagram of okBTPipeIn [4].

Figure 10. Timing diagram of okBTPipeOut [4].

Methods presented in Listing 13, 14, 15, and 16 allow manipulating data using pipes.

Listing 13. WriteToPipeIn() function.

Listing 14. WriteToBlockPipeIn() function.

Listing 15. ReadFromPipeOut() function.

Listing 16. ReadFromBlockPipeOut() function.

Arguments:

- epAddr address of pipe target.
- length length of a transferred tab (multiple of 16 in bytes).
- blockSize size of a block (power of 2 in bytes).
- data pointer to array with data.

Commonly returned values:

- A value above 0 indicates the size of the transmitted array.
- Failed (-1) unsuccessful operation.
- Timeout (-2) operation exceeded allowed time.
- InvalidEndpoint (-9) the address is out of the range specified for pipes.
- InvalidBlockSize (-10) the defined size of block of data is out of allowed range (BTPipe only)
- UnsupportedFeature (-15) the size of the passed array is not correct.

The reason why ep_dataout and ep_datain ports are 32-bit is the rule of byte order for USB 3.0 OpalKelly's systems. FPGA (HDL) receives 4 bytes words per clock cycle. Though, these words are transferred from PC (API) perspective as 8-bit data type (unsigned char). According to this rule, the first byte sent via okPipeIn is transferred over the lower order bits of the data bus (7:0). The second byte is transferred over next higher order bits of the data bus (15:8) and so on. Analogically, when reading from okPipeOut, the lower order bits are the first byte read, and the next higher order bits are the second byte read.

3.3. First-in, first-out data structure

FIFO is a data structure that represents a queue. The meaning of this acronym is first-in, first-out. In other words, the element on the tail is always the one that has been in the set for the longest time [14].

FIFO is a valuable component in systems where data need to be arranged in a buffer, especially in a case where data incomes faster than it is processed. That will be a typical situation for proxy system described in the second chapter. Then, the implementation of FPGA system should consider such data structure. Fortunately, Xilinx system helps to achieve that by sharing a module called LogiCORETM IP FIFO Generator. The core provides an optimized solution for all FIFO configurations and delivers maximum performance (up to 500 MHz) while utilizing minimum resources [5]. It is entirely customizable so that a user can choose specific width, depth, memory type and some useful status flags. It is also very stable and compatible with Spartan-6 used in OpalKelly module.

FIFO needs memory space to store data in a queue. That is why Xilinx allows choosing three of memory types: Block RAM (BRAM), Distributed RAM and a shift register. Each of them has own low-level implementation but in general:

- Block RAM is used in situations when there is a need for a scalable system that will store a lot of data in a deep queue. It is the only memory type that allows non-symmetric aspect ratio implementations.
- Distributed RAM is suitable for the smaller amount of data but still in a deep queue.
- The *shift register* is proper for really small FIFOs.

Table 3. FIFO's memory type characteristics.

Memory type	Clock supported	Buffering	Minimal resources	Non-symmetric aspect ratio
			required	support
Block RAM	Common/Independent	Medium-Large	Yes	Yes
Distributed RAM	Common/Independent	Small	No	No
Shift register	Common only	Small	No	No

The register size (for reading and writing data) of a FIFO is called width. The depth is a value that says how many words (of a size of width) can be stored in the queue. In general, both read and write ports are symmetric (has the same width). However, in case of non-symmetric aspect ratios, they can have different sizes but only in supported proportions write-to-read: 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1. Also, the only memory type that supports such case is Block RAM.

There is also a rule for data ordering – when the write width is smaller than the read width (1:8, 1:4, 1:2), the most significant bits are read first (MSB to LSB). The analogical situation happens for reverse proportions. Two examples can be found in Figure 11 for 1:4 and 4:1 cases.

Figure 11. Data ordering in FIFO with write-to-read 1:4 (a) and 4:1 (b) proportions [5].

As previously mentioned, FIFO is fully customizable but in this project typically were used ports described in Table 4. Also, mostly Common Clock was implemented. Figure 12 shows how such system works.

Table 4. FIFO ports used in the project with description.

Port	Direction	Description			
clk	input	a clock that can be synchronous to the whole design or asyn-			
		chronous. Moreover, in case of non-symmetric aspect ratios, there			
		are separated clock domains for read (rd_clk) and write (wr_clk)			
		ports.			
rst	input	an asynchronous reset for FIFO registers.			
din	input	port for incoming data. From FrontPanel's perspective, the best			
		wire/register width is 32 bit, so din should be [31:0].			
dout	output	analogically to the din, but for outcoming data.			
wr_en	input	port that receives signal whenever FIFO is obligated to receive			
		data throughout the din port. It is synchronous to the clk and			
		enables writing in the same clock cycle (only when FIFO is not			
		full).			
rd_en	input	port that receives signal whenever FIFO is obligated to send data			
		throughout the dout. It is also synchronous to the clk but read			
		operation is performed only from the next clock cycle (till the			
		rd_en signal is de-asserted, or FIFO is empty).			
almost_full	output	output signal that informs design whenever the only one more			
		write can be performed before the FIFO is full.			
wr_ack	output	output signal asserted when a write request (wr_en) succeeded			
		during the prior clock cycle.			
valid	output	output signal indicating that valid data is available on the dout			
		bus.			

Figure 12. Timing diagram for FIFO with Common Clock [5].

4. Project description

4.1. Overview

This project is an environment for testing out the transfer capabilities of the OpalKelly's FPGA device which will serve in the future as a proxy between specialized ASICs and PC. It consists of programs both for PC and FPGA side and a script for results processing. In detail, its primary responsibility is measuring pipe write and read transfer speed (with applied FIFO in FPGA) by serving a bulk of data with specific pattern and size. The whole project is available on GitHub webpage: https://github.com/mikgral/Master_thesis.

The project is suitable for all popular operating systems (Windows, Linux, and macOS) and all hardware that supports USB 3.0. It is developed for PC in C++ (an object-oriented, general-purpose programming language [15]) and FPGA in Verilog (a hardware description language used during creation of electronic systems [16]). The script is written in Python (an interpreted, high-level, general-purpose programming language [17]). It enables to generate charts that visualize transfer speed and helps to understand which FIFO memory type (Block RAM, Distributed RAM or shift register) is the most efficient buffer to queue data. It also checks if specific data pattern or depth value affects bandwidth and proves that long arrays are the most efficient way to transfer information.

The test environment is prepared to act based on specified options. The most important of them with their possible parameters (and additional description) are presented below:

• mode:

- 32bit FIFO with a symmetric aspect ratio (both its read and write ports are 32-bits width),
- nonsym FIFO with a non-symmetric aspect ratio (one of its ports is 32-bits width and the second one is 64-bits width. The *direction* option determines which port has which width),
- duplex FIFO prepared for pseudo-duplex transfer with a symmetric aspect ratio.
 The reason why full duplex is not available is the fact that FrontPanel does not support isochronous transfer, providing in return reliable transfer error correction [6];

• direction:

- write transfer from PC to FPGA,
- read transfer to PC from FPGA;
- **memory** FIFO memory type:
 - blockram refers to Block RAM,
 - distributedram refers to Distributed RAM,
 - shiftregister refers to a shift register;
- **depth** depth of FIFO. Valid values are: 16 (except nonsym write mode), 32 (nonsym write mode only), 64, 256, 1024, 2048;

• pattern:

- counter_8bit a counter based on an 8-bit register. It starts from 0 to 255 and is increased by 8-bit 1 per word,
- counter_32bit a counter based on a 32-bit register. It starts from 0 to 8589934591 and is increased by 32-bit 1 per 4 words,

- walking_1 per each iteration, there is a left logical shift in 32-bit (for 32bit mode) or 64-bit (for nonsym mode) register. The initial value equals 1,
- asic ASIC pattern simulator based on a 64-bit register (nonsym mode only).

The asic pattern was developed for the need of the project to simulate the activity of STIM64 IC chip that is used in neuroscientific projects [18]. The width of the register was arbitrarily set to 64-bit so that it can be used only in nonsym mode. First four bits are reserved for an ASIC ID number, next eight bits are reserved for a channel number, next 16 are for amplitude, and the rest is for a timestamp. The amplitude takes pseudo-random values generated by LFSR⁴ per each iteration according to the equation (1).

$$f(x) = x^{12} + x^6 + x^4 \tag{1}$$

where $f(1) = 123_{16}$ and x is a value of the previous state. The values of the powers have been chosen arbitrarily in such a way as to give the highest possible dispersion between successive results.

These parameters can be combined with each other to run a specific test. However, the combinations have some limitations. Table 5 presents valid options of a higher level (looking from the left column) that can be linked with lower level options.

Table 5. Valid combinations of parameters with additional information about FIFO read and write ports width.

Mode	Direction	Memory	Depth	Pattern	FIFO write port width [bits]	FIFO read port width [bits]
32bit	write	blockram, distributedram, shiftregister	16, 64, 256, 1024, 2048	counter_8bit, counter_32bit,	32	32
32010	read			1024, 2048	walking_1	52
nongum	write	blockram	32, 64, 256, 1024, 2048	counter_8bit, counter_32bit,	32	64
nonsym	read	blockram	16, 64, 256, 1024, 2048	walking_1, asic	64	32
duplex	-	blockram	2048	counter_8bit, counter_32bit, walking_1	32	32

Some limitations result from software restrictions. E.g., in the case of non-symmetric aspect ratios (in nonsym mode), the only memory applicable for FIFO is blockram [5]. The asic pattern is available only in nonsym mode as initially is based on a 64-bit register. The 32 depth (instead of 16) in nonsym write mode results from mathematic limitations — the read port is two times wider than write, so more data is stored.

 $^{^4}Linear$ -feedback shift register – a shift register that uses a specified linear function of the previous state as an input bit.

4.2. FPGA side implementation

4.2.1. The core of the project's implementation on FPGA side

The project on FPGA side is divided into 5 top modules: 32bit write, 32bit read, nonsym write, nonsym read, duplex bidir. In general, the test sequence is the same for 32bit and nonsym. The difference is in a low-level implementation of FIFO (32bit uses symmetric, while nonsym uses non-symmetric aspect ratios). The most significant variation is visible between modules that are responsible for testing write and read performance.

Figure 13 presents a timing diagram for write module. After launching the timer with start_timer wire, the pipe_in_write is triggered and orders FIFO to collect data. Just after receiving the first word, FIFO informs that is not empty. That triggers port fifo_read_enable, which in turn activates an additional checkData module (via enable_pattern port). It is responsible for comparing data received from a PC with the data generated by dataGenerator module. If the transfer is stopped, FIFO tries to empty its content.

In the *read* implementation (its timing diagram is presented in Figure 14), the timer triggers data generation (in dataGenerator module) that fills FIFO. However, the fifo_almost_full wire controls the creation and prevents from overflowing the queue. In next step, the PC requests read operation and stops the timer at the end.

The implementation of *duplex* (its timing diagram is presented in Figure 15), is the combination of *write* and *read* solutions. The whole control of data holds the PC.

Figure 13. Timing diagram for write module.

Figure 14. Timing diagram for read module.

Figure 15. Timing diagram for bidir module.

All implementations respect the convention of wires and registers naming, created for needs of the project (see Table 6).

Table 6. The project's convention for endpoints.

Wire/register name	Endpoint	Description
	$\operatorname{address}$	
pattern_to_generate	0x00	Informs dataGenerator module which pattern need to
		be generated. Valid values are from 0 to 3 respectively
		for counter_8bit, counter_32bit, walking_1, asic
trigger	0x40	Triggers specified wire. Valid values are from 0 to
		3 responsible for (respectively) reset, start_timer,
		stop_timer, reset_pattern
clk_counts	0x20	Register that holds clock counts in range <0, 31> bits
clk_counts	0x21	Register that holds clock counts in range <32, 63>
		bits
error_count	0x22	Register that gets errors counted by checkData mod-
		ule (used only in write direction mode)
pipe_in_data	0x80	Pipe write endpoint (not used in read)
pipe_out_data	0xA0	Pipe read endpoint (not used in write)

The FIFO is always coupled with pipes or timer, so it will never overflow, as an emptying mechanism is automated (even with small depth). The user can collect counts of clock cycles via 0x20 and 0x21 wires (as clk_counts register is 64 bit). By dividing it by clock frequency (100.8 MHz), transfer time can be counted. An additional wire in *write* mode is implemented – error_counts, which delivers counted errors from checkData module.

4.2.2. Timer implementation

Timer implementation is the same for all top modules. The start_timer wire should be triggered if a user wants to launch the timer. Then, a 64-bit clk_counts register stores number of errors that are counted during all clock intervals till stop_timer is triggered. In write mode, before the beginning of sending data from PC to FPGA, some clock cycles can elapse (the delay depends on PC processor speed. See Figure 13). The stop_timer trigger may also delay depending on PC capabilities (see Figure 14 and 15).

The timer is implemented in always block, which is controlled by clock okClk. When start_timer is at a high value, a non-zero value is set for the timer_on register. In next clock cycles, once this register is high, the clk_counts register is increased by one per each cycle. The stop_timer wire overrides the timer_on register to 0. A user should use the reset trigger to zero clk_counts register. Listing 17 presents this implementation in Verilog language.

Listing 17. The timer implementation in FPGA project.

```
always @(posedge okClk) begin
  if (reset) begin
    clk_counts <= 64'd0;</pre>
    timer_on
                <= 0;
  end
  if (start_timer) begin
                <= 1;
    timer_on
    clk_counts <= clk_counts + 1;</pre>
  end
  if (timer_on) begin
    clk_counts <= clk_counts + 1;</pre>
  end
  if (stop_timer) begin
    timer_on
                <= 0;
  end
end
```

4.2.3. Description of module responsible for generating data

The dataGenerator module is a standalone part of the project. It is responsible for filling register (that handles data) with a specified pattern. Its implementation is the same for both read and write direction mode. Though, it differs in case of 32bit and nonsym mode as the register size is respectively 32- and 64-bit width. The module's instance is presented in Listing 18.

Listing 18. Instance of the dataGenerator module.

```
dataGenerator dataGenCheck(
   .clk(clk),
   .enable_gener(enable_gener),
   .pattern(pattern),
   .reset(reset_pattern),
   .dataout(dataout),
   .dataout_available(dataout_available)
);
```

It is important to know each endpoint's role to implement the module properly in a project:

- clk input for a clock that synchronizes the project.
- enable_gener input 32-bit wire synchronized with a clock that triggers generation of pattern.
- pattern input wire that handles the request of specified data pattern generation. Valid values are described below (with their Verilog's binary format equivalent in brackets):

```
- 0 (3'b000) - counter_8ibit.

- 1 (3'b001) - counter_32bit.

- 2 (3'b010) - walking_1.

- 3 (3'b011) - asic (valid only for nonsym mode).
```

- reset input wire that triggers reset of all registers used for generating data.
- dataout output register that returns data filled with specified pattern. Its width depends on which mode (32-bit for 32bit and 64-bit for nonsym) the project works.
- dataout_available output register that gets high state whenever the pattern generation is done in current clock cycle (mostly used in *read* direction mode to inform FIFO that data is ready to receive).

There are some additional helper components in the module showed in Listing 19, e.g., registers that are used in generating asic data pattern. To the extra four wires are assigned maximal values that the registers can reach.

Listing 19. Helper registers in dataGenerator module that are used in generating asic data pattern.

```
reg [3:0] id;
reg [7:0] channel;
reg [15:0] amplitude;
reg [35:0] timestamp;

wire [3:0] max_id;
wire [7:0] max_channel;
wire [35:0] max_timestamp;

assign max_id = 4'hF;
assign max_channel = 8'hFF;
assign max_timestamp = 36'hFFFFFFFFF;
```

The generation is controlled by reset and enable_gener triggers synchronized with the clock in always block. When the reset is triggered, the dataout register gets a default value, depending on the requested pattern type in pattern endpoint. Listing 20 presents an example of this action from 32bit mode implementation.

Listing 20. The reset operation in dataGenerator module in 32bit mode implementation.

When enable_gener is at a high state, the generation is launched, and dataout_available gets a value of 1. At the same time, when pattern wire is set to 0 value, each byte (8 bits) of 32-or 64-bit dataout register is increased by 1 per clock cycle. That is how counter_8bit pattern is formed. When the wire is set to 1, the register is increased by a constant wire of value of 1 (of the same width), creating the counter_32bit pattern. When the wire is set to 2, a concatenation happens of the whole register (without the last bit) with its last bit. Thus, the generation of the walking_1 pattern is performed. Listing 21 shows an implementation in the 32bit mode of generation of data patterns described above. When the pattern wire is set to 3 value, the asic pattern generation is performed. The dataout register is the result of a concatenation of helper registers showed on Listing 19. Per each clock cycle, timestamp and channel registers are increased by 1. If the channel register reaches its max value, it is zeroed, and the value of id register is increased by one. Meanwhile, the concatenation happens in amplitude register that complies with the LFSR operation described in equation (1). Listing 22 shows the specific implementation in nonsym mode.

Listing 21. The part of dataGenerator module responsible for generating counter_8bit, counter_32bit, walking_1 patterns in 32bit mode implementation.

```
if (enable_gener) begin
  dataout_available = 1;
  case (pattern)
    3'b000: begin
    dataout[7:0] = dataout[7:0] + 4'b1000;
    dataout[15:8] = dataout[15:8] + 4'b1000;
    dataout[23:16] = dataout[23:16] + 4'b1000;
    dataout[31:24] = dataout[31:24] + 4'b1000;
    dataout[39:32] = dataout[39:32] + 4'b1000;
    dataout[47:40] = dataout[47:40] + 4'b1000;
    dataout[55:48] = dataout[55:48] + 4'b1000;
    dataout[63:56] = dataout[63:56] + 4'b1000;
    end
    3'b001: dataout = dataout + 64'b1;
3'b010: dataout = {dataout[62:0], dataout[63]};
...
```

Listing 22. The part of dataGenerator module responsible for generating the asic pattern in nonsym mode implementation.

```
3'b011: begin
      dataout = {timestamp[35:0], amplitude[15:0], channel[7:0], id[3:0]};
      amplitude = {amplitude[14:0],
                   amplitude[11] ^ amplitude[5] ^ amplitude[3]};
      if (timestamp == max_timestamp) begin
        timestamp = timestamp + 36'b1;
      end
      if (channel == max_channel) begin
        channel = 8'b1;
        id = id + 4'b1;
      end else begin
        channel = channel + 8'b1;
      end
      if (id == max_id) begin
        id = 4'b1;
      end
    end
  endcase
end else begin
  dataout_available = 0;
end
```

4.2.4. Description of module responsible for checking data

Data check happens only in *write* direction mode. The module responsible for this is checkData. Its primary goal is to verify whether incoming data from PC is compatible with the pattern. It uses dataGenerator module to produce a correct sample and compares it with the one from source. The module's instance is presented in Listing 23.

Listing 23. Instance of the checkData module.

```
checkData checkDataFromPipeIn (
   .data_to_check(data_to_check),
   .pattern(pattern),
   .clk(clk),
   .reset_err_counter(reset_err_counter),
   .reset_pattern(reset_pattern),
   .check_for_errors(check_for_errors),
   .enable_pattern(enable_pattern),
   .error_count(error_count)
)
```

It is essential to know each endpoint's role to implement the module accurately in a project:

- data_to_check input wire that holds data to check. Its width depends on which mode ([31:0] in 32bit and [63:0] in nonsym) the project works.
- pattern input wire that handles the request of specified data pattern generation. Valid values are the same that the ones described in Listing 18 in subsection 4.2.3.
- clk input for a clock that synchronizes the project.
- reset_err_counter input wire that zeroes error_count register.
- reset_pattern input wire that is passed to the reset endpoint of a dataGenerator module.
- check_for_errors input wire that triggers error checking.
- enable_pattern input wire that is passed to the enable_gener endpoint of the dataGenerator module.
- error_count output 32-bit register that returns from the module counted errors.

The module's always block controls two possible states. The first one is triggered by reset_err_counter where error_count is zeroed. The second one is triggered by check_for_errors. If the incoming data (data_to_check) is not equal with the data (stored in additional wire correct_data) generated by the dataGenerator module, the error_count register is increased by 1.

Listing 24. Implementation of always block in the checkData module in 32bit mode. A width of an additional wire correct_data is 64-bit in nonsym mode.

```
wire [31:0] correct_data;
always @(posedge clk) begin
  if (reset_err_counter) begin
    error_count <= 32'b0;
end
  if (check_for_errors) begin
    if(data_to_check != correct_data) begin
        error_count <= error_count + 1;
    end
end</pre>
```

4.2.5. LEDs application in the project

The OpalKelly module has 8 LEDs that can be used in any project. In this case, they play a role as states indicators of some wires, which can be useful during debugging or troubleshooting. Listing 25 presents assignments of relevant wires to appropriate LEDs. Assignment for led[6] was intentionally omitted as it varies depending on mode:

- ~valid is assigned in 32bit write mode.
- ~fifo_empty is assigned in nonsym write mode.
- 1'b1 (always off) is assigned in 32bit read, nonsym read, and duplex bidir modes.

Listing 25. Universal LED array assignment to specific wires.

```
assign led[0] = ~reset;
assign led[1] = ~start_timer;
assign led[2] = ~timer_on;
assign led[3] = ~stop_timer;
assign led[4] = ~fifo_write_enable;
assign led[5] = ~fifo_read_enable;
assign led[7] = ~1'b1;
```

4.2.6. FIFO instance in the project

An instance of FIFO (which was described in detail in section 3.3) is placed in each project's top module. Listing 26 shows it as a universal pattern which does not take into account several ports that additionally appear depending on the mode:

- .clk(okClk) 32bit write, 32bit read, duplex bidir.
- .wr_clk(okClk) and .rd_clk(okClk) nonsym write, nonsym read.
- ullet .almost_full(fifo_almost_full) $-32bit\ read,\ nonsym\ read.$
- .valid(valid) 32bit write, nonsym write.
- .wr_ack(wr_ack) 32bit write.
- .empty(fifo_empty) nonsym write.

Listing 26. FIFO instance that is common for all top modules. Square brackets should be replaced with relevant words.

```
FIFO_[mode] fifoFor[direction]Test (
    .rst(reset),
    .din(fifo_datain),
    .dout(fifo_dataout),
    .wr_en(fifo_write_enable),
    .rd_en(fifo_read_enable),
    [other ports that appear depending on used mode]
);
```

4.3. PC side implementation

4.3.1. Overview

The test environment on the PC side is fully customizable and can execute on any platform. It is ready to be used in future projects that will include the OpalKelly module. The application strictly for the test is an object-oriented program written in C++11 [19]. It uses the standard library (std) and some other cross-platform libraries:

- GLOG an open source logging library that supports tracing program execution [20].
- *libconfig* an open source project for reading config files by a program written in C++ [21].
- FrontPanelDLL library developed by OpalKelly, available only for customers of their products. This library contains a header file for API purposes (okFrontPanelDLL.h) and dynamically linked libraries for Windows, macOS, and Linux.

The application can perform many tests on the OpalKelly device, considering specified options. Results are saved in a separated file. Moreover, the application has own logging systems, so the program execution can be investigated in order to understand dependencies between implemented classes. The program can be compiled in a standard release mode or debug (where additional logs are added to find bugs during a test). The application comes with ready CMake file to facilitate compilation process.

The application contains own implementation of 7 classes, one interface, and one namespace. All of their definitions are stored in a header file called *performance.h*, which can be used as the project's API in future projects. Names and descriptions of these classes (along with the name of the file in which they are developed) are described below:

- Configurations (config.cpp) a class responsible for parsing test options from a particular config file. It uses libconfig methods as the configuration is written in unique JSON-like format. A path to the file is passed as an argument to the class's constructor. Then, parsing is performed to public variables which will be used by other classes. Some default variables are hardcoded in that class, so a user should check them in a header file to adequately prepare the config file.
- Results (results.cpp) a class used to store results from the test and save them to a result file.
- TransferController (transfer.cpp) a class that controls the test based on specified configuration. It uses many loops to reach the test's goals.
- DataGenerator (datagen.cpp) a class that fills arrays with specified pattern or checks if received data is following the pattern.
- ITimer (timer.cpp) an abstract class that holds data counted by timers implemented in its child classes. It has one pure virtual method performTimer. Figure 16 presents its class diagram. The child classes are:
 - Read a class used in read mode.
 - Write a class used in write mode.
 - Duplex a class used in *duplex* mode. It has one additional method
 (checkIfReceivedEqualsSend) that compares sent and received data.

Figure 16. Class diagram of *Timer* interface.

The last element of the project's API is okdev namespace (developed in *okdev.cpp* file) that has three helper functions for okCFrontPanel objects:

- void openDevice(okCFrontPanel *dev) if an OpalKelly's device is connected with PC, then this method opens a communication port.
- void checkIfOpen(okCFrontPanel *dev) checks if the device is still connected. If not, it closes the program with a fatal error. It may be useful before performing some critical operation on the device.
- void setupFPGA(okCFrontPanel *dev, const string &path_to_bitfile) loads a bitfile to the FPGA.

4.3.2. The program's flow description

When starting the program, a path to a config file should be passed as an argument (otherwise, the program will use by default: ".../performance.cfg"). Configurations class parses determined options and stores them. Then, the object of this class is passed (with okCFrontPanel object responsible for device management) to TransferController class that handles the test. There, many loops iterate through mode and direction of the transfer, depth, and memory of FIFO, pattern and its size. At one runtime, many mixed tests can be performed. Based on these parameters, TransferController class uses a class from Timer interface: Read, Write or Duplex. Each of them launches timer and sends (or receives) data generated by DataGenerator class, based on specified pattern type. After measurements, all results are saved to file in CVS format by Results class. This flow is presented graphically in Figure 17.

Figure 17. Collaboration diagram of the PC program execution.

4.3.3. Detailed description of the timer

There are three timer versions in the application as there are three possible direction modes: read, write and bidir (duplex). The principal idea is to start a chronometer, perform transfer operation, stop the measurement and count elapsed time. Technically, the application uses a function from the standard library called chrono::system_clock::now() to save time value in both start and stop timer variables. The result is saved in pc_duration_total variable of a chrono::duration<double, std::micro> type, so count() operation on it returns a time result in microseconds.

According to *ITimer* interface, the *performTimer* method takes two arguments: pattern size and a number of iterations of the transfer operation. First, a method called prepareForTransfer() is executed where time result and error variables are zeroed. Also, information about the current pattern type is sent to the FPGA with reset trigger. Second, memory is allocated for an array that will hold data. Then, depending on the direction mode, there are three possible scenarios. If the direction is set to *read*, a loop is executed where the read operation on a pipe is performed per each iteration, an elapsed time is counted, and data is checked for errors (Listing 27). Else, if the direction is set to *write*, the data array is filled with the pattern. The data is sent to the FPGA and the transfer time is measured (Listing 28). Else, if the project works in *duplex* mode, the data array is filled with the pattern, and memory is allocated for an array that will hold received data. During time measurement, write and read operations are done along with comparing if the sent and received arrays are the same (Listing 29).

Listing 27. The implementation of perform Timer in Read class.

```
prepareForTransfer();
unsigned char *data = new unsigned char[pattern_size];
for (unsigned int i=0; i<iterations; i++)
{
    DLOG(INFO) << "Current iteration: " << i;
    dev->ActivateTriggerIn(TRIGGER, RESET_PATTERN);
    timer_start = std::chrono::system_clock::now();
    dev->ActivateTriggerIn(TRIGGER, START_TIMER);

    dev->ReadFromPipeOut(PIPE_OUT, pattern_size, data);

    dev->ActivateTriggerIn(TRIGGER, STOP_TIMER);
    timer_stop = std::chrono::system_clock::now();

    pc_duration_total += (timer_stop - timer_start);
    performActionOnData(data, pattern_size);
}
delete[] data;
```

Listing 28. The implementation of performTimer in Write class.

```
prepareForTransfer();
unsigned char *data = new unsigned char[pattern_size];
performActionOnData(data, pattern_size);
timer_start = std::chrono::system_clock::now();
dev->ActivateTriggerIn(TRIGGER, START_TIMER);
for (unsigned int i=0; i<iterations; i++)
{
    dev->ActivateTriggerIn(TRIGGER, RESET_PATTERN);
    dev->WriteToPipeIn(PIPE_IN, pattern_size, data);
}
dev->ActivateTriggerIn(TRIGGER, STOP_TIMER);
timer_stop = std::chrono::system_clock::now();
pc_duration_total = timer_stop - timer_start;
delete[] data;
```

Listing 29. The implementation of perform Timer in Duplex class.

```
prepareForTransfer();
unsigned char *data = new unsigned char[pattern_size];
performActionOnData(data, pattern_size);
unsigned char *received_data = new unsigned char[block_size];
unsigned char *send_data;
for (unsigned int i=0; i<iterations; i++)</pre>
  for (unsigned int j = 0; j < pattern_size; j+=block_size)</pre>
    send_data = data + j;
    timer_start = std::chrono::system_clock::now();
    dev->ActivateTriggerIn(TRIGGER, START_TIMER);
    dev->WriteToPipeIn(PIPE_IN, block_size, send_data);
    dev->ReadFromPipeOut(PIPE_OUT, block_size, received_data);
    dev->ActivateTriggerIn(TRIGGER, STOP_TIMER);
    timer stop = std::chrono::system clock::now();
    pc_duration_total += (timer_stop - timer_start);
    // Error checking
    checkIfReceivedEqualsSend(send_data, received_data);
  }
}
delete[] received_data;
delete[] data;
```

4.3.4. Description of pattern generators

Generators for the four patterns are implemented in DataGenerator class. Its constructor takes such parameters like mode, pattern type, and size. It has two public methods:

- void fillArrayWithData(unsigned char *data) fills the data array (passed as a pointer) with the pattern.
- unsigned int checkArrayForErrors(unsigned char *data) checks whether data array equals expected pattern.

After detection of an expected pattern to generate and determining some helper parameters (like a maximal value of register size), the generation starts. A helper method is used called performActionOnGeneratedData which fills the data or check it with the pattern, depending on transfer direction. The generation algorithms are the same as described in section 4.2.3. Listings 30, 31 and 32 show implementation of (respectively) counter_8bit, counter_32bit, walking_1 patterns. Listing 33 shows declaration of helper variables that are used in asic pattern generation. Listing 34 shows shift operations on an asic_data array (that will be finally used to fill data pattern) to place id, channel, amplitude and timestamp variables on proper bit positions. Listing 35 shows the way of generating data for id, channel, and amplitude variables.

Listing 30. The implementation of counter_8bit pattern in DataGenerator::counter8Bit() method.

```
uint64_t iter = 0;
for (unsigned int i = 0; i < pattern_size; i++)
{
  unsigned char data_char = static_cast<unsigned char>(iter);
  performActionOnGeneratedData(data_char, i);
  if (iter > max_register_size) iter = 0;
  else ++iter;
}
```

Listing 31. The implementation of counter_32bit pattern in DataGenerator::counter32Bit() method.

Listing 32. The implementation of walking_1 pattern in DataGenerator::walking1() method.

Listing 33. Declaration of variables used in the generation of asic pattern in DataGenerator::asic() method. Comments inform about their bit size.

```
uint16_t amplitude = 0x123; // 16b
uint64_t timestamp = 0; // 36b

const uint8_t max_id = 15; // 4b
const uint8_t max_channel = 255; // 8b
const uint16_t max_amplitude = 65535; // 16b
const uint64_t max_timestamp = 68719476735; // 36b

unsigned char asic_data[8];

uint8_t id = 1;
uint8_t channel = 1;
unsigned int i_data = 0;
```

Listing 34. Filling asic pattern with id, channel, amplitude and timestamp data in while (i_data < pattern_size) loop in DataGenerator::asic() method. Comments inform about steps taken to fill asic_data array correctly.

```
timestamp = i_data + 1;
// The first byte is filled with the 4-bit id and
// a half of the 8-bit channel
asic_data[0] = static_cast<unsigned char>(id);
asic_data[0] += static_cast<unsigned char>(channel << 4);</pre>
// The second byte is filled with the second half of channel and
// a quarter of the 16-bit amplitude
asic_data[1] = static_cast<unsigned char>(channel >> 4);
asic_data[1] += static_cast<unsigned char>(amplitude << 4);</pre>
// The third byte is filled with the next series of bits from amplitude
asic_data[2] = static_cast<unsigned char>(amplitude >> 4);
// The fourth byte is filled with the rest bits of amplitude and
// a 1/9 part of the 36-bit timestamp
asic_data[3] = static_cast<unsigned char>(amplitude >> 12);
asic_data[3] += static_cast<unsigned char>(timestamp << 4);</pre>
// Rest of bytes are filled with the rest of timestamp
asic_data[4] = static_cast<unsigned char>(timestamp >> 4);
asic_data[5] = static_cast<unsigned char>(timestamp >> 12);
asic_data[6] = static_cast<unsigned char>(timestamp >> 20);
asic_data[7] = static_cast<unsigned char>(timestamp >> 28);
```

Listing 35. *Id*, channel and amplitude generation in while (i_data < pattern_size) loop in DataGenerator::asic() method.

4.4. Description of script for results processing

One performance test can produce large result file with plenty of data. Results are in CSV format so they can be passed to a program that will visualize and analyze them. Nevertheless, for fast data processing, a script was developed which is an integral part of the project. Not only it allows to visualize results by generating a series of charts, but also it produces tables that show a comparison of data in different cases so that it facilitates the analysis. The script is written in Python3 and uses matplotlib library (a Python 2D plotting library [22]). It consists of two files: $run_analysis.py$ and cfg.py. The first one has the main implementation. The second one has global attributes that affect script execution. Comments above these variables inform what they do and how to use them in order to change script options, but a description of the most important of them can be found below:

- CSV_FILE defines a path to file (in CSV format) that contains transfer results from the test.
- SEPARATOR defines separator used in results file (as the CSV file does not necessarily need to be separated by a comma).
- STATISTICAL_ITERATIONS defines the number of statistical iterations (should be the same as the one defined in *performance.cfg* file).
- CHECK_FOR_ERRORS determines if the script should check error occurrence during transfer (default value is *False*). The result is returned on stdout.
- TARGET_SPEED specifies the target speed that will be collocated with pattern sizes on charts. The default value is 'AV' (average speed of average speeds from PC and FPGA) but also available are 'PC' (average speed from PC) and 'FPGA' (average speed from FPGA).
- PARAMETERS_SEPARATED determines if each combination of parameters should be presented on a separated chart. The default answer is False, so aggregated parameters are indicated in a legend on a figure.

The main implementation is composed of 4 classes:

- ResultsParser transforms data from CSV file to a list of dictionaries that will be easier in use by rest of classes.
- CounterParams uses methods from *statistics* and *math* libraries to count such values like average transfer speed.
- ResultsHandler handles result data whereby another list of dictionaries is created that can be managed in any way, e.g., to create charts or tables.
- Figure responsible for generating charts with *matplotlib* library.

4.5. Project repository structure and description of the config file

The project is divided into PC, FPGA and script section. In folder 'src' is a source code for PC application. In 'HDL' folder are top modules (with additional components) for the board. In folder 'script' is a source code for the script that analyses results with the result file from the test described in section 5. Optionally, CMakeList.txt file can be used with cmake program that controls the build process [23].

Compilation of the program will be successful only if additional libraries like *GLOG*, *libconfig* and *FrontPanelDLL* are installed on a computer or, at least, their sources are placed in the project's folder. The program can be compiled in a *release* or *debug* mode (in the second case, additional traces are implemented).

The config file (*performance.cfg*) specifies how exactly the device should be tested. It has attributes that are divided into two groups:

- output specifies how result file should look like:
 - headers names output arguments in the first row of results file. They can be modified, but it is not generally recommended.
 - resultfile_name the name of the result file. It is recommended to use .csv extension.
 - results_path a path where results need to be stored. Warning: the folder specified in this path must exist! Otherwise, the program will terminate with a fatal error.
 - result_sep a separator that separates results in rows (comma or other).
- params test options:
 - mode three modes are available to choose: 32bit, nonsym, and duplex.
 - direction two directions are available: read (from FPGA to PC) or write (from PC to FPGA). Valid only for 32bit or nonsym mode.
 - memory determines which FIFO memory need to be used: Block RAM (blockram),
 Distributed RAM (distributedram) or shift register (shiftregister).
 - depth FIFO memory depth. Valid options are: 16 (except nonsym write mode), 32 (nonsym write mode only), 64, 256, 1024, 2048.
 - pattern_size list of data sizes. Generally, size must be in a closed range from 16 to 1073741824 (1 GB). If no argument passed, then default values will be generated according to the pattern: $a_n = 16 \cdot 2^{n-1}$, where $n \in \mathbb{N} \land n \in \{0, 27\}$
 - block_size_duplex specifies a size of data blocks. The block size must be divisible by data size and be in the range: <16, 64, 256, 1024>. Valid only for duplex mode.
 - pattern_size_duplex sizes of data patterns for duplex mode. Requirements are the same as in pattern_size except that range begins from 1024.
 - pattern data pattern to generate.
 - statistic_iter iterations that improve statistical error of speed transfer.
 - iterations numbers of transfers for a single mode. It generally decreases statistical error for short patterns.

To run the script for data analysis, the user should execute $script/run_analysis.py$ in Python3 environment. Also, a config file script/cfg.py can be modified to custom analysis (see section 4.4).

5. Testing the transfer

5.1. Introduction to test

The experiment was launched on PC that had Intel® CoreTM i7-8700 CPU @ 3.20GHz with integrated USB 3.0 Intel Corporation Device controller. It had 16 GB RAM DDR4 and ran on Linux Debian 9.4. Redundant processes and daemons were off to reduce actions performed in OS that may interfere with the transfer. All test options were enabled in the test's configuration while respecting rules of combination described in Table 5. Both *statistic_iter* and *iterations* values were set to 10 to meet a representative statistical sample. The measurement errors of the speed results were counted using standard deviation formula according to the equation (2).

$$s = \sqrt{\frac{1}{10 - 1} \sum_{i=1}^{10} (speed_i - \overline{speed})^2}$$
 (2)

The transfer results shown in figures (in next subsections) are sums of average speeds counted on PC and FPGA, divided by two (mean value). Their statistical errors were computed using error propagation formula presented in the equation (3) and were included in the charts in the form of vertical lines.

$$u_{c}(av_speed) = \sqrt{\left[\frac{\partial av_speed}{\partial av_fpga_speed}u(av_fpga_speed)\right]^{2} + \left[\frac{\partial av_speed}{\partial av_pc_speed}u(av_pc_speed)\right]^{2}}$$

$$= \sqrt{\left[\frac{u(av_fpga_speed)}{2}\right]^{2} + \left[\frac{u(av_pc_speed)}{2}\right]^{2}}$$
(3)

The primary purpose of the test is to examine whether, in *nonsym* and *32bit* mode, FIFO memory type, depth value of FIFO or data pattern type (sent via pipes) has an impact on transfer speed. Therefore, three levels of parameters were introduced in each part of the test. Description of these levels can be found at the beginning of subsections. Also, each part of the experiment was performed in four configurations considering transfer direction and mode: *nonsym read, nonsym write, 32bit read, 32bit write.*

In case of *duplex* mode, instead of FIFO memory type (as there is only one valid for this test – *blockram*) there is another parameter – block size. The primary purpose of this test is to find out how efficiently divide bulk of data to imitate full duplex transfer. In the future implementation of OpalKelly module, it will be essential to perform many read and write operations as much as possible at the same time, so the best transfer manner, in this case, should be developed.

Graphical presentation of results and their analysis were possible thanks to the script described in section 4.4. Charts and tables that were created using it are included in the Appendix. As many results were similar to each other, only one example per subtest was moved to proper subsection (unless some anomalies appeared. Their examples were also moved from the Appendix).

5.2. Investigation of data pattern type impact on transfer speed

The first level parameter in this subtest is FIFO memory type. The second one is FIFO depth value. The third parameter is data pattern type. This subsection examines the impact on bandwidth considering a type of data sent in bulks.

In case of *nonsym* mode, no anomalies were detected. All *read* results (from 16 to 2048 depth value) are very similar to those presented in Figure 18. In case of *write* direction – all results (from 32 to 2048 depth value) are similar to those in Figure 19.

Figure 18. Example chart that presents speed results from the test of data pattern impact investigation in *nonsym read* mode without anomalies (*blockram* FIFO memory type with 16 depth value).

Figure 19. Example chart that presents speed results from the test of data pattern impact investigation in *nonsym write* mode without anomalies (*blockram* FIFO memory type with 32 depth value).

In case of 32bit mode and read direction, for blockram and distributedram (16, 64, 256, 1024, and 2048 depth values), and shiftregister (256, 1024, and 2048 depth values), no anomalies were detected, and results were similar to those presented in Figure 20. However, in the case of shiftregister (16 and 64 depth values), there were some disorders during transfer and looked like that those presented in Figures 22 and 23. For write direction, results were similar to those presented in Figure 21.

Figure 20. Example chart that presents speed results from the test of data pattern impact investigation in *32bit read* mode without anomalies (*blockram* FIFO memory type with *16* depth value).

Figure 21. Example chart that presents speed results from the test of data pattern impact investigation in *32bit write* mode without anomalies (*blockram* FIFO memory type with *16* depth value).

Figure 22. Example chart that presents speed results from the test of data pattern impact investigation in *32bit read* mode with anomalies (*shiftregister* FIFO memory type with *16* depth value).

Figure 23. Example chart that presents speed results from the test of data pattern impact investigation in *32bit read* mode with anomalies (*shiftregister* FIFO memory type with *64* depth value).

This subtest showed two major problems during the transfer. The first concerns the anomalies observed during testing shift register FIFO memory type. The second showed atypical data writing speeds (from the PC to the FPGA).

The problem with the *shiftregister* is that the maximal transfer speed values are slightly lower than in the other cases (there are even some small discrepancies between pattern types). Besides, in the range of the pattern size from 10kB to 1 MB, the quality of the results is noticeably worse, as the measurement uncertainties are significant. One could conclude that the shift register is not suitable for long patterns, which would be in agreement with the theory that in case of big queues this type of memory is not optimal (see Table 3). However, the problem appears only in the case of 16 and 64 depth values. The rest of the results for that FIFO memory type do not differ from those without anomalies. The reason for these abnormalities should probably be looked for in the operating system. Possibly, some processes or daemons affected the transfer.

Reading data from the FPGA runs smoothly with speed up to 400 MB/s. On the other hand, sending data to the FPGA shows two basic anomalies. First, maximal transfer speed is about 250 MB/s, so it is over half of the reading average top values. Second, there are visible bumps for around 10 kB and 10 MB data pattern size. Reasons for their appearance are not clear. As the measurement uncertainties are low (the results were reproducible) and considering the fact that reading works correctly, the module's microcontroller responsible for transfer handling should not be treated as defected. Probably, reasons should be sought in the PC's USB controller or operating system. Perhaps, changing hardware on the PC side or OS would solve the problem.

In overall, there was no significant difference in transfer speed results between *nonsym* and 32bit modes. Besides, no impact on transfer was detected that might be potentially affected by pattern types. The whole analysis was based on a graphical representation of results of this subtest placed in the Appendix section A.1.

5.3. Investigation of FIFO memory type impact on transfer speed

The first level parameter in this subtest is FIFO depth value. The second one is data pattern type. The third parameter is FIFO memory type. This subsection examines the impact on bandwidth considering a type of memory implemented in FIFO's core.

In case of *nonsym* mode, both *read* and *write* direction did not reveal any anomalies (except that speed results between these directions differ. This case has been described more in subsection 5.2). In fact, nothing particular this subtest shows as the only valid memory type in that mode is *blockram*. All results are similar to those presented in Figure 24 for *read* and Figure 25 for *write*.

Figure 24. Example chart that presents speed results from the test of FIFO memory type impact investigation in *nonsym read* mode (16 FIFO depth value and *counter_8bit* pattern type).

Figure 25. Example chart that presents speed results from the test of FIFO memory type impact investigation in *nonsym write* mode (32 FIFO depth value and *counter_8bit* pattern type).

In case of 32bit mode and read direction, for all depth values (and all pattern types), no anomalies were detected, and the results were similar to those presented in Figure 26. Though, for 16 and 64 depth values are noticeable anomalies only in shiftregister (see Figure 28 and 29). For write direction, the transfer ran as shown in Figure 27.

Figure 26. Example chart that presents speed results from the test of FIFO memory type impact investigation in *32bit read* mode without anomalies (256 FIFO depth value and *counter_8bit* pattern type).

Figure 27. Example chart that presents speed results from the test of FIFO memory type impact investigation in 32bit write mode without anomalies

(16 FIFO depth value and counter 8bit pattern type).

Figure 28. Example chart that presents speed results from the test of FIFO memory type impact investigation in 32bit read mode with anomalies

(16 FIFO depth value and counter 8bit pattern type).

Figure 29. Example chart that presents speed results from the test of FIFO memory type impact investigation in 32bit read mode with anomalies (64 FIFO depth value and counter_8bit pattern type).

In overall, there was no significant difference in transfer speed results between *nonsym* and 32bit modes. Except for the mentioned anomalies in 32bit mode (shiftregister with 16 and 64 depth value, which were more described in subsection 5.2), no impact on transfer was detected that might be potentially affected by FIFO memory types. The whole analysis was based on a graphical representation of results of this subtest placed in the Appendix section A.2.

5.4. Investigation of FIFO depth value impact on transfer speed

The first level parameter in this subtest is data pattern type. The second one is FIFO memory type. The third parameter is FIFO depth value. This subsection examines the impact on bandwidth considering the depth of a queue implemented in FIFO.

In case of *nonsym* mode, no anomalies were detected. All *read* results are very similar to those presented in Figure 30. In case of *write* direction – all results are similar to those in Figure 31.

Figure 30. Example chart that presents speed results from the test of FIFO depth value impact investigation in *nonsym read* mode (*counter_8bit* pattern type and *blockram* FIFO memory type).

Figure 31. Example chart that presents speed results from the test of FIFO depth value impact investigation in *nonsym write* mode (*counter_8bit* pattern type and *blockram* FIFO memory type).

In case of 32bit mode and read direction, for all pattern types, no anomalies were detected, and the results were similar to those presented in Figure 32. However, some anomalies were found for shiftregister memory type – for all pattern types, significant discrepancies were found among 16 and 64 depth values. For comparison, examples for counter_8bit and counter_32bit were presented in Figures 34 and 35. For write direction, the transfer ran as shown in Figure 33.

Figure 32. Example chart that presents speed results from the test of FIFO depth value impact investigation in 32bit read mode without anomalies (counter_8bit pattern type and blockram FIFO memory type).

Figure 33. Example chart that presents speed results from the test of FIFO depth value impact investigation in *write* mode without anomalies (*counter_8bit* pattern type and *blockram* FIFO memory type).

Figure 34. Example chart that presents speed results from the test of FIFO depth value impact investigation in *32bit read* mode with anomalies (*counter_8bit* pattern type and *shiftregister* FIFO memory type).

Figure 35. Example chart that presents speed results from the test of FIFO depth value impact investigation in 32bit read mode with anomalies (counter_32bit pattern type and shiftregister FIFO memory type).

In overall, there was no significant difference in transfer speed results between *nonsym* and 32bit modes. Except for the mentioned anomalies in 32bit mode (shiftregister with 16 and 64 depth value), no impact on transfer was detected that might be potentially affected by the specific depth of FIFO. The whole analysis was based on a graphical representation of results of this subtest placed in the Appendix section A.3.

5.5. Investigation of data pattern type impact on transfer speed in pseudoduplex mode

The first level parameter in this subtest is FIFO memory type (with only one valid value – blockram). The second one is data block size. The third parameter is data pattern type. This subsection examines the impact on bandwidth considering a data pattern type sent in small blocks in pseudo-duplex mode. Graphical presentation of results can be found in Figures 36, 37, 38, and 39.

Figure 36. Transfer results for the test that investigates data pattern impact in *duplex* mode (*blockram* FIFO memory type, 16 *block_size*).

Figure 37. Transfer results for the test that investigates data pattern impact in *duplex* mode (*blockram* FIFO memory type, 64 *block_size*).

Figure 38. Transfer results for the test that investigates data pattern impact in *duplex* mode (*blockram* FIFO memory type, 256 *block_size*).

Figure 39. Transfer results for the test that investigates data pattern impact in *duplex* mode (*blockram* FIFO memory type, 1024 *block_size*).

The graphical presentation shows that despite the large uncertainties for the small size of patterns (for smaller block sizes), the results between pattern types coincide, so the speed transfer speed does not depend on the pattern used (considering pseudo-duplex mode). More precise result values can be found in tables in the Appendix section A.4.

5.6. Research of the most optimal block size value for pseudo-duplex mode

The first level parameter in this subtest is data pattern type. The second one is FIFO memory type (with only one valid value - blockram). The third parameter is block size. This subsection examines the best block size value that allows a fast pseudo-duplex transfer. Graphical presentation of results can be found in Figure 40, 41 and 42.

Figure 40. Transfer results for the research of the most optimal block size value in *duplex* mode (*counter_8bit* pattern type, *blockram* FIFO memory type).

Figure 41. Transfer results for the research of the most optimal block size value in *duplex* mode (*counter_32bit* pattern type, *blockram* FIFO memory type).

Figure 42. Transfer results for the research of the most optimal block size value in *duplex* mode (*walking_1* pattern type, *blockram* FIFO memory type).

It can be clearly seen that the size of the block of data affects the transfer speed. When the block is larger, the speed increases. Moreover, every pattern size has own speed plateau which depends on the block size. The larger piece of data, the shorter and higher the limit is. More precise result values can be found in tables in the Appendix section A.5.

6. Summary and conclusions

The bandwidth may be affected by multiple aspects. The OpalKelly documentation says that even small operations performed on not real-time operating systems (such as Windows, Linux or macOS) may significantly reduce transfer speed [6]. It is noticeable that in the testing section, in the case of non-duplex modes, there is a deviation between read and write direction. Typically, the difference should be of a few percents. Besides, the write results have two peaks around 10 kB and 10 MB of pattern size, the origin of which is not entirely clear. Perhaps, when changing the PC hardware or OS, the results may be equal considering direction. However, the key of this thesis was to check if implementation on FPGA side may impact transfer, e.g. when complementary cores like FIFO are embedded. Moreover, the test of pseudo-duplex mode should say which block size implementation is the best to simulate fully duplex mode.

Subection 5.2 examined if data pattern sent between FPGA and PC matters considering speed transfer. The analysis showed that there is no apparent dependence between transfer rate and sent content.

Subection 5.3 examined if FIFO memory type has an impact on transfer speed. In nonsym mode, only Block RAM implementation is valid, so no further conclusions can be drawn. However, in 32bit mode in some cases, there is a visible difference between the shift register and other implementations, especially in more extended patterns. It follows the theory that assumes that shift register is not the best memory type for long patterns. Though, this difference might be caused by other aspects that came from OS side (e.g., other processes have disrupted the execution of the program), as the results had a large dispersion compared to the other cases (with high measurement uncertainty), and appeared only in situations when two specific depth values were used.

Subsction 5.4 examined if depth of FIFO has an impact on transfer speed. Here, the situation is clear – no effect should be visible.

Subection 5.5 examined if data pattern type may be crucial when sending small blocks of data in pseudo-duplex mode. Also here, the conclusion is – no impact. The last subsection (5.6), however, showed that block size matters. Up to some value of pattern size, the total speed increases exponentially and eventually reaches max value. But, these speeds are still too low to perform pseudo-duplex transfers efficiently. Thus, bigger block sizes should be used. After all, although the isochronous transfer is not supported by FrontPanel (for the sake of efficient transfer error checking), the module can imitate full duplex mode.

To sum up, there is no significant impact on transfer speed considering FIFO implementation and sent data. Only the size of pattern matters (and its block size in case of pseudo-duplex applications). From 10 MB of transmitted data, the rate reaches max value up to 400 MB/s (in read direction), so the module met the expected speed. Plus, no errors during transfer were performed, so the transfer was efficient at 100%. Furthermore, the test environment is built on cross-platform libraries, so it is universal in use. The OpalKelly module is entirely suitable for neuroscientific experiments.

References

- [1] Szypulska M., Dąbrowski W., Hottowy P. et al., "Modular asic-based system for large-scale electrical stimulation and recording of brain activity in behaving animals," tech. rep., Faculty of Physics and Applied Computer Science AGH University of Science and Technology Krakow, Poland, 2016.
- [2] OpalKelly Inc., "XEM6310 product overview." https://www.opalkelly.com/products/xem6310/. Access: 17.05.2018.
- [3] OpalKelly Inc., "BRK6110 breakout board." https://docs.opalkelly.com/display/ XEM6310/BRK6110+Breakout+Board. Access: 17.05.2018.
- [4] OpalKelly Inc., "FrontPanel HDL USB 3.0." https://docs.opalkelly.com/display/FPSDK/FrontPanel+HDL+-+USB+3.0. Access: 17.05.2018.
- [5] Xilinx Inc., FIFO Generator v13.1. LogiCORE IP Product Guide, April 2017. Document number: PG057.
- [6] OpalKelly Inc., "FrontPanel's performance." https://docs.opalkelly.com/display/FPSDK/Performance. Access: 17.05.2018.
- [7] Vahid F., Digital Design with RTL Design, VHDL, and Verilog. John Wiley & Sons, Inc., second ed., 2011.
- [8] PXI Systems Alliance, "About PXI." http://www.pxisa.org/About/AboutPXI.aspx. Access: 17.05.2018.
- [9] Texas Instruments Inc., Interface Circuits for TIA/EIA-644 (LVDS), September 2002. Document number: SLLA038B.
- [10] Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, NEC Corporation, ST-NXP Wireless, and Texas Instruments, *Universal Serial Bus 3.0 Specification*, November 2008. Revision 1.0.
- [11] OpalKelly Inc., "FrontPanel presentation." https://www.opalkelly.com/products/frontpanel/. Access: 17.05.2018.
- [12] OpalKelly Inc., "FrontPanel API." https://docs.opalkelly.com/display/FPSDK/FrontPanel+API. Access: 17.05.2018.
- [13] OpalKelly Inc., "FrontPanel HDL." https://docs.opalkelly.com/display/FPSDK/FrontPanel+HDL. Access: 17.05.2018.
- [14] Cormen T. and Leiserson C. and Rivest R. and Stein C., *Introduction to Algorithms*. Massachusetts Institute of Technology, third ed., 2009.
- [15] Stroustrup B., The C++ Programming Language. Addison Wesley, fourth ed., 2013.
- [16] The Institute of Electrical and Electronics Engineers, Inc., $IEEE\ Standard\ for\ Verilog$ ® Hardware Description Language, April 2006. IEEE Std 1364TM-2005.
- [17] Python Software Foundation, "Python official website." https://www.python.org/. Access: 17.05.2018.
- [18] AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Nuclear Electronics, *Specification of STIM64 IC*, July 2015. version 1.2.

- [19] International Organization for Standardization, ISO/IEC 14882:2011, September 2011.
- [20] Google Inc., "C++ implementation of the Google logging module." https://github.com/google/glog. Access: 17.05.2018.
- [21] hyperrealm, "C/C++ library for processing configuration files." https://github.com/hyperrealm/libconfig. Access: 17.05.2018.
- [22] The Matplotlib development team, "Matplotlib: Python plotting." https://matplotlib.org/. Access: 17.05.2018.
- [23] Kitware, Inc., "CMake official website." https://cmake.org/. Access: 17.05.2018.

A. Appendix

A.1. Graphical presentation of results from the data pattern type impact investigation subtest

A.1.1. nonsym mode part of the subtest

Figure 43. Speed results for data pattern impact subtest in *nonsym* read mode (blockram FIFO memory type with 16 depth value).

Figure 44. Speed results for data pattern impact subtest in *nonsym* read mode (blockram FIFO memory type with 64 depth value).

Figure 45. Speed results for data pattern impact subtest in *nonsym* read mode (blockram FIFO memory type with 256 depth value).

Figure 46. Speed results for data pattern impact subtest in *nonsym* read mode (blockram FIFO memory type with 1024 depth value).

Figure 47. Speed results for data pattern impact subtest in *nonsym* read mode (blockram FIFO memory type with 2048 depth value).

Figure 48. Speed results for data pattern impact subtest in *nonsym* write mode (blockram FIFO memory type with 32 depth value).

Figure 49. Speed results for data pattern impact subtest in nonsym write mode (blockram FIFO memory type with 64 depth value).

Figure 50. Speed results for data pattern impact subtest in *nonsym* write mode (blockram FIFO memory type with 256 depth value).

Figure 51. Speed results for data pattern impact subtest in *nonsym* write mode (blockram FIFO memory type with 1024 depth value).

Figure 52. Speed results for data pattern impact subtest in *nonsym* write mode (blockram FIFO memory type with 2048 depth value).

Table 7. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (nonsym mode, read direction, blockram FIFO memory type).

D	1.0	0.4	070	1004	00.40
Pattern size [B]	16	64	256	1024	2048
16	asic [0.065]	walking_1 [0.065]	counter_8bit [0.065]	counter_8bit [0.066]	counter_8bit [0.066]
	counter_32bit	walking_1	walking_1	counter_8bit	walking_1
32	[0.132]	[0.131]	[0.131]	[0.132]	[0.132]
0.4	counter_32bit	counter_8bit	counter_32bit	counter_32bit	asic
64	[0.262]	[0.263]	[0.262]	[0.264]	[0.263]
128	counter_32bit	walking_1	walking_1	asic	counter_8bit
	$[0.523]$ counter_8bit	[0.523] walking_1	[0.522] walking_1	[0.527] counter_8bit	[0.528] asic
256	[1.046]	[1.045]	[1.047]	[1.054]	[1.054]
512	counter_8bit	counter_8bit	counter_8bit	walking_1	asic
	[2.096]	[2.092]	[2.091]	[2.107]	[2.107]
1024	counter_32bit	counter_8bit	counter_32bit	walking_1	asic
	[4.174]	[4.177]	[4.179]	[4.209]	[4.217]
2048	counter_8bit [8.191]	counter_32bit [8.173]	walking_1 [8.190]	counter_32bit [8.246]	counter_32bit [8.242]
	counter_8bit	counter_32bit	asic	counter_8bit	walking_1
4096	[15.816]	[15.812]	[15.813]	[15.911]	[15.933]
	asic	walking_1	walking_1	counter_32bit	asic
8192	[29.613]	[29.466]	[29.438]	$[29.\overline{619}]$	[29.611]
16384	counter_8bit	asic	counter_32bit	counter_8bit	counter_8bit
	[51.862]	[51.569]	[51.499]	[51.961]	[51.974]
32768	asic	counter_8bit	counter_32bit	counter_32bit	counter_32bit
	[91.198]	[91.236]	[91.425]	[91.721]	[91.823]
65536	asic [148.105]	asic [148.043]	asic [148.193]	counter_32bit [148.868]	walking_1 [148.646]
	walking_1	counter_8bit	counter_8bit	counter_8bit	counter_32bit
131072	[215.186]	[216.054]	[215.370]	[215.849]	[215.974]
2021 4 4	asic	counter_32bit	counter_32bit	asic	asic
262144	[278.859]	[278.772]	[278.689]	[279.065]	[279.087]
524288	counter_32bit	asic	counter_8bit	asic	counter_32bit
	[327.077]	[326.875]	[327.005]	[327.257]	[327.184]
1048576	counter_32bit	asic	asic	asic	walking_1
	[352.594]	[352.982]	[353.293]	[353.288]	[353.290]
2097152	asic [<i>374.325</i>]	counter_8bit [374.297]	walking_1 [374.400]	walking_1 [<i>374.413</i>]	counter_32bit [374.425]
	counter_8bit	asic	asic	asic	asic
4194304	[384.797]	[384.823]	[384.871]	[384.887]	[384.875]
0000000	walking_1	walking_1	counter_32bit	walking_1	counter_32bit
8388608	[390.318]	[390.345]	[390.345]	[390.349]	[390.347]
16777216	walking_1	walking_1	counter_8bit	walking_1	counter_32bit
10111210	[391.577]	[391.585]	[391.587]	[391.596]	[391.591]
33554432	counter_8bit [392.854]	counter_8bit [392.872]	walking_1 [392.871]	counter_32bit [392.865]	asic [<i>392.875</i>]
	walking_1	counter_8bit	asic	asic	counter_8bit
67108864	[393.514]	[393.517]	[393.520]	[393.514]	[393.493]
194917799	counter_8bit	counter_32bit	counter_8bit	asic	asic
134217728	[393.841]	[393.820]	[393.840]	[393.825]	[393.827]
268435456	asic	asic	asic	walking_1	counter_8bit
	[393.995]	[393.983]	[394.005]	[393.999]	[393.996]
536870912	counter_8bit	asic	counter_8bit	counter_32bit	counter_32bit
	[394.081]	[394.077]	[394.082]	[394.071]	[394.074]
1073741824	counter_32bit [394.112]	counter_8bit [394.113]	counter_8bit [394.093]	walking_1 [394.113]	walking_1 [394.099]
Most frequent	counter_8bit	counter_8bit	counter_8bit	counter_32bit,	asic
parameter	counter_out	counter_out	counter_out	asic, walking 1	asic
Paramotor		I	l .		

Table 8. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (nonsym mode, write direction, blockram FIFO memory type).

Pattern size [B]	32	64	256	1024	2048
16	asic [0.054]	counter_32bit $[0.053]$	asic [0.054]	asic [0.054]	walking_1 [0.054]
32	asic	walking_1	counter_8bit	asic	counter_8bit
	[0.108] counter_32bit	[0.107] asic	[0.107] counter_8bit	[0.107] walking_1	[0.107] asic
64	[0.215]	[0.214]	[0.214]	[0.215]	$\begin{bmatrix} asic \\ [0.215] \end{bmatrix}$
128	walking_1	walking_1	counter_8bit	counter_8bit	asic
128	[0.430]	[0.428]	[0.429]	[0.430]	[0.430]
256	walking_1	asic	counter_32bit	walking_1	counter_8bit
	[0.861] counter_32bit	[0.855] asic	[0.856] asic	[0.858] asic	[0.860] asic
512	[1.717]	[1.703]	[1.709]	[1.716]	[1.719]
1024	counter_32bit	walking_1	counter_32bit	walking_1	asic
1024	[3.438]	[3.414]	[3.421]	[3.439]	[3.441]
2048	counter_32bit	walking_1	walking_1	counter_32bit	asic
	[6.852] walking_1	[6.808] counter_8bit	[6.815] counter_8bit	[6.846] counter_8bit	[6.849] counter_8bit
4096	[13.363]	[13.208]	[13.229]	[13.350]	[13.357]
8192	asic	walking_1	counter_8bit	walking_1	counter_8bit
0192	[25.778]	[25.408]	[25.509]	[25.589]	[25.737]
16384	counter_8bit	walking_1	walking_1	asic	counter_8bit
	[0.717] asic	[0.696] walking_1	[0.700] counter_8bit	[0.727] counter_32bit	[0.738] counter_32bit
32768	[1.312]	[1.343]	[1.344]	[1.326]	[1.313]
erroc	walking_1	walking_1	counter_8bit	counter_32bit	walking_1
65536	[2.561]	[2.651]	$[2.5\overline{61}]$	[2.758]	[2.824]
131072	counter_8bit	counter_32bit	counter_32bit	asic	counter_8bit
	[5.147] asic	[5.093] counter_8bit	[5.147] counter_32bit	[5.146]	[5.146] asic
262144	[10.060]	[10.060]	[10.166]	counter_8bit [10.061]	[10.061]
70.40 00	walking_1	walking_1	counter_8bit	asic	counter_32bit
524288	[19.828]	[19.628]	[19.629]	[19.627]	[19.629]
1048576	walking_1	counter_8bit	asic	counter_8bit	counter_8bit
	[38.026] asic	[47.582] walking_1	[52.397] counter_8bit	[39.562] counter_8bit	[37.295] counter_8bit
2097152	[68.184]	[68.190]	[68.163]	[68.772]	[68.771]
4104004	walking_1	counter_32bit	counter_8bit	counter_32bit	asic
4194304	[116.138]	[116.144]	$[116.\overline{110}]$	[116.127]	[116.146]
8388608	counter_8bit	counter_8bit	counter_32bit	asic	counter_8bit
	[179.106] asic	[179.142] counter_8bit	[180.102] counter_32bit	[179.102] counter_32bit	[179.129] walking_1
16777216	[184.707]	[184.886]	[185.187]	[181.192]	[182.194]
99554499	counter_8bit	asic	walking_1	asic	counter_32bit
33554432	[209.324]	[209.682]	[210.356]	[209.637]	[211.023]
67108864	counter_32bit	walking_1	counter_8bit	walking_1	counter_8bit
	[225.823] asic	[225.813] counter 32bit	[226.582] counter 32bit	[225.430] asic	[225.439]
134217728	asic [<i>235.216</i>]	[235.279]	[235.195]	asic [235.189]	counter_32bit [235.190]
0.00 4.05 45.0	asic	counter_8bit	counter_32bit	counter_32bit	counter_32bit
268435456	[240.531]	[240.485]	[240.524]	[240.444]	[240.473]
536870912	counter_32bit	counter_32bit	asic	asic	asic
	[243.254]	[243.228]	[243.328]	[243.224]	[243.268]
1073741824	walking_1 [244.743]	counter_32bit [244.770]	counter_8bit [244.705]	counter_32bit [244.747]	counter_32bit [244.743]
Most frequent	asic	[244.770] walking_1	counter_8bit	[244.747] asic	counter_8bit
parameter					
	I .	I	I.	I .	I .

A.1.2. 32bit mode part of the subtest

Figure 53. Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 16 depth value).

Figure 54. Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 64 depth value).

Figure 55. Speed results for data pattern impact subtest in *32bit read* mode (*blockram* FIFO memory type with *256* depth value).

Figure 56. Speed results for data pattern impact subtest in *32bit read* mode (*blockram* FIFO memory type with *1024* depth value).

Figure 57. Speed results for data pattern impact subtest in 32bit read mode (blockram FIFO memory type with 2048 depth value).

Figure 58. Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 16 depth value).

Figure 59. Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 64 depth value).

Figure 60. Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 256 depth value).

Figure 61. Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 1024 depth value).

Figure 62. Speed results for data pattern impact subtest in 32bit read mode (distributedram FIFO memory type with 2048 depth value).

Figure 63. Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 16 depth value).

Figure 64. Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 64 depth value).

Figure 65. Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 256 depth value).

Figure 66. Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 1024 depth value).

Figure 67. Speed results for data pattern impact subtest in 32bit read mode (shiftregister FIFO memory type with 2048 depth value).

Figure 68. Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 16 depth value).

Figure 69. Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 64 depth value).

Figure 70. Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 256 depth value).

Figure 71. Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 1024 depth value).

Figure 72. Speed results for data pattern impact subtest in 32bit write mode (blockram FIFO memory type with 2048 depth value).

Figure 73. Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 16 depth value).

Figure 74. Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 64 depth value).

Figure 75. Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 256 depth value).

Figure 76. Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 1024 depth value).

Figure 77. Speed results for data pattern impact subtest in 32bit write mode (distributedram FIFO memory type with 2048 depth value).

Figure 78. Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 16 depth value).

Figure 79. Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 64 depth value).

Figure 80. Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 256 depth value).

Figure 81. Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 1024 depth value).

Figure 82. Speed results for data pattern impact subtest in 32bit write mode (shiftregister FIFO memory type with 2048 depth value).

Table 9. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, read direction, blockram FIFO memory type).

D 44	1.0	0.4	050	1004	00.40
Pattern size [B]	16	64	256	1024	2048
16	counter_32bit	counter_32bit	counter_32bit	counter_32bit	walking_1
	[0.065]	[0.066]	[0.066]	[0.066]	[0.066]
32	counter_8bit	walking_1	counter_32bit	counter_8bit	walking_1
	[0.131]	[0.132]	[0.132]	[0.132]	[0.131]
64	walking_1	walking_1	walking_1	walking_1	counter_8bit
	[0.262]	[0.264]	[0.263]	[0.263]	[0.262]
128	counter_8bit	counter_8bit	counter_32bit	walking_1	counter_32bit
	[0.523]	[0.528]	[0.527]	[0.528]	[0.526]
256	counter_8bit	walking_1	counter_8bit	counter_8bit	counter_8bit
	[1.044]	[1.054]	[1.053]	[1.054]	[1.049]
512	counter_8bit	counter_8bit	counter_8bit	counter_32bit	counter_8bit
	[2.087]	[2.111]	[2.105]	[2.106]	[2.104]
1024	counter_32bit	counter_32bit [4.207]	walking_1	walking_1	walking_1
	[4.167]		[4.203]	[4.194]	[4.195]
2048	walking_1 [8.189]	counter_8bit [8.249]	counter_8bit [8.239]	walking_1 [8.259]	counter_32bit [8.244]
	walking_1	walking_1	counter_8bit	walking_1	[0.244] counter_8bit
4096	[15.820]	[15.918]	[15.909]	[15.928]	[15.885]
	counter_8bit	counter_32bit	counter_32bit	counter_32bit	walking_1
8192	[29.411]	[29.643]	[29.630]	[29.602]	[29.579]
	counter_32bit	walking_1	walking_1	counter_32bit	walking_1
16384	[51.933]	[51.995]	[51.965]	[51.930]	[51.941]
	counter_32bit	walking_1	walking_1	counter_32bit	counter_8bit
32768	[91.284]	[91.600]	[91.875]	[91.613]	[91.806]
	counter_32bit	walking_1	walking_1	counter_32bit	walking_1
65536	[148.171]	[148.682]	[148.762]	[148.776]	[148.415]
101070	walking_1	counter_8bit	counter_8bit	counter_32bit	counter_32bit
131072	[216.013]	[216.011]	[215.799]	[215.868]	[215.507]
262144	counter_8bit	walking_1	walking_1	walking_1	walking_1
202144	[278.685]	[279.071]	[279.096]	[278.931]	[279.044]
524288	walking_1	walking_1	counter_32bit	counter_8bit	counter_32bit
324200	[326.896]	[327.092]	[327.203]	[327.099]	[327.188]
1048576	counter_32bit	counter_8bit	counter_8bit	walking_1	walking_1
1040010	[353.151]	[353.133]	[353.209]	[353.194]	[352.906]
2097152	walking_1	counter_32bit	walking_1	walking_1	counter_8bit
	[374.329]	[374.437]	[374.390]	[374.452]	[374.021]
4194304	walking_1	counter_8bit	counter_32bit	walking_1	counter_32bit
	[384.840]	[384.869]	[384.872]	[384.853]	[384.708]
8388608	counter_8bit	walking_1	walking_1	walking_1	counter_32bit
	[390.351]	[390.332] counter_8bit	[390.320]	[390.256]	[390.272]
16777216	counter_32bit [391.590]		walking_1 [391.580]	counter_32bit [391.590]	counter_8bit
	[391.390] walking_1	[391.578] counter_32bit	walking_1	counter 8bit	[391.556] counter_8bit
33554432	[392.870]	[392.871]	[392.860]	[392.854]	[392.811]
	counter_32bit	walking_1	counter_8bit	counter_32bit	counter_32bit
67108864	[393.518]	[393.515]	[393.514]	[393.506]	[393.494]
	walking_1	counter_8bit	counter_32bit	counter_8bit	walking_1
134217728	[393.826]	[393.833]	[393.817]	[393.835]	[393.827]
200.457.47	walking_1	walking_1	counter_32bit	counter_32bit	counter_8bit
268435456	[393.971]	[393.998]	[393.967]	[394.002]	[393.974]
F969F0012	walking_1	counter_8bit	walking_1	walking_1	counter_32bit
536870912	[394.067]	[394.080]	[394.076]	[394.069]	[394.078]
1079741994	counter_8bit	counter_8bit	walking_1	walking_1	walking_1
1073741824	[394.109]	[394.103]	[394.104]	[394.099]	[394.096]
Most frequent	walking_1	walking_1	walking_1	walking_1	walking_1
parameter					_

Table 10. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, read direction, distributedram FIFO memory type).

Pattern size	16	64	256	1024	2048
[B]					
16	counter_32bit	walking_1	counter_8bit	counter_32bit	counter_8bit
10	[0.066]	[0.066]	[0.065]	[0.065]	[0.066]
32	counter_8bit	counter_32bit	counter_8bit	counter_8bit	counter_8bit
32	[0.131]	[0.132]	[0.131]	[0.131]	[0.132]
64	walking_1	counter_8bit	counter_8bit	counter_8bit	counter_32bit
04	[0.262]	[0.263]	[0.260]	[0.261]	[0.264]
128	counter_32bit	walking_1	counter_32bit	counter_32bit	counter_8bit
126	[0.523]	[0.526]	[0.527]	[0.522]	[0.526]
256	counter_8bit	walking_1	counter_32bit	walking_1	counter_8bit
230	[1.046]	[1.053]	[1.057]	[1.046]	[1.053]
F10	walking_1	counter_32bit	counter_8bit	counter_32bit	counter_8bit
512	[2.089]	[2.108]	[2.103]	[2.086]	[2.107]
1004	counter_32bit	counter_8bit	walking_1	counter_8bit	counter_32bit
1024	[4.179]	[4.198]	[4.208]	[4.135]	[4.204]
20.10	counter_8bit	walking_1	counter_8bit	walking_1	walking_1
2048	[8.245]	[8.239]	$[8.2\overline{49}]$	[8.174]	[8.246]
1000	walking 1	counter_32bit	counter_32bit	counter_8bit	counter_32bit
4096	[15.814]	[15.884]	[15.903]	[15.806]	$[15.\overline{9}19]$
	counter_32bit	walking_1	walking_1	counter_32bit	walking_1
8192	[29.400]	[29.587]	[29.602]	$[29.\overline{502}]$	[29.614]
10001	counter_32bit	counter_8bit	counter_32bit	counter_32bit	walking_1
16384	[51.544]	[51.938]	[51.693]	$[51.\overline{387}]$	[51.898]
	counter_8bit	counter_32bit	counter_8bit	walking_1	counter_32bit
32768	[91.047]	[91.664]	[91.322]	[90.921]	[91.617]
	counter_8bit	counter_32bit	walking_1	counter_32bit	counter_8bit
65536	[148.380]	[148.720]	[148.760]	[147.826]	[148.649]
	walking_1	walking_1	walking_1	counter_8bit	counter_32bit
131072	[215.960]	[215.778]	[215.921]	[215.599]	[215.991]
	walking_1	counter_8bit	walking_1	counter_32bit	walking_1
262144	[278.996]	[278.908]	[279.031]	[278.172]	[279.068]
	counter_8bit	counter_8bit	counter_8bit	counter_32bit	counter_8bit
524288	[327.099]	[327.086]	[327.057]	[326.884]	[327.229]
	counter_32bit	counter_32bit	walking_1	walking_1	walking_1
1048576	[353.030]	[352.868]	[353.158]	[352.287]	[353.215]
	walking_1	walking_1	walking_1	counter_8bit	counter_8bit
2097152	[374.334]	[374.108]	[374.457]	[374.013]	[374.409]
	counter_32bit	counter_32bit	counter_8bit	counter_8bit	walking_1
4194304	[384.781]	[384.698]	[384.898]	[384.619]	[384.868]
	counter_32bit	counter_8bit	counter_8bit	counter_32bit	counter_8bit
8388608	[390.295]	[390.269]	[390.332]	[390.199]	[390.351]
	counter_32bit	counter_8bit	counter_8bit	counter_32bit	walking_1
16777216	[391.569]	$[391.\overline{540}]$	$[391.\overline{590}]$	[391.567]	[391.584]
	counter 8bit	counter_32bit	walking_1	counter_8bit	counter_8bit
33554432	[392.849]	[392.829]	[392.867]	[392.853]	[392.873]
	walking_1	counter_32bit	walking_1	counter_8bit	walking_1
67108864	[393.508]	[393.513]	[393.507]	$[393.\overline{507}]$	[393.518]
101017700	walking_1	walking 1	counter_32bit	counter_8bit	walking_1
134217728	[393.838]	[393.833]	[393.841]	[393.810]	[393.818]
000107175	counter_32bit	counter_8bit	counter_8bit	walking_1	walking_1
268435456	[393.999]	[393.995]	[393.984]	[393.996]	[393.999]
F0.00 F0.00	walking_1	counter_8bit	counter_8bit	counter_8bit	walking_1
536870912	[394.064]	[394.066]	[394.070]	[394.074]	[394.072]
	counter_8bit	counter_32bit	counter_8bit	counter_8bit	counter_8bit
1073741824	[394.106]	[394.102]	[394.097]	[394.103]	[394.101]
Most frequent	counter_32bit	counter 32bit	counter_8bit	counter_8bit	counter_8bit,
parameter	02011001_02010	02011001_02010		0041101_0010	walking_1
Parameter					

Table 11. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, read direction, shiftregister FIFO memory type).

				I	
Pattern size [B]	16	64	256	1024	2048
16	counter_32bit [0.065]	counter_32bit [0.065]	walking_1 [0.066]	counter_32bit [0.066]	counter_32bit [0.066]
32	counter_32bit [0.123]	counter_8bit [0.131]	counter_32bit [0.132]	counter_8bit [0.132]	counter_8bit [0.132]
64	counter_8bit	counter_32bit	counter_32bit	walking_1	counter_8bit
190	[0.256] counter_8bit	$[0.255]$ counter_8bit	[0.263] counter_8bit	[0.263] counter_8bit	[0.264] counter_32bit
128	[0.521] counter_32bit	[0.526] counter 32bit	[0.527] counter_32bit	[0.527] counter 32bit	[0.528] walking_1
256	[1.040]	[0.982]	[1.054]	[1.054]	[1.054]
512	counter_8bit [1.986]	counter_8bit $[1.957]$	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [2.107] \end{array}$	walking_1 [2.107]	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [2.107] \end{array}$
1024	walking_1 [4.175]	counter_32bit [4.182]	counter_8bit [4.198]	counter_8bit [4.203]	walking_1 [4.210]
2048	walking_1 [7.981]	walking_1 [8.062]	counter_8bit [8.237]	counter_32bit [8.253]	walking_1 [8.256]
4096	counter_32bit	walking_1	counter_8bit	walking_1	walking_1
8192	[15.438] counter_8bit	[15.705] counter_32bit	[15.919] walking_1	[15.907] walking_1	[15.853] counter_32bit
	[29.417] counter_8bit	[27.679] walking_1	[29.657] walking_1	[29.628] counter_32bit	[29.557] counter_32bit
16384	[50.380]	[48.964]	[51.920]	$[51.\overline{991}]$	[51.976]
32768	walking_1 [84.201]	counter_8bit [91.571]	walking_1 [91.676]	counter_8bit [91.683]	counter_8bit [91.588]
65536	counter_32bit [138.324]	counter_32bit [148.110]	counter_8bit [148.781]	counter_8bit [148.700]	counter_8bit [148.745]
131072	counter_32bit [207.014]	counter_8bit [206.285]	walking_1 [215.823]	counter_32bit [215.740]	walking_1 [215.717]
262144	walking_1	counter_32bit	walking_1	counter_8bit	walking_1
524288	[262.387] counter_8bit	[258.534] walking_1	[279.032] counter_8bit	[278.995] counter_8bit	[278.803] walking_1
	[312.172] walking 1	[302.974] walking_1	[327.212] counter_8bit	[327.205] counter_8bit	[327.069] walking_1
1048576	[330.465]	[331.175]	[353.100]	[353.185]	[353.198]
2097152	counter_8bit [353.948]	walking_1 [347.914]	counter_8bit [374.337]	counter_8bit [374.327]	counter_8bit [374.468]
4194304	counter_8bit [359.897]	counter_32bit [357.630]	counter_32bit [384.704]	walking_1 [384.839]	walking_1 [384.881]
8388608	walking_1 [362.094]	counter_8bit [361.903]	counter_32bit [390.228]	counter_32bit [390.343]	counter_32bit [390.336]
16777216	counter_8bit	counter_32bit	walking_1	counter_8bit	counter_8bit
33554432	[364.196] walking_1	[361.250] counter_32bit	[391.583] counter_32bit	[391.585] walking_1	[391.584] counter_8bit
	[355.745] counter_8bit	[363.850] counter_8bit	[392.873] counter_8bit	[392.869] counter_8bit	[392.864] counter_8bit
67108864	[355.445] walking_1	[369.825] counter_8bit	[393.516] counter_8bit	[393.514] counter_32bit	[393.504] walking_1
134217728	[368.340]	[368.964]	[393.844]	[393.815]	[393.829]
268435456	counter_8bit [369.640]	counter_8bit [367.055]	walking_1 [393.986]	counter_8bit [393.990]	counter_32bit [394.003]
536870912	counter_32bit [369.263]	walking_1 [388.025]	counter_32bit [394.071]	walking_1 [394.080]	counter_8bit [394.078]
1073741824	counter_8bit	counter_32bit	walking_1	counter_32bit	walking_1
Most frequent	[366.695] counter_8bit	[394.096] counter_32bit	[394.104] counter_8bit	[394.083] counter_8bit	[394.106] walking_1
parameter					

Table 12. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, write direction, blockram FIFO memory type).

Dottom size	16	C 1	256	1024	20.49
Pattern size [B]	16	64	256	1024	2048
16	walking_1 [0.054]	counter_32bit [0.054]	walking_1 [0.054]	counter_32bit $[0.053]$	walking_1 [0.054]
	walking_1	walking_1	counter_8bit	counter_32bit	walking_1
32	[0.107]	[0.108]	[0.107]	[0.107]	[0.107]
	counter_8bit	counter_8bit	counter_32bit	counter_32bit	walking_1
64	[0.214]	[0.215]	[0.215]	[0.214]	[0.215]
	walking 1	walking 1	counter_8bit	counter_8bit	counter_8bit
128	[0.429]	[0.430]	[0.428]	[0.428]	[0.430]
	counter_32bit	walking_1	walking_1	counter_32bit	counter_32bit
256	[0.856]	[0.860]	[0.856]	[0.855]	[0.860]
	counter_8bit	counter_8bit	walking_1	walking_1	counter_32bit
512	[1.711]	[1.718]	[1.706]	[1.707]	[1.710]
1004	counter_32bit	counter_8bit	counter_8bit	walking_1	walking_1
1024	[3.420]	$[3.4\overline{39}]$	[3.432]	[3.418]	[3.437]
20.40	walking_1	counter_32bit	walking_1	counter_32bit	counter_8bit
2048	[6.815]	[6.842]	[6.823]	[6.809]	[6.847]
4000	counter_32bit	counter_32bit	counter_32bit	counter_8bit	walking_1
4096	[13.233]	[13.355]	[13.226]	[13.223]	[13.343]
8192	walking_1	walking_1	walking_1	counter_32bit	counter_8bit
8192	[25.494]	[25.717]	[25.501]	[25.500]	[25.663]
16384	counter_32bit	counter_8bit	counter_32bit	counter_32bit	counter_8bit
10364	[0.664]	[0.689]	[0.673]	[0.650]	[0.650]
32768	counter_8bit	counter_32bit	counter_32bit	counter_32bit	counter_32bit
32100	[1.312]	[1.330]	[1.298]	[1.344]	[1.598]
65536	counter_32bit	counter_8bit	counter_8bit	counter_32bit	counter_32bit
00000	[2.616]	[2.561]	[2.589]	[2.589]	[2.616]
131072	walking_1	counter_32bit	counter_32bit	counter_8bit	counter_8bit
101012	[5.093]	[5.203]	[5.093]	[5.148]	[5.091]
262144	walking_1	walking_1	walking_1	walking_1	counter_32bit
	[10.062]	[10.061]	[10.061]	[10.059]	[10.059]
524288	counter_8bit	counter_8bit	counter_32bit	walking_1	counter_32bit
	[19.833]	[19.627]	[19.628]	[19.629]	[19.829]
1048576	counter_32bit	counter_32bit	counter_32bit	counter_32bit	counter_32bit
	[38.390]	[38.390]	[40.090]	[38.027]	[43.821]
2097152	walking_1	walking_1	counter_8bit	counter_8bit	counter_32bit
	[68.187]	[68.177]	[68.175]	[68.181] counter_32bit	[68.766] counter_32bit
4194304	counter_8bit [116.133]	walking_1 [116.129]	walking_1 [116.124]	[116.137]	[116.953]
	counter_32bit	counter_8bit	counter_32bit	walking_1	walking_1
8388608	[179.115]	[179.112]	[179.101]	[180.109]	[179.122]
	walking_1	counter_32bit	counter_32bit	walking_1	counter_32bit
16777216	[187.065]	[181.690]	[184.868]	[185.761]	[185.262]
2277 1 122	counter 32bit	walking_1	walking_1	walking 1	counter_32bit
33554432	[210.333]	[210.329]	[208.665]	[211.339]	[210.343]
07100004	counter_32bit	counter_8bit	counter_8bit	counter_32bit	counter_8bit
67108864	[225.429]	$[225.\overline{634}]$	$[226.\overline{216}]$	[226.194]	[225.794]
134217728	counter_32bit	counter_8bit	walking_1	counter_8bit	counter_8bit
194411140	[235.169]	[235.332]	[235.078]	[235.274]	[235.226]
268435456	counter_32bit	walking_1	counter_32bit	walking_1	counter_8bit
200 1 00400	[240.482]	[240.438]	[240.484]	[240.437]	[240.433]
536870912	walking_1	counter_32bit	counter_32bit	counter_32bit	walking_1
2000.0012	[243.259]	[243.182]	[243.278]	[243.244]	[243.283]
1073741824	counter_32bit	counter_32bit	walking_1	counter_8bit	counter_8bit
	[244.689]	[244.686]	[244.698]	[244.690]	[244.643]
Most frequent	counter_32bit	counter_32bit,	counter_32bit	counter_32bit	counter_32bit
parameter		walking_1,			
		counter_8bit			

Table 13. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, write direction, distributedram FIFO memory type).

Pattern size	16	64	256	1024	2048
[B]					
16	walking_1 [0.054]	counter_8bit [0.053]	counter_32bit [0.054]	walking_1 [0.053]	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [0.053] \end{array}$
	counter_8bit	counter_8bit	counter_8bit	counter_32bit	counter_8bit
32	[0.107]	[0.107]	[0.108]	[0.107]	[0.107]
0.4	walking_1	walking_1	counter_32bit	walking_1	counter_8bit
64	[0.215]	[0.214]	[0.215]	[0.214]	[0.214]
100	counter_32bit	walking_1	counter_32bit	walking_1	counter_8bit
128	[0.430]	[0.428]	[0.430]	[0.429]	[0.426]
256	counter_8bit	counter_8bit	counter_8bit	counter_8bit	counter_8bit
250	[0.860]	[0.855]	[0.859]	[0.860]	[0.851]
512	walking_1	counter_8bit	counter_8bit	counter_8bit	walking_1
312	[1.717]	[1.709]	[1.716]	[1.705]	[1.702]
1024	counter_8bit	counter_8bit	walking_1	walking_1	counter_8bit
1024	[3.439]	[3.410]	[3.437]	[3.420]	[3.411]
2048	counter_32bit	counter_8bit	counter_8bit	counter_8bit	counter_32bit
2040	[6.853]	[6.819]	[6.847]	[6.817]	[6.819]
4096	counter_32bit	walking_1	counter_32bit	walking_1	counter_8bit
	[13.352]	[13.201]	[13.351]	[13.245]	[13.224]
8192	counter_8bit	walking_1	walking_1	counter_32bit	counter_32bit
	[25.680]	[25.502]	[25.706]	[25.478]	[25.490]
16384	walking_1	walking_1	counter_32bit	walking_1	counter_32bit
	[0.710]	[0.678]	[0.709]	[0.659]	[0.657]
32768	counter_32bit	walking_1	counter_8bit	counter_32bit	counter_8bit
	[1.312]	[1.313]	[1.358]	[1.330]	[1.299]
65536	counter_8bit	counter_8bit	walking_1	counter_32bit [2.800]	walking_1
	[2.616]	[2.617] counter_8bit	[2.588] counter_32bit	counter_8bit	[2.623] counter_8bit
131072	walking_1 [5.092]	[5.147]	[5.093]	[5.145]	[5.147]
	counter_8bit	walking_1	counter_8bit	counter_32bit	counter_8bit
262144	[10.060]	[10.168]	[10.166]	[10.061]	[10.060]
	walking_1	walking_1	counter_8bit	counter_32bit	counter_32bit
524288	[19.627]	[19.629]	[19.627]	[19.627]	[19.627]
1010770	walking_1	walking_1	counter_8bit	counter_8bit	counter_8bit
1048576	[49.550]	[42.967]	$[49.3\overline{69}]$	[44.433]	[38.913]
2007152	walking_1	counter_32bit	walking_1	counter_32bit	counter_32bit
2097152	[68.748]	[68.772]	[68.769]	[68.161]	[68.187]
4194304	counter_8bit	counter_8bit	counter_32bit	walking_1	walking_1
4134304	[116.909]	[116.139]	[116.109]	[116.088]	[116.151]
8388608	counter_32bit	counter_8bit	walking_1	counter_32bit	counter_32bit
0000000	[180.048]	[179.136]	[179.137]	[180.997]	[179.112]
16777216	counter_32bit	counter_8bit	counter_32bit	counter_32bit	counter_8bit
	[183.197]	[186.456]	[184.733]	[186.452]	[183.216]
33554432	counter_8bit	counter_8bit	counter_32bit	counter_8bit	counter_32bit
	[210.713]	[210.001]	[211.014]	[210.047]	[208.675]
67108864	counter_8bit	counter_32bit	counter_32bit	counter_8bit	counter_32bit
	[226.209]	[225.831]	[225.780]	[225.624]	[225.625]
134217728	walking_1	counter_32bit	counter_8bit	counter_8bit	counter_32bit
	[235.081] counter_32bit	[235.082] counter_32bit	[235.085] walking_1	[235.184] counter_32bit	[235.271] counter_8bit
268435456	[240.475]	[240.480]	[240.535]	[240.495]	[240.492]
	counter_8bit	counter_32bit	counter_8bit	counter_8bit	walking_1
536870912	[243.219]	[243.271]	[243.252]	[243.238]	[243.277]
	counter_32bit	counter_32bit	walking_1	counter_32bit	counter_32bit
1073741824	[244.689]	[244.765]	[244.711]	[244.693]	[244.664]
Most frequent	counter_8bit	counter_8bit	counter_32bit,	counter 32bit	counter_8bit
parameter	00411001_0010	0000000000000000000000000000000000000	counter_8bit	0201101_02010	55411001_0010
Parameter	<u> </u>	l	ODIU		l

Table 14. The fastest pattern types (values in square brackets are in MB/s) compared between depth values (32bit mode, write direction, shiftregister FIFO memory type).

			272	1001	2010
Pattern size [B]	16	64	256	1024	2048
16	counter_32bit [0.054]	counter_32bit [0.054]	walking_1 [0.054]	walking_1 [0.054]	walking_1 [0.054]
32	counter_32bit [0.107]	counter_8bit [0.108]	$ \begin{array}{c} \text{counter} 32 \text{bit} \\ [0.107] \end{array} $	$ \begin{array}{c} \text{counter} 32 \text{bit} \\ [0.107] \end{array} $	counter_32bit [0.107]
64	walking_1	counter_32bit	counter_32bit	counter_32bit	walking_1
64	[0.215]	[0.215]	[0.214]	[0.214]	[0.214]
128	walking_1 [0.430]	$\begin{array}{c} \text{counter_32bit} \\ [0.430] \end{array}$	$\begin{array}{c} \text{counter_8bit} \\ [0.429] \end{array}$	$\begin{array}{c} \text{counter_8bit} \\ [0.428] \end{array}$	walking_1 [0.429]
256	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [0.860] \end{array}$	walking_1 [0.861]	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [0.856] \end{array}$	walking $_1$ [0.855]	counter_8bit $[0.859]$
512	counter_8bit [1.718]	counter_8bit [1.718]	counter_8bit [1.710]	walking_1 [1.706]	counter_8bit [1.709]
1024	walking_1 [3.439]	counter_8bit [3.434]	counter_8bit [3.418]	walking_1 [3.425]	counter_32bit [3.418]
2048	counter_32bit [6.851]	counter_8bit [6.834]	counter_32bit [6.810]	walking_1 [6.854]	counter_8bit [6.814]
4096	counter_8bit	counter_8bit	counter_8bit	counter_8bit [13.221]	walking_1 [13.212]
8192	[13.354] counter_8bit	[13.288] walking_1	[13.223] counter_32bit	counter_8bit	counter_32bit
16384	[25.712] walking_1	[25.740] counter_8bit	[25.460] counter_32bit	[25.466] walking_1	[25.479] counter_32bit
10364	[0.714]	[0.696]	[0.666]	[0.712]	[0.680]
32768	walking_1 [1.372]	walking_1 [1.298]	walking_1 [1.534]	counter_32bit [1.284]	counter_8bit [1.344]
65536	walking_1 [2.561]	counter_8bit [2.616]	walking_1 [2.651]	$\begin{array}{c} \text{counter}_32 \text{bit} \\ [2.644] \end{array}$	walking_1 [2.561]
131072	counter_32bit [5.147]	counter_32bit [5.147]	counter_32bit [5.092]	counter_8bit [5.201]	counter_32bit [5.146]
262144	counter_32bit [10.061]	counter_32bit [10.061]	walking_1 [10.168]	walking_1 [10.060]	counter_8bit [10.060]
524288	walking_1 [19.628]	counter_8bit [19.629]	counter_8bit [19.629]	walking_1 [19.629]	counter_32bit [19.629]
1048576	counter_8bit [37.657]	counter_32bit [38.835]	counter_8bit [38.835]	walking_1 [40.664]	counter_32bit [40.008]
2097152	counter_8bit [68.168]	walking_1 [68.186]	counter_8bit [68.182]	counter_32bit [68.177]	counter_8bit [68.181]
4194304	counter_8bit [116.976]	walking_1 [116.135]	counter_32bit [116.132]	counter_8bit [116.117]	walking_1 [116.125]
8388608	counter_8bit [179.072]	walking_1 [179.114]	counter_32bit [179.111]	counter_32bit [179.094]	walking_1 [179.116]
16777216	counter_8bit [181.116]	counter_8bit [186.764]	counter_8bit [186.337]	counter_8bit [182.277]	counter_32bit [184.629]
33554432	counter_8bit [208.940]	walking_1 [211.025]	counter_32bit [208.022]	counter_32bit [209.960]	counter_8bit [210.642]
67108864	counter_32bit [225.372]	counter_8bit [225.626]	walking_1 [226.014]	walking_1	walking_1
134217728	counter_32bit	counter_32bit	walking_1	[225.241] counter_32bit	[226.376] walking_1
	[235.114] walking_1	[235.218] counter_8bit	[235.350] counter_8bit	[235.085] counter_32bit	[235.214] walking_1
268435456	[240.413]	[240.449]	[240.481]	[240.430]	[240.523]
536870912	counter_8bit [243.190]	counter_32bit [243.219]	walking_1 [243.259]	counter_8bit [243.279]	counter_32bit [243.272]
1073741824	counter_8bit [244.624]	walking_1 [244.705]	counter_32bit [244.756]	walking_1 [244.709]	counter_8bit [244.697]
Most frequent parameter	counter_8bit	counter_8bit	counter_32bit	walking_1	walking_1
Faranious	1	l .	l .	l .	

A.2. Graphical presentation of results from the FIFO memory type impact investigation subtest

A.2.1. nonsym mode part of the subtest

Figure 83. Speed results for FIFO memory type impact subtest in *nonsym* read mode (16 FIFO depth value and counter_8bit pattern type).

Figure 84. Speed results for FIFO memory type impact subtest in *nonsym* read mode (16 FIFO depth value and counter_32bit pattern type).

Figure 85. Speed results for FIFO memory type impact subtest in nonsym read mode (16 FIFO depth value and walking_1 pattern type).

Figure 86. Speed results for FIFO memory type impact subtest in *nonsym* read mode (16 FIFO depth value and asic pattern type).

Figure 87. Speed results for FIFO memory type impact subtest in *nonsym* read mode (64 FIFO depth value and counter 8bit pattern type).

Figure 88. Speed results for FIFO memory type impact subtest in *nonsym* read mode (64 FIFO depth value and counter_32bit pattern type).

Figure 89. Speed results for FIFO memory type impact subtest in nonsym read mode (64 FIFO depth value and walking_1 pattern type).

Figure 90. Speed results for FIFO memory type impact subtest in nonsym read mode (64 FIFO depth value and asic pattern type).

Figure 91. Speed results for FIFO memory type impact subtest in nonsym read mode (256 FIFO depth value and counter_8bit pattern type).

Figure 92. Speed results for FIFO memory type impact subtest in nonsym read mode (256 FIFO depth value and counter_32bit pattern type).

Figure 93. Speed results for FIFO memory type impact subtest in nonsym read mode (256 FIFO depth value and walking_1 pattern type).

Figure 94. Speed results for FIFO memory type impact subtest in nonsym read mode (256 FIFO depth value and asic pattern type).

Figure 95. Speed results for FIFO memory type impact subtest in nonsym read mode (1024 FIFO depth value and counter_8bit pattern type).

Figure 96. Speed results for FIFO memory type impact subtest in nonsym read mode (1024 FIFO depth value and counter_32bit pattern type).

Figure 97. Speed results for FIFO memory type impact subtest in nonsym read mode (1024 FIFO depth value and walking_1 pattern type).

Figure 98. Speed results for FIFO memory type impact subtest in nonsym read mode (1024 FIFO depth value and asic pattern type).

Figure 99. Speed results for FIFO memory type impact subtest in nonsym read mode (2048 FIFO depth value and counter_8bit pattern type).

Figure 100. Speed results for FIFO memory type impact subtest in nonsym read mode (2048 FIFO depth value and counter_32bit pattern type).

Figure 101. Speed results for FIFO memory type impact subtest in nonsym read mode (2048 FIFO depth value and walking_1 pattern type).

Figure 102. Speed results for FIFO memory type impact subtest in nonsym read mode (2048 FIFO depth value and asic pattern type).

Figure 103. Speed results for FIFO memory type impact subtest in nonsym write mode (32 FIFO depth value and counter_8bit pattern type).

Figure 104. Speed results for FIFO memory type impact subtest in nonsym write mode (32 FIFO depth value and counter_32bit pattern type).

Figure 105. Speed results for FIFO memory type impact subtest in nonsym write mode (32 FIFO depth value and walking_1 pattern type).

Figure 106. Speed results for FIFO memory type impact subtest in nonsym write mode (32 FIFO depth value and asic pattern type).

Figure 107. Speed results for FIFO memory type impact subtest in nonsym write mode (64 FIFO depth value and counter_8bit pattern type).

Figure 108. Speed results for FIFO memory type impact subtest in nonsym write mode (64 FIFO depth value and counter_32bit pattern type).

Figure 109. Speed results for FIFO memory type impact subtest in nonsym write mode (64 FIFO depth value and walking_1 pattern type).

Figure 110. Speed results for FIFO memory type impact subtest in nonsym write mode (64 FIFO depth value and asic pattern type).

Figure 111. Speed results for FIFO memory type impact subtest in nonsym write mode (256 FIFO depth value and counter_8bit pattern type).

Figure 112. Speed results for FIFO memory type impact subtest in nonsym write mode (256 FIFO depth value and counter_32bit pattern type).

Figure 113. Speed results for FIFO memory type impact subtest in nonsym write mode (256 FIFO depth value and walking_1 pattern type).

Figure 114. Speed results for FIFO memory type impact subtest in nonsym write mode (256 FIFO depth value and asic pattern type).

Figure 115. Speed results for FIFO memory type impact subtest in nonsym write mode (1024 FIFO depth value and counter_8bit pattern type).

Figure 116. Speed results for FIFO memory type impact subtest in nonsym write mode (1024 FIFO depth value and counter_32bit pattern type).

Figure 117. Speed results for FIFO memory type impact subtest in nonsym write mode (1024 FIFO depth value and walking_1 pattern type).

Figure 118. Speed results for FIFO memory type impact subtest in nonsym write mode (1024 FIFO depth value and asic pattern type).

Figure 119. Speed results for FIFO memory type impact subtest in nonsym write mode (2048 FIFO depth value and counter_8bit pattern type).

Figure 120. Speed results for FIFO memory type impact subtest in nonsym write mode (2048 FIFO depth value and counter_32bit pattern type).

Figure 121. Speed results for FIFO memory type impact subtest in nonsym write mode (2048 FIFO depth value and walking_1 pattern type).

Figure 122. Speed results for FIFO memory type impact subtest in nonsym write mode (2048 FIFO depth value and asic pattern type).

Table 15. Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 16 depth value for read direction and the second one in the square bracket concerns 32 depth value for write direction.

Pattern size [B]	counter_8bit	counter_32bit	walking_1	asic
16	0.065	0.065	0.065	0.065
10	[0.054]	[0.054]	[0.054]	[0.054]
32	0.130	0.132	0.131	0.131
32	[0.107]	[0.107]	[0.107]	[0.108]
64	0.261	0.262	0.261	0.262
04	[0.215]	[0.215]	[0.215]	[0.215]
128	0.523	0.523	0.523	0.523
126	[0.430]	[0.430]	[0.430]	[0.429]
256	1.046	1.046	1.045	1.046
200	[0.859]	[0.858]	[0.861]	[0.859]
512	2.096	2.084	2.091	2.082
512	[1.717]	[1.717]	[1.715]	[1.715]
1024	4.170	4.174	4.174	4.165
1024	[3.437]	[3.438]	[3.395]	[3.438]
2048	8.191	8.172	8.191	8.173
2046	[6.849]	[6.852]	[6.831]	[6.845]
4096	15.816	15.813	15.779	15.793
	[13.357]	[13.360]	[13.363]	[13.343]
8192	29.453	29.375	29.396	29.613
6192	[25.731]	[25.703]	[25.718]	[25.778]
16384	51.862	51.507	51.670	51.535
10364	[0.717]	[0.650]	[0.671]	[0.650]
32768	91.061	91.110	90.863	91.198
32108	[1.284]	[1.298]	[1.298]	[1.312]
65536	147.929	147.719	147.752	148.105
00000	[2.561]	[2.561]	[2.561]	[2.561]
131072	214.958	215.179	215.186	215.140
101012	[5.147]	[5.093]	[5.093]	[5.093]
262144	278.392	278.409	278.471	278.859
202111	[10.059]	[10.060]	[10.059]	[10.060]
524288	326.661	327.077	326.736	326.771
021200	[19.624]	[19.621]	[19.828]	[19.629]
1048576	352.548	352.594	352.282	352.217
10100.0	[37.661]	[37.660]	[38.026]	[38.024]
2097152	373.910	374.079	373.343	374.325
	[68.182]	[68.179]	[68.177]	[68.184]
4194304	384.797	384.758	384.763	384.787
	[116.137]	[116.132]	[116.138]	[116.134]
8388608	390.315	390.308	390.318	390.281
	[179.106]	[179.102]	[179.095]	[179.106]
16777216	391.573	391.576	391.577	391.567
	[180.700]	[179.153]	[182.190]	[184.707]
33554432	392.854	392.852	392.842	392.697
	[209.324]	[207.688]	[208.021]	[207.677]
67108864	393.506	393.440	393.514	393.392
	[225.427]	[225.823]	[225.410]	[225.319]
134217728	393.841	393.834	393.839	393.814
	[235.185]	[235.085]	[235.039]	[235.216]
268435456	393.983	393.970	393.949	393.995
	[240.462]	[240.433]	[240.484]	[240.531]
536870912	394.081	394.067	394.069	394.059
	[243.246]	[243.254]	[243.220]	[243.199]
1073741824	394.096	394.112	394.093	394.103
	[244.673]	[244.684]	[244.743]	[244.642]

Table 16. Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 64 depth value for read direction and the second one in the square bracket concerns 64 depth value for write direction.

Pattern size [B]	counter_8bit	counter_32bit	walking_1	asic
16	0.065	0.065	0.065	0.065
10	[0.053]	[0.053]	[0.053]	[0.053]
32	0.131	0.130	0.131	0.130
32	[0.106]	[0.107]	[0.107]	[0.107]
C 4	0.263	0.261	0.261	0.261
64	[0.213]	[0.213]	[0.214]	[0.214]
100	0.523	0.522	0.523	0.522
128	[0.428]	[0.427]	[0.428]	[0.426]
256	1.045	1.044	1.045	1.042
200	[0.849]	[0.854]	[0.852]	[0.855]
512	2.092	2.086	2.089	2.086
312	[1.700]	[1.698]	[1.693]	[1.703]
1004	4.177	4.169	4.148	4.173
1024	[3.400]	[3.412]	[3.414]	[3.387]
00.40	8.153	8.173	8.166	8.123
2048	[6.770]	[6.805]	[6.808]	[6.797]
4000	15.757	15.812	15.772	15.768
4096	[13.208]	[13.189]	[13.206]	[13.182]
0100	29.415	29.390	29.466	29.284
8192	[25.351]	[25.322]	[25.408]	[25.403]
10004	51.510	51.390	51.561	51.569
16384	[0.650]	[0.664]	[0.696]	[0.680]
22-22	91.236	91.177	91.215	91.127
32768	[1.298]	[1.298]	[1.343]	[1.312]
ar r 9 a	147.735	147.530	148.007	148.043
65536	[2.561]	[2.588]	[2.651]	[2.589]
101070	216.054	215.082	214.880	215.061
131072	[5.092]	[5.093]	[5.092]	[5.092]
0.001.4.4	278.207	278.772	278.437	278.503
262144	[10.060]	[10.058]	[10.059]	[10.060]
F0.40 00	326.701	326.438	326.565	326.875
524288	[19.625]	[19.624]	[19.628]	[19.623]
1040770	352.404	352.770	352.586	352.982
1048576	[47.582]	[41.738]	[45.874]	[37.287]
0007170	374.297	374.273	374.289	374.106
2097152	[68.169]	[68.189]	[68.190]	[68.182]
4104904	384.738	384.779	384.777	384.823
4194304	[116.143]	[116.144]	[116.141]	[116.132]
000000	390.311	390.324	390.345	390.341
8388608	[179.142]	[179.123]	[179.121]	[179.135]
1.022201.0	391.579	391.563	391.585	391.579
16777216	[184.886]	[180.687]	[182.716]	[182.679]
00774400	392.872	392.868	392.842	392.863
33554432	[209.321]	[208.018]	[208.347]	[209.682]
451 0004	393.517	393.491	393.509	393.305
67108864	[225.253]	[225.441]	[225.813]	[225.054]
104017700	393.816	393.820	393.731	393.817
134217728	[235.078]	[235.279]	[235.077]	[235.191]
000405450	393.973	393.919	393.942	393.983
268435456	[240.485]	[240.424]	[240.434]	[240.431]
K00000010	394.066	394.061	394.075	394.077
536870912	[243.219]	[243.228]	[243.175]	[243.171]
	394.113	394.107	394.101	394.097
1073741824				

Table 17. Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 256 depth value for read direction and the second one in the square bracket concerns 256 depth value for write direction.

Pattern size [B]	counter_8bit	counter_32bit	walking_1	asic
1.0	0.065	0.065	0.065	0.065
16	[0.053]	[0.054]	[0.054]	[0.054]
00	0.131	0.130	0.131	0.131
32	[0.107]	[0.107]	[0.107]	[0.107]
	0.260	0.262	0.261	0.260
64	[0.214]	[0.213]	[0.214]	[0.214]
120	0.520	0.522	0.522	0.522
128	[0.429]	[0.427]	[0.428]	[0.427]
272	1.045	1.042	1.047	1.042
256	[0.855]	[0.856]	[0.855]	[0.854]
F 10	2.091	2.085	2.090	2.090
512	[1.707]	[1.707]	[1.706]	[1.709]
1004	4.173	4.179	4.169	4.165
1024	[3.411]	[3.421]	[3.417]	[3.417]
22.10	8.179	8.180	8.190	8.177
2048	[6.808]	[6.789]	[6.815]	[6.813]
1000	15.795	15.812	15.787	15.813
4096	[13.229]	[13.218]	[13.219]	[13.184]
2422	29.407	29.428	29.438	29.380
8192	[25.509]	[25.395]	[25.489]	[25.431]
10001	51.454	51.499	51.476	51.443
16384	[0.643]	[0.687]	[0.700]	[0.678]
	91.132	91.425	90.949	91.220
32768	[1.344]	[1.312]	[1.326]	[1.284]
	148.080	148.191	148.067	148.193
65536	[2.561]	[2.561]	[2.561]	[2.561]
1010-0	215.370	214.947	214.811	214.888
131072	[5.093]	[5.147]	[5.093]	[5.092]
	278.370	278.689	278.318	278.250
262144	[10.061]	[10.166]	[10.059]	[10.061]
¥2.4200	327.005	326.432	326.897	326.772
524288	[19.629]	[19.626]	[19.628]	[19.625]
1010220	352.535	352.778	353.203	353.293
1048576	[40.199]	[51.847]	[42.372]	[52.397]
2007170	374.350	374.346	374.400	374.394
2097152	[68.163]	[68.158]	[68.160]	[68.160]
4404004	384.741	384.859	384.824	384.871
4194304	[116.110]	[116.086]	[116.109]	[116.106]
0000000	390.317	390.345	390.215	390.317
8388608	[179.098]	[180.102]	[179.110]	[179.069]
10777010	391.587	391.578	391.579	391.587
16777216	[184.246]	[185.187]	[183.759]	[183.229]
2277 1 122	392.864	392.864	392.871	392.864
33554432	[208.936]	[209.349]	[210.356]	[209.652]
	393.495	393.511	393.509	393.520
67108864	[226.582]	[226.403]	[226.211]	[225.640]
10.401 =====	393.840	393.836	393.716	393.674
134217728	[235.174]	[235.195]	[235.076]	[235.084]
000 105 150	393.959	393.959	393.993	394.005
268435456	[240.403]	[240.524]	[240.417]	[240.425]
	394.082	394.062	394.078	394.068
536870912	[243.202]	[243.210]	[243.225]	[243.328]
	394.093	394.080	393.990	394.083
1073741824	[244.705]	[244.639]	[244.659]	[244.655]
	[244.100]	[244.000]	[244.003]	[244.000]

Table 18. Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 1024 depth value for read direction and the second one in the square bracket concerns 1024 depth value for write direction.

Pattern size [B]	counter_8bit	counter_32bit	walking_1	asic
10	0.066	0.066	0.066	0.066
16	[0.053]	[0.053]	[0.053]	[0.054]
00	0.132	0.132	0.132	0.132
32	[0.107]	[0.106]	[0.107]	[0.107]
0.4	0.263	0.264	0.263	0.263
64	[0.214]	[0.215]	[0.215]	[0.215]
100	0.525	0.527	0.525	0.527
128	[0.430]	[0.429]	[0.430]	[0.429]
250	1.054	1.053	1.054	1.047
256	[0.857]	[0.858]	[0.858]	[0.857]
512	2.096	2.105	2.107	2.107
512	[1.714]	[1.713]	[1.715]	[1.716]
1024	4.195	4.201	4.209	4.196
1024	[3.412]	[3.434]	[3.439]	[3.435]
00.40	8.242	8.246	8.230	8.231
2048	[6.826]	[6.846]	[6.839]	[6.822]
4096	15.911	15.905	15.886	15.909
4090	[13.350]	[13.248]	[13.088]	[13.220]
8192	29.604	29.619	29.609	29.617
0192	[25.576]	[25.571]	[25.589]	[25.585]
16384	51.961	51.853	51.690	51.634
10384	[0.657]	[0.666]	[0.682]	[0.727]
32768	91.679	91.721	91.536	91.695
32108	[1.284]	[1.326]	[1.312]	[1.326]
65536	148.700	148.868	148.779	148.565
00000	[2.672]	[2.758]	[2.589]	[2.561]
131072	215.849	215.783	215.802	215.596
131072	[5.093]	[5.093]	[5.093]	[5.146]
262144	279.065	277.893	278.787	279.065
202144	[10.061]	[10.060]	[10.059]	[10.060]
524288	327.189	327.090	327.228	327.257
024200	[19.626]	[19.626]	[19.627]	[19.627]
1048576	353.228	353.200	353.125	353.288
1010010	[39.562]	[37.655]	[38.018]	[39.192]
2097152	374.189	374.340	374.413	374.334
2001102	[68.772]	[68.163]	[68.162]	[68.165]
4194304	384.885	384.874	384.848	384.887
1101001	[116.111]	[116.127]	[116.109]	[116.114]
8388608	390.348	390.342	390.349	390.332
	[179.100]	[179.094]	[179.085]	[179.102]
16777216	391.592	391.582	391.596	391.567
	[180.671]	[181.192]	[180.167]	[179.184]
33554432	392.857	392.865	392.856	392.863
	[207.682]	[208.341]	[209.318]	[209.637]
67108864	393.508	393.513	393.503	393.514
	[225.236]	[225.220]	[225.430]	[225.426]
134217728	393.822	393.721	393.789	393.825
	[235.170]	[235.076]	[235.179]	[235.189]
268435456	393.978	393.997	393.999	393.980
	[240.421]	[240.444]	[240.382]	[240.381]
536870912	394.071	394.071	394.062	394.049
	[243.220]	[243.149]	[243.193]	[243.224]
1073741824	394.103	394.095	394.113	394.110
	[244.641]	[244.747]	[244.645]	[244.721]

Table 19. Speed results (in MB/s) for blockram memory type in nonsym mode. The first value in cells concerns 2048 depth value for read direction and the second one in the square bracket concerns 2048 depth value for write direction.

Pattern size [B]	counter_8bit	counter_32bit	walking_1	asic
10	0.066	0.066	0.066	0.066
16	[0.054]	[0.054]	[0.054]	[0.054]
00	0.131	0.132	0.132	0.132
32	[0.107]	[0.107]	[0.107]	[0.107]
0.4	0.263	0.263	0.263	0.263
64	[0.215]	[0.215]	[0.215]	[0.215]
128	0.528	0.527	0.526	0.527
	[0.430]	[0.430]	[0.430]	[0.430]
070	1.053	1.053	1.053	1.054
256	[0.860]	[0.859]	[0.857]	[0.854]
F 10	2.106	2.091	2.105	2.107
512	[1.716]	[1.704]	[1.717]	[1.719]
1004	4.167	4.204	4.197	4.217
1024	[3.434]	[3.433]	[3.432]	[3.441]
20.40	8.238	8.242	8.241	8.236
2048	[6.847]	[6.842]	[6.843]	[6.849]
1000	15.866	15.888	15.933	15.901
4096	[13.357]	[13.342]	[13.343]	[13.352]
2422	29.582	29.611	29.571	29.611
8192	[25.737]	[25.700]	[25.690]	[25.720]
10001	51.974	51.919	51.930	51.904
16384	[0.738]	[0.703]	[0.671]	[0.737]
	91.423	91.823	91.752	90.902
32768	[1.285]	[1.313]	[1.299]	[1.284]
	148.115	148.597	148.646	148.478
65536	[2.561]	[2.623]	[2.824]	[2.678]
	215.654	215.974	215.725	215.950
131072	[5.146]	[5.092]	[5.092]	[5.092]
	279.060	278.947	279.013	279.087
262144	[10.060]	[10.057]	[10.061]	[10.061]
	326.936	327.184	327.157	327.104
524288	[19.624]	[19.629]	[19.625]	[19.628]
1010220	353.204	352.968	353.290	353.277
1048576	[37.295]	[37.291]	[37.294]	[37.293]
2007170	374.402	374.425	374.357	374.359
2097152	[68.771]	[68.166]	[68.167]	[68.174]
4404004	384.867	384.870	384.861	384.875
4194304	[116.137]	[116.139]	[116.145]	[116.146]
000000	390.335	390.347	390.245	390.296
8388608	[179.129]	[179.114]	[179.091]	[179.110]
10222010	391.551	391.591	391.583	391.587
16777216	[179.676]	[179.195]	[182.194]	[181.162]
22771122	392.866	392.874	392.869	392.875
33554432	[207.358]	[211.023]	[208.013]	[207.690]
	393.493	393.488	393.489	393.480
67108864	[225.439]	[225.380]	[225.197]	[225.048]
	393.764	393.804	393.791	393.827
134217728	[235.068]	[235.190]	[235.062]	[235.071]
000.405.450	393.996	393.961	393.993	393.934
268435456	[240.420]	[240.473]	[240.469]	[240.418]
F0.00 F0.04 5	394.042	394.074	394.028	394.044
536870912	[243.224]	[243.229]	[243.180]	[243.268]
40-0-145	394.089	394.081	394.099	394.095
1073741824	[244.662]	[244.743]	[244.608]	[244.636]
	[~44.002]	[~44.140]	[~44.000]	[~44.000]

A.2.2. 32bit mode part of the subtest

Figure 123. Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO depth value and counter_8bit pattern type).

Figure 124. Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO depth value and counter_32bit pattern type).

Figure 125. Speed results for FIFO memory type impact subtest in 32bit read mode (16 FIFO depth value and walking_1 pattern type).

Figure 126. Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and counter_8bit pattern type).

Figure 127. Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and counter_32bit pattern type).

Figure 128. Speed results for FIFO memory type impact subtest in 32bit read mode (64 FIFO depth value and walking_1 pattern type).

Figure 129. Speed results for FIFO memory type impact subtest in 32bit read mode (256 FIFO depth value and counter_8bit pattern type).

Figure 130. Speed results for FIFO memory type impact subtest in 32bit read mode (256 FIFO depth value and counter_32bit pattern type).

Figure 131. Speed results for FIFO memory type impact subtest in 32bit read mode (256 FIFO depth value and walking_1 pattern type).

Figure 132. Speed results for FIFO memory type impact subtest in 32bit read mode (1024 FIFO depth value and counter_8bit pattern type).

Figure 133. Speed results for FIFO memory type impact subtest in 32bit read mode (1024 FIFO depth value and counter 32bit pattern type).

Figure 134. Speed results for FIFO memory type impact subtest in 32bit read mode (1024 FIFO depth value and walking 1 pattern type).

Figure 135. Speed results for FIFO memory type impact subtest in 32bit read mode (2048 FIFO depth value and counter_8bit pattern type).

Figure 136. Speed results for FIFO memory type impact subtest in 32bit read mode (2048 FIFO depth value and counter_32bit pattern type).

Figure 137. Speed results for FIFO memory type impact subtest in 32bit read mode (2048 FIFO depth value and walking_1 pattern type).

Figure 138. Speed results for FIFO memory type impact subtest in 32bit write mode (16 FIFO depth value and counter_8bit pattern type).

Figure 139. Speed results for FIFO memory type impact subtest in 32bit write mode (16 FIFO depth value and counter 32bit pattern type).

Figure 140. Speed results for FIFO memory type impact subtest in 32bit write mode (16 FIFO depth value and walking 1 pattern type).

Figure 141. Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and counter_8bit pattern type).

Figure 142. Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and counter_32bit pattern type).

Figure 143. Speed results for FIFO memory type impact subtest in 32bit write mode (64 FIFO depth value and walking_1 pattern type).

Figure 144. Speed results for FIFO memory type impact subtest in 32bit write mode (256 FIFO depth value and counter_8bit pattern type).

Figure 145. Speed results for FIFO memory type impact subtest in 32bit write mode (256 FIFO depth value and counter_32bit pattern type).

Figure 146. Speed results for FIFO memory type impact subtest in 32bit write mode (256 FIFO depth value and walking_1 pattern type).

Figure 147. Speed results for FIFO memory type impact subtest in 32bit write mode (1024 FIFO depth value and counter_8bit pattern type).

Figure 148. Speed results for FIFO memory type impact subtest in 32bit write mode (1024 FIFO depth value and counter_32bit pattern type).

Figure 149. Speed results for FIFO memory type impact subtest in 32bit write mode (1024 FIFO depth value and walking_1 pattern type).

Figure 150. Speed results for FIFO memory type impact subtest in 32bit write mode (2048 FIFO depth value and counter_8bit pattern type).

Figure 151. Speed results for FIFO memory type impact subtest in 32bit write mode (2048 FIFO depth value and counter_32bit pattern type).

Figure 152. Speed results for FIFO memory type impact subtest in 32bit write mode (2048 FIFO depth value and walking_1 pattern type).

Table 20. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, read direction, 16 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	distributedram	distributedram	distributedram
16	[0.065]	[0.066]	[0.065]
32	distributedram	distributedram	distributedram
02	[0.131]	[0.131]	[0.130]
64	distributedram	blockram	distributedram
	[0.261]	[0.261]	[0.262]
128	blockram	distributedram	distributedram
	[0.523]	[0.523]	[0.522]
256	distributedram	distributedram	distributedram
	[1.046] blockram	[1.043] distributedram	[1.046] distributedram
512	[2.087]	[2.084]	[2.089]
	distributedram	distributedram	shiftregister
1024	[4.170]	[4.179]	[4.175]
	d.170] distributedram	distributedram	blockram
2048	[8.245]	[8.199]	[8.189]
	blockram	blockram	blockram
4096	[15.811]	[15.806]	[15.820]
2122	shiftregister	distributedram	distributedram
8192	[29.417]	[29.400]	[29.385]
10904	blockram	blockram	distributedram
16384	[51.601]	[51.933]	[51.534]
32768	blockram	blockram	blockram
32708	[91.125]	[91.284]	[91.067]
65536	distributedram	blockram	blockram
03330	[148.380]	[148.171]	[148.088]
131072	blockram	distributedram	blockram
101012	[215.242]	[215.213]	[216.013]
262144	distributedram	distributedram	distributedram
-	[278.975]	[278.940]	[278.996]
524288	distributedram	blockram	distributedram
	[327.099] distributedram	[326.805] blockram	[327.012] distributedram
1048576	[352.820]	[353.151]	[352.855]
	distributedram	distributedram	distributedram
2097152	[<i>374.261</i>]	[374.224]	[374.334]
	blockram	distributedram	blockram
4194304	[384.814]	[384.781]	[384.840]
	blockram	blockram	blockram
8388608	[390.351]	[390.341]	[390.338]
1.055501.0	blockram	blockram	blockram
16777216	[391.581]	[391.590]	[391.583]
33554432	blockram	blockram	blockram
JJJJ44J4	[392.863]	[392.862]	[392.870]
67108864	blockram	blockram	distributedram
0110004	[393.517]	[393.518]	[393.508]
134217728	distributedram	distributedram	distributedram
	[393.798]	[393.836]	[393.838]
268435456	distributedram	distributedram	distributedram
	[393.991]	[393.999]	[393.988]
536870912	distributedram	distributedram	blockram
	[394.057]	[394.059]	[394.067]
1073741824	blockram	blockram	blockram
M + C +	[394.109]	[394.096]	[394.096]
Most frequent param-	$\operatorname{distributedram}$	distributedram	distributedram
eter			

Table 21. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, read direction, 64 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	blockram	blockram	distributedram
10	[0.066]	[0.066]	[0.066]
32	blockram	distributedram	blockram
02	[0.131]	[0.132]	[0.132]
64	blockram	blockram	blockram
01	[0.264]	[0.263]	[0.264]
128	blockram	distributedram	distributedram
	[0.528]	[0.524]	[0.526]
256	distributedram	distributedram	blockram
	[1.051]	[1.051]	[1.054]
512	blockram	distributedram	blockram
	[2.111]	[2.108]	[2.103]
1024	distributedram	blockram	blockram
	[4.198] blockram	[4.207] blockram	[4.206] distributedram
2048	[8.249]	[8.249]	[8.239]
	blockram	blockram	blockram
4096	[15.909]	[15.900]	[15.918]
	distributedram	blockram	blockram
8192	[29.584]	[29.643]	[29.635]
	distributedram	blockram	blockram
16384	[51.938]	[51.778]	[51.995]
	shiftregister	distributedram	distributedram
32768	[91.571]	[91.664]	[91.623]
	distributedram	distributedram	blockram
65536	[148.613]	[148.720]	[148.682]
	blockram	blockram	blockram
131072	[216.011]	[215.752]	[215.840]
	distributedram	blockram	blockram
262144	[278.908]	[279.063]	[279.071]
	distributedram	distributedram	blockram
524288	[327.086]	[326.851]	[327.092]
1040570	blockram	distributedram	blockram
1048576	[353.133]	[352.868]	[353.087]
2007152	blockram	blockram	blockram
2097152	[374.407]	[374.437]	[374.435]
4194304	blockram	blockram	blockram
4194304	[384.869]	[384.861]	[384.863]
8388608	blockram	blockram	blockram
0900000	[390.303]	[390.327]	[390.332]
16777216	blockram	blockram	blockram
10111210	[391.578]	[391.577]	[391.573]
33554432	blockram	blockram	blockram
·	[392.856]	[392.871]	[392.865]
67108864	blockram	distributedram	blockram
	[393.514]	[393.513]	[393.515]
134217728	blockram	distributedram	distributedram
	[393.833]	[393.831]	[393.833]
268435456	distributedram	blockram	blockram
	[393.995]	[393.973]	[393.998]
536870912	blockram	blockram	distributedram
	[394.080]	[394.064]	[394.062]
1073741824	blockram	distributedram	distributedram
Most from the	[394.103]	[394.102]	[394.099]
Most frequent param-	blockram	blockram	blockram
eter			

Table 22. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, read direction, 256 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	blockram	blockram	blockram
10	[0.066]	[0.066]	[0.066]
32	shiftregister	blockram	shiftregister
	[0.131]	[0.132]	[0.131]
64	blockram	shiftregister	blockram
	[0.263]	[0.263]	[0.263]
128	shiftregister $[0.527]$	blockram [0.527]	blockram $[0.527]$
	distributedram	distributedram	shiftregister
256	[1.056]	[1.057]	[1.052]
	blockram	shiftregister	blockram
512	[2.105]	[2.107]	[2.103]
	shiftregister	blockram	distributedram
1024	[4.198]	[4.195]	[4.208]
00.10	distributedram	distributedram	blockram
2048	[8.249]	[8.244]	[8.234]
4096	shiftregister	distributedram	shiftregister
4090	[15.919]	[15.903]	[15.902]
8192	blockram	blockram	shiftregister
8192	[29.621]	[29.630]	[29.657]
16384	blockram	shiftregister	blockram
10004	[51.932]	[51.843]	[51.965]
32768	shiftregister	blockram	blockram
	[91.657]	[91.614]	[91.875]
65536	shiftregister	shiftregister	blockram
	[148.781]	[148.732]	[148.762]
131072	blockram [<i>215.799</i>]	shiftregister [215.700]	$\begin{array}{c} \text{distributedram} \\ [215.921] \end{array}$
	blockram	blockram	blockram
262144	[278.965]	[278.996]	[279.096]
	shiftregister	blockram	blockram
524288	[327.212]	[327.203]	[327.124]
1010770	blockram	blockram	blockram
1048576	[353.209]	[353.114]	[353.172]
000#1#0	distributedram	distributedram	distributedram
2097152	[374.434]	[374.423]	[374.457]
4194304	distributedram	blockram	distributedram
4194004	[384.898]	[384.872]	[384.856]
8388608	distributedram	distributedram	distributedram
	[390.332]	[390.293]	[390.326]
16777216	distributedram	blockram	shiftregister
	[391.590]	[391.572]	[391.583]
33554432	shiftregister [392.868]	shiftregister [392.873]	distributedram [392.867]
	shiftregister	[392.873] shiftregister	shiftregister
67108864	[393.516]	[393.511]	[393.515]
	shiftregister	distributedram	distributedram
134217728	[393.844]	[393.841]	[393.830]
000105177	shiftregister	shiftregister	shiftregister
268435456	[393.986]	[393.973]	[393.986]
£26970012	shiftregister	shiftregister	blockram
536870912	[394.071]	[394.071]	[394.076]
1073741824	distributedram	blockram	blockram
	[394.097]	[394.103]	[394.104]
Most frequent param-	shiftregister	blockram	blockram
eter			

Table 23. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, read direction, 1024 depth value).

16	Pattern size [B]	counter_8bit	counter_32bit	walking_1
	16			
	10	E 3		E j
	32			
	32	[0.132]		
128	64		shiftregister	shiftregister
	04	[0.263]	[0.263]	[0.263]
	199	shiftregister	shiftregister	blockram
1.054	128	$[0.5\overline{27}]$	[0.527]	[0.528]
1.034 1.034 1.038 1.05	07.0	blockram	shiftregister	shiftregister
	256	[1.054]	[1.054]	[1.053]
1024 shiftregister shiftregister shiftregister [2.007] [4.201]	710			shiftregister
1024 Shiftregister [4.203] [4.197] [4.201] [4.201] [4.201] [4.201] [4.203] [4.197] [4.201] [512			
1024 [4.203] [4.197] [4.201]				
Shiftregister Shiftregister Shiftregister S. 253 S. 259	1024	_		_
Section Sect				
	2048			
15.924				
8192 shiftregister [29.603] shiftregister [29.607] shiftregister [29.608] 16384 blockram [51.878] [51.991] [51.920] 32768 shiftregister shiftregister shiftregister shiftregister [51.991] [51.920] 32768 shiftregister shiftregister shiftregister shiftregister shiftregister [148.546] [91.683] [91.670] [91.553] 65536 blockram blockram blockram shiftregister [218.844] [148.776] [148.546] [148.546] 131072 blockram blockram blockram blockram [278.984] [215.834] [215.868] [215.822] 262144 shiftregister blockram shiftregister [278.995] [278.726] [278.988] 524288 shiftregister blockram shiftregister blockram shiftregister shiftregister shiftregister blockram [352.08] [327.098] 1048576 [353.185] [353.185] [353.194] 2097152 blockram shiftregister blockram shiftregister blockram [344.844] [374.333] [374.326] [374.452] 4194304 [348.844] [384.837] [384.853] [384.853] 8388608 shiftregister shiftregister shiftregister shiftregister [391.592] [391.592] [391.592]	4096			
8192 $[29.603]$ $[29.607]$ $[29.628]$ 16384 blockram shiftregister shiftregister 32768 shiftregister shiftregister shiftregister $[91.683]$ $[91.670]$ $[91.553]$ 65536 blockram blockram shiftregister $[148.728]$ $[148.776]$ $[148.546]$ 131072 blockram blockram blockram $[215.834]$ $[215.868]$ $[215.822]$ 262144 shiftregister blockram shiftregister $[278.995]$ $[278.726]$ $[278.988]$ 524288 $[327.205]$ $[327.098]$ $[327.098]$ 3hiftregister shiftregister blockram shiftregister $[353.185]$ $[353.108]$ $[353.194]$ 2097152 $[374.333]$ $[374.333]$ $[374.333]$ $[374.326]$ $[374.452]$ 4194304 blockram blockram blockram blockram blockram $[384.853]$ $[384.853]$ $[394.853]$ $[394.250]$. , ,	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8192			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16384			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,		
Bookram	32768			
148.728				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65536			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
[215.834]	131072			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	262144			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
	524288			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1048576			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10100.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2097152			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2001102		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4194304			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1101001			[384.853]
	8388608	shiftregister		shiftregister
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8388008			
	16777916	shiftregister	blockram	shiftregister
	10777210	[391.585]	[391.590]	[391.572]
	99554499	shiftregister	shiftregister	shiftregister
	33334432	[392.856]	[392.868]	[392.869]
	67100064	shiftregister	shiftregister	blockram
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0710004			[393.491]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	194917799	blockram	shiftregister	blockram
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	194211128	[393.835]		[393.769]
	202427470			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	208435456	_		[393.996]
	536870912			
[394.103] [394.100] [394.099]				
	1073741824			
more parameter simulations simulation simulati	Most frequent param-			
eter		2111111 C 2121 C1	SHILLICGISTEL	ommur C Stonet

Table 24. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, read direction, 2048 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	distributedram	shiftregister	distributedram
10	[0.066]	[0.066]	[0.066]
32	shiftregister $[0.132]$	shiftregister $[0.131]$	$\begin{array}{c} \text{distributedram} \\ [0.132] \end{array}$
	shiftregister	shiftregister	shiftregister
64	[0.264]	[0.264]	[0.263]
128	shiftregister	shiftregister	shiftregister
	[0.527]	[0.528]	[0.527]
256	distributedram $[1.053]$	shiftregister [1.053]	shiftregister $[1.054]$
	distributedram	shiftregister	shiftregister
512	[2.107]	[2.107]	[2.104]
1094	shiftregister	distributedram	shiftregister
1024	[4.201]	[4.204]	[4.210]
2048	shiftregister	blockram	shiftregister
2048	[8.254]	[8.244]	[8.256]
4096	distributedram	distributedram	distributedram
4030	[15.913]	[15.919]	[15.915]
8192	distributedram	distributedram	distributedram
8192	[29.598]	[29.613]	[29.614]
16384	shiftregister	shiftregister	blockram
10364	[51.947]	[51.976]	[51.941]
32768	blockram	distributedram	blockram
32108	[91.806]	[91.617]	[91.628]
65536	shiftregister	shiftregister	distributedram
03330	[148.745]	[148.496]	[148.574]
131072	$\operatorname{distributedram}$	distributedram	$\operatorname{distributedram}$
131072	[215.843]	[215.991]	[215.828]
262144	$\operatorname{distributedram}$	distributedram	$\operatorname{distributedram}$
202144	[278.975]	[279.038]	[279.068]
524288	distributedram	blockram	shiftregister
021200	[327.229]	[327.188]	[327.069]
1048576	distributedram	shiftregister	distributedram
1010010	[353.201]	[353.153]	[353.215]
2097152	shiftregister	shiftregister	shiftregister
200,1202	[374.468]	[374.409]	[374.417]
4194304	shiftregister	distributedram	shiftregister
	[384.840]	[384.863]	[384.881]
8388608	distributedram	shiftregister	distributedram
	[390.351]	[390.336]	[390.341]
16777216	shiftregister	shiftregister	distributedram
	[391.584]	[391.568]	[391.584]
33554432	distributedram	distributedram	shiftregister
	[392.873]	[392.860]	[392.854]
67108864	distributedram	distributedram	distributedram
	[393.512]	[393.510]	[393.518]
134217728	distributedram	distributedram	shiftregister
	[393.816] shiftregister	[393.804] shiftregister	[393.829] distributedram
268435456	snittregister [<i>393.985</i>]	[394.003]	[393.999]
	shiftregister	blockram	distributedram
536870912	[394.078]	[394.078]	[394.072]
	distributedram	distributedram	shiftregister
1073741824	[394.101]	[394.096]	snittregister [<i>394.106</i>]
Most frequent param-	distributedram	shiftregister	distributedram
eter	distributediani	Similaregister	distributediani
CuCI			

Table 25. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, write direction, 16 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
	shiftregister	shiftregister	distributedram
16	[0.054]	[0.054]	[0.054]
32	distributedram	shiftregister	shiftregister
32	[0.107]	[0.107]	[0.107]
64	shiftregister	distributedram	distributedram
04	[0.215]	[0.215]	[0.215]
128	distributedram	shiftregister	shiftregister
120	[0.430]	[0.430]	[0.430]
256	distributedram	shiftregister	shiftregister
200	[0.860]	[0.860]	[0.860]
512	shiftregister	distributedram	distributedram
	[1.718]	[1.710]	[1.717]
1024	distributedram	distributedram	shiftregister
1021	[3.439]	[3.437]	[3.439]
2048	distributedram	distributedram	distributedram
	[6.844]	[6.853]	[6.844]
4096	shiftregister	distributedram	distributedram
	[13.354]	[13.352]	[13.351]
8192	shiftregister	shiftregister	shiftregister
	[25.712]	[25.709]	[25.666]
16384	shiftregister	shiftregister	shiftregister
	[0.701] blockram	[0.687] distributedram	[0.714]
32768	[1.312]	[1.312]	shiftregister [1.372]
	distributedram	blockram	blockram
65536	[2.616]	[2.616]	[2.589]
	shiftregister	shiftregister	blockram
131072	[5.147]	[5.147]	[5.093]
	shiftregister	shiftregister	blockram
262144	[10.060]	[10.061]	[10.062]
	blockram	blockram	blockram
524288	[19.833]	[19.630]	[19.630]
	blockram	blockram	distributedram
1048576	[38.029]	[38.390]	[49.550]
	blockram	blockram	distributedram
2097152	[68.183]	[68.176]	[68.748]
1101001	shiftregister	blockram	blockram
4194304	[116.976]	[116.124]	[116.129]
0900000	blockram	distributedram	blockram
8388608	[179.102]	[180.048]	[179.108]
16777216	shiftregister	blockram	blockram
10777210	[181.116]	[184.786]	[187.065]
33554432	distributedram	blockram	distributedram
00004404	[210.713]	[210.333]	[209.683]
67108864	distributedram	distributedram	distributedram
0.10004	[226.209]	[225.434]	[225.034]
134217728	blockram	blockram	blockram
	[235.094]	[235.169]	[235.094]
268435456	distributedram	blockram	blockram
	[240.414]	[240.482]	[240.427]
536870912	distributedram	blockram	blockram
	[243.219]	[243.243]	[243.259]
1073741824	blockram	distributedram	distributedram
	[244.678]	[244.689]	[244.645]
Most frequent param-	shiftregister,	blockram	distributedram,
eter	distributedram		blockram

Table 26. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, write direction, 64 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	shiftregister	shiftregister	shiftregister
10	[0.054]	[0.054]	[0.054]
32	shiftregister	shiftregister	shiftregister
02	[0.108]	[0.108]	[0.108]
64	shiftregister	shiftregister	shiftregister
-	[0.215]	[0.215]	[0.215]
128	shiftregister	shiftregister	blockram
	[0.430] shiftregister	[0.430] blockram	[0.430] shiftregister
256	[0.860]	[0.859]	[0.861]
	blockram	shiftregister	blockram
512	[1.718]	[1.717]	[1.718]
	blockram	blockram	blockram
1024	[3.439]	[3.436]	[3.435]
	blockram	blockram	blockram
2048	[6.840]	[6.842]	[6.836]
4000	blockram	blockram	blockram
4096	[13.340]	[13.355]	[13.347]
8192	shiftregister	blockram	shiftregister
8192	[25.730]	[25.713]	[25.740]
16384	shiftregister	blockram	distributedram
10004	[0.696]	[0.687]	[0.678]
32768	distributedram	blockram	distributedram
	[1.313]	[1.330]	[1.313]
65536	distributedram	blockram	distributedram
	[2.617]	[2.561]	[2.589]
131072	distributedram	blockram [5.203]	blockram [<i>5.147</i>]
	[5.147] blockram	shiftregister	distributedram
262144	[10.061]	[10.061]	[10.168]
	shiftregister	shiftregister	distributedram
524288	[19.629]	[19.628]	[19.629]
1040570	blockram	shiftregister	distributedram
1048576	[38.024]	[38.835]	[42.967]
2097152	shiftregister	distributedram	shiftregister
2097132	[68.182]	[68.772]	[68.186]
4194304	distributedram	shiftregister	shiftregister
110 100 1	[116.139]	[116.129]	[116.135]
8388608	distributedram	distributedram	distributedram
	[179.136]	[179.125]	[179.125]
16777216	shiftregister	distributedram [185.361]	distributedram
	[186.764] distributedram	blockram	[182.744] shiftregister
33554432	[210.001]	[209.955]	[211.025]
	blockram	distributedram	distributedram
67108864	[225.634]	[225.831]	[225.438]
19 491 7799	blockram	shiftregister	blockram
134217728	[235.332]	[235.218]	[235.090]
268435456	shiftregister	distributedram	blockram
40040040U	[240.449]	[240.480]	[240.438]
536870912	distributedram	distributedram	distributedram
	[243.221]	[243.271]	[243.244]
1073741824	shiftregister	distributedram	shiftregister
	[244.673]	[244.765]	[244.705]
Most frequent param-	shift register	shiftregister, blockram	$\operatorname{distributedram}$
eter			

Table 27. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, write direction, 256 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	blockram	distributedram	blockram
10	[0.054]	[0.054]	[0.054]
32	distributedram	distributedram	distributedram
	[0.108]	[0.108]	[0.108]
64	distributedram	distributedram	distributedram
-	[0.215]	[0.215]	[0.215]
128	distributedram	distributedram	distributedram
	[0.430]	[0.430]	[0.430] distributedram
256	distributedram	distributedram	
	$\frac{[0.859]}{\text{distributedram}}$	[0.859] distributedram	[0.859] distributedram
512	[1.716]	[1.715]	[1.716]
	blockram	distributedram	distributedram
1024	[3.432]	[3.430]	[3.437]
	distributedram	distributedram	distributedram
2048	[6.847]	[6.839]	[6.840]
	distributedram	distributedram	distributedram
4096	[13.267]	[13.351]	[13.306]
0100	distributedram	distributedram	distributedram
8192	[25.652]	[25.706]	[25.706]
10904	distributedram	distributedram	distributedram
16384	[0.705]	[0.709]	[0.671]
32768	distributedram	shiftregister	shiftregister
32708	[1.358]	[1.413]	[1.534]
65536	blockram	blockram	shiftregister
03330	[2.589]	[2.588]	[2.651]
131072	distributedram	blockram	distributedram
1010.2	[5.093]	[5.093]	[5.092]
262144	distributedram	blockram	shiftregister
-	[10.166]	[10.060]	[10.168]
524288	shiftregister	shiftregister	shiftregister
	[19.629] distributedram	[19.628] distributedram	[19.629] distributedram
1048576	distributedram $[49.369]$	[42.002]	
	shiftregister	shiftregister	[45.246] distributedram
2097152	[68.182]	[68.176]	[68.769]
	shiftregister	shiftregister	shiftregister
4194304	[116.120]	[116.132]	[116.124]
	shiftregister	distributedram	distributedram
8388608	[179.094]	[179.112]	[179.137]
10777010	shiftregister	blockram	distributedram
16777216	[186.337]	[184.868]	[182.062]
33554432	distributedram	distributedram	distributedram
33334432	[208.281]	[211.014]	[209.704]
67108864	blockram	distributedram	shiftregister
0110004	[226.216]	[225.780]	[226.014]
134217728	shiftregister	shiftregister	shiftregister
==	[235.096]	[235.185]	[235.350]
268435456	shiftregister	blockram	distributedram
	[240.481]	[240.484]	[240.535]
536870912	distributedram	blockram	blockram
	[243.252]	[243.278]	[243.278]
1073741824	distributedram	shiftregister	distributedram
N/+ C	[244.699]	[244.756]	[244.711]
Most frequent param-	distributedram	distributedram	distributedram
eter			

Table 28. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, write direction, 1024 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	shiftregister	blockram	shiftregister
10	[0.053]	[0.053]	[0.054]
32	blockram	blockram	distributedram
	[0.107]	[0.107]	[0.107]
64	distributedram	blockram	distributedram
	[0.214]	[0.214]	[0.214]
128	blockram $[0.428]$	distributedram $[0.429]$	distributedram [0.429]
	distributedram	blockram	shiftregister
256	[0.860]	[0.855]	[0.855]
	shiftregister	shiftregister	blockram
512	[1.706]	[1.706]	[1.707]
1001	distributedram	distributedram	shiftregister
1024	[3.416]	[3.416]	[3.425]
20.49	shiftregister	blockram	shiftregister
2048	[6.851]	[6.809]	[6.854]
4096	blockram	shiftregister	distributedram
70 <i>0</i> 0	[13.223]	[13.213]	[13.245]
8192	shiftregister	blockram	shiftregister
0±0 <u>#</u>	[25.466]	[25.500]	[25.462]
16384	distributedram	distributedram	shiftregister
	[0.657]	[0.650]	[0.712]
32768	distributedram	blockram	blockram
	[1.312]	[1.344]	[1.340]
65536	blockram [<i>2.589</i>]	distributedram [2.800]	distributedram
	shiftregister	blockram	[2.650] shiftregister
131072	[5.201]	[5.092]	[5.092]
	distributedram	distributedram	shiftregister
262144	[10.060]	[10.061]	[10.060]
	blockram	shiftregister	shiftregister
524288	[19.628]	[19.628]	$[19.\widetilde{629}]$
1048576	distributedram	distributedram	shiftregister
1048570	[44.433]	[42.366]	[40.664]
2097152	blockram	shiftregister	blockram
2001102	[68.181]	[68.177]	[68.179]
4194304	blockram	blockram	blockram
	[116.136]	[116.137]	[116.128]
8388608	shiftregister	distributedram	blockram
	[179.084]	[180.997]	[180.109] blockram
16777216	distributedram $[183.243]$	distributedram $[186.452]$	[185.761]
	blockram	blockram	blockram
33554432	[211.038]	[210.028]	[211.339]
	distributedram	blockram	blockram
67108864	[225.624]	[226.194]	[226.019]
104017700	blockram	shiftregister	distributedram
134217728	[235.274]	[235.085]	[235.076]
268435456	blockram	distributedram	blockram
200700700	[240.434]	[240.495]	[240.437]
536870912	shiftregister	blockram	distributedram
	[243.279]	[243.244]	[243.230]
1073741824	blockram	distributedram	shiftregister
	[244.690]	[244.693]	[244.709]
Most frequent param-	blockram	blockram	shiftregister
eter			

Table 29. The fastest memory types (values in square brackets are in MB/s) compared between pattern types (32bit mode, write direction, 2048 depth value).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	blockram	blockram	blockram
10	[0.054]	[0.054]	[0.054]
32	distributedram	blockram	blockram
	[0.107]	[0.107]	[0.107]
64	blockram	blockram	blockram
	[0.214]	[0.215]	[0.215]
128	blockram	blockram	blockram
	[0.430]	[0.429]	[0.429]
256	blockram	blockram	blockram
	[0.859]	[0.860]	[0.852]
512	blockram	blockram	blockram
	[1.710] blockram	[1.710] blockram	[1.708] blockram
1024	[3.433]	[3.434]	[3.437]
	blockram	blockram	blockram
2048	[6.847]	[6.846]	[6.839]
	blockram	blockram	blockram
4096	[13.339]	[13.334]	[13.343]
	blockram	blockram	blockram
8192	[25.663]	[25.623]	[25.574]
	shiftregister	shiftregister	shiftregister
16384	[0.657]	[0.680]	[0.650]
	shiftregister	blockram	shiftregister
32768	[1.344]	[1.598]	[1.326]
arroa	blockram	blockram	distributedram
65536	[2.589]	[2.616]	[2.623]
191079	distributedram	distributedram	distributedram
131072	[5.147]	[5.147]	[5.092]
262144	shiftregister	distributedram	shiftregister
202144	[10.060]	[10.060]	[10.060]
524288	shiftregister	blockram	shiftregister
3242 00	[19.628]	[19.829]	[19.628]
1048576	blockram	blockram	blockram
1040010	[41.010]	[43.821]	[42.179]
2097152	distributedram	blockram	shiftregister
	[68.182]	[68.766]	[68.179]
4194304	distributedram	blockram	distributedram
	[116.131]	[116.953]	[116.151]
8388608	distributedram	blockram	blockram
	[179.105]	[179.115] blockram	[179.122]
16777216	distributedram [183.216]	[185.262]	shiftregister
	shiftregister	blockram	[182.219] blockram
33554432	[210.642]	[210.343]	[209.005]
	blockram	shiftregister	shiftregister
67108864	[225.794]	[225.824]	[226.376]
	blockram	distributedram	shiftregister
134217728	[235.226]	[235.271]	[235.214]
	distributedram	shiftregister	shiftregister
268435456	[240.492]	[240.465]	[240.523]
X000X00X00	blockram	distributedram	blockram
536870912	[243.221]	[243.272]	[243.283]
1080811001	shiftregister	distributedram	distributedram
1073741824	[244.697]	[244.664]	[244.637]
Most frequent param-	blockram	blockram	blockram
eter			

A.3. Graphical presentation of results from the FIFO depth value impact investigation subtest

A.3.1. nonsym mode part of the subtest

Figure 153. Speed results for FIFO depth value impact subtest in *nonsym* read mode (counter_8bit pattern type and blockram FIFO memory type).

Figure 154. Speed results for FIFO depth value impact subtest in *nonsym* read mode (counter_32bit pattern type and blockram FIFO memory type).

Figure 155. Speed results for FIFO depth value impact subtest in nonsym read mode (walking_1 pattern type and blockram FIFO memory type).

Figure 156. Speed results for FIFO depth value impact subtest in *nonsym* read mode (asic pattern type and blockram FIFO memory type).

Figure 157. Speed results for FIFO depth value impact subtest in *nonsym* write mode (counter_8bit pattern type and blockram FIFO memory type).

Figure 158. Speed results for FIFO depth value impact subtest in *nonsym* write mode (counter_32bit pattern type and blockram FIFO memory type).

Figure 159. Speed results for FIFO depth value impact subtest in nonsym write mode (walking_1 pattern type and blockram FIFO memory type).

Figure 160. Speed results for FIFO depth value impact subtest in nonsym write mode (asic pattern type and blockram FIFO memory type).

Table 30. The fastest depth values (speeds in square brackets are in MB/s) compared between pattern types (nonsym mode, read direction, blockram memory type).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
	2048	1024	2048
16	[0.066]	[0.066]	[0.066]
32	1024	1024	1024
32	[0.132]	[0.132]	[0.132]
64	1024	1024	1024
04	[0.263]	[0.264]	[0.263]
128	2048	1024	2048
120	[0.528]	[0.527]	[0.526]
256	1024	2048	1024
200	[1.054]	[1.053]	[1.054]
512	2048	1024	1024
012	[2.106]	[2.105]	[2.107]
1024	1024	2048	1024
1021	[4.195]	[4.204]	[4.209]
2048	1024	1024	2048
2010	[8.242]	[8.246]	[8.241]
4096	1024	1024	2048
	[15.911]	[15.905]	[15.933]
8192	1024	1024	1024
	[29.604]	[29.619]	[29.609]
16384	2048	2048	2048
	[51.974]	[51.919]	[51.930]
32768	1024	2048	2048
	[91.679]	[91.823]	[91.752]
65536	1024	1024	1024
	[148.700]	[148.868]	[148.779]
131072	[016,054]	2048	1024
	[216.054]	[215.974]	[215.802]
262144	1024 [<i>279.065</i>]	2048 [278.947]	2048 [279.013]
	1024	2048	1024
524288	[327.189]	[327.184]	[327.228]
	1024	1024	2048
1048576	[353.228]	[353.200]	[353.290]
	2048	2048	1024
2097152	[374.402]	[374.425]	[374.413]
	1024	1024	2048
4194304	[384.885]	[384.874]	[384.861]
	1024	2048	1024
8388608	[390.348]	[390.347]	[390.349]
	1024	2048	1024
16777216	[391.592]	[391.591]	[391.596]
	64	2048	256
33554432	[392.872]	[392.874]	[392.871]
a=1000a4	64	1024	16
67108864	[393.517]	[393.513]	[393.514]
194917799	16	256	16
134217728	[393.841]	[393.836]	[393.839]
260425456	2048	1024	1024
268435456	[393.996]	[393.997]	[393.999]
526270012	256	2048	256
536870912	[394.082]	[394.074]	[394.078]
1073741824	64	16	1024
1010141044	[394.113]	[394.112]	[394.113]
Most frequent param-	1024	1024	1024
eter			

Table 31. The fastest depth values (speeds in square brackets are in MB/s) compared between pattern types (nonsym mode, write direction, blockram memory type).

Pattern size [B]	counter_8bit	counter_32bit	walking_1
16	2048	32	32
10	[0.054]	[0.054]	[0.054]
32	32	32	32
	[0.107]	[0.107]	[0.107]
64	2048	1024	1024
	$\frac{[0.215]}{1024}$	[0.215]	[0.215]
128	[0.430]	[0.430]	[0.430]
	2048	2048	32
256	[0.860]	[0.859]	[0.861]
710	32	32	2048
512	[1.717]	[1.717]	[1.717]
1024	32	32	1024
1024	[3.437]	[3.438]	[3.439]
2048	32	32	2048
2010	[6.849]	[6.852]	[6.843]
4096	2048	32	32
	[13.357]	[13.360]	[13.363]
8192	2048	32	32
	[25.737]	[25.703]	[25.718]
16384	$2048 \ [0.738]$	2048 [0.703]	$\begin{array}{c} 256 \\ [0.700] \end{array}$
	256	1024	64
32768	[1.344]	[1.326]	[1.343]
	1024	1024	2048
65536	[2.672]	[2.758]	[2.824]
	32	256	32
131072	[5.147]	[5.147]	[5.093]
000144	256	256	2048
262144	[10.061]	[10.166]	[10.061]
524288	256	2048	32
324200	[19.629]	[19.629]	[19.828]
1048576	64	256	64
	[47.582]	[51.847]	[45.874]
2097152	1024	64	64
	[68.772] 64	[68.189] 64	[68.190] 2048
4194304	[116.143]	[116.144]	[116.145]
	64	256	64
8388608	[179.142]	[180.102]	[179.121]
	64	256	256
16777216	[184.886]	[185.187]	[183.759]
99774499	32	2048	256
33554432	[209.324]	[211.023]	[210.356]
67108864	256	256	256
0710004	[226.582]	[226.403]	[226.211]
134217728	32	64	1024
	[235.185]	[235.279]	[235.179]
268435456	[0/0/05]	256	32
	[240.485]	[240.524]	[240.484]
536870912	32	32	256
	$\frac{[243.246]}{256}$	[243.254] 64	[243.225] 32
1073741824	256 [244.705]	[244.770]	32 [244.743]
Most frequent param-	32	32	32
eter	92	52	02
5301			

A.3.2. 32bit mode part of the subtest

Figure 161. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit pattern type and blockram FIFO memory type).

Figure 162. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit pattern type and distributedram FIFO memory type).

Figure 163. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_8bit pattern type and shiftregister FIFO memory type).

Figure 164. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_32bit pattern type and blockram FIFO memory type).

Figure 165. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_32bit pattern type and distributedram FIFO memory type).

Figure 166. Speed results for FIFO depth value impact subtest in 32bit read mode (counter_32bit pattern type and shiftregister FIFO memory type).

Figure 167. Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1 pattern type and blockram FIFO memory type).

Figure 168. Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1 pattern type and distributedram FIFO memory type).

Figure 169. Speed results for FIFO depth value impact subtest in 32bit read mode (walking_1 pattern type and shiftregister FIFO memory type).

Figure 170. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit pattern type and blockram FIFO memory type).

Figure 171. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit pattern type and distributedram FIFO memory type).

Figure 172. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_8bit pattern type and shiftregister FIFO memory type).

Figure 173. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit pattern type and blockram FIFO memory type).

Figure 174. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit pattern type and distributedram FIFO memory type).

Figure 175. Speed results for FIFO depth value impact subtest in 32bit write mode (counter_32bit pattern type and shiftregister FIFO memory type).

Figure 176. Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1 pattern type and blockram FIFO memory type).

Figure 177. Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1 pattern type and distributedram FIFO memory type).

Figure 178. Speed results for FIFO depth value impact subtest in 32bit write mode (walking_1 pattern type and shiftregister FIFO memory type).

Table 32. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, read direction, counter_8bit pattern type).

Pattern size [B]	blockram	distributedram	shiftregister
16	64	2048	1024
	[0.066]	[0.066]	[0.066]
32	1024	2048	2048
	[0.132]	[0.132]	[0.132]
64	64	2048	2048
	[0.264]	[0.263]	[0.264]
128	64	2048	2048
	[0.528]	[0.526]	[0.527]
256	1024	256	1024
	[1.054]	[1.056]	[1.053]
512	64 [2.111]	2048 [2.107]	$2048 \ [2.107]$
	256	2048	1024
1024	[4.196]	[4.200]	[4.203]
	64	256	2048
2048	[8.249]	[8.249]	[8.254]
	1024	2048	256
4096	[15.924]	[15.913]	[15.919]
	256	2048	256
8192	[29.621]	[29.598]	[29.620]
10001	256	64	2048
16384	[51.932]	[51.938]	[51.947]
00-00	2048	64	1024
32768	[91.806]	[91.560]	[91.683]
arraa	256	2048	256
65536	[148.730]	[148.649]	[148.781]
131072	64	2048	2048
131072	[216.011]	[215.843]	[215.546]
262144	256	2048	1024
202144	[278.965]	[278.975]	[278.995]
524288	256	2048	256
021200	[327.101]	[327.229]	[327.212]
1048576	256	2048	1024
	[353.209]	[353.201]	[353.185]
2097152	64	256	2048
	[374.407]	[374.434]	[374.468]
4194304	64	256	2048
	[384.869]	[384.898] 2048	[<i>384.840</i>] 1024
8388608	16 [<i>390.351</i>]	[390.351]	[390.341]
	1024	256	1024
16777216	[391.583]	[391.590]	[391.585]
	16	2048	256
33554432	[392.863]	[392.873]	[392.868]
a=1000a:	16	2048	256
67108864	[393.517]	[393.512]	[393.516]
1949177790	1024	256	256
134217728	[393.835]	[393.833]	[393.844]
260425456	1024	64	1024
268435456	[393.982]	[393.995]	[393.990]
536870912	64	1024	2048
000010014	[394.080]	[394.074]	[394.078]
1073741824	16	16	256
	[394.109]	[394.106]	[394.097]
Most frequent param-	64	2048	2048
eter			

Table 33. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, read direction, counter_32bit pattern type).

Pattern size [B]	blockram	distributedram	shiftregister
16	64	2048	2048
	[0.066]	[0.066]	[0.066]
32	256	64	256
	[0.132]	[0.132] 2048	[0.132]
64	[0.263]	[0.264]	2048
	256	256	[0.264]
128	[0.527]	[0.527]	[0.528]
	256	256	1024
256	[1.053]	[1.057]	[1.054]
	1024	64	256
512	[2.106]	[2.108]	[2.107]
	64	2048	2048
1024	[4.207]	[4.204]	[4.204]
	64	256	1024
2048	[8.249]	[8.244]	[8.253]
1000	1024	2048	256
4096	[15.908]	[15.919]	[15.885]
0100	64	2048	1024
8192	[29.643]	[29.613]	[29.607]
10904	16	2048	1024
16384	[51.933]	[51.776]	[51.991]
22760	256	64	1024
32768	[91.614]	[91.664]	[91.670]
65536	1024	64	256
00000	[148.776]	[148.720]	[148.732]
131072	1024	2048	1024
101072	[215.868]	[215.991]	[215.740]
262144	64	2048	256
	[279.063]	[279.038]	[278.770]
524288	256	1024	1024
	[327.203]	[326.884]	[327.009]
1048576	16	16	2048
	[353.151]	[353.030]	[353.153]
2097152	64	256 [<i>374.423</i>]	2048
	[374.437]	256	[<i>374.409</i>] 2048
4194304	[384.872]	[384.863]	2048 [384.844]
	16	2048	1024
8388608	[390.341]	[390.336]	[390.343]
	16	16	1024
16777216	[391.590]	[391.569]	[391.571]
	64	2048	256
33554432	[392.871]	[392.860]	[392.873]
07100001	16	64	1024
67108864	[393.518]	[393.513]	[393.512]
194917799	256	256	256
134217728	[393.817]	[393.841]	[393.840]
268435456	1024	16	2048
<u> </u>	[394.002]	[393.999]	[394.003]
536870912	2048	256	2048
000010814	[394.078]	[394.068]	[394.075]
1073741824	256	64	256
	[394.103]	[394.102]	[394.101]
Most frequent param-	64, 256	2048	1024
eter			

Table 34. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, read direction, walking_1 pattern type).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	64 [0.066] 64 [0.132] 2048 [0.263] 64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [15.915]	2048 $[0.066]$ 1024 $[0.132]$ 2048 $[0.263]$ 2048 $[0.527]$ 2048 $[1.054]$ 1024 $[2.107]$ 2048 $[4.210]$ 2048 $[8.256]$ 1024 $[15.907]$ 256
$ \begin{array}{c c} [0.066] \\ \hline 32 & 64 \\ [0.132] \\ \hline 64 & [0.264] \\ \hline 128 & 1024 \\ [0.528] \\ \hline 256 & 64 \\ [1.054] \\ \hline 512 & 64 \\ [2.103] \\ \hline 1024 & [4.206] \\ \hline 2048 & [8.259] \\ \hline \end{array} $	64 [0.132] 2048 [0.263] 64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	$ \begin{array}{c c} & 1024 \\ & [0.132] \\ & 2048 \\ & [0.263] \\ & 2048 \\ & [0.527] \\ & 2048 \\ & [1.054] \\ & 1024 \\ & [2.107] \\ & 2048 \\ & [4.210] \\ & 2048 \\ & [8.256] \\ & 1024 \\ & [15.907] \end{array} $
$ \begin{array}{c c} 32 & & & [0.132] \\ 64 & & 64 \\ & [0.264] \\ 128 & & 1024 \\ & [0.528] \\ 256 & & 64 \\ & [1.054] \\ 512 & & 64 \\ & [2.103] \\ 1024 & & 64 \\ & [4.206] \\ 2048 & & [8.259] \\ \end{array} $	[0.132] 2048 [0.263] 64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	
$ \begin{array}{c c} 64 & $	2048 [0.263] 64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	2048 [0.263] 2048 [0.527] 2048 [1.054] 1024 [2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
	[0.263] 64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	
$\begin{array}{c} 128 & 1024 \\ [0.528] \\ 256 & 64 \\ [1.054] \\ 512 & 64 \\ [2.103] \\ 1024 & 64 \\ [4.206] \\ 2048 & 1024 \\ [8.259] \end{array}$	64 [0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	2048 [0.527] 2048 [1.054] 1024 [2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
	[0.526] 64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	
256	64 [1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	2048 [1.054] 1024 [2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
256 [1.054] 512 [2.103] 1024 [4.206] 2048 [8.259]	[1.053] 2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	[1.054] 1024 [2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
512 [2.103] 1024 [4.206] 2048 [8.259]	2048 [2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	1024 [2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
1024 [2.103] 1024 [4.206] 2048 [8.259]	[2.103] 256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	[2.107] 2048 [4.210] 2048 [8.256] 1024 [15.907]
1024 64 [4.206] 2048 1024 [8.259]	256 [4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	2048 [4.210] 2048 [8.256] 1024 [15.907]
1024 [4.206] 2048 [8.259]	[4.208] 2048 [8.246] 2048 [15.915] 2048 [29.614]	[4.210] 2048 [8.256] 1024 [15.907]
2048 1024 [8.259]	2048 [8.246] 2048 [15.915] 2048 [29.614]	2048 [8.256] 1024 [15.907]
[8.259]	[8.246] 2048 [15.915] 2048 [29.614]	[8.256] 1024 [15.907]
	2048 [15.915] 2048 [29.614]	1024 [<i>15.907</i>]
1024	[15.915] 2048 [29.614]	
[15.928]	[29.614]	256
64		- ~
8192 [29.635]		[29.657]
16384	2048	256
[51.995]	[51.898]	[51.920]
32768	64	256
[91.875]	[91.623]	[91.676]
65536 256	256	256
[148.762]	[148.760]	[148.623]
131072	16	256
[210.013]	[215.960]	[215.823]
262144 256 [279.096]	2048 [<i>279.068</i>]	256 [279.032]
256	16	1024
524288 [327.124]	[327.012]	[327.098]
1024	2048	2048
1048576 [353.194]	[353.215]	[353.198]
1024	256	2048
[374.452]	[374.457]	[374.417]
6/1	2048	2048
4194304 [384.863]	[384.868]	[384.881]
16	2048	1024
8388608 [390.338]	[390.341]	[390.286]
16777216 16 16 16 16 16 16 16 16 16 16 16 16 1	2048	256
[391.583]	[391.584]	[391.583]
33554432 16	256	1024
[392.870]	[392.867]	[392.869]
67108864	2048	256
[393.515]	[393.518]	[393.515]
134217728 2048	16	2048
[393.827]	[393.838]	[393.829]
268435456 [393.998]	2048 [393.999]	1024 [393.989]
256	2048	1024
536870912 [394.076]	[394.072]	[394.080]
256	64	2048
1073741824 [394.104]	[394.099]	[394.106]
Most frequent param- 64	2048	2048
eter 01		-010

Table 35. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, write direction, counter_8bit pattern type).

Pattern size [B]	blockram	distributedram	shiftregister
16	256	256	64
10	[0.054]	[0.054]	[0.054]
32	64	256	64
	[0.107]	[0.108] 256	[0.108] 64
64	[0.215]	[0.215]	[0.215]
	2048	16	64
128	[0.430]	[0.430]	[0.430]
070	2048	1024	64
256	[0.859]	[0.860]	[0.860]
512	64	256	16
012	[1.718]	[1.716]	[1.718]
1024	64	16	64
-	[3.439]	[3.439]	[3.434]
2048	2048 [<i>6.847</i>]	256 [<i>6.847</i>]	1024 [<i>6.851</i>]
	64	16	16
4096	[13.340]	[13.336]	[13.354]
0100	64	16	64
8192	[25.691]	[25.680]	[25.730]
16384	64	256	16
10384	[0.689]	[0.705]	[0.701]
32768	16	256	2048
02.00	[1.312]	[1.358]	[1.344]
65536	256	64	64
	[2.589]	[2.617]	[2.616] 1024
131072	1024 [5.148]	[5.147]	[5.201]
	64	256	2048
262144	[10.061]	[10.166]	[10.060]
F0.40 00	16	64	64
524288	[19.833]	[19.628]	[19.629]
1048576	2048	256	2048
1010010	[41.010]	[49.369]	[39.485]
2097152	16	2048	256
	[68.183]	[<i>68.182</i>]	[68.182] 16
4194304	1024 [<i>116.136</i>]	[116.909]	[116.976]
	64	64	2048
8388608	[179.112]	[179.136]	[179.098]
1.077791.0	256	64	64
16777216	[181.196]	[186.456]	[186.764]
33554432	1024	16	2048
	[211.038]	[210.713]	[210.642]
67108864	256	16	64
	[226.216] 64	[226.209] 2048	$ \begin{bmatrix} 225.626 \\ \hline 256 \end{bmatrix} $
134217728	[235.332]	[235.185]	256 [<i>235.096</i>]
	256	2048	$\frac{[255.090]}{256}$
268435456	[240.466]	[240.492]	[240.481]
F96970019	256	256	1024
536870912	[243.239]	[243.252]	[243.279]
1073741824	1024	256	2048
	[244.690]	[244.699]	[244.697]
Most frequent param-	64	256	64
eter			

Table 36. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, write direction, counter_32bit pattern type).

Pattern size [B]	blockram	distributedram	shiftregister
16	64	256	64
10	[0.054]	[0.054]	[0.054]
32	64 [0.108]	256 [0.108]	64 [0.108]
	2048	16	64
64	[0.215]	[0.215]	[0.215]
128	2048	16	16
126	[0.429]	[0.430]	[0.430]
256	2048	256	16
	[0.860]	[0.859]	[0.860]
512	[1.717]	[1.715]	[1.717]
1004	64	16	16
1024	[3.436]	[3.437]	[3.436]
2048	2048	16	16
2040	[6.846]	[6.853]	[6.851]
4096	64	16	16
	[13.355] 64	[13.352] 256	[13.333] 16
8192	[25.713]	[25.706]	[25.709]
10004	64	256	16
16384	[0.687]	[0.709]	[0.687]
32768	2048	1024	256
02100	[1.598]	[1.330]	[1.413]
65536	16 [2.616]	1024 [2.800]	1024
	64	2048	[2.644]
131072	[5.203]	[5.147]	[5.147]
262144	16	1024	64
202144	[10.061]	[10.061]	[10.061]
524288	2048	2048	2048
	[19.829] 2048	[19.627] 1024	[19.629] 2048
1048576	[43.821]	[42.366]	[40.008]
	2048	64	1024
2097152	[68.766]	[68.772]	[68.177]
4194304	2048	2048	256
1101001	[116.953]	[116.142]	[116.132]
8388608	16 [179.115]	1024 [180.997]	256 [179.111]
	2048	1024	256
16777216	[185.262]	[186.452]	[184.802]
33554432	2048	256	1024
33334432	[210.343]	[211.014]	[209.960]
67108864	1024	64	2048
	[226.194] 16	[225.831] 2048	[225.824] 64
134217728	[235.169]	[235.271]	[235.218]
000407470	256	1024	2048
268435456	[240.484]	[240.495]	[240.465]
536870912	256	2048	2048
	[243.278]	[243.272]	[243.272]
1073741824	16	[011765]	256
Most frequent param-	[244.689] 2048	[244.765] 256, 1024	[244.756] 16
eter	2040	250, 1024	10
C0C1	1		

Table 37. The fastest depth values (speeds in square brackets are in MB/s) compared between memory types (32bit mode, write direction, walking_1 pattern type).

16 256 16 64 2054 [0.054] [0.054] [0.054] 32 64 256 64 64 16 16 16 64 2018 16 </th <th>Pattern size [B]</th> <th>blockram</th> <th>distributedram</th> <th>shiftregister</th>	Pattern size [B]	blockram	distributedram	shiftregister
	16	256		64
32 [0.108] [0.108] [0.108] 64 2048 16 16 16 (0.215] (0.215] (0.215] (0.215] (0.215] 128 64 16 16 16 (0.430] [0.430] [0.430] [0.430] 256 64 256 64 1512 64 16 16 1624 16 16 16 1024 2048 256 16 1624 3,437] [3,437] [3,439] 2048 16 1024 [6.854] 4096 64 16 1024 4096 64 256 64 13.347] [13.351] [13.345] 1624 256 64 16384 64 16 16 164 16 16 16 16384 64 16 16 16 165717 [25.706] [25.707]				
64 2048 [0.215] 16 [0.215] 16 [0.215] 16 [0.215] 16 [0.215] 128 64 [0.430] 16 [0.430] 16 [0.430] 16 [0.430] 16 [0.430] 16 [0.430] 16 [0.430] 16 [0.430] 46 [0.430] 46 [0.861] 46 [0.861] 46 [0.861] 46 [0.861] 46 [0.861] 46 [0.861] 46 [0.871] 47 [0.214] 47 [0.244] 47 [0.244] 47 [0.244] 47 [0.834] 46 [0.834] 46 [0.634] 46 [0.634] 46 [0.634] 46 [0.674] 46 [0.677] 47 [0.774] 4	32			
64 16 16 64 16 16 (0.430) [0.430] [0.430] 256 64 256 64 [0.860] [0.859] [0.861] 512 64 16 16 11.7713 [1.717] [1.714] 1024 2048 256 16 (3.437) [3.437] [3.439] 2048 2048 16 1024 4096 64 16 16 16 4096 [3.347] [3.345] [3.345] 4096 [4.3347] [3.351] [13.345] 8192 64 256 6 (4 16 16 16 (16.344) [2.574] [25.740] [27.74] 32768 [10.24] 256 256 (1.340) [1.326] [1.534] (1.340) [1.326] [2.531] (3.141) [3.560] [2.651] (3.152)				
128	64			
	190			
Description	126			
512 64 [1.718] 16 [1.717] 16 [1.714] 1024 2048 [3.437] 256 [3.437] 16 [3.437] 2048 16 [6.839] 16 [6.844] 1024 [6.854] 4096 64 [13.347] 13.351] 13.345] 8192 64 [4 256 [6.4] 64 [25.707] 16 [25.706] 16 [25.740] 16384 16 [6.678] 16 [0.678] 16 [0.710] 16 [0.714] 32768 1024 [1.340] 256 [1.340] 256 [1.554] 256 [1.534] 6536 16 [2.589] 12.650] 12.651] 6536 16 [2.589] 12.650] 16 [2.651] 131072 64 [2.589] 256 [1.0.68] 16 [2.589] 16 [2.660] 16 [2.560] 262144 16 [4.0.662] 64 [10.683] 10.168] 10.168] 524288 16 [19.360] 19.629] 19.629] 1048576 2048 [19.639] 16 [19.629] 10.168] 104876 2048 [19.638] 16 [2.68.187] 16 [2.68.187] 16 [2.68.187] 16 [2.10.64] 2097152	256			
1.718				
1024	512			
1024	1004			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1024			
[0.839] [0.844] [0.854] [16 16 16 16 16 16 16 1	2048			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2040	L 3		
8192 64 [25.717] 25.706 [25.740] 64 [25.740] 64 [25.740] 64 [25.740] 16384 64 [0.678] 16 [0.710] 16 [0.714] 32768 1024 [1.334] 256 [2.589] 256 [2.650] 256 [2.651] 65536 16 [2.889] 1024 [2.650] 256 [2.651] 256 [2.651] 131072 64 [4 256 [5.147] 15.092] [5.092] [5.092] 262144 16 [10.062] 64 [10.168] 256 [10.168] 10.168] 10.168] 524288 16 [19.630] 64 [10.629] 10.9629] 19.629] 10.9629] 1048576 2048 [19.630] 16 [29.550] 10.664] 1024 [49.179] 16.64 [68.187] 66 64 2097152 16 [68.187] 256 [68.187] 68.186] 64 10.44 [116.129] 64 64 4194304 16 [16 2048 2048 [181.09] 180.022] 179.116] 16 64 2048 [187.065] 182.744] 182.219] 16 16 64 2048 [187.065] 182.744] 182.219 2048	4096			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
16384 64 [0.678] [0.710] [0.714] 32768 1024 256 256 256 256 256 [1.340] [1.326] [1.534] 65536 16 1024 256 256 [2.589] [2.650] [2.651] 131072 64 256 16 256 [10.02] [5.092] [5.092] 262144 [10.062] [10.168] [10.168] 16 6 64 256 [10.168] [10.168] 524288 16 64 1024 [19.629] 1048576 2048 16 1024 [19.629] [19.629] 1048576 2048 16 1024 [40.664]	8192			
1024 256 256 256 256 256 256 256 256 256 256 256 256 256 2589 2.650] 2.651] 2.651] 31072 64 256 2.569] 2.651] 131072 16 64 256 16 256 2.6244 16 64 256 2.6244 16 64 256 2.6248 16 1024 2.625] 2.6244 16 64 1024 2.625] 2.6248 16 10.682] 19.629] 19.629] 1048576 2048 16 1024 2.626 2.6248	10904			
1.340	10384			
[1.340]	32768			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65536			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	131072			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	262144	16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	202144			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	524288			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1048576			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2007172			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2097152			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4194304			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8388608			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10222010			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16777216			
	33554432			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00001102			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67108864			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	134217728			
	269425456			
	4004 50450		2 1	
	536870912			
[244.709] [244.709]				
	1073741824			
	Most frequent param-			
eter 01, 10				01, 10

A.4. Graphical presentation of results from the data pattern type impact investigation subtest in pseudo-duplex mode

Table 38. The fastest pattern types (values in square brackets are in MB/s) compared between block sizes (duplex mode).

Pattern size [B]	16	64	256	1024
16	walking_1	counter_32bit	counter_8bit	counter_8bit
10	[0.035]	[0.035]	[0.035]	[0.035]
32	counter_8bit	counter_32bit	counter_32bit	counter_8bit
	[0.035]	[0.070]	[0.070]	[0.069]
64	counter_8bit	counter_8bit	counter_8bit	counter_32bit
-	[0.035]	[0.139]	[0.140]	[0.139]
128	counter_32bit	counter_8bit	counter_32bit	walking_1
	[0.035]	[0.139]	[0.279]	[0.280]
256	counter_32bit	counter_8bit	counter_32bit	counter_8bit
	[0.035]	[0.139]	[0.557]	[0.555]
512	$\begin{array}{c} \text{counter_32bit} \\ [0.035] \end{array}$	counter_8bit [0.139]	counter_8bit [0.557]	walking_1
				[1.111]
1024	walking_1	walking_1	walking_1	walking_1
	[0.035]	[0.139]	[0.558]	[2.227]
2048	walking_1 $[0.035]$	counter_32bit	counter_8bit [0.556]	counter_32bit [2.232]
		[0.139]		
4096	counter_8bit $[0.035]$	counter_8bit [0.139]	counter_32bit	walking_1 [2.230]
			[0.556]	1 2
8192	counter_8bit	counter_8bit	walking_1	counter_32bit
	$[0.035]$ counter_8bit	[0.139] counter_32bit	[0.557] counter_32bit	[2.210] counter_8bit
16384	[0.035]	[0.138]	[0.553]	[2.209]
	counter_8bit	walking_1	counter_32bit	counter 8bit
32768	[0.035]	[0.138]	[0.553]	[2.212]
	walking_1	counter_8bit	walking_1	counter_32bit
131072	[0.035]	[0.138]	[0.554]	[2.208]
	counter_32bit	walking_1	walking_1	walking_1
262144	[0.035]	[0.138]	[0.554]	[2.213]
	walking_1	walking_1	walking_1	counter_8bit
524288	[0.035]	[0.138]	[0.553]	[2.209]
	counter_32bit	counter_8bit	counter_8bit	counter_32bit
1048576	[0.035]	[0.138]	[0.551]	[2.204]
	walking_1	counter_32bit	counter_8bit	walking_1
2097152	[0.035]	[0.138]	$[0.5\overline{53}]$	[2.208]
4404004	walking_1	counter 32bit	counter_8bit	counter_8bit
4194304	[0.035]	[0.138]	$[0.5\overline{53}]$	[2.207]
000000	counter_32bit	counter_8bit	counter_32bit	counter_8bit
8388608	[0.035]	[0.138]	[0.552]	[2.202]
16777216	walking_1	counter_8bit	counter_32bit	walking_1
10777210	[0.035]	[0.138]	[0.553]	[2.211]
33554432	counter_8bit	counter_8bit	counter_8bit	walking_1
00001102	[0.035]	[0.138]	[0.553]	[2.208]
67108864	counter_32bit	walking_1	walking_1	counter_8bit
01100004	[0.035]	[0.138]	[0.553]	[2.209]
134217728	counter_32bit	walking_1	counter_32bit	walking_1
	[0.035]	[0.138]	[0.553]	[2.209]
268435456	counter_8bit	counter_8bit	counter_32bit	counter_32bit
	[0.035]	[0.138]	[0.553]	[2.208]
536870912	walking_1	counter_8bit	walking_1	walking_1
	[0.035]	[0.138]	[0.553]	[2.208]
1073741824	walking_1	walking_1	walking_1	counter_8bit
	[0.035]	[0.138]	[0.553]	[2.208]
Most frequent	walking_1	counter_8bit	counter_32bit	counter_8bit
parameter				

A.5. Graphical presentation of results from the best block size value research in pseudo-duplex mode

Table 39. Speed transfer (in MB/s) depending on the block size for counter_8bit pattern type.

Pattern size [B]	16	64	256	1024
16	0.0346	0.0348	0.0348	0.0348
32	0.0349	0.0696	0.0694	0.0693
64	0.0349	0.1394	0.1398	0.1379
128	0.0346	0.1393	0.2783	0.2788
256	0.0346	0.1392	0.5376	0.5547
512	0.0345	0.1388	0.5569	1.1092
1024	0.0347	0.1383	0.5558	2.2161
2048	0.0346	0.1382	0.5555	2.2142
4096	0.0347	0.1389	0.5537	2.2080
8192	0.0346	0.1387	0.5542	2.2057
16384	0.0346	0.1379	0.5525	2.2088
32768	0.0346	0.1381	0.5526	2.2125
65536	0.0345	0.1381	0.5505	2.2114
131072	0.0345	0.1382	0.5525	2.2063
262144	0.0346	0.1383	0.5526	2.2107
524288	0.0346	0.1382	0.5521	2.2094
1048576	0.0346	0.1382	0.5512	2.2012
2097152	0.0345	0.1383	0.5526	2.2048
4194304	0.0346	0.1382	0.5531	2.2073
8388608	0.0345	0.1382	0.5519	2.2022
16777216	0.0345	0.1382	0.5523	2.2078
33554432	0.0346	0.1382	0.5527	2.2071
67108864	0.0346	0.1382	0.5525	2.2093
134217728	0.0346	0.1382	0.5525	2.2083
268435456	0.0346	0.1382	0.5527	2.2062
536870912	0.0346	0.1382	0.5526	2.2073
1073741824	0.0346	0.1382	0.5526	2.2077

Table 40. Speed transfer (in MB/s) depending on the block size for counter_32bit pattern type.

Pattern size [B]	16	64	256	1024
16	0.0347	0.0348	0.0347	0.0347
32	0.0346	0.0696	0.0698	0.0670
64	0.0348	0.1388	0.1384	0.1391
128	0.0347	0.1373	0.2789	0.2713
256	0.0347	0.1382	0.5567	0.5407
512	0.0347	0.1385	0.5458	1.0910
1024	0.0346	0.1388	0.5579	2.2079
2048	0.0346	0.1385	0.5540	2.2317
4096	0.0346	0.1383	0.5559	2.2203
8192	0.0346	0.1386	0.5529	2.2097
16384	0.0346	0.1381	0.5532	2.2019
32768	0.0346	0.1381	0.5530	2.2084
65536	0.0345	0.1381	0.5530	2.2078
262144	0.0346	0.1383	0.5539	2.2115
524288	0.0345	0.1383	0.5523	2.2077
1048576	0.0346	0.1381	0.5510	2.2041
2097152	0.0345	0.1383	0.5525	2.2041
4194304	0.0345	0.1383	0.5526	2.2042
8388608	0.0346	0.1382	0.5523	2.2012
16777216	0.0345	0.1381	0.5525	2.2094
33554432	0.0346	0.1382	0.5526	2.2055
67108864	0.0346	0.1382	0.5519	2.2063
134217728	0.0346	0.1383	0.5529	2.2077
268435456	0.0346	0.1382	0.5527	2.2084
536870912	0.0346	0.1382	0.5526	2.2075
1073741824	0.0346	0.1382	0.5526	2.2075

Table 41. Speed transfer (in MB/s) depending on the block size for walking_1 pattern type.

Pattern size [B]	16	64	256	1024
16	0.0348	0.0340	0.0348	0.0348
32	0.0341	0.0695	0.0693	0.0691
64	0.0344	0.1358	0.1391	0.1357
128	0.0346	0.1393	0.2783	0.2796
256	0.0346	0.1391	0.5561	0.5547
512	0.0346	0.1381	0.5569	1.1110
1024	0.0347	0.1391	0.5580	2.2273
2048	0.0346	0.1385	0.5515	2.2230
4096	0.0345	0.1385	0.5543	2.2296
8192	0.0346	0.1384	0.5570	2.2065
16384	0.0346	0.1380	0.5532	2.2065
32768	0.0345	0.1382	0.5529	2.2096
65536	0.0345	0.1382	0.5533	2.2112
131072	0.0345	0.1380	0.5536	2.2045
262144	0.0346	0.1383	0.5541	2.2126
524288	0.0346	0.1384	0.5529	2.2070
1048576	0.0345	0.1380	0.5507	2.1999
2097152	0.0346	0.1383	0.5522	2.2084
4194304	0.0346	0.1382	0.5528	2.2068
8388608	0.0345	0.1382	0.5516	2.2020
16777216	0.0346	0.1381	0.5524	2.2109
33554432	0.0346	0.1382	0.5526	2.2080
67108864	0.0346	0.1382	0.5527	2.2083
134217728	0.0346	0.1383	0.5526	2.2086
268435456	0.0346	0.1382	0.5525	2.2083
536870912	0.0346	0.1382	0.5526	2.2076
1073741824	0.0346	0.1382	0.5527	2.2073