

Wydział Elektroniki, Fotoniki i Mikrosystemów

Elektronika w automatyce

Dokumentacja techniczna

Członkowie grupy: Łukasz Sobczak, 263457

Kacper Ugorny, 263504

Prowadzący zajęcia: Dr inż. Andrzej Jabłoński

Grupa zajęciowa: Piątek $9^{15} - 11^{00}$

Spis treści

1	Założenia projektowe	1
2	Widok płytki	1
3	Zdjęcia płytki	2
4	Schemat blokowy	3
5	Schemat ideowy	4
6	Działanie urządzenia	5
7	Opis poszczególnych części układu	5
	7.1 Moduł zasilania	5
	7.2 Generator	5
	7.3 Dzielnik częstotliwości	6
	7.4 Generator impulsu	6
	7.5 Moduł sterowania	7
	7.6 Timer	7
	7.7 Roszerzenie - wyświetlenie 0	7
	7.8 Moduł wyświetlania	8
8	Źródła	8
9	Wykaz elementów	8
Sp	s rysunków	10
Sį	s tabel	10

1 Założenia projektowe

- Generator 10Hz wraz z dzielnikiem częstotliwości
- Programowanie za pomocą dip-switch
- Zliczanie w dół
- Wyjście nr 1 stan wysoki przez czas odliczania, sygnalizacja diodą led.
- $\bullet\,$ Wyjście nr2- stan wysoki przez sekunde po odliczaniu, sygnalizacja buzzerem.
- Sygnalizacja LED wyjścia, impulsy generatora, zasilanie oraz wyświetlacz 7 segmenowy
- Timer zasilany 10V DC, zabezpieczony przeciw odwrotnej polaryzacji.
- Pobór prądu przy napięciu znamionowym: 0.19A 0.26A
- Autoreset na podłączeniu układu do zasilania.
- Wyświetlanie 0 po odliczaniu.
- Technologia CMOS

2 Widok płytki

Rysunek 1: Płytka z góry

Rysunek 2: Płytka z tyłu

3 Zdjęcia płytki

Rysunek 3: Płytka z góry

Rysunek 4: Płytka z tyłu

4 Schemat blokowy

Rysunek 5: Schemat blokowy

5 Schemat ideowy

Rysunek 6: Schemat Ideowy

6 Działanie urządzenia

Aby należy najpierw ustawić na dip-switchu czas wyrażony w sekundach. Aby to zrobić należy wyznaczyc liczbę w postaci binarnej. Wybrana liczba pokazuje się na wyświetlaczu 7-segmentowym. Następnie po naciśnięciu przycisku startu (SW1) rozpoczyna się odliczanie od wybranej liczby do zera. W trakcie odliczania aktywne jest wyjście nr 1 - świeci się dioda zielona (D4). Po dojściu licznika do 0 dezaktywuje się wejście nr 1 i przez 1 sekundę (w trakcie wyświetlania liczby 0) aktywne jest wejście nr 2 - świeci sie dioda żółta (D5).

7 Opis poszczególnych części układu

7.1 Moduł zasilania

Układ został zabezpieczony następującymi elementami:

- dioda Zenera 15V chroni przed odwrotnym podłączeniem zasilania oraz przed zbyt dużym napięciem
- kondensatory 100uF i 100nF filtrują zakłócenia zasilania

Czerwona dioda D2 sygnalizuje podłączenie układu do zasilania.

7.2 Generator

Funkcję generatora sygnału pełni układ NE555 pracujący w trybie astabilnym. Generuje on sygnał o częstotliwości ok. 10Hz. Elementy zostały dobrane według następującego wzoru:

$$T = 0.693 * (R_A + 2 * R_B) * C \tag{1}$$

$$f = 1/T \tag{2}$$

Dobrane wartości elementów wynoszą $R_A=R_B=2.2k\Omega$ oraz C = 23uF. Co według wzoru daje f = 9.5Hz, lecz w rzeczywistości było to 10,6 Hz co jest wynikiem dopuszczalnym.

Rysunek 7: Oscylogram przebiegu generatora

7.3 Dzielnik częstotliwości

Rolą dzielnika jest zamiana sygnału 10Hz podowanego z generatora na sygnał o częstowtliwości 1 Hz, który używany jest przez timer. Funkcję tę pełni układ CD4017. Używane jest tylko jedno z jego wyjść: Q0. Ten układ dostając impuls na wejście zmienia pin na którym jest stan wysoki, więc podłączając się tylko pod Q0, stan wysoki będzie tylko co dziesiąty impuls.

7.4 Generator impulsu

Funkcje generatora impulsu dla wyjścia drugigo pełni układ NE555 w trybie astabilnym. Generator ten wyzwalany jest stanem niskim na wejściu i na wyjściu generuje impuls o określonej długości. Długość tego impulsu zależy od elementów. Można go wyznaczyć według następującej zależności:

$$t = 1.1 * R * C \tag{3}$$

W przypadku tego timera wartości wynoszą $R=500k\Omega$ i C = 2,2uF co daje t = 1,2s. W rzeczywistości trwał on około 1,1 sekundy. Impuls trwający ponad sekunde był wymagany w naszym rozwiązaniu wyświetlania 0 na wyświetlaczu.

Impuls aktywuje wyjście nr 2, które sygnalizowane jest diodą żółtą D5 oraz buzzerem.

7.5 Moduł sterowania

Za sterowanmie w układzie odpowiada przerzutnik RS (układ cd 4013). Wejście S podpięte jest do przycisku START, natomiast do wejścia R za pomocą bramki NAND podpięto 2 sygnały:

- dwójnik RC zapewnia autoreset w momencie podpięcia zasilania
- sygnał zakończenia pracy układu

Po podaniu sygnału START przerzutnik uruchamia następujące elementy:

- dzielnik częstotliwości podając stan wysoki na wejście CKEN
- Timer podając sygnał niski na wejście PE
- Wyjście nr 1 zrealizowane za pomocą tranzystora bipolarnego NPN w konfiguracji otwartego kolektora

7.6 Timer

Funkcję Timera pełni układ CD4510 zliczający w dół (pin U/D zwarty do masy). Na wejścia A1-A4 podawana jest liczba binarna z dip-switcha. Zliczany sygnał podawany jest z dzielnika częstotliwości, a liczenie rozpoczyna się po pojawieniu się stanu niskiego na pinie PE (patrz moduł sterowania). Aktualny stan licznika przekazywany jest do dekodera wyświetlacza.

7.7 Roszerzenie - wyświetlenie 0

Do drugiego wejścia bramki NAND dołożona została bramka XOR, w celu wyświetlenia 0 na wyświetlaczu po odliczaniu, która bierze na wejścia Carry Out z układu 4510 oraz wyjście monostabilnego NE555. Dzięki temu układ resetuje się gdy na wejściach tej bramki oba stany są wysokie lub niskie. Moment w którym są dwa stany wysokie na wejściach pojawia się tylko gdy timer skończy odliczać i minie sekunda po pokazaniu 0 na wyświetlaczu (zmieni 0 na 9). Działa to dzięki temu, że impuls NE555 monostabilnego trwa około 1.1sekundy.

Konieczne również było dodanie kondensatora utrzymującego stan na wejściu bramki NAND, gdyż w układzie występuje bardzo krótki moment, gdy oba stany są niskie co resetuje układ. Jest to moment gdy Counter osiągnie 0, wtedy Carryout zmienia stan na niski, a 555 zmienia wyjście na stan wysoki dopiero kwant czasu później.

Na poniższym obrazku widać wycinek symulacji przedstawiający część układu. W prawym górnym rogu widać układ 555 symulujący impuls pochodzący od countera, a pod nim kolejny układ 555, który odpowiada generatorowi impulsu z naszego układu. Z lewej widoczny jest układ bramek logicznych identyczny do tego z modułu resetującego. Symulacja ma również dołożony kondensator na wyjściu impulsu buzzera, który ma odpowiadać opóźnieniu występującemu w rzeczywistym układzie.

Na wyjściu bramki XOR znajduję się przełącznik rozłączający kondensator utrzymujący stan wysoki.

Gdy przeprowadza się symulacje z rozłaczonym kondensatorem, po wciśnieciu "H"

odrazu zapala się żarówka odpowiadająca resetu układu. Dołączenie kondensatora rozwiązuje ten problem.

http://tinyurl.com/ymhm7wwd - Skrócony link do symulacji.

W symulacji wartości elementów nie są równoważne z rzeczywistymi, są dobrane w celach symulacyjnych.

Rysunek 8: Symulacja na portalu falstad.com

7.8 Moduł wyświetlania

Cyfry w kodzie BCD z licznika CD4510 podawane są do dekodera CD4511, który zamienia je na sygnały opdowiadające poszczególnym segmentom wyświetlacza, są one następnie wyświetlalne na wyświetlaczu FJ5101AH o wspólnej katodzie.

8 Źródła

- https://www.ti.com/lit/ds/symlink/lm555.pdf
- https://www.build-electronic-circuits.com/ opisy układów scalonych
- https://www.falstad.com symulacje

9 Wykaz elementów

Oznaczenie projektowe	Nazwa elementu	typ/parametr	parametr pom.	ilość
R1-R2	rezystor	$2.2 \mathrm{k}\Omega$	0.25W	2
R3,R11	rezystor	$1 \mathrm{k}\Omega$	0.25W	2
R4,R6-R9	rezystor	$12k\Omega$	0.25W	5
R5	rezystor	$51\mathrm{k}\Omega$	0.25W	1
R10	rezystor	$500 \mathrm{k}\Omega$	0.25W	1
R12-R18,R20-R23	rezystor	680om	0.25W	11
R19	rezystor	470om	0.25W	1
R24	rezystor	330om	0.25W	1
C1	kond. elektrolit.	22uF	50V	1
C2	kond. ceramiczny	15nF	50V	1
C3	kond. ceramiczny	1nF	100V	1
C4,C7	kond. ceramiczny	100nF	100V	2
C5,C9	kond. elektrolit.	2.2uF	50V	2
C6	kond. elektrolit.	100uF	25V	1
C8	kond. ceramiczny	220nF	50V	1
C10	kond. ceramiczny	1uF	50V	1
D1	dioda Zenera	15V	1,3W	1
D2	dioda LED	czerwona	-	1
D3-D4	dioda LED	zielona	-	2
D5-D6	dioda LED	żółta	-	2
U1,U5	układ scalony	NE555	-	2
U2	układ scalony	CD4017	-	1
U3	układ scalony	CD4013	-	1
U4	układ scalony	CD4011	-	1
U6	układ scalony	CD4510	-	1
U7	układ scalony	CD4511	-	1
U8	układ scalony	4030E	-	1
DIS1	wyświetlacz 7-segmentowy	FJ5101AH	-	1
Z1	podstawka pod ukł. scal.	DIL8	-	1
Z2-Z5	podstawka pod ukł. scal.	DIL16	-	4
Z6-Z8	podstawka pod ukł. scal.	DIL14	-	3
Z 9	podstawka pod ukł. scal.	DIL18	-	1
Z10	podstawka pod ukł. scal.	DIL24	-	1
SW1	przycisk	monostabilny	-	1
SW2	dip-switch	4 przełączniki	-	1
Q1	tranzystor	BC560	-	1
BZ1	buzzer	TMB12A05	-	1

Tabela 1: Wykaz elementów.

Spis tabel

1	Wykaz elementów
Spis	rysunków
1	Płytka z góry
2	Płytka z tylu
3	Płytka z góry
4	Płytka z tylu
5	Schemat blokowy
6	Schemat Ideowy
7	Oscylogram przebiegu generatora
8	Symulacia na portalu falstad com