

Sponsored by

IndoorGML – Candidate Standard for Indoor Spatial Information

90th OGC Technical Committee
Washington, DC
Ki-Joune Li
26 March 2014

Before starting...

- Not (InDoorGML, Indoor GML, In Door GML)
- the correct name is IndoorGML like CityGML

<Source: Google Earth 3D>

<Source: Google Earth 3D>

OGC®

Applications

Indoor Geo-Portal

Indoor mCommerce

Cruise Ship

Services for handicapped persons

Hospital

Indoor Robot

Prior work on indoor space

• IFC: Mainly focused on BIM

CityGML: LoD 4: Interior space

- KML
- others

Basic Ideas

Space

a boundless extent in which objects and events occur and have position – in online Britannica

Basic Ideas – Components vs. Space

IndoorGML as a complement

Indoor positioning is out of scope

IndoorGML and Other Standards

IndoorGML based on Cellular Space Model

- A given space is defined as a set of (Non-Overlapping) cell spaces
 - $C_i \cap C_i = \phi$
 - ∪ C ⊆ U
 (e.g. Shadow area of sensor coverage)
 - Given indoor Space U: 2D or 3D
 - Each cell has Cell ID.
- 4 aspects of cellular space
 - Geometry
 - Topology
 - Multi-Layered Structure
 - Semantics

Geometry

Three options to represent geometry of each cell

- Poincare Duality
 - Conversion from original (primal space) to dual space
 - Given a N-D (e.g. 3D) space, conversion from k D object → N-k (e.g. 3-k) D objects

Primal Space

Adjacency Graph

Dual Space

Connectivity Graph

Example: Wall and Door as Space Boundary

Topographic Space

Non-navigable Link (Adjacency) В1 **B3** D1 **B5** D4 D2 **EXT**

Navigable Link (Connectivity)

Dual Space

Multi-Layered Space

Multi-Layered Space – Inter-layer relation

Example – Multi-Layered Space

Example – Multi-Layered Space

Layer "Wheelchair"

Layer "Walkable"

Layer "WiFi"

Semantics

- Semantic Interpretation of Indoor Space
 - Classification of Indoor Space
 - Example Room, Door, Corridor, Stair Space, Elevator Shaft, Gate
- Definition of Attributes
 - Names, Usage, Functions, etc...
 - Directions
 - Accessibility

Semantic Extension for Navigation

Indoor Navigation Module – Anchor Node

Anchor Node also contains

- Conversion Parameters
 - rotation origin point (x_0, y_0, z_0)
 - rotation angles $(\alpha, \beta, \gamma, \text{ along } x, y, \text{ and } z\text{-axis})$,
 - rescaling factor (s_x, s_y, s_z) , and
 - translation vector (t_x, t_y, t_z)
- Other attributes
 - URL of fingerprint map
 - Address

Basic Components of IndoorGML

Semantic Extension – Future Plan

Composition of Coex Indoor Map

- POI Data
- Network Data (Topology)
 - Geometric Topology
- Space Data

= 6

Song Optical

Demands from other standards

- ISO/TC204 WG 17 (Nomadic Devices of ITS Systems)
 - Extension of road navigation standards for covering outdoor space
 AND Indoor Space in a seamless way
 - NWIP: Adopted on May 7, 2012 (ISO 17438-1) Part I

Indoor navigation for personal and vehicle ITS station

- Part 1: General information and use cases definition

- Part 3: Requirements and specification for indoor positioning reference data format
- Part 4: Personal/Vehicle and central ITS stations interface requirements and specification for indoor map and indoor positioning reference data
- IEEE RAS(Robotics and Automation Society)
 - Indoor maps for localization and navigation of robots
 - IEEE MDR (Map Data Representation for Robots)
 - WG established in Nov. 2011
 - To be published in 2014

Useful Links

• indoorgml.net

