Ανάπτυξη Λογισμικού για Δυσεπίλυτα Αλγοριθμικά Προβλήματα

Evótnta 1: Nearest neighbors and Clustering

Γιάννης Εμίρης

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

October 10, 2021

Outline

- Similarity search
- 2 Locality sensitive hashing
 - Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Exact and Approximate Nearest Neighbors

A *d*-dimensional space *D* is equipped with distance function dist (\cdot, \cdot) . Given pointset $P \subset D$, for any query point $q \in D$, its exact NN is any point $p_0 \in P$ s.t.:

$$\operatorname{dist}(p_0,q) \leq \operatorname{dist}(p,q), \quad \forall p \in P.$$

For fixed $P \subset D$, and approximation factor $1 > \epsilon > 0$, given a query point q, an ϵ -NN, or Approximate NN, of q is any point $p_0 \in P$:

$$\operatorname{dist}(p_0, q) \leq (1 + \epsilon) \cdot \operatorname{dist}(p, q), \quad \forall p \in P.$$

Exact NN is practically linear in n, while ANN is sublinear or logarithmic in n

Near neighbors

Approximation factor $c = 1 + \epsilon > 1$.

Definition

Given: finite set of points $P \subset D$, approximation factor c > 1, radius r. Input: query point $q \in D$.

(r, c)-Near Neighbor Decision problem with witness:

If $\exists p_0$ within radius r, output any p: $dist(q,p) \leq c \cdot r$;

If $\not\exists p$ within radius cr, then report NULL;

otherwise output any point p within cr or NULL.

(r, c)-Near Neighbor Range search: Report any subset of

$$\{p \in P : dist(q,p) \le c \cdot r\}$$
 that includes all $\{p \in P : dist(q,p) \le r\}$.

In practice, if c is not given, take c = 1.

Distances in vector spaces

Definition

The family of ℓ_k norms, for vectors $x, y \in \mathbb{R}^d$, defines various distances:

$$extit{dist}_{\ell_k}(x,y) = \|x-y\|_k = \sqrt[k]{\sum_{i=1}^d |x_i-y_i|^k}, \quad k \geq 0.$$

Examples:

- -- ℓ_2 : Euclidean distance,
- -- ℓ_1 : Manhattan (taxicab) distance,
- ℓ_∞ : max distance.
- $-\ell_0: \|\mathbf{v}\|_0 = \#$ nonzero entries in \mathbf{v} .

Distance Measure

Definition (Metric)

A distance measure d: $D^2 \to \mathbb{R}$ is a function that satisfies:

- Non-negativity: $d(x, y) \ge 0$
- Isolation: $x \neq y \Leftrightarrow d(x, y) > 0$
- Symmetry: d(x, y) = d(y, x)
- Triangle inequality: d(x, y) < d(x, z) + d(z, y)

It follows that d(x,x)=0, and $|d(x,z)-d(z,y)|\leq d(x,y)$.

Distances in vector spaces (e.g. ℓ_k , Hamming) are distance measures. Thanks to their (vector) representation, we can also compute attributes, s.t. the mean of a set, or its total order.

NN in \mathbb{R}

Sort/store the points (in balanced binary search tree), use binary search for queries, then:

- Prepreprocessing in $O(n \log n)$ time
- Data structure requiring O(n) space
- Answer the query in O(log n) time

A hash-table with M buckets offers a solution with

- preprocessing in O(M + n) = O(n) time
- space O(M+n) = O(n)
- query time O(1)

assuming constant time for hashing and constant number of items per bucket.

NN in \mathbb{R}^2

- Preprocessing: Voronoi Diagram in $O(n \log n)$.
- Storage = O(n).
- Given query q, find the cell it belongs (point location) in $O(\log n)$. NN = site of cell containing q.

NN in \mathbb{R}^d

Fxact NN:

- Voronoi diagram uses space/preprocessing = $O(n^{|d/2|})$; point location methods hardly extend to high dimensions.
- State of the art: kd-trees: Sp = O(dn), Query $\simeq O(d \cdot n^{1-1/d})$, tends to linear in n for large d.
- Randomized (Clarkson'88): $S = O(n^{\lceil d/2 \rceil + \delta})$, $Q = O(2^d \log n)$.

Hence the Curse of Dimensionality:

Can we solve NN in poly-time in d and faster than linear-time in n?

Approximate nearest neighbor (ANN)

Tree-based data structures: kd-, BBD-trees

- Space = O(dn)
- Query = $O((1/\epsilon)^d \log n)$

... still plagued by the curse of dimensionality

- LSH (Indyk, Motwani'98) (Andoni, Indyk et al.'08)
 - Space = $O(dn^{1+\rho})$,
 - Query = $O(dn^{\rho})$, $\rho = 1/(1+\epsilon)^2 < 1$.

... "beats the curse of dimensionality" (Chazelle)

- Space = $O^*(dn)$,
- Query = $O^*(dn^{\rho})$, $\rho = 1 \Theta(\epsilon^2)$
- beats the curse in optimal space

Outline

- Similarity search
- 2 Locality sensitive hashing
 - Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

LSH definition

Idea: use hash-table for proximity query, mapping nearby vectors to same bucket

LSH Family

Let $r_1 < r_2$, probabilities $P_1 > P_2$. A family H of functions is (r_1, r_2, P_1, P_2) -sensitive if, for any points $p \neq q$ and any randomly selected function $h \in_{R} H$,

- if dist $(p,q) \le r_1$, then prob $[h(q) = h(p)] \ge P_1$,
- if dist $(p, q) > r_2$, then prob $[h(q) = h(p)] < P_2$.

 $h \in \mathbb{R} H$ is chosen uniformly at random from H.

Construction

Preprocess

- Having defined hash-function family H we can construct several $h_i \in_R H$
- Randomly specify L amplified hash-functions g_1, \ldots, g_l , each using $k h_l$'s
- Store all points to *i*-th (1-dim) hash-table using g_i , $i = 1, \ldots, L$

Figure shows intuition behind h_i 's:

Practical choices:

$$L = 5 \text{ (or 6)},$$

HashTable size n/8 (or n/16),

aiming at $\Theta(1)$ points per bucket.

NN search

Approximate kNN

```
Input: query a
Let b \leftarrow \text{Null}; d_b \leftarrow \infty; initialize k best candidates and distances;
for i from 1 to 1 do
    for each item p in bucket g_i(q) do
        if dist(q, p) < d_b = k-th best distance then b \leftarrow p; d_b \leftarrow \text{dist}(q, p)
        end if
        if large number of retrieved items (e.g. > 10L) then return b
                                                                                     // optional
        end if
    end for
    return b: k best candidates:
end for
```

For k > 1 must maintain k best candidate distances sorted so as to always replace k-th farthest candidate neighbor.

Approximate Range Search

Approximate (r, c) Range search

```
Input: r, query q
for i from 1 to 1 do
   for each item p in bucket g_i(q) do
       if dist(q, p) < r then output p
       end if
       if large number of retrieved items (e.g. > 20L) then return
                                                                        // optional
       end if
   end for
end for
return
```

This may miss points within radius r.

Amplification

Hash-tables

LSH creates hash-tables using amplified index function g by combining k functions $h_i \in \mathbb{R}$ H, chosen uniformly at random with repetition from H. So some h_i may be chosen more than once for some g_i , or for different g's.

Notice both h_i , g map objects to integers (indices in the hash-table).

Setting $g(p) = [h_1(p), \dots, h_k(p)]$ defines k-dimensional table with many empty buckets. So, we apply concatenation

$$g(p) = [h_1(p)|h_2(p)|\cdots|h_k(p)],$$

or random linear combination, for some large $M \in \mathbb{N}$, random $r_i \in \mathbb{N}$:

$$g(p) = \sum_{i=1}^k r_i h_i(p) \bmod M \in [0, \dots, M).$$

Practical choice k = 4 to 6.

Known LSH-able metrics

- Hamming distance,
- ℓ_2 (Euclidean) distance,
- ℓ_1 (Manhattan) distance.
- ℓ_k distance for any $k \in (1,2)$,
- ℓ_2 distance on a sphere,
- Cosine similarity,
- Jaccard coefficient.

Recall
$$\ell_k$$
 distance: $\operatorname{dist}_{\ell_k}(x,y) = \sqrt[k]{\sum_{i=1}^d |x_i - y_i|^k}.$

Outline

- Similarity search
- Locality sensitive hashing
 - Euclidean space
- - Vector spaces
- - Initialization
 - Reverse assignment

Euclidean Space

 $dist_{\ell_2}(x,y)^2 = \sum_{i=1}^d (x_i - y_i)^2$. Recall:

Definition

Let d-vector $v \sim \mathcal{N}(0,1)^d$ have coordinates identically independently distributed (i.i.d.) by the standard normal (next slide).

Set "window" $w \in \mathbb{N}^*$ for the entire algorithm, pick single-precision real t uniformly $\in_R [0, w)$. For point $p \in \mathbb{R}^d$, define:

$$h(p) = \left| \frac{p \cdot v + t}{w} \right| \in \mathbb{Z}.$$

- -- Essentially project p on the line of v, shift by t, partition into cells of length w.
- In general, w=4 is good but should increase for range queries with large r.
- -- Also k=4 (but can go up to 10), and L may be 5 (up to 30).

Normal distribution

Vector $v \sim \mathcal{N}(0,1)^d$ has single-precision real coordinates distributed according to the standard normal (Gaussian) distribution:

$$v_i \sim \mathcal{N}(0,1), \ i=1,2,\dots,d,$$

with mean $\mu = 0$, variance $\sigma^2 = 1$ (σ is the standard deviation).

The bell curve:

Hash-table

To avoid many empty buckets we define ϕ as random combination of the h_i 's:

Classic hash-function

Build 1-dim hash-table with classic index:

$$\phi(p) = [(r_1h_1(p) + r_2h_2(p) + \cdots + r_kh_k(p)) \bmod M] \bmod TableSize,$$

s.t. int
$$r_i \in_{\mathbb{R}} \mathbb{Z}$$
, prime $M = 2^{32} - 5$ if $h_i(p)$ are int, TableSize = $n/4$ (or $n/8$).

 ϕ computed in intarithmetic, if all $h_i(p)$, r_i are int (\leq 32 bits).

Can have smaller TableSize= n/8 or n/16 (heuristic choice).

Recall $(a \square b) \mod m = ((a \mod m) \square (b \mod m)) \mod m$

Querying trick

Store object ID along with pointer to object, for all bucket elements.

Object ID

For every p, store

$$ID(p) = r_1h_1(p) + r_2h_2(p) + \cdots + r_kh_k(p) \bmod M.$$

Then indexing hash-function is $\phi(p) = ID(p)$ mod TableSize.

ID is locality sensitive: depends on w-length cells on the v-lines.

To avoid computing Euclidean distance to all elements in the bucket, do it only for p: ID(p) = ID(q), assuming such p exists.

Complexity

Theorem

For $P \subset \mathbb{R}^d$, n = |P|, the hashtable for $(r, 1 + \epsilon)$ -Neighbors offers, whp,

queries in
$$O(dn^{\frac{1}{1+\epsilon}} \log n)$$
, space in $O(dn + n^{1+\frac{1}{1+\epsilon}}) \log n$.

Theorem

We solve $(1+\epsilon)$ -ANN by performing $O(\log \frac{n}{\epsilon})$ many queries to $(r, 1+\epsilon)$ -Neighbor structures. Binary search is not sufficient.

Corollary

 $(1+\epsilon)$ -ANN performs queries in $O(dn^{\frac{1}{1+\epsilon}}\log n\log \frac{n}{\epsilon})$ using space in $O(dn+n^{1+\frac{1}{1+\epsilon}}\log^3(\frac{n}{\epsilon})/\epsilon^2)$.

Outline

- Similarity search
- 2 Locality sensitive hashing
- Euclidean space
- Randomized projections
- 4 Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Randomized projection

Lemma (Johnson, Lindenstrauss'82)

Given $P \subset \mathbb{R}^d$, |P| = n, $\epsilon > 0$, \exists randomized linear $f : \mathbb{R}^d \to \mathbb{R}^{d'}$, for

$$d' = O(\log n/\epsilon^2),$$

s.t., whp,
$$(1 - \epsilon) \|p - q\|_2 \le \|f(p) - f(q)\|_2 \le (1 + \epsilon) \|p - q\|_2$$
.

For randomized $d' \times d$ matrix M, projected vectors are Mp for input $p \in \mathbb{R}^d$.

However, the JL Lemma cannot remedy the curse of dimensionality for ANN.

Binary (0/1) hypercube

Projection

- Input: Metric space admitting family of LSH functions h_i.
- Let f_i s.t: for each h_i , $f_i(h_i)$ maps buckets to $\{0, 1\}$ uniformly.
- Preprocess: Store points $p \mapsto [f_1(h_1(p)), \dots, f_{d'}(h_{d'}(p))] \in \{0, 1\}^{d'}$, so data at hypercube vertices, dimension $d' = \lfloor \lg n \rfloor 1$ to $\lfloor \lg n \rfloor 3$.

Search

- Project query point to corresponding hypercube vertex.
- 2 Check points in same vertex and nearby vertices in increasing Hamming distance (=1, then 2, etc), until some threshold reached (next slide).
- ANN returns closest candidate, range search all p within query ball.

Complexity

Theorem

For ℓ_1 and ℓ_2 metrics, a (single) hypercube yields an efficient solution for the ϵ -ANN problem with space and preprocessing in $O^*(dn)$, query time in $O^*(dn^\rho)$, $\rho=1-\Theta(\epsilon^2)$. The data structure succeeds with constant probability.

Implementation Parameters

- d': larger implies finer mapping so search can stop earlier (lower thresholds); increases storage and preprocessing.
- Thresholds: #points to be checked in \mathbb{R}^d , max #vertices probed, bound on Hamming distance of vertices probed.

The Hamming distance of strings $x, y \in \{0, 1\}^k$ equals # different bits in x, y. Here the vertices of the (unique) hypercube are the hash-table buckets.

Outline

- Similarity search
- 2 Locality sensitive hashing
 - Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Clustering

Definition (k clusters)

Given n objects (and k > 1) partition the objects into k clusters so as to optimize some objective function.

- Objects in the same cluster are more "similar" (or closer) to each other than
 to those in other clusters.
- Possible criteria: minimizing the total distance among all cluster points, minimizing the distance of cluster points to some center, etc.
- Variations: k is unknown and computed, e.g., by the Silhouette method.

Good Clustering, with centroids

Approaches

- hierarchical (agglomerative): each point initializes a cluster, merge until stopping criterion, e.g., predetermined number of clusters, or if merging creates cluster with points too far apart.
- centroid-based (point-assignment): given some initial clusters (with centroids), assign points to "best" cluster (nearest centroid); redefine centroids and repeat. Might allow combining / splitting clusters. Example: k-means (our focus).

(Ullman et al:Mining Massive datasets)
(Theodoridis-Koutroumbas:Pattern Recognition)

Outline

- Similarity search
- 2 Locality sensitive hashing
- Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Vector spaces

Problem definition

- Clustering that minimizes objective function.
- k is given.
- Centroids may not be in the input; computed per cluster.

k-means

- k-means is the most common problem: Main algorithms:
 - Lloyd's algorithm is standard.
 - -- Elkan's uses triangular inequality to accelerate updates.
- In Euclidean space, assignment is point location to k Voronoi cells.

Lloyd's for k-means

Algorithm (EM)

Initialize k centers randomly (or using some strategy).

- Assignment (Expectation): Assign each object to its nearest center.
- 2 Update (Maximization): Calculate mean $\frac{1}{\tau} \sum_{i=1}^{T} \vec{v_i}$ per cluster, make it new center, where T = #objects $\vec{v_i}$ in cluster.

Repeat the two steps until there is no, or little, change in the assignments.

Properties

- Each distance calculation = O(d) because vectors in \mathbb{R}^d .
- Assignment = O(nkd), Update = O(nd),
- #iterations unknown, in practice $\ll n$.
- Converges to local minimum in Euclidean space (depends on initialization)

k-means: Objective function

Typical ambient space is \mathbb{R}^d but can generalize to metric space \mathcal{Z} .

Minimization function

In any metric space over vectors $\mathcal Z$ with distance metric $\mathrm d$, let the dataset be $X = \{x_1, \dots, x_n\} \subseteq \mathcal{X} \subseteq \mathcal{Z}$, and k > 1. Given centroids $C \subset \mathcal{Z}$, let

$$d(x_i, C) = \min_{c \in C} d(x_i, c).$$

Consider vector $v(C) = [d(x_1, C), \dots, d(x_n, C)]$. The k-means objective is:

$$\min_{C \subseteq \mathcal{Z}, |C| = k} \|v(C)\|_2^2 = \min_{C \subseteq \mathcal{Z}, |C| = k} \sum_{i=1}^n d(x_i, C)^2.$$

The k-means objective is NP-hard to check, but for the ℓ_2 metric, Lloyd's algorithm converges "quickly" to a local minimum.

Variations

Recall $X = \{x_i\}$ is input, $v(C) = [d(x_1, C), \dots, d(x_n, C)]$, where $C \subset \mathcal{Z}$ are the k centroids in the ambient space \mathcal{Z} . The k-median objective is:

$$\min_{C\subseteq\mathcal{Z},|C|=k}\|v(C)\|_1=\min_{C\subseteq\mathcal{Z},|C|=k}\sum_{i=1}^n\,\mathrm{d}_{\ell_1}(x_i,C).$$

Further objective functions exist when the centroids belong to the dataset:

k-medoid: $\min_{C \subseteq X, |C| = k} ||v(C)||_1$.

k-center: $\min_{C \subseteq X, |C| = k} \|v(C)\|_{\infty}$,

k-medians clustering

Lloyd's Algorithm (EM)

Initialize k centers.

- **①** Expectation: Assignment of vectors to nearest center in ℓ_1 metric.
- ② Maximization: Update center by (marginal) median $c \in \mathbb{R}^d$ defined s.t. c_j is median of $\{v_{1j}, v_{2j}, \dots, v_{7j}\}$, $1 \leq j \leq d$, T = cluster cardinality.

Repeat the two steps until there is no change in the assignments.

Recall the median of *n* sorted values is the $\lceil n/2 \rceil$ -th largest value.

Random initialization k = 4

Fails to find 4 clusters

- Similarity search
- 2 Locality sensitive hashing
 - Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

- Euclidean space
- - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment

Improve Initialization 1: Spread-out

INITIALIZATION++ : K-MEANS++ / K-MEDOIDS++:

- (1) Choose a centroid uniformly at random; $t \leftarrow 1$.
- (2) ∀ non-centroid point i = 1,...,n-t, let D(i) ← min distance to some centroid, among t chosen centroids.
- (3) Choose new centroid: r chosen with probability proportional to $D(r)^2$:

prob[choose
$$r$$
] = $D(r)^2 / \sum_{i=1}^{n-\tau} D(i)^2$.

Let $t \leftarrow t + 1$.

(4) Go to (2) until t = k = given #centroids.

Expected approximation ratio = $O(\log k)$ (Arthur-Vassilvitskii:SODA'07) Similar algo for 2-approx of k-center (NP-hard prob)

Implement initialization++

Given D(i) > 0, i = 1, ..., n - t, compute n - t (float) partial sums

$$P(r) = \sum_{i=1}^{r} D(i)^{2}, \quad r = 1, ..., n-t,$$

and store them in binary tree (or array) P. To avoid the P(r)'s being very large, we may normalize all D(i)'s by dividing them by $\max_i D(i)$.

Pick a uniformly distributed float $x \in [0, P(n-t)]$ and return

$$r \in \{1, 2, \dots, n-t\} : P(r-1) < x \le P(r),$$

where P(0)=0; r chosen with probability proportional to $P(r)-P(r-1)\sim D(i)^2$. Can find r by binary search in P.

Improve Initialization 2: Concentrate

Select centroids close to dataset's center of mass (and to each other) as follows.

- (1) Calculate symmetric $n \times n$ distance matrix of all objects, i.e. all distances d_{ij} from every object i = 1, ..., n to every other object $j = 1, ..., n, i \neq j$.
- (2) For object i compute

$$v_i = \sum_{j=1}^n \frac{d_{ij}}{\sum_{t=1}^n d_{jt}}, \quad i = 1, \dots, n.$$

(3) Return the k objects with k smallest v_i values.

Algorithm proposed in (Park-Jun'09).

- Similarity search
- 2 Locality sensitive hashing
- Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Assignment by direct method

Exact approach -- for little data

At each iteration (Lloyd's):

- For every point, compute distance to every centroid.
- Return (exact) nearest centroid.

Approximate approach -- for big data

At each iteration:

- lacktriangle Index k centroids into data-structure, e.g. LSH hashtables.
- For every non-centroid point, run ANN to find nearest centroid.
- Return (approximate) nearest centroid.

This is the standard approach in almost all big data implementations today.

Assignment by Range search

Reverse approach (ANN)

- Index n points into L hashtables: once for entire algorithm.
- LSH TableSize $\leq n/8$: avoid buckets with very few items.
- At each iteration, for each centroid c, range/ball queries centered at c.
- Mark assigned points: either move them at end of LSH buckets (and insert "barrier", or mark them using "flag" field).
- Multiply radii by 2, start with min(dist between centers)/2; centers mapped to buckets once. Until most balls get no new point.
- ullet For a given radius, if a point lies in ≥ 2 balls, compare its distances to the respective centroids, assign to closest centroid.
- At end: for every unassigned point, compare its distances to all centroids

Reverse assignment: example

Double radii until all points assigned, or most balls get no new point, or radius reaches some threshold.

- Similarity search
- 2 Locality sensitive hashing
 - Euclidean space
- Randomized projections
- Centroid-based Clustering
 - Vector spaces
- General Improvements
 - Initialization
 - Reverse assignment
- Evaluation

Silhouette

- For $1 \le i \le n$, a(i) = average ℓ_1 distance of i to objects in same cluster - Let b(i) = average ℓ_1 distance of i to objects in *next best* (neighbor) cluster, i.e. cluster of 2nd closest centroid.

Silhouette of Object i

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} = \left\{ \begin{array}{ll} 1 - a(i)/b(i), & \text{if } a(i) < b(i) \\ 0, & \text{if } a(i) = b(i) \\ b(i)/a(i) - 1, & \text{if } a(i) > b(i) \end{array} \right\} \in [-1, 1].$$

Interpret silhouette

- $s(i) \rightarrow 1$: i seems correctly assigned to its cluster;
- $s(i) \simeq 0$: borderline assignment (but not worth to change);
- $s(i) \rightarrow -1$: i would be better if assigned to next best cluster.

Silhouette: Cluster and clustering

Specific clusters

- -- Evaluate a cluster: Compute average s(i) over all i in some cluster.
- If k is too large or too small, some clusters shall display much smaller silhouettes than the rest.
- -- Silhouette plots are used to improve k: try different k's and see if clusters have roughly equal silhouettes.

Overall Clustering

Overall Silhouette coefficient = average s(i) over i = 1, ..., n.

High if well clustered, low may indicate bad k (or existance of outlier points).