Università degli studi di Modena e Reggio Emilia Dipartimento di Ingegneria Enzo Ferrari

Automotive Connectivity

Indice

1	Intr	troduction				1	
1.1 Structure and Content						1	
	1.2	Intra-V	Vehicles			2	
	1.3	Archite	tectures			2	
	1.4	Intra-Vehicles		3			
		1.4.1	Multiple Access Protocols			3	
		1.4.2	Bit Coding			5	
2	Intr	ntra-Vahielas					
	2.1	ISO/OSI Layers			•	6	
	2.2	2 Network Topology - The Bus System			8		
	2.3	Contro	oller Area Network			9	

Capitolo 1

Introduction

1.1 Structure and Content

• Module 1:

- 1. intra-vehicles communications: nodes, sensors, ECU
- 2. **signal busses**: CAN, LIN, FlexRay, MOST, Ethernet [T1/T1S]
- 3. car domain and OS

• Module 2:

- 1. *inter-vehicles communications*: V2V and V2X (car is a node)
- 2. wireless technologies: Bluetooth, LoRa, C-V2X, IEE 802.11p (bd)
- 3. application, messages, broadcast, GPS

Different **domain** or **application** needs different *communications protocols*, is important to understand how each nodes in domain communicate each other (inside the car).

1.2 Intra-Vehicles

From the 80's, where the car's control unit are isolated an there was a dedicated wires connect sensors and actuators with less electronic than now, until the reach the greates goal of evolution in the automotive sector: autonomous drive. The complexity of the number of connection from each ECU's to the other, also the number of ECU's for each car, is growing. While the number of signal increase in a liner way, the connection between ECU's is growing with a quadratic complexity $O(n^2)$.

If we examine the evolutions of the ECUs number inside an "Audi A6" we can observe that in 1997 it has 5 ECUs and in the 2007 it has 50 ECUs, instead the "Tesla M3" in the 2017 has 70 ECUs. The quadratic increase of ECUs number, however has reach a cap for two main reason: the cost and the space inside the car. Traditionally one ECUs is responsible of one task, but nowadays it could be two type of trends:

- 1. distributed of function across ECUs
- 2. integration of multiple function in one ECU

1.3 Architectures

Figura 1.1: Domain Architecture

- 1. central domain controller (\mathbf{P}) or high performance computer
- 2. ability to handle more complex functions
- 3. cost optimization
- 4. cable harness is rigid and expensive

Figura 1.2: Zonal Architecture

- 1. local ethernet per zone (G)
- 2. ultra high-speed secured backbone between zone
- 3. centralized software
- 4. central computer storage

1.4 Basic Knowledge

1.4.1 Multiple Access Protocols

In the ISO/OSI stack the first layer is the *data link layer* and it is used, in a computer network, to transmit the data between two or more devices or nodes. The data link layer it is normally split in two different sub-layer:

- 1. data link control: is a reliable channel for transmitting data over a dedicated link using various techniques such as framing, error control and flow control of data packets in the computer network.
- 2. **multiple access protocol**: if the link doesn't connect only two nodes, but multiple nodes can access to the physical link is possible that two or more nodes start to communicate in the same time, and it could be possible to have collision and cross talk between two or more devices. In this case the *multiple access protocol* is required to reduce the collision and avoid cross talk between the channel.

In this course it could be useful to see in dept three type of *Multiple Access Protocols*: the first one is *Carrier Sense Multiple Access - Collision Detection*, next is the *Carrier Sense Multiple Access - Collision Avoidance* and the last one is

the *Time Division Multiple Access*. In the autonomotive domain indeed there is needs to have a bus topology network and it is important to avoid collision.

CSMA/CA - Carrier Sense Multiple Access - Collision Avoidance: the idea is that before transmitting, a node first listens the shared medium to determine if the channel is not used (idle), if not it could start to transmit, but the problem start when two nodes begins to write on the nodes together. The Collision Avoidance part get in the game when two or more device try to write in the channel simultaneously in this case if another nodes is sense the transmitting node wait for a period of time (usually random) before re-start the writing procedure.

CSMA/CD - Carrier Sense Multiple Access - Collision Detection: is use in early Ethernet technology for LAN. It use carrier-sense to detect if the media is idle and it is combined with collision-detection in which a transmission station sense collision by detecting transmissions from other stations while it is transmitting a frame.

- 1. is the frame ready for the transmission? if not, wait for the frame.
- 2. is medium idle? if not, wait until it becomes ready.
- 3. start transmission and monitor for collision during transmission.
- 4. did a collision occur? if yes, go to collision detecting procedure.
 - (a) continue the transmission (with **jam signal**) until minimum packet time is reached to ensure that all receiver detect the collision.
 - (b) increment re-transmission counter.
 - (c) was the maximum number of transmission (time out) attempts reached? if yes, abort transmission.
 - (d) restart from 1.
- 5. reset the transmission counter and complete frame transmission.

TDMA - Time Division Multiple Access: is a channel access method for share-medium networks. It allow several users to share the same frequency channel by dividing the signal into different time slot. The users transmit in rapid succession, one after the other, each using its own time slot. This type of access to the physical medium has higher syncronization overhead tha CSMA.

1.4.2 Bit Coding

The first thing is to introduce the *Electromagnetic Inferference - EMI* that is a disturbance generate by an external source that affects an electrical circuit by *electromagnetic induction*, *electromagnetic couplig* or from conduction. For reduce EMI there are three possible way: add shield to wires, used twisted pair wiring or use coding with few rising/falling signal edges. At this point we can introduce the two main coding techniques: *NRZ - Non Return to Zero* or *Manchester Coding* (original variant).

Figura 1.3: Non Return to Zeros

In the **Non Return to Zero** the digital ones is, usually, the positive voltage, while digital zeros are represented by other significat

condition, like negative voltage.

Figura 1.4: Manchester Coding

In the *Manchester Coding* (original variant) the digital ones is the rising edge of the signal, instead the digital zeros are represented by the falling edge of the signal.

In both case it must be identify the digital zeros or one on the rising edge of the clock, so the syncronization problem between the clock of the transmitting node and the receiving nodes it is foundamentals.

Capitolo 2

Intra-Vehicles

2.1 ISO/OSI Layers

In telecommunication the idea is to divide each steps into layers starting from the application layer to the fisical ones, every layers have different function and it needs different protocols. Each layer can interact with the one that is above or below it and the communication of two layers follow rigid and specifics rules. Nowadays the standard de iure is the ISO/OSI, instead the the de facto standard is the TCP/IP that relax the rigid guidelines. The ISO/OSI has seven layers (bottom to top):

- 1. **physical layer**: specifies the mechanical and electrical properties to transmit bit (in the "real" world) and to control time synchronization.
- 2. data link layer: checked the transmission of the frame, error checking, frame synchronization and flow control.
- 3. **network layer**: it is used for the transmission of the packets, it is also know as *IP Layer*, in is normally use in ethernet.
- 4. **transport layer**: reliable end to end transport segment, you can manage how the data have to flow. In 99.99 % of the car domain it doesn't need.
- 5. **session layer**: establish and tear down sessions.
- 6. **presentation layer**: define the syntax and the semantics of information.
- 7. application layer: uses data transmitted via physical medium.

In the first module we need only two layers: **physical layer** and **data link layer**. We have to study the behaviour of the communication protocols like CANBus, LIN, FlexRay, MOST and Ethernet in this two layers. Starting from the **transmission medium**, normally the hardware pieces that we use to interact with is:

- transceiver: is used to "convert" analog signal to bits (brain less).
- controller: control the communication (brain full).

Initially the idea is to focus a little more on CANBus, the *Physical Layer*: is compose by three component: Physical Signaling - PLS, Physical Medium Attachment - PMA and Media Dependant Interface - MDI.

- 1. **physical signaling**: the main purpose is to understand the bit encoding/decoding (if it is *NRZ* or *Manchester*) and to mantein the synchronization all over the network, every transceiver it must have a the same clock source. The synchronization is the most important things both for the bit encoding/decoding and for don't introduce delay in the communication.
- 2. **physical medium attachment**: driver/receiver characteristics based on the communication protocol.
- 3. **media dependant interface**: the connector for access to the physical medium.

Data Link Layer is compose by two component: Logical Link Control - LLC and Medium Access Control - MAC.

- 1. logical link control: from now on, we start to call frame the data that are send/receiver from the physical channel. It is used for acceptance filtering that permit to decide if a frame is important for the application above the controller and if not discard it. This component include also the overload notification and recovery management in the case there is an error on the communication they could ask to a re-transmit the data.
- medium access control: is purpose is error detection it could check the data encapsulation/decapsulation, frame coding and error detection/signaling/handling.

2.2 Network Topology - The Bus System

Figura 2.1: Line Topology Figura 2.2: Star Topology Figura 2.3: Ring Topology

In the **Line** topology also In the **Star** topology know like Bus topology each node is connected connected to a central by interface connectors to node called hub or switch. data to another, the data a single center cable. It is It has an higher cost and passes through each cheaper than the others and it has lower complexity but it is not very robust.

complexity than the bus topology, but it is much more robust (if the hubgoes down it is a *single* point of failure).

The **Ring** topology is a every peripheral nodes is daisy chain in a closed loop. When a node sends intermediate node on the ring until reach its destination (it use only one direction). It is not too munch expensive, but has higher complexity (if you want add a new node it could be troublesome).

In the autonomotive domain it is chosen the **Bus Topology**, why? The first thing is that in the automotive industry it is mandatory to maintain lower the cost. The busses are very cheap for the materials, the weight and the volume. In the bus topology it is possible to have higher modularity, you can plug & play a node "when you want", in that way it is possible to have fully customizability inside the vehicles. The last things is that there is shorter development cycles. In the autonomotive field there is three main component:

1. **transceiver**: it is the physical layer definition and implement the first layer of the ISO/OSI stack.

- 2. **communication controller**: it is the communication protocol and implement the first and the second layers of the *ISO/OSI* stack.
- 3. **ECU**: also know like **electronic controller unit** and implement the last layer of the *ISO/OSI* stack, the **application** layer.

The idea is to made possible to abstract the application layer in order to, if you want, change the first two layers, for example from CANBus to FlexRay, but nothing change at the application layer.

2.3 Controller Area Network

The Controller Area Network also know as CAN is a vehicle bus standard to enable efficient communication. It is originally developed to reduce complexity and cost of electrical wiring. CANBus use an electrical medium over wires and a broadcast data transmission. CANBus use the CSMA/CR like multiple access protocol, it means carrier sense multiple access collision resolution protocol, that permit to CANBus to have arbitration on the channel access. In this way there is random access to the physical channel, but it is impossible that there is some collision on the communications.

Figura 2.4: CANBus Network Topology

The **CANBus** network is compose by two wires: **CAN High** and **CAN Low**. The data is transmit over the wire using the *potential difference* on each transceiver. Two twisted wires are use because it gives to the protocol **noise resistance** and **increase resiliency**, if one brakes, CAN Low *survives*. At the end of the wire in the bus topology there are place two impedance R_T of 120 Ω . Each CANBus node has three element:

- CAN Transceiver: is directly connected to the medium access by two pin (one on CANH and the other on CANL). It has the goal to translate the voltage level into bits (during the reception) and send it to the CAN Controller and translate bit into voltage level (during the transmission).
- CAN Controller: is connect to the *CAN Transceiver* by two pin (CANTX and CANRX) and is scope is to: message completion, control bus access, transmission and reception of the message, bit timing.
- Microcontroller: application software communicating with other ECUs via messages over the bus.