

CloudNativeCon

North America 2019

— North America 2019

Alcor

Hyperscale Cloud Network Management

Futurewei Technologies

Introduction

North America 2019

➤ Alcor is a cloud native SDN platform powered by Kubernetes/Istio

Р

Performance

- Throughputoptimal design to allow batched provisioning of network resources
- Fast provisioning path to support time-critical applications such as serviceless

Α

Availability

- Always-on control plane without a single point of failure
- Cross-AZ resilience for services and data
- Fault-tolerant design with multiple resource provisioning paths

S

Scalability

- Large-scale network resource management
- Scale to half a million hosts and tens of millions network ports

Е

Extensibility

- Unified resource management of both VMs and containers
- Plugable model to support various implementations of data plane

Architecture Highlight

North America 2019

Management Plane ►

REST APIs

Unified Network Modeling

End User Monitoring

Authentication & Authorization

Control Plane

Cloud-native Controller

Scalable Network Management Services

Cross-AZ Resilience

Throughput-optimal Design

Messaging

Multiple Resource Provisioning Path

gRPC-based Fast Path

Architecture Overview

North America 2019

Cloud-Native Control Plane

North America 2019

Cloud-native application powered by Kubernetes

- Each controller instance is a Kubernetes app
- Each app contains multiple services

Micro-Services Architecture

- Secure, connect, and monitor control plane micro-services with Istio
- Fine-grained control of service-toservice communication including load balancing, retries, failovers, and rate limits.

User Scenario: Large-Scale VPC Provisioning

— North America 2019

Throughput-Optimal Design

North America 2019

Focus on throughout optimization on every system layer

API

- Group of ports deployment with one POST call
- Unified network resource management for both VMs and containers

Controller

- Implicit batching for database write and network programming
- Per-host network configuration batching

Messaging

- Drive groups of resources to the same host in one shot
- Support various combinations of resource updates
 - Multiple resource instances
 - Multiple resource types
 - Across
 VPC/subnet
 boundaries

Host Agent

- Parallel network setup on the host and port programming to data plane
- Achieve 1000+ port RPM on the host with Mizar data plane

Message Load in Control Plane

Batch vs Serial comm.

90% to 99% cut on message count when compared with serial communication

on average 50% cut on message load

Number of messages from controllers to agents

E2E Provisioning Latency

North America 2019

Batch vs. Serial Provisioning

- 88% to 95% latency reduction for large deployments
- Complete 1000 ports programming within 95 seconds

Batch Provisioning Process

- Created with a single API call
- Distributed to hosts in a batched and parallel manner

Provisioning Latency Improvement (single-tenant)

Agent Programming Latency

North America 2019

Batch vs. Serial Host Programming

78% programming latency reduction on the hostsScale to 500 ports per host within 33 seconds

Parallel Host Programming Process

 Multiple threading for network configuration
 Program data plane in a single-threaded mode or multi-threaded mode

Port Programming Latency at Host

Fast Port Provisioning

<u>Use Scenarios: Time-critical</u> <u>application</u>

- Direct communication channel from controller to agent
- Alternative provisioning path for control plane reliability

Thank you!

Contact

Liguang Xie (lxie@futurewei.com), Ying Xiong (yxiong@futurewei.com))
Seattle Cloud Lab

Futurewei Technologies