<u>REMARKS</u>

The applicants have added 6 claims and cancelled 6 claims. The applicants authorize the PTO to charge to Deposit Account No. 03-2775 for the fee for the extra independent claim over three. If there are any additional fees due in connection with the filing of this amendment, the applicants authorize the PTO to charge to Deposit Account No. 03-2775. A prompt and favorable action is solicited.

Respectfully submitted,

CONNOLLY BOVE LODGE & HUTZ LLP

Bv

Ashley I/Pezzner Reg. No. 35,646

Tel. (302) 888-6270

219715

13/contr

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS: ELLEN M. DOBRUSIN, ET AL.

EXAMINER: T. TRUONG

SERIAL NO. 09/623,737

ART UNIT: 1624

FILED: SEPTEMBER 7, 2000

PAPER NO.

FOR: BICYCLIC PYRIMIDINES AND

BICYCLIC 3,4-DIHYDROPYRIMIDINES

AS INHIBITORS OF CELLULAR

PROLIFERATION

Commissioner for Patents Washington, D.C. 20231

AMENDMENT

Dear Sir:

Please amend the above-identified application as follows:

In the Claims:

Please amend claims 54, 56 and 60 as follows:

54. (Amended) A compound of Formula I

or a pharmaceutically acceptable salt thereof,

wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀

cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,

$$OR^{5}$$
 \mid
 $T(CH_{2})_{m}QR^{4}$, $T(CH_{2})_{m}C$ - $(CH_{2})_{m}QR^{4}$,

 $C(O)T(CH_2)_mQR^4$, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, [or] and T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N⁺(O)R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N⁺(O)R⁵ or N⁺R⁵R⁶Y⁻;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

$$T(CH_2)_mQR^4$$
, or OR^5
 $|$
 $T(CH_2)_mC$ - $(CH_2)_mQR^4$,

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_n$ Ar, C_3 - C_{10} cycloalkyl, heterocyclyl, and

heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH,

 $\begin{array}{l} {\rm OR^4,\,NR^4R^5,\,(CH_2)_mOR^4,\,(CH_2)_mNR^4R^5,\,T\text{-}(CH_2)_mQR_4,} \\ {\rm CO\text{-}T\text{-}(CH_2)_mQR^4,\,NH(CO)T(CH_2)_mQR^4,\,T\text{-}(CH_2)_mCO_2R^4,\,[or]\,\,\underline{and}} \\ {\rm T(CH_2)_mCONR^4R^5;} \end{array}$

R⁶ is alkyl;

 R^8 and R^9 independently are H, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CN or nitro;

when the dotted line is absent, R^9 can additionally be = NOH,

= NOalkyl, =NOalkenyl, =NOalkynyl or =NOcycloalkyl; and

Y is a halo counter-ion;

with the proviso that: (a) when R^8 and R^9 are both hydrogen, W is NH, R^1 is hydrogen and X is NR^{10} , then R^{10} is neither unsubstituted (C_1 - C_{10}) alkyl, unsubstituted [(C_1 - C_{10})] (C_2 - C_{10}) alkynyl;

- (b) when R⁸ or R⁹ is NR⁴R⁵, N⁺(O)R⁴R⁵, or N⁺R⁴R⁵R⁶ Y⁻, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more R⁴, R⁵ and R⁶ are attached, heterocyclic or heteroaryl; and
- (c) when R^8 or R^9 is COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 or PO_3R^4 , then one or more of R^4 , R^5 and R^6 must be, independent of the nitrogen to which said one or more R^4 , R^5 and R^6 are attached, $(CH_2)_n$ aryl wherein n is zero, 1, 2 or 3, heterocyclic or heteroaryl;
- (d) when X is S and W is NH, then at least one of [R1, R2, R3, R8 and R9] R^1 , R^2 , R^3 , R^8 and R^9 is other than H or C_1 - C_3 alkyl.
- 56. (Amended) A compound of Claim 55 having the formula

$$R^{1} - N \qquad N \qquad N \qquad 0$$

$$R^{2}$$

[wherein:

 R^1 and R^2 independently are hydrogen, C_1 - C_{10} alkyl, $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, C_3 - C_{10} cycloalkyl, or $(CH_2)_n$ heterocyclyl, wherein n is 0, 1, 2 or 3, and the $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl and $(CH_2)_n$ heterocyclyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy, $T(CH_2)_mQR^4$,

 $C(O)T(CH_2)_mQR^4$,

NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, or T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N⁺(O)R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N⁺(O)R⁵, or N⁺R⁵R⁶Y⁻;

R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

$$\begin{array}{c} \text{OR}^5 \\ \mid \\ \text{T(CH}_2)_m \text{QR}^4, \, \text{T(CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ \mid \\ \text{H} \end{array}$$

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)₁ or 2, $(CH_2)_n$ Ar, C_3 - C_{10} cycloalkyl, heterocyclyl, and

heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, T- $(CH_2)_mQR_4$, CO-T- $(CH_2)_mQR^4$, $NH(CO)T(CH_2)_mQR^4$, T- $(CH_2)_mCO_2R^4$, or $T(CH_2)_mCONR^4R^5$; R^6 is alkyl; and

Y is a halo counter-ion].

58. (Amended) A pharmaceutical formulation comprising a compound of [compound of] Formula I

or a pharmaceutically acceptable salt thereof, wherein:

the dotted line represents an optional double bond; W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

 R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_nAr$, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heterocyclyl, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, and C_2 - C_{10} alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_nAr$, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

heteroaryloxy, $T(CH_2)_mQR^4$,

OR⁵

$$T(CH_2)_mC-(CH_2)_mQR^4$$
,

 $C(O)T(CH_2)_mQR^4$, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, [or] <u>and</u> $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR⁴, N+(O)R⁴, N+R⁴R⁶Y-, or CR⁴R⁵, and Q is O, S, NR⁵, N+(O)R⁵ or N+R⁵R⁶Y-;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent; otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

$$OR^{5}$$

$$|$$

$$T(CH_{2})_{m}QR^{4}, \underline{or} T(CH_{2})_{m}C-(CH_{2})_{m}QR^{4},$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)₁ or 2, $(CH_2)_n$ Ar, C_3 - C_{10} cycloalkyl, heterocyclyl, and

heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, T- $(CH_2)_mQR_4$,

CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, [or] and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

 R^8 and R^9 independently are H, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CN or nitro;

when the dotted line is absent, R^9 can additionally be = NOH,

= NOalkyl, =NOalkenyl, =NOalkynyl or =NOcycloalkyl; and

Y is a halo counter-ion;

with the proviso that: (a) when R^8 and R^9 are both hydrogen, W is NH, R^1 is hydrogen and X is NR^{10} , then R^{10} is neither unsubstituted (C_1 - C_{10}) alkyl, unsubstituted [(C_1 - C_{10})] (C_2 - C_{10}) alkenyl nor unsubstituted [(C_1 - C_{10})] (C_2 - C_{10}) alkynyl; and

- (b) when R⁸ or R⁹ is NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴ or PO₃R⁴, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more of R⁴, R⁵ and R⁶ is attached, (CH₂)_naryl wherein n is zero, 1, 2, or 3, heterocyclic or heteroaryl;
- (c) when X is S and W is NH, then at least one of [R1, R2, R3, R8 and R9] \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^8 and \mathbb{R}^9 is other than H or \mathbb{C}_1 - \mathbb{C}_3 alkyl;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

The terms bracketed are canceled from the claims and the terms underlined are added to the claims. See Appendix 1 for a clean copy of the claims.

REMARKS

The applicants have corrected clerical errors with respect to claims 54, 56 and 58. If there are any additional fees due in connection with the filing of this amendment, the applicants authorize the PTO to charge to Deposit Account No. 03-2775.

A prompt and favorable action is solicited.

Respectfully submitted,

CONNOLLY BOVE LODGE & HUTZ LLP

Reg. No. 35,646 Tel. (302) 888-6270

225824