	Student Name Student Roll Number	C SASI VARMA 2116190701194	
In [1]:	Download the Dataset import numpy as np import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import os		
In [2]:	batch_size = 16		
In [3]:	<pre>Image Augmentation data_aug = Sequential(</pre>		
In [5]:	os.listdir("C:\\Users\\Harini\\Flowers-Dataset")		
In [6]:	<pre>['flowers'] train_data = tf.keras.utils.image_dataset_from_directory("C:\Vasera\Warrini\\Plowers-Dataset", validation_split=0.25, subset="training", seed=120, image_siree(180, 180), batch_sire=batch_sire) Found 4317 files belonging to 1 classes. Using 3238 files for training.</pre>		
In [7]:	<pre>val_data_set = tf.keras.utils.image_dataset_from_directory("C:\\Users\\Harini\\Flowers-Dataset", validation_splite0.25, subsets".validation", seed=120, image_size=(180, 180), batch_size=batch_size) Found 4377 files belonging to 1 classes.</pre>		
In [8]:	Using 1079 files for validation. class_names = train_data.class_names		
In [9]:	plt.figure(figsize=(15, 15)) for images, labels in train_data.take(1): for i in range(6): ax = plt.subplot(3, 3, i + 1) plt.sublot(3, 3, i + 1) plt.title(class_names[labels[i]]) flowers flowers flowers flowers flowers flowers flowers flowers flowers		
	80 100 120 120 120 120 120 120 160 160 150 160 150 160 150 160 160 160 160 160 160 160 160 160 16		
In [10]:	80 100 100 120 120 120 120 140 160 150 0 50 100 150 0 50 100 150 100 150 100 150		
	<pre>dataset_normalized = train_data.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(dataset_normalized)) first_image = image_batch[0] print(np.min(first_image), np.max(first_image)) 0.0 1.0</pre>		
	Create Model Add Layers (Convolution,MaxPooling,Flatten,Dense-(Hidden Layers),Output)		
In [12]:	<pre>num_classes = len(class_names) model = Sequential([data_aug,</pre>		
	Compile The Model		
In [13]:	model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),		
	metrics=['accuracy'])		
In [14]:	Fit The Model		
	history = model.fit(train_data,validation_data=val_data_set,epochs=epochs) Epoch 1/15 203/203 [====================================	10s+00 = usl accuracy 1 0000	
	Epoch 2/15 203/203 [] - 28s 140ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.000 Epoch 3/15	00e+00 - val_accuracy: 1.0000	
	203/203 [====================================	10e+00 - val_accuracy: 1.0000	
	203/203 [====================================	00e+00 - val_accuracy: 1.0000	
	203/203 [====================================	10e+00 - val_accuracy: 1.0000	
	203/203 [====================================	00e+00 - val_accuracy: 1.0000	
	Epoch 12/15 203/203 [====================================	00e+00 - val_accuracy: 1.0000	
	Epoch 14/15 203/203 [] - 29s 143ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.000 Epoch 15/15 203/203 [] - 29s 141ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.000	00e+00 - val_accuracy: 1.0000	
	plt.figure(figsize=(8, 8)) plt.plot(epochm_range, history.history['accuracy'], label="Training Accuracy') plt.plot(epochm_range, history.history['val_accuracy'], label="Validation Accuracy') plt.legend() plt.title('Training and Validation Accuracy') plt.show() Training and Validation Accuracy		
	— Taining Accuracy — Validation Accuracy		
	102 -		
	100 -		
	0.98 -		
	0.96 -		
In [16]:	pht.plot(epochs_range, history.history['loss'], label='Training Loss') plt.plot(epochs_range, history.history['val_loss'], label='Validation Loss') plt.legend()		
	plt.title('Training and Validation Loss') plt.ahow() Training and Validation Loss — Taining Loss		
	Validation Loss		
	0.02 -		
	0.00 -		
	-0.02 - -0.04 -		
	Save The Model		
In [17]: In [18]:	model.save("./flowers.h5")		
	model.load_weights('./flowers.h5') Test The Model		

In [19]: from tensorflow.keras.preprocessing import image import numpy as np

In [20]: img=image.load_img('C:\Users\Sai\\Flowers-Dataset\\flowers\\rose\\5172171681_5934378f08.jpg',target_size=(70,70)) img

Out[20]:

In []: