Informatik S C H U L E Hauptcampus T R I E R

Systemadministration Teil 3b

Prof. Dr.-Ing. Jörn Schneider

WIEDERHOLUNG

Prozess

- Instanz eines Programmes mit eigenem Ausführungskontext
- Zum Ausführungskontext gehören Ressourcen wie:
 - Befehlszähler
 - Inhalt von Statusregistern
 - Stack
 - Sonstige Daten im Hauptspeicher
 - Informationen über offene Dateien, etc.

Beispiel für Ablauf im Rechner (Single Core mit Round-Robin Scheduling)

Speichersegmente

Informatik
Hauptcampus

Processes have three segments: text, data, stack

T R I E R

Paging

The relation between virtual addresses and physical memory addresses given by page table

ENDE WIEDERHOLUNG

FILES

Verzeichnisstruktur

File system for a university department

File System Implementation

A possible file system layout

Festplattenpartitionen

- Pro Partition ein Filesystem
 - Beispiel:
 - Partition 0: Windows File System, Typ FAT32, "C:"
 - Partition 1: Windows File System, Typ NTFS, "D:"
 - Partition 2: Linux File System, Typ ext3, "/"
- Boot erfolgt von aktiver Partition

Implementing Files (1)

- (a) Contiguous allocation of disk space for 7 files
- (b) State of the disk after files D and F have been removed

Implementing Files (2)

Implementing Files (1)

- (a) Contiguous allocation of disk space for 7 files
- (b) State of the disk after files D and F have been removed

Implementing Files (2)

The UNIX V7 File System (1)

A UNIX V7 directory entry

The UNIX V7 File System (2)

The steps in looking up /usr/ast/mbox

PROTECTION

Beispiel UNIX (I)

- Prozesse können auf Speicherbereiche anderer Prozesse nur zugreifen, wenn dies explizit erlaubt ist
 - Beispiel: Kommunikation über Shared Memory
- Benutzer haben eindeutige Nummer: UID (User ID)
 - 0 = root
- Benutzer gehören zu mindestens einer Gruppe
- Gruppen haben eindeutige Nummer: GID (Group ID)
- Prozess erbt UID und GID des startenden Users

Beispiel UNIX (II)

- Dateien haben einen Besitzer, eine Gruppe und Rechte für:
 - User (=Besitzer)
 - Group (=Gruppe)
 - Others (=Alle anderen)
- Für jede dieser drei Kategorien (U = User, G = Group, O = Other) gibt es drei Basisrechte:
 - r = read
 - w = write
 - x = execute
- Beispiel: **rwxr-x--x**
 - Besitzer: lesen, schreiben und ausführen
 - Gruppe: lesen und ausführen
 - Rest: ausführen

Beispiel UNIX (II)

- Dateien haben einen Besitzer, eine Gruppe und Rechte für:
 - User (=Besitzer)
 - Group (=Gruppe)
 - Others (=Alle anderen)
- Für jede dieser drei Kategorien (U = User, G = Group, O = Other) gibt es drei Basisrechte:
 - r = read
 - w = write
 - x = execute
- Beispiel: rwxr-x--x
 - Besitzer: lesen, schreiben und ausführen
 - Gruppe: lesen und ausführen
 - Rest: ausführen

Tipp:

Gebe "Is –I" in Home-Verzeichnis an und prüfe welche Rechte welcher Benutzer auf den Files und Verzeichnissen hat.