XMAC02 Métodos Matemáticos para Análise de Dados

Regressão Linear

Sempre que traçamos uma linha de regressão linear,
 haverá um valor residual em cada x

 $lue{}$ Trata-se da diferença vertical entre o valor real de y e o

valor \hat{y} (previsão)

□ A equação da linha é dada por : $\hat{y} = mx + b$

- $lue{m}$ é a inclinação da linha
- □ b é o ponto de interceptação no eixo y

Regressão Linear

□ Ao invés de $\hat{y} = mx + b$, podemos escrever a equação da linha da seguinte forma:

$$y = \beta_0 + \beta_1 x + e$$

- lacksquare eta_0 é o ponto de interceptação no eixo y
- lacksquare eta_1 é a inclinação da reta
- $lackbox{0}{\hspace{-0.1cm}} e$ (erro) representa um desvio aleatório de um valor observado (real) de y e a linha de regressão da população $y=eta_0+eta_1 x$
- $lue{}$ Suposições a respeito de e :
 - é normalmente distribuído
 - lacktriangle seu desvio padrão σ não depende de x

Regressão Linear

 Para cada valor de x, o valor de e é normalmente distribuído

- \square A média de e é 0
- e tem o mesmo desvio padrão ao longo de toda reta
- $\sigma = desvio padrão de y$

□ A variável y pode ser linearmente dependente de múltiplas variáveis independentes $x_1, x_2, ... x_k$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + e$$

- $\ \square\ \beta_i$ s são chamados coeficientes de regressão populacional
- Na fórmula acima, cada variável independente x_i representa uma lista de n valores aleatórios

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + e$$

- Para obter os valores dos coeficientes de regressão de uma população é necessário resolver um sistema normal de equações lineares
- Exemplo: considerando k = 2 e n =número de triplas x_1, x_2, y temos:

$$n\beta_{0} + \beta_{1} \sum x_{1} + \beta_{2} \sum x_{2} = \sum y$$

$$\beta_{0} \sum x_{1} + \beta_{1} \sum x_{1}^{2} + \beta_{2} \sum x_{1}x_{2} = \sum x_{1}y$$

$$\beta_{0} \sum x_{2} + \beta_{1} \sum x_{1}x_{2} + \beta_{2} \sum x_{2}^{2} = \sum x_{2}y$$

Exemplo: Preços de casas

Número de quartos x_1	Número de banheiros x ₂	\$ Preço y
3	2	48,800
2	1	44,300
4	3	53,800
2	1	44,200
3	2	49,700
2	2	44,900
5	3	58,400
4	2	52,900

$$n = 8$$

$$\sum x_1 = 25$$

$$\sum x_2 = 16$$

$$\sum y = 397,000$$

$$\sum x_1 y = 1,281,100$$

$$\sum x_2 y = 817,700$$

$$\sum x_1^2 = 87$$

$$\sum x_2^2 = 55$$

Exemplo: Preços de casas

$$n = 8$$

$$\sum x_1 = 25$$

$$\sum x_2 = 16$$

$$\sum y = 397,000$$

$$\sum x_1 y = 1,281,100$$

$$\sum x_2 y = 817,700$$

$$\sum x_1^2 = 87$$

$$\sum x_2^2 = 55$$

$$n\beta_0 + \beta_1 \sum x_1 + \beta_2 \sum x_2 = \sum y$$

$$\beta_0 \sum x_1 + \beta_1 \sum x_1^2 + \beta_2 \sum x_1 x_2 = \sum x_1 y$$

$$\beta_0 \sum x_2 + \beta_1 \sum x_1 x_2 + \beta_2 \sum x_2^2 = \sum x_2 y$$

$$8\beta_0 + 25\beta_1 + 16\beta_2 = 397,000$$

 $25\beta_0 + 87\beta_1 + 55\beta_2 = 1,281,100$
 $16\beta_0 + 55\beta_1 + 36\beta_2 = 817,700$

Solução:

$$\beta_0 = 35,191.67$$
 $\beta_1 = 4,133.33$
 $\beta_2 = 758.33$

Exemplo: Preços de casas

 $\beta_0 = 35,191.67$ $\beta_1 = 4,133.33$ $\beta_2 = 758.33$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

= 35,191.67 + 4,133.33 x_1 + 758.33 x_2

 \hat{y} pois o erro e foi desconsiderado

- Calcular valores estimados de casas:
 - $\mathbf{x}_1 = 2$ quartos e $x_2 = 1$ banheiros

$$35,191.67 + 4,133.33(2) + 758.33(1) = $44,216.67$$

 $\mathbf{x}_1 = 5$ quartos e $x_2 = 3$ banheiros

$$35,191.67 + 4,133.33(5) + 758.33(3) = $58,133.33$$

10

Créditos

 Este conteúdo é uma tradução do original em inglês produzido pelo Prof. Ronald Mak (SJSU).