3 - Constructions

EE1030:Matrix Theory

Gajjarapu Satyanarayana AI24BTECH11009

Question:3.2.21

Construct and give justification:

A right triangle when one side is 3.5 cm and sum other side and the hypotenuse is 5.5 cm.

Solution:

Actual Name	Assigned Variable	Given values
AB	c	-
BC	а	3.5 cm
CA + AB	k	5.5 cm
∠ABC	$\angle B$	90°

Table 3.2.21.1 0: Variables and its values

Consider the right angle at **B**, so that $\angle B = 90^{\circ}$, $\cos(\angle B) = 0$, $\sin(\angle B) = 1$ In $\triangle ABC$, if **B** is considered as origin then the coordinates are represented by

$$\mathbf{A} = c \begin{pmatrix} \cos(\angle B) \\ \sin(\angle B) \end{pmatrix} \tag{0.1}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ c \end{pmatrix} \tag{0.2}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.3}$$

$$\mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{0.4}$$

Using the formula to find c,

$$c = \frac{k^2 - a^2}{2(k - a\cos(\angle B))}$$
(0.5)

$$c = \frac{\frac{121}{4} - \frac{49}{4}}{2\left(\frac{11}{2} - 0\right)} \tag{0.6}$$

$$c = \frac{18}{11} \tag{0.7}$$

1

Therefore,

$$\mathbf{A} = \begin{pmatrix} 0 \\ \frac{18}{11} \end{pmatrix} \tag{0.8}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.9}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ \frac{18}{11} \end{pmatrix}$$
 (0.8)
$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (0.9)
$$\mathbf{C} = \begin{pmatrix} \frac{7}{2} \\ 0 \end{pmatrix}$$
 (0.10)

Fig. 0.1: Triangle ABC