5 de fevereiro de 2020

Duração 2 horas. Prova com consulta de formulário, em folha A4, e uso de dispositivo de cálculo, apenas para fazer contas e não para consultar apontamentos, exames anteriores ou formulários. O dispositivo não pode estar ligado à rede e só pode executar um programa de cada vez.

Li e compreendi o texto acima:

1. (4 valores) A fonte no circuito representado no diagrama tem voltagem máxima 9 V e frequência angular $\omega=125$ kHz. Determine a voltagem máxima no condensador de 2 nF.

2. (4 valores) Um protão (massa 1.67×10^{-27} kg) passa pela origem, em t = 0, com velocidade $(3 \hat{\imath} + 2 \hat{\jmath})$ Mm/s, dentro de uma região onde há vácuo e campo elétrico uniforme, $\vec{E} = E \hat{\jmath}$. Determine o valor que deverá ter E para que o protão atravesse o eixo dos x em x = 85 cm. (O peso do protão pode ser desprezado neste caso).

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- **3.** Três cargas pontuais estão fixas no eixo do x, a primeira carga, de 32 nC, encontra-se em x = 0, a segunda, de 8 nC está em x = 6 m, e a terceira carga, com valor desconhecido q, está em x = 3. Determine o valor de q, sabendo que o campo elétrico em x = 8 m tem módulo 15.3 N/C, e aponta no sentido positivo do eixo dos x.
 - (A) -10 nC
- (C) 25 nC
- (E) 5 nC

- (**B**) 15 nC
- (**D**) -20 nC

Resposta:

4. Calcule a impedância equivalente entre os pontos 1 e 2.

- (A) $\frac{RLCs^2 + Ls}{LCs^2 + RCs + 1}$
- $(\mathbf{D}) \ \frac{RLCs^2 + Ls + R}{LCs^2 + RCs}$
- $(\mathbf{B}) \ \frac{RLC\,s^2 + L\,s + R\,C\,s + L\,s}{R\,C\,s + 1}$
- (E) $\frac{RLCs^2 + Ls + I}{LCs^2 + 1}$
- (C) $\frac{RLCs^2 + R}{LCs^2 + RCs + 1}$

Resposta:

- 5. Numa região onde há vácuo e campo magnético uniforme, os eletrões (massa 9.109×10^{-31} kg) com velocidade perpendicular ao campo descrevem movimento circular uniforme com período 5.2 ns. Determine o módulo do campo magnético (o peso pode ser desprezado).
 - (A) 344 G
- (C) 34 G
- (**E**) 618 G

- **(B)** 69 G
- **(D)** 52 G

Resposta:

6. Selecione a afirmação correta. A energia potencial elétrica de uma partícula com carga positiva:

- (A) É sempre menor que a energia de uma partícula com carga negativa no mesmo ponto.
- (B) É maior nos pontos onde o potencial é menor.
- (C) É sempre positiva.
- (**D**) É sempre maior que a energia de uma partícula com carga negativa no mesmo ponto.
- (E) É maior nos pontos onde o potencial é maior.

Resposta:

- 7. A resistência de uma bobina é $50\,\Omega$ e a sua indutância $34\,\text{mH}$ (consideram-se em série). Determine o desfasamento (em radianos) entre a voltagem e a corrente na bobina, quando for ligada a uma fonte de tensão alternada com frequência de $60\,\text{Hz}$.
 - (**A**) 0.251
- (**C**) 0.301
- **(E)** 0.376

- **(B)** 0.427
- **(D)** 0.125

Resposta:

8. Num determinado instante, as correntes no circuito do diagrama são $I_1=349~\mu A$ e $I_2=315~\mu A$. Determine o valor da carga no condensador de $0.3~\mu F$ nesse mesmo instante.

- (**A**) 19.2 nC
- (C) 230.4 nC
- (E) 518.4 nC

- (**B**) 57.6 nC
- (**D**) 288.0 nC

Resposta:

- 9. Existe carga elétrica distribuída uniformemente no interior 13. A carga positiva num dipolo elétrico é 4.8×10^{-19} C e encontrado paralelepípedo definido por $0 \le x \le 4$, $0 \le y \le 3$ e $0 \le z \le 5$ (em metros). O fluxo elétrico produzido pelo paralelepípedo, através da esfera com centro na origem e raio igual a 9 m, é igual a 5193 N/(C·m²). Determine a carga volúmica dentro do paralelepípedo, em unidades de nC/m³.
 - (A) 0.2126
- (C) 0.574
- (E) 1.7006

- **(B)** 0.3673
- (**D**) 0.7653

Resposta:

10. No circuito do diagrama, sabendo que a carga armazenada no condensador de 3 nF é igual a 15 nC, calcule o valor da f.e.m.

- (A) 4 V
- (C) 7 V
- (E) 5 V

- **(B)** 15 V
- (**D**) 12 V

Resposta:

11. Determine a carga acumulada no condensador, após um tempo suficientemente elevado para que o indutor e o condensador estejam em estado estacionário.

- (A) $3.22 \,\mu\text{C}$
- (C) 1.32 μC
- **(E)** $4.38 \, \mu C$

- **(B)** $2.27 \,\mu\text{C}$
- (**D**) 8.36 μC

Resposta:

- 12. Três fios retilíneos e muito compridos, paralelos ao eixo dos z, transportam correntes de 1 A, 2 A e 3 A, todas no sentido positivo do eixo dos z. O fio com 1 A passa pelo ponto (2, 1) no plano xy (todas as distâncias em cm), o fio com 2 A passa pelo ponto (4, 2) e o fio com 3 A passa pelo ponto (2, 4). Calcule o integral de linha do campo magnético no triângulo, no plano xy, com vértices nos pontos (x, y) = (1, 0), (3, 1) e (1, 3).
 - (A) 0.8π (G·cm)
- (C) 1.2π (G·cm)
- (E) 1.6π (G·cm)

- **(B)** $0.4 \pi (G \cdot cm)$
- **(D)** 2.0π (G·cm)

Resposta:

- se a uma distância de 6.4×10^{-10} m da carga negativa. Determine o valor do potencial elétrico num ponto que se encontra a 9.2×10^{-10} m de cada uma das cargas.
 - (A) 9.4 V
- (C) $5.1 \times 10^9 \text{ V}$
- (E) zero

- **(B)** 1.7 V
- **(D)** 4.2 V

Resposta:

14. A expressão da voltagem da fonte no circuito do diagrama é $V(t) = e^{-t}$ (unidades SI e $t \ge 0$) e a expressão da corrente é $I(t) = \frac{e^{-t} - e^{-3t}}{8}$. Sabendo que o valor da resistência é $R = 12 \Omega$, encontre o valor da indutância L.

- (A) 2 H
- (C) 1 H
- **(E)** 4 H

- (**B**) 5 H
- (**D**) 3 H

Resposta:

- 15. Liga-se um condutor com resistência de 750 Ω a uma pilha com fem de 8.5 V. Sabendo que a resistência interna da pilha é de 148 Ω , calcule a corrente no condutor.
 - (A) 11.3 mA
- (C) 80.1 mA
- (E) 20.8 mA

- (**B**) 9.5 mA
- (**D**) 68.8 mA

Resposta:

- **16.** A expressão do campo elétrico numa região do espaço é \vec{E} = 6 x^2 î (unidades SI). Calcule a diferença de potencial V(2) - V(1)entre os pontos x = 2 m e x = 1 m, sobre o eixo dos x.
 - (A) -12 V
- (C) -18 V
- (E) -6 V

- **(B)** -14 V
- (**D**) -24 V

Resposta:

17. Dois eletrões encontram-se em dois dos vértices de um triângulo equilátero, tal como mostra a figura. Qual dos 5 vetores representa melhor o campo elétrico no terceiro vértice?

- (A) 4
- (C) 5
- **(E)** 3

- **(B)** 2
- **(D)** 1

Resposta:

Resolução do exame de 5 de fevereiro de 2020

Regente: Jaime Villate

Problema 1. As impedâncias complexas dos dois condensadores são, em Ω ,

$$Z_1 = \frac{-i}{125 \times 10^3 \times 8 \times 10^{-9}} = -i1000$$
 $Z_2 = \frac{-i}{125 \times 10^3 \times 2 \times 10^{-9}} = -i4000$

Como tal, com as impedâncias em $k\Omega$ e as voltagens em V, o circuito é o seguinte:

Para determinar o fasor V, usam-se circuitos equivalentes mais simples, da forma seguinte:

Onde a impedância em paralelo e a impedância total são:

$$Z_{\rm p} = \frac{4 - \mathrm{i}\,4}{5 - \mathrm{i}\,4}$$

$$Z_{\rm t} = -i + \frac{4 - i4}{5 - i4} = \frac{9}{4 + i5}$$

O fasor da corrente total é (em mA),

$$I_t = \frac{9}{\frac{9}{4+i5}} = 4+i5$$

O fasor da voltagem na impedância Z_p é:

$$\boldsymbol{V}_p = \left(\frac{4-i\,4}{5-i\,4}\right)(4+i\,5) = 4+i\,4$$

E os fasores da corrente e da voltagem no condensador de 2 nF são:

$$I = \frac{4+i4}{4-i4} = i$$
 $V = -i4 \times i = 4$

Ou seja, a voltagem máxima nesse condensador é igual a 4 V.

Problema 2. A força elétrica sobre o protão e a sua aceleração, ambas constantes, são:

$$\vec{F} = e E \hat{j} \qquad \qquad \vec{a} = \frac{e E}{m} \hat{j}$$

As duas componentes da equação de movimento são (unidades SI):

$$\frac{\mathrm{d}v_x}{\mathrm{d}t} = 0 \qquad \qquad \frac{\mathrm{d}v_y}{\mathrm{d}t} = 9.593 \times 10^7 E$$

A primeira equação implica que v_x permanece constante, ou seja, igual à componente x da velocidade inicial: $v_x = 3$ Mm/s. Como a projeção y do movimento é com aceleração constante, a trajetória será uma parábola no plano xy.

O tempo que o protão demora até atravessar o eixo dos x, em x = 85 cm é:

$$\Delta t = \frac{0.85}{3 \times 10^6} = 2.833 \times 10^{-7} \text{ s}$$

Observe-se que o potencial elétrico tem o mesmo valor em todo o eixo dos x; como tal, quando o protão atravesse o eixo dos x, terá a mesma energia mecânica e potencial elétrica do instante inicial. A energia cinética nesse instante será igual à energia cinética inicial, o qual implica que o protão atravessará o eixo dos x com $v_y = -2$ Mm/s. Separando variáveis e integrando a segunda equação de movimento, obtém-se:

$$\int_{2\times 10^6}^{-2\times 10^6} \mathrm{d}v_y = 9.593\times 10^7 E \int_0^{2.833\times 10^{-7}} \mathrm{d}t \quad \Longrightarrow \quad E = -\frac{4\times 10^6}{9.593\times 10^7\times 2.833\times 10^{-7}}$$

O resultado é $E = -1.47 \times 10^5$ N/C.

Perguntas

2	\mathbf{D}	

4. A

5. B

6. E

7. A

8. B

9. D

10. D

11. E

12. B

13. E

14. E

15. B

16. B

17. E

Critérios de avaliação

Problema 1

Impedância em série do condensador e a resistência do ramo da direita	
Impedância da alínea anterior, em paralelo com a resistência no meio	
Impedância total entre os terminais da fonte	0.4
Fasor da corrente total que sai da fonte	0.4
Fasor da voltagem na impedância da segunda alínea	0.8
Fasor da corrente no ramo da direita	0.8
Fasor da voltagem no condensador da direita e valor máximo dessa voltagem	0.8
Problema 2	
Observação que a trajetória é parabólica, no plano xy	0.4
Cálculo das componentes da aceleração	
Resolução das duas componentes das equações de movimento	2.4
Cálculo do tempo que demora a atravessar o eixo dos <i>x</i>	0.4
Obtenção do valor de <i>E</i> , com o sinal correto	0.4