# MATLAB概率论与数理统计程序设计

## 胡尧

## 贵州大学理学院数学系

Email: sci.yhu@gzu.edu.cn

QQ: 1600391567

2014.7 贵州师范学院



# 数理统计部分

一、统计作图

二、参数估计

三、假设检验

四、方差分析



## 一、统计作图

## 1. 正整数的频率表

命令 正整数的频率表 函数 tabulate 格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些值的个数,第3列为这些值的频率.

|                                                     | V      | alue | Count | Percent |
|-----------------------------------------------------|--------|------|-------|---------|
| 例                                                   |        | 1    | 1     | 14. 29% |
| -llllll.                                            | 运      | 2    | 2     | 28. 57% |
| <pre>clear all; close all; A=[1 2 2 5 6 3 8];</pre> | 行      | 3    | 1     | 14. 29% |
| tabulate(A)                                         | 结<br>果 | 4    | 0     | 0.00%   |
|                                                     |        | 5    | 1     | 14. 29% |
|                                                     |        | 6    | 1     | 14. 29% |
|                                                     |        | 7    | 0     | 0.00%   |
|                                                     | 2//    | 8    | 1     | 14. 29% |

#### 3. 假若某地区30名2010年某专业毕业生实习期满后的





clear all; close all;

X=[909 1086 1120 999 1320 1091 1071 1081 1130 1136 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738];

tabulate(X) %频率表

histfit(X) %直方图拟合

hist(X) %直方图

%ecdfhist 频率直方图

## 2. 经验累积分布函数图形



```
函数 cdfplot 
格式 cdfplot(X) %作样本X(向量)的累积分布函数图形 
h=cdfplot(X) %h表示曲线的环柄 
[h, stats]=cdfplot(X) %stats表示样本的一些特征
```

```
例 clear all; close all; X=normrnd (0,1,50,1); [h,stats]=cdfplot(X)
h = 172.0016
stats = 运min: -2.1707
max: 2.1832
mean: 0.0393
median: 0.1196
std: 0.9760
```



## 3. 最小二乘拟合直线



```
函数 1sline
```

格式 1sline %最小二乘拟合直线

h=1sline %h为直线的句柄

例 clear all; close all;

 $X = [2 \ 3.4 \ 5.6 \ 8 \ 11 \ 12.3 \ 13.8 \ 16 \ 18.8 \ 19.9]';$ 

plot(X,'+')

1sline

运行结果



## 4. 绘制正态分布概率图形



函数 normplot

格式 normplot(X) %若X为向量,则显示正态分布概率图形,若X 为矩阵,则显示每一列的正态分布概率图形.

h=normplot(X)%返回绘图直线的句柄

说明:样本数据在图中用"+"显示;如果数据来自正态分布,则图形显示为直线,而其它分布可能在图中产生弯曲.

例

clear all; close all; X=normrnd(0,1,50,1); normplot(X)



## 5. 绘制Weibull概率图形

函数 weibplot

格式 weibplot(X) %若X为向量,则显示威布尔(Weibull)概率 图形,若X为矩阵,则显示每一列的威布尔概率图形.

h = weibplot(X) %返回绘图直线的柄

说明 绘制Weibull概率图形的目的是用图解法估计来自威布尔分布的数据X,如果X是威布尔分布数据,其图形是直线的,否则图

形中可能产生弯曲.

例

clear all; close all; r=weibrnd(1.2,1.5,50,1); weibplot(r)

运行结果



## 6. 样本数据的盒图



#### 函数 boxplot

格式 boxplot(X) %产生矩阵X的每一列的盒图和"须"图."须"是从盒的尾部延伸出来,并表示盒外数据长度的线,如果"须"的外面没有数据,则在"须"的底部有一个点.

boxplot(X,notch) %当notch=1时,产生一凹盒图,notch=0时产生一矩箱图.

boxplot(X,notch,'sym') %sym表示图形符号,默认值为 "+". boxplot(X,notch,'sym',vert) %当vert=0时,生成水平盒图 ,vert=1时,生成竖直盒图(默认值vert=1).

boxplot(X,notch,'sym',vert,whis) %whis定义"须"图的长度,默认值为1.5,若whis=0则boxplot函数通过绘制sym符号图来显示盒外的所有数据值.

```
clear all; close all; X1=normrnd(5,1,100,1);
```

X2=normrnd(6,1,100,1);

X=[x1 x2];

boxplot(x,1,'g+',1,0)

# 运行结果



## 7. 给当前图形加一条参考线



```
函数 refline
```

格式 refline(slope,intercept)

% slope表示直线斜率,intercept表示截距 refline(slope) slope=[a b],图中加一条直线:y=b+ax.

例

```
clear all; close all;
y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
```

plot(y,'+')
refline(0,3)

运行结果



## 8. 在当前图形中加入一条多项式曲线



函数 refcurve

格式 h = refcurve(p) %在图中加入一条多项式曲线,h为曲线的 环柄,p为多项式系数向量,p=[p1,p2, p3,...,pn],其中p1为 最高幂项系数.

例 火箭的高度与时间图形,加入一条理论高度曲

线,火箭初速为100m/秒.

```
clear all; close all;
H=[85 162 230 289 339 381 413
437 452 458 456 440 400 356];
plot(H,'+');
refcurve([-4.9 100 0]);
行
结
```



### 9. 样本的概率图形



函数 capaplot

格式 p = capaplot(data, specs) %data为所给样本数据, specs指定范围, p表示在指定范围内的概率。

说明 返回来自于估计分布的随机变量落在指定范围内的概率

#### 例

```
clear all; close all;
data=normrnd(0,1,30,1);
p=capaplot(data,[-2,2])
```

#### 运行结果

p =

0.9527



## 10. 附加有正态密度曲线的直方图



函数 histfit

格式 histfit(data) %data为向量,返回直方图和正态曲线. histfit(data,nbins) % nbins指定bar的个数,缺省时为data中数据个数的平方根。

例

clear all; close all
R=normrnd(10,1,100,1)
histfit(R)

运行结果



## 11. 在指定的界线之间画正态密度曲线



函数 normspec

格式 p = normspec(specs,mu,sigma) %specs指定界线,mu,sigma为正态分布的参数p为样本落在上、下界之间的概率.

例 clear all; close all; normspec([10 Inf],11.5,1.25)

#### 运行结果

ans = 0.8849



## 12. 画正态检验的正态概率图(normplot)





## 13. 画Weibull检验的概率图(weibplot)





| 函数名      |                                                            | ▲                          |  |
|----------|------------------------------------------------------------|----------------------------|--|
|          | PHAT= binofit(X <del>, N)</del>                            | Binomial 分布的概率的 MLE        |  |
|          |                                                            | 置信度为95%的参数估计和置信区值          |  |
|          | PHAT PCI = binofit(X,N) = ** PHAT PCI = binofit(X,N,ALPYA) | 返回水平α的参数估计和置信区间            |  |
| poissfit | Lambdahat=poissfit(X)                                      | Poisson 分布的参数的最大似然估计       |  |
|          | [Lambdahat, Lambdaci] = poissfit(X)                        | 置信度为95%的参数估计和置信区间          |  |
|          | [Lambdahat, Lambdaci]= poissfit (X, ALPHA)                 | 返回水平α的λ参数和置信区间             |  |
| normfit  | [muhat,sigmahat,muci,sigmaci] = normfit(X)                 | Normal 分布的 MLE, 置信度为 95%返回 |  |
|          | [muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA)          | 水平α的期望、方差值和置信区间            |  |
| betafit  | PHAT =betafit (X)                                          | 返回 Beta 分布参数 a 和 b 的 MLE   |  |
|          | [PHAT, PCI]= betafit (X, ALPHA)                            | 返回最大似然估计值和水平 α 的置信区间       |  |
|          | [ahat,bhat] = unifit(X)                                    | Uniform 分布参数的 MLE          |  |
| unifit   | [ahat hhat ACI RCI] = unifit(X)                            | 置信度为95%的参数估计和置信区间          |  |
| 说明       | J 各函数返回已给数据向量X的参                                           | 数MLE和置信度为                  |  |
| expfil   | (1-α) ×100%的置信区间.α的默认                                      | 值为0.05,即置信度为95%.           |  |
|          | [muhat,muci] = expfit(X,alpha)                             | 返回水平 α 的参数估计和置信区间          |  |
| gamfit   | phat = gamfit(X)                                           | Gamma 分布参数的 MLE            |  |
|          | [phat,pci] = gamfit(X)                                     | 置信度为95%的参数估计和置信区间          |  |
|          | [phat,pci] = gamfit(X,alpha)                               | 返回 MLE 值和水平 α 的置信区间        |  |
| weibfit  | phat = weibfit(X)                                          | Weibull 分布参数的 MLE          |  |
|          | [phat,pci] = weibfit(X)                                    | 置信度为95%的参数估计和置信区间          |  |
|          | [phat,pci] = weibfit(X,alpha)                              | 返回水平α的参数估计及其区间估计           |  |
| Mle      | phat = mle('dist',data)                                    | 分布函数名为 dist 的 MLE          |  |
|          | [phat,pci] = mle('dist',data)                              | 置信度为95%的参数估计和置信区间          |  |
|          | [phat,pci] = mle('dist',data,alpha)                        | 返回水平α的 MLE 值和置信区间          |  |
|          | [phat,pci] = mle('dist',data,alpha,p1)                     | 仅用于 Binomial 分布, pl 为试验总次数 |  |

## 1. 常见分布的参数估计



命令 Beta分布的参数a和b的MLE值和置信区间

函数 betafit

格式 PHAT=betafit(X)

[PHAT, PCI]=betafit(X, ALPHA)

说明 PHAT为样本X的β分布的参数a和b的估计量PCI为样本X的β分布参数a和b的置信区间,是一个2×2矩阵,其第1例为参数a的置信下界和上界,第2例为b的置信下界和上界,ALPHA为显著水平,(1-α)×100%为置信度.

例 随机产生100个β分布数据,相应的分布参数真值为5和2.则5和2的MLE值和置信度为99%的置信区间为:



```
clear all; close all;
X=betarnd(5,2,100,1); %产生100个β分布的随机数
[PHAT,PCI]=betafit(X,0.01)%求置信度为99%的置信区间和参数a、b的估计值结果显示
```

**说明** 估计值4. 2823的置信区间是[2. 7774 5. 7871],估计值 1. 8260的置信区间是[1. 2283 2. 4238].

#### 命令 Normal 分布的参数估计

函数 normfit

格式 [muhat, sigmahat, muci, sigmaci]=normfit(X)
[muhat, sigmahat, muci, sigmaci]=normfit(X, alpha)

**说明** muhat, sigmahat 分别为 Normal 分布的参数  $\mu$  和  $\sigma$  的估计值, muci, sigmaci 分别为置信区间, 其置信度为  $(1-\alpha) \times 100\%$ ; alpha 给出显著水平  $\alpha$ , 缺省时默认为 0.05, 即置信度为 95%.

**例** 有两组(每组100个元素)正态随机数据,其均值为78,均方差为9,求95%的置信区间和参数估计值.

R=normrnd(78,9,100,2); %产生两列正态随机数据 [mu,sigma,muci,sigmaci]=normfit(R)

mu=76.335577.9517%各列的均值的估计值Sigma=8.73978.8862%各列的均方差的估计值muci=74.601376.188478.069679.7149说明 muci, sigmaci中各列分别为Sigmaci=7.67357.8022原随机数据各列估计值的置信区间,置10.152710.3229信度为95%。

#### 例 分别使用金球和铂球测定引力常数

- (1) 用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672
- (2) 用铂球测定观察值为: 6. 661 6. 661 6. 667 6. 667 6. 664 设测定值总体为  $N(\mu, \sigma^2)$ ,  $\mu$  和  $\sigma$  为未知. 对(1)、(2) 两种情况分别求  $\mu$  和  $\sigma$  的置信度为 0. 9 的置信区间.

SIGMACI = 0.0019 0.0071

#### 命令 利用 mle 函数进行参数估计

函数 mle

格式 phat=mle('dist', X) %返回用 dist 指定分布的最大似然估计值

[phat, pci]=mle('dist', X) %置信度为95%

[phat, pci]=mle('dist', X, alpha) %置信度由 alpha 确定

[phat, pci]=mle('dist', X, alpha, pl)% Binomial 分布, pl 为试验次数

**说明** dist 为分布函数名,如: beta(β分布)、bino(二项分布)等,X 为数据样本,alpha 为显著水平 α , (1-α) × 100% 为置信度。

#### 例

```
      clear all; close all;

      X=binornd(20,0.75)
      %产生二项分布的随机数

      [p,pci]=mle('bino',X,0.05,20)

      %求概率的估计值和置信区间,置信度为95%
```

#### 运行结果

## 2. 非线性模型置信区间预测



命令 Gauss—Newton 法的非线性最小二乘数据拟合

函数 nlinfit

格式 beta = nlinfit(X, y, FUN, beta0) %返回在 FUN 中描述的非线性函数的系数, FUN 为用户提供形如  $\hat{y} = f(\beta, X)$  的函数,该函数返回已给初始参数估计值 β 和自变量 X 的 y 的预测值  $\hat{y}$ 。

[beta, r, J] = nlinfit(X, y, FUN, beta0) %beta 为拟合系数, r 为残差, J 为 Jacobi 矩阵, beta0 为初始预测值.

说明 若X为矩阵,则X的每一列为自变量的取值,y是一个相应的列向量.如果FUN中使用了@,则表示函数的柄.

例 调用MATLAB提供的数据文件reaction.mat

load reaction

betafit = nlinfit(reactants, rate,@hougen,beta)

betafit = 1.2526 0.0628 0.0400 0.1124 1.1914

#### 命令 非线性模型的参数估计的置信区间 函数 nlparci



格式 ci = nlparci(beta, r, J) %返回置信度为95%的置信区间, beta为非线性最小二乘法估计的参数值, r为残差, J为Jacobian矩阵. nlparci可以用nlinfit函数的输出作为其输入...

例 调用MATLAB中的数据reaction.

clear all; close all;

load reaction

#### 命令 非线性拟合和显示交互图形

函数 nlintool

格式 nlintool(x, y, FUN, beta0)%返回数据(x, y)的非线性曲线的预测图形,它用2条红色曲线预测全局置信区间.

beta0为参数的初始预测值, 置信度为95%.

nlintool(x, y, FUN, beta0, alpha) %置信度为(1-alpha)×100%

load reaction
nlintool(reactants, rate, 'hougen', beta)



# 命令 非线性模型置信区间预测 函数 nlpredci



格式 ypred = nlpredci(FUN, inputs, beta, r, J) % ypred 为预测值, FUN与前面相同, beta为给出的适当参数, r为残差, J为Jacobian矩阵, inputs为非线性函数中的独立变量的矩阵值。

[ypred, delta]=nlpredci (FUN, inputs, beta, r, J) %delta为非线性最小二乘法估计的置信区间长度的一半,当r长度超过beta的长度并且J的列满秩时,置信区间的计算是有效的. [ypred-delta, ypred+delta]为置信度为95%的不同步置信区间.

ypred=nlpredci (FUN, inputs, beta, r, J, alpha, 'simopt', 'predopt')%控制置信区间的类型, 置信度为100(1-alpha)%. 'simopt' ='on' 或'off' (默认值)分别表示同步或不同步置信区间. 'predopt'='curve' (默认值)表示输入函数值的置信区间, 'predopt'='observation' 表示新响应值的置信区间. nlpredci可以用nlinfit函数的输出作为其输入.





```
load reaction
[beta,resids,J]=nlinfit(reactants,rate,@hougen,beta);
[ypred,delta]=nlpredci(@hougen,[100 300 80],beta,resids,J)
```

```
ypred =
10.9113
delta =
0.3195
```



## 3. 对数似然函数



命令 负Beta分布的对数似然函数

函数 Betalike

格式 logL=betalike(params, data) %返回负Beta分布的对数似然函数, params为向量[a, b],是Beta分布的参数, data为样本数据.

[logL, info]=betalike(params, data)%返回Fisher逆信息矩阵info.如果params 中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.

说明 betalike是Beta分布最大似然估计的实用函数.似然函数假设数据样本中,所有的元素相互独立.因为betalike返回负Beta对数似然函数,用fmins函数最小化betalike与最大似然估计的功能是相同的.

例 本例所取的数据是随机产生的Beta分布数据.

```
r= betarnd(3,3,100,1); logL =-4.2393
[logL,info] = betalike([2.1234,3;4567,4319 0.1111 0.1239
```

#### 命令 负Gamma分布的对数似然估计





格式 logL=gamlike(params, data) %返回由给定样本数据data 确定的Gamma分布的参数为params(即[a, b])的负对数似然函数值 [logL, info]=gamlike(params, data) %返回Fisher逆信息矩阵info.如果params中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.

说明 gamlike是Gamma分布的最大似然估计函数.因为gamlike返回 Gamma对数似然函数值,故用fmins函数将gamlike最小化后,其结果与最大似然估计是相同的.



#### 命令 负正态分布的对数似然函数

函数 normlike

格式 logL=normlike(params, data) %返回由给定样本数据 data确定的、负正态分布的、参数为params(即 [mu, sigma])的对数似然函数值.

[logL, info]=normlike(params, data)%返回Fisher逆信息矩阵info.如果params中输入的参数是极大似然估计值,那么info的对角元素为相应参数的渐近方差.



#### 命令 Weibull分布的对数似然函数

函数 Weiblike

格式 logL=weiblike(params, data) %返回由给定样本数据data 确定的、Weibull分布的、参数为params(即 [a, b])的对数似然函数值.

[logL, info]=weiblike(params, data) %返回Fisher逆信息矩阵info. 如果params中输入参数是MLE,则info的对角元素为相应参数的渐近方差.

说明 Weibull分布的负对数似然函数定义为

$$-\log L = -\log \prod_{i=1}^{n} f(a,b \mid x_i) = -\sum_{i=1}^{n} \log f(a,b \mid x_i)$$

info =

-0.0018



```
clear all;close all;
r=weibrnd(0.4,0.98,100,1);
[logL,info]=weiblike([0.1342,0.9876],r)

logL =
    241.1717
```

0.0096

0.0007 -0.0018

## 三、假设检验



1.  $\sigma^2$  已知,单个正态总体的均值  $\mu$  的假设检验(U 检验法) **函数** ztest

格式 h=ztest(x, m, sigma) % x为正态总体的样本, m为均值μ<sub>0</sub>, sigma为标准差, 显著性水平为0.05(默认值) H=ztest(x, m, sigma, alpha) %显著性水平为alpha [h, sig, ci, zval]=ztest(x, m, sigma, alpha, tail) %sig

为

说明

观察值的概率,当sig为小概率时则对原假设提出质疑,ci 为真正均值 μ的1-alpha置信区间,zval为统计量的值.

若 h=0,表示在显著性水平 alpha 下,不能拒绝原假设;

若 h=1,表示在显著性水平 alpha 下,可以拒绝原假设.

原假设:  $H_0$ :  $\mu = \mu_0 = m$ 

若 tail=0,表示备择假设:  $H_1$ :  $\mu \neq \mu_0 = m$  (默认,双边检验);

tail=1,表示备择假设: $H_1$ :  $\mu > \mu_0 = m$ (单边检验);

tail=-1,表示备择假设: $H_1$ :  $\mu < \mu_0 = m$ (单边检验)

例 某车间用一台包装机包装葡萄糖,包得的袋装糖重是 机变量,它服从正态分布。当机器正常时,其均值为0.5公斤 准差为0.015。某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)

0.497 0.506 0.518 0.524 0.498 0.511 0.52 0.515 0.512 问机器是否正常?

**解**: 总体  $\mu$  和  $\sigma$  已知, 该问题是当  $\sigma^2$  为已知时, 在水平  $\alpha = 0.05$  下, 根据样本值判断  $\mu = 0.5$  还是  $\mu \neq 0.5$ . 为此提出假设:

原 假 设:  $H_0$ :  $\mu = \mu_0 = 0.5$ 

备择假设: H<sub>1</sub>: μ≠0.5

X=[0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512];
[h,sig,ci,zval]=ztest(X,0.5,0.015,0.05,0)

**运** h=1 % h=1, 说明在水平 α = 0.05 下, 拒绝原假设, 认为包装机工作不正常 fig=0.0248 %样本观察值的概率 ci=0.5014 0.5210 %置信区间,均值 0.5 在此区间之外

果 zval=2.2444 %统计量的值



```
%[h,p,ci,zval]=ztest(X,mu,sigma,alpha,tail,dim)
X=[8.058.158.28.18.25];
[h,p,ci,zval]=ztest(X,8,0.2,0.05)
h =
p = 0.0935
ci = 7.9747 8.3253
zval = 1.6771
注:
p为观察值的概率;i为置信区间;zval统计量值
若h=0:表示在显著性水平alpha下,不能否定原假设
若h=1:表示在显著性水平alpha下,否定原假设
若tail=0:表示双边假设检验
若tail=1:表示单边假设检验(mu>mu0)
若tail=0:表示单边假设检验(mu<mu0)
dim表示根据指定的维数进行检验
```

### %[h,p,ci,zval]=ztest(X,mu,sigma,alpha)

% X=normrnd(mu,sigma,N,M); 随机产生均值为mu,标准差 为sigma的M行N例随机数

```
X=normrnd(100,5,100,1);mu=mean(X);sigmal=5;
[h,p,ci,zval] = ztest(X,100,5,0.05)
mu = 99.8810 h = 0 p = 0.8119
ci = 98.9011 \ 100.8610 \ zval = -0.2379
X=[14.7 15.1 14.8 15.0 15.2 14.6];
[h,p,ci,zval]=ztest(X,15,0.05,0.05)
h = 1 p = 9.6336e-007
ci = 14.8600 \quad 14.9400 \quad zval = -4.8990
运行结果:
```

h=1:拒绝原假设,认为alpha=0.05条件下,不认为产品平均值仍为15; p值=9.6336e-007<0.05 表明,拒绝原假设 均值的置信区间为[14.8600,14.9400] 统计量为-4.8990

```
X=[100.36 100.31 99.99 100.11 100.64 100.85
 99.42 99.91 99.35 100.10];
[h,p,ci,zval] = ztest(X,100,0.5,0.05)
h =
    0.5107
ci =
   99.7941 100.4139
zval =
    0.6578
```

### 运行结果

h=0:接受原假设,有alpha=0.05条件下,认为钢管内直径平均值为100 p值=0.5107>0.05:表明,接受原假设 均值的置信区间为[99.7941,100.4139] 统计量为0.6578

### 2. $\sigma^2$ 未知, 单个正态总体的均值 $\mu$ 的假设检验(t 检验法)

法)

函数 ttest

**格式** h=ttest(x, m) %x为正态总体的样本, m为均值 μ<sub>0</sub>, 显著性 水平为0.05

H=ttest(x, m, alpha) %alpha为给定显著性水平 [h, sig, ci]=ttest(x, m, alpha, tail) %sig为观察值的

概

率,当sig为小概率时则对原假设提出质疑,ci为真正均值 u的1-alpha置信区间.

说明

μ的1-alpha置信区间. 若 h=0,表示在显著性水平 alpha 下,不能拒绝原假设;

若 h=1,表示在显著性水平 alpha 下,可以拒绝原假设.

原假设:  $H_0$ :  $\mu = \mu_0 = m$ 

若 tail=0,表示备择假设:  $H_1$ :  $\mu \neq \mu_0 = m$  (默认, 双边检验);

tail=1,表示备择假设: $H_1$ :  $\mu > \mu_0 = m$ (单边检验);

tail=-1,表示备择假设:  $H_1$ :  $\mu < \mu_0 = m$  (单边检验).

**例** 某种电子元件的寿命 X(以小时计)有  $X \sim N(\mu, \sigma^2)$ ,  $\sigma^2$ 均未知. 现测得 16 只元件的寿命如下



159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于 225(小时)?

解: 未知  $\sigma^2$ , 在水平  $\alpha = 0.05$  下检验假设:

$$H_0: \mu < \mu_0 = 225$$
 v. s.  $H_1: \mu > 225$ 

X=[159 280 101 212 224 379 179 264
 222 362 168 250 149 260 485 170];
[h,sig,ci]=ttest(X,225,0.05,1)

运行结果 h = 0
sig = 0.2570
ci = 198.2321 Inf

**结果表明** H=0 表示在水平 $\alpha = 0.05$  下应该接受原假设  $H_0$ ,即认为元件的平均寿命不大于 225 小时.



```
%[h, p, ci, tstat]=ttest(X, mu0, alpha, tail, dim)
X=[239.7 239.6 239 240 239.2];
[h,p,ci,tstat]=ttest(X,240,0.05)
h =1 p=0.0491 ci=239.0033 239.9967
tstat = tstat: -2.7951
       df: 4
       sd: 0.4000
注: p为观察值的概率; ci为置信区间; tstat统计量值
若h=0:表示在显著性水平alpha下,不能否定原假设;
若h=1:表示在显著性水平alpha下,否定原假设;
df为自由度; sd为样本标准差
若tail=0:表示双边假设检验;
若tail=1:表示单边假设检验(mu>mu0);
若tail=0:表示单边假设检验(mu<mu0);
dim表示根据指定的维数进行检验
```



### 运行结果:

h=0:接受原假设,认为有alpha=0.05 条件下, 认为钢管内直径平均值仍为100 p值=0.5070>0.05:表明,接受原假设 均值的置信区间为[99.7635 100.4445] 统计量为0.6910;样本的标准差为0.4760



### 运行结果分析:

h=1:拒绝原假设,认为该正态总体的均值不为0.618 p值=0.0453<0.05 同上; 均值置信区间为[0.6190, 0.7049] t统计量值为2.1422;样本方差为0.0918





```
%[h, p, varci, stats]=vartest(x, var0, alpha, tail)
X=[49.4\ 50.5\ 50.7\ 51.7\ 49.8\ 47.9\ 49.2\ 51.4\ 48.9];
Mean=mean(X); Var=VAR(X)
[h,p,varci,stats]=vartest(X,1.5,0.05,0)
Mean = 49.9444 Var=1.5278 h = 0 p = 0.8383
varci = 0.6970 5.6072
stats = chisqstat: 8.1481 df: 8
注: p为观察值的概率; varci为方差的置信区间;
stats 为卡方统计量的观测值
若h=0:表示在显著性水平alpha下,不能否定原假设;
若h=1:表示在显著性水平alpha下,否定原假设;df为自由度;
若tail=0:表示双边假设检验(sigma^2=sigma0^2);
若tail=1:表示单边假设检验(sigma^2>sigma0^2);
若tail=-1:表示单边假设检验(sigma^2<sigma0^2);
```



### 运行结果:

h=1: 表示拒绝原假设,认为该天纤度的总体标准差不正常 p值=0.0181<0.05: 也验证了上结论 其卡方统计量值为13.5069;方差的置信区间为[0.0028,0.0642]

### 4. 两个正态总体均值差的检验(t检验)

两正态总体方差未知但相等,比较两正态总体均值的假设检验

### 函数 ttest2

**格式** [h, sig, ci]=ttest2(X, Y) %X, Y为两个正态总体的样本, 显著性水平为0.05

[h, sig, ci]=ttest2(X, Y, alpha) %alpha为显著性水平 [h, sig, ci]=ttest2(X, Y, alpha, tail) %sig为当原假设为 真时得到观察值的概率,当sig为小概率时则对原假设提出质疑, ci为真正均值 μ的1-alpha置信区间.

说明 若 h=0,表示在显著性水平 alpha 下,不能拒绝原假设;

若 h=1,表示在显著性水平 alpha 下,可以拒绝原假设。

原假设:  $H_0$ :  $\mu_1 = \mu_2$ ,  $(\mu_1 \to X \to M)$  为期望值,  $\mu_2 \to Y \to M$ 的期望值)

若 tail=0,表示备择假设:  $H_1$ :  $\mu_1 \neq \mu_2$  (默认,双边检验);

tail=1,表示备择假设: $H_1$ : $\mu_1 > \mu_2$ (单边检验);

tail=-1,表示备择假设: $H_1$ : $\mu_1 < \mu_2$ (单边检验)。

**例** 在平炉上进行一项试验以确定改变操作方法的建议是否会增加**的** 率,试验是在同一只平炉上进行的.每炼一炉钢时除操作方法外,其他条件都尽可能做到相同.先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼 10 炉,其产率分别为

(1)标准方法:78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3

(2) 新方法: 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1 设这两个样本相互独立,且分别来自正态总体  $N(\mu_1,\sigma^2)$  和  $N(\mu_2,\sigma^2)$ ,  $\mu_1$ 、  $\mu_2$ 、  $\sigma^2$  均未知. 问建议的新操作方法能否提高产率?(取  $\alpha$  =0.05)

解: 两个总体方差不变时, 在水平  $\alpha = 0.05$  下检验假设

$$H_0: \mu_1 = \mu_2$$
 V. S.  $H_1: \mu_1 < \mu_2$ 

X=[78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3];
Y=[79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1];
[h,sig,ci]=ttest2(X,Y,0.05,-1)

结显 果示 h=1

### 结果表明

sig=2.1759H=1 表示在水平 $\alpha = 0.05$  下, 应该拒绝原假设, 即认为 ci=-Inf=建议的新操作方法提高了产率, 因此, 比原方法好.



### 两正态总体均值差的假设检验 方差未知但相等情形

% h=ttest2(x, y, alpha, tail, vartype, dim)

%样本X与Y在给定检验水平alpha下,进行双边(tail为0)或单边>(tail为+1)或单边<(tail为-1)且vartype('equal' or 'unequal')指定方差是否相等的假设检验 采用双边假设检验

```
X=[76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34];
Y=[73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61];
[h,p,ci,stat]=ttest2(X,Y,0.05,0,'equal')
```

h=1: 表明在alpha=0.05条件下,应拒绝原假设(相等),即认为镍合金硬度与铜合金硬度不相等。

p=0.0285:表明两个总体均值相等的概率(<0.05),故拒绝原假设;

ci: 表示均值差的置信区间

```
X = [76.43 \ 76.21 \ 73.58 \ 69.69 \ 65.29 \ 70.83 \ 82.75 \ 72.34];
Y = [73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07]
[h,p,ci,stat]=ttest2(X,Y,0.05,1,'equal')
h = 1 p = 0.0142 ci = 1.4148 Inf
stat = tstat: 2.4234 df: 15 sd: 4.3432
注: h=1:表明在alpha=0.05条件下,应拒绝原假设,即认为镍合金硬
度没有显著提高.
p=0.0142(<0.05):表明两个总体均值相等的概率(<0.05),故
拒绝原假设; ci: 表示均值差的置信区间
X = [76.43 \ 76.21 \ 73.58 \ 69.69 \ 65.29 \ 70.83 \ 82.75 \ 72.34];
Y = [73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61];
[h,p,ci,stat]=ttest2(X,Y,0.01,1,'equal')
h = 0 p = 0.0142 ci = -0.3779
                                 Tnf
stat =tstat: 2.4234 df: 15 sd: 4.3432
注: h=0: 表明在alpha=0.01条件下,应拒绝原假设,即认
为镍合金硬度有显著提高。
p=0.0142()0.01):表明两个总体均值相等的概率()0.01),
故拒绝原假设, ci: 表示均值差的置信区间
```



### 方差相等

HO: A型号的使用时间均值等于B的使用时间均值 H1: A型号的使用时间均值大于B的使用时间均值 X=[5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9]; $Y=[3.8 \ 4.3 \ 4.2 \ 4.0 \ 4.9 \ 4.5 \ 5.2 \ 4.8 \ 4.5 \ 3.9 \ 3.7 \ 4.6];$ [h,p,varci,stats]=ttest2(X,Y,0.01,0,'equal') h = 1p = 1.9279e - 005varci = 0.5482 1.7184stats = tstat: 5.4844 df: 21 sd: 0.4951

### 运行结果:

h=1: 拒绝原假设,认为A型号的平均使用时间比B型号的平均使用时间要长。p值=1.9279e-005<0.05:表时拒绝原假设 t统计量值为5.4844;均值差的标准差为0.4951

### 运行结果:

h=1:拒绝原假设,认为70度与80度时的平均断裂强力间有显著差异.

p值=0.0418<0.05:表时拒绝原假设

t**统计量值为**2.2410

均值差的标准差为0.09148

## 5. 两正态总体方差比的假设检验总体均值未知时



%[h, p, varci. stats]=vartest2(X, Y, alpha, tail)

### 说明

p为观察值的概率; varci为方差的置信区间; stats 为卡方统计量的观测值: fstat为F统计量的观测值; df1 df2分别为F分布的第一、第二自由度; 若h=0:表示在显著性水平alpha下,不能否定原假设;否则则拒绝 若tail=0:表示双边假设检验(sigma1^2=sigma2^2); tail=1:表示单边假设检验(sigma12>sigma2^2); tail=-1:表示单边假设检验(sigma1^2<sigma2^2);



```
X=[16.2 \ 16.4 \ 15.8 \ 15.5 \ 16.7 \ 15.6 \ 15.8];
Y=[15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0];
X Var=VAR(X)
Y Var=VAR(Y)
[h,p,varci,stats]=vartest2(X,Y,0.05,0)
X_{var} = 0.1967
Y_{var} = 0.2164
                          结果表明
h = 0
p = 0.9232
                       h=0:表示在显著性水平alpha
varci = 0.1775 5.
                       下,不能否定原假设,认为二
stats = fstat: 0.9087 <mark>台机床加工的精度一致。</mark>
        df1: 6
        df2: 7
```

```
X=[15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8]
Y=[15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14
X Var=VAR(X)
Y Var=VAR(Y)
[h,p,varci,stats]=vartest2(X,Y,0.05,0)
X_{var} = 0.0955
Y_{var} = 0.0261
h = 0
p = 0.0892
varci = 0.8079 17.9258
stats = fstat: 3.6588
         df1: 7
         df2: 8
运行结果:
h=0:表示接受原假设
    认为两台机床生的的滚珠直径的方差没有明显差异;
p=0.0892>0.05: 表明接受原假设;F统计量值为3.6588
```



### 运行结果:

h=0:表示接受原假设

认为批电子器件总体方差没有明显差异,即方差相等; p=0.9132>0.05:表明接受原假设;F统计量值为1.1080



```
在(1)情形下,两方差未知但相等
X=[0.140 0.138 0.143 0.142 0.144 0.137];
Y=[0.135 0.140 0.142 0.136 0.138 0.140];
[h,p,varci,stats]=ttest2(X,Y,0.05,0,'equal')
h = 0
p = 0.2001
varci = -0.0014 0.0057
stats = tstat: 1.3718
df: 10
sd: 0.0027
```

### 运行结果:

h=0:表示接受原假设

认为批电子器件总体均值没有明显差异,即均值相等; p=0.2001>0.05:表明接受原假设; t统计量值为1.3718 sd=0.0027表示两样本差的标准差



```
例:
X=[20.1 20.0 19.3 20.6 20.2 19.9 20.0]
   19.9 19.1 19.9];
Y=[18.6 19.1 20.0 20.0 20.0 19.7 19.9 19.6 20.2];
[h,p,varci,stats]=vartest2(X,Y,0.05,0)
h =
p = 0.5798
varci = 0.1567 2.8001
stats = fstat: 0.6826
     df1: 9
     df2: 8
```



## (非参数假设检验)

检验样本是否服从指定的分布

调用格式:

### 1. h=chi2gof(X)

检验样本X是否样本是否服从正态分布(原假设为样本服从正态分布). 输出参数h为0(在显著性水平0.05下接受原假设,认为X服从正态分布)或1(在显著性水平0.05下拒绝原假设,认为X不服从正态分布)

### 2. [h, p]=chi2gof(X)

返回检验P值: 当P值小于或等于显著性水平alpha时,拒绝原假设,否则接受原假设.



### 3. [h, p, stats]=chi2gof(X)



返回一个结构体变量stats,它包含字段:

chi2stat:卡方统计量;df:自由度;

edges: 合并后各区间的边界向量;

0: 落入每个小区间内观测的个数,即实际频数;

E: 每个小区间对应的理论频数

4. [h, p, stats]=chi2gof(X, name1, vall, name2, val2, ···.)

通过可选的成对出现的参数名与参数值来控制初始分组、原假设中的分布、显著性水平等。

等等其它调用格式,参见有关Matlab统计资料



bins=0:11;%总体分成的区间总类

obsCounts=[57 203 383 525 532 408 273 139 45 27 10 6];

%对应区间上样本观测值个数

n=sum(obsCounts);%总的观测样本数据

lambdaHat=sum (bins.\*obsCounts)/n; %参数的MLE估计值

expCounts =n\*poisspdf(bins,lambdaHat);% 理论频数

[h,p,st] =chi2gof(bins,'ctrs',bins,'frequency',obsCounts, 'expected',expCounts,'nparams',1) %'frequency'指定观测值中出现的频数, 'expected'指定各区间的理论频数, 'nparams'指定分布中待估参数的个数

h=0 p=0.1692 st=chi2stat: 12.8577 df: 9

Edges: [-0.5000 0.5000 1.5000 2.5000 3.5000 4.5000

5.5000 6.5000 7.5000 8.5000 9.5000 11.5000]

O: [57 203 383 525 532 408 273 139 45 27 16]

E: [54.4187 210.5802 407.4339 525.5397 508.4113

393.4729 253.7659 140.2829 67.8554 29.1751 15.2612]

注: h=0 (p值>0.05) 接受原假设: Poisson分布;



```
bins=1:6;%总体分成的区间总类
   obsCounts=[2 6 6 3 3 0];
   %对应区间上样本观测值个数
   n=sum(obsCounts);%总的观测样本数据
   expCounts=[n*0.1 n*0.2 n*0.3 n*0.2 n*0.1
n*0.1];%对应区间上的理论频数
[h,p,st]=chi2gof(bins,'ctrs',bins,'frequency',obs
Counts, 'expected', expCounts, 'nparams', 0)
%'nparams'指定分布中待估参数的个数
   h =
   p = 0.5580
   st = chi2stat: 1.1667
            df: 2
          edges: [0.5000 2.5000 3.5000 6.5000]
              0: [8 6 6]
              E: [6 6 8]
```

注: h=0 (p值>0.05) 接受原假设分布;

### 例 丢掷骰子100次,分别出现的点数为 13次 14次 20次 17次 15次 21次 1点 2点 3点 4点 5点 6点 检验这粒骰子是否均匀?



解:
$$H_0$$
:均匀,即 $P$  {1点朝上}=·····= $P$  {6点朝上}= $\frac{1}{6}$ 

根据观测值: 
$$np_i = \frac{100}{6} = 16.667 > 5$$

$$\chi^{2} = \sum_{i=1}^{6} \frac{(n_{i} - np_{i})^{2}}{np_{i}} = 3.200 < \chi^{2}_{1-\alpha} (6 - 0 - 1) = 11.1$$

 $\Rightarrow$  接受 $H_0$ ,认为总体服从均匀分布,这粒骰子是均匀的.

bins=1:6;%总体分成的区间总类
obsCounts=[13 14 20 17 15 21];%对应区间上样本观测值个数
n=sum(obsCounts);%总的观测样本数据
lambdaHat=1/6;%参数的MLE估计值
expCounts=[n\*lambdaHat n\*lambdaHat n\*lambdaHat n\*lambdaHat n\*lambdaHat n\*lambdaHat];%理论频数,即均为100/6
[h,p,st]=chi2gof(bins,'ctrs',bins,'frequency',obsCounts,'expected',expCounts,'nparams',0)%'nparams'指定分布中待估参数的个数
H=0
D=0.6692

H=0
P=0.6692
St=chi2stat: 3.2000 df: 5
edges:[0.5000 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000]
O:[13 14 20 17 15 21]
E:[16.6667 16.6667 16.6667 16.6667 16.6667]

说明:h=0(p值>0.05)故接受原假设, 认为总体服从均匀分布,这粒骰子是均匀的.

### 某工厂近5年发升63次事故,按星期几分类如下

星期一二三三四五六

次数 9 10 11 8 13 12

### 问事故发生与否与星期几有关?

解 
$$H_0: P(X=1) = \dots = P(X=6) = \frac{1}{6}$$

$$np = n_x p_i = 63 \times \frac{1}{6} = 10.5$$

X = 1 = 2 = 3 = 4 = 5

 $n_i$  9 10 11 8 13 12

np, 10.5 10.5 10.5 10.5 10.5

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n\hat{p}_{i})^{2}}{n\hat{p}_{i}} = 1.67 \le \chi^{2}_{k-\ell-1} = \chi^{2}_{0.95} = 11.07$$

接受H<sub>0</sub>认为事故发生与星期几无关.



```
bins=1:6;%总体分成的区间总类
obsCounts=[9 10 11 8 13 12];%对应区间样本个数
n=sum(obsCounts);%总的观测样本数据
lambdaHat=1/6; %参数的MLE估计值
expCounts=[n*lambdaHat n*lambdaHat n*lambdaHat n*lambdaHat
n*lambdaHat n*lambdaHat];%理论频数63/6
[h,p,st]=chi2gof(bins, 'ctrs', bins, 'frequency', obsCounts, 'e
xpected', expCounts, 'nparams', 0)% 'nparams' 指定分布中待估参数个
数
H=0
P=0.8931
St=chi2stat: 1.6667
   df: 5
 edges: [0.5000 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000]
    0: [9 10 11 8 13 12]
    E: [10.5000 10.5000 10.5000 10.5000 10.5000 10.5000]
```

说明: h=0(p值>0.05)故接受原假设,认为事故发生与星期几无关.

### 7. 两个总体一致性的检验 - 秩和检验



函数 ranksum

格式 p=ranksum(x, y, alpha) %x、y为两个总体的样本,可以不等长, alpha为显著性水平

[p, h]=ranksum(x, y, alpha) % h为检验结果, h=0表示X与Y 的总体差别不显著h=1表示X与Y的总体差别显著

[p, h, stats]=ranksum(x, y, alpha) %stats中包括: ranksum为秩和统计量的值以及zval为过去计算p的正态统计量的值

说明 P为两个总体样本X和Y为一致的显著性概率,若P接近于0,则不一致较明显。

### 8. 两个总体中位数相等的假设检验

# THE CONTRACTOR OF THE PARTY OF

### ---- 符号秩检验

函数 signrank

- 格式 p=signrank(X, Y, alpha) %X、Y为两个总体的样本,长度 必须相同, alpha为显著性水平, P两个样本X和Y的中位 数相等的概率, p接近于0则可对原假设质疑.
  - [p, h]=signrank(X, Y, alpha)%h为检验结果:h=0表示X与Y的中位数差不显著,h=1表示X与Y的中位数之差显著.
  - [p, h, stats]=signrank(x, y, alpha) %stats中包括: signrank为符号秩统计量的值以及zval为过去计算p的正态统计量的值.



### 例 两个正态随机样本的中位数相等的假设检验

```
x = normrnd(0, 1, 20, 1);
y=normrnd(0,2,20,1);
[p,h,stats]=signrank(x,y,0.05)
    0.8813
stats =
          zval: -0.1493
    signedrank: 101
    结果表明: h=0表示X与Y的中位数之差不显著
```

### 9. 两个总体中位数相等的假设检验



### ——符号检验

函数 signtest

格式 p=signtest(X,Y,alpha) % X、Y为两个总体的样本,长度 必须相同,alpha为显著性水平,P两个样本X和Y的中位 数相等的概率,p接近于0则可对原假设质疑.

[p,h]=signtest(X,Y,alpha)% h为检验结果:h=0表示X与Y的中位数之差不显著,h=1表示X与Y的中位数差显著.

[p,h,stats]=signtest(X,Y,alpha) % stats中sign为符号 统计量的值



### 例 两个正态随机样本的中位数相等的假设检验

### 10. 正态分布的拟合优度测试



函数 jbtest

格式 H=jbtest(X) %对输入向量X进行Jarque-Bera测试,显著性水平为0.05.

H=jbtest(X, alpha) %在水平alpha而非5%下施行 Jarque-Bera 测试, alpha在0和1之间.

[H, P, JBSTAT, CV]=jbtest(X, alpha) %P为接受假设的概率值,P越接近于0,则可以拒绝是正态分布的原假设:JBSTAT为测试统计量的值,CV为是否拒绝原假设的临界值.

说明 H为测试结果,若H=0,则可以认为X是服从正态分布的;若X=1,则可以否定X服从正态分布.X为大样本,对于小样本用lillietest函数.



**例** 调用MATLAB中关于汽车重量的数据,测试该数据是否服从正态分布?

load carsmall
[h,p,j,cv]=jbtest(Weight)

```
h = 1
p = 0.0321
j = 6.9594
cv = 5.4314
```

说明 p=3.21%表示应该拒绝服从正态分布的假设;h=1也可否定服从正态分布;统计量的值j=6.9594大于接受假设的临界值cv=5.4314,因而拒绝假设(测试水平为5%)。

# 11. 正态分布的拟合优度测试



函数 lillietest

格式 H=Iillietest(X) %对输入向量X进行Lilliefors测试,显著性水平为0.05.

H=lillietest(X, alpha) %在水平alpha而非5%下施行 Lilliefors测试, alpha在0.01和0.2之间.

[H, P, LSTAT, CV]=lillietest (X, alpha) %P为接受假设的概率值,P越接近于0,则可以拒绝是正态分布的原假设;LSTAT为测试统计量的值,CV为是否拒绝原假设的临界值.

说明 H为测试结果, 若H=0, 则可以认为X是服从正态分布的; 若H=1, 则可以否定X服从正态分布.



```
Y=chi2rnd(10,100,1);
[h,p,l,cv]=lillietest(Y)
```

h = 1 p = 0.0086 1 = 0.1050 cv = 0.0890

说明 h=1表示拒绝正态分布的假设;p=0.0086表示服从正态分布的概率很小;统计量的值1=0.1050大于接受假设的临界值cv=0.0890,因而拒绝假设(测试水平为5%).





从图中看出,数据Y不服从正态分布。

# 12. 单个样本分布的Kolmogorov-Smirnov测试

函数 kstest

格式 H=kstest(X)%测试向量X是否服从标准正态分布,测试水平为5%.

H=kstest(X, cdf)%指定累积分布函数为cdf的测试(cdf=[]时表示标准正态分布),测试水平为5%

H=kstest(X, cdf, alpha) % alpha为指定测试水平

[H, P, KSSTAT, CV]=kstest(X, cdf, alpha)%P为原假设成立的概率, KSSTAT为测试统计量的值, CV为是否接受假设的临界值.

说明 原假设为X服从标准正态分布. 若H=0则不能拒绝原假设, H=1则可以拒绝原假设.



例 产生100个威布尔随机数,测试该随机数服从的分布

```
x=weibrnd(1,2,100,1);
[H,p,ksstat,cv]=kstest(x,[x
weibcdf(x,1,2)],0.05) %测试是否服从威布尔分布
H = 0
p = 0.7207
ksstat = 0.0678
cv = 0.1340
说明 H=0表示接受原假设,统计量ksstat小于临界值表示接受原假设。
```

```
THE CONTRACTOR OF THE PARTY OF
```

[H,p,ksstat,cv]=kstest(x,[x expcdf(x,1)],0.05) %测试是否服从指数分布

```
H = 1
p = 8.0240e-004
ksstat = 0.1955
cv = 0.1340
说明 H=1表明拒绝服从指数分布的假设.
```

[H,p,ksstat,cv]=kstest(x,[],0.05) %测试是否服 从标准正态分布

```
H = 1
p = 9.8857e-026
ksstat = 0.5335
cv = 0.1340
说明 H=1表明不服从标准正态分布.
```

# Klomogorov-Smirnov检验



Klomogorov-Smirnov检验是检验任意已知分布函数的一种有效的假设检验算法. MATLAB的统计学工具箱中提供了kstest函数实现该算法. 其调用格式如下:

```
h=kstest(X)
h=kstest(X, CDF)
h=kstest(X, CDF, alpha)
h=kstest(X, CDF, alpha, type)
[h, p, ksstat, cv]=kstest(....)
```

#### 例



```
clear all;

X=-2:1:4

[h,p,k,c]=kst

XX=-3:.1:5;F=

hold on

G=plot(XX,non

set(F,'LineW:

set(G,'Linew:

legend('经验允

title('经验CD
```



ocation', 'East'

$$p = 0.1359$$

$$k = 0.4128$$

$$c = 0.4834$$

# 13. 两个样本具有相同的连续分布的假设检验

函数 kstest2

格式 H=kstest2(X1, X2) %测试向量X1与X2是具有相同的连续分布,测试水平为5%.

H=kstest2(X1, X2, alpha) % alpha为测试水平 [H, P, KSSTAT]=kstest(X, cdf, alpha) %与指定累积分 布cdf相同的连续分布, P为假设成立的概率

KSSTAT为测试统计量的值.

说明 原假设为具有相同连续分布.测试结果为H,若H=0,表示应接受原假设;若H=1,表示可以拒绝原假设.这是Kolmogorov-Smirnov测试方法.



```
x=-1:1:5;
y=randn(20,1);
[h,p,k]=kstest2(x,y)
h =
p =
   0.0219
k =
   0.6143
说明 h=1表示可以认为向量x与y的分布不相同,相同的概率
只有2.19%.
```

# 四、方差分析



## 1. 单因素方差分析

单因素方差分析是比较两组或多组数据的均值, 它返回原假设——均值相等的概率

函数 anova1

格式 p=anova1(X) %X的各列为彼此独立的样本观察值,其元素 个数相同,p为各列均值相等的概率值,若p 值接近于0,则原假设受到怀疑,说明至少有一列均值与其余列均值有明显不同.

p=anova1(X, group)%X和group为向量且group要与X对应 p=anova1(X, group, 'displayopt ')%displayopt=on/off 表示显示与隐藏方差分析表图和盒图

[p, table]=anova1(…) %table为方差分析表 [p, table, stats]=anova1(…) %stats为分析结果的构造





anova1函数产生两个图:标准的方差分析表图和盒图.

#### 方差分析表中有6列:

第1列(source)显示:X中数据可变性的来源;

第2列(SS)显示:用于每一列的平方和;

第3列(df)显示:与每一种可变性来源有关的自由度;

第4列(MS)显示:是SS/df的比值;

第5列(F)显示:F统计量数值,它是MS的比率;

第6列显示:从F累积分布中得到的概率,当F增加时,p值减少.

**例** 设有3台机器,用来生产规格相同的铝合金薄板.取样测量薄板的厚度,精确至‰厘米.得结果如下:



**例** 建筑横梁强度的研究:3000磅力量作用在一英寸的 横梁上来测量横梁的挠度,钢筋横梁的测试强度是:82 86

79 83 84 85 86 87;其余两种更贵的合金横梁强度测试为

合金1: 74 82 78 75 76 77

合金2: 79 79 77 78 82 79

检验这些合金强度有无明显差异?

#### 解:



```
p = 1.5264e - 004
table='Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
     'Groups'[184.80] [2] [92.40] [15.4] [1.5264e-4]
    'Error' [102.0000] [17] [ 6.0000] []
    'Total' [286.8000] [19] []
                                  []
stats =
   gnames: {3x1 cell}
        n: [8 6 6]
   source: 'anova1'
    means: [84 77 79]
       df: 17
        s: 2.4495
```





**说明** p值(小于0.05)显示, 3种合金是明显不同的, 盒图显示钢横梁的挠度大于另两种合金横梁的挠度.



% $fcdf(x, n_1, n_2)$ :F分布函数CDF的调用命令,其中第一自由度为 $n_1$ ,第二自由度为 $n_2$ 的F分布累积分布函数值

p = 0.0118

Matlab统计箱提供单因素方差分析的函数anoval,调用格式为: p=anoval1(X)

%返回H0(均值相等)成立概率值(接近0(小于alpha),则拒绝H0) p=anova1(X,group)

panova1(X,group,displayopt)

[p,table]anova1(...)

[p,table,stats]=anoval(...)

```
Y=[1073 1107 1093;1009 1092 1029;1060 990 1080;1001
1109 1021;1002 1090 1022;1012 1074 1032;1009 1122
1029;1028 1001 1048];
,'A3','A3'};[p,table,stats]=anova1(Y,alloy)
p = 0.0454
'Source' 'SS' 'df' 'MS'
                           'F' 'Prob>F'
'Groups' [9.6601e+003] [ 2] [4.8300e+003] [3.5948] [0.0454]
'Error' [2.8216e+004] [21] [1.3436e+003] []
'Total' [3.7876e+004] [23]
stats =
   gnames: {3x1 cell}
      n: [8 8 8]
   source: 'anova1'
   means: [1.0243e+003 1.0731e+003 1.0443e+003]
      df: 21
      s: 36.6553
```





#### 结果分析

由于得出和概率值p值(0.0454)<alpha(0.05),故应该拒绝给定的原假设H0,认为三种饲料的增肥作用有明显的差别.从盒式图可以看出,第1种(A1水平)饲料显然低于第2种(A2水平),其均值的估计值分别为:1.0243e+003 1.0731e+003 1.0443e+003 标准差的估计值为:36.6553



计算各水平均值的置信区间公式的程序实现

在方差分析结果(即拒绝原假设)情形下的实现程序如下:

调用方差分析和各水平均值mu的1-alpha的置信区间公式(见教材 P377 8.1.23)即

$$(\overline{Y}_{u\cdot} - \overline{Y}_{v\cdot} \pm \Delta_{uv}) \qquad \Delta_{uv} = t_{1-0.5\alpha}(n-r)\sqrt{\frac{S_E}{n-r}(\frac{1}{n_u} - \frac{1}{n_v})}$$

t分位数的计算公式调用命令: tinv(1-alpha,n) n为自由度

```
clear all; close;
muhat=[1.0243e+003 1.0731e+003 1.0443e+003];
                %各水平的均值估计值,由第一问实现
sigmahat=36.6553; %各水平的同方差估计值,由第一问实现
mi=[8 8 8]; %各水平下的试验次数
for i=1:3 %求各水平的均值置信区间(3个置信水平)
 muci L(i)=muhat(i)-sigmahat*tinv(0.975,21)/sqrt(mi(i));
               %对应均值的置信下限
 muci U(i)=muhat(i)+sigmahat*tinv(0.975,21)/sqrt(mi(i));
               %对应均值的置信上限
end
muci L %输出各水平均值对应的置信下限
muci U %输出各水平均值对应的置信上限
  muci_L =
    1.0e+003 *
      0.9973 1.0461
                          1.0173
  muci_U =
    1.0e+003 *
      1.0513 1.1001
                        1.0713
```



# 拟将对上题同时给出否定原则假设情形下,各均值差的置信区间估计(多重比较)

教材 P383 多重比较 效应差的置信区间 例题 8.2.1

%[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA): 返回水平α的期望、方差值和置信区间

%c=multcompare(stats) %根据结构变量体stats中的信息进行 多重比较,返回两两比较的结果矩阵

```
clear all; close all;
Y=[1073 1107 1093;1009 1092 1029;1060 990 1080;1001
1109 1021;1002 1090 1022;1012 1074 1032;1009 1122
1029;1028 1001 10481;
,'A3','A3'};
[p,table,stats]=anova1(Y,alloy)
c=multcompare(stats)%根据结构变量体stats中的信息进行多重比较,
               返回两两比较的结果矩阵
p = 0.0454
'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Groups' [9.6601e+003][ 2] [4.8300e+003][3.5948] [0.0454]
'Error' [2.8216e+004][21] [1.3436e+003] []
                                          []
'Total' [3.7876e+004][23] [] []
stats = gnames: {3x1 cell} n: [8 8 8] source: 'anoval'
   means: [1.0243e+003 1.0731e+003 1.0443e+003]
      df: 21 s: 36.6553
c = 1.0000 2.0000 -95.0712 -48.8750 -2.6788
  1.0000 3.0000 -66.1962 -20.0000 26.1962
   2.0000 3.0000 -17.3212 28.8750 75.0712
```



结论: mu1-mu2 在0的左边, 所以我们可能以概率95%认为mu1小于mu2,



其他两个区间均包含0点,统计上可以认为在alpha=0.05条件下无显著差异.

注:交互式图形,可以通过鼠标单击的方式进行两两比较检验(见上下两图).

该交互式图形上用一个符号(圆圈)标出每组的组均值,用一条线段标出了每组的组均值置信区间.如果某两条线段不相交,即没有重叠部分,则说明这两个组的组均值之间的差异是显著的(本题三组之间均无重叠部分,即三组之间的差异是显著的);如果某两条线段有重叠部分,则说明这两个组的组均值之间的差异是不显著的.也可以用鼠标在图上任意选一组,选中的组以及与选中的组差异显著的其他组均用高亮显示,选中的组用蓝色显示,与选中的组差异显著的有显著差异;下图2是A2(蓝色 选中的组)与A1(红色)是显著差异的;下图3是A3(蓝色 选中的组)没有与它显著异的)



```
clear all; close all;
Y=[12 14 19 24 18 12 17 30 13 21];
alloy={'A1' 'A2' 'A3' 'A4' 'A1' 'A2' 'A3' 'A4' 'A2' 'A3'};
[p,table,stats]=anova1(Y,alloy)
    p =
        0.0071
    table =
        'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
       'Groups' [258] [3] [86] [11.2174] [0.0071]
        'Error' [ 46] [ 6] [7.6667] []
                                            []
       'Total' [304] [9] []
                                 stats =
        gnames: {4x1 cell}
            n: [2 3 3 2]
        source: 'anoval'
         means: [15 13 19 27]
           df: 6
            s: 2.7689
```





**结果分析** 由于得出和概率值p值(0.0071)<alpha(0.05), 故应该拒绝给定的原假设H0,认为四种新包装的销售效果有明显的差别.从盒式图可以看出,第2种(A2水平)饲料明显低于第4种(A4水平),其均值的估计值分别为:15 13 19 27 标准差的估计值为:2.7689

#### 在方差分析结果(即拒绝原假设)情形下的实现程序如下:



$$(\overline{Y}_{u\cdot} - \overline{Y}_{v\cdot} \pm \Delta_{uv}) \qquad \Delta_{uv} = t_{1-0.5\alpha} (n-r) \sqrt{\frac{S_E}{n-r}} (\frac{1}{n_u} - \frac{1}{n_v})$$

```
muhat=[15 13 19 27]; %各水平的均值估计值,由第一问实现 sigmahat=2.7689; %各水平的同方差估计值,由第一问实现 mi=[2 3 3 2]; %各水平下的试验次数 for i=1:4 %求各水平的均值置信区间(3个置信水平) muci_L(i)=muhat(i)-sigmahat*tinv(0.975,6)/sqrt(mi(i)); %对应置信下限 muci_U(i)=muhat(i)+sigmahat*tinv(0.975,6)/sqrt(mi(i)); %对应置信上限 end muci_L %输出各水平均值对应的置信下限 muci_U %输出各水平均值对应的置信上限
```

```
muci_L = 10.2092 9.0883 15.0883 22.2092
muci_U = 19.7908 16.9117 22.9117 31.7908
```

# 类似上例: 拟将对教材例题8.1.4在否定原则假设情形下,各均值差的置信区间估计(P386 例8.2.3)



%c=multcompare(stats) %根据结构变量体stats中的信息进行多重比较,返回两两比较的结果矩阵

```
Y=[12 14 19 24 18 12 17 30 13 21];
alloy={'A1' 'A2' 'A3' 'A4' 'A1' 'A2' 'A3' 'A4' 'A2' 'A3'};
[p,table,stats]=anoval(Y,alloy)
c=multcompare(stats)
```

%根据结构变量体stats中的信息进行多重比较,返回两两比较的结果矩阵



```
p =
   0.0071
table =
   'Source' 'SS'
                  'df'
                          'MS'
                                    'F'
                                               'Prob>F'
   'Groups' [258] [3] [ 86] [11.2174] [0.0071]
   'Error' [ 46] [ 6] [7.6667]
                                           []
                                                     'Total' [304] [9]
                                []
                                           []
                                                     []
stats =
   gnames: {4x1 cell}
        n: [2 3 3 2]
   source: 'anoval'
    means: [15 13 19 27]
       df: 6
        s: 2.7689
C =
   1.0000
             2.0000 -6.7499 2.0000
                                       10.7499
   1.0000
            3.0000 -12.7499 -4.0000 4.7499
   1.0000
            4.0000 -21.5850
                            -12.0000
                                       -2.4150
            3.0000 -13.8262 -6.0000 1.8262
   2.0000
   2.0000
             4.0000 -22.7499
                            -14.0000
                                       -5.2501
   3.0000
             4.0000 - 16.7499
                            -8.0000
                                        0.7499
```





# 单因素方差分析

其他习题解答见文档

### 2. 双因素方差分析



函数 anova2

格式 p = anova2(X, reps)

p = anova2(X, reps, 'displayopt')

 $[p, table] = anova2(\cdots)$ 

[p, table, stats] = anova2(···)

说明 执行平衡的双因素试验的方差分析来比较X中两个或多个列(行)的均值,不同列的数据表示因素A的差异,不同行的数据表示另一因素B的差异.如果行列对有多于一个的观察点,则变量reps指出每一单元观察点的数目,每一单元包含reps行,如: reps=2

| _ A=1            | A=2              |        |
|------------------|------------------|--------|
| $X_{111}$        | X <sub>112</sub> | B = 1  |
| X <sub>121</sub> | X <sub>122</sub> | )D — 1 |
| X <sub>211</sub> | X <sub>212</sub> | B = 2  |
| X <sub>221</sub> | X <sub>222</sub> | )D - 2 |
| X <sub>311</sub> | X <sub>312</sub> | B = 3  |
| X <sub>321</sub> | X <sub>322</sub> | )D - 3 |

其余参数与单因素方差分析参数相似





燃料与每种推进器的组合各发射火箭2次,得到结果如下:

| 推进器 (B) | B1       | B2       | В3       |
|---------|----------|----------|----------|
| A1      | 58. 2000 | 56. 2000 | 65. 3000 |
|         | 52. 6000 | 41. 2000 | 60.8000  |
| A2      | 49. 1000 | 54. 1000 | 51.6000  |
| 燃料A     | 42.8000  | 50. 5000 | 48. 4000 |
| A3      | 60. 1000 | 70. 9000 | 39. 2000 |
|         | 58. 3000 | 73. 2000 | 40.7000  |
| A4      | 75. 8000 | 58. 2000 | 48. 7000 |
|         | 71. 5000 | 51. 0000 | 41. 4000 |

考察推进器和燃料这两个因素对射程是否有显著的影响?

| X = [58.2000] | 56   | .2000 | 65.3000   |
|---------------|------|-------|-----------|
| 52.6000       | 41   | .2000 | 60.8000   |
| 49.1000       | 54   | .1000 | 51.6000   |
| 42.8000       | 50   | .5000 | 48.4000   |
| 60.1000       | 70   | .9000 | 39.2000   |
| 58.3000       | 73   | .2000 | 40.7000   |
| 75.8000       | 58   | .2000 | 48.7000   |
| 71.5000       | 51   | .0000 | 41.4000]; |
| P=anova2 (X   | (,2) |       | 1         |

 $P = 0.0035 \quad 0.026$ 

0.0260 0.0001

|             |         |    |          | ANOVA Table |         |  |
|-------------|---------|----|----------|-------------|---------|--|
| Source      | SS      | df | MS       | F           | Prob>F  |  |
| Columns     | 370. 98 | 2  | 185.49   | 9. 39       | 0. 0035 |  |
| Rows        | 261.68  | 3  | 87, 225  | 4.42        | 0. 026  |  |
| Interaction | 1768.69 | Б  | 294, 782 | 14. 93      | 0.0001  |  |
| Error       | 236, 95 | 12 | 19. 746  |             |         |  |
| Total       | 2638.3  | 23 |          |             |         |  |





# 3. 方差分析的具体案例分析

(参见交通问题研究多路段车流数据的方差分析)



# Thanks for your attention