Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №2 дисциплины «Алгоритмизация» Вариант 14

Выполнил: Касимов Асхаб Арсенович 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р А., канд. технических наук, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой Дата защиты

Ход работы

1. Написал программу, которая считает числа Фибоначчи через рекурсивную функцию и измерил время за которое она рассчитывает каждое число.

```
Sampling

Thomaticalizes

Thom
```

Рисунок 1. Результат работы программы

2. Написал программу, считающую числа Фибоначчи с зписью их в массив для исключения многочисленных повторяющихся вычислений. Также добавил цикл, делающий 1000000 итераций для каждого числа, чтобы появилась возможность измерить время, поскольку программа работала слишком быстро.

```
Figure and the price of the pri
```

Рисунок 2. Результат программы для первых 30 чисел последовательности

3. Собрал данные и сделал наглядную демонстрацию разницы в эффективности этих двух программ с помощью таблиц excel.

Таблица 1. Время работы алгоритмов вычисления чисел Фибоначчи

n	time (s) NAIV	time (s) ARR
0	0,001	0,000000239
1	0,001	0,000000463
2	0,001	0,000000681
3	0,001	0,000000918
4	0,001	0,000001218
5	0,001	0,000001465
6	0,001	0,000001705
7	0,001	0,000001946
8	0,001	0,000002216
9	0,001	0,000002477
10	0,001	0,000002748
11	0,001	0,000003032
12	0,001	0,000003328
13	0,001	0,000003616
14	0,001	0,000003896
15	0,001	0,000004213
16	0,001	0,000004516
17	0,002	0,000004816
18	0,003	0,000005102
19	0,003	0,000005393
20	0,004	0,000005714
21	0,004	0,000006042

22	0,006	0,000006376	
23	0,008	0,000006718	
24	0,011	0,000007049	
25	0,016	0,000007379	
26	0,024	0,000007689	
27	0,037	0,000008083	
28	0,057	0,000008408	
29	0,088	0,000008773	
30	0,139	0,000009147	
31	0,221	0,000009525	
32	0,35	0,000009882	
33	0,583	0,000010253	
34	0,934	0,000010595	
35	1,507	0,000010949	
36	2,422	0,000011335	
37	3,913	0,000011699	
38	6,364	0,000012087	
39	10,245	0,000012467	
40	16,297	0,000012839	
41	26,601	0,000013247	
42	43,184	0,000013653	
43	69,842	0,000014042	
44	112,924	0,000014459	
45	182,742	0,000014883	
46	295,9	0,000015295	
47	479,508	0,000015728	
48	782,629	0,000016145	
49	1270,29	0,000016537	
50	2067,22	0,000016961	

Рисунок 3. Графики для чисел Фибоначчи

4. Написал программу, вычисляющую наибольший общий делитель для двух целых чисел через цикл с перебором всех возможных целых чисел, которые меньше максимального из пары данных.

```
| MORBINIACL BOSMOXHOCTS | ITEMPHITE | BPMM| | SEE | Code | Code
```

Рисунок 4. Результат работы программы (НОД через перебор)

5. Разработал программу, выполняющую расчёт НОД для двух целых чисел с помощью алгоритма Евклида.

Рисунок 5. Результат работы программы (НОД через алгоритм Евклида)

6. Собрал данные из консоли и сделал графическую демонстрацию превосходства второго метода над первым.

Таблица 2. Время работы алгоритмов вычисления НОД

а	b	time (s) Naiv	time (s) Euclid
3918848	1653264	0,006	0,0000001683
3918848	3306528	0,007	0,0000001389
3918848	6613056	0,01	0,0000001447
3918848	13226112	0,02	0,0000001434
3918848	26452224	0,038	0,0000001305
3918848	52904448	0,076	0,0000001225
3918848	105808896	0,175	0,0000001175
3918848	211617792	0,311	0,000000114
3918848	423235584	0,623	0,0000001149
3918848	846471168	1,21	0,0000001155
3918848	1692942336	2,413	0,000000114

Рисунок 6. Графики для НОД

Вывод: в ходе выполнения лабораторной работы был проведен сравнительный анализ наивных и оптимизированных алгоритмов для решения задач. Из полученных результатов можно сделать следующий вывод: наивные реализации алгоритмов зачастую показывают значительно меньшую производительность. На примере алгоритма поиска НОД для двух целых чисел и вычисления чисел Фибоначчи оптимизированный алгоритм показал эффективность в десятки тысяч раз превосходящую таковую у наивной реализации. Таким образом, использование наивных алгоритмов является нецелесообразным, что значит, что при разработке программы необходимо обращать внимание на оптимизацию и доработку.