(4)

(b)

(a) Name two advantages of MOSFET. (b) Draw the cross sectional diagram for an enhancement NMOSFET and describe very briefly the structure. Are IG = 0 and ID = IS? (15)

(a)

small size (scaled down easily) and low power consumption.

D: drain

An NMOSFET consists of a metal gate insulated from a p-type semiconductor substrate (or body) by an insulating layer of silicon dioxide. On either side of the gate there are n type regions forming the drain and source.

(10)

In the circuit, find V1 . Show clearly your reasons . (16)

Given that VT = 1V, K = 2 mA/V2.

At triode region , $VGS \ge VT$, VDS < VGS - VT , ID = 2K(VGS - VT)VDS - KVDS2At saturation region , $VGS \ge VT$, $VDS \ge VGS - VT$, ID = K[(VGS - VT)2]

(c)
$$V1 - \begin{vmatrix} 2V \\ 2V \\ 2mA \\ 1k\Omega \end{vmatrix}$$

$$V_{GS} = V1 - 2 \qquad V_{DS} = 0.5V$$

NMOS may be triode since $V_{DS} \sim 0$ (4)

$$\therefore \mathbf{I} = 2\mathbf{K}[(\mathbf{V}_{GS} - \mathbf{V}_{T})\mathbf{V}_{DS} - \frac{\mathbf{V}_{DS}^{2}}{2}]$$

$$\therefore 2\mathbf{mA} = 2 * 2[(\mathbf{V}1 - 2 - 1) * 0.5 - \frac{0.5^2}{2}]$$

$$\therefore V1 = (\frac{2mA}{4} + 0.125) * 2 + 3 = 4.25V$$
 (8)

Hence NMOS is triode since

1.
$$V_{GS} > V_{T}$$
 2.25 > 1
2. $V_{DS} < V_{GS} - V_{T}$ 0.5 < 2.25 - 1 (4)

Find I. Show clearly your reasons. (18)

Given the NMOS are identical,

$$\begin{split} &V_T \!=\! 1V, \ K \!=\! 0.25 m \ A/V^2 \ . \\ &At \ triode \ region \ , \ VGS \ge VT \quad , \ VDS < VGS \\ &- VT \quad , \ ID = 2K(VGS - VT)VDS - KVDS2 \\ &At \ saturation \ region \ , \qquad VGS \ge VT \quad , \\ &VDS \ge VGS \ - VT \quad , \quad ID = K[(VGS - VT)2] \end{split}$$

Assume 2 NMOS are in saturation and use KCL

(4)

$$\therefore \mathbf{I_D} = \mathbf{K} (\mathbf{V_{GS}} - \mathbf{V_T})^2$$
$$\therefore 0.25\mathbf{m}^* (6 - \mathbf{Vo} - 1)^2 + \frac{6 - \mathbf{Vo}}{1\mathbf{k}\Omega} = 0.25\mathbf{m}^* (\mathbf{Vo} - 1)^2 + \frac{\mathbf{Vo}}{1\mathbf{k}\Omega}$$

(4)

From symmetry,
$$V_0 = 3V$$
 (5)

$$\therefore \mathbf{I} = 0.25 \mathbf{m} * (6 - 3 - 1)^2 = 1 \mathbf{m} \mathbf{A}$$
 (2)

$$V_{GS1} = 3V$$
 $V_{DS1} = 3V$
 $V_{GS2} = 3V$ $V_{DS2} = 3V$
Hence NMOS is saturate since
1. $V_{GS} > V_{T}$ $3 > 1$
2. $V_{DS} > V_{GS} - V_{T}$ $3 > 3 - 1$ (4)

(17)

- In the diode circuit, find Vc. Hence sketch and label clearly Vo(t).
 - (a) D1 is an <u>offset diode</u> with VF = 0.7V. (17)

$$V_C = 9.3V \tag{11}$$

$$V_0 = V_i + 1 + V_c = V_i + 10.3V$$
 (3)

OR

$$V_0 = V_i + V_c = V_i + 9.3V$$
 (3)

In the ideal diode circuit, plot V3 versus V2 for $18V \ge V2 \ge 0V$. (24)

(b)

- 4
- (a) Find the model of the diode D1 at breakdown.
- (b) Find I1 if R3 = $1k\Omega$, I2 = 5mA, R1 = R2 = $4k\Omega$, V1 = 3V.
- (c) Find V2 if V1 = 4.7V, R1 = R2 = $1k\Omega$, R3 = $2k\Omega$, I1 = -1mA, V4 = 3V.

Show clearly your reasons . (30) Given that D1 and D2 are identical. Diode equation is $I_D = I_O *[e^{\frac{v_D}{25mV}} - 1]$ and the diode has the I-V curve as shown.

(a)
$$\bigvee_{\mathbf{z}_{0}} \mathbf{v}_{\mathbf{z}_{0}} = 18V$$

$$\bigvee_{\mathbf{z}_{0}} \mathbf{v}_{\mathbf{z}_{0}} = 18V$$

$$\bigvee_{\mathbf{z}_{0}} \mathbf{v}_{\mathbf{z}_{0}} = 3V/0.4A = 7.5\Omega$$
(7)

$$V4 = 5V > 3V$$
D1 is OFF (5)
$$I1 = I_0 = 6.9 \times 10^{-16} A$$
 (3)

$$\frac{3-\mathbf{v}4}{4\mathbf{k}} + 5\mathbf{m} = \frac{\mathbf{v}4}{1\mathbf{k}}$$

$$3-\mathbf{v}4 + 20 = 4\mathbf{v}4$$

$$\mathbf{v}4 = 4.6\mathbf{V}$$
Use KCL and D1 is OFF

(c)

$$\therefore I2 = 0.5 \text{mA} \tag{5}$$

$$\therefore 0.5 \text{mA} \cong I_{O}(e^{\frac{\text{VD}}{25 \text{mV}}})$$
 (2)

:
$$VD = 25mV * log_e \frac{0.5mA}{6.9x10^{-19}A} \cong 682.7mV$$
 (5)

$$\therefore V2 \cong 3.5 + 0.683 = 4.183V$$
 (3)

OR

$$\therefore 1\text{mA} = I_{O} \left(e^{\frac{\text{VD}}{25\text{mV}}} - 1\right) \cong I_{O} \left(e^{\frac{700\text{mV}}{25\text{mV}}}\right)$$
$$\therefore 0.5\text{mA} \cong I_{O} \left(e^{\frac{\text{VD}}{25\text{mV}}}\right)$$

$$\therefore \log_{e} 2 = \frac{700 \text{mV} - \text{VD}}{25 \text{mV}}$$

$$\therefore$$
 V2 \cong 3.5 + 0.683 = 4.183**V**

Find IE. Given $V_0 = 5.8V$.

Show clearly your reasons. For the BJT, given VBE(ON)

=
$$0.7V$$
, $\beta = 10$, VCESAT = $0.2V$.

= 0.7v, β = 10, VCESAT = 0.2V. For the diode, the diode equation is $I_D = I_O * [e^{\frac{V_D}{25mV}} - 1]$ and $I_D = 10^{-13}A$. In breakdown, $V_{ZO} = 5V$, $r_Z = 5\Omega$. (18)

$$\therefore VB = 0.7V \tag{3}$$

D is breakdown since
$$Vo = 5.8V$$
 (4)

(40)

- 6
- (a) Name two III-V compound semiconductors.
- (b) Find the conductivity of intrinsic (pure) <u>Germanium (Ge</u>). Find also the resistivity.
- (c) The pure Ge is doped to <u>n-type Ge</u> with a dopant of $1x10^{22}/m3$. Find the conductivity. Find also the hole concentration (in atoms / m3).
- (d) 5×10^{20} / m3 indium atoms are used to dope the <u>pure Si</u>. Find the electron density n, hole density p, and conductivity σ . Is the doped Si n-Si or p-Si?

Given that $\sigma = e(n\mu_n + p\mu_p)$, $\rho = 1/\sigma$, $np = n_i^2$, $e = 1.6 \times 10^{-19}$ C For Ge: $n_i = 2.4 \times 10^{19}/m^3$, $\mu_p = 0.19 \ m^2/Vs$, $\mu_n = 0.39 \ m^2/Vs$. For Si: $ni = 1.5 \times 10^{16}/m^3$, $\mu_p = 0.048 \ m^2/Vs$, $\mu_n = 0.135 \ m^2/Vs$. Some atoms: group 3 (boron B, gallium Ga, indium In); group 5 (nitrogen N, phosphorus P, arsenic As) (40)

- (a) III-V compound GaAs, InP etc (4)
- **(b)** The conductivity of intrinsic (pure) Ge

$$\sigma_{i} = e(\mu_{N} \mathbf{n}_{i} + \mu_{P} \mathbf{n}_{i}) = e \mathbf{n}_{i} (\mu_{P} + \mu_{N})$$

$$= 1.6 \mathbf{x} 10^{-19} \mathbf{x} 2.4 \mathbf{x} 10^{19} \mathbf{x} (0.19 + 0.39) \cong 2.227 / \Omega \mathbf{m}$$

$$\rho_{i} = \frac{1}{\sigma_{i}} \cong \frac{1}{2.227} \cong 0.45 \Omega \mathbf{m}$$
(4)

(b) $\therefore \sigma_{N} = \mathbf{e}(\mu_{P}\mathbf{p} + \mu_{N}\mathbf{n}) \cong \mathbf{e}(\mu_{N}\mathbf{n})$ $= 1.6\mathbf{x}10^{-19} * (0.39 * 1\mathbf{x}10^{22}) \cong 624/\Omega\mathbf{m}$ (7)

$$\therefore \mathbf{p} = \frac{\mathbf{n_i}^2}{\mathbf{n}} = \frac{(2.4 \times 10^{19})^2}{1 \times 10^{22}}$$

$$\approx 5.76 \times 10^{16} \text{ holes/m}^3$$
(6)

(c) **P-type** (2)

$$\therefore \mathbf{p} \cong 5\mathbf{x}10^{20} \mathbf{ holes/m}^3$$
 (4)

$$\therefore \mathbf{n} = \frac{\mathbf{n_i}^2}{\mathbf{p}} = \frac{(1.5\mathbf{x}10^{16})^2}{5\mathbf{x}10^{20}}$$

$$\approx 4.5\mathbf{x}10^{11} \text{ electrons/m}^3$$
(6)

$$\therefore \sigma_{P} = e(\mu_{P}p + \mu_{N}n) \cong e(\mu_{P}p)$$
$$= 1.6x10^{-19} * 0.048 * 5x10^{20}$$
$$= 3.84/\Omega m$$

- 7
- (a) If $X = 1k\Omega$, $Y = 2k\Omega$, V2 = 0V, V1 = given waveform, draw the waveform of Vo.
- (b) If $Y=1\mu F$, $X=1k\Omega$, V1=0, $\underline{V2=given}$ $\underline{waveform}$. Derive the equation for the output voltage V_O , and hence draw the waveform of V_O . Given Vo(0)=0V. Assume the op amp is ideal. (21)

(a)

$$V_0/V_1 = 1 + 2k/1k = 3$$
(8)

$$\frac{V2}{R} = C \frac{d(0 - Vo)}{dt}$$

$$\frac{dVo}{dt} = \frac{-V2}{CR} = \frac{-2V}{1ms}$$
given $Vo(0) = 0V$ (8)

(5)

- (a) Find the complex transfer function $G \ (= Vo \ / \ Vs \)$ in terms of R1, C, R2 and jw .
- (b) If R1 = $2k\Omega$, R2 = $5k\Omega$, C = 0.01uF, plot the magnitude of G (|G|) versus ω . Show clearly the value of |G| when $\omega=0$, $\omega=\infty$, and $\omega=\omega O$ (cut-off frequency) in your plot . Find also ωO . Assume op amp is ideal.

$$\frac{\mathbf{V_{0}}}{0.5\mathbf{V_{S}}} = -\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}} = -\frac{2\mathbf{R}_{2} / / \frac{1}{\mathbf{j}\omega \mathbf{C}}}{\mathbf{R}_{1}}$$

$$\frac{\mathbf{V_{0}}}{\mathbf{V_{S}}} = -\frac{2\mathbf{R}_{2} * \frac{1}{\mathbf{j}\omega \mathbf{C}}}{2\mathbf{R}_{1} (2\mathbf{R}_{2} + \frac{1}{\mathbf{j}\omega \mathbf{C}})} = -\frac{2\mathbf{R}_{2}}{2\mathbf{R}_{1}} * \frac{1}{1 + \mathbf{j}\omega \mathbf{C} * 2\mathbf{R}_{2}}$$

$$= -\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}} * \frac{1}{1 + \mathbf{j}\frac{\omega}{\omega_{0}}}$$
(10)

$$2\omega CR2 = 1$$

$$\omega = \omega_0 = \frac{1}{2CR2} = \frac{1}{2*0.01u*5k} = 10krad/s$$
 (5)

(3)

9

In an ideal op amp filter circuit, the complex transfer function G (=

$$V_O/V_S$$
) is given as.
$$\frac{-20}{1-\frac{2\mathbf{j}}{\omega CR}}$$

- (a) If $V_0(t) = \frac{-10}{\sqrt{17}}\cos(200kt + 66^\circ) V$, find $V_0(t)$.
- (b) Find the cut-off frequency $\omega = \omega O$. Is the ideal op amp circuit a low pass filter?

Given that 1/CR = 400 krad/s. (20)

(a)

$$\mathbf{G} = \frac{-20}{1 - 2\mathbf{j}/200\,\mathbf{k} * \mathbf{CR}} = \frac{-20}{1 - 4\mathbf{j}} = \frac{-20}{\sqrt{17} \angle -76^{\circ}}$$
 (5)

$$\therefore \mathbf{V_s} = \frac{-10}{\sqrt{17}} \angle 66^{\circ} / \frac{-20}{\sqrt{17}} \angle 76^{\circ} = 0.5 \angle -10^{\circ} \mathbf{V}$$
 (5)

:
$$V_s(t) = 0.5 \cos(200 kt - 10^{\circ})V$$
 (3)

Circuit is a high pass filter

(b)

$$G = \frac{-20}{1 - \mathbf{j}} \Rightarrow 2/\omega \mathbf{CR} = 1$$

$$\omega = \omega_0 = \frac{2}{\mathbf{CR}} = 800 \mathbf{krad/s}$$
 (4)

Draw the cross sectional structure of a NPN BJT transistor operated in the amplifier mode. Describe the movement of electrons, the designs in the emitter/base/collector, and explain briefly the equation IE \approx IC / α . Given $I_C \cong \beta I_B$, find α if $\beta = 200$. (17)

(4)

- 1. EB Junction is a forward bias (on) diode and BC is reverse bias (off) diode
- 2. <u>E is very heavily doped</u> (N + for NPN). E has <u>many electrons</u>,
- 3. <u>B is very thin</u>. So <u>most electrons</u> injected from E (to B) are attracted to C and

$$I_{C} \cong \alpha I_{E}$$

$$I_{E} \cong \frac{I_{C}}{\alpha} = I_{B} + I_{C} = \frac{I_{C}}{\beta} + I_{C}$$

$$hence \frac{1}{\alpha} = \frac{1}{\beta} + 1$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1} = \frac{200}{201}$$
(6)

Draw the small signal (AC) equivalent circuit of the BJT amplifier and find the voltage gain Av (= Vo / Vi).

Given
$$r\pi=10\Omega,\ ro=\infty\Omega$$
 , $\beta=100$, and $V_{CESAT}=0.2V$, $V_{BE(ON)}=0.7V$.
(19)

If IB = 0.2mA, find IC/IB.

Show clearly your reasons. For the BJT, given $V_{BE(ON)} = 0.7V, \, \beta = 100, \, V_{CESAT} = 0.2V. \, (20)$

(a) when $V_{CE} = V_{CESAT}$ $I_{C} \cong I_{E} \cong \frac{15.8V - 0.2V}{4k\Omega} = 3.9mA$

Now IB = 0.2mA, VB = 8.7V, VE = 8V, IE = 4mA, hence BJT is SAT

(OR IB \sim IC/ $\beta \sim 0.04$ mA

But now IB ~ 0.2mA, hence BJT is SAT)

Hence Vout = 8.2V, Ic = 3.8mA (17)

∴
$$\beta' = \frac{I_C}{I_B} = \frac{3.8 \text{mA}}{0.2 \text{mA}} = 19$$
 (3)

Given the BJT circuit below and the $\rm\,I_{C}\,\text{-}V_{CE}$ curve of the BJT.

Given the VB waveform and VCEQ = 10V. (a) Find VCC , draw the load line $V_{CE} = VCC - I_{C}R_{C}$ and locate the Q point on the load line .

- (b) Estimate the $\underline{\text{voltage gain}}$ (VCE / VIN) from the load line and IC -VCE curves . Show also on the load line the range of movement of the bias point . Draw and label also the waveform of VCE.
- (c) If VBE(ON) is changed from 0.7V to 0.62V, draw roughly and label the waveform of IC. (33)

For the BJT, given $V_{BE(ON)} = 0.7V$, $V_{CESAT} = 0.2V$.

Draw <u>load line</u>, Draw <u>Q point</u>,

(a)

$$\therefore \mathbf{I}_{BQ} = \frac{0.8\mathbf{V} - 0.7\mathbf{V}}{1\mathbf{k}\Omega} = 0.1\mathbf{m}\mathbf{A}$$

$$\therefore \mathbf{I}_{CQ} = 20\mathbf{m}\mathbf{A}$$
(6)

:
$$V_{CC} = 10V + 20 \text{mA} * 500\Omega = 20V$$
 (4)

(b)

voltage gain
$$A_{v} = \frac{v_{CE}}{v_{B}} = \frac{V_{CE2} - V_{CE1}}{V_{in2} - V_{in1}}$$

$$\approx \frac{14V - 6V}{0.76V - 0.84V} \approx -100$$
(5)

If VBE(ON) is changed to 0.62V, Q point moves to IB = 0.18mA, IC = 36mA, IC waveform ~

