Jahnavi Bora

Due Date: Thursday, July 7, 2022

PROBLEM #1:

For each of the following statements, determine whether it is true or false. Label "T" if it is true, otherwise label "F".

a. If X_1, \dots, X_n are independent and are from a distribution with mean μ and variance σ^2 , then the sample variance S^2 is an unbiased estimator of the variance σ^2 where

 $S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} (X_{i} - \overline{X}) \right).$

- b. If X_1, \dots, X_n are from a distribution with mean μ and variance σ^2 , then the sample mean \overline{X} is an unbiased estimator of μ .
- c. If $\hat{\theta}$ is a point estimator of θ with $\mathbb{E}(\hat{\theta}) = \theta$, then $\hat{\theta}$ is an unbiased estimator of θ .
- d. If X_1, \dots, X_n is a random sample from a normal distribution with mean μ and variance σ^2 , then \overline{X} is the MVUE for μ .
- e. The likelihood function tells us how likely the observed sample is as a function of the possible parameter values. T
- f. S^2 defined above as a point estimator of the variance σ^2 can also be deduced from maximum likelihood estimation.
- g. Let $\hat{\theta}$ be the maximum likelihood estimator of the parameter θ . Then the maximum likelihood estimator of $\sqrt{\theta}$ is $\sqrt{\hat{\theta}}$. \in
- h. The point estimator of the population proportion p is the sample proportion $\hat{p} = X/n$ where *n* is the sample size and *X* is the number of "successes" in the sample.
- i. The maximum likelihood estimator $\hat{\theta}$ of a population parameter θ is its MVUE.
- j. If X_1, \dots, X_n is a random sample from a normal distribution with mean μ and variance σ^2 , then the maximum likelihood estimator of μ is \overline{X} which is the same as the one obtained from the method of moments.

a) F		x
めて		T
c)T		TC
T (b)		<i>y</i> '
e) T		
DF 8	1	
a) F		

PROBLEM #2:

Consider a random sample X_1, \dots, X_n from the shifted exponential pdf

$$f(x; \lambda, \theta) = \begin{cases} \lambda e^{-\lambda(x-\theta)}, & x \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$

Obtain the maximum likelihood estimators of θ and λ . Show your work.

$$f(x_1, \dots, x_n; \lambda) = (\lambda e^{\lambda} x_1) \dots (\lambda e^{\lambda} x_n) = \lambda e^{-\lambda} x_1$$

$$\lim_{N \to \infty} \{x_1, \dots, x_n; \lambda\} = \lim_{N \to \infty} \{x_1, \dots, x_n; \lambda\} = \lim_{N$$

Thus
$$\hat{\theta} = x(1)$$

PROBLEM #3:

Let *X* denote the proportion of allotted time that a randomly selected student spends working on a certain aptitude test. Suppose the pdf of *X* is

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta}, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

where $-1 < \theta$. A random sample of ten students yields data $x_1 = 0.92$, $x_2 = 0.79$, $x_3 = 0.90$, $x_4 = 0.65$, $x_5 = 0.86$, $x_6 = 0.47$, $x_7 = 0.73$, $x_8 = 0.97$, $x_9 = 0.94$, $x_{10} = 0.77$.

- Use the method of moments to obtain an estimator of θ , and then compute the estimate for this data. Show your work.
- Obtain the maximum likelihood estimator of θ , and then compute the estimate for the given data. Show your work.

SOLUTION:
$$E(x) = \int x fx dx$$

$$E(x) = \int_{0}^{1} x (\theta + 1) x^{\theta}$$

$$= \int_{0}^{1} (\theta + 1) x^{\theta + 1} dx$$

$$= (\theta + 1) \left[\frac{x^{\theta + 2}}{\theta + 2} - \frac{x^{\theta + 2}}{\theta + 2} \right]_{0}^{1}$$

$$= (\theta + 1) \left[\frac{\theta + 2}{\theta + 2} - \frac{x^{\theta + 2}}{\theta + 2} \right]_{0}^{1}$$

$$= \frac{\theta + 1}{\theta + 2} = \overline{x}$$

$$= \frac{\theta + 1}{\theta + 2} = \frac{\pi}{1 - 2}$$

$$= \frac{\pi}{1 - 2}$$

PROBLEM #4:

Let X_1, \dots, X_n be a random sample from the probability density function

$$f(x|\theta) = \theta x^{-2}, \quad 0 < \theta \le x < \infty.$$

Find the MLE of θ and the method of moments estimator of θ , respectively. Show your work.

A)
$$f(x|\theta) = \frac{\theta}{x}$$

$$E(x) = \int_{0}^{\infty} xfxcdx$$

$$E(x) = \int_{0}^{\infty} xfxcdx$$

$$= e \int_{0}^{\infty} \frac{x}{x}dx$$

$$= e \int_{0}^{\infty} \frac{x}{$$

PROBLEM #5:

Let X_1, \dots, X_n be a random sample with their density function being one of the following two. If $\theta = 0$, then

$$f(x|\theta) = \begin{cases} 1, & \text{if } 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$

while if $\theta = 1$, then

$$f(x|\theta) = \begin{cases} 1/2\sqrt{x}, & \text{if } 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$

Find the MLE of θ . Show your work.

when
$$\theta = 1$$
 $r(\theta|x) = \frac{1}{12} \frac{1}{2} \frac{1}{$