2425-MA140 Engineering Calculus

Week 08, Lecture 2 (L23) Areas between curves

Dr Niall Madden

School of Maths, University of Galway

Wednesday, 06 November, 2024

The areas we'll cover today:

- 1 Recall: Definite integrals
- 2 Definite Integrals with IbP
- 3 Areas Between Curves
- 4 Compound Regions
- 5 Exercises

For more reading, see Sections 7.1 (Integration by Parts, briefly) and 6.1 (Areas Between Curves; mainly) of Calculus by Strang & Herman: math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

Recall: Definite integrals

Long, long ago (Tuesday of last week) we introduced the definite integral as follows:

Definition: definite integral

If f(x) is a function defined on an interval [a, b], the **definite** integral of f from a to b is given by

$$\int_a^b f(x)dx = \lim_{n \to \infty} h \sum_{i=0}^{n-1} f(x_i),$$

where h=(b-a)/n and $x_i=a+ih$, provided the limit exists. Moreover, it is the area of the region in space bounded by y=0, y=f(x), x=a and x=b.

We'll now revisit this idea, and then extend it.

Definite Integrals with IbP

Integration by Parts for Definite Integrals

$$\int_{a}^{b} u dv = (uv) \Big|_{a}^{b} - \int_{a}^{b} v \, du$$

Example: First estimate $\int_{0}^{1} xe^{-1} dx$ from the graph of xe^{-x}

Definite Integrals with IbP

Now use *Integration By Parts* to actually evaluate $\int_0^1 xe^{-x} dx$.

We know that $\int_a^b f(x) dx$ evaluates as the area of the region between x = a and x = b, and between y = f(x) and y = 0. But what if we wanted to evaluate the area between two curves?

Area Between Curves

Let f and g be continuous functions with $f(x) \ge g(x)$ throughout the interval [a,b]. Then the area A of the region over [a,b] and between the curves y=f(x) and y=g(x) is the integral of f(x)-g(x) from x=a to x=b; that is

$$A = \int_a^b (f(x) - g(x)) dx.$$

Example

Find the area of the region bounded above by the graph of f(x) = x + 4, and below by the graph of g(x) = 3 - x/2 over the interval [1, 4]

Frequently, we need to work out the domain ourselves, by finding where the graphs of the functions intersect.

Example

Find the area of the region enclosed by the parabola $f(x) = 2 - x^2$ and the line g(x) = -x.

Example

Find the area enclosed between the two curves $f(x) = 6 - 2x^2$ and g(x) = 4x.

In all previous examples, we assumed that $f(x) \ge g(x)$ for all $x \in [a, b]$. But what if f and g cross in the domain?

Areas between curves, without $f(x) \ge g(x)$

Let f(x) and g(x) be continuous functions over an interval [a, b]. Then A, the area of the region between the graphs of f(x) and g(x), and between x = a and x = b, is given by

$$A = \int_a^b |f(x) - g(x)| \, dx.$$

Example

Find the area between $f(x) = \sin(x)$ and $g(x) = \cos(x)$, from x = 0 to $x = \pi$.

It will help to consult p13 of the "log" tables.

Triantánacht

Trigonometry

$$\tan A = \frac{\sin A}{\cos A} \qquad \cot A = \frac{\cos A}{\sin A}$$
$$\sec A = \frac{1}{\cos A} \qquad \csc A = \frac{1}{\sin A}$$

 $\cos^2 A + \sin^2 A = 1$ $\sec^2 A = 1 + \tan^2 A$

cos(-A) = cos Asin(-A) = -sin A

 $\tan(-A) = -\tan A$

Nóta: Bíonn $\tan A$ agus $\sec A$ gan sainiú nuair $\cos A = 0$. Bíonn $\cot A$ agus $\csc A$ gan sainiú nuair $\sin A = 0$. Note: $\tan A$ and $\sec A$ are not defined when $\cos A = 0$. $\cot A$ and $\csc A$ are not defined when $\sin A = 0$.

A (céimeanna)	0°	90°	180°	270°	30°	45°	60°	A (degrees)
A (raidiain)	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	A (radians)
$\cos A$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	cos A
sin A	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	sin A
tan A	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	tan A

1 rad. ≈ 57.296°

1° ≈ 0.01745 rad.

Exercises

Exer 8.2.1 (From 2023/2024 exam)

Evaluate $\int_{0}^{\pi/2} x \cos(x) dx.$

Exer 8.2.2 (From 2019/2020 exam)

The functions f(x) = 1/x and $g(x) = x^2$ intersect at x = 1. Calculate the area between their graphs on [1,2]

Exer 8.2.3 (From 2019/2020 exam)

Calculate the bounded area enclosed by the curves $f(x) = \sqrt{x}$ and $g(x) = x^2$.

Exer 8.2.4 (From 23/24 exam)

Find the area bounded by the curves $f(x) = x^2 - 4x$ and g(x) = 2x - 5.