Изучение электромагнитных резонансных явлений в резонаторе Земля-ионосфера

Работу выполнили:

Сарафанов Ф.Г., Платонова М.В.

Научные руководители:

Мареев Е.А., Шлюгаев Ю.В.

Нижний Новгород - 2018

Цели работы

- 1 Изучить явление резонанса в резонаторе Земля-ионосфера
- 2 Создать программу обработки данных для определения резонансных частот
- **3** Обработать экспериментальные данные и объяснить характерные особенности спектрограммы
- **4** Определить направление на источники сигнала, выявленные на спектрограмме

Глобальная электрическая цепь

Разность потенциалов между Землей и ионосферой составляет $\approx 300~\text{кB}$ Основная зарядка происходит в мировых грозовых центрах: дельта Амазонки (Южно-американский грозовой центр), дельта реки Конго (Африканский грозовой центр).

Возникновение резонанса в сферическом резонаторе Земля-ионосфера

Возникшая в резонаторе ЭМ-волна после огибания земного шара и ряда отражений может войти в резонанс с собой.

Такой резонанс возможен на частотах

$$f=\frac{cn}{2\pi R},$$

где n – число отражений, c – скорость волны, R – радиус Земли

Это явление шумановского резонанса.

Характерный вид резонансных пиков шумановских частот

Спектрограмма [из интернета] измерений магнитного поля

Аппаратура

Данные, обрабатываемые в данной работе, получены при помощи двух разнесенных с базой $I=50\,$ м установок, каждая из которых представляет три взаимно перпендикулярных индукционных датчика IMS-008.

Наличие в месте измерений сильной помехи на частоте сети 50 Гц и ее гармоник до 500 Гц обусловило выбор частоты дискретизации

$$f_d = 2000 \; \Gamma$$
ц ,

которая заведомо больше частоты Найквиста.

Разрешение АЦП позволяет измерять частоты от 0.1 Гц до 10 кГц.

Точка измерения магнитного поля – 69.2517N, 35.1561E (Териберский маяк, Териберка, Кольский полуостров).

Обработка данных. Дискретное преобразование Фурье

- 1 $H(t) \Rightarrow H(f)$
- 2 Дискретное преобразование Фурье
- **3** Быстрое преобразование Фурье (1 час сигнала 40 минут преобразование)

Фильтрация данных

- **1** Децимация данных, фильтрация фильтром Баттерворта 3-го порядка. ФНЧ ($f_c=150$ Гц), ФВЧ ($f_c=0.2$ Гц)
- 2 Децимация спектра и усреднение полосами шириной 2 Гц

Отфильтрованные данные и АЧХ фильтра Баттерворта

Резонансные частоты Шумана

- 1 Выделен спектр шумановских резонансных частот 8, 14, 20, 26, 32 Гц
 - 2 Спектр ниже 8 Гц потерян, но в данной работе не используется

Первые гармоники шумановского резонанса

Направления на источники. Сравнение амплитуд

Простейший способ определения направления на источник заключался в сравнении амплитуд $H_{\rm 3B}$ и $H_{\rm co}$ резонансных пиков:

$$\alpha = \arctan \frac{\textit{H}_{\rm 3B}}{\textit{H}_{\rm CiO}}$$

- 1 Направление на генератор 50 Гц, рассчитанное таким способом, $\approx 43^\circ$. Реальное направление на источник 45°
- 2 Найдено направление на источник шумановского резонанса $\approx 15^\circ.$ Реальное направление на источник $\approx 5^\circ$
- 3 Направление на станцию радиосвязи «Зевс» (82Гц) \approx 54°. Реальное направление на источник \approx 60°

Выводы

- 1 Исследована природа резонанса Шумана
- 2 Изучено применение методов определения местоположения грозовой активности
- **3** Написана программа для обработки экспериментальных данных, с помощью нее получены спектрограммы магнитного поля
- 4 Проведен анализ спектрограмм, на которых выделялись:
 - Пять гармоник резонансных частот Шумана (8 Гц, 14 Гц, 20 Гц, 26 Гц, 32 Гц)
 - 😉 сеть с частотой 50 Гц и ее гармоники
 - сеть станции СДВ-радиосвязи «Зевс»
- Определены направления на шумановский резонанс ($\approx 15^\circ$), генератор ($\approx 43^\circ$), станцию радиосвязи «Зевс» ($\approx 52^\circ$)

Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer