(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale, 27 septembre 2001 (27.09.2001)

PCT

(10) Numéro de publication internationale WO 01/71356 A2

- (51) Classification internationale des brevets? : G01N 33/68, C07K 14/195, 14/435, C12N 15/12, 15/31, G01N 33/68, C12N 15/31, 15/12, C07K 14/195, 14/47
- (21) Numéro de la demande internationale :

PCT/FR01/00843

- (22) Date de dépôt international: 21 mars 2001 (21.03.2001)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 00/03637 22 mars 2000 (22.0

22 mars 2000 (22.03.2000) FI

- (71) Déposants (pour tous les États désignés sauf US) : CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR). INSTITUT CURIE [FR/FR]; 26, rue d'Ulm, F-75248 Paris Cedex 05 (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): FRADELIZI, Julie [FR/FR]; 88bis, boulevard de Port-Royal, F-75005 Paris (FR). FRIEDERICH, Evelyne [LU/LU]; 13, rue Bessemer Eschiallette, L-4032 Luxembourg (LU). GOLSTEYN, Roy, M. [CA/FR]; 20, rue du Champ de l'Alouette, F-75013 Paris (FR). LOUVARD, Daniel [FR/FR]; 23, allée de Trévise, F-92330 Sceaux

(FR). NOIREAUX, Vincent [FR/FR]; 4, rue de la Ridenne, F-41120 Cormeray (FR). SYKES, Cécile [FR/FR]; 3, villa Coeur de Vey, F-75014 Paris (FR).

- (74) Mandataires: DEMACHY, Charles etc.; Grosset-Fournier & Demachy SARL, 20, rue de Maubeuge, F-75009 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: PEPTIDE SEQUENCES COMPRISING ONE OR SEVERAL PROTEIN BINDING UNITS OF THE ENA/VASP FAMILY, AND USES THEREOF

(54) Titre: SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

(57) Abstract: The invention concerns the use of proteins or peptides comprising one or several protein binding units of the Ena/VASP family, said proteins or peptides not binding with the Arp2/3 protein complex, in particular fragments of the ActA protein of Listeria monocytogenes, or proteins of the zyxin family, for preparing reagents for use in implementing a process detecting and screening molecules having an inhibiting or stimulating effect on the formation of actin cytoskeleton.

(57) Abrégé: La présente invention a pour objet l'utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, notamment de fragments de la protéine ActA de Listeria monocytogenes, ou de protéines de la famille de la zvxine, pour la préparation de réactifs utilisables dans le cadre de la mise en oeuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

5

La présente invention a pour objet des séquences peptidiques comprenant au moins un motif de liaison aux protéines de la famille Ena/VASP, ainsi que l'utilisation de telles séquences notamment dans le cadre de procédés de détection de molécules ayant un effet d'inhibition ou de stimulation de la formation de cytosquelette d'actine.

. 10

15

Les cellules de notre corps sont capables de se déplacer et, parfois, elles s'arrondissent et se divisent en deux cellules sœur. Tous ces mouvements sont basés sur le cytosquelette d'actine. A un stade multicellulaire, le cytosquelette joue un rôle essentiel pour l'organisation du corps et pour l'homéostasie. Par exemple, la migration cellulaire est essentielle dans l'embryogenèse et la réponse immunitaire ainsi que lors de la réparation de blessures où les cellules migrent vers les régions endommagées. Ces mouvements sont dépendants du fonctionnement normal du cytosquelette d'actine. Les conséquences de la perturbation du fonctionnement du cytosquelette peuvent être désastreuses pour l'organisme. Dans les processus métastatiques, par exemple, l'absence de contrôle du cytosquelette des cellules tumorales peut provoquer leur migration en dehors de leur localisation normale, leur permettant de proliférer dans d'autres parties du corps, ce qui rend le traitement du cancer extrêmement difficile.

20

La caractérisation des protéines capables de polymériser l'actine, et la compréhension du mécanisme par lequel cette polymérisation génère une force, représentent les éléments clés pour comprendre le fonctionnement du cytosquelette dans la cellule. Toutefois, les propriétés dynamiques du cytosquelette rendent son étude extrêmement difficile. De plus, les approches actuellement disponibles pour analyser le cytosquelette sont compliquées ou fastidieuses.

30

25

La première étape de tous les processus dépendants du cytosquelette, tel que le mouvement, est la production de filaments d'actine, ou F-actine. Le mécanisme de la formation de ces polymères biologiques dans la cellule n'est toujours pas connu, malgré l'identification de nombreuses protéines liant l'actine et l'étude extensive de la polymérisation de l'actine in vitro.

Le syndrome de Wiskott-Aldrich est une maladie du cytosquelette. La protéine WASP humaine, exprimée à partir du gène WAS qui est muté chez les patients affectés par ce syndrome, de même que le protéine N-WASP d'origine bovine (qui a environ 45% d'identité de séquence avec la protéine WASP humaine), ont donc fait l'objet d'études dans le but d'éclaircir le mécanisme du fonctionnement du cytosquelette dans la cellule (Yarar et al., Current Biology, 9 : 555 - 558 (1999); Rohatgi et al., Cell, 97 : 221 - 231 (1999); Miki et al., The EMBO Journal, 15(19) : 5326 - 5335 (1996)).

Il a été montré que ces protéines WASP et N-WASP interagissent avec le complexe Arp2/3 (complexe protéique impliqué dans la polymérisation de l'actine), et induisent ainsi la polymérisation de l'actine.

A ce titre, il a été démontré que la protéine WASP est suffisante pour agir sur la motilité cellulaire basée sur l'actine, et que cette fonction est sous la dépendance du complexe Arp2/3 (Yarar et al. 1999 susmentionné). Pour effectuer cette démonstration, les auteurs de cet article ont préparé des microsphères recouvertes de protéine WASP et ont démontré que ces microsphères polymérisent l'actine, forment des queues d'actine, et sont douées d'une motilité basée sur l'actine dans des extraits cellulaires. Dans les extraits cellulaires dans lesquels le complexe Arp2/3 a été supprimé, les microsphères recouvertes de protéine WASP n'ont plus de motilité et possèdent seulement une activité résiduelle de polymérisation de l'actine.

Par ailleurs, de nombreux micro-organismes unicellulaires ont leurs propres moyens indépendants de mouvement mais certaines bactéries et virus pathogènes deviennent mobiles en utilisant des composants des cellules qu'ils infectent.

La bactérie Listeria monocytogenes qui infecte l'homme par contamination alimentaire, est un de ces pathogènes.

La Listeria pénètre dans les cellules, puis recrute des monomères d'actine à sa surface, leur permettant ainsi de former des "comètes" riches en actine F et de bouger (Sanger et al., Infection and Immunity, 60, 3609-3619 (1992); Tilney, L.G., DeRosier, D.J., Weber, A., and Tilney, M.S. (1992) Journal of Cell Biology, 118, 83-93).

L'analyse du cytosquelette d'actine humain a été extrêmement facilitée par l'étude de cette *Listeria* (Beckerle, M.C., Cell 95, 741-748 (1998); Cossart P and Lecuit M., EMBO Journal 17, 3797-3806 (1998)).

5

15

20

30

5

10.

15

20

25

ActA est une protéine de surface de Listeria qui est essentielle pour sa mobilité (Domann et al., EMBO Journal 11, 1981-1990 (1992); Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P. (1992) Cell, 68, 521-531). Il a été montré que des billes de polystyrène enduites de protéine ActA et placées dans un extrait cytoplasmique d'œufs de Xenopus laevis, étaient capables de se déplacer (Cameron et al., P.N.A.S. 96, 4908-4913 (1999)). Cette protéine ActA est composée d'un domaine N-terminal (délimité par les acides aminés situés aux positions 1 et 234 de la figure 1) qui interagit avec le complexe Arp 2/3 pour induire une activité de nucléation de l'actine (Welch M.D. et al, Science 281, 105-108 (1998)), suivi d'un grand domaine riche en proline (délimité par les acides aminés situés aux positions 235 et 584 de la séquence peptidique représentée sur la figure 1) dont on suppose qu'il joue également un rôle dans le cadre de l'accélération du taux d'assemblage d'actine (Golsteyn R.M. et al., Journal of Cell Science, 110: 1893-1906 (1997)).

La zyxine humaine représente une protéine dont la caractérisation a été facilitée par les connaissances acquises au cours des études menées sur la *Listeria* (Beckerle, M.C., Bio Essays 19, 949-957 (1997)).

La zyxine représente le prototype d'une nouvelle famille de protéines qui est localisée dans des sites riches en actine dans les cellules des eucaryotes supérieurs (Petit, M.M., Mois, R., Schoenmakers E.F., Mandahl N., Van De Ven W.J. (1996) Genomic, 36, 118-129). Par analyse de séquences, d'autres protéines de cette famille ont été identifiées, telles que la protéine LPP (Lipoma Preferred Partner) dont le pourcentage d'homologie avec la zyxine est d'environ 40% (Petit M. et al., Molecular Biology of the Cell, 11: 117-129), et la protéine TRIP6 dont le pourcentage d'homologie avec la zyxine est d'environ 35% (Yi, J., and Beckerle, M.C., Genomics 49, 314-316 (1998)).

Ces protéines de la famille de la zyxine comprennent un domaine riche en résidus proline d'environ 380 à 420 acides aminés présentant un pourcentage d'homologie d'environ 20 à environ 25 % avec le domaine riche en proline susmentionné de la protéine ActA.

La protéine ActA et les protéines de la famille de la zyxine susmentionnée, se lient par l'intermédiaire de leur domaine riche en proline aux membres de la famille des protéines Ena/VASP, qui comprend notamment la protéine VASP (vasodilatator stimulated phosphoprotein, ou phosphoprotéine stimulée vasodilatatrice), les protéines Ena (chez la drosophile) et Mena (équivalent de la protéine Ena chez les mammifères),

ainsi que la protéine Evl (Chakraborty T. et al., EMBO Journal 14, 1314-1321 (1995); Reinhard M. et al, P.N.A.S. 92, 7956-7960 (1995)); Gertler F.B. et al, Cell 87: 227-239 (1996)).

5

La protéine VASP serait impliquée dans l'organisation du cytosquelette car elle se lie à l'actine F et à la profiline, une protéine de 14 kDa qui forme des complexes avec l'actine G (Reinhard M. et al., EMBO Journal 14, 1583-1589 (1995)), mais ce mécanisme d'action n'est pas complètement élucidé.

10

Le rôle des protéines Ena/VASP, ainsi que celui de la zyxine et autres protéines de la famille de la zyxine dans les cellules des mammifères n'est pas clarifié à l'heure actuelle.

15

La présente invention découle de la mise en évidence par les Inventeurs du fait qu'il existe dans les cellules de l'organisme un autre mécanisme de polymérisation de l'actine que celui faisant intervenir la liaison de protéines, telles que celles de la famille WASP, au complexe Arp2/3.

En effet, les Inventeurs ont mis en évidence que des protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP, mais ne se liant pas au complexe Arp2/3, sont capables de polymériser l'actine, et permettent la formation du cytosquelette d'actine dans des extraits cellulaires lorsque ces protéines ou fragments de protéines sont adsorbés sur un support solide approprié telles que des microsphères.

20

Par opposition aux effets mesurés avec les billes enduites de protéines se liant au complexe Arp2/3, notamment avec des billes enduites de protéines de la famille WASP susmentionnées, les billes enduites de protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP selon l'invention, et placées dans des surnageants de cellules lysées de mammifères, notamment humaines, ont permis aux inventeurs de mettre en évidence que :

25

- la polymérisation de l'actine détectée à l'aide des billes de l'invention est inhibée par les protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP (notamment par le fragment de la protéine ActA désigné ci-après ActA-Pro), tandis que la polymérisation de l'actine détectée à l'aide des billes enduites de protéine WASP n'est pas inhibée par les protéines ou fragments de protéines susmentionnés,

- la polymérisation de l'actine détectée à l'aide des billes de l'invention n'est pas inhibée par les protéines WASP ou N-WASP, tandis que les billes enduites de protéine WASP sont inhibées par les protéines WASP ou N-WASP,

- la présence du complexe Arp2/3 dans les surnageants de cellules lysées susmentionnés, n'apparaît pas essentielle pour obtenir l'effet de polymérisation de l'actine sur les billes de l'invention, tandis qu'elle est obligatoire dans le cas des billes enduites de protéine WASP,

- la présence de protéines de la famille Ena/VASP dans les surnageants de cellules lysées susmentionnés, est nécessaire pour obtenir l'effet de polymérisation de l'actine sur les billes de l'invention, tandis qu'elle n'apparaît pas essentielle dans le cas des billes enduites de protéine WASP,

- les billes de l'invention ne sont pas susceptibles de se déplacer sous l'effet du mécanisme de polymérisation de l'actine faisant intervenir les protéines de la famille Ena/VASP, tandis que les billes enduites de protéine WASP sont capables de se déplacer sous l'effet du mécanisme de polymérisation de l'actine faisant intervenir le complexe Arp2/3.

Par ailleurs, puisque de nombreux processus dépendant de la polymérisation d'actine nécessitent le recrutement et l'activation du complexe Arp2/3, les Inventeurs ont recherché la présence de ce complexe au niveau des mitochondries portant la zyxine à leur surface. Aucune accumulation des protéines Arp2/3 n'a été observée au niveau des mitochondries, et de plus, la protéine WASP n'inhibe pas la polymérisation au niveau des mitochondries dans ce test. Ces résultats permettent aux Inventeurs de conclure sur le fait que les protéines de la famille zyxine sont suffisantes pour crée des sites de polymérisation, cette polymérisation nécessitant la présence de VASP.

La présente invention a pour but de fournir de nouveaux fragments, ou polypeptides dérivés, des protéines ActA et de la famille de la zyxine, ainsi que les séquences nucléotidiques codant pour ces fragments.

L'invention a également pour but de fournir de nouveaux procédés de détection ou de criblage de molécules ayant un effet sur la formation du cytosquelette issu du mécanisme d'interaction des protéines de la famille Ena/VASP avec les protéines ActA et celles de la famille de la zyxine, notamment de molécules cytotoxiques ou de

JEDOCID: -WO 017135682

5

10

15

20

médicaments utilisables dans le cadre du traitement de pathologies liées à un développement anormal du cytosquelette.

L'invention a également pour but de fournir de nouveaux réactifs et kits pour la mise en œuvre des procédés susmentionnés.

5

La présente invention a pour objet l'utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, et étant capables d'induire in vitro la polymérisation de l'actine (à savoir d'induire la formation de filaments d'actine F dans des extraits cellulaires ou dans des milieux comparables, et ce même en absence du complexe Arp2/3 dans ces extraits ou milieux, mais en présence de protéines de la famille Ena/VASP), pour la préparation de réactifs utilisables dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

15

10

L'invention a également pour objet l'utilisation de protéines ou peptides susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine.

20

L'invention a plus particulièrement pour objet l'utilisation des fragments peptidiques ou des séquences dérivées susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition de la formation du cytosquelette d'actine, lesdites molécules étant susceptibles d'être utilisées :

25

- en tant que médicaments dans le traitement de cancers métastatiques,
- ou en tant qu'antibiotiques anti-parasitaires.

L'invention a plus particulièrement pour objet l'utilisation des fragments peptidiques ou des séquences dérivées susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection d'effets secondaires de molécules, notamment de médicaments ou de molécules de l'environnement, à savoir d'un procédé de détection de molécules susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.

Avantageusement, les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention, contiennent un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline et, de préférence, un résidu phénylalanine. Avantageusement encore, les protéines ou peptides susmentionnés comprennent au moins deux motifs de liaison aux protéines de la famille Ena/VASP.

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de protéines ou peptides définis ci-dessus, comprenant, à titre de motifs de liaison aux protéines de la famille Ena/VASP, un ou plusieurs motifs de formule (I) suivante :

Phe- X_1 - X_2 - X_3 -Pro- $(X_4)_n$ (I)

dans laquelle :

- -n = 0 ou 1,
 - X₁ représente un résidu proline ou leucine,
 - X₂ représente un résidu proline, leucine, ou sérine,
 - X₃ représente un résidu proline, isoleucine, ou alanine,
 - X, représente un résidu proline, leucine, ou thréonine,

sous réserve que lorsque n = 0, deux au moins de X_1 , X_2 , X_3 représentent un résidu proline, et lorsque n = 1, deux au moins de X_1 , X_2 , X_3 , et X_4 représentent un résidu proline.

Avantageusement les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention comprennent deux à quatre motifs de formule (I) définie cidessus.

Avantageusement encore, les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention interagissent, par le biais des motifs définis ci-dessus, avec les protéines de la famille Ena/VASP, à savoir la protéine VASP, et/ou la protéine Ena, et/ou la protéine Mena, et/ou la protéine Evl susmentionnées, dans le cadre de la polymérisation de l'actine dans les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes.

L'invention concerne plus particulièrement l'utilisation susmentionnée de protéines ou peptides choisis parmi :

- les fragments de la protéine ActA de Listeria monocytogenes, les dits fragments de la protéine ActA ne se liant pas au complexe protéique Arp2/3, et ayant la

10

5

15

20

25

propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, ou les séquences dérivées de ces fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

- les protéines de la famille de la zyxine, ou les fragments de ces dernières, ou les séquences dérivées de ces protéines ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la zyxine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

- la vinculine des mammifères, notamment la vinculine humaine, ou les fragments de ces dernières, ou les séquences dérivées de cette protéine ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la vinculine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine.

Par liaison à la protéine VASP dans ce qui précède et ce qui suit, on entend principalement des liaisons du type électrostatique, ainsi que les forces de Van der Waal.

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments de la protéine ActA de Listeria monocytogenes, désignée SEQ ID NO 2 dans la liste de séquences ci-après, dont la partie aminoterminale se liant au complexe Arp2/3, à savoir la séquence correspondant aux 235 premiers acides aminés environ de SEQ ID NO 2, est supprimée ou modifiée par substitution ou suppression d'un ou plusieurs acides aminés, de sorte que les fragments en question ne puissent pas se lier au complexe Arp2/3.

A ce titre, l'invention concerne plus particulièrement l'utilisation susmentionnée :

- de la séquence SEQ ID NO 4, correspondant au fragment de 376 acides aminés délimité par les acides aminés situés aux positions 235 et 610 de la séquence SEQ ID NO 2,
- de la séquence SEQ ID NO 6, correspondant au fragment de 350 acides aminés délimité par les acides aminés situés aux positions 235 et 584 de la séquence SEQ ID NO 2.

5

10

15

20

25

L'invention a également pour objet l'utilisation susmentionnée de protéines de la famille de la zyxine choisies parmi :

A

- la protéine zyxine de mammifères, notamment la zyxine murine représentée par SEQ ID NO 8, la zyxine de poulet représentée par SEQ ID NO 10, et la zyxine humaine représentée par SEQ ID NO 12,

- la protéine LPP de mammifères, notamment la LPP humaine représentée par SEQ ID NO 14,
- la protéine TRIP6 de mammifères, notamment la TRIP6 humaine représentée par SEQ ID NO 16, et la TRIP6 murine représentée par SEQ ID NO 18.

10

20

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments tels que définis ci-dessus de protéines de la famille de la zyxine susmentionnées, et notamment des fragments choisis parmi :

- la séquence SEQ ID NO 20, correspondant au fragment de 374 acides aminés délimité par les acides aminés situés aux positions 2 et 375 de la séquence SEQ ID NO 8,

- la séquence SEQ ID NO 22, correspondant au fragment de 351 acides aminés délimité par les acides aminés situés aux positions 1 et 351 de la séquence SEQ ID NO 10,

- la séquence SEQ ID NO 24, correspondant au fragment de 380 acides aminés délimité par les acides aminés situés aux positions 1 et 380 de la séquence SEQ ID NO 12,
- la séquence SEQ ID NO 26, correspondant au fragment de 412 acides aminés délimité par les acides aminés situés aux positions 3 et 414 de la séquence SEQ ID NO 14,
- ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies ci-dessus.

L'invention a plus particulièrement pour objet encore l'utilisation susmentionnée de la zinculine humaine désignée SEQ ID NO 28 dans la liste de séquences ci-après, ou des fragments tels que définis ci-dessus de cette dernière, notamment la séquence SEQ ID NO 30, correspondant au fragment de 227 acides aminés délimité par les acides aminés situés aux positions 840 et 1066 de la séquence SEQ ID NO 28.

L'invention a également pour objet l'utilisation susmentionnée de protéines ou peptides, ou de séquences dérivées de ces derniers, tels que définis ci-dessus, fusionnés du côté N-terminal ou C-terminal avec une ou plusieurs séquences peptidiques facilitant la détection et la purification des fragments peptidiques ou séquences dérivées susmentionnés, sans pour autant affecter la propriété

30

susmentionnée de ces derniers de polymériser l'actine. Parmi de telles séquences peptidiques fusionnées aux fragments peptidiques, ou aux séquences dérivées de ces derniers, de l'invention, on peut citer celle de la glutathione-S-transférase (GST, décrit dans Smith D.B. and Johnson K.S., Gene 67 : 31-41 (1988)) fusionnée à la partie N-terminale des protéines ou peptides ou séquences dérivées susmentionnés, ou celles d'épitopes reconnus par des anticorps spécifiques, telle que celle de l'épitope myc9E10 (décrit dans Evan G.I. et al., Molecular and Cellular Biology 5 : 3610-3616 (1985)) fusionnée à la partie C-terminale des protéines ou peptides ou séquences dérivées susmentionnés.

10

5

L'invention concerne également les fragments peptidiques susmentionnés en tant que tels, à savoir plus particulièrement les séquences SEQ ID NO 4, SEQ ID NO 6, SEQ ID NO 20, SEQ ID NO 22, SEQ ID NO 24, SEQ ID NO 26, et SEQ ID NO 30, ainsi que les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies ci-dessus.

15

L'invention concerne également les séquences nucléotidiques codant pour les fragments peptidiques susmentionnés, ou pour les séquences peptidiques dérivées de ces derniers, ou encore pour les protéines de fusion telles que décrites ci-dessus.

L'invention a plus particulièrement pour objet les séquences nucléotidiques suivantes:

20

- la séquence SEQ ID NO 3 codant pour SEQ ID NO 4, la séquence SEQ ID NO 5 codant pour SEQ ID NO 6, la séquence SEQ ID NO 19 codant pour SEQ ID NO 20, la séquence SEQ ID NO 21 codant pour SEQ ID NO 22, la séquence SEQ ID NO 23 codant pour SEQ ID NO 24, la séquence SEQ ID NO 25 codant pour SEQ ID NO 26, la séquence SEQ ID NO 29 codant pour SEQ ID NO 30.

25

- les séquences nucléotidiques dérivées par dégénérescence du code génétique des séquences nucléotidiques susmentionnées, et codant pour les protéines ou peptides susmentionnés,

30

- les séquences nucléotidiques dérivées des séquences nucléotidiques susmentionnées, et codant pour les séquences dérivées desdits protéines ou peptides telles que définies ci-dessus.

L'invention a également pour objet les vecteurs, notamment les plasmides, contenant une séquence nucléotidique telle que définie ci-dessus.

5

10

15

20

25

30

L'invention concerne également les cellules hôtes transformées par un vecteur susmentionné, les dites cellules exprimant les fragments peptidiques susmentionnés, ou les séquences dérivées décrites ci-dessus, sous forme recombinante. Avantageusement, les cellules hôtes susmentionnées sont choisies parmi les suivantes : Escherichia coli DH5 α et Escherichia coli BL21.

L'invention a également pour objet des réactifs pour la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit réactif comprenant au moins une protéine ou peptide tel(le) que défini(e) ci-dessus, lié(e) ou adsorbé(e) à un support susceptible de permettre la polymérisation de l'actine, lorsque ledit support lié audit peptide est placé dans un milieu contenant les éléments nécessaires à la polymérisation de l'actine, notamment lorsque ledit support est ajouté à un extrait préparé à partir de surnageants de cellules lysées de mammifères, ou dans un milieu contenant principalement les protéines de la famille Ena/VASP, la cofiline, et des protéines de coiffage, mais ne contenant pas obligatoirement le complexe Arp2/3.

L'invention a plus particulièrement pour objet les réactifs tels que définis cidessus, choisis parmi les microsphères dont le diamètre est compris entre environ 100 et environ 10.000 nm, le matériau constituant les microsphères étant lui même choisi parmi les polystyrènes ou le latex, lesdites microsphères contenant chacune environ 5 000 à environ 50 000 molécules de protéine ou peptide susmentionné ou d'une séquence dérivée selon l'invention.

Avantageusement la protéine ou le peptide susmentionné, ou leur séquence dérivée, sont adsorbés ou liés de façon covalente avec un site réactif à la surface desdites microsphères, ledit réactif étant obtenu par simple mélange desdites microsphères à la protéine ou au peptide ou à leur séquence dérivée.

L'invention a également pour objet un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant :

- une étape de mise en présence de la molécule testée avec un réactif tel que défini ci-dessus, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine définis ci-dessus, notamment dans un extrait de surnageant de cellules lysées,

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin (à savoir un milieu tel que décrit ci-dessus ne contenant pas la molécule testée, et dans lequel se trouve ledit réactif), correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison de la protéine ou du peptide ou de leur séquence dérivée susmentionnés, avec une protéine de la famille Ena/VASP.

Avantageusement, le milieu susmentionné dans lequel la molécule testée est mise en présence dudit réactif, contient un composé marqué notamment par fluorescence, permettant de détecter la polymérisation de l'actine sur ledit réactif. A titre d'illustration, le composé marqué susmentionné est un dérivé fluorescent de l'actine, telle que l'actine-rhodamine (disponible commercialement), permettant de visualiser la polymérisation de l'actine par microscopie à épifluorescence.

L'invention concerne également un procédé tel que défini ci-dessus, de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant en plus des étapes du procédé défini ci-dessus :

- une étape de mise en présence, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine dont le complexe Arp2/3, notamment dans un extrait de surnageant de cellules lysées, de la molécule testée avec un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes, ou de micro-organismes telles que les levures, ou des fragments peptidiques de ces protéines de la famille WASP, lesdits fragments peptidiques ayant la propriété des protéines de la famille WASP de polymériser l'actine en induisant la motilité cellulaire, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques susmentionnés, notamment par substitution d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété susmentionnée des protéines de la famille WASP et desdits fragments de ces dernières, lesdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, étant liés ou adsorbés à un support tel que défini ci-dessus,

5

10

15

20

25

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison desdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, avec le complexe Arp2/3.

Par protéines de la famille WASP, on entend, dans ce qui précède et ce qui suit, la protéine produite par le gène WAS muté dans le cadre du syndrome de Wiskott-Aldrich chez l'homme, ainsi que les protéines d'origine humaine ou non, présentant au moins environ 45% d'homologie avec la protéine WASP humaine susmentionnée, et étant impliquée dans le processus de polymérisation de l'actine cellulaire, et, le cas échéant, de la motilité cellulaire.

Les protéines susmentionnées de la famille WASP possèdent également la caractéristique commune de posséder au moins trois domaines majeurs :

- un domaine WH1/Scar dans la partie N-terminale ; ce domaine a des caractéristiques structurales similaires à un domaine d'homologie à la pleckstrine (ou domaine pH), et est supposé interagir avec l'actine polymérisée et avec les phospholipides,

-un domaine riche en proline,

- un domaine WH2/A qui est divisé en trois sous-domaines, à savoir le sousdomaine d'homologie à la verproline, le sous-domaine d'homologie à la cofiline, et un sous-domaine acide.

Avantageusement, les protéines susmentionnées de la famille WASP et les fragments peptidiques de ces dernières utilisés dans le cadre du procédé susmentionné de la présente invention, sont choisis parmi les protéines WASP, N-WASP, Scar et Las17, ou leurs fragments, ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés telles que définies ci-dessus.

L'invention a plus particulièrement pour objet le procédé susmentionné dans lequel les fragments peptidiques des protéines de la famille WASP sont choisis parmi les fragments :

- de la protéine WASP humaine, ou d'autres mammifères, notamment la protéine WASP bovine ou murine,

15

10

5

20

25

- de la protéine N-WASP humaine, ou d'autres mammifères, notamment la protéine N-WASP bovine, ou de rat,

- des protéines de la sous-famille Scar, telle que la protéine Scar1/WAVE de Dictyostellium discoideum, ou de Caenorhabditis elegans, ou de Drosophila melanogaster, de souris, ou humaine,
 - des protéines de la sous-famille Las 17 des micro-organismes, notamment des levures, telle que la protéine Las 17/Bee1 de Saccharomyces cerevisiae, ou la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe.

Avantageusement, les fragments peptidiques susmentionnés sont choisis parmi ceux comprenant :

- le domaine d'homologie avec la verproline contenu dans les protéines de la famille WASP, ou dans une protéine dérivée de ces dernières, ou au moins une des deux séquences homologues à la verproline lorsque lesdites protéines de la famille WASP contiennent deux de ces séquences, ou une séquence peptidique dérivée du domaine susmentionné, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés, et conservant la propriété de ce domaine de se lier à l'actine,
- et le domaine d'homologie avec la cofiline contenu dans les protéines de la famille WASP ou dans une protéine dérivée de ces dernières, ou une séquence peptidique dérivée du domaine susmentionné, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés, et conservant la propriété de ce domaine d'intervenir dans le cadre de la polymérisation de l'actine.

Le cas échéant, les fragments peptidiques susmentionnés utilisés dans le cadre de la présente invention, contiennent également le segment acide C-terminal desdites protéines WASP ou dérivées.

Avantageusement les fragments peptidiques susmentionnés ne contiennent pas le domaine d'homologie avec la plekstrine, et/ou le domaine de liaison à Cdc42, et/ou la région riche en proline, définis ci-dessus desdites protéines de la famille WASP.

L'invention a plus particulièrement pour objet l'utilisation susmentionnée dans le procédé défini ci-dessus, de fragments peptidiques des protéines de la famille WASP d'origine humaine.

30

5

10

15

1.1

20

5

10

15

20

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine sont choisis parmi les fragments de la protéine WASP humaine comprenant :

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 430 et 446 de la séquence peptidique de la protéine WASP humaine représentée par SEQ ID NO 31, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 469 et 487 de la séquence peptidique de la protéine WASP humaine représentée par SEQ ID NO 31, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

De préférence, les fragments de la protéine WASP humaine susmentionnés sont choisis parmi les suivants :

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 404 à 430 de SEQ ID NO 31, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 487 à 502 de SEQ ID NO 31,
- * le fragment de 99 acides aminés délimité par les acides aminés situés aux positions 404 et 502 de SEQ ID NO 31,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 404 et 487 de SEQ ID NO 31,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 430 et 502 de SEQ ID NO 31,
- * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 430 et 487 de SEQ ID NO 31,
- * ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments de la protéine N-WASP humaine comprenant :

30

25

la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 405 et 421 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

5

et/ou la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 433 et 449 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10

et le domaine d'homologie avec la cofiline contenu dans la protéine N-WASP susmentionnée, à savoir le domaine délimité par les acides aminés situés aux positions 470 et 488 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

15

De préférence, les fragments de la protéine N-WASP humaine susmentionnés sont choisis parmi les suivants :

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 392 à 433 de SEQ ID NO 32, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 32,
- * le fragment de 114 acides aminés délimité par les acides aminés situés aux positions 392 et 505 de SEQ ID NO 32,
- * le fragment de 97 acides aminés délimité par les acides aminés situés aux positions 392 et 488 de SEQ ID NO 32.
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 32,

25

30

- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 32,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 505 de SEQ ID NO 32,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 32,
 - * ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs

PCT/FR01/00843

acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments de la protéine Scar1 humaine comprenant :

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 497 et 513 de la séquence peptidique de la protéine Scar1 humaine représentée par SEQ ID NO 33, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10

5

et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 531 et 546 de la séquence peptidique de la protéine Scar1 humaine représentée par SEQ ID NO 33, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

De préférence, les fragments de la protéine Scar1 humaine susmentionnés sont choisis parmi les suivants :

15

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 443 à 497 de SEQ ID NO 33, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 546 à 559 de SEQ ID NO 33,

20

- * le fragment de 117 acides aminés délimité par les acides aminés situés aux positions 443 et 559 de SEQ ID NO 33,
- * le fragment de 104 acides aminés délimité par les acides aminés situés aux positions 443 et 546 de SEQ ID NO 33,
- * le fragment de 63 acides aminés délimité par les acides aminés situés aux positions 497 et 559 de SEQ ID NO 33,

25

- * le fragment de 50 acides aminés délimité par les acides aminés situés aux positions 497 et 546 de SEQ ID NO 33,
- * ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

30

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments peptidiques des protéines de la famille WASP d'origine non humaine.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine non humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments des protéines de la famille WASP de mammifères non humains, tels que :

- les fragment de la protéine WASP murine, eux-mêmes choisis parmi :

* ceux comprenant :

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 448 et 465 de la séquence peptidique de la protéine WASP murine représentée par SEQ ID NO 34, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10

15

20

25 -

5

- et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 487 et 505 de la séquence peptidique de la protéine WASP murine représentée par SEQ ID NO 34, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 420 à 448 de SEQ ID NO 34, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 505 à 520 de SEQ ID NO 34,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 420 et 520 de SEQ ID NO 34,
- * le fragment de 86 acides aminés délimité par les acides aminés situés aux positions 420 et 505 de SEQ ID NO 34,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 448 et 520 de SEQ ID NO 34.
- * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 448 et 505 de SEQ ID NO 34,

- les fragments de la protéine N-WASP de rat, eux-mêmes choisis parmi :

* ceux comprenant:

la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 401 et 417 de la séquence peptidique de la protéine N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et/ou la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 429 et 444 de la séquence peptidique de la protéine

N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et le domaine d'homologie avec la cofiline contenu dans la protéine N-WASP susmentionnée, à savoir le domaine délimité par les acides aminés situés aux positions 466 et 484 de la séquence peptidique de la protéine N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 401 à 429 de SEQ ID NO 35, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 484 à 501 de SEQ ID NO 35,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 401 et 501 de SEQ ID NO 35,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 401 et 484 de SEQ ID NO 35,

* le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 429 et 501 de SEQ ID NO 35,

- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 429 et 484 de SEQ ID NO 35,
 - les fragment de la protéine N-WASP bovine, eux-mêmes choisis parmi :

* ceux comprenant :

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 405 et 421 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et/ou le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 433 et 488 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 470 et 488 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

15

10

5

20

30

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 405 à 433 de SEQ ID NO 36, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 36,

- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 36,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 36,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine non humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments des protéines de la famille WASP de micro-organismes, tels que :

- les fragment de la protéine Las17 de Saccharomyces cerevisiae, eux-mêmes choisis parmi :

* ceux comprenant :

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 447 et 466 de la séquence peptidique de la protéine Las17 représentée par SEQ ID NO 37, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 607 et 624 de la séquence peptidique de la protéine Las17 représentée par SEQ ID NO 37, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 422 à 447 de SEQ ID NO 37, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 624 à 633 de SEQ ID NO 37,
- * le fragment de 212 acides aminés délimité par les acides aminés situés aux positions 422 et 633 de SEQ ID NO 37,
- * le fragment de 203 acides aminés délimité par les acides aminés situés aux positions 422 et 624 de SEQ ID NO 37,

5

15

20

25

PCT/FR01/00843

* le fragment de 187 acides aminés délimité par les acides aminés situés aux positions 447 et 633 de SEQ ID NO 37,

* le fragment de 178 acides aminés délimité par les acides aminés situés aux positions 447 et 624 de SEQ ID NO 37,

- les fragment de la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe, eux-mêmes choisis parmi :

* ceux comprenant:

WO 01/71356

5

10

15

20

25

30

le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 501 et 517 de la séquence peptidique de la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe représentée par SEQ ID NO 38, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 548 et 565 de la séquence peptidique de la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe représentée par SEQ ID NO 38, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 477 à 501 de SEQ ID NO 38, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 565 à 574 de SEQ ID NO 38,
- * le fragment de 98 acides aminés délimité par les acides aminés situés aux positions 477 et 574 de SEQ ID NO 38,
- * le fragment de 89 acides aminés délimité par les acides aminés situés aux positions 477 et 565 de SEQ ID NO 38,
- * le fragment de 74 acides aminés délimité par les acides aminés situés aux positions 501 et 574 de SEQ ID NO 38,
- le fragment de 65 acides aminés délimité par les acides aminés situés aux positions 501 et 565 de SEQ ID NO 38.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine ou non utilisés dans le procédé défini ci-dessus, sont choisis parmi les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés

de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

L'invention a également pour objet l'application du procédé tel que défini cidessus, à la détection ou au criblage de molécules :

5

- susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine, notamment en tant que médicaments dans le traitement de cancers métastatiques, ou en tant qu'antibiotiques anti-parasitaires,

10

- ou susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.

L'invention a également pour objet une trousse ou kit pour la mise en œuvre d'un procédé susmentionné, comprenant

- un réactif tel que défini ci-dessus,,

15

- le cas échéant un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques définis ci-dessus de ces protéines ou séquences dérivées, liés ou adsorbés à un support tel que défini ci-dessus,

20

- le cas échéant un composé marqué permettant de visualiser la polymérisation de l'actine, notamment de l'actine marquée par fluorescence,
- le cas échéant un milieu approprié contenant les éléments nécessaires à la polymérisation de l'actine, notamment un extrait de cellules lysées.

L'invention sera davantage illustrée à l'aide de la description détaillée qui suit de la préparation de microsphères enduites d'un fragment peptidique de la protéine ActA, et de la détection de la polymérisation de l'actine à la surface de ces microsphères dans un extrait de surnageant cellulaire.

25

I) Préparation des billes GST-ActA-Pro

30

La séquence codant pour le domaine amino-terminale (1-234) de l'ADNc codant pour la protéine ActA de la bactérie *Listeria monocytogenes* a été supprimée, ainsi que la partie codant pour les 20 derniers acides aminés du domaine carboxy-terminal (ancrage transmembranaire de la protéine). La séquence d'ADN restante, codant pour la

partie centrale (riche en proline) et la partie carboxy-terminale d'ActA, a été introduite dans le vecteur pGEX2T (Pharmacia), en aval de la séquence codant pour la glutathione-S-transferase (GST), générant le plasmide pGEX2T-ActA-Pro. Le domaine GST a été choisi car il facilite la purification de la protéine. Cette protéine recombinante est composée de domaines GST (237 résidus) et des parties centrale riche en proline et carboxy-terminale d'ActA (350 résidus correspondant à SEQ ID NO 6).

II) Purification et caractérisation de la protéine GST-ActA-Pro.

10

15

20

5

Des bactéries E. coli (souche BL21) on été transformées avec le plasmide pGEX2T-ActA-Pro. Les bactéries ont été cultivées dans du milieu LB standard contenant l'antibiotique ampicilline pour maintenir sous pression de sélection les bactéries comportant le plasmide. Les bactéries ont été cultivées en suspension à 37°C iusqu'à ce que la culture atteigne une densité optique de 0.6 à 600 nm. Ensuite. l'isopropylthio-B-D-galactoside (IPTG) a été ajouté au milieu à une concentration finale de 1 mM pour induire la production de la protéine. Après 1 heure, les bactéries ont été collectées par centrifugation et les culots ont été stockés à -80°C. Les culots ont été décongelés et ajoutés à du tampon d'extraction (solution saline tamponnée au phosphate pH 8, 300 mM NaCl, 2 mM EDTA (acide ethylènediamine tetra acide), 1 mM DTT, 0,5% Triton X-100, contenant 1 µg/ml de chacun des inhibiteurs de protéase suivants, leupeptine, benzamidine, pepstatine, à un rapport de 1 gr de culot par 10 volumes de tampon d'extraction. La suspension a été soniquée jusqu'à ce que elle ne soit plus visqueuse. L'extrait a été centrifugé à 20.000 x g pendant 10 minutes à 4°C et le surnageant contenant la protéine GST-ActA-Pro a été conservé. La protéine ActA-Pro a été purifiée à partir de l'extrait bactérien par chromatographie d'affinité sur résine couplée à la Glutathione (Pharmacia) et éluée avec 10 mM glutathione réduit selon les recommandations des fabricants. La purification a été confirmée par analyse de la GST-Acta-Pro par électrophorèse sur gel d'acrylamide.

30

25

La protéine GST-ActA-Pro a été adsorbée sur des billes latex de 500 nm (Polyscience Inc, 400 Valley Road, Warrington Pa, USA) suivant les instructions des fabricants. Ces billes, ajoutées aux extraits préparés à partir de cellules, sont capables de nucléer l'actine.

REVENDICATIONS

1. Utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, et étant capables d'induire in vitro la polymérisation de l'actine, pour la préparation de réactifs utilisables dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

10

5

2. Utilisation de protéines ou peptides selon la revendication 1, contenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline.

15

3. Utilisation de protéines ou peptides selon la revendication 1 ou 2, contenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline et un résidu phénylalanine.

20

- 4. Utilisation de protéines ou peptides selon l'une des revendications 1 à 3, comprenant au moins deux motifs de liaison aux protéines de la famille Ena/VASP.
- 5. Utilisation de protéines ou peptides selon l'une des revendications 1 à 4, comprenant un ou plusieurs motifs de formule (I) suivante :

25

Phe-
$$X_1$$
- X_2 - X_3 -Pro- $(X_4)_n$ (I)

dans laquelle:

- -n = 0 ou 1,
- X₁ représente un résidu proline ou leucine,
- X₂ représente un résidu proline, leucine, ou sérine,

- X₃ représente un résidu proline, isoleucine, ou alanine,
- X4 représente un résidu proline, leucine, ou thréonine,

sous réserve que lorsque n = 0, deux au moins de X_1 , X_2 , X_3 représentent un résidu proline, et lorsque n = 1, deux au moins de X_1 , X_2 , X_3 , et X_4 représentant un résidu proline.

5

6. Utilisation selon l'une des revendications 1 à 5 de peptides choisis parmi :

10

- les fragments de la protéine ActA de Listeria monocytogenes, lesdits fragments de la protéine ActA ne se liant pas au complexe protéique Arp2/3, et ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, ou les séquences dérivées de ces fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

15

les protéines de la famille de la zyxine, ou les fragments de ces dernières, ou les séquences dérivées de ces protéines ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, les dits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la zyxine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine,.

20

- la vinculine des mammifères, notamment la vinculine humaine, ou les fragments de ces dernières, ou les séquences dérivées de cette protéine ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la vinculine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine.

- 7. Utilisation selon l'une des revendications 1 à 6, de peptides choisis parmi les fragments peptidiques suivants :
- la séquence SEQ ID NO 4, correspondant au fragment de 376 acides aminés délimité par les acides aminés situés aux positions 235 et 610 de la séquence SEQ ID NO 2,

- la séquence SEQ ID NO 6, correspondant au fragment de 350 acides aminés délimité par les acides aminés situés aux positions 235 et 584 de la séquence SEQ ID NO 2,

5

- la séquence SEQ ID NO 20, correspondant au fragment de 374 acides aminés délimité par les acides aminés situés aux positions 2 et 375 de la séquence SEQ ID NO 8,

- la séquence SEQ ID NO 22, correspondant au fragment de 351 acides aminés délimité par les acides aminés situés aux positions 1 et 351 de la séquence SEQ ID NO 10,

10

- la séquence SEQ ID NO 24, correspondant au fragment de 380 acides aminés délimité par les acides aminés situés aux positions 1 et 380 de la séquence SEQ ID NO 12,

- la séquence SEQ ID NO 26, correspondant au fragment de 412 acides aminés délimité par les acides aminés situés aux positions 3 et 414 de la séquence SEQ ID NO 14,

15

- la séquence SEQ ID NO 30, correspondant au fragment de 227 acides aminés délimité par les acides aminés situés aux positions 840 et 1066 de la séquence SEQ ID NO 28,

20

- ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies dans la revendication 6.

25

8. Réactif pour la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit réactif comprenant au moins une protéine ou peptide tel que défini dans l'une des revendications 1 à 7, lié ou adsorbé à un support susceptible de permettre la polymérisation de l'actine, lorsque ledit support lié à ladite protéine ou audit peptide est placé dans un milieu contenant les éléments nécessaires à la polymérisation de l'actine, notamment lorsque ledit support est ajouté à un extrait préparé à partir de surnageants de cellules lysées de mammifères.

30

9. Réactif selon la revendication 8, caractérisé en ce qu'il est choisi parmi les microsphères dont le diamètre est compris entre environ 100 et environ 10 000 nm, le

matériau constituant les microsphères étant lui même choisi parmi les polystyrènes ou le latex, lesdites microsphères contenant chacune environ 5 000 à environ 50 000 molécules de peptide ou séquence dérivée définis dans l'une des revendications 1 à 7.

5

10

15

20

25

10. Procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant :

- une étape de mise en présence de la molécule testée avec un réactif selon la revendication 8 ou 9, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine, notamment dans un extrait de surnageant de cellules lysées,

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison de la protéine ou du peptide ou de leur séquence dérivée susmentionnés, avec une protéine de la famille Ena/VASP.

11. Procédé selon la revendication 10, de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant en plus des étapes du procédé défini dans la revendication 10:

- une étape de mise en présence, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine dont le complexe Arp2/3, notamment dans un extrait de surnageant de cellules lysées, de la molécule testée avec un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes, ou de micro-organismes telles que les levures, ou des fragments peptidiques de ces protéines de la famille WASP, lesdits fragments peptidiques ayant la propriété des protéines de la famille WASP de polymériser l'actine en induisant la motilité cellulaire, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques susmentionnés, notamment par substitution d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la

propriété susmentionnée des protéines de la famille WASP et desdits fragments de ces dernières, lesdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, étant liés ou adsorbés à un support tel que défini ci-dessus,

5

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison desdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, avec le complexe Arp2/3.

10

15

- 12. Procédé selon la revendication 11, caractérisé en ce que les protéines de la famille WASP utilisées sont choisies parmi :
- la protéine WASP humaine, ou d'autres mammifères, telle que la protéine WASP bovine ou murine,

- la protéine N-WASP humaine, ou d'autres mammifères, telle que la protéine N-WASP bovine, ou de rat,

- les protéines de la sous-famille Scar, telle que la protéine Scar1/WAVE de

20

- Dictyostellium discoideum, ou de Caenorhabditis elegans, ou de Drosophila melanogaster, de souris, ou humaine,

 les protéines de la sous-famille I as 17 des micro-organismes, notamment des
- les protéines de la sous-famille Las17 des micro-organismes, notamment des levures, telle que la protéine Las17/Bee1 de Saccharomyces cerevisiae, ou la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe.

- ou les séquences peptidiques dérivées des protéines susmentionnées telles que définies dans la revendication 11.

25 -

- 13. Procédé selon la revendication 11, caractérisé en ce que les fragments des protéines de la famille WASP utilisés sont choisis parmi :
 - les fragments de la protéine WASP humaine suivants :

30

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 404 à 430 de SEQ ID NO 31, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 487 à 502 de SEQ ID NO 31,

PCT/FR01/00843 WO 01/71356

* le fragment de 99 acides aminés délimité par les acides aminés situés aux positions 404 et 502 de SEQ ID NO 31,

- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 404 et 487 de SEO ID NO 31,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 430 et 502 de SEQ ID NO 31,
- * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 430 et 487 de SEQ ID NO 31,
 - les fragments de la protéine N-WASP humaine suivants :

10

5

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 392 à 433 de SEQ ID NO 32, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEO ID NO 32.
- * le fragment de 114 acides aminés délimité par les acides aminés situés aux positions 392 et 505 de SEQ ID NO 32,

15

- * le fragment de 97 acides aminés délimité par les acides aminés situés aux positions 392 et 488 de SEQ ID NO 32,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 32,

* le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 32,

20

- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 505 de SEQ ID NO 32,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 32,

25

- les fragments de la protéine Scar1 humaine suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 443 à 497 de SEQ ID NO 33, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 546 à 559 de SEO ID NO 33,

- * le fragment de 117 acides aminés délimité par les acides aminés situés aux positions 443 et 559 de SEQ ID NO 33,
- * le fragment de 104 acides aminés délimité par les acides aminés situés aux positions 443 et 546 de SEQ ID NO 33,

* le fragment de 63 acides aminés délimité par les acides aminés situés aux positions 497 et 559 de SEQ ID NO 33,

- * le fragment de 50 acides aminés délimité par les acides aminés situés aux positions 497 et 546 de SEQ ID NO 33,
 - les fragment de la protéine WASP murine suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 420 à 448 de SEQ ID NO 34, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 505 à 520 de SEQ ID NO 34,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 420 et 520 de SEQ ID NO 34,
- * le fragment de 86 acides aminés délimité par les acides aminés situés aux positions 420 et 505 de SEQ ID NO 34,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 448 et 520 de SEQ ID NO 34,
- * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 448 et 505 de SEQ ID NO 34,
 - les fragments de la protéine N-WASP de rat suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 401 à 429 de SEQ ID NO 35, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 484 à 501 de SEQ ID NO 35,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 401 et 501 de SEQ ID NO 35,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 401 et 484 de SEQ ID NO 35,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 429 et 501 de SEQ ID NO 35,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 429 et 484 de SEQ ID NO 35,
 - les fragment de la protéine N-WASP bovine suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 405 à 433 de SEQ ID NO 36, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 36.

5 -

10

15

20

5

10

15

20

- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 36,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 36,
- * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
 - les fragment de la protéine Las 17 de Saccharomyces cerevisiae suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 422 à 447 de SEQ ID NO 37, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 624 à 633 de SEQ ID NO 37,
- * le fragment de 212 acides aminés délimité par les acides aminés situés aux positions 422 et 633 de SEQ ID NO 37,
- * le fragment de 203 acides aminés délimité par les acides aminés situés aux positions 422 et 624 de SEQ ID NO 37,
- * le fragment de 187 acides aminés délimité par les acides aminés situés aux positions 447 et 633 de SEQ ID NO 37,
- * le fragment de 178 acides aminés délimité par les acides aminés situés aux positions 447 et 624 de SEQ ID NO 37,
- les fragment de la protéine homologue WASP (Wsp1p) de Schizosaccharomyces pombe suivants :
- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 477 à 501 de SEQ ID NO 38, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 565 à 574 de SEQ ID NO 38,
- * le fragment de 98 acides aminés délimité par les acides aminés situés aux positions 477 et 574 de SEQ ID NO 38,
- * le fragment de 89 acides aminés délimité par les acides aminés situés aux positions 477 et 565 de SEQ ID NO 38,
- * le fragment de 74 acides aminés délimité par les acides aminés situés aux positions 501 et 574 de SEQ ID NO 38,

- le fragment de 65 acides aminés délimité par les acides aminés situés aux positions 501 et 565 de SEQ ID NO 38,

- ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies dans la revendication 11 des protéines de la famille WASP et desdits fragments de ces dernières.
- 14. Procédé selon l'une des revendications 11 à 13, appliqué à la détection ou au criblage de molécules :
- susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine, notamment en tant que médicaments dans le traitement de cancers métastatiques, ou en tant qu'antibiotiques anti-parasitaires,
- ou susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.
- 15. Trousse ou kit pour la mise en œuvre d'un procédé selon l'une des revendications 10 à 13, comprenant
 - un réactif selon la revendication 8 ou 9,
- le cas échéant un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques définis dans l'une des revendications 11 à 13, liés ou adsorbés à un support tel que défini dans la revendication 8 ou 9,
- le cas échéant un composé marqué permettant de visualiser la polymérisation de l'actine, notamment de l'actine marquée par fluorescence,
- le cas échéant un milieu approprié contenant les éléments nécessaires à la polymérisation de l'actine, notamment un extrait de cellules lysées.
- 16. Séquences peptidiques SEQ ID NO 4, SEQ ID NO 6, SEQ ID NO 20, SEQ ID NO 22, SEQ ID NO 24, SEQ ID NO 26, et SEQ ID NO 30, ainsi que les

5

10

15

20

5

10

15

séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies dans la revendication 6.

- 17. Séquences nucléotidiques codant pour les séquences peptidiques selon la revendication 16, et correspondant aux séquences nucléotidiques suivantes :
- la séquence SEQ ID NO 3 codant pour SEQ ID NO 4, la séquence SEQ ID NO 5 codant pour SEQ ID NO 6, la séquence SEQ ID NO 19 codant pour SEQ ID NO 20, la séquence SEQ ID NO 21 codant pour SEQ ID NO 22, la séquence SEQ ID NO 23 codant pour SEQ ID NO 24, la séquence SEQ ID NO 25 codant pour SEQ ID NO 26, la séquence SEQ ID NO 29 codant pour SEQ ID NO 30,
- les séquences nucléotidiques dérivées par dégénérescence du code génétique des séquences nucléotidiques susmentionnées, et codant pour les séquences peptidiques susmentionnés,
- les séquences nucléotidiques dérivées des séquences nucléotidiques susmentionnées, et codant pour les séquences dérivées desdites séquences peptidiques telles que définies ci-dessus.

LISTE DE SEQUENCES

<110> CNRS INSTITUT CURIE

<120> SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

<130> IFB 99 BM CNR ACTA

<140>

<141>

<160> 30

<170> PatentIn Ver. 2.1

<210> 1

<211> 1830

<212> ADN

<213> Listeria monocytogenes

<220>

<221> CDS

<222> :(1) .. (1830)

<400> 1

gcg aca gat agc gaa gat tct agt cta aac aca gat gaa tgg gaa gaa 48 Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu

gaa aaa aca gaa gag caa cca agc gag gta aat acg gga cca aga tac 96 Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr
20 25 30

gaa act gca cgt gaa gta agt tca cgt gat att aaa gaa cta gaa aaa 144 Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Lys Glu Leu Glu Lys 35 40 45

tcg aat aaa gtg aga aat acg aac aaa gca gac cta ata gca atg ttg 192 Ser Asn Lys Val Arg Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu 50 55 60

aaa gaa aaa gca gaa aaa ggt cca aat atc aat aac aac agt gaa 240 Lys Glu Lys Ala Glu Lys Gly Pro Asn Ile Asn Asn Asn Asn Ser Glu 65 70 75 80

caa act gag aat gcg gct ata aat gaa gag gct tca gga gcc gac cga 288 Gln Thr Glu Asn Ala Ala Ile Asn Glu Glu Ala Ser Gly Ala Asp Arg 85 90 95

cca gct ata caa gtg gag cgt cgt cat cca gga ttg cca tcg gat agc 336
Pro Ala Ile Gln Val Glu Arg Arg His Pro Gly Leu Pro Ser Asp Ser
100 105 110

gca gcg gaa att aaa aaa aga agg aaa gcc ata gca tca tcg gat agt 384 Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser 115 120 125

gag Glu	ctt Leu 130	gaa Glu	agc Ser	ctt Leu	act Thr	tat Tyr 135	ccg Pro	gat Asp	aaa Lys	cca Pro	aca Thr 140	ГÀЗ	gta Val	aat Asn	aag Lys	432
aaa Lys 145	aaa Lys	gtg Val	gcg Ala	aaa Lys	gag Glu 150	tca Ser	gtt Val	gcg Ala	gat Asp	gct Ala 155	tct Ser	gaa Glu	agt Ser	gac Asp	tta Leu 160	480
gat Asp	tct Ser	agc Ser	atg Met	cag Gln 165	tca Ser	gca Ala	gat Asp	gag Glu	tct Ser 170	tca Ser	cca Pro	caa Gln	cct Pro	tta Leu 175	aaa Lys	528
gca Ala	aac Asn	caa Gln	caa Gln 180	cca Pro	ttt Phe	ttc Phe	cct Pro	aaa Lys 185	gta Val	ttt Phe	aaa Lys	aaa Lys	ata Ile 190	aaa Lys	gat Asp	576
gcg Ala	gly ggg	aaa Lys 195	tgg Trp	gta Val	cgt Arg	gat Asp	aaa Lys 200	atc Ile	gac Asp	gaa Glu	aat Asn	cct Pro 205	gaa Glu	gta Val	aag Lys	624
aaa Lys	gcg Ala 210	att Ile	gtt Val	gat Asp	aaa Lys	agt Ser 215	gca Ala	ggg ggg	tta Leu	att Ile	gac Asp 220	caa Gln	tta Leu	tta Leu	acc . Thr	672
aaa Lys 225	aag Lys	aaa Lys	agt Ser	gaa Glu	gag Glu 230	gta Val	aat Asn	gct Ala	tcg Ser	gac Asp 235	ttc Phe	ccg Pro	cca Pro	cca Pro	cct Pro 240	720
Thr	Asp	Glu	Glu	Leu 245	Arg	Leu	Ala		Pro 250	Glu	Thr	Pro	Met	Leu 255	Leu	768
Ğİy	"Phe	Asn	Ala 260	Pro	Ala	Thr	Ser	Glu 265	Pro	Ser	Ser	Phe	Glu 270	Phe	Pro	816
Pro	Pro	Pro 275	Thr	Asp	Glu	Glu	Leu 280	aga Arg	Leu	Ala	Leu	Pro 285	Glu	Thr	Pro	864
atg Met	ctt Leu 290	ctt Leu	ggt Gly	ttt Phe	aat Asn	gct Ala 295	cct Pro	gct Ala	aca Thr	tcg Ser	gaa Glu 300	ccg Pro	agc Ser	tcg Ser	ttc Phe	912
gaa Glu 305	Phe	cca Pro	ccg Pro	cct Pro	cca Pro 310	aca Thr	gaa Glu	gat Asp	gaa Glu	cta Leu 315	Glu	atc Ile	atc Ile	Arg	gaa Glu 320	960
aca Thr	gca Ala	tcc Ser	tcg Ser	cta Leu 325	Asp	tct Ser	agt Ser	ttt Phe	aca Thr 330	aga Arg	GJ À aaa	gat Asp	tta Leu	gct Ala 335	Ser	1008
ttg Leu	aga Arg	aat Asn	gct Ala 340	Ile	aat Asn	cgc Arg	cat His	agt Ser 345	Gln	aat Asn	ttc Phe	tct Ser	gat A <i>sp</i> 350	Phe	Pro	1056
cca Pro	atc Ile	Pro 355	Thr	gaa Glu	gaa Glu	gag Glu	Leu 360	Asn	ggg Gly	aga Arg	ggc Gly	ggt Gly 365	Arg	cca Pro	aca Thr	1104

					ggt Gly					1152
					gat Asp					1200
					aat Asn 410					1248
					tcg Ser					1296
					gac Asp					1344
_			_		gtg Val					1392
					cct Pro					1440
-	-		_		caa Gln 490	_	_		_	1488
					gca Ala					1536
Asn					caa Gln					1584
					gag Glu					1632
					aaa Lys					1680
					gca Ala 570				rys Lys	1728
					att Ile					1776
					aaa Lys				aaa Lys	1824

1830

aat aat Asn Asn 610 <210> 2 <211> 610 <212> PRT <213> Listeria monocytogenes Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr 25 Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys Val Arg Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu Lys Glu Lys Ala Glu Lys Gly Pro Asn Ile Asn Asn Asn Asn Ser Glu 65 Gln Thr Glu Asn Ala Ala Ile Asn Glu Glu Ala Ser Gly Ala Asp Arg 90 Pro Ala Ile Gln Val Glu Arg Arg His Pro Gly Leu Pro Ser Asp Ser 100 Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser 120 Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Val Asn Lys 130 Lys Lys Val Ala Lys Glu Ser Val Ala Asp Ala Ser Glu Ser Asp Leu 155 Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Ser Pro Gln Pro Leu Lys 170 Ala Asn Gln Gln Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp 185 Ala Gly Lys Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys 200 Lys Ala Ile Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro . 235 Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro

265

Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro 280 Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu Leu Glu Ile Ile Arg Glu 310 315 Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr Arg Gly Asp Leu Ala Ser 325 Leu Arg Asn Ala Ile Asn Arg His Ser Gln Asn Phe Ser Asp Phe Pro . 345 Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly Arg Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly Asp Phe Thr Asp Asp Glu 375 Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp Arg Leu Ala Asp Leu Arg 390 . 395 Asp Arg Gly Thr Gly Lys His Ser Arg Asn Ala Gly Phe Leu Pro Leu Asn Pro Phe Ala Ser Ser Pro Val Pro Ser Leu Ser Pro Lys Val Ser 425 Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp Ile Thr Lys Lys Thr Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn Val Phe Asn Lys Lys Thr Thr 455 Thr Lys Thr Val Thr Lys Lys Pro Thr Pro Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln Glu Thr Val Leu Arg Glu 490 Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala Glu Thr Asn Lys Gln Ser 505 Ile Asn Met Pro Ser Leu Pro Val Ile Gln Lys Glu Ala Thr Glu Ser Asp Lys Glu Glu Met Lys Pro Gln Thr Glu Glu Lys Met Val Glu Glu 535 Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys Asn Arg Ser Ala Gly Ile 550 555 Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala Glu Asp Glu Lys Ala Lys 565 Glu Glu Pro Gly Asn His Thr Thr Leu Ile Leu Ala Met Leu Ala Ile 580 585

Gly Val Phe Ser Leu Gly Ala Phe Ile Lys Ile Ile Gln Leu Arg Lys

595 Asn Asn 610 <210> 3 <211> 1128 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle: fragment de la protéine ActA de Listeria monocytogenes <220> <221> CDS <222> (1)..(1128) <400> 3 gac ttc ccg cca cca cct acg gat gaa gag tta aga ctt gct ttg cca 48 Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro 1 gag aca cca atg ctt ctt ggt ttt aat gct cct gct aca tca gaa ccg Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro 25 20 ago toa tto gaa ttt oca oca coa cot acg gat gaa gag tta aga ott Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu 35 get ttg cca gag acg cca atg ctt ctt ggt ttt aat get eet get aca 192 Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr 55 50 teg gaa eeg age teg tte gaa ttt eea eeg eet eea aca gaa gat gaa 240 Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu 75 70 65 cta gaa atc atc cgg gaa aca gca tcc tcg cta gat tct agt ttt aca 288 Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr 85 aga ggg gat tta gct agt ttg aga aat gct att aat cgc cat agt caa 336 Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln 110 105 100 aat tto tot gat tto coa coa ato coa aca gaa gaa gag ttg aac ggg 384 Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly 120 125 115 aga ggc ggt aga cca aca tct gaa gaa ttt agt tcg ctg aat agt ggt Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly 135 140 130 480 Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp 150 145

				tta Leu 165												528
				cca Pro			Pro									576
				gta Val												624
				acg Thr												672
Phe 225	Asn	Lys	Lys	act Thr	Thr 230	Thr	Lys	Thr	Val	Thr 235	Lys	Lys	Pro	Thr	Pro 240	720
Val	Lys	Thr	Ala	cca Pro 245	Lys	Leu	Ala	Glu	Leu 250	Pro	Ala	Thr	Lys	Pro 255	Gln	768
Glu	Thr	Val	Leu 260	agg Arg	Glu	Asn	Lys	Thr 265	Pro	Phe	Ile	Glu	Lys 270	Gln	Āla	816
Glu	Thr	Asn 275	Lys	cag Gln	Ser	Ile	Asn 280	Met	Pro	Ser	Leu	Pro 285	Val	Ile	Gln	864
Lys	Glu 290	Ala	Thr	gag Glu	Ser	Asp 295	Lys	Glu	Glu	Met	Lys 300	Pro	Gln	Thr	Glu	912
Glu 305	Lys	Met	Val	gag Glu	Glu 310	Ser	Glu	Ser	Ala	Asn 315	Asn	Ala	Asn	Gly	Lys 320	960
Asn	Arg	Ser	Ala	ggc Gly 325	Ile	Glu	Glu	Gly	Lys 330	Leu	Ile	Ala	Lyş	Ser 335	Ala	1008
Glu	Asp	Glu	Lys 340	gcg Ala	Lys	Glu	Glu	Pro 345	Gly	Asn	His	Thr	Thr 350	Leu	Ile	1056
Leu	Ala	Met 355	Leu	gct Ala	Ile	Gly	Val 360	ttc Phe	tct Ser	tta Leu	GJ À ààà	gcg Ala 365	ttt Phe	atc Ile	aaa Lys	1104
				aga Arg				٠		,						1128

<210> 4 <211> 376 <212> PRT

- <213> Séquence artificielle
- <223> Description de la séquence artificielle: fragment de la protéine ActA de Listeria monocytogenes
- <400> 4
 Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro
 1 5 10 15
- Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro 20 25 30
- Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu 35 40 45
- Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr
 50 55 60
- Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu 65 70 75 80
- Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr 85 90 95
- Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln
 100 105 110
- Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly
 115 120 125
- Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly 130 135 140
- Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp 145 150 155 160
- Arg Leu Ala Asp Leu Arg Asp Arg Gly Thr Gly Lys His Ser Arg Asn 165 170 175
- Ala Gly Phe Leu Pro Leu Asn Pro Phe Ala Ser Ser Pro Val Pro Ser 180 185 190
- Leu Ser Pro Lys Val Ser Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp 195 200 205
- Ile Thr Lys Lys Thr Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn Val 210 215 220
- Phe Asn Lys Lys Thr Thr Thr Lys Thr Val Thr Lys Lys Pro Thr Pro 225 230 235 240
- Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln 245 250 255
- Glu Thr Val Leu Arg Glu Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala 260 265 270
- Glu Thr Asn Lys Gln Ser Ile Asn Met Pro Ser Leu Pro Val Ile Gln 275 280 285
- Lys Glu Ala Thr Glu Ser Asp Lys Glu Glu Met Lys Pro Gln Thr Glu 290 295 300

Glu Lys Met Val Glu Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala 325 330 Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr Leu Ile Leu Ala Met Leu Ala Ile Gly Val Phe Ser Leu Gly Ala Phe Ile Lys 360 Ile Ile Gln Leu Arg Lys Asn Asn <210> 5 <211> 1050 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle: fragment de la protéine ActA de Listeria monocytogenes <220> <221> CDS <222> (1)..(1050) <400> 5 gac ttc ccg cca cca cct acg gat gaa gag tta aga ctt gct ttg cca Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro gag aca cca atg ctt ctt ggt ttt aat gct cct gct aca tca gaa ccg Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro 20 25 age tea tte gaa ttt cea eea eet aeg gat gaa gag tta aga ett Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu 40 gct ttg cca gag acg cca atg ctt ctt ggt ttt aat gct cct gct aca Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr 50 55 tcg gaa ccg agc tcg ttc gaa ttt cca ccg cct cca aca gaa gat gaa 240 Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu 70 75 cta gaa atc atc cgg gaa aca gca tcc tcg cta gat tct agt ttt aca 288 Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr 85 aga ggg gat tta gct agt ttg aga aat gct att aat cgc cat agt caa Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln 100 105

		ttc Phe															384
2	aga Arg	ggc Gly 130	ggt Gly	aga Arg	cca Pro	aca Thr	tct Ser 135	gaa Glu	gaa Glu	ttt Phe	agt Ser	t <i>cg</i> Ser 140	<i>c</i> t <i>g</i> Leu	aat Asn	agt Ser	ggt Gly	432
i	gat Asp 145	ttt Phe	aca Thr	gat Asp	gac Asp	gaa Glu 150	aac Asn	agc Ser	gag Glu	aca Thr	aca Thr 155	gaa Glu	gaa Glu	gaa Glu	att Ile	gat Asp 160	480
7	cgc Arg	cta Leu	gct Ala	gat Asp	tta Leu 165	aga Arg	gat Asp	aga Arg	gga Gly	aca Thr 170	gga Gly	aaa Lys	cac His	tca Ser	aga Arg 175	aat Asn	528
	gcg Ala	ggt Gly	ttt Phe	tta Leu 180	cca Pro	tta Leu	aat Asn	ccg Pro	ttt Phe 185	gct Ala	agc Ser	agc Ser	ccg Pro	gtt Val 190	cct Pro	tcg Ser	576
	tta Leu	agt Ser	cca Pro 195	Lys	gta Val	tcg Ser	aaa Lys	ata Ile 200	agc Ser	gca Ala	ccg Pro	gct Ala	ctg Leu 205	ata Ile	agt Ser	gac Asp	624
	ata Ile	act Thr 210	aaa Lys	aaa Lys	acg Thr	cca Pro	ttt Phe 215	aag Lys	aat Asn	cca Pro	tca Ser	cag Gln 220	cca Pro	tta Leu	aat Asn	gtg Val	672
	ttt Phe 225	aat Asn	aaa Lys	aaa Lys	act Thr	aca Thr 230	acg Thr	aaa Lys	aca Thr	gtg Val	act Thr 235	aaa Lys	aaa Lys	cca Pro	acc Thr	pro 240	720
	gta Val	aag Lys	acc Thr	gca Ala	cca Pro 245	aag Lys	cta Leu	gca Ala	gaa Glu	ctt Leu 250	cct Pro	gcc Ala	aca Thr	aaa Lys	cca Pro 255	caa Gln	768
. (Glu	acc Thr	Val	Leu 260	Arg	Glu	Asn	Lys	Thr 265	Pro	Phe	Ile	Glu	Lys 270	Gln	Ala	816
	gaa Glu	aca Thr	aac Asn 275	aag Lys	cag Gln	tca Ser	att Ile	aat Asn 280	Met	ccg Pro	agc Ser	cta Leu	cca Pro 285	gta Val	atc Ile	Gln	864
	Lys	.290	Ala	Thr	Glu	Ser	Asp 295	Lys	Glu	Glu	Met	Lys 300	Pro	Gln	Thr	Glu -	912
	gaa Glu 305	_	atg Met	gta Val	gag Glu	gaa Glu 310	Ser	gaa Glu	tca Ser	gct Ala	aat Asn 315	Asn	gca Ala	aac Asn	gga Gly	aaa Lys 320	960
	Asn	cgt Arg	Ser	Ala	Gly 325	Ile	Glu	Glu	Gly	Lys 330	Leu	Ile	Ala	Lys	Ser 335	Ala	1008
	gaa Glu	gac Asp	gaa Glu	aaa Lys 340	Ala	aag Lys	gaa Glu	gaa Glu	cca Pro 345	Gly	aac Asn	cat His	acg Thr	acg Thr 350			1050;

<210> 6

<211> 350

<212> PRT

<213> Séquence artificielle ·

<223> Description de la séquence artificielle: fragment de la protéine ActA de Listeria monocytogenes

<400> 6

Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro
1 5 10 15

Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro
20 25 30

Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu 35 40 45

Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr 50 55 60

Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu 65 70 .75 80

Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr 85 90 95

Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln
100 105 110

Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly
115 120 125

Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly 130 135 140

Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp 145 150 155 160

Arg Leu Ala Asp Leu Arg Asp Arg Gly Thr Gly Lys His Ser Arg Asn 165 170 175

Ala Gly Phe Leu Pro Leu Asn Pro Phe Ala Ser Ser Pro Val Pro Ser 180 185 190

Leu Ser Pro Lys Val Ser Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp 195 200 205

Ile Thr Lys Lys Thr Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn Val 210 215 220 ·

Phe Asn Lys Lys Thr Thr Thr Lys Thr Val Thr Lys Lys Pro Thr Pro 225 230 235 240

Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln
245 250 255

Glu Thr Val Leu Arg Glu Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala 260 265 270

Glu Thr Asn Lys Gln Ser Ile Asn Met Pro Ser Leu Pro Val Ile Gln 275 280 285

Lys	Glu 290	Ala	Thr	Glu	Ser	Asp 295	Lys	Glu	Glu	Met	Lys 300	Pro	Gln	Thr	Glu	
Glu 305	Lys	Met	Val	Glu	Glu 310	Ser	Glu	Ser	Ala	Asn 315	Asn	Ala	Asn		Lys 320	
Asn	Arg	Ser	Ala	Gly 325	Ile	Glu	Glu	Gly	Lys 330	Leu	Ile	Ala	Lys	<i>Ser</i> 335	Ala	
Glu	Asp	Glu	Lys 340	Ala	Lys	Glu	Glu	Pro 345	Gly	Asn	His	Thr	Thr 350			
															;	
<212)> 7 l> 16 ?> AD 3> Mu	N	ıscul	Lus		-										•
)> L> CI ?> (1		(1695	5)				•								
<400)> 7															
atg Met 1	gcg Ala	gcc Ala	ccc Pro	cgc Arg 5	ccg Pro	cct Pro	ccc Pro	gcg Ala	atc Ile 10	tcc Ser	gtc Val	tcc Ser	gtc Val	tcg Ser 15	gcc Ala	48
ccc Pro	gcg Ala	ttt Phe	tac Tyr 20	gcc Ala	ccg Pro	cag Gln	aag Lys	aag Lys 25	ttc Phe	gcc Ala	ccg Pro	gtt Val	gtg Val 30	Ala	cca Pro	96
aag Lys	ccc Pro	aaa Lys 35	gtg Val	aat Asn	cct Pro	ttc Phe	cgg Arg 40	cct Pro	ggg Gly	gac Asp	agc Ser	gag Glu 45	cct Pro	cct Pro	gta Val	144
gca Ala	gcc Ala 50	Gly	gcc Ala	caa Gln	aga Arg	gcg Ala 55	cag Gln	atg Met	ggt Gly	cgg Arg	gtg Val 60	ggc ggc	gag Glu	atc Ile	cca Pro	192
cca Pro 65	cca Pro	ccc Pro	ccg Pro	gaa Glu	gac Asp 70	ttt Phe	cct Pro	ttg Leu	ccc Pro	cct Pro 75	cct Pro	ccc Pro	ctt. Leu	att Ile	ggg 80	240
gag Glu	ggc Gly	gac Asp	gac Asp	tca Ser 85	gag Glu	ggt Gly	gcc Ala	ctg Leu	gga Gly 90	ggt Gly	gcc Ala	ttc Phe	cca Pro	cct Pro 95	cca Pro	288
					gag Glu											336
gac Asp	atc Ile	ttc Phe 115	ccc Pro	tcc Ser	cct Pro	cca Pro	cct Pro 120	cca Pro	ctg Leu	gag Glu	gag Glu	gag Glu 125	gga Gly	ej'A aaa	cct Pro	384
gag Glu	gcc Ala 130	cct Pro	acc Thr	cag Gln	ctc Leu	cca Pro 135	ccg	cag Gln	ccc Pro	agg Arg	gag Glu 140	Lys	gtg Val	tgc Cys	agt Ser	432

att Ile 145	Asp	ctg Leų	gag Glu	att Ile	gac Asp 150	tct Ser	ctg Leu	tcc Ser	tca Ser	ctg Leu 155	Leu	gac	gac Asp	atg Met	acc Thr 160	480
aag Lys	aac Asn	gat Asp	ccc Pro	ttc Phe 165	aaa Lys	gcc Ala	cgg Arg	gta Val	tca Ser 170	tcc Ser	gga Gly	tat Tyr	gta Val	ecc Pro 175	cca Pro	528
								aag Lys 185								576
								tgg Trp								624
cca Pro	cca Pro 210	cct Pro	cag Gln	ccg Pro	cag Gln	gcc Ala 215	aag Lys	cct Pro	cag Gln	gtc Val	cag Gln 220	ctc Leu	cat His	gtc Val	cag Gln	672
cct Pro 225	cag Gln	gcc	aag Lys	ccc	cat His 230	gtc Val	caa Gln	ccc Pro	cag Gln	cct Pro 235	gtg Val	tct Ser	tct Ser	gct Ala	aat Asn 240	720
aca Thr	cag Gln	ccc Pro	cgg Arg	ggt Gly 245	ccc Pro	ctt Leu	tct Ser	cag Gln	gca Ala 250	cca Pro	act Thr	cca Pro	gca Ala	cct Pro 255	aag Lys	768
ttt Phe	gct Ala	cca Pro	gtg Val 260	gct Ala	cct Pro	aaa Lys	ttt Phe	act Thr 265	ccc Pro	gtg Val	gtt Val	tcc Ser	aag Lys 270	ttc Phe	agc Ser	816
cct Pro	ggt Gly	gct Ala 275	cca Pro	agt Ser	gga Gly	cct Pro	ggg Gly 280	cca Pro	cag Gln	ccc Pro	aat Asn	caa Gln 285	aaa Lys	atg Met	gtg Val	864
cct Pro	ccg Pro 290	gat Asp	gct Ala	cct Pro	tct Ser	tct Ser 295	gtg Val	agc Ser	aca Thr	ggc	tcc Ser 300	cct Pro	cag Gln	ccc Pro	cct Pro	912
agc Ser 305	ttc Phe	acc Thr	tat Tyr	gct Ala	cag Gln 310	cag Gln	aag Lys	gag Glu	aag Lys	ccc Pro 315	cta Leu	gtt Val	caa Glņ	gag Glu	aag Lys 320	960
cag Gln	cac His	cca Pro	cag Gln	cct Pro 325	cca Pro	cca Pro	gct Ala	caa Gln	aac Asn 330	caa Gln	aac Asn	cag Gln	gta Val	cgc Arg 335	tct Ser	1008
cct Pro	gga Gly	ggc Gly	cca Pro 340	ggc Gly	ccc Pro	ttg Leu	acc Thr	ctg Leu 345	aag Lys	gag Glu	gta Val	gag Glu	gag Glu 350	ttg Leu	gag Glu	1056
cag Gln	ctg Leu	acc Thr 355	cag Gln	cag Gln	ctg Leu	atg Met	cag Gln 360	gac Asp	atg Met	gaa Glu	cac His	cct Pro 365	cag Gln	agg Arg	cag Gln	1104
agc Ser	gtg Val 370	gca Ala	gtg Val	aat Asn	gag Glu	tcc Ser 375	tgt Cys	ggc Gly	aaa Lys	tgc Cys	aat Asn 380	cag Gln	cca Pro	ctg Leu	gcc Ala	1152

cgt Arg 385	gca Ala	cag Gln	cct Pro	gcg Ala	gtt Val 390	cgt Arg	gca Ala	ctg Leu	gga Gly	caa Gln 395	ctg Leu	ttc Phe	cac His	atc Ile	acc Thr 400	1200
tgc Cys	ttc Phe	act Thr	tgc Cys	cat His 405	cag Gln	tgt Cys	cag Gln	cag Gln	cag Gln 410	ctg Leu	cag Gln	gga Gly	cag Gln	cag Gln 415	ttc Phe	1248
tat Tyr	agc Ser	ctg Leu	gag Glu 420	gga Gly	gca Ala	cca Pro	tat Tyr	tgt Cys 425	gag Glu	ggc Gly	tgc Cys	tac Tyr	acc Thr 430	Asp	act Thr	1296
ttg Leu	gag Glu	aag Lys 435	tgc Cys	aac Asn	acc Thr	tgt Cys	ggg Gly 440	cag Gln	ccc Pro	atc Ile	act Thr	gac Asp 445	cgc Arg	atg Met	ctg Leu	1344
agg Arg	gcc Ala 450	act Thr	ggc ggc	aaa Lys	gcc Ala	tac Tyr 455	cac His	cca Pro	cag Gln	tgc Cys	ttc Phe 460	acc Thr	tgt Cys	gtg Val	gtc Val	1392
tgc Cys 465	gcc Ala	tgt Cys	ccc Pro	ctg Leu	gag Glu 470	ggc Gly	acc Thr	tcc Ser	ttc Phe	att Ile 475	gtg Val	gac Asp	cag Gln	gcc Ala	aat Asn 480	1440
cag Gln	ccc Pro	cac His	tgt Cys	gtc Val 485	cct Pro	gac Asp	tat Tyr	cac His	aag Lys 490	caa Gln	tac Tyr	gct Ala	cca Pro	agg Arg 495	tgc Cys	1488
Ser	Val	Cys	tcg Ser 500	Glu	Pro	Ile	Met	Pro 505	Glu	Pro	GTĀ	Arg	Asp 510	GIU	rnr	1536
Val	Arg	Val 515	Val	Ala	Leu	Asp	Lys 520	Asn	Phe	His	Met	ьу <i>в</i> 525	Cys	Tyr		1584
Cys	Glu 530	Asp	Cys	Gly	Lys	Pro 535	Leu	Ser	Ile	Glu	Ala 540	Asp	Asp	Asn	ggc	1632
tgt Cys 545	Phe	Pro	ctg Leu	gat Asp	ggc Gly 550	His	gto Val	ctt Leu	tgt Cys	cgg Arg 555	Lys	tgc Cys	cac His	Ser	gct Ala 560	1680
			acc Thr										<i>:</i>		•	1695
<21 <21	.0> 8 !1> 5 !2> F	64 PRT	nusci	ılus												
Met	00> 8 : Ala	B a Ala	a Pro		g Pro	o Pro	o Pro	o Ala	a Ile 10	e Sei	r Val	L Sei	. Val	l Sei 1	Ala	·
Pro	Ala	a Ph		r Ala	a Pro	o G1:	n Ly	s Liy: 2:		e Ala	a Pro	o Val	l Va.	l Ala	a Pro	•

Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val 35 40 45

- Ala Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro
 50 55 60
- Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ile Gly 65 70 75 80
- Glu Gly Asp Asp Ser Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro 85 90 95
- Pro Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu 100 105 110
- Asp Ile Phe Pro Ser Pro Pro Pro Pro Leu Glu Glu Glu Gly Pro 115 120 125
- Glu Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser 130 135 140
- Ile Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr 145 150 155 160
- Lys Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro 165 170 175
- Pro Val Ala Thr Pro Phe Val Pro Lys Pro Ser Thr Lys Pro Ala Pro 180 185 190
- Gly Gly Thr Ala Pro Leu Pro Pro Trp Lys Thr Pro Ser Ser Ser Gln 195 200 205
- Pro Pro Pro Gln Pro Gln Ala Lys Pro Gln Val Gln Leu His Val Gln 210 215 220
- Pro Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn 225 230 235 240
- Thr Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys 245 250 255
- Phe Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser 260 265 270
- Pro Gly Ala Pro Ser Gly Pro Gly Pro Gln Pro Asn Gln Lys Met Val 275 280 285
- Pro Pro Asp Ala Pro Ser Ser Val Ser Thr Gly Ser Pro Gln Pro Pro 290 295 300
- Ser Phe Thr Tyr Ala Gln Gln Lys Glu Lys Pro Leu Val Gln Glu Lys 305 310 315 320
- Gln His Pro Gln Pro Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser 325 330 335
- Pro Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Glu Leu Glu 340 345 350

Gln Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln 360 355 Ser Val Ala Val Asn Glu Ser Cys Gly Lys Cys Asn Gln Pro Leu Ala 375 Arg Ala Gln Pro Ala Val Arg Ala Leu Gly Gln Leu Phe His Ile Thr 395 Cys Phe Thr Cys His Gln Cys Gln Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly Gln Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His Pro Gln Cys Phe Thr Cys Val Val Cys Ala Cys Pro Leu Glu Gly Thr Ser Phe Ile Val Asp Gln Ala Asn 470 475 Gln Pro His Cys Val Pro Asp Tyr His Lys Gln Tyr Ala Pro Arg Cys 495 490 Ser Val Cys Ser Glu Pro Ile Met Pro Glu Pro Gly Arg Asp Glu Thr 505 Val Arg Val Val Ala Leu Asp Lys Asn Phe His Met Lys Cys Tyr Lys 520 Cys Glu Asp Cys Gly Lys Pro Leu Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val Leu Cys Arg Lys Cys His Ser Ala 560 555 550 Arg Ala Gln Thr <210> 9 <211> 1626 <212> ADN <213> Gallus gallus <220> <221> CDS <222> (1)..(1626) <400> 9 atg get tet eea ggt acc eea ggg acc egt atg aca acc aca gte agt 48. Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser 10 · atc aac att tcc aca ccg tcc ttt tac aac cca cag aag aaa ttt gca Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala 25

								ccc Pro					144
								gga Gly					192
	٠.							gta Val 75					240
·								gga Gly					288
								cca Pro					336
								tct Ser	Pro				384
								cag Gln					432
· ,								aaa Lys 155					480
								ttt Phe					528
								ccc Pro					576
								cag Gln					624
	t	_	-					cct Pro		_		-	672
,	• .				_	_	_	cct Pro 235					720
								aca Thr					768
								tcc Ser					816

cct Pro	cag Gln	cct Pro 275	ccc Pro	aat Asn	ttc Phe	acc Thr	tat Tyr 280	gct Ala	cag Gln	cag Gln	tgg Trp	gaa Glu 285	aga Arg	cct Pro	cag Gln	864
gtg Val	cag Gln 290	gag Glu	aaa Lys	cct Pro	gtt Val	ccc Pro 295	act Thr	gaa Glu	aaa Lys	tct Ser	gct Ala 300	gct Ala	gta Val	aaa Lys	gac Asp	912
atg Met 305	cgt Arg	aga Arg	ccc Pro	act Thr	gca Ala 310	gat Asp	ccg Pro	cct Pro	aag Lys	gga Gly 315	aac Asn	tct Ser	cct Pro	ctg Leu	acc Thr 320	960
atg Met	aag Lys	gag Glu	gta Val	gaa Glu 325	gag Glu	ctg Leu	gag Glu	ctg Leu	ttg Leu 330	acc Thr	cag Gln	aaa Lys	cta Leu	atg Met 335	aag Lys	10.08
gat Asp	atg Met	gat Asp	cat His 340	cca Pro	cct Pro	cca Pro	gta Val	gaa Glu 345	gct Ala	gct Ala	act Thr	tct Ser	gag Glu 350	ctc Leu	tgt Cys	1056
ggc Gly	ttc Phe	tgt Cys 355	cgg Arg	aag Lys	ccc Pro	ctg Leu	tca Ser 360	cgg Arg	acc Thr	cag Gln	cca Pro	gct Ala 365	gtg Val	aga Arg	gct Ala	1104
ctg Leu	gac Asp 370	tgc Cys	ctt Leu	ttc Phe	cac His	gtg Val 375	gag Glu	tgc Cys	ttc Phe	acc Thr	tgc Cys 380	ttc Phe	aag Lys	tgt Cys	gag Glu	1152
aag Lys 385	cag Gln	ctg Leu	cag Gln	G1y ggg	cag Gln 390	cag Gln	ttc Phe	tac Tyr	aat Asn	gtg Val 395	gat Asp	gaa Glu	aag Lys	ccc Pro	ttc Phe 400	1200
tgc Cys	gag Glu	gac Asp	tgc Cys	tat Tyr 405	gct Ala	gga Gly	acc Thr	ctg Leu	gaa Glu 410	aag Lys	tgc Cys	agt Ser	gtc Val	tgc Cys 415	aaa Lys	1248
cag Gln	act Thr	atc Ile	aca Thr 420	gac Asp	agg Arg	atg Met	ctg Leu	aag Lys 425	gcc Ala	acc Thr	ggt Gly	aac Asn	tca Ser 430	tac Tyr	cat His	1296
cct Pro	cag Gln	tgc Cys 435	ttc Phe	acc Thr	tgt Cys	gtg Val	atg Met 440	tgc Cys	cat His	act Thr	cct Pro	ctg Leu 445	gag Glu	Gly	gcc Ala	1344
tcc Ser	ttc Phe 450	ata Ile	gtg Val	gac Asp	cag Gln	gcc Ala 455	Asn	cag Gln	cct Pro	cac His	tgt Cys 460	gtg Val	gat Asp	gac Asp	tac Tyr	1392
cac His 465	agg Arg	aag Lys	tat Tyr	gct Ala	cca Pro 470	Arg	tgc Cys	tca Ser	gta Val	tgt Cys 475	Ser	gaa Glu	cct Pro	atc ~Ile	atg. Met 480	1440
cca Pro	gag Glu	cct Pro	GJA	aaa Lys 485	Asp	gag Glu	aca Thr	gtg Val	cgt Arg 490	gtg Val	gtg Val	gca Ala	ctg Leu	gag Glu 495	aaa Lys	1488
aac Asn	ttc Phe	cac His	atg Met 500	Lys	tgt Cys	tac	aag Lys	tgt Cys 505	Glu	gac Asp	tgt Cys	GJA	agg Arg 510	Pro	tta Leu	1536

tct att gag gct gat gaa aat ggc tgc ttt cca ctg gat ggg cac gta 1584 Ser Ile Glu Ala Asp Glu Asn Gly Cys Phe Pro Leu Asp Gly His Val 515 520 525

cta tgt atg aaa tgt cac act gtt cgt gct aaa aca gcg tgc 1626 Leu Cys Met Lys Cys His Thr Val Arg Ala Lys Thr Ala Cys 530 535 540

<210> 10

<211> 542

<212> PRT

<213> Gallus gallus

<400> 10

Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser 1 5 10 15

Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala 20 25 30

Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly
35 40 45

Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg
50 55 60

Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu 65 70 75 80

Glu Leu Pro Leu Pro Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe 85 90 95

Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Pro Phe Glu Glu Pro
100 105 110

Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro Pro 115 120 125

Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser 130 135 140

Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile 145 150 155 160

Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr 165 170 175

Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser 180 185 190

Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gln Arg Lys Glu Pro 195 200 205

Leu Ala Ser Val Pro Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala 210 215 220

Lys Phe Thr Pro Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly 225 230 235 240

- Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser 245 250 255
- Leu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg 260 265 270
- Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln 275 280 . 285
- Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp 290 295 300
- Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr 305 310 315 320
- Met Lys Glu Val Glu Glu Leu Glu Leu Leu Thr Gln Lys Leu Met Lys 325 330 335
- Asp Met Asp His Pro Pro Pro Val Glu Ala Ala Thr Ser Glu Leu Cys 340 345 350
- Gly Phe Cys Arg Lys Pro Leu Ser Arg Thr Gln Pro Ala Val Arg Ala 355 360 365
- Leu Asp Cys Leu Phe His Val Glu Cys Phe Thr Cys Phe Lys Cys Glu 370 375 380
- Lys Gln Leu Gln Gly Gln Gln Phe Tyr Asn Val Asp Glu Lys Pro Phe 385 390 395 400
- Cys Glu Asp Cys Tyr Ala Gly Thr Leu Glu Lys Cys Ser Val Cys Lys 405 410 415
- Gln Thr Ile Thr Asp Arg Met Leu Lys Ala Thr Gly Asn Ser Tyr His 420 425 430
- Pro Gln Cys Phe Thr Cys Val Met Cys His Thr Pro Leu Glu Gly Ala 435 440 445
- Ser Phe Ile Val Asp Gln Ala Asn Gln Pro His Cys Val Asp Asp Tyr 450 455 460
- His Arg Lys Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met 465 470 475 480
- Pro Glu Pro Gly Lys Asp Glu Thr Val Arg Val Val Ala Leu Glu Lys 485 490 495
- Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Arg Pro Leu 500 505 510
- Ser Ile Glu Ala Asp Glu Asn Gly Cys Phe Pro Leu Asp Gly His Val 515 520 525
- Leu Cys Met Lys Cys His Thr Val Arg Ala Lys Thr Ala Cys 530 535 540

<210> 11 <211> 1716

<212> ADN <213> Homo sapiens <220> <221> CDS <222> (1)..(1716) <400> 11 atg gcg gcc ccc cgc ccg tct ccc gcg atc tcc gtt tcg gtc tcg gct 48 Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala ccg gct ttt tac gcc ccg cag aag aag ttc ggc cct gtg gtg gcc cca Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro 25 aag coe aaa gtg aat coe tto egg coe ggg gac age gag cot eec eeg 144 Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro gea eee ggg gee eag ege gea eag atg gge egg gtg gge gag att eee 192 Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro ccg ccg ccc ccg gaa gac ttt ccc ctg cct cca cct ccc ctt gct ggg Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ala Gly gat; ggc gac gat gca gag ggt gct ctg gga ggt gcc ttc ccg ccc ccc 288 Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro cet ece eeg ate gag gaa tea ttt eee eet geg eet etg gag gag gag 336 Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu 100 105 atc ttc cct tcc ccg ccg cct cct ccg gag gag gag ggg ggg cct gag 384 Ile Phe Pro Ser Pro Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu 115 gcc ccc ata ccg ccc cca cca cag ccc agg gag aag gtg agc agt att Ala Pro Ile Pro Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 135 140 gat ttg gag atc gac tct ctg tcc tca ctg ctg gat gac atg acc aag Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys 145 150 155 aat gat cct ttc aaa gcc cgg gtg tca tct gga tat gtg ccc cca cca Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro 165· 170 gtg gcc act cca ttc agt tcc aag tcc agt acc aag cct gca gcc ggg Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly 180 190 ggc aca gca ccc ctg cct cct tgg aag tcc cct tcc agc tcc caq cct Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro 195

ctg Leu	ccc Pro 210	cag Gln	gtt Val	ccg Pro	gct Ala	ecg Pro 215	gct Ala	cag Gln	agc Ser	cag Gln	aca Thr 220	cag Gln	ttc Phe	cat His	gtt Val	672
cag Gln 225	ccc Pro	cag Gln	ccc Pro	cag Gln	ccc Pro 230	aag Lys	cct Pro	cag Gln	gtc Val	caa Gln 235	ctc Leu	cat His	gtc Val	cag Gln	tcc Ser 240	720
cag Gln	acc Thr	cag Gln	cct Pro	gtg Val 245	tct Ser	ttg Leu	gct Ala	aac Asn	acc Thr 250	cag Gln	ccc Pro	cga Arg	GJ A GGG	ccc Pro 255	cca Pro	768
gcc Ala	tca Ser	tct Ser	ccg Pro 260	gct Ala	cca Pro	gcc Ala	cct Pro	aag Lys 265	ttt Phe	tct Ser	cca Pro	gtg Val	act Thr 270	cct Pro	aag Lys	816
ttt Phe	act Thr	cct Pro 275	gtg Val	gct Ala	tcc Ser	aag Lys	ttc Phe 280	Ser	cct Pro	gga Gly	gcc Ala	cca Pro 285	ggt Gly	gga Gly	tct Ser	864
gly	tca Ser 290	caa Gln	cca Pro	aat Asn	caa Gln	aaa Lys 295	ttg Leu	ggg Gly	cac His	ccc Pro	gaa Glu 300	gct Ala	ctt Leu	tct Ser	gct Ala	912
ggc Gly 305	aca Thr	ggc	tcc Ser	cct Pro	caa Gln 310	cct	ccc	agc Ser	ttc Phe	acc Thr 315	tat Týr	gcc Ala	cag Gln	cag Gln	agg Arg 320	960
gag Glu	aag Lys	ccc Pro	cga Arg	gtg Val 325	cag Gln	gag Glu	aag Lys	cag Gln	cac His 330	ccc Pro	gtg Val	ccc Pro	cca Pro	ccg Pro 335	gct Ala	1008
cag Gln	aac Asn	caa Gln	aac Asn 340	cag Gln	gtg Val	cgc Arg	tcc Ser	ect Pro 345	GJY	gcc Ala	cca Pro	G] À Ggà	ccc Pro 350	ctg Leu	act Thr	1056
ctg Leu	aag Lys	gag Glu 355	gtg Val	gag Glu	gag Glu	ctg Leu	gag Glu 360	Gln	ctg Leu	acc Thr	cag Gln	cag Gln 365	cta Leu	atg Met	cag Gln	1104
gac Asp	atg Met 370	gag Glu	cat	cct Pro	cag Gln	agg Arg 375	cag Gln	aat Asn	gtg Val	gct Ala	gtc Val 380	Asn	gaa Glu	ctc Leu	tgc Cys	1152
ggc Gly 385	Arg	tgc Cys	cat His	caa Gln	ccc Pro 390	ctg Leu	gcc Ala	cgg Arg	gcg Ala	cag Gln 395	Pro	gcc Ala	gtc Val	cgc Arg	gct Ala 400	1200
cta Leu	ggg	cag Gln	ctg Leu	ttc Phe 405	His	ato Ile	gcc Ala	tgc Cys	tto Phe 410	Thr	tgc Cys	cac His	cag Gln	tgt Cys 415	gcg Ala	1248
cag Gln	cag Gln	ctc Lev	cag Gln 420	Gly	caç Glr	g Cag n Gln	tto Phe	tac Tyr 425	Ser	ctg Leu	gag Glu	gly ggg	geg Ala 430	Pro	tac Tyr	1296
tgc · Cys	gag Glu	ggc Gl ₃ 435	/ Cys	tac Tyr	act Thi	gac Asr	aco Thr 440	Lev	gag i Glu	g aac Lys	g tgt s Cys	aac Asn 445	1 Thr	tgo Cys	ggg Gly	1344

gag Glụ	ccc Pro 450	atc Ile	act Thr	gac Asp	cgc Arg	atg Met 455	ctg Leu	agg Arg	gcc Ala	acg Thr	ggc Gly 460	aag Lys	gcc Ala	tat Tyr	cac His	1392
ccg Pro 465	cac His	t <i>gc</i> Cýs	t <i>tc</i> Phe	acc Thr	tgt Cys 470	gtg Val	gtc Val	tgc Cys	gcc Ala	cgc Arg 475	ccc Pro	ctg Leu	gag Glu	ggc	acc Thr 480	1440
					cag Gln											1488
cac His	_aag Lys	cag Gln	tac Tyr 500	gcc Ala	ccg Pro	agg Arg	tgc Cys	tcc Ser 505	gtc Val	tgc Cys	tct Ser	gag Glu	ccc Pro 510	atc Ile	atg Met	1536
cct Pro	Glu	cct Pro 515	ggc Gly	cga Arg	gat Asp	gag Glu	act Thr 520	gtg Val	cga Arg	gtg Val	gtc Val	gcc: Ala 525	ctg Leu	gac Asp	aag Lys	1584
aac Asn	ttc Phe 530	cac His	atg Met	aag Lys	tgt Cys	ta <i>c</i> Tyr 535	aag Lys	tgt Cys	gag Glu	gac Asp	tgc Cys 540	Gly ggg	aag. Lys	ccc Pro	ctg Leu	1632
tcg Ser 545	att Ile	gag Glu	gca Ala	gat Asp	gac Asp 550	aat Asn	ggc Gly	tgc Cys	ttc Phe	ccc Pro 555	ctg Leu	gac Asp	ggt Gly	cac His	gtg Val 560	1680
ctc	tgt	cgg	aag	tgc	cac	act	gct	aga	gcc	cag	acc					1716
Leu	Суз	Arg	Lys	Cys 565	His	Thr	Ala	-	Ala 570	Gln	Thr					
<210 <211 <212)> 12 l> 57 2> PF	2 72 RT	Lys	565	His	Thr	Ala	-		Gln	Thr					
<210 <211 <212 <213	0> 12 1> 57 2> PF 3> Ho	2 72 RT DMO s	sapie	565 ens					570		, ·					
<210 <211 <212 <213	0> 12 1> 57 2> PF 3> Ho	2 72 RT DMO s	sapie	565 ens	His				570		, ·	Ser	Val	Ser 15	Ala	
<210 <211 <212 <213 <400 Met	0> 12 1> 57 2> PF 3> Ho 0> 12 Ala	2 72 RT omo s 2 Ala	sapie Pro	565 ens Arg		Ser	Pro	Ala	570 Ile 10	Ser	Val	٠		15		
<210 <211 <212 <213 <400 Met 1	0> 12 1> 57 2> PF 3> Ho 0> 12 Ala	2 72 RT DMO s 2 Ala	Pro Tyr 20	ens Arg 5 Ala	Pro	Ser	Pro Lys	Ala Lys 25	Ile 10 Phe	Ser	Val Pro	Val	Val 30	15 Ala	Pro	
<210 <211 <212 <213 <400 Met 1 Pro	0> 12 1> 57 2> PF 3> Ho 0> 12 Ala Ala	2 72 RT DMO s 2 Ala Phe Lys 35	Pro Tyr 20 Val	Arg 5 Ala Asn	Pro Pro	Ser Gln Phe	Pro Lys Arg 40	Ala Lys 25 Pro	Ile 10 Phe	Ser Gly Asp	Val Pro Ser	Val Glu 45	Val 30 Pro	15 Ala Pro	Pro Pro	
<210 <211 <212 <213 <400 Met 1 Pro Lys	0> 12 1> 57 2> PF 3> Ho 0> 12 Ala Ala Pro 50	2 72 RT DMO s 2 Ala Phe Lys 35	Pro Tyr 20 Val	Arg 5 Ala Asn Gln	Pro Pro	Ser Gln Phe Ala 55	Pro Lys Arg 40 Gln	Ala Lys 25 Pro Met	Ile 10 Phe Gly	Ser Gly Asp	Val Pro Ser Val 60	Val Glu 45 Gly	Val, 30 Pro Glu	15 Ala Pro Ile	Pro Pro	
<210 <211 <212 <213 <400 Met 1 Pro Lys Ala Pro 65	0> 12 1> 57 2> PF 3> Ho 0> 12 Ala Ala Pro Pro 50	2 72 RT DMO s 2 Ala Phe Lys 35 Gly	Pro Tyr 20 Val Ala	Arg 5 Ala Asn Gln	Pro Pro Pro Arg	Ser Gln Phe Ala 55 Phe	Pro Lys Arg 40 Gln Pro	Ala Lys 25 Pro Met	Ile 10 Phe Gly Gly	Ser Gly Asp Arg Pro 75	Val Pro Ser Val 60 Pro	Val Glu 45 Gly Pro	Val 30 Pro Glu Leu	15 Ala Pro Ile Ala	Pro Pro Pro Gly 80	

Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu 120 115 Ala Pro Ile Pro Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 135 Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys 155 150 Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly 185 Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro 200 Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val 215 Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser 235 230 Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro 245 250 Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys 265 Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser 280 Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala 295 Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg 315 310 Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala 330 Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr 345 Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys 375 Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala 390 Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr 425

Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly
435 440 445

Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His 450 455 460

Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr 465 470 475 480

Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr 485 490 495

His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met
500 505 510

Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys 515 520 525

Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu 530 535 540

Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val 545 550 555 560

Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr 565 570

<210> 13

<211> 1836

<212> ADN

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1836)

<400> 13

atg tct cac cca tct tgg ctg cca ccc aaa age act ggt gag ccc ctc 48

Met Ser His Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu

1 5 10 15

ggc cat gtg cct gca cgg atg gag acc acc cat tcc ttt ggg aac ccc 96 Gly His Val Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro
20 25 30

agc att tca gtg tct aca caa cag cca ccc aaa aag ttt gcc ccg gta 144 Ser Ile Ser Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val 35 40 45

gtt gct cca aaa cct aag tac aac cca tac aaa caa cct gga ggt gag 192 Val Ala Pro Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Gly Glu 50 55 60

ggt gat ttt ctt cca ccc cca cct cca cct cta gat gat tcc agt gcc 240 Gly Asp Phe Leu Pro Pro Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala 65 70 75 80

															gat Asp 95	gaa Glu		288
															gag Glu		-	336
	agg Arg	cgc Arg	tcc Ser 115	agc Ser	ctg Leu	gac Asp	gct Ala	gag Glu 120	att Ile	gac Asp	tcc Ser	ttg Leu	acc Thr 125	agc Ser	atc Ile	ttg Leu		384
	gct Ala	gac Asp 130	ctt Leu	gag Glu	tgc Cys	agc Ser	tcc Ser 135	ccc Pro	tat Tyr	aag Lys	cct Pro	cgg Arg 140	cct Pro	cca Pro	cag Gln	agc Ser		432
	tcc Ser 145	act Thr	ggt Gly	tca Ser	aca Thr	gcc Ala 150	tct Ser	cct Pro	cca Pro	gtt Val	tcg Ser 155	acc Thr	cca Pro	gtc Val	aca Thr	gga Gly 160		480
-	cac His	aag Lys	aga Arg	atg Met	gtc Val 165	atc Ile	ccg Pro	aac Asn	caa Gln	ccc Pro 170	cct Pro	cta Leu	aca Thr	gca Ala	acc Thr 175	aag Lys		528
	aag Lys	tct Ser	aca Thr	ttg Leu 180	aaa Lys	cca Pro	cag Gln	cct Pro	gca Ala 185	ccc Pro	cag Gln	gct Ala	gga Gly	ccc Pro 190	atc Ile	cct Pro		576
	gtg Val	gct Ala	cca Pro 195	atc Ile	gga Gly	aca Thr	ctc Leu	aaa Lys 200	ccc Pro	cag Gln	cct	cag Gln	cca Pro 205	gtc Val	cca Pro	gcc Ala		624
															gtg Val			672
	gtg Val 225	aag Lys	tca Ser	gcc Ala	cag Gln	ccc Pro 230	agc Ser	cct Pro	cat His	tat Tyr	atg Met 235	gct Ala	gcc Ala	cct Pro	tca Ser	tca Ser 240		720
	gga Gly	caa Gln	att	tat Tyr	ggc Gly 245	tca Ser	ggg Gly	ccc Pro	Gln	ggc Gly 250	tat Tyr	aac Asn	act Thr	Gln	cca Pro 255			768
															atg Met			816
	tat Tyr	gcc Ala	tac Tyr 275	att Ile	cca Pro	cca Pro	cca Pro	gga Gly 280	ctt Leu	cag Gln	ccg Pro	gag Glu	cct Pro 285	ggg Gly	tat Tyr	GJ A GG A		864
	tat Tyr	gcc Ala 290	ccc Pro	aac Asn	cag Gln	gga Gly	cgc Arg 295	tat Tyr	tat Tyr	gaa Glu	ggc Gly	tac Tyr 300	tat Tyr	gca Ala	gca Ala	GJY GGG		912
	cca Pro 305	ggc Gly	tat Tyr	Gly	ggc	aga Arg 310	aat Asn	gac Asp	tct Ser	gac Asp	cct Pro 315	acc Thr	tat Tyr	ggt Gly	caa Gln	caa Gln 320		960

ggt Gly	cac His	cca Pro	aat Asn	acc Thr 325	Trp	aaa Lys	cgg Arg	gaa Glu	cca Pro 330	Gly	tac Tyr	act Thr	cct Pro	cct Pro 335	gga Gly	1008
gca Ala	Gly	aac Asn	cag Gln 340	Asn	cct Pro	cct Pro	ggg	atg Met 345	tat Tyr	cca Pro	gtc Val	act Thr	ggt Gly 350	Pro	aag Lys	1056
aag Lys	acc Thr	tat Tyr 355	atc Ile	aca Thr	gat Asp	cct Pro	gtt Val 360	tca Ser	gcc Ala	ccc Pro	tgt Cys	gcg Ala 365	Pro	cca Pro	ttg Leu	1104
cag Gln	cca Pro 370	aag Lys	ggt Gly	ggc	cat His	tca Ser 375	ggg Gly	caa Gln	ctg Leu	Gly	cct Pro 380	tcg Ser	tca Ser	gtt Val	gcc Ala	1152
cct Pro 385	tca Ser	ttc Phe	cgc Arg	cca Pro	gag Glu 390	gat Asp	gag Glu	ctt Leu	gag Glu	cac His 395	ctg Leu	acc Thr	aaa Lys	aag Lys	atg Met 400	1200
ctg Leu	tat Tyr	gac Asp	atg Met	gaa Glu 405	aat Asn	cca Pro	cct Pro	gct Ala	gac Asp 410	gaa Glu	tac Tyr	ttt Phe	ggc	cgc Arg 415	tgt Cys	1248
gct Ala	cgc Arg	tgt Cys	gga Gly 420	gaa Glu	aac Asn	gta Val	gtt Val	ggg Gly 425	gaa Glu	ggt Gly	aca Thr	gga Gly	tgc Cys 430	act Thr	gcc Ala	1296
						gtg Val										1344
Asn	Lys 450	Leu	Arg	Gly	Gln	Pro 455	Phe	Tyr	Ala	Val	Glu 460	Lys	Lys	Ala		1392
tgc Cys 465	gag Glu	ccc Pro	tgc Cys	tac Tyr	att Ile 470	aat Asn	act Thr	ctg Leu	gag Glu	cag Gln 475	tgc Cys	aat Asn	gtg Val	tgt Cys	tcc Ser 480	1440
Lys	Pro	Ile	Met	Glu 485	Arg	att Ile	Leu	Arg	Ala 490	Thr	Gly	Lys	Ala	Tyr 495	His	1488
cct Pro	cac His	tgt Cys	ttc Phe 500	acc Thr	tgc Cys	gtg Val	atg Met	tgc Cys 505	Cac His	cgc Arg	agc Ser	ctg Leu	gat Asp 510	Gly	atc Ile	1536
cca Pro	ttc Phe	act Thr 515	gtg Val	gat Asp	gct Ala	ggc ggc	ggg Gly 520	ctc Leu	att Ile	cac His	tgc Cys	att Ile 525	gag Glu	gac Asp	ttc · Phe	1584
cac His	aag Lys 530	aaa Lys	ttt Phe	gcc Ala	ccg Pro	egg Arg 535	tgt Cys	tct Ser	gtg Val	tgc Cys	aag Lys 540	gag Glu	cct Pro	att Ile	atg Met	1632
						gag Glu								Āsp		1680

gat Asp	ttc Phe	cat His	gtt Val	cac His 565	tgc Cys	tac Tyr	cga Arg	tgc Cys	gag Glu 570	gat Asp	tgc Cys	ggt Gly	ggt Gly	ctc Leu 575	ctg Leu	1728
tct Ser	gaa Glu	gga Gly	gat Asp 580	aac Asn	caa Gln	ggc Gly	tgc Cys	tac Tyr 585	ccc Pro	ttg Leu	gat Asp	gjå aaa	cac His 590	atc Ile	ctc Leu	1776
tgc Cys	aag Lys	acc Thr 595	tgc Cys	aac Asn	tct Ser	gcc Ala	cgc Arg 600	Ile	agg Arg	gtg Val	ttg Leu	acc Thr 605	gcc Ala	aag Lys	gcg Ala	1824
	act Thr 610															1836
<21:	0> 14 1> 61 2> PI 3> Ho	l2 RT	eani e	ans												
\Z.I.)> IIC		συν												•	
	0> 14 Ser		Pro	Ser 5	Trp	Leu	Pro	Pro	Lys 10	Ser	Thr	Gly	Glu	Pro 15	Leu	
Gly	His	Val	Pro 20	Ala	Arg	Met	Glu	Thr 25	Thr	His	Ser	Phe	Gly 30	Asn	Pro	
Ser	Ile	Ser 35	Val	Ser	Thr	Gln	Gln 40	Pro	Pro	Lys	Lys	Phe 45	Ala	Pro	Val	
Val	Ala 50	Pro	Lys	Pro	Lys	Tyr 55	Asn	Pro	Tyr	Lys	Gln 60	Pro	Gly	Gly	Glu	. ,
Gly 65	Asp	Phe	Leu	Pro	Pro 70	Pro	Pro	Pro	Pro	Leu 75	Asp	Asp	Ser	Ser	Ala 80	
Leu	Pro	Ser	Ile	Ser 85	Gly	Asn	Phe	Pro	Pro 90	Pro	Pro	Pro	Leu	Asp 95	Glu	
Glu	Ala	Phe	Lys 100	Val	Gln	Gly	Asn	Pro 105	Gly	Gly	Lys	Thr	Leu 110	Glu	Glu	
Arg	Arg	Ser 115	Ser	Leu	Asp	Ala	Glu 120	Ile	Asp	Ser	Leu	Thr 125	Ser	Ile	Leu	
	Asp 130					135					140					
Ser 145	Thr	Gly	Ser	Thr	Ala 150	Ser	Pro	Pro	Val	<i>Ser</i> 155		Pro	Val	Thr	Gly 160	
	Lys	-		165					170					175		
Lys	Ser	Thr	Leu 180		Pro	Gln	Pro	Ala 185	Pro	Gln	Ala	Gly	Pro 190		Pro	
Val	Ala	Pro 195		Gly	Thr	Leu	Lys 200		Gln	Pro	Gln	Pro 205		Pro	Ala	

Ser Tyr Thr Thr Ala Ser Thr Ser Ser Arg Pro Thr Phe Asn Val Gln 215 Val Lys Ser Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser Gly Gln Ile Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val 250 Pro Val Ser Gly Gln Cys Pro Pro Pro Ser Thr Arg Gly Gly Met Asp 260 265 Tyr Ala Tyr Ile Pro Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly 280 Tyr Ala Pro Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly 290 295 Pro Gly Tyr Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln Gly His Pro Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly Ala Gly Asn Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys Lys Thr Tyr Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu 355 Gln Pro Lys Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met 390 Leu Tyr Asp Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg Cys Ala Arg Cys Gly Glu Asn Val Val Gly Glu Gly Thr Gly Cys Thr Ala 425 Met Asp Gln Val Phe His Val Asp Cys Phe Thr Cys Ile Ile Cys Asn Asn Lys Leu Arg Gly Gln Pro Phe Tyr Ala Val Glu Lys Lys Ala Tyr 455 Cys Glu Pro Cys Tyr Ile Asn Thr Leu Glu Gln Cys Asn Val Cys Ser Lvs Pro Ile Met Glu Arg Ile Leu Arg Ala Thr Gly Lys Ala Tyr His 490 Pro His Cys Phe Thr Cys Val Met Cys His Arg Ser Leu Asp Gly Ile 500 505 Pro Phe Thr Val Asp Ala Gly Gly Leu Ile His Cys Ile Glu Asp Phe 520 525

His Lys Lys Phe Ala Pro Arg Cys Ser Val Cys Lys Glu Pro Ile Met 535 530 Pro Ala Pro Gly Gln Glu Glu Thr Val Arg Ile Val Ala Leu Asp Arg Asp Phe His Val His Cys Tyr Arg Cys Glu Asp Cys Gly Gly Leu Leu Ser Glu Gly Asp Asn Gln Gly Cys Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Thr Cys Asn Ser Ala Arg Ile Arg Val Leu Thr Ala Lys Ala Ser Thr Asp Leu 610 <210> 15 <211> 1431 <212> ADN <213> Homo sapiens <220> <221> CDS <222> (1)..(1431) <400> 15 atg teg ggg eec ace tgg etg eec eeg aag eag eeg gag eec gee aga Met Ser Gly Pro Thr Trp Leu Pro Pro Lys Gln Pro Glu Pro Ala Arg gee eet eag ggg agg geg ate eee ege gge aee eeg ggg eea eea eeg 96 Ala Pro Gln Gly Arg Ala Ile Pro Arg Gly Thr Pro Gly Pro Pro gee cae gga gea gea etc cag eec cae eec agg gte aat ttt tge eec 144 Ala His Gly Ala Ala Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro 45 . 40 ctt cca tot gag cag tgt tac cag gcc cca ggg gga ccg gag gat cgg 192 Leu Pro Ser Glu Gln Cys Tyr Gln Ala Pro Gly Gly Pro Glu Asp Arg ggg ccg gcg tgg gtg ggg tcc cat gga gta ctc cag cac acg cag ggg 240 Gly Pro Ala Trp Val Gly Ser His Gly Val Leu Gln His Thr Gln Gly 70 . ctc cct gca gac agg ggg ggc ctt cgc cct gga agc ctg gac gcc gag Leu Pro Ala Asp Arg Gly Gly Leu Arg Pro Gly Ser Leu Asp Ala Glu 90 ata gac ttg ctg agc agc acg ctg gcc gag ctg aat ggg ggt cgg ggt Ile Asp Leu Leu Ser Ser Thr Leu Ala Glu Leu Asn Gly Gly Arg Gly 105

			cgg Arg													384
			cgc Arg													432
	_		ccc Pro							_					_	480
			gct Ala													528
			ggc Gly 180													576
			ccg Pro													624
			Glà													672
Glu 225	Glu	Ala	gct Ala	Gly	Val 230	Ser	Gly	Pro	Ala	Gly 235	Arg	Gly	Arg	Gly	Gly 240	720
			ccc Pro													768
			acg Thr 260													816
			ttt Phe													864
			GJA GGG													912
			tct Ser													960
			agg Arg													1008
			gcc Ala 340													1056

gct Ala	atg Met	ggg Gly 355	aag Lys	gcc Ala	tac Tyr	cac His	cct Pro 360	ggc Gly	tgc Cys	ttc Phe	acc Thr	tgc Cys 365	gtg Val	gtg Val	tgt Cys	1104	
cac His	cgc Arg 370	ggc Gly	ctc Leu	gac Asp	ggc Gly	atc Ile 375	Pro	ttc Phe	aca Thr	gtg Val	gat Asp 380	gct Ala	acg Thr	agc Ser	cag Gln	1152	٠
atc Ile 385	cac His	tgc Cys	att Ile	gag Glu	gac Asp 390	ttt Phe	cac His	agg Arg	aag Lys	ttt Phe 395	gcc Ala	cca Pro	aga Arg	tgc Cys	tca Ser 400	1200	
gtg Val	tgc Cys	ggt Gly	GJ À ààà	gcc Ala 405	Ile	atg Met	cct Pro	gag Glu	cca Pro 410	ggt Gly	cag Gln	gag Glu	gag Glu	act Thr 415	gtg Val	1248	
aga Arg	att Ile	gtt Val	gct Ala 420	ctg Leu	gat Asp	cga Arg	agt Ser	ttt Phe 425	cac His	att Ile	ggc Gly	tgt Cys	tac Tyr 430	aag Lys	tgc Cys	1296	
gag Glu	gag Glu	tgt Cys 435	GJ A GGG	ctg Leu	ctg Leu	ctc Leu	tcc Ser 440	tct Ser	gag Glu	ggc Gly	gag Glu	tgt Cys 445	cag Gln	ggc	tgc Cys	1344	*
tac Tyr	ccg Pro 450	ctg Leu	gat Asp	GJ A GGG	cac His	atc Ile 455	ttg Leu	tgc Cys	aag Lys	gcc Ala	tgc Cys 460	agc Ser	gcc Ala	tgg Trp	cgc Arg	1392	
atc Ile 465	cag Gln	gag Glu	ctc Leu	tca Ser	gcc Ala 470	acc Thr	gtc Val	acc Thr	act Thr	gac Asp 475	tgc Cys	tga			٠	1431	٠.
<21 <21	0> 1 1> 4 2> P1 3> H	76 RT	sapi	ens			\				•				٠.		٠.
<40 Met 1	0> 1 Ser	6 Gly	Pro	Thr 5		Leu	Pro	Pro	Lys 10	Gln	Pro	Glu	Pro	Ala 15	Arg	· .	*.
Ala	Pro	Gln	Gly 20		Ala	Ile	Pro	Arg 25		Thr	Pro	Gly	Pro 30		Pro		
Ala	His	G1 ý 35	Ala	Ala	Leu	Gln	Pro 40		Pro	Arg	Val	Asn 45	Phe	Сув	Pro	.*	
Leu	Pro 50		Glu	Gln	Cys	Tyr 55		Ala	Pro	Gly	Gly 60		Glu	Asp	Arg		.*
Gly 65		Ala	Trp	Val	Gly 70		His	: Gly	Val	Leu 75		His	Thr	Gln	.Gly 80		
Lev	Pro	Ala	Asp	Arg 85		Gly	Leu	Arg	Pro 90		Ser	Leu	Asp	Ala 95	Glu		
Ile	Asp	Lev	100		Ser	Thr	: Let	Ala 105		Leu	Asn	Gly	Gly		Gly	•	

His Ala Ser Arg Arg Pro Asp Arg Gln Ala Tyr Glu Pro Pro Pro Pro Pro Ala Tyr Arg Thr Gly Cys Leu Lys Pro Asn Pro Ala Ser Pro Leu Pro Ala Ser Pro Tyr Gly Gly Pro Thr Pro Ala Ser Tyr Thr Thr Ala 145 150 155 Ser Thr Pro Ala Gly Pro Ala Phe Pro Val Gln Val Lys Val Ala Gln Pro Val Arg Gly Cys Gly Pro Pro Arg Arg Gly Ala Ser Gln Ala Ser Gly Pro Leu Pro Gly Pro His Phe Pro Leu Pro Gly Arg Gly Glu Val Trp Gly Pro Gly Tyr Arg Ser Gln Arg Glu Pro Gly Pro Gly Ala Lys Glu Glu Ala Ala Gly Val Ser Gly Pro Ala Gly Arg Gly Arg Gly Gly Glu His Gly Pro Gln Val Pro Leu Ser Gln Pro Pro Glu Asp Glu Leu Asp Arg Leu Thr Lys Lys Leu Val His Asp Met Asn His Pro Pro Ser Gly Glu Tyr Phe Gly Gln Cys Gly Gly Cys Gly Glu Asp Val Val Gly Asp Gly Ala Gly Val Val Ala Leu Asp Arg Val Phe His Val Gly Cys Phe Val Cys Ser Thr Cys Arg Ala Gln Leu Arg Gly Gln His Phe Tyr Ala Val Glu Arg Arg Ala Tyr Cys Glu Gly Cys Tyr Val Ala Thr Leu Glu Lys Cys Ala Thr Cys Ser Gln Pro Ile Leu Asp Arg Ile Leu Arg Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr Cys Val Val Cys His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp Ala Thr Ser Gln Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala Pro Arg Cys Ser 390 395 Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln Glu Glu Thr Val 410

Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly Cys Tyr Lys Cys

425

420

PCT/FR01/00843 WO 01/71356

Glu Glu Cys Gly Leu Leu Leu Ser Ser Glu Gly Glu Cys Gln Gly Cys 435 440 Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys Ser Ala Trp Arg 455 Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys 470 <210> 17 <211> 1443 <212> ADN <213> Mus musculus <220> <221> CDS <222> (1)..(1443) <400> 17 atg tcc ggg ccc acc tgg ctt ccc ccg aag cag cca gaa ccc tcc aga Met Ser Gly Pro Thr Trp Leu Pro Pro Lys Gln Pro Glu Pro Ser Arg ctc cct cag ggg aga tcg ctg ccc aga ggc gcc ctg ggc ccg cca acg 96 Leu Pro Gln Gly Arg Ser Leu Pro Arg Gly Ala Leu Gly Pro Pro Thr gee cae gga gea aca etc eag eet eac eec agg gte aac ttt tge eec Ala His Gly Ala Thr Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro ctc ccg cct gaa cac tgt tat cag cct ccg ggg gta ccg gaa gat cgg 192 Leu Pro Pro Glu His Cys Tyr Gln Pro Pro Gly Val Pro Glu Asp Arg ggg cct act tgg gtg gga tcc cat gga aca ccc cag cgc ctg cag ggg 240 Gly Pro Thr Trp Val Gly Ser His Gly Thr Pro Gln Arg Leu Gln Gly ctc cct cca gac agg ggg atc atc cgc cct ggc agt ctg gat gct gag Leu Pro Pro Asp Arg Gly Ile Ile Arg Pro Gly Ser Leu Asp Ala Glu ata gat tcg ctc acc agc atg ttg gct gat ctg gac ggg ggt cgc agt 33.6 Ile Asp Ser Leu Thr Ser Met Leu Ala Asp Leu Asp Gly Gly Arg Ser cat gca cct agg cgg cca gac aga cag gct ttt gag gct ccc cca ccc 384 His Ala Pro Arg Arg Pro Asp Arg Gln Ala Phe Glu Ala Pro Pro Pro 120 115 cat gct tac cgc gga ggc tcc ctg aag ccc agt gga ggt gct gtt cca His Ala Tyr Arg Gly Gly Ser Leu Lys Pro Ser Gly Gly Ala Val Pro 135 130 acc ccg atg ctc cca gca tcc cac tat ggt gga cct acc oca gcc tcc 480 Thr Pro Met Leu Pro Ala Ser His Tyr Gly Gly Pro Thr Pro Ala Ser 150 155

145

tat Tyr	gct Ala	acc Thr	gcg Ala	ago Ser 165	Thr	cca Pro	gct Ala	ggc	Pro 170	Ala	ttc Phe	cct Pro	gta Val	caa Gln 175	gtg Val	528
aag Lys	gtg Val	gçt Ala	caa Gln 180	cct Pro	gtg Val	aga Arg	ggc Gly	tgt Cys 185	gga Gly	ctg Leu	Pro	agg Arg	cga Arg 190	ggg Gly	gcc Ala	576
tct Ser	cag Gln	gcc Ala 195	tct Ser	ej A aaa	cct Pro	ctt Leu	cca Pro 200	ggc Gly	ccc Pro	cac His	ttt Phe	cct Pro 205	Leu	aca Thr	ggt Gly	624
cgt Arg	ggt Gly 210	gaa Glu	gtc Val	tgg Trp	ggg Gly	gct Ala 215	ggc Gly	tat Tyr	agg Arg	agc Ser	cac His 220	cga Arg	gag Glu	cca Pro	gga Gly	672
ccg Pro 225	ggg	gtt Val	ccg Pro	gag Glu	gga Gly 230	cct Pro	tct Ser	gga Gly	gta Val	cat Hi <i>s</i> 235	atc Ile	cct Pro	gca Ala	gga Gly	gga Gly 240	720
GJ À GG À	aga Arg	gga Gly	ggt Gly	ggg Gly 245	cat His	gag Glu	cct Pro	cag Gln	ggc Gly 250	ccc Pro	tta Leu	ggc	caa Gln	cct Pro 255	cct Pro	768
gaa Glu	gag Glu	gaa Glu	ctg Leu 260	gag Glu	aga Arg	ctg Leu	acc Thr	aag Lys 265	aaa Lys	ctg Leu	gtg Val	cat His	gac Asp 270	atg Met	agc Ser	816
cac His	cct Pro	ccc Pro 275	agt Ser	Gl ^à aaa	gag Glu	tac Tyr	ttt Phe 280	ggt Gly	cgg Arg	tgt Cys	ggt Gly	ggc Gly 285	tgt Cys	ggc Gly	gaa Glu	864
gat Asp	gtg Val 290	gtg Val	ggc Gly	gat Asp	gga Gly	gct Ala 295	ggg Gly	gtt Val	gtg Val	gcc Ala	ctg Leu 300	gac Asp	cgt Arg	gtc Val	ttc Phe	912
cat His 305	att Ile	ggt Gly	tgc Cys	ttt Phe	gtg Val 310	tgt Cys	tct Ser	acc Thr	tgt Cys	cgg Arg 315	gcc Ala	cag Gln	ctc Leu	cgg Arg	ggc Gly 320	960
cag Gln	cac His	ttc Phe	tat Tyr	gct Ala 325	gtg Val	gag Glu	agg Arg	cgg Arg	gca Ala 330	tat Tyr	tgt Cys	gag Glu	Ser	tgc Cys 335	tat Tyr	1008
gtg Val	gcc Ala	acc Thr	ctg Leu 340	gag Glu	aaa Lys	tgt Cys	tcc Ser	aca Thr 345	tgc Cys	tct Ser	gaa Glu	ccc Pro	atc Ile 350	ctg Leu	gac Asp	1056
cga Arg	atc Ile	ctg Leu 355	agg Arg	gct Ala	atg Met	GJ A aaa	aag Lys 360	gcg Ala	tac Tyr	cac His	cct Pro	ggt Gly 365	tgc Cys	ttc Phe	acc Thr	1104
tgt Cys	gtg Val 370	gta Val	tgc Cys	cac His	cgt Arg	ggt Gly 375	ctt Leu	gat Asp	G1y ggc	atc Ile	ccg Pro 380	ttc Phe	aca Thr	gtg Val	gac Asp	1152
gcc Ala 385	acc Thr	agc Ser	cag Gln	atc Ile	cac His 390	tgc Cys	att Ile	gaa Glu	gat Asp	ttc Phe 395	cac His	agg Arg	aaa Lys	Phe	gcc Ala 400	1200

	cca Pro	cga Arg	tgc Cys	tca Ser	gtg Val 405	tgt Cys	ggt Gly	ggg Gly	gcc Ala	atc Ile 410	atg Met	ccg Pro	gaa Glu	cca Pro	ggt Gly 415	cag Gln	1248
	gag Glu	gag Glu	acg Thr	gtg Val 420	aga Arg	atc Ile	gtt Val	gct Ala	ctg Leu 425	gat Asp	cga Arg	agt Ser	ttc Phe	cac His 430	atc Ile	Gly Ggc	1296
	tgt Cys	tac Tyr	aag Lys 435	tgt Cys	gag Glu	gag Glu	tgt Cys	ggg Gly 440	ctg Leu	ctg Leu	ctg Leu	tcc Ser	tct Ser 445	gag Glu	gga Gly	gag Glu	1344
	tgt Cys	caa Gln 450	ggc Gly	tgc Cys	tac Tyr	ccg Pro	ctg Leu 455	gat Asp	GJ Ā āāā	cac His	atc Ile	ttg Leu 460	tgc Cys	aag Lys	gct Ala	tgc Cys	1392
	agc Ser 465	gcc Ala	tgg Trp	cgt Arg	atc Ile	caa Gln 470	gag Glu	ctc Leu	tca Ser	gcc Ala	act Thr 475	gtc Val	acc Thr	act Thr	gat Asp	tgt Cys 480	1440
	tga																1443
<210> 18 <211> 480 <212> PRT <213> Mus musculus																	
	<40 Met 1	0> 1 Ser	8 Gly	Pro	Thr 5		Leu	Pro	Pro	Lys 10		Pro	Glu	Pro	Ser 15	Arg	
	Leu	Pro	Gln	Gly 20	Arg	Ser	Leu	Pro	Arg 25	Gly	Ala	Leu	Gly	Pro 30	Pro	Thr	
	Ala	His	Gly 35		Thr	Leu	Gln	Pro 40	His	Pro	Arg	Val	Asn 45	Phe	Cys	Pro	
	Leu	Pro 50		Glu	His	Cys	Tyr 55		Pro	Pro	Gly	Val 60	Pro	Glu	Asp	Arg	

Gly Pro Thr Trp Val Gly Ser His Gly Thr Pro Gln Arg Leu Gln Gly 80

Leu Pro Pro Asp Arg Gly Ile Ile Arg Pro Gly Ser Leu Asp Ala Glu 90

Ile Asp Ser Leu Thr Ser Met Leu Ala Asp Leu Asp Gly Gly Arg Ser 100

His Ala Pro Arg Arg Pro Asp Arg Gln Ala Phe Glu Ala Pro Pro Pro 115

His Ala Tyr Arg Gly Gly Ser Leu Lys Pro Ser Gly Gly Ala Val Pro 130 135 140

Thr Pro Met Leu Pro Ala Ser His Tyr Gly Gly Pro Thr Pro Ala Ser 145 150 155 160

Tyr Ala Thr Ala Ser Thr Pro Ala Gly Pro Ala Phe Pro Val Gln Val 165 Lys Val Ala Gln Pro Val Arg Gly Cys Gly Leu Pro Arg Arg Gly Ala Ser Gln Ala Ser Gly Pro Leu Pro Gly Pro His Phe Pro Leu Thr Gly Arg Gly Glu Val Trp Gly Ala Gly Tyr Arg Ser His Arg Glu Pro Gly Pro Gly Val Pro Glu Gly Pro Ser Gly Val His Ile Pro Ala Gly Gly 235 Gly Arg Gly Gly His Glu Pro Gln Gly Pro Leu Gly Gln Pro Pro Glu Glu Glu Leu Glu Arg Leu Thr Lys Lys Leu Val His Asp Met Ser 265 His Pro Pro Ser Gly Glu Tyr Phe Gly Arg Cys Gly Gly Cys Gly Glu 275 280 Asp Val Val Gly Asp Gly Ala Gly Val Val Ala Leu Asp Arg Val Phe 295 His Ile Gly Cys Phe Val Cys Ser Thr Cys Arg Ala Gln Leu Arg Gly Gln His Phe Tyr Ala Val Glu Arg Arg Ala Tyr Cys Glu Ser Cys Tyr 330 Val Ala Thr Leu Glu Lys Cys Ser Thr Cys Ser Glu Pro Ile Leu Asp 340 345 Arg Ile Leu Arg Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr 360 Cys Val Val Cys His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp Ala Thr Ser Gln Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala Pro Arg Cys Ser Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln Glu Glu Thr Val Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly 425 Cys Tyr Lys Cys Glu Glu Cys Gly Leu Leu Ser Ser Glu Gly Glu Cys Gln Gly Cys Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys 455 Ser Ala Trp Arg Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys-

```
<210> 19
<211> 1122
<212> ADN
<213> Séquence artificielle
<220>
<221> CDS
<222> (1)..(1122)
<223> Description de la séquence artificielle: fragment
     de la protéine zyxine murine
geg ged eec ege eeg eet eec geg ate tee gte tee gte teg ged eec
                                                                  48
Ala Ala Pro Arg Pro Pro Pro Ala Ile Ser Val Ser Val Ser Ala Pro
gcg ttt tac gcc ccg cag aag aag ttc gcc ccg gtt gtg gcc cca aag
Ala Phe Tyr Ala Pro Gln Lys Lys Phe Ala Pro Val Val Ala Pro Lys
            20
ccc aaa gtg aat cct ttc cgg cct ggg gac agc gag cct cct gta gca.
Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val Ala
         35
gcc ggg gcc caa aga gcg cag atg ggt cgg gtg ggc gag atc cca cca
Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro Pro
cca ccc ccg gaa gac ttt cct ttg ccc cct cct ccc ctt att ggg gag
                                                                  240
Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ile Gly Glu
ggc gac gac tea gag ggt gec etg gga ggt gec tte cea cet cea eet
                                                                  288
Gly Asp Asp Ser Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
ccc ccg atg atc gag gaa cca ttc ccc cct gct cct ctg gag gag gac
                                                                  336
Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu Asp
ate tte eee tee eet eea eet eea etg gag gag gag gga ggg eet gag
                                                                  384
Ile Phe Pro Ser Pro Pro Pro Pro Leu Glu Glu Glu Gly Pro Glu
                            120
qcc cet acc cag ctc cca ccg cag ccc agg gag aaa gtg tgc agt att
Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser Ile
                        135
gac ctg gag att gac tct ctg tcc tca ctg ctg gac gac atg acc aag
                                                                   480
Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
                                        155
aac gat ccc ttc aaa gcc cgg gta tca tcc gga tat gta ccc cca cca .
Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro
                                    170
                .165
```

gtt Val	gcc Ala	act Thr	cca Pro 180	tt't Phe	gtt Val	ccc Pro	aag Lys	cct Pro 185	agt Ser	acc Thr	aaa Lys	cct Pro	gcc Ala 190	cct Pro	GJ Å aaa	576
ggc Gly	aca Thr	gca Ala 195	ccc	ttg Leu	cct Pro	cct Pro	tgg Trp 200	aag Lys	acc Thr	cct Pro	t <i>c</i> t Ser	agc Ser 205	tcc Ser	cag Gln	cca Pro	624
cca Pro	cct Pro 210	cag Gln	ccg Pro	cag Gln	gcc Ala	aag Lys 215	cct Pro	cag Gln	gtc Val	cag Gln	ctc Leu 220	cat His	gtc Val	cag Gln	cct Pro	672
cag Gln 225	gcc Ala	aag Lys	ccc Pro	cat His	gtc Val 230	caa Gln	ccc Pro	cag Gln	cct Pro	gtg Val 235	tct Ser	tct Ser	gct Ala	aat Asn	aca Thr 240	720
cag Gln	ccc Pro	cgg Arg	ggt Gly	ccc Pro 245	ctt Leu	tct Ser	cag Gln	gca Ala	cca Pro 250	act Thr	cca Pro	gca Ala	cct Pro	aag Lys 255	ttt Phe	768
Ala	Pro	Val	Ala 260	Pro	Lys	Phe	Thr	Pro 265	Val	.Val	Ser	Lys	Phe 270	agc Ser	Pro	816
Gly	Ala	Pro 275	Ser	Gly	Pro	Gly	Pro 280	Gln	Pro	Asn	Gln	Lys 285	Met	gtg Val	Pro	864
Pro	Asp 290	Ala	Pro	Ser	Ser	Val 295	Ser	Thr	Gly	Ser	Pro 300	Gln	Pro	cct Pro	Ser	912
Phe 305	Thr	Tyr	Ala	Gln	Gln 310	Lys	Glu	Lys	Pro	Leu 315	Val	Gln	Glu	aag Lys	Gln 320	960
His	Pro	Gln	Pro	Pro 325	Pro	Ala	Gln	Asn	Gln 330	Asn	Gln	Val	Arg	tct Ser 335	Pro	1008
Gly	Gly	Pro	Gly 340	Pro	Leu	Thr	Leu	Lys 345	Glu	Val	Glu	Glu	Leu 350	gag Glu	Gln	1056
ctg Leu	acc Thr	cag Gln 355	cag Gln	ctg Leu	atg Met	cag Gln	gac Asp 360	atg Met	gaa Glu	cac His	cct Pro	cag Gln 365	agg Arg	cag Gln	agc Ser	1104
		gtg Val				•										1122

<210> 20

<211> 374

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment de la protéine zyxine murine

<400> 20

Ala 1	Ala	Pro	Arg	Pro 5	Pro	Pro	Ala	Ile	Ser 10	Val	Ser	Val	Ser	Ala 15	Pro
Ala	Phe	Tyr	Ala 20	Pro	Gln	Lys	Lÿs	Phe 25	Ala	Pro	Val	Val	Ala 30	Pro	Lys
Pro	Lys	Val 35	Asn	Pro	Phe	Arg	Pro 40	Gly	Asp	Ser	Glu	Pro 45	Pro	Val	Ala
Ala	Gly 50	Ala	Gln	Arg	Ala	Gln 55	Met	Gly	Arg	Val	Gly 60	Glu	Ile	Pro	Pro
Pro 65	Pro	Pro	Glu	Asp	Phe 70	Pro	Leu	Pro	Pro	Pro 75	Pro	Leu	Ile	Glу	Gl ນ 80
Gly	Asp	Asp	Ser	Glu 85	Gly	Ala	Leu	Gly	Gly 90	Ala	Phe	Pro	Pro	Pro 95	Pro
Pro	Pro	Met	Ile 100	Glu	Glu	Pro	Phe	Pro 105	Pro	Ala	Pro	Leu	Glu 110	Glu	Asp
Ile	Phe	Pro 115	Şer	Pro	Pro	Pro	Pro 120	Leu	Glu	Glu	Glu	Gly 125	Gly	Pro	Glu
Ala	Pro 130	Thr	Gln	Leu	Pro	Pro 135	Gln	Pro	Arg	Glu	Lys 140	Val	Cys	Ser	Ile
Asp 145	Leu	Glu	Ile	Asp	Ser 150	Leu	Ser	Ser	Leu	Leu 155	Asp	Asp	Met	Thr	Lys 160
Asn	Asp	Pro	Phe	Lys 165	Ala	Arg	Val	Ser	Ser 170	Gly	Tyr	Val	Pro	Pro 175	Pro
Val	Ala	·Thr	Pro 180	Phe	Val	Pro	Lys	Pro 185	Ser	Thr	Lys	Pro	Ala 190	Pro	Gly
Gly	Thr	Ala 195	Pro	Leu	Pro	Pro	Trp 200	Lys	Thr	Pro	Ser	Ser 205	Ser	Gln	Pro
Pro	Pro 210	Gln	Pro	Gln	Ala	Lys 215	Pro	Gln	Val	Gln	Leu 220	His	Val	Gln	Pro
Gln 225	Ala	Lys	Pro	His	Val 230	Gln	Pro	Gln	Pro	Val 235	Ser	Ser	Ala	¦Asn	Thr 240
Gln	Pro	Arg	Gly	Pro 245		Ser	Gln	Ala	Pro 250		Pro	Ala	Pro	Lys 255	Phe
Ala	Pro	Val	Ala 260		Lys	Phe	Thr	Pro 265		Val	Ser	Lys	Phe 270	Ser	Pro
Gly	Ala	Pro 275		Gly	Pro	Gly	Pro 280	Gln	Pro	Asn	Gln	Lys 285	Met	Val	Pro
Pro	Asp 290		Pro	Ser	Ser	Val 295		Thr	Gly	Ser	Pro 300		Pro	Pro	Ser
Phe		Tyr	Ala	Gln	Gln 310		Glu	Lys	Pro	Leu 315	Val	Gln	Glu	Lys	Gln 320

His Pro Gln Pro Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser Pro 325 330 Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Glu Leu Glu Gln 345 Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln Ser Val Ala Val Asn Glu Ser 370 <210> 21 <211> 1053 <212> ADN <213> Séquence artificielle <220> <221> CDS <222> (1)..(1053) <223> Description de la séquence artificielle: fragment de la protéine zyxine de poulet atg gct tct eca ggt acc cca ggg acc cgt atg aca acc aca gtc agt 48 Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser 10 atc aac att tcc aca ccg tcc ttt tac aac cca cag aag aaa ttt gca 96 Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala ccc gtg gtt gcc cct aaa ccc aag gtg aat ccc ttc aag act ggg ggt 144 Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly 40 aca tcg gag tca tcg cag cca cag cct cct gga act ggt gcc cag cgt 192 Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg 55 gcc cag ata ggg aga gtg gga gag atc ccc gta tct gtg aca gca gaa 240 Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu 70 75 gag ctg ccg ctg cca cct ccc cca cct gga gag gag cta agt ttc 288 Glu Leu Pro Leu Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe tee tea aac tgt get ttt eet eea eee eea eee ttt gaa gag eet 336 Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Pro Phe Glu Glu Pro 105 ttc cca cca qcc cca qat gaa qct ttt cct tct cct cca cct cct Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro 120 115 125

Pro	cca Pro 130	atg Met	ttt Phe	gat Asp	gaa Glu	gga Gly 135	cct Pro	gcc Ala	cta Leu	cag Gln	ata Ile 140	cct Pro	cca Pro	gga Gly	tcc Ser	432
ace Thi	g ggt Gly	tct Ser	gtg Val	gag Glu	aaa Lys 150	ccg Pro	ttg Leu	gcc Ala	cca Pro	aaa Lys 155	gct Ala	cac His	gtg Val	gaa Glu	atc Ile 160	480
tc: Se:	a tct c Ser	gca Ala	ccc Pro	aga Arg 165	gat Asp	cct Pro	act Thr	cct Pro	cct Pro 170	ttt Phe	cct Pro	tcc Ser	aag Lys	ttc Phe 175	act Thr	528
cc Pr	a aag o Lys	cca Pro	agt Ser 180	ggt Gly	acc Thr	tta Leu	tct Ser	tcc Ser 185	aag Lys	ccc Pro	cct Pro	gga Gly	ttg Leu 190	gat Asp	tca Ser	576
ac Th	t cct r Pro	gcc Ala 195	cca Pro	gct Ala	cca Pro	tgg Trp	gca Ala 200	gct Ala	cca Pro	cag Gln	cag Gln	cgc Arg 205	aag Lys	gag Glu	ccc Pro	624
Le	a gcc u Ala 210	Ser	Val	Pro	Pro	Pro 215	Pro	Ser	Leu	Pro	Ser 220	Gln	Pro	Thr	Ala	672
Ьу 22		Thr	Pro	Pro	Pro 230	Val	Ala	Ser	Ser	Pro 235	Gly	Ser	Lys	Pro	Gly 240	720
Āl	c act a Thr	Val	Pro	Met 245	Ala	Pro	Ser	Asn	Ser 250	Thr	Arg	Tyr	Pro	Thr 255	Ser	768
L∈	t cag u Gln	Thr	Gln 260	Phe	Thr	Ala	Pro	Ser 265	Pro	Ser	Gly	Pro	Leu 270	Ser	Arg	816
Pr	o Gln	275	Pro	Asn	Phe	Thr	Tyr 280	Ala	Gln	Gln	Trp	Glu 285	Arg	Pro	cag Gln	864
Va	g cag 1 Gln 290	Glu	Lys	Pro	Val	Pro 295	Thr	Glu	Lys	Ser	Ala 300	Ala	۷al	Lys	Asp	912
at Me 30	g cgt t Arg 5	: aga g Arg	ccc Pro	act Thr	gca Ala 310	Asp	ccg Pro	Pro	aag Lys	gga Gly 315	Asn	tct Ser	cct Pro	ctg Leu	Thr 320	960
at Me	g aag et Lys	g gag s Glu	gta Val	gaa Glu 325	Glu	ctg Leu	gag Glu	ctg Leu	Leu 330	Thr	cag Gln	aaa Lys	cta Leu	atg Met 335	aag. Lys	1008
ga A:	it ato sp Mei	g gat t Asp	cat His 340	Pro	cct Pro	cca Pro	gta Val	gaa Glu 345	ı Ala	gct Ala	act Thr	tct Ser	gag Glu 350	Leu	: . I	1053.

<210> 22

<211> 351

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment de la protéine zyxine de poulet

<400> 22

Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Val Ser
1 5 10 15

Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala 20 25 30

Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly 35 40 45

Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg
50 55 60

Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu 65 70 75 80

Glu Leu Pro Leu Pro Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe 85 90 95

Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Pro Phe Glu Glu Pro .100 105 110

Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro 115 120 125

Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser 130 135 140

Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile 145 150 155 160

Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr 165 170 175

Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser 180 185 190

Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gln Arg Lys Glu Pro 195 200 205

Leu Ala Ser Val Pro Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala 210 215 220

Lys Phe Thr Pro Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly 225 230 235 240

Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser 245 250 255

Leu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg 260 265 270

Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln 275 280 285

Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp 290 295 300 Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr 310 315 Met Lys Glu Val Glu Glu Leu Glu Leu Leu Thr Gln Lys Leu Met Lys 330 325 Asp Met Asp His Pro Pro Pro Val Glu Ala Ala Thr Ser Glu Leu 345 <210> 23 <211> 1140 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle: fragment de la protéine zyxine humaine <220> <221> CDS <222> (1).,(1140) <400> 23 atg gcg gcc ccc cgc ccg tct ccc gcg atc tcc gtt tcg gtc tcg gct 48 Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala 15 1 ccq gct ttt tac gcc ccg cag aag aag ttc ggc cct gtg gtg gcc cca 96 Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro 20 25 144 aaq ccc aaa gtg aat ccc ttc cgg ccc ggg gac agc gag cct ccc ccg Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro 45 35 gca ccc ggg gcc cag cgc gca cag atg ggc cgg gtg ggc gag att ccc 192 Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro 55 50 240. ccg ccg ccc ccg gaa gac ttt ccc ctg cct cca cct ccc ctt gct ggg Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ala Gly 70 75 65 gat ggc gac gat gca gag ggt gct ctg gga ggt gcc ttc ccg ccc 288 Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro cct ccc ccg atc gag gaa tca ttt ccc cct gcg cct ctg gag gag gag 336 Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu 105 100 atc ttc cct tcc ccg ccg cct cct ccg gag gag gag gga ggg cct gag 384 Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu 120 125 115 gcc ccc ata ccg ccc cca cca cag ccc agg gag aag gtg agc agt att Ala Pro Ile Pro Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 135

		gag Glu														480
aat Asn	gat Asp	cct Pro	ttc Phe	aaa Lys 165	gcc Ala	cgg Arg	gtg Val	tca Ser	tct Ser 170	gga Gly	tat Tyr	gtg Val	ccc Pro	cca Pro 175	cca Pro	528
		act Thr														576
		gca Ala 195														624
ctg Leu	ccc Pro 210	cag Gln	gtt Val	ccg Pro	gct Ala	ccg Pro 215	gct Ala	cag Gln	agc Ser	cag Gln	aca Thr 220	cag .Gln	ttc Phe	cat His	gtt Val	672
		cag Gln														720
		cag Gln														768
		tct Ser														816
		cct Pro 275														864
		caa Gln														912
		ggc Gly														960
		ccc Pro														1008
		caa Gln														1056
		gag Glu 355														1104
		gag Glu														1140

<210> 24

<211> 380

<212> PRT

<213> Séquence artificielle

<223> Description de la séqu nce artificielle: fragment de la protéine zyxine humaine

<400> 24

Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala
1 5 10 15

Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro 20 25 30

Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro 35 40 45

Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro 50 55 60

Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ala Gly 65 70 75 80

Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro 85 90 95

Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu I00 105 110

Ile Phe Pro Ser Pro Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu
115 120 125

Ala Pro Ile Pro Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 130 135 140

Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys 145 150 155 160

Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro 165 170 175

Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly
180 185 190

Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro 195 200 205

Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val 210 215 220

Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser 225 230 235 240

Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro 245 250 255

Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys 260 265 270

Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser 275 280 285

Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala 295 Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg 310 315 Glu Lys Pro Arq Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala 330 Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr 340 Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln 360 Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val 375 <210> 25 <211> 1236 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle: fragment de la protéine LPP humaine. <220> <221> CDS <222> (1)..(1236) cca tot tgg ctg cca ccc aaa agc act ggt gag ccc ctc ggc cat gtg Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu Gly His Val 1 10 cet gea egg atg gag ace ace cat tee ttt ggg aac eec age att tea 96 Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro Ser Ile Ser 20 gtg tot aca caa cag cca ccc aaa aag ttt gcc ccy gta gtt gct cca 144 Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val Val Ala Pro 35 40 aaa cct aag tac aac cca tac aaa caa cct gga ggt gag ggt gat ttt 192 Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Glu Gly Asp Phe 55 ctt cca ccc cca cct cca cct cta gat gat tcc agt gcc ctt cca tct 240 Leu Pro Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala Leu Pro Ser 70 75 atc tct gga aac ttt cct cct cca cca cct ctt gat gaa gag gct ttc 288 Ile Ser Gly Asn Phe Pro Pro Pro Pro Pro Leu Asp Glu Glu Ala Phe

90

85

aaa Lys	gta Val	cag Gln	999 Gly 100	aat Asn	ccc Pro	gga Gly	ggc Gly	aag Lys 105	aca Thr	ctt Leu	gag Glu	gag Glu	agg Arg 110	cgc Arg	tcc Ser	336
agc Ser	ctg Leu	gac Asp 115	gct Ala	gag Glu	att Ile	gac Asp	tcc Ser 120	ttg Leu	acc Thr	agc Ser	atc Ile	ttg Leu 125	gct Ala	gac Asp	ctt Leu	384
gag Glu	tgc Cys 130	agc Ser	tcc Ser	ccc Pro	tat Tyr	aag Lys 135	cct Pro	cgg Arg	cct Pro	cca Pro	cag Gln 140	agc Ser	tcc Ser	act Thr	ggt Gly	432
tca Ser 145	aca Thr	gcc Ala	tct Ser	cct Pro	cca Pro 150	gtt Val	tcg Ser	acc Thr	cca Pro	gtc Val 155	aca Thr	gga Gly	cac His	aag Lys	aga Arg 160	480
atg Met	gtc Val	atc Ile	ccg Pro	aac Asn 165	caa Gln	ccc Pro	cct Pro	cta Leu	aca Thr 170	gca Ala	acc Thr	aag Lys	aag Lys	tct Ser 175	aca Thr	528
ttg Leu	aaa Lys	cca Pro	cag Gln 180	cct Pro	gca Ala	ccc Pro	cag Gln	gct Ala 185	gga Gly	ccc Pro	atc Ile	cct Pro	gtg Val 190	gct Ala	cca Pro	576
atc Ile	gga Gly	aca Thr 195	ctc Leu	aaa Lys	ccc Pro	cag Gln	cct Pro 200	cag Gln	cca Pro	gtc Val	cca Pro	gcc Ala 205	tcc Ser	tac Tyr	acc Thr	624
acg Thr	gcc Ala 210	tcc Ser	act Thr	tct Ser	tca Ser	agg Arg 215	cct Pro	acc Thr	ttt Phe	aat Asn	gtg Val 220	cag Gln	gtg Val	aag Lys	tca Ser	672
gcc Ala 225	cag Gln	ccc Pro	agc Ser	cct Pro	cat His 230	tat Tyr	atg Met	gct Ala	gcc Ala	cct Pro 235	tca Ser	tca Ser	gga Gly	caa Gln	att Ile 240	720
tat Tyr	ggc Gly	tca Ser	GŢĀ	ccc Pro 245	cag Gln	ggc	tat Tyr	aac Asn	act Thr 250	cag Gln	cca Pro	gtt Val	cct Pro	gtc Val 255	tct Ser	768
ggg Gly	cag Gln	tgt Cys	cca Pro 260	cct Pro	cct Pro	tca Ser	aca Thr	cgg Arg 265	gga Gly	ggc	atg Met	gat Asp	tat Tyr 270	gcc Ala	tac Tyr	816
att Ile	cca Pro	cca Pro 275	Pro	gga Gly	ctt Leu	cag Gln	ccg Pro 280	Glu	cct Pro	Gly	tat Tyr	ggg Gly 285	tat Tyr	gcc Ala	ccc Pro	864
aac Asn	cag Gln 290	gga Gly	cgc	tat Tyr	tat Tyr	gaa Glu 295	ggc Gly	tac Tyr	tat Tyr	gca Ala	gca Ala 300	Gly	cca Pro	ggc Gly	tat Tyr	912
302 GJ y ggg	ggc Gly	aga Arg	aat Asn	gac Asp	Ser 310	Asp	cct Pro	acc Thr	tat Tyr	ggt Gly 315	Gln	caa Gln	ggt Gly	cac His	pro 320	960
aat Asn	acc Thr	tgg	aaa Lys	cgg Arg 325	Glu	cca Pro	ggg Gly	tac Tyr	act Thr 330	Pro	cct Pro	gga Gly	gca Ala	ggg Gly 335		1008

cag aac cct cct ggg atg tat cca gtc act ggt ccc aag aag acc tat Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys Lys Thr Tyr 340 345 ate aca gat eet gtt tea gee eee tgt geg eea eea ttg eag eea aag 1104 Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu Gln Pro Lys 360 ggt ggc cat tca ggg caa ctg ggg cct tcg tca gtt gcc cct tca ttc 1152 Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe 370 ege eea gag gat gag ett gag eac etg ace aaa aag atg etg tat gae 1200 Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp 390 395 atg gaa aat cca cct gct gac gaa tac ttt ggc cgc 1236 Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg 405

<210> 26

<211> 412

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment de la protéine LPP humaine

<400> 26

Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu Gly His Val
1 5 10 15

Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro Ser Ile Ser 20 25 30

Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val Val Ala Pro
35 40 45

Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Glu Gly Asp Phe 50 55 60

Leu Pro Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala Leu Pro Ser 65 70 75 80

Ile Ser Gly Asn Phe Pro Pro Pro Pro Pro Leu Asp Glu Glu Ala Phe 85 90 95

Lys Val Gln Gly Asn Pro Gly Gly Lys Thr Leu Glu Glu Arg Arg Ser 100 105 110

Ser Leu Asp Ala Glu Ile Asp Ser Leu Thr Ser Ile Leu Ala Asp Leu 115 120 125

Glu Cys Ser Ser Pro Tyr Lys Pro Arg Pro Pro Gln Ser Ser Thr Gly 130 135 140

Ser Thr Ala Ser Pro Pro Val Ser Thr Pro Val Thr Gly His Lys Arg 145 150 155 160

Met Val Ile Pro Asn Gln Pro Pro Leu Thr Ala Thr Lys Lys Ser Thr 165 170 175

Leu Lys Pro Gln Pro Ala Pro Gln Ala Gly Pro Ile Pro Val Ala Pro 185 Ile Gly Thr Leu Lys Pro Gln Pro Gln Pro Val Pro Ala Ser Tyr Thr 200 Thr Ala Ser Thr Ser Ser Arg Pro Thr Phe Asn Val Gln Val Lys Ser 215 Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser Gly Gln Ile 235 Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val Pro Val Ser Gly Gln Cys Pro Pro Pro Ser Thr Arg Gly Gly Met Asp Tyr Ala Tyr 265 Ile Pro Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly Tyr Ala Pro 280 Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly Pro Gly Tyr 295 Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln Gly His Pro 310 Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly Ala Gly Asn 325 330 335 Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys Lys Thr Tyr 345 Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu Gln Pro Lys 360 Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe 375 Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp 395 400 390 Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg 405 410 <210> 27

<210> 27 <211> 3201 <212> ADN <213> Homo sapiens

<220>
<221> CDS
<222> (1)..(3201)

MICROCID: -WO 017135842 1 >

<400> 27
atg cca gtg ttt cat acg cgc acg atc gag agc atc ctg gag ccg gtg 4
Met Pro Val Phe His Thr Arg Thr Ile Glu Ser Ile Leu Glu Pro Val
1 5 10 15

										cac His						96
										ccc Pro						144
										aaa Lys					acc. Thr	192
										cca Pro 75						240
										gca Ala						288
										tat Tyr						336
										ctc Leu						384
										aaa Lys						432
										gaa Glu 155						480
										atg Met						528
gag Glu	aga Arg	cag Gln	cag Gln 180	gag Glu	ctc Leu	act Thr	cac His	cag Gln 185	Glu	cac His	cga Arg	gtg Val	atg Met 190	ttg Leu	gtg Val	576
										cca Pro						624
										aaa Lys						672
Glu										gaa Glu 235						720
										acc Thr						768

gcc Ala	tgg Trp	gcc Ala	agc Ser 260	aag Lys	gac Asp	act Thr	gaa Glu	gcc Ala 265	atg Met	aag Lys	aga Arg	gca Ala	ttg Leu 270	gcc Ala	tcc Ser	816
ata Ile	gac Asp	tcc Ser 275	aaa Lys	ctg Leu	aac Asn	cag Gln	gcc Ala 280	aaa Lys	ggt Gly	tgg Trp	ctc Leu	cgt Arg 285	gac Asp	cct Pro	agt Ser	864
gcc Ala	tcc Ser 290	cca Pro	Gly	gat Asp	gct Ala	ggt Gly 295	gag Glu	cag Gln	gec Ala	atc Ile	aga Arg 300	cag Gln	atc Ile	tta Leu	gat Asp	912
gaa Glu 305	gct Ala	gga Gly	aaa Lys	gtt Val	ggt Gly 310	gaa Glu	ctc Leu	tgt Cys	gca Ala	ggc Gly 315	aaa Lys	gaa Glu	cgc Arg	agg Arg	gag Glu 320	960
att Ile	ctg Leu	gga Gly	act Thr	tgc Cys 325	aaa Lys	atg Met	cta Leu	GJÀ Gàà	cag Gln 330	atg Met	act Thr	gat Asp	caa Gln	gtg Val 335	gct Ala	1008
gac Asp	ctc Leu	cgt Arg	gcc Ala 340	aga Arg	gga Gly	caa Gln	gga Gly	tcc Ser 345	tca Ser	ccg Pro	gtg Val	gcc Ala	atg Met 350	cag Gln	aaa Lys	1056
gct Ala	cag Gln	cag Gln 355	gta Val	tct Ser	cag Gln	Glå	ctg Leu 360	gat Asp	gtg Val	ctc Leu	aca Thr	gca Ala 365	aaa Lys	gtg Val	gaa Glu	1104
aat Asn	gca Ala 370	gct Ala	cgc Arg	aag Lys	ctg Leu	gaa Glu 375	gcc Ala	atg Met	acc Thr	aac Asn	tca Ser 380	aag Lys	cag Gln	agc Ser	att	1152
Ala 385	Lys	Lys	Ile	Asp	Ala 390	Ala	Gln	Asn	Trp	Leu 395	Ala	Asp	Pro	Asn	400	
бĺу	Pro	Glu	Gly	Glu 405	Glu	Gln	Ile	Arg	Gly 410	Ala	Leu	Ala	Glu	Ala 415	Arg	1248
aaa Lys	ata Ile	gca Ala	gaa Glu 420	tta Leu	tgt Cys	gat Asp	gat Asp	Pro 425	aaa Lys	gaa Glu	aga Arg	gat Asp	gac Asp 430	att Ile	cta Leu	1296
	tcc Ser														cta Leu	1344
cga Arg	aga Arg 450	cag Gln	ggg	aaa Lys	gga Gly	gat Asp 455	tct Ser	cca Pro	gag Glu	gct Ala	cga Arg 460	gcc Ala	ttg Leu	gcc Ala	aaa Lys	1392
cag Gln 465	gtg Val	gcc Ala	acg Thr	gcc Ala	ctg Leu 470	cag	aac Asn	ctg Leu	cag Gln	acc Thr 475	aaa Lys	acc Thr	aac Asn	cgg Arg	gct Ala 480	1440
gtg Val	gcc Ala	aac Asn	agc Ser	aga Arg 485	ccg Pro	gcc Ala	aaa Lys	gca Ala	gct Ala 490	Val	cac His	ctt Leu	gag Glu	ggc Gly 495	Lys	1488

att Ile	gag Glu	Gln	gca Ala 500	cag Gln	cgg Arg	tgg Trp	att Ile	gat Asp 505	aat Asn	ccc Pro	aca Thr	gtg Val	gat Asp 510	Asp	cgt	1536
															cgt Arg	1584
			gtt Val				Pro					Leu			aag Lys	1632
tgt Cys 545	gac Asp	cga Arg	gtg Val	gac Asp	cag Gln 550	ctg Leu	aca Thr	gcc Ala	cag Gln	ctg Leu 555	gct Ala	gac Asp	ctg Leu	gct Ala	gcc Ala 560	1680
			GJÀ aaa													1728
caa Gln	gac Asp	tcc Ser	tta Leu 580	aag Lys	gat Asp	cta Leu	aaa Lys	gct Ala 585	cgg Arg	atg Met	cag Gln	gag Glu	gcc Ala 590	atg Met	act Thr	1776
cag Gln	gaa Glu	gtg Val 595	tca Ser	gat Asp	gtt Val	ttc Phe	agc Ser 600	gat Asp	acc Thr	aca Thr	act Thr	ccc Pro 605	atc Ile	aag Lys	ctg Leu	1824
ttg Leu	gca Ala 610	gtg Val	gca Ala	gcc Ala	acg Thr	gcg Ala 615	cct. Pro	cct	gat Asp	gcg Ala	cct Pro 620	aac Asn	agg Arg	gaa Glu	gag Glu	1872
gta Val 625	ttt Phe	gat Asp	gag Glu	agg Arg	gca Ala 630	gct Ala	aac Asn	ttt Phe	gaa Glu	aac Asn 635	cat His	tca Ser	gga Gly	aag Lys	ctt Leu 640	1920
ggt Gly	gct Ala	acg Thr	gcc Ala	gag Glu 645	aag Lys	gcg Ala	gct Ala	gcg Ala	gtt Val 650	ggt Gly	act Thr	gct Ala	aat Asn	aaa Lys 655	tca Ser	1968
aca Thr	gtg Val	gaa Glu	ggc Gly 660	att Ile	cag Gln	gcc Ala	Ser	gtg Val 665	aag Lys	acg Thr	gcc Ala	cga Arg	gaa Glu 670	ctc Leu	aca Thr	2016
ccc Pro	cag Gln	gtg Val 675	gtc Val	tcg Ser	gct Ala	gct Ala	cgt Arg 680	atc Ile	tta Leu	ctt Leu	agg Arg	aac Asn 685	cct Pro	gga Gly	aat Asn	2064
caa Gln	gct Ala 690	gct Ala	tat Tyr	gaa Glu	cat His	ttt Phe 695	gag Glu	acc Thr	atg Met	aag Lys	aac Asn 700	cag Gln	tgg Trp	atc Ile	gat · Asp	2112
aat Asn 705	gtt Val	gaa Glu	aạa Lys	atg Met	aca Thr 710	G1A aaa	ctg Leu	gtg Val	gac Asp	gaa Glu 715	gcc Ala	att Ile	gat Asp	acc Thr	aaa Lys 720	2160
tct Ser	ctg Leu	ttg Leu	gat Asp	gct Ala 725	tca Ser	gaa Glu	gaa Glu	gça Ala	att Ile 730	aaa Lys	aaa Lys	gac Asp	ctg Leu	gac Asp 735	aag Lys	2208

tgc Cys	aag Lys	gta Val	gct Ala 740	atg Met	gcc Ala	aac Asn	att Ile	cag Gln 745	cct Pro	cag Gln	atg Met	ctg Leu	gtt Val 750	gct Ala	Gly	2256
gca Ala	acc Thr	agt Ser 755	att Ile	gct Ala	cgt Arg	cgg Arg	gcc Ala 760	aac Asn	cgg Arg	atc Ile	ctg Leu	ctg Leu 765	gtg Val	gct Ala	aag Lys	2304
agg Arg	gag Glu 770	gtg Val	gag Glu	aat Asn	tcc Ser	gag Glu 775	gat Asp	ccc Pro	aag Lys	ttc Phe	cgt Arg 780	gag Glu	gct Ala	gtg Val	aaa Lys	2352
gct Ala 785	gcc Ala	tct Ser	gat Asp	gaa Glu	ttg Leu 790	agc Ser	aaa Lys	acc Thr	atc Ile	tcc Ser 795	cca Pro	atg Met	gtg Val	atg Met	gat Asp 800	2400
gca Ala	aaa Lys	gct Ala	gtg Val	gct Ala 805	gga Gly	aac Asn	att Ile	tcc Ser	gac Asp 810	cct Pro	gga Gly	ctg Leu	caa Gln	aag Lys 815	agc Ser	2448
ttc Phe	ctg Leu	gac Asp	tca Ser 820	gga Gly	tat Tyr	cgg Arg	atc Ile	ctg Leu 825	gga Gly	gct Ala	gtg Val	gcc Ala	aag Lys 830	gtc Val	aga Arg	2496
gaa Glu	gcc Ala	ttc Phe 835	caa Gln	cct Pro	cag Gln	gag Glu	cct Pro 840	gac Asp	ttc Phe	ccg Pro	ccg Pro	cct Pro 845	cca Pro	cca Pro	gac Asp	2544
ctt Leu	gaa Glu 850	caa Gln	ctc Leu	cga Arg	cta Leu	aca Thr 855	gat Asp	gag Glu	ctt Leu	gct Ala	cct Pro 860	ccc Pro	aaa Lys	cca Pro	cct Pro	2592
ctg Leu 865	cct Pro	gaa Glu	ggt Gly	gag Glu	gtc Val 870	ect Pro	cca Pro	cct Pro	agg Arg	cct Pro 875	cca Pro	cca Pro	cca Pro	gag Glu	gaa Glu 880	2640
					cct Pro										cag Gln	2688
cca Pro	atg Met	atg Met	atg Met 900	gct Ala	gcc Ala	aga Arg	cag Gln	ctc Leu 905	cat His	gat Asp	gaa Glu	gct Ala	cgc Arg 910	aaa Lys	tgg Trp	2736
					gac Asp											2784
					tct Ser										aag Lys	2832
					tgt Cys 950											2880
gtg Val	act Thr	cgg Arg	ttg Leu	gcc Ala 965	aag Lys	gag Glu	gtt Val	gcc Ala	aag Lys 970	cag Gln	tgc Cys	aca Thr	gat Asp	aaa Lys 975	cgg Arg	2928

•	
att aga acc aac ctc tta cag gta tgt gag cga atc cca acc ata agc Ile Arg Thr Asn Leu Gln Val Cys Glu Arg Ile Pro Thr Ile Ser 980 985 990	2976
acc cag ctc aaa atc ctg tcc aca gtg aag gcc acc atg ctg ggc cgg Thr Gln Leu Lys Ile Leu Ser Thr Val Lys Ala Thr Met Leu Gly Arg 995 1000 1005	3024
acc aac atc agt gat gag gag tct gag cag gcc aca gag atg ctg gtt Thr Asn Ile Ser Asp Glu Glu Ser Glu Gln Ala Thr Glu Met Leu Val 1010 1015 1020	3072
cac aat gcc cag aac ctc atg cag tct gtg aag gag act gtg cgg gaa His Asn Ala Gln Asn Leu Met Gln Ser Val Lys Glu Thr Val Arg Glu 1025 1030 1035 1040	3120
gct gaa gct gct tca atc aaa att cga aca gat gct gga ttt aca ctg Ala Glu Ala Ala Ser Ile Lys Ile Arg Thr Asp Ala Gly Phe Thr Leu 1045 1050 1055	3168
cgc tgg gtt aga aag act ccc tgg tac cag tag Arg Trp Val Arg Lys Thr Pro Trp Tyr Gln 1060 1065	3201
<210> 28	
<211> 1066	

<212> PRT

<213> Homo sapiens

<400> 28

Met Pro Val Phe His Thr Arg Thr Ile Glu Ser Ile Leu Glu Pro Val 10

Ala Gln Gln Ile Ser His Leu Val Ile Met His Glu Glu Gly Glu Val 25

Asp Gly Lys Ala Ile Pro Asp Leu Thr Ala Pro Val Ala Ala Val Gln 40

Ala Ala Val Ser Asn Leu Val Arg Val Gly Lys Glu Thr Val Gln Thr

Thr Glu Asp Gln Ile Leu Lys Arg Asp Met Pro Pro Ala Phé Ile Lys

Val Glu Asn Ala Cys Thr Lys Leu Val Gln Ala Ala Gln Met Leu Gln

Ser Asp Pro Tyr Ser Val Pro Ala Arg Asp Tyr Leu Ile Asp Gly Ser 100

Arg Gly Ile Leu Ser Gly Thr Ser Asp Leu Leu Thr Phe Asp Glu 120

Ala Glu Val Arg Lys Ile Ile Arg Val Cys Lys Gly Ile Leu Glu Tyr

Leu Thr Val Ala Glu Val Val Glu Thr Met Glu Asp Leu Val Thr Tyr 155 150

Thr Lys Asn Leu Gly Pro Gly Met Thr Lys Met Ala Lys Met Ile Asp 165 170 Glu Arg Gln Gln Glu Leu Thr His Gln Glu His Arg Val Met Leu Val 185 Asn Ser Met Asn Thr Val Lys Glu Leu Leu Pro Val Leu Ile Ser Ala 200 Met Lys Ile Phe Val Thr Thr Lys Asn Ser Lys Asn Gln Gly Ile Glu Glu Ala Leu Lys Asn Arg Asn Phe Thr Val Glu Lys Met Ser Ala Glu 235 Ile Asn Glu Ile Ile Arg Val Leu Gln Leu Thr Ser Trp Asp Glu Asp 250 Ala Trp Ala Ser Lys Asp Thr Glu Ala Met Lys Arg Ala Leu Ala Ser Ile Asp Ser Lys Leu Asn Gln Ala Lys Gly Trp Leu Arg Asp Pro Ser Ala Ser Pro Gly Asp Ala Gly Glu Gln Ala Ile Arg Gln Ile Leu Asp Glu Ala Gly Lys Val Gly Glu Leu Cys Ala Gly Lys Glu Arg Arg Glu Ile Leu Gly Thr Cys Lys Met Leu Gly Gln Met Thr Asp Gln Val Ala Asp Leu Arg Ala Arg Gly Gln Gly Ser Ser Pro Val Ala Met Gln Lys Ala Gln Gln Val Ser Gln Gly Leu Asp Val Leu Thr Ala Lys Val Glu Asn Ala Ala Arg Lys Leu Glu Ala Met Thr Asn Ser Lys Gln Ser Ile Ala Lys Lys Ile Asp Ala Ala Gln Asn Trp Leu Ala Asp Pro Asn Gly 390 395 Gly Pro Glu Gly Glu Glu Gln Ile Arg Gly Ala Leu Ala Glu Ala Arg 405 Lys Ile Ala Glu Leu Cys Asp Asp Pro Lys Glu Arg Asp Asp Ile Leu 425 430 Arg Ser Leu Gly Glu Ile Ser Ala Leu Thr Ser Lys Leu Ala Asp Leu 435 Arg Arg Gln Gly Lys Gly Asp Ser Pro Glu Ala Arg Ala Leu Ala Lys 455 Gln Val Ala Thr Ala Leu Gln Asn Leu Gln Thr Lys Thr Asn Arg Ala 470 475

017135842 1

Val Ala Asn Ser Arg Pro Ala Lys Ala Ala Val His Leu Glu Gly Lys 485 490 Ile Glu Gln Ala Gln Arg Trp Ile Asp Asn Pro Thr Val Asp Asp Arg Gly Val Gly Gln Ala Ala Ile Arg Gly Leu Val Ala Glu Gly His Arg Leu Ala Asn Val Met Met Gly Pro Tyr Arg Gln Asp Leu Leu Ala Lys 535 Cys Asp Arg Val Asp Gln Leu Thr Ala Gln Leu Ala Asp Leu Ala Ala Arg Gly Glu Gly Glu Ser Pro Gln Ala Arg Ala Leu Ala Ser Gln Leu Gln Asp Ser Leu Lys Asp Leu Lys Ala Arg Met Gln Glu Ala Met Thr Gln Glu Val Ser Asp Val Phe Ser Asp Thr Thr Thr Pro Ile Lys Leu Leu Ala Val Ala Ala Thr Ala Pro Pro Asp Ala Pro Asn Arg Glu Glu 610 615 Val Phe Asp Glu Arg Ala Ala Asn Phe Glu Asn His Ser Gly Lys Leu 635 Gly Ala Thr Ala Glu Lys Ala Ala Ala Val Gly Thr Ala Asn Lys Ser 645 Thr Val Glu Gly Ile Gln Ala Ser Val Lys Thr Ala Arg Glu Leu Thr 665 Pro Gln Val Val Ser Ala Ala Arg Ile Leu Leu Arg Asn Pro Gly Asn 680 Gln Ala Ala Tyr Glu His Phe Glu Thr Met Lys Asn Gln Trp Ile Asp 695 Asn Val Glu Lys Met Thr Gly Leu Val Asp Glu Ala Ile Asp Thr Lys Ser Leu Leu Asp Ala Ser Glu Glu Ala Ile Lys Lys Asp Leu Asp Lys Cys Lys Val Ala Met Ala Asn Ile Gln Pro Gln Met Leu Val Ala Gly Ala Thr Ser Ile Ala Arg Arg Ala Asn Arg Ile Leu Leu Val Ala Lys 760 Arg Glu Val Glu Asn Ser Glu Asp Pro Lys Phe Arg Glu Ala Val Lys Ala Ala Ser Asp Glu Leu Ser Lys Thr Ile Ser Pro Met Val Met Asp 795 785 790

Ala Lys Ala Val Ala Gly Asn Ile Ser Asp Pro Gly Leu Gln Lys Ser 805 810 815

Phe Leu Asp Ser Gly Tyr Arg Ile Leu Gly Ala Val Ala Lys Val Arg 820 825 830

Glu Ala Phe Gln Pro Gln Glu Pro Asp Phe Pro Pro Pro Pro Pro Asp 835 840 845

Leu Glu Gln Leu Arg Leu Thr Asp Glu Leu Ala Pro Pro Lys Pro Pro 850 855 860

Leu Pro Glu Gly Glu Val Pro Pro Pro Arg Pro Pro Pro Pro Glu Glu 865 870 875 880

Lys Asp Glu Glu Phe Pro Glu Gln Lys Ala Gly Glu Val Ile Asn Gln 885 890 895

Pro Met Met Ala Ala Arg Gln Leu His Asp Glu Ala Arg Lys Trp 900 905 910

Ser Ser Lys Gly Asn Asp Ile Ile Ala Ala Ala Lys Arg Met Ala Leu 915 920 925

Leu Met Ala Glu Met Ser Arg Leu Val Arg Gly Gly Ser Gly Thr Lys 930 935 940

Arg Ala Leu Ile Gln Cys Ala Lys Asp Ile Ala Lys Ala Ser Asp Glu 945 950 955 960

Val Thr Arg Leu Ala Lys Glu Val Ala Lys Gln Cys Thr Asp Lys Arg 965 970 975

Ile Arg Thr Asn Leu Leu Gln Val Cys Glu Arg Ile Pro Thr Ile Ser 980 985 990

Thr Gln Leu Lys Ile Leu Ser Thr Val Lys Ala Thr Met Leu Gly Arg 995 1000 1005

Thr Asn Ile Ser Asp Glu Glu Ser Glu Gln Ala Thr Glu Met Leu Val 1010 1015 1020

His Asn Ala Gln Asn Leu Met Gln Ser Val Lys Glu Thr Val Arg Glu 025 1030 1035 1040

Ala Glu Ala Ala Ser Ile Lys Ile Arg Thr Asp Ala Gly Phe Thr Leu 1045 1050 1055

Arg Trp Val Arg Lys Thr Pro Trp Tyr Gln 1060 1065

<210> 29

<211> 681

<212> ADN

<213> Séquence artificielle

<220>

<221> CDS

<222> (1) .. (681)

<220>

<223> Description de la séquence artificielle: fragment de la vinculine humaine

-40	n > 2	n .									**					
cct	0> 29 gac Asp	ttc	ccg Pro	ccg Pro 5	cct Pro	cca Pro	cca Pro	gac Asp	ctt Leu 10	gaa Glu	caa Gln	ctc Leu	cga Arg	cta Leu 15	aca Thr	48
						aaa Lys										96
						cca Pro										144
						att Ile 55										192
cag Gln 65	ctc Leu	cat His	gat Asp	gaa Glu	gct Ala 70	cgc Arg	aaa Lys	tgg Trp	tcc Ser	agc Ser 75	aag Lys	ggc ggc	aat Asn	gac Asp	atc Ile 80	240
						atg Met										288
Leu	Val	Arg	100	Gly	Ser	ggt Gly	Thr	Lys 105	Arg	Ala	Leu	Ile	Gln 110	Cys	Ala	336
aag Lys	gac Asp	atc Ile 115	gcc Ala	aag Lys	gcc Ala	tca Ser	gat Asp 120	gag Glu	gtg Val	act Thr	cgg Arg	ttg Leu 125	gcc Ala	aag Lys	gag Glu	384
						gat Asp 135										432
						acc Thr										480
						ctg Leu										528
tct Ser	gag Glu	cag Gln	gcc Ala 180	aca Thr	gag Glu	atg Met	ctg Leu	gtt Val 185	cac His	aat Asn	gcc Ala	cag Gln	aac Asn 190	ctc Leu	atg Met	576
						gtg Val										624
att Ile	cga Arg 210	aca Thr	gat Asp	gct Ala	gga Gly	ttt Phe 215	aca Thr	ctg Leu	cgc Arg	tgg Trp	gtt Val 220	aga Arg	aag Lys	act Thr	ccc Pro	672

681

tgg tac cag Trp Tyr Gln 225

<210> 30

<211> 227

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment de la vinculine humaine

<400> 30

Pro Asp Phe Pro Pro Pro Pro Pro Asp Leu Glu Gln Leu Arg Leu Thr
1 5 10 15

Asp Glu Leu Ala Pro Pro Lys Pro Pro Leu Pro Glu Gly Glu Val Pro
20 25 30

Pro Pro Arg Pro Pro Pro Pro Glu Glu Lys Asp Glu Glu Phe Pro Glu
35 40 45

Gln Lys Ala Gly Glu Val Ile Asn Gln Pro Met Met Ala Ala Arg 50 55 60

Gln Leu His Asp Glu Ala Arg Lys Trp Ser Ser Lys Gly Asn Asp Ile 65 70 75 80

Ile Ala Ala Lys Arg Met Ala Leu Leu Met Ala Glu Met Ser Arg 85 90 95

Leu Val Arg Gly Gly Ser Gly Thr Lys Arg Ala Leu Ile Gln Cys Ala 100 105 110

Lys Asp Ile Ala Lys Ala Ser Asp Glu Val Thr Arg Leu Ala Lys Glu 115 120 125

Val Ala Lys Gln Cys Thr Asp Lys Arg Ile Arg Thr Asn Leu Leu Gln 130 135 140

Val Cys Glu Arg Ile Pro Thr Ile Ser Thr Gln Leu Lys Ile Leu Ser 145 150 155 160

Thr Val Lys Ala Thr Met Leu Gly Arg Thr Asn Ile Ser Asp Glu Glu 165 170 175

Ser Glu Gln Ala Thr Glu Met Leu Val His Asn Ala Gln Asn Leu Met 180 185 190

Gln Ser Val Lys Glu Thr Val Arg Glu Ala Glu Ala Ala Ser Ile Lys 195 200 205

Ile Arg Thr Asp Ala Gly Phe Thr Leu Arg Trp Val Arg Lys Thr Pro 210 215 220

Trp Tyr Gln 225

<210> 31

<211> 502

<212> PRT

<213> Homo sapiens

<400> 31

Met Ser Gly Gly Pro Met Gly Gly Arg Pro Gly Gly Arg Gly Ala Pro 1 5 10

Ala Val Gln Gln Asn Ile Pro Ser Thr Leu Leu Gln Asp His Glu Asn 20 25 30

Gln Arg Leu Phe Glu Met Leu Gly Arg Lys Cys Leu Thr Leu Ala Thr 35 40 45

Ala Val Val Gln Leu Tyr Leu Ala Leu Pro Pro Gly Ala Glu His Trp
50 55 60

Thr Lys Glu His Cys Gly Ala Val Cys Phe Val Lys Asp Asn Pro Gln 65 70 75 80

Lys Ser Tyr Phe Ile Arg Leu Tyr Gly Leu Gln Ala Gly Arg Leu Leu 85 90 95

Trp Glu Gln Glu Leu Tyr Ser Gln Leu Val Tyr Ser Thr Pro Thr Pro
100 105 110

Phe Phe His Thr Phe Ala Gly Asp Asp Cys Gln Ala Gly Leu Asn Phe 115 120 125

Ala Asp Glu Asp Glu Ala Gln Ala Phe Arg Ala Leu Val Gln Glu Lys 130 135 140

Ile Gln Lys Arg Asn Gln Arg Gln Ser Gly Asp Arg Arg Gln Leu Pro 145 150 155 160

Pro Pro Pro Thr Pro Ala Asn Glu Glu Arg Arg Gly Gly Leu Pro Pro 165 170 175

Leu Pro Leu His Pro Gly Gly Asp Gln Gly Gly Pro Pro Val Gly Pro
180 185 190

Leu Ser Leu Gly Leu Ala Thr Val Asp Ile Gln Asn Pro Asp Ile Thr 195 200 205

Ser Ser Arg Tyr Arg Gly Leu Pro Ala Pro Gly Pro Ser Pro Ala Asp 210 215 220

Lys Lys Arg Ser Gly Lys Lys Lys Ile Ser Lys Ala Asp Ile Gly Ala 225 230 235

Pro Ser Gly Phe Lys His Val Ser His Val Gly Trp Asp Pro Gln Asn 245 250 255

Gly Phe Asp Val Asn Asn Leu Asp Pro Asp Leu Arg Ser Leu Phe Ser 260 265 270

Arg Ala Gly Ile Ser Glu Ala Gln Leu Thr Asp Ala Glu Thr Ser Lys 275 280 285 Leu Ile Tyr Asp Phe Ile Glu Asp Gln Gly Gly Leu Glu Ala Val Arg 290 295 300

Gln Glu Met Arg Arg Gln Glu Pro Leu Pro Pro Pro Pro Pro Pro Ser 305 310 315 320

Arg Gly Gly Asn Gln Leu Pro Arg Pro Pro Ile Val Gly Gly Asn Lys-325 330 335

Gly Arg Ser Gly Pro Leu Pro Pro Val Pro Leu Gly Ile Ala Pro Pro 340 345 350

Pro Pro Thr Pro Arg Gly Pro Pro Pro Pro Gly Arg Gly Pro Pro 355 360 365

Pro Pro Pro Pro Pro Ala Thr Gly Arg Ser Gly Pro Leu Pro Pro 370 375 380

Pro Pro Gly Ala Gly Gly Pro Pro Met Pro Pro Pro Pro Pro Pro Pro 385 390 395 400

Pro Pro Pro Pro Ser Ser Gly Asn Gly Pro Ala Pro Pro Pro Leu Pro 405 410 415

Pro Ala Leu Val Pro Ala Gly Gly Leu Ala Pro Gly Gly Arg Gly
420 425 430

Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Asn Lys Thr Pro 435 440 445

Gly Ala Pro Glu Ser Ser Ala Leu Gln Pro Pro Pro Gln Ser Ser Glu 450 455 460

Gly Leu Val Gly Ala Leu Met His Val Met Gln Lys Arg Ser Arg Ala 465 470 475 480

Ile His Ser Ser Asp Glu Gly Glu Asp Gln Ala Gly Asp Glu Asp Glu 485 490 495

Asp Asp Glu Trp Asp Asp 500

<210> 32

<211> 505

<212> PRT

<213> Homo sapiens

<400> 32

Met Ser Ser Val Gln Gln Gln Pro Pro Pro Pro Arg Arg Val Thr Asn 1 5 10 15

Val Gly Ser Leu Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Thr $20 \\ 25 \\ 30$

Phe Leu Gly Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu 35 40 45

Tyr Ala Ala Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val 50 55 60

Ala Cys Leu Val Lys Asp Asn Pro Gln Arg Ser His Phe Leu Arg Ile Phe Asp Ile Lys Asp Gly Lys Leu Leu Trp Glu Gln Glu Leu Tyr Asn Asn Phe Val Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly Asp Thr Cys Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Glu Ala Lys 120 Lys Phe Arg Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys 130 135 Ser Glu Lys Arg Arg Asp Pro Pro Asn Gly Pro Asn Leu Pro Met Ala 150 Thr Val Asp Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Gly 165 Pro Gln Val Asn Asn Ile Ser His Thr Lys Glu Lys Lys Lys Gly Lys Ala Lys Lys Lys Arg Leu Thr Lys Gly Asp Ile Gly Thr Pro Ser Asn 195 Phe Gln His Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Ser Asp Leu Asn Asn Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly 230 Ile Leu Glu Ala Gln Leu Lys Glu Arg Glu Thr Leu Lys Val Ile Tyr Asp Phe Ile Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu Arg Arg Gln Ala Pro Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro Pro Pro Pro Pro Pro His Ser Ser Gly Pro Pro Pro Pro Pro Ala 295 Arg Gly Arg Gly Ala Pro Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala Ala Pro Pro Pro Pro Pro Ser Arg Pro Ser Val Glu Val Pro Pro . 330 Pro Pro Pro Asn Arg Met Tyr Pro Pro Pro Pro Pro Ala Leu Pro Ser Ser Ala Pro Ser Gly Pro Pro Pro Pro Pro Pro Ser Val Leu Gly Val 360 365 370 375

Pro Pro Pro Pro Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro 385 390 395 400

Thr Thr Ala Gly Asn Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly
405 410 415

Ala Gln Leu Lys Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser 420 425 430

Gly Arg Asp Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys
435
440
445

Ser Val Ala Asp Gly Gln Glu Ser Thr Pro Pro Thr Pro Ala Pro Thr 450 455 460

Ser Gly Ile Val Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys 465 470 475 480

Ala Ile His Ser Ser Asp Glu Asp Glu Asp Glu Asp Glu Glu Asp 485 490 495

Phe Glu Asp Asp Glu Trp Glu Asp 500 505

<210> 33

<211> 559

<212> PRT

<213> Homo sapiens

<400> 33

Met Pro Leu Val Lys Arg Asn Ile Asp Pro Arg His Leu Cys His Thr 1 5 10 15

Ala Leu Pro Arg Gly Ile Lys Asn Glu Leu Glu Cys Val Thr Asn Ile 20 25 30

Ser Leu Ala Asn Ile Ile Arg Gln Leu Ser Ser Leu Ser Lys Tyr Ala 35 40 45

Glu Asp Ile Phe Gly Glu Leu Phe Asn Glu Ala His Ser Phe Ser Phe 50 60

Arg Val Asn Ser Leu Gln Glu Arg Val Asp Arg Leu Ser Val Ser Val 65 70 75 80

Thr Gln Leu Asp Pro Lys Glu Glu Glu Leu Ser Leu Gln Asp Ile Thr 85 90 95

Met Arg Lys Ala Phe Arg Ser Ser Thr Ile Gln Asp Gln Gln Leu Phe 100 105 110

Asp Arg Lys Thr Leu Pro Ile Pro Leu Gln Glu Thr Tyr Asp Val Cys 115 120 125

Glu Gln Pro Pro Pro Leu Asn Ile Leu Thr Pro Tyr Arg Asp Asp Gly
130 135 140

Lys Glu Gly Leu Lys Phe Tyr Thr Asn Pro Ser Tyr Phe Phe Asp Leu 145 150 155 160

Trp Lys Glu Lys Met Leu Gln Asp Thr Glu Asp Lys Arg Lys Glu Lys 170 Arg Lys Gln Lys Gln Lys Asn Leu Asp Arg Pro His Glu Pro Glu Lys 185 Val Pro Arg Ala Pro His Asp Arg Arg Glu Trp Gln Lys Leu Ala Gln Gly Pro Glu Leu Ala Glu Asp Asp Ala Asn Leu Leu His Lys His 215 Ile Glu Val Ala Asn Gly Pro Ala Ser His Phe Glu Thr Arg Pro Gln 225 230 235 Thr Tyr Val Asp His Met Asp Gly Ser Tyr Ser Leu Ser Ala Leu Pro Phe Ser Gln Met Ser Glu Leu Leu Thr Arg Ala Glu Glu Arg Val Leu 260 Val Arg Pro His Glu Pro Pro Pro Pro Pro Met His Gly Ala Gly 280 Asp Ala Lys Pro Ile Pro Thr Cys Ile Ser Ser Ala Thr Gly Leu Ile 290 Glu Asn Arg Pro Gln Ser Pro Ala Thr Gly Arg Thr Pro Val Phe Val 315 Ser Pro Thr Pro Pro Pro Pro Pro Pro Leu Pro Ser Ala Leu Ser 325 Thr Ser Ser Leu Arg Ala Ser Met Thr Ser Thr Pro Pro Pro Pro Val Pro Pro Pro Pro Pro Pro Ala Thr Ala Leu Gln Ala Pro Ala Val 355 Pro Pro Pro Pro Ala Pro Leu Gln Ile Ala Pro Gly Val Leu His Pro Ala Pro Pro Pro Ile Ala Pro Pro Leu Val Gln Pro Ser Pro Pro Val Ala Arg Ala Ala Pro Val Cys Glu Thr Val Pro Val His Pro Leu Pro Gln Gly Glu Val Gln Gly Leu Pro Pro Pro Pro Pro Pro Pro Pro Leu 425 Pro Pro Pro Gly Ile Arg Pro Ser Ser Pro Val Thr Val Thr Ala Leu Ala His Pro Pro Ser Gly Leu His Pro Thr Pro Ser Thr Ala Pro Gly 455 Pro His Val Pro Leu Met Pro Pro Ser Pro Pro Ser Gln Val Ile Pro 470 475

Ala Ser Glu Pro Lys Arg His Pro Ser Thr Leu Pro Val Ile Ser Asp 485 490 495

- Ala Arg Ser Val Leu Leu Glu Ala Ile Arg Lys Gly Ile Gln Leu Arg 500 505 510
- Lys Val Glu Glu Gln Arg Glu Gln Glu Ala Lys His Glu Arg Ile Glu 515 520 525
- Asn Asp Val Ala Thr Ile Leu Ser Arg Arg Ile Ala Val Glu Tyr Ser 530 540
- Asp Ser Glu Asp Asp Ser Glu Phe Asp Glu Val Asp Trp Leu Glu 545 550 555
- <210> 34
- <211> 520
- <212> PRT
- <213> Mus musculus
- <400> 34
- Met Asn Ser Gly Pro Gly Pro Val Gly Gly Arg Pro Gly Gly Arg Gly
 1 5 10 15
- Gly Pro Ala Val Gln Gln Asn Ile Pro Ser Asn Leu Leu Gln Asp His
 20 25 30
- Glu Asn Gln Arg Leu Phe Glu Leu Leu Gly Arg Lys Cys Trp Thr Leu 35 40 45
- Ala Thr Thr Val Val Gln Leu Tyr Leu Ala Leu Pro Pro Gly Ala Glu 50 60
- His Trp Thr Met Glu His Cys Gly Ala Val Cys Phe Val Lys Asp Asn 65 70 75 80
- Pro Gln Lys Ser Tyr Phe Ile Arg Leu Tyr Ala Leu Gln Ala Gly Arg 85 90 95
- Leu Leu Trp Glu Gln Glu Leu Tyr Ser Gln Leu Val Tyr Leu Thr Pro 100 105 110
- Thr Pro Phe Phe His Thr Phe Ala Gly Asp Asp Cys Gln Val Gly Leu 115 120 125
- Asn Phe Ala Asp Glu Ser Glu Ala Gln Ala Phe Arg Ala Leu Val Gln 130 135 140
- Glu Lys Ile Gln Lys Arg Asn Gln Arg Gln Ser Gly Glu Arg Arg Gln 145 150 155 160
- Leu Pro Pro Pro Ala Pro Ile Asn Glu Glu Arg Arg Gly Gly Leu 165 170 175
- Pro Pro Val Pro Pro His Pro Gly Gly Asp His Gly Gly Pro Ser Gly 180 185 190
- Gly Pro Leu Ser Leu Gly Leu Val Thr Val Asp Ile Gln Asn Pro Asp 195 200 205

Ile Thr Ser Ser Arg Tyr Arg Gly Leu Pro Ala Pro Gly Pro 210 215 220

Thr Asp Lys Lys Arg Ser Gly Lys Lys Lys Ile Ser Lys Ala Asp Ile 225 230 235 240

Gly Ala Pro Ser Gly Phe Lys His Val Ser His Val Gly Trp Asp Pro 245 250 255

Gln Asn Gly Phe Asp Val Asn Asn Leu Asp Pro Asp Leu Arg Ser Leu 260 265 270

Phe Ser Arg Ala Gly Ile Ser Glu Ala Gln Leu Thr Asp Ala Glu Thr 275 280 285

Ser Lys Leu Ile Tyr Asp Phe Ile Glu Asp Gln Gly Gly Leu Glu Ala 290 295 300

Val Arg Gln Glu Met Arg Arg Gln Glu Pro Leu Pro Pro Pro Pro 305 310 315 320

Gly Gly Gly Gly Gln Pro Leu Arg Pro Pro Val Leu Gly Ser Asn 340 345 350

Lys Gly Arg Ser Pro Pro Leu Pro Pro Val Pro Met Gly Gly Ala Pro 355 360 365

Pro Pro Pro Thr Pro Arg Gly Pro Pro Pro Pro Gly Arg Gly Pro

Pro Pro Pro Pro Pro Pro Ala Thr Gly Arg Ser Gly Pro Pro Pro Pro 385 390 395 400

Pro Leu Pro Gly Ala Gly Gly Pro Pro Ala Pro Pro Pro Pro Pro 405 410 415

Pro Pro Pro Pro Pro Cys Pro Gly Ser Gly Pro Ala Pro Pro Pro 420 425 430

Leu Pro Pro Thr Pro Val Ser Gly Gly Ser Pro Ala Pro Gly Gly Gly 435

Arg Gly Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Asn Lys 450 455 460

Thr Pro Gly Ala Leu Glu Asn Ser Val Gln Gln Pro Pro Ala Gln Gln 465 470 475 480

Ser Glu Gly Leu Val Gly Ala Leu Met His Val Met Gln Lys Arg Ser 485 490 495

Arg Val Ile His Ser Ser Asp Glu Gly Glu Asp Gln Thr Gly Glu Asp 500 505 510

Glu Glu Asp Asp Glu Trp Asp Asp 515 520 <210> 35 1

<211> 501

<212> PRT

<213> Rattus rattus

<400> 35

Met Ser Ser Gly Gln Gln Pro Pro Arg Arg Val Thr Asn Val Gly Ser 1 5 10 15

Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Ser Phe Leu Gly
20 25 30

Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu Tyr Ala Ala-35 40 45

Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val Ala Cys Leu 50 55 60

Val Lys Asp Asn Pro Gln Arg Ser Tyr Phe Leu Arg Ile Phe Asp Ile 65 70 75 80

Lys Asp Gly Lys Leu Leu Trp Glu Gln Glu Leu Tyr Asn Asn Phe Val 85 90 95

Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly Asp Thr Cys
100 105 110

Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Glu Ala Lys Lys Phe Arg 115 120 125

Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys Ser Glu Lys 130 135 140

Arg Arg Asp Ala Pro Asn Gly Pro Asn Leu Pro Met Ala Thr Val Asp 145 150 155 160

Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Ser Ser Gln Val

Asn Asn Ile Ser His Thr Lys Glu Lys Lys Lys Gly Lys Ala Lys Lys 180 185 190

Lys Arg Leu Thr Lys Ala Asp Ile Gly Thr Pro Ser Asn Phe Gln His 195 200 205

Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Phe Asp Leu Asn Asn 210 215 220

Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly Ile Ser Glu 225 230 235 240

Ala Gln Leu Lys Asp Arg Glu Thr Ser Lys Val Ile Tyr Asp Phe Ile 245 250 255

Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu Arg Arg Gln 260 265 270

Ala Pro Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro Pro Pro Pro 275 280 285

Pro Pro Pro His Ser Ser Gly Pro Pro Pro Pro Pro Ala Arg Gly Arg 290 295 300

Gly Ala Pro Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala Ala Pro Pro 305 310 315 320

Pro Pro Pro Pro Ser Arg Pro Gly Val Val Val Pro Pro Pro Pro Pro 325 330 335

Asn Arg Met Tyr Pro Pro Pro Pro Pro Ala Leu Pro Ser Ser Ala Pro 340 345 350

Ser Gly Pro Pro Pro Pro Pro Leu Ser Met Ala Gly Ser Thr Ala 355 360 365

Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro Ala Ser Ser Gly 385 390 395

Asn Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly Ala Gln Leu Lys
405
410
415

Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser Gly Arg Asp Ala 420 425 430

Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys Ser Val Ser Asp
435 440 445

Gly Gln Glu Ser Thr Pro Pro Thr Pro Ala Pro Thr Ser Gly Ile Val 450 455 460

Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys Ala Ile His Ser 465 470 475 480

Ser Asp Glu Asp Glu Asp Asp Asp Glu Glu Asp Phe Gln Asp Asp 485 490 495

Asp Glu Trp Glu Asp 500

<210> 36

<211> 505

<212> PRT

<213> Bos taurus

<400> 36

Met Ser Ser Gly Gln Gln Fro Pro Pro Pro Arg Arg Val Thr Asn
1 5 10 15

Val Gly Ser Leu Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Thr 20 25 30

Phe Leu Gly Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu 35 40 45

Tyr Ala Ala Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val
50 55 60

Ala Cys Leu Val Lys Asp Asn Pro Gln Arg Ser Tyr Phe Leu Arg Ile . Phe Asp Ile Lys Asp Gly Lys Leu Leu Trp Glu Glu Glu Leu Tyr Asn Asn Phe Val Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly Asp Thr Cys Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Glu Ala Lys 120 Lys Phe Arg Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys 135 Ser Glu Lys Arg Arg Asp Pro Pro Asn Gly Pro Asn Leu Pro Met Ala Thr Val Asp Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Gly 170 Pro Gln Ile Asn Asn Ile Ser His Thr Lys Glu Lys Lys Lys Gly Lys Ala Lys Lys Lys Arg Leu Thr Lys Ala Asp Ile Gly Thr Pro Ser Asn 200 Phe Gln His Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Phe Asp Leu Asn Asn Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly 230 Ile Ser Glu Ala Gln Leu Lys Asp Arg Glu Thr Ser Lys Val Ile Tyr 245 Asp Phe Ile Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu 265 Arg Arg Gln Ala Pro Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro 280 275 Pro Pro Pro Pro Pro Pro Ris Ser Ser Gly Pro Pro Pro Pro Pro Ala 295 Arg Gly Arg Gly Ala Pro Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala Ala Pro Pro Pro Pro Pro Ser Arg Pro Gly Val Gly Ala Pro Pro 330 Pro Pro Pro Asn Arg Met Tyr Pro Pro Pro Leu Pro Ala Leu Pro Ser 340 Ser Ala Pro Ser Gly Pro Pro Pro Pro Pro Pro Leu Ser Val Ser 360 . 375 380

Pro Pro Pro Pro Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro 385 390 395 400

Thr Pro Ala Gly Ser Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly
405 410 415

Ala Gln Leu Lys Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser 420 425 430

Gly Arg Asp Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys 435 440 445

Ser Val Thr Asp Ala Pro Glu Ser Thr Pro Pro Ala Pro Ala Pro Thr 450 455 460

Ser Gly Ile Val Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys 465 470 475 480

Ala Ile His Ser Ser Asp Glu Asp Glu Asp Glu Asp Asp Asp Glu Asp 485 490 495

Phe Glu Asp Asp Glu Trp Glu Asp 500 505

<210> 37

<211> 633

<212> PRT

<213> Saccharomyces cerevisiae

<400> 37

Met Gly Leu Leu Asn Ser Ser Asp Lys Glu Ile Ile Lys Arg Ala Leu

1 5 10 15

Pro Lys Ala Ser Asn Lys Ile Ile Asp Val Thr Val Ala Arg Leu Tyr
20 25 30

Ile Ala Tyr Pro Asp Lys Asn Glu Trp Gln Tyr Thr Gly Leu Ser Gly
35 40 45

Ala Leu Ala Leu Val Asp Asp Leu Val Gly Asn Thr Phe Phe Leu Lys 50 55 60

Leu Val Asp Ile Asn Gly His Arg Gly Val Ile Trp Asp Gln Glu Leu 65 70 75 80

Tyr Val Asn Phe Glu Tyr Tyr Gln Asp Arg Thr Phe Phe His Thr Phe 85 90 95

Glu Met Glu Glu Cys Phe Ala Gly Leu Leu Phe Val Asp Ile Asn Glu
100 105 110

Ala Ser His Phe Leu Lys Arg Val Gln Lys Arg Glu Arg Tyr Ala Asn 115 120 125

Arg Lys Thr Leu Leu Asn Lys Asn Ala Val Ala Leu Thr Lys Lys Val 130 135 140

Arg Glu Glu Gln Lys Ser Gln Val Val His Gly Pro Arg Gly Glu Ser 145 150 155 160

Leu Ile Asp Asn Gln Arg Lys Arg Tyr Asn Tyr Glu Asp Val Asp Thr 165 170 Ile Pro Thr Thr Lys His Lys Ala Pro Pro Pro Pro Pro Pro Thr Ala 185 Glu Thr Phe Asp Ser Asp Gln Thr Ser Ser Phe Ser Asp Ile Asn Ser Thr Thr Ala Ser Ala Pro Thr Thr Pro Ala Pro Ala Leu Pro Pro Ala 215 Ser Pro Glu Val Arg Lys Glu Glu Thr His Pro Lys His Ser Leu Pro 235 Pro Leu Pro Asn Gln Phe Ala Pro Leu Pro Asp Pro Pro Gln His Asn Ser Pro Pro Gln Asn Asn Ala Pro Ser Gln Pro Gln Ser Asn Pro Phe Pro Phe Pro Ile Pro Glu Ile Pro Ser Thr Gln Ser Ala Thr Asn Pro Phe Pro Phe Pro Val Pro Gln Gln Gln Phe Asn Gln Ala Pro Ser Met 295 Gly Ile Pro Gln Gln Asn Arg Pro Leu Pro Gln Leu Pro Asn Arg Asn 315 Asn Arg Pro Val Pro Pro Pro Pro Pro Met Arg Thr Thr Glu Gly 330 Ser Gly Val Arg Leu Pro Ala Pro Pro Pro Pro Pro Arg Arg Gly Pro Ala Pro Pro Pro Pro Pro His Arg His Val Thr Ser Asn Thr Leu Asn 360 Ser Ala Gly Gly Asn Ser Leu Leu Pro Gln Ala Thr Gly Arg Arg Gly Pro Ala Pro Pro Pro Pro Pro Arg Ala Ser Arg Pro Thr Pro Asn Val Thr Met Gln Gln Asn Pro Gln Gln Tyr Asn Asn Ser Asn Arg Pro Phe 405 410 Gly Tyr Gln Thr Asn Ser Asn Met Ser Ser Pro Pro Pro Pro Pro Val 425 Thr Thr Phe Asn Thr Leu Thr Pro Gln Met Thr Ala Ala Thr Gly Gln 435 440 Pro Ala Val Pro Leu Pro Gln Asn Thr Gln Ala Pro Ser Gln Ala Thr 455 . Asn Val Pro Val Ala Pro Pro Pro Pro Pro Ala Ser Leu Gly Gln Ser 465

Gln Ile Pro Gln Ser Ala Pro Ser Ala Pro Ile Pro Pro Thr Leu Pro
485 490 495

Ser Thr Thr Ser Ala Ala Pro Pro Pro Pro Pro Ala Phe Leu Thr Gln
500 505 510

Gln Pro Gln Ser Gly Gly Ala Pro Ala Pro Pro Pro Pro Gln Met 515 520 525

Pro Ala Thr Ser Thr Ser Gly Gly Ser Phe Alá Glu Thr Thr Gly 530 535 540

Asp Ala Gly Arg Asp Ala Leu Leu Ala Ser Ile Arg Gly Ala Gly 545 550 555 560

Ile Gly Ala Leu Arg Lys Val Asp Lys Ser Gln Leu Asp Lys Pro Ser 565 570 575

Val Leu Leu Gln Glu Ala Arg Gly Glu Ser Ala Ser Pro Pro Ala Ala 580 585 590

Ala Gly Asn Gly Gly Thr Pro Gly Gly Pro Pro Ala Ser Leu Ala Asp 595 600 605

Ala Leu Ala Ala Leu Asn Lys Arg Lys Thr Lys Val Gly Ala His 610 615 620

Asp Asp Met Asp Asn Gly Asp Asp Trp 625 630

<210> 38

<211> 574

<212> PRT

<213> Schizosaccharomyces pombe

<400> 38

Met Pro Pro Ser Ser Ser Ile Thr Gln Glu Asp Lys Ala Thr Ile Arg

1 5 10 15

Lys Tyr Ile Pro Lys Ser Thr Asn Lys Ile Ile Ala Ala Ala Val Val 20 25 30

Lys Leu Tyr Val Ala Tyr Pro Asp Pro Asn Lys Trp Asn Tyr Thr Gly
35 40 45

Leu Cys Gly Ala Leu Val Leu Ser Tyr Asp Thr Thr Ala Lys Cys 50 55 60

Trp Phe Lys Leu Val Asp Val Val Asn Asn Ser Gly Ile Ile Trp Asp
65 70 75 80

Gln Glu Leu Tyr Gln Asn Met Asp Tyr Arg Gln Asp Arg Thr Phe Phe 85 90 95

His Ser Phe Glu Leu Asp Lys Cys Leu Ala Gly Phe Ser Phe Ala Asn 100 105 110

Glu Thr Asp Ala Gln Lys Phe Tyr Lys Lys Val Leu Asp Lys Gly Cys 115 120 125

His	Pro 130	Glu	Ser	Ile	Glu	Asn 135	Pro	Val	Leu	Ser	Phe 140	Iľe	Thr	Arg	Lys	
Gly 145	Ser	Ser	Arg	His	Ala 150	Pro	Asn	Asn	Ser	Asn 155	Ile	Gln	Pro	Pro	Ser 160	
Ala	Ala	Pro	Pro	Val 165	Pro	Gly	Lys	Glu	Asn 170	Tyr	Asn	Ala	Val	Gly 175	Ser	
Lys	Ser	Pro	Asn 180	Glu	Pro	Glu	Leu	Leu 185	Asn	Ser	Leu	Asp	Pro 190	Ser	Leu	
Ile	Asp	Ser 195	Leu	Met	Lys	Met	Gly 200	Ile	Ser	Gln	Asp	Gln 205	Ile	Ala	Glu	
Asn	Ala 210	Asp	Phe	Val	Lys	Ala 215	Tyr	Leu	Asn	Glu	Ser 220	Ala	Gly	Thr	Pro	
Thr 225	Ser	Thr	Ser	Ala	Pro 230	Pro	Ile	Pro	Pro	Ser 235	Ile	Pro	Ser	Ser	Arg 240	
Pro	Pro	Glu	Arg	Val 245	Pro	Ser	Val	Ser	Ala 250	Pro	Ala	Pro	Pro	Pro 255	Ile	
Pro	Pro	Pro	Ser 260	Asn	Gly	Thr	Val	Ser 265	Ser	Pro	Pro	Asn	Ser 270	Pro	Pro	
		275		Pro			280					285				
_	290			Pro		295					300					
Ala 305	Ala	Asn	Lys	Lys	Arg 310	Pro	Pro	Pro	Pro	Pro 315	Pro	Pro	Ser	Arg	Arg 320	f
Asn	Arg	Gly	Lys	Pro 325	Pro	Ile	Gly	Asn	Gly 330	Ser	Ser	Asn	Ser	Ser 335	Leu	
Pro	Pro	Pro	Pro 340	Pro	Pro	Pro	Arg	Ser 345	Asn	Ala	Ala	Gly	Ser 350	Ile	Pro	
Leu	Pro	Pro 355	Gln	Gly	Arg	Ser	Ala 360	Pro	Pro	Pro	Pro	Pro 365		Arg	Ser	
Ala	Pro 370	Ser	Thr	Gly	Arg	Gln 375		Pro	Pro	Leu	Ser 380	Ser	Ser	Arg	Ala	
Val 385	Ser	Asn	Pro	Pro	Ala 390		Pro	Pro	Ala	11e 395	Pro	Gly	Arg	Ser	Ala 400	
Pro	Ala	Leu	Pro	Pro 405		Gly	Asn	Ala	Ser 410		Thr	Ser	Thr	Pro 415		
Val	Pro	Thr	Pro 420	Pro	Ser	Leu	Pro	Pro 425		Ala	. Pro	Pro	Ser 430		Pro	
Pro	Ser	Ala 435		Pro	Ser	Leu	Pro		Gly	Ala	Pro	Ala 445	Ala	Pro	Pro	,

WO 01/71356 PCT/FR01/00843

Leu Pro Pro Ser Ala Pro Ile Ala Pro Pro Leu Pro Ala Gly Met Pro 455 Ala Ala Pro Pro Leu Pro Pro Ala Ala Pro Ala Pro Pro Pro Ala Pro 470 475 Ala Pro Ala Pro Ala Ala Pro Val Ala Ser Ile Ala Glu Leu Pro Gln 485 490 Gln Asp Gly Arg Ala Asn Leu Met Ala Ser Ile Arg Ala Ser Gly Gly 500 505 Met Asp Leu Leu Lys Ser Arg Lys Val Ser Ala Ser Pro Ser Val Ala 520 Ser Thr Lys Thr Ser Asn Pro Pro Val Glu Ala Pro Pro Ser Asn Asn 535 Leu Met Asp Ala Leu Ala Ser Ala Leu Asn Gln Arg Lys Thr Lys Val 550 555 Ala Gln Ser Asp Glu Glu Asp Glu Asp Asp Asp Glu Trp Asp 565 570

		a∰. Va	
		a de la companya de La companya de la co	
		ing sa	
	en e		
en e			No.
		The second second	
		The same of the same of	
	and the second second	in the second	
		100 miles (100 miles (
	Commence of the Commence of th		· **
			and the second
		•	
ANN TO A CAN AND AND AND AND AND AND AND AND AND A		and the state of t	
		. *	
			en de la companya de La companya de la co
			· · · · · · · · · · · · · · · · · · ·
		• • • • • • • • • • • • • • • • • • •	, w _e
		4.1 -	
			$e^{i \hat{G}_{i}}$
		y	
	•		
			•
	and the state of t		
(1) (1) (4) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	તાર વાઉપયા		
	The first of the second second	بالمناوية الموافق المناوية	Sign of the second
* 1990a	يبا نما يستطرح بقومة اوريني بالأساور واليون		

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

THE REPORT OF THE PROPERTY OF

(43) Date de la publication internationale 27 septembre 2001 (27.09.2001)

PCT

(10) Numéro de publication internationale WO 01/071356 A3

- (51) Classification internationale des brevets⁷: G01N 33/68, C12N 15/31, 15/12, C07K 14/195, 14/47
- (21) Numéro de la demande internationale :

PCT/FR01/00843

- (22) Date de dépôt international : 21 mars 2001 (21.03.2001)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 00/03637 22 mars 2000 (22.03.2000) FR
- (71) Déposants (pour tous les États désignés sauf US):
 CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3, rue Michel-Ange, F-75794 Paris
 Cedex 16 (FR). INSTITUT CURIE [FR/FR]; 26, rue
 d'Ulm, F-75248 Paris Cedex 05 (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement); FRADELIZI, Julie [FR/FR]; 88bis, boulevard de Port-Royal, F-75005 Paris (FR). FRIEDERICH, Evelyne [LU/LU]; 13, rue Bessemer Eschiallette, L-4032 Luxembourg (LU). GOLSTEYN, Roy, M. [CA/FR]; 20, rue du Champ de l'Alouette, F-75013 Paris (FR). LOUVARD, Daniel [FR/FR]; 23, allée de Trévise, F-92330 Sceaux (FR). NOIREAUX, Vincent [FR/FR]; 4, rue de la Ridenne, F-41120 Cormeray (FR). SYKES, Cécile [FR/FR]; 3, villa Coeur de Vey, F-75014 Paris (FR).

- (74) Mandataires: DEMACHY, Charles etc.; Grosset-Fournier & Demachy SARL, 20, rue de Maubeuge, F-75009 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

(88) Date de publication du rapport de recherche internationale: 27 février 2003

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: PEPTIDE SEQUENCES COMPRISING ONE OR SEVERAL PROTEIN BINDING UNITS OF THE ENA/VASP FAMILY, AND USES THEREOF

(54) Titre: SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE
 ✓ LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

(57) Abstract: The invention concerns the use of proteins or peptides comprising one or several protein binding units of the Ena/VASP family, said proteins or peptides not binding with the Arp2/3 protein complex, in particular fragments of the ActA protein of *Listeria monocytogenes*, or proteins of the zyxin family, for preparing reagents for use in implementing a process detecting and screening molecules having an inhibiting or stimulating effect on the formation of actin cytoskeleton.

(57) Abrégé: La présente invention a pour objet l'utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, notamment de fragments de la protéine ActA de *Listeria monocytogenes*, ou de protéines de la famille de la zyxine, pour la préparation de réactifs utilisables dans le cadre de la mise en oeuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

Inte nal Application No PCT/FR 01/00843

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 GO1N33/68 C12M CO7K14/195 C07K14/47 C12N15/12 C12N15/31 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) GO1N C12N C07K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category * Relevant to claim No. PETIT MARLEEN M R ET AL: "LPP, an actin 16,17 X cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity." MOLECULAR BIOLOGY OF THE CELL vol. 11, no. 1, January 2000 (2000-01), pages 117-129, XP002176722 ISSN: 1059-1524 1-15 the whole document LAINE, R. ET AL.: "Vinculin proteolysis 1-6 unmasks an ActA homolog for actin-based Shigella motility" JOURNAL OF CELL BIOLOGY, vol. 138, no. 6, 1997, pages 1255-1264, XP000979073 ISSN: 0021-9525 1-15 the whole document Y Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **2** 5. 09. 01 5 September 2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Andres, S

Inter al Application No PCT/FR 01/00843

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Y	DAVID VIOLAINE ET AL: "Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach." JOURNAL OF CELL SCIENCE, vol. 111, no. 19, October 1998 (1998-10), pages 2877-2884, XP000979022 ISSN: 0021-9533 the whole document	1-15
Y	WO 98 01755 A (BIOTECHNOLOG FORSCHUNG GMBH; HUTCHINSON FRED CANCER RES (US)) 15 January 1998 (1998-01-15) page 7, line 5 -page 8, line 12 page 15, line 26 -page 17, line 20 page 25, line 16 - last line page 43, line 28 -page 44, line 12 claims	1-10
Y	HIGGS H N ET AL: "INFLUENCE OF THE C TERMINUS OF WISKOTT-ALDRICH SYNDROME PROTEIN (WASP) AND THE ARP2/3 COMPLEX ON ACTIN POLYMERIZATION" BIOCHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, PA,US, vol. 38, no. 46, 16 November 1999 (1999-11-16), pages 15212-15222, XP000938899 ISSN: 0006-2960 the whole document	11-15
Y	ZEILE, W. ET AL.: "Vaccinia locomotion in host cells: Evidence for the universal involvement of actin-based motility sequences ABM-1 and AMB-2." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 95, no. 23, 10 November 1998 (1998-11-10), pages 13917-13922, XP002176723 ISSN: 0027-8424 the whole document	1-15
X	SOUTHWICK FREDERICK S ET AL: "Arrest of Listeria movement in host cells by a bacterial ActA analogue: Implications for actin-based motility." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 91, no. 11, 1994, pages 5168-5172, XP002158806 1994 ISSN: 0027-8424 the whole document	1-3,5
	- /	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Inte al Application No PCT/FR 01/00843

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	nerevani (O Cidini 140.
X	SOUTHWICK FREDERICK S ET AL: "Inhibition of Listeria locomotion by mosquito oostatic factor, a natural oligoproline peptide uncoupler of profilin action." INFECTION AND IMMUNITY, vol. 63, no. 1, 1995, pages 182-190, XP002158807 ISSN: 0019-9567 the whole document	1,2
X	PURICH DANIEL L ET AL: "ABM-1 and ABM-2 homology sequences: Consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 231, no. 3, 1997, pages 686-691, XP002158808 ISSN: 0006-291X the whole document	1-3,5
X	NOIREAUX V ET AL: "Growing an actin gel on spherical surfaces." BIOPHYSICAL JOURNAL., vol. 78, no. 3, March 2000 (2000-03), pages 1643-1654, XP002171120 ISSN: 0006-3495	8,15
Α	the whole document	8-15
X	DOMANN, E. ET AL.: "A NOVEL BACTERIAL VIRULENCE GENE IN LISTERIA MONOCYTOGENES REQUIRED FOR HOST CELL MICROFILAMENT INTERACTION WITH HOMOLOGY TO THE PROLINE-RICH REGION OF VINCULIN." EMBO JOURNAL, vol. 11, no. 5, 1992, pages 1981-1990, XP002071288 ISSN: 0261-4189 cited in the application the whole document	17
A	CAMERON LISA A ET AL: "Motility of ActA protein-coated microspheres driven by actin polymerization." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 96, no. 9, 27 April 1999 (1999-04-27), pages 4908-4913, XP002158809 ISSN: 0027-8424 cited in the application the whole document	8-10

Inter al Application No
PCT/FR 01/00843

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCI/FK 01/00843		
Category ° Citation of document, with Indication, where appropriate, of the relevant passages Relevant to claim No.				
Α	YARAR ET AL: "The Wiskott-Aldrich syndrome protein directs actin-based	10-15		
	motility by stimulating actin nucleation with the Arp2/3 complex" CURRENT BIOLOGY,			
	vol. 9, no. 10, 20 May 1999 (1999-05-20), pages 555-558, XP000925925 ISSN: 0960-9822 cited in the application			
	the whole document			
A	WIEDMANN MARTIN ET AL: "Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential." INFECTION AND IMMUNITY, vol. 65, no. 7, 1997, pages 2707-2716, XP002158810 ISSN: 0019-9567 figure 3	16,17		
A	SMITH GREGORY A ET AL: "The tandem repeat domain in the Listeria monocytogenes actA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin." JOURNAL OF CELL BIOLOGY, vol. 135, no. 3, 1996, pages 647-660, XP002158811 ISSN: 0021-9525			
A	LASA, I. ET AL.: "The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator." MOLECULAR MICROBIOLOGY, vol. 18, no. 3, 1995, pages 425-436, XP000979024 ISSN: 0950-382X			
A	MACALMA TERESITA ET AL: "Molecular characterization of human zyxin." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 49, 1996, pages 31470-31478, XP002176724 ISSN: 0021-9258			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Inter I Application No PCT/FR 01/00843

		PCI/FR UI	7 00043
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	MOISEYEVA ELENA P ET AL: "Organization of the human gene encoding the cytoskeletal protein vinculin and the sequence of the vinculin promoter." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 6, 1993, pages 4318-4325, XP002176725 ISSN: 0021-9258		
Ρ,Χ	FRADELIZI, J. ET AL.: "Role of zyxin in the spatial control of actin polymerisation." BIOLOGY OF THE CELL (PARIS), vol. 92, no. 2, April 2000 (2000-04), page 157 XP000979072 ISSN: 0248-4900 abstract & Congress of the French Society of Cell Biology; Paris, France; May 24-26, 2000		1-8
Р,Х	DREES, B. ET AL.: "Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 29, 21 July 2000 (2000-07-21), pages 22503-22511, XP002176726 ISSN: 0021-9258 the whole document		1-6
T	SKOBLE JUSTIN ET AL: "Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility." JOURNAL OF CELL BIOLOGY, vol. 150, no. 3, 7 August 2000 (2000-08-07), pages 527-537, XP002171121 ISSN: 0021-9525		

International application No. PCT/FR 01/00843

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
	See supplemental sheet
1. X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
L	To prove the payment of additional scatter rees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

The International Searching Authority has determined that the present international application contains more than one invention or group of inventions, namely:

1. Claims: 1-17 (all in part)

Use of ActA fragments of SEQ ID 4 and 6 to detect or screen molecules that modulate the formation of the actin cytoskeleton. Reagent, kit and method including same, as well as the corresponding nucleotide sequences (SEQ ID 3 and 5).

2. Claims: 1-17 (all in part)

As for invention 1, but relating to murine (SEQ ID 20), chicken (SEQ ID 22) or human (SEQ ID 24) zyxin fragments, as well as the corresponding nucleotide sequences (SEQ ID 19, 21 and 23).

3. Claims: 1-5, 7-17 (all in part)

As for invention 1, but relating to the human LPP fragment of SEQ ID 26 and the corresponding nucleotide sequence (SEQ ID 25).

4. Claims: 1-17 (all in part)

As for invention 1, but relating to the vinculin fragment of SEQ ID 30 and the corresponding nucleotide sequence (SEQ ID 29).

Information on patent family members

Inte al Application No PCT/FR 01/00843

				PCT/FR 01/00843			
Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
WO 9801755	A	15-01-1998	WO	980175	5 A1	15-01-1998	
			•				
			•				
		,					
			-				
Ĵ							
							i
					÷	•	
							l
						•	

Form PCT/ISA/210 (patent family annex) (July 1992)

Dem: nternationale No PCT/FR 01/00843

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 G01N33/68 C12N15/31 C12N15/12 CO7K14/195 CO7K14/47

Selon la classification internationale des brevets (CIB) ou à ta fols selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification sulvi des symboles de classement) GO1N C12N C07K CIB 7

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) BIOSIS

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Calegone *	Identification des documents cités, avec, le cas échéant, l'Indication des passages pertinents	no. des revendications visées
X	PETIT MARLEEN M R ET AL: "LPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity." MOLECULAR BIOLOGY OF THE CELL, vol. 11, no. 1, janvier 2000 (2000-01), pages 117-129, XP002176722 ISSN: 1059-1524	16,17
Υ	le document en entier	1-15
X	LAINE, R. ET AL.: "Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility" JOURNAL OF CELL BIOLOGY, vol. 138, no. 6, 1997, pages 1255-1264, XP000979073 ISSN: 0021-9525	1-6
Y	le document en entier	. 1–15
	-/	

Υ	le document en entier		. 1–15
	· 	-/	
X Voir	la suite du cadre C pour la lin de la liste des documents	Les documents de familles de bre	evets sont indiqués en annexe
*A' docume conside *E' docume ou apr *L' docume priorité autre (*O' docume une e) *P' docume	es spéciales de documents cités: ent définissant l'état général de la technique, non léré comme particulièrement pertinent ent antérieur, mais publié à la date de dépôt international ès cettle date ent pouvant jeter un doute sur une revendication de è ou cité pour déterminer la date de publication d'une citation ou pour une raison spéciale (telle qu'indiquée) ent se référant à une divutgation orale, à un usage, à coosition ou lous autres moyens ent publié avant la date de dépôt international, mais ieurement à la date de priorité revendiquée	 "T" document uttérieur publié après la date de priorité et n'appartenenant patechnique pertinent, mais cité pour co ou la théorie constituant la base de l'i être considérée comme nouvelle ou cinventive par rapport au document co inventive par rapport au document co 'Y' document particulièrement pertinent; l'ne peut être considérée comme impli lorsque le document est associé à un documents de même nature, cette co pour une personne du métier '8' document qui fait partie de la même fait 	is à l'état de la mprendre le principe invention invention revendiquée ne peut omme impliquant une activité nisidéré Isolément invention revendiquée quant une activité inventive ou plusieurs autres imbinaison étant évidente
	elle la recherche internationale a été effectivement achevée septembre 2001	Date d'expédition du présent rapport	de recherche internationale
Nom et adre	esse postale de l'administration chargée de la recherche internation Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Andres, S	

Dema iternationale No PCT/FR 01/00843

		PCT/FR 01/00843
	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie *	identification des documents cités, avec,le cas échéant, l'indicationdes passages pertir	nents no. des revendications visées
Y	DAVID VIOLAINE ET AL: "Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach." JOURNAL OF CELL SCIENCE, vol. 111, no. 19, octobre 1998 (1998-10), pages 2877-2884, XP000979022 ISSN: 0021-9533 le document en entier	1-15
Y	WO 98 01755 A (BIOTECHNOLOG FORSCHUNG GMBH; HUTCHINSON FRED CANCER RES (US)) 15 janvier 1998 (1998-01-15) page 7, ligne 5 -page 8, ligne 12 page 15, ligne 26 -page 17, ligne 20 page 25, ligne 16 - dernière ligne page 43, ligne 28 -page 44, ligne 12 revendications	1-10
Y	HIGGS H N ET AL: "INFLUENCE OF THE C TERMINUS OF WISKOTT-ALDRICH SYNDROME PROTEIN (WASP) AND THE ARP2/3 COMPLEX ON ACTIN POLYMERIZATION" BIOCHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, PA,US, vol. 38, no. 46, 16 novembre 1999 (1999-11-16), pages 15212-15222, XP000938899 ISSN: 0006-2960 le document en entier	11-15
Y	ZEILE, W. ET AL.: "Vaccinia locomotion in host cells: Evidence for the universal involvement of actin-based motility sequences ABM-1 and AMB-2." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 95, no. 23, 10 novembre 1998 (1998-11-10), pages 13917-13922, XP002176723 ISSN: 0027-8424 le document en entier	1-15
x	SOUTHWICK FREDERICK S ET AL: "Arrest of Listeria movement in host cells by a bacterial ActA analogue: Implications for actin-based motility." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 91, no. 11, 1994, pages 5168-5172, XP002158806 1994 ISSN: 0027-8424 le document en entier	1-3,5
		1
	-/	

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1892)

Der sternationale No
PCT/FR 01/00843

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS				
Catégorie °	Identification des documents cités, avec,le cas échéant, l'Indicationdes passages pertine	nts no. des revendications visées		
X	SOUTHWICK FREDERICK S ET AL: "Inhibition of Listeria locomotion by mosquito oostatic factor, a natural oligoproline peptide uncoupler of profilin action." INFECTION AND IMMUNITY, vol. 63, no. 1, 1995, pages 182-190,	1,2		
!	XP002158807 ISSN: 0019-9567 le document en entier			
X	PURICH DANIEL L ET AL: "ABM-1 and ABM-2 homology sequences: Consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 231, no. 3, 1997, pages 686-691,	1-3,5		
	XP002158808 ISSN: 0006-291X le document en entier			
X	NOIREAUX V ET AL: "Growing an actin gel on spherical surfaces." BIOPHYSICAL JOURNAL., vol. 78, no. 3, mars 2000 (2000-03), pages 1643-1654, XP002171120	8,15		
Α	ISSN: 0006-3495 le document en entier	8-15		
X	DOMANN, E. ET AL.: "A NOVEL BACTERIAL VIRULENCE GENE IN LISTERIA MONOCYTOGENES REQUIRED FOR HOST CELL MICROFILAMENT INTERACTION WITH HOMOLOGY TO THE PROLINE-RICH REGION OF VINCULIN."	17		
	EMBO JOURNAL, vol. 11, no. 5, 1992, pages 1981-1990, XP002071288 ISSN: 0261-4189 cité dans la demande			
A	le document en entier CAMERON LISA A ET AL: "Motility of ActA protein-coated microspheres driven by	8-10		
	actin polymerization." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 96, no. 9,			
·	27 avril 1999 (1999-04-27), pages 4908-4913, XP002158809 ISSN: 0027-8424 cité dans la demande le document en entier			
	-/			

Den Internationale No
PCT/FR 01/00843

	(suite) DOCUMENTS CONSIDERES COMME PERTINENTS				
Catégorie °	Identification des documents cités, avec,le cas échéant, l'indicationdes passages per	tinents	no. des revendications visées		
A	YARAR ET AL: "The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with theArp2/3 complex" CURRENT BIOLOGY, vol. 9, no. 10, 20 mai 1999 (1999-05-20), pages 555-558, XP000925925 ISSN: 0960-9822 cité dans la demande le document en entier		10-15		
A	WIEDMANN MARTIN ET AL: "Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential." INFECTION AND IMMUNITY, vol. 65, no. 7, 1997, pages 2707-2716, XP002158810 ISSN: 0019-9567 figure 3		16,17		
A	SMITH GREGORY A ET AL: "The tandem repeat domain in the Listeria monocytogenes actA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin." JOURNAL OF CELL BIOLOGY, vol. 135, no. 3, 1996, pages 647-660, XPOO2158811 ISSN: 0021-9525				
A	LASA, I. ET AL.: "The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator." MOLECULAR MICROBIOLOGY, vol. 18, no. 3, 1995, pages 425-436, XP000979024 ISSN: 0950-382X				
A	MACALMA TERESITA ET AL: "Molecular characterization of human zyxin." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 49, 1996, pages 31470-31478, XP002176724 ISSN: 0021-9258		·		

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1992)

Der nternationale No PCT/FR 01/00843

		rci/rk oi	, , , , , , , , , , , , , , , , , , , ,
	OCUMENTS CONSIDERES COMME PERTINENTS		
Catégorte '	Identification des documents cités, avec, le cas échéant, l'indicationdes passages	pertinents	no. des revendications visées
A	MOISEYEVA ELENA P ET AL: "Organization of the human gene encoding the cytoskeletal protein vinculin and the sequence of the vinculin promoter." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 6, 1993, pages 4318-4325, XP002176725 ISSN: 0021-9258		
Ρ,Χ	FRADELIZI, J. ET AL.: "Role of zyxin in the spatial control of actin polymerisation." BIOLOGY OF THE CELL (PARIS), vol. 92, no. 2, avril 2000 (2000-04), page 157 XP000979072 ISSN: 0248-4900 abrégé & Congress of the French Society of Cell Biology; Paris, France; May 24-26, 2000		1-8
Ρ,Χ	DREES, B. ET AL.: "Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 29, 21 juillet 2000 (2000-07-21), pages 22503-22511, XP002176726 ISSN: 0021-9258 le document en entier		1-6
T	SKOBLE JUSTIN ET AL: "Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility." JOURNAL OF CELL BIOLOGY, vol. 150, no. 3, 7 août 2000 (2000-08-07), pages 527-537, XP002171121 ISSN: 0021-9525		
		•	

PCT/FR 01/00843

Cadre I Observati ns – lorsqu'il a été stimé que certaines r v ndications ne pouvai nt pas faire l' bjet d'une recherc
(suite du point 1 de la première feuill)
Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:
1. Les revendications nos se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:
2. Les revendications n ^{os} se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:
Les revendications nos sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).
Cadre II Observations – lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)
L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:
voir feuille supplémentaire
1. X Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.
 Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n cs
Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'Invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n os
Remarque quant à la réserve Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposan X Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

Formulaire PCT/ISA/210 (suite de la première feuille (1)) (Juillet 1998)

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-17 (toutes partiellement)

Utilisation des fragments d'ActA, représentés par les SEQ IDs 4 et 6, pour la détection ou le criblage de molécules ayant un effet modulateur sur la formation du cytosquelette d'actine. Réactif, trousse ou kit, et procédé les comprenant, ainsi que les séquences nucléotidiques correspondantes (SEQ IDs 3 et 5).

2. revendications: 1-17 (toutes partiellement)

Comme pour l'invention 1, mais concernant les fragments de la zyxine murine (SEQ ID 20), de poulet (SEQ ID 22) ou humaine (SEQ ID 24), ainsi que les séquences nucléotidiques correspondantes (SEQ IDs 19, 21 et 23).

3. revendications: 1-5,7-17 (toutes partiellement)

Comme pour l'invention 1, mais concernant le fragment de la LPP humaine représenté par SEQ ID 26 et la séquence nucléotidique correspondante (SEQ ID 25).

4. revendications: 1-17 (toutes partiellement)

Comme pour l'invention 1, mais concernant le fragment de la vinculine représenté par SEQ ID 30 et la séquence nucléotidique correspondante (SEQ ID 29).

Renseignements relatifs aux membres de familles de brevets

iternationale No

PCT/FR 01/00843 Membre(s) de la famille de brevet(s) Document brevet cité Date de Date de au rapport de recherche publication publication WO 9801755 Α 15-01-1998 WO 9801755 A1 15-01-1998

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)

THIS PAGE BLANK (USPTO)