Steiner forest

Steiner tree

Observe:

if the subset = all nodes then Steiner tree = minimum spanning tree

MST

Steiner tree approx. algorithm

- 1. Define new graph:
- · Vertex set = S
- · Edge set = complete graph
- · Weight of {u,v} = shortest path length in G

Steiner tree algorithm

2. Compute minimum spanning tree on new graph

Steiner tree algorithm

3. Output corresponding set of original edges

Here
Output=12
OPT=11

Steiner tree algorithm

- 1. new complete graph on subset
- 2. minimum spanning tree on that graph
- 3. output corresponding set of original edges

Theorem: it's a 2-approximation

Theorem: it's a 2-approximation Consider unknown OPT tree

Theorem: it's a 2-approximation

Go around the OPT tree to define terminal-to-terminal paths

Theorem: it's a 2-approximation

Map terminal-to-terminal paths to edges in complete graph of terminals

Theorem: it's a 2-approximation

Remove one cycle edge

Steiner tree

Henry Pollak
H.N. Gilbert

Jakob Steiner

Fig. 3. Full Steiner trees with a Steiner points

Steiner tree

Richard Karp

Marshall Bern Paul Plassmann

Steiner tree 1.39

Jaroslaw Byrka

Thomas Rothvoss

Fabrizio Grandoni

Laura Sanita

Steiner forest

