MODERADOR DE DIÁLOGO EM REALIDADE VIRTUAL PARA IDOSOS

Orientadores:

Prof. Nuno Feixa Rodrigues

Prof. António Coelho

Autor:

Henrique da Silva

Lopes (UP202308657)

PROJETO CONNECT LIVES XR

Este projeto visa desenvolver um ambiente imersivo em Realidade Virtual para promover conexões sociais entre adultos mais velhos de forma a mitigar a solidão e isolamento social.

A solidão e o isolamento social são preocupações significativas de saúde pública entre os adultos mais velhos, a percentagem dos indivíduos com 65 anos ou mais a sofrer por isolamento social em Portugal são 27,7%, de acordo com o SNS. À medida que a população envelhece, prevê-se que a prevalência destes problemas aumente.

Este projeto tem <u>3 frentes</u>:

- Responsável pelo desenvolvimento de um moderador de diálogo em RV Henrique Lopes;
- Responsável pela elaboração do espaço virtual Simplício Lima;
- Responsável pela criação de alguns jogos inerentes ao espaço virtual Joana Pereira.

REVISÃO DE LITERATURA

A revisão de literatura para este projeto foi elaborada tendo em conta a insuficiência de estudos científicos que cubram todos os seguintes pontos:

- 1. Realidade Virtual;
- 2. Adultos mais velhos (65 anos ou mais);
- 3. Isolamento social e solidão;
- 4. Moderador de diálogo.

Assim, excluindo o ponto 4 (Moderador de diálogo), a revisão tenta responder às perguntas:

"<u>Que métodos, usando Realidade Virtual, se apresentam mais eficazes a combater a solidão e o isolamento social entre adultos mais velhos?</u>";

"Que tecnologias suportam estes métodos?".

DECLARAÇÃO DO PROBLEMA

A revisão foca-se na análise da eficácia da Realidade Virtual (RV) como uma intervenção para aliviar a solidão e o isolamento social entre os adultos mais velhos. Investiga se a RV pode colmatar as lacunas sociais e melhorar as interações sociais, tendo em conta as limitações físicas e geográficas frequentemente enfrentadas por este grupo demográfico. O documento visa explorar a forma como as intervenções de RV podem ser optimizadas para melhorar o bem-estar mental e emocional dos adultos mais velhos através de uma maior conectividade e envolvimento social.

Utilizando as diretrizes do PRISMA e o CASP para avaliar a qualidade dos artigos foram encontrados 19 estudos originais de extrema importância para entender o estado de arte do problema abordado neste projeto.

ESTADO DE ARTE

Os resultados da revisão sugerem que os métodos com mais sucesso em amenizar o sentimento de solidão entre adultos mais velhos são os que utilizaram Realidade Virtual social (Social VR) num contexto com vários participantes (Multiplayer). Sendo assim, e embora que muito pouco explorado neste contexto, a integração de um moderador de diálogo virtual parece apresentar-se como um bom método para atingir o objetivo do projeto Connect Lives XR. Abaixo estão citações dos resultados de alguns dos estudos da revisão.

Kalantari et al. (2022) - "Participants felt happy (M=2.3 out of 9 reverse-coded; SD=1.4), somehow calm (M=4.7 out of 9; SD=2.1), and relatively in control (M=5.1 out of 9; SD=1.5) during the experimental session."

<u>Hui Liang et al. (2023)</u> - "The results demonstrated that the mental state of the elderly who had used the virtual social center was significantly better than that of those who had not used it."

<u>Keith Kenyon et al. (2023)</u> - "The results of this study in relation to hypothesis 4 support the assumption that the longer a person has been in social VR the lower will be their feelings of loneliness. There was a significant reduction in feelings of loneliness in the online condition."

<u>Dannie Korsgaard al. (2020)</u> - "Thus, it appears that avatar-based communication (similar to audio-/video-based systems [19, 39]) also has the ability to ease loneliness."

ESTUDOS INCLUÍDOS

Os estudos incluídos na revisão usaram vários métodos diferentes como jogos cognitivos, espaços de reuniões virtuais, terapia de relaxamento, narração interactiva de histórias, exploração da natureza, entre outros.

A maior parte dos estudos usaram Meta Quest 2, Oculus Go e Oculus Rift que são dispositivos HMD (Head-mounted display). Para o desenvolvimento dos espaços virtuais e avatars a grande maioria usou Unity 3D ou Unreal Engine.

Os estudos que usaram escalas para medir solidão ou bem-estar fizeram-no com WHO-5 Well-Being Index ou UCLA Loneliness Scale.

O PAPEL DO MODERADOR NO CONTEXTO VIRTUAL

O moderador virtual atua como facilitador da conversa em ambientes VR, utilizando informações prévias dos participantes para promover diálogos relevantes e relacionar pessoas com interesses em comum. Intervém apenas quando necessário, nomeadamente em situações de silêncio ou exclusão, garantindo uma experiência inclusiva e fluida.

Embora automatizado, o moderador foi concebido para se manter distinguível através de marcadores visuais subtis. Este equilíbrio permite interações naturais sem confundir os participantes sobre a sua função.

METODOLOGIA DO ESTUDO

- 1. <u>Desenvolvimento do moderador.</u>
- 2. <u>Integração do moderador no espaço virtual criado em Unity</u>.
- 3. <u>Sessões de teste sem participantes</u>:

Testar a funcionalidade do moderador e do ambiente virtual em condições controladas, garantindo que o sistema opere conforme o esperado antes de envolver participantes reais tentar identificar e corrigir possíveis falhas técnicas no comportamento do moderador ou no ambiente.

4. Escolha dos participantes:

Os adultos mais velhos serão convidados a participar com base nos seus resultados na UCLA Loneliness Scale, uma escala validada para medir os níveis de solidão, de forma a garantir que os usuários fazem parte do público-alvo do estudo.

METODOLOGIA DO ESTUDO

5. Recolha de dados dos participantes:

Antes de cada sessão, os participantes preencherão um questionário para fornecer informações sobre interesses pessoais e preferências, nível de experiência com tecnologia em RV. Consentimento para coleta de dados anónimos, caso prefiram manter sua identidade privada. Esses dados serão usados para personalizar as ações do moderador, como a escolha de tópicos para discussão.

6. <u>Sessões de Teste:</u>

Os testes incluirão grupos de 3 a 5 participantes em cada uma das sessões, que terão a duração de 30 a 60 minutos. A observação do comportamento do moderador e recolha de feedback de todos os participantes será uma prática constante durante a investigação. Após cada sessão, os participantes responderão a outro questionário para avaliar a percepção do moderador (eficiência, naturalidade, relevância das intervenções), nível de conforto e segurança psicológica no ambiente virtual e sugestões para melhorias.

7. <u>Alterações de acordo com o feedback dos participantes</u>:

Estas alterações serão feitas no intervalo de tempo entre sessões, espera-se uma melhoria crescente da experiência dos participantes.

8. Análise de resultados e publicação.

DIAGRAMA GANTT

METODOLOGIA DE DESENVOLVIMENTO

- 1. Abordagem iterativa e empírica com ciclos de tentativa/erro.
- 2. Simulação textual e aperfeiçoamento de prompts para validar lógica de diálogo.
- 3. Evolução para interações com voz (STT e TTS).
- 4. Introdução progressiva de novas funcionalidades
- 5. Integração com ferramentas externas:
- OpenAl (GPT-4): geração de respostas.
- Google STT: transcrição de voz.
- Azure TTS: resposta em voz natural.
- LangChain e Chroma: memória e interesses (dos participantes) vetoriais.

ARQUITETURA E FUNCIONAMENTO DO SISTEMA

Desenvolvido em Python 3.11 com arquitetura modular:

- STT: Google Speech-to-Text para transcrição da fala dos participantes.
- TTS: Azure (pt-PT-DuarteNeural) para respostas com voz natural.
- NLP: GPT-4 para compreender contexto e gerar respostas adaptativas.

O sistema do moderador funciona de forma cíclica:

<u>Captura fala do participante \rightarrow Transcreve para texto \rightarrow Analisa \rightarrow Gera resposta em texto \rightarrow O moderador fala (em voz) \rightarrow Atualiza histórico.</u>

PAPEL DA BASE DE DADOS E FERRAMENTAS ASSOCIADAS

1. <u>Adaptação ao Número de Participantes</u>

- Os dados dos participantes estão armazenados num ficheiro JSON.
- Este ficheiro é lido no início da sessão e permite ao sistema ajustar-se automaticamente ao número de participantes definidos, sem necessidade de reescrever código.

2. <u>Gestão do Histórico da Conversa</u>

- Ao longo da sessão, todas as interações são registadas no JSON, garantindo que o moderador mantém o contexto da conversa.
- A biblioteca LangChain é utilizada para organizar e estruturar este histórico, permitindo ao GPT-4 responder com base no que já foi dito anteriormente, mantendo a fluidez e coerência do diálogo.

PAPEL DA BASE DE DADOS E FERRAMENTAS ASSOCIADAS

3. <u>Personalização da Experiência</u>

- Antes da sessão, o JSON inclui dados como idade, cidade e interesses pessoais de cada participante.
- Estes interesses são vetorizados com a ajuda do Chroma, permitindo ao sistema encontrar relações semânticas e propor temas de conversa que sejam mais relevantes e envolventes.

FUNCIONAMENTO DO MODERADOR

O moderador só intervém após silêncio coletivo, ou seja, todos os participantes estarem em silêncio.

Como só é possível simular um participante de cada vez, cada um tem o seu próprio temporizador que funciona da seguinte forma:

- 1. Quando o participante começava a falar, o temporizador reinicia.
- 2. Se não dissesse mais nada durante 3 segundos, a sua intervenção é considerada concluída e validada.
- 3. Se não dissesse nada de todo, era considerado silêncio e passa a palavra para o próximo participante

Numa sessão real o temporizador será geral , ao fim de 5 segundos se o moderador não ouvir nada, ele intervirá.

FUNCIONAMENTO DO MODERADOR

Lógica rotativa:

Mesmo com os prompts corretos o moderador repetia-se, dirigindo-se sempre ao mesmo participante. Para evitar este problema, foi implementada uma lógica de rotação, garantindo atenção equitativa.

Resposta imediata ao ser chamado:

Se alguém disser "moderador", este responde automaticamente á pessoa que o mencionou, mesmo se houver outras pessoas a falar ou o tempo de silêncio coletivo ainda não tivesse decorrido.

FUNCIONAMENTO DO MODERADOR

Promoção do diálogo:

Utiliza as informações guardadas sobre os participantes (como interesses ou experiências) para encontrar pontos em comum e sugerir tópicos relevantes que fomentem o diálogo.

Mediação de conflitos:

Caso detete algum conflito, desacordo ou mal-entendido, intervém de forma calma, diplomática e imparcial, promovendo a escuta ativa e o respeito.

Tratamento formal:

O moderador nunca trata os participantes por "tu", mantendo sempre uma postura respeitadora e adequada ao público-alvo.

ARQUITETURA E COMUNICAÇÃO ATUAL

Conectar Unity (VR) com Python (IA moderador) para gerir conversas em tempo real.

3 Conexões TCP:

- 5050: Unity → Python (envio de áudio do participante)
- 5051: Python → Unity (envio da voz do moderador)
- 5052: Unity → Python (sinal "pronto" para escutar)

<u>Ciclo de Interação</u>:

- 1.Python envia a resposta do moderador em áudio para o Unity.
- 2. Unity reproduz o som e depois ativa o microfone para gravar o áudio dos participantes.
- 3. Unity envia o sinal <READY> para o Python, que significa que o Unity está preparado para enviar o áudio dos participantes para o Python.
- 4. Python escuta e processa as falas dos participantes, e caso haja silêncio coletivo, gera nova resposta do moderador → repete o ciclo.

DIVISÃO DE TAREFAS

Unity (cliente leve):

- Capta e envia voz dos participantes.
- Reproduz a voz do moderador.
- Garante sincronização com <READY>.

Python (servidor inteligente):

- Transcreve fala (Google STT).
- Gera voz (Azure TTS).
- Processa lógica de moderação.

RESULTADOS ESPERADOS E IMPACTO

Espera-se que o moderador:

- Estimule diálogos mais ricos e naturais.
- Reduza perceção de solidão entre os participantes, ou seja, resultados mais baixos na Escala de solidão UCLA.

Impacto esperado:

- Contribuição para o design de moderadores virtuais empáticos em RV.
- Aplicabilidade futura em centros de dia, lares ou redes sociais virtuais.

ESTADO ATUAL

Estado Atual do Trabalho:

Atrasado — A integração com o Unity ainda não está concluída.

Falta a criação do avatar, recrutamento de participantes, realização das sessões de teste e análise dos dados.

<u>Previsão de Conclusão</u>:

Difícil — A conclusão dentro do prazo será desafiante e depende de avanços rápidos nas próximas etapas críticas.

<u>Dificuldade Técnica</u>:

A execução simultânea de Python e Unity obriga a que o código Python esteja ativo antes de iniciar manualmente a simulação no Unity.

MUITO OBRIGADO!