

FIG. 1A

FIG. 1B

FIG. 1C

WA

FIG. 1D

FIG. 2

FIG. 3A

M

FIG. 3G

FIG. 4

Fig. 5

092355851 025160

FIG. 6B

FIG. 6A

FIG. 7A

FIG. 7B

09355351 051603

Fig. 8 - Impedance Matched Absorbing Module

Fig 9 : Aliasing Module

FIG. 10

Universal Frequency
Up-Conversion (UFC) module 1101

FIG. 11

0925555555555555

Universal Frequency
Up-Conversion
(UFU) Module 1200

FIG. 12

09555851000000000000

INFORMATION
SIGNAL
1302

FIG. 13A

OSCILLATING
SIGNAL
1304

FIG. 13B

FREQUENCY MODULATED
INPUT SIGNAL
1306

FIG. 13C

HARMONICALLY
RICH SIGNAL
(SHOWN AS SQUARE WAVE)
1308

FIG. 13D

SEE FIG. 13E

FIG.
13

EXPANDED VIEW OF
HARMONICALLY RICH
SIGNAL 1308

FIG. 1310

SEE FIG. 13F

HARMONICS OF
SIGNAL 1310
(SHOWN SEPARATELY)

FIG. 13F

FUNDAMENTAL
FREQUENCY
1310A

THIRD HARMONIC
1310B

FIFTH HARMONIC
1310C

FIG. 13E

FIG. 13F

HARMONICS OF
SIGNAL 1312
(SHOWN SEPARATELY)

FIG. 13E

FIG. 13F

FUNDAMENTAL
FREQUENCY
1312A

THIRD HARMONIC
1312B

FIFTH HARMONIC
1312C

FIG. 13 (CONT)

00000000000000000000

FIG. 13 (cont.)

FIG. 14

FIG. 15

FIG. 16A

1.0V 0.5V 0V -0.5V

FIG. 16 B

0 9 8 7 6 5 4 3 2 1 . m 0 5 4 6 0 . d

FIG. 16C

FIG. 16 D

卷之三

Fig. 16 E

09355354 DE5460

FIG. 16 F

09655854 in CES 160

FIG. 16 6

FIG. 16H

GÖTTSCHE LOWE AND THE COLEMAN FLOWERS

09355854 035150

F16. 16T

09355854 CES 4.6 G

Fig. 16J

0 50 100 150 200 250 300 350 400

F16, 16K

0 9 8 5 6 5 3 0 5 4 6 0

F16. 16L

FIG. 16M

FIG. 16N

0965585 05660

Fig. 160

F16, 17

FIG. 18A

0.000000000000000

FIG. 18B

0 9 8 3 5 5 3 5 4 0 9 5 4 6 0

F16. 18C

093355851 083160

F16. 18D

FIG. 18E

FIG. 19

FIG. 20A.

0.9855555555555555

FIG. 20B.

093558 CES 460

FIG. 20C

FIG. 20D

FIG. 20E

F16. 20F

F16.21

FIG. 22.

FIG. 23

FIG. 24A

0916553511 093160

F16.24B

0 9 8 5 6 5 4 3 2 1

FIG. 24C

2005 2005 2005 2005 2005

Fig. 24D

093556ES1 CES46C

FIG. 24E

09855654 in GES 4.5 G

FIG. 24 F

F16. 25A

0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 9 3 5 5 3 5 1 0 3 5 4 6 0

00965555555555555555555555555555

2662

0 9 8 5 5 6 5 4 0 5 1 5 0

FIG. 26D

2648

2672

F16.27A

09355854 05460

Fig. 27B

Fig. 27C

Fig. 27D

Fig. 27E

0985566
Page 15

FIG. 28

FIG. 29

-EXEMPLARY RECEIVER FOR
UNIVERSAL FREQUENCY DOWN-CONVERSION

FIG. 30

EXEMPLARY TRANSMITTER USING THE PRESENT INVENTION

FIG. 31A

TRANSMITTER USING PRESENT INVENTION IN A
HALF DUPLEX COMMUNICATIONS CIRCUIT WITH A
UNIVERSAL FREQUENCY DOWN-CONVERTER (FM & PH)

09855654 098162

FIG. 31B

FIG. 31C

09355651 093460

FIG. 32

TRANSMITTER USING PRESENT INVENTION IN
A HALF-DUPLEX COMMUNICATIONS CIRCUIT
WITH A UNIVERSAL FREQUENCY DOWN-CONVERTER(AM)

0 9 8 5 5 6 5 3 1 0 5 4 6 0 0 0

FIG. 33

TRANSMITTER USING PRESENT INVENTION IN
FULL DUPLEX COMMUNICATIONS CIRCUIT WITH
UNIVERSAL FREQUENCY DOWN-CONVERTER

09655554 0334600

F16.34

Fig. 35

F16.36

Fig. 38

F16.39

11

0.98553353 0.951600

FIG. 41

F16 42

Fig. 43

0 6 2 8 8 2 8 8 2 8 8 0

Fig 44

FIG. 45A

FIG. 45B

FIG. 45C

FIG. 45D

FIG. 45E

Fig. 46

F16. 47

F16. 48

09355851 CES 60

F16. 49

FIG. 50

FIG. 51

0.9555555555555555

FIG. 52

F16 53

FIG. 54

Fig. 55

0 0 0 0 0 0 0 0 0 0 0 0

F16. 56

FIG. 57

09655854 095460

Fig. 58

FIG. 59

FIG. 60

FIG. 61

09355654 Quest 60

METHOD FOR DOWN-CONVERTING AN ELECTROMAGNETIC SIGNAL

6200

RECEIVE A RF INFORMATION SIGNAL

~6202

ELECTRICALLY COUPLE THE RF INFORMATION SIGNAL TO A CAPACITOR

~6204

CONTROL A CHARGING AND DISCHARGING CYCLE OF THE CAPACITOR WITH A SWITCHING DEVICE ELECTRICALLY COUPLED TO THE CAPACITOR

~6206

PERFORM A PLURALITY OF CHARGING AND DISCHARGING CYCLES OF THE CAPACITOR, THEREBY FORMING A DOWN-CONVERTED INFORMATION SIGNAL

~6208

END

~6210

FIG 62

09855351-0514504