北京市平谷区 2023 年学业水平考试统一练习(一)

数学试卷

2023.4

事

项

- 1. 本试卷共8页,包括三道大题,28 道小题,满分100分。考试时间120分钟。
- 2. 在答题卡上准确填写学校名称、班级和姓名。
- 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
- 5. 考试结束, 请将试卷和答题卡一并交回。
- 一、选择题(本题共16分,每小题2分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 下面几何体中,是圆柱体的为

- 2. 为了确保我国粮食种植的稳定性,国家提出了"严防死守 18 亿亩耕地的红线目标",经过 了多年的努力和坚守,我国耕地面积止住了下跌趋势,而且还实现了增长.到 3020 年,全 国耕地保有量回升至 18.65 亿亩以上,18650000000 用科学计数法表示为
 - A. 1.865×10^7 B. 18.65×10^8 C. 1.865×10^9
- $D.1.865 \times 10^{12}$
- 3. 把一根细线固定在半圆形量角器的圆心处,细线的另 一端系一个小重物,制成一个简单的测角仪,如图所 示,细线与 BC 边重合,则 LA 的度数为。
 - A. 30°
 - B. 40°
 - C. 50°
 - D. 75°

4. 实数 a 在数轴上的对应点的位置如图所示. 若实数 b 满足 b < -a,则 b 的值可以是

A. I

B. 0

C. -1

- 5、不透明的袋子中有三个小球,上面分别写着数字"1~2~3",除数字外三个小球无其他 差别,从中随机摸出一个小球,记录其数字,不放回,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是
 - A. $\frac{1}{4}$
- B. $\frac{1}{3}$
- c. $\frac{1}{2}$
- D. $\frac{7}{3}$
- - $A. m \ge 1$
- B. $m \leq 1$
- C. m > 1
- D.m < 1
- 7. 瓷器上的纹饰是中国古代传统文化的重要载体之一,如图所示的图形即为瓷器上的纹饰,该图形既为中心对称图形,又 为轴对称图形,该图形对称轴的条数为

- B. 2
- C. 4
- D. 5
- 8. 摄氏温度(℃)与华氏温度(°F)是表示温度的两种方法,它们的关系如下:

摄氏温度(℃)	0	10	20
华氏温度(°F)	32	50	68

若设摄氏温度(\mathcal{C})为x,华氏温度(\mathcal{C} F)为y,y与x之间满足如下我们学习过的一种函数关系,则y与x满足的函数关系为

A. 正比例函数

B. 一次函数

C. 反比例函数

D. 二次函数

二、填空题(本题共16分,每小题2分)

- 9. 若 $\frac{6}{x-1}$ 在实数范围内有意义,则实数 x 的取值范围是_____.
- 10. 分解因式: mx² 2mx + m = _____
- 11. 方程 $\frac{3}{2x+1} = \frac{1}{x-1}$ 的解为______.
- 12. 写出一个比 3 大比 4 小的无理数____.

数学试卷 第2页(共8页)

- 13. 在平面直角坐标系 xOy 中,反比例函数 $y = \frac{k}{x} (k \neq 0)$ 的图象过点 A(2, -1) 和 B(m, -2),则 $m = _____$.
- 14. 为了提高大家的环境保护意识,某小区在假期开展了废旧电池回收的志愿者活动,该社区的 10 名中学生参与了该项活动,回收的旧电池数盘如下表:

电池数量(节)	2	5	6	8	10
人数	1	4	2	2	1

根据以上数据,这10名中学生收集废旧电池的平均数为____·

15. 如图,在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$, BD 平分 $\angle ABC$,若 $S_{\triangle BCD} = 1$,

- 三、解答题(本题共 68 分,第 17 20、22、25 题,每题 5 分;第 21、23、24、26 题,每题 6 分; 第 27 - 28 题,每题 7 分)

解答应写出文字说明、演算步骤或证明过程.

17. 计算: $(\pi - 2023)^{\circ} + 2\sin 60^{\circ} - \sqrt{27} + |1 - \sqrt{3}|$.

18. 解不等式组:
$$\begin{cases} 2x + 4 \ge 1 - x, \\ x < \frac{2x + 3}{3}. \end{cases}$$

- 19. 已知 $2x^2 + x 1 = 0$, 求代数式(x + 2)(x 2) + x(x + 1)的值.
- 20. 已知:如图, △ABC 为锐角三角形.

求作:以BC 为一边作 Rt $\triangle MBC$,使 $\angle MBC = 90^{\circ}$

 $\angle M = \angle A$.

作法:①作 AC 边的垂直平分线 DE;

- ②作 BC 边的垂直平分线 FG,与直线 DE 交 于点 O;
- ③以 0 为圆心, OA 为半径作 O 0;
- ④ 连接 CO 并延长,交⊙0 于点 M,连接 BM;

△MBC 即为所求作的三角形.

(2)完成下面的证明

证明: : $DE \neq AC$ 的垂直平分线, $FG \neq BC$ 的垂直平分线, $DE \neq FG$ 交于点 O

- $\therefore OA = OB = OC$
- ∴ 点 A 、B、C 都在 ⊙ 0 上
- : CM 为⊙0 的直径
- ∴ ∠*MBC* = ____°
- $:: \widehat{BC} = \widehat{BC}$
- ·. ∠M = ∠A (_____)(填推理依据)
- :. △MBC 即为所求作的三角形.

数学试卷 第4页(共8页)

- 21. 如图,在口ABCD中,点E 是 BC 中点,点F 是 AD 中点,连接 AE、CF、EF, EF 平分 L AEC.
 - (1) 求证: 四边形 AECF 是姿形:
 - (2) 连接 AC, 与 EF 交于点 O, 连接 OD,

若 AF = 5, $\sin \angle FAC = \frac{3}{2}$, 求 OD 的长.

- 22. 在平面直角坐标系 xOy 中,函数 $y = ix + b(k \neq 0)$ 的图象经过点(-1,0),(0,1)
 - (1) 求该函数的解析式;
 - (2) 当x > -2 时,对于x 的每一个值,函数 y = 2x + n 的值大于函数 y = kx + b ($k \neq 0$)的值,求n 的取值范围.
- 23. 明明学完了统计部分的相关知识后,对数据的统计产生了浓厚的兴趣,他从网上查阅了 2023 年 3 月 1 号至 10 号 A、B 两个城市的日最高气温数据,并对数据进行整理、描述和 分析,下面给出了部分信息.
 - a. A、B 两个城市 3 月 1 号至 10 号的日最高气温数据的折线图:

数学试卷 第5页(共8页)

b. A、B 两个城市 3 月 1 号至 10 号的日 最高气温数据的平均数、中位数、众数、极楚:

城市	平均数	中位数	众数	权炎
A	17.5	17.5	19	z
, B	12.4	m		8

根据以上信息,回答下列问题:

- (1) 求表中m、n、z的值;
- (2)记A城市3月1号至10号的日最高气温的方差为 s_1^2 , B城市3月1号至10号的日最高气温的方差为 s_2^2 ,则 s_1^2 _____ s_2^2 (填">""<"或"=");
- (3)如果你是明明,请根据以上统计数据,对 A、B 两个城市 3 月 1 号至 10 号的日最高 气温情况做简单的分析.(至少从两个方面做出分析)

- 24. 如图, AB 是 $\odot O$ 的直径, C 、D 是 $\odot O$ 上的两点, $\mathbb{E}(DB) = DC$, 过点 D 作 $\odot O$ 的切线交 AC 的延长线于点 E.
 - (1)求证: $\angle E = 90^{\circ}$;
 - (2)连接 CD. 若 $\cos \angle ECD = \frac{2}{3}$, AB = 9, 求 CE 的长.

25. 如图所示,某农场的小麦收割机正在收割小麦,脱离后的谷粒沿着喷射管道飞出,飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,谷粒从喷射出到着陆的过程中,谷粒的竖直高度 y (单位:m)与距离喷射口的水平距离 x (单位:m)近似满足函数关系 $y = a(x-h)^2 + k(a<0)$.

(1)谷粒距离喷射口的水平距离x(单位:m)与竖直高度y(单位:m)的几组数据如下:

水平距离 x/m	0	2	3	4	5
竖直高度 y/m	3. 5	4. 3.	, 4.4	4.'3	4. 0

根据上述数据,若用货车接运谷粒,保证和喷射口在同一平面的情况下,谷粒落下过程中恰好落到车箱的中心点.若货车车箱的中心点距地面 1.9 米,则货车车箱的中心点应距离喷射口几米?

(2)谷粒喷出的同时石子等较重的杂质会跟随谷粒一起在重力作用下沿抛物线①被分 离出来,谷皮和颗粒等较轻的杂质也会跟着谷粒一起沿抛物线②被分离出来,若已 知两条抛物线的解析式分别为

 $A: y = -0.09(x-3.2)^2 + 4.4?$ $B: y = -0.12(x-2.8)^2 + 4.44$ 则 $A \setminus B$ 对应的抛物线分别为 $A: ____; B: _____(写①或②即可).$

- 26. 在平面直角坐标系 xOy 中,点(1, y_1),(3, y_2)在抛物线 $y=x^2-2mx+m^2$ 上.
 - (1)求抛物线的对称轴用含(m的式子表示);
 - (2)若 y₁ < y₂,求 m 的取值范围;
 - (3)若点 (x_0, y_0) 在抛物线上,若存在 $-1 < x_0 < 0$,使 $y_1 < y_0 < y_2$ 成立,求 m 的取值范围.

- 27. 在△ABC 中,BD ⊥ AC,E 为 AB 边中点,连接 CE,BD 与 CE 相交于点 F,过 E 作 EM ⊥ EF, 交 BD 于点 M,连接 CM.
 - (1)依题意补全图形;
 - (2)求证: $\angle EMF = \angle ACF$;
 - (3)判断 BM、CM、AC 的数量关系,并证明.

- 28. 在平面直角坐标系 xOy 中,已知点 M(m,n),我们将点 M 的横纵坐标交换位置得到点 N(n,m). 给出如下定义:对于平面上的点 C,若满足 NC=1,则称点 C 为点 M 的"对 炫点".
 - (1)已知点 A(2,0),
 - ①下列各点: $Q_1(0,1), Q_2(1,1), Q_3(-1,2)$ 中为点 A 的"对炫点"的是_____;
 - ②点 P 是直线 y=x+2 上一点,若点 A 是点 P 的对炫点,求出点 P 的坐标;
 - (2)设点 A(a, b) 是第一象限内一点,点 P 是直线 y = x + b 上一点,至少存在一个点 P,使得点 A 的对炫点也是点 P 的对炫点,求 a、b 的取值范围.

平谷区 2023 年一模试卷评分标准

初三数学

2023年4月

一、选择题(本题共 16 分,每小题 2 分)

题号	1	2	3	4	5	6	7	8
答案	Α	С	В	D	В	D	С	В

二、填空题(本题共16分,每小题2分)

题号	9	10	11	12	13	14	15	16
答案	x≠1	m(x-1) ²	x=4	答案不唯一例: √10	1	6	2	2;8

三、解答题(本题共 68 分,第 17-20、22、25 题,每题 5 分,第 21、23、24、26 题,每题 6 分,第 27-28 题,每题 7 分)解答应写出文字说明、演算步骤或证明过程.

$$= 1 + 2 \times \frac{\sqrt{3}}{2} - 3\sqrt{3} + \sqrt{3} - 1$$

$$= -\sqrt{3}$$

18 解不等式组: $\begin{cases} 2x+4 \ge 1-x, \\ x < \frac{2x+3}{3}. \end{cases}$

解①得 x ≥-1	2
解②得 x < 3	4
−1 ≤ x < 3	-5

19 先化简,再求值:

(x+2)(x-2)+x(x+1)

$$= x^{2} - 4 + x^{2} + x$$

$$= 2x^{2} + x - 4$$

$$\therefore 2x^2 + x - 1 = 0, \therefore 2x^2 + x = 1$$

20 (1) 尺规作图

 $\frac{2}{3}$ ∵ 一次函数 $y = kx + b(k \neq 0)$ 的图象经过点(-1,0)和(0,1)

```
\therefore \begin{cases} -k+b=0 \\ b=1 \end{cases}
         \therefore \begin{cases} k=1 \\ b=1 \end{cases}
             y = x + 1
(2) 当直线 y=x+1 中 x=-2 时,y=-1<sup>-</sup>
```

```
当 y = 2 x + n 过点(- 2,- 1)时,n=3<sup>--</sup>
```

n≥3时结论成立.

<mark>23</mark>.解:(1) m=12.5,n=14,z=15;— (3)A 城市 3 月 1 日至 10 日日平均气温的平均值更高,极差较大,温度波动较大,不稳定,

B 城市 3 月 1 日至 10 日日平均气温的平均值较小,极差小,温度变化较稳定。

24. (1) 解:连结 OD.

:: DE 为 O*o*的切线

```
∴ ∠ EDO=90°-
\therefore \widehat{DB} = \widehat{DC}
∴ ∠ 1=∠ 2.
∵ OA=OD
∴ ∠ 2=∠ 3—
∴ ∠ 1=∠ 3
∴ ODII AE
∴ ∠ E=∠ EDO=90°—
```

(2) : 四边形 ABDC 内接于⊙ o

```
∴ ∠ B=∠ ECD
\because \cos \angle ECD = \frac{2}{3}
  \cos \angle B = \frac{2}{3}
:AB 是直径
∴ ∠ ADB=90°, ∵ AB=9
∴ BD=6----
```


$ \therefore \widehat{OB} = \widehat{OC} \therefore CD = BD = 6 $	
$\because \cos \angle ECD = \frac{2}{3},$	
∴ CE=4—6	
25.(1)由表可知,抛物线的顶点坐标为(3,4.4)	
∴ 抛物线的解析式为 y = a(x-3) +4.4	
∵ 抛物线过点 (0.3.5) .解得 a=- 0.1	
$y = -0.1(x-3)^{2} + 4.4$	2
当 y=1.9 时,x=8	
(2) ②; ①.————————————————————————————————————	3
(2) Ø, 0.	5
26 (1) 解:对称轴 x=m ———————————————————————————————————	3
(2) m < 2	3
(3) 由 $\vec{m} > 1 - 2m + m^2$, 得 $m \ge \frac{1}{2}$	4
由1+2n+m² <9−6m+m²,得n≤1	5
1	
$\therefore \frac{1}{2} \le m \le 1$	6
2	
<mark>27 (1</mark>)补全图形1	
(2) 证明:	
∴ ∠ BDC=90° ∴ ∠ DCF+∠ DFC=90°2	
: EM1 EF	E/
∴ ∠ EMF+∠ EFM=90°	
∵ ∠ EFM=∠ DFC	
∴ ∠ EMF=∠ DCF3	B
(3)	
结论: AC'+BM'=MC'4	
延长 ME 到 G 使 EG=EM,连接 AG、CG	
∵∠ GEA=∠ MEB, EG=EM, AE=BE	G _K
∴ △AGE≅ △BME (SAS)5	/X
∴ BM=AG,BMII AG	.//`
∵ BD⊥ AC	
∴ ∠ GAC=∠ BDA=90°6	// >
· CELEM, EM=EG	1/1
∴ CE 垂直平分 MG ∴ CG=CM	
在 Rt \triangle AGC 中, $AC^2 + AG^2 = GC^2$	D
11 KL AGO T, AL TAG = CC	

	_
The state of the s	-2
	-3 -5
	.9
	-3
	-4
	-5
	-6
E E	F
Б. Д.	
B	

(2)
$$P(\frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2})$$
 $\mathbb{E}P(-\frac{\sqrt{2}}{2}, 2 - \frac{\sqrt{2}}{2})$

如图,点 A 的所有对炫点在以 B 为圆心半径为 1 的圆上,点 P 的所有对炫点在互相平行的 $I_1,\,I_2$ 两条直线围成的区 域内,所以满足条件的时刻即为圆 B 与 ln、l2 两条直线围成的区域内有交点即可

.: 0 < a ≤ 2√2 , b > 0 —