Redshift Space Distortion of 21cm line at 1 < z < 5 with Cosmological Hydrodynamic Simulations arxiv:1808.01116

21-cm線観測における 赤方偏移空間歪み

発表者 Rika Ando (Nagoya Univ)

共同研究者 Atsushi J Nishizawa (Nagoya Univ)
Kenji Hasegawa (Nagoya Univ)
Ikko Shimizu (Osaka Univ)
Kentaro Nagamine (Osaka Univ)

Outline

motivation

21cm line as a probe of large-scale structure

method

cosmological hydrodynamic simulations

results

Redshift Space Distortion of HI

SKA survey

motivation

Future surveys probe the large-scale structure by detecting the 21-cm line.

Theory

matter in real space

observation

neutral hydrogen (HI) in redshift space

connect theoretical predictions with observables measure the HI power spectrum in redshift space

Redshift Space Distortion (RSD)

distance in redshift space differs from that in real space

geometric shape and 2D-power spectrum are distorted

RSD of HI at 1<z<5

this work

• measure the 2D power spectra P_{2D} in redshift space

 fit theoretical models with results and explore the HI bias and velocity dispersion

method

using the cosmological hydrodynamic simulation

Osaka simulation

Box size: (85Mpc/h)³

Particle Number (DM and gas): 2×512³

cosmological parameter: WMAP-9

Osaka simulation

N-body/SPH code GADGET-3 (Springel 2005)

Aoyama et al. 2017, Shimizu et al. 2018 (submitted)

- star formation supernova feedback
- uniform UV background

RSD

···· real space

— redshift space

peculiar velocity

large scales

Kaiser

coherent motion toward the overdensity

small scales

Finger of God

non-linear random motion

2D HI power spectra

- real space
- --- redshift space

contour of 2D HI power spectra $P_{
m HI}(k_{\perp},k_{\parallel})$

- On large scales
 clustering is enhanced
- On small scales
 power is suppressed

Future SKA survey

0<z<3

frequency resolution: 50kHz

the transverse density fluctuation is smoothed out

	interferometer	single-dish
angular resolution	high ~2Mpc/h @z=1	low ~65Mpc/h @z=1
field of view	small	large

$1+\delta_{HI}$ map in redshift-space at z=3

2D HI power spectra

— real space

--- redshift space

···· interferometer

the power spectrum is suppressed

interferometer

power is slightly suppressed

single-dish

since angular resolution is low, fluctuations in transverse direction are smoothed out

multipole $P_l(s)(k)$

symbols: Osaka simulation

curves: best-fitting models

solid : TNS

bashed: non-linear empirical

dotted: linear theory

••• $\ell=0$: monopole

••• $\ell=2$: quadrupole

anisotropic 2D power spectrum

$$P(k,\mu)$$
 ($\mu=\cos\theta=k_\parallel/k$)

Legendre expand

$$P_l^{(s)}(k) = \frac{2l+1}{2} \int_{-1}^1 d\mu \, P^{(s)}(k,\mu) \, \mathcal{L}_l(\mu)$$

 $\mathcal{L}_l(\mu)$: *I*-th Legendre polynomial

models for anisotropic power spectrum

$$P_{\rm HI}(k,\mu) = e^{-(k\mu f \sigma_v)^2} b_{\rm HI}^2 (1 + \beta \mu^2)^2 P_{\rm dm}^{\rm lin}(k)$$

HI Finger of God Kaiser matter redshift space suppressed enhanced real space

take angular resolution into account

$$W_{\rm beam} = \exp\left(-\frac{k^2(1-\mu^2)}{2}\sigma_{\rm smooth}^2\right) \qquad 1-\mu^2 = \sin^2\theta$$

$$\int_{\rm Obs} \delta_{\rm obs} = W_{\rm beam}(k,\mu)\delta \quad , \quad P = \langle \delta\delta \rangle$$

$$P_{\rm HI,obs}^{(s)}(k,\mu) = W_{\rm beam}^2(k,\mu) P_{\rm HI}^{(s)}(k,\mu)$$

HI bias, velocity dispersion

model:
$$P_{\rm HI}(k,\mu) = W_{\rm beam}^2(k,\mu) \ e^{-(k\mu f \sigma_v)^2} \ b_{\rm HI}^2 (1 + \frac{f}{b_{\rm HI}} \mu^2)^2 \ P_{\rm m}(k)$$

find the best-fitting HI bias and velocity dispersion parameters

free parameters

$$0.1 < b_{HI} < 10$$

$$0 < \sigma_V < 5\sigma_{V-lin}$$

best-fitting values

- interferometer
- ▼ real space
- × no smooth
- bias is consistent with direct measurement ($b_{HI}=P_{HI,m}/P_m$)
- velocity dispersion is smaller than the linear theory prediction @z>1
- Since box size ~ angular resolution we cannot measure the parameters for single-dish

We measured the Redshift space distortion of HI for future 21cm surveys (SKA)

method

using the full cosmological hydrodynamic simulation assuming the SKA-like observation

result

- we need to develop a more sophisticated model for HI power
- the best-fit values for interferometer is almost same as no-smooth
- we need the simulations with larger box-size for single-dish