A Mathematical Perspective on Machine Learning

Weinan E

Center for Machine Learning Research and School of Mathematical Sciences

Peking University

(z)activation function

goal

average error for all the data

.....

doesn't work in high dimention			approximate, finite sur
doesn't work in high dimention	doesn't work in high dimention		
doesn't work in high dimention	doesn't work in high dimention		
		doesn't work in	high dimention

"New" approach: Let π be a probability distribution

$$f^*(\boldsymbol{x}) = \int_{\mathbb{R}^d} a(\boldsymbol{\omega}) e^{i(\boldsymbol{\omega}, \boldsymbol{x})} \underline{\pi(d\boldsymbol{\omega})} = \boxed{\mathbb{E}_{\boldsymbol{\omega} \sim \pi} a(\boldsymbol{\omega}) e^{i(\boldsymbol{\omega}, \boldsymbol{x})}}$$

Let $\{\omega_j\}$ be an i.i.d. sample of π , $f_m(x) = \frac{1}{m} \sum_{j=1}^m a(\omega_j) e^{i(\omega_j,x)}$

$$\mathbb{E}|f^*(m{x}) - f_m(m{x})|^2 = rac{\mathsf{var}(f)}{m}$$
 does not suffer from CoD

Note: $f_m(\mathbf{x}) = \frac{1}{m} \sum_{j=1}^m a_j \sigma(\boldsymbol{\omega}_j^T \mathbf{x}) = \underline{\text{two-layer neural network}}$ with $\sigma(z) = e^{iz}$.

Conclusion:

Functions of the this type (i.e. can be expressed as this kind of expectation) can be approximated by two-layer neural networks with a dimension-independent error rate.

Approximation theory for the random feature model

ω: feature vectorΩ: sapce of feature vector

- Let $\phi(\cdot; \boldsymbol{w})$ be a <u>feature function</u> parametrized by $\boldsymbol{w} \in \Omega$, e.g. $\phi(\boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^T \boldsymbol{x})$. We will assume that ϕ is continuous and Ω is compact.
- Let π_0 be a fixed distribution for the random variable w.
- Let $\{\boldsymbol{w}_{j}^{0}\}_{j=1}^{m}$ be a set of i.i.d samples drawn from π_{0} .

The <u>random feature model</u> (RFM) associated with the features $\{\phi(\cdot; {m w}_j^0)\}$ is given by

$$f_m(oldsymbol{x};oldsymbol{a}) = rac{1}{m} \sum_{j=1}^m a_j \phi(oldsymbol{x};oldsymbol{w}_j^0).$$

linear combination with aj

What spaces of functions are "well approximated" (say with the same convergence rate as in Monte Carlo) by the random feature model?

- In classical approximation theory, these are a the Sobolev or Besov spaces: They are characterized by the convergence behavior for some specific approximation schemes.
- Direct and inverse approximation theorems.

Define the kernel function associated with the random feature model:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}_{\boldsymbol{w} \sim \pi_0} [\phi(\boldsymbol{x}; \boldsymbol{w}) \phi(\boldsymbol{x}'; \boldsymbol{w})]$$

Let \mathcal{H}_k be the reproducing kernel Hilbert space (RKHS) induced by the kernel k.

Probabilistic characterization: a(.): coefficient function

 $f \in \mathcal{H}_k$ if and only if there exists $a(\cdot) \in L^2(\pi_0)$ such that

$$f(\boldsymbol{x}) = \int a(\boldsymbol{w})\phi(\boldsymbol{x};\boldsymbol{w})d\pi_0(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{w}\sim\pi_0}a(\boldsymbol{w})\phi(\boldsymbol{x};\boldsymbol{w})$$

and

$$||f||_{\mathcal{H}_k}^2 = \int a^2(\boldsymbol{w}) d\pi_0(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{w} \sim \pi_0} a^2(\boldsymbol{w})$$

sqaure of 12 norm

the rest in : 2022_ICM_A Mathematical Perspective of Machine Learning_note2