Importing libraries and data

CEN481 - INTRODUCTION TO DATA MINING SUPPORT VECTOR MACHINE(SVM)

ANIL ALKIŞ

2019556006

```
from sklearn.model_selection import train_test_split, cross_val_score ,StratifiedKFold,GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.sym import SVC from sklearn import preprocessing from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score, classification_report , confusion_matrix, ConfusionMatrixDisplay import numpy as np import matplotlib.pyplot as plt import pandas as pd import time
```

```
[18] dataset = pd.read_csv('/content/AcousticFeatures.csv')
```

Split

```
X = dataset[['_RMSenergy_Mean', '_Lowenergy_Mean', '_Fluctuation_Mean',
         '_Tempo_Mean', '_MFCC_Mean_1', '_MFCC_Mean_2', '_MFCC_Mean_3',
        '_MFCC_Mean_4', '_MFCC_Mean_5', '_MFCC_Mean_6', '_MFCC_Mean_7',
        '_MFCC_Mean_8', '_MFCC_Mean_9', '_MFCC_Mean_10', '_MFCC_Mean_11',
        ' MFCC Mean 12', ' MFCC Mean 13', ' Roughness Mean', ' Roughness Slope',
        '_Zero-crossingrate_Mean', '_AttackTime_Mean', '_AttackTime_Slope',
        '_Rolloff_Mean', '_Eventdensity_Mean', '_Pulseclarity_Mean',
         '_Brightness_Mean', '_Spectralcentroid_Mean', '_Spectralspread_Mean',
        '_Spectralskewness_Mean', '_Spectralkurtosis_Mean',
        '_Spectralflatness_Mean', '_EntropyofSpectrum_Mean',
        '_Chromagram_Mean_1', '_Chromagram_Mean_2', '_Chromagram_Mean_3',
         '_Chromagram_Mean_4',
                                '_Chromagram_Mean_5', '_Chromagram_Mean_6',
        '_Chromagram_Mean_7', '_Chromagram_Mean_8', '_Chromagram_Mean_9', '_Chromagram_Mean_10', '_Chromagram_Mean_11', '_Chromagram_Mean_12',
        '_HarmonicChangeDetectionFunction_Mean',
        '_HarmonicChangeDetectionFunction_Std',
        ' HarmonicChangeDetectionFunction_Slope',
        '_HarmonicChangeDetectionFunction_PeriodFreq',
        ' HarmonicChangeDetectionFunction_PeriodAmp',
        '_HarmonicChangeDetectionFunction_PeriodEntropy']]
y = dataset['Class']
```

1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Class	0
_RMSenergy_Mean	0
_Lowenergy_Mean	0
_Fluctuation_Mean	0
_Tempo_Mean	0
_MFCC_Mean_1	0
_MFCC_Mean_2	0
_MFCC_Mean_3	0
_MFCC_Mean_4	0
_MFCC_Mean_5	0
_MFCC_Mean_6	0
_MFCC_Mean_7	0
_MFCC_Mean_8	0
_MFCC_Mean_9	0
	0
_MFCC_Mean_10	
_MFCC_Mean_11	0
_MFCC_Mean_12	0
_MFCC_Mean_13	0
_Roughness_Mean	0
_Roughness_Slope	0
_Zero-crossingrate_Mean	0
_AttackTime_Mean	0
_AttackTime_Slope	0
_Rolloff_Mean	0
_Eventdensity_Mean	0
_Pulseclarity_Mean	0
_Brightness_Mean	0
_Spectralcentroid_Mean	0
_Spectralspread_Mean	0
_Spectralskewness_Mean	0
_Spectralkurtosis_Mean	0
_Spectralflatness_Mean	0
_EntropyofSpectrum_Mean	0
_Chromagram_Mean_1	0
_Chromagram_Mean_2	0
_Chromagram_Mean_3	0
_Chromagram_Mean_4	0
_Chromagram_Mean_5	0
_Chromagram_Mean_6	0
_Chromagram_Mean_7	0
_Chromagram_Mean_8	0
_Chromagram_Mean_9	0
_Chromagram_Mean_10	0
_Chromagram_Mean_11	0
_Chromagram_Mean_12	0
_HarmonicChangeDetectionFunction_Mean	0
_HarmonicChangeDetectionFunction_Std	
	0
_HarmonicChangeDetectionFunction_Slope	0
_HarmonicChangeDetectionFunction_PeriodFreq	0
_HarmonicChangeDetectionFunction_PeriodAmp	0
_HarmonicChangeDetectionFunction_PeriodEntropy	0
dtype: int64	

no missing values.

[21] song_types = dataset["Class"].value_counts() song_types_df = pd.DataFrame(song_types)
song_types_df = song_types.reset_index(level = 0) song_types_df index Class 丽 0 relax 100 1 happy 100 2 sad 100 3 angry dataset.describe().T **F** count std min 25% 50% 75% max 扁 _RMSenergy_Mean 400.0 0.134650 0.064368 0.010 0.08500 0.1280 0.17400 0.431 Lowenergy Mean 400.0 0.553605 0.050750 0.302 0.52300 0.5530 0.58325 0.703 6.7340 _Fluctuation_Mean 400.0 7.145932 2.280145 3.580 5.85950 7.82350 23,475 400.0 123.682020 34.234344 48.284 101.49025 120.1325 148.98625 195.026 _Tempo_Mean _MFCC_Mean_1 400.0 2.456422 0.799262 0.323 1.94850 2.3895 2.86025 400.0 0.071890 0.537865 -3.484 -0.26275 0.0685 0.41325 _MFCC_Mean_2 1.937 _MFCC_Mean_3 400.0 0.488065 0.294607 -0.870 0.28125 0.4645 0.68600 1.622 _MFCC_Mean_4 400 0 0.030465 0.275839 -1.636 -0.11700 0.0445 0 19825 1 126 0.195230 -0.494 0.06125 0.1810 _MFCC_Mean_5 400.0 0.178897 0.28850 1.055 400.0 0.038307 0.203754 -0.916 -0.07825 0.0495 0.15125 0.799 MFCC Mean 6 -0.04125 _MFCC_Mean_7 400.0 0.059943 0.180982 -0.936 0.0720 0.17225 0.571 _MFCC_Mean_8 400.0 0.043467 0.165184 -0.744 -0.04925 0.0395 0.13000 0.728 _MFCC_Mean_9 400.0 0.023010 0.159239 -0.621 -0.07100 0.0165 0.12300 0.539 _MFCC_Mean_10 400.0 0.027793 -0.544 -0.05925 0.12600 0.152235 0.0315 0.510 400.0 0.028798 _MFCC_Mean_11 0.136156 -0.487 -0.04400 0.0370 0.11400 0.494 _MFCC_Mean_12 400 0 0.016667 0.128528 -0.418 -0.05600 0.0225 0.09450 0.355 -0.04550 0.0390 400.0 0.024118 _MFCC_Mean_13 0.133470 -0.620 0.10125 0.536 400.0 527.681365 521.218943 0.941 169.18875 367.5780 734.37250 3899.847 Roughness Mean _Roughness_Slope 400.0 0.072038 0.174301 -0.525 -0.02700 0.0680 0.17400 400.0 -0.02/00 _kougnness_slope 0.072038 U.1743U1 -U.020 U.174UU U.084 \Box _Zero-crossingrate_Mean 400.0 997.252315 524.895887 149.490 592.27500 893.4910 1303.49275 3147.907 _AttackTime_Mean 400.0 0.031305 0.016801 0.010 0.02300 0.0270 0.03300 0.165 _AttackTime_Slope 400.0 -0.002890 0.149920 -0.465 -0.09400 0.0075 0.08900 0.599 _Rolloff_Mean 400.0 5691.069637 2293.401839 887.151 3933.55275 5648.6280 7355.88625 11508.298 400.0 2.784820 1.326889 0.234 1.73700 2.7730 _Eventdensity_Mean 3.69250 7.952 _Pulseclarity_Mean 400.0 0.249387 0.155335 0.011 0.12775 0.2180 0.32725 0.856 _Brightness_Mean 400.0 0.434158 0.131517 0.053 0.35250 0.4480 0.52725 0.737 _Spectralcentroid_Mean 400.0 2581.167267 863.520318 606.524 1981.55775 2547.6780 3182.56975 5326.379 400.0 3082.394695 767.648035 814.817 2508.76850 3150.9490 3684.32525 4721.479 _Spectralspread_Mean 1.870035 0.881635 0.390 400.0 1.32725 1.6870 2.18250 7.855 _Spectralskewness_Mean _Spectralkurtosis_Mean 400.0 7.348953 8.621386 1.930 3.88150 5.2160 7.84900 121,998 _Spectralflatness_Mean 400.0 0.048523 0.026492 0.006 0.02900 0.0470 0.06200 0.209 _EntropyofSpectrum_Mean 400.0 0.872607 0.037260 0.740 0.85300 0.8790 0.89900 400.0 0.352560 0.323071 0.000 0.05700 0.2735 0.55125 1.000 Chromagram Mean 1 400.0 0.253035 0.287694 0.01850 _Chromagram_Mean_2 0.000 0.1420 0.39525 1.000 _Chromagram_Mean_3 400.0 0.365098 0.324570 0.000 0.07975 0.2885 0.57650 1.000 400.0 0.208295 0.253623 0.000 0.01700 0.1050 0.31500 1.000 _Chromagram_Mean_4 0.08975 0.2710 _Chromagram_Mean_5 400.0 0.350412 0.303521 0.000 0.53575 1.000 400.0 0.263880 0.292692 0.000 0.01975 0.1440 0.45050 1.000 _Chromagram_Mean_6 0.02600 _Chromagram_Mean_7 0.242797 0.275798 0.000 0.1410 400.0 0.38500 1.000 _Chromagram_Mean_8 400.0 0.391873 0.330826 0.000 0.10200 0.2955 0.83550 1.000 _Chromagram_Mean_9 400.0 0.354632 0.334976 0.000 0.08875 0.2470 0.61200 1.000 400.0 0.590975 0.357981 0.000 0.26450 0.6120 _Chromagram_Mean_10 1.00000 1.000 400.0 0.342340 0.315808 0.000 0.05950 0.58525 _Chromagram_Mean_11 0.2470 1.000 _Chromagram_Mean_12 400.0 0.385620 0.348117 0.000 0.06075 0.2965 0.67075 1.000 _HarmonicChangeDetectionFunction_Mean 400.0 0.328213 0.055520 0.112 0.29075 0.3330 0.38725 0.488 HarmonicChangeDetectionFunction Std 400.0 0.192997 0.047092 0.060 0.16000 0.1900 0.22600 0.340 0.442 _HarmonicChangeDetectionFunction_Slope 400.0 -0.000157 0.104743 -0.285 -0.05800 -0.0020 0.08325 _HarmonicChangeDetectionFunction_PeriodFreq 400.0 1.762288 0.930352 0.187 0.96100 1.6820 2.24300 4.488 0.769690 0.072107 0.530 0.82400 HarmonicChangeDetectionFunction PeriodAmp 400.0 0.72500 0.7880 0.908

0.988712

0.003841

0.939

0.96500

0.9670

0.96900

0.977

HarmonicChangeDetectionFunction PeriodEntropy 400.0

```
[23] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state = 20)
   # Searching parameters
    # grid Search CV
    grid_search = GridSearchCV(pipe,
                              random_state = 20),
                              refit = True,
                              verbose = 2,
                              scoring = "accuracy")
    start time train = time.time()
    grid_search.fit(X_train, y_train)
     end_time_train = time.time()
     # get the best model
    best_model = grid_search.best_estimator_
0
     best = pd.DataFrame.from_dict(grid_search.best_params_, orient = "index").rename(columns = {0: "Best"})
\Box
                      Best I
        Classifier__C
     Classifier_gamma 0.01
     Classifier_kernel
                       rbf
[26] y_pred = best_model.predict(X_test)
     accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred)
    print(f"Doğruluk: {accuracy}")
    print("Sınıflandırma Raporu:\n", report)
    print(f"eğitim süresi: {(end_time_train - start_time_train) / 60}")
    Doğruluk: 0.8
    Siniflandirma Raporu:
                  precision
                             recall f1-score support
                               0.76
           angry
           happy
                      0.81
                               0.94
                                        0.87
                                                   18
                               0.82
                      0.82
                                        0.82
                                                   17
           relax
                      0.64
                               0.70
                                        0.67
                                                   20
        accuracy
                                        0.80
                                                   80
                      0.80
                               0.81
       macro avg
                                        0.80
                                                   89
    weighted avg
                     0.81
                               0.80
                                        0.80
    eğitim süresi: 0.09886568387349447
    disp = ConfusionMatrixDisplay(confusion_matrix = svc_m,
display_labels = best_model.classes_)
    print("SVC Confusion Matrix")
   disp.plot()
plt.show();
SVC Confusion Matrix
                                                         17.5
                 19
       angry
                                                          15.0
                                                         12.5
       happy
    True label
                                                         10.0
```

7.5

- 5.0

0.0

sad

14

relax

relax

sad

angry

happy