Importing Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
```

Loading the dataset

```
In [2]: df = pd.read_csv("Algerian_forest_fires_dataset_UPDATE.csv", )
```

Checking first 5 rows of the dataset

```
In [3]: df.head()
```

Out[3]:	
	Bejaia
	Region

Dataset													
Classes	FWI	BUI	ISI	DC	DMC	FFMC	Rain	Ws	RH	Temperature	year	month	day
not fire	0.5	3.4	1.3	7.6	3.4	65.7	0	18	57	29	2012	06	01
not fire	0.4	3.9	1	7.6	4.1	64.4	1.3	13	61	29	2012	06	02
not fire	0.1	2.7	0.3	7.1	2.5	47.1	13.1	22	82	26	2012	06	03
not fire	0	1.7	0	6.9	1.3	28.6	2.5	13	89	25	2012	06	04

OBSERVATION: Since the dataset contains Bejaia Region data & Sidi-Bel Abbes Region Data we're going to read it separately.

Reading the Bejaia Region data from CSV file.

Out[4]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Clas
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	no
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	no ⁻
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	no ⁻
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	no ⁻
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	no

Addition of Region Column

In [5]: bejaia_df["Region"] = "Bejaia"
bejaia_df

Out [5]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	С
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	I
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	I
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	I
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	I
117	26	9	2012	31	54	11	0.0	82.0	6.0	16.3	2.5	6.2	1.7	I
118	27	9	2012	31	66	11	0.0	85.7	8.3	24.9	4.0	9.0	4.1	
119	28	9	2012	32	47	14	0.7	77.5	7.1	8.8	1.8	6.8	0.9	I
120	29	9	2012	26	80	16	1.8	47.4	2.9	7.7	0.3	3.0	0.1	I
121	30	9	2012	25	78	14	1.4	45.0	1.9	7.5	0.2	2.4	0.1	I

In [6]: bejaia_df

Out[6]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	С
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	I
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	I
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	1
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	I
117	26	9	2012	31	54	11	0.0	82.0	6.0	16.3	2.5	6.2	1.7	I
118	27	9	2012	31	66	11	0.0	85.7	8.3	24.9	4.0	9.0	4.1	
119	28	9	2012	32	47	14	0.7	77.5	7.1	8.8	1.8	6.8	0.9	I
120	29	9	2012	26	80	16	1.8	47.4	2.9	7.7	0.3	3.0	0.1	1
121	30	9	2012	25	78	14	1.4	45.0	1.9	7.5	0.2	2.4	0.1	1

Reading the Sidi-Bel Abbes Region data from CSV file.

In [7]: abbes_df = pd.read_csv('Algerian_forest_fires_dataset_UPDATE.csv',
 abbes_df.head()

Out[7]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Clas
0	1	6	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2	no
1	2	6	2012	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9	0.2	no [.]
2	3	6	2012	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6	0.1	no ⁻
3	4	6	2012	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6	1	no ⁻
4	5	6	2012	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5	0.9	no

Addition of Region Column

In [8]: abbes_df['Region'] = "Sidi-Bel Abbes"
abbes_df

Out[8]:

_		day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	(
	0	1	6	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2	
	1	2	6	2012	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9	0.2	
	2	3	6	2012	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6	0.1	
	3	4	6	2012	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6	1	
	4	5	6	2012	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5	0.9	
	117	26	9	2012	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	
	118	27	9	2012	28	87	15	4.4	41.1	6.5	8	0.1	6.2	0	
	119	28	9	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	
	120	29	9	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	
	121	30	9	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	

Merging these two dataframes into one

In [9]: df = abbes_df.append(bejaia_df).reset_index()
df

Out [9]:

	index	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI
0	0	1	6	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8
1	1	2	6	2012	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9
2	2	3	6	2012	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6
3	3	4	6	2012	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6
4	4	5	6	2012	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5
239	117	26	9	2012	31	54	11	0.0	82.0	6.0	16.3	2.5	6.2
240	118	27	9	2012	31	66	11	0.0	85.7	8.3	24.9	4.0	9.0
241	119	28	9	2012	32	47	14	0.7	77.5	7.1	8.8	1.8	6.8
242	120	29	9	2012	26	80	16	1.8	47.4	2.9	7.7	0.3	3.0
243	121	30	9	2012	25	78	14	1.4	45.0	1.9	7.5	0.2	2.4

Shape of the dataframe

In [10]: df.shape

Out[10]: (244, 16)

Information of the dataframe

In [11]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	index	244 non-null	int64
1	day	244 non-null	int64
2	month	244 non-null	int64
3	year	244 non-null	int64
4	Temperature	244 non-null	int64
5	RH	244 non-null	int64
6	Ws	244 non-null	int64
7	Rain	244 non-null	float64
8	FFMC	244 non-null	float64
9	DMC	244 non-null	float64
10	DC	244 non-null	object
11	ISI	244 non-null	float64
12	BUI	244 non-null	float64
13	FWI	244 non-null	object
14	Classes	243 non-null	object
15	Region	244 non-null	object
dtyp	es: float64(5), int64(7), obj	ect(4)
memo	ry usage: 30.	6+ KB	

OBSERVATION: Features DC & FWI are string objects hence we need to convert them into float values.

Feature datatypes

In [12]: df.dtypes
Out[12]: index int64

day int64 int64 month year int64 Temperature int64 RH int64 Ws int64 float64 Rain FFMC float64 float64 DMC object DC float64 ISI float64 BUI FWI object Classes object object Region

dtype: object

Dropping irrelavant column

In [13]: df.drop(columns=['index'], inplace=True)

In [14]: df.head()

Out[14]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Clas
0	1	6	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2	no
1	2	6	2012	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9	0.2	no [,]
2	3	6	2012	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6	0.1	no [.]
3	4	6	2012	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6	1	no
4	5	6	2012	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5	0.9	no [.]

Columns in dataframe

Checking the null values

```
In [16]: df.isna().sum()
Out[16]: day
                           0
                           0
          month
                           0
          year
          Temperature
                           0
           RH
                           0
           Ws
                           0
          Rain
                           0
          FFMC
                           0
                           0
          DMC
          DC
                           0
          ISI
                           0
          BUI
                           0
          FWI
                           0
          Classes
                           1
          Region
                           0
          dtype: int64
```

OBSERVATION: There is one null value present in the Classes feature.

Dropping the row which has missing value

```
In [17]: | df.dropna(inplace=True)
          df.isna().sum()
Out[17]: day
                           0
          month
                           0
                           0
          year
          Temperature
                           0
           RH
                           0
           Ws
                           0
                           0
          Rain
          FFMC
                           0
          DMC
                           0
          DC
                           0
          ISI
                           0
          BUI
                           0
          FWI
                           0
          Classes
                           0
          Region
                           0
          dtype: int64
```

Checking the shape of the df after dropping the row

```
In [18]: df.shape
Out[18]: (243, 15)
```

Changing the name of features

```
In [19]: df.rename(columns={'Classes' ': "Classes', 'Rain' : "Rain', " Ws":
```

Creation of date column from [day, month, year] features

```
In [20]: df['date'] = df.loc[:, 'day':'year'].apply(lambda x:"/".join(x.astyp)
In [21]: df
```

Out [21]:

	day	month	year	Temperature	Relative Humidity	Wind- Speed	Rain	FFMC	DMC	DC	ISI	BUI
0	1	6	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8
1	2	6	2012	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9
2	3	6	2012	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6
3	4	6	2012	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6
4	5	6	2012	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5
239	26	9	2012	31	54	11	0.0	82.0	6.0	16.3	2.5	6.2
240	27	9	2012	31	66	11	0.0	85.7	8.3	24.9	4.0	9.0
241	28	9	2012	32	47	14	0.7	77.5	7.1	8.8	1.8	6.8
242	29	9	2012	26	80	16	1.8	47.4	2.9	7.7	0.3	3.0
243	30	9	2012	25	78	14	1.4	45.0	1.9	7.5	0.2	2.4

Dropping columns [day, month, year] from dataset

```
In [22]: df.drop(columns=['day', 'month', 'year'], inplace=True)
```

Converting date string to datetime object

```
In [23]: df['date'] = pd.to_datetime(df['date'])
```

Converting the type for Feature DC

```
In [24]: df["DC"] = df['DC'].map(lambda x: str(x).replace(" ", "")).astype('
```

Converting the type for Feature FWI

```
In [25]: df['FWI'] = df['FWI'].astype('float')
```

Checking Values for Classes Feature

```
In [26]: df['Classes'] = df['Classes'].str.strip()
In [27]: df["Classes"].value_counts()
```

Out[27]: fire 137 not fire 106

Name: Classes, dtype: int64

In [28]: df

Out[28]:

	Temperature	Relative Humidity	Wind- Speed	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Reç
0	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2	not fire	٤ Ab
1	30	73	13	4.0	55.7	2.7	7.8	0.6	2.9	0.2	not fire	٤ Ab
2	29	80	14	2.0	48.7	2.2	7.6	0.3	2.6	0.1	not fire	٤ Ab
3	30	64	14	0.0	79.4	5.2	15.4	2.2	5.6	1.0	not fire	٤ Ab
4	32	60	14	0.2	77.1	6.0	17.6	1.8	6.5	0.9	not fire	٤ Ab
239	31	54	11	0.0	82.0	6.0	16.3	2.5	6.2	1.7	not fire	Вє
240	31	66	11	0.0	85.7	8.3	24.9	4.0	9.0	4.1	fire	Вє
241	32	47	14	0.7	77.5	7.1	8.8	1.8	6.8	0.9	not fire	В€
242	26	80	16	1.8	47.4	2.9	7.7	0.3	3.0	0.1	not fire	В€
243	25	78	14	1.4	45.0	1.9	7.5	0.2	2.4	0.1	not fire	Вє

Statistical Summary of the data

In [29]: df.describe()

Out[29]:

	Temperature	Relative Humidity	Wind- Speed	Rain	FFMC	DMC	D
count	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.00000
mean	32.152263	62.041152	15.493827	0.762963	77.842387	14.680658	49.43086
std	3.628039	14.828160	2.811385	2.003207	14.349641	12.393040	47.66560
min	22.000000	21.000000	6.000000	0.000000	28.600000	0.700000	6.90000
25%	30.000000	52.500000	14.000000	0.000000	71.850000	5.800000	12.35000
50%	32.000000	63.000000	15.000000	0.000000	83.300000	11.300000	33.10000
75%	35.000000	73.500000	17.000000	0.500000	88.300000	20.800000	69.10000
max	42.000000	90.000000	29.000000	16.800000	96.000000	65.900000	220.40000

Making Date as index for the dataframe

Univariate Analysis

Distribution plot for all the numerical Values

```
In [31]: feature_filter = df.columns[(df.dtypes=="int64") | (df.dtypes=='flo
```

```
In [32]: pos=1
               fig = plt.figure(figsize=(13,25))
               for i in feature_filter:
                     ax = fig.add_subplot(8,3,pos)
                     pos = pos + 1
                     sns.distplot(df[i], ax=ax, color="#e39d07")
                                                     0.025
                   0.12
                                                                                         0.15
                   0.10
                 Density
90.0
                                                     0.015
                                                                                         0.10
                                                     0.010
                   0.04
                                                                                         0.05
                                                     0.005
                   0.02
                   0.00
                                                     0.000
                                                                                         0.00
                                  30
                                                              20
                                                                         60
                                                                                                              20
                                                      0.06
                                                                                         0.05
                   2.0
                                                      0.05
                                                                                         0.04
                    1.5
                                                      0.04
                                                                                         0.03
                                                      0.03
                    1.0
                                                                                         0.02
                                                      0.02
                    0.5
                                                      0.01
                                                      0.00
                                                                                         0.00
                    0.0
                                             15
                                      10
                                                            20
                                                                  40
                                                                       60
                                                                             80
                                                                                  100
                                                                                         0.05
                  0.020
                                                      0.15
                                                                                         0.04
                  0.015
                                                                                         0.03
                                                      0.10
                  0.010
                                                                                         0.02
                                                      0.05
                  0.005
                                                                                         0.01
                                                                                         0.00
                  0.000
                                                      0.00
                               50
                                  100 150 200 250
                                                                             15
                      -50
                           Ö
                                                                        10
                                                                                                  Ó
                                                                                                       20
                                                                                                                   60
                                                                                                                        80
                  0.125
                  0.100
                  0.075
                  0.050
                  0.025
                  0.000
```

Box plot distribution for all the numeric features

FWI

```
In [33]: sns.set_style("whitegrid")
  plt.figure(figsize=(16, 8))
  sns.boxplot(data=df)
```

Out[33]: <AxesSubplot:>

Count Matrix of Region wrt Classes

In [34]: pd.crosstab(df['Classes'], df['Region'], normalize=True)*100

Out[34]:

Region	Bejaia	Sidi-Bel Abbes		
Classes				
fire	24.279835	32.098765		
not fire	25.925926	17.695473		

OBSERVATION: There are more fire incidents happened in Sidi-Bel Abbes region as compared to Bejaia region.

Count plot for Classes in dataset

```
In [35]:
sns.countplot(data=df, x="Classes")
```

Out[35]: <AxesSubplot:xlabel='Classes', ylabel='count'>

Bivariate Analysis

Plotting Temperature wrt monthly data

2012-11-30 2012-12-31

```
In [37]: | temp = df['Temperature'].resample('M')
         temp.plot(ylabel = "Temperature (C)", xlabel="Date")
Out[37]: date
         2012-01-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-02-29
         2012-03-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-04-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-05-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-06-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-07-31
         2012-08-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-09-30
         2012-10-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
```

AxesSubplot(0.125,0.2;0.775x0.68)

AxesSubplot(0.125,0.2;0.775x0.68)

Freq: M, Name: Temperature, dtype: object

OBSERVATION: As evident from the above graph, high temprature signs are observed between the month of July and October.

Plotting Rain wrt Monthly data

2012-04-30

AxesSubplot(0.125,0.2;0.775x0.68)

2012-05-31 AxesSubplot(0.125,0.2;0.775x0.68) 2012-06-30 AxesSubplot(0.125,0.2;0.775x0.68)

2012-07-31 AxesSubplot(0.125,0.2;0.775x0.68) 2012-08-31 AxesSubplot(0.125,0.2;0.775x0.68)

2012-09-30 AxesSubplot(0.125,0.2;0.775x0.68) 2012-10-31 AxesSubplot(0.125,0.2;0.775x0.68) 2012-11-30 AxesSubplot(0.125,0.2;0.775x0.68) 2012-12-31 AxesSubplot(0.125,0.2;0.775x0.68)

Freq: M, Name: Rain, dtype: object

OBSERVATION: High rainfall months were June & September.

Wind-Speed wrt monthly data

2012-10-31

2012-11-30 2012-12-31

```
In [39]:
         temp = df['Wind-Speed'].resample('M')
         temp.plot(ylabel = "Wind-Speed (km/h)", xlabel="Date")
Out[39]:
         date
         2012-01-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-02-29
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-03-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-04-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-05-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-06-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-07-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-08-31
         2012-09-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
```

AxesSubplot(0.125,0.2;0.775x0.68) AxesSubplot(0.125,0.2;0.775x0.68)

AxesSubplot(0.125,0.2;0.775x0.68)

Freq: M, Name: Wind-Speed, dtype: object

OBSERVATION: Windspeed was high during the month of October.

Relative Humidity wrt monthly data

```
In [40]: temp = df['Relative Humidity'].resample('M')
temp.plot(ylabel = "Relative Humidity (%)", xlabel="Date")
```

```
Out[40]: date
         2012-01-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-02-29
         2012-03-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-04-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-05-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-06-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-07-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-08-31
         2012-09-30
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-10-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
                        AxesSubplot(0.125,0.2;0.775x0.68)
         2012-11-30
         2012-12-31
                        AxesSubplot(0.125,0.2;0.775x0.68)
         Freq: M, Name: Relative Humidity, dtype: object
```


OBSERVATION: Humidity seems high in the months of August, September & October

Resetting the index

In [41]: df.reset_index(inplace=True)

Correlation Heatmap

In [42]: sns.heatmap(df.corr(), annot=True,fmt='.1f')

Out[42]: <AxesSubplot:>

OBSERVATION: DC & DMC, FWI & DMC, BUI & DC, FWI & ISI AND FWI & BUI are highly correlated.

Temperature Distribution

In [43]: sns.set_style("whitegrid")
sns.displot(data=df, x='Temperature', hue="Classes", kind="kde")

Out[43]: <seaborn.axisgrid.FacetGrid at 0x175214220>

In [44]: sns.set_style("whitegrid")
sns.displot(data=df, x='Temperature', hue="Region", kind="kde")

Out[44]: <seaborn.axisgrid.FacetGrid at 0x17514b3d0>

Rainfall Distribution

In [45]: sns.set_style("whitegrid")
sns.displot(data=df, x='Rain', hue="Classes", kind="kde")

Out[45]: <seaborn.axisgrid.FacetGrid at 0x17545b280>


```
In [46]: sns.set_style("whitegrid")
sns.displot(data=df, x='Rain', hue="Region", kind="kde")
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x17549ca60>

OBSERVATION: Fire incident happened in the low rainfall regions mostly.

Wind-Speed Distribution

In [47]: sns.set_style("whitegrid")
sns.displot(data=df, x='Wind-Speed', hue='Classes', kind="kde")

Out[47]: <seaborn.axisgrid.FacetGrid at 0x17541c250>

In [48]: sns.set_style("whitegrid")
sns.displot(data=df, x='Wind-Speed', hue="Region", kind="kde")

Out[48]: <seaborn.axisgrid.FacetGrid at 0x17554eb00>

OBSERVATION: Fire incident happened in the low rainfall regions mostly.

Relative Humidity Distribution

In [49]: sns.set_style("whitegrid")
 sns.displot(data=df, x='Relative Humidity', hue="Classes", kind="kd")

Out[49]: <seaborn.axisgrid.FacetGrid at 0x17550ace0>


```
In [50]: sns.set_style("whitegrid")
sns.displot(data=df, x='Relative Humidity', hue="Region", kind="kde")
```

Out[50]: <seaborn.axisgrid.FacetGrid at 0x1755cac50>

OBSERVATION: Relative Humidity is generally low in the observations where fire incidents happend.

Scatter Plot between Temperature & Relative Humidity

In [52]: sns.set_style('dark')
sns.scatterplot(data=df, x='Temperature', y='Relative Humidity', hu

Out[52]: <AxesSubplot:xlabel='Temperature', ylabel='Relative Humidity'>

In [53]: plt.figure(figsize=(8, 8))
 sns.regplot(data=df, x='Temperature', y="Relative Humidity", ci=100

Out[53]: <AxesSubplot:xlabel='Temperature', ylabel='Relative Humidity'>

OBSERVATION: There is a negative correlation between Temperature & Relative Humidity.

Scatter Plot between FFMC & Temperature

In [54]: sns.set_style('white')
sns.scatterplot(data=df, x='Temperature', y='FFMC', hue="Classes")

Out[54]: <AxesSubplot:xlabel='Temperature', ylabel='FFMC'>

In [55]: plt.figure(figsize=(8, 8))
 sns.regplot(data=df, x='Temperature', y="FFMC", ci=100, color="#cc7")

Out[55]: <AxesSubplot:xlabel='Temperature', ylabel='FFMC'>

OBSERVATION: Observations with Fire class have higher FFMC values.