Spatiotemporal Modeling of Extreme Events

Samuel Morris (NC State), Brian Reich (NC State), and Dan Cooley (Colorado State)

JSM 2014, Boston

Motivation

- Average behavior is important to understand, but it does not paint the whole picture.
 - e.g. When constructing river levees, engineers need to be able to estimate a 100-year or 1000-year flood levels.
 - ▶ e.g. Probability of exceeding a certain threshold level
- Spatial methods borrow information across space to estimate spatial correlation and make predictions by Kriging at unknown locations.
- ▶ Want to explore similar methods for extremes.

Standard analysis - Block maxima

- Uses yearly maxima
- Discards many observations
- Models are fit using the generalized extreme value distribution
- ► For a spatial analysis, max-stable processes give an appropriate limiting distribution

Standard analysis - Peaks over threshold

- Incorporates more data than block maxima
- ▶ Select a threshold, *T*, and use the Generalized Pareto distribution (GPD) to model the exceedances.
- ► Temporal dependence may be an issue between observations (e.g. flood levels don't dissipate overnight)

Multivariate analysis

- Multivariate max-stable and GPD models have nice features, but they are
 - computationally challenging to work with
 - joint distribution only available in low dimension
- ▶ Pairwise likelihood approach (Huser and Davison, 2014)

Model objectives

- Our objective is to build a model that
 - has marginal distribution with a flexible tail
 - has asymptotic spatial dependence
 - has computation on the order of Gaussian models for large space-time datasets

Thresholding data

- ▶ We threshold the observed data at a high threshold *T*.
- ► Thresholded data:

$$Y_t^*(\mathbf{s}) = \left\{ egin{array}{ll} Y_t(\mathbf{s}) & Y_t(\mathbf{s}) > T \\ T & Y_t(\mathbf{s}) \leq T \end{array} \right.$$

▶ Allows tails of the distribution to speak for themselves.

χ coefficient

- \blacktriangleright The χ coefficient is a measure of extremal dependence
- lacktriangle Specifically, we focus on $\chi(\mathbf{h})$ for the upper tail given by

$$\chi(\mathbf{h}) = \lim_{c \to \infty} \Pr(Y(\mathbf{s}) > c \mid Y(\mathbf{s} + \mathbf{h}) > c)$$

- ▶ If $\chi(\mathbf{h}) = 0$, then observations are asymptotically independent at distance \mathbf{h} .
- We expect $\lim_{\mathbf{h}\to\infty} \chi(\mathbf{h}) = 0$.

Gaussian spatial model

- ▶ In geostatistics $Y(\mathbf{s})$ are often modeled using a Gaussian process with mean function $\mu(\mathbf{s})$ and covariance function $\rho(\mathbf{h})$.
- Model properties:
 - ▶ Nice computing properties (closed-form likelihood)
 - For a Gaussian spatial model $\lim_{c\to\infty} \chi(\mathbf{h}) = 0$ regardless of the strength of the correlation in the bulk of the distribution.
 - ► Tail is not flexible (Gaussian is light tailed)

Spatial skew-t distribution

Assume observed data $Y_t(\mathbf{s})$ come from a skew-t (Zhang and El-Shaarawi, 2012)

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \alpha z_t + v_t(\mathbf{s})$$

where

- $\alpha \in \mathcal{R}$ controls the skewness
- $ightharpoonup z_t \stackrel{iid}{\sim} N_{(0,\infty)}(0,\sigma_t^2)$ is a random effect
- $v_t(\mathbf{s})$ is a Gaussian process with variance σ_t^2 and Matérn correlation

Spatial skew-t distribution

- ▶ Conditioned on z_t and σ_t^2 , $Y_t(\mathbf{s})$ is a Gaussian spatial model
- ▶ Can use standard geostatistical methods to fit this model.
- Predictions can be made through Kriging.
- ▶ Marginalizing over z_t and σ_t^2 (via MCMC),

$$Y_t(\mathbf{s}) \sim \text{skew-t}(\mu, \Sigma^*, \alpha, \text{df} = 2a)$$

where

- $\blacktriangleright \mu$ is the location
- a, b are the IG parameters for σ_t^2
- $\Sigma^* = \frac{b}{a} \Sigma$ is a scale matrix, and Σ is a Matérn covariance matrix
- $\alpha \in \mathcal{R}$ controls the skewness

Spatial skew-t distribution

- Model properties
 - ▶ Has flexible tail controlled by skewness α and degrees of freedom 2a
 - ► For a skew-t distribution $\lim_{c\to\infty} \chi(\mathbf{h}) > 0$ (Padoan, 2011)
 - Computation that is on the order of Gaussian computation
- ▶ For this distribution, $\chi(\mathbf{h})$ shows asymptotic dependence that does not approach 0 as $\mathbf{h} \to \infty$
- ▶ This occurs because all observations (near and far) share the same z_t and σ_t^2 .
- ▶ We deal with this through a daily random partition (similar to Huser and Davison).

Daily random partition

▶ Daily random partition allows z_t and σ_t^2 to vary by site.

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \alpha z_t(\mathbf{s}) + \sigma(\mathbf{s})v_t(\mathbf{s})$$

▶ Consider a set of daily knots $\mathbf{w}_{tk} \sim \text{Uniform that define a}$ random daily partition P_{t1}, \ldots, P_{tK} such that

$$P_{tk} = \{s : k = \arg\min_{\ell} ||\mathbf{s} - \mathbf{w}_{t\ell}||\}$$

▶ For $\mathbf{s} \in P_{tk}$

$$z_t(\mathbf{s}) = z_{tk}$$

 $\sigma_t^2(\mathbf{s}) = \sigma_{tk}^2$

▶ Within each partition $Y_t(\mathbf{s})$ has the same MV skew-t distribution as before.

Example daily partition

Figure: Two sample partitions (number is at partition center)

Simulated $\widehat{\chi}(h)$ plots

Sample simulated datasets

Figure: Gaussian and t with 3 partitions

Sample simulated datasets

Figure: Gaussian and skew-t with 3 partitions

MCMC details

- ► Three main steps:
 - 1. Impute censored data below T
 - 2. Update parameters with standard random walk Metropolis Hastings or Gibbs sampling
 - 3. Make spatial predictions
- Priors are selected to be conjugate when possible.

Data analysis

- ▶ Data analysis uses
 - max 8-hour ozone measurements
 - ▶ 85 sites
 - ▶ 92 days

Figure: Ozone monitoring station locations

Data analysis

Figure: Max 8-hour ozone measurements at 85 sites in NC, SC, and GA for days 5 and 34.

Exploratory data analysis

Figure: $\widehat{\chi}$ -plot for sample quantiles of ozone observations

Model comparisons

- 9 different analysis methods incorporating
 - ▶ Gaussian vs t vs skew-t marginal distribution
 - K = 1 partition vs K = 3 partitions
 - ▶ No thresholding vs thresholding at T = 0.90 sample quantile
- All methods use a Matérn or exponential covariance $(\nu = 0.5)$
- ► Compare quantile and Brier scores using 5-fold cross validation (Gneiting and Raftery, 2007)
- Mean function modeled as

$$\beta_0 + \beta_1 \cdot \text{lat} + \beta_2 \cdot \text{long} + \beta_3 \cdot \text{lat}^2 + \beta_4 \cdot \text{long}^2 + \beta_5 \cdot \text{lat} \cdot \text{long}$$

Quantile score for cross-validation

ightharpoonup The quantile score for the auth quantile is

$$2\{I[y<\widehat{q}(\tau)]-\tau\}(\widehat{q}-y)$$

where:

- ▶ y is a test set value
- $ightharpoonup \widehat{q}(au)$ is the estimated auth quantile

Brier score

ightharpoonup The Brier score for predicting exceedance of threshold c is

$$[e(c) - P(c)]^2$$

where

- ▶ y is a test set value
- $\bullet \ e(c) = I[y > c]$
- ightharpoonup P(c) is the predicted probability of exceeding c

Five-fold cross-validation results

					au		
Marginal	K	T	0.950	0.980	0.990	0.995	0.999
Gaussian	1	0	39.820	17.539	9.167	4.720	1.057
t	1	0	31.008	13.898	7.229	3.405	0.879
t	3	0	31.213	13.920	7.218	3.498	0.918
t	1	0.9	32.221	14.519	7.549	3.604	0.896
t	3	0.9	38.842	16.781	8.434	4.180	1.020
skew-t	1	0	31.845	14.542	7.533	3.645	0.844
skew-t	1	0.9	32.132	14.296	7.484	3.497	0.890
skew-t	3	0	33.653	15.453	8.119	4.338	1.188
skew-t	3	0.9	32.157	14.727	7.794	3.825	0.917

Table: Brier score for predicting exceedance of $c = \hat{q}(\tau)$ from five-fold cross-validation (×1000)

Quantile score results are similar.

Predicted 95th quantile

Figure: Predicted 95th quantile using Gaussian and t

Predicted 95th quantile

Figure: Predicted 95th quantile using t and t thresholded at T = 0.9

Predicted 99th quantile

Figure: Predicted 99th quantile using Gaussian and t

Predicted 99th quantile

Figure: Predicted 99th quantile using t and t thresholded at T = 0.9

Probability of exceedance

Figure: Probability of exceeding the 75 ppb ozone standard using Gaussian and *t*

Probability of exceedance

Figure: Probability of exceeding the 75 ppb ozone standard using t and t thresholded at T=0.9

Simulation study

- ▶ 6 different data settings:
 - ► Gaussian vs t vs skew-t marginal distribution
 - K = 1 partition vs K = 5 partitions
- Preliminary results suggest that there may be a modest improvement in quantile scores from thresholding when the data come from a t distribution with K=5 partitions

Future Work

- ▶ Different ways to incorporate the temporal dependence
 - ► Three dimensional covariance model for $v_t(\mathbf{s})$ (e.g. Huser and Davison, 2014)
 - Use a temporal structure for $z_t(\mathbf{s})$:
 - ► AR(1)
 - Moving average
 - Association between $\mathbf{w}_{t,k}$ and $\mathbf{w}_{t+1,k}$
- Comparison with extreme value analysis methods

Questions

- ▶ Questions?
- ▶ Thank you for your attention.
- Acknowledgment: This work was funded by EPA STAR award R835228

References

- ▶ Demarta, S. and McNeil, A. J. (2007) The t copula and related copulas. *International Statistical Review*, 73, 111–129.
- ▶ Huser, R. and Davison, A. C. (2014) Space-time modelling of extreme events. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), **76**, 439–461.
- ▶ Padoan, S. A. (2011) Multivariate extreme models based on underlying skew-t and skew-normal distributions. *Journal of Multivariate Analysis*, **102**, 977–991.
- ► Zhang, H. and El-Shaarawi, A. (2010) On spatial skew-Gaussian processes and applications. *Environmetrics*, **21**, 33–47.

