RESOLUÇÃO DO PRODUTO VETORIAL

Determinar a incógnita \vec{x} do produto vetorial:

$$\vec{x} \wedge \vec{a} = \vec{b} \tag{1}$$

com \vec{x} , \vec{a} e $\vec{b} \in \vec{V}$; onde \vec{V} é um espaço vetorial de ordem 3 (3 dimensões).

Considerando: $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ e $\vec{a} \cdot \vec{b} = 0$ (portanto perpendiculares e contidos no plano π mostrado na figura), tem-se pela definição de produto vetorial que $\vec{x} \perp \vec{b}$.

Pode-se representar $\vec{x} = (E - O)$ como a soma de dois vetores: um na direção de \vec{a} e outro perpendicular a \vec{a} (e ortogonal a \vec{b} , como já estabelecido):

$$\vec{x} = \rho \vec{a} \wedge \vec{b} + \lambda \vec{a}$$
, (2) com $\lambda \in \rho \in \Re$.

Assim, substituindo na equação (1) tem-se que:

$$(\rho \ \vec{a} \wedge \vec{b} + \lambda \vec{a}) \wedge \vec{a} = \vec{b}$$
 portanto:
 $(\rho \ \vec{a} \wedge \vec{b}) \wedge \vec{a} = \vec{b}$ (3)

Tomando o módulo dos termos da equação 3 e como os vetores são perpendiculares, obtêmse:

$$|\rho| \cdot |\vec{a}| \cdot |\vec{b}| \cdot |\vec{a}| = |\vec{b}| \qquad \Rightarrow \qquad \rho = \pm \frac{1}{|\vec{a}|^2}$$

Verificando, a solução corresponde ao valor positivo de ρ , obtêm-se finalmente da equação 2:

$$\vec{x} = \frac{\vec{a} \wedge \vec{b}}{|\vec{a}|^2} + \lambda \vec{a} \quad \text{com } \lambda \text{ qualquer } \in \Re$$

que são as soluções da equação do produto vetorial com uma incógnita em \vec{x} . Tal solução correspondente à reta $\lambda \vec{a}$ (linha pontilhada mostrada na figura) que passa pelo ponto E. Note ainda que a solução particular quando $\lambda = 0$, resulta em $\vec{x} \perp \vec{a}$.