

FIGURE 1



FIGURE 2



FIGURE 3



FIGURE 4



FIGURE 5



FIGURE 6



FIGURE 7





Effect of PABLO transfection on neuronal and non-neuronal cells

OGN cultures 34 hr. post-fransfection

FIGURE 8



FIGURE 9

Figure 10: Bclxl (ΔTM)/pAS2-1

Bclxl/pAS2-1

| Bclx1/pAS2-1        |            |            |            |              |            |
|---------------------|------------|------------|------------|--------------|------------|
|                     | 10         | 20         | 30         | 40           | 50         |
| 19 Bclxl/pAS2-      | CAGCTTTGAC | TCATATGAAA | ATGTCTCAGA | GCAACCGGGA   | GCTGGTGGTT |
| _                   | 60         | 70         | 80         | 90           | 100        |
| 19 Bclxl/pAS2-      | GACTTTCTCT | CCTACAAGCT | TTCCCAGAAA | GGATACAGCT   | GGAGTCAGTT |
|                     | 110        | 120        | 130        | 140          | 150        |
| 19 Bclxl/pAS2-      | TAGTGATGTG | GAAGAGAACA | GGACTGAGGC | CCCAGAAGGG   | ACTGAATCGG |
| -                   | 160        | 170        | 180        | 190          | 200        |
| 19 Bclxl/pAS2-      | AGATGGAGAC | CCCCAGTGCC | ATCAATGGCA | ACCCATCCTG   | GCACCTGGCA |
|                     | 210        | 220        | 230        | 240          | 250        |
| 19 Bclx1/pAS2-      | GACAGCCCCG | CGGTGAATGG | AGCCACTGGC | CACAGCAGCA   | GTTTGGATGC |
| _                   | 260        | 270        | 280        | 290          | 300        |
| 19 Bclx1/pAS2-<br>1 | CCGGGAGGTG | ATCCCCATGG | CAGCAGTAAA | GCAAGCGCTG   | AGGGAGGCAG |
| 1                   | 310        | 320        | 330        | 340          | 350        |
| 19 Bclxl/pAS2-      | GCGACGAGTT | TGAACTGCGG | TACCGGCGGG | CATTCAGTGA   | CCTGACATCC |
| -                   | 360        | 370        | 380        | 390          | 400        |
| 19 Bclxl/pAS2-<br>1 | CAGCTCCACA | TCACCCCAGG | GACAGCATAT | CAGAGCTTTG   | AACAGGTAGT |
| _                   | 410        | 420        | 430        | 440          | 450        |
| 19 Bclxl/pAS2-<br>1 | GAATGAACTC | TTCCGGGATG | GGGTAAACTG | GGGTCGCATT   | GTGGCCTTTT |
|                     | 460        | 470        | 480        | 490          | 500        |
| 19 Bclxl/pAS2-      | TCTCCTTCGG | CGGGGCACTG | TGCGTGGAAA | GCGTAGACAA   | GGAGATGCAG |
|                     | 510        | 520        | 530        | 540          | 550        |
| 19 Bclx1/pAS2-<br>1 | GTATTGGTGA | GTCGGATCGC | AGCTTGGATG | GCCACTTACC   | GGAATGACCA |
|                     | 560        | 570        | 580        | 590,         | 600        |
| 19 Bclxl/pAS2-<br>1 | CCTAGAGCCT | TGGATCCAGG | AGAACGGCGG | CTGGGATACT   | TTTGTGGAAC |
|                     | 610        | 620        | 630        | 640          | 650        |
| 19 Bclxl/pAS2-<br>1 | TCTATGGGAA | CAATGCAGCA | GCCGAGAGCC | GAAAGGGCCA   | GGAACGCTTC |
| _                   | 660        | 670        | 680        | 690          | 700        |
| 19 Bclxl/pAS2-<br>1 | AACCGCTGAG | TCGACCTGCA | GCCAAGCTAA | TTCCGGGCGA   | ATTTCTTATG |
| _                   | 710        | 720        | 730        | 740          | 750        |
| 19 Bclx1/pAS2-<br>1 | ATTTATGATT | TTTATTATTA | AATAAGTTAT | АААААААТА    | AGTGTAT    |
|                     |            |            |            | <del> </del> |            |

Figure 11: Amino Acid Sequence of Bclxl (TM) Used As Bait In Yeast 2-Hybrid Screen.

|    | 70<br>140<br>210                                                                                                                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | VNGATA<br>VNWGRI<br>KGQERF                                                                                                                                                             |
| 09 | SWHLADSPA<br>VVNELFRDG<br>GNNAAAESR                                                                                                                                                    |
| 50 | ETPSAINGNP<br>PGTAYQSFEQ<br>GGWDTFVELY                                                                                                                                                 |
| 40 | LSYKLSQKGYSWSQFSDVEENRTEAPEGTESEMETPSAINGNPSWHLADSPAVNGATA<br>MAAVKQALREAGDEFELRYRRAFSDLTSQLHITPGTAYQSFEQVVNELFRDGVNWGRI<br>ESVDKEMQVLVSRIAAWMATYLNDHLEPWIQENGGWDTFVELYGNNAAAESRKGQERF |
| 30 | SQFSDVEENRT<br>DEFELRYRRAE<br>RIAAWMATYLN                                                                                                                                              |
| 20 | KLSQKGYSWS<br>VKQALREAGI<br>DKEMQVLVSF                                                                                                                                                 |
| 10 | MSQSNRELVVDFLSY<br>HSSSLDAREVIPMAA<br>VAFFSFGGALCVESV<br>NR 212                                                                                                                        |

Figure 12: Nucleotide Sequence of Pablo  $\triangle 142$ 

| 10                                                                                                                                                                                                             |                                         | 20                                                                 | 30                                                                                                                                                                     | 40                                                                                | 20                                                                                | 09                                                                                                                                                                                                                                      | 70                                                       |                                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|-----|
| atgccgctagtgaaaagaaacatcgatcctaggcactt<br>atgaactggaatgtgtaaccaatatttccttggcaaat<br>tgctgaagatatatttggagaattattcaatgaagcac<br>gaacgtgtggaccgtttatctgttagtgttacacagct<br>atataacaatgaggaaagctttccgaagttctacaatt | gaaaag<br>tgtgtgt<br>tatttg<br>ccgttt   | gaaacatcgaaacattggaagaattattattattactgttac                         | cgatcctaggcacttgtgccacacagcact<br>atttccttggcaaatataattagacaacta<br>tattcaatgaagcacatagtttttccttca<br>tagtgttacacagcttgatccaaaggaaga<br>cgaagttctacaattcaagaccagcagctt | cacttgtgccaca<br>caaatataattag<br>agcacatagtttt<br>cagcttgatccaa<br>caattcaagacca | gtgccacacagcactgatataataattagcactaaattagtttttccttcag                              | cctag<br>gtagc<br>agtca<br>gaatt<br>tcgat                                                                                                                                                                                               | aggcattaaga<br>ctaagtaaata<br>actcattgcaa<br>gtctttgcaag | 70<br>140<br>210<br>280<br>350   |     |
| 360                                                                                                                                                                                                            |                                         | 370                                                                | 380                                                                                                                                                                    | 390                                                                               | 400                                                                               | 410                                                                                                                                                                                                                                     | 420                                                      |                                  | . • |
| gcctattccattacaggagacgtacgatgtttgtgaacagcctccacctctcaatatactcactc                                                                                                                                              | tacage<br>gtaaage<br>ggatace<br>gaaaaae | gagacgtacc<br>aaggtctgac<br>agaggataac<br>gtgccaagac<br>atgatgctaa | gatgtttgtgaac<br>agttttataccaa<br>gaggaaggaaaag<br>gcacctcatgaca<br>atctcttacataa                                                                                      | aacagcctcc<br>caatccttcc<br>aagaggaagc<br>acaggcggcg<br>taagcatatt                | ctccacctctcaa<br>ttcgtatttcttt<br>aagcagaagcaga<br>ggcgagaatggca<br>tattgaagttgct | cagcctccacctctcaatatactcactccttat<br>atccttcgtatttctttgatctatggaaagaaa<br>gaggaagcagaaaaatctagatcgtcc<br>aggcggcgagaatggcagaagctggcccaaggt<br>agcatattgaagttgctaatggcccagcctct                                                          | ccttat<br>aagaaa<br>tcgtcc<br>caaggt<br>cctctc           | 420<br>490<br>560<br>630         |     |
| 710                                                                                                                                                                                                            |                                         | 720                                                                | 730                                                                                                                                                                    | 740                                                                               | 750                                                                               | 760                                                                                                                                                                                                                                     | 770                                                      |                                  |     |
| attttgaaacaagacctcagacatacgtggatcatatggatgg                                                                                                                                                                    | aggacc<br>agtgag<br>gcatg<br>cotca      | tcagacatas<br>cttctgacts<br>gagcaggags<br>gtcaccagct               | tacgtggatcatat<br>ctagagctgaggaa<br>agatgcaaaaccga<br>gctacaggcagaac<br>tgtcaacttcctca                                                                                 | atggatggatct<br>aaagggtattag<br>gatacccacctg<br>acacctgtgttt<br>cattaagagctt      | cottactcac<br>cagtcagacc<br>ctgtatcagt<br>cttgtgagcc                              | tacgtggatcatatggatggatcttactcactttctgccttgccatt ctagagctgaaagggtattagtcagaccacatgaaccacctcca agatgcaaaaaccgataccacctgtatcagttctgctacaggtttga gctacaggcagaacacctgtttgtgagccccactccccacctcc tgtcaacttcctcattaagagcttcaatgacttcaactcccccct | cttgccatt<br>ccacctcca<br>caggtttga<br>cccacctcc         | 770<br>840<br>910<br>980<br>1050 |     |
| 1060                                                                                                                                                                                                           | 0                                       | 1070                                                               | 1080                                                                                                                                                                   | 1090                                                                              | 1100                                                                              | 1110                                                                                                                                                                                                                                    | 1120                                                     |                                  |     |
| ccagtacctccccacctccacc<br>ctcttcagattgcccctggagtt<br>tccaccagtagctagagctgccc                                                                                                                                   | cccac<br>gcccc<br>yctaga                | ctccacctco<br>tggagttct<br>gctgcccca                               | tccagccactgctttgcaagct<br>cttcacccagctcctcctcaa<br>cagtatgtgagactgtaccagt                                                                                              | tttgcaagct<br>cctcctccaa<br>ctgtaccagt                                            | ccagcagta<br>attgcacctc<br>ttcatccact                                             | tecagecactgetttgeaagetecageagtaceaceaectecagetecteaececeaectecagetectecaececeaectececececececececececece                                                                                                                                | cagete<br>gecete<br>1254                                 | 1120                             |     |

Figure 13: Amino Acid Sequence of Pablo  $\Delta 142$ 

|        | 10          | 20         | 30        | 40     |     |  |
|--------|-------------|------------|-----------|--------|-----|--|
| MPLVKR | NIDPRHLCH   | TALPRGIKNE | LECVTNISL | ANIIRQ | 40  |  |
| LSSLSK | YAEDIFGEL   | FNEAHSFSFR | VNSLQERVD | RLSVSV | 80  |  |
| TQLDPK | EEELSLQDI   | TMRKAFRSST | IQDQQLFDR | KTLPIP | 120 |  |
| LQETYD | VCEQPPPLN   | ILTPYRDDGK | EGLKFYTNP | SYFFDL | 160 |  |
| WKEKML | QDTEDKRKE   | KRKQKQKNLD | RPHEPEKVP | RAPHDR | 200 |  |
|        | 210         | 220        | 230       | 240    |     |  |
| RREWOK | LAOGPELAE   | DDANLLHKHI | EVANGPASH | FETRPQ | 240 |  |
|        | <del></del> | PFSQMSELLT |           |        | 280 |  |
| PPPMHG | AGDAKPIPT   | CISSATGLIE | NRPQSPATG | RTPVFV | 320 |  |
| SPTPPP | PPPPLPSAL   | STSSLRASMT | STPPPPVPP | PPPPPA | 360 |  |
| TALQAP | AVPPPPAPL   | QIAPGVLHPA | PPPIAPPLV | QPSPPV | 400 |  |
|        | 410         | 420        | 430       | 440    |     |  |

ARAAPVCETVPVHPLPQG 418