This is a collection of old real analysis qualifier exam solutions.

August 2019

Problem 1

Problem: Let \mathcal{C} be the Cantor set on [0,1].

- (a) Show that C + C = [0, 2].
- (b) Find two sets $A, B \subseteq \mathbb{R}$ that are closed and have Lebesgue measure zero such that $A + B = \mathbb{R}$.
- (a) Recall that the Cantor set \mathcal{C} is defined to consist of all $x \in [0,1]$ such that x only contains 0 and 2 in the ternary expansion of x. Writing $a \in [0,2]$ as

$$a = \sum_{k=0}^{\infty} \frac{a_k}{3^k},$$

where $a_k \in \{0,1,2\}$, we may then find a_k at each ternary expansion slot for k as follows:

- if $a_k = 0$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = c_k = 0$
- if $a_k = 2$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = 2$ and $c_k = 0$ or vice versa.
- if $a_k = 1$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_{k+1} = c_{k+1} = 2$.

Therefore, since every digit of every ternary expansion in [0,2] can be obtained from \mathbb{C} , we see that $\mathbb{C} + \mathbb{C} = [0,2]$.

(b) We may set B to be the union of all integer translates of C, and set A = C. This yields closed subsets of \mathbb{R} with Lebesgue measure zero that sum to \mathbb{R} .

Problem 2

Problem: Does there exist a finite measure space (X, \mathcal{F}, μ) and a sequence $(f_n)_n$ of μ -measurable functions such that

- $f_n(x) \ge 0$;
- $f_n(x) \rightarrow 0$ for all x;
- $\int_{\mathbf{X}} f_{\mathbf{n}}(\mathbf{x}) d\mu(\mathbf{x}) \to 0 \text{ as } \mathbf{n} \to \infty;$
- $\Phi(x) = \sup_{n} f_{n}(x)$ has infinite integral?

Consider the sequence of functions

$$f_n(x) = n \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}$$

defined on [0,1]. This sequence is pointwise convergent everywhere to zero, as $f_n(0) = 0$ and the Archimedean property give that for any $x \in (0,1]$, there is some n large enough that gives $\frac{1}{n} < x$. Furthermore, we see that

$$\int f_n d\mu = n \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
$$= \frac{1}{n+1}$$
$$\to 0.$$

Finally, we see that by taking suprema, we have the integral

$$\int \Phi \ d\mu = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

Problem: Let $L_1(\mathbb{R})$ be the space of Lebesgue integrable functions on \mathbb{R} . Suppose $f \in L_1(\mathbb{R})$ is positive. Show that $\frac{1}{f(x)} \notin L_1(\mathbb{R})$.

Suppose toward contradiction that both f and 1/f are in $L_1(\mathbb{R})$. Then, from Hölder's Inequality, we have

$$\infty = \int 1 d\mu$$

$$\leq \left(\int f d\mu \right)^{1/2} \left(\int \frac{1}{f} d\mu \right)^{1/2}$$

$$< \infty,$$

which is a contradiction.

Problem 5

Problem: Applying the Gram–Schmidt orthogonalization to $\{1, x, x^2, ...\}$ in the Hilbert space $L_2([-1, 1])$ with Lebesgue measure, one gets the Legendre polynomials $L_n(x)$.

- (a) Show that the Legendre polynomials form a basis (complete orthogonal system) in the Hilbert space $L_2([-1,1])$.
- (b) Show that the Legendre polynomials are given by the formula $L_n(x) = c_n \frac{d^n}{dx^n} (x^2 1)^n$.
- (a) Let $f \in L_2([-1,1])$. We may find $g \in C([-1,1])$ such that $\|f-g\|_{L_2} < \varepsilon/2$. Similarly, we may find a polynomial p such that $\|g-p\|_{\mathfrak{U}} < \varepsilon/4$, meaning that $|p(x)-g(x)| < \varepsilon/4$ for all $x \in [-1,1]$. This yields

$$\|\mathbf{p} - \mathbf{g}\|_{L_2} = \left(\int_{-1}^{1} |\mathbf{p}(\mathbf{x}) - \mathbf{g}(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2}$$

$$< \left(\int_{-1}^{1} \left(\frac{\varepsilon}{4}\right)^2 d\mathbf{x}\right)^{1/2}$$

$$= \left(\frac{\varepsilon^2}{8}\right)^{1/2}$$

$$< \frac{\varepsilon}{2},$$

so $\|f - p\|_{L_2} < \varepsilon$, meaning that the closed linear span of the monomials is dense in L_2 , and the Legendre polynomials form an orthonormal system.

(b) We see that at every step in evaluating the expression

$$L_n(x) = c_n \frac{d^n}{dx^n} \left(x^2 - 1\right)^n, \tag{*}$$

the degree of the polynomial increases by 1, so each $L_n(x)$ has degree n. To verify that the polynomials generated from (*) are orthogonal to each other, we let n>m without loss of generality, and use integration by parts to obtain

$$\begin{split} \langle L_n, L_m \rangle &= \int_{-1}^1 \biggl(\frac{d^n}{dx^n} \Bigl(x^2 - 1 \Bigr)^n \biggr) \biggl(\frac{d^m}{dx^m} \Bigl(x^2 - 1 \Bigr)^m \biggr) \, dx \\ &= \frac{d^{n-1}}{dx^{n-1}} \Bigl(x^2 - 1 \Bigr)^n \frac{d^m}{dx^m} \Bigl(x^2 - 1 \Bigr)^m \biggr|_{-1}^1 - \int_{-1}^1 \frac{d^{n-1}}{dx^{n-1}} \Bigl(x^2 - 1 \Bigr)^n \frac{d^{m+1}}{dx^{m+1}} \Bigl(x^2 - 1 \Bigr)^m \, dx \end{split}$$

:

$$= (-1)^{n} \int_{-1}^{1} \frac{d^{m+n}}{dx^{m+n}} \left(x^{2} - 1\right)^{m} dx$$

$$= (-1)^{n} \int_{-1}^{1} \frac{d^{n}}{dx^{n}} \left(\frac{d^{m}}{dx^{m}} \left(x^{2} - 1\right)^{m}\right) dx$$

$$= (-1)^{n} \int \frac{d^{n}}{dx^{n}} L_{m}(x) dx$$

$$= 0,$$

seeing as we are taking n derivatives of a degree m < n polynomial.

January 2020

Problem 1

Problem: Let μ be the Lebesgue measure on \mathbb{R} , and let $A \subseteq [0,1]$ be Lebesgue-measurable.

(a) Prove or show a counterexample to the assertion that

$$\mu(A) = \sup_{\substack{U \subseteq A \\ U \text{ open}}} \mu(U).$$

(b) Prove or show a counterexample to the assertion that

$$\mu(A) = \inf_{\substack{A \subseteq U \\ U \text{ open}}} \mu(U).$$

(a) This is false. If $A \subseteq [0,1]$ is the "fat Cantor set" constructed similar to the traditional Cantor, but obtained by deleting the middle fourth of each subinterval rather than the middle third, then $\mu(A) = \frac{1}{2}$, but A is nowhere dense, meaning that if $U \subseteq A$ is open, then $U = \emptyset$.

To see that A is nowhere dense, we see that A is closed, so if $x \in A \subseteq [0,1]$, and $\varepsilon > 0$, we may show that the interval $(x - \varepsilon, x + \varepsilon)$ is not contained in A. In the recursive construction of A, we may see that there is some step n_1 such that $\frac{1}{4^{n_1}} < 2\varepsilon$, implying that $(x - \varepsilon, x + \varepsilon)$ is not contained in the recursive construction at n_1 . Therefore $A^\circ = \emptyset$.

(b) This is true. By the definition of the Lebesgue outer measure, for any $\epsilon>0$, there are $\{(a_k,b_k)\}_{k=1}^\infty$ such that

$$\mu(A) + \varepsilon < \mu \left(\bigcup_{k=1}^{\infty} (a_k, b_k) \right),$$

so by setting

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k),$$

we have that U is open, meaning that by the definition of infimum, we get

$$\mu(A)=\inf\bigl\{U\ \big|\ A\subseteq U, U\ open\bigr\}.$$

Remark: Part (a) can be solved by selecting $A = \mathbb{R} \setminus \mathbb{Q} \cap [0, 1]$.

Problem: Let X be a compact metric space, C(X) the space of real-valued continuous functions on X with the supremum norm. Assume that $A \subseteq C(X)$ satisfies

- (algebra) for all $f, g \in A$, $\alpha, \beta \in \mathbb{R}$, we have $\alpha f + \beta g \in A$ and $fg \in A$;
- (separates points) for any $x \neq y$ in X, there exists $f \in A$ such that $f(x) \neq f(y)$.
- (a) Show by example that A need not be dense in C(X).
- (b) In order to conclude that A is dense by the Stone–Weierstrass Theorem, what additional condition(s) should be added.
- (a) Consider the algebra of polynomials on [0,1] without a constant term. Then, since linear combinations and multiplications still yield polynomials without constant term, and f(x) = x separates points in [0,1], this algebra satisfies the requirements of the question. Yet, since all elements of this algebra are equal to zero at x = 0, the uniform closure of the algebra yields all the continuous functions on [0,1] with f(0) = 0.
- (b) In order to satisfy the requirements of the Stone–Weierstrass theorem, we need the algebra A to include the constant functions.

Problem 4

Problem: Let μ be a measure on $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the Borel σ -algebra. Let $\mu(\mathbb{R})=1$. Next, let $\mathcal{F}\subseteq \mathcal{B}$ be the sub- σ -algebra generated by symmetric intervals.

Let $f \in L_1(\mathbb{R}, \mathcal{B}, \mu)$. Find a function g such that:

- $g \in L_1(\mathbb{R}, \mathcal{F}, \mu)$ (in particular, g is \mathcal{F} -measurable);
- for all $E \in \mathcal{F}$, $\int_{E} g d\mu = \int_{E} f d\mu$.

We consider the signed measure on \mathcal{F} defined by

$$\nu(E) = \int_{E} f \, d\mu,$$

meaning that $\nu \ll \mu$, so the function $g \coloneqq \frac{d\nu}{d\mu}$, where $\frac{d\nu}{d\mu}$ denotes the Radon–Nikodym derivative of ν with respect to μ (where we restrict μ to $\mathcal F$), is $\mathcal F$ -measurable (by Radon–Nikodym) and in $L_1(\mathbb R,\mathcal F,\mu)$. This gives, for all $E \in \mathcal F$,

$$\begin{split} \int_E g \; d\mu &= \int_E \frac{d\nu}{d\mu} \; d\mu \\ &= \int_E \; d\nu \\ &= \nu(E) \\ &= \int_E f \; d\mu. \end{split}$$

Problem 5

Problem: Let μ be a finite measure on (X, \mathcal{F}) . Show that a sequence of \mathcal{F} -measurable functions $(f_n)_n$ converges to f in measure if and only if

$$\int_X \min\{1,|f_n-f|\}\ d\mu(x)\to 0.$$

Let $M = \mu(X)$.

Let $(f_n)_n \to f$ in measure, and let $\varepsilon > 0$. If we let

A =
$$\{x \mid |f_n(x) - f(x)| > \varepsilon/2M\}$$

B = $\{x \mid |f_n(x) - f(x)| \le \varepsilon/2M\}$,

we have

$$\begin{split} \int_X \min(1,|f_n-f|) \; d\mu &= \int_A \min(1,|f_n-f|) \; d\mu + \int_B \min(1,|f_n-f|) \; d\mu \\ &\leq \mu(A) + \epsilon/2 \\ &< \epsilon/2 + \epsilon/2 \\ &= \epsilon. \end{split}$$

Meanwhile, if

$$\int_X \min(1, |f_n - f|) d\mu \to 0,$$

then by Chebyshev's Inequality, we have, for a fixed $0 < \varepsilon \le 1$,

$$\mu(\lbrace x \mid |f_n - f| \ge \varepsilon \rbrace) = \mu(\lbrace x \mid \min(1, |f_n - f|) \ge \varepsilon \rbrace)$$

$$\le \frac{1}{\varepsilon} \int_X \min(1, |f_n - f|) d\mu$$

$$\to 0,$$

so $(f_n)_n \to f$ in measure.

August 2020

Problem 1

Problem: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and almost everywhere differentiable such that f'(x) = 1 almost everywhere. Does this imply that f(2) - f(1) = 1?

This is false. To see this, let $\mathfrak{C}(x)$ denote the Cantor–Lebesgue function, and let

$$h(x) = \sum_{n=-\infty}^{\infty} \mathfrak{C}(x-n) + n.$$

Then, since $\mathfrak{C}(x)$ has derivative zero almost everywhere, the sum of a number of translates of $\mathfrak{C}(x)$ still has derivative zero almost everywhere. Then, setting

$$f(x) = h(x) + x,$$

we get that f(x) has derivative equal to 1 almost everywhere. However, at the same time, f(2) - f(1) = 2.

Problem 2

Problem: Prove or provide a counterexample to the assertion that every open set in \mathbb{R}^2 is a countable union of closed sets.

We show the inverse problem, which is that every closed set in \mathbb{R}^2 is G_δ . To do this, we let $A \subseteq \mathbb{R}^2$ be closed, nonempty, and proper (if $A = \emptyset$ or $A = \mathbb{R}^2$ the answer is trivial).

Then, there is some $x \in A^c$, and specifically there is $x \in A^c$ with rational coordinates (else, select $y \in \mathbb{Q}^2$ within the ball of radius ε that allows A^c to be open). Furthermore, since \mathbb{R}^2 is a metric space, \mathbb{R}^2 is regular, so there are open U_x and V_x such that $A \subseteq U_x$, $x \in V_x$, and $U_x \cap V_x = \emptyset$.

Therefore, we get

$$A = \bigcap \{ U_x \mid x \in \mathbb{Q}^2 \setminus A \},\,$$

meaning that A is G_{δ} . Taking complements, we thus get that every open set is F_{σ} .

Problem 3

Problem: Let \mathcal{H} be a separable complex Hilbert space with basis $(f_n)_n$. Define $P(f_n) = f_{n+1}$.

- (a) Find P*, the adjoint to P.
- (b) Find PP* and P*P.
- (a) We see that

$$\langle \mathsf{Pf}_{\mathsf{i}}, \mathsf{f}_{\mathsf{j}} \rangle = \delta_{\mathsf{i}+1,\mathsf{j}}$$

$$= \delta_{\mathsf{i},\mathsf{j}-1}$$

$$= \langle \mathsf{f}_{\mathsf{i}}, \mathsf{f}_{\mathsf{j}-1} \rangle$$

$$= \langle \mathsf{f}_{\mathsf{i}}, \mathsf{P}^*\mathsf{f}_{\mathsf{j}} \rangle,$$

so that $Pf_n = f_{n-1}$ if n > 1. Else, if n = 1, then $P^*f_n = 0$.

(b) We see that, acting on the orthonormal basis $(f_n)_n$, $P^*P(f_n) = f_n$, and

$$PP^*(f_n) = \begin{cases} 0 & n = 1\\ 1 & else, \end{cases}$$

so that $P^*P = I$ and PP^* is as above.

Problem 4

Problem: Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$. Let $f_n : X \to \mathbb{R}$ be measurable functions such that

$$\lim_{n\to\infty}\mu(\{x\mid f_n(x)\leqslant t\})=\begin{cases} 0 & t<0\\ 1 & t\geqslant 0 \end{cases}.$$

Show that $f_n \to 0$ in measure.

We see that

$$\mu(\{x \mid f_n(x) > t\}) = \mu(X) - \mu(\{x \mid f_n(x) \leqslant t\}),$$

so by taking limits, we find that

$$\lim_{n\to\infty}\mu(\{x\mid f_n(x)>t\})=\begin{cases} 1 & t<0\\ 0 & t\geqslant 0 \end{cases}.$$

So, if $\varepsilon > 0$, then

$$\begin{split} \mu(\{x\mid |f_{n}(x)|>\epsilon\}) &= \mu(\{x\mid f_{n}(x)<-\epsilon\}) + \mu(\{x\mid f_{n}(x)>\epsilon\})\\ &\leqslant \mu(\{x\mid f_{n}(x)\leqslant -\epsilon\}) + \mu(\{x\mid f_{n}(x)>\epsilon\})\\ &\to 0. \end{split}$$

January 2021

Problem 1

Problem: Let $(f_n)_n$, f be measurable functions on $(\Omega, \mathcal{F}, \mu)$ such that $f_n \to f$ in measure. Does this imply that there exists a measurable set $A \subseteq \Omega$ with $\mu(\Omega \setminus A) = 0$ such that $f_n(x) \to f(x)$ for all $x \in A$.

This is not true. To see this, consider the family of functions defined by

$$\begin{split} f_1 &= \mathbb{1}_{[0,1]} \\ f_2 &= \mathbb{1}_{[0,1/2]} \\ f_3 &= \mathbb{1}_{[1/2,1]} \\ &\vdots \end{split}$$

where f_n is of width $\frac{1}{2^k}$ when $2^k \le n < 2^{k+1}$, moving along [0,1]. Then, since $\mu(\{x \mid |f_n(x)| > 0\}) = \frac{1}{2^k}$, we have that for any $\epsilon > 0$, $(\mu(\{x \mid |f_n(x)| > \epsilon\}))_n \le (\mu(A_n))_n$, where we have defined A_n to be the particular set with width $\frac{1}{2^k}$ when $2^k \le n \le 2^{k+1}$. Yet, since for any $x \in [0,1]$ there are infinitely many such n such that $f_n(x) = 1$, the family $(f_n)_n$ does not converge to 0 pointwise anywhere on [0,1].

Problem 2

Problem: Let B be a measurable subset of the two-dimensional plane such that the intersection of B with every vertical line is either finite or countable. Find $\mu(B)$, where μ is the two-dimensional Lebesgue measure.

Note that the two-dimensional Lebesgue measure is the completion of $\mathfrak{m} \times \mathfrak{m}$, where $\mathfrak{m} \times \mathfrak{m}$ is the product measure on the product σ -algebra $\mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R})$. If $B \in \mathcal{L}(\mathbb{R}^2)$, then $B = C \cup N$, where N is a μ -null set and $C \in \mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R})$. Therefore, if we show that $(\mathfrak{m} \times \mathfrak{m})(C) = 0$, we then show that $\mu(B) = 0$.

To see that $(m \times m)(\mathbb{C}) = 0$, note that by our assumption, $B^x = \{y \in \mathbb{R} \mid (x,y) \in B\}$ is either finite or countable, so since $C^x \subseteq B^x$, we must have that C^x is either finite or countable. By Tonelli's Theorem, since $\mathbb{1}_C$ is positive, we have

$$\int_{\mathbb{R}^2} \mathbb{1}_C d(m \times m) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_{C^{\times}} dy dx$$
$$= \int_{\mathbb{R}} m(C^{\times}) dx$$
$$= 0,$$

so $(m \times m)(C^x) = 0$, meaning

$$\mu(B) = \mu(C) + \mu(N)$$
$$= (m \times m)(C) + \mu(N)$$
$$= 0.$$

Problem 3

Problem: Let (Ω, \mathcal{F}) be a measurable space, μ, ν, ρ finite positive measures with $\mu \ll \nu$. Show that there exists a measurable function f on Ω such that for all $E \in \mathcal{F}$,

$$\mu(E) = \int_E f \ d\nu + \int_E (f-1) \ d\rho.$$

Since $\mu \ll \nu$, and $\rho \ll \rho$, we have $\mu + \rho \ll \nu + \rho$, as $(\nu + \rho)(E) = 0$ if and only if $\nu(E) = 0$ and $\rho(E) = 0$, meaning that $\mu(E) = 0$ and $\rho(E) = 0$, so by Radon–Nikodym, there is some measurable f such that

$$\mu(E) + \rho(E) = \int_{E} f d(\nu + \rho),$$

so by rearranging, we get

$$\mu(E) = \int_{E} f \, d\nu + \int_{E} (f - 1) \, d\rho.$$

Problem 4

Problem: Let f, g be nonnegative measurable functions on [0,1], and let a, b, c, d $\geqslant 0$ be arbitrary nonnegative numbers. Show that

$$\left(ac + bd + \int_0^1 f(x)g(x) dx\right)^3 \le \left(a^3 + b^3 + \int_0^1 (f(x))^3 dx\right) \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} dx\right)^2.$$

Since all of f, g, a, b, c, d are positive, we may show

$$ac + bd + \int_0^1 f(x)g(x) dx \le \left(a^3 + b^3 + \int_0^1 (f(x))^3 dx\right)^{1/3} \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} dx\right)^{2/3}.$$

To do this, we use Hölder's Inequality three times:

$$\begin{split} \alpha c + b d + \int_0^1 f(x) g(x) \; dx & \leqslant \left(\alpha^3 + b^3\right)^{1/3} \left(c^{3/2} + d^{3/2}\right)^{2/3} + \int_0^1 f(x) g(x) \; dx \\ & \leqslant \left(\alpha^3 + b^3\right)^{1/3} \left(c^{3/2} + d^{3/2}\right)^{2/3} + \left(\int_0^1 (f(x))^3 \; dx\right)^{1/3} \left(\int_0^1 (g(x))^{3/2} \; dx\right)^{2/3} \\ & \leqslant \left(\alpha^3 + b^3 + \int_0^1 (f(x))^3 \; dx\right)^{1/3} \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} \; dx\right)^{2/3}. \end{split}$$

Problem 5

Problem: Let f(x) be a continuous function on [0,1]. Show that for every $\epsilon > 0$ there exists $n \in \mathbb{Z}_{\geqslant 0}$ and $a_0, a_1, \ldots, a_n \in \mathbb{R}$ such that for

$$D := \sum_{k=0}^{n} a_k \left(\frac{d}{dx} \right)^k,$$

we have

$$\left| f(x) - e^{x^2} \left(De^{-x^2} \right) \right| < \varepsilon$$

for all $x \in [0, 1]$.

We note that for each n,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\mathrm{n}} \left(e^{-x^2}\right) = \mathrm{P}_{\mathrm{n}}(x)e^{-x^2}$$

where $P_n(x)$ is a degree n polynomial. To see this, using induction on n, we get

$$\left(\frac{d}{dx}\right)^{0} \left(e^{-x^{2}}\right) = (1)e^{-x^{2}}$$

$$=: P_{0}(x)e^{-x^{2}}$$

$$\frac{d}{dx} \left(P_{n}(x)e^{-x^{2}}\right) = P'_{n}(x)e^{-x^{2}} - 2xP_{n}(x)e^{-x^{2}}$$

$$=: P_{n+1}(x)e^{-x^{2}}.$$

Therefore,

$$e^{x^2} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n \left(e^{-x^2}\right) = \mathrm{P}_n(x).$$

Since each $P_n(x)$ is linearly independent (as they have different degrees of polynomials), and consist of polynomials of each degree for all $n \ge 0$, they span $\mathbb{C}[x]$. Then, for any $\varepsilon > 0$, by Stone–Weierstrass, there is some polynomial p(x) such that

$$\sup_{x \in [0,1]} |f(x) - p(x)| < \varepsilon.$$

Since $\{P_n(x)\}_{n\geqslant 0}$ forms a basis for $\mathbb{C}[x]$, there are a_0,\ldots,a_n such that $p(x)=\sum_{k=0}^n a_k P_k(x)$. Setting

$$D = \sum_{k=0}^{n} a_k \left(\frac{d}{dx}\right)^k,$$

we obtain that

$$\left| f(x) - e^{x^2} \Big(De^{-x^2} \Big) \right| < \varepsilon.$$

January 2022

Problem 1

Problem: Let $(f_n)_n$, $f \subseteq L_1(X,\mu)$ be nonnegative functions, and let $(f_n)_n \to f$ pointwise, as well as

$$\left(\int_X f_n \ d\mu\right)_n \to \int_X f \ d\mu.$$

Show that $(f_n)_n \to f$ in L_1 .

Consider the function $g_n(x) = \min(f_n, f)$, also written as

$$g_n = \frac{1}{2}(f_n + f - |f_n - f|).$$

Note that $|g_n| \le f$, and $(g_n)_n \to f$ pointwise, so by dominated convergence, we have

$$\begin{split} \int_X f \, d\mu &= \lim_{n \to \infty} \int_X g_n \, d\mu \\ &= \frac{1}{2} \lim_{n \to \infty} \left(\int_X f_n \, d\mu + \int_X f \, d\mu - \int_X |f_n - f| \, d\mu \right) \\ &= \int_X f \, d\mu - \frac{1}{2} \lim_{n \to \infty} \int_X |f_n - f| \, d\mu, \end{split}$$

so

$$\lim_{n\to\infty}\int_{Y}|f_n-f|\;d\mu=0,$$

and $(f_n)_n \to f$ in L_1 .

Problem: Let $p \in [1, \infty)$.

- (a) Show that if $(f_n)_n \to f$ in L_p , then there is $(f_{n_k})_k$ such that for μ -a.e. $x \in X$, $(f_{n_k})_k \to f$ pointwise.
- (b) Let h be a measurable function, and let D be defined such that

$$D = \{ f \in L_p(X, \mu) \mid hf \in L_p(X, \mu) \}.$$

Suppose $(f_n)_n \to f$ in L_p , and $(hf_n)_n \to g$ in L_p . Show that $f \in D$ and g = hf.

(a) Since $(f_n)_n \to f$ in L_p , the sequence $(f_n)_n$ is L_p -Cauchy, so we may find a subsequence $(f_{n_k})_k$ such that

$$\|f_{n_{k+1}} - f_{n_k}\| < \frac{1}{2^k}.$$

Defining

$$s_n = \sum_{k=1}^n |f_{n_{k+1}} - f_{n_k}|$$

$$s = \sum_{k=1}^{n} |f_{n_{k+1}} - f_{n_k}|,$$

we see that by Minkowski's Inequality,

$$||s_n|| \le \sum_{k=1}^n ||f_{n_{k+1}} - f_{n_k}||$$

 $\le 1.$

So, by applying Fatou's Lemma to s_n^p , we see that

$$||s|| \leq 1$$
,

meaning that in particular, $s(x) < \infty$ almost everywhere, and $(s_n)_n$ converges absolutely almost everywhere. Defining

$$g(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k})(x)$$

for all x where s(x) is defined, and 0 otherwise, we see that by telescoping, $g(x) = \lim_{k \to \infty} f_{n_k}(x)$. Now, we show that $\|g - f\| = 0$, meaning that g = f under the μ -a.e. equivalence relation. Computing, we have

$$\begin{split} \int_X |g-f|^p \ d\mu &= \int_X \liminf_{k \to \infty} |f_{n_k} - f|^p \ d\mu \\ &\leq \liminf_{k \to \infty} \int_X |f_{n_k} - f|^p \ d\mu \\ &= \liminf_{k \to \infty} ||f_{n_k} - f||^p \\ &= 0, \end{split}$$

as for any subsequence $(f_{n_k})_k$, $(f_{n_k})_k \to f$ in L_p . Thus, $(f_{n_k})_k \to f$ for μ -almost every x.

August 2022

Problem 1

Problem: Compute

$$\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} \ dx.$$

We note that

$$\left| \frac{n \sin(x/n)}{x(1+x^2)} \right| \le \left| \frac{n(x/n)}{x(1+x^2)} \right|$$
$$= \frac{1}{1+x^2},$$

and since $\frac{1}{1+x^2}$ is integrable, we may use Dominated Convergence to switch limit and integral, giving

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1+x^2)} dx = \int_0^\infty \lim_{n \to \infty} \frac{n \sin(x/n)}{x(1+x^2)} dx$$

$$= \int_0^\infty \lim_{n \to 0} \frac{\frac{1}{n} \sin(nx)}{x(1+x^2)} dx$$

$$= \int_0^\infty \frac{x}{x(1+x^2)} dx$$

$$= \frac{\pi}{2}.$$

Problem 2

Problem: Fix a < b in \mathbb{R} . For a Lipschitz function $g: [a, b] \to \mathbb{C}$, set

$$\|g\|_{\text{Lip}} = \sup_{x \neq y \in [a,b]} \frac{|g(x) - g(y)|}{|x - y|}.$$

- (a) Show that $f: [a, b] \to \mathbb{C}$ is Lipschitz if and only if f is absolutely continuous and $f' \in L_{\infty}([a, b])$.
- (b) If $f: [a, b] \to \mathbb{C}$ is Lipschitz, show that $||f||_{Lip} = ||f'||_{L_{\infty}}$.
- (a) Let f be Lipschitz, and let M denote the Lipschitz constant i.e., $|f(x) f(y)| \le |x y|$ for all $x, y \in [a, b]$. Set $\delta = \frac{\epsilon}{M}$. Then, if $\left\{\left(\alpha_j, b_j\right)\right\}_{j=1}^k$ is a partition such that $\sum_{j=1}^k \left|b_j a_j\right| < \delta$, we have

$$\sum_{j=1}^{k} |f(b_j) - f(a_j)| \le M \sum_{j=1}^{k} |b_j - a_j|$$

$$< \varepsilon.$$

Thus, f is absolutely continuous. Now, if $x, x + h \in [a, b]$, we have that

$$\left|\frac{f(x+h)-f(x)}{h}\right|\leqslant M,$$

meaning that

$$|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right|$$

 $\leq M$.

and since f'(x) exists for a.e. $x \in [a,b]$, we have that $\operatorname{ess\,sup}_{x \in [a,b]} |f'(x)| \leq M$, so $f' \in L_{\infty}([a,b])$.

Let f be absolutely continuous with bounded derivative. Then, if M is the essential supremum of the f', the fundamental theorem of calculus gives

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t) dt \right|$$

$$\leq \int_{x}^{y} |f'(t)| dt$$

$$\leq \int_{x}^{y} M dx$$

$$= M|y - x|,$$

so f is Lipschitz.

(b) If f is such that f'(x) exists, then for $x, x + h \in [a, b]$, we have

$$\left| \frac{f(x+h) - f(x)}{h} \right| \le \|f\|_{\text{Lip}'}$$

so by taking limits, we have

$$|f'(x)| \le ||f||_{Lip}$$
.

Thus, this ordering must respect essential suprema, meaning

$$\|f'\|_{L_{\infty}} \leqslant \|f\|_{Lip}$$
.

Furthermore, if $\varepsilon > 0$, there are $x, y \in [a, b]$ with x < y such that

$$\begin{aligned} \|f\|_{Lip} - \varepsilon &< \left| \frac{f(y) - f(x)}{y - x} \right| \\ &= \frac{1}{|y - x|} \left| \int_{x}^{y} f'(t) dt \right| \\ &\leqslant \frac{1}{|y - x|} \int_{x}^{y} |f'(t)| dt \\ &\leqslant \frac{1}{|y - x|} \int_{x}^{y} \|f'\|_{L_{\infty}} dt \\ &= \|f'\|_{L_{\infty}'} \end{aligned}$$

and since ϵ is arbitrary, we have $\|f\|_{Lip} \le \|f'\|_{L_{\infty}}$.

Problem 3

Problem: Let (X, μ) be a σ -finite measure space. Show that if $f, g \in L_1(X, \mu)$ with $0 \le f, g$ almost everywhere, then

$$\|f - g\|_{L_1} = \int_0^\infty \mu(\{x \mid f(x) > t\} \triangle \{x \mid g(x) > t\}) dt.$$

We start by showing that

$$|a-b| = \int_0^\infty \left| \mathbb{1}_{(t,\infty)}(a) - \mathbb{1}_{(t,\infty)}(b) \right| dt$$

for all $a, b \in [0, \infty)$. Without loss of generality, $a \le b$. To see this, note that there are three cases:

$$\left| \mathbf{1}_{(\mathsf{t},\infty)}(\alpha) - \mathbf{1}_{(\mathsf{t},\infty)}(b) \right| = \begin{cases} 0 & \mathsf{t} < \alpha, b \\ 1 & \alpha \leqslant \mathsf{t} < b, \\ 0 & \alpha, b \leqslant \mathsf{t} \end{cases}$$

giving

$$\int_0^\infty \mathbb{1}_{[a,b)} dt = \mu([a,b))$$
$$= b - a$$
$$= |a - b|.$$

Now, we have

$$\begin{split} \|f - g\|_{L_1} &= \int_X |f(x) - g(x)| \ d\mu(x) \\ &= \int_X \int_0^\infty \left| \mathbb{1}_{(t,\infty)}(f(x)) - \mathbb{1}_{(t,\infty)}(g(x)) \right| \ dt \ d\mu(x), \end{split}$$

and by Tonelli's Theorem, we have

$$\begin{split} &= \int_0^\infty \int_X \left| \mathbb{1}_{f^{-1}((t,\infty))} - \mathbb{1}_{g^{-1}((t,\infty))} \right| \, d\mu(x) \, \, dt \\ &= \int_0^\infty \int_X \mathbb{1}_{f^{-1}((t,\infty)) \triangle g^{-1}((t,\infty))} \, \, d\mu(x) \, \, dt \\ &= \int_0^\infty \mu \Big(f^{-1}((t,\infty)) \triangle g^{-1}((t,\infty)) \Big) \, \, dt. \end{split}$$

Problem 4

Problem: Let (X, Σ) be a measurable space. Suppose that μ, ν are signed measures on Σ such that $\|\mu\|_{TV}, \|\nu\|_{TV} < \infty$, and $|\mu| \perp |\mu|$.

- (a) If $\mu = \mu_1 \mu_2$ and $\nu = \nu_1 \nu_2$ with $\mu_1 \perp \mu_2$ and $\nu_1 \perp \nu_2$, show that $\mu_i \perp \nu_j$ for all $i, j \in \{1, 2\}$.
- (b) Show that

$$\|\mu + \nu\|_{TV} = \|\mu\|_{TV} + \|\nu\|_{TV}.$$

(a) Since $|\mu| \perp |\nu|$, there are $U, V \subseteq X$ such that $|\mu|$ is concentrated on U and $|\nu|$ is concentrated on V, with $U \cap V = \emptyset$.

Note that by the Jordan decompositions, we have $|\mu| = \mu_1 + \mu_2 \geqslant \mu_{1,2}$ so $\mu_{1,2}$ are concentrated on U, and similarly $\nu_{1,2}$ are concentrated on V, so $\mu_i \perp \nu_j$.

- (b) We show that the measures $\mu_1 + \nu_1$ and $\mu_2 + \nu_2$ are mutually singular. To see this, note the following:
 - $\mu_1 = 0 \text{ on } N_{\mu} \cup V;$
 - $v_1 = 0$ on $N_v \cup U$;
 - $\mu_2 = 0$ on $P_u \cup V$;
 - $v_2 = 0$ on $P_v \cup U$,

so $\mu_1 + \nu_1 = 0$ on $A = (N_{\mu} \cup V) \cap (N_{\nu} \cup U)$, and $\mu_2 + \nu_2 = 0$ on $B = (P_{\mu} \cup V) \cap (P_{\nu} \cup U)$. Therefore, since

$$\begin{split} A \cup B &= \left(N_{\mu} \cap N_{\nu}\right) \cup \left(N_{\mu} \cap U\right) \cup \left(N_{\nu} \cap V\right) \\ &\quad \cup \left(P_{\mu} \cap P_{\mu}\right) \cup \left(P_{\mu} \cap U\right) \cup \left(P_{\nu} \cap V\right) \\ &= X \end{split}$$

$$A \cap B = (N_{\mu} \cup V) \cap (N_{\nu} \cup U)$$
$$\cap (P_{\mu} \cup V) \cap (P_{\nu} \cup U)$$
$$= \emptyset,$$

the measures $\mu_1 + \nu_1$ and $\mu_2 + \nu_2$ are mutually singular, so A \sqcup B forms a Hahn decomposition for $\mu + \nu$ with corresponding Jordan decomposition of $(\mu_1 + \nu_1) - (\mu_2 + \nu_2)$. Thus,

$$\begin{split} \|\mu + \nu\|_{TV} &= |\mu + \nu|(X) \\ &= (\mu_1 + \nu_1)(X) + (\mu_2 + \nu_2)(X) \\ &= (\mu_1 + \mu_2)(X) + (\nu_1 + \nu_2)(X) \\ &= |\mu|(X) + |\nu|(X) \\ &= \|\mu\|_{TV} + \|\nu\|_{TV}. \end{split}$$

Problem 5

Problem:

(a) For $f \in L_1([0,1])$, let L_f be the set of all $x \in [0,1]$ such that

$$\lim_{r \to 0} \frac{1}{2r} \int_{x-r}^{x+r} |f(y) - f(x)| \, dy = 0.$$

State the conclusion of the Lebesgue differentiation theorem regarding L_f.

(b) For $n \in \mathbb{N}$, $0 \le j \le 2^n - 1$, set $I_{n,j} = [j2^{-n}, (j+1)2^{-n})$. For $f \in L_1([0,1])$, define

$$E_{n}f = \sum_{j=0}^{2^{n}-1} \left(\frac{1}{m(I_{n,j})} \int_{I_{n_{j}}} f(t) dt \right) \mathbb{1}_{I_{n_{j}}}.$$

Show that $\lim_{n\to\infty} (E_n f)(x) = f(x)$ for a.e. $x \in [0,1]$.

- (a) The conclusion of the Lebesgue differentiation theorem states that $\mu([0,1] \setminus L_f) = 0$.
- (b) Let $x \in [0,1]$. We note that x must be in exactly one such interval $(j2^{-n}, (j+1)2^{-n}]$ since these intervals are disjoint. If we select r > 0 such that $\frac{1}{2^n} < r \le \frac{1}{2^{n-1}}$, then we note the following:
 - $I_{n,j} \subseteq U(x,r)$ for exactly one such j;
 - $\mathfrak{m}(\mathfrak{U}(x,r)) \leq 4\mu(\mathfrak{I}_{\mathfrak{n},\mathfrak{j}}).$

If $x \in L_f$, then for any $\varepsilon > 0$, there is some $\delta > 0$ such that when $r < \delta$, then

$$\frac{1}{\mu(U(x,r))}\int_{U(x,r)}|f(t)-f(x)|\;\mathrm{d}t<\epsilon,$$

by the Lebesgue Differentiation Theorem. If n is such that $\frac{1}{2^{n-1}} < \delta$, then when $\frac{1}{2^n} < r \leqslant \frac{1}{2^{n-1}}$, then for any $x \in L_f$, we have

$$|E_n f(x) - f(x)| = \left| \frac{1}{m(I_{n,j})} \int_{I_{n,j}} f(t) dt - f(x) \right|$$

$$\leq \frac{1}{\mathfrak{m}(I_{\mathfrak{n},j})} \int_{I_{\mathfrak{n},j}} |f(t) - f(x)| dt$$

$$\leq \frac{1}{\mathfrak{m}(I_{\mathfrak{n},j})} \int_{U(x,r)} |f(t) - f(x)| dt$$

$$\leq \frac{4}{U(x,r)} \int_{U(x,r)} |f(t) - f(x)| dt$$

$$\leq 4\varepsilon,$$

so $\lim_{n\to\infty} E_n f(x) = f(x)$ for all $x \in L_f$, meaning that it holds for a.e. $x \in [0,1]$.

January 2023

Problem 1

Problem: Let (X, μ) be a σ-finite measure space, $\mathfrak{p} \in [1, \infty)$. Let $(\mathfrak{f}_n)_n$ be a sequence in $L_\mathfrak{p}(X, \mu)$, and suppose $\|\mathfrak{f}_n\|_{L_\mathfrak{p}} \le 1$, $(\mathfrak{f}_n)_n \to \mathfrak{f}$ almost everywhere. Show that $\|\mathfrak{f}\|_\mathfrak{p} \le 1$.

By using Fatou's Lemma, and assuming WLOG that $(f_n)_n \to f$ pointwise everywhere, we get

$$\int_{X} |f|^{p} d\mu = \int_{X} \liminf_{n \to \infty} |f_{n}|^{p} d\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} |f_{n}|^{p} d\mu$$

$$\leq 1,$$

so $\|f\|_{L_n} \le 1$.

Problem 2

Problem: Let μ be an atomless Borel probability measure on \mathbb{R} . Suppose $E \subseteq \mathbb{R}$ is a Borel set with $\mu(E) > 0$. Show that there is $t \in \mathbb{R}$ with $\mu(E \cap (-\infty, t)) = \frac{1}{2}\mu(E)$.

Let

$$f(t) = \mu(E \cap (-\infty, t)),$$

and for any sequence $(t_n)_n$, define

$$E_n = E \cap (-\infty, t_n).$$

We will show that f is left- and right-continuous, hence continuous. To start, if $(t_n)_n \setminus t$, then

$$\bigcap_{n\in\mathbb{N}} E_n = E \cap (-\infty, t],$$

so

$$f(t) = \mu \left(\bigcap_{n \in \mathbb{N}} E_n \setminus \{t\} \right)$$
$$= \mu \left(\bigcap_{n \in \mathbb{N}} E_n \right) - \mu(\{t\}).$$

Since μ is atomless, we see that $\mu(\{t\}) = 0$, so since $\mu(E) < \infty$,

$$f(t) = \mu \left(\bigcap_{n \in \mathbb{N}} E_n \right)$$

$$= \lim_{n \to \infty} \mu(E_n)$$
$$= \lim_{n \to \infty} f(t_n).$$

Thus, f is right-continuous. Similarly, if f is left-continuous, and $(t_n)_n \nearrow t$, then

$$\bigcup_{n\in\mathbb{N}}\mathsf{E}_n=\mathsf{E}\cap(-\infty,\mathsf{t}),$$

so by continuity from below,

$$f(t) = \mu \left(\bigcup_{n \in N} E_n \right)$$
$$= \lim_{n \to \infty} \mu(E_n)$$
$$= \lim_{n \to \infty} f(t_n).$$

Therefore, f is continuous. Since

$$\lim_{t \to -\infty} f(t) = 0$$
$$\lim_{t \to \infty} f(t) = \mu(E)$$
$$> 0,$$

the intermediate value theorem gives some $t_0 \in \mathbb{R}$ such that

$$\begin{split} f(t_0) &= \mu(E \cap (-\infty, t_0)) \\ &= \frac{1}{2} \mu(E). \end{split}$$

Problem 3

Problem: Let X be a set equipped with a σ-algebra Σ. Suppose $\mu, \nu \colon \Sigma \to [0, \infty)$ are finite measures with $\lambda = \mu + \nu$. Define f such that

$$\nu(\mathsf{E}) = \int_{\mathsf{E}} \mathsf{f} \, \mathrm{d}\lambda.$$

- (i) Show that $0 \le f \le 1 \lambda$ -a.e.
- (ii) If $F = \{x \mid f(x) = 1\}$, show that $\mu(F) = 0$.
- (iii) If $A \subseteq \{x \mid 0 \le f(x) < 1\}$ is such that $\mu(A) = 0$, show that $\nu(A) = 0$.
- (i) Consider the sets E_n , for each $n \in \mathbb{N}$, defined by

$$E_n = \left\{ x \mid f(x) < -\frac{1}{n} \right\},\,$$

so that $E_n \subseteq E_{n+1}$, and

$$E = \bigcup_{n=1}^{\infty} E_n$$
$$= \{x \mid f(x) < 0\}.$$

Then, we see that

$$0 \geqslant -\frac{1}{n}\lambda(\mathsf{E}_n)$$

$$= -\frac{1}{n} \int_{E_n} d\lambda$$

$$> \int_{E_n} f d\lambda$$

$$= \nu(E_n)$$

$$\ge 0,$$

meaning that $\lambda(E_n) = 0$ for each n, so by continuity from below, $\lambda(E) = \lim_{n \to \infty} \lambda(E_n) = 0$.

Now, the set

$$F = \{x \mid f(x) > 1\}$$

has

$$\lambda(F) = \int_{F} d\lambda$$

$$< \int_{F} f d\lambda$$

$$= \nu(F)$$

$$\leq \nu(F) + \mu(F)$$

$$= \lambda(F),$$

meaning that $\lambda(F) = 0$, and $0 \le f \le 1 \lambda$ -a.e.

(ii) If $F = \{x \mid f(x) = 1\}$, then

$$\lambda(F) = \int_{F} d\lambda$$
$$= \int_{F} f d\lambda$$
$$= \gamma(F),$$

so $\mu(F) = 0$.

(iii) Let $A \subseteq \{x \mid 0 \le f(x) < 1\}$ be such that $\mu(A) = 0$. Then, we have

$$v(A) = \int_{A} f \, d\lambda$$

$$= \int_{A} f \, d\nu + \int_{A} f \, d\mu$$

$$< \int_{A} f \, d\nu + \int_{A} d\mu$$

$$= \int_{A} f \, d\nu + \mu(A)$$

$$= \int_{A} f \, d\nu$$

$$\leq \int_{A} f \, d\lambda$$

$$= \nu(A),$$

so v(A) = 0, else we reach a contradiction.

Problem: Fix $p \in [1, \infty)$. Let $W_p([0, 1])$ be the space of absolutely continuous functions on [0, 1] such that $f' \in L_p([0, 1])$. For all $f \in W_p([0, 1])$, define

$$\|f\|_{W_p} = |f(0)| + \|f'\|_{L_p}.$$

Show that $\|\cdot\|_{W_p}$ is a norm that makes $W_p([0,1])$ into a Banach space. You are allowed to use the fact that $L_p([0,1])$ is a Banach space.

We start by showing that $\|\cdot\|_{W_p}$ is indeed a norm. To see that $\|\cdot\|_{W_p}$ is positive definite, if

$$\|f\|_{W_p} = 0,$$

then |f(0)| = 0 and $||f'||_{L_p} = 0$. Since $||f'||_{L_p} = 0$, f' = 0 a.e. as L_p is a Banach space. Note that, by the fundamental theorem of calculus,

$$f(x) = f(0) + \int_0^x f'(t) dt,$$

so f(x) = 0 almost everywhere, hence f(x) = 0 in L_p .

Next, to see homogeneity, we have for all $\alpha \in \mathbb{C}$,

$$\begin{aligned} \|\alpha f\|_{W_{p}} &= |\alpha f(0)| + \|(\alpha f)'\|_{L_{p}} \\ &= |\alpha| \Big(|\alpha| + \|f'\|_{L_{p}} \Big) \\ &= |\alpha| \|f\|_{W_{p}}, \end{aligned}$$

as $\|\cdot\|_{L_p}$ is a norm. Finally, we have

$$\begin{split} \|f+g\|_{W_{p}} &= |(f+g)(0)| + \left\|(f+g)'\right\|_{L_{p}} \\ &\leq |f(0)| + |g(0)| + \|f'\|_{L_{p}} + \|g'\|_{L_{p}} \\ &= \|f\|_{W_{p}} + \|g\|_{W_{p}}, \end{split}$$

as $\|\cdot\|_{L_p}$ is a norm, so the triangle inequality holds. Thus, $\|\cdot\|_{W_p}$ is a norm.

Let $(f_n)_n$ be Cauchy in $W_p([0,1])$. Then, for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $\mathfrak{m}, \mathfrak{n} \geqslant N$,

$$\|f_n - f_m\|_{W_p} = |f_n(0) - f_m(0)| + \|f'_n - f'_m\|_{L_p}$$

< ε ,

meaning that both

$$\begin{split} |f_n(0) - f_m(0)| &< \epsilon \\ \|f_n' - f_m'\|_{L_p} &< \epsilon. \end{split}$$

Since \mathbb{C} and $L_p([0,1])$ are complete, there is $c \in \mathbb{C}$ and $g \in L_p([0,1])$ such that

$$f_n(0) \to c$$

 $f'_n \to g$.

Define

$$f(x) = c + \int_0^x g(t) dt.$$

Then, we note that by the Fundamental Theorem of Calculus,

$$f'(x) = g(x)$$

$$\in L_{p}([0,1]),$$

so $f \in W_p([0,1])$. Finally, we see that

$$\begin{split} \|f_{n} - f\|_{W_{p}([0,1])} &= |f_{n}(0) - f(0)| + \|f'_{n} - f'\|_{L_{p}} \\ &= |f_{n}(0) - c| + \|f'_{n} - g\|_{L_{p}} \\ &\to 0, \end{split}$$

so $(f_n)_n \to f$ in W_p , meaning W_p is complete.

Problem 5

Problem: Let m be Lebesgue measure on \mathbb{R} , $\Omega = \{\mathbb{1}_E \mid E \subseteq \mathbb{R} \text{ Borel, } m(E) < \infty\}$ be regarded as a subset of $L_1(\mathbb{R})$. We regard Ω as a metric space with the L_1 distance.

(i) If a < b are real numbers, show that the function $\Omega \to \mathbb{R}$ given by

$$\mathbb{1}_{\mathsf{F}} \mapsto \mathsf{m}(\mathsf{E} \cap [\mathfrak{a}, \mathfrak{b}])$$

is a continuous function.

(ii) If a < b are real numbers, let $U_{a,b}$ be the subset of Ω consisting of all $\mathbb{1}_E$ where $E \subseteq \mathbb{R}$ is Borel, and

$$0 < m(E \cap [a, b]) < b - a$$
.

Show that $U_{a,b}$ is open and dense in Ω .

(iii) Let D be the set of all $\mathbb{1}_F$ where $E \subseteq \mathbb{R}$ is Borel, and for every interval I of positive measure, we have

$$0 < \mathfrak{m}(E \cap I) < \mathfrak{m}(I)$$
.

Show that there is a countable collection $\left\{U_j\right\}_{j\in J}$ of open and dense subsets of Ω with $\bigcap_{j\in J}U_j\subseteq D$.

(i) Letting $f: \Omega \to \mathbb{R}$ be defined by $f(\mathbb{1}_E) = \mathfrak{m}(E \cap [\mathfrak{a}, \mathfrak{b}])$, we have

$$\begin{split} |\mathsf{m}(\mathsf{E} \cap [\mathfrak{a}, \mathfrak{b}]) - \mathsf{m}(\mathsf{F} \cap [\mathfrak{a}, \mathfrak{b}])| &= \left| \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{1}_{\mathsf{E}} - \mathbb{1}_{\mathsf{F}} \, d\mathfrak{m} \right| \\ &\leq \int_{\mathfrak{a}}^{\mathfrak{b}} |\mathbb{1}_{\mathsf{E}} - \mathbb{1}_{\mathsf{F}}| \, d\mathfrak{m} \\ &\leq \int_{\mathsf{R}} |\mathbb{1}_{\mathsf{E}} - \mathbb{1}_{\mathsf{F}}| \, d\mathfrak{m} \\ &= \|\mathbb{1}_{\mathsf{E}} - \mathbb{1}_{\mathsf{F}}\|_{\mathsf{L}_{\mathsf{I}}}, \end{split}$$

meaning that f is Lipschitz, hence continuous.

- (ii) Let $\mathbb{1}_F \in \Omega$. Then, $0 \le \mu(F \cap [a, b]) \le b a$. If these inequalities are strict, then $F \in U_{a,b}$. Else, we let $\varepsilon > 0$, and see two cases:
 - if $\mu(F \cap [a, b]) = b a$, then we may set $E = F \setminus ([a, a + \varepsilon/) \cup (b \varepsilon/2, b])$, so that $0 < \mu(E \cap [a, b]) < b a$, and $\|\mathbb{1}_E \mathbb{1}_F\|_{L_1} = \mu(E \triangle F) \le \varepsilon$;
 - if $\mu(F \cap [a, b]) = 0$, then we may set $E = F \cup ([a, a + \varepsilon/2) \cup [b \varepsilon/2, b))$, meaning that $0 < \mu(E \cap [a, b]) < b a$, and $\mu(E \triangle F) \le \varepsilon$.

Therefore, $U_{\alpha,b}$ is dense in Ω . To see that $U_{\alpha,b}$ is open, notice that for any $\mathbb{1}_E \in U_{\alpha,b}$, we may find $\epsilon > 0$ such that $0 < \mu(E \cap [\alpha,b]) - \epsilon < \mu(E \cap [\alpha,b]) < \mu(E \cap [\alpha,b]) + \epsilon < b - \alpha$, and for all F with $\|\mathbb{1}_F - \mathbb{1}_E\|_{L_1} < \epsilon$, we have

$$|\mu(\mathsf{F} \cap [\mathfrak{a}, \mathfrak{b}]) - \mu(\mathsf{E} \cap [\mathfrak{a}, \mathfrak{b}])| \leq ||\mathbb{1}_{\mathsf{F}} - \mathbb{1}_{\mathsf{E}}||_{\mathsf{L}_{1}}$$

$$< \varepsilon,$$

so $0 < \mu(F \cap [a, b]) < b - a$. Thus, $U_{a,b}$ is also open.

(iii) If $\{[a_k,b_k]\}$ is an enumeration of rational-endpoint intervals in \mathbb{R} , then for any interval I, there is some rational-endpoint interval $[a_k,b_k]\subseteq I$ by density and the characterization of an interval. For any $\mathbb{1}_E\in U_{a_k,b_k}$, we have that for an interval $[a,b]\subseteq I$ with $a_k\geqslant a$ and $b_k\leqslant b$,

$$m(E \cap [a, b]) = m(E \cap [a, a_k]) + m(E \cap [a_k, b_k]) + m(E \cap [b_k, b])$$

$$< a_k - a + b_k - a_k + b - b_k$$

$$= b - a,$$

so $U_{a_k,b_k} \subseteq D$. Thus, since this holds for all intervals of positive measure for each a_k,b_k , we get

$$\bigcap_{k=1}^{\infty} U_{a_k,b_k} \subseteq D.$$

August 2023

Problem 1

Problem: Let (X, μ) be a σ-finite Borel measure space. Let $(f_n)_n$ be a sequence in $L_2(X, \mu)$, and $f \in L_2(X, \mu)$ such that for every $g \in L_2(X, \mu)$, we have

$$\lim_{n\to\infty} \int_X f_n(x)g(x) \ d\mu(x) = \int_X f(x)g(x) \ d\mu(x).$$

Furthermore, suppose that

$$\lim_{n \to \infty} \|f_n\|_{L_2} = \|f\|_{L_2}.$$

Prove that there is a subsequence $(f_{n_j})_i$ and a subset $E \subseteq X$ with $\mu(E) = 0$ such that for all $x \in X \setminus E$,

$$\lim_{i \to \infty} \left| f_{n_j}(x) - f(x) \right| = 0.$$

In order to show that $(f_{n_j})_j \to f$ pointwise a.e., we show that $(f_n)_n \to f$ in measure; it has been well-established that if $(f_n)_n \to f$ in measure, then $(f_n)_n$ admits a subsequence that converges to f pointwise almost everywhere.

By Chebyshev's Inequality, we have that

$$\begin{split} \mu(\{x\mid|f_n(x)-f(x)|\geqslant\epsilon\})&\leqslant\frac{1}{\epsilon^2}\|f_n-f\|_{L_2}^2\\ &=\frac{1}{\epsilon^2}\int_X|f_n-f|^2\;d\mu. \end{split}$$

Focusing on the integral,

$$\int_{Y} |f_n - f|^2 d\mu = \int_{Y} (f_n - f) \overline{(f_n - f)} d\mu$$

$$\begin{split} &= \int_X |f_n|^2 - f_n \overline{f} - \overline{f_n} f + |f|^2 \ d\mu \\ &= \int_X |f_n|^2 \ d\mu - \int_X f_n \overline{f} \ d\mu + \int_X |f|^2 \ d\mu - \overline{\int_X f_n \overline{f} \ d\mu}. \end{split}$$

Now, we note the following:

- $\lim_{n\to\infty} \int_X |f_n|^2 d\mu = \int_X |f|^2 d\mu$; and
- if $f \in L_2(X, \mu)$, then so too is \overline{f} .

Thus, by taking limits, we have

$$\begin{split} \lim_{n \to \infty} \int_{X} |f_{n} - f|^{2} \, dx &= \lim_{n \to \infty} \left(\int_{X} |f_{n}|^{2} \, d\mu - \int_{X} f_{n} \overline{f} \, d\mu + \int_{X} |f|^{2} \, d\mu - \overline{\int_{X} f_{n} \overline{f} \, d\mu} \right) \\ &= \int_{X} |f|^{2} \, d\mu - \int_{X} |f|^{2} \, d\mu + \int_{X} |f|^{2} \, d\mu - \overline{\int_{X} |f|^{2} \, d\mu} \\ &= 0. \end{split}$$

so $\|f_n - f\|_{L_2}^2 \to 0$. Thus, $(f_n)_n \to f$ in measure, and thus there is a subsequence $(f_{n_j})_j \to f$ pointwise almost everywhere.

Problem 3

Problem: Let X be a LCH space. Recall that $g: X \to \mathbb{C}$ vanishes at infinity if for every $\varepsilon > 0$, there is a compact $K_{\varepsilon} \subseteq X$ such that for all $x \in X \setminus K_{\varepsilon}$, $|g(x)| < \varepsilon$. Show that $C_0(X)$ is complete with respect to the sup norm.

Let $(f_n)_n$ be Cauchy in the sup norm. Then, for all $\varepsilon > 0$, there is N such that for all $m, n \ge N$, $||f_m - f_n|| < \varepsilon$. Therefore, for all $x \in X$, we have $|f_n(x) - f_m(x)| < \varepsilon$, meaning that the sequence $(f_n(x))_n$ is Cauchy in \mathbb{C} . Define $f(x) = \lim_{n \to \infty} f_n(x)$ for each x.

We must now show that

- $(f_n)_n \to f$ in the supremum norm;
- $f \in C_0(X)$.

For the first point, we see that for $\varepsilon > 0$, there is N such that for all $n, m \ge N$ and all $x \in X$,

$$|f_n(x) - f_m(x)| < \varepsilon.$$

Taking the limit as $m \to \infty$, we have

$$|f_n(x) - f(x)| \le \varepsilon$$
.

Thus, by taking suprema, we get that

$$\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon,$$

so $\|f_n - f\| \le \varepsilon$, meaning that $(f_n)_n \to f$ in the sup norm, implying that f is continuous as it is the uniform limit of continuous functions.

Finally, we let N_1 be such that for all $n \ge N_1$, $\|f_n - f\| < \varepsilon/2$. Note that since $f_{N_1} \in C_0(X)$, we have a $K_{\varepsilon/2}$ such that for all $x \in X \setminus K_{\varepsilon/2}$, $|f_N(x)| < \varepsilon/2$. Therefore, for all $x \in X \setminus K_{\varepsilon/2}$, we have

$$\begin{split} |f(x)| & \leq |f_{N_1}(x) - f(x)| + |f_{N_1}(x)| \\ & \leq ||f_{N_1} - f|| + |f_{N_1}(x)| \\ & < \varepsilon/2 + \varepsilon/2 \\ & = \varepsilon, \end{split}$$

so $f \in C_0(X)$. Thus, $C_0(X)$ is complete.

Problem: Let (X, \mathcal{A}, μ) be a finite measure space. Show that for any $n \ge 1$, and any $A_1, \ldots, A_n, B_1, \ldots, B_n \in \mathcal{A}$,

$$\mu((A_1 \cup \cdots \cup A_n) \triangle (B_1 \cup \cdots \cup B_n)) \leqslant \sum_{j=1}^n \mu(A_j \triangle B_j).$$

We start off by noting that the symmetric difference $A \triangle B$ can be written as

$$A \triangle B = A \cup B \setminus (A \cap B).$$

This is evident from unwinding the definition $A \triangle B = (A \setminus B) \cup (B \setminus A)$. Now, writing the left-hand side of our desired inequality, we get

$$\mu((A_1 \cup \cdots \cup A_n) \triangle (B_1 \cup \cdots \cup B_n)) = \mu(A_1 \cup \cdots \cup A_n \cup B_1 \cup \cdots \cup B_n) - \mu((A_1 \cup \cdots \cup A_n) \cap (B_1 \cup \cdots \cup B_n)).$$

Distributing the second term on the right-hand side and rearranging the first term, we get

$$=\mu\bigg(\bigcup_{j=1}^n \big(A_j\cup B_j\big)\bigg)-\mu\bigg(\bigcup_{j=1}^n (A_1\cup\cdots\cup A_n)\cap B_j\bigg).$$

Using subadditivity on the first term, we get

$$\leqslant \sum_{j=1}^{n} \mu(A_j \cup B_j) - \mu \left(\bigcup_{j=1}^{n} (A_1 \cup \dots \cup A_n) \cap B_j \right).$$

Finally, using monotonicity and subadditivity on the second term, and exercising the fact that

$$A_j \cap B_j \subseteq \bigcap_{i=1}^n (A_1 \cup \cdots \cup A_n) \cap B_j,$$

we get

$$\leq \sum_{j=1}^{n} \mu(A_j \cup B_j) - \sum_{j=1}^{n} \mu(A_j \cap B_j)$$
$$= \sum_{j=1}^{n} \mu(A_j \triangle B_j).$$

Problem 5

Problem: Let (X, μ) be a nonnegative measure space and f a measurable function on (X, μ) such that

$$\sup_{\lambda > 0} \mu(\{x \mid |f(x)| > \lambda\}) < \infty.$$

Prove that there is a finite constant C such that for every finite measure subset, we have

$$\int_{E} |f(x)| \ d\mu(x) \le C\mu(E)^{1/2}.$$

Lemma (Cavalieri's Principle):

$$\int_X |f| \ d\mu = \int_0^\infty \mu(\{x \in X \mid |f| > \lambda\}) \ d\lambda.$$

Using Cavalieri's Principle, we get

$$\begin{split} \int_{E} |f| \; d\mu &\leqslant \int_{0}^{\alpha} \mu(\{x \in E \mid |f| > \lambda\}) \; d\lambda + \int_{\alpha}^{\infty} \mu(\{x \in E \mid |f| > \lambda\}) \; d\lambda \\ &\leqslant \alpha \mu(E) + \int_{\alpha}^{\infty} \frac{M}{\lambda^{2}} \; d\lambda \\ &= \alpha \mu(E) + \frac{M}{\alpha} \\ &\leqslant (M+1)\mu(E)^{1/2}, \end{split}$$

where we selected $\alpha = \frac{1}{\mu(E)^{1/2}}$, and M denotes the given supremum.

January 2024

Problem 1

Problem: Let (X, μ) be a σ-finite measure space, and suppose $(f_n)_n$ is a sequence in $L_2(X, \mu)$ such that $\sup_{n\geqslant 1}\|f_n\|_{L_2}<\infty$ and $(f_n)_n\to f$ μ -almost everywhere. Prove that $f\in L_2(X,\mu)$.

Applying Fatou's Lemma, we find that

$$\int_{X} |f|^{2} d\mu = \int_{X} \liminf_{n \to \infty} |f_{n}|^{2} d\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} |f_{n}|^{2} d\mu$$

$$\leq \limsup_{n \to \infty} \int_{X} |f_{n}|^{2} d\mu$$

$$\leq \sup_{n \geq 1} \int_{X} |f_{n}|^{2} d\mu$$

$$\leq \infty.$$

Problem 2

Problem: Let (X, μ) be a measure space, and let $p \in [1, \infty)$. Let $(f_n)_n \to f$ in L_p .

- (i) Prove that there exists a subsequence (f_{n_k}) such that $||f_{n_{k+1}} f_{n_k}||_{L_n} < 2^{-k}$.
- (ii) Show that for μ -almost every x, we have $\lim_{k\to\infty} f_{n_k}(x) = f(x)$.
- (i) Since $(f_n)_n \to f$ in L_p , we see that $(f_n)_n$ is L_p -Cauchy, so we may extract a subsequence as follows. Let $f_{n_1} = f_1$, and find f_{n_2} with $n_2 > 1$ such that

$$\|f_{n_2} - f_{n_1}\| < \frac{1}{2}.$$

Inductively, we may use the fact that $(f_n)_n$ is Cauchy to find $n_{k+1} > n_k$ such that

$$\|f_{n_{k+1}} - f_{n_k}\| < \frac{1}{2^k}.$$

(ii) Consider the sequence $(s_n)_n$ given by

$$s_n = \sum_{k=1}^n |f_{n_{k+1}} - f_{n_k}|.$$

Then, by Minkowski's Inequality, we find that

$$\|s_n\|_{L_p} \le \sum_{k=1}^n \|f_{n_{k+1}} - f_{n_k}\|_{L_p}.$$

In particular, $\|s_n\|_{L_p} \le 1$ for all n, meaning that by dominated convergence, $s = \lim_{n \to \infty} s_n$ is in L_p , and in particular, $s(x) < \infty$ for almost every x. Notice that this means that

$$h(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

converges for almost every x. Defining h(x) = 0 for all x where this sum does not converge absolutely, we notice that

$$f_{n_1}(x) + \sum_{k=1}^{m} (f_{n_{k+1}}(x) - f_{n_k}(x)) = f_{n_{m+1}}(x),$$

meaning that h is the pointwise (almost everywhere) limit of the sequence $(f_{n_k})_k$; by Minkowski's Inequality, and applying Fatou's Lemma, as earlier, we also find that

$$\begin{split} \|h\|_{L_{p}} & \leq \|f_{n_{1}}\|_{L_{p}} + \sum_{k=1}^{\infty} \|f_{n_{k+1}} - f_{n_{k}}\|_{L_{p}} \\ & \leq \|f_{n_{1}}\|_{L_{p}} + 1 \\ & < \infty, \end{split}$$

meaning $h \in L_p(X, \mu)$. All we need to do now is show that $\|f - h\|_{L_p} = 0$, meaning that [f] = [h] under the pointwise almost everywhere equivalence relation. To see this,

$$\begin{split} \int_X |h - f|^p \ d\mu &= \int_X \liminf_{k \to \infty} |f_{n_k} - f|^p \ d\mu \\ &\leq \liminf_{k \to \infty} \int_X |f_{n_k} - f|^p \ d\mu \\ &= \liminf_{k \to \infty} ||f_{n_k} - f||^p \\ &= 0 \end{split}$$

where the last equality is derived from the fact that $(f_n)_n \to f$ in L_p , so every subsequence of $(f_n)_n$ converges to f in L_p .

Problem 3

Problem: Let f be Lebesgue-integrable on \mathbb{R} , and let g be a bounded continuous function on \mathbb{R} . Prove that the convolution

$$(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y) dy$$

is a continuous function on \mathbb{R} .

Let $M = \sup_{x \in \mathbb{R}} |g(x)|$. Now, since $f \in L_1$, there is a compactly supported continuous function $h \in C_c(\mathbb{R})$ such that $\|h - f\|_{L_1} < \frac{\varepsilon}{3M}$. If we let $K = \sup(h)$, then since h is compactly supported, h is uniformly continuous, so there is $\delta > 0$ such that whenever $|x - y| < \delta$, we have

$$|h(x) - h(y)| < \frac{\varepsilon}{3Mm(K)}$$

where m(K) is the Lebesgue measure of K in \mathbb{R} . Therefore, if $|x - y| < \delta$, we have

$$\begin{split} |(f*g)(x) - (f*g)(y)| &= \left| \int_{\mathbb{R}} (f(x-t) - f(y-t))g(t) \, dt \right| \\ &\leq \int_{\mathbb{R}} |f(x-t) - f(y-t)||g(t)| \, dt \\ &\leq \int_{\mathbb{R}} |f(x-t) - h(x-t)||g(t)| \, dt \\ &+ \int_{\mathbb{R}} |h(x-t) - h(y-t)||g(t)| \, dt \\ &+ \int_{\mathbb{R}} |h(y-t) - f(y-t)||g(t)| \, dt. \end{split}$$

Using Hölder's Inequality on the first and third integrals, we get

$$\leq M\left(\frac{\varepsilon}{3M}\right) + \int_{\mathbb{R}} |h(x-t) - h(y-t)| |g(t)| dt + M\left(\frac{\varepsilon}{3M}\right),$$

and using the uniform continuity of h, we get

$$\leq \frac{2\varepsilon}{3} + M(m(K)) \frac{\varepsilon}{3M(m(K))}$$

= ε .

Alternative Solution

We know that f is integrable on \mathbb{R} , and g is bounded and continuous. We will show that if $(x_n)_n \to x_0$, then $((f * g)(x_n))_n \to (f * g)(x_0)$.

Now, if $(x_n)_n \to x_0$, then $g(x_n) \to g(x_0)$, since g is continuous. Since f is integrable, f is finite almost everywhere, meaning that $f(y)g(x_n - y) \to f(y)g(x_0 - y)$ almost everywhere.

Furthermore, since g is bounded, we have $|g| \le M$ for some M > 0. Writing our convolution integrand, we have

$$|f(y)g(x_n - y)| \le M|f(y)|.$$

Since f is integrable, we may use the dominated convergence theorem to find that

$$\lim_{n\to\infty} \int f(y)g(x_n - y) dy = \int f(y)g(x_0 - y) dy.$$

Problem 4

Problem: Let $(a_n)_n$ be a sequence of complex numbers such that $|a_n| < 1$ for all n and $\lim_{n \to \infty} a_n = 0$.

- (i) Show that if $\sum_{n\geqslant 1}|\alpha_n|<\infty$, then the sequence $(\mathfrak{p}_n)_n$ defined by $\mathfrak{p}_n=\prod_{i=1}^n(1+\alpha_i)$ is convergent.
- (ii) Does the converse hold? In other words, is it true that if $(p_n)_n$ is convergent, we must have $\sum_{n\geqslant 1}|a_n|<\infty$? Recall the conditions that $|a_n|<1$ for all n and $\lim_{n\to\infty}a_n=0$.