HCMUT FACULTY OF CS AND ENGINEERING

MIDTERM Subject: **Discrete Structures** (CO1007)

 $\overline{\text{Classes: } \mathbf{CT14QUEE} + \mathbf{CT14KTMT} + \mathbf{CT14KHMT}}$

Time: 60 minutes (Closed book test)

Test date: July 09, 2015

Student's Full Name:		Student's ID:				
Final Score:	Examiner:	Examiner's Signature:				
(There are 20 MCQs, ea	ch question is worth 0.5 poi	$nts. \ Answers \ in \ bold:$; cancel out to deselect: \mu .)			
Question 1. Suppose the	hat $P(x,y)$ means "x is a par	rent of y " and $M(x)$ mea	ns " x is male." If $F(v, w)$ equals			
	$M(v) \wedge \exists x \exists y (P(x,y) \wedge B)$	$P(x,v) \wedge (y \neq v) \wedge P(y,u)$	<i>,</i>))),			
then what is the meaning	g of the expression $F(v, w)$?					
lacksquare A v is a brother of w .		$\boxed{\mathbf{C}}$ v is an uncle of	w.			
$\boxed{\mathbb{B}} \ v \text{ is a nephew of } w.$		$\boxed{\mathbb{D}}$ v is a grandfather of w.				
Question 2. In this que	estion, assume the following	predicate and constant s	ymbols:			
V(x,y): x wrote y $h: Hardy$ $L(x,y): x is longer than y$ $a: Austen$ $V(x): x is a novel$ $j: Jude the 0$		p : Pride and Predjudice.				
_	s, which of the predicate log- n any of Austen's" in predicate	_	ent the sentence, "Hardy wrote of			
		$\boxed{\mathbb{C}} \ \forall x \forall y (W(h,x) \land W(a,y) \to L(x,y))).$				
Question 3. Which of	the following predicate calcu	lus formulas must be true	e under all interpretations?			
I. $(\forall x P(x) \lor \forall x Q(x))$		III. $(\exists x P(x) \lor \exists x Q($	$(x)) \longrightarrow \exists x (P(x) \lor Q(x)).$			
	$\longrightarrow (\forall x P(x) \lor \forall x Q(x)).$					
A I only.	B III only.	C I and II.	D I and III.			
Question 4. Which of	these is NOT a valid inference	ce rule, where A, B and C	C are any propositional formula?			
$lacksquare$ From $\neg B$ and A —	$\rightarrow B \text{ infer } \neg A.$	$igchic C$ From A and $A \longrightarrow B$ infer B .				
B From A infer $A \wedge B$.		\bigcirc From A infer $\neg \neg A$.				
Question 5. Which for	mula captures the following	statement most accurate	ly?			
"When the next Central Bank buys	t large bank gets into troubl the bank (b)."	e (t) , the financial syste	m collapses (c) unless the			

Question 7. Of all the students at HCMUT, 55% were born in HCMC. Of those born in HCMC, 85% speak English well. Of those not born in HCMC, 32% speak English well. A student was selected at random. What is the probability that this student was born in HCMC or speaks English well?						
A $0.55 \times 0.85 \times 0.32$.		\Box	0.55 + 0.32.	D $0.55 \times 0.85 + 0.32$.		
Question 8. A newspaper sports reporter has a 58% accuracy for predicting the winners in V-league 2015. A radio sports reporter has a 65% accuracy for predicting the winners. For a particular match, what is the probability that at least one of these reporters will make a correct prediction?						
$\boxed{A} \ 1 - 0.58 \times 0.65.$		\bigcirc 0.58 + 0.65 - 0.58 \times 0.65.				
\bigcirc B $0.58 + 0.65$.		D	0.58×0.65 .			
Question 9. Suppose the monthly demand for tomatoes (a perishable good) in a small town is random. With probability $1/2$, demand is 50; with probability $1/2$, demand is 100. You are the only producer of tomatoes in this town. Tomatoes sell for a fixed price of 1 USD, cost 0.50 USD to produce, and can only be sold in the local market. If you produce 60 tomatoes, your expected profit is:						
A 15 USD.	B 25 USD.	$\boxed{\mathbf{C}}$	45 USD	\bigcirc 50 USD		
Question 10. Let S be the	e collection of all sets with a	t mos	st 5 elements. Then			
$oxed{A}$ An element of S is a elements.	set with 1, 2, 3, 4, or 5	\bigcirc	An element of S is a se	et with 25 elements.		
B An element of S is a number than 5.	umber which is not greater	D	An element of S is a set of elements.	with an arbitrary number		
Question 11. Let $A = \{\text{all diet soda pops}\}$, $B = \{\text{all cola soda pops}\}$, and $D = \{\text{all caffeine-free soda pops}\}$. Describe the set $(A - D) \cap B$ in words.						
All diet soda pops that contain caffeine and all cola soda pops		C All diet caffeine-free cola soda pops				
B All non-diet, caffeine-free cola soda pops		D All diet cola soda pops that contain caffeine				
Question 12. Say that two real numbers a and b are related if the sum of their squares is 2015. Then this relation is						
A function.		C Symmetric.				
B An equivalence relation	1.	D	Anti-symmetric.			
Question 13. Say that two functions f and g , with domain \mathbb{R} , are related if $f(x) \leq g(x)$ for every $x \in \mathbb{R}$. Then						
A This is an equivalence	relation.	\bigcirc	This is a function.			
B This is an order relation.		$\hfill \hfill $				
Question 14 . Exactly which of the relations R_1, R_2 , and R_3 on $\{1, 2, 3, 4\}$ that are given below are antisymmetric?						
$R_1 = \{(1,1), (1,2), (2,2), (2,3), (3,3), (3,4), (4,4), (4,1)\};$ $R_2 = \{(1,1), (1,2), (2,3), (3,3), (3,2), (4,2)\};$ $R_3 = \emptyset.$						
$\boxed{\textbf{A}} \ R_1, R_2$	$lacksquare$ B R_1, R_3	C	R_2, R_3	\square R_2		

Question 15.	The number of functions $f: \{1, 2,, 2015\} \longrightarrow \{1, 2,, 100\}$ is:					
		C 2015×100 .	D $2015! + 100!$.			
Question 16.	The number of relations from $\{1, 2,, 5\}$ to $\{1, 2,, 100\}$ is:					
\bigcirc A 100^5 .		\bigcirc 2 ¹⁰⁵ .	$\boxed{\mathrm{D}} \ 2^{500}.$			
Question 17.	The number of increasing functions $f:\{1,2,,15\} \longrightarrow \{1,2,,2015\}$ is:					
\bigcirc A 15^{2015} .		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \boxed{D} \frac{2015!}{15!}. $			
Question 18.	ion 18. The number of surjective (onto) functions $f: \{1, 2,, 5\} \longrightarrow \{1, 2,, 100\}$ is:					
A 0.		\bigcirc 100 ⁵ .	$ \boxed{D} \frac{100!}{5!}. $			
Question 19.	Let $f:A\longrightarrow B$ and $g:B\longrightarrow C$ be f	unctions. Which of the followi	ng statements is incorrect?			
A If f and g are one-to-one, then $g \circ f$ is one-to-one. C If $g \circ f$ is one-to-one, then f is one-to-one.						
$oxed{B}$ If $g \circ f$ is onto, then f is onto.		$\boxed{\mathbb{D}}$ If f is onto and $g \circ f$ is one-to-one, then g is one-to-one.				
Question 20. How many solutions are there of the equation $x_1 + x_2 + x_3 = 12$ with x_1, x_2, x_3 positive integers?						
$\boxed{A} \binom{14}{2}.$	$(B) \binom{13}{2}$.	$C \binom{12}{2}$.	$D \binom{11}{2}$.			
THE END						
	Test Approved by:	Test Prepared by:				
		aubl				
		Nguyen An Khuong, P	hD			