Dérivabilité des fonctions de $\mathbb R$ dans $\mathbb K$

Cornou Jean-Louis

6 décembre 2022

Dans tout ce cours, I désigne un intervalle non vide et non réduit à un point. Cela revient à dire que son intérieur est non vide, donc qu'il existe $(b,c) \in I^2$ tels que b < c et $]b,c[\subset I.$ a désigne un réel appartenant à I. f désigne une fonction de I à valeurs dans \mathbb{K} . On distinguera les cas $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ quand ce sera nécessaire.

1 Fonctions dérivables, fonction dérivée

1.1 Dérivabilité locale

Définition 1 On appelle taux d'accroissement de f en a l'application $\tau_a: \mathbb{I}\setminus\{a\} \to \mathbb{K}, x\mapsto \frac{f(x)-f(a)}{x-a}$.

Définition 2 On dit que f est dérivable en a lorsque la fonction τ_a admet une limite finie en a, il est équivalent de dire que τ_a possède des limites finies et égales à gauche et à droite en a, puisque τ_a n'est pas définie en a.

Notation

On note $f'(a) = \lim_{x \to a, x \neq a} \tau_a(x)$. C'est le nombre dérivé de f en a.

Propriété 1 Si f est dérivable en a, alors f est continue en a

∧ Attention

La réciproque est bien entendu fausse, comme le montre la valeur absolue en 0.

Théorème 1 (**Développement limité d'ordre 1 en a**) La fonction f est dérivable en a si et seulement si il existe une fonction ϵ définie dans un voisinage V de f et de limite nulle en f telle que

$$\forall h \in V, f(a+h) = f(a) + f'(a)h + h\varepsilon(h)$$

Remarque

Cette formulation permet d'éviter de se tracasser avec des dénominateurs nuls.

Propriété 2 Soit f et g dérivables en a, α et β des scalaires. Alors $\alpha f + \beta g$ et fg sont dérivables en a et

$$(\alpha f + \beta g)'(a) = \alpha f'(a) + \beta g'(a)$$
 et $(fg)'(a) = f(a)g'(a) + f'(a)g(a)$

Propriété 3 Soit $g: J \to \mathbb{K}$ dérivable en f(a), alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = g'(f(a))f'(a)$.

Propriété 4 Si f ne s'annule pas en a et f dérivable en a, alors 1/f est définie au voisinage de a et dérivable en a.

$$\left(\frac{1}{f}\right)'(a) = \frac{-f'(a)}{f(a)^2}$$

Propriété 5 $f: I \to \mathbb{C}$ est dérivable en a si et seulement si $\Re \mathfrak{C}(f)$ et $\operatorname{Im}(f)$ sont dérivables en a auquel cas

$$f'(a) = \Re (f)'(a) + i \operatorname{Im}(f)'(a)$$

1.2 Dérivabilité globale

Définition 3 On dit que f est dérivable sur l lorsque pour tout élément a de l, f est dérivable en a. L'application $I \to \mathbb{K}$, $a \mapsto f'(a)$ est appelée fonction dérivée de f, notée f'.

Notation

On note $D(I, \mathbb{K})$ l'ensemble des fonctions dérivables sur I

Propriété 6 L'espace $D(I, \mathbb{K})$ est stable par combinaison linéaire et par produit.

Exemple 1 Soit $(f_i)_{i \in [1,n]}$ une famille finie de fonctions dérivables. Alors

$$\left(\left(\prod_{i=1}^{n} f_{i}\right)' = \sum_{i=1}^{n} f_{i}' \left(\prod_{k=1, k \neq i}^{n} f_{k}\right)$$

Théorème 2 Si $f: I \rightarrow K$ est dérivable et $f'(a) \neq 0$, alors

Catalogue de fonctions dérivées, de dérivées de fonctions composées

2 Variations des fonctions dérivables

lci, f est à valeurs réelles.

2.1 Extrema, théorème de Rolle

Définition 4 On dit que f admet un extremum local en a lorsqu'il existe un voisinage V de a tel que a est un extremum de $f_{|V\cap I|}$

Exemple 2 Sinus, $x \mapsto x \sin(x)$

Propriété 7 On suppose que a appartient à l'intérieur de I, et que f est dérivable en a. Si f admet un extremum local en a, alors f'(a) = 0

Démonstration. Etablir le signe du taux d'accroissement à gauche et à droite en a, puis passer à la limite.

Exemple 3 C'est bien entendu faux si a est une extrémité réelle de l.

Théorème 3 (Rolle) Soit a, b deux réels tels que a < b, f continue sur [a, b] et f dérivable sur]a, b[. On suppose que f(a) = f(b). Alors

$$\exists c \in]a, b[, f'(c) = 0$$

Démonstration. D'après le théorème des bornes atteintes, comme f est continue sur un segment, f atteint son maximum et son minimum dans le segment [a,b]. Si les deux extrema sont atteints aux bornes, alors f est constante, donc de dérivée nulle sur [a,b]. Sinon, l'un de ces extremums est atteint dans]a,b[. D'après ce qui précède, la dérivée de f s'annule en ce point.

Exemple 4 Pas de généralisation au cas complexe. La fonction $t\mapsto e^{it}$ est périodique, mais se dérivée ne s'annule jamais.

2.2 Accroissements finis

Théorème 4 (Égalité des accroissements finis) Soit a, b deux réels tels que a < b. On suppose que f est continue sur [a, b], dérivable sur [a, b], derivable sur [a, b] tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Démonstration. Appliquer le théorème de Rolle à $x\mapsto f(x)-f(a)-(x-a)\frac{f(b)-f(a)}{b-a}$

Théorème 5 (Égalité des accroissements finis généralisée) f et g tout ça.

Théorème 6 (Inégalité des accroissements finis) Soit a, b deux réels dans l tels que a < b. On suppose que f est continue sur [a, b], dérivable sur [a, b]. On suppose de plus que

$$\exists M \in \mathbb{R}^+, \forall t \in]a, b[, |f'(t)| \leq M$$

Alors

$$\forall (x, y) \in [a, b]^2, |f(x) - f(y)| \le M|x - y|$$

Remarque

Ce théorème est l'un des rares à posséder une généralisation dans le cas complexe

Propriété 8 Avec les mêmes hypothèses que précédemment, f est M-Lipschitzienne.

2.3 Variations

Propriété 9 On suppose f dérivable sur l. Alors

- f est croissante si et seulement si $f' \ge 0$.
- f est strictement croissante si et seulement si $f' \ge 0$ et $\{x \in ||f'(x) = 0\}$ ne contient aucun intervalle d'intérieur non vide.
- f est décroissante si et seulement si $f' \leq 0$.
- f est strictement décroissante si et seulement si $f' \le 0$ et $\{x \in ||f'(x)| = 0\}$ ne contient aucun intervalle d'intérieur non vide.

Propriété 10 Il suffit que f' > 0 pour que f soit strictement croissante. Il suffit que f' < 0 pour que f soit strictement décroissante.

Exemple 5 Dérivabilité du sinus cardinal en 0. Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin(x)/x$ si $x \ne 0$, $x \mapsto 1$ si x = 0. Alors f est dérivable en 0 et f'(0) = 0.

Théorème 7 (Limite de la dérivée) On considère le cas où $a \in I$, f continue sur I, f' dérivable sur $I \setminus \{a\}$. On suppose que $f'_{|I \setminus \{a\}}$ admet une limite finie I en a. Alors f est dérivable en a, f'(a) = I et f' est continue en a.

3 Fonctions de classe C^k .

Opérations sur les fonctions de classe C^k . Formule de Leibniz, quotient, composition, réciproque.