



# <u>Calculation</u> - <u>Equalization</u> - <u>Bandpass</u> <u>Filter</u> •

Calculating the <u>bandwidth</u> at -3 dB <u>cut-off frequencies</u>  $f_1$  and  $f_2$ 

when center frequency  $f_0$  and Q factor is given. The bandwidth BW is between lower and upper cut-off frequency.



3 dB bandwidth  $BW = f_2 - f_1 = f_0/Q$  and <u>quality factor</u> is Q factor EQ filter <u>conversion</u> Q factor to <u>bandwidth in octaves</u> NParametric peak equalizer and notch (dip) equalizer

People use 'O' and 'bandwidth' interchangeably, though they're not

People use 'Q' and 'bandwidth' interchangeably, though they're not.

Defining the bandwidth for a bandpass as the −3 dB points cannot be correct for a boost gain of 3 dB or less.

 $f_1$  and  $f_2$  = <u>corner frequency</u> = <u>cut-off frequency</u> = <u>crossover frequency</u> = <u>half-power frequency</u> = <u>3 dB frequency</u> = <u>break frequency</u> is all the same.

The <u>center frequency</u>  $f_0$  is the <u>geometric mean</u> of  $f_1$  and  $f_2$  $BW = \Delta f = f_0 / Q$   $Q = f_0 / BW$   $f_0 = BW \times Q = \sqrt{(f_1 \times f_2)}$ 

 $BW = f_2 - f_1$   $f_1 = f_0^2 / f_2 = f_2 - BW$   $f_2 = f_0^2 / f_1 = f_1 + BW$ 

Center frequency  $f_0$  1000 Hz Q factor or quality factor Q 1.414

reset  $\downarrow$  calculate

Lower cutoff frequency  $f_1$  Hz

Upper cutoff frequency  $f_2$  Hz

Formula for the lower cutoff frequency:

$$f_1 = f_0 \left( \sqrt{1 + \frac{1}{4Q^2}} - \frac{1}{2Q} \right)$$

Formula for the upper cutoff frequency:

$$f_2 = f_0 \left( \sqrt{1 + \frac{1}{4Q^2}} + \frac{1}{2Q} \right)$$

Formula for the *Q* factor:

$$Q = \frac{f_0}{f_2 - f_1}$$

Formula for the bandwidth:

$$f_2 - f_1 = \frac{f_0}{Q}$$

A high filter quality means narrow-band filtering (notch), with a large Q factor. This results in steep filter flanks with a small bandwidth.

A low filter quality means broad-band filtering, with a small Q factor. This results in flat filter flanks with a large bandwidth.

#### **Notice:**

A low Q factor gives a broad band (wide) bandwidth or a high Q factor gives a narrow band (small) bandwidth.

## Q factor as a function of the bandwidth in octaves N (octave bandwidth)

| Bandwidth in octaves <i>N</i> | Q factor  |
|-------------------------------|-----------|
| 3.0 wide                      | 0.404 low |
| 2.5                           | 0.511     |
| 2.0                           | 0.667     |
| 1.5                           | 0.920     |
| 1.0                           | 1.414     |
| 2/3                           | 2.145     |
| 1/2                           | 2.871     |
| 1/3                           | 4.318     |
| 1/6                           | 8.651     |
|                               |           |

1/12 small 17.310 high

Conversion: 'bandwidth in octaves' N to quality factor Q
Interrelationship of 'octave bandwidth' N and the quality factor Q
Formulas for conversion of bandwidth in octaves to quality factor
Questions on "Parametric filter adjustment"
Conversion table Q to N and N to Q for parametric filters
Filter slope or steepness (dB/oct) is not bandwidth
Excel conversion - quality factor Q to bandwidth in octaves N
Calculating the center frequency from a given bandwidth
Finding the filter center frequency - geometric mean
Conversion RC-pad - R × C to Corner frequency fc and Cutoff
frequency to R × C - Time constant t (tau) = R × C

Why is the bandwidth and the cutoff frequency found at the level of "-3 dB"? Why we always take 3 dB down gain of a filter? Full width at half maximum (FWHM).

Answer: That is the point where the energy (power) is fallen to the value  $\frac{1}{2}$  or 0.5 = 50 percent of the initial power as energy quantity, that is equivalent to (-)3 dB =  $10 \times \log(0.5)$ . A (-)3 dB power drop is a decrease of 50 % to the value of 50 %.

There the voltage is fallen to the value of  $\sqrt{(\frac{1}{2})}$  or 0.7071 = 70.71 percent of the initial voltage as field quantity equivalent to (-)3 dB =  $20 \times \log(0.7071)$ . A (-)3 dB voltage drop is a decrease of 29.29 % to the value of 70.71 %.

(-)3 dB implies  $\frac{1}{2}$  the electric power and since the power is proportional to the square of voltage, the value will be 0.7071 or 70.71 % of the passband voltage.

 $\sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \sqrt{0.5} = 0.7071$ .  $P \sim V^2$ , that is  $0.5 \sim 0.7071^2$ .

Sound engineers and sound designers ("ear people") mostly use the usual (sound) **field quantity**. That'swhy they say:

The cutoff frequency of a device (microphone, amplifier, loudspeaker) is the frequency at which the output voltage level is decreased to a value of (-)3 dB below the input voltage level (0 dB).

• (-)3 dB corresponds to a factor of  $\sqrt{\frac{1}{2}} = 1/\sqrt{2} = 0.7071$ , which is 70.71% of the input voltage.

Acousticians and sound protectors ("noise fighters") seem to like more the (sound) **energy quantity.** They tell us:

The cutoff frequency of a device (microphone, amplifier, loudspeaker) is the frequency at which the output power level is decreased to a value of (–)3 dB below the input power level (0 dB).

• (-)3 dB corresponds to a factor of  $\frac{1}{2}$  = 0.5, which is 50% of the input power (half the value).

**Note:** Power gain (power amplification) is not common in audio engineering. Even power amplifiers for loudspeakers don't amplify the power. They amplify the audio voltage that moves the voice coil.

#### Sound field quantities



Sound pressure, sound or particle velocity, particle displacement or displacement amplitude, (voltage, current, electric resistance).

Inverse Distance Law 1/r

### Sound energy quantities

Sound intensity, sound energy density, sound energy, acoustic power. (electrical power).

<u>Inverse Square Law 1/r²</u>

**Note:** A sound field quantity (sound pressure p, electric voltage V) is not a sound energy quantity (sound intensity I, sound power  $P_{ak}$ ).  $I \sim p^2$  or  $P \sim V^2$ . Sometimes you can hear the statement: The cutoff frequency is there where the level L is

decreased by (-)3 dB.

Whatever the user wants to tell us so accurately: Level is level or dB is dB.

## **Bandwidth for Yamaha Parametric Equalizer**

For a Yamaha parametric equalizer EQ there is the filter bandwidth of an octave divided in 60/60 (12 semitones).

One half tone step (semitone) is then 5/60 – 01V Digital Mixing Console. **Conversion:** 

N = "bandwidth in octaves" (semi tone or half tone distance). Q = Q factor

| Filter<br>EQ | N     | Q      | Interval      | - 1 | ilter<br>EQ | N     | Q     | Interval    |
|--------------|-------|--------|---------------|-----|-------------|-------|-------|-------------|
| 5/60         | 0.083 | 17.31  | Semitone step |     | 95/60       | 1.583 | 0.867 |             |
| 10/60        | 0.167 | 8.651  | Whole tone    |     | 100/60      | 1.667 | 0.819 |             |
| 15/60        | 0.25  | 5.764  |               |     | 105/60      | 1.75  | 0.776 |             |
| 20/60        | 0.333 | 4.318  | 1/3 octave    |     | 110/60      | 1.833 | 0.736 |             |
| 25/60        | 0.417 | 3.45   |               |     | 115/60      | 1.917 | 0.7   |             |
| 30/60        | 0.5   | 2.871  | 1/2 octave    |     | 120/60      | 2     | 0.667 | 2 octaves   |
| 35/60        | 0.583 | 2.456  | Fifth         |     | 125/60      | 2.083 | 0.636 |             |
| 40/60        | 0.667 | 2.145  |               |     | 130/60      | 2.167 | 0.607 |             |
| 45/60        | 0.75  | 1.902  |               |     | 135/60      | 2.25  | 0.581 |             |
| 50/60        | 0.833 | 1.707  |               |     | 140/60      | 2.333 | 0.556 |             |
| 55/60        | 0.917 | 1.548  |               |     | 145/60      | 2.417 | 0.532 |             |
| 60/60        | 1     | 1.,414 | 1 octave      |     | 150/60      | 2.5   | 0.511 | 2.5 octaves |
| 65/60        | 1.083 | 1.301  |               |     | 155/60      | 2.583 | 0.49  |             |
| 70/60        | 1.67  | 1.204  |               |     | 160/60      | 2.667 | 0.471 |             |
| 75/60        | 1.25  | 1.119  |               |     | 165/60      | 2.,75 | 0.453 |             |
| 80/60        | 1.333 | 1.044  |               |     | 170/60      | 2.883 | 0.436 |             |
| 85/60        | 1.417 | 0.979  |               |     | 175/60      | 2.917 | 0.419 |             |
| 90/60        | 1.5   | 0.92   | 1.5 octaves   |     | 180/60      | 3     | 0.404 | 3 octaves   |

The "BW/60" control replicates the effect of the Behringer Pro DSP1124P - Feedback Destroyer bandwidth setting. This control sets the bandwidth of the filter between the half-gain points with:

BW (Hz) = 
$$f_0 \times (BW / 60) \times \sqrt{2}$$

For example, at a bandwidth setting of 60/60 a filter centred on 1 kHz with a gain of -6 dB will have a bandwidth of 1,414 Hz between the points where its response crosses -3 dB. This bandwidth remains constant as the filter's gain is adjusted. Note that the Behringer DSP1100 - 24 band parametric equalizer software package does **NOT** correctly reproduce the way the bandwidth control actually operates, its bandwidths are too small by a factor of  $\sqrt{2}$ .

Defining filter bandwidth in this way is not uncommon (the TMREQ filters use a similar definition).

The relationship between Q and BW for the DSP1124P is:

$$Q = 60 / [(BW / 60) \times \sqrt{2}]$$

So the bandwidth range of 1/60 to 120/60 gives a range from Q = 42.4 to 0.35.



At the cut-off frequency  $f_c$  of a drop the **voltage** V is always fallen to the value

 $1/\sqrt{2} = 0.7071 \equiv 70.71$  % and the voltage level is damped by  $20 \times \log (1/\sqrt{2}) = (-)3.0103$  dB.

At the cut-off frequency (half-power frequency) the less interesting **power** *P* 

is always fallen to

 $1/2 = 0.5 \equiv 50$  % and the power level is damped by

 $10 \times \log (1/2) = (-)3.0103 \text{ dB} - \text{that is the same dB value}.$ 

This is often confusing. 0.7071 × 0.7071 is 0.5 and  $P = V^2/R$ ;  $P \sim V^2$ . What do you mean by 3 dB cutoff frequency? Why is it 3 dB, not 1 dB? Answer: The power P is always fallen there to 1/2 = 0.5 = 50 %.

Quality Factor 
$$Q = f_0 / BW$$
  
 $BW = f_0/Q$   $Q = f_0/BW$   $f_0 = BW \times Q$ 

Please enter two values, the third value will be calculated.

| Center | frequency $f_0$  |           | Hz | <u> </u> |
|--------|------------------|-----------|----|----------|
| Ва     | andwidth BW      |           | Hz | $f_0$    |
| Qua    | ality Factor $Q$ |           |    | BO       |
| reset  |                  | calculate |    |          |

# Measurement of input impedance and output impedance

| Search Engine Indine | back < | Search Engine | home 🛆 |
|----------------------|--------|---------------|--------|
|----------------------|--------|---------------|--------|