河北大学 物理科学与技术学院《激光原理》测试题

第四章 激光振荡特性

— 、	简答题
١,	

— 、	简答题
1.	试解释均匀加宽激光器中的自选模效应(简明起见,仅考虑基横模运转)。
2.	对于内腔式均匀加宽单模气体激光器,在刚开机点亮预热的一段时间里,可观察到激光输出频率在增益曲线中心频率附近振荡。首先逐渐连续减小,然后突然跳变增大,再重复该过程。同时输出功率也随之起伏。试解释该现象。
3.	试解释驻波腔激光器中增益的轴向空间烧孔效应,并简要说明轴向空间烧孔的影响。
4.	试简单分析单模激光器在小信号增益系数大于阈值增益时,稳定工作状态建立的过程。

5.	什么是振荡线宽? 简述影响激光器振荡线宽的因素。
6.	什么是兰姆凹陷? 试定性解释兰姆凹陷产生的原因。
7.	一般固体脉冲激光器会出现弛豫振荡现象。试定性解释弛豫振荡产生的原因。
8.	为何单模激光器的线宽极限不为零,试定性说明其原因。
	证明题 激光器的工作物质长为 l ,折射率为 η ,谐振腔长 L ,谐振腔中除工作物质外的其余部分折射率为 η'
•	工作物质中光子数密度为 N ,光的单程损耗为 δ ,真空中的光速为 c 。试证明对频率为中心频率的光 $\frac{\mathrm{d}N}{\mathrm{d}t} = \Delta n \sigma_{21} c N \frac{l}{L'} - N \frac{\delta c}{L'}$ 其中 $L' = \eta l + \eta' (L - l)$ 为腔的光学长度。

三、综合题

- 10. 某无源 F-P 腔激光谐振腔的在工作物质中心频率附近的一段频谱,如下图所示。(设腔内充满工作物质,折射率均为 $\eta=1$)。试计算:
 - (1) 该 F-P 谐振腔的腔长 L;
 - (2) 该 F-P 谐振腔的时间常数;
 - (3) 若对工作物质进行激励,为了使激光器出现自激振荡,中心频率处小信号增益系数 g_m^0 应为多少?

- 11. He-Ne 激光工作物质的多普勒宽度 $\Delta\nu_D=1450~{\rm MHz}$,中心频率处小信号增益系数 $g_m=1.2\times 10^{-3}~{\rm cm}^{-1}$ 。腔长 $L=120~{\rm cm}$,放电管长 $l=100~{\rm cm}$ 。输出镜的透射率为 0.06,忽略光腔的其它损耗。
 - (1) 试求该激光器的纵模间隔;
 - (2) 试求该激光器的阈值增益系数;
 - (3) 若仅有基横模运转,试估算有几个纵模可以振荡。
 - 注: 多普勒加宽工作质小信号增益系数为

$$g_i^0(\nu) = g_m \exp\left[-\left(4\ln 2\right) \left(\frac{\nu - \nu_0}{\Delta \nu_D}\right)^2\right]$$

- 12. 如下图所示的激光谐振腔,其中凹面反射镜 M_1 与平面反射镜 M_2 的反射率分别为 $r_1=0.95$ 和 $r_2=0.85$,两个布儒斯特窗口对特定偏振光的透过率均为 T=98%,光腔的长度为 $L=50~{\rm cm}$,增益 介质的长度为 $l=30~{\rm cm}$,增益介质的折射率为 $\eta=1$ 。
 - (1) 若凹面反射镜 M_1 的曲率半径为 $R_1 = 1$ m, 试判断该腔的稳定性;
 - (2) 若增益介质的小信号增益系数 $g^0 = 0$ 时, 试求光腔的单程损耗因子;
 - (3) 若中心频率处小信号增益系数为 $g^0 = 4 \times 10^{-3} \text{ cm}^{-1}$,请问该激光器能否振荡,并说明原因。

