University of Vienna Faculty of Physics

Notes on Noncommutative Geometry and Particle Physics

Milutin Popovic Supervisor: Dr. Lisa Glaser

Week 7: 23.04 - 27.04

Contents

1	Classification of Finite Real Spectral Triples	2
2	Real Algebras and Krajewski Diagrams	7
3	Classification of Irreducible Geometries	8

1 Classification of Finite Real Spectral Triples

Here we classify finite real spectral triples modulo unitary equivalence with Krajewski Diagrams. We extend Λ -decorated graphs to the case of real spectral triples (grading and real structure).

The Algebra:Like before:

$$A \simeq \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C}) \quad \text{with } \hat{A} = \{\mathbf{n}_1, \dots, \mathbf{n}_N\}$$
 (1)

Where \mathbf{n}_i are irreducible representation of A on \mathbb{C}^{n_i}

The Hilbertspace: Faithful irreducible representation on *A* are the direct sum of \mathbb{C}^{n_i} 's, which act on A by left block-diagonal matrix multiplication.

$$\bigoplus_{i=1}^{N} \mathbb{C}^{n_i} \tag{2}$$

Furthermore we need a representation of A° on H that commutes with A. That is

$$A^{\circ} \simeq \bigoplus_{i=1}^{N} M_{n_{i}}(\mathbb{C})^{\circ}$$
 with $\hat{A}^{\circ} = \{\mathbf{n}_{1}^{\circ}, \dots, \mathbf{n}_{N}^{\circ}\}$ (4)

with
$$\hat{A}^{\circ} = \{\mathbf{n}_1^{\circ}, \dots, \mathbf{n}_N^{\circ}\}$$
 (4)

and
$$\bigoplus_{i=1}^{N} \mathbb{C}^{n_i \circ}$$
 (5)

And we need the multiplicity space V_{ij} of $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ}$. Thus making the Hilbertspace:

$$H = \bigoplus_{i,j=1}^{N} \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ij}$$
 (6)

- \mathbf{n}_i , \mathbf{n}_i° form a grid
- if there is a node at $(\mathbf{n}_i, \mathbf{n}_i^{\circ})$ then $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ}$ is nonzero in H.
- multiplicity implies multiple nodes

Example 1. $A = \mathbb{C} \oplus M_2(\mathbb{C})$, two options of the Hilbertspace.

The first diagram corresponds to $H_1 = \mathbb{C} \oplus M_2(\mathbb{C})$, to the second $H_2 = \mathbb{C} \oplus \mathbb{C}^2$.

Exercise 1

Let J be an anti-unitary operator on a finite-dimensional Hilbert space. Show that J^2 is an unitary operator

Straight forward, say $J: H \to H$, then let $\xi_1, \xi_2 \in H$:

$$==$$
 (7)

$$= \langle J\xi_2, J\xi_1 \rangle = \langle \xi_1, \xi_2 \rangle$$
 (8)

The real Structure: $J: H \rightarrow H$.

Lemma 1. Let J be an anti-unitary operator on a finite-dimensional Hilbertspace H with $J^2 = \pm 1$

- 1. If $J^2 = 1 \Rightarrow \exists an \ ONB \{e_k\} \ of \ H$ with $Je_k = e_k$.
- 2. If $J^2 = -1 \Rightarrow \exists$ an ONB $\{e_k, f_k\}$ of H with $Je_k = f_k$ and consequently $Jf_k = -e_k$.

Proof. **1.** $J^2 = 1$

 $v \in H$ and set:

$$e_1 := \begin{cases} c(v+Jv) & \text{if } Jv \neq -v \\ iv & \text{if } Jv = -v \end{cases}$$
 (9)

Where c is a normalization constant, then take Je_1

$$J(v+Jv) = Jv + J^2v = v + Jv$$
 and (10)

$$J(iv) = -iJv = iv (11)$$

$$\Rightarrow Je_1 = e_1 \tag{12}$$

Take $v' \perp e_1$ making:

$$\langle e_1, Jv' \rangle = \langle J^2v', Je_1 \rangle = \langle v', Je_1 \rangle = \langle v', e_1 \rangle = 0$$
 (13)

Construct $e_2 \perp e_1$ with v':

$$e_2 := \begin{cases} c(v' + Jv') & \text{if } Jv' \neq -v' \\ iv' & \text{if } Jv' = -v' \end{cases}$$
 (14)

Do this *k* times and get $\{e_k\}$ ONB of *H* for $J^2 = 1$.

2. $J^2 = -1$

 $v \in H$ and set $e_1 = cv$, c normalization constant. Then we set $f_1 = Je_1$ with $f_1 \perp e_1$,

this is automatically the case because:

$$\langle f_1, e_1 \rangle = \langle Je_1, e_1 \rangle = -\langle Je_1, J^2 e_1 \rangle =$$
 (15)

$$= - \langle Je_1, e_1 \rangle = - \langle f_1, e_1 \rangle$$
 (16)

this only holds for 0. Then take some $v' \perp e_1, f_1$ and set $e_2 = c'v'$ and $f_2 = Je_2 \perp e_2, f_1, e_1$.

$$\langle e_1, f_2 \rangle = \langle e_1, Je_2 \rangle = -\langle J^2e_1, Je_2 \rangle = -\langle e_2, Je_1 \rangle = -\langle e_2, f_1 \rangle = 0$$
 (17)

$$\langle f_1, f_2 \rangle = \langle Je_1, Je_2 \rangle = \langle e_2, e_1 \rangle = 0.$$
 (18)

Do this k times and get $\{e_k, f_k\}$ ONB of H for $J^2 = -1$

Apply Lemma 1 to the real structure J on a spectral triple. J implements right action of A on H with

$$a^{\circ} = Ja^*J^{-1} \tag{19}$$

and satisfying $[a, b^{\circ}] = 0$. With the block form of A, this implies

$$J(a_1^* \oplus \cdots \oplus a_N^*) = (a_1^\circ \oplus \cdots \oplus a_N^\circ)J. \tag{20}$$

With this we can conclude that the Krajewski diagram for a real finite spectral triple is symmetric along the diagonal. *J* hast then the following bilinear mapping:

$$J: \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ij} \to \mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i \circ} \otimes V_{ji}. \tag{21}$$

Proposition 1. Let J be a real structure on a finite real spectral triple (A, H, D; J).

1. If $J^2=1$ (K0-dimension 0, 1, 6, 7) Rightarrow \exists an ONB $\{e_k^{(ij)}\}$ with $e_k^{(ij)} \in \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ij}$ such that

$$Je_k^{(ij)} = e_k^{(ij)} \quad (i, j = 1, ..., N; k = 1, ...dim(V_{ij}))$$
 (22)

2. If $J^2 = -1$ (KO-dimension 2, 3, 4, 5) $\Rightarrow \exists ONB \{e_k^{(ij)}, f_k^{(ji)}\}\$ with $e_k^{(ij)} \in \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ij}$ and $f_k^{(ji)} \in \mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i \circ} \otimes V_{ji}$ such that

$$Je_k^{(ij)} = f_k^{(ji)} \quad (i \le j = 1, \dots, N; \ k = 1, \dots, dim(V_{ji})).$$
 (23)

Proof. Similar to Lemma 1.

For whatever unknown reasons this implies that in the case of KO-dimension 2, 3, 4, 5, diagonals H_i need to have even multiplicity.

The finite Dirac Operator: Is a mapping between H_{ij} to H_{kl}

$$D_{ii,kl}: \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ii} \to \mathbb{C}^{n_k} \otimes \mathbb{C}^{n_l \circ} \otimes V_{kl}$$
 (24)

We have $D_{kl,ij} = D_{ij,kl}^*$. And in the diagram we have a line between the nodes $(\mathbf{n}_i, \mathbf{n}_j^\circ)$ and $(\mathbf{n}_l, \mathbf{n}_k^\circ)$. But instead of drawing directional lines draw a single undirected line that represents both $D_{ij,kl}$ and the adjoint $D_{kl,ij}$.

Lemma 2. The conditions $JD = \pm DJ$ and $[[D,a],b^{\circ}] = 0$ imply that the connections in the diagram run only vertically or horizontally and thereby the diagonal symmetry between the nodes is preserved.

Proof. The condition $JD = \pm DJ$ has the following commutative diagram.

$$\mathbb{C}^{n_i \circ} \otimes \mathbb{C}^{n_j \circ} \otimes V_{ij} \xrightarrow{D} \mathbb{C}^{n_k \circ} \otimes \mathbb{C}^{n_l \circ} \otimes V_{kl}
\downarrow^J
\mathbb{C}^{n_j \circ} \otimes \mathbb{C}^{n_i \circ} \otimes V_{ji} \xrightarrow{\pm D} \mathbb{C}^{n_l \circ} \otimes \mathbb{C}^{n_k \circ} \otimes V_{lk}$$

Relating $D_{ii,kl}$ to $D_{ii,kl}$ and maintaining diagonal symmetry. Wit the condition $[[D,a],b^{\circ}]=$ 0 for the diagonal elements $a = \lambda_1 \mathbb{I}_{n_1} \oplus \cdots \oplus \lambda_N \mathbb{I}_{n_N} \in A$ and $b = \mu_1 \mathbb{I}_{n_1} \oplus \cdots \oplus \mu_N \mathbb{I}_{n_N} \in A$, with some $\lambda_i, \mu_i \in \mathbb{C}$, we can commute:

$$D_{ii\,kl}(\lambda_i - \lambda_k)(\bar{\mu}_i - \bar{\mu}_l) = 0 \tag{25}$$

$$\forall \lambda_i, \mu_i \in \mathbb{C}$$
, thus $D_i j, kl = 0$ for $i \neq j$ or $j \neq i$.

The Grading: $\gamma: H \to H$ each node gets labeled by a + or a - sign.

- D only connects nodes with different signs
- If $(\mathbf{n}_i, \mathbf{n}_i^{\circ})$ has $\mathbf{n} \pm \sin \theta$ then $(\mathbf{n}_j, \mathbf{n}_i^{\circ})$ has $\mathbf{n} \mp, \varepsilon''$ sign according to $J\gamma = \varepsilon''\gamma J$

Definition 1. A Krajewski Diagram of KO-dimension k is an ordered pair (Γ, Λ) where Γ is a finite graph and Λ is a set of positive integers with a labeling:

- of $v \in \Gamma^{(0)}$ of vertices by elements $\iota(v) = (n(v), m(v)) \in \Lambda \times \Lambda$, an edge from vto v' implies that either n(v) = n(v') or m(v) = m(v') or both
- of $e = (v_1, v_2) \in \Gamma^{(1)}$ edges with non-zero operators D_e and their adjoints D_e^* :

$$D_e: \mathbb{C}^{n(v_1)} \to \mathbb{C}^{n(v_2)} \qquad \text{if} \quad m(v_1) = m(v_2)$$

$$D_e: \mathbb{C}^{m(v_1)} \to \mathbb{C}^{m(v_2)} \qquad \text{if} \quad n(v_1) = n(v_2)$$

$$(26)$$

$$D_e: \mathbb{C}^{m(v_1)} \to \mathbb{C}^{m(v_2)} \qquad \text{if} \quad n(v_1) = n(v_2) \tag{27}$$

Together with an involutive graph automorphism $j: \Gamma \Rightarrow \Gamma$ such that the following conditions hold:

- 1. every row or column in $\Gamma \times \Gamma$ has non-empty intersection with $\iota(\Gamma)$
- 2. for each vertex v we have n(j(v)) = m(v)
- 3. for each edge e we have $D_e = \varepsilon' D_{i(e)}$
- 4. if KO dimension k is even, then the vertices are labeled by ± 1 and the edges only connect opposite signs. The signs at v and j(v) differ by a factor of ε
- 5. if the K0-dimension is 2, 3, 4, 5 then the inverse image of ι of the diagonal elements in $\Lambda \times \Lambda$ contains an even number of vertices of Γ

With this definition we can label different vertices by the same element in $\Lambda \times \Lambda$ (accounting for the multiplicities in V_{ij})

Diagram: To sum it up we have the following diagram

- Node at $(\mathbf{n}_i, \mathbf{n}_i^{\circ})$ for each vertex with that label
- Operators D_e add up to $D_{ij,kl}$ connecting nodes $(\mathbf{n}_i, \mathbf{n}_i^\circ)$ with $(\mathbf{n}_k, \mathbf{n}_l^\circ)$

$$D_{ij,kl} = \sum_{\substack{e = (v_1, v_2) \in \Gamma^{(1)} \\ \iota(v_1) = (\mathbf{n}_i, \mathbf{n}_j) \\ \iota(v_2) = (\mathbf{n}_k, \mathbf{n}_l)}} D_e$$

$$(28)$$

· only vertical or horizontal connections

Theorem 1. There is a one-to-one correspondence between finite real spectral triples $(A, H, D; J, \gamma)$ of K0-dimension k modulo unitary equivalence and Krajewski diagrams of KO-dimension k in the following way:

$$A = \bigoplus_{n \in \Lambda} M_n(\mathbb{C}) \tag{29}$$

$$H = \bigoplus_{\tau = (0)} \mathbb{C}^{n(\nu)} \otimes \mathbb{C}^{m(\nu)} \circ \tag{30}$$

$$A = \bigoplus_{n \in \Lambda} M_n(\mathbb{C})$$

$$H = \bigoplus_{v \in \Gamma^{(0)}} \mathbb{C}^{n(v)} \otimes \mathbb{C}^{m(v)}$$

$$D = \sum_{e \in \Gamma^{(1)}} D_e + D_e^*$$

$$(31)$$

The real structure $J: H \to H$ is given as as in Proposition 1 with a basis dictated by a graph automorphism $j:\Gamma\to\Gamma$. The grading γ is differed by setting $\gamma=\pm 1$ on $\mathbb{C}^{n(v)} \otimes \mathbb{C}^{m(v)} \circ \subset H$ according to the labeling \pm of the vertex v.

Example 2. $A = M_n(\mathbb{C})$ with $\hat{A} = \mathbf{n}$. We have the following Krajewski diagram.

- We can label the node either with a + or a sign, the choice being irrelevant
- $H = \mathbb{C}^n \otimes \mathbb{C}^{n \circ} \simeq M_n(\mathbb{C})$
- γ trivial grading (+1)
- *J* is a combination of complex conjugation and the flip $n \otimes n^{\circ}$ ($\Rightarrow M_n(\mathbb{C})$ as matrix adjoint)
- ullet Because node label is \pm there is no non-zero Dirac operator
- \Rightarrow $(A = M_n(\mathbb{C}), H = M_n(\mathbb{C}), D = 0; J = (\cdot)^*, \gamma = 1)$

2 Real Algebras and Krajewski Diagrams

Definition 2. A real Algebra is a Vector space A over \mathbb{R} with $A \times A \to A$, $(a,b) \mapsto ab$ and $1a = a1 = a \ \forall a \in A$

A real *-algebra is a real algebra with a bilinear map * : $A \to A$ such that $(ab)^* = b^*a^*$ and $(a^*)^* \quad \forall a,b \in A$

Example 3. Real *-algebra of quaternions \mathbb{H} subalgebra of $M_2(\mathbb{C})$.

$$\mathbb{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$
 (32)

 \mathbb{H} consists of matrices that commute in $M_2(\mathbb{C})$ with the operator I defined by:

$$I\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} -\bar{v}_2 \\ \bar{v}_1 \end{pmatrix} \tag{33}$$

The involution is the hermitian conjugation of $M_2(\mathbb{C})$.

Exercise 2

- 1. Show that $\mathbb H$ is a real *-algebra which contains a real subalgebra isomorphic to $\mathbb C.$
- **2.** Show that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \simeq M_2(\mathbb{C})$ as complex *-algebras.
- **3.** Show that $M_k(\mathbb{H})$ is areal *-algebra for any k
- **4.** Show that $M_k(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \simeq M_{2k}(\mathbb{C})$ as complex *algebras.

Definition 3. A representation of a finite-dimensional real * algebra *A* is a pair (π, H) , *H*-Hilbertspace, $\pi: A \to L(H)$

Exercise 3

Show that there is a one-to-one correspondence between Hilbertspace representations of real *-algebras A and complex representations of its complexification $A \otimes_{\mathbb{R}} \mathbb{C}$. Conclude that the unique irreducible Hilbertspace representation of $M_k(\mathbb{H})$ is \mathbb{C}^{2k}

Lemma 3. Real *-algebra A represented faithfully on a finite dimensional Hilbertspace H through a real linear *-algebra map $\pi: A \to L(H)$ hen A is a matrix algebra.

$$A \simeq \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{F}_i) \tag{34}$$

Where $\mathbb{F}_i = \mathbb{R}, \mathbb{C}, \mathbb{H}$ depending on i.

Proof. π allows A to be considered as a real *-subalgebra of $M_{dim(H)}(\mathbb{C}) \Rightarrow A + iA$ complex *-subalgebra of $M_{dim(H)}(\mathbb{C})$. Then A+iA is a matrix algebra and A+iA= $M_k(\mathbb{C})$ for $k \geq 1$. Thus we have

$$A \cap iA = \begin{cases} \{0\} & \text{if } A = M_k(\mathbb{C}) \\ A + iA = M_k(\mathbb{C}) \end{cases}$$
(35)

Furthermore *A* is a fixed point algebra of an anti-linear automorphism α of $M_k(\mathbb{C})$ with $\alpha(a+ib)=a-ib$ for $a,b\in A$. Implement α by an anti-linear isometry I on \mathbb{C}^n such that $\alpha(x)=I\times I^{-1} \quad \forall x\in M_k(\mathbb{C})$. Now since $\alpha^2=1$, I^2 commutes with $M_k(\mathbb{C})$ and is proportional to a complex scalar $I^2=\pm 1$ and A is the commutant of I

- if $I^2 = 1 \implies \exists \{e_i\} \text{ ONB of } \mathbb{C}^k \text{ with } Ie_i = e_i, \text{ then } A = M_k(\mathbb{R})$
- if $I^2 = -1 \implies \exists \{e_i, f_i\} \text{ ONB of } \mathbb{C}^k \text{ with } Ie_i = f_i, (k \text{ even})$ Therefor *I* must be a $k/2 \times k/2$ matrix because of commutation with $M_k(\mathbb{C})$, then $A = M_{k/2}(\mathbb{H})$

The Krajewski diagrams can also classify real algebras, as long as we take \mathbb{F}_i for each *i* into account. That is we enhance the set Λ to be

$$\Lambda = \{\mathbf{n}_1 \mathbb{F}_1, \dots, \mathbf{n}_N \mathbb{F}_N\} \tag{36}$$

Reducing in to the previous Λ if all $\mathbb{F}_i = \mathbb{C}$.

3 Classification of Irreducible Geometries

Classify irreducible real spectral triples based on $M_N(\mathbb{C} \oplus M_N(\mathbb{C})$ for some N

Definition 4. A finite real spectral triple $(A, H, D; J, \gamma)$ is called irreducible if the triple (A,H,J) is irreducible, that is when

- 1. The representation of A and J on H are irreducible
- 2. The action of A on H has a separating vector

Theorem 2. Let $(A, H, D; J, \gamma)$ be an irreducible finite real spectral triple of KOdimension 6. Then exists a positive integer N such that $A \simeq M_N(\mathbb{C}) \oplus M_N(\mathbb{C})$.

Proof. Let $(A, H, D; J, \gamma)$ be an arbitrary finite real spectral triple, corresponding to

$$A = \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C}) \tag{37}$$

$$A = \bigoplus_{i}^{N} M_{n_{i}}(\mathbb{C})$$

$$H = \bigoplus_{i,j=1}^{N} \mathbb{C}^{n_{i}} \otimes \mathbb{C}^{n_{j} \circ} \otimes V_{ij}$$

$$(38)$$

Remember that each $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j}$ is a irreducible representation of A. In order for H to support the real structure J we need both $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j}$ and $\mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i}$. With Lemma 1 with $J^2 = 1$ with multiplicity $dim(V_{ij}) = 1$ we have such a structure. Hence

$$H = \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j} \oplus \mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i} \tag{39}$$

For $i, j \in \{1, ..., N\}$

For the second condition (existence of the separating vector). The representations of A in H are only faithful if $A = M_{n_i}(\mathbb{C}) \oplus M_{n_j}(\mathbb{C})$. The stronger condition applies $n_i = n_j$ then we have $A'\xi = H$ with the commutant of A and $\xi \in H$ the separating vector. Normally since $A' = M_{n_j}(\mathbb{C}) \oplus M_{n_i}(\mathbb{C})$ with $dim(A') = n_i^2 + n_j^2$ and $dim(H) = 2n_i n_j$ we have a equality $n_i = n_j$.