Calculus II: Assignment 3

Jeremy Favro

February 2, 2024

Consider the region below the curve $y = \frac{1}{x}$ and above the x-axis for $1 \le x < \infty$.

Problem 1. Compute the area of the given region, both by hand and using SageMath.

Solution 1.

$$= \int_{1}^{\infty} \frac{1}{x} dx$$

$$= \lim_{n \to \infty} \left[\int_{1}^{n} \frac{1}{x} dx \right]$$

$$= \lim_{n \to \infty} \left[\ln(x) \Big|_{1}^{n} \right]$$

$$= \lim_{n \to \infty} \left[\ln(n) - \ln(1) \right]$$

$$= \lim_{n \to \infty} \ln(n)$$

$$= +\infty$$

Using sage to evaluate:

[1]: +Infinity

$$\therefore$$
 the area of $\frac{1}{x}$ on $[1,\infty)$ is ∞

Problem 2. Compute the volume of the solid obtained by revolving the given region about the x-axis, both by hand and using SageMath.

Solution 2.

$$= \pi \int_{1}^{\infty} \frac{1}{x^{2}} dx$$

$$= \lim_{n \to \infty} \left[\pi \int_{1}^{n} \frac{1}{x^{2}} dx \right]$$

$$= \lim_{n \to \infty} \left[-\pi \frac{1}{x} \Big|_{n}^{1} \right]$$

$$= -\pi \lim_{n \to \infty} \left[\frac{1}{x} \Big|_{n}^{1} \right]$$

$$= -\pi \lim_{n \to \infty} \left[\frac{1}{n} - \frac{1}{1} \right]$$

$$= -\pi \lim_{n \to \infty} \frac{1}{n} - 1$$

$$= \pi$$

Using sage to evaluate:

[2]: pi

 \therefore the volume of $\frac{1}{x}$ on $[1,\infty)$ rotated about the x-axis is π

Problem 3. There is something a little paradoxical about the (correct :-) answers to 1 and 2. What is the paradox? Explain what's going on as best you can.

Solution 3. The area under $\frac{1}{x}$ (on $[1,\infty)$, implied) is infinite, but the volume of the solid of revolution about the x-axis is finite, π in this case. This seems paradoxical as rotating an infinite area about the x-axis should give you an infinite volume. I think the reason this doesn't occur is because $\int \frac{1}{x} dx = \ln(x)$, which is strictly increasing (though very slowly, as $x \to \infty$, $\ln(x) \to \infty$), whereas $\int \frac{1}{x^2} dx = -\frac{1}{x}$, which is strictly decreasing (again though very slowly, as $x \to \infty$, $-\frac{1}{x} \to \infty$, though $-\frac{1}{x}$ will never equal 0). This means that though the area is infinite, the amount added to the volume decays ("falls off") quick enough that it approaches a finite value, which is a little weird sounding but I think it makes sense.

Woohoo, finally figured out how to do nice embedding of sage code in IATEX, now to figure out plotting solids of revolution