

Efficient Quantized Sparse Matrix Operations on Tensor Cores

Shigang Li*, Kazuki Osawa⁺, Torsten Hoefler⁺

*School of Computer Science, Beijing University of Posts and Telecommunications

[†]Department of Computer Science, ETH Zurich

Model size is growing exponentially

Models are also compressible

Sparsification

SpMM

- 1. Self-attention in sparse Transformers
- 2. Forward pass of pruned models

• •

Sparsity in scientific: > 99%

SDDMM

- 1. Attention score in sparse Transformers
- 2. Backward pass of **pruned models**

...

Quantization

Combining sparsification with quantization

Mart van Baalen et al., Bayesian bits: Unifying quantization and pruning, NeurIPS 2020

- H. Yang et al., Automatic neural network compression by sparsity-quantization joint learning: A constrained optimization based approach, CVPR 2020
- S. Han et al., Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, ICLR 2016

...

Tensor cores for deep learning acceleration

(18.7 TFLOPS for fp16) (125 TFLOPS for fp16)

(624 TOPS for int8)

(2,000 TOPS for int8)

Images and GIFs in this slide are from https://www.nvidia.com/en-us/data-center/tensor-cores/

Challenges

(1) How to achieve practical speedup in a large range of sparsity ratio, e.g., 50% ~ 98%?

SpMM with 2x1 block sparsity on A100 tensor cores, using 1,536 sparse matrices from DL domain

(2) How to efficiently support sparse workloads with mixed precision (two input matrices with different precision),

e.g., 8-bit weights and 4-bit activation?

	Hopper	Ampere	Turing	Volta
Supported Tensor Core precisions	FP64, TF32, bfloat16, FP16, FP8, INT8	FP64, TF32, bfloat16, FP16, INT8, INT4, INT1	FP16, INT8, INT4, INT1	FP16

Two input matrices must be the same precision

Libraries of sparse matrix computation

¹ Mixed precision means two input matrices with different precision

I :h wo wy		Pre	cisior	ı	Spai	Тана с п. С с на	
Library	fp16	int8	int4	mixed	granularity	DL-friendly?	Tensor Core
cuSPARSE [10]	✓	✓	X	X	fine-grained	•	•
cust AKSE [10]	✓	✓	X	X	block	Ů	£
cuSPARSELt [11]	✓	✓	✓	X	2:4 structured	Ċ	£
Sputnik [13]	✓	X	X	X	fine-grained	Ů	•
vectorSparse [14]	✓	X	X	X	1-D block	Ů	c
Magicube (ours)	X	✓	✓	✓	1-D block	Ů	Ů

Sparse matrix with 1-D non-zero blocks

Data layout of m8n8k16 for int8 mma on Tensor Cores

SR-BCRS sparse matrix format

Sparse matrix with 1-D block non-zeros, the length of the 1-D block = 2, 4, or 8

SR-BCRS (ours) is more friendly to Tensor Cores

Matrix A for mma

A (row-major)													
Col Row	0	1	2	3	4	5	6	7	8	9	10	11	12 13 14 15
0	T0: {a∞,	a ₀₁ ,	a02,	a03}	T1: {ao4	, a os	, a 06,	a ₀₇ }	T2: {ao	в , а о	9 , a oa,	аоь}	T3: {aoc, aod, aoe, aof}
1	T4: {a10,	a11,	a12,	a13}	T5: {a14	1, a 15	, a ₁₆	, a ₁₇ }	T6: {a1	в , а 1	o , a 1a,	a _{1b} }	T7: {a1c, a1d, a1e, a1f}
7	T28:{a70,	a71,	a 72 ,	a ₇₃ }	T29:{a ₇	4 , a 75	s , a 76	, a77}	T30:{a ₇	8 , a 7	9 , a 7a,	, а _{7ь} }	T31:{a⁊c, aʔd, aʔe, aʔf}

Λ (man man i a m)

SpMM in Magicube

N (dense) row-major K BS_n Stride=BS_k V=BS_m warp0 warp: BS_n M (dense) $A_{\text{(sparse)}}$ (in SR-BCRS format)

(b) SpMM in Magicube at thread-block level

Load rows of matrix B to shared memory for int8

Load blocks of matrix B to shared memory for int8

Local transpose on registers for int8

Local transpose on registers for int8

Efficiency is guaranteed by:

- (1) coalesced global memory access
- (2) conflict-free shared memory access
- (3) fast transpose on registers

Data layout of m8n8k16 for int8 mma

MMAs in SpMM with int8

The warp-level view of MMAs in SpMM with int8

Efficient local transpose for int4 with indices shuffling

Prefetch data blocks of matrix B of SpMM

Load data from GM to SM

```
Algorithm 1 Prefetch the data block of dense matrix B
      steps = nnz / BS_k;
      Load_A_values_and_indices_to_shared(0);
        _syncthreads();
                                               → Cold start
      Prefetch_B_values_to_registers(0);
      for i=1; i < steps; i++ do
           Store_B_values_on_regs_to_shared(i-1);
                                                    Load data and
           Load_A_values_and_indices_to_shared(i);
                                                    indices to SM
            __syncthreads();
           Prefetch_B_values_to_registers(i);
                                                    Overlap prefetch
           MMA_compute_tiles(i-1);
                                                    with MMA
            __syncthreads();
      end for
      Store_B_values_on_regs_to_shared(i-1);
       _syncthreads();
                                               The tail of pipeline
      MMA_compute_tiles(i-1);
```


SDDMM in Magicube

(a) SDDMM

(b) SDDMM in Magicube at thread-block level

MMAs in SDDMM

The thread-block level view of SDDMM

The warp-level view of MMAs in SDDMM

Mixed precision

a is an 8-bit **unsigned** integer, b is unsigned 4-bit

a = 11101101 (237 in decimal)

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

a is an 8-bit **signed** integer, b is signed 4-bit a = 11101101 (-19 in decimal)

(a) Emulation of A (8-bit) * B (4-bit) using 4-bit mma

Evaluation

- NVIDIA A100-SXM4-40GB GPU
 - total 108 SMs
 - each SM has 192KB configurable L1 cache and shared memory, and 256KB registers
 - supported datatypes on Tensor Core: int8, int4, int1, fp16, bf16, tf32, fp64
- Compare the performance of Magicube with sparse libraries (vectorSparse, cuSPARSE) and dense libraries (cuBLAS, cuDNN)
- Micro-benchmarks: 1,536 sparse matrices from Deep Learning Matrix Collection (DLMC) with sparsity 50%~98%, dilating each scalar with 1-D blocks (length V = 2, 4, 8)
- Case study: end-to-end sparse Transformer inference

One streaming multiprocessor (SM) of GA100

This image is from: R. Krashinsky, et al. https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ May, 2020

Ablation study for SpMM in Magicube

Ablation study for optimizations of SpMM

SpMM with mixed precision in Magicube

SpMM with mixed precision

Lx-Ry means x-bit A matrix multiplied by y-bit B matrix

Benchmarking SpMM and SDDMM

SDDMM on A100 GPU using 1,536 sparse matrices

End-to-end sparse Transformer inference

Quantized self-attention with sparse attention mask

Latency of end-to-end inference of sparse Transformer

End-to-end sparse Transformer inference

dei	sparsity=0.9					
PyTorch (cuDNN, fp32)	PyTorch (cuDNN, fp16)	vectorSparse (fp16)	Magicube (16b-8b)	Magicube (8b-8b)	Magicube (8b-4b)	
57.36%	57.50%	57.14%	57.32%	57.11%	56.79%	

Test accuracy of text classification using sparse Transformer

with num_heads=4 and seq_len=4,096

Conclusion

1. Challenges

2. SR-BCRS format

3. SpMM in Magicube

4. SDDMM in Magicube

5. Mixed precision

6. Evaluation

https://zenodo.org/record/6924338 https://github.com/Shigangli/Magicube

