Diretoria de Tecnologia e Inovação

ROBÓTICA

Módulo 2

Mecanismo: Irrigador AULA 13 Automático

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Cleiton Rosa Simone Sinara de Souza

Validação de Conteúdo

Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

Ilustração

Jocelin Vianna

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da Aula	5
1. Contextualização	5
2. Montagem e Programação	6
3. Feedback e Finalização	14
Videotutorial	15

Introdução

A técnica de irrigação automática consiste no fornecimento de água ao solo em quantidade ideal, de modo a garantir a sobrevivência e produtividade das plantas presentes nesse.

Nesta aula, você terá a oportunidade de programar um protótipo, constituído por componentes eletrônicos, que permite simular o mecanismo utilizado em irrigadores automáticos.

Objetivos desta Aula

- Demonstrar a importância da irrigação automática na manutenção hídrica de plantas;
- Simular o mecanismo de funcionamento de um irrigador automático.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Lista de Materiais

- 01 Placa Protoboard;
- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 01 Módulo Sensor de Umidade do Solo Higrômetro;
- 01 Motor DC:
- O1 Módulo Relé 5V;
- 01 Bateria de 9V:
- O1 Clipe para bateria;
- O5 Jumpers Fêmea-Fêmea;
- 05 Jumpers Macho-Macho;
- 50 cm Fio Paralelo de 0,5mm;
- 01 Recipiente (copo descartável) com água;
- O1 Recipiente (copo descartável) com terra seca;
- 01 Notebook:
- Software Arduino IDF.

Roteiro da Aula

1. Contextualização (15min):

Você já deve ter estudado que a água é a substância fundamental da vida, pois atua como solvente e transporte de substâncias orgânicas e na elaboração de substâncias essenciais ao crescimento e desenvolvimento de animais e plantas. Estudou também que a ausência de água nesses seres provoca um desequilíbrio hídrico, podendo inclusive levá-los à morte. Tendo estas informações, você saberia identificar quando um organismo necessita de água?

Nos animais, incluindo a espécie humana, quando o corpo precisa de água para realizar as funções vitais ele sinaliza através da sede. Assim, ao bebermos água estamos contribuindo para o equilíbrio hídrico de nosso organismo.

Para as plantas, a necessidade de água é sinalizada quando os tecidos vegetais se tornam murchos e as folhas se fecham. Quando isso acontece, elas precisam absorver do substrato em que se encontram (aquático ou terrestre) a quantidade de água necessária para seu desenvolvimento.

Sabendo disso, em regiões onde há escassez de água e/ou períodos prolongados de seca, agricultores utilizam a técnica de irrigação automática com a finalidade de fornecer água em quantidade suficiente às plantas, elevando a produção e melhorando a qualidade do produto. Esta técnica, também, tem sido cada vez mais utilizada em residências para garantir a hidratação necessária às plantas ornamentais e/ou hortas caseiras, quando moradores não dispõem de tempo para regá-las.

Na **Aula 12 - Sensor de Umidade do Solo**, aprendemos que este sensor permite, através do método de medição de quantidade de água por resistência elétrica, detectar a umidade do solo, informando se há ou não necessidade de irrigação.

Nesta aula, entre outros componentes, utilizaremos novamente o Sensor de Umidade do Solo para simular, via programação, o mecanismo de funcionamento de um irrigador automático com o intuito de demonstrar a eficiência deste equipamento na manutenção hídrica das plantas.

2. Montagem e Programação (60min):

Vamos iniciar a montagem dos componentes eletrônicos, conectando 1 Jumper Macho-Macho entre a porta GND do Arduino e a linha azul da Protoboard. A seguir, com auxílio de outro Jumper Macho-Macho, conecte a porta 5V do Arduino com a linha vermelha da Protoboard, como mostra a figura 1.

Figura 1 - Ligação de jumpers Macho-Macho a placa de Protoboard e Arduino

Agora, faça a ligação entre o Módulo Relé, a bateria de 9 Volts e o Motor DC. Para esta ação, conecte, através de fios paralelos de 0,5 milímetros, o clipe de bateria ao Borne localizado em uma das extremidades do Módulo Relé, e a um dos fios do Motor DC, figura 2. Utilize mais 1 fio paralelo de 0,5 milímetros para ligar o Motor DC ao Borne central do Módulo Relé, conforme a figura 2.

Figura 2 - Conexão entre bateria, relé e microbomba

Uma vez conectados os três componentes eletrônicos - Bateria, Relé e Motor DC -, o próximo passo é conectar o Módulo Relé às placas Protoboard e Arduino. Para isso, prepare 3 Jumpers Macho-Fêmea, interligando 1 Jumper Macho-Macho para cada Jumper Fêmea-Fêmea.

Na sequência, utilize 1 Jumper Macho-Fêmea para conectar a porta GND do Módulo Relé à linha azul da Protoboard. Com outro Jumper Macho-Fêmea, interligue a porta VCC do Módulo Relé à linha vermelha da Protoboard, figura 3. O terceiro Jumper Macho-Fêmea você utilizará para conectar a porta IN1 do Módulo Relé à porta 8 da placa Arduino, conforme exposto na figura 3.

9v fritzing

Figura 3 - Conexão entre módulo relé e as placas Protoboard e Arduino

O próximo componente eletrônico conectado às placas Protoboard e Arduino é o Módulo Sensor de Umidade do Solo Higrômetro. Para tanto, prepare o sensor conectando 2 Jumpers Fêmea-Fêmea entre o módulo e a sonda, figura 4.

A seguir, prepare 3 Jumpers Macho-Fêmea para conectar o Sensor de Umidade às placas Protoboard e Arduino, na respectiva sequência: insira 1 Jumper entre o pino VCC do módulo sensor e a linha vermelha da Protoboard. Insira outro Jumper entre o pino GND do módulo sensor e a linha azul da Protoboard. Finalize, inserindo o terceiro Jumper entre o pino de saída analógica do sensor e a porta analógica (AO) do Arduino (figura 4).

Figura 4 - Conexão entre o módulo sensor de umidade e às placas Protoboard e Arduino

Agora, vamos programar!

Concluída a montagem dos componentes eletrônicos, espete a sonda do sensor em um recipiente com terra seca e programe o Arduino para a leitura do Sensor de Umidade do Solo e ativação/desativação do Módulo Relé de 5 volts.

Linguagem de programação por código

Parainiciar a programação, conecte a placa Arduino ao computador, através de um cabo USB, a fim de que ocorra a comunicação entre a placa microcontroladora e o Arduino IDE.

No software IDE, crie um sketch e lembre-se de selecionar a porta que o computador atribuiu ao Arduino; então, digite ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1:

Atenção!

Ao copiar o código diretamente do pdf, evite quebra da página (e consequentemente erros na compilação), copiando o código por partes.

Quadro 1 - Código-fonte da programação na linguagem do Arduino

```
/* Código de Funcionamento para Sistema de Monitoramento e
Irrigação com Arduino */

/* Define o pino A0 como "pinoAnalog" */
#define pinoAnalog A0
/* Define o pino 8 como "pinoRele" */
#define pinoRele 8
```



```
/* Variável que armazena a leitura analógica do sensor */
int ValAnalogIn;
void setup() {
 /* Declara a velocidade da porta serial em 9600 bauds */
  Serial.begin (9600);
 /* Condfigura o pinoRele como Saída */
 pinMode(pinoRele, OUTPUT);
void loop() {
 /* Armazena o valor analógico recebido do sensor */
  ValAnalogIn = analogRead(pinoAnalog);
  /* Converte o valor analógico em uma escala de 0% à 100% */
  int Porcento = map(ValAnalogIn, 1023, 0, 0, 100);
  /* Imprime a porcentagem de umidade no monitor Serial */
  Serial.print(Porcento);
  /* Imprime o símbolo % junto ao valor encontrado */
  Serial.println("%");
  /* Se a porcentagem for menor ou igual à 45 */
  if (Porcento <= 45) {</pre>
   /* Imprime a frase no monitor serial */
    Serial.println("Irrigando a planta ...");
    /* Altera o estado do pinoRele para nível Alto */
    digitalWrite(pinoRele, HIGH);
  else { /* Se não ... */
    /* Imprime a frase no monitor serial */
    Serial.println("Planta Irrigada ...");
    /* Altera o estado do pinoRele para nível Baixo */
    digitalWrite(pinoRele, LOW);
  /* Aguarda 1 segundo para a próxima leitura */
  delay (1000);
```


Com o código-fonte inserido no Arduino IDE, compile o programa pressionando o botão **Verificar** para examinar se não há erros de sintaxe. Estando o código correto, pressione o botão **Carregar** para realizar a transferência do programa para o Arduino.

Após a transferência do programa para o Arduino, é ativada a leitura do Sensor de Umidade do Solo da seguinte maneira: com a sonda espetada no solo seco, o sensor detectará uma baixa umidade (abaixo de 45%) e acionará o funcionamento do Motor DC através da ativação do Módulo Relé. À medida que for sendo adicionada água neste solo, o sensor identificará no solo a umidade ideal, conforme determinado na programação (acima de 45%), desligando o Módulo Relé, consequentemente, o Motor DC.

Vale destacar que o funcionamento de um sistema de irrigação automática ocorre da mesma forma que em nosso protótipo: quando o sensor detecta a umidade ideal no solo, o fornecimento de água é interrompido, contribuindo assim, para o desenvolvimento das plantas.

Que tal programar o irrigador para ligar quando o valor do sensor de umidade do solo for menor que 40% e desligar quando for maior que 60%?

O irrigador não funcionar, se atente a alguns dos possíveis erros:

- **a.** Verifique se os Jumpers estão nos pinos certos, se estão na mesma coluna dos terminais dos componentes, fazendo assim as conexões:
- **b.** Verifique se os Jumpers estão ligados aos pinos corretos no Arduino;
- **c.** Verifique se o Sensor de Umidade do Solo Higrômetro está conectado corretamente às placas Arduino e Protoboard;
- **d.** Verifique se a programação está adequada a cada porta analógica.

3. Feedback e Finalização (15min):

- **a.** Confira, compartilhando seu projeto com os demais colegas, se o objetivo foi alcançado.
- **b.** Analise seu projeto desenvolvido, de modo a atender aos requisitos para funcionamento de um mecanismo de irrigação automática.
 - c. Reflita se as seguintes situações ocorreram:
 - i. Colaboração e Cooperação: você e os membros de sua equipe interagiram entre si, compartilhando ideias que promoveram a aprendizagem e o desenvolvimento deste projeto?
 - **ii.** Pensamento Crítico e Resolução de Problemas: você conseguiu identificar os problemas, analisar informações e tomar decisões de modo a contribuir para o projeto desenvolvido?
- **d.** Reúna todos os componentes utilizados nesta aula e os organize novamente, junto aos demais, no kit de robótica.

Videotutorial

Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:

https://rebrand.ly/a13robotica2

Acesse, também, pelo QRCode:

