MATH 162: Calculus II Framework for Mon., Mar. 12 Dot Products and Projections

Today's Goal: To define the dot product and learn of some of its properties and uses

The Dot Product

Definition: For vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, we define the *dot product* of \mathbf{u} and \mathbf{v} to be

$$\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Notes:

- The dot product $\mathbf{u} \cdot \mathbf{v}$ is a scalar (number), not another vector.
- Properties
 - 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - 2. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$.
 - 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
 - 4. $0 \cdot v = 0$
 - 5. $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$

Theorem: If **u** and **v** are nonzero vectors, then the angle θ between them satisfies

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}.$$

Note that, when $\theta = \pi/2$, the numerator on the right-hand side must be zero. This motivates the following definition.

Orthogonality

Definition: Two vectors \mathbf{u} and \mathbf{v} are said to be *orthogonal* (or *perpendicular*) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example: The zero vector **0** is orthogonal to every other vector. In 2D, the vectors $\langle a, b \rangle$ and $\langle -b, a \rangle$ are orthogonal, since

$$\langle a,b\rangle \, \boldsymbol{\cdot} \, \langle -b,a\rangle \; = \; (a)(-b)+(b)(a) \; = \; 0.$$

Example: Find an equation for the plane containing the point (1, 1, 2) and perpendicular to the vector $\langle A, B, C \rangle$.

Projections

Scalar component of u in the direction of v: $|\mathbf{u}|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|}$.

Vector projection of u onto v:

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} \; := \; \left(\begin{array}{c} \operatorname{scalar \; component \; of } \; \mathbf{u} \\ \operatorname{in \; direction \; of } \; \mathbf{v} \end{array} \right) \left(\begin{array}{c} \operatorname{direction} \\ \operatorname{of } \; \mathbf{u} \end{array} \right) \; = \; \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \right) \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) \; = \; \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \, \mathbf{v}.$$

Work

The work done by a constant force **F** acting through a displacement vector $\mathbf{D} = \overrightarrow{PQ}$ is given by

$$W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}| |\mathbf{D}| \cos \theta,$$

where θ is the angle between **F** and **D**.