# **Machine Learning**

## Topic 3

- Additive Models and Linear Regression
- •Sinusoids and Radial Basis Functions
- Classification
- Logistic Regression
- Gradient Descent

### Polynomial Basis Functions

- To fit a P'th order polynomial function to multivariate data: concatenate columns of all monomials up to power P
- •E.g. 2 dimensional data and 2<sup>nd</sup> order polynomial (quadratic)



#### Sinusoidal Basis Functions

 More generally, we don't just have to deal with polynomials, use any set of basis fn's:

$$f(x;\theta) = \sum_{p=1}^{P} \theta_p \phi_p(x) + \theta_0$$



- These are generally called Additive Models
- Regression adds linear combinations of the basis fn's
- •For example: Fourier (sinusoidal) basis  $\varphi_{2k}\left(x_{i}\right)=\sin\left(kx_{i}\right)\quad \varphi_{2k+1}\left(x_{i}\right)=\cos\left(kx_{i}\right)$
- Note, don't have to be a basis per se, usually subset



#### Radial Basis Functions

Can act as prototypes of the data itself

$$f(\mathbf{x}; \mathbf{\theta}) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \left\| \mathbf{x} - \mathbf{x}_k \right\|^2\right)$$

•Parameter  $\sigma$  = standard deviation  $\sigma^2$  = covariance

controls how wide bumps are what happens if too big/small?



Called RBF for short







#### Radial Basis Functions

Each training point leads to a bump function

$$f(\mathbf{x}; \theta) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2\right)$$

•Reuse solution from linear regression:  $\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ •Can view the data instead as X, a big matrix of size N x N

$$\mathbf{X} = \begin{bmatrix} \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_3\right\|^2\right) \end{bmatrix}$$

•For RBFs, X is square and symmetric, so solution is just

$$\nabla_{\boldsymbol{\theta}} R = 0 \rightarrow \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y} \rightarrow \mathbf{X} \boldsymbol{\theta} = \mathbf{y} \rightarrow \boldsymbol{\theta}^* = \mathbf{X}^{-1} \mathbf{y}$$

## **Evaluating Our Learned Function**

- •We minimized empirical risk to get  $\theta^*$
- •How well does  $f(x;\theta^*)$  perform on future data?
- •It should *Generalize* and have low True Risk:

$$R_{true}\left(\theta\right) = \int P(x,y)L(y,f(x;\theta))dx dy$$

- •Can't compute true risk, instead use Testing Empirical Risk
- We randomly split data into training and testing portions

$$\left\{\!\left(\boldsymbol{x}_{\!\scriptscriptstyle 1},\boldsymbol{y}_{\!\scriptscriptstyle 1}\right)\!,\ldots,\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N},\boldsymbol{y}_{\!\scriptscriptstyle N}\right)\!\right\} \qquad \qquad \left\{\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N+1},\boldsymbol{y}_{\!\scriptscriptstyle N+1}\right)\!,\ldots,\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N+M},\boldsymbol{y}_{\!\scriptscriptstyle N+M}\right)\!\right\}$$

- •Find  $\theta^*$  with training data:  $R_{train}\left(\theta\right) = \frac{1}{N}\sum_{i=1}^{N}L\left(y_i,f\left(x_i;\theta\right)\right)$
- •Evaluate it with testing data:  $R_{test}\left(\theta\right) = \frac{1}{M}\sum_{i=N+1}^{N+M}L\left(y_{i},f\left(x_{i};\theta\right)\right)$

#### Crossvalidation

- Try fitting with different sigma radial basis function widths
- •Select sigma which gives lowest  $R_{test}(\theta^*)$



- Think of sigma as a measure of the simplicity of the model
- •Thinner RBFs are more flexible and complex

### Regularized Risk Minimization

- Empirical Risk Minimization gave overfitting & underfitting
- We want to add a penalty for using too many theta values
- This gives us the Regularized Risk

$$\begin{split} R_{regularized}\left(\theta\right) &= R_{empirical}\left(\theta\right) + Penalty\left(\theta\right) \\ &= \frac{1}{N} \sum\nolimits_{i=1}^{N} L\left(y_i, f\left(x_i; \theta\right)\right) + \frac{\lambda}{2N} \left\|\theta\right\|^2 \end{split}$$

Solution for Regularized Risk with Least Squares Loss:

$$\nabla_{\theta} R_{regularized} = 0 \implies \nabla_{\theta} \left( \frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^{2} + \frac{\lambda}{2N} \left\| \theta \right\|^{2} \right) = 0$$

$$\theta^{*} = \left( \mathbf{X}^{T} \mathbf{X} + \lambda I \right)^{-1} \mathbf{X}^{T} \mathbf{y}$$

## Regularized Risk Minimization

- •Have D=16 features (or P=15 throughout)
- •Try minimizing  $R_{regularized}(\theta)$  to get  $\theta^*$  with different  $\lambda$
- •Note that  $\lambda$ =0 give back Empirical Risk Minimization



#### Crossvalidation

- Try fitting with different lambda regularization levels
- •Select lambda which gives lowest  $R_{test}(\theta^*)$



- Lambda measures simplicity of the model
- Models with low lambda are more flexible

## From Regression To Classification

Classification is another important learning problem

$$\begin{array}{ll} \text{Regression} & \mathcal{X} = \left\{ \left(\mathbf{x}_1, y_1\right), \left(\mathbf{x}_2, y_2\right), \dots, \left(\mathbf{x}_N, y_N\right) \right\} & \mathbf{x} \in \mathbb{R}^D \quad y \in \mathbb{R}^1 \\ & \text{Classification} & \mathcal{X} = \left\{ \left(\mathbf{x}_1, y_1\right), \left(\mathbf{x}_2, y_2\right), \dots, \left(\mathbf{x}_N, y_N\right) \right\} & \mathbf{x} \in \mathbb{R}^D \quad y \in \left\{0, 1\right\} \end{array}$$

- •E.g. Given x = [tumor size, tumor density] Predict y in {benign,malignant}
- •Should we solve this as a least squares regression problem?







## Classification vs. Regression

- a) Classification needs binary answers like {0,1}
- b) Least squares is an unfair measure of risk here e.g. Why penalize a correct but large positive y answer? e.g. Why penalize a correct but large negative y answer?
- •Example: not good to use regression output for a decision  $f(x)>0.5 \rightarrow Class 1$   $f(x)<0.5 \rightarrow Class 0$  if f(x)=-3.8 & correct class=0, squared error penalizes it...



We pay a hefty squared error loss here even if we got the correct classification result. The thick solid line model makes two mistakes while the dashed model is perfect

## Classification vs. Regression

We will consider the following four steps to improve from naïve regression to get better classification learning:

- 1) Fix functions f(x) to give binary output (logistic neuron)
- 2) Fix our definition of the Risk we will minimize so that we get good classification accuracy (logistic loss)

...and later on...

- 3) Make an even better fix on f(x) to binarize (perceptron)
- 4) Make an even better risk (perceptron loss)

#### Logistic Neuron (McCullough-Pitts)

•To output binary, use squashing function g().

$$f(\mathbf{x}; \theta) = \theta^T \mathbf{x}$$



Linear neuron

$$egin{aligned} f\left(\mathbf{x}; \mathbf{ heta}
ight) &= g\left(\mathbf{ heta}^T\mathbf{x}
ight) \ g\left(z
ight) &= \left(1 + \exp\left(-z
ight)
ight)^{-1} \end{aligned}$$



Logistic Neuron



This squashing is called sigmoid or logistic function

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \mathbf{\theta}) = (1 + \exp(-\mathbf{\theta}^T \mathbf{x}))^{-1}$$

#### Short hand for Linear Functions

•What happened to adding the intercept?

$$f(\mathbf{x};\theta) = \theta^T \mathbf{x} + \theta_0$$

$$= \begin{bmatrix} \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix}^T \begin{bmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} + \theta_0 = \begin{bmatrix} \theta_0 \\ \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} = \vec{\theta}^T \vec{\mathbf{x}}$$

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Fix#1: use f(x) below, output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \theta) = \left(1 + \exp(-\theta^T \mathbf{x})\right)^{-1}$$

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Fix#1: use f(x) below, output 1 if f(x)>0.5 and 0 otherwise

Squared Loss Logistic Loss

$$f(\mathbf{x}; \theta) = \left(1 + \exp(-\theta^T \mathbf{x})\right)^{-1}$$

•Fix#2: instead of squared loss, use Logistic Loss



- This method is called Logistic Regression.
- •But Empirical Risk Minimization has no closed-form sol'n:

$$R_{emp}\left(\boldsymbol{\theta}\right) = \frac{_{1}}{^{N}} \sum\nolimits_{i=1}^{N} \! \left(\boldsymbol{y}_{i} - 1\right) \! \log \! \left(1 - f\!\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)\right) - \boldsymbol{y}_{i} \log \! \left(f\!\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)\right)$$

•With logistic squashing function, minimizing  $R(\theta)$  is harder

$$\begin{split} R_{emp}\left(\theta\right) &= \tfrac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_{i} - 1\right) \log\left(1 - f\left(\mathbf{x}_{i}; \theta\right)\right) - y_{i} \log\left(f\left(\mathbf{x}_{i}; \theta\right)\right) \\ \nabla_{\theta} R &= \tfrac{1}{N} \sum\nolimits_{i=1}^{N} \left[\frac{1 - y_{i}}{1 - f\left(\mathbf{x}_{i}; \theta\right)} - \frac{y_{i}}{f\left(\mathbf{x}_{i}; \theta\right)}\right] f'\left(\mathbf{x}_{i}; \theta\right) = 0 \end{aligned} ???$$

- Can't minimize risk and find best theta analytically!
- Let's try finding best theta numerically.
- Use the following to compute gradient

$$f(\mathbf{x}; \theta) = (1 + \exp(-\theta^T \mathbf{x}))^{-1} = g(\theta^T \mathbf{x})$$

•Here, g() is the logistic squashing function

$$g(z) = (1 + \exp(-z))^{-1} \quad g'(z) = g(z)(1 - g(z))$$



#### **Gradient Descent**

- Useful when we can't get minimum solution in closed form
- Gradient points in direction of fastest increase
- •Take step in the opposite direction!
- Gradient Descent Algorithm



choose scalar step size  $\eta$ , & tolerance  $\varepsilon$  initialize  $\theta^0 = \text{small random vector}$ 

$$\begin{array}{l} \theta^{1}=\theta^{0}-\eta \, \nabla_{\theta}R_{emp}\big|_{\theta^{0}}\,,\quad t=1\\ \text{\it while} \, \left\|\theta^{t}-\theta^{t-1}\right\|\geq \in \quad \{\\ \theta^{t+1}=\theta^{t}-\eta \, \nabla_{\theta}R_{emp}\big|_{\theta^{t}}\,,\quad t=t+1 \end{array}$$

•For appropriate  $\eta$ , this will converge to local minimum

- Logistic regression gives better classification performance
- Its empirical risk is

$$R_{emp}\left(\theta\right) = \frac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_{i} - 1\right) \log \left(1 - f\left(\mathbf{x}_{i}; \theta\right)\right) - y_{i} \log \left(f\left(\mathbf{x}_{i}; \theta\right)\right)$$

- This R(θ) is convex so gradient descent always converges to the same solution
- Make predictions using

$$f(\mathbf{x}; \mathbf{\theta}) = \left(1 + \exp\left(-\mathbf{\theta}^T \mathbf{x}\right)\right)^{-1}$$

- •Output 1 if f > 0.5
- Output 0 otherwise

