Second-Order Nédélec Curl-Conforming Prism for Finite Element Computations

Adrián Amor Martín, Luis Emilio García Castillo

17 May 2016

Table of contents

Table of contents

Motivation: Why another triangular prism?

- ► Previous approaches:
 - ▶ Volakis, 1997.
 - ▶ Graglia, 1998.
 - ► Tsiboukis, 2008.
 - Jiao, 2009.
 - ► Tobon, 2014.
- ► Systematic approach:

Motivation: Why another triangular prism?

- Previous approaches:
 - ▶ Volakis. 1997.
 - ► Graglia, 1998.
 - ► Tsiboukis, 2008.
 - ▶ Jiao, 2009.
 - ► Tobon, 2014.
- ► Systematic approach:
 - ► A priori known space of functions.
 - Definition of degrees of freedom as functionals.
 - Basis functions as dual basis with respect to those degrees of freedom
- ► Compatibility with tetrahedra previously implemented.

Motivation: Why another triangular prism?

- ► Previous approaches:
 - ▶ Volakis, 1997.
 - ► Graglia, 1998.
 - ► Tsiboukis, 2008.
 - ▶ Jiao, 2009.
 - ► Tobon, 2014.
- ► Systematic approach:
 - A priori known space of functions.
 - Definition of degrees of freedom as functionals.
 - Basis functions as dual basis with respect to those degrees of freedom
- ► Compatibility with tetrahedra previously implemented.

Outline

- ▶ Definition.
- ► Verification.
- ► Comparison with other authors: condition number.
- ▶ Integration in HOFEM (Higher Order Finite Element Method).

Table of contents

Mixed-Order Curl-Conforming Nédélec Elements

Domain.

Space construction

▶ Tensor product between triangle and segment.

$$\boldsymbol{\mathcal{P}_{k}^{\mathsf{prism}}} = (\mathcal{R}^{k}(\widehat{T}) \otimes \mathcal{P}_{k}(\widehat{I})) \times (\mathcal{P}_{k}(\widehat{T}) \otimes \mathcal{P}_{k-1}(\widehat{I}))$$

► Space dimension.

Dimensions	$\mathcal{R}^k(\widehat{T})$	$\mathcal{P}_k(\widehat{I})$	$\mathcal{P}_k(\widehat{T})$	$\mathcal{P}_{k-1}(\widehat{I})$	Total
k	(k+2)k	k+1	$\frac{(k+1)(k+2)}{2}$	k	_
k = 1	3	2	3	1	9
k = 2	8	3	6	2	36
k = 3	15	4	10	3	90
k = 4	24	5	15	4	180

Space definition

First order.

$$\mathcal{P}_{1}^{\mathsf{prism}} \equiv \mathbf{N}_{i} (i=1,...,9) = \left\{ egin{array}{l} a_{1}^{(i)} + a_{2}^{(i)}z + C^{(i)}y + D^{(i)}yz \ b_{1}^{(i)} + b_{2}^{(i)}z - C^{(i)}x - D^{(i)}xz \ c_{1}^{(i)} + c_{2}^{(i)}x + c_{3}^{(i)}y \end{array}
ight.
ight.$$

Second order.

$$\mathcal{P}_{2}^{\text{prism}} \equiv \mathbf{N}_{i} (i=1,...,36) = \left\{ \begin{array}{l} a_{1}^{(i)} + a_{2}^{(i)} \times + a_{3}^{(i)} y + a_{4}^{(i)} \times + a_{5}^{(i)} \times x + a_{6}^{(i)} y \times + a_{7}^{(i)} \times x^{2} + a_{8}^{(i)} \times x^{2} + ... \\ ... + a_{9}^{(i)} yz^{2} + C^{(i)} y^{2} + D^{(i)} xy + E^{(i)} y^{2} \times + F^{(i)} xyz + G^{(i)} y^{2}z^{2} + H^{(i)} xyz^{2} \\ b_{1}^{(i)} + b_{2}^{(i)} \times + b_{3}^{(i)} y + b_{4}^{(i)} z + b_{5}^{(i)} xz + b_{6}^{(i)} yz + b_{7}^{(i)} z^{2} + b_{8}^{(i)} xz^{2} + ... \\ ... + b_{9}^{(i)} yz^{2} - C^{(i)} xy - D^{(i)} x^{2} - E^{(i)} xyz - F^{(i)} x^{2}z - G^{(i)} xyz^{2} - H^{(i)} x^{2}z^{2} \\ c_{1}^{(i)} + c_{2}^{(i)} \times + c_{3}^{(i)} y + c_{4}^{(i)} x^{2} + c_{5}^{(i)} y^{2} + c_{6}^{(i)} xy + c_{7}^{(i)} z + c_{8}^{(i)} xz + ... \\ ... + c_{9}^{(i)} yz + c_{10}^{(i)} x^{2}z + c_{11}^{(i)} y^{2}z + c_{12}^{(i)} xyz \end{array} \right\}$$

Definition of the degrees of freedom

► Edges.

$$g(\mathbf{u}) = \int_e (\mathbf{u} \cdot \hat{\boldsymbol{\tau}}) q \, dl, \forall q \in P_1(e)$$

► Triangular faces.

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} \times \hat{\mathbf{n}}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Quadrilateral faces.

$$g(\mathbf{u}) = \int_{f_q} (\mathbf{\hat{n}} \times \mathbf{u}) \cdot \mathbf{q} \, ds, orall \mathbf{q} = (q_1, q_2); q_1 \in \mathcal{Q}_{0,1}; q_2 \in \mathcal{Q}_{1,0}$$

Volume.

$$g(\mathbf{u}) = \int_{V} \mathbf{u} \cdot \mathbf{q} \, dV, \forall \mathbf{q} \in \mathbf{P}_{0}(f_{t})$$

Master element

Other considerations (i)

► Discretization: choice of **q**.

Dual basis

$$g_i(\mathbf{N_i}) = \delta_{ij}$$

 $ightharpoonup a_1, a_2, \ldots$ as unknowns.

a_1	a ₂	a 3	a4	a ₅	a ₆	a ₇	a 8	a 9	
4	-6	-12	-16	24	48	12	-18	-36	
-2	6	2	8	-24	-8	-6	18	6	
0	0	2	0	0	-8	0	0	6	
0	0	4	0	0	-16	0	0	12	
:	:	:	:	:	:	:	:	:	

Other considerations (& ii)

- ▶ Local definition of $\hat{\tau}$, $\hat{\mathbf{n}}$, \mathbf{q} .
- ▶ Use of the master element:

$$\mathbf{u} = [J]^{-1}\widehat{\mathbf{u}}$$

Basis functions on triangular faces

Basis functions on quadrilateral faces

Table of contents

Verification: MMS

- ► HOFEM: Monomials $(xyz^2, -xz^2, xyz)$.

MMS solution

Code solution

Error

Verification: MMS

- $\blacktriangleright \ \nabla \times \frac{1}{f_r} \nabla \times \mathbf{u} k_0^2 \mathbf{g}_r \mathbf{u} = \Psi.$
- ► HOFEM: Monomials $(xyz^2, -xz^2, xyz)$.
- ► HOFEM: Planewave.

Triangle deformation

$$[M^p] = [D]^{-1}[M][D]^{-1}$$

 $[K^p] = [D]^{-1}[K][D]^{-1}$
 $D_{ii} = \sqrt{M_{ii}}$

	Refer	ence	Triangle deformation						
	prism		$\varepsilon = 4$		$\varepsilon = 8$		arepsilon=16		
Version	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	
vc,(1-2)	81	37	1587	210	18826	791	276385	3096	
vc,(2-3)	81	37	217	199	738	733	2827	2856	
vc,(3-1)	71	38	215	197	737	732	2825	2854	
vq	72	37	215	197	737	732	2826	2854	
Graglia	37	19	174	104	639	394	2498	1551	
Tobon	171	20	842	101	3468	398	14046	1588	

Different options in q

Rectangle deformation

$$[M^p] = [D]^{-1}[M][D]^{-1}$$

 $[K^p] = [D]^{-1}[K][D]^{-1}$
 $D_{ii} = \sqrt{M_{ii}}$

	Refer	rence	Rectangle deformation						
	prism		$\kappa = 2$		$\kappa = 4$		$\kappa = 8$		
Version	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	[K ^p]	
VC	72	37	3107	2566	12270	10205	48926	40765	
vq	72	37	2187	2066	8435	8171	33432	32599	
Graglia	37	19	1484	1067	5889	4279	23509	17131	
Tobon	171	20	5967	1209	23559	4226	93928	16923	

Comparison (i)

Comparison (i)

Comparison (& ii)

Comparison (& ii)

Table of contents

Conclusions

- ► Systematic approach for designing higher-order basis functions.
- Mathematical verification of the element.
- ► Competitive with other families of prismatic elements.
- ► Acknowledgements: TEC2010-18175/TCM and TEC2013-47753-C3-2.
- ► "Second Order Nedelec Curl-Conforming Prismatic Element for Computational Electromagnetics", *IEEE Transactions on Antennas and Propagation*, submitted Jun 15, advanced state of review.

Thank you for your attention!

Second-Order Nédélec Curl-Conforming Prism for Finite Element Computations

Adrián Amor Martín, aamor@tsc.uc3m.es Universidad Carlos III de Madrid Radiofrequency, Electromagnetics, Microwaves and Antennas Group

