A.KACIMI Maître de conférences classe A Faculté de Mathématique USTHB

Fonctions élémentaires d'une variable réelle

Plan du cours

- 1.
- Fonction Logarithme
- Fonction exponentielle

- 11.
- Fonction logarithme de base « a »
- Fonction exponentielle de base
 « a »
- Fonctions puissances

- Fonctions trigonométriques
- Fonctions trigonométriques inverses

- IV.
- Fonctions hyperboliques
- Fonctions hyperboliques inverses

Plan du cours

I.

- Fonction Logarithme
- Fonction exponentielle

11.

- Fonction logarithme de base « a »
- Fonction exponentielle de base « a »
- Fonctions puissances

III.

- Fonctions trigonométriques
- Fonctions trigonométriques inverses

IV.

- Fonctions hyperboliques
- Fonctions hyperboliques inverses

Prérequis

1. Les nombres réels

2. Les applications

3.Les Suites numériques

4. Les fonctions numériques

5. Continuité et dérivabilité des fonctions numériques

Fonctions élémentaires d'une variable réelle

Proposition 00:

$$f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

qui possède une dérivée strictement positive sur *I* (respectivement strictement négative sur *I*)

alors f représente une bijection de I sur J = f(I) admet une fonction réciproque notée f^{-1} définie de J sur I De plus

- f^{-1} est dérivable sur J et $\forall x \in J$; $f^{-1}(x) = \frac{1}{f'[f^{-1}(x)]}$
- f et f^{-1} ont même sens de variation
- Les graphes de f et f^{-1} sont symétriques l'un de l'autre par rapport à la première bissectrice.

Fonctions élémentaires d'une variable réelle

I. Fonction Logarithme népérien

Soit
$$m \in \mathbb{Q} - \{-1\}$$
 $x \mapsto x^m$

$$x \mapsto \frac{1}{n+1} x^{n+1} + c \text{ où } c \in \mathbb{R}$$
Pour $m = -1$

$$x \mapsto \frac{1}{n+1} x^n + c \mapsto x \neq 0$$

. Fonction Logarithme népérien

Définition:

On appelle fonction logarithme népérien que l'on note ln l'unique primitive sur \mathbb{R}_+^* de la fonction $x \mapsto \frac{1}{x}$ s'annulant en 1 et définie sur \mathbb{R}_+^* par :

$$ln: \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x) = \int_{1}^{x} \frac{dt}{t}$$

l. Fonction Logarithme népérien

Proposition:

La fonction logarithme est

• Indéfiniment dérivable sur \mathbb{R}_+^* avec $(\ln x)' = \frac{1}{x}$, $x \in \mathbb{R}_+^*$

- Strictement croissante
- Concave

Fonction Logarithme népérien

Preuve:

$$ln(x) = \int_{1}^{x} \frac{dt}{t}$$

$$(\ln x)' = \frac{1}{x}$$
 pour tout $x \in \mathbb{R}_+^*$

$$(\ln x)' = \frac{1}{x}$$
 pour tout $x \in \mathbb{R}_+^*$
 $(\ln x)'' = -\frac{1}{x^2} < 0$ pour tout $x \in \mathbb{R}_+^*$

. Fonction Logarithme népérien

<u>Proposition</u>: (Propriété fondamentale)

La fonction logarithme népérien vérifie que

Pour tout x, ydans \mathbb{R}_+^* ln(xy) = ln(x) + ln(y)

De plus pour tout x > 0 et pour tout $n \in \mathbb{N}$

$$ln(x^n) = nln(x)$$

. Fonction Logarithme népérien

Preuve:

Pour tout
$$y>0$$

$$u_y(x)=\ln(xy)$$
Pour tout $x>0$

$$u'_y(x)=\frac{y}{xy}=\frac{1}{x}$$

$$\forall x\in\mathbb{R}_+^*;\ \ln(xy)-\ln x=C$$
En prenant $x=1$; $C=\ln y$

$$x_1,x_2,\cdots,x_n>0$$

$$\ln(x_1x_2\cdots x_n)$$

$$=\ln(x_1)+\ln(x_2)+\cdots+\ln(x_n)$$

$$x_1=x_2=\cdots=x_n=x \text{ , il vient}$$

$$\forall x>0, \forall n\in\mathbb{N}; \ln(x^n)=n\ln(x)$$

l. Fonction Logarithme népérien

Conséquence:

1.
$$\forall x, y > 0; ln\left(\frac{x}{y}\right) = ln(x) - ln(y),$$

2.
$$\forall x > 0, \forall r \in \mathbb{Q}; ln(x^r) = rln(x).$$

Preuve:

1.
$$z = \frac{x}{y}$$
 donc que $x = zy$

$$ln(x) = ln(yz) = lny + lnz$$

$$lnz = ln\left(\frac{x}{y}\right) = lnx - lny$$

en prenant x = 1

$$\forall y > 0; \ln\left(\frac{1}{y}\right) = -\ln y$$

. Fonction Logarithme népérien

2.
$$n \in \mathbb{Z}$$
 on a $ln(x^n) = nlnx$
 $n = -mavec \ m \in \mathbb{N}$
 $ln(x^n) = ln(1/x)^m = mln(1/x)$
 $= -mln(x)$

posons
$$y = \sqrt[n]{x}$$
 ie $x = y^n$
 $lnx = ln(y^n) = nln(y)$

$$ln(x^{(1/n)}) = (1/n)ln(x)$$

$$r = \frac{p}{q}$$
 tel que $p \in \mathbb{Z}$, $q \in \mathbb{N} - \{0\}$

$$ln(x^r) = ln\left((x^p)^{1/q}\right) = (1/q)(plnx)$$
$$= rlnx$$

I. Fonction Logarithme népérien

Proposition:

$$\lim_{x \to +\infty} \ln(x) = +\infty \quad \lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Preuve:

$$\lim_{x \to +\infty} \ln(2^n) = +\infty$$

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\ln(1/x) = -\ln(x)$$

$$x \to \ln(1+x); \quad \frac{d}{dx} \ln(1+x) = \frac{1}{1+x}$$

Pour x = 0

$$\frac{d}{dx}\ln(1+x)|_{x=0} = \lim_{x \to 0} \frac{\ln(1+x) - 0}{x - 0} = 1$$

I. Fonction Logarithme népérien

Tableau de variation:

l. Fonction Logarithme népérien

$$\lim_{x \to +\infty} \frac{ln(x)}{x} = 0$$

Graphe du logarithme népérien:

. Fonction Logarithme népérien

Dérivée logarithmique

$$u: I \to \mathbb{R}$$
$$u(x_0) \neq 0$$

Définition:

On appelle dérivée logarithmique de u en x_0 , le nombre

$$\frac{u'(x_0)}{u(x_0)}$$

Remarque:

$$x \to \ln(u(x)) \frac{u'(x_0)}{u(x_0)}.$$

$$(\ln|u(x)|)' = \frac{u'(x_0)}{u(x_0)}$$

. Fonction Logarithme népérien

$$\frac{(uv)'}{uv} = \frac{u'v + uv'}{uv} = \frac{u'}{u} + \frac{v'}{v}$$

$$\frac{\left(\frac{u}{v}\right)'}{\frac{u}{u}} = \frac{u'v - uv'}{uv} = \frac{u'}{u} - \frac{v'}{v}$$

Exemple:

La relation donnant la période T d'un pendule de torsion en fonction de sa constante de torsion C et de son moment d'inertie T est

$$T = 2\pi \sqrt{\frac{J}{C}}$$

Déduire l'incertitude sur la période.

I. Fonction Logarithme népérien

Solution:

$$ln(T) = ln\left(2\pi\sqrt{\frac{J}{C}}\right) = ln(2\pi) + ln\left(\sqrt{\frac{J}{C}}\right)$$
$$ln(T) = ln(2\pi) + \frac{1}{2}[ln(J) - ln(C)]$$
$$\frac{dT}{T} = \frac{1}{2}\left[\frac{dJ}{J} - \frac{dC}{C}\right]$$

D'où l'incertitude ΔT vérifie

$$\frac{\Delta T}{T} = \frac{1}{2} \left[\frac{\Delta J}{J} + \frac{\Delta C}{C} \right]$$

Donc

$$\Delta T = \frac{T}{2} \left[\frac{\Delta J}{J} + \frac{\Delta C}{C} \right]$$

Fonctions élémentaires d'une variable réelle

II. Fonction exponentielle

Définition:

On appelle fonction exponentielle, notée exp la fonction réciproque de la fonction logarithme népérien définie de \mathbb{R} vers \mathbb{R}_+^* et on a

$$y = exp(x) \Leftrightarrow x = ln(y); \ \forall x \in \mathbb{R}$$

Proposition:

La fonction exponentielle est une bijection strictement croissante de \mathbb{R} vers \mathbb{R}_{+}^{*}

$$exp: \mathbb{R} \longrightarrow \mathbb{R}_{+}^{*}$$
$$x \longmapsto y = exp(x)$$

sa dérivée

$$(exp)'(x) = \frac{1}{\ln'(y)} = \frac{1}{\left(\frac{1}{y}\right)} = exp(x)$$

De plus

$$\lim_{x \to +\infty} exp(x) = +\infty, \lim_{x \to -\infty} exp(x) = 0$$

Tableau de variations:

Graphe de l'exponentielle:

Proposition:

- 1. exp(0) = 1
- 2. Pour tout x, y dans \mathbb{R} exp(x + y) = exp(x)exp(y)
- 3. Pour tout x dans \mathbb{R}

$$exp(-x) = \frac{1}{exp(x)}$$

4. Pour tout x, y dans \mathbb{R}

$$exp(x - y) = \frac{exp(x)}{exp(y)}$$

5. Pour tout x dans \mathbb{R} et $\forall n \in \mathbb{Z}$; $exp(nx) = (exp(x))^n$

Preuve:

- $ln1 = 0 \Leftrightarrow exp(0) = 1$
- ln(exp(x+y)) = x + y, et ln(exp(x)exp(y)) = ln(exp(x)) + ln(exp(y)) = x + y
- ln(exp(-x)) = -x et $ln(\frac{1}{exp(x)}) = -ln(exp(x)) = -x$
- exp(x y) = exp(x + (-y)) = $exp(x)exp(-y) = \frac{exp(x)}{exp(y)}$
- ln(exp(nx)) = nx et $ln((exp(x))^n) = nln(exp(x)) = nx$

Théorème fondamentaux:

Soit la suite $(U_n)_{n\geq 0}$

$$U_0 = 1, U_1 = 1 + \frac{1}{1!}$$

$$U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \quad \forall n \in \mathbb{N}$$

Lemme 1:

La suite $(U_n)_{n\geq 0}$ est convergente et de plus sa limite est un nombre irrationnel

Preuve du lemme:

$$V_{1} = 1 + \frac{1}{1!}, \qquad V_{n} = U_{n} + \frac{1}{n!}$$

$$U_{n+1} - U_{n} = \frac{1}{(n+1)!} > 0$$

$$V_{n+1} - V_{n} = \frac{1-n}{(n+1)!} < 0, \qquad \forall n > 1$$

$$\lim_{n \to +\infty} (U_{n} - V_{n}) = 0$$

$$\lim_{n \to +\infty} U_{n} = \lim_{n \to +\infty} V_{n} = L \in \mathbb{R}$$

$$\forall n; \ U_{n} < L < V_{n}$$

Suite de la preuve:

Montrons par l'absurde que $L \in \mathbb{R} - \mathbb{Q}$

$$L \in \mathbb{Q}; \qquad L = \frac{P}{N}$$

$$1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{N!} < \frac{P}{N}$$

$$< 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{N!} + \frac{1}{N!}$$

$$A < P(N - 1)! < A + 1$$

$$A = 2N! + \frac{N!}{2!} + \dots + N(N - 1) + N + 1$$

$$L \in \mathbb{R} - \mathbb{Q}$$

Définition du nombre e d'Euler:

On désigne par la lettre e le nombre irrationnel limite de la suite $(U_n)_{n\geq 0}$ de terme général

$$U_0 = 1$$
, $U_1 = 1 + \frac{1}{1!}$
 $U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$
 $e \approx 2.718\ 281\ 828$

Théorème 1:

$$exp(1) = e$$

Preuve:

$$exp(1) = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} exp(\theta_n);$$

avec $0 < \theta_n < 1$

$$exp(1) = U_n + \frac{1}{(n+1)!} exp(\theta_n)$$

$$\frac{1}{(n+1)!} < exp(1) - U_n = \frac{1}{(n+1)!} exp(\theta_n) < \frac{exp(1)}{(n+1)!}$$

avec $\lim_{n \to +\infty} \frac{1}{(n+1)!} = \lim_{n \to +\infty} \frac{exp(1)}{(n+1)!} = 0$

ďoù

$$U_n \xrightarrow[n \to +\infty]{} exp(1)$$

$$exp(1) = e$$

Théorème 2:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Preuve:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$
$$x_n = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

On obtient que:

$$\frac{1}{x_n} \ln(1 + x_n) = n \ln\left(1 + \frac{1}{n}\right)$$

$$= \ln\left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} 1$$

$$\left(1 + \frac{1}{n}\right)^n = exp\left[\ln\left(1 + \frac{1}{n}\right)^n\right] \xrightarrow[n \to +\infty]{} e$$

Nouvelle notation de la fonction exponentielle:

$$\forall x \in \mathbb{R}, n \in \mathbb{Z} \; ; \; exp(nx) = \left(exp(x)\right)^n$$

$$exp(n) = \left(exp(1)\right)^n = e^n$$

$$ln(e^{(1/q)}) = (1/q)ln(e) = 1/q$$

$$exp(1/q) = e^{(1/q)}$$
pour tout $r = p/q \in \mathbb{Q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{Z} - \{0\}$, on a
$$exp(p/q) = \left(exp(1/q)\right)^p = e^{(p/q)}$$

$$\forall r \in \mathbb{Q}; \; exp(r) = e^r$$
définie sur \mathbb{Q} par $r \to e^r$

$$\forall x \in \mathbb{R} \; ; \; exp(x) = e^x$$