- Test #1 Student Mathematics League Short Solutions November 2001
- A 1. Letting t = this and T = that yields the equations $(t + T)/3 = t^2$ and T/t = 8/1. Substituting T = 8t into the first equation yields $3t^2 9t = 0$ or 3t(t 3) = 0, with solutions t = 0,3. But $t \neq 0$, so t = 3.
- A 2. S is (2,3) and T is (-2,-3), so the required line has equation $y 3 = \frac{3}{2}(x 2)$, or $y = \frac{3}{2}x$.
- E 3. The given inequality is equivalent to $-2001 \le 5 2x \le 2001$, or $1003 \ge x \ge -998$. The resulting interval, [-998,1003], is contained only in the interval [-1000,2001].
- B 4. Let x be the given angle and y its supplement. Sin $x = \frac{2}{3}$ implies sin $y = \frac{2}{3}$ and csc $y = \frac{3}{2}$. Since $\cot^2 y + 1 = \csc^2 y$, then $\cot^2 y = \frac{5}{4}$ and $\cot y = \pm \frac{\sqrt{5}}{2}$. But y is in Quadrant II, so $\cot y = -\frac{\sqrt{5}}{2}$.
- 5. The given function values yield the equations c = 3, 4a + 2b + c = 0, and 16a + 4b + c = 1. This implies 4a + 2b = -3 and 16a + 4b = -2, so 4b = -10 and b = -2.5. Then a = 0.5, so a + b + c = 1.
- E 6. Since $Q(x) = \frac{(x-2)(x-1)}{x^2(x+1) 4(x+1)} = \frac{(x-2)(x-1)}{(x-2)(x+2)(x+1)}$, the domain is all x except ± 2 and -1.
- B 7. Since $8^2 + 15^2 = 17^2$, the triangle is a right triangle. Any right triangle inscribed in a circle must be inscribed in a semicircle with the hypotenuse as the diameter. Thus the radius is half of 17 or 8.5.
- 8. The only 3-digit perfect cube with its first and last digits the same is 343, and the only 3-digit perfect squares divisible by 12 are 144, 324, 576, and 900, so TYC = 576. Thus A + M + A + T + Y + C = 28.
- E 9. For $2x^2$ bx 36 to have rational solutions, its discriminant, b^2 + 288, must be a perfect square. This is true for $b = \pm 1, \pm 6, \pm 14, \pm 21, \pm 34$, and ± 71 , for a total of 12 values of b.
- D 10. Since $\angle A = \angle CDA$, $\triangle ACD$ is isosceles with AC = CD. Then AB = 3 = AC/3, and since $\triangle ABF$ and $\triangle ACD$ are similar, BF = BE/3 = CD/3 = 3, and EF = BE BF = 6.
- D 11. At 4 mph, Matt takes (60 min)((1/2)/4) = 7.5 min to row to shore. This means (7.5 min)(10 gal/min) = 75 gal of water enter. Cassie must bail 45 gal (all but 30 of the 75 gal) in this 7.5 min, or 6 gal/min.
- D 12. If r is the length of the radius of the circle, the radius ending at the arc's midpoint, the chord, and the radius ending at one end of the chord form a right triangle with legs of length r 4 and 6 mm and hypotenuse r mm. Then $(r-4)^2 + 6^2 = r^2$, so $r^2 8r + 52 = r^2$, 8r = 52, and the radius is exactly 6.5 mm.
- C 13. There are 5 ways to parenthesize: $(a + b)*(c ^d)$, $((a + b)*c) ^d$, $(a + (b*c)) ^d$, and 7, for 4 distinct values.
- B 14. We need the smallest N ending in 0, its digits adding to 8 or 17 (so that N + 1 is a multiple of 9), and N + 2 is a multiple of 8. The values satisfying the first two conditions are 80 + 90k. Since 350 is the smallest value for which N + 2 is a multiple of 8 (352 = 8x44), this is N. Only 11 is a factor of 352.
- A 15. The line segments \overline{PS} , \overline{TW} , \overline{QV} , \overline{RU} divide the octagon into 4 isosceles right triangles, 4 rectangles, and a square. If s is the length of a side of the octagon, the total area is $4(s^2/4) + 4(s^2/\sqrt{2}) \div s^2 = (2 + 2\sqrt{2})s^2$. The area of PSTW = $2(s^2/\sqrt{2}) + s^2 = (1 + \sqrt{2})s^2 = \text{half}$ the octagon's area.
- E 16. The equation is equivalent to $x^3 + y^3 x y = 0$, or $(x + y)(x^2 xy + y^2 1) = 0$. Thus x + y = 0 (a straight line), or $x^2 xy + y^2 = 1$, an ellipse (since $B^2 4AC < 0$).
- C 17. To maximize the product, the factors should be as nearly equal as possible. For n = 2, 3, 4, 5, 6, this yields 5(5), 3(3)(4), 2(2)(3)(3), 2(2)(2)(2)(2), and 1(1)(2)(2)(2)(2), or 25, 36, 36, 32, 16.
- B 18. The number of ways to pick any 2 shoes is C(22,2) = 231. The number of ways to pick a matching pair is by picking 1 right and 1 left of the same color. 6(6) + 3(3) + 2(2) = 49. Then 49/231 = 7/33.
- C 19. If A is (0,0) and B is (65,0), the lines thru A, C and B, E have equations $y = \frac{3}{4}x$ and $y = \frac{-5}{12}x + \frac{325}{12}$. They intersect at $(\frac{325}{14}, \frac{975}{56})$, and the pentagon's area is $\frac{52(39)}{2} + \frac{25(60)}{2} - \frac{975}{56}(\frac{65}{2}) = 1198\frac{17}{112}$.
- D 20. By symmetry they meet after 6 turns. Starting from (0,0) they end at $(\cos 0^{\circ} + \cos 15^{\circ} + \cos 30^{\circ} + ... + \cos 75^{\circ} + \cos 90^{\circ}, \sin 0^{\circ} + \sin 15^{\circ} + ... + \sin 90^{\circ})$, which is $4.30\sqrt{2}$ or about 6.1 from (0,0).