

On-Policy vs Off-Policy

- On-Policy
 - "Calificare la locul de muncă"
 - Învățăm politica π din experiențe extrase cu ajutorul aceleiași politici.
- Off-Policy
 - "Învățăm uitându-ne la altcineva"
 - Învățăm politica π din experiențe extrase cu altă politică (μ).

Generalizare!

- Evaluarea politicii: Estimarea V_{π}
- Îmbunătățire politicii: Generarea $\pi' \geq \pi$

Îmbunătățiri: V(s) vs. Q(s, a)

 Necesită existența modelului din spatele MDP-ului (procesul decizional Markov)

$$\pi'(s) = \operatorname*{argmax}_{s \in \mathcal{A}} \mathcal{R}^{\mathsf{a}}_s + \mathcal{P}^{\mathsf{a}}_{ss'} V(s')$$

Îmbunătățirea politicii cu ajutorul Q(s, a)

• Este model-free!

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

Alegem "Action-Value Function"

- Evaluarea politicii: Estimarea $Q = q_{\pi}$

Dar cum alegem acțiunile?

GREEDY!!!!

Exemplu: Avem două cutii (stânga și dreapta) din care extragem obiecte. Se execută următoarele acțiuni conform strategiei greedy:

- Deschidem cutia din dreapta => reward 0 = V(dreapta) = 0
- Deschidem cutia din stânga => reward +1 = V(stânga) = +1
 Deschidem cutia din stânga => reward +3 = V(stânga) = +3
- Descridem cutta din stanga => reward +3 = v(stanga) = +3
- Deschidem cutia din stânga => reward +2 = V(stânga) = +2

Suntem siguri că alegem cea mai bună cutie???

Soluția pentru Greedy? ϵ -Greedy

ε-Greedy -> Explorare!!!

- Toate cele m acțiuni sunt încercate cu probabilitate diferită de zero.
- Alegem cu probabilitate 1 € acțiunea greedy.
- Cu probabilitate € alegem o acțiune aleatorie.

$$\pi(a|s) = \left\{egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & \epsilon/m & ext{otherwise} \end{array}
ight.$$

Teoremă!

Pentru orice politică ε -greedy π , politica π ' obținută cu ajutorul q_{π} este o îmbunătățire față de politica anterioară, $v_{\pi'}(s) \geq v_{\pi}(s)$.

$$q_{\pi}(s, \pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s, a)$$

$$= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, a)$$

 $=\sum \pi(a|s)q_{\pi}(s,a)=v_{\pi}(s)$

Un portret final!

- Evaluarea politicii: Estimarea $Q = q_{\pi}$
- Îmbunătățirea politicii: ε-greedy

Dar putem simplifica!

- Evaluarea politicii: Estimarea Q $\approx q_{\pi}$
- Îmbunătățirea politicii: ε-greedy

GLIE (Greedy in the Limit with Infinite Exploration)

• Toate perechile stare-acțiune sunt explorate "la infinit".

$$\lim_{k\to\infty}N_k(s,a)=\infty$$

Policita converge către una de tip greedy.

$$\lim_{k\to\infty}\pi_k(a|s)=\mathbf{1}(a=\mathop{\rm argmax}_{a'\in\mathcal{A}}Q_k(s,a'))$$

GLIE Monte-Carlo

- Extragem episodul cu indicele k, folosind π : $\{S_1, A_1, R_1, ..., S_T\} \sim \pi$
- Pentru fiecare stare S_t și acțiune A_t din episod:

$$egin{aligned} N(S_t,A_t) &\leftarrow N(S_t,A_t) + 1 \ Q(S_t,A_t) &\leftarrow Q(S_t,A_t) + rac{1}{N(S_t,A_t)} \left(G_t - Q(S_t,A_t)
ight) \end{aligned}$$

Îmbunătățim politica folosind valorile noi pentru "action-value function": $\epsilon \leftarrow 1/k$

function":
$$\epsilon \leftarrow 1/k \\ \pi \leftarrow \epsilon\text{-greedy}(Q)$$

Teoremă!

GLIE Monte-Carlo converge către zona optimă a funcției valoare-acțiune, $Q(s,a) \rightarrow q_*(s,a)$.

MC vs. TD

- Ne reamintim avantajele TD:
 - Varianță mai mică!
 - Online!
 - Învață din secvențe incomplete!
- Ce putem face în continuare?
- Aplicăm TD pentru Q(s, a) cu ε-greedy, la fiecare pas de timp t

Cum funcționează SARSA?

La fiecare pas de timp!!!

- Evaluarea politicii: Estimarea Q $pprox q_{\pi}$
- Îmbunătățirea politicii: ε-greedy

Algoritm - SARSA On-Policy Control

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Repeat (for each step of episode):

Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy)

Choose A' from S' using policy derived from
$$Q$$
 (e.g., ε -greedy)
$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$$

 $S \leftarrow S'; A \leftarrow A';$ until S is terminal

until S is terminal

$$egin{aligned} n = 1 & (\textit{Sarsa}) & q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}) \ n = 2 & q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}) \end{aligned}$$

$$q_t^{(2)}$$

$$=R$$

 $n = \infty$ (MC) $q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Off-Policy Learning - Introducere

- Evaluăm politica $\pi(a|s)$ pentru a calcula $v_{\pi}(s)$ sau $q_{\pi}(s,a)$.
- Dar! Urmăm comportamentul politicii $\mu(a|s)$.
- De ce este important acest tip de învățare în domeniu?
 - Este o practică bună!
 - Putem reutiliza experiențele din politici mai vechi.
 - Putem învăța politica optimă folosind o politică exploratorie.

Importance Sampling

Putem estima totul folosind distribuția unei alte politici.

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

Importance Sampling - MC

- Folosim return-urile generate de politica μ pentru a evalua politica π.
- Va trebui să ajustăm G^t și $V(S_t)$.
- Atenţie!!! Putem introduce varianţă foarte mare!

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

 $V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t^{\pi/\mu}}{V(S_t)} - V(S_t) \right)$

Importance Sampling - TD

- Folosim target-urile generate de politica μ pentru a evalua politica π.
- Va trebui să ajustăm V(S_t).
- Varianță mai mică față de versiunea cu Monte Carlo.

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

Ce este Q-Learning?

- Aplicăm tehnica off-policy learning pentru Q(s, a).
- Nu este necesar să folosim importance sampling!
- Următoarea acțiune este aleasă folosind comportamentul politicii:

$$A_{t+1} \sim \mu(\cdot | S_t)$$

Considerăm posibilitatea unei acțiuni alternative:

$$A' \sim \pi(\cdot | S_t)$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Ce este Q-Learning?

S,A

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

