HST.410J/6.07J

February 6, 2007

Lecture 1

Projects in Microscale Engineering for the Life Sciences HST.410J / 6.07J

Staff: Denny Freeman

Martha Gray AJ Aranyosi

Janice Balzer (secretary)

Web site:

http://umech.mit.edu/6.07J/index.html

Microscale Engineering

Electronics

Medicine and Biology

Images removed due to copyright restrictions.

revised March 5, 2007

Thursday

HST.410J/6.07J Calendar

Introductory Exercises (weeks 1-7)

Projects (weeks 8-14)

Cell Traps

Thursday	
Homework #6 Due	4/5 L15
Projects	
	4/12
	L17
Projects	
	4/19
	L18
Projects	
DROP DATE	4/26
Technical Writing	L20
and Oral Presentatio	n
First Drafts	5/3
Due	L22
Projects	
	5/10
Project Presentation	L24
Dry Runs	
	5/17
Project	L26
Presentations	

Moore's Law

http://en.wikipedia.org

Johnson Hou and Prof. Scott Manalis

Johnson Hou MIT PhD thesis, 2007

Image removed due to copyright restrictions.

Micro/Nano Fluidics

Courtesy of JongYoon Han. Used with permission.

JongYoon Han

Courtesy of Joel Voldman. Used with permission.

Joel Voldman

Courtesy of Joel Voldman. Used with permission.

O-Ring Fluid Reservoirs

Chrome Mask

Silicon Master

PDMS Cast of Master

Unpunched PDMS Device

Plastic Master and Source Mold

Plastic Master Of PDMS Device

Washing Mold With Soap And Water

Rising Mold In Deionized Water

Rinsing Mold With Isopropyl Alcohol

Drying Mold With Compressed Air

Removing Excess Crud With Tape

Pouring PDMS

Popping Bubbles In PDMS

Placing Mold And PDMS In Oven

Proper Oven Settings For Baking PDMS

Unpunched PDMS Device

PDMS and Glass on Taped Slides

Placing Device In Plasma Cleaner

Plasma Cleaner On

Vacuum Ready

Plasma Cleaner On

Plasma Without Oxygen

Plasma With Oxygen

Device Partially Bonded To Glass

PDMS Device With Holes Punched

PDMS Device With Pipette Reservoir

PDMS Device With Punched Syringe Holes

Plastic Master Of PDMS Device

Plsatic Master With O-Ring Molds

O-Ring Fluid Reservoirs

PDMS Reservoirs

PDMS Reservoir Bonded To Device

