MATRIZES QUADRADAS

Seja $\mathbf{A} = (a_{ij})$ (i=1,2,...,n; j=1,2,...,n) a matriz quadrada do tipo $n \times n$, ou de ordem n, num corpo Ω ,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

- Os elementos da matriz A que possuem os dois índices iguais, isto é, os elementos a_{ii} (i=1,2,...,n) são designados por elementos principais.
- A diagonal $(a_{11}, a_{22}, a_{33}, ..., a_{nn})$ chama-se diagonal principal.
- A diagonal $(a_{12}, a_{23}, a_{34}, ..., a_{n-1,n})$, situada acima da diagonal principal, chama-se diagonal superior.
- A diagonal $(a_{21}, a_{32}, a_{43}, ..., a_{n,n-1})$, situada abaixo da diagonal principal, chama-se *diagonal inferior*.
- A diagonal $(a_{1n}, a_{2,n-1}, a_{3,n-2}, ..., a_{n1})$ chama-se diagonal secundária.
- Os elementos a_{ij} e a_{ji} , com $i \neq j$, ocupando posições simétricas em relação à diagonal principal, chamam-se *elementos opostos*.

Traço de uma matriz quadrada

Definição [2.11]: Traço de uma matriz quadrada

Chama-se traço de uma matriz quadrada \boldsymbol{A} de ordem n, designando-se por $tr(\boldsymbol{A})$, à soma dos seus elementos principais, isto é,

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Teorema [2.7]: Sejam A e B duas matrizes quadradas, num corpo Ω , de ordem n e $k \in \Omega$. Então:

- a) $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$.
- **b**) $tr(k\mathbf{A}) = k tr(\mathbf{A})$.

c)
$$tr(\mathbf{AB}) = tr(\mathbf{BA}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$$
.

d)
$$tr(\mathbf{A}) = tr(\mathbf{A}^{\mathsf{T}})$$
.

Teorema [2.8]: Seja $\{A_1, A_2, A_3, ..., A_{p-1}, A_p\}$ um conjunto constituído por p matrizes quadradas de ordem n, num corpo Ω . Então

$$tr(\boldsymbol{A}_{1}\boldsymbol{A}_{2}\boldsymbol{A}_{3}\ldots\boldsymbol{A}_{p-1}\boldsymbol{A}_{p})=tr(\boldsymbol{A}_{2}\boldsymbol{A}_{3}\ldots\boldsymbol{A}_{p-1}\boldsymbol{A}_{p}\boldsymbol{A}_{1})=\ldots=tr(\boldsymbol{A}_{p}\boldsymbol{A}_{1}\boldsymbol{A}_{2}\boldsymbol{A}_{3}\ldots\boldsymbol{A}_{p-1})$$

Exemplo 12 [2.16]: Relativamente às matrizes quadradas de ordem 3

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 0 & -2 \end{bmatrix}$$

$$tr(\mathbf{A}) = 2 + 1 + 1 = 4$$

$$tr(\mathbf{B}) = -1 + 1 - 2 = -2$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 2 & 2 \\ 4 & 0 & -1 \end{bmatrix}$$

$$2\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 6 & 2 & 2 \\ 4 & 0 & 2 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} -1 & 5 & 7 \\ 0 & 7 & 8 \\ 0 & 4 & 4 \end{bmatrix}$$

$$\mathbf{BA} = \begin{bmatrix} 10 & 1 & 5 \\ 7 & 2 & 2 \\ 0 & 2 & -2 \end{bmatrix}$$

$$tr(\mathbf{A} + \mathbf{B}) = 1 + 2 - 1 = tr(\mathbf{A}) + tr(\mathbf{B}) = 4 - 2 = 2$$

$$tr(2\mathbf{A}) = 4 + 2 + 2 = 2tr(\mathbf{A}) = 8$$

$$tr(\mathbf{AB}) = -1 + 7 + 4 = tr(\mathbf{BA}) = 10 + 2 - 2 = 10$$

$$\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$tr(\mathbf{A}^{\mathsf{T}}) = 2 + 1 + 1 = tr(\mathbf{A}) = 4$$

Matriz identidade

Definição [2.12]: Matriz identidade

Designa-se por *matriz identidade* de ordem n, representando-se por I_n , ou simplesmente por I, a matriz quadrada em que os elementos principais tomam o valor 1, sendo nulos todos os seus restantes elementos, isto é,

$$I = (i_{ij})$$
 : $i_{ij} = 1$, $i = j$ \land $i_{ij} = 0$, $i \neq j$

Exemplo 13 [2.18]: A matriz identidade de ordem 3 é

$$I = I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 A matriz / pode ser considerada o elemento neutro do produto de matrizes quadradas da mesma ordem; se / é uma matriz quadrada de ordem n, obtém-se

$$AI = IA = A$$

 A matriz *I* é uma matriz comutativa (permutável) com qualquer outra matriz quadrada da mesma ordem n.

Matriz escalar

Definição [2.13]: Matriz escalar

A matriz quadrada \boldsymbol{A} de ordem n, num corpo Ω , chama-se matriz escalar, se todos os elementos principais forem iguais, sendo nulos todos os seus restantes elementos. Se $k \in \Omega$, então

$$\mathbf{A} = (a_{ij})$$
 : $a_{ij} = k$, $i = j$ \wedge $a_{ij} = 0$, $i \neq j$ \Leftrightarrow $\mathbf{A} = k\mathbf{I}$

Exemplo 14:

$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = -2\mathbf{I} \quad (k = -2)$$

- A matriz identidade, I, é uma matriz escalar (k = 1).
- A matriz escalar A = kI é comutativa (permutável) com qualquer matriz quadrada B da mesma ordem

$$AB = (kI)B = k(IB) = k(BI) = B(kI) = BA \iff AB = BA = kB$$

Matriz diagonal

Definição [2.14]: Matriz diagonal

A matriz quadrada \mathbf{A} de ordem n, num corpo Ω , chama-se matriz diagonal, se forem nulos todos os elementos situados fora da diagonal principal, ou seja,

$$\mathbf{A} = (a_{ij}) : a_{ij} = 0 , i \neq j$$

$$\mathbf{A} = \text{diag}(a_{11}, a_{22}, a_{33}, \dots, a_{nn})$$

Exemplo 15:

$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \text{diag}(-2,0,5)$$

 Qualquer matriz escalar é um caso particular de uma matriz diagonal, onde os elementos principais são todos idênticos entre si.

Exemplo 16:

$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = -2\mathbf{I} = \text{diag}(-2, -2, -2)$$

• A matriz identidade, *I*, de ordem *n* é uma matriz diagonal

$$I = diag (1,1,1,...,1)$$

Matriz triangular superior

Definição [2.15]: Matriz triangular superior

Uma matriz quadrada \boldsymbol{A} de ordem \boldsymbol{n} , num corpo Ω , chama-se *matriz triangular superior*, se forem nulos todos os elementos situados abaixo da diagonal principal, isto é,

$$\mathbf{A} = (a_{ij}) : a_{ij} = 0 , i > j$$

Exemplo 17 [2.20]:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

 Qualquer matriz diagonal e toda a matriz escalar, podem ser encaradas como casos particulares de uma matriz triangular superior.

Exemplo 18:

$$\mathbf{B} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \text{diag}(-2,1,3) \qquad \mathbf{C} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix} = -3\mathbf{I}$$

Matriz triangular inferior

Definição [2.15]: Matriz triangular inferior

Uma matriz quadrada \boldsymbol{A} de ordem n, num corpo Ω , chama-se *matriz triangular inferior*, se forem nulos todos os elementos situados acima da diagonal principal, isto é,

$$\mathbf{A} = (a_{ij}) : a_{ij} = 0 , i < j$$

Exemplo 19 [2.20]:

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 3 & 4 \end{bmatrix}$$

• Qualquer matriz diagonal e toda a matriz escalar, podem ser encaradas como casos particulares de uma matriz triangular inferior.

Exemplo 20:

$$\mathbf{B} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \text{diag}(-2,1,3) \qquad \mathbf{C} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix} = -3\mathbf{I}$$

Decomposição triangular de matrizes quadradas

Seja **A** uma matriz quadrada de ordem *n*. Pretende-se resolver o problema de factorização

A = LU

- **L** uma *matriz triangular inferior* de ordem *n*.
- *U* uma *matriz triangular superior* de ordem *n*.
- A factorização nem sempre é possível; se existir, ela será única, se todos os elementos principais de *U* forem iguais a 1.
- A decomposição triangular de uma matriz quadrada pode ser aplicada na resolução de um sistema com n equações lineares a n incógnitas e possível e determinado (sistema de Cramer).

Exemplo 21 [2.21]: Aplicar a decomposição triangular à matriz quadrada

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 4 \\ -2 & -3 & -1 \end{bmatrix}$$

Solução:

$$\mathbf{A} = \mathbf{L}\mathbf{U} \iff \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 4 \\ -2 & -3 & -1 \end{bmatrix} = \begin{bmatrix} I_{11} & 0 & 0 \\ I_{21} & I_{22} & 0 \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 4 \\ -2 & -3 & -1 \end{bmatrix} = \begin{bmatrix} I_{11} & I_{11}u_{12} & I_{11}u_{13} \\ I_{21} & I_{21}u_{12} + I_{22} & I_{21}u_{13} + I_{22}u_{23} \\ I_{31} & I_{31}u_{12} + I_{32} & I_{31}u_{13} + I_{32}u_{23} + I_{33} \end{bmatrix}$$

$$\begin{cases} I_{11} = 1 \\ I_{11}u_{12} = 2 \\ I_{11}u_{13} = -1 \end{cases} \Leftrightarrow \begin{cases} I_{11} = 1 \\ u_{12} = 2 \\ u_{13} = -1 \end{cases}$$

$$\begin{cases} I_{21} = 2 \\ I_{21}u_{12} + I_{22} = 1 \\ I_{21}u_{13} + I_{22}u_{23} = 4 \end{cases} \Leftrightarrow \begin{cases} I_{21} = 2 \\ 2I_{21} + I_{22} = 1 \\ -I_{21} + I_{22}u_{23} = 4 \end{cases} \Leftrightarrow \begin{cases} I_{21} = 2 \\ I_{22} = -3 \\ u_{23} = -2 \end{cases}$$

$$\begin{cases} I_{31} = -2 \\ I_{31}u_{12} + I_{32} = -3 \\ I_{31}u_{13} + I_{32}u_{23} + I_{33} = -1 \end{cases} \Leftrightarrow \begin{cases} I_{31} = -2 \\ 2I_{31} + I_{32} = -3 \\ -I_{31} - 2 \ I_{32} + I_{33} = -1 \end{cases} \Leftrightarrow \begin{cases} I_{31} = -2 \\ I_{32} = 1 \\ I_{33} = -1 \end{cases}$$

$$\mathbf{A} = \mathbf{L}\mathbf{U} \iff \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 4 \\ -2 & -3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -3 & 0 \\ -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz simétrica

Definição [2.16]: Matriz simétrica

Uma matriz quadrada \mathbf{A} de ordem n, num corpo Ω , é uma matriz simétrica, se for igual à sua matriz transposta, ou seja,

$$\boldsymbol{A} = \boldsymbol{A}^\mathsf{T}$$

Exemplo 22 [2.22]: A matriz quadrada de ordem 3

$$\mathbf{H} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ -1 & -3 & -4 \end{bmatrix}$$

é uma matriz simétrica

$$\mathbf{H}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ -1 & -3 & -4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ -1 & -3 & -4 \end{bmatrix} = \mathbf{H}$$

Teorema [2.9]: Seja \boldsymbol{A} uma matriz quadrada de ordem \boldsymbol{n} , num corpo Ω . A matriz \boldsymbol{A} é uma matriz simétrica, se e só se os seus elementos opostos são iguais, isto é,

$$a_{ij} = a_{ji}$$
 , $i \neq j$

Teorema [2.9]: Sejam as matrizes \mathbf{A} e \mathbf{B} , num corpo Ω , tais que \mathbf{A} é uma matriz quadrada de ordem n e \mathbf{B} é uma matriz do tipo $m \times n$. Então:

- **a**) A matriz soma $C = A + A^{T}$ é uma matriz simétrica de ordem n.
- **b**) As matrizes produto $\mathbf{D} = \mathbf{A}\mathbf{A}^{\mathsf{T}}$ e $\mathbf{E} = \mathbf{A}^{\mathsf{T}}\mathbf{A}$ são matrizes simétricas de ordem n.
- **c**) As matrizes produto $\mathbf{F} = \mathbf{B}\mathbf{B}^T$ e $\mathbf{G} = \mathbf{B}^T\mathbf{B}$ são matrizes simétricas; a matriz \mathbf{F} é de ordem m, enquanto que a matriz \mathbf{G} é de ordem n.

Exemplo 23 [2.23]: Dadas as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -3 \\ -2 & 4 & 2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix}$$

São matrizes simétricas

$$\mathbf{A} + \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -3 \\ -2 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 & -2 \\ 3 & 0 & 4 \\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & -3 \\ 5 & 0 & 1 \\ -3 & 1 & 4 \end{bmatrix}$$
 (ordem 3)

$$\mathbf{B}\mathbf{B}^{\mathsf{T}} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$
 (ordem 3)

$$\mathbf{B}^{\mathsf{T}}\mathbf{B} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 1 & 6 \end{bmatrix} \text{ (ordem 2)}$$

Matriz hemi-simétrica

Definição [2.17]: Matriz hemi-simétrica

Uma matriz quadrada $\bf A$ de ordem n, num corpo Ω , constitui uma matriz hemi-simétrica, se for igual à simétrica da sua matriz transposta, ou seja,

$$\boldsymbol{A} = -\boldsymbol{A}^{\mathsf{T}}$$

Exemplo 24 [2.24]: A matriz quadrada de ordem 3

$$\mathbf{T} = \begin{bmatrix} 0 & -5 & 2 \\ 5 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$

é uma matriz hemi-simétrica

$$-\mathbf{T}^{\mathsf{T}} = -\begin{bmatrix} 0 & -5 & 2 \\ 5 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}^{\mathsf{T}} = -\begin{bmatrix} 0 & 5 & -2 \\ -5 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -5 & 2 \\ 5 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = \mathbf{T}$$

Teorema [2.10]: Seja \boldsymbol{A} uma matriz quadrada de ordem \boldsymbol{n} , num corpo Ω . A matriz \boldsymbol{A} é uma matriz hemi-simétrica, se e só se os seus elementos opostos são simétricos e todos os elementos principais são nulos, isto é,

$$a_{ii} = -a_{ii}$$
 , $i \neq j$ \wedge $a_{ii} = 0$, $i = j$

Teorema [2.10]: Seja \boldsymbol{A} uma matriz quadrada de ordem \boldsymbol{n} , num corpo Ω . Então:

- **a**) A matriz subtração $C = A A^{T}$ é uma *matriz hemi-simétrica* de ordem n.
- **b**) A matriz **A** pode ser escrita como o resultado da soma de uma matriz simétrica com uma matriz hemi-simétrica, ou seja,

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathsf{T}})}_{\text{matriz}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathsf{T}})}_{\text{matriz}}$$

$$\underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathsf{T}})}_{\text{matriz}}$$

$$\underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathsf{T}})}_{\text{matriz}}$$

Exemplo 25 [2.25]: Relativamente à matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -3 \\ -2 & 4 & 2 \end{bmatrix}$$

$$\mathbf{A} - \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -3 \\ -2 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -2 \\ 3 & 0 & 4 \\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & -7 \\ -1 & 7 & 0 \end{bmatrix}$$
 (ordem 3)

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathsf{T}})}_{\text{matriz}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathsf{T}})}_{\text{matriz}} \Leftrightarrow$$

$$\underset{\text{simétrica}}{\text{matriz}}$$

$$\Leftrightarrow \mathbf{A} = \frac{1}{2} \begin{bmatrix} 2 & 5 & -3 \\ 5 & 0 & 1 \\ -3 & 1 & 4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & -7 \\ -1 & 7 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -3 \\ -2 & 4 & 2 \end{bmatrix}$$

Matriz normal

Definição [2.18]: Matriz normal

Uma matriz quadrada **A** de ordem n, no corpo $\Omega = \mathbb{C}$, diz-se uma *matriz* normal, se

$$AA^H = A^H A$$

Exemplo 26 [2.26]: As matrizes A, B, C e D são matrizes normais.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \qquad \overline{\mathbf{A}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} = \mathbf{A} \qquad \mathbf{A}^{\mathsf{H}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} = \mathbf{A}$$
$$\mathbf{A}\mathbf{A}^{\mathsf{H}} = \mathbf{A}^{\mathsf{H}}\mathbf{A} = \mathbf{A}\mathbf{A}$$

$$\mathbf{B} = \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & -1 & -i \\ 4 & i & 0 \end{bmatrix} \qquad \mathbf{\bar{B}} = \begin{bmatrix} 2 & 2-i & 4 \\ 2+i & -1 & i \\ 4 & -i & 0 \end{bmatrix}$$

$$\mathbf{B}^{\mathsf{H}} = \begin{bmatrix} 2 & 2-i & 4 \\ 2+i & -1 & i \\ 4 & -i & 0 \end{bmatrix}^{\mathsf{I}} = \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & -1 & -i \\ 4 & i & 0 \end{bmatrix} = \mathbf{B}$$

$$\boldsymbol{B}\boldsymbol{B}^H = \boldsymbol{B}^H\boldsymbol{B} = \boldsymbol{B}\boldsymbol{B}$$

$$\boldsymbol{C} = \begin{bmatrix} i & 2 \\ -2 & -i \end{bmatrix} \qquad \bar{\boldsymbol{C}} = \begin{bmatrix} -i & 2 \\ -2 & i \end{bmatrix} \qquad \boldsymbol{C}^{\mathsf{H}} = \begin{bmatrix} -i & 2 \\ -2 & i \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} -i & -2 \\ 2 & i \end{bmatrix} = -\boldsymbol{C}$$
$$\boldsymbol{C}\boldsymbol{C}^{\mathsf{H}} = \boldsymbol{C}^{\mathsf{H}}\boldsymbol{C} = -\boldsymbol{C}\boldsymbol{C}$$

$$\mathbf{D} = \begin{bmatrix} 6 & -3 & 2 \\ 2 & 6 & 3 \\ 3 & 2 & -6 \end{bmatrix}$$

$$\bar{\mathbf{D}} = \begin{bmatrix} 6 & -3 & 2 \\ 2 & 6 & 3 \\ 3 & 2 & -6 \end{bmatrix} = \mathbf{D}$$

$$\mathbf{D}^{\mathsf{H}} = \begin{bmatrix} 6 & -3 & 2 \\ 2 & 6 & 3 \\ 3 & 2 & -6 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 6 & 2 & 3 \\ -3 & 6 & 2 \\ 2 & 3 & -6 \end{bmatrix}$$

$$\mathbf{DD}^{\mathsf{H}} = \begin{bmatrix} 6 & -3 & 2 \\ 2 & 6 & 3 \\ 3 & 2 & -6 \end{bmatrix} \begin{bmatrix} 6 & 2 & 3 \\ -3 & 6 & 2 \\ 2 & 3 & -6 \end{bmatrix} = \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}$$

$$\mathbf{D}^{\mathsf{H}}\mathbf{D} = \begin{bmatrix} 6 & 2 & 3 \\ -3 & 6 & 2 \\ 2 & 3 & -6 \end{bmatrix} \begin{bmatrix} 6 & -3 & 2 \\ 2 & 6 & 3 \\ 3 & 2 & -6 \end{bmatrix} = \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}$$

$$\mathbf{D}\mathbf{D}^H = \mathbf{D}^H\mathbf{D}$$

Matriz hermitiana

Definição [2.19]: Matriz hermitiana

Uma matriz quadrada **A** de ordem *n*, no corpo $\Omega = \mathbb{C}$, é uma *matriz* hermitiana, ou de Hermite, se for igual à sua matriz transconjugada, ou seja, se

$$\mathbf{A} = \mathbf{A}^{\mathsf{H}}$$

Exemplo 27 [2.27]: São matrizes hermitianas

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$$
 $\overline{\mathbf{A}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} = \mathbf{A}$ $\mathbf{A}^{\mathsf{H}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} = \mathbf{A}$

$$\mathbf{A}^{\mathsf{H}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}^{\mathsf{I}} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} = \mathbf{A}$$

$$\mathbf{B} = \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & -1 & -i \\ 4 & i & 0 \end{bmatrix} \qquad \qquad \mathbf{\bar{B}} = \begin{bmatrix} 2 & 2-i & 4 \\ 2+i & -1 & i \\ 4 & -i & 0 \end{bmatrix}$$

$$\bar{\mathbf{B}} = \begin{bmatrix} 2 & 2-i & 4 \\ 2+i & -1 & i \\ 4 & -i & 0 \end{bmatrix}$$

$$\mathbf{B}^{\mathsf{H}} = \begin{bmatrix} 2 & 2-i & 4 \\ 2+i & -1 & i \\ 4 & -i & 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & -1 & -i \\ 4 & i & 0 \end{bmatrix} = \mathbf{B}$$

Teorema [2.11]: Sejam \boldsymbol{A} e \boldsymbol{B} duas matrizes hermitianas de ordem \boldsymbol{n} . Então:

- **a**) A matriz C = A + B é uma *matriz hermitiana* de ordem *n*.
- **b**) Se $k \in \mathbb{R}$, a matriz $\mathbf{D} = k\mathbf{A}$ é uma matriz hermitiana de ordem n.
- c) Se AB = BA, a matriz AB é uma matriz hermitiana de ordem n.

Teorema [2.12]: Seja A uma matriz quadrada de ordem n, no corpo $\Omega = \mathbb{C}$. São verdadeiras as seguintes proposições:

- **a**) A matriz soma $C = A + A^H$ é uma *matriz hermitiana* de ordem *n*.
- **b**) As matrizes produto $\mathbf{D} = \mathbf{A}\mathbf{A}^{\mathsf{H}}$ e $\mathbf{E} = \mathbf{A}^{\mathsf{H}}\mathbf{A}$ são matrizes hermitianas de ordem n.
- c) A matriz A é uma matriz hermitiana, se e só se os seus elementos opostos são conjugados e todos os elementos principais são reais, ou seja,

$$a_{ij} = \overline{a}_{ji}$$
 , $i \neq j$ $\wedge \forall a_{ii} \in \mathbb{R}$

- **d**) Se **A** é uma *matriz simétrica* com todos os seus *elementos reais*, então **A** é uma *matriz hermitiana*.
- e) Se A é uma matriz hermitiana, então será ainda uma matriz normal.

Exemplo 28 [2.27]: São matrizes hermitianas

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & -1 & -i \\ 4 & i & 0 \end{bmatrix}$$

Matriz hemi-hermitiana

Definição [2.20]: Matriz hemi-hermitiana

Uma matriz quadrada ${\bf A}$ de ordem n, no corpo $\Omega=\mathbb{C}$, será uma matriz hemi-hermitiana, se for igual à simétrica da sua matriz transconjugada, ou seja, se

$$\boldsymbol{A} = -\boldsymbol{A}^{H}$$

Exemplo 29 [2.28]: É uma matriz hemi-hermitiana

$$\boldsymbol{C} = \begin{bmatrix} i & 2 \\ -2 & -i \end{bmatrix}$$
 $\bar{\boldsymbol{C}} = \begin{bmatrix} -i & 2 \\ -2 & i \end{bmatrix}$ $\boldsymbol{C}^{\mathsf{H}} = \begin{bmatrix} -i & 2 \\ -2 & i \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} -i & -2 \\ 2 & i \end{bmatrix} = -\boldsymbol{C}$

Teorema [2.13]: Seja **A** uma matriz quadrada de ordem n, no corpo $\Omega = \mathbb{C}$. Verifica-se:

a) A matriz A é uma matriz hemi-hermitiana, se e só se os seus elementos opostos são simétrico-conjugados e os elementos principais são nulos ou imaginários puros, isto é,

$$a_{ij} = -\overline{a}_{ji}$$
 , $i \neq j$ \wedge $(a_{ij} = 0 \lor a_{ij} = b i$, $b \neq 0)$, $i = j$

- **b**) A matriz subtração $C = A A^H$ é uma *matriz hemi-hermitiana* de ordem n.
- c) Se **A** é uma *matriz hemi-simétrica* com todos os seus *elementos reais*, então **A** é uma *matriz hemi-hermitiana*.
- **d**) Se **A** é uma *matriz hermi-hermitiana*, então também será uma *matriz normal*.

Teorema [2.13]: Se A é uma matriz quadrada de ordem n, no corpo $\Omega = \mathbb{C}$, então A pode ser escrita como o resultado da soma de uma matriz hermitiana com uma matriz hemi-hermitiana, ou seja,

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{H})}_{\text{matriz}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{H})}_{\text{matriz}}$$
hermitiana

Exemplo 30 [2.29]: Em relação à matriz A (quadrada de ordem 3)

$$\mathbf{A} = \begin{bmatrix} 2 & 1+i & 0 \\ 2-i & i & 1-i \\ 4+2i & 2 & 1+i \end{bmatrix} \qquad \mathbf{A}^{H} = \begin{bmatrix} 2 & 1+i & 0 \\ 2-i & i & 1-i \\ 4+2i & 2 & 1+i \end{bmatrix}^{T} = \begin{bmatrix} 2 & 2+i & 4-2i \\ 1-i & -i & 2 \\ 0 & 1+i & 1-i \end{bmatrix}$$

$$\mathbf{A} + \mathbf{A}^{\mathsf{H}} = \begin{bmatrix} 2 & 1+i & 0 \\ 2-i & i & 1-i \\ 4+2i & 2 & 1+i \end{bmatrix} + \begin{bmatrix} 2 & 2+i & 4-2i \\ 1-i & -i & 2 \\ 0 & 1+i & 1-i \end{bmatrix} = \begin{bmatrix} 4 & 3+2i & 4-2i \\ 3-2i & 0 & 3-i \\ 4+2i & 3+i & 2 \end{bmatrix}$$

$$\mathbf{A} - \mathbf{A}^{\mathsf{H}} = \begin{bmatrix} 2 & 1+i & 0 \\ 2-i & i & 1-i \\ 4+2i & 2 & 1+i \end{bmatrix} - \begin{bmatrix} 2 & 2+i & 4-2i \\ 1-i & -i & 2 \\ 0 & 1+i & 1-i \end{bmatrix} = \begin{bmatrix} 0 & -1 & -4+2i \\ 1 & 2i & -1-i \\ 4+2i & 1-i & 2i \end{bmatrix}$$

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{H})}_{\text{matriz}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{H})}_{\text{matriz}} \Leftrightarrow$$

$$\Leftrightarrow \mathbf{A} = \frac{1}{2} \begin{bmatrix} 4 & 3+2i & 4-2i \\ 3-2i & 0 & 3-i \\ 4+2i & 3+i & 2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -1 & -4+2i \\ 1 & 2i & -1-i \\ 4+2i & 1-i & 2i \end{bmatrix} = \begin{bmatrix} 2 & 1+i & 0 \\ 2-i & i & 1-i \\ 4+2i & 2 & 1+i \end{bmatrix}$$