Вводная лекция

Лектор: Петров Антон Александрович

Содержание

- Определение облачный вычислений (облако)
- Характеристики облака
- Модели размещения облаков
- Модели предоставления сервиса облаком
- Облачные приложения

Виртуализаци

Source: BESSEMER VENTURE PARTNERS, , June 2015

Определение облака

Американский National Institute of Standards and Technology (NIST) определяет облако как:

- Cloud computing is a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.
- Русская википедия определяет облако как:
 - Облачные вычисления (англ. cloud computing) технология распределённой обработки данных, в которой компьютерные ресурсы и мощности предоставляются пользователю как сервис.

Развитие ключевых технологий

- Развитие многоядерных процессоров
 - увеличение производительности
 - снижение стоимости оборудования
 - снижение энергопотребления
- Увеличение емкостей носителей информации
 - «безгранично» увеличить объемы хранимой информации
 - снизить стоимость обслуживания
- Развитие технологии многопоточного программирования
 - эффективному использованию вычислительных ресурсов
 - гибкое распределение вычислительных мощностей

Развитие ключевых технологий

- Развитие технологий виртуализации
 - создание кроссплатформенного ПО
 - легкость масштабирования
 - уменьшение расходов на администрирование
 - доступность виртуальной инфраструктуры через сеть Интернет
- Увеличении пропускной способности сетевых каналов
 - увеличению скорости работы
 - снижение стоимости Интернет трафика

• Сервис по запросу:

• Облачные ресурсы предоставляются по запросу пользователя, без дополнительного взаимодействия с оператор облака. Процесс предоставления облачных ресурсов полностью автоматизирован.

• Сетевая доступность:

• Облачные ресурсов доступны через сеть с помощью стандартных механизмов доступа, которые предоставляют платформа-независимый доступ через ПК\Ноутбук\Планшет и т.д.

• Объединения ресурсов:

• Вычислительные ресурсы и ресурсы хранения предоставляемые оператором облака объединяются в единый пул, чтобы обслуживать несколько пользователей (multi-tenancy). Multi-tenant – это возможность облака обслуживать несколько пользователей на одном физическом оборудовании.

• Эластичность:

• Ресурсы облака должны гибко и быстро предоставляются пользователю. Это означает, что ресурсов должны быстро масштабироваться (вверх и вниз) по запросу либо пользователя, либо оператора облака, либо в автоматическом режиме.

• Измерительный сервис:

• Обычно ресурсы облака предоставляются пользователю по модели «плати за использование». Облака может предоставлять несколько метрик измерения понятия использования ресурса, например, время или объем трафика. В общем случае для каждого облачного сервиса может быть определена своя специфичная метрика.

• Производительность:

• Облако достигает необходимой производительности для каждого запущенного в нем приложения. Ресурсы, выделяемые облаком, могут быть масштабированы (вверх и вниз), чтобы динамически подстраиваться под нужны приложения.

• Снижение затрат:

• Облака предоставляет возможность снижения затрат на поддержку приложения, так как необходимое количество вычислительных ресурсов и ресурсов хранения может предоставляться динамически. Данный аспект позволяет избежать больших первоначальных вложений для покрытия худшего случая (когда для каждого приложения все ресурсы закупаются независимо).

• Удаленное управление инфраструктурой:

• Облако предоставляет пользователям (ФЛ, Организации, Бизнес) переносить свою информационную инфраструктуру в облако.

• Надежность:

• Приложения, которые запущены в облачно окружении в общем случае более надежны, так как инфраструктура облака находить под профессиональным, постоянным наблюдением и управлением оператора облака.

• Multi-tenancy:

- Данный подход позволяет нескольким пользователям разделять один и те же ресурсы.
- В виртуальном Multi-tenancy, Под ресурсами обычно понимают пулы ресурсов хранения, вычислительные ресурсов, а также сетевые ресурсов, которые разделяются между несколькими пользователями.
- В системной (organic) Multi-tenancy, каждый компонент облачной системы разделяется между несколькими пользователями.

Сервисные модели облака

- Software as a Service (SaaS)
 - Приложения, управление и пользовательских интерфейс предоставляется по сети.
- Platform as a Service (PaaS)
 - Средства разработки приложений, операционные системы для запуска приложений, и инструментарий для размещения приложений.
- Infrastructure as a Service (IaaS)
 - Виртуальные вычислительные, сетевые ресурсы и ресурсы хранения предоставляются пользователю по запросу. Обычно это делается в виде виртуальных машин, контейнеров и других виртуальных сущностей.

Software-as-a-Service (SaaS)

- Приложение/интерфейс
 - SaaS предоставляет пользователю полноценное приложение, либо пользовательских интерфейс для доступа к приложению.
- Удаленное управления инфраструктурой
 - Оператор облака управления физической инфраструктурой (серверами, сетевыми устройствами, ОС, системами хранения). При этом пользователь полностью абстрагирован от этого управления.
- Тонкие клиентские интерфейсы
 - Приложение предоставляется клиенту, через «тонкие» клиентские интерфейсы (например, браузер). SaaS приложения являются платформа независимыми, с возможность доступа через ПК/ноутбук/планшет/телефон с различными ОС.
- Доступ из любой точки
 - Так как оператор облака управляет как приложением так и данными, пользователи могут получать доступ из любой точки (откуда доступно облако).

Software-as-a-Service (SaaS)

SaaS

Преимущества для пользователя

- Низкая стоимость
- Не нужна инфраструктура
- Бесшовные обновления
- Гарантированная производительность
- Автоматические backup
- Восстановление данных
- Мгновенный доступ

Характеристики

- Multi-tenancy
- Приложение по запросу
- Открытые протоколы интеграции
- Интеграция с социальными сетями

Применимость

- Простые Пользователи: Высокая
- Средний и малый бизнес: Высокая
- Большой бизнес: Высокая
- Гос. структуры: Средняя

Примеры

- Google Apps
- Salesforce.com
- Facebook
- Zoho
- Dropbox
- Taleo
- Microsoft Office 365
- Linkedin
- Slideshare
- CareCloud

Office 365

What if I don't use Windows or Internet Explorer Web Browser?

Platform-as-a-Service (PaaS)

- Разработка и размещение:
 - PaaS представляет пользователю возможность разрабатывать и размещать приложение в облаке. Для этого использует специальным инструментарий разработки (IDE, API, библиотеки), предоставляемые оператором облака.
- Оператор управляет инфраструктурой:
 - Оператор облака управления физической инфраструктурой (серверами, сетевыми устройствами, ОС, системами хранения). При этом пользователь полностью абстрагирован от этого управления.
- Пользователь управляет приложением:
 - Пользователи отвечают за разработку, размещение, конфигурирование и управление приложениями, запущеннымыи в облачной инфраструктуре.

Platform-as-a-Service (PaaS)

PaaS

Преимущества для пользователя

- Малые САРЕХ и ОРЕХ
- Нет затрат на управления инфраструктурой
- Улучшенное масштабирование
- Высокая производительность
- Безопасные доступ
- Легкое и быстрое размещение
- Бесшовная интеграция

Характеристики

- Multi-tenancy
- Открытые протоколы интеграции
- Инструменты разработки приложений & SDKs
- Аналитика

Применимость

- Простые Пользователи: Низкая
- Средний и малый бизнес: Средняя
- Большой бизнес: Высокая
- Гос. структуры: Средняя

Примеры

- Google App Engine
- Windows Azure Platform
- Force.com
- RightScale
- Heroku
- Github
- Gigaspaces
- AppScale
- LongJump

Azure Demo

Infrastructure-as-a-Service (IaaS)

- Предоставление ресурсов
 - Предоставляет пользователю вычислительные ресурсы и ресурсы хранения.
- Виртуальные машины (ВМ)
 - Ресурсы предоставляются пользователю в виде ВМ и виртуальных хранилищ. Пользователи могут запустить, остановить, конфигурировать и управлять ВМ и виртуальными хранилищами.
- Оператор управляет инфраструктурой:
 - Оператор облака управления физической инфраструктурой (серверами, сетевыми устройствами, ОС, системами хранения). При этом пользователь полностью абстрагирован от этого управления.
- Плати за использование (Pay-per-use/Pay-as-you-go):
 - Стоимость виртуальные ресурсы, предоставляемых пользователю, рассчитывается по модели pay-per-use/pay-as-you-go.

Infrastructure-as-a-Service (IaaS)

IaaS

Преимущества для пользователя

- Смещение фокуса с управления IT в сторону управления инфраструктурой
- Нет затрат на управления инфраструктурой
- Pay-per-use/pay-per-go pricing
- Гарантированная производительность
- Динамическое масштабирование
- Безопасный доступ

Характеристики

- Multi-tenancy
- Виртуализированое оборудование
- Инструменты для управления и мониторинга
- Система восстановления после сбоев

Применимость

- Простые Пользователи: Низкая
- Средний и малый бизнес: Средняя
- Большой бизнес: Высокая
- Гос. структуры: Высокая

Примеры

- Amazon Elastic Compute Cloud (EC2)
- RackSpace
- GoGrid
- Eucalyptus
- Joyent
- Terremark
- OpenStack
- Savvis
- Nimbula
- Enamoly

AWS Cloud Demo

Виды услуг предоставляемые облаками

• IaaS, PaaS, SaaS...

- аппаратное обеспечение как услуга (Hardware as a Service)
- рабочее место как услуга (Workplace as a Service)
- данные как услуга (Data as a Service)
- безопасность как сервис (Security as a Service)
- все как услуга (Everything as a Service)

Модели размещения облаков

- Публичное облако
 - Доступное для любого пользователя или большой индустриальной группы
- Частное облако
 - Эксплуатируется только для нужд конкретной организации
- Community облако
 - Доступное для группы организаций, которые поддерживают определенное community
- Гибридное облако
 - Сочетает в себе несколько типов облаков (публичное и частное) которые остаются отдельными облаками, однако связаны между собой, для предоставления доступа к приложениям и с возможностью переноса данных

Недостатки облаков

- Постоянное соединение с сетью
- Программное обеспечение и его кастомизация
- Конфиденциальность
- Надежность
- Дороговизна оборудования

Облачные приложения

- Банковские и финансовые приложения
- Приложения электронной торговли
- Социальные сети
- Приложения систем здравоохранения
- Системы энергетики
- Интеллектуальные транспортные системы
- Электронное правительство
- Мобильные коммуникации

Облачные потребители

- Telco провайдеры
- Корпоративные провайдеры
- Мультимедиа сети (CDN)
- Информационная безопасность
- Образование

Infrastructure Services

Storage

Amazon S3 & EBS Rackspace Cloud Files Nirvanix

AT&T Synaptic

Zetta

Cloud Broker

RightScale enStratus

Kaavo

Elastra CloudKick

CloudSwitch

Compute

Amazon EC2 Serve Path GoGrid Rackspace Cloud Servers

Joyent Cloud Flexiant Flexiscale

Elastichosts Terremark **ITRICITY**

LayeredTech

Savvis Cloud Compute

Verizon CaaS AT&T Synaptic

Sungard Enterprise Cloud

Navisite

Services Management

CohesiveFT

CloudFoundry NewRelic

Amazon CloudWatch

- Amazon VPC

Scalr

Ylastic

Cloud42

Cloud Software

SaaS Data Security

Navajo -PerspecSys - Data

10Gen MongoDB Apache CouchDb Apache HBase

> Hypertable Tokyo Cabinet Cassandra

> > memcached Clustrix FlockDB

Gizzard Redis BerkeleyDB

Voldemort Terrastore

Compute

Globus Toolkit Xeround Sun Grid Engine Hadoop

> OpenCloud Gigaspaces DataSynapse -

File Storage

EMC Atmos ParaScale Zmamda **CTERA**

Appistry -

Cloud Management

CA Turn-key Cloud OpenNebula Open.ControlTier **Enomaly Enomalism** VMware vCloud CohesiveFT VPN Cubed Hyperic

Eucalyptus Puppet Labs

Appistry IBM CloudBurst Cisco UCS

> Zenoss Surgient

CLOUD TAXONOMY

Platform Services

General Purpose

 Force.com Etelos

LongJump Rollbase

Bungee Connect Google App Engine

Engine Yard

Caspio

Qrimp MS Azure

Mosso Cloud Sites

VMforce

Intuit Partner Platform

Joyent Smart Platform

Business Intelligence

 Aster DB Quantivo Cloud9 Analytics **K2 Analytics**

LogiXML

Oco PivotLink

Clario Analytics ColdLight Neuron Vertica

Integration

Boomi

gnip

SnapLogic

On-Demand

 Amazon SQS Amazon SNS IBM Cast Iron

Appian Anywhere Rational Software **Delivery Services** HubSpan Informatica

Database

Testing

SOASTA

SkyTap

Aptana

LoadStorm

Collabnet

Amazon SimpleDB Mosso Drizzle Amazon RDS

Keynote Systems

Development & Financials

Concur -Xero -Workday -

Expensify -Intuit Quickbooks

Management Clickability -SpringCM -CrownPoint -

Content

Online

Billing

Aria Systems eVapt -Redi2 Zuora -

Collaboration

Box.net -CubeTree SocialText -

Basecamp Assembla DropBox -

Social Networks

Zembly. Amitive Jive SBS -

NetSuite -Ning —

Parature | Responsys -Rightnow -LiveOps -MSDynamics -Salesforce.com -Oracle On Demand

Software Services

Sales

CRM

Xactly -

Success

Metrics

StreetSmarts

Desktop Productivity

Zoho · Google Apps -HyperOffice -

MS Office -Web Apps

Document Management

NetDocuments -DocLanding -Knowledge TreeLive SpringCM

Спасибо за внимание! Вопросы?

petrov.a@kubsau.ru

Петров Антон Александрович