BAYESIAN LEARNING - LECTURE 1

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

COURSE OVERVIEW

- ► Five two-day modules with:
 - Lectures
 - Exercises
 - Labs

COURSE OVERVIEW

- ► Five two-day modules with:
 - Lectures
 - Exercises
 - Labs
- Examination
 - ▶ Lab reports, 2 credits
 - ▶ Bayesian project report, 4 credits

COURSE OVERVIEW

- ► Five two-day modules with:
 - Lectures
 - Exercises
 - Labs

Examination

- ► Lab reports, 2 credits
- Bayesian project report, 4 credits
- Bayesian project report
 - Individual
 - Use one or several real datasets to illustrate Bayesian analysis of several models
 - Deadline January 6

LECTURE OVERVIEW

- ► The likelihood function
- ► Bayesian inference
- ► The Bernoulli model

THE LIKELIHOOD FUNCTION

▶ Bernoulli trials:

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta).$$

► Likelihood:

$$p(x_1, ..., x_n | \theta) = p(x_1 | \theta) \cdots p(x_n | \theta)$$

= $\theta^s (1 - \theta)^f$,

where $s = \sum_{i=1}^{n} x_i$ is the number of successes in the Bernoulli trials and f = n - s is the number of failures.

▶ Given the data $x_1, ..., x_n$, we may plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

THE LIKELIHOOD FUNCTION FROM BERNOULLI TRIALS

Likelihood function of the Bernoulli model for different data

LIKELIHOOD

- ▶ Two different roles played by $p(x_1, ..., x_n | \theta)$:
 - **a function of the data**, $x_1, ..., x_n$, for a *fixed* θ , it is a **probability distribution** for the data. Here the *data are random* and θ is fixed.
 - **a** deterministic function of θ for a fixed data sample. The likelihood function.
- ▶ The **likelihood principle**: Two experiments E_1 and E_2 that give rise to proportional likelihoods, i.e. $L_1(\theta) = c \cdot L_2(\theta)$ for all θ and some constant c > 0, should provide the same inference about θ .
- ▶ Many frequentist procedure violate the likelihood principle. Binomial vs inverse binomial sampling.
- ▶ Birnbaum' theorem: the likelihood principle follows directly from two universally accepted statistical principles.

OBSERVED INFORMATION

- ► The curvature of the likelihood is a measure of the informativeness (precision) of the data.
- ► The observed information

$$J_{\theta,\mathbf{x}} = -\frac{\partial^2 \ln L(\theta;\mathbf{x})}{\partial \theta^2}$$

Asymptotic approximation of the likelihood function

$$N\left(\hat{ heta},J_{\hat{ heta},\mathbf{x}}^{-1}
ight)$$
 ,

where $\hat{\theta}$ is the Maximum Likelihood Estimate (MLE) of θ .

- ► The normality can be proved heuristically by a second order Taylor expansion of the log-likelihood function.
- Example: Bernoulli data

$$J_{\hat{\theta},\mathbf{x}} = -\left. \frac{\partial^2 \ln L(\theta;\mathbf{x})}{\partial \theta^2} \right|_{\theta = \hat{\theta}} = \frac{s}{\hat{\theta}^2} + \frac{f}{(1-\hat{\theta})^2} = \frac{n}{\hat{\theta}(1-\hat{\theta})}.$$

FISHER INFORMATION

Fisher information

$$I_{ heta} = \mathsf{E}_{\mathbf{x}| heta}\left(J_{ heta,\mathbf{x}}
ight)$$
 ,

where the expectation is with respect to the data distribution.

- ► The Fisher information is the information that can be **expected** before the data is observed.
- ► The asymptotic distribution of the MLE

$$|\hat{ heta}| heta \overset{\mathsf{approx}}{\sim} N\left(heta, rac{1}{l_{ heta}}
ight).$$

Example: Bernoulli data

$$I_{\theta} = \frac{E(s)}{\theta^2} + \frac{E(f)}{(1-\theta)^2} = \frac{n}{\theta(1-\theta)}.$$

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- Will the likelihood give us un idea of which values of θ that should be regarded as probable (in some sense)? Kind of, but ... No!
- ▶ In order to say that one value of θ is more probable than another we clearly must think of θ as random. But θ may be something that we know is non-random, e.g. a fixed natural constant.
- ▶ Bayesian: doesn't matter if θ is fixed or random. What matters is whether or not You know the value of θ . If θ is uncertainty to You, then You can assign a probability distribution to θ which reflects Your knowledge about θ . Subjective probability.
- Different types of prior information
 - ▶ Real **expert information**. Combo of previous studies and experience.
 - ▶ Vague prior information, or even **noninformative priors**.
 - Reporting priors
 - ▶ **Smoothness priors**. Regularization. Shrinkage. Big thing in modern statistics/machine learning.

LEARNING FROM DATA - BAYES' THEOREM

- ▶ Given that you have formulated a distribution for θ , $p(\theta)$, how can we learn from data? That is, how do we make the transition from $p(\theta) \rightarrow p(\theta|Data)$? Bayes' theorem is the key.
- ▶ One form of Bayes' theorem reads (A and B are events)

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

So that Bayes' theorem 'reverses the conditioning', i.e. takes us from p(B|A) to p(A|B).

▶ Let $A = \theta$ and B = Data

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

▶ Interpreting the likelihood function as a probability density for θ is just as wrong as ignoring the factor p(A)/p(B) in Bayes' theorem.

GENERALIZED BAYES' THEOREM

From your basic statistics textbook:

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{p(B)} = \frac{p(B|A_i)p(A_i)}{\sum_{i=1}^{k} p(B|A_i)p(A_i)}.$$

▶ Let $\theta_1, ..., \theta_k$ be k different values on a parameter θ . Bayes' Theorem:

$$p(\theta_i|Data) = \frac{p(Data|\theta_i)p(\theta_i)}{p(Data)} = \frac{p(Data|\theta_i)p(\theta_i)}{\sum_{i=1}^k p(Data|\theta_i)p(\theta_i)}.$$

 \blacktriangleright If θ takes on a continuum of values

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

THE JOY OF IGNORING A NORMALIZING CONSTANT

▶ When Data is known, p(Data) in Bayes' theorem is just a constant that makes $p(\theta|Data)$ integrate to one. Example: $x \sim N(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

We may write

$$p(x) \propto \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

► Short form of Bayes' theorem

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

NORMALIZATION CONSTANT IS NOT IMPORTANT

Illustration that the normalization constant is unimportant

$N(\mu,\sigma^2)$ density without normalization constant

BAYESIAN UPDATING

- ▶ Suppose: you already have $x_1, x_2, ..., x_n$ data points, and the corresponding posterior $p(\theta|x_1, ..., x_n)$
- Now, a fresh additional data point x_{n+1} arrives.
- ▶ The posterior based on all available data is

$$p(\theta|x_{1,...},x_{n+1}) \propto p(x_{n+1}|\theta,x_{1},...,x_{n})p(\theta|x_{1},...,x_{n}).$$

- ► The following are therefore equivalent:
- Analyzing the likelihood of all data $x_{1,...}, x_{n+1}$ with the prior based on no data $p(\theta)$
- Analyzing the likelihood of the fresh data point x_{n+1} with the 'prior' equal to the posterior based on the old data $p(\theta|x_1,...,x_n)$.
- Yesterday's posterior is today's prior.

BERNOULLI TRIALS - BETA PRIOR

► Model:

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta)$$

Prior:

$$heta \sim Beta(lpha,eta) \ p(y) = rac{\Gamma(lpha,eta)}{\Gamma(lpha)\Gamma(eta)} y^{lpha-1} (1-y)^{eta-1} \ \ ext{for } 0 \leq y \leq 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$

$$= \theta^{s}(1-\theta)^{f}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

▶ But this is recognized as proportional to the $Beta(\alpha + s, \beta + f)$ density. That is, the prior-to-posterior mapping reads

$$\theta \sim Beta(\alpha, \beta) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x_1, \dots, x_n \sim Beta(\alpha + s, \beta + f).$$

BERNOULLI EXAMPLE: SPAM EMAILS

- ► George has gone through his collection of 4601 e-mails. He classified 1813 of them to be spam.
- ▶ Let $x_i = 1$ if i:th email is spam. Assume $x_i | \theta \stackrel{\textit{iid}}{\sim} \textit{Bernoulli}(\theta)$ and $\theta \sim \text{Beta}(\alpha, \beta)$.
- Posterior

$$\theta | x \sim Beta(\alpha + 1813, \beta + 2788)$$

SPAM DATA (N=10): PRIOR SENSITIVITY

SPAM DATA (N=100): PRIOR SENSITIVITY

SPAM DATA (N=4601): PRIOR SENSITIVITY

SPAM DATA: POSTERIOR CONVERGENCE

