МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе № 116 «Маховое колесо»

Выполнил:

студент 1 курса ВШ ОПФ Тарханов Андрей Алексеевич

Практическая часть

1. Измерим моменты инерции методом вращения, используя грузы массой 500г и 200г и формулы (6, 11). Данные занесем в таблицу 1:

т,г	N	h,см	г,см	t,c	n_2	I, 10 ⁶ г*см ²	$I_{cp,}$, $10^6 \Gamma^* cm^2$	$I,10^6$ Γ * cm ²
	1			15,2	133	5,64	5,72	5,55
500	2	134		15,6	133	5,95		
	3			15,1	138	5,58		
	1		3,7	24,2	45	5,26	5,38	
200	2	142		25,2	49	5,38		
				,		ĺ		
	3			24,4	50	5,51		
	i			, -		- , -		

Ісистемы =
$$(m(gt^2-2h)r^2n_2)/(2h(n_2+n_1))$$
, где $n_1=h/(2\pi r)$ рассчитаем Ідоп = Іоси + Іутолщения + Ішкива

Момент инерции цилиндра: Ідоп = $\frac{\pi \rho R^4 h}{2}$. Ось, утолщение и шкив представляют собой цилиндры со следующими характеристиками: R=0,9 см, h=7,4 см; R=1,15 см, h=17 см; R=3,7 см, h=3,4 см (ρ =7,8 г/см³)

Получаем, что
$$I_{\text{доп}} = 0.008 * 10^6 \text{г} * \text{см}^2$$

Тогда
$$I_{\kappa} \approx 5.55 * 10^6 \Gamma * cm^2$$

Рассчитаем погрешность в измерении момента инерции колеса:

$$\Delta h = 0.1 \text{ cm}; \Delta r = 0.005 \text{ cm}; \Delta m = 0.5 \text{ r}; \Delta t = 0.2 \text{ c};$$

$$I\kappa = 5.66 * 10^6 \Gamma * cm^2;$$

$$\delta I = I\kappa(\Delta m/m + 2\Delta h/h + 2\Delta r/r + 2\Delta t/t);$$

$$\delta I \approx 0.15 * 10^6 \text{ r} * \text{ cm}^2$$

2. Измерим моменты инерции колеса методом колебаний (используя формулы 19-21). Отклонять колесо с грузом от положения равновесия будем не более, чем на 15°.

т,г	N	n	R _{доп,см}	L, см	t,c	I, 10 ^{6г} *см ²	<u>I</u> ,10 ⁶ г*с м ²	I _{доп} , 10 ⁶ г*см ²	I _к ,, 10 ⁶ г*см ²
1900	1	15	5	23,8	25,1	7,07	7,11	1,10	6,01
	2				25,3	7,19			
	3				25,1	7,07			
1450	1		3,5		29,2	7,31	7,28	0,83	6,45
	2				29,2	7,31			
	3				29,0	7,21			

Ісистемы =
$$(mgLT^2)/(4\pi^2)$$
,

$$T = t/n$$
,

$$I_{\text{доп}} = (mR_{\text{доп}}^2)/2 + mL^2$$
,

Тогда $I_K = I_{CUCTEMЫ} - I_{ДОП} - I_{ДОП}$,

 $I_{\rm K} \approx 6.01*10^6 \, {\rm f}*{\rm cm}^2$, $I_{\rm K} \approx 6.45*10^6 \, {\rm f}*{\rm cm}^2$, Получим среднее значение для момента инерции колеса $I_{\rm K} = 6.23*10^6 \, {\rm r}*{\rm cm}^2$

Рассчитаем погрешность:

$$\Delta L = 0.1$$
cm; $\Delta T = 0.2$ c, $\Delta m = 0.1$ г;

$$\delta$$
I = Iκ(Δ L/L + 2 Δ T/T + Δ m/m);

$$\delta I \approx 0.97 * 10^6 \Gamma * cm^2$$

3. Оценим вклад обода и спиц колеса в его момент инерции

Іобода =
$$\frac{\pi \rho h(r_{\text{внеш}}^4 - r_{\text{внутр}}^4)}{2}$$
 Іспиц = $\frac{\pi \rho r^2 L^3}{12}$

Іобода $\approx 6.14 * 10^6 \Gamma * \text{см2}$, Іспиц $\approx 0.2 * 10^6 \Gamma * \text{см2}$,

$$I_K = Iобода + Iспиц \approx 6,18 * 10^6 г * см2.$$

Такая большая погрешность во втором методе связана с существенным вкладом в систему дополнительных элементов, из-за которых увеличивается абсолютная погрешность. Так же большое влияние оказывает трение в осях и очень быстрое затухание

колебаний. Ось и груз на нити в первом методе оказывали гораздо меньшее влияние на движение системы.

Вывод:

Определен момент инерции махового колеса. Результат, полученный колебательным методом, более близок к теоретическому, чем результат, полученный методом вращения. Однако погрешность в определении момента инерции значительно больше у метода колебаний. Это может объясняться быстрым затуханием колебаний, трением в оси махового колеса. Разница в полученных разными методами значениях может заключаться в недостаточно справедливой гипотезе относительно метода вращения — о пропорциональности работы силы трения и количества оборотов махового колеса на всем времени проведения эксперимента, кроме того, при достаточно быстром вращении колеса не учитывалось сопротивление воздуха.