Factor and independent component analysis

David J. Hessen

Utrecht University

Academic year 2023-2024

Applications

The analysis of

- educational or psychological test data
- ► EEG data
- trading prices of stocks

David J. Hessen (UU)

The data

The data matrix (the scores of N cases on k features)

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{N1} & x_{N2} & \dots & x_{Nk} \end{bmatrix} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]^T$$

The vector of feature means is $\bar{\mathbf{x}} = [\bar{x}_1 \ \bar{x}_2 \ \dots \ \bar{x}_k]^T$

The data

Centered data:
$$\mathbf{c}_i = [c_{i1} \ c_{i2} \ \dots \ c_{ik}]^T = \mathbf{x}_i - \bar{\mathbf{x}}, \text{ for } i = 1, \dots, N$$

The matrix of centered data is

$$\mathbf{C} = \left[egin{array}{cccc} c_{11} & c_{12} & \dots & c_{1k} \ c_{21} & c_{22} & \dots & c_{2k} \ dots & dots & dots \ c_{N1} & c_{N2} & \dots & c_{Nk} \end{array}
ight] = \left[\mathbf{c_1} \ \mathbf{c_2} \ \dots \ \mathbf{c_N}
ight]^T = \mathbf{X} - \mathbf{1} ar{\mathbf{x}}^T$$

David J. Hessen (UU)

 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ are the sample observations of random variables

$$X_{1} = \mu_{1} + \lambda_{11}F_{1} + \dots + \lambda_{1q}F_{q} + U_{1}$$

$$X_{2} = \mu_{2} + \lambda_{21}F_{1} + \dots + \lambda_{2q}F_{q} + U_{2}$$

$$\vdots \qquad \vdots$$

$$X_{k} = \mu_{k} + \lambda_{k1}F_{1} + \dots + \lambda_{kq}F_{q} + U_{k}$$

where

- $ightharpoonup F_1, \ldots, F_q$ are q common factors
- $ightharpoonup U_1, \ldots, U_k$ are k unique factors
- $\blacktriangleright \mu_1, \ldots, \mu_k$ are k intercepts
- $\triangleright \lambda_{11}, \ldots, \lambda_{kq}$ are factor loadings (regression slopes)

Let
$$X = [X_1 ... X_k]^T$$
, $F = [F_1 ... F_q]^T$, and $U = [U_1 ... U_k]^T$

Then, in terms of matrices

$$oldsymbol{X} = oldsymbol{\mu} + oldsymbol{\Lambda} oldsymbol{F} + oldsymbol{U}$$

where

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_k \end{bmatrix} \text{ and } \boldsymbol{\Lambda} = \begin{bmatrix} \lambda_{11} & \dots & \lambda_{1q} \\ \vdots & & \vdots \\ \lambda_{k1} & \dots & \lambda_{kq} \end{bmatrix}$$

The elements of F and U are latent random variables

Scales must be assigned to all factors

The means of F_1, \ldots, F_q are set to zero and the variances are set to one

The means of U_1, \ldots, U_k are set to zero

Consequently, the means of X_1, \ldots, X_k are μ_1, \ldots, μ_k (the intercepts)

David J. Hessen (UU)

It is assumed that all factors (common and unique) are uncorrelated

Consequently, the covariance matrix of X_1, \ldots, X_k is

$$cov(\boldsymbol{X}) = \boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \boldsymbol{\Theta}$$

where
$$\Theta = cov(U) = diag\{var(U_1), \dots, var(U_k)\}$$

The diagonal elements of Θ are called uniquenesses

From

$$oldsymbol{X} = oldsymbol{\mu} + oldsymbol{\Lambda} oldsymbol{F} + oldsymbol{U}$$

it follows that

$$oldsymbol{C} = oldsymbol{X} - oldsymbol{\mu} = oldsymbol{\Lambda} oldsymbol{F} + oldsymbol{U}$$

where $C = [C_1 \dots C_k]^T$ is the random vector of centered features

The sample estimate of μ is $\bar{\mathbf{x}}$

The covariance matrix of C_1, \ldots, C_k is also

$$cov(\boldsymbol{C}) = \boldsymbol{\Sigma} = \boldsymbol{\Lambda}\boldsymbol{\Lambda}^T + \boldsymbol{\Theta}$$

Non-uniqueness due to rotational indeterminacy

Note that

$$\Sigma = \Lambda \Lambda^{T} + \Theta$$

$$= \Lambda \mathbf{B}^{T} \mathbf{B} \Lambda^{T} + \Theta \quad \text{where } \mathbf{B}^{T} \mathbf{B} = \mathbf{I}$$

$$= \Lambda \mathbf{B}^{T} (\Lambda \mathbf{B}^{T})^{T} + \Theta$$

$$= \Lambda^{*} \Lambda^{*T} + \Theta$$

where $\Lambda^* = \Lambda B^T$

Rotational indeterminacy is usually solved by constraining

$$\mathbf{\Lambda}^T \mathbf{\Theta}^{-1} \mathbf{\Lambda}$$

to be diagonal

The normal factor model

X is assumed to have a multivariate normal distribution (X is Gaussian)

As a consequence,

- ightharpoonup The elements of Λ and Θ can be estimated using maximum likelihood
- ▶ The fit of the model to data can be tested using a large sample chi-square goodness of fit test
- ► Fit indices can be calculated

David J. Hessen (UU) Academic year 2023-2024

11/28

Maximum likelihood estimation

Assuming $X_i \sim N(\mu, \Sigma)$, for all i, the log-likelihood function is

$$l(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \left\{ k \ln(2\pi) + \ln|\boldsymbol{\Sigma}| + \operatorname{tr}(\boldsymbol{\Sigma}^{-1} \mathbf{S}_N) + (\bar{\mathbf{x}} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \right\}$$

where $\mathbf{S}_N = (N-1)\mathbf{S}/N$ and \mathbf{S} is the sample covariance matrix

The unconstrained log-likelihood function is maximized by $\bar{\mathbf{x}}$ and \mathbf{S}_N

Under the common factor model, $\Sigma = \Lambda \Lambda^T + \Theta$

 $l(\bar{\mathbf{x}}, \boldsymbol{\Lambda}, \boldsymbol{\Theta})$ is maximized w.r.t. $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ subject to diagonal $\boldsymbol{\Lambda}^T \boldsymbol{\Theta}^{-1} \boldsymbol{\Lambda}$

Goodness of fit

Let $\hat{\Lambda}$ and $\hat{\Theta}$ be the ML estimates of Λ and Θ , respectively

A likelihood ratio test

If $X_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, for all i, where $\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \boldsymbol{\Theta}$, then

$$X^2 = 2\left\{l(\bar{\mathbf{x}}, \mathbf{S}_N) - l(\bar{\mathbf{x}}, \hat{\mathbf{\Lambda}}, \hat{\mathbf{\Theta}})\right\} \stackrel{L}{\to} \chi_{df}^2$$

where df = k(k-1)/2 + q(q-1)/2 - kq

Problem: the power to reject a model close to the true data generating process, increases with sample size

Fit indices (TLI, CFI, RMSEA, etc.) can be used to check the badness of fit

Principal components

The random vector of k features is given by

$$oldsymbol{X} = oldsymbol{\mu} + oldsymbol{\Lambda} oldsymbol{F}$$

where $\mathbf{F} = [F_1 \dots F_k]^T$ is a random vector of principal components

 $cov(\boldsymbol{X})$ is $\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Psi} \boldsymbol{\Lambda}^T$, where $\boldsymbol{\Lambda}^T = \boldsymbol{\Lambda}^{-1}$ and $\boldsymbol{\Psi} = cov(\boldsymbol{F})$ is diagonal

Under multivariate normality, the ML estimates of Λ and Ψ are given by the eigen-decomposition of \mathbf{S}_N

So, if $\mathbf{L}^T \mathbf{S}_N \mathbf{L} = \mathbf{P}$, where $\mathbf{L}^T \mathbf{L} = \mathbf{I}$ and \mathbf{P} is diagonal, then \mathbf{L} and \mathbf{P} are the ML estimates of $\boldsymbol{\Lambda}$ and $\boldsymbol{\Psi}$, respectively

14 / 28

Total variance explained

The total variance is defined as: $\operatorname{tr}(\Sigma) = \sum_{i=1}^{k} \sigma_i^2$

Under the factor model, the proportion of total variance explained is

$$\mathrm{tr}(\boldsymbol{\Lambda}\boldsymbol{\Lambda}^T)/\mathrm{tr}(\boldsymbol{\Sigma}) = \mathrm{tr}(\boldsymbol{\Lambda}^T\!\boldsymbol{\Lambda})/\mathrm{tr}(\boldsymbol{\Sigma}) = \sum_{r=1}^q \boldsymbol{\lambda}_r^T \boldsymbol{\lambda}_r/\mathrm{tr}(\boldsymbol{\Sigma})$$

Then, the proportion explained by the rth factor is $\boldsymbol{\lambda}_r^T \boldsymbol{\lambda}_r / \mathrm{tr}(\boldsymbol{\Sigma})$

Factor scores

Estimators of \boldsymbol{F}

► Thurstone's factor scores

$$\mathbf{f}_T = \mathbf{\Lambda}^T \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})$$

► Bartlett's factor scores

$$\mathbf{f}_B = (\mathbf{\Lambda}^T \mathbf{\Theta}^{-1} \mathbf{\Lambda})^{-1} \mathbf{\Lambda}^T \mathbf{\Theta}^{-1} (\mathbf{X} - \boldsymbol{\mu})$$

► McDonald's factor scores

$$\mathbf{f}_M = \left(\mathbf{\Lambda}^T \mathbf{\Sigma}^{-1} \mathbf{\Lambda}\right)^{-1/2} \mathbf{\Lambda}^T \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})$$

Rotation

The rotated matrix of factor loadings is given by

$$ar{m{\Lambda}} = \hat{m{\Lambda}} {f M}$$

where $\hat{\mathbf{\Lambda}}$ is the initial estimate of $\mathbf{\Lambda}$ and \mathbf{M} is an invertible rotation matrix

In the case of orthogonal rotation, $\mathbf{M}^{-1} = \mathbf{M}^T$

- ▶ orthogonal: varimax
- by oblique: promax or obliming

Rotation

Rotation to a position as close as possible to simple structure

Simple structure \rightarrow exactly q-1 elements of each row of Λ are zero

An example of 9 features and 3 common factors

$$\begin{bmatrix} \lambda_{11} & 0 & 0 \\ \lambda_{21} & 0 & 0 \\ \lambda_{31} & 0 & 0 \\ 0 & \lambda_{42} & 0 \\ 0 & \lambda_{52} & 0 \\ 0 & \lambda_{62} & 0 \\ 0 & 0 & \lambda_{73} \\ 0 & 0 & \lambda_{83} \\ 0 & 0 & \lambda_{93} \end{bmatrix}$$

Independent components

 F_1, \ldots, F_q are assumed to be mutually independent

Independence implies that $cov(\mathbf{F}) = \mathbf{\Psi}$ is a diagonal matrix

However, a diagonal $cov(\mathbf{F})$ does **not** imply independence

 F_1, \ldots, F_q are independent if and only if their joint density is

$$g(f_1,\ldots,f_q)=\prod_{r=1}^q g_r(f_r)$$

Solution: orthogonal rotation to a position with independent factors

The classical cocktail party problem

FIGURE 14.37. Illustration of ICA vs. PCA on artificial time-series data. The upper left panel shows the two source signals, measured at 1000 uniformly spaced time points. The upper right panel shows the observed mixed signals. The lower two panels show the principal components and independent component solutions.

The classical cocktail party problem

FIGURE 14.38. Mixtures of independent uniform random variables. The upper left panel shows 500 realizations from the two independent uniform sources, the upper right panel their mixed versions. The lower two panels show the PCA and ICA solutions, respectively.

Academic year 2023-2024

In the Places Rated Almanac, Boyer and Savageau rated 329 communities according to the following nine criteria:

- 1. Climate and Terrain
- 2. Housing
- 3. Health Care & the Environment
- 4. Crime
- 5. Transportation
- 6. Education
- 7. The Arts
- 8. Recreation
- 9. Economics

Note! Within the dataset, except for housing and crime, the higher the score the better. For housing and crime, the lower the score the better. Where some communities might rate better in the arts, other communities might rate better in other areas such as having a lower crime rate and good educational opportunities.

22 / 28

Assuming normality, a five-factormodel is fitted to the data

Uniquenesses:

V1	V2	V3	V4	V 5	V6	V7	V 8	V9
0.737	0.005	0.005	0.411	0.005	0.691	0.206	0.646	0.005

Loadings:

	Factor1	Factor2	Factor3	Factor4	Factor5
V1	0.070	0.450	-0.150	-0.024	0.183
V2	0.250	0.926	0.239	0.122	-0.049
VЗ	0.939	0.240	-0.025	0.105	0.212
V4	0.125	0.102	0.130	0.104	0.731
V5	0.332	0.094	-0.002	0.916	0.191
V6	0.509	0.023	0.100	0.191	-0.053
V7	0.753	0.291	-0.034	0.131	0.351
V8	0.146	0.380	0.095	0.232	0.355
۷9	0.054	0.030	0.982	0.010	0.166

	Factor1	Factor2	Factor3	Factor4	Factor5
SS loadings	1.925	1.368	1.081	0.985	0.931
Proportion Var	0.214	0.152	0.120	0.109	0.103
Cumulative Var	0.214	0.366	0.486	0.595	0.699

Test of the hypothesis that 5 factors are sufficient. The chi square statistic is 5.59 on 1 degree of freedom. The p-value is 0.018

David J. Hessen (UU)

ICA with 1, 2, 3, 4, 5, and 6 components

# of components	% of explained var
1	0.753
2	0.889
3	0.939
4	0.973
5	0.987
6	0.995

ICA with 3 components

Correlations

	C	component				
feature	1	2	3			
1	-0.348	-0.156	-0.030			
2	-0.952	-0.218	-0.197			
3	-0.238	-0.810	-0.250			
4	-0.040	-0.352	-0.220			
5	-0.018	-0.287	-0.954			
6	-0.084	-0.325	-0.256			
7	-0.212	-0.958	-0.194			
8	-0.341	-0.246	-0.367			
9	-0.344	0.020	-0.084			

Factor or independent component regression

Supervised learning:

Prediction of y from q < k common factors of x_1, \ldots, x_k

Multiple regression (interval response): $y = g(f_1, ..., f_q) + \varepsilon$

Binary logistic regression:
$$\pi = \frac{\exp\{g(f_1, \dots, f_q)\}}{1 + \exp\{g(f_1, \dots, f_q)\}}$$

By estimating only q coefficients, overfitting can be mitigated

Assumption: f_1, \ldots, f_q are sufficient to predict y

The number of factors or independent components q can be determined by cross-validation

Thursday:

- ▶ Discussion of take home exercises
- ► Assignment 6

