Feuille d'exercices 10. Groupes

Exercice 10.1: (niveau 1)

Montrez que si A, B et C sont trois sous-groupes d'un groupe abélien noté (G, +),

$$[A \subseteq C] \Rightarrow [A + (B \cap C) = (A + B) \cap C].$$

Exercice 10.2: (niveau 1)

On pose
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix} \in \mathcal{S}_5 \text{ et } \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}.$$

Déterminer l'ordre de σ , c'est-à-dire min $\{k \in \mathbb{N}^*/\sigma^k = Id\}$ ainsi que l'ordre de σ' . Déterminer les ordres de $\sigma\sigma'$ et de $\sigma'\sigma$.

Exercice 10.3: (niveau 1)

Pour tout $n \in \mathbb{N}^*$, on note $Z_n = \{ s \in \mathcal{S}_n / \forall \sigma \in \mathcal{S}_n \ s \circ \sigma = \sigma \circ s \}.$

- 1°) Déterminer Z_1 et Z_2 .
- 2°) On suppose que $n \geq 3$.
- a) Pour tout $i \in \mathbb{N}_n$, montrer qu'il existe une permutation σ_i dans \mathcal{S}_n telle que $\sigma_i(i) = i$ et, pour tout $j \in \mathbb{N}_n$ avec $j \neq i$, $\sigma_i(j) \neq j$.
- b) En déduire que $Z_n = \{Id_{\mathbb{N}_n}\}.$

Exercice 10.4: (niveau 1)

Déterminer les sous-groupes finis de \mathbb{C}^* .

Exercice 10.5: (niveau 1)

Déterminer les morphismes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Exercice 10.6: (niveau 1)

Soit $n \geq 2$. Montrer que S_n est engendré par les transpositions de la forme $(1 \ k)$ où $k \in \{2, \ldots, n\}$.

Exercice 10.7: (niveau 2)

Soit (G, .) un groupe, H et K deux sous-groupes de G. Montrer que $H \cup K$ est un groupe si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 10.8: (niveau 2)

Montrer que tout sous-groupe d'un groupe cyclique est cyclique.

Exercice 10.9: (niveau 2)

- 1°) Montrer que les groupes (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes.
- **2°)** En admettant que $\sqrt{2}$ est irrationnel, montrer que les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}_+^*, \times) ne sont pas isomorphes.

Exercice 10.10 : (niveau 2)

Soit (G, .) un groupe. Si H est un sous-groupe de G, on dit que H est distingué dans G lorsque, pour tout $a \in G$ et pour tout $h \in H$, $aha^{-1} \in H$.

- 1°) Quels sont les sous-groupes distingués d'un groupe commutatif?
- **2°)** Montrer que, pour tout $a \in G$, l'application $\varphi_a: x \longmapsto axa^{-1}$ est un automorphisme de G.

Montrer qu'un sous-groupe H est distingué dans G si et seulement si, pour tout $a \in G$ $\varphi_a(H) = H$.

- **3°)** Si $f: G \longrightarrow G'$ est un morphisme de groupes, montrer que l'image directe (resp : réciproque) par f d'un sous-groupe distingué de G (resp : de G') est un sous-groupe distingué de f(G) (resp : de G).
- 4°) Si $f: G \longrightarrow G'$ est un morphisme de groupes, montrer que Ker(f) est un sous-groupe distingué de G.
- 5°) Notons $Z(G) = \{a \in G/\forall h \in G \ ah = ha\}\ (Z(G) \ s'appelle le centre de <math>G$). Montrer que Z(G) est un sous-groupe distingué de G.

Exercice 10.11: (niveau 2)

Quels sont les groupes qui ne possèdent qu'un nombre fini de sous-groupes?

Exercice 10.12 : (niveau 2)

Soit (G, .) un groupe commutatif fini. Si f et g sont deux morphismes de G dans \mathbb{C}^* , calculer la quantité $\frac{1}{|G|} \sum_{x \in G} f(x).\overline{g(x)}$.

Exercice 10.13: (niveau 2)

Soit $n \geq 3$. On note \mathcal{A}_n l'ensemble des permutations de \mathcal{S}_n dont la signature vaut 1.

- 1°) Montrer que A_n est engendré par les cycles de longueur 3.
- **2°)** Montrer que A_n est engendré par les cycles (1,2,k) où $k \in \{3,\ldots,n\}$.

Exercice 10.14: (niveau 2)

On fixe un entier n supérieur ou égal à 2. On note S_n le groupe des bijections de $\{1,\ldots,n\}$ dans lui-même.

1°) Montrer que pour toute transposition (a,b) de S_n , il existe $\sigma \in S_n$ telle que $(a,b) = \sigma^{-1}(1,2)\sigma$.

2°) Déterminer tous les morphismes de groupes de S_n dans $\{-1,1\}$.

Exercice 10.15: (niveau 3)

Montrer que si G est un groupe de type fini, c'est-à-dire engendré par un ensemble fini, alors G est dénombrable. La réciproque est-elle vraie?

Exercice 10.16: (niveau 3)

p et q sont deux entiers non nuls premiers entre eux. On pose n=pq.

Soit G un groupe fini commutatif d'élément neutre e tel que, pour tout $x \in G$, $x^n = e$. Notons $M = \{x \in G/x^p = e\}$ et $N = \{x \in G/x^q = e\}$.

- 1°) Montrer que M et N sont des sous-groupes de G.
- 2°) Montrer que $M \cap N = \{e\}$.
- **3°)** Montrer que l'application $f: M \times N \longrightarrow G \\ (x,y) \longmapsto xy$ est un isomorphisme de groupes.

Exercice 10.17: (niveau 3)

Soient (G, .) un groupe et H un sous-groupe de G.

 $\mathbf{1}^{\circ}$) Sur G, on considère la relation \mathcal{R} définie par

 $\forall (x,y) \in G^2 \ (x\mathcal{R}y \Longleftrightarrow x^{-1}y \in H).$

Montrer que \mathcal{R} est une relation d'équivalence.

Pour tout $x \in G$, on note \overline{x} la classe d'équivalence de x.

Montrer que, pour tout $x \in G$, $\overline{x} = xH$.

On note $G/H = {\overline{x}/x \in G} = {xH/x \in G}.$

On dira que H est un sous-groupe distingué de G si et seulement si, pour tout $h \in H$ et $g \in G$, $ghg^{-1} \in H$.

- **2°)** Montrer que, lorsque H est un sous-groupe distingué de G, en posant, pour tout $(x,y) \in G^2$, $\overline{x}.\overline{y} = \overline{x.y}$, (G/H,.) est un groupe.
- ${f 3}^{\circ}$) Montrer que H est un sous-groupe distingué de G si et seulement si c'est le noyau d'un morphisme dont G est l'ensemble de départ.
- **4°)** Si $f: G \longrightarrow G'$ est un morphisme de groupes,

montrer que $G/Ker(f) \longrightarrow Im(f)$ $\overline{x} \longmapsto f(x)$ est un isomorphisme de groupes.

Exercice 10.18: (niveau 3)

Soit ${\cal G}$ un groupe fini non abélien.

On note $Z = \{g \in G/\forall h \in G, gh = hg\}$ (Z est le centre de G).

Montrer que $|Z| \le \frac{|G|}{4}$.

Exercice 10.19: (niveau 3)

Soit (G,.) un groupe fini tel que pour tout $x \in G$, $x^2 = 1_G$.

Montrer que l'ordre de ${\cal G}$ est une puis sance de 2. Exercice 10.20: (niveau 3)

Soit (G, .) un groupe fini commutatif.

Si $y \in G$, on note o(y) l'ordre de y.

- 1°) Soit $x \in G$ tel que o(x) = pq, où $(p,q) \in \mathbb{N}^2$. Déterminer $o(x^p)$.
- **2°)** Soit $(x,y) \in G^2$. On pose o(x) = p et o(y) = q. On suppose que p et q sont premiers entre eux.

Déterminer o(xy).

3°) Montrer qu'il existe un $x \in G$ tel que o(x) est égal au plus petit commun multiple des ordres des éléments de G.

Exercice 10.21: (niveau 3)

Lemme de Cauchy : Il s'agit de montrer que si G est un groupe dont l'ordre est multiple d'un nombre premier p, alors il existe dans G un élément d'ordre p.

On note E l'ensemble des p-uplets $(x_1, \ldots, x_p) \in G^p$ tels que $x_1 \cdots x_p = 1_G$.

On définit sur E une relation binaire R en convenant que (x_1, \ldots, x_p) R (y_1, \ldots, y_p) si et seulement si (y_1, \ldots, y_p) se déduit de (x_1, \ldots, x_p) par une permutation circulaire.

- 1°) Montrer que R est une relation d'équivalence.
- 2°) Montrer que les classes d'équivalence sont de cardinal 1 ou p.
- **3**°) Conclure.

Exercices supplémentaires :

Exercice 10.22: (niveau 1)

Déterminer le nombre de p-cycles dans S_n .

Exercice 10.23: (niveau 1)

On rappelle que, pour tout $n \in \mathbb{N}^*$, $\mathbb{U}_n = \{e^{2ik\pi/n}/k \in \mathbb{Z}\}$ désigne l'ensemble des racines n-ièmes de l'unité.

Montrer que $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$ est un groupe multiplicatif abélien.

Exercice 10.24: (niveau 1)

Soit (G, .) un groupe et A une partie de G.

On note $c(A) = \{x \in G / \forall a \in A, \ ax = xa\}.$

- $\mathbf{1}^{\circ}$) Montrer que c(A) est un sous-groupe de G.
- **2°**) Si $A \subset B$, comparer c(A) et c(B).
- **3°)** Montrer que $A \subset c(c(A))$.

Exercice 10.25: (niveau 1)

Soient (G, .) un groupe et I un ensemble non vide.

On considère une famille de sous-groupes de G, notée $(G_i)_{i \in I}$, telle que

$$\forall (i,j) \in I^2 \ \exists k \in I \ G_i \cup G_j \subset G_k.$$

Montrer que $\bigcup_{i \in I} G_i$ est un sous-groupe de G.

Exercice 10.26: (niveau 1)

Soient (G, .) un groupe et H et K deux sous-groupes de G.

On note $HK = \{hk/h \in H \text{ et } k \in K\}$ et $KH = \{kh/h \in H \text{ et } k \in K\}$.

- 1°) Si KH = HK, montrer que HK est un groupe.
- 2°) Démontrer la réciproque de la première question.

Exercice 10.27: (niveau 1)

Les groupes $(\mathbb{Z}, +)$ et $(\mathbb{Z}^2, +)$ sont-ils isomorphes?

Exercice 10.28: (niveau 2)

Dans \mathbb{R} , on considère la loi \top de composition interne définie par

 $\forall (x,y) \in \mathbb{R}^2 \ x \top y = \sqrt[3]{x^3 + y^3}$, où $\sqrt[3]{}$ désigne la bijection réciproque de l'application $x \longmapsto x^3$ de \mathbb{R} dans \mathbb{R} .

Montrer que (\mathbb{R}, \top) est un groupe abélien isomorphe à $(\mathbb{R}, +)$.

Plus généralement, si f est une fonction de \mathbb{R} dans \mathbb{R} , à quelle condition existe-t-il une loi de groupe \top sur \mathbb{R} telle que f est un isomorphisme du groupe (\mathbb{R}, \top) dans le groupe $(\mathbb{R}, +)$?

Exercice 10.29: (niveau 2)

Si $x, y \in]-1, 1[$, on pose $x * y = \frac{x+y}{1+xy}$.

Montrer que (]-1,1[,*) est un groupe abélien.

Exercice 10.30: (niveau 2)

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Si A est une partie de E, on notera \overline{A} le complémentaire de A dans E.

Sur $\mathcal{P}(E)$, on considère les lois suivantes :

$$A + B = (A \cap \overline{B}) \cup (B \cap \overline{A})$$
 et $A.B = A \cap B$.

Montrez que $(\mathcal{P}(E),+,.)$ est un anneau abélien. Est-il intègre ?

Exercice 10.31 : (niveau 2)

Soit $s \in \mathcal{S}_n$ une permutation qui commute avec le cycle $c = (1 \ 2 \ \cdots \ n)$. Montrer qu'il existe $k \in \mathbb{N}$ tel que $s = c^k$.

Exercice 10.32: (niveau 2)

Soit n un entier tel que $n \geq 2$.

- 1°) Montrez que S_n est engendré par les transpositions (i, i+1) où $i \in \{1, \ldots, n-1\}$.
- 2°) Montrez que S_n est engendré par la transposition (1,2) et le cycle $(1,\ldots,n)$.

Exercice 10.33: (niveau 2)

Démontrer que tout groupe fini (G, .) de cardinal pair contient au moins un élément g_0 différent de 1_G tel que $g_0^2 = 1_G$.

Exercice 10.34: (niveau 2)

Soient G un groupe fini et f un morphisme de G tel que

$$Card\{x\in G/f(x)=x^{-1}\}>\frac{Card(G)}{2}.$$

Montrez que f est involutive (c'est-à-dire que $f \circ f = Id_G$).

Exercice 10.35: (niveau 2)

Soit (G, .) un groupe et A une partie de G, que l'on suppose stable, c'est-à-dire telle que, pour tout $a, b \in A$, $ab \in A$. Montrer que si A est finie et non vide, alors A est un sous-groupe de G.

Exercice 10.36: (niveau 2)

Soit (G, .) un groupe de cardinal 2n avec $n \geq 2$.

On suppose que G possède deux sous-groupes A et B d'ordre n tels que $A \cap B = \{1_G\}$. Montrer que n = 2.

Exercice 10.37: (niveau 2)

Soit n un entier impair. On note S_n l'ensemble des bijections de $\{1,\ldots,n\}$ dans luimême.

Montrer que, pour tout $s \in \mathcal{S}_n$, $\prod_{i=1}^n (s(i)^2 - i^2)$ est un multiple de 4.

Exercice 10.38: (niveau 2)

Soit (G,.) un groupe fini et deux parties A et B de G telles que |A| + |B| > |G|. Montrer que G = AB.

Exercice 10.39: (niveau 3)

Inégalité de réarrangement :

Soient a_0, \ldots, a_n n+1 réels rangés par ordre croissant et b_0, \ldots, b_n n+1 réels également rangés par ordre croissant.

Montrer que pour tout
$$\sigma \in \mathcal{S}_n$$
, $\sum_{k=0}^n a_k b_{n-k} \leq \sum_{k=0}^n a_k b_{\sigma(k)} \leq \sum_{k=0}^n a_k b_k$.

Exercice 10.40 : (niveau 3)

Soit G un groupe, noté multiplicativement.

On note $D(G) = Gr\{xyx^{-1}y^{-1}/(x,y) \in G^2\}$. D(G) est le groupe dérivé de G.

- $\mathbf{1}^{\circ}$) Montrer que D(G) est un sous-groupe distingué de G.
- **2°)** On suppose que H est un sous-groupe distingué de G. Montrer que G/H est un groupe abélien si et seulement si $D(G) \subset H$.

Exercice 10.41 : (niveau 3)

Soit (G,.) un groupe. On dit qu'un sous-groupe G' de G est distingué si et seulement si pour tout $g' \in G'$, pour tout $g \in G$, $gg'g^{-1} \in G'$.

H et K sont deux sous-groupes de (G, .). On note $HK = \{hk/(h, k) \in H \times K\}$.

- 1°) Si H est un sous-groupe distingué de G, montrer que $HK = Gr(H \cup K)$.
- $\mathbf{2}^{\circ}$) On suppose que H et K sont des sous-groupes distingués de G et que $H \cap K = \{1_G\}$. Montrer que, pour tout $(h,k) \in H \times K$, hk = kh, puis montrer que HK est isomorphe à $H \times K$.
- 3°) On suppose que H est un sous-groupe distingué de G.
- a) Montrer que $H \cap K$ est un sous-groupe distingué de K et que H est un sous-groupe distingué de HK.
- b) On pose $G/H = \{\overline{g}/g \in G\}$ où $\overline{g} = gH = \{gh/h \in H\}$. Montrer que l'on peut munir G/H d'une structure de groupe pour laquelle $g \longmapsto \overline{g}$ est un morphisme de G dans G/H.
- c) Montrer que $K/(H \cap K)$ est isomorphe à (HK)/H.

Exercice 10.42: (niveau 3)

Soit (G, .) un groupe fini non commutatif.

On tire au hasard, avec remise, deux éléments dans G.

Montrer que la probabilité qu'ils commutent est inférieure à $\frac{5}{8}$.

Exercice 10.43: (niveau 3)

Automorphismes intérieurs de S_n . Soit φ un automorphisme de S_n qui transforme toute transposition en une transposition.

- 1°) Montrer qu'on peut écrire $\varphi((1\ 2)) = (a_1\ a_2)$ et $\varphi((1\ 3)) = (a_1\ a_3)$.
- **2°)** Montrer qu'on peut écrire $\varphi((1 \ i)) = (a_1 \ a_i)$ pour tout $i \in \{2, \ldots, n\}$, où $a_i \in \{1, \ldots, n\}$.
- **3°)** Montrer que $i \longmapsto a_i$ est un élément de \mathcal{S}_n .
- 4°) Montrer que les automorphismes intérieurs sont exactement les automorphismes qui transforment toute transposition en une transposition.