

PC Camera Controller

SN9C105 Data Sheet

Released Version 1.0

March 16, 2004

1. General Description

The SN9C105 is a video/audio single-chip processor to pair with the resolution of VGA or CIF CMOS image sensor. It reads the 9 or 8 bits input raw image data (RGB Bayer pattern) from an image device and outputs through a USB port into the PC. This chip includes three individual digital color gains setting (named R, G, B gains), H/W color and JPEG compression engine, offset compensation, hardware windowing with random image size selection, scaling functions, and audio input interface.

2. Features

- 9-Bit CMOS image raw data input
- Up to 30fps@VGA for PC mode video
- Provide individual R/G/B digital color gains control
- Provide snapshot function
- Support pixel offset compensation
- Support CIF/VGA CMOS sensor, IC-media, TASC 5110/5130, Hynix 7131D/E/R, OmniVision, Pixart 106/202, Micron, NS, CI sensor, ... etc
- Embedded two modes of AE calculation and report
- Built in microphone interface that includes pre-amplifier, PGA, and 10 bit audio ADC
- Built-in external EEPROM controller for customer V_ID, P_ID, defect pixel compensation and streaming setting
- Provide internal up to 26 various P ID in default setting
- Provide hardware windowing, 1/2, 1/4 scaling function with smooth filter
- Built-in gamma correction and white balance gain circuit
- Support operation mode in image quality/frame rate selection
- USB 1.1 compliance and support suspend mode
- USB 5 endpoints: control, isochronous read, bulk read, interrupt read, and another ISO read for audio data
- Support video data transfer either in USB isochronous or bulk modes
- Up to 9 alternated setting for USB isochronous transfer of video data
- 12MHz crystal and 3.3 volt only
- 48 pins LQFP package
- Embedded hardware color DSP and JPEG baseline capability of compression encoder
- No external memory needed

3. Functional Block Diagram

4. Pin Assignment

SN9C105	PIN NAME	DIR	Description	
1	GND	P	GND for core and I/O	
2	GPIO2	В	General purpose I/O	
3	PID_SEL2	I	Product ID selection (H,L,Z)**	
4	PID_SEL1	I	Product ID selection (H,L,Z)**	
5	PID_SEL0	I	Product ID selection (H,L,Z)**	
6	KEY	I	KEY input	
7	RST	I	chip reset	
8	AVREFH	P	Vref+ for audio ADC	
9	AVREFL	P	Vref- for audio ADC	
10	VMID	P	Vcom for audio ADC	
11	VSSA1	P	AVSS for audio ADC	
12	VDDA1	P	AVDD for audio ADC	
13	SIN_PGA	В	PGA input for audio ADC	
14	OUT_PREA1	В	Pre-Amplify output for audio ADC	
15	SIN_PREA1	В	Pre-Amplify input for audio ADC	
16	TAVSS	P	Substrate Ground	
17	DN	В	D- for USB	
18	DP	В	D+ for USB	
19	TAVDD	P	VDD for USB	
20	GPIO0	В	General purpose I/O	
21	GPIO1	В	General purpose I/O	
22	TEST	I	test mode	
23	S_PWR_DN	О	Power down for sensor	

24	LED	О	LED output
25	VDD	P	VDD for core and I/O
26	GND	P	GND for core and I/O
27	SDA	В	I2C data
28	SCL	О	I2C clock
29	S_PCK	В	Sensor pixel clock
30	VDD	P	VDD for core and I/O
31	GND	P	GND for core and I/O
32	SEN_CLK	О	Sensor clock
33	S_VSYNC	В	Sensor vsync
34	S_HSYNC	В	Sensor hsync
35	S_IMG0	В	Sensor image data
36	S_IMG1	В	Sensor image data
37	S_IMG2	В	Sensor image data
38	S_IMG3	В	Sensor image data
39	GND	P	GND for core and I/O
40	VDD	P	VDD for core and I/O
41	S_IMG4	В	Sensor image data
42	S_IMG5	В	Sensor image data
43	S_IMG6	В	Sensor image data
44	S_IMG7	В	Sensor image data
45	S_IMG8	В	Sensor image data
46	VDD	P	VDD for core and I/O
47	XIN	I	OSC input
48	XOUT	О	OSC output

5. Electrical Characteristics

5.1 DC Operating Condition

a. Absolute maximum ratings:

Symbol	Parameter	Rating	Units
Vcc	Power Supply	-0.3 to 3.6	V
Vin	Input Voltage	-0.3 to Vcc+0.3	V
Vout	Output Voltage	-0.3 to Vcc+0.3	V
Tstg	Storage Temperature	-55 to 150	°C

b. Recommended operating conditions:

Symbol	Parameter	Min	Тур	Max	Units
Vcc	Power Supply	3.0	3.3	3.6	V
Vin	Input voltage	0		Vcc	V
Topr	Operating Temperature	0		70	°C

c. DC electrical characteristics:

(Under Recommended Operating Conditions and Vcc=3.0 ~ 3.6V, Tj=0 to +115 °C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vil	Input low voltage	CMOS	-0.3		0.3Vcc	V
Vih	Input high voltage	CMOS	0.7Vcc		Vcc+0.3	V
Vil	Input low voltage	TTL	-0.3		0.8	V
Vih	Input high voltage	TTL	2.0		5.3	V
Iil	Input low current	no pull-up or pull-down	-1		1	uA
Iih	Input high current	no pull-up or pull-down	-1		1	uA
Ioz	Tri-state leakage current		-1		1	uA
Vil	Schmitt input low voltage	CMOS		1.20		V
Vih	Schmitt input high voltage	CMOS		2.10		V
Vol	Output Low voltage	Iol=4mA			0.4	V
Voh	Output high voltage	Ioh=4mA	2.4			V
Cin	Input capacitance			2.8		pF
Cout	Output capacitance		2.7		4.9	pF
Cbid	Bi-directional buffer Capacitance		2.7		4.9	pF

5.2 AC Operating Condition

Symbol	Description	Max operation Frequency	Notes
SEN_CLK	Sensor clock	48MHz	
XIN	Crystal input clock	12 MHz	
SCK	I2C clock frequency	400KHz	

6. System Applications

7. Application Circuit

8. Package Information

48pin LQFP

(All dimensions are in Millimeters)