AQAlg: Advanced Quantum Algorithms

2023 - 2024

Exercises 1: QFT, phase estimation and Shor's algorithm

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (Oracles). For accessing a function $f: \{0,1\}^n \to \{0,1\}$ with a quantum circuit, we use a bit oracle O_b or a phase oracle O_p . For $z \in \{0,1\}^n$ and $w \in \{0,1\}$, these are defined as follows:

$$|z\rangle - O_b - |z\rangle - |z\rangle$$

We can show that both oracles are equivalent in a sense.

• Show that the phase oracle can simulate the bit oracle:

• Show that the bit oracle can simulate the phase oracle:

Exercise 2 (Controlled unitary). Recall the controlled unitary gate:

$$\begin{array}{c|c} |k\rangle & & |k\rangle \\ |\psi\rangle & & cU & U^k |\psi\rangle \end{array}$$

where $k = k_1 \dots k_n$ is an *n*-bit integer. Expand this gate into more elementary gates of the form

$$|k_s\rangle$$
 U^{2^s} U^{2^s} U^{2^s}

for $k_s \in \{0, 1\}$ and $s \in \{0, 1, \dots, n-1\}$.

Exercise 3 (Hadamard transform). A variation on the quantum Fourier transform is the Hadamard transform H_N for $N = 2^n$. It is defined by $H_N = H^{\otimes n}$, which corresponds to the circuit

$$\begin{array}{c|c} \hline \\ \vdots \\ H_N \\ \hline \vdots \\ \hline \end{array} \equiv \begin{array}{c} \hline \\ H \\ \hline \vdots \\ \hline \end{array}$$

1

- What is $H_N |0^n\rangle$ equal to?
- What is $H_N |k\rangle = H_N |k_1 \dots k_n\rangle$ equal to? Use the inner product $x \cdot k = \sum_{\ell} x_{\ell} k_{\ell}$.

Exercise 4 (Bernstein-Vazirani algorithm). Let $N=2^n$. Consider a function $f:\{0,1\}^n\to\{0,1\}$ that is determined by some hidden string $a \in \{0,1\}^n$ in the following way:

$$f(x) = (x \cdot a) \pmod{2}$$
.

We can access the function through the phase oracle $O_x |x\rangle = (-1)^{f(x)} |x\rangle$. What is the output of the following circuit?

Exercise 5 (Fourier analysis). Consider natural numbers q, m, r such that q = mr. Prove the following critical identity in Shor's algorithm for period finding:

$$\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} |s+jr\rangle \quad \overset{F_q^\dagger}{\mapsto} \quad \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} \omega_q^{s\ell m} \, |\ell m\rangle \,,$$

$$\underbrace{\frac{1/\sqrt{m}}{s} \quad \uparrow \quad \uparrow}_{s+r} \quad \frac{q^{-1}}{s+jr} \quad \overset{F_q^\dagger}{\mapsto} \quad \underbrace{\uparrow}_{0} \quad \underbrace{\uparrow}_{m} \quad \underbrace{\uparrow}_{2m} \quad \underbrace{\uparrow}_{m} \quad \underbrace{\downarrow}_{m} \quad \underbrace$$

Exercise 6 (Factoring reduction (optional)). Here we walk through Shor's reduction from factoring to period finding. Recall that we are given an n-bit integer N such that $2^{n-1} \leq N < 2^n$, and we wish to find a (nontrivial) factor of N. Argue that, without loss of generality, we can assume that N is odd and not a prime power.²

Now pick $x \in \{2, ..., N-1\}$ uniformly at random. If gcd(N, x) > 1 then we can run Euclid's algorithm to find a factor. Hence, assume that N and x are coprime, and consider the series

$$x^0 = 1 \pmod{N}, \qquad x \pmod{N}, \qquad x^2 \pmod{N}, \qquad \dots$$

Since N and x are coprime, there does not exist s such that $x^s = 0 \pmod{N}$. Show that this implies that the series must have a period $r \leq N$ for which $x^r = 1 \pmod{N}$. This r is called the multiplicative order of x modulo N, and it is precisely this factor that is calculated using quantum period finding.

One can show (not in this exercise!) that, with probability at least 1/2 over the choice of x, the period r will be even and both $x^{r/2} + 1$ and $x^{r/2} - 1$ are not multiples of N. Use $x^r = 1 \pmod{N}$ to show that this implies that both $x^{r/2} + 1$ and $x^{r/2} - 1$ must share a (nontrivial) factor with N. Once we computed r, we can then find these factors by computing $gcd(x^{r/2} \pm 1, N)$.

¹Hint: use that $H|k_{\ell}\rangle = \frac{1}{\sqrt{2}} \sum_{x_{\ell}=0}^{1} (-1)^{x_{\ell}k_{\ell}} |x_{\ell}\rangle$.

²Hint: if $N = p^k$ for some prime $p \geq 2$ then necessarily $k \leq n$.