MANUAL DE USUARIO

SIMULADOR DE VUELO

Enlaces de Proyecto:

- Web del Proyecto
- Trello del Proyecto
- Repositorio GitHub

Redes Sociales:

- Instagram
- TikTok

Índice general del manual

1. Introducción

- 1.1 Descripcion general
- 1.2 Objetivos
- 1.3 Destino y alcance

2. Componenetes del sistema

- 2.1 Pantallas
- 2.2 Panel de instrumentos
- 2.3 Pedestal de mando
- 2.4 Yoke (sistema de control)
- 2.5 Sistemas de movimiento

3. Guia de uso

- 3.1 Flight simulator
- 3.2 Panel de control
- 3.3 Lectura y Utilización de Instrumentos en Pantalla
- 3.4 Ejecución de Maniobras Básicas de Vuelo

4. Precauciones de seguridad

- 4.1 Antes de operar
- 4.2 Durante la operacion

5. Instalacion y configuracion

- 5.1 Instalación y Configuración de Software
- 5.2 Configuración del Sistema de Comunicación
- 5.3 Configuración de MobiFlight para el Control de Paneles
- 5.4 Pruebas y Ajustes Iniciales

6. Contacto

1. Introducción

1.1 Descripcion general

El simulador de vuelo SKYLF 2024 es una plataforma basada en la cabina de un Cessna 152, diseñada para simular las maniobras y controles reales de una aeronave. Combina un sistema físico interactivo con software de simulación y tecnología de control de movimiento.

1.2 Objetivos

Objetivo general:Ofrecer una experiencia inmersiva que permita simular el control de un avión real mediante un sistema físico conectado al simulador virtual.

Objetivos específicos:

Integrar controles físicos (interruptores, botones y palancas) con un sistema digital.

Controlar movimientos *Pitch* y *Roll* mediante motores trifásicos sincronizados con el simulador virtual.

1.3 Destino y alcance

Este simulador está destinado a estudiantes de ingeniería, entusiastas de la aviación y centros de enseñanza técnica que busquen herramientas de formación práctica en sistemas de control, mecánica de vuelo y electrónica aplicada.

2. Componenetes del sistema

2.1 Pantallas

Pantalla de 32" superior para la simulación de vuelo.

Pantalla de 32" secundaria para instrumentos.

2.2 Panel de instrumentos

- Interruptores para sistemas de luces (NAV, BCN, TAXI, LAND).
- Selector de magnetos (OFF, L, R, BOTH).
- Freno de parqueo (PARK BRAKE).
- Controles de calentador del tubo Pitot y bomba de combustible.

2.3 Pedestal de mando

• Palancas:

Acelerador: Control de potencia del motor.

Mezcla: Ajuste de la mezcla aire-combustible.

Paso de hélice: Control de inclinación de las palas (si aplica).

• Interruptores auxiliares: Para configuraciones avanzadas.

2.4 Yoke

• Movimientos simulados:

Pitch: Empujar o tirar del yoke.

Roll: Girar el yoke hacia los lados.

• Botones programables: Para funciones como flaps, tren de aterrizaje y comunicación.

2.5 Sistemas de movimiento Motores:

Sensores:

MPU6050 para detectar inclinación y sincronizar movimientos físicos con el simulador virtual.

Controladores:

ESP32 y potenciómetros digitales para ajustar la resistencia y velocidad de los motores.

3. Guia de uso

3.1 Procedimientos de Encendido y Apagado Encendido del Simulador:

 Verificar Conexiones: Antes de encender el simulador, asegúrese de que todas las conexiones de hardware estén correctamente instaladas y que no haya cables sueltos o dañados.

2) Iniciar el Software:

- Abra Microsoft Flight Simulator 2020 en la computadora.
- Ejecute los programas auxiliares, como MobiFlight y FSUIPC7, necesarios para la sincronización entre los controles físicos y el simulador.
- Encender el Panel de Control: Active los interruptores principales del panel de control físico (asegurándose de seguir el orden correcto, de ser necesario).
- 4) Calibración Inicial de Sensores y Controladores: Espere a que el sistema complete su auto-calibración. Esto permite que el sensor MPU6050 y los motores controlados por el ESP32 ajusten sus parámetros iniciales.

Apagado del Simulador:

- 1) Cerrar el Software: Primero, cierre Microsoft Flight Simulator 2020, y luego desactive FSUIPC7 y MobiFlight.
- 2) Desactivar el Panel de Control: Apague los interruptores del panel de control y desconecte la alimentación eléctrica.
- 3) Inspección de Seguridad: Verifique que no haya sobrecalentamiento en los componentes y que todos los sistemas se hayan apagado correctamente.

3.2 Uso del Panel de Control

El panel de control físico del simulador replica las funciones básicas de una cabina de avión real, permitiendo a los usuarios gestionar sistemas de vuelo como la iluminación, la bomba de combustible, los magnetos, entre otros. A continuación, se describen los controles y su operación:

- Interruptores de Iluminación (BCN, LAND, TAXI, NAV, STRB): Activa y
 desactiva las luces de navegación, aterrizaje, y otras luces exteriores. Esto
 se puede hacer en cualquier momento del vuelo, según sea necesario.
- Llave de Magnetos: Este interruptor rotativo permite seleccionar entre diferentes posiciones de encendido, simulando el sistema de encendido de los magnetos, que distribuyen corriente eléctrica al motor.
- Primer: Inyecta combustible en los cilindros del motor antes de arrancarlo, una función especialmente útil en condiciones de baja temperatura.

Consejo de Seguridad: Realice una inspección visual del panel de control antes de activar cualquier sistema y asegúrese de que todos los interruptores estén en la posición "OFF" antes de encender el simulador.

3.3 Lectura y Utilización de Instrumentos en Pantalla

El simulador incluye una pantalla de 32 pulgadas que muestra datos en tiempo real de los instrumentos de vuelo, tales como altímetro, velocímetro y horizonte artificial. Estos instrumentos están sincronizados con Microsoft Flight Simulator 2020 y reflejan la situación actual del vuelo. Principales Instrumentos en Pantalla:

- Altímetro: Indica la altura sobre el nivel del mar. Es crucial monitorizar esta lectura especialmente durante ascensos y descensos.
- Velocímetro: Muestra la velocidad de vuelo en nudos. La velocidad debe mantenerse en rangos seguros, evitando velocidades críticas para prevenir posibles "stall" o pérdida de sustentación.
- Horizonte Artificial: Permite visualizar la orientación del avión en relación al horizonte, mostrando los ángulos de cabeceo y alabeo.
- Variómetro: Muestra la velocidad de ascenso o descenso del avión, ayudando a los usuarios a ajustar la altitud con precisión.

Consejo de Seguridad: Familiarícese con cada instrumento antes de realizar maniobras avanzadas. Asegúrese de entender el propósito de cada uno y cómo afectan el estado y control de la aeronave.

4. Precauciones de seguridad

4.1 Antes de operar

1) Inspección inicial:

- Verificar que todas las conexiones eléctricas estén firmes y correctamente aisladas.
- Asegurarse de que no haya cables pelados, expuestos o en mal estado.
- Revisar que la estructura metálica esté completamente fija al suelo para evitar movimientos inesperados durante la operación.

2) Zona de operación:

- Operar el simulador en un lugar seco y ventilado.
- Mantener el área libre de líquidos que puedan derramarse sobre los componentes electrónicos.
- Asegurarse de que no haya objetos sueltos cerca de los motores, cables o estructuras que puedan interferir en su funcionamiento.

3) Estado del operador:

- 1. Solo personas capacitadas o con conocimiento básico del sistema deben operar el simulador.
- 2. El operador debe usar calzado cerrado y seco para evitar descargas eléctricas.
- 3. Evitar operar el simulador si se siente fatigado, mareado o bajo efectos de medicamentos que afecten la concentración.

4.2 Durante la operación

1) Interacción con los controles:

- Utilizar los interruptores, botones y palancas con suavidad para evitar daños mecánicos.
- No ejercer fuerza excesiva en el yoke, pedestal o panel de instrumentos.

2) Movimientos del simulador:

- Asegurarse de que las extremidades del operador y las de los observadores estén alejadas de las partes móviles (por ejemplo, áreas donde los motores generan movimientos *Pitch* y *Roll*).
- Evitar que niños o personas no capacitadas se acerquen a las áreas móviles mientras el simulador está en funcionamiento.

3) Monitoreo del sistema:

- Prestar atención a ruidos inusuales provenientes de los motores o variadores de frecuencia. Si se detecta un ruido anormal, detener el simulador inmediatamente y realizar una inspección.
- Si alguna de las pantallas deja de funcionar o muestra información errónea, pausar la operación y verificar las conexiones.

4) Comportamiento ante fallos:

- En caso de un corte de energía, apagar todos los interruptores del panel y desconectar el sistema para evitar sobrecargas al reanudar la corriente.
- Si el simulador no responde a los controles, detener la operación y revisar las conexiones del ESP32, los motores y el panel.

5. Instalacion y configuracion

5.1 Instalación y Configuración de Software

Incluye la instalación de MobiFlight, FSUIPC7 y SimConnect, así como su configuración para conectar el hardware con el simulador.

5.2 Configuración del Sistema de Comunicación

Guía para configurar el potenciometro y los pines de comunicación del ESP32 y el variador de frecuencia.

5.3 Configuración de MobiFlight para el Control de Paneles

Paso a paso para mapear los controles físicos en MobiFlight y asignar sus funciones en Flight Simulator 2020.

5.4 Pruebas y Ajustes Iniciales

Procedimientos para probar y ajustar el funcionamiento de cada componente antes de la operación completa

6. Contacto

Página web del proyecto:

https://estebanlautaro.github.io/Paginaweb-SKYFLY/

· Redes sociales:

Instagram: @skylf.proyect

TikTok: @skyfly826