Massimizzare l'influenza

Viral marketing

 Noi siamo influenzati più dai nostri amici che da persone che non conosciamo

Viral marketing

Identificare clienti che possano influenzare

Questi clienti consigliano il prodotto ai loro amici

Come creare una "grande" cascade?

- Information epidemics:
 - quali sono gli utenti che influenzano di più?
 - quali sono i siti che consentono una grande diffusione?
 - Dove dovremmo fare pubblicità?

Massimizzare lo spread (diffusione)

- Supponiamo che invece di un virus, abbiamo un oggetto (prodotto, idea, video, etc.) che si propaga attraverso l'interazione (contatto)
 - word of mouth propagation (passaparola)
- una azienda che reclamizza un prodotto è interessata a massimizzare lo spread del prodotto nella rete
 - il santo Graal del "viral marketing"

Problema: quali nodi dovremmo "infettare" così da massimizzare lo spread?

Contagio probabilistico Independent cascade model

- Grafo direzionato G=(V,E)
- Ciascun nodo può essere attivo (ha il prodotto) o inattivo (non ha il prodotto)
- Il tempo procede in step.
- Al tempo t, ogni nodo v che è divenuto attivo al tempo t-1 attiva un adiacente w non-attivo con probabilità p_{vw}. Se fallisce non può più riprovarci
 - un nodo ha <u>solo una</u> chance di rendere un adiacente attivo
 - generalizzazione del modello SIR (in quel caso tutte le probabilità erano uguali) con $t_{\tau} = 1$

Independent cascade

Massimizzare l'influenza

Funzione di influenza: per un insieme S (target set), l'influenza f(S) (spread) è il numero aspettato di nodi attivi alla fine del processo di diffusione, se il prodotto è inizialmente posto nei soli nodi in S

Problema della massimizzazione dell'influenza [Kempe, Kleinberg, Tardos 2003]:

Data una rete rappresentata da un grafo G ed un valore k, identificare un insieme S di k nodi nella rete che massimizzi f(S).

 $\max_{S: |S|=k} f(S)$

Massimizzare l'influenza è NP-hard

 Mostreremo che determinare il più influente target set è almeno difficile quanto il problema di determinare il set cover

Set cover problem (noto problema NP-complete)

Dato un universo $U=\{u_1, ..., u_n\}$ ed insiemi $X_1, ..., X_m \subseteq U$

Ci sono k insiemi tra $X_1, ..., X_m$ tali che la loro unione è U?

Massimizzare l'influenza è NP-hard (dimostrazione)

- Data un'istanza di set cover k, U={u₁, ...,u_n}, X₁, ...,X_m
- Costruiamo un grafo direzionato bipartito G=(V,E)
 - $V = \{X_1, ..., X_m\} \cup \{u_1, ..., u_n\}$
 - $E = \{ (X_h, u_i) \mid u_i \in X_h) \}$
 - $px_h u_j = 1$ se $(X_h, u_j) \in E$

Nota: avendo scelto le probabilità tutte uguali a 1, stiamo in pratica considerando un'attivazione deterministica

Possibile provare che:

Esiste un target set S di size k con f(S)=k+n <u>iff</u> esiste un set cover di size k

cattive e buone notizie

- Notizie cattive:
 - La massimizzazione dell'influenza è NP-complete
- Notizie buone:
 - esiste un algoritmo di approssimazione!
 - * l'algoritmo non trova una soluzione globalmente ottima per tutti gli input
 - * ma, proveremo che l'algoritmo non si comporta troppo male. Più precisamente, esso trova un target set S tale che f(S) > 0,63 f(S_{OPT})

L'algoritmo Greedy

Il più semplice ed intuitivo algoritmo per selezionare S

```
Algoritmo GREEDY(G,k)
Parti con S_0 = \emptyset
Procedi in k step, for ciascuno step i = 1 \dots k
• scegli il nodo u che massimizza la funzione f(S_{i-1} \cup \{u\})
(il nodo che attiva il maggior numero di nodi in quello step)
• aggiungi u all'insieme S_{i-1} cioè poni S_i = S_{i-1} \cup \{u\}
```

- Calcolo di f(S): effettua simulazioni Monte-Carlo ripetute del processo e prendi la media
- Quanto è buona questa soluzione comparata alla soluzione ottima?

Richiami: Algoritmi di approssimazione

Supponiamo di avere un problema di ottimizzazione, e sia

- X un'istanza del problema, sia
- OPT(X) il valore della soluzione ottima per X, sia
- ALG(X) il valore della soluzione di un algoritmo ALG per X Nel nostro caso:
 - * X=(G,k) è l'stanza input,
 - * OPT(X) è lo spread $f(S_{OPT})$ della soluzione ottima S_{OPT} ,
 - * GREEDY(X) è lo spread f(S) della soluzione dell'algoritmo Greedy

ALG è un algoritmo di approssimazione se il rapporto tra OPT(X) e ALG(X) è limitato

Richiami: Algorithmi di approssimazione

Per un problema di massimizzazione, l'algoritmo ALG è un α -approximation algorithm, per $\alpha < 1$, se per tutte le istanze X,

$$ALG(X) \ge \alpha OPT(X)$$

- Questo significa che ALG(X) ha un valore di almeno $\alpha\%$ del valore ottimo
- α è l'approximation ratio dell'algoritmo
 - idealmente, vorremmo α sia una costante vicina a 1

Approximation ratio dell'algoritmo greedy per la massimizzazione dell'influenza

Teorema

L'algoritmo GREEDY ha un'approximation ratio $\alpha=1-1/e$

 $GREEDY(G,K) \ge (1-1/e) OPT(G,k)$

per tutte le istanze (G,k)

[Kempe, Kleinberg, Tardos 2003]

dimostrazione

La dimostrazione procede in due passi:

- (1) prova che la funzione di influenza f(.) ha due proprietà
 - f è monotona e submodulare
- (2) determina il fattore di approssimazione dell'algoritmo GREEDY

Dimostrazione: passo (1)

La funzione di influenza f(.) ha due proprietà

f è monotona

$$f(S) \le f(T)$$
 se $S \subseteq T$

- un nodo che si attiva, non può più disattivarsi, quindi ciò che riesco ad attivare con S posso sicuramente attivare (se non di più) con T

Dimostrazione: passo (1)

La funzione di influenza f(.) ha due proprietà

f è submodulare

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$
 se $S \subseteq T$

- l'aggiunta di un nodo u al target set ha più effetto (più attivazioni) se il target set è più piccolo piuttosto che se fosse più grande.

più grande è l'insieme che ricopre più piccola è l'area di u che resta da coprire

submodularità

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$

Background: funzioni submodulari

Fatto 1:

Se $f_1(x)$, ..., $f_k(x)$ sono submodulari,

e
$$c_i, ..., c_k \ge 0$$

allora $F(x)=\Sigma_i$ c_i $f_i(x)$ è anch'essa submodulare

(combinazione lineare non negativa di funzioni submodulari e submodulare)

Fatto 2:

Dati gli insiemi X_u, ..., X_v, dove

X_u nodi influenzati dall'iniziale nodo attivo u

$$f(S)=|U_{w\in S}|X_w|$$
 è una funzione submodulare

Strategia della dimostrazione:

Usiamo il fatto che la massimizzazione dell'influenza è un'istanza del problema del vertex cover:

 f(S) è la size dell'unione dei nodi influenzati dai vertici attivi in S

Bisogna però stare attenti perché f(S) è il risultato di un processo random.

Useremo il principio di decisione differita

Principio di decisione differita:

Lanciamo all'inizio la moneta per ciascun edge e memorizziamo per quali edge si ha il successo

- rimuoviamo gli edge percui il lancio della moneta ha dato un insuccesso

- gli edge sopravvissuti andranno a costituire un grafo

deterministico!

Bisogna ora individuare l'insieme X_u dei nodi influenzati da ciascun nodo u:

X_u è l'insieme dei nodi raggiungibili da u lungo una path di edge sopravvissuti

$$X_a = \{a,f,c,g\}$$

 $X_b = \{b,c\}$
 $X_c = \{c\}$
 $X_d = \{d,e,h\}$

X_u insieme dei nodi influenzati da ciascun nodo u:

- X_u è l'insieme dei nodi raggiungibili da u lungo una path di edge sopravvissuti

Quale è il valore di f(S)?

- f(S) è la size dell'insieme di nodi raggiungibili da nodi in S lungo path di edge sopravvissuti

$$X_a = \{a, f, c, g\}$$

 $X_b = \{b, c\}$
 $X_c = \{c\}$
 $X_d = \{d, e, h\}$

$$f({a,b}) = |{a,f,c,g} \cup {b,c}| = 5$$

 $f({a,d}) = |{a,f,c,g} \cup {d,e,h}| = 7$

Il valore di f(S) dipende dal risultato del lancio di monete che ha determinato gli archi del grafo

Ripetiamo più volte questo processo

Con l'i-simo lancio di monete, determiniamo

- Xi_a = insieme di nodi raggiungibili dal nodo a lungo path di edge sopravvissuti nell'i-simo lancio
- $f_i(S) = |U_{w \in S} X_w^i| \rightarrow f_i(S)$ è submodulare (Fatto 2)
- $f(S) = \Sigma_i f_i(S) \rightarrow f(S)$ è submodulare (combinazione lineare di funzioni submodulari - Fatto 1)

esempio

Consideriamo S={a,d}

e tre lanci di monete e quindi tre grafi, abbiamo

$$f_1(S) = 5$$
 $f_2(S) = 4$ $f_3(S) = 3$
 $f(S) = \Sigma_i f_i(S) = 12$

Dimostrazione: passo (2)

Abbiamo fatto vedere che la funzione f(.) usata nell'algoritmo GREEDY è monotona e submodulare, ci rimane da determinare il fattore di approssimazione dell'algoritmo GREEDY, cioè:

Il fattore di approssimazione dell'algoritmo GREEDY è $\alpha=1-1/e$ cioè esso produce un insieme di attivazione S tale che

$$f(S) \ge (1-1/e) f(S_{OPT})$$

Questa soluzione greedy è almeno 63% della soluzione ottima

- È un bound nel caso peggiore
- Indipendentemente dai dati input, l'algoritmo greedy non fa mai peggio di 0.63 f(S_{OPT})

Strategia della dimostrazione

Definiamo: guadagno marginale $\delta_i = f(S_i) - f(S_{i-1})$

La dimostrazione procede in 3 passi:

- O) Lemma: $f(A \cup B) f(A) \le \Sigma_{j=1...k} [f(A \cup \{b_j\}) f(A)]$ dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare
- 1) $\delta_{i+1} \ge 1/k [f(S_{OPT}) f(S_i)]$
- 2) $f(S_{i+1}) \ge (1 1/k) f(S_i) + 1/k f(S_{OPT})$
- 3) $f(S_k) \ge (1 1/e) f(S_{OPT})$

$$f(A \cup B) - f(A) \le \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare

Dim.:

$$f(A \cup B) - f(A) \le \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare

Dim.:

• sia $B_i = \{b_1, \dots, b_i\}$, così abbiamo $B_1, B_2, \dots, B_k (=B)$ e $B_i = B_{i-1} \cup \{b_i\}$ e $B_0 = \emptyset$

$$f(A \cup B) - f(A) \le \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare

Dim.:

- sia $B_i = \{b_1, \dots, b_i\}$, così abbiamo $B_1, B_2, \dots, B_k (=B)$ e $B_i = B_{i-1} \cup \{b_i\}$ e $B_0 = \emptyset$
- $f(A \cup B) f(A) = \sum_{i=1...k} [f(A \cup B_i) f(A \cup B_{i-1})]$

aggiungiamo e togliamo $f(A \cup B_1)$, $f(A \cup B_2)$,..., $f(A \cup B_{k-1})$

$$f(A \cup B) - f(A) \le \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare

Dim.:

- sia $B_i = \{b_1, \dots, b_i\}$, così abbiamo $B_1, B_2, \dots, B_k (=B)$ e $B_i = B_{i-1} \cup \{b_i\}$ e $B_0 = \emptyset$
- $f(A \cup B) f(A) = \Sigma_{i=1...k} [f(A \cup B_i) f(A \cup B_{i-1})]$ = $\Sigma_{i=1...k} [f(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})]$

$$f(A \cup B) - f(A) \le \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dove $B = \{b_1, ..., b_k\}$ e $f(\cdot)$ è submodulare

Dim.:

- sia $B_i = \{b_1, \dots, b_i\}$, così abbiamo $B_1, B_2, \dots, B_k(=B)$ e $B_i = B_{i-1} \cup \{b_i\}$ e $B_0 = \emptyset$
- $f(A \cup B) f(A) = \Sigma_{i=1...k} [f(A \cup B_i) f(A \cup B_{i-1})]$ = $\Sigma_{i=1...k} [f(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})]$

$$\leq \Sigma_{i=1...k} [f(A \cup \{b_i\}) - f(A)]$$

dalla submodularità $A \cup B_{i-1} \supseteq A$

$$f(S_{OPT}) \leq f(S_i \cup S_{OPT})$$

---- dalla monotonia di f

$$f(S_{OPT}) \le f(S_i \cup S_{OPT})$$

$$= f(S_i \cup S_{OPT}) - f(S_i) + f(S_i)$$

$$f(S_{OPT}) \leq f(S_i \cup S_{OPT})$$

$$= f(S_i \cup S_{OPT}) - f(S_i) + f(S_i)$$

$$\leq \Sigma_{j=1...k} \left[f(S_i \cup \{t_j\}) - f(S_i) \right] + f(S_i)$$

dal Lemma precedente, assumendo

$$\boldsymbol{S_{OPT}} = \{\mathsf{t}_1, \dots, \mathsf{t}_k\}$$

$$f(S_{OPT}) \leq f(S_i \cup S_{OPT})$$

$$= f(S_i \cup S_{OPT}) - f(S_i) + f(S_i)$$

$$\leq \Sigma_{j=1...k} \left[f(S_i \cup \{t_j\}) - f(S_i) \right] + f(S_i)$$

$$\leq \Sigma_{j=1...k} \left[\delta_{i+1} \right] + f(S_i)$$

$$\delta_{i+1} = f(S_{i+1}) - f(S_i)$$

vertice, si ha $f(S_i \cup \{t_i\}) \leq f(S_i \cup \{u\})$

Passo 1: valutiamo δ_{i+1}

$$f(S_{OPT}) \leq f(S_i \cup S_{OPT})$$

$$= f(S_i \cup S_{OPT}) - f(S_i) + f(S_i)$$

$$\leq \Sigma_{j=1...k} \left[f(S_i \cup \{t_j\}) - f(S_i) \right] + f(S_i)$$

$$\leq \Sigma_{j=1...k} \left[\delta_{i+1} \right] + f(S_i)$$

$$= k \delta_{i+1} + f(S_i)$$

$$Così \delta_{i+1} \geq 1/k \left[f(S_{OPT}) - f(S_i) \right]$$

Passo 2: quanto vale $f(S_{i+1})$?

Passo 2: quanto vale $f(S_{i+1})$?

$$f(S_{i+1}) = f(S_i) + \delta_{i+1}$$

$$\geq f(S_i) + 1/k [f(S_{OPT}) - f(S_i)]$$

$$= (1 - 1/k) f(S_i) + 1/k f(S_{OPT})$$

Così
$$f(Si_{+1}) \ge (1 - 1/k) f(Si) + 1/k f(SOPT)$$

Prima proviamo che

$$f(S_i) \ge [1 - (1 - 1/k)^i] f(S_{OPT})$$

Per induzione:

•
$$i = 0$$
: $f(S_0) = f(\emptyset) = 0$ e $[1 - (1 - 1/k)^0] f(S_{OPT}) = 0$

Prima proviamo che

$$f(S_i) \ge [1 - (1 - 1/k)^i] f(S_{OPT})$$

Per induzione:

- i = 0: $f(S_0) = f(\emptyset) = 0$ e $[1 (1 1/k)^0] f(S_{OPT}) = 0$
- Supponiamo che $f(S_i) \ge [1 (1 1/k)^i] f(S_{OPT})$
- Consideriamo i + 1:

$$f(S_{i+1}) \ge (1 - 1/k) f(S_i) + 1/k f(S_{OPT})$$

$$\ge (1 - 1/k) [1 - (1 - 1/k)^i] f(S_{OPT}) + 1/k f(S_{OPT})$$

Prima proviamo che

$$f(S_i) \ge [1 - (1 - 1/k)^i] f(S_{OPT})$$

Per induzione:

- i = 0: $f(S_0) = f(\emptyset) = 0$ e $[1 (1 1/k)^0] f(S_{OPT}) = 0$
- Supponiamo che $f(S_i) \ge [1 (1 1/k)^i] f(S_{OPT})$
- Consideriamo i + 1:

$$f(S_{i+1}) \ge (1 - 1/k) f(S_i) + 1/k f(S_{OPT})$$

$$\ge (1 - 1/k) [1 - (1 - 1/k)^i] f(S_{OPT}) + 1/k f(S_{OPT})$$

$$= [1 - (1 - 1/k)^{i+1}] f(S_{OPT})$$

Così

$$f(S_k) \ge [1 - (1 - 1/k)^k] f(S_{OPT})$$

$$\ge (1 - 1/e) f(S_{OPT})$$
Ma $(1 - 1/k)^k \le 1/e$

Considerato che $S = S_k$ e che quindi $f(S) = f(S_k)$ abbiamo

$$f(S) \ge (1 - 1/e) f(S_{OPT})$$

Come valutare f(S)?

- E' ancora un problema aperto valutare f(S) in maniera efficiente
- Ma, si possono ottenere delle buone stime attraverso la simulazione
 - ripetendo il processo di diffusione abbastanza spesso

Qualità della soluzione

L'algoritmo GREEDY produce una soluzione S tale che

$$f(S) \ge (1-1/e) f(S_{OPT})$$

cioè $f(S) \ge 0.63 f(S_{OPT})$

Questo risultato è un bound indipendente dai dati

- questo è un bound nel caso peggiore
- indipendentemente dai dati input l'algoritmo GREEDY non farà mai peggio di 0,63 f(S_{OPT})

- Rete di collaborazione scentifica: co-authorships in articoli presenti su arXiv riguardanti high-energy physics theory
 - 10748 nodi, 53000 edge
 - cascade process: spread di una nuova ricerca nell'area o una nuova terminologia
- Independent Cascade Model:
 - Caso 1: probabilità uniforme p per ciascun arco
 - Caso2: l'arco da v a w ha probabilità 1/deg(w) di attivare w

- Simulare il processo 10000 volte
 - riscegliendo ogni volta gli archi in maniera random
- Confronto con 3 altre euristiche:
 - degree centrality: scegli il nodo con il grado maggiore
 - distance centrality: scegli il nodo al "centro" della rete
 - Nodi a caso: scegli un insieme di nodi a caso

probabilità p_{uv} uniforme

probabilità $p_{uv} = 1/deg(v)$ non uniforme

Contagio deterministico Linear threshold model

- Grafo direzionato G=(V,E)
- Ciascun nodo può essere attivo (ha il prodotto) o inattivo (non ha il prodotto)
- Ad ogni arco direzionato (v,u) ha associato un peso b_{vu} tale che

$$\sum_{v \in N_{in}(u)} b_{vu} \le 1$$

dove $N_{in}(u)$ = insieme degli adiacenti entranti di u

- Ogni nodo u ha un valore threshold t_u associato
- Il tempo procede in step.
- Al tempo t, un nodo inattivo u diventa attivo se

$$\sum_{v \text{ è attivo } e \ v \in N_{in}(u)} b_{vu} \ge \mathsf{t}_{\mathsf{u}}$$

Linear threshold model

threshold a maggioranza

Massimizzare l'influenza

- [Kempe, Kleinberg, Tardos 2003] hanno mostrato che anche nel linear threshold model,
 - la funzione f(S) è submodulare
 - l'algoritmo Greddy ottiene (1-1/e) approssimazione