ECON 4003 Econometrics I

Empirical Exercise 4

By Duong Trinh

Picture the Scenario

- ▶ Objective: Predicting the US presidential elections using economic and political indicators.
- Dataset: election.dta
 - ☐ which contains 33 observations of elections from 1880 to 2008.
 - we will use data from 1916 to 2008.

Key variables:

- □ vote: Percentage share of the popular vote won by the incumbent party
- ☐ growth: Growth rate of real GDP per capita in the first 3 quarters of the election year
- ☐ inflation: Inflation rate in the first 15 quarters of the administration period

Create a binary variable called majority such that:

majority =
$$\begin{cases} 1 \text{ if votes } > 50\% \\ 0 \text{ if votes } \le 50\% \end{cases}$$

Compare the GDP growth rate per capita for those incumbents who won with majority and for those who didn't:

Create a binary variable called majority such that:

majority =
$$\begin{cases} 1 \text{ if votes } > 50\% \\ 0 \text{ if votes } \le 50\% \end{cases}$$

Compare the GDP growth rate per capita for those incumbents who won with majority and for those who didn't:

	All Incumbents	With Majority Vote	Without Majority Vote
Mean	1.4129	3.3817	-1.8683
n	24	15	9

The GDP growth rate per capita in the previous 3 quarters of the elections' year was in average positive with 3.3817% for those who won with majority and negative with 1.8683% for those who didn't win with majority.

Consider the regression model:

$$vote_i = \beta_0 + \beta_1 growth_i + u_i$$

- ▶ (a) Point Estimate
- ▶ (b) Hypothesis Testing
- ► (c) Confidence Interval

Question 2 (a) Point Estimate

Estimate the regression model:

$$vote_i = \beta_0 + \beta_1 growth_i + u_i$$

Question 2 (a) Point Estimate

Estimate the regression model:

$$vote_i = \beta_0 + \beta_1 growth_i + u_i$$

Estimation results with heteroskedastic-robust standard errors:

$$\widehat{\text{vote}} = 50.8484 + 0.8859 \cdot \text{growth}$$
 $R^2 = 0.5189$ $SER = 4.798$ (se) (1.0658) (0.1640)

- □ A 1 percentage point increase in the growth rate of real GDP per capita in the 3 quarters before the election is associated with a 0.8859 percentage points increase in the share of votes of the incumbent party on average.
- □ When real GDP growth is 0, the expected vote of the incumbent party is 50.85% (meaning that it will still maintain the majority vote).

► Test the null hypothesis that economic growth has no effect on the percentage vote earned by the incumbent party at a 5% significance level.

Hypothesis

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

- Null hypothesis H_0 :
 - \Box H_0 : GDP growth has no effect on the percentage vote H_0 : $\beta_1 = 0$
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

- Null hypothesis H_0 :
 - \square H_0 : GDP growth has no effect on the percentage vote $H_0: \beta_1 = 0$
- \blacksquare Alternative hypothesis H_1 :
 - \square H_1 : GDP growth has a positive effect on the percentage of vote $H_1: \beta_1 > 0$
 - ☐ We take the assumption that when the economy is doing well, the incumbent party has a better chance to win the elections.
- Test statistic
- Decision rule
- Conclusion

- Null hypothesis H₀
- \triangleright Alternative hypothesis H_1
- Test statistic:

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.8859 - 0}{0.1640} = 5.40$$

- Decision rule
- Conclusion

Test statistic:

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.8859 - 0}{0.1640} = 5.40$$

. reg vote growth, robust

Linear regression

Number of obs	=	24
F(1, 22)	=	29.19
Prob > F	=	0.0000
R-squared	=	0.5189
Root MSE	=	4.798

vote	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
growth	.8859464	.1639885	5.40	0.000	.545855	1.226038
_cons	50.8484	1.065803	47.71	0.000	48.63806	53.05874

- ► Null hypothesis *H*₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule:
 - □ Is this a two-sided test or an one-sided (left-tailed/right-tailed) test? ⇒ Right-tailed test (Look again $H_1: \beta_1 > 0$).
 - □ What is the **significance level** α ?
 - \implies 5% significance level.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - ⇒ Distinguish...
- Conclusion

- Decision rule:
 - ☐ Right-tailed test
 - \square The significance level $\alpha = 0.05$
 - Is the decision rule based on critical values or p-value?
 - *Approach 1: **Critical-value Test**: Reject H_0 if t-statistic $> t_{\alpha,n-2}$
 - ▶ The critical value is: $t_{0.05,22} = 1.7171$
 - . display invttail(22, 0.05)
 1.7171444
 - ▶ Since 5.40 > 1.7171, we reject H_0 at 5% level of significance.

- Decision rule:
 - ☐ Right-tailed test
 - \square The significance level $\alpha = 0.05$
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - *Approach 2: P-value Test: Reject H_0 if P-value $\leq \alpha$
 - Stata displays by default a two-sided p value:
 - p-value one-sided = p-value two-sided/2 ≈ 0.000
 - ▶ Since $0.000 < 0.05 = \alpha$, we reject H_0 at 5% level of significance.

. reg vote gr	owth, robust					
Linear regres	sion			Number of F(1, 22) Prob > F R-squared Root MSE	= =	24 29.19 0.0000 0.5189 4.798
vote	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
growth _cons	.8859464 50.8484	.1639885 1.065803	5.40 47.71	0.000 0.000	.545855 48.63806	1.226038 53.05874

- ▶ Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule
- Conclusion:
 - ☐ Real GDP growth rate per capita has a significant positive effect relation with the percentage votes of the incumbent party.

▶ What is the 95% confidence interval for β_1 ? Interpret the result. What are the 90% and 99% confidence intervals for β_1 ?

▶ The 95% confidence interval for β_1 is

$$\left[\widehat{\beta}_{1}-t_{\frac{0.05}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{0.05}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right)\right]$$

. reg vote gro	owth, robust					
Linear regress	sion			Number of F(1, 22) Prob > F R-squared Root MSE	=	24 29.19 0.0000 0.5189 4.798
vote	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
growth _cons	.8859464 50.8484	.1639885 1.065803	5.40 47.71	0.000 0.000	.545855 48.63806	1.226038 53.05874

▶ By default Stata displays the 95% Confidence Interval which is [0.5459; 1.2260]

▶ The 95% confidence interval for β_1 is

[0.5459; 1.2260]

- In repeated samples, 95% of the intervals constructed in this way will contain the true value of parameter β_1 .
- ➤ The lower bound of the 95% Confidence Interval is positive, referring that GDP growth rate and the share of votes for the incumbent party have a positive relationship.

▶ The 90% confidence interval for β_1 is

$$\left[\widehat{\beta}_{1}-t_{\frac{0.1}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{0.1}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right)\right]$$

. reg vote growth, robust level(90)

Linear regression

Number of obs	=	24
F(1, 22)	=	29.19
Prob > F	=	0.0000
R-squared	=	0.5189
Root MSE	=	4.798

vote	Coef.	Robust Std. Err.	t	P> t	[90% Conf.	Interval]
growth	.8859464	.1639885	5.40	0.000	.6043544	1.167538
_cons	50.8484	1.065803	47.71		49.01826	52.67853

▶ The 99% confidence interval for β_1 is

$$\left[\widehat{\beta}_{1}-t_{\frac{0.01}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{0.01}{2},22}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right)\right]$$

. reg vote growth, robust level(99)

Linear regression

Number of obs	=	24
F(1, 22)	=	29.19
Prob > F	=	0.0000
R-squared	=	0.5189
Root MSE	=	4.798

vote	Coef.	Robust Std. Err.	t	P> t	[99% Conf. Interval]
growth _cons	.8859464 50.8484	.1639885 1.065803	5.40 47.71	0.000	.4237027 1.34819 47.84416 53.85264

Estimate the regression model:

$$vote_i = \gamma_0 + \gamma_1 inflation_i + u_i$$

- ▶ (a,b) Test the null hypothesis that inflation has no effect on the percentage vote earned by the incumbent party at a 1% significance level.
- ➤ (c) Test the null hypothesis that if inflation is zero the expected vote in favour of the incumbent party is 50% or more at a 1% significance level.

Question 3 (c)

Hypothesis testing for the expected vote when inflation is 0

$$\mathbb{E}\left[\textit{vote}_i \mid \textit{inflation}_i = 0\right] = \gamma_0 + \gamma_1 \times 0 = \gamma_0$$

- Null hypothesis H₀:
 - ☐ H_0 : Expected vote of the incumbent is 50% or more $H_0: \gamma_0 \ge 50\%$
- Alternative hypothesis H₁:
 - □ H_1 : Expected vote of the incumbent lower than 50% H_1 : $\gamma_0 < 50\%$
- Test statistic
- Decision rule
- Conclusion

- \triangleright β_1 are **unknown** features of the population (population parameters), and we will never know them with certainty.
- Nevertheless, we can **hypothesize** about the value of β_1 and then use statistical inference to test our hypothesis.

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

■ Null hypothesis *H*₀:

$$H_0: \beta_1 = \beta_{1,0}$$

where $\beta_{1,0}$ is a hypothesized value.

- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

Null hypothesis H_0 :

$$H_0: \beta_1 = \beta_{1,0}$$

where $\beta_{1,0}$ is a hypothesized value.

Alternative hypothesis H_1 :

Test	H_1
Two-sided	$\beta_1 \neq \beta_{1,0}$
Left-tailed	$\beta_1 < \beta_{1,0}$
Right-tailed	$\beta_1 > \beta_{1,0}$

- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic:

$$\textbf{t-statistic} = \frac{\widehat{\beta}_1 - \beta_{1,0}}{\textit{SE}\left(\widehat{\beta}_1\right)}$$

follows a t-distribution with degrees of freedom n-2

- Decision rule
- Conclusion

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- \triangleright Alternative hypothesis H_1
- Test statistic
- Decision rule:
 - □ Is this a two-sided test or an one-sided (left-tailed/right-tailed) test? \implies Look again H_1 .
 - \square What is the **significance level** α ?
 - \implies Usually chosen to be 0.01, 0.05 or 0.10.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - ⇒ Distinguish...
- Conclusion

Decision Rule

Approach 1: Critical-value Test

Test	H_1	Reject H_0 if
Two-sided	$\beta_1 \neq \beta_{1,0}$	$t^{s}<-t_{rac{lpha}{2}} ext{ or } t^{s}>t_{rac{lpha}{2}}$
Left-tailed	$\beta_1 < \beta_{1,0}$	$t^s < -t_lpha$
Right-tailed	$\beta_1 > \beta_{1,0}$	$t^s>t_lpha$

Approach 2: p-value Test

Test	H_1	p-value	Reject H_0 if
Two-sided	$\beta_1 \neq \beta_{1,0}$	sum probabilities to the right of $ t^s $ and to the left of $- t^s $	$p\text{-value} \leq \alpha$
Left-tailed	$\beta_1 < \beta_{1,0}$	probability to the left of t^s	$p ext{-}value \leq \alpha$
Right-tailed	$\beta_1 > \beta_{1,0}$	probability to the right of t^s	$p\text{-}value \leq \alpha$

*Note: p-value two-sided = $2 \times p$ -value one-sided

Decision Rule

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion:
 - \square Do you reject or or fail to reject the null hypothesis at the significance level α ?
 - □ AVOID saying that you "accept" the null hypothesis, which can be very misleading

Confidence Intervals

▶ The $100(1-\alpha)\%$ confidence interval for β_1 is given by

$$\left[\widehat{\beta}_{1}-t_{\frac{\alpha}{2},n-2}\cdot SE\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{\alpha}{2},n-2}\cdot SE\left(\widehat{\beta}_{1}\right)\right]$$

- \square Usually $\alpha=0.01,0.05$ or 0.10, so that we obtain a 99%, 95% or 90% confidence interval, respectively.
- \Box $t_{\frac{\alpha}{n},n-2}$: same critical value as two-sided hypothesis test.

Confidence Intervals

If you have 100 random realizations of the confidence intervals, then 95 on average will include the true parameter.