A Sequence of Beurling Functions Related to the Natural Approximation B_n Defined by an Iterative Construction Generating Square-Free Numbers k_i and the Value of the Möbius Function $\mu(k_i)$

F. Auil

Abstract. For a function $F_n(x) = \sum_{k=1}^n a_k \rho\left(\frac{\theta_k}{x}\right)$, where $\rho(x) := x - [x]$, with $a_k \in \mathbb{C}$ and $0 < \theta_k \leqslant 1$ satisfying $\sum_{k=1}^n a_k \theta_k = 0$, is known to have

$$\left| \frac{1}{s} \left(1 - \zeta(s) \sum_{k=1}^{n} a_k \, \theta_k^s \right) \right| = \left| \int_0^1 (F_n(x) + 1) \, x^{s-1} \, dx \right| \le \|F_n(x) + 1\| \, \|x^{s-1}\|;$$

where the first relation follows from straightforward computation and the second using Schwarz inequality in $L^2([0,1],dx)$. Therefore, if the first norm in the right hand side above would be arbitrarily small for a suitable choice of n, a_k 's and θ_k 's the function $\zeta(s)$ would have zeros for Re s>1/2. This is the Beurling approach to Riemann Hypothesis. Several approximating sequences were proposed, between them

$$B_n(x) := \sum_{k=1}^n \mu(k) \, \rho\left(\frac{1/k}{x}\right) - n\left(\sum_{k=1}^n \frac{\mu(k)}{k}\right) \rho\left(\frac{1/n}{x}\right).$$

In the present work we construct iteratively a sequence of numbers $\{k_n\}$ and approximating functions $\{\widetilde{B}_n\}$ converging pointwise to -1 in [0,1]. We prove results which seems to suggest the relation $\widetilde{B}_n = B_n$ and we conjecture that a sufficient condition for this is that the set $\{k_n\}_{n\in\mathbb{N}}$ be equal to the set of square-free numbers, $\mathbb{M} := \{m \in \mathbb{N} : \mu(m) \neq 0\}$. Numerical evidence seems to support both conjectures.

Anyway, we think that these sequences are interesting by itself because our construction not only generates square-free (hence prime) numbers k_i , but also the value of the Möbius function $\mu(k_i)$. Our definition is independent of \mathbb{M} and μ , with the k_i 's arising as discontinuity points of the \widetilde{B}_i 's.

As for the case of B_n , we prove that sequence \widetilde{B}_n is not convergent to -1 in $L^2([0,1],dx)$. Consequently, we focus our analysis not on L^2 norm at right hand side in first expression above but on the integral at the middle term. This procedure seems to be useful to elucidate the lack of L^2 convergence for *step* Beurling functions.

1 Introduction: Beurling Functions and Approximating Sequences

Denote as [x] the integer part of x, i.e. the greatest integer less than or equal to x and define the fractional part function by $\rho(x) = x - [x]$. Given $n \in \mathbb{N}$ and two families of parameters $\{a_k\}_{k=1}^n \subset \mathbb{C}$ and $\{\theta_k\}_{k=1}^n \subset (0,1]$, we define a *Beurling function* as a function $F = F_n$ (the sub-index n included in the notation for convenience) of the form

$$F_n(x) := \sum_{k=1}^n a_k \, \rho\left(\frac{\theta_k}{x}\right),\tag{1}$$

For a Beurling function F_n , an elementary computation shows

$$\int_0^1 (F_n(x) + 1) \, x^{s-1} \, dx = \frac{\sum_{k=1}^n a_k \, \theta_k}{s - 1} + \frac{1}{s} \left(1 - \zeta(s) \, \sum_{k=1}^n a_k \, \theta_k^s \right); \quad \text{Re } s > 0.$$
 (2)

See, for instance, [1, p. 253] for a proof. It is useful, but not always necessary, assume that the parameters defining the function F_n satisfy the additional condition

$$\sum_{k=1}^{n} a_k \, \theta_k = 0. \tag{3}$$

In this case, first term at right hand side of (2) vanishes, simplifying the expression. Identity (2) is the starting point of a theorem by Beurling; see [1, p. 252] for a proof and further references. Here we just remark that an elementary computation, using Schwarz inequality for the integral at left hand side of (2), allows to show that a sufficient condition for Riemann Hypothesis (RH) is that ||F(x)| + 1|| be done arbitrarily small for a suitable choice of n, a_k 's and θ_k 's, where ||.|| denotes the norm in $L^2([0,1], dx)$. We will refer to this last condition as to the Beurling criterion (BC) for RH. It was proved in [3] that BC remains unchanged if we restrict the parameters θ_k to be reciprocal of natural numbers, i.e. $\theta_k = 1/b_k$, with $b_k \in \mathbb{N}$.

Several approximating functions (1) were proposed. From (2) and (3), we have that under BC the "partial sum"

$$\sum_{k=1}^{n} a_k \, \theta_k^s. \tag{4}$$

is an approximation to the inverse Riemann Zeta Function $1/\zeta(s)$, which is known to have an expression as a Dirichlet series

$$\frac{1}{\zeta(s)} = \sum_{k=1}^{n} \frac{\mu(k)}{k^s},\tag{5}$$

convergent for $\operatorname{Re} s > 1$. Therefore, a (naive) first choice for an approximating function would be

$$S_n(x) := \sum_{k=1}^n \mu(k) \,\rho\left(\frac{1/k}{x}\right). \tag{6}$$

But this function does not matches the condition (3). We can handle this without subtlety, just taking out the difference, given by g(n), where

$$g(t) := \sum_{\mathbb{N} \ni k \le t} \frac{\mu(k)}{k}.$$
 (7)

Therefore a second choice would be

$$B_n(x) := \sum_{k=1}^n \mu(k) \, \rho\left(\frac{1/k}{x}\right) - n \, g(n) \, \rho\left(\frac{1/n}{x}\right). \tag{8}$$

$$= \sum_{k=1}^{n-1} \mu(k) \rho\left(\frac{1/k}{x}\right) - n g(n-1) \rho\left(\frac{1/n}{x}\right). \tag{9}$$

There are also variants on the same theme, as

$$V_n(x) := \sum_{k=1}^n \mu(k) \, \rho\left(\frac{1/k}{x}\right) - g(n) \, \rho\left(\frac{1}{x}\right). \tag{10}$$

Sequences (6), (9) and (10) are known to be *not* convergent to -1 in $L^2([0,1], dx)$, as proved in [2].

2 From Integrals to Series

The integral in (2) can be expressed alternatively as a series, by a "change of variable" under suitable hypothesis. A Beurling function constant between the reciprocal of the natural numbers will be called a *step Beurling function*, i.e. such a function takes (non-necessarily different) constant values in each of the intervals $(\frac{1}{k+1}, \frac{1}{k}]$, for all $k \in \mathbb{N}$. Note that Beurling functions are left-continuous, because $\rho(x)$ is right-continuous.

Lemma 1. Let F_n be a step Beurling function, such that $F_n(x) = -1$ if $x \in (\frac{1}{m}, 1]$, where $m \in \mathbb{N}$. (If m = 1 this is an empty condition, therefore in this case there is not additional condition at all). Define $f_n(k) := F_n(1/k)$, for $k \in \mathbb{N}$. Then,

$$s \int_0^1 (F_n(x) + 1) x^{s-1} dx = \sum_{k=m}^\infty f_n(k) \left[\frac{1}{k^s} - \frac{1}{(k+1)^s} \right] + \frac{1}{m^s}.$$
 (11)

Proof:

$$\int_{0}^{1} (F_{n}(x) + 1) x^{s-1} dx = \int_{0}^{\frac{1}{m}} (F_{n}(x) + 1) x^{s-1} dx = \sum_{k=m}^{\infty} \int_{\frac{1}{k+1}}^{\frac{1}{k}} (F_{n}(x) + 1) x^{s-1} dx$$

$$= \sum_{k=m}^{\infty} (F_{n}(1/k) + 1) \int_{\frac{1}{k+1}}^{\frac{1}{k}} x^{s-1} dx = \sum_{k=m}^{\infty} (F_{n}(1/k) + 1) \frac{x^{s}}{s} \Big|_{\frac{1}{k+1}}^{\frac{1}{k}}$$

$$= \frac{1}{s} \sum_{k=m}^{\infty} (F_{n}(1/k) + 1) \left[\frac{1}{k^{s}} - \frac{1}{(k+1)^{s}} \right] = \frac{1}{s} \sum_{k=m}^{\infty} F_{n}(1/k) \left[\frac{1}{k^{s}} - \frac{1}{(k+1)^{s}} \right] + \frac{1}{s} \frac{1}{m^{s}}. \quad \blacksquare$$

Remarks. (1) Observe that a step Beurling function $F_n(x)$ is completely determined for $x \in [0,1]$ by the arithmetic function $f_n(k)$, $k \in \mathbb{N}$. This arithmetic function can be extended, just by defining $f_n(x) := F_n(1/x)$, for $x \in \mathbb{R}$, becoming right-continuous.

- (2) Just for reference, we define an arithmetic Beurling function as a right-continuous function f on $[1, +\infty)$ constant between the natural numbers, such that f(1/x) is a Beurling function. Thus, there exists a correspondence between step and arithmetic Beurling functions and the integrals involving the former correspond to series involving the later as expressed in (11).
- (3) We can think in relation (11) as a "change of variables" in the integral, turning the integration domain from [0,1] to $[1,+\infty)$. This can be visualized also like to put a zoom on the original integration domain, reflecting the interval [0,1] and then stretching it to fit on $[1,+\infty)$.

3 An Arithmetic Beurling Function Iteratively Defined

3.1 Beurling Binomials

One of the simplest arithmetic Beurling functions matching (3) are given by

$$\beta_{a,b}(x) := \rho\left(\frac{x}{a}\right) - \frac{b}{a}\rho\left(\frac{x}{b}\right),\tag{12}$$

when $a, b \in \mathbb{N}$. These "binomials" will be the basic blocks in our construction, thus we summarize some of its elementary properties in the following result.

Lemma 2. Consider $a, b \in \mathbb{R}$, with 0 < a < b. Then,

- **a.** $\rho\left(\frac{x}{a}\right)$ and $\rho\left(\frac{x}{b}\right)$ are right-continuous, and linearly independent functions.
- **b.** $\beta_{a,b}(x) = 0$, when $0 \le x < a$.
- **c.** Let $k \in \mathbb{N}$ be such that $(k-1)a < b \leq ka$. Then,

$$\beta_{a,b}(x) = \begin{cases} -j & \text{if } ja \leqslant x < (j+1)a, \text{ for } j = 1, \dots, (k-2); \\ -(k-1) & \text{if } (k-1)a \leqslant x < b. \end{cases}$$

d. Assume $a, b \in \mathbb{N}$. Then, $\beta_{a,b}(x)$ is constant when $k \leq x < k+1$, for all $k \in \mathbb{N}$.

3.2 The Aproximating Sequence \widetilde{B}_i

We will define a sequence of numbers $\{k_i\}$ and functions $\{b_i\}$ iteratively as follows. We start with the definition

$$k_{1} := 1;$$

$$k_{2} := 2;$$

$$b_{2}(x) := \rho\left(\frac{x}{k_{1}}\right) - \frac{k_{2}}{k_{1}}\rho\left(\frac{x}{k_{2}}\right).$$
(13)

And for $i \ge 2$ define $k_{i+1} := k_i + j$, where j is the less integer such that $b_i(k_i + j) \ne b_i(k_i)$, and

$$b_{i+1}(x) := b_i(x) + (1 + b_i(k_i)) \left[\rho \left(\frac{x}{k_i} \right) - \frac{k_{i+1}}{k_i} \rho \left(\frac{x}{k_{i+1}} \right) \right]. \tag{14}$$

Observe that each b_i is a linear combination of $\beta_{p,q}$. Other elementary properties are given in the next result, which is a direct consequence of Lemma 2.

Lemma 3. For any $i \in \mathbb{N}$ we have

- **a.** b_i is an arithmetic Beurling function, i.e. a right-continuous function constant between the natural numbers.
- **b.** $b_{i+1}(k_i) = -1$.
- **c.** Assume $k_{i+1} \leq 2k_i$ for $i \geq 2$. Then, $b_i(x) = -1$ for all $x \in [1, k_i)$. In particular, the sequence $\{b_i\}_{i \in \mathbb{N}}$ converges pointwise to -1 in $[1, +\infty)$.

Denote $\widetilde{B}_n(x) := b_n(1/x)$. As in the case of B_n we have the following result.

Lemma 4. \widetilde{B}_n do not converges to -1 in $L^2([0,1], dx)$.

Proof: Denoting $e_k(x) = \rho\left(\frac{1}{kx}\right) - \frac{1}{k}\rho\left(\frac{1}{x}\right)$, we have $\beta_{p,q}(1/x) = e_p(x) - \frac{q}{p}e_q(x)$. Therefore, each \widetilde{B}_n is a (finite) linear combination of e_k and the statement of the lemma follows from Proposition 4.7 in [2].

4 Relation Between \widetilde{B}_n and B_n

The next result is relevant in order to establish a relation between the sequence $\{k_i\}$ and the square-free numbers and, on the other hand, between \widetilde{B}_n and B_n .

Lemma 5. The following conditions are equivalent

a.
$$\sum_{j=1}^{i} \frac{\mu(k_j)}{k_j} = \frac{1 + b_i(k_i)}{k_i}$$
, for $i \ge 2$.

b.
$$b_i(x) = \sum_{j=1}^{i-1} \mu(k_j) \, \rho\left(\frac{x}{k_j}\right) - k_i \left(\sum_{j=1}^{i-1} \frac{\mu(k_j)}{k_j}\right) \rho\left(\frac{x}{k_i}\right), \text{ for } i \geqslant 2.$$

c.
$$\frac{\mu(k_i)}{k_i} = \frac{1 + b_i(k_i)}{k_i} - \frac{1 + b_{i-1}(k_{i-1})}{k_{i-1}}$$
, for $i \ge 3$.

Furthermore, if the condition $k_{i+1} < 2k_i$ is valid for $i \ge 2$, then all conditions above are also equivalent to the following ones

d.
$$\mu(k_{i+1}) = b_i(k_{i+1}) - b_i(k_i)$$
, for $i \ge 2$.

e.
$$\sum_{j=1}^{i} \mu(k_j) \left[\frac{k_i}{k_j} \right] = 1, \text{ for } i \geqslant 1.$$

Comparing (9) and expression in Lemma 5 (b) we can state the following conjecture.

Conjecture 1. $\widetilde{B}_n \stackrel{?}{=} B_n$, for all $n \in \mathbb{N}$.

Observe that \widetilde{B}_n is not a subsequence of B_n , strictly speaking. Sequence $\{\widetilde{B}_i\}$ depends on the numbers $\mathbb{K} := \{k_i\}_{i \in \mathbb{N}}$, the firsts of them are given by

$$\mathbb{K} = \{1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, \dots\}.$$

These are all square-free numbers (incidentally, we prefer to denominate the numbers in $\mathbb{M} := \{k \in \mathbb{N} : \mu(k) \neq 0\}$ as $M\ddot{o}bius$ numbers rather than "square-free", because they are also cube-free, 4-th-power-free, etc.), and numerical evidence suggest $\mathbb{K} \subseteq \mathbb{M}$. Moreover, apparently none $M\ddot{o}bius$ number is omitted, fact that seems to support the following conjecture.

Conjecture 2. $\mathbb{K} \stackrel{?}{=} \mathbb{M}$

If Conjecture 2 is true, then relation in Lemma 5 (e) is a well known result; see [4, p. 66]. It is also known that square-free numbers are distributed with density $6/\pi^2$; see [5, Thm. 333, p. 269]. We can estimate $k_{i+1} \approx k_i + \pi^2/6$, or $k_{i+1}/k_i \approx 1 + \pi^2/6k_i$ and this is less than 2 for $k_i > \pi^2/6 \approx 1.64$. Thus, condition $k_{i+1} < 2k_i$ seems to be reasonable also. This highly speculative argument seems to suggest that Conjecture 1 follows from 2.

5 Further Comments and Questions

Comparison of (11) and (2) (assuming (3)) gives

$$\sum_{k=m}^{\infty} F_n(1/k) \left[\frac{1}{k^s} - \frac{1}{(k+1)^s} \right] = \left(1 - \zeta(s) \sum_{k=1}^n a_k \, \theta_k^s \right) - \frac{1}{m^s}. \tag{15}$$

For the particular case of B_n , where m=n, this expression is given by

$$\sum_{k=n}^{\infty} B_n(1/k) \left[\frac{1}{k^s} - \frac{1}{(k+1)^s} \right] = (s-1)\zeta(s) \int_n^{\infty} \frac{g(t)}{t^s} dt - \frac{1}{n^s}.$$
 (16)

In particular, $|g(t)| = \mathcal{O}(t^{-\frac{1}{2}})$ is a sufficient condition for RH. An old result by de la Vallée-Poussin states $|g(t)| = \mathcal{O}(\frac{1}{\ln t})$; see [6, p. 92].

If we apply Schwarz inequality in $l^2(\mathbb{N})$ to left hand side in (15) trying to get an analog of BC for step Beurling functions we have

$$\left| \left(1 - \zeta(s) \sum_{k=1}^{n} a_k \, \theta_k^s \right) \right| \leqslant \left| \frac{1}{m^s} \right| + \left(\sum_{k=m}^{\infty} |F_n(1/k)|^2 \right)^{\frac{1}{2}} \left(\sum_{k=m}^{\infty} \left| \frac{1}{k^s} - \frac{1}{(k+1)^s} \right|^2 \right)^{\frac{1}{2}}. \tag{17}$$

Now, $F_n(1/x)$ is a periodic function on the unbounded interval $[1, +\infty)$, thus for any N multiple of the period we have

$$\frac{a}{p}(N-m) \leqslant \sum_{k=m}^{N} \left| F_n(1/k) \right|^2 \leqslant \frac{a}{p} N, \tag{18}$$

where p = p(n) is the period and $a = a(n) := \sum_{k=1}^{p} |F_n(1/k)|^2$. Therefore, the series for $||F_n(1/k)||_{l^2(\mathbb{N})}$ is divergent. This argument could explain the failure of L^2 convergence for general step Beurling functions and it would be possible to write down along these lines an alternative proof of Proposition 4.7 in [2].

References

- [1] W. F. Donoghue, *Distributions and Fourier Transforms*, Academic Press, New York, 1969.
- [2] L. Báez-Duarte, Arithmetical Aspects of Beurling's Real Variable Reformulation of the Riemann Hypothesis. arXiv:math.NT/0011254v1
- [3] L. Báez-Duarte, A Strengthening of the Nyman-Beurling Criterion for the Riemann Hypothesis. arXiv:math.NT/0202141v2
- [4] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer-Verlag, New York, 1976.

- [5] G. H. Hardy, E. M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, 5th ed., 1980.
- [6] H. M. Edwards, Riemann's Zeta Function, Academic Press, New York, 1974.

Fernando Auil

Instituto de Física Universidade de São Paulo Caixa Postal 66318 CEP 05315-970 São Paulo - SP Brasil

E-mail: auil@fma.if.usp.br