Matrikulasi Matematika Terapan & Matematika Diskrit

[RPLD422104 & RPLD4222013]

Program peralihan D3 MI ke D4 TRPL

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak
Universitas Pendidikan Ganesha

$\mathsf{D3} \; o \; \mathsf{D4}$

Matematika Dasar → Matematika Terapan

Daftar Isi

Bagian 1

- Sistem bilangan dan himpunan
- Fungsi
- Sistem koordinat Kartesius
- Trigonometri
- Matriks
- Transformasi
- Limit & turunan

Bagian 2

- Logika Matematika
- Induksi Matematika
- Prinsip inklusi-eksklusi, permutasi & kombinasi
- Probabilitas kejadian
- Pemodelan dengan graf

Bagian 1.1: Sistem bilangan & himpunan

Sistem bilangan/himpunan bilangan

- Himpunan bilangan *asli* (natural): $\mathbb{N} = \{1, 2, 3, \dots\}$
- Himpunan bilangan *bulat (integer)*: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- Himpunan bilangan *rasional*: $\mathbb{Q} = \{ \frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0 \}$
- Himpunan bilangan *irrasional* \mathbb{P} : e.g. $\sqrt{3}$, π , etc.
- Himpunan bilangan riil: $\mathbb{R} = \mathbb{Q} \cup \mathbb{P}$

Notasi Interval: Misalkan $a, b \in \mathbb{R}$,

1.
$$(a,b) = \{ x \mid a < x < b \}$$

2.
$$[a,b] = \{ x \mid a \le x \le b \}$$

3.
$$[a,b) = \{ x \mid a \le x < b \}$$

4.
$$(a, b] = \{ x \mid a < x \le b \}$$

5.
$$(a, \infty) = \{ x \mid x > a \}$$

6.
$$[a, \infty) = \{ x \mid x \ge a \}$$

7.
$$(-\infty, b) = \{ x \mid x < b \}$$

8.
$$(-\infty, b] = \{ x \mid x \le b \}$$

9.
$$(-\infty, \infty) = \mathbb{R}$$

Remark. ∞ dan $-\infty$ bukan bilangan riil

Bagian 1.2: Fungsi

Fungsi

Misalkan A dan B dua buah himpunan. Fungsi dari A ke B adalah aturan memasangkan (memadankan) setiap elemen di A dengan satu elemen di B.

Bila elemen-elemen dari A lebih banyak dari elemen-elemen B, dapatkah kita membuat fungsi dari A ke B?

Unsur fungsi

Untuk fungsi: $f: A \rightarrow B$

- A disebut domain dari f;
- B disebut kodomain dari f;
- Jika f(a) = b, maka b disebut bayangan (image) dari a, dan a adalah pre-image dari b;
- Daerah hasil (range) dari f adalah himpunan semua bayangan dari elemen di A.

Latihan

Tentukan daerah definisi dan daerah hasil dari fungsi berikut.

1
$$f(x) = x + \sqrt{x}$$

$$f(x) = x^2 \quad \text{dimana } -1 \le x \le 1$$

$$f(x) = \begin{cases} x^2 & x \le 0 \\ 1 & x > 0 \end{cases}$$

- **4** f(x) = |x|
- f(x) = [|x|] (bilangan bulat terbesar yang kurang dari atau sama dengan x)

1. Fungsi polinomial

Perhatikan fungsi-fungsi berikut:

- f(x) = ax + b
- $f(x) = ax^2 + bx + c$
- $f(x) = ax^3 + bx^2 + cx + d$
- $f(x) = ax^4 + bx^3 + cx^2 + dx + e$

Pola apa yang Anda amati dari fungsi-fungsi tersebut?

1. Fungsi polinomial

Perhatikan fungsi-fungsi berikut:

- f(x) = ax + b
- $f(x) = ax^2 + bx + c$
- $f(x) = ax^3 + bx^2 + cx + d$
- $f(x) = ax^4 + bx^3 + cx^2 + dx + e$

Pola apa yang Anda amati dari fungsi-fungsi tersebut?

Definisi fungsi polinomial

Sebuah fungsi polinomial memiliki bentuk:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

2. Fungsi modulo

Misalkan $a \in \mathbb{Z}$ dan $m \in \mathbb{Z}^+$. Fungsi a modulo m dinotasikan sebagai:

a mod m

yaitu fungsi yang memberikan sisa pembagian dari a bila dibagi dengan m. Jadi,

a mod $m \equiv r$

berarti a = mq + r dengan $0 \le r \le m$.

Contoh fungsi modulo

- 13 mod 5 ≡ ...
- 30 mod 5 ≡ ...
- 13 $\mod 20 \equiv ...$
- 0 mod $5 \equiv \dots$
- \bullet -13 mod 5 \equiv ...
- ...

3. Fungsi faktorial

Misalkan $n \in \mathbb{Z}$, n > 0. Fungsi faktorial dari n didefinisikan sebagai:

$$n! = \begin{cases} 1, & n = 0 \\ 1 \times 2 \times \cdots \times (n-1) \times n, & n > 0 \end{cases}$$

Example

- 0! = ?
- 1! = ?
- 2! = ?
- 3! = ?

4. Fungsi eksponensial

Misal $a \in \mathbb{R}$ dan $n \in \mathbb{Z}^+$. Fungsi eksponensial didefinisikan sebagai:

$$a^{n} = \begin{cases} 1, & n = 0 \\ \underbrace{a \times a \times \cdots \times a}_{n \text{ times}}, & n > 0 \end{cases}$$

Untuk n < 0, didefinisikan:

$$a^{-n}=\frac{1}{a^n}$$

Sifat-sifat fungsi eksponensial

- $a^m \times a^n = \dots$
- 2 $a^m/a^n = ...$
- **3** ...
- 4 ...

5. Fungsi logaritmik

Fungsi logaritmik merupakan invers dari fungsi eksponensial.

Diberikan $x = a^y$, bagaimana y dapat dinyatakan sebagai fungsi dari x?

$$x = a^y \Leftrightarrow y = a \log x$$

Sifat-sifat fungsi logaritmik

- **③** ...
- 4 ...

6. Fungsi floor dan ceiling

Misalkan $x \in \mathbb{R}$, maka terdapat dua bilangan bulat z_1 dan z_2 yang "mengapit" x. Dengan kata lain:

$$z_1 \leq x \leq z_2$$

Dalam hal ini, dapat dilakukan pembulatan bilangan bulat **terdekat**, **ke atas**, atau **ke bawah**.

• Fungsi floor menyatakan nilai bilangan bulat **terbesar** yang **kurang dari** atau sama dengan x.

Dilambangkan dengan |x|.

 Fungsi ceiling menyatakan nilai bilangan bulat terkecil yang lebih dari atau sama dengan x.

Dilambangkan dengan [x].

Contoh:

$$\lfloor\frac{1}{2}\rfloor=0, \lceil\frac{1}{2}\rceil=1, \lfloor-\frac{1}{2}\rfloor=-1, \lceil-\frac{1}{2}\rceil=0, \lfloor3.1\rfloor=3, \lceil3.1\rceil=4, \lfloor7\rfloor=7, \lceil7\rceil=7$$

7. Fungsi rekursif

Tinjau fungsi berikut.

$$n! = \begin{cases} 1, & n = 0 \\ 1 \times 2 \times \cdots \times (n-1) \times n, & n > 0 \end{cases}$$

- Menggunakan definisi tersebut, hitunglah nilai dari 2!, 3!, 4!,
- Pola apa yang dapat diamati dari proses yang dilakukan?
- Bagaimana keterkaitan antara n! dan (n-1)! ?

Relasi rekurens

Relasi rekurens untuk barisan $\{a_n\}$ adalah persamaan yang menyatakan a_n dalam satu (atau lebih) suku-suku sebelumnya, yaitu $a_0, a_1, \ldots, a_{n-1}$.

Pada contoh sebelumnya, kita dapat menyatakan fungsi faktorial sebagai:

$$n! = (n-1)! n$$

 $\Leftrightarrow f(n) = f(n-1) \times n$

Sehingga fungsi rekursif-nya adalah:

$$\begin{cases} f(1) &= 1 \\ f(n) &= f(n-1) \times n \end{cases}$$

Bagian 1.3: Sistem koordinat Kartesisus

Daftar isi:

- Sistem koordinat Kartesisus
- Polinom (suku banyak)
- Persamaan garis lurus
- Fungsi kuadrat
- Persamaan lingkaran
- Persamaan elips
- Persamaan hiperbola

1. Sistem koordinat Kartesisus

- Sumbu-x (absis)
- Sumbu-y (ordinat)

Remark. Sistem koordinat ini dapat diperluas menjadi n sumbu, $n \ge 3$.

2. Polinom (suku banyak)

Bentuk umum:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

- $a_0, a_1, \ldots, a_n \in \mathbb{R}$ adalah *koefesien*
- x adalah variabel
- n adalah derajat polinom

Akar dari polinom p(x) adalah semua nilai x yang memenuhi kesamaan:

$$p(x) = 0$$

.

Menentukan akar polinom

• Polinom *linier* (derajat satu):

$$p(x) = ax + b$$
, $a \neq 0$ akarnya $x = -\frac{b}{a}$

• Polinom *kuadrat* (derajat dua):

$$p(x) = ax^2 + bx + c, \ a \neq 0$$

akarnya $x_1=\frac{-b+\sqrt{D}}{2a}$ dan $x_2=\frac{-b-\sqrt{D}}{2a}$ dengan $D=b^2-4ac$ disebut diskriminan.

Dalam hal ini, terdapat tiga kemungkinan nilai diskriminan:

- ▶ D > 0, dua akar riil berbeda $(x_1 \neq x_2)$
- ▶ D = 0, dua akar riil kembar $(x_1 = x_2)$
- ► D < 0, tidak ada akar riil

Koefesien a menentukan kecekungan grafiknya.

- ightharpoonup a > 0: grafik cekung ke atas
- ightharpoonup a < 0: grafik cekung ke bawah

3. Persamaan garis lurus

Bentuk umum: Ax + By + C = 0 dimana A dan B tidak keduanya nol.

Berikan analisis apa yang terjadi jika:

- A = 0
- B = 0
- $A, B \neq 0$

3. Persamaan garis lurus

Bentuk umum: Ax + By + C = 0 dimana A dan B tidak keduanya nol.

Berikan analisis apa yang terjadi jika:

- ullet A=0 o persamaan berbentuk $y=-rac{\mathcal{C}}{\mathcal{B}}$, grafiknya sejajar sb-x
- ullet B=0 o persamaan berbentuk $x=-rac{\mathcal{C}}{A}$, grafiknya sejajar sb-y
- $A, B \neq 0 \rightarrow Ax + By + C = 0 \Leftrightarrow y = -\frac{A}{B}x \frac{C}{B}$

3. Persamaan garis lurus

Saat $A, B \neq 0$, maka:

$$Ax + By + C = 0 \Leftrightarrow y = -\frac{A}{B}x - \frac{C}{B}$$

Jika $m=-\frac{A}{B}$ dan $c=-\frac{C}{B}$, maka persamaan garis lurus dapat dituliskan sebagai:

$$y = mx + c$$

• m disebut gradien atau kemiringan garis lurus

Menggambar grafik dari persamaan garis lurus

Latihan: Gambarlah grafik fungsi berikut:

$$2x + 3y = 12$$

$$3x - y = 6$$

Apa perbedaan kedua garis lurus tersebut?

Dapatkah Anda menjelaskan hubungannya?

Jelaskan tahapan menentukan persamaan garis lurus.

- **1** ...
- **2** ...

Bagaimana menentukan persamaan garis lurus

Diketahui sebuah garis lurus melalui dua titik (x_1, y_1) dan (x_2, y_2) .

Bagaimanakah persamaan garis tersebut?

4. Menggambar grafik fungsi kuadrat (parabola)

Latihan: Gambarlah grafik fungsi berikut.

$$(x) = x^2 + x - 1$$

2
$$f(x) = x^2 - 2x + 1$$

$$f(x) = x^2 + 1$$

$$f(x) = -x^2 - 1$$

Bagaimana langkah-langkah menggambar fungsi kuadrat?

- **1** ..
- **2** ...

Solusi latihan menggambar grafik

Latihan

Bagaimana interpretasi geometris dari fungsi polinom ketika:

- D > 0
- D = 0
- D < 0

Apa yang dapat Anda amati jika:

- D < 0 dan a > 0
- D < 0 dan a < 0

Bagaimana menyelesaikan persamaan polinom derajat n > 2?

Theorem

Setiap polinom derajat n > 2 dapat difaktorkan menjadi faktor-faktor linier atau kuadrat definit (i.e., D < 0).

Contoh:

$$p(x) = x^{6} - 1$$

$$= (x^{3} - 1)(x^{3} + 1)$$

$$= (x - 1)(x^{2} + x + 1)(x + 1)(x^{2} - x + 1)$$

Menurut Anda, dapatkah sebuah fungsi polinom berderajat n > 2 digambarkan pada sebuah sistem koordinat Kartesius?

5. Persamaan lingkaran

Lingkaran adalah himpunan titik-titik yang jaraknya sama terhadap titik tertentu (yang disebut *pusat lingkaran*).

Lingkaran berpusat di (0,0) dengan *jari-jari* r $x^2 + y^2 = r^2$ Lingkaran berpusat di (p,q) dengan *jari-jari* r $(x-p)^2 + (y-q)^2 = r^2$

$$x^{2} + y^{2} = r^{2}$$

$$(x - p)^{2} + (y - q)^{2} = r^{2}$$

lingkaran $x^2 + y^2 = 3$

lingkaran $(x-1)^2 + (y-2)^2 = 3$

Latihan

Tentukan titik pusat dan jari-jari lingkaran:

$$x^2 - 2x + y^2 + 4y - 20$$

Tentukan persamaan lingkaran berikut.

6. Persamaan elips

Bentuk umum elips dengan *titik pusat* (0,0):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Jika pusatnya adalah (p, q), maka persamaannya:

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$

Latihan

Gambarkan elips berikut

$$4x^2 - 24x + y^2 - 4y + 39 = 0$$

7. Persamaan hiperbola

Bentuk umum:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ atau } -\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Remark. Garis putus-putus mempunyai persamaan: 2y = 3x dan merupakan asimtot terhadap hiperbola tersebut.

Latihan

Jelaskan perbedaan persamaan parabola dan hiperbola.

Bagian 1.4: Trigonometri

Konsep trigonometri

Koordinat titik P adalah P = (x, y).

Sudut *t*-positif dihitung berdasarkan arah yang berlawanan dengan jarum jam dengan satuan *radian* ($1^o = \frac{1}{180}\pi$ rad).

Definisi:

$$f(t) = \sin(t) = y \quad \text{dan} \quad g(t) = \cos(t) = x$$

Fungsi sinus dan cosinus

Remark. Sudut t dan $t + 2\pi$ menentukan posisi titik P yang sama.

Fungsi sin dan cos dikatakan periodik dengan $periode 2\pi$.

Latihan

Jelaskan mengapa sifat berikut berlaku.

$$\bullet \, \sin(-t) = -\sin(t)$$

$$\bullet \sin^2(t) + \cos^2(t) = 1$$

Jawab:

Fungsi trigonometri lainnya

•
$$f(x) = \tan(t) = \frac{\sin(t)}{\cos(t)}$$

•
$$f(x) = \cot(t) = \frac{\cos(t)}{\sin(t)}$$

•
$$f(x) = \sec(t) = \frac{1}{\cos(t)}$$

$$f(x) = \csc(t) = \frac{1}{\sin(t)}$$

$$D_f = \{x | x \neq \frac{2k+1}{2}\pi, k \in \mathbb{Z}\}$$

$$\bullet$$
 $D_f = ...$

•
$$D_f = ...$$

•
$$D_f = ...$$

$$ightharpoonup R_f = \mathbb{R}$$

•
$$R_f = ...$$

•
$$R_f = ...$$

•
$$R_f = ...$$

Apakah fungsi berikut *periodik*?

Sifat-sifat fungsi trigonometri

•
$$\sin^2(x) + \cos^2(x) = 1$$
, $1 + \tan^2(x) = \sec^2(x)$, $1 + \cot^2(x) = \csc^2(x)$

- sin(x) = sin(x) dan cos(x) = cos(x)
- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- $\sin^2(x) = \frac{1}{2} \frac{1}{2}\cos(2x)$ dan $\cos^2(x) = \frac{1}{2} + \frac{1}{2}\cos(2x)$
- $\sin(x) = \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$
- $cos(x) + cos(y) = 2 cos(\frac{x+y}{2}) cos(\frac{x-y}{2})$
- $cos(x) cos(y) = -2 sin(\frac{x+y}{2}) sin(\frac{x-y}{2})$

Bagian 1.5: Matriks

Definisi MATRIKS

Sebuah matriks A adalah sebuah array berbentuk persegi panjang, dan berisikan skalar:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Baris dari matriks A adalah daftar m elemen yang tersusun horizontal:

$$(a_{11}, a_{12}, \ldots, a_{1n}), (a_{21}, a_{22}, \ldots, a_{2n}), \ldots, (a_{m1}, a_{m2}, \ldots, a_{mn})$$

Kolom dari matriks A adalah daftar n elemen yang tersusun vertikal:

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m3} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{bmatrix}$$

Note: Jadi, matriks terdiri dari sekumpulan vektor.

1. Matriks persegi

Matriks persegi adalah matriks dengan jumlah baris dan kolom yang sama.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{nn} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Diagonal and Trace

Misalkan $A = [a_{ij}]$ adalah matriks persegi dengan order n. Diagonal atau diagonal utama dari A terdiri dari elemen dengan subskrip yang sama, yaitu:

$$a_{11}, a_{22}, \ldots, a_{nn}$$

Trace dari A, dilambangkan dengan tr(A) adalah jumlah elemen diagonal dari A.

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

Theorem (Properties of trace)

- tr(A+B) = tr(A) + tr(B)
- tr(kA) = ktr(A)
- $tr(A^T) = tr(A)$
- tr(AB) = tr(BA) (ingatlah bahwa tidak selalu $AB \neq BA$)

2. Matriks identitas, matriks skalar

The identity or unit matrix, denoted by I_n (or simply I) is the square matrix $n \times n$, with 1's on the diagonal, and 0's elsewhere.

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

I has a similar role as the scalar 1 for \mathbb{R} .

Sifat penting: Ketika terdefinisi dengan baik,

$$IA = A$$

Untuk beberapa skalar $k \in \mathbb{R}$, matriks kI disebut matriks skalar yang sesuai dengan skalar k.

3. Matriks diagonal

Matriks $D = [d_{ij}]$ adalah matriks diagonal jika entri non-diagonalnya semuanya nol.

$$D = \mathsf{diag}(d_{11}, d_{22}, \ldots, d_{nn})$$

dimana beberapa dari d_{ii} atau semua d_{ii} mungkin nol.

Example

$$\begin{bmatrix} 3 & 0 & \cdots & 0 \\ 0 & -5 & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & 9 \end{bmatrix}$$

Oleh karena itu, matriks identitas dan matriks skalar juga merupakan matriks diagonal.

4. Matriks segitiga atas dan segitiga bawah

Matriks persegi $A = [a_{ij}]$ adalah segitiga atas (*upper-triangular*), jika semua entri di bawah diagonal utama sama dengan 0.

Matriks segitiga bawah (*lower-triangular*) adalah matriks persegi yang entri-entri di atas diagonal utama semuanya nol.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

a ₁₁ a ₂₁ a ₃₁	0 a ₂₂	0 0		0]
a ₃₁	a ₃₂	a ₃₃		0
			٠	 a _{nn} _
a_{n1}	a_{n2}	a_{n3}		a _{nn}

Matriks segitiga atas dan segitiga bawah

Theorem

Jika $A = [a_{ij}]$ dan $B = [b_{ij}]$ adalah $n \times n$ matriks segitiga. Maka:

$$A + B$$
, kA , AB

adalah matriks segitiga dengan elemen diagonalnya yaitu:

$$(a_{11}+b_{11}, \ldots, a_{nn}+b_{nn}), (ka_{11}, \ldots, ka_{nn}), (a_{11}b_{11}, \ldots, a_{nn}b_{nn})$$

5. Matriks simetris

Suatu matriks A adalah simetris jika $A^T = A$, yaitu $a_{ij} = a_{ji}$ untuk setiap $i, j \in \{1, 2, ..., n\}$.

Itu skew-symmetric jika $A^T = -A$.

Example

$$A = \begin{bmatrix} 2 & -3 & 5 \\ -3 & 6 & 7 \\ 5 & 7 & -8 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 3 & -4 \\ -3 & 0 & 5 \\ 4 & -5 & 0 \end{bmatrix}$$

A adalah matriks simetris, dan B adalah matriks simetris miring.

Dapatkah Anda menemukan contoh lain? Temukan contoh matriks yang tidak simetris dan tidak simetris miring.

6. Matriks normal

Sebuah matriks A adalah matriks normal jika $AA^T = A^TA$.

Example

Misalkan
$$A = \begin{bmatrix} 6 & -3 \\ 3 & 6 \end{bmatrix}$$
. Maka:
$$AA^{T} = \begin{bmatrix} 6 & -3 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 6 & 3 \\ -3 & 6 \end{bmatrix} = \begin{bmatrix} 45 & 0 \\ 0 & 45 \end{bmatrix}$$
$$A^{T}A = \begin{bmatrix} 6 & 3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 45 & 0 \\ 0 & 45 \end{bmatrix}$$

Karena $AA^T = A^TA$, matriks A adalah normal.

7. Matriks blok

Dengan menggunakan sistem garis horizontal dan vertikal (putus-putus), matriks A dapat dipartisi menjadi submatriks yang disebut blok (atau sel) dari A.

Example

$$\begin{pmatrix} 1 & -2 & | & 0 & 1 & | & 3 \\ 2 & 3 & | & 5 & 7 & | & -2 \\ \hline 3 & 1 & | & 4 & 5 & | & 9 \\ 4 & 6 & | & -3 & 1 & | & 8 \end{pmatrix}) \quad \begin{pmatrix} 1 & -2 & | & 0 & 1 & 3 \\ \hline 2 & 3 & | & 5 & 7 & -2 \\ \hline 3 & 1 & | & 4 & 5 & 9 \\ \hline 4 & 6 & | & -3 & 1 & 8 \end{pmatrix}) \quad \begin{pmatrix} 1 & -2 & | & 0 & 1 & 3 \\ \hline 2 & 3 & | & 5 & | & 7 & -2 \\ \hline 3 & 1 & | & 4 & | & 5 & 9 \\ \hline 4 & 6 & | & -3 & | & 1 & 8 \end{pmatrix}$$

Operasi pada matriks blok

Misalkan $A = [A_{ij}]$ dan $B = [B_{ij}]$ adalah matriks blok dengan jumlah blok baris dan kolom yang sama, dan misalkan blok yang bersesuaian memiliki ukuran yang sama.

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + B_{mn} \end{bmatrix}$$

dan

$$kA = \begin{bmatrix} kA_{11} & kA_{12} & \cdots & kA_{1n} \\ kA_{21} & kA_{22} & \cdots & kA_{2n} \\ \cdots & \cdots & \cdots \\ kA_{m1} & kA_{m2} & \cdots & kA_{mn} \end{bmatrix}$$

Matriks blok persegi

Matriks blok *M* disebut matriks blok persegi jika:

- 1 M adalah matriks persegi.
- Blok-bloknya membentuk matriks persegi.
- 3 Blok diagonalnya juga matriks persegi.

Example

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ \hline 9 & 8 & 7 & 6 & 5 \\ \hline 4 & 4 & 4 & 4 & 4 \\ 3 & 5 & 3 & 5 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ \hline 9 & 8 & 7 & 6 & 5 \\ 4 & 4 & 4 & 4 & 4 \\ \hline 3 & 5 & 3 & 5 & 3 \end{pmatrix}$$

Manakah dari matriks di atas yang merupakan matriks blok persegi?

Matriks blok diagonal

Matriks blok diagonal adalah matriks blok persegi $M = [A_{ij}]$ sedemikian sehingga blok-blok non-diagonalnya adalah matriks nol.

Example

$$\left(\begin{array}{c|cccc}
1 & 2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\hline
0 & 0 & 7 & 6 & 0 \\
0 & 0 & 4 & 4 & 0 \\
\hline
0 & 0 & 0 & 0 & 3
\end{array}\right)$$

Matriks blok diagonal sering dilambangkan sebagai $M = \text{diag}(A_{11}, A_{22}, \dots, A_{rr})$

Operasi matriks

Kita akan membahas:

- Perkalian skalar
- Penambahan matriks
- Perkalian matriks
- Transpose matriks
- Perpangkatan matriks
- Polinomial dari matriks

1. Perkalian matriks dengan skalar

Hasil perkalian dari matriks $A = [a_{ij}]$ dengan skalar $k \in \mathbb{R}$ didefinisikan sebagai:

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \cdots & \cdots & \cdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix}$$

Lebih lanjut, -A = (-1)A.

2. Penjumlahan matriks

Misalkan $A = [a_{ij}]$ dan $B = [b_{ij}]$ adalah matriks dengan ukuran yang sama, yaitu ukuran $m \times n$. Jumlah dari A dan B didefinisikan sebagai:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Lebih lanjut, A - B = A + (-B).

Sifat-sifat matriks pada penjumlahan dan perkalian skalar

Theorem

Misalkan A, B, dan C merupakan matriks dengan ukuran yang sama, dan $k, k' \in \mathbb{R}$. Maka:

•
$$(A + B) + C = A + (B + C)$$

(asosiatif)

•
$$A + B = B + A$$

(komutatif)

•
$$A + 0 = A$$

(0 adalah elemen identitas thd penjumlahan)

•
$$A + (-A) = 0$$

(matriks invers thd penjumlahan)

$$\bullet \ k(A+B) = kA + kB$$

(distributif)
(distributif thd skalar)

$$\bullet (k+k')A = kA + k'A$$

, (----:-+:f +h-l ---l---)

$$\bullet (kk')A = k(k'A)$$

(asosiatif thd scalar)

$$\bullet \ 1 \cdot A = A$$

(1 adalah elemen identitas thd perkalian skalar)

Note: Oleh karena itu, jumlah $A_1 + A_2 + \cdots + A_n$ dapat dihitung dalam urutan apa pun, dan tidak memerlukan tanda kurung.

Contoh persoalan

Diketahui matriks berikut:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 1 \\ 5 & 5 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 2 \\ -1 & 0 & 4 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 & 3 \\ 9 & 8 & 7 \end{bmatrix}$$

Sederhanakan ekspresi matriks berikut.

- A + B
 - B − C
 - \bullet -3A + 2B

•
$$5A + 2B - 3C$$

•
$$3(A-C)+B$$

3. Perkalian matriks

Misalkan $A = [a_i]$ adalah matriks baris dan $B = [b_i]$ adalah matriks kolom. Maka $A \times B$ didefinisikan sebagai:

$$AB = [a_1, a_2, \dots, a_n] \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{i=1}^n a_ib_i$$

Catatan: hasil kali A dan B adalah skalar.

Example

$$[7, -4, 5] \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = 7(3) + (-4)(2) + 5(-1) = 21 - 8 - 5 = 8$$

Misalkan $A = [a_{ij}]$ dan $B = [b_{ij}]$ masing-masing adalah matriks dengan ukuran $m \times p$ dan $p \times n$. Maka hasil kali A dan B adalah matriks AB dengan ukuran $m \times n$.

Contoh persoalan

Hitunglah nilai AB dimana $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ dan $B = \begin{bmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{bmatrix}$.

Kalikan setiap baris A dengan setiap kolom dari B.

Karena A berukuran 2×2 dan B berukuran 2×3 , maka AB berukuran 2×3 .

$$AB = \begin{bmatrix} 2+15 & 0-6 & -4+18 \\ 4-5 & 0+2 & -8-6 \end{bmatrix} = \begin{bmatrix} 17 & -6 & 14 \\ -1 & 2 & -14 \end{bmatrix}$$

Hubungan antara penjumlahan matriks dan perkalian matriks

Theorem

Misalkan A, B, dan C adalah matriks. Jika penjumlahan dan perkalian matriks terdefinisi dengan jelas, maka:

•
$$(AB)C = A(BC)$$

(asosiatif)

•
$$A(B+C) = AB + AC$$

(distributif kiri)

$$\bullet (B+C)A = BA + CA$$

(distributif kanan)

•
$$k(AB) = (kA)B = A(kB)$$
 dimana $k \in \mathbb{R}$

•
$$0A = 0$$
 dan $A0 = 0$, dimana 0 adalah matriks nol

4. Transpos matriks

Transpos dari sebuah matriks A, dilambangkan dengan A^T , adalah matriks yang diperoleh dengan menuliskan kolom-kolom A, secara berurutan, sebagai baris.

$$\mathsf{Jika}\ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \ \mathsf{maka}\ A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Catatan: Jika A memiliki ukuran $m \times n$, maka A^T memiliki ukuran $n \times m$.

Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad \text{dan} \quad \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}^T = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$$

Sifat operasi pada transpose matriks

Theorem

Jika A dan B adalah matriks sedemikian sehingga operasi berikut terdefinisi dengan baik (well-defined), maka:

$$(A + B)^T = A^T + B^T$$

$$(A - B)^T = A^T - B^T$$

5. Perpangkatan matriks, Polinomial matriks

Jika A memiliki ukuran $m \times n$, maka A^T memiliki ukuran $n \times m$. Misalkan A adalah matriks persegi dengan order n atas \mathbb{R} (atau atas lapangan lain). Perpangkatan dari A didefinisikan sebagai:

$$A^2 = AA$$
, $A^3 = A^2A$, ..., $A^{n+1} = A^nA$, ..., dan $A^0 = 1$

Kita juga dapat mendefinisikan polinomial dalam matriks A. Untuk polinomial apa pun:

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$
, dimana $a_i \in \mathbb{R}$,

Polinomial f(A) didefinisikan sebagai:

$$f(A) = a_0I + a_1A + a_2A^2 + \cdots + a_nA^n$$

Catatan: Jika f(A) = 0 (matriks nol), maka A disebut *pembuat nol* (zero) atau akar (root) dari f(x).

Contoh persoalan

Misal
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
. Maka:
$$A^2 = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix}, \text{ dan}$$

$$A^3 = A^2 A = \begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} -11 & 38 \\ 57 & -106 \end{bmatrix}$$

Misal
$$f(x) = 2x^2 - 3x + 5$$
, maka:

$$f(A) = 2\begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix} + 3\begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 16 & -18 \\ -27 & 61 \end{bmatrix}$$

Determinan

1. Determinan dari matriks 2×2

Diberikan sebuah matriks

$$A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$

Di sekolah menengah, Anda mungkin telah mempelajari bahwa determinan dari matriks (ukuran 2×2) didefinisikan sebagai

$$a_1b_2 - a_2b_1$$

dan dinotasikan dengan:

$$|A| = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

Contoh motivasi

Perhatikan lagi sistem persamaan linier dalam dua variabel:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

- Sistem memiliki tepat <u>satu solusi</u> ketika $a_1b_2 a_2b_1 \neq 0$
- Sistem tidak memiliki solusi atau memiliki banyak solusi ketika $a_1b_2 \overline{a_2b_1} = 0$

Contoh motivasi

Perhatikan lagi sistem persamaan linier dalam dua variabel:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

- Sistem memiliki tepat <u>satu solusi</u> ketika $a_1b_2 a_2b_1 \neq 0$
- Sistem tidak memiliki solusi atau memiliki banyak solusi ketika $a_1b_2 \overline{a_2b_1} = 0$

Matriks koefisien
$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$
 memiliki determinan $= a_1b_2 - a_2b_1$.

Catatan. Dengan demikian, determinan dari matriks koefisien menentukan jumlah solusi dari sistem yang diberikan. Sistem memiliki solusi unik jika $D \neq 0$.

Penerapan determinan pada sistem persamaan linear

Menyelesaikan SPL dengan metode eliminasi:

$$a_1b_2x + b_1b_2y = b_2c_1$$

$$a_2b_1x + b_1b_2y = b_1c_2$$

$$(a_1b_2 - a_2b_1)x = b_2c_1 - b_1c_2$$

$$x = \frac{b_2c_1 - b_1c_2}{a_1b_2 - a_2b_1}$$

Sehingga:

$$b_2c_1 - b_1c_2 = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = N_x \text{ dan } a_1b_2 - a_2b_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = D$$

Dengan demikian, $x = \frac{N_x}{D}$

Penerapan determinan pada sistem persamaan linear

Nilai y dapat ditentukan dengan cara serupa:

$$a_1 a_2 x + a_2 b_1 y = a_2 c_1$$

 $a_1 a_2 x + a_1 b_2 y = a_1 c_2$

$$(a_2b_1 - a_1b_2)y = a_2c_1 - a_1c_2$$
$$x = \frac{a_2c_1 - a_1c_2}{a_2b_1 - a_1b_2} = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$$

Sehingga:

$$a_1c_2 - a_2c_1 = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = N_y \text{ dan } a_1b_2 - a_2b_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = D$$

Jadi,
$$y = \frac{N_y}{D}$$

Contoh penyelesaian SPL dengan determinan

Selesaikan sistem berikut menggunakan determinan:

$$\begin{cases} 3x - 4y = -10 \\ -x + 2y = 2 \end{cases}$$

Solusi:

$$N_{x} = \begin{vmatrix} -10 & -4 \\ 2 & 2 \end{vmatrix} = -20 - (-8) = -12$$

$$N_{y} = \begin{vmatrix} 3 & -10 \\ -1 & 2 \end{vmatrix} = 6 - 10 = -4$$

$$D = \begin{vmatrix} 3 & -4 \\ -1 & 2 \end{vmatrix} = 6 - 4 = 2$$

Jadi,
$$x = \frac{-12}{2} = -6$$
 dan $y = \frac{-4}{2} = -2$.

Kesimpulan

Diberikan:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

dengan matriks koefisien $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$ memiliki determinan tak-nol (artinya, SPL memiliki solusi tunggal).

Solusi SPL adalah:

$$x = \frac{N_x}{D}$$
 dan $y = \frac{N_y}{D}$

dimana
$$N_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$$
, $N_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$, dan $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$.

Interpretasi geometris

Matriks $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ dapat dilihat sebagai "pengaturan" dari:

- vektor baris: $\begin{bmatrix} a & b \end{bmatrix}$ dan $\begin{bmatrix} c & d \end{bmatrix}$
- atau, vektor kolom: $\begin{bmatrix} a \\ c \end{bmatrix} dan \begin{bmatrix} b \\ d \end{bmatrix}$

Matriks mendefinisikan apa yang disebut *transformasi linier* dari persegi satuan (digambar hijau) yang dibentuk oleh *vektor basis* $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ dan $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, sehubungan dengan:

- vektor baris, ditunjukkan oleh jajar genjang merah; atau
- vektor kolom, ditunjukkan oleh jajar genjang biru

Kedua jajar genjang memiliki luas yang sama.

Contoh

Diberikan matriks
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
.

Gambarlah dua jajar genjang yang mendefinisikan transformasi persegi satuan terhadap masing-masing vektor baris dan vektor kolom.

Solusi:

2. Determinan matriks ukuran 3×3

Diberikan matriks:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Determinan dari matriks di atas didefinisikan sebagai:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Bentuk alternatif untuk determinan matriks orde-3

Determinan dari matriks di atas didefinisikan sebagai:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$= a_{11}(a_{22}a_{23} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Formula ini dapat digambarkan sebagai berikut:

Contoh

Tentukan determinan matriks
$$A = \begin{bmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{bmatrix}$$

Solusi:

Dengan menggunakan diagram

$$det(A) = 3(5)(4) + 2(-1)(2) + (1)(-4)(-3) - 1(5)(2) - 2(-4)(4)(-3)(-3)$$
$$= 60 - 4 + 12 - 10 + 32 - 9 = 81$$

Dengan menggunakan bentuk alternatif

$$\begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} = 3 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} + 1 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix}$$
$$= 3 \begin{vmatrix} 5 & -1 \\ -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} -4 & -1 \\ 2 & 4 \end{vmatrix} + 1 \begin{vmatrix} -4 & 5 \\ 2 & -3 \end{vmatrix}$$
$$= 3(20 - 3) - 2(-16 + 2) + 1(12 - 10) = 51 + 28 + 2 = 81$$

Penerapan pada sistem persamaan linear

Diketahui sistem persamaan linier berikut:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z &= b_1 \\ a_{21}x + a_{22}y + a_{23}z &= b_2 \\ a_{31}x + a_{32}y + a_{33}z &= b_3 \end{cases}$$

Kita dapat melakukan perhitungan serupa seperti pada kasus matriks (2×2) , untuk menemukan solusi sistem.

Matriks koefesien dari SPL tersebut adalah:
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Penerapan pada sistem persamaan linear

SPL memiliki solusi tunggal hanya jika $D = \det(A) \neq 0$. Solusinya adalah:

$$x = \frac{N_x}{D}, \quad y = \frac{N_y}{D}, \quad z = \frac{N_z}{D}$$

dimana N_x , N_y , dan N_z diperoleh dengan mengganti kolom ke-1, ke-2, dan

ke-3 dari
$$A$$
 dengan vektor konstanta $\begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix}$.

Interpretasi geometris

Dalam \mathbb{R}^3 , vektor u_1 , u_2 , dan u_3 menentukan paralelepiped,

yang merupakan hasil transformasi kubus satuan menggunakan vektor $\{u_1, u_2, u_3\}$.

Catatan.

Misal u_1, u_2, \ldots, u_n adalah vektor di \mathbb{R}^n . Maka persamaan paralelepiped:

$$S = \{a_1u_1 + a_2u_2 + \dots + a_nu_n : 0 \le a_i \le 1 \text{ for } i = 1,\dots, n\}$$

V(S) = nilai mutlak det(A)

Latihan: membuat program komputer

- Buatlah program komputer untuk mengalikan dua matriks A berukuran $m \times p$ dan B berukuran $p \times n$, dimana $m, n, p \in \{1, 2, 3\}$.
- Gunakan program pada soal sebelumnya sebagai subrutin untuk membuat program komputer yang menghitung perpangkatan matriks persegi A berukuran 3×3 .
- Buatlah sebuah program komputer untuk menghitung determinan matriks berukuran 3×3 .

Bagian 1.6: Transformasi

Transformasi yang pernah dipelajari di SMA

- Pencerminan
- Rotasi
- Dilasi

Konversi dari o ke rad

- $180^{\circ} = 1\pi \text{ rad}$
- ullet $1^o=rac{\pi}{180}$ rad

Ruang vektor:

Ruang vektor satu dimensi:

Ruang vektor:

Jika setiap bilangan pada garis tersebut dikalikan 2:

Ruang vektor:

Jika setiap bilangan pada garis tersebut dikalikan 1/2:

Ruang vektor:

Jika setiap bilangan pada garis tersebut dikalikan -3:

Ruang vektor:

Tansformasi linier pada ruang berdimensi 2

https://www.youtube.com/watch?v=2xKaXDHDGsA

Transformasi yang tidak linier pada ruang berdimensi 2

https://www.youtube.com/watch?v=x1dGfxBdDlM

https://www.youtube.com/watch?v=MgWkNwczVb0

Definisi formal

Definition

Jika f adalah fungsi dengan domain \mathbb{R}^n dan codomain \mathbb{R}^m , maka kita katakan bahwa f adalah transformation dari \mathbb{R}^n ke \mathbb{R}^m , atau f maps dari \mathbb{R}^n ke \mathbb{R}^m .

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Jika m = n, transformasi sering disebut operator di \mathbb{R}^n .

Transformasi muncul dari sistem linier

Diberikan sistem linier:

yang dapat ditulis dalam notasi matriks $\mathbf{w} = A\mathbf{x}$:

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Ini dapat dilihat sebagai transformasi yang memetakan vektor $\mathbf{x} \in \mathbb{R}^n$ ke dalam vektor $\mathbf{w} \in \mathbb{R}^m$ dengan mengalikan \mathbf{x} di sebelah kiri dengan A.

Transformasi matriks

Matriks yang mengubah vektor $\mathbf{x} \in \mathbb{R}^n$ menjadi vektor $\mathbf{w} \in \mathbb{R}^m$ disebut matrix transformation (atau matrix operator ketika m = n), dan dilambangkan dengan:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$

Notasi lain yang sering digunakan adalah:

- $\mathbf{w} = T_A(\mathbf{x})$, yang disebut perkalian dengan A; atau
- $\mathbf{x} \xrightarrow{T_A} \mathbf{w}$, yang dibaca sebagai T_A memetakan \mathbf{x} menjadi \mathbf{w} .

1. Refleksi (pencerminan)

Operator refleksi pada \mathbb{R}^2

Operator refleksi are operators on \mathbb{R}^2 (or \mathbb{R}^3) that maps each point into its symmetric image about a fixed line or a fixed plane that contains the origin.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the x-axis T(x, y) = (x, -y)	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	(-x, y) = (x, y) $T(x)$ x	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	y = x $(y, x) y = x$ $(x, y) x$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Operator refleksi pada \mathbb{R}^{3}

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the xy-plane $T(x, y, z) = (x, y, -z)$	$T(\mathbf{x}) = \begin{pmatrix} z \\ y \\ (x, y, z) \end{pmatrix}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane $T(x, y, z) = (-x, y, z)$	$T(\mathbf{x}) = \begin{cases} (-\mathbf{x}, y, z) \\ \mathbf{x} \end{cases}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

2. Proyeksi

Operator proyeksi di \mathbb{R}^2

Operator proyeksi atau operator proyeksi ortogonal adalah operator matriks pada \mathbb{R}^2 (atau \mathbb{R}^3) yang memetakan setiap titik ke dalam proyeksi ortogonalnya ke suatu garis tetap atau bidang melalui titik asal.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis $T(x, y) = (x, 0)$	(x, y) $T(x)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	(0, y) $T(x)$ x x	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Operator proyeksi pada \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy-plane T(x, y, z) = (x, y, 0)	x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz-plane $T(x, y, z) = (x, 0, z)$	(x, 0, z) $T(x)$ x y x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane $T(x, y, z) = (0, y, z)$	$ \begin{array}{c} z \\ T(x) \end{array} $ $ \begin{array}{c} (0, y, z) \\ x \end{array} $	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3. Rotasi

Operator rotasi untuk \mathbb{R}^2

Operator rotasi adalah operator matriks pada \mathbb{R}^2 atau \mathbb{R}^3 yang memindahkan titik sepanjang busur lingkaran yang berpusat di asal.

Bagaimana menemukan matriks standar untuk operator rotasi $T: \mathbb{R}^2 \to \mathbb{R}^2$ yang memindahkan titik berlawanan arah jarum jam terhadap titik asal melalui positif sudut θ ?

 $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$ Matriks transformasi standar untuk T adalah:

99 / 134

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Operator rotasi untuk \mathbb{R}^2 (*lanjutan*)

Matriks:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

disebut rotation matrix untuk \mathbb{R}^2 .

Misalkan $\mathbf{x}=(x,y)\in\mathbb{R}^2$ dan $\mathbf{w}=(w_1,w_2)$ menjadi gambarnya di bawah rotasi. Kemudian:

$$\mathbf{w} = R_{\theta}\mathbf{x}$$

with:

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) θ (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Contoh operator rotasi

Temukan gambar $\mathbf{x} = (1,1)$ di bawah rotasi $\pi/6$ rad $(=30^{\circ})$ tentang asalnya.

Solusi:

Kita tahu bahwa $\sin(\pi/6) = \frac{1}{2} \operatorname{dan} \cos(\pi/6) = \frac{\sqrt{3}}{2}$.

Dengan rumus sebelumnya:

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

Rotasi di \mathbb{R}^3

Rotasi di \mathbb{R}^3 umumnya digambarkan sebagai axis of rotation dan vektor satuan ${\bf u}$ sepanjang garis itu.

Aturan tangan kanan digunakan untuk menetapkan tanda sudut rotasi.

- Jika sumbu adalah sumbu x, y, atau z, maka ambil vektor satuan masing-masing i, j, dan k.
- Sudut rotasi akan menjadi positif jika berlawanan arah jarum jam melihat ke arah asal sepanjang sumbu koordinat positif dan akan menjadi negatif jika searah jarum jam.

Rotasi di \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	X X	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive z -axis through an angle θ	x w y	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

4. Dilasi and kontraksi

Dilasi & kontraksi

Misalkan $k \in \mathbb{R}, k \geq 0$. Operator:

$$T(\mathbf{x}) = k\mathbf{x}$$

pada \mathbb{R}^2 atau \mathbb{R}^3 mendefinisikan penambahan atau pengurangan panjang vektor \mathbf{x} dengan faktor k.

- Jika k > 1, disebut dilatasi dengan faktor k;
- Jika 0 < k < 1, disebut kontraksi dengan faktor k.

Dilasi & kontraksi pada \mathbb{R}^2

Operator	Illustration $T(x, y) = (kx, ky)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x}) = \begin{cases} \mathbf{x} & (x, y) \\ (kx, ky) & x \end{cases}$	(0,1) = (0,k) + (0,k) $(0,k) = (0,k)$ $(0,k) = (0,k)$	[<i>k</i> 0]
Dilation with factor k in R^2 $(k > 1)$	Y $T(\mathbf{x})$ (kx, ky) \mathbf{x} (x, y)	$(0,1) \qquad (0,k) \qquad \uparrow \uparrow \qquad \uparrow \qquad \downarrow \qquad$	[0 k]

Dilasi & kontraksi pada \mathbb{R}^3

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	z $T(\mathbf{x}) = (kx, ky, kz)$ y	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 $(k > 1)$	$z \qquad (kx, ky, kz)$ $T(\mathbf{x}) \qquad \qquad \mathbf{x} \qquad (x, y, z)$	

5. Ekspansi and kompresi

Ekspansi and kompresi

Dalam dilasi atau kontraksi \mathbb{R}^2 atau \mathbb{R}^3 , **semua koordinat** dikalikan dengan faktor non-negatif k.

Sekarang bagaimana jika **hanya satu koordinat** dikalikan dengan k?

- Jika k > 1, disebut ekspansi dengan faktor k searah sumbu koordinat (x, y, or z);
- Jika $0 \le k \le 1$, disebut kompresi

Ekspansi and kompresi in \mathbb{R}^2 (in *x*-direction)

Operator	Illustration $T(x, y) = (kx, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x -direction with factor k in R^2 $(0 \le k < 1)$	$ \begin{array}{c} y \\ (kx, y) \\ T(x) \\ x \end{array} $	(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)	$\begin{bmatrix} k & 0 \end{bmatrix}$
Expansion in the x -direction with factor k in R^2 $(k > 1)$	(x, y) (kx, y) (x, y) (kx, y) $T(x)$	(0,1) $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$	[0 1]

Ekspansi and kompresi in \mathbb{R}^2 (in *y*-direction)

Operator	Illustration $T(x, y) = (x, ky)$	Effect on the Unit Square	Standard Matrix	
Compression in the y-direction with factor k in R^2 $(0 \le k < 1)$	(x, y) (x, ky) (x)	$(0,1)$ $(0,k)$ $\downarrow \downarrow$ $(1,0)$	[1 0]	
Expansion in the y-direction with factor k in R^2 $(k > 1)$	T(x) X X X	(0, 1) (0, k) 11	[0 k]	

6. Shear

Shear

Operator matriks berbentuk:

$$T(x,y) = (x + ky, y)$$

menerjemahkan titik (x, y) dalam bidang xy sejajar dengan sumbu x dengan jumlah ky yang sebanding dengan koordinat y dari titik tersebut.

Ini disebut shear in the x-direction dengan faktor k.

Demikian pula, operator matriks:

$$T(x,y) = (x, y + kx)$$

disebut shear in the y-direction dengan faktor k.

Ketika k>0, maka geseran berada pada arah positif. Ketika k<0, arahnya negatif.

Shear

Operator	Effect on the Unit Square	Standard Matrix
Shear in the x -direction by a factor k in R^2 $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \line(0,1) \lin$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear in the y-direction by a factor k in R^2 $T(x, y) = (x, y + kx)$	$(0,1) \qquad (0,1) \qquad (0,1) \qquad (0,1) \qquad (0,1) \qquad (1,k) \qquad (1,k) \qquad (1,k) \qquad (1,k)$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Example

Jelaskan operator matriks yang matriks standarnya adalah sebagai berikut:

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ $A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

$$A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solusi:

Dari tabel pada slide sebelumnya, kita dapat melihat bahwa:

- A₁ sesuai dengan geseran ke arah x dengan faktor 2;
- A_2 sesuai dengan geseran ke arah x dengan faktor -2;
- A₃ sesuai dengan dilatasi dengan faktor 2;
- A₄ sesuai dengan perluasan dalam arah x dengan faktor 2.

Example (cont.)

Jelaskan secara geometris hasil transformasi:

Bagian 1.7: Limit & turunan

Konsep limit

Misalkan I = (a, b) suatu *interval buka* di \mathbb{R} dan $c \in I$.

Fungsi f(x) dikatakan terdefinisi di I kecuali mungkin di c artinya: f(x) terdefinisi di semua titik pada $I \setminus \{c\}$, dan dapat terdefinisi atau tidak di c.

Berapakah nilai limit f(x) bila x mendekati titik c?

Diberikan fungsi $f(x) = \frac{2x^2 - 3x - 2}{x - 2}$, $D_f = \mathbb{R} \setminus \{2\}$

x	f(x)
0.00000	1.00000
1.00000	3.00000
1.90000	4.80000
1.95000	4.90000
1.99999	4.99998
÷	
2.00000	?
:	
2.00001	5.00002
2.05000	5.10000
2.10000	5.20000
3.00000	7.00000

Perhatikan bahwa:

$$f(x) = \frac{2x^2 - 3x - 2}{x - 2}, \quad D_f = \mathbb{R} \setminus \{2\} = \frac{(2x + 1)(x - 2)}{x - 2} = 2x + 1$$

Definisi limit

Misalkan f(x) terdefinisi pada I = (a, b) kecuali mungkin di $c \in I$. Limit dari f(x) untuk x mendekati c adalah L, dinotasikan dengan:

$$\lim_{x \to c} f(x) = L$$

artinya untuk setiap $\epsilon > 0$, dapat dicari $\delta > 0$ sehingga $|x-c| < \delta \Rightarrow |f(x)-L| < \epsilon$.

Limit sepihak

- Tentukan δ_1 supaya $x-1 < \delta_1 \Rightarrow |f(x)-1.5| < 1$
- Tentukan δ_2 supaya $x-1<\delta_2\Rightarrow |f(x)-1.5|<rac{3}{4}$
- ullet Tentukan δ_3 supaya $x-1<\delta_3\Rightarrow |f(x)-1.5|<rac{1}{4}$
- ullet Jika $\epsilon>0$, adakah $\delta>0$ supaya $x-1<\delta\Rightarrow |f(x)-1.5|<\epsilon$

Karena $\forall \epsilon > 0$, $\exists \delta > 0$ sehingga implikasi tersebut berlaku, maka "limit dari f(x) untuk x menuju 1 dari kanan bernilai 1.5", dan dinotasikan dengan $\lim_{x\to 1^+} f(x) = 1.5$.

Limit sepihak

- Tentukan δ_1 supaya $1-x<\delta_1\Rightarrow |f(x)-1.5|<1$
- ullet Tentukan δ_2 supaya $1-x<\delta_2\Rightarrow |f(x)-1.5|<rac{3}{4}$
- ullet Tentukan δ_3 supaya $1-x<\delta_3\Rightarrow |f(x)-1.5|<rac{1}{4}$
- ullet Jika $\epsilon >$ 0, adakah $\delta >$ 0 supaya $1-x < \delta \Rightarrow |f(x)-1.5| < \epsilon$

Ini menunjukkan bahwa "limit kiri dari f(x) untuk x menuju 1 dari kiri bukan 1.5". Apakah limit kirinya ada?

Limit kanan & limit kiri

Limit kanan:

Misalkan f(x) terdefinisi pada I = (a, b) kecuali mungkin di $c \in I$. Limit dari f(x) untuk x mendekati c dari kanan adalah L, dinotasikan dengan:

$$\lim_{x\to c^+}f(x)=L$$

artinya untuk setiap $\epsilon > 0$, dapat dicari $\delta > 0$ sehingga $x - c < \delta \Rightarrow |f(x) - L| < \epsilon$.

Limit kiri:

Misalkan f(x) terdefinisi pada I = (a, b) kecuali mungkin di $c \in I$. Limit dari f(x) untuk x mendekati c dari kiri adalah L, dinotasikan dengan:

$$\lim_{x \to c^{-}} f(x) = L$$

artinya untuk setiap $\epsilon > 0$, dapat dicari $\delta > 0$ sehingga $c - x < \delta \Rightarrow |f(x) - L| < \epsilon$.

Sifat-sifat limit

•
$$\lim_{x\to c} f(x) = L \Leftrightarrow \lim_{x\to c^+} f(x) = L \Leftrightarrow \lim_{x\to c^-} f(x) = L$$

•
$$\lim_{x\to c} f(x) = L \Rightarrow \lim_{x\to c} |f(x)| = |L|$$

•
$$\lim_{x\to c} f(x) = 0 \Leftrightarrow \lim_{x\to c} |f(x)| = 0$$

Latihan:

Diketahui
$$f(x) = \begin{cases} -x^2 & x < 1\\ x+1 & 1 \le x < 2\\ 5 & x = 2\\ 2x-1 & x > 2 \end{cases}$$

Gambarkan grafik f(x) lalu hitung:

(a)
$$\lim_{x\to 0} f(x)$$

b)
$$\lim_{x\to 1} f(x)$$

(c)
$$\lim_{x\to 2} f(x)$$

(a)
$$\lim_{x\to 0} f(x)$$
 (b) $\lim_{x\to 1} f(x)$ (c) $\lim_{x\to 2} f(x)$ (d) $\lim_{x\to 2.001} f(x)$

Limit di tak-hingga

Limit di tak-hingga menjelaskan perilaku fungsi f(x) jika x membesar/mengecil tanpa batas.

Ilustrasi:

Perhatikan $f(x) = \frac{1}{1+x^2}$ Bila x membesar terus tanpa batas, ditulis $x \to \infty$, nilai f(x) 'cenderung' menuju 0.

M

Misalkan f terdefinisi pada $[c, \infty)$. $\lim = L$ artinya untuk setiap $\epsilon > 0$, dapat dicari bilangan M sehingga $x > M \Longrightarrow |f(x) - L| < \epsilon$.

Misalkan f terdefinisi pada $(-\infty, c)$. $\lim_{r\to -\infty} = L \text{ artinya untuk setiap } \epsilon > 0,$ dapat dicari bilangan M sehingga $x < M \Longrightarrow |f(x) - L| < \epsilon$.

Limit tak-hingga

Limit di tak-hingga menjelaskan perilaku fungsi f(x) dimana nilai f(x) membesar/mengecil tanpa batas.

Misalkan f(x) terdefinisi pada I=(a,b) kecuali mungkin di $c\in I$. Limit dari f(x) untuk x mendekati c^+ bernilai ∞ dinotasikan dengan:

$$\lim_{x\to c^+} f(x) = \infty$$

artinya untuk setiap bilangan M, dapat dicari $\delta > 0$ sehingga $0 < x - c < \delta \Rightarrow f(x) > M$.

Kekontinuan fungsi

Misalkan f(x) terdefinisi pada interval buka I dan $c \in I$. Fungsi f disebut *kontinu di titik c* jika:

$$f(c) = \lim_{x \to c} f(x) \iff f(c) = \lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$$

Contoh. Misalkan
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2 \\ 5 & x = 2 \end{cases}$$
 Periksalah kekontinuan fungsi f di titik $x = 2$.

Kekontinuan sepihak & kekontinuan pada interval

- Fungsi f disebut kontinu kiri di x = c jika $f(x) = \lim_{x \to c^{-}} f(x)$
- Fungsi f disebut kontinu kanan di x = c jika $f(x) = \lim_{x \to c^+} f(x)$
- Fungsi f disebut kontinu pada interval buka (a, b) jika f kontinu pada setiap titik di (a, b)
- Fungsi f disebut kontinu pada interval tutup [a, b] jika f kontinu pada setiap titik di [a, b]

Konsep garis singgung

Kemiringan garis talibusur yang melalui titik P dan Q adalah:

$$m_{\text{sec}} = \frac{f(c+h) - f(c)}{h}$$

Kemiringan garis singgung di titik P = (c, f(c)) didefinisikan sebagai:

$$m = \lim_{h \to 0} m_{\text{sec}} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Turunan

Misalkan f adalah sebuah fungsi riil dan $x \in D_f$.

Turunan dari f di titik x, ditulis sebagai

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Aturan turunan

Aturan-aturan Turunan:

- Misalkan k suatu konstanta, maka $D_x[k] = 0$ (buktikan !)
- $D_x[x] = 1$
- Misalkan $n \in \mathbb{N}$ maka $D_x[x^n] = n x^{n-1}$ (buktikan !)
- ullet Misalkan k suatu konstanta, maka $D_x[k\,f(x)]=k\,D_x[f(x)]$
- $D_x[(f \pm g)(x)] = D_x[f(x)] \pm D_x[g(x)]$
- $D_x[(fg)(x)] = D_x[f(x)]g(x) + f(x)D_x[g(x)] = f'(x)g(x) + f(x)g'(x)$
- $D_x[(\frac{f}{g})(x)] = \frac{D_x[f(x)] g(x) f(x) D_x[g(x)]}{(g(x))^2} = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
- Misalkan $n \in \mathbb{N}$ maka $D_x[x^{-n}] = -n x^{-n-1}$

Aturan turunan

Aturan Turunan Fungsi Trigonometri:

•
$$D_x[\sin x] = \cos x$$
 (buktikan!)

$$D_x[\cos x] = -\sin x$$

•
$$D_x[\tan x] = \sec^2 x$$

$$D_x[\cot x] = -\csc^2 x$$

•
$$D_x[\sec x] = \sec x \tan x$$

$$D_x[\csc x] = -\csc x \cot x$$

Dimana berbagai konsep tersebut digunakan?

end of slide...

Referensi

Warsoma Djohan & Wono Setya Budhi.

Diktat Kalkulus.

Departemen Matematika, FMIPA, Institut Teknologi Bandung, 2007.