

Yuzhu Han, Foster Lockerbie, Jingran Zhao & Litao Zheng

Contents

Ol. Team & Happipad Overview

O2. Project Details

03. Results

04. Conclusion

Our Team

Yuzhu Han

Background in statistics and urban planning

Foster Lockerbie

Background in psychology (statistics focus)

Jingran Zhao

Background in information management

Litao Zheng

Background in Mathematics and Statistics

What is Happipad?

Housing platform geared toward "unlocking underutilized housing". Focused on providing affordable homes for seniors, refugees, and students.

Matches landlords with renters based on comprehensive profiles with list of habits and preferences.

Research questions

Can we effectively represent the housing demand and trends through dashboarding?

Can we predict which home listings will be rented?

Can we predict the appropriate price for rental listings?

Can we use any large language models to improve our predictive modelling?

5

Deliverables

Dashboards

Property and renter monitoring:
Property overview
Renter overview

Two Versions:

Dash and Tableau

Predictive Modelling

Predicting price of rental spaces based on home features

Using NLP to inform price predictions based on text responses

Final Report

Formal project report including:

Project research questions

Methods

Predictive modelling results and analysis

Dashboard explanation

Data Overview

Renters Dataset

- Desired lease term
- Budget
- City

Properties Dataset

- Rent price
- **Property locations**
- Furnishing details

Hosts Dataset

- Location
- Preferred gender of roommates
- Disabilities

Contracts Dataset

- Monthly price of rent
- Lease term
- Location

Data Cleaning

- Investigate outliers
 - determine which values are considered outliers and if they should remain in the dataset
- Remove test properties and listing
- Standardize columns (postal code, address, city, province)
- Binarize columns that contain multiple values
- Convert data types

PEDA - Hosts

9

EDA - Contracts

DEDA - Contracts

DEDA - Properties

count	3666.000000					
mean	1098.124326					
std	2091.288179					
min	0.000000					
25%	756.000000					
50%	947.040000					
75%	1188.000000					
max	118800.000000					
Name:	Total, dtype: float64					

EDA - Properties

▶ EDA - Renters

▼ EDA - Renters

Results:

Predictive Modelling

- price predictions

Model Name	RMSE	Relative Error
XGBoost (target encoding)	137.41	16.46%
XGBoost (one-hot encoding)	141.89	16.99%
Random Forest	133.60	16.00%
LightGBM	137.42	16.46%
Random Forest + NLP	140.43	16.82%

Results:

Predictive Modelling - price predictions

Predictive Modelling - Rental Likelihood Classifier

- Target variable: a binary column indicating whether the property has a rental record in the contracts dataset
- 5-fold Random Forest:

```
Fold 1 — Accuracy: 0.921, F1: 0.179
Fold 2 — Accuracy: 0.926, F1: 0.062
Fold 3 — Accuracy: 0.925, F1: 0.141
Fold 4 — Accuracy: 0.906, F1: 0.136
Fold 5 — Accuracy: 0.921, F1: 0.179
Mean Accuracy: 0.920
Mean Precision: 0.902
Mean Recall: 0.077
Mean F1 Score: 0.140
```

Predict				
		0	1	
True	0	3693	4	
	1	321	27	

Ollama is a command-line platform for running large language models (LLMs) on local computer for offline text generation and analysis

 natural language processing tasks such as summarization, text classification, etc.

Mistral:

- Good balance between accuracy and speed
- Run efficiently on local hardware

Expected output columns:

- number_of_people: number of people mentioned in the description
- bedrooms: how many bedrooms for rent
- pets allowed: whether pets are allowed on the property
- property_size: the size of the property
- shared_spaces: a list of shared spaces in the rental listing.
- bathroom_type: the bathroom would be shared or private
- nearby_amenities: a list of nearby amenities, such as bus stop
- unique_features: unique features of the property

Input prompt 1:

Return a JSON object with:

- Number Of People (how many people the space is for or referenced)
- Number Of Pets (how many pets are mentioned)
- Property Size (e.g., small, medium, large, unknown)
- Shared Spaces (e.g., kitchen, living room)
- Bathroom Type (shared or private)
- Nearby Facilities (e.g., bus stop, store)

If the information is missing, return "unknown".

Example output 1:

Number Of People	Number Of Pets	Property Size	Space Type	Shared Spaces	Bathroom Type
Unknown	Unknown	Unknown	Room	['Kitchen', 'Bathroom']	Shared
2	unknown	unknown	apartment	['living room', 'kitchen']	private
1	2	Unknown	Room	['kitchen', 'bathroom', 'living room', 'laundry	Shared
Unknown	Unknown	Unknown	Room	['kitchen', 'living room']	Unknown
unknown	unknown	unknown	unknown	unknown	unknown
unknown	unknown	unknown	unknown	unknown	unknown
unknown	unknown	unknown	master bedroom	['kitchen', 'laundry room', 'cozy living room']	private

Input prompt final:

```
Schema:
 "number of people": "integer or 'unknown'",
 "bedrooms": "integer or 'unknown'",
 "pets allowed": "true, false, or 'unknown'",
 "property size": "'small', 'medium', 'large', or 'unknown'",
 "shared spaces": "comma-separated string or 'unknown'",
 "bathroom type": "'private', 'shared', or 'unknown'",
 "nearby amenities": "comma-separated string from [bus, store, recreation]
centre/pool, school and university] or 'unknown'",
 "unique features": "semicolon-separated string or 'unknown'"
}}
```

Example output final:

number_of_people	bedrooms	pets_allowed	property_size	shared_spaces	bathroom_type	nearby_amenities	unique_features
unknown	1	unknown	unknown	unknown	private	bus, unknown	parking
unknown	unknown	unknown	medium	unknown	unknown	bus, store, recreation centre/pool,	five minute walk to the beach;
unknown	unknown	unknown	unknown	living room	unknown	bus, store, recreation centre/pool,	none
unknown	unknown	unknown	unknown	unknown	unknown	unknown	suitable for students
unknown	1	unknown	unknown	living room, kitchen	unknown	bus, store, recreation centre/pool	fireplace
unknown	1	unknown	unknown	unknown	unknown	unknown	unknown
unknown	1	unknown	unknown	unknown	unknown	unknown	Queen bedroom
1	unknown	unknown	medium	kitchen	unknown	bus, store, recreation centre/pool	furnished room, electricity, W
unknown	unknown	unknown	unknown	unknown	private	unknown	unknown
unknown	1	unknown	medium	unknown	unknown	bus, school (UBCO)	spacious

Happipad

▶ Dashboard(Dash): Property Overview

- Property Status
- Geographical Distribution
- Property Characteristics

✓ Dashboard(Dash): Property Overview

Property Status

Location Distribution

■ Dashboard(Dash): Property Overview

Other Features

▶ Dashboard(Tableau): Property Overview

Dashboard(Dash): Renter Overview

- Basic Information card:
 Top City, Unique Renters,
 Average Budget
- Canada map showing renter distribution
- Budget Distribution
- Lease term distribution
- Filter dropdowns:Year, Province

Dashboard(Dash): Renter Overview

Conclusion

- Two dashboards (Property and Renter Overview):
 - Help Happipad monitor business
 - Help Happipad understand their clientele
- Modelling Framework
- Ollama with Mistral

Future works:

- Monitor model performance as dataset grows
- Build a streamlined process to continuously update the dashboard

Acknowledgement Happipad

MDS Capstone

Dr. Scott Fazackerley

Thank you!