Handwriting Assignment #1 Solution: Algorithm

1. Prove by induction that $2^n < n!$ for every integer n>4.

Solution) Base case: $2^4 = 16$, and 4! = 24, so $2^4 < 4!$.

Induction step: Let integer $k \ge 4$, and assume that $2^k \le k!$.

We wish to show that $2^{k+1} < (k + 1)!$.

We have $2^{k+1} = 2 \cdot 2^k < 2 \cdot k!$ by the induction hypothesis.

But then we also have 2 < (k + 1) since $k \ge 4$.

Therefore $2^{k+1} < 2 \cdot k! < (k+1) \cdot k! = (k+1)!$, as desired.

2. Decide whether each of the following statements is true or false, and prove that your conclusion is correct.

1)
$$n^2 = O(2^n)$$

True, since $n^2 < c (2^n)$ for all $n_0 > 2$ and c = 1, for example.

2)
$$2^{n+1} = O(2^n)$$

True, since $2^{n+1} = 2(2n)$, so we can pick for example n0 = 1 and c = 2

3)
$$2^{2n} = O(2^n)$$

False, since $2^{2n} = (2^n)^2$ and this cannot be bound from above by a constant.

3. Solve the following recurrence using the master method. Show your work.

$$T(n) = \Theta(1)$$
 $n = 1$
 $T(n/2) + \Theta(1)$ $n > 1$

Master method: a = 1, b = 2,

compare
$$f(n)$$
 n^{logba}
 $n^{logba} = n^0$

Therefore, we are in case 2 of the master theorem, and $T(n) = \Theta(logn)$

4. Solve the recurrence by recursion tree

$$T(n) = 1$$
 $n = 1$
 $T(n-1) + n$ $n > 1$

Solution) Levels Cost

$$n + n-1 + n-2 + ... + 2 + 1 =$$

$$\sum_{h=1}^{n} h = \frac{n(n+1)}{2} = \Theta(n^2)$$

5. Solve the following recurrence by the master method.

$$T(n) = T(\frac{9n}{10}) + n.$$

$$T(n) = T(\frac{9n}{10}) + n.$$

This is a divide-and-conquer recurrence with $a=1,\ b=10/9,\ f(n)=n,$ and $n^{\log_b a}=n^{\log_{10/9} 1}=n^0=1.$ This is case 3 of the master theorem, thus $T(n)\in\Theta(n).$

6. Trace the insertion sort as it sorts the following array into ascending order: $25\ 30\ 20\ 80\ 40\ 60$

Solution:

25 30 20 80 40 60 25 30 20 80 40 60 20 25 30 80 40 60 20 25 30 40 80 60 20 25 30 40 60 80

- 7. Trace the *mergesort* algorithm as it sorts the following array into ascending order. List the calls to *mergesort* and *merge* in the order in which they occur. 20 80 40 25 60 30
- (1) mergesort(0,5)
- (2) mergesort(0,2)
- (3) mergesort(0,1)
- (4) mergesort(0,0)
- (5) mergesort(1,1)
- (6) merge(0,0,1)
- (7) mergesort(2,2)
- (8) merge(0,1,2)
- (9) mergesort(3,5)
- (10) mergesort(3,4)
- (11) mergesort(3,3)
- (12) mergesort(4,4)