Computación neuronal y evolutiva: Prácticas

Regresión Lineal

APELLIDOS, NOMBRE: (mayúsculas)

1. Enunciado

Sea la nube de puntos conocida $\{(-1,0'11),(0,0'00),(1,0'88),(2,0'11),(3,0'33)\}$. Ajuste los datos mediante una función de la forma $f(x) = a_1 + a_2x + a_3x^2$. A continuación calcule el error $E_i = f(x_i) - y_i$ cometido en cada uno de los puntos de la nube, el error cuadrático global E cometido en el ajuste y el error cuadrático global medio E_m . Por último, utilice la función f de ajuste para obtener una salida aproximada para la nueva entrada x = 2,5.

$$f(x) = a_1 + a_2 x + a_3 x^2$$
 $s = n =$
 $f_1(x) =$
 $f_2(x) =$
 $f_3(x) =$

X	у	f_1	f_2	f_3	f_1f_1	f_1f_2	f_1f_3	f_2f_2	f_2f_3	f_3f_3	$\int f_1 y$	f_2y	f_3y
####	####	####	####	####									

$$B = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \quad B^t \underline{y} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \quad \Rightarrow \quad \underline{a} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

f(x) =		
$f(x_1) =$	$E_1 =$	E =
$f(x_2) =$	$E_2 =$	$E_m =$
$f(x_3) =$	$E_3 =$	
$f(x_4) =$	$E_4 =$	f(2'5) =
$f(x_5) =$	$E_5 =$	

Nube de puntos y gráfica de la función con el error cometido en cada punto:

2. Enunciado

Aproximar la nube de puntos $\{(1,1,1.1),(2,2,3.9),(3,3,8.7\}$ mediante la función $g(x)=a_0+a_1x$ utilizando

- 1. el método desarrollado en la sección anterior
- 2. una neurona artificial lineal entrenada

Para el entrenamiento, seguir las instrucciones

- 1. iniciar de forma aleatoria los pesos
- 2. entrenar la neurona mediante la regla

$$w_i(n+1) = w_i(n) + \eta(d^{(k)} - g(x))x_i^{(k)}, \qquad (2.1)$$

fijando un número máximo de iteraciones y un error global aceptable.

- 3. imprimir los coeficientes de la regresión lineal
- 4. graficar la evolución del error