Primeiro Relatório de Medidas Eletromagneticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

Introdução

Т		ouuçao			
	1.1	Analise preliminar			
2	Med	dicoes no Laboratorio			
_	11100	neces no Euseratorie			
3	Res	ultados preliminares			
	3.1	Montando o circuito			
	3.2	Valores esperados			
1	Ma	dicoes no laboratorio			
4					
	4.1	Valores experimentais			
5	Cor	aclusões			
J	Conclusões				

1 Introdução

Neste relatório, vamos discutir o comportamento de um multimetro, e como ele induz erros para certas bandas de frequencia e o por que.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/labcircuitos

1.1 Analise preliminar

Analisaremos a maneira que o multimetro mede tensoes.

Especificamente mediremos uma tensao conhecida de $5V_{pp}$, e analisaremos o erro absoluto da medicao em funcao da frequencia provinda do gerador de sinais.

Faremos isto para dois tipos de onda de entrada, senoidal e serra.

Resultados esperados

Onda senoidal

Para a onda senoidal esperamos que o erro seja mais alto para frequencias baixas, e para frequencais altas.

Isto ocorre porque o multimetro tem uma banda de confianca, quando nos afastamos desta banda de confianca, perdemos a certeza nas medidas.

Onda dente de serra

Neste caso temos que lembrar que podemos decompor a onda em senoidais por serie de Fourier. E como vimos anteriormente as decomposicoes que tiverem frequencia alta ou baixa serao problematicas.

Mas esperamos que os erros sejam mais distribuidos ao longo da banda inteira que testarmos.

2 Medicoes no Laboratorio

Vamos utilizar o osciloscopio para medir uma tensao de saida conhecida do osciloscopio, esta de $5V_{pp}$. E registraremos o erro absoluto e relativo entre nossas medidas e a esperada de $5V_{pp}$.

Freq (Hz)	Erro (V)	Erro	
10	0.1818	3.58	
15	0.1267	2.50	
60	0.0930	1.83	
120	0.0916	1.80	
300	0.0913	1.80	
600	0.0924	1.82	
1000	0.0941	1.85	
10000	0.1139	2.25	
20000	0.1388	2.74	
30000	0.1219	2.40	
40000	0.1114	2.19	
50000	0.0766	1.51	
60000	0.0373	0.73	
70000	0.0050	0.10	
80000	0.0162	0.32	
90000	0.0247	0.49	
100000	0.0213	0.42	
110000	0.0068	0.13	
120000	0.0172	0.34	
130000	0.0497	0.98	
140000	0.0893	1.76	
150000	0.1349	2.66	
160000	0.1858	3.66	
170000	0.2401	4.73	
180000	0.2995	5.90	
190000	0.3606	7.10	
200000	0.4253	8.38	
250000	0.7718	15.21	
300000	1.1342	22.35	
330000	1.1342	26.11	

Primeiro vale lembrar que a resistência de Thevenin e a de Norton são iguais. Logo obtendo uma também obteremos a outra.

Neste caso, resolvendo o sistema vamos obter que esta resistência é igual a R_c

$$\frac{V_a - V_1}{R_1} + \frac{V_a - V_0}{R_3} + \frac{V_a - V_2}{R_2} = 0$$

$$V_0 = -A * V_a$$
(1)

Que nos da:

$$V_0 = -\frac{AR_1R_3V_2 + AR_2R_3V_1}{(R_2 + R_1)R_3 + (A+1)R_1R_2}$$
 (2)

E para o caso específico do amp op ideal, fazemos A tender a infinito e simplesmente temos:

$$V_{0} = -\frac{R_{1}R_{3}V_{2} + R_{2}R_{3}V_{1}}{R_{1}R_{2}}$$

$$V_{0} = -\frac{R_{3}}{R_{1}}V_{1} - \frac{R_{3}}{R_{2}}V_{2}$$
(3)

Daí podemos juntar (1) com (3) e obter:

$$A_{v_1} = -\frac{R_3}{R_1}$$

$$A_{v_2} = -\frac{R_3}{R_2}$$
(4)

Também é importante notar que as resistências vistas de V_1 e V_2 são as seguintes:

$$I_n = \frac{V_1 - V_a}{R_n} \to R_{im_n} = \frac{V_n}{I_n} = R_n * \frac{V_n}{V_n - V_a} = R_n$$
(5)

3 Resultados preliminares

Aqui vamos fazer uma análise utilizando a teoria demonstrada acima para saber como montar o circuito para termos um ganho $A_1 = -2$ e $A_2 = -4$

3.1 Montando o circuito

Nos termos da equação (4) como os ganhos se comportam a partir das resistências do circuito. Então, basta resolvermos este sistema utilizando valores de resistores comerciais.

$$A_{v_1} = -\frac{R_3}{R_1} = -2$$

$$A_{v_2} = -\frac{R_3}{R_2} = -4$$
(6)

Podemos então escolher resistores com aproximadamente os seguintes valores:

$$R_1 \approx 100k\Omega$$
 $R_2 \approx 47k\Omega$ (7)
 $R_3 \approx 220k\Omega$

3.2 Valores esperados

Vamos analisar as seguintes combinações de tensões em V_1 e V_2 : -1, 2; -0, 6; 0; 0, 6; 1, 2

A análise será feita em C# e esta em: https://github.com/Shapis/ufpe_ee/blob/main/4thsemester/labcircuitos/Relatorio3/Program.cs

Pelo método dos mínimos quadrados. O que fiz foi o seguinte: Fixei o V_2 em um valor específico, e variei o V_1 para cada valor V_0 obtido.

Isto me deu cinco retas aproximadas pelo método dos mínimos quadrados.

Com as cinco equações em mãos fiz o mesmo passo que utilizei para conseguir o ganho real não aproximado por este método de A_1 e A_2 e obtive os mesmos ganhos que havia obtido anteriormente. $A_1 = -4.7$ e $A_2-2.2$

5 Conclusões

Nesta prática vimos como controlar o de $V_2 \downarrow /V_1 \rightarrow$ -1.2V-0.6V0.0V0.6V1.2 Vensão em um circuito a partir de uma mon--1.2V8.26 6.94 5.62 4.30 -0.6V5.45 4.13 2.811.49 0. for operacional. 0.0V2.64 1.32 0 -1.32-2.64-5.45Também 0.6V-2.81-4.13-0.17-1.49aprendemos \mathbf{a} utilizar 1.2V-2.98-4.30-5.62-6.94-8.26 tenciômetros para o controle de tensões de entrada em um circuito.

4 Medicoes no laboratorio

Nesta etapa nós montamos o circuito como indicado na secao 1.1, com única diferença que nós alimentamos o Amp Op com uma diferença de potencial de 20V já que ele é um elemento ativo.

Foto do circuito abaixo:

4.1 Valores experimentais

$V_2 \downarrow /V_1 \rightarrow$	-1.2V	-0.6V	0.0V	0.6V	1.2V
-1.2V	8.37	7.03	5.72	4.31	3.01
-0.6V	5.48	4.18	2.85	1.45	0.23
0.0V	2.67	1.36	0.04	-1.31	-2.62
0.6V	-0.21	-1.54	-2.84	-4.18	-5.53
1.2V	-3.03	-4.36	-5.67	-7	-8.32

Resolvendo este sistema linear da seguinte maneira:

$$V_1^n A_1^n + V_2^n A_2^n = V_0^n (8)$$

Temos que o ganho A_1 real é -2.2 e o ganho A_2 real é -4.7