2022 CCF 非专业级软件能力认证模拟赛 - 入 门组

2022/8/6

(请选手务必仔细阅读本页内容)

题目名称	时间	玩具	巨炮的重生	取石子游戏
题目类型	传统型	传统型	传统型	传统型
英文题目名称	time	toy	pao	game
输入文件名	time.in	toy.in	pao.in	game.in
输出文件名	time.out	toy.out	pao.out	game.out
输出文件名	1s	1s	1s	1s
内存上限	512M	512M	512M	512M
测试点数目	10	30	10	10
每个测试点分值	10	3-4	10	10
附加样例文件	无	有	有	有
结果比较方式	全文比较	全文比较	全文比较	全文比较

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回类型必须是 int, 程序正常结束时的返回值必须是 0。

1 时间

(time.cpp/c)

【题目描述】

2022 年 CSP-J/S 比赛马上就要来了,CSP-J 的比赛时长是 3 小时 30 分钟。 假设今年 CCF 神奇的把比赛开始时间设在了 h 小时 m 分开始,请你计算比赛的结束时间。

没错,本题中 CCF 有可能在凌晨或者深更半夜开始比赛。

【输入输出格式】

【输入格式】

从文件 time.in 中读入数据。

输入共一行共,一个形如 hh:mm 的字符串,表示比赛开始的时间。 位数不足将填补 0。

【输出格式】

输出到文件 time.out 中。

共一行一个形如 hh:mm 字符串,表示比赛结束的时间。位数不足请填补 0。

【样例】

【样例 1 输入】

00:00

【样例 1 输出】

03:00

【样例 2 输入】

00:30

【样例 2 输出】

04:00

【样例 3 输入】

20:30

【样例 3 输出】

00:00

【数据范围与提示】

存在独立的 30% 的测试点,满足 h < 20, m < 30。 存在独立的 30% 的测试点,满足 h < 20。 存在独立的 30% 的测试点,满足 m < 30。 对于全部的数据,满足 $0 \le h < 20, 0 \le m < 60$ 注:独立指测试点集合互不相交。

2 玩具

(toy.cpp/c/pas)

【题目描述】

藤藤和陈老师各有一个正多边形玩具。

藤藤的多边形玩具是正 C 边形, 其中边长为 A, 陈老师的多边形玩具是正 D 边形, 其中边长为 B。藤藤和陈老师将两个多边形玩具摆放在一起, 两多边形玩具并不重叠, 并且有至少一个公共顶点和一条公共边。

藤藤准备旋转他自己的多边形玩具,因此沿陈老师的多边形玩具按照顺时针方向旋转自己 的多边形玩具。

藤藤旋转的中心点是两个玩具公共边上一点,且旋转过程中两个多边形玩具不重叠。藤藤想知道,在旋转多少次过后,藤藤的多边形玩具会回到原位置

【输入输出格式】

【输入格式】

输入文件 toy.in 输入仅一行,四个整数为 A, C, B, D 如题目描述

【输出格式】

输出文件 toy.out 输出仅一行为题目要求的答案

【样例】

【样例 1 输入】

2 4 3 4

【样例 1 输出】

8

前两次操作如图所示:

【样例 2 输入】

3 4 4 4

【样例 2 输出】

24

【数据范围与提示】

对于前 10% 的测试数据,保证 $1 \le C, D \le 10, 1 \le A, B \le 100$ 对于 10% 的数据, $C = D = 4, A, B \le 10$ 对于另外 30% 的数据, $C, D \le 1000$, $A \le B \le 1000$ 对于另外 30% 的数据,B 是 A 的倍数;对于 100% 的数据, $A \le B \le 10^6, 3 \le c, D \le 10^6$

3 巨炮的重生

(pao.cpp/c/pas)

【题目描述】

传说,在 2147483647 年前,有一个可以发出震碎天地的 AK IOI 的轰鸣的巨炮。巨炮过处 无题不切。但由于他过于强大,被一群大佬联合围攻致死,尸体被砍成了 n 个炮。这 n 个炮无时无刻没在想着重回巅峰时期。

2147483647 年过去了,这 n 个炮终于等到了时机。他们围成一圈,决定重新合成巨炮。每个炮都有一个 fAKe 值,**有正有负**。

每次他们可以进行如下操作:

- **双炮合一**: 选择**相邻的**两个炮,把他们融合成一个大炮,融合的时候,这两个炮会暴躁,因为他们的自我意识将会永远消失在这个世界上。假设你选择的两个炮的 fAKe 值分别为 A,B,则产生的大炮吸收了他们的怒火,fAKe 值是 A+B。
- 三**炮合**一:选择**相邻的**三个炮,把他们融合成一个巨炮,融合的时候,两侧的炮会非常暴躁,因为他们的自我意识将会永远消失在这个世界上;但中间的炮会满足,因为很快两侧的炮就会变成自己的一部分。假设你选择的三个炮的 fAKe 值分别为 A,B,C,则产生的巨炮吸收了他们的怒火,fAKe 值为 $A\times C-B$ 。

求最终融合成一个巨炮的最大 fAKe 值

【输入输出格式】

【输入格式】

从文件 pao.in 中读入数据

第一行一个整数 T, 以下 T 组数据:

每组数据第一行一个整数 n。

第二行 n 个整数, 顺时针给出每个炮的 fAKe 值。

【输出格式】

输出到文件 pao.out

每组数据一行一个整数,最终获得的巨炮的 fAKe 值。

【样例】

【样例 1 输入】

6

1

9

3

```
3 4 5
```

5

3 2 7 6 8

7

1 0 4 8 5 7 6

8

1 9 2 6 0 8 1 7

9

9 9 8 2 4 4 3 5 3

【样例 1 输出】

9

17

148

583

4022

6000

- 第一组: 9 = 9
- 第二组: $4 \times 5 3 = 17$
- 第三组: $3 \times 7 2 = 19, 19 \times 8 6 = 148$
- 第四组: $6+1=7, 4+8=12, 7\times 12-0=84, 84\times 7-5=583$
- 第五组: 共建和谐社会。
- 第六组: 略

【数据范围与提示】

所有测试点满足:

- $T \le 50$
- $n \le 35$
- 初始时 |fAKe 值 | ≤ 10

对于 30% 的数据 $n \le 5$

对于 50% 的数据 $n \le 10$

对于 80% 的数据 $n \le 25$

对于 100% 的数据 $n \le 35$

4 取石子游戏

(game.cpp/c/pas)

【题目描述】

陈老师和藤藤在玩取石子游戏。

一共有 n 堆石子, 每堆石子 a_i 个。

陈老师每次可以从其中一堆中取偶数颗,藤藤每次可以从其中一堆中取奇数颗。每人每次至少取一颗。

直到其中一个人无法操作就输了。

陈老师先手, 陈老师找你算算, 他先手有无必胜策略。

如果陈老师先手必胜,则输出 YES,否则输出 NO

【输入输出格式】

【输入格式】

从文件 game.in 中读入数据

多组数据。对于每组数据,第一行输入一个正整数 n, 第二行输入 n 个正整数,第 i 个数 表示 a_i

【输出格式】

输出到文件 game.out 中 对于每组数据,每行输出一个字符串 YES 或 NO。

【样例】

【样例 1 输入】

2

2 1

【样例 1 输出】

NO

【样例 2 输入】

1

6

【样例 2 输出】

YES

【数据范围与提示】

对于 20% 的数据,数据组数为 1 且 n=1对于另外 20% 的数据,n=1对于另外 20% 的数据,石子数都为 1; 对于 100% 的数据 n 的和小于 $n \leq 10^6$,石子数小于 10000000000