作者: 张陈成

学号: 023071910029

K-理论笔记

Banach 空间范畴

1 Banach 空间的范畴化刻画

定义 1 (Banach 空间). 给定完备域 F, Banach 空间即完备赋范线性空间. 以下假设 F 给定.

定义 2 (范畴 Ban_{∞} 与 Ban_{1}). 定义范畴 Ban_{∞} 与 Ban_{1} 中对象均为 Banach 空间. 其中 Ban_{∞} 中态射为连续 线性映射 (范数有限); Ban_{1} 中态射为压缩线性映射 (范数不超过 1).

命题 1. Ban_{∞} 为加法范畴, 但非 Abel 范畴. Ban_{∞} 亦然.

证明. 下仅讨论 Ban_{∞} . 若 Ban_{∞} 为 Abel 范畴, 则任意 Ban_{∞} 中态射 $X \xrightarrow{f} Y$ 补全为正合列

$$0 \to \ker(f) \to X \to Y \to \operatorname{coker}(f) \to 0.$$

此处 $\ker(f) = f^{-1}\{0\}$ 为 Banach 空间 X 的闭子空间, 从而为 Banach 空间; 但 coker 未必完备, 例如

$$f: \ell^1(\mathbb{C}) \to \ell^1(\mathbb{C}), \quad \{x_n\}_{n \ge 1} \mapsto \{2^{-n} \cdot x_n\}$$

是 Banach 空间中非满的稠密态射, 从而 $\operatorname{im}(f)$ 不完备. 而 Abel 范畴中 $\operatorname{im}(f) \simeq \ker(\operatorname{coker}(f))$, 因此 $\operatorname{coker}(f)$ 必不为 Banach 空间.