Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira

Equações lineares módulo n e o teorema chinês dos restos

1 Equações Lineares Módulo m

Se mdc(a, m) = 1, como a é invertível módulo m, a equação

$$ax \equiv b \pmod{m}$$
,

tem solução única módulo m, dada por $x\equiv a^{\varphi(m)-1}b\pmod{m}$ (utilizando o teorema de Euler-Fermat para encontrar o inverso de $\overline{a}\in\mathbb{Z}/(m)$). Assim, todas as soluções da equação acima são da forma $x=a^{\varphi(m)-1}b+km$ onde $k\in\mathbb{Z}$. No caso geral, se $\mathrm{mdc}(a,m)=d>1$ temos que

$$ax \equiv b \pmod{m} \implies ax \equiv b \pmod{d} \iff b \equiv 0 \pmod{d}$$
.

Logo uma condição necessária para que a congruência linear $ax \equiv b \pmod{m}$ tenha solução é que $d \mid b$. Esta condição é também suficiente, já que escrevendo a = da', b = db' e m = dm', temos que

$$ax \equiv b \pmod{m} \iff a'x \equiv b' \pmod{m'}.$$

Como mdc(a',m')=1, há uma única solução $(a')^{\varphi(m')-1}b'$ módulo m', isto é, há d soluções distintas módulo m, a saber $x\equiv (a')^{\varphi(m')-1}b'+km'\pmod{m}$ com $0\leq k< d$. Note ainda que como resolver $ax\equiv b\pmod{m}$ é equivalente a resolver a equação diofantina linear ax+my=b, poderíamos também ter utilizado o teorema de Bachet-Bézout e o algoritmo de Euclides para encontrar as soluções desta congruência linear como no exemplo \ref{mod} ? Resumimos esta discussão na seguinte

Proposição 1. A congruência linear

$$ax \equiv b \pmod{m}$$

admite solução se, e somente se, $mdc(a, m) \mid b$. Neste caso, há exatamente mdc(a, m) soluções distintas módulo m.

Agora queremos encontrar condições para que um sistema de congruências lineares tenha solução. O seguinte teorema nos garante a existência de tais soluções.

Teorema 2 (Teorema Chinês dos Restos). Se b_1, b_2, \ldots, b_k são inteiros quaisquer $e \ a_1, a_2, \ldots, a_k$ são primos relativos dois a dois, o sistema de equações

$$x \equiv b_1 \pmod{a_1}$$

 $x \equiv b_2 \pmod{a_2}$
 \vdots
 $x \equiv b_k \pmod{a_k}$

admite solução, que é única módulo $A = a_1 a_2 \dots a_k$.

Demonstração. Daremos duas provas do teorema chinês dos restos. Para a primeira, consideremos os números $M_i = \frac{A}{a_i}$. Como $\mathrm{mdc}(a_i, M_i) = 1$, logo existe X_i tal que $M_i X_i \equiv 1 \pmod{a_i}$. Note que se $j \neq i$ então M_j é múltiplo de a_i e portanto $M_j X_j \equiv 0 \pmod{a_i}$. Assim, temos que

$$x_0 = M_1 X_1 b_1 + M_2 X_2 b_2 + \dots + M_k X_k b_k$$

é solução do sistema de equações, pois $x_0 \equiv M_i X_i b_i \equiv b_i \pmod{a_i}$. Além disso, se x_1 é outra solução, então $x_0 \equiv x_1 \pmod{a_i} \iff a_i \mid x_0 - x_1$ para todo a_i , e como os a_i 's são dois a dois primos, temos que $A \mid x_0 - x_1 \iff x_0 \equiv x_1 \pmod{A}$, mostrando a unicidade módulo A.

Para a segunda prova, considere o mapa natural

$$f: \mathbb{Z}/(A) \to \mathbb{Z}/(a_1) \times \mathbb{Z}/(a_2) \times \cdots \times \mathbb{Z}/(a_k)$$

 $b \mod A \mapsto (b \mod a_1, b \mod a_2, \dots, b \mod a_k).$

Note que este mapa está bem definido, isto é, o valor de $f(b \bmod A)$ independe da escolha do representante da classe de $b \bmod A$, pois quaisquer dois representantes diferem de um múltiplo de A, que tem imagem $(0 \bmod a_1, \ldots, 0 \bmod a_k)$ no produto $\mathbb{Z}/(a_1) \times \cdots \times \mathbb{Z}/(a_k)$. Observemos agora que o teorema chinês dos restos é equivalente a mostrar que f é uma bijeção: o fato de f ser sobrejetor corresponde à existência da solução do sistema, enquanto que o fato de f ser injetor corresponde à unicidade módulo f. Como o domínio e o contradomínio de f têm mesmo tamanho (ambos têm f elementos), para mostrar que f é uma bijeção basta mostrarmos que f é injetora. Suponha que f (f mod f) = f (f mod f), então f0 para todo f1, e como na primeira demonstração temos que isto implica f2 (mod f3), o que encerra a prova.

Observação 3. Como $\operatorname{mdc}(b, a_1 a_2 ... a_k) = 1 \iff \operatorname{mdc}(b, a_j) = 1, \forall j \leq k, \ a$ bijeção f definida na segunda prova do teorema anterior satisfaz $f((\mathbb{Z}/(A))^{\times}) = (\mathbb{Z}/(a_1))^{\times} \times (\mathbb{Z}/(a_2))^{\times} \times \cdots \times (\mathbb{Z}/(a_k))^{\times}.$

Em particular, isso nos dá uma nova prova de que $\varphi(a_1a_2...a_k) = \varphi(a_1)\varphi(a_2)...\varphi(a_k)$ sempre que $\operatorname{mdc}(a_i, a_j) = 1, \forall i \neq j$.

Por exemplo, para $k=2, a_1=3$ e $a_2=5$, temos a seguinte tabela, que mostra, para cada i e j com $0 \le i < 3$ e $0 \le j < 5$, a única solução x com $0 \le x < 3 \cdot 5 = 15$ tal que $x \equiv i \pmod{3}$ e $x \equiv j \pmod{5}$:

	$0 \mod 5$	$1 \bmod 5$	$2 \bmod 5$	$3 \bmod 5$	$4\bmod 5$
$0 \mod 3$	0	6	12	3	9
$1 \bmod 3$	10	1	7	13	4
$2 \mod 3$	5	11	2	8	14

Vejamos algumas aplicações.

Exemplo 4. Um inteiro é livre de quadrados se ele não é divisível pelo quadrado de nenhum número inteiro maior do que 1. Demonstrar que existem intervalos arbitrariamente grandes de inteiros consecutivos, nenhum dos quais é livre de quadrados.

SOLUÇÃO: Seja n um número natural qualquer. Sejam p_1, \ldots, p_n primos distintos. O teorema chinês dos restos nos garante que o sistema

$$x \equiv -1 \pmod{p_1^2}$$

$$x \equiv -2 \pmod{p_2^2}$$

$$\vdots$$

$$x \equiv -n \pmod{p_n^2}$$

tem solução. Se x_0 é uma solução positiva do sistema, então cada um dos números $x_0+1, x_0+2, \ldots, x_0+n$ é divisível pelo quadrado de um inteiro maior do que 1, logo nenhum deles é livre de quadrados.

Exemplo 5. Seja P(x) um polinômio não constante com coeficientes inteiros. Demonstrar que para todo inteiro n, existe um inteiro i tal que

$$P(i), P(i+1), P(i+2), \dots, P(i+n)$$

são números compostos.

Solução: Demonstraremos primeiro o seguinte

Lema 6. Seja P(x) um polinômio não constante com coeficientes inteiros. Para todo par de inteiros k, i, tem-se que $P(i) \mid P(k P(i) + i)$.

Demonstração. Dado que $(kP(i)+i)^n \equiv i^n \pmod{P(i)}$ para todo n inteiro não negativo, é fácil ver que $P(kP(i)+i) \equiv P(i) \equiv 0 \pmod{P(i)}$.

Suponhamos por contradição que a sequência $P(i), P(i+1), \ldots, P(i+n)$ contém um número primo para cada i. Então a sequência $\{P(i)\}_{i\geq 1}$ assume infinitos valores primos. Consideremos os n+1 primos distintos $P(i_0), P(i_1), \ldots, P(i_n)$.

Pelo teorema chinês dos restos segue que existem infinitas soluções x do sistema de equações

$$x \equiv i_0 \qquad \pmod{P(i_0)}$$

$$x \equiv i_1 - 1 \pmod{P(i_1)}$$

$$x \equiv i_2 - 2 \pmod{P(i_2)}$$

$$\vdots$$

$$x \equiv i_n - n \pmod{P(i_n)}$$

onde, se x_0 é uma solução, então $x = x_0 + k(P(i_0) \cdots P(i_n))$ também é solução para todo $k \geq 0$. Assim, pelo lema anterior, podemos dizer que $P(x), P(x+1), \ldots, P(x+n)$ são números compostos quando k é suficientemente grande, múltiplos respectivamente de $P(i_0), P(i_1), \ldots, P(i_n)$.

Exemplo 7. Uma potência não trivial é um número da forma m^k , onde m, k são inteiros maiores do que ou iguais a 2. Dado $n \in \mathbb{N}$, prove que existe um conjunto $A \subset \mathbb{N}$ com n elementos tal que para todo subconjunto $B \subset A$ não vazio, $\sum_{x \in B} x$ é uma potência não trivial. Em outras palavras, se $A = \{x_1, x_2, \ldots, x_n\}$ então todas as somas $x_1, x_2, \ldots, x_n, x_1 + x_2, x_1 + x_3, \ldots, x_{n-1} + x_n, \ldots, x_1 + x_2 + \cdots + x_n$ são potências não triviais.

Solução: Vamos provar a existência de um tal conjunto por indução em n. Para $n=1,\ A=\{4\}$ é solução e, para $n=2,\ A=\{9,16\}$ é solução. Suponha agora que $A=\{x_1,\ldots,x_n\}$ é um conjunto com n elementos e para todo $B\subset A$, $B\neq\emptyset,\ \sum_{x\in B}x=m_B^{k_B}$. Vamos mostrar que existe $c\in\mathbb{N}$ tal que o conjunto $\tilde{A}=\{cx_1,cx_2,\ldots,cx_n,c\}$ satisfaz o enunciado. Seja $\lambda=\mathrm{mmc}\{k_B\mid B\subset A,B\neq\emptyset\}$, o mínimo múltiplo comum de todos os expoentes k_B . Para cada $B\subset A,B\neq\emptyset$, associamos um número primo $p_B>\lambda$, de forma que $B_1\neq B_2$ implica $p_{B_1}\neq p_{B_2}$. Pelo teorema chinês dos restos existe um natural r_B com

$$r_B \equiv 0 \pmod{p_X}$$
 para todo subconjunto $X \subset A, X \neq B$
 $\lambda \cdot r_B \equiv -1 \pmod{p_B}$.

 $(\lambda \text{ \'e invert\'ivel m\'odulo } p_B)$. Tomemos

$$c = \prod_{\substack{X \subset A \\ X \neq \emptyset}} (1 + m_X^{k_X})^{\lambda r_X}$$

e vamos mostrar que $\tilde{A} = \{cx_1, cx_2, \dots, cx_n, c\}$ continua a satisfazer as condições do enunciado.

Dado $B' \subset \{cx_1, cx_2, \dots, cx_n\}$, temos que $B' = \{cx \mid x \in B\}$ para algum $B \subset A$. Como c é uma potência λ -ésima, c também é uma potência k_B -ésima, portanto, $\sum_{x \in B'} x = cm_B^{k_B}$ será uma potência k_B -ésima para todo $B' \neq \emptyset$. Além disso, para subconjuntos de \tilde{A} da forma $B' \cup \{c\}$, temos

$$\sum_{x \in B' \cup \{c\}} x = c \cdot (1 + m_B^{k_B}) = \left(\prod_{\substack{X \subset A \\ X \neq \emptyset, B}} (1 + m_X^{k_X})^{\lambda r_X}\right) (1 + m_B^{k_B})^{\lambda r_B + 1},$$

que é uma potência p_B -ésima, pois $\lambda r_B + 1$ e r_X $(X \neq B)$ são múltiplos de p_B .

Problemas Propostos

Problema 8. Resolver as equações lineares

- (a) $7x \equiv 12 \pmod{127}$
- (b) $12x \equiv 5 \pmod{122}$
- (c) $40x \equiv 64 \pmod{256}$

Problema 9. Resolver o sistema de congruências lineares

$$x \equiv 0 \pmod{7}$$
$$x \equiv 1 \pmod{12}$$
$$x \equiv -5 \pmod{17}$$

Problema 10. Determine um valor de s tal que $1024s \equiv 1 \pmod{2011}$ e calcule o resto da divisão de 2^{2000} por 2011.

Problema 11. Um inteiro positivo n é chamado de auto-replicante se os últimos dígitos de n^2 formam o número n. Por exemplo, 25 é auto-replicante pois $25^2 = 625$. Determine todos os números auto-replicantes com exatamente 4 dígitos.

Problema 12. Sejam $a, n \in \mathbb{N}_{>0}$ e considere a sequência (x_k) definida por $x_1 = a, x_{k+1} = a^{x_k}$ para todo $k \in \mathbb{N}$. Demonstrar que existe $N \in \mathbb{N}$ tal que $x_{k+1} \equiv x_k \pmod{n}$ para todo $k \geq N$.

Problema 13. Demonstrar que o sistema de equações

$$x \equiv b_1 \pmod{a_1}$$

 $x \equiv b_2 \pmod{a_2}$
 \vdots
 $x \equiv b_k \pmod{a_k}$

tem solução se, e só se, para todo i e j, $mdc(a_i, a_j) \mid (b_i - b_j)$. (No caso particular em que $mdc(a_i, a_j) = 1$, o problema se reduz ao teorema chinês dos restos).

Problema 14. Demonstrar que, para k e n números naturais, é possível encontrar k números consecutivos, cada um dos quais tem ao menos n divisores primos diferentes.

Problema 15. Demonstrar que se a, b e c são três inteiros diferentes, então existem infinitos valores de n para os quais a+n, b+n e c+n são primos relativos.

Problema 16. Demonstrar que para todo inteiro positivo m e todo número par 2k, este último pode ser escrito como a diferença de dois inteiros positivos, cada um dos quais é primo relativo com m.

Problema 17. Demonstrar que existem progressões aritméticas de comprimento arbitrário formadas por inteiros positivos tais que cada termo é a potência de um inteiro positivo com expoente maior do que 1.

Dicas e Soluções

Em breve

Referências

[1] F. E. Brochero Martinez, C. G. Moreira, N. C. Saldanha, E. Tengan - Teoria dos Números - um passeio com primos e outros números familiares pelo mundo inteiro, Projeto Euclides, IMPA, 2010.