data visualization

skimming deep waters

The Visual Display of Quantitative Information

EDWARD R. TUFTE

Show the Data

Minimize Distraction

Minimize Distraction

Make Big Data Coherent

Reveal Several Levels of Detail

Be Closely Integrated with Statistics

The Data:Ink Ratio

- 1. Above all else show data.
- 2. Maximize the data-ink ratio.
- 3. Erase non-data-ink.
- 4. Erase redundant data-ink.
- 5. Revise and edit

Minimizing Ink

Minimizing Ink

Extra Ink in Boxes & Lines

A Cleaner Boxplot

Pure Tufte Boxplots

Basic Plotting in R

Visualizing a Lot of the Data

pairs(plankton[, 14:18])

A Basic Bivariate Plot

plot(Copepod.total ~
 diatom, data = plankton)

A Basic Bivariate Plot

plot(plankton\$diatom,
 plankton\$Copepod.total)

Adding Axis Labels

```
plot(Copepod.total ~ diatom, data = plankton, xlab = "Diatom Abundance", & ded ylab = "Copepod Abundnace", & xlim = c(0, 20))
```


Adding Axis Limits

```
plot(Copepod.total ~ diatom, data = plankton, xlab = "Diatom Abundance", & ded ylab = "Copepod Abundnace", & xlim = c(0, 20))
```


More Point Shapes

```
plot(Copepod.total ~
    diatom, data = plankton,
    xlab = "Diatom Abundance",
    ylab = "Copepod Abundnace",
    xlim = c(0, 20),
    pch = 19)
```


More Point Shapes

cex for Size

```
plot(Copepod.total ~

diatom, data = plankton,

xlab = "Diatom Abundance", pure ylab = "Copepod Abundance", ylab = "Copepod Abundance", pure ylab = c(0, 20),

pch = 19, cex = 4)
```

See also cex.axis, cex.lab, and more.

Add a Little Color

```
plot(Copepod.total ~ diatom, data = plankton, xlab = "Diatom Abundance", post ylab = "Copepod Abundance" xlim = c(0, 20), pch = 19, col = Month)
```


Panels with Par and Mfrow

par(mfrow = c(1, 2))

Lots of Other Functions that For Plots

?matplot
?lines
?axis
?title
?legend
?points
?segments

So....Explore! Plot with the data, try different par settings, or use some of these functions!

ggplot2

or how I learned to stop worring and love http://had.co.nz/ggplot2 & http://stackoverflow.com/

Start with nothing...

There is no layout specified here for the data.

Add a Layer

```
p <- p + geom_point()
p</pre>
```


Format with Theme

```
p <- p + ylab("Total Copepod Abundance") + theme_bw()
p</pre>
```


Map a Variable to Color

Set Your Own Scale

```
p2 <- p2 + scale_color_gradient(low = "blue", high = "red")
p2</pre>
```


And Maybe Add Another Layer

```
p2 <- p2 + geom_line(aes(group = Year))
p2</pre>
```


Facet for Easier Visualization

```
p2 <- p2 + facet_wrap(~Year) + scale_x_continuous(breaks = c(3,
      6, 9, 12))
p2</pre>
```


This All Can Lead to Interesting Visualizations

```
qplot(factor(Year), diatom, geom = "bar", fill = factor(Month),
  data = plankton) + theme_bw() + xlab("Year") +
  ylab("Diatom Abundance\n") + scale_fill_discrete(name = "Month") +
  scale_x_discrete(breaks = seq(1974, 1997, 5))
```


Lots of Layers to Add to ggplot2 Objects

```
?theme
?labs
?xlim
?facet_grid
?scale_x_log10
?geom_histogram
?geom_ribbon
?geom_linerange
?geom_freqpoly
```

So....Explore!
Also, see http://had.co.nz/ggplot2 for some examples