Introduction to Structural Causal Models

Daniel Saggau

5/11/2021

Motivation

@marketoonist.com

Introduction

Table 1: (Pearl 2012)

Association-based Concepts	Causal Concepts
Correlation	Randomization
Regression	Confounding
Conditional Independence	Disturbance
Likelihood	Error Terms
Odds Ratio	Structural Coefficients
Propensity Score	Spurious Correlation

Table of Contents

- Foundations of SCMs
 - Assumptions
 - Comparing Causal Tools
- Pearl's Causal Hierachy
 - Prediction
 - Intervention
 - Counterfactuals
 - Implications
- Graphical Models
 - Features
 - Implications
- Causality and Time

Foundations of SCMs (1)

- System of equations with functions
- Assignment equation ':=' rather than regular equation '='
- Nonparametric SEM
- This algebraic equation would imply that B = A because the order has no concrete meaning in algebraic equations (symmetry)
- The initial ' =' sign was replaced with the ':=' which is asymmetric (Pearl, 2009) and called an assignment.
- As mentioned, we define variables as functions e.g. $A = f_A(B, U_A)$.

Error:* Regression: Omittable outside factor SCM/SEM; Latent influential factor that is pivotal for the model specification but not observable

Consists of graph and assignments: Baseline:

$$C := N_c$$
$$E := f_E(C, N_E)$$

Assumptions in Causality

Independence:

- noise terms independent
- mechanisms independent (other variables invariant)(local changes)
- change in distribution stems from change in mechanism
- Causal Markov Condition allows to factorize
- Each Conditional is a causal mechanism

Source: (Peters, Janzing, and Schölkopf 2017)

Assumptions in Causality (2)

Established Conditions:

Definition: SUTVA

'The treatment that one unit receives does not change the effect of treatment for any other unit.' (Hardt and Recht 2021)

Definition: Consistency

The outcome Y agrees with the potential outcome corresponding to the treatment indicator.' (Hardt and Recht 2021)

Definition: **Ignorability**

The potential outcomes are conditionally independent of treatment given some set of de-confounding variables. (Hardt and Recht 2021) (perfect RCT)

- First tow hold for SCM counterfactuals
- third not testable but can check via backdoor criterion in SCM

SCM Applications:

- Flexible simulations for higher order problems (intervention, counterfactual)
- Graphical visualization via directed acyclic graph

Fundamental Differences (1)

- conflict whether to use graphs or not
- A SEM is a parametric specification used in applied sciences (parameters contested)
- A Bayesian causal network is another popular causal model using conditional probabilities and NO functions
- Differences in performance between BCN and SCM# Performance Evaluation

Implications

Method	CBN	SCM
Prediction	 Unstable Volatile to parameter changes Re-Estimate entire model	StableMore Natural SpecificationOnly estimate Δ CM
Intervention	 Costly for Non-Markovian Models Unstable(Nature CP) Only generic estimates(Δ CP) 	Pot. Cyclic RepresentationStableContext specific
Counterfactuals	$ \begin{array}{c} \cdot \ \textbf{Impossible} \\ \cdot \ \text{no information on latent} \\ \text{factors}(\epsilon) \end{array} $	Possible Inclusion of latent factors

Pearls Causal Hierachy

Table 3: Pearls Hierarchy of Causation (2009)

Method	Action	Example	Usage
Association $P(a b)$	Co-occurrence	What happened	(Un-)Supervised ML, BN, Reg.
Intervention $P(a do(b), c)$	Do- manipulation	What happens if	CBN,MDP,RL
Counterfactual $P(a_b a^i,b^i)$	Hypotheticals	What would have happened if	SCM ,PO

Prediction

- ML, BN and regression are at the lowest level in the causal hierarchy
- Prediction methods demand the least information and depend on association alone
- Associational methods ignore external changes outside of our data.
- intervention distribution has information on these external changes.
- intervention distribution is only defined in high level causal methods.

Intervention

- The second query deals with interventions
- Mathematical Tool: do-calculus
- The do-calculus enables us to study the manipulation of parent nodes
- There are various types of intervention
- One example is atomic intervention, where we set a variable to a constant
- In policy intervention we specify a different function for an equation
- Off-policy intervention models different intervention that is not in our historical data
- CBN, MDP and reinforcement learning model intervention.

Example Intevention (1)

Atomic Intervention:

• by replacing function with a constant

$$C_1 := f_{c_1}(p, N_1) \rightarrow C_1 := 600$$
 $C_2 := f_{c_2}(a, N_2)$
 $E := f_E(C_1, C_2, N_E)$

Example Intevention (2)

Policy Intervention:

Intervention by replacing function with a different conditional probability

$$C_1 := f_{c_1}(p, N_1) \to C_1 := f(\pi)$$

$$C_2 := f_{c_2}(a, N_2)$$

$$E := f_E(C_1, C_2, N_E)$$

Counterfactuals

• missing data problem in PO framework

Process is described as follows:

- **a** Abduction: Cast probability P(u) as conditional probability $P(u|\epsilon)$
- **1** Action: Exchange (X = x)
- **1** Prediction: Compute (Y = y)

Graphical Tools

- No need to specify exact parametric shape
- highlight colliders
- estimation back door criterion
- 0
- Nodes
- Edges
- Parents/Ancestors/Descendents
- (Missing) Arrows

Difference Path Diagramm and Pearls Causal Diagrams

Graphical Illustration - Probabilisitic Model

Figure 1: Probabilistic Model

Graphical Illustration - Structural Causal Model

Figure 2: Structural Causal Model

Causality and Time

- Time in Physical Sciences: Mechanical and exact
- Time in Social Sciences: Often Vague
- Regular Time Specification is also more vague
- To accommodate that issue, research on differential equation based SCMs started

Causal Modelling with Differential Equations

Intial Value:

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + dt \cdot f(\mathbf{x}(t))$$

Graphical Overview

model	predict in IID setting	predict under changing distributions / interventions	answer counter- factual questions	obtain physical insight
mechanistic model	Y	Y	Y	Y
structural causal model	Y	Y	Y	N
causal graphical model	Y	Y	N	N
statistical model	Y	N	N	N

Source: (Peters, Janzing, and Schölkopf 2017)

Extensions

- Mediation Analysis
- PO-Framework
- Causal Algorithms
- Causal Constraints Model

Conclusions

References

- Hardt, Moritz, and Benjamin Recht. 2021. *Patterns, Predictions, and Actions: A Story about Machine Learning*. https://mlstory.org. http://arxiv.org/abs/2102.05242.
- Pearl, Judea. 2012. "The Causal Foundations of Structural Equation Modeling." CALIFORNIA UNIV LOS ANGELES DEPT OF COMPUTER SCIENCE.
- Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. 2017. *Elements of Causal Inference: Foundations and Learning Algorithms*. Adaptive Computation and Machine Learning Series. Cambridge, Massachuestts: The MIT Press.