EXERCISE - IV

ADVANCED SUBJECTIVE QUESTIONS

- **1.** Solve : $\sin 5x = \cos 2x$ for all values of x between $0^{\circ} \& 180^{\circ}$.
- 2. Find the solution set of the equation,

$$\log_{\frac{-x^2-6x}{10}} (\sin 3x + \sin x) = \log_{\frac{-x^2-6x}{10}} (\sin 2x).$$

- **3.** Find the value of θ , which satisfy $3-2\cos\theta-4\sin\theta-\cos2\theta+\sin2\theta=0$.
- **4.** Find the general solution of the equation, $\sin \pi x + \cos \pi x = 0$. Also find the sum of all solutions in [0, 100].
- **5.** Solve for x, $(-\pi \le x \le \pi)$ the equation; $2(\cos x + \cos 2x) + \sin 2x (1 + 2\cos x) = 2\sin x$.
- **6** Find the range of y such that the equation, y + cos $x = \sin x$ has a real solution. For y = 1, find x such that 0 < x < 2π .
- **7.** Find the general values of θ for which the quadratic

function (sin
$$\theta$$
) $x^2 + (2 \cos \theta) x + \frac{\cos \theta + \sin \theta}{2}$ is the square of a linear function.

- **8.** Find the general solution of the equation, $\tan^2(x + y) + \cot^2(x + y) = 1 2x x^2$.
- **9.** Prove that the equations
- (a) $\sin x \cdot \sin 2x \cdot \sin 3x = 1$
- (b) $\sin x \cdot \cos 4x \cdot \sin 5x = -1/2$ have no solution
- **10.** Find the general solution of $\sec 4\theta \sec 2\theta = 2$.
- **11.** Let $f(x) = \sin^6 x + \cos^6 x + k(\sin^4 x + \cos^4 x)$ for some real number k. Determine
- (a) all real numbers k for which f(x) is constant for all values of x.
- **(b)** all real numbers k for which there exists a real number 'c' such that f(c) = 0.
- (c) If k = -0.7, determine all solutions to the equation f(x) = 0.

- **12.** Solve the equation : $\frac{\sqrt{3}}{2} \sin x \cos x = \cos^2 x$.
- **13.** Solve : $\cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0$.
- **14.** Find all the solutions of, $4 \cos^2 x \sin x 2 \sin^2 x = 3 \sin x$.
- **15.** If α & β are the roots of the equation, a $\cos \theta$ + b $\sin \theta$ = c then prove that :

(i)
$$\sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2}$$

(ii)
$$\sin \alpha \cdot \sin \beta = \frac{c^2 - a^2}{a^2 + b^2}$$

(iii)
$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{2b}{a+c}$$

(iv)
$$\tan \frac{\alpha}{2}$$
 . $\tan \frac{\beta}{2} = \frac{c-a}{c+a}$

- **16.** Find the general solution of the following equation: $2(\sin x \cos 2x) \sin 2x(1 + 2\sin x) + 2\cos x = 0$.
- **17.** Solve the inequality $\sin 2x > \sqrt{2} \sin^2 x + (2 \sqrt{2}) \cos^2 x$.
- **18.** Find the values of x , between 0 & 2 π , satisfying the equation ;

$$\cos 3x + \cos 2x = \sin \frac{3x}{2} + \sin \frac{x}{2}.$$

- **19.** Solve for $x : \sin 3\alpha = 4 \sin \alpha \sin (x + \alpha) \sin (x \alpha)$ where α is a constant.
- **20.** Find the general solution of the equation $|2 \tan x 1| + |2 \cot x 1| = 2$.
- **21.** Find the set of values of 'a' for which the equation, $\sin^4 x + \cos^4 x + \sin 2x + a = 0$ possesses solutions. Also find the general solution for these values of 'a'.

22. Solve: $\tan^2 2x + \cot^2 2x + 2\tan 2x + 2\cot 2x = 6$.

23. Solve :
$$\sin^4 x + \cos^4 x - 2\sin^2 x + \frac{3}{4}\sin^2 2x = 0$$
.

24. Solve :

 $\tan^2 x \cdot \tan^2 3x \cdot \tan 4x = \tan^2 x - \tan^2 3x + \tan 4x$.

25. Solve :
$$\sin^{10} x + \cos^{10} x = \frac{29}{16} \cos^4 2x$$
.

26. Find the set of values of x satisfying the equality

$$\sin\left(x - \frac{\pi}{4}\right) - \cos\left(x + \frac{3\pi}{4}\right) = 1$$

and the inequality $\frac{2\cos 7x}{\cos 3 + \sin 3} > 2^{\cos 2x}$.

- **27.** Find the sum of all the roots of the equation , $\sin\sqrt{x}=-1$, which are less than 100 π^2 . Also Find the sum of the square roots of these roots . Now , can we conclude that all the roots $\cos\sqrt{x}=0$ are also the roots of $\sin\sqrt{x}=-1$? Justify your answer .
- **28.** Solve : $\sin\left(\frac{\sqrt{x}}{2}\right) + \cos\left(\frac{\sqrt{x}}{2}\right) = \sqrt{2} \sin \sqrt{x}$.
- 29. Find the general solution of the equation,

$$\sin\frac{2x+1}{x} + \sin\frac{2x+1}{3x} - 3\cos^2\frac{2x+1}{3x} = 0$$

- **30.** Solve the equation : $\sin 5x = 16 \sin^5 x$.
- 31. Solve for x & y: $x\cos^3 y + 3x\cos y \sin^2 y = 14$ $x\sin^3 y + 3x\cos^2 y \sin y = 13$
- **32.** Solve the equation : $\cot x 2 \sin 2x = 1$.