

CAEconvolutional autoencoder

Vision@OUC

Wang Chao

Group of DL

Overview

- Introduction
- Experiments
- What's Next
- Q&A

Introduction

What is autoencoder?

NN & AE & SAE

What is CAE?

Keys to implement

Deconvolution

Unpooling

Experiments

Toy examples

• Dataset: cifar10

Experiments details

CAE architecture

Encoder	Conv1	Pool1	Conv2	Pool2	Conv3	pool3
Fliter	64*5*5	2*2	32*3*3	2*2	16*3*3	2*2
Stride	1	2	1	2	1	2
Pad	2		1		1	
Decoder	Unpool3	Deconv3	Unpool2	Deconv2	Unpool1	Deconv1
Fliter	2*2	16*3*3	2*2	32*3*3	2*2	64*5*5
Unpool_ size	8		16		32	

Representation result

Experiments on WHOI

Architecture

- Solver
 - learning rate: 0.001; solver type: Adam; momentum: 0.9;
 weight_decay:0.0005; loss function: euclideanloss, cross_entropy_loss.

Results and analysis

Origin image

Reconstruction image

Insights

• On small class(Akashiwo)

Only 4 images in training dataset

• Large class(dino30)

43903 images in training dataset

Shape alike classes

- Transferable
 - On mnist dataset

On Kaggle

On imagenet

Fc encoder & decoder

Classification result

Database	Model	Accuracy	F1 score
Full+Sample	CAE(encode)	0.8530	0.2128
Sample	Cifar10 net	0.8271	0.3086
Sample	Alexnet	0.8807	0.4211
Sample	Vgg16	0.8972	0.4919

Encode visualization(T-SNE)

• Tools: http://projector.tensorflow.org/

CAE && beyond

• Program1 (based on resnet)

• Program2 (general encode decode)

Experiment result

• General encode & decode (alexnet + decode)

dataset	accuracy	precision	recall	F1 score
sample	0.886216	0.3765	0.5961	0.4110

Why not work well?

- Mix classes
- Fine-grained challenge
- Unsupervised learning (clustering)

What's Next

• Shallow CAE + general CNN

• CAE (Another architecture)

• Data enhancement (Use DCGAN)

