

PostgreSQL Ein Elephant vergisst nie...

- Vortragsreihe "Chaos-Seminar"
 - Veranstalter: CCC Ulm
 - http://ulm.ccc.de/ChaosSeminar
 - mail@ulm.ccc.de
 - Montagstreff: http://ulm.ccc.de/MontagsTreff
- Referent: Markus Schaber
 - Software-Entwickler
 - markus.schaber@ulm.ccc.de
- Folien: http://ulm.ccc.de/~schabi/postgres

SELECT * FROM CONTENTS;

- Kurze Geschichte
- Aktueller Stand
- Erweiterungen
- Support
- Ausgewählte technische Details

Vorläufer

- University of Berkeley
 - Ingres
 - Relational Technologies
 - Computer Associates
 - Postgres
 - Illustra
 - Informix
 - IBM
 - Postgres95

Entwicklung 6.X

- Erstes Release: PostgreSQL 6.0
 - 29. 1. 1997
- Weiterentwicklung z. B.:
 - MVCC
 - SQL Features
 - Neue Built-In Datentypen
 - Geschwindigkeit

Entwicklung 7.X

- Weiterentwicklung z. B:
 - WAL
 - TOAST
 - IPv6 + SSL
 - SQL-Standard Information Schema
 - Full-Text Indexing
 - PLPython/PLPerI/PLTCL
 - Viele SQL-Features
 - u. v. m.

Entwicklung 8.0

- Wichtige Neuerungen
 - Native Windows-Version
 - Savepoints
 - Point-in-Time Recovery
 - Tablespaces
 - Spaltentypen on-the-fly ändern
- Viele kleinere Optimierungen und Features
- Einige Treiber in eigene Projekte verlagert

Entwicklung 8.1

- Wichtige Neuerungen u. A.:
 - Skalierbarkeit auf SMP-Systemen verbessert
 - Bitmap Index Scans
 - 2-Phase Commit
 - rollenbasierende Nutzer- und Rechteverwaltung
 - min() und max() können indices nutzen
 - Autovacuum im Server
 - Constraint Exclusion
 - Verbesserte Abhängigkeitsanalyse

Entwicklung 8.2

- Aktuell in 8.2 beta 3:
 - RETURNING
 - Nichtblockierendes Indizieren
 - FILLFACTOR
 - Vererbungen nachträglich veränderbar
 - COPY SELECT
 - Multi-Input Aggregates
 - NULLs in Arrays
 - Wie immer: viele interne Verbesserungen...

Wieso PostgreSQL? (Werbesendung)

- Keine Lizenz-Zählerei
- Exzellenter Support
 - Community
 - Kommerzielle Anbieter
- Zuverlässig
- Umfangreiche Features
- Viele Zusatztools
- Plattformunabhängig
- Erweiterbar

Wer nutzt PostgreSQL?

- ICTU (niederländisches Einwohnermeldeamt)
- Skype
- US-Militär
- Auswärtiges Amt
- Deutscher Wetterdienst
- BASF
- Logical Tracking and Tracing International AG
- EU Joint Reserach Centre
- Und viele andere mehr...

Vergleich zur Konkurrenz

- Feature-Umfang ähnlich zu
 - Oracle
 - DB2
 - Informix
- Benchmarks mit obigen nicht zulässig
- Exzellente SQL-Standard-Unterstützung
- Bessere Skalierbarkeit als MySQL

Features (Buzzword Bingo)

Transaktionen gemäß ACID-Definition

Isolation Level	Dirty Read	Nonrepeatable Read	Phantom Read
Read uncommitted	Possible	Possible	Possible
Read committed	Not possible	Possible	Possible
Repeatable read	Not possible	Not possible	Possible
Serializable	Not possible	Not possible	Not possible

- Implementiert sind
 - Read committed
 - Serializable
- Sonst gibt's den jeweils besseren

Exkurs: ACID-"Loch"

 Kleine Lücke in ACID-Modell:

Client A:
 BEGIN; SELECT SUM(data)
 WHERE type=1;
 Ergebnis: 30

 Client B: BEGIN; SELECT SUM(data) WHERE type=2; Ergebnis: 70

- Client A:
 INSERT INTO table
 VALUES(2, 30); COMMIT;
- Client B: *INSERT INTO table VALUES*(1, 70); COMMIT;
- Lösung: Locks

Features 2

- Primär- und Fremdschlüssel
- Views / Rules
- Triggers
- Subselects
- Stored Functions
- User Defined Locking
- LISTEN/NOTIFY
- Temporäre Tabellen

Erweiterbarkeit

- Katalogbasierend
- Benutzerdefinierbarkeit von
 - Datentypen
 - Skalartypen
 - Compound Types
 - Domains
 - Funktionen
 - Operatoren
 - Sprachen

Limits

Maximum Database Size: Unlimited

Maximum Table Size: 32 TB

Maximum Row Size: 1.6 TB

Maximum Field Size: 1 GB

Maximum Rows per Table: Unlimited

Maximum Columns per Table: 250 - 1600

Maximum Indexes per Table: Unlimited

Prozedurale Sprachen

- (SQL)
- PIPgsql
- PIPython
- PIPerl
- PITCL

- C
- PL/R
- PIPHP
- PlJava
- PlMono

Client-Treiber für:

- ODBC
- JDBC
- .Net
- C
- C++
- PHP
- Matlab
- GNU Prolog

- Perl
- TCL
- ECPG
- Python
- Ruby
- OLE
- Objective C

Contrib

- Mitgelieferte Erweiterungen, z. B.
 - adminpack: Hilfsfunktionen für Admins
 - dblink: Queries in andere Datenbanken
 - isn (ISSN/ISBN/ISMN/UPC/EAN13)
 - tsearch2 (Volltext-Indexierung)
 - Itree, btree_gist (weitere Index-Typen)
 - pg_crypto (Algorithmen aus PGP und OpenSSL)
 - xml2 (XPath queries, XSLT)
 - über 20 weitere...

PgFoundry/GBorg

- Hosting für PostgreSQL-basierte Projekte:
 - Treiber
 - Erweiterungen
 - Administrationswerkzeuge
 - Entwicklungswerkzeuge
 - Anwendungen
 - Migrationshilfen

Externe freie Projekte

- PostGIS
 - Geographische Daten nach OpenGIS-Standard
 - http://postgis.refractions.net/
- OpenFTS
 - Volltextsuch-Engine
 - http://openfts.sourceforge.net/
- Bizgres
 - Erweiterungen für "Business Intelligence"
 - http://www.bizgres.org/

Externe freie Projekte

- BioPostgres
 - http://biopostgres.cs.ucla.edu/
 - Erweiterung für Bioinformatik
 - Module:
 - BlastGres (Sequenzanalyse)
 - GoBase (Geneontologie)
 - PostGraph (Graphenanalyse)
 - PostMake (Derivation dependency analysis)
 - PostModel (Modellierung und Data Mining)

Externe freie Projekte

- PGAccess
 - MS-Access-ähnliches UI-Zusammenklick-Frontend
 - http://www.pgaccess.org
- Viele weitere...
 - Freshmeat 429 hits
 - Sourceforge 633 Hits

Freie Applikationen

- PGFakt
 - Warenwirtschaftssystem
 - http://pgfakt.de/
- Compiere Libero
 - Port des freien ERP / CRM für PostgreSQL
 - http://www.e-evolution.com.mx/postgre.html

Kommerzielle Projekte

- Beispiele:
 - Bizgres MPP
 - Erweitert Bizgres um parallele Verarbeitung
 - http://www.greenplum.com/
 - EnterpriseDB
 - Erweiterungen zur Oracle-Kompatibilität
 - http://www.enterprisedb.com/
- Größere Liste auf:
 - http://www.postgresql.org/docs/techdocs.62

Community

- http://www.postgresql.org/community/
 - Infrastruktur z. B.
 - Mailinglisten
 - Irc-Channels
 - Angebote z. B.
 - Support
 - Entwickler-Diskussionen
 - Advocacy
- Deutsche PostgreSQL User Group
 - http://www.pgug.de/

Doku und Info

- Umfangreiche Manuals im Lieferumfang
- Weiteres Material auf www.postgresql.org
- http://www.postgresql.org/docs/books/
- http://www.planetpostgresql.org/

Kommerzieller Support

- Viele Anbieter auf allen Kontinenten
 - http://www.postgresql.org/support/
- Auch "große" Namen wie Fujitsu und SUN
- Mittelständische Anbieter in Deutschland
- Server Hosting verfügbar

Replikation

- Verschiedene Lösungen verfügbar
 - Single-Master
 - Multi-Master
 - Proxy-Basierend
- Beispiele:
 - Slony
 - PgPool
 - PgCluster
 - DBBalancer

Details: TOAST

- The Oversized-Attribute Storage Technique
 - Seit PostgreSQL 7.1
 - Erlaubt Feldgröße bis zu ein Gig
- Implementierung:
 - Kompression
 - Auslagerung in TOAST-Tabellen

Details: MVCC

- Multi-Version Concurrency Control
 - Erlaubt parallele Bearbeitung
 - Leser werden nie blockiert
 - Schreiber werden selten blockiert
- Implementierung:
 - Verschiedene Versionen desselben Datensatzes
 - Transaktions-ID und Kommando-ID zur identifikation
 - VACUUM räumt veraltete Versionen auf

Details: Indices

- Storage Methods
 - B-Tree
 - GIST
 - Hash
 - R-Tree
- Features
 - Partielle Indices
 - Funktionale Indices

Details: GIST

- Generisches Index-Framework
- Erlaubt gängige Baum-Indices wie
 - B-Tree
 - R-Tree
 - RD-Trees
 - Tsearch2
- Verlustbehaftete Indizierung möglich
 - PostGIS indiziert Bounding Box
- Geht nicht für Radix-Trees u. ä.

Details: GIST 2

- Index wird über 7 Funktionen definiert:
 - consistent
 - union
 - compress
 - decompress
 - penalty
 - picksplit
 - same

END TRANSACTION;

- Nur die wichtigsten Dinge gestreift, einiges ausgelassen
- Alle Warenzeichen sind natürlich Eigentum der jeweiligen Inhaber.
- Noch Fragen?

- Verwendete Software:
 - PostgreSQL & Co
 - OpenOffice
 - Opera
 - Keyjnote
 - Gimp
 - Debian GNU/Linux
 - u. A...

COPY H20 TO parasco;

- Weitere Diskussion
- Griechisches Essen
- Kühle Getränke

http://parasco.home.pages.de