FIRST SEMESTER 2020-2021 Course Handout Part II

Date: 17/08/2020

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : CS F402

Course Title : Computational Geometry

Instructor-in-charge: Tathagata Ray

Scope and Objective

In theoretical computer science, the algorithms for geometric problems are a subject which needs special attention. This subject is called Computational Geometry. It has emerged as a research area in itself with dedicated conferences and journals. These geometric problems are coming from the requirements of real life problem in computer graphics, Geographical Information Systems, Cartography, Robotics, and many more entailing all the disciplines of engineering.

The objective of the course is to impart students with state of the art data structures and algorithms in computational geometry. The students at the end of the course will be able to

- To identify suitable algorithms or data structure to apply for a given geometric problem.
- Will be able to argue about the time complexity of geometric algorithms.
- Will be able to write the proof of correctness of geometric algorithms.
- Will be able to understand the intricacies involved in implementing such algorithms.
- Will get acquainted with state of the art computational geometric algorithm libraries.
- Will be able to implement computational geometric algorithms.

Pre-requisites:

CS F111 (Computer Programming), CS F211 (Data Structure and Algorithms)

Text Books:

• T1: Mark de Berg et al. Computational Geometry: Algorithms and Applications, Springer **Reference books:**

- R1: Joseph O'Rourke, Computational Geometry in C, Cambridge univ press
- R2: Preparata and Shamos "Computational Geometry: An Introduction" Springer
- R3: Research papers as discussed in the class

Course Plan:

Evaluation Scheme:

Lecture No.	Learning Objecti	ves	Topics		References
1-3	Understanding Computational Geor and its applications		duction to com netry.	T1 (Chapter 1)	
4-10	Understanding Conv Hull and Different algorithms to make i		vex Hull algori	R1, T1, R3 (Chapter 1)	
11-14	Understanding Map overlay problem and it can be solved usin Line Segment Intersection Algorith	how g	Line Segment Intersection		T1(Chapter 2)
15-20	Understanding class Art Gallery Problem how it is solved usin Polygon Triangulation	ic Poly and g	Polygon Triangulation		T1(Chapter 3)
21-25	Understanding data structures to search a the points in a given space efficiently.	all	Orthogonal Range Search		T1 (Chapter 5)
26-30	Understanding data structures to give the regions containing given a query point.		Point Location		T1 (Chapter 6)
31-35	Understanding a spekind of triangulation called Delaunay triangulation and its data structure Voron diagram used in marapplications.	Dual oi	Delaunay Triangulation and Voronoi Diagram		T1 (Chapter 7 and 9)
36-40	Understanding an arrangement of lines can be nicely studied using their dual representation i.e points.		Arrangement and Duality		T1 (Chapter 8)
40-42	Understanding real l applications using the algorithms.		Applications of Computational Geometry		R2, R3
S. No.	Evaluation	Duration	Date and	Weightage	Nature of

S. No.	Evaluation	Duration	Date and	Weightage	Nature of
	Component		Time	(%)	Component
1.	Test-1	30 Mins	September 10 – September 20 (during scheduled class Hour)	10%	Open Book
2.	Test-2	30 Mins	October 9- October 20(during scheduled class hour)	15%	Open Book

3	Test-3	30 Mins	November 10- November 20 during scheduled class hour)	15%	Open Book
4.	Assignments (Two)	TBA	TBA	25%	Open Book
5.	Comprehensive	120 Mins	TBA	35%	Open Book
	Exam				

Chamber Consultation Hour: 12-1:00 p.m. on every Saturday. (meet.google.com/xcg-pxqp-doa)

Notices: All notices pertaining to this course will be displayed on the CMS.

Make-Up Policy:

Make-Ups will be granted case-to-case basis. The discretion of granting Make-ups lies with the Instructor-In-Charge.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge Tathagata Ray