

Analog IC Design

Lecture 03 Review on Semiconductors Basics

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

What are Semiconductors

- \square Conductors \rightarrow Ex: copper
- ☐ Insulators → Ex: glass
- Semiconductors are materials whose conductivity lies between that of conductors and insulators
- What is so special about semiconductors?
 - The electrical conductivity can be dramatically changed by introducing extrinsic dopant atoms
 - We have two types of carriers: electrons and holes
- ☐ Silicon (Si) is the semiconductor material used in the majority of today's electronic devices

Silicon Crystal

- Covalent bonds are formed by sharing of the valence electrons
- At 0 K, all bonds are intact and no free electrons are available

Electrons and Holes

- At room temperature, some of the covalent bonds are broken by thermal generation
- $oldsymbol{\square}$ Each broken bond gives rise to a free electron (e^-) and a hole (h^+)
 - Both e^- and h^+ become available for current conduction

Intrinsic Silicon

- Carrier concentration is the number of charge carriers per unit volume (cm^3)
- At thermal equilibrium, the recombination rate is equal to the generation rate
- \Box The concentration of free electrons (n) is equal to the concentration of holes (p)

$$n = p = n_i$$

 $oldsymbol{\square}$ The product of n and p is constant (depends only on temperature)

$$np = n_i^2$$

Doped Silicon

- Doping involves introducing impurity atoms into the silicon crystal
- To increase the concentration of free electrons (n) silicon is doped with an element with a valence of 5 (Ex: phosphorus)
 - Each dopant atom (donor) gives a free e^- and a fixed positive charge
 - Electrons become the majority carriers $(n \gg p)$
 - The doped silicon is n-type
- \Box To increase the concentration of holes (p) silicon is doped with an element having a valence of 3 (Ex: boron)
 - Each dopant atom (acceptor) gives a h^+ and a fixed negative charge
 - Holes become the majority carriers $(p \gg n)$
 - The doped silicon is p-type

n-Type Silicon

- $f\square$ Each dopant atom (donor) gives a free e^- and a fixed positive charge
- $oldsymbol{\square}$ Electrons become the majority carriers ($n\gg p$)

p-Type Silicon

- $f\square$ Each dopant atom (acceptor) gives a h^+ and a fixed negative charge
- lacktriangle Holes become the majority carriers ($p\gg n$)

Current Flow: (1) Drift Current

- \square Current flows due to electrical field (E)
 - Holes are accelerated in the direction of E
 - Free electrons are accelerated in the direction opposite to E

Current Flow: (2) Diffusion Current

- Current flows due to carrier concentration gradient
 - Carriers diffuse from the region of high concentration to the region of low concentration

03: Semiconductors Basics [Sedra/Smith, 2015]

The pn Junction (The Diode)

03: Semiconductors Basics [Sedra/Smith, 2015]

pn Junction in Equilibrium (o.c.)

- \square Diffusion current (I_D) flows due to concentration gradient
 - A depletion region of uncovered fixed charges is formed
 - The uncovered charges create $E \rightarrow$ drift current (I_S)
- \square $I_D = I_S \rightarrow$ net current $(I_D I_S)$ is zero
- \square Capacitance $(C) = \frac{\epsilon A}{d}$

03: Semiconductors Basics [Sedra/Smith, 2015]

pn Junction in Equilibrium (o.c.)

The barrier voltage limits carrier diffusion

03: Semiconductors Basics [Sedra/Smith, 2015]

pn Junction in Reverse (Rvr) Bias

- ☐ The applied reverse voltage increases diffusion barrier
- The applied reverse voltage opposes diffusion current
- $lue{}$ Net current is very small $pprox -I_S$
- Depletion width increases → capacitance decreases
 - Max capacitance at zero bias

03: Semiconductors Basics [Sedra/Smith, 2015]

pn Junction in Forward (Fwd) Bias

- ☐ The applied forward voltage decreases diffusion barrier
- The applied reverse voltage dramatically increases diffusion current
- \square Net current is very high = $I_D I_S \approx I_D$

pn Junction IV Characteristics

- lacktriangle Forward: High diffusion current exponentially dependent on V_F
- Reverse: Very small drift current
- Breakdown: Very high reverse current at LARGE reverse bias voltage

16

Thank you!