

학습 **내용**

- 01 기억장치의 개요
- 02 반도체를 사용한 주기억장치
- 03 가상 기억장치

학습 목표

- 기억장치의 읽기와 쓰기의 방법을 설명할 수 있다.
- 주기억장치에 사용되는 반도체 기억장치를 설명할 수 있다.
- 가상 기억장치의 개념을 설명할 수 있다.

- 6주차. 캐시 기억장치 -

지/난/시/간/의/ 학/습/내/용

컴퓨터 기억장치의 계층적 구조

캐시 기억장치의 원리

캐시 기억장치의 설계

교체 알고리즘

컴퓨터 기억장치의 계층적 구조

√ 개요

- 보조기억장치: 낮은 속도지만 큰 용량
- 주기억장치: 빠른 속도
- 버퍼기억장치 : 작은 용량이지만 고속으로 중앙처리장치에 접근

캐시 기억장치의 원리

√ 개요

- 주기억장치에 비해 5~10배의 빠른 접근 속도를 제공하는 기억장치
- 주기억장치에서 자주 사용하는 명령들을 옮겨 저장
- 빠른 속도로 중앙처리장치에 제공하는 기억장치

✓ 동작 순서

- 중앙처리장치가 명령어를 처리하기 위해 캐시 기억장치에 접근
- 적중(Hit): 그 내용을 찾았을 때
- 실패(Miss): 그 내용을 못 찾았을 때

캐시 기억장치의 설계

✓ 사상함수

- 사상 : 주기억장치와 캐시 기억장치 사이에서 정보를 옮기는 것
- 직접사상, 연관사상, 집합연관사상 등이 있음

교체 알고리즘

√ 개요

- 캐시 기억장치가 가득 차 있는 상태에서 캐시 기억장치의 일부를 제거하고 주기억장치로부터 새로운 데이터를 가져와야 하는 경우 캐시의 내용을 제거하는 방식

3) 기억장치의 계층구조

5) 기억장치 액세스의 유형

1) 기억장치 시스템의 특성

■ 기억장치의 구분: 주기억장치, 보조기억장치

주기억장치(Main memory)

 중앙처리장치 (CPU, Central Processor Unit)와 접근 통신이 가능한 기억장치

보조기억장치(Auxiliary memory)

 현재는 필요하지 않은 프로그램이나 데이터를 저장하고 있다가 데이터나 프로그램을 요구하는 경우 주기억장치로 데이터를 전달하는 저장장치

1) 기억장치 시스템의 특성

■ 기억장치의 구분: 주기억장치, 보조기억장치

주회로기판에서 기억장치의 위치와 종류

■ 기억장치의 성능 평가 요소

기억 용량 (Capacity) 접근시간 (Access Time) 사이클시간 (Cycle time) 기억장치의 대역폭 (Bandwidth) 데이터 전송률 (Data Transportation) 가격 (Cost)

- 기억 용량의 기본 단위: 비트(bit)
- 바이트(byte, 1byte = 8bit)
- 단어(word)

■ 기억장치의 성능 평가 요소

기억용량 (Capacity) 접근 시간 (Access Time) 사이클시간 (Cycle time) 기억장치의 대역폭 (Bandwidth) 데이터 전송률 (Data Transportation) 가격 (Cost)

• 기억장치에 저장된 데이터를 읽거나 새로운 데이터를 기록하는 데 걸리는 시간

■ 기억장치의 성능 평가 요소

기억 용량 (Capacity)

접근 시간 (Access Time)

사이클 시간 (Cycle time)

기억장치의 대역폭 (Bandwidth)

데이터 전송률 (Data Transportation)

> 가격 (Cost)

- 연속적으로 기억장치에 접근을 할 때, 두 번 접근할 때 요구되는 최소 시간
- 반도체 기억장치와 같이 정보를 읽어도 기억장치에 정보가 그대로 남아 있는 비파괴 기억장치에서는

사이클 시간과 접근 시간은 동일

• 파괴 기억장치(자기 코어(magnetic core) 기억장치)는 정보를 읽어 내면 저장되었던 정보가 삭제

■ 기억장치의 성능 평가 요소

기억용량 (Capacity) 접근시간 (Access Time) 사이클시간 (Cycle time) 기억장치의 대역폭 (Bandwidth) 데이터 전송률 (Data Transportation) 가격 (Cost)

• 기억장치가 한 번에 전송할 수 있는 비트 수 또는 저장할 수 있는 비트 수

■ 기억장치의 성능 평가 요소

기억용량 (Capacity)

접근 시간 (Access Time)

사이클시간 (Cycle time)

기억장치의 대역폭 (Bandwidth)

데이터 전송률 (Data Transportation)

> 가격 (Cost)

• 기억장치에서 데이터를 읽는 과정을 수행할 때, 초(second)당 몇 비트의 데이터가 전송되어서 읽혀지는가를 나타낸 것

■ 기억장치의 성능 평가 요소

기억 용량 (Capacity) 접근시간 (Access Time) 사이클시간 (Cycle time) 기억장치의 대역폭 (Bandwidth) 데이터 전송률 (Data Transportation) 가격 (Cost)

- 일반적으로 기억장치의 가격은 기억장치의 처리속도와 비례
- CPU의 처리속도와 보조를 맞추기 위해서는 고가의 기억장치를 사용 (비용의 한계 때문에 대용량의 기억장치를 구비하기 어려움)

3) 기억장치의 계층구조

서로 상관관계를 가지는
 기억장치의 성능을 평가하는 요소들

고가의 고속 기억장치

• 데이터의 읽고, 쓰기 속도를 향상시키기 위해서 필요함

저가의 기억장치

- 많은 양의 데이터를 저장하기 위해 기억장치의 용량이 커져야 하지만 적정 비용을 위해서 필요함
- 사용하게 되면 기억장치의 접근 속도는 그만큼 느려짐

3) 기억장치의 계층구조

■ 기억장치의 계층구조

4) 기억장치의 분류

■ 기억장치의 제조 재료에 따른 유형

반도체 기억장치 (Semiconductor memory)

- 반도체 물질인 실리콘 칩을 사용하여 기억장치 설계
- 전기적인 속성을 이용하여 저장

자기-표면 기억장치 (Magnetic-surface memory)

자화 물질로 코팅된 표면에 자화 방향에 따라 정보를 저장

4) 기억장치의 분류

■ 데이터를 저장하는 방법에 따른 유형

휘발성(volatile) 기억장치

- 일정한 시간이 지나거나 전원 공급이 중단되면 기억장치 내의 기록된 모든 데이터가 지워짐
- 예) RAM

비 휘발성(nonvolatile) 기억장치

- 전원 공급 중단되더라도 기억장치 내의 데이터들은 지워지지 않음
- •예) ROM, CD-ROM

■ 데이터를 접근하는 방법에 따른 유형

(Sequential Access)

- 저장되는 순서에 따라 액세스
- 액세스 시간은 원하는 데이터가 저장된 위치에 따라 결정
- 자기 테이프의 액세스 방식

■ 데이터를 접근하는 방법에 따른 유형

(Direct Access)

- 기억장소 근처로 이동한 다음 순차적 검색을 통하여 최종적으로 원하는 데이터를 액세스
- 액세스 시간은 원하는 데이터의 위치와 이전 액세스의 위치에 따라 결정
- 자기 디스크의 액세스 방식

■ 데이터를 접근하는 방법에 따른 유형

(Random Access)

- 어떤 위치를 액세스하는데 걸리는 시간이 이전의 액세스 순서와는 무관하며 항상 일정한 방식
- 반도체 기억장치(RAM, ROM)의 액세스 방식

■ 데이터를 접근하는 방법에 따른 유형

(Associative Access)

- 각 위치는 자신의 주소 지정 메커니즘을 통해 임의 액세스
- 단어 내의 특정 비트들과 원하는 비트들을 비교하여 일치하는 단어를 액세스
- 비교 동작을 모든 단어들에 대해 동시에 수행
- 캐시 기억장치의 액세스 방식

반도체를 사용한 주기억장치

- 1) 개요
- 2) 주기억장치의 구조와 동작
- 3) 명령어 사이클에서 주기억장치의 동작
- 4) 주기억장치 분할
- 5) 주기억장치 할당 방법
- 6) 반도체 기억장치(semiconductor memory)

1) 개요

- 반도체 칩의 사용
 - ▶ 최근 대부분의 컴퓨터에서 주기억장치는 반도체 칩이 사용

- 크기가 작고 신뢰성이 높음
- 성능이 우수하고 소비 전력이 작음

반도체 기억장치 중 가장 일반적인 유형

RAM (Random Access Memory)

ROM (Read Only Memory)

1) 개요

- 반도체 칩의 사용
 - ▶ 최근 대부분의 컴퓨터에서 주기억장치는 반도체 칩이 사용

2) 주기억장치의 구조와 동작

- 주기억장치의 구조
 - ▶ CPU 내의 제어장치는 데이터를 읽거나, 쓰기 동작을 수행하도록 제어신호 발생함

쓰기 동작모드

읽기 동작모드

- 입력장치나 보조기억장치에서 주기억장치로 입력정보가 전달
- 기록회로 : 입력된 프로그램과 데이터를 임시적으로 저장하였다가 기억매체에 전달
- 기억 매체 : 프로그램 명령과 프로그램에서 사용될 데이터를 실제로 기억하는 기억 소자들로 구성
- 번지 선택 회로:데이터가 저장될 기억소자를 선택

2) 주기억장치의 구조와 동작

- 주기억장치의 구조
 - ▶ CPU 내의 제어장치는 데이터를 읽거나, 쓰기 동작을 수행하도록 제어신호 발생함

쓰기 동작모드

읽기 동작모드

- 제어장치는 읽기 제어신호를 발생하고 인출될 정보가 저장된 기억소자의 위치를 지정
- 판독 회로는 해당 번지에 저장된 내용을 정보 판독하고 외부로 출력

3) 명령어 사이클에서 주기억장치의 동작

■ 명령어 사이클의 4단계

3) 명령어 사이클에서 주기억장치의 동작

■ 주기억장치와 레지스터의 관계

- 인출 과정: MAR이 지시하는 주기억장치의 주소 번지에서 데이터를 읽어와서 MBR에 저장
- <mark>저장</mark> 과정 : MAR에 저장되어 있는 주소 번지에 해당하는 주기억장치 위치에 MBR에 저장되어 있는 데이터를 저장

4) 주기억장치 분할

■ 주기억장치에 저장되는 프로그램

응용 프로그램

- 실행 시 : 주기억장치에 저장
- 수행 종료 시 : 다른 프로그램 대체 및 삭제
- 전원 종료 시:해당 프로그램 삭제

시스템 프로그램

• 컴퓨터가 구동되기 시작해서부터 종료될 때까지 주기억장치에 유지

4) 주기억장치 분할

■ 주기억장치의 분할 구조

(운영체제 상주 구역)	시스템 프로그램
비상주 구역	영역
사용자 응용프로그램 1	
사용자 응용프로그램 2	사용자
사용자 응용프로그램 3	응용프로그램 영역
사용자 응용프로그램 4	

4) 주기억장치 분할

- 주기억장치의 분할 구조
 - 언제라도 바로 실행될 수 있는 운영체제의 기본적 기능과 자주 사용되는 프로그램들이 기억되는 곳

(운영체제 상주 구역) 비상주 구역	시스템 프로그램 영역
사용자 응용프로그램 1	
사용자 응용프로그램 2	사용자
사용자 응용프로그램 3	응용프로그램 영역
사용자 응용프로그램 4	

4) 주기억장치 분할

■ 주기억장치의 분할 구조

 자주 사용되는 프로그램들이 아니고 필요할 때에만 보조기억장치에서 인출된 후, 저장되었다가 처리가 끝나면 다른 프로그램이 다시 그 장소를 사용 가능한 구역

(운영체제 상주 구역) 비상주 구역	시스템 프로그램 영역
사용자 응용프로그램 1	
사용자 응용프로그램 2	사용자
사용자 응용프로그램 3	응용프로그램 영역
사용자 응용프로그램 4	

4) 주기억장치 분할

■ 주기억장치의 분할 구조

- 일반 프로그램이 기억되는 곳이며, 시스템 프로그램의 제어에 의해서 동작함
- 여러 부분으로 분할하고 독립된 프로그램들을 기억시켜, 다중 프로그래밍 방식으로 동작하는 것을 가능하게 함
- 운영체제는 사용자 프로그램 각각의 독립된 영역을 보호해주는 기억 보호(storage protection)를 수행함

(운영체제 상주 구역) 비상주 구역	시스템 프로 그램 영역
사용자 응용프로그램 1	
사용자 응용프로그램 2	사용자
사용자 응용프로그램 3	응용프로그램 영역
사용자 응용프로그램 4	

■ 사용자 응용 프로그램 영역을 효율적으로 사용하기 위한 고려사항

주기억장치에 한 번에 몇 개의 프로그램을 적재할 것인가? 한 개의 프로그램만 여러 개의 프로그램을 함께 공존시킬 수도 있음 가능할 수도 있고 일정한 크기의 다른 크기의 공간 할당 고려 공간 할당 고려 프로그램의 수행이 끝날 때까지 연속한 작은 공간들을 할당할지, 그 크기를 유지할지, 하나의 덩어리로 된 커다란 공간을 상황에 따라서 할당한 공간의 크기를 할당할지 고려 변경할지 고려

■ 주기억장치 할당 방법

■ 주기억장치 할당 방법

단일 사용자 할당 기법

고정 분할

가변 분힐

• 운영체제가 차지하는 부분을 제외한 나머지 기억 공간의 부분을 한 사용자가 독점 사용하도록 하는 기법 운영체제 영역

사용자 응용프로그램 영역

사용되지 않는 영역

장점

- 사용자에게 융통성을 최대한 제공함
- 최대의 단순성과 최소의 비용을 만족함
- 특별한 하드웨어가 필요 없으며, 운영체제 소프트웨어도 필요 없음

단점

- 사용자가 사용하는 부분 이외의 부분은 낭비가 될 수 있음
- 입력과 출력을 수행하는 동안 주기억장치내의 프로그램은 중앙처리장치를 계속 쓸 수 없기 때문에 유휴 상태가 되므로 활용도가 매우 낮음
- 프로그램이 주기억장치의 용량보다 큰 경우 이를 수행시키기 어려움

■ 주기억장치 할당 방법

단일 사용자

고정 분할 할당 기법

가변 분힐

• 각 프로그램에 고정된 동일 크기의 분할된 구역을 할당하는 방법

장점- 프로그램이 적재되고 남은 공간에 다른 프로그램을 적재하여 수행하므로
프로세서와 기억장치 같은 자원의 활용도를 크게 향상시킴
- 동시에 여러 프로그램을 주기억장치에 적재하여 수행하는
다중 프로그래밍 기법이 가능함- 할당되는 저장 공간이 작고 저장될 프로그램이 클 경우에는
프로그램이 작은 단위로 쪼개지는 단편화(fragmentation)의 문제가 발생함
- 프로그램과 할당된 분할 구역의 크기가 일치하지 않으면
프로그램이 점유하고 남은 공간이 발생함

■ 주기억장치 할당 방법

다인 사요가 그저 브하

가변 분할 할당 기법

- 단편화를 해결하기 위하여 각 작업에 대한 필요한 만큼의 공간 만을 할당
 - 주기억장치 내에 새로운 프로그램이 들어올 때마다 그 프로그램의 크기에 맞추어 가변적으로 기억 공간을 분할하여 프로그램에 맞는 공간 만을 할당

■ 가변 분할 할당 기법에서 기억 장소의 집약

기억 장소의 집약 (memory compaction)

- 주기억장치를 검사하여 빈 영역을 하나의 커다란 빈 영역으로 만드는 방법
- 운영체제는
 사용 중인 블록을 한데 모으고,
 비어 있는 기억 장소를
 하나의 커다란 공백으로 만듦

[기억 장소의 집약 과정]

■ 가변 분할 할당 기법에서 기억 장소의 집약

장점	단점
• 기억 장소에 분산되었던 공간들을 한 곳에 모음으로써 사용 가능한 큰 영역을 만들 수 있음 → 기억 장소의 낭비를 줄일 수 있음	 기억 장소를 집약하는 동안 전체 시스템은 지금까지 수행한 일들을 일단 중지해야 하고 집약을 위하여 많은 시간이 소모됨 수행 중이던 프로그램과 데이터를 주기억장치 내의 다른 장소로 이동시킴 → 각각의 위치 및 이에 관계되는 내용을 수정해야 함

■ 가변 분할 할당 기법에서 공백 영역 탐색 알고리즘

최초 적합 방법

• 여러 유휴 공간들을 차례대로 검색해 나가다가 새로운 프로그램을 저장 할 수 있을 만큼의 크기를 가진 부분을 최초로 찾으면 그 곳에 할당하는 방법임

• 여러 공백 중 새로운 프로그램이 요구하는 크기보다 크면서 가장 크기가 비슷한 공간을 채택하여 할당함

• 장점 : 매우 작은 공백만 생김

• 존재하는 여러 공백 중 가장 큰 부분을 찾아 할당함

• 프로그램이 할당되고 남은 공간이 크다면, 그 나머지 부분을 다른 프로그램에 할당하여 사용할 수 있음

공백 영역을 찾는 알고리즘의 예

새로운 17KB의 기억 장소를 필요로 하는 프로그램이 주기억장치로 들어오게 되면,

최초 적합 방법

①에 프로그램에 적재

최적 적합 방법

④에 프로그램에 적재

최악 적합 방법

③에 프로그램에 적재

사용 중

① 30Kbyte

사용 중

2 10Kbyte

사용 중

3 40Kbyte

사용 중

4 20Kbyte

- 반도체 기억장치
 - ▶ 디지털 시스템에서 주기억장치로 널리 사용
 - ▶ 형태: 대부분 어느 저장 위치로도 같은 시간에 접근이 가능한 RAM(random access memory)

RAM

- ▶ 데이터가 중앙처리장치에서 처리되기 이전 또는 이후에 저장되는 공간
- ▶ 휘발성 기억장치이며 읽고 쓰기가 자유로움
- ▶ 보조기억장치와 중앙처리장치 사이에 보조기억장치보다 상대적으로 속도가 빠른 주기억장치인 RAM을 두어 속도의 차이 극복

RAM

제조기술에 따른 RAM의 분류

동적(Dynamic) RAM(DRAM)

- 1 bit를 저장하기 위해 한 개의 트랜지스터가 필요
- 집적도가 높아 가격이 낮고 용량이 높은 장점
- 시간이 지남에 따라 전자가 누전되는 특성으로 주기적으로 Refresh 과정 필요

정적(Static) RAM(SRAM)

- 1 bit를 저장하기 위해 4개의 트랜지스터로 이루어진 두 쌍의 인버터에 저장
- 장점: Flip-Flop으로 구성되어 속도가 빠름 (DRAM 대비 100배 이상)
- 집적도가 낮아 가격이 고가이며 소비전력도 높음

RAM

DRAM

SRAM

- 캐패시터(Capacitor)에 전하(Charge)를 저장하는 방식으로 데이터를 저장
- 전하의 존재 여부에 따라 '1'과 '0'를 구분
- 주기적인 재충전(refresh) 필요: 충전된 전하는 시간이 지남에 따라 조금씩 방전
- 집적도가 높아 대용량 메모리에 적합하여 가장 일반적인 종류의 RAM으로 주로 주기억장치로 사용

장점	- 상대적으로 가격이 저렴하고, 소비전력이 적으며 동작속도가 빠르고 내부 구조가 간단하여 제조가 용이
단점	- 재충전 필요

RAM

DRAM

SRAM

- 플립플롭(flip-flop)을 사용하여 데이터를 저장함
- 컴퓨터에서 캐시 기억장치로 주로 사용됨

장점	- 전하의 방전현상이 나타나지 않아 재충전 회로가 필요 없음 - DRAM에 비해 속도가 빠름
단점	- DRAM에 비해 가격이 비쌈 - 소비 전력이 크고 회로가 복잡함

ROM

- ▶ 영구적, 반영구적으로 데이터를 유지할 수 있는 메모리
- ▶ 저장된 명령이나 데이터를 단지 읽기만 할 수 있는 기억장치로 재기록하는 것이 불가능
- ▶ 전원 공급이 중단되어도 저장된 데이터가 지워지지 않고 유지되는 비 휘발성(non-volatile)메모리
- ▶ 컴퓨터는 전원을 켰을 때 내장 메모리를 체크하거나 주변장치를 초기화 수행
 - 내용이 지워지지 않는 메모리가 필요
 - 일반적으로 바이오스(BIOS)에 많이 사용

ROM

Mask ROM PROM EPROM EPROM Flash Memory

- 한 번의 기록으로 더 이상 데이터를 변경할 수 없음
- 데이터를 저장하기 해서는 반도체 회사에 주문해 특별히 만들어야 함
- 단일 비트를 바꾸려고 한다면 마스크를 다시 제작해야 함
- 비디오카드에 자체적으로 각 문자의 형태를 ROM에 기록한 후 필요할 때마다 화면에 불러오는 방법에서 사용됨

ROM

Mask ROM PROM EPROM EPROM Flash Memory

(Programmable ROM)

- 1회에 한해서 새로운 내용으로 변경할 수 있는 ROM
- 한번 기록된 내용은 변경 하거나 삭제 불가능
- 사용자가 특별한 장비인 PROM writer를 사용하여 필요한 논리 기능을 직접 기록

ROM

Mask ROM PROM EPROM EPROM Flash Memory

(Erasable PROM)

- 필요할 때마다 기억된 내용을 지우고 다른 내용으로 기록 가능함
- 레이저 ROM writer를 사용하여 데이터를 지우고 다시 쓰기 가능함
- 원래 비어있는 상태로 제조되어 공급되며 동그란 유리창 있음
- 데이터를 집어넣는 것은 PROM과 같고, 창에 자외선을 쏘이면 내용이 지워지고 다시 쓸 수 있음
- 지우는 방법에 따라 구분: UVEPROM (Ultra Violate Erasable PROM), EEPROM (Electrically Erasable PROM)

ROM

Mask ROM PROM EPROM EPROM Flash Memory

(Electrically Erasable PROM)

- 전기적으로만 지울 수 있는 PROM
- 칩의 한 핀에 전기적 신호를 가하면 내부 데이터가 지워짐
- UVEPROM에 있는 동그란 유리창이 없음
- UVEPROM에 비해 EEPROM이 훨씬 편리한 점이 많지만, 가격이 월등히 비싸며, 쓰기/지우기 속도가 느림

ROM

Mask ROM PROM

EPROM

EEPROM

Flash Memory

- EEPROM의 한 종류로 일반 EEPROM과는 달리 블록단위로 재 프로그래밍 할 수 있음
- RAM과 ROM의 중간적인 위치를 가짐

하드디스크 대용 가능

- 액세스 속도도 하드디스크보다 빠르고
 반도체 메모리이기 때문에 충격에 매우 강함
- 기계적인 운동이 없어 전력소모도 매우 적어 노트북 컴퓨터에 많이 사용됨
- 고가의 단점이 있으나, 점차적 하락으로 차세대 저장장치로 각광받음

RAM 대용 불가

- 데이터의 읽는 과정은 일반 램과 비슷하나 쓰는 시간이 느림
- RAM은 데이터를 읽고 쓸 수 있는 횟수에 거의 제한이 없지만 십만에서 백만 번 이상의 쓰기 후에는 더 이상 쓸 수가 없음

ROM

Mask ROM

PROM

EPROM

EEPROM

Flash Memory

- 가상기억장치
 - ▶ 보조기억장치와 같이 기억용량이 큰 기억장치를 주기억장치처럼 사용하는 개념
 - ▶ 실행될 프로그램의 용량이 주기억장치의 용량보다 큰 경우 프로그램의 실행이 불가능
 - 가상기억장치를 사용하여 부족한 주기억장치의 용량을 보조기억장치가 대신

■ 가상기억장치

주기억장치 크기보다 더 큰 기억공간이 필요한 프로그램을 실행할 수 있는 방법

■ 주소 매핑

매핑

- 각 주소가 가상 주소를 주기억장치의 실제 주소로 변환하는 것
- 구분 : 페이지에 의한 매핑, 세그먼트에 의한 매핑
- ▶ 변환은 메모리 매핑 표에 의해 동적으로 동작

가상 주소(Virtual address)

- 가상기억장치에서 프로그래머에 의해쓰여진 주소
- 주소 집합: 주소공간(Address space)

물리적 주소(Physical address)

- 주기억장치의 주소
- 주소 집합: 메모리 공간(Memory space)

■ 주소 매핑

2) 주소변환 방법

- 주소변환 방법
 - ▶ 개개의 주소 단위(바이트 또는 워드)로 변환을 정의하는 것은 변환에 필요한 정보량이 많아 비효율적 ➡ 블록 단위의 변환을 정의

블록 내 변위 가상 주소의 형태 : **V = (b, d)** 블록번호

| 레이징기법 동일크기의 블록으로 구성 | 세그멘테이션 기법 서로 다른 크기의 블록으로 구성

■ 페이지와 블록

페이지 블록 • 주소 공간을 고정된 크기로 나눈 것 • 메모리 공간을 고정된 크기로 나눈 것

페이지를 사용한 매핑 방식

페이지에 대한 매핑 표를 가지고 페이지를 블록으로 변환

- 페이지에 의한 매핑
 - ▶ 보조기억장치의 페이지에 있는 프로그램이 CPU의 요구를 받을 경우 주기억장치로 이동
 - 매핑 표를 이용, 페이지의 프로그램들이 메모리 공간으로 이동

■ 페이지에 의한 매핑

- 페이지 오류(page fault) 발생
 - ▶ 가상 주소 페이지가 주기억장치에 없을 경우
 - ▶ 자주 발생하게 되면 CPU의 데이터 처리 시간보다 페이지를 교체하는데 더 많은 시간을 사용하게 되어 효과적인 데이터 처리를 할 수 없음

페이지를 사용하는 가상기억장치의 문제점 : 페이지 방식에서는 일정한 크기의 페이지를 사용하기 때문에 프로그램의 크기나 논리 구조에 많은 어려움이 발생

4) 세그먼트에 의한 매핑

- 세그먼트에 의한 매핑
 - ▶ 페이지 사용 문제점을 해결하기 위해 세그먼트라는 완전히 독립적인 주소 공간을 제공하는 방식
 - 서로 다른 세그먼트들은 서로 다른 길이를 가짐
 - 세그먼트의 길이는 실행 중에도 변할 수 있음
 - ▶ 논리 주소 : 세그먼트 프로그램에 의해서 지정되는 주소
 - ▶ 프로그래머에 의해서 프로그램을 세그먼트화 하고 다시 시스템에 의해서 페이지화

정리 하기

기억장치의 개요

✓ 기억장치 액세스의 유형

- 데이터를 액세스하는 방법: 순차적 액세스, 직접 액세스, 임의 액세스, 연관 액세스

정리 하기

반도체를 사용한 주기억장치

✓ RAM

- 주로 주기억장치로 사용됨
- 휘발성 기억장치로 전원 공급이 중단되면 기억장치 내의 데이터가 지워짐
- 종류 : DRAM, SRAM

✓ ROM

- 기억장치의 일부를 구성하며 일반적으로 바이오스에 많이 사용됨
- 전원 공급이 중단되어도 ROM에 저장된 데이터가 지워지지 않고 유지할 수 있음
- 종류 : Mask ROM, PROM, EPROM, EEPROM, 플래시 메모리 등

가상 기억장치

정리 하기

√ 개념

- 보조기억장치와 같이 기억 용량이 큰 기억장치를 마치 주기억장치처럼 사용함

