Федеральное государственное автономное образовательное учреждение высшего образовани	1Я
«Санкт-Петербургский национальный исследовательский	
университет информационных технологий, механики и оптики»	

Мегафакультет Компьютерных Технологий и Управления Дисциплина: Информатика

Лабораторная работа №7 Работа с системой компьютерной вёрстки ${\rm TEX}$

> Выполнил: Анищенко Анатолий Алексеевич Р3112

 ${
m Caнкт} ext{-}\Pi{
m e}{
m Te}{
m p}{
m fypr}$ 2018

 ${\bf M329.}$ Выпуклый пугольник помещён в квадрат со стороной 1. Докажите, что найдётся три вершины $A,\ B,\ C$ этого пугольника такие, что площадь треугольника ABC меньше $8/n^2$

Рис. 5.

Обозначим через a_1, a_2, \ldots, a_n длины сторон нашего n-угольника, через $\alpha_1, \ldots, \alpha_n$ – величины его внутренних углов. Пусть S_i – площадь i-того треугольника (со сторонами a_i и a_{i+1} – см. рисунок $5, i=1,2,\ldots,n-1$), S_n – площадь треугольника со сторонами a_n, a_1 . Имеем: $2S_i = a_i a_{i+1} \sin \alpha_i, i=1,2,\ldots,n-1,$ $2S_n = a_n a_1 \sin \alpha_n$. Пусть S – наименьшая из площадей этих треугольников. Тогда

$$2S \leqslant a_i a_{i+1} \sin \alpha_i$$

откуда

$$(2S)^n \leqslant \prod_{i=1}^n a_i^2 \prod_{i=1}^n \sin \alpha_i < \prod_{i=1}^n a_i^{2*}),$$

то есть

$$2S < \left(\prod_{i=1}^{n} a_i\right)^{2/n}$$

Но

$$\left(\prod_{i} a_{i}\right)^{\frac{1}{n}} = \sqrt[n]{a_{1} \cdot \ldots \cdot a_{n}} \leqslant \frac{a_{1} + \cdots + a_{n}}{n} * *) = \frac{\sum_{i=1}^{n} a_{i}}{n},$$

поэтому

$$2S < \left(\frac{\sum_{i=1}^{n} a_i}{n}\right)^2.$$

Пусть p_i и q_i — длины проекций i-й стороны n-угольника на вертикальную и горизонтальную стороны квадрата. Тогда $a_i \leqslant p_i + q_i$, то есть $\sum_i a_i \leqslant \sum_i p_i + \sum_i q_i \leqslant 4$

Поэтому

$$2S < \left(\frac{4}{n}\right)^2,$$

откуда

$$S < \frac{8}{n^2}.$$

Получившаяся оценка довольно груба — мы с самого начала отбросили $\prod_{i=1}^n \alpha_i$, оценив это произведение единицей. Уточним эту оценку. Имеем:

$$(2S)^n \leqslant \prod_{i=1}^n a_i^2 \cdot \prod_{i+1}^n \alpha_i,$$

то есть

$$2S \leqslant \left(\prod_{i=1}^{n} a_i\right)^{2/n} \cdot \left(\prod_{i=1}^{n} \alpha_i\right)^{1/n} \leqslant \frac{16}{n^2} \cdot \frac{\sum_{i=1}^{n} \sin \alpha_i}{n}.$$

^{*)} Здесь \prod_i – знак произведения: $\prod_{i=1}^n a_i = a_1 \cdot \ldots \cdot a_n$.

^{**)} Мы восполользовались неравенством о среднем арифмитическом и среднем геометрическом.

Так как я совсем забыл про таблицу, то я вставил её отдельно на следующей стрпнице. Заполнив её списком заданий на данную лабораторную работу.

		Задание
Номер задания	Проценты	Текст задания
Обязательно задание	<=75%	Сверстать страницу, максимально похожую на вы-
		бранную страницу из журнала «Квант».
Необязательное	+10%	Выполнение данного задания позволяет получить до
задание №1		10 дополнительных баллов.
		1. Сверстать титульный лист
		2. Создать файл main.tex, в котором будет содер-
		жаться преамбула и ссылки на 2 документа: ти-
		тульный лист и статью (ссылки создаются с по-
		мощью команды \input)
Необязательное	+15%	Выполнение данного задания позволяет получить до
задание №2		15 дополнительных баллов.
		1. Рассчитать номер варианта по следующей схе-
		ме:
		N_1 – количество букв в фамилии, N_2 – количе-
		ство букв в имени
		$Homep\ варианта = 1 + ((N_1 * N_2) \mod 8)$
		2. Выполнить задание из полученного варианта,
		используя средства L^AT_EX
		В каждом варианте указаны пакеты или классы до-
		кументов, использование которых необходимо или
		полезно для выполнения задания.

