MATH1564 K – Linear Algebra with Abstract Vector Spaces Homework 7

Due 10/30, submit to both Canvas-Assignment and Gradescope

1. Consider the subspace of \mathbb{R}^4

$$\mathcal{V} = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} : a - b + c - d = 0 \text{ and } a + d = 0 \right\}$$

of \mathbb{R}^4 .

(a) Find a basis for \mathcal{V} .

(b) Find an orthonormal basis \mathscr{C} for \mathscr{V} .

(c) Let $x = (1, 2, 3, 4)^T \in \mathbb{R}^4$. Find the orthogonal projection of x onto the space \mathcal{V} : $proj_{\mathcal{V}}x$.

(d) Find an orthonormal basis of \mathbb{R}^4 that contains the vectors from \mathscr{C} from (b).

(e) Find the matrix representation of the orthogonal projection of \mathbb{R}^4 onto the space \mathscr{V} with respect to the basis that you obtained from (d).

(f) Find the matrix representation of the orthogonal projection of \mathbb{R}^4 onto the space \mathscr{V} with respect to the standard basis of \mathbb{R}^4 .

(g) Use the answer from (f) to calculate $proj_{\psi}x$

2. Consider
$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = [v_1|v_2|v_3]$$
 with v_1, v_2, v_3 are the columns of

(i) Use Gram-Schmidt process to construct an orthogonal set $\{q_1, q_2, q_3\}$ such that for j = 1, 2, 3,

$$span\{q_1,\ldots,q_j\}=span\{v_1,\ldots,v_j\}.$$

(ii) Use the answer from (i), find r_{ij} , for $1 \le i \le j \le 3$ such that

$$v_1 = r_{11}q_1$$
, $v_2 = r_{12}q_1 + r_{22}q_2$, $v_3 = r_{13}q_1 + r_{23}q_2 + r_{33}q_3$.

(iii) Denote $Q = [q_1|q_2|q_3]$ and $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}$. Show that indeed

A = QR and ran(A) = ran(Q).

(iv) Show that $Q^TQ = I_{3\times 3}$ and $QQ^T = q_1q_1^T + q_2q_2^T + q_3q_3^T$. Therefore QQ^T is the orthogonal projection onto ran(Q) = ran(A).

(v) Let
$$b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 6 \end{pmatrix}$$
. Show that b is not in $ran(A)$.

- (vi) Find $proj_{ran(A)}b$.
- (vii) Use results from (v) show that Ax = b has no solution.
- (viii) Use (iii) and (iv) to find x_* such that $Ax_* = QQ^Tb$.
- (ix) Show that $x_* = (A^T A)^{-1} A^T b$.
- (x) Show that $||b-Ax_*|| \leq ||b-Ax||$ for any $x \in \mathbb{R}^3$. (Thus, x_* is called the least square solution of Ax = b. In elementary linear algebra text book, x_* is usually given by (viii) and not solved using (vii). However (vii) is more numerically stable than (viii) and conceptually better explained it is easier to prove (ix) using (vii); and can be readily generalized to more general setting, for example when the columns of A are not linearly independent.)