MATH 2270: Homework 8 Worksheet

due October 27, 2017

Instructions: Do the following problems on a separate sheet of paper. Show all of your work.

1. Bases in subspaces of functions:

- (a) In the vector space of all real valued functions, find a basis for the subspace H spanned by the set $\{\sin t, \sin 2t, (\cos t)(\sin t)\}$.
- (b) Consider the polynomials $p_1(t) = 1 + t^2$ and $p_2(t) = 1 t^2$. Is $\{p_1(t), p_2(t)\}$ a linearly independent set in \mathbb{P}_3 ? Why or why not?

2. Coordinate Systems:

(a) Find the coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x} relative to the basis \mathcal{B} .

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}, \vec{b}_1 = \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \vec{b}_3 = \begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix}$$

- (b) The set $\{1+t^2, t+t^2, 1+2t+t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $p(t) = 1+4t+7t^2$ relative to \mathcal{B} .
- (c) Use coordinate vectors to determine if the set of polynomials $\{1 + 2t^3, 2 + t 3t^2, -t + 2t^2 t^3\}$ is linearly independent.
- (d) Is the function $T: \mathbb{P}_3 \to \mathbb{R}^4$ defined by $T(a_3t^3 + a_2t^2 + a_1t + a_0) = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T$ a vector space isomorphism?

3. Dimension

- (a) Explain why the space \mathbb{P} of all polynomials (of any degree) is an infinite dimensional vector space.
- (b) Let V be a finite dimensional vector space. Determine if each of the following statements is true or false and justify your answer.
 - i. If there exists a set $\{\vec{v}_1,\ldots,\vec{v}_p\}$, then dim $V\leq p$.
 - ii. If there exists a linearly independent set $\{\vec{v}_1,\ldots,\vec{v}_p\}$, then dim $V \geq p$.
 - iii. If every set of p elements in V fails to span V, then $\dim V > p$.
 - iv. If every set of p elements in V is linearly dependent, then dim V > p.

4. Rank

- (a) Let $T: V \to W$ be a linear transformation and assume that $\dim V = 10$ and $\dim W = 7$.
 - i. If the dimension of ker T is 5, what is the dimension of the range of T? (Recall that the range of a linear transformation $S: V \to W$ is the set of vectors

$$\{\vec{w} \in W \mid \text{there is some } \vec{v} \in V \text{ such that } S(\vec{v}) = \vec{w}\}$$

In words, the range is the set of vectors in the codomain that are actually outputs of the function S.

- ii. If the dimension of the range of T is 4, what is the dimension of ker T?
- iii. What is the minimum possible dimension of $\ker T$?
- iv. What is the minimum possible dimension of the range of T?
- (b) Let $T: \mathbb{P}_3 \to \mathbb{R}^2$ be the linear transformation defined by $T(p(t)) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$. What is the dimension of the range of T? What is the dimension of \mathbb{P}_3 ? Without doing any further computations, determine the dimension of $\ker T$.
- (c) Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side constants? Is it possible for such a system to have a unique solution for every right-hand side? Explain.

5. Change of bases and the matrix of a linear transformation

- (a) §4.7 problem 7
- (b) §4.7 problem 9
- (c) §4.7 problem 13
- (d) Extra Credit: §4.7 problems 17 & 18 (*Use a calculator*)
- (e) **Extra Credit:** Consider the linear transformation $D: \mathbb{P}_3 \to \mathbb{P}_3$ defined by D(p) = p' + 2p (here p' is the derivative of p). Let $\mathcal{B} = \{1, t, t^2, t^3\}$ and let $\mathcal{C} = \{1, 1 + t, 1 + t + t^2, 1 + t + t^2 + t^3\}$.
 - i. Let $p(t) = -2t^3 + 3t^2 10t + 1$. Find $[p(t)]_{\mathcal{C}}$.
 - ii. For the same p(t) as in part (5(e)i), find D(p(t)).
 - iii. Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and the change of basis matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$. Hint: It's probably easier to find them both directly than it is to find one and then compute its inverse.
 - iv. What is the dimension of the image of D? What is the dimension of the kernel of D?
 - v. Find a basis for $\ker D$.
 - vi. Find the matrix for the linear transformation D with respect to the basis \mathcal{B} .
 - vii. Find the matrix for the linear transformation D with respect to the basis \mathcal{C} .