Prova scritta di Calcolo Scientifico

Udine, 22 giugno 2021

- 1. Sia $\mathcal{F}:=\mathcal{F}(2,t,e_{\max},e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi $t, e_{\text{max}}, e_{\text{min}}$ in modo che $e_{\text{max}} = e_{\text{min}}$, la precisione di macchina u sia 1/32 e realmax/realmin = 31.
 - Siano dati $x=(1.\overline{0111})_2$ e $y=(10.\overline{0111})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(+)\tilde{y}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - ullet Definisci i numeri denormalizzati per $\mathcal F$ e determina il numero denormalizzato positivo più piccolo. Giustifica la risposta.
- 2. Si vuole calcolare la funzione y = f(x).
 - Sia $f(x) = \sqrt{g(x)}$, con g funzioni reale non negativa. Determina la relazione tra il numero di condizionamento di f e quello di g. Studia il condizionamento della funzione $f(x) = \sqrt{\frac{x^2-2}{x+1}}$ con x che varia nel campo di esistenza di f.
 - Sia $p(x) = \sum_{k=0}^{n} x^k$, con n=2 e x numero di macchina. Per calcolare p(x) usa l'algoritmo di Horner e studia la stabilità.
 - Scrivi la pseudocodifica dell'algoritmo di Horner per $p(x) = \sum_{k=0}^{n} a_k x^k$, con n intero qualsiasi. Analizza la sua complessità computazionale.
- 3. Sia $f(x) = x^4 11x^2 + 18x 8$.
 - Disegna il grafico di f. Determina le radici α, β, γ con $\alpha < \beta < \gamma$ (Suggerimento: valuta f(1)).
 - Studia la convergenza del metodo di Newton ad α e a γ .
 - * Siano $z_1, z_2, z_1 < z_2$, i due punti di flesso della funzione f. Studia la convergenza del metodo di Newton a β quando $x_0 \in (z_1, z_2)$
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -5$
 - (b) $x_0 = -3$
 - (c) $x_0 = 0$
 - (d) $x_0 = 3$

Sono convergenti? Se convergenti, convergono ad α, β o a γ ? Qual è l'ordine di convergenza? Giustifica tutte le risposte.

- Sia $g(x) = x \frac{f(x)}{m}$. Considera il metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Determina m in modo che il metodo sia localmente convergente in maniera monotona a α con ordine di convergenza quadratico. La successione ottenuta con $x_0 = -3$ è convergente? Giustifica la risposta.
- Studia la convergenza locale a γ del metodo iterativo al punto precedente con m=120. La successione ottenuta con $x_0=3$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} -\alpha & -9 & \alpha \\ 2 & 3 & 4 \\ 2\alpha & 13 & 2\alpha \end{array}\right).$$

- ullet Calcola la fattorizzazione LU di A. Per quale scelta del parametri lpha esiste tale fattorizzazione?
- ullet Studia al variare di lpha il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = 4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- 5. Sia $f(x) = \log_2(1 + 4x^2)$. Dati i punti $P_0 = (-1/2, f(-1/2)), P_1 = (0, f(0)), P_2 = (1/2, f(1/2)).$
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Determina il polinomio \tilde{p} che interpola i tre punti e tale che $\tilde{p}'(0) = f'(0)$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e $P_3 = (\sqrt{3}/2, f(\sqrt{3}/2))$ nel senso dei minimi quadrati.
- * Scrivi la pseudocodifica dell'algoritmo di eliminazione di Gauss di base. Modificala per applicare la tecnica del pivot parziale.