

Hypothesis Testing: Two sample test

σ_1^2 and σ_2^2 Unknown, Assumed Unequal

Population means, independent samples σ_1^2 and σ_2^2 known σ_1^2 and σ_2^2 unknown σ_1^2 and σ_2^2 assumed equal σ_1^2 and σ_2^2 assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal

σ_1^2 and σ_2^2 Unknown: Assumed Unequal

Population means, independent samples σ_1^2 and σ_2^2 known σ_1^2 and σ_2^2 unknown σ_1^2 and σ_2^2 assumed equal σ_1^2 and σ_2^2 assumed unequal

Forming interval estimates:

- The population variances are assumed unequal, so a pooled variance is not appropriate
- Use a t value with v degrees of freedom, where

$$v = \frac{\left[\left(\frac{s_1^2}{n_1} \right) + \left(\frac{s_2^2}{n_2} \right) \right]^2}{\left(\frac{s_1^2}{n_1} \right)^2 / (n_1 - 1) + \left(\frac{s_2^2}{n_2} \right)^2 / (n_2 - 1)}$$

The test statistic for

$$\mu_1 - \mu_2$$
 is:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Where t has v degrees of freedom:
$$v = \frac{\left[(\frac{s_1^2}{n_1}) + (\frac{s_2^2}{n_2}) \right]^2}{\left(\frac{s_1^2}{n_1} \right)^2 / (n_1 - 1) + \left(\frac{s_2^2}{n_2} \right)^2 / (n_2 - 1)}$$

- Arsenic concentration in public drinking water supplies is a potential health risk.
- An article in the Arizona Republic (Sunday, May 27, 2001) reported drinking water arsenic concentrations in parts per billion (ppb) for 10 metropolitan Phoenix communities and 10 communities in rural Arizona.
- The data as shown:

Metro Phoenix		Rural Arizona	
Phoenix,	3	Rimrock,	48
Chandler,	7	Goodyear,	44
Gilbert,	25	New River,	40
Glendale,	10	Apachie Junction,	38
Mesa,	15	Buckeye,	33
Paradise Valley,	6	Nogales,	21
Peoria,	12	Black Canyon City,	20
Scottsdale,	25	Sedona,	12
Tempe,	15	Payson <i>,</i>	1
Sun City,	7	Casa Grande,	18

$$\bar{x}_1 = 12.5$$

 $s_1 = 7.63$

$$\bar{x}_1 = 27.5$$

$$s_2 = 15.3$$

We wish to determine it there is any difference in mean arsenic concentrations between metropolitan Phoenix communities and communities in rural Arizona.

- 1. The parameters of interest are the mean arsenic concentrations for the two geographic regions, say, μ_1 and μ_2 , and we are interested in determining whether $\mu_1 \mu_2 = 0$.
- 2. H_0 : $\mu_1 \mu_2 = 0$, or H_0 : $\mu_1 = \mu_2$
- 3. $H_1: \mu_1 \neq \mu_2$
- **4.** $\alpha = 0.05$ (say)
- 5. The test statistic is

$$t_0^* = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6. The degrees of freedom

$$v = \frac{\left[\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)\right]^2}{\left(\frac{s_1^2}{n_1}\right)^2 / (n_1 - 1) + \left(\frac{s_2^2}{n_2}\right)^2 / (n_2 - 1)} = \frac{\left[\left(\frac{7.63^2}{10}\right) + \left(\frac{15.3^2}{10}\right)\right]^2}{\left(\frac{7.63^2}{10}\right)^2 / (10 - 1) + \left(\frac{15.3^2}{10}\right)^2 / (10 - 1)} = 13.2 = 13$$

Therefore, using $\alpha = 0.05$, we would reject H_0 : $\mu_1 = \mu_2$ if $t_0^* > t_{0.025,13} = 2.160$ or if $t_0^* < -t_{0.025,13} = -2.160$

Computations:

$$t = \frac{(12.5 - 27.5) - 0}{\sqrt{\left(\frac{7.63^2}{10} + \frac{15.3^2}{10}\right)}} = -2.77$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion: There is evidence of a difference in means.

8. Conclusions: Because $t_0^* = -2.77 < t_{0.025,13} = -2.160$,

- Reject the null hypothesis.
- There is evidence to conclude that mean arsenic concentration in the drinking water in rural Arizona is different from the mean arsenic concentration in metropolitan Phoenix drinking water.


```
In [17]: stats.t.ppf(0.025,13) #critical t value
Out[17]: -2.160368656461013
In [18]: metro = [3,7,25,10,15,6,12,25,15,7]
    rural = [48,44,40,38,33,21,20,12,1,18]
In [20]: stats.ttest_ind(metro,rural, equal_var = False)
Out[20]: Ttest_indResult(statistic=-2.7669395785560558, pvalue=0.015827284816100885)
```


Dependent Samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$d_i = x_i - y_i$$

- Assumptions:
 - Both Populations Are Normally Distributed

Test Statistic: Dependent Samples

The test statistic for the mean difference is a t value, with n-1 degrees of freedom:

$$t = \frac{\overline{d} - D_o}{\frac{s_d}{\sqrt{n}}} \qquad \overline{d} = \frac{\sum d_i}{n} = \overline{x} - \overline{y}$$

 D_0 = hypothesized mean difference s_d = sample standard dev. of differences n = the sample size (number of pairs)

Decision Rules: Dependent Samples

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge 0$$

$$H_1$$
: $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 - \mu_2 \le 0$$

$$H_1$$
: $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$

Decision Rules: Dependent Samples

Reject H_0 if $t < -t_{n-1, \alpha}$

Reject H_0 if $t > t_{n-1, \alpha}$

Reject
$$H_0$$
 if $t < -t_{n-1,\alpha/2}$
or $t > t_{n-1,\alpha/2}$

$$t = \frac{\overline{d} - D_o}{\frac{s_d}{\sqrt{D}}}$$

Dependent Samples: Example

- An article in the Journal of Strain Analysis (1983, Vol. 18, No. 2) compares several methods for predicting the shear strength for steel plate girders.
- Data for two of these methods, the Karlsruhe and Lehigh procedures,
 when applied to nine specific girders, are shown in Table .
- We wish to determine whether there is any difference (on the average) between the two methods.

Table: Strength Predictions for Nine Steel Plate Girders (Predicted Load/Observed Load)

Girder	Karlsruhe Method	Lehigh Method	Difference dj
S11	1.186	1.061	0.119
S21	1.151	0.992	0.159
S31	1.322	1.063	0.259
S41	1.339	1.062	0.277
S51	1.200	1.065	0.138
S21	1.402	1.178	0.224
S22	1.365	1.037	0.328
S23	1.537	1.086	0.451
S24	1.559	1.052	0.507

Inferences About the Difference Between Two Population Means: Matched Samples

- 1. The parameter of interest is the difference in mean shear strength between the two methods, say, $\mu_D = \mu_1 \mu_2 = 0$.
- **2.** H_0 : $\mu_D = 0$
- 3. $H_1: \mu_D \neq 0$
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$t_0 = \frac{\overline{d}}{s_D/\sqrt{n}}$$

Inferences About the Difference Between Two Population Means: Matched Samples

- **6.** Reject H_0 if $t_0 > t_{0.025,8} = 2.306$ or if $t_0 < -t_{0.025,8} = -2.306$.
- 7. Computations: The sample average and standard deviation of the differences d_j are $\overline{d} = 0.2736$ and $s_D = 0.1356$, so the test statistic is

$$t_0 = \frac{\overline{d}}{s_D/\sqrt{n}} = \frac{0.2736}{0.1356/\sqrt{9}} = 6.05$$

8. Conclusions: Since $t_0 = 6.05 > 2.306$,

we conclude that the strength prediction methods yield different results.

The *P*-value for $t_0 = 6.05$ is P = 0.0002,


```
In [37]: KARL= [1.186,1.151,1.322,1.339,1.200,1.402,1.365,1.537,1.559]
LEH= [1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052]
```

```
In [38]: stats.ttest_rel(KARL,LEH)
```

Out[38]: Ttest_relResult(statistic=6.0819394375848255, pvalue=0.00029529546278604066)

Inferences About the Difference Between Two Population Proportions

Inferences About the Difference Between Two Population Proportion

Inferences About the Difference Between **Two Population Proportions**

- Interval Estimation of $p_1 p_2$
- Hypothesis Tests About $p_1 p_2$

Sampling Distribution of \overline{p}_1 - \overline{p}_2

Expected Value

$$E(\overline{p}_1 - \overline{p}_2) = p_1 - p_2$$

Standard Deviation (Standard Error)

$$\sigma_{\bar{p}_1 - \bar{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

where: n1 = size of sample taken from population 1 n2 = size of sample taken from population 2

Sampling Distribution of \overline{p}_1 - \overline{p}_2

- If the sample sizes are large, the sampling distribution of $\overline{p_1}$ $\overline{p_2}$ can be approximated by a normal probability distribution.
- The sample sizes are sufficiently large if all of these conditions are met:

$$n_1p_1 \ge 5$$

$$n_1(1-p_1) \ge 5$$

$$n_2p_2 \ge 5$$

$$n_2(1-p_2)\geq 5$$

Sampling Distribution of $\overline{p_1}$ - $\overline{p_2}$

Interval Estimation of p_1 - p_2

Interval Estimation

$$\overline{p}_1 - \overline{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\overline{p}_1(1-\overline{p}_1)}{n_1} + \frac{\overline{p}_2(1-\overline{p}_2)}{n_2}}$$

Point Estimator of the Difference Between Two Population Proportions

- p1 = proportion of the population of households "aware"
 of the product after the new campaign
- p2 = proportion of the population of households "aware" of the product before the new campaign
- $\overline{p_1}$ = sample proportion of households "aware" of the product after the new campaign
- $\overline{p_2}$ = sample proportion of households "aware" of the product before the new campaign

$$\overline{p}_1 - \overline{p}_2 = \frac{120}{250} - \frac{60}{150} = .48 - .40 = .08$$

Hypothesis Tests about $p_1 - p_2$

Hypothesis

We focus on tests involving no difference between the two population proportions (i.e. $p_1 = p_2$)

$$H_0: p_1 - p_2 \ge 0$$
 $H_0: p_1 - p_2 \le 0$ $H_0: p_1 - p_2 = 0$ $H_a: p_1 - p_2 \ne 0$ $H_a: p_1 - p_2 \ne 0$ Left-tailed Right-tailed Two-tailed

Hypothesis Tests about $p_1 - p_2$

• Standard Error of $\overline{p_1}$ - $\overline{p_2}$ when $p_1 = p_2 = p$

$$\sigma_{\bar{p}_1 - \bar{p}_2} = \sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

• Pooled Estimator of p when $p_1 = p_2 = p$

$$\overline{p} = \frac{n_1 \overline{p}_1 + n_2 \overline{p}_2}{n_1 + n_2}$$

Hypothesis Tests about $p_1 - p_2$

Test Statistic

$$z = \frac{(\overline{p}_1 - \overline{p}_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Problem: Hypothesis Tests about $p_1 - p_2$

- Extracts of St. John's Wort are widely used to treat depression.
- An article in the April 18, 2001 issue of the Journal of the American Medical Association ("Effectiveness of St. John's Worton Major Depression: A Randomized Controlled Trial") compared the efficacy of a standard extract of St. John's Wort with a placebo in 200 outpatients diagnosed with major depression.
- Patients were randomly assigned to two groups; one group received the St. John's Wort, and the other received the placebo.
- After eight weeks, 19 of the placebo-treated patients showed improvement, whereas 27 of those treated with St. John's Wort improved.
- Is there any reason to believe that St. John's Wort is effective in treating major depression? Use 0.05.

Problem: Hypothesis Tests about $p_1 - p_2$

- 1. The parameters of interest are p_1 and p_2 , the proportion of patients who improve following treatment with St. John's Wort (p_1) or the placebo (p_2) .
- **2.** H_0 : $p_1 = p_2$
- 3. $H_1: p_1 \neq p_2$
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$z_0 = rac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}(1-\widehat{p})igg(rac{1}{n_1} + rac{1}{n_2}igg)}}$$

where $\hat{p}_1 = 27/100 = 0.27, \hat{p}_2 = 19/100 = 0.19, n_1 = n_2 = 100, \text{ and}$

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{19 + 27}{100 + 100} = 0.23$$

Problem: Hypothesis Tests about $p_1 - p_2$

- **6.** Reject H_0 : $p_1 = p_2$ if $z_0 > z_{0.025} = 1.96$ or if $z_0 < -z_{0.025} = -1.96$.
- 7. Computations: The value of the test statistic is

$$z_0 = \frac{0.27 - 0.19}{\sqrt{0.23(0.77)\left(\frac{1}{100} + \frac{1}{100}\right)}} = 1.35$$

8. Conclusions: Since z_0 1.35 does not exceed z 0.025, we cannot reject the null hypothesis.

The *P*-value is $P \cong 0.177$. There is insufficient evidence to support the claim that St. John's Wort is effective in treating major depression.


```
In [29]:
         import math
         def two_samp_proportion(p1,p2,n1,n2):
             p_{pool} = ((p1*n2)+(p2*n1))/(n1+n2)
             x = (p_pool*(1-p_pool)*((1/n1)+(1/n2)))
             s = math.sqrt(x)
             z = (p1- p2)/s
             if (z < 0):
                 p_val = stats.norm.cdf(z)
             else:
                 p_val = 1 - stats.norm.cdf(z)
             return z, p_val*2
In [30]: two_samp_proportion(0.27,0.19,100,100)
Out[30]: (1.3442056254198995, 0.17888190308175567)
In [27]: | stats.norm.cdf(1.3442056254198995)
Out[27]: 0.9105590484591222
```


Thank You

