Big Data Analytics-Selected Topics (60-475)

Frequent Itemset Mining and Association Rules

Lecture 3

School of Computer Science Faculty of Science University of Windsor

> Dr. Mehdi Kargar Winter 2017

1

Big Data Analytics

Outline

- In last lecture, we defined frequent itemsets and association rules
 - {Milk} --> {Coke}
 - {Diaper, Milk} --> {Beer}
- In this lecture, we see algorithms for finding frequent itemsets

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

- Can we do it **recursively**?

sets of size k

3

Items are positive

integers

Big Data Analytics

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes – all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - What happens if we don't have enough space to keep all pairs?
 - Swapping between main memory and disk is a disaster (why?)

5

Big Data Analytics

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items {i, j}
 - Why? Frequent pairs are common, frequent triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would **only** like to count (keep track of) those itemsets that in the end turn out to be **frequent**

How to keep the count of pairs?

- First, convert items to integers
 - We can do this using a hash table
 - We assume our items are numbered from 1 to n
 - Assume Beer is mapped to 5 and Milk is mapped to 71
- Then, next step is how to **keep the counts** of the number of times that each pair {i, j} is appeared in all baskets
 - {5, 71} has appeared in 56,000 baskets

Naïve approach

- Use a two dimensional array a[i,j], and assume i < j
 - What is wrong with this method?!
 - Remember we may have 100,000 items

-

Big Data Analytics

Two approaches for counting pairs in memory

- Approach 1: Count all pairs using a one dimensional triangular array
 - We store in a[k], the count for pair $\{i,j\}$, with $1 \le i < j \le n$
 - k = (i 1)(n i/2) + j i
- Approach 2: Keep triples [i, j, c] as:
 - The count of the pair of items $\{i, j\}$ is c. We only keep count if c > 0
 - We need a **hash table** with **i** and **j** as search key to **quickly** find [i, j, c]
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hash table

Note

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

University of Windsor **Big Data Analytics**

Comparing the two approaches

- Approach 1: Triangular Matrix
 - **n** = total number items
 - Count pair of items {i, j} only if i<j
 - Keep pair counts in lexicographic order:
 - $\{1,2\}$, $\{1,3\}$,..., $\{1,n\}$, $\{2,3\}$, $\{2,4\}$,..., $\{2,n\}$, $\{3,4\}$,...
 - Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-1
 - Total number of pairs $\binom{n}{2}$; total bytes = $2n^2$
 - Note: we approximate $\binom{n}{2} = \frac{n^2}{2}$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair
 - (but only for pairs with count > 0)
- Approach 2 beats Approach 1 if less than 1/3 of possible pairs actually occur

.0

Now, the main challenge is how to find (count) frequent pairs efficiently?

11

Big Data Analytics

Naïve approach for finding frequent pairs

- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of m items, generate its m(m-1)/2
 pairs by two nested loops
- Naïve approach fails if (#items)² exceeds main memory
 - Even if we use the two efficient approaches for keeping the counts
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - ullet Therefore, $2*10^{10}$ (20 gigabytes) of memory needed!
 - For only 100,000 items

Can we do better?!

A-Priori Algorithm

13

University of Windsor **Big Data Analytics**

A-Priori Algorithm - (1)

 A two-pass approach called A-Priori limits the need for main memory

- Key idea: monotonicity
 - If a set of items \boldsymbol{I} appears at least \boldsymbol{s} times, so does every subset \boldsymbol{J} of \boldsymbol{I}
- Contrapositive for pairs:
 If item i does not appear in s baskets, then no pair including i can appear in s baskets
- So, how does A-Priori find frequent pairs?

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items not (#items)²
- Items that appear $\geq s$ times are the frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Example

- Hypothetical steps of the A-Priori algorithm
 - $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \} \}$
 - Count the support of itemsets in C₁
 - Prune non-frequent: $L_1 = \{ b, c, j, m \}$
 - Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
 - Count the support of itemsets in C₂
 - Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
 - Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
 - Count the support of itemsets in C₃
 - Prune non-frequent: L₃ = { {b,c,m} }

19

Big Data Analytics

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory
- Many possible extensions:
 - Association rules with intervals:
 - For example: Men over 65 have 2 cars
 - Association rules when items are in a taxonomy
 - Bread, Butter → FruitJam
 - BakedGoods, MilkProduct → PreservedGoods
 - Lower the support s as itemset gets bigger

^{**}Note: here we generate new candidates by generating C_k from L_{k-1} and L_1 . But that one can be more careful with candidate generation. For example, in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent

Quiz I

- Suppose there are 100,000 items, and 10,000,000 baskets of 10 items each
- Assume that we have the extreme case in which every pair of items appeared only once
- Which method is better to store the pairs of items in main memory?
 - one dimensional triangular array OR
 - triples [i, j, c]
- · Assume all items are stored as integers

21

Big Data Analytics

Answer to Quiz I

- · One dimensional triangular array:
 - We need to store $\binom{100,000}{2}$ = 5 × 10⁹ integers
 - Note: we approximate $\binom{n}{2} = \frac{n^2}{2}$
- Total number of pairs among all the baskets:
 - $-10^{7}\binom{10}{2} = 4.5 \times 10^{8}$
 - Thus, the maximum number of nonzero pairs (in the extreme case in which every pair of items appeared only once) is 4.5×10^8
- Triples [i, j, c]:
 - Maximum number of non-zero pairs is 4.5×10^8
 - We need three times this number for the triples method: 1.35 × 10⁹
- The winner is Triples!

Quiz II

- Compute frequent **pairs** for the baskets below with Apriori Algorithm
- -Assume threshold s = 3
 - a) {1, 2, 4, 5, 8, 9}
 - b) {1, 4, 7, 8, 9}
 - c) {1, 2, 5, 9}
 - d) {1, 2, 5, 7, 8}
 - e) {1, 2, 8, 10}

Big Data Analytics CSCI 4030

23

Big Data Analytics

Answer to Quiz II

- Compute frequent pair for the baskets below with Apriori Algorithm. Assume threshold s = 3.
 - a) {1, 2, 4, 5, 8, 9}
 - b) {1, 4, 7, 8, 9}
 - c) {2, 5, 6, 9}
 - d) {1, 2, 3, 7, 8}
 - e) {1, 2, 8, 10}
- Answer:
 - Pass 1:
 - Frequent items with count greater or equal 3 are: 1, 2, 8, 9
 - Pass 2:
 - Frequent pairs among frequent items are: {1,2}, {1,8}, {2,8}