EIGENVALUES AND EIGENVECTORS

ELECTRONIC VERSION OF LECTURE

HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics

HCMC — 2021.

OUTLINE

- 1 THE REAL WORLD PROBLEMS
- 2 EIGENVALUES AND EIGENVECTORS OF A MATRIX
- 3 DIAGONALIZATION
- MATLAB

MODELLING MOTION

 $\triangle PQR \rightarrow \triangle P'Q'R'$ is the

reflection over the x-axis.

 $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the reflection matrix. Therefore, for every point in the plane (x_1, x_2) , the matrix that results in a reflection over the x-axis and then we obtain a new point in the plane (y_1, y_2)

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} x_1 \\ -x_2 \end{array}\right)$$

Question: For every point (x_1, x_2) , find

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A^k \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, (k \in \mathbb{N}).$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, u = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \text{ We have}$$

$$A \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{ and } A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -1. \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

EIGENVALUES AND EIGENVECTORS OF A MATRIX

DEFINITION 2.1

If A is an $n \times n$ matrix, then a nonzero vector $X \in \mathbb{R}^n$, $X \neq 0$ is called an eigenvector of A if $AX = \lambda X$ for some scalar λ . The scalar λ is called an **eigenvalue** of A and X is said to be an eigenvector corresponding to λ .

Example 2.1

Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

The equation $AX = \lambda X$ can be rewritten as

$$(A - \lambda I)X = 0$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

This homogeneous linear system has non-zero solution $X \neq 0$, thus

$$\begin{vmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 1 = 0$$
$$\Leftrightarrow \lambda_1 = -1, \lambda_2 = 1.$$

In the case where $\lambda_1 = -1$, we have

$$\begin{cases} 2x_1 + 0x_2 = 0 \\ 0x_1 + 0x_2 = 0 \end{cases} \Leftrightarrow x_1 = 0, x_2 = \alpha.$$

Therefore, the eigenvectors corresponding to $\lambda_1 = -1$ are $\alpha(0,1)$, $\alpha \neq 0$.

In the case where $\lambda_2 = 1$. We have

$$\begin{cases} 0x_1 + 0x_2 = 0 \\ 0x_1 - 2x_2 = 0 \end{cases} \Leftrightarrow x_1 = \beta, x_2 = 0.$$

Therefore, the eigenvectors corresponding to $\lambda_2 = 1$ are $\beta(1,0), \beta \neq 0$.

EXAMPLE 2.2

Find eigenvalues and eigenvectors of
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

 $AX = \lambda X$ can be rewritten

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 - \lambda & 2 \\ -2 & 1 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

This homogeneous linear system has non-zero solution $X \neq 0$, thus

$$\begin{vmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} = 0 \Leftrightarrow (1-\lambda)^2 + 4 = 0$$
$$\Leftrightarrow \lambda_{1,2} = 1 \pm 2i.$$

In the case where $\lambda_1 = 1 + 2i$. We have

$$\begin{cases} -2ix_1 + 2x_2 = 0 \\ -2x_1 - 2ix_2 = 0 \end{cases} \Leftrightarrow x_1 = \alpha, x_2 = \alpha i.$$

Therefore, the eigenvectors corresponding to λ_1 are $\alpha(1,i), \alpha \neq 0$.

In the case where $\lambda_2 = 1 - 2i$. We have

$$\begin{cases} 2ix_1 + 2x_2 = 0 \\ -2x_1 + 2ix_2 = 0 \end{cases} \Leftrightarrow x_1 = \beta, x_2 = -\beta i.$$

Therefore, the eigenvectors corresponding to λ_2 are $\beta(1,-i), \beta \neq 0$.

If λ is an eigenvalue of $A \Leftrightarrow \exists X \neq 0 : AX = \lambda . X$ $\Leftrightarrow AX - \lambda X = 0 \Leftrightarrow (A - \lambda I) . X = 0$.

This homogeneous linear system has non-zero solution $X \neq 0$, thus $det(A - \lambda I) = 0$

DEFINITION 2.2

If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if $\chi_A(\lambda) = \det(A - \lambda I) = 0$. This is called the characteristic equation of A. The polynomial $\chi_A(\lambda) = \det(A - \lambda I)$ is called the characteristic polynomial.

FINDING EIGENVALUES AND EIGENVECTORS OF A SQUARE MATRIX

- **STEP 1**. Finding the characteristic equation $det(A \lambda I) = 0$.
- **STEP** 2. Solving this equation to find eigenvalues.
- **STEP 3.** For every eigenvalue λ_i , solve the homogeneous system $(A \lambda_i I)X = 0$ to find eigenvectors X corresponding to the eigenvalue λ_i .

THEOREM 2.1

$$If A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right), then$$

$$\chi_{A}(\lambda) = |A - \lambda I| = -\lambda^{3} + tr(A)\lambda^{2} - \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}\right)\lambda + det(A)$$

where $tr(A) = a_{11} + a_{22} + a_{33}$ is called the trace of A.

DEFINITION 2.3

The eigenvetors corresponding to the eigenvalue λ , together with the zero vector, form the null space of the matrix $(A - \lambda I)$. This subspace is called the eigenspace corresponding to the eigenvalue λ .

DEFINITION 2.4

If λ_0 is an eigenvalue of an $n \times n$ matrix A, then the dimension of the eigenspace corresponding to λ_0 is called the **geometric multiplicity** of λ_0 , and the number of times that $\lambda - \lambda_0$ appears as a factor in the characteristic polynomial of A is called the **algebraic multiplicity** of λ_0 .

THEOREM 2.2

For every eigenvalue of A, the geometric multiplicity \leq the algebraic multiplicity.

EXAMPLE 2.3

$$Let A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{array}\right)$$

- Find the characteristic polynomial of A
- Find eigenvalues and eigenvectors of A

1. The characteristic polynomial of *A*

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 10\lambda^2 - 28\lambda + 24 = -(\lambda - 2)^2(\lambda - 6)$$

2. The characteristic equation of *A*

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 0$$

In the case where $\lambda_1 = 2$, we have

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + 2x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

$$\Rightarrow X_1 = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \alpha^2 + \beta^2 \neq 0.$$

The algebraic multiplicity of $\lambda_1 = 2$ is 2 and the geometric multiplicity of $\lambda_1 = 2$ is 2.

In the case where $\lambda_2 = 6$, we have

The electronic multiplicity of
$$\lambda_2 = 0$$
, we have
$$\begin{cases}
-3x_1 + x_2 + x_3 = 0 \\
2x_1 - 2x_2 + 2x_3 = 0 \Rightarrow X_2 = \gamma \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \gamma \neq 0.
\end{cases}$$

The algebraic multiplicity of $\lambda_2 = 6$ is 1 and the geometric multiplicity of $\lambda_2 = 6$ is 1.

DEFINITION 3.1

If A and B are square matrices, then we say that B is similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

DEFINITION 3.2

A square matrix A is said to be **diagonalizable** if it is similar to some diagonal matrix D, that is, if there exists an invertible matrix S such that $S^{-1}AS = D$. In this case the matrix S is said to **diagonalize** A.

We have $S^{-1}AS = D = dig(\lambda_1, \lambda_2, ..., \lambda_n)$. It follows that AS = SD

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$S = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1n} \\ s_{21} & s_{22} & \dots & s_{2n} \\ \dots & \dots & \dots & \dots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{pmatrix} = \begin{pmatrix} S_{*1} & S_{*2} & \dots & S_{*n} \end{pmatrix}$$

$$AS = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1n} \\ s_{21} & s_{22} & \dots & s_{2n} \\ \dots & \dots & \dots & \dots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{pmatrix}$$

$$= A(S_{*1} S_{*2} \dots S_{*n}) = (AS_{*1} AS_{*2} \dots AS_{*n})$$

$$SD = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1n} \\ s_{21} & s_{22} & \dots & s_{2n} \\ \dots & \dots & \dots & \dots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 S_{*1} & \lambda_2 S_{*2} & \dots & \lambda_n S_{*n} \end{pmatrix}$$

Therefore,

$$(AS)_{*i} = AS_{*i} = (SD)_{*i} = \lambda_i S_{*i}, (i = 1, 2, ..., n).$$

So, S_{*i} is the eigenvector corresponding to eigenvalue $\lambda_i (i = 1, 2, ..., n)$ of A.

Form the matrix S whose column vectors are the n basis eigenvectors of A.

EXAMPLE 3.1

Let
$$A = \begin{pmatrix} 15 & -18 & -16 \\ 9 & -12 & -8 \\ 4 & -4 & -6 \end{pmatrix}$$
. Find a matrix S that diagonalizes A .

Step 1. Find eigenvalues, eigenvectors of *A*.

$$\chi_{A}(\lambda) = |A - \lambda I| = \begin{vmatrix} 15 - \lambda & -18 & -16 \\ 9 & -12 - \lambda & -8 \\ 4 & -4 & -6 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -(\lambda + 3)(\lambda + 2)(\lambda - 2) = 0 \Leftrightarrow \lambda_{1} = -3 \text{ (AM=1)}, \lambda_{2} = -2$$

$$(AM=1), \lambda_{3} = 2 \text{ (AM=1)}.$$

In the case where
$$\lambda_1 = -3$$
 (AM=1), we have
$$\begin{cases}
18x_1 - 18x_2 - 16x_3 = 0 \\
9x_1 - 9x_2 - 8x_3 = 0 \\
4x_1 - 4x_2 - 3x_3 = 0
\end{cases} \Rightarrow X_1 = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \alpha \neq 0.$$

In the case where
$$\lambda_2 = -2$$
 (AM=1), we have
$$\begin{cases}
17x_1 - 18x_2 - 16x_3 = 0 \\
9x_1 - 10x_2 - 8x_3 = 0 \Rightarrow X_2 = \beta \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \beta \neq 0. \\
4x_1 - 4x_2 - 4x_3 = 0
\end{cases}$$

In the case where $\lambda_3 = 2$ (AM=1), we have $\begin{cases} 13x_1 - 18x_2 - 16x_3 = 0 \\ 9x_1 - 14x_2 - 8x_3 = 0 \\ 4x_1 - 4x_2 - 8x_3 = 0 \end{cases} \Rightarrow X_3 = \gamma \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}, \gamma \neq 0.$

Step 2. Find a matrix *S* that diagonalizes *A*.

$$S = \left(\begin{array}{ccc} 1 & 2 & 4 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{array}\right)$$

Then
$$S^{-1}AS = D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

COMPUTING POWERS OF A MATRIX

Suppose *A* is diagonalizable, that is

$$S^{-1}AS = D = dig(\lambda_1, \lambda_2, ..., \lambda_n)$$

$$\Rightarrow (S^{-1}AS)^k = D^k, k \in \mathbb{N}$$

$$\Rightarrow S^{-1}A(S.S^{-1})AS....S^{-1}AS = S^{-1}A^kS = D^k$$

$$\Rightarrow A^k = SD^kS^{-1}.$$

Therefore,

$$A^{k} = S \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n}^{k} \end{pmatrix} S^{-1}$$

EXAMPLE 3.2

Let
$$A = \begin{pmatrix} 0 & -8 & 6 \\ -1 & -8 & 7 \\ 1 & -14 & 11 \end{pmatrix}$$
. Find $A^k, k \in \mathbb{N}$.

$$\chi_{A}(\lambda) = |A - \lambda I| = \begin{vmatrix}
-\lambda & -8 & 6 \\
-1 & -8 - \lambda & 7 \\
1 & -14 & 11 - \lambda
\end{vmatrix} = 0$$

$$\Leftrightarrow -(\lambda - 2)(\lambda + 2)(\lambda - 3) = 0 \Leftrightarrow \lambda_{1} = -2 \text{ (AM=1)}, \lambda_{2} = 2$$

$$(AM=1), \lambda_{3} = 3 \text{ (AM=1)}.$$

In the case where
$$\lambda_1 = -2$$
 (AM=1), we have
$$\begin{cases} 2x_1 - 8x_2 + 6x_3 = 0 \\ -x_1 - 6x_2 + 7x_3 = 0 \end{cases} \Rightarrow X_1 = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha \neq 0.$$
$$x_1 - 14x_2 + 13x_3 = 0$$

In the case where
$$\lambda_2 = 2$$
 (AM=1), we have
$$\begin{cases}
-2x_1 - 8x_2 + 6x_3 = 0 \\
-x_1 - 10x_2 + 7x_3 = 0
\end{cases} \Rightarrow X_2 = \beta \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta \neq 0.$$

In the case where
$$\lambda_3 = 3$$
 (AM=1), we have
$$\begin{cases}
-3x_1 - 8x_2 + 6x_3 = 0 \\
-x_1 - 11x_2 + 7x_3 = 0 \Rightarrow X_3 = \gamma \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, \gamma \neq 0.
\end{cases}$$

A matrix *S* that diagonalizes *A* is $S = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix}$

$$\Rightarrow S^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}, D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$
Therefore,

$$A^{k} = SD^{k}S^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} (-2)^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 3^{k} \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}$$

THEOREM 3.1

The square matrix A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.

EXAMPLE 3.3

Let
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -2 & 0 & -1 \end{pmatrix}$$
. Diagonalize A if A is diagonalizable.

Step 1. Find eigenvalues, eigenvectors of *A*.

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 1 & 1 - \lambda & 1 \\ -2 & 0 & -1 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -\lambda(\lambda-1)^2=0$$

$$\Leftrightarrow \lambda_1 = 0 \text{ (AM=1)}, \lambda_2 = 1 \text{ (AM=2)}.$$

In the case where $\lambda_1 = 0$ (AM=1), we have $\begin{cases} 2x_1 + x_3 &= 0 \\ x_1 + x_2 + x_3 &= 0 \\ -2x_1 - x_3 &= 0 \end{cases} \Rightarrow X_1 = \alpha \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \alpha \neq 0.$

In the case where $\lambda_2 = 1$ (AM=2), we have

$$\begin{cases} x_1 + x_3 &= 0 \\ x_1 + x_3 &= 0 \\ -2x_1 - 2x_3 &= 0 \end{cases}$$

$$\Rightarrow X_2 = \begin{pmatrix} \alpha \\ \beta \\ -\alpha \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \alpha^2 + \beta^2 \neq 0.$$

Step 2. The matrix that diagonalizes *A* is

$$S = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix}$$
Then $S^{-1} = \begin{pmatrix} -1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$

$$D = S^{-1}AS = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

EXAMPLE 3.4

$$Let A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix}. Diagonalize A if A is diagonalizable.$$

Step 1. Find eigenvalues, eigenvectors of *A*.

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -(\lambda - 4)(\lambda - 2)^2 = 0$$

$$\Leftrightarrow \lambda_1 = 4 \text{ (AM=1)}, \lambda_2 = 2 \text{ (AM=2)}.$$

In the case where $\lambda_1 = 4$ (AM=1), we have

$$\begin{cases}
-2x_1 &= 0 \\
x_1 - 2x_3 &= 0
\end{cases} \Rightarrow X_1 = \alpha \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \alpha \neq 0.$$

In the case where $\lambda_2 = 2$ (AM=2), we have

$$\begin{cases} 2x_2 = 0 \\ x_1 = 0 \end{cases} \Rightarrow X_2 = \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \beta \neq 0.$$

Step 2. Since the algebraic multiplicity =2> geometric multiplicity=1 then *A* is not diagonalizable.

ORTHOGONAL DIAGONALIZATION

DEFINITION 3.3

A square matrix A is said to be symmetric if $A = A^T$ or equivalently if $A = (a_{ij})_n$ then $a_{ij} = a_{ji}, \forall i, j = 1, 2, ..., n$.

THEOREM 3.2

If A is a **symmetric** matrix with real entries, then the eigenvalues λ of A are all real numbers and eigenvectors from different eigenspaces are orthogonal.

DEFINITION 3.4

A square matrix P is said to be **orthogonal** if its transpose is the same as its inverse, that is, if $P^T = P^{-1}$, or equivalently, if $PP^T = P^TP = I$.

THEOREM 3.3

If A is a symmetric matrix with real entries, then there exists the orthogonal matrix P such that $P^{T}AP = P^{-1}AP$ is diagonal.

ORTHOGONAL DIAGONALIZATION

- **Step 1.** Find the eigenvalues.
- **Step 2.** Find a basis for each eigenspace.
- **Step 3.** Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace.
- **Step 4.** Form the matrix *P* whose comlumns are the vectors constructed in Step 3. The eigenvalues on the diagonal of $D = P^T A P$ will be the same order as their corresponding eigenvectors in *P*.

EXAMPLE 3.5

Orthogonally diagonalize the matrix

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

Step 1. Find eigenvalues of *A*.

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 2 - \lambda & -1 & -1 \\ -1 & 2 - \lambda & -1 \\ -1 & -1 & 2 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -\lambda(\lambda-3)^2 = 0$$

$$\Leftrightarrow \lambda_1 = 0$$
, (AM=1) $\lambda_2 = 3$ (AM=2).

Step 2, 3. In the case where $\lambda_1 = 0$ (AM=1), we have

$$\begin{cases} 2x_1 - x_2 - x_3 &= 0 \\ -x_1 + 2x_2 - x_3 &= 0 \\ -x_1 - x_2 + 2x_3 &= 0 \end{cases} \Rightarrow X_0 = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha \neq 0.$$

Therefore,
$$P_{*1} = \frac{X_0}{||X_0||} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

In the case where $\lambda_2 = 3$ (AM=2), we have

$$\begin{cases}
-x_1 - x_2 - x_3 &= 0 \\
-x_1 - x_2 - x_3 &= 0 \\
-x_1 - x_2 - x_3 &= 0
\end{cases}$$

$$\Rightarrow X = \begin{pmatrix} -\alpha - \beta \\ \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \alpha^2 + \beta^2 \neq 0.$$

Applying the Gram-Shmidt process, yields the orthogonal eigenvectors $B = \{y_1, y_2\}$.

$$y_1 = X_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, y_2 = X_2 - \frac{\langle X_2, y_1 \rangle}{\langle y_1, y_1 \rangle} y_1 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

Normalize the orthogonal basis to obtain

$$P_{*2} = \frac{y_1}{||y_1||} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \text{ and } P_{*3} = \frac{y_2}{||y_2||} = \begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}$$

Step 4. The matrix that orthogonally diagonalizes *A*

is
$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$$

Then $D = P^T A P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

MATLAB

- Finding the characteristic polynomial of A:p = poly(A)
- Finding the roots of characteristic equation of A: roots(p)
- **3** Finding eigenvalues and eigenvectors of of A: [V, D] = eig(A)

THANK YOU FOR YOUR ATTENTION