

A novel Deep Neural Network architecture for non-linear system identification

Luca Zancato, Alessandro Chiuso

University of Padova

DEPARTMENT OF INFORMATION ENGINEERING

Problem

What:

Non-linear system identification with parametric models: Deep Neural Networks

Challenges:

- Overfitting
- Interpretability

How:

- Inductive bias (on the architecture)
- Regularization (on the loss function)
- Differentiable automatic complexity selection based on available data
- Optimize model and regularization loss with standard Deep Learning primitives

Why:

DNNs are universal approximators

DNNs Loss Landscape [1]

Favorably scales on the large data regime

Notation

One-step-ahead predictor

Goal

Find: $\hat{F} \approx F_0$ given N data from the true system

Remark: F_0 depends on z_t^- (infinite past)

(1)
$$\hat{F} = \arg \min_{F \in \mathcal{F}} \frac{1}{N} \sum_{t=1}^{N} (y_t - F(z_t^-))^2 + (\lambda P(F))$$

Where \mathscr{F} is the model class and P(F) is a penalty function

Modeling assumption

fading memory systems can be uniformly approximated on compact sets

We shall consider Neural Networks model class (universal approximators)

Remark:

Fading memory $\Longrightarrow F_0(z_t^-) \approx F_0(\varphi_{t,T}(z))$

where $\phi_{tT}(z)$ is a finite (length T) yet arbitrarily long window of past data w.r.t. t

Approach

Fading Memory network architecture

We design a block-structured architecture to encode fading memory [2]

Remark: n_B large enough to capture the true memory and should **not** be chosen to face a bias-variance trade-off

Fading Regularization

Model structure design:

- How to choose the number of blocks n_R ?
- Automatically choose the <u>right complexity</u> so that only <u>relevant past</u> is considered?

Solution:

Fading Regularization: "large enough" n_R (larger than the true memory) and automatically select the best model complexity to avoid overfitting.

Joint posterior optimization

In a Bayesian setting the optimal parameter set is obtained through maximum a-posteriori:

(3)
$$\hat{\theta}, \hat{\mathbf{W}}, \hat{\lambda}, \hat{\kappa} = \arg \min_{\theta, \mathbf{W}, \lambda \in (0,1), \kappa > 0} \frac{\left| |Y - \hat{Y}_{\theta, \mathbf{W}}| \right|^2}{\eta^2} + \log(\eta^2) - \log(p(\mathbf{W})) - \log(p_{\lambda, \kappa}(\theta))$$

Proposition 1: The following is an upper bound on the marginal log likelihood associated to the posterior in equation (3) with marginalization taken only w.r.t. θ :

(4)
$$\mathcal{U} := \frac{1}{\eta^2} ||Y - \hat{Y}_{\theta, \mathbf{W}}||^2 + \theta^{\mathsf{T}} \Lambda^{-1} \theta + \log p(\mathbf{W}) + \log |F_{\mathbf{W}} \Lambda F_{\mathbf{W}}^{\mathsf{T}} + \eta^2 I|$$

Experiments

Fading DNN vs Plain DNN: Box plots obtained from 20 independent runs with N=10k. The closer to the dashed line the better.

Models N = 100kN = 400N = 1000N = 10kTrain Test Train Test Train Test GP model from Pillonetto $oxed{0.14} \quad 0.27 \quad 0.13 \quad 0.19 \quad 0.14 \quad 0.17$ et al.² $0.02 \quad 0.49 \mid 0.03 \quad 0.45 \mid 0.07 \quad 0.23 \mid 0.12 \quad 0.20$ Our architecture w/o SO regularization Our complete architecture $oxed{0.10}$ $oxed{0.32}$ $oxed{0.15}$ $oxed{0.15}$ $oxed{0.16}$ $oxed{0.17}$ $oxed{0.15}$ $oxed{0.15}$

Effects of window's length: Box plots

obtained from 20 independent runs with N=10k

on System 4

Comparison with SOTA: optimal innovation variance: $\eta^2 = 0.14$

Take-Home Message

- Block-structured architecture
- 2. Regularization for automatic complexity selection

Block's relevance during optimization.

3. Over-parametrized vs non-parametric models: good in mid-large data

[2] Pillonetto et al. A New Kernel-Based Approach for Nonlinear System Identification, IEEE Transactions on Automatic Control, 2011

