COMP9024: Data Structures and **Algorithms**

Week Seven: Priority Queues

Hui Wu

Session 1, 2015 http://www.cse.unsw.edu.au/~cs9024

Outline Priority Queues Heaps Adaptable Priority Queues

Priority Queues

Priority Queue ADT

- A priority queue stores a collection of entries.
- Each **entry** is a pair (key, value).
- Main methods of the Priority Queue ADT:
 - insert(k, x)
 Inserts an entry with key k and value x.
 - removeMin()
 Removes and returns the entry with smallest key.
- Additional methods
 - min()
 returns, but does not
 remove, an entry with
 smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers Auctions

 - Stock market

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct entries in a priority queue can have the same key.
- Mathematical concept of total order relation \leq
 - Reflexive property: $x \leq x$
 - Antisymmetric property: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive property: $x \le y \land y \le z \Longrightarrow x \le z$

Entry ADT

- An entry in a priority queue is simply a keyvalue pair.
- Priority queues store entries to allow for efficient insertion and removal based on keys.
 - Methods:
 - key(): returns the key for this entry.
 - value(): returns the value associated with this entry.
- As a Java interface:
 - * Interface for a key-value * pair entry
 - public interface Entry { public Object key(); public Object value();

A comparator encapsulates the action of comparing two objects according to a given total order relation. A generic priority queue uses an auxiliary comparator. The comparator is external to the keys being compared When the priority queue needs to compare two keys, it uses its comparator.

- The primary method of the Comparator ADT:
 - compare(a, b): Returns an integer i such that i
 0 if a < b, i = 0 if a = b, and i > 0 if a > b; aerror occurs if a and b cannot be compared.

Priority Queue Sorting Algorithm PQ-Sort(S, C) We can use a priority Input sequence S, comparator Cqueue to sort a set of comparable elements: for the elements of S Insert the elements one by one with a series of insert operations. Output sequence S sorted in increasing order according to ${\it C}$ $\{ P = \text{priority queue with } \}$ Remove the elements in sorted order with a series of removeMin operations. comparator C; while (¬S.isEmpty ()) The running time of this $\{ e = S.removeFirst();$ sorting method depends on P.insert (e, 0); } the priority queue implementation. while $(\neg P.isEmpty())$ ${e = P.removeMin().key();}$ S.insertLast(e);}

Selection-Sort Example			
	List S	Priority Queue P	
Input:	(7,4,8,2,5,3,9)	()	
Phase 1			
(a)	(4,8,2,5,3,9)	(7)	
(b)	(8,2,5,3,9)	(7,4)	
(g)	0	(7,4,8,2,5,3,9)	
Phase 2			
(a)	(2)	(7,4,8,5,3,9)	
(b) (c)	(2,3) (2,3,4)	(7,4,8,5,9) (7,8,5,9)	
(d)	(2,3,4,5)	(7,8,9)	
(e)	(2,3,4,5,7)	(8,9)	
(f) (g)	(2,3,4,5,7,8) (2,3,4,5,7,8,9)	(9) ()	
(9)	(2,3,1,3,1,0,3)	V	12

Recall Priority Queue ADT

- Main methods of the Priority
 - insert(k, x) inserts an entry with key k
- Additional methods:
 - min()
 returns, but does not remove, an entry with smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall Priority Queue Sorting We can use a priority queue to sort a set of Algorithm PQ-Sort(S, C) Input sequence S, comparator Ccomparable elements: comparable elements:

Insert the elements with a series of insert operations
Remove the elements in sorted order with a series of removeMin operations
The running time depends on the priority queue implementation: for the elements of SOutput sequence S sorted in increasing order according to ${\it C}$ { P = priority queue withcomparator C; while (¬S.isEmpty ()) $\{ e = S.removeFirst();$ Unsorted sequence gives selection-sort: O(n²) time P.insert (e, 0); } Sorted sequence gives insertion-sort: O(n²) time while (¬P.isEmpty()) ${e = P.removeMin().key();}$ Can we do better? S.insertLast(e);}

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root, key(v) ≥ key(parent(v))
- Complete Binary Tree: let h
 be the height of the heap
 - for i = 0, ..., h 1, there are 2ⁱ nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes
- The last node of a heap is the rightmost node of depth h.

Height of a Heap

- Theorem: A heap storing n keys has height $O(\log n)$. Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys.
 - Since there are 2^i keys at depth $i=0,\ldots,h-1$ and at least one key at depth h, we have $n\geq 1+2+4+\ldots+2^{h-1}+1$.
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$.

Heaps and Priority Queues

- We can use a heap to implement a priority queue.
- We store a (key, element) item at each internal node.
- We keep track of the position of the last node.
- For simplicity, we show only the keys in the pictures.

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node z (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

22

Upheap

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

After replacing the root key with the key k of the last node, the heap-order property may be violated. Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root. Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k. Since a heap has height O(log n), downheap runs in O(log n) time.

■ The insertion node can be found by traversing a path of $O(\log n)$ nodes: ■ Go up until a left child or the root is reached ■ If a left child is reached, go to the right child ■ Go down left until a leaf is reached ■ Similar algorithm for updating the last node after a removal.

- rity ems y means Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time.
 - The resulting algorithm is called heap-sort.
 - Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.

27

25

Merging Two Heaps

- We are given two two heaps and a key k.
- We create a new heap with the root node. storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property.

 $2^{i+1}-1$ keys.

Bottom-up Heap

30

Recall the Entry and Priority Queue ADTs

- An entry stores a (key, value) pair within a data structure
- Methods of the entry ADT:
 - key(): returns the key associated with this entry
 - value(): returns the value paired with the key associated with this entry
- Priority Queue ADT:
 - insert(k, x)
 inserts an entry with key
 k and value x
 - removeMin() removes and returns the entry with smallest key
 - min()
 returns, but does not
 remove, an entry with
 smallest key
 - size(), isEmpty()

37

Motivating Example

- Suppose we have an online trading system where orders to purchase and sell a given stock are stored in two priority queues (one for sell orders and one for buy orders) as (p,s) entries:
 - The key, p, of an order is the price
 - The value, s, for an entry is the number of shares
 - A buy order (p,s) is executed when a sell order (p',s') with price p'≤p is added (the execution is complete if s'≥s)
 - A sell order (p,s) is executed when a buy order (p',s') with price p'≥p is added (the execution is complete if s'≥s)
- What if someone wishes to cancel their order before it executes?
- What if someone wishes to update the price or number of shares for their order?

38

Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the key of entry e of P; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the value of entry e of P.

39

Example

Operation	Output	Р
insert(5,A)	e_1	(5,A)
insert(3,B)	e_2	(3,B),(5,A)
insert(7,C)	e_3	(3,B),(5,A),(7,C)
min()	e_2	(3,B),(5,A),(7,C)
$key(e_2)$	3	(3,B),(5,A),(7,C)
$remove(e_1)$	e_1	(3,B),(7,C)
replaceKey(e_2 ,9)	3	(7,C),(9,B)
replaceValue(e_3 , l	D) C	(7,D),(9,B)
Operation insert(5, A) insert(3, B) insert(7, C) min() key(e_2) remove(e_1) replaceKey(e_2 , 9) replaceValue(e_3 , I) remove(e_2)	e_2	(7,D)

40

Locating Entries

- In order to implement the operations remove(k), replaceKey(e), and replaceValue(k), we need fast ways of locating an entry e in a priority queue.
- We can always just search the entire data structure to find an entry e, but there are better ways for locating entries.

Location-Aware Entries

- A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure
- Intuitive notion:
 - Coat claim check
 - Valet claim ticket
 - Reservation number
- Main idea:
 - Since entries are created and returned from the data structure itself, it can return location-aware entries, thereby making future updates easier

Performance Using location-aware entries we can achieve the following running times (times better than those achievable without location-aware entries are highlighted in blue): Method **Unsorted List** Sorted List Heap size, isEmpty O(1)O(1)O(1)insert O(1)O(n) $O(\log n)$ 0(1) O(1) min O(n)removeMin O(n)O(1) $O(\log n)$ $O(\log n)$ remove 0(1) 0(1) replaceKey 0(1) O(n) $O(\log n)$ replaceValue 0(1) 0(1) 0(1)

References

1. Chapter 8, Data Structures and Algorithms by Goodrich and Tamassia.