

Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                 | • •        | ie i aiii        | damento delle teris, tangenziali. |                          | 0                         |
|-----------------|------------|------------------|-----------------------------------|--------------------------|---------------------------|
| Ν               | = 14200 N  | $M_{\star}$      | = -265000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$           | = 1130 N   | $M_{v}^{}$       | = 125000 Nmm                      | G                        | = 77000 N/mm <sup>2</sup> |
| Μ́ <sub>t</sub> | = 9910 Nmm | $\sigma_{a}^{'}$ | = 220 N/mm <sup>2</sup>           |                          |                           |
| $x_{G}$         | =          | $J_t$            | =                                 | $\sigma_{ls}$            | =                         |
| $y_G$           | =          | σ(N)             |                                   | $\sigma_{\text{lls}}$    | =                         |
| $u_o$           | =          | $\sigma(M_x)$    |                                   | $\sigma_{\text{ld}}$     | =                         |
| $V_{o}$         | =          | $\sigma(M_y)$    |                                   | $\sigma_{\text{IId}}$    | =                         |
| Α               | =          | $\tau(M_t)_d$    |                                   | $\sigma_{\text{tresca}}$ | =                         |
| $C_{w}$         | =          | $\tau(T_{yc})$   | =                                 | $\sigma_{\text{mises}}$  | =                         |
| $J_xx$          | =          | $\tau(T_{yb})$   | d=                                | $\sigma_{\text{st.ven}}$ | =                         |
| $J_{yy}$        | =          | $\tau(T_y)_s$    |                                   | $\Theta_{t}$             | =                         |
| $J_{xy}$        | =          | $\tau(T_y)_d$    | =                                 | $r_u$                    | =                         |
| $J_{u}$         | =          | σ                | =                                 | $r_{v}$                  | =                         |
| $J_v$           | =          | $	au_{s}$        | =                                 | r <sub>o</sub>           | =                         |
| α               | =          | $	au_{d}$        | =                                 | $J_p$                    | =                         |
| _               |            | 1                | 0.4.0=.0=                         |                          |                           |



Calcolo degli sforzi in  $^{\star}$  con forze baricentriche essendo  $^{\star}$  il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                |                                 | vo. rappresentare rai | idamento delle teris, tanț | gerizian.                | 0                         |
|----------------|---------------------------------|-----------------------|----------------------------|--------------------------|---------------------------|
| Ν              | = 16800 N                       | $M_{x}$               | = -188000 Nmm              | E                        | $= 200000 \text{ N/mm}^2$ |
| T              | <sub>v</sub> = 953 N            | $M_{v}$               | = 190000 Nmm               | G                        | = 77000 N/mm <sup>2</sup> |
| M              | $\hat{I}_t = 11500 \text{ Nmm}$ | $\sigma_{a}^{'}$      | $= 220 \text{ N/mm}^2$     |                          |                           |
| X <sub>(</sub> | <sub>G</sub> =                  | $J_{t}^{n}$           | =                          | $\sigma_{\sf ls}$        | =                         |
| У              | <sub>G</sub> =                  | σ(N)                  |                            | $\sigma_{\sf lls}$       | =                         |
| u,             | o =                             | $\sigma(M_x)$         |                            | $\sigma_{\sf ld}$        | =                         |
| V              | _ =                             | $\sigma(M_y)$         |                            | $\sigma_{IId}$           | =                         |
| Α              |                                 | $\tau(M_t)$           |                            | $\sigma_{ m tresca}$     | =                         |
| С              |                                 | $\tau(T_{yc}$         | ) =                        | $\sigma_{\sf mises}$     | =                         |
| J,             |                                 | $	au(T_{yb}$          | ) <sub>d</sub> =           | $\sigma_{\text{st.ven}}$ | =                         |
| J              | <sub>/y</sub> =                 | $\tau(T_{y})$         | s =                        | $\Theta_{t}$             | =                         |
| J,             | <sub>cy</sub> =                 | $\tau(T_{y})$         | _d =                       | $r_{\rm u}$              | =                         |
| J              | , =                             | σ                     | =                          | $r_{v}$                  | =                         |
| J′             | , =                             | $	au_{	extsf{s}}$     | =                          | $r_{o}$                  | =                         |
| α              | =                               | $	au_{\sf d}$         | =                          | $J_{p}$                  | =                         |
| _              |                                 |                       |                            |                          |                           |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|             | i acollalivo, rappresenta | i e i aii         | damento delle teris, tarigeriziali. |                          | 0                         |
|-------------|---------------------------|-------------------|-------------------------------------|--------------------------|---------------------------|
| N           | = 19900 N                 | $M_{x}$           | = -227000 Nmm                       | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$       | = 843 N                   | $M_{v}$           | = 271000 Nmm                        | G                        | = 77000 N/mm <sup>2</sup> |
| $\dot{M_t}$ | = 8180 Nmm                | $\sigma_{a}^{'}$  | = 220 N/mm <sup>2</sup>             |                          |                           |
| $x_{G}$     | =                         | $J_t$             | =                                   | $\sigma_{\sf ls}$        | =                         |
| $y_G$       | =                         | σ(N)              | =                                   | $\sigma_{\sf IIs}$       | =                         |
| $u_o$       | =                         | $\sigma(M_x)$     |                                     | $\sigma_{\text{ld}}$     | =                         |
| $V_{o}$     | =                         | $\sigma(M_{v})$   |                                     | $\sigma_{\text{IId}}$    | =                         |
| Α           | =                         | $\tau(M_t)_c$     |                                     | $\sigma_{\text{tresca}}$ | =                         |
| $C_{w}$     | =                         | $\tau(T_{yc})$    | =                                   | $\sigma_{\text{mises}}$  |                           |
| $J_xx$      | =                         | $\tau(T_{yb})$    |                                     | $\sigma_{\text{st.ven}}$ | =                         |
| $J_{yy}$    | =                         | $\tau(T_{y})_{s}$ | , =                                 | $\Theta_{t}$             | =                         |
| $J_{xy}$    | =                         | $\tau(T_y)_d$     | <sub>I</sub> =                      | $r_u$                    | =                         |
| $J_{u}$     | =                         | σ                 | =                                   | $r_v$                    | =                         |
| $J_v$       | =                         | $	au_{\sf s}$     | =                                   | $r_{o}$                  | =                         |
| $\alpha$    | =                         | $	au_{d}$         | =                                   | $J_p$                    | =                         |
|             |                           | 11 8 411          | 040505                              |                          |                           |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|          | • •        |                   | 9                       |                          |                          |
|----------|------------|-------------------|-------------------------|--------------------------|--------------------------|
| N        | = 23200 N  | $M_x$             | = -270000 Nmm           | E                        | = 200000 N/mm            |
| $T_v$    | = 476 N    | $M_{v}^{}$        | = 369000 Nmm            | G                        | $= 77000 \text{ N/mm}^2$ |
| $M_t$    | = 9810 Nmm | $\sigma_{a}^{y}$  | = 220 N/mm <sup>2</sup> |                          |                          |
| $x_G$    | =          | $J_t$             | =                       | $\sigma_{\sf ls}$        | =                        |
| $y_G$    | =          | σ(N)              | =                       | $\sigma_{\sf IIs}$       | =                        |
| $u_o$    | =          | $\sigma(M_x)$     | ) =                     | $\sigma_{Id}$            | =                        |
| $V_{o}$  | =          | $\sigma(M_y)$     |                         | $\sigma_{IId}$           | =                        |
| Α        | =          | $\tau(M_t)_c$     | <sub>1</sub> =          | $\sigma_{\text{tresca}}$ | =                        |
| $C_{w}$  | =          | $\tau(T_{yc})$    | =                       | $\sigma_{\text{mises}}$  | =                        |
| $J_xx$   | =          | $\tau(T_{yb})$    | l <sub>d</sub> =        | $\sigma_{\text{st.ven}}$ |                          |
| $J_{yy}$ | =          | $\tau(T_y)_s$     | , =                     | $\Theta_{t}$             | =                        |
| $J_{xy}$ | =          | $\tau(T_y)_d$     | <sub>I</sub> =          | $r_u$                    | =                        |
| $J_{u}$  | =          | σ                 | =                       | $r_v$                    | =                        |
| $J_v$    | =          | $	au_{	extsf{s}}$ | =                       | $r_{o}$                  | =                        |
| $\alpha$ | =          | $	au_{d}$         | =                       | $J_p$                    | =                        |
|          |            | 11 8 411          | 040505                  |                          |                          |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|             | i acollativo. ia        | appresentare i anuamento delle teris, tangenzio | all.                     | 0                         |
|-------------|-------------------------|-------------------------------------------------|--------------------------|---------------------------|
| Ν           | = 16600 N               | $M_{x} = -318000 \text{ Nmm}$                   | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$     | = 468 N                 | $M_{y} = 486000 \text{ Nmm}$                    | G                        | $= 77000 \text{ N/mm}^2$  |
| $\dot{M_t}$ | = 11600 Nmm             | $\sigma_a^y = 220 \text{ N/mm}^2$               |                          |                           |
| $x_{G}$     | =                       | $J_t =$                                         | $\sigma_{\sf ls}$        | =                         |
| $y_G$       | =                       | $\sigma(N) =$                                   | $\sigma_{\sf lls}$       | =                         |
| $u_o$       | =                       | $\sigma(M_x) =$                                 | $\sigma_{\sf ld}$        | =                         |
| $V_{o}$     | =                       | $\sigma(M_y) =$                                 | $\sigma_{IId}$           | =                         |
| Α           | =                       | $\tau(M_t)_d =$                                 | $\sigma_{ m tresca}$     | <sub>a</sub> =            |
| $C_{w}$     | =                       | $\tau(T_{yc}) =$                                | $\sigma_{mises}$         |                           |
| $J_{xx}$    | =                       | $\tau(T_{yb})_{d}=$                             | $\sigma_{\text{st.ver}}$ | n =                       |
| $J_{yy}$    | =                       | $\tau(T_y)_s =$                                 | $\theta_{t}$             | =                         |
| $J_{xy}$    | =                       | $\tau(T_y)_d =$                                 | $r_{\rm u}$              | =                         |
| $J_{u}$     | =                       | σ =                                             | $r_{v}$                  | =                         |
| $J_v$       | =                       | $\tau_s$ =                                      | $r_{o}$                  | =                         |
| $\alpha$    | =                       | $\tau_{d}$ =                                    | $J_p$                    | =                         |
| <u></u>     | Adalfa Zavalani Dasai E | Dallia and a all Milana and 04 05 07            |                          |                           |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|   |                 | i aconanyo, rappicacina           | ic ranc          | annonio delle teris, tarigeriziani.    |                          |                           |
|---|-----------------|-----------------------------------|------------------|----------------------------------------|--------------------------|---------------------------|
| ١ | ١               | = 14200 N                         | $M_{\star}$      | = -265000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| 7 | Γ,,             | = 1130 N                          | $M_{v}$          | = 125000 Nmm                           | G                        | $= 77000 \text{ N/mm}^2$  |
| Ν | ۸,              | = 9910 Nmm                        | $\sigma_{a}^{'}$ | = 220 N/mm <sup>2</sup>                |                          |                           |
| X | G               | = 7.083 mm                        | J,               | = 345.9 mm <sup>4</sup>                | $\sigma_{ls}$            | = 184.3 N/mm <sup>2</sup> |
|   | 'G              | = 35.89 mm                        | σ(N)             | $= 46.84 \text{ N/mm}^2$               | $\sigma_{\sf lls}$       | $= -61.87 \text{ N/mm}^2$ |
|   | 1 <sup>o</sup>  | = -7.45 mm                        | $\sigma(M_x)$    | $= 37.91 \text{ N/mm}^2$               | $\sigma_{Id}$            | = 178.8 N/mm <sup>2</sup> |
|   | ' <sub>0</sub>  | = -5.416 mm                       | $\sigma(M_v)$    | = 37.69 N/mm <sup>2</sup>              | $\sigma_{IId}$           | $= -56.35 \text{ N/mm}^2$ |
|   | ٩               | $= 303.2 \text{ mm}^2$            | $\tau(M_t)_d$    | = 57.3 N/mm <sup>2</sup>               | $\sigma_{\text{tresca}}$ | = 246.2 N/mm <sup>2</sup> |
| ( | $C_{w}$         | = 0.5878-6 mm <sup>6</sup>        | $\tau(T_{vc})$   | = 3.209 N/mm <sup>2</sup>              | $\sigma_{\text{mises}}$  | $= 221.8 \text{ N/mm}^2$  |
|   | J <sub>xx</sub> | = 164871 mm <sup>4</sup>          | $\tau(T_{vb})$   | <sub>d</sub> = 46.28 N/mm <sup>2</sup> | $\sigma_{\rm st.ven}$    | $= 202.8 \text{ N/mm}^2$  |
|   | J <sub>yy</sub> | = 27737 mm <sup>4</sup>           | $\tau(T_v)_s$    | = -43.07 N/mm <sup>2</sup>             | $\theta_{t}$             | = 0.6726 / m              |
|   | $I_{xy}$        | = -8945 mm <sup>4</sup>           |                  | = 49.49 N/mm <sup>2</sup>              | ru                       | = 23.36 mm                |
| · | ),,             | = 165452 mm <sup>4</sup>          | σ                | = 122.4 N/mm <sup>2</sup>              | r <sub>v</sub>           | = 9.465 mm                |
| Ų | J <sub>v</sub>  | = 27156 mm <sup>4</sup>           | $	au_{ m s}$     | $= -100.4 \text{ N/mm}^2$              | r <sub>o</sub>           | = 26.84 mm                |
| C | -               | = 0.06486                         |                  | = 106.8 N/mm <sup>2</sup>              | $J_p$                    | = 218329 mm <sup>4</sup>  |
| ( | @ Ad            | lolfo Zavelani Rossi, Politecnico | di Mila          |                                        | •                        |                           |
|   |                 |                                   |                  |                                        |                          |                           |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                         | i acollativo, rappresentare i andamento delle tens, tangenziali. |                  |                                        |                          |                           |  |  |
|-------------------------|------------------------------------------------------------------|------------------|----------------------------------------|--------------------------|---------------------------|--|--|
| Ν                       | = 16800 N                                                        | $M_{\star}$      | = -188000 Nmm                          | Ε                        | $= 200000 \text{ N/mm}^2$ |  |  |
| $T_v$                   | = 953 N                                                          | $M_{v}^{}$       | = 190000 Nmm                           | G                        | = 77000 N/mm <sup>2</sup> |  |  |
| Ḿ,                      | = 11500 Nmm                                                      | $\sigma_{a}^{'}$ | $= 220 \text{ N/mm}^2$                 |                          | _                         |  |  |
| $x_{G}$                 | = 10.12 mm                                                       | J,               | = 368 mm <sup>4</sup>                  | $\sigma_{\sf ls}$        | = 191.3 N/mm <sup>2</sup> |  |  |
| $y_G$                   | = 35.25 mm                                                       | σ(N)             | = 51.85 N/mm <sup>2</sup>              | $\sigma_{\sf IIs}$       | $= -72.12 \text{ N/mm}^2$ |  |  |
| u <sub>o</sub>          | = -10.67 mm                                                      | $\sigma(M_x)$    | = 25.11 N/mm <sup>2</sup>              | $\sigma_{ld}$            | = 186.8 N/mm <sup>2</sup> |  |  |
| v <sub>o</sub>          | = -4.027 mm                                                      | $\sigma(M_v)$    | $= 42.24 \text{ N/mm}^2$               | $\sigma_{IId}$           | $= -67.62 \text{ N/mm}^2$ |  |  |
| Ă                       | = 324 mm <sup>2</sup>                                            | $\tau(M_t)_d$    | = 62.5 N/mm <sup>2</sup>               | $\sigma_{\text{tresca}}$ | = 263.4 N/mm <sup>2</sup> |  |  |
| $C_{w}$                 | = 0.1044-7 mm <sup>6</sup>                                       | $\tau(T_{vc})$   | = 2.533 N/mm <sup>2</sup>              | $\sigma_{\text{mises}}$  | = 235.8 N/mm <sup>2</sup> |  |  |
| $J_{xx}^{"}$            | = 175766 mm <sup>4</sup>                                         | $\tau(T_{vb})$   | <sub>d</sub> = 52.44 N/mm <sup>2</sup> | $\sigma_{\rm st.ven}$    | = 212.9 N/mm <sup>2</sup> |  |  |
| $J_{yy}^{x}$            | = 54269 mm <sup>4</sup>                                          | $\tau(T_v)_s$    | = -49.9 N/mm <sup>2</sup>              | $\theta_{t}$             | = 0.7463 / m              |  |  |
| $J_{xy}^{\prime\prime}$ | = -14532 mm <sup>4</sup>                                         |                  | = 54.97 N/mm <sup>2</sup>              | $r_u$                    | = 23.4 mm                 |  |  |
| $J_{u}^{n}$             | = 177480 mm <sup>4</sup>                                         | σ                | = 119.2 N/mm <sup>2</sup>              | r <sub>v</sub>           | = 12.74 mm                |  |  |
| $J_{v}^{"}$             | = 52555 mm <sup>4</sup>                                          | $\tau_{ m s}$    | = -112.4 N/mm <sup>2</sup>             | $r_0$                    | = 28.98 mm                |  |  |
| α                       | = 0.1174                                                         | $	au_{ m d}$     | = 117.5 N/mm <sup>2</sup>              | $J_{D}$                  | = 272176 mm <sup>4</sup>  |  |  |
| @ Ac                    | lolfo Zavolani Possi Politoonico                                 | di Mila          |                                        | r                        |                           |  |  |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                         | i acoltativo, rappresentare i andamento delle tens, tangenziali. |                                                  |                       |                                      |  |  |  |
|-------------------------|------------------------------------------------------------------|--------------------------------------------------|-----------------------|--------------------------------------|--|--|--|
| Ν                       | = 19900 N                                                        | $M_{x} = -227000 \text{ Nmm}$                    | E                     | $= 200000 \text{ N/mm}^2$            |  |  |  |
| $T_v$                   | = 843 N                                                          | $M_{v} = 271000 \text{ Nmm}$                     | G                     | $= 77000 \text{ N/mm}^2$             |  |  |  |
| Ḿ,                      | = 8180 Nmm                                                       | $\sigma_a' = 220 \text{ N/mm}^2$                 |                       | _                                    |  |  |  |
| $x_{G}$                 | = 13.48 mm                                                       | $J_{t} = 392.4 \text{ mm}^4$                     | $\sigma_{\sf ls}$     | = 187.6 N/mm <sup>2</sup>            |  |  |  |
| $y_{G}$                 | = 34.66 mm                                                       | $\sigma(N) = 57.29 \text{ N/mm}^2$               | $\sigma_{\sf lls}$    | $= -55.14 \text{ N/mm}^2$            |  |  |  |
| $u_{o}$                 | = -14.16 mm                                                      | $\sigma(M_x) = 28.22 \text{ N/mm}^2$             | $\sigma_{ld}$         | = 184.2 N/mm <sup>2</sup>            |  |  |  |
| v <sub>o</sub>          | = -1.74 mm <sub>-</sub>                                          | $\sigma(M_{v}) = 46.99 \text{ N/mm}^{2}$         | $\sigma_{IId}$        | $= -51.66 \text{ N/mm}^2$            |  |  |  |
| Ă                       | $= 347.3 \text{ mm}^2$                                           | $\tau(M_t)_d = 41.69 \text{ N/mm}^2$             | $\sigma_{\rm tresca}$ | $_{a} = 242.8 \text{ N/mm}^{2}$      |  |  |  |
| $C_{w}$                 | = 0.5071-6 mm <sup>6</sup>                                       | $\tau(T_{vc}) = 2.091 \text{ N/mm}^2$            | $\sigma_{\rm mises}$  | $\frac{1}{3} = 220.5 \text{ N/mm}^2$ |  |  |  |
| $J_{xx}^{"}$            | = 187703 mm <sup>4</sup>                                         | $\tau(T_{vb})_{d} = 57.93 \text{ N/mm}^2$        | $\sigma_{\rm st,ver}$ | $_{1} = 204.1 \text{ N/mm}^{2}$      |  |  |  |
| $J_{yy}^{\infty}$       | = 92961 mm <sup>4</sup>                                          | $\tau(T_{v})_{s} = -55.84 \text{ N/mm}^{2}$      | $\theta_{t}$          | = 0.6469 /m                          |  |  |  |
| $J_{xy}^{\prime\prime}$ | = -21207 mm <sup>4</sup>                                         | $\tau(T_{\rm v})_{\rm d} = 60.03 \text{ N/mm}^2$ | $r_{\rm u}$           | = 23.53 mm                           |  |  |  |
| $J_{u}^{n}$             | = 192233 mm <sup>4</sup>                                         | $\sigma = 132.5 \text{ N/mm}^2$                  | r <sub>v</sub>        | = 15.96 mm                           |  |  |  |
| $J_{v}^{"}$             | = 88431 mm <sup>4</sup>                                          | $\tau_{\rm s} = -97.54 \text{ N/mm}^2$           | r <sub>o</sub>        | = 31.81 mm                           |  |  |  |
| α                       | = 0.2105                                                         | $\tau_{\rm d}$ = 101.7 N/mm <sup>2</sup>         | $J_{\rm p}$           | = 351353 mm <sup>4</sup>             |  |  |  |
| @ A                     | dolfo Zavelani Rossi, Politecnico                                | di Milano, vers.24.05.07                         | I-                    |                                      |  |  |  |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

-acoltativo: rappresentare l'andamento delle tens, tangenziali,

|                | Facoltativo: rappresenta   | re l'an           | damento delle tens. tangenziali.       |                          | _                          |
|----------------|----------------------------|-------------------|----------------------------------------|--------------------------|----------------------------|
| N              | = 23200 N                  | $M_x$             | = -270000 Nmm                          | Ε                        | $= 200000 \text{ N/mm}^2$  |
| $T_v$          | = 476 N                    | $M_{v}$           | = 369000 Nmm                           | G                        | = 77000 N/mm <sup>2</sup>  |
| M <sub>t</sub> | = 9810 Nmm                 | $\sigma_{a}^{'}$  | $= 220 \text{ N/mm}^2$                 |                          |                            |
| $x_{G}$        | = 17.11 mm                 | $J_t^{-}$         | = 418.3 mm <sup>4</sup>                | $\sigma_{ls}$            | = 185.9 N/mm <sup>2</sup>  |
| $y_{G}$        | = 34.14 mm                 | σ(N)              | = 62.32 N/mm <sup>2</sup>              | $\sigma_{\sf lls}$       | = -40.66 N/mm <sup>2</sup> |
| $u_o$          | = -17.35 mm                | $\sigma(M_x)$     | = 31.23 N/mm <sup>2</sup>              | $\sigma_{\sf ld}$        | = 184.2 N/mm <sup>2</sup>  |
| v <sub>o</sub> | = 2.955 mm                 | $\sigma(M_v)$     | = 51.71 N/mm <sup>2</sup>              | $\sigma_{IId}$           | = -38.98 N/mm <sup>2</sup> |
| Α              | = 372.3 mm <sup>2</sup>    | $\tau(M_t)_d$     | <sub>1</sub> = 46.91 N/mm <sup>2</sup> | $\sigma_{\text{tresca}}$ | = 226.6 N/mm <sup>2</sup>  |
| $C_{w}$        | = 0.1157-5 mm <sup>6</sup> |                   | = 1.101 N/mm <sup>2</sup>              | $\sigma_{\text{mises}}$  | = 209.2 N/mm <sup>2</sup>  |
| $J_{xx}$       | = 200296 mm <sup>4</sup>   | $\tau(T_{vb})$    | <sub>d</sub> = 38.94 N/mm <sup>2</sup> | $\sigma_{\text{st.ven}}$ | = 198.1 N/mm <sup>2</sup>  |
| $J_{yy}$       | = 145789 mm <sup>4</sup>   |                   | = -37.83 N/mm <sup>2</sup>             | $\theta_{t}$             | = 0.5574 / m               |
| $J_{xy}^{r}$   | = -28741 mm <sup>4</sup>   | $\tau(T_{v})_{d}$ | <sub>1</sub> = 40.04 N/mm <sup>2</sup> | $r_u$                    | = 23.9 mm                  |
| $J_{u}$        | = 212651 mm <sup>4</sup>   | σ΄                | = 145.3 N/mm <sup>2</sup>              | $r_v$                    | = 18.93 mm                 |
| $J_{v}$        | = 133434 mm <sup>4</sup>   | $	au_{s}$         | = -84.74 N/mm <sup>2</sup>             | $r_{o}$                  | = 35.21 mm                 |
| α              | = 0.406                    | $	au_{\sf d}$     | = 86.95 N/mm <sup>2</sup>              | $J_p$                    | = 461388 mm <sup>4</sup>   |
| ~ · ·          |                            |                   | 0.4.05.05                              | •                        |                            |



Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                         | i aconanyo, rappicacina           | ic rain          | admente dene tens. tangenzian.         |                          |                           |
|-------------------------|-----------------------------------|------------------|----------------------------------------|--------------------------|---------------------------|
| N                       | = 16600 N                         | $M_{\star}$      | = -318000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                   | = 468 N                           | $\hat{M_{v}}$    | = 486000 Nmm                           | G                        | $= 77000 \text{ N/mm}^2$  |
| M,₊                     | = 11600 Nmm                       | $\sigma_{a}^{'}$ | $= 220 \text{ N/mm}^2$                 |                          |                           |
| x <sub>G</sub>          | = 20.94 mm                        | J, ¨             | = 445.1 mm <sup>4</sup>                | $\sigma_{ls}$            | = 183.7 N/mm <sup>2</sup> |
| $y_{G}$                 | = 33.68 mm                        | σ(N)             | $= 41.67 \text{ N/mm}^2$               | $\sigma_{\sf lls}$       | $= -51.39 \text{ N/mm}^2$ |
| u <sub>o</sub>          | = -12.36 mm                       | $\sigma(M_x)$    | $= 34.24 \text{ N/mm}^2$               | $\sigma_{ld}$            | $= 182.1 \text{ N/mm}^2$  |
| v <sub>o</sub>          | = -17.3 mm                        | $\sigma(M_v)$    | $= 56.44 \text{ N/mm}^2$               | $\sigma_{IId}$           | $= -49.72 \text{ N/mm}^2$ |
| A                       | $= 398.3 \text{ mm}^2$            | $\tau(M_t)_d$    | = 52.12 N/mm <sup>2</sup>              | $\sigma_{\text{tresca}}$ | = 235.1 N/mm <sup>2</sup> |
| $C_{w}$                 | = 0.7722-5 mm <sup>6</sup>        | $\tau(T_{vc})$   | = 1.01 N/mm <sup>2</sup>               | $\sigma_{\text{mises}}$  | $= 214.1 \text{ N/mm}^2$  |
| $J_{xx}^{"}$            | = 213320 mm <sup>4</sup>          |                  | <sub>d</sub> = 44.04 N/mm <sup>2</sup> | $\sigma_{\rm st,ven}$    | = 199.1 N/mm <sup>2</sup> |
| $J_{yy}^{n}$            | = 214595 mm <sup>4</sup>          |                  | = -43.03 N/mm <sup>2</sup>             | $\theta_{t}$             | = 0.6244 / m              |
| $J_{xy}^{\prime\prime}$ | = -36958 mm <sup>4</sup>          |                  | = 45.05 N/mm <sup>2</sup>              | ru                       | = 21.08 mm                |
| J.,                     | = 176994 mm <sup>4</sup>          | σ                | $= 132.4 \text{ N/mm}^2$               | r,                       | = 25.1 mm                 |
| $J_{v}^{"}$             | = 250920 mm <sup>4</sup>          | $\tau_{s}$       | $= -95.15 \text{ N/mm}^2$              | r <sub>o</sub>           | = 39.07 mm                |
| α                       | = -0.7768                         | $	au_{\sf d}$    | = 97.17 N/mm <sup>2</sup>              | $\tilde{J_{p}}$          | $= 608001 \text{ mm}^4$   |
| @ Ac                    | dolfo Zavelani Rossi, Politecnico | di Mila          |                                        | •                        |                           |
|                         |                                   |                  |                                        |                          |                           |