Assignment 2

Generated by Doxygen 1.8.17

1 Hierarchical Index	1
1.1 Class Hierarchy	1
2 Class Index	3
2.1 Class List	3
3 File Index	5
3.1 File List	5
4 Class Documentation	7
4.1 ChemEntity.ChemEntity Class Reference	7
4.1.1 Member Function Documentation	7
4.1.1.1 num_atoms()	7
4.2 CompoundT.CompoundT Class Reference	8
4.2.1 Detailed Description	8
4.2.2 Constructor & Destructor Documentation	8
4.2.2.1init()	8
4.2.3 Member Function Documentation	9
4.2.3.1 constit_elems()	9
4.2.3.2 equals()	9
4.2.3.3 get_molec_set()	10
4.2.3.4 num_atoms()	10
4.3 ChemTypes.ElementT Class Reference	10
4.3.1 Detailed Description	13
4.4 ElmSet.ElmSet Class Reference	13
4.4.1 Detailed Description	13
4.5 Equality.Equality Class Reference	14
4.5.1 Detailed Description	14
4.5.2 Member Function Documentation	
4.5.2.1 equals()	14
4.6 MolecSet.MolecSet Class Reference	15
4.6.1 Detailed Description	15
4.7 MoleculeT.MoleculeT Class Reference	15
4.7.1 Detailed Description	16
4.7.2 Constructor & Destructor Documentation	16
4.7.2.1init()	16
4.7.3 Member Function Documentation	16
4.7.3.1 <u>eq_()</u>	16
4.7.3.2 constit_elems()	17
4.7.3.3 equals()	
4.7.3.4 get_elm()	
4.7.3.5 get_num()	
4.7.3.6 num_atoms()	

4.8	Reaction I. Reaction I Class Reference	19
	4.8.1 Detailed Description	19
	4.8.2 Constructor & Destructor Documentation	19
	4.8.2.1init()	19
	4.8.3 Member Function Documentation	20
	4.8.3.1elm_in_chem_eq()	20
	4.8.3.2 get_lhs()	20
	4.8.3.3 get_lhs_coeff()	20
	4.8.3.4 get_rhs()	21
	4.8.3.5 get_rhs_coeff()	21
4.9	Set.Set Class Reference	21
	4.9.1 Detailed Description	22
	4.9.2 Constructor & Destructor Documentation	22
	4.9.2.1init()	22
	4.9.3 Member Function Documentation	22
	4.9.3.1 add()	22
	4.9.3.2 equals()	23
	4.9.3.3 member()	23
	4.9.3.4 rm()	24
	4.9.3.5 size()	24
	4.9.3.6 to_seq()	24
5 File [Documentation (1997)	25
		25
		25
5.2	•	25
0		26
5.3		26
	5.3.1 Detailed Description	26
5.4		26
		27
5.5	src/MolecSet.py File Reference	27
		27
5.6	src/MoleculeT.py File Reference	27
	5.6.1 Detailed Description	27
5.7	src/ReactionT.py File Reference	28
	5.7.1 Detailed Description	28
5.8		28
	5.8.1 Detailed Description	28
Index		29

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ReactionT.ReactionT	19
ABC	
ChemEntity.ChemEntity	7
CompoundT.CompoundT	8
MoleculeT.MoleculeT	15
Equality.Equality	14
CompoundT.CompoundT	8
MoleculeT.MoleculeT	
Set.Set	21
ElmSet.ElmSet	13
MolecSet.MolecSet	15
Enum	
ChemTypes.ElementT	10

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ChemEntity.ChemEntity	7
CompoundT.CompoundT	
Class that represents a Compound, inherits ChemEntity and Equality	8
ChemTypes.ElementT	
A data type to hold all elements in the periodic table	10
ElmSet.ElmSet	
Inherits from Set, just used for new name of Set	13
Equality. Equality	
An abstract class for comparing two objects	14
MolecSet.MolecSet	
Inherits from Set, just used for new name of Set	15
MoleculeT.MoleculeT	
Class that represents a molecule, inherits ChemEntity and Equality	15
ReactionT.ReactionT	
Class to simulate a reaction with balancing the equation	19
Set.Set	
Class that represents a Set	21

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/ChemEntity.py	
Abstract interface for methods about chemical entities	25
src/ChemTypes.py	
Definition of Element types	25
src/CompoundT.py	
Class for holding a MolecSet	26
src/Equality.py	
Used for comparing two objects @Date Feb 1, 2020	26
src/MolecSet.py	
Class used to rename the Set, set of MoleculeT	27
src/MoleculeT.py	
Class for holding the Molecule which includes element and number of it	27
src/ReactionT.py	
Class that holds two compounds for the reactions	28
src/Set.py	
Class for Set building and applying methods to the Set	28

6 File Index

Chapter 4

Class Documentation

4.1 ChemEntity.ChemEntity Class Reference

Inheritance diagram for ChemEntity. ChemEntity:

Public Member Functions

- def num_atoms (self, element_t)
- An abstract method for counting number of atoms.

 def constit_elems (self)

4.1.1 Member Function Documentation

4.1.1.1 num_atoms()

```
\begin{tabular}{ll} $\operatorname{def}$ $\operatorname{ChemEntity.num\_atoms}$ & ( \\ & self, \\ & element\_t & ) \end{tabular}
```

An abstract method for counting number of atoms.

Parameters

Reimplemented in MoleculeT.MoleculeT, and CompoundT.CompoundT.

The documentation for this class was generated from the following file:

· src/ChemEntity.py

4.2 CompoundT.CompoundT Class Reference

Class that represents a Compound, inherits ChemEntity and Equality. Inheritance diagram for CompoundT.CompoundT:

Public Member Functions

• def __init__ (self, molec_set)

Constructor to initalize the object with a MolecSet.

def get_molec_set (self)

Return the Compound which is a MolecSet.

• def num_atoms (self, element)

Return the number of atoms in the MolecSet with the specified element.

• def constit_elems (self)

Returns the ElmSet of the all the different ElementT in the compound.

def equals (self, other_compound)

Check if the two compounds are equal.

def <u>__eq__</u> (self, other)

4.2.1 Detailed Description

Class that represents a Compound, inherits ChemEntity and Equality.

4.2.2 Constructor & Destructor Documentation

Constructor to initalize the object with a MolecSet.

Parameters

molec_set	- MolecSet to be stored in a Compound	
-----------	---------------------------------------	--

4.2.3 Member Function Documentation

4.2.3.1 constit_elems()

```
\label{lem:constit_elems} \mbox{ def CompoundT.CompoundT.constit\_elems (} \\ self \mbox{ )}
```

Returns the ElmSet of the all the different ElementT in the compound.

Using get_elm() function for MoleculeT to get the element

Returns

ElmSet of all the ElementT

Reimplemented from ChemEntity.ChemEntity.

4.2.3.2 equals()

Check if the two compounds are equal.

Parameters

Returns

true if equal else false

Reimplemented from Equality. Equality.

4.2.3.3 get_molec_set()

```
\label{lem:compoundT.compoundT.get_molec_set (} self \ )
```

Return the Compound which is a MolecSet.

Returns

MolecSet

4.2.3.4 num_atoms()

Return the number of atoms in the MolecSet with the specified element.

Using functional programming functions, turn the MolecSet into a sequence to iterate over and find the number of atoms for each MolecSet with a specified element then sum up the list

Parameters

```
element - ElementT
```

Returns

the total number of atoms of element in the Compound

Reimplemented from ChemEntity.ChemEntity.

The documentation for this class was generated from the following file:

src/CompoundT.py

4.3 ChemTypes.ElementT Class Reference

A data type to hold all elements in the periodic table.

Inheritance diagram for ChemTypes.ElementT:

Static Public Attributes

- **H** = auto()
- **He** = auto()
- **Li** = auto()
- **Be** = auto()
- **B** = auto()
- **C** = auto()
- **N** = auto()
- **O** = auto()
- **F** = auto()
- **Ne** = auto()
- **Na** = auto()
- **Mg** = auto()
- **AI** = auto()
- **Si** = auto()
- **P** = auto()
- **S** = auto()
- **CI** = auto()
- **Ar** = auto()
- **K** = auto()
- **Ca** = auto()
- **Sc** = auto()
- **Ti** = auto()
- **V** = auto()
- **Cr** = auto()
- **Mn** = auto() • **Fe** = auto()
- **Co** = auto()
- **Ni** = auto()
- **Cu** = auto()
- **Zn** = auto()
- **Ga** = auto() • **Ge** = auto()
- **As** = auto()
- **Se** = auto()
- **Br** = auto()
- **Kr** = auto()
- **Rb** = auto()
- **Sr** = auto()
- **Y** = auto()
- **Zr** = auto()
- **Nb** = auto()
- **Mo** = auto()
- **Tc** = auto()
- **Ru** = auto()
- **Rh** = auto()
- **Pd** = auto()
- **Ag** = auto()
- **Cd** = auto()
- **In** = auto()
- **Sn** = auto()
- **Sb** = auto() • **Te** = auto()
- **I** = auto()

- **Xe** = auto()
- **Cs** = auto()
- **Ba** = auto()
- **La** = auto()
- **Ce** = auto()
- **Pr** = auto()
- **Nd** = auto()
- **Pm** = auto()
- **Sm** = auto()
- **Eu** = auto()
- **Gd** = auto()
- **Tb** = auto()
- **Dy** = auto()
- **Ho** = auto()
- **Er** = auto()
- **Tm** = auto()
- **Yb** = auto()
- **Lu** = auto()
- **Hf** = auto()
- **Ta** = auto()
- **W** = auto()
- **Re** = auto()
- **Os** = auto()
- **Ir** = auto()
- **Pt** = auto()
- **Au** = auto()
- **Hg** = auto()
- **TI** = auto()
- **Pb** = auto()
- **Bi** = auto()
- **Po** = auto()
- **At** = auto()
- **Rn** = auto()
- **Fr** = auto()
- **Ra** = auto()
- **Ac** = auto()
- **Th** = auto()
- **Pa** = auto()
- **U** = auto()
- **Np** = auto()
- **Pu** = auto()
- **Am** = auto()
- **Cm** = auto()
- **Bk** = auto()
- **Cf** = auto()
- **Es** = auto()
- **Fm** = auto()
- **Md** = auto()
- No = auto()Lr = auto()
- **Rf** = auto()
- **Db** = auto()
- **Sg** = auto()
- **Bh** = auto()
- **Hs** = auto()

- **Mt** = auto()
- **Ds** = auto()
- **Rg** = auto()
- **Cn** = auto()
- **Nh** = auto()
- **FI** = auto()
- **Mc** = auto()
- **Lv** = auto()
- **Ts** = auto()
- **Og** = auto()

4.3.1 Detailed Description

A data type to hold all elements in the periodic table.

The documentation for this class was generated from the following file:

src/ChemTypes.py

4.4 ElmSet.ElmSet Class Reference

Inherits from Set, just used for new name of Set.

Inheritance diagram for ElmSet.ElmSet:

Additional Inherited Members

4.4.1 Detailed Description

Inherits from Set, just used for new name of Set.

The documentation for this class was generated from the following file:

src/ElmSet.py

4.5 Equality. Equality Class Reference

An abstract class for comparing two objects.

Inheritance diagram for Equality. Equality:

Public Member Functions

• def equals (self, other)

Abstract method for checking if two objects are equal.

4.5.1 Detailed Description

An abstract class for comparing two objects.

4.5.2 Member Function Documentation

4.5.2.1 equals()

Abstract method for checking if two objects are equal.

Parameters

other Object to compare against

Returns

true is equal else false

Reimplemented in Set.Set, MoleculeT.MoleculeT, and CompoundT.CompoundT.

The documentation for this class was generated from the following file:

• src/Equality.py

4.6 MolecSet.MolecSet Class Reference

Inherits from Set, just used for new name of Set.

Inheritance diagram for MolecSet. MolecSet:

Additional Inherited Members

4.6.1 Detailed Description

Inherits from Set, just used for new name of Set.

The documentation for this class was generated from the following file:

src/MolecSet.py

4.7 MoleculeT.MoleculeT Class Reference

Class that represents a molecule, inherits ChemEntity and Equality.

Inheritance diagram for MoleculeT.MoleculeT:

Public Member Functions

```
def __init__ (self, num, elm)
```

Constructor that intializes a Molecule with element and number of those element.

def get_num (self)

Get the number of atoms in the molecule.

• def get_elm (self)

Get the element.

• def num_atoms (self, element)

Return the number of atom in the Molecule.

• def constit_elems (self)

Return the element in a ElmSet.

• def equals (self, other_m)

Check if the other MoleculeT is the same as current object.

def <u>eq</u> (self, other)

The default equals for Python.

• def __hash__ (self)

4.7.1 Detailed Description

Class that represents a molecule, inherits ChemEntity and Equality.

4.7.2 Constructor & Destructor Documentation

```
4.7.2.1 __init__()
```

Constructor that intializes a Molecule with element and number of those element.

Parameters

```
num - number of element in that molecule, elm - ElementT
```

4.7.3 Member Function Documentation

```
4.7.3.1 __eq__()
```

```
def MoleculeT.MoleculeT.\_eq\_ ( self,
```

```
other )
```

The default equals for Python.

But we don't want that we want to use our equals method

Parameters

```
Other - MoleculeT
```

Returns

the result of our equals method

4.7.3.2 constit_elems()

```
\label{eq:constit_elems} \mbox{ def MoleculeT.MoleculeT.constit_elems (} \\ self \mbox{ )}
```

Return the element in a ElmSet.

Returns

ElmSet of the element

Reimplemented from ChemEntity. ChemEntity.

4.7.3.3 equals()

Check if the other MoleculeT is the same as current object.

Checking by if it is the same ElementT and same number of atoms

Parameters

```
other ← - MoleculeT to compare with _m
```

Returns

True if the same else False

Reimplemented from Equality. Equality.

4.7.3.4 get_elm()

```
\begin{tabular}{ll} $\operatorname{def MoleculeT.MoleculeT.get\_elm} & ( \\ & self \end{tabular} \label{eq:moleculeT.moleculeT.get}
```

Get the element.

Returns

ElementT of element

4.7.3.5 get_num()

Get the number of atoms in the molecule.

Returns

the number of atoms of the element

4.7.3.6 num_atoms()

```
def MoleculeT.MoleculeT.num_atoms ( self, \\ element \ )
```

Return the number of atom in the Molecule.

If the inputted element if the same as the ${\color{blue} {\sf MoleculeT}}$ then return the number of atoms else 0

Parameters

```
element - ElementT to get
```

Returns

Number of atoms or 0

Reimplemented from ChemEntity.ChemEntity.

The documentation for this class was generated from the following file:

src/MoleculeT.py

4.8 ReactionT.ReactionT Class Reference

Class to simulate a reaction with balancing the equation.

Public Member Functions

```
· def init (self, left compound, right compound)
     Constructor for ReactionT which balances before storing it.

    def get_lhs (self)

     Return the left hand side of ReactionT.
def get_rhs (self)
     Return the right hand side of ReactionT.

    def get_lhs_coeff (self)

     Return the coeffs for the left side.
def get_rhs_coeff (self)
     Return the coeffs for the right side.
• def __elm_in_chem_eq__ (self, c)
     Return the ElementT in the compound.

    def <u>calc coeffs</u> (self, left compound, right compound)

• def __n_atoms__ (self, comp, c, element)

    def is bal elm (self, left comp, right comp, left coef, right coef, element)

• def __is_balanced__ (self, left_comp, right_comp, left_coef, right_coef)
```

4.8.1 Detailed Description

Class to simulate a reaction with balancing the equation.

4.8.2 Constructor & Destructor Documentation

Constructor for ReactionT which balances before storing it.

Uses local functions to calculate the coeffs, then check if it is balanced else throw Value Error The reason I dont check for positive coeffs is because I make them positive in the calculation of coeffs

Parameters

left_compound - CompoundT right_compound - CompoundT
--

4.8.3 Member Function Documentation

```
4.8.3.1 __elm_in_chem_eq__()
```

Return the ElementT in the compound.

Returns

ElmSet of elements

4.8.3.2 get_lhs()

```
\label{eq:continuity} \mbox{ def ReactionT.ReactionT.get\_lhs (} \\ self \mbox{ )}
```

Return the left hand side of ReactionT.

Returns

the left side CompoundT

4.8.3.3 get_lhs_coeff()

```
\label{lem:coeff} \begin{tabular}{ll} $\operatorname{def ReactionT.ReactionT.get\_lhs\_coeff} & \\ & self \end{tabular} \end{tabular}
```

Return the coeffs for the left side.

Returns

list of coeffs

4.8.3.4 get_rhs()

Return the right hand side of ReactionT.

Returns

the right side CompoundT

4.8.3.5 get_rhs_coeff()

Return the coeffs for the right side.

Returns

list of coeffs

The documentation for this class was generated from the following file:

src/ReactionT.py

4.9 Set.Set Class Reference

Class that represents a Set.

Inheritance diagram for Set.Set:

Public Member Functions

• def __init__ (self, sequence)

Constructor that initializes the object with set.

• def add (self, element)

Add an element to the set.

• def rm (self, element)

Remove a specified from the set.

• def member (self, element)

Checks if the element is in the set.

• def size (self)

Returns the size of the set.

• def equals (self, other_set)

Checks if the two sets are the same.

def to_seq (self)

Convert the set into a list for it to be iterable.

4.9.1 Detailed Description

Class that represents a Set.

4.9.2 Constructor & Destructor Documentation

```
4.9.2.1 __init__()
```

Constructor that initializes the object with set.

Takes in a sequence and converts it into set and holds it in the state variable

Parameters

```
sequence - Takes in a sequence (list)
```

4.9.3 Member Function Documentation

4.9.3.1 add()

```
def Set.Set.add (
          self,
```

```
element )
```

Add an element to the set.

Uses the add function of set object to add the element

Parameters

```
Element to add
```

4.9.3.2 equals()

Checks if the two sets are the same.

First check if the two sets are the same then check if all the elements occur in the other set

Parameters

```
other_set - Set to check with
```

Returns

True if the same else false

Reimplemented from Equality. Equality.

4.9.3.3 member()

Checks if the element is in the set.

Parameters

Element to check

Returns

True if in the set else false

4.9.3.4 rm()

Remove a specified from the set.

Uses the remove function from the Set Object

Parameters

<i>Specified</i> Eler

Exceptions

4.9.3.5 size()

```
def Set.Set.size (
          self )
```

Returns the size of the set.

Using len function

Returns

the size of the set as an integer

4.9.3.6 to_seq()

```
def Set.Set.to_seq (
     self )
```

Convert the set into a list for it to be iterable.

Returns

List of the sets

The documentation for this class was generated from the following file:

src/Set.py

Chapter 5

File Documentation

5.1 src/ChemEntity.py File Reference

Abstract interface for methods about chemical entities.

Classes

• class ChemEntity.ChemEntity

5.1.1 Detailed Description

Abstract interface for methods about chemical entities.

Author

Dhruv Bhavsar

Date

Feb 1, 2020

5.2 src/ChemTypes.py File Reference

Definition of Element types.

Classes

• class ChemTypes.ElementT

A data type to hold all elements in the periodic table.

26 File Documentation

5.2.1 Detailed Description

Definition of Element types.

Author

Dhruv Bhavsar

Date

Feb 1, 2020

5.3 src/CompoundT.py File Reference

Class for holding a MolecSet.

Classes

• class CompoundT.CompoundT

Class that represents a Compound, inherits ChemEntity and Equality.

5.3.1 Detailed Description

Class for holding a MolecSet.

Author

Dhruv Bhavsar

Date

Feb 3, 2020

5.4 src/Equality.py File Reference

Used for comparing two objects @Date Feb 1, 2020.

Classes

· class Equality. Equality

An abstract class for comparing two objects.

5.4.1 Detailed Description

Used for comparing two objects @Date Feb 1, 2020.

Author

Dhruv Bhavsar

5.5 src/MolecSet.py File Reference

Class used to rename the Set, set of MoleculeT.

Classes

• class MolecSet.MolecSet

Inherits from Set, just used for new name of Set.

5.5.1 Detailed Description

Class used to rename the Set, set of MoleculeT.

Author

Dhruv Bhavsar

Date

Feb 3, 2020

5.6 src/MoleculeT.py File Reference

Class for holding the Molecule which includes element and number of it.

Classes

• class MoleculeT.MoleculeT

Class that represents a molecule, inherits ChemEntity and Equality.

5.6.1 Detailed Description

Class for holding the Molecule which includes element and number of it.

Author

Dhruv Bhavsar

Date

Feb 3, 2020

28 File Documentation

5.7 src/ReactionT.py File Reference

Class that holds two compounds for the reactions.

Classes

· class ReactionT.ReactionT

Class to simulate a reaction with balancing the equation.

5.7.1 Detailed Description

Class that holds two compounds for the reactions.

Author

Dhruv Bhavsar

Date

Feb 3, 2020

5.8 src/Set.py File Reference

Class for Set building and applying methods to the Set.

Classes

· class Set.Set

Class that represents a Set.

5.8.1 Detailed Description

Class for Set building and applying methods to the Set.

Author

Dhruv Bhavsar

Date

Feb 2, 2020

Index

elm_in_chem_eq ReactionT.ReactionT, 20 eq MoleculeT.MoleculeT, 16 init CompoundT.CompoundT, 8 MoleculeT.MoleculeT, 16 ReactionT.ReactionT, 19 Set.Set, 22	Set.Set, 23 MolecSet.MolecSet, 15 MoleculeT.MoleculeT, 15 eq, 16init, 16 constit_elems, 17 equals, 17 get_elm, 18 get_num, 18 num_atoms, 18
add Set.Set, 22 ChemEntity.ChemEntity, 7 num_atoms, 7 ChemTypes.ElementT, 10 CompoundT.CompoundT, 8	num_atoms ChemEntity.ChemEntity, 7 CompoundT.CompoundT, 10 MoleculeT.MoleculeT, 18 ReactionT.ReactionT, 19
init, 8 constit_elems, 9 equals, 9 get_molec_set, 9 num_atoms, 10 constit_elems CompoundT.CompoundT, 9 MoleculeT.MoleculeT, 17	elm_in_chem_eq, 20 init, 19 get_lhs, 20 get_lhs_coeff, 20 get_rhs, 20 get_rhs_coeff, 21 rm Set.Set, 23
ElmSet.ElmSet, 13 Equality.Equality, 14 equals, 14 equals CompoundT.CompoundT, 9 Equality.Equality, 14 MoleculeT.MoleculeT, 17 Set.Set, 23	Set.Set, 21init, 22 add, 22 equals, 23 member, 23 rm, 23 size, 24 to_seq, 24 size
get_elm MoleculeT.MoleculeT, 18 get_lhs ReactionT.ReactionT, 20 get_lhs_coeff ReactionT.ReactionT, 20 get_molec_set CompoundT.CompoundT, 9 get_num MoleculeT.MoleculeT, 18 get_rhs	Set.Set, 24 src/ChemEntity.py, 25 src/ChemTypes.py, 25 src/CompoundT.py, 26 src/Equality.py, 26 src/MolecSet.py, 27 src/MoleculeT.py, 27 src/ReactionT.py, 28 src/Set.py, 28
ReactionT.ReactionT, 20 get_rhs_coeff ReactionT.ReactionT, 21	to_seq Set.Set, 24

member