DAFTAR ISI

DAFT	AR ISI	1
DAFT	AR TABEL	2
BAB I	. PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran yang Diharapkan	2
1.5	Manfaat	2
BAB 2	. TINJAUAN PUSTAKA	2
2.1	Potensi Energi Surya di Indonesia	2
2.2	Solar Tracker Pasif dan Aktif	3
2.3	Posisi Usulan (State of The Art)	3
BAB 3	. TAHAP PELAKSANAAN	4
3.1	Metode dan Model Pelaksanaan	4
3.2	Rancangan Alat	6
3.3	Cara Kerja Alat	7
3.4	Keunggulan Inovasi	8
BAB 4	. BIAYA DAN JADWAL KEGIATAN	9
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	9
Lam	piran 1. Biodata Ketua, Anggota dan Dosen Pendamping	11
Lam	piran 2. Justifikasi Anggaran Kegiatan	23
Lam	piran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	26
Lam	piran 4. Surat Pernyataan Ketua Pelaksana	27
Lam	piran 5. Gambaran Teknologi yang Akan Diterapkembangkan	28

DAFTAR TABEL

DAI TAN TADEL	
Tabel 4. 1. Anggaran Biaya	8
Tabel 4. 2. Jadwal Kegiatan	9
DAFTAR GAMBAR	
Gambar 3.1. Diagram Alir Pelaksanaan Kegiatan	4
Gambar 3.2. Tampilan SMART (Solar Mechanical Adjustable Ray Tracker)	6
Gambar 3.3. Tampilan Atas dari Heat Absorber	6
Gambar 3.4. Urutan Skenario dari Prinsip Kerja SMART	6
Gambar 5.1. SMART tanpa Panel Surya	27
Gambar 5.2. SMART dengan Panel Surya	27
Gambar 5.3. SMART dalam jumlah banyak bila diaplikasikan ke Grid	28
Gambar 5.4. SMART bila diaplikasikan dalam proyek Agrophotovoltaic untu daerah 3T (hanya gambaran untuk versatilitas aplikasi SMART untuk masyara	akat)
Cambar 5.5 Model 3D SMART	20

BAB I. PENDAHULUAN

1.1 Latar Belakang

Seiring dengan perkembangan teknologi di zaman modern, kehidupan masyarakat Indonesia akan sangat bergantung dengan keberadaan energi listrik. Berdasarkan data yang diperoleh dari Kementrian Energi dan Sumber Daya Mineral, konsumsi listrik masyarakat Indonesia sepanjang tahun 2020 mencapai angka 242,6 terawatt hour (TWh). Sekitar 80% dari kebutuhan energi tersebut masih dipenuhi oleh energi primer yang terdiri atas minyak bumi, gas bumi, dan batu bara (Outlook Energi Indonesia, 2019). Sumber energi untuk pembangkit listrik di Indonesia masih didominasi oleh energi fosil yang diproyeksikan akan habis pada 20 tahun mendatang. Oleh karena itu, pemerintah Indonesia berkomitmen untuk merealisasikan ketahanan dan kemandirian energi dengan cara meningkatkan peran energi baru dan terbarukan sebesar 23% pada tahun 2025.

Salah satu sumber energi utama dan berjumlah besar ialah energi surya. Pemanfaatan energi surya sebagai sumber energi alternatif untuk memenuhi kebutuhan listrik masyarakat Indonesia merupakan pilihan yang tepat karena letak geografis yang berada pada daerah tropis dan dapat dijangkau oleh sinar matahari sepanjang tahun. Dengan mengoptimalkan penyerapan energi surya, maka penggunaan energi tak terbarukan akan semakin kecil sehingga berdampak pada pengurangan emisi gas karbon dioksida yang sesuai dengan *Sustainable Development Scenario* oleh International Energy Agency (IEA).

Solusi yang kami ajukan terhadap permasalahan inefisiensi *solar tracker* ialah SMART (Smart Mechanical Adjustable Ray Tracker). Inovasi ini memiliki berbagai keunggulan jika dibandingkan dengan *solar tracker* berbasis elektrik. Pertama, SMART merupakan *solar tracker* yang bekerja secara pasif. *Solar tracker* jenis ini tidak menggunakan penggerak motor dalam mengikuti gerak matahari serta bekerja pada dua sumbu. Apabila ditinjau dari segi *solar tracker* berbasis elektrik, perangkat ini dinilai tidak efektif karena mengonsumsi sekitar 20% dari total daya yang dihasilkan oleh panel surya. Keunggulan lain yang ditawarkan oleh SMART ialah biaya pemeliharaan yang jauh lebih rendah dibandingkan *solar tracker* berbasis elektrik sehingga dapat dimanfaatkan pada daerah yang minim akan akses perawatan. Selanjutnya, SMART memiliki sifat fleksibel karena dapat ditempatkan di berbagai daerah dengan kondisi geografis yang beragam. Hal ini dapat terjadi karena perangkat SMART memiliki bagian berupa kalibrator yang dapat beradaptasi dengan lingkungan tempat sistem dipasangkan.

Melalui proposal ini, diusulkan sebuah solusi untuk menjawab tantangan menaikkan produksi listrik panel surya dengan teknologi SMART untuk yang dapat juga berkontribusi untuk menyelesaikan permasalahan ketahanan energi di Indonesia. Sistem SMART yang terususun atas komponen sederhana, variatif dari segi ukuran, serta bekerja secara pasif sehingga dapat membantu masyarakat Indonesia untuk turut berpartisipasi dalam mewujudkan *Sustainable Development*

Goals (SDGs) poin ketujuh yaitu menerima akses energi yang terjangkau, andal, dan modern.

1.2 Rumusan Masalah

Bagaimana merancang suatu *solar tracker* pasif yang tinggi dari segi efisiensi, ekonomis dari segi biaya, serta fleksibel untuk ditempatkan di berbagai letak geografis demi mewujudkan ketahanan energi nasional?

1.3 Tujuan

Tujuan kegiatan ini adalah untuk mendapatkan rancangan alat pelacak surya berbasis sistem kontrol fluida mekanik untuk mengoptimalkan kinerja panel surya yang mampu bekerja efektif untuk meningkatkan produksi listrik panel surya guna memenuhi target penggunaan EBT oleh pemerintah.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari kegiatan ini antara lain:

- 1. Laporan kemajuan dan laporan akhir mengenai alat pelacak surya berbasis sistem kontrol fluida mekanik untuk mengoptimalkan kinerja panel surya.
- 2. Prototipe unit SMART
- 3. Draft paten dari SMART
- 4. Publikasi ilmiah untuk

1.5 Manfaat

Manfaat dari kegiatan ini antara lain:

- 1. Memberi dampak positif dalam meningkatkan efisiensi system energi listrik berbasis energi surya.
- 2. Memberikan sumbangsih jangka panjang pada ilmu pengetahuan dan teknologi melalui *solar tracker* pasif yang berpotensi memberikan solusi terhadap *solar tracker* yang ekonomis.
- 3. Memiliki potensi jangka panjang untuk diaplikasikan dan dipasarkan sebagai alternatif *solar tracker* pada skala rumah tangga, industri, maupun daerah 3T.

BAB 2. TINJAUAN PUSTAKA

2.1 Potensi Energi Surya di Indonesia

Potensi energi baru terbarukan terbesar di Indonesia adalah energi surya. Hal ini disebabkan oleh letak geografis Indonesia berada di garis khatulistiwa. Intensitas radiasi matahari berkisar pada angka 4,8 kWh/m² per hari di seluruh wilayah Indonesia (Rahardjo & Fitriana, 2005). Berdasarkan informasi dari Direktorat Jenderal Energi Baru dan Terbarukan dan Konservasi Energi (EBTKE),

pemanfaatan energi surya di Indonesia baru mencapai 0,05%. Pengembangan Pembangkit Listrik Tenaga Surya (PLTS) masih tergolong mahal dan menggunakan perangkat yang didatangkan dari luar negeri. Oleh karena itu, pengembangan dan modifikasi panel surya di daerah yang minim akan akses listrik PLN perlu ditingkatkan agar seluruh lapisan masyarakat dapat memperoleh akses energi secara berkelanjutan.

2.2 Solar Tracker Pasif dan Aktif

Untuk mengubah energi surya menjadi energi listrik, diperlukan suatu elemen semikonduktor yang disebut sebagai sel surya atau sel fotovoltaik. Namun, gerak semu harian matahari menyebabkan posisi matahari yang dapat berubah setiap harinya sehingga modul sel surya tidak selalu mendapatkan intensitas cahaya yang maksimal. Hal ini akan berakibat pada arus listrik yang dihasilkan tidak optimal. Solusi dari permasalahan ini adalah dengan menggunakan alat berupa solar tracker yang berfungsi untuk mengarahkan panel surya agar selalu tegak lurus dengan arah datang sinar matahari.

Sistem solar tracker dapat diklasifikasikan berdasarkan jumlah sumbu putaran (Tudorache & Keindler, 2010). Solar tracker satu sumbu dapat dibagi menjadi dua jenis, yaitu vertical rotating axis dan inclined rotating axis. Vertical rotating axis merupakan jenis solar tracker yang dapat mengendalikan sudut dari timur ke barat. Sementara itu, inclined rotating axis merupakan solar tracker yang mengendalikan sudut tilt. Berbeda dari solar tracker satu sumbu, solar tracker dua sumbu memadukan prinsip kerja dari vertical rotating axis dan inclined rotating axis.

Selain dapat diklasifikasikan dari segi sumbu putar, *solar tracker* juga dapat digolongkan berdasarkan metode pelacakannya (Amelia, *et al.*, 2020). *Solar tracker* dengan jenis aktif bergantung pada sumber energi eksternal yang terhubung pada komponen elektrik, seperti pompa maupun radiator. Di sisi lain, *solar tracker* dengan jenis pasif beroperasi tanpa melibatkan komponen listrik.

2.3 Posisi Usulan (State of The Art)

Beberapa penelitian dan paten terkait yang mendukung kegiatan ini adalah sebagai berikut:

- a. Solar tracker aktif sudah pernah dirancang oleh Widyanigrum Indrasari (2018). Teknologi tersebut terhubung dengan alat berupa microcontroller sehingga data dari intensitas matahari dapat diakses secara langsung menggunakan komputer. Kelemahan dari alat ini ialah biaya instalasi dan pemeliharaan yang tinggi serta kurang sesuai untuk digunakan di daerah pedalaman yang minim akan akses energi listrik
- **b.** Penelitian akan jenis fluida kerja pada *solar tracker* telah dilakukan oleh Narendrasinh (2010) dengan menggunakan tiga jenis fluida yang berbeda, yaitu thinner, aseton, dan metanol. Namun, ketiga jenis fluida

tersebut tentunya membutuhkan biaya yang lebih karena tidak tersedia secara langsung di alam dan berbahaya bagi kesehatan manusia apabila dihirup.

Posisi yang kami usulkan adalah memodifikasi *solar tracker* yang umumnya bekerja dengan menggunakan komponen elektrik menjadi alat yang tidak membutuhkan komponen motor listrik sama sekali . Seperti disampaikan pada poin (a), ternyata teknologi yang ada masih belum sempurna dikarenakan terdapat berbagai kekurangan. Kekurangan dari *solar tracker* aktif ialah membutuhkan biaya pemeliharaan yang tinggi. Selain itu, *solar tracker* jenis ini kurang akurat apabila digunakan ketika cuaca berawan serta mengonsumsi 20% dari total daya yang dihasilkan oleh panel surya.

Solar tracker dengan jenis pasif merupakan solusi yang tepat untuk menggantikan teknologi yang ada. Hal ini disebabkan teknologi yang diusulkan tidak membutuhkan satu pun komponen elektrik dalam proses operasinya serta memiliki biaya pemeliharaan yang jauh lebih murah. Selain itu, permasalahan pada poin (b) dapat ditangani oleh sistem SMART karena pemilihan fluida kerja berupa udara. Udara merupakan fluida yang tergolong melimpah, tidak beracun, serta mudah untuk didapatkan. Solar tracker dengan jenis pasif merupakan solusi yang tepat untuk menggantikan teknologi yang ada. Hal ini disebabkan teknologi yang diusulkan tidak membutuhkan satu pun komponen elektrik dalam proses operasinya serta memiliki biaya pemeliharaan yang jauh lebih murah. Selain itu, permasalahan pada poin (b) dapat ditangani oleh sistem SMART karena pemilihan fluida kerja berupa udara. Udara merupakan fluida yang tergolong melimpah, tidak beracun, serta mudah untuk didapatkan.

BAB 3. TAHAP PELAKSANAAN

3.1 Metode dan Model Pelaksanaan

Metode pelaksanaan proposal ini ditampilkan dalam diagram alir 3.1.

Gambar 3. 1. Diagram Alir Pelaksanaan Kegiatan

Berdasarkan diagram alir di atas, berikut adalah penjelasan tahapan pelaksanan pada usulan unit SMART:

1. Preparasi Alat dan Bahan

Alat dan bahan yang dipersiapkan pada tahap ini meliputi alat dan bahan yang dibutuhkan dalam proses pembuatan *Heat Absorber* dan *Gas Chamber*. Kemudian, dipersiapkan juga alat dan bahan untuk rancang bangun prototipe, seperti rangka (*mount*), *gear*, d.l.l.

2. Pengambilan Data Intensitas Cahaya dan Temperatur Ambien

Data intensitas cahaya dan temperature ambien diperlukan untuk menentukan berapa tekanan yang dapat menggerak piston di dalam *gas chamber*. Intensitas Cahaya dan Temperatur Ambien akan diukur pada plat yaitu yang akan menjadi *heat absorber* nanti. Data kemudian akan di *cross-reference* dengan modul simulasi yang telah dibuat sebelumnya, dan kemudian bila data sudah sesuai/disesuaikan, pembuatan dan uji komponen *gas chamber* dan *heat absorber dapat dilakukan*

3. Pembuatan dan Uji Komponen Gas Chamber dan Heat Absorber

Pembuatan *gas chamber* dan *heat absorber* dilakukan terlebih dahulu agar mekanisme dasar penggerak dari SMART dapat diuji dan disempurnakan terlebih dahulu sebelum rancang bangun dan pembuatan prototipe SMART. Selebihnya, hal ini dilakukan agar tingkat galat yang dapat terjadi pada tahapan selanjutnya untuk mekanisme kerja SMART dapat diminimalisir. Prosedur uji juga turut memerhatikan arah datangnya matahari guna mendapatkan efisiensi penyinaran.

4. Rancang Bangun dan Pembuatan Prototipe

Setelah alat, bahan, dan data sudah disiapkan, prototipe S3P akan diproduksi sesuai dengan perancangan yang telah dilakukan. Dengan menggunakan prototipe maka peneliti dapat memastikan rancangan awal dapat berfungsi sebagaimana tujuan utama pembuatan alat SMART.

5. Pengujian Prototipe

Ketika alat SMART siap produksi, selanjutnya dilakukan pengujian untuk memastikan alat dapat bekerja secara optimum. Alat SMART akan diletakkan di lokasi terbuka tanpa hambatan untuk menutupi sinar matahari dan kemudian diperiksa pada berbagai variable yang berbeda. Pengujian pertama difokuskan kepada berfungsinya fungsi dasar yaitu pergerakan alat membuat solar panel mengikuti arah datangnya matahari. Kemudian dilakukan peninjauan kerja akan mekanisme alat penggerak yang digerakkan oleh piston serta kekuatan material pada kondisi pengujian.

6. Penyempurnaan Alat dan Finalisasi

Setelah melakukan pengujian alat SMART, didapatkan data untuk analisis guna melihat performa alat SMART dari beberapa parameter yang telah ditentukan sebelumnya. Parameter yang dipilih bertujuan untuk memastikan kerja alat SMART secara keseluruhan. Analisis yang dilakukan bertujuan untuk memperbaiki dan menyempurnakan SMART sehingga dapat berfungsi dengan optimal dan efektif sesuai dengan tujuan awal perancangan alat.

3.2 Rancangan Alat

Gambar 3. 2. Tampilan SMART (Solar Mechanical Adjustable Ray Tracker)

SMART merupakan *solar tracker* yang mampu bekerja secara pasif dengan memanfaatkan panas dari sinar matahari. SMART bekerja dengan prinsip ekspansi dan kompresi gas oleh suhu, dimana ekspansi dan kompresi gas pada sistem piston akan menyebabkan sistem piston memanjang ataupun memendek. Berdasarkan Gambar 3.2, dapat terlihat bahwa SMART terdiri atas beberapa komponen utama, yaitu *heat absorber, gas chamber,* piston, *dan frame*.

Komponen penting pertama dari SMART ialah heat absorber. Heat absorber merupakan komponen yang berfungsi untuk menyerap cahaya matahari dan mengubahnya menjadi panas. Komponen ini terdiri beberapa sub-komponen yaitu; konduktor, reflektor, dan protector glass (Gambar 3.3). Konduktor adalah sub-komponen yang berfungsi untuk menghantarkan panas dari bagian luar absorber ke bagian dalam absorber. Konduktor pada SMART merupakan logam stainless steel yang dilapisi dengan warna hitam. Pelapisan dengan pewarna hitam pada konduktor ditujukan untuk meningkatkan absorbsi energi dari cahaya adalah Reflektor sub-komponen berfungsi matahari. yang mengkonsentrasikan cahaya matahari ke permukaan konduktor. Selanjutnya, protector glass merupakan lapisan kaca pada permukaan konduktor yang berfungsi untuk meningkatkan durabilitas dari absorber.

Gambar 3. 3. Tampilan Atas dari Heat Absorber

Komponen utama selanjutnya dari SMART ialah *gas chamber*. Gas chamber merupakan komponen yang berfungsi sebagai tempat penampung gas kerja (*working fluid*). Fluida kerja yang digunakan pada smart adalah udara normal (78,1% gas nitrogen dan 20,9% gas oksigen). Komponen berikutnya adalah *frame*. *Frame* memiliki fungsi sebagai kerangka yang menghubungkan ujung atas piston dengan solar panel.

3.3 Cara Kerja Alat

SMART memanfaatkan ekspansi dan kompresi gas untuk menciptakan kemiringan yang optimal pada solar panel. Berikut adalah urutan skenario dari prinsip kerja SMART (Gambar 3.4):

- (1) *Heat absorber* menyerap sinar matahari dan mengubahnya menjadi energi panas. Panas yang dihasilkan akan memanaskan gas kerja yang terdapat dalam sistem.
- (2) Gas kerja yang sudah panas akan mengalir ke dalam *gas chamber* akibat perbedaan tekanan dan massa jenis. Hal ini mengakibatkan keseluruhan gas kerja yang terdapat dalam *gas chamber* mengalami kenaikan suhu.
- (3) Kenaikan suhu pada gas kerja mengakibatkannya mengalami ekspansi (pertambahan volume gas akibat kenaikan temperatur). Sehingga, piston akan terdorong ke atas dan menggerakkan gear serta frame.
- (4) Akibat dari pergerakan frame, solar panel akan mengalami perubahan kemiringan yang sesuai dengan sudut arah datang cahaya matahari. Hal ini akan menyebabkan terjadinya kenaikan efisiensi pada solar panel.

Gambar 3. 4. Urutan Skenario dari Prinsip Kerja SMART

Gambar 3. 4. Ilustrasi Gear Pada SMART

Animasi cara kerja SMART dapat dilihat di link berikut: https://drive.google.com/file/d/1cYOSMXL41G9YsZ-wVmi2O2evggn82QUf/view?usp=sharing

3.4 Keunggulan Inovasi

Keunggulan inovasi dari Solar Mechanical Adjustable Ray Tracker (SMART) yang kami kemukakan pada tulisan ini adalah sebagai berikut:

- 1) Bekerja secara pasif
- 2) Meningkatkan efisiensi panel surya berkonfigurasi tetap
- 3) Memiliki perawatan yang sangat minim biaya
- 4) Sangat ekonomis dibandingkan electrical tracker
- 5) Fleksibilitas aplikasi alat

SMART juga menawarkan kemudahan dalam perawatannya. Hal ini dikarenakan SMART tidak melibatkan penggunaan komponen elektronik dalam rancangannya. Perawatan yang perlu dilakukan hanyalah menjaga kebersihan komponen *heat absorber* dan juga membersihkan frame agar akurasi SMART tetap terjaga. Oleh karena itu SMART dapat diterapkan di daerah 3T untuk menyetarakan akses energi listrik terhadap semua warga negara terutama listrik dari EBT.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4. 1. Anggaran Biaya

No.	Jenis Pengeluaran	Sumber Dana	Biaya (Rp)
1.	Sewa dan jasa	Belmawa	Rp. 795.700
1.	Sewa dan jasa	Perguruan Tinggi	Rp. 500.000
2.	Barang habis pakai	Belmawa	Rp. 4.385.000
2.		Perguruan Tinggi	Rp. 800.000
3.	Transportasi lokal	Belmawa	Rp. 1.150.000
٥.		Perguruan Tinggi	Rp. 350.000
4.	Lain-lain	Belmawa	Rp. 577.300
7.		Perguruan Tinggi	Rp. 100.000
	Jumlah	1	8.658.000

4.2 Jadwal Kegiatan

Tabel 4. 2. Jadwal Kegiatan

No	Jenis Kegiatan		Bulan			Penanggung Jawab
110	Jenis Kegiatan	1	2	3	4	i changgung Jawab
1	Studi Literatur					Jason Palenewen
2	Persiapan Alat dan Bahan					Juan Khosashi
3	Pengambilan Data Intensitas					Jonathan Tjioe
	Cahaya dan Temperatur					
	Ambien					
4	Pembuatan dan Uji					Juan Khosashi
	Komponen Gas Chamber					
	dan <i>Heat Absorber</i>					
5	Rancang Bangun dan					Juan Khosashi
	Pembuatan Prototipe					
6	Pengujian Prototipe					Jonathan Tjioe
7	Pengolahan Data dan					Evan Fadhil
	Pembuatan Laporan					Nurhakim
8	Finalisasi					Angelina Grace

DAFTAR PUSTAKA

- A.R. Amelia et al. 2020. IOP Conf. Ser.: Mater. Sci. Eng. 767 012052
- Bachtiar, M., 2006. PROSEDUR PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA UNTUK PERUMAHAN (SOLAR HOME SYSTEM). *Jurnal SMARTek*, 4(3), pp.176-182.
- Bahrami A, Okoye CO, Atikol U, Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries, Renewable Energy (2017), doi: 10.1016/j.renene.2017.05.095.
- Duz, H., 2016. Storing Solar Energy Inside Compressed Air Through A Heat Machine Mechanism. *Gazi University Journal of Science*, 29(2), pp.245-251
- Ghazouani, K., 2019. Thermal Analysis of Linear Solar Concentrator for Indirect Steam Generator. *Energy Procedia*, 162(1), pp.136-145.
- Indrasari, W., Fahdiran, R., Budi, E. and Jannah, L., 2018. Active Solar Tracker Based on The Horizon Coordinate System. *Journal of Physics*, 8(1), pp.1-5.
- K. Branker, M.J.M. Pathak, J.M. Pearce, A review of solar photovoltaic levelized cost of electricity, Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2011.07.104.
- Narendrasinh J, Parmar ANP and Gautam Vinod S. Passive solar tracking system. International Journal Emerging Technology and Advanced Engineering vol.5
- Rahardjo, I. and Fitriana, I., 2005. ANALISIS POTENSI PEMBANGKIT LISTRIK TENAGA SURYA DI INDONESIA. Strategi Penyediaan Listrik Nasional Dalam Rangka Mengantisipasi Pemanfaatan PLTU Batubara Skala Kecil, PLTN, Dan Energi Terbarukan, pp.43-51.
- Syafrialdi, R., 2015. RANCANG BANGUN SOLAR TRACKER BERBASIS MIKROKONTROLER ATmega8535 DENGAN SENSOR LDR DAN PENAMPIL LCD. *Jurnal Fisika Unand*, 4(2), pp.113-114.
- W A Nugroho and B Sudiarto 2021 *IOP Conf. Ser.: Mater. Sci. Eng.* **1098** 042069 Direktorat Jenderal Ketenagalistrikan, Kementerian Energi dan Sumber Daya Mineral, Indonesia: 2016 Faktor Emisi Sistem Kelistrikan

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Jason Jimmy Amadeus Palenewen
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Bioproses
4.	NIM	1906357383
5.	Tempat dan Tanggal Lahir	Manado, 13 Maret 2002
6.	Alamat e-mail	Jason.jimmy@ui.ac.id
7.	No. Telepon/HP	08111308055

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	SRE UI SC 2021	Vice President of External	Daring, 2021
2	SPE UI SC 2021	Co-Director of Curriculum and Competition	Daring, 2021
3	SRE UI SC 2021	Staff of Relations	Daring, 2021
4	SBE UI SC 2020	Staff of External Events	Daring, 2020
5	IMTK FT UI 2020	Badan Pengurus Kemahasiswaan	Daring, 2020
5	Chemical Engineering in Charity 2020	Wakil Ketua Panitia	Bogor, 2020

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Top 10 PF Sains (Masih proses seleksi top 3)	Pertamina Foundation	2021
2	Top 10 Ideathon (Masih proses seleksi top 3)	IYSRE 2021	2021
3	1st-runner up of [RE]Charge New Energi Nexus	NEXUS x GIZ	2021
4	Champion of Oil Rig Design Competition on Petroforia 2021	IATMI STT Migas Balikpapan	2021
5	Champion of Oil Rig Design Competition on Oil and Gas Intellectual Parade 2021	SPE UPN Veteran Yogyakarta	2021

6	Champion of SPE-UTM SC Intellectual Day's 2021	SPE-Universiti Teknologi Malaysia SC	2021
7	Verbal Commendation	Student Energy-Model United Nations	2020
8	Juara 1 English Debate	Olimpiade Ilmiah Mahasiswa FTUI	2020
9	Juara 2 Liga Basket	BKKMTKI (Badan Koordinasi Kegiatan Mahasiswa Teknik Kimia Indonesia)	2020

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta

Depok, 25 Maret 2022

Ketua,

(Jason Jimmy Amadeus Palenewen)

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Juan Khosashi
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIM	1906355472
5.	Tempat dan Tanggal Lahir	Jakarta, 2 Juli 2001
6.	Alamat e-mail	Juan.khosashi@ui.ac.id
7.	No. Telepon/HP	081342957282

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Proyek pengembangan teknologi EBT	Pemilik ide	Desa Binaan Astra, Agustus 2021-Maret 2022
2	Plant Design Competition Training oleh AIChE UI SC	Project Officer	Depok, Februari – April 2021
3	Process Engineering and Energy Days UI 2022	Wakil Kepala Bidang Divisi Design	Depok, July 2021 – Maret 2022

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Top 10 PF Sains (Masih proses seleksi top 3)	Pertamina Foundation	2021
2	Top 10 Ideathon (Masih proses seleksi top 3)	IYSRE 2021	2021
3	1st-runner up of [RE]Charge New Energi Nexus	NEXUS x GIZ	2021
4	Champion of Oil Rig Design Competition on Petroforia 2021	IATMI STT Migas Balikpapan	2021
5	Champion of Oil Rig Design Competition on Oil and Gas Intellectual Parade 2021	SPE UPN Veteran Yogyakarta	2021

6	Champion of SPE-UTM SC Intellectual Day's 2021	SPE-Universiti Teknologi Malaysia SC	2021
7	Juara Nasional Inovasi Teknologi EBT	Astra Internasional	2021
8	Juara 2 Liga Basket	BKKMTKI (Badan Koordinasi Kegiatan Mahasiswa Teknik Kimia Indonesia)	2020

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta

Depok, 25 Maret 2022 Anggota Tim,

(Juan Khosashi)

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Evan Fadhil Nurhakim
2.	Jenis Kelamin	Laki – Laki
3.	Program Studi	Teknik Kimia
4.	NIM	1906380493
5.	Tempat dan Tanggal Lahir	Jakarta, 14 Juni, 2001
6.	Alamat e-mail	evan.fadhil@ui.ac.id
7.	No. Telepon/HP	+62 81386276835

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Organization	Deputy Director of Study Research	Society of Petroleum Engineers SC Universitas Indonesia (January 2021 – Present)
2	Organization	Founder and Chairperson	SPEnergized (February 2021 – Present)
3	Committee	Director of Operations	International Youth Summit for Renewable Energi (March 2021 – September 2021)
4	Committee	Vice Director of Engineering Physical Projet	Kerja Sosial Fakultas Teknik Universitas Indonesia (April 2021 – July 2021)

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Awardee of PFprestasi - Sobat Bumi	Pertamina Foundation, PT. Pertamina	2021

2	National Champion of Astra Green I nergy Student Innovation	Astra International, Society of Renewable Litergi	2021
3	2 nd Place of Impact Solution Pitch on Indonesia Energy Innovation Challenge	Energy Investment BV and Enlit Asia	2021
4	1 st Place of Startup Challenge on ASEAN University Startup	ASEAN University Network and CU Innovation Hub	2021
5	Champion of Oil Rig Design Competition on SPE-UTM SC Intellectual Day's 2021	SPE-Universiti Teknologi Malaysia SC	2021

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta

Depok, 25 Maret 2022 Anggota Tim,

(Evan Fadhil Nurhakim)

D. Biodata Anggota ke-3

A. Identitas diri

1.	Nama Lengkap	Angelina Grace
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1906300385
5.	Tempat dan Tanggal Lahir	Jakarta, 30 Oktober 2001
6.	Alamat e-mail	angelinagracesimatupang@gmail.com
7.	No. Telepon/HP	081289255763

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

_	Ionia Vaciatan		Waktu dan Tempat
No		Status dalam Kegiatan	waktu dan Tempat
1	Organisasi Society of Petroleum Engineers Universitas Indonesia Student Chapter	Deputy Director of Education Associate	Depok, 2021
2	Acara Process Engineering and Energy Days (PGD) Universitas Indonesia	Vice PIC of Opening and Closing Ceremony	Depok, 2021
3	Asisten Dosen Mata Kuliah Kimia Fisika	Asisten Dosen	Depok, 2021
4	Asisten Laboratorium Mata Kuliah Kimia Fisika dan Kimia Analitik	Asisten Dosen	Depok, 2021
5	Organisasi Society of Petroleum Engineers Universitas Indonesia Student Chapter	Staff of Education Asssociate	Depok, 2020
6	Organisasi Ikatan Mahasiswa Teknik Kimia (IMTK)	Staff Ilmu Pengetahuan dan Teknologi	Depok, 2020

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Mahasiswa Berprestasi Akademis Jurusan Teknik Kimia	Departemen Teknik Kimia Universitas Indonesia	2021
2	Juara 1 Astra Green Energy Student Innovation (AGEnSI)	Astra International Tbk dan Society of Renewable Energy (SRE)	2021
3	Juara 1 Oil Rig Design Competition SPE UTM SC Intellectual Day	Society of Petroleum Engineers (SPE) Universiti Teknologi Malaysia	2021
4	Juara 1 Oil Rig Design Competition OGIP	UPN "Veteran" Yogyakarta	2021
5	Juara 1 Oil Rig Design Competition PETROFORIA	STT Migas Balikpapa	2021
6	Juara 1 Inovasi Terbaik Industrial's Seminar and Expo (ISAX)	UIN Sunan Kalijaga Yogyakarta	2021
7	Juara Favorit Oil Rig Design Competition IPFEST	Institut Teknologi Bandung	2021

8	Juara 2 Energy Business Plan Competition on Energy Accesss	New Energy Nexus Deutsche dan Gesselschaft für Internationale Zusammenarbeit (Giz GmbH)	2021
9		Energy Investment Management dan Enlit Asia	2021
10	Juara 3 Lomba Esai Pekan Ilmiah Fisika XXXI	Universitas Negeri Semarang	2020
11	Juara 2 Lomba Karya Tulis Nasional pada Pekan Ilmiah	Universitas Tidar	2020
12	Juara 2 Lomba Debat Bahasa Inggris	Suku Dinas Pendidikan Kota Administrasi Jakarta Selatan	2018
13		Suku Dinas Perpustakaan dan Kearsipan Kota Administrasi	2018
14		SMAN 1 Kota Tangerang Selatan	2018

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta

Depok, 25 Maret 2022 Anggota Tim,

(Angelina Grace)

E. Biodata Anggota ke-4

A. Identitas diri

1.	Nama Lengkap	Jonathan Tjioe	
2.	Jenis Kelamin	Laki-laki	
3.	Program Studi	Teknik Kimia	
4.	NIM	1906355226	
5.	Tempat dan Tanggal Lahir	Jakarta, 28 Februari 2001	
6.	Alamat e-mail	Tjioejonathan28@gmail.com	
7.	No. Telepon/HP	082211048669	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMTK	Kepala Bidang Akademis dan Keprofesian	Periode 2021
2	IMTK	Wakil Kepala Bidang Akademis dan keprofesian	Periode 2020

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 3 Oil Rig Design Competition	Universitas Pertamina	2020
2	Juara 1 Oil Rig Design Competition	Universitas Teknologi Malaysia	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta

Depok, 25 Maret 2022 Anggota Tim,

(Jonathan Tjioe)

F. Biodata Dosen Pendamping

A. Identitas diri

1.	Nama Lengkap (dengan gelar)	Dr. Kenny Lischer, ST., MT.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIP/NIDN	100120910282110991/0028119003
5.	Tempat dan Tanggal Lahir	Jakarta, 28 November 1990
6.	Alamat E-mail	lischer.k@gmail.com
7.	No. Telepon/HP	+6287888017811

B. Riwayat Pendidikan

	SI	S2	S3
Nama Institusi	Universitas Indonesia	Universitas Indonesia	Nara Institute of Science and Technology
Jurusan/Prodi	Teknologi Bioproses	Teknik Kimia	Biological Sciences
Tahun Masuk-Lulus	2008-2012	2013	2018

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Biokimia	Wajib	3
2.	Kapita Selekta Bio	Wajib	2
3.	Komputasi Numerik Bio	Wajib	3
4.	Peristiwa Perpindahan Hayati	Wajib	3
5.	Kimia Dasar	Wajib	2

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun	
1.	Cloning of DNA Polymerase I	UI	2021	
	Geobacillus thermoleovorans			

	SGAir0734 from a Batu Kuwung Hot Spring in Escherichia coli.		
2.	The emergence and rise of indigenous thermophilic bacteria exploration from hot springs in Indonesia.	UI	2021
3.	Heat transfer simulation of various material for polymerase chain reaction thermal cycler.	UI	2021
4.	Molecular interaction analysis of Sulawesi propolis compounds with SARS-CoV-2 main protease as preliminary study for COVID-19 drug discovery.	UI	2021
5.	Ethanol recovery from propolis production waste using adsorption distillation method.	UI	2021
6.	Surface plasmon resonance analysis for detecting non-structural protein 1 of dengue virus in Indonesia	UI	2020
7.	Ethanol Production by Encapsulated Rhizopus oryzae from Oil Palm Empty Fruit Bunch.	DIKTI	2020
8.	Exploration of the Antifungal Potential of Indonesian Propolis from Tetragonula biroi Bee on Candida sp. and Cryptococcus neoformans.	UI	2020
9.	In silico study on RNA structures of intronic mutations of beta-globin gene.	UI	2020
10.	Encapsulation of agarwood essential oil with maltodextrin and gum Arabic.	UI	2020
11.	Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation.	MEXT	2018
12.	Antiviral activity of Acanthaster planci phospholipase A2 against human immunodeficiency virus.	DIKTI	2018
13.	Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant.	DIKTI	2017

C.1. Pengabdian Kepada Masyarakat

No.	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1.	Pelatihan penyusunan draf Hak Kekayaan Intelektual dan Paten di Poltekkes Tasikmalaya	UI	2021
2.	Pelatihan molecular docking untuk akademisi	UI	2021
2.	Budidaya lebah madu di Bengkulu, Sumbawa, dan Sulawesi Selatan	Bank Indonesia	2021

3.	Pelatihan budidaya lebah madu klenceng untuk masyarakat umum	UI	2020
4.	Budidaya lebah madu di Engineering Park UI	UI	2019
5.	Budidaya lebah madu di Kebun Belimbing, Depok	UI	2019

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC

Depok, 25 Maret 2022

Dosen Pendamping

(Dr. Kenny Lischer, ST., MT.)

Lampiran 2. Justifikasi Anggaran Kegiatan

No.	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1	Belanja Sewa	•		
	Sewa Jasa Manufaktur	1 kali	975.000	975.000
	Kuas Cat	2 buah	25.350	50.700
	Termometer Gun	1 buah	120.000	120.000
	Sewa Zoom Education	1 buah	150.000	150.000
	SUBTOTAL 1 (Rp)		I	1.295.700
2	Belanja Bahan			1
	Stainless Steel (OD=3cm, tebal=0,2 cm)	0,6 meter	218.000	117.000
	Stainless Steel (OD=0,5 cm)	1,5 meter	240.000	260.000
	Allumunium Rod (OD=0,35 cm)	0,2 meter	230.000	46.000
	Mild Steel Pipe (OD=2 cm)	0,5 meter	70.000	35.000
	Allumunium Alloy (OD= 0,2 cm)	0,4 meter	75.000	24.000
	Cooper Tube (ID=0,4 cm)	0,5 meter	200.000	100.000
	Borosilicate glass (ID=0,4 cm)	0,5 meter	270.000	140.000
	Fiber Glass	4 buah	30.000	120.000
	Allumunium Film (panjang=8 m)	1 buah	99.000	99.000
	Cat Hitam (volume= 200ml)	1 buah	50.000	50.000
	Cat Latex Putih (volume= 700ml)	1 buah	60.000	60.000

	Wheel Hub Bearing (OD= 2 cm)	6 buah	50.000	300.000
	Steel Gear (OD = 1 cm)	4 buah	150.000	600.000
	Steel Gear $(OD = 3 cm)$	2 buah	200.000	400.000
	O-Ring Heat Resistant	4 buah	80.000	320.000
	Spun Gear Rack	2 buah	120.000	240.000
	Inverter	1 buah	480.000	480.000
	Mur dan baut	1 set	200.000	200.000
	Strap	4 buah	48.000	192.000
	Solar Panel 20 wp	2 buah	290.000	580.000
	Lampu LED DC 12 Volt 3 watt	1 buah	35.000	35.000
	Lampu pijar 25 watt	1 buah	16.000	16.000
	Kabel power solar panel	1 buah	189.000	189.000
	Battery VRLA 20Ah	1 buah	400.000	400.000
	Fitting lampu	1 buah	9.500	9.500
	Box panel ukuran 30x20x15 cm	1 buah	100.000	100.000
	Saklar	1 buah	5.000	5.000
	Solar panel controller 10A/12volt	1 buah	47.500	47.500
	Fuse	1 buah	29.500	29.500
	SUBTOTAL 2 (Rp)			5.185.000
3	Transportasi Lokal			
	Biaya Pengiriman Bahan	10 kali	25.000	250.000
	Perjalanan Test Uji Coba	5 kali	175.000	875.000
	Transportasi Survei Manufaktur	1 kali	375.000	375.000
	SUBTOTAL 3 (Rp)		ı	1.500.000

4	Lain-lain			
	Biaya Publikasi Ilmiah Konferensi Internasional ICMEA	1 kali	375.000	375.000
	Biaya tidak terduga	1 kali	302.300	302.300
	SUBTOTAL 4 (Rp) 677.300			677.300
	GRAND TOTAL 1+2+3+4 (Rp) 8.658.000			8.658.000
	Terbilang Delapan Juta Enam Ratus Lima Puluh Delapan Ribu Rupiah			

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

	piran 3. Susunan Org	ı			
No	Nama / NIM	Program	Bidang Ilmu	Alokasi	Uraian Tugas
		Studi		Waktu (jam	
				/ minggu)	
1	Jason Jimmy	Teknik	Divisi Riset	20	-Koordinasi
	Amadeus	Bioproses		jam/minggu	sumber daya
	Palenewen/1906357				manusia dan
	383				sumber daya
					alam
					-Melakukan
					studi literatur
					-Membuat
					laporan
					kemajuan
2	Juan	Teknik	Divisi	20	- Rancang
	Khosashi/19063554	Kimia	Produksi	jam/minggu	Bangun Alat
	72				SMART
					-Uji lapangan
					SMART
					-Melakukan
					analisis
					performa alat
3	Evan Fadhil	Teknik	Divisi	20	-Melakukan
	Nurhakim/1906380	Kimia	Pengumpula	jam/minggu	analisis
	493		n Data		performa alat
					-Membuat
					laporan
					pengujian
					-Uji lapangan
					SMART
4	Angelina	Teknik	Divisi Riset	20	-Membuat
	Grace/1906300385	Kimia		jam/minggu	laporan
					pengujian
					-Melakukan
					studi literatur
5	Jonathan	Teknik	Divisi	20	-Mengatur
	Tjioe/1906355226	Kimia	Keuangan	jam/minggu	arus kas dan
					pemesanan
					bahan
					-Melakukan
					riset bahan
					yang
					diperlukan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Jason Jimmy Amadeus Palenewen

NIM : 1906357383 Program Studi : Teknik Bioproses

Fakultas : Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "SMART (SOLAR MECHANICAL ADJUSTABLE RAY TRACKER) ALAT PELACAK SURYA BERBASIS SISTEM KONTROL FLUIDA MEKANIK UNTUK MENGOPTIMALKAN KINERJA PANEL SURYA" yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Depok, 25 Maret 2022 Yang menyatakan,

(Jason Jimmy Amadeus Palenewen) 1906357383

Lampiran 5. Gambaran Teknologi yang Akan Diterapkembangkan

Gambar 5. 1. SMART tanpa Panel Surya

Gambar 5. 2. SMART dengan Panel Surya

Gambar 5. 3. SMART dalam jumlah banyak bila diaplikasikan ke Grid

Gambar 5. 4. SMART bila diaplikasikan dalam proyek Agrophovoltaic untuk daerah 3T (hanya gambaran untuk versatilitas aplikasi SMART untuk masyarakat)

Gambar 5. 5. Model 3D SMART