Notas de Clase: Organización industrial

Fabián Méndez Martinez

Agosto 2024 - Enero 2025

ÍNDICE GENERAL

1.	Part	te Uno	3
	1.1.	Clase del 19 de agosto	3
	1.2.	Clase del 21 de agosto	5
	1.3.	Clase del 22 de agosto	6
	1.4.	Clase del 26 de Agosto	7
	1.5.	Clase del 28 de agosto	8
	1.6.	Clase del 29 de agosto	10
	1.7.	Clase del 2 de septiembre	11
2.	Part	te II	13
	2.1.	Clase del 9 de Septiembre	13
	2.2.	Clase del 11 de septiembre	15
	2.3.	Clase del 12 de septiembre	16
	2.4.	Clase del 19 de septiembre	18
	2.5.	Clase del 23 de septiembre	19
	2.6.	Clase del 25 de septiembre	20
	2.7.	Clase del 26 de septiembre	22
	2.8.	Clase del 30 de Septiembre	23
	2.9.	Clase del 2 de octubre	24

	3.1. Primera lista de ejercicios	29
3.	Ejercicios	29
	2.11. Clase del 7 de Octubre	26
	2.10. Clase del 3 de octubre	28

CAPÍTULO

1

PARTE UNO

Información de la EE

Nombre: Organización industrial

■ NRC: 92681

■ Clave: ECTE - 38008

■ Créditos: 8

Información del Profesor

 Profesor: Miguel Rodrigo Ávila Pulido

■ Correo: miavila@uv.mx

1.1. Clase del 19 de agosto

Organización industrial

La organización industrial estudia la competencia imperfecta. En las economías de mercado se tiene que

- Las firmas deciden qué y cuanto producir
- Los consumidores eligen comprar en la mejor alternativa por precio, calidad, ubicación, etc.

Este curso estudia el comportamiento de las empresas.

Horario

Martes	7:00	9:00			
Jueves	7:00	9:00			
Viernes	9:00	11:00			

Aula: 217

Historia de la Organización in- Debilidades: Suponer que la concentración dustrial

Harvard

Caso: Demanda del gobierno de EE.UU contra US Steel: La firma concentraba el 70 % del mercado de producción de acero. El gobierno americano perdió la demanda, US Steel no violó la ley de competencia pues "La Ley no hace al tamaño una ofensa".

¿Comó inferis comportamientos ilegales a partir de características estructurales como el tamaño? A partir de esto se creo el siguiente marco

Definición

 $Marco = Estructura \rightarrow Conducta \rightarrow$ desempeño

La estructura determina la forma en la que las firmas interactuan entre sí, con los compradores y los potenciales entrantes.

Definición

Estructura = f(Firmas, tecnología,productos, etc.)

La estructura determina la conducta (forma en la que las firmas se comportan en una estructura de mercado dada). La conducta determina el desempeño (Beneficios, excedentes, bienestar)

Señalan que la alta concentración de mercado reduce el excedente de los consumidores.

es exógena, no tomar en cuenta diferencias interindustriales.

Chicago

Está de acuerdo con Harvard en que las firmas con mayor concentración de mercado tienden a generar mayores beneficios. Para Harvard esto implica que los mercados concentrados son menos competitivos.

Para Chicago este no es el caso, puede ser que las firmas con mayor de mercado sean más eficientes y por ello tengan mayores beneficios.

Enfasis en teoría de precios: Afirman que el comportamiento monopólico es dificil de confirmar, no ocurre con frecuencia y cuando ocurre es tipicamente transitorio.

Post Chicago

Enfasis en la toma de decisiones estratégicas, el comportamiento de las firmas se representa con modelos matemáticos y de toería de Juegos. Se construye un marco formal que supera el debate entre Chicago y Harvard.

También surge nueva literatura empírica que combina los modelos matemáticos con pruebas econométricas (Ordered-probit, multinomial-logit, random coefficient logit, etc.) computacionalmente demandantes.

Dificultades: ¿Qué modelos usar para cada caso? Efectos de segundo orden.

Competencia Perfecta

Supuestos

Un agente se comporta de forma competitiva si:

- Suponen que el precio de mercado está dado.
- Bienes homogeneos.
- Libre entrada y salida, por ejemplo los costos fijos pueden ser considerados una barrera de entrada.
- Información perfecta.
- No hay externalidades.
- Bienes perfectamente divisibles.
- No hay costos de transacción.

- Costo total: C(q) = c(q) + F
- Costo variable: c(q)
- Costo medio: $AC = \frac{c(q)}{q} + \frac{F}{q}$
- Costo marginal: MC = C'(q)
- \bullet Costo variable medio: $AVC = \frac{c(q)}{q}$
- Costo fijo medio: $AFC = \frac{F}{q}$

Demuestre que la curva de costo marginal cruza la curva de costo medio en su mínimo.

Sea \hat{Q} la cantidad que minimiza AC : $\frac{dAC(\hat{Q})}{d\hat{Q}}=0$ se tiene que

1.2. Clase del 21 de agosto

El Benchmark de competencia perfecta

Objetivo de la firma: Maximizar beneficios por lo que se tiene que

Precio en competencia perfecta

$$\max = pq - C(q)$$

Obteniendo F.O.C

$$p - C'(q) = 0$$

$$p = C'(q)$$

$$p = MC(q)$$

Se tienen los siguientes funciones de costo

$$\frac{AC(Q)}{dQ} = \frac{dC(Q)}{dQ} \cdot Q^{-1} + C(Q)(-1)Q^{-2},$$

 $\frac{AC(Q)}{dQ} = \frac{\frac{dC(Q)}{dQ}Q - C(Q)}{Q^2}.$

Si se tiene que $Q = \hat{Q}$, se cumple que

$$\frac{dAC(\hat{Q})}{d\hat{Q}} = C(\hat{Q}),$$

por lo que

$$\frac{AC(Q)}{dQ} = \frac{C(\hat{Q}) - C(\hat{Q})}{\hat{Q}^2} = 0.$$

Mercado competitivo

Equilibrio de corto plazo

Pensemos en n firmas idénticas y que los costos fijos son costos fijos son costos hundidos en el corto plazo. La oferta de mercado de corto plazo es la suma horizontal sw curvas de oferta de cada firma

En el corto plazo puede ser el caso que una firma representativa tenga beneficios mayores a cero.

Equilibrio de largo plazo

La entrada de firmas al mercado en el largo plazo se detiene cuando el precio llega al mínimo del costo promedio se largo plazo.

1.3. Clase del 22 de agosto

Recordatorio de bienestar y excedentes

Se define al **Bienestar** como la suma de los excedentes de todos los consumidores y de todos los productores. El **excedente del consumidor** es el área bajo la curva inversa de demanda y por arriba del precio (i.e diferencia entre lo que un consumidor esta dispuesto a pagar y el precio que efectivamente pagó multiplicado por la cantidad consumida).

El **Excedente del productor** es la área de la curva de oferta y abajo del precio.

Teoremas del bienestar

Primer teorema del bienestar

Es cualquier asignación descentralizada obtenida a tráves de un mercado libre es eficiente en el sentido de pareto y maximiza el bienestar social.

Segundo teorema del bienestar

Es cualquier asignación en la curva de contratos es alcanzable a través de la redistribución de las asignaciones iniciales.

Teoría de Juegos

Estudia los problemas de decisión multiagente. En competencia imperfecta hay interacciones estratégicas entre agentes.

Juego en forma normal

- 1. Conjunto de Jugadores $I = \{1, 2, \dots, N\}$
- 2. Para cada jugador un conjunto de estrategias A_i .

De esta ultima definimos que sea $a = (a_1, a_2, \ldots, a_n)$ una lista de las acciones de cada jugador. Decimos que a es un perfil de acciones.

3. Para cada jugador una función de pago.

1.4. Clase del 26 de Agos- Matriz del dilema del prisionero \mathbf{to}

Ejemplo de juego en forma normal

Suponga que en competencia en precios cuando los bienes son sustitutos perfectos

- 1. Conjunto de Jugadores: $I: \{f1, f2\}$
- 2. Conjunto de estrategias: $P_i \in R_{++}$
- de funciones 3. Conjunto pagos: $\Pi_i(P_i, P_i) = (P_i - C_i)q_i(P_i, P_i)$

Dilema del prisionero

- 1. Conjunto de Jugadores: I{Prisionero 1, Prisionero 2}
- 2. Conjunto de estrategias: {Delatar, no delatar} para $i \in I$
- 3. Conjunto de funciones de pagos:

$$U_{i}(S_{i}, S_{2}) \begin{cases} -5 & \text{si } S_{i} = M, S_{j} = F \\ -4 & \text{si } S_{i} = S_{j} = F \\ -2 & \text{si } S_{i} = S_{j} = M \\ -1 & \text{si } S_{i} = F, S_{j} = M \end{cases}$$

Representación matricial de Juegos Finitos con dos jugadores

Convenciones: Las filas representan al ju- En el dilema del prisionero la estrategia esgador 1, las columnas al jugador 2 y en las entradas los pagos.

$$F M \\ F (-4, -4) (-1, -5) \\ M (-5, -1) (-2, -2)$$

Equilibrio en estrategias dominantes

Sea $s \in \prod_{j=1}^{N} S_j$ para $i \in \{1, ..., N\}$ denotemos a $S_{-i} = (S_i, S_2, \dots, S_{i-1}, S_{i+1}, \dots, S_n)$ y reescribimos el conjunto de acciones S como $S = (S_i, S_{-i}).$

En los juegos en forma normal una estrategia es una acción que pertenece al conjunto de acciones de algún jugador.

Definición

Si para todo $s_{-i} \in \prod_{j \neq i} S_{-i}$ y para todo $s_i \in S_i$ sujeto a que $s_i \neq \tilde{s_i}$

$$\Pi_i(\widetilde{s_i}, s_{-i}) > \Pi_i(s_i, s_{-i})$$

Se tiene que $\tilde{s_i} \in S_i$ es una estrategia estrictamente dominante para el jugador i.

trictamente dominante de ambos jugadores es delatar (F).

Una primera definición de equili- 1.5. brio

Primera definición de equilibrio

Un perfil de estrategias $s = (\widetilde{s_1}, \widetilde{s_2}, \dots \widetilde{s_n}) \in \Pi_{j=1}^N S_j$ es un equilibrio en estrategias dominantes si $\widetilde{S_i}$ es una estrategia dominante para el jugador i.

Para el dilema del prisionero (F,F), $U_i = -4$ para $i \in I$. Por lo que no hay razón para que las desiciones de mercado lleven a un óptimo de pareto.

La batalla de los sexos

$$Opera$$
 Football $Opera$ $(2,1)$ $(0,0)$ $Football$ $(0,0)$ $(1,2)$

No hay equilibrio en estrategias estrictamente dominantes.

Segunda definición de equilibrio

Equilibrio de Nash: Un perfil de estrategias $\widetilde{S} = (\widetilde{S}_1, \widetilde{S}_2, \dots, \widetilde{S}_n) \in \Pi_{j=1}^N S_j$ es un equilibrio de Nash si ningún jugador tiene incentivos a desviarse de este perfil estratégico. Esto es: si para todo $i \in I$ para todo $s_i \in S_i$,

$$\Pi(\widetilde{S}_i, \widetilde{S}_{-i}) \ge \Pi_i(S_i, \widetilde{S}_{-i})$$

1.5. Clase del 28 de agosto

¿Cómo encontrar el equilibrio de Nash?

Tengamos un juego simple 2x2 con una matriz

$$C$$
 D C $(-1,-1)$ $(-10,0)$ D $(0,-10)$ $(-6,-6)$

Por descripción tengamos que

- (C, C): No es un equilibrio de Nash, ambos jugadores no tienen incentivos para jugar D.
- (C, D): No es equilibrio de Nash, el jugador 1 tiene incentivos para jugar D.
- (D, C): No es equilibrio de Nash, el jugador 2 tiene incentivos para jugar D.
- (D, D): Sí es equilibrio de Nash.

Ejemplo

$$\begin{array}{ccc} & C & D \\ C & (2,1) & (0,0) \\ D & (0,0) & (1,2) \end{array}$$

- \bullet (O,O): Sí es equilibrio de Nash
- (F, F): Sí es equilibrio de Nash

Si el juego más complejo, resolverlo por inspección tomaría mucho tiempo.

Análisis de Mejor Respuesta

• Sea $i \in \{1, 2, ..., N\}$ y $S_{-i} \in \prod_{j \neq 1} S_j$

- Sea $BR_i(S_{-i}) = \operatorname{arg.max} U_i(s_i, S_{-i})$
- Si $S_{-i} \in \Pi_{j\neq 1}S_j \to \text{Si } BR_i(S_i)$ es la correspondencia de mejor respuesta del jugador i.

Nota

Varios valores de s_i podrían resolver el problema de maximización. arg.max es el conjunto de valores de "x"para los que la función alcanza su valor máximo. Un perfil estratégico

$$\widetilde{S} = (\widetilde{s_1}, \widetilde{s_2}, \dots, \widetilde{s_N}) \in \prod_{j=1}^N S_j,$$

es un equilibrio de Nash si para todo i:

$$\widetilde{S_i} \in BR_i(S_{-i}).$$

Cada jugador elige una estrategia que es su mejor respuesta a las estrategias de equilibrio de sus rivales.

Para resolver un juego encontrando el equilibrio de Nash con análisis de mejor respuesta:

- 1. Para cada jugador i, buscar la correspondencia de mejor respuesta $BR_i(\cdot)$
- 2. Buscar las intersecciones de las mejores respuestas, con esto obtendrás todos los equilibrios de Nash.

Ejemplo

Considere la competencia en precios con productos diferenciados $c_1 = c_2 = 0$. Sea la función de pagos $\Pi_i(P_i, P_j) = (P_i - C_i)q_i(P_i, P_j)$, suponga $q_i = 1 - 2P_i + P_j$. Encuentre el equilibrio de Nash:

Partiendo desde la función de pagos

$$\Pi_i(P_i, P_j) = (P_i - C_i) \cdot q_i(P_i, P_j),$$

sustituyendo q_i

$$\Pi_i(P_i, P_j) = (P_i - C_i) (1 - 2P_i + P_j),$$

considerando $C_i = 0$

$$\Pi_i(P_i, P_i) = P_i (1 - 2P_i + P_i)$$

$$\Pi_i(P_i, P_j) = P_i - 2P_i^2 + P_i P_j.$$

Calculando las F.O.C

$$\frac{\partial \Pi_i(P_i, P_j)}{\partial a_i} = 1 - 4P_i P_j = 0,$$

se sigue que

$$1 - 4P_iP_j = 0,$$

 $4P_i + P_j = 1,$
 $4P_i = 1 - P_j,$
 $P_i = \frac{1 - P_j}{4}.$

Por lo que la función de mejor respuesta esta dada por

$$BR_i = \frac{1 - P_j}{4}.$$

El proceso es análogo para el caso de P_j , sustituyendo P_j en P_i

$$\begin{split} P_i &= \frac{1 - \left(\frac{1 - P_i}{4}\right)}{4}, \\ P_i &= \frac{\frac{4 - 1 + P_i}{4}}{4}, \\ P_i &= \frac{3 + P_i}{16}, \end{split}$$

$$P_{i} = \frac{3 + P_{i}}{16},$$

$$16P_{i} = 3 + P_{i},$$

$$15P_{i} = 3,$$

$$P_{i} = \frac{3}{15} = \frac{1}{5}.$$

Análogamente se se observa que

$$P_i = P_j = \frac{1}{5}.$$

1.6. Clase del 29 de agosto

Comentarios

- 1. Un equilibrio en estrategias dominantes es siempre un equilibrio de Nash.
 - Una estrategia dominante es la mejor respuesta a cualquier perfil estratégico.
 - Un equilibrio de Nash no siempre es equilibrio en estrategias dominantes.
- 2. Al buscar el equilibrio de Nash, solo considera desviaciones unilaterales del perfil estratégico.

Fundamentos del equilibrio de Nash

- Todos los agentes son racionales y todos los agentes saben que son racionales.
- Como los agentes son racionales, harán lo posible por maximizar su utilidad dadas las acciones de sus rivales.
- Al final se jugará un perfil estratégico del por que ningún agente se desviará.

¿Cómo elegir entre varios equilibrios de Nash?

- Ocasionalmente uno es Pareto dominante
- Otras veces uno actúa como punto focal

En juegos repetidos, el proceso de aprendizaje lleva a un equilibrio de Nash, incluso sin agentes racionales. La historia, dependiendo del punto de partida, podrías converger a equilibrios de Nash distintos.

$$Piedra \ Papel \ Tijera$$
 $Piedra \ (0,0) \ (-1,1) \ (1,-1)$
 $Papel \ (1,-1) \ (0,0) \ (-1,1)$
 $Tijera \ (-1,1) \ (1,-1) \ (0,0)$

No hay equilibrio de Nash en estrategias puras

$$\begin{array}{ccc} Divide & Roba \\ Divide & \left(\frac{1}{2}, \frac{1}{2}\right) & (0, 1) \\ Roba & (1, 0) & (0, 0) \end{array}$$

En (Divide, Roba), (Roba, Divide), (Roba, Necesitamos un concepto de equilibrio que eli-Roba).

mine amenazas no creíbles.

Juegos de forma extensiva

Juego del piloto vs terrorista

$$BnNB$$
 NB, B B, B NB, NB 3. Itere hasta alcanzar el modo inicial. $Cuba$ $(-1, -1)$ $(1, 1)$ $(-1, -1)$ $(1, 1)$ $(2, 0)$ **Equilibrio:** $(NYC, (NB, NB))$.

Equilibrios de Nash

- \bullet (Cuba, (NB, B))
- **■** (NYL,(B,NB))
- \blacksquare NYL(NB,NB)

1.7. Clase del 2 de septiembre

Consideremos el primer equilibrio, un piloto racional diría, si vuelo a NYC, es interés del terrorista cambiar a NB en lugar de B. Este razonamiento no es capturado por el equilibrio de Nash:

Algunos equilibrios de Nash se sostienen por amenazas no creíbles.

Inducción hacia atrás (Backward induction)

- 1. Empieza resolviendo para las desiciones óptimas en el nodo terminal, encuentre los pagos.
- 2. Vaya un paso atrás, resuelva para las desiciones óptimas, anticipando que todos se comportan racionalmente en nodos subsecuentes, encuentre los pagos.

Equilibrio Perfecto en subjuegos

Definición

Un subjuego es un nodo de decisión del juego original con los nodos de decisión y los nodos terminales que siguen directamente a este nodo.

Un subjuego es llamado subjuego estricto si es distinto del juego original.

Definición

Un perfil estratégico es un equilibrio perfecto en subjuegos si induce un equilibrio Nash en cada subjuego del juego original.

Suponga un juego finito:

Incluso si los jugadores mueven simultáneamente el juego puede resolverse por *backward induction*.

- 1. Inicie por los subjuegos más profundos y encuentre el equilibrio de Nash en ellos.
- 2. En la forma extensiva, remplaza los subjuegos más pequeños por los pagos del equilibrio de Nash.
- 3. Itera hasta que no queden subjuegos.

Resumen

Juego en forma normal

Tres conjuntos (jugadores, acciones, pagos)

- Solución: Equilibrio perfecto en subjuegos / equilibrio de Nash
- Prueba y error / función de mejor respuesta

Juegos en forma extensiva

- Concepto de solución: equilibrio perfecto en subjuegos (elimina amenazas no creíbles)
- Método: Con periodos finitos usar inducción hacia atrás

CAPÍTULO

2

PARTE II

2.1. Clase del 9 de Septiembre

Monopolio de bienes durables

Bienes que solo se compran cada ± 3 años y se usan todo ese periodo (celulares, pantallas, refrigeradores, autos).

Conjetura de Coase

Suponga que un monopolista tiene toda la tierra del mundo y quiere venderla al mayor beneficio descontado posible.

 Año 1: El monopolista vende la mitad de la tierra a P₁^M (i.e demanda lineal con MC=0) ■ Año 2: El monopolista quiere vender lo mismo pero, a menos que la población crezcaa muy rápido, la demanda será menor $P_2^M < P_1^M$

"Si los consumidores no descuentan mucho el tiempo y esperan que el precio baje en el futuro, el monopolio de bienes durables cobra un precio menor que el monopolio tradicional"

Modelo A: Continuo de consumidores, demanda con pendiente negativa, consumidores viven dos periodos, costo marginal cero. Demanda agregada de un periodo por los servicios del bien P = 100 - q

Juego:

Jugadores: Consumidores y monopolista.

- \blacksquare Conjunto de acciones: Vendedor elige q_1 Obteniendo los beneficios y $q_2(q_1)$, compradores eligen si comprar en cada periodo.
- Pagos: PS, CS (no se descuentan).

Buscamos el equilibrio perfecto en subjuegos: La técnica a utilizar es backward induction.

En el periodo 2: Suponga que se vendió \bar{q}_1 en el primer periodo los consumidores que consumieron en el primer periodo lo vuelvan a comprar.

Demanda periodo
$$2 \rightarrow P = 100 - \bar{q_1} - q_2$$

Recordemos la condición de maximización del monopolio (MR = MC)

$$B = (100 - \bar{q}_1 - q_2)(q_2)$$

$$B = 100q_2 - \bar{q}_1q_2 - q_2^2$$

$$MR = 100 - \bar{q}_1 - 2q_2 = 0$$

$$MR = 100 - \bar{q}_1 = 2q_2$$

$$MR = \frac{100 - \bar{q}_1}{2} = q_2$$

Sustituyendo en la función de la inversa de demanda

$$P_2 = 100 - \bar{q}_1 - \frac{100 - \bar{q}_1}{2}$$

$$P_2 = 100 - \bar{q}_1 - 50 + \frac{\bar{q}_1}{2}$$

$$P_2 = 50 - \frac{\bar{q}_1}{2}$$

$$\Pi_{2} = \left(50 - \frac{\bar{q}_{1}}{2}\right) \left(50 - \frac{\bar{q}_{1}}{2}\right)$$

$$\Pi_{2} = \left(50 - \frac{\bar{q}_{1}}{2}\right)^{2}$$

Suponga que el monopolista vende \bar{q}_1 en t=1¿Cuál es el máximo P que puede cobrar?

El consumidor marginal debe estar indiferente entre comprar en t = 1 y t = 2 Excedente del consumidor que compra en el primer periodo

$$2(100 - \bar{q_1}) - P_1$$

Excedente del consumidor que compra que compra en el segundo periodo

$$100 - q_1 - P_2$$

Igualando se tiene que

$$50 - \frac{\bar{q}_1}{2} = 200 - 2\bar{q}_1 - P_1$$

$$2\bar{q}_1 - \frac{\bar{q}_1}{2} = 150 - P_1$$

$$\frac{4\bar{q}_1 - \bar{q}_1}{2} = 150 - P_1$$

$$\frac{3\bar{q}_1}{2} = 150 - P_1$$

$$150 - \frac{3\bar{q}_1}{2} = P_1$$

Calculando los beneficios de ambos periodos

$$Max_{q_1}(\Pi_1 + Pi_2) = \left(150 - \frac{3\bar{q_1}}{2}\right)q_1 + \left(50 - \frac{\bar{q_1}}{2}\right)^2$$

2.2. Clase del 11 de septiembre

Estrategia alternativa: Rentar los bienes. Vender equivale a cobrar un único precio por periodo de tiempo indefinido. Rentar es cargar un precio por usar un bien un definido.

• Demanda agregada: P = 100 - q

Resolveremos el modelo estático dos veces

Para el periodo 1

$$P = 100 - q$$

Calculando beneficios

$$R = (100 - q)q,$$

$$R = 100q - q^2$$

Derivando e igualando a cero

$$\frac{\partial R}{\partial q} = 100 - 2q$$

$$0 = 100 - 2q,$$

$$2q = 100,$$

$$\frac{100}{2} = q$$

$$50 = q.$$

Sustituyendo en la inversa de demanda

$$P = 100 - q,$$

$$P = 100 - 50,$$

$$P = 50.$$

¿La firma prefiere vender o rentar bienes? La firma prefiere rentar.

Oligopolio estático: Competencia de Bertrand

Método para estudiar oligopolio que bajo ciertas condiciones resulta en un equilibrio de Nash en un juego de precios.

- 2 Firmas
- q(P) demanda total por el bien homogéneo
- $q(\cdot) < 0$
- Consumidores consumen del vendedor más barato.
- Si los vendedores cobran lo mismo, los consumidores se dividen 50/50

Sea la demanda de la firma q_i

$$q_i(P_1, P_2) \begin{cases} q(P_1) \text{ si } P_1 < P_2 \\ \frac{q(P)}{2} \text{ si } P_1 = P_2 \\ 0 \text{ si } P_1 > P_2 \end{cases}$$

Juego en forma normal:

• Jugadores: $I = \{Firma 1, Firma 2\}$

- \bullet Estrategias: $s_i = \{P_1, P_2\} | P_1, P_2 \in R_+$
- Pagos: $\Pi_i = (P_i C_i) \cdot q_i(P_1, P_2)$

Concepto de equilibrio: Equilibrio de Nash

Un par $\{P_1^B, P_2^B\}$ es un equilibrio de Bertrand (Nash en precios) si:

1. Dado P_2

2.3. Clase del 12 de septiembre

Bertrand con costos por cambiar de proveedor

En algunas industrias los consumidores deben pagar por cambiar de proveedor.

- Compatibilidad (Google, Microsoft)
- Costos de transacción (Acceso a internet)
- Costos de aprendizaje
- ullet Costos psicológicos (lealtad de marca)

Supuestos

- 2 firmas
- 2 periodos
- Bien homogéneo
- \blacksquare Costos constantes c por periodo
- Consumidores forward-looking
- Masa de consumidores 1
- Utilidad bruta U por consumir el bien por cada periodo
- No hay tasa de descuento

En el periodo 2 si un consumidor compró a la firma i en t=1 debe pagar σ para comprar a j en t=2. Suponga que $\sigma > U-c$ (costo por cambiar es suficientemente grande)

Tiempo

- t = 1: Firmas 1y 2 eligen P_1^1 y P_2^1 simultáneamente.
- t = 1,5: Consumidores eligen sus proveedores (avientan una moneda)
- t = 2 Firmas 1 y 2 eligen precios P_1^2 y P_2^2 simultáneamente.
- t = 2.5: Consumidores eligen proveedores

Resolución

Iniciamos en el t = 2. Sea s_i el market share de la firma i en t = 1.

$$P_i^2 \le P_i^2 - \sigma,$$

como la firma j quiere vender una cantidad positiva, su precio debe ser

$$P_i^2 \leq U$$
,

debe ser el caso que P_i :

$$P_j^2 \le U - \sigma \le c,$$

si los costos por cambiar de producir son altos, no es rentable para la firma i ganar market share en t=2. Ambas firmas se concen-

tran en sus consumidores y cobran P_i š = U. Competencia de Cournot Los beneficios son

$$\Pi_i = (U - c)s_i$$

Para t = 1.5 Los consumidores anticipan que tendrán excedente cero en el segundo periodo. Se sigue que los consumidores compran del proveedor más barato en t=1.5

$$s_i(P_i^1, P_j^1) = \begin{cases} 1 & \text{si } P_i^1 < P_j^1 \\ \frac{1}{2} & \text{si } P_i^1 = P_j^1 \\ 0 & \text{si } P_j^1 < P_i^1 \end{cases}$$

con beneficios

$$\Pi_i^1(P_1^1, P_2^1) = \begin{cases}
P_1 - c & \text{si } P_i^1 < P_j^1 \\
\frac{P_i - c}{2} & \text{si } P_i^1 = P_j^1 \\
0 & \text{si } P_j^1 < P_i^1
\end{cases}$$

Para obtener los precios se tiene que

$$\Pi_i(P_i^1, P_j^1) = \begin{cases} P_i^1 - 2c + U | P_i^1 < P_j^1, P_i^1 \le U & \text{Dado } q_1 = q_1^c, q_2^c \text{ resuelve } \max_{q_2} \Pi_2(q_1^c, q_2) \\ \frac{P_i^1 + U}{2} - c \text{ si } P_i^1 = P_j^1 \\ 0 \text{ si } P_j^1 < P_i^1 \end{cases} \qquad \text{Dado que los rivales juegan la estrategia equilibrio de Cournot en cantidades, ningenties of the properties of the properties$$

Por conocimientos de Bertrand o por casos se llega que el precio es

$$P_i^1 = 2c - U,$$

esto es el Costo marginal percibido por los consumidores.

Análisis de oligopolio que bajo ciertas condiciones es un equilibrio de Nash en un juego de cantidades

Supuestos

- Firmas eligen nivel de producción
- 2 Firmas
- Costos: $C_i(q_i) = c_i q_i \mid i = 1, 2$
- Demanda: $P(Q) = a bQ \mid Q =$

Juego en forma normal

- Jugadores: $N = \{ \text{Firma 1, Firma 2} \}$
- Estrategias: $S_i = q_i \in R_+$
- Pagos: $\Pi_i(q_1,q_2) = P(Q)q_i c_i(q_i)$ para $i \in N$

Un par (q_i^c, q_2^2) es un equilibrio de Cournot si:

Dado $q_2 = q_2^c, q_1^c$ resulve $\max_{q_1} \Pi_1(q_1, q_2^c)$.

Dado que los rivales juegan la estrategia de equilibrio de Cournot en cantidades, ninguna firma puede elevarse beneficios cambiando su nivel de producción.

Los correspondientes niveles de precio en el equilibrio de Cournot son:

$$p^c = a - b(q_1^c + q_2^c)$$

Extensión al caso con n firmas

Cada firma maximiza beneficios de acuerdo a:

$$\Pi(q_1, q_2, \dots, q_n) = P(Q)q_i - c_i(q_i)$$

La función de mejor respuesta para i es

2.4. Clase del 19 de septiembre

Análisis de Bienestar

El excedente del consumidor es el área entre la curva de demanda y el preciode mercado.

Calcule el excedente del consumidor para el ejemplo anterior sería

$$CS = \frac{[N(a-c)]^2}{2b(N+1)^2}$$

para el caso del productor se tiene que

$$PS = \frac{N(a-c)^2}{b(N+1)^2}$$

Siendo el bienestar

$$W = \frac{N(a+c)^2(N+2)}{2b(N+1)^2}$$

Actividades opcionales

- ¿Qué ocurre con el bienestar cuando el número de firmas aumenta?
- ¿Qué ocurre en Cournot con costos asimétricos?

■ En Cournot con costos asimétricos, obtenga una expresión para el indice de lerner que relacione el Market share de la firma i con la elasticidad inversa.

Cournot con Movimientos Secuenciales (Stackelberg)

Misma estructura que el modeloen un solo tiempo. Las firmas mueven de forma secuencial.

Tiempos

- t = 1 Firma 1 elige q_1 (líder)
- t = 2 Firma 2 elige q_2 (seguidora)

Resolveremos con Backward induction

Información necesaria

- $P(Q) = a bQ, Q = q_1 + q_2$
- $C_i(q_i) = c_i q_i$

Empezaremos en t=2, se tiene que

$$\Pi_2 = (a - b(q_1 + q_2))q_2 - C_2q_2,$$

obteniendo la F.O.C llegamos a

$$q_2 = \frac{a - C_2}{2b} - \frac{1q_1}{2}$$

Ahora en t=1

$$\Pi_1 = (a - b(q_1 + q_2))q_1 - C_1q_1,$$

obteniendo la F.O.C llegamos a

$$q_1 = \frac{q + C_2 - 2C_1}{2b}$$

sustituyendo q_1 en q_2 se tiene que

$$q_2 = \frac{a - 3C_2 + 2C_1}{4b}$$

2.5. Clase del 23 de septiembre

Comparación de Stackelbeg y Cournot

Veamos que

Stackelberg Cournot
$$q_1 = \frac{a-c}{2b} \quad q^c = \frac{a-c}{3b}$$

$$q_2 = \frac{a-c}{4b}$$

Conclusiones:

- Competencia de Cournot: Firmas eligen
- Competencia de Stackelberg: Firmas eligen q secuencionalmente
- Competencia de Bertrand: Firmas eligen precios

¿Qué modelo usar? Si la capacidad y el nivel de producción se ajustan facilmente, Bertrand. Si la capacidad es dificil de ajustar, Cournot.

■ Excedente del consumidor: CS^M < $CS^C < CS^S < CS^{PC}$

■ Excedente del productor: $PS^M > PS^C > PS^S > PS^{PC}$

Oligopolio Dinámico

Bajo competencia oligopólica las acciones de las firmas generan externalidades competitivos.

Colusión: Ocurre cuando las firmas se ponen de acuerdo en un perfil de precios o cantidades que reducen las externalidades competitivas. La colusión también puede ocurrir en decisiones de inversión o publicidad. La colusión es ilegal en México, EE.UU, entre otros países.

¿Cómo explicarias Bertrand a un estudiante de MBA?

Guerra de precios: Si ambos tenemos P > MC y yo bajo mis precios hoy, es de esperarse que mi rival baje su precio mañana y que el proceso siga hasta que P = MC.

Colusión en el oligopolio de Cournot

Iniciamos con Cournot en un periodo, las firmas eligen cantidades simultáneamente y tienen costo constante unitario cero.

Resultado no-cooperativo:

- Equilibrio de Nash en cantidades donde:
 - $\bullet \quad q_1^C = \frac{a}{3b}$
 - $\bullet \quad q_2^C = \frac{a}{3b}$
 - $Q = \frac{2a}{3b}$

$$\bullet \quad P = \frac{a}{3}$$

$$\bullet \quad \Pi = \frac{a^2}{9b}$$

¿Cúal sería el mejor resultado cooperativo?

Si deciden cooperar maximizarán su función de beneficios conjunta.

$$\Pi(q_1, q_2) = P(q_1, q_2)(q_1 + q_2),$$

como las firmas son iguales $q_1 + q_2 = Q$ y cada firma produce: $\frac{Q}{2}$, entonces:

$$\Pi(Q) = P(a-b)Q,$$

calculando Q, tal que $Q = \frac{a}{2b}$ se sustituye en el precio de tal forma que

$$P = \frac{a}{2}$$

por lo que el beneficio es

$$\Pi = \frac{a^2}{8b}$$

el cuál es mayor que el equilibrio de Nash.

¿El equilibrio cooperativo es sostenible?

No es sostenible en un juego estático, el único equilibrio de Nash es el resultado no cooperativo (Cournot)

¿Seguimos estando cuerdos?

¿Qué ocurre si la firma 1 elige el nivel de producción cooperativo? Si $q_1 = \frac{a}{4b}$, ¿la firma 2 elige $q_2 = \frac{a}{4b}$?

Las firmas buscan desviarse en un juego en una etapa, no hay espacio para la colusión, si una firma se desvía, no hay espacio para castigarla.

2.6. Clase del 25 de septiembre

Colusión en el ologopolio de Cournot: Parte 2

Dado que el resultado cooperativo (colusivo) no es sostenible en un juego en una etapa, repetiremos el juego T veces para permitir castigo por desviaciones. Suponga que las firmas juegan Cournot por (t+1) periodos, t>0. En cada periodo $0 \le t \le T$ las firmas eligen cantidades de forma no cooperativa. Las firmas eligen la estrategia de equilibrio que maximiza sus beneficios descontados:

- \blacksquare Beneficios descontados: $\sum_{t=0}^T \delta^t \Pi_t^i$
- ullet Factor de descuento: δ
- lacksquare Beneficios de la firma i: Π^i_t

Concepto de equilibrio: Equili- Colusión en el oligopolio brio perfecto en subjuegos

Backward induction

Empezando en t = T, se tiene que como el mundo termina al final del periodo T las firmas juegan Cournot estático, no hay motivos para desviarse del equilibrio no cooperativo pues no habrá forma de castigar.

$$q_1^c + q_2^c = \frac{a}{3b}$$

En t = T - 1, las firmas saben que independientemente de sus acciones en t = T - 1 el resultado no cooperativo se jugará en T, no hay amenaza de castigo y las firmas juegan Cournot no cooperativo.

$$q_{T-1}^1 = q_{T-1}^2 = \frac{a}{3b}$$

Podemos hacer el mismo argumento para T- $2, T-3, \ldots, 0$. En cada etapa se jugará el equilibrio de Cournot estático. La colusión no es sostenible en el juego de Cournot repetido un número finito de veces.

Rsultado final: Tomando un juego en forma normal con un único equilibrio de Nash y repitiendolo T+1 veces. El único equilibrio perfecto en subjuegos del juego repetido es el equilibrio de Nash del juego en un periodo (repetido T+1 veces).

de Cournout: Parte 3

Dado que la colusión no es sostenible mi em Cournot estático ni en Cournot finito, probaremos qué ocurre en Cournot repetido infinitas veces.

Las firmas buscan maximizar son beneficios descontados:

$$\max \sum_{t=0}^{\infty} \delta_t^i$$

El juego puede tener una variedad de equilibrios perfectos en subjuegos. Restringimos el análisis a estrategias simples que llamamos: .estrategias de gatillo". Sea

- La producción de cada firma cuando no cooperan: $q_{NC} = \frac{a}{3b}$
- La producción de cada firma cuando se coluden (cooperan): $q_c = \frac{a}{4h}$

Definimos las estrategias de gatillo: La firma i juega una estrategia de gatillo si $q_1^0 =$ q_t , firma i elige producción de colusión en t=0.

Para todo $t \ge 1$: si $q_i^C = \dots$

2.7.tiembre

Colusión en \mathbf{el} oligopolio Cournot: Parte 3

Proposición

Existe δ^* al que el resultado en el que ambas firmas juegan sus estrategias de gatillo es un equilibrio perfecto en subjuegos si y solo si $\delta \geq \delta^*$.

Como no se puede usar backward induction se tiene que calcular un resultado en equilibrio perfecto en subjuegos, este es si induce un equelibrio de Nash en cada subjuego del juego original.

Suponga que la firma 1 juega su estrategia de gatillo, revisamos si en cada subjuego la mejor respuesta de la firma 2 es jugar su estrategia de gatillo.

Hay dos tipos de subjuegos:

- 1. Los que inician en t y alguna firma se desvía en t' < t.
- 2. Los que inician en t y no hubo desviaciones antes que t.

Consideremos el primer tipo de subjue-

gos: Como la firma 1 juega su estrategia de gatillo, elegirá q_{NC} por siempre. Lo mejor que puede hacer la firma 2 es elegir q_{NC} , lo que es parte de su estrategia de gatillo de la firma 2.

El resultado en el que ambas firmas juegan sus Si se tiene que

Clase del 26 de sep- estrategias de gatillo es equilibrio de Nash de subjuegos tipo 1

> Consideremos el segundo tipo de subde juegos: Como nadie se ha desviado en la historia y la firma 1 juega su estrategia de gatillo, la firma 1 juega q_C en t = t. ¿Cuál es la mejor desviación posible para la firma 2?

> > Tengamos que Juega su mejor respuesta

$$BR_2(q_1) = q_2 = \frac{a - bq_1}{2b},$$

tomando en cuenta que $q_1 = \frac{a}{4b}$ se tiene que

$$q_2 = \frac{3a}{8b},$$

para el periodo t. En todos los periodos siguientes la *firma 1* suelta el gatillo y juega q_{NC} . La mejor respuesta de la firma 2 es jugar también q_{NC} (equilibrio de Cournot estático).

La firma 2 gana en los periodos $T \ge t + 1$

$$\Pi_{NC} = \frac{a^2}{9b},$$

lo máximo que gana la firma 2 por desviarse es:

$$\Pi_D + \sum_{t=t+1}^{\infty} \delta^{T-t} \Pi_{NC}$$

si la firma 2 no se desvía gana

$$\sum_{T=t}^{\infty} \delta^{T-t} \Pi_C.$$

$$\Pi_D + \sum_{t=t+1}^{\infty} \delta^{T-t} \Pi_{NC} \ge \sum_{T=t}^{\infty} \delta^{T-t} \Pi_C$$

Si la desigualdad se cumple, la firma 2 no se desvía en t y sigue cooperando (juega estrategia de gatillo). En ese caso jugar estrategias de gatillo es equilibrio de Nash en los dos tipos tipos de subjuegos. ¿Qué necesito para que esto ocurra?

2.8. Clase del 30 de Septiembre

Colusión en el oligopolio de Cournot infinito

En clases pasadas nos preguntábamos si es que ambas firmas jugaran sus estrategias de gatillo era uno de los posibles equilibrios perfectos en subjuegos de Cournot repetido infinitamente. Si este fuera el caso, la colusión sería sostenible.

Nos encontramos estudiando dos tipos de subjuegos:

Tipo 1: Alguien había traicionado en la historia previa (encontramos que para ambas firmas era óptimo jugar sus estrategias de gatillo).

Tipo 2: Nadie había traicionado en la historia previa (buscabamos el δ^* que haría óptimo jugar estrategias de gatillo comparando los beneficios descontados de traicionar y no traicionar).

La firma 2 no quiere desviarse syss:

$$\Pi_D + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} \Pi_{NC} \le \sum_{\tau=t}^{\infty} \delta^{\tau-t} \Pi_C$$

en el lado izquierdo siendo los beneficios de traicionar en t (no jugar estrategias de gatillo en subjuegos tipo 2) y a la derecha los beneficios de no traicionar o desviarse (Jugar estrategias de gatillo en subjuegos tipo 2).

El factor de descuento que hace sostenible la colusión (hace que ambas firmas jueguen sus estrategias de gatillo en ambos tipos de juegos) es:

$$\delta \ge \frac{9}{17} = \delta^*$$

esto siendo el factor crítico de descuento. Si las firmas son suficientemente pacientes, la colusión es factible en el oligopolio de Cournot repetido infinitas veces. De forma intuitiva, cuando las firmas deciden si desviarse del acuerdo colusivo enfrentan el siguiente tradeoff:

- Desviarse hoy permite capturar más beneficios a corto plazo.
- Pero esto genera un castigo infinito mañana, si las firmas le dan alta importancia al futuro (alta δ), el segundo efecto domina y la colusión se obliga a ocurrir.
- Un parámetro facilita la corrupción disminuye δ^*

Colusión en el oligopolio de Bertrand infinito

Supongamos ahora que las firmas compiten en precios sea Q(P) la demanda total. Considere el juego en una etapa, ¿cuál es el mejor resultado cooperativo?

Jugar $P = P^M$, donde P^M resuelve:

$$arg. max(P-C)Q(P),$$

cada firma gana $\frac{\Pi^M}{2}$, con:

$$\Pi^M = (P^M - C)Q(P^M).$$

Si una firma se desvía del resultado cooperativo, ¿cuántos beneficios gana?

- Mejor desviación:
 - $P = P^M \epsilon$
 - $\Pi_D = \Pi^M$
- ¿Cuál es el resultado no cooperativo?
 - $P_M = MC = C$
 - $\Pi_{NC} = 0$

2.9. Clase del 2 de octubre

Colusión en el ologopolio de Bertrand

tegia de gatillo y que la firma 1 elige el precio colusión es creciente en el número de firmas.

 p^{M} en todos los periodos anteriores a t. La mejor desviación posible para la firma 1 es $P^M - \epsilon$ y ganar Π^D en t, en los siguientes periodos jugara $P_1 = c$. Para que la colusión sea sostenible como equilibrio, esta desviación debe ser menos rentable que mantenerse cooperando.

Siendo los beneficios de la forma

$$\Pi_D + \sum_{\tau=t+1}^{\infty} \Pi_{NC} \le \sum_{\tau=t}^{\infty} \delta^{\tau-t} \Pi_C,$$

para un $\delta \geq \frac{1}{2}$, la colusión (equilibrio en estrategias de gatillo) es equilibrio perfecto en subjuegos si y solo si $\delta \geq \frac{1}{2}$, las firmas se coluden si son suficientemente pacientes.

Determinantes de Colusión

Número de Firmas

Suponga que hay N firmas compitiendo á la Bertrand, el beneficio de cada firma por coludirse es $\frac{\Pi^M}{N}$, el beneficio de desviarse es Π^M (después del periodo en que me desvío es cero). Teniendo en cuenta que

$$\Pi_D + \sum_{\tau=t+1}^{\infty} \Pi_{NC} \le \sum_{\tau=t}^{\infty} \delta^{\tau-t} \Pi_C,$$

se sigue que

$$\Pi^M \le \sum_{\tau=t}^{\infty} \delta^{\tau-t} \frac{\Pi^M}{N},$$

Suponga que la firma 2 está jugando su estra- para un $\delta \geq \frac{N-1}{N}$, el δ^* que hace sostenible la

El $\uparrow N$ reduce los beneficios de coludirse, au- Suponemos que $\delta = \frac{1}{1+r}$, en este caso: mentando los incentivos a desviarse.

Alcanzar un acuerdo colusivo es más complicado si hay más participantes.

La probabilidad de que la autoridad detecte una asociación colusiva aumenta con más participantes.

Crecimiento de mercado

Regresamos al caso de Bertrand con dos firmas: supongamos ahora que la demanda al tiempo t es: $Q_t(P) = A^t Q(P)$ con A > 0.

Los beneficios por desviarse son: $\Pi_D(t) =$ $A^t\Pi^M$, los beneficios no cooperativos son $\Pi_{NC} = 0$, la condición de no desviación es:

$$\Pi^{M} + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} \Pi_{NC} \le \sum_{\tau=t}^{\infty} \delta^{\tau-t} A^{\tau-t} \frac{\Pi^{M}}{2}$$

considerando un $\delta \geq \frac{1}{2A}$. La colusión es más facil en un mercado en expansión que en uno que se contrae.

2.10. Clase del 3 de octubre

Número de cambios de precio al año

Ahora suponga que las firmas cambian sus precios f veces al año, el periodo de tiempo es $\frac{1}{f}$ del año.

$$\delta = \frac{1}{1 + \frac{r^y}{f}}$$

En el modelo de Bertrand con dos firmas la colusión solo es factible si $\delta \geq \frac{1}{2}$, esto ocurre

$$\frac{1}{1 + \frac{r^y}{f}} \ge \frac{1}{2}$$

Despejando f de la desigualdad se tiene que $f \geq r^y$, se concluye que la colusión es más fácil cuando se ajustan los precios con frecuencia. Cuando las firmas interactúan con frecuencia pueden detectar las desviaciones del acuerdo colusivo rápidamente.

Recortes inobservables de Precios

Cuando las firmas están imperfectamente informadas de los precios rivales, la colusión es más complicada, una firma que se desvía podría no ser castigada si los rivales no observaron la disociación.

Soluciones para facilitar la colusión

Igualamos el precio de la competencia:

Los consumidores pueden pedir reembolsos si el rival tiene mejores precios (Consumidores monitorizan el cumplimiento del acuerdo colusivo)

Consumidor más beneficiado: Consumidores Pasados pueden pedir reembolsos si bajas el precio (Reduce el incentivo a bajar precios)

Ejemplo

En alguna ocasión el gobierno de Dinamarca decidió publicar precios de transacción de compra de concreto entre agentes, facilitando la colusión, el precio subió un 20 % ese año y dejó de publicar precios.

Colusión con firmas asimétricas

Suponga que las firmas 1 y 2 tienen gastos asimétricos $c_1 = c < \bar{c} = c_2$ puede mostrarse que si $\delta \leq \frac{1}{2}$ existen equilibrios colusivos con características:

$$P \in [P^M(c), P^M(\bar{c})]$$

con market shares $S_i > 0$ para i = 1, 2.

Problemas: No hay una forma simple de elegir entre equilibrios, es más dificil elegir entre el precio colusivo y la segmentación de mercado, hay incentivos para que las firmas mientan en sus costos marginales, las firmas no satisfechas pueden iniciar guerras de precios. El resultado de maximización de beneficios conjunta no es equilibrio perfecto en subjuegos.

Soluciones: Sobornos

■ Firma 1 oferta a todo el mercado a $P^M(c)$

• Firma 2 elige $P \to \infty$

Siempre que la firma 2 no esté en el mercado, la firma 1 la soborna. Problema: ¿a cuánto debe ascender el soborno? ¿Cómo ocultarlo?

Por lo que la colusión es más difícil con firmas asimétricas.

2.11. Clase del 7 de Octubre

Colusión y contratos multimercado

Considere dos mercados: A y B.

- $Q_A(P_A) = Q(P_A)$
- $Q_B(P_B) = Q(P_B)$
- Mercado A: $C_1^A = c < \bar{c} = c_2^A$
- Mercado B: $C_2^B = c < \bar{c} = c_1^B$

Sin contratos multimercado (suponiendo que B no existe), las firmas 1 y 2 tendrían problemas en alcanzar un acuerdo colusivo.

Para contratos multimercado, consideremos las siguientes estrategias de gatillo:

Si
$$t = 0$$
, $P_1^A(t) = P^M(c)$ y $P_1^B(t) = \infty$ si $t > 1$.

Si para todo $\tau < t$,

•
$$P_1^A(\tau) = P_2^B = P^M(c)$$
 y
 $P_1^B(\tau) = P_2^A = \infty$

•
$$P_1^A(\tau) = P^M(c)$$
 y
 $P_1^B(\tau) = P_2^A = \infty$

En otro caso $P_1^A(t) = c$ y $P_1^B(t) = c + \epsilon$. Es la estrategia simétrica para la firma 2.

Es directo probar que estas estrategias de gatillo forman un equilibrio perfecto en si y solo si $\delta > \frac{1}{2}$. El resultado de maximización de beneficios conjunta puede ser sostenido najo contratos multimercado. En equilibrio, la firma 1 oferta el mercado A a su precio de monopolio y la firma 2 oferta al mercado B a su precio de monopolio.

Los contratos multimercado aplanan las asimetrías entre las firmas y facilitan la colusión.

Guerra de precios

Hasta el momento, las guerras de precios nunca ocurren:

- O las firmas no se coluden y P = MCpor siempre
- O las firmas se coluden y el precio permanece siempre en el nivel colusivo.

En los modelos, las guerra de precios son un fenómeno fuera del equilibrio, la amenaza de una guerra de precios obliga la colusión a ocurrir.

Pero las guerras de precio ocurren en la realidad, ¿Por qué?

• Shocks de liquidez: Empresas con problemas financieros podrían necesitar hacer muchos beneficios en el corto plazo.

Modelo: Suponga que el factor de descuento de las firmas con problemas financieros decrece después del shock de liquidez. La firma podría iniciar una guerra de precios. Firmas con problemas financieros (Alto $\frac{\text{equity}}{\text{debé}}$)

Las guerras de precios permiten a algunas firmas ganar batallas de distribución entre los miembros del cartel.

Con información asimétrica las firmas podrían comportarse de forma en que lastimen a sus beneficios y a los de sus competidores para ganar mercado.

Recortes secretos de Precios y fluctuaciones de la demanda

Suponga que en cada periodo, la demanda está dada por:

$$D_t(P) = \begin{cases} \frac{D(P)}{1-\mu} & \text{Con Prob: } 1-\mu\\ 0 & \text{Con Prob: } \mu \end{cases}$$

Si una firma vende 0 puede ser por dos razones, un shock de demanda o una desviación del rival, si el shock no se observa, es imposible distinguir la causa.

■ Shocks no anticipados: Nuevo compe- Las firmas deciden P antes de que ocurra el tidor, nueva información sobre el futuro. shock. El beneficio esperado de coludirse es:

$$\Pi^M = IE[(P^M - c)D_t(P^M)],$$

$$\Pi^{M} = (1 - \mu)(P^{M} - c)\frac{D(P)}{1 - \mu} + \mu \cdot 0,$$

$$\Pi^M = (P^M - c)D(P),$$

en cada t. Si las firmas observan al final de cada periodo si ocurrió o no el shock, sabemos que la colusión es sostenible syss $\delta \geq \frac{1}{2}$. Si las firmas no observan el shock:

- Deben castigar cada vez que observan baja demanda, de otra forma, las firmas siempre harían trampa.
- Pero el regreso a Bertrand infinito es muy radical, antes o después ocurriría un shock.

Solución intermedia: Guerra de precios por τ periodos y regresar al acuerdo colusivo, esto sería equilibrio perfecto en subjuegos si $\delta > \delta^*(\tau)$.

Las guerras de precio son un fenómeno de equilibrio que permite disciplinar al mercado. CAPÍTULO

3

EJERCICIOS

3.1. Primera lista de ejercicios

Ejercicio I

3.2. Segunda lista de ejercicios

Ejercicio I