Decision Trees from large Databases: SLIQ

- C4.5 often iterates over the training set
 - How often?
 - If the training set does not fit into main memory, swapping makes C4.5 unpractical!
- SLIQ:
 - Sort the values for every attribute
 - Build the tree "breadth-first", not "depth-first".
- Original reference:

M. Mehta et. al.: "SLIQ: A Fast Scalable Classifier for Data Mining". 1996

SLIQ: Gini Index

- To determine the best split, SLIQ uses the Gini-Index instead of Information Gain.
- For a training set *L* with *n* distinct classes:
 - $Gini(L) = 1 \sum_{j=1...n} p_j^2$
 - $\star p_i$ is the relative frequency of value j
- After a binary split of the set L into sets L_1 and L_2 the index becomes:
 - $Gini_{split}(L) = \frac{|L_1|}{|L|}Gini(L_1) + \frac{|L_2|}{|L|}Gini(L_2)$
- Gini-Index behaves similarly to Information Gain.

Compare: Information Gain vs. Gini Index

Which split is better?

- $H(L,y) = -\left(\frac{29}{64}\log_2\frac{29}{64} + \frac{35}{64}\log_2\frac{35}{64}\right) = 0.99$
- $IG(L, x_1) = 0.99 \left(\frac{26}{64}H(L_{x_1=yes}, y) + \frac{38}{64}H(L_{x_1=no}, y)\right) \approx 0.26$
- $IG(L, x_2) = 0.99 \left(\frac{51}{64}H(L_{x_2=yes}, y) + \frac{13}{64}H(L_{x_2=no}, y)\right) \approx 0.11$

$$\left(1 - \left(\left(\frac{8}{38}\right)^2 + \left(\frac{30}{38}\right)^2\right)\right) \approx 0.33$$

- $Gini_{x_1}(L) = \frac{26}{64}Gini(L_{x_1=yes}) + \frac{38}{64}Gini(L_{x_1=no}) \approx 0.32$
- $Gini_{x_2}(L) = \frac{51}{64}Gini(L_{x_2=yes}) + \frac{13}{64}Gini(L_{x_2=no}) \approx 0.42$

SLIQ – Algorithm

- Start Pre-sorting of the samples.
- 2. As long as the stop criterion has not been reached
 - 1. For every attribute
 - 1. Place all nodes into a class histogram.
 - 2. Start evaluation of the splits.
 - Choose a split.
 - Update the decision tree; for each new node update its class list (nodes).

SLIQ (1st Substep)

- Pre-sorting of the samples:
- 1. For each attribute: create an *attribute list* with columns for the value, sample-ID and class.
- Create a class list with columns for the sample-ID, class and leaf node.
- Iterate over all training samples:
 - For each attribute
 - Insert its attribute values, sample-ID and class (sorted by attribute value) into the attribute list.
 - Insert the sample-ID, the class and the leaf node (sorted by sample-ID) into the class list.

SLIQ: Example

TRAINING DATA

AFTER PRE-SORTING

				Class List			Class List			
Age	Salary	Class	Age	Index	Sala	ary l	Index	ı	Class	Leaf
30	65	G						1	G	
23	15	В		-			-	2		-1-
40	75	G						3		
55	40	В		-			-	4		-1-
55	100	G						5	_	
45	60	G						6		
			Age	List	Sala	ary L	ist		Class	List

SLIQ: Example

TRAINING DATA

AFTER PRE-SORTING

Age	Salary	Class
30	65	G
23	15	В
40	75	G
55	40	В
55	100	G
45	60	G

	Class List
Age	Index
23	2
30	1
40	3
45	6
55	5
55	4
55	4

Age Li	ist
--------	-----

	Class List		
Salary	Index		
15	2		
40	4		
60	6		
65	1		
75	3		
100	5		

Salary List

	Class	Leaf
l	G	N1
2	В	N1
3	G	N1
1	В	N1
5	G	N1
6	G	N1

Class List

SLIQ – Algorithm

- Start Pre-sorting of the samples.
- **√**
- 2. As long as the stop criterion has not been reached
 - 1. For every attribute
 - 1. Place all nodes into a class histogram.
 - 2. Start evaluation of the splits.
 - Choose a split.
 - Update the decision tree; for each new node update its class list (nodes).

SLIQ (2nd Substep)

- Evaluation of the splits.
- For each node, and for all attributes
 - Construct a histogram (for each class the histogram saves the count of samples before and after the split).
- 2. For each attribute A
 - For each value v (traverse the attribute list for A)
 - Find the entry in the class list (provides the class and node).
 - 2. Update the histogram for the node.
 - 3. Assess the split (if its a maximum, record it!)

SLIQ: Example

SLIQ – Algorithm

- Start Pre-sorting of the samples.
- As long as the stop criterion has not been reached
 - 1. For every attribute
 - Place all nodes into a class histogram.
 - 2. Start evaluation of the splits. <

- Choose a split.
- Update the decision tree; for each new node update its class list (nodes).

SLIQ (3rd Substep)

- Update the Class list (nodes).
- 1. Traverse the attribute list of the attribute used in the node.
- 2. For each entry (value, ID)
- 3. Find the matching entry (ID, class, node) in the class list.
- 4. Apply the split criterion emitting a new node.
- 5. Replace the corresponding class list entry with (ID, class, new node).

SLIQ: Example

SLIQ: Data Structures

Data structures in memory?

Swappable data structures?

Data structures in a database?

SLIQ- Pruning

- Minimum Description Length (MDL): the best model for a given data set minimizes the sum of the length the encoded data by the model plus the length of the model.
 - \bullet cost(M, D) = cost(D|M) + cost(M)
- cost(M) = cost of the model (length).
 - How large is the decision tree?
- cost(D|M) = cost to describe the data with the model.
 - How many classification errors are incurred?

Pruning – MDL Example I

Assume: 16 binary attributes and 3 classes

- cost(M, D) = cost(D|M) + cost(M)
 - Cost for the encoding of an internal node:

$$\star \log_2(m) = \log_2(16) = 4$$

- Cost for the encoding of a leaf:
 - $\star \lceil \log_2(k) \rceil = \lceil \log_2(3) \rceil = 2$
- Cost for the encoding of a classification error for n training data points:
 - $\star \log_2(n)$

Pruning – MDL Example II

Which tree is better?

- Cost for tree 1: $2*4+3*2+7*\log_2 n = 14+7\log_2 n$
- Cost for tree 2: $4*4+5*2+4*\log_2 n = 26+4\log_2 n$
- If n < 16, then tree 1 is better.
- If n > 16, then tree 2 is better.

SLIQ – Properties

- Running time for the initialization (pre-sorting):
 - $O(n \log n)$ for each attribute
- Much of the data must not be kept in main memory.
- Good scalability.
 - If the class list does not fit in main memory then SLIQ no longer works.
 - Alternative: SPRINT
- Can handle numerical and discrete attributes.
- Parallelization of the process is possible.

Regression Trees

- ID3, C4.5, SLIQ: Solve classification problems.
 - Goal: low error rate + small tree
- Attribute can be continuous (except for ID3), but their prediction is discrete.
- Regression: the prediction is continuously valued.
 - Goal: low quadratic error rate + simple model.

$$\bullet SSE = \sum_{j=1}^{n} (y_j - f(x_j))^2$$

- Methods we will now examine:
 - Regression trees,
 - Linear Regression,
 - Model trees.

Regression Trees

- Input: $L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$, continuous y.
- Desired result: $f: X \to Y$
- Algorithm CART
 - It was developed simultaneously & independently from C4.5.
 - Terminal nodes incorporate continuous values.
 - Algorithm like C4.5. For classification, there are slightly different criteria (Gini instead of IG), but otherwise little difference.
 - Information Gain (& Gini) only work for classification.
 - Question: What is a split criterion for Regression?
- Original reference:
 - L. Breiman et. al.: "Classification and Regression Trees". 1984

Regression Trees

- Goal: small quadratic error (SSE) + small tree.
- Examples L arrive at the current node.
- SSE at the current node: $SSE_L = \sum_{(\mathbf{x},y)\in L} (y \bar{y})^2$ where $\bar{y} = \frac{1}{|L|} \sum_{(\mathbf{x},y)\in L} y$.
- With which test should the data be split?
- Criterion for test nodes $[x \le v]$:
 - $SSE Red(L, [x \le v]) = SSE_L SSE_{L[x \le v]} SSE_{L[x > v]}$
 - SSE-Reduction through the test.
- Stop Criterion:
 - Do not make a new split unless the SSE will be reduced by at least some minimum threshold.
 - If so, then create a terminal node with mean m of L.

CART- Example

 $SSE_L = \sum_{(\mathbf{x}, y) \in L} (y - \bar{y})^2$ where $\bar{y} = \frac{1}{|L|} \sum_{(\mathbf{x}, y) \in L} y$

Which split is better?

Linear Regression

- Regression trees: constant prediction at every leaf node.
- Linear Regression: Global model of a linear dependence between x and y.
- Standard method.
- Useful by itself and it serves as a building block for Model trees.

Linear Regression

- Input: $L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$
- Desired result: a linear model, $f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + c$

Normal vector

Residuals

Points along the Regression line are perpendicular to the normal vector.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Model Trees: Creation of new Test Nodes

- Fit a linear regression of all samples that are filtered to the current node.
- Compute the regression's SSE.
- Iterate over all possible tests (like C4.5):
 - Fit a linear regression for the subset of samples on the left branch, & compute SSE_{left} .
 - Fit a linear regression for the subset of samples on the right branch, & compute SSE_{right} .
- Choose the test with the largest reduction $SSE SSE_{left} SSE_{right}$.
- Stop-Criterion: If the SSE is not reduced by at least a minimum threshold, don't create a new test.

Missing Attribute Values

- Problem: Training data with missing attributes.
- What if we test an attribute A for which an attribute value does not exist for every sample?
 - These training samples receive a substitute attribute value which occurs most frequently for A among the samples at node n.
 - These training samples receive a substitute attribute value, which most samples with the same classification have.

Attributes with Costs

- Example: Medical diagnosis
 - A blood test costs more than taking one's pulse
- Question: How can you learn a tree that is consistent with the training data at a low cost?
- Solution: Replace Information Gain with:
 - Tan and Schlimmer (1990): $\frac{IG^2(L,x)}{Cost(A)}$
 - Nunez (1988): $\frac{2^{IG(L,x)}-1}{(Cost(A)+1)^{W}}$
 - ♦ Parameter $w \in [0,1]$ controls the impact of the cost.

Bootstrapping

- Simple resampling method.
- Generates many variants of a training set L.
- Bootstrap Algorithm:
 - Repeat k = 1 ... M times:
 - \star Generate a sample dataset L_k of size n from L:
 - The sampled dataset is drawn uniformly with replacement from the original set of samples.
 - \star Compute model θ_k for dataset L_k
 - Return the parameters generated by the bootstrap:

$$\star \ \theta^* = (\theta_1, \dots, \theta_M)$$

Bootstrapping - Example

Bagging – Learning Robust Trees

- Bagging = Bootstrap aggregating
- Bagging Algorithm:
 - Repeat k = 1 ... M times :
 - \star Generate a sample dataset L_k from L.
- e.g. a model tree

- ★ Compute model θ_k for dataset L_k .
- Combine the M learned predictive models:
 - Classification problems: Voting
 - Regression problems: Mean value
- Original reference:
 - L.Breiman: "Bagging Predictors". 1996

Random Forests

Bootstrap

- Repeat:
 - Draw randomly n samples, uniformly with replacement, from the training set.
 - Randomly select m' < m features
 - Learn decision tree (without pruning)
- Classification: Maximum over all trees (Voting)
- Regression: Average over all trees
- Original reference:
 - L. Breiman: "Random Forests". 2001

Usages of Decision Trees

- Medical Diagnosis.
- In face recognition.
- As part of more complex systems.

Decision Tree - Advantages

- Easy to interpret.
- Can be efficiently learned from many samples.
 - SLIQ, SPRINT
- Many Applications.
- High Accuracy.

Decision Tree - Disadvantages

- Not robust against noise
- Tendency to overfit
- Unstable

Summary of Decision Trees

- Classification: Prediction of discrete values.
 - Discrete attributes: ID3.
 - Continuous attributes: C4.5.
 - Scalable to large databases: SLIQ, SPRINT.
- Regression: Prediction of continuous values.
 - Regression trees: constant value predicted at each leaf.
 - Model trees: a linear model is contained in each leaf.