Package 'binaryGP'

October 12, 2022

Type Package

Title Fit and Predict a Gaussian Process Model with (Time-Series) Binary Response
Version 0.2
Date 2017-09-17
Author Chih-Li Sung
Maintainer Chih-Li Sung <iamdfchile@gmail.com></iamdfchile@gmail.com>
Description Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) <arxiv:1705.02511>.</arxiv:1705.02511>
License GPL-2 GPL-3
LazyData TRUE
Imports Rcpp (>= 0.12.0), lhs (>= 0.10), logitnorm (>= 0.8.29), nloptr (>= 1.0.4), GPfit (>= 1.0-0), stats, graphics, utils, methods
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 5.0.1
Depends R (>= $2.14.1$)
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-09-19 08:34:21 UTC
R topics documented:
binaryGP_fit 2 predict.binaryGP 5 print.binaryGP 7 summary.binaryGP 9 Index 12

2 binaryGP_fit

hi	nary	/GP	fit

Binary Gaussian Process (with/without time-series)

Description

The function fits Gaussian process models with binary response. The models can also include time-series term if a time-series binary response is observed. The estimation methods are based on PQL/PQPL and REML (for mean function and correlation parameter, respectively).

Usage

```
binaryGP_fit(X, Y, R = 0, L = 0, corr = list(type = "exponential", power =
2), nugget = 1e-10, constantMean = FALSE, orthogonalGP = FALSE,
converge.tol = 1e-10, maxit = 15, maxit.PQPL = 20, maxit.REML = 100,
xtol_rel = 1e-10, standardize = FALSE, verbose = TRUE)
```

Arguments

Χ		a design matrix with dimension n by d.
Y		a response matrix with dimension n by T. The values in the matrix are 0 or 1. If no time-series, $T = 1$. If time-series is included, i.e., $T > 1$, the first column is the response vector of time 1, and second column is the response vector of time 2, and so on.
R		a positive integer specifying the order of autoregression only if time-series is included. The default is 1.
L		a positive integer specifying the order of interaction between X and previous Y only if time-series is included. The value couldn't nbe larger than R. The default is 1.
cor	r	a list of parameters for the specifing the correlation to be used. Either exponential correlation function or Matern correlation function can be used. See corr_matrix for details.
nug	get	a positive value to use for the nugget. If NULL, a nugget will be estimated. The default is 1e-10.
con	stantMean	logical. TRUE indicates that the Gaussian process will have a constant mean, plus time-series structure if R or T is greater than one; otherwise the mean function will be a linear regression in X, plus an intercept term and time-series structure.
ort	hogonalGP	logical. TRUE indicates that the orthogonal Gaussian process will be used. Only available when corr is list(type = "exponential", power = 2).
con	verge.tol	convergence tolerance. It converges when relative difference with respect to η_t is smaller than the tolerance. The default is 1e-10.
max	it	a positive integer specifying the maximum number of iterations for estimation to be performed before the estimates are convergent. The default is 15.
max	it.PQPL	a positive integer specifying the maximum number of iterations for PQL/PQPL estimation to be performed before the estimates are convergent. The default is 20.

binaryGP_fit 3

maxit.REML a positive integer specifying the maximum number of iterations in 1bfgs for

REML estimation to be performed before the estimates are convergent. The

default is 100.

xtol_rel a postive value specifying the convergence tolerance for lbfgs. The default is

le-10.

standardize logical. If TRUE, each column of X will be standardized into [0,1]. The default

is FALSE.

verbose logical. If TRUE, additional diagnostics are printed. The default is TRUE.

Details

Consider the model

$$logit(p_t(x)) = \eta_t(x) = \sum_{r=1}^{R} \varphi_r y_{t-r}(\mathbf{x}) + \alpha_0 + \mathbf{x}' \boldsymbol{\alpha} + \sum_{l=1}^{L} \gamma_l \mathbf{x} y_{t-l}(\mathbf{x}) + Z_t(\mathbf{x}),$$

where $p_t(x) = Pr(y_t(x) = 1)$ and $Z_t(\cdot)$ is a Gaussian process with zero mean, variance σ^2 , and correlation function $R_{\theta}(\cdot, \cdot)$ with unknown correlation parameters θ . The power exponential correlation function is used and defined by

$$R_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{x}_j) = \exp\{-\sum_{l=1}^d \frac{(x_{il} - x_{jl})^p}{\theta_l}\},$$

where p is given by power. The parameters in the mean functions including φ_r , α_0 , α , γ_l are estimated by PQL/PQPL, depending on whether the mean function has the time-series structure. The parameters in the Gaussian process including θ and σ^2 are estimated by REML. If orthogonalGP is TRUE, then orthogonal covariance function (Plumlee and Joseph, 2016) is employed. More details can be seen in Sung et al. (unpublished).

Value

alpha_hat a vector of coefficient estimates for the linear relationship with X.

varphi_hat a vector of autoregression coefficient estimates.

gamma_hat a vector of the interaction effect estimates.

theta_hat a vector of correlation parameters.

sigma_hat a value of sigma estimate (standard deviation).

nugget_hat if nugget is NULL, then return a nugget estimate, otherwise return nugget.

orthogonalGP orthogonalGP.

X data X. Y data Y.

R order of autoregression.

L order of interaction between X and previous Y.

corr a list of parameters for the specifing the correlation to be used.

Model.mat model matrix.

binaryGP_fit

```
eta_hat eta_hat.

standardize standardize.

mean.x mean of each column of X. Only available when standardize=TRUE, otherwise mean.x=NULL.

scale.x max(x)-min(x) of each column of X. Only available when standardize=TRUE, otherwise scale.x=NULL.
```

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

predict.binaryGP for prediction of the binary Gaussian process, print.binaryGP for the list of estimation results, and summary.binaryGP for summary of significance results.

```
library(binaryGP)
            Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences
        Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)</pre>
  x1 <- X[,1]
  x2 < X[,2]
  eta_1 <- cos(x1 + x2) * exp(x1*x2)
  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 \leftarrow rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] \leftarrow rbinom(1,1,p_1[i])
  Y < - y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- \exp(eta_2)/(1+\exp(eta_2))
      y_2 \leftarrow rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] \leftarrow rbinom(1,1,p_2[i])
      Y \leftarrow cbind(Y, y_2)
      P \leftarrow cbind(P, p_2)
      y_1 <- y_2
  }
  return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
```

predict.binaryGP 5

```
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)
##### without time-series ####
Y <- test_function(X, 1)$Y ## Y is a vector
binaryGP.model <- binaryGP_fit(X = X, Y = Y)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
##### with time-series, lag 1 ####
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results</pre>
```

predict.binaryGP

Predictions of Binary Gaussian Process

Description

The function computes the predicted response and its variance as well as its confidence interval.

Usage

```
## S3 method for class 'binaryGP'
predict(object, xnew, conf.level = 0.95,
   sim.number = 101, ...)
```

Arguments

object a class binaryGP object estimated by binaryGP_fit.

xnew a testing matrix with dimension n_new by d in which each row corresponds to a predictive location.

conf.level a value from 0 to 1 specifying the level of confidence interval. The default is 0.95.

sim.number a positive integer specifying the simulation number for Monte-Carlo method. The default is 101.

... for compatibility with generic method predict.

6 predict.binaryGP

Value

mean	a matrix with dimension n_new by T displaying predicted responses at locations xnew.
var	a matrix with dimension n_n ew by T displaying predictive variances at locations xnew.
upper.bound	a matrix with dimension n_new by T displaying upper bounds with conf.level confidence level.
lower.bound	a matrix with dimension n_new by T displaying lower bounds with conf.level confidence level.
y_pred	a matrix with dimension n_n ew by T displaying predicted binary responses at locations xnew.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

binaryGP_fit for estimation of the binary Gaussian process.

```
library(binaryGP)
            Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences
       Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)</pre>
  x1 <- X[,1]
  x2 <- X[,2]
  eta_1 <- cos(x1 + x2) * exp(x1*x2)
  p_1 <- exp(eta_1)/(1+exp(eta_1))</pre>
  y_1 \leftarrow rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] \leftarrow rbinom(1,1,p_1[i])
  Y < - y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 \leftarrow \exp(eta_2)/(1+\exp(eta_2))
      y_2 \leftarrow rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] \leftarrow rbinom(1,1,p_2[i])
      Y \leftarrow cbind(Y, y_2)
      P <- cbind(P, p_2)
      y_1 <- y_2
    }
  }
```

print.binaryGP 7

```
return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
n.test <- 10
d < - 2
X <- matrix(runif(d * n), ncol = d)</pre>
X.test <- matrix(runif(d * n.test), ncol = d)</pre>
##### without time-series #####
Y <- test_function(X, 1)$Y ## Y is a vector
test.out <- test_function(X.test, 1)</pre>
Y.test <- test.out$Y
P.true <- test.out$P
# fitting
binaryGP.model \leftarrow binaryGP_fit(X = X, Y = Y)
# prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)</pre>
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)
##### with time-series #####
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
test.out <- test_function(X.test, 10)</pre>
Y.test <- test.out$Y
P.true <- test.out$P
binaryGP.model \leftarrow binaryGP_fit(X = X, Y = Y, R = 1)
# prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)</pre>
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)
```

print.binaryGP

Print Fitted results of Binary Gaussian Process

Description

The function shows the estimation results by binaryGP_fit.

8 print.binaryGP

Usage

```
## S3 method for class 'binaryGP'
print(x, ...)
```

Arguments

x a class binaryGP object estimated by binaryGP_fit.

... for compatibility with generic method print.

Value

a list of estimates by binaryGP_fit.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

binaryGP_fit for estimation of the binary Gaussian process.

```
library(binaryGP)
            Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences
       Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)</pre>
  x1 <- X[,1]
  x2 <- X[,2]
  eta_1 <- cos(x1 + x2) * exp(x1*x2)
  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 \leftarrow rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] \leftarrow rbinom(1,1,p_1[i])
  Y < - y_1
  P < - p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 \leftarrow \exp(eta_2)/(1+\exp(eta_2))
      y_2 \leftarrow rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] \leftarrow rbinom(1,1,p_2[i])
      Y \leftarrow cbind(Y, y_2)
      P \leftarrow cbind(P, p_2)
      y_1 <- y_2
    }
  }
```

summary.binaryGP 9

```
return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
n.test <- 10
d < - 2
X <- matrix(runif(d * n), ncol = d)</pre>
##### without time-series #####
Y <- test_function(X, 1)$Y ## Y is a vector
binaryGP.model \leftarrow binaryGP_fit(X = X, Y = Y)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
##### with time-series, lag 1 #####
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
binaryGP.model \leftarrow binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
```

summary.binaryGP

Summary of Fitting a Binary Gaussian Process

Description

The function summarizes estimation and significance results by binaryGP_fit.

Usage

```
## S3 method for class 'binaryGP'
summary(object, ...)
```

Arguments

```
object a class binaryGP object estimated by binaryGP_fit.
... for compatibility with generic method summary.
```

Value

A table including the estimates by $binaryGP_fit$, and the correponding standard deviations, Z-values and p-values.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

10 summary.binaryGP

See Also

binaryGP_fit for estimation of the binary Gaussian process.

```
library(binaryGP)
            Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences
       Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)</pre>
  x1 <- X[,1]
  x2 <- X[,2]
  eta_1 \leftarrow cos(x1 + x2) * exp(x1*x2)
  p_1 \leftarrow \exp(eta_1)/(1+\exp(eta_1))
  y_1 \leftarrow rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] \leftarrow rbinom(1,1,p_1[i])
  Y < - y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- \exp(eta_2)/(1+\exp(eta_2))
      y_2 \leftarrow rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] \leftarrow rbinom(1,1,p_2[i])
      Y \leftarrow cbind(Y, y_2)
      P \leftarrow cbind(P, p_2)
      y_1 < - y_2
  }
  return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
n.test <- 10
d < - 2
X <- matrix(runif(d * n), ncol = d)</pre>
##### without time-series #####
Y <- test_function(X, 1)$Y ## Y is a vector
binaryGP.model \leftarrow binaryGP_fit(X = X, Y = Y)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
##### with time-series, lag 1 #####
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
```

summary.binaryGP 11

```
binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results</pre>
```

Index

```
binaryGP_fit, 2, 6, 8, 10
corr_matrix, 2
predict.binaryGP, 4, 5
print.binaryGP, 4, 7
summary.binaryGP, 4, 9
```