

激光SLAM的发展 和应用

主讲人曾书格

越凡创新技术负责人 电子科技大学硕士

激光SLAM简介

- 1、SLAM的定义与分类
- 2、SLAM的框架
- 3、激光SLAM
- 4、相关数学基础

激光SLAM简介

- 1、SLAM的定义与分类
- **2、SLAM的框架**
- 3、激光SLAM
- 4、相关数学基础

SLAM的定义

● Localization:在给定地图的情况下,估计机器人的位姿。 **移动机器人导航中最重要,也最难**

● Mapping:在给定机器人位姿的情况下,估计环境地图。 可以不实时

● SLAM: 同时估计机器人的位姿和环境地图。 移动机器人中最重要的内容

SLAM解决的问题

- 机器人在环境中的位姿;
- 导航过程中需要的环境地图。

基于传感器的分类

类型	适用场景	特点
二维激光SLAM	室内(可解决95%的问题)	成本低
三维激光SLAM	室外、测绘	成本高 信息量较大
视觉SLAM	室内室外通用	信息量丰富
声纳SLAM	水下,绘制海图	

二维激光 SLAM

三维激光 SLAM

视觉 SLAM

声纳 SLAM

类型	特点
图优化方法	估计全部位姿
Graph-based	(最通用)
滑动窗口方法	估计固定数量的位姿
sliding-window	(VIO,VO)
滤波器方法	估计当前位姿
filter-based	(Pose-Fusion)

 \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \mathbf{x}_{k-2} \mathbf{x}_{k-1} \mathbf{x}_k \mathbf{x}_{k+1} \mathbf{x}_{k+2} \cdots \mathbf{x}_K

激光SLAM简介

- 1、SLAM的定义与分类
- 2、SLAM的框架
- 3、激光SLAM
- 4、基本数学基础

Graph-based SLAM

- 前端匹配(局部匹配、帧间匹配)
- 回环检测
- 后端优化

图的结构

• Graph: 表示SLAM的过程

• Node: 机器人的位姿

• Edge: 节点之间的空间约束关系

图优化前

图优化后

- 1. 数据处理(激光雷达去畸变、里程计标定)
- 2. 激光帧间匹配(计算两帧激光之间的相对位姿)
- 3. 激光回环检测(识别回到访问过的环境)
- 4. 后端优化(Pose-Graph,非线性最小二乘优化)

数据处理--非常重要

1. 里程计标定

- 机械标称值不代表实际值,实际误差可能较大
- 里程计的精度对于机器人定位和建图至关重要

2.激光雷达运动畸变去除

- 一帧激光数据的采集需要时间
- 运动畸变会让数据严重失真,影响匹配精度

帧间匹配算法--核心部分

- ICP(Iterative Closest Point)
- PI-ICP(Point-to-Line Iterative Closest Point)
- NICP(Normal Iterative Closest Point)

- CSM(Correlation Scan Match)
- NDT(Normal Distance Transform)
- Optimization-Based
- Feature-Based

回环检测

方法	特点
Scan-to-Scan	计算量最小,容易产生歧义
Scan-to-Map	计算量中等,中等歧义
Map-to-Map	计算量最大,基本不产生歧义

- 高斯牛顿方法
- LM方法

激光SLAM简介

- 1、SLAM的定义与分类
- **2、SLAM的框架**
- **3**、激光SLAM
- 4、基本数学基础

- 1、2D激光SLAM的介绍
- 2、2D激光SLAM的发展
- 3、2D激光SLAM的应用

2D激光SLAM的输入

- IMU数据
- 里程计数据
- 2D激光雷达数据

2D激光SLAM的输出

- 覆盖栅格地图
- 机器人的轨迹 or PoseGraph

2D激光SLAM的帧间匹配方法

方法	特点
PL-ICP(Point-to-Line ICP)	点到线的距离,更符合室内结构化场景, 依赖初始解
CSM(Correlation Scan Match)	暴力搜索,能找到最优解
Optimization-Based	依赖于地图的梯度,可以轻易的引入额 外约束

2D激光SLAM的回环检测方法

- Scan-to-Map
- Map-to-Map
- Branch and Bound & Lazy Decision

• State of Art: CSM+梯度优化

Filter-based

方法	特点
EKF-SLAM(90年代)	随着环境的增大,状态量急剧增大
FastSLAM(2002~2003)	粒子滤波,每一个粒子表示一个地图
Gmapping(2007)	FastSLAM的升级版本
Optimal RBPF(2010)	Gmapping的基础上进一步优化

Graph-based

方法	特点
Karto-SLAM(2010)	首个基于优化的2D激光SLAM的开源算法,很 经典
Cartographer(2016)	与Karto-SLAM原理类似,更完整

⇔ 2D激光SLAM的应用

- 0
- 数据的预处理---非常重要!!!
- 轮式里程计的标定
- 激光雷达运动畸变去除
- 不同系统之间的时间同步

实际环境中的问题

- 1. 环境变化
- 2. 几何结构相似环境
- 3. 建图的操作复杂

- 4. 全局定位
- 5. 地面材质的变化
- 6. 机器人载重的改变

2D激光SLAM的趋势—与视觉融合

视觉提供的信息

- 高精度的里程信息
- 信息量丰富的视觉地图

0

融合解决的问题

- 环境变化
- 几何结构相似环境
- 建图的操作复杂

- 全局定位
- 地面材质的变化
- 机器人载重的改变

- 1、3D激光SLAM的介绍
- 2、3D激光SLAM的发展
- 3、3D激光SLAM的应用

3D激光SLAM的输入

- IMU数据
- 里程计数据
- 3D激光雷达数据

3D激光SLAM的输出

- 3D点云地图
- 机器人的轨迹 or PoseGraph

3D激光SLAM的帧间匹配方法

方法	特点
Point-to-Plane ICP	点到面的距离,类似于2D的点线
Plane-to-Plane ICP(GICP)	面到面的距离
NDT	划分网格,拟合高斯分布,速度快
NICP	在ICP的基础上,引入法向量信息,精度高
IMLS-ICP	对点云进行局部曲面拟合
Feature-based Method	提取特征点和描述符进行匹配

\$ 3D激光SLAM的应用

数据的预处理

- 轮式里程计的标定
- 激光雷达运动畸变去除
- 不同系统之间的时间同步

•

与视觉融合

- 3D激光雷达为视觉特征提供深度信息
- 视觉辅助激光雷达进行运动畸变去除
- 视觉辅助回环检测
- 视觉提供精确里程信息

- 1、退化环境(Degeneration Environment)
- 2、地图的动态更新(Map Update)
- 3、全局定位(Global Localization)
- 4、动态环境定位(Dynamic Localization)

激光SLAM简介

- 1、SLAM的定义与分类
- **2、SLAM的框架**
- 3、激光SLAM
- 4、基本位姿转换

数学基础: 位姿表示和转换矩阵

位姿表示

• 机器人在坐标系W中的坐标:

$$(x, y, \theta)$$

机器人坐标系B到坐标系W的转换矩阵:

$$T_B^W = \begin{bmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$$

数学基础: 位姿表示和转换矩阵

主动旋转(向量旋转)

- 向量旋转
- 生成在同坐标系下的新向量
- 多用于计算机图形学(CG)领域

$$x' = R(\theta) \cdot x$$

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 旋转矩阵

数学基础: 位姿表示和转换矩阵

0

主动旋转(向量旋转)

- 坐标系由一组基底定义,坐标系中的任意一个向量都表示为基底的线性组合
- 向量(a,b)实际表达式:

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• 对于向量的旋转,可以等价于对基底的旋转:

$$R(\theta) \begin{bmatrix} a \\ b \end{bmatrix} = aR(\theta) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + bR(\theta) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

主动旋转(向量旋转)

• x轴基向量(1,0)的旋转

$$x = [1,0]^{T} \qquad x' = [\cos \theta, \sin \theta]^{T}$$

$$x' = R(\theta) \cdot x = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \Longrightarrow \qquad \begin{cases} R_{11} = \cos \theta \\ R_{21} = \sin \theta \end{cases}$$

Y轴基向量(0,1)的旋转

$$y = [0,1]^{T} \quad y' = [-\sin\theta, \cos\theta]^{T}$$

$$y' = R(\theta) \cdot y = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{cases} R_{12} = -\sin\theta \\ R_{22} = \cos\theta \end{cases}$$

被动旋转(坐标系旋转)

- 坐标系旋转
- 某一个物理量在不同坐标系下的表示
- 多用于状态估计领域

$$x_W = R_B^W x_B$$

$$R_B^W = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

被动旋转(坐标系旋转)

• 设向量x在B系中的坐标为(a,b)

$$x_B = \begin{bmatrix} a \\ b \end{bmatrix} = a \cdot OX' + b \cdot OY'$$

- 如果知道B系基向量在W系中的表达式,即可知道向量 x在W系中的坐标
- 根据旋转可得,OX'和OY'在W中的坐标:

$$OX' = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \qquad OY' = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

被动旋转(坐标系旋转)

• 向量x在W系中的表达式:

$$x_{W} = a \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + b \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

写成矩阵形式:

$$x_{W} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$X_W = R_B^W X_B \implies R_B^W = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

转换矩阵

• 假设B系在W系中的位姿为:

$$p_B = (x, y, \theta) = (t_B, \theta)$$

已知B系中的某个量,在W系中的表达:

$$x_W = R_B^W x_B + t_B = \begin{bmatrix} R_B^W & t_B \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_B \\ 1 \end{bmatrix}$$

$$T_B^W = \begin{vmatrix} R_B^W & t_B \\ 0 & 1 \end{vmatrix}$$

可以认为位姿跟转换矩阵是对应的

位姿表示

●坐标系B在坐标系W中的坐标:

$$(x, y, \theta)$$

坐标系B到坐标W的转换矩阵:

$$T_B^W = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & x \\ \sin(\theta) & \cos(\theta) & y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$$

坐标系W到坐标B的转换矩阵:

$$T_{W}^{B} = \begin{bmatrix} R^{T} & -R^{T}t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R^{-1} & -R^{-1}t \\ 0 & 1 \end{bmatrix}$$

机器人A在坐标系W的坐标:

$$(x_A, y_A, \theta_A), \begin{bmatrix} \cos(\theta_A) & -\sin(\theta_A) & x_A \\ \sin(\theta_A) & \cos(\theta_A) & y_A \\ 0 & 0 & 1 \end{bmatrix}$$

• 机器人B在坐标系W的坐标:

$$(x_B, y_B, \theta_B), \begin{bmatrix} \cos(\theta_B) & -\sin(\theta_B) & x_B \\ \sin(\theta_B) & \cos(\theta_B) & y_B \\ 0 & 0 & 1 \end{bmatrix}$$

机器人A在机器人B中的坐标:

$$T_A^B = T_W^B T_A^W = T_B^{W^{-1}} T_A^W$$

$$(x, y, \theta) = T2V(T_A^B) = (T_A^B(0, 2), T_A^B(1, 2), a \tan 2(T_A^B(1, 0), T_A^B(0, 0)))$$

1. 激光SLAM公开课

- 激光SLAM的发展历史
- 激光SLAM的流程

2. 传感器数据处理I: 里程计运动模型及标定

- 里程计模型--简化的线性模型
- 里程计模型--实际模型
- 里程计标定原理

3. 传感器数据处理II: 激光雷达数学模型和运动畸变去除

- 激光雷达数学模型
- 运动畸变概念及影响
- 基于纯激光雷达的运动畸变去除
- 基于里程计辅助的运动畸变去除

4. 激光SLAM的前端配准方法一

- ICP匹配方法
- PL-ICP匹配方法
- NICP匹配方法
- IMLS-ICP匹配方法

≫ 激光SLAM理论与实践在线课程

5. 激光SLAM的前端配准方法

- =
- 爬山法(拟梯度法)
- 基于高斯牛顿的优化方法
- NDT方法
- 相关方法和分支定界方法

6. 基于图优化的激光SLAM方法

- Pose Graph的概念
- 回环检测方法
- 非线性最小二乘原理
- 非线性最小二乘求解SLAM
- 经典开源算法(cartographer)源码讲解

7. 基于已知定位的建图

- 地图分类
- 基于占用概率的栅格地图构建
- · 基于TSDF的栅格地图构建

8. 基于图优化

- life-long Mapping的概念以及应用
- 最小信息量激光帧的选取
- Pose-Graph的精确边缘化
- Pose-Graph的近似边缘化

9. 3D激光SLAM的介绍

- 3D激光SLAM的介绍
- LOAM算法原理
- ALOAM代码讲解
- 主流开源激光SLAM代码介绍

⇒ 课程设置

作业

- 基于ROS系统, C++编程
- 实现关键函数
- 每一小节有对应的课后作业,课程完结有一个把所有的模块连接起来的大作业

详细见第一节作业说明文档

感谢各位聆听

Thanks for Listening

