

Dr. S. M. Moosavi

Data Sets

Mathematics for Data Science

Dr. S. M. Moosavi

smohsenmoosavi2009@gmail.com

July 28, 2024

Dr. S. M

Data Sets Solutions The following slides are arranged (with some modifications) based on the book "Math for Data Science" by "Omar Hijab".

You can follow me on <u>Linkedin</u>. Also, for course materials such as slides and the related python codes, see this <u>Github</u> repository.

Outline

Math for Data

Dr. S. M

Data Sets

Data Sets

2 Solutions

Data Sets

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

What is a dataset

Definition 1.1

Geometrically, a dataset is a sample of N points x_1, x_2, \dots, x_N in d-dimensional space \mathbb{R}^d . Algebraically, a dataset is an $N \times d$ matrix.

Practically speaking, the following are all representations of datasets:

matrix = CSV file = spreadsheet = SQL table = array = dataframe

Definition 1.2

Each point $x=(t_1,t_2,\cdots,t_d)$ in the dataset is a sample or an example, and the components t_1,t_2,\cdots,t_d of a sample point x are its features or attributes. As such, d-dimensional space \mathbb{R}^d is feature space.

Definition 1.3

Sometimes one of the features is separated out as the label. In this case, the dataset is a labelled dataset.

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction

Averages and Vector Spaces Two Dimensions Complex Numbers Mean and Covarianc

lris dataset

The *Iris dataset* contains 150 examples of four features of Iris flowers, and there are three classes of Irises, *Setosa*, *Versicolor* and *Virginica*, with 50 samples from each class.

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and
Spaces
Two Dimension

Mean and Covari

MNIST dataset

The MNIST dataset consists of 60,000 images of hand-written digits. There are 10 classes of images, corresponding to each digit $0,1,\cdots,9$. We seek to compress the images while preserving as much as possible of the images' characteristics.

Each image is a grayscale 28×28 pixel image. Since $28^2=784$, each image is a point in d=784 dimensions. Here there are N=60000 samples and d=784 features.

0	0	0	0	0	O	0	0	0	٥	0	0	0	0	0	0
1															
														2	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	٤	ч	4	4	4	4	#	4	4	4	9	Ч	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6	G	6	6	و	P	9	9	ø	Ø	6	6	ق	6	6	b
F	7	7	7	7	7	7	7	~	7	7	^	ø	7	7	7
														8	
9	૧	9	9	9	9	8	9	٩	ρ	9	9	9	9	9	9

CX

Math for Data

Dr. S. M. Moosavi

Data Sets Introduction Averages and V Spaces Two Dimension

Fwo Dimensions Complex Numbers Mean and Covariand

Solution

Exercise 1.1

Use sklearn to download Iris dataset.

Exercise 1.2

- From keras read the MNIST dataset.
- Let (train_X, train_y), (test_X, test_y) = mnist.load_data()
- Let pixels = train_X[1].
- Do for loops over i and j in range(28) and use scatter to plot points at location (i,j) with size given by pixels[i,j], then show the following image.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions
Complex Numbers
Mean and Covarian
Solutions

ntroduction

Suppose we have a population of things (people, tables, numbers, vectors, images, etc.) and we have a sample of size N from this population:

$$1 = [x_1, x_2, \dots, x_N]$$

The total population is the population or the sample space.

Example 1.1

The sample space consists of all real numbers and we take ${\cal N}=5$ samples from

$$1 = [3.95, 3.20, 3.10, 5.55, 6.93]$$

Example 1.2

The sample space consists of all integers and we take ${\cal N}=5$ samples from

$$1 = [35, -32, -8, 45, -8]$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions

Two Dimensions Complex Numbers Mean and Covariance

ntroduction

Example 1.3

The sample space consists of all Python strings and we take ${\cal N}=5$ samples from

```
1 = ['a2e?','#%T','7y5,','kkk>><</',,'[[)*+']
```

Example 1.4

The sample space consists of all HTML colors and we take ${\cal N}=5$ samples from

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions Complex Numbers

Solutions

Mean

Let 1 be a list as above. The goal is to compute the sample *average* or *mean* of the list, which is

$$mean = average = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

In the Example (1.1), the average is

$$\frac{3.95 + 3.20 + 3.10 + 5.55 + 6.93}{5} = 4.546.$$

Example 1.5

```
import numpy as np

dataset = np.array([3.95, 3.20, 3.10, 5.55, 6.93])
print(np.mean(dataset))

output: 4.546
```

In the Example (1.2), the average is $\frac{32}{5}$. In the Example (1.3), while we can add strings, we can't divide them by 5, so the average is undefined. Similarly for colors: the average is undefined.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions Complex Numbers Mean and Covariance

Vector space

A sample space or population V is called a $vector\ space$ if, roughly speaking, one can compute means or averages in V. In this case, we call the members of the population "vectors".

Definition 1.4 (Vector space)

Let V be a set. V is a vector space (over $\mathbb R$) if for every $u,v,w\in V$ and $r,s\in \mathbb R$:

- 1 vectors can be added (and the sum v + w is back in V);
- 2 vector addition is commutative v + w = w + v
- 3 vector addition is associative u + (v + w) = (u + v) + w;
- 4 there is a zero vector $\mathbf{0}$ ($\mathbf{0} + v = v$);
- **5** vectors v have negatives (or opposites) -v (v + (-v) = 0);
- **5** vectors can be multiplied by real numbers (and the product rv is back in V);
- 7 multiplication is distributive over addition (r+s)v = rv + sv and r(u+v) = ru + rv;
- 8 1v = v and 0v = 0;
- r(sv) = (rs)v.

Math for Data Moosavi

Averages and Vector

Definition 1.5 (Centered Versus Non-Centered)

If x_1, x_2, \dots, x_N is a dataset of points with mean m and

$$v_1 = x_1 - m, v_2 = x_2 - m, \dots, v_N = x_N - m,$$

then v_1, v_2, \cdots, v_N is a centered dataset of vectors where its mean is zero.

Dr. S. M Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

Some note:

- When we work with vector spaces, numbers are referred to as scalars.
- When we multiply a vector v by a scalar r to get the scaled vector rv, we call it scalar multiplication.
- ullet The set of all real numbers $\mathbb R$ is a vector space.
- ullet The set of all integers $\mathbb Z$ is not a vector space.
- The set of all rational numbers $\mathbb Q$ is a vector space over $\mathbb Q$ but not over $\mathbb R$.
- The set of all Python strings is not a vector space.
- Usually, we can't take sample means from a population, we instead take the sample mean of a statistic associated to the population. A statistic is an assignment of a number f(item) to each item in the population. For example, the human population on Earth is not a vector space (they can't be added), but their heights is a vector space (heights can be added). For the Python strings, a statistic might be the length of the strings. For the HTML colors, a statistic is the HTML code of the color.

Moosavi

Averages and Vector

In general, a statistic need not be a number. A statistic can be anything that "behaves like a number". For example, f(item) can be a vector or a matrix. More generally, a statistic's values may be anything that lives in a vector space V.

Math for Data

Dr. S. M.

Moosavi

Data Sets Introduction Averages and VeSpaces Two Dimensions

Mean and Co

artesian plane

The *cartesian plane* \mathbb{R}^2 , also called the 2-dimensional real space is a vector space.

For $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$ and $t\in\mathbb{R}$ define

- $\mathbf{v}_1 + \mathbf{v}_2 = (x_1 + x_2, y_1 + y_2)$ (Addition).
- $\mathbf{0} = (0,0)$ (Zero).
- $t\mathbf{v}_1 = (tx_1, ty_1)$ (Scaling).
- $-\mathbf{v}_1 = (-1)\mathbf{v}_1$ (Negative).
- $\mathbf{v}_1 \mathbf{v}_2 = \mathbf{v}_1 + (-\mathbf{v}_2) = (x_1 x_2, y_1 y_2)$ (Subtraction).

Operations

Math for Data

Dr. S. M

Data Sets
Introduction

Spaces
Two Dimensions

Complex Numbers

....

2d example

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vect

Two Dimensions
Complex Numbers
Mean and Covariance

```
Example 1.6
```

```
import numpy as np
   v1 = (1.2)
4 v2 = (3,4)
   print(v1 + v2 == (1+3,2+4)) # returns False
6
7 v1 = [1,2]
   v2 = [3.4]
9
   print(v1 + v2 == [1+3,2+4]) # returns False
10
11
   v1 = np.array([1,2])
12
   v2 = np.array([3,4])
13
   print(v1 + v2 == np.array([1+3,2+4]))
14
   # returns [ True True]
15
   print(3*v1 == np.array([3,6]))
16
   # returns [ True True]
17
   print(-v1 == np.array([-1,-2]))
18
   # returns [ True True]
19
   print(v1 - v2 == np.array([1-3,2-4]))
20
   # returns [ True True]
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vec

Two Dimensions
Complex Numbers

Complex Numbers

Mean and Covaria

2d example

For the two-dimensional dataset

$$\mathbf{x}_1 = (1, 2), \mathbf{x}_2 = (3, 4), \mathbf{x}_3 = (-2, 11), \mathbf{x}_4 = (0, 66),$$

or, equivalently,

$$\mathbf{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ -2 & 11 \\ 0 & 66 \end{pmatrix},$$

the average is

$$\frac{(1,2) + (3,4) + (-2,11) + (0,66)}{4} = (0.5,20.75).$$

Example 1.7

```
1  import numpy as np
2  
3  dataset = np.array([[1,2], [3,4], [-2,11], [0,66]])
4  print(np.mean(dataset, axis=0))
5  # returns [ 0.5 , 20.75]
```


D C M

Data Sets
Introduction
Averages and

Two Dimensions

Complex Numbers Mean and Covariance

-u cxumpi

Example 1.8

Generate a 2 dimensional dataset of random points and their mean

```
import numpy as np
   from numpy.random import random as rd
   import matplotlib.pyplot as plt
   N = 20
   dataset = np.array([[rd(), rd()] for _ in range(N)])
6
   mean = np.mean(dataset,axis=0)
   plt.grid()
8
   X, Y = dataset[:,0], dataset[:,1]
   plt.scatter(X,Y)
10
   plt.scatter(*mean)
11
   plt.annotate('$m$', xy=mean+0.01)
12
   plt.show()
                                1.0
                                0.8
```


Dr. S. M Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Complex Numbers
Mean and Covarian

Magnitude

Definition 1.6 (Distance Formula)

If $\mathbf{v}_1=(x_1,y_1)$ and $\mathbf{v}_2=(x_2,y_2)$, then the distance between \mathbf{v}_1 and \mathbf{v}_2 is

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

The distance of ${\bf v}=(x,y)$ to the origin ${\bf 0}=(0,0)$ is its magnitude or norm or length

$$r = |\mathbf{v}| = |\mathbf{v} - \mathbf{0}| = \sqrt{x^2 + y^2}.$$

Example 1.9

For $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$

$$|\mathbf{v}_1| = \sqrt{1^2 + 2^2} = \sqrt{5} \simeq 2.236,$$

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(1-3)^2 + (2-4)^2} = \sqrt{4+4} = \sqrt{8} \simeq 2.828.$$

```
1  import numpy as np
2  
3  v1 = np.array([1,2])
4  v2 = np.array([3,4])
5  print(np.linalg.norm(v1)) #returns 2.23606797749979
6  print(np.linalg.norm(v1-v2)) #returns 2.
```


Moosavi

In terms of r and θ , the polar representation of (x,y) is

$$x = r\cos\theta, \quad y = r\sin\theta.$$

The unit circle consists of the vectors which are distance 1 from the origin 0. When v is on the unit circle, the magnitude of v is 1, and we say v is a unit vector. In this case, the line formed by the scalings of v intersects the unit circle at $\pm v$.

When **v** is a unit vector, then r = 1 and $\mathbf{v} = (x, y) = (\cos \theta, \sin \theta)$.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and
Spaces
Two Dimension

Complex Numbers

Solutions

Polar representation

By the distance formula, a vector $\mathbf{v} = (x, y)$ is a unit vector when

$$x^2 + y^2 = 1.$$

More generally, any circle with $\mathit{center}\ (a,b)$ and radius r consists of vectors $\mathbf{v}=(x,y)$ satisfying

$$(x-a)^2 + (y-b)^2 = r^2.$$

Let R be a point on the unit circle, and let t>0. The scaled point tR is on the circle with center (0,0) and radius t. Moreover, if Q is any point, Q+tR is on the circle with center Q and radius t. It is easy to check that $|t\mathbf{v}|=|t||\mathbf{v}|$ for any real number t and vector \mathbf{v} .

From this, if a vector \mathbf{v} is unit and r > 0, then $r\mathbf{v}$ has magnitude r. If \mathbf{v} is any vector not equal to the zero vector, then $r = |\mathbf{v}|$ is positive, and

$$\left| \frac{1}{r} \mathbf{v} \right| = \frac{1}{r} |\mathbf{v}| = \frac{1}{r} r = 1$$

so \mathbf{v}/r is a unit vector.

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vec
Spaces

Two Dimensions
Complex Numbers
Mean and Covarian

nner product

Definition 1.7

Let $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$. The inner product or the dot product of \mathbf{v}_1 and \mathbf{v}_2 is given algebraically as

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1 x_2 + y_1 y_2.$$

From the geometric view, we have:

Theorem 1.1 (Dot Product Identity)

$$x_1x_2 + y_1y_2 = \mathbf{v}_1 \cdot \mathbf{v}_2 = |\mathbf{v}_1||\mathbf{v}_2|\cos\theta,$$

where θ is the angle between \mathbf{v}_1 and \mathbf{v}_1 .

Exercise 1.3

Prove the "Dot Product Identity", Theorem (1.1). Hint: Use Pythagoras' theorem for general triangles.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vec

Two Dimensions
Complex Numbers

Mean and Covariand

The angle between two vectors

In Python, the dot product is given by numpy.dot and as a consequence of the dot product identity, we have the code for the angle between two vectors:

$$\theta_{\mathbf{v}_1,\mathbf{v}_2} = \arccos\left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1||\mathbf{v}_2|}\right).$$

Example 1.10

Find the angle between the vectors $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$.

```
import numpy as np

def angle(u,v):
    a = np.dot(u,v)
    b = np.dot(u,u)
    c = np.dot(v,v)
    theta = np.arccos(a / np.sqrt(b*c))
    return np.degrees(theta)

v1 = np.array([1,2])
v2 = np.array([3,4])
print(angle(v1,v2)) #returns 10.304846468766044 in degree
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and V

Two Dimensions Complex Numbers

Mean and Covaria

Cauchy-Schwarz Inequality

Recall that $-1 \le \cos \theta \le 1$. Using the dot product identity, we obtain the important inequality:

Theorem 1.2 (Cauchy-Schwarz Inequality)

If u and v are any two vectors, then

$$-|u||v| \le u \cdot v \le |u||v|.$$

Exercise 1.4

Prove the "Cauchy-Schwarz Inequality".

Dr. S. M Moosavi

Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

2d linear equations system

Consider the homogeneous system

$$\begin{cases}
ax + by = 0 \\
cx + dy = 0
\end{cases}$$
(1.1)

and let A be the 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \tag{1.2}$$

(x,y)=(-b,a) is a solution of the first equation in (1.1). If we want this to be a solution of the second equation as well, we must have cx+dy=ad-bc=0.

Definition 1.8 (Determinant)

The determinant of A is

$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

2d linear equations system

Dr. S. M.

Data Sets
Introduction
Averages and

Two Dimensions
Complex Numbers
Mean and Covariance

Theorem 1.3 (Homogeneous System)

When $\det(A)=0$, the homogeneous system (1.1) has a nonzero solution, and all solutions are scalar multiples of (x,y)=(-b,a). When $\det(A)\neq 0$, the only solution is (x,y)=(0,0).

For the inhomogeneous case

$$\begin{cases}
ax + by = e \\
cx + dy = f
\end{cases}$$
(1.3)

we have

Theorem 1.4 (Inhomogeneous System)

When $det(A) \neq 0$, the inhomogeneous system (1.3) has the unique solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} de - bf \\ af - ce \end{pmatrix}.$$

When det(A) = 0, (1.3) has a solution iff ce = af and de = bf.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vi

Two Dimensions
Complex Numbers

Complex Numbers Mean and Covariance

2d linear equations systen

When $a^2 + b^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} ae \\ be \end{pmatrix}.$$

When $c^2 + d^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{c^2 + d^2} \begin{pmatrix} cf \\ df \end{pmatrix}.$$

Any other solution differs from these solutions by a scalar multiple of the homogeneous solution (x,y)=(-b,a).

Exercise 1.5

Prove the Theorems (1.3) and (1.4).

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Ve
Spaces

Complex Numbers
Mean and Covarian

Complex numbers

Roughly speaking, the set of all *complex numbers* is the set of all points in \mathbb{R}^2 with different multiplication rule.

Definition 1.9 (Complex numbers)

The complex numbers, \mathbb{C} , is the set

$$\mathbb{C} = \{(x, y) \in \mathbb{R}^2\}$$

with operations

- Addition: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
- Scalar Multiplication: t(x, y) = (tx, ty)
- Multiplication: $(x_1, y_1)(x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1)$.

Then, in \mathbb{C} , we have

- zero: 0 = (0, 0).
- opposite or additive inverse: -(x,y) = (-x,-y).
- one: 1 = (1, 0).

Evample 1

Math for Data

Dr. S. M Moosavi

Data Sets Introduction Averages and Ve

Two Dimensions

Complex Numbers

Mean and Covarian

iviean and C

Example 1.11

- \bullet (1,2) + (3,4) = (4,6).
- \bullet (0,0) + (1,2) = (1,2).
- 3(1,2) = (3,6).
- (1,0)(1,2) = (1-0,2+0) = (1,2).
- (1,2)(3,4) = (3-8,4+6) = (-5,10).
- (x,0) + (y,0) = (x+y,0).
- (x,0)(y,0) = (xy,0).

Note. By the last two examples, we see that complex numbers with 0 as their second component act like real numbers in addition and multiplication. So, from now on, we set x = (x, 0).

Example 1.12

- \bullet 0 = (0,0).
- 1 = (1, 0).
- \bullet -1 = (-1,0).

Dr. S. M Moosavi

Data Sets Introduction Averages and Spaces

Two Dimensions

Complex Numbers

Mean and Covariance

Solutions

maginary number

Definition 1.10 (Imaginary number)

$$i = (0, 1).$$

Note. Python uses the symbol j for imaginary number.

Theorem 1.5

For each $z = (x, y) \in \mathbb{C}$, we can write

$$z = x + iy.$$

We call x as the real part of z, and y the imaginary part of z.

$$x = Re(z), \quad y = Im(z).$$

Proof.
$$x + iy = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0 - 0, 0 + y) = (x, y).$$

31 / 60

Theorem 1.6

$$i^2 = -1$$
.

Proof.
$$i^2 = (0,1)(0,1) = (0-1,0+0) = (-1,0) = -1.$$

Examp

Math for Data

Dr. S. M Moosavi

Data S

Introduction
Averages and Verages
Two Dimensions

Mean and Covaria

Solutions

Example 1.13

In complex numbers:

- $\bullet \ \sqrt{-1} = i.$
- $\sqrt{-4} = 2i$.

•
$$(1,2)(3,4) = (1+2i)(3+4i)$$

= $3+4i+6i+8i^2$
= $3+10i-8$
= $-5+10i$
= $(-5,10)$.

•
$$(1,2)^3 = (1+2i)^3$$

= $(1)^3 + 3(1)^2(2i) + 3(1)(2i)^2 + (2i)^3$
= $1 + 6i + 12i^2 + 8i^3$
= $1 + 6i - 12 - 8i$
= $-11 - 2i$
= $-(11,2)$.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Ve

Two Dimensions

Complex Numbers

Mean and Covariance

Conjugate

Definition 1.11 (Conjugate)

For $z=(x,y)\in\mathbb{C}$, the conjugate is

$$\bar{z} = (x, -y) = x - iy \in \mathbb{C}.$$

Some properties.

- $z + \bar{z} = 2Re(z)$, $z \bar{z} = 2iIm(z)$.
- $z\bar{z} = Re(z)^2 + Im(z)^2$,

$$\Rightarrow |z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{z\bar{z}}$$
$$\Rightarrow |z|^2 = z\bar{z}.$$

Example 1.14

For $z = (4, -3) \in \mathbb{C}$:

- $\bar{z} = (4,3) = 4 + 3i$
- $z + \bar{z} = 2 \times 4 = 8$, $z \bar{z} = 2i \times (-3) = -6i$.
- $z\bar{z} = (4)^2 + (-3)^2 = 16 + 9 = 25 \Rightarrow |z| = \sqrt{25} = 5.$
- $z^2 = (4-3i)^2 = 7-24i.$
- $|z|^2 = 25$.

Moosavi

Complex Numbers

Theorem 1.7

For a non-zero $z \in \mathbb{C}$, the inverse of z is

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}.$$

Proof. Firstly, if z=(x,y) then $\frac{1}{z}\in\mathbb{C}$, because,

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) \in \mathbb{C}.$$

Secondly,

$$zz^{-1} = (x+iy)\left(\frac{x-iy}{x^2+y^2}\right) = \frac{x^2+y^2}{x^2+y^2} = 1.$$

Corollary 1.1 (Division)

For $z_1 \in \mathbb{C}$ and $0 \neq z_2 \in \mathbb{C}$

$$\frac{z_1}{z_2} = z_1 z_2^{-1}.$$

Dr. S. M. Moosavi

Introduction
Averages and Ver
Spaces
Two Dimensions

Mean and Covariance

Solutions

Definitions

Definition 1.12 (Mean-squared distance)

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ be a dataset, say D, in \mathbb{R}^d , and let $\mathbf{x} \in \mathbb{R}^d$. The mean-squared distance of \mathbf{x} to D is

$$MSD(\mathbf{x}) = \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{x}|^2.$$

Definition 1.13 (Mean)

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ be a dataset in \mathbb{R}^d . The mean or sample mean is

$$\mathbf{m} = \bar{\mathbf{x}}_N = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_k = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_N}{N}.$$

Theorem 1.8 (Point of Best-fit)

The mean is the point of best-fit: The mean minimizes the mean-squared distance to the dataset.

Exercise 1.6

Prove the Theorem (1.8).

Point of Best-fit

Math for Data

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and V
Spaces

Complex Numbers

Mean and Covariance

```
import matplotlib.pyplot as plt
    import numpy as np
    np.random.seed(1)
   N = 20
6 rnd = np.random.random
    dataset = np.array([ [rnd(), rnd()] for _ in range(N) ])
    # Mean
    m = np.mean(dataset, axis=0)
10
    #Random point
11
    p = np.array([rnd(), rnd()])
12
13
    plt.grid()
14
    X, Y = dataset[:,0], dataset[:,1]
15
    plt.scatter(X,Y)
16
    for v in dataset:
      plt.plot([m[0],v[0]],[m[1],v[1]],c='green')
plt.plot([p[0],v[0]],[p[1],v[1]],c='red')
17
18
    plt.show()
19
20
21
    # Comparison of MSD of the mean and a random point
22
    MSD_m = np.sum(np.abs(dataset-m)**2)/N
23
    MSD_p = np.sum(np.abs(dataset-p)**2)/N
24
    print (MSD_m, MSD_p) # 0.160478187272121 0.5984208474157081
```


Point of Best-fi

Math for Data

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vec

Complex Numbers

Mean and Covariance

. . .

Figure 1.1: MSD for the mean (green) versus MSD for a random point (red).

Dr. S. M Moosavi

Data Sets
Introduction
Averages and
Spaces
Two Dimension

Mean and Cov

Solutions

ensor product

For simplicity, let $\mathbf{u} = (a, b)$ and $\mathbf{v} = (c, d, e)$ be two vectors.

Definition 1.14 (Tensor product)

The tensor product of ${\bf u}$ and ${\bf text}$ is the matrix

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} ac & ad & ae \\ bc & bd & be \end{pmatrix} = \begin{pmatrix} c\mathbf{u} & d\mathbf{u} & e\mathbf{u} \end{pmatrix} = \begin{pmatrix} a\mathbf{v} \\ b\mathbf{v} \end{pmatrix}$$

Definition 1.15 (Trace of a matrix)

The trace of a squared matrix A is the sum of the diagonal entries.

Note. For any vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :

$$\bullet \ \mathbf{v} \otimes \mathbf{u} = (\mathbf{u} \otimes \mathbf{v})^t.$$

In square case:

•
$$trace(\mathbf{u} \otimes \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$$
.

•
$$trace(\mathbf{u} \otimes \mathbf{u}) = |\mathbf{u}|^2$$
.

$$\bullet (\mathbf{u} \otimes \mathbf{v})\mathbf{w} = (\mathbf{v} \cdot \mathbf{w})\mathbf{u}.$$

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers

Complex Numbers

Mean and Covaria

Solutions

Covariance

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ be a dataset in \mathbb{R}^d with \mathbf{m} as its mean.

Definition 1.16 (1d Covariance)

When d = 1, the covariance q is a scalar

$$q = \frac{1}{N} \sum_{k=1}^{N} (x_k - m)^2 = MSD(m).$$

In the scalar case, the covariance is called the variance of the scalar dataset.

In general, the covariance is a symmetric $d \times d$ matrix Q. We can center the dataset as

$$v_1 = x_1 - m, v_2 = x_2 - m, ..., v_N = x_N - m.$$

Then the *covariance matrix* is the $d \times d$ matrix Q as

$$Q = \frac{\mathbf{v}_1 \otimes \mathbf{v}_1 + \mathbf{v}_2 \otimes \mathbf{v}_2 + \ldots + \mathbf{v}_N \otimes \mathbf{v}_N}{N}.$$
 (1.4)

Example

Math for Data

Dr. S. M. Moosavi

Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers

Mean and Covariance

Example 1.16

Suppose ${\cal N}=5$ and

$$\mathbf{x}_1 = (1, 2), \quad \mathbf{x}_2 = (3, 4), \quad \mathbf{x}_3 = (5, 6), \quad \mathbf{x}_4 = (7, 8), \quad \mathbf{x}_5 = (9, 10).$$

Then m = (5,6) and

$$\mathbf{v}_1 = \mathbf{x}_1 - \mathbf{m} = (-4, -4), \quad \mathbf{v}_2 = \mathbf{x}_2 - \mathbf{m} = (-2, -2),$$

 $\mathbf{v}_3 = \mathbf{x}_3 - \mathbf{m} = (0, 0), \quad \mathbf{v}_4 = \mathbf{x}_4 - \mathbf{m} = (2, 2), \quad \mathbf{v}_5 = \mathbf{x}_5 - \mathbf{m} = (4, 4).$

Since

$$(\pm 4, \pm 4) \otimes (\pm 4, \pm 4) = \begin{pmatrix} 16 & 16 \\ 16 & 16 \end{pmatrix},$$
$$(\pm 2, \pm 2) \otimes (\pm 2, \pm 2) = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},$$
$$(0,0) \otimes (0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

then

$$Q = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}$$
.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and V
Spaces
Two Dimension

Complex Numbers

Mean and Covariance

```
import numpy as np
   def tensor(u.v):
     return np.array([ [ a*b for b in v] for a in u ])
5
   np.random.seed(1)
   N = 20
   rnd = np.random.random
   dataset = np.array([[rnd(), rnd()] for _ in range(N)])
10
   # mean
11
   m = np.mean(dataset,axis=0)
12
   # center dataset
13
   vectors = dataset - m
14
   # covariance
15
   Q = np.mean([ tensor(v,v) for v in vectors ],axis=0)
16
   print(Q)
```


Data Sets
Introduction
Averages and Vector

Two Dimensions

Mean and Covariance

Mean and Covarianc

tandardized

Note. The covariance matrix as written in (1.4) is the *biased* covariance matrix. If the denominator is instead N-1, the matrix is the *unbiased covariance matrix*.

For datasets with large N, it doesn't matter, since N and N-1 are almost equal.

In numpy, the Python covariance constructor is

```
import numpy as np

np.random.seed(1)

N = 20

rnd = np.random.random

dataset = np.array([[rnd(), rnd()] for _ in range(N)])

# covariance

Q = np.cov(dataset, bias=True, rowvar=False)

print(Q)
```


Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers

Mean and Covariance

Total variance

Definition 1.17 (Total variance)

From $trace(\mathbf{u} \otimes \mathbf{u}) = |\mathbf{u}|^2$, if Q is the covariance matrix then

$$trace(Q) = \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{m}|^2.$$
 (1.5)

We call (1.5) the total variance of the dataset. Thus the total variance equals $MSD(\mathbf{m})$.

```
import numpy as np

np.random.seed(1)

np.random.seed(1)

n = 20

rnd = np.random.random

dataset = np.array([[rnd(), rnd()] for _ in range(N)])

covariance

np.cov(dataset.T,bias=True)

print(Q.trace()) # returns 0.16047818727212101
```


Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

Projections

We would like to project a 2d dataset onto a line. Let ${\bf u}$ be a unit vector (a vector of length one, $|{\bf u}|=1$), and let ${\bf v}_1,{\bf v}_2,\ldots,{\bf v}_N$ be a 2d dataset, assumed for simplicity to be centered. We wish to project this dataset onto the line through ${\bf u}$. This will result in a 1d dataset.

When a vector \mathbf{v} is projected onto the line through \mathbf{u} , the length of the projected vector reads

$$|proj_{\mathbf{u}}\mathbf{v}| = |\mathbf{v}|\cos\theta,$$

where θ is the angle between the vectors \mathbf{v} and \mathbf{u} . Since $|\mathbf{u}|=1$, this length equals the dot product $\mathbf{v} \cdot \mathbf{u}$. Hence the projected vector is

$$proj_{\mathbf{u}}\mathbf{v} = (\mathbf{v} \cdot \mathbf{u})\mathbf{u}.$$

Dr. S. M Moosavi

Data Sets

Averages and Vector Spaces
Two Dimensions
Complex Numbers

Mean and Covariance

Projections

Hence,

Definition 1.18 (Reduced dataset)

The projected dataset of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ onto the line through \mathbf{u} is the dataset

$$(\mathbf{v}_1 \cdot \mathbf{u})\mathbf{u}, (\mathbf{v}_2 \cdot \mathbf{u})\mathbf{u}, \dots (\mathbf{v}_N \cdot \mathbf{u})\mathbf{u}.$$

The projected datasetc is in \mathbb{R}^2 . The reduced dataset is

$$(\mathbf{v}_1 \cdot \mathbf{u}), (\mathbf{v}_2 \cdot \mathbf{u}), \dots (\mathbf{v}_N \cdot \mathbf{u}),$$

which is in \mathbb{R} .

Exercise 1.7

Show that when a 2d dataset is centered then the mean of the reduced dataset is θ .

Exercise 1.8

Prove that if Q is the covariance matrix of a 2d dataset, then the variance of the projected dataset onto the line through the vector \mathbf{u} equals the quadratic function $\mathbf{u} \cdot Q \mathbf{u}$:

$$q = \frac{1}{N} \sum_{k=1}^{N} \mathbf{u} \cdot (\mathbf{v}_k \otimes \mathbf{v}_k) \mathbf{u} = \mathbf{u} \cdot Q \mathbf{u}.$$

Dr. S. M. Moosavi

Introduction
Averages and Ve
Spaces
Two Dimensions

Mean and Covariance

0.1.4

Covariance ellips

Hence,

Definition 1.19 (Covariance ellipse)

The contour of all points ${\bf x}$ satisfying ${\bf x}\cdot Q{\bf x}=1$ is the covariance ellipsoid. In two dimensions d=2, this is the covariance ellipse. The contour of all points ${\bf x}$ satisfying ${\bf x}\cdot Q^{-1}{\bf x}=1$ is the inverse covariance ellipsoid. In two dimensions d=2, this is the inverse covariance ellipse.

In two dimensions d=2, a covariance matrix has the form

$$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

If we write $\mathbf{u}=(x,y)$ for a vector in the plane, the covariance ellipse is

$$\mathbf{u} \cdot Q\mathbf{u} = (x, y) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + 2bxy + cy^2 = 1.$$

The covariance ellipse and inverse covariance ellipses described above are centered at the origin (0,0). When a dataset has mean \mathbf{m} and covariance Q, the ellipses are drawn centered at \mathbf{m} .

In particular, when a=c and b=0, then Q=aI is a multiple of the identity, the inverse covariance ellipse is the circle of radius \sqrt{a} , and the covariance ellipse is the circle of radius $\frac{1}{\sqrt{a}}$.

Mean and Covariance

Example 1.20

Plot the contour ellipses for

$$Q_1 = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 9 & 2 \\ 2 & 4 \end{pmatrix}.$$

Covariance ellipse II

Math for Data

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and
Spaces

Two Dimensions

Complex Number

Mean and Covariance

```
import matplotlib.pyplot as plt
   import numpy as np
3
4
   def ellipse(a, b, c, levels, color):
5
     L. delta = 4...1
6
     x = np.arange(-L,L,delta)
     y = np.arange(-L,L,delta)
8
     X,Y = np.meshgrid(x, y)
q
     plt.contour(X, Y, a*X**2 + 2*b*X*Y + c*Y**2, levels,
                                  colors=color)
10
11
   # Q1 Covariance entities
12
   a, b, c = 9, 0, 4
13
14
   # Inverse Covariance entities
15
   det = a*c - b**2
16
   A, B, C = c/det, -b/det, a/det
17
18
   plt.grid()
19
   ellipse(a, b, c, [20], 'blue')
20
   ellipse(A, B, C, [1], 'red')
21
   plt.show()
```


Mean and Covariance

```
22
23
   # Q2 Covariance entities
24
   a, b, c = 9, 2, 4
25
26
   # Inverse Covariance entities
27
   det = a*c - b**2
28
   A, B, C = c/det, -b/det, a/det
29
30
   plt.grid()
31
   ellipse(a, b, c, [1], 'blue')
32
   ellipse(A, B, C, [1], 'red')
33
   plt.show()
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Complex Numbers

Mean and Covarianc

Standardization

Here, we describe how to standardize datasets in \mathbb{R}^2 . Standardizing the dataset means to center the dataset and to place the x and y features on the same scale.

Consider the dataset

$$\mathbf{x}_1=(x_1,y_1), \mathbf{x}_2=(x_2,y_2),\ldots,\mathbf{x}_N=(x_N,y_N)$$
 with mean $\mathbf{m}=(m_x,m_y).$ Then the covariance matrix is

$$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix},$$

where

$$a = \frac{1}{N} \sum_{k=1}^{N} (x_k - m_x)^2, \quad b = \frac{1}{N} \sum_{k=1}^{N} (x_k - m_x)(y_k - m_y),$$
$$c = \frac{1}{N} \sum_{k=1}^{N} (y_k - m_y)^2.$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

Solutions

Standardization

If a and c differ, the different scales of x's and y's distorts the relation between them, and b may not accurately reflect the correlation. To correct for this, we center and re-scale

$$x_1, x_2, \dots, x_N \to x_1' = \frac{x_1 - m_x}{\sqrt{a}}, x_2' = \frac{x_2 - m_x}{\sqrt{a}}, \dots, x_N' = \frac{x_N - m_x}{\sqrt{a}}$$

and

$$y_1, y_2, \dots, y_N \to y_1' = \frac{y_1 - m_y}{\sqrt{c}}, y_2' = \frac{y_2 - m_y}{\sqrt{c}}, \dots, y_N' = \frac{y_N - m_y}{\sqrt{c}}$$

This results in a new dataset

$$\mathbf{v}_1 = (x_1', y_1'), \mathbf{v}_2 = (x_2', y_2'), \dots, \mathbf{v}_N = (x_N', y_N')$$
 that is centered:

$$\frac{\mathbf{v}_1 + \mathbf{v}_2 + \ldots + \mathbf{v}_N}{N} = 0,$$

with each feature standardized to have unit variance,

$$\frac{1}{N} \sum_{k=1}^{N} x'_k = 1, \quad \frac{1}{N} \sum_{k=1}^{N} y'_k = 1.$$

This is the standardized dataset.

Moosavi

The covariance matrix of the standardized dataset has the form

$$Q' = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$

where

$$\rho = \frac{1}{N} \sum_{k=1}^{N} x_k' y_k' = \frac{b}{\sqrt{ac}} = \frac{\sum_{k=1}^{N} (x_k - m_x)(y_k - m_y)}{\sqrt{\left(\sum_{k=1}^{N} (x_k - m_x)^2\right) \left(\sum_{k=1}^{N} (y_k - m_y)^2\right)}}$$

is the Pearson correlation coefficient of the dataset. The matrix Q' is the correlation matrix, or the standardized covariance matrix.

$$Q = \begin{pmatrix} 9 & 2 \\ 2 & 4 \end{pmatrix} \quad \Rightarrow \quad \rho = \frac{b}{\sqrt{ac}} = \frac{1}{3} \quad \Rightarrow \quad Q' = \begin{pmatrix} 1 & 1/3 \\ 1/3 & 1 \end{pmatrix}.$$

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

Standardization

From the Cauchy-Schwarz inequality, the correlation coefficient ρ is always between -1 and 1. When $\rho=\pm 1$, the dataset samples are perfectly correlated and lie on a line passing through the mean. When $\rho=1$, the line has slope 1, and when $\rho=-1$, the line has slope -1. When $\rho=0$, the dataset samples are completely uncorrelated and are considered two independent one-dimensional datasets (In standardized case).

In Python numpy, the correlation matrix is returned by

```
import numpy as np
np.corrcoef(dataset.T)
```

Here again, we input the transpose of the dataset if our default is vectors as rows

Notice the 1/N cancels in the definition of ρ . Because of this, corrcoef is the same whether we deal with biased or unbiased covariance matrices.

Outline

Math for Data

Dr. S. M

Data Sets
Solutions

Data Sets

Moosavi

Solutions

Chapter 1

Exercise 1.1.

```
from sklearn import datasets
iris = datasets.load_iris(as_frame=True)
dataset = iris["frame"]
```

Exercise 1.2.

- 1 Download file https://s3.amazonaws.com/img-datasets/mnist.npz
- 2 Move mnist.npz to .keras/datasets/ directory
- 3 Load data

Code 2.1: pixels

```
from keras.datasets import mnist
2
   import matplotlib.pyplot as plt
3
4
   (train_X, train_y), (test_X, test_y) = mnist.load_data()
5
6
   pixels = train_X[1]
7
   plt.grid()
9
   for i in range (28):
10
     for j in range(28): plt.scatter(i,j, s = pixels[i,j])
11
   plt.show()
```


Data Sets
Solutions

Chapter 1

Notice that for the code:

we have

Figure 2.1: True pixels' image

To simulate Figure (2.1), we have to change our Code (2.1) to:

Dr. S. M.

Data Sets

Chapter 1

Code 2.2: pixels

```
1
   from keras.datasets import mnist
2
   import matplotlib.pyplot as plt
3
4
   (train_X, train_y), (test_X, test_y) = mnist.load_data()
5
6
   pixels = train_X[1]
7
8
   plt.grid()
   plt.gca().invert_yaxis()
10
   plt.axis('equal')
11
   for i in range (28):
12
     for j in range(28): plt.scatter(i,j, s = pixels[j,i])
13
   plt.show()
```

The result is:

Data Sets
Solutions

Chapter 1

Exercise 1.3. By Pythagoras' theorem for general triangles (Figure 2.2 (a)) we have

$$c^2 = a^2 + b^2 - 2ab\cos(\theta). (2.1)$$

Figure 2.2: Dot product identity

Next, connect Figure 2.2 (a) and Figure 2.2 (b) by noting $a=|\mathbf{v}_2|$ and $b=|\mathbf{v}_1|$ and $c=|\mathbf{v}_2-\mathbf{v}_1|$. Then

$$\begin{aligned} a^2 + b^2 - 2|\mathbf{v_1}||\mathbf{v_2}|\cos\theta &= a^2 + b^2 - 2ab\cos(\theta) = c^2 = |\mathbf{v_2} - \mathbf{v_1}|^2 \\ &= \left(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\right)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 \\ &= x_1^2 + y_1^2 - 2(x_1x_2 + y_1y_2) + x_2^2 + y_2^2 = a^2 + b^2 - 2(x_1x_2 + y_1y_2) \end{aligned}$$

Dr. S. M. Moosavi

D-4- 6

Solutions

Chapter :

Exercise 1.4.

If one of u or v is a zero vector then the result is obvious. Otherwise,

$$\begin{cases} -1 \leq \cos \theta \leq 1 \\ \cos \theta = \frac{u \cdot v}{\|u\|\|v\|} \end{cases} \Rightarrow -1 \leq \frac{u \cdot v}{\|u\|\|v\|} \leq 1 \Rightarrow -\|u\|\|v\| \leq u \cdot v \leq \|u\|\|v\|.$$

Exercise 1.5.

For the homogeneous system (1.1) we saw that if $\det(A)=0$ then (x,y)=(-b,a) was a solution. If $\det(A)\neq 0$ the result comes from:

$$\begin{cases} d(ax + by) = 0 \\ b(cx + dy) = 0 \end{cases} \xrightarrow{subtract} (ad - bc)x = d(ax + by) - b(cx + dy) = 0.$$

and

$$\begin{cases} c(ax+by)=0\\ a(cx+dy)=0 \end{cases} \xrightarrow{subtract} (bc-ad)y = c(ax+by) - a(cx+dy) = 0.$$

For the inhomogeneous system (1.3) use the same trick.

Data Sets

Chapter 1

Exercise 1.6.

By the inner product properties, if $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$ then:

$$|\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$$
$$= (\mathbf{a} \cdot \mathbf{a}) - 2\mathbf{a} \cdot \mathbf{b} + (\mathbf{b} \cdot \mathbf{b})$$
$$= |\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2.$$

Therefore, letting $\mathbf{a} = \mathbf{x}_k - \mathbf{m}$ and $\mathbf{b} = \mathbf{m} - \mathbf{x}$ we have:

$$\begin{split} MSD(\mathbf{x}) &= \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{x}|^2 \\ &= \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k + \mathbf{m} - \mathbf{x}|^2 \\ &= \frac{1}{N} \sum_{k=1}^{N} |(\mathbf{x}_k - \mathbf{m}) - (\mathbf{x} - \mathbf{m})|^2 \\ &= \frac{1}{N} \sum_{k=1}^{N} (|\mathbf{x}_k - \mathbf{m}|^2 - 2(\mathbf{x}_k - \mathbf{m}) \cdot (\mathbf{x} - \mathbf{m}) + |\mathbf{x} - \mathbf{m}|^2) \\ &= \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{m}|^2 - \frac{2}{N} \sum_{k=1}^{N} (\mathbf{x}_k - \mathbf{m}) \cdot (\mathbf{x} - \mathbf{m}) + \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x} - \mathbf{m}|^2. \end{split}$$

Dr. S. M Moosavi

Data Sets

Now the middle term vanishes:

$$\frac{2}{N} \sum_{k=1}^{N} (\mathbf{x}_k - \mathbf{m}) \cdot (\mathbf{x} - \mathbf{m}) = \frac{2}{N} (\mathbf{x} - \mathbf{m}) \cdot \sum_{k=1}^{N} (\mathbf{x}_k - \mathbf{m})$$
$$= \frac{2}{N} (\mathbf{x} - \mathbf{m}) \cdot \left(\sum_{k=1}^{N} \mathbf{x}_k - \sum_{k=1}^{N} \mathbf{m} \right)$$
$$= \frac{2}{N} (\mathbf{x} - \mathbf{m}) \cdot (N\mathbf{m} - N\mathbf{m}) = 0.$$

Hence,

$$MSD(\mathbf{x}) = \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{m}|^2 + \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x} - \mathbf{m}|^2$$
$$= MSD(\mathbf{m}) + |\mathbf{x} - \mathbf{m}|^2$$
$$> MSD(\mathbf{m}).$$