

: 01

Report Version

Report No.: FR961832F

FCC RADIO TEST REPORT

FCC ID : 2AFZZG7G

Equipment : Mobile Phone

Brand Name : Redmi

Model name : M1906G7G

Applicant : Xiaomi Communications Co., Ltd. Standard : FCC Part 15 Subpart E §15.407

The product was received on Jun. 18, 2019 and testing was started from Aug. 14, 2019 and completed on Sep. 24, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Report Template No.: BU5-FR15EWLB4 AC MA Version 2.4

Table of Contents

Report No.: FR961832F

Hi	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 26dB and 99% Occupied Bandwidth Measurement	11
	3.2	Maximum Conducted Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Unwanted Emissions Measurement	17
	3.5	AC Conducted Emission Measurement	22
	3.6	Automatically Discontinue Transmission	24
	3.7	Antenna Requirements	25
4	List	of Measuring Equipment	26
5	Unce	ertainty of Evaluation	28
Αp	pendi	x A. Conducted Test Results	
Αp	pendi	x B. AC Conducted Emission Test Result	

Appendix C. Radiated Spurious Emission

Appendix D. Radiated Spurious Emission Plots

Appendix E. Duty Cycle Plots

TEL: 886-3-327-3456 : 2 of 28 Page Number Issued Date FAX: 886-3-328-4978 : Sep. 24, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 2.4

History of this test report

Report No.: FR961832F

Report No.	Version	Description	Issued Date
FR961832F	01	Initial issue of report	Sep. 24, 2019

TEL: 886-3-327-3456 Page Number : 3 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Summary of Test Result

Report No.: FR961832F

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403 (i)	6dB & 26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407 (a)	Maximum Conducted Output Power	Pass	-
3.3	15.407 (a)	Power Spectral Density Pass		-
3.4	15.407(b)	Unwanted Emissions Pass		Under limit 6.19 dB at 713.850 MHz
3.5	15.207	AC Conducted Emission	Pass	Under limit 11.14 dB at 0.517 MHz
3.6	15.407 (c)	Automatically Discontinue Transmission	Pass	-
3.7	15.203 & 15.407 (a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Dara Chiu

TEL: 886-3-327-3456 Page Number : 4 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Report No.: FR961832F

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.3 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, FM Receiver, NFC, and GNSS

	·				
Produ	Product Specification subjective to this standard				
	WWAN: PIFA Antenna				
	WLAN:				
	<ant. 1="">: PIFA Antenna</ant.>				
	<ant. 2="">: PIFA Antenna</ant.>				
Antonno Typo	Bluetooth:				
Antenna Type	<ant. 1="">: PIFA Antenna</ant.>				
	<ant. 2="">: PIFA Antenna</ant.>				
	GPS / Glonass / BDS / Galileo : PIFA Antenna				
	NFC: Loop Antenna				
	FM: Using earphone as Antenna				

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

1.5 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Sit	e No.	
rest site No.	TH05-HY	CO05-HY	

Report No.: FR961832F

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

TEL: 886-3-327-3456 Page Number : 6 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR961832F

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane for Ant. 1; X Plane for Plane X) were recorded in this report.

Report No.: FR961832F

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5825MHz Band 4	151*	5755	159*	5795
(U-NII-3)	153	5765	161	5805
(5 1111 0)	155#	5775	-	-

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ac VHT40 (Covered by HT40)	MCS0
802.11ac VHT80	MCS0

TEL: 886-3-327-3456 Page Number : 8 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

	Test Cases			
AC Conducted Emission	Mode 1: LTE Band 2 Link + Bluetooth Link + WLAN (5GHz) Link + Video Record (Rear) + Earphone + SD Card + USB Cable 1 (Charging from AC Adapter)			
Remark: For Radi	Remark: For Radiated Test Cases, the tests were performed with USB Cable 1			

Report No.: FR961832F

	Ch. #		Band IV:57	25-5825MHz	
	Cn. #	802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
L	Low	149	149	151	-
М	Middle	157	157	-	155
Н	High	161	161	159	-

2.3 Connection Diagram of Test System

TEL: 886-3-327-3456 Page Number : 9 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	IF6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

Report No.: FR961832F

2.5 EUT Operation Test Setup

The RF test items, make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-3456 Page Number : 10 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth for the band 5.725-5.85GHz

Report No.: FR961832F

- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 26dB and 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : 12 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Report No.: FR961832F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 13 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR961832F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 14 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR961832F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6
 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

TEL: 886-3-327-3456 Page Number : 15 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.3.4 Test Setup

Report No.: FR961832F

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 16 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR961832F

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

TEL: 886-3-327-3456 Page Number : 17 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

Report No.: FR961832F

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 18 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR961832F

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

TEL: 886-3-327-3456 Page Number : 19 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.4.4 Test Setup

For radiated emissions below 30MHz

Report No.: FR961832F

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 20 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

For radiated emissions above 1GHz

Report No.: FR961832F

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix C and D.

3.4.7 Duty Cycle

Please refer to Appendix E.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 21 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR961832F

Eroquency of emission (MUz)	Conducted limit (dBμV)								
Frequency of emission (MHz)	Quasi-peak	Average							
0.15-0.5	66 to 56*	56 to 46*							
0.5-5	56	46							
5-30	60	50							

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

TEL: 886-3-327-3456 Page Number : 22 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.5.4 Test Setup

Report No.: FR961832F

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 23 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR961832F

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 Page Number : 24 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR961832F

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 25 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Jan. 06, 2020	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Dec. 05, 2019	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0800N1D01N- 06	41912&05	30MHz to 1GHz	Feb. 12, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Feb. 11, 2020	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-162 0	1G~18GHz	Oct. 17, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Oct. 16, 2019	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 05, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Dec. 04, 2019	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Dec. 27, 2019	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 00550006	1GHz~18GHz	Jul. 09, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Jul. 08, 2020	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Aug. 22, 2020	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Sep. 03, 2019 ~ Sep. 24, 2019	Oct. 31, 2019	Radiation (03CH15-HY)
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	Apr. 29, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Apr. 28, 2020	Radiation (03CH15-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Sep. 03, 2019 ~ Sep. 24, 2019	N/A	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Sep. 03, 2019 ~ Sep. 24, 2019	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Sep. 03, 2019 ~ Sep. 24, 2019	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k 5)	RK-00045 1	N/A	N/A	Sep. 03, 2019 ~ Sep. 24, 2019	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 15, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Apr. 14, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4 PE	30M-18G	Apr. 15, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Apr. 14, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY802430 /4	30M~18GHz	May 13, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	May 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 13, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN4	1.53G Low Pass	Jul. 04, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Jul. 03, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000 -40ST	SN6	6.75 GHz Highpass	Jul. 02, 2019	Sep. 03, 2019 ~ Sep. 24, 2019	Jul. 01, 2020	Radiation (03CH15-HY)

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : 26 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Instrument Manufacture		Model No. Serial No. Characteristics		Calibration Date	Test Date	Due Date	Remark	
Power Sensor	DARE	RPR3006W	16l00054S NO10	10MHz~6GHz	Dec. 19, 2018	Aug. 14, 2019~ Sep. 24, 2019	Dec. 18, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	Aug. 14, 2019~ Sep. 24, 2019	Nov. 20, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	EM	EMSW18	SW107090 3	N/A	Dec. 19, 2018	Aug. 14, 2019~ Sep. 24, 2019	Dec. 18, 2019	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 13, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 12, 2018	Sep. 13, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Sep. 13, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	Sep. 13, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 13, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Sep. 13, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde &		100851	N/A	Dec. 31, 2018	Sep. 13, 2019	Dec. 30, 2019	Conduction (CO05-HY)

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : 27 of 28
FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	

Report No.: FR961832F

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.00
of 95% (U = 2Uc(y))	5.20

TEL: 886-3-327-3456 Page Number : 28 of 28 FAX: 886-3-328-4978 Issued Date : Sep. 24, 2019

Report Number : FR961832F

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Nick Yu/Shiming Liu/Derek Hsu	Temperature:	21~25	°C
Test Date:	2019/8/14~2019/9/24	Relative Humidity:	51~54	%

Report Number : FR961832F

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

	Band IV												
Mod.	d. Data Rate N		CH.	Freq. (MHz)	Band	9% lwidth Hz)	Band	dB width Hz)	_	dB width Hz)	6 dB Bandwidth Min. Limit (MHz)	Pass/Fail	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	(1411 12)		
11a	6Mbps	1	149	5745	-	21.30	-	42.85	-	15.10	0.5	Pass	
11a	6Mbps	1	157	5785	-	20.10	-	46.55	-	15.10	0.5	Pass	
11a	6Mbps	1	161	5805	-	17.15	-	38.15	-	15.00	0.5	Pass	
HT20	MCS0	1	149	5745	-	21.30	-	46.10	-	15.10	0.5	Pass	
HT20	MCS0	1	157	5785	-	21.10	-	43.45	-	15.00	0.5	Pass	
HT20	MCS0	1	161	5805	-	18.20	-	42.65	-	15.05	0.5	Pass	
HT40	MCS0	1	151	5755	-	36.80	-	80.96	-	35.07	0.5	Pass	
HT40	MCS0	1	159	5795	-	37.20	-	80.80	-	35.10	0.5	Pass	
VHT80	MCS0	1	155	5775	-	76.80	-	142.08	-	75.26	0.5	Pass	

Report Number: FR961832F

TEST RESULTS DATA Average Power Table

	Band IV													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm) Ant 1 Ant 2 SUM		FCC Conducted Power Limit (dBm)		Conducted Power Limit		Conducted DG Power Limit (dBi)		Pass/Fail	
							Ant 1	Ant 2	Ant 1	Ant 2				
11a	6Mbps	1	149	5745	13.00	13.10		30.00	30.00	-1.88	0.06	Pass		
11a	6Mbps	1	157	5785	12.50	12.70		30.00	30.00	-1.88	0.06	Pass		
11a	6Mbps	1	161	5805	12.60	12.80		30.00	30.00	-1.88	0.06	Pass		
HT20	MCS0	1	149	5745	12.90	13.00		30.00	30.00	-1.88	0.06	Pass		
HT20	MCS0	1	157	5785	12.60	12.80		30.00	30.00	-1.88	0.06	Pass		
HT20	MCS0	1	161	5805	12.20	12.60		30.00	30.00	-1.88	0.06	Pass		
HT40	MCS0	1	151	5755	11.50	12.00		30.00	30.00	-1.88	0.06	Pass		
HT40	MCS0	1	159	5795	11.60	11.70		30.00	30.00	-1.88	0.06	Pass		
VHT20	MCS0	1	149	5745	12.80	12.90		30.00	30.00	-1.88	0.06	Pass		
VHT20	MCS0	1	157	5785	12.50	12.70		30.00	30.00	-1.88	0.06	Pass		
VHT20	MCS0	1	161	5805	12.10	12.50		30.00	30.00	-1.88	0.06	Pass		
VHT40	MCS0	1	151	5755	11.40	11.90		30.00	30.00	-1.88	0.06	Pass		
VHT40	MCS0	1	159	5795	11.50	11.60		30.00	30.00	-1.88	0.06	Pass		
VHT80	MCS0	1	155	5775	10.80	10.90		30.00	30.00	-1.88	0.06	Pass		

Report Number : FR961832F

TEST RESULTS DATA Power Spectral Density

	Band IV															
Mod.	Mod. Data Rate	NTX	CH.	Freq. (MHz)	Fac	uty ctor B)	10log (500kHz /RBW) Factor (dB)		Average Power Density (dBm/500kHz)			Average PSD Limit (dBm/500kHz)		DG (dBi)		Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745	0.17	0.14	-	2.22	-	4.35		-	30.00	-1.88	0.06	Pass
11a	6Mbps	1	157	5785	0.17	0.14	-	2.22	-	3.94		-	30.00	-1.88	0.06	Pass
11a	6Mbps	1	161	5805	0.17	0.14	-	2.22	-	3.37		-	30.00	-1.88	0.06	Pass
HT20	MCS0	1	149	5745	0.18	0.15	-	2.22	-	4.44		-	30.00	-1.88	0.06	Pass
HT20	MCS0	1	157	5785	0.18	0.15	-	2.22	-	3.76		-	30.00	-1.88	0.06	Pass
HT20	MCS0	1	161	5805	0.18	0.15	-	2.22	-	3.30		-	30.00	-1.88	0.06	Pass
HT40	MCS0	1	151	5755	0.31	0.31	-	2.22	-	-0.54		-	30.00	-1.88	0.06	Pass
HT40	MCS0	1	159	5795	0.31	0.31	-	2.22	-	-0.54		-	30.00	-1.88	0.06	Pass
VHT80	MCS0	1	155	5775	0.55	0.58	-	2.22	-	-3.77		-	30.00	-1.88	0.06	Pass

Note: PSD Sum = Max PSD(Ant. 1, Ant. 2) + 10 log (n)

Appendix B. AC Conducted Emission Test Results

Toot Engineer	limmy Chang	Temperature :	24~26 °ℂ
Test Engineer :	Jiriiriy Criang	Relative Humidity :	52~56%

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : B1 of B

FAX: 886-3-328-4978

EUT Information

 Report NO :
 961832

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.172500		28.99	54.84	25.85	L1	OFF	19.4
0.172500	39.04	-	64.84	25.80	L1	OFF	19.4
0.492000		30.07	46.13	16.06	L1	OFF	19.4
0.492000	33.42	-	56.13	22.71	L1	OFF	19.4
0.516750		32.08	46.00	13.92	L1	OFF	19.4
0.516750	36.16		56.00	19.84	L1	OFF	19.4
2.271750		24.04	46.00	21.96	L1	OFF	19.5
2.271750	25.74		56.00	30.26	L1	OFF	19.5
4.035750		24.98	46.00	21.02	L1	OFF	19.6
4.035750	26.48	-	56.00	29.52	L1	OFF	19.6
16.755000		24.19	50.00	25.81	L1	OFF	20.1
16.755000	25.27		60.00	34.73	L1	OFF	20.1

EUT Information

Report NO: 961832
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.172500		28.93	54.84	25.91	N	OFF	19.5
0.172500	39.60		64.84	25.24	N	OFF	19.5
0.489750		29.38	46.17	16.79	N	OFF	19.5
0.489750	35.82	-	56.17	20.35	N	OFF	19.5
1.477500		24.00	46.00	22.00	N	OFF	19.5
1.477500	26.26		56.00	29.74	N	OFF	19.5
4.710750		24.90	46.00	21.10	N	OFF	19.7
4.710750	26.09	-	56.00	29.91	N	OFF	19.7
11.757750		24.77	50.00	25.23	N	OFF	20.0
11.757750	25.80	-	60.00	34.20	N	OFF	20.0
23.858250		25.04	50.00	24.96	N	OFF	20.4
23.858250	26.06		60.00	33.94	N	OFF	20.4

Appendix C. Radiated Spurious Emission

Test Engineer :		Temperature :	23~26°C
rest Engineer .	Leo Liu, Karl Hou, and BigShow Wang	Relative Humidity :	50~65%

Report No.: FR961832F

Band 4 - 5725~5825MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

1 (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/M) (dB/m) (dB/	VIFI N	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
5695.6 52.33 -49.63 101.96 41.22 31.8 9.86 30.55 204 288 P	1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
5716.6 51.38 -58.47 109.85 40.21 31.87 9.86 30.56 204 288 P			5627.2	50.84	-17.36	68.2	39.73	31.77	9.85	30.51	204	288	Р	Н
5724.6 50.49 -70.8 121.29 39.27 31.93 9.86 30.57 204 288 P 5785 106.71 -			5695.6	52.33	-49.63	101.96	41.22	31.8	9.86	30.55	204	288	Р	Н
* 5785			5716.6	51.38	-58.47	109.85	40.21	31.87	9.86	30.56	204	288	Р	Н
* 5785 98.9 87.51 32.13 9.87 30.61 204 288 A 5853.4 50.95 -63.5 114.45 39.46 32.2 9.94 30.65 204 288 P 5857 51.19 -59.05 110.24 39.67 32.23 9.94 30.65 204 288 P 5894 51.09 -40.01 91.1 39.47 32.3 9.99 30.67 204 288 P 5927.2 50.79 -17.41 68.2 39.08 32.37 10.03 30.69 204 288 P 802.11n HT20 CH 157 5608.6 51.95 -16.25 68.2 40.8 31.8 9.85 30.5 205 341 P 5785MHz 5662.2 51.23 -26.03 77.26 40.2 31.7 9.86 30.53 205 341 P 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 89.03 32.13 9.87 30.61 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P			5724.6	50.49	-70.8	121.29	39.27	31.93	9.86	30.57	204	288	Р	Н
Sign		*	5785	106.71	-	-	95.32	32.13	9.87	30.61	204	288	Р	Н
S857 S1.19 -59.05 110.24 39.67 32.23 9.94 30.65 204 288 P		*	5785	98.9	-	-	87.51	32.13	9.87	30.61	204	288	Α	Н
S894 S1.09 -40.01 91.1 39.47 32.3 9.99 30.67 204 288 P			5853.4	50.95	-63.5	114.45	39.46	32.2	9.94	30.65	204	288	Р	Н
802.11n HT20 CH 157 5608.6 51.95 -16.25 68.2 40.8 31.8 9.85 30.5 205 341 P 5785MHz 5662.2 51.23 -26.03 77.26 40.2 31.7 9.86 30.53 205 341 P 5710 52.08 -55.92 108 40.91 31.87 9.86 30.56 205 341 P * 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 <td< td=""><td></td><td></td><td>5857</td><td>51.19</td><td>-59.05</td><td>110.24</td><td>39.67</td><td>32.23</td><td>9.94</td><td>30.65</td><td>204</td><td>288</td><td>Р</td><td>Н</td></td<>			5857	51.19	-59.05	110.24	39.67	32.23	9.94	30.65	204	288	Р	Н
802.11n HT20 CH 157 5608.6 51.95 -16.25 68.2 40.8 31.8 9.85 30.5 205 341 P 5785MHz 5662.2 51.23 -26.03 77.26 40.2 31.7 9.86 30.53 205 341 P 5710 52.08 -55.92 108 40.91 31.87 9.86 30.56 205 341 P 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27			5894	51.09	-40.01	91.1	39.47	32.3	9.99	30.67	204	288	Р	Н
HT20 CH 157			5927.2	50.79	-17.41	68.2	39.08	32.37	10.03	30.69	204	288	Р	Н
CH 157 5608.6 51.95 -16.25 68.2 40.8 31.8 9.85 30.5 205 341 P 5785MHz 5662.2 51.23 -26.03 77.26 40.2 31.7 9.86 30.53 205 341 P 5710 52.08 -55.92 108 40.91 31.87 9.86 30.56 205 341 P 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28	2.11n													Н
5785MHz 5662.2 51.23 -26.03 77.26 40.2 31.7 9.86 30.53 205 341 P 5710 52.08 -55.92 108 40.91 31.87 9.86 30.56 205 341 P 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P	IT20													Н
5710 52.08 -55.92 108 40.91 31.87 9.86 30.56 205 341 P 5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P	H 157		5608.6	51.95	-16.25	68.2	40.8	31.8	9.85	30.5	205	341	Р	V
5723 50.42 -67.22 117.64 39.2 31.93 9.86 30.57 205 341 P * 5785 108.04 - - 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 - - 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P	85MHz		5662.2	51.23	-26.03	77.26	40.2	31.7	9.86	30.53	205	341	Р	V
* 5785 108.04 96.65 32.13 9.87 30.61 205 341 P * 5785 100.42 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P			5710	52.08	-55.92	108	40.91	31.87	9.86	30.56	205	341	Р	V
* 5785 100.42 89.03 32.13 9.87 30.61 205 341 A 5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P			5723	50.42	-67.22	117.64	39.2	31.93	9.86	30.57	205	341	Р	V
5850.2 51.73 -70.01 121.74 40.25 32.2 9.93 30.65 205 341 P 5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P		*	5785	108.04	-	-	96.65	32.13	9.87	30.61	205	341	Р	V
5874.6 51.85 -53.46 105.31 40.28 32.27 9.96 30.66 205 341 P		*	5785	100.42	-	-	89.03	32.13	9.87	30.61	205	341	Α	V
			5850.2	51.73	-70.01	121.74	40.25	32.2	9.93	30.65	205	341	Р	V
5877.4 51.46 -51.96 103.42 39.88 32.27 9.97 30.66 205 341 P			5874.6	51.85	-53.46	105.31	40.28	32.27	9.96	30.66	205	341	Р	V
			5877.4	51.46	-51.96	103.42	39.88	32.27	9.97	30.66	205	341	Р	V
5931.4 50.83 -17.37 68.2 39.13 32.37 10.03 30.7 205 341 P			5931.4	50.83	-17.37	68.2	39.13	32.37	10.03	30.7	205	341	Р	V
														V
														V

TEL: 886-3-327-3456 Page Number : C1 of C19

FAX: 886-3-328-4978

Report No.: FR961832F

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11570	48.41	-25.59	74	58.24	40	14.56	64.39	100	0	Р	Н
		17355	51.48	-16.72	68.2	52.03	41.4	18.72	60.67	100	0	Р	Н
802.11n													Н
HT20													Н
CH 157		11570	49.63	-24.37	74	59.46	40	14.56	64.39	100	0	Р	٧
5785MHz		17355	52.8	-15.4	68.2	53.35	41.4	18.72	60.67	100	0	Р	V
													٧
													٧
Remark		other spurious											

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C2 of C19

Emission below 1GHz

Report No.: FR961832F

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		162.89	26.96	-16.54	43.5	41.46	16.21	1.79	32.5	-	-	Р	Н
		192.96	30.52	-12.98	43.5	46.28	14.8	1.93	32.49	-	-	Р	Н
		219.15	31.21	-14.79	46	46.46	15.23	2.02	32.5	-	-	Р	Н
		336.52	35.05	-10.95	46	45.18	20.03	2.38	32.54	1	-	Р	Н
		714.82	38.05	-7.95	46	40.07	26.89	3.46	32.37	100	0	Р	Н
		905.91	37.11	-8.89	46	35.59	29.14	3.98	31.6	1	-	Р	Н
													Н
													Н
													Н
													Н
5GHz													Н
802.11n													Н
HT20		45.52	30.97	-9.03	40	45.96	16.74	0.87	32.6	-	-	Р	V
LF		106.63	25.13	-18.37	43.5	39.57	16.7	1.37	32.51	-	-	Р	V
		192.96	25.3	-18.2	43.5	41.06	14.8	1.93	32.49	-	-	Р	V
		296.75	30.6	-15.4	46	41.63	19.24	2.27	32.54	-	-	Р	V
		716.76	35.71	-10.29	46	37.61	27.01	3.46	32.37	-	-	Р	V
		905.91	37.43	-8.57	46	35.91	29.14	3.98	31.6	100	0	Р	V
													V
													V
													V
													V
													V
													V

TEL: 886-3-327-3456 Page Number : C3 of C19

Report No.: FR961832F

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5630.6	50.66	-17.54	68.2	39.55	31.77	9.85	30.51	100	230	Р	Н
		5695	52.96	-48.55	101.51	41.85	31.8	9.86	30.55	100	230	Р	Н
		5719.2	63.45	-47.13	110.58	52.23	31.93	9.86	30.57	100	230	Р	Н
		5724.8	70.49	-51.25	121.74	59.27	31.93	9.86	30.57	100	230	Р	Н
	*	5745	104.59	-	-	93.31	32	9.86	30.58	100	230	Р	Н
	*	5745	97.09	-	-	85.81	32	9.86	30.58	100	230	Α	Н
													Н
802.11a													Н
CH 149 5745MHz		5608.6	50.33	-17.87	68.2	39.18	31.8	9.85	30.5	400	304	Р	V
3745WITIZ		5689.8	52.11	-45.57	97.68	41	31.8	9.86	30.55	400	304	Р	V
		5717.2	58.34	-51.68	110.02	47.17	31.87	9.86	30.56	400	304	Р	V
		5725	69.55	-52.65	122.2	58.33	31.93	9.86	30.57	400	304	Р	V
	*	5745	103.01	-	-	91.73	32	9.86	30.58	400	304	Р	V
	*	5745	95.39	-	-	84.11	32	9.86	30.58	400	304	Α	V
													V
													V

TEL: 886-3-327-3456 Page Number : C4 of C19

FCC RADIO TEST REPORT Report No. : FR961832F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5623.6	51.28	-16.92	68.2	40.17	31.77	9.85	30.51	100	230	Р	Н
		5667.6	50.42	-30.84	81.26	39.34	31.75	9.86	30.53	100	230	Р	Н
		5714.4	51.67	-57.56	109.23	40.5	31.87	9.86	30.56	100	230	Р	Н
		5724	50.89	-69.03	119.92	39.67	31.93	9.86	30.57	100	230	Р	Н
	*	5785	104.12	-	-	92.73	32.13	9.87	30.61	100	230	Р	Н
	*	5785	96.78	-	-	85.39	32.13	9.87	30.61	100	230	Α	Н
		5850.8	51.69	-68.69	120.38	40.21	32.2	9.93	30.65	100	230	Р	Н
		5873.8	50.29	-55.25	105.54	38.72	32.27	9.96	30.66	100	230	Р	Н
		5878.6	51.64	-50.89	102.53	40.06	32.27	9.97	30.66	100	230	Р	Н
		5941.2	52.09	-16.11	68.2	40.34	32.4	10.05	30.7	100	230	Р	Н
													Н
802.11a													Н
CH 157		5601.4	51.5	-16.7	68.2	40.34	31.8	9.85	30.49	305	306	Р	V
5785MHz		5692.6	50.79	-48.95	99.74	39.68	31.8	9.86	30.55	305	306	Р	V
		5704	50.82	-55.5	106.32	39.65	31.87	9.86	30.56	305	306	Р	V
		5724.4	50.29	-70.54	120.83	39.07	31.93	9.86	30.57	305	306	Р	٧
	*	5785	102.7	-	-	91.31	32.13	9.87	30.61	305	306	Р	V
	*	5785	95	-	-	83.61	32.13	9.87	30.61	305	306	Α	V
		5855	49.75	-61.05	110.8	38.23	32.23	9.94	30.65	305	306	Р	V
		5862.4	50.22	-58.51	108.73	38.69	32.23	9.95	30.65	305	306	Р	V
		5898.8	51	-36.55	87.55	39.39	32.3	9.99	30.68	305	306	Р	V
		5937.6	50.87	-17.33	68.2	39.16	32.37	10.04	30.7	305	306	Р	V
													V
													V

TEL: 886-3-327-3456 Page Number : C5 of C19

WIFI Preamp Note Frequency Over Limit Read Antenna Path Ant **Table** Peak Pol. Level Limit Line **Factor** Factor Pos Pos Ant. Level Loss Avg. (dBµV/m) (dB) (dBµV/m) (dB/m) (deg) (P/A) (H/V) 2 (MHz) (dB_µV) (dB) (dB) (cm) * 5805 105.34 30.62 100 93.88 32.2 9.88 138 Η 5805 97.8 86.34 32.2 9.88 30.62 100 Н --138 Α 5851 51.03 -68.89 119.92 39.55 32.2 9.93 30.65 100 138 Ρ Н 5860.6 109.23 32.23 9.95 30.65 100 Ρ Н 51.24 -57.99 39.71 138 5881.8 51.19 -48.96 100.15 39.62 32.27 9.97 30.67 100 138 Ρ Н Р 5927.8 50.04 -18.16 68.2 38.34 32.37 10.03 30.7 100 138 Н Н Н 802.11a **CH 161** 5805 104.27 92.81 32.2 9.88 30.62 100 31 V 5805MHz ٧ 5805 96.28 84.82 32.2 9.88 30.62 100 31 Α -_ 32.23 100 Р ٧ 5855 52.33 -58.47 110.8 40.81 9.94 30.65 31 Р ٧ 5855 52.33 -58.47 110.8 40.81 32.23 9.94 30.65 100 31 5886.6 50.9 -45.69 96.59 39.32 32.27 9.98 30.67 100 31 Ρ V Р ٧ 5933.8 50.15 -18.05 68.2 38.44 32.37 10.04 30.7 100 31 ٧ ٧ ٧ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number: C6 of C19

Report No.: FR961832F

WIFI 802.11a (Harmonic @ 3m)

(MHz) 11490 17235 11490	(dBµV/m) 49.96 49.85	Limit (dB) -24.04 -18.35	Line (dBµV/m) 74 68.2	59.7	Factor (dB/m) 40.17	Loss (dB)	Factor (dB) 64.41	Pos (cm)		Avg. (P/A)	(H/V
11490 17235 11490	49.96	-24.04	74	59.7							(H/V
17235					40.17	14.5	6/ /1	400			1
11490	49.85	-18.35	68.2				04.41	100	0	Р	Н
				51.46	40.7	18.51	60.82	100	0	Р	Н
											Н
											Н
	49.4	-24.6	74	59.14	40.17	14.5	64.41	100	0	Р	V
17235	49.52	-18.68	68.2	51.13	40.7	18.51	60.82	100	0	Р	V
											V
											V
11570	48.95	-25.05	74	58.78	40	14.56	64.39	100	0	Р	Н
17355	52.2	-16	68.2	52.75	41.4	18.72	60.67	100	0	Р	Н
											Н
											Н
11570	49.78	-24.22	74	59.61	40	14.56	64.39	100	0	Р	V
17355	52.34	-15.86	68.2	52.89	41.4	18.72	60.67	100	0	Р	V
											V
											V
11610	47.89	-26.11	74	54.16	39.9	14.06	60.76	100	0	Р	Н
17415	51.13	-17.07	68.2	46.56	42.03	18.39	56.27	100	0	Р	Н
											Н
											Н
11610	47.96	-26.04	74	54.23	39.9	14.06	60.76	100	0	Р	V
17415	50.27	-17.93	68.2	45.7	42.03	18.39	56.27	100	0	Р	V
											V
											V
	17355 11570 17355 11610 17415	17355 52.2 11570 49.78 17355 52.34 11610 47.89 17415 51.13	17355 52.2 -16 11570 49.78 -24.22 17355 52.34 -15.86 11610 47.89 -26.11 17415 51.13 -17.07	17355 52.2 -16 68.2 11570 49.78 -24.22 74 17355 52.34 -15.86 68.2 11610 47.89 -26.11 74 17415 51.13 -17.07 68.2 11610 47.96 -26.04 74	17355 52.2 -16 68.2 52.75 11570 49.78 -24.22 74 59.61 17355 52.34 -15.86 68.2 52.89 11610 47.89 -26.11 74 54.16 17415 51.13 -17.07 68.2 46.56 11610 47.96 -26.04 74 54.23	17355 52.2 -16 68.2 52.75 41.4 11570 49.78 -24.22 74 59.61 40 17355 52.34 -15.86 68.2 52.89 41.4 11610 47.89 -26.11 74 54.16 39.9 17415 51.13 -17.07 68.2 46.56 42.03 11610 47.96 -26.04 74 54.23 39.9	17355 52.2 -16 68.2 52.75 41.4 18.72 11570 49.78 -24.22 74 59.61 40 14.56 17355 52.34 -15.86 68.2 52.89 41.4 18.72 11610 47.89 -26.11 74 54.16 39.9 14.06 17415 51.13 -17.07 68.2 46.56 42.03 18.39 11610 47.96 -26.04 74 54.23 39.9 14.06	17355 52.2 -16 68.2 52.75 41.4 18.72 60.67 11570 49.78 -24.22 74 59.61 40 14.56 64.39 17355 52.34 -15.86 68.2 52.89 41.4 18.72 60.67 11610 47.89 -26.11 74 54.16 39.9 14.06 60.76 17415 51.13 -17.07 68.2 46.56 42.03 18.39 56.27 11610 47.96 -26.04 74 54.23 39.9 14.06 60.76	17355 52.2 -16 68.2 52.75 41.4 18.72 60.67 100 11570 49.78 -24.22 74 59.61 40 14.56 64.39 100 17355 52.34 -15.86 68.2 52.89 41.4 18.72 60.67 100 11610 47.89 -26.11 74 54.16 39.9 14.06 60.76 100 17415 51.13 -17.07 68.2 46.56 42.03 18.39 56.27 100 11610 47.96 -26.04 74 54.23 39.9 14.06 60.76 100	17355 52.2 -16 68.2 52.75 41.4 18.72 60.67 100 0 11570 49.78 -24.22 74 59.61 40 14.56 64.39 100 0 17355 52.34 -15.86 68.2 52.89 41.4 18.72 60.67 100 0 11610 47.89 -26.11 74 54.16 39.9 14.06 60.76 100 0 17415 51.13 -17.07 68.2 46.56 42.03 18.39 56.27 100 0 11610 47.96 -26.04 74 54.23 39.9 14.06 60.76 100 0	17355 52.2 -16 68.2 52.75 41.4 18.72 60.67 100 0 P 11570 49.78 -24.22 74 59.61 40 14.56 64.39 100 0 P 17355 52.34 -15.86 68.2 52.89 41.4 18.72 60.67 100 0 P 11610 47.89 -26.11 74 54.16 39.9 14.06 60.76 100 0 P 17415 51.13 -17.07 68.2 46.56 42.03 18.39 56.27 100 0 P

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C7 of C19

Report No.: FR961832F

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5627.4	50.52	-17.68	68.2	39.41	31.77	9.85	30.51	100	228	Р	Н
		5697.4	54.62	-48.66	103.28	43.51	31.8	9.86	30.55	100	228	Р	Н
		5719.2	63.8	-46.78	110.58	52.58	31.93	9.86	30.57	100	228	Р	Н
		5725	69.85	-52.35	122.2	58.63	31.93	9.86	30.57	100	228	Р	Н
	*	5745	104.47	-	-	93.19	32	9.86	30.58	100	228	Р	Н
	*	5745	96.92	-	-	85.64	32	9.86	30.58	100	228	Α	Н
802.11n													Н
HT20													Н
CH 149		5603.4	50.88	-17.32	68.2	39.72	31.8	9.85	30.49	380	302	Р	V
5745MHz		5687	51.58	-44.03	95.61	40.47	31.8	9.86	30.55	380	302	Р	V
		5720	61.41	-49.39	110.8	50.19	31.93	9.86	30.57	380	302	Р	V
		5724.2	68.98	-51.4	120.38	57.76	31.93	9.86	30.57	380	302	Р	V
	*	5745	102.75	-	-	91.47	32	9.86	30.58	380	302	Р	V
	*	5745	95.34	-	-	84.06	32	9.86	30.58	380	302	Α	V
													V
													V

TEL: 886-3-327-3456 Page Number: C8 of C19

WIFI Limit Antenna Table Peak Pol. Note Frequency Level Over Read Path Preamp Ant Ant. Limit Line Level **Factor** Loss **Factor** Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) 2 (MHz) (dB) (dBµV/m) (dB_µV) (dB/m) (dB) (dB) (cm) 50.74 5608.4 -17.4668.2 39.59 31.8 9.85 30.5 100 230 Н 51.92 40.89 31.7 5663.4 -26.23 78.15 9.86 30.53 100 230 Ρ Н 5709.6 51.07 -56.82 107.89 39.9 31.87 9.86 30.56 100 230 Ρ Н Ρ 5720.8 50.49 -62.13 112.62 39.27 31.93 9.86 30.57 100 230 Н 5785 104.78 30.61 100 230 Ρ Н 93.39 32.13 9.87 * 5785 96.56 85.17 32.13 9.87 30.61 100 230 Α Н 5854.6 50.11 -61.6 111.71 38.59 32.23 9.94 30.65 100 230 Ρ Н 5869 50.38 -56.5 106.88 38.85 32.23 9.96 30.66 100 230 Ρ Н 5896.8 50.68 -38.35 89.03 39.07 32.3 9.99 30.68 100 230 Н Р 32.37 100 230 Н 5933.6 50.74 -17.46 68.2 39.03 10.04 30.7 Η 802.11n Н **HT20** CH 157 -17.61 31.77 Ρ V 5620 50.59 68.2 39.47 9.85 30.5 394 328 5785MHz V 5681.2 49.75 -41.58 91.33 38.68 31.75 9.86 30.54 394 328 Ρ 5710.8 50.83 -57.4 108.23 39.66 31.87 9.86 30.56 394 328 Ρ V 5723.4 49.33 -69.22 118.55 38.11 31.93 9.86 30.57 394 328 Ρ ٧ 102.04 328 Ρ V 5785 90.65 32.13 9.87 30.61 394 * 94.09 32.13 30.61 V 5785 82.7 9.87 394 328 Α 5854.4 49.66 -62.51 112.17 38.14 32.23 9.94 30.65 394 328 Ρ ٧ Ρ ٧ 5870.6 50.04 -56.39 106.43 38.47 32.27 9.96 30.66 394 328 Ρ ٧ 5875.2 51.34 -53.71 105.05 39.77 32.27 9.96 30.66 394 328 68.2 32.4 394 328 Р ٧ 5938.8 50.97 -17.23 39.23 10.04 30.7 V ٧

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : C9 of C19

WIFI Level Preamp Note Frequency Over Limit Read Antenna Path Ant Table Peak Pol. Limit Line **Factor** Factor Pos Pos Ant. Level Loss Avg. (MHz) (dBµV/m) (dB) (dBµV/m) (dB_µV) (dB/m) (deg) (P/A) (H/V) 2 (dB) (dB) cm) * 5805 104.79 32.2 30.62 110 93.33 9.88 139 Η * 5805 97.12 85.66 32.2 9.88 30.62 110 139 Н -Α 5852.4 53.65 -63.08 116.73 42.16 32.2 9.94 30.65 110 139 Ρ Н 5855.4 54.44 32.23 9.94 30.65 110 139 Н -56.25 110.69 42.92 Ρ 5880.4 51.76 -49.43 101.19 40.19 32.27 9.97 30.67 110 139 Н Р 5938.4 51.04 -17.16 68.2 39.33 32.37 10.04 30.7 110 139 Н Н 802.11n Н **HT20 CH 161** V 5805 103.68 92.22 32.2 9.88 30.62 100 30 5805MHz ٧ 5805 32.2 9.88 30.62 100 30 Α 96.46 --85 5851.6 32.2 30.65 100 30 Р ٧ 52.14 -66.41 118.55 40.66 9.93 Р ٧ 5863.2 51.05 -57.45 108.5 39.53 32.23 9.95 30.66 100 30 5897.4 50.77 -37.82 88.59 39.16 32.3 9.99 30.68 100 30 Ρ V Р ٧ -17.43 32.37 5927.4 50.77 68.2 39.06 10.03 30.69 100 30 ٧ ٧ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : C10 of C19

Report No.: FR961832F

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/\
		11490	48.91	-25.09	74	58.65	40.17	14.5	64.41	100	0	Р	Н
		17235	49.79	-18.41	68.2	51.4	40.7	18.51	60.82	100	0	Р	Н
802.11n													Н
HT20													Н
CH 149		11490	49.16	-24.84	74	58.9	40.17	14.5	64.41	100	0	Р	V
5745MHz		17235	50.49	-17.71	68.2	52.1	40.7	18.51	60.82	100	0	Р	V
													V
													V
		11570	49.95	-24.05	74	59.78	40	14.56	64.39	100	0	Р	Н
		17355	52.53	-15.67	68.2	53.08	41.4	18.72	60.67	100	0	Р	Н
802.11n													Н
HT20													Н
CH 157		11570	49.61	-24.39	74	59.44	40	14.56	64.39	100	0	Р	V
5785MHz		17355	52.97	-15.23	68.2	53.52	41.4	18.72	60.67	100	0	Р	V
													V
													V
		11610	47.87	-26.13	74	54.14	39.9	14.06	60.76	100	0	Р	Н
		17415	49.54	-18.66	68.2	44.97	42.03	18.39	56.27	100	0	Р	Н
802.11n													Н
HT20													Н
CH 161		11610	47.78	-26.22	74	54.05	39.9	14.06	60.76	100	0	Р	V
5805MHz		17415	49.11	-19.09	68.2	44.54	42.03	18.39	56.27	100	0	Р	V
													V
													V

Remark

- 2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 : C11 of C19 Page Number

Report No.: FR961832F

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5644.4	51.3	-16.9	68.2	40.24	31.73	9.85	30.52	100	231	Р	Н
		5697	60.63	-42.36	102.99	49.52	31.8	9.86	30.55	100	231	Р	Н
		5719.8	70.42	-40.32	110.74	59.2	31.93	9.86	30.57	100	231	Р	Н
		5723	73.41	-44.23	117.64	62.19	31.93	9.86	30.57	100	231	Р	Н
	*	5755	100.87	-	-	89.52	32.07	9.87	30.59	100	231	Р	Н
	*	5755	93.33	-	-	81.98	32.07	9.87	30.59	100	231	Α	Н
		5853.2	50.91	-63.99	114.9	39.42	32.2	9.94	30.65	100	231	Р	Н
		5868	50.72	-56.44	107.16	39.2	32.23	9.95	30.66	100	231	Р	Н
		5880.8	50.62	-50.27	100.89	39.05	32.27	9.97	30.67	100	231	Р	Н
		5940.4	51.76	-16.44	68.2	40.01	32.4	10.05	30.7	100	231	Р	Н
802.11n													Н
HT40													Н
CH 151		5637.4	50.94	-17.26	68.2	39.88	31.73	9.85	30.52	400	304	Р	V
5755MHz		5699.2	53.49	-51.12	104.61	42.38	31.8	9.86	30.55	400	304	Р	V
		5719.8	67.26	-43.48	110.74	56.04	31.93	9.86	30.57	400	304	Р	V
		5722.4	69.55	-46.72	116.27	58.33	31.93	9.86	30.57	400	304	Р	V
	*	5755	98.77	-	-	87.42	32.07	9.87	30.59	400	304	Р	V
	*	5755	91.64	-	-	80.29	32.07	9.87	30.59	400	304	Α	٧
		5851.6	51.01	-67.54	118.55	39.53	32.2	9.93	30.65	400	304	Р	V
		5869.2	51.2	-55.62	106.82	39.67	32.23	9.96	30.66	400	304	Р	V
		5878	51.37	-51.6	102.97	39.79	32.27	9.97	30.66	400	304	Р	V
		5938.8	50.47	-17.73	68.2	38.73	32.4	10.04	30.7	400	304	Р	V
													V
													V

TEL: 886-3-327-3456 Page Number : C12 of C19

WIFI Limit Antenna Table Peak Pol. Note Frequency Level Over Read Path Preamp Ant Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) 2 (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) 5615 50.4 -17.8 68.2 39.25 31.8 9.85 30.5 100 229 Н 51.92 104.02 40.81 Ρ 5698.4 -52.1 31.8 9.86 30.55 100 229 Н 5714.8 51.55 -57.8 109.35 40.38 31.87 9.86 30.56 100 229 Ρ Н 100 Ρ 5721.8 51.67 -63.23114.9 40.45 31.93 9.86 30.57 229 Н 5795 100.49 89.03 32.2 9.87 30.61 100 229 Ρ Н _ * 5795 92.67 81.21 32.2 9.87 30.61 100 229 Α Н 5854 56.28 -56.8 113.08 44.76 32.23 9.94 30.65 100 229 Ρ Н 5862.2 55.16 -53.62 108.78 43.63 32.23 9.95 30.65 100 229 Ρ Н 5880.4 51.15 -50.04 101.19 39.58 32.27 9.97 30.67 100 229 Η Р 5932.2 -16.94 32.37 100 229 Н 51.26 68.2 39.55 10.04 30.7 Н 802.11n Н **HT40 CH 159** 5647.8 -17.92 31.73 30.52 305 Ρ V 50.28 68.2 39.22 9.85 320 5795MHz Ρ V 5657.6 50.73 -23.12 73.85 39.7 31.7 9.86 30.53 320 305 110.63 5719.4 51.97 -58.66 40.75 31.93 9.86 30.57 320 305 Ρ ٧ 5720.4 49.91 -61.8 111.71 38.69 31.93 9.86 30.57 320 305 Ρ ٧ 32.2 320 305 Ρ ٧ 5795 98.63 87.17 9.87 30.61 * 91.35 32.2 30.61 320 305 V 5795 79.89 9.87 Α 5850.6 52.01 -68.82 120.83 40.53 32.2 9.93 30.65 320 305 Ρ ٧ Ρ ٧ 5855.8 52.07 -58.51 110.58 40.55 32.23 9.94 30.65 320 305 320 305 Ρ ٧ 5903.8 50.76 -33.09 83.85 39.14 32.3 10 30.68 52.03 40.32 32.37 30.7 320 305 Р ٧ 5933.4 -16.17 68.2 10.04 V V 1. No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : C13 of C19

Report No.: FR961832F

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11510	49.4	-24.6	74	59.08	40.2	14.52	64.4	100	0	Р	Н
		17265	51.54	-16.66	68.2	52.96	40.8	18.56	60.78	100	0	Р	Н
802.11n													Н
HT40													Н
CH 151		11510	49.63	-24.37	74	59.31	40.2	14.52	64.4	100	0	Р	V
5755MHz		17265	50.62	-17.58	68.2	52.04	40.8	18.56	60.78	100	0	Р	V
													V
													V
		11590	49.69	-24.31	74	59.55	39.95	14.57	64.38	100	0	Р	Н
		17385	52.34	-15.86	68.2	52.5	41.73	18.75	60.64	100	0	Р	Н
802.11n													Н
HT40													Н
CH 159		11590	49.11	-24.89	74	58.97	39.95	14.57	64.38	100	0	Р	V
5795MHz		17385	52.88	-15.32	68.2	53.04	41.73	18.75	60.64	100	0	Р	V
													V
													V
Remark		o other spurious		Peak and	l Average lim	it line.							

TEL: 886-3-327-3456 Page Number : C14 of C19

Report No.: FR961832F

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5616.6	51.63	-16.57	68.2	40.51	31.77	9.85	30.5	100	237	Р	Н
		5698	59.32	-44.41	103.73	48.21	31.8	9.86	30.55	100	237	Р	Н
		5720	63.28	-47.52	110.8	52.06	31.93	9.86	30.57	100	237	Р	Н
		5722.2	64.17	-51.65	115.82	52.95	31.93	9.86	30.57	100	237	Р	Н
	*	5775	97.05	-	-	85.65	32.13	9.87	30.6	100	237	Р	Н
	*	5775	89.59	-	-	78.19	32.13	9.87	30.6	100	237	Α	Н
		5853.4	59.27	-55.18	114.45	47.78	32.2	9.94	30.65	100	237	Р	Н
		5865.8	60.01	-47.76	107.77	48.49	32.23	9.95	30.66	100	237	Р	Н
		5875	57.41	-47.79	105.2	45.84	32.27	9.96	30.66	100	237	Р	Н
		5940	51.32	-16.88	68.2	39.57	32.4	10.05	30.7	100	237	Р	Н
802.11ac													Н
VHT80													Н
CH 155		5630.6	51.4	-16.8	68.2	40.29	31.77	9.85	30.51	340	304	Р	V
5775MHz		5697.8	53.8	-49.78	103.58	42.69	31.8	9.86	30.55	340	304	Р	V
		5719.6	59.38	-51.31	110.69	48.16	31.93	9.86	30.57	340	304	Р	V
		5724.6	60.68	-60.61	121.29	49.46	31.93	9.86	30.57	340	304	Р	V
	*	5775	94.33	-	-	82.93	32.13	9.87	30.6	340	304	Р	V
	*	5775	87.15	-	-	75.75	32.13	9.87	30.6	340	304	Α	V
		5850.8	53.25	-67.13	120.38	41.77	32.2	9.93	30.65	340	304	Р	V
		5856.2	56.84	-53.62	110.46	45.32	32.23	9.94	30.65	340	304	Р	V
		5876.6	52.17	-51.84	104.01	40.59	32.27	9.97	30.66	340	304	Р	V
		5944.2	51.75	-16.45	68.2	40.01	32.4	10.05	30.71	340	304	Р	V
													V
													V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C15 of C19

Report No.: FR961832F

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11550	49.97	-24.03	74	59.76	40.05	14.55	64.39	100	0	Р	Н
		17325	50.94	-17.26	68.2	51.91	41.07	18.67	60.71	100	0	Р	Н
802.11ac													Н
VHT80													Н
CH 155		11550	49.95	-24.05	74	59.74	40.05	14.55	64.39	100	0	Р	V
5775MHz		17325	50.43	-17.77	68.2	51.4	41.07	18.67	60.71	100	0	Р	V
													V
													٧
			l .	1	l .	1	l .		1	1	1	1	'

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C16 of C19

Emission below 1GHz

Report No.: FR961832F

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		45.52	22.82	-17.18	40	37.81	16.74	0.87	32.6	-	-	Р	Н
		99.84	23.46	-20.04	43.5	38.66	15.97	1.34	32.51	-	-	Р	Н
		162.89	27.09	-16.41	43.5	41.59	16.21	1.79	32.5	-	-	Р	Н
		195.87	29.17	-14.33	43.5	44.84	14.89	1.93	32.49	-	-	Р	Н
		340.4	34.54	-11.46	46	44.56	20.12	2.4	32.54	1	-	Р	Н
		716.76	34.92	-11.08	46	36.82	27.01	3.46	32.37	100	0	Р	Н
													Н
													Н
													Н
													Н
5GHz													Н
802.11n													Н
HT20		44.55	30.01	-9.99	40	44.51	17.23	0.87	32.6	-	-	Р	V
LF		63.95	25.02	-14.98	40	44.51	11.99	1.09	32.57	-	-	Р	V
		162.89	22.32	-21.18	43.5	36.82	16.21	1.79	32.5	-	-	Р	V
		191.02	24.1	-19.4	43.5	39.87	14.8	1.92	32.49	-	-	Р	V
		296.75	30.44	-15.56	46	41.47	19.24	2.27	32.54	-	-	Р	V
		713.85	39.81	-6.19	46	41.87	26.85	3.46	32.37	100	0	Р	V
													V
													V
													V
													V
													V
													V

Page Number TEL: 886-3-327-3456 : C17 of C19

Note symbol

Report No.: FR961832F

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions				
	shall not exceed the level of the fundamental frequency.				
!	Test result is over limit line.				
P/A	Peak or Average				
H/V	Horizontal or Vertical				

TEL: 886-3-327-3456 Page Number : C18 of C19

A calculation example for radiated spurious emission is shown as below:

Report No.: FR961832F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level($dB\mu V$) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C19 of C19

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Leo Liu, Karl Hou, and BigShow Wang	Temperature :	23~26°C	
lest Engineer.		Relative Humidity :	50~65%	

Report No. : FR961832F

Note symbol

-L	Low channel location	
-R	High channel location	

TEL: 886-3-327-3456 Page Number : D1 of D33

Band 4 - 5725~5825MHz WIFI 802.11n HT20 (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: D2 of D33

TEL: 886-3-327-3456 Page Number : D3 of D33

Report No.: FR961832F

WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: D4 of D33

Emission below 1GHz

Report No.: FR961832F

5GHz WIFI 802.11n HT20 (LF)

TEL: 886-3-327-3456 Page Number: D5 of D33

Report No.: FR961832F

WIFI 802.11a (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: D6 of D33

TEL: 886-3-327-3456 Page Number: D7 of D33

TEL: 886-3-327-3456 Page Number : D8 of D33

TEL: 886-3-327-3456 Page Number : D9 of D33

TEL: 886-3-327-3456 Page Number : D10 of D33

TEL: 886-3-327-3456 Page Number: D11 of D33

Band 4 - 5725~5825MHz

TEL: 886-3-327-3456 Page Number : D12 of D33

TEL: 886-3-327-3456 Page Number : D13 of D33

TEL: 886-3-327-3456 Page Number : D14 of D33

TEL: 886-3-327-3456 Page Number : D15 of D33

WIFI

Band 4 5725~5825MHz Band Edge @ 3m

802.11n HT20 CH161 5805MHz

Prince CH161 5805MHz

Fundamental

Fundamental

Fundamental

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : D16 of D33

WIFI

Band 4 5725~5825MHz Band Edge @ 3m

802.11n HT20 CH161 5805MHz

2 Vertical

Fundamental

Place of the control of the con

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : D17 of D33

Band 4 - 5725~5825MHz WIFI 802.11n HT40 (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number : D18 of D33

TEL: 886-3-327-3456 Page Number : D19 of D33

TEL: 886-3-327-3456 Page Number : D20 of D33

TEL: 886-3-327-3456 Page Number : D21 of D33

Band 4 - 5725~5825MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: D22 of D33

TEL: 886-3-327-3456 Page Number : D23 of D33

Band 4 - 5725~5825MHz

Report No.: FR961832F

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: D24 of D33

TEL: 886-3-327-3456 Page Number: D25 of D33

TEL: 886-3-327-3456 Page Number: D26 of D33

Band 4 - 5725~5825MHz

Report No.: FR961832F

WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number : D27 of D33

TEL: 886-3-327-3456 Page Number: D28 of D33

TEL: 886-3-327-3456 Page Number: D29 of D33

Band 4 - 5725~5825MHz

Report No.: FR961832F

WIFI 802.11n HT40 (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: D30 of D33

TEL: 886-3-327-3456 Page Number: D31 of D33

Band 4 - 5725~5825MHz

Report No.: FR961832F

WIFI 802.11ac VHT80 (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: D32 of D33

Emission below 1GHz

Report No.: FR961832F

5GHz WIFI 802.11n HT20 (LF)

TEL: 886-3-327-3456 Page Number : D33 of D33

FCC RADIO TEST REPORT

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
1	802.11a	96.19	1390	0.72	1kHz	0.17
2	802.11a	96.89	1400	0.71	1kHz	0.14
1	5GHz 802.11n HT20	95.94	1300	0.77	1kHz	0.18
2	5GHz 802.11n HT20	96.67	1305	0.77	1kHz	0.15
1	5GHz 802.11n HT40	93.06	644	1.55	3kHz	0.31
2	5GHz 802.11n HT40	93.10	648	1.54	3kHz	0.31
1	5GHz 802.11ac VHT20	96.70	1320	0.76	1kHz	0.15
2	5GHz 802.11ac VHT20	96.70	1320	0.76	1kHz	0.15
1	5GHz 802.11ac VHT40	93.14	652	1.51	3kHz	0.31
2	5GHz 802.11ac VHT40	93.17	655	1.53	3kHz	0.31
1	5GHz 802.11ac VHT80	88.04	324	3.09	10kHz	0.55
2	5GHz 802.11ac VHT80	87.50	322	3.11	10kHz	0.58

Report No.: FR961832F

TEL: 886-3-327-3456 Page Number : E1 of E7

FCC RADIO TEST REPORT

<Ant. 1>

Report No.: FR961832F

Date: 14.AUG.2019 05:37:57

802.11n HT20

Date: 14.AUG.2019 05:40:19

TEL: 886-3-327-3456 Page Number : E2 of E7

Date: 14.AUG.2019 05:42:05

802.11ac VHT20

Date: 14.AUG.2019 05:44:41

TEL: 886-3-327-3456 Page Number : E3 of E7

Date: 14.AUG.2019 05:46:00

802.11ac VHT80

Date: 14.AUG.2019 05:49:09

TEL: 886-3-327-3456 Page Number : E4 of E7

FCC RADIO TEST REPORT

Report No.: FR961832F

<Ant. 2> 802.11a

Date: 14.AUG.2019 05:38:37

802.11n HT20

Date: 14.AUG.2019 05:39:28

TEL: 886-3-327-3456 Page Number : E5 of E7

FCC RADIO TEST REPORT

Report No.: FR961832F

Date: 14.AUG.2019 05:42:57

802.11ac VHT20

Date: 14.AUG.2019 05:44:13

TEL: 886-3-327-3456 Page Number : E6 of E7

802.11ac VHT40

Report No.: FR961832F

Date: 14.AUG.2019 05:47:02

802.11ac VHT80

Date: 14.AUG.2019 05:48:22

——THE END——

TEL: 886-3-327-3456 Page Number : E7 of E7