

Model Development Phase Template

Date	18 July 2024
Team ID	SWTID1720086535
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
In [22]: from sklearn import svm
            from sklearn.linear_model import LogisticRegression, LogisticRegressionCV, RidgeClassifier
from sklearn.neighbors import KNeighborsClassifier
            from sklearn.ensemble import RandomForestClassifier
            from sklearn.model_selection import GridSearchCV
            from xgboost import XGBClassifier
            from sklearn.preprocessing import Normalizer
            from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score, confusion_matrix
            def model_evaluation(x_train,y_train,x_test,y_test):
                  lr=LogisticRegression(random_state=1234)
                 lr.fit(x train,y_train)
print('LOGISTIC REGRESSION')
print('Train Score:',lr.score(x_train,y_train))
print('Test Score:',lr.score(x_test,y_test))
                  print()
                  lcv=LogisticRegressionCV(random_state=1234)
                  lcv.fit(x_train,y_train)
                  print('LOGISTIC REGRESSION CV')
print('Train Score:',lcv.score(x_train,y_train))
print('Test Score:',lcv.score(x_test,y_test))
                  xgb=XGBClassifier(random_state=1234)
                  xgb.fit(x_train,y_train)
                  print('XGB00ST')
print('Train Score:',xgb.score(x_train,y_train))
print('Test Score:',xgb.score(x_test,y_test))
```

```
rc=RidgeClassifier(random_state=1234)
rc.fit(x_train,y_train)
print('RIDGE CLASSIFIER')
print('Train Score:',rc.score(x_train,y_train))
print('Test Score:',rc.score(x_test,y_test))
print()
kn=KNeighborsClassifier()
kn.fit(x_train,y_train)
print('K NEIGHBORS CLASSIFIER')
print('Train Score:',kn.score(x_train,y_train))
print('Test Score:',kn.score(x_test,y_test))
print()
rf=RandomForestClassifier(random_state=1234)
rf.fit(x_train,y_train)
print('RANDOM FOREST CLASSIFIER')
print('Train Score:',rf.score(x_train,y_train))
print('Test Score:',rf.score(x_test,y_test))
svc=svm.SVC(random state=1234)
svc.fit(x_train,y_train)
print('SVM CLASSIFIER')
print('Train Score:',svc.score(x_train,y_train))
print('Test Score:',svc.score(x_test,y_test))
print()
return lr,lcv,xgb,rc,kn,rf,svc
```

```
In [23]: lr,lcv,xgb,rc,kn,rf,svc = model_evaluation(xnorm_train,y_train,xnorm_test,y_test)
```


Model Validation and Evaluation Report:

Model		Classifica	tion Rep	Accura cy	Confusion Matrix		
logistic regressio n	print(classi 0 1 accuracy macro avg weighted avg	fication_r precision 0.56 0.70 0.63 0.64		_test,y_p f1-score 0.56 0.70 0.64 0.63 0.64	red)) support 896 1304 2200 2200 2200	64%	<pre>print(confusion_matrix(y_test,y_pred)) [[503 393] [398 906]]</pre>
logistic regressio n CV	print(classi 0 1 accuracy macro avg weighted avg	fication_r precision 0.56 0.69 0.62 0.63		test,y_p f1-score 0.54 0.70 0.64 0.62 0.64	red)) support 896 1304 2200 2200 2200	64%	<pre>print(confusion_matrix(y_test,y_pred)) [[463 433] [362 942]]</pre>
XGBoost	print(classi 0 1 accuracy macro avg weighted avg	fication_r precision 0.57 0.73 0.65 0.66		_test,y_p f1-score 0.60 0.70 0.66 0.65 0.66	red)) support 896 1304 2200 2200 2200	66%	print(confusion_matrix(y_test,y_pred)) [[573 323] [436 868]]
ridge classifier	print(classi 0 1 accuracy macro avg weighted avg	fication_r precision 0.56 0.74 0.65 0.66		_test,y_p f1-score 0.61 0.69 0.65 0.65 0.66	support 896 1304 2200 2200 2200	65%	<pre>print(confusion_matrix(y_test,y_pred)) [[593 303] [462 842]]</pre>

	<pre>print(classification_report(y_test,y_pred))</pre>						
K nearest neighbor s	0 1 accuracy macro avg weighted avg	precision 0.55 0.70 0.62 0.64	necall 0.57 0.68 0.62 0.63	f1-score 0.56 0.69 0.63 0.62 0.64	896 1304 2200 2200 2200	63%	print(confusion_matrix(y_test,y_pred)) [[511 385] [420 884]]
random forest	print(classi	precision 0.56 0.74 0.65 0.66		_test,y_p f1-score 0.61 0.69 0.65 0.65 0.66	red)) support 896 1304 2200 2200 2200	66%	<pre>print(confusion_matrix(y_test,y_pred)) [[593</pre>
support vector classifier	print(classi	ification_r precision 0.56 0.82 0.69 0.71		_test,y_p f1-score 0.66 0.66 0.66 0.66 0.66	red)) support 896 1304 2200 2200 2200	66%	print(confusion_matrix(y_test,y_pred)) [[734 162] [578 726]]