universitätfreiburg

What you need aknow about Yoneda

Emma Bach (she/her)
Seminar on Functional Programming and Logic, Summer Semester 2025

▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.

¹Quoted as a proverb in Don Quixote

- ▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- ► "Tell me your company, and I will tell you what you are." 1

¹Quoted as a proverb in Don Quixote

- ▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." 1
- ► The Yoneda Lemma is the result of applying this way of thinking to mathematical objects within the extremely general setting of category theory.

¹Quoted as a proverb in Don Quixote

- ▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." ¹
- ► The Yoneda Lemma is the result of applying this way of thinking to mathematical objects within the extremely general setting of category theory.
- As a result, a category $\mathbb C$ is often best understood by instead studying functors from that category into $\mathbb S et$.

¹Quoted as a proverb in Don Quixote

ightharpoonup A category $\mathbb C$ consists of:

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of objects;

- ► A category C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of objects;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;

- ► A category C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of objects;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B:
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;

- ► A category C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of objects;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ an associative composition morphism $f \circ g \in \mathbb{C}(A, C)$ for each pair of morphisms $f \in \mathbb{C}(A, B)$, $g \in \mathbb{C}(A, B)$.

- ► A category ℂ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of objects;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ an associative composition morphism $f \circ g \in \mathbb{C}(A, C)$ for each pair of morphisms $f \in \mathbb{C}(A, B)$, $g \in \mathbb{C}(A, B)$.
- ▶ If $\mathbb{C}(A, B)$ is a set, we call it the homset from A to B.

- ► A category C consists of:
 - ▶ a collection |C| of objects;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ an associative composition morphism $f \circ g \in \mathbb{C}(A, C)$ for each pair of morphisms $f \in \mathbb{C}(A, B)$, $g \in \mathbb{C}(A, B)$.
- ▶ If $\mathbb{C}(A, B)$ is a set, we call it the homset from A to B.
- For every category \mathbb{C} , there exists an opposite category \mathbb{C}^{op} , in which all morphisms are reversed.

► For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - ▶ $\mathbb{C}(A, -)$ maps an Object B to the Homset $\mathbb{C}(A, B)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(-,B)$ maps an Object A to the Homset $\mathbb{C}(A,B)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(-,B)$ maps an Object A to the Homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(A, B)$ is mapped to the morphism $\circ f: \mathbb{C}(B, C) \to \mathbb{C}(A, C)$

Natural Transformations

- ▶ A structure-preserving map between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an indexed family of morphisms $\phi_A \in \mathbb{D}(F(A), G(A))$ from F(A) to G(A)
 - ► These morphisms satisfy the following naturality condition:

$$\forall f \in \mathbb{C}(A, B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

 \triangleright Given two functors F and G, we write the collection of all natural transformation between them as Nat(F,G).

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathtt{map}(a) = \mathtt{map}(a) \circ r_A$$

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

This is the free theorem we got for a parametrically polymorphic function $r: [X] \rightarrow [X]$ and an arbitrary function $a: A \rightarrow B$.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

- ► This is the free theorem we got for a parametrically polymorphic function r ::
 [X] -> [X] and an arbitrary function a : A -> B.
- ightharpoonup This free theorem is equivalent to the statement that r is a natural transformation.

▶ In general, assume we have:

- ▶ In general, assume we have:
 - two functors F and G,

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function m r : m F x -> G x,

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ► an arbitrary function f : A -> B.

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function $r : F \times -> G \times$,
 - ▶ an arbitrary function f : A → B.
- ▶ Then we get the following free theorem:

```
r . fmap f = fmap f . r
```

- ► In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A -> B.
- ▶ Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

► In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function m r : m F x -> G x,
 - ▶ an arbitrary function f : A -> B.
- Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!

- In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A -> B.
- Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

► In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!
- ▶ It turns out that parametrically polymorphic functions correspond exactly to natural transformations between endofunctors $Set \rightarrow Set$.

Functor Categories

▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ightharpoonup This category is known as a functor category and denoted $\mathbb{D}^{\mathbb{C}}$.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ightharpoonup This category is known as a functor category and denoted $\mathbb{D}^{\mathbb{C}}$.
- ightharpoonup A morphism $\mathbb{D}^{\mathbb{C}}(F,G)$ is a natural transformation $F \to G$.

The Yoneda Embedding

► Remember that the goal is finding out everything about an object *A* through its relations to other objects.

The Yoneda Embedding

- ► Remember that the goal is finding out everything about an object *A* through its relations to other objects.
- So we want a correspondence between objects and their homsets.

 $\begin{array}{ccc}
A & \xrightarrow{f \in \mathbb{C}(A,B)} & B \\
\downarrow & & \downarrow \\
\mathbb{C}(A,-) & \xrightarrow{\mathcal{Y}(f)} & C(B,-)
\end{array}$

- ► Remember that the goal is finding out everything about an object *A* through its relations to other objects.
- So we want a correspondence between objects and their homsets.
- Formally, we want a bijective functor

$$\mathcal{Y}:\mathbb{C}
ightarrow\mathbb{S}et^{\mathbb{C}}\ A\mapsto\mathbb{C}(A,-)$$

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- ▶ So we want a correspondence between objects and their homsets.
- Formally, we want a bijective functor $\mathbb{C}(A,-) \xrightarrow{\mathcal{V}(f)} C(B,-) \blacktriangleright$ We call \mathcal{Y} the Yoneda Embedding.

$$\mathcal{Y}:\mathbb{C} o\mathbb{S}$$
et $^{\mathbb{C}}$ $A\mapsto\mathbb{C}(A,-)$

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- ▶ So we want a correspondence between objects and their homsets.
- $\mathbb{C}(A,-) \xrightarrow{\mathcal{Y}(f)} C(B,-) \blacktriangleright$ We call \mathcal{Y} the Yoneda Embedding.
- Formally, we want a bijective functor

$$\mathcal{Y}:\mathbb{C}
ightarrow\mathbb{S}et^{\mathbb{C}}\ A\mapsto\mathbb{C}(A,-$$

- ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ is a morphism between $\mathbb{C}(A,-)$ and $\mathbb{C}(B,-)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- So we want a correspondence between objects and their homsets.
- $\begin{array}{ccc}
 A & \xrightarrow{f \in \mathbb{C}(A,B)} & B \\
 \downarrow & & \downarrow \\
 C(A,-) & \xrightarrow{\gamma(f)} & C(B,-)
 \end{array}$

$$\mathcal{Y}:\mathbb{C}
ightarrow\mathbb{S}et^{\mathbb{C}}\ A\mapsto\mathbb{C}(A,-$$

- $ightarrow \ {\it C}(B,-)$ lacktriangle We call ${\cal Y}$ the Yoneda Embedding.
 - ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ is a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.
 - ▶ Therefore, $\mathcal{Y}(f)$ is a natural transformation between $\mathbb{C}(A,-)$ and $\mathbb{C}(B,-)$

lt turns out we can do even better!

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- ▶ Specifically, the Yoneda Lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A))$$

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda Lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A))$$

Furthermore, this isomorphism is a natural transformation.

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda Lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A))$$

- Furthermore, this isomorphism is a natural transformation.
- ightharpoonup So we can construct a unique $\mathcal Y$ with our desired properties from any element F(A).

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda Lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A))$$

- Furthermore, this isomorphism is a natural transformation.
- \triangleright So we can construct a unique $\mathcal Y$ with our desired properties from any element F(A).
- Vice versa, if we know all natural transformations $Nat(\mathbb{C}(A, -), F)$, we can construct the set F(A).

Instances of the Yoneda Lemma

- ► Cayley's theorem in group theory
- Countless theorems in algebra, particulary in algebraic topology
- ▶ Proofs by indirect inequality: $b \leq a$ iff. $\forall c : (a \leq c) \implies (b \leq c)$
- Profunctor optics in functional programming

Profunctor Optics