	b . b . S .	اسم المقرر: مبادئ التحليل العددي
اسم الطالب:	بسم الله الرحمن الرحيم	رقم المقرر: 1281
رقم الطالب:		مدة الامتحان: ساعة ونصف
تاريخ الامتحان:/		عدد الأسئلة: 6

الامتحان النصفي للفصل الاول "1151" 2015/2016

__ نظری__

د. 11

د. 12030

عزيزي الطالب: 1. عبئ كافة المعلومات المطلوبة عنك في دفت الاحابة وعلى ورقة الأسئلة

عريري السبب. 1. مبلى عد المسؤلك ورموز الإجابة الصحيحة للأسئلة الموضوعية (إن وجدت) على الجدول المخصص في دفتر الإجابة 2. ضع رقم السؤال للأسئلة المقالية واجب على دفتر الإجابة.				
لك في دفتر الإجابة (30علامة)	مزها في الجدول المخصص لذ	مز الإجابة الصحيحة وضع ره	السوال الاول: اختر ر	
	فاصلة المتحركة على الشكل	قم $\left(213.13 ight)_{5}$ باستخدام ال	1. يمكن كتابته الرأ	
د. 0.0021313×5 ⁴	0.021313 ×5 ⁴ .	0.21313×5 ⁴ .ب 0	.021313×5³ .i	
	F(2	2,3,-1,2) يتضمنها النظام ي	2. عدد الأعداد التر	
د. 41	33 .÷	ب. 25	81 .i	
وكان $F(x) = 10x^2 + 9x - 12$ فان قيمة $F(3.01)$ المقدرة تقريباً هي 3.01 دا كان $F(x) = 10x^2 + 9x - 12$				
د. 159.691	ج. 109.691	ب. 185.691	اً. 105.691	
$ ho\left(\lambda ight) = \lambda\left(\lambda-4 ight)(\lambda+9)$ مصفوفة من الحجم 8 ×3 بحيث كان كثير الحدود المميز لها معطاه بالعلاقة A				
	يساوي	${f A}$ للمصفوفة $ ho({f A})$ المصفوفة	فان نصف القطر	
د. 4	ج. 9-	ب. 9	أ. صف ر	
			5. تعتبر المعادلة	
د. جميع ما ذكر	ج. تصاعدية	ب. حدودية	أ. جبرية	
$x^0 = 2$ عند	متقاربة متقاربة $f(x) = x^2 -$	نطة الثابتة التالية للمعادلة 5	6. أي من صيغ النف	

 $x = \frac{1}{2} \left(x + \frac{5}{x} \right)$ \therefore $x = \frac{1}{2} (x^2 + x - 5)$ \Rightarrow $x = x^2 + x - 5$ \Rightarrow $x = \frac{5}{x}$ \Rightarrow

$$\|A\|_{\infty}$$
 فان $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$ فان $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$.7

(A) فان رقم الحالة $\|A^{-1}\|_{\infty}=6000$ و كان $\|A^{-1}\|_{\infty}$ فان رقم الحالة $\|A\|_{\infty}=2.005$ هو

ب. 2995.2

و. اذا كانت المصفوفة A^{-1} انظير ألضربي A^{-1} هي A^{-1} انظير ألضربي A^{-1} هي

 $\begin{bmatrix} -7 & -3 \\ -5 & -2 \end{bmatrix} \quad . \qquad \begin{bmatrix} -2 & 5 \\ -3 & 7 \end{bmatrix} \quad . \Rightarrow \qquad \begin{bmatrix} 7 & -3 \\ 5 & -2 \end{bmatrix} \quad . \downarrow \qquad \begin{bmatrix} -7 & 3 \\ -5 & 2 \end{bmatrix} \quad .$

10. . إذا كانت A مصفوفة مربعة غير منفردة وكان رقم الحالة لها هو $\operatorname{C}(A)\!>\!>\!1$ فان هذه المصفوفة تكون

أ. في حالة عليلة ب. في حالة جيدة ج. متماثلة د. موجبة مؤكدا

11. الجذور الحقيقية للحدودية $P(x) = x^5 - 4x^4 + 5x^3 - 3x^2 + 1$ هي

 $\{1, 1 \pm \sqrt{2}\}$. $\{2, 5\}$. $\{1\}$. $\{0, 1\}$.

مصفوفة منفردة فان قيمة / قيم $A = \begin{bmatrix} x & 3 \\ 4 & x - 1 \end{bmatrix}$ تساوي:

 $\{-2,6\}$. $\{2,-6\}$. $\{-3,4\}$. $\{3,-4\}$.

يقع بين f(x)=0 اقتران له مشتقة متصلة على فترة I وان f(x)=0 فان المعادلة f(x)=0 لها حل وحيد α يقع بين

 $f(0), 0 \quad ... \quad \frac{1}{k}, 0 \quad ... \quad -\frac{f(0)}{k}, 0 \quad ... \quad \frac{f(0)}{k}, 0 \quad ... \quad ...$

14. المصفوفة A تسمى مصفوفة موجبة مؤكداً إذا كانت

أ. A متماثلة وإذا X متماثلة وإذا X لجميع X الجميع X لجميع X ل

15. اذا كانت المصفوفة $\,A\,$ غير منفردة فان :

 $AA^{-1} = A^{-1}A = A^{-1}$. $AA^{-1} = A^{-1}A = I$. $AA^{-1} = A^{-1}A = A$. $AA^{-1} = A^{-1}A = A$. $AA^{-1} = A^{-1}A = A$

السؤال الثاني : - ضع إشارة (\sqrt) أو إشارة (\times) في الجدول المخصص لذلك في دفتر الإجابة (\sqrt) علامة)

- $X_E=3.257$ هو $X_E=3.257$ فان الخطأ النسبي للعدد $X_E=3.257$ هو $X_E=3.257$.1
- 2. عند تحويل العدد العشري 1326 إلى عدد مكافئ في النظام الثنائي فان الجواب هو 10100101110 .
 - . [1,2] في الفترة $x^3-2x-10=0$ للمعادلة 3.
- . $\vec{X} = \begin{bmatrix} 2 & , 3 & , 0 \end{bmatrix}^T$ هو $\vec{X}^{(k)}$ هان المتجه \vec{X} الذي يؤول اليه $\vec{X} = \begin{bmatrix} 2 & , 3 \frac{1}{K} & , \frac{3}{K^2} \end{bmatrix}^T$ 4.
 - 5. تعتبر طريقة نيوتن _ رافسون من طرق النقطة الثابتة ذات تقارب خطي .
 - $\overrightarrow{X}=A^{-1}.\overrightarrow{b}$ هو $\overrightarrow{Ax}=\overrightarrow{b}$ هان حل النظام عند \overrightarrow{A} هو .6
- 7. إذا كانت $\omega = 1$ فان أسلوب S.O.R يصبح نفس أسلوب جاوس سايدل لحل نظام من المعادلات بأسلوب التتابع.
 - . $\{-1,0,1\}$ هي $F(x) = x^2 + x 1$ هي 8.
 - . 2 يساوي $x^3 + x^2 8x + 12 = 0$ للمعادلة x = 3 يساوي 2.
 - $\|X\|_{2} = 6$ فإن $X = [1, -1, 2, 0]^{T}$ فإن 10.

أ. احسب اكبر خطا ممكن ثم احسب القيمة التقريبية للمقدار : $\frac{1.362(7.54-13.2)}{47}$

(حامات) جا نا کانت
$$x = \sqrt{7 + \sqrt{7 + \sqrt{7 + \sqrt{7 + \sqrt{7}}}}}$$
 ب اذا کانت $x = \sqrt{7 + \sqrt{7 + \sqrt{7 + \sqrt{7}}}}$

السؤال الرابع :-

أ. $x \in [1,2]$ عندما $f(x) = x^3 + 4x^2 - 10$ أ. استخدم طريقة التنصيف لإيجاد الجذر التقريبي الرابع للمعادلة

ب. اوجد نصف القطر الطيفي للمصفوفة $A=\begin{bmatrix}1&1\\2&1\end{bmatrix}$

ملاحظة: - اجب عن احد السؤالين التاليين

السؤال الخامس

استخدم خوارزمية A=LU لإيجاد مجموعة حل المعادلات الخطية التالية:

$$x_1 - x_2 = 0$$

$$-2x_1 + 4x_2 - 2x_3 = -1$$

$$-x_2 + 2x_3 = 1.5$$

السؤال السادس :-

 $\vec{X}^{(1)}$, $\vec{X}^{(2)}$ واستخدم خوارزمية SOR بثابت تسارع $\vec{X}^{(0)} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ واستخدم خوارزمية للمعادلتين

$$4x_1 - x_2 = 15$$

$$x_1 + 5x_2 = 9$$

انتهت الاسئلة