# Theorem: Euclidean Algorithm

## Theorem: Euclidean Algorithm

The Euclidean algorithm provides an efficient method for computing the greatest common divisor of two integers.

#### Statement

Let  $a, b \in \mathbb{Z}$  with  $b \neq 0$ . Then:

$$gcd(a, b) = gcd(b, a \mod b)$$

where  $a \mod b$  is the remainder when a is divided by b.

### Algorithm

Given integers a and b with  $a \ge b > 0$ :

- 1. If b = 0, then gcd(a, b) = a
- 2. Otherwise, compute  $r = a \mod b$
- 3. Replace (a, b) with (b, r) and repeat

The algorithm terminates when the remainder becomes 0.

#### **Proof of Correctness**

We need to show that  $gcd(a, b) = gcd(b, a \mod b)$ .

Let  $r = a \mod b$ . Then a = qb + r for some integer q.

**Step 1**: Show that any common divisor of a and b is also a common divisor of b and r.

If  $d \mid a$  and  $d \mid b$ , then  $d \mid (a - qb) = r$ . Thus d divides both b and r.

**Step 2**: Show that any common divisor of b and r is also a common divisor of a and b.

If  $d \mid b$  and  $d \mid r$ , then  $d \mid (qb + r) = a$ . Thus d divides both a and b.

Therefore, the set of common divisors of (a, b) equals the set of common divisors of (b, r), so their greatest elements are equal.

#### Example

Find gcd(48, 18):

- 1.  $48 = 2 \cdot 18 + 12$ , so gcd(48, 18) = gcd(18, 12)
- 2.  $18 = 1 \cdot 12 + 6$ , so gcd(18, 12) = gcd(12, 6)
- 3.  $12 = 2 \cdot 6 + 0$ , so gcd(12, 6) = 6

Therefore, gcd(48, 18) = 6.

## Extended Euclidean Algorithm

The algorithm can be extended to find integers x, y such that:

$$\gcd(a,b) = ax + by$$

This proves Bézout's identity constructively.

## Time Complexity

The number of steps is at most  $O(\log \min(a, b))$ , making it very efficient even for large numbers.

## Mermaid Diagram

```
graph TD
    A[Euclidean Algorithm] --> B[gcd(a,b) = gcd(b, a mod b)]
    B --> C[Repeat until remainder = 0]
    A --> D[Example: gcd(48,18)]
    D --> E[48 = 2·18 + 12]
    E --> F[18 = 1·12 + 6]
    F --> G[12 = 2·6 + 0]
    G --> H[gcd = 6]
    A --> I[Extended Algorithm]
    I --> J[Find x,y: gcd = ax + by]

style A fill:#f9f,stroke:#333,stroke-width:2px
    style B fill:#bfb,stroke:#333,stroke-width:2px
    style H fill:#bfb,stroke:#333,stroke-width:2px
    style J fill:#bfb,stroke:#333,stroke-width:2px
```

## Dependency Graph



Local dependency graph