METAHEURISTICS

INF273

#6: Simulated Annealing

AHMAD HEMMATI

Optimization Group Dept. of Informatics University of Bergen

Spring Semester 2022

AGENDA

- Introduction: Annealing
- Simulated Annealing
 - Temperature
 - Cooling Schedule
 - Acceptance Criteria

Introduction: Annealing

Introduction: Annealing

- Cold working metal causes/increases defects in crystal structure
- After cold working, annealing is performed
- The metal is heated to, like 0.4 * melting temperature
- Ions inside metal can move around
- Metal is slowly cooled down, ions assume low-energy, stable positions in crystal → metal becomes more stable
- Due to their movement, ions may temporarily assume positions of high energy
- An initial, brittle crystal structure is transformed to a much better configuration by stepping over good and bad states

Page 4

Introduction: Annealing

- Metropolis' algorithm (1953)
 - Algorithm to simulate energy changes in physical systems
 when cooling and shows how physical systems find states of
 low energy
 - The (simulated) physical system escapes local optima by accepting worse solutions from time to time.
 - This could be a remedy for the premature convergence problem of local search/hill climbing!

- Kirkpatrick, Gelatt and Vecchi (1983)
 - Suggested to use the same type of simulation to look for good solutions in a COP
- Simulated Annealing = hill climbing + sometimes accept worse states following Metropolis' method
 - ⇒ lower risk of premature convergence

- A lot of literature
- Can be interpreted as a Stochastic Local Search
 - Choose a neighbor solution
 - Improving moves are always accepted
 - Deteriorating moves are accepted with a probability that depends on the amount of the deterioration and on the temperature (a parameter that decreases with time)
- Can escape local optima

Initialization

```
Parameters Setting (T<sub>0</sub>, T<sub>f</sub>, Max Ite, Cooling Schedule)
      Generate an Initial solution (randomly)
      Current solution = Initial solution; Best solution = Initial solution; T = T_0
While (T > T_f) do
      For i = 1 to Max Ite do
             Generate New solution = Neighbor(Current solution)
             Evaluate the change in objective function level \Delta E
            If \Delta E < 0 then
                   Current solution = New solution
                   If f(Current solution) < f(Best solution) then Best solution = Current solution
             Else
                   Accept Current\_solution = New\_solution with probability p = e^{T}
             End If
      End For
      Decrease parameter T according to Cooling Schedule
End While
```

Ahmad Hemmati

Page 9

Simulated annealing searching for a maximum

ACCEPTANCE CRITERIA

- We assume a minimization problem
- Set $\Delta E = Obj(neighbour solution) Obj(current solution)$
- If $\Delta E < 0 \implies$ accept (we have an improving move)
- Else accept if
- Boltzmann probability function: $p = e^{\frac{-\Delta E}{T}}$

$$Random(0,1) < e^{\frac{-\Delta E}{T}}$$

• If the move is not accepted: try another neighbor

ACCEPTANCE CRITERIA

Example 1:

Probability of acceptance for two different worse solutions (compared with current solution) at the same temperature:

$$(x_c, f(x_c) = 2000) \rightarrow (x_1, f(x_1) = 2100) \implies p_1 = e^{\frac{-\Delta E}{T}} = e^{\frac{-(2100 - 2000)}{100}} = e^{-1} \cong 0.368$$

$$(x_c, f(x_c) = 2000) \rightarrow (x_2, f(x_2) = 2200) \Rightarrow p_2 = e^{\frac{-\Delta E}{T}} = e^{\frac{-(2200 - 2000)}{100}} = e^{-2} \approx 0.135$$

$f(x_i)$	2050	2100	2200	2300	2400	2500	2600
p_i	0.606	0.368	0.135	0.050	0.018	0.007	0.002

ACCEPTANCE CRITERIA

Example 2:

Probability of acceptance for a worse solution (compared with current solution) at two different temperatures:

$$T_1 = 100$$
; $(x_c, f(x_c) = 2000) \rightarrow (x_1, f(x_1) = 2200) \Rightarrow p_1 = e^{\frac{-\Delta E}{T}} = e^{\frac{-(2200 - 2000)}{100}} = e^{-2} \approx 0.135$

$$T_2 = 50; \quad (x_c, f(x_c) = 2000) \to (x_1, f(x_1) = 2200) \Longrightarrow p_2 = e^{\frac{-\Delta E}{T}} = e^{\frac{-(2200 - 2000)}{50}} = e^{-4} \cong 0.018$$

T_i	300	200	150	100	75	50	40
p_i	0.513	0.368	0.263	0.135	0.069	0.018	0.007

TEMPERATURE

• Initial and Final temperatures (T_0, T_f) depend on the scale of the changes in objective function value (ΔE) when we move from one solution to anouther

$$p = e^{\frac{-\Delta E}{T}} \implies \ln p = \frac{-\Delta E}{T} \implies T = \frac{-\Delta E}{\ln p}$$

• Intermediate temperatures depend on the *cooling* schedule

TEMPERATURE

Example 1:

$$p = e^{\frac{-\Delta E}{T}} \implies \ln p = \frac{-\Delta E}{T} \implies T = \frac{-\Delta E}{\ln p}$$

$$p_{max} = 0.99$$
 $p_{min} = 0.01$ $\Delta E \in (0.01, 0.05)$

$$\Rightarrow T_1 = \frac{-0.01}{\ln 0.99} \cong 0.99 \qquad T_2 = \frac{-0.05}{\ln 0.99} \cong 4.97 \qquad T_3 = \frac{-0.01}{\ln 0.01} \cong 0.002 \qquad T_4 = \frac{-0.05}{\ln 0.01} \cong 0.01$$

$$\Rightarrow$$
 $T_0 = \max \{T_1 \cong 0.99, T_2 \cong 4.97, T_3 \cong 0.002, T_4 \cong 0.01\} + \varepsilon = 5$

$$\Rightarrow$$
 $T_f = \min \{T_1 \cong 0.99, T_2 \cong 4.97, T_3 \cong 0.002, T_4 \cong 0.01\} - \varepsilon = 0.001$

TEMPERATURE

Example 2:

$$p = e^{\frac{-\Delta E}{T}} \implies \ln p = \frac{-\Delta E}{T} \implies T = \frac{-\Delta E}{\ln p}$$

$$p_{max} = 0.99$$
 $p_{min} = 0.01$ $\Delta E \in (40,50)$

$$\Rightarrow T_1 = \frac{-40}{\ln 0.99} \cong 3980 \qquad T_2 = \frac{-5}{\ln 0.99} \cong 4975 \qquad T_3 = \frac{-40}{\ln 0.01} \cong 8.8 \qquad T_4 = \frac{-50}{\ln 0.01} \cong 11$$

$$\Rightarrow$$
 $T_0=\max \{T_1\cong 3980$, $T_2\cong 4975$, $T_3\cong 8.8$, $T_4\cong 11\}+\varepsilon=5000$

$$\Rightarrow$$
 $T_f = \min \{T_1 \cong 3980, T_2 \cong 4975, T_3 \cong 8.8, T_4 \cong 11\} - \varepsilon = 8$

- The cooling schedule defines how the temperature parameter *T* in the *Simulated Annealing* process is set.
- The operator maps the current iteration index *i* to a (positive) real temperature value *T*.
- The temperature schedule allows for a smooth transition of *SA* algorithm behavior from "like *Random Search*" (high temperature) to "like *hill climbing*" (low temperature).

• Linear

• Exponential

$$T_{i+1} = \alpha T_i$$
$$0 < \alpha < 1$$

Logarithmic

$$T_i = T_0 - i^A$$

$$A = \frac{\ln(T_0 - T_f)}{\ln(N)}$$

Hyperbolic

SIMULATED ANNEALING - REMARKS

- Initial temperature T_0
 - (if $\infty \rightarrow Random\ Search$)
 - (if \sim 0 → *Local Search*)

Page 22

SIMULATED ANNEALING - REMARKS

- Initial temperature T_0
 - (if $\infty \rightarrow Random\ Search)$
 - (if $\sim 0 \rightarrow Local Search)$
- Cooling schedule how to change temperature over time
 - If too fast \rightarrow stops in some local optimum too early
 - If too slow \rightarrow too slow convergence
- Number of iterations at each temperature
- Choice of neighborhood structure is important
- Stopping criterion
- Solution quality/speed dependents on the choices made

Distance: 43,499 miles Temperature: 1,316 Iterations: 0

Ahmad Hemmati Page 2

NEXT LECTURE

LECTURE #7:

TABU SEARCH

