#### **Lecture 9: Curves**

# **Today: Curves**

- Basics of shape representation
- Basics of curves
- Continuity conditions
- Polynomial pieces
- Cubics

# Shapes (informally)

- a set of points (infinite)
- lives in a "space" dimension of the points
  - o a line segment can be in:
    - the plane (2D)
    - space (3D)
    - hyper-space (4D)
    - etc

#### **Curves**

- Intuition: set of points drawn with a "pen"
- "Most" points have 2 "neighbors" (next, previous)
  - endpoints
  - crossing
- mapping from time to place
  - $egin{aligned} \circ \ (x,y) = f(t) ext{ for } t \in [0,1] \end{aligned}$

# Curves vs. Areas/Regions/Surfaces

# **Types of Curve Representations**

• Implicit (test function)

$$\circ f(x,y)=0$$

Parametric

$$y \circ y = f(x)$$

- $egin{aligned} \circ x, y = f(t) ext{ for some free parameter } t \end{aligned}$
- Procedural
- Subdivision

## Implicit Representations

A function that tests if a point is in the set

• 
$$f(x,y) = 0$$

- Easy for geometric tests
- Harder for drawing

# Parametric Representations

Index the set with a free parameter

$$\bullet (x,y) = f(t)$$

- easy to generate points - free parameter controls mapping

#### Same Points, Different Functions

$$t \in [0, 1]$$

$$f(t) = (t,0) \ f(t) = (1-t,0) \ f(t) = (t^2,0)$$

- different curves?
- different parameterizations of the same curve?

#### Mathematics defines curves 2 ways

- the image of a 1D interval it's the points!
- the mapping from a 1D interval to a space it's the function (mapping)

we'll try to be specific with what we mean if it matters usually: *curve* is a set of points, *parameterization* is the mapping

#### **A Circle**

#### **Implicit**

$$x^2 + y^2 - 1 = 0$$

#### **Parametric**

$$egin{aligned} x &= \cos(2\pi t) \ y &= \sin(2\pi t) \ t \in [0,1] \end{aligned}$$

# Inside the Disc (area - not a curve)

#### **Implicit**

$$x^2 + y^2 < 1$$

#### **Parametric**

$$egin{aligned} x &= r\cos(2\pi t) \ y &= r\sin(2\pi t) \ t &\in [0,1], r \in [0,1] \end{aligned}$$

#### **Subdivision Representations**

- Start with a set of points
- Have a rule that adds new points (possibly moving others)
- Repeat the rule to add more points

- repeat infinitely many times to get the curve
- design rules so it converges
- limit curve is what you get after infinite subdivisions

# **Toy Example**

- Rule: insert a new point 1/2 way between
- Limit Curve: line segments

#### **Parametric Forms**

Assuming points  $\vec{x}$  or  $\mathbf{x}$ 

$$\mathbf{x} = \mathbf{f}(t)$$

For a curve:

- *t* is a scalar in some range
- x is a point (in 2D or 3D)
- ullet  ${f f}$  is a function  $\mathbb{R} o \mathbb{R}^2$  (or  $\mathbb{R}^3$ )

One "vector" function or functions per dimension

#### Free Parameters and Shape Parameters

#### The range of the free parameter

t goes from start to end

can always scale to 0,1

convention: use u for parameter in [0,1]

(unit parameterization)

use t for more general case (which includes unit)

This is convention - we can use any variable names we like

This will keep coming up

#### Approximation

How many points before it looks "right""?
(smooth)

- Good enough for manufacturing?
   is this round enough to roll?
- What if we zoom in?

Keep "real" curve (infinite...)
Approximate to draw, ...



## **Aside: Drawing Curves**

Ultimately approximate with pixels

Good algorithms for basic shapes

- lines, circles
- bezier curves
- later in class

**Raster Algorithms** 

- in the library/API
- (often) in hardware



# **Defining Smoothness**

We will actually define continuity

Does it have abrupt changes?

- breaks / gaps
- corners
- changes in higher derivatives



### Continuity vs. Other Smoothness

### **Continuity defined**

Are the points next to each other?

Can we draw without lifting the pen?

At a parameter value u

$$f(u^-)=f(u^+)$$

This is continuity in value

## **Continuity in Direction**

Does the curve change direction suddenly?

### **Tangent Vectors**

Line that touches the curve at the point

Velocity (vector) of the pen's travel

Derivative of position with respect to free parameter

$$\mathbf{x} = \mathbf{f}(t)$$

$$\mathbf{\dot{x}} = \mathbf{f'}(t)$$
, where  $\mathbf{f'} = rac{\partial \mathbf{f}}{\partial t}$ 

Tangent/velocity is a **vector** 

It is a function of the free parameter

### **Discontinuity Example**

#### Piecewise line segments:

```
f(u) = if u < .5 then (u,0) else (u,1)
or
f(u) = (u < .5) ? (u,0) : (u,1)
```

Position discontinuity at u=.5

### **Discontinuity Example**

#### Piecewise line segments:

```
f(u) = if u < .5 then (u,u) else (u,.5)
```

Tangent (first derivative) discontinuity at u=.5

Note: discontinuities happen when we switch

#### **Continuity Conditions**

We say a curve is C(n) continuous

If all its derivatives up to (and including) n are continuous

- C(0) positions
- C(1) positions and tangents (1st derivatives)
- C(2) positions and tangents and 2nd derivatives

## How much continuity do we need?

```
C(0) - no gaps
```

C(1) - no corners

C(2) - looks smooth

Higher...

Important for airflow (airplane, car, boat design)

Important for reflections

#### **Speed Matters?**

```
f(u) = if u<0.5 then (u,0) else (2u-0.5,0)
```

It's a horizontal line
The pen doesn't change direction
It does change "speed" at the point

#### C and G continuity

C(n) continuity - all derivatives up to n match

G(n) continuity - the directions of the derivatives match

Technically: requires some terms we haven't learned yet

#### Consider continuity where segments come together

### Better pieces than line segments

Circular arcs?

# C and G continuity with arcs



#### Piecewise Polynomials

#### Chains of low-degree polynomials

- line segment chains (1st degree)
- chains of 2nd or 3rd degree (or more)

### Why not pieces of higher degree?

Given n points, you can make an n-1 degree polynomial

- hard to compute
- hard to control
- unwanted wiggles

#### Come back to this later

#### **Piecewise Parameterizations**

Overall parameterization (t)

Per-piece parameterization (u)

## **General Polynomials**

$$f(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

for 2D, we need:

$$f_x(t) = a_{0x} + a_{1x}t + a_{2x}t^2 + \dots + a_{nx}t^n \ f_y(t) = a_{0y} + a_{1y}t + a_{2y}t^2 + \dots + a_{ny}t^n$$

or use vector notation

$$\mathbf{f}(t) = \mathbf{a_0} + \mathbf{a_1}t + \mathbf{a_2}t^2 + \dots + \mathbf{a_n}t^n$$

Note: the dimensions are independent

### **General Polynomials**

$$\mathbf{f}(t) = \mathbf{a_0} + \mathbf{a_1}t + \mathbf{a_2}t^2 + \cdots + \mathbf{a_n}t^n$$
  $\mathbf{f}(t) = \sum_{i=0}^n \mathbf{a_i}t^i$ 

# **Polynomials**

Linear in the coefficients (given u)

### Polynomial Forms: Line Segment

 $\mathbf{a_0}$  and  $\mathbf{a_1}$ 

$$\mathbf{f}(\mathbf{u}) = \mathbf{a_0} + \mathbf{a_1}u$$

is this convenient?

### **Polynomial Forms: Line Segment**

 $\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1}u$   $\mathbf{p_0}$  and  $\mathbf{p_1}$   $\mathbf{f(u)} = (1-u)\mathbf{p_0} + u\mathbf{p_1}$  easy to specify easy to check continuity between segments easy to convert between forms

 $\mathbf{a_0}$  and  $\mathbf{a_1}$ 

### **Polynomial Forms: Line Segment**

 $a_0$  and  $a_1$ 

$$\mathbf{f}(\mathbf{u}) = \mathbf{a_0} + \mathbf{a_1}u$$

 $\mathbf{p_0}$  and  $\mathbf{p_1}$ 

$$\mathbf{f}(\mathbf{u}) = (1 - u)\mathbf{p_0} + u\mathbf{p_1}$$

 ${f c}$  and  ${f d}$  (center and displacement)

$$\mathbf{f}(\mathbf{u}) = \mathbf{c} + 2 * (u - .5) * \mathbf{d}$$

and many others

### Change of parameters

 $\mathbf{a_0}$  and  $\mathbf{a_1}$   $\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1} u$ 

$$\mathbf{p_0}$$
 and  $\mathbf{p_1}$   $\mathbf{f(u)} = (1-u)\mathbf{p_0} + u\mathbf{p_1}$ 

easy to compute  $a_i$  from other parameters

## Beyond a line...

We need curved segments to get better continuity

# Quadratic (2nd degree) Segments

 $\mathbf{a_0}, \mathbf{a_1}, \mathsf{and} \ \mathbf{a_2}$   $\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1} u + \mathbf{a_2} u^2$ 

what can we do with this?

#### note:

- f(0)
- f'(0)
- $\mathbf{f}(1) = \mathbf{a_0} + \mathbf{a_1} + \mathbf{a_2}$ 
  - $\circ$  if you want to specify where the curve ends, you can compute  $\mathbf{a_2}$
  - $\circ$  are  $a_1$  and  $a_2$  convenient?

## Quadratic (2nd degree) Segments

```
\mathbf{a_0}, \mathbf{a_1}, and \mathbf{a_2} \mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1}u + \mathbf{a_2}u^2 \mathbf{p_0}, \mathbf{p_1}, and \mathbf{??}
```

- $\bullet$  interpolate  $p_{\frac{1}{2}}$
- stay inside triangle (influence)
- specify derivatives (to help match neighbors)

### **Cubics**

The most popular choice in computer graphics

- specify position and 1st derivative at the ends
- C(1), interpolation, local control
- 4x4 matrices (just like 3D transformations)

### **Cubics**

$$\mathbf{f}(\mathbf{u}) = \mathbf{a_0} + \mathbf{a_1}u + \mathbf{a_2}u^2 + \mathbf{a_3}u^3$$

coefficient form is not convenient

#### **Hermite Form**

specify position and 1st derivative at ends

 $\mathbf{p}_0, \mathbf{p}_1$  as well as  $\mathbf{p}_0', \mathbf{p}_1'$ 

need to compute  $a_i$  from these

derivation in the book (or old versions of the class)

### **Hermite Equations**

$$f(u) = p_0 \ u^0 + \ p_0' \ u^1 + \ (-3p_0 - 2p_0' + 3p_1 - p_1') \ u^2 + \ (2p_0 + p_0' - 2p_1 - p_1') \ u^3$$

**SO...** 

 $\mathbf{a_0} = \mathbf{p_0}$  and so on...

### A more useful form

$$f(t) = (1 - 3u^2 + 2u^3) \ p_0 + \ (u - 2u^2 + 1) \ p_0' + \ (3u^2 - 2u^3) \ p_1 + \ (-u^2 + u^3) \ p_1'$$

functions of u for each "control point"

$$f(t) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_0' + b_3(u)p_1' \ b_0(u) = 1 - 3u^2 + 2u^3$$

#### basis functions

### Interpolation

Given a set of points, make a curve through them

But which one?

- shortest? (line segments)
- smooth?

what happens in between points?

### **Designing with Hermite Curves**

We can make C(1) shapes easily Control "in-between" with derivatives

### Avoid specifying derivatives?

Compute derivatives based on neighbor points

### **Cardinal Splines**

### **Catmul-Rom Splines**

### **Tension Parameter**

$$f_i'=s(f_{i+1}-f_{i-1})$$
  $s=rac{1-t}{2}$   $t=0, s=rac{1}{2}$ 

## **Cardinal Interpolation**