UAS - INTRODUCTION TO DATA SCIENCE - STAT6152016

Format nama files: nim_nama.ipynb; nim_nama.pdf; nim_nama.rar

NIM: 2540118656 Nama: Rafael Nicholas Tanaja

Link Video: https://drive.google.com/file/d/1FvYtRQ9NIniCUPvG6atGTMOqCqEWwpB-/view?usp=sharing

Exploratory data analysis and visualization using Python

Memuat Libraries

```
In [1]:
```

```
# Import packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Set style & figures inline
sns.set()
%matplotlib inline
%matplotlib notebook
```

Memuat Data

```
In [2]:
```

```
confirmed_cases_data = 'time_series_covid19_confirmed_global.csv'
death_cases_data = 'time_series_covid19_deaths_global.csv'
recovered_cases_data = 'time_series_covid19_recovered_global.csv'

# Import datasets as pandas dataframes
raw_data_confirmed = pd.read_csv(confirmed_cases_data)
raw_data_deaths = pd.read_csv(death_cases_data)
raw_data_recovered = pd.read_csv(recovered_cases_data)
```

Kasus terkonfirmasi COVID-19

Langkah selanjutnya dalam proses explorasi dan visualisai data covid-19 adalah menampilkan beberapa baris teratas, informasi, dan deskriptif statistik dataframe raw_data_confirmed

```
In [3]:
```

```
raw_data_confirmed.head()
```

```
Out[3]:
```

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	 3/29/20	3/30/20
0	NaN	Afghanistan	33.0000	65.0000	0	0	0	0	0	0	 120	170
1	NaN	Albania	41.1533	20.1683	0	0	0	0	0	0	 212	223
2	NaN	Algeria	28.0339	1.6596	0	0	0	0	0	0	 511	584
3	NaN	Andorra	42.5063	1.5218	0	0	0	0	0	0	 334	370
4	NaN	Angola	-	17.8739	0	0	0	0	0	0	 7	7

5 rows × 81 columns

In [4]:

```
raw data confirmed.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 263 entries, 0 to 262
Data columns (total 81 columns):

	eIndex: 263 enti		
	columns (total		
#	Column	Non-Null Count	
0	Province/State	92 non-null	object
			_
1	Country/Region		object
2	Lat	263 non-null	float64
3	Long	263 non-null	float64
4	1/22/20	263 non-null	int64
5	1/23/20	263 non-null	int64
6	1/24/20	263 non-null	int64
7	1/25/20	263 non-null	int64
8	1/26/20	263 non-null	int64
9	1/27/20	263 non-null	int64
10	1/28/20	263 non-null	int64
11	1/29/20	263 non-null	int64
12	1/30/20	263 non-null	int64
13	1/31/20	263 non-null	int64
14	2/1/20	263 non-null	int64
15	2/2/20	263 non-null	int64
16	2/3/20	263 non-null	int64
17	2/4/20	263 non-null	int64
18	2/5/20	263 non-null	int64
19	2/6/20	263 non-null	int64
20	2/7/20	263 non-null	int64
21	2/8/20	263 non-null	int64
22	2/9/20	263 non-null	int64
23	2/10/20	263 non-null	int64
24	2/11/20	263 non-null	int64
	2/12/20	263 non-null	int64
	2/13/20	263 non-null	int64
	2/14/20	263 non-null	int64
	2/15/20	263 non-null	int64
29		263 non-null	int64
30	2/17/20	263 non-null	int64
	2/18/20	263 non-null	int64
32	2/19/20	263 non-null	int64
33	2/20/20	263 non-null	int64
34	2/21/20	263 non-null	int64
35	2/22/20	263 non-null	int64
36	2/23/20	263 non-null	int64
37	2/24/20	263 non-null	int64
38	2/25/20	263 non-null	int64
39	2/26/20	263 non-null	int64
40	2/27/20	263 non-null	int64
41	2/28/20	263 non-null	int64
42	2/29/20	263 non-null	int64
43	3/1/20	263 non-null	int64
44	3/2/20	263 non-null	int64
45	3/3/20	263 non-null	int64
46	3/4/20		
		263 non-null	int64
47	3/5/20	263 non-null	int64
48	3/6/20	263 non-null	int64
49	3/7/20	263 non-null	int64
50	3/8/20	263 non-null	int64
51	3/9/20	263 non-null	int64
52	3/10/20	263 non-null	int64
53	3/11/20	263 non-null	int64
54	3/12/20	263 non-null	int64
55	3/13/20	263 non-null	int64
56	3/14/20	263 non-null	int64
57	3/15/20	263 non-null	int64

```
58
    3/16/20
                   263 non-null
                                  int64
 59
    3/17/20
                   263 non-null
                                  int64
                   263 non-null
 60
   3/18/20
                                 int64
 61 3/19/20
                   263 non-null int64
 62 3/20/20
                   263 non-null int64
                   263 non-null
                                int64
 63 3/21/20
 64 3/22/20
                   263 non-null int64
 65 3/23/20
                   263 non-null int64
 66 3/24/20
                  263 non-null int64
 67 3/25/20
                  263 non-null int64
 68 3/26/20
                  263 non-null
                                int64
 69 3/27/20
                  263 non-null
                                int64
 70 3/28/20
                  263 non-null
                                int64
71 3/29/20
                  263 non-null
                                 int64
72 3/30/20
                  263 non-null
                                int64
73 3/31/20
                  263 non-null
                                 int64
 74 4/1/20
                                 int64
                   263 non-null
 75 4/2/20
                   263 non-null
                                 int64
 76 4/3/20
                   263 non-null
                                 int64
 77
    4/4/20
                   263 non-null
                                 int64
 78
    4/5/20
                   263 non-null
                                 int64
    4/6/20
 79
                   263 non-null
                                 int64
80 4/7/20
                  263 non-null
                                 int64
dtypes: float64(2), int64(77), object(2)
memory usage: 166.6+ KB
```

memory usage. 100.01

In [5]:

```
raw data confirmed.describe()
```

Out[5]:

	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1
count	263.000000	263.000000	263.000000	263.000000	263.000000	263.000000	263.000000	263.000000	263.000000	263.
mean	21.339244	22.068133	2.110266	2.486692	3.577947	5.452471	8.053232	11.129278	21.209125	23.
std	24.779585	70.785949	27.434015	27.532888	34.275498	47.702207	66.662110	89.815834	220.427512	221.
min	-51.796300	135.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	6.938500	-21.031300	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
50%	23.634500	20.168300	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
75%	41.178850	79.500000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
max	71.706900	178.065000	444.000000	444.000000	549.000000	761.000000	1058.000000	1423.000000	3554.000000	3554.

8 rows × 79 columns

1. Jumlah kasus terkonfirmasi COVID-19 berdasarkan negara (Bobot: 15%)

Informasi diatas masih sangat general sehingga anda perlu mendapatkan informasi yang lebih spesifik, salah satunya mendapatkan informasi jumlah kasus terkonfirmasi COVID-19 berdasarkan kriteria tertentu. Anda perlu menampilkan dataframe <code>confirmed_country</code> yang berisi jumlah kasus terkonfirmasi COVID-19 di setiap negara berdasarkan deret waktu(time series) yang terindeks berdasarkan waktu(date/time) bukan berdasarkan Country/Region.

```
In [6]:
```

```
data_country = raw_data_confirmed.groupby('Country/Region').sum()
data_country
```

Out[6]:

Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/20	 3/29/20	3/30/20
Country/Region	33.0000	65.0000	0	0	0	0	0	0	0	0	 120	170
Albania	41.1533	20.1683	0	0	0	0	0	0	0	0	 212	223
Algeria	28.0339	1.6596	0	0	0	0	0	0	0	0	 511	584
Andorra	42.5063	1.5218	0	0	0	0	0	0	0	0	 334	370
Angola	- 11.2027	17.8739	0	0	0	0	0	0	0	0	 7	7
Vietnam	16.0000	108.0000	0	2	2	2	2	2	2	2	 188	203
West Bank and Gaza	31.9522	35.2332	0	0	0	0	0	0	0	0	 109	116
Western Sahara	24.2155	-12.8858	0	0	0	0	0	0	0	0	 0	0
Zambia	- 15.4167	28.2833	0	0	0	0	0	0	0	0	 29	35
Zimbabwe	20.0000	30.0000	0	0	0	0	0	0	0	0	 7	7

184 rows × 79 columns

In [7]:

```
del data_country['Long']
del data_country['Lat']
```

In [8]:

```
confirmed_country = data_country
confirmed_country = confirmed_country.T
confirmed_country
```

Out[8]:

Country/Region	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	•••	United Arab Emirates
1/22/20	0	0	0	0	0	0	0	0	0	0		С
1/23/20	0	0	0	0	0	0	0	0	0	0		С
1/24/20	0	0	0	0	0	0	0	0	0	0		С
1/25/20	0	0	0	0	0	0	0	0	0	0		С
1/26/20	0	0	0	0	0	0	0	0	4	0		С
4/3/20	281	304	1171	439	8	15	1265	736	5330	11524		1264
4/4/20	299	333	1251	466	10	15	1451	770	5550	11781		1505
4/5/20	349	361	1320	501	14	15	1451	822	5687	12051		1799
4/6/20	367	377	1423	525	16	15	1554	833	5797	12297		207€
4/7/20	423	383	1468	545	17	19	1628	853	5895	12639		2359

77 rows × 184 columns

Berdasarkan data tersebut bisa dilihat bahwa terdapat 184 negara yang terdapat di data.

2. Visualisasi kasus terkonfirmasi COVID-19 berdasarkan negara (Bobot: 15%)

Anda sudah memiliki sebuah dataframe yang berisi kasus terkonfirmasi COVID-19 yang terindeks berdasarkan waktu. Selanjutnya, visualisasikan data jumlah kasus terkonfirmasi di negara-negara berikut (Prancis, Spanyol, Cina, AS, Italia, dan Australia). Berikan judul, labels, dan spesifikasi (ukuran, warna, ketebalan, dll) yang sesuai, sehingga plot yang dihasilkan rapi, menarik, dan mudah dipahami.

```
In [9]:
```

```
#untuk merapikan tanggal
confirmed country.index = pd.to datetime(confirmed country.index,infer datetime format=T
rue)
#memasukkan masing-masing negara ke variable
a = confirmed country['France']
b = confirmed country['Spain']
c = confirmed country['China']
d = confirmed country['US']
e = confirmed country['Italy']
f = confirmed_country['Australia']
#size chart
plt.figure(figsize = (15, 7))
#insert plot
plt.plot(a, color = "#346751", linewidth = 2.5)
plt.plot(b, color = "#9AD0EC", linewidth = 2.5)
plt.plot(c, color = "#7882A4", linewidth = 2.5)
plt.plot(d, color = "#C37B89", linewidth = 2.5)
plt.plot(e, color = "#A6CF98", linewidth = 2.5)
plt.plot(f, color = "#AE4CCF", linewidth = 2.5)
plt.legend(['France', 'Spain', 'China', 'United States', 'Italy', 'Australia'], fontsize = 12
plt.title('Confirmed Case COVID-19', fontsize = 20, fontweight = 'bold')
plt.xlabel('Date', fontsize = 15)
plt.ylabel('Number of Cases', fontsize = 15)
plt.show()
```


Berdasarkan hasil visualisasi diatas, United States memiliki total confirmed case covid-19 yang paling tinggi dan china memiliki jumlah confirmed casenya tidak melebihi 100.000.

3. Jumlah kasus kematian COVID-19 yang dilaporkan berdasarkan negara (Bobot: 15%)

Selain informasi kasus terkonfirmasi, anda juga perlu mendapatkan informasi mengenai kasus kematian COVID-

```
In [10]:
```

```
# Beberapa baris teratas/terbawah dari dataframe raw_data_death
raw data deaths.head(5)
```

Out[10]:

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20 .	3/29/20	3/30/20
0	NaN	Afghanistan	33.0000	65.0000	0	0	0	0	0	0 .	4	4
1	NaN	Albania	41.1533	20.1683	0	0	0	0	0	0 .	10	11
2	NaN	Algeria	28.0339	1.6596	0	0	0	0	0	0 .	31	35
3	NaN	Andorra	42.5063	1.5218	0	0	0	0	0	0 .	6	8
4	NaN	Angola	- 11.2027	17.8739	0	0	0	0	0	0 .	2	2

5 rows × 81 columns

▶

In [11]:

20

2/22/20

```
# informasi dataframe raw data death
raw data deaths.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 263 entries, 0 to 262

Data columns (total 81 columns): # Column Non-Null Count Dtype -----Province/State 82 non-null object 0 1 Country/Region 263 non-null object 263 non-null float64 2 Lat 3 Long 263 non-null float64 4 1/22/20 263 non-null int64 5 1/23/20 263 non-null int64 6 1/24/20 263 non-null int64 7 1/25/20 263 non-null int64 int64 8 1/26/20 263 non-null 9 1/27/20 263 non-null int64 10 1/28/20 263 non-null int64 11 1/29/20 263 non-null int64 12 1/30/20 263 non-null int64 13 263 non-null 1/31/20 int64 14 2/1/20 263 non-null int64 int64 15 2/2/20 263 non-null 16 2/3/20 263 non-null int64 263 non-null int64 263 non-null int64 17 2/4/20 18 2/5/20

19 2/6/20 263 non-null int64 20 2/7/20 263 non-null int64 21 2/8/20 263 non-null int64 22 2/9/20 263 non-null int64 23 2/10/20 263 non-null int64 263 non-null int64 24 2/11/20 263 non-null int64 25 2/12/20 263 non-null int64 26 2/13/20 27 2/14/20 263 non-null int64 int64 28 2/15/20 263 non-null int64 263 non-null 29 2/16/20 int64 30 2/17/20 263 non-null 31 2/18/20 263 non-null int64 32 2/19/20 263 non-null 33 2/20/20 263 non-null int64 263 non-null int64 34 2/21/20 35 2/22/20 263 non-null int64

262 --- --- 11

```
30 2/23/20
                  ∠03 NON-NULL TUC04
 37 2/24/20
                  263 non-null
                               int64
 38 2/25/20
                 263 non-null
                               int64
39 2/26/20
                 263 non-null int64
 40 2/27/20
                 263 non-null int64
 41 2/28/20
                 263 non-null
 42 2/29/20
                 263 non-null
                               int64
 43 3/1/20
                 263 non-null
                               int64
 44 3/2/20
                 263 non-null
                               int64
 45
   3/3/20
                 263 non-null
                               int64
 46 3/4/20
                  263 non-null
                                int64
 47
    3/5/20
                  263 non-null
                                int64
 48
    3/6/20
                  263 non-null
                                int64
 49
    3/7/20
                  263 non-null
                                int64
                  263 non-null
                               int64
 50
    3/8/20
                  263 non-null
                               int64
 51
    3/9/20
 52
    3/10/20
                  263 non-null int64
 53
   3/11/20
                  263 non-null int64
 54
   3/12/20
                  263 non-null int64
 55
                 263 non-null int64
   3/13/20
 56 3/14/20
                 263 non-null int64
   3/15/20
                 263 non-null int64
 57
 58
   3/16/20
                 263 non-null int64
 59
   3/17/20
                 263 non-null int64
   3/18/20
                 263 non-null int64
 61
   3/19/20
                 263 non-null int64
 62 3/20/20
                 263 non-null int64
 63 3/21/20
                 263 non-null int64
                               int64
   3/22/20
                 263 non-null
 64
 65 3/23/20
                 263 non-null
                               int64
                  263 non-null
                                int64
 66
    3/24/20
 67
    3/25/20
                  263 non-null
                  263 non-null
                               int64
 68
    3/26/20
                  263 non-null
                              int64
 69
    3/27/20
                  263 non-null
                               int64
 70
    3/28/20
                  263 non-null
                               int64
 71 3/29/20
                               int64
                  263 non-null
 72 3/30/20
 73 3/31/20
                  263 non-null
                               int64
74 4/1/20
                 263 non-null int64
 75 4/2/20
                 263 non-null int64
 76 4/3/20
                 263 non-null int64
 77 4/4/20
                 263 non-null
 78 4/5/20
                 263 non-null
                               int64
79 4/6/20
                 263 non-null
                               int64
                 263 non-null
80 4/7/20
                               int64
dtypes: float64(2), int64(77), object(2)
memory usage: 166.6+ KB
```

Out[14]:

Hasil analisis yang saya dapatkan adalah terdapat 263 baris data kematian COVID-19

Selanjutnya, tampilkan beberapa baris teratas/terbawah data kasus kematian COVID-19 di setiap negara yang terindeks berdasarkan waktu(date/time) bukan berdasarkan Country/Region.

```
In [12]:

deaths_each_country = raw_data_deaths.groupby('Country/Region').sum()
del deaths_each_country['Long']
del deaths_each_country['Lat']

In [13]:

deaths_each_country = deaths_each_country.T

In [14]:

deaths_each_country.index
```

```
'2/3/20', '2/4/20', '2/5/20', '2/6/20', '2/7/20', '2/8/20', '2/9/20', '2/10/20', '2/11/20', '2/12/20', '2/13/20', '2/14/20', '2/15/20', '2/16/20', '2/17/20', '2/18/20', '2/19/20', '2/20/20', '2/21/20', '2/22/20', '2/23/20', '2/24/20', '2/25/20', '2/26/20', '2/27/20', '2/28/20', '2/29/20', '3/1/20', '3/2/20', '3/3/20', '3/4/20', '3/5/20', '3/6/20', '3/7/20', '3/8/20', '3/9/20', '3/10/20', '3/11/20', '3/12/20', '3/13/20', '3/14/20', '3/15/20', '3/16/20', '3/17/20', '3/18/20', '3/19/20', '3/20/20', '3/21/20', '3/22/20', '3/23/20', '3/24/20', '3/25/20', '3/26/20', '3/27/20', '3/28/20', '3/29/20', '3/30/20', '3/31/20', '4/1/20', '4/2/20', '4/3/20', '4/4/20', '4/5/20', '4/6/20', '4/7/20'], dtype='object')
```

In [15]:

```
deaths_each_country[0:5]
```

Out[15]:

Country/Region	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	 United Arab Emirates
1/22/20	0	0	0	0	0	0	0	0	0	0	 С
1/23/20	0	0	0	0	0	0	0	0	0	0	 С
1/24/20	0	0	0	0	0	0	0	0	0	0	 C
1/25/20	0	0	0	0	0	0	0	0	0	0	 С
1/26/20	0	0	0	0	0	0	0	0	0	0	 C

5 rows × 184 columns

1 P

Dari data yang telah ditampilkan, ditunjukan bahwa pertumbuhan jumlah kasus kematian COVID-19 di setiap negara terdapat kasus yang makin hari makin bertambah dan ada juga negara yang stabil.

4. Penyelarasan kurva pertumbuhan seluruh negara dengan jumlah kasus kematian COVID-19 ≥ 25 (Bobot: 25%)

Untuk mendapatkan gambaran perkembangan kasus covid-19 di berbagai negara, diperlukan penyelarasan kurva pertumbuhan setiap negara. Kurva hanya menampilkan informasi yang dimulai dengan hari dimana data kasus kematian COVID-19 setidaknya 25 orang.

```
In [16]:
```

```
deaths = deaths_each_country[deaths_each_country >= 25]
deaths
```

Out[16]:

Country/Region	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	 United Arab Emirates
1/22/20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
1/23/20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
1/24/20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
1/25/20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
1/26/20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
4/3/20	NaN	NaN	105.0	NaN	NaN	NaN	39.0	NaN	28.0	168.0	 NaN

4/4/20	NaN	NaN	130.0	NaN	NaN	Antigua	43.0	NaN	30.0	186.0		UnlifeN
Country/Region 4/5/20	Afghanistan NaN	Albania NaN	Algeria 152.0	Andorra NaN	Angola NaN	and NaN Barbuda	Argentina 44.0	Armenia NaN	Australia 35.0	Austria 204.0		Arab NaN Emirates
4/6/20	NaN	NaN	173.0	NaN	NaN	NaN	48.0	NaN	40.0	220.0		NaN
4/7/20	NaN	NaN	193.0	NaN	NaN	NaN	56.0	NaN	45.0	243.0		NaN

77 rows × 184 columns

[4]

Visualisasikan hasil diatas dan berikan/atur judul, labels, dan spesifikasi (ukuran, warna, ketebalan, dll) yang sesuai sehingga plot/kurva yang dihasilkan rapi, menarik, dan mudah dipahami.

In [17]:

```
deaths.index = pd.to_datetime(deaths.index,infer_datetime_format=True)
```

In [18]:

```
for i in deaths:
    test = deaths[i].sum()
    if test == 0:
        continue
    else:
        plt.figure(figsize = (10,5))
        plt.title(i, fontsize = 15, fontweight = 'bold')
        plt.plot(deaths[i], linewidth = 2.5)
        plt.xticks(rotation=35)
        plt.show()
```


20003.5. 20003.5. 20003.5. 20003.5. 20003.5. 20003.5. 200040. 200040. 200040.

Ecuador 175

<ipython-input-18-4c143f65e1d0>:6: RuntimeWarning: More than 20 figures have been opened.
Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained un
til explicitly closed and may consume too much memory. (To control this warning, see the
rcParam `figure.max open warning`).

plt.figure(figsize = (10,5))

Kematian di dunia paling banyak dialami oleh US dan China.

5. Visualisasi jumlah pasien yang sembuh (recovered people) (Bobot: 25%)

Anda perlu mendapatkan informasi mengenai total pasien COVID-19 yang dinyatakan sembuh seperti pada kasus terkonfirmasi dan kasus kematian tapi, kali ini lakukan hal tersebut dengan membuat user-defined functions yang diperlukan bukan mengetik ulang barisan code yang sama seperti di nomor sebelumnya.

```
In [19]:
```

```
#type your function codes here
def pasien_sembuh():
    global recovered
    global world
    total = 0
    recovered = raw_data_recovered.groupby('Country/Region').sum()
    del recovered['Long']
    del recovered['Lat']
    recovered = recovered.T
```

```
world = recovered[:].sum(axis = 1)

max = recovered.max()
for i in max:
    total += i

display(recovered.head(5))
display(recovered.tail(5))

print("")
print("")
print('\033[1m' + "Total Pasien COVID-19 yang dinyatakan sembuh adalah", total)
```

Periksa fungsi-fungsi yang sudah anda buat

In [20]:

```
pasien_sembuh()
```

Country/Region	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	 United Kingdom
1/22/20	0	0	0	0	0	0	0	0	0	0	 С
1/23/20	0	0	0	0	0	0	0	0	0	0	 С
1/24/20	0	0	0	0	0	0	0	0	0	0	 C
1/25/20	0	0	0	0	0	0	0	0	0	0	 С
1/26/20	0	0	0	0	0	0	0	0	0	0	 C

5 rows × 196 columns

•

Country/Region	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	•••	United Kingdom
1/7/22	0	0	0	0	0	0	0	0	0	0		C
1/8/22	0	0	0	0	0	0	0	0	0	0		С
1/9/22	0	0	0	0	0	0	0	0	0	0		С
1/10/22	0	0	0	0	0	0	0	0	0	0		С
1/11/22	0	0	0	0	0	0	0	0	0	0		С

5 rows × 196 columns

Total Pasien COVID-19 yang dinyatakan sembuh adalah 137249981

Selanjutnya,tampilkan data total pasien COVID-19 yang sembuh dalam bentuk grafik yang sesuai. Berikan judul, labels, dan spesifikasi (ukuran, warna, ketebalan, dll) yang sesuai sehingga plot yang dihasilkan rapi, menarik, dan mudah dipahami.

In [21]:

```
world.index = pd.to_datetime(world.index,infer_datetime_format=True)

#size chart
fig,ax = plt.subplots(figsize = (20, 15))

#insert plot
ax.plot(world, color = "#B8405E", linewidth = 4.5)
ax.legend(['World'], fontsize = 20)
ax.set_title('World Recovered Case COVID-19', fontsize = 23, fontweight = 'bold')
ax.set_xlabel('Date', fontsize = 18)
```

```
ax.set_ylabel('Number of Cases', fontsize = 18)
plt.xticks(size = 15)
ax.set_yticklabels(['0', '20 Juta', '40 Juta', '60 Juta', '80 Juta', '100 Juta', '120 Juta'], size = 15)
plt.show()
```



```
<ipython-input-21-90d314b7bee1>:13: UserWarning: FixedFormatter should only be used toget
her with FixedLocator
   ax.set_yticklabels(['0', '20 Juta', '40 Juta', '60 Juta', '80 Juta', '100 Juta', '120 J
uta'], size = 15)
```

Jumlah kasus yang sembuh dari covid-19 semakin banyak dan memiliki puncak di bulan 8 - 2021

Lakukan visualisasi yang sama pada beberapa negara berikut (France, Spain, China, US, Italy, and Australia). Berikan judul, labels, dan spesifikasi (ukuran, warna, ketebalan, dll) yang sesuai sehingga plot yang dihasilkan rapi, menarik, dan mudah dipahami.

```
In [22]:
```

```
recovered.index = pd.to_datetime(recovered.index,infer_datetime_format=True)
```

In [23]:

```
prancis = recovered['France']
spanyol = recovered['Spain']
china = recovered['China']
us = recovered['US']
itali = recovered['Italy']
australia = recovered['Australia']

#size chart
fig,ax1 = plt.subplots(figsize = (20, 15))
```

```
#insert plot
plt.plot(prancis, color = "#346751", linewidth = 2.5)
plt.plot(spanyol, color = "#9ADOEC", linewidth = 2.5)
plt.plot(china, color = "#7882A4", linewidth = 2.5)
plt.plot(us, color = "#C37B89", linewidth = 2.5)
plt.plot(itali, color = "#A6CF98", linewidth = 2.5)
plt.plot(australia, color = "#AE4CCF", linewidth = 2.5)
plt.legend(['France','Spain','China','United States','Italy','Australia'], fontsize = 20)
plt.title('Recovered Case COVID-19', fontsize = 23, fontweight = 'bold')
plt.xlabel('Date', fontsize = 20)
plt.ylabel('Number of Cases', fontsize = 20)
ax1.set_yticklabels(['0', '1 Juta', '2 Juta', '3 Juta', '4 Juta', '5 Juta', '6 Juta'], s
ize = 15)
plt.xticks(size = 15)
plt.show()
```



```
<ipython-input-23-df9114c49e46>:22: UserWarning: FixedFormatter should only be used toget
her with FixedLocator
   ax1.set_yticklabels(['0', '1 Juta', '2 Juta', '3 Juta', '4 Juta', '5 Juta', '6 Juta'],
size = 15)
```

Amerika memiliki kasus recovered COVID-19 tertinggi dari bulan 4-2020 hingga bulan 12-2020