

About me...

MSc Cognitive Science

Machine Learning Engineer: Health, Security, Environmental Science

Toptal Latin America & Africa Regional Leader

MMA Fighter, loves cats

www.toptal.com/medellin-ml

$$\delta w_{ji} = \alpha (t_j - \phi(h_j)) \phi'(h_j) x_i$$

Learning

Why TensorFlow?

Denny Britz @dennybritz · 25 Dec 2017

I'm going through my newsletters to write up a year-end summary of developments and achievements in Al.

Fun fact: Almost every week, a company released a new generic or task-specific Deep Learning "framework"

Why TensorFlow?

Stars and Repositories

Companies using TensorFlow

Demand for tutorials on TensorFlow

Classify skin cancer

WaveNet: Text to Speech

1 Second

Drawing

Neural Style Translation

The best time to learn Machine Learning Deep Learning.

Tensorflow launched November 2015

Andrew Ng's Deep Learning Specialization launched August 2017

Sequence models available since February 2018

Learning Tensorflow

Gradient Descent

$$\delta w_{ji} = \alpha (t_j - \phi(h_j)) \phi'(h_j) x_i$$

alpha * (expected - calculated) * derivative_of_calculated * input_at_i

Ballmer Peak

X

Time of the day	Language of choice	Bottles of beer	# of bugs	
13:00	PHP	0	16	
15:00	Ruby	2	8	
20:00	Python	1	7	
23:00	23:00 JavaScript		9	
3:00	Haskell	I forgot	4	
		;	(52)	

MACHINE LEARNING METHODS

CLASSIFICATION

REGRESSION

MACHINE LEARNING METHODS

Supervised Learning

Unsupervised Learning

X

Time of the day	Language of choice	Bottles of beer	# of bugs	
13:00	PHP	0	16	
15:00	Ruby	2	8	
20:00	Python	1	7	
23:00	JavaScript	5	9	
3:00	Haskell	_	4	

Fill up this value


```
from sklearn.preprocessing import Imputer
2
  imputer = Imputer(strategy="median")
5 code_num = code_data.drop("language", axis=1)
6
  imputer.fit(code_num)
8
9 X = imputer.transform(code_num)
10
```


Min-max scaling	Standarization	
0-1	0 mean, unit variance	
Values shifted and rescaled	Good with outliers	
MinMaxScaler	StandardScaler	

X

13:00 PHP 0 16 15:00 Ruby 2 8 20:00 Python 1 7 23:00 JavaScript 5 9	Time of the day	Language of choice	Bottles of beer	# of bugs	
20:00 Python 1 7	13:00	PHP	0	16	
	15:00	Ruby	2	8	
23:00 JavaScript 5 9	20:00	20:00 Python		7	
	23:00	23:00 JavaScript		9	
3:00 Haskell - 4	3:00 Haskell		_	4	

Label Encoding

Name	Number	
PHP	1	
Ruby	2	
Python	3	
JavaScript	4	
Haskell	5	

Similarity

Similarity

One Hot Encoding

Time of the day	Bottles of beer	# of bugs	PHP?	Ruby?	Python?
13:00	0	16	1	0	0
15:00	2	8	0	1	0
20:00	1	7	0	0	1
23:00	5	9	0	0	0
3:00	_	4	0	0	0


```
from sklearn.pipeline import FeatureUnion
num pipeline = Pipeline([
        ('selector', DataFrameSelector(num attribs)),
        ('imputer', Imputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std scaler', StandardScaler()),
    1)
cat pipeline = Pipeline([
        ('selector', DataFrameSelector(cat attribs)),
        ('label binarizer', LabelBinarizer()),
    1)
full pipeline = FeatureUnion(transformer list=[
        ("num pipeline", num pipeline),
        ("cat_pipeline", cat_pipeline),
    1)
```

Aurélien Géron. "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems."

Try some models

```
names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
         "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
         "Naive Bayes", "QDA"]
classifiers = [
   KNeighborsClassifier(3),
   SVC(kernel="linear", C=0.025),
   SVC(gamma=2, C=1),
   GaussianProcessClassifier(1.0 * RBF(1.0), warm start=True),
   DecisionTreeClassifier(max depth=5),
   RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
   MLPClassifier(alpha=1),
   AdaBoostClassifier(),
   GaussianNB(),
   QuadraticDiscriminantAnalysis()]
```

Iterate

```
iterate over datasets
for ds cnt, ds in enumerate(datasets):
    # preprocess dataset, split into training and test part
   X, y = ds
    X = StandardScaler().fit_transform(X)
    X_train, X_test, y_train, y_test = \bigvel{1}
        train test split(X, y, test size=.4, random state=42)
    # iterate over classifiers
    for name, clf in zip(names, classifiers):
        clf.fit(X train, y train)
        score = clf.score(X test, y test)
```

http://scikit-learn.org/stable/

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, ran-

dom forest. ...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso, ...

- Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased effi-

ciency

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.

— Examples

Be the worst

"Always be the worst guy in every band you're in."
-Pat Metheny

Get a job that challenges you.

Breaking into the field

```
why are programmers
```

```
why are programmers so rude
```

why are programmers so weird

why are programmers so smart

why are programmers so arrogant

why are programmers

why are programmers so awkward

why are programmers paid so much

why are programmers single

why are programmers weird

why are programmers such douchebags

Get a job at Google

BEGINNERS

Hands-on
Machine
Learning with
Scikit-Learn &
TensorFlow
Aurélien Géron

Welch Labs Youtube

Learning

