Automatic Ticketing Machine

Consider an automatic ticket machine, placed in a very crowded area. We can consider that as soon as a costumer completes her transaction, a new one is immediately available to start a new purchase.

The costumer first starts interacting with the Graphical User Interface of the machine. The time required to complete her choice, is Hyper-exponential distributed with the characteristics shown in row A of the table I below. 20% of the costumers does not buy a ticket and leave immediately the machine. The other 80% who purchases a ticket, pays it either with cash (35%) or with an electronic transaction (65%). The length of two operations is different, and it is reported respectively in rows B and C of table I below. When payment has been completed, the system prints the ticket, with a time that follows row D of table I below. Table II shows the cost of the tickets, with the probability that the corresponding document is issued.

Analyze the considered scenario:

- 1. Draw a state machine of the system.
- 2. Compute the probability that it is either: waiting for user input, handling a cash transaction, handling an electronic transaction, printing a ticket
- 3. Compute the average duration of a transaction the time (expressed in minutes) the machine is used by a costumer.
- 4. Compute the average cash collected by the machine in 20 hours of operation.

Case	Description	Distribution	
A GUI time 2 stage Hyper-exponential with:		2 stage Hyper-exponential with:	
		$p_1 = 0.8$, $\lambda_1 = 0.4 \text{ min}^{-1}$	
		$p_2 = 0.2$, $\lambda_2 = 0.1 \text{ min}^{-1}$	
В	Cash payment	Exponential with $\lambda = 0.4 \text{ min}^{-1}$	
С	Electronic payment	Erlang $k = 4$, and $\lambda = 2 \text{ min}^{-1}$	
D	Printing	2 stage Hyper-Erlang:	
		$p_1 = 0.95, k_1 = 2, \lambda_1 = 10 \text{ min}^{-1}$	
		$p_2 = 0.05, k_2 = 1, \lambda_2 = 0.1 \text{ min}^{-1}$	

Table I: Distributions

Ticket type	Fare	Probability
Urban	2.50€	90%
Area I	4.00 €	6%
Area II	6.00 €	4%

Table II: Fares and their distribution