Übungsblatt 1

Aufgabe 1

 M_n , $\forall_n \in \mathbb{N}$ abzählbar heißt, dass es $\forall n \in \mathbb{N}$ nach Voraussetzung eine surjektive Abbildung gibt mit f_n : $\mathbb{N} \Rightarrow M_n$.

Wir ordnen die Funktionswerte wie folgt an:

$$\begin{array}{lll} f_{1}\left(1\right) & f_{1}\left(2\right) & f_{1}\left(3\right) & f_{1}\left(4\right) \\ f_{2}\left(1\right) & f_{2}\left(2\right) & f_{2}\left(3\right) \\ f_{3}\left(1\right) & f_{3}\left(2\right) \end{array}$$

Mit

$$f_1(1) \to f_1(2) \to f_2(1) \to f_3(1) \to f_2(2) \to f_1(3) \to f_1(4) \to f_2(3) \to f_3(2)$$
 usw...

Wir definieren eine Abbildung

$$f:\mathbb{N}\to\bigcup_{n\in\mathbb{N}}M_n$$
demnach $f\left(1\right)=f_1\left(1\right),\,f\left(2\right)=f_1\left(2\right),\,f\left(3\right)=f_2\left(1\right),\,f\left(4\right)=f_3\left(1\right),$ usw...

Behauptung: f ist surjektiv

<u>Beweis</u>: Sei $x \in \bigcup_{n \in \mathbb{N}} M_n$, d.h. $\exists n \in \mathbb{N}, x \in M$

 \Rightarrow Es gibt ein $l \in \mathbb{N}$ mit $f_n(l) = x$. Nach dieser Konstruktion gibt es $m \in \mathbb{N}$: $f(m) = f_n(l) = x$. Somit ist die Vereinigung abzählbarer Mengen wieder abzählbar

Aufgabe 2

a)

Zu zeigen: $\sum_{k}^{*} = \{1, ..., k\}^{*}$ abzählbar.

Es sei K aus \mathbb{N}^+ beliebig

$$\sum_{K}^{*} = \bigcup_{n \in \mathbb{N}} \sum_{K}^{n}$$

Da es nur endliche Strings der Länge
n gibt (also $|\sum_k|^n$ viele), ist \sum_K^n abzählbar.

$$\Rightarrow \sum_K^*$$
abzählbar aus Aufgabe 1

b)

Es gilt: Ein Polynom p(x) des n-ten Grades hat höchstens n-viele Nullstellen. Die Anzahl der Nullstellen eines Polynoms ist abzählbar. Da $a_i \in \mathbb{Z}$ mit $i \in \{a, ..., n\}$ aus den ganzen Zahlen kommt, ist die Menge aller Polynome mit ganzzahligen Koeffizienten abzählbar. Daraus und aus Aufgabe 1 folgt, dass die Vereinigung der Polynome abzählbar ist.

⇒ Die Menge der reelen algebraischen Zahlen ist abzählbar

c)

Die Menge der reelen transzenten Zahlen \mathbb{T} ist mit $\mathbb{T} = \mathbb{R} \setminus \mathbb{A}$ definiert, wobei \mathbb{A} die Menge aller reelen algebraischen Zahlen ist.

Da $\mathbb R$ überabzählbar ist und eine abzählbare Menge entfernt wird, muss $\mathbb T$ überabzählbar sein.

Aufgabe 3

a)

$$\delta(z_0, \square) = (z_1, 1, R)$$

$$\delta(z_0, 1) = (z_1, 1, L)$$

$$\delta(z_1, \square) = (z_0, 1, L)$$

$$\delta(z_1, 1) = (z_e, 1, L)$$

$$z_0 \square \to 1z_1 \square \to z_0 \square 1 \square \to z_1 \square 1 \square \to z_0 \square 1 \square \to 1z_1 \square 1 \to z_e \square 1 \square 1$$

$$\Rightarrow BBTM(2) = 4$$

b) $(2 \cdot 2 \cdot (n+1))^{2n}$

c)

$$(z_n, \square) \rightarrow (z_e, 1, R)$$

 $(z_n, 1) \rightarrow (z_n, 1, R)$

 \Rightarrow Somit kommt in jedem neuen Schritt mindestens eine 1 (also 1 Holzstück) hinzu. $\Rightarrow BB\left(\cdot\right)$ ist streng monoton wachsende Funktion