MATH 140 Inference Formulas

• CI for
$$\mu$$
 if σ is known : $\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$

• CI for
$$\mu$$
 if σ is unknown : $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$

• CI for
$$p: \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• CI for
$$\mu_1 - \mu_2$$
: $(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

• CI for
$$p_1 - p_2$$
: $(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$

• 1-sample
$$t: t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

• 2-sample
$$t:$$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• test for 1 proportion :
$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

• test for 2 proportions :
$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}}$$
 (\hat{p} is pooled proportion)

