

COVID-19

Global Health Data Analytics Using MySQL

INTRODUCTI

Thi presentation showcases a series of advanced SQL queries performed to analyze global health data, with a focus on identifying key trends, high-risk regions, and critical performance metrics. The analysis leverages MySQL's aggregation, filtering, and analytical capabilities to transform raw data into actionable insights.

- Global Total Cases, Deaths, and Recovery Rate Summarizing overall impact on a global scale.
- Top 10 Countries with Highest Active Cases Identifying regions with the most ongoing infections.
- Daily New Cases Globally Tracking the daily growth and spread of infections.
- Case Fatality Rate by Country Evaluating the severity of the outbreak across nations.
- Top 10 Countries by Highest Deaths Highlighting the most affected countries by fatalities.
- Daily Growth Rate per Country Analyzing the trend of infections in each country.
- Peak Cases Date per Country Identifying when the outbreak peaked regionally.
- Mortality vs Recovery Correlation per Country Exploring the relationship between deaths and recoveries.

This comprehensive analysis provides a data-driven understanding of the global situation, enabling better forecasting, risk assessment, and strategic decision-making.

1. Global Total Cases, Deaths, and Recovery Rate

SELECT

SUM(confirmed) AS total cases,

SUM(deaths) AS total_deaths,

SUM(recovered) AS total_recovered,

ROUND(SUM(deaths) * 100.0 / NULLIF(SUM(confirmed), 0), 2) AS death_rate,

ROUND(SUM(recovered) * 100.0 / NULLIF(SUM(confirmed), 0), 2) AS recovery_rate

FROM covid_19_data;

Shows overall impact and key percentages globally.

2. Top 10 Countries with Highest Active Cases

SELECT

`Country/Region`, (SUM(confirmed) - SUM(recovered) - SUM(deaths)) AS active_cases FROM covid_19_data GROUP BY 'Country/Region' ORDER BY active_cases DESC LIMIT 10; Export: Wrap Cell Content: TA Fetch rows: Result Grid Filter Rows: Country/Region active cases Mainland China 259286 284 Singapore Hong Kong 240 Japan Others South Korea 182 Thailand 181 Taiwan 150 Australia 127 123

Identifies countries with the most ongoing cases.

3. Daily New Cases Globally

SELECT

ObservationDate,

SUM(confirmed) - LAG(SUM(confirmed)) OVER (ORDER BY ObservationDate) AS daily_new_cases

FROM covid_19_data

GROUP BY ObservationDate

ORDER BY ObservationDate;

	IWUXA				* -
	esult Grid 📗 🔌	Filter Rows:	Export:	Wrap Cell Content:	1
	ObservationDate	daily_new_cases			
•	2/9/2020	2815			
	2/8/2020	2729			
	2/7/2020	3574			
	2/6/2020	3182			
	2/5/2020	3744			
	2/4/2020	4011			
	2/3/2020	3094			
	2/2/2020	4749			
	2/1/2020	2113			
	1/31/2020	1690			
	1/30/2020	2070			
	1/29/2020	587			
	1/28/2020	2651			
	1/27/2020	809			
	1/26/2020	681			
	1/25/2020	496			
	1/24/2020	156			

Shows how cases evolved daily.

4. Case Fatality Rate by Country

SELECT

`Country/Region`,

ROUND(SUM(Deaths) * 100.0 / NULLIF(SUM(Confirmed), 0), 2) AS case_fatality_rate

FROM covid_19_data

GROUP BY 'Country/Region'

ORDER BY case_fatality_rate DESC;

Country/Region	case_fatality_rate		
Philippines	36.84		
Hong Kong	2.40		
Mainland China	2.17		
Macau	0.00		
Taiwan	0.00		
US	0.00		
Japan	0.00		
Thailand	0.00		
South Korea	0.00		
Russia	0.00		
Sweden	0.00		
Singapore	0.00		
Malaysia	0.00		
Vietnam	0.00		
Australia	0.00		

Measures severity across countries.

5. Top 10 Countries by Highest Deaths

SELECT

`Country/Region`,

SUM(Deaths) AS total_deaths

FROM covid_19_data

GROUP BY 'Country/Region'

ORDER BY total_deaths DESC

LIMIT 10;

Normalizes cases based on population size.

6. Daily Growth Rate per Country

```
SELECT
```

```
`Country/Region`,
ObservationDate,
SUM(confirmed) AS total_confirmed,
ROUND ((SUM(confirmed) - LAG(SUM(Confirmed)) OVER (PARTITION BY `Country/Region`
ORDER BY ObservationDate)) * 100.0 / NULLIF(LAG(SUM(Confirmed)) OVER (PARTITION BY `Country/Region`
ORDER BY ObservationDate), 0), 2) AS growth_rate_percentage
```

FROM covid_19_data

GROUP BY `Country/Region`, ObservationDate

ORDER BY `Country/Region`, ObservationDate DESC;

Detects acceleration or slowdown of the outbreak.

7. Peak Cases Date per Country

WITH daily_data AS

(SELECT `Country/Region`, ObservationDate,

WHERE rnk = 1;

SUM(Confirmed) - LAG(SUM(Confirmed)) OVER (PARTITION BY `Country/Region` ORDER BY ObservationDate) AS daily_cases

FROM covid_19_data

GROUP BY `Country/Region`, ObservationDate)

SELECT `Country/Region`, ObservationDate, daily_cases

FROM (

SELECT *, RANK() OVER (PARTITION BY `Country/Region`

ORDER BY daily_cases DESC) AS rnk

FROM daily_data) ranked

Result Grid 🔢 🛭 F	iter Rows:	Exp	ort:	Wrap Cell Cont	ent: IA
Country/Region	ObservationDate	daily_cases			
Australia	1/25/2020	4	-		
Australia	1/30/2020	4			
Belgium	2/8/2020	0			
Belgium	2/5/2020	0			
Belgium	2/6/2020	0			
Belgium	2/7/2020	0			
Brazil	1/23/2020	NULL			
Cambodia	1/28/2020	0			
Cambodia	1/29/2020	0			
Cambodia	1/30/2020	0			
Cambodia	1/31/2020	0			
Cambodia	2/1/2020	0			
Cambodia	2/2/2020	0			
Cambodia	2/3/2020	0			
Cambodia	2/4/2020	0			
Cambodia	2/5/2020	0			
Cambodia	2/6/2020	0			
Cambodia	2/7/2020	0			
Cambodia	2/8/2020	0			

Finds the date when each country had its highest surge.

8. Mortality vs. Recovery Correlation per Country

SELECT

`Country/Region`,

ROUND(SUM(Deaths) * 100.0 / NULLIF(SUM(Deaths) + SUM(Recovered), 0), 2) AS Mortality_percentage,

ROUND(SUM(Recovered) * 100.0 / NULLIF(SUM(Deaths) + SUM(Recovered), 0), 2) AS Recovery_percentage

FROM covid_19_data

GROUP BY 'Country/Region'

ORDER BY Mortality_percentage DESC;

Compares how each country fared in terms of survival vs. mortality.

Conclusion and Future Work

This project demonstrates the effective use of advanced SQL analytics to extract, process, and analyze large-scale global health data. By employing structured queries in MySQL, it delivers accurate, scalable, and reproducible insights into key metrics such as cases, deaths, recovery rates, and country-wise trends. The work establishes a robust analytical framework that supports real-time monitoring and can be adapted for future applications in infectious disease surveillance, healthcare planning, and risk assessment.

Building upon this foundation, future enhancements will focus on:

- I. Advanced Analytical Queries: Incorporating predictive modeling using SQL with machine learning integration.
- II. Dynamic Dashboards: Connecting the database to visualization tools such as Power BI or Tableau for interactive, real-time insights.
- **III. Data Enrichment:** Integrating additional datasets (vaccination rates, demographic information, healthcare infrastructure).
- IV. Automated ETL Pipelines: Enabling seamless data ingestion and periodic updates for continuous analysis.
- V. Scalability and Cloud Deployment: Migrating the database to cloud-based platforms for global accessibility and higher processing capabilities.

This forward-looking approach ensures the project remains **relevant**, **extensible**, **and impactful**, serving as a foundation for **evidence-based research and decision-making** in public health and beyond.