#### Introduction

Modelling parallel systems

### **Linear Time Properties**

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

safety properties "nothing bad will happen"

**liveness properties** "something good will happen"

safety properties "nothing bad will happen" examples:

- mutual exclusion
- deadlock freedom
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen"

# safety properties "nothing bad will happen" examples:

- mutual exclusion
- deadlock freedom
- "every red phase is preceded by a yellow phase"

# **liveness properties** "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

## **safety properties** "nothing bad will happen" examples:

- mutual exclusion \ special case: invariants
- deadlock freedom \ "no bad state will be reached"
- "every red phase is preceded by a yellow phase"

# **liveness properties** "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

$$\Phi ::= true \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \end{vmatrix} \dots$$
atomic proposition, i.e.,  $a \in AP$ 



semantics: interpretation over a subsets of AP

$$\Phi ::= true \begin{vmatrix} a \\ \uparrow \end{vmatrix} \Phi_1 \wedge \Phi_2 \begin{vmatrix} \neg \Phi \\ \uparrow \end{vmatrix} \Phi_1 \vee \Phi_2 \begin{vmatrix} \Phi_1 \rightarrow \Phi_2 \\ \downarrow \end{bmatrix} \dots$$
atomic proposition, i.e.,  $a \in AP$ 

semantics: Let  $A \subseteq AP$ 

$$A \models true$$
 $A \models a$  iff  $a \in A$ 
 $A \models \Phi_1 \land \Phi_2$  iff  $A \models \Phi_1$  and  $A \models \Phi_2$ 
 $A \models \neg \Phi$  iff  $A \not\models \Phi$ 

$$\Phi ::= true \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \\ \hline atomic proposition, i.e., a \in AP \end{vmatrix} \cdots$$

semantics: Let  $A \subseteq AP$ 

$$A \models true$$
 $A \models a$  iff  $a \in A$ 
 $A \models \Phi_1 \land \Phi_2$  iff  $A \models \Phi_1$  and  $A \models \Phi_2$ 
 $A \models \neg \Phi$  iff  $A \not\models \Phi$ 

e.g., 
$$\{a,b\} \not\models (a \rightarrow \neg b) \lor c \quad \{a,b\} \not\models a \lor c$$

$$\Phi ::= true \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \\ \hline atomic proposition, i.e., a \in AP \end{vmatrix} \cdots$$

semantics: Let  $A \subseteq AP$ 

$$A \models true$$
 $A \models a$  iff  $a \in A$ 
 $A \models \Phi_1 \land \Phi_2$  iff  $A \models \Phi_1$  and  $A \models \Phi_2$ 
 $A \models \neg \Phi$  iff  $A \not\models \Phi$ 

for state **s** of a TS over **AP**:  $\mathbf{s} \models \Phi$  iff  $L(\mathbf{s}) \models \Phi$ 

Let  $\boldsymbol{E}$  be an LT property over  $\boldsymbol{AP}$ .

**E** is called an invariant if there exists a propositional formula  $\Phi$  over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let  $\boldsymbol{E}$  be an LT property over  $\boldsymbol{AP}$ .

**E** is called an invariant if there exists a propositional formula  $\Phi$  over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

 $\Phi$  is called the invariant condition of E.

```
mutual exclusion (safety):
```

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \notin A_i \text{ or } \operatorname{crit}_2 \notin A_i \end{cases}$$

here: 
$$AP = \{ crit_1, crit_2, \ldots \}$$

```
mutual exclusion (safety):  MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i \end{cases}
```

invariant condition:  $\phi = \neg crit_1 \lor \neg crit_2$ 

here:  $AP = \{ crit_1, crit_2, \ldots \}$ 

mutual exclusion (safety):

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \notin A_i \text{ or } \operatorname{crit}_2 \notin A_i \end{cases}$$

invariant condition:  $\phi = \neg crit_1 \lor \neg crit_2$ 

deadlock freedom for 5 dining philosophers:

$$DF = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N} \exists j \in \{0, 1, 2, 3, 4\}. \text{ wait}_j \notin A_i \end{cases}$$

invariant condition:

$$\Phi = \neg wait_0 \lor \neg wait_1 \lor \neg wait_2 \lor \neg wait_3 \lor \neg wait_4$$

here: 
$$AP = \{ wait_j : 0 \le j \le 4 \} \cup \{ \ldots \}$$

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff  $trace(\pi) \in E$  for all  $\pi \in Paths(T)$ 

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff  $trace(\pi) \in E$  for all  $\pi \in Paths(T)$  iff  $s \models \Phi$  for all states  $s$  on a path of  $T$ 

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff  $trace(\pi) \in E$  for all  $\pi \in Paths(T)$   
iff  $s \models \Phi$  for all states  $s$  on a path of  $T$   
iff  $s \models \Phi$  for all states  $s \in Reach(T)$ 

set of reachable states in T

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff  $trace(\pi) \in E$  for all  $\pi \in Paths(T)$   
iff  $s \models \Phi$  for all states  $s$  on a path of  $T$   
iff  $s \models \Phi$  for all states  $s \in Reach(T)$ 

i.e.,  $\Phi$  holds in all initial states and is invariant under all transitions





perform a graph analysis (**DFS** or **BFS**) to check whether  $s \models \Phi$  for all  $s \in Reach(T)$ 



perform a graph analysis (**DFS** or **BFS**) to check whether  $s \models \Phi$  for all  $s \in Reach(T)$ 



error indication: initial path fragment  $s_0 s_1 \dots s_{n-1} s_n$  such that  $s_i \models \Phi$  for  $0 \le i < n$  and  $s_n \not\models \Phi$ 

### **DFS-based invariant checking**

input: finite transition system T, invariant condition  $\Phi$ 

LTProp/is2.5-7

input: finite transition system T, invariant condition  $\Phi$ 

```
FOR ALL s_0 \in S_0 DO

IF DFS(s_0, \Phi) THEN

return "no"

FI

OD

return "yes"
```

input: finite transition system T, invariant condition  $\Phi$ 

```
FOR ALL s_0 \in S_0 DO

IF DFS(s_0, \Phi) THEN

return "no"

FI

OD

return "yes"
```

 $DFS(s_0, \Phi)$  returns "true" iff depth-first search from state  $s_0$  leads to some state t with  $t \not\models \Phi$ 

LTProp/is2.5-7

#### **DFS-based invariant checking**

*input:* finite transition system T, invariant condition  $\Phi$ 

```
\pi := \emptyset \longleftarrow stack for error indication
FOR ALL s_0 \in S_0 DO
       IF DFS(s_0, \Phi) THEN
           return "no" and reverse(\pi)
       FT
UD
return "yes"
```

 $DFS(s_0, \Phi)$  returns "true" iff depth-first search from state  $s_0$  leads to some state t with  $t \not\models \Phi$ 

input: finite transition system T, invariant condition  $\Phi$ 

```
\pi := \varnothing \longleftarrow stack for error indication
FOR ALL s_0 \in S_0 DO
       IF DFS(s_0, \Phi) THEN
           return "no" and reverse (\pi)
       FΙ
UD
return "yes"
```

 $DFS(s_0, \Phi)$  returns "true" iff depth-first search from state  $s_0$  leads to some state t with  $t \not\models \Phi$ 

*input:* finite transition system T, invariant condition  $\Phi$ 

$$U := \varnothing \longleftarrow$$
 stores the "processed" states

 $\pi := \varnothing \longleftarrow$  stack for error indication

FOR ALL  $s_0 \in S_0$  DO

IF  $DFS(s_0, \Phi)$  THEN

return "no" and  $reverse(\pi)$ 

FI

OD

return "yes"

 $s_n = t$ 
 $s_n = t$ 
 $s_n = t$ 

 $DFS(s_0, \Phi)$  returns "true" iff depth-first search from state  $s_0$  leads to some state t with  $t \not\models \Phi$ 

(1)

```
IF s \notin U THEN
      IF s \not\models \Phi THEN return "true" FI
      IF s \models \Phi THEN
      FΙ
FΙ
return "false"
```

```
IF s \notin U THEN

IF s \not\models \Phi THEN return "true" FI

IF s \models \Phi THEN

insert s in U;
```

FI FI return "false"

```
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
     FΙ
FT
return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                 IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
     FΙ
Pop(\pi); return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
                                                initial
     FΙ
FT
                                                state
Pop(\pi); return "false"
```

"searches" for a path fragment  $s \dots t$  with  $t \not\models \Phi$ 

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
FT
                                                 state
Pop(\pi); return "false"
```

"searches" for a path fragment  $s \dots t$  with  $t \not\models \Phi$ 

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
                                                 state
Pop(\pi); return "false"
```

"searches" for a path fragment  $s \dots s' \dots t$  with  $t \not\models \Phi$ 

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
                                                 state
Pop(\pi); return "false"
```



$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 

IS2.5-9



stack π

*S*<sub>0</sub>

$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 



stack  $\pi$ 

**S**1

$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 



 $DFS(s_0, a)$   $DFS(s_1, a)$   $DFS(s_1, a)$ 

stack  $\pi$ 



$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 





stack  $\pi$ 



$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 









$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 

IS2.5-9



$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 







$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 







$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 







IS2.5-9



invariant condition a

$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 



stack  $\pi$ 





$$s_0, s_1, s_2 \models a$$
  
 $t \not\models a$ 









#### Introduction

Modelling parallel systems

# **Linear Time Properties**

state-based and linear time view definition of linear time properties invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

state that "nothing bad will happen"

state that "nothing bad will happen"

#### invariants:

- mutual exclusion: never crit₁ ∧ crit₂

## other safety properties:

- German traffic lights:
   every red phase is preceded by a yellow phase
- beverage machine:
   the total number of entered coins is never less
   than the total number of released drinks

state that "nothing bad will happen"

# invariants: ← "no **bad state** will be reached"

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;
   0≤i<n</li>

## other safety properties:

- German traffic lights:
   every red phase is preceded by a yellow phase
- beverage machine:
   the total number of entered coins is never less
   than the total number of released drinks

other safety properties:

"no bad prefix"

state that "nothing bad will happen"

```
invariants: ← "no bad state will be reached"
```

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;
   0≤i<n</li>

```
    German traffic lights:
```

- every red phase is preceded by a yellow phase
- beverage machine:
   the total number of entered coins is never less
   than the total number of released drinks

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g.,  $\dots$   $\{\bullet\}$ 

13 / 174

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g.,  $\dots$  { $\bullet$ }

beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., {pay} {drink} {drink}

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

**E** = set of all infinite words that do *not* have a bad prefix

*E* is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=} set of bad prefixes for E$ 

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$  set of bad prefixes for  $E \subseteq (2^{AP})^+$ 

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$  set of bad prefixes for  $E \subseteq (2^{AP})^+$  briefly: BadPref

**E** is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix  $A_0 A_1 \dots A_n$  of  $\sigma$  such that none of the words  $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$  belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words  $A_0 A_1 \dots A_n$  are called bad prefixes for E.

minimal bad prefixes: any word  $A_0 \dots A_i \dots A_n \in BadPref$ s.t. no proper prefix  $A_0 \dots A_i$  is a bad prefix for E



$$AP = \{red, yellow\}$$





hence:  $T \models E$ 

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



hence:  $T \models E$ 

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```





hence:  $T \models E$ 

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



"there is a red phase that is not preceded by a yellow phase"



hence:  $T \models E$ 

```
E = \text{ set of all infinite words } A_0 A_1 A_2 \dots
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



"there is a red phase that is not preceded by a yellow phase"

hence:  $T \not\models E$ 



hence:  $T \models E$ 

$$E = \text{ set of all infinite words } A_0 A_1 A_2 ...$$
  
over  $2^{AP}$  such that for all  $i \in \mathbb{N}$ :  
 $red \in A_i \implies i \ge 1$  and  $yellow \in A_{i-1}$ 



 $T \not\models E$ bad prefix, e.g.,  $\emptyset \{ red \} \emptyset \{ yellow \}$ 



"every red phase is preceded by a yellow phase"

hence:  $T \models E$ 

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$
  
over  $2^{AP}$  such that for all  $i \in \mathbb{N}$ :  
 $red \in A_i \implies i \ge 1$  and  $yellow \in A_{i-1}$ 



 $T \not\models E$  minimal bad prefix:

 $\emptyset$  { red }



"every red phase is preceded by a yellow phase"

hence:  $T \models E$ 

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```

is a safety property over  $AP = \{red, yellow\}$  with

BadPref = set of all finite words 
$$A_0 A_1 ... A_n$$
  
over  $2^{AP}$  s.t. for some  $i \in \{0, ..., n\}$ :  
red  $\in A_i \land (i=0 \lor yellow \notin A_{i-1})$ 

Let  $E \subseteq (2^{AP})^{\omega}$  be a safety property, T a TS over AP.

$$\mathcal{T} \models E$$
 iff  $\mathit{Traces}(\mathcal{T}) \subseteq E$ 

$$Traces(T)$$
 = set of traces of  $T$ 

Let  $E \subseteq (2^{AP})^{\omega}$  be a safety property, T a TS over AP.

$$T \models E$$
 iff  $Traces(T) \subseteq E$  iff  $Traces_{fin}(T) \cap BadPref = \emptyset$ 

**BadPref** = set of all bad prefixes of 
$$E$$

```
Traces(T) = \text{ set of traces of } T
Traces_{fin}(T) = \text{ set of finite traces of } T
= \left\{ trace(\widehat{\pi}) : \widehat{\pi} \text{ is an initial, finite path fragment of } T \right\}
```

Let  $E \subseteq (2^{AP})^{\omega}$  be a safety property, T a TS over AP.

$$T \models E$$
 iff  $Traces(T) \subseteq E$   
iff  $Traces_{fin}(T) \cap BadPref = \emptyset$   
iff  $Traces_{fin}(T) \cap MinBadPref = \emptyset$ 

```
BadPref= set of all bad prefixes of EMinBadPref= set of all minimal bad prefixes of ETraces(T)= set of traces of TTraces<sub>fin</sub>(T)= set of finite traces of T= { trace(\hat{\pi}) : \hat{\pi} is an initial, finite path fragment of T}
```

correct.

## correct.

Let E be an invariant with invariant condition  $\Phi$ .

## correct.

Let E be an invariant with invariant condition  $\Phi$ .

• bad prefixes for E: finite words  $A_0 \dots A_i \dots A_n$  s.t.

$$A_i \not\models \Phi$$
 for some  $i \in \{0, 1, ..., n\}$ 

## correct.

Let E be an invariant with invariant condition  $\Phi$ .

- bad prefixes for E: finite words  $A_0 ... A_i ... A_n$  s.t.  $A_i \not\models \Phi$  for some  $i \in \{0, 1, ..., n\}$
- minimal bad prefixes for E: finite words  $A_0 A_1 ... A_{n-1} A_n$  such that  $A_i \models \Phi$  for i = 0, 1, ..., n-1, and  $A_n \not\models \Phi$

 $\varnothing$  is a safety property

# correct

### correct

• all finite words  $A_0 \dots A_n \in (2^{AP})^+$  are bad prefixes

### correct

- all finite words  $A_0 \dots A_n \in (2^{AP})^+$  are bad prefixes
- Ø is even an invariant (invariant condition *false*)

### correct

- all finite words  $A_0 \dots A_n \in (2^{AP})^+$  are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$  is a safety property

### correct

- all finite words  $A_0 \dots A_n \in (2^{AP})^+$  are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$  is a safety property

### correct

### correct

- all finite words  $A_0 \dots A_n \in (2^{AP})^+$  are bad prefixes
- Ø is even an invariant (invariant condition *false*)

$$(2^{AP})^{\omega}$$
 is a safety property

### correct

"For all words 
$$\in (2^{AP})^{\omega} \setminus (2^{AP})^{\omega} \dots$$
"

**Prefix closure** 

is2.5-prefix-closure

For a given infinite word  $\sigma = A_0 A_1 A_2 \dots$ , let

$$pref(\sigma) \stackrel{\text{def}}{=} \text{ set of all nonempty, finite prefixes of } \sigma$$

$$= \left\{ A_0 A_1 \dots A_n : n \ge 0 \right\}$$

For a given infinite word 
$$\sigma = A_0 A_1 A_2 \dots$$
, let  $\operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set}$  of all nonempty, finite prefixes of  $\sigma$  
$$= \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\}$$
 For  $E \subseteq \left(2^{AP}\right)^{\omega}$ , let  $\operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in E} \operatorname{\textit{pref}}(\sigma)$ 

For a given infinite word 
$$\sigma = A_0 A_1 A_2 \dots$$
, let  $\operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set}$  of all nonempty, finite prefixes of  $\sigma$  
$$= \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\}$$
 For  $E \subseteq (2^{AP})^{\omega}$ , let  $\operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in F} \operatorname{\textit{pref}}(\sigma)$ 

Given an LT property  $\boldsymbol{E}$ , the prefix closure of  $\boldsymbol{E}$  is:

$$cl(E) \stackrel{\text{def}}{=} \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

# Theorem:

E is a safety property iff cl(E) = E

remind: LT properties and trace inclusion:

If  $T_1$  and  $T_2$  are TS over AP then:

$$Traces(T_1) \subseteq Traces(T_2)$$

iff for all LT properties E:  $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ 

remind: LT properties and trace inclusion:

safety properties and finite trace inclusion:

If 
$$\mathcal{T}_1$$
 and  $\mathcal{T}_2$  are TS over  $AP$  then: 
$$\mathcal{T}_{races_{fin}}(\mathcal{T}_1) \subseteq \mathcal{T}_{races_{fin}}(\mathcal{T}_2)$$
 iff for all safety properties  $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* " $\Longrightarrow$ ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff  $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* " $\Longrightarrow$ ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff  $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$ 

Hence:

If 
$$T_2 \models E$$
 and  $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$  then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties  $E: T_2 \models E \implies T_1 \models E$ 

*Proof* " $\Longrightarrow$ ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff  $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$ 

Hence:

If 
$$T_2 \models E$$
 and  $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$  then:

$$Traces_{fin}(T_1) \cap BadPref$$

$$Traces_{fin}(T_1) \cap BadPref$$

$$\subseteq Traces_{fin}(T_2) \cap BadPref = \emptyset$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* " $\Longrightarrow$ ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff  $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$ 

Hence:

If  $\mathcal{T}_2 \models E$  and  $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$  then:

$$Traces_{fin}(T_1) \cap BadPref$$

$$Traces_{fin}(T_1) \cap BadPref$$
 $\subseteq Traces_{fin}(T_2) \cap BadPref = \emptyset$ 

and therefore  $T_1 \models E$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof " $\Leftarrow$ ": consider the LT property  $E = cl(Traces(T_2))$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

 $\mathit{Traces_{fin}}(\mathcal{T}_1) \subseteq \mathit{Traces_{fin}}(\mathcal{T}_2)$  iff for all safety properties  $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ 

*Proof* " $\Leftarrow$ ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "← ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

for each transition system T:

$$pref\left(Traces(\mathcal{T})\right) = Traces_{fin}(\mathcal{T})$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties  $E: T_2 \models E \implies T_1 \models E$ 

*Proof* " $\Leftarrow$ ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* " $\Leftarrow$ ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

as 
$$cl(E) = E$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties  $E: T_2 \models E \implies T_1 \models E$ 

*Proof* "← ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

as 
$$cl(E) = E$$

set of bad prefixes:  $(2^{AP})^+ \setminus Traces_{fin}(T_2)$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

 $\mathit{Traces_{fin}}(\mathcal{T}_1) \subseteq \mathit{Traces_{fin}}(\mathcal{T}_2)$  iff for all safety properties  $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ 

*Proof* " $\Leftarrow$ ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, **E** is a safety property and  $T_2 \models E$ .

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

By assumption:  $T_1 \models E$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* " $\Leftarrow$ ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

By assumption:  $T_1 \models E$  and therefore  $Traces(T_1) \subseteq E$ .

Hence:  $Traces_{fin}(T_1) = pref(Traces(T_1))$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

Hence: 
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$
  
 $\subseteq pref(E)$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

Hence: 
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$
  
 $\subseteq pref(E) = pref(cl(Traces(T_2)))$ 

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

*Proof* "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and  $T_2 \models E$ .

Hence: 
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$
  
 $\subseteq pref(E) = pref(cl(Traces(T_2)))$   
 $= Traces_{fin}(T_2)$ 

# Safety and finite trace equivalence

## Safety and finite trace equivalence

safety properties and finite trace inclusion:

If  $T_1$  and  $T_2$  are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties  $E: T_2 \models E \implies T_1 \models E$ 

safety properties and finite trace inclusion:

safety properties and finite trace equivalence:

trace inclusion

$$Traces(T) \subseteq Traces(T')$$
 iff

for all LT properties  $E: T' \models E \Longrightarrow T \models E$ 

finite trace inclusion

$$Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$$
 iff

for all safety properties  $E: T' \models E \Longrightarrow T \models E$ 

## Summary: trace relations and properties

trace equivalence

$$Traces(T) = Traces(T')$$
 iff

T and T' satisfy the same LT properties

finite trace equivalence

$$Traces_{fin}(T) = Traces_{fin}(T')$$
 iff

T and T' satisfy the same safety properties

If  $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ then  $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$ .

```
If Traces(T) \subseteq Traces(T')
then Traces_{fin}(T) \subseteq Traces_{fin}(T').
```

#### correct, since

```
Traces_{fin}(T) = set of all finite nonempty prefixes of words in Traces(T) = pref(Traces(T))
```

If 
$$Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$$
  
then  $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$ .

#### correct, since

$$Traces_{fin}(T)$$
 = set of all finite nonempty prefixes of words in  $Traces(T)$  =  $pref(Traces(T))$ 

is trace equivalence the same as finite trace equivalence ?

is trace equivalence the same as finite trace equivalence ?

answer: no







$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions  $AP = \{b\}$ 





$$Traces(T) = \{\emptyset^{\omega}\}$$





$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions

$$AP = \{b\}$$





$$\frac{\mathsf{Traces}(\mathcal{T})}{\mathsf{Traces}_{\mathsf{fin}}(\mathcal{T})} = \{\varnothing^{\omega}\}$$





$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions  $AP = \{b\}$ 



$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions 
$$AP = \{b\}$$



$$T$$

$$Traces(T) = \{\varnothing^{\omega}\}$$

$$Traces_{fin}(T) = \{\varnothing^{n} : n \ge 0\}$$

$$Traces(T') = \{\varnothing^{n}\{b\}^{\omega} : n \ge 2\}$$

$$Traces_{fin}(T') = \{\varnothing^{n} : n \ge 0\} \cup \{\varnothing^{n}\{b\}^{m} : n \ge 2 \land m \ge 1\}$$

$$Traces(\mathcal{T}) \not\subseteq Traces(\mathcal{T}')$$
, but  $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$ 

$$T$$

$$Traces(T) = \{\varnothing^{\omega}\}$$

$$Traces_{fin}(T) = \{\varnothing^{n} : n \ge 0\}$$

$$Traces(T') = \{\varnothing^{n}\{b\}^{\omega} : n \ge 2\}$$

$$Traces_{fin}(T') = \{\varnothing^{n} : n \ge 0\} \cup \{\varnothing^{n}\{b\}^{m} : n \ge 2 \land m \ge 1\}$$

 $Traces(T) \not\subseteq Traces(T')$ , but  $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ 

LT property  $E \cong$  "eventually **b**"  $T \not\models E, T' \models E$ 

- (1) **T** has no terminal states,
- (2) T' is finite.

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

```
Then: \mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}') iff \mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \subseteq \mathit{Traces}_{\mathit{fin}}(\mathcal{T}')
```

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

```
Then: \mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}') iff \mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \subseteq \mathit{Traces}_{\mathit{fin}}(\mathcal{T}')
```

" $\Longrightarrow$ ": holds for all transition systems, no matter whether (1) and (2) hold

- (1) **T** has no terminal states, i.e., all paths of **T** are infinite
- (2) T' is finite.

```
Then: \mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}') iff \mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \subseteq \mathit{Traces}_{\mathit{fin}}(\mathcal{T}')
```

- "⇒": holds for all transition systems
- " $\leftarrow$ ": suppose that (1) and (2) hold and that
  - $(3) \quad Traces_{fin}(T) \subseteq Traces_{fin}(T')$

Show that  $Traces(T) \subseteq Traces(T')$ 

- (1) **T** has no terminal states
- (2) T' is finite
- $(3) \quad Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then  $Traces(T) \subseteq Traces(T')$ 

Proof:

- (1) **T** has no terminal states
- (2) T' is finite
- $(3) \quad Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then  $Traces(T) \subseteq Traces(T')$ 

*Proof:* Pick some path  $\pi = s_0 s_1 s_2 ...$  in T and show that there exists a path

$$\pi'=t_0\,t_1\,t_2...$$
 in  $\mathcal{T}'$ 

such that  $trace(\pi) = trace(\pi')$ 

finite TS T'paths from state  $t_0$ (unfolded into a tree)



finite TS T' paths from state  $t_0$  (unfolded into a tree)



finite TS T' paths from state  $t_0$  (unfolded into a tree)

contains all path fragments with trace  $A_0 A_1 ... A_n$ 



finite until depth  $\leq n$ 





finite TS T'

paths from state to

(unfolded into a tree)

contains infinitely many path fragments  $t_n S_{n+1}^m \dots S_m^m$ 

contains all path fragments with trace  $A_0 A_1 \dots A_n$  in particular:  $t_0 t_1 \dots t_n$ 

finite until depth ≤ *n* 

there exists  $t_{n+1} \in Post(t_n)$ s.t.  $t_{n+1} = s_{n+1}^m$  for infinitely many m Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite  $\longleftarrow$  image-finiteness is sufficient

(3)  $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then  $Traces(T) \subseteq Traces(T')$ 

Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite  $\longleftarrow$  image-finiteness is sufficient

(3)  $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then  $Traces(T) \subseteq Traces(T')$ 

image-finiteness of 
$$T' = (S', Act, \rightarrow, S'_0, AP, L')$$
:

```
Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite \longleftarrow image-finiteness is sufficient

(3) Traces_{fin}(T) \subseteq Traces_{fin}(T')

Then Traces(T) \subseteq Traces(T')
```

```
image-finiteness of T' = (S', Act, \rightarrow, S'_0, AP, L'):
```

• for each  $A \in 2^{AP}$  and state  $s \in S'$ :

$$\{t \in Post(s) : L'(t) = A\}$$
 is finite

Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite

(3)  $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then  $Traces(T) \subseteq Traces(T')$ 

image-finiteness of 
$$T' = (S', Act, \rightarrow, S'_0, AP, L')$$
:

- for each  $A \in 2^{AP}$  and state  $s \in S'$ :
- $\{t \in Post(s) : L'(t) = A\}$  is finite
- for each  $A \in 2^{AP}$ :  $\{s_0 \in S'_0 : L'(s_0) = A\}$  is finite

Whenever 
$$Traces(T) = Traces(T')$$
 then  $Traces_{fin}(T) = Traces_{fin}(T')$ 

## Trace equivalence vs. finite trace equivalence

Whenever 
$$Traces(T) = Traces(T')$$
 then  $Traces_{fin}(T) = Traces_{fin}(T')$ 

while the reverse direction does not hold in general (even not for finite transition systems)

## Trace equivalence vs. finite trace equivalence

Whenever 
$$Traces(T) = Traces(T')$$
 then  $Traces_{fin}(T) = Traces_{fin}(T')$ 

while the reverse direction does not hold in general (even not for finite transition systems)



Whenever 
$$Traces(T) = Traces(T')$$
 then  $Traces_{fin}(T) = Traces_{fin}(T')$ 

while the reverse direction does not hold in general (even not for finite transition systems)



finite trace equivalent, but *not* trace equivalent

## Trace equivalence vs. finite trace equivalence

Whenever 
$$Traces(T) = Traces(T')$$
 then  $Traces_{fin}(T) = Traces_{fin}(T')$ 

The reverse implication holds under additional assumptions, e.g.,

- if T and T' are finite and have no terminal states
- or, if *T* and *T'* are *AP*-deterministic