Unsupervised pre-training for images

Sunita Sarawagi

CS 725 Fall 2023

Reading material

- Chapter 19.2.4 in Probabilistic ML by K Murphy
- Papers

Motivation

- ML models have more parameters than the amount of labelled data available for training them well
 - Labeled data: e.g.
 - Images along with labels of objects in them
 - Images with caption
- ResNET CNN with 50 layers has 23 million parameters
- Unlabelled data:
 - Large collection of images but without any labels or captions.
 - Can we harness these for pre-training a CNN for image classification or captioning?

Unsupervised >> self-supervised

- Starting from unlabeled data e.g. collection of images, use a set of scripts to automatically create supervised tasks out of them.
- Example, for text data next-token prediction.
- Three types of self-supervised tasks for images:
- →• Imputation
 - Mask part of image and generate that
 - Proxy or pretext tasks
 - Create image pairs and use Siamese networks to generate representations that can predict relationship between them
 - Contrastive learning
 - Like metric learning, but create similar pairs on your own.

Imputation

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

Pretext task: predict relative patch locations

(Image source: Doersch et al., 2015)

Contrastive Representation Learning

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 52

May 17, 2022

Contrastive Representation Learning

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(\check{s}(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)))} + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} x_1^{-N} \right]$$

SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$$s(u,v) = \frac{u^T v}{||u||||v||} = \frac{\text{dot product (u,v)}}{\text{norm (u) norm (v)}}$$

Use a projection network $g(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

 random cropping, random color distortion, and random blur.

SimCLR: generating positive samples from data augmentation

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

SimCLR

Generate a positive pair by sampling data augmentation functions

Iterate through and use each of the 2N sample as reference, compute average loss

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do

draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation

$$egin{aligned} oldsymbol{ ilde{x}}_{2k-1} &= t(oldsymbol{x}_k) \ oldsymbol{h}_{2k-1} &= f(oldsymbol{ ilde{x}}_{2k-1}) & ext{\# representation} \ oldsymbol{z}_{2k-1} &= g(oldsymbol{h}_{2k-1}) & ext{\# projection} \end{aligned}$$

the second augmentation

$$egin{aligned} ilde{m{x}}_{2k} &= t'(m{x}_k) \ m{h}_{2k} &= f(m{ ilde{x}}_{2k}) \ m{z}_{2k} &= g(m{h}_{2k}) \end{aligned}$$
 # representation # projection

end for

for all
$$i \in \{1, \dots, 2N\}$$
 and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \boldsymbol{z}_i^{\top} \boldsymbol{z}_j / (\|\boldsymbol{z}_i\| \|\boldsymbol{z}_j\|)$ # pairwise similarity

end for

define
$$\ell(i,j)$$
 as
$$\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$$

$$\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$$
 update networks f and g to minimize \mathcal{L}

end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x^-

Semi-supervised learning on SimCLR features

		Label fraction				
Method	Architecture	1%	10%			
		— Top 5				
Supervised baseline	ResNet-50	48.4	80.4			
Methods using other label-propagation:						
Pseudo-label	ResNet-50	51.6	82.4			
VAT+Entropy Min.	ResNet-50	47.0	83.4			
UDA (w. RandAug)	ResNet-50	-	88.5			
FixMatch (w. RandAug)	ResNet-50	-	89.1			
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2			
Methods using representa	tion learning only:					
InstDisc	ResNet-50	39.2	77.4			
BigBiGAN	RevNet-50 $(4\times)$	(55.2)	78.8			
PIRL	ResNet-50	57.2	83.8			
CPC v2	ResNet-161(*)	77.9	91.2			
SimCLR (ours)	ResNet-50	75.5	87.8			
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2			
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6			

Train feature encoder on ImageNet (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

Table 7. ImageNet accuracy of models trained with few labels.

Self-supervised multi-modal pre-training

Learning to jointly encode image and text

https://icml.cc/media/icml-2021/Slides/9193.pdf