

Questions

- 1. Please explain the specifics of ALD in comparison to CVD!
- 2. What are the steps of an ALD cycle?
- 3. Please name potential applications of ALD thin films!
- 4. Please name the basic process steps in the process flow of lithography and patterning!
- 5. Please name and discuss the equation for the resolution! (How to lower critical dimension CD = min. printable feature size)
- 6. Please name the applied resolution enhancement techniques (RET)
- Please define the terms "anisotropy" and "selectivity"!
- 8. What are potential dry etching techniques? Please name the respective etching mechanisms and the achievable anisotropy!
- 9. Please draw a reactor for reactive ion etching and name the different parts!

Seminar 4 : Deposition Processes (2) -ALD

Q1 Please explain the specifics of ALD in comparison to CVD!

<u>ALD</u>

- Highly reactive precursors
- precursors react separately on the substrate
- precursors must not decompose at process temperature
- Uniformity ensured by the saturation mechanism at the surface
- thickness controlled by amount of cycles (growth per cycle GPC)
- Surplus precursor dosing acceptable

CVD

- Less reactive precursors
- Precursors react at the same time on the substrate
- Precursors can decompose at process temperature
- Uniformity requires uniform flux of reactants and temperature (in reaction rate limited case)
- Thickness control by precise process control and monitoring
- Precursor dosing important

Seminar 4 : Deposition Processes (2) -ALD

Atomic Layer Deposition: Comparison of ALD and CVD

<u>ALD</u>

- Highly reactive precursors
- Precursors react separately on the substrate
- Precursors do not decompose at process temperature
- Uniformity ensured by the saturation mechanism
- Thickness control by counting the number of reaction cycles
- Surplus precursor dosing acceptable

C V D

- Less reactive precursors
- Precursors react at the same time on the substrate
- Precursors can decompose at process temperature
- Uniformity requires uniform flux of reactants and temperature (in reaction rate limited case)
- Thickness control by precise process control and monitoring
- Precursor dosing important

Seminar 4 : Deposition Processes (2) -ALD

Q2 What are the steps of an ALD cycle?

How many steps per cycle (min.)? 4 steps

- Step 1: Precursor A chemisorbs at the surface (chemical reaction, saturation of all available reaction sites)
- Step 2: Purge: removal of unreacted precursor & reaction byproducts
- Step 3: Precursor B chemisorbs at the surface (chemical reaction, saturation of all available reaction sites)
- Step 4: Purge: removal of unreacted precursor & reaction byproducts

How many cycles are combined for complete film deposition?

- For approx. 5 nm we may need 50 ... 100 cycles (given a GPC 0.05 ... 0.1 nm/cycle)

Atomic Layer-by-layer Growth

The intrinsic surface control mechanism:

Saturation of all the reaction/adsorpion sites

Purging step

ALD Cycle

Seminar 4: Deposition Processes (2) -ALD

Q3 Please name potential applications of ALD thin films! (in production)

Applications	Materials
 High-k dielectrics for: MOS gate insulator integrated capacitors (memory) Diffusion barrier films Seed layers for the electrochem. Dep. (ECD) 	HfOx, HfSixOy Al2O3 TiN, TaN, WCN Cu
4) Capacitor electrodes	Ru, TiN, TaN

Atomic Layer Deposition: Processes for IC Industry

High-k gate dielectrics

- Replacement of current SiO₂/Si₃N₄ films
- Processes available for ZrO₂, HfO₂, mixed materials
- Targeted (equivalent) oxide thickness EOT: ~ 1.0 nm

High-k capacitor dielectrics

- Replacement of current SiO₂/Si₃N₄, Ta₂O₅ films
- ALD processes for Al₂O₃, Ta₂O₅

Diffusion barriers (to avoid Cu diffusion)

- Replacement current sputtered diffusion barriers
- ALD processes for TiN, W(C)N, Ta(C)N, mixed nitrides

Conducting/Metal films

- ALD Cu seed layers for Cu electroplating
- Electrodes for high k gate and capacitor applications (metals & metal nitrides)

EOT – equivalent oxide thickness

Seminar 4: Lithography

Q4 Please name the basic process steps in the process flow of lithography and patterning!

- 1) pre-treatment: dehydration bake / adhesion promotor deposition
- 2) spin-on deposition / coating of the wafer with photoresist (PR)
- 3) Pre-exposure bake (drive of solvent)
- Exposure (mask): positive resist: exposed areas will change ist properties and get resolvable
- 5) Post-exposure bake
- 6) Development of PR (patterning the PR, etching the exposed areas in a liquid solution)
- Hard bake: making the PR more crosslinked, resistive to the etching process
- Dry Etching pattern the film using the PR mask (additional hard mask may be required)
- 9) PR stripping / removal by combination of dry/wet process
- 10) [cleaning]

Q5 Please name and discuss the equation for the resolution! (How to lower critical dimension CD = min. printable feature size)

$$I_{min} = k_1 \cdot \frac{\lambda}{NA}$$

Ways to reduce I_{min}:

- 1) Reduce exposure wavelength (some 100 nm ... DUV 248/193 nm ... EUV/soft X-ray 13.5 nm)
- 2) Increase the numerical aperture NA: improving optics, increase n (move from air \rightarrow water = immersion litho; NA = n * sin(beta)
- 3) RET resolution enhancement techniques!
- reduce λ (\rightarrow DUV \rightarrow EUV \rightarrow X-ray)
- increase NA (immersion litho)
- reduce k₁ (RET)

Seminar 4: Lithography

Q6 Please name the applied resolution enhancement techniques (RET)

- 1) Optical Proximity Correction (OPC)
- 2) off- axis illumination (OAI)
- Double Exposure (or even triple or more)
- 4) phase shift mask (PSM)
- 5)
- 6)

Combination of RET Solutions

- This is what the designer drew
- Added 'scattering bars' and serifs to make the polygon print more exactly
- Added additional phase features to allow printing smaller features at the same wavelength

Accurate and flexible modeling is key!

(Courtesy ASML)

Advanced Integrated Circuit Technology Specific Processes

<u>Seminar 4 : Patterning – dry etching</u>

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Q7 Please define the terms "anisotropy" and "selectivity"!

Degree of Anisotropy:

$$A_f = 1 - \frac{l}{h_f} = 1 - \frac{R_1 t}{R_v t} = 1 - \frac{R_1}{R_v}$$

For isotropic etching: $R_I = R_v$ and $A_f = 0$

For completely anisotropic etching: $R_I = 0$ and $A_f = 1$

Selectivity: Ratio of etch rates of different materials

$$S_{(to) resist} = R_{etched film} / R_{resist}$$

$$S_{(to) \text{ underlayer}} = R_{etched \text{ film}} / R_{underlayer}$$

