

Дисперсионный анализ

ПМИ ФКН ВШЭ, 2 ноября 2019 г.

Денис Деркач, Алексей Артёмов

ФКН BIIIЭ

Оглавление

Мотивация

Тестируемые гипотезы

Дисперсионный анализ (ANalysis Of VAriances)

Анализ Краскела — Уоллиса

Апостериорные тесты

Анализ контрастов

Мотивация

Мотивация

- > Ранее, мы рассматривали одно- и двухвыборочные тесты (например, *t*-тест);
- > что делать, если мы хотим сравнить сразу несколько выборок?

Мотивирующий пример

График слева: мы можем сказать, что средние, видимо, отличаются. Что мы можем сказать про график справа?

Мотивирующий пример

Иными словами, пришли ли выборки из одного распределения или из разных?

Обсуждение мотивирующего примера

- > Если события во всех выборках происходят из одного распределения, то все события должны быть распределены одинаково, как внутри группы, так между группами.
- Это, в частности, означает ассимптотическое равенство дисперсий и средних.
- Необходимо сравнить дисперсию внутри группы с дисперсией между группами, для того, чтобы получить вывод о равенстве средних.

Тестируемые гипотезы

Тестирование гипотез: нулевая гипотеза

Сформулируем гипотезы:

- H_0 : $\mu_1 = \mu_2 = \mu_3$.
- $\to H_1$: $\mu_1
 eq \mu_2$ или $\mu_2
 eq \mu_3$ или $\mu_1
 eq \mu_3$.

Какой тест предпочесть?

Мы можем взять несколько попарных t-тестов, проверяя:

$$H_0: \mu_1 = \mu_2;$$

 $H_1: \mu_1 \neq \mu_2.$

$$H_0: \mu_2 = \mu_3;$$

 $H_1: \mu_2 \neq \mu_3.$

> и т.д.

Проблема: вероятность ошибки первого рода резко увеличивается.

TABLE 1: Probability of Committing at Least One Type I Error by Using Two-Sample t Tests for All C Pairwise Comparisons of k Means*

					ficance, of t Tests	α,
\boldsymbol{k}	\boldsymbol{C}	0.10	0.05	0.01	0.005	0.001
2	1	0.10	0.05	0.01	0.005	0.001
3	3	0.27	0.14	0.03	0.015	0.003
4	6	0.47	0.26	0.06	0.030	0.006
5	10	0.65	0.40	0.10	0.049	0.010
6	15	0.79	0.54	0.14	0.072	0.015
10	45	0.99	0.90	0.36	0.202	0.044
	∞	1.00	1.00	1.00	1.000	1.000

^{*}There are C = k(k - 1)/2 pairwise comparisons of k means. This is the number of combinations of k items taken two at a time.

Идея ANOVA

> Заметим, что при верной H_0 все группы получены из популяций с одинаковыми средним μ и дисперсией σ^2 .

Вспомним пример

Как мы можем отличить два случая?

Идея ANOVA

- > Заметим, что при верной H_0 все группы получены из популяций с одинаковыми средним μ и дисперсией σ^2 .
- Давайте оценим дисперсию разными независимыми способами и сравним!

Двухвыборочный F-тест

Предположим, что у нас есть две ііd выборки

 $X_1,\dots X_n\sim \mathcal{N}(\mu_X,\sigma_X^2)$ и $Y_1,\dots,Y_m\sim \mathcal{N}(\mu_Y,\sigma_Y^2)$. Необходимо проверить, что X и Y имеют одинаковую дисперсию.

$$H_0: \sigma_X^2 = \sigma_Y^2;$$

 $H_a: \sigma_X^2 \neq \sigma_Y^2;$

Мы можем оценить дисперсии:

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2;$$

$$S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2$$

Распределение Фишера

Тогда статистика:

$$\frac{S_X^2}{S_Y^2} \sim F(m-1, n-1).$$

Где F - распределение Фишера, характерной функцией плотности вероятности для которого является:

$$f(x; d_1, d_2) = \frac{1}{B(\frac{d_1}{2}, \frac{d_2}{2})} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1 + \frac{d_1}{d_2} x\right)^{-\frac{d_1 + d_2}{2}},$$

где В - бета-функция.

Распределение Фишера

$$\frac{S_X^2}{S_Y^2} \sim F(m-1, n-1).$$

Распределение часто используется для характеристики отношений случайных величин χ_k/χ_m , Γ_1/Γ_2 и пр.

Свойства F-теста

- > односторонний;
- > относительно неустойчив к ненормальности распределений;
- > в случае больших α или близких размеров выборок, может проявлять устойчивость, при этом всё равно теряет мощность.

Вспомним пример

Как мы можем отличить два случая?

Идея ANOVA

- > Заметим, что при верной H_0 все группы получены из популяций с одинаковыми средним μ и дисперсией σ^2 .
- Давайте оценим дисперсию разными независимыми способами и сравним!
- Можем оценить исходя из вариативности внутри группы и вариативности между групп.

Дисперсионный

анализ (ANalysis Of

VAriances)

Данные

Данные состоят из $N = \sum_{j=1}^k n_j$ наблюдений x_{ij} , по n_j наблюдений в j-й выборке, $j=1,\ldots,k$. Фактически, мы анализируем такую таблицу:

Измерения						
1	2		k			
x_{11}	x_{12}		x_{1k}			
x_{21}	x_{22}		x_{2k}			
x_{n_11}	x_{n_22}		$x_{n_k k}$			

Для каждого столбца характерно среднее значение μ_j , оцениваемое \bar{X}_j

Тестирование гипотез: нулевая гипотеза

Сформулируем нулевую гипотезу:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$.

Это сложная гипотеза, то есть она содержит в себе много парных и непарных простых (например $\mu_1=\mu_2$ или $\mu_2=\frac{\mu_1+\mu_3}{2}$).

NB: есть другие способы сформулировать нулевую гипотезу ANOVA.

NB2: на этой лекции рассматриваем только однофакторную (one-way) ANOVA, то есть анализ с одной независимой переменной.

Тестирование гипотез: альтернативная гипотеза

Сформулируем альтернативную гипотезу:

 $\to H_1$: $\mu_1
eq \mu_2$ или $\mu_2
eq \mu_3$ или $\mu_1
eq \mu_3$.

Заметим, что H_0 отвергается, если верна хотя бы одна из маленьких частных альтернативных гипотез (парных или комплексных).

NB: ANOVA не говорит какая.

Вариативность между группами

Оценим σ^2 на основе дисперсии средних между группами (посчитаем ошибку среднего, как будто это выборочные средние, и из неё вычислим дисперсию):

$$s_{\bar{x}} = \frac{\sum_{j} (\bar{X}_j - \bar{\bar{X}})}{k - 1}$$

Тогда mean square between groups (MS_B):

$$MS_B = \frac{\sum_j (\bar{X}_j - \bar{\bar{X}}) n_j}{k - 1}$$

Количество степеней свободы при этом:

$$DF_B = k - 1$$
,

где k — число групп.

Вариативность внутри группы

Mean square within groups = error MS

$$MS_W = \frac{s_1^2 + \ldots + s_k^2}{k}$$

Количество степеней свободы при этом:

$$DF_B = N - k$$
,

где k — число групп, N - полное число семплов.

F-статистика

$$F=rac{ ext{oценка дисперсии между группами}}{ ext{oценка дисперсии внутри групп}}=rac{MS_B}{MS_W}.$$

Тестирование H_0

- \rightarrow для заданных df рассчитывается критическое значение F;
- > на основе групп считается F и сравнивается с критическим значением;
- \rightarrow если F больше критического H_0 о равенстве средних в группах отвергается;
- F это отношение дисперсий, оно имеет особое распределение, оно всегда положительно; ANOVA принципиально односторонний тест.

Sum of squares

SS - это суммы квадратов отклонений (sum of squared deviations):

- > SSBetween сумма квадратов отклонений каждого среднего в группе от общего среднего = Effect;
- > SSWithin сумма квадратов отклонений каждого измерения от среднего в соответствующей группе = Error;
- SSTotal сумма квадратов отклонений каждого измерения от общего среднего = Total.

При этом:

$$SS_T = SS_W + SS_B.$$

ANOVA достигнутый эффект

Для того, чтобы понять насколько значим полученный результат в тесте строят два типа переменных:

- $R^2 = \eta^2 = \frac{SS_B}{SS_T}$, чем выше R^2 , тем больше полученный эффект.
- $f=rac{s_{ar{x}}}{\sqrt{MS_W}}$, чем выше, тем больше полученный эффект.

Глоссарий ANOVA

Типы переменных:

- > Группирующая переменная, фактор (factor, predictor).
- > Зависимая переменная (dependent variable, response).

Мы пока разбираем случай с одним фактором (one-way). В ANOVA одна зависимая переменная, а факторов может быть несколько, и они могут составлять довольно сложные конструкции.

Дизайн эксперимента

Факторы могут быть двух видов:

- » fixed. Рассматриваются именно эти значения фактора. Другие значения не существуют или не интересуют. Пример: пол, время суток и тд.
- random. Рассматриваются случайно выбранные значения фактора из многих возможных. За пределами исследования существуют другие значения фактора. Пример: происхождение семпла, процент лекарства.

Для этих типов факторов по-разному оценивается межгрупповая изменчивость. Когда фактор один, это не важно, но в сложных моделях с несколькими факторами эти различия очень важны!

Допущения ANOVA

- Выборки должны быть случайными, измерения независимыми.
- > Размеры групп должны различаться как можно меньше.
- > Нормальность в каждой группе по отдельности.
- > Равенство дисперсий в группах.

Требование нормальности

Возможные проверки:

- Сделать тест по методу моментов (Обычно достаточно проверить эксцесс и асимметрию).
- > Построить гистограмму распределения остатков ($x_i \bar{x}$) внутри каждого семпла (и проверить goodness-of-fit тесты).
- > Тест Шапиро-Уилка.
- > Тест Д'Агостино-Пирсона.
- Тест Андресона-Дарлинга.

Подробный разбор тестов в этой ссылке.

Тест Шапиро-Уилка

Критерий Шапиро-Уилка основан на оптимальной линейной несмещённой оценке дисперсии к её обычной оценке методом максимального правдоподобия. Статистика критерия имеет вид:

$$W = \frac{1}{s^2} \left[\sum_{i=1}^n a_{n-i+1} (x_{n-i+1} - x_i) \right]^2,$$

где $s^2=\sum_{i=1}^n(x_i-\overline{x})^2,\overline{x}=\frac{1}{n}\sum_{i=1}^nx_i$, а коэффициенты a_{n-i+1} берутся из таблиц.

На практике, следует проверять применимость таблиц в том или ином софте. Можно также использовать тест Шапиро-Франчиа.

Ненормальные данные

- > Если семплы достаточно большие, можно оставить как есть.
- > Провести преобразование к нормальным:
 - > стандартизовать распределение;
 - метод Бокса-Кокса.
- > Использовать непараемтрический ANOVA:
 - односторонний дисперсионный анализ
 Краскела—Уоллиса.

Метод Бокса-Кокса

Для последовательности: $\{y_1,\dots y_n\}$, $y_i>0$ однопараметрическое преобразование Бокса-Кокса с параметром λ определяется следующим образом:

$$y_i^{\lambda} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0, \\ \log(y_i), & \text{if } \lambda = 0. \end{cases}$$

Где λ - свободный параметр.

Требование равенства дисперсий

Для проверки можно:

- > Использовать тест Левена (Ливиня).
- > Использовать F-тест.
- > Построить зависимость остатков (residuals) от средних.

Тест Ливиня

Проверяет равенство дисперсий всех семплов.

$$W = \frac{(N-k)}{(k-1)} \cdot \frac{\sum_{i=1}^{k} N_i (Z_{i.} - Z_{..})^2}{\sum_{i=1}^{k} \sum_{j=1}^{N_i} (Z_{ij} - Z_{i.})^2},$$

Здесь Z может центрироваться на:

- > среднее выборки (для симметричных распределений);
- > медиану выборки (для асимметричных распределений);
- усечённое среднее выборки (для распределений с тяжёлыми хвостами).

В общем случае рекомендуют использовать медиану. Значение W затем сравнивается с соответсвующим F распределением.

Свойства ANOVA

- > Возможно провести one-way ANOVA в случае, если у нас в руках есть только средние значения, показатели разброса (SD, SE, s^2) и размер выборок (например, из какой-нибудь статьи).
- \rightarrow В случае двух выборок ANOVA эквивалентна t-тесту.

Уоллиса

Анализ Краскела —

Мотивация

В некоторых случаях невозможно добиться данных с нормальным распределением. Потому необходимо использовать непараметрические тесты или линейные модели.

Анализ Краскела — Уоллиса

- > непараметрический тест, который не требует нормальности данных (но чувствителен к разным дисперсиям);
- менее мощный, чем параметрические тесты, в случае однофакторного анализа мощность около 95%, в остальных случаях ниже 80%.
- > для двух групп эквивалентен тесту Манна-Уитни.

NB: если данные гетероскедастичны, следует использовать дисперсионный анализ Уелча.

Алгоритм

- 1. выставить ранг r_{ij} согласно значению всех x_{ij} ;
- положив:

$$S_j = \sum_{i=1}^{n_j} r_{ij}, r_{\cdot j} = S_j / n_j,$$

тогда

$$r_{\cdot \cdot \cdot} = 1/N \sum_{i = 1}^{N} r_{ij} = (N+1)/2$$

подсчитать статистику:

$$W = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} S_j^2 / n_j\right) - 3(N+1),$$

3. найти критическую область для W-статистики.

Пост-Мотивация

W мотивирована сравнением рангов между группами и внутри группы (то есть, анализ дисперсий на рангах):

$$W = (N-1) \frac{\sum_{j=1}^{k} n_j (r_j - r_{..})^2}{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (r_{ij} - r_{..})^2},$$

Совпадения

Мы использовали, что $\sum_i r_i = \frac{N(N+1)}{2}$. В случае, если есть совпадающие значения x_{ij} , это не так. Для вычисления W в этом случае следует пользоваться коррекцией:

- ightarrow при подсчёте W использовать среднее значение рангов для совпадающих элементов;
- > для тестирования использовать $W'=W/\gamma$, где $\gamma=1-\frac{1}{N(N^2-1)}\sum_{m=1}^g l_m(l_m^2-1)$, где g число групп совпадений, l_m количество элементов в m-й группе

Наблюдения

- > для k>5 можно сравнивать с χ^2_{k-1} ;
- \rightarrow для нормальной работы теста рекомендуют $n_i > 5$;
- H_0 : все группы происходят из одного распределения (Отличается от обычного дисперсионного анализа!).

Многофакторные непараметрические задачи

В случае бОльшего количества факторов можно использовать улучшения теста Краскела-Уоллеса:

- > Scheirer-Ray-Hare Test
- > Jonckheere-Terpstra Test

NB: относительная мощность непараметрических тестов быстро падает с ростом количества факторов.

Апостериорные тесты

Апостериорные (post-hoc) тесты

ANOVA не называет причину, по которой была отвергнута гипотеза H_0 . Потому используют апостериорные тесты:

- > Сначала сравнить все группы между собой с помощью ANOVA.
- > Если различия есть, использовать методы множественного сравнения (сравнивают группы попарно, сохраняя общую $\alpha=0.05$).
- > Если различий нет, анализ следует считать завершённым (и не проводить post-hoc тесты).

NB: проведение апостериорных тестов может испортить весь анализ.

Тест Тьюки

Он же honestly significant difference test (HSD test) or wholly significant difference test (WSD test).

- > Выстраиваем средние по выборке по возрастанию.
- > Строим статистику $q = \frac{Y_A Y_B}{SE}$, где Y среднее (причём $Y_A > Y_B$, SE стандартное отклонение.
- > Ищем значимость $q_{\alpha,N-k,k}$ для нужного α .

Тест Тьюки

- Наиболее распространённый и рекомендуемый в литературе тест;
- > строго контролирует α (0.05);
- > проверяет все парные гипотезы сразу;
- > плохо работает, если размер групп сильно различается;
- > увствителен к неравенству дисперсий;
- > считает статистику (q) на основе MSwithin и df.

Другие post-hoc тесты

- > Тьюки-Крамера, решает проблему теста Тьюки для неравных выборок.
- > Критерий Ньюмена-Кейлса. Все средние упорядочивают по возрастанию и пошагово вычисляют статистики; начинают от сравнения наибольшего с наименьшим. Сравнивают с $q_{\alpha,N-k,p}$, где p диапазон средних. Мощнее теста Тьюки, но плохо контрлирует ошибку 1-го рода.
- > Критерий Шеффе (Scheffe test) очень консервативный, мощность меньше, чем у теста Тьюки (но см. ниже).
- > Критерий Даннетта (Dunnett test) используется для сравнения нескольких групп с контрольной группой, мощнее, чем тест Тьюки. Размер контрольной группы рекомендуется делать больше, чем размеры остальных групп в $\sqrt{k-1}$ раз.

Failed post-hoc

Бывает так, что в ANOVA нулевая гипотеза отвергается, а пост-хок тесты не обнаруживают различий, так как их мощность ниже. В этом случае необходимо увеличивать размер выборки.

Анализ контрастов

Анализ контрастов (planned comparisons)

- > Проводится вместо ANOVA.
- Важно: то, какие группы сравнивать, выбирают заранее, до проведения какого-либо анализа. В идеале — ещё при постановке исследования.
- > В тесте проверяется только одна гипотеза;
- Можно провести 2-3 таких теста в пределах одного «набора» групп, только надо следить, чтобы сравнения не сильно перекрывались, не были избыточными.

> Мощнее post-hoc тестов.

Пример

У нас 4 группы тигров, их кормят: овощами; фруктами;рыбой; мясом.

Вопрос: отличается ли масса тигров, питающихся животной и растительной едой?

Построение контрастов

Контраст — линейная комбинация средних значений. Коэффициенты сравнения — константы, на которые умножены средние. Таким образом гипотезы формулируются:

$$H_0: \sum_i C_i \mu_i = 0;$$

$$H_1: \sum_i C_i \mu_i \neq 0.$$

При этом $\sum_i C_i = 0$.

Если тестируется несколько гипотез: $\sum_i C_{1,i}C_{2,i}=0$. В этом случае статистика строится: $t=\frac{\sum_i C_i \mu_i}{SE}$ и имеет t распределение.

Пример

У нас 4 группы тигров, их кормят: овощами; фруктами;рыбой; мясом.

Вопрос: отличается ли масса тигров, питающихся животной и растительной едой?

Мы строим контраст: $\frac{1}{2}\mu_1 + \frac{1}{2}\mu_2 - \frac{1}{2}\mu_3 - \frac{1}{2}\mu_4$.