

Aprendizaje Automático Profundo (Deep Learning)

Dr. Facundo Quiroga - Dr. Franco Ronchetti

Tipos de problemas

Aprendizaje Automático. Tipos de problemas.

Datos

Para hacer Machine Learning necesitamos DATOS

1	Α	В	С	D	E
1	sepallength	sepalwidth	petallength	petalwidth	class
2	5,10	3,50	1,40	0,20	Iris-setosa
3	4,90	3,00	1,40	0,20	Iris-setosa
4	4,70	3,20	1,30	0,20	Iris-setosa
5	4,60	3,20	1,40	0,20	Iris-setosa
6	5,30	3,70	1,50	0,20	Iris-setosa
7	5,00	3,30	1,40	0,20	Iris-setosa
8	7,00	3,20	4,70	1,40	Iris-versicolor
9	6,40	3,20	4,50	1,50	Iris-versicolor
10	6,90	3,10	4,90	1,50	Iris-versicolor
11	5,50	2,30	4,00	1,30	Iris-versicolor
12	7,60	3,00	6,60	2,10	Iris-virginica
13	4,90	2,50	4,50	1,70	Iris-virginica
14	7,30	2,90	6,30	1,80	Iris-virginica
15	6,70	2,50	5,80	1,80	Iris-virginica
16	7,20	3,60	6,10	2,50	Iris-vir
17	6,50	3,20	5,10	2,00	Iris-
18	6,40	2,70	5,30	1,90	Iris.
19	6,80	3,00	5,50	2,10	Iris-

Un dataset típico

- Generalmente almacenado como archivo CSV o XLS.
- Cada fila es un registro (un ejemplo)
- Cada columna es un atributo (variable o feature)
- Dos tipos de datos: numéricos y nominales.
- Siempre necesitamos datos numéricos.
- Aprendizaje supervisado.

Visualización de los Datos

¿Cómo podemos visualizar el dataset?

- Al tener dos atributos podemos hacer un gráfico 2D.
- ¿Qué pasaría si tenemos 3 o más atributos?

Supongamos el siguiente problema:

Queremos predecir cuál es el rendimiento (km/L) que tiene un auto en base a la velocidad a la que circula.

velocidad km/h	km/Litro
20	8.00
75	15.20
22	8.60
10	18.00
51	12.50
52	13.20
60	14.20

¿Cómo podemos generar un modelo que resuelva este problema?

velocidad km/h	km/Litro
20	8.00
75	15.20
22	8.60
10	18.00
51	12.50
52	13.20
60	14.20

¿Cómo podemos generar un modelo que resuelva este problema?

Podríamos generar una ecuación lineal.

El modelo va a tener un error (ya que muy pocos elementos pasan por la recta), pero es simple y funciona "bien".

En el caso de imágenes

Input: una imagen

Output: Un valor real

Ejemplo: estimar la edad de una persona.

En el caso de imágenes

Input: una imagen

Output: una imagen

Clasificación binaria

Clasificación Multiclase

- Por ejemplo, ¿cómo agruparía las bolas del juego de Pool en diferentes conjuntos?
- ¿Qué característica necesito?
- ¿Cuántos conjuntos necesito?
- Podrían agruparse por color (rojas, amarillentas, azuladas).
- En orden por sus valores.
- Por su función en el juego (lisas, rayadas).

Supongamos el siguiente problema:

Queremos clasificar dos especies de flores según el largo y ancho de sus pétalos. Tenemos la siguiente información. X1= Largo, X2= Ancho.

x1	x2	Clase
0,7	0,2	0
2	0,5	0
3	1	0
3	2	0
0,5	3	1
1	2	1
1,5	3,5	1
3	3,5	1

A veces, la "clase" estará en formato nominal (texto).

Ej. "flor_tipo_1" y "flor_tipo_2"

Problema de clasificación binaria, que podemos afrontar con aprendizaje supervisado.

Visualización en 2D

x1	x2	Clase
0,7	0,2	0
2	0,5	0
3	1	0
3	2	0
0,5	3	1
1	2	1
1,5	3,5	1
3	3,5	1

El modelo más simple que podemos pensar: **Lineal**

Ecuación de decisión: x1 = x2

$$g(x) = \begin{cases} 0 & si \ x1 - x2 > 0 \\ 1 & si \ x1 - x2 \le 0 \end{cases}$$

¿Y ahora?

x1	x2	Clase
0	-0,5	0
0,5	0	0
-0,5	0	0
0,3	0,5	0
-1,3	-1,3	1
1	-1,5	1
-1	1	1
1,5	0,5	1

Un modelo lineal ya no nos sirve.

$$f = x1^2 = x2^2$$

$$g(x) = \begin{cases} 1 & si x1^2 - x2^2 > 0 \\ 0 & si x1^2 - x2^2 \le 0 \end{cases}$$

Generalización de un modelo

¿Qué curva es mejor?

Generalmente, un modelo más simple lo vamos a considerar mejor, ya que generaliza de forma más efectiva, aunque no sea perfecto.

X1

Generalización de un modelo

¿Qué ocurre en esta área?

Si no hay datos, esa zona no es representativa para un modelo de Aprendizaje Automático. Pero podría ser una zona del espacio a considerar en futuros datos (desconocidos por el modelo).

Ej: una flor con tamaño de pétalo muy grande.