

Design of RF building blocks Study guide

Vojkan Vidojkovic

Where innovation starts

Organization of RF building blocks

- 4 weeks with each of 2 blocks of 4 hours
 - Lectures
 - Exercises
 - to practice theory from lectures
 - Labs
 - to get familier with measurement equipment and practical aspects of amplifier design
 - Complete course information is available in CANVAS

Vojkan professional profile

IC group: RF sensing & communication lab

Scope

RF & mm-wave circuits for sensing & communications

Vision

From concepts via circuits/building blocks to systems & demonstrators

Way of working BEP, MSc, PhD students working together as a team

RF: 0.1 – 10GHz mm-wave: 20-40, 60-80, 150GHz freq

Planning (1/2)

Module 4: RF amplifiers	Lecture:	RF systems and amplifier design	Mar 5, 5+6	Atlas 8.310	Vidojkovic	-
	Exercises:	Amplifier design	Mar 5, 7+8	Atlas 8.310	Vidojkovic	-
Intermediate test	Exam:	Course content up to	Mar 7, 1+2	Neuron 0.266	Bronckers, Johannsen	Telluri, Yadav
		and including module 3				
	Lab:	Extra lab Q&A opportunity	Mar 7, 3+4	Neuron 0.266	Bronckers	Telluri, Yadav
Module 5: Low-noise amplifiers	Lecture:	Noise and LNA design	Mar 12, 5+6	Atlas 2.225	Vidojkovic	-
	Exercises:	LNA design	Mar 12, 7+8	Atlas 2.225	Vidojkovic	-
	Lab:	QUCS amplifier design	Mar 14, 1-4	Atlas 2.225	Dommele, Vidojkovic	-

Planning (2/2)

Module 6: Power amplifiers & mixers	Lecture:	Basics of PA and mixer design	Mar 19, 5+6 ¹	Atlas 8.310	Vidojkovic	-
	Exercises:	Amplifier matching using distributed components	Mar 21, 1+2	Atlas 2.225	Vidojkovic	-
	Lab:	Amplifier measurements	Mar 21, 3+4 Mar 26, 5+6	Atlas 2.225	Dommele, Vidojkovic	-
Module 7: System integration	Lecture:	System-level design	Mar 26, 7+8	Atlas 2.225	Vidojkovic	-
	Exercises:	System integration and matching	Mar 28, 1+2	Atlas 2.225	Vidojkovic	-
	Lab:	System-level characteristics	Mar 28, 3+4	Atlas 2.225	Dommele, Vidojkovic	-

Objective

- Basic info about RF systems
- Design of RF amplifiers, particular low-noise amplifiers using S parameters addressing:
 - Gain
 - Noise
 - Stability
 - Matching
- Basic info about power amplifiers and mixers
- Systems aspects of RF systems
- Getting familiar with measurement equipment
- Getting familiar with measurements of high frequency amplifiers

Material

- Lecture slides (available on CANVAS)
- Exercises (available on CANVAS)
- Labs (instructions available on CANVAS)
- Books
 - Microwave Engineering
 - David M. Pozar
 - Chapters:
 - 12: Design of microwave amplifiers and oscillators
 - 14: Introduction to microwave systems

- Guilermo Gonzalez
- Chapters:
 - 1: Representations of two port networks
 - 2: Matching network and signal flow graphs
 - 3: Microwave transistor amplifier design
 - 4: Noise, broadband and high-power design methods

Contact Information

- Vojkan Vidojkovic, Flux 7.087, v.vidojkovic@tue.nl
- Rainier van Dommele, Flux 7.087, a.r.v.dommele@tue.nl