Type Tuo One Shade Text Texture one dark one thin one one: 12,2

$$I_{\text{mfp}}(scak) = 2 \times 1 + 2 \times 1 = 1$$

$$I(light) = A \rightarrow 2, C \rightarrow 0$$

Show that the entropy of a node never increases after splitting it into smaller successor nodes.

Answer:

Let $Y = \{y_1, y_2, \dots, y_c\}$ denote the c classes and $X = \{x_1, x_2, \dots, x_k\}$ denote the k attribute values of an attribute X. Before a node is split on X, the entropy is:

$$E(Y) = -\sum_{j=1}^{c} P(y_j) \log_2 P(y_j) = \sum_{j=1}^{c} \sum_{i=1}^{k} P(x_i, y_j) \log_2 P(y_j),$$
 (4.1)

where we have used the fact that $P(y_j) = \sum_{i=1}^k P(x_i, y_j)$ from the law of total probability.

After splitting on X, the entropy for each child node $X = x_i$ is:

$$E(Y|x_i) = -\sum_{i=1}^{c} P(y_j|x_i) \log_2 P(y_j|x_i)$$
(4.2)

where $P(y_j|x_i)$ is the fraction of examples with $X = x_i$ that belong to class y_j . The entropy after splitting on X is given by the weighted entropy of the children nodes:

$$E(Y|X) = \sum_{i=1}^{k} P(x_i)E(Y|x_i)$$

$$= -\sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i)P(y_j|x_i)\log_2 P(y_j|x_i)$$

$$= -\sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i, y_j)\log_2 P(y_j|x_i), \qquad (4.3)$$

where we have used a known fact from probability theory that $P(x_i, y_j) = P(y_j|x_i) \times P(x_i)$. Note that E(Y|X) is also known as the conditional entropy of Y given X.

To answer this question, we need to show that $E(Y|X) \leq E(Y)$. Let us compute the difference between the entropies after splitting and before splitting, i.e., E(Y|X) - E(Y), using Equations 4.1 and 4.3:

$$E(Y|X) - E(Y)$$

$$= -\sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i, y_j) \log_2 P(y_j|x_i) + \sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i, y_j) \log_2 P(y_j)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i, y_j) \log_2 \frac{P(y_j)}{P(y_j|x_i)}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{c} P(x_i, y_j) \log_2 \frac{P(x_i)P(y_j)}{P(x_i, y_j)}$$

$$(4.4)$$

To prove that Equation 4.4 is non-positive, we use the following property a logarithmic function:

$$\sum_{k=1}^{d} a_k \log(z_k) \le \log\left(\sum_{k=1}^{d} a_k z_k\right),\tag{4.5}$$

subject to the condition that $\sum_{k=1}^{d} a_k = 1$. This property is a special case of a more general theorem involving convex functions (which include the logarithmic function) known as Jensen's inequality.

By applying Jensen's inequality, Equation 4.4 can be bounded as follows:

$$E(Y|X) - E(Y) \leq \log_2 \left[\sum_{i=1}^k \sum_{j=1}^c P(x_i, y_j) \frac{P(x_i)P(y_j)}{P(x_i, y_j)} \right]$$

$$= \log_2 \left[\sum_{i=1}^k P(x_i) \sum_{j=1}^c P(y_j) \right]$$

$$= \log_2(1)$$

$$= 0$$

Because $E(Y|X) - E(Y) \le 0$, it follows that entropy never increases after splitting on an attribute.

This means the relationship bow all ilp features are independent. use Bayesian belief Sophia Calls

DELTA Notebook

Date_ Page No. Lung Cancer: Smoken Emphysen lung cancer Positive or Ray

P) E) investment = No, Toravel = No Yes, Reading = Yes,
health = No

Et is investment = No
E2 1, Toravel = Yes
E3 11 Reading = Yes
E4 11 Health = No

