Regresión Lineal Simple

Palazzo Tomás Alejandro

Ciencias de Datos - FCEN - UBA

Motivación: Precios de propiedades

Regresión Lineal Simple

Este modelo trata de explicar la relación lineal entre una variable dependiente y con una variable independiente x

Nuestros Datos

A partir de ahora

- $x = \text{Superficie Total}(m^2)$
- y = Precio

Observemos que $y=(y_1,y_2,...,y_n)$ y $x=(x_1,x_2,...,x_n)$. Donde x va a ser nuestra variable **dependiente** e y nuestra variable **dependiente**.

y vamos a llamar a

$$\hat{y} = eta + lpha x = \hat{precio}$$

- Idea: Encontrar los eta y lpha tales que \hat{y} sea lo más parecida posible a y

$$\hat{y} = \beta + \alpha x$$

Función de Costo

Función de Costo

Lo que tratamos de buscar es que nuestro modelo tenga *el menor error posible*. Pero, ¿cómo calculamos ese error? Una forma es la siguiente:

$$L(y,\hat{y}) = rac{1}{2n} \sum_{i=1}^n (y_i - \hat{y_i})^2$$

$$\hat{y} = \beta + \alpha x$$

$$min_{lpha,eta}rac{1}{2n}\sum_{i=1}^n(y_i-\hat{y_i})^2$$

¿Cómo minimizamos el error?

En otras palabras. ¿Cómo calculamos $min_{lpha,eta}rac{1}{2n}\sum_{i=1}^n(y_i-\hat{y_i})^2$?

Un método puede ser Gradiente Descendente (no incluido en el video).

•
$$\hat{y} = \beta + \alpha x$$

• Parámetros: α, β

ullet Función de Costo: $L(y,\hat{y})=rac{1}{2n}\sum_{i=1}^n(y_i-\hat{y_i})^2$

• Objetivo: $\min_{lpha,eta} rac{1}{2n} \sum_{i=1}^n (y_i - \hat{y_i})^2$

