PROBATOIRE F3 SESSION 2009 CAMEROUN

Première partie : Technologie

- 1. Quelle est la différence entre une mémoire synchrone et une mémoire asynchrone?
- 2. Quelle est la différence entre une bascule RS et une bascule D?
- 3. Quels sont les éléments de base d'un GRAFCET?
- 4. Quelle est la différence entre le GRAFCET de niveau 1 et le GRAFCET de niveau 2 ?

Deuxième partie : circuit analogique

Exercice 1: Polarisation par diviseur de tension

Soit la Figure ci-contre

- 1. Calculer VB, VE, IE, IC, IB, et VC
- 2. Quelle est la valeur de VCE ?
- 3. Quelles sont les coordonnées du point de repos Q ?

Exercice 2: Amplificateur opérationnel

On donne l'amplificateur opérationnel non inverseur ci-contre :

- 1. Calculer l'impédance d'entrée Zen(NI)
- 2. Calculer l'impédance de sortie Zs(NI)
- 3. Calculer le gain en tension en boucle fermée
- 4. Cet amplificateur opérationnel est maintenant utilisé dans une configuration à suiveur de tension.
 - a) Déterminer l'impédance d'entrée Zen(ST)
 - b) Déterminer l'impédance de sortie Zs(ST)
 - c) Comparer Zen(NI) et Zen(ST)
 - d) Comparer Zs(NI) et Zs(ST)

Exercice 3: Analyse des circuits par la méthode de superposition

On considère le circuit ci-contre

- 1. Calculer le courant dans **R3** en utilisant la Méthode de superposition
- 2. Déterminer la tension au point **A** par rapport à la masse

Troisième partie : circuit numérique

Exercice 4: numération

Convertir 1128 (code décimal) en code binaire

Exercice 5: Multiplexeur (3pts)

Soit le circuit ci-contre :

Les entrées S0 et S1 forment un nombre binaire à 2 bits.

S0 est le LSB et **S1** le MSB. $[S1S0] = S1.2^{1} + S0.2^{0} = K$ en decimal. Lorsque l'entrée de validation V est active, $\mathbf{Y} = I_{\mathbf{k}}$ Lorsque l'entrée de validation V est inactive, $\mathbf{Y} = 0$ (V est active au Niveau bas)

- 1. Dresser la table de vérité de ce circuit
- 2. Donner l'équation liant les entrées à la sortie
- 3. Exprimer cette équation sous la 3^{ème} forme canonique
- 4. En déduire le schéma à partir des portes NAND (le nombre D'entrée est au choix du candidat)

Exercice 6: Compteur synchrone

On veut réaliser un compteur synchrone modulo 7 à bascules JK commutables sur front descendant.

- 1. Combien de bascules doit-on utiliser?
- 2. Dresser sa table de transition
- 3. Donner les équations des entrées pour chaque bascule
- 4. Donner le schéma structurel du compteur