COL216 Computer Architecture

Lab Assignments 1 to 3

The objective of the lab assignments 1 to 3 is to design and implement a simple arithmetic expression evaluator in ARM assembly language. ARMSim# simulator is to be used for developing and testing the assembly programs.

Week	Title and brief description
1	Evaluation of expressions without parentheses
	Expression is represented as ASCII string
	Operators add (+), subtract (-) and multiply (*): left to right evaluation, no operator precedence
	Constant integer operands – ASCII to binary conversion required
2	Evaluation of expressions with nested parentheses
	Use recursive functions to take care of nesting of parentheses
3	Expression evaluation with input/output
	Use input/output facilities of Embest board plug-in of ARMSim# simulator

COL216 Computer Architecture

Lab Assignments 4 to 14

The objective of the lab assignments 4 onwards is to design and implement a complete ARM CPU based computer, using Vivado tools and BASYS3 FPGA boards. These assignments are organized as follows.

Week	Title and brief description
4	CPU for a small ARM instructions subset
	Instructions for implementation = {add, sub, cmp, mov, ldr, str, beq, bne, b}
	Single-cycle design style
5	Simulate CPU design and prepare for synthesis
	Use ROM, RAM generator, ROM with pre-loaded test program
	Design a test bench and do extensive simulation
	Create interface for displaying address, instruction and result
6	Design for synthesis and testing on the board
	Introduce FSM for single-step and continuous operation
	Initialize ROM with multiple test programs, selectable at reset time
	Study resource usage and performance
	CPU with multi-cycle design style
7	Separate RF and ALU structurally
	Extend FSM for -
	multi-cycle execution
	single-instruction operation, in addition to single-step and continuous
	Study resource usage and performance
	CPU with all ARM DP instructions
8	Extend the design to include all 16 DP instructions
	Include all DP variants (flag setting, shift, rotate)
9	CPU with all ARM DT instructions

	Include all DT data types (byte, half word, signed byte/half word)
	Include all DT variants (defined by PUW)
10	CPU with all ARM multiply instructions
	Include all multiply instructions – short as well as long
	CPU with predication
	Test all conditions defined by the <i>condition</i> field
	Apply predication to all instructions along with branch instruction
12	CPU with interrupts
	Include SWI instruction and HW interrupts
13	CPU with serial I/O
	Interface UART
14	CPU with programming environment
	Use a simple monitor program to –
	load and run user programs from terminal
	provide simple I/O for user programs