BMCuC

Лекция 4 Внутреннее устройство микропроцессора

Общее устройство CPU

Арифметико-логическое устройство (АЛУ)

блок процессора, который под управлением устройства управления (УУ) служит для выполнения арифметических и логических преобразований над данными

- Сложение
- Вычитание
- Тригонометрические операции
- и другие

Сумматор - часть АЛУ

Дешифратор команд

- Преобразует двоичные данные в команды понятные АЛУ
- Определяет какие данные должны быть загружены в регистры
- Определяет какие флаги должны быть выставлены или сброшены

Регистры

Высокоскоростные ячейки памяти непосредственно взаимодействующие с АЛУ.

- Регистры общего назначения (GPR)
 Используются для хранения данных доступных для оперативного доступа АЛУ
- Специальные регистры (SFR)
 - Регистры флагов
 - Счетчик команд
 - Указатель стека

D-Триггер (защелка)

Вычислительный блок

Кэш-память

Сверхбыстрая память использующаяся для снижения задержек при доступе к ОЗУ

- Кэш инструкций
- Кэш данных
- Другие кэши

Исполняемый код

Синхросигнал - Clock signal

Все электронные системы содержат источник синхросигнала в том или ином виде

Синхросигнал обеспечивает слаженную и синхронную работу всех составляющих системы

Тактовый генератор

- Это устройство которое генерирует периодический сигнал синхронизации
- Все системы нуждаются в источнике синхронизации для выполнения команд и передачи данных
- Подключается к каждому из устройств которые производят обработку сигналов в цифровой форме (ЦПУ, АЛУ, ОЗУ, DSP, и тд)

Кварцевый резонатор, кварц (crystal)

Кварцевый резонатор - это диск из кварца заключенный в упаковку

Это пассивный элемент необходимый для работы схемы генерирования тактового импульса

Кварцевый генератор (oscillator)

Генератор включает в себя кварц и генераторную схему, которая обеспечивает выходной сигнал логического уровня.

Трехшинная структура операционного блока

Трехшинная структура

- Операнды считываются за один такт => Максимальное быстродействие
- Большая площадь кристалла => высокая стоимость
- Применяется в DSP процессорах

Двухшинная структура операционного блока

Двухшинная структура

- Операнды считываются последовательно с одной шины
- Производительность ниже чем при 3-шинной структуре
- Проще в производстве

Одношинная структура операционного блока

Системная шина

Пример распределения адресного пространства

64K	Порт ввода-вывода	11111111111111111
	Неиспользуемое	
	адресное	XXXXXXXXXXXXXXX
	пространство	
16K		0011111111111111
	ОЗУ	001xxxxxxxxxxxxx
8K		0010000000000000
	Неиспользуемое	
	адресное	000xxxxxxxxxxxxxx
	пространство	
2K		0000011111111111
	ПЗУ	00000xxxxxxxxxxxxxx
0		0000000000000000