Practical Two-Step Look-Ahead Bayesian Optimization

Jian Wu (Cornell) Peter I. Frazier (Cornell, Uber) Funding from AFOSR, NSF

Overview

- What is BayesOpt? A class of ML methods for optimizing black-box time-consuming-to-evaluate functions without derivatives. BayesOpt methods use supervised learning (typically a Gaussian process) to model the objective function, and an acquisition function to decide where to evaluate it.
- Important BayesOpt Applications:

- **Problem:** Acquisition functions fast enough to be used in practice look just 1 step ahead. This hurts their query efficiency.
- For example, expected improvement, $EI(x) = E[\max(f(x), f^*)] f^*$ compares the solution quality now (f^*) to the quality after one more evaluation $E[\max(f(x), f^*)]$
- Predictive entropy search and probability of improvement also look just 1 step ahead. Knowledge gradient looks 1.5 steps ahead.
- Past Attempts: Look > 1 steps ahead using general-purpose RL [González, Osborne & Lawrence AISTATS 2016, Lam, Wolcox & Wolpert NIPS 2016]
- These methods are slow (100s of minutes per evaluation)
- Approx. errors erase most of the benefit of looking > 1 steps ahead
- Our Contribution: A new algorithm that efficiently & accurately optimizes the two-step lookahead acquisition function. It provides:
- Better query efficiency than 1-step and past multi-step methods
- It is <u>fast</u> enough to be practical: seconds to at most several minutes per batch; comparable to knowledge-gradient acquisition function;
 10x faster than previous multi-step methods
- Code:
- Method: https://github.com/wujian16/Cornell-MOE
- Experiments: https://github.com/wujian16/TwoStep-BayesOpt

2-OPT Acquisition Function

- **Setting**: Maximize f(x) using noise-free evaluations of f.
- Approach: Evaluate the quality of a batch X_1 , looking 2 steps ahead.
- Step 1: Choose a batch X_1 of points to evaluate.
- Step 2: Assume we'll choose one more point, x_2 , based on $f(X_1)$, and our overall solution quality will be the best point seen, f_2^* .

Past Data $f(X_0)$	1st Step (Now) Choose batch X_1 , Observe $f($		2nd Step (Future) Choose point x_2 , Observe $f(x_2)$		
$f_0^* = \max$ $f f(X_0) $	$x f(X_0)$ $\sim GP(\mu_0, K_0)$	$f_1^* = \max(f_0^*, f f(X_1), f(X_0))$	$f(X_1)$) $f(X_1) \sim GP(\mu_1, K_1)$	$f_2^* = \max(f_1^*)$	$f(x_2)$

• 2-OPT Acquisition Function: The expected 2-step improvement $E[f_2^* - f_0^*]$ for a batch X_1 is

$$2 ext{-OPT}(X_1) = \operatorname{EI}_0(X_1) + \mathbb{E}_0\left[\max_{x_2}\operatorname{EI}_1(x_2)
ight],$$

- $EI_n(x) = EI(\mu_n(x) f_n^*, K_n(x, x))$ is the expected improvement of evaluating at x under the step n posterior.
- $\mathrm{EI}(m,v) = m\Phi(m/\sqrt{v}) + \sqrt{v}\varphi(m/\sqrt{v}).$

We Can Maximize 2-OPT Quickly

- **Approach:** Multistart SGD, where SGD uses a novel fast unbiased Monte Carlo estimator of $\nabla 2$ -OPT(X_1)
- Novel fast Monte Carlo estimator of the gradient of 2-OPT (X_1)
- 1. Use the reparameterization trick for unbiased Monte Carlo estimation of 2-OPT, where $C_0(X_1)$ is the Cholesky decomposition of $K_0(X_1, X_1)$, $Z \sim N(0, 1)$,

$$\widehat{\mathbf{2-OPT}}(X_1, Z) = \max(f_0^* - \mu_0(X_1) - C_0(X_1)Z)^+ + \max_{x_2} \mathrm{EI}_2(X_1, x_2, Z).$$

2. Use infinitesimal perturbation analysis to exchange gradient and expectation:

$$\nabla_{X_1} \operatorname{2-OPT}(X_1) = \mathbb{E}_0 \left[\nabla_{X_1} \widehat{\operatorname{2-OPT}}(X_1, Z) \right]$$

$$= \mathbb{E}_0 \left[\nabla \max(f_0^* - \mu_0(X_1) - C_0(X_1)Z)^+ + \nabla \max_{x_2} \operatorname{EI}_2(X_1, x_2, Z) \right]$$

3. Use the envelope theorem to compute the last term quickly

$$abla_{X_1} \max_{x_2} \mathrm{EI}_2(X_1, x_2, Z) =
abla_{X_1} \mathrm{EI}_2(X_1, x_2^*, Z),$$

where we can ignore the dependence of $x_2^* \in \operatorname{argmax}_{x_2} \operatorname{EI}_2(X_1, x_2, Z)$ on X_1 when calculating ∇_{X_1} .

• 2-OPT Explores More than EI:

Numerical Results

• Synthetic functions, 90% quantile of log10 simple regret vs. common 1-step heuristics. 2-OPT is substantially more robust.

• 2-OPT is much faster than GLASSES, comparable to KG.

