Universidad Nacional Autónoma de México

Facultad de Ciencias

Organización y Arquitectura de Computadoras 2025-2

Docentes:

José Galaviz Ricardo Pérez Ximena Lezama

Fernanda Ramírez Juárez Ianluck Rojo Peña

No. de cuenta:

321204747 118005762

Fecha de entrega: Viernes 11 de abril de 2025

Preguntas.

1. Demuestra que $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Dem. Demostracion por tabla de verdad:

x	y	z	$y \cdot z$	$x \cdot (y \cdot z)$	$x \cdot y$	$(x \cdot y) \cdot z$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	1	1

Como las columnas $x \cdot (y \cdot z)$ y $(x \cdot y) \cdot z$ son idénticas para todas las combinaciones posibles de x, y, z, queda demostrada la igualdad.

2. Demuestra si la siguiente igualdad es válida $x(\overline{x} + y) = xy$ **Dem.**

Aplicamos la propiedad de distributividad:

$$x(\overline{x} + y) = x\overline{x} + xy$$

Por el complemento, tenemos que $x\overline{x} = 0$, así:

$$x\overline{x} + xy = 0 + xy$$

Y por último por Identidad 0 + xy = xy + 0 = xy:

$$0 + xy = xy$$

Por lo tanto se cumple la igualdad.

Alternativamente con la tabla de verdad:

x	y	\overline{x}	$\overline{x} + y$	$x(\overline{x}+y)$	xy
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	1	0	1	1	1

Las columnas $x(\overline{x} + y)$ y xy son iguales, confirmando la igualdad.

3. Demuestra si la siguiente igualdad es válida $(x+y)(\overline{x}+z)(y+z)=(x+y)(\overline{x}+z)$ **Dem.**

Tomemos el lado izquierdo $(x+y)(\overline{x}+z)(y+z)$ y desarrollemos el producto de los dos primeros términos $(x+y)(\overline{x}+z)$:

$$(x+y)(\overline{x}+z) = x\overline{x} + xz + y\overline{x} + yz$$

Sabemos que por propiedad del complemento $x\overline{x} = 0$:

$$x\overline{x} + xz + y\overline{x} + yz = 0xz + y\overline{x} + yz = xz + \overline{x}y + yz$$

Es decir:

$$(x+y)(\overline{x}+z) = xz + \overline{x}y + yz$$

Retomando en el lado izquierdo:

$$(x+y)(\overline{x}+z)(y+z) = (xz + \overline{x}y + yz)(y+z)$$

Desarrollando el producto:

$$(xz+y\overline{x}+yz)(y+z)=xzy+y\overline{x}y+yzy+xzz+y\overline{x}z+yzz \\ =xyz+\overline{x}yy+yyz+xzz+\overline{x}yz+yzz \quad \text{Conmutatividad}$$

Aplicando idempotencia, yy = y y zz = z:

$$xyz + \overline{x}yy + yyz + xzz + \overline{x}yz + yzz = xyz + \overline{x}y + yz + xz + \overline{x}yz + yz$$

De igual forma por idempotencia sobre yz + yz = yz

$$xyz + \overline{x}y + yz + xz + \overline{x}yz + yz = xyz + \overline{x}y + xz + \overline{x}yz + yz + yz$$
 Conmutatividad
= $xyz + \overline{x}y + xz + \overline{x}yz + yz$

Observemos que $xyz + \overline{x}yz = yz(x + \overline{x}) = yz(1) = yz$

$$xyz + \overline{x}y + xz + \overline{x}yz + yz = xyz + \overline{x}yz + \overline{x}y + xz + yz$$
 Conmutatividad
= $\overline{x}y + xz + yz + yz = \overline{x}y + xz + yz$ Idempotencia

Ahora, notemos que $\overline{x}y + xz + yz = xz + \overline{x}y + yz$, que es lo que obtuvimos al desarrollar el producto $(x + y)(\overline{x} + z)$, es decir:

$$\overline{x}y + xz + yz = xz + \overline{x}y + yz = (x+y)(\overline{x}+z)$$

Por lo que podemos concluir que el factor (y + z) está de más, y de esta forma la igualdad es válida.

$$\therefore$$
 Se cumple que $(x+y)(\overline{x}+z)(y+z)=(x+y)(\overline{x}+z)$

4. Demuestra si la siguiente igualdad es válida $\overline{x\cdot y}=\overline{x}\cdot\overline{y}$

Dem. Demostracion por contra-ejemplo:

Sea x = 1 y y = 1, sustituyendo en la igualdad:

$$\overline{x \cdot y} = \overline{x} \cdot \overline{y}$$

$$\overline{1\cdot 0} = \overline{1}\cdot \overline{0}$$

Sabemos que $1 \cdot 0 = 0 \cdot 1 = 0$, y $\overline{1} = 0$, $\overline{0} = 1$:

$$\overline{0} = 0 \cdot 1$$

$$1 = 0$$
 !!!

Pero esto es una contradicción, pues $1 \neq 0$. Por lo que la igualdad no es válida.

$$\overline{x \cdot y} \neq \overline{x} \cdot \overline{y}$$

5. Verifica la siguiente igualdad usando los postulados de Huntington.

$$F(x, y, z) = x + x(\overline{x} + y) + \overline{x}y = x + y$$

Resolvemos la igualdad en base a los postulados de Huntington tomados como referencia del archivo pdf de las notas de clase Lógica digital y diseño de circuitos digitales.

Aplicamos la distributividad para $x(\overline{x} + y) = x\overline{x} + xy$:

$$F(x, y, z) = x + x(\overline{x} + y) + \overline{x}y = x + x\overline{x} + xy + \overline{x}y$$

Notemos que, por el postulado Complemento, $x\overline{x} = 0$:

$$F(x, y, z) = x + x\overline{x} + xy + \overline{x}y = x + 0 + xy + \overline{x}y$$

Y por Identidad x + 0 = 0 + x = x:

$$F(x, y, z) = x + 0 + xy + \overline{x}y = x + xy + \overline{x}y$$

Ahora, podemos factorizar y de $(xy + \overline{x}y) = y(x + \overline{x})$:

$$F(x, y, z) = x + xy + \overline{x}y = x + y(x + \overline{x})$$

Reexpresamos $x + \overline{x} = 1$ por el postulado del Complemento:

$$F(x, y, z) = x + y(x + \overline{x}) = x + y(1) = x + y \cdot 1$$

Simplificamos $y \cdot 1 = y$ por el postulado de Identidad:

$$F(x, y, z) = x + y(1) = x + y \cdot 1 = x + y$$

De este modo quedó demostrado que $x + x(\overline{x} + y) + \overline{x}y = x + y$

$$F(x,y,z) = x + x(\overline{x} + y) + \overline{x}y = x + y$$

6. Obtén los mintérminos y reduce la siguiente función.

$$F(x, y, z) = \overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

Antes de obtener los mintérminos y reducir la función dada, primero la simplificamos en base, de nuevo, a las notas de clase Lógica digital y diseño de circuitos digitales.

1) Simplificamos la función.

Notemos que por Conmutatividad $\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x = \overline{x} \cdot x \cdot \overline{y} \cdot \overline{z}$

Por Complemento $\overline{x} \cdot x = 0$, así $\overline{x} \cdot x \cdot \overline{y} \cdot \overline{z} = 0 \cdot \overline{y} \cdot \overline{z}$

Y por el **Teorema 2** (Aniquilación) $0 \cdot \overline{y} \cdot \overline{z} = 0$:

$$F(x,y,z) = \overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= \overline{x} \cdot x \cdot \overline{y} \cdot \overline{z} + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= 0 \cdot \overline{y} \cdot \overline{z} + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= 0 + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z} \quad \text{Identidad: } 0 + x = x$$

Factorizamos los términos comunes, observando que $\overline{z} \cdot x + z \cdot x = x(\overline{z} + z)$ Recordando que por el Complemento $\overline{z} + z = 1$, así $x(\overline{z} + z) = x(1) = x$:

$$F(x, y, z) = \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= x(\overline{z} + z) + x \cdot \overline{y} + \overline{z}$$

$$= x(1) + x \cdot \overline{y} + \overline{z}$$

$$= x + x \cdot \overline{y} + \overline{z}$$

Por último aplicamos el **Teorema 3** (Absorción) $x + x \cdot y = x$:

$$F(x, y, z) = x + x \cdot \overline{y} + \overline{z}$$
$$= x + \overline{z}$$

Por lo que la función simplificada es $F(x, y, z) = x + \overline{z}$.

2) Obtenemos los mintérminos.

Construimos la tabla de verdad para la función $F(x,y,z)=x+\overline{z}$:

x	y	z	\overline{z}	F(x,y,z)
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1

Los mintérminos donde F = 1 corresponden a las siguientes combinaciones:

$$m_0, m_2, m_4, m_5, m_6, m_7$$

Y de este modo, la forma canónica es:

$$F(x, y, z) = m_0, m_2, m_4, m_5, m_6, m_7 = \sum_{i=1}^{n} m(0, 2, 4, 5, 6, 7)$$

 \therefore La función reducida es $F(x, y, z) = x + \overline{z}$

Los mintérminos son $F(x, y, z) = m_0, m_2, m_4, m_5, m_6, m_7 = \sum m(0, 2, 4, 5, 6, 7)$

7. Simplifica la siguiente función usando su tabla de verdad asociada y mapas de Karnaugh.

$$F(x,y,z) = \overline{xyz} + \overline{xy}z + \overline{x}y\overline{z} + x\overline{y}\overline{z} + x\overline{y}z + x\overline{y}z + xyz$$

Tabla de verdad:

x	y	z	xyz
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Mapa de Karnaugh:

$$x = \begin{bmatrix} yz \\ 00 & 01 & 11 & 10 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Función simplificada: $\overline{x} + \overline{y} + z$

8. Reduce la siguiente función y da su maxitérminos.

$$F(x, y, z) = (x + \overline{x}z) \cdot (\overline{y} + \overline{z}) \cdot z$$

Aplicamos la ley de absorción y la ley distributiva:

$$x + \overline{x}z = (x + \overline{x})(x + z) = 1 \cdot (x + z) = x + z$$

Sustituimos:

$$F(x,y,z) = (x+z)(\overline{y} + \overline{z})z$$

Aplicamos la ley distributiva entre los tres factores:

$$F(x, y, z) = [(x + z)(\overline{y} + \overline{z})]z$$

Distribuimos los primeros términos:

$$(x+z)(\overline{y}+\overline{z}) = x\overline{y} + x\overline{z} + z\overline{y} + z\overline{z}$$

Pero $z\overline{z} = 0$, entonces obtenemos: $x\overline{y} + x\overline{z} + z\overline{y}$

Multiplicamos por z:

$$F(x,y,z) = (x\overline{y} + x\overline{z} + z\overline{y})z = x\overline{y}z + x\overline{z}z + z\overline{y}z$$

6

Como ya sabemos $x\overline{z}z = 0$ y $z\overline{y}z = z\overline{y}$:

$$F(x, y, z) = x\overline{y}z + z\overline{y}$$

Factorizando:

$$F(x, y, z) = z\overline{y}(x+1) = z\overline{y}$$

Así tenemos la Función reducida: $z\overline{y}$

Escribimos cada maxitérmino:

$$\begin{array}{cccc} M_0 & 000 & (x+y+z) \\ M_1 & 001 & (x+y+\overline{z}) \\ M_2 & 010 & (x+\overline{y}+z) \\ M_3 & 011 & (x+\overline{y}+\overline{z}) \\ M_4 & 100 & (\overline{x}+y+z) \\ M_6 & 110 & (\overline{x}+\overline{y}+\overline{z}) \\ M_7 & 111 & (\overline{x}+\overline{y}+\overline{z}) \end{array}$$

$$F(x, y, z) = \prod (M_0, M_1, M_2, M_3, M_4, M_6, M_7)$$

$$F(x,y,z) = (x+y+z)(x+\overline{y}+z)(x+\overline{y}+\overline{z})(\overline{x}+y+z)(\overline{x}+\overline{y}+z)(\overline{x}+\overline{y}+\overline{z})$$

$$F(x, y, z) = (000)(010)(011)(100)(110)(111)$$

9. Utilizando Mapas de Karnaugh simplifica la función.

$$F(x_0, x_1, x_2, x_3) = \overline{x_0 x_1 x_2 x_3} + \overline{x_0 x_1 x_2} x_3 + \overline{x_0 x_1} x_2 x_3 + x_0 \overline{x_1} x_2 x_3 + x_0 x_1 \overline{x_2 x_3} + \overline{x_0} x_1 \overline{x_2 x_3} + x_0 x_1 x_2 x_3$$

Mapa de Karnaugh:

: La Función simplificada es:

$$F(x_0, x_1, x_2, x_3) = x_1 \overline{x_2 x_3} + \overline{x_0 x_1 x_2} + \overline{x_0 x_1} x_2 x_3 + x_0 x_2 x_3$$

10. Para realizar una Mapa de Karnaugh con más de 5 variables se mencionó que existe más de una forma de representarlo.

Investiga ambos métodos y utiliza el que más se te acomode para reducir la siguiente función.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + x_0 \overline{x_1} x_2 x_3 x_4 + x_0 \overline{x_1} x$$

Mapa de Karnaugh:

∴ La Función simplificada es:

$$F(x_0, x_1, x_2, x_3) = x_1 \overline{x_2 x_3} + \overline{x_0 x_1 x_2} + \overline{x_0 x_1} x_2 x_3 + x_0 x_2 x_3$$

11. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0} x_1 x_2 x_3 \overline{x_4} + \overline{x_0} x_1 \overline{x_2} x_3 \overline{x_4} + x_0 \overline{x_1} \overline{x_2} x_3 \overline{x_4} + x_0 \overline{x_1} \overline{x_2} \overline{x_3} x_4 + x_0 \overline{x_1} \overline$$

1) Paso 1: Hacer la tabla y organizar según su índice.

Número	$x_0 x_1 x_2 x_3 x_4$	Índice
0	00000	0
2	00010	1
9	01001	2
10	01010	2
14	01110	3
25	11001	3
23	10111	4
29	11101	4
31	11111	5

2) Paso 2: Identificar cuáles cambian en un solo bit.

Combinación	$x_0 x_1 x_2 x_3 x_4$	Índice	Solución
0-2	000-0	0	S_1
2-10	0-010	1	S_2
9-25	-1001	2	S_3
10-14	01 - 10	2	S_4
25-29	11-01	3	S_5
23-31	1-111	4	S_6
29-31	111-1	4	S_7

- 3) Paso 3: Omitimos este paso ya que con los resultados que tenemos no es posible hacer la comparación porque cambian en más de un bit.
- 4) Hacemos la tabla para marcar lo que tenemos:

	0	2	9	10	14	25	23	29	31
S_1	X	X							
$\begin{array}{ c c }\hline S_2\\ S_3\\ \hline S_4\\ \hline \end{array}$		X		X					
S_3			X			X			
S_4				X	Х				
S_5						Х		Х	
S_5 S_6							Х		X
S_7								Х	X

Elegimos soluciones: $S_1,\ S_3,\ S_4,\ S_6,\ S_7$

∴ La **Función simplificada** es:

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_4} + x_1 \overline{x_2 x_3} x_4 + \overline{x_0} x_1 x_2 \overline{x_4} + x_0 x_2 x_3 x_4 + x_0 x_1 x_2 x_4$$

12. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 x_4 + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + \overline{x_0 x_1} \overline{x_2} x_3 \overline{x_4} + x_0 \overline{x_1} x_2 x_3 x_4 + x_0 x_1 \overline{x_2} \overline{x_3} x_4 + \overline{x_0} x_1 \overline{x_2} \overline{x_3} x_4 + x_0 x_1 x_2 \overline{x_3} x_4 + x_0 x_1 x_2 x_3 x_4$$

1) Paso 1: Hacer la tabla y organizar según su índice.

Número	$x_0 x_1 x_2 x_3 x_4$	Índice
0	00000	0
2	00010	1
6	00110	2
9	01001	2
10	01010	2
7	00111	3
14	01110	3
25	11001	3
23	10111	4
29	11101	4
31	11111	5

2) Paso 2: Identificar cuáles cambian en un solo bit.

Combinación	$x_0 x_1 x_2 x_3 x_4$	Índice	Solución
0-2	000-0	0	S_1
2-6	00-10	1	X
2-10	0-010	1	X
6-7	0011-	2	S_2
6-14	0-110	2	X
9-25	-1001	2	S_3
10-14	01 - 10	2	X
7-23	-0111	3	S_4
25-29	11-01	3	S_5
23-31	1-111	4	S_6
29-31	111-1	4	S_7

3) Paso 3: Comparamos de nuevo los bits pero si el guión está en la misma posición.

Combinación	$x_0 x_1 x_2 x_3 x_4$	Índice	Solución
2,6-10,14	010	1	S_8
2, 10-6, 14	010	1	S_8

4) Hacemos la tabla para marcar lo que tenemos:

	0	2	6	7	9	10	14	23	25	29	31
S_1	X	X									
S_2			X	X							
S_3					X				X		
S_4				X				Х			
$ \begin{array}{c c} S_2 \\ \hline S_3 \\ S_4 \\ \hline S_5 \\ S_6 \\ \hline S_7 \end{array} $									X	X	
S_6								Х			X
										Х	X
S_8		X	X			X	X				

Elegimos soluciones: S_1 , S_3 , S_4 , S_7 , S_8

 \therefore La Función simplificada es:

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_4} + x_1 \overline{x_2 x_3} x_4 + \overline{x_1} x_2 x_3 x_4 + x_0 x_1 x_2 x_4 + \overline{x_0} x_3 \overline{x_4}$$

Referencias

[1] Galaviz, C. (s. f.). Lógica digital y diseño de circuitos digitales. [Facultad de Ciencias, UNAM]. PDF. Disponible en:

https://drive.google.com/file/d/1BdCwuwFcSar5W5nPxA98FVNfTxZfd6yg/view