Intro to Communication System EE140 Fall, 2020

Assignment 7

Due time: 10:15, Nov 20, 2020 (Friday)

Name: 陈 稼 霖 Student ID: 45875852 Grade:

Problem 1 (2.1 Coin flip.) Score: _____. A fair coin is flipped until the first head occurs. Let X denote the number of flips required.

(a) Find the entropy H(X) in bits. The following expression may be useful:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \quad \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.$$

(b) A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form, "Is X contained in the set S?" Compare H(X) to the expected number of questions required to determine X.

Solution:

Problem 2 (2.2 Entropy of functions.) Score: _____. Let X be a random variable taking on a finite number of values. What is the (general) inequality relation of H(X) and H(Y) if

- (a) $Y = 2^X$?
- (b) $Y = \cos X$?

Solution:

Problem 3 (2.4 Entropy of functions of a random variable.) Score: _____. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$\begin{split} H(X,g(X)) &\stackrel{\text{(a)}}{=} H(X) + H(g(X)|X) \\ &\stackrel{\text{(b)}}{=} H(X) \\ H(X,g(X)) &\stackrel{\text{(c)}}{=} H(g(X)) + H(X|g(X)) \\ &\stackrel{\text{(d)}}{\geq} H(g(X)). \end{split}$$

Thus, $H(g(X)) \leq H(X)$.

Solution:

Problem 4 (2.5 Zero conditional entropy.) Score: _____. Show that if H(Y|X) = 0, then Y is a function of X [i.e., for all x with p(x) > 0, there is only one possible value of y with p(x, y) > 0].

Solution: \Box

Problem 5 (2.11 Measure of correlation.) Score: _____. Let X_1 and X_2 be identically distributed but not necessarily independent. Let

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}.$$

- (a) Show that $\rho = \frac{I(X_1; X_2)}{H(X_1)}$.
- (b) Show that $0 \le \rho \le 1$.
- (c) When is $\rho = 0$?

(d) When is $\rho = 1$?

Solution:

Problem 6 (2.21Example of entropy.) Score: _____. Let p(x,y) be given by

Y X	0	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	0	$\frac{1}{3}$

Find:

- (a) H(X), H(Y).
- (b) H(X|Y), H(Y|X).
- (c) H(X,Y).
- (d) H(Y) H(Y|X).
- (e) I(X;Y).
- (f) Draw a Venn diagram for the quantities in parts (a) through e.

Solution:

Problem 7 (8.1 Diffrential entropy.) Score: _____. Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:

- (a) The exponential density, $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$.
- (b) The Laplace density, $f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}$.
- (c) The sum of X_1 and X_2 , where X_1 and X_2 are independent random variables with means μ_i and variables σ_i^2 , i = 1, 2.

Solution: