COMP30027 MACHINE LEARNING TUTORIAL

Workshop - 4

Model Evaluation and Decision Trees

We'll cover evaluation metrics, baselines, decision trees, and data-splitting strategies.

Understanding Classification Results

- True Positive (TP): The model correctly predicts the positive class. For example, a spam email is correctly identified as spam.
- False Positive (FP): The model incorrectly predicts positive class when it's actually negative. For Example, normal email is wrongly labelled as spam. (Also known as a Type I Error.)
- False Negative (FN): The model misses the positive class—it predicts negative when it's actually positive. For example, a spam email is misclassified as not spam. (Also known as a Type II Error.)
- True Negative (TN): The model correctly predicts the negative class. For example, a normal email is correctly identified as not spam.

 https://www.evidentlyai.com/classification-metrics/confusion-matrix

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Scenario: Fraud Detection in Credit Card Transactions

You're building a model to detect fraudulent transactions.

- You have 100,000 transactions
- Only 100 are actually fraudulent
- •That means:
 - 99,900 are legitimate
 - 100 are fraud

So, the class distribution is heavily imbalanced

$$rac{TP+TN}{Total} = rac{0+99,900}{100,000} = 99.9\%$$

Even though the model achieves 99.9% accuracy, it fails to detect any fraudulent transactions. So, when the class distribution is highly imbalanced, accuracy is not a reliable evaluation metric

$$Precision = \frac{600}{600 + 100}$$

Recall =
$$\frac{5}{5+10}$$

The general formula for non-negative real β is:

$$F_{eta} = rac{(1+eta^2) \cdot (ext{precision} \cdot ext{recall})}{(eta^2 \cdot ext{precision} + ext{recall})}$$

Beta (β) controls the balance between precision and recall:

- • β > 1: More weight on **recall** (sensitive to false negatives)
- • β < 1: More weight on **precision** (sensitive to false positives)
- • β = 1: Equal weight → This gives the **F1-score**

800

600

400

- 200

A **confusion matrix** is a table used to evaluate the performance of a classification model by comparing the predicted labels with the actual labels.

The highlighted green areas represent false positives for the aeroplane class, while the brown areas indicate false negatives. The dark blue section corresponds to the true positives for the aeroplane class in the confusion matrix.

Q4

A confusion matrix is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

Predicted -	Predicted +	
2	10	Actual +
7	5	Actual -

Calculate the precision, recall, and F-score (where β = 1) for this classifier.

•Precision : 10/15 = 0.667

•**Recall** : 10/12 = 0.833

•**F-score:** *PR/P+R* =2*0.667*0.8330.667+0.833=0.741

Metric	Formula
True positive rate, recall	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$
False positive rate	$\frac{\text{FP}}{\text{FP+TN}}$
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
Accuracy	$\frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$
F-measure	$\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Baseline vs Benchmark

Baseline: starting point for comparison

- **Zero-R Rule** (0-R)
- **One Rule** (1-R)

Zero-R (Majority Class)

Always predicts the most frequent class. Simplest possible classifier.
Implementation requires just a counter.

One-R (Single Rule)

Generates one rule based on one feature. Finds the attribute with minimum error rate.

Benchmark: known standard or state-of-the-art that you compare your model against

- CNN
- Linear Regression
- Random Forest

Training set:

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	Н	F	Ν
В	S	Н	Н	Т	Ν
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	Ν	F	Υ
F	R	С	Ν	Т	Ν

Test set:

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

Zero-R Rule (O-R)

Training set:

ID	Outlook	Temp	Humid	Wind	Play	
А	S	Н	Н	F	N	
В	S	Н	Н	Т	N	
С	0	Н	Н	F	Υ	
D	R	М	Н	F	Υ	— 3
Е	R	С	Ν	F	Υ.	
F	R	С	N	Т	N	

Test set:

It's a tie, so you can choose either N or Y

ID	Outlook	Temp	Humid	Wind	Play
G	O	М	N	Т	N
Н	S	Н	Н	F	N

One-R Rule (1-R)

Step 1: Find the majority label and compute errors for each feature

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	Н	F	N
В	S	Н	Н	Т	Ν
С	Ο	Н	Н	F	Υ
D	R	М	Н	F	Υ
Ε	R	С	Ν	F	Υ
F	R	С	Ν	Т	Ν

Outlook: 1 error

Temp: 2 errors

Humid: 3 errors

Wind: 1 error

Outlook	Labels	Majority Label	Errors
S	N, N	N	0
0	Υ	Υ	0
R	Y, Y, N	Y (2)	1 (1 N misclassified)
Temp	Labels	Majority Label	Errors
Н	N, N, Y	N (2)	1 (Y is misclassified)
М	Υ	Υ	0
С	Y, N	Υ	1 (1 N misclassified)
Humid	Labels	Majority Label	Errors
Н	N, N, Y, Y	N (2)	2 (2 Y misclassified)
N	Y, N	Υ	1 (1 N misclassified)
Wind	Labels	Majority Label	Errors
F	N, Y, Y, Y	Y (3)	1 (1 N misclassified)
Т	N, N	N	0

Step 2: Create Final Rule Based on Best Feature (Outlook)

Outlook	Predict
S	N
0	Υ
R	Υ

Test set:

ID	Outlook	Temp	Humid	Wind	Play
G	Ο	М	N	Т	?
Н	S	Н	Н	F	?

Step 3: Make Final Prediction based on Best Feature (Outlook) from step 2

ID	Outlook	Prediction
G	0	Υ
Н	S	N

Decision Trees: Fundamentals

Tree Structure

Hierarchical model with nodes and branches. Each node represents a decision point.

Splitting Criteria

Uses information gain (used in ID₃), Gain ratio, etc

Leaf Nodes

Terminal nodes that provide final predictions.

ID3 Decision Tree Implementation Algorithm

 Basic method: construct decision trees in recursive divide-andconquer fashion

FUNCTION ID3 (Root)

IF all instances at Root have the same class label*

THEN stop

ELSE 1. <u>Select an attribute</u> to use in partitioning *Root* node instances

- Create a branch for each attribute value and partition up Root node instances according to each value
- 3. Call **ID3**(*LEAF*_i) for each leaf node *LEAF*_i

At each step, it:

- **1.Computes entropy of parent** (how mixed the class labels are).
- **2.Computes information gain** for each feature.
- **3.Chooses the feature with highest gain** to split the data.
- 4. Repeats this process **recursively** on child branches.

^{*} Note: we may not end up with pure leaves (all instances with the same class label). Therefore, our stopping criterion may actually be a threshold $purity(Root) > \theta$

Entropy

The entropy of a discrete random event x with possible states 1, ..., n is:

$$H(x) = -\sum_{i=1}^{n} P(i) \log_2 P(i)$$

where $0 \log_2 0 \stackrel{\text{def}}{=} 0$

In the context of Decision Trees, we are looking at the class distribution at a node:

• 50 Y instances, 5 N instances:

$$H = -\left[\frac{50}{55}\log_2\frac{50}{55} + \frac{5}{55}\log_2\frac{5}{55}\right] \approx 0.44 \ bits$$

• 30 Y instances, 25 N instances:

$$H = -\left[\frac{30}{55}\log_2\frac{30}{55} + \frac{25}{55}\log_2\frac{25}{55}\right] \approx 0.99 \ bits$$

We want leaves with low entropy!

How do we choose the attribute to partition the root node instances?

Attribution Selection: Information Gain

 Select attribute R_A (with values x₁, ..., x_m) best splits the instances at a given root node R according to information gain:

$$IG(R_A|R) = H(R) - \sum_{j=1}^{m} P(x_j) H(x_j)$$

Information Gain = Entropy of parent - Mean Information

Q3
Classify the test instances using the ID3 Decision Tree method:
1.Using information gain as the splitting criterion

Training	set:	Outlook	Temp	Humid	Wind	Play
	Α	S	Н	Н	F	N
	В	S	Н	Н	Т	N
	С	Ο	Н	Н	F	Υ
	D	R	М	Н	F	Υ
	Е	R	С	N	F	Υ
	F	R	С	Ν	Т	Ν

Test set:

ID	Outlook	Temp	Humid	Wind	Play
G	Ο	М	N	Т	?
Н	S	Н	Н	F	?

Step 1: Calculate Entropy of Root (Target Class - Play)

From the training set, we have:

- 3 instances where Play = Y
- 3 instances where Play = N

Entropy at root is:

$$H(R) = -\left(rac{3}{6}\log_2rac{3}{6} + rac{3}{6}\log_2rac{3}{6}
ight) = 1$$

This means we're completely uncertain at the start (equal split).

At each step, it:

- **1.Computes entropy of parent** (how mixed the class labels are).
- **2.Computes information gain** for each feature.
- **3.Chooses the feature with highest gain** to split the data.
- 4. Repeats this process **recursively** on child branches.

Step 2: Try Splitting on All Features

Now we calculate Information Gain for each feature.

Information Gain =

IG(Feature) = Entropy at parent – Weighted average entropy of children

Feature: Outlook

Value	Counts	Play Yes	Play No
S	2	0	2
0	1	1	0
R	3	2	1

•
$$Ent(S) = -\left[0\log_2 0 + \frac{2}{2}\log_2 \frac{2}{2}\right] = 0$$

•
$$Ent(O) = 0$$

•
$$Ent(R) = -\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right) \approx 0.918$$

$$Gain(Outlook) = 1 - \left(rac{2}{6} \cdot 0 + rac{1}{6} \cdot 0 + rac{3}{6} \cdot 0.918
ight) = 1 - 0.459 = 0.541$$

At each step, it:

- **1.Computes entropy of parent** (how mixed the class labels are).
- **2.Computes information gain** for each feature.
- **3.Chooses the feature with highest gain** to split the data.
- 4. Repeats this process **recursively** on child branches.

Feature: Temp

Value	Counts	Play Yes	Play No
Н	3	1	2
М	1	1	0
С	2	1	1

$$Ent(H)pprox 0.918$$
 , $Ent(M)=0$, $Ent(C)=1$

$$Gain(Temp) = 1 - \left(rac{3}{6} \cdot 0.918 + rac{1}{6} \cdot 0 + rac{2}{6} \cdot 1
ight) = 1 - (0.459 + 0 + 0.333) = 0.208$$

Feature: Humid

Value	Counts	Play Yes	Play No
н	4	2	2
N	2	1	1

•
$$Ent(H) = 1$$
, $Ent(N) = 1$
$$Gain(Humid) = 1 - (4/6*1 + 2/6*1) = 1 - 1 = 0$$

Feature: Wind

Value	Counts	Play Yes	Play No
F	4	3	1
Т	2	0	2

•
$$Ent(F) = -\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) \approx 0.811$$

•
$$Ent(T) = 0$$

$$Gain(Wind) = 1 - \left(rac{4}{6} \cdot 0.811 + rac{2}{6} \cdot 0
ight) = 1 - 0.541 = 0.459$$

Best Split: Highest IG

Feature	Gain
Outlook	0.541 ← Best
Wind	0.459
Temp	0.208
Humid	0

At each step, it:

- **1.Computes entropy of parent** (how mixed the class labels are).
- **2.Computes information gain** for each feature.
- **3.Chooses the feature with highest gain** to split the data.
- 4. Repeats this process **recursively** on child branches.

Build Tree (First Split: Outlook)

Step 1: Calculate Entropy of Root (Outlook = R)

ID	Temp	Humid	Wind	Play
D	М	Н	F	Υ
E	С	N	F	Υ
F	С	N	Т	N

• 1 N $\mathsf{Entropy}\, H(R) = -\left(\tfrac{2}{3}\log_2\tfrac{2}{3} + \tfrac{1}{3}\log_2\tfrac{1}{3}\right) \approx 0.9183$

At each step, it:

- **1.Computes entropy of parent** (how mixed the class labels are).
- **2.Computes information gain** for each feature.
- 3.Chooses the feature with highest gain to split the data.
- 4. Repeats this process **recursively** on child branches.

Step 2: Try Splitting on All Features

Feature: Temp

Temp	Play
М	Y → Entropy = 0
С	Y, N \rightarrow Entropy = 1

Mean Info:

$$MI(Temp) = rac{1}{3}(0) + rac{2}{3}(1) = 0.6667$$
 $IG(Temp) = 0.9183 - 0.6667 = 0.2516$

Feature: Humid

Humid	Play
н	Y → Entropy = 0
N	Y, N → Entropy = 1

Same calculation as above:

$$MI(Humid) = rac{1}{3}(0) + rac{2}{3}(1) = 0.6667$$
 $IG(Humid) = 0.9183 - 0.6667 = 0.2516$

ID	Temp	Humid	Wind	Play
D	М	Н	F	Υ
Е	С	N	F	Υ
F	С	N	Т	N

Feature: Wind

Wind	Play	
F	Y, Y \rightarrow Entropy = 0	
Т	N → Entropy = 0	

$$MI(Wind) = rac{2}{3}(0) + rac{1}{3}(0) = 0$$
 $IG(Wind) = 0.9183 - 0 = 0.9183$

Best Split: Highest IG

Wind

Final Decision Tree (Second split = Wind)

	G	O	М	N	T	?
Yes = 3 No =3	Н	S	Н	Н	F	?

ID

Outlook Temp Humid

Wind

Play

Final Decision Tree

ID

Outlook Temp Humid Wind

Play

Shortcomings of Information Gain

• Information gain tends to prefer highly-branching attributes

What if we split instances using ID label?

When using **information gain**, ID3 tends to prefer attributes with **many distinct values**, which can be misleading (e.g., ID has a unique value for each example — perfect split, but useless for generalization).

Gain Ratio

Gain Ratio (GR) reduces the bias for information gain towards highly-branching attributes by normalising relative to the split info

$$Gain\ Ratio = \frac{Information\ Gain}{Split\ Information}$$

$$SplitInfo = -\sum \frac{N_i}{N} log_2 \frac{N_i}{N}$$

where Ni is the number of data points containing each value of the variable

and N is the total number of data points

	R	Outlook		Temp			Humid		Wi	nd	ID						
		S	0	r	h	m	С	h	n	Т	F	Α	В	С	D	Е	F
Υ	3	0	1	2	1	1	1	2	1	0	3	0	0	1	1	1	0
N	3	2	0	1	2	0	1	2	1	2	1	1	1	0	0	0	1
Total	6	2	1	3	3	1	2	4	2	2	4	1	1	1	1	1	1
P(Y)	1/2	0	1	2/3	1/3	1	1/2	1/2	1/2	0	3/4	0	0	1	1	1	0
P(N)	1/2	1	0	1/3	2/3	0	1/2	1/2	1/2	1	1/4	1	1	0	0	0	1
н	1	0	0	0.91 83	0.91 83	0	1	1	1	0	0.81 12	0	0	0	0	0	0
MI		0.45 92			0.79 24			1		0.54 08		0					
IG		0.54 08			0.20 76			0		0.45 92		1					

Step 2: Try Splitting on All Features

Feature: Outlook

Values: S, O, R

- $S \rightarrow A$, $B \rightarrow both N \rightarrow Entropy = 0$
- $O \rightarrow C \rightarrow Y \rightarrow Entropy = 0$
- R → D, E, F → Y, Y, N → Entropy ≈ 0.9183

Mean Information:

$$MI = rac{2}{6}(0) + rac{1}{6}(0) + rac{3}{6}(0.9183) pprox 0.4592$$
 $IG = 1 - 0.4592 = 0.5408$ $SI = -\left(rac{2}{6}\log_2rac{2}{6} + rac{1}{6}\log_2rac{1}{6} + rac{3}{6}\log_2rac{3}{6}
ight) pprox 1.459$ $GR = rac{0.5408}{1.459} pprox 0.3707$

Step 2: Try Splitting on All Features

Step 2: Choose Root = Wind

Feature: Temp

Values: H, M, C

- H: A, B, C → N, N, Y → Entropy = 0.9183
- M: D → Y → Entropy = 0
- C: E, F → Y, N → Entropy = 1

$$MI = rac{3}{6}(0.9183) + rac{1}{6}(0) + rac{2}{6}(1) pprox 0.7924$$
 $IG = 1 - 0.7924 = 0.2076$

 $SI = -[0.5\log_2 0.5 + 0.1667\log_2 0.1667 + 0.3333\log_2 0.3333] pprox 1.459$

$$GRpproxrac{0.2076}{1.459}pprox0.1423$$

Feature: Humid

 $H \rightarrow A$, B, C, D \rightarrow N, N, Y, Y \rightarrow Entropy = 1

 $N \rightarrow E, F \rightarrow Y, N \rightarrow Entropy = 1$

- → Mean Information = 1
- \rightarrow IG = 0
- \rightarrow GR = 0

 $T \rightarrow B, F \rightarrow N, N \rightarrow Entropy = 0$

Feature: Wind

 $F \rightarrow A$, C, D, $E \rightarrow N$, Y, Y, Y \rightarrow Entropy ≈ 0.8112

$$MI = rac{2}{6}(0) + rac{4}{6}(0.8112) pprox 0.5408$$

$$IG = 1 - 0.5408 = 0.4592$$

$$SI = -\left(rac{2}{6}\log_2rac{2}{6} + rac{4}{6}\log_2rac{4}{6}
ight) pprox 0.9183$$
 $GR = rac{0.4592}{0.9183} pprox 0.5001$

Feature: ID

$$MI(ID)=\sum_{i=1}^6rac{1}{6}\cdot 0=0$$

$$IG(ID) = H(R) - MI = 1 - 0 = 1$$

There are 6 branches (A to F), each with probability $\frac{1}{6}$:

$$SI(ID) = -\sum_{i=1}^6 rac{1}{6} \log_2 rac{1}{6} = 6 \cdot \left(-rac{1}{6} \cdot \log_2 rac{1}{6}
ight) = -\log_2 rac{1}{6}$$

$$\log_2 \frac{1}{6} = \log_2 1 - \log_2 6 = 0 - \log_2 6 pprox -2.585$$

So,

$$SI(ID) = 2.585$$

$$GR(ID)=rac{IG}{SI}=rac{1}{2.585}pprox 0.387$$

Build Tree (First Split: Wind)

Step 3: Evaluate Attributes in Wind = F subset

Feature: Outlook

Value	Play	Entropy
S	N	0
0	Υ	0
r	Y, Y	0

MI = 0
IG = 0.8112
SI =
$$-[\frac{1}{4}\log\frac{1}{4} + \frac{1}{4}\log\frac{1}{4} + \frac{1}{2}\log\frac{1}{2}] = 1.5$$

GR = 0.8112 / 1.5 = **0.5408**

Feature: Temp

2 h instances (1 Y, 1 N, (H = 1))

1 m instance (Y, (H = 0))

1 c instance (Y, (H = 0))

MI = 2/4(1) + 1/4(0) + 1/4(0) = 0.5

 $\Rightarrow IG = 0.8112 - 0.5 = 0.3112$

Same instance distribution as **Outlook**, so the split information is also 1.5, and the Gain ratio is $GR(Temp|Wind=F)=0.31121.5\approx0.2075$

Step 2: Try Splitting on All Features

Feature: Humid

```
3 h instances (2 Y, 1 N, ( H = 0.9183 ))

1 n instance (Y, ( H = 0 ))

MI=3/4(0.9183)+1/4(0)=0.6887

\Rightarrow IG=0.8112-0.6887=0.1225

Split information: SI(H \mid Wind = F) = -\left[\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right] \approx 0.8112

Gain ratio: GR(H \mid Wind = F) = \frac{0.1225}{0.8112} \approx 0.1387
```

Feature: Id

Mean information is obviously still 0, so IG = 0.8112

Split information:
$$SI(ID) = -\left[4 \times \frac{1}{4}\log_2 \frac{1}{4}\right] = 2$$

Gain ratio: $GR(ID) = \frac{0.8112}{2} \approx 0.4056$

Best Split: Highest GR

Outlook = **0.5408**

Final Decision Tree (Second split = outlook)

Play	Wind	Humid	Temp	Outlook	ID
?	Т	N	М	Ο	G
?	F	Н	Н	S	Н

Final Decision Tree

ID

Outlook Temp Humid Wind

Ν

Н

Play

Ν

Ν

Data Splitting Techniques

Holdout

You split your dataset into two or three parts:

Training set: used to train the model

Validation set: used to optimize hyperparameters

Test set: used to evaluate the model's performance

You split your dataset into k equal parts (folds) and perform k rounds of training/testing:

In each round:	Fold	Dataset	Validation error	Cross-validation error
	1		ϵ_1	
Train on $k-1$ folds	9		60	
Test on the remaining fold	2		ϵ_2	$\frac{\epsilon_1 + + \epsilon_k}{\epsilon_1}$
Final score = average performance across all rounds	:	:	:	κ
	k		ϵ_k	
		Train Validation		

Key Takeaways and Best Practices

Choose Metrics Wisely

Select evaluation metrics that match your problem domain and business objectives.

Always Use Baselines

Establish minimum performance thresholds with simple models for comparison.

Implement Proper Data Splits

Ensure train/validation/test splits reflect real-world data distribution and use cases.

Iterate and Improve

Use evaluation insights to refine models continuously. Monitor for drift in production.