

Data

Table 1: Flutter Test Bench Data

Test	Setup	AOA	Flutter Velocity
1	С	2.5	37.8
2	D	2.5	25.34
3	В	2.5	31
4	В	5	28.81
5	Α	5	27.33
6	Α	2.5	26.18
7	D	5	25.97
8	С	5	34.72

^{*}Velocity Measured in m/s

Data Cont.

Questions

WHAT PREDICTIONS CAN BE MADE OF THE DIVERGENCE VELOCITY OF THE AIRFOIL FOR THE CONDITIONS WHERE THE SPRINGS WERE AT THE LEADING AND TRAILING EDGES (OPTION B & C).

Step 1: Predicting the Divergence Velocity

Given Parameters

- Airfoil chord, $c = 0.1 \,\mathrm{m}$
- Spring stiffness per spring, $k = 0.03 \, \text{N/mm} = 30 \, \text{N/m}$
- Effective span, $s = 266.25 \,\mathrm{mm} = 0.26625 \,\mathrm{m}$
- Number of springs, 4 (two at leading edge, two at trailing edge)
- Air density, $\rho_{\infty} = 1.225 \,\mathrm{kg/m}^3$
- Aerodynamic center, $x_{ac} = 0.25c = 0.025 \,\mathrm{m}$
- Lift-curve slope, $C_{L_{\alpha}} = 2\pi \operatorname{rad}^{-1}$

Calculations

Wing Area

$$S = c \times s = 0.1 \,\mathrm{m} \times 0.26625 \,\mathrm{m} = 0.026625 \,\mathrm{m}^2$$

Equivalent Torsional Stiffness

$$k_{
m edge} = 2k = 2 \times 30 \,
m N/m = 60 \,
m N/m$$
 $b = \frac{c}{2} = 0.05 \,
m m$ $k_T = 2k_{
m edge}b^2 = 2 \times 60 \,
m N/m \times (0.05 \,
m m)^2 = 0.3 \,
m N \cdot m/rad$

Pivot Point Location

$$x_0 = \frac{c}{2} = 0.05 \,\mathrm{m}$$

Divergence Dynamic Pressure

$$q_D = \frac{k_T}{SC_{L_{\alpha}}(x_0 - x_{ac})} = \frac{0.3}{0.026625 \times 2\pi \times 0.025} \approx 71.658 \,\mathrm{N/m}^2$$

Divergence Velocity

$$U_D = \sqrt{\frac{2q_D}{\rho_{\infty}}} = \sqrt{\frac{2 \times 71.658}{1.225}} \approx 10.8 \,\mathrm{m/s}$$

The predicted divergence velocity for the configuration with springs at the leading and trailing edges is approximately 10.8 m/s. However, experimental observations indicated flutter occurring at 37.8 m/s, suggesting possible discrepancies due to factors such as additional structural stiffness and/or simplifications in the theoretical model.

Question

- WHAT DO YOU THINK THE EFFECT OF MOVING THE SPRINGS TO THE OTHER TWO POSITIONS (A & D) WILL BE?
 - BASED ON THE PRELAB, A & D SHOULD DECREASE THE VELOCITY REQUIRED TO REACH FLUTTER

- How do your observations match the predictions?
 - The data and observations match the prediction made as both Option A & D required less velocity to cause flutter for AOA: 2.5 and AOA: 5.0 as shown in Slides 2 and 3 [Data & Data Cont.]

Question

WHAT IS THE PREDICTED DIVERGENCE VELOCITY FOR THE DIFFERENT SPRING POSITIONS BY TREATING THE SPRING ARRANGEMENT AS A TORSIONAL SPRING?

Answer

Option A Calculations

1. Calculate x_0 and b

$$x_0 = \frac{x_{\mathrm{front}} + x_{\mathrm{rear}}}{2} = \frac{0 + 0.1}{2} = 0.05 \,\mathrm{m}$$
 $l = x_{\mathrm{rear}} - x_{\mathrm{front}} = 0.1 - 0 = 0.1 \,\mathrm{m}$
 $b = \frac{l}{2} = \frac{0.1}{2} = 0.05 \,\mathrm{m}$

2. Calculate Equivalent Torsional Stiffness k_T

$$k_T = 2kb^2 = 2 \times 30 \,\mathrm{N/m} \times (0.05 \,\mathrm{m})^2 = 0.15 \,\mathrm{N \cdot m/rad}$$

3. Calculate Dynamic Pressure q_D

$$\begin{split} q_D &= \frac{k_T}{SC_{L_\alpha}(x_0 - x_{ac})} = \frac{0.15}{0.026625 \times 2\pi \times (0.05 - 0.025)} \\ q_D &= \frac{0.15}{0.026625 \times 6.28319 \times 0.025} = \frac{0.15}{0.004186} \approx 35.836 \, \text{N/m}^2 \end{split}$$

4. Calculate Divergence Velocity U_D

$$U_D = \sqrt{\frac{2q_D}{\rho_{\infty}}} = \sqrt{\frac{2 \times 35.836}{1.225}} = \sqrt{58.513} \approx 7.65 \,\mathrm{m/s}$$

Option B Calculations

1. Calculate x_0 and b

$$x_0 = \frac{0 + 0.12}{2} = 0.06 \,\mathrm{m}$$
 $l = 0.12 - 0 = 0.12 \,\mathrm{m}$ $b = \frac{0.12}{2} = 0.06 \,\mathrm{m}$

2. Calculate k_T

$$k_T = 2kb^2 = 2 \times 30 \times (0.06)^2 = 0.216 \,\mathrm{N\cdot m/rad}$$

3. Calculate q_D

$$q_D = \frac{0.216}{0.026625 \times 6.28319 \times (0.06 - 0.025)} = \frac{0.216}{0.026625 \times 6.28319 \times 0.035}$$
$$q_D = \frac{0.216}{0.005861} \approx 36.853 \,\text{N/m}^2$$

4. Calculate U_D

$$U_D = \sqrt{\frac{2 \times 36.853}{1.225}} = \sqrt{60.201} \approx 7.76 \,\mathrm{m/s}$$

Answer Cont.

Option C Calculations

1. Calculate x_0 and b

$$x_0 = \frac{-0.02 + 0.12}{2} = 0.05 \,\mathrm{m}$$

 $l = 0.12 - (-0.02) = 0.14 \,\mathrm{m}$
 $b = \frac{0.14}{2} = 0.07 \,\mathrm{m}$

2. Calculate k_T

$$k_T = 2kb^2 = 2 \times 30 \times (0.07)^2 = 0.294 \,\mathrm{N \cdot m/rad}$$

3. Calculate q_D

$$q_D = \frac{0.294}{0.026625 \times 6.28319 \times (0.05 - 0.025)} = \frac{0.294}{0.004186} \approx 70.23 \,\mathrm{N/m}^2$$

4. Calculate U_D

$$U_D = \sqrt{\frac{2 \times 70.23}{1.225}} = \sqrt{114.703} \approx 10.72 \,\mathrm{m/s}$$

Option D Calculations

1. Calculate x_0 and b

$$x_0 = \frac{-0.02 + 0.1}{2} = 0.04 \,\mathrm{m}$$

 $l = 0.1 - (-0.02) = 0.12 \,\mathrm{m}$
 $b = \frac{0.12}{2} = 0.06 \,\mathrm{m}$

2. Calculate k_T

$$k_T = 2kb^2 = 2 \times 30 \times (0.06)^2 = 0.216 \,\mathrm{N\cdot m/rad}$$

3. Calculate q_D

$$q_D = \frac{0.216}{0.026625 \times 6.28319 \times (0.04 - 0.025)} = \frac{0.216}{0.026625 \times 6.28319 \times 0.015}$$
$$q_D = \frac{0.216}{0.002513} \approx 85.946 \,\text{N/m}^2$$

4. Calculate U_D

$$U_D = \sqrt{\frac{2 \times 85.946}{1.225}} = \sqrt{140.395} \approx 11.85 \,\mathrm{m/s}$$

- How do your experiment compare to predictions?
 - Option C has the highest divergence velocity (UD = 10.72 m/s), due to the increased distance between springs, leading to higher torsional stiffness kT.
 - Option A has the lowest divergence velocity (UD = 7.65 m/s), with springs at the LE and TE.
 - Both predictions align with the predictions in the prelab and the data where C required the most velocity to reach flutter and A (or D) required the least velocity to induce flutter but the experimental observations showed flutter occurring at 37.8 m/s, significantly higher than the predicted velocities, suggesting there may be errors in our assumptions.