CT Übungsaufgaben **ADC**

1. Offset errors

- a. Draw the transfer function of an ideal 3-Bit ADC. V_{REF} is set to 2V.
- b. That ADC has an offset error of -1.5 LSB.
 - Draw the new transfer function
 - II. Convert the LSB in volts
 - III. Convert the offset error in Volts
 - IV. Calculate the offset error in % of FSR

2. Programming the ADC

Consider the ADC registers and addresses given below. Assume that the ADCs are properly initialized and started for regular channel conversion.

Write C code (including correct register addresses) to do the following:

- a. Wait until ADC1 conversion has completed.
- b. Set an 8-bit variable (var2) to 0xFF if there was a loss of data on ADC2, otherwise reset that variable to 0.
- c. Set ADC3 resolution to 10-bit.

sanble

1/8 = 0.15 -0 150 ~ 0.15 voll

official con : -1.5 · 0.15 = 0.25

= 0.32-5.100/175=21.93%

13.13 ADC registers

Refer to Section 1.1 on page 57 for a list of abbreviations used in register descriptions.

The peripheral registers must be written at word level (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

13.13.1 ADC status register (ADC SR)

Address offset: 0x00

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									OVR	STRT	JSTRT	JEOC	EOC	AWD	
									rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0		

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 OVR: Overrun

This bit is set by hardware when data are lost (either in single mode or in dual/triple mode). It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1.

- 0: No overrun occurred
- 1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.

- 0: No regular channel conversion started
- 1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag

This bit is set by hardware when injected group conversion starts. It is cleared by software.

- 0: No injected group conversion started
- 1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software.

- 0: Conversion is not complete
- 1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

- 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
- 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software.

- 0: No analog watchdog event occurred
- 1: Analog watchdog event occurred

13.13.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Docony	ad		OVRIE	RE	S	AWDEN	JAWDEN	Reserved					
	Reserved			rw	rw	rw	rw	rw		Reserved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	DISCNUM[2:0] JDISCE N DISC EN			JAUTO	AWDSG L	SCAN	JEOCIE	AWDIE	EOCIE	EOCIE AWDCH[4:0]					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:27 Reserved, must be kept at reset value.

Bit 26 OVRIE: Overrun interrupt enable

This bit is set and cleared by software to enable/disable the Overrun interrupt.

- 0: Overrun interrupt disabled
- 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.

00: 12-bit (15 ADCCLK cycles)

01: 10-bit (13 ADCCLK cycles)

10: 8-bit (11 ADCCLK cycles)

11: 6-bit (9 ADCCLK cycles)

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.

- 0: Analog watchdog disabled on regular channels
- 1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set and cleared by software.

- 0: Analog watchdog disabled on injected channels
- 1: Analog watchdog enabled on injected channels

Bits 21:16 Reserved, must be kept at reset value.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger.

000: 1 channel

001: 2 channels

111: 8 channels

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group.

- 0: Discontinuous mode on injected channels disabled
- 1: Discontinuous mode on injected channels enabled

ADC region		offset		Address of register				
	ADC1	0x000 - 0x04C	Specific registers	0x40012000 + 0x000 + register offset				
			Reserved					
0x4001 2000	ADC2	0x100 - 0x14C	Specific registers	0x40012000 + 0x100 + register offset				
- 0x4001 23FF			Reserved					
0X4001 Z011	ADC3	0x200 - 0x24C	Specific registers	0x40012000 + 0x200 + register offset				
			Reserved					
	Common	0x300 - 0x308	Common registers	0x40012000 + 0x300 + register offset				