Package 'BayesRegDTR'

June 27, 2023
Type Package
Title Bayesian Regression for Dynamic Treatment Regimes
Version 1.0.1
Description Methods to estimate optimal dynamic treatment regimes using Bayesian likelihood-based regression approach as described in Yu, W., & Bondell, H. D. (2023) <doi:10.1093 jrsssb="" qkad016=""> Uses backward induction and dynamic programming theory for computing expected values. Offers options for future parallel computing.</doi:10.1093>
License GPL (>= 3)
Imports Rcpp (>= 1.0.13-1), mvtnorm, foreach, progressr, stats, future
Depends doRNG
Suggests cli, testthat (>= 3.0.0), doFuture
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
RoxygenNote 7.3.2
<pre>URL https://github.com/jlimrasc/BayesRegDTR</pre>
<pre>BugReports https://github.com/jlimrasc/BayesRegDTR/issues</pre>
Config/testthat/edition 3
NeedsCompilation yes
Author Jeremy Lim [aut, cre], Weichang Yu [aut] (ORCID: https://orcid.org/0000-0002-0399-3779)
Maintainer Jeremy Lim <jeremylim23@gmail.com></jeremylim23@gmail.com>
Repository CRAN
Date/Publication 2025-06-27 13:20:02 UTC
Contents
BayesRegDTR-package

Index 7

BayesRegDTR-package

BayesRegDTR: Bayesian Regression for Dynamic Treatment Regimes

Description

Methods to estimate optimal dynamic treatment regimes using Bayesian likelihood-based regression approach as described in Yu, W., & Bondell, H. D. (2023) doi:10.1093/jrsssb/qkad016 Uses backward induction and dynamic programming theory for computing expected values. Offers options for future parallel computing.

Author(s)

Maintainer: Jeremy Lim < jeremylim23@gmail.com>

Authors:

• Weichang Yu <weichang.yu@unimelb.edu.au>(ORCID)

References

Yu, W., & Bondell, H. D. (2023), "Bayesian Likelihood-Based Regression for Estimation of Optimal Dynamic Treatment Regimes", Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(3), 551-574. doi:10.1093/jrsssb/qkad016

See Also

generate_dataset() for generating a toy dataset to test the model fitting on
BayesLinRegDTR.model.fit() for obtaining an estimated posterior distribution of the optimal
treatment option at a user-specified prediction stage

Useful links:

- https://github.com/jlimrasc/BayesRegDTR
- Report bugs at https://github.com/jlimrasc/BayesRegDTR/issues

BayesLinRegDTR.model.fit

Main function for fitting a Bayesian likelihood-based linear regression model

Description

Fits the Bayesian likelihood-based linear model to obtain an estimated posterior distribution of the optimal treatment option at a user-specified prediction stage. Uses backward induction and dynamic programming theory for computing expected values.

Usage

```
BayesLinRegDTR.model.fit(
 Dat.train,
 Dat.pred,
 n.train,
 n.pred,
 num_stages,
 num_treats,
 p_list,
 t,
 R = 30,
  tau = 0.01,
 B = 10000,
 nu0 = 3,
 V0 = mapply(diag, p_list, SIMPLIFY = FALSE),
  alph = 1,
 gam = 1,
  showBar = TRUE
)
```

Arguments

Dat.train	Training data in format returned by generate_dataset: organised as a list of $\{y, X_1, X_2,, X_{num_stages}, A\}$ where y is a vector of the final outcomes, $X_1, X_2,, X_{num_stages}$ is a list of matrices of the intermediate covariates and A is an $n.train \times num_stages$ matrix of the assigned treatments, where num_stages is the total number of stages
Dat.pred	Prediction data in format returned by generate_dataset: organised as a list of $\{X_1, X_2, X_t, A\}$ where X_1, X_2, X_t is a list of matrices of the intermediate covariates and A is an $n.pred \times (t-1)$ matrix of the assigned treatments, where t is the prediction stage
n.train	Number of samples/individuals in the training data
n.pred	Number of samples/individuals in the prediction data
num_stages	Total number of stages
num_treats	Vector of number of treatment options at each stage
p_list	Vector of intermediate covariate dimensions for each stage
t	Prediction stage t, where $t \leq num_stages$
R	Draw size from distribution of intermediate covariates. default: 30
tau	Normal prior scale parameter for regression coefficients. Should be specified with a small value. default: 0.01
В	Number of MC draws from posterior of regression parameters. default 10000
nu0	Inverse-Wishart prior degrees of freedom for regression error Vcov matrix. Ignored if using a univariate dataset. default: 3
V0	List of Inverse-Wishart prior scale matrix for regression error Vcov matrix. Ignored if using a univariate dataset. default: list of identity matrices

alph	Inverse-Gamma prior shape parameter for regression error variance of y. default: 1
gam	Inverse-Gamma prior rate parameter for regression error variance of y. default: 1
showBar	Whether to show a progress bar. Uses API from progressr and future for parallel integration deafult: TRUE

Details

Utilises a future framework, so to enable parallel processing and register a parallel backend, plan and registerDoFuture must be called first.

Additionally, progress bars use progressr API, and a non-default progress bar (e.g. cli) is recommended. See below or registerDoFuture and handlers for examples.

Note that to have a progress bar for the parallel sections, future must be used. To turn off the immediate warnings, use options(BRDTR_warn_imm = FALSE).

Value

GCV_results	An array of dimension $n.pred \times num_treats[t] \times B$, indicating the expected value under each treatment option at stage t.
post.prob	An $n.pred \times num_treats[t]$ matrix of the posterior probability that each treatment type at stage t is optimal
MC_draws.train	A list of Monte Carlo draws containing:
	- $sigmat_B_list$ - A list of length num_stages with each element a vector of size $B \times p_list[t]$
	• Wt_B_list - A list of length num_stages with each element a matrix of size $B \times p_list[t]$
	• beta_B - A list of length B
	• <i>sigmay_2B</i> - A list of length B

Examples

```
num_stages <- 5
t <- 3
p_list <- rep(1, num_stages)</pre>
num_treats <- rep(2, num_stages)</pre>
n.train <- 5000
n.pred
         <- 10
# ------
# Generate Dataset
# -----
Dat.train <- generate_dataset(n.train, num_stages, p_list, num_treats)</pre>
Dat.pred <- generate_dataset(n.pred, num_stages, p_list, num_treats)</pre>
Dat.pred <- Dat.pred[-1]</pre>
Dat.pred[[num_stages+1]] <- Dat.pred[[num_stages+1]][1:n.pred, 1:(t-1), drop = FALSE]</pre>
# -----
# Main
# -----
gcv_uvt <- BayesLinRegDTR.model.fit(Dat.train, Dat.pred, n.train, n.pred,</pre>
                                num_stages, num_treats,
                                p_list, t, R = 30,
                                tau = 0.01, B = 500, nu0 = NULL,
                                V0 = NULL, alph = 3, gam = 4)
## MVT
# -----
# Initialise Inputs
num_stages <- 3</pre>
t <- 2
p_list <- rep(2, num_stages)</pre>
num_treats <- rep(2, num_stages)</pre>
n.train <- 5000
         <- 10
n.pred
# -----
# Generate Dataset
Dat.train <- generate_dataset(n.train, num_stages, p_list, num_treats)</pre>
Dat.pred <- generate_dataset(n.pred, num_stages, p_list, num_treats)</pre>
Dat.pred <- Dat.pred[-1]</pre>
Dat.pred[[num_stages+1]] <- Dat.pred[[num_stages+1]][1:n.pred, 1:(t-1), drop = FALSE]</pre>
# -----
# Main
# ------
gcv_res <- BayesLinRegDTR.model.fit(Dat.train, Dat.pred, n.train, n.pred,</pre>
                                num_stages, num_treats,
                                p_list, t, R = 30,
                                tau = 0.01, B = 500, nu0 = 3,
                                V0 = mapply(diag, p_list, SIMPLIFY = FALSE),
                                alph = 3, gam = 4)
```

6 generate_dataset

generate_dataset	Generate a toy dataset in the right format for testing BayesLin- RegDTR.model.fit
	· ·

Description

Generates a toy dataset simulating observed data of treatments over time with final outcomes and intermediate covariates. Follows the method outlined in Toy-Datagen on Github

Usage

```
generate_dataset(n, num_stages, p_list, num_treats)
```

Arguments

n	Number of samples/individuals to generate
num_stages	Total number of stages per individual
p_list	Vector of dimension for each stage
num_treats	Vector of number of treatment options at each stage

Value

Observed data organised as a list of $\{y, X_1, X_2..., X_{num_stages}, A\}$ where y is a vector of the final outcomes, $X_1, X_2..., X_{num_stages}$ is a list of matrices of the intermediate covariates and A is an $n \times num_stages$ matrix of the assigned treatments

Examples

Index

```
BayesLinRegDTR.model.fit, 2
BayesLinRegDTR.model.fit(), 2
BayesRegDTR (BayesRegDTR-package), 2
BayesRegDTR-package, 2
future, 4
generate_dataset, 6
generate_dataset(), 2
handlers, 4
plan, 4
progressr, 4
registerDoFuture, 4
```