Construcción de álgebra lineal

Amaury V. Miniño

CSU

18 de Septiembre, 2024

Overview

- Ejemplos en otras temas
- Que es un grupo?
- Que es un cuerpo?
- Vamos a junatarlo!

- Ejemplos en otras temas
- 2 Que es un grupo?
- Que es un cuerpo?
- Vamos a junatarlo!

- Programas lineales (linear programming)
- equaciones en las diferencias (differential equations)
- Analisis funcional (functional analysis)

- Ejemplos en otras temas
- Que es un grupo?
- Que es un cuerpo?
- 4 Vamos a junatarlo!

Operaciones Binaria

Definition

Sea S un conjunto. Una aplicacion del producto cartesiano $S \times S$ a los mismos S se llama *operacion binaria definida sobra* S.

Operaciones Binaria

Definition

Sea S un conjunto. Una aplicacion del producto cartesiano $S \times S$ a los mismos S se llama operacion binaria definida sobra S.

Example

Sea S el conjunto de letras y signos de puntuacion, $y \cdot : S \times S \to s$ sea la concatenacion de letras y signos.

Leyes para un grupo

Un conjunto G con una operacion binaria + solamente no es un grupo. Un grupo es un conjunto en el que la operación bianaria sigue las siguientes leyes

- (interna) si $a, b \in G$, entonces $(a + b) \in G$.
- ② (asociativa) si $a, b, c \in G$, (a + b) + c = a + (b + c).
- **1** (neutro) Existe $0 \in G$, entonces a + 0 = 0 + a = a para todo $a \in G$.
- (inverso) Para todo $a \in G$ entonces $-a \in G$ such that a + (-a) = (-a) + a = 0

Grupos conmutativas

Ahora que hemos definido un grupo, podemos definir un grupo conmutativo

- (Grupo) G es un grupo
- ② (conmutativa) Si $a, b \in G$, entonces a + b = b + a.

- Ejemplos en otras temas
- Que es un grupo?
- Que es un cuerpo?
- Vamos a junatarlo!

DOS Operaciones Binaria!

Podemos definir un cuerpo como el conjunto de operaciones binaria.

Definition

Sea G un conjunto. No llamos G un cuerpo si

- Existe un operacion $+: G \times G \rightarrow G$ donde (G, +) es un grupo conmutativa, con el elemento neutro 0.
- 2 Existe otra operacion $*: (G-0) \times (G-0) \rightarrow (G-0)$ donde (G-0,*) es un grupo conmutativa con el elemento neutro 1,
- (ley distributativa) por todo $a, b, c \in G$, a * (b + c) = (a * b) + (a * c)

- Ejemplos en otras temas
- 2 Que es un grupo?
- Que es un cuerpo?
- Vamos a junatarlo!

Espacios vectoriales

Para definir un espacio vectorial, tenemos que elegir un cuerpo. Generalmente, usamos los numeros reales o los nueros complejos.

Definition

Un *espacio vecotrial* V sobre un cuerpo K es un grupo conmutativa (V, +) con un operacion producto por un escalar $K \times V \to V$, escribido por $(\alpha, u) \mapsto a \cdot u$, con los propiedades

- **①** (asociativa) $\alpha \cdot (\beta \cdot u) = (\alpha * \beta) \cdot u$,
- ② (elemento neutro) Si $e \in K$ es el elemento neutro del cuerpo K, $e \cdot u = u$ por todo $u \in V$.
- (distributiva: suma vectorial) $\alpha \cdot (u + v) = (\alpha \cdot u) + (\alpha \cdot v)$
- **4** (distributiva: suma escalar) $(\alpha + \beta) \cdot u = (\alpha \cdot u) + (\beta \cdot u)$.

