Faster Pairing Hardware Accelerators

Junfeng Fan*

Joint work with Frederik Vercautere*, Gavin Yao†, Ray Cheung†, and Ingrid Verbauwhede*.

* ESAT/SCD-COSIC KU Leuven, Belgium

† Dept. of Electronic Engineering City University of Hong Kong

ECC 2012, Querétaro

Agenda

- Introduction
- 2 Hybrid Montgomery
- 3 RNS Montgomery

Platform - ASIC

"source: Andrew B. Kahng et al."

Platform - FPGA

Introduction Hybrid Montgomery RNS Montgomery

So, how do we build fast hardware?

In the beginning...

We increased the frequency...

Beautiful parallelism

Datapath reuse

Unbalanced occupancy

Dynamic reconfiguration

Complexity reduction

Carpooling

Ride More, Drive Less.

One-Child policy

Scheduling is critical

The design space

Complexity vs Implementations

- Computational: how many bit-operations.
- Software implementation
 - Typical measurement: no. of cycles, code size
 - Depends on: platform, compiler, programmer, etc.
- Hardware implementation
 - Typical measurement: area, throughput, power
 - Depends on:
 - platform: ASIC vs FPGA
 - Architecture: Low-area vs High-speed
 - EDA tools: synthesis, P&A, etc.
 - Designers.

Algorithm-Architecture co-optimization

- Optimize your algorithm and architecture together
 - Step 1: analyse and optimize the algorithm
 - Step 2: Map the algorithm to hardware
 - Step 3: Optimize the architecture
 - data-path reuse
 - reduce pipeline bubbles
 - optimize the memory structure
 - achieve higher frequency
 - Step 4: Optimize the algorithm based on Step 3
 - Step 3: Go to Step 3

Pairing computation

```
Algorithm 3. Computing the Tate pairing for E_3/\mathbb{F}_p
Input: P \in G_1 and Q \in G_2.
Output: t_r(P, Q).
       1. Write r in binary: r = \sum_{i=0}^{L-1} r_i 2^i.

 T ← P, f ← 1.

 For i from L − 2 downto 0 do:

                                                               {Miller operation}

 3.1 Let ℓ be the tangent line at T.

          3.2 T \leftarrow 2T.
          3.3 f \leftarrow f^2 \cdot \ell(Q).
          3.4 If r_i = 1 and i \neq 0 then
                   Let \ell be the line through T and P.
                   T \leftarrow T + P.
                   f \leftarrow f \cdot \ell(Q).

 Compute f<sup>(p<sup>12</sup>-1)/r</sup> as follows:

                                                                {Final exponentiation}
          4.1 f \leftarrow f^{p^6-1}.
          4.2 f \leftarrow f^{p^2+1}
          4.3 a \leftarrow f^{-(6z+5)}, b \leftarrow a^p, b \leftarrow a \cdot b.
          4.4 Compute f^p, f^{p^2}, f^{p^3}.

4.5 f \leftarrow f^{p^3} \cdot [b \cdot (f^p)^2 \cdot f^{p^2}]^{6z^2+1} \cdot b \cdot (f^p \cdot f)^9 \cdot a \cdot f^4.
       Return(f).
```


Faster Pairing Computation?

• Speed up \mathbb{F}_p multiplications

Agenda

- 1 Introduction
- 2 Hybrid Montgomery
- RNS Montgomery

Modular multiplication

- Target: compute ab mod p
- Fast reduction method
 - Use pseudo-Mersenne number

$$p=2^m-s$$

- Montgomery reduction
- Barrett reduction
- Chung-Hasan
 - if p = f(t), where f(t) is monic.

Montgomery Mult.

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

1: *T* ← *AB*

2: $\mu \leftarrow T \mod R$

3: $q \leftarrow \mu \cdot (p') \mod R$

4: $S \leftarrow (T + qp)/R$

5: $S \leftarrow S - p$ if S > p

Return: S

Montgomery Mult.

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

1: *T* ← *AB*

2: $\mu \leftarrow T \mod R$

3: $q \leftarrow \mu \cdot (p') \mod R$

4: $S \leftarrow (T + qp)/R$

5: $S \leftarrow S - p$ if S > p

Return: S

Complexity

Let $log_2(|p|)+1=nw$

 n^2 MUL_w

 n^2 MUL_w n^2 MUL_w

Long integer multiplication: carry propagation

Pairing on BN curves

Barreto-Naehrig Curves:

$$y^2 = x^3 + b$$
 over \mathbb{F}_p ,

where

$$p(z) = 36z^4 + 36z^3 + 24z^2 + 6z + 1,$$

$$r(z) = 36z^4 + 36z^3 + 18z^2 + 6z + 1,$$

$$t(z) = 6z^2 + 1,$$

$$k = 12$$

Some observations

$$p = 36z^4 + 36z^3 + 24z^2 + 6z + 1$$

- p can not be psudo-Mersenne number
- However,
 - p(z) has small coefficients
 - $p^{-1}(z) = 324z^4 36z^3 12z^2 + 6z 1 \mod z^5$
 - $p^{-1}(z) = -1 \mod z$

Polynomial based reduction

Montgomery Mult.

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

1: *T* ← *AB*

2: $\mu \leftarrow T \mod R$

3: $q \leftarrow \mu \cdot (p') \mod R$

4: $S \leftarrow (T + qp)/R$

5: $S \leftarrow S - p$ if S > p

Return: S

Polynomial based reduction

Montgomery Mult.

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

1: *T* ← *AB*

2: $\mu \leftarrow T \mod R$

3: $q \leftarrow \mu \cdot (p') \mod R$

4: $S \leftarrow (T + qp)/R$

5: $S \leftarrow S - p$ if S > p

Return: S

Montgomery Mult. using poly.

Input: A(z) and B(z)

Output: $T = A(z)B(z)R^{-1}(z) \mod p(z)$

1: $T(z) \leftarrow A(z)B(z)$

2: $\mu(z) \leftarrow T(z) \mod R(z)$

3: $q(z) \leftarrow \mu(z) \cdot (p'(z)) \mod R(z)$

4: $S(z) \leftarrow (T(z) + q(z)p(z))/R(z)$

Return: S(z)

• Note: $R = z^5$, $p'(z) = 324z^4 - 36z^3 - 12z^2 + 6z - 1$, $p(z) = (36z^4 + 36z^3 + 24z^2 + 6z + 1)$.

Coefficient reduction

- There is one problem: coefficient grows
 - Input: $a(z) = 35z^4 + 36z^3 + 7z^2 + 6z + 103$, $b(z) = 5z^4 + 136z^3 + 34z^2 + 9z + 5$ Select z = 137,
 - Compute
 - step 1: $c(z) \leftarrow a(z)b(z)$
 - step 2: $\mu(z) \leftarrow c(z) \mod z^5$
 - step 3: $q(z) \leftarrow \mu(z)p'(z) \mod z^5$
 - step 4: $r(z) \leftarrow (c(z) + q(z)p(z)/z^5$
 - Result:

$$r(z) = 2243z^4 - 820648z^3 - 964511z^2 - 616127z - 173978$$

Thus, we need to reduce the coefficient s.t. $r_i < z$
 $r(z) = -28z^5 + 37z^4 + 32z^3 + 120z^2 + 62z + 12$.

Selection of z

- We need division by z
- Choose $z = 2^m + s$, where s is small.
- For BN-curves, we also need

• prime
$$p(z) = 36z^4 + 36z^3 + 24z^2 + 6z + 1$$
,

• prime
$$r(z) = 36z^4 + 36z^3 + 18z^2 + 6z + 1$$

• Example: $z = 2^{63} + 857$ to achieve 128-bit security.

Complexity analysis

Montgomery Mult. using poly.

Input: A(z) and B(z)

Output: $T = A(z)B(z)R^{-1} \mod p(z)$

1: $T(z) \leftarrow A(z)B(z)$

2: Coefficient reduction.

3:
$$\mu(z) \leftarrow T(z) \mod R$$

4: $q(z) \leftarrow \mu(z) \cdot (p'(z)) \mod R$

5: $S(z) \leftarrow (T(z) + q(z)p(z))/R$

Return: S(z)

Complexity

Let $n=\deg(p(z))+1$, $w=\log|z|+1$

$$n^2$$
 MUL_w $2n-1$ CoRedc()

Easy Easy

Digit-serial Hybrid Multiplier

• Digit-serial implementations (n = 4, w = 64)

Another Digit-serial Hybrid Multiplier

• Digit-serial implementations (n = 4, w = 64)

Discussion

- Advantages
 - Reduced complexity
 - Easy to parallelize
- Disadvantages
 - Only work for specific polynomial form primes
 - Doesn't make use of lazy reduction

Agenda

- Introduction
- 2 Hybrid Montgomery
- 3 RNS Montgomery

RNS representation

RNS is defined by *n* pairwise coprime integer constants:

$$\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$$

$$M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$$

RNS representation

RNS is defined by *n* pairwise coprime integer constants:

$$\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$$

$$M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$$

Any integer X, $0 \le X < M_{\mathfrak{B}}$, X is uniquely represented by:

$$\mathfrak{X} = \{|X|_{b_1}, |X|_{b_2}, \cdots, |X|_{b_n}\},\$$

RNS representation

RNS is defined by *n* pairwise coprime integer constants:

$$\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$$

$$M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$$

Any integer X, $0 \le X < M_{\Re}$, X is uniquely represented by:

$$\mathfrak{X} = \{|X|_{b_1}, |X|_{b_2}, \cdots, |X|_{b_n}\},\$$

Example:

- X = 42711290161816493313599693852409489022
- \mathfrak{X} = {103164, 4142, 38734, 34062, 26238, 30586, 117182, 113538} base: { $2^{17} 9$, $2^{17} 7$, $2^{17} 3$, $2^{17} 1$, 2^{17} , $2^{17} + 1$, $2^{17} + 5$, $2^{17} + 9$ }

Arithmetic operations using RNS

Arithmetic operations using RNS ($\mathbb{Z}/M_{\mathfrak{B}}\mathbb{Z}$)

```
Normal RNS R = X \pm Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \pm \mathfrak{Y}, where r_i = x_i \pm y_i \mod b_i R = XY \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \odot \mathfrak{Y}, where r_i = x_i y_i \mod b_i \mathfrak{R} = X/Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \odot \mathfrak{Y}^{-1}, where r_i = x_i y_i^{-1} \mod b_i if \gcd(Y, M_{\mathfrak{B}}) = 1
```


Arithmetic operations using RNS

Arithmetic operations using RNS ($\mathbb{Z}/M_{\mathfrak{B}}\mathbb{Z}$)

```
Normal RNS R = X \pm Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \pm \mathfrak{Y}, where r_i = x_i \pm y_i \mod b_i R = XY \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \odot \mathfrak{Y}, where r_i = x_i y_i \mod b_i \mathfrak{R} = X/Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \odot \mathfrak{Y}^{-1}, where r_i = x_i y_i^{-1} \mod b_i if \gcd(Y, M_{\mathfrak{B}}) = 1
```


Arithmetic operations using RNS

Arithmetic operations using RNS ($\mathbb{Z}/M_{\mathfrak{B}}\mathbb{Z}$)

```
Normal RNS R = X \pm Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \pm \mathfrak{Y}, where r_i = x_i \pm y_i \mod b_i R = X/Y \mod M_{\mathfrak{B}} \mathfrak{R} = \mathfrak{X} \odot \mathfrak{Y}, where r_i = x_i y_i \mod b_i where r_i = x_i y_i^{-1} \mod b_i if \gcd(Y, M_{\mathfrak{B}}) = 1
```

 $b_i = 2^w \pm t$, and t is a small integer.

Complexity

Complexity of Montgomery Mult.

 $2n^2 + n \mathbf{MUL}_w$

Complexity

Complexity of Montgomery Mult.

$$2n^2 + n MUL_w$$

Complexity of Hybrid Montgomery Mult.

```
n<sup>2</sup> MUL<sub>w</sub> +
PolyRedc() +
2n - 1 CoRedc()
```

Complexity

Complexity of Montgomery Mult.

$$2n^2 + n MUL_w$$

Complexity of Hybrid Montgomery Mult.

```
n<sup>2</sup> MUL<sub>w</sub> + PolyRedc() + 2n - 1 CoRedc()
```

RNS Mult.

```
n MUL<sub>w</sub> + n CoRedc()
```


Montgomery – R

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

$$2:Q \leftarrow ||T|_R \cdot (-p)^{-1}|_R$$

$$3:S \leftarrow (T + Qp)/R$$

Montgomery – R

Input: $A = aR \mod p$ and

 $B = bR \mod p$

Output: $T = abR \mod p$

$$2:Q \leftarrow \left| |T|_R \cdot (-p)^{-1} \right|_R$$

$$3:S \leftarrow (T + Qp)/R$$

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and

 $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

in 🏻

1: $T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}}$

2: $Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$

3: $S_{\mathfrak{B}} \leftarrow (T + Q_{\mathfrak{B}}p)/M_{\mathfrak{B}}$

Montgomery – R

Input: $A = aR \mod p$ and $B = bR \mod p$

Output: $T = abR \mod p$

$$2:Q \leftarrow \left| |T|_R \cdot (-p)^{-1} \right|_R$$

$$3:S \leftarrow (T + Qp)/R$$

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and

 $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

1:
$$T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}}$$

2:
$$Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$$

3:
$$S_{\mathfrak{B}} \leftarrow (T + Q_{\mathfrak{B}}p)/M_{\mathfrak{B}}$$

 $M_{\mathfrak{B}}^{-1}$ does not exist in \mathfrak{B} .

Introduce a new base \mathfrak{C} to perform division by $M_{\mathfrak{B}}$.

Montgomery – R

Input: $A = aR \mod p$ and $B = bR \mod p$

Output: $T = abR \mod p$

$$2:Q \leftarrow \left| |T|_R \cdot (-p)^{-1} \right|_R$$

$$3:S \leftarrow (T + Qp)/R$$

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and

 $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

in C

1:
$$T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}}$$

2: $Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$

$$T_{\mathfrak{C}} \leftarrow A_{\mathfrak{C}}B_{\mathfrak{C}}$$

$$S_{\mathfrak{C}} \leftarrow (T_{\mathfrak{C}} + Q_{\mathfrak{C}} p) (M_{\mathfrak{B}}^{-1})_{\mathfrak{C}}$$

 $M_{\mathfrak{B}}^{-1}$ does not exist in \mathfrak{B} .

Introduce a new base \mathfrak{C} to perform division by $M_{\mathfrak{B}}$.

The overhead is two base extensions.

Montgomery – R

Input: $A = aR \mod p$ and $B = bR \mod p$

Output: $T = abR \mod p$

$$1: T \leftarrow AB$$
$$2: Q \leftarrow \left| |T|_R \cdot (-p)^{-1} \right|_R$$
$$3: S \leftarrow (T + Qp)/R$$

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

$$\begin{array}{cccc} & & & & & & & & & & \\ 1: & T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}} & & T_{\mathfrak{C}} \leftarrow A_{\mathfrak{C}}B_{\mathfrak{C}} \\ 2: & Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1} & & & & \\ 3: & & Q_{\mathfrak{B}} & & & Q_{\mathfrak{C}} \\ 4: & & & & & & & \\ 5: & & S_{\mathfrak{B}} \leftarrow & S_{\mathfrak{C}} \end{array}$$

 $M_{\mathfrak{B}}^{-1}$ does not exist in \mathfrak{B} .

Introduce a new base \mathfrak{C} to perform division by $M_{\mathfrak{B}}$.

The overhead is two base extensions.

$$\mathfrak{X}_{\mathfrak{B}} = \{x_1, x_2, \cdots, x_n\}$$
 $x_i = X \mod b_i$
 $\mathfrak{X}_{\mathfrak{C}} = \{x'_1, x'_2, \cdots, x'_n\}$
 $x'_i = X \mod c_i$

Chinese Remainder Theorem (CRT):

$$X = \left| \sum_{i=1}^{n} B_i \cdot \xi_i \right|_{M_{\mathfrak{B}}}$$

$$\xi_i = \left| x_i \cdot |B_i^{-1}|_{b_i} \right|_{b_i}, B_i = \prod_{k=1, k \neq i}^n b_k$$

Chinese Remainder Theorem (CRT):

$$X = \left| \sum_{i=1}^{n} B_{i} \cdot \xi_{i} \right|_{M_{\mathfrak{B}}} = \sum_{i=1}^{n} B_{i} \cdot \xi_{i} - \lambda \cdot M_{\mathfrak{B}}$$

$$\xi_i = \left| x_i \cdot |B_i^{-1}|_{b_i} \right|_{b_i}, B_i = \prod_{k=1, k \neq i}^n b_k$$

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{n} \end{pmatrix} = \begin{pmatrix} |B_{1}|_{c_{1}} & |B_{2}|_{c_{1}} & \cdots & |B_{n}|_{c_{1}} \\ |B_{1}|_{c_{2}} & |B_{2}|_{c_{2}} & \cdots & |B_{n}|_{c_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ |B_{1}|_{c_{n}} & |B_{2}|_{c_{n}} & \cdots & |B_{n}|_{c_{n}} \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix} - \lambda \begin{pmatrix} |M_{\mathfrak{B}}|_{c_{1}} \\ |M_{\mathfrak{B}}|_{c_{2}} \\ \vdots \\ |M_{\mathfrak{B}}|_{c_{n}} \end{pmatrix}$$

$$|B_i|_{c_j} = \left| \prod_{k=1, k \neq i}^n b_k \right|_{c_j}$$

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{n} \end{pmatrix} = \begin{pmatrix} |B_{1}|_{c_{1}} & |B_{2}|_{c_{1}} & \cdots & |B_{n}|_{c_{1}} \\ |B_{1}|_{c_{2}} & |B_{2}|_{c_{2}} & \cdots & |B_{n}|_{c_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ |B_{1}|_{c_{n}} & |B_{2}|_{c_{n}} & \cdots & |B_{n}|_{c_{n}} \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix} - \lambda \begin{pmatrix} |M_{\mathfrak{B}}|_{c_{1}} \\ |M_{\mathfrak{B}}|_{c_{2}} \\ \vdots \\ |M_{\mathfrak{B}}|_{c_{n}} \end{pmatrix}$$

$$|B_i|_{c_j} = \left| \prod_{k=1, k \neq i}^n b_k \right|_{c_j}$$

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{n} \end{pmatrix} = \begin{pmatrix} |B_{1}|_{c_{1}} & |B_{2}|_{c_{1}} & \cdots & |B_{n}|_{c_{1}} \\ |B_{1}|_{c_{2}} & |B_{2}|_{c_{2}} & \cdots & |B_{n}|_{c_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ |B_{1}|_{c_{n}} & |B_{2}|_{c_{n}} & \cdots & |B_{n}|_{c_{n}} \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix} - \lambda \begin{pmatrix} |M_{\mathfrak{B}}|_{c_{1}} \\ |M_{\mathfrak{B}}|_{c_{2}} \\ \vdots \\ |M_{\mathfrak{B}}|_{c_{n}} \end{pmatrix}$$

$$|B_i|_{c_j} = \left| \prod_{k=1, k \neq i}^n b_k \right|_{c_j} = \left| \prod_{k=1, k \neq i}^n (b_k - c_j) \right|_{c_j}$$

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{n} \end{pmatrix} = \begin{pmatrix} |B_{1}|_{c_{1}} & |B_{2}|_{c_{1}} & \cdots & |B_{n}|_{c_{1}} \\ |B_{1}|_{c_{2}} & |B_{2}|_{c_{2}} & \cdots & |B_{n}|_{c_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ |B_{1}|_{c_{n}} & |B_{2}|_{c_{n}} & \cdots & |B_{n}|_{c_{n}} \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix} - \lambda \begin{pmatrix} |M_{\mathfrak{B}}|_{c_{1}} \\ |M_{\mathfrak{B}}|_{c_{2}} \\ \vdots \\ |M_{\mathfrak{B}}|_{c_{n}} \end{pmatrix}$$

where

$$|B_i|_{c_j} = \left| \prod_{k=1, k \neq i}^n b_k \right|_{c_j} = \left| \prod_{k=1, k \neq i}^n (b_k - c_j) \right|_{c_j}$$

$$\tilde{B}_{ij} := \prod_{k=1, k \neq i}^n (b_k - c_j) \ll 2^w$$

if $b_1, b_2, \ldots, b_n, c_1, c_2, \ldots, c_n$ are close enough.

Previously on Parameter Selection

$$n = 8, w = 33$$

$$\mathfrak{B} = \left\{ \begin{array}{ccccc} 2^w - 1 & 2^w - 9 & 2^w + 3 & 2^w + 11 \\ & 2^w + 5 & 2^w + 9 & 2^w - 31 & 2^w + 15 \end{array} \right\}$$

$$\mathfrak{C} = \left\{ \begin{array}{ccccc} 2^w & 2^w + 1 & 2^w - 3 & 2^w + 17 \\ & 2^w - 13 & 2^w - 21 & 2^w - 25 & 2^w - 33 \end{array} \right\}$$
 Consequently

Consequently,

uently,
$$\lceil \log_2 \tilde{B}_{ij} \rceil = \begin{pmatrix} 23 & 20 & 21 & 20 & 21 & 20 & 18 & 19 \\ 20 & 18 & 20 & 18 & 19 & 18 & 16 & 17 \\ 22 & 20 & 20 & 19 & 20 & 19 & 18 & 19 \\ 18 & 17 & 18 & 19 & 18 & 19 & 16 & 21 \\ 23 & 24 & 22 & 22 & 22 & 22 & 22 & 21 \\ 22 & 23 & 22 & 21 & 21 & 21 & 23 & 21 \\ 23 & 24 & 23 & 23 & 23 & 23 & 24 & 23 \\ 20 & 20 & 20 & 19 & 20 & 20 & 24 & 19 \end{pmatrix}$$

RNS Parameter Selection

$$n = 4, w = 67$$

$$\mathfrak{B} = \{2^{w} - 1, 2^{w} - 7, 2^{w} - 9, 2^{w} - 15\},$$

$$\mathfrak{C} = \{2^{w} - 0, 2^{w} - 3, 2^{w} - 5, 2^{w} - 31\}.$$

Consequently,

$$\lceil \log_2 \tilde{B}_{ij} \rceil = \begin{pmatrix} 10 & 8 & 7 & 6 \\ 9 & 8 & 7 & 6 \\ 7 & 8 & 7 & 6 \\ 14 & 14 & 14 & 14 \end{pmatrix}, \ \lceil \log_2 \tilde{C}_{ij} \rceil = \begin{pmatrix} 8 & 7 & 6 & 4 \\ 8 & 9 & 10 & 6 \\ 10 & 10 & 11 & 8 \\ 11 & 12 & 12 & 11 \end{pmatrix}.$$

Dual Mode Multiplier

Four 18×69-bit multipliers

Dual Mode Multiplier

Four 18×69-bit multipliers

- Mode I
 - \bullet $X_j Y_j$
 - One 69×69 multiplier

Dual Mode Multiplier

Four 18×69-bit multipliers

- Mode I
 - \bullet $X_j Y_j$
 - One 69×69 multiplier
- Mode II
 - $\bullet \ (\tilde{B}_{1j} \ \tilde{B}_{2j} \ \tilde{B}_{3j} \ \tilde{B}_{4j}) \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix}$
 - Four 18×69 multipliers

Cox-Rower Architecture [Kawamura et al. 00]

- 4 rowers
 - MUL: 2 cycles
 - RED: 6 cycles
- One rower, one dual-mode mul
- Microcoded sequencer

Rower Design

- Dual mode multiplier
- Preadder
- 2 accumulators
- Small-constant multiplier
- 3-port RAMs
- 2-level channel reduction
- Same data path
 - MUL
 - RED

Comparison

Design	Pairing/ Security[bit]	Platform	Algorithm	Area	Freq. [MHz]	Cycle	Delay [ms]
This	,,,,	Vilian	DNC	5237 slices	[1711 12]		[III3]
This	optimal ate	Xilinx	RNS		230	77,769	0.338
Work	126	(Virtex-6)	(Parallel)	64 DSPs		,	
Cheung ⁺ 11	optimal ate	Xilinx	RNS	7032 slices	250	143,111	0.573
	126	(Virtex-6)	(Parallel)	32 DSPs			
Fan+11	ate/128	Xilinx	HMM	4014 slices	210	336,366	1.60
	opt. ate/128	(Virtex-6)	(Parallel)	42 DSPs		245,430	1.17
Estibals'10	Tate F _{35.97}	Xilinx		4755 Slices	192	428,853	2.23
	128	(Virtex-4)	-	7 BRAMs			
Ghosh ⁺ 11	η_T over $\mathbb{F}_{2^{1223}}$	Xilinx FPGA		15167	250	47,610	0.19
	128	(Virtex-6)	-	Slices			
Beuchat+10	optimal ate	Core	Montgomery	-	2800	2,330,000	0.83
	126	i7					
Aranha ⁺ 11	optimal ate	Phenom	Montgomery	-	3000	1,562,000	0.52
	126	II					
Aranha ⁺ 10	η_T over $\mathbb{F}_{2^{1223}}$	Xeon	-	-	2000	3,020,000	1.51
	128	(8 cores)					
Aranha ⁺ 10	opt. Eta F₂367	Core	-	-	2530	2,440,000	0.96
	128	i5				2,440,000	0.90

Thank you!