Cours du 28 janvier

K. Destagnol Université Paris Saclay

28 janvier 2021

The state of the s	271- period 60 (6)
Rappels-Fonctions périodiques, continues, continue	s par morceaux -5;4 CF/
Périodique de période T >0 :	- e t.
g(t+T) = g(t)	A (- E 18 -
draber 122	
Contine	Continue pour morceaux
	11211
1 pain	0 (2) (3 (2)
	←ロ → ← 回 → ← 豆 → 豆 → り へ で ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Rappels-Coefficients de Fourier réels

Coefficients de Fairie r'ills:
$$(a_n(l))_{n \in \mathbb{N}^2}$$

Coefficients de Fairie r'ills: $(a_n(l))_{n \in \mathbb{N}^2}$
 $(b_n(l))_{n \in \mathbb{N}$

Rappels-Lien entre les deux types de coefficients
$$G: \mathbb{R} - 1 (\mathbb{R} \times \mathbb{R} - \mathbb{R})$$
 $C_n(l) = \begin{cases} a_n(l) & \text{si } n : 0 \\ f(a_n(l) - i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n < 0 \end{cases}$$

$$f(a_n(l) + i \cdot f_n(l)) & \text{si } n$$

Fin du calcul commencé la dernière fois 217 - princique, BlH=1+1 Sus B: 12 312 7,71.

Sat
$$n \geqslant 1$$
, $a_n(e) = \frac{1}{17} \int_{0}^{2\pi} g(t) con(nt) dt$

$$g(t) = |t| \leq sm \left[-\pi, \pi \right]$$

$$= \frac{1}{17} \int_{-\pi}^{\pi} g(t) con(nt) dt$$

$$(con g(t) = |t|) = \frac{1}{17} \int_{-\pi}^{\pi} |t| con(nt) dt$$

$$\lim_{t \to \infty} \left[-\pi, \pi \right] = \frac{1}{17} \int_{-\pi}^{\pi} |t| con(nt) dt$$

$$\lim_{t \to \infty} \left[-\frac{1}{17} \int_{-\pi}^{\pi} |t| con(nt) dt \right]$$

$$= \int_{-\pi}^{\pi} |t| con(nt) dt + \int_{0}^{\pi} |t$$

a,(0)= 1 5 11 11 (w(nf) clt =) 1 x 2 5 It wo (nt) cut tm Itlus(nt) st 1-t/cos(-nt) = 1+/cos(nt) 1-11=11-1 65 pain [5] g(H) d= 2 5 g(H)dt sig st une faction

$$0.(6) = \frac{2}{11} \int_{0}^{\pi} |H| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk = \frac{2}{11} \int_{0}^{\pi} |E| \cos(nk) dk$$

$$= \frac{2}{1$$

$$a_{n}(b) = -\frac{2}{n^{2}\pi} \left(1 - (-1)^{h}\right) = \begin{cases} -\frac{2}{n^{2}\pi} \left(1 - 1\right) = Q & n \text{ point } \\ -\frac{2}{n^{2}\pi} \left(1 + 1\right) = -4 & \text{ sin } \\ -\frac{2}{n^{2}\pi} \left(1 + 1$$

Coefficients de Fourier et dérivation

Proposition

Soit f une fonction T-périodique, continue et \mathcal{C}^1 par morceaux On a alors

$$\forall n \in \mathbb{Z}, \quad c_n(f') = \frac{2i\pi n}{T} c_n(f), \quad a_0(f') = 0, \quad \forall n \geqslant 1, \quad \begin{cases} a_n(f') = \frac{2n\pi}{T} b_n(f) \\ b_n(f') = -\frac{2n\pi}{T} a_n(f). \end{cases}$$

En particulier, si on à déjà calculé les coefficients de Fourier d'une fonction f et que

l'on vous demande de calculer ceux de f^\prime , on ne se fatique pas à les calculer

E par merceurs: continy par merceux + désirable soul évir en un bles sini de points (pas che type verticale et le number l'ini de prior / anyles . pas electivally to pas carlines. (1 per morceary continy decivable soul

Série de Fourier associée à une fonction périodique

Série de Fourier associée à une fonction périodique

Définition

Soit f continue par morceaux et T-périodique. On appelle **série de Fourier**de f la série définie pour tout $t \in \mathbb{R}$ par

$$a_0(f) + \sum_{n\geqslant 1} \left[a_n(f) \cos\left(rac{2\pi nt}{T}
ight) + b_n(f) \sin\left(rac{2\pi nt}{T}
ight)
ight]$$

ou de manière équivalente

$$c_0(f) + \sum_{n \geqslant 1} \left[c_n(f) e^{\frac{2i\pi nt}{T}} + c_{-n}(f) e^{-\frac{2i\pi nt}{T}} \right].$$

Cette dernière série est notée $\sum_{n \in \mathbb{Z}} c_n(f) e^{\frac{2i\pi nt}{f}}$.

Exemple
$$B: \mathbb{R} \to \mathbb{R}$$
 $2\pi \cdot \text{piriodique}$ $B(h|=|h|)$
 $a_0(0) = \frac{\pi}{2}$ $a_n(0) = \begin{cases} 0 & \text{sinpair} \\ -\frac{4}{\sqrt{2\pi}} & \text{sininpatri} \end{cases}$
 $a_n(0) = 0$ $a_n(0) = \begin{cases} 0 & \text{sinpair} \end{cases}$
 $a_n(0) = 0$ $a_n(0) = 0$ $a_n(0) = 0$ $a_n(0) = 0$
 $a_n(0) = 0$ $a_n(0) = 0$ $a_n(0) = 0$
 $a_n(0) = 0$ $a_n(0) = 0$
 $a_n(0) = 0$ $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0) = 0$
 $a_n(0$

$$a_{n}(\theta) + \sum_{n \geq 1/2} \left(\alpha_{n}(\theta) \cos(nt) + \frac{1}{2} \cos(nt) \right)$$

$$= \frac{11}{2} + \sum_{n \geq 1/2} \alpha_{n}(\theta) \cos(nt)$$

$$= \frac{11}{2} + \sum_{n \geq 1/2} \alpha_{n}(\theta) \cos(nt)$$

$$= \frac{11}{2} + \sum_{n \geq 1/2} \alpha_{n}(\theta) \cos(nt)$$

$$= \frac{11}{2} + \sum_{n \geq 1/2} \frac{1}{2} \cos(nt)$$

$$= \frac{1}{2} + \sum_{n \geq 1/2} \frac{1}{2} \cos(nt)$$

$$= \frac{1}{2} + \sum_{n \geq 1/2} \frac{1}{2} \cos(nt)$$

$$= \frac{1}{2} + \sum_{n \geq 1/2} \frac{1}{2} \cos(nt)$$

- (Q1) Pour quelles valeurs de $t\in\mathbb{R}$, la série de Fourier converge-t-elle?
- (Q2) Si on a convergence pour une valeur de t, la somme de la série de Fourier est-elle égale à f(t)?

$$S_{6}(+) = o_{5}(0) + \frac{\mathcal{E}}{n+1} \left(a_{n}(0) \cos \left(\frac{2\mathcal{U}_{1} + \mathcal{E}}{T} \right) + \mathcal{E}_{2}(0) \sin \left(\frac{\mathcal{U}_{1} + \mathcal{E}}{T} \right) \right)$$

□▶ 4 를 ▶ 4 를 ▶ 9 Q @

Théorème de Dirichlet I

Théorème de Dirichlet II

partylination at an abort Pini of

Théorème de Dirichlet non continu

Soit f une fonction T-périodique de classe (P par morceaux) alors la série de Fourier

$$\forall t \in \mathbb{R}, \quad a_0(f) + \sum_{n=1}^{+\infty} \left[a_n(f) \cos\left(\frac{2n\pi t}{T}\right) + b_n(f) \sin\left(\frac{2n\pi t}{T}\right) \right]$$

$$=\sum_{-\infty}^{+\infty}c_n(f)e^{\frac{2in\pi t}{f}}=\left\{\begin{array}{l}f(t)\text{ si }f\text{ est continue en }t\\\frac{f(t^+)+f(t^-)}{2}\text{ sinon}\end{array}\right.$$

$$f(t^{+}) = \lim_{\substack{s \to t \\ s > t}} f(s) \text{ et } f(t^{-}) = \lim_{\substack{s \to t \\ s < t}} f(s)$$

les limites respectivement à droite et à gauche de f.

of
$$T = \frac{1}{11} \lim_{n \to \infty} \frac{1}{(2\ln n)^2} = \frac{1}{2}$$

of $\frac{1}{11} \lim_{n \to \infty} \frac{1}{(2\ln n)^2} = \frac{1}{2}$

on put en didenin que $\frac{1}{12} \lim_{n \to \infty} \frac{1}{12} = \frac{1}{12}$

Con put en didenin que $\frac{1}{12} \lim_{n \to \infty} \frac{1}{12} = \frac{1}{12}$

Con put en didenin que $\frac{1}{12} \lim_{n \to \infty} \frac{1}{12} = \frac{1}{12}$

Con put en didenin que $\frac{1}{12} \lim_{n \to \infty} \frac{1}{12} = \frac{1}{12}$

Con put en didenin que $\frac{1}{12} \lim_{n \to \infty} \frac{1}{12} = \frac{1}{12}$

Exemple 2

Je vous renvoire du conigé du DMI de l'un durien un Ecompus de le 5ite veus du cours pour la sisie de fourier et l'application du théoreme de Disichlet pour la fanchen 20 - périodique défini per la l'application de l'origine de finale per la fanchen 20 - périodique défini per la l'entre de HE E CO, 277).

Égalité de Parseval

É galité de Parseval

Soit f une fonction T-périodique, continue par morceaux. Alors les séries numériques

$$\left(\sum_{n\in\mathbb{Z}}|c_n(f)|^2\right)\text{et} \sum_{n\in\mathbb{N}^*}(\left|\underline{a_n(f)}\right|^2+\left|\underline{b_n(f)}\right|^2)$$

convergent et

$$\sum_{-\infty}^{+\infty} |c_n(f)|^2 = |a_0(f)|^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (|a_n(f)|^2 + |b_n(f)|^2) = \frac{1}{T} \int_0^T |f(t)|^2 dt.$$

EXEMPLE 1
$$B(H) = H$$
 $S_{m} [-\Pi, \Pi)$ $B \ge \Pi - \text{pirichique}$
 $a_{0}(0) = \frac{\Pi}{2}$ $a_{m}(B) = \begin{cases} 0 & n \text{ point} \\ -\frac{4}{2\Pi^{2}} & n \text{ in point} \end{cases}$

On what application farsoval. On a

 $|a_{n}(0)|^{2} + \frac{1}{2} \sum_{n=1}^{\infty} \left(|a_{n}(B)|^{2} + |b_{n}(B)|^{2} \right) = \frac{2\Pi}{2\Pi} \sum_{n=1}^{\infty} \frac{1}{2\Pi} \sum_{n=1$

$$\frac{1}{|a_0(0)|^2 + \frac{1}{2} \sum_{i=1}^{6} (|a_n(0)|^2 + |b_n(0)|^2)} = \frac{1}{4} + \frac{1}{2} \sum_{i=1}^{6} (-\frac{4}{4})^2 + \frac{1}{4} \sum_{i=1}^{6} \frac{1}{4} + \frac$$

$$= \frac{1}{11} \left(\frac{1}{3} \right)_{0}^{11}$$

$$= \frac{1}{11} \times \frac{11}{3}^{3} = \frac{1}{13}^{2}$$

$$= \frac{1}{11} \times \frac{11}{3}^{3} = \frac{1}{3}^{2}$$

$$= \frac{1}{11} \times \frac{11}{3}^{3} = \frac{1}{3}^{2}$$

$$= \frac{1}{11} \times \frac{11}{3}^{3} = \frac{1}{3}^{2}$$

1 50 18(4) Cdt

15 TE 6 20Ch

$$\frac{8}{\pi} = \frac{1}{(2h+1)^4} = \frac{\pi^2}{12}$$

Marken $\frac{2}{h=0} \frac{1}{(2h+1)^6} = \frac{11^3}{8 \times 12} = \frac{11^3}{96}$ et final-ement avec convergente de la série automatique. Vai DMI de l'en dernier pour lourseval pour B(H=et sur EU, 241), 211 - périoclique. Vain parfaprit pour calcul des coefficient de Fairnis, Dirichlet et Parseval peu B(t/= bt/ 46 GG, TJ)

2îi-périodique.

Application des séries de Fourier au traitement de signal

Chapitre 5

Rappels d'algèbre linéaire

