C 1 (2220 M - 1120
SUPPORT VECTOR MACHINES
1. In an n-dimensional space, the equation
of a hyperplane " is given by:
$\Rightarrow \omega^{T} \times + b = 0$
where \vec{w} and \vec{x} are n dimensional
vectors and b is the bias term. & IR
Eg: 2.D space (1-D line)
$y \wedge ax + by + c = 0$
$\omega^{T}. \times $ where :
w = [a] &
$ \begin{array}{c} \times = \begin{bmatrix} x \\ y \end{bmatrix} \\ \times (1 \times 2) \times (2 \times 1) \implies (1 \times 1) \in \mathbb{R} \end{array} $
$(1\times2)\times(2\times1) \Rightarrow (1\times1) \in \mathbb{R}$
So, we can always characterize or define
a d - dimensional hyperplane with $\vec{\omega}_{k}$ b.
(Think of was the slope of a 1-D line
and b as the intercept.)
Thus, for a line - $ax + by + C = 0 \iff \omega_2 x_1 + \omega_1 x_0 + \omega_0 = 0$
1
$\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}^{T} \begin{bmatrix} \varkappa_0 \\ \varkappa_1 \end{bmatrix} + \omega_0 = 0$
$\lfloor \omega_2 \rfloor \lfloor \varkappa_1 \rfloor$
for a plane -
an + by + cz + d = 0 (=> w3 x2 + w2x1 + w1 x0 + w0 = 0
$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} \begin{bmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{bmatrix} + \omega_0 = 0$
$ \omega_2 $. $ \alpha_1 $ + $ \alpha_0 $ = 0
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
2. To 'cut' or distribute an n-dimensional space,
we need an (n-1) dimensional 'hyperplane'.
=) Divide a line with a point.
⇒ Cut a cubical space with a plane sheet.

$\vec{\omega} \cdot \vec{x}_{-} + b \leq 0$ (for all - samples)	
$\Rightarrow \vec{x}, \vec{x}_{+} + b > 0 \qquad \text{for } y = +1$	
$\vec{\omega} \cdot \vec{x}_{-} + b \leq 0 \qquad \text{for} y = -1$	
$\Rightarrow y_{i}(\vec{\omega}.\vec{x}_{i}+b) > 0 \forall i \in [1,2,,m]$	
(Samples)	
Now let's come back to the training phase. We	
want to have -	
$\vec{\omega} \cdot \vec{x}_i + b \ge +1$ for + samples	
$\overrightarrow{\omega} \cdot \overrightarrow{x}_i + b \leq -1$ for - samples	
(covered properly in my notes)	
A new explaination for the above eqns:	
Distance of a point from a hyperplane	
$=\frac{\vec{\omega}.\vec{\times}}{\ \vec{\omega}\ }$	
So for + samples,	
$\overrightarrow{\omega}.\overrightarrow{\times}_{+}\gg \mathcal{D}$ (some margin threshold)	
n द्या	
for - samples,	
$\vec{\omega}.\vec{x}$ \leq -2) (some margin threshold)	
II WII for - samples.	
=> for - samples, For + samples, \(\frac{1}{2} - \frac{1}	
$\omega \cdot \times_{+} \gg 3000000000000000000000000000000000000$	
Because our normal vector w is independent	
of scaling, changing its magnitude won't do	
anything because it's only meant for directing	
our hyperplane. (Discussed properly in my notes.)	
OPTIMIZATION FOR HARD MARGIN:	
So till now we discussed our expectations from the	
algorithm in the form of constraints and to sum them up,	
ω.× ₊ + b ≥+1 } 1	

{	More details about Lagrangian are in my NOTES ?
	$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{\infty} \alpha_i \left[y_i x_i \right] = 0$ $\Rightarrow i \omega_m = \sum_{i=1}^{\infty} \alpha_i y_i x_i - 2$ $\Rightarrow \sum_{i=1}^{\infty} \alpha_i y_i = 0$
	$\Rightarrow \omega_{m} = \sum_{i} \alpha_{i} y_{i} \times i = 0$ $\Rightarrow \sum_{i} \alpha_{i} y_{i} = 0$
	$\sum_{i=1}^{n} \alpha_i y_i = 0$
	2b 2 4, 9, = 0
	Using 2 & 3 in our Primal Lagrangian Problem,
	$\mathcal{L}(\omega,b) = \frac{1}{2} \omega \cdot \omega - \sum_{i=1}^{m} \alpha_i y_i \omega x_i - b \sum_{i=1}^{m} \alpha_i y_i + \sum_{i=1}^{m} \alpha_i$ $\mathcal{L}(\omega,b) = \frac{1}{2} \omega \cdot \omega - \sum_{i=1}^{m} \alpha_i y_i \omega \cdot x_i + \sum_{i=1}^{m} \alpha_i$
	$\lambda(\alpha, \beta) = 1$ $\alpha(\alpha) = \sum_{i \in \mathcal{V}} \alpha(\alpha) \times i + \sum_{i \in \mathcal{V}} \alpha(\alpha)$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\mathcal{L}(\omega,b) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{m} \alpha_{i}$
	$\mathcal{L}_{p}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j})$
	where $\alpha_i > 0$
	and $\sum_{i=1}^{\infty} \alpha_i y_i = 0$
	Now, why did we do this?
	Well, our primal lagrangian had 3 variables to
	tune in order to find the minima of the Objective
	(and the lagrangian itself). We converted that to maximizing our New Lagrangian over x;'s by substitut-
	ing wand bas a function of a. This was done
	by using the property that derivatives at min = 0.
	$\left(\frac{\partial \mathcal{L}}{\partial \omega}, \frac{\partial \mathcal{L}}{\partial b}\right)$
	Refer to Introduction to Machine Learning: Support Vector Machines
	for understanding about Lagrangian.

```
Eg: minimize 2-x^2-2y^2
         x, y
        subject to : \mathbb{D} \times + y - 1 = 0 (Equality constraint)
                           (You can also have inequality
                                     (onstraints)
           \mathcal{L}(x,y,\alpha) = (2-\alpha^2-2y^2) - \alpha(x+y-1)
               and now we have an unconstrained problem
               with respect to x, y and of (Lagrangian multip.)
            \min L(x, y, \alpha)
           \Rightarrow \frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial y} = 0, \frac{\partial L}{\partial \alpha} = 0
               -2x - x = 0 - 0
                -4y-α=0 - 2
               x+y-1=0 -3
             \Rightarrow x+y=1, \alpha=-2x=-4y \Rightarrow [x=2y]
                  y = \frac{1}{3}, x = \frac{2}{3}, \alpha = -\frac{4}{3}
      Similarly, you can have on constraints.
Eg 2:
  extr.(f(x,y)) = 8x^2 - 2y
         g(x,y) = x^2 + y^2 - 1 = 0
  extr. (((x,y,x))=8x^2-2y-((x^2+y^2-1))
  \Rightarrow \frac{\partial \mathcal{L}}{\partial x} = 16x - 20x = 0
        \frac{\partial \mathcal{L}}{\partial y} = -2 - 2y\alpha - 0
        \frac{\partial \mathcal{L}}{\partial \alpha} = -(\chi^2 + y^2 - 1) = 0
           x^2 + y^2 = 1 - 0
           x(16-2d)=0 - @
              1 + \alpha y = 0 \quad -3
    i) x=0-
          y^2 = 1 \Rightarrow y = \pm 1
            \alpha = \pm 1
                                       x = 0, y = 1, \alpha = -1
                                        \mathcal{X} = 0, \mathbf{Y} = -1, \mathbf{x} = +1
```

(1)	
	$y = -1/8 = 2 = 1 - \frac{1}{64} = \pm \sqrt{63}$
	$x = \sqrt[4]{63}$, $y = -\frac{1}{8}$, $\alpha = 8$
	Now check which of the 4 solns. give us
	our maxima/minima.
	active that Qual Pool to a year will get your
	solve the Dual Problem, you will get your ectors (those having non-zero α ;). After getting
	rt vectors, you can derive your w*.
α	$ \sum_{i=1}^{m} \alpha_i y_i x_i $
	i=1
	and a guestian in the little used a
	ised a question in my mind, if we used a unction to get the d's, then we won't be
able to	use this formula because we won't have
the X;'s	in the higher dimensions.
	and we can plug in that into
Office we	get w, we can plug in that into:
* ω•× _{sν} 4	$b^{\dagger} = y_{sv}$ — $\textcircled{4}$
for so	ne SV lying exactly on our margin.
⇒ h* =	ysv - w. Xsv!

SOFT MARGIN CLASSIFICATION

For soft margin classifier, we need to allow some missclassifications so that we have a tradeff between the margin width and the 'correctness' of our classifier. This indicates that we need to have some 'slack' or 'dheel' (am) in classifying all the data points correctly so that our margin width does not suffer because of noise in our dataset.

Eg: It is unlikely that any real world data will be linearly separable, even if it is, it might look somewhat like:

A soft margin SVM will/can allow some slackness in the process which will give us a wider margin at the cost of a few misclassifications.

So we aim at minimizing the total amounts of slacks while maximizing the margin width. Let's introduce a slack variable &: for every training example i=1,....m.

Where & quantifies the 'error' or deviation of a + sample x. from the + margin: w.x + b = +1. For a SV, Esv > 1 means that it has been misclassified as it lies on the other side of the hyperplane. If Esv < 1, then it lies inside that margin yet correctly classified.

OPTIMIZATION:

 $\min_{\omega,b} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{m} \varepsilon_i$

subject to ① $y:(\omega \cdot x: +b) \ge (1-\varepsilon_i)$ $\forall i=1,2,...,m$

The amount of slack for the ith sample.

(2) $E_i > 0$ $\forall i = 1, 2, ..., m$

If C is large, then even a very little slack will increase the cost. If C is kept small, then relatively more slack can be allowed.

Thus, reducing C helps in increasing the no. of SVs inside and on the margin which results in decreasing the variance and reducing over-fitting because our model will generalize better.

New Primal Problem:

New Primal Problem:
$\mathcal{L}(\omega,b,\varepsilon,\alpha,u) = \frac{1}{2}\omega.\omega + C\sum_{i=1}^{m} \varepsilon_{i} - \sum_{i=1}^{m} \alpha_{i}[y_{i}(\omega.x_{i}+b) - (1-\varepsilon_{i})] - \sum_{i=1}^{m} u_{i}\varepsilon_{i}$
$\alpha_{i} \geqslant 0$ $\forall i = 1, 2, \ldots, m$ $\alpha_{i} \geqslant 0$
min $\max_{\omega,b,\epsilon} \chi(\omega,b,\epsilon,\alpha,\mu)$ ω,b,ϵ α,μ
NOTE: $y_i(\omega, x_i + b) \ge 1 - E_i$ if $E_i = 0$, then this ith sample is correctly classified.
if $y_i(w.x; +b) = 1-0$ then it's a correctly classified S.V.
else if \mathcal{E} ; > 0, then this sample might be misclassified. if $y_i(\omega.x_i + b) = 1 - \mathcal{E}_i$ and $\mathcal{E}_i > 1$
then this is a misclassified data point.
else if $y_i(\omega.x; +b) > 1- E_i$ is smaller than 1, then it's misclassified.
Partially differentiating the Primal Lagrangian wrt the Primal Variables w, b and & gives us:
$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{m} \alpha_i y_i x_i$ $\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{m} \alpha_i y_i$
$\frac{\partial \mathcal{L}}{\partial \xi_{i}} = C - \alpha_{i} - \mu_{i}$
Equating them to zero gives:

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} C - \alpha & - \mu \\$
	ubstituting ①,② and ③ after simplifying our imal Problem:
L	$\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{m} \alpha_{i} y_{i} (\{\sum_{j=1}^{m} \alpha_{j} y_{j} \times y\} \cdot x_{i}) - \sum_{i=1}^{m} \alpha_{i} y_{i}$
	$+\sum_{i=1}^{n}\alpha_{i}-\sum_{i=1}^{n}\alpha_{i}\epsilon_{i}-\sum_{i=1}^{n}\mu_{i}\epsilon_{i}+C\sum_{i=1}^{n}\epsilon_{i}$
\mathcal{L}_{Γ}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
[] 	$\alpha(\alpha) = \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_j y_j (x_i \cdot x_j)$
a	early, α ; > 0 and u ; > 0 \forall $i = 1, 2,, m$ as they re Langrangian Multipliers. iven that α ; $= C - u$; (from 3)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	All data points for which O<0; <c are="" exactly="" holds="" lie="" margin.<="" on="" our="" support="" td="" that="" true,="" vectors=""></c>
	This is explained by Karush - Kuhn Tucker conditions.
	Now, solving the Dual Problem shown above, we will get our Lagrangian Multipliers back. This enables us to get back our Primal Variables w and b which
	parametrize our separating hyperplane.

parametrize our separating hyperplane.
$\omega^* = \sum_{i=1}^{m} \alpha_i y_i x_i \qquad (From 1)$
i=L
Once we get w, we can plug in that into:
$\omega_{\bullet} \times_{sv} + b^* = y_{sv} - \Phi$
for some SV lying exactly on our margin.
$\Rightarrow b^* = y_{sv} - \omega_{v} \times x_{sv}$
41 avacutu as was bushu dan ut
If everything was hunky-dory, we were done at
this point. BUT
It is possible that none of the SVs lie exactly
on the margin i.e. all SVs violate the margin.
Then we can't use (4) as our assumption fails.
By some more math, we can say that in such
a case we can find b* as follows:
$b^* = Median (y_s - w^* \times_s) \forall s \in SV_s.$