Плотность. $\rho = \frac{m}{V}$. $[\rho] = \frac{\mathrm{KP}}{\mathrm{M}^3}$. Bec. P = mg. $[P] = \mathrm{H}$.

Давление. $p = \frac{F}{S}$. $[p] = \Pi a$.

Давление столба жидкости. $p = \rho g h$.

Сила Архимеда. $F_{\rm apx} = \rho g V$.

Скорость. $V = \frac{S}{t}$. $[V] = \frac{M}{c}$. Ускорение. $a = \frac{\Delta V}{\Delta t}$. $[a] = \frac{M}{c^2}$.

Формулы с ускорением:

- $V_x = V_{0x} + a_x t$.
- $S_x = V_{0x}t \pm \frac{a_x t^2}{2}$.
- $x = x_0 + V_{0x}t + \frac{a_x t^2}{2}$.

Второй закон Ньютона. $\sum F = ma$.

Сила трения. $F_{\text{тр}} = N\mu$.

Закон Гука. $F_{\text{упр}} = -k\Delta x$.

Параллельное соединение пружин. $k_{\text{o}6}=k_1+k_2+\dots$ Последовательное соединение пружин. $\frac{1}{k_{\text{o}6}}=\frac{1}{k_1}+\frac{1}{k_2}+\dots$

Механическая работа. A = Fl. [A] = Дж.

Мощность. $P = \frac{A}{t} = FV$. $[P] = B_T$.

Коэффиицент полезного действия. $\eta = \frac{A_{\text{пол}}}{A_{\text{non}}}$.

Кинетическая энергия. $E_{\rm K} = \frac{mV^2}{2}$. Потенциальная энергия. $E_{\rm II} = mgh$.

Потенциальная энергия пружины. $E_{\Pi} = -\frac{k\Delta x^2}{2}$

Внутренняя энергия. $\sum E_{\text{к. мол.}} + E_{\text{п. взаим.}}$

Количество теплоты через теплоемкость. $Q = C\Delta t$.

Количество теплоты через удельную теплоемкость. $Q = cm\Delta t$.

Закон Ньютона-Рихмана. $P = \alpha (t_{\text{тела}} - t_{\text{окр}}).$

Абсолютная влажность воздуха. $\rho_{\rm a6c}=\frac{m_{H_2O}}{V}$. Относительная влажность воздуха. $\varphi=\frac{\rho_{\rm a6c}}{\rho_{\rm B\Pi(t)}}\cdot 100\%$.

Закон Фурье. $P = \frac{\alpha(t_1 - t_2)}{l}$.

Закон Кулона. $F = \frac{k \cdot |q_1 \cdot q_2|}{\varepsilon \cdot R^2}$. $k = 9 \cdot 10^9 \frac{\text{H·м}^2}{\text{K}\pi^2}$, ε - диэлектрическая проницаемость(в вакууме 1). Напряженность. $E = \frac{F}{q} = \frac{k \cdot q}{r^2}$. $[E] = \frac{\text{B}}{\text{M}} = \frac{\text{H}}{\text{K}\pi}$.

Потенциальная энергия в электрическом поле, действующий на точку. $W = q \varphi$. $[\varphi] = B$.

Напряжение. $U = \varphi_1 - \varphi_2 = I \cdot R = \frac{A}{a}$. [U] = B.

Сила тока. $I=\frac{q}{t}=\frac{U}{R}.~[I]=A=\frac{K\pi}{c}.$ Сопротивление. $R=\frac{U}{I}=\frac{\rho\cdot l}{S}.~[R]=\frac{B}{A}={
m Om}.$

Закон Ома. $I \sim U; I = \frac{U}{R}$

Последовательное соединение резисторов. $I_{06}=I_1=I_2=\dots$; $U_{06}=U_1+U_2+\dots$; $R_{06}=R_1+R_2+\dots$. Параллельное соединение резисторов. $I_{06}=I_1+I_2+\dots$; $U_{06}=U_1=U_2=\dots$; $\frac{1}{R_{06}}=\frac{1}{R_1}+\frac{1}{R_2}+\dots$

Закон Джоуля-Ленца. $Q = I^2Rt = \frac{U^2t}{R} = IUt$.

Мощность электрического тока. $P=I^2R=\frac{U^2}{R}=IU$.

ЭДС(Электро-движущая сила). $\varepsilon = \frac{A_{\text{ст}}}{a}$. $[\varepsilon] = B$.

Закон Ома для участка цепи с источником. $\Phi_A - \Phi_B + \varepsilon = I \cdot (R+r)$.

Законы Кирхгофа:

1.
$$\sum_{i} \pm I_{i} = 0$$
.

2.
$$\sum_{i} \pm \varepsilon_{i} = \sum_{i} \pm I_{i} \cdot R_{i} + \sum_{i} \pm I_{i} \cdot r_{i}$$
.

Шунты:

- Амперметр. $R = \frac{R_A}{n-1}$.
- Вольтметр. $R = (n-1) \cdot R_V$.

Емкость конденсатора. $c=\frac{q}{U}=\frac{\varepsilon_0\cdot\varepsilon\cdot S}{d}.$ $[c]=\frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{B}}=\Phi;\ \varepsilon_0$ - электрическая постоянная; ε - диэлектрическая проницаемость, величина, которая показывает во сколько раз диэлектрик ослабевает электрическое поле. $\varepsilon_0 = \frac{1}{4 \cdot \pi \cdot k} =$ $8.85 \cdot 10^{-12} \frac{\Phi}{M}$.

Сила Ампера. $F_A = B \cdot I \cdot l \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением тока.

Сила Лоренца. $F_{\Pi} = B \cdot q \cdot v \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением скорости

Поток вектора магнитной индукции. $\Phi_{\scriptscriptstyle \rm B}=BS\cos\alpha.$ $[\Phi_{\scriptscriptstyle \rm B}]=$ Вб.

Индукция магнитного поля. $B=\frac{F_{max}}{I \cdot l}$. $[B]=\mathrm{Tn}$. Закон радиоактивного распада. $N=\frac{N_0}{2^{\frac{t}{T}}}$. T - время полураспада, N_0 - изначальное число атомов, t - прошедшее время.

Дефект масс. $\Delta m = M_{\pi} + M_{H} - M_{H}$.

Формула фокусного расстояния линз. $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$; F — фокусное расстояние, d — расстояние от объекта до линзы, f — расстояние от изображения до линзы. \pm перед $\frac{1}{F}$ — собирающая/рассеивающая линза, \pm перед $\frac{1}{d}$ — действительный/мнимый предмет, \pm перед $\frac{1}{f}$ — действительное/ мнимое изображение.

Диоптрия. $D = \frac{1}{F}$. [D] = Дптр. $D_{\text{of}} = D_1 + D_2 + \dots$

Нормальное ускорение. $a_{\rm H}=\frac{V^2}{R}$. Углова скорость. $\omega=\lim_{\Delta t\to 0}\frac{\Delta \varphi}{\Delta t}$. $[\omega]=\frac{{\rm pag}}{{\rm c}}$. Период. $T=\frac{2\pi R}{V}=\frac{2\pi}{\omega}$. $[T]={\rm c}$. Формула связи линейной скорости с угловой. $V=\omega R$.

Частота. $\nu = \frac{1}{T}$. $[\nu] = \Gamma$ ц.

Преобразование Галилея. $\vec{V_{
m a\delta c}} = \vec{V_{
m othoc}} + \vec{V_{
m nep}}$.

Закон Снелиуса. $n_1 \sin \alpha = n_2 \sin \beta$.