

planetmath.org

Math for the people, by the people.

subsequence

Canonical name Subsequence

Date of creation 2013-03-22 12:56:34 Last modified on 2013-03-22 12:56:34

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 6

Author alozano (2414) Entry type Definition Classification msc 00A05 Given a sequence $\{x_n\}_{n\in\mathbb{N}}$, any infinite subset of the sequence forms a subsequence. We formalize this as follows:

Definition. If X is a set and $\{a_n\}_{n\in\mathbb{N}}$ is a sequence in X, then a subsequence of $\{a_n\}$ is a sequence of the form $\{a_{n_r}\}_{r\in\mathbb{N}}$ where $\{n_r\}_{r\in\mathbb{N}}$ is a strictly increasing sequence of natural numbers.

Equivalently, $\{y_n\}_{n\in\mathbb{N}}$ is a subsequence of $\{x_n\}_{n\in\mathbb{N}}$ if

- 1. $\{y_n\}_{n\in\mathbb{N}}$ is a sequence of elements of X, and
- 2. there is a strictly increasing function $a: \mathbb{N} \to \mathbb{N}$ such that

$$y_n = x_{a(n)}$$
 for all $n \in \mathbb{N}$.

Example. Let $X = \mathbb{R}$ and let $\{x_n\}$ be the sequence

$$\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}.$$

Then, the sequence

$$\{y_n\}_{n\in\mathbb{N}} = \left\{\frac{1}{n^2}\right\}_{n\in\mathbb{N}} = \left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots\right\}$$

is a subsequence of $\{x_n\}$. The subsequence of natural numbers mentioned in the definition is $\{n^2\}_{n\in\mathbb{N}}$ and the function $a:\mathbb{N}\to\mathbb{N}$ mentioned above is $a(n)=n^2$.