2 Lab Portion

Disclaimer: This exam is not intended to be a *comprehensive* guide to everything I could possibly ask about on the midterm. However, if you understand how to perform and interpret results of each procedure below, you are probably in good shape for the exam.

2.1 General Lab Hints

Save all of your scripts/dialogs and give them informative names! This means you will just have to open up the right script/dialog and follow its example. Look in the example problems and Sapling/lab assignments for tell-tale signs that a question will involve power analysis or a specific type of hypothesis test/confidence interval. Often, deciding the type of hypothesis test/confidence interval can be solved by answering four simple questions:

- 1. What is a case/unit/subject in this study?
- 2. What categorical variable(s) am I recording for each case, and how many possible values does each variable have?
- 3. What numerical variables am I recording for each case?
- 4. How many samples do I have, and are all the cases in my sample(s) independent?

2.2 Lab 14

- Create a histogram to graphically display a numerical variable
- Create a boxplot to graphically display a numerical variable
- Linearly transform a numerical variable (using *Transform* function in Rguroo or *mutate* command in R)

2.3 Labs 13, 15, and 17

- For a normal random variable/normal population distribution, find the probability of obtaining an individual value below a given value/above a given value/between two given values
- For a sampling distribution of sample mean, find the probability of obtaining a *sample mean value* below a given value/above a given value/between two given values
- For a t-distributed random variable, find the probability of obtaining a t-statistic below a given value/above a given value/between two given values
- Perform those procedures "in reverse" to find cumulative proportions/upper tail probabilities (i.e., using qnorm/qt or Probability → Values)

2.4 Labs 18-20

- Perform a one-sample t hypothesis test in the Neyman-Pearson framework and make an appropriate conclusion
- Compute the power and β for a one-sample t hypothesis test in the Neyman-Pearson framework (using Rguroo's Mean Inference \rightarrow Details \rightarrow Power Analysis or R's power.t.test function)
- Perform a one-sample thypothesis test in the NHST framework and make an appropriate conclusion

- Add a variable to the dataset containing paired differences (using *Transform* function in Rguroo or *mutate* command in R)
- Perform a matched pairs t hypothesis test in the NHST framework and make an appropriate conclusion
- Create a set of histograms showing the distribution of a numerical variable in two or more groups
- Perform a two-sample t hypothesis test in the NHST framework and make an appopriate conclusion
- Create a set of boxplots showing the distribution of a numerical variable in two or more groups
- Perform a One-Way ANOVA hypothesis test (Fisher framework) and make an appropriate conclusion
- If the null hypothesis for a One-Way ANOVA hypothesis test is rejected, perform *post hoc* procedures and make an appropriate conclusion

2.5 Labs 21-22

- Construct a t confidence interval for population mean and interpret it
- Construct a t confidence interval for population mean of paired differences and interpret it
- Construct a t confidence interval for difference of population means and interpret it (in particular, which population mean is bigger and by how much)
- Determine whether a specific null hypothesis can be accepted (N-P framework) or rejected (NHST framework) based on the confidence interval