Biomarkers & Biochemical Endpoints of Toxicological Studies

Andrew East, M.S.

ENST Dept.

Defense Centers for Public Health-Aberdeen

March 2025

Who am I?

- Quantitative
 EcoToxicologist
- Work with Dr. Yonkos
 - Terrestrial organism exposure to PFAS
- DoD Biologist in Public Health Toxicology Directorate.
 - Support risk+hazard assessments

Lecture Map

• Biomarkers & Biochemical Endpoints of Toxicological Studies

Toxicological paradigms to consider

Interdisciplinary and translational science

Data you have.

Your data in context.

Toxicological paradigms to consider

Basic to applied translation has a purpose

The goal is to predict effects given exposure

Toxicological paradigms to consider

- "Dose makes the poison"
- Regs are usually based on the identification of the <u>highest safe dose</u>

Supposed to be "adverse." What does adverse mean?

Toxicity tests

- Purposes
 - Regulatory requirements
 - Standardized protocols + endpoints +reporting
 - Comparative and threshold setting
 - Research
 - Mechanisms
 - Refined exposures + endpoints
 - Co-stressors + modifying factors
 - · Comparative and threshold setting

TABLE 3.—Absolute liver weight, relative liver weight (% body weight), hepatocyte hypertrophy, and labeling index (LI) of PFOA- and WY-treated PPAR-α knockout mice (mean ± SD).

reatment (n)	Liver Weight (g)	Relative Liver Weight (%)	Lesion Score	LI
ontrol (8)	0.92 ± 0.08	3.4 ± 0.4	1.1 ± 0.4	0.2 ± 0.2
mg/kg PFOA (8)	1.2 ± 0.14^{n}	4.5 ± 0.2^{a}	1.9 ± 0.6^{a}	0.6 ± 0.4
mg/kg PFOA (7)	1.46 ± 0.21^{a}	5.8 ± 0.3^{a}	3.0 ± 0^{a}	0.6 ± 0.3
0 mg/kg PFOA (7)	2.8 ± 0.18^{a}	9.4 ± 0.6^{a}	4.0 ± 0^a	7.7 ± 3.0^{a}
0 mg/kg Wyeth (7)	1.07 ± 0.24	3.9 ± 0.5	1.4 ± 0.5	0.6 ± 0.5

a. statistically different from control by Student's t test at p < .05

OECD GUIDELINE FOR TESTING OF CHEMICALS

Daphnia sp., Acute Immobilisation Test

$$set LC50 [(m * [algae] + b) + a * length^c]$$

$$resp = 1 - \exp(-\exp(b(\ln([pyra]) - \ln[LC50])))$$

Toxicity test (firefighting foam example)

- Exposed mice to increasing concentration of fire fighting foams for 28 days.
- Is the toxicity profile (and threshold value) different between PFAS-free and PFAS-containing?
- Following basis of OECD#407 (Repeated dose 28-day oral toxicity study in rodents).
- Endpoints based on clinical observation, survival, body weight trends, organ weights, micronucleus assay, thyroid hormones, hematology, clinical chemistry, toxicological pathology.

Two different results, can you explain it?

 The direction of the dose-response is opposite—why? And how do you make sense of it?

East AG, Narizzano AM, Holden LA, Bazar MA, Bohannon ME, Pervitsky D, Adams VH, Reinke EN, Quinn MJ. 2023. Comparative Toxicity of Seven Aqueous Film-Forming Foam to In Vitro Systems and Mus. Environmental Toxicology and Chemistry. 42(11):2364–2374. doi:10.1002/etc.5714.

The rest of the tox profile.

No influence on bodyweight over time, no increase in micronucleated reticulocytes or reticulocytes, no pathology

Increase in serum ALT, AST

Reduction in serum total protein, increase in AST, reduction in RBC/HgB/MCV, increase in circulating thyroid hormones

"Classic" hepatotoxicity

Poor body condition, solvent toxicity

Toxicity studies and causality

• Causality is usually the criteria we're striving for

Process expected.

Actual process.

Causality example

 There are multiple 'routes' by which a chemical could influence animal health if liver weight and bodyweight were the measured endpoints.

Figure 1. The causal model. A Drug (D) can affect liver weight (L) directly; by altering body weight (B), which in turn affects the liver weight; or through both mechanisms. Four potential confounding effects (C1-C4) must be ruled out before making causal mechanistic claims about how the drug affects liver weight (A). An alternative causal model is that the drug affects liver weight, making the animal ill, which then leads to a reduction in body weight.

Endpoint(s) of test is a critical choice

- Zoom in and measure something better.
- This is the basis of "Adverse Outcome Pathways"

High quality measures of effects

- Response is tied to process (specificity)
- Response is predictive of effects (sensitivity)

Beware!

 Be cognizant of your goals and your need for sensitivity/specificity.

Landscape Repeatability **High Throughput Low-med Cost Ecosystems** Questionable application across systems/taxa Communities Low Relevance No higher level interactions **Populations** Highly relevant Higher level interactions Individuals Location specific Costs can vary Repeatability High effort to execute

Figure 1. The pros, cons and uncertainties of ecological risk assessment based on data from different levels of biological organization. (This figure is presented in colour in the online version of the article.)

CRITICAL REVIEWS IN TOXICOLOGY, 2016
http://dx.ddi.cog/10.1080/10408444_2016.1190685

REVIEW ARTICLE

Blue = pro

Red = con

Purple = +/-, uncertain

CRITICAL REVIEWS IN TOXICOLOGY

The pros and cons of ecological risk assessment based on data from different levels of biological organization

lason R. Rohr^a, Christopher J. Salice^b and Roger M. Nisbet^c

^aUniversity of South Florida, Department of Integrative Biology, Tampa, FL, USA; ^bTowson University, Department of Biological Sciences, Towson, MD, USA: ⁴University of California at Santa Barbara, Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA

Biochemical endpoints

- Liver example
 - Liver is extremely important organ—first place where food contents meet bloodstream, metabolism (tox+food), lipid+protein regulation, handling wastes (e.g. bile excretion), etc.
- Specific markers of health have been developed.

Table 2 Clinical biomarkers of liver toxicity. 59,126,117,161,162

Biomarker	*Cellular localization	**Biological activity	***Tissue localization	\$Injury	SS Specific damage markers	*Comments	**Disadvantage
ALT	Mitochondria in periportal and cytoplasm	Amino acid reductive transfer from amino acid	Primarily localized to liver	Increased in the presence of liver necrosis, cardiac dysfunction, and muscular damage.	Hepatocellular Necrosis	Standard method for evaluating liver cell damage	Both enzymes activities can potentially exceed 100 times the upper reference limit. Maximum activity does not correlate with outcome
AST	Cytoplasm and mitochondria periportal	Amino acid reductive transfer from amino acid	Localized in heart, brain, skeletal muscle and liver	Elevated due to liver or extracellular tissue injury	Hepatocellular Necrosis	Less specific than ALT	 Peak enzymes activities do not affect prognosis.

Turning an endpoint into a biomarker

Hoff PT, Van Dongen W, Esmans EL, Blust R, De Coen WM. 2003. Evaluation of the toxicological effects of perfluorooctane sulfonic acid in the common carp (Cyprinus carpio). Aquatic Toxicology. 62(4):349–359. doi:10.1016/S0166-445X(02)00145-5.

Hoff PT, Van Campenhout K, Van De Vijver K, Covaci A, Bervoets L, Moens L, Huyskens G, Goemans G, Belpaire C, Blust R, et al. 2005. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects. Environmental Pollution. 137(2):324–333. doi:10.1016/j.envpol.2005.01.008.

How about 'adverse' and ERA-relevant?

• Proportional increase in liver is predictive of proportional increase in ALT.

"Site A vs Site B show X-fold increase in ALT suggests Y-fold increase in liver weight"

Biomarker of damage vs biomarker of exposure?

- If ALT in serum shows up after the liver is damaged, we're not being protective.
 - Measure of adverse effect (i.e. evidence of harm or validation of risk)
- Are there biomarkers/bioindicators/biochemical endpoints that are informative before adverse effects?
- Is an adverse response the only useful response to differentiate toxicological profiles?

Polycyclic aromatic hydrocarbons

- Hydrocarbons (lots of CH bonds)
- Aromatic ("typified by benzene") (old terminology)
- Cyclic (ring) (newer terminology that captures "ring" structure)
- Poly (many)
- Nonpolar, lipophilic, organic.
- Complex mixtures in natural hydrocarbons, combustion products.

Chrysene

Tetracene

Phenanthrene

Toxicity of PAHs

- Species sensitivity distribution of acute EC50s in various fish species exposed to benzo[a]pyrene.
- ~0.5 µg/L (ppb) HC₅₀

But what about the rest of the toxicology?

- PAHs are a classic example of nonpolar+lipophilic molecules that are easy in and hard to get out.
- Metabolism is key to excretion.
- What happens during metabolism?

PAH 'bioactiviation'

- CYP450 proteins add polar components to aid the excretion of PAHs by increasing their water solubility (get into blood+urine).
- Reactive oxygen species bind to DNA...metabolism leads to increased toxicity...

Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 141 and 181

How do we measure PAH metabolism?

- EROD activity assay
 - Expose liver tissue to 7ethoxyresorufin, wait, measure fluorescence.
 - Activity scales with amount of 7ethoxy-resorufin-O-deethylase present. EROD is present as a function of the amount of CYP1A1 induction through binding to aryl hydrocarbon receptor.

https://protocolexchange.researchsquare.com/article/nprot-3473/v1

Activity increases before apical effects

 Chicken eggs were viable, but had large increases in EROD activity when exposed to mixtures of PAHs.

Table 1. Mortality on day 10 of development in chicken embryos treated with naphthalenes injected into the air sacs on day 7

Treatment	Dose (mg/kg)					
	Control	1.0	3.0	10.0		
Hexachloronaphthalene-mix	0/20	0/7	6/12**			
Halowax 1014	0/20	0/7	4/12*	6/8***		
Heptachloronaphthalene	0/20	0/8	0/14	-		

Fisher's exact probability test:

^{*} P < 0.05

^{**} P < 0.01

^{***} P <0.001

In the field?

 Many, many, many uses of EROD for hydrocarbon exposure—think oil spills.

 Avian EROD activity predicts high concentration sites!

Table 2 SIMPER analy Low ethoxyresorufin-Odealkylase (EROD) activ High EROD activity follo significant ANOSIM anal four categories of EROD activity compared to 33 of and inorganic variables at 56 sites across the Great Lakes,

1397

2010-2014

EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree... Low EROD

Fig. 2 Ninety-five percent confidence intervals (CIs, vertical lines), and adjusted CIs (black rectangles) for ethoxyresorufin-O-dealkylase (EROD) activity coefficients in tree swallow nestling livers at 54 sites within 27 Areas of Concern (AOCs) and six non-AOC locations,

2010-2014. Non-AOC sites are indicated by an asterisk. Horizontal lines indicate adjusted upper and lower confidence intervals (CIs) for six combined non-AOC sites. EROD activity was measured in pmol product/min/mg microsomal protein

vity vs.		SIMPER analysis Low EROD	SIMPER analysis Low EROD vs. High EROD				
alysis of	Variable	Percent contribution	Cumulative per				
organic	aPAHs	11.64	11.64				

	EROD	LKOD vs. High	Intervals) concentrations (ng/g wet weight)		
Variable	Percent contribution	Cumulative percent	Low EROD	High EROD	
aPAHs	11.64	11.64	33 (23-45)	517 (265–1008)	
pPAHs	11.13	22.78	14 (9.5-21.3)	221 (109-447)	
Chlordane	9.2	31.98	12 (7.1-21.7)	102 (51-200)	
Dieldrin	8.81	40.79	1.6 (1.0-2.7)	20 (10-39)	
Heptachlor	8.73	49.52	2.8 (1.4-5.6)	28 (13-60)	
PCBs	8.18	57.7	102 (45-228)	727 (521-112)	
PAH TEQs	7.82	65.52	0.15 (0.06-0.38)	5.81 (2.21-15.30)	
PFOS	6.21	71.74	65 (32-135)	172 (123-240)	
PFCs	5.81	77.55	98 (50-193)	229 (162-325)	
PBDEs	4.72	82.28	12.0 (6.8-21.4)	26.4 (18.5-37.7)	
DDE	3.89	86.17	100 (75-135)	237 (180-312)	
Benzenes	2.08	88.25	7.7 (3.2-18.3)	8.1 (6.1-10.8)	
Mirex	1.98	90.23	7.5 (5.9–9.6)	8.0 (6.0–10.7)	

Concentrations of contaminants in the Low and High EROD activity groups are also shown

SIMPER similarity percentage, EROD ethoxyresorufin-O-dealkylase, aPAHs alkylated polycyclic aromatic hydrocarbons, pPAHs parent PAHs, PCBs polychlorinated biphenyls, TEQs toxic equivalents, PFOS perfluorooctane sulfonate, PFCs perfluorinated chemicals, PBDEs polybrominated diphenyl ethers, DDE p,p'-dichlorodiphenyldichloroethylene

> Custer, T.W., Custer, C.M., Dummer, P.M., Bigorgne, E., Oziolor, E.M., Karouna-Renier, N., Schultz, S., Erickson, R.A., Aagaard, K. and Matson, C.W., 2017. EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. Ecotoxicology, 26, pp.1392-1407.

T. W. Custer et al.

Geometric mean (95% Confidence

Same idea but doesn't require lethal sampling?

- If EROD is downstream of gene induction and transcription, can't we just measure that (rtQPCR type methods)?
- Yep!
- Challenge is that liver tissue shows most activity, but as the appropriate sequences are known, the mRNA can be quantified.

Also in vitro techniques for screening!

Jönsson, M.E., Woodin, B.R., Stegeman, J.J. and Brunström, B., 2011. Cytochrome P450 1 genes in birds: evolutionary relationships and transcription profiles in chicken and Japanese quail embryos. PLoS One, 6(12), p.e28257.

Table 1. GenBank or Ensembl accession numbers of the studied transcripts.

Species	Gene	Number
Chicken	CYP1C1	JN656933 (cloned)
Turkey	CYP1C1-like	ENSMGAG00000015774
Mallad duck	CYP1C1-like	ENSAPLG00000001387
Anole lizard	CYP1C1-like	ENSACAG00000013750
Xenopus tropicalis	CYP1C1	HQ018042
Zebrafish	CYP1C1	NM001020610
Zebrafish	CYP1C2	NM001114849
Japanese quail	CYP1B1	JN656934 (cloned)
Chicken	CYP1B1	XP419515
Zebra finch	CYP1B1-like	XP002191325
Human	CYP1B1	NP000095
Anole lizard	CYP1B1-like	XP003216002
Xenopus tropicalis	CYP1B1	HQ018041
Japanese quail	AHR1	HM053555, JN656935 (cloned
Chicken	AHR1	AAF70373
Turkey	AHR1	XP003207170
Albatross	AHR1	BAC87795
Zebra finch	AHR1	XP002188964
Common tern	AHR1	AF192503
Cormorant	AHR1	BAD01477
Mallard duck	AHR1	AF192501
Xenopus tropicalis	AHR1	CX900378
Mouse	AHR	NM013464
Human	AHR	AAH70080
Chicken	AHR1B-like	ENSGALG00000004322
Zebrafish	AHR1A	NP571103
Zebrafish	AHR1B	AAY42958
Chicken	AHR2	XP421887
Albatross	AHR2	BAC87796
Cormorant	AHR2	BAF64245
Zebrafish	AHR2	CAK11168
Japanese quail	EF1A	JN656936 (cloned)

doi:10.1371/journal.pone.0028257.t001

In standardized tox test?

- Useful exercise for studies of chemicals with unknown mechanisms or unknown types of effects.
- Remember back to solvent example?

Table 5
Liver metabolic enzymes—rats given DGBE for 13 weeks

Sex	Dose level (mg/kg/day)		Parameter (Units)					
			EROD (nmol/min/mg P)	MROD (pmol/min/mg P)	PROD (pmol/min/mg P)	UGT (pmol/min/mg P)	PNPH (nmol/min/mg P)	
Males	0	Mean	24.731	13.018	1.514	1.096	0.296	
		SD	2.476	1.256	0.149	0.057	0.038	
	1000	Mean	30.592 ^a	12.516	2.098^{a}	1.287 ^a	0.314	
		SD	3.512	1.588	0.273	0.115	0.048	
Females	0	Mean	38.481	26.032	2.328	0.779	0.244	
		SD	4.881	6.966	0.419	0.055	0.039	
	1000	Mean	47.636 ^a	31.094	2.881 ^a	0.906^{a}	0.287	
		SD	17.065	13.991	0.866	0.065	0.066	

N = 10 for all parameters.

(In the DGBE example, the excreted metabolite is a better predictor of exposure—not necessarily effects though)

^a Statistically identified, Dunnett's Test, two-way ANOVA, alpha = 0.05.

Johnson, K.A., Baker, P.C., Kan, H.L., Maurissen, J.P., Spencer, P.J. and Marty, M.S., 2005. Diethylene glycol monobutyl ether (DGBE): two-and thirteen-week oral toxicity studies in Fischer 344 rats. Food and chemical toxicology, 43(3), pp.467-481.

Other important examples

- Vitellogenin
 - Yolk protein precursor. Increase in males indicates exposure to estrogenic chemicals. Also, reduction in vitellogenin can reduce fecundity...
- Acetylcholinesterase
 - Terminates neurotransmission. Inhibition keeps nerve signaling "on."
 - Is desired effect of some insecticides...

Fu, H., Xia, Y., Chen, Y., Xu, T., Xu, L., Guo, Z., Xu, H., Xie, H.Q. and Zhao, B., 2018. Acetylcholinesterase is a potential biomarker for a broad spectrum of organic environmental pollutants. Environmental science & technology, 52(15), pp.8065-8074.

Sun, B., Hu, C. and Chen, L., 2025. Fish Skin Mucus Vitellogenin as a Noninvasive, Sensitive Biomarker for Aquatic Xenoestrogens. Environment & Health.

Conclusions

- Be cognizant of causality, specificity, sensitivity, and desired inference.
- Biomarker is generally the word for quite validated methods
 - Bioindicator is something you're still studying
- Use in toxicity tests may be for a variety of purposes
 - Explore mechanisms, standard measures, useful in the field

Questions?

aeast@umd.edu

Adverse outcome pathways

• The recent(ish) development that gave a name to biological

organization in toxicology.

SETAC PRESS

Environmental Toxicology and Chemistry, Vol. 29, No. 3, pp. 730-741, 2010 & 2009 SETAC Printed in the USA

Hazard/Risk Assessment

ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT

GERALD T. ANKLEY, * RICHARD S. BENNETT, RESSELL J. ERICKSON, DALE J. HOFF, MICHAEL W. HORNING, RODNEY D. JOHNSON, DAVID R. MOINT, JOHN W. NICHOLS, CHRISTINE L. RUSSON, PATRICIA K. SCHMEIDER, JOSE A. SERRANO, JOSEPH E. TEUTG, and DANIEL L. VILLENLIVE S. ELIVERING CONTROL OF RESEARCH AND PROPERTY E. TEUTG, and DANIEL L. VILLENLIVE S. ELIVERNING CONTROL OF RESEARCH ADVENTURE AND PROPERTY OF THE PRO