In this project, there are 3 planning problems. The project has been setup with 3 stages:

- 1. Represent the planning problems using propositional logic. Planning and domain definition language is used to represent the planning problems
- 2. Define the domain independent heuristics. The heuristic functions will add the intelligence component to the search algorithm
- 3. Experiment different search algorithms to reach the solution state

Air Cargo Problem 1

The table below provides the results of applying various search algorithms to first planning problem.

# 🔻	Algorithm	Optima V	Expansion	Goal Test	New Node	Plan Length	Time Elapsed (ms)
1 breadth_fi	1 breadth_first_search		43	56	180	6	43.1
2 breadth_fi	rst_tree_search	Yes	1458	1459	5960	6	1095.2
3 depth_firs	t_graph_search	No	12	13	48	12	9.89
4 depth_lim	4 depth_limited_search		101	271	414	50	108.04
5 uniform_c	ost_search	Yes	55	57	224	6	40.1
6 recursive_	best_first_search	Yes	4229	4230	17029	6	3056.3
7 greedy_be	st_first_graph_search	Yes	7	9	28	6	5.225
8 astar_sear	ch with h_1	Yes	55	57	224	6	51.2
9 astar_search with h_ignore_preconditions		s Yes	41	43	170	6	44.3
10 astar_sear	ch with h_pg_levelsum	Yes	55	57	224	6	1809

Key Takeaways

- 1. Optimal plans have length of 6 in the table above
- 2. Except for depth_first_graph_search and depth_limited_search, all other search algorithms generates and optimal plan with path length of 6
- 3. Of all the optimal plans, uniform_cost_search has the least execution time and the recursive best first search has the maximum execution time
- 4. For this problem, uniformed search algorithm 'uniform_cost_search' and informed search algorithm 'astart_search_with_h_ignore_preconditions' are the best candidates for search algorithm

Air Cargo Problem 2

The table below provides the results of applying various search algorithms to first planning problem.

#	Algorithm	Optimal	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed (ms)
	1 breadth_first_search	Yes	3346	4612	30534	9	15862.3
	2 breadth_first_tree_search						
	3 depth_first_graph_search	No	1124	1125	10017	1085	10205.9
	4 depth_limited_search						
	5 uniform_cost_search	Yes	4853	4855	44041	9	14684.5
	6 recursive_best_first_search						
	7 greedy_best_first_graph_search	No	895	897	8009	21	2910.6
	8 astar_search with h_1	Yes	4853	4855	44041	9	14891.7
	9 astar_search with h_ignore_preconditions	Yes	1450	1452	13303	9	4701.9
	10 astar_search with h_pg_levelsum						

Key Takeaways

- 1. Optimal plans have length of 9 in the table above
- 2. Only 4 search algorithms yields a result to problem with optimal length. The 4 algorithms are breadth_first_search, uniform_cost_search, astar_search_search_h_1 and astar_search_with_h_ignore_preconditions
- 3. Although greedy_best_first_graph_search has lowest execution time, the algorithm does not provide and optimal plan in terms of plan length
- 4. For this problem, informed search algorithm 'astart_search_with_h_ignore_preconditions' is the best candidates for search algorithmin terms of optimal length and execution time

Air Cargo Problem 3

The table below provides the results of applying various search algorithms to first planning problem.

#	Algorithm	Optimal	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed (ms)
	1 breadth_first_search	Yes	14120	17673	124926	12	119599.9
	2 breadth_first_tree_search						
	3 depth_first_graph_search	No	677	678	5608	660	4256.7
	4 depth_limited_search						
	5 uniform_cost_search	Yes	18233	18235	159697	12	96591.8
	6 recursive_best_first_search						
	7 greedy_best_first_graph_search	Yes	5165	5167	45611	22	17032.4
	8 astar_search with h_1	Yes	18233	18235	159697	12	1230866
	9 astar_search with h_ignore_preconditions	Yes	4951	4953	44051	12	16617
	10 astar_search with h_pg_levelsum						

Key Takeaways

- 1. Optimal plans have length of 12 in the table above
- 2. Only 4 search algorithms yields a result to problem with optimal length. The 4 algorithms are breadth_first_search, uniform_cost_search, astar_search_search_h_1 and astar_search_with_h_ignore_preconditions
- 3. Although depth_first_graph_search has lowest execution time, the algorithm does not provide and optimal plan in terms of plan length
- 4. For this problem, informed search algorithm 'astart_search_with_h_ignore_preconditions' is the best candidates for search algorithmin terms of optimal length and execution time