

Lab 2

CPS592 – Visual Computing and Mixed Reality

MATLAB

Change folder and copy working files to working folder

Read image from file

img = imread('singapore.jpg');
figure, imshow(img);

Convert image to gray

img_gray = rgb2gray(img);
figure, imshow(img_gray);

Declare filter kernel

kernel = [-1 0 1; -2 0 2; -1 0 1];

Apply filter on grayscale image

img_gray_sobel = imfilter(img_gray, kernel, 'replicate');

figure, imshow(img_gray_sobel);

Apply filter on color image

img_sobel = imfilter(img, kernel, 'replicate');

figure, imshow(img_sobel);

Apply Gaussian filter

```
gaussian_kernel = fspecial('gaussian', [25 25], 5);
img_gray_gaussian = imfilter(img_gray, gaussian_kernel,
'replicate');
figure, imshow(img_gray_gaussian);
```


Display Gaussian kernel

figure,imshow(gaussian_kernel);

Display Gaussian kernel

figure,imshow(gaussian_kernel, []);

Create sharpened image

img_sharpened = img_gray * 2 - img_gray_gaussian;

figure, imshow(img_sharpened);

Create sharpened image

img_sharpened2 = double(img_gray) * 2 - double(img_gray_gaussian);

figure, imshow(img_sharpened2);

Create sharpened image

img_sharpened3 = uint8(img_sharpened2);

figure, imshow(img_sharpened3);

Load image with noise

img_noise = imread('salt_and_pepper.jpg');
figure, imshow(img_noise);

img_denoise = medfilt2(img_noise);
figure,imshow(img_denoise);

img_denoise = medfilt2(img_noise,[5 5]);
figure,imshow(img_denoise);

img_denoise = medfilt2(img_noise,[10 10]);
figure,imshow(img_denoise);

img_denoise = medfilt2(img_noise,[50 50]);
figure,imshow(img_denoise);

Q&A