

Name: SHANMUKHA SAI RAYAPATI

CSU ID: 2788976

Name: Anil Pavuluru CSU ID:2782551

LOGIN ID: anpavulu

Task:1

Step-1: I make a directory called hw3 and under this directory 1 have extracted the NVIDIA_CUDA_345 using tar xvfz ~cis345s/pub/gpu345.tar.gz

```
### Company of the Co
```

-For the first part we navigate to \sim /hw3/NVIDIA_CUDA_345/deviceQuery% and execute the make command to compile and build the kernel

-After compiling we are running it using

./deviceQuery

Streaming Multiprocessor (SM):4

CUDA core [(4) Multiprocessors, (128) CUDA Cores/MP]: 512 CUDA Cores

(Off chip) Global memory: 1992 MBytes (2089091072 bytes)

GPU clock rate: 1354 MHz (1.35 GHz)

TASK-2(page default):

In this task i reach the program vAddUM.cu by using following command

~/hw3/NVIDIA_CUDA_345/vAddUM

Next compile by using nvcc vAddUM.cu -o vAddUM

Next I run by using nvcc vAddUM.cu -o vAddUM then again I run by using nvprof ./vAddUM and taken screenshot. Because,it is in c++ that's why double cc

Cou	nt Av	g Size	Min Size	Max Size	Total Size	Total Time	Name
60	130	5.53KB	4.0000KB	0.9922MB	8.000000MB	1.169728ms	Host
							To

						Device
24	170.67KB	4.0000KB	0.9961MB	4.00000MB	343.6800us	Device
						То
						Host
25	-	-	-	-	4.097280ms	Gpu
						page fault
						fault
						groups

Total CPU Page faults: 36

Huge array A and Array b and add them store in array c (a[0]+b[0]=c[0] like that)

Int N=1<<20; 2²⁰=1million array size

Then after allocating 1million through cudaMallocManaged by float 4bytes,4bytes,upto 1million

Then after simple logic written for the array

Timing purpose cude event start and stop

Int blocksize=256;

12*256

D1 . 1 0			D11.1	1

Int blocknum=12;

Vector add

The result c[0] array stores in block 0,thread 0,c[1] block 0,thread1

We come to know the absolute value of the index x is for the starting index block and then dimension of x is 256

Block 1 stride

Block 11

Page migration is caused that's why page fault occurs

Task-3(vAddUM_Init.cu):

In this task we copy the vAddUM and named That file in the name of vAddUM_Init.cu and changes are done based on handout. Removing the initialization of x and y we initialized values so that we reduce the page faults

Next step we run the program nvcc vAddUM_Init.cu -o vAddUM_Init.cu and execute the output nvprof ./vAddUM_Init and taken screen shot from bach.

I move initialization from the CPU to the GPU by __global__, the addkernel launch by init<<<num Blocks, blockSize >>>won't page fault. Here's a simple CUDA C++ kernel to initialize the data. We can just replace the host code(that's why not getting answers for host to device) that initializes **x** and **y** with a launch of this kernel. So we can reduce the page fault.

Count	Avg Size	Min Size	Max Size	Total Size	Total Time	Name
24	170.67KB	4.0000KB	0.9961MB	4.00000MB	344.4160us	Device
						To
						Host
34	-	-	-	-	3.287744Ms	Gpu
						page fault
						groups

Total CPU Page faults: 12

Task-4 (vAddUM_Pfetch.cu):

Copy vAddUM.cu to another file vAddUM_Pfetch.cu and change the code add the code before the kernel launch or before the z variable use the Pfetch so that page migration is reduced.

Next compile for the command using nvcc vAddUM_Pfetch.cu -o vAddUM_Pfetch and then run by using nvprof vAddUM_Pfetch after that taken the screenshot of the result

Coun	Avg Size	Min Size	Max Size	Total Size	Total Time	Name
t						
4	2.0000M	2.0000M	2.0000M	8.000000M	967.5200us	Host
	В	В	В	В		To
						Devic
						e
2	2.0000M	2.0000M	2.0000M	4.000000M	338.3360us	Devic
	В	В	В	В		e To
						Host
12	-	-	-	-	1.252768m	Gpu
					S	page
						fault
						groups

Total CPU Page faults: 24

Task-5(vAddUM_Over.cu)

Copy the code form the vAddUM to vAddUM_Over.cu and modfity the number form 2^20 to 2^28 and calculate the value $2^28*4=2^30$ bytes

Then compile nvcc vAddUM_Over.cu -o vAddUM_Over and run by using the command nvprof vAddUM_Over.cu and taken the screen shot of the results.

Count	Avg Size	Min Size	Max Size	Total Size	Total Time	Name
17616	119.05KB	4.0000KB	0.9961MB	2.000000GB	178.4112ms	Host
						To
						Device
4336	432.18KB	4.0000KB	2.0000MB	1.787109GB	156.1746ms	Device
						То
						Host
6185	_	-	-	-	556.7007ms	Gpu
						page
						fault
						groups

Total CPU Page faults: 8211

Here cpu has more space so its not problem of exceeding memory we increase from 2^20 to 2^28 .