обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 **2**: 897 99 54 вечер, г-н Станев; Web страница: <u>www.solemabg.com</u>; E-mail: <u>solema@gbg.bg</u>

Тригонометрични уравнения и неравенства

I. Тригонометрична окръжност

Окръжност k с център O и радиус 1.

II. Обобщен **ъгъл**

Ъгълът, който се получава при завъртането на точка M по тригонометричната окръжност, се нарича обобщен ъгъл. На фиг. 1 обобщеният ъгъл може да бъде: α ; $\alpha \pm 360^{\circ}$; $\alpha \pm 2.360^{\circ}$ и т.н. Виждаме, че обобщения, ъгъл може да се получи при ротация на ъгъла: $\alpha + k.360^{\circ}$, (1)

където $k = 0; \pm 1; \pm 2; \dots$ е броят на оборотите (т.е. броят на завъртанията на второто рамо на ъгъла).

Бележка:

Навсякъде в този урок числото k е произволно цяло число, за което имаме $k=0:\pm 1:\pm 2:\dots$ т.е. $k\in Z$.

III. Радиан

Всеки ъгъл може да се измерва с градусни мерки или радиани. Централен ъгъл, за който дължината на съответната му дъга е равна на радиуса на окръжността, се нарича радиан (rad). На фиг. 1 се вижда, че ∢AOM = α rad

Превръщането от едната мерна единица в другата се извършва по следния начин:

$$\frac{\alpha^0}{180}$$
. π = x rad

$$\frac{\alpha}{\pi}180 = X^0$$

Бележка:

След градусната мярка се поставя знака за градус "0", а след радианната мярка не се записва означението rad

IV. Тангенсова и котангенсова ос

Нека да имаме обобщен ∢АОМ:

- ◆ Тангенсова ос Оста At[→], която е допирателна до точка A (фиг. 3);
- Котангенсова ос Оста Вс[→], която е допирателна до точка В (фиг. 4);

V. Тригонометрични функции и свойствата им:

sin x

- ◆ Това е функцията, която съпоставя на обобщен ъгъл X ординатата
 У_М на точка М (Фиг. 2). Графиката е синусоида (Фиг. 9)
- ♦ ДМ: ∀х;
- Функцията е периодична с период 2π т.е. $\sin x = \sin (x \pm 2\pi)$;
- lack Функцията е нечетна, т.е. $\sin(-x) = -\sin x$;
- **№** Приема най-голяма стойност **1** при $x = \frac{\pi}{2} + k.2\pi$;
- ♦ Приема най-малка стойност 1 при $x = -\frac{\pi}{2} + k.2\pi$;
- ♦ Приема стойност 0 при x = k.π;
- ◆ Расте от − 1 до 1 във всеки интервал $\left[-\frac{\pi}{2} + k.2\pi; \frac{\pi}{2} + k.2\pi \right]$;
- ♦ Намалява от + 1 до − 1във всеки интервал $\left[\frac{\pi}{2} + k.2\pi; \frac{3\pi}{2} + k.2\pi\right]$;

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

cos x

- ◆ Това е функцията, която съпоставя на обобщен ъгъл X абсцисата X_M на точка M (Фиг. 2). От равенството $\cos x = \sin \left(x + \frac{\pi}{2} \right)$ следва, че графиката на COS X се получава от синусоидата изместена (транслирана) наляво по оста X, на разстояние $\frac{\pi}{2}$ (Фиг. 11);
- **♦** ДМ: ∀**х**;

адрес: гр.София, ж.к. Надежда, бл. 335

- ♦ Функцията е периодична с период 2π т.е. $\cos x = \cos (x \pm 2\pi)$;
- ♦ Функцията е четна, т.е. $\cos(-x) = \cos x$;
- Ф Приема най-голяма стойност 1 при x = kπ;
- ♦ Приема най-малка стойност 1 при $x = \pi + k.2\pi$;
- Приема стойност 0 при $x = \frac{\pi}{2} + k.\pi$;
- ♦ Расте от -1 до 1 във всеки интервал [- π +k.2 π ; k.2 π];
- ♦ Намалява от + 1 до − 1във всеки интервал [k.2 π ; π + k.2 π];

tg x

- ◆ Това е функцията, която съпоставя на обобщен ъгъл X ординатата Ур на точка P, която е пресечна точка между тангенсова ос At и второто рамо на обобщения ъгъл X (Фиг. 3). На координатната система графиката е показана на Фиг. 13;
- Функцията е периодична с период π т.е. $tg x = tg (x \pm k\pi)$;
- Функцията е нечетна, т.е. tg(-x) = -tg(x). Затова графиката и в интервала $\left[0, \frac{\pi}{2}\right]$ относно началото на координатната система;
- ♦ Няма най-голяма и най-малка стойност;
- ♦ Приема стойност 0 при $x = k\pi$;
- ♦ Расте от $-\infty$ до $+\infty$ във всеки интервал $\left[-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right]$;

Бележка:

Функцията $y = tg \times e$ растяща в интервала $\left[-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right]$, но не е растяща в интервал, съдържащ точките в които функцията не е дефинирана, т.е.точки от вида $x = \frac{\pi}{2} + k\pi$. Например: функцията $y = tq \times e$ растяща в интервала $(0; \pi)$.

cotg x

- ◆ Това е функцията, която съпоставя на обобщен ъгъл х абсцисата х_с на точка С, която е пресечна точка между котангенсова ос Вс[→] и второто рамо на обобщения ъгъл х (Фиг. 4). На координатната система графиката и е показана на Фиг. 15;
- ДМ: ∀x ≠ kπ;
- lack Функцията е периодична с период π т.е. $\cot x = \cot x + \cot x$
- ♦ Функцията е нечетна, т.е. cotg(-x) = -cotg(x);
- ♦ Няма най-голяма и най-малка стойност;
- Приема стойност 0 при $x = \frac{\pi}{2} + k\pi$;
- ♦ Намалява от $+\infty$ до $-\infty$ във всеки интервал (k π ; π +k π);

Бележка:

Функцията $y = \cot g x$ е намаляваща в интервала ($k\pi$; $\pi + k\pi$), но не е намаляваща в интервал, съдържащ точки, в които функцията не е дефинирана, т.е. точки от вида $x = k\pi$. Например: функцията $y = \cot g x$ не е намаляваща в интервала $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

VIII. Тригонометрични уравнения

Уравнения, при които неизвестното се съдържа само под знака на тригонометричната функция. Например: уравнението $\cos x + x = 1$, не е тригонометрично.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Основните тригонометрични уравнения и техните решения са представени в следната таблица:

Таблина № 3

				,	,
У-ние:	1 <a<-1 т.е. a >1</a<-1 	a= - 1	a= 0	a= 1	-1 <a<1 td="" т.е. a <1<=""></a<1>
sin x =a	н.р.	$x = -\frac{\pi}{2} + 2k\pi$	x=kπ	$x = \frac{\pi}{2} + 2k\pi$	(A): $x=\alpha + 2k\pi$ (B): $x=\pi - \alpha + 2k\pi$
cos x =a	н.р.	x=π+2kπ	$x = \frac{\pi}{2} + k\pi$	x=2kπ	(A): $x = \alpha + 2k\pi$ (B): $x = -\alpha + 2k\pi$
tg x =a	x=α+kπ	$x = -\frac{\pi}{4} + k\pi$	x=kπ	$x = \frac{\pi}{4} + k\pi$	x=α+kπ
cotg x =a	x=α+kπ	$x = \frac{3\pi}{4} + k\pi$	$x = \frac{\pi}{2} + k\pi$	$x = \frac{\pi}{4} + k\pi$	x=α+kπ

Бележки:

- 1. Решенията (A) и (B) не са броя на решенията, а броя на групите решения. Тригонометричните уравнения имат безброй много решения (защото графиката на тригонометричната функция пресича много пъти права успоредна на абсцизната ос.
- 2. Уравненията tg x = a и соtg x = a имат решения за \forall a, a уравненията sin x = a и соs x = a имат решения за a \in [-1; 1].

Начини за решаване на тригонометрични уравнения:

◆ Основни тригонометрични уравнения – Решават се по таблица №3.
 Дадено уравнение може да се преобразува до основно чрез използването на Тригонометрични формули;

Зад. 1:
$$\cos\left(2x + \frac{\pi}{3}\right) = -\frac{1}{2}$$

Решение:

I начин:

От таблица № 1 (виж <u>Таблици</u>) определяме стойността на cos, а основното уравнение решаваме от таблица №3:

$$\cos\left(2x + \frac{\pi}{3}\right) = -\frac{1}{2} \Leftrightarrow \cos\left(2x + \frac{\pi}{3}\right) = \cos\frac{2\pi}{3}, \alpha = \frac{2\pi}{3} \Rightarrow \begin{cases} 2x + \frac{\pi}{3} = \frac{2\pi}{3} + 2k\pi \\ 2x + \frac{\pi}{3} = -\frac{2n}{3} + 2k\pi \end{cases} \Leftrightarrow \begin{cases} x = \frac{\pi}{6} + k\pi \\ x = -\frac{\pi}{2} + k\pi \end{cases}$$

II начин:

От таблица № 1 (виж <u>Таблици</u>) определяме стойността на α , а основното уравнение решаваме от таблица №3:

$$\cos\left(2x + \frac{\pi}{3}\right) = -\frac{1}{2}; \alpha = \frac{2\pi}{3} \Rightarrow \begin{cases} 2x + \frac{\pi}{3} = \frac{2\pi}{3} + 2k\pi \\ 2x + \frac{\pi}{3} = -\frac{2n}{3} + 2k\pi \end{cases} \Leftrightarrow \begin{cases} x = \frac{\pi}{6} + k\pi \\ x = -\frac{\pi}{2} + k\pi \end{cases}$$

Бележка:

Ако в множеството ъгли от вида $\alpha+k\beta$ параметъра k се замени с $k\pm m$, където m е цяло число, множеството не се променя. Например: в множеството $\frac{\pi}{6}+k\pi$ нека да заменим k с k+1, то полученото множество $\frac{\pi}{6}+(k+1)\pi=\frac{7\pi}{6}+k\pi$ не се променя.

Зад. 2:
$$\sin x = \frac{1 - tg^2 x}{1 + tg^2 x}$$
 (1993; ВВОУ)

Решение: За дясната част използваме формула (65) от <u>Тригонометрични формули</u> и получаваме основно уравнение, чието решение определяме от Таблица №3: $\pi M : x \neq \frac{\pi}{n} + kn$

$$\sin x = \cos 2x \iff \cos \left(\frac{\pi}{2} - x\right) = \cos 2x \iff \begin{cases} 2x = \frac{\pi}{2} - x + 2k\pi \\ 2x = -\frac{\pi}{2} + x + 2k\pi \end{cases} \iff \begin{cases} (A) \to x = \frac{\pi}{6} + \frac{2}{3}k\pi \\ (B) \to x = -\frac{\pi}{2} + 2k\pi \end{cases}$$

Групите ъгли (A) и (B) не са получени от едно и също тригонометрично уравнение, затова трябва да проверим има ли ъгли от едната група, които се съдържат в другата група, а така също трябва да отчетем и ДМ.

Засичането ще разгледаме в общ случай. Нека да имаме следните групи ъгли (за означаване на обобщения ъгъл сме използвали различен параметър):

адрес: гр.София, ж.к. Надежда, бл. 335

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

$$(C) \rightarrow x = \frac{\pi}{2} + 2k\pi$$
; $(D) \rightarrow x = \frac{\pi}{2} + \frac{2}{3}l\pi$; $(E) \rightarrow x = \frac{1}{4}p\pi$; $(F) \rightarrow x = \frac{1}{3}q\pi$.

$$(D) \to x = \frac{\pi}{2} + \frac{2}{3}l\pi;$$

$$(E) \to x = \frac{1}{4} p\pi;$$

$$(F) \to x = \frac{1}{3} q \pi$$

Разглеждаме групите ъгли (C) и (D) като ги при-

равним:
$$\frac{\pi}{2} + 2k\pi = \frac{\pi}{2} + \frac{2l\pi}{3} \left| \frac{6}{\pi} \Leftrightarrow 3 + 12k = 3 + 4l \Leftrightarrow l = 4k$$
, т.е.

ъглите от групата (C) се съдържат в групата (D), защото 1 се получава като умножим k с 4. Затова ъглите от групата (С) са дублиращи и трябва да отпаднат. Този извод може да се направи, и ако групите ъгли (C) и (D) се нанесат на тригонометричната окръжност по следния начин: Задаваме стойности на k и 1 от 0 до тогава докато точките започват да се повтарят (фиг.5). Виждаме, че ъглите C_0 и D_0 съвпадат. Затова можем да кажем, че ъглите от групата С са дублиращи.

Разглеждаме групите ъгли (А) и (В) като ги приравним: $\frac{\pi}{6} + \frac{2k\pi}{3} = -\frac{\pi}{2} + 2l\pi \Big|_{\frac{\pi}{2}} + \frac{6}{\pi} \Leftrightarrow 1 + 4k = -3 + 12l \Leftrightarrow k = 3l - 1$

Като отчетем Бележката от зад.1 следва, че ъглите от групата (В) се съдържат в групата (А), т.е. те са дублиращи и трябва да отпаднат. Същият извод можем да направим, и ако ги нанесем върху тригонометричната окръжност (фиг. 6)

Разглеждаме групите ъгли (Е) и (F) като ги приравним: $\frac{p\pi}{4} = \frac{q\pi}{3}$. $\frac{12}{\pi} \Leftrightarrow 3p = 4q \Leftrightarrow p = \frac{4q}{3}$, т.е. излишните

ъгли са от групата (F) и то не всички, а тези които са кратни на 3. Определянето на излишните ъгли (и тези които ще останат) се прави от тригонометричната окръжност (фиг.7). Двете групи съвпадат при ъгли 0 и π. Затова едната група решения ще бъдат групата E, т.е. $x = k^{\frac{\pi}{2}}$. Остана-

лите отговори: $-\frac{\pi}{3}; \frac{\pi}{3}; \frac{2\pi}{3}; \frac{4\pi}{3}$ групираме по следния на-

чин: Отговорите $\frac{\pi}{3}$ и $\frac{4\pi}{3}$ (както се вижда от фиг.7) се раз-

личават с 180°. Затова можем да ги запишем по следния

начин:
$$\frac{\pi}{3} + k\pi$$
 .. По същия начин отговорите $-\frac{\pi}{3}$ и $\frac{2\pi}{3}$ могат да бъдат записани като

$$-\frac{\pi}{3} + k\pi$$
. Тези два отговора записваме $x = \pm \frac{\pi}{3} + k\pi$. В крайна сметка след засичането

на групите (Е) и (F) получаваме, че решенията са:
$$\begin{cases} x = k \, \frac{\pi}{4} \\ x = \pm \, \frac{\pi}{3} + k \pi \end{cases}$$

Нека сега да разгледаме групите ъгли (С) и (F) като ги приравним:

$$\frac{\pi}{2} + 2k\pi = \frac{q\pi}{3} \cdot \frac{6}{\pi} \Leftrightarrow 3 + 12k = 2q \Leftrightarrow q = 6k + \frac{3}{2}$$

От тук се вижда, че групите ъгли (С) и (F) се различават с дробно число. В такъв случай дублиращи ъгли няма и двете групи ъгли са решения.

Бележка:

варящи на точки (A_1)).

Да повторим, че групите ъгли не се засичат, когато са получени от едно и също основно тригонометрично уравнение. В случай, когато броят на групите са много и могат да бъдат записани по общ начин (както при фиг. 7), тогава те също се групират (без обаче да изключваме част от тях).

Нека сега се върнем на групите (А) и (В), които са решения на дадената задача 2. От фиг. 6 видяхме, че групите решения (В) са дублиращи. Тогава решенията на уравнението остават да бъдат групата (А). Като отчетем Д.М. виждаме, че ъглите от групата $(A_2) \rightarrow -\frac{\pi}{2} + 2k\pi$ не принадлежат на Д.М.(защото тогава tg не е дефиниран) и трябва да се изключат от решенията. И, както виждаме от фиг. 6, окончателните решения са групите ъгли: $x = \frac{\pi}{6} + 2k\pi$ (отговарящи на точки (A₀)) и $x = \frac{5\pi}{6} + 2k\pi$ (отго-

> ♦ Чрез разлагане на множители – При този метод всички едночлени се прехвърлят от едната страна на равенството и с помощта на формулите от Тригонометрични формули, се стремим да достигнем до равенството: $f(x) g(x) = 0 \Leftrightarrow f(x) = 0$ или g(x) = 0При този начин за решаване отговорите винаги се засичат по описания по-горе начин.

$$3 aд. 3: 3 cos^2 x + 2 cos^3 x = 2 cos x$$

<u>Решение:</u> $3\cos^2 x + 2\cos^3 x - 2\cos x = 0 \Leftrightarrow \cos x(2\cos^2 x + 3\cos x - 2) = 0$. Прилагайки (3), това уравнение се разделя на следните две:

28: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

1) $\cos x = 0 \Leftrightarrow (A) \to x = \frac{\pi}{2} + k\pi$

2) $2\cos^2 x + 3\cos x - 2 = 0$. Полагаме: $\cos x = y$, Д M_y : $y \in [-1; 1]$. Уравнението добива вида: $2y^2 + 3y - 2 = 0$ $\Leftrightarrow y_1 = 2 \notin ДM_y$ и $y_2 = \frac{1}{2}$. От полагането по-

лучаваме
$$\cos x = \frac{1}{2} \Leftrightarrow \cos = \cos \frac{\pi}{3}; \ \alpha = \frac{\pi}{3} \Rightarrow (B) \rightarrow \begin{cases} x = \frac{\pi}{3} + 2k\pi \\ x = -\frac{\pi}{3} + 2k\pi \end{cases}$$

Групите ъгли (А) и (В) са решения на уравнението.

- ♦ Уравнения от вида: a.sin Ax + b.cos Bx = c, (4) кълето $a^2 + b^2 \neq 0$
 - о В случаите, когато a = b = 1, а c = 0, се решават като преобразуваме едната тригонометрична функция в другата (от таблица №2) и приложим Тригонометрични формули (57) до (60).

$3а\pi$. 4: cos2x + sinx = 0

<u>Решение:</u> От Таблица №2 преобразуваме sinx в соs и след това използваме формула (59):

$$\cos 2x + \cos\left(\frac{\pi}{2} - x\right) = 0 \Leftrightarrow 2\cos\frac{2x - x + \frac{\pi}{2}}{2}\cos\frac{2x + x - \frac{\pi}{2}}{2} = 0$$

$$\frac{1}{2} \Leftrightarrow \cos\frac{2x + \pi}{4}\cos\frac{6x - \pi}{4} = 0$$

Прилагайки (3), това уравнение се разделя на следните две:

$$1)\cos\frac{2x+\pi}{4} = 0 \Leftrightarrow \frac{2x+\pi}{4} = \frac{\pi}{2} + k\pi \Leftrightarrow (A) \to x = \frac{\pi}{2} + 2k\pi$$

$$2)\cos\frac{6x-\pi}{4} = 0 \Leftrightarrow \frac{6x-\pi}{4} = \frac{\pi}{2} + k\pi \Leftrightarrow (B) \to x = \frac{\pi}{2} + \frac{2}{3}k\pi$$

Групите ъгли (A) се съдържат в групата ъгли (B), защото: $\frac{\pi}{2} + 2k\pi = \frac{\pi}{2} + \frac{2}{3}l\pi \Big|_{\pi} \stackrel{6}{\Leftrightarrow} 3 + 12k = 3 + 4l \Leftrightarrow l = 3k$, т.е.

ъглите от групата (A) са дублиращи (този извод можем да го направим и от фиг.8). Затова решенията на нашето уравнения са само групата ъгли $(B) \rightarrow x = \frac{\pi}{2} + \frac{2}{3}k\pi$

Следващите случаи са когато A = B

о Когато **a** = **b**, а **c** ≠ **0**, тогава повдигаме **(2)** на квадрат и като приложим Тригонометрични формули (1) и (33) получаваме основно тригонометрично уравнение $\sin 2x = \frac{c^2 - a^2}{a^2}$

Бележка:

Всяко повдигане на квадрат на тригонометрично уравнение довежда до появата на "чужди корени". Те се отстраняват чрез непосредствена проверка.

3ад. 5:
$$\cos x + \sin x = \frac{\sqrt{2}}{2}$$

Решение: Повдигаме на квадрат двете страни на уравнението:

$$\cos^2 x + \sin^2 x + 2\sin x \cos x = \frac{1}{2} \stackrel{(i)}{\Leftrightarrow} 1 + 2\sin x \cos x = \frac{1}{2} \Leftrightarrow 2\sin x \cos x = -\frac{1}{2} \stackrel{(33)}{\Leftrightarrow} \sin 2x = -\frac{1}{2};$$

$$\alpha = \frac{7\pi}{6} \Rightarrow (A) \rightarrow x = \frac{7\pi}{12} + k\pi; \quad (B) \rightarrow x = -\frac{\pi}{12} + k\pi$$

Непосредствено проверяваме за появата на "чужди" корени по следния начин: Групите ъгли (A) са $\frac{7\pi}{12}$, $\frac{19\pi}{12}$. Заместваме в даденото уравнение:

$$\cos \frac{7\pi}{12} + \sin \frac{7\pi}{12} = \frac{\sqrt{2}}{2} \Rightarrow x = \frac{7\pi}{12} \ e \ peшение; \ \cos \frac{19\pi}{12} + \sin \frac{19\pi}{12} \neq \frac{\sqrt{2}}{2} \Rightarrow x = \frac{19\pi}{12}$$
 не е решение, т.е. той е "чужд" корен и след отстраняването му групата ъгли (A) има вида $(A) \to x = \frac{7\pi}{12} + 2k\pi$. Тази група е решение на даденото уравнение.

Групите ъгли (B) са $-\frac{\pi}{12}$, $-\frac{11\pi}{12}$. Заместваме в даденото уравнение:

$$\cos\left(-\frac{\pi}{12}\right) + \sin\left(-\frac{\pi}{12}\right) = \frac{\sqrt{2}}{2} \Rightarrow x = -\frac{\pi}{12} \ e \ peшение; \ \cos\left(-\frac{11\pi}{12}\right) + \sin\left(-\frac{11\pi}{12}\right) \neq \frac{\sqrt{2}}{2} \Rightarrow x = -\frac{11\pi}{12}$$
 не е решение, т.е. той е "чужд" корен и след отстраняването му групата ъгли (В) има

не е решение, т.е. той е "чужд" корен и след отстраняването му групата ъгли (В) им вида $(B) \to x = -\frac{\pi}{12} + 2k\pi$. Тази група е решение на даденото уравнение.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com ; E-mail: solema@gbg.bg

Бележки:

- 1. Задачата може да бъде решена и като се умножат двете страни на даденото уравнение с подходящо число и се приложи <u>Тригонометрични формули</u> (27). Подобен начин за решаване ще покажем в Зад. 7.
- 2. Задачата може да бъде решена и като използваме формула (76), за да достигнем до основното уравнение $\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.
 - О Използване на универсалната субституция (виж <u>Тригонометрични формули</u> (9) и (12)). В такъв случай уравнение **(2)** се преобразува в квадратно спрямо $tg \frac{x}{2}$.

Бележка:

Знаем, че тангенса не е дефиниран за $x=\frac{\pi}{2}+k\pi$, затова в нашия случай след решаването на квадратното уравнение трябва да изключим ъглите $\frac{x}{2}=\frac{\pi}{2}+k\pi \Leftrightarrow x=\pi+2k\pi$

3ад. 6: 2sinx + cosx = -1

<u>Решение:</u> Като използваме универсалната субституция от <u>Тригонометрични</u>

 $\frac{\text{формули}}{2}$ (9) и (12) получаваме уравнението $2\frac{2tg\frac{x}{2}}{1+tg^2\frac{x}{2}} + \frac{1-tg^2\frac{x}{2}}{1+tg^2\frac{x}{2}} = -1$. ДМ на това

уравнение е: $\frac{x}{2} \neq \frac{\pi}{2} + k\pi \iff x \neq \pi + 2k\pi$ и след полагането $tg\frac{x}{2} = y$ получаваме:

 $2\frac{2y}{1+y^2} + \frac{1-y^2}{1+y^2} = -1 \Leftrightarrow 4y + 1 - y^2 = -1 - y^2 \Leftrightarrow 4y = -2 \Leftrightarrow y = -\frac{1}{2} \ .$ Тогава от полагането

получаваме $tg\frac{x}{2} = -\frac{1}{2}$. От таблица № 2 виждаме, че нямаме изчислен ъгъл, при който

тангенса да бъде равен на $-\frac{1}{2}$, но такъв ъгъл съществува. Затова този ъгъл означава-

ме с а. От таблица №3 определяме, че решенията на уравнението са

 $\frac{x}{2} = \alpha + k\pi \Leftrightarrow x = 2\alpha + 2k\pi$. В тези решения не се включват групите ъгли $\pi + 2k\pi$, но

трябва непосредствено да проверим дали тези групи ъгли са решения на даденото уравнение.

От $x = \pi + 2k\pi$ \Rightarrow $\begin{vmatrix} \sin x = 0 \\ \cos x = -1 \end{vmatrix}$ и заместваме в даденото уравнение: 2.0 - 1 = -1

 \Leftrightarrow -1 = -1, т.е. групата ъгли $x = \pi + 2k\pi$ са решения на даденото уравнение и затова ги прибавяме към крайните решения. Окончателните решения са: $x = \pi + 2k\pi$, $x = 2\alpha + 2k\pi$. Ъгълът α определяме от таблица (или калкулатор) и има приблизителна стойност 27^0 .

 Чрез въвеждане на спомагателен ъгъл – В някои случаи лявата страна уравнението (4) е полезно да се замени с израза Sin(x±φ).

Преобразуването става като разделим двете страни на уравнение (4) с

$$\sqrt{a^2+b^2}$$
 и получаваме: $\frac{a}{\sqrt{a^2+b^2}}\sin Ax + \frac{b}{\sqrt{a^2+b^2}}\cos Ax = \frac{c}{\sqrt{a^2+b^2}}$. Въвеждаме ≮ ϕ с ра-

венствата: $\frac{a}{\sqrt{a^2+b^2}} = \cos \varphi$ и $\frac{b}{\sqrt{a^2+b^2}} = \sin \varphi$ (такива полагания могат да се направят,

защото
$$\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right)^2 = 1$$
). Така за горното уравнение получаваме:

 $\cos \varphi \sin Ax + \sin \varphi \cos Ax = \frac{c}{\sqrt{a^2 + b^2}}$. Прилагаме <u>Тригонометрични формули</u> (27) и по-

лучаваме исканото основно тригонометрично уравнение $\sin(Ax+\varphi) = \frac{c}{\sqrt{a^2+b^2}}$. Това

уравнение (или уравнение (4)) има решение, ако $|c| \le \sqrt{a^2 + b^2}$. (5)

Зад. 7:
$$\sin 2x - \sqrt{3} \cos 2x = -\sqrt{3}$$

<u>Решение:</u> Сравнявайки това уравнение с уравнение (4) стигаме до извода, че $A=2, a=1, \ b=-\sqrt{3}$ и $c=-\sqrt{3}$. Тогава $\sqrt{a^2+b^2}=\sqrt{1+3}=\sqrt{4}=2$ т.е. делим даденото уравнение с 2 и получаваме:

$$\frac{1}{2}\sin 2x - \frac{\sqrt{3}}{2}\cos 2x = -\frac{\sqrt{3}}{2} \Leftrightarrow \cos\frac{\pi}{3}\sin 2x - \sin\frac{\pi}{3}\cos 2x = -\frac{\sqrt{3}}{2} \Leftrightarrow \sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\alpha = \frac{4\pi}{3} = -\frac{2\pi}{3} \Rightarrow \begin{cases} 2x - \frac{\pi}{3} = -\frac{2\pi}{3} + 2k\pi \\ 2x - \frac{\pi}{3} = \pi + \frac{2\pi}{3} + 2k\pi \end{cases} \Leftrightarrow \begin{cases} x = -\frac{\pi}{6} + k\pi \\ x = \pi + k\pi \end{cases}$$

6 стр.

адрес: гр.София, ж.к. Надежда, бл. 335

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

От тъждеството $(a.sinAx + b.cosAx)^2 + (b.sinAx - a.cosAx)^2 = a^2 + b^2$ намираме $(b.sinAx - a.cosAx)^2 = a^2 + b^2 - c^2$. Тогава от системата

 $a \sin Ax + b \cos Ax = c$ получаваме основните тригонометрични уравнения: $b\sin Ax - a\cos Ax = \pm \sqrt{a^2 + b^2 - c^2}$

$$\sin Ax = \frac{ac \pm b\sqrt{a^2 + b^2 - c^2}}{a^2 + b^2} \text{ M } \cos Ax = \frac{bc \mp a\sqrt{a^2 + b^2 - c^2}}{a^2 + b^2}$$
 (6)

♦ Хомогенни тригонометрични уравнения – Те са от вида: $a_0 \sin^n x + a_1 \sin^{n-1} x \cdot \cos x + ... + a_{n-1} \sin x \cdot \cos^{n-1} x + a_n \cos^n x = 0$

Хомогенните уравнения нямат решение при **COSX** = 0, защото тогава от горното уравнение следва, че и $\sin x = 0$. Обаче от Тригонометрични формули (1) знаем, че не съществува X, за което двете функции едновременно да са 0. Затова уравнение (7) можем да го разделим на $sin^n x$ или $cos^n x$. Тогава хомогенното уравнение се превръща в: $a_0 t g^n x + a_1 t g^{n-1} x + ... + a_{n-1} t g x + a_n = 0$. Сега полагаме t g x = y и уравнението се превръща в квадратно алгебрично, което решаваме.

Зад. 8:
$$\sin^2 x - (\sqrt{3} + 1)\sin x \cos x + \sqrt{3}\cos^2 x = 0$$
 (ПУ, 1996)

Решение: Допускаме, че **COSX** = 0, от Тригонометрични формули (1) получаваме $\sin^2 x = 1$. Като заместим в даденото уравнение, получаваме 1 = 0 т.е. при това допускане уравнението не се удовлетворява. Затова делим на $\cos^2 x \neq 0$ и получава-

$$\frac{\sin^2 x}{\cos^2 x} - \left(\sqrt{3} + 1\right) \frac{\sin x}{\cos x} + \sqrt{3} = 0 \Leftrightarrow tg^2 x - \left(\sqrt{3} + 1\right) tgx + \sqrt{3} = 0; \Pi o \text{narame} : tgx = y; \Pi M : x \neq \frac{\pi}{2} + k\pi$$

$$y^2 - \left(\sqrt{3} + 1\right) y + \sqrt{3} = 0; D = \left(\sqrt{3} + 1\right)^2 - 4\sqrt{3} = \left(\sqrt{3}\right)^2 - 2\sqrt{3} + 1 = \left(\sqrt{3} - 1\right)^2 \to \sqrt{D} = \sqrt{3} - 1$$

$$y_1 = \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2} = \sqrt{3}; y_2 = \frac{\sqrt{3} + 1 - \sqrt{3} + 1}{2} = 1$$

От полагането имаме следните случаи

1)
$$tgx = \sqrt{3}$$
; $\alpha = \frac{\pi}{3} \Rightarrow (A) \rightarrow x = \frac{\pi}{3} + k\pi \in \mathcal{A}M$.

2)
$$tgx = 1$$
; $\alpha = \frac{\pi}{4} \Rightarrow (B) \rightarrow x = \frac{\pi}{4} + k\pi \in \mathcal{I}M$.

Окончателните отговори са групата ъгли (А) и (В).

Някои уравнения не са от вида (7), но могат да се преобразуват с помощта на Тригонометрични формули. Например: Уравнението:

$$a.\sin^2 x + b.\sin x.\cos x + c.\cos^2 x + d = 0$$
, където $a + d \neq 0$ (8)

се свежда до квадратно за tgx, когато d представим като 1.d и приложим Тригонометрични формули (1). Друг начин за преобразуване на тригонометрично уравнение в хомогенно е използването на подходящи Тригонометрични формули:

Бележка:

Уравнение (8) може да се преобразува до квадратно за tq x с помощта на Тригонометрични формули (18) и (20) или до квадратно спрямо четвърта степен за , , х с универсалната субституция (9) и (12). В случаите, когато

формулите (18) и (20) свеждат уравнението до рационално за tq х (тогава наред с тях се използват и формулите (8) и (11)), тяхното използване трябва да се предпочита пред това на формулите (9) и (12).

$$3 a д. 9: 3 \cos^3 x - \sin^2 x \cos x = \sin x.(\sin^2 x + \cos^2 x)$$

Решение: Разкриваме скобите и прехвърляме всички едночлени отляво: $3\cos^3 x - \sin x \cdot \cos^2 x - \sin^2 x \cdot \cos x - \sin^3 x = 0$. Това уравнение е хомогенно, затова допускаме, че $\cos x = 0$, от Тригонометрични формули (1) получаваме $\sin^2 x = 1$. Като заместим в даденото уравнение, получаваме -1 = 0, т.е. при това допускане уравнението не се удовлетворява. Затова делим на $\cos^3 x \neq 0$, и като заместим $tgx = \frac{\sin x}{\cos x}$ получаваме: $tg^3x + tg^2x + tgx - 3 = 0$. $\mu M : x \neq \frac{\pi}{2} + k\pi$. Полагаме: $tgx = \frac{\sin x}{\cos x}$

у и получаваме $y^3+y^2+y-3=0 \Leftrightarrow y^3-1+y^2-1+y-1=0 \Leftrightarrow (y-1)(y^2-y+1)+(y-1)(y+1)+(y-1)=0 \Leftrightarrow (y-1)(y^2+y+1+y+1+1)=0 \Leftrightarrow (y-1)(y^2+2y+3)=0$. Разглеждаме следните два случая:

1)
$$y-1=0 \Leftrightarrow y=1 \Rightarrow tgx=1 \Leftrightarrow (A) \rightarrow x=\frac{\pi}{4}+k\pi \in \mathcal{I}M.$$

2)
$$y^2 + 2y + 3 = 0$$
; $D = 1 - 3 < 0 \Rightarrow H.P.$

Окончателните решения на даденото уравнение са групите (А).

Бележка:

Полученото в горната задача уравнение от трета степен $y^3 + y^2 + y - 3 = 0$ може да се реши с правилото на Хорнер.

> Уравнения за които използваме, че неравенствата – 1 ≤ sin x ≤ 1 и -1 ≤ cos x ≤ 1, са верни за всяко x.

$$3ад. 9: sin x + sin 9x = 2$$

7 стр.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 **2**: 897 99 54 вечер, г-н Станев; Web страница: <u>www.solemabg.com</u>; E-mail: <u>solema@gbg.bg</u>

Решение: За да е в сила горното уравнение, трябва да е изпълнена системата:

$$\begin{vmatrix} \sin x = 1 \\ \sin 9x = 1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = \frac{\pi}{2} + 2k\pi \\ 9x = \frac{\pi}{2} + 2l\pi \end{vmatrix} \Leftrightarrow \begin{vmatrix} (A) \to x = \frac{\pi}{2} + 2k\pi \\ (B) \to x = \frac{\pi}{18} + \frac{2}{9}l\pi \end{vmatrix}$$
. Засичаме отговорите и решение на да-

дената задача ще бъдат само дублиращите групи ъгли:

$$\frac{\pi}{2} + 2k\pi = \frac{\pi}{18} + \frac{2l\pi}{9} \left| \frac{18}{\pi} \Leftrightarrow 9 + 36k = 1 + 4l \Leftrightarrow l = 2 + 9k$$
, т.е ъглите от групата (A) се съдър-

жат в групата (B) и те са дублиращи. Затова окончателното решение на даденото уравнение са $x = \frac{\pi}{2} + 2k\pi$

 $3ад.\ 10: cosx.cos\ 7x = 1$

Решение: Разглеждаме следните два случая::

$$|cos x = 1| cos 7x = 1 \Leftrightarrow \begin{vmatrix} x = 2k\pi \\ 7x = 2l\pi \end{vmatrix} \Leftrightarrow \begin{vmatrix} (A) \to x = 2k\pi \\ (B) \to x = \frac{2}{7}l\pi \end{aligned}; 2k\pi = \frac{2l\pi}{7} \Leftrightarrow l = 7k$$
 T.e. ъглите (A) са дублиращи

Общото решение в този случай е $x=2k\pi$

2)
$$\begin{vmatrix} \cos x = -1 \\ \cos 7x = -1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = \pi + 2k\pi \\ 7x = \pi + 2l\pi \end{vmatrix} \Leftrightarrow \begin{vmatrix} (A) \to x = \pi + 2k\pi \\ (B) \to x = \frac{\pi}{7} + \frac{2}{7}l\pi \end{aligned} ; \pi + 2k\pi = \frac{\pi}{7} + \frac{2l\pi}{7} \Leftrightarrow l = 3 + 7k$$
 T.e.

ъглите от групата (A) се съдържат в ъглите от групата (B) и те са дублиращи. Общото решение в този случай е $X = \pi + 2k\pi$

Нанасяйки решенията (1) и (2) на тригонометричната окръжност, виждаме, че се различават с 180^0 . Затова можем да ги обединим (не да ги засечем) в група ъгли **X** = $k\pi$, което е и решение на дадената задача.

lack Уравнения, в които участват само изразите sin x + cos x и sinx.cosx или sin x - cos x и sinx.cosx.

За $\sin x + \cos x$ (или $\sin x - \cos x$) използваме Тригонометрични формули (76) и правим полагането $y = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$ (или

$$y = \sin x - \cos x = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$$
. От тук се вижда, че $\mathcal{I}M_y$: $y \in \left[-\sqrt{2}; \sqrt{2}\right]$ (защото $-1 \le$

 $\sin x \le 1$). Израза $\sin x$. $\cos x$ получаваме като повдигнем полагането на квадрат, т.е.

$$y^{2} = (\sin x + \cos x)^{2} \Leftrightarrow \sin^{2} x + 2\sin x \cdot \cos x + \cos^{2} x = y^{2} \Leftrightarrow \sin x \cdot \cos x = \frac{y^{2} - 1}{2}$$

3ад. 11: sin x + cos x = sin x cos x - 1

<u>Решение:</u> Полагаме $\sin x + \cos x = y$. Повдигаме двете страни на квадрат и след преобразуване получаваме $\sin x . \cos x = \frac{y^2 - 1}{2}$. От Тр. Ф. (76) полагането се за-

писва във вида $y = \sqrt{2} \sin \left(\frac{\pi}{4} + x \right);$ $\mathcal{A}M_y : y \in \left[-\sqrt{2}; \sqrt{2} \right],$ и даденото уравнение добива

вида $y = \frac{y^2 - 1}{2} - 1 \Leftrightarrow y^2 - 2y - 3 = 0;$ $y_1 = 3 \notin \mathcal{I}M_y$, $y_2 = -1 \in \mathcal{I}M_y$ От полагането получа-

Bame
$$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = -1 \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$\alpha = \frac{5\pi}{4} \Rightarrow x + \frac{\pi}{4} = \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{5\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + 2k\pi \Leftrightarrow (A) \rightarrow x = \pi + 2k\pi; \quad x + 2k\pi \Leftrightarrow (A) \rightarrow x =$$

$$(B) \to x = -\frac{\pi}{2} + 2k\pi$$

Групите ъгли (А) и (В) са окончателните решения на даденото уравнение.

Следват избрани задачи от

Основни типове задачи:

3ад. 12:
$$\sin x + \cos x = \frac{1}{\sqrt{2} \sin x \cdot \cos x}$$

Решение: Повдигаме на квадрат двете страни на уравнението:

$$\sin^2 x + 2\sin x \cdot \cos x + \cos^2 x = \frac{1}{2\sin^2 x \cdot \cos^2 x} \Leftrightarrow 2\sin^2 x \cos^2 x + \cos^2 x + \cos^2 x$$

2sinx.cosx) = 1 ⇔ 2sin²x cos²x (1 + 2sinx.cosx) = 1| .2 ⇔ (2sinx cosx)²(1 + 2sinx cosx) = 2 ⇔ sin²2x (1 + sin 2x) = 2. Полагаме sin2x = y, ДМ_у: y∈ [-1; 1] и получаваме $y^2(1 + y) = 2 \Leftrightarrow y^3 + y^2 - 2 = 0$. Това уравнение от трета степен решаваме с помощта на <u>правилото на Хорнер</u>. Делителите на свободния член са ±1; ±2. По правилото на Хорнер намираме кой от тях може да бъде решение на даденото уравнение

Щом $\mathbf{r} = \mathbf{0}$ числото $\mathbf{x} = \mathbf{1}$ е точен корен. Следващите делители не ги проверяваме, а записваме дадения многочлен като произведение от двучлен и квадратна функция: (у

$$-1$$
)(y + 2y + 2) = 0 \Leftrightarrow y² - 1 = 0 \Rightarrow y = 1 или y² + 2y + 2 = 0, D = 1 - 2 < 0 \Rightarrow H.P. т.е. решението е само y = 1. От полагането получаваме

 $\sin 2x = 1 \Rightarrow 2x = \frac{\pi}{2} + 2k\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi$. Повдигането на квадрат довежда по поя-

вата на "чужди корени", затова ще направим проверка. От тригонометричната окръжност виждаме, че получената група ъгли може да разделим на две групи:

$$(A) \to x = \frac{\pi}{4} + 2k\pi$$
 И $(B) \to x = \frac{5\pi}{4} + 2k\pi$.. Непосредствено се проверява, че само групата

(A) удовлетворява даденото уравнение (защото за група (B) от таблица №2 се вижда, че $\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$ и $\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$. Замествайки в даденото уравнение, получаваме:

$$-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = \frac{2}{\sqrt{2}} \Leftrightarrow -2\sqrt{2} = 2\sqrt{2}$$
, което очевидно не е вярно, т.е. група (В) не са реше-

ния на даденото уравнение). Окончателните решения на даденото уравнения са само група $(A) \to x = \frac{\pi}{4} + 2k\pi$

 $3a\pi$. 13: $\cos^2 x + \cos^2 2x + \cos^2 3x = 1$

<u>Решение:</u> За понижаване на степента използваме <u>Тригонометрични формули</u> (19) и получаваме:

$$\frac{1 + \cos 2x}{2} + \cos^2 2x + \frac{1 + \cos 6x}{2} = 1 \Leftrightarrow 1 + \cos 2x + 2\cos^2 2x + 1 + \cos 6x = 2 \Leftrightarrow$$

$$\Leftrightarrow (\cos 2x + \cos 6x) + 2\cos^2 2x = 0 \Leftrightarrow 2\cos 4x \cdot \cos 2x + 2\cos^2 2x = 0 \Leftrightarrow \cos 2x(\cos 4x + \cos 2x) = 0$$

1)
$$\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow (A) \to x = \frac{\pi}{4} + \frac{1}{2}k\pi$$

$$2)\cos 4x + \cos 2x = 0 \Leftrightarrow 2\cos 3x \cos x = 0 \Rightarrow \begin{cases} \cos 3x = 0 \Leftrightarrow 3x = \frac{\pi}{2} + k\pi \Leftrightarrow (B) \to x = \frac{\pi}{6} + \frac{1}{3}k\pi \\ \cos x = 0 \Leftrightarrow (C) \to x = \frac{\pi}{2} + k\pi \end{cases}$$

Като приравним групите ъгли (С) и (В) виждаме, че (С) е дублираща група и тя отпада като решения. Окончателните решения са: $x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$ и $x = \frac{\pi}{6} + k \cdot \frac{\pi}{3}$.

Бележка:

Когато тригонометричните функции участват в уравнението чрез четни степени, полезно е да се използват <u>Тригонометрични формули</u> за понижаване на степените (17) и (19).

Зад. 18: При кои стойности на реалния параметър a, уравнението $(1 - a)\cos 2x + 2(1 - 2a)\sin x + a + 3 = 0$ има решение.

Решение:. Използваме Тригонометрични формули (34):

$$(1-a)(1-2\sin^2 x) + 2(1-2a)\sin x + a + 3 = 0 \Leftrightarrow 1-2\sin^2 x - a + 2a\sin^2 x + 2(1-2a)\sin x + a + 3 = 0$$
$$\Leftrightarrow 2(a-1)\sin^2 x + 2(1-2a)\sin x + 4 = 0 \Leftrightarrow (a-1)\sin^2 x + (1-2a)\sin x + 2 = 0$$

Разглеждаме два случая:

- 1) При $a-1=0 \Leftrightarrow a=1$, горното уравнение се превръща линейното уравнение sinx=2, което няма решение т.е. a=1 не е решение на даденото уравнение;
- 2) При $a 1 \neq 0$ в горното уравнение полагаме sinx = y:

$$(a-1)y^2 + (1-2a)y + 2 = 0; D = (1-2a)^2 - 8(a-1) = 1 - 4a + 4a^2 - 8a + 8 = 9 - 12a + 4a^2 = (2a-3)^2$$

$$\sqrt{D} = \sqrt{(2a-3)^2} = 2a-3; y_1 = \frac{2a-1-2a+3}{2(a-1)} = \frac{2}{2(a-1)} \Leftrightarrow y_1 = \frac{1}{a-1}; y_2 = \frac{2a-1+2a-3}{2(a-1)} \Leftrightarrow y_2 = 2a-1+2a-3$$

- 2.а) sinx = 2. Това уравнение няма решение;
- 2.6) $\sin x = \frac{1}{a-1}$. Това уравнение има решение, когато е изпълнено:

$$\begin{vmatrix} \frac{1}{a-1} \ge -1 \\ \frac{1}{a-1} \le 1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} \frac{1}{a-1} + 1 \ge 0 \\ \frac{1}{a-1} - 1 \le 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} \frac{a}{a-1} \ge 0 \\ \frac{2-a}{a-1} \le 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a \in (-\infty;0] \cup (1;+\infty) \\ a \in (-\infty;1) \cup [2;+\infty) \end{vmatrix} \Leftrightarrow a \in (-\infty;0] \cup [2;+\infty)$$

От 1) и 2) следва, че даденото уравнение има решение при $a \in (-\infty; 0] \cup [2; +\infty)$

VIII. Тригонометрични неравенства

Решаването на тригонометрични неравенства обикновено се свежда до решаване на основни тригонометрични неравенства. Те са представени в таблицата:

Таблица № 4

Неравенство:	a<-1	a = -1	-1 <a<1 th="" т.е. a <1<=""><th>a= 1</th><th>a>1</th></a<1>	a= 1	a>1
$\sin x > a$ $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$	∀x	$\forall x \neq -\frac{\pi}{2} + 2k\pi$	α+2kπ <x<π-α+2kπ (Фиг. 9)</x<π-α+2kπ 	н.р.	н.р.
$\sin x < a$ $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$	н.р.	н.р.	-π-α+2kπ <x<α+2kπ (Фиг. 10)</x<α+2kπ 	$\forall x \neq \frac{\pi}{2} + 2k\pi$	∀x
$\cos x > a$ $\alpha \in [0;\pi]$	∀x	∀x≠π+2kπ	-α+2kπ <x<α+2kπ (Фиг. 11)</x<α+2kπ 	н.р.	н.р.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

I	cos x <a< th=""><th>н.р.</th><th>н.р.</th><th>$\alpha+2k\pi < x < 2\pi-\alpha+2k\pi$</th><th>∀x≠2kπ</th><th>∀x</th></a<>	н.р.	н.р.	$\alpha+2k\pi < x < 2\pi-\alpha+2k\pi$	∀x≠2kπ	∀x
ı	$\alpha \in [0; \pi]$	п.р.	11.P.	(Фиг. 12)	V Λ+∠KI	V A

Бележка:

Ако имаме нестрого неравенство (например: $\sin x \ge a$) и a = 1 (или a = -1), то след като неравенствата $\sin x > a$ (или $\cos x > a$) нямат решения, то остава да търсим решение само за $\sin x = a = 1$.

Таблица № 5

Неравенство:	_∞ <a<+∞< th=""><th>Неравенство</th><th>_∞<a<+∞< th=""></a<+∞<></th></a<+∞<>	Неравенство	_∞ <a<+∞< th=""></a<+∞<>
	$\alpha + k\pi < x < \frac{\pi}{2} + k\pi$ (Фиг. 13)	$ tg x < a $ $ \alpha \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) $	$-\frac{\pi}{2} + k\pi < x < \alpha + k\pi$ (Фиг. 14)
$\cot g \ x > a$ $\alpha \in (0; \pi)$	kπ <x<α+kπ (Фиг. 15)</x<α+kπ 	$cotg x < a$ $\alpha \in (0; \pi)$	α+kπ <x<π+kπ (Фиг. 16)</x<π+kπ

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Зал. 20: sin x < cos x

<u>Решение:</u>. Преобразуваме до основно тригонометрично неравенство:

$$\sin x - \cos x < 0 | \frac{\sqrt{2}}{2} \Leftrightarrow \frac{\sqrt{2}}{2} \cdot \sin x - \frac{\sqrt{2}}{2} \cdot \cos x < 0 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) < 0; \alpha = 0$$

Фиг. 16

$$-\pi - 0 + 2k\pi < x - \frac{\pi}{4} < 0 + 2k\pi \Leftrightarrow \begin{vmatrix} x - \frac{\pi}{4} > -\pi + 2k\pi \\ x - \frac{\pi}{4} < 2k\pi \end{vmatrix} \Leftrightarrow x \in \left(-\frac{3\pi}{4} + 2k\pi; \frac{\pi}{4} + 2k\pi \right)$$

Зад. 21:
$$2\cos^2\left(x+\frac{\pi}{4}\right) - 3\sin\left(\frac{\pi}{4}-x\right) + 1 > 0$$

Решение:. От таблица №2 имаме
$$\sin\left(\frac{\pi}{4} - x\right) = \cos\left[\frac{\pi}{2} - \left(\frac{\pi}{4} - x\right)\right] = \cos\left(x + \frac{\pi}{4}\right)$$
 и неравенс-

твото има вида:

IX. Тригонометрични преобразования

Зад. 23: Намерете tg 75⁰

<u>Решение:</u>. Аргумента на дадената тригонометрична функция представяме така, че да може да използваме Таблица за стойностите на тригонометричните функции:

$$tg 75^{0} = tg (30^{0} + 45^{0}) \xrightarrow{tg . (4.5)} \frac{tg 30^{0} + tg 45^{0}}{1 - tg 30^{0} . tg 45^{0}} = \frac{\frac{\sqrt{3}}{3} + 1}{1 - \frac{\sqrt{3}}{3}} = \frac{\sqrt{3} + 3}{3 - \sqrt{3}} . \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{\left(3 + \sqrt{3}\right)^{2}}{9 - 3} = \frac{9 + 6\sqrt{3} + 3}{3} = \frac{12 + 6\sqrt{3}}{3} = 2 + \sqrt{3}$$

Зад. 24: Намерете стойността на всички тригонометрични функции, ако $tg\alpha = \frac{2}{5}$ и $\alpha \in (0^0; 90^0)$.

<u>Решение:</u>.Синус и косинус намираме от системата $tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{12}{5}$ (1) . Решаваме я $\sin^2 \alpha + \cos^2 \alpha = 1$ (2)

чрез заместване:

• от (1) получаваме $\sin \alpha = \frac{12}{5} \cos \alpha$.

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

• заместваме в (2) $\left(\frac{12}{5}\right)^2 \cos^2 \alpha + \cos^2 \alpha = 1 \Leftrightarrow \frac{169}{25} \cos^2 \alpha = 1 \Leftrightarrow \cos \alpha = \frac{5}{13}$, но по условие α е в I квадрант, то знакът на $\cos \alpha$ е положителен, затова $\cos \alpha = \frac{5}{13}$.

• Заместваме в $\sin \alpha = \frac{12}{5} \cos \alpha$ и получаваме $\sin \alpha = \frac{12}{13}$ Остава да намерим котангенс от формулата $\cot \alpha = \frac{1}{tg \alpha} \Leftrightarrow \cot \alpha = \frac{5}{12}$

Зад. 25: Пресметнете tg $\frac{\pi}{8}$; cotg $\frac{\pi}{8}$.

Решение: За да използваме формулите за половинки ъгли (виж ТФ. 5.13 до 5.16)

трябва да представим $\frac{\pi}{8} = \frac{\frac{\pi}{4}}{2}$ и тогава:

•
$$\sin \frac{\pi}{8} = \sqrt{\frac{1 - \cos \frac{\pi}{4}}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

•
$$\cos\frac{\pi}{8} = \sqrt{\frac{1+\cos\frac{\pi}{4}}{2}} = \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

•
$$tg\frac{\pi}{8} = \frac{\sin\frac{\pi}{8}}{\cos\frac{\pi}{8}} = \frac{\frac{\sqrt{2-\sqrt{2}}}{2}}{\frac{\sqrt{2+\sqrt{2}}}{2}} = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} \cdot \frac{2-\sqrt{2}}{2-\sqrt{2}} = \sqrt{\frac{(2-\sqrt{2})^2}{4-2}} = \frac{2-\sqrt{2}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2}-1$$

$$\cot g \frac{\pi}{8} = \frac{1}{tg \frac{\pi}{8}} = \frac{1}{\sqrt{2} - 1} \cdot \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = \sqrt{2} + 1$$

Зад. 25: Намерете tg
$$\left(\frac{\pi}{4} - \alpha\right)$$
, ако cos $\alpha = -\frac{4}{5}$ и $\alpha \in (180^{\circ}; 270^{\circ})$.

Решение: Използваме (ТФ.4.5), която за нашия случай е

$$tg\left(\frac{\pi}{4}-\alpha\right) = \frac{tg\frac{\pi}{4}-tg\alpha}{1+tg\frac{\pi}{4}.tg\alpha} = -\frac{tg\alpha}{1+tg\alpha}$$
. Остава да намерим tg α .

• От основното тригонометрично тъждество намираме $\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = \frac{9}{25} \Leftrightarrow \sin \alpha = \pm \frac{3}{5}$, но по условие α е във II квадрант, то знакът на $\sin \alpha$ е отрицателен, откъдето $\sin \alpha = -\frac{3}{5}$.

•
$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{5}.$$

•
$$tg\left(\frac{\pi}{4} - \alpha\right) = -\frac{tg \alpha}{1 + tg \alpha} = -\frac{\frac{3}{5}}{1 + \frac{3}{5}} = -\frac{3}{8}$$

Задачи за упражнение:

Следват задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидатстуденти с учител от Учебен център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7 клас.

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".