

DSBA Transformer survey paper study

A Survey of Transformers

#3: Attention 2

arXiv preprint

고려대학교 산업경영공학과

Data Science & Business Analytics Lab 이유경, 김명섭, 윤훈상, 김지나, 허재혁, 김수빈

발표자 : 김지나

1. Linearized Attention

- 1. Feature map
- 2. Aggregation rule

2. Prototype and Memory Compression

- 1. Attention with Prototype Queries
- 2. Attention with Compressed Key-Value Memory

03 Overview

1. Lineaerized Attention

- Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (ICML 2020, 110회 인용)
- Masked Language Modeling for Proteins via Linearly Scalable Long-Context Transformers (arXiv 2020, 17회 인용)
- Random Feature Attention (ICLR 2021, 21회 인용)
- Rethinking Attention with Performers. (ICLR 2021, 117회 인용)
- Linear Transformers Are Secretly Fast Weight Memory Systems (arXiv 2021, 5회 인용)

2. Prototype and Memory Compression

- Fast Transformers with Clustered Attention (arXiv 2020, 20회 인용)
- Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (AAAI 2021, 17회 인용)
- Generating Wikipedia by Summarizing Long Sequences(ICLR 2018, 379회 인용)
- Set Transformer (In Proceedings of ICML, 2019, 229회 인용), Luna (arXive 2021, 1회 인용)
- Luna: Linear Unified Nested Attention. (arXiv 2021, 1회 인용)

Linearization을 통해 attention의 computational complexity $o(T^2) o o(T)$ 줄임

- 기존 Attention: $Q, K, V \in \mathbb{R}^{TXD}$ 에 대한 attention matrix를 위한 $softmax(QK^T)V$ 연산
 - QK^T 연산은 Quadratic, computational complexity $O(T^2)$
- Linearized Attention: $softmax(QK^T)$ 연산을 위해 $QK^T = Q'K'^T$ 로 disentangle
 - Computational complexity O(T)
 - *K'*^T*V* 연산 먼저 수행 후, *Q*'와 연산
 - $Q'K'^TV \Rightarrow Q'(K'^TV)$

Linearized Attention

Un-normalized attention matrix

$$\hat{\mathbf{A}} = \exp(\mathbf{Q}\mathbf{K}^{\top})$$

- $\exp(\cdot)$ is applied element-wise
- 기존 softmax 취한 score에 따른 attention matrix에서 normalization을 위한 denominator 생략
- Regular Attention

Attention(Q, K, V) = softmax
$$\left(\frac{QK^{\top}}{\sqrt{D_k}}\right)$$
 V = AV
$$Z = \mathbf{D}^{-1} \hat{\mathbf{A}} \mathbf{V} \qquad \text{where} \quad \mathbf{D} = \operatorname{diag}(\hat{\mathbf{A}} \mathbf{1}_T^{\top})$$

$$\mathbf{1}_T^{\mathsf{T}} \text{: the all-ones column vector of length } T$$

Linearized Attention

• Approximate or replace the unnormalized attention matrix $\exp(QK^{\mathrm{T}})$ with $\phi(Q)\phi(K)^{\mathrm{T}}$

$$\hat{\mathbf{A}} = \exp(\mathbf{Q}\mathbf{K}^{\mathsf{T}}) \quad \Longrightarrow \quad \phi(\mathbf{Q})\phi(\mathbf{K})^{\mathsf{T}}$$

• ϕ : is a feature map that is applied in row-wise manner

$$\mathbf{z}_i = \sum_j \frac{\sin(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} \sin(\mathbf{q}_i, \mathbf{k}_{j'})} \mathbf{v}_j,$$

Regular Attention $\supseteq sim(\cdot,\cdot)$

: the exponential of inner product $\exp(\langle \cdot, \cdot \rangle)$

$$\mathbf{z}_{i} = \sum_{j} \frac{\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j})^{\top}}{\sum_{j'}\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j'})^{\top}} \mathbf{v}_{j}$$
$$= \frac{\phi(\mathbf{q}_{i})\sum_{j}\phi(\mathbf{k}_{j})\otimes\mathbf{v}_{j}}{\phi(\mathbf{q}_{i})\sum_{j'}\phi(\mathbf{k}_{j'})^{\top}},$$

 $sim(\cdot,\cdot)$: a kernel function $K(x,y) = \phi(x)\phi(y)^{T}$

 \otimes : outer product

T: sequence length

Linearized Attention

$$\mathbf{z}_i = \sum_{j} \frac{\sin(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} \sin(\mathbf{q}_i, \mathbf{k}_{j'})} \mathbf{v}_j, \qquad \longrightarrow$$

: the exponential of inner product $exp(\langle \cdot, \cdot \rangle)$

$$\mathbf{z}_{i} = \sum_{j} \frac{\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j})^{\top}}{\sum_{j'}\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j'})^{\top}} \mathbf{v}_{j}$$
$$= \frac{\phi(\mathbf{q}_{i})\sum_{j}\phi(\mathbf{k}_{j})\otimes\mathbf{v}_{j}}{\phi(\mathbf{q}_{i})\sum_{j'}\phi(\mathbf{k}_{j'})^{\top}},$$

 $sim(\cdot,\cdot)$: a kernel function $K(x,y) = \phi(x)\phi(y)^{\mathrm{T}}$ \otimes : outer product

(a) standard self-attention

(b) linearized self-attention

Linearized Attention

$$\mathbf{z}_i = \sum_{j} \frac{\sin(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} \sin(\mathbf{q}_i, \mathbf{k}_{j'})} \mathbf{v}_j,$$

$$\mathbf{z}_i = \sum_j \frac{\phi(\mathbf{q}_i)\phi(\mathbf{k}_j)^\top}{\sum_{j'}\phi(\mathbf{q}_i)\phi(\mathbf{k}_{j'})^\top} \mathbf{v}_j$$

Regular Attention \supseteq $sim(\cdot,\cdot)$

: the exponential of inner product $exp(\langle \cdot, \cdot \rangle)$

Linearized Attention 개념

Linearized Attention

$$\mathbf{z}_i = \sum_j \frac{\sin(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} \sin(\mathbf{q}_i, \mathbf{k}_{j'})} \mathbf{v}_j, \qquad \longrightarrow$$

: the exponential of inner product $exp(\langle \cdot, \cdot \rangle)$

$$sim(\cdot,\cdot)$$
: a kernel function $K(x,y) = \phi(x)\phi(y)^{T}$
 \otimes : outer product

$$\mathbf{z}_{i} = \sum_{j} \frac{\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j})^{\top}}{\sum_{j'}\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j'})^{\top}} \mathbf{v}_{j}$$

$$= \frac{\phi(\mathbf{q}_{i})\sum_{j}\phi(\mathbf{k}_{j})\otimes\mathbf{v}_{j}}{\phi(\mathbf{q}_{i})\sum_{j'}\phi(\mathbf{k}_{j'})^{\top}},$$

03 Linearized Attention 개념

Linearized Attention

$$\mathbf{z}_i = \sum_{j} \frac{\sin(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{j'} \sin(\mathbf{q}_i, \mathbf{k}_{j'})} \mathbf{v}_j, \longrightarrow$$

: the exponential of inner product $exp(\langle \cdot, \cdot \rangle)$

$$\mathbf{z}_i = \sum_{j} \frac{\phi(\mathbf{q}_i)\phi(\mathbf{k}_j)^{\top}}{\sum_{j'}\phi(\mathbf{q}_i)\phi(\mathbf{k}_{j'})^{\top}} \mathbf{v}_j$$

$$= \frac{\phi(\mathbf{q}_i)\sum_{j}\phi(\mathbf{k}_j)\otimes\mathbf{v}_j}{\phi(\mathbf{q}_i)\sum_{j'}\phi(\mathbf{k}_{j'})^{\top}},$$

 $sim(\cdot,\cdot)$: a kernel function $K(x,y) = \phi(x)\phi(y)^{T}$ \otimes : outer product

Attention can be linearized by first computing the highlighted terms 연산량 매우 줄어듦

O3 Linearized Attention 개념

Linearized Attention

$$\mathbf{z}_{i} = \sum_{j} \frac{\phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j})^{\top}}{\sum_{j'} \phi(\mathbf{q}_{i})\phi(\mathbf{k}_{j'})^{\top}} \mathbf{v}_{j}$$
$$= \frac{\phi(\mathbf{q}_{i})\sum_{j} \phi(\mathbf{k}_{j}) \otimes \mathbf{v}_{j}}{\phi(\mathbf{q}_{i})\sum_{j'} \phi(\mathbf{k}_{j'})^{\top}},$$

Memory matrix

$$\phi(\mathbf{q}_i)\sum_j\phi(\mathbf{k}_j)\otimes\mathbf{v}_j$$

 retrieve a value by multiplying the memory matrix with feature mapped query with proper normalization.

$$\sum_j \phi(\mathbf{k}_j) \otimes \mathbf{v}_j$$

- maintains a memory matrix by aggregating associations represented by outer products of (feature mapped) keys and values
- (1) Feature map $\phi(\cdot)$ (2) Aggregation rule

- Linear Transformer (ICML 2020, 110회 인용)
 - Simple feature map

$$\phi_i(\mathbf{x}) = \text{elu}(x_i) + 1$$

기존의 dot product attention을 approximate하는 것을 목표로 하지 않고, 비슷한 수준의 성능을 내는 것을 목표로 하여, standard transformer에 준하는 성능 달성

Method	Validation PER	Time/epoch (s)
Bi-LSTM	10.94	1047
Softmax	5.12	2711
LSH-4	9.33	2250
Linear (ours)	8.08	824

• Speech recognition 실험 결과, linear transformer를 사용하였을 때, PER을 8까지 낮춰, 다른 모델에 비해 softmax와 가장 성능이 유사하며, 소요 시은 softmax의 3배 이상 감소했다.

Linearized Attention (1) Feature Maps

Feature Maps

- Performer first version (arXiv 2020, 17회 인용)
 기존의 dot product attention을 approximate하는 것을 목표로 함
 - Random feature map

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} [f_1(\omega_1^\top \mathbf{x}), \cdots, f_m(\omega_m^\top \mathbf{x}), \cdots, f_l(\omega_1^\top \mathbf{x}), \cdots, f_l(\omega_m^\top \mathbf{x})],$$
$$f_1, \cdots, f_l : \mathbb{R} \to \mathbb{R} \text{ and } h : \mathbb{R}^D \to \mathbb{R}.$$

where $\omega_1, \dots, \omega_m \stackrel{\text{iid}}{\sim} \mathcal{D}$ are drawn from some distribution $\mathcal{D} \in \mathcal{P}(\mathbb{R}^D)$ Softmax를 approximate하기 위해 아래와 같은 kernel 함수를 사용

$$h(\mathbf{x}) = \exp(\frac{\|\mathbf{x}\|^2}{2}), l = 2, f_1 = \sin, f_2 = \cos.$$

O3 Linearized Attention (1) Feature Maps

Feature Maps

- Performer first version (arXiv 2020, 17회 인용)
 기존의 dot product attention을 approximate하는 것을 목표로 함
 - Random feature map

Theorem 1 (Rahimi & Recht, 2007). Let $\phi : \mathbb{R}^d \to \mathbb{R}^{2D}$ be a nonlinear transformation:

$$\phi(\mathbf{x}) = \sqrt{1/D} \left[\sin(\mathbf{w}_1 \cdot \mathbf{x}), \dots, \sin(\mathbf{w}_D \cdot \mathbf{x}), \cos(\mathbf{w}_1 \cdot \mathbf{x}), \dots, \cos(\mathbf{w}_D \cdot \mathbf{x}) \right]^{\top}$$

When d-dimensional random vectors \mathbf{w}_i are independently sampled from $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$,

$$\mathbb{E}_{\mathbf{w}_{i}}\left[\boldsymbol{\phi}\left(\mathbf{x}\right)\cdot\boldsymbol{\phi}\left(\mathbf{y}\right)\right] = \exp\left(-\left\|\mathbf{x}-\mathbf{y}\right\|^{2}/2\sigma^{2}\right).$$

O3 Linearized Attention (1) Feature Maps

Feature Maps

• Random Feature Attention (ICLR 2021, 21회 인용)

Performer(ver. 1)와 유사

Random feature map

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} [f_1(\omega_1^\top \mathbf{x}), \cdots, f_m(\omega_m^\top \mathbf{x}), \cdots, f_l(\omega_1^\top \mathbf{x}), \cdots, f_l(\omega_m^\top \mathbf{x})],$$
$$f_1, \cdots, f_l : \mathbb{R} \to \mathbb{R} \text{ and } h : \mathbb{R}^D \to \mathbb{R}.$$

where $\omega_1, \dots, \omega_m \stackrel{\text{iid}}{\sim} \mathcal{D}$ are drawn from some distribution $\mathcal{D} \in \mathcal{P}(\mathbb{R}^D)$

query, key를 feature space에 보내기 전 l_2 -normalization 하기 때문에, h(x) = 1

$$h(\mathbf{x}) = \exp(\frac{\|\mathbf{x}\|^2}{2}), l = 2, f_1 = \sin, f_2 = \cos.$$

Calculation Linearized Attention (1) Feature Maps

Feature Maps

• Random Feature Attention (ICLR 2021, 21회 인용)

Performer(ver. 1)와 유사

Random feature map

- Random Feature Attention (ICLR 2021, 21회 인용)
 - Performer(ver. 1)와 유사
 - The trigonometric random feature map leads to an unbiased approximation,

it does not guarantee non-negative attention scores

where
$$\omega_1, \dots, \omega_m \stackrel{\text{iid}}{\sim} \mathcal{D}$$
 are drawn from some distribution $\mathcal{D} \in \mathcal{P}(\mathbb{R}^D)$

query, key를 feature space에 보내기 전 l_2 -normalization 하기 때문에, h(x) =

$$h(\mathbf{x}) = \exp(\frac{\|\mathbf{x}\|^2}{2}), l = 2, f_1 = \sin, f_2 = \cos.$$

- Performer second version (ICLR 2021, 117회 인용)
 - Positive random feature map

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} [f_1(\omega_1^\top \mathbf{x}), \cdots, f_m(\omega_m^\top \mathbf{x}), \cdots, f_l(\omega_1^\top \mathbf{x}), \cdots, f_l(\omega_m^\top \mathbf{x})],$$

$$f_1, \cdots, f_l : \mathbb{R} \to \mathbb{R} \text{ and } h : \mathbb{R}^D \to \mathbb{R}.$$

where $\omega_1, \dots, \omega_m \stackrel{\text{iid}}{\sim} \mathcal{D}$ are drawn from some distribution $\mathcal{D} \in \mathcal{P}(\mathbb{R}^D)$

$$h(\mathbf{x}) = \exp(-\frac{\|\mathbf{x}\|^2}{2}), l = 1, f_1 = \exp(-\frac{\|\mathbf{x}\|^2}{2})$$

Guarantees unbiased and non- negative approximation of dot-product attention ⇒ Performer(ver. 1) 보다 stable하고, 더 좋은 approximation 결과 보임

- Performer second version (ICLR 2021, 117회 인용)
 - Positive random feature map

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} [f_1(\omega_1^\top \mathbf{x}), \cdots, f_m(\omega_m^\top \mathbf{x}), \cdots, f_l(\omega_1^\top \mathbf{x}), \cdots, f_l(\omega_m^\top \mathbf{x})],$$

$$f_1, \cdots, f_l : \mathbb{R} \to \mathbb{R} \text{ and } h : \mathbb{R}^D \to \mathbb{R}.$$

where $\omega_1, \dots, \omega_m \stackrel{\text{iid}}{\sim} \mathcal{D}$ are drawn from some distribution $\mathcal{D} \in \mathcal{P}(\mathbb{R}^D)$

$$h(\mathbf{x}) = 1, l = 1, f_1 = \text{ReLU}.$$

Effective in various tasks including machine translation and protein sequence modeling.

Linear Transformers Are Secretly Fast Weight Memory Systems (arXiv 2021, 5회 인용)
 feature space 상에서의 orthogonality를 이용할 수 있는 feature map 제안

$$\phi_{i+2(j-1)D}(\mathbf{x}) = \text{ReLU}([\mathbf{x}, -\mathbf{x}])_i \text{ReLU}([\mathbf{x}, -\mathbf{x}])_{i+j}$$
 for $i = 1, \cdots, 2D, j = 1, \cdots, \nu$.
$$input \ x \in R^D$$
 the feature map $\phi: R^D \to R^{2\nu D}$

Usual Linearized Attention (2) Aggregation Rule

Aggregation Rule

The associations $\{\phi(k)_j \otimes v_j\}$ are aggregated into the memory matrix by simple summation

⇒ 새로운 association을 memory network S에 추가할 때, 선택적으로 association을 drop하는 것이 효과적

Aggregation Rule

- Random Feature Attention (ICLR 2021, 21회 인용)
 - Gating mechanism

$$g_t = \operatorname{sigmoid}(\mathbf{w}_g \cdot \mathbf{x}_t + b_g),$$

$$\mathbf{S}_t = g_t \, \mathbf{S}_{t-1} + (1 - g_t) \, \boldsymbol{\phi}(\mathbf{k}_t) \otimes \mathbf{v}_t,$$

$$\mathbf{z}_t = g_t \, \mathbf{z}_{t-1} + (1 - g_t) \, \boldsymbol{\phi}(\mathbf{k}_t).$$

- w_g and b_g are learned parameters, and x_t is the input representation at timestep t.
- By multiplying the learned scalar gates $0 \langle g_t \rangle$ 1 against the hidden state (S_t, z_t) , history is exponentially decayed, favoring more recent context.

Linearized Attention (2) Aggregation Rule

Aggregation Rule

- Linear Transformers Are Secretly Fast Weight Memory Systems (arXiv 2021, 5회 인용)
 Association의 단순 합으로 memory matrix를 update하는 것은, memory matrix의 capacity를 제한하는 것,
 따라서 write-and-remove를 통해 capacity를 확장하는 방식을 제안
 - Write-and-remove update

$$\begin{aligned} \boldsymbol{k}^{(i)}, \boldsymbol{v}^{(i)}, \boldsymbol{q}^{(i)} &= \boldsymbol{W}_k \boldsymbol{x}^{(i)}, \boldsymbol{W}_v \boldsymbol{x}^{(i)}, \boldsymbol{W}_q \boldsymbol{x}^{(i)} \\ \bar{\boldsymbol{v}}^{(i)} &= \boldsymbol{W}^{(i-1)} \phi(\boldsymbol{k}^{(i)}) \\ \beta^{(i)} &= \sigma(\boldsymbol{W}_\beta \boldsymbol{x}^{(i)}) \\ \boldsymbol{v}^{(i)}_{\text{new}} &= \beta^{(i)} \boldsymbol{v}^{(i)} + (1 - \beta^{(i)}) \bar{\boldsymbol{v}}^{(i)} \end{aligned} \qquad \begin{aligned} \boldsymbol{W}^{(i)} &= \boldsymbol{W}^{(i-1)} \underbrace{+ \boldsymbol{v}^{(i)}_{\text{new}} \otimes \phi(\boldsymbol{k}^{(i)})}_{\text{write}} \underbrace{- \bar{\boldsymbol{v}}^{(i)} \otimes \phi(\boldsymbol{k}^{(i)})}_{\text{remove}} \\ &= \boldsymbol{W}^{(i-1)} + \beta^{(i)} (\boldsymbol{v}^{(i)} - \bar{\boldsymbol{v}}^{(i)}) \otimes \phi(\boldsymbol{k}^{(i)}) \\ \boldsymbol{v}^{(i)}_{\text{new}} &= \beta^{(i)} \boldsymbol{v}^{(i)} + (1 - \beta^{(i)}) \bar{\boldsymbol{v}}^{(i)} \end{aligned}$$

 $\beta(i)$ is the "write-strength. only depends on input x(i)

새로운 input key-value pair가 들어오면,

- 1) k^i 와 직전 memory matrix W^{i-1} 의 association \bar{v}^i 을 구하고
- 2) 현재 v^i 의 convex combination을 memory matrix에 update함

목적

Reduce the complexity of attention by

- (1) Query prototyping: reducing the number of queries
- (2) Memory compression: reducing the number of key-value pairs

The key-value pairs are often referred to as a **key-value memory**

(1) Attention with Prototype Queries

Attention with Prototype Queries

Several prototypes of queries serve as the main source to compute attention distributions query representation 중,

- 특정 position의 query distribution을 copy
- discrete uniform distribution으로 채움

(1) Attention with Prototype Queries

Attention with Prototype Queries

- Clustered Attention (arXiv 2020, 20회 인용)
 - groups queries into several clusters and then computes attention distributions for cluster centroids.
 - ① Centroid 구하기

$$Q_j^c = \frac{\sum_{i=1}^{N} S_{ij} Q_i}{\sum_{i=1}^{N} S_{ij}}$$

 $S_{ij} = 1$, if the *i*-th query Q_i belongs to the *j*-th cluster and 0 otherwise.

② Centroid에 대한 attention score 계산③ Centroid에 의한 새로운 value 계산

$$A^c = \operatorname{softmax}\left(\frac{Q^c K^T}{\sqrt{D_k}}\right)$$

 $Q^c \in \mathbb{R}^{C \times D_k}$ as the centroid matrix

$$\hat{V}^c = A^c V.$$

④ 가장 가까운 centroid에 대한 attention value 도출

$$\hat{V}_i = \sum_{j=1}^C S_{ij} \hat{V}_j^c.$$

(1) Attention with Prototype Queries

Attention with Prototype Queries

- Clustered Attention (arXiv 2020, 20회 인용)
 - groups queries into several clusters and then computes attention distributions for cluster centroids.

	full	clustered-100	i-clustered-100
WER (%)	15.0	18.5	15.5
Time/Epoch (h)	3.84	1.91	2.57
Time/Epoch (h) Convergence Time (h)	228.05	132.13	127.44

(1) Attention with Prototype Queries

Attention with Prototype Queries

- Informer (AAAI 2021, 17회 인용)
 - Query sparsity measurement를 제안하여, 상위 u개의 query만을 가지고 attention distribution 계산
 - 나머지 query에는 discrete uniform distribution 부여
 - Query sparsity measurement
 - Query의 attention distribution과 the discrete uniform distribution 사이의 Kullback-Leibler divergence 값을 기반으로 정의
 - Attention distribution이 the discrete uniform distribution과의 차이가 클수록 몇몇 key에 dominant한 attention을 주는 query라고 할 수 있기 때문에, KLD가 클수록 중요한 query로 봄

(2) Attention with Compressed Key-Value Memory

Attention with Compressed Key-Value Memory

reduce the complexity by reducing the number of the key-value pairs before applying the attention mechanism

(2) Attention with Compressed Key-Value Memory

Attention with Compressed Key-Value Memory

- Memory Compressed Attention(ICLR 2018, 379회 인용)
 - Strided convolution을 사용하여 key와 value의 개수를 줄임
 - Kernel size k에 따라 줄이고자 하는 key, value 개수를 조절하며, attention 연산량이 줄어들기 때문에, 같은 시간 안에 vanilla transformer보다 훨씬 긴 sequence를 처리할 수 있다.
- Set Transformer (In Proceedings of ICML 2019, 229회 인용),
- Luna (arXive 2021, 1회 인용)
 - Trainable global node를 정의하여, input으로부터의 정보를 취합하게 하며, 취합된 정보는 input이 attend할 memory로 사용된다.

(2) Attention with Compressed Key-Value Memory

Attention with Compressed Key-Value Memory

- Linformer(arXiv 2020, 132회 인용)
 - Key, value에 대해 linear projection을 적용하여 length n에서 더 짧은 n_k 의 sequence로 사영
 - 단점: autoregressive attention에 사용할 수 없음
- Poolingformer (ICML 2021, 1회 인용)
 - 여러 개의 pooling operation을 사용하여, key와 value를 줄이면서도 receptive field를 키우고자 함

(a) Single-level local attention (b) Two-level pooling attention

03 Summary

1. Lineaerized Attention

- Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (ICML 2020, 110회 인용)
- Masked Language Modeling for Proteins via Linearly Scalable Long-Context Transformers (arXiv 2020, 17회 인용)
- Random Feature Attention (ICLR 2021, 21회 인용)
- Rethinking Attention with Performers. (ICLR 2021, 117회 인용)
- Linear Transformers Are Secretly Fast Weight Memory Systems (arXiv 2021, 5회 인용)

2. Prototype and Memory Compression

- Fast Transformers with Clustered Attention (arXiv 2020, 20회 인용)
- Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (AAAI 2021, 17회 인용)
- Generating Wikipedia by Summarizing Long Sequences(ICLR 2018, 379회 인용)
- Set Transformer (In Proceedings of ICML, 2019, 229회 인용), Luna (arXive 2021, 1회 인용)
- Luna: Linear Unified Nested Attention. (arXiv 2021, 1회 인용)

감사합니다