## **SMARTBRIDGE AIML ASSIGNMENT-4**

September 22, 2023 (morning slot)

Name :BOYA CHAITANYA Registration No : 21BCE9968

email : chaitanya.21bce9968@vitapstudent.ac.in campus : vellore Institute of technology -AP

### 1.0.1 Logistic regression, Decision tree and random forest classifiers on EmployeeAttritiondataset

### 1.1 DataPreprocessing.

| im<br>im<br>im | port <mark>nu</mark><br>port pa | g necessary libi<br>impy as np<br>indas as pd<br>atplotlib.pyplo<br>s sns |                 | t       |           |                  |                  |
|----------------|---------------------------------|---------------------------------------------------------------------------|-----------------|---------|-----------|------------------|------------------|
|                | -                               | g the dataset.<br>d_csv("Employe                                          | ee-Attrition.cs | v")     |           |                  |                  |
| df.h           | nead()                          |                                                                           |                 |         |           |                  |                  |
|                | Age                             | Attrition                                                                 | Business        | Travel  | DailyRate | I                | Department \     |
| 0              | 41                              | Yes                                                                       | Travel_F        | Rarely  | 1102      |                  | Sales            |
| 1              | 49                              | No                                                                        | Travel_Frequ    | iently  | 279       | Research & Dev   | relopment        |
| 2              | 37                              | Yes                                                                       | Travel_F        | Rarely  | 1373      | Research & Dev   | elopment         |
| 3              | 33                              | No                                                                        | Trave l_Frequ   | iently  | 1392      | Research & Dev   | relopment        |
| 4              | 27                              | No                                                                        | Travel_F        | Rarely  | 591       | Research & Dev   | relopment        |
|                | Distan                          | ceFromHome                                                                | EducationEd     | ucation | Field     | EmployeeCount    | EmployeeNumber \ |
| 0              |                                 | 1                                                                         | 2               | LifeSo  | ciences   | 1                | 1                |
| 1              |                                 | 8                                                                         | 1               | LifeSo  | ciences   | 1                | 2                |
| 2              |                                 | 2                                                                         | 2               |         | Other     | 1                | 4                |
| 3              |                                 | 3                                                                         | 4               | LifeSo  | ciences   | 1                | 5                |
| 4              |                                 | 2                                                                         | 1               |         | Medical   | 1                | 7                |
|                | Re                              | elationshipSatis                                                          | factionStandard | dHours  | ;         | StockOptionLevel | \                |
| 0              |                                 |                                                                           | 1               |         | 80        |                  | 0                |
| 1              | •••                             |                                                                           | 4               |         | 80        |                  | 1                |
| 2              |                                 |                                                                           | 2               |         | 80        |                  | 0                |
| 3              | •••                             |                                                                           | 3               |         | 80        |                  | 0                |
| 4              |                                 |                                                                           | 4               |         | 80        |                  | 1                |

|   | TotalWorkingYears | TrainingTimesLastYearWorkLifeBalance | YearsAtCompany |    | \ |
|---|-------------------|--------------------------------------|----------------|----|---|
| 0 | 8                 | 0                                    | 1              | 6  |   |
| 1 | 10                | 3                                    | 3              | 10 |   |
| 2 | 7                 | 3                                    | 3              | 0  |   |
| 3 | 8                 | 3                                    | 3              | 8  |   |
| 4 | 6                 | 3                                    | 3              | 2  |   |
|   |                   |                                      |                |    |   |

|   | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager 0 | 4 |
|---|--------------------|-------------------------|------------------------|---|
|   |                    | 0                       | 5                      |   |
| 1 |                    | 7                       | 1                      | 7 |
| 2 |                    | 0                       | 0                      | 0 |
| 3 |                    | 7                       | 3                      | 0 |
| 4 |                    | 2                       | 2                      | 2 |

[5 rows x 35 columns]

[4]:

### df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns):

| `# | Column                  | Non-N | Non-NullCount |        |
|----|-------------------------|-------|---------------|--------|
| 0  | Age                     | 1470  | non-null      | int64  |
| 1  | Attrition               | 1470  | non-null      | object |
| 2  | BusinessTravel          | 1470  | non-null      | object |
| 3  | DailyRate               | 1470  | non-null      | int64  |
| 4  | Department              | 1470  | non-null      | object |
| 5  | DistanceFromHome        | 1470  | non-null      | int64  |
| 6  | Education               | 1470  | non-null      | int64  |
| 7  | EducationField          | 1470  | non-null      | object |
| 8  | EmployeeCount           | 1470  | non-null      | int64  |
| 9  | EmployeeNumber          | 1470  | non-null      | int64  |
| 10 | EnvironmentSatisfaction | 1470  | non-null      | int64  |
| 11 | Gender                  | 1470  | non-null      | object |
| 12 | HourlyRate              | 1470  | non-null      | int64  |
| 13 | JobInvolvement          | 1470  | non-null      | int64  |
| 14 | JobLevel                | 1470  | non-null      | int64  |
| 15 | JobRole                 | 1470  | non-null      | object |
| 16 | JobSatisfaction         | 1470  | non-null      | int64  |
| 17 | MaritalStatus           | 1470  | non-null      | object |
| 18 | MonthlyIncome           | 1470  | non-null      | int64  |
| 19 | MonthlyRate             | 1470  | non-null      | int64  |
| 20 | NumCompaniesWorked      | 1470  | non-null      | int64  |
| 21 | Over18                  | 1470  | non-null      | object |
| 22 | OverTime                | 1470  | non-null      | object |
|    |                         |       |               |        |

| 23    | PercentSalaryHike        | 1470non-null | int64 |
|-------|--------------------------|--------------|-------|
| 24    | PerformanceRating        | 1470non-null | int64 |
| 25    | RelationshipSatisfaction | 1470non-null | int64 |
| 26    | StandardHours            | 1470non-null | int64 |
| 27    | StockOptionLevel         | 1470non-null | int64 |
| 28    | TotalWorkingYears        | 1470non-null | int64 |
| 29    | TrainingTimesLastYear    | 1470non-null | int64 |
| 30    | WorkLifeBalance          | 1470non-null | int64 |
| 31    | YearsAtCompany           | 1470non-null | int64 |
| 32    | YearsInCurrentRole       | 1470non-null | int64 |
| 33    | YearsSinceLastPromotion  | 1470non-null | int64 |
| 34    | YearsWithCurrManager     | 1470non-null | int64 |
| ltvne | es: int64(26).object(9)  |              |       |

dtypes: int64(26),object(9)
[5]: memory usage: 402.1+ KB

### #Checking for Null Values.

### [5] : df.isnull().any()

| anishan().any()          |       |        |
|--------------------------|-------|--------|
| Attrition                |       | False  |
| BusinessTravel           |       | False  |
| DailyRate                |       | False  |
| Department               |       | False  |
| DistanceFromHome         |       | False  |
| Education                |       | False  |
| EducationField           |       | False  |
| EmployeeCount            |       | False  |
| EmployeeNumber           |       | False  |
| EnvironmentSatisfaction  | False | Gender |
|                          |       | False  |
| HourlyRate               |       | False  |
| JobInvolvement           |       | False  |
| JobLevel                 |       | False  |
| JobRole                  |       | False  |
| JobSatisfaction          |       | False  |
| MaritalStatus            |       | False  |
| MonthlyIncome            |       | False  |
| MonthlyRate              |       | False  |
| NumCompaniesWorked       |       | False  |
| Over18                   |       | False  |
| OverTime                 |       | False  |
| PercentSalaryHike        |       | False  |
| PerformanceRating        |       | False  |
| RelationshipSatisfaction |       | False  |
| StandardHours            |       | False  |
| StockOptionLevel         |       | False  |
| TotalWorkingYears        |       | False  |
|                          |       |        |

TrainingTimesLastYear False

WorkLifeBalance False
YearsAtCompany False
YearsInCurrentRole False
YearsSinceLastPromotion False
YearsWithCurrManager False dtype: bool

### [6]: df.isnull().sum()

| [6] :Age                 | 0 |
|--------------------------|---|
| Attrition                | 0 |
| BusinessTravel           | 0 |
| DailyRate                | 0 |
| Department               | 0 |
| DistanceFromHome         | 0 |
| Education                | 0 |
| EducationField           | 0 |
| EmployeeCount            | 0 |
| EmployeeNumber           | 0 |
| EnvironmentSatisfaction  | 0 |
| Gender                   | 0 |
| HourlyRate               | 0 |
| JobInvolvement           | 0 |
| JobLevel                 | 0 |
| JobRole                  | 0 |
| <b>JobSatisfaction</b>   | 0 |
| MaritalStatus            | 0 |
| MonthlyIncome            | 0 |
| MonthlyRate              | 0 |
| NumCompaniesWorked       | 0 |
| Over18                   | 0 |
| OverTime                 | 0 |
| PercentSalaryHike        | 0 |
| PerformanceRating        | 0 |
| RelationshipSatisfaction | 0 |
| StandardHours            | 0 |
| StockOptionLevel         | 0 |
| TotalWorkingYears        | 0 |
| TrainingTimesLastYear    | 0 |
| WorkLifeBalance          | 0 |
| YearsAtCompany           | 0 |
| YearsInCurrentRole       | 0 |
| YearsSinceLastPromotion  | 0 |
| YearsWithCurrManager     | 0 |
| dtype: int64             |   |
|                          |   |

## [7]: #Data Visualization. sns.distplot(df["Age"])

C:\Users\Admin\AppData\Local\Temp\ipykernel\_39480\2400079689.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seabornv0.14.0.

Please adapt your code to use either `displot` (a figure-level functionwith similar flexibility) or `histplot` (an axes-level function forhistograms).

For a guide to updating your code to use the new functions, pleasesee https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df["Age"])

[7] : <Axes: xlabel='Age',ylabel='Density'>



[8]: attrition\_count = pd.DataFrame(df['Attrition'].value\_counts()) plt.pie(attrition\_count['Attrition'], labels = ['No', 'Yes'], explode = (0.2,0))

[8] : ([<matplotlib.patches.Wedge at0x2634cd0cb80>, <matplotlib.patches.Wedge at 0x2634ce105e0>], [Text(-1.136781068348268, 0.6306574368426737, 'No'), Text(0.961891673217765, -0.5336332157899547, 'Yes')])



[9]: plt.figure(figsize=[20,20]) sns.heatmap(df.corr(),annot=True)

C:\Users\Admin\AppData\Local\Temp\ipykernel\_39480\3113117044.py:2: FutureWarning: The default value of numeric\_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select onlyvalid columns or specify the value of numeric\_only to silence this warning. sns.heatmap(df.corr(),annot=True) [9]:

<Axes: >



[10]: #Outlier detection plt.figure(figsize=[20,5])
sns.boxplot(df['MonthlyIncome'],orient='h') plt.show()



[11]: plt.figure(figsize=[20,5]) sns.boxplot(df['YearsAtCompany'],orient='h') plt.show()



```
[12]:
        # Label Encoding
        categories = __
          ['BusinessTravel','Department','Education','EducationField','Gender','MaritalStatus','OverT
          LivironmentSatisfaction', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction', 'NumCompa
          9 'PerformanceRating', 'RelationshipSatisfaction', 'StockOptionLevel', 'TrainingTimesLastYear','
        categorical = df[categories].astype('object')
        categorical - nd get dummies(dfleategories) dron first - True)
[13]:
        # Splitting Dependent and Independent variables
        independent = ___
          □ ['Attrition', 'Over18', 'EmployeeCount', 'StandardHours', 'EmployeeNumber']
        continuous = df.drop(columns= categories)
        continuous = continuous.drop(columns= independent)
[14]:
        #X - Features, Y- Target variables
        X = pd.concat([categorical,continuous],axis=1)
        Y = df['Attrition'].replace({'Yes': 1, 'No': 0}).values.reshape(-1,1)
```

```
[15]:
       # Feature scaling
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler()
        continuous_variables = list(continuous.columns) X =
        X.reset_index()
        del X['index']
        X[continuous_variables] = pd.DataFrame(scaler.
[16]:
        #Splitting Data into Train and Test.
        from sklearn.model_selection import train_test_split
        x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
       x_train.shape,x_test.shape,y_train.shape,y_test.shape
[17]:
[17]: ((1176, 44), (294, 44), (1176, 1), (294, 1))
       1.2 Logistic Regressionmodel
        #Importing necessary libraries
[18]:
        from sklearn.linear model import Logistic Regression
        from sklearn.metrics import accuracy score, precision score, recall score,
         □ score, confusion_matrix, classification_report, roc_auc_score, roc_curve
[19]:
       #Initializing the model
        lr = LogisticRegression()
[20]:
        #Training the model
        lr.fit(x train,y train)
       C:\Users\Admin\anaconda3\lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWarning: A
       column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,
       ), for example using ravel().
         y = column \text{ or } 1d(y, warn=True)
```

C:\Users\Admin\anaconda3\lib\site-

packages\sklearn\linear\_model\\_logistic.py:458: ConvergenceWarning: lbfgsfailed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max\_iter) or scale the data as shownin: https://scikitlearn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikitlearn.org/stable/modules/linear model.html#logistic-

```
n_iter_i = _check_optimize_result([20]:
LogisticRegression()
[21]:
        #Testing the model
        y_pred = lr.predict(x_test)
[22]:
        # Evaluation of model #
        Accuracy score
        print("Accuracy of Logistic regression model:",accuracy_score(y_test,y_pred))
       Accuracy of Logistic regression model: 0.8843537414965986
[23]:
       # Precision score
        precision_yes = precision_score(y_test, y_pred, pos_label=1) print("Precision
        (Yes): " + str(round(precision_yes, 2))) precision_no = precision_score(y_test,
        y_pred, pos_label=0) print("Precision (No): " + str(round(precision_no, 2)))
       Precision (Yes): 0.76
       Precision (No): 0.9
[24]:
        # Recall score
        recall_yes = recall_score(y_test, y_pred, pos_label=1) print("Recall
        (Yes): " + str(round(recall_yes, 2))) recall_no = recall_score(y_test,
        v pred, pos label=0) print("Recall (No): " + str(round(recall no, 2)))
       Kecali (Yes): 0.45
       Recall (No): 0.97
[25]:
        #F1 score
        f1_score_yes = f1_score(y_test, y_pred, pos_label=1) print("F1 Score
       y_pred, pos_label=0) print("F1 Score (No): " + str(round(f1_score_no, 2)))
       FI SCOIE ( TES). U.JU FI
       Score (No): 0.93
        # Confusion matrix
[26]:
        print("Confusion matrix:\n\n",confusion_matrix(y_test,y_pred))
       Confusion matrix:
        [[238
                  7]
        [27]
                22]]
```

regression

# # Classification Report print("Classification report of Logistic Regression model: \[ \n\n'', \classification\_report(y\_test,y\_pred)) \]

Classification report of Logistic Regression model:

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.90      | 0.97   | 0.93     | 245     |
| 1           | 0.76      | 0.45   | 0.56     | 49      |
| accuracy    |           |        | 0.88     | 294     |
| macro avg   | 0.83      | 0.71   | 0.75     | 294     |
| weightedavg | 0.87      | 0.88   | 0.87     | 294     |

# probability = fpr,tpr,thresh plt.plot(fpr,t plt.xlabel('Fa plt.ylabel('Tr plt.title('ROC') from plt.vision | fr.predict\_proba(x\_test)[:,1] sholds = roc\_curve(y\_test,probability) pr) lse Positive Rate') ue Positive Rate') Curve of Logistic regression model')

plt.show()



#### 1.3 Decision TreeClassifier

- [29]: # Importing necesary packages
  from sklearn.tree import DecisionTreeClassifier
- [30]: # Initializing the model
  dtc = DecisionTreeClassifier(random\_state=30)
- [31]: # Training the model dtc.fit(x\_train, y\_train)
- [31]: DecisionTreeClassifier(random\_state=30)
- [32]: # Testing the model y\_pred1 = dtc.predict(x\_test)
- [33]: # Evaluation metrics #
  Accuracy score
  accuracy = accuracy\_score(y\_test, y\_pred1) print("Accuracy of
  Decision tree model:",accuracy)

Accuracy of Decisiontreemodel: 0.7517006802721088

```
[34]:
       # Precision score
        precision_yes = precision_score(y_test, y_pred1, pos_label=1) print("Precision
        (Yes): ", str(round(precision_yes,2))) precision_no = precision_score(y_test,
        y_pred1, pos_label=0) print("Precision (No): " + str(round(precision_no, 2)))
                              0.27
       Precision(Yes):
       Precision (No): 0.86
[35]:
        # Recall score
        recall_yes = recall_score(y_test, y_pred1, pos_label=1) print("Recall
        (Yes): " + str(round(recall_yes, 2))) recall_no = recall_score(y_test,
        y_pred1, pos_label=0) print("Recall (No): " + str(round(recall_no, 2)))
       Kecan (Yes): 0.29
       Recall (No): 0.84
[36]:
        #F1 score
        f1_score_yes = f1_score(y_test, y_pred1, pos_label=1) print("F1 Score
        (Yes): " + str(round(f1_score_yes,2))) f1_score_no = f1_score(y_test,
        y_pred1, pos_label=0) print("F1 Score (No): " +
        str(round(f1_score_no, 2)))
       11 SCUIC (1CS). U.20 II
       Score (No): 0.85
        # Classification report
[37]:
        print("Classification report of Decision tree model:
          △\n\n",classification_report(y_test,y_pred1))
```

Classification report of Decision tree model:

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.86      | 0.84   | 0.85     | 245     |
| 1           | 0.27      | 0.29   | 0.28     | 49      |
| accuracy    |           |        | 0.75     | 294     |
| macro avg   | 0.56      | 0.57   | 0.56     | 294     |
| weightedavg | 0.76      | 0.75   | 0.75     | 294     |

```
[38]: #ROC curve

probability = dtc.predict_proba(x_test)[:,1]
fpr,tpr,thresh sholds = roc_curve(y_test,probability)
```

plt.plot(fpr,tpr) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve of Decision tree model') plt.show()



### 

C:\Users\Admin\AppData\Local\Temp\ipykernel\_39480\391630832.py:2:

DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n\_samples,), for exampleusing ravel(). rf.fit(x\_train, y\_train)

[41]: RandomForestClassifier(criterion='entropy', n\_estimators=10,random\_state=30)[42]:

```
[42]: 0.983843537414966train)
[43]:
        # Testing the model
        y_pred2 = rf.predict(x_test)
[44]:
       # Evaluation metrics #
        Accuracy score
        accuracy = accuracy_score(y_test, y_pred2) print("Accuracy of
        Random forest model:",accuracy)
       Accuracy of Randomforestmodel:
                                                  0.8435374149659864
[45]:
       # Precision score
        precision_yes = precision_score(y_test, y_pred2, pos_label=1) print("Precision
        (Yes): ", str(round(precision_yes,2))) precision_no = precision_score(y_test,
        y_pred2, pos_label=0) print("Precision (No): " + str(round(precision_no, 2)))
                              0.71
       Precision(Yes):
       Precision (No): 0.85
[46]:
        # Recall score
        recall_yes = recall_score(y_test, y_pred2, pos_label=1) print("Recall
        (Yes): " + str(round(recall_yes, 2))) recall_no = recall_score(y_test,
        y_pred2, pos_label=0) print("Recall (No): " + str(round(recall_no, 2)))
       kecan (Yes):U.I
       Recall (No):0.99
[47]:
        #F1 score
        f1_score_yes = f1_score(y_test, y_pred2, pos_label=1) print("F1 Score
        (Yes): " + str(round(f1_score_yes,2))) f1_score_no = f1_score(y_test,
        y_pred2, pos_label=0) print("F1 Score (No): " +
        str(round(f1 score no, 2)))
       1 1 SCUIC ( 1 CS). U.10 I 1
       Score (No): 0.91
```

# # Classification Report print("Classification report of Random Forest model: \[ \n\n\n\], classification\_report(y\_test,y\_pred2))

### Classification report of Random Forest model:

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.85      | 0.99   | 0.91     | 245     |
| 1           | 0.71      | 0.10   | 0.18     | 49      |
| accuracy    |           |        | 0.84     | 294     |
| macro avg   | 0.78      | 0.55   | 0.55     | 294     |
| weightedavg | 0.82      | 0.84   | 0.79     | 294     |

# probability = fpr,tpr,thresh plt.plot(fpr,t plt.xlabel('Fa plt.ylabel('Tr plt.title('ROC') from probability = ff.predict\_proba(x\_test)[:,1] sholds = roc\_curve(y\_test,probability) pr) lse Positive Rate') ue Positive Rate') Curve of Random forest model')

plt.show()

