

Homework for the Lecture

Functional Analysis

Stefan Waldmann Christopher Rudolph

Winter Term 2024/2025

 $\underset{\scriptscriptstyle{\text{revision: }2024\text{-}12\text{-}26}}{\text{Homework Sheet No}} \underset{\scriptscriptstyle{\text{4-}0100}}{\text{No}} 11$

Last changes by christopher.rudolph@home on 2024-12-26 Git revision of funkana-ws2425: d1af372 (HEAD -> master)

> 27. 12. 2024 (27 Points. Discussion 13.01.2025)

Homework 11-1: Bijective Bounded Linear Operators Into Banach Spaces

(4 **Points**) Let $(V, \|\cdot\|_V)$ be a normed and $(W, \|\cdot\|_W)$ be a Banach space. Prove the following: If there exists a bijective bounded linear operator ϕ mapping from V to W, then V is a Banach space. Hint: Use ϕ to construct a second norm $\|\cdot\|'_V$ on V. Then consider the completions of $(V, \|\cdot\|_V)$ and $(V, \|\cdot\|'_V)$.

Homework 11-2: Open Mapping, Closed Graph and Inverse Mapping: Counter Examples

(5 Points) Let $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ be normed spaces and $\phi: V \to W$ be a bounded linear operator. Give examples of V, W and ϕ such that

- the open mapping theorem
- the closed graph theorem
- the inverse mapping theorem

does not hold.

Homework 11-3: The Parallelogram Identity

(4 Points) Let $(V, \|\cdot\|)$ be a complex normed space whose norm satisfies the parallelogram identity, that is

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
(11.1)

for any two vectors $x, y \in V$. Show that there is a positive definite inner product $\langle \cdot, \cdot \rangle$ on V such that $||x||^2 = \langle x, x \rangle$ for every $x \in V$.

Homework 11-4: The Bargmann-Fock Space: Part I

Let $n \in \mathbb{N}$ and $z = (z_1, \ldots, z_n) = (x_1 + \mathrm{i}y_1, \ldots, x_n + \mathrm{i}y_n) \in \mathbb{C}^n$. Consider the differential operators

$$\partial_i := \frac{\partial}{\partial z_i} := \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right) \quad \text{and} \quad \overline{\partial}_i := \frac{\partial}{\partial \overline{z}_i} := \frac{1}{2} \left(\frac{\partial}{\partial x_i} + i \frac{\partial}{\partial y_i} \right),$$
 (11.2)

 $i \in \{1, \ldots, n\}$. Analogously to holomorphic functions, we call a function $f: D \to \mathbb{C}$ on an open subset D of \mathbb{C}^n antiholomorphic if it is real differentiable and $\partial_i f = 0$ for all i. The set of antiholomorphic functions on D is denoted by $\overline{\mathcal{O}}(D)$. One can show that for every antiholomorphic function $f \in \overline{\mathcal{O}}(D)$ there is a unique holomorphic function $g \in \mathcal{O}(D)$ such that $f = \overline{g}$. In particular, all well-known results from complex analysis also hold true for antiholomorphic functions.

We now define the Bargmann-Fock space as

$$\mathfrak{H}_{BF} := \left\{ f \in \overline{\mathcal{O}}(\mathbb{C}^n) : \frac{1}{(2\pi\hbar)^n} \int_{\mathbb{C}^n} \overline{f(\overline{z})} f(\overline{z}) e^{-\frac{\overline{z}z}{2\hbar}} \, dz \, d\overline{z} < \infty \right\}, \tag{11.3}$$

where $\overline{z}z := \sum_{i=1}^n \overline{z}_i z_i$ and $\hbar := \frac{h}{2\pi}$ is the reduced Planck constant. Given a differentiable bijection $\mathbb{R}^2 \supset D \ni (r,s) \mapsto (z_i(r,s), \overline{z}_i(r,s))$ with Jacobian J, we set

$$\int_{\mathbb{C}} g(z_i, \overline{z}_i) \, \mathrm{d}z_i \, \mathrm{d}\overline{z}_i := \int_{D} g(z_i(r, s), \overline{z}_i(r, s)) \frac{|\det(J(r, s))|}{2} \, \mathrm{d}r \, \mathrm{d}s$$
(11.4)

for every integrable function g.

i.) (1 Point) Show that the map

$$\langle \cdot, \cdot \rangle_{BF} : \mathfrak{H}^{2}_{BF} \ni (f, g) \mapsto \langle f, g \rangle_{BF} := \frac{1}{(2\pi\hbar)^{n}} \int_{\mathbb{C}^{n}} \overline{f(\overline{z})} g(\overline{z}) e^{-\frac{\overline{z}z}{2\hbar}} \, \mathrm{d}z \, \mathrm{d}\overline{z}$$
 (11.5)

defines a positive definite inner product that turns \mathfrak{H}_{BF} into a pre-Hilbert space.

ii.) (5 Points) Compute the integral

$$\frac{1}{2\pi\hbar} \int_{\mathbf{B}_{r}(0)^{\mathrm{cl}}} az_{i}^{k} \overline{z_{i}}^{l} \mathrm{e}^{-\frac{\overline{z}_{i}z_{i}}{2\hbar}} \, \mathrm{d}z_{i} \, \mathrm{d}\overline{z}_{i}, \tag{11.6}$$

with $a \in \mathbb{C} \setminus \{0\}$, r > 0 and $k, l \in \mathbb{N}_0$. Conclude that

$$\langle f, g \rangle_{BF} = \sum_{r=0}^{\infty} \frac{(2\hbar)^r}{r!} \sum_{k_1, \dots, k_r} \overline{\frac{\partial^r f}{\partial \overline{z}_{k_1} \cdots \partial \overline{z}_{k_r}}} \Big|_{z=0} \frac{\partial^r g}{\partial \overline{z}_{k_1} \cdots \partial \overline{z}_{k_r}} \Big|_{z=0}$$
(11.7)

for all $f, g \in \mathfrak{H}_{BF}$.

Hint: Use polar coordinates on each copy of \mathbb{C} .

iii.) (1 Point) Show that the set

$$\left\{e_{k_1\dots k_n}(\overline{z}) := \frac{1}{\sqrt{(2\hbar)^{k_1+\dots+k_n}k_1!\dots k_n!}} \overline{z}_1^{k_1}\dots \overline{z}_n^{k_n} : k_1,\dots,k_n \in \mathbb{N}_0\right\} \subset \mathfrak{H}_{BF}$$
 (11.8)

satisfies

$$\langle e_{k_1...k_n}, e_{\ell_1...\ell_n} \rangle_{BF} = \prod_{i=1}^n \delta_{k_i \ell_i}. \tag{11.9}$$

- iv.) (3 Points) Prove that the delta functional $\delta_{\overline{w}}: \mathfrak{H}_{BF} \to \mathbb{C}$ is continuous for every $w \in \mathbb{C}^n$. Hint: Find a function $f_{\overline{w}} \in \mathfrak{H}_{BF}$ such that $\delta_{\overline{w}} = \langle f_{\overline{w}}, \cdot \rangle_{BF}$.
- v.) (4 Points) Show that \mathfrak{H}_{BF} is a Hilbert space.

Hint: Consider a Cauchy sequence $(f_n)_{n\in\mathbb{N}}\subset\mathfrak{H}_{BF}$ and show that it is a Cauchy sequence with respect to the supremum norm on every compact subset on \mathbb{C}^n .