EDA/CAD Nanoeletrónica

Mª Helena Fino 2015 – Aula 7

Introdução ao Modelo EKV

Modelo EKV2.6 – Transístores de canal longo

(Continuação)

+ É necessário um modelo que reproduza fielmente as "novas" características de funcionamento dos Transístores em todas as zonas de inversão

+ Modelo EKV

Name	Description	Units
COX	Gate oxide capacitance	F/m
VTO	Nominal threshold voltage	V
GAMMA	Body effect factor	V ^{1/2}
PHI	Bulk Fermi potential (2x)	V
KP	Transconductance parameter	A/V ²
THETA	Mobility reduction coefficient	1/V
UCRIT	Longitudinal critical field	V/m
ХJ	Junction depth	m
DL	Channel length correction	m
DW	Channel width correction	m
LAMBDA	Depletion length coefficient	-
LETA	Short channel effect coefficient	-
WETA	Narrow channel effect coefficient	-

Modelo EKV

- Todas as tensões são referidas ao Bulk, mantendose integralmente a simetria dos dispositivos
- A corrente de Dreno, ID, é calculada como sendo a soma de uma corrente Direta, I_F e uma corrente Inversa I_R

$$I_D = I_F - I_R$$

Consideram-se as correntes normalizadas:

$$I_D = I_s \left(i_F - i_R \right)$$

$$I_s = 2 \mu n C_{ox} U_t^2 \left(\frac{W}{L}\right)$$

$$i_F = \left[\ln \left(1 + \exp \left(\frac{V_P - V_s}{2U_t} \right) \right) \right]^2$$

$$i_R = \left[\ln \left(1 + \exp \left(\frac{V_P - V_D}{2U_t} \right) \right) \right]^2$$

Modelo EKV

$$I_D = I_s \left(i_F - i_R \right)$$

$$I_s = 2 \mu n C_{ox} U_t^2 \left(\frac{W}{L}\right)$$

$$i_{F/R} = \left[\ln \left(1 + \exp \left(\frac{V_P - V_{S/D}}{2U_t} \right) \right) \right]^2$$

Numa primeira aproximação podemos considerar

$$V_P \simeq \frac{V_G - V_t}{n}$$

Resultando

$$i_{F/R} = \left[\ln \left(1 + \exp \left(\frac{V_G - V_t}{n} - V_{S/D} \right) \right) \right]^2$$

Modelo EKV

$$I_D = I_s (i_F - i_R)$$

$$i_{F/R} = \left[\ln \left(1 + \exp \left(\frac{V_G - V_t}{n} - V_{S/D} \right) \right) \right]^2$$

No caso de $V_s << e V_D >> resulta$

$$i_F = \left[\ln \left(1 + \exp \left(\frac{V_G - V_t - nV_S}{2nU_t} \right) \right) \right]^2 \cong \left(\frac{V_G - V_t - nV_S}{2nU_t} \right)^2$$

Resultando

$$I_D = I_s \left(\frac{V_G - V_t - nV_s}{2nU_t} \right)$$

$$i_R = \left[\ln \left(1 + \exp \left(\frac{V_G - V_t - nV_D}{2nU_t} \right) \right) \right]^2 \cong 0$$

$$I_s = 2 \,\mu n C_{ox} U_t^2 \left(\frac{W}{L}\right)$$

$$I_D = 0.5 \,\mu \, C_{ox} \left(\frac{W}{L}\right) \left(V_{GS} - V_t\right)^2$$

Modelo EKV

$$I_D = I_s \left(i_F - i_R \right)$$

$$i_{F/R} = \left[\ln \left(1 + \exp \left(\frac{V_P - V_{S/D}}{2U_t} \right) \right) \right]^2$$

$$V_P = V_G' - \varphi - \gamma' \left[\sqrt{V_G' + (0.5\gamma')^2} - 0.5\gamma' \right]$$

Em que:

$$V_G = V_G - V_{t0} + \varphi - \gamma \sqrt{\varphi}$$

$$\gamma = \sqrt{\frac{2q\varepsilon_{si}N_{sub}}{Cox}}$$

$$Cox = \frac{\varepsilon_{ox}}{tox}$$

Para UMC130

$$\varepsilon_{ox} = 3.453e-11$$
 $\varepsilon_{si} = 1.045e-10$
 $t_{oxn} = 2.7300e-09$ $t_{oxp} = 2.8600e-09$

$$t_{oxn} = 2.7300e-09$$
 $t_{oxp} = 2.8600e-09$

Modelo EKV- Determinação de parâmetros

Modelo EKV- Determinação de parâmetros

1. Determinação de Vp

$$I_D = I_s \left(i_F - i_R \right)$$

$$i_{F/R} = \left[\ln \left(1 + \exp \left(\frac{V_P - V_{S/D}}{2U_t} \right) \right) \right]^2$$

Em saturação i_R=0 logo:

$$I_D = I_s(i_F)$$

Quando Vp=Vstem-se $I_D=I_S$.[ln(2)]^2

Ou

$$I_D = I_s \left[\ln \left(1 + \exp \left(\frac{V_p - V_s}{2U_T} \right) \right) \right]^2$$

Modelo EKV- Determinação de parâmetros

1. Determinação de Vp(Vg)

$$I_D = I_s \left[\ln \left(1 + \exp \left(\frac{V_p - V_s}{2U_T} \right) \right) \right]^2$$

Quando Vp=Vs tem-se I_D=I_S.[ln(2)]^2

Modelo EKV- Determinação de parâmetros

1. Determinação de Vp(Vg)

Como numa aproximação considerámos

$$V_P \simeq \frac{V_G - V_t}{n}$$

Concluimos que V_t será o valor de Vg quando Vp=0

Modelo EKV- Determinação de parâmetros

1. Determinação de n e miu

Sabendo que para canal longo se tem:

$$V_{P} = V_{G}^{'} - \varphi - \gamma^{'} \left[\sqrt{V_{G}^{'} + (0.5\gamma^{'})^{2}} - 0.5\gamma^{'} \right]$$

Em que:

$$V_G = V_G - V_{t0} + \varphi - \gamma \sqrt{\varphi}$$

Por fitting de Vp(Vg) obtemos

$$\varphi$$
 e γ

Modelo EKV- Determinação de parâmetros

1. Determinação de restantes parâmetros

Sabendo que para canal longo se tem:

$$I_{s} = 2 \mu n C_{ox} U_{t}^{2} \left(\frac{W}{L}\right)$$

Οu

$$I_s = 2 n U_t^2 \frac{\beta_0}{1 + \Theta V_P} \left(\frac{W}{L} \right)$$

com

$$n = 1 + \frac{\gamma}{2\sqrt{V_p + \phi + 4U_T}}$$

Por fitting de Is e Vp(Vg) tiramos $\Theta e \beta_0$

