Programovací jazyk SVGER

October 28, 2016

Contents

1	Gra	matiky a lexikální analyzátor	3
	1.1	Identifikátory	3
		1.1.1 Nalezení symbolů, které nejsou zbytečné	3
		1.1.2 Hledání dostupných symbolů	3
		1.1.3 Upravená gramatika	3
		1.1.4 Generování automatu	3
	1.2	Čísla	4
		1.2.1 Nalezení symbolů, které nejsou zbytečné	4
		1.2.2 Hledání dostupných symbolů	4
		1.2.3 Upravená gramatika	4
		1.2.4 Generování automatu	4
	1.3	Slova	5
		1.3.1 Nalezení symbolů, které nejsou zbytečné	5
		1.3.2 Hledání dostupných symbolů	5
		1.3.3 Upravená gramatika	5
		1.3.4 Generování automatu	5
	1.4	Konečný automat	5
		1.4.1 Generování automatu	5

1 Gramatiky a lexikální analyzátor

Programovací jazyk se skládá z následujících gramatik: Q_f

1.1 Identifikátory

Identifikátor začíná na kterýkoliv znak z množiny $z=\{a..z,A..Z,+,-/,*,<,>,[,]\}$ a pokračuje v kterémkoliv ze znaků z množiny $m=z\bigcup\{0..9\}$

Z tohoto popisu nám vyplyne následující gramatika $L_i dentifikatory(['S', "S'"], ['z', 'm'], \{$

$$S \to zS|z|S'$$

$$S' \to mS' | m$$

 $\}, S)$

1.1.1 Nalezení symbolů, které nejsou zbytečné

$$\tau_0 = \{m, z\}$$

$$\tau_1 = \{S, S', m, z\}$$

1.1.2 Hledání dostupných symbolů

$$D_0 = \{S\}$$

$$D_1 = \{S, S', z\}$$

$$D_2 = \{S, S', m, z\}$$

1.1.3 Upravená gramatika

Po úpravách dostaváme gramatiku $L_i dentifikatory(['S', "S'"], ['z', 'm'], \{$

$$S \to zS|z|S'$$

$$S' \to mS' | m$$

}, S)

1.1.4 Generování automatu

Stavy automatu $\{Q_S, Q_{S'}, Q_F\}$

1.2 Čísla

Jazyk obsauje pouze přirozená čísla. Validním číslem je tedy jakákoliv sekvence znaků, které se nachází v množině d=0...9

Ná základě tohoto můžeme vytvořit následující gramatiku $L_cisla(['S', 'A', 'B', 'C'], ['-', 'd', ''], \{$

$$S \rightarrow -A|dA|d|dC$$

$$A \rightarrow dA|d|dC$$

$$B \rightarrow dB|d$$

$$C \rightarrow .B$$

}, S)

1.2.1 Nalezení symbolů, které nejsou zbytečné

$$\tau_0 = \{-, ., d\}$$

$$\tau_1 = \{-, ., A, B, C, S, d\}$$

1.2.2 Hledání dostupných symbolů

$$D_0 = \{S\}$$

$$D_1 = \{-, A, C, S, d\}$$

$$D_2 = \{-, ., A, B, C, S, d\}$$

1.2.3 Upravená gramatika

Po úpravách dostaváme gramatiku $L_cisla(['S', 'A', 'B', 'C'], ['-', 'd', ''], \{$

$$S \rightarrow -A|dA|d|dC$$

$$A \rightarrow dA|d|dC$$

$$B \rightarrow dB|d$$

$$C \rightarrow .B$$

}, S)

1.2.4 Generování automatu

Stavy automatu $\{Q_S, Q_A, Q_B, Q_C, Q_F\}$

1.3 Slova

$$L_slova(SABC, ab, \{$$

$$S \to A|B$$

$$A \to aB|AS|b$$

$$B \to AB|bA|\epsilon$$

$$C \to AS|b$$

}, S)

1.3.1 Nalezení symbolů, které nejsou zbytečné

$$\tau_0 = \{a, b\}$$

$$\tau_1 = \{A, B, C, a, b\}$$

$$\tau_2 = \{A, B, C, S, a, b\}$$

1.3.2 Hledání dostupných symbolů

$$D_0 = \{S\}$$

$$D_1 = \{A, B, S\}$$

$$D_2 = \{A, B, S, \epsilon, a, b\}$$

1.3.3 Upravená gramatika

Po úpravách dostaváme gramatiku $L_slova([\mathrm{'S'},\,\mathrm{'A'},\,\mathrm{'B'}],\,[\mathrm{'a'},\,\mathrm{'b'}],\,\{$

$$S \to A|B$$

$$A \to aB|AS|b$$

$$B \to AB|bA|\epsilon$$

}, S)

1.3.4 Generování automatu

Stavy automatu $\{Q_S, Q_A, Q_B, Q_F\}$

1.4 Konečný automat

1.4.1 Generování automatu

 $Stavy \ automatu \ \{Q_{Scislacisla+identifikatory}, Q_{Acislacisla+identifikatory}, Q_{Bcislacisla+identifikatory}, Q_{Ccislacisla+identifikatory}, Q_{Ccisl$