DEVOIR DE MATHEMATIQUES N°2 - DECEMBRE 2020 DUREE 02 HEURES

Exercice 1 (08 Pts)

On considère le polynôme $P(x) = ax^4 + bx^3 + cx^2 + bx + a$

- 1) Déterminer les nombres réels a, b et c sachant que les divisions euclidiennes de P(x) par x-2, x-1 et x+1 donnent respectivement pour restes 0, 18, et -18.
- 2) Soit le polynôme $P(x) = -10x^4 + 9x^3 + 20x^2 + 9x 10$
- 3) Déduire de 1) une racine évidente de P(x).
- 4) a) Montrer que si α est une racine de P(x), alors α est non nul et $\frac{1}{\alpha}$ est aussi une racine de P(x).
 - b) En déduire une deuxième racine de P(x)
- 5) Résoudre dans IR l'équation P(x) = 0
- 6) En utilisant le changement de variable $X = x + \frac{1}{x}$, montrer qu'on peut retrouver les résultats de la question 5).

Exercice 2 (06 Pts)

- 1) Résoudre dans IR³ par la méthode du pivot de Gauss le système : $\begin{cases} 4x + 2y + z = 5 \\ 9x + 3y + z = 1 \\ -x y z = -1 \end{cases}$
- 2) En déduire un polynôme P(x) de degré 2 tel que la division euclidienne par x-2, x-3 et x-1 donne respectivement comme restes 5, 1 et 1.
- 3) Résoudre dans IR³ le système : $\begin{cases}
 -x + 2y + z = 3 \\
 2x + 3y z = 1 \\
 -4x 6y + 2z = -2
 \end{cases}$

Exercice 3 (06 Pts)

- 1) Résoudre dans IR² le système $\begin{cases} x + y = 1 \\ x^3 + y^3 = 7 \end{cases}$
- 2) Résoudre dans IR les équations et inéquations suivantes
 - a) $\sqrt{x^2 + 3x 1} = x^2 + 3x 7$ (Poser $X = x^2 + 3x 1$
 - $b) \quad \sqrt{x^2 x 1} \le x + 5$
 - $c) \quad \sqrt{2x^2 x} \ge 2x 3$