

VERIFICATION OF TRANSLATION

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

<u>Takashi MATSUMOTO</u>, residing at <u>1-13-16</u>, <u>Seta, Setagaya-ku, Tokyo 158-0095</u> Japan

declares:

- (1) that he/she knows well both the Japanese and English language;
- (2) that he/she translated the Japanese application No. 2002-257813 from Japanese to English;
- (3) that the attached English translation is a true and correct translation of the Japanese application No. 2002-257813 to the best of his/her knowledge and belief; and
- (4) that all statements made of his/her own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under 18 USC 1001, and that such false statements may jeopardize the validity of the application or any patent issuing thereon.

Date November 7, 2005

pot motsum

[NAME OF THE DOCUMENT] PATENT APPLICATION

[REFERENCE NUMBER] 0250608

[DATE OF SUBMISSION] September 3, 2002

[ADDRESSEE] COMMISSIONER, PATENT OFFICE

[INTERNATIONAL PATENT CLASSIFICATION] G06B 17/60

[TITLE OF THE INVENTION] INFORMATION DISTRIBUTION

SERVICE SYSTEM BASED ON PREDICTED CHANGES IN LOCATION OF

MOBILE INFORMATION TERMINAL

[NUMBER OF THE CLAIM] 5

[INVENTOR]

[NAME] Hideyuki AOKI

[ADDRESS] C/O FUJITSU LIMITED

1-1, KAMIKODANAKA 4-CHOME, NAKAHARA-KU,

KAWASAKI-SHI, KANAGAWA JAPAN

[INVENTOR]

[NAME] Norio MURAKAMI

[ADDRESS] C/O FUJITSU LIMITED

1-1, KAMIKODANAKA 4-CHOME, NAKAHARA-KU,

KAWASAKI-SHI, KANAGAWA JAPAN

[PATENT APPLICANT]

[IDENTIFICATION NUMBER] 000005223

[NAME] FUJITSU LIMITED

[AGENT]

[IDENTIFICATION NUMBER] 100075384

[PATENT ATTORNEY]

[NAME] Takashi MATSUMOTO

[TELEPHONE NUMBER] 03-3582-7477

[INDICATION OF FEE]

[PREPAY REGISTER NUMBER] 001764

[PREPAID AMOUNT]	¥21,000	
[LIST OF MATERIAL SUBMITTED]		
[NAME OF MATERIAL]	SPECIFICATION	1
[NAME OF MATERIAL]	DRAWING	1
[NAME OF MATERIAL]	WRITTEN ABSTRACT	1
[NUMBER OF GENERAL POWER	OF ATTORNEY] 9704	374

[Name of Document] Specification
[Title of the Invention] Information Distribution Service
System Based on Predicted Changes in Position of Mobile
Information Terminal
[What is Claimed is]

[Claim 1] An information distribution service system comprising a plurality of mobile information terminals, a computer system and a plurality of information-provider terminals wherein said mobile information terminals, said computer system and said information-provider terminals are connected to each other by a communication network, said information distribution service system characterized in that:

said computer system predicts a mobile information terminal's moving destination and moving direction by inferring said mobile-information terminal's positional displacements along the time axis on the basis of information on positions of said mobile information terminal including a pre-registered information category whose information distribution service, distribution and notification are desired, and on the basis of an inference formula provided in advance with said mobile information terminal's moving direction and position; and

said computer system determines an information-

provider terminal predicted to exist at said predicted moving destination of said mobile information terminal on the basis of locations of information-provider terminals pre-recording plans to distribute information as a notification, and determines distributed and reported information corresponding to an information category registered in advance by said mobile information terminal among pieces of information to be provided by said selected information-provider terminal.

[Claim 2] An information distribution service system according to claim 1, said information distribution service system characterized in that, if it is impossible to determine an inference formula for predicting said mobile information terminal's moving direction and position from positional displacements of said mobile information terminal with each geographical position used as an origin on the basis of map information, said computer system finds an inference formula for predicting said mobile information terminal's most recent moving destination and most recent moving direction each time most recent information on a position of said mobile information terminal is obtained.

[Claim 3] An information distribution service system according to claim 1, said information distribution

service system characterized in that, if an inference formula, which is found as an equation for predicting said mobile information terminal's moving destination and moving direction each time most recent information on a position of said mobile information terminal is obtained, changes very frequently in a time series, said computer system predicts a polarity of a movement of said mobile information terminal by application of a partial derivative and on the basis of said mobile information terminal's positional information accumulated in the past.

[Claim 4] An information distribution service system according to claim 1, said information distribution service system characterized in that said computer system executes the steps of:

regarding said defined inference formula as an equation representing a regression straight line;

finding a distance between a position represented by said inference formula and the location of said information-provider terminal by adoption of a least-square method; and

determining that an information-provider terminal exists in the vicinity of said predicted moving destination of said mobile information terminal if said distance is in an allowable range determined for said

defined inference formula.

[Claim 5] An information distribution service system according to claim 1, said information distribution service system characterized in that said computer system executes the steps of:

informing a mobile-communication enterprise of information on a mobile information terminal moving to a position at a place in an area at and/or in said mobile information terminal's moving destination and/or moving direction predicted on the basis of an inference formula defined from information on positions of said mobile information terminal;

finding a moving speed of said mobile information terminal from positional information accumulated in the past;

informing an information-provider terminal inferred to be a terminal located at said mobile information terminal's moving destination of an expected time of arrival of said mobile information terminal at said moving destination where said expected time of arrival is a time predicted by using an inference formula based on a present position of said mobile information terminal;

determining moving means, on which a user of said mobile information terminal is riding, from a combination

of said mobile information terminal's moving speed and displacements in positional information; and

informing said mobile-information terminal of operational information obtained from an enterprise managing operations of said moving means.

[Detailed Description of the Invention]

[Technical Field to which the Invention Pertains]

The present invention relates a technique of rendering an information distribution service to provide a user of a mobile information terminal with information such as area information optimum for a predicted location of the user in advance.

[0002]

[Prior Art]

A service and/or a function based on information on positions of the conventional mobile information terminal allow information on the vicinity of the present position (the current location) of the mobile information terminal to be obtained by determining or inputting the present position. That is to say, the information on the vicinity of the present position of the mobile information terminal can be obtained only on condition that the

mobile information terminal is currently located at the present position. In addition, there are also cases in which the mobile information terminal is provided with obsolete information no longer required by the user of the mobile information terminal. An example of such information is information on an area already left by the mobile information terminal. Furthermore, there is no means for distributing information to mobile information terminals moving in a specific direction by adoption of a multi-casting or broadcasting technique.

[0003]

[Problems to be Solved by the Invention]

However, the conventional information distribution service has the following problems. If a user carrying a mobile information terminal does not enter information on a destination of the movement of the user to the terminal, the existence of information on the destination of the movement or information on an area on the way in the direction of the movement is not known. In general, only information on the vicinity of the present position of the mobile information terminal can be obtained and distributed information includes obsolete information not required by the user. In addition, the obsolete information not required by the user is displayed in some

cases. Furthermore, information on accidents at a destination of a mobile information terminal moving in a specific direction and disaster or urgent information cannot be transmitted to the mobile information terminal as a notification whereas congestions cannot be controlled either.

[0004]

It is thus an object of the present invention to provide a user of a mobile information terminal with information such as advance area information suitable for a predicted moving destination (or a predicted moving direction) of the user and to control a mobile information terminal located at the same moving destination (or at a position on the way to the same moving direction).

[0005]

[Means for Solving the Problems]

In accordance with an aspect of the present invention, there is provided an information distribution service system comprising a plurality of mobile information terminals, a computer system and a plurality of information-provider terminals wherein said mobile information terminals, said computer system and said information-provider terminals are connected to each

other by a communication network, said information distribution service system characterized in that:

said computer system predicts a mobile information terminal's moving destination and moving direction by inferring said mobile-information terminal's positional displacements along the time axis on the basis of information on positions of said mobile information terminal including a pre-registered information category whose information distribution service, distribution and notification are desired, and on the basis of an inference formula provided in advance with said mobile information terminal's moving direction and position; and

said computer system determines an informationprovider terminal predicted to exist at said predicted
moving destination of said mobile information terminal on
the basis of locations of information-provider terminals
pre-recording plans to distribute information as a
notification, and determines distributed and reported
information corresponding to an information category
registered in advance by said mobile information terminal
among pieces of information to be provided by said
selected information-provider terminal.

[0006]

It is desirable to provide an implementation of

said information distribution service system wherein, if it is impossible to determine an inference formula for predicting said mobile information terminal's moving direction and position from positional displacements of said mobile information terminal with each geographical position used as an origin on the basis of map information, said computer system finds an inference formula for predicting said mobile information terminal's most recent moving destination and most recent moving direction each time most recent information on a position of said mobile information terminal is obtained.

[0007]

It is also desirable to provide another implementation of said information distribution service system wherein, if an inference formula, which is found as an equation for predicting said mobile information terminal's moving destination and moving direction each time most recent information on a position of said mobile information terminal is obtained, changes very frequently in a time series, said computer system predicts a polarity of a movement of said mobile information terminal by application of a partial derivative and on the basis of said mobile information terminal's positional information accumulated in the past.

[8000]

[Mode for Carrying out the Invention]

Before embodiments of the present invention are explained, the principle of the present invention is described. Fig. 1 is a diagram showing the basic configuration of an information distribution service system. The information distribution service system includes a computer system 2, a plurality of informationprovider terminals 4#i where i = 1 to n and a plurality of user terminals 6#i where i = 1 to m. The computer system 2 is an application service provider (ASP) connected to the information-provider terminals 4#i and the user terminals 6#i by a network typically comprising gateways (GWs) 8a, the Internet 8b, a mobilecommunication network 8c and enterprise networks (NW) 8d. The information-provider terminals 4#i are each a terminal owned by a provider supplying information to users. Examples of the information-provider terminals 4#i are an enterprise terminal connected to the enterprise NW 8d, a personal-business terminal such as SOHO and a mobile terminal. On the other hand, the user terminals 6#i are each a mobile terminal owned by a recipient of the provided information. An example of the user terminal 6#i is a mobile phone.

[0009]

The computer system 2 has the following functions:

- (i): Register the position of an information provider and information provided to users as well as their categories for each of the information-provider terminals 4#i.
- (ii): Register the category of user information and the category of desired information to be provided to a user for each of the user terminals 6#i.
- (iii): Infer the next position of a moving user from the present and previous positions of the user terminal 6#i by using an inference formula.
- (iv): Determine an information provider from an inferred position of the user terminal 6#i.
- (v): Distribute information to the user terminals 6#i.
- (vi): Analyze users' responses to distributed information.

The information-provider terminal 4#i has a function of requesting the computer system 2 to register a position thereof and information provided thereby in the computer system 2. The information-provider terminal 4#i can be a stationary or mobile terminal.

The user terminal 6#i has the following functions:

(i): Request the computer system 2 to register the category of user information and the category of desired

information to be provided to the user in the computer system 2.

(ii): Inform the computer system 2 that the user terminal 4#i is a GPS-function terminal in case the user terminal 4#i is a GPS-function terminal or that the user terminal 4#i is a non-GPS-function terminal in case the user terminal 4#i is a non-GPS-function terminal.

(iii): Display information received from the computer system 2 and transmits a response to the information to the computer system 2.

[0011]

Fig. 2 is a diagram showing the configuration of the computer system 2. As shown in Fig. 2, the computer system 2 includes a CPU 10, an execution processing unit 12, a communication processing unit 14 and a storage unit 16. The execution processing unit 12 includes a user management unit 20, a position management unit 22, an information management unit 24 and an information-distribution management unit 25. The communication processing unit 14 communicates with the information-provider terminals 4#i and the user terminals 6#i through gateways (GWs) 8a, the Internet 8b, the mobile-communication network 8c and enterprise networks (NW) 8d. The storage unit 16 is used for storing a user-

information database 26, a user-location database 28, an information-provider database 30, an area-information database 32, an inferred-information database 34 and an analysis database 36.

[0012]

Fig. 3 is block diagrams each showing functions of the information-provider terminal 4#i. To be more specific, Fig. 3(a) is a block diagram showing functions of a mobile information-provider terminal while Fig. 3(b) is a block diagram showing functions of a stationary information-provider terminal. The mobile informationprovider terminal's configuration elements essentially identical to those of the stationary information-provider terminal are denoted by the same reference numerals as their counterparts in the stationary information-provider terminal. As shown in Fig. 3(a), the mobile informationprovider terminal comprises a CPU 50, an execution processing unit 51, a radio-communication processing unit 52, a display unit 54, a storage unit 56 and an input unit 58. The execution processing unit 51 includes an information-registration processing unit 60, an information-display-execution processing unit 62 and the input unit 58. On the other hand, the stationary information-provider terminal comprises a CPU 50, an

execution processing unit 51, a communication processing unit 70, a display unit 54, a storage unit 56 and an input unit 58 as shown in Fig. 3(b).

[0013]

Fig. 4 is block diagrams each showing functions of the user terminal 6#i. To be more specific, Fig. 4(a) is a block diagram showing functions of a non-GPS user information terminal while Fig. 4(b) is a block diagram showing functions of a GPS user information terminal. The non-GPS user terminal's configuration elements essentially identical to those of the GPS user terminal are denoted by the same reference numerals as their counterparts in the GPS user terminal. As shown in Fig. 4(a), the non-GPS user information terminal comprises a CPU 80, an execution processing unit 82, a radiocommunication processing unit 84, a display unit 86, a storage unit 88 and an input unit 96. The execution processing unit 82 includes a terminal-registration processing unit 90, a positional-information-reporting processing unit 92 and an information display execution processing unit 94. On the other hand, the GPS user information terminal comprises a GPS-apparatus unit 100 in addition to the non-GPS user information terminal as shown in Fig. 4(b).

[0014]

Fig. 5 is a block diagram showing functions relevant to user management and position management. A user management unit 20 comprises a user-interface processing unit 150, a user-service-reception processing unit 152, a registration-service analysis processing unit 154 and a registration-menu output processing unit 156. Fig. 6 is a block diagram showing functions relevant to information management. Figs. 7 to 9 are each a block diagram showing functions relevant to position management control. Fig. 10 is a block diagram showing functions relevant to information distribution management.

The position management unit 22 comprises the userinterface processing unit 150, a user-positional
information reception processing unit 160 and the userpositional information history management processing unit
162, which are shown in Fig. 5, an inference-formula
generation processing unit 230 shown in Fig. 7, a userpresent-positional information determination processing
unit 260, an inference-formula-candidate extraction
determination processing unit 262, a user-displacementposition history processing unit 264, an inferenceformula determination processing unit 266, an

information-provider-location determination processing unit 270, an information-provider-candidate extraction determination processing unit 272 and an information-provider determination processing unit 274, which are shown in Fig. 8, a user-displacement adequacy check processing unit 300, a distribution-order determination processing unit 302, an Information-distribution processing management unit 304 and an Information-distribution execution processing unit 306, which are shown in Fig. 9.

[0016]

The information management unit 24 includes an information-provider interface processing unit 200, an information-provider registration reception processing unit 202, a registration menu output processing unit 204 and a registration-information analysis processing unit 206, which are shown in Fig. 6. The information-provider management unit 25 comprises a user-interface processing unit 150, a distributed-information user-response reception processing unit 350, a user analysis processing unit 352, an information-provider analysis processing unit 354, a response-attribute analysis processing unit 356, an analysis-result edit processing unit 358, an analysis-result communication processing unit 360, the

information-provider interface processing unit 200 and an analysis-result-report-writing processing unit 362, which are shown in Fig. 10.

[0017]

The user-information database 26 is a database for storing information on users. The user-information database 26 has a user master database 170 and a user registration service category master database 172, which are shown in Fig. 5. The user-location database 28 is a database for storing information on locations of users. The user-location database 28 comprises a user-location master database 180 and a user-location information history database 182. The information-provider database 30 is a database for storing information on information providers. The information-provider database 30 includes an information-provider master database 210 and a registration-information category master database 212, which are shown in Fig. 6.

[0018]

The area-information database 32 is a database for storing information on areas such as traffic information in areas, information on trunks and train schedules. The inferred-information database 34 is a database for storing information required for inferring the position

of a user. The inferred-information database 34 has a map-information master database 232 and an inferenceformula master database 234, which are shown in Fig. 7, a user present location database 280, a user location displacement database 284, a candidate inference-formula database 286, a determined-inference-formula database 288, an information-provider location database 290, a candidate information-provider database 292 and an information-provider database 294, which are shown in Fig. 8, and a target-user database 310, a distribution target information-provider database 312 and a distribution log database 314, which are shown in Fig. 9. The analysis database 36 is a database for storing data required in analyses of responses of users to the information given by the information provider. The analysis database 36 comprises a user response result master database 378, a user analysis log database 380, an information-provider analysis log database 382, a response-attribute analysis log database 384 and an analysis result database 386, which are shown in Fig. 10.

[0019]

Fig. 11 shows a flowchart representing processing carried out by the computer system 2. Fig. 12 shows a flowchart representing user management processing. Fig.

13 shows a flowchart representing information management processing. Fig. 14 shows a flowchart representing position management processing. Fig. 15 shows a flowchart representing information-provider management processing. Fig. 16 shows a flowchart representing processing carried out by a user terminal. Fig. 17 shows a flowchart representing processing to register a user terminal. Fig. 18 shows a flowchart representing processing to report positional information. Fig. 19 shows a flowchart representing information-display execution processing. Fig. 20 shows a flowchart representing processing carried out by the information-provider terminal. Fig. 21 shows a flowchart representing a process to register information. Fig. 22 shows a flowchart representing processing to change an information display. Fig. 23 shows a flowchart representing processing to delete information.

[0020]

Fig. 24 is a diagram showing structures of data transmitted by the computer system to a user terminal. Fig. 25 is a diagram showing structures of data transmitted to the computer system by a user terminal. Fig. 26 is a diagram showing structures of data transmitted by the computer system to an information-provider terminal. Fig. 27 is a diagram showing

structures of data transmitted to the computer system by an information-provider terminal.

[0021]

Fig. 28 is a diagram showing a basic sequence shown in processing to register user information. Fig. 29 is a diagram showing a basic sequence shown in processing to register provided information. Fig. 30 is a diagram showing a basic sequence shown in processing to modify a display of provided information. Fig. 31 is a diagram showing a basic sequence shown in processing to delete provided information. Fig. 32 is a diagram showing a basic sequence shown in an information-providing service for a user terminal functioning as a GPS terminal. Fig. 33 is a diagram showing a basic sequence shown in an information-providing service for a user terminal functioning as a non-GPS terminal.

[0022]

Fig. 34 is a diagram showing a user-registration screen of a user terminal. Fig. 35 is a diagram showing a user-registration completion screen of a user terminal. Fig. 36 is a diagram showing a selection menu screen for an information provider. Fig. 37 is a diagram showing an information-registration screen for an information provider. Fig. 38 is a diagram showing an information

menu screen of a user terminal. Fig. 39 is a diagram showing an information-registration screen for an information provider. Fig. 40 is a diagram showing a user-registration completion screen for an information provider. Fig. 41 is a diagram showing an informationdisplay-changing screen (category selection) for an information provider. Fig. 42 is a diagram showing an information-display-changing screen (displaying detailed information) for an information provider. Fig. 43 is a diagram showing an information-changing completion screen for an information provider. Fig. 44 is a diagram showing an information-deletion screen (category selection) for an information provider. Figs. 45 and 46 are each a diagram showing an information-deletion screen (displaying detailed information deletion) for an information provider. Fig. 47 is a diagram showing an information-deletion completion screen for an information provider. Figs. 48 to 50 are each a diagram showing an inference mechanism.

[0023]

(1): Registration of User Information

At a step S200 of the flowchart shown in Fig. 16, the terminal-registration processing unit 90 carries out a process to register a user terminal as follows. The

user makes a request for a user-registration menu by entering a special number or the like via a keyboard. a step S250 of the flowchart shown in Fig. 17, the terminal-registration processing unit 90 forms a judgment as to whether or not a request for a user-registration menu has been received. If a request for a userregistration menu has been received, the flow of the processing goes on to a step S252. If a request for a user-registration menu has not been received, on the other hand, the flow of the processing goes on to a step S254. Since the user has made a request for a userregistration menu, in this case, the flow of the processing goes on to the step S252. At the step S252, the request for a user-registration menu is transmitted to the computer system 2 as indicated by an arrow (2) of the basis sequence shown in Fig. 28. As shown in Fig. 25(a), the request for a user-registration menu includes a request identification number and the IP address of the user terminal 6#i or the phone number of the user terminal 6#i.

[0024]

At a step S2 of the flowchart shown in Fig. 11, the user management unit 20 carries out the following processing. The request for a user-registration menu is

transmitted to the user service reception processing unit 152 by way of the user-interface processing unit 150 shown in Fig. 5. At a step S20 of the flowchart shown in Fig. 12, the user-interface processing unit 150 forms a judgment as to whether or not the request for a user-registration menu has been received. If the request for a user-registration menu has been received, the flow of the processing goes on to a step S22. If the request for a user-registration menu has not been received, on the other hand, the flow of the processing goes on to a step S24.

[0025]

Since the request for a user-registration menu has been received, in this case, the flow of the processing goes on to the step S22. At the step S22, the registration-menu output processing unit 156 shown in Fig. 5 transmits a user-registration menu to the user terminal 6#i by way of the user-interface processing unit 150 as indicated by an arrow (6) of the basic sequence shown in Fig. 28. As indicated by an arrow (8) of the basic sequence shown in Fig. 28, the user-registration menu is transmitted to the user terminal 6#i by way of a mobile-communication enterprise. As shown in Fig. 24(a), a packet of the user-registration menu includes an

identification number, the IP address of the user terminal 6#i or the phone number of the user terminal 6#i and the user-registration menu itself. The IP address or the telephone number is included in a packet used for making a request for the user-registration menu.

[0026]

At a step S254 of the flowchart shown in Fig. 17, the terminal-registration processing unit 90 forms a judgment as to whether or not a user-registration menu has been received. If a user-registration menu has been received, the flow of the processing goes on to a step S256. If a user-registration menu has not been received, on the other hand, the flow of the processing goes on to a step S258. At the step S256, the terminal-registration processing unit 90 displays the user-registration menu on the display unit 86. As shown in Fig. 34, the userregistration menu displays information on the user, categories of information to be provided to the user as desired by the user and a menu operation portion. The information on the user includes a user name and a password. The categories of information to be provided to the user as desired by the user include information on traffic, information on shopping, information on events and information on restaurants. The menu operation

portion includes REGISTER, CANCEL, URGENT, LIST and HELP buttons. The URGENT button is operated to indicate that the desired information is needed now. The LIST button is operated to display detailed information for checking registered information. The HELP button is operated to display guidance information.

[0027]

The user enters user-registration information including a user name, a password and an information category in accordance with a user-registration menu appearing on the display unit 86 and then presses the REGISTER button. At the step S258 of the flowchart shown in Fig. 17, a judgment is formed to determine whether or not the user-registration information has been entered. If the user-registration information has been entered, the flow of the processing goes on to a step S259. If the user-registration information has not been entered, on the other hand, the flow of the processing goes on to a step S260. Since the user-registration information has been entered, in this case, the flow of the processing goes on to the step S259. At the step S259, a userinformation input packet shown in Fig. 25(b) is transmitted to the computer system 2 as indicated by an arrow (10) of the basic sequence shown in Fig. 28. The

user-information input packet typically includes a request identification number, the IP address of the user terminal 6#i or the phone number of the user terminal 6#i, the password, the user name and the information category. As indicated by an arrow (12) of the basic sequence shown in Fig. 28, the user-information input packet is transmitted to the computer system 2 by way of the mobile-communication enterprise.

[0028]

At the step S24 of the flowchart shown in Fig. 12, a judgment is formed to determine whether or not the user-registration information has been received. If the user-registration information has been received, the flow of the processing goes on to a step S26. If the user-registration information has not been received, on the other hand, the processing is ended. Since the user-registration information has been received, in this case, the flow of the processing goes on to the step S26. At the step S26, the registration-service analysis processing unit 154 shown in Fig. 5 forms a judgment as to whether or not the user is a new user. If the user is a new user, the flow of the processing goes on to a step S28. If the user is not a new user, on the other hand, the flow of the processing goes on to a step S30. The

judgment as to whether or not the user is a new user is formed by finding out whether or not the same user name has been registered in the user master database 170 of the user-information database 26.

[0029]

At the step S28 of the flowchart shown in Fig. 12, the user name, the password and the IP address or the phone number are registered in the user master database 170. The user name and the information category are registered in the user registration service category master database 172 for the category. At the step S30, the password included in the user-registration information is compared with a password already registered in the user-information database 26 to determine whether or not the password included in the user-registration information is valid. If the password included in the user-registration information is found valid, the flow of the processing goes on to a step S31 at which the modified user-registration information is registered in the user-information database 26. Then, the flow of the processing goes on to a step S32. If the password included in the user-registration information is found invalid, on the other hand, the flow of the processing goes on to a step S34.

[0030]

At the step S32, a packet containing a userinformation-inputting operation completion notification including an identification number, an IP address or a phone number and completion information as shown in Fig. 24(b) is transmitted to the user terminal 6#i as indicated by an arrow (14) of the basic sequence shown in Fig. 28. The notification of user-information-inputting operation completion is transmitted as indicated by an arrow (16) of the basic sequence shown in Fig. 28 to the user terminal 6#i by way of the mobile-communication enterprise. In the case of an invalid password, however, the user is requested to reenter a password at the step S34 of the flowchart shown in Fig. 12. At a step S260 of the flowchart shown in Fig. 17, a judgment is formed to determine whether or not a notification of userinformation-inputting operation completion has been received. If a notification of user-information-inputting operation completion has been received, the flow of the processing goes on to a step S262. If a notification of user-information-inputting operation completion has not been received, on the other hand, the processing is finished. At the step S262, a user-registration result like the one show in Fig. 35 is displayed on the display

unit 86.

[0031]

(2): Information Registration

At a step S400 of the flowchart shown in Fig. 20, the information-registration processing unit 60 employed in the information-provider terminal 4#i carries out processing to register information as follows. following description explains the processing to register information for a case in which the information-provider terminal is a mobile terminal. A selection menu shown in Fig. 36 is transmitted by the computer system 2 and displayed on a screen by the information-registration processing unit 60. The user is allowed to select one of operations to register, display, change and delete information. Assume that the user selects the operation to register information. At a step S420 of the flowchart shown in Fig. 21, the information-registration processing unit 60 forms a judgment as to whether or not a request for an information-registration menu has been made. If a request for an information-registration menu has been made, the flow of the processing goes on to a step S422. If a request for an information-registration menu has not been made, on the other hand, the flow of the processing goes on to a step S424. Since a request for an

information-registration menu has been made, in this case, the flow of the processing goes on to the step S422. At the step S422, the request for an information-registration menu shown in Fig. 27(a) is transmitted to the computer system 2 as indicated by an arrow (50) of the basic sequence shown in Fig. 29.

[0032]

At a step S4 of the flowchart shown in Fig. 11, the information management unit 24 carries out the following processing. At a step S150 of the flowchart shown in Fig. 13, a judgment is formed to determine whether or not a request for an information-registration menu has been made. If a request for an information-registration menu has been made, the flow of the processing goes on to a step S152. If a request for an information-registration menu has not been made, on the other hand, the flow of the processing goes on to a step S154. At the step S152, a packet of the information-registration menu is transmitted to the information-provider terminal 4#i by way of the mobile-communication enterprise as indicated by an arrow (52) of the basic sequence shown in Fig. 29. As shown in Fig. 26(a), the packet of the informationregistration menu includes an identification number, an IP address of or a phone number and the informationregistration menu itself.

[0033]

At a step S424 of the flowchart shown in Fig. 21, a judgment is formed to determine whether or not an information-registration menu has been received. If an information-registration menu has been received, the flow of the processing goes on to a step S426. If an information-registration menu has not been received, on the other hand, the flow of the processing goes on to a step S428. At the step S426, the information-registration menu shown in Fig. 37 is displayed on the display unit 54. The screen of the information-registration menu is identical to the screen of the user-registration menu. Ιf information on shopping is entered as a category of information provided by the information provider, for example, an information menu shown in Fig. 38 is displayed. If category information in the information menu is entered, a detailed-information input screen shown in Fig. 39 is displayed.

[0034]

The information provider enters detailed information like one shown in Fig. 39. As the operation to enter the detailed information is completed, the information provider clicks a REGISTER button. At a step

S428 of the flowchart shown in Fig. 12, a judgment is formed to determine whether or not information to be provided has been entered. If information to be provided has been entered, the flow of the processing goes on to a step S430. If information to be provided has not been entered, on the other hand, the flow of the processing goes on to a step S432. At the step S430, the information-registration processing unit 60 transmits inform to be provided to the computer system 2 as indicated by an arrow (54) of the basic sequence shown in Fig. 29. As shown in Fig. 27(b), the information to be provided includes a password, category information and detailed information.

[0035]

The provided information is transferred to the information-provider registration reception processing unit 202 by way of the information-provider interface processing unit 200 shown in Fig. 6. At a step S154 of the flowchart shown in Fig. 13, the information-provider registration reception processing unit 202 forms a judgment as to whether or not the provided information has been received. If the provided information has been received, the flow of the processing goes on to a step S156. If the provided information has not been received,

on the other hand, the processing is ended. At the step S156, the registration-information analysis processing unit 206 shown in Fig. 6 checks the provided information, registers the information on the information provider in the information-provider master database 210 as indicated by an arrow (55) of the basic sequence shown in Fig. 29 and registers the provided information of the information provider in the registration-information category master database 212 for the category of the provided information. At a step S158 of the flowchart shown in Fig. 13, a provided-information-inputting completion notification shown in Fig. 26(b) is reported to the information-provider terminal 4#i by way of the mobile-communication enterprise as indicated by an arrow (56) of the basic sequence shown in Fig. 29.

[0036]

At a step S432 of the flowchart shown in Fig. 21, a judgment is formed to determine whether or not the provided-information-inputting completion notification has been received. If the provided-information-inputting completion notification has been received, the flow of the processing goes on to a step S434. If the provided-information-inputting completion notification has not been received, on the other hand, the processing is ended.

At the step S434, an information-registration result shown in Fig. 40 is displayed. If the information provider is a stationary terminal, operations indicated by arrows (70) to (76) are carried out. It is to be noted that, if the information-provider terminal 4#i is a mobile terminal, information on the position of the information-provider terminal 4#i is transmitted to the computer system 2 by execution of the same procedure as a procedure of transmitting information on the position of a user terminal 6#i. The procedure of transmitting information on the position of a user terminal 6#i to the computer system 2 will be described later. The position management unit 22 updates the information on the position of the information-provider terminal 4#i with the most recent information received as such. The information on the position of the information-provider terminal 4#i is stored in the information-provider master database 210.

[0037]

(3): Modification of Information Display

The information provider is capable of changing provided information. At a step S402 of the flowchart shown in Fig. 20, a process to change an information display is carried out. Detailed operations of the

process to change an information display are carried out at steps S450 to S464 of the flowchart shown in Fig. 22. If the information provider is a mobile terminal, the following processing is carried out. As indicated by an arrow (80) of the basic sequence shown in Fig. 30, the information-provider terminal 4#i transmits an information-display-changing menu request shown in Fig. 27(f) to the computer system 2. As indicated by an arrow (82), the computer system 2 transmits an informationdisplay-changing menu shown in Fig. 26(f) to the information-provider terminal 4#i. The informationprovider terminal 4#i displays an information-displaychanging menu screen shown in Fig. 41. The information provider changes details of the provided information as shown in Fig. 42. As indicated by an arrow (84) of the basic sequence shown in Fig. 30, the information-provider terminal 4#i transmits a provided-information-change request shown in Fig. 27(d) to the computer system 2. indicated by an arrow (86), the computer system 2 transmits a provided-information-completion notification shown in Fig. 26(d) to the information-provider terminal The information-provider terminal 4#i displays a provided-information-change completion notification screen shown in Fig. 43. As indicated by an arrow (87),

the computer system 2 updates the provided information stored in the information-provider master database 210 with the changes in provided information.

If the information provider is a stationary terminal, on the other hand, operations indicated by arrows (90) to (95) are carried out.

[0038]

(4): Deletion of Information

The information provider is capable of deleting provided information. At a step S404 of the flowchart shown in Fig. 20, a process to delete provided information is carried out. Detailed operations of the process to delete provided information are carried out at steps S480 to S494 of the flowchart shown in Fig. 23. process to delete provided information is similar to the process to change provided information. If the information provider is a mobile terminal, operations indicated by arrows (100) to (106) of the basic sequence shown in Fig. 31 are carried out. If the information provider is a stationary terminal, on the other hand, operations indicated by arrows (110) to (116) are carried In the case of the process to delete provided information, an information deletion screen shown in Fig. 44, detailed-information-deletion screens shown in Figs.

45 to 46 and an information deletion completion screen shown in Fig. 47 are displayed.

[0039]

- (5): Position Inference
- (a): Position Inference for a GPS Terminal

When the user operates the user terminal 6#i to specify a SERVICE button appearing on the screen shown in Fig. 34, as indicated by an arrow (150) of the basic sequence shown in Fig. 32, the user terminal 6#i transmits a service-start request shown in Fig. 25(f) to the computer system 2. The user terminal 6#i carries out a process to register a position at a step S202 of the flowchart shown in Fig. 16 as follows. At a step S300 of the flowchart shown in Fig. 18, a judgment is formed to determine whether or not a GPS function is embedded. If a GPS function is embedded, the flow of the processing goes on to a step S302. If a GPS function is not embedded, on the other hand, the flow of the processing goes on to a step S306.

[0040]

At the step S302, the GPS-apparatus unit 100 shown in Fig. 4 measures its own position. Then, at the next step S304, a positional information notification message shown in Fig. 25(c) is transmitted to the computer system

2 as indicated by an arrow (152) of the basic sequence shown in Fig. 32. The positional information notification message includes a request identification number, an IP address or a phone number, positional information comprising a latitude and a longitude and time information. The positional information is supplied to the user-positional information reception processing unit 160 by way of the user-interface processing unit 150 shown in Fig. 5. At a step S52 of the flowchart shown in Fig. 14, the user-positional information reception processing unit 160 stores the positional information in the user-location master database 180. The userpositional information history management processing unit 162 reads out the positional information from the userlocation master database 180 and stores the information in the user-location information history database 182. [0041]

[0041]

(b): Position Inference for Non-GPS Terminal

Much like a GPS terminal, a non-GPS terminal makes a request for a start of a service as indicated by an arrow (200) of the basic sequence shown in Fig. 33. In the case of a non-GPS terminal, however, positional information is reported to the computer system 2 by requesting the mobile-communication enterprise to inform

the computer system 2 of the positional information at a step S306 of the flowchart shown in Fig. 18. As shown in Fig. 25(e), the positional information includes a request identification number and an IP address or a phone number. The terminal's latitude and longitude included in the positional information are passed on by the mobile-communication enterprise to the computer system 2.

[0042]

At a step S54 of the flowchart shown in Fig. 14, a moving direction and a movement time are computed by inference as follows. The inference-formula generation processing unit 230 shown in Fig. 7 generates an inference formula from map information stored in the mapinformation master database 232 and stores the inference formula into the inference-formula master database 234. In the generation of the inference formula, the latitudes and the longitudes of a start point and an end point are quantized. The start point is regarded as an origin in a 2-dimensional space. Assume for example that the present position is in the vicinity of a station closest to a bustling street. An inference formula predicting the user's movement from the present position serving as the start point of the movement is a formula stored in the inference-formula master database 234. If there are a

plurality of candidates for the direction of the movement, a plurality of inference formulas should also have been stored in the inference-formula master database 234 as well. In addition, an inference formula is created in accordance with a plurality of pieces of map information with different scales for each start point.

[0043]

The inference formula is typically an equation expressing a relation between y and x with the start point taken as the origin (0, 0) where x and y are the coordinates of a measured position (x, y). In this case, the x axis is the axis extending from the origin (0, 0) in the East direction whereas the y axis is the axis extending from the origin (0, 0) in the North direction. An x coordinate of a position (x, y) is a distance from the origin (0, 0) to the position (x, y) along the x axis whereas a y coordinate of a position (x, y) is a distance from the origin (0, 0) to the position (x, y) along the y axis. In addition, the map information in use has a variety of scales ranging from a fine scale to a coarse one.

[0044]

Assume for example that map information having a fine scale is used. In this case, an inference formula is

provided for each branch point such as a point of intersection. If map information having a coarse scale is used, on the other hand, an inference formula is provided only for each big branch point such as a branch point on a trunk road as an inference formula expressing a rough direction. Map information having a relatively coarse scale is used for a high-speed movement of a car or a train. On the other hand, map information having a relatively fine scale is used for a low-speed movement such as a walk of a strolling user carrying a mobile terminal. In this way, the position of a mobile terminal can be inferred with a high degree of accuracy.

[0045]

The user-present-positional information determination processing unit 260 shown in Fig. 8 determines the next location of a user from the user-location information history database 182 and stores information on the location in the user present location database 280. The inference-formula-candidate extraction determination processing unit 262 extracts an inference formula or a plurality of inference formulas from the inference-formula master database 282 and stores the extracted inference formulas in the candidate inference-formula database 286. The extracted inference formulas

are each a candidate inferred to be a candidate that will be probably used on the basis of information stored in the user present location database 280. A candidate inference formula is typically a formula, the origin of which coincides with the present location of the user, or a formula expressing points including one coinciding with the present location of the user. It is to be noted that, if a candidate inference formula is not found, an inference formula is derived from an inference algorithm to be described later.

[0046]

The user-displacement-position history processing unit 264 shown in Fig. 8 computes a positional displacement from the user's immediately preceding location to a next location on the basis of the user present location database 280 and stores the displacement in the user location displacement database 284. The inference-formula determination processing unit 266 finds information such as the polarity of a continuous positional displacement representing changes in user positional information from the positional displacements stored in the user location displacement database 284. The inference-formula determination processing unit 266 then forms a judgment on validity of the candidate

inference formula, determines a valid candidate inference formula and stores the determined candidate inference formula in the determined-inference-formula database 288. It is to be noted that, in order to determine an inference formula, at least 2 changes in positional information are required.

[0047]

In an inference mechanism shown in the diagram of Fig. 48, the horizontal axis represents the lapse of time (T) and the horizontal axis represents allowed values (B). Allowed values represent a range of allowed discrepancies relative to values given by an inference formula. That is to say, a pair of allowed values defines inference's allowable upper limit and allowable lower limit. The allowable upper limit is the upper limit of the range of allowed discrepancies and the allowable lower limit is the lower limit of the range of allowed discrepancies. If the displacement is between allowable upper limit and allowable lower limit of the inference formula, the movement of the user is inferred as a movement in a direction conforming to the inference formula.

[0048]

To put it concretely, a judgment on the validity of a candidate inference formula is formed as follows.

Assume for example that y = ax is a candidate inference formula, the allowable upper limit is expressed by y = ax + b where b > 0 and the allowable lower limit is expressed by y = ax-b where b > 0. That is to say, + b is the value of the allowable upper limit and -b is the value of the allowable lower limit. In this case, if a difference between the y-coordinate value given by the candidate inference formula and the y-coordinate value of the user at a time T is within the range of allowable values, the movement of the user can be inferred as a movement in a direction conforming to the inference formula. Since the inference formula is a quadratic function expressing a relation between the position of a mobile information terminal and the time, the movement speed of the user can also be found with ease.

[0049]

Assume for example that the user is at positions A0, A1 and A2 at times t0, t1 and t2 respectively. In this case, since the displacements are between allowable upper limit and allowable lower limit of the inference when the user moves from $A0 \rightarrow A1 \rightarrow A2$, the movement of the user can be inferred as a movement in a direction conforming to the inference formula. As another example, assume that the user is at positions B0, B1, B2 and B3 at times t0,

t1, t2 and t3 respectively. In this case, since the displacements are beyond allowable range between the upper limit and the lower limit of the inference when the user moves along a route of $B0 \rightarrow B1 \rightarrow B2 \rightarrow B3$, the movement of the user cannot be judged to be a movement in a direction conforming to the inference formula. It is to be noted that the user can be inferred to be in a stationary state between in a period between times t2 and t3 since there is no displacement between the positions B2 and B3.

[0050]

The above description explains an inference mechanism for a case in which a proper inference formula is not stored in the inference-formula master database 234. In order to apply inference appropriate for a loop road or a curved road, a larger number of inference formulas is required. In the inference mechanism shown in Fig. 48, the inference formula is assumed to be a linear equation. In general, however, an ordinary road or an ordinary route is a curved road or a curved route respectively, and has a plurality of points of intersection in some cases. In such a case, it is difficult to find an inference formula in advance. In order to solve this problem, an inference formula is set

from locations of the user by using a general inference mechanism shown in Fig. 49. For each of positions Pi located at equal time intervals, positional information is reported and recorded.

[0051]

(i): An inference formula y = alx + bl is defined on the basis of positions P0, P1 and P2 at times t0, t1 and t2 respectively. In accordance with a concept taken as a basis for finding the coefficients al and bl of the inference formula y = alx + bl, the point P0 (0, 0) is taken as a start point and the inference formula is regarded as an equation representing a linear line passing through the point P0 (0, 0) as well as the middle point ((x1 + x2)/2, (y1 + y2)/2)) between the points P1 and P2.

[0052]

(ii): Next, a next inference formula y = a2x + b2 is defined on the basis of positions P1, P2 and P3 at times t1, t2 and t3 respectively in the same way by taking the point P1 as a start point this time. That is to say, by the same token, the coefficients a2 and b2 of the inference formula y = a2x + b2 are found by regarding the inference formula as an equation representing a linear line passing through the point P1 as well as the middle

point between the points P2 and P3.

[0053]

(iii): Subsequently, while shifting the third point Pi, a subsequent inference formula y = aix + bi is defined on the basis of positions P_{i+1} , P_i and P_{i-1} where P_{i+1} is the most recent position, P_i is a position preceding the most recent position P_{i+1} and P_{i-1} is a position preceding the point P_i .

[0054]

By defining inference formulas on the basis of information on points being shifted, that is, information obtained from a mobile information terminal as described above, it is possible to predict a positional displacement of the mobile information terminal moving through any points on a road or a route.

[0055]

The inference mechanism shown in Fig. 50 is a mechanism for defining an inference formula by application of a partial derivative. As an example, the figure shows a case in which a road has a grid-like shape. As shown in Fig. 50, inference formulas y = a1x + b1, y = a2x + b2, y = a3x + b3 and y = a4x + b4 are defined in the same way as the inference mechanism shown in Fig. 49. [0056]

- (i): An inference formula y = anx + bn is defined from P_{n-1} , P_n and P_{n+1} where P_{n+1} is the most recent position. [0057]
- (ii): If there is a drastic variation in an value where an is the gradient of the defined inference formula, that is, if the gradient of an inference formula defined at a point of time is negative (an < 0) while the gradient of an inference formula defined at the following point of time is positive $(a_{n+1} > 0)$, for example, it is possible to conceive a model wherein the mobile information terminal is moving from position to position along a grid-like road like one shown in Fig. 34. In such a case, by defining an inference formula for each positional displacement and, at the same time, by defining the found inference formula by application of a partial derivative and on the basis of all positional information stored in the past, it is possible to show the polarity (or the trend) of the positional displacements of the mobile information terminal. In the case of the inference mechanism shown in Fig. 50, the inference formula y = aix+ bi shows the polarity (or the trend) of the positional displacements of the mobile information terminal. It is thus possible to show the polarity (or the trend) of the positional displacements by defining an inference formula

for each positional displacement and, at the same time, by defining the inference formula through application of a partial derivative and on the basis of all past positional displacements. By using such means, it is possible to infer that a movement is a movement along a curved road or a grid-like road.

[0058]

The user-displacement adequacy check processing unit 300 shown in Fig. 9 forms a judgment as to whether or not the user's positional displacement stored in the user location displacement database 284 is a displacement based on an inference formula stored in the determined-inference-formula database 288. If the positional displacement is not based on an inference formula, the inference-formula-candidate extraction determination processing unit 262 employed in an inference-formula determination processing management unit 250 shown in Fig. 8 is requested to extract a new inference formula for the user. As requested, the inference-formula-candidate extraction determination processing unit 262 extracts a new inference formula and stores the formula in the candidate inference-formula database 286.

[0059]

Assume for example that inference formulas A and B

have been determined. Inference formula A takes a relatively coarse map with a large scale factor as a reference whereas inference formula B takes a relatively fine map with a small scale factor as a reference. In this case, if the user carrying the mobile information terminal is moving at a high speed, it is generally assumed that there is a case in which the positional displacement of the user comes off inference formula B used for predicting a positional displacement of the user.

[0060]

If the user carrying the mobile information terminal is moving at a low speed, on the other hand, an inference formula taking a fine map with a small scale factor as a reference is determined to be an inference formula for predicting a positional displacement of the user. The inference-formula determination processing unit 266 shown in Fig. 8 selects an inference formula among candidates for the inference formula, which are read out from the user location displacement database 284, and stores the selected inference formula in the determined-inference-formula database 288. The validity of this new inference formula is again checked by the user-displacement adequacy check processing unit 300. As described above, the direction of the movement of the

user and the movement time are inferred. [0061]

(6): Determination of Information on an Information
Provider

At a step S56 of the flowchart shown in Fig. 14, the area-information database 32 (the map-information master database 232) and the information-provider database 30 (the information-provider master database 210 and the registration-information category master database 212) are searched for information corresponding to the moving direction and the movement time. The information-provider-location determination processing unit 270 shown in Fig. 8 finds locations of the information provider from the map-information master database 232 and the information-provider master database 210, and stores information on the locations of the information provider in the information-provider location database 290.

[0062]

The information-provider-candidate extraction determination processing unit 272 extracts information providers on the basis of the user's present position stored in the user present location database 280 and on the basis of an information category desired by the user, locations of information providers and categories of

information provided by the information providers, and stores the extracted information providers in the candidate information-provider database 292. The information-provider determination processing unit 274 shown in Fig. 8 determines an information provider in an area surrounding the mobile information terminal's position predicted by an inference formula stored in the determined-inference-formula database 288 among those stored in the candidate information-provider database 292 and stores the determined information provider in the information-provider database 294. A method for determining such an information provider comprises the steps of:

- (i): Regarding the inference formula as an equation representing a regression straight line.
- (ii): Finding distances (residuals) to the location of each information provider existing in the vicinity of the mobile information terminal's moving destination predicted to be in an allowable range determined for the inference formula by adoption of the least-square method.
- (iii): Determining that an information provider is located at the mobile information terminal's moving destination predicted by the reference formula if the residual found by adoption of the least-square method for

the information provider is in a range determined for the inference formula.

[0063]

The distribution-order determination processing unit 302 shown in Fig. 9 determines a distribution priority order of selected information providers and stores the distribution priority order in the distribution information-provider database 312. The distribution priority order is determined on the basis of typically contracts made with the information providers. [0064]

(7): Information Display Execution Processing

At a step S58 of the flowchart shown in Fig. 14, the Information-distribution execution processing unit 306 employed in the user management unit 20 and shown in Fig. 9 edits an information menu on the basis of an information category read out from the user-information database 26 (the user registration service category master database 172). Then, at the next step S60, an information menu shown in Fig. 24(c) is transmitted as indicated by an arrow (154) of the basic sequence shown in Fig. 32 and an arrow (204) shown in Fig. 33. At a step S320 of the flowchart shown in Fig. 19, the information display execution processing unit 92 shown in Fig. 4

forms a judgment as to whether or not the information menu has been received. If the information menu has been received, the flow of the processing goes on to a step S322. If the information menu has not been received, on the other hand, the flow of the processing goes on to a step S328. At the step S322, the information menu is displayed. The information menu typically includes categories registration by the user. Examples of the categories are information on traffic, information on trains and buses, information on shopping, information on events and information on concerts. Then, at the next step S324, a judgment is formed to determine whether or not selected information has been received. selected information has been received, the flow of the processing goes on to a step S326. If the selected information has not been received, on the other hand, the flow of the processing goes on to a step S328. At the step S326, the selected information shown in Fig. 25(d) is transmitted to the computer system 2 as indicated by an arrow (156) of the basic sequence shown in Fig. 32 and an arrow (206) of the basic sequence shown in Fig. 33. [0065]

At a step S100 of the flowchart shown in Fig. 15, the user service reception processing unit 152 shown in

Fig. 5 forms a judgment as to whether or not the selected information has been received from the user-interface processing unit 150. If the selected information has been received, the flow of the processing goes on to a step S102. If the selected information has not been received, on the other hand, the processing is ended. At the step S102, detailed information corresponding to the selected information is extracted from the distribution information-provider database 312 on the basis of the user's inferred position stored in the target-user database 310.

[0066]

To be more specific, if the selected information is information on traffic, the detailed information is information on traffic jams for a direction in which the user is moving forward. If the selected information is information on trains and buses, the detailed information includes information on arrival times of a vehicle, on which the user is riding, and information on places for changing trains or buses on which the user is riding. If the selected information is information on resort, the detailed information includes information on parking lots, information on seaside house and information on restaurants in a specific area on the way for a direction

in which the user is moving forward. At a step S104 of the flowchart shown in Fig. 15, the detailed information shown in Fig. 24(d) is transmitted to the user terminal 6#i by way of the Information-distribution execution processing unit 306 and the user-interface processing unit 150, which are shown in Fig. 9, as indicated by an arrow (158) of the basic sequence shown in Fig. 32 and an arrow (208) of the basic sequence shown in Fig. 33. Then, at the next step S106 of the flowchart shown in Fig. 15, the selected category information, the distribution time and the number of users to which the detailed information is distributed are recorded in the distribution log database 314.

[0067]

At a step S328 of the flowchart shown in Fig. 19, a judgment is formed to determine whether or not the detailed information has been received. If the detailed information has been received, the flow of the processing goes on to a step S330. If the detailed information has not been received, on the other hand, the processing is ended. At the step S330, the detailed information is displayed. To be more specific, if the selected information is information on traffic, what is displayed as the detailed information is information is information on traffic

jams for a direction in which the user is moving forward. If the selected information is information on trains and buses, what are displayed as the detailed information include information on arrival times of a vehicle, on which the user is riding, and information on places for changing a train or a bus on which the user is riding. If the selected information is information on resort, what are displayed as the detailed information include information on parking lots, information on seaside house and information on restaurants in a specific area on the way for a direction in which the user is moving forward. As an alternative, what are displayed as the detailed information include information on buying at a bargain at a department store or the like existing on the way for a direction in which the user is moving forward, information on seasonal bargains at such a department store and information on bargain coupons issued by such a department store.

[0068]

If the user further selects a specific item among items of the detailed information, the selected item is transmitted from the user terminal 6#i to the computer system 2 and received by the computer system 2. Assume for example that a coupon item is selected from the

detailed information. In this case, detailed information corresponding to the coupon item is retrieved from the distribution information-provider database 312 and transmitted to the user terminal 6#i by way of the Information-distribution execution processing unit 306 and the user-interface processing unit 150. Typically, the transmitted detailed information is information on coupons.

[0069]

At a step S8 of the flowchart shown in Fig. 11, the information-distribution management unit 25 carries out the following processing. At a step S106 of the flowchart shown in Fig. 15, the following processing is carried out. The information-provider analysis processing unit 354 saves the user's response to distributed information such as a selected coupon item in the user response result master database 378. The user analysis processing unit 352 shown in Fig. 10 analyzes the user's favorites stored in the distribution log database 314 and records a result of the analysis in the user analysis log database 380. The information-provider analysis processing unit 354 analyzes information providers stored in the user response result master database 378 and the distribution information-provider database 312, being related to the

favorites of the user, and records a result of the analysis in the information-provider analysis log database 382.

[0070]

At a step S108 of the flowchart shown in Fig. 15, the following processing is carried out. The responseattribute analysis processing unit 356 analyzes attributes stored in the user response result master database 378 and the distribution log database 314, and records a result of the analysis in the responseattribute analysis log database 384. The analyzed attributes include the length of time to the user's response to distributed information and next positional information that gets a response. The analysis-result edit processing unit 358 finds favorites for improving the effects of notification using priority levels of an information-providing menu and the contents of provided information, and stores a result of the analysis in the analysis result database 386. The priority levels of an information-providing menu and the contents of provided information are stored in the user analysis log database 380, the information-provider analysis log database 382 and the response-attribute analysis log database 384.

[0071]

The analysis-result-report-writing processing unit 362 creates a report 388 from data stored in the analysis result database 386. At a step S110, on the basis of the report 388, a result of the favorite calculation is reflected in the user information. The analysis-result communication processing unit 360 transmits an analysis result stored in the analysis result database 386 to the information-provider terminal 4#i by way of the information-provider interface processing unit 200.

[0072]

(8): User's Request for Urgent Providing of Information

Fig. 51 is a block diagram showing functions, which

are carried out when the user makes a request for urgent transmission of information. When the user desires information now, the user needs to press the URGENT button appearing on the screen shown in Fig. 34 and enter a special number in order to indicate a level of urgency. The information-provider-candidate extraction determination processing unit 272 determines candidate information providers on the basis of the user's present position stored in the user present location database 280, the user's desired information category stored in the user registration service category master database 172, the information providers' present positions stored in

the information-provider location database 290 and provided-information categories stored in the registration-information category master database 212, and stores the candidate information providers in the candidate information-provider database 292. The information-provider determination processing unit 274 determines an information provider proper for the degree of urgency, that is, the level of the request made by the user, and stores the determined information provider in the information-provider database 294.

[0073]

If a condition for information specified in a request made by the user and/or a condition for permissiveness of the request are lenient, the range of allowance for a distance from the present location of the user to the position of a proper information provider can be considered to be a wide range, that is, it is possible to increase a radius of a circle having the present location of the user as a center point and enclosing an area in which candidate information providers are located. If a condition for information specified in a request made by the user and/or a condition for permissiveness of the request are strict, on the other hand, the radius of such a circle is decreased. The Information-distribution

processing management unit 304 then reads out information on the determined information provider from the information-provider database 294, transmits the information to the user making the request for distribution of information and records the transmission in the distribution log database 314.

[0074]

(9): Inter-bank Financial Settlements

Fig. 52 is diagrams each showing a sequence of inter-bank financial settlement operations. To be more specific, Fig. 52(a) is a diagram showing a sequence of inter-bank financial settlement operations for a case in which the information-provider terminal is a non-mobile terminal. In this case, the computer system requests the non-mobile information-provider terminal to pay an information-provider monthly fee. The computer system requests a mobile user terminal to pay a user monthly fee through the mobile-communication enterprise. In the inter-bank financial settlement, the computer system requests an information provider and a user to pay their monthly fees through their financial-transaction institutions.

[0075]

Fig. 52(b) is a diagram showing a sequence of

inter-bank financial settlement operations for a case in which the information-provider terminal is a mobile terminal. In this case, the computer system requests the non-mobile information-provider terminal to pay an information-provider monthly fee through the mobile-communication enterprise. The computer system requests a mobile user terminal to pay a user monthly fee also through the mobile-communication enterprise. In the inter-bank financial settlement, the computer system requests an information provider and a user to pay their monthly fees through their financial-transaction institutions.

[0076]

Fig. 52(c) is a diagram showing a sequence of inter-bank financial settlement operations for a case in which the computer system also carries out network financial works and each user has an account in a network bank. In this case, the computer system requests the non-mobile information-provider terminal to pay an information-provider monthly fee. The computer system requests a mobile user terminal to pay a user monthly fee through the mobile-communication enterprise. In the inter-bank financial settlement, when the financial-transaction institution of a user requests the network

bank to make a payment, the network bank makes the payment to the financial-transaction institution and a process to make a payment to the financial-transaction institution of the computer system is carried out.

[0077]

First Embodiment

Fig. 53 is a diagram showing the configuration of an information distribution service system implemented by a first embodiment of the present invention. configuration elements of the first embodiment essentially identical to those employed in the information distribution system shown in Fig. 1 are denoted by the same reference numerals as their counterparts employed in the information distribution system. In the case of the first embodiment, user terminals 6#1 and 6#3 are each a non-GPS terminal whereas a user terminal 6#2 is a GPS terminal. The user of the user terminal 6#2 desires information on shopping such as restaurants and supermarkets. On the other hand, the user of the user terminal 6#1 desires information on areas such as information on traffic and information on accidents. The information on shopping is stored in the information-provider database 30 included in the computer system 2 as shown in Fig. 29 in the basic sequence of

operations carried out between a information-provider terminal 4#i owned by the information provider and the computer system 2 as shown in Fig. 29. In the basic sequence shown in Fig. 29, a recommended information such as information on positions, the information on shopping and information on coupons is transmitted to the computer system 2.

[0078]

On the other hand, the computer system 2 acquires area information such as traffic information and accident information, which vary from time to time, from a traffic center, and stores the information on areas in the area-information database 32. In the case of the information on areas, the locations of the areas and the contents of the information reflect the location of the information provider and information provided by the information provider. Thus, the information on areas is virtually the same as the information provided by the information provider.

[0079]

(1): GPS User Terminal 6#2

In the case of a GPS user terminal, a service is rendered in accordance with the sequence shown in Fig. 32.

The user of the GPS user terminal 6#2 desires

presentation of information on shopping. The computer system 2 derives an inference formula for predicting a moving destination from positional information of the GPS user terminal 6#2 by adoption of the inference mechanism described earlier.

[0800]

Fig. 54 is a diagram showing a screen displaying detailed information. The computer system 2 finds out a proper information provider by adoption of the leastsquare method described above and in accordance with from the position of the GPS user terminal 6#2. Then, pieces of detailed information for the information category specified by the GPS user terminal 6#2 are transmitted in a distribution order. The detailed information includes the names of department stores, supermarkets and restaurants. The department stores, the supermarkets and the restaurants pertain to the information category, which is the shopping-information category in this case. The GPS user terminal 6#2 displays the detailed information on a screen like one shown in Fig. 54. In the case of a department store, a supermarket or the like, information on a coupon and information on buying at a bargain are also distributed as well.

[0081]

(2): Non-GPS User Terminal 6#1

In the case of a non-GPS user terminal, a service is rendered in accordance with the sequence shown in Fig. 33. The user of the non-GPS user terminal 6#1 desires presentation of information on areas such as information on traffic and information on accidents. The computer system 2 acquires the area information such as the traffic information and the accident information, which vary from time to time, from a traffic center, and stores the information on areas in the area-information database 32.

[0082]

Fig. 55 is a diagram showing a screen displaying detailed information. The computer system 2 derives an inference formula for predicting a moving destination from positional information of the non-GPS user terminal 6#1, which is positional information received via the mobile-communication enterprise. The computer system 2 transmits information on an area such as information on traffic and information on accidents in accordance with the information category desired by the non-GPS user terminal 6#1. The area is an area surrounding the position of the non-GPS user terminal 6#1. The position of the non-GPS user terminal 6#1 is predicted by using

the enterprise formula. The GPS user terminal 6#1 displays the detailed area information on a screen like the one shown in Fig. 55.

[0083]

In accordance with the first embodiment described above, it is possible to easily obtain information on an area existing on the way in the moving direction without specifying a destination of the movement. In addition, even in the case of mobile information terminals existing in the same region, information on an area may or may not be distributed depending on the moving direction. Thus, the amount of distributed information can be reduced.

[0084]

Second Embodiment

Fig. 56 is a diagram showing the configuration of an information distribution service system implemented by a second embodiment of the present invention. The configuration elements of the second embodiment essentially identical to those employed in the information distribution system shown in Fig. 1 are denoted by the same reference numerals as their counterparts employed in the information distribution system. Fig. 57 is a block diagram showing functions of a computer system 450 employed in the information

distribution service system shown in Fig. 56.

Configuration elements of the computer system 450 that are essentially identical to those employed in the computer system 2 shown in Fig. 2 are denoted by the same reference numerals as their counterparts employed in the computer system 2. In addition to the functions of the position management unit 22 employed in the first embodiment, a position management unit 460 has the following additional functions:

- (i): Identify an area predicted to be a specific area, toward which users are moving, from predicted moving directions of users, and identify user terminals 6#i moving to the specific area.
- (ii): Inform the mobile-communication enterprise of a map code of the specific area toward which users are intensively moving, that is, information on the specific area and the phone number or the terminal address or each user terminal inferred to be moving toward the specific area.

[0085]

Since the amount of traffic in the specific area toward which users are moving is predicted to increase, the mobile-communication enterprise is notified of the fact that the traffic will become heavier so that the

mobile-communication enterprise can take a proactive measure such as a regulation to suppress traffic congestion. For example, the mobile-communication enterprise can notify users of information on a traffic regulation so that the users avoid moving in the direction toward the area.

[0086]

Fig. 58 shows a flowchart representing processing of position management. Fig. 59 shows a user sequence chart. The user terminal 6#i transmits a request to start a service to the computer system 450 as indicated by an arrow (250) of the sequence shown in Fig. 59. The user terminal 6#i transmits a position-registration notification to the computer system 450 as indicated by an arrow (252). At a step S600 of the flowchart shown in Fig. 58, the position management unit 460 employed in the computer system 450 forms a judgment as to whether or not positional information has been received. If the positional information has been received, the flow of the processing goes on to a step S602. If the positional information has not been received, on the other hand, the processing is ended. Then, at the next step S604, a process to infer the user's moving direction and movement time is carried out by adopting the inference method

described above.

[0087]

Subsequently, at the next step S606, a judgment is formed to determine whether or not users the number of which exceeds a predetermined user count are moving in the moving direction toward the same area. If users the number of which exceeds a predetermined user count are moving in the moving direction toward the same area, the flow of the processing goes on to a step S608. If users the number of which exceeds a predetermined user count are not moving in the moving direction toward the same area, on the other hand, the flow of the processing goes on to a step S610. At the step S608, the map code of the area and the terminal address of each of the users are reported to the mobile-communication enterprise as indicated by an arrow 254 of the sequence shown in Fig. 59.

[8800]

Since the amount of traffic in the area is predicted to increase, upon reception of the map code, the mobile-communication enterprise notifies the user terminal through the terminal address that traffic will be regulated by taking a step such as limiting a traffic flow as indicated by an arrow (256) of the sequence shown

in Fig. 59. From this notification, the user terminal knows in advance that the amount of traffic at the moving destination will increase. At the step S610, an area information database is searched for information corresponding to the moving direction and the movement time. Then, at the next step S612, an information menu stored in the user database is edited on the basis of the category information. Subsequently, at the next step S614, the information menu is transmitted to the terminal.

[0089]

In accordance with the second embodiment described above, not only are the same effects as the first embodiment exhibited, but a preventive measure can also be taken in case concentration of traffic in a certain area is predicted in advance.

[0090]

Third Embodiment

Fig. 60 is a diagram showing the configuration of an information distribution service system implemented by a third embodiment of the present invention. The configuration elements of the third embodiment essentially identical to those employed in the information distribution system shown in Fig. 1 are denoted by the same reference numerals as their

counterparts employed in the information distribution system. Fig. 61 is a block diagram showing functions of a computer system 500 employed in the information distribution service system shown in Fig. 60.

Configuration elements of the computer system 500 that are essentially identical to those employed in the computer system 2 shown in Fig. 2 are denoted by the same reference numerals as their counterparts employed in the computer system 2. In addition to the functions of the position-management unit employed in the first embodiment, a position management unit 510 has the following additional functions:

- (i): Form a judgment as to whether or not a user is riding on a vehicle such as a train or a bus on the basis of data stored in a vehicle operation information database included in the area-information database 32, a moving direction and a movement time, and identify what kind of vehicle is used if the user is riding on a vehicle.
- (ii): Identify what vehicle the user is riding on, on the basis of data stored in a vehicle operation information database.
- (iii): Edit an information menu including an arrival time of the identified vehicle and information on an area in

which a destination station of the vehicle is located. [0091]

The vehicle operation information database included in the area-information database 32 includes route information showing operation routes and an operation time table of each route. The route information is information on locations located on a contiguous line and information on allowable displacements. Examples of the contiguous line are a trunk road, an express way and a rail road. Provided for each vehicle running through a route, operation information for the route includes the name of each place at which the vehicle will arrive and the geographical location of such a place as well as an operation time, that is, a time of arrival at the place. [0092]

Fig. 62 shows a flowchart representing a processing of position management. Fig. 63 is a diagram showing a screen displaying detailed information. At a step S700 of the flowchart shown in Fig. 62, the position management unit 510 forms a judgment as to whether or not positional information has been received. If the positional information has been received, the flow of the processing goes on to a step S702. If the positional information has not been received, on the other hand, the processing is

ended. Then, at the next step S704, a process to infer the user's moving direction and movement time is carried out by adopting the inference mechanism described above. Subsequently, at the next step S706, a judgment is formed to determine whether or not the moving direction is to be compared with the operation route of a vehicle. If the moving direction is to be compared with the operation route of a vehicle, the flow of the processing goes on to a step S708. If the moving direction is not to be compared with the operation route of a vehicle, on the other hand, the flow of the processing goes on to a step S714. At the step S708, the moving direction is compared with the operation route of a vehicle to determine whether or not the moving direction coincides with the operation route of a vehicle. If the moving direction coincides with the operation route of a vehicle, the flow of the processing goes on to a step S710. If the moving direction does not coincide with the operation route of a vehicle, on the other hand, the flow of the processing goes on to the step S714. This is because a vehicle cannot be identified.

[0093]

At the step S710, the vehicle, which the user is riding on, is identified, and the vehicle-operation data

base is searched for information on vehicle operations and information on areas. The pieces of information are then combined to be used in a work to edit an information menu. Assume for example that the vehicle is a train. In this case, the vehicle-operation database is searched for information on stations on the way to the destination and a time of arrival at the terminal station, guiding information showing transfer stations as well as information on delays caused by an accident or the like. These pieces of information are included in the information menu. In addition, the area-information database 32 is also searched for information on an area surrounding each of the stations. Such information can also be included in the information menu.

[0094]

The above description for a train is applicable to a public bus used as a vehicle. Then, at a step S712, the information menu is transmitted to the terminal. At the step S714, the area-information database is searched for data for the moving direction and the movement time. Then, at the next step S716, an information menu is edited on the basis of category information retrieved from the user database. Subsequently, at a step S718, the information menu is transmitted to the terminal. As shown in Fig. 63,

the screen displays, among others, an item for information on train changes.

[0095]

In accordance with the third embodiment described above, not only are the same effects as the first embodiment exhibited, but it is also possible to obtain travel-destination information according to operation information of a vehicle the user is riding on.

[0096]

Fourth Embodiment

Fig. 64 is a diagram showing the configuration of an information distribution service system implemented by a fourth embodiment of the present invention. The configuration elements of the fourth embodiment essentially identical to those employed in the information distribution system shown in Fig. 1 are denoted by the same reference numerals as their counterparts employed in the information distribution system. Fig. 65 is a block diagram showing functions of a computer system 550 employed in the information distribution service system shown in Fig. 64.

Configuration elements of the computer system 550 that are essentially identical to those employed in the computer system 2 shown in Fig. 2 are denoted by the same

reference numerals as their counterparts employed in the computer system 2. In addition to the functions of the position-management unit employed in the first embodiment, a position management unit 560 has the following additional functions:

- (i): Find a moving speed from information on positions along the time series and, from the moving speed, determine whether the user is walking or riding on a vehicle moving at a high speed such as an automobile.
- (ii): Select candidates for a moving destination on the basis of the moving direction of the user and on the basis of whether or not the user is riding on a vehicle. If the user is riding on a car, for example, the candidates for the moving destination are limited to locations within a distance of not longer than 10 km from the user in the moving direction.
- (iii): Edit an information menu including information on the area of each candidate for the moving destination.
 [0097]

Fig. 66 shows a flowchart representing a position-registration process. Fig. 67 is a diagram showing a screen displaying detailed information. At a step S800 of the flowchart shown in Fig. 66, the position management unit 560 forms a judgment as to whether or not

information on a position has been received. information on a position has been received, the flow of the processing goes on to a step S802. If information on a position has not been received, on the other hand, the processing is ended. At a step S804, the user's moving direction and movement time are inferred by using the inference method described earlier. Then, the flow of the processing goes on to the next step S806 to form a judgment as to whether or not the moving speed of the user is to be compared with that of a vehicle. If the moving speed of the user is to be compared with that of a vehicle, the flow of the processing goes on to a step S808. If the moving speed of the user is not to be compared with that of a vehicle, on the other hand, the flow of the processing goes on to a step S810. At the step S808, the moving speed of the user is examined to determine whether the user is walking or riding on a vehicle.

[800]

At the step S810, the area-information database 32 is searched for information appropriate for the moving direction and the movement time. If the user is riding on a car, for example, the candidates for the moving destination are limited to locations within a distance of

not longer than 10 km from the user in the moving direction. If a bathing resort is selected as a candidate for the moving destination, an expected time of arrival at the bathing resort, the state of road traffic congestion and information on a by-road are searched for. At a place where the user is further approaching the bathing resort, the amount of additional information is increased. Examples of the additional information include an expected time of arrival at the bathing resort, the state of road traffic congestion, information on a byroad and information on available parking lots. At a place where the user is further approaching the vicinity of the bathing resort, information on available parking lots, information on the bathing resort and information on restaurants classified by business hour are searched for as detailed information. In addition, if there is a plurality of available parking lots, a parking lot convenient for parking a car running in the moving direction is selected at a high priority level. Fig. 67 shows information on a bathing resort, information on a parking lot close to the bathing resort, information on seaside house and information on restaurants. In the above description, a bathing resort is explained as an example. Conceivable destinations other than a bathing

resort include an amusement park, a skiing ground, a golf course and an airport.

[0099]

If the user is walking, on the other hand, the candidates for the moving destination are limited to locations within a distance of not longer than 1 km from the user in the moving direction. If a department store is selected as a candidate for the destination, an expected time of arrival at the department store and information on bargain sales are searched for as detailed information. At a place where the user is further approaching the department store, additional information is searched for as menu information. The additional information includes an expected time of arrival at the department store and information on seasonal bargain sales during a specified period of time such as a bargain-sale place, commodities sold at a bargain and their bargain prices. At a place where the user is further approaching the vicinity of the department store, information on seasonal bargain sales during a specified period of time and information on coupons are acquired as detailed information.

[0100]

In accordance with the fourth embodiment described

above, not only are the same effects as the first embodiment exhibited, but it is also possible to render a service of distributing detailed information in a range, which varies depending on whether the user is walking or riding on a vehicle.

[0101]

Fifth Embodiment

Fig. 68 is a diagram showing the configuration of an information distribution service system implemented by a fifth embodiment of the present invention. The fifth embodiment's configuration elements essentially identical to those employed in the information distribution system shown in Fig. 1 are denoted by the same reference numerals as their counterparts employed in the information distribution system. Fig. 69 is a block diagram showing functions of a computer system 600 employed in the information distribution service system shown in Fig. 68. Configuration elements of the computer system 600 that are essentially identical to those employed in the computer system 2 shown in Fig. 2 are denoted by the same reference numerals as their counterparts employed in the computer system 2. Fig. 70 is a block diagram showing functions of a informationprovider management unit 650 employed in the computer

system 600 shown in Fig. 69, which are functions carried out for a response given by the user. Figs. 71 and 72 are diagrams showing the configurations of store-management systems 610 and 620 respectively, employed in the information distribution service system shown in Fig. 68.

[0102]

Fig. 73 shows a sequence of operations carried out by the user. As indicated by an arrow (300) of the sequence shown in Fig. 73, the user terminal 6#i transmits a request for a start of a service to the computer system 600. As indicated by an arrow (304), the computer system 600 transmits an information menu to the user terminal 6#i. As indicated by an arrow (306), the user terminal 6#i transmits selected information to the computer system 600. As indicated by an arrow (308), the computer system 600 transmits detailed information to the user terminal 6#i. As indicated by an arrow (310), the user terminal 6#i transmits a response to the information notification. In this case, the distributed-information user-response reception processing unit 350 shown in Fig. 70 receives the response from the user-interface processing unit 150 and stores the response in the user response result master database 378. The response includes a result of the user's response to the

distributed information.

[0103]

A user analysis processing unit 352 analyzes a user on the basis of information stored in the user response result master database 378 and information stored in the target-user database 310, and stores a result of the analysis in the user analysis log database 380. A userdisplacement-speed computation processing unit 700 searches the user location displacement database 284 for positional displacements of the responding user, the response given by which is stored in the user response result master database 378. The positional displacements are used as a basis for finding the moving speed of the user. An inferred-distance computation processing unit 702 computes an estimated distance to the location of an information provider responded by the user, the response given by which is stored in the user response result master database 378, from information stored in the distribution information-provider database 312. An estimated-arrival-time computation processing unit 704 finds an expected time of arrival from the moving speed of the user and the estimated distance and stores the expected time of arrival in the inferred-user-arrivaltime database 750.

[0104]

A response-result-edit processing unit 680 finds an accurate expected time of arrival to the information provider from information stored in an inferred-userarrival-time database 750 and a response-attribute analysis log database 384 particularly used for storing, among other data, a time at which the user responds. response-result-edit processing unit 680 then edits items to be reported to other information providers and stores the edited item in a response-result database 722. A response-result-notification processing unit 682 transmits the response result stored in the responseresult database 722 to the information provider by way of the information-provider interface processing unit 200 as indicated by an arrow (312) of a sequence shown in Fig. The store management system 610 or 620 of the information provider receives the response result. [0105]

(a): Restaurant Serving as an Information Provider of the Store Management System 610

If the information provider is a restaurant, the provided information includes a recommended menu, a seat reservation and a parking lot reservation. On the other hand, responses shown by the user are food orders. A

response notification given by the computer system 600 includes a time at which the user reacted, the user's registered name or ID and an expected time of arrival at the restaurant in addition to the user's response itself. An information-processing apparatus 800 employed in the store management system 610 shown in Fig. 71 displays a parking lot reservation and a seat reservation on a parking lot display unit 804 and a seat display unit 806 respectively, the user's expected time of arrival and ordered food on a kitchen display unit 808 and information such as the name of the user, the number of the people in the party, the expected time of arrival and a menu of foods for reservation on a staff-room display unit 810 through a display-unit-driving control apparatus 802.

[0106]

Receiving the response notification, the store management system 610 gives a response, which shows that the response notification has been received, as indicated by an arrow 314 of the sequence shown in Fig. 73. The computer system 600 passes on the reception response received from the store management system 610 (the information provider) to the user terminal 6#i as a response notification as indicated by arrows (316). As

such, the information provider allows restaurant kitchen staffs to know the user's reserved food menu and expected time of arrival. In this case, by the information provider, collaboration between a job management system and the present invention is realized. Thus, the aim of the preparation work becomes obvious, and since the user's expected time of arrival is known, service staffs can render a service to serve customers smoothly. That is to say, the work efficiency of the restaurant business can be improved and the profit can hence be increased. In addition, the user no longer worries about the availability of a parking lot and the availability of a seat and can expect that the time to wait for the foods to become ready is reduced substantially.

[0107]

(b): A Retailer/Distributor Serving as the Information Provider of the Store Management System 620

If the information provider is a vendor, the provided information is a message saying: "A discount rate varying depending on a time between the user's expected time of arrival at the store and a commodity-purchasing time is applied." For example, "a discount rate of 50%, 40% or 30% is applied if a time between the user's expected time of arrival at the store and a

commodity-purchasing time is no more than 10 minutes, 20 minutes or 30 minutes respectively," or a message saying: "If this is clicked, an expected time of arrival at the store and an electronic coupon to be submitted to the cashier are displayed. So, submit the coupon to the cashier when you make a purchase payment." As the user's response to such provided information, the user clicks a predetermined portion of the screen. A response notification issued by the computer system 600 includes a time at which the user reacted and an expected time of arrival at the store in addition to the user's response itself. A sales management processing system 820 employed in the store management system 620 shown in Fig. 72 informs an inventory management system 822 and a POS management system 824 of a commodity to which a discount rate is applicable as indicated in the response notification.

[0108]

Receiving the response notification, the store management system 620 gives a response, which shows that the response notification has been received, as indicated by an arrow 314 of the sequence shown in Fig. 73. The computer system 600 passes on the reception response received from the store management system 620 (the

information provider) to the user terminal 6#i as a response notification as indicated by arrows (316). For example, assume that the expected time of arrival at the store is 00:00 to 00:00. In this case, if the time of a payment for a purchased commodity B to the cashier is within 10 minutes, 20 minutes or 30 minutes from the expected time of arrival at the store, a discount rate of 50%, 40% or 30% respectively is applied. When making the payment, submit what is displayed this time to the cashier.

[0109]

In addition, a technique of selling commodities in accordance with a weather forecast and/or a road condition can increase the efficiency. For example, tire chains are required due to a fall of snow in a certain area and areas in the north of the certain area. In this case, a store selling tire chains distributes information urging the user moving to those areas to make a reservation for purchasing tire chains. For a user making such a reservation, tire chains are then reserved separately from those displayed at the shop.

[0110]

As described above, the present invention specifies an enterprise, which provides information desired by a

user to the user, by predicting a moving direction of the user through adoption of an inference mechanism and identifying information providers existing in an area in the predicted moving direction. Examples of the enterprise providing information are a food and drink enterprise, a parking-lot enterprise, a retailing enterprise and a distribution enterprise. By collaboration between the present invention and a job management system, the information provider is capable of discovering a new selling technique that cannot be adopted with the conventional system and, at the same time, the management efficiency can be improved and the profit can hence be increased. That is to say, the effect of the present invention on industries is profound.

[0111]

The scope of the present invention includes the following things.

[0112]

(Appendix 1) An information distribution service system comprising a plurality of mobile information terminals, a computer system and a plurality of information-provider terminals wherein said mobile information terminals, said computer system and said information-provider terminals are connected to each other by a communication network,

said information distribution service system characterized in that:

said computer system predicts a mobile information terminal's moving destination and moving direction by inferring said mobile-information terminal's positional displacements along the time axis on the basis of information on positions of said mobile information terminal including a pre-registered information category whose information distribution service, distribution and notification are desired, and on the basis of an inference formula provided in advance with said mobile information terminal's moving direction and position; and

said computer system determines an informationprovider terminal predicted to exist at said predicted
moving destination of said mobile information terminal on
the basis of locations of information-provider terminals
pre-recording plans to distribute information as a
notification, and determines distributed and reported
information corresponding to an information category
registered in advance by said mobile information terminal
among pieces of information to be provided by said
selected information-provider terminal.

[0113]

(Appendix 2) An information distribution service system

according to appendix 1, said information distribution service system characterized in that:

said computer system is provided with an inference formula for predicting a moving direction for each geographical position with said geographical position taken as an origin on the basis of map information; and

said computer system, if existence at an origin to which an inference formula is applied is confirmed on the basis of information on positions of said mobile information terminal, infers prediction of said mobile information terminal's moving destination and moving direction on the basis of said inference formula.

[0114]

(Appendix 3) An information distribution service system according to appendix 1, said information distribution service system characterized in that each of a plurality of said inference formulas is defined on the basis of map information having a plurality of scale factors.

[0115]

(Appendix 4) An information distribution service system according to appendix 1, said information distribution service system characterized in that said computer system executes the steps of:

regarding said defined inference formula as an

equation representing a regression straight line;

finding a distance between a position represented by said reference formula and the location of said information-provider terminal by adoption of a least-square method; and

determining that an information-provider terminal exists in the vicinity of said predicted moving destination of said mobile information terminal if said distance is in an allowable range determined for said defined inference formula.

[0116]

(Appendix 5) An information distribution service system according to appendix 1, said information distribution service system characterized in that said computer system forms a judgment as to whether or not an inference formula defined on the basis of information on positions of said mobile information terminal is proper and, if said defined inference formula is found improper, a new inference formula is defined.

[0117]

(Appendix 6) An information distribution service system according to appendix 1, said information distribution service system characterized in that, if it is impossible to determine an inference formula for predicting said

mobile information terminal's moving direction and position from positional displacements of said mobile information terminal with each geographical position used as an origin on the basis of map information, said computer system finds an inference formula for predicting said mobile information terminal's most recent moving destination and most recent moving direction each time most recent information on a position of said mobile information terminal is obtained.

[0118]

(Appendix 7) An information distribution service system according to appendix 1, said information distribution service system characterized in that, if an inference formula, which is found as an equation for predicting said mobile information terminal's moving destination and moving direction each time most recent information on a position of said mobile information terminal is obtained, changes very frequently in a time series, said computer system predicts a polarity of a movement of said mobile information terminal by application of a partial derivative and on the basis of said mobile information terminal's positional information accumulated in the past.

[0119]

(Appendix 8) An information distribution service system

according to appendix 1, said information distribution service system characterized in that, if said mobile information terminal makes an urgent request for information on a place in an area at which said mobile information terminal is currently located, said computer system transmits said information based on most recent information on a position of said mobile information terminal.

[0120]

(Appendix 9) An information distribution service system according to appendix 1, said information distribution service system characterized in that said computer system executes the steps of:

informing a mobile-communication enterprise of information on a mobile information terminal moving to a position at a place in an area at and/or in said mobile information terminal's moving destination and/or moving direction predicted on the basis of an inference formula defined from information on positions of said mobile information terminal;

finding a moving speed of said mobile information terminal from positional information accumulated in the past;

informing an information-provider terminal inferred

to be a terminal located at said mobile information terminal's moving destination of an expected time of arrival of said mobile information terminal at said moving destination where said expected time of arrival is a time predicted by using an inference formula based on a present position of said mobile information terminal;

determining moving means, on which a user of said mobile information terminal is riding, from a combination of said mobile information terminal's moving speed and displacements in positional information; and

informing said mobile-information terminal of operational information obtained from an enterprise managing operations of said moving means.

[0121]

(Appendix 10) An information distribution service system according to appendix 1, said information distribution service system characterized in that said computer system receives a response to information transmitted to said mobile information terminal as a notification from said mobile information terminal and records, separates as well as analyzes said response.

[0122]

(Appendix 11) An information distribution service system according to appendix 1, said information

distribution service system characterized in that said computer system informs said information-provider terminal of a result of an analysis of said response by said mobile information terminal.

[0123]

(Appendix 12) An information distribution service system according to appendix 11, said information distribution service system characterized in that said computer system carries out a statistical analysis to improve a priority order of distributed notifications, contents of information and inference precision on the basis of a response by said mobile information terminal, attributes and category information, which have been registered by the user, and contents of a notification distributed by said information-provider terminal.

[0124]

[Effects of the Invention]

In accordance with the present invention described above, it is possible to easily obtain information on an area existing on the way in the moving direction without specifying a destination of the movement. In addition, even in the case of mobile information terminals existing in the same region, information on an area may or may not be distributed depending on the moving direction. Thus,

the amount of distributed information can be reduced. Furthermore, distribution of information and mobile information terminals can be controlled in conjunction with a mobile-communication enterprise.

[Brief Description of the Drawings]

[Fig. 1]

Fig. 1 is a diagram showing the basic configuration of an information distribution system provided by the present invention;

[Fig. 2]

Fig. 2 is a diagram showing the configuration of a computer system employed in the information distribution system shown in Fig. 1;

[Fig. 3]

Fig. 3 shows block diagrams each showing functions of an information-provider terminal employed in the information distribution system shown in Fig. 1;

[Fig. 4]

Fig. 4 shows block diagrams each showing functions of a user terminal employed in the information distribution system shown in Fig. 1;

[Fig. 5]

Fig. 5 is a block diagram showing functions

relevant to user management and position management;

[Fig. 6]

Fig. 6 is a block diagram showing functions relevant to information management;

[Fig. 7]

Fig. 7 is a block diagram showing functions relevant to position management;

[Fig. 8]

Fig. 8 is a block diagram showing other functions relevant to position management;

[Fig. 9]

Fig. 9 is a block diagram showing further functions relevant to position management;

[Fig. 10]

Fig. 10 is a block diagram showing functions relevant to information-provider management;

[Fig. 11]

Fig. 11 shows a flowchart representing processing carried out by the computer system;

[Fig. 12]

Fig. 12 shows a flowchart representing processing of user management;

[Fig. 13]

Fig. 13 shows a flowchart representing processing

of information management;

[Fig. 14]

Fig. 14 shows a flowchart representing processing of position management;

[Fig. 15]

Fig. 15 shows a flowchart representing processing of information-provider management;

[Fig. 16]

Fig. 16 shows a flowchart representing processing carried out by a user terminal;

[Fig. 17]

Fig. 17 shows a flowchart representing a process to register a user terminal;

[Fig. 18]

Fig. 18 shows a flowchart representing a process to report information on a position;

[Fig. 19]

Fig. 19 shows a flowchart representing information-display execution processing;

[Fig. 20]

Fig. 20 shows a flowchart representing processing carried out by the information-provider terminal;

[Fig. 21]

Fig. 21 shows a flowchart representing a process to

register information;

[Fig. 22]

Fig. 22 shows a flowchart representing a process to change an information display;

[Fig. 23]

Fig. 23 shows a flowchart representing a process to delete information;

[Fig. 24]

Fig. 24 is a diagram showing structures of data transmitted by the computer system to a user terminal; [Fig. 25]

Fig. 25 is a diagram showing structures of data transmitted to the computer system by a user terminal; [Fig. 26]

Fig. 26 is a diagram showing structures of data transmitted by the computer system to an information-provider terminal;

[Fig. 27]

Fig. 27 is a diagram showing structures of data transmitted to the computer system by an information-provider terminal;

[Fig. 28]

Fig. 28 is a diagram showing a basic sequence shown in a process to register user information;

[Fig. 29]

Fig. 29 is a diagram showing a basic sequence shown in a process to register provided information;

[Fig. 30]

Fig. 30 is a diagram showing a basic sequence shown in a process to modify a display of provided information; [Fig. 31]

Fig. 31 is a diagram showing a basic sequence shown in a process to delete provided information;

[Fig. 32]

Fig. 32 is a diagram showing a basic sequence shown in an information-providing service for a user terminal functioning as a GPS terminal;

[Fig. 33]

Fig. 33 is a diagram showing a basic sequence shown in an information-providing service for a user terminal functioning as a non-GPS terminal;

[Fig. 34]

Fig. 34 is a diagram showing a user-registration screen of a user terminal;

[Fig. 35]

Fig. 35 is a diagram showing a user-registration completion screen of a user terminal;

[Fig. 36]

Fig. 36 is a diagram showing a selection menu screen for an information provider;

[Fig. 37]

Fig. 37 is a diagram showing an information-registration screen for an information provider;

[Fig. 38]

Fig. 38 is a diagram showing an information menu screen of a user terminal;

[Fig. 39]

Fig. 39 is a diagram showing an information-registration screen for an information provider;

[Fig. 40]

Fig. 40 is a diagram showing a user-registration completion screen for an information provider;

[Fig. 41]

Fig. 41 is a diagram showing an information-display-changing screen (category selection) for an information provider;

[Fig. 42]

Fig. 42 is a diagram showing an information-display-changing screen (displaying detailed information) for an information provider;

[Fig. 43]

Fig. 43 is a diagram showing an information-

changing completion screen for an information provider; [Fig. 44]

Fig. 44 is a diagram showing an information-deletion screen (category selection) for an information provider;

[Fig. 45]

Fig. 45 is a diagram showing an information-deletion screen (displaying detailed information deletion) for an information provider;

[Fig. 46]

Fig. 46 is a diagram showing an information-deletion screen (displaying detailed information deletion) for an information provider;

[Fig. 47]

Fig. 47 is a diagram showing an information-deletion completion screen for an information provider;

[Fig. 48]

Fig. 48 is a diagram showing an inference mechanism;

[Fig. 49]

Fig. 49 is a diagram showing an inference mechanism for a curved road;

[Fig. 50]

Fig. 50 is a diagram showing an inference mechanism

for a grid-like road;

[Fig. 51]

Fig. 51 is a block diagram showing functions, which are carried out when the user makes a request for urgent transmission of information;

[Fig. 52]

Fig. 52 is diagrams each showing a sequence of inter-bank financial settlement operations;

[Fig. 53]

Fig. 53 is a diagram showing the configuration of an information distribution service system implemented by a first embodiment of the present invention;

[Fig. 54]

Fig. 54 is a diagram showing a screen displaying detailed information;

[Fig. 55]

Fig. 55 is a diagram showing a screen displaying detailed information;

[Fig. 56]

Fig. 56 is a diagram showing the configuration of an information distribution service system implemented by a second embodiment of the present invention;

[Fig. 57]

Fig. 57 is a block diagram showing functions of a

computer system employed in the information distribution service system shown in Fig. 56;

[Fig. 58]

Fig. 58 shows a flowchart representing processing of position management;

[Fig. 59]

Fig. 59 shows a user sequence chart;

[Fig. 60]

Fig. 60 is a diagram showing the configuration of an information distribution service system implemented by a third embodiment of the present invention;

[Fig. 61]

Fig. 61 is a block diagram showing functions of a computer system employed in the information distribution service system shown in Fig. 60;

[Fig. 62]

Fig. 62 shows a flowchart representing processing of position management;

[Fig. 63]

Fig. 63 is a diagram showing a screen displaying detailed information;

[Fig. 64]

Fig. 64 is a diagram showing the configuration of an information distribution service system implemented by

a fourth embodiment of the present invention;

[Fig. 65]

Fig. 65 is a block diagram showing functions of a computer system employed in the information distribution service system shown in Fig. 64;

[Fig. 66]

Fig. 66 shows a flowchart representing processing of position management;

[Fig. 67]

Fig. 67 is a diagram showing a screen displaying detailed information;

[Fig. 68]

Fig. 68 is a diagram showing the configuration of an information distribution service system implemented by a fifth embodiment of the present invention;

[Fig. 69]

Fig. 69 is a block diagram showing functions of a computer system employed in the information distribution service system shown in Fig. 68;

[Fig. 70]

Fig. 70 is a block diagram showing functions of an information-provider management unit employed in the computer system shown in Fig. 69;

[Fig. 71]

Fig. 71 is a diagram showing the configurations of a store-management system employed in the information distribution service system shown in Fig. 68;

[Fig. 72]

Fig. 72 is a diagram showing the configurations of another store-management system employed in the information distribution service system shown in Fig. 68; and

[Fig. 73]

Fig. 73 shows a sequence of operations carried out by the user.

[Description of Reference Numerals]

- 2: Computer system
- 4#i where i = 1 and so on: Information-provider terminal
- 6#i where i = 1 and so on: User terminal
- 20: User management unit
- 22: Position management unit
- 24: Information management unit
- 25: Information-distribution management unit
- 26: User-information database
- 30: Information-provider database
- 32: Area-information database
- 34: Inferred-information database
- 36: Analysis database

[Name of Document] Abstract
[Abstract]

[Object] To provide an information distribution service system for predicting a moving destination and a moving direction of a user of a mobile information terminal on the basis of information on positions of the user and distributing information such as area information suitable for the predicted moving destination. [Solving Means] In an information distribution service system comprising a plurality of mobile information terminals, a computer system and a plurality of information-provider terminals, the computer system is provided with a user-information database for registration information categories provided for the mobile information terminals' users each serving as a recipient of an information distribution service rendered by the information distribution service system, an information-provider database for registering positions of the information-provider terminals and information to be distributed by the information-provider terminals as notifications, and a position management unit provided for the purpose of inferring changes in position of each mobile information terminal in a time series by using an inference formula provided in advance for predicting the

particular mobile information terminal's moving direction and position on the basis of information on positions of the particular mobile information terminal, and the purpose of determining an information-provider terminal predicted to exist at a predicted destination of the movement of the particular mobile information terminal on the basis of the positions of the information-provider terminals and determining information to be transmitted by the determined information-provider terminal as a notification to the particular mobile information terminal.

[Selected Drawing] Fig. 2

Fig. 1 Basic configuration

6#1/#n: Terminal

User

4#n: Terminal

information provider

8c: Mobile-communication network

8b: Internet

2: ASP

Computer system

8d: Enterprise network

4#1: Terminal

information provider

GW: Gate away

ASP: Application service provider

Fig. 2 Computer system

12: Execution processing unit

20: User management unit

22: Position management unit

24: information management unit

25: Information-distribution management unit

14: Communication processing unit

16: Storage unit

26: User-information DB

- 28: User-location DB
- 30: Information-provider DB
- 32: Area-information DB
- 34: Inferred-information DB
- 36: Analysis DB
- Fig. 3 Information-provider terminal
- 51: Execution processing unit
- 60: Information-registration processing unit
- 62: Information-display-execution processing unit
- 52: Radio-communication processing unit
- 54: Display unit
- 56: Storage unit
- 58: Input unit
- 70: Communication processing unit
- Fig. 4 User terminal configuration
- 82: Execution processing unit
- 90: Terminal-registration processing unit
- 92: Positional-information-reporting processing unit
- 94: information display execution processing unit
- 84: Radio-communication processing unit
- 86: Display unit
- 88: Storage unit

96: Input unit

100: GPS-apparatus unit

Fig. 5 Functional blocks relevant to user management and position management

150: User-interface processing unit (Service registration)

152: User-service-reception processing unit

154: Registration-service analysis processing unit

156: Registration-menu output processing unit

160: User-position-information reception processing unit

162: User-position-information history management processing unit

170: User master DB

172: User registration service category master DB

180: User-location information master DB

182: User-location information history DB

152:---(Registration request)---156
(Change request)

Fig. 6 Functional blocks relevant to information management

200: Information-provider interface processing unit

202: Information-provider registration reception

processing unit

- 204: registration menu output processing unit
- 206: Registration-information analysis processing unit
- 210: Information-provider master DB
- 212: Registration-information-category master DB
- 202--- (Register) (Change) --- 204
- Fig. 7 Functional blocks relevant to position management
- 230: Inference-formula generation processing unit
- 232: Map-information master DB
- 234: Inference-formula master DB
- Fig. 8 Functional blocks relevant to position management
- 172: User registration service category master DB
- 182: User-location information history DB
- 232: Map-information master DB
- 210: Information-provider master DB
- 250: Inference-formula determination processing management unit
- 260: User-present-position-information determination processing unit
- 270: Information-provider-location determination processing unit
- 212: Registration-information-category master DB

- 280: User present location DB
- 234: Inference-formula master DB
- 290: Information-provider location DB
- 264: User-displacement-position history processing unit
- 262: Inference-formula-candidate extraction determination processing unit
- 272: Information-provider-candidate extraction determination processing unit
- 284: User location displacement DB
- 286: Candidate inference-formula DB
- 292: Candidate information-provider DB
- 266: Inference-formula determination processing unit
- 288: Determined-inference-formula DB
- 274: Information-provider determination processing unit (Determining information provider existing in allowable range of inference formula on the basis of the least-square method)
- 294: Selected information-provider DB
- Fig. 9 Functional blocks relevant to position management
- 284: User location displacement DB
- 288: Determined-inference-formula DB
- 294: Selected information-provider DB
- 212: Registration-information-category master DB

- 294-212: If positional displacement of user is determined to slip out of inference formula, inference-formula determination processing management unit determines to extract new inference formula.
- 300: User-displacement adequacy check processing unit
 (Positional displacement conforming to inference formula)
 302: Distribution-order determination processing unit
 (Determining distribution priority order of selected
- 310: Target-user DB

information providers)

- 312: Distribution information-provider DB
- 150: User-interface processing unit
- 304: Information-distribution processing management unit
- 306: Information-distribution execution processing unit
- 314: Distribution log DB
- Fig. 10 Functional blocks relevant to information-provider management
- 150: User-interface processing unit
- 350: Distributed-information user response reception processing unit
- 310: Target-user DB
- 312: Distribution target information-provider DB
- 314: Distribution log DB

- 378: User response result master DB
- 352: User analysis processing unit
- 354: Information-provider analysis processing unit
- 356: Response-attribute analysis processing unit
- 380: User analysis log DB
- 382: Information-provider analysis log DB
- 384: Response-attribute analysis log DB
- 358: Analysis-result edit processing unit
- 360: Analysis-result communication processing unit
- 200: Information-provider interface processing unit
- 386: Analysis result DB
- 362: Analysis-result-report-writing processing unit
- 388: Report

Fig. 11

Flowchart of computer-system processing

- S2: Perform user management processing
- S4: Perform information management processing
- S6: Perform position management processing
- S8: Perform information-distribution management

processing

Fig. 12

Flowchart of user management processing

- S20: Receive request for user-registration menu
- S22: Transmit user-registration menu
- S24: User-registration information received?
- S26: New user?
- S30: Password valid?
- S28: Register user name, password, terminal name, IP address or phone number and category information in user master DB
- S31: Register modified user-registration information in user-information DB
- S32: Report completion of user-information input registration
- S34: Request reentering of password

Fig. 13

Flowchart of information management processing

- S150: Request for information-registration menu received?
- S154: Provided information received?
- S152: Transmit information-registration menu
- S156: Check provided information and register provided

information in information-provider master DB

S158: Report completion of registration of provided information

Fig. 14

Flowchart of position management processing

S50: Position information received?

S52: Save position information in user-location DB

S54: Infer moving direction and movement time

S56: Search area-information DB for information corresponding to moving direction and movement time

S58: Edit information menu on the basis of information category read out from user-information DB

S60: Transmit information menu to terminal

Fig. 15

Flowchart of information-provider management processing

S100: Selected information entered received?

S102: Extract detailed information based on selected information from area-information DB and vehicle-operation management DB

S104: Transmit detailed information notification to terminal

S106: Save user response result such as selected information category, user time and user location in user response result master DB

S108: Analyze user favorites read out from user response result master DB and find favorites to improve effects of

notification using priority levels of informationproviding menu and contents of provided information S110: Reflect favorite computation results in analysis DB

Fig. 16

Flowchart of user-terminal processing

S200: Perform process to register terminal

S202: Perform process to report positional information

S204: Perform process to display information

Fig. 17

Flowchart of process to register terminal

S250: User-registration menu requested?

S252: Transmit request for user-registration menu to computer system

S254: User-registration menu received?

S256: Display user-registration menu on display unit

S258: User-registration information entered?

S259: Transmit user-registration information to computer system

S260: User-information inputting completion notification received?

S262: Display user-registration result

Fig. 18 Flowchart of process to report position information

START

Processing enclosed by this dashed line is performed repeatedly and periodically

S300: GPS function embedded?

S302: Find own position by using GPS function

S304: Transmit position information to computer system

S306: Request mobile-communication enterprise to report

position-information to computer system

Fig. 19

Flowchart of process to display information

S320: Information menu received?

S322: Display information menu

S324: Selected information entered?

S326: Transmit selected information to computer system

S328: Detailed information received?

S330: Display detailed information

Fig. 20

Flowchart of information-provider-terminal processing

S400: Perform process to register information

S402: Perform process to change information display

S404: Perform process to delete information

Fig. 21

Flowchart of process to register information

S420: Information-registration menu requested?

S422: Transmit request for information-registration menu to computer system

S424: Information-registration menu received?

S426: Display information-registration menu on display

unit

S428: Information to be provided entered?

S430: Transmit information to be provided to computer

system

S432: Notification of provided-information-inputting completion received?

S434: Display information-registration results

Fig. 22

Flowchart of process to change information display

S450: Information-display-changing menu requested?

S452: Transmit request for information-display-changing

menu to computer system

S454: Information-display-changing menu received?

S456: Display information-display-changing menu on

display unit

S458: Information to be provided changed?

S460: Transmit changed information to be provided to

computer system

S462: Notification of provided-information-changing

completion received?

S464: Display information-display-changing results

Fig. 23

Flowchart of process to delete information

S480: Information-deleting menu requested?

S482: Transmit request for information-deleting menu to

computer system

S484: Information-deleting menu received?

S486: Display information-deleting menu on display unit

S488: Deletion button pressed?

S490: Transmit deletion number of deleted information to

be provided to computer system

S492: Notification of provided-information deletion

completion received?

S494: Display information-deletion results

Fig. 24 Structures of data transmitted by computer system

Computer system ==> user terminal

- (b): Notification of completion of user-information inputting
- Identification number (2) IP address or phone number Completion information
- 0: Normal completion
- 2: Abnormal completion
- (c): Transmission of information menu
- Identification number (3) IP address or phone number information menu
- (d): Notification of detailed information
- Identification number (4) IP address or phone number

 Detailed information
- (e): Notification of terminal information (to mobile-communication enterprise)
- Identification number (5) IP address or phone number Moving-destination information .
- Fig. 25 Structures of data transmitted by user terminal
 User terminal ==> computer system
- (a): Request for user-registration menu
 Requested identification number (1)

- IP address or phone number
- (b): User information input

Requested identification number (2)

IP address or phone number Password

Category information

(c): Position-information notification

Requested identification number (3)

IP address or phone number

Position information (Longitude and Latitude)

Time information

(d): Selected-information input

Requested identification number (4)

IP address or phone number Selection number

(e): Position-information notification request

Requested identification number (5)

IP address or phone number

(f): Request for service start/stop

Requested identification number (6)

IP address or phone number

Start/stop identification Service-request level

- 0: Register
- 1: Start
- 2: Change
- 3: Stop

4: Release

0: Normal

1: Urgent

Fig. 26 Structures of data transmitted by computer system

Computer system ==> information-provider terminal

- (a): Transmission of information-registration menu

 Identification number (11) IP address or phone number

 Information-registration menu
- (b): Notification of completion of provided-information inputting

Identification number (12) IP address or phone number Completion information

0: Normal completion

1: Abnormal completion

(d): Notification of completion of modification of information to be provided

Identification number (14) IP address or phone number Completion information

0: Normal completion

1: Abnormal completion

- 0: Normal completion
- 1: Abnormal completion
- (f): Transmission of information-display-changing menu

 Identification number (16) IP address or phone number

 Information-display-changing menu
- (g): Transmission of information-deleting menu

 Identification number (17) IP address or phone number

 Information-deleting menu
- Fig. 27 Structures of data transmitted by information-provider terminal

Information-provider terminal ==> computer system

(a): Request for information-registration menu Requested identification number (11)

IP address or phone number

(b): Provided-information input

Requested identification number (12)

IP address or phone number Password
Category information Detailed information

(c): Request for display of information to be provided

Requested identification number (13)

IP address or phone number Password

Category information Detailed information

(d): Request for modification of information to be provided

Requested identification number (14)

IP address or phone number Password

Category information Information No.

Detailed information

(e): Request for deletion of information to be provided Requested identification number (15)

IP address or phone number Password Category information Deletion No.

0: Complete deletion

1 to 999: information No.

(f): Request for information-display-changing menu Requested identification number (16)

IP address or phone number

(g): Request for information-deleting menu
Requested identification number (17)

IP address or phone number

Fig. 28 Basic sequence User terminal

Mobile-communication enterprise

Computer system

Information-provider terminal

Registration of provided information {

- (2), (4): Request for user-registration menu
- (6), (8): Transmit user-registration menu
- (10), (12): User-information input
- (14), (16): User-information-inputting completion

notification

User management processing

User master DB registration--> 170

Fig. 29 Basic sequence

Information-provider terminal (Mobile-terminal)

Mobile-communication enterprise

Computer system

Information-provider terminal (Stationary terminal)

Registration of provided information {

- (50): Request for information-registration menu
- (52): Transmit information-registration menu
- (54): Provided-information input

Information-distribution management processing

- (55): Information-provider master DB registration
- (56): Provided-information-inputting completion

notification

- (70): Request for information-registration menu
- (72): Transmit information-registration menu
- (74): Provided-information input
- (75): Information-provider master DB registration
- (76): Provided-information-inputting completion notification
- } Registration of provided information

Fig. 30 Basic sequence

Information-provider terminal (Mobile-terminal)

Mobile-communication enterprise

Computer system

Information-provider terminal (Stationary terminal)
Modification of provided-information display {

- (80): Request for information-display-changing menu
- (82): Transmit information-display-changing menu
- (84): Request to change provided information

 Information-distribution management processing
- (87): Information-provider master DB registration
- (86): Provided-information modification completion notification
- (90): Request for information-display-changing menu
- (92): Transmit information-display-changing menu

- (94): Request to change provided information
- (95): Information-provider master DB registration
- (96): Provided-information modification completion notification
- } Modification of provided information

Fig. 31 Basic sequence

Information-provider terminal (Mobile-terminal)
Mobile-communication enterprise

Computer system

Information-provider terminal (Stationary terminal)
Deletion of provided-information display {

- (100): Request for information-deleting menu
- (102): Transmit information-deleting menu
- (104): Request to delete provided information Information-distribution management processing
- (105): Information-provider master DB registration
- (106): Provided-information-deletion completion notification
- (110): Request for information-deleting menu
- (112): Transmit information-deleting menu
- (114): Request to delete provided information
- (115): Information-provider master DB registration
- (116): Provided-information-deletion completion

notification

} Deletion of provided information

Fig. 32 Basic sequence

User terminal

Mobile-communication enterprise

Computer system

Information-provider terminal

(150): Service-start request

(150):--> Position management processing

(152): Position-information notification

(152):-->

- o Preliminarily select an information provider inferred to be proper on the basis of the user's registration condition and initial position information.
- o Select a plurality of inference formulas each taking initial position information as an origin or select a plurality of relevant inference formulas from position information.
- } o Focus only on inference formulas extracted from position information
- o Focus only on relevant inference formulas A and B
- o The terminal is determined to be moving in accordance with inference formula A

(154): Transmit information menu

(156): Selected-information input

(158): Detailed-information notification

Fig. 33 Basic sequence

User terminal

Mobile-communication enterprise

Computer system

Information-provider terminal

(200): Service-start request

(200):--> Position management processing

(202): Position-information notification request

(202):-->

- o Preliminarily select an information provider inferred to be proper on the basis of the user's registration condition and initial position information.
- o Select a plurality of inference formulas each taking initial position information as an origin or select a plurality of relevant inference formulas from position information.
- } o Focus only on inference formulas extracted from position information
- o Focus only on relevant inference formulas A and B
- o The terminal is determined to be moving in accordance

with inference formula A

(204): Transmit information menu

(206): Selected-information input

(208): Detailed-information notification

Fig. 34 User-registration screen

<< User-registration menu >>

User name ABC

Password *****

V Traffic information

V Shopping information

V Event information

Restaurant information

LIST URGENT

REGISTER CANCEL SERVICE HELP

Fig. 35 User-registration completion screen

** User registration has been completed

SERVICE HELP

Screen after user registration

Fig. 36 Select menu screen for information providers

<< Select menu >>

1: information registration

2: information displaying and changing

3: information deletion

SERVICE HELP

Select menu screen

Fig. 37 Information-registration screen

<< Information-registration menu >>

User name ABC

Password *****

Traffic information

V Shopping information

Event information

Restaurant information

LIST

REGISTER CANCEL SERVICE HELP

Information-registration menu screen (Category inputting)

Fig. 38 information menu screen

<< information menu >>

1: Traffic information

2: Train and bus information

3: Shopping information

4: Event information

5: Entertainment information

SERVICE HELP

Fig. 39 Information-registration screen
<< Information-registration menu >>
Shopping information

No. 1

Today, at 00 shopping center, XX products are put on sales only for 100 customers on first-come, first-served basis.

Address: 1-1-1 \square town, $\triangle\triangle$ city

Phone: xxx-yyy-zzzz

<--Enter information here

LIST

REGISTER CANCEL SERVICE HELP

Information-registration menu screen (Detailedinformation inputting)

Fig. 40 Information-registration completion screen

** information registration has been completed.

SERVICE HELP

Fig. 41 Information-display-changing screen
<< Information-display-changing menu >>

Screen after information registration

User name ABC

Password *****

Traffic information

Shopping information

Event information

Restaurant information

LIST

DETERMINE CANCEL SERVICE HELP

Information-displaying screen (Category selection)

Fig. 42 Information-display changing screen

<< Information-display changing menu >>

Shopping information

No. 1

Today, at 00 shopping center, XX products are put on sales only for 100 customers on first-come-first-served basis.

Address: 1-1-1 $\square\square$ town, $\triangle\triangle$ city

Phone: xxx-yyy-zzzz

LIST

CHANGE CANCEL SERVICE HELP

Information-displaying screen (Detailed-information
display)

Fig. 43 information modification completion screen

** information modification has been completed.

SERVICE HELP

Screen after information modification

Fig. 44 information deletion screen

<< information deletion menu >>

User name ABC

Password *****

Traffic information

Shopping information

Event information

Restaurant information

LIST

DETERMINE CANCEL SERVICE HELP

Information deletion screen (Category selection)

Fig. 45 information deletion screen

<< information deletion menu >>

Shopping information

No. 1

Today, at 00 shopping center, XX products are put on sales only for 100 customers on first-come-first-served basis.

Address: 1-1-1 $\square\square$ town, $\triangle\triangle$ city

Phone: xxx-yyy-zzzz

LIST

DELETE CANCEL SERVICE HELP

Information deletion screen (Detailed-information
deletion)

Fig. 46 information deletion screen

<< information deletion menu >>

Shopping information

No. 1

Today, at OO shopping center, XX products are put on sales only for 100 customers on first-come-first-served basis.

Address: 1-1-1 $\square\square$ town, $\triangle\triangle$ city

Phone: xxx-yyy-zzzz

Deletion of No. 1

Deletion of all

LIST

DELETE CANCEL SERVICE HELP

Information deletion screen (Detailed-information deletion)

Fig. 47 Information-deletion completion screen
** information deletion has been completed.

SERVICE HELP

Screen after information deletion

Fig. 48 Inference mechanism

B (Allowable value) Inference upper limit (y = ax + b)

Inference formula (y = ax)

Inference lower limit (y = ax-b)

T (Time)

Range of allowable displacements

* If the value changed within the range between the upper and lower limits of the inference 3 times consecutively in a row (or 3 times in a predetermined period of time), ==> it is possible to infer that the terminal (or the user) has been moving in a direction conforming to the inference formula (through a route of A0-->A1-->A2). ==> A movement of B0-->B1-->B2-->B3 cannot be judged to be a movement conforming to the inference formula (A displacement of B2-->B3 between times t2 and t3 can be inferred as a stationary state).

Fig. 49 Inference mechanism for curved roads
Actual road

Inference formula derived from P0, P1, P2, P3 and P4

Inference formula y = a3x + b3 defined from P2, P3 and P4

Inference formula y = a2x + b2 defined from P1, P2 and P3

Inference formula y = a3'x + b3' defined from P0, P1 and P3'

Inference formula y = a1x + b1 defined from PO, P1 and P2

Fig. 50 Inference mechanism for grid-like roads

Moving along grid-like road through points P0, P1, P2, P3,

P4 and P5

Actual road

Inference formula derived from PO, P1, P2, P3, P4 and P5 by application of partial derivative

Defined allowable range

Fig. 51 For user's request for urgent transmission of information to be provided

172: User registration service category master DB

280: User present location DB

290: Information-provider location DB

212: Registration-information-category master DB

272: Information-provider-candidate extraction determination processing unit

292: Candidate information-provider DB

274: Information-provider determination processing unit (Determination of an information provider existing in a circular area having the present position of the user as its center by varying the radius of the area in accordance with the level of a request made by the user)

294: Information-provider DB for distributing information to be provided

150: User-interface processing unit

306: Information-distribution execution processing unit

304: Information-distribution processing management unit

314: Distribution log DB

Fig. 52 Bank financial-settlement sequence

(a): information-provider terminal is not mobile terminal
(from top, from left)

User

Mobile network

ASP

information provider

(Financial transaction institution)

(Financial transaction institution)

(Financial transaction institution)

(Financial transaction institution)

Billing notification (By mail in some cases)

```
User monthly fee billing
 Information-provider monthly fee billing (Including
additional registration fee for first month after
registration)
 (Inter-bank settlement (transaction))
 <--Payment demand
 <--Payment demand
 Payment demand-->
 Payment-->
 Payment-->
 <--Payment
(b): information-provider terminal is mobile terminal
(from top, from left)
 User information provider
 Mobile network
 ASP
  (Financial transaction institution)
  (Financial transaction institution)
  (Financial transaction institution)
  (Financial transaction institution)
 Billing notification (By mail in some cases)
 User monthly fee billing
 Information-provider monthly fee billing
```

```
Billing notification (By mail in some cases)
 <--Payment demand
 Payment demand (to user)
(Inter-bank settlement (transaction))
 <--Payment demand
 Payment demand (to information provider)
 Payment-->
 Payment-->
 Payment-->
 Payment-->
(c): ASP also does network banking and user has network-
bank account
(from top, from left)
 User
 Mobile network
 ASP
 information provider
  (Financial transaction institution)
 Network bank
  (Financial transaction institution)
  (Financial transaction institution)
 Billing notification (By mail in some cases)
 User monthly fee billing
```

```
Information-provider monthly fee billing
 <--Payment demand
 Payment demand-->
 Payment demand-->
 <--Payment
 (Inter-bank settlement (transaction))
 <--Payment
 <--Payment
 Payment-->
Fig. 53 information distribution service system
implemented by first embodiment of present invention
6#1: Terminal
6#2: GPS terminal
6#3: Terminal
4#1: Terminal
4#2: Terminal
4#4: Terminal
8c: Mobile-communication network
8b: IP network
2: Computer system
8d: Enterprise network
```

Fig. 54 Detailed-information screen

<< Detailed shopping information >>

Nakahara department store

1: Today's buying at bargain

2: Seasonal-bargain information

3: Coupons

SERVICE HELP

Detailed-information screen

Fig. 55 Detailed-information screen

<< Detailed traffic information >>

Traffic jam at distance of 5 km from Youga

SERVICE HELP

Detailed-information screen

Fig. 56 information distribution service system

implemented by second embodiment of present invention

6#1: Terminal

6#2: GPS terminal

6#3: Terminal

4#1: Terminal

4#2: Terminal

4#4: Terminal

8c: Mobile-communication network

8b: IP network

450: Computer system

8d: Enterprise network

Fig. 57 Computer system of information distribution service system shown in Fig. 56

12: Execution processing unit

20: User management unit

460: Position management unit

24: information management unit

25: Information-distribution management unit

14: Communication processing unit

16: Storage unit

26: User-information DB

28: User-location DB

30: Information-provider DB

32: Area-information DB

34: Inferred-information DB

35: Analysis DB

Fig. 58

Flowchart of position management processing

S600: Position information received?

S602: Save position information in user-location DB

S604: Infer moving direction and movement time

S606: Moving destination (map code) and terminal address to be transmitted to communication enterprise?

S608: Transmit destination (map code) and terminal address to communication enterprise

S610: Search area-information DB for information corresponding to moving direction and movement time S612: Edit information menu on the basis of information category read out from user-information DB

S614: Transmit information menu to terminal

Fig. 59 User sequence

User terminal Mobile-communication enterprise

Computer system Information-provider terminal

(250): Service-start request

(250):--> Position management processing

(252): Position-information notification

(252):-->

- o Preliminarily select an information provider inferred to be proper on the basis of the user's registration condition and initial position information.
- o Select a plurality of inference formulas each taking initial position information as an origin or select a plurality of relevant inference formulas from position information.

- } o Focus only on inference formulas extracted from position information
- o Focus only on relevant inference formulas A and B
- o The terminal is determined to be moving in accordance with inference formula A
- (254): Terminal-information notification

Transmit terminal's phone number or IP address and moving destination (map code)

(256): Notification from mobile communication enterprise

Fig. 60 information distribution service system implemented by third embodiment of present invention

6#1: Terminal

6#2: GPS terminal

6#3: Terminal

4#1: Terminal

4#2: Terminal

4#4: Terminal

8c: Mobile-communication network

8b: IP network

500: Computer system

8d: Enterprise network

Fig. 61 Computer system of information distribution

service system shown in Fig. 60

- 12: Execution processing unit
- 20: User management unit
- 510: Position management unit
- 24: information management unit
- 25: Information-distribution management unit
- 14: Communication processing unit
- 16: Storage unit
- 26: User-information DB
- 28: User-location DB
- 30: Information-provider DB
- 32: Area-information DB
- 34: Inferred-information DB
- 35: Analysis DB

Fig. 62

Flowchart of position management processing

- S700: Position information received?
- S702: Save position information in user-location DB
- S704: Infer moving direction and movement time
- S706: Moving direction to be compared with vehicle (such
- as train or bus)?
- S708: Moving direction match?
- S714: Search area-information DB for information

corresponding to moving direction and movement time

S716: Edit information menu on the basis of information

category read out from user-information DB

S718: Transmit information menu to terminal

S710: Identify vehicle taken by user and edit menu based

on combination of information retrieved from area
information DB and information on operations of vehicle

S712: Transmit information menu to terminal

Fig. 63 Detailed-information screen
<< Detailed information on trains and buses >>
The next station is Musashi Nakahara.

Will arrive at Kawasaki terminal at 12:00.

1: information on change to another train at Kawasaki station

2: information on change to another train at Musashi Kosugi station

SERVICE HELP

Detailed-information screen

Fig. 64 information distribution service system implemented by fourth embodiment of present invention

6#1: Terminal

6#2: GPS terminal

6#3: Terminal

4#1: Terminal

4#2: Terminal

4#4: Terminal

8c: Mobile-communication network

8b: IP network

550: Computer system

8d: Enterprise network

Fig. 65 Computer system of information distribution service system shown in Fig. 64

12: Execution processing unit

20: User management unit

560: Position management unit

24: information management unit

25: Information-distribution management unit

14: Communication processing unit

16: Storage unit

26: User-information DB

28: User-location DB

30: Information-provider DB

32: Area-information DB

34: Inferred-information DB

35: Analysis DB

Fig. 66

Flowchart of position management processing

S800: Position information received?

S802: Save position information in user-location DB

S804: Infer moving direction and movement time

S806: Moving means to be identified?

S808: Determine whether user is walking or riding on

vehicle

S810: Search area-information DB for information corresponding to moving direction and movement time

S812: Edit information menu on the basis of information category read out from user-information DB

S814: Transmit information menu to terminal

Fig. 67 Detailed-information screen << Detailed information on resort >> Vicinity of Nakahara beach

1: information on parking lots

2: information on seaside houses

3: information on restaurants

SERVICE HELP

Detailed-information screen

Fig. 68 information distribution service system implemented by fifth embodiment of present invention

6#1: Terminal

6#2: GPS terminal

6#3: Terminal

4#1: Terminal

4#2: Terminal

610: Store management system

620: Store management system

4#4: Terminal

8c: Mobile-communication network

8b: IP network

600: Computer system

8d: Enterprise network

Fig. 69 Computer system of information distribution service system shown in Fig. 68

12: Execution processing unit

20: User management unit

22: Position management unit

24: information management unit

650: Information-distribution management unit

14: Communication processing unit

16: Storage unit

26: User-information DB

28: User-location DB

30: Information-provider DB

32: Area-information DB

34: Inferred-information DB

35: Analysis DB

Fig. 70 Information-distribution management unit of computer system shown in Fig. 69

(Response) --> 150

150: User-interface processing unit

350: Distributed-information user response reception processing unit

310: Target-user DB

314: Distribution log DB

284: User location displacement DB

312: Distribution information-provider DB

378: User response result master DB

352: User analysis processing unit

354: Information-provider analysis processing unit

700: User-displacement-speed computation processing unit

702: Inferred-distance computation processing unit

704: Estimated-arrival-time computation processing unit

380: User analysis log DB

- 384: Response-attribute analysis log DB
- 750: Inferred-user-arrival-time DB
- 680: Response-result-edit processing unit
- 682: Response-result-notification processing unit
- 722: Response-result DB
- 200: Information-provider interface processing unit
- 200:--> (Response notification)
- 200: <-- (Response)
- 750:--> (Response notification)
- 716: Response-notification execution processing unit
- 714: Response-notification processing management unit
- 712: Response edit processing unit
- 710: Information-provider response reception processing

unit

- 754: Response log DB
- 752: Information-provider response master DB
- Fig. 71 Store management system of information distribution service system shown in Fig. 68 Response notification--> 800
- 800: Information-processing apparatus
- 802: Display-unit-driving control apparatus
- 804: Parking lot display unit
- 806: Seat display unit

808: Kitchen display unit

810: Staff-room display unit

Displayed information includes:

- o The name of user (the person making reservation) and number of people in party.
- o An expected time of arrival of user
- o A menu of foods reserved by user

Fig. 72 Store management system of information distribution service system shown in Fig. 68 Store management system

Response notification--> 820

820: Sales management processing system

822: Inventory management system

824: POS management system

Fig. 73 User sequence

User terminal Mobile-communication enterprise

Computer system Information-provider terminal

(300): Service-start request

(300):--> Position management processing

(302): Position-information notification request

(302):-->

o Preliminarily select an information provider inferred

to be proper on the basis of the user's registration condition and initial position information.

- o Select a plurality of inference formulas each taking initial position information as an origin or select a plurality of relevant inference formulas from position information.
- } o Focus only on inference formulas extracted from position information
- o Focus only on relevant inference formulas A and B
- o The terminal is determined to be moving in accordance with inference formula A
- (304): Transmit information menu
- (306): Selected-information input
- (308): Detailed-information notification
- (310): Response
- (312): Response notification
- (314): Response
- (316): Response notification