

Beuth HS Berlin - Fachbereich VI Übung elektrische Messtechnik

2. Übung

Lernziele:

- Bestimmung von Spannungen und Strömen in Gleichstromkreisen
- Garantierte Fehlergrenzen
- Spannungskennlinie eines Potentiometers mit Fehlerrechnung

1.) Bestimmung von Strömen und Spannungen

Berechnen Sie die Ströme I, I₁ und I₂ und die Spannungen U_a und U_b.

Lösungen: $I = 9.81 \text{ mA}, I_1 = 5.69 \text{ mA}, I_2 = 4.12 \text{ mA}, U_a = 3.24 \text{ V}, U_b = 26.76 \text{ V}$

2.) Messbereichserweiterung und Fehlergrenzen

Ein Drehspulmesswerk zeigt bei einem Strom I = 2mA Vollausschlag an. Der Innenwiderstand des Messwerks beträgt R_i = 20Ω . Wie muss man einen Ohmschen Widerstand hinzuschalten und welchen Wert muss dieser annehmen, damit das Messwerk Vollausschlag anzeigt bei

a) einer Spannung von 220 V Lösung: R = 109,98 k Ω b) einem Strom von 5 A Lösung: R = 8,0 m Ω

Ein Drehspulgerät mit der Klasse 0,5 zeigt im 30V-Messbereich einen Messwert von 20V an. Berechnen Sie die absoluten und relativen garantierten Fehlergrenzen des Messergebnisses.

Lösungen: $\Delta U = \pm 0.15V$

 $\Delta U/U = \pm 0.75\%$

3.) Spannungsteiler

Mit Hilfe eines Spannungsteilers R1, R2 soll an einer konstanten Spannung Uo eine niedrigere Spannung U abgegriffen werden. Der Spannungsteiler wird mit dem veränderlichen Widerstand RL belastet.

Messgerät: Digitalmultimeter Fluke 287 mit $\Delta U = \pm (x \% v. Messwert + n Digit)$

- a) Berechnen und zeichnen Sie die Funktion $U_{berechnet} = f(R_L)$.
- b) Berechnen Sie die in den Widerständen R_1 und R_2 umgesetzten Leistungen für $R_L = 0\Omega$ und $R_L = 20$ k Ω .
- c) Zeichnen Sie die vollständige Messschaltung.
- d) Überlegen Sie sich eine Messtabelle.
- e) Bauen Sie die Schaltung auf.
- f) Nehmen Sie die Messreihe $U_{gemessen} = f(R_L)$ für 10 verschiedene Lastwiderstände R_L auf und zeichnen Sie das Diagramm mit logarithmischer Beschriftung der x-Achse für R_L .
- g) Vergleichen Sie die Ergebnisse $U_{berechnet} = f(RL)$ und $U_{gemessen} = f(RL)$. Berechnen Sie den relativen Fehler der Messergebnisse für die verschiedenen Lastwiderstände.