Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

РАЗРАБОТКА АЛГОРИТМА РАСПОЗНАВАНИЯ ВЫРАЖЕНИЯ ЛИЦА ЧЕЛОВЕКА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ НА МОБИЛЬНЫХ УСТРОЙСТВАХ

Выполнил:

Дементьев Михаил Евгеньевич, гр. 7304

Руководитель:

Беляев Сергей Алексеевич, к.т.н., доцент

Консультант:

Борисенко Константин Алексеевич, к.т.н.

Санкт-Петербург, 2021

Актуальность

В современных условиях развития цифровых технологий происходит расширение сфер применения и увеличение способов взаимодействия человека с мобильными устройствами. Широко востребованным направлением становится, в частности, распознавание человека на изображении.

Данная технология может быть использована в приложениях дополненной реальности для взаимодействия с виртуальными объектами, создании усовершенствованных игровых механик, а также в качестве помощи в управлении интерфейсами и реабилитации людей с ограниченными возможностями или перенесшими тяжелые заболевания.

Исходя их вышесказанного, одной из актуальных и важных задач машинного обучения является разработка методов по распознаванию выражения лица человека на мобильных устройствах.

Цель и задачи

Цель: разработка и реализация метода машинного обучения для создания новых возможностей взаимодействия с мобильным телефоном в режиме реального времени при помощи мимики человека.

Задачи:

- 1. Обзор существующих решений и формулировка требований / ограничений.
- 2. Сбор данных и их обработка.
- 3. Создание метода распознавания эмоций.
- 4. Обучение нейронной сети и анализ полученных результатов.

1. Обзор существующих решений и формулировка требований / ограничений

Критерии сравнения аналогов.

- 1. Объект распознавания нейронной сети.
- 2. Описание обработки выборки.
- 3. Использование комбинированных эмоций (если объект распознавания мимика).
- 4. Описание метода разработки нейронной сети.
- 5. Возможность использования на мобильном устройстве.

Таблица 1 Сопоставление аналогов с критериями сравнения

Сравнение	Номера критериев из списка выше					
по критериям	1	2	3	4	5	
1	Мимика	+	-	+	-	
2	Изображения	-	_	+	-	
3	Жесты	-	_	+	-	
4	Номерные знаки	+	_	+	-	
5	Участки дорожного движения	-	-	+	-	

Рисунок. 1. Блок-схема алгоритма сбора и обработки данных

- Создание и отправка задачи на сбор данных
- Получение данных
- Выделение кадра с изображением лица на каждом фото
- Кадрирование каждого видео (по 17 кадров в секунду)
- Ручная фильтрация получившихся фотографий

Рисунок 2. Основные выражения лиц

Рисунок. 3. Комбинированные выражения лиц (1)

Рис. 4. Комбинированные выражения лиц (2)

Таблица 2 Статистика формирования исходной выборки

Исходные данные	До ручной обработки	После ручной обработки	
- 35 пользователей	- 8925 фотографий каждой эмоции	- 8750 фотографий	
- 45 эмоций	- 11475	не прошли ручную фильтрацию - 8730 фотографий каждой эмоции осталось	
- 15 секунд одно предоставленное видео	фотографий каждого пользователя		
17 кадров в секунду255 фотографий из одного видео	- 401625 фотографий всего	- 392875 фотографий всего осталось	

3. Создание метода распознавания эмоций

Рисунок 5. Метод распознавания эмоций

• RGB-матрица изображения

• BlazeFace (детектирование лица)

• RGB-матрица изображения лица

MobileNetV2 (классификация эмоций)

 (1, 0...1, 0) – кортеж соответствия распознанных эмоций

Процесс обучения нейронной сети

Рисунок 6. Алгоритм обучения нейронное сети

Рисунок 7. **Качество (ассигасу). Эксперимент №1.** 1/6 часть выборки.

Рисунок 8. **Потери (loss). Эксперимент №1.** 1/6 часть выборки.

Рисунок 9. **Качество (ассигасу). Эксперимент №4. 5/6 часть выборки. Без аугментации.**

Рисунок 10. **Потери (loss). Эксперимент №4. 5/6 часть выборки. Без аугментации**

Рисунок 11. **Качество (ассигасу). Эксперимент №5.** 5/6 часть выборки. С использованием аугментации.

Рисунок 12 . Потери (loss). Эксперимент №5. 5/6 часть выборки. С использованием аугментации.

Рисунок 13. Точность (precision). Эксперимент №5. 5/6 часть выборки. С использованием аугментации.

Рисунок 14. Полнота (recall). Эксперимент №5. 5/6 часть выборки. С использованием аугментации.

Рисунок 15. **F-мера (R-precision). Эксперимент №5.** 5/6 часть выборки. С использованием аугментации.

Таблица 3 **Результаты обучения модели нейронной сети**

Эксперимент	Качество (ассигасу)	Потери (loss)	Точность (precision)	Полнота (recall)	F-мера (R- precision)
1/6 часть выборки. Без аугментации	0.94684	0.35232	0.98281	0.87936	0.92822
5/6 часть выборки. Без аугментации	0.97255	0.15895	0.98029	0.96475	0.97241
5/6 часть выборки. С использованием аугментации	0.99955	0.00148	0.99956	0.99938	0.99947

Заключение

- Осуществлен обзор аналогов, который показал, что для создания метода нейронной сети необходимо использовать выборку из комбинированных эмоций мимики человека, а также учитывать ограничения, которые вносит мобильное устройство.
- Осуществлен сбор данных, произведена их ручная обработка, которая отсеяла 2,5% исходной выборки.
- Создан метод распознавания эмоций, учитывающий поставленные перед ним требования.
- Проведено обучение нейронной сети и разработана модель, работающая с точностью 99,947%.
- Дальнейшим этапом работы станет расширение спектра распознаваемых эмоций, а также увеличение количества функций, для которых данная технология будет использоваться в мобильном приложении ВКонтакте.

Апробация работы

- Дементьев М.Е., Борисенко К.А. Разработка алгоритма распознавания выражения лица на мобильных устройствах: этап сбора и обработки данных // Сборник докладов студентов и аспирантов на научно-техническом семинаре кафедры МОЭВМ. СПб, 2021. 95 с. С. 40-44.
- Дементьев М.Е., Борисенко К.А. Реализация алгоритма распознавания выражения лица на мобильных устройствах // IX Научно-практическая конференция с международным участием «Наука настоящего и будущего» / СПб, СПбГЭТУ, 13-15 мая 2021 г.
- Акт внедрения результатов выпускной квалификационной работы в мобильное приложение на платформе IOS социальной сети ВКонтакте.

Апробация работы

Утверждаю Генеральный директор Управляющей организации ООО «Мэйл.Ру Груп» Е.Г. Багудина «28» АПОЕЛЯ 2021 г.

АКТ ВНЕДРЕНИЯ

Настоящий акт составлен о том, что результат выпускной квалификационной работы студента СПБГЭТУ «Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)» группы 7304 очной формы обучения Дементьева М.Е. на тему «Разработка алгоритма распознавания выражения лица на мобильных устройствах» внедрен в мобильное приложение на платформе IOS социальной сети ВКонтакте. Результат выпускной квалификационной работы используется в девелоперском приложении масок и эффектов и запланировано внедрить в мобильное приложение на платформе IOS социальной сети ВКонтакте, в видеозвонках для детектирования реакций и эмоций пользователей, а также для игровых механик в Клипы ВКонтакте.

Руководитель разработки платформы рекомендаций Аз А. Дзюба
Генеральный директор
Упоавляющей организации
ООО «Мэйл.Ру Рруп»

Е.Г. Багудина

«21» АПРЕЛЯ
2021 г.

IX Научно-практическая конференция с международным участием «НАУКА НАСТОЯЩЕГО И БУДУЩЕГО» для студентов, аспирантов и молодых ученых

(СПбГЭТУ «ЛЭТИ»)

для студентов, аспирантов и молодых учены

Диплом III степени

за доклад по направлению конференции:

Прикладная математика и программная инженерия

НАГРАЖДАЕТСЯ

Дементьев Михаил Евгеньевич

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

РАЗРАБОТКА АЛГОРИТМА РАСПОЗНАВАНИЯ ВЫРАЖЕНИЯ ЛИЦА ЧЕЛОВЕКА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ НА МОБИЛЬНЫХ УСТРОЙСТВАХ

Выполнил:

Дементьев Михаил Евгеньевич, гр. 7304

Руководитель:

Беляев Сергей Алексеевич, к.т.н., доцент

Консультант:

Борисенко Константин Алексеевич, к.т.н.

Качество (ассuracy). Эксперимент №2. 1/6 часть выборки.

Потери (loss). Эксперимент №2. 1/6 часть выборки.

Качество (ассuracy). Эксперимент №3. 1/6 часть выборки.

Потери (loss). Эксперимент №5. 1/6 часть выборки.

