(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-22630 (P2000-22630A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) Int.CI.		蹴別配号	FΙ			テーマコード(参考)
H 0 4 B	10/02		H04B 9	9/00	Н	5 K 0 0 2
H04J	3/00		H04J 3	3/00	ប	5 K O 2 8
H04L	12/28		H04L 1	1/00	310D	5 K O 3 O
	12/437				3 3 1	5 K O 3 1
			11	1/20	С	5 K O 3 3
			 农糖查審	未讃求	請求項の数18 C)L (全 14 頁)
(21)出願番号		特願平10-185518	(71)出願人	0000051	08	
				株式会社	出日立製作所	
(22)出顧日		平成10年7月1日(1998.7.1)		東京都市	F代田区神田駿河台	四丁目6番地
			(72)発明者	池田 博	身樹	
		,		東京都區	3分寺市東恋ヶ窪一	丁目280番地
				株式会社	上日立製作所中央研	究所内
			(72)発明者	金武 選	建鄉	
		(東京都国	3分寺市東恋ヶ窪一	丁目280番地
				株式会社	上日立製作所中央研	究所内
	•		(74)代理人	100061893		
				弁理士	高橋 明夫 (外	1名)

最終頁に続く

(54)【発明の名称】 自己救済型光ネットワーク

(57) 【要約】

【課題】 本願発明の第1の課題は光伝送路、例えば光ファイバの施設形態によらず、障害時の予備光パス選択を柔軟に行い得る自己救済型光ネットワークを提供することである。また、本願発明の第2の課題は自己救済型光ネットワークの光伝送路、例えば光ファイバの使用効率を向上させることができる。

【解決手段】 本願発明は、複数個の伝送装置と、前記 伝送装置を接続する複数の光パスとを少なくとも有し、前記光パスには所定の伝送光の波長が割り当てられ、且 つオーバーヘッド情報を有する伝送フレームを少なくと も用いてデジタル伝送をなす波長多重伝送の自己救済型 光ネットワークであって、前記複数の光パスは前記複数 の伝送装置を一連鎖に接続する光パスを有する。光ファイバの敷設形態に影響されないため、トラフィックの容量に応じて光パスを柔軟に張ることが可能になる。更に、障害時の予備光パス選択に柔軟性を持たせ、かつ高速な切替えが可能でなる。

【特許請求の範囲】

【請求項1】 複数個の伝送装置と、前記伝送装置を接続する複数の光パスとを少なくとも有し、前記光パスには所定の伝送光の波長が割り当てられ、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなす波長多重伝送の自己救済型ネットワークであって、前記複数の光パスは前記複数の伝送装置を一連鎖に接続する光パスを有することを特徴とする自己救済型光ネットワーク。

【請求項2】前記伝送装置をリング状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項1に記載の自己救済型光ネットワーク。

【請求項3】前記伝送装置を一連鎖状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項1に記載の自己救済型光ネットワーク。

【請求項4】前記現用光パスにより構成されたリング網を少なくとも2個有することを特徴とする請求項1、2、および3項に記載の自己救済型光ネットワーク。

【請求項5】 複数個の伝送装置と、前記伝送装置を接続する複数の光パスとを少なくとも有し、前記光パスには所定の時間分割の信号が割り当てられ、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなす時間分割伝送の自己救済型ネットワークであって、前記複数の光パスは前記複数の伝送装置を一連鎖に接続する光パスを有することを特徴とする自己救済型光ネットワーク。

【請求項6】前記伝送装置をリング状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項5に記載の自己救済型光ネットワーク。

【請求項7】前記伝送装置を一連鎖状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項5に記載の自己救済型光ネットワーク。

【請求項8】前記現用光パスにより構成されたリング網を少なくとも2個有することを特徴とする請求項5、6、および7項に記載の自己救済型光ネットワーク。

【請求項9】 複数個の伝送装置と、前記伝送装置を接続する光パスとを少なくとも有し、前記光パスには所定の伝送光の波長が割り当てられ、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなす波長多重自己救済型ネットワークであって、前記オーバーヘッド情報は障害に関する切替制御情報を有し、前記伝送装置は、前記各光パスの波長アドレス情報と前記各光パスの障害情報とを少なくとも格納する波長アドレスマップを構成する記憶手段を有し、現用光パスに障害が生じた際に、前記障害に関する切替制御情報と前記波長アドレス情報と前記光パスの障害情報とに基づ

いて、光パスを切替えるように構成されたことを特徴とする自己救済型光ネットワーク。

【請求項10】複数個の伝送装置と、前記伝送装置を接続する光パスとを少なくとも有し、前記光パスは現用光パスあるいは予備光パスとして用いられ、前記光パスには所定の伝送光の波長が割り当てられ、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなす波長多重自己救済型ネットワークであって、前記オーバーヘッド情報は障害に関する切替制の情報を有し、前記伝送装置は、前記各光パスの波長アドレス情報と前記各光パスの障害情報とを少なくとも格納する波長アドレスマップを構成する記憶手段を有し、現用光パスに障害が生じた際に、前記障害に関する切替制御情報と前記波長アドレス情報と前記光パスの障害情報とに基づいて、現用光パスを予備光パスへ切替えるように構成されたことを特徴とする自己救済型光ネットワーク。

【請求項11】 複数個の伝送装置と、前記伝送装置を接続する光パスとを少なくとも有する波長多重自己救済 20 型ネットワークが、SDH (Synchronous Digital Hierarchy) ネットワークなることを特徴とする請求項9および請求項10に記載の自己救済型光ネットワーク。

【請求項12】 複数個の伝送装置と、前記伝送装置を接続する光パスとを少なくとも有する波長多重自己救済型ネットワークが、SONET (Synchronous Optical Network)ネットワークなることを特徴とする請求項9および請求項10に記載の自己救済型光ネットワーク。

30 【請求項13】前記伝送装置をリング状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項9および請求項10に記載の自己救済型光ネットワーク。

【請求項14】前記伝送装置を一連鎖状に接続する光パスを少なくとも有し、この光パスを予備光パスとして用い得ることを特徴とする請求項9および請求項10に記載の自己救済型光ネットワーク。

【請求項15】前記光パスの2個以上が一つの光伝送路に設置されていることを特徴とする請求項9および請求 40 項10に記載の自己救済型光ネットワーク。

【請求項16】前記現用光パスにより構成されたリング網を少なくとも2個有することを特徴とする請求項9および請求項10に記載の自己救済型光ネットワーク。

【請求項17】 複数個の伝送装置と、前記伝送装置を接続する複数の光パスとを少なくとも有し、前記光パスの少なくとも2本が一つの光伝送路に設置されており、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなし信号の多重伝送可能な自己救済型光ネットワークであって、前記複数の光パスは前記複数の伝送装置を一連鎖に接続する複数の光パスを

50

有することを特徴とする自己救済型光ネットワーク。

【請求項18】数個の伝送装置と、前記伝送装置間を結 びかつ光波長が割り当てられた現用光パスと、前記伝送 装置間を結びかつ光波長が割り当てられた予備光パスと を少なくとも有し、前記伝送装置は、前記各光パスの波 長アドレス情報と障害情報とを少なくとも格納する波長 アドレスマップを構成する記憶手段を有し、オーバーへ ッド情報を有する伝送フレームを少なくとも用いてデジ タル伝送をなす波長多重サバイバルネットワークであっ て、(1)ステップ1:前記オーバーヘッド情報の自動 切替バイトが障害パターンを示すか否かを判定するステ ップ、(2)ステップ2:波長アドレスマップ情報に基 づいて、前記オーバーヘッド情報の自動切替バイトが受 信した伝送装置宛か否かを判定するステップ、(3)ス テップ3:自動切替バイトが、受信した伝送装置宛であ る場合、切替動作を開始するステップ、(4)ステップ 4:自動切替バイトが、受信した伝送装置宛でない場 合、前記自動切替バイトを転送するステップ、なる切替 判定ステップを可能ならしめるごとく構成されたことを 特徴とする自己救済型光ネットワーク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は自己救済型光ネットワークに関するものである。わけても、波長多重伝送方式あるいは時間分割伝送方式を用いた光ネットワークに関するものである。

[0002]

【従来の技術】近年、回線サービスの信頼性を向上するため、光ネットワークの回線障害に対する信号の救済を行うことができるネットワークが提案されている。この回線障害には、たとえば、不意にによる伝送路の切断や劣化、中継器の故障などがあげられる。通常、このような光ネットワークでは、こうした回線障害を自動的に検出し、伝送路の切替を自動的に行うよう設計されている。この様な光ネットワークをサバイバルネットワークと呼ぶ。

【0003】更に、このような伝送ネットワークの救済能力の向上のため、特に同期網ネットワークであるSDH方式またはSONET方式に則り切替が行えるようなサバイバルネットワークが提供されている。SDH方式とはSynchronousDigital Hierarkchy方式の略称である。また、SONET方式とはSynchronous Optical Network方式の略称である。

【0004】その例を示せば、(1)複数の現用伝送路 および予備伝送路を切り替える1:N型NPS(Nes ted Protection Switching)シ ステムや(2)現用伝送路および予備伝送路によりリン グ状に接続した4Fiber型BLSR(Bidire ctional Line Switching Ri ng)システムなどである。

【0005】前者の例は、例えば、Fiber Network Service Survivability、 1992 Artech House、INCであり、後者の例は、Bellcore SONETBLSR GenerticCriteria GRー1230-CORE、1993にみられる。

【0006】図2は、1:N型NPSシステムを説明する図である。図2において101~104は伝送装置である。現用伝送路105~108は双方向伝送路を示しいる。ここでいう双方向伝送路とは2本の光ファイバより形成される。図2ではこの双方向伝送路を一つの参照符号に対する双方向の実線の矢印で示されている。

【0007】また、図2の例では次のような接続を持っ ている。現用伝送路105は伝送装置101内の終端装 置112と伝送装置102内のアッドドロップ装置(分 岐挿入装置)に接続される。伝送路は信号の送信側で光 送信機を用いて、受信機側で光受信機を用いて終端装置 もしくはアッドドロップ装置に接続される。さらに現用 20 伝送路105は伝送装置102内のアッドドロップ装置 を用いて現用伝送路106と結合されている。現用伝送 路107は伝送装置102と伝送装置104内の終端装 置と接続されている。そしてこの現用伝送路107は伝 送装置103で中継されている。符号113は中継装置 を示す。すなわち、伝送装置103で双方向伝送路10 7は予備伝送路に切替能力を有していない。他方、予備 伝送路109~111は図2に点線で示されている。こ の予備伝送路109~111は伝送装置101~104 のすべてを、各々の伝送装置内でアッドドロップ装置を 30 用いて結合されている。各々の伝送装置は現用伝送路を 予備伝送路に切り替える能力を有している。

【0008】次に、NPSシステムの切替の例を示す。例えば、双方向伝送路107で障害が発生した場合、どのように切り替えを行うかを説明する。双方向伝送路107は伝送装置102と伝送装置104で終端されているため、これらの伝送装置で伝送路切替能力を有している。この為、双方向伝送路107で障害が発生した場合、予備伝送路110と予備伝送路111を使用して信号の伝送が行われる。図2に示した1:N型NPSシス40 テムは、トラフィック(主信号)の容量に応じて現用伝送路を敷設し、伝送装置内にアッドドロップ装置や中継装置を選択できる。

【0009】図3は4Fiber型BLSRを説明する図である。図3において201~204は伝送装置である。現用伝送路221~224と予備伝送路211~214は各々、伝送装置内でアッドドロップ装置を介してリング状に結合されている。各々の伝送装置は現用伝送路を予備伝送路に切り替える能力を有する。

【0010】この4Fiber型BLSRシステムでの 50 回線障害に対する伝送路切替に関する基本動作を述べ

5

る。図3はにおいて、現用伝送路221で障害が発生した場合、伝送塩曜201と202で双方向伝递路切替を行い、予備伝送路211を使用して、信号救済を行う。また、現用伝送路211を使用して、信号救済を行う。また、現用伝送路21と予備伝送路211の両方にには、いて障害が発生した場合、つまり、ケーブル断などの障害が発生した場合、つまり、ケーブル断などの障害時には、リング型ネットワークの特徴である迂回経路を使用する、つまり、4Fiber型BLSRシステームに送路212~214を使用することにより信号の救済を行うことができる。このようにリング型での救済法でも、は、時計回りと反時計回りの2つの経路を選択でも、時計回りと反時計回りの2つの経路を選択できることである。この4Fiber型BLSRシステムは、GR-1230-COREによって提供されている。

[0011]

【発明が解決しようとする課題】従来のサバイバルネットワークではケーブル断、光ファイバ断、光送受信部の故障などの障害を救済するため、伝送路切替を行い、トラフィックを救済する。しかし、前述の1:N型NPSシステムではトラフィックの需要に応じて光ファイバが必要となる。しかしながら光ファイバの本数が足りない場合、新たに伝送装置間に光ファイバを増設する必要があり、多大な敷設コストがかかってしまう。

【0012】また上述のBLSRシステムでは、次のような難点を持っている。BLSRは1:1システムであるため、現用伝送路の伝送容量の分だけの予備伝送路を敷設しなければならない。従って、最大トラフィックの光スパンに必要な容量が、リング全体の容量となってしまう。例えば、図3において伝送装置201と202の間のトラフィックだけがネットワークの中で最大容量値となるとき、現用伝送路221の最大容量値に設定するだけでなく、リング全体をその最大容量値に設定しなければならない。つまり、トラフィックがリング内のあるスパンに集中するほど、伝送路の使用効率や経済性に問題がある。

【0013】上述したように、サバイバルネットワークでは新たな需要の喚起により伝送容量に対応した光ファイバが必要となるため、増設コストさらにファイバの使用効率が問題となる。

【0014】本願発明は上記の諸問題を解決すべくなされたものである。

【0015】本願発明の第1の目的は、光ネットワークにおける光伝送路、例えば光ファイバの施設形態によらず、障害時の予備光バス選択を柔軟に行い得る自己救済型光ネットワークを提供することである。

【0016】本願発明の第2の目的は、自己救済型光ネットワークの光伝送路、例えば光ファイバの使用効率を向上させることである。

[0017]

【課題を解決するための手段】本願発明の基本形態の概 50 化情報は時間分割アドレス情報となる。

要を略述し、次いで本願明細書に開示される本発明の各種財産の概要を説明する。

【0018】 〈本願発明の自己救済型光ネットワークの構成の概要〉本願発明の代表的な自己救済型光ネットワークは複数個の伝送装置と、前記伝送装置を接続する複数の光パスとを少なくとも有し、前記光パスには所定の伝送光の波長が割り当てあるいは時間分割によって割り当てられたられた信号が伝送され、且つオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送をなす自己救済型光ネットワークであって、前記複数の光パスは前記複数の伝送装置を一連鎖に接続する光パスを有することを特徴とする波長多重自己救済型光ネットワークである。

【0019】即ち、本願発明の波長多重の自己救済型光ネットワークはこの一連鎖に接続された光パスを予備光パスとして用い得るごとく構成する点に要点がある。こうすることでいわゆるメッシュ状の現用光パスで障害が発生したとき、予備光パスによって救済を行うことが出来る。

20 【0020】本願発明の自己救済方法は、波長多重型伝送方式、および時間分割伝送方式のいずれに対しても適用可能である。

【0021】本願明細書では、波長の選択ないしは時間分割によって割り当てられる光学的な光のパスを「光パス」と称する。即ち、光信号の論理的な接続路が「光パス」である。これに対して、この光パスを具体的に構成する物理的な接続路を「光伝送路」と称する。それは具体的に例えば光ファイバが代表例である。従って、例えば一つの光伝送路に複数の光パスが存在することが可能である。即ち、各光パスが波長の割り当てによっている場合、この通信方式は通例光多重伝送と称されている。また、各光パスが時間分割によって割り当てられている場合、この通信方式は通例時間分割伝送方式と称されている。

【0022】尚、伝送フレームが有するオーバヘッドは、ネットワークの運用保守情報を転送する領域のことである。また、このオーバヘッド内の自動切替用のバイトは、伝送システムの中継器や伝送媒体の故障に対して、伝送端局装置間でシステム切り替えを制御する信号の授受と、警報状態を示すのに使用されるものである。【0023】光パスの切替えの為、自動切替バイト内の障害に関する切替制御情報、各光パスの障害情報、波長アドレス情報などが必要である。上記の伝送装置は、いわゆるオーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタル伝送を行い得るものであるが、これらの伝送装置は前記各光パスの障害情報とを少なくとも格納する波長アドレスマップを構成する記憶手段を有している。尚、時間分割伝送方式の場合、上記光多重

【0024】そして、現用光パスに障害が生じた際に、前記伝送フレームのオーパーヘッド内の自動切替パイトの情報に基づき、前記障害に関する切替制御情報と波長アドレス情報を前記伝送装置間で通信し、前記切替情報と前記波長アドレス情報と前記障害情報に基づいて、光パスを切替えるように構成される。尚、これらの具体例は発明の実施の形態の欄で述べられる。

【0025】光ネットワークでは、その論理的接続にしたがって、いわゆる現用光パス、予備光パスに分けられるが、本光ネットワークでは各伝送装置の指示によって、各光パス自体は、現用、予備のいずれの役割も果たすことが出来る。現用光パスは所望信号を伝送する光パスであり、一方、予備光パスは、光パスに何らかの障害が生じた場合に用いる光パスの呼称と考えれば良い。

【0026】光ネットワークの基本構成として、これまで知られている代表的なSONET又はSDHネットワークに本願発明を適用して極めて有用なものである。SONET又はSDHネットワークでは、この自動切替用のパイトはAPS(Automatic Protection Switching)パイトと称され、通例、K1およびK2の二つの領域で構成されている。このAPSパイトの詳細は後述する。

【0027】次いで本願明細書に開示される本願発明の 各種形態の概要を列挙する。

【0028】本発明の光ネットワークの基本思想は、現用光パスで障害が発生した場合、波長アドレス情報を含む切替情報の通信を伝送装置間で行い、予備光パスを使用して信号の救済を行うものであるが、光ネットワークの形態を容易にして切替を高速でかつ容易にするための光ネットワークとして次の形態が考えられる。

【0029】(1)前記自己救済型光ネットワークが、前記伝送装置をリング状に接続する予備光パスとを少なくとも有する自己救済型光ネットワーク。

【0030】(2)前記自己救済型光ネットワークが、前記伝送装置を一連鎖にに接続する予備光パスとを少なくとも有することを特徴とする自己救済型光ネットワーク。

【0031】(3) 前記自己救済型光ネットワークが、 1個の光伝送路で2個以上の光パスを少なくとも含む自 己救済型光ネットワーク。この形態は、光ファイバの使 用効率を向上させ、光ファイバなどの物理形態に依存さ れずに、フレキシビリティを高くする。

【0032】(4) また、本発明の自己救済型光ネットワーク形態として、前記本願の自己救済型光ネットワークが、前記現用光パスにより構成されたリング網を少なくとも2つ以上含んでも良い。

【0033】(5)本願発明の波長多重光ネットワークの基本動作は次のようにまとめられる。本願発明の波長 多重自己救済型光ネットワークは、複数個の伝送装置 と、前記伝送装置間を結びかつ光波長が割り当てられた 光パスと、オーバーヘッド情報を有する伝送フレームを 少なくとも用いてデジタル伝送をなす波長多重サバイバ ルネットワークであって、前記伝送装置は、前記各光パ スの波長アドレス情報と前記各光パスの障害情報とを少 なくとも格納する波長アドレスマップを構成する記憶手 段を有し、前記現用光パスに障害が生じた際に、前記伝 送フレームのオーバーヘッド内の自動切替バイトの情報 に基づき、前記障害に関する切替制御情報と波長アドレス情報を前記伝送装置間で通信し、前記切替情報と 放長アドレス情報と前記障害情報に基づいて、健全な光 パスに切替えるように構成されている。

8

【0034】前記波長多重サバイバルネットワークが、前記光パスとして現用光パスと予備光パスとして、論理的接続がなされている場合、前記切替情報と前記波長アドレス情報と前記障害情報に基づいて、予備光パスに切替えるように構成されているということが出来る。

【0035】(6)前記波長多重サバイバルネットワークが、1個の光伝送路で2個以上の光パスを少なくとも含むことを特徴とする前記項目(1)より項目(5)に20 記載の波長多重サバイバルネットワーク。

【0036】(7)前記切替情報に、現用光パスの波長アドレスと伝送装置の切替状態とを少なくとも含むことを特徴とする前記項目(1)より項目(6)に記載の波長多重サバイバルネットワーク。

【0037】(8)前記切替情報に、重要度の最も高い現用光パスの波長アドレスと、伝送装置の切替状態とを少なくとも含むことを特徴とする前記項目(1)より項目(7)に記載の波長多重サバイバルネットワーク。

【0038】(9)前記切替情報に、重要度の最も高い 30 現用光パスの番号と切替情報を送信した伝送装置番号 と、この伝送装置の切替状態とを少なくとも含むことを 特徴とする前記項目(1)より項目(7)に記載の波長 多重サバイバルネットワーク。

【0039】(10)前記波長多重サバイバルネットワークが、前記現用光パスにより構成されたリング網を少なくとも2つ以上含むことを特徴とする前記項目(1)より項目(7)に記載の波長多重サバイバルネットワーク。

【0040】<本願発明の光ネットワークの切替判定ス の テップの代表例>また、本発明の光ネットワークにおい て切替情報の通信を実現するためのネットワークは次の 通りである。

【0041】数個の伝送装置と、前記伝送装置間を結びかつ光波長が割り当てられた現用光パスと、前記伝送装置間を結びかつ光波長が割り当てられた予備光パスとを少なくとも有し、前記伝送装置は、前記各光パスの波長アドレス情報と障害情報とを少なくとも格納する波長アドレスマップを構成する記憶手段を有し、オーバーヘッド情報を有する伝送フレームを少なくとも用いてデジタ ル伝送をなす波長多重サバイバルネットワークにおい

9

て、次に例示する切替判定ステップを有する。

【0042】(1)ステップ1:前記オーバーヘッド情報の自動切替バイトが障害パターンを示すか否かを判定するステップ。

【0043】(2)ステップ2:波長アドレスマップ情報に基づいて、前記オーバーヘッド情報の自動切替バイトが受信した伝送装置宛か否かを判定するステップ。

【0044】(3)ステップ3:自動切替パイトが、受信した伝送装置宛である場合、切替動作を開始するステップ。

【0045】(4)ステップ4:自動切替バイトが、受信した伝送装置宛でない場合、前記自動切替バイトを転送するステップ。

【0046】 <伝送装置の概要>これまで、光ネットワークの論理的構成を中心に説明した。次に、この論理構成の具体的な物理的構成例の概要を説明する。こうした装置のより具体的、実際的な構成は、発明の実施の形態の欄で説明される。

【0047】本願発明の光ネットワークの例を図8に示す。本願発明がこの例に限定されないことはいうまでも無い。波長多重サバイバルネットワークは、伝送装置 $11\sim14$ 、光ファイバ $15\sim18$ 、光パスアッドドロップ装置 $21\sim24$ 、予備光パス $31\sim34$ 、現用光パス41、42、44-1、44-2を有して構成されている。図8において光パスは双方向の光パスを示している。但し、この例では、同一光ファイバを利用しているため、双方向の光パスは異なる光波長を使用している。

【0048】伝送装置は次の要素を含んで構成されている。図1の符号9がこの例を示している。それは(1)光パスの送受信部5、6、(2)光伝送の制御手段3、および(3)パス切り替え手段4を少なくとも有する。更に、制御手段3は光パスの波長アドレス情報と光パスの障害情報の記憶手段である波長アドレスマップ2とオーパーヘッド処理手段1を有している。この波長多重サバイパルネットワークは予備光パス31~34により光パスアッドドロップ機能を経てリング状に接続されている。現用光パス41は伝送装置11と12によって終端されている。

【0049】前記各伝送装置11~14は光バスの光送受信部及びアッドドロップ機能を有している。この機能に基づき各伝送装置は光パス切替能力を有することと成る。この切替はパス切替手段4で行う。

【0050】光パスアッドドロップは、主に波長多重分離装置(WDM)、光クロスコネクト、光中継器、光フィルタや光スイッチまたは光サーキュレータなどにより構成された光学装置である。この装置は、任意の光波長を選択し、アッド(Add、挿入)、ドロップ(Drop、分岐)又はスルー(Through、通過)することが可能な装置である。

[0051]

【発明の実施の形態】本発明の波長多重サバイバルネットワークの具体例を図1、図3~図12を使用して説明する。

10

【0052】本発明の基本思想は、現用光パスに障害が生じた際に、伝送装置間で波長アドレスを含む切替制御情報を相互に通信し、この切替制御情報をに基づいて、現用光パスで伝送されている信号を予備光パスで伝送されるように、光パス切替を行う波長多重サバイパルネットワークである。

10 【0053】尚、以下の具体例で理解されるように、一つの光ファイパ内に波長多重で伝送される多数の光のパスが存在する。

【0054】本願明細書において予備光パスとは、前述した通り、障害発生時に切替えられる光パスのことである。即ち、予備光パスとは、その役割を与えられた場合の呼称であり、特別それとして固定的に設けられた光パスのことを指すものではない。従って、現用光パスで障害が発生していないときは、信号を伝送するために予備光パスを使用することもできる。情報を伝送するという観点から現用光パスも予備光パスも同一である。またう観点から現用光パスも予備光パスを開位をもつとした場合、優先順位の低い現用光パスを予備光パスで障害発生した場合、優先順位の低い現用光パスを予備光パスで障害発生した場合、優先順位の低い現用光パスを開いて優先順位の高い光パスの信号を救済する。もちろん、このとき、優先度の低い現用光パスの信号を伝送することはできない。

【0055】図1は本発明の概略構成を示す図である。この概略構成は波長多重サバイバルネットワークの原理を説明するための一例である。本発明に関わる波長多重サバイバルネットワークでは、次の要素を含んでいる。【0056】図1の例は7つの伝送装置9の光ネットワークを例示している。この図は光りパスの論理的な接続のみを示している。各伝送装置9は光パス7および光パス8によって光接続されている。この例で、実線の光パス8は現用光パス、点線の光パス7は予備光パスとして使用された例である。

【0057】図1にその代表例が示されている各伝送装置9は次の要素を含んで構成されている。即ち、それは(1)光パスの送受信部5,6、(2)光パス切替の制御手段3、および(3)パス切り替え手段4を少なくとも有する。更に、制御手段3は光パスの波長アドレス情報と光パスの障害情報の記憶手段である波長アドレスマップ2とオーバヘッド処理手段1を有している。

【0058】前記切り替えオーバーヘッド処理手段1は 通例CPU (Central Processing U nit)で構成される。オーバヘッド処理手段1は、オ ーバーヘッドが要求されている諸要求の処理を実行す る。即ち、それはオーバヘッド内の切替情報と検出した

50 障害情報と、波長アドレス情報などが格納されている波

40

長アドレスマップの情報を参照しながら解析して、切替 判定等を行う。

【0059】図1の例では、送受信部6が現用光パスに対する送受信部、送受信部5が予備光パスに対する送受信部である。現用光パス8は現用光パス送受信部6で送受信される。予備光パス7は予備光パス送受信部5で送受信される。そして前記光パス送受信部は主信号の切替を行うパス切替手段4に接続される。尚、送受信部の具体的構成は通例のもので良い。

【0060】光パス7、8への信号は主信号とオーバヘッドを有して構成される。この信号構成の詳細は後述される。

【0061】次に、光パスに伝送障害が起きた場合の伝送装置の動作について説明する。

【0062】前記光パス送受信部5、6は光パス7、8 を監視し、伝送障害を検出した場合、その障害情報を制 御手段3内のオーバーヘッド処理手段1に送る。また前 記光パス送受信部5,6は他の伝送装置から送信されて くる信号のフレーム内のオーバヘッド情報を受信してオ ーパヘッド処理手段1に送る。オーバーヘッド処理手段 1は、オーバヘッド内の切替情報と検出した障害情報 と、波長アドレス情報などが格納されている波長アドレ スマップの情報を参照しながら解析して、切替判定を行 い、オーパヘッドの処理を行う。即ち、処理手段1は、 受信された伝送フレームのオーバーヘッド内にあるAP Sバイトの切替情報と、処理手段と同一ノード内にある 光パス送受信部5、6から通知された障害情報から切替 判定を行なう。そして、処理手段1は、光パス切替手段 4で主信号を予備光パスへ切り替えるべきか否かを判定 する。この時、ネットワークの接続状態および現在の障 害状態等を記憶した波長アドレスマップを参照にして、 予備光パスに切り替えるべきか否かを判定する。制御手 段1はこの判定結果に基づいて光パス切替手段4に切り 替え命令を行なう。そして、処理手段1は、この判定結 果に基づいて送信するべきAPSバイトの情報を決定す る。尚、波長アドレスマップについては後述する。

【0063】尚、SONET又はSDHネットワークでの自動切替用のバイトはAPSバイトと称されていることは前述したが、これは通例、K1およびK2の二つの領域で構成されている。このAPSバイト内での各種割り当ての具体例を図4に示す。K1バイト、K2バイトの各々は8ピットを有する。APSバイト内のK1バイトには(1)障害に対する優先度、(2)現用に供する光パス番号が割り当てられる。K2バイトには(1)送信ノード番号、(2)トリガーのオン、オフ、及び

(3) 切替え状態、即ち、障害通知、遠隔通知、送受信 側切り替え、送信側切り替え、及び正常状態が割り当て られる。

【0064】また、波長アドレスマップには(1)光パス番号、(2)接続ノード、(3)第1優先予備光パ

ス、(4)第2優先予備光パスが格納されている。尚、前記(2)接続ノードには前記光パスによって接続される伝送装置が指示されている。第1および第2の各予備光パスは予備光パスへの切替えに対する優先順位を示している。波長アドレスマップの例を図10に示す。この例で、例えば、光パス番号1を考えてみる。接続ノードABであるとノードAとノードBの接続を意図している。そしてこの伝走路にある障害が発生した場合、第1に予備パスとして優先されるのが、光パスABであり、第1に予備パスとして優先されるのが光パスADCBであることを示している。

【0065】この結果、オーバヘッド処理手段1は、処理されたオーバヘッドを光パス送受信部に送る。被長アドレスマップのデータをその処理結果に基づいて動的に更新する。さらにオーバーヘッド処理手段1はこれらの結果に基づいて光パスの主信号をパス切替手段4により、指示された予備光パスに切替える。

【0066】次に波長多重サバイバルネットワーク全体の光パスの切替方法の具体的な諸例を説明する。

【0067】<実施の形態1>図5は本発明の波長多重 サバイバルネットワーク例を示す図である。この例は各 伝送装置が予備光パスによってリング状に接続されてい る例である。

【0068】尚、実施の形態1の光ネットワークは、本来原理的にはノード数に依存されないが、説明を容易にするため、4ノードの波長多重サバイバルネットワークを用いて説明する。

【0069】この波長多重サバイバルネットワークは、 伝送装置11~14、光ファイバ15~18、光分岐挿 30 入装置(通称、光パスアッドドロップ装置)21~2 4、予備光パス31~34、現用光パス41、42、4 4-1、44-2を有して構成されている。

【0070】前記各伝送装置11~14は光パスの光送受信部及び分岐および挿入(アッドドロップ)機能を有している。この機能に基づき各伝送装置は光パス切替能力を有することと成る。この切替はパス切替手段4で行う。図4において光パスは双方向の光パスを示している。但し、この例では、同一光ファイバを利用しているため、双方向の光パスは異なる光波長を使用している。【0071】この波長多重サバイバルネットワークは予備光パス31~34により光パスアッドドロップ機能を経てリング状に接続されている。現用光パス41は伝送装置11と12によって終端されている。

【0072】光パスアッドドロップ装置は、主に波長多重分離装置(WDM)、光クロスコネクト、光中継器、光フィルタや光スイッチまたは光サーキュレータなどにより構成されている。この装置は、任意の光波長を選択し、アッド(挿入:Add)、ドロップ(分岐:Drop)またはスルー(通過:Through)することが50 可能な装置である。例えば、現用光パス41において伝

送装置11から12に伝送される信号は、まず光パスア ッドドロップ装置21において、光パス41に挿入(ア ッド)される。そしてその信号は光ファイバ15による 光パス41を経て光パスアッドドロップ装置22で分岐 (ドロップ) され、伝送装置12へ接続される。

【0073】図5に示された現用光パス44-2につい て説明する。現用光パス44-2は光伝送装置11と1 3間のトラフィックを伝送する。このような場合、光伝 送装置11と13において終端装置に接続され、その伝 送装置内で光パス切替能力を有する。光ファイバ17と 18は光パスアッドドロップ装置24を介して接続され ている。このとき現用光パス44-2は光パスアッドド ロップ装置24内を通過(スルー)している。従って、 現用光パス44-2と伝送装置14とは接続されない。

【0074】次に、光パスを増設する場合の方法につい て説明する。実施の形態1では、トラフィックが増大し た伝送装置内に現用光パスを終端する装置を設けるのみ で、光パスの増設が可能となる。

【0075】例えば、伝送装置11と伝送装置14の間 でトラフィックが増大した場合について考える。この 時、伝送装置11と14内に光パスを終端する装置を設 けると44-1のように現用光パスの増設が可能とな る。即ち、物理的な伝送路の増設が不要である。尚、勿 論、光パスアッドドロップ装置21と24では光パスを 分岐および挿入 (アッドドロップ) する機能が必要であ る。

【0076】このように光ファイバの新たな増設を必要 とせずに、光現用パスを増設することで、伝送容量の増 設が可能である。このため、増設コストが削減でき、コ ストパフォーマンスに優れている。尚、1本の光ファイ バにおいては複数の光パスが伝送される場合、周知の波 長分割多重技術(もしくは周波数分割多重技術)が使用 される。

【0077】 [光パスの切替方法] 次に光パス切替方法 について説明する。それは、例えば、光送受信部の故障 などによる障害のため、現用光パス41の信号が劣化も しくは不通になった場合の処理方法である。

【0078】この場合、予備光パスを使用して現用光パ ス41の信号を送信する。このとき使用する予備光パス の経路は、次の2つの選択肢がある。第一の優先経路は 予備光パス31の経路であり、第二の優先経路は予備光 パス32-33-34の経路である。通常前者をスパン 切替、後者をリング切替と呼ぶ。2つの切替のどちらを 優先して選択するかはあらかじめ決定しておく必要があ る。この2つの切替え経路の選択は、前述した波長アド レスマップにその優先順位が記憶されている。そして、 この波長アドレスマップを参照して前述のオーバーヘッ ドの処理がなされ、光パスの切替えが行われる。たとえ ば、スパン切替を試みたのち、リング切替を試みるよう に設定しておく。前記例では、まず、予備光パス31へ 50 であるので説明は省略する。

切替を行うものとする。もし光ファイバ15の切断など により予備光パス31が使用不可能な場合、予備光パス 32~34を使用してリング切替を行う。

14

【0079】このように予備光パスをリング状に接続し た場合、時計回りと反時計回りの予備経路が選択でき、 稼働率や救済効率が向上する。

【0080】図6は、本発明に関わる光パスアッドドロ ップ装置の具体例を示す図である。図5は特に図4の光 パスアッドドロップ24への適用を考えたものである。 10 この光パスアッドドロップは、波長多重分離装置 24-1と24-2、中継器24-3、光クロスコネクト24 - 4から構成されている。

【0081】光ファイバ17には現用光パス44-2な らびに予備光パス33が伝送されている。光パス44一 2、33は波長多重分離装置24-2を経て、それぞれ 中継器24-3と光クロスコネクト24-2に接続され る。光ファイバ18には現用光パス44-1、44-2 ならびに予備光パス34が伝送されている。光パス44 -1、44-2、34は波長多重分離装置24-1を経 て、光パス44-2は中継器24-3に、光パス44-20 1と34は光クロスコネクト24-2に接続される。光 パス44-1、33、34は光クロスコネクトを経て伝 送装置14に接続される。いいかえると光パス44-2 は光パスアッドドロップ装置24を通過(スルー)して おり、光パス33、34、44-1では分岐、挿入(ア ッドドロップ) している。

【0082】<実施の形態2>図6は本発明の波長多重 サバイバルネットワークの実施の形態2を示す図であ る。この例は各伝送装置が予備光パスによって一連鎖に 接続されている例である。尚、実施の形態2の光ネット ワークは、本来原理的にはノード数に依存されない。

【0083】この波長多重サバイバルネットワークは、 伝送装置11~14、光ファイバ15~17、光パスア ッドドロップ装置21~24、予備光パス31~33、 現用光パス41-1、41-2、42、43から構成さ れている。光パスアッドドロップ装置の具体的構成は実 施の形態1において述べたものと同様である。各伝送装 置は光パスの光送受信部及び分岐、挿入(アッドドロッ プ)機能を有している。この結果、各伝送装置は光パス の切替能力を有している。

【0084】この波長多重サバイバルネットワークは予 備光パス31~33により各伝送装置内で各伝送装置ア ッドドロップ機能を経て一連鎖に接続されている。現用 光パス41-2は障害発生時には予備光パス31と32 を使用する。つまり現用光パス41-2は現用光パス4 1-1及び42と予備光パス31, 32を共有してい る。このように、複数の現用光パスで予備光パスを共用 することで予備系コストを低減している。

【0085】その他の基本的事項は実施の形態1と同様

【0086】<実施の形態3>図8は本発明の波長多重サバイバルネットワークの実施の形態3を示す図である。実施の形態3は伝送装置11と12間の接続に光ファイバが二本使用されている例である。

【0087】この波長多重サバイバルネットワークは、 伝送装置11~14、光ファイバ15~17、光パスアッドドロップ装置21~24、予備光パス31~34、 現用光パス41-1、41-3、42、43から構成されている。予備光パス31は光ファイバ20を経て接続されている。形パス41-1、41-3は光ファイバ19 を経て接続されている。光パスアッドドロップ装置の具体的構成は実施の形態1において述べたものと同様である。

【0088】このように本発明の波長多重サバイバルネットワークは、光パスの接続形態のみに依存しているのであって、光ファイバなどの物理媒体の接続形態に依存していない。言い換えれば、光ファイバの接続形態に依存しないため、新たな敷設などを必要とせずに既存の光ファイバを利用できることを意味する。

【0089】また、光ファイバ19で障害が発生した場合について考える。たとえば、光ファイバ19が切断された場合、現用光パス41-1と41-3も切断される。このときの救済の一例として現用光パス41-1を予備光パス31を使用して救済し、現用光パス41-3は予備光パス32~34を使用してリング切替を行い、救済することができる。つまり予備光パスと現用光パスを異なる光ファイバで伝送しておくと、光ファイバ切断などの障害に対して救済効率が向上する。このように本発明の波長多重サバイバルネットワークは、救済効率を考慮してネットワークを構築することが可能であり、ネットワークの構築にフレキシビリティがある。

【0090】<実施の形態4>図9本発明の波長多重サバイバルネットワークの実施の形態4を示す図である。 実施の形態4は各伝送装置はリング状に接続されている 例である。

【0091】この波長多重サバイバルネットワークは、 伝送装置 $11\sim14$ 、光ファイバ $15\sim17$ 、光パスアッドドロップ装置 $21\sim24$ 、予備光パス $31\sim34$ 、 現用光パス41-1、41-2、42-1、42-2、 43-1, 43-244-1, 44-2から構成されている。

【0092】実施の形態4は現用光パス41-1、42-1、43-1、44-1は伝送装置11~14を経てリング状に接続されている。さらに現用光パス41-2、42-2、43-2、44-2も同様に伝送装置11~14を経てリング状に接続されている。このように現用光パスによりリング網を形成することが可能である。この実施例の場合は、現用光パスにより2つのリング網が形成されており、各々の現用光パスは各々の伝送装置間で同一光ファイバを用いて伝送されている。また

16 各リング網を異なる光ファイバで伝送するように設計することもできる。

【0093】 [a. 光パスの切替方式] 次に、本例を用いて、光パス切替を実現するための光パス切替方式について説明する。デジタル伝送は通常フレーム単位で伝送され、伝送フレームのオーバヘッドは同期デジタルハイアラキ(SDH)や同期光通信網(SONET)などによって規格化されている。自動切替制御のため、そのオーバヘッド内にある自動切替バイト(APSバイト)が10割り当てられている。APSバイトはいわゆる「K1バイト」、および「K2バイト」の2つのバイトを有する。

【0094】本波長多重サバイバルネットワークで切替を行う場合、光パスの障害状態と光パスの波長アドレス情報と切替状態の情報とを含む切替情報の通信を行う必要である。この切替情報の具体的な内容を示すと、「障害の重要度」、「光パス番号」、「送信ノード番号」および「切替状態」を少なくとも含む。「障害の重要度」は光パスの障害状態の情報である。「光パス番号」と「送信ノード番号」とは光パスの波長アドレス情報である。「切替状態」は伝送装置の切替状態の情報である。さらに柔軟な切替を可能とするため、「信号種類」を定義する。

【0095】「障害の重要度」とは、トラフィックの重要度や誤り率測定による信号劣化度などから判定した光パスの切替優先度のことである。複数の光パスで障害が発生した場合、この切替優先度を使用して重要度を決定する。「光パス番号」とは現用光パスや予備光パスを区別するための情報である。「送信ノード番号」とは切替30 情報を送信したノード(光伝送装置)を示す情報である。「切替状態」とは切替情報を送信したノードの切替状態を示す情報である。「信号種類」とは切替開始のためのトリガーか、もしくは高速切替のために情報伝達のみを行う信号かを示す情報である。このような切替情報の通信には予備光パスで伝送されるK1とK2パイトを使用する。

【0096】 [b. APSバイトの使用例] 次にこのAPSバイトの使用例について説明する。

【0097】図4は、本発明のAPSバイトの使用例を示す図である。切替情報をAPSバイトに割り当てた一例である。たとえば、K1バイトには「障害の重要度」と「光パス番号」とを割り当て、それぞれ4ビットづつ割り当てる。またK2バイトには「送信ノード番号」と「信号種類」と「切替状態」とを割り当て、それぞれ4ビットづつ割り当てる。このように割り当てると障害状態が16状態、光パス数が16パス(予備光パスが1パスとそれに対応した現用光パスが15パス)、ノード数が16ノード、信号種類が2種類、切替状態が8状態まで割り当てることができる。

50 【0098】 [c. 波長アドレスの割り当て方] 図11

は、本発明に関わる波長アドレスの割り当て方を説明する図である。光ネットワークの構成は図8と同様である。

【0099】波長アドレスマップには、図10を用いて説明したように各光パスの番号、接続ノード状態、第1優先予備光パス、第2優先予備光パスが含まれている。光パス番号は伝送装置の接続形態にのみ依存し、波長や光ファイバなどの接続形態には依存しない。現用光パスが同一の予備光パスを使用する場合は、光パス番号を重複しないように割り当てる必要がある。また、第1優先予備光パスとは、障害が発生した現用光パスを救済するとき、最初に切替を試みるべき光パスのことである。この第1優先予備光パスを使用できないとき、第2優先予備光パスへの切替を試みる。

【0100】これらの情報はネットワーク構築時に各伝送装置内にある波長アドレスマップに記憶させておく必要がある。例えば現用光パス41について、光パス番号を「1」、接続ノード「AB」、第1優先予備光パス経路「ADCB」と割り当てる。また現用光パス41-1は、現用光パス44-2は予備光パス34を共有しているため、光パス番号「2」を割り当てる。

【0101】次のこの波長アドレスマップの使用方法について説明する。

【0102】例えば、図11の状態で光パス41で障害が発生した場合、伝送装置AB間で切替情報の通信を行い、切替経路を決定する。このとき波長アドレスマップより、まず第1優先予備パス31へ切替を試みる。この結果、切替可能であるならば予備光パス31を使用する。もし切替不可能な場合、言い換えると、光予備パス31がすで使用されているかもしくは予備光パス31で障害発生しており、予備光パス31が使用できない場合、伝送装置ADCB間を接続している第2優先予備パス32、33、34への切替を試みる。

【0103】この時、波長アドレスマップはつぎのように書き替えが行なわれる。光パス41ヲ示す光パス番号「1」と接続ノード「AB」の状態は「信号障害」に変更される。障害復旧の際、第1優先予備光パス31を使用した場合、この光パス41に対する第1優先予備光パスの状態は「使用済み」となる。従って、この光パス31を使用する予備光パスはすべて「使用不可」と変更される。図11にはこの例での波長アドレスマップのデータ書き替えが、「波長アドレスマップのデータ変更前」及び「波長アドレスマップのデータ変更後」として例示されている。

【0104】 [d. APSバイトの処理過程] 図11 は、本発明のAPSバイトの処理過程を説明するフローチャートである。

【0105】1. 障害を検出した伝送装置は、APSバイトが障害情報を示すパターンか否かを判定する (S

1).

【0106】2. 障害パターンを示す場合、そのAPS パイトが自伝送装置宛であるか否かを判定する(S 2)。

【0107】3. 自伝送装置宛である場合、予備光パスへの切替動作を開始する(S3)。自伝送装置宛でない場合、予備光パスを経由して隣の伝送装置へそのAPSパイトを転送する(S4)。

【0108】4. これらの判定は波長アドレスマップを参照しながら、制御手段3で行う。

【0109】つぎにAPS信号のやり取りについて説明する。

【0110】図12は、本発明のAPSパイトのタイム チャートの例を示す図である。

【0111】ここでは一例として、図10の現用光パス44-2の障害例について説明する。

【0112】最初に時間T0において信号1~4は障害 状態の定常状態を示している。「#0」は予備光パスを 示しており、「NR」とは正常状態を示している。

20 「S」は切替トリガーではない信号であり、「i d l e」は切替が行われていない状態を示している。図12におけるK1, K2パイトの信号1、2、3、4として示している。K1, K2パイトには、図12のタイムチャートの送信信号を示す符号に各々対応する符号が付されている。

【0113】1.時間T1に現用光パス44-2の障害を伝送装置Aで「SF」を検出した場合を考える。「SF」とは受信誤り率測定などにより障害判定を行った結果、切替優先度が高いと判定された障害状態である。障害を検出したノードAは、障害状態、波長アドレス情報と切替状態を含んでいる切替情報を隣接しているノードBとノードDに向けて送信する(信号5)。このとき障害状態として重障害「SF」を、波長アドレス情報として光パス番号「1」、送信ノード「A」、信号種類と切替状態の組み合わせにより切替要求を示す「r/idle」を送信する。この切替情報を受信したノードDは、まずこの切替情報が障害パターンを示すと判定する(この判断は図11のフローチャートでのS1である。以下同様である。)。

40 【0114】2. 次に各伝送装置で保持している波長アドレスマップを参照して切替情報を受信するべきノードを判定する(S2)。

【0115】3. この結果、この切替情報の受信ノードはCであるため、隣接しているノードCに転送する(S4)。

【0116】4. さらにこの切替情報を受信したノード Cは、障害パターン判定を行い(S1)、波長アドレス マップを参照することにより自ノードが受信ノードであ ると判定する(S3)。この結果、第1優先予備光パス 50 である経路ADC、つまり予備光パス33、34への切

替を開始する(S3)。

【0117】 5. ノードCは、障害状態として重障害 「SF」を、波長アドレス情報として光パス番号 「1」、送信ノード「C」、信号種類と切替状態の組み 合わせにより切替応答を示す「r/Br」を送信する (信号6)。

【0118】6. 切替応答を受信したノードAは切替を 完了して、信号種類と切替状態の組み合わにより切替完 了を示す「r/S&B」をノードCに送信する(信号 7).

【0119】7. この切替完了を受信したノードCも切 替を完了してノードAにその主旨を送信する(信号 8).

【0120】切替に関係ない伝送装置Bにもこの障害情 報を送信するため、ノードAとCは信号種類と切替状態 の組み合わせにより情報送信を示す「s/S&B」を送 信する(信号7sと8s)。この信号を受信したノード Bは波長アドレスマップの情報を更新する。このことに よって、新たに障害が発生した場合など、高速切替判定 が可能となり、切替時間の短縮になる。

【0121】時間T2は現用光パス44-2が予備光パ ス33、34を使用して、トラフィックを救済している ときのAPS信号を示している。

[0122]

【発明の効果】本願発明の自己救済型光ネットワークは 光伝送路、例えば光ファイバの施設形態によらず、障害 時の予備光パス選択を柔軟に行い得る自己救済型光ネッ トワークを提供することができる。

【0123】本願発明の自己救済型光ネットワークは自 パの使用効率を向上させることができる。

【0124】即ち、本願発明の自己救済型光ネットワー クは光ファイバの敷設形態に影響されないため、トラフ イックの容量に応じて光パスを柔軟に張ることが可能に なる。この結果、光ファイバの使用効率が向上し、また スルーノードで中継器を設置することによりネットワー クが柔軟に構築でき、かつ低コスト化が可能となる。さ らに、障害時の予備光パス選択に柔軟性を持たせ、かつ 高速な切替えが可能でなる。

【図面の簡単な説明】

【図1】図1は本発明の概略構成を示す図である。

【図2】図2は1:N型NPSシステムを説明する図で

20

【図3】図3は4Fiber型BLSRを説明する図で

【図4】図4はAPSバイトのフォーマットの例を示す 図である。

【図5】図5は本発明の波長多重サバイバルネットワー ク例を示す図である。

【図6】図6は本発明に関わる光パスアッドドロップ装 10 置の例を示す図である。

【図7】図7は本発明の波長多重サバイバルネットワー ク例を示す図である。

【図8】図8は本発明の波長多重サバイバルネットワー ク例を示す図である。

【図9】図9は本発明の波長多重サバイパルネットワー ク例を示す図である。

【図10】図10は本発明のAPSバイトの使用例を示 す図である。

【図11】図11は本発明に関わる波長アドレスの割り 20 当て方を説明する図である。

【図12】図12は本発明のAPSバイトの処理過程を フローチャートで説明する図である。

【図13】図13は本発明のAPSバイトのタイムチャ ートの例を示す図である。

【符号の説明】

1…オーバーヘッド処理手段、2…波長アドレスマッ プ、3…制御手段、4…パス切替手段、5…予備光 パス送受信部、6・・・現用光パス送受信部、7・・・予備光 パス、8…現用光パス、9…伝送装置、101~10 己救済型光ネットワークの光伝送路、例えば、光ファイ 30 4…NPS伝送装置、105~108…双方向現用伝 送路、109~111…双方向予備伝送路、112… 終端装置113・・・中継装置、114・・・アッドドロップ 装置、201~204···伝送装置、211~214··· 予備伝送路、221~224…現用伝送路、11~1 4…伝送装置、15~20…光ファイバ、21~24 ・・・光パスアッドドロップ装置、31~34・・・予備光パ ス、41~44、41-1、41-2、42-1、42 -2, 43-1, 43-2, 44-1, 44-2, ... 現用光パス、24-1~24-2…波長多重分離装 40 置、24-3…中継器、24-4…光クロスコネクト

である。

 2
 BC
 正常
 BC
 使用可能
 BADC
 使用可能

 1
 AD
 正常
 AD
 使用可能
 ABCD
 使用可能

 1
 AC
 正常
 ADC
 使用可能
 ABC
 使用可能

【図12】

図 12

【図11】

2 11

波長アドレスマップ(データ変更前)

光バス番号	接続ノード	状態	第1優先予償光バス		第2優先予備光バス	
1	AB	正常	AB	使用可能	ADCB	使用可能
2	BC	正常	ВС	使用可能	BADC	使用可能
1	AD	正常	AD	使用可能	ABCD	使用可能
1	AC	正常	ADC	使用可能	ABC	使用可能

波長アドレスマップ (データ変更後)

光パス番号	接続ノード	状態	第1優先予備光バス		第2優先予備光バス	
1	AB	信号障害	AB	使用済み	ADCB	使用可能
2	BC	正常	BC	使用可能	BADC	使用不可
1	AD	正常	AD	使用可能	ABCD	使用不可
1	AC	正常	ADC	使用可能	ABC	使用不可

【図13】

図 13

フロントページの続き

Fターム(参考) 5K002 AA06 BA04 BA05 BA06 CA05

DA02 DA03 DA04 DA05 DA11

EA33 FA01

5K028 AA11 AA14 BB08 MM05 MM12

QQ01 SS24 TT02

5K030 GA01 GA12 HC14 JL03 JL10

LA17 MD02

5K031 AA01 AA04 AA08 CA08 CA15

CB12 CC04 DA12 DA19 EB05

5K033 AA01 AA02 AA06 CA11 CA17

DA02 DA14 DB22 EB06