Candidat #12184 Détection de fractures osseuses

HBI-120 de Viken Detection

Principe général

seuils: 40, 120

Détection des traits Avec la Transformée de Hough

Classique (détecte des droites)

Probabiliste (détecte des segments)

Détection des traits

Avec la Transformée de Hough

Θ	r
15	189.0
30	282.0
45	355.7
60	407.3
75	429.4

```
0 r
15 318.5
30 376.8
45 407.3
60 409.8
75 385.3
```

Θ	r
15	419.0
30	443.6
45	438.4
60	402.9
75	340.1

Calcul des angles Avec de la trigonométrie

Critère de décision

$$\max \text{ angles} > \varepsilon \iff \text{ cass\'e}$$

Identification du type de fracture

Noms des différentes lignes de fracture du fémur

Un problème de texture

bas: 40 haut: 60

bas: 40 haut: 120

bas: 60 haut: 180

seuils(luminosité, contraste)?

Seuils optimaux de détection de bords

Recherche de sets de données

Recherche de sets de données

$$T = \operatorname{Flou}_{r_{\text{flou}}}(S \cdot \operatorname{cont} + \operatorname{lum})$$

$$B = \operatorname{Canny}_{\operatorname{seuil}_h, \operatorname{seuil}_b} T$$

$$L = \{(i, f) \in \text{Hough}(B), ||i - f|| \ge 20\}$$

Calcul de la récompense

$$\begin{cases} 1 - d(\lim B, 7, 15) & \text{si } d(\lim B, 7, 15) \neq 0 \\ 0.25 + 1 - d(|L|, 10, 25) & \text{sinon} \end{cases}$$

avec

$$d := (v, a, b) \mapsto \begin{cases} |v - a| & \text{si } v < a \\ |v - b| & \text{si } v > b \\ 0 & \text{sinon} \end{cases}$$

Apprentissage de l'agent avec des Q-Tables

	État 1	État 2	État 3	•••
Action 1	0.1244	0.3409	0.7574	0.7269
Action 2	0.8476	0.4427	0.3895	0.8374
Action 3	0.8479	0.7761	0.0762	0.7884
	0.1121	0.4661	0.9433	0.1774

Apprentissage de l'agent Le problème de dimension des Q-Tables

		8 ²⁰⁰ ·200			
		État 1	État 2	État 3	
$20 \cdot 20 \cdot 6 \cdot 10 \cdot 5 \bigg\{$	Action 1 Seuil haut -= 10	0.1244	0.3409	0.7574	0.7269
	Action 2 Seuil haut -= 9	0.8476	0.4427	0.3895	0.8374
	Action 3 Seuil haut -= 8	0.8479	0.7761	0.0762	0.7884
	•••	0.1121	0.4661	0.9433	0.1774

Apprentissage de l'agent Le problème de dimension des Q-Tables

 $8^{200\cdot200} \cdot 20 \cdot 20 \cdot 6 \cdot 10 \cdot 5 \approx$

 $4.77 \cdot 10^{36128}$

TODO: taille en pétaoctets

Apprentissage de l'agent Avec des Deep-Q Networks

Incréments du seuil haut

$$seuil_h \in \{-10, -9, \dots, 8, 9, 10\}$$

Incréments du seuil bas

$$seuil_b \in \{-10, -9, \dots, 8, 9, 10\}$$

Incréments du contraste

cont
$$\in \{1, 1.1, 1.2, 1.3, 1.4, 1.5\}$$

Incréments de la luminosité

$$lum \in \{-5, -4, \dots, +3, +4, +5\}$$

Réglage du rayon de flou

$$r_{\text{flou}} \in \{0, 10, \dots, 50\}$$

Résultats

Résultats

