Notes on Formal Compiler Construction with the π Framework

Christiano Braga

Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

August 14, 2018

http://github.com/ChristianoBraga/BPLC

Compiler pipeline

source	lexer	tokens	parser	concrete	AST transformer	abstract	type checker	abstract	code generator	machine	optimizer	optimized
code				syntax		syntax		syntax		code		machine
				tree		tree		tree				code

Compiler pipeline and formal languages

	Regular ContextFree		ContextFree		ContextSensitive			Turing		Turing		
	Grammar		Grammar		Grammar		Grammar		Machine		Machine	
source	lexer	tokens	parser	concrete	AST transformer	abstract	type checker	abstract	code generator	machine	optimizer	optimized
code				syntax		syntax		syntax		code		machine
				tree		tree		tree				code

Compiler architecture with the π Framework

Automata

- π lib defines a set of constructions common to many programming languages.
- π lib constructions have a formal automata-based semantics in π automata.
- One may execute (or validate) a program in a given language by running its associated π lib program.
- π Framework: http://github.com/ChristianoBraga/BPLC
- Notes on Formal Compiler Construction with the π Framework: https://github.com/ChristianoBraga/BPLC/blob/master/notes/notes.pdf.

A calculator

We wish to compute simple arithmetic expressions such as 5*(3+2).

A calculator: Lexer

```
\langle digit \rangle ::= [0..9]

\langle digits \rangle ::= \langle digit \rangle^+

\langle boolean \rangle ::= 'true' | 'false'
```


A calculator: concrete syntax

```
\langle exp \rangle ::= \langle aexp \rangle \mid \langle bexp \rangle
\langle aexp \rangle ::= \langle aexp \rangle '+' \langle term \rangle | \langle aexp \rangle '-' \langle term \rangle | \langle term \rangle
\langle term \rangle ::= \langle term \rangle '*' \langle factor \rangle | \langle term \rangle '/' \langle factor \rangle | \langle factor \rangle
\langle factor \rangle ::= '(' \langle aexp \rangle ')' | \langle digits \rangle
\langle bexp \rangle ::= \langle boolean \rangle \mid ``-` \langle bexp \rangle \mid \langle bexp \rangle \langle boolop \rangle \langle bexp \rangle
                      \ \langle aexp\ \langle iop\ \langle aexp\
⟨iop⟩ ::= '=' | '<' | '>' | '<=' | '>='
```


A calculator: abstract syntax

A calculator: π denotations I

Let D in $\langle digits \rangle$, B in $\langle boolean \rangle$ and E_1, E_2 in $\langle exp \rangle$,

$$[D]_{\pi} = num(D) \tag{1}$$

$$[B]_{\pi} = boo(B) \tag{2}$$

$$[E_1 + E_2]_{\pi} = add([E_1]_{\pi}, [E_2]_{\pi})$$
 (3)

$$||E_1 - E_2||_{\pi} = sub(||E_1||_{\pi}, ||E_2||_{\pi})$$
 (4)

$$[E_1 * E_2]_{\pi} = mul([E_1]_{\pi}, [E_2]_{\pi})$$
 (5)

$$||E_1/E_2||_{\pi} = div(||E_1||_{\pi}, ||E_2||_{\pi})$$
(6)

$$||E_1/E_2||_{\pi} = div(||E_1||_{\pi}, ||E_2||_{\pi})$$
 (6)

$$[E_1 < E_2]_{\pi} = It([E_1]_{\pi}, [E_2]_{\pi})$$
 (7)

$$[E_1 <= E_2]_{\pi} = le([E_1]_{\pi}, [E_2]_{\pi})$$
(8)

$$||E_1 > E_2||_{\pi} = gt(||E_1||_{\pi}, ||E_2||_{\pi})$$
 (9)

$$||E_1\rangle = |E_2||_{\pi} = ge(||E_1||_{\pi}, ||E_2||_{\pi})$$
(10)

A calculator: π denotations II

- π denotations are functions $[\![\cdot]\!]_{\pi}: AST \to \pi$ lib, where AST denotes the datatype for the abstract syntax tree and π lib denotes the datatype for π lib programs.
- Note that $\llbracket \cdot \rrbracket_{\pi}$ has *trees* as parameters, instances of *AST*. The example expression 5*(3+2) becomes

A calculator: π denotations III

A calculator: executing π lib with π automata

A π automaton is a 5-tuple $\mathcal{A} = (G, Q, \delta, q_0, F)$, where G is a context-free grammar, Q is the set of states, q_0 is the initial state, $F \subseteq Q$ is the set of final states and

$$\delta: L(G)^* \times L(G)^* \times Store \rightarrow Q$$
,

where L(G) is the language generated by G and Store represents the memory. (Elements in a set S^* are represented by terms $[s_1, s_2, ..., s_n]$.)

```
\delta([nul(num(5), add(num(3), num(2)], \emptyset, \emptyset) = \delta([num(5), add(num(3), num(2)), \#MUL], \emptyset, \emptyset)
  \delta([\mathsf{num}(5), \mathsf{add}(\mathsf{num}(3), \mathsf{num}(2)), \#\mathsf{MUL}], \emptyset, \emptyset) = \delta([\mathsf{add}(\mathsf{num}(3), \mathsf{num}(2)), \#\mathsf{MUL}], [\mathsf{num}(5)], \emptyset)
   \delta([add(num(3), num(2)), \#MUL], [num(5)], \emptyset) = \delta([num(3), num(2), \#SUM, \#MUL], [num(5)], \emptyset)
\delta([num(3), num(2), \#SUM, \#MUL], [num(5)], \emptyset) = \delta([num(2), \#SUM, \#MUL], [num(3), num(5)], \emptyset)
\delta([num(2), \#SUM, \#MUL], [num(3), num(5)], \emptyset) = \delta([\#SUM, \#MUL], [num(2), num(3), num(5)], \emptyset)
\delta([\#SUM, \#MUL], [num(2), num(3), num(5)], \emptyset) = \delta([\#MUL], [num(5), num(5)], \emptyset)
                       \delta([\#MUL],[num(5),num(5)],\emptyset) = \delta(\emptyset,[num(25)],\emptyset)
```

$$\delta(\phi, [num(25)], \phi) = num(25)$$
Computação

