Math 143 Midterm 2

Name: _____

Identities: $\cos^2 t = (1 + \cos 2t)/2$, $\sin^2 t = (1 - \cos 2t)/2$.

1. Find the arclength of the curve given by the parametric equations $\begin{cases} x = \cos(2t), \\ y = 2t - \sin(2t) \end{cases}$ for $t \in [0, \pi]$.

2. Find the values of t for which the parametric curve $\begin{cases} x=2t^2 \\ y=t^4-t^3/3 \end{cases}$ for $t\in\mathbb{R}$ is concave down.

3. Find the plane containing the lines $\begin{cases} x=2+t,\\ y=1+t,\\ z=-2+2t \end{cases} \text{ for } t\in\mathbb{R} \text{ and } \begin{cases} x=s,\\ y=1+s,\\ z=1+2s \end{cases} \text{ for } s\in\mathbb{R}.$

4. Find the equation of the line tangent to the polar curve $r=1/(1+\cos\theta)$ at $\theta=\pi/2$.

5. Set up an integral (or integrals) that give the area inside the polar curve $r = \cos(3\theta)$ but outside the polar curve $r = \sin(3\theta)$. Do not evaluate the integrals, just set the integrals up!

6 (Bonus!). Write $m \in \mathbb{R}$. If there is a unique maximum among the numbers written down by all students, then the student who wrote m will earn $\frac{100}{m}\%$ extra credit.