N-Queen

* Queen이 감시할 수 있는 구간을 찾아야 함.

- Queen이 (1,1)칸에 있다고 가정.
- Queen 기준 세로 가로열은 놓을 수 없음.
- 새로 놓이는 Queen의 Y와 X가 기존의 Queen과 같은지 확인하면 됨.
- 우측 대각선 : (q_y 1, q_x +1) 과 (q_y + 1, q_x -1)을 만족하는
 모든 칸을 False로 두면 됨.
- 수식을 좀 더 보면, q_y-1와 q_x + 1 그리고 q_y+1, q_x -1은 서로 더하면
- $q_y-1 + q_x + 1 = q_y + q_x$
- q_y+1 + q_x 1 = q_y + q_x를 만족함.

N-Queen

* Queen이 감시할 수 있는 구간을 찾아야 함.

* 좌측 대각선 : (q_y -1, q_x -1)과 (q_y +1, q_x +1)을 만족하는 모든 대각선을 False로 두면 됨. 수식을 좀 더 살펴보면 q_y - 1 - (q_x - 1) = q_y - q_x + 1 q_y + 1 - (q_x + 1) = q_y + 1 - q_x - 1 = q_y - q_x + 됨.

N-Queen

* Queen이 감시할 수 있는 구간을 찾아야 함.

Q	

- base_condition : Queen의 특성상 각 y에 1개 밖에 Queen을 둘 수 가 없음. 즉 n == board의 y값이 되면 base condition.
- 내부 for문은 x값을 의미하는 for문이 됨.

Q(0,0)			

- N = 0
- ISUSED_X[0] = [1,0,0,0,0,0]

- N = 0 *x값은 내부 for문으로 순회.
- X = 0
- ISUSED_X[0] = [1,0,0,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 0] = 1
- ISUSED_DIAGONAL_MINUS[N-X = 0] = 1

- N = 1 *x값은 내부 for문으로 순회.
- X = 0
- ISUSED_X[0] = [1,0,0,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 0] = 1
- ISUSED_DIAGONAL_MINUS[N-X = 0] = 1

- N = 1 *x값은 내부 for문으로 순회.
- X = 1
- ISUSED_X[0] = [1,0,0,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 0] = 1 [1,
- ISUSED_DIAGONAL_MINUS[N-X = 0] = 1

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 2] = 1 [1,0,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X = -1] = 1
- 인덱스는 -가 될 수 없음
- 약간의 꼼수를 사용해야 함.
- 수식을 Q_Y Q_X + board_y 1로 변환.

[1

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 2] = 1 [1,0,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+6-1 = -1]= 1
- 인덱스는 -가 될 수 없음
- 약간의 꼼수를 사용해야 함.
- 수식을 Q_Y Q_X + board_y 1로 변환.

시작 위치										
0	1	2	3	4	5	6	7	8	9	10
				1	1					

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 2] = 1 [1,0,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5] = 4

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 0] = 1 [1,0,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5] = 4

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 1] = 1[1,1,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5] = 4

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 2] = 1 [1,1,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5] = 4

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 2] = 1 [1,1,1,0,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 3] = 1 [1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5] = 4

 $[0,0,0,0,\frac{1}{1},1,0,0,0,0,0]$

- N = 1 *x값은 내부 for문으로 순회.
- X = 2
- ISUSED_X[X = 4] = 1 [1,1,1,1,0,0]
- ISUSED_DIAGONAL_PLUS[N+X = 6] = 1 [1,0,0,1,0,0,1
- ISUSED_DIAGONAL_MINUS[N-X+5=3] = 1