Social Choice Theory for Logicians

Lecture 5

Eric Pacuit

Department of Philosophy University of Maryland, College Park ai.stanford.edu/~epacuit epacuit@umd.edu

February 12, 2013

Plan

- ✓ Arrow, Sen, Muller-Satterthwaite
- Characterizing Voting Methods: Majority (May, Asan & Sanver), Scoring Rules (Young), Borda Count (Farkas and Nitzan, Saari), Approval Voting (Fishburn)
- √ Voting to get things "right" (Distance-based measures, Condorcet and extensions)
- √ Strategizing (Gibbard-Satterthwaite)
- 1. Generalizations
 - 1.1 Infinite Populations
 - ✓ Judgement aggregation (List & Dietrich)
- 2. Logics
- 3. Applications

Plan

- ► The logic of axiomatization results
- Logics for reasoning about aggregation methods
- ► Preference (modal) logics
- Applications

Setting the Stage: Logic and Games

- M. Pauly and W. van der Hoek. *Modal Logic form Games and Information*. Handbook of Modal Logic (2006).
- G. Bonanno. Modal logic and game theory: Two alternative approaches. Risk Decision and Policy $\bf 7$ (2002).
- J. van Benthem. Extensive games as process models. Journal of Logic, Language and Information 11 (2002).
- J. Halpern. *A computer scientist looks at game theory*. Games and Economic Behavior **45:1** (2003).
- R. Parikh. Social Software. Synthese 132: 3 (2002).

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2, pgs. 227 - 243, 2008.

M. Pauly. *On the Role of Language in Social Choice Theory*. Synthese, 163, 2, pgs. 227 - 243, 2008.

Given a semantic domain $\mathcal D$ and a target class $\mathcal T\subseteq \mathcal D$

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2, pgs. 227 - 243, 2008.

Given a **semantic domain** \mathcal{D} and a *target class* $\mathcal{T} \subseteq \mathcal{D}$

Fix a language $\mathcal L$ and a satisfaction relation $\models\subseteq\mathcal D imes\mathcal L$

M. Pauly. *On the Role of Language in Social Choice Theory*. Synthese, 163, 2, pgs. 227 - 243, 2008.

Given a **semantic domain** \mathcal{D} and a *target class* $\mathcal{T} \subseteq \mathcal{D}$

Fix a language \mathcal{L} and a satisfaction relation $\models\subseteq\mathcal{D}\times\mathcal{L}$

 $\Delta \subseteq \mathcal{L}$ be a set of *axioms*

M. Pauly. *On the Role of Language in Social Choice Theory*. Synthese, 163, 2, pgs. 227 - 243, 2008.

Given a **semantic domain** \mathcal{D} and a *target class* $\mathcal{T} \subseteq \mathcal{D}$

Fix a language \mathcal{L} and a satisfaction relation $\models\subseteq\mathcal{D}\times\mathcal{L}$

 $\Delta \subseteq \mathcal{L}$ be a set of *axioms*

 Δ absolutely axiomatizes $\mathcal T$ iff for all $M \in \mathcal D$, $M \in \mathcal T$ iff $M \models \Delta$ (i.e., Δ defines $\mathcal T$)

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2, pgs. 227 - 243, 2008.

Given a **semantic domain** \mathcal{D} and a *target class* $\mathcal{T} \subseteq \mathcal{D}$

Fix a language \mathcal{L} and a satisfaction relation $\models \subseteq \mathcal{D} \times \mathcal{L}$

 $\Delta \subseteq \mathcal{L}$ be a set of *axioms*

 Δ absolutely axiomatizes \mathcal{T} iff for all $M \in \mathcal{D}$, $M \in \mathcal{T}$ iff $M \models \Delta$ (i.e., Δ defines \mathcal{T})

 Δ relatively axiomatizes \mathcal{T} iff for all $\varphi \in \mathcal{L}$, $\mathcal{T} \models \varphi$ iff $\Delta \models \varphi$ (i.e., Δ axiomatizes the theory of \mathcal{T})

May's Theorem: Δ is the set of aggregation functions w.r.t. 2 candidates, \mathcal{T} is majority rule, \mathcal{L} is the language of set theory, Δ is the properties of May's theorem, then Δ absolutely axiomatizes \mathcal{T} .

May's Theorem: Δ is the set of aggregation functions w.r.t. 2 candidates, \mathcal{T} is majority rule, \mathcal{L} is the language of set theory, Δ is the properties of May's theorem, then Δ absolutely axiomatizes \mathcal{T} .

Arrow's Theorem: Δ is the set of aggregation functions w.r.t. 3 or more candidates, \mathcal{T} is a dictatorship, \mathcal{L} is the language of set theory, Δ is the properties of May's theorem, then Δ absolutely axiomatizes \mathcal{T} .

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Language. 2006.

Let Φ_I be the set of **individual formulas** (standard propositional language)

 V_I the set of individual valuations

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Language. 2006.

Let Φ_I be the set of **individual formulas** (standard propositional language)

 V_I the set of individual valuations

$$\Phi_C$$
 the set of **collective formulas**: $\Box \alpha \mid \varphi \wedge \psi \mid \neg \varphi$

 $\square \alpha$: The group collectively accepts α .

 V_C the set of collective valuations: $v: \Phi_C \to \{0,1\}$

Let
$$\mathcal{CON}_n = \{ v \in V_C \mid v(\Box \alpha) = 1 \text{ iff } \forall i \leq n, \ v_i(\alpha) = 1 \}$$

- **E**. $\Box \varphi \leftrightarrow \Box \psi$ provided $\varphi \leftrightarrow \psi$ is a tautology
- $\mathsf{M}. \ \Box(\varphi \wedge \psi) \to (\Box \varphi \wedge \Box \psi)$
- C. $(\Box \varphi \land \Box \psi) \rightarrow (\Box \varphi \land \Box \psi)$
- Ν. □Τ
- $D. \neg \Box \bot$

Theorem [Pauly, 2005] $V_C(KD) = \mathcal{CON}_n$, provided $n \ge 2^{|\Phi_0|}$.

 $(\mathcal{D} = V_C, \mathcal{T} = \mathcal{CON}_n, \Delta = EMCND$, then Δ absolutely axiomatizes \mathcal{T} .)

Let
$$\mathcal{MAJ}_n = \{ v \in \mathcal{V}_C \mid v([>]\alpha) = 1 \text{ iff } |\{i \mid v_i(\alpha) = 1\}| > \frac{n}{2} \}$$

STEM contains all instances of the following schemes

S.
$$[>]\varphi \rightarrow \neg[>]\neg\varphi$$

T.
$$([\geq]\varphi_1 \wedge \cdots \wedge [\geq]\varphi_k \wedge [\leq]\psi_1 \wedge \cdots \wedge [\leq]\psi_k) \rightarrow \bigwedge_{1 \leq i \leq k} ([=]\varphi_i \wedge [=]\psi_i)$$
 where $\forall v \in V_I : |\{i \mid v(\varphi_i) = 1\}| = |\{i \mid v(\psi_i) = 1\}|$

E. $[>]\varphi \leftrightarrow [>]\psi$ provided $\varphi \leftrightarrow \psi$ is a tautology

M.
$$[>](\varphi \wedge \psi) \rightarrow ([>]\varphi \wedge [>]\psi)$$

Theorem [Pauly, 2005] $V_C(STEM) = \mathcal{MAJ}$.

$$(\mathcal{D}=V_C,\,\mathcal{T}=\mathcal{MAJ}_n,\,\Delta=STEM,$$
 then Δ absolutely axiomatizes $\mathcal{T}.)$

- ► Compare principles in terms of the language used to express them
- M. Pauly. *On the Role of Language in Social Choice Theory*. Synthese, 163, 2, pgs. 227 243, 2008.
- T. Daniëls. *Social choice and logic of simple games*. Journal of Logic and Computation, 21, 6, pgs. 883 906, 2011.

- ► Compare principles in terms of the language used to express them
- M. Pauly. *On the Role of Language in Social Choice Theory*. Synthese, 163, 2, pgs. 227 243, 2008.
- T. Daniëls. *Social choice and logic of simple games*. Journal of Logic and Computation, 21, 6, pgs. 883 906, 2011.
 - ► How much "classical logic" is "needed" for the judgement aggregation results?
- T. Daniëls and EP. *A general approach to aggregation problems*. Journal of Logic and Computation, 19, 3, pgs. 517 536, 2009.
- F. Dietrich. *A generalised model of judgment aggregation*. Social Choice and Welfare 28(4): 529 565, 2007.

Plan

- √ The logic of axiomatization results
- Logics for reasoning about aggregation methods
- ► Preference (modal) logics
- Applications

Judgement Aggregation Logic

T. Agotnes, W. van der Hoek, M. Wooldridge. *On the logic of preference and judgement aggregation*. Autonomous Agent and Multi-Agent Systems, 22, pgs. 4 - 30, 2011.

Some Notation:

- $ightharpoonup N = \{1, \dots, n\}$ a set of agents
- ▶ A is the agenda (set of formulas of some logic L "on the table" satisfying certain "fullness conditions")
- Let $J(A, \mathcal{L})$ is the set of *judgements* (eg. maximally consistent subsets of A)
- ▶ $\gamma \in J(\mathcal{A}, \mathcal{L})^n$ is a judgement profile with γ_i agent i's judgement set

Tables $\langle \mathit{F}, \gamma, \mathit{p} \rangle$

Tables
$$\langle F, \gamma, p \rangle$$

Example:

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \to Q, \neg P, \neg Q, \neg (P \to Q)\}$$

F is an aggregations function $F: J(\mathcal{A},\mathcal{L})^n \to J(\mathcal{A},\mathcal{L})$

Tables
$$\langle F, \gamma, p \rangle$$

Example:

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \to Q, \neg P, \neg Q, \neg (P \to Q)\}$$

 $\gamma \in J(\mathcal{A}, \mathcal{L})^n$ (assuming consistency and completeness)

Tables
$$\langle F, \gamma, \mathbf{p} \rangle$$

Example:

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \to Q, \neg P, \neg Q, \neg (P \to Q)\}$$

$$p \in \mathcal{A}$$

Judgement Aggregation Logic: Language

Atomic Formulas: At = $\{i, \sigma, \mathbf{h}_p \mid p \in \mathcal{A}, i \in N\}$

Formulas: $\varphi ::= \alpha \mid \Box \varphi \mid \blacksquare \varphi \mid \varphi \land \varphi \mid \neg \varphi$

Judgement Aggregation Logic: Language

- $ightharpoonup F, \gamma, p \models \mathbf{h}_q \text{ iff } q = p$
- $ightharpoonup F, \gamma, p \models i \text{ iff } p \in \gamma_i$
- $ightharpoonup F, \gamma, p \models \sigma \text{ iff } p \in F(\gamma)$
- ▶ $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$
- $ightharpoonup F, \gamma, p \models \blacksquare \varphi \text{ iff } \forall p' \in \mathcal{A}, F, \gamma, p' \models \varphi$
- Boolean connectives as usual

- ► $F, \gamma, p \models \mathbf{h}_q$ iff q = pThe current proposition on the table is q
- $ightharpoonup F, \gamma, p \models i \text{ iff } p \in \gamma_i$
- $ightharpoonup F, \gamma, p \models \sigma \text{ iff } p \in F(\gamma)$
- ▶ $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$
- $ightharpoonup F, \gamma, p \models \blacksquare \varphi \text{ iff } \forall p' \in \mathcal{A}, F, \gamma, p' \models \varphi$
- ▶ Boolean connectives as usual

- ► $F, \gamma, p \models \mathbf{h}_q$ iff q = pThe current proposition on the table is q
- ► $F, \gamma, p \models i$ iff $p \in \gamma_i$ Voter i accepts the current proposition on the table
- $ightharpoonup F, \gamma, p \models \sigma \text{ iff } p \in F(\gamma)$
- ► $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$
- $ightharpoonup F, \gamma, p \models \blacksquare \varphi \text{ iff } \forall p' \in \mathcal{A}, F, \gamma, p' \models \varphi$
- ► Boolean connectives as usual

- ► $F, \gamma, p \models \mathbf{h}_q$ iff q = pThe current proposition on the table is q
- ► $F, \gamma, p \models i$ iff $p \in \gamma_i$ Voter i accepts the current proposition on the table
- ► $F, \gamma, p \models \sigma$ iff $p \in F(\gamma)$ Society accepts the current proposition on the table
- ► $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$
- $ightharpoonup F, \gamma, p \models \blacksquare \varphi \text{ iff } \forall p' \in \mathcal{A}, F, \gamma, p' \models \varphi$
- ▶ Boolean connectives as usual

- ► $F, \gamma, p \models \mathbf{h}_q$ iff q = pThe current proposition on the table is q
- ► $F, \gamma, p \models i$ iff $p \in \gamma_i$ Voter i accepts the current proposition on the table
- ► $F, \gamma, p \models \sigma$ iff $p \in F(\gamma)$ Society accepts the current proposition on the table
- ► $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$ Quantification over the set of judgement profiles
- $ightharpoonup F, \gamma, p \models \blacksquare \varphi \text{ iff } \forall p' \in \mathcal{A}, F, \gamma, p' \models \varphi$
- Boolean connectives as usual

- ► $F, \gamma, p \models \mathbf{h}_q$ iff q = pThe current proposition on the table is q
- ► $F, \gamma, p \models i$ iff $p \in \gamma_i$ Voter i accepts the current proposition on the table
- ► $F, \gamma, p \models \sigma$ iff $p \in F(\gamma)$ Society accepts the current proposition on the table
- ▶ $F, \gamma, p \models \Box \varphi$ iff $\forall \gamma' \in J(A, \mathcal{L})^n$, $F, \gamma', p \models \varphi$ Quantification over the set of judgement profiles
- ► $F, \gamma, p \models \Box \varphi$ iff $\forall p' \in A, F, \gamma, p' \models \varphi$ Quantification over the agenda
- Boolean connectives as usual

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F_{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models 1 \land 2 \land \neg 3$$

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \sigma$$

	Р	$P \rightarrow Q$	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \blacklozenge (1 \land 3)$$

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond((1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3))$$

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	True	True	True
F_{maj}	True	True	True

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond((1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3))$$

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	True	True	True
F _{maj}	True	True	True

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond(\underbrace{(1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3)}_{\text{All agents agree on } P})$$

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	False	False
Individual 3	False	True	False
F _{maj}	True	True	False

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond \blacksquare ((1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3))$$

	P	P o Q	Q
Individual 1	True	True	True
Individual 2	True	True	True
Individual 3	True	True	True
F _{maj}	True	True	True

$$\mathcal{A} = \{P, Q, P \rightarrow Q, \neg P, \neg Q, \neg (P \rightarrow Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond \blacksquare ((1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3))$$

	Р	P o Q	Q
Individual 1	True	True	True
Individual 2	True	True	True
Individual 3	True	True	True
F _{maj}	True	True	True

$$\mathcal{A} = \{P, Q, P \to Q, \neg P, \neg Q, \neg (P \to Q)\}$$

$$F_{maj}, \gamma, P \models \Diamond \underbrace{\blacksquare ((1 \leftrightarrow 2) \land (2 \leftrightarrow 3) \land (1 \leftrightarrow 3))}_{}$$

All agents agree on all propositions in the agenda

Sound and complete axiomatization

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subseteq N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subseteq N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results: Nondictatorship: $\bigwedge_{i \in N} \lozenge \blacklozenge \neg (\sigma \leftrightarrow i)$,

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results: Nondictatorship: $\bigwedge_{i \in N} \lozenge \Phi \neg (\sigma \leftrightarrow i)$, Unanimity: $\square \blacksquare ((1 \land \cdots \land n) \rightarrow \sigma)$

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

```
Nondictatorship: \bigwedge_{i\in N} \lozenge \Phi \neg (\sigma \leftrightarrow i), Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma) Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma)) Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

```
Nondictatorship: \bigwedge_{i \in \mathbb{N}} \lozenge \Phi \neg (\sigma \leftrightarrow i),
Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma)
Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma))
Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

```
Nondictatorship: \bigwedge_{i \in N} \lozenge \Phi \neg (\sigma \leftrightarrow i), Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma) Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma)) Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subseteq N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

```
Nondictatorship: \bigwedge_{i\in \mathbb{N}} \lozenge \Phi \neg (\sigma \leftrightarrow i), Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma) Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma)) Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- ▶ Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subset N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:

```
Nondictatorship: \bigwedge_{i\in N} \lozenge \blacklozenge \neg (\sigma \leftrightarrow i), Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma) Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma)) Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subseteq N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results:
 Nondictatorship: A

```
Nondictatorship: \bigwedge_{i\in N} \lozenge \Phi \neg (\sigma \leftrightarrow i), Unanimity: \square \blacksquare ((1 \land \cdots \land n) \to \sigma) Independence: \square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma)) Given any judgement profile, any choice of the voters and any P \in \mathcal{A}, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
```

- Sound and complete axiomatization
- Model checking is decidable, but relatively difficult
- Expressivity:
 - Discursive Dilemma: $\Diamond((\blacksquare MV) \to \bot)$, where $MV := \sigma \leftrightarrow \bigvee_{G \subseteq N, |G| > \frac{n}{2}} \bigwedge_{i \in G} i$,
 - Impossibility results: Nondictatorship: $\bigwedge_{i \in N} \lozenge \blacklozenge \neg (\sigma \leftrightarrow i)$, Unanimity: $\square \blacksquare ((1 \land \cdots \land n) \to \sigma)$ Independence: $\square \bigwedge_{o \in O} \blacksquare ((o \land \sigma) \to \square(o \to \sigma))$ Given any judgement profile, any choice of the voters and any $P \in \mathcal{A}$, if society accepts P then for any profile (if the choices are the same w.r.t. P then society should accept P)
- Complete axiomatization

U. Endriss. Logic and Social Choice. 2011.

Plan

- √ The logic of axiomatization results
- √ Logics for reasoning about aggregation methods
- ► Preference (modal) logics
- Applications

x, y objects

 $x \succeq y$: x is at least as good as y

x, y objects

 $x \succeq y$: x is at least as good as y

- 1. $x \succeq y$ and $y \not\succeq x (x \succ y)$
- 2. $x \not\succeq y$ and $y \succeq x (y \succ x)$
- 3. $x \succeq y$ and $y \succeq x (x \sim y)$
- 4. $x \not\succeq y$ and $y \not\succeq x (x \perp y)$

x, y objects

$$x \succeq y$$
: x is at least as good as y

- 1. $x \succeq y$ and $y \not\succeq x (x \succ y)$
- 2. $x \not\succeq y$ and $y \succeq x (y \succ x)$
- 3. $x \succeq y$ and $y \succeq x$ $(x \sim y)$
- 4. $x \not\succeq y$ and $y \not\succeq x (x \perp y)$

Properties: transitivity, connectedness, etc.

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Preference Modalities $\langle \succeq \rangle \varphi$: "there is a world at least as good (as the current world) satisfying φ "

 $\mathcal{M}, w \models \langle \succeq \rangle \varphi$ iff there is a $v \succeq w$ such that $\mathcal{M}, v \models \varphi$

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Preference Modalities $\langle \succeq \rangle \varphi$: "there is a world at least as good (as the current world) satisfying φ "

$$\mathcal{M}, w \models \langle \succeq \rangle \varphi$$
 iff there is a $v \succeq w$ such that $\mathcal{M}, v \models \varphi$

$$\mathcal{M}, w \models \langle \succ \rangle \varphi \text{ iff there is } v \succeq w \text{ and } w \not\succeq v \text{ such that } \mathcal{M}, v \models \varphi$$

- 1. $\langle \succ \rangle \varphi \rightarrow \langle \succeq \rangle \varphi$
- 2. $\langle \succeq \rangle \langle \succ \rangle \varphi \rightarrow \langle \succ \rangle \varphi$
- 3. $\varphi \land \langle \succeq \rangle \psi \rightarrow (\langle \succ \rangle \psi \lor \langle \succeq \rangle (\psi \land \langle \succeq \rangle \varphi))$
- 4. $\langle \succ \rangle \langle \succeq \rangle \varphi \rightarrow \langle \succ \rangle \varphi$

Theorem The above logic (with Necessitation and Modus Ponens) is sound and complete with respect to the class of preference models.

J. van Benthem, O. Roy and P. Girard. *Everything else being equal: A modal logic approach to* ceteris paribus *preferences.* JPL, 2008.

Preference Modalities

 $\varphi \geq \psi :$ the state of affairs φ is at least as good as ψ (ceteris paribus)

G. von Wright. The logic of preference. Edinburgh University Press (1963).

Preference Modalities

 $\varphi \geq \psi$: the state of affairs φ is at least as good as ψ (ceteris paribus)

G. von Wright. The logic of preference. Edinburgh University Press (1963).

 $\langle \Gamma \rangle^{\leq} \varphi$: φ is true in "better" world, all things being equal.

J. van Benthem, O. Roy and P. Girard. *Everything else being equal: A modal logic approach to* ceteris paribus *preferences.* JPL, 2008.

All Things Being Equal...

All Things Being Equal...

▶ With boots (b), I prefer my raincoat (r) over my umbrella (u)

All Things Being Equal...

- ▶ With boots (b), I prefer my raincoat (r) over my umbrella (u)
- ▶ Without boots $(\neg b)$, I also prefer my raincoat (r) over my umbrella (u)

- ▶ With boots (b), I prefer my raincoat (r) over my umbrella (u)
- ▶ Without boots $(\neg b)$, I also prefer my raincoat (r) over my umbrella (u)
- ▶ But I do prefer an umbrella and boots over a raincoat and no boots

All things being equal, I prefer my raincoat over my umbrella

Let Γ be a set of (preference) formulas. Write $w \equiv_{\Gamma} v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

- 1. $\mathcal{M}, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in W$ such that $w \equiv_{\Gamma} v$ and $\mathcal{M}, v \models \varphi$.
- 2. $\mathcal{M}, w \models \langle \Gamma \rangle^{\leq} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap \leq) v$ and $\mathcal{M}, v \models \varphi$.
- 3. $\mathcal{M}, w \models \langle \Gamma \rangle^{<} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap <)v$ and $\mathcal{M}, v \models \varphi$.

Let Γ be a set of (preference) formulas. Write $w \equiv_{\Gamma} v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

- 1. $\mathcal{M}, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in W$ such that $w \equiv_{\Gamma} v$ and $\mathcal{M}, v \models \varphi$.
- 2. $\mathcal{M}, w \models \langle \Gamma \rangle^{\leq} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap \leq) v$ and $\mathcal{M}, v \models \varphi$.
- 3. $\mathcal{M}, w \models \langle \Gamma \rangle^{<} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap <)v$ and $\mathcal{M}, v \models \varphi$.

Key Principles:

- $\blacktriangleright \pm \varphi \wedge \langle \Gamma \rangle (\alpha \wedge \pm \varphi) \rightarrow \langle \Gamma \cup \{\varphi\} \rangle \alpha$

Let Γ be a set of (preference) formulas. Write $w \equiv_{\Gamma} v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

- 1. $\mathcal{M}, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in W$ such that $w \equiv_{\Gamma} v$ and $\mathcal{M}, v \models \varphi$.
- 2. $\mathcal{M}, w \models \langle \Gamma \rangle^{\leq} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap \leq) v$ and $\mathcal{M}, v \models \varphi$.
- 3. $\mathcal{M}, w \models \langle \Gamma \rangle^{<} \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap <)v$ and $\mathcal{M}, v \models \varphi$.

Key Principles:

- $\blacktriangleright \pm \varphi \wedge \langle \Gamma \rangle^{\leq} (\alpha \wedge \pm \varphi) \to \langle \Gamma \cup \{\varphi\} \rangle^{\leq} \alpha$

Given a preference ordering \leq over a set of objects X, we want to **lift** this to an ordering $\hat{\leq}$ over $\wp(X)$.

Given \leq , what reasonable properties can we infer about $\hat{\leq}$?

S. Barberá, W. Bossert, and P.K. Pattanaik. *Ranking sets of objects*. In Handbook of Utility Theory, volume 2. Kluwer Academic Publishers, 2004.

You know that $x \prec y \prec z$ Can you infer that $\{x, y\} \ \hat{\prec} \ \{z\}$?

- ► You know that $x \prec y \prec z$ Can you infer that $\{x,y\} \ \hat{\prec} \ \{z\}$?
- You know that x ≺ y ≺ z
 Can you infer anything about {y} and {x, z}?

- You know that $x \prec y \prec z$ Can you infer that $\{x, y\} \ \hat{\prec} \ \{z\}$?
- You know that x ≺ y ≺ z
 Can you infer anything about {y} and {x, z}?
- You know that $w \prec x \prec y \prec z$ Can you infer that $\{w, x, y\} \stackrel{?}{\leq} \{w, y, z\}$?

- ► You know that $x \prec y \prec z$ Can you infer that $\{x,y\} \stackrel{?}{\sim} \{z\}$?
- You know that x ≺ y ≺ z
 Can you infer anything about {y} and {x, z}?
- ► You know that $w \prec x \prec y \prec z$ Can you infer that $\{w, x, y\} \stackrel{?}{\leq} \{w, y, z\}$?
- You know that $w \prec x \prec y \prec z$ Can you infer that $\{w, x\} \stackrel{?}{\sim} \{y, z\}$?

There are different interpretations of $X \stackrel{?}{\leq} Y$:

- ▶ You will get one of the elements, but cannot control which.
- ▶ You can choose one of the elements.
- You will get the full set.

Kelly Principle

(EXT)
$$\{x\} \stackrel{?}{\sim} \{y\}$$
 provided $x \prec y$
(MAX) $A \stackrel{?}{\sim} Max(A)$
(MIN) $Min(A) \stackrel{?}{\sim} A$

J.S. Kelly. Strategy-Proofness and Social Choice Functions without Single-Valuedness. Econometrica, 45(2), pp. 439 - 446, 1977.

Gärdenfors Principle

- (G1) $A \stackrel{?}{\sim} A \cup \{x\}$ if $a \prec x$ for all $a \in A$
- (G2) $A \cup \{x\} \stackrel{\widehat{}}{\sim} A \text{ if } x \prec a \text{ for all } a \in A$

P. Gärdenfors. *Manipulation of Social Choice Functions*. Journal of Economic Theory. 13:2, 217 - 228, 1976.

Gärdenfors Principle

- (G1) $A \stackrel{?}{\sim} A \cup \{x\}$ if $a \prec x$ for all $a \in A$ (G2) $A \cup \{x\} \stackrel{?}{\sim} A$ if $x \prec a$ for all $a \in A$
- P. Gärdenfors. *Manipulation of Social Choice Functions*. Journal of Economic Theory. 13:2, 217 228, 1976.

Independence

(IND)
$$A \cup \{x\} \stackrel{?}{\leq} B \cup \{x\}$$
 if $A \stackrel{?}{\leq} B$ and $x \notin A \cup B$

Theorem (Kannai and Peleg). If $|X| \ge 6$, then no weak order satisfies both the Gärdenfors principle and independence.

Y. Kannai and B. Peleg. A Note on the Extension of an Order on a Set to the Power Set. Journal of Economic Theory, 32(1), pp. 172 - 175, 1984.

 $\mathcal{M}, w \models \varphi \preceq_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \preceq t$

 $\mathcal{M}, w \models \varphi \preceq_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \preceq t$

 $\mathcal{M}, w \models \varphi \prec_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \prec t$

 $\mathcal{M}, w \models \varphi \preceq_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \preceq t$

 $\mathcal{M}, w \models \varphi \prec_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \prec t$

 $\mathcal{M}, w \models \varphi \preceq_{\forall \exists} \psi$ iff for all s there is a t such that $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, t \models \psi$, and $s \preceq t$

 $\mathcal{M}, w \models \varphi \preceq_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \preceq t$

 $\mathcal{M}, w \models \varphi \prec_{\exists\exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \prec t$

 $\mathcal{M}, w \models \varphi \preceq_{\forall \exists} \psi$ iff for all s there is a t such that $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, t \models \psi$, and $s \preceq t$

 $\mathcal{M}, w \models \varphi \preceq_{\forall \exists} \psi$ iff for all s there is a t such that $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, t \models \psi$, and $s \prec t$

$$\varphi \preceq_{\exists\exists} \psi := \mathsf{E}(\varphi \wedge \Diamond^{\preceq} \psi)$$

$$\varphi \preceq_{\exists\exists} \psi := \mathsf{E}(\varphi \wedge \lozenge \preceq \psi)$$

$$\varphi \prec_{\exists\exists} \psi := E(\varphi \land \Diamond \prec \psi)$$

$$\varphi \preceq_{\exists\exists} \psi := \mathsf{E}(\varphi \wedge \Diamond^{\preceq} \psi)$$

$$\varphi \prec_{\exists\exists} \psi := \mathsf{E}(\varphi \land \Diamond^{\prec} \psi)$$

$$\varphi \preceq_{\forall \exists} \psi := \mathsf{A}(\varphi \to \Diamond^{\preceq} \psi)$$

$$\varphi \preceq_{\exists\exists} \psi := \mathsf{E}(\varphi \wedge \Diamond^{\preceq} \psi)$$

$$\varphi \prec_{\exists\exists} \psi := \mathsf{E}(\varphi \land \Diamond ^{\prec} \psi)$$

$$\varphi \preceq_{\forall \exists} \psi := A(\varphi \to \Diamond^{\preceq} \psi)$$

$$\varphi \prec_{\forall \exists} \psi := A(\varphi \to \Diamond^{\prec} \psi)$$

 $\mathcal{M}, w \models \varphi \preceq_{\forall \forall} \psi$ iff for all s, for all t, $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ implies $s \preceq t$

 $\mathcal{M}, w \models \varphi \preceq_{\forall \forall} \psi$ iff for all s, for all t, $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ implies $s \preceq t$

 $\mathcal{M}, w \models \varphi \prec_{\forall \forall} \psi$ iff for all s, for all t, $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ implies $s \prec t$

$$\varphi \preceq_{\forall \forall} \psi \ := \ \textit{A}(\psi \to \Box^{\preceq} \neg \varphi)$$

$$\varphi \preceq_{\forall \forall} \psi := A(\psi \to \Box^{\preceq} \neg \varphi)$$

$$\varphi \prec_{\forall \forall} \psi := A(\psi \to \Box ^{\prec} \neg \varphi)$$

$$\varphi \preceq_{\forall \forall} \psi := A(\psi \to \Box \preceq \neg \varphi)$$

$$\varphi \prec_{\forall \forall} \psi := A(\psi \rightarrow \Box \prec \neg \varphi)$$

We must assume the ordering \leq is total

From Sets to Worlds

$$P_1 \gg P_2 \gg P_3 \gg \cdots \gg P_n$$

x > y iff x and y differ in at least one P_i and the first P_i where this happens is one with $P_i x$ and $\neg P_i y$

F. Liu and D. De Jongh. Optimality, belief and preference. 2006.

Logics of Knowledge and Preference

 $K(\varphi \succeq \psi)$: "Ann knows that φ is at least as good as ψ "

 $\mathit{K} \varphi \succeq \mathit{K} \psi$: "knowing φ is at least as good as knowing ψ

Logics of Knowledge and Preference

 $K(\varphi \succeq \psi)$: "Ann knows that φ is at least as good as ψ "

 $K\varphi \succeq K\psi$: "knowing φ is at least as good as knowing ψ

$$\mathcal{M} = \langle W, \sim, \succeq, V \rangle$$

Logics of Knowledge and Preference

 $K(\varphi \succeq \psi)$: "Ann knows that φ is at least as good as ψ "

 $\mathit{K} \varphi \succeq \mathit{K} \psi$: "knowing φ is at least as good as knowing ψ

$$\mathcal{M} = \langle W, \sim, \succeq, V \rangle$$

J. van Eijck. Yet more modal logics of preference change and belief revision. manuscript, 2009.

F. Liu. Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis, ILLC, 2008.

$$A(\psi \to \langle \succeq \rangle \varphi)$$
 vs. $K(\psi \to \langle \succeq \rangle \varphi)$

$$A(\psi \to \langle \succeq \rangle \varphi)$$
 vs. $K(\psi \to \langle \succeq \rangle \varphi)$

Should preferences be restricted to information sets?

$$A(\psi \to \langle \succeq \rangle \varphi)$$
 vs. $K(\psi \to \langle \succeq \rangle \varphi)$

Should preferences be restricted to information sets?

$$\mathcal{M}, w \models \langle \succeq \cap \sim \rangle \varphi$$
 iff there is a v with $w \sim v$ and $w \preceq v$ such that $\mathcal{M}, v \models \varphi$

$$K(\psi \rightarrow \langle \succeq \cap \sim \rangle \varphi)$$

D. Osherson and S. Weinstein. *Preference based on reasons*. Review of Symbolic Logic, 2012.

 $\varphi \succeq_X \psi$ "The agent considers φ at least as good as ψ for reason X"

 $\varphi \succeq_X \psi$ "The agent considers φ at least as good as ψ for reason X"

i envisions a situation in which φ is true and that otherwise differs little from his actual situation. Likewise i envisions a world where ψ is true and otherwise differs little from his actual situation. Finally, there utility according to u_X of the first imagined situation exceeds that of the second.

 $p \succ_1 \neg p$: u_1 measures safety

 $p \succ_1 \neg p$: u_1 measures safety

 $p \prec_2 \neg p$: u_2 measures finances

 $p \succ_1 \neg p$: u_1 measures safety

 $p \prec_2 \neg p$: u_2 measures finances

What is the status of $p \succ_{1,2} \neg p$? $p \prec_{1,2} \neg p$?

 $(p \succ_1 \top) \succ_2 \top$: it's in your financial interest that your buying a low-power automobile is in you safety interesting — which might well be true inasmuch as low-power vehicles are cheaper.

 $(p \succ_1 \top) \succ_2 \top$: it's in your financial interest that your buying a low-power automobile is in you safety interesting — which might well be true inasmuch as low-power vehicles are cheaper.

 $\neg q \succ_1 (p \succ_2 q)$: from the point of view of family pride, you'd rather that your brother not run for mayor than that Miss Smith be the superior candidate.

At a set of atomic proposition, $\mathbb S$ a set of **reasons**.

$$\langle W, s, u, V \rangle$$

- W is a set of states
- ▶ $s: W \times \wp_{\neq \emptyset}(W) \to W$ is a selection function $(s(w, A) \in A)$
- ▶ $u: W \times \mathbb{S} \to \mathfrak{R}$ is a utility function
- $V: \mathsf{At} o \wp(W)$ is a valuation function

At a set of atomic proposition, S a set of **reasons**.

$$\langle W, s, u, V \rangle$$

- W is a set of states
- ▶ $s: W \times \wp_{\neq \emptyset}(W) \to W$ is a selection function $(s(w, A) \in A)$
- ▶ $u: W \times \mathbb{S} \to \mathfrak{R}$ is a utility function
- $V: At \rightarrow \wp(W)$ is a valuation function

$$\mathcal{M}, w \models \theta \succeq_X \psi \text{ iff } u_X(s(w, \llbracket \theta \rrbracket_{\mathcal{M}})) \geq u_X(s(w, \llbracket \psi \rrbracket_{\mathcal{M}}))$$

provided $\llbracket \theta \rrbracket_{\mathcal{M}} \neq \emptyset$ and $\llbracket \psi \rrbracket_{\mathcal{M}} \neq \emptyset$

$$\Diamond \varphi =_{\operatorname{def}} \varphi \succeq_{X} \varphi
\square \varphi =_{\operatorname{def}} \neg (\neg \varphi \succeq_{X} \neg \varphi)$$

Reflexive: for all w if $w \in A$ then s(w, A) = w.

Reflexive: for all w if $w \in A$ then s(w, A) = w.

 \mathcal{M} is reflexive implies $(p \succeq_X \top) \lor (\neg p \succeq_X \top)$ is valid.

Reflexive: for all w if $w \in A$ then s(w, A) = w.

 \mathcal{M} is reflexive implies $(p \succeq_X \top) \lor (\neg p \succeq_X \top)$ is valid.

$$\Box(p \to (p \prec_X \neg p)) \land \Box(\neg p \to (\neg p \succ_X p))$$

Regular: if $A \subseteq B$ and $w_1 \in A$ then If $s(w, B) = w_1$ then $s(w, A) = w_1$.

Regular: if $A \subseteq B$ and $w_1 \in A$ then If $s(w, B) = w_1$ then $s(w, A) = w_1$.

 \mathcal{M} is regular implies $((p \lor q) \succ_X r) \to ((p \succ_X r) \lor (q \succ_X r))$ is valid.

 \mathcal{M} is regular and reflexive then $((p \prec_1 \top) \succ_2 (q \prec_1 \top)) \rightarrow (\neg p \succ_2 \neg q)$ is valid.

"If it is ecologically better for p than for q to politically backfire the abstaining from p is ecologically better than abstaining from q."

 \mathcal{M} is proximal if for all w and $A \neq \emptyset$, If $s(w,A) = w_1$ then there is no $w_2 \in A$ such that $V^{-1}(w)\Delta V^{-1}(w_2) \subset V^{-1}(w)\Delta V^{-1}(w_1)$, where Δ is the symmetric difference.

 $\mathcal M$ is proximal if for all w and $A \neq \emptyset$, If $s(w,A) = w_1$ then there is no $w_2 \in A$ such that $V^{-1}(w)\Delta V^{-1}(w_2) \subset V^{-1}(w)\Delta V^{-1}(w_1)$, where Δ is the symmetric difference.

 $(((p \land r) \succ_X (q \land r)) \land ((p \land \neg r) \succ_X (q \land \neg r))) \rightarrow (p \succ_X q)$ is invalid in the class of regular and in the class of proximal models, but valid in the class of models that are both proximal and regular.

 $\mathcal M$ is proximal if for all w and $A \neq \emptyset$, If $s(w,A) = w_1$ then there is no $w_2 \in A$ such that $V^{-1}(w)\Delta V^{-1}(w_2) \subset V^{-1}(w)\Delta V^{-1}(w_1)$, where Δ is the symmetric difference.

 $(((p \land r) \succ_X (q \land r)) \land ((p \land \neg r) \succ_X (q \land \neg r))) \rightarrow (p \succ_X q)$ is invalid in the class of regular and in the class of proximal models, but valid in the class of models that are both proximal and regular.

$$(p \land ((p \land q) \succ_X r)) \rightarrow (q \succ_X r)$$

Plan

- √ The logic of axiomatization results
- √ Logics for reasoning about aggregation methods
- ✓ Preference (modal) logics
- Applications

Given an aggregation method F, let $\mathcal{D} = \{C \mid C \text{ is winning for } F\}$

Given an aggregation method F, let $\mathcal{D} = \{C \mid C \text{ is winning for } F\}$

Given a set of winning coalitions \mathcal{D} , we can define F as follows:

$$F(J) = \{ \alpha \mid \{i \mid i \text{ judges that } \alpha \} \in \mathcal{D} \}$$

Given an aggregation method F, let $\mathcal{D} = \{C \mid C \text{ is winning for } F\}$

Given a set of winning coalitions \mathcal{D} , we can define F as follows:

$$F(J) = \{ \alpha \mid \{i \mid i \text{ judges that } \alpha \} \in \mathcal{D} \}$$

What is the general relationship between sets of coalitions and aggregators?

- F. Herzberg and D. Eckert. *Impossibility results for infinite-electorate abstract aggregation rules*. Journal of Philosophical Logic, 41, pgs. 273 286, 2012.
- F. Herzberg and D. Eckert. *The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates.* Mathematical Social Sciences, 64, pgs. 41 47, 2012.
- L. Lauwers and L. van Liedekerke. *Ultraproducts and aggregation*. Journal of Mathematical Economics, 24, pgs. 217 237, 1995.

- F. Herzberg and D. Eckert. *Impossibility results for infinite-electorate abstract aggregation rules*. Journal of Philosophical Logic, 41, pgs. 273 286, 2012.
- F. Herzberg and D. Eckert. *The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates.* Mathematical Social Sciences, 64, pgs. 41 47, 2012.
- L. Lauwers and L. van Liedekerke. *Ultraproducts and aggregation*. Journal of Mathematical Economics, 24, pgs. 217 237, 1995.

Theorem. Let \mathcal{D} be a filter and suppose that $F_{\mathcal{D}}$ preserves ψ and assume that there is some $\mathcal{A} \in \Omega^{l}$ with *finite witness multiplicity* with respect to ψ . Then,

- ▶ If \mathcal{D} is an ultrafilter, then it is principal (whence $F_{\mathcal{D}}$ is a dictatorship)
- ▶ If φ is free of negation, disjunction and universal quantification then \mathcal{D} contains a finite coalition (whence $F_{\mathcal{D}}$ is an oligarchy)

May's Theorem: Notation

Fix an infinite set W.

Suppose that there are two alternatives, x and y, under consideration.

We assume that each voter has a linear preference over x and y, so for each $w \in W$, either w prefers x to y or y to x, but not both.

Assume that a subset $X \subseteq W$, represents the set of all voters that prefer x to y.

Thus X represents the outcome of a particular vote.

May's Theorem: Notation

There are three possible outcomes to consider: 0 means that alternative y was chosen, $\frac{1}{2}$ means the vote was a tie, and 1 means that alternative x was chosen.

An aggregation function is a function $f: 2^W \to \{0, \frac{1}{2}, 1\}$.

A set $X \subseteq W$, f(X) represents the social preference of the group W ($\frac{1}{2}$ is interpreted as a tie).

Consider $f: 2^W \to \{0, \frac{1}{2}, 1\}$

Consider $f: 2^W \to \{0, \frac{1}{2}, 1\}$

Decisiveness f is a total function.

Consider
$$f: 2^W \to \{0, \frac{1}{2}, 1\}$$

Decisiveness f is a total function.

Neutrality for all
$$X \subseteq W$$
, $f(X^C) = 1 - f(X)$

Consider
$$f: 2^W \to \{0, \frac{1}{2}, 1\}$$

Decisiveness f is a total function.

Neutrality for all
$$X \subseteq W$$
, $f(X^C) = 1 - f(X)$

Positive Responsiveness if, for all $X, Y \subseteq W$, $X \subsetneq Y$ and $f(X) \neq 0$ implies f(Y) = 1.

Anonymity

Anonymity states that it is the number of votes that counts when determining the outcome, not *who* voted for what.

Anonymity

Anonymity states that it is the number of votes that counts when determining the outcome, not *who* voted for what.

When W is finite, this condition is straightforward to impose:

Fix an arbitrary order on W, then each subset of W can be represented by a finite sequence of 1s and 0s.

Then f satisfies **anonymity** if f is symmetric in this sequence of 1s and 0s.

Anonymity for an Infinite Population

A **permutation** on a set X is a 1-1 map $\pi: X \to X$.

f is **anonymous** iff for all π and $X \subseteq W$, $f(X) = f(\pi[X])$.

Anonymity for an Infinite Population

A **permutation** on a set X is a 1-1 map $\pi: X \to X$.

f is **anonymous** iff for all π and $X \subseteq W$, $f(X) = f(\pi[X])$.

Too strong! Let X, Y be any (countably) infinite subsets of W, then there is a π such that $\pi[X] = Y$. Hence, for all $X, Y \subseteq W$, f(X) = f(Y).

Anonymity for an Infinite Population

A **finite permutation** on a set X is a 1-1 map $\pi: X \to X$ such that there is a finite set $F \subseteq X$ such that for all $w \in W - F$, $\pi(w) = w$.

f is **finitely anonymous** iff for all finite permutations π and $X \subseteq W$, $f(X) = f(\pi[X])$.

Digression: Bounded Anonymity and Density

Let
$$X \subseteq \mathbb{N}$$
 and $n \in \mathbb{N}$, let $X(n) = \{m \in X \mid m \le n\}$

$$d(X) = \lim_{n \to \infty} \frac{X(n)}{n}$$

Digression: Bounded Anonymity and Density

Let
$$X \subseteq \mathbb{N}$$
 and $n \in \mathbb{N}$, let $X(n) = \{m \in X \mid m \le n\}$

$$d(X) = \lim_{n \to \infty} \frac{X(n)}{n}$$

$$d(\mathbb{E})=rac{1}{2}$$

Digression: Bounded Anonymity and Density

Let
$$X \subseteq \mathbb{N}$$
 and $n \in \mathbb{N}$, let $X(n) = \{m \in X \mid m \le n\}$

$$d(X) = \lim_{n \to \infty} \frac{X(n)}{n}$$

$$d(\mathbb{E})=rac{1}{2}$$

Unfortunately, $\lim_{n\to\infty} \frac{X(n)}{n}$ does not always exist. π is a **bounded permutation** iff

$$\lim_{n\to\infty} \frac{|\{k\mid k\leq n<\pi(k)\}|}{n} = 0$$

May's Theorem Generalized

Bounded anonymity: $F(A) = F(\pi[A])$ for all bounded permutations

Density positive responsiveness: f satisfies monotonicity and, if f(A) = 1/2 and all sets with density D with $A \cap D \neq \emptyset$ and d(A) > 1, we have $f(A \cup D) = 1$.

Theorem (Fey) If an aggregation rule f satisfies neutrality, density positive responsiveness and bounded anonymity, then f agrees with a density majority rule.

M. Fey. May's Theorem with an Infinite Population. Social Choice and Welfare (2004).

▶ Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? No

S. Okasha. *Theory choice and social choice: Kuhn versus Arrow.* Mind, 120, 477, pgs. 83 - 115, 2011.

► Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? M/A Yes

S. Okasha. *Theory choice and social choice: Kuhn versus Arrow.* Mind, 120, 477, pgs. 83 - 115, 2011.

M. Moureau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice to theory choice. FEW, 2012.

- ► Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? M/ Yes
- S. Okasha. *Theory choice and social choice: Kuhn versus Arrow.* Mind, 120, 477, pgs. 83 115, 2011.
- M. Moureau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice to theory choice. FEW, 2012.
 - Is it possible to rationally merge evidence from multiple methods?
- J. Stegenga. *An impossibility theorem for amalgamating evidence*. Synthese, 2011.

► Is it possible to merge classic AGM belief revision with the Ramsey test?

P. Gärdenfors. *Belief revisions and the Ramsey Test for conditionals*. The Philosophical Review, 95, pp. 81 - 93, 1986.

H. Leitgeb and K. Segerberg. *Dynamic doxastic logic: why, how and where to?*. Synthese, 2011.

H. Leitgeb. A Dictator Theorem on Belief Revision Derived From Arrow's Theorem. Manuscript, 2011.

Plan

- ✓ Arrow, Sen, Muller-Satterthwaite
- Characterizing Voting Methods: Majority (May, Asan & Sanver), Scoring Rules (Young), Borda Count (Farkas and Nitzan, Saari), Approval Voting (Fishburn)
- √ Voting to get things "right" (Distance-based measures, Condorcet and extensions)
- √ Strategizing (Gibbard-Satterthwaite)
- √ Generalizations
 - √ Infinite Populations
 - ✓ Judgement aggregation (List & Dietrich)
- √ Logics
- ✓ Applications

Thank you!