

Internet of Things

Clément **DUHART**

Dr - Computer Science clement.duhart@devinci.fr

Internet of Things

03|

6loWPAN

02|

Contiki OS

04|

Assignment

01| Internet of Things

The IoT landscape - One size doesn't fit all

Broad variety of wireless standards, industry bodies, technologies for different types of networks:

- Body Area Network (BAN)
- Body Sensor Network (BSN)
- Medical Body Area Network (MBAN)
- Personal Area Network (PAN)
- Home Area Network (HAN)
- Nearby Area Network (NAN)
- Local Area Network (LAN)
- Wide Area Network (WAN)
- Global Area Network (GAN)

Source: Goldman Sachs, ToT Primer, September 3, 2014; "Internet of Things: Making sense of the next mega-trend"

01| Internet of Things

Réseaux et protocoles

Crédits : Postscapes et Harbor Research

(CC BY-NC-ND 4.0)

01| Internet of Things

	TCP/IP Support	Gateway Needed?	Power	Data Rate	Topology	Wireless Spectrum	Alliance	Module Costs (5K EAU)	Other				
Ethernet	Over 802.3	No, directly wired to Internet	High / Power- over-Ethernet (PoE) 802.3af	Up to 1 Gbps	Varies	None	None	\$10 +	RJ45	The attributes of different wireless and LPWan (Low-Power WAN) technologies			
Wi-Fi	Over 802.11	No, connects to Internet through Wi-Fi access points and routers	High (low-power modules available for battery applications)	1-135 Mbps	None	2.4 GHz, 5 GHz	Wi-Fi Alliance	< \$10 +	Internal or external antenna	↑	S	atellite	
6LoWPAN	Over 802.15.4	Yes	Low	0.04-0.25 Mbps	Varies	868-921 MHz, 2.4 GHz	Internet Engineering Task Force (IETF)	\$5 +	Internal or external antenna	igh	LPWAN		
ZigBee	Lacks native TCP/IP support, based on 802.15.4	Yes, ZigBee Coordinator	Low	0.04-0.25 Mbps	Mesh	868-921 MHz, 2.4 GHz	ZigBee Alliance	< \$4 +	Internal or external antenna	Range	LoRaWAN Sigfox NB-IoT Cat-M1	Cellular 3G/4G/50	
Z-Wave	Lacks native TCP/IP support, based on Z- Wave standard	Yes	Low	0.1 Mbps, primarily for remote control	Mesh	868-921 MHz	Z-Wave Alliance	\$5 +	Internal or external antenna, managed by Sigma Designs	RFID	Zigbee 802.15.4 Bluetooth	WiFi	
Bluetooth	Lacks native TCP/IP support, based on Bluetooth standard	Yes	Moderate	0.7-2.1 Mbps	Point-to-point	2.4 GHz	Bluetooth Special Interest Group (SIG)	\$5 +	Pairing can be complicated, max 8 devices in piconet, ~100 ms latency	ow NFC		vata Rate	→ High
Bluetooth Smart (such as BLE, BT 4.0)	Lacks native TCP/IP support, based on Bluetooth LE standard	Yes	Low to moderate	0.27 Mbps maximum	Point-to-point	2.4 GHz	Bluetooth Special Interest Group (SIG)	\$5+	Simpler to pair devices, new version 4.2 connects directly with Internet	ne technology is perfectly s	nge capabilities of LoRaWAN (uited to IoT applications when	e low power, low data-rates	e mta
Cellular	TCP/IP over cellular network	No, connects to Internet/cloud through cellular service provider network	High	Varies based on technology	Point-to-point	Varies	None	Monthly service charges, modules, carrier certification fees	External Antenna Only, Monthly Service	nd extended range is a valu llowing devices to run on b	ied. LoRaWAN is far more pow attery for years.	rer erricient trian WiFi and 4G,	MANX TECHNOLOGY GROUP

IPV6 for Low Power Wireless Personal Area Network

01| Wireless Personal Area Networks

01| Wireless Personal Area Networks

Image source: (Wikipeida) GFDL

02 | 6loWPAN : IPV6 Low Power Wireless Personal Network

- Support for e.g. 64-bit and 16-bit 802.15.4 addressing
- Useful with low-power link layers such as IEEE 802.15.4, narrowband ISM and power-line communications
- Efficient header compression
- IPv6 base and extension headers, UDP header
- Network autoconfiguration using neighbor discovery
- Unicast, multicast and broadcast support
- Multicast is compressed and mapped to broadcast
- Fragmentation
- 1280 byte IPv6 MTU -> 127 byte 802.15.4 frames
- Support for IP routing (e.g. IETF RPL)
- Support for use of link-layer mesh (e.g. 802.15.5)

02 Wireless Sensor Networks

Application

Transport

Network

Data Link

Physical

TCP/IP Protocol Stack

HTTP RTP
TCP UDP ICMP
IP
Ethernet MAC
Ethernet PHY

6LoWPAN Protocol Stack

Wireless Sensor Networks

02 Wireless Sensor Networks

Full UDP/IPv6 (64-bit addressing)

Minimal UDP/6LoWPAN (16-bit addressing)

| IPV6 Neighbor Discovery and network setup

| IPV6 Neighbor Discovery and network setup

| IPV6 Neighbor Discovery and network setup

| Mobility and Network Integration

Contiki Operating System

03 Contiki OS: Overview

Cross-platform

ARM, Atmel AVR, X86, Texas Instruments, Freescale, ...

Contiki Applications

Web server, Web services, Erbium, Telnet, serial-shell, shell, VNC, Email, IRC, FTP, twitter, calc, Power Trace, Collect view ping, netconf, JSON, etc

Development environment

Hardware emulator, wireless environment simulator, Linux development toolchain

- Memory-constrained networked embedded systems (8Mhz, 16K RAM, 128K ROM, 8K EEPROM)
- Native 6lowPAN stack with several configuration profiles
- Cross-platform implementation
- Applications Management System
- Event-driven and multi-threading kernel capacities
- File Management System COFFEE
- Complete Network Emulator COOJA

03 Contiki OS: Architecture

03| Contiki OS: Compilation

03 Contiki OS: Proto-Threading

```
Process1
                                                                  Process2
Int event;
PROCESS(Hprocess, "Hprocess");
AUTOSTART PROCESSES(& H process);
PROCESS THREAD( H process, ev, data)
                                                  PROCESS(Hprocess2, "Hprocess2");
static struct etimer timer;
                                                   PROCESS THREAD( H process2, ev, data)
PROCESS BEGIN ();
                                                  PROCESS BEGIN ();
etimer_set(&timer, CLOCK_SECOND / 2);
event = process alloc event();
                                                   while(1) {
process_start(&H process_s2, NULL);-
                                                    PROCESS_WAIT_EVENT();
                                                    if(ev == event) {
                                                      printf("Hello, world!\n");
while(1) {
  PROCESS WAIT EVENT();
 if(ev == PROCESS_EVENT_TIMER) {
  printf("Send event to process2!\n");
                                                   PROCESS END ();
  process_post_synch(&H p r o c e s s2, event, NULL);
  etimer_set(&timer, CLOCK_SECOND / 2); }
PROCESS END ();
                                 Contiki OS Kernel
```


1 Assignment

04| Assignment

- Experiment COOJA simulations
- First contiki compilation and helloworld
- Develop custom Contiki applications
- Fix bugs and build a patch
- Develop a RS232 shell interface
- Implement the chat project
- Develop an installation procedure

04| Assignment

Atmega 128 RFA1

- I2C
- **UART RS 232**
- SPI
- ADC
- RF 802.15.4
- **AES 128 Bits**
- GPIO

04| Assignment

