

A Preliminary Model for Spacecraft Propulsion **Performance Analysis based on Nuclear Gain** and Subsystem Mass-Power Balances

S. Chakrabarti, G. R. Schmidt, Y. C. Thio & Marshall Space Flight Center June 24, 1999 C. M. Hurst

Acknowledgments

About the Authors

Suman Chakrabarti

Plasma Propulsion Specialist, Propulsion Research Center, STD, MSFC (IPA - Penn State University)

George R. Schmidt

Deputy Director, Propulsion Research Center, STD, MSFC

Y. C. "Francis" Thio

Principal Scientist, Propulsion Research Center, STD, MSFC

Chantelle M. Hurst

Accompanying Student, Propulsion Research Center, STD, MSFC (Purdue University)

Space Flight Requirements

- □ Omniplanetary space flight requires new high-performance propulsion systems based on nuclear energy.
- □ Over the last several decades, many propulsion concepts have discussed one-month missions to Mars and one-year missions to the outer planets.
- □ Such missions entail large mission velocities and vehicle accelerations, which in turn require both high exhaust velocities (and therefore, specific impulses) and extremely low mass-power ratios, e.g.:

$$I_{sp} \ge 10^4 \text{ to } 10^5 \text{ sec}$$

$$\alpha \le 10^{-2} \text{ kg/kW}$$

Spacecraft Energy "Gain"

- □ High performance electric propulsion appears capable of enabling multi-month transits to Mars and the near-earth asteroids; however, the mass-power ratio (α) of these "powerlimited" systems appears too high to achieve large accelerations for outer planet missions.
- □ Higher accelerations demand energy "gains" from nuclear reactions in the propellant.
- limited" in that driver power can be a significant fraction of □ Such energy "gains" must account for power required to "drive" nuclear reactions — this type of system is "gaintotal power produced.

Control Theory" for Performance

- an approach analogous to control theory may be useful in evaluating the performance of such systems — in effect, treating ☐ The concept of energy "gain" for propulsion systems implies that propulsion systems as "power circuits".
- □ First, derive expressions for mission trip time and distance as functions of parameters including (required) I_{sp} and α .
- \square Next, derive expressions for α for both power- and gainlimited systems.
- systems □ Last, connect the mission relations to the power relations.

Mission Assumptions

- \Box Treat I_{sp} and α as independent parameters that characterize a propulsion system
- \Box Treat vehicle acceleration as a parameter dependent upon I_{sp} and α
- □ Assume round-trip mission between points A and B
- \Box Goal is to minimize trip time τ_{RT} for the distance D_{AB}
- Assume accelerations far greater than local acceleration of the sun
- ☐ Assume constant thrust accelerations
- ☐ Assume zero velocity at points A and B
- \Box These points permit assumption of a straight-line trajectory where $D_{AB^{=}}$ D_{BA}

Round Trips: Time & Distance

 $m_{
m propellant}$ expended \dot{n} \Box If we begin with $\Delta \tau = \dot{\tau}$ in each direction:

, we can obtain trip times

$$\tau_{AB} = \frac{gI_{sp}}{T/m_{A2}} \frac{m_{A2}}{m_B} \left(\frac{m_B}{m_{A1}} - 1 \right)$$

$$\tau_{BA} = \frac{gI_{sp}}{T/m_{A2}} \left(\frac{m_{A2}}{m_B} - 1 \right)$$

□ Using $D_{if} = \frac{1}{\dot{m}} \int_{m_i}^{m_f} V dm$ direction:

$$D_{AB} = \frac{\left(gI_{sp}\right)^2}{T/m_{A2}} \frac{m_{A2}}{m_B} \left(\sqrt{\frac{m_B}{m_{A1}}} - 1\right)^2 \qquad D_{BA} =$$

$$D_{BA}=rac{\left(oldsymbol{g}I_{sp}
ight)^2}{T/m_{A2}igg(\sqrt{rac{m_{A2}}{m_B}}-1igg)^2}$$

 \square With straight-line trajectories, $D_{AB}=D_{BA}$, and the mass ratios can be eliminated to yield both round-trip and one-way trip times as functions of I_{sp} and D_{AB} :

$$\tau = \frac{D_{AB}}{gI_{sp}} \cdot (h + kU)$$

where
$$(h,k) = \begin{cases} (4,4) \text{ for Round Trip} \\ (3,2) \text{ for One Way} \end{cases}$$
 and $U = \frac{gI_{sp}}{\sqrt{(T/m_{A2})D_{AB}}}$

Vehicle acceleration, T/m_{A2}

 \Box The acceleration T/m_{A2} is related to the system mass-power ratio α. We can use the following expression for final (burnout) mass m_{A2} , together with relations for power output and propellant

$$m_{A2} = m_{pay} + \alpha \cdot P_{out} + \beta \cdot m_{prop}$$

$$m_{pay} = m_{A2} \lambda_{pay}$$
; $P_{out} = TV_e/2$; $m_{prop} = T\tau/V_e$

Substitution enables solving for the acceleration in terms of γ :

$$\frac{1}{T/m_{A2}} = \frac{1}{1 - \lambda_{pay}} \left(\alpha \frac{gI_{sp}}{2} + \beta \frac{\tau}{gI_{sp}} \right)$$

Trip Times = $f(I_{sp}, D_{AB}, \alpha)$

 \Box This leads to a generalized expression relating trip time and I_{sp} :

$$\tau = \frac{1}{I_{sp}} \cdot \left[X \pm \sqrt{Y + Z \cdot I_{sp}^3} \right]$$

$$\zeta = \left(\frac{D_{AB}}{2h + k^2} \right) \left(\frac{\beta}{2h + k^2} \right)$$

$$Y = \left(\frac{kD_{AB}}{2g}\right)^{2} \left[4h + k^{2} \frac{\beta}{1 - \lambda_{pay}}\right] \frac{\beta}{1 - \lambda_{pa}}$$

$$Z = \frac{k^2}{2} \frac{gD_{AB}}{1 - \lambda_{pay}} \alpha$$

Optimized Isp yields Optimal \tau

 \Box An optimal τ is obtained by taking the derivative with respect to I_{sp} and solving:

$$\left[\left(I_{sp} \right)_{OPT} \right]^3 = \frac{1}{Z} t_{OPT}^3$$

$$t_{OPT}^{3}(X,Y) = \left(\frac{2X}{9}\right) \cdot \left[\left(X - \frac{3Y}{X}\right) + \sqrt{X^{2} + 3Y}\right]$$

 \Box Substitution of this optimized I_{sp} yields the optimal trip time:

$$\tau_{OPT} = \frac{Z^{1/3}}{\iota_{OPT}} \left[X + \sqrt{Y + \iota_{OPT}^3} \right]$$

 \square Note that Z is proportional to α : this means that τ_{OPT} varies as

Minimizing Trip Times

Required Final Accelerations

 \Box One year to Jupiter: $~\alpha \sim 10^{-1}~kg/kW;~I_{sp} \sim 70000~sec$

 $\alpha \sim 10^{-3}$ kg/kW; $I_{sp} \sim 300000$ sec ☐ One year to Pluto:

These values are beyond the limits of power-limited systems including even high-performance electric propulsion □ Instead, consider the influence of gain-limited systems, with spacecraft gain illustrated by the following power system schematic (or 'power circuit') ...

Power System Schematic

Power flows as fractions of P_{in}

 \Box The input power to the nuclear process — P_{in} — is obtained from two sources:

☐ Fractional power from an onboard source:

0

Fractional power from a driver powered from system:

 \Box If e=1

solely power-limited

 \Box If e=0

solely gain-limited

The power flows in the schematic are represented as fractions of this input power:

☐ Fraction of power needed to power driver:

□ Subsystem mass-power ratios:

 $\hat{lpha}_{\scriptscriptstyle D},\hat{lpha}_{\scriptscriptstyle P},\hat{lpha}_{\scriptscriptstyle T},\hat{lpha}_{\scriptscriptstyle S},\hat{lpha}_{\scriptscriptstyle H}$

□ Subsystem component efficiencies (always < 1):

 η_D , η_P , η_T

Conservation of Mass/Power

- □ Using a similar equation for conservation of mass as used previously, we can substitute the mass-power ratio α multiplied by the fractional power to yield the mass for each subsystem.
- \Box Example: [mass of power supply subsystem]: $m_S = (\hat{\alpha}_S)(e)P_{in}$
- power yields an equation for the overall system mass-power □ Summing all subsystem masses and dividing through by output

$$\alpha = \frac{\left[\hat{\alpha}_{S}\eta_{D}e + \hat{\alpha}_{D}(1-e) + \hat{\alpha}_{P}\eta_{D}G + \hat{\alpha}_{T}[G\eta_{P}\eta_{D} - (1-e)] + \left[\hat{\alpha}_{H}[(1-\eta_{D})(1-e) + \eta_{D}(1-\eta_{P})G]\right]\right]}{\left[\hat{\alpha}_{H}[(1-\eta_{D})(1-e) + \eta_{D}(1-\eta_{P})G]\right]}$$

Special Cases of Power Systems

- \Box This equation is capable of modeling the α of either powerlimited or gain-limited systems.
- \Box For solely power-limited systems (e = 1, G = 1):

$$egin{align*} lpha_{P-L} &= lpha_{POWER-LIMITED} \ &= rac{\hat{lpha}_S + \hat{lpha}_P \eta_P + \hat{lpha}_H ig(1 - \eta_Pig)}{\eta_T \eta_P} + \hat{lpha}_T \ &= rac{\hat{lpha}_S + \hat{lpha}_P \eta_P + \hat{lpha}_T ig)}{\eta_T \eta_P} \end{array}$$

 \Box For solely gain-limited systems (e = 0):

 $oldsymbol{lpha}_{G-L} = oldsymbol{lpha}_{GAIN-LIMITED}$

$$= \frac{\hat{\alpha}_{_D} \eta_{_D} + \hat{\alpha}_{_P} \eta_{_D} \eta_{_P} G + \hat{\alpha}_{_H} \Big[(1 - \eta_{_D}) + \eta_{_D} (1 - \eta_{_P}) G \Big]}{\eta_{_T} (\eta_{_P} \eta_{_D} G - 1)} + \hat{\alpha}_{_T}$$

Limits on Values of Gain

and driver operation, the denominator of this equation must have □ In order to have a net positive input power for thrust production a positive value. This condition results in:

$$G > G_{MIN}$$
; where $G_{MIN} = \frac{1}{\eta_P \eta_D}$

□ Progressively higher values of G above this minimum result in successively lower mass-power ratios, α .

 \Box In the limit where gain goes to infinity, there is a minimum of α :

$$\alpha_{G_{\infty}} = \hat{\alpha}_{T} + \frac{\hat{\alpha}_{P}\eta_{P} + \hat{\alpha}_{H}(1 - \eta_{P})}{\eta_{T}\eta_{P}}$$

A Simplified form of α_{G-L}

 \Box In the limit where gain goes to zero, the value of α has no physical significance:

$$lpha_{G0} = \hat{lpha}_{\scriptscriptstyle T} - rac{\hat{lpha}_{\scriptscriptstyle D} \eta_{\scriptscriptstyle D} + \hat{lpha}_{\scriptscriptstyle H} ig(1 - \eta_{\scriptscriptstyle D}ig)}{\eta_{\scriptscriptstyle T}}$$

 \Box However, substitution of α_{G0} and $\alpha_{G\infty}$ simplifies the α_{G-L} power balance into a more compact form emphasizing gain-driven and gain-independent parameters:

$$lpha_{G-L} = rac{G}{G_{MIN}} lpha_{G\infty} - lpha_{G0} \ rac{G}{G_{MIN}} - 1$$

Given a, calculate needed Gain

 \Box Inverting the compact α_{G-L} equation for G yields an equation stating the G required for a given α_{G-L} (or α):

$$G=G_{MIN} rac{lpha-lpha_{G0}}{lpha-lpha_{G\infty}}$$

higher η_P — the smaller the value of gain G required to meet a The lower the value of $\alpha_{G\infty}$ —implying lower subsystem α 's and mission.

Summary so far ...

- shown that mission trip time is proportional to the cube root of α . □ For very fast missions with straight-line trajectories, it has been
- □ Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown:
- □ A minimum gain is needed to have enough power for thruster and driver operation
- ☐ Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations.
- ☐ However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain.
- ☐ Therefore, it is of interest to monitor the progress of gain-limited subsystem
- \Box It is also possible that power-limited systems with sufficiently low α may be competitive for such ambitious missions.