Machine Dynamics - Assignment 1

Student ID: D08522005

Student Name: 張元

Part I

Q2 Statics

Calculate the reaction forces at all joints and the required torque on Link 2 to achieve static balance when θ_2 is equal to 90 degree. List all the data in a table.

Joint	Reaction Force (N)	Required Torque $(N \cdot m)$
A	1035.4742	0
В	1036.2480	0
\mathbf{C}	1036.5765	0
D	1044.4153	0

Part II

Q3 Kinetostatics

Calculate the reaction force at all joints and the required torque on Link 2 when θ_2 varies from θ to 360 degree (interval ≤ 1 degree). Take the angle of Link 2 (θ_2) as the horizontal axis to draw plots for these variables.

The reaction forces of each joint splitted with x and y axis: $(Ja \sim Jd)$

The required torque on Joint A:

 $\mathbf{Q4}$

Continued from 3, draw (a) the plots of the x and y components of the shaking force with θ_2 as the horizontal axis, and (b) the polar plots of the shaking force and shaking moment.

The shaking force is composed by Joint A and Joint D based on the frame.

The polar plot of shaking force. (Composed)

The shaking moment can be obtained by $M_S = \overrightarrow{R_1} \times \overrightarrow{F_{41}} + \overrightarrow{T_{21}}.$

a. What is the maximum input torque? When does it happen? Use degree as the unit and be accurate to 2 decimal places.

According to the torque of Joint A, the extremum of input torque is $3.8172 \times 10^6~N \cdot m$ at $\theta_2=183.9195$ deg.

b. What are the maximum shaking force and shaking moment? When do they happen? Use degree as the unit and be accurate to 3 decimal places.

According to the polar plot, the maximum shaking force is 57694.7620N at $\theta_2=199.6040$ deg; the maximum shaking moment is $1556.5653\times 10^4~N\cdot m$ at $\theta_2=209.5842$ deg.