Операции сравнения

17

Обзор главы

В разделе	Вы найдете	на стр.
17.1	Обзор	17–2
17.2	Сравнение двух целых чисел	17–3
17.3	Сравнение двух чисел с плавающей точкой	17–5

17.1. Обзор

С помощью операций сравнения Вы можете сравнивать друг с другом следующие пары числовых значений:

- два целых числа (16 бит)
- два целых числа (32 бита)
- два вещественных числа (числа с плавающей точкой, 32 бита, IEEE-FP)

Вы загружаете числовые значения в AKKU 1 и 2. Операция сравнения сравнивает значение в AKKU 2 со значением в AKKU 1 по критериям, приведенным в таблице 17-1.

Результатом сравнения является двоичная цифра, т.е. "1" или "0". "1" указывает что результат сравнения является "истиной", "0" указывает, что результат "ложен" (см. табл. 17–2). Этот результат сохраняется в бите результата логической операции (бит VKE, см. гл. 9.4). Этот результат Вы можете использовать в своей программе для дальнейшей обработки.

Когда CPU выполняет операцию сравнения, он устанавливает биты в слове состояний. Другие операции AWL могут анализировать биты слова состояния. CPU выполняет операции сравнения независимо от результата логической операции.

Таблица 17-1. Критерии сравнения

Вид числового значения в АККU 2	Критерий сравнения	Символ (ы) операции	Вид числового значения в АККИ 1
	равно	==I ==D ==R	
	не равно	<1 <>D <>R	
Целое число (16 бит) Целое число (32 бита)	больше, чем	>I >D >R	Целое число (16 бит) Целое число (32 бита)
Число с плавающей точкой (32 бита)	меньше, чем	<i <d <r< td=""><td>Число с плавающей точкой (32 бита)</td></r<></d </i 	Число с плавающей точкой (32 бита)
	больше или равно	>=I >=D >=R	
	меньше или равно	<=I <=D <=R	

17.2. Сравнение двух целых чисел

Описание

Операции *Сравни целые числа (16 бит)*, операции *Сравни целые числа (32 бита)* сравнивают два целых числа (32 бита) в соответствии с критериями в табл. 17–2. Пример программы следует за таблицей 17–3.

Таблица 17-2. Операции сравнения (целые числа, 16 и 32 бита)

Операция	Объяснение
==I	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на равенство.
==D	Сравнить целое число (32 бита) в АККU 2 с целым числом (32 бита) в АККU 1 на равенство.
≪I	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на неравенство.
⇔D	Сравнить целое число (32 бита) в АККU 2 с целым числом (32 бита) в АККU 1 на неравенство.
>I	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на больше.
>D	Сравнить целое число (32 бита) в АККИ 2 с целым числом (32 бита) в АККИ 1 на больше.
<i< td=""><td>Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на меньше.</td></i<>	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на меньше.
<d< td=""><td>Сравнить целое число (32 бита) в АККИ 2 с целым числом (32 бита) в АККИ 1 на меньше.</td></d<>	Сравнить целое число (32 бита) в АККИ 2 с целым числом (32 бита) в АККИ 1 на меньше.
>=I	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на больше или равно.
>=D	Сравнить целое число (32 бита) в АККU 2 с целым числом (32 бита) в АККU 1 на больше или равно.
<=I	Сравнить целое число (16 бит) в младшем слове АККU 2 с целым числом (16 бит) в младшем слове АККU 1 на меньше или равно.
<=D	Сравнить целое число (32 бита) в АККU 2 с целым числом (32 бита) в АККU 1 на меньше или равно.

Установка битов А1 и А0 в слове

Операции сравнения для целых чисел (16 и 32 бита) устанавливают различные комбинации сигнальных состояний битов A1 и A0, чтобы **состояния** отобразить, какое условие было выполнено (см. табл. 17–3).

Таблица 17-3. Состояния битов А1 и А0 после операции сравнения

Условие	Сигнальное состояние:		Возможный опрос с помощью операций
	A1	A0	U, O, X, UN, ON, XN
Akku2>Akku1	1	0	>0
Akku2 <akku1< td=""><td>0</td><td>1</td><td><0</td></akku1<>	0	1	<0
Akku2=Akku1	0	0	==0
Akku2≪Akku1	0	1	<>0
	или	или	
	1	0	
Akku2>=Akku1	1	0	>=0
	или	или	
	0	0	
Akku2<=Akku1	0	1	<=0
	или	или	
	0	0	

Пример

Следующий пример программы показывает, как работают операции сравнения для целых чисел (16 бит).

AWL	Объяснение
L MW10	Загрузить содержимое меркерного слова MW10 в AKKU 1.
L EW0	Загрузить содержимое входного слова ЕW0 в АККИ 1.
	Старое содержимое в АККИ 1 смещается в АККИ 2.
==I	Сравнить значение в младшем слове АККU 2 со значением в младшем слове АККU
	1, чтобы выяснить, равны ли они.
= A 4.0	Выход А 4.0 проводит ток, если MW10 и EW0 равны.
>I	Сравнить значение в младшем слове АККИ 2 со значением в младшем слове АККИ
	1, чтобы выяснить, больше ли оно, чем значение в младшем слове АККИ 1.
	Выход А 4.1 проводит ток, если MW10 больше, чем EW0.
= A 4.1	
	Сравнить значение в младшем слове АККИ 2 со значением в младшем слове АККИ
<1	1, чтобы выяснить, меньше ли оно, чем значение в младшем слове АККИ 1.
	Выход А 4.2 проводит ток, если MW10 меньше. чем EW0.
= A 4.2	

17.3. Сравнение двух чисел с плавающей точкой

Описание

Операции сравнения для чисел с плавающей точкой сравнивают два числа с плавающей точкой (32 бита, IEEE-FP) по критериям, приведенным в таблице 17–4. Так как числа с плавающей точкой (32 бита, IEEE-FP) относятся к типу данных REAL (вещественные), то в качестве мнемонического сокращения для этих операций используется "R".

Таблица 17–4. Операции сравнения (числа с плавающей точкой, 32 бита, IEEE– FP)

Операция	Объяснение
==R	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 на равенство.
⇔R	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 на неравенство.
>R	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 на больше.
<r< td=""><td>Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККU 1 на меньше.</td></r<>	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККU 1 на меньше.
>=R	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККU 1 на больше или равно.
<=R	Сравнить число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 с числом с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 на меньше или равно.

Установка битов в слове состояния Операции сравнения для чисел с плавающей точкой (32 бита, IEEE-FP)

OS слова состояния, чтобы отобразить, какое условие было выполнено

Таблица 17–5. Состояния битов в слове состояния после операции сравнения для чисел с плавающей точкой (32 бита, IEEE–FP)

Условие	A1	A0	ov	os
==	0	0	0	выпадает
\Diamond	0	1	0	выпадает
	или	или		
	1	0		
>	1	0	0	выпадает
<	0	1	0	выпадает
>=	1	0	0	выпадает
	или	или		
	0	0		
<=	0	1	0	выпадает
	или	или		
	0	0		
UO	1	1	1	1

Анализ битов в слове состояния

Другие операции AWL могут анализировать биты в слове состояния (см. гл. 11.3 и табл. 17–6).

Таблица 17–6. Операции, анализирующие биты A1, A0, OV и OS слова состояния

Операция	Ссылка на биты слова состояния или метка перехода	Глава в этом руко- водстве
U,O,X,UN,ON,XN	>0, <0, <>0, >=0, <=0, ==0, UO, OV, OS	11.3
SPU	<метка перехода>	22.4
SPZ	< метка перехода >	22.5
SPN	< метка перехода >	22.5
SPP	< метка перехода >	22.5
SPM	< метка перехода >	22.5
SPMZ	< метка перехода >	22.5
SPPZ	< метка перехода >	22.5

Пример

Следующий пример программы показывает, как работают операции сравнения для чисел с плавающей точкой (32 бита, IEEE-FP).

AWL	Объяснение
L MD24	Загрузить содержимое двойного меркерного слова MD24 в AKKU 1.
L +1.00E+00	Загрузить значение 1.0 как число с плавающей точкой (32 бита) в АККИ 1. Старое содержимое АККИ 1 сдвигается в АККИ 2.
>R	Сравнить значение в AKKU 2 со значением в AKKU 1, чтобы выяснить, больше ли оно, чем значение в AKKU 1.
= A 4.1	Выход А 4.1 проводит ток, если МD24 больше, чем 1.0.
<r< td=""><td>Сравнить значение в AKKU 2 со значением в AKKU 1, чтобы выяснить, меньше ли оно, чем значение в AKKU 1.</td></r<>	Сравнить значение в AKKU 2 со значением в AKKU 1, чтобы выяснить, меньше ли оно, чем значение в AKKU 1.
= A 4.2	Выход А 4.2 проводит ток, если МD24 меньше, чем 1.0.