(12) NACH DEM VEKTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 25. September 2003 (25.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/078629 A1

(51) Internationale Patentklassifikation*: C12N 15/11, 15/82

(21) Internationales Aktenzeichen: PCT/EP03/02735

(22) Internationales Anmeldedatum:

17. März 2003 (17.03.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 12 892.8

20. März 2002 (20.03.2002) Di

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF PLANT SCIENCE GMBH [DE/DE]; Carl-Bosch-Strasse 38, 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KOCK, Michael [DE/DE]; Am Leutbusch 12, 67105 Schifferstadt (DE). BAUER, Jörg [DE/DE]; Friedrich-Profit-Str. 56, 67063 Ludwigshafen (DE).

(74) Anwalt: DÖRPER, Thomas; BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f
 ür Änderungen der Anspr
 üche geltenden Frist; Ver
 öffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: CONSTRUCTS AND METHODS FOR THE REGULATION OF GENE EXPRESSION
- (54) Bezeichnung: KONSTRUKTE UND VERFAHREN ZUR REGULATION DER GENEXPRESSION
- (57) Abstract: The invention relates to constructs and methods for the regulation of gene expression of at least two endogenous target genes by introduction of an at least partly double-stranded ribonucleic acid molecule into a eukaryotic cell or a eukaryotic organism, whereby the ribonucleic acid molecule comprises at least two ribonucleotide sequence sections which are homologous with various genes of the eukaryotic cell.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft Konstrukte und Verfahren zur Regulation der Genexpression von mindestens zwei endogenen Zielgenen durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in eine eukaryotische Zelle oder einen eukaryotischen Organismus, wobei das Ribonukleinsäuremolekül mindestens zwei Ribonukleotidsequenzabschnitte umfasst, die zu verschiedenen Genen der eukaryotischen Zelle homolog sind.

Konstrukte und Verfahren zur Regulation der Genexpression

Beschreibung .

Die vorliegende Erfindung betrifft Konstrukte und Verfahren zur Regulation der Genexpression von mindestens zwei endogenen Zielgenen durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in eine eukaryotische Zelle oder einen 10 eukaryotischen Organismus, wobei das Ribonukleinsäuremolekül mindestens zwei Ribonukleotidsequenzabschnitte umfasst, die zu verschiedenen Genen der eukaryotischen Zelle homolog sind.

Die gezielte Inhibition der Genexpression definierter Gene ist 15 eine der am meisten beforschten Technologie der Biotechnologie. Die Expression von antisense-RNA ist dabei der am häufigsten verwendet Ansatz und vielfach beschrieben (u.a. EP-A1 0 458 367; EP-Al 0 140 308; van der Krol AR et al. (1988) BioTechniques 6(10):658-676; de Lange P et al. (1995) Curr Top Microbiol Immu-20 nol 197:57-75). Antisense-RNA vermittelte Ansätze haben jedoch den Nachteil, dass stöchiometrische Mengen der antisense-RNA erforderlich sind, um eine wirksame Inhibition der Ziel-mRNA zu bewirken. Weitere Probleme stehen im Zusammenhang mit dem Einbringen der antisense-RNA in ausreichenden Mengen in die Zellen und 25 mit der Labilität der antisense-RNA. Ansätze basierend auf antisense-RNA sind daher meist ineffizient.

Ein weiterer Ansatz zur Genregulation ist die "Co-Suppression" und meint die Verminderung der Expression eines endogenen Ziel-30 gens durch transgene Expression einer sense-RNA dieses Zielgens (EP-A1 0 465 572). Der Co-Suppression liegen vermutlich mehr als ein Mechanismus zugrunde. Nachteilig ist die mangelnde Verlässlichkeit und Reproduzierbarkeit des Verfahrens. In manchen Fällen erfolgt Suppression, während in anderen Fällen - bedingt durch 35 die Expression der sense-RNA - die erwartete Überexpression erfolgt. Auch ist der erhaltene Phänotyp oft nicht stabil. Die Anwendung der Co-Suppression ist im wesentlichen auf Pflanzen beschränkt.

40 Verschiedene Abwandlungen der Verfahren basierend auf antisense-RNA oder Cosuppression sind bekannt. So beschreibt WO 93/23551 ein Verfahren zur Inhibition mehrerer Gene durch Expression einer chimären antisense-RNA oder sense-RNA. Das Verfahren kann die üblichen mit antisense-RNA oder sense-RNA verbundenen Probleme nicht lösen und bleibt ineffizient.

WO 98/36083 und WO 99/15682 beschreiben die Regulation der Genexpression mittels viraler Expressionssysteme ("virus induced gene

silencing" VIGS).

WO 99/32619 und WO 99/53050 beschreiben Verfahren zur Inhibition einzelner Zielgene unter Verwendung einer RNA mit doppelsträngi5 ger Struktur, wobei das Zielgen und die Region der RNA Duplex zumindest eine teilweise Identität aufweisen (siehe auch: Montgomery MK et al. (1998) Proc Natl Acad Sci USA 95:15502- 15507;
Sharp PA (1999) Genes & Development 13(2):139-141; Fire A et al. (1998) Nature 391:806-11). Das Verfahren wird heute auch als
10 "RNA-Interference" (RNAi) bezeichnet und hat in Mechanismus und Wirkung Ähnlichkeiten mit dem oben erwähnten VIGS Verfahren.

Die beschriebenen Verfahren, insbesondere das RNAi-Verfahren, lösen zwar einige Probleme im Zusammenhang mit der Verminderung 15 einzelner Zielgene. Für andere Probleme, insbesondere für die parallele Suppression mehrerer Zielgene, konnte jedoch bislang keine befriedigende Lösung bereit gestellt werden. Zahlreiche Ansätze in der Biotechnologie erfordern nicht nur die Verminderung eines einzelnen Zielgens, sondern mehrerer Zielgene, wie bei-20 spielsweise verschiedener Gene eines oder verschiedener Stoffwechselwege oder ganzer Genfamilien. Bislang war dies nur mit erheblichen Arbeits- und Zeitaufwand zu realisieren. Die Ansätze erforderten oft die individuelle Regulation der einzelnen Zielgene durch sukzessive Transformation beispielsweise mit verschiedenen Expressionskonstrukten, die jeweils für eine antisense RNA eines Zielgens kodierten. Neben dem erheblichen Arbeits- und Zeitaufwand, besteht dabei der Nachteil, das für viele Systeme und Organismen nur eine beschränkte Anzahl von Selektionsmarkern, geeigneten Promotoren etc. zur Verfügung steht, was multiple Transformationen erheblich erschwert und beispielsweise die Deletion der Marker nach der Transformation und Selektion erfordert. Die mehrfache Verwendung eines Promotors hat oft unerwünschte Folgen, wie beispielsweise ein epigenetisches Gene-Silencing. Hierbei kommt es infolge der mehrfach verwendeten Kontrollsequenzen zu einer Inaktivierung derselben, vergleichbar der oben be-35 schriebenen Cosuppression.

Es stellte sich also die Aufgabe, neue Verfahren bereit zu stellen, die eine effiziente Verminderung der Expression mindestens zweier endogener Zielgene in einer eukaryotischen Zelle oder einem eukaryotischen Organismus ermöglichen. Diese Aufgabe wird durch die vorliegende Erfindung gelöst.

Ein erster Gegenstand der Erfindung betrifft Verfahren zur Verminderung der Expression von mindestens zwei verschiedenen, endogenen Zielgenen in einer eukaryotischen Zelle oder einem eukaryotische Organismus durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in besagte eukaryotische

Zelle oder besagten eukaryotischen Organismus, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

- a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils

 5 mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des
 "sense"-RNA-Transkriptes eines jeden der besagten endogenen
 Zielgene und
- 10 b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teil-15 weise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens, wobei jedoch nicht alle "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens identisch sind, und

25

- b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.
- 30 Umfasst ist ferner die Verwendung der erfindungsgemäßen doppelsträngiges Ribonukleinsäuremolekül in einem der erfindungsgemäßen Verfahren.

Die vorliegende Erfindung löst die oben geschilderten Probleme 35 und ermöglicht eine schnelle, besonders effiziente Methode zur Regulation der Expression verschiedener Zielgene. Insbesondere ergeben sich folgende Vorteile:

- a) Transgene Organismen oder Zellen, in denen mehr als ein Ziel-40 gen inhibiert wird, können in einer einzigen Transformation erzeugt werden.
- b) Die Transkriptionsrate für jeden Ribonukleotidsequenz der dsRNA ist gleich. Dadurch werden multiple Phänotypen durch unterschiedliche Expressionshöhen verhindert, wie sie bei individueller Expression separater Ribonukleotidsequenzen – beispielsweise durch den unterschiedlichen Ort der Insertion

25

in das Genom - oft entstehen. Dieser Vorteil gewährleistet eine gleichbleibend hohe Inhibition aller Zielgene und vermindert dramatisch die erforderlichen Selektionsschritte zu Generierung eines Organismus, bei dem alle Zielgene effizient supprimiert werden.

- c) Ein ökonomischer Umgang mit Kontrollelementen wie Promotoren und Selektionsmarkern wird ermöglicht. Zudem erübrigen sich Probleme, wie sie bei der mehrfachen Verwendung eines bestimmten Kontrollelementes, insbesondere eines Promoters, entstehen können ("epigenic gene silencing").
- d) Eine Segregation der einzelnen Ribonukleotidsequenzen bei nachfolgenden Züchtungs- und Kreuzungsschritten, wie sie bei der Verwendung mehrerer Expressionskonstrukte zwangsläufig entsteht, wird verhindert. Dadurch wird die nachfolgende Züchtung stabiler Linien erheblich erleichtert und beschleunigt.
- Organismen mit komplexen beispielsweise polyploide Genomen, wie beispielsweise manche Pflanzen, sind einer effizienten Gensuppression zugänglich. Aufgrund der zahlreichen Kopien für einzelne Gene sind diese Organismen klassischen verfahren der Mutagenese und Selektion nicht zugänglich.

Überraschenderweise konnte bei dem erfindungsgemäßen Verfahren keine störende Interferenz zwischen den einzelnen Ribonukleotidsequenzabschnitte untereinander beobachtet werden.

- "Endogenes Zielgen einer eukaryotischen Zelle oder eines eukaryotische Organismus" meint jede Nukleinsäuresequenz in einer eukaryotischen Zelle, einem eukaryotische Organismus oder einem Teil, Organ, Gewebe, Samen etc. desselben, die zur Transkription befähigt ist. Dabei kann es sich um natürlicherweise vorkommende oder aber künstlich eingeführte Sequenzen (wie beispielsweise transgene Sequenzen) handeln, wobei natürlicherweise vorkommende Sequenzen sind bevorzugt sind. Natürlicherweise vorkommende Sequenzen sind bevorzugt und umfassen sowohl die eigenen Sequenzen der eukaryotischen Zelle oder des eukaryotischen Organismus als auch Gene von Pathogenen, die in der eukaryotischen Zelle oder dem eukaryotischen Organismus nach einem Befall durch ein Pathogen prä-
- karyotischen Organismus nach einem Befall durch ein Pathogen präsent sind. Das Zielgen kann in der chromosomalen DNA oder der DNA der Organellen (wie beispielsweise der Plastiden z.B. Chloroplasten etc.) lokalisiert sein oder aber sich extrachromosomal in
- 45 der Zelle befinden. Die natürlicherweise vorkommenden, eigenen Sequenzen des eukaryotischen Organsimus umfassen bevorzugt Gene desselben, die stabil im Genom vorliegen, wobei das Genom die Ge-

samtheit der genetischen Information meint und sowohl die chromosomale als auch die plastidäre DNA umfasst. Bevorzugt ist das endogene Zielgen ein natürlicherweise in der chromosomalen DNA vorkommendes Gen. Bevorzugt sind Gene deren verminderte Expression 5 zu einem veränderten Phänotyp führt.

"Verminderung" oder "vermindern" der Expression eines Zielgens ist im Zusammenhang weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbio-10 logische Mechanismen beruhende Unterbindung oder Blockierung der Expression des Zielgens oder der von ihm abgeleiteten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten Proteinproduktes in einer Zelle oder einem Organismus oder einem davon abgeleiteten Teil, Gewebe, Organ, Zelle oder Samen. Eine Verminderung im Sinne 15 der Erfindung umfasst die mengenmässige Verringerung einer vom Zielgen exprimierten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten Proteinproduktes bis hin zu einem im wesentlichen vollständigen Fehlen derselben. Dabei wird die Expression einer bestimmten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten 20 Proteinproduktes in einer Zelle oder einem Organismus im Vergleich zu der selben Zelle oder Organismus, die dem Verfahren nicht unterworfen wurden, bevorzugt um mehr als 50%, besonders bevorzugt um mehr als 80%, ganz besonders bevorzugt um mehr als 90%, am meisten bevorzugt mehr al 95% vermindert. Dabei kann die 25 Verminderung durch dem Fachmann geläufigen Verfahren ermittelt werden. So kann die Verminderung der Proteinmenge beispielsweise durch immunologischen Nachweis des Proteins bestimmt werden. Weiterhin können biochemische Techniken wie Northern-Hybridisierung, "nuclease protection assay", Reverse Transkription (quanti-30 tative RT-PCR), ELISA ("enzyme linked immunosorbent assay"), Western-Blotting, Radioimmunoassay (RIA) oder andere Immunoassays sowie "fluorescence activated cell analysis" (FACS) eingesetzt werden. Je nach Art des verminderten Proteinproduktes kann auch dess Aktivität oder der Einfluss auf den Phänotyp des Organismus 35 oder der Zelle ermittelt werden.

"Proteinmenge" meinte die Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment.

"Verminderung" der Proteinmenge meint die mengenmäßige Verminderung der Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment – beispielsweise durch das erfindungsgemäße Verfahren – im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter, Nährstoffzufuhr

etc.). Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10% oder mindestens 20%, besonders bevorzugt um mindestens 40% oder 60%, ganz besonders bevorzugt um mindestens 70% oder 80%, am meisten bevorzugt um mindestens 90% oder 95%. Ver5 fahren zur Bestimmung der Proteinmenge sind dem Fachmann bekannt. Beispielhaft seien zu nennen: Das Mikro-Biuret Verfahren (Goa J (1953) Scand J Clin Lab Invest 5:218-222), die Folin-Ciocalteu-Methode (Lowry OH et al. (1951) J Biol Chem 193:265-275) oder die Messung der Adsorption von CBB G-250 (Bradford MM (1976) Analyt 10 Biochem 72:248-254).

"Verschieden" meint in Bezug auf zwei endogene Zielgene bevorzugt, dass die von den beiden endogenen Zielgenen transkribierte
RNA oder mRNA nicht identisch ist. Bevorzugt ist die Homologie
15 der von den beiden endogenen Zielgenen transkribierte RNA oder
mRNA geringer als 90%, bevorzugt geringer als 80%, besonders bevorzugt geringer als 70%, ganz besonders bevorzugt geringer als
60%, am meisten bevorzugt geringer als 50% über jeweils die gesamte Länge der transkribierten RNA oder mRNA.

20

"Zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül" (infolge dsRNA) meint Ribonukleinsäuremolekül, die ganz oder teilweise doppelsträngig sind. Bevorzugt ist die Ribonukleinsäuresequenz überwiegend vollständig doppelsträngig. "Überwiegend 25 vollständig doppelsträngig" meint, dass zumindest 50%, bevorzugt 70%, besonders bevorzugt 80%, ganz besonders bevorzugt 90% der in dem Molekül vorhandenen Basen in Paarung mit einer anderen Base der dsRNA vorliegen oder – entsprechend der Sequenz der dsRNA und den Basenpaarregeln sowie gegebenenfalls einer RNA-Sekundärstruk-30 turvoraussage mittels eines geeigneten Computeralgorithmus – zumindest theoretisch vorliegen können.

"Im wesentlichen identisch" meint, dass eine "sense"-Ribonukleotidsequenz der dsRNA auch Insertionen, Deletionen sowie einzelne

35 Punktmutationen im Vergleich zu der Sequenz des "sense"-RNATranskriptes eines endogenen Zielgens aufweisen kann. Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Basen einer Nukleinsäuresequenz.

Bevorzugt beträgt die Homologie zwischen einer "sense"-Ribonu
40 kleotidsequenz einer dsRNA und mindestens einem Teil des "sense"-RNA-Transkript eines endogenen Zielgens mindestens 60 %, bevorzugt mindestens 70 %, ganz besonders bevorzugt mindestens 90 %, am meisten bevorzugt 95%. Die Sequenzen können auch identisch mit der korrespondierenden Sequenz des Zielgens sein. Eine

45 100%ige Sequenzidentität zwischen der "sense"-Ribonukleotidsequenz der dsRNA und mindestens einem Teil des "sense"-Stranges

der Transkriptes eines endogenen Gens ist bevorzugt, wenn gleich

nicht zwingend erforderlich, um eine effiziente Verminderung der Expression des endogenen Gens zu bewirken. Einzelne Mutationen werden toleriert. Das Verfahren ist demnach tolerant gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Po5 lymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise auch möglich mit einer einzigen dsRNA, die ausgehend von einer bestimmten endogenen Gen generiert wurde, die Expression weiterer homologer endogener Gene des gleichen Organismus oder aber auch die Expression homologer endogener Gene in anderen verwandten Arten zu unterdrücken.

Unter Homologie wird das Maß der Übereinstimmung zwischen zwei Nukleotid-, Ribonukleotid- oder Proteinsequenzen verstanden, die bevorzugt durch Vergleich mit Hilfe des Programmalgorithmus

15 GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

20 Gap Weight: 50 Length Weight: 3

Average Match: 10 Average Mismatch: 0

Dem Fachmann ist bewusst, dass wenn die Homologie zwischen DNA 25 (z.B. Genen) und RNA bestimmt wird, Thymin (T) in der DNA Sequenz als äquivalent zu Uracil (U) in der RNA Sequenz betrachtet wird.

"Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens" meint Fragmente einer RNA oder mRNA transkribiert von einem endogenen Zielgen. Dabei hat besagtes Teil bevorzugt eine Sequenzlänge von mindestens 10 Basen, bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen. Umfasst ist auch die vollständige transkribierte RNA oder mRNA.

Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines Transkriptes, bevorzugt der mRNA, eines endogenen Zielgenes zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h oder unter anderen Standardhybridisierungsbedingungen).

"Standardhybridisierungsbedingungen" ist breit zu verstehen und 45 meint weniger stringente als auch – bevorzugt – stringente Hybridisierungsbedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und bevorzugt - solchen mit hoher Stringenz (mit ungefähr 0,2X SSC 10 bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M NaCl, pH 7.0). Darüberhinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu - bevorzugt - stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, 15 Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird 20 die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind in-

- (1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein: 25
 - a) 4x SSC bei 65°C,

folge gegeben:

- b) 6X SSC bei 45°C,
- 6X SSC, 100 μg/ml denaturierter, fragmentierte Fischsperc) ma-DNA bei 68°C, 30
 - 50% Formamid, 4X SSC bei 42°C, f)
 - 2X oder 4X SSC bei 50°C (schwach stringente Bedingung), h)
 - 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach i) stringente Bedingung).

35

- (2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:
 - a) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1% SDS bei 50°C.
- b) 0,1X SSC bei 65°C. 40
 - c) 0,1X SSC, 0,5% SDS bei 68°C.
 - d) 0,1x SSC, 0,5% SDS, 50% Formamid bei 42°C.
 - e) 0,2X SSC, 0,1% SDS bei 42°C.
 - f) 2X SSC bei 65°C (schwach stringente Bedingung).

45

"Im wesentlichen komplementär" meint, dass die "antisense"-Ribonukleotidsequenzen der dsRNA auch Insertionen, Deletionen sowie

einzelne Punktmutationen im Vergleich zu dem Komplement der "sense"-Ribonukleotidsequenzen aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100% zwischen den "antisense"-Ribonukleotidsequenzen und dem Komplement der "sense"-Ribonukleotidsequenzen. Komplement meint dabei - in der dem Fachmann geläufigen Weise - den entsprechend den Basenpaarregeln abgeleiteten Gegenstrang.

- Die doppelsträngige Struktur der dsRNA kann ausgehend von einem einzigen, ganz oder teilweise selbstkomplementären RNA-Strang (bei dem die oben erwähnten "sense"- und "antisense"-Ribonukleotidsequenzen der dsRNA alle kovalent miteinander verbunden sind) oder ausgehend von zwei RNA-Strängen (indem die oben erwähnten "sense"- und "antisense"-Ribonukleotidsequenzen der dsRNA auf separate Stränge vorliegen), die zueinander ganz oder teilweise komplementär sind, gebildet werden. Bei zwei separaten Strängen können beispielsweise alle "sense"-Ribonukleotidsequenzen auf dem einen und alle "antisense"-Ribonukleotidsequenzen auf dem anderen Strang vorliegen. Die Sequenzen können aber auch anders auf die beiden Stränge verteilt sein. Die Ausbildung der doppelsträngigen Struktur kann in vitro aber auch in vivo beispielsweise in der eukaryotischen Zelle selber erfolgen. Bevorzugt liegt die dsRNA in Form eines einzigen, selbstkomplementären RNA-Stranges vor.
 - Die einzelnen "sense"-Ribonukleotidsequenzen können mit den korrespondierenden, im wesentlichen komplementären "antisense"-Ribonukleotidsequenzen eine doppelsträngige RNA-Struktur mittels Basenpaarung ausbilden und bilden eine Untereinheit der dsRNA.
- Im Falle eines selbstkomplementären Stranges ergeben sich verschiedene Möglichkeiten für die Primärstruktur der dsRNA. Nachfolgend aufgeführte sind beispielshaft, jedoch nicht einschränkend zu verstehen:
- a) Es können zunächst die "sense"-Ribonukleotidsequenzen (S) der einzelnen Untereinheiten aneinander gefügt werden, wodrauf dann eine Aneinanderreihung der im wesntlichen komplementären "antisense"-Ribonukleotidsequenzen (AS) folgt. Die Anzahl der Einheiten n ist größer oder gleich zwei. Es entsteht eine Struktur mit einer einzelnen Haarnadel. Die Primärstruktur der dsRNA kann dabei schematisch beispielsweise wie folgt aussehen:

45
$$5'-S(1)-S(2)-\ldots-S(n)-AS(n)-\ldots-AS(2)-AS(1)-3'$$

40

Die bevorzugte Sekundärstruktur ist in Fig. 2-A wiedergegeben.

b) Es können zunächst die "sense"-Ribonukleotidsequenz (S) und die im wesentlichen komplementäre "antisense"-Ribonukleotidsequenz (AS) der ersten Untereinheiten aneinander gefügt werden, wodrauf dann die Aneinanderreihung von "sense"- und "antisense"-Ribonukleotidsequenzen der weiteren Untereinheiten folgt. Die Anzahl der Einheiten n ist größer oder gleich zwei. Es entsteht eine Struktur mit mehreren Haarnadeln. Die Primärstruktur der dsRNA kann dabei schematisch beispielsweise wie folgt aussehen:

$$5'-S(1)-AS(1)-S(2)-AS(2)....-S(n)-AS(n)-3'$$

Die bevorzugte Sekundärstruktur ist in Fig. 2-B wiedergegeben.

Ist die dsRNA - bevorzugt - in der Lage eine Haarnadelstruktur auszubilden, so entspricht der Stamm der Haarnadel dem doppel20 strängige Anteil der dsRNA, der durch Basenpaarung zwischen auf dem gleich RNA-Moleküle lokalisierten "sense"- und "antisense"Ribonukleotidsequenz gebildet wird. Dabei werden "sense"- und "antisense"-Ribonukleotidsequenzen bevorzugt durch einen "Linker" verbunden. Der "Linker" ist bevorzugt ein Intron, das aus der
25 dsRNA herausgespleißt werden kann. Selbstkomplementären dsRNAStrukturen ausgehend von einem einzelnen RNA-Molekül sind bevorzugt, da sie lediglich die Expression eines Konstruktes erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhältnis umfassen.

Bei der Verwendung eines Linkers (I) - bevorzugt eines Intron - seien nachfolgende schematische Primärstrukturen für die dsRNA beispielhaft genannt:

35 c) Dies ist eine bevorzugte Variante von a), bei der an der Stelle der Haarnadelschlaufe ein Linker (I) - bevorzugt ein Intron - insertiert wird:

$$5'-S(1)-S(2)-...-S(n)-I-AS(n)-...-AS(2)-AS(1)-3'$$

Die bevorzugte Sekundärstruktur ist in Fig. 2-C wiedergegeben.

d) Dies ist eine bevorzugte Variante von b), bei der an der
 45 Stelle der jeder Haarnadelschlaufe ein Linker (I) – bevorzugt ein Intron – insertiert wird:

werden.

5'-S(1)-I-AS(1)-S(2)-I-AS(2)....-S(n)-I-AS(n)-3'

Die bevorzugte Sekundärstruktur ist in Fig. 2-D wiedergegeben.

Die dsRNA Moleküle sind jedoch auch ohne den Linker funktionell. Dabei ist jedoch zu berücksichtigen, dass die letzten ca. 10 Nukleotide der terminalen Untereinheit S(n) in diesem Fall nicht 10 mehr korrekt paaren. In diesem Fall ist die Länge für diese Untereinheit um 10 Nukleotide zu ergänzen. Der Linker ist bevorzugt ein Intron, besonders bevorzugt ein Intron in sense-Orientierung. Bevorzugt handelt es sich um ein Intron eines pflanzlichen Gens. Beispielhaft jedoch nicht einschränkend seien zu nennen: Das In-15 tron 3 der Alkoholdehydrogenase 1 (Adh1) aus Mais (GenBank Acc.-No.: AF044293; GI: 2828164), das Intron 4 der beta-Conglycinin alpha Untereinheit aus Soja (GenBank Acc.-No.: AB051865); eines der Introns des rbcS-3A Gens für Ribulose-1.5-bisphosphatcarboxylase (RBC) kleine Untereinheit aus Erbse (GenBank Acc.-No.: 20 X04333). Diese und weitere geeignete Introns sind dem Fachmann bekannt (McCullough AJ & Schuler MA (1997) Nuc Acids Res 25:1071-1077). Für die Anwendung in dem erfindungsgemäßen Verfahren wird das Intron bevorzugt in Kombination mit Spleißakzeptorund Spleißdonorsequenzen eingesetzt, die ein späteres Heraus-25 spleißen aus der dsRNA ermöglichen. Diese Spleißsequenzen können die flankirenden Sequenzen des Intron selber sein, oder aber auch durch dentsprechende Sequenzen der überigfen dsRNA bereitgestellt

30 Jede der einzelnen "sense"-Ribonukleotidsequenzen der dsRNA ist im wesentlichen identisch zu mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens. Dabei sind jedoch nicht alle "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens identisch, sondern die jeweils maximale Identität von mindestens zwei der "sense"-Ribonukleotidsequenzen besteht zu den "sense"-RNA-Transkripten von unterschiedlichen endogenen Zielgenen. Dabei beträgt die Homologie zwischen den Transkripten der beiden endogenen Zielgene unter 90%, bevorzugt unter 80%, besonders bevorzugt unter 70%, ganz besonders bevorzugt unter 60%, am meisten bevorzugt unter 50%.

Mindestens zwei der in der erfindungsgemäßen dsRNA umfassten einzelnen "sense"-Ribonukleotidsequenzen sind unterschiedlich. Un45 terschiedlich bedeutet zum einen, dass die Zielgene zu deren
Transkripten sie die jeweils maximale Identität aufweisen, nicht
identisch sind. Bevorzugt vermindert mindestens eine Untereinheit

der dsRNA die Expression eines anderen Gens als mindstens eine andere Untereinheit. Unterschiedlich kann zum anderen auch heißen, dass die "sense"-Ribonukleotidsequenzen der Untereinheiten selber im wesentlichen nicht identisch sind und bevorzugt eine 5 Homologie zu einander unter 60%, besonders bevorzugt unter 50% ganz besonders bevorzugt unter 40% aufweisen. Die dsRNA kann in einer weiteren Ausführungsform meherer Kopien einer Untereinheit enthalten. Weiterhin kann die dsRNA auch mehrere verschiedene Untereinheiten enthalten, die aber gegen das gleiche endogene Zielgens gerichtet sind und deren "sense"-Ribonukleotidsequenzen beispielsweise im wesentlichen identisch sind zu unterschiedlichen Teilen des "sense"-RNA-Transkriptes des besagten endogenen Zielgens.

- 15 Dabei kann jede der einzelnen "sense"-Ribonukleotidsequenzen auch zu dem Transkript mehrerer endogener Zielgene im wesentlichen identisch sein. Dies ist besonders dann der Fall, wenn die Zielgene über ähnliche Sequenzabschnitte verfügen, wie es beispielsweise bei Mitgliedern von Genfamilien (z.B. Speicherproteinen)
 20 der Fall ist. Dies ist eine besonders vorteilhafte Anwendungsform, da bei entsprechender Wahl der Ribonukleotidsequenz einer Untereinheit besagte Untereinheit die Expression von mehr als einem Zielgen vermindern kann.
- 25 Vorzugsweise wird die Sequenz der dsRNA so gewählt, dass die angestrebte dsRNA Struktur nach Ausbildung der Duplex im Vergleich zu anderen möglichen Faltungsvarianten der Primärstruktur der dsRNA die jeweils geringste freie Energie hat. Dies kann beispielsweise durch Vermeidung von Sequenzduplikationen etc. gewährleistet werden. Die spezifische Sekundärstruktur kann beispielsweise mit geeigneten Computerprogrammen vorausgesagt und optimiert werden (z.B. FOLDRNA; Zuker and Stiegler (1981) Nucleic Acids Res 9(1):133-48).
- 35 Jede Untereinheit der dsRNA hat in einer bevorzugten Ausführungsform eine Länge von mindestens 20 Basenpaaren, bevorzugt mindestens 50 Basenpaaren, besonders bevorzugt mindestens 100 Basenpaare, ganz besonders bevorzugt mindestens 250 Basenpaare.
- 40 In einer weiterhin bevorzugten Ausführungsform hat jede Einheit eine Länge eine ganzzahligen Vielfachen von 21 oder 22 Basenpaaren, also beispielsweise 21, 22, 42, 43, 44, 63, 64, 65, 66, 84, 85, 86, 87, 88, 105, 106, 107, 108, 109, 110, 126, 127, 128, 129, 131, 132, 147, 148, 149, 150, 151, 152, 153, 154, 168, 169, 170, 171, 172, 173, 174, 175, 176, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 oder 220 Basenpaare, bevorzugt 21, 22, 42, 44, 63, 66, 84, 88,

105, 110, 126, 132, 147, 154, 168, 176, 189, 198, 210 oder 220 Basenpaare, ganz besonders bevorzugt 21, 42, 63, 84, 105, 126, 147, 168, 189 oder 210 Basenpaare, am meisten bevorzugt 180 oder 210 Basenpaare.

5

Die "sense"- und/oder "antisense"-Ribonukleotidsequenzen der einzelnen Untereinheiten können direkt oder aber durch einen "Spacer" (SP; Abstandshalter) miteinander verbunden und/oder flankiert sein. Die einzelnen "Spacer" (SP) können dabei identisch oder aber auch unterschiedlich sein. Der "Spacer" genügt dabei bevorzugt den gleichen Längenanforderungen wie sie oben für die Länge der Untereinheiten selber gegeben sind. Der "Spacer" kann eine doppelstränge Struktur ausbilden, kann aber auch - beispielsweise in Form einer Blase - in ungepaarter Formation besteten, d.h. die Basen in Strang und Gegenstrang müssen nicht zwingenderweise komplementär sein. Bevorzugte Ausführungsformen sind zum Beispiel durch nachfolgende Primärstrukturen beschrieben:

e) Dies ist eine bevorzugte Variante von c):

20

Die bevorzugte Sekundärstruktur ist in Fig. 3-A wiedergegeben.

25

Der "Spacer" kann weitere Funktionselemente umfassen. Beispielhaft jedoch nicht einschränkend sind zu nennen:

i) Sequenzen kodierend für eine von einem Ribozym als Substrat 30 erkannten Erkennungssequenz (RE). Beispielsweise kann die dsRNA nachfolgende lineare Struktur vor der Faltung einnehmen:

$$5'-S(1)-(RE)-S(2)-...-S(n)-AS(n)-..-AS(2)-(RE)-AS(1)-3'$$

35

40

Die bevorzugte Sekundärstruktur ist in Fig. 3-B wiedergegeben. Das entsprechende Ribozym (R) kann separat exprimiert werden kann aber auch auf der dsRNA selber kodiert sein. Dabei ist die Sequenz kodierend für ein Ribozym bevorzugt so angeordnet, dass sie im gefalteten dsRNA Molekül einer Sequenz gegenüber liegt, die für dieses Ribozym als Substrat fungieren kann. Beispielsweise kann die dsRNA nachfolgende lineare Struktur vor der Faltung einnehmen:

45
$$5'-S(1)-(R)(RE)-S(2)-...-S(n)-AS(n)-..-AS(2)-(R)(RE)-AS(1)-3'$$

10

15

20

25

30

35

40

Die bevorzugte Sekundärstruktur ist in Fig. 3-C wiedergegeben. Durch die genannten Ausführungsformen werden nach Transkription die einzelnen Untereinheiten durch Wirkung des Ribozym voneinander getrennt. Diese Trennung ist vorteilhaft, jedoch nicht zwingend erforderlich. Entsprechend nutzbare Ribozyme und Erkennungssequenzen sind dem Fachmann bekannt.

Ribozyme meint katalytische RNA-Moleküle. Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"antisense"-RNA-Moleküle ist beispielsweise beschrieben bei Haseloff et al. (1988) Nature 334: 585-591. Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die eines bestimmte RNA katalytisch zu spalten. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S.449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu den Spacersequenzen aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

45 ii) Sequenzen kodierend für Erkennungssequenzen für RNAsen Der "Spacer" kann Erkennungssequenzen für RNAsen, bevorzugt sequenzspezifische RNAsen wie beispielsweise RNAse III ent-

halten. RNAse III schneidet am Motiv 5'-AGNN-3, wenn vier dieser Motive in einer Schleife vorhanden sind (Nagel R & Ares M (2000) RNA 6:1142-1156). Die RNase kann eine pflanzeneigene RNAse sein, oder - wie beispiuelsweise für bakterielle RNase III Proteine - auch transgen exprimiert werden.

iii) Sequenzen kodierend für Intronspeißsignale (IS). Dabei sind die Spleißdonor und Spleißakzeptorsequenzen bevorzugt so lokalisiert, dass jeweils die Untereinheit als Intron herausgespleißt wird. Intronspleißsignale sind in Meritt et al. (1997) Plant Journal 12:937-943 oder in Egoavil et al. (1997) Plant Journal 12:971-980 beschrieben.

Die dsRNA bzw. ihre Vorläufermoleküle können auf verschiedene dem 15 Fachmann geläufige Weise in einen Organismus oder eine Zelle eingebracht werden. "Einbringen" ist breit zu verstehen und umfasst im Rahmen der Erfindung alle Verfahren, die dazu geeignet eine dsRNA bzw. ihre Vorläufermoleküle, direkt oder indirekt, in einen Organismus oder eine Zelle, Kompartiment, Gewebe, Organ oder Sa-20 men desselben einzuführen oder dort zu generieren. Die Einbringung kann zu einer vorübergehenden (transienten) Präsenz einer dsRNA führen oder aber auch zu einer dauerhaften (stabilen). Umfasst sind Verfahren der direkten Transfektion oder Transformation der Zelle mit der als auch die Transformation oder Trans-25 fektion der Zelle mit Expressionskassetten, die befähigt sind, die der dsRNA zugrundeliegenden Ribonukleinsäuresequenzen in der Zelle zu exprimieren (infolge dsRNA-Expressionssystem). Die Expression der dsRNA kann transient oder - beispielsweise nach Integration in das Genom des Organismus - permanent erfolgen. Die 30 Duplex-Bildung der dsRNA kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden.

Die dsRNA wird in einer Menge eingeführt, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung der Expression der Zielgene bewirken. Da dsRNA eine außerordentlich gute Mobilität innerhalb eines Organismus hat, ist es nicht zwingend erforderlich die dsRNA in jede Zelle des Organismus zu applizieren. Es ist ausreichend, die dsRNA in eine oder wenige Zellen einzubringen oder zu exprimieren, wobei die erfindungsgemäße Wirkung dann auch in anderen Zellen des gleichen Organismus erzielt werden kann.

Eine dsRNA - beispielsweise zur Verwendung in einer direkten

45 Transformation oder Transfektion - kann kann in vivo oder in vitro, durch enzymatische, molekularbiologische oder chemisch-synthetische Verfahren synthetisiert werden. Dazu können eukaryoti-

WO 03/078629

sche, prokaryotische oder Bakteriophagen RNA Polymerasen (wie z.B. T3-, T7- oder SP6 RNA-Polymerase) verwendet werden. Entsprechende Verfahren zu in vitro Expression von RNA sind beschrieben (WO 97/32016; US 5,593,874; US 5,698,425, US 5,712,135, US 5 5,789,214, US 5,804,693). Eine chemisch oder enzymatisch in vitro synthetisierte dsRNA kann vor der Einführung in eine Zelle, Gewebe oder Organismus aus dem Reaktionsgemisch beispielsweise durch Extraktion, Präzipitation, Elektrophorese, Chromatographie oder Kombinationen dieser Verfahren ganz oder teilweise aufgerei-10 nigt werden. Die dsRNA kann direkt in die Zelle eingeführt werden (beispielsweise durch Partikelbeschuß oder Mikroinjektion) oder aber extrazellulär (z.B. in den interstitial Raum, das Gefäßsystem, das Verdauungssystem o.ä.) appliziert werden. Auch eine Applikation beispielsweise von dsRNA exprimierenden Organismen in 15 Form von Nahrung ist denkbar. Es ist bekannt, dass dsRNA eine gute Zellgängigkeit und ausreichende Stabilität hat. Durch die hohe Wirksamkeit der dsRNA sind auch wenige Moleküle ausreichend, um eine gute Wirkung im Sinne der Erfindung zu erzielen.

20 Es können ferner Modifikationen sowohl des Zucker-Phosphat-Gerüstes als auch der Nukleoside in der dsRNA vorliegen. Beispielsweise können die Phosphodiesterbindungender der RNA dahingehend modifiziert sein, dass sie zumindest ein Stickstoff oder Schwefel-Heteroatom umfassen. Basen können dahingehend modifiziert werden, dass die Aktivität beispielsweise von Adenosindeaminase eingeschränkt wird. Die dsRNA kann enzymatisch oder ganz oder teilweise chemisch-synthetisch hergestellt werden.

Bevorzugt wird die dsRNA jedoch ausgehend von entsprechenden Expressionssystemen in der Zelle exprimiert. Ein weiterer Gegenstand der Erfindung betrifft besagte dsRNA-Expressionssysteme. Wird die dsRNA als ein einzelner, selbstkomplementären RNA-Strang exprimiert, so umfasst das Expressionssystem eine Expressionskassette mit einer für den selbstkomplementären RNA-Strang kodierenden DNA Sequenz in funktioneller Verknüpfung mit einen Promotor, der geeignet ist, die Expression in der jeweiligen eukaryotischen Zelle zu gewährleisten. Optional kann die Expressionskassette weitere funktionelle Elemente wie beispielsweise Transkriptionsterminatoren und/oder Polyadenylierungssignale umfassen. Derartige Expressionskassetten sind ebenfalls Gegenstand der Erfindung.

Wird die dsRNA in Form von zwei separaten Strängen exprimiert, die zueinander ganz oder teilweise komplementär sind, so umfasst das Expressionssystem zwei Expressionskassetten, wobei jeder der beiden Stränge in funktioneller Verknüpfung mit einen Promotor steht, der geeignet ist, die Expression in der jeweiligen euka-

ryotischen Zelle zu gewährleisten. Optional können die Expressionskassetten weitere funktionelle Elemente wie beispielsweise Transkriptionsterminatoren und/oder Polyadenylierungssignale umfassen. Die Kombination der beiden Expressionskassetten zu dem erfindungsgemäßen Expressionssystem kann auf verschiedene dem Fachmann geläufige Art geschehen. Beispielhaft seien zu nennen:

a) Transformation der Zelle oder Pflanze mit einem Vektor, der Expressionskassetten für beide RNA-Stränge umfasst,

10

- b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei jeweils ein Vektor für jeweils einen der beiden Stränge der dsRNA kodiert.
- 15 c) Kreuzung von zwei Pflanzen, die mit jeweils einem Vektor transformiert wurden, wobei jeweils ein Vektor für jeweils einen der beiden Stränge der dsRNA kodiert.

Es ist auch möglich, das eine Expressionskassette einzusetzten, 20 bei der die für die dsRNA kodierende DNA-Sequenz zwischen zwei Promotoren mit entgegengerichteter Transkriptionsrichtung lokalisiert ist und so von beiden Seiten transkribiert wird.

Expressionskassette meint chimäre DNA-Moleküle in denen eine für das dsRNA-Molekül (bzw. für einen der Stränge desselben) kodierende Nukleinsäuresequenz mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor, Enhancer, Silencer, Splice-Donor oder -Akzeptor, Polyadenylierungssignal) derart verknüpft ist, das die Transkription des dsRNA-Moleküls (bzw. eines der Stränge desselben) in der eukaryotischen Zelle oder Organismus gewährleistet ist. Entsprechend vorteilhafte Konstruktionen sind weiter unten beschrieb. Eine Polyadenylierung ist möglich, jedoch nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein.

35

Soll das Expressionskonstrukt in eine Pflanze eingeführt und die dsRNA in plantae erzeugt werden, so sind pflanzenspezifische genetische Kontrollelemente (beispielsweise pflanzenspezifische Promotoren) bevorzugt. Die dsRNA kann jedoch auch in anderen Organismen oder in vitro erzeugt und dann in die Pflanze eingebracht werden.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu transkri45 bierenden Nukleinsäuresequenz und ggf. weiterer regulativer Ele-

mente wie zum Beispiel einem Terminator und/oder Polyadenylierungssignalen derart, dass jedes der regulativen Elemente seine

Funktion bei der Transkription der Nukleinsäuresequenz, je nach Anordnung der Nukleinsäuresequenzen erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Se-5 quenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die zu transkribierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent mit-10 einander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare. In einer bevorzugten Ausführungsform wird die zu 15 transkribierende Nukleinsäuresequenz so hinter dem Promotor lokalisiert, das der Transkriptionsstart identisch ist mit dem gewünschten Beginn der dsRNA.

Die Herstellung einer funktionellen Verknüpfung als auch die Her-20 stellung einer Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML und En-25 quist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind.

Unter einer Expressionskassette sind aber auch solche Konstruktionen zu verstehen, bei denen zum Beispiel eine Nukleinsäuresequenz kodierend für eines dsRNA derart hinter einen endogenen Promotor platziert werden, dass der gleiche Effekt auftritt. 35 Beide Ansätze führen zu Expressionskassetten im Sinne der Erfindung.

Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemässe 40 Verfahren verwendet werden, solange sie die Expression in dem Zielorganismus gewährleisten. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

30

Es können weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine Expression in weiteren Eukaryoten oder in Prokaryoten, wie zum Beispiel E.coli Bakterien ermöglichen.

Die in den erfindungsgemässen Expressionskassetten oder Vektoren enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit zu 10 verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemässen Expressionskassette haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemässen Expressionskassetten 5'-stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen pflanzenspezifischen Promoter und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz.

Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen. Es ist gezeigt worden, dass diese eine signifikante Funktio-25 nen bei der Regulation der Genexpression spielen können. Kontrollsequenzen umfassen ferner Polyadenylierungssignale sowie Terminatorsequenzen.

Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods. 14(4):381-92). Hier werden bestimmte flankierende

Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine Entfernung mittels der cre-Rekombinase ermöglichen.

Bevorzugt kann die Expressionskassette, bestehend aus einer Ver5 knüpfung von Promoter und zu transkribierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation - nach einem der unten beschriebenen Verfahren - in die eukaryotische Zelle oder Organismus eingebracht werden. Die nachfolgende Expression kann transient sein oder aber

10 auch - bevorzugt - stabil nach Insertion (beispielsweise unter
Verwendung von Selektionsmarkern) der Expressionskassetten in das
Genom erfolgen. Bevorzugt wird das dsRNA-Expressionssystem stabil
in das Genom - beispielsweise die chromosomale DNA oder die DNA
der Organellen (z.B. der Plastiden, Mitochondrien etc.) - einer

15 Zelle integriert.

Die Einführung einer erfindungsgemässen transgenen Expressionskassette in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zel-20 len, Gewebe, Organe, Teile oder Samen) kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die transgenen Expressionskassetten enthalten sind. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobakterien sein. Die transgenen Expressionskassetten können in den Vek-25 tor (bevorzugt ein Plasmidvektor) über eine geeignete Restriktionsschnittstelle insertiert werden. Der entstandene Vektor wird zunächst in E.coli eingeführt. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der rekombinante Vektor mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und 30 Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen.

Die Herstellung eines transformierten Organismus (bzw. einer 35 transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Expressionsvektor) oder RNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist

eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature 327:70-73; Howell et al. (1980) Science 208:1265; Horsch et al. (1985) Science 227:1229-1231; DeBlock et al. (1989) Plant Physiology 91:694-701; 10 Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).

15 Ein weiterer Gegenstand der Erfindung betrifft Zellen, die eines der erfindungsgemäßen dsRNA Moleküle, Expressionssysteme, Expressionskassetten oder Expressionsvektoren enthalten. Die Zelle kann von einem Organismus abgeleitet oder in diesem enthalten sein, meint aber auch einzellige Organismen wie Mikroorganismen. Die Zelle kann prokaryotisch oder eukarypotischer Natur sein. Wobei das erfindungsgemäße Verfahren auf eukaryotische Organismen angewendet wird. Dennoch können prokaryotische Organismen die erfindungsgemäßen Expressionssysteme beispielsweise zum Zwecke der dsRNA-Produktion enthalten. Auch können prokaryotische Organismen, beispielsweise Agrobakterien, vorteilhaft als Vehikel für die Transformation beispielsweise pflanzlicher Organismen eingesetzt werden.

Bevorzugte Prokaryoten sind vor allem Bakterien wie Bakterien der 30 Gattung Escherichia, Corynebacterium, Bacillus, Clostrridium, Proionibacterium, Butyrivibrio, Eubacterium, Lactobacillus, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Phaeodactylum, Colpidium, Mortierella, Entomophthora, Mucor, Crypthecodinium oder Cyanobakterien zum Beispiel der Gattung Synechocystis. Bevorzugt sind vor allem Mikroorganismen, welche zur Infektion von Pflanzen und damit zur Übertragung der erfindungsgemässen Konstrukte befähigt sind. Bevorzugte Mikroorganismus sind solche aus der Gattung Agrobacterium und insbesondere der Art Agrobacterium tumefaciens.

Eukaryotische Zellen und Organismen umfasst pflanzliche und tierische, nicht-menschliche Organismen und/oder Zellen sowie eukaryotische Mikroorganismen wie beispielsweise Hefen, Algen oder Pilze. Eine entsprechender transgener Organismus kann beispielsweise durch Einführung der entsprechenden Expressionssysteme in eine Zygote, Stammzelle, Protoplast oder eine andere geeignete von dem Organismus abgeleitete Zelle hergestellt werden.

"Tierische Organismus" meint nicht-menschliche Vertebraten oder
5 Invertebraten. Bevorzugte Vertebraten umfassen beispielsweise Fischarten, nicht-menschliche Säugetiere wie Rind, Pferd, Schaf, Ziege, Maus, Ratte oder Schwein, sowie Vögel wie Huhn oder Gans. Bevorzugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Invertebraten umfassen Nematoden oder andere Würmer sowie Insekten.
10 Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen.

Bevorzugt sind ferner Nematoden, die in der Lage sind Tiere oder Menschen zu befallen, wie solche der Gattungen Ancylostoma, Ascaris ridia, Ascaris, Bunostomum, Caenorhabditis, Capillaria, Chabertia, Cooperia, Dictyocaulus, Haemonchus, Heterakis, Nematodirus, Oesophagostomum, Ostertagia, Oxyuris, Parascaris, Strongylus, Toxascaris, Trichuris, Trichostrongylus, Tfhchonema, Toxocara oder Uncinaria. Ferner bevorzugt sind solche, die in der Lage sind pflanzliche Organismen zu befallen wie beispielsweise Bursaphalenchus, Criconemella, Diiylenchus, Ditylenchus, Globodera, Helicotylenchus, Heterodera, Longidorus, Melodoigyne, Nacobbus, Paratylenchus, Pratylenchus, Radopholus, Rotelynchus, Tylenchus oder Xiphinema. Bevorzugte Insekten umfassen solche der Gattungen Coleoptera, Diptera, Lepidoptera und Homoptera.

Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii.

Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178).

Als transgene Organismen bevorzugt sind vor allem pflanzliche Organismen. "Pflanzlicher Organismus" umfasst jeden Organismus, der zur Photosynthese befähigt ist, sowie die von diesem abgeleitete

- 40 Zellen, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte). Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sowie Gymnospermen sind bevorzugt. Eingeschlossen sind 45 reife Pflanze, Saatgut, Sprosse und Keimlinge, sowie davon abge-
- 45 reife Pflanze, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte) und Kulturen, zum Beispiel Zell- oder Kalluskulturen.

Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.

5 "Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere 10 Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium. 15 "Pflanze" umfasst alle einjährigen und mehrjährige, monokotyledonen und dikotyledonen Pflanzen und schließt beispielhaft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidop-20 sis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Gly-25 cine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea und Populus ein.

Bevorzugt sind Pflanzen nachfolgender Pflanzenfamilien: Amaranthaceae, Asteraceae, Brassicaceae, Carophyllaceae, Chenopodiaceae, 30 Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubiaceae, Saxifragaceae, Scrophulariaceae, Solanacea, Sterculiaceae, Tetragoniacea, Theaceae, Umbelliferae.

35 Bevorzugte monokotyle Pflanzen sind insbesondere ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel der Familie der Gramineae wie Alfalfa, Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer sowie dem Zuckerrohr sowie alle Arten von Gräsern.

Die Erfindung wird ganz besonders bevorzugt aus dikotyledone pflanzliche Organismen angewendet. Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum Beispiel

40

- Asteraceae wie Sonnenblume, Tagetes oder Calendula und andere mehr,
- Compositae, besonders die Gattung Lactuca, ganz besonders die 5 Art sativa (Salat) und andere mehr,
 - Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps), campestris (Rübe), oleracea cv Tastie (Kohl), oleracea cv Snowball Y (Blumenkohl) und oleracea cv Em-
- peror (Broccoli) und weitere Kohlarten; und der Gattung Arabidopsis, ganz besonders die Art thaliana sowie Kresse oder Canola und andere mehr,
 - Cucurbitaceae wie Melone, Kürbis oder Zucchini und andere mehr,

- Leguminosae besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) Soja sowie Alfalfa, Erbse, Bohnengewächsen oder Erdnuss und andere mehr
- 20 Rubiaceae, bevorzugt der Unterklasse Lamiidae wie beispielsweise Coffea arabica oder Coffea liberica (Kaffestrauch) und andere mehr,
- Solanaceae besonders die Gattung Lycopersicon, ganz besonders
 die Art esculentum (Tomate) und die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) sowie Tabak oder Paprika und andere mehr,
- Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie bei-30 spielsweise Theobroma cacao (Kakaostrauch) und andere mehr,
 - Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr,

35

- Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karrotte)) und Apium (ganz besonders die Art graveolens dulce (Selarie)) und andere mehr; und die Gattung Capsicum, ganz besonders die Art annum (Pfeffer) und andere mehr,

40

- sowie Lein, Soya, Baumwolle, Hanf, Flachs, Gurke, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, insbesondere Banane und Kiwi.
- 45 Umfasst sind ferner Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträucher oder Rasen. Beispielhaft aber nicht einschränkend seien zu nennen Angiospermen, Bryophyten wie zum

Beispiel Hepaticae (Leberblümchen) und Musci (Moose); Pteridophyten wie Farne, Schachtelhalm und Lycopoden; Gymnospermen wie Koniferen, Cycaden, Ginkgo und Gnetalen, die Familien der Rosaceae wie Rose, Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.

Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive befähigte Organismen, wie zum Bei15 spiel Algen, Cyanobakterien sowie Moose. Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Insbesondere bevorzugt ist Synechocystis.

20 Am meisten bevorzugt sind

- a) Pflanzen, die zur Ölproduktion geeignet sind, wie beispielsweise Raps, Sonnenblume, Sesam, Färberdistel (Carthamus tinctorius), Ölbaum, Soja, Mais, Erdnuß, Rizinus, Ölpalme, Weizen, Kakaostrauch oder verschiedene Nussarten wie beispielsweise Walnuss, Kokosnuß oder Mandel. Unter diesen wieder besonders bevorzugt sind dikotyledonen Pflanzen, insbesondere
 Raps, Soja und Sonnenblume.
- 30 b) Pflanzen, die der Stärkeproduktion dienen, wie beispielsweise Mais, Weizen oder Kartoffel.
- c) Pflanzen, die als Nahrungs- und/oder Futtermittel und/oder Nutzpflanze genutzt werden und bei denen eine Resistenz gg.
 35 Pathogene vorteilhaft wäre, wie beispielsweise Gerste, Roggen, Reis, Kartoffel, Baumwolle, Flachs, Lein.
- d) Pflanzen, die zur Produktion von Feinchemikalien wie beispielsweise Vitaminen und/oder Carotinoiden dienen können,
 40 wie beispielsweise Raps.

Die in den Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Me-

45 dium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente

WO 03/078629

40

45

wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nach gefüttert werden.

Nachfolgende Anwendung des erfindungsgemäßen Verfahrens seien beispielhaft jedoch nicht einschränkend zu nennen:

I. Pflanzenbiotechnologie

- Bevorzugt wird das erfindungsgemäße Verfahren im Rahmen der Pflanzenbiotechnologie zur Erzeugung von Pflanzen mit vorteilhaften Eigenschaften eingesetzt. So kann Eignung der Pflanzen oder deren Samen als Nahrungs- oder Futtermittel verbessert werden, beispielsweise über eine Veränderung der Zusammensetzungen und/ oder des Gehalt an Metaboliten, insbesondere Proteinen, Ölen, Vitaminen und/oder Stärke. Auch können Wachstumsrate, Ertrag oder die Resistenz gegen biotische oder abiotische Stressfaktoren erhöht werden. Nachfolgende Anwendungen im Bereich der Pflanzenbiotechnologie sind insbesondere vorteilhaft. Die angegebenen möglichen Zielgene sind beispielhaft jedoch nicht einschränkend zu verstehen:
- Verbesserter Schutz gegen abiotische Stressfaktoren (Hitze, Kälte, Trockenheit, erhöhte Feuchtigkeit, Umweltgifte, UV-Strahlung). Bevorzugt werden Gene in iherer Expression vermindert, die am Stressreaktionen beteiligt sind.
- Modifikation der Zusammensetzung und/oder des Gehaltes an
 Fettsäuren, Lipiden oder Ölen

Eine Veränderung des Fettsäuregehalten oder der Fettsäurezusammensetzung, vorzugsweise in einer Ölfrucht wie Raps oder Sonnenblume, kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen der Fettsäurebiosynthese vorzugsweise ausgewählt aus der Gruppe bestehend aus Genen kodierend für Acetyltransacylasen, Acyltransportproteinen ("acyl carrier protein"), Desaturasen wie Stearyldesaturasen oder mikrosomale $\Delta 12$ -Desaturasen insbesondere Fad2-1 Gene, Malonyltransacylase, β -Ketoacyl-ACP-synthetasen, 3-Keto-ACP-reduktasen, Enoyl-ACP-hydrasen, Thioesterasen wie Acyl-ACP-thioesterases, Enoyl-ACP-reduktasen. Verschiedene weitere vort

teilhafte Ansätze zur Modifizierung der Lipidzusammensetzung sind beschrieben (Shure M et al. (1983) Cell 35:225-233; Preiss et al. (1987) Tailoring Genes for Crop Improvement (Bruening et al., eds.), Plenum Press, S.133-152; Gupta et al. (1988) Plant Mol Biol. 10:215-224; Olive et al. (1989) 5 Plant Mol Biol 12:525-538; Bhattacharyya et al. (1990) Cell 60:155-122; Dunwell JM (2000) J Exp Botany 51Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM und Somerville CR (1993) Curr Opin Biotech 4(2):152-8). Bevorzugt sind insbesondere Fad2 Gene (z.B. be-10 schrieben durch Genbank Acc.-Nr.: AF124360 (Brassica carinata), AF042841 (Brassica rapa), L26296 (Arabidopsis thaliana), A65102 (Corylus avellana)). Weitere vorteilhafte Gene und Verfahren zur Modifikation des Lipidgehaltes sind beispielsweise beschrieben in US 5,530,192 und WO 94/18337. Ein 15 erhöhter Lipidgehalt kann auch erreicht werden durch Verminderung des Stärkegehalte bespielsweise infolge verminderter Expression von von Enzymen des Kohlenhydratstoffwechsels (z.B. ADP-Glucosepyrophosphorylasen).

3. Modifikation der Kohlenhydratzusammensetzung

Eine Modifikation der Kohlehydratzusammensetzung kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen des Kohlenhydratstoffwechsels oder der Kohlen-25 hydratbiosynthese, beispielsweise der Biosynthese von Amylose, Pektinen, Cellulose oder Zellwandkohlenhydraten. Dadurch kann eine Vielzahl zellulärer Prozesse (Reifung, Halfestigkeit, Stärkezusammensetzung oder -gehalt etc.) in vorteilhafter Weise beeinflusst werden. Als Zielgene seien bei-30 spielhaft jedoch nicht einschränkend zu nennen Phosphorylasen, Stärkesynthetasen, Q-Enzyme, Sucrose-6-phosphatsynthetasen, Sucrose-6-phosphatphosphatasen, ADP-Glucosepyrophosphorylasen, Branching-Enzyme, Debranching-Enzyme sowie diverse Amylasen. Die entsprechenden Gene sind beschrieben (Dunwell 35 JM (2000) J Exp Botany 51Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM und Somerville CR (1993) Curr Opin Biotech 4(2):152-8). Vorteilhafte Gene zur beeinflussung des Kohlenhydratstoffwechsels - insbesondere der Stärkebiosynthese - sind beschrieben in WO 40 92/11375, WO 92/11376, US 5, 365,016 und WO 95/07355.

- 4. Veränderung der Farbe oder Pigmentierung
- Veränderung der Farbe oder Pigmentierung vorzugsweise von Zierpflanzen kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen der Flavonoid-Biosynt-

WO 03/078629

5

10

15

30

hese wie beispielsweise Chalconsynthasen, Chalconisomerasen, Phenylalaninammonialyasen, Dehydrokaempferol(flavone)hydroxylasen wie Flavanon-3-hydroxylasen oder Flavanon-2-hydroxylasen, Dihydroflavonolreduktasen, Dihydroflavanol-2-hydroxylasen, Flavonoid-3'-hydroxylasen, Flavonoid-5'-hydroxylasen, Flavonoidglycosyltransferasen (z.B. Glucosyltransferasen wie UDPG:Flavonoid-3-0-glucosyltransferasen, UDPG:Flavonol-7-0-glucosyltransferasen oder Rhamnosyltransferasen), Flavonoidmethyltransferasen (wie z.B. SAM:Anthocyanidin-3-(p-coumaroyl)-rutinosid-5-glucosid-3',5'-0-methyltransferasen) und Flavonoidacyltransferasen (Hahlbrock (1981) Biochemistry of Plants, Vol.7, Conn (Ed.); Weiring and de Vlaming (1984) "Petunia", KC Sink (Ed.), Springer-Verlag, New York). Geeignet sind insbesondere die in EP-A1 522 880 beschriebenen Sequenzen.

5. Verminderung des Gehaltes von Speicherproteinen

Die Verminderung der Genexpression von Genen kodierend für Speicherproteine (infolge SP) hat zahlreiche Vorteile, wie beispielsweise Verminderung des allergenen Potentials oder Veränderung in der Zusammensetzung oder Menge anderer Metabolite. Speicherproteine sind u.a beschrieben in EP-A 0 591 530, WO 8.7/47731, WO 98/26064, EP-A 0 620 281; Kohno-Murase Jet al. (1994) Plant Mol Biol 26(4): 1115-1124.

SP dienen zur Speicherung von Kohlenstoff, Stickstoff und Schwefel, die für das schnelle heterotrophe Wachstum bei Keimung von Samen oder Pollen benötigt werden. Sie haben meist keine enzymatische Aktivität. SP werden dabei nur im Embryo während der Samenentwicklung synthetisiert und akkumulieren dabei zum einen in Proteinspeichervakuolen (PSV) von unterschiedlich differentzierten Zellen im Embryo bzw. Endosperm.

"Speicherprotein" meint allgemein ein Protein, das mindestens eine der nachfolgenden wesentlichen Eigenschaften aufweist:

i) Speicherproteine werden im wesentlichen nur im Embryo während der Samenentwicklung exprimiert. "Im wesentlichen" bedeutet dabei, dass in dem besagten Stadium mindestens 50%, bevorzugt mindestens 70%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% der Gesamtexpression über die Lebensdauer einer Pflanze hinweg stattfindet.

10

15

20

25

30

35

40

45

ii) Speicherproteine werden während der Keimung des Samen wieder abgebaut. Dabei beträgt der Abbau während der Keimung mindestens 20%, bevorzugt mindestens 50%, ganz besonders bevorzugt mindestens 80%.

iii) Speicherproteine machen einen wesentlichen Anteil am Gesamtproteingehalt des nicht-keimenden Samens aus. Bevorzugt macht das Speicherprotein in dem nicht-keimenden Samen der Wildtyp-Pflanze mehr als 5 Gew.% des Gesamtproteins aus, besonders bevorzugt mindestens 10 Gew.%, ganz besonders bevorzugt mindestens 20 Gew.%, am meisten be-

Bevorzugt weisen Speicherproteine 2 oder alle der oben genannten wesentlichen Eigenschaften i), ii) oder iii) auf.

vorzugt mindestens 30 Gew.-%.

Speicherproteine können in Untergruppen entsprechend weiterer charakteristischer Eigenschaften, wie beispielsweise ihrem Sedimentationskoeffizienten oder der Löslichkeit in verschiedenen Lösungen (Wasser, Salzlösung, Alkohol) aufgeteilt werden. Die Bestimmung des Sedimentationskoeffizienten kann in der dem Fachmann vertrauten Weise mittels Ultrazentrifugation durchgeführt werden (z.B. beschrieben bei Correia JJ (2000) Methods in Enzymology 321:81-100).

Insgesamt können vier grosse Genfamilien für Speicherproteine aufgrund ihrer Sequenzen zugeordnet werden: 2S-Albumine (Napin-ähnlich), 7S-Globuline (Phaseolin-ähnlich), 11S/12S-Globuline (Legumin-/Cruciferin-ähnlich) und die Zein-Prolamine.

2S Albumine sind weit verbreitet in Samen von Dikotyledonen, einschliesslich wichtiger kommerzieller Pflanzenfamilien wie Fabaceae (z.B. Sojabohne), Brassicaceae (z.B. Raps), Euphorbiaceae (z.B. Rizinus) oder Asteraceae (z.B. Sonnenblume). 2S Albumine sind kompakte globuläre Proteine mit konservierten Cysteinresten, die oft Heterodimere bilden.

7S-Globuline liegen in trimerer Form vor und enthalten keine Cysteinreste. Nach ihrer Synthese werden sie wie die 2S-Albumine in kleinere Fragmente gespalten und glykosyliert. Trotz Unterschiede in der Polypeptidgrösse sind die verschiedenen 7S-Globuline hoch konserviert und gehen vermutlich wie die 2S-Albumine auf einen gemeinsames Vorläuferprotein zurück. Die 7S-Globuline sind nur in geringen Mengen in Monokotyledonen vorhanden. In Dikotyledonen ist ihr Anteil immer kleiner verglichen mit den 11S/12S-Globulinen.

10

15

30

11S/12S-Globuline stellen neben den 2S-Albuminen die Hauptfraktion der Speicherproteine in Dikotyledonen. Die hohe Ähnlichkeit der verschiedenen 11S-Globuline aus verschiedenen Pflanzengattungen lassen wiederrum auf einen gemeinsames Vorläuferprotein in der Evolution schliessen.

Bevorzugt ist das Speicherprotein ausgewählt aus den Klassen der 2S-Albumine (Napin-ähnlich), 7S-Globuline (Phaseolin-ähnlich), 11S/12S-Globuline (Legumin-/Cruciferin-ähnlich) oder Zein-Prolamine.

Besonders bevorzugte 2S-Albumine umfassen

- 2S-Albumine aus Arabidopsis, ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 2, 4, 6 oder 8, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 1, 3, 5 oder 7 kodierten Proteine,
- ii) 2S-Albumine aus Arten der Gattung Brassica, wie beispielsweise Brassica napus, Brassica nigra, Brassica juncea, Brassica oleracea oder Sinapis alba, ganz besonders
 bevorzugt die 2S-Albumine mit der SEQ ID NO: 32, 34, 36,
 38, 40, 46 oder 48, am meisten bevorzugt die durch die
 Nukleinsäuren gemäß SEQ ID NO: 31, 33, 35, 37, 39, 45
 oder 47 kodierten Proteine,
 - iii) 2S-Albumine aus Soja, ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 42 oder 44, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 41 oder 43 kodierten Proteine,
- iv) 2S-Albumine aus Sonnenblume (Helianthus annus), ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 50 oder 52, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 49 oder 51 kodierten Proteine,

sowie die entsprechenden Homologen und funktionellen Äquivalente zu i) oder ii) oder iii) oder iv) aus identischen oder
anderen Pflanzenarten, insbesondere Raps, Sonnenblume, Lein,
Sesam, Färberdistel, Ölbaum, Soja oder verschiedene Nussarten. Funktionelle Äquivalente zeichnen sich bevorzugt neben
den oben genannten wesentlichen Eigenschaften durch charakteristische Eigenschaften wie einen 2S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Wasser aus.

40

10

15

20

25

30

35

40

45

Funktionelle Äquivalente der 2S-Albumine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 2, 4, 6, 8, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 oder 52 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und – bevorzugt- die charakteristischen Eigenschaften eines 2S-Speicherproteins auf.

Besonders bevorzugte 7S-Globuline umfassen solche aus Arabidopsis oder Soja, ganz besonders bevorzugt die Proteine mit der SEQ ID NO: 94 oder 96, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 93 oder 95 kodierten Proteine. Funktionelle Äquivalente zeichnen sich bevorzugt neben den oben genannten wesentlichen Eigenschaften durch charakteristische Eigenschaften wie einen 7S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Salzlösung aus. Als weitere charakteristische Eigenschaft können 7S-Globuline keine Cysteinreste enthalten.

Funktionelle Äquivalente der 7S-Globuline haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 94 oder 96 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und – bevorzugt- die charakteristischen Eigenschaften eines 7S-Speicherproteins auf.

Besonders bevorzugte 11S/12S-Globuline umfassen bevorzugt 11S-Globuline aus Raps, Soja und Arabidopsis insbesondere

i) 11S-Globuline aus Raps mit der SEQ ID NO: 10, 12, 14, 16 oder 18, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 9, 11, 13, 15 oder 17 kodierten Proteine,

40

45

ii) die 11S-Globuline aus Soja mit der SEQ ID NO: 20, 22, 24, 26 oder 28, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 19, 21, 23, 25 oder 27 kodierten Proteine,

iii) die 11S-Globuline aus Arabidopsis thaliana mit der SEQ ID NO: 60, 62, 64, 66, 68 oder 70 am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 59, 61, 63, 65, 67 oder 69 kodierten Proteine,

- sowie die entsprechenden Homologen und funktionellen Äquivalente aus anderen Pflanzenarten, insbesondere Raps, Sonnenblume, Lein, Sesam, Färberdistel, Ölbaum, Soja oder verschiedene Nussarten, wie beispielsweise das Sonnenblume 11S Speicherprotein (SEQ ID NO: 30), insbesondere das durch die Nukleinsäuresequenz gemäß SEQ ID NO: 29 kodierte Protein. Funktionelle Äquivalente zeichnen sich bevorzugt neben den oben
 genannten wesentlichen Eigenschaften durch charakteristische
 Eigenschaften wie einen 11S- oder 12S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Salzlösung (PBS;
 phosphatgepufferte Salzlösung) und/oder eine schlechte Löslichkeit in Wasser aus.
- Funktionelle Äquivalente der 11S- oder 12S Albumine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von 25 mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 60, 62, 64, 66, 68 oder 70 wobei die Homologie sich bevorzugt über eine Länge von minde-30 stens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und - bevorzugt- die charakteristischen Eigen-35 schaften eines 11S- oder 12S-Speicherproteins auf.

Besonders bevorzugte Zein-Prolamine umfassen bevorzugt solche aus monokotyledonen Pflanzen, insbesondere Mais, Rais, Hafer, Gerste oder Weizen. Ganz besonders bevorzugt sind die Mais Zein-Prolamine beschrieben durch SEQ ID NO: 98, 100, 102 oder 104 - insbesondere die durch SEQ ID NO 97, 99, 101 oder 103 kodierten Protein -, das Reis Prolamin gemäß SEQ ID NO: 106 - insbesondere das durch SEQ ID NO 105 kodierte Protein -, das Hafer Prolamin gemäß SEQ ID NO: 108 - insbesondere das durch SEQ ID NO 107 kodierte Proteine-, das Gerste Prolamin gemäß SEQ ID NO: 110 und/oder 111 - insbesondere das durch SEQ ID

WO 03/078629

5

10

. 15

20

25

30

35

40

NO 109 kodierte Protein - und das das Weizen Prolamin gemäß SEQ ID NO: 113 - insbesondere das durch SEQ ID NO 112 kodierte Protein. Funktionelle Äquivalente zeichnen sich bevorzugt durch eine Löslichkeit in 70%iger ethanolischer Lösung und eine schlechte Löslichkeit in Wasser oder Salzlösung aus.

Funktionelle Äquivalente der Zein-Prolamine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 98, 100, 102, 104, 106, 108, 110, 111 oder 113 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und – bevorzugt- die charakteristischen Eigenschaften eines Zein-Prolamine auf.

Funktionelle Äquivalente meint insbesondere natürliche oder künstliche Mutationen der obengenannten Speicherproteine sowie homologe Polypeptide aus anderen Pflanzen, die die gleichen wesentlichen und – bevorzugt – charakteristischen Eigenschaften aufweisen. Bevorzugt sind homologe Polypeptide aus oben beschriebenen bevorzugten Pflanzen. Die zu den im Rahmen dieser Erfindung offenbarten Speicherproteinen homologen Sequenzen aus anderen Pflanzen – beispielsweise solchen deren genomische Sequenz ganz oder teilweise bekannt ist, wie beispielsweise aus Arabidopsis thaliana, Brassica napus, Nicotiana tabacum oder Solanum tuberosum – durch Homologievergleiche aus Datenbanken auffinden. können z.B. durch Datenbanksuche oder Durchmustern von Gen-Banken – unter Verwendung der beispielhaft aufgeführten Speicherprotein-Sequenzen als Suchsequenz bzw. Sonde – leicht aufgefunden werden.

Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste.

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

i) einen "sense"-RNA-Strang umfassend mindestens zwei Ribonukleotidsequenzabschnitte, wobei jeweils mindestens einer dieser Ribonukleotidsequenzabschnitte im wesentlichen

10

25

identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes einer Speicherprotein-Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 59, 61, 63, 65, 67, 69, 71, 93, 95, 97, 99, 101, 103, 105, 107, 109 oder 112 oder eines funktionellen Äquivalentes derselben, wobei jedoch nicht alle Ribonukleotidsequenzabschnitte zu dem "sense"-RNA-Transkript eines einzigen einer Speicherprotein-Nukleinsäuresequenz identisch sind, und

- ii) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter i) im wesentlichen komplementären ist.
- Bevorzugt haben zumindest zwei der Speicherprotein-Nukleinsäuresequenzen, zu deren "sense"-RNA-Transkript die besagten
 Ribonukleotidsequenzabschnitte im wesentlichen identisch
 sind, untereinander eine Homologie von unter 90%, bevorzugt
 unter 80%, ganz besonders bevorzugt unter 60% am meisten bevorzugt unter 50% über die gesamte Länge ihrer kodierenden
 Nukleotidsequenz.

In einer weiteren bevorzugten Ausführungsform enthält die dsRNA mehrere Sequenzabschnitte, die eine gleichzeitige Suppression mehrerer Speicherproteine, bevorzugt von Speicherproteinen aus verschiedenen Klassen - wie beispielsweise einem 2S-Albumin, 7S-Globuline, 11S/12S-Globulin oder die Zeinprolamine - bewirken.

- Am meisten bevorzugt sind doppelsträngige RNA Moleküle beschrieben durch die Ribonukleinsäuresequenz gemäß SEQ ID NO: 84, 86 oder 88. Diese werden bevorzugt kodiert durch Nukleotidsequenzen entsprechend SEQ ID NO: 83, 85 oder 87.
- 35 5. Erreichen einer Resistenz gegen pflanzliche Pathogene

Eine Resistenz gegen pflanzliche Pathogene wie Arachniden, Pilze, Insekten, Nematoden, Protozoen, Viren, Bakterien und Krankheiten kann erreicht werden durch Verminderung der Genexpression von Genen, die für das Wachstum, Überleben, bestimmte Entwicklungsstufen (beispielsweise Verpuppung) oder die Vermehrung eine bestimmten Pathogens essentiell sind. Eine entsprechende Verminderung kann eine vollständige Inhibition vorgenannter Schritte aber auch eine Verzögerung derselben bewirken. Dies können pflanzliche Gene sein, die dem Pathogen beispielsweise das Eindringen ermöglichen, können aber auch pathogen-eigene Gene sein. Bevorzugt ist die dsRNA

WO 03/078629

5

10

15

20

25

30

40

gg. Gene des Pathogens gerichtet. Als anti-Pathogenes Agens kann dabei die dsRNA selber, jedoch auch die Expressionssysteme, Expressionskassetten oder transgenen Organismen wirken. Pflanzen können beispielsweise mit geeigneten Formulierungen vorgenannter Agentien behandelt, beispielsweise besprüht oder estäubt werden Die Pflanzen selber können jedoch in Form eines transgenen Organismus die Agentien beinhalten und diese – beispielsweise in Form eines Fraßgiftes – an die Pathogene weitergeben. Verschiedene essentielle Gene diverser Pathogene sind dem Fachmann bekannt (z.B. für Nematodenresistenz WO 93/10251, WO 94/17194).

Am meisten bevorzugt als Pathogen sind Pilzpathogene wie Phytophthora infestans, Fusarium nivale, Fusarium graminearum, Fusarium culmorum, Fusarium oxysporum, Blumeria graminis, Magnaporthe grisea, Sclerotinia sclerotium, Septoria nodorum, Septoria tritici, Alternaria brassicae, Phoma lingam, bakterielle Pathogene wie Corynebacterium sepedonicum, Erwinia carotovora, Erwinia amylovora, Streptomyces scabies, Pseudomonas syringae pv. tabaci, Pseudomonas syringae pv. phaseolicola, Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. malvacearum und Xanthomonas campestris pv. oryzae, und Nematoden wie Globodera rostochiensis, G. pallida, Heterodera schachtii, Heterodera avenae, Ditylenchus dipsaci, Anguina tritici und Meloidogyne hapla.

Eine Virusresistenz kann beispielsweise durch Verminderung der Expression eines viralen Hüllproteins, einer viralen Replikase, einer viralen Protease etc. erreicht werden. Zahlreiche Pflanzenviren und entsprechende Zielgene sind dem Fachmann bekannt.

6. Verhinderung von Halmbruch

Eine verminderte Anfälligkeit gegen Halmbruch kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen des Kohlenhydratstoffwechsels (s.o.). Vorteilhafte Gene sind beschrieben (u.a. WO 97/13865) und umfassen gewebspezifische Polygalacturonasen oder Cellulasen.

7. Verzögerung der Fruchtreifung

Eine verzögerte Fruchtreifung kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen ausgewählt aus der Gruppe bestehend aus Polygalacturonasen, Pectinesterasen, β -(1-4)glucanasen (Cellulasen), β -Galactanasen (β -Galactosidasen), oder Gene der Ethylenbiosynthese wie

1-Aminocyclopropan-1-carboxylatsynthase, Gene der Carotinoid-biosynthese wie z.B. Gene derPrephytoen- oder Phytoenbiosynthese beispielsweise Phytoendesaturasen. Weitere vorteilhafte Gene sind bespielsweise in WO 91/16440, WO 91/05865, WO 91/16426, WO 92/17596, WO 93/07275 oder WO 92/04456.

 Erzielen einer männlichen Sterilität ("male sterility"). Entsprechende Zielgene sind beschrieben u.a. in WO 94/29465, WO89/10396, WO 92/18625.

10

5

- 9. Verminderung unerwünschter oder toxischer Pflanzeninhaltsstoffe wie z.B. Glucosinolaten. Entsprechende Zielgene sind beschrieben (u.a. in WO 97/16559).
- 15 10. Verzögerung von Alterserscheinungen. Entsprechende Zielgene sind u.a. Cinnamoyl-CoA:NADPH-Reduktasen oder Cinnamoylalko-holdehydrogenasen. Weitere Zielgene sind beschrieben (u.a. in WO 95/07993).
- 20 11. Modifikation der Lignifikation und/oder des Ligningehaltes vor allem in Baumarten. Entsprechende Zielgene sind beschrieben u.a. in WO 93/05159, WO 93/05160.
- 12. Modifikation des Faseranteils in Nahrungsmitteln vorzugsweise 25 in Samen durch Verminderung der Expression der Coffeinsäure-0-methyltransferase oder der Cinnamoylalkoholdehydrogenase.
 - 13. Modifaktion der Faserqualität in Baumwolle. Entsprechende Zielgene sind beschrieben u.a. in US 5,597,718.

30

- 14. Verminderung der Stoßanfälligkeit von beispielsweise Kartoffeln durch Verminderung beispielsweise der Polyphenoloxidase
 (WO 94/03607) etc.
- 35 15. Steigerung der Vitamin E Biosynthese beispielsweise durch Verminderung der Expression von Genen aus dem Homogentisatabbauweg wie z.B. der Homogentisat-1,2-dioxygenase (HGD; EC-Nr.: 1.13.11.5), der Maleylacetoacetatisomerase (MAAI; EC-Nr.: 5.2.1.2.) oder der Fumarylacetoacetathydrolase (FAAH; EC-Nr.: 3.7.1.2).

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst WO 03/078629

- i) einen "sense"-RNA-Strang umfassend mindestens zwei Ribonukleotidsequenzabschnitte, wobei jeweils mindestens einer dieser Ribonukleotidsequenzabschnitte im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines Gens aus dem Homogentisatabbauweg gemäß SEQ ID NO: 115, 116, 118 oder 120 oder eines funktionellen Äquivalentes derselben, wobei jedoch nicht alle Ribonukleotidsequenzabschnitte zu dem "sense"-RNA-Transkript eines einzigen einer Speicherprotein-Nukleinsäuresequenz identisch sind, und
 - ii) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter i) im wesentlichen komplementären ist.
- 15 16. Verminderung des Nikotingehaltes beispielsweise in Tabak durch verminderte Expression beispielsweise der N-Methyl-putrescinoxidase und der Putrescin-N-methyltransferase.
- 17. Verminderung des Coffeingehaltes in der Kaffeebohne (Coffea arabica) durch durch Verminderung der Genexpression von Genen der Coffeinbiosynthese wie 7-Methylxanthine-3-methyltransferase.
- 18. Verminderung des Theophyllin-Gehaltes im Tee (Camellia sinensis) durch durch Verminderung der Genexpression von Genen der Theophyllin-Biosynthese wie beispielsweise 1-Methylxanthin-3-methyltransferase.
- 19. Erhöhung des Methioningehaltes durch Verminderung der Threo-30 ninbiosynthese, beispielsweise durch Verminderung der Expression der Threoninsynthase (Zeh M et al .(2001) Plant Physiol 127(3):792-802).
- Weitere Beispiele für vorteilhafte Gene sind zum Beispiel genannt 35 bei Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; Seite 487-96.
- Jede der oben genannten Anwendungen kann als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen, wie oben definiert, vermindert. Diese Zielgene können dabei aus einer einzigen für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zugeordnet sein.

Zur Anwendung der erfindungsgemäßen Verfahren stehen dem Fachmann geläufige Werkzeuge, wie Expressionsvektoren mit für Pflanzen geeigneten Promotoren, sowie Verfahren zur Transformation und Regeneration von Pflanzen zur Verfügung. Pflanzenspezifische

5 Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein. Bevorzugt sind:

10

a) Konstitutive Promotoren

"Konstitutive" Promotoren meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen 15 Zeitpunkten der Pflanzenentwicklung, gewährleisten (Benfey et al.(1989) EMBO J 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus 20 (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Pro-25 motor ist der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol 30 Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines pro-35 linreichen Proteins aus Weizen (WO 91/13991), sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

40 b) Gewebespezifische Promotoren

Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samen.

Samenspezifische Promotoren wie zum Beispiel der Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), des 2S Albumingens (Joseffson LG et al. (1987) J

Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215(2): 326-331), des USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), des Napin Gens (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), des Saccharosebindeproteins (WO 00/26388) oder der Legumin B4-Promotor (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), der Oleosin-Promoter aus Arabidopsis (WO 98/45461), der Bce4-Promoter aus Brassica (WO 91/13980). Wei-10 tere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AG-Pase) oder die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen 15 wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des 1pt2 oder lpt1-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens, des Gliadin-20 Gens, des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens). Weitere samenspezifische Promotoren sind be-

- 25 Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren wie beispielsweise der Patatin Promotor Klasse I (B33), der Promotor des Cathepsin D Inhibitors aus Kartoffel.
- Blattspezifische Promotoren wie Promotor der cytosolischen

 FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).
- Blütenspezifische Promotoren wie beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593).
- Antheren-spezifische Promotoren wie den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-l Promotor und den γ -Zein Promotor.
 - c) Chemisch induzierbare Promotoren

schrieben in WO89/03887.

Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die

45

40

Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanoloder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

d) Stress- oder Pathogen-induzierbare Promotoren

Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993)
Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder
hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare
alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der
licht-induzierbare PPDK Promotor oder der verwundungsinduzierte
pinII-Promoter (EP375091).

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, β -1,3-Glucanase, 25 Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Ukmes, et al. (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. 30 (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989). 35

Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.

e) Entwicklungsabhängige Promotoren
Weitere geeignete Promotoren sind beispielsweise fruchtreifungspezifische Promotoren, wie beispielsweise der fruchtreifungspezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die Gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe
naturgemäß entwicklungsabhängig erfolgt.

Besonders bevorzugt sind konstitutive sowie samenspezifische Pro-10 motoren.

Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionsteuernden Eigenschaften modifizieren können. So kann durch genetitische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstress, Abscisinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131-17135) und Hitzestress (Schoffl F et al., Molecular & General Genetics 217(2-3):246-53, 1989) beschrieben.

Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adhl-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5'-untranslatierte Sequenzen die transiente Expression heterologer 30 Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5'-Leadersequenz aus dem Tabak-Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebsspezifität fördern (Rouster Jet al. (1998) Plant J 15:435-440).

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase)

40 des Ti-Plasmids pTiACHS entsprechen (Gielen et al. (1984) EMBO J 3:835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Terminator.

45 Eine Expressionskassetten und die von ihr abgeleiteten Vektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente,

die einen Einfluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemässen Expressionskassetten, Vektoren oder transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:

5

10

15

20

25

30

a)

- Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456), Antibiotika oder Biozide, bevorzugt Herbizide, wie zum Beispiel Kanamycin, G 418, Bleomycin, Hygromycin, oder Phosphinotricin etc. verleihen. Besonders bevorzugte Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen, die für Phosphinothricinacetyltransferasen (PAT) kodieren und Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen), 5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene), die eine Resistenz gegen Glyphosat® (N-(phosphonomethyl)glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase), das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert), Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphosphotransferas (NPTII) Gen, das eine Resistenz gegen Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation).
- Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressionsortes oder -zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al.(1995) Plant Journal 8(5):777-784), die Chloramphenicoltransferase, eine Luziferase (Ow et al. (1986) Science 234:856-859), das Aequorin-Gen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268), die β-Galactosidase, ganz besonders bevorzugt ist die β-Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907).

- c) Replikationsursprünge, die eine Vermehrung der erfindungsgemässen Expressionskassetten oder Vektoren in zum Beispiel
 E.coli gewährleisten. Beispielhaft seien genannt ORI (origin
 of DNA replication), der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed.
 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,
 1989).
- d) Elemente, die für eine Agrobakterium vermittelte Pflanzen transformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.

Zur Selektion erfolgreich homolog rekombinierter oder auch transformierter Zellen ist es in der Regel erforderlich, einen selektionierbaren Marker zusätzlich einzuführen, der den erfolgreich rekombinierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid), einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84).

Verschiedene Methoden und Vektoren zum Einschleusen von Genen in das Genom von Pflanzen sowie zur Regeneration von Pflanzen aus 25 Pflanzengeweben oder Pflanzenzellen sind bekannt (Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); White FF (1993) Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und Wu R, Academic Press, 30 15-38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225; Halford NG, Shewry PR (2000) Br Med Bull 56(1):62-73). Dazu zählen beispielhaft die 35 oben erwähnten. Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte 40 DNA-Aufnahme, die Liposomen vermittelte Transformation (wie z.B. in US 4,536,475 beschrieben), biolistische Verfahren mit der Genkanone ("particle bombardment" Methode; Fromm ME et al. (1990) Bio/Technology. 8(9):833-9; Gordon-Kamm et al. (1990) The Plant Cell 2:603), die Elektroporation, die Inkubation trockener Em-

45 bryonen in DNA-haltiger Lösung und die Mikroinjektion.

dieser "direkten" Transformationsmethoden sind keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plasmide wie die der pUC-Reihe, pBR322, M13mp Reihe, pACYC184 etc. können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist er erforderlich, das sich auf dem Plasmid ein zusätzliches selektionierbares 5 Markergen befindet.

Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium (z.B. EP 0 116 718), virale Infektion mittels viraler Vektoren 10 (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) oder mittels Pollen (EP 0 270 356; WO 85/01856; US 4,684,611) durchgeführt werden.

Die für die Agrombacterium-Transformation meist verwendeten 15 Stämme Agrobacterium tumefaciens oder Agrobacterium rhizogenes eine auch durch bakterielle Infektion mittels enthalten ein Plasmid (Ti bzw. Ri Plasmid), das auf die Pflanze nach Agrobaterium-Infektion übertragen wird. Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA), wird in das Genom der Pflanzenzelle inte-20 griert. Alternativ können durch Agrobakterium auch binäre vektoren (Mini-Ti-Plasmide) auf Pflanzen übertragen und in deren Genom integriert werden. Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone, diploide Pflanzenzellen geeignet, wohingegen die direkten Transformationstechniken sich für jeden 25 Zelltyp eignen. Verfahren zur Agrobakterium vermittelten Transformation sind beispielsweise beschrieben bei Horsch RB et al. (1985) Science 225:1229f. Werden Agrobacterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: shuttle or interme-30 diate vector) oder einen binären Vektor. Wird ein Ti oder Ri Plasmid zur Transformation verwendet werden soll, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden Expressionskassette verbunden.

35

Für die Agrobacterium Tranformation werden bevorzugt binäre Vektoren verwendet. Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz. Sie können direkt in Agrobacterium transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187). Das Selektionsmarkergen erlaubt eine Selektion transformierter Agrobakteria und ist zum Beispiel das nptII Gen, das eine Resistenz gegen Kanamycin verleiht. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche

Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam, Chapter V; An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA; Bevan et al.(1984) Nucl Acids Res 12:8711),

Die mit einem solchen Vektor transformierten Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Raps, verwendet wer-15 den, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschliessend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist beschrieben (White FF, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Enginee-20 ring and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant 25 Molec Biol 42:205- 225). Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die integriert die oben beschriebenen erfindungsgemässen Expressionssysteme enthalten.

30 Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibio-35 tika oder Herbizide (wie Kanamycin, G418, Bleomycin, Hygromycin oder Phosphinotricin etc.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbizides zu überleben, die einen untransfor-40 mierten Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht (Rathore KS et al. (1993) Plant Mol Biol 21(5):871-884), das nptII Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht, 45 oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCormick et al. (1986)

Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten vorzugsweise kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich 5 ist.

Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden. Entsprechende Verfahren sind beschriebe (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533).

Die Wirksamkeit der Expression der transgen exprimierten Nukleinsäuren kann beispielsweise in vitro durch Sprossmeristemvermeh20 rung unter Verwendung einer der oben beschriebenen Selektionsmethoden ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression eines Zielgens und die Auswirkung auf den Phänptyp der Pflanze an Testpflanzen in Gewächshausversuchen getestet werden.

25

30

II. Medizinische Anwendungen

Die erfindungsgemäß bereitgestellten dsRNA, Expressionssysteme oder Organismen eignen sich zur Herstellung von Arzneimitteln zur Behandlung von menschlichen und tierischen Erkrankungen. Für eine effizient Therapie ist es oft unzureichend nur ein einzelnes Zielgen zu vermindern. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Behandlung von

Pathogenbefall, wie beispielsweise virale oder bakte-35 rielle Erkrankungen. In diesen Fällen führen Ansätze, die lediflich gegen ein molekulares Ziel gerichtet sind, oft zu der Ausbildung von Resistenzen. Eine Kombinationtherapie, die mehrere Ziele abdeckt, ist jedoch kompliziert zu koordinieren und v.a. nur sehr aufwendig in klinischen 40 Experimenten zu evaluieren. Das erfindungsgemäße Verfahren ermöglicht hier eine vorteilhafte Alternative. Die inhibitorische dsRNA kann dabei in der dem Fachmann geläufigen Weise appliziert werden. dsRNA verfügt über eine erstaunliche Stabilität und effiziente Wirkung und kann 45 beispielsweise durch Verfütterung entsprechender dsRNA exprimierenden Bakterien appliziert werden. Das Verfahren

20

25

30

35

40

45

eignet sich insbesondere zur Behandlung von viralen Infektionen z.B. mit dem "human immunodeficiency virus" (HIV), indem gleichzeitig die Expression von mindestens zwei viralen Gene vermindert wird, beispielsweise bei HIV. von Genen wie gp41, die für den Zelleintritt verantwortlich sind, und der viralen Replikase oder reversen Transkriptase.

- Behandlung von Krebs (beispielsweise solider Tumore und/
oder Leukämien). Zahlreiche potentialle Zielgene sind
hier dem Fachmann bekannt (z.B. Oncogene wie ABL1, BCL1,
BCL2, BCL6, CBFA2, CBL, CSF1R, ERBA, ERBB, EBRB2, FGR,
FOS, FYN, HRAS, JUN, LCK, LYN, MYB, MYC, NRAS, RET oder
SRC; Tumorsuppressorgene wie BRCA1 oder BRCA2; Adhäsionsmoleküle; Cyclinekinasen und deren Inhibitoren).

Weitere potentiell mit dem erfindungsgemäßen Verfahren behandelbare Erkrankungen und die entsprechenden Zielgene sind dem Fachmann ohne weiteres zugänglich und umfassen beuspielsweise Erkrankungen des Herz/Kreislaufsystems wie Bluthochdruck, Erkrankungen des zentralen oder peripheren Nervensystems wie Alzheimer, Parkinson oder multiple Sklerose usw. Auch ist es durch das erfindungsgemäße Verfahren möglich, mehr als eine Erkrankung parallel zu behandeln, wie beispielsweise ein Herzkreilauferkrankung und eine Erkrankung des zentralen Nervensystems, was durch klassische Ansätze nicht möglich ist. Derartige Ansätze sind v.a. bei multiplen Erkrankungen wie sie oft im fortgeschrittenen Alter auftreten vorteilhaft. Beispielhaft sei die parallele Behandlung von Bluthochdruck und z.B. Alzheimer oder seniler Demenz zu nennen. Dabei kann dieser Anwendungen als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen vermindert. Diese Zielgene können dabei aus der für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zugeordnet sein.

III. Biotechnologische Anwendungen

Das erfindungsgemäße Verfahren läßt sich vorteilhaft in biotechnologischen Verfahren anwenden. Beispielhaft jedoch nicht einschränkend sei zu nennen die Optimierung von Stoffwechselwegen in fermentativ genutzten Hefen, Pilzen oder anderen eukaryotischen Mikroorganismenoder Zellen zur Herstellung von Feinchemikalien wie Aminosäuren (z.B. Lysin oder Methionin), Vitaminen (wie Vitamin B2, Vitamin C, Vitamin E), Carotinoi-

den, Ölen und Fetten, polyungesättigten Fettsäuren, Biotin usw. Dabei kann dieser Anwendungen als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen vermindert. Diese Zielgene können dabei aus der für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zügeordnet sein.

10

5

WO 03/078629

Als Vektoren zur Expression in E.coli sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluescript Vektoren, Phagescript Vektoren, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).

Bevorzugte Vektoren zur eukaryotischen Expression umfassen pWLNEO, pSV2CAT, pOG44, pXT1 und pSG (Stratagene Inc.); pSVK3, pBPV, pMSG und pSVL (Pharmacia Biotech, Inc.). Als induzierbare Vektoren seien pTet-tTak, pTet-Splice, pcDNA4/TO, pcDNA4/TO / LacZ, pcDNA6/TR, pcDNA4/TO/Myc-His /LacZ, pcDNA4/TO/Myc-His A,

pcDNA4/TO/Myc-His B, pcDNA4/TO/Myc-His C, pVgRXR (Invitrogen, Inc.) oder die pMAM-Serie (Clontech, Inc.; GenBank Accession No.: U02443) zunennen. Diese stellen bereits das induzierbare regula-

- 25 torische Kontrollelement beispielsweise für eine chemisch, induzierbare Expression eines DSBI-Enzyms zur Verfügung. In diese Vektoren kann die Nukleinsäuresequenz kodierend für ein DSBI-Enzym direkt insertiert werden.
- 30 Vektoren für die Expression in Hefe umfassen beispielhaft pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ,pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-S1, pPIC3SK, pPIC9K, und PA0815 (Invitrogen, Inc.).
- 35 Vorteilhafte Kontrollsequenzen sind beispielsweise die gram-positiven Promotoren amy und SPO2, und die Hefe- oder Pilzpromotoren ADC1, MFa , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
- Klonierungsvektoren und Techniken zur genetischen Manipulation 40 von Ciliaten und Algen sind dem Fachmann bekannt (WO 98/01572; Falciatore et al. (1999) Marine Biotechnology 1(3):239-251; Dunahay et al. (1995) J Phycol 31:10004-1012).
- Als Selektionsmarker können prinipiell viele der auch für Pflan-45 zen bevorzugten Selektionssysteme verwendet werden. Insbesondere bevorzugt sind für Säugerzelle die Neomycin (G418) Resistenz, die Hygromycin-Resistenz, die Zeocin-Resistenz oder die Puromycin-Re-

sistenz. Für Prokaryoten ist insbesondere die Ampicillin-Resistenz, die Kanamycin-Resistenz oder die Tetracyclin-resistent bevorzugt.

5 Prinzipiell sind für die Transformation tierischer Zelle oder von Hefezellen ähnliche Verfahren wie für die "direkte" Tranformation von pflanzlichen Zellen anzuwenden. Insbesondere Verfahren wie die Calciumphosphat oder Liposomen vermittelte Transformation oder aber Elektroporation sind bevorzugt.

10

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemässen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien, wie beispielsweise Enzymen, Vitaminen, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe. Besonders bevorzugt ist die Produktion von Triaclyglycezo riden, Lipiden, Ölen, Fettsäuren, Stärke, Tocopherolen und Tocotrienolen sowie Carotinoiden. Von Menschen und Tieren verzehrbare erfindungsgemässe, genetisch veränderte Pflanzen können auch beispielsweise direkt oder nach an sich bekannter Aufbereitung als Nahrungsmittel oder Futtermittel verwendet werden.

25

30

35

Sequenzen

- SEQ ID NO: 1
 Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S subunit 1 (GenBank Acc.-No.: M22032)
 - 2. SEQ ID NO: 2 Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 1
- 10 3. SEQ ID NO: 3 Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S subunit 3 (GenBank Acc.-No.: M22035)
- 4. SEQ ID NO: 415 Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 3
 - 5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S subunit 2 (GenBank Acc.-No.: M22034)
- 6. SEQ ID NO: 6
 Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 2
- 7. SEQ ID NO: 7

 Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S subunit 4 (GenBank Acc.-No.: M22033)
- 8. SEQ ID NO: 8 Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 4 30
 - 9. SEQ ID NO: 9
 Nukleinsäuresequenz kodierend für B.napus Cruciferin Speicherprotein (GenBank Acc.-No.: X59294)
- 35 10. SEQ ID NO: 10

 Proteinsequenz kodierend für B.napus Cruciferin Speicherprotein
- 11. SEQ ID NO: 11

 Nukleinsäuresequenz kodierend für Brassica napus Cruciferin
 (GenBank Acc.-No.: X14555)
 - 12. SEQ ID NO: 12
 Proteinsequenz kodierend für Brassica napus Cruciferin

- 13. SEQ ID NO: 13

 Nukleinsäuresequenz kodierend für B.napus BnC2 Cruciferin
 Speicherprotein (GenBank Acc.-No.: X59295)
- 5 14. SEQ ID NO: 14

 Proteinsequenz kodierend für B.napus BnC2 Cruciferin Speicherprotein
- 15. SEQ ID NO: 15

 10 partielle Nukleinsäuresequenz kodierend für B.napus Cruciferin cru4 subunit (GenBank Acc.-No.: X57848)
- 16. SEQ ID NO: 16
 partielle Proteinsequenz kodierend für B.napus Cruciferincru4 subunit
 - 17. SEQ ID NO: 17

 Nukleinsäuresequenz kodierend für B.napus cru1 Cruciferin subunit (GenBank Acc.-No.: X62120)
- 18. SEQ ID NO: 18
 Proteinsequenz kodierend für B.napus crul Cruciferin subunit
- 19. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für Glycinin A-la-B-x subunit aus des Sojabohne (GenBank Acc.-No.: M36686)
- 20. SEQ ID NO: 20
 Proteinsequenz kodierend für Glycinin A-la-B-x subunit aus
 des Sojabohne
 - 21. SEQ ID NO: 21

 Nukleinsäuresequenz kodierend für Sojabohne Glycinin subunit
 G2 (GenBank Acc.-No.: X15122)
 - 22. SEQ ID NO: 22
 Proteinsequenz kodierend für Sojabohne Glycinin subunit G2
- 23. SEQ ID NO: 23

 Nukleinsäuresequenz kodierend für Sojabohne A5A4B3 Glycinin subunits (GenBank Acc.-No.: X02626)
- 24. SEQ ID NO: 24
 Proteinsequenz kodierend für Sojabohne A5A4B3 Glycinin subunits

WO 03/078629

- 25. SEQ ID NO: 25

 Nukleinsäuresequenz kodierend für Sojabohne (G.max) Glycinin
 Speicherprotein subunit A3-B4 (GenBank Acc.-No.: M10962)
- 5 26. SEQ ID NO: 26 Proteinsequenz kodierend für Sojabohne (G.max) Glycinin Speicherprotein subunit A3-B4
- 27. SEQ ID NO: 27

 10 Nukleinsäuresequenz kodierend für Sojabohne Glycinin subunit
 G3 (GenBank Acc.-No.: X15123)
 - 28. SEQ ID NO: 28
 Proteinsequenz kodierend für Sojabohne Glycinin subunit G3
- 29. SEQ ID NO: 29

 Nukleinsäuresequenz kodierend für Sonnenblume 11S Speicherprotein (G3-D1) (GenBank Acc.-No.: M28832)
- 20 30. SEQ ID NO: 30
 Proteinsequenz kodierend für Sonnenblume 11S Speicherprotein
 (G3-D1)
- 31. SEQ ID NO: 31
 Nukleinsäuresequenz kodierend für Raps (B.napus) Napin (Gen-Bank Acc.-No.: J02586)
 - 32. SEQ ID NO: 32
 Proteinsequenz kodierend für Raps (B.napus) Napin
- 33. SEQ ID NO: 33

 Nukleinsäuresequenz kodierend für Brassica juncea 2S Speicherprotein (GenBank Acc.-No.: X65040)
- 35 34. SEQ ID NO: 34

 Proteinsequenz kodierend für Brassica juncea 2S Speicherprotein
- 35. SEQ ID NO: 35

 Nukleinsäuresequenz kodierend für Brassica oleracea 2S Speicherprotein (GenBank Acc.-No.: X65038)
- 36. SEQ ID NO: 36
 Proteinsequenz kodierend für Brassica oleracea 2S Speicherprotein

- 37. SEQ ID NO: 37
 Nukleinsäuresequenz kodierend für Brassica napus cv. Topas
 Napin (GenBank Acc.-No.: U04945)
- 5 38. SEQ ID NO: 38 Proteinsequenz kodierend für Brassica napus cv. Topas Napin
- 39. SEQ ID NO: 39
 partielle Nukleinsäuresequenz kodierend für Sinapis alba sin1
 Speicherprotein (GenBank Acc.-No.: X91799)
 - 40. SEQ ID NO: 40

 partielle Proteinsequenz kodierend für Sinapis alba sin1

 Speicherprotein
- 41. SEQ ID NO: 41

 Nukleinsäuresequenz kodierend für Sojabohne (Glycine max) napin-type 2S Albumin 1 (GenBank Acc.-No.: U71194)
- 20 42. SEQ ID NO: 42
 Proteinsequenz kodierend für Sojabohne (Glycine max) napintype 2S Albumin 1
- 43. SEQ ID NO: 43

 Nukleinsäuresequenz kodierend für Sojabohne (Glycine max) 2S

 Albumin (GenBank Acc.-No.: AF005030)
- 44. SEQ ID NO: 44

 Proteinsequenz kodierend für Sojabohne (Glycine max) 2S Albumin
 - 45. SEQ ID NO: 45
 Nukleinsäuresequenz kodierend für Brassica nigra 2S Speicherprotein (GenBank Acc.-No.: X65039)
 - 46. SEQ ID NO: 46
 Proteinsequenz kodierend für Brassica nigra 2S Speicherprotein
- 40 47. SEQ ID NO: 47

 Nukleinsäuresequenz kodierend für Sinapis alba sin5 Speicherprotein (GenBank Acc.-No.: X91798)
- 48. SEQ ID NO: 48

 45 Proteinsequenz kodierend für Sinapis alba sin5 Speicherprotein

- 49. SEQ ID NO: 49

 Nukleinsäuresequenz kodierend für Sonnenblume HaG5 2 S Albumin (GenBank Acc.-No.: X06410)
- 5 50. SEQ ID NO: 50 proteinsequenz kodierend für Sonnenblume HaG5 2 S Albumin
- 51. SEQ ID NO: 51

 partielle Nukleinsäuresequenz kodierend für Sonnenblume (Helianthus annuus) 2S Albumin (GenBank Acc.-No.: X76101)
 - 52. SEQ ID NO: 52
 partielle Proteinsequenz kodierend für Sonnenblume (Helianthus annuus) 2S Albumin
- 53. SEQ ID NO: 53 Nukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCru3 (Insert von Vektor pCR2.1-AtCRU3-RNAi)
- 54. SEQ ID NO: 54
 Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression
 von Arabidopsis thaliana 12S Speicherprotein AtCru3
- 25 55. SEQ ID NO: 55

 Nukleinsäuresequenz kodierend für dsRNA zur Suppression von
 Arabidopsis thaliana 12S Speicherprotein AtCra1
- 56. SEQ ID NO: 56

 Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCra1
- 57. SEQ ID NO: 57

 Nukleinsäuresequenz kodierend für dsRNA zur Suppression von
 Arabidopsis thaliana 2S Speicherprotein At2S2
 - 58. SEQ ID NO: 58
 Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression
 von Arabidopsis thaliana 2S Speicherprotein At2S2
 - 59. SEQ ID NO: 59
 Nukleinsäuresequenz kodierend für Arabidopsis thaliana 12S
 Cruciferin Speicherprotein (ATCRU3; GenBank Acc.-No.: U66916)

. 40

WO 03/078629

60. SEQ ID NO: 60 Proteinsequenz kodierend für Arabidopsis thaliana 12S Cruciferin Speicherprotein (ATCRU3)

55

- 5 61. SEQ ID NO: 61 Nukleinsäuresequenz kodierend für A.thaliana 12S Speicherprotein (CRA1; GenBank Acc.-No.: M37247)
- 62. EQ ID NO: 62 10 Proteinsequenz kodierend für A.thaliana 12S. Speicherprotein (CRA1)
- 63. SEQ ID NO: 63 Nukleinsäuresequenz kodierend für Arabidopsis thaliana 12S 15 Speicherprotein AT5g44120/MLN1_4 (GenBank Acc.-No.: AY070730)
 - 64. SEQ ID NO: 64 Proteinsequenz kodierend für Arabidopsis thaliana 12S Speicherprotein AT5g44120/MLN1_4
 - 65. SEQ ID NO: 65 Nukleinsäuresequenz kodierend für Arabidopsis 12S Speicherprotein (CRB; GenBank Acc.-No.: X14313; M37248)
- 25 66. SEO ID NO: 66 Proteinsequenz kodierend für Arabidopsis 12S Speicherprotein (CRB)
- 67. SEQ ID NO: 67 30 Nukleinsäuresequenz kodierend für Arabidopsis thaliana putatives 12S Speicherprotein (aus GenBank Acc.-No.: AC003027)
- 68. SEQ ID NO: 68 Proteinsequenz kodierend für Arabidopsis thaliana putatives 35 Speicherprotein (Protein_id="AAD10679.1)
- 69. SEQ ID NO: 69 Nukleinsäuresequenz kodierend für Arabidopsis thaliana Cruciferin 12S Spwicherprotein (At1g03890) (GenBank Acc.-No.: 40 AY065432)
 - 70. SEQ ID NO: 70 Proteinsequenz kodierend für Arabidopsis thaliana Cruciferin 12S Speicherprotein (Atlg03890)

71. SEQ ID NO: 71

Nukleinsäuresequenz kodierend für Arabidopsis thaliana Prohibitin 1 (Atphb1) (GenBank Acc.-No.: U66594)

56

5 72. SEQ ID NO: 72

Proteinsequenz kodierend für Arabidopsis thaliana Prohibitin 1 (Atphb1)

73. SEQ ID NO: 73 Oligonukleotidprimer OPN1

10

74. SEQ ID NO: 74 Oligonukleotidprimer OPN2

75. SEQ ID NO: 75 Oligonukleotidprimer OPN3

15 76. SEQ ID NO: 76 Oligonukleotidprimer OPN4

77. SEQ ID NO: 77 Oligonukleotidprimer OPN5

78. SEQ ID NO: 78 Oligonukleotidprimer OPN6

20

79. SEQ ID NO: 79 Oligonukleotidprimer OPN7

80. SEQ ID NO: 80 Oligonukleotidprimer OPN8

25 81. SEQ ID NO: 81 Oligonukleotidprimer OPN9

82. SEQ ID NO: 82 Oligonukleotidprimer OPN10

83. SEQ ID NO: 83

Nukleinsäuresequenz kodierend für sRNAi4-dsRNA zur Suppression mehrerer Speicherproteine

84. SEQ ID NO: 84

Ribonukleinsäuresequenz kodierend für sRNAi4-dsRNA zur Suppression mehrerer Speicherproteine

85. SEQ ID NO: 85

Nukleinsäuresequenz kodierend für sRNAi8-dsRNA zur Suppression mehrerer Speicherproteine

40

35

86. SEQ ID NO: 86

Ribonukleinsäuresequenz kodierend für sRNAi8-dsRNA zur Suppression mehrerer Speicherproteine

45 87. SEQ ID NO: 87 Oligonukleotidprimer OPN11

	88.	SEQ	ID	NO:	88	Oligonukleotidprimer	OP12
	89.	SEQ	ID	NO:	89 .	Oligonukleotidprimer	OPN13
. 5	90.	SEQ	ID	NO:	90	Oligonukleotidprimer	OPN15
	91.	SEQ	ID	NO:	91	Oligonukleotidprimer	OPN16
10	92.	SEQ	ID	NO:	92	Oligonukleotidprimer	OPN17
	93.			NO:		kodierend für Arabidon	cic thali

- 93. SEQ ID NO: 93

 Nukleinsäuresequenz kodierend für Arabidopsis thaliana "glo-bulin-like protein" (GenBank Acc.-No.: NM_119834)
- 15 94. SEQ ID NO: 94

 Proteinsequenz kodierend für Arabidopsis thaliana "globulin-like protein" (Protein_id="NP_195388.1)
- 95. SEQ ID NO: 95

 Nukleinsäuresequenz kodierend für Glycine max 7S Samenglobulin (GenBank Acc.-No.: U59425)
- 96. SEQ ID NO: 96

 Proteinsequenz kodierend für für Glycine max 7S Samenglobulin
 25
 - 97. SEQ ID NO: 97

 Nukleinsäuresequenz kodierend für Zea mays 19kD Zein (GenBank Acc.-No.: E01144)
- 30 98. SEQ ID NO: 98
 Proteinsequenz kodierend für Zea mays 19kD Zein
- 99. SEQ ID NO: 99

 Nukleinsäuresequenz kodierend für Zea mays 19kD alpha Zein B1

 (GenBank Acc.-No.: AF371269)
 - 100. SEQ ID NO: 100
 Proteinsequenz kodierend für Zea mays 19kD alpha Zein B1
- 40 101. SEQ ID NO: 101

 Nukleinsäuresequenz kodierend für Zea mays 19kD alpha Zein B2

 (GenBank Acc.-No.: AF371270)
- 102. SEQ ID NO: 102

 45 Proteinsequenz kodierend für Zea mays 19kD alpha Zein B2

- 103. SEQ ID NO: 103 Nukleinsäuresequenz kodierend für Zea mays 22kD alpha-zein (GenBank Acc.-No.: X61085)
- 5 104. SEQ ID NO: 104 Proteinsequenz kodierend für Zea mays 22kD alpha-zein
- 105. SEQ ID NO: 105

 Nukleinsäuresequenz kodierend für Oryza sativa Prolamin

 10 (GenBank Acc.-No.: AB016503)
 - 106. SEQ ID NO: 106
 Proteinsequenz kodierend für Oryza sativa Prolamin
- 15 107. SEQ ID NO: 107

 Nukleinsäuresequenz kodierend für A.sativa Avenin (GenBank Acc.-No.: M38446)
- 108. SEQ ID NO: 108
 20 Proteinsequenz kodierend für A.sativa Avenin
 - 109. SEQ ID NO: 109
 Nukleinsäuresequenz kodierend für Hordeum vulgare C-Hordein
 (GenBank Acc.-No.: M36941)
- 110. SEQ ID NO: 110
 Proteinsequenz Teil 1 kodierend für Hordeum vulgare C-Hordein
- 111. SEQ ID NO: 111
 30 Proteinsequenz Teil 2 kodierend für Hordeum vulgare C-Hordein
 - 112 SEQ ID NO: 112

 Nukleinsäuresequenz kodierend für Triticum aestivum LMW Glutenin-1D1 (GenBank Acc.-No.: X13306)
- 113. SEQ ID NO: 113

 Proteinsequenz kodierend für Triticum aestivum LMW Glutenin-1D1
- 40 114. SEQ ID NO: 114

 Binärer Expressionsvektor für Agrobakterium vermittelte
 Pflanzentransformation pSUN2-USP.

115. SEQ ID NO: 115

WO 03/078629

Partielle Nukleinsäuresequenz kodierend für Homogentisat-1,2-dioxygenase aus Brassica napus (HGD; EC-Nr.: 1.13.11.5)

5

116. SEQ ID NO: 116

Nukleinsäuresequenz kodierend für Homogentisat-1,2-dioxygenase aus Arabidopsis thaliana (HGD; EC-Nr.: 1.13.11.5)

10 117. SEQ ID NO: 117

Proteinsequenz kodierend für Homogentisat-1,2-dioxygenase aus Arabidopsis thaliana (HGD; EC-Nr.: 1.13.11.5)

118. SEQ ID NO: 118

Nukleinsäuresequenz kodierend für Maleylacetoacetatisomerase aus Arabidopsis thaliana (MAAI; EC-Nr.: 5.2.1.2.)

119. SEQ ID NO: 119

Proteinsequenz kodierend für Maleylacetoacetatisomerase aus Arabidopsis thaliana (MAAI; EC-Nr.: 5.2.1.2.)

120. SEQ ID NO: 120

Nukleinsäuresequenz kodierend für Fumarylacetoacetathydrolase aus Arabidopsis thaliana (FAAH; EC-Nr.: 3.7.1.2)

25

121. SEQ ID NO: 121

Proteinsequenz kodierend für Fumarylacetoacetathydrolase aus Arabidopsis thaliana (FAAH; EC-Nr.: 3.7.1.2)

30 122. SEQ ID NO: 122

Nukleinsäuresequenz kodierend für Supressionskonstrukt 2 (p3300.1-Toc159-GFP-RNAi)

35 123. SEQ ID NO: 123 Oligonukleotidprimer OPN18

124. SEQ ID NO: 124 Oligonukleotidprimer OPN19

125. SEQ ID NO: 125 Oligonukleotidprimer OPN20

40

126. SEQ ID NO: 126 Oligonukleotidprimer OPN21

Abbildungen

45 1. Fig.1: Schematische Darstellung der Speicherprotein-Suppressionskonstrukte.

Insert aus Vektor pCR2.1-sRNAi4 (1) (vgl. Beispiel 2d) und pCR2.1-sRNAi8 (2) (vgl. Beispiel 2e) kodierend für eine die AtCru3-, AtCRB und At2S3-Expression supprimierende dsRNA.

- In den beiden Konstrukten sind die "sense"-Ribonukleotidsequenzen und die komplementären "antisense"-Ribonukleotidsequenzen (symbolisiert durch auf dem Kopf stehende Buchstaben) für die einzelnen zu supprimierenden Zielgene (AtCru3; AtCRB, At2S3) unterschiedlich angeordnet. Schraffierte Bereiche (II, I2 etc.) stellen Intronsequenzen (Linker) dar.
 - 2. Fig.2A-D: Symbolische Darstellung verschiedener dsRNAs in ihrer Sekundärstruktur.
- 15 S1, S2, ... S(n): "sense"-Ribonukleotidsequenz
 AS1, AS2, ... AS(n): "antisense"-Ribonukleotidsequenz
 I: Intronsequenz
- Die Anordnung der einzelnen "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen kann so erfolgen, dass zunächst alle "sense"-Ribonukleotidsequenzen aneinander gereiht werden und so quasi einen "sense"-Strang bilden, wodrauf dann alle "antisense"-Ribonukleotidsequenzen aneinander zu einem "antisense"-Strang zusammengefügt werden (A und C).

Alternativ kann die Anordnung der einzelnen "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen so erfolgen, dass Paare von jeweils komplementären "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen aneinander gefügt werden (B und D).

"sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen können direkt aneinandergefügt sein (A und B) oder aber durch weitere Sequenzen beispielsweise Introns (I) voneinander getrennt sein (C und D).

- 3. Fig.3A-C: Symbolische Darstellung verschiedener dsRNAs in ihrer Sekundärstruktur.
- 40 S1, S2, ... S(n): "sense"-Ribonukleotidsequenz AS1, AS2, ... AS(n): "antisense"-Ribonukleotidsequenz

SP: "SPACER"

RE: Erkennungssequenz für Ribozym

R: Ribozym

25

30

"sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen können durch weitere Sequenzen ("SPACER"; SP) voneinander getrennt sein (A). Der Spacer kann beispielsweise eines Erkennungssequenz für ein Ribozym sein. Das korrespondierende Ribozym kann separat exprimiert werden (B) oder aber auch ebenfalls von dem Spacer kodiert sein (C).

4. Fig.4: Abbildung des Supressionskonstrukts mit den entsprechenden Restriktionsenzymschnittstellen:

10

5

WO 03/078629

5. Fig.5A: Identifikation einer Pflanze, die den Albino-Phänotyp zeigt (links). Der Phänotyp ist identisch zur ppi2 Mutante, die Toc159 nicht mehr exprimieren kann. Als Kontrolle Pflanzen mit Wildtyp Phänotyp, die parallel gewachsen sind.

15

Fig. 5B: Fluoreszenz-Analyse der Pflanzen aus Fig.5A. Anregung der Fluoreszenz durch Licht im Wellenlängenbereich 470-490 nm. Es wurde dieselbe Vergrösserung gewählt wie in Fig.5A.

20

25

30

35

Beispiele

WO 03/078629

30

Allgemeine Methoden:

5 Alle Chemikalien, wenn nicht anders erwähnt, stammen von den Firmen Fluka (Buchs), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen). Restriktionsenzyme, DNA-modifizierende Enzyme und Molekularbiologie-Kits wurden von den Firmen Amersham-Pharmacia (Freiburg), Biometra (Göttingen), Roche (Mannheim), New England Biolabs (Schwalbach), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Qiagen (Hilden), Stratagen (Amsterdam, Niederlande), Invitrogen (Karlsruhe) und Ambion (Cambridgeshire, United Kingdom). Die verwendeten Reagenzien wurden entsprechend der Angaben des Herstellers eingesetzt.

Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungs
20 schritte wie z.B. Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden

25 wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).

Beispiel 1: Allgemeine Verfahren

Die Pflanze Arabidopsis thaliana repräsentiert ein Mitglied der 35 höheren Pflanzen (Samenpflanzen). Diese Pflanze ist eng verwandt mit anderen Pflanzenarten aus der Familie der Cruciferen wie z.B. Brassica napus, aber auch mit anderen Pflanzenfamilien der Dikotyledonen. Aufgrund des hohen Grades an Homologie ihrer DNA-Sequenzen bzw. Polypeptidsequenzen kann Arabidopsis thaliana als 40 Modellpflanze für andere Pflanzenarten eingesetzt werden.

a) Anzucht von Arabidopsis Pflanzen

Die Pflanzen werden entweder auf Murashige-Skoog Medium mit 0,5 % 45 Saccharose (Ogas et al. (1997) Science 277:91-94) oder auf Erde gezogen (Focks & Benning (1998) Plant Physiol 118:91-101). Um einheitliche Keimungs- und Blühzeiten zu erreichen, werden die

Samen nach Ausplattieren bzw. Ausstreuen auf Erde zwei Tage bei 4°C stratifiziert. Nach der Blüte werden die Schoten markiert. Entsprechend der Markierungen werden dann Schoten mit einem Alter von 6 bis 20 Tagen nach der Blüte geerntet.

63

b) Isolierung von total RNA und poly-A+ RNA aus Pflanzen

Für die Herstellung von Supressionskonstrukten wird RNA bzw. polyA+ RNA isoliert. RNA wurde aus Schoten von Arabidopsis Pflan-10 zen nach folgender Vorschrift isoliert: Schotenmaterial im Alter von 6 bis 20 Tage nach Blühte wurde geerntet und in flüssigem Stickstoff schockgefroren. Das Material wurde vor der weiteren Verwendung bei -80°C gelagert. 75 mg des Materials wurde im gekühlten Mörser zu einem feinem Pulver gemahlen und mit 200 μL des 15 Lysis-Puffers aus dem Ambion RNAqueos-Kit versetzt. Die Isolierung der totalen RNA wurde dann nach Herstellerangaben durchgeführt. Die RNA wurde mit 50 µL Elutionspuffer (Ambion) eluiert und die Konzentration durch Absorption einer 1 zu 100 verdünnten Lösung am Photometer (Eppendorf) bei 260 nm bestimmt. 40 µg/ml 20 RNA entspricht dabei einer Absorption von 1. Die RNA-Lösungen wurden mit RNAse freiem Wasser auf eine Konzentration von 1 $\mu g/\mu L$ eingestellt. Die Konzentrationen wurden durch Agarosegelelektrophorese überprüft. Zur Isolierung von polyA+ RNA wurde oligo(dT)-Zellulose von Amersham Pharmacia nach Herstellerangaben 25 verwendet. RNA bzw. polyA+ RNA wurde bei -70°C gelagert.

c) Konstruktion der cDNA-Bank

Zur Konstruktion der cDNA-Bank aus Arabidopsis Schoten-RNA wurde 30 die Erststrangsynthese unter Verwendung von Reverser Transkriptase aus Maus-Leukämie-Virus (Clontech) und Oligo-d(T)-Primern, die Zweitstrangsynthese durch Inkubation mit DNA-Polymerase I, Klenow-Enzym und RNAse H-Spaltung bei 12°C (2 Std.), 16°C (1 Std.) und 22°C (1 Std.) erzielt. Die Reaktion wurde durch Inkubation 35 bei 65°C (10 min) gestoppt und anschließend auf Eis überführt. Doppelsträngige DNA-Moleküle wurde mit T4-DNA-Polymerase (Roche, Mannheim) bei 37°C (30 min) mit glatten Enden versehen. Die Nukleotide wurden durch Phenol/Chloroform-Extraktion und Sephadex-G50-Zentrifugiersäulen entfernt. EcoRI/XhoI-Adapter (Pharma-40 cia, Freiburg, Deutschland) wurden mittels T4-DNA-Ligase (Roche, 12°C, über Nacht) an die cDNA-Enden ligiert, mit KhoI nachgeschnitten und durch Inkubation mit Polynukleotidkinase (Roche, 37°C, 30 min) phosphoryliert. Dieses Gemisch wurde der Trennung auf einem Low-Melting-Agarose-Gel unterworfen. DNA-Moleküle über 45 300 Basenpaaren wurden aus dem Gel eluiert, Phenol-extrahiert, auf Elutip-D-Säulen (Schleicher und Schüll, Dassel, Deutschland) konzentriert und an Vektorarme ligiert und in lambda-ZAPII-Phagen oder lambda-ZAP-Express-Phagen unter Verwendung des Gigapack Gold-Kits (Stratagene, Amsterdam, Niederlande) verpackt, wobei Material des Herstellers verwendet und seine Anweisungen befolgt wurden.

5

WO 03/078629

d) Isolierung von genomischer DNA aus Pflanzen wie Arabidopsis thaliana oder Brassica napus (CTAB-Methode)

Zur Isolierung genomischer DNA aus Pflanzen wie Arabidopsis tha-10 liana oder Brassica napus werden ca. 0,25 g Blattmaterial junger Pflanzen im vegetativen Stadium in flüssigem Stickstoff zu feinem Pulver gemörsert. Das pulverisierte Pflanzenmaterial wird zusammen mit 1 ml 65°C-warmem CTAB I-Puffer (CTAB: Hexadecyltrimethylammoniumbromid, auch genannt Cetyltrimethylammoniumbromid; Sigma 15 Kat.-Nr.: H6269) und 20 µl ß-Mercaptoethanol in einen vorgewärmten zweiten Mörser gegeben und nach vollständiger Homogenisierung wird der Extrakt in ein 2 ml Eppendorf-Gefäß überführt und für 1 h bei 65°C unter regelmäßiger, vorsichtiger Durchmischung inkubiert. Nach Abkühlung auf Raumtemperatur wird der Ansatz mit 1 ml 20 Chloroform/Octanol (24:1, mit 1M Tris/HC1, pH 8,0 ausgeschüttelt) durch langsames Invertieren extrahiert und zur Phasentrennung für 5 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Anschließend wird die wässrige Phase erneut mit 1 ml Chloroform/ Octanol extrahiert, zentrifugiert und durch Invertieren mit 1/10 . 25 Volumen auf 65°C vorgewärmtem CTAB II-Puffer sorgfältig gemischt. Anschließend wird der Ansatz durch vorsichtiges Schwenken mit 1 ml Chloroform/Octanol-Gemisch (siehe oben) versetzt und zur erneuten Phasentrennung für 5 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Die wässrige untere Phase wird in 30 ein frisches Eppendorf-Gefäß überführt und die obere organische Phase wird in einem frischen Eppendorf-Gefäß erneut für 15 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Die hieraus resultierende wässrige Phase wird mit der wässrigen Phase des vorherigen Zentrifugationsschrittes vereinigt und der gesamte 35 Ansatz mit exakt demselben Volumen vorgewärmtem CTAB III-Puffer versetzt. Es folgt eine Inkubation bei 65°C, bis die DNA in Flocken ausfällt. Dies kann bis zu 1 h dauern oder durch Inkubation bei 37°C über Nacht erfolgen. Das aus dem anschließenden Zentrifugationsschritt (5 min, 2000 rpm (500 x g), 4°C) resul-40 tierende Sediment wird mit 250 μl auf 65°C vorgewärmtem CTAB IV-Puffer versetzt und für mindestens 30 min bzw. bis zur vollständigen Auflösung des Sediments bei 65°C inkubiert. Anschließend wird die Lösung zur Fällung der DNA mit 2,5 Volumina eiskaltem Ethanol vermischt und für 1h bei -20°C inkubiert. Alternativ 45 kann der Ansatz mit 0.6 Volumina Isopropanol vermischt und ohne weitere Inkubation sofort für 15 min bei 8,500 rpm (7,500 x g) und 4°C zentrifugiert werden. Die sedimentierte DNA wird durch

Invertieren des Eppendorf-Gefäßes zweimal mit je 1 ml 80%igem eiskaltem Ethanol gewaschen, nach jedem Waschschritt erneut zentrifugiert (5 min, 8,500 rpm (7,500 x g), 4°C) und anschließend für ca. 15 min luftgetrocknet. Abschließend wird die DNA in

5 100 µl TE mit 100 µg/ml RNase resuspendiert und für 30 min bei Raumtemperatur inkubiert. Die DNA Lösung ist nach einer weiteren Inkubationsphase über Nacht bei 4°C homogen und kann für weiterführende Experimente verwendet werden.

```
10 Lösungen für CTAB:
```

```
Lösung I (für 200 ml):

100 mM Tris/HCl pH 8,0 (2,42 g)

1,4 M NaCl (16,36 g)

20 mM EDTA (8,0 ml von 0,5 M Stammlösung)

2 %(w/v) CTAB (4,0 g)
```

Jeweils vor der Verwendung werden frisch zugesetzt: 2 % ß-Mercaptoethanol (20 μ l für 1 ml Lösung I).

20

```
Lösung II (für 200 ml):
0,7 M NaCl (8,18 g)
10 %(w/v) CTAB (20 g)
```

25 Lösung III (für 200 ml):

```
50 mM Tris/HCl pH 8,0 (1,21 g)
10 mM EDTA (4 ml 0,5 M von 0,5 M Stammlösung)
1 %(w/v) CTAB (2,0 g)
```

30 Lösung IV (High-salt TE) (für 200 ml):

10 mM Tris/ HCl pH 8,0 (0,242 g)

0,1 mM EDTA (40 µl 0.5 M Stammlösung)

1 M NaCl (11, 69 g)

35 Chloroform/Octanol (24:1) (für 200 ml):

192 ml Chloroform

8 ml Octanol

Die Mischung wird 2x mit 1 M TrisHCl pH 8,0 ausgeschüttelt und vor Licht geschützt gelagert.

40

Beispiel 2: Herstellung von Suppressionskonstrukten

Ausgehend von der genomischer Arabidopsis thaliana DNA oder cDNA wurden über PCR mittels der aufgeführten Oligonukleotide folgende

45 Fragmente von Speicherproteinsequenzen amplifiziert. Dabei kam nachfolgendes PCR Protokoll zum Einsatz:

Zusammensetzung des PCR-Ansatzes (50 µL):

- 5,00 μ L Template cDNA oder genomische DNA (ca. 1 μ g)
- 5,00 μL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂
- 5 5,00 μL 2mM dNTP
 - 1,25 μ L je Primer (10 pmol/ μ L)
 - 0,50 µL Advantage-Polymerase (Clontech)

PCR-Programm: Anfangsdenaturierung für 2 min bei 95°C, dann 35 Zy
10 klen mit 45 sec 95°C, 45 sec 55°C und 2 min 72°C. Abschliessende

Extension von 5 min bei 72°C.

- a) Ausgangsvektor pCR2.1-AtCRU3-RNAi
- 15 Aus genomischer Arabidopsis thaliana DNA wird mit nachfolgendem Oligonukleotid-Primerpaar ein Exonbereich mit dem vollständigen anschließenden Intron einschließlich der an das Intron anschließenden Spleiß-Akzeptorsequenz des 12S Speicherprotein AtCRU3 (Basenpaar 1947 bis 2603 der Sequenz mit der GenBank Acc.-No:
- 20 U66916) amplifiziert:

ONP1 (SEQ ID NO: 134):

5'-ATAAGAATGCGGCCGCGTGTTCCATTTGGCCGGAAACAAC-3'

25 ONP2 (SEQ ID NO: 135):

5'-CCCGGATCCTTCTGTAACATTTGACAAAACATG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-1
30 Vektor und die Sequenz überprüft.

Für die den antisense-Strang der dsRNA kodierende Sequenz wird aus Arabidopsis thaliana cDNA lediglich das gleiche Exon wie oben (Basenpaar 1947 bis 2384) mit dem nachfolgenden Primerpaar ampli35 fiziert:

ONP3 (SEQ ID NO: 136):

5 ATAAGAATGCGGCCGCGTGTTCCATTTGGCCGGAAACAAC-3

- 40 ONP4 (SEQ ID NO: 137):
 - 5 ATAAGAATGCGGCCGCGGATCCACCCTGGAGAACGCCACGAGTG-3

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-2
45 Vektor und die Sequenz überprüft.

0,5 μg von Vektor pCR2.1-1 werden mit dem Restriktionsenzym BamHI (New England Biolabs) für 2 Stunden nach Herstellerangaben inkubiert und dann für 15 min mit alkalischer Phosphatase (New England Biolabs) dephosphoryliert. Der so präparierte Vektor (1 µL) 5 wird dann mit dem aus Vektor pCR2.1-2 gewonnenen Fragment ligiert. Dazu werden 0,5 µg von Vektor pCR2.1-2 2 Stunden mit BamHI (New England Biolabs) verdaut und die DNA-Fragmente per Gelelektorphorese aufgetrennt. Das neben dem Vektor (3,9 kb) entstandene 489 bp grosse Stück wird aus dem Gel ausgeschnitten und mit dem 10 "Gelpurification"-Kit (Qiagen) nach Herstellerangaben aufgereinigt und mit 50 µL Elutionspuffer eluiert. 10 µL des Eluats werden mit Vektor pCR2.1-1 (s.o.) über Nacht bei 16°C ligiert (T4 Ligase, New England Biolabs). Die Ligationsprodukte werden dann in TOP10 Zellen (Stratagene) nach Herstellerangaben transformiert und ent-15 sprechend selektioniert. Positive Klone werden mit dem Primerpaar ONP1 und ONP2 durch PCR verifiziert. Der erhaltene Vektor wird pCR2.1-AtCRU3-RNAi genannt. Die für die dsRNA kodierdende Nu-

20 b) Ausgangsvektor pCR2.1-AtCRB-RNAi

Mit nachfolgendem Oligonukleotid-Primerpaar wird ein Exonbereich des 12S Speicherprotein AtCRB (SEQ ID NO: 117 bzw. 118; Basenpaar 601 bis 1874 der Sequenz mit der GenBank Acc.-No: M37248) aus 25 Arabidopsis thaliana cDNA amplifiziert:

ONP5 (SEQ ID NO: 138):
5 ATAAGAATGCGGCCGCGGATCCCTCAGGGTCTTTTCTTGCCCACT-3'

kleinsäuresequenz ist durch SEQ ID NO: 105 beschrieben.

30 ONP6 (SEQ ID NO: 139): 5'-CCGCTCGAGTTTACGGATGGAGCCACGAAG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-3 Vektor und die Sequenz überprüft.

Für den als Linker fungierenden Bereich wird aus Arabidopsis thaliana genomischer DNA ein Intron mit den entsprechenden Spliceakzeptor und -donorsequenzen der flankierenden Exons (Basenpaar 1874 bis 2117 der Sequenz mit der GenBank Acc.-No: M37248) mit dem nachfolgenden Primerpaar amplifiziert:

ONP7 (SEQ ID NO: 140): 5'-CCGCTCGAGGTAAGCTCAACAAATCTTTAG-3'

45 ONP8 (SEQ ID NO: 141): 5'-ACGCGTCGACGCGTTCTGCGTGCAAGATATT-3' Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-4 Vektor und die Sequenz überprüft.

- 5 Das Konstrukt für AtCRB wird in einer ähnlichen Strategie wie für AtCRU3 erläutert, erstellt. Vektor pCR2.1-3 wird mit mit XhoI (New England Biolabs) für 2 Stunden inkubiert und dephosphoryliert (alkalische Phosphatase, New England Biolabs). Vektor pCR2.1-4 wird ebenfalls mit XhoI in derselben Weise inkubiert und 10 die Gelfragmente per Gelelektrophorese aufgetrennt. Die entsprechenden Fragmente werden in der unter AtCRU3 beschriebenen Art und Weise aufgereinigt und ligiert, resultierend nach Bakterientransformation in dem Vektor pCR2.1-AtCRB Exon/Intron. Dieser Vektor wird für 2 Stunden mit XbaI (NEB), anschliessend für 15 min mit Klenow-Fragment (NEB), dann für 2 Stunden mit SalI inkubiert und zuletzt 15 min mit alkalischer Phosphatase (NEB) behandelt. Parallel wird der Vektor pCR2.1-3 mit BamHI (NEB), dann 15 min mit Klenow-Fragment und anschliessend 2 Stunden mit XhoI (NEB) inkubiert. Das Exon-Fragment von AtCRB wird nach Gelelektorphorese isoliert, gereinigt und zur Ligation eingesetzt. Beide Fragmente wurden dann ligiert und der Vektor pCR2.1-AtCRB-RNAi resultierte. Der erhaltene Vektor wird pCR2.1-AtCRB-RNAi genannt. Die für die dsRNA kodierdende Nukleinsäuresequenz ist durch SEQ ID NO: 107 beschrieben.
- 25 c) Ausgangsvektor pCR2.1-At2S3-RNAi

Mit nachfolgendem Oligonukleotid-Primerpaar wird ein Exonbereich des 2S Speicherprotein At2S3 (SEQ ID NO: 3 bzw. 4; Basenpaar 212 bis 706 der Sequenz mit der GenBank Acc.-No: M22035) amplifiziert:

ONP9 (SEQ ID NO: 142): 5'-ATAAGAATGCGGCCGCGGATCCATGGCTAACAAGCTCTTCCTCGTC-3'

ONP10 (SEQ ID NO: 143):
5'-ATAAGAATGCGGCCGCGGATCCCTAGTAGTAAGGAGGAAGAAAG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-5

Vektor und die Sequenz überprüft. Für den als Linker fungierenden Bereich wird das gleiche Intron wie unter b) mit den Primern OPN 7 und OPN 8 amplifiziert eingesetzt.

Das Konstrukt für At2S3 wird in einer ähnlichen Strategie wie für 45 AtCRU3 erläutert, erstellt. Vektor pCR2.1-5 wird mit mit XhoI (New England Biolabs) für 2 Stunden inkubiert und dephosphory-liert (alkalische Phosphatase, New England Biolabs). Vektor

pCR2.1-3 werden ebenfalls mit XhoI in derselben Weise inkubiert und die Gelfragmente per Gelelektrophorese aufgetrennt. Die entsprechenden Fragmente werden in der unter AtCRU3 beschriebenen Art und Weise aufgereinigt und ligiert, resultierend nach Bakte5 rientransformation in dem Vektor pCR2.1-At2S3 Exon/Intron. Dieser Vektor wird für 2 Stunden mit SalI (NEB), anschliessend für 15 min mit Klenow-Fragment (NEB) inkubiert und zuletzt 15 min mit alkalischer Phosphatase (NEB) behandelt. Parallel wird der Vektor pCR2.1-5 mit BamHI (NEB) und dann 15 min mit Klenow-Fragment inkubiert. Das Exon-Fragment von At2S3 wird nach Gelelektorphorese isoliert, gereinigt und zur Ligation eingesetzt. Beide Fragmente werden dann ligiert und der Vektor pCR2.1-At2S3-RNAi resultierte. Die für die dsRNA kodierdende Nukleinsäuresequenz ist durch SEQ ID NO: 109 beschrieben.

15

d) Herstellung von Super-Supressionskonstrukt 1

Die Vektoren pCR2.1-AtCRU3-RNAi und pCR2.1-4 (siehe oben) werden mit den Restriktionsenzymen XhoI und SalI für 2 Stunden bei 37°C inkubiert, die DNA-Fragmente durch Agarose-Gelelektrophorese aufgetrennt und sowohl der Vektor als auch das PCR-Insert aus pCR2.1-4 ausgeschnitten und mit dem "Gelpurification"-Kit von Qiagen nach Herstellerangaben aufgereinigt und mit 50 μL Elutionspuffer eluiert. Vom Vektor wird 1 μL, vom PCR-Insert aus pCR2.1-4 8 μL der Eluate für die Ligation eingesetzt, resultierend in dem Konstrukt pCR2.1-sRNAi1. Dieser Vektor wird für 2 Stunden mit dem Restriktionsenzym XhoI und dann für 15 min mit Klenow-Fragment inkubiert.

30 Der Vektor pCR2.1-AtCRB-RNAi (siehe oben) wird mit dem Enzym EcoRI für 2 Stunden inkubiert und ebenfalls 15 min mit Klenow-Fragement behandelt. Beide Inkubationsansätze werden durch Gelelektrophorese aufgetrennt und jeweils der Vektor (pCR2.1-sRNAi1) bzw. das Insert (aus pCR2.1-AtCRB-RNAi) aus dem Agarosegel ausge-35 schnitten und die DNA-Fragmente wie oben beschrieben aufgereinigt. Für die Ligation werden 1 μL des Eluates vom Vektor und 8 μL des Eluates vom Insert eingesetzt und bei 4°C über Nacht inkubiert. Das resultierende Konstrukt wird mit pCR2.1-sRNAi2 bezeichnet. Der resultierende Vektor wird mit dem Enzym XbaI und 40 anschliessend mit Klenow-Fragment inkubiert. Der Vektor pCR2.1-4 wird mit den Enzymen EcoRV und XbaI und anschliessend mit Klenow-Fragment inkubiert. Nach Gelelektrophorese und -reinigung wird das Fragment aus pCR2.1-4 mit dem Vektor pCR2.1-sRNAi2 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi3. Der resultierende 45 Vektor wird dann mit dem Enzym ApaI für 2 Stunden und dann mit Klenow-Fragment für 15 min inkubiert. Als Insert wird der Vektor pCR2.1-At2S3-RNAi mit dem Enzym EcoRI für 2 Stunden und dann mit

Klenow-Fragment für 15 min inkubiert. Nach Gelelektrophorese und -reinigung werden die Eluate ligiert, resultierend in dem Vektor pCR2.1-sRNAi4. Aus diesem Vektor wird dann das sRNAi4-Fragment (SEQ ID NO: 144; vgl. Fig. 1(1)), kodierend für die super-supprimierende dsRNA, durch Inkubation mit HindIII und PvuI ausgeschnitten und in den binären Vektor pSUN-USP (SEQ ID NO: 179) ligiert. Das Konstrukt dient der gleichzeitigen Suppression von Arabidopsis thaliana Speicherproteinen CRB (SEQ ID NO:4), CRU3 (SEQ ID NO: 112) und At2S3 (SEQ ID NO: 118).

1.0

WO 03/078629

Der verwendete Vektor pSUN-USP ist ein binärer Vektor zur Pflanzentransformation auf Basis von pBinAR (Höfgen und Willmitzer (1990) Plant Science 66: 221-230). Eine gewebespezifische Expression Im Samen läßt sich unter Verwendung des gewebespezifischen 15 Promotors USP-Promotors erzielt.

e) Herstellung von Super-Supressionskonstrukt 2

Ausgehend von Arabidopsis thaliana cDNA wird ein Fragment aus dem 20 Speicherprotein AtCRU3 (SEQ ID NO: 111, 112) mit dem nachfolgenden Oligonukleotid-Primerpaar unter den in Beispiel 2 angegebenen PCR-Bedingungen amplifiziert:

OPN 11: 5'-AAAAGGCCTGTGTTCCATTTGGCCGGAAACAAC-3' (SEQ ID NO: 148) 25 OPN 12: 5'-AAAGATATCACCCTGGAGAACGCCACGAGTG-3' (SEQ ID NO: 149).

Das erhaltene Fragment wird in den Vektor pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in den pCR2.1-6 und die Sequenzen überprüft.

30

Ausgehend von Arabidopsis thäliana cDNA wird ein Fargment aus dem Speicherprotein At2S3 (SEQ ID NO: 3, 4) mit dem nachfolgenden Oligonukleotid-Primerpaar unter den in Beispiel 2 angegebenen PCR-Bedingungen amplifiziert:

35

OPN 13: 5'-AAAAGGCCTATGGCTAACAAGCTCTTCCTCGTC-3' (SEQ ID NO: 150)
OPN 14: 5'-AAAGATATCCTAGTAGTAAGGAGGGAAGAAAG-3' (SEQ ID NO: 151).

Das erhaltene Fragment wird in den Vektor pCR2.1-TOPO Vektor (In-40 vitrogen) gemäss Herstellerangaben kloniert, resultierend in den pCR2.1-7 und die Sequenzen überprüft.

Aus den pCR2.1-3, pCR2.1-4 (siehe Beispiel 2) und pCR2.1-6 und pCR2.1-7 werden dann die Konstrukte folgendermassen zusammen ligiert: Der Vektor pCR2.1-3 wird 2 Stunden mit EcoRV inkubiert und anschliessend 15 min mit alkalischer Phosphatase dephosphoryliert. Der Vektor pCR2.1-6 wird mit den Enzymen StuI und EcoRV

für 2 Stunden inkubiert und das PCR-Insert über Gelelektrophorese und -reinigung isoliert. Vektor pCR2.1-3 und Insert aus pCR2.1-6 werden dann über Nacht bei 4°C ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi5. Dieser Vektor wird dann mit EcoRV inkubiert und dephosphoryliert und mit dem StuI/ EcoRV inkubierten und gelaufgereinigten Fragment aus pCR2.1-7 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi6. Dieser Vektor wird dann mit XhoI inkubiert und dephosphoryliert. Der Vektor pCR2.1-4 wird mit SalI und XhoI inkubiert und das Insert aus pCR2.1-4 mit dem vorbereiteten Vektor pCR2.1-sRNAi6 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi7. Ausgehend von pCR2.1-sRNAi7 wird eine PCR mit den nachfolgenden Primerpaar unter den in Beispiel 2 gegebenen Bedingungen durchgeführt:

15 OPN 15: 5' CCGCTCGAGCTCAGGGTCTTTTCTTGCCCACT (SEQ ID NO: 152)
OPN 16: 5'-CCGGTCGACCTAGTAGTAAGGAGGGAAGAAG (SEQ ID NO: 153).

Das resultierende PCR-Produkt wird mit den Enzymen XhoI und SalI inkubiert. Das Fragment wird dann in den Vektor pCR2.1-sRNAi7

20 (inkubiert mit XhoI) ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi8. Aus diesem Vektor wird dann das sRNAi8-Fragment (SEQ ID NO: 146; vgl. Fig. 1(2)), kodierend für die super-supprimierende dsRNA, durch Inkubation mit HindIII und XbaI ausgeschnitten und in den binären Vektor pSUN-USP (SEQ ID NO: 179) ligiert. Das Konstrukt dient der gleichzeitigen Suppression von Arabidopsis thaliana Speicherproteinen CRB (SEQ ID NO:4), CRU3 (SEQ ID NO: 112) und At2S3 (SEQ ID NO: 118).

Beispiel 3: Transformation von Agrobacterium

Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung der Agrobacterium tumefaciens-Stämme GV3101 (pMP90) (Koncz und Schell (1986) Mol Gen Genet 204: 383-396) oder LBA4404 (Clontech) durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (Deblaere et al.(1984) Nucl Acids Res 13:4777-4788).

Beispiel 4: Pflanzentransformation

30

40 Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P 45 ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

Die Transformation mittels Agrobacterium von Arabisopsis thaliana
5 wird durch die Methode nach Bechthold et al., 1993 (C.R. Acad.
Sci. Ser. III Sci. Vie., 316, 1194-1199) durchgeführt.
Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell
Report 8 (1989) 238-242; De Block et al., Plant Physiol. 91

10 (1989) 694-701). Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die
Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als
selektierbarem Pflanzenmarker durchgeführt.

15

Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) läßt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13:282-285 beschriebenen Technik durchführen.

20

Die Transformation von Soja kann unter Verwendung von beispiels-weise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.

25

Die Pflanzentransformation unter Verwendung von Teilchenbeschuß, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise beschrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 30 3-540-97826-7, Springer Verlag New York).

Beispiel 5: Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus

- 35 Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus wurde auf der Transkriptions- und/oder der Translationsebene gemessen.
- Ein geeignetes Verfahren zur Bestimmung der Menge an Transkrip40 tion des Gens (ein Hinweis auf die Menge an RNA, die für die
 Tranlation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular
 Biology, Wiley: New York, oder den oben erwähnten Beispielteil),
- 45 wobei ein Primer, der so gestaltet ist, daß er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so daß, wenn die

Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen 5 anzeigt. Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E.R., et al. (1992) Mol. Microbiol. 6:317-326 beschriebene, präpariert werden.

10

Northern-Hybridisierung:

Für die RNA-Hybridisierung wurden 20 μg Gesamt-RNA oder 1 μg poly(A)+-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25 % unter Verwendung von Formaldehyd, wie be-

- 15 schrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 x SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10 % Dextransulfat
- 20 Gew./Vol., 1 M NaCl, 1.% SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Roche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-32P-dCTP (Amersham Pharmacia, Braunschweig, Deutschland). Die Hybridisierung wurde nach
- 25 Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 X SSC und zweimal für 30 min unter Verwendung von 1 X SSC, 1 % SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1

30 bis 14 T durchgeführt.

Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel 35 et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamt-Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bin-40 det, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen läßt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.

30

Beispiel 6: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, 5 Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die 10 erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromato-15 graphie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et 20 al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley 25 and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative 35 und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Che-

Zusätzlich zur Messung des Endproduktes der Fermentation ist 45 es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz

mistry of Fats and Other Lipids CODEN.

der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, 5 Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192

10 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Mas15 senspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard20 Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

25

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment 30 wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethy-35 lester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethyle-40 ster muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

Für die Öl-Analyse der mit den Supressionskonstrukten transformierten Arabidopsis Pflanzen wird folgendes Protokoll angewendet:

Die Extraktion der Lipide aus Samen wird nach der Methode von Bligh & Dyer (1959) Can J Biochem Physiol 37:911 durchgeführt. Dazu werden 5 mg Arabidopsis Samen in 1,2 ml Qiagen-Microtubes (Qiagen, Hilden) auf einer Sartorius (Göttingen) Mikrowaage abge-5 wogen. Das Samenmaterial wird mit 500 uL Chloroform/Methanol (2:1; enthält Mono-C17-glycerin von Sigma als internen Standard) in der Rätschmühle MM300 der Firma Retsch (Haan) homogenisiert und 20 min bei RT inkubiert. Nach Zugabe von 500 uL 50 mM Kaliumphosphatpuffer pH 7,5 erfolgt die Phasentrennung. Von der organi-10 schen Phase werden 50 µL abgenommen, mit 1500 uL Chloroform verdünnt und 5 μL auf die Kapillaren Chromarods SIII der Firma Iatroscan (SKS, Bechenheim) aufgetragen. Nach Auftrag der Proben werden diese für 15 min in einer Dünnschichtkammer, die gesättigt ist mit 6:2:2 Chloroform: Methanol: Toluol in einem ersten 15 Schritt aufgetrennt. Nach Ablauf der Zeit werden die Kapillaren 4 min bei Raumtemperatur getrocknet und dann für 22 min in eine Dünnschichtkammer, die gesättigt ist mit 7:3 n-Hexan:Dieethylether gestellt. Nach einem weiteren Trocknungsschritt für 4 min bei Raumtemperatur werden die Proben in einem Iatroscan MK-5 20 (SKS, Bechenheim) entsprechend Fraser & Taggart, 1988 J. Chromatogr. 439:404 analysiert. Folgende Parameter wurden für die Messungen eingestellt: Slice width 50 msec, Treshold 20 mV, Noise 30, Skim ratio 0. Die Quantifizierung der Daten erfolgte anhand des internen Standards Mono-C17-glycerin (Sigma) sowie einer er-25 stellten Eichkurve mit Tri-C17-glycerin (Sigma) mittels des Programms ChromStar (SKS, Beichenheim).

Für die quantitative Bestimmung der Ölgehalte werden Samen von jeweils 10 Pflanzen derselben unabhängigen transgenen Linie ana30 lysiert. Insgesamt wurde der Ölgehalt von 30 transgene Linien der T1 Generation, 10 transgene Linien mit je 10 Pflanzen der T2 Generation und 5 transgene Linien mit je 10 Pflanzen der T3 Linien bestimmt. Dabei zeigen die transgenen Pflanzen einen signifikant höheren Ölgehalt als entsprechend gleichbehandelte Kontrollpflanzen.

Beispiel 7:

Zum Nachweis der Funktionalität der multiplen RNAi Konstrukte

40 wurden Gene ausgewählt, deren Supression einen deutlichen phänologischen Effekt hervorrufen. Ein solches Gen ist zum Beispiel Toc159. Dieses Gen ist essentiell für die Entwicklung und Funktionalität von Chloroplasten in Arabidopsis (Bauer et al. Nature, 403, 203-207). Ein Ausschalten dieses Gens führt zu chlorophylldefizienten Pflanzen, deren Blatt-Erscheinungsbild dann hell-grün bis weiss ist. Dieser Albino-Phänotyp ist sehr leicht zu unterscheiden von normalen Pflanzen.

Als weiteres visuelles Reprotergen wurde GFP, das grün-fluoreszierende Protein aus der Qualle Aequorea victoria eingesetzt. Dieses Reportergen ist ein häufig verwendetes Reportergen in Pflanzen (siehe z.B. Stewart, Plant Cell Rep 2001 20(5):376-82).

- 5 Ausgehend von Arabidopsis thaliana cDNA oder vom Plasmid pEGFP (BD Clontech, Heidelberg, Genbank-Eintrag U476561) wurde über PCR mittels der aufgeführten Oligonukleotide erzeugt. Dabei wurde folgendes Protokoll eingesetzt:
- 10 Zusammensetzung des PCR-Ansatzes (50 μL):
 - 5,00 μL Template cDNA oder genomische DNA (ca. 1 μg)
 - 5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂
 - 5,00 µL 2mM dNTP
- 1,25 μL je Primer (10 pmol/μL)
 - 0,50 µL Advantage-Polymerase (Clontech)

PCR-Programm: Anfangsdenaturierung für 2 min bei 95°C, dann 35 Zy-klen mit 45 sec 95°C, 45 sec 55°C und 2 min 72°C. Abschliessende 20 Extension von 5 min bei 72°C.

a) Ausgangsvektor pGEM-Toc159: Ausgehend von Arabidopsis cDNA wurde mit nachfolgendem Oligonukleotid-Primerpaar ein Fragment aus Toc159 (Genbank Acc.-No. **T14P8.24**) amplifiziert:

25

ONP18 (SEQ ID NO: 123):

5 '-CTCGAGGAATTCATGGACTCAAAGTCGGTTACTCCA

ONP19 (SEQ ID NO: 124):

30 5 '-GGATCCATAAGCAAGCTTTCTCACTCTCCCCATCTGTGGA

Das PCR Produkt wurde in den Vektor pGEM-T easy von Promega (Mannheim) gemäss Herstellerangaben kloniert, resultierend in dem pGEM-Toc159 Vektor und die Sequenz überprüft.

35

b) Ausgangsvektor pGEM-GFP: Ausgehend von dem Plasmid pEGFP (BD Clontech, Heidelberg, GenbankAcc.-No.: U476561) wurde mit nachfolgendem Oligonukleotid-Primerpaar ein Fragment aus GFP amplifiziert:

40

ONP20 (SEQ ID NO: 125): 5'-AAGCTTCCAACACTTGTCACTACTTT ONP21 (SEQ ID NO: 126): 5'-GGATCCTTAAAGCTCATCATGTTTGT

Das PCR Produkt wurde in den Vektor pGEM-T easy von Promega
45 (Mannheim) gemäss Herstellerangaben kloniert, resultierend in dem
pGEM-GFP Vektor und die Sequenz überprüft.

- c) Herstellung des Konstruktes pGEM-159-GFP Der Vektor pGEM-GFP wurde mit den Restriktionsenzymen HindIII und BamHI für 2 Stunden inkubiert. Parallel wurde der Vektor pGEM-Toc159 mit den gleichen Restriktionsenzymen inkubiert, anschliessend dann zusätzlich für 5 15 min mit alkalischer Phosphatase behandelt. Die alkalische Phosphatase wurde anschliessend durch Erhitzen auf 95 oC für 10 min inaktiviert. Die entstandenen DNA-Fragmente aus beiden Ansätzen wurden über Agarose-Gelelektrophorese aufgetrennt. Das 558 bp Fragment aus pGEM-GFP sowie das 3471 bp Fragment von pGEM-Toc159 10 wurden aus dem Gel ausgeschnitten und mit dem "Gelpurification"-Kit (Qiagen) nach Herstellerangaben aufgereinigt. Beide Fragmente wurden für 2 h bei 16°C ligiert (T4 Ligase, New England Biolabs) und anschliessend nach Herstellerangaben in E. coli DH5 α Zellen (Stratagen) transformiert. Positive Klone wurden durch PCR 15 mit dem Primerpaar OPN1 und OPN4 identifiziert und anschliessend verifiziert durch Sequenzierung. Der erhaltene Vektor wurde mit pGEM-159-GFP bezeichnet.
- d) Herstellung des Supressionskonstruktes 1: Der Vektor pGEM-159-GFP wurde einerseits mit den Restriktionsenzymen XhoI und BamHI, ein weiterer Ansatz mit BamHI und SalI inkubiert. Der zweite Ansatz mit BamHI/ SalI wurde anschliessend für weitere 15 min mit alkalischer Phosphatase inkubiert. Die DNA-Fragmente aus beiden Ansätzen wurden über Agarose-Gelelektrophorese aufgetrennt und folgende Fragmente ausgeschnitten: Ansatz BamHI-XhoI das 1091 bp Fragment; Ansatz BamHI-SalI das 4029 bp Fragment. Beide Fragmente wurden nach Aufreinigung aus dem Agarose-Gel (siehe oben) für 2 h bei 16°C mit T4 Ligase inkubiert und anschliessend in E. coli DH5α Zellen (Stratagen) transformiert. Positive Klone wurden durch PCR mit dem Primerpaar OPN1 identifiziert und anschliessend verifiziert durch Sequenzierung. Der erhaltene Vektor wurde als Supressionskonstrukt 1 bezeichnet.
- e) Herstellung des Supressionskonstruktes 2: Das Supressionskonstrukt 1 und der Vektor p3300.1 (Andreas Hilbrunner, Dissertation ETH Zürich, 2003) wurden für 2h Stunden mit dem Restriktionsenzym EcoRI inkubiert. Anschliessend wurde der Vektor p3300.1 15 min mit alkalischer Phosphatase behandelt. Beide Ansätze wurden gemischt und für 2 h bei 16°C mit T4 Ligase inkubiert. Der Ligationsansatz wurde dann in E. coli DH5α Zellen (Stratagen) transformiert. Das entstandene Supressionskonstrukt 2 wurde dann für die Agrobacterium- und Pflanzentransformation eingesetzt. Die Nukleinsäuresequenz kodierend für Supressionskonstrukt 2 wiedergegeben.

40

Die Transformtion von Agrobakterien und Pflanzen wurde wie in Beispiel 3 bzw. 4 beschrieben durchgeführt. Zum Nachweis der Funktionalität des Supressionskonstruktes 2 wurde dieses durch die nach Bechtold et al., 1993 (C.R. Acad. Sci. Ser. III Sci.

- 5 Vie., 316, 1194-1199) beschriebene Blüten-Transformationsmethode in Arabidopsis transformiert. Aus Ausgangsmaterial wurden Arabidopsis Pflanzen der Varietät Columbia-O verwendet, die bereits die T-DNA des binären Vektors pBIN-35S-GFP enthielten.
- 10 Durch Anregung durch ultraviolettes Licht im Wellenlängenbereich 470-490 nm die grüne Fluoreszenz von GFP in diesen Pflanzen angeregt werden und damit die Expression des eingebrachten Transgens überprüft werden. Dazu wurden Keimlinge 1 Woche nach Keimung oder Blattstücke bei älteren Pflanzen mit dem Fluoreszenzmikroskop
- 15 MZFLIII von Leica analysiert. Zur Anregung von GFP wurden folgende Parameter eingestellt: Quecksilberlampe HBO 100W/DC, Filter GFP3, Bildbearbeitung Leica-Software. Speziell die Verwendung eines Filters (GFP3), der oberhalb einer Wellenlänge von 525 nm nicht mehr durchlässig ist, ermöglicht die GFP-Analyse von grünen
- 20 Blattmaterial. Ohne diesen Filter könnte die starke Autofluoreszenz des Blattfarbstoffes Chlorophyll nicht ausgeschlossen werden. Die zur Transformation verwendete Arabidopsis Linie zeigte eine starke GFP Expression nach mikroskopischer Analyse.
- 25 Transformierte Samen wurden direkt auf Erde ausgelegt und angezogen. Nach einer Woche wurde nach Keimlingen gesucht, die keinen oder einen reduzierten Anteil des Blattfarbstoffes Chlorophyll enthielten. Solche Pflanzen waren leicht an ihrer hellgrünen oder weisen Erscheinungsbild zu erkennen. Diese Pflanzen wurden dann
- 30 weiter durch Fluoreszenz-Mikroskopie untersucht und mit entsprechend parallel gewachsenen grünen Pflanzen verglichen. Fig.5A zeigt beispielhaft ein solche identifizierte Pflanze, die sich deutlich in der Farbe der Blätter von parallel gewachsenen Pflanzen unterscheidet. Dabei ist der Albino-Phänotyp (weisse Blätter)
- 35 auf die Wirkung des Toc159-Supressionskonstrukts zurückzuführen. Die nicht transformierten Nachkommen der mit Agrobacerium-Suspension behandelten Pflanzen zeigen den Albino-Phänotyp nicht. Der auftretende Albino-Phänotyp ist damit ein spezifischer Effekt des eingebrachten Supressionskonstruktes.

Die Fluoreszenz-mikroskopische Untersuchung der Albino-Pflanzen zeigte dann (Fig.5B), dass keine GFP-Signale in solchen Pflanzen gefunden werden konnte. Im Vergleich dazu zeigten die parallel gewachsenen grünen Pflanzen deutliche GFP Signale. Die Abwesen-

45 heit des GFP-Signals in allen identifizierten Albino-Pflanzen demonstriert die Funktionalität des Supressionskonstruktes, denn nur die mit dem Supressionkonstrukt transformierten Pflanzen zeigten keine GFP-Signale mehr. Es konnte keine Segregation der beiden angestrebten Phänotypen beobachtet werden. Damit konnte gezeigt werden, dass durch Verwendung von nur einem Kontrollelement (Promotor) zwei funktionell völlig unterschiedliche Gene,

5 die ihrerseits durch unterschiedliche Kontrollelemente in ihrer Expression reguliert werden, ausgeschaltet werden konnten.

10

15

20

25

30

35

25

Patentansprüche

- Verfahren zur Verminderung der Expression von mindestens zwei verschiedenen, endogenen Zielgenen in einer eukaryotischen Zelle oder einem eukaryotische Organismus durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in besagte eukaryotische Zelle oder besagten eukaryotischen Organismus, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst
 - a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem
 Teil des "sense"-RNA-Transkriptes eines jeden der besagten endogenen Zielgene und
- b) "antisense"-Ribonukleotidsequenzen, die zu besagten
 "sense"-Ribonukleotidsequenzen unter a) im wesentlichen
 komplementären sind.
 - 2. Verfahren nach Anspruch 1, wobei die transkribierten RNAs von mindestens zwei der in ihrer Expression verminderten Zielgene untereinander eine Homologie von unter 90% haben.

3. Verfahren nach Anspruch 1 oder 2, wobei die doppelsträngige RNA durch ein einziges selbstkomplementäres Ribonukleotidmolekül gebildet wird.

- 30 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei mindestens eine der ausgehend von den einzelnen "sense"-Ribonukleotidsequenzen gebildeten doppelsträngigen RNA-Strukturen eine Länge eines geradzahligen Vielfachen von 21 oder 22 Basenpaaren hat.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Ribonukleotidmolekül zwischen mindestens einer "sense"-Ribonukleotidsequenz und der dazu im wesentlichen komplementären "antisense"-Ribonukleotidsequenz eine Ribonukleotidsequenz kodierend für ein Intron enthält.

45

5

10

15

20

- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens zwei der endogenen Zielgene ausgewählt sind aus jeweils unterschiedlichen Klassen von Speicherprotein ausgewählt aus den Speicherprotein-Klassen der 2S-Albumine, 7S-Globuline, 11S/12S-Globuline oder Zein-Prolamine.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei mindestens eine "sense"-Ribonukleotidsequenz im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes
 - a) einer Speicherprotein-Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 59, 61, 63, 65, 67, 69, 71, 93, 95, 97, 99, 101, 103, 105, 107, 109 oder 112, oder
 - b) eines Gens aus dem Homogentisatabbauweg gemäß SEQ ID NO: 115, 116, 118 oder 120, oder

eines Gens ausgewählt aus der Gruppe bestehend aus Acetyltransacylasen, Acyltransportproteinen, Fettsäuredesaturasen, Malonyltransacylasen, β-Ketoacyl-ACP-synthetasen, 3-Keto-ACP-reduktasen, Enoyl-ACP-hydrasen, Thioeste-25 rasen, Enoyl-ACP-reduktasen, ADP-Glucosepyrophosphorylasen, Phosphorylasen, Stärkesynthetasen, Q-Enzymen, Sucrose-6-phosphatsynthetasen, Sucrose-6-phosphatphosphatasen, ADP-Glucosepyrophosphorylasen, Branching-Enzymen, Debranching-Enzymen, Amylasen, Chalconsynthasen, Chalco-30 nisomerasen, Phenylalaninammonialyasen, Dehydrokaempferol(flavone)hydroxylasen, Dihydroflavonolreduktasen, Dihydroflavanol-2-hydroxylasen, Flavonoid-3'-hydroxylasen, Flavonoid-5'-hydroxylasen, Flavonoidglycosyltransferasen, Flavonoidmethyltransferasen, Flavonoidacyltransferasen, Polygalacturonasen, Cellulasen, Pectinesterasen, 35 β -(1-4)Glucanasen, β -Galactanasen, 1-Aminocyclopropan-1-carboxylatsynthasen, Phytoendesaturasen, Cinnamoyl-CoA: NADPH-Reduktasen, Cinnamoylalkoholdehydrogenasen, Coffeinsäure-O-methyltransferasenn Cinnamoylalkoholdehy-40 drogenasen, Polyphenoloxidasen, Homogentisat-1,2-dioxygenasen, Maleylacetoacetatisomerasen, Fumarylacetoacetathydrolasen, N-Methyl-putrescinoxidasen, Putrescin-N-methyltransferasen, 7-Methylxanthine-3-methyltransferasen, 1-Methylxanthin-3-methyltransferasen und Threoninsyntha-45 sen.

15

- 8. Ribonukleinsäuremolekül, das eine zumindest teilweise doppelsträngige Struktur hat und umfasst
- a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser
 "sense"-Ribonukleotidsequenzen im wesentlichen identisch
 ist zu mindestens einem Teil des "sense"-RNA-Transkriptes
 eines endogenen Zielgens, wobei jedoch nicht alle
 "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens im wesentlichen
 identisch sind, und
 - b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.
 - Ribonukleinsäuremolekül nach Anspruch 8, wobei das Ribonukleinsäuremolekül wie in einem der Ansprüche 2 bis 7 gekennzeichnet ist.
- 10. Transgene Expressionskassette enthaltend in funktioneller Verknüpfung mit einem Promotor eine Nukleinsäuresequenz kodierend für doppelsträngiges Ribonukleinsäuremolekül gemäß einem der Ansprüche 8 oder 9, wobei das Ribonukleinsäuremolekül aus einem einzigen RNA-Strang gebildet wird.
 - 11. Transgenes Expressionssystem enthaltend
- a) in funktioneller Verknüpfung mit einem Promotor eine

 Nukleinsäuresequenz kodierend für "sense"-Ribonukleotidsequenzen eines doppelsträngigen Ribonukleinsäuremoleküls
 gemäß einem der Ansprüche 8 oder 9 und
- b) in funktioneller Verknüpfung mit einem Promotor eine
 Nukleinsäuresequenz kodierend für "antisense"-Ribonukleotidsequenzen eines doppelsträngigen Ribonukleinsäuremoleküls gemäß einem der Ansprüche 8 oder 9,
- wobei das Ribonukleinsäuremolekül aus den beiden unter a)
 und b) definierten Strängen gebildet wird, und die Promotoren
 so gewählt sind, das in einem bestimmten Organismus oder
 Zelle die gleichzeitige Expression von "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen gewährleistet ist.

- 12. Transgener Vektor enthaltend eine transgene Expressionskassette gemäß Anspruch 10 oder ein transgenes Expressionssystem gemäß Anspruch 11.
- 5 13. Transgener Organismus enthaltend eine transgene Expressionskassette gemäß Anspruch 10 oder ein transgenes Expressionssystem gemäß Anspruch 11 oder einen transgenen Vektor gemäß Anspruch 12.
- 10 14. Transgener Organismus nach Anspruch 13 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, nicht-menschlichen Tieren und Pflanzen.
- 15: Transgener Organismus nach Anspruche 13, dadurch gekennzeichnet, dass die Pflanze ausgewählt ist aus der Gruppe der landwirtschaftlichen Nutzpflanzen.
- 16. Verwendung eines Ribonukleotidmoleküls nach einem der Ansprüche 8 oder 9, einer transgenen Expressionskassette gemäß Anspruch 10, eines transgenen Expressionssystem gemäß Anspruch 11, eines transgenen Vektors gemäß Anspruch 12 oder eines transgenen Organismus gemäß einem der Ansprüche 13 bis 15 zur Herstellung von Arzneimitteln, in biotechnologischen Verfahren oder in der Pflanzenbiotechnologie.

- 17. Verwendung nach Anspruch 16, wobei mindestens einer der nachfolgenden Eigenschaften in Pflanzen erzielt wird:
 - a) Verbesserter Schutz gegen abiotische Stressfaktoren

30

- b) Modifikation der Zusammensetzung und/oder des Gehaltes an Fettsäuren, Lipiden oder Ölen
- c) Modifikation der Kohlenhydratzusammensetzung

35

- d) Veränderung der Farbe oder Pigmentierung
- e) Verminderung des Gehaltes von Speicherproteinen
- 40 f) Erreichen einer Resistenz gegen pflanzliche Pathogene
 - g) Verhinderung von Halmbruch
 - h) Verzögerung der Fruchtreifung

45

i) Erzielen einer männlichen Sterilität

85 Verminderung unerwünschter oder toxischer Pflanzeninhaltsstoffe k) Verzögerung von Alterserscheinungen 5 1) Modifikation der Lignifikation und/oder des Ligningehaltes m) Modifikation des Faseranteils in Nahrungsmitteln oder der 10 Faserqualität in Baumwolle n) Verminderung der Stoßanfälligkeit Steigerung der Vitamin E Biosynthese 0) 15 Verminderung des Nikotingehaltes, des Coffeingehaltes p) oder des Theophyllin-Gehaltes Erhöhung des Methioningehaltes durch Verminderung der q) 20 Threoninbiosynthese 25

30

35

Fig. 1

Fig.2

Fig.3

Fig.4

Fig.5

SEQUENZPROTOKOLL

•	SEQUENZPROTOKOLL
<110> BASF Plant Science GmbH	
<pre><120> Konstrukte und Verfahren Genexpression</pre>	zur Regulation der
<130> PD009300062-AT	·
<140>	
<141>	
<160> 126	
<170> PatentIn Ver. 2.1	
<210> 1 <211> 495	
<212> DNA	
<213> Arabidopsis thaliana	
<220> <221> CDS	
<222> CDS <222> (1)(492)	
<223> albumine 2S subunit 1	
<400> 1	
Met Ala Asn Lvs Leu Phe Leu Val	tgc gca gct ctc gct ctc tgc ttc 48 Cys Ala Ala Leu Ala Leu Cys Phe
1 5	10 15
ctc ctc acc aac gct tcc atc tac	cgc acc gtc gtt gag ttc gaa gaa 96
Leu Leu Thr Asn Ala Ser Ile Tyr 20	Arg Thr Val Val Glu Phe Glu Glu 25 30
•	
Asp Asp Ala Thr Asn Pro Ile Gly	cca aaa atg agg aaa tgc cgc aag 144 Pro Lys Met Arg Lys Cys Arg Lys
35 40	45
gag ttt cag aaa gaa caa cac cta	aga gct tgc cag caa ttg atg ctc 192
50 55	Arg Ala Cys Gln Gln Leu Met Leu 60
cag caa gca agg caa ggc cgt agc	gat gag ttt gat ttc gaa gac gac 240
Gln Gln Ala Arg Gln Gly Arg Ser	Asp Glu Phe Asp Phe Glu Asp Asp
65 70	75 80
Met Glu Asn Pro Gln Gly Gln Gln	cag gaa caa cag cta ttc cag cag 288 Gln Glu Gln Gln Leu Phe Gln Gln
85	90 95
tgc tgc aac gag ctt cgc cag gaa	gag cca gat tgt gtt tgc ccc acc 336
Cys Cys Asn Glu Leu Arg Gln Glu 100	Glu Pro Asp Cys Val Cys Pro Thr 105 110
	aga ctc cag gga cag cac caa cca 384
Leu Lys Gln Ala Ala Lys Ala Val	Arg Leu Gln Gly Gln His Gln Pro
115 120	125
atg caa gtc agg aaa att tac cag	aca gcc aag cac ttg ccc aac gtt 432 Thr Ala Lys His Leu Pro Asn Val
130 135	140
tgc gac atc ccg caa gtt gat gtt	tgt ccc ttc aac atc cct tca ttc 480
Cys Asp Ile Pro Gln Val Asp Val	Cys Pro Phe Asn Ile Pro Ser Phe
145 150	155 160
CCt tCt ttc tac taa Pro Ser Phe Tyr	495

wo	03/07	8629				
<21: <21: <21:	0> 2 1> 1(2> PI 3> AI	RT	dops:	is tl	nalia	ana
-	0> 2 Ala	Asn	Lys	Leu 5	Phe	Le
Leu	Leu	Thr	Asn 20	Ala	Ser	Il
Asp	Asp	Ala 35	Thr	Asn	Pro	Il
Glu	Phe 50	Gln	Lys	Glu	Gln	Hi 5
Gln 65	Gln	Ala	Arg	Gln	Gly 70	Ar
Met	Glu	Asn	Pro	Gln 85	Gly	Gl
]ys	Cys	Asn	Glu 100	Leu	Arg	Gl

Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu
20 25 30

Asp Asp Ala Thr Asn Pro Ile Gly Pro Lys Met Arg Lys Cys Arg Lys 35 40 45

Glu Phe Gln Lys Glu Gln His Leu Arg Ala Cys Gln Gln Leu Met Leu 50 55 60

Gln Gln Ala Arg Gln Gly Arg Ser Asp Glu Phe Asp Phe Glu Asp Asp 65 70 75 80

Met Glu Asn Pro Gln Gly Gln Gln Gln Gln Gln Leu Phe Gln Gln 85 90 95

Cys Cys Asn Glu Leu Arg Gln Glu Glu Pro Asp Cys Val Cys Pro Thr 100 105 110

Leu Lys Gln Ala Ala Lys Ala Val Arg Leu Gln Gly Gln His Gln Pro 115 120 125

Met Gln Val Arg Lys Ile Tyr Gln Thr Ala Lys His Leu Pro Asn Val 130 135 140

Cys Asp Ile Pro Gln Val Asp Val Cys Pro Phe Asn Ile Pro Ser Phe 145 150 155 160

Pro Ser Phe Tyr

<210> 3

<211> 495

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(492)

<223> albumine 2S subunit 3

<400> 3

atg gct aac aag ctc ttc ctc gtc tgc gca act ctc gcc ctc tgc ttc 48
Met Ala Asn Lys Leu Phe Leu Val Cys Ala Thr Leu Ala Leu Cys Phe
1 5 10 15

ctc ctc acc aac gct tcc atc tac cgc acc gtt gtc gaa ttc gaa gaa 96 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu 20 25 30 .

gat gac gcc agc aac ccc gta ggt cca aga cag aga tgc cag aag gag 144
Asp Asp Ala Ser Asn Pro Val Gly Pro Arg Gln Arg Cys Gln Lys Glu
35 40 45

ttt cag caa tca caa cac cta aga gct tgc cag aga tgg atg agc aag 192
Phe Gln Gln Ser Gln His Leu Arg Ala Cys Gln Arg Trp Met Ser Lys
50 55 60

PCT/EP03/02735

											3						
•	caa Gln 65	Met	g agg : Arg	caa Gln	gga Gly	cgt Arg 70	ggt Gly	ggt Gly	ggt	cct Pro	tcc Ser 75	Leu	gac Asp	gat Asp	gag Glu	ttc Phe 80	240
	gat Asp	tto Phe	gag Glu	ggc Gly	ccc Pro 85	cag Gln	cag Gln	gga Gly	tac Tyr	cag Gln 90	cta Leu	ctc Leu	cag Gln	cag Gln	tgc Cys 95	tgc Cys	288
	aac Asn	gag Glu	ctt Leu	cgc Arg 100	Gln	gaa Glu	gag Glu	cca Pro	gtt Val 105	tgc Cys	gtt Val	tgc Cys	ccc Pro	acc Thr 110	ttg Leu	aaa Lys	336
	caa Gln	gct Ala	gcc Ala 115	Arg	gca Ala	gtt Val	agc Ser	ctc Leu 120	cag Gln	gga Gly	cag Gln	cac His	gga Gly 125	cca Pro	ttc Phe	caa Gln	384
	tcc Ser	agg Arg 130	Lys	att Ile	tac Tyr	cag Gln	tca Ser 135	gct Ala	aag Lys	tac Tyr	ttg Leu	cct Pro 140	aac Asn	att Ile	tgc Cys	aag Lys	.432
	atc Ile 145	cag Gln	caa Gln	gtt Val	ggt Gly	gaa Glu 150	tgt Cys	ccc Pro	ttc Phe	cag Gln	acc Thr 155	acc Thr	atc Ile	cct Pro	ttc Phe	ttc Phe 160	480
				tac Tyr	tag												495
	<213 <213 <400)> 4	RT rabi			halia Phe		Val	Cys	Ala 10	Thr	Leu	Ala	Leu ·	Cys 15	Phe	·
				20		Ser			25					30			
	Asp	Asp	Ala 35	Ser	Asn	Pro	Val	Gly 40	Pro	Arg	Gln	Arg	Cys 45	Gln	Lys	Glu	
•	Phe	Gln 50	Gln	Ser	Gln	His	Leu 55	Arg	Ala	Суѕ	Gln	Arg 60	Trp	Met	Ser	Lys	
	Gln 65	Met	Arg	Gln	Gly	Arg 70	Gly	Gly	Gly	Pro		Leu			Glu	Phe 80	
	Asp	Phe	Glu	Gly	Pro 85	Gln	Gln	Gly	Tyr	Gln 90	Leu	Leu	Gln	Gln	Cys 95	Cys	
	Asn	Glu	Leu	Arg 100	Gln	Glu	Glu	Pro	Val 105	Cys	Val	Cys		Thr 110	Leu	Lys	
	Ģļn	Ala	Ala 115	Arg	Ala	Val	Ser	Leu 120	Gln	Gly	Gln		Gly 125	Pro	Phe	Gln	
	Ser	Arg 130	Lys	Ile	Tyr	Gln	Ser 135	Ala	Lys	Tyr	Leu	Pro 140	Asn	Ile	Cys	Lys	
	Ile 145	Gln	Gln	Val	Gly	Glu 150	Cys	Pro	Phe		Thr 155	Thr	Ile	Pro		Phe 160	
	_																

Pro Pro Tyr Tyr

	2> DI 3> A:		dops:	is tl	nalia	ana										
<222 <222	<220> <221> CDS <222> (1)(510) <223> albumine 2S subunit 2															
atg	_		aag Lys					_	_			_		_		48
			aac Asn 20	_				_		_	_			_	_	96
_	_	-	agc Ser											_	_	144
	_		tca Ser							-					_	192
	Met		caa Gln													240
			gac Asp													288
_			cag Gln 100	_	_											336
			ccc Pro													384
			gga Gly													432
			aac Asn											Pro		480
_			atc Ile							taa						513
<212	l> 17 l> PH	TΣ	dopsi	is tl	nalia	ana										
<400 Met		Asn	Lys	Leu	Phe	Leu	Val	Cys	Ala	Thr	Phe	Ala	Leu	Cys	Phe	
1 Leu	Į,en	ጥከዮ	Acn	5 Ala	Ser	Ile	Φvr	Arσ	10 Thr	۷al	Va1	Glu	Phe	15 Asp	Glii	
			20					25					30			
Asp	Asp	Ala 35	Ser	Asn	Pro	Met	Gly 40	Pro	Arg	GIn	Lys	Cys 45	GIN	Lys	GIU	

Phe Gln Gln Ser Gln His Leu Arg Ala Cys Gln Lys Leu Met Arg Met 50 Gln Met Arg Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe Asp Leu Glu Asp Asp Ile Glu Asn Pro Gln Gly Pro Gln Gln Gly His Gln Ile Leu Gln Gln Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val 105 Cys Val Cys Pro Thr Leu Arg Gln Ala Ala Arg Ala Val Ser Leu Gln 115 120 Gly Gln His Gly Pro Phe Gln Ser Arg Lys Ile Tyr Lys Thr Ala Lys Tyr Leu Pro Asn Ile Cys Lys Ile Gln Gln Val Gly Glu Cys Pro Phe 150 155 Gln Thr Thr Ile Pro Phe Phe Pro Pro Tyr 165 <210> 7 <211> 501 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(498) <223> albumine 2S subunit 4 <400> 7 atg gcg aac aag ctc ttc ctc gtc tgc gca gct ctc gcc ctg tgt ttc 48 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe atc ctc acc aac gct tcc gtc tat cgc acc gtt gtc gag ttc gac gaa Ile Leu Thr Asn Ala Ser Val Tyr Arg Thr Val Val Glu Phe Asp Glu 25 gat gac gcc agt aac ccc ata ggc cca ata cag aaa tgt cag aag gag 144 Asp Asp Ala Ser Asn Pro Ile Gly Pro Ile Gln Lys Cys Gln Lys Glu 40 ttt cag caa gac cag cac cta aga gct tgc cag aga tgg atg cgc aag 192 Phe Gln Gln Asp Gln His Leu Arg Ala Cys Gln Arg Trp Met Arg Lys. 55 caa atg tgg caa gga cgt ggt ggt cct tcc ctc gac gat gag ttc 240 Gln Met Trp Gln Gly Arg Gly Gly Gly Pro Ser Leu Asp Asp Glu Phe 65 75 gat atg gaa gac gac atc gag aac ccg cag aga cga cag cta ctc cag 288 Asp Met Glu Asp Asp Ile Glu Asn Pro Gln Arg Arg Gln Leu Leu Gln 85 aag tgc tgc agc gag ctt cgc caa gaa gag cca gtt tgc gtt tgc ccc 336 Lys Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val Cys Val Cys Pro 100 105 acc ttg aga caa gct gcc aag gcc gtt aga ttc cag gga cag caa cac Thr Leu Arg Gln Ala Ala Lys Ala Val Arg Phe Gln Gly Gln Gln His 115

PCT/EP03/027

caa cca gag caa gtc agg aaa att tac cag gca gct aag tac ttg cct 432 Gln Pro Glu Gln Val Arg Lys Ile Tyr Gln Ala Ala Lys Tyr Leu Pro 135 aac att tgc aaa atc cag caa gtt ggt gtt tgc ccc ttc cag atc cct 480 Asn Ile Cys Lys Ile Gln Gln Val Gly Val Cys Pro Phe Gln Ile Pro 150 155 tca atc cct tct tac tac taa 501 Ser Ile Pro Ser Tyr Tyr 165 <210> 8 <211> 166 <212> PRT <213> Arabidopsis thaliana <400> 8 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe Ile Leu Thr Asn Ala Ser Val Tyr Arg Thr Val Val Glu Phe Asp Glu 25 Asp Asp Ala Ser Asn Pro Ile Gly Pro Ile Gln Lys Cys Gln Lys Glu Phe Gln Gln Asp Gln His Leu Arg Ala Cys Gln Arg Trp Met Arg Lys 55 Gln Met Trp Gln Gly Arg Gly Gly Gly Pro Ser Leu Asp Asp Glu Phe Asp Met Glu Asp Asp Ile Glu Asn Pro Gln Arg Arg Gln Leu Leu Gln 85 Lys Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val Cys Val Cys Pro 105 Thr Leu Arg Gln Ala Ala Lys Ala Val Arg Phe Gln Gly Gln Gln His 120 Gln Pro Glu Gln Val Arg Lys Ile Tyr Gln Ala Ala Lys Tyr Leu Pro 130 135 Asn Ile Cys Lys Ile Gln Gln Val Gly Val Cys Pro Phe Gln Ile Pro Ser Ile Pro Ser Tyr Tyr 165 <210> 9

<211> 1473 <212> DNA <213> Brassica napus <220> <221> CDS [<222> (1)..(1470) <223> cruciferin

atg gct egg etc tea tet etc etc tet ttt tee tta gca ett ttg ate Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Ile 10

ttt Phe	ctc Leu	cat His	ggc Gly 20	tct Ser	aca Thr	gct Ala	caa Gln	cag Gln 25	Phe	cca Pro	aac Asn	gag Glu	tgt Cys 30	cag Gln	cta Leu	96
							ccg Pro 40									144
							cac His									192
Gly 65	Val	Ser	Phe	Val	Arg 70	Tyr	atc Ile	Ile	Glu	Ser 75	Lys	Gly	Leu	Tyr	Leu 80	240
			Phe				aag Lys									288
							cct Pro									336
							ggt Gly 120									384
Gly							ggc									432
							cag Gln									480
ggc	ttc Phe	cgt Arg	gat Asp	atg Met 165	cac His	cag Gln	aaa Lys	gtg Val	gag Glu 170	cac His	ata Ile	agg Arg	act Thr	ggg Gly 175	gac Asp	528
							gta Val									576
							tcc Ser 200									624
							agg Arg									672
cca Pro 225	caa Gln	ggc Gly	caa Gln	gta Val	tgg Trp 230	ata Ile	gaa Glu	gga Gly	cgc Arg	gag Glu 235	caa Gln	cag Gln	cca Pro	caa Gln	aag Lys 240	720
aac Asn	atc Ile	ctt Leu	aat Asn	ggc Gly 245	ttc Phe	aca Thr	cca Pro	gag Glu	gtt Val 250	ctt Leu	gct Ala	aaa Lys	gct Ala	ttc Phe 255	aag Lys	768
							caa Gln									816
gga Gly	aac Asn	att Ile 275	atc Ile	cga Arg	gtc Val	caa Gln	ggc Gly 280	cca Pro	ttc Phe	agt Ser	gtc Val	att Ile 285	agg Arg	ccg Pro	cct Pro	864

										0						
ttg Leu	agg Arg 290	agt Ser	cag Gln	aga Arg	ccg Pro	cag Gln 295	gag Glu	aca Thr	gaa Glu	gtt Val	aac Asn 300	ggt Gly	tta Leu	gaa Glu	gag Glu	912
acc Thr 305	ata Ile	tgc Cys	agc Ser	gcg Ala	agg Arg 310	tgc Cys	acc Thr	gat Asp	aac Asn	ctc Leu 315	gat Asp	gac Asp	cca Pro	tct Ser	aat Asn 320	960
gct Ala	gac Asp	gta Val	tac Tyr	aag Lys 325	cca Pro	cag Gln	ctc Leu	ggt Gly	tac Tyr 330	atc Ile	agc Ser	act Thr	ctg Leu	aac Asn 335	agc Ser	1008
tat Tyr	gat Asp	ctc Leu	ccc Pro 340	atc Ile	ctt Leu	cgc Arg	ttc Phe	ctt Leu 345	cgt Arg	ctc Leu	tca Ser	gcc Ala	ctc Leu 350	cgt Arg	gga Gly	1056
tct Ser	atc Ile	cgt Arg 355	caa Gln	aac Asn	gcg Ala	atg Met	gtg Val 360	ctt Leu	cca Pro	cag Gln	tgg Trp	aac Asn 365	gca Ala	aac Asn	gca Ala	1104
aac Asn	gcg Ala 370	gtt Val	ctc Leu	tac Tyr	gtg Val	aca Thr 375	gac Asp	ggg Gly	gaa Glu	gcc Ala	cat His 380	gtg Val	cag Gln	gtg Val	gtt Val	1152
aac Asn 385	gac Asp	aac Asn	ggt Gly	gac Asp	aga Arg 390	gtg Val	ttc Phe	gac Asp	gga Gly	caa Gln 395	gtc Val	tct Ser	caa Gln	gga Gly	cag Gln 400	1200
cta Leu	ctt Leu	tcc Ser	ata Ile	cca Pro 405	caa Gln	ggt Gly	ttc Phe	tcc Ser	gtg Val 410	gtg Val	aaa Lys	cgc Arg	gca Ala	aca Thr 415	agc Ser	1248
gaa Glu	cag Gln	ttc Phe	cgg Arg 420	tgg Trp	atc Ile	gag Glu	ttc Phe	aag Lys 425	aca Thr	aac Asn	gca Ala	aac Asn	gca Ala 430	cag Gln	atc Ile	1296
aac Asn	aca Thr	ctt Leu 435	gct Ala	gga Gly	cga Arg	acc Thr	tcg Ser 440	gtc Val	ttg Leu	aga Arg	ggt Gly	tta Leu 445	cca Pro	tta Leu	gag Glu	1344
gtc Val	ata Ile 450	tcc Ser	aat Asn	ggg ggg	tac Tyr	caa Gln 455	atc Ile	tca Ser	ctc Leu	gaa Glu	gaa Glu .460	gca Ala	aga Arg	agg Arg	gtt Val	1392
aag Lys 465	ttc Phe	aac Asn	acg Thr	atc Ile	gag Glu 470	acc Thr	act Thr	ttg Leu	acg Thr	cac His 475	agc Ser	agt Ser	ggc Gly	cca Pro	gct Ala 480	1440
			ggg													1473
<211 <212	0> 10 L> 49 2> Pl 3> Bi	90 RT	ica:	napu	s											
<400 Met 1)> 10 Ala) Arg	Leu	Ser 5	Ser	Leu	Leu	Ser	Phe 10	Ser	Leu	Ala	Leu	Leu 15		
Phe	Leu	His	Gly 20	Ser	Thr	Ala	Gln	Gln 25	Phe	Pro	Asn	Glu	Cys 30		Leu	
Asp	Gln	Leu 35	Asn	Ala	Leu	Glu	Pro 40		His	Val	Leu	Lys 45		Glu	Ala	

Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Ser Thr Ala Lys Leu Ser Phe Val Ala Lys Gly Glu 85 90 Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp 100 105 Ser Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Ser Gly Glu Gly Gln Gly Gln Gly Gln Gly Gln Gly Gln Gly His Gln Gly Gln Gly Gln 135 Gly Gln Gln Gly Gln Gln Gln Gln Gln Gln Ser Gln Gly Gln 150 Gly Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp 165 170 Thr Ile Ala Thr His Pro Gly Val Ala Gln Trp Phe Tyr Asn Asp Gly 190 185 Asn Gln Pro Leu Val Ile Val Ser Val Leu Asp Leu Ala Ser His Gln 200 205 · Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr Leu Ala Gly Asn Asn 215 . Pro Gln Gly Gln Val Trp Ile Glu Gly Arg Glu Gln Gln Pro Gln Lys 235 Asn Ile Leu Asn Gly Phe Thr Pro Glu Val Leu Ala Lys Ala Phe Lys 245 250 Ile Asp Val Arg Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg 260 -265 Gly Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro 275 280 Leu Arg Ser Gln Arg Pro Gln Glu Thr Glu Val Asn Gly Leu Glu Glu 295 Thr Ile Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn 310 315 Ala Asp Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser 325 330 Tyr Asp Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser Ile Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala 360 Asn Ala Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val 375 Asn Asp Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln 390 395 Leu Leu Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser 405 410 Glu Gln Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile 420 425

Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala 465 470 475 480

Ser Tyr Gly Gly Pro Arg Lys Ala Asp Ala 485 490

<210> 11

<211> 1467

<212> DNA

<213> Brassica napus

<220>

<221> CDS

<222> (1)..(1464)

<223> cruciferin

<400> 11

atg gct cgg ctc tca tct ctt ctc tct ttt tcc tta gca ctt ttg act 48 Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Thr

10 15

ttt ctc cat ggc tct aca gct caa cag ttt cca aac gag tgt cag cta 96
Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu
20 25 30

gac cag ctc aat gca ctg gag ccg tca cac gta ctt aag gct gag gct 144
Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala
35 40 45

ggt cgc atc gag gtg tgg gac cac cac gct cct cag cta cgt tgc tct 192
Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser
50 55 60

ggt gtc tcc ttt gta cgt tac atc atc gag tct aag ggt ctc tac ttg 240
Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Lys Gly Leu Tyr Leu
65 70 75 80

ccc tct ttc ttt agc acc gcg agg ctc tcc ttc gtg gct aaa gga gaa 288
Pro Ser Phe Phe Ser Thr Ala Arg Leu Ser Phe Val Ala Lys Gly Glu

ggt ctt atg ggg aga gtg gtc ctg tgc gcc gag aca ttc cag gac tca 336

Gly Leu Met Gly Arg Val Val Leu Cys Ala Glu Thr Phe Gln Asp Ser

100 105 110

tca gtg ttt caa cca agc ggt ggt agc ccc ttc gga gaa ggt cag ggc 384
Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Phe Gly Glu Gly Gln Gly
115 120 125

caa gga caa caa ggt cag ggc caa ggc cac caa ggt caa ggc caa gga 432 Gln Gly Gln Gln Gly Gln Gly Gln Gly His Gln Gly Gln Gly Gln Gly 130 135 140

caa cag ggc caa caa ggt cag caa gga caa cag agt caa ggc cag ggt 480 Gln Gln Gly 155 160

ttc cgt gat atg cac cag aaa gtg gag cac ata agg act ggg gac acc 528 Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp Thr

165 170 175

WO 03/078629					11			PCT	EP03/02	735
atc gct aca Ile Ala Thr			Ala G							576
caa cca ctt Gln Pro Leu 195										624
cag ctc gac Gln Leu Asp 210			Pro F			a Gly				672
caa ggc caa Gln Gly Gln 225										720
atc ctt aat Ile Leu Asn	Gly Phe 245	Thr Pro	Glu V	/al Leu 250	Ala Lys	Ala	Phe	Lys 255	Ile	768
gat gtt agg Asp Val Arg	Thr Ala 260	Gln Gln	Leu G	Sln Asn 265	Gln Glr	Asp .	Asn 270	Arg	Gly	816
aac att atc Asn Ile Ile 275										864
agg agt cag Arg Ser Gln 290	Arg Pro	Gln Glu 295	Glu V	al Asn	Gly Let 300	Glu (Glu	Thr	Ile	912
tgc agc gcg Cys Ser Ala 305										960
gta tac aag Val Tyr Lys	Pro Gln 325	Leu Gly	Tyr I	le Ser 330	Thr Lev	a Asn	Ser '	Tyr 335	Asp	1008
ctc ccc atc Leu Pro Ile	Leu Arg 340	Phe Leu	Arg L	eu Ser 145	Ala Leu	Arg (Gly 3	Ser	Ile	1056
cgt caa aac Arg Gln Asn 355	Ala Met	Val Leu	Pro G 360	In Trp	Asn Ala	365	Ala	Asn	Ala	1104
gtt ctc tac Val Leu Tyr 370	Val Thr	Asp Gly 375	Glu A	da His	Val Glr 380	Val	Val 1	Asn	Asp	1152
aac ggt gac Asn Gly Asp 385	Arg Val	Phe Asp 390	Gly G	In Val	Ser Glr 395	Gly	Gln 1	Leu	Leu 400	1200
tcc ata cca Ser Ile Pro	Gln Gly 405	Phe Ser	Val V	al Lys 410	Arg Ala	Thr :	Ser (Glu 415	Gln	1248
ttc cgg tgg Phe Arg Trp	Ile Glu 420	Phe Lys	Thr A	sn Ala 25	Asn Ala	Gln :	Ile 2 430	Asn	Thr	1296
ctt gct gga Leu Ala Gly 435										1344

4	

										14						
		Gly	tac Tyr													1392
aac Asn 465	acg Thr	atc Ile	gag Glu	acc Thr	act Thr 470	ttg Leu	acg Thr	cac His	agc Ser	agt Ser 475	ggc Gly	cca Pro	gct Ala	agc Ser	tac Tyr 480	1440
			agg Arg					taa	•							1467
<21:	0> 1: 1> 4: 2> P: 3> B:	88 RT .	ica 1	napu	S											
<40	0> 12	2														
Met 1	Ala	Arg	Leu	Ser 5	Ser	Leu	Leu	Ser	Phe 10	Ser	Leu	Ala	Leu	Leu 15	Thr	
Phe	Leu	His	Gly 20	Ser	Thr	Ala	Gln	Gln 25	Phe	Pro	Asn	Glu	Cys 30	Gln	Leu	
Asp	Gln	Leu 35	Asn	Ala	Leu	Glu	Pro 40	Ser	His	Val	Leu	Lys 45	Ala	Glu	Ala	
Gly	Arg 50	Ile	Glu	Val	Trp	Asp 55	His	His	Ala	Pro	Gln 60	Leu	Arg	Cys	Ser ·	
Gly 65	Val	Ser	Phe	Val	Arg 70	Tyr	Ile	Ile	Glu	Ser 75	Lys	Gly	Leu	Tyr	Leu 80	
Pro	Ser	Phe	Phe	Ser 85	Thr	Ala	Arg	Leu	Ser '90	Phe	Val	Ala	Lys	Gly 95	Glu	
Gly	Leu	Met	Gly 100	Arg	Val	Val	Leu	Cys 105	Ala	Glu	Thr	Phe	Gln 110	Asp	Ser	
Ser	Val	Phe 115	Gln	Pro	Ser	Gly	Gly 120	Ser	Pro	Phe	Gly	Glu 125	Gly	Gln	Gly	
	130		Gln			135					140				-	
145			Gln		150					155			•		160	
			Met	165					170					175		
			His 180					185					190			
		195	Val				200					205				
Gln	Leu 210	Asp	Arg	Asn	Pro	Arg 215	Pro	Phe	Tyr	Leu	Ala 220	Gly	Asn	Asn	Pro	
225			Val		230					235					240	
Ile	Leu	Asn	Gly	Phe 245	Thr	Pro	Glu	Val	Leu 250	Ala	Lys	Ala	Phe	Lys 255	Ile	
Asp	Val	Arg	Thr 260	Ala	Gln	Gln	Leu	Gln 265	Asn	Gln	Gln	Asp	Asn 270	Arg	Gly	

13 Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro Leu 280 Arg Ser Gln Arg Pro Gln Glu Glu Val Asn Gly Leu Glu Glu Thr Ile 295 . 300 Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn Ala Asp 310 Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser Ile 345 Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala 360 Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val Asn Asp 375 380 Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Leu 390 395 Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Glu Gln 405 410 Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr 420 425 Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile 440

Ser Asn Gly Tyr Gln Ile Ser Leu Glu Glu Ala Arg Arg Val Lys Phe 455 460

Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr 470 475

Gly Gly Pro Arg Lys Ala Asp Ala 485

<210> 13

<211> 1491

<212> DNA

<213> Brassica napus

<220> ·

<221> CDS

<222> (1)..(1488)

<223> cruciferin BnC2

atg get ega etc teg tet etc tat ttt teg ata aca gtt ttg atc 48 Met Ala Arg Leu Ser Ser Leu Leu Tyr Phe Ser Ile Thr Val Leu Ile

ttt ctc cat ggc tct aca gct caa cag ttt cca aac gag tgc caa cta 96 Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu

gac cag ctc aat gcg ctg gag ccg tca cac gta ctt aag gcc gag gct Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala 40

ggt cgc atc gaa gtg tgg gac cac cac gct cct cag cta cgc tgc tct Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser 50 55 60

PCT/EP03/02735

	Val			gta Val												240
				aat Asn 85												288
				aga Arg												336
				caa Gln												384
Gly				cag Gln												432
				ggt Gly												480
				ggt Gly 165												528
				ggc Gly												· 576
				aat Asn												624
				cac His					_	_			-			672
				aaa Lys												720
				caa Gln 245												768
				ttc Phe												816
				aac Asn												864
				ccg Pro												912
gct Ala 305	aac Asn	ggt Gly	cta Leu	gaa Glu	gag Glu 310	acc Thr	ata Ile	tgc Cys	agc Ser	gca Ala 315	agg Arg	tgc Cys	acg Thr	gat Asp	aac Asn 320	960
				tct Ser 325												1008

WO 03/078629			PCT/EP03/02735
		15	
		a ccc atc ctt cgc gt u Pro Ile Leu Arg Va 5 35	l Leu Arg
		t caa aat gca atg gt g Gln Asn Ala Met Va 365	
		t ctc tac gtg aca ga l Leu Tyr Val Thr As 380	
		c ggt gac aga gtg tt n Gly Asp Arg Val Ph 395	
Gln Val Ser Gln G	gg cag cta ctt tc ly Gln Leu Leu Se 05	c att cca caa gga tt r Ile Pro Gln Gly Ph 410	c tcc gtt 1248 e Ser Val 415
gtg aaa cgc gca ac Val Lys Arg Ala Th 420	ca agc gat cag tt hr Ser Asp Gln Ph 42	c agg tgg ata gaa tt e Arg Trp Ile Glu Ph 5 43	e Lys Thr
		t gct gga cgt acc tc u Ala Gly Arg Thr Se 445	
aga ggt tta cca to Arg Gly Leu Pro Le 450	ta gag gtc ata gc eu Glu Val Ile Al 455	c aat ggg tac caa at a Asn Gly Tyr Gln Il 460	c tca ctt 1392 e Ser Leu
gaa gaa gca aga ag Glu Glu Ala Arg A 465	gg gtt aag ttc aa rg Val Lys Phe As 470	c aca ata gag acc ac n Thr Ile Glu Thr Th 475	t ttg acc 1440 r Leu Thr 480
His Ser Ser Gly P	ca gcg agc tac gg ro Ala Ser Tyr Gl 85	a agg cca agg aag gc y Arg Pro Arg Lys Al 490	t gat gct 1488 a Asp Ala 495
tga		•	1491
<210> 14 <211> 496 <212> PRT <213> Brassica na	pus		
<400> 14	or Ser Leu Leu Th	r Phe Ser Ile Thr Va	l Len Tle
met Ala Arg Leu Si	er ser bed bed ry 5	10	15
20	2		0 .
Asp Gln Leu Asn A	la Leu Glu Pro Se · 40	er His Val Leu Lys Al 45	a Glu Ala
Gly Arg Ile Glu V	al Trp Asp His Hi 55	s Ala Pro Gln Leu Ar 60	g Cys Ser
Gly Val Ser Phe V	al Arg Tyr Ile Il 70	e Glu Ser Gln Gly Le. 75	u Tyr Leu 80
	sn Thr Ala Asn Va 85	al Ser Phe Val Ala Ly 90	s Gly Gln 95

Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp

Leu Ser Ala Leu Arg Gly Ser Ile Arg Gln Asn Ala Met Val Leu Pro

Gln Trp Lys Ser Lys Ser Asn Ala Val Leu Tyr Val Thr Asp Gly Glu 375 380

Ala Gln Ile Gln Val Val Asn Asp Asn Gly Asp Arg Val Phe Asp Gly 390

Gln Val Ser Gln Gly Gln Leu Leu Ser Ile Pro Gln Gly Phe Ser Val

Val Lys Arg Ala Thr Ser Asp Gln Phe Arg Trp Ile Glu Phe Lys Thr 425

Asn Ala Asn Ala Gln Ile Asn Thr Leu Ala Gly Arg Thr Ser Val Met 440

Arg Gly Leu Pro Leu Glu Val Ile Ala Asn Gly Tyr Gln Ile Ser Leu 455

Glu Glu Ala Arg Arg Val Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr 470 475

His Ser Ser Gly Pro Ala Ser Tyr Gly Arg Pro Arg Lys Ala Asp Ala 490

<213 <213 <213		55 NA	ica :	napu	S											
<222 <223	1> C 2> (1) ruci:	(552) feri		u4											
ttg	tgc	aca	atg Met													48.
			aag Lys 20													96
			atc Ile													144
			aac Asn													192
			tac Tyr													240
			caa Gln													288
			cca Pro 100													336
			tgg Trp			Phe										384
Thr			gga Gly													432
			ggg Gly													480
ttc Phe	agc Ser	act Thr	ctt Leu	gag Glu 165	acc Thr	aca Thr	ttg Leu	act Thr	caa Gln 170	agc Ser	agt Ser	ggt Gly	cct Pro	atg Met 175	ggc Gly	528
			cct Pro 180					tga								555
<210> 16 <211> 184 <212> PRT																
<213> Brassica napus																
	> 16 Cys		Met	Arg 5	Cys	Thr	Glu	Asn	Leu 10	Asp	Asp	Pro	Ser	Ser 15	Ala	

Asp Val Tyr Lys Pro Ser Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr 20 25 30

Asn Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser 35 40 45

Ile His Asn Asn Ala Met Val Leu Pro Gln Trp Asn Val Asn Ala Asn 50 55 60

Ala Ala Leu Tyr Val Thr Lys Gly Lys Ala His Ile Gln Met Val Asn
65 70 75 80

Asp Asn Gly Gln Arg Val Phe Asp Gln Glu Ile Ser Gln Gly Gln Leu 85 90 95

Leu Val Val Pro Gln Gly Phe Ala Val Val Lys Arg Ala Thr Ser Gln
100 105 110

Gln Phe Gln Trp Ile Glu Phe Lys Ser Asn Asp Asn Ala Gln Ile Asn 115 120 125

Thr Leu Ala Gly Arg Thr Ser Val Met Arg Gly Leu Pro Leu Glu Val 130 135 140

Ile Ser Asn Gly Tyr Gln Ile Ser Pro Gln Glu Ala Arg Ser Val Lys 145 150 155 160

Phe Ser Thr Leu Glu Thr Thr Leu Thr Gln Ser Ser Gly Pro Met Gly
165 170 175

Tyr Gly Met Pro Arg Val Glu Ala 180

<210> 17

<211> 1530

<212> DNA

<213> Brassica napus

<220>

<221> CDS

<222> (1)..(1527)

<223> cruciferin cru4

<400> 17

atg gtt aaa gtt cct cat ctc ctc gtc gca acg ttc ggg gtt ctc ctc 48
Met Val Lys Val Pro His Leu Leu Val Ala Thr Phe Gly Val Leu Leu
1 5 10 15

gtc ctc aac ggc tgt ctc gca agg cag tcg cta ggg gtt cct cct cag 96
Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln
20 25 30

cta ggg aac gcg tgt aac ctc gat aac tta gac gtt ctc cag cct acc
Leu Gly Asn Ala Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Pro Thr
35
40
45

gaa act atc aag agc gag gct ggt cgg gtc gag tac tgg gat cac aac 192
Glu Thr Ile Lys Ser Glu Ala Gly Arg Val Glu Tyr Trp Asp His Asn
50 55 60

aat cct cag atc cga tgt gct ggt gtc tct gtc tct cgt gtt ata atc 240
Asn Pro Gln Ile Arg Cys Ala Gly Val Ser Val Ser Arg Val Ile Ile
65 70 75 80

gaa caa ggc ggt ctc tac ctt cct acc ttc ttc agc tcc ccc aaa att 288
Glu Gln Gly Gly Leu Tyr Leu Pro Thr Phe Phe Ser Ser Pro Lys Ile
85 90 95

WO 03/078629

4	_^
	-

			gtt Val 100											336
			acc Thr											384
			tgg Trp											432
			cag Gln		_	_				_		_	_	480
			gga Gly											528
	_	_	gtc Val 180	_										576
			tcc Ser											624
		_	ctt Leu											672
		_	acg Thr		_	_	-			_		Gly		720
_	_		cag Gln											768
_	_		gcc Ala 260	-	-	_		_	-	 _	_	_		816
			caa Gln											864
			gtt Val											912
			cac His											960
			act Thr											1008
			gct Ala 340											1056
_		_	tac Tyr											1104

WO 03/078629	

•							•		•	20						
				ctc Leu												1152
				gag Glu												1200
				gac Asp 405												1248
				gtg Val												1296
				aac Asn												1344
				act Thr											ttg _. Leu	1392
				ata Ile												1440
aga Arg	agg Arg	atc Ile	aag Lys	ttc Phe 485	aac Asn	acg Thr	ctt Leu	gag Glu	acc Thr 490	act Thr	ttg Leu	act Thr	cgt Arg	gcg Ala 495	cgc Arg	1488
				cag Gln									taa			1530
<213 <213	0> 18 1> 50 2> PI 3> Bi)9 RT	ica 1	napus	5											
)> 18															
Met 1	Val	Lys		Pro 5		•			10					15		
Val	Leu	Asn	Gly 20	Cys	Leu	Ala	Arg	Gln 25	Ser	Leu	Gly	Val	Pro 30	Pro	GIn	
Leu	Gly	Asn 35	Ala	Суѕ	Asn	Leu	Asp 40	Asn	Leu	Asp	Val	Leu 45	Gln	Pro	Thr	
Glu	Thr 50	Ile	Lys	Ser	Glu	Ala 55	Gly	Arg	Val	Glu	Tyr 60	Trp	Asp	His	Asn	
Asn 65	Pro	Gln	Ile	Arg	Cys 70	Ala	Gly	Val	Ser	Val 75	Ser	Arg	Val	Ile	Ile 80	
Glu	Gln	Gly	Gly	Leu 85	Tyr	Leu	Pro	Thr	Phe 90	Phe	Ser	Ser	Pro	Lys 95	Ile	
Ser	Tyr	Val	Val 100	Gln	Gly	Met	Gly	Ile 105	Ser	Gly	Arg	Val	Val 110	Pro	Gly	
Cvs			FT12	Dh o	Mot	Asn	Ser	Gln	Pro	Met	Gln	Gly	Gln	Gln	${\tt Gln}$	
Cyc	Ala	115	THE	Pne	Mec		120					125				

21 Gln Gly Gln Gln Gly Gln Gly Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Gln Gln Gln Gln Gln Gln Gln Gly Phe Arg Asp Met 165 170 His Gln Lys Val Glu His Val Arg His Gly Asp Ile Ile Ala Ile Thr 180 185 Ala Gly Ser Ser His Trp Ile Tyr Asn Thr Gly Asp Gln Pro Leu Val 200 Ile Ile Cys Leu Leu Asp Ile Ala Asn Tyr Gln Asn Gln Leu Asp Arg 215 Asn Pro Arg Thr Phe Arg Leu Ala Gly Asn Asn Pro Gln Gly Gly Ser 235 Gln Gln Gln Gln Gln Gln Gln Asn Met Leu Ser Gly Phe Asp Pro 245 250 Gln Val Leu Ala Gln Ala Leu Lys Ile Asp Val Arg Leu Ala Gln Glu Leu Gln Asn Gln Gln Asp Ser Arg Gly Asn Ile Val Arg Val Lys Gly 280 Pro Phe Gln Val Val Arg Pro Pro Leu Arg Gln Pro Tyr Glu Ser Glu 295 Gln Trp Arg His Pro Arg Gly Pro Pro Gln Ser Pro Gln Asp Asn Gly 310 315 Leu Glu Glu Thr Ile Cys Ser Met Arg Thr His Glu Asn Ile Asp Asp 325 330 Pro Ala Arg Ala Asp Val Tyr Lys Pro Asn Leu Gly Arg Val Thr Ser 340 345 Val Asn Ser Tyr Thr Leu Pro Ile Leu Gln Tyr Ile Arg Leu Ser Ala 355 360 Thr Arg Gly Ile Leu Gln Gly Asn Ala Met Val Leu Pro Lys Tyr Asn 375 Met Asn Ala Asn Glu Ile Leu Tyr Cys Thr Gln Gly Gln Ala Arg Ile 390 395 Gln Val Val Asn Asp Asn Gly Gln Asn Val Leu Asp Gln Gln Val Gln 405 410 Lys Gly Gln Leu Val Val Ile Pro Gln Gly Phe Ala Tyr Val Val Gln 425 Ser His Gln Asn Asn Phe Glu Trp Ile Ser Phe Lys Thr Asn Ala Asn 440 Ala Met Val Ser Thr Leu Ala Gly Arg Thr Ser Ala Leu Arg Ala Leu Pro Leu Glu Val Ile Thr Asn Ala Phe Gln Ile Ser Leu Glu Glu Ala 475 Arg Arg Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Arg 485 490 Gly Gly Gln Pro Gln Leu Ile Glu Glu Ile Val Glu Ala 500 505

WO 03/078629 PCT/EP03/02735

<21:	0> 19 1> 14 2> DI 3> G	488 NA	ne ma	эх										
<222	1> C1 2> (:	1)		5) -1a-I	3-x s	subur	nit	٠						
<400)> 19	7				•								
-	_	_		gtt Val 5					_		-		-	48
_		_		agt Ser								_	_	96
				aat Asn										144
				gag Glu										192
				ctc Leu										240
				acc Thr 85										288
				ggc Gly										336
				cct Pro										384
				atc Ile										432
				gca Ala										480
				att Ile 165										528
				aga Arg										576
				caa Gln										624
				gaa Glu										672

		PCT.	/ EP 03/0)273
_	cag			7

						•				23						
Th: 225	Leu	Glu	tto Phe	Leu	Glu 230	. His	Ala	Phe	Ser	Val 235	Asp	Lys	Gln	Ile	Ala 240	720
aaa Lys	aac Asn	cta Leu	caa Gln	gga Gly 245	Glu	aac Asn	gaa Glu	Gly	gaa Glu 250	gac Asp	aag Lys	gga Gly	gcc	att Ile 255	gtg Val	768
aca Thr	gtg Val	aaa Lys	gga Gly 260	ggt	ctg Leu	agc Ser	gtg Val	ata Ile 265	aaa Lys	cca Pro	ccc Pro	acg Thr	gac Asp 270	gag Glu	cag Gln	816
caa Gln	caa Gln	aga Arg 275	ccc Pro	cag Gln	gaa Glu	gag Glu	gaa Glu 280	gaa Glu	gaa Glu	gaa Glu	gag Glu	gat Asp 285	gag Glu	aag Lys	cca Pro	864
cag Gln	tgc Cys 290	Lys	ggt Gly	aaa Lys	gac Asp	aaa Lys 295	cac His	tgc Cys	caa Gln	cgc Arg	ccc Pro 300	cga Arg	gga Gly	agc Ser	caa Gln	912
agc Ser 305	Lys	agc Ser	aga Arg	aga Arg	aat Asn 310	ggc	att	gac Asp	gag Glu	acc Thr 315	ata Ile	tgc Cys	acc Thr	atg Met	aga Arg 320	960
Leu	Arg	His	aac Asn	Ile 325	Gly	Gln	Thr	Ser	Ser 330	Pro	Asp	Ile	Tyr	Asn 335	Pro	1008
Gln	Ala	Gly	agc Ser 340	Val	Thr	Thr	Ala	Thr 345	Ser	Leu	Asp	Phe	Pro 350	Ala	Leu	1056
Ser	Trp	Leu 355	aga Arg	Leu	Ser	Ala	Glu 360	Phe.	Gly	Ser	Leu	Arg 365	Lys	Asn	Ala	1104
Met	Phe 370	Val	cca Pro	His	Tyr	Asn 375	Leu	Asn	Ala	Asn	Ser 380	Ile	Ile	Tyr	Āla	1152
Leu 385	Asn	Gly	cgg Arg	Ala	Leu 390	Ile	Gln	Val	Val	Asn 395	Cys	Asn	Gly	Glu	Arg 400	1200
Val	Phe	Asp	gga Gly	Glu 405	Leu	Gln	Glu	Gly	Arg 410	Val	Leu	Ile	Val	Pro 415	Gln	1248
Asn	Phe	Val	gtg Val 420	Ala	Ala	Arg	Ser	Gln 425	Ser	Asp	Asn	Phe	Glu 430	Tyr	Val	1296
Ser	Phe	Lys 435	acc Thr	Asn	Asp	Thr	Pro 440	Met	Ile	Gly	Thr	Leu 445	Ala	Gly	Ala	1344
Asn	Ser 450	Leu	ttg Leu	Asn	Ala	Leu 455	Pro	Glu	Glu	Val	Ile 460	Gln	His	Thr	Phe	1392
Asn 465	Leu	Lys	agc Ser	Gln	Gln 470	Ala	Arg	Gln	Ile	Lys 475	Asn	Asn	Asn	Pro	Phe 480	1440
aag Lys	ttc Phe	ctg Leu	gtt Val	cca Pro 485	cct Pro	cag Gln	gag Glu	Ser	cag Gln 490	aag Lys	aga Arg	gct Ala	Val	gct Ala 495	tag	1488

340

<210> 20 <211> 495 <212> PRT <213> Glycine max <400> 20 Met Ala Lys Leu Val Phe Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys Cys Phe Ala Phe Ser Ser Arg Glu Gln Pro Gln Gln Asn Glu Cys Gln 25 Ile Gln Lys Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu 40 Gly Gly Leu Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys 50 55 Ala Gly Val Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg Arg Pro Ser Tyr Thr Asn Gly Pro Gln Glu Ile Tyr Ile Gln Gln Gly Lys Gly Ile Phe Gly Met Ile Tyr Pro Gly Cys Pro Ser Thr Phe Glu 100 105 Glu Pro Gln Gln Pro Gln Gln Arg Gly Gln Ser Ser Arg Pro Gln Asp 115 120 Arg His Gln Lys Ile Tyr Asn Phe Arg Glu Gly Asp Leu Ile Ala Val 135 Pro Thr Gly Val Ala Trp Trp Met Tyr Asn Asn Glu Asp Thr Pro Val 150 Val Ala Val Ser Ile Ile Asp Thr Asn Ser Leu Glu Asn Gln Leu Asp 165 170 Gln Met Pro Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Gln Glu Phe 180 185 Leu Lys Tyr Gln Gln Glu Gln Gly Gly His Gln Ser Gln Lys Gly Lys 200 His Gln Gln Glu Glu Glu Asn Glu Gly Gly Ser Ile Leu Ser Gly Phe 220 Thr Leu Glu Phe Leu Glu His Ala Phe Ser Val Asp Lys Gln Ile Ala 235 230 Lys Asn Leu Gln Gly Glu Asn Glu Gly Glu Asp Lys Gly Ala Ile Val 245 250 Thr Val Lys Gly Gly Leu Ser Val Ile Lys Pro Pro Thr Asp Glu Gln 265 Gln Gln Arg Pro Gln Glu Glu Glu Glu Glu Glu Asp Glu Lys Pro 280 Gln Cys Lys Gly Lys Asp Lys His Cys Gln Arg Pro Arg Gly Ser Gln Ser Lys Ser Arg Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr Met Arg 315 Leu Arg His Asn Ile Gly Gln Thr Ser Ser Pro Asp Ile Tyr Asn Pro 325 330 Gln Ala Gly Ser Val Thr Thr Ala Thr Ser Leu Asp Phe Pro Ala Leu

•	

										45						
	Trp	Leu 355	Arg	Leu	Ser	Ala	Glu 360		Gly	Ser	Leu	Arg 365		Asn	Ala	
Met	Phe 370	Val	Pro	His	Tyr	Asn 375	Leu	Asn	Ala	Asn	Ser 380	Ile	Ile	Tyr	Ala	
Leu 385	Asn	Gly	Arg	Ala	Leu 390	Ile	Gln	Val	Val	Asn 395	Cys	Asn	Gly	Glu	Arg 400	
Val	Phe	Asp	Gly	Glu 405	Leu	Gln	Glu	Gly	Arg 410	Val	Leu	Ile	Val	Pro 415	Gln	
Asn	Phe	Val	Val 420	Ala	Ala	Arg	Ser	Gln 425	Ser	Asp	Asn	Phe	Glu 430	Tyr	Val	
Ser		Lys 435	Thr	Asn	Asp	Thr	Pro 440	Met	Ile	Gly	Thr	Leu 445	Ala	Gly	Ala	
Asn	Ser 450		Leu	Asn	Ala	Leu 455	Pro	Glu	Glu	Val	Ile 460		His	Thr	Phe	
Asn 465	Leu	Lys	Ser	Gln	Gln 470	Ala	Arg	Gln	Ile	Lys 475	Asn	Àsn	Asn	Pro	Phe 480	
Lys	Phe	Leu	Val	Pro 485	Pro	Gln	Glu	Ser	Gln 490	Lys	Arg	Ala	Val	Ala 495		
<21: <21: <22: <22: <22:	0> 1> C1 2> (:	NA lycir DS 1)	ne ma	5)		£										
<22.	3> g.	lycir	יו מנו	'')		t										
				52 SC	murr.	. •										
atg	0> 2: gcc Ala	aag	ctt Leu	gtt	ctt	tcc	ctt Leu	tgt Cys	ttc Phe 10	ctt Leu	ctt Leu	ttc Phe	agt Ser	ggc Gly 15	tgc Cys	48
atg Met 1	gcc Ala gct	aag Lys ctg	ctt	gtt Val 5 gag	ctt Leu cag	tcc Ser gca	Leu cag	Cys caa	Phe 10 aat	Leu gag	Leu tgc	Phe cag	Ser atc	Gly 15 caa	Cys	48 96
Met 1 ttc Phe	gcc Ala gct Ala aat	aag Lys ctg Leu	ctt Leu aga Arg	gtt Val 5 gag Glu	ctt Leu cag Gln	tcc Ser gca Ala	Leu cag Gln aac	Cys caa Gln 25 cgt	Phe 10 aat Asn	Leu gag Glu gag	tgc Cys tcg	Phe cag Gln gaa	Ser atc Ile 30	Gly 15 caa Gln	Cys aag Lys ttc	
atg Met 1 ttc Phe ctg Leu	gcc Ala gct Ala aat Asn	aag Lys ctg Leu gcc Ala 35 aca	ctt Leu aga Arg 20 ctc	gtt Val 5 gag Glu aaa Lys	ctt Leu cag Gln ccg Pro	tcc Ser gca Ala gat Asp	cag Gln aac Asn 40	Cys caa Gln 25 cgt Arg	Phe 10 aat Asn ata Ile cca	Leu gag Glu gag Glu ttc	tgc Cys tcg Ser	Phe cag Gln gaa Glu 45 tgt	Ser atc Ile 30 ggt Gly	Gly 15 caa Gln ggg Gly	Cys aag Lys ttc Phe	96
atg Met 1 ttc Phe ctg Leu att Ile	gcc Ala gct Ala aat Asn gag Glu 50 ctc	aag Lys ctg Leu gcc Ala 35 aca Thr	ctt Leu aga Arg 20 ctc Leu	gtt Val 5 gag Glu aaa Lys aac Asn	ctt Leu cag Gln ccg Pro cct	tcc Ser gca Ala gat Asp aac Asn 55	Cag Gln aac Asn 40 aac Asn	Cys caa Gln 25 cgt Arg aag Lys	Phe 10 aat Asn ata Ile cca Pro aat	gag Glu gag Glu ttc Phe	tgc Cys tcg Ser cag Gln 60 ctt	Cag Gln gaa Glu 45 tgt Cys	Ser atc Ile 30 ggt Gly gcc Ala aga	Gly 15 caa Gln ggg Gly ggt Gly	Cys aag Lys ttc Phe gtt Val	96 144
Met 1 ttc Phe ctg Leu att Ile gcc Ala 65 tac	gcc Ala gct Ala aat Asn gag Glu 50 ctc Leu	aag Lys ctg Leu gcc Ala 35 aca Thr tct Ser	ctt Leu aga Arg 20 ctc Leu tgg Trp	gtt Val 5 gag Glu aaa Lys aac Asn tgc Cys	ctt Leu cag Gln ccg Pro cct Pro	tcc Ser gca Ala gat Asp aac Asn 55 ctt Leu	cag Gln aac Asn 40 aac Asn aac Asn	Cys caa Gln 25 cgt Arg aag Lys cgc Arg	Phe 10 aat Asn ata Ile cca Pro aat Asn ata	gag Glu gag Glu ttc Phe gcc Ala 75 caa	tgc Cys tcg Ser cag Gln 60 ctt Leu	Phe cag Gln gaa Glu 45 tgt Cys cgt Arg	ser atc ile 30 ggt Gly gcc Ala aga Arg	Gly 15 caa Gln ggg Gly ggt Gly cct Pro	Cys aag Lys ttc Phe gtt Val tcc Ser 80 att	96 144

WO 03/078629	

				26				
gaa tct ca Glu Ser Gl 11	n Gln Arg							384
aag gta ca Lys Val Hi 130	t cgc ttc s Arg Phe	aga gag Arg Glu 135	ggt gat Gly Asp	ttg atc Leu Ile	gca gtg Ala Val 140	cct ac Pro Th	t ggt r Gly	432
gtt gca tg Val Ala Tr 145	g tgg atg p Trp Met	tac aac Tyr Asn 150	aat gaa Asn Glu	gac act Asp Thr 155	cct gtt Pro Val	gtt gc Val Al	c gtt a Val 160	480
tct att at Ser Ile Il	t gac acc e Asp Thr 165	aac agc Asn Ser	ttg gag Leu Glu	aac cag Asn Gln 170	ctc gac Leu Asp	cag at Gln Me 17	t Pro	528
agg aga tt Arg Arg Ph	c tat ctt e Tyr Leu 180	gct ggg Ala Gly	aac caa Asn Gln 185	gag caa Glu Gln	gag ttt Glu Phe	cta aa Leu Ly 190	a tat 's Tyr	576
cag cag ca Gln Gln Gl 19	n Gln Gln							624
gaa gaa ga Glu Glu Gl 210	u Asn Glu	Gly Ser 215	Asn Ile	Leu Ser	Gly Phe 220	Ala Pr	o Glu	672
ttc ttg aa Phe Leu Ly 225	s Glu Ala	Phe Gly 230	Val Asn	Met Gln 235	Ile Val	Arg As	n Leu 240	720
caa ggt ga Gln Gly Gl	u Asn Glu 245	Glu Glu	Asp Ser	Gly Ala 250	. Ile Val	Thr Va	al Lys 55 [.]	768
gga ggt ct Gly Gly Le	u Arg Val 260	Thr Ala	Pro Ala 265	Met Arg	Lys Pro	Gln Gl 270	ln Glu	816
gaa gat ga Glu Asp As 27	p Asp Asp 5	Glu Glu	Glu Gln 280	Pro Gln	Cys Val 285	Glu Th	nr Asp	864
aaa ggt tg Lys Gly Cy 290	s Gln Arg	Gln Ser 295	Lys Arg	Ser Arg	Asn Gly 300	Ile As	sp Glu	912
acc att tg Thr Ile Cy 305	s Thr Met	Arg Leu 310	Arg Gln	Asn Ile 315	Gly Gln	Asn Se	er Ser 320	960
cct gac at Pro Asp Il	e Tyr Asn 325	Pro Gln	Ala Gly	Ser Ile	Thr Thr	Ala Ti	nr Ser 35	1008
ctt gac tt Leu Asp Ph	e Pro Ala 340	Leu Trp	Leu Leu 345	Lys Leu	Ser Ala	Gln Ty 350	yr Gly	1056
tca ctc cg Ser Leu Ar 35	g Lys Asn 5	Ala Met	Phe Val	Pro His	Tyr Thr 365	Leu As	sn Ala	1104
aac agc at Asn Ser Il 370			Asn Gly					1152

WO 03/078629	
--------------	--

•	

									•	27						
385				gag Glu												1200
gtg Val																1248
gat Asp																1296
gga Gly					_			_	_		-	_				1344
gtg (Val :																1392
aag a Lys . 465 .	Asn															1440
agg a					tag											1458
<210: <211: <212: <213:	> 48 > PR	15 RT	ne ma	эх			•					<i>:</i>				
<400 Met 2			T ON	7727	Leu	Ser	Lou	Carc	Dho	T ON	T 011	Dho	Cor	C1	Cara	
1	лта	nys	nea	5	Бей	per	Deu	Cys	10	Deu	Deu	FIIE	Ser	15	Cys	
Phe A	Ala	Leu	Arg 20	Glu	Gln	Ala	Gln	Gln 25	Asn			Gln	Ile 30	Gln	Lys	
Leu A	Asn	Ala 35		Lys	Pro	Asp	Asn 40	Arg	Ile	Glu	Ser	Glu 45	Gly	Gly	Phe	
Leu A		35	Leu				40					45	_	_		
•	31u 50	35 Thr	Leu Trp	Asn	Pro	Asn 55	40 Asn	Lys	Pro	Phe	Gln 60	45 Cys	Ala	Gly	Val	
Ile (Glu 50 Leu	35 Thr Ser	Leu Trp Arg	Asn Cys	Pro Thr 70	Asn 55 Leu	40 Asn Asn	Lys Arg	Pro Asn	Phe Ala 75	Gln 60 Leu	45 Cys Arg	Ala Arg	Gly Pro	Val Ser 80	
Ile (Ala I	Glu 50 Leu Thr	35 Thr Ser Asn	Leu Trp Arg Gly	Asn Cys Pro 85	Pro Thr 70 Gln	Asn 55 Leu Glu	40 Asn Asn Ile	Lys Arg Tyr	Pro Asn Ile 90	Phe Ala 75 Gln	Gln 60 Leu Gln	45 Cys Arg Gly	Ala Arg Asn	Gly Pro Gly 95	Val Ser 80 Ile	
Ile (Ala I 65 Tyr T	Slu 50 Leu Thr Sly	35 Thr Ser Asn Met	Leu Trp Arg Gly Ile 100	Asn Cys Pro 85 Phe	Pro Thr 70 Gln Pro	Asn 55 Leu Glu Gly	40 Asn Asn Ile Cys	Lys Arg Tyr Pro	Pro Asn Ile 90 Ser	Phe Ala 75 Gln Thr	Gln 60 Leu Gln Tyr	45 Cys Arg Gly	Ala Arg Asn Glu 110	Gly Pro Gly 95 Pro	Val Ser 80 Ile Gln	
Ile (Ala I 65 Tyr 7 Phe (Glu S	Slu 50 Leu Thr Sly	35 Thr Ser Asn Met Gln 115	Trp Arg Gly Ile 100 Gln	Asn Cys Pro 85 Phe Arg	Thr 70 Gln Pro	Asn 55 Leu Glu Gly Arg	40 Asn Asn Ile Cys Ser 120	Lys Arg Tyr Pro 105 Gln	Pro Asn Ile 90 Ser Arg	Phe Ala 75 Gln Thr	Gln 60 Leu Gln Tyr	45 Cys Arg Gly Gln Asp 125	Ala Arg Asn Glu 110 Arg	Gly Pro Gly 95 Pro	Val Ser 80 Ile Gln	
Ile (Ala I 65 Tyr 7 Phe (Glu S	Glu 50 Leu Thr Gly Ser	35 Thr Ser Asn Met Gln 115 His	Leu Trp Arg Gly Ile 100 Gln Arg	Asn Cys Pro 85 Phe Arg	Pro Thr 70 Gln Pro Gly Arg	Asn 55 Leu Glu Gly Arg Glu 135	40 Asn Asn Ile Cys Ser 120 Gly	Lys Arg Tyr Pro 105 Gln Asp	Pro Asn Ile 90 Ser Arg Leu	Phe Ala 75 Gln Thr Pro	Gln 60 Leu Gln Tyr Gln	45 Cys Arg Gly Gln Asp 125 Val	Ala Arg Asn Glu 110 Arg	Gly Pro Gly 95 Pro His	Val Ser 80 Ile Gln Gln Gly	
Ile (Ala I 65 Tyr T Phe (Glu S Lys V Val A	Slu 50 Leu Thr Sly Ser Val 130	35 Thr Ser Asn Met Gln 115 His	Leu Trp Arg Gly Ile 100 Gln Arg	Asn Cys Pro 85 Phe Arg Phe	Pro Thr 70 Gln Pro Gly Arg Tyr 150	Asn 55 Leu Glu Gly Arg Glu 135 Asn	Asn Asn Ile Cys Ser 120 Gly Asn	Lys Arg Tyr Pro 105 Gln Asp	Pro Asn Ile 90 Ser Arg Leu Asp	Phe Ala 75 Gln Thr Pro Ile Thr 155	Gln 60 Leu Gln Tyr Gln Ala 140 Pro	45 Cys Arg Gly Gln Asp 125 Val	Ala Arg Asn Glu 110 Arg Pro Val	Gly Pro Gly 95 Pro His Thr	Val Ser 80 Ile Gln Gln Gly Val 160	

WO 03/078629

Gln Gln Gln Gln Gly Gly Ser Gln Ser Gln Lys Gly Lys Gln Gln 200 Glu Glu Glu Asn Glu Gly Ser Asn Ile Leu Ser Gly Phe Ala Pro Glu 220 215 Phe Leu Lys Glu Ala Phe Gly Val Asn Met Gln Ile Val Arg Asn Leu 230 235 Gln Gly Glu Asn Glu Glu Glu Asp Ser Gly Ala Ile Val Thr Val Lys . 250 245 Gly Gly Leu Arg Val Thr Ala Pro Ala Met Arg Lys Pro Gln Gln Glu 265 Glu Asp Asp Asp Glu Glu Glu Gln Pro Gln Cys Val Glu Thr Asp 280 275 Lys Gly Cys Gln Arg Gln Ser Lys Arg Ser Arg Asn Gly Ile Asp Glu 300 295 Thr Ile Cys Thr Met Arg Leu Arg Gln Asn Ile Gly Gln Asn Ser Ser 310 315 Pro Asp Ile Tyr Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser 330 Leu Asp Phe Pro Ala Leu Trp Leu Leu Lys Leu Ser Ala Gln Tyr Gly 345 Ser Leu Arg Lys Asn Ala Met Phe Val Pro His Tyr Thr Leu Asn Ala 360 Asn Ser Ile Ile Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val 375 Asn Cys Asn Gly Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gly 390 395 Val Leu Ile Val Pro Gln Asn Phe Ala Val Ala Ala Lys Ser Gln Ser 410 405 Asp Asn Phe Glu Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile 425 420 Gly Asn Leu Ala Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu . 440 Val Ile Gln His Thr Phe Asn Leu Lys Ser Gln Gln Ala Arg Gln Val 455 460 Lys Asn Asn Asn Pro Phe Ser Phe Leu Val Pro Pro Gln Glu Ser Gln 470 475 465 Arg Arg Ala Val Ala

<210> 23

<211> 1689

<212> DNA

<213> Glycine max

<220>

<221> CDS

<222> (1)..(1686)

<223> glycinin A5A4B3 subunits

<400> 23

atg ggg aag ccc ttc act ctc tct ctt tct tcc ctt tgc ttg cta ctc 48

WO 03/078629

										23			•		•	
Met 1		Lys	Pro	Phe 5		Leu	Ser	Leu	Ser 10	Ser	Leu	Cys	Leu	Leu 15	Leu	
			gca Ala 20													96
			aac Asn													144
			ttg Leu				Trp									192
Cys 65	Ala	Gly	gtc Val	Thr	Val 70	Ser	Lys	Leu	Thr	Leu 75	Asn	Arg	Asn	Gly	Leu 80	240
His	Ser	Pro	tct Ser	Tyr 85	Ser	Pro	Tyr	Pro	Arg 90	Met	Ile	Ile	Ile	Ala 95	Gln	288
Gly	Lys	Gly	gca Ala 100	Leu	Gly	Val	Ala	Ile 105	Pro	Gly	Cys	Pro	Glu 110	Thr	Phe	336
Glu	Glu	Pro 115	caa Gln	Glu	Gln	Ser	Asn 120	Arg	Arg	Gly	Ser	Arg 125	Ser	Gln	Lys	384
cag Gln	cag Gln 130	cta Leu	cag Gln	gac Asp	agt Ser	cac His 135	cag Gln	aag Lys	att Ile	cgt Arg	cac His 140	ttc Phe	aat Asn	gaa Glu	gga Gly	432
Asp 145	Val	Leu	gtg Val	Ile	Pro 150	Pro	Ser	Val	Pro	Tyr .155	Trp	Thr	Tyr	Asn	Thr 160	480
Gly	Asp	Glu	cca Pro	Val 165	Val	Ala	Ile	Ser	Leu 170	Leu	Asp	Thr	Ser	Asn 175	Phe	528
Asn	Asn	Gln	ctt Leu 180	Asp	Gln	Thr	Pro	Arg 185	Val	Phe	Tyr	Leu	Ala 190	Gly	Asn '	576
Pro	Asp	Ile 195	gag Glu	Tyr	Pro	Glu	Thr 200	Met	Gln	Gln	Gln	Gln 205	Gln	Gln	Lys	624
agt Ser	cat His 210	ggt Gly	gga Gly	cgc Arg	aag Lys	cag Gln 215	ggg Gly	caa Gln	cac His	cag Gln	cag Gln 220	gag Glu	gaa Glu	gag Glu	gaa Glu	672
gaa Glu 225	ggt Gly	ggc Gly	agc Ser	gtg Val	ctc Leu 230	agt Ser	ggc Gly	ttc Phe	agc Ser	aaa Lys 235	cac His	ttc Phe	ttg Leu	gca Ala	caa Gln 240	720
tcc Ser	ttc Phe	aac Asn	acc Thr	aac Asn 245	gag Glu	gac Asp	ata Ile	Ala	gag Glu 250	aaa Lys	ctt Leu	gag Glu	tct Ser	cca Pro 255	gac Asp	768
gac Asp	gaa Glu	agg Arg	aag Lys 260	cag Gln	atc Ile	gtg Val	aca Thr	gtg Val 265	gaa Glu	gga Gly	ggt Gly	ctc Leu	agc Ser 270	gtt Val	atc Ile	816
									-							

								•	30						
				caa Gln											864
				gaa Glu											912
				gaa Glu											960
	_			cga Arg 325										Gln	1008
				gat Asp											1056
	_	_		aag Lys			_	_		_		_	_		1104
				tgc Cys											1152
	_	_		cac His		Asn									1200
				gct Ala 405											1248
	_		_	caa Gln			_	-			_	_			1296
				tac Tyr		Pro									1344
				cga Arg	Gly										1392
				ttc Phe											1440
				ttc Phe 485											1488
				ttc Phe											1536
_	_			agg Arg					-						1584
				agt Ser											1632

WO 03/078629	

WO 03/07	78629)										PCT	/EP03/0	2735
								:	31						
ggt cct Gly Pro 545															1680
gtc gca Val Ala	taa														1689
<210> 24 <211> 56 <212> PF <213> GI	52 RT	ne ma	ìх												
<400> 24 Met Gly 1		Pro	Phe 5	Thr	Leu	Ser	Leu	Ser 10	Ser	Leu	Cys	Leu	Leu 15	Leu	
Leu Ser	Ser	Ala 20	Cys	Phe	Ala	Ile	Ser 25	Ser	Ser	Lys	Leu	Asn 30	Glu	Cys	
Gln Leu	Asn 35	Asn	Leu	Asn	Ala	Leu 40	Glu	Pro	Asp	His	Arg 45	Val	Glu	Ser	
Glu Gly 50	Gly	Leu	Ile	Gln	Thr 55	Trp	Asn	Ser	Gln	His 60	Pro	Glu	Leu	Lys	
Cys Ala 65	Gly	Val	Thr	Va1 70	Ser	Lys	Leu	Thr	Leu 75	Asn	Arg	Asn	Gly	Leu 80	
His Ser	Pro	Ser	Tyr 85	Ser	Pro	Tyr	Pro	Arg 90	Met	Ile	Ile	Ile	Ala 95	Gln	
Gly Lys	Gly	Ala 100	Leu	Gly	Val	Ala	Ile 105	Pro	Gly	Cys	Pro	Glu 110	Thr	Phe	
Glu Glu	Pro 115	Gln	Glu	Gln	Ser	Asn 120	Arg	Arg	Gly	Ser	Arg 125	Ser	Gln	Lys	
Gln Gln 130					135					140					
Asp Val 145				150					155					160	
Gly Asp			165		•			170					175		
Asn Asn		180					185					190			
Pro Asp	195		_			200					205				
Ser His 210	-				215					220					
Glu Gly 225				230					235					240	
Ser Phe			245					250					255		
Asp Glu	Arg	Lys 260	Gln	Ile	Val	Thr	Val 265	Glu	Gly	Gly	Leu	Ser 270	Val	116	

Ser Pro Lys Trp Gln Glu Gln Gln Asp Glu Asp Glu Asp Glu Asp Glu

Asp Asp Glu Asp Glu Gln Ile Pro Ser His Pro Pro Arg Arg Pro Ser

His Gly Lys Arg Glu Gln Asp Glu Asp Glu Asp Glu Asp Glu Asp Lys 310 Pro Arg Pro Ser Arg Pro Ser Gln Gly Lys Arg Asn Lys Thr Gly Gln 325 330 Asp Glu Asp Glu Asp Glu Asp Glu Pro Arg Lys Ser Arg Glu 340 Trp Arg Ser Lys Lys Thr Gln Pro Arg Arg Pro Arg Gln Glu Glu Pro Arg Glu Arg Gly Cys Glu Thr Arg Asn Gly Val Glu Glu Asn Ile Cys 375 Thr Leu Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe 390 395 Tyr Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu 410 405 Pro Ala Leu Arg Gln Phe Gln Leu Ser Ala Gln Tyr Val Val Leu Tyr 425 Lys Asn Gly Ile Tyr Ser Pro His Trp Asn Leu Asn Ala Asn Ser Val 440 Ile Tyr Val Thr Arg Gly Gln Gly Lys Val Arg Val Val Asn Cys Gln 455 Gly Asn Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Leu Val 470 Val Pro Gln Asn Phe Val Val Ala Glu Gln Ala Gly Glu Gln Gly Phe Glu Tyr Ile Val Phe Lys Thr His His Asn Ala Val Thr Ser Tyr Leu 505 510 Lys Asp Val Phe Arg Ala Ile Pro Ser Glu Val Leu Ala His Ser Tyr 520 Asn Leu Arg Gln Ser Gln Val Ser Glu Leu Lys Tyr Glu Gly Asn Trp 535 Gly Pro Leu Val Asn Pro Glu Ser Gln Gln Gly Ser Pro Arg Val Lys 555 560 550

<210> 25

Val Ala

<211> 1551

<212> DNA

<213> Glycine max

<220>

<221> CDS

<222> (1)..(1548)

<223> glycinin A3-B4 subunit

<400> 25

atg ggg aag ccc ttc ttc act ctc tct tct tct tcc ctt tgc ttg cta 4
Met Gly Lys Pro Phe Phe Thr Leu Ser Leu Ser Ser Leu Cys Leu Leu
1 5 10 15

ctc ttg tcg agt gca tgc ttt gct att acc tcc agc aag ttc aac gag 96 Leu Leu Ser Ser Ala Cys Phe Ala Ile Thr Ser Ser Lys Phe Asn Glu 20 25 30

PCT/
rc II.

							-					
	caa Gln								_	_		144
	gaa Glu 50											192
	tgc Cys	-	_			-			_			240
	cac His											288
	Gly ggg	_	 _		_		_	 -			_	336
	gag Glu	_					-				_	384
	caa Gln 130											432
	gta Val											480
	gat Asp											528
	aat Asn	_	_		_	_			_			· 576
	gat Asp							_	_	_	_	624
_	cat His 210									_	_	672
	ggc Gly											720
	aac Asn											768
	agg Arg											816
	aag Lys											864
	gga Gly 290											912

WO 03/078629		
--------------	--	--

WO 03/0	78629)										PCT/	EP03/02	735
									34						
cat gaa His Glu 305	_	_		_		_	_	_	_	-			-		960
gat cac Asp His												-		_	1008
gga aga Gly Arg		_			-			_		-			_		1056
atg aag Met Lys						_	_			_	_	_			1104
aac cca Asn Pro 370		_		_		_				_					1152
gcc ctc Ala Leu 385	_					_	_			_	_				1200
aat gga Asn Gly					_			_				_		_	1248
atg act Met Thr	_				_	_	_				-				1296
gca gtg Ala Val		_										-		-	1344
cag aac Gln Asn 450															1392
gta gtg Val Val 465		_					-		_	_			_	-	1440
gtg ttt Val Phe															1488
ggc cag Gly Gln	_		_	_	_		_								1536
ttg gtc Leu Val			taa												1551
<210> 20 <211> 53 <212> P1 <213> G3	16 RT	ne ma	ах												
<400> 20															
Met Gly 1	Lys	Pro	Phe 5		Thr	Leu	Ser	Leu 10	Ser	Ser	Leu	Суѕ	Leu 15	Leu	

Leu Leu Ser Ser Ala Cys Phe Ala Ile Thr Ser Ser Lys Phe Asn Glu 20 25 30

Cys Gln Leu Asn Asn Leu Asn Ala Leu Glu Pro Asp His Arg Val Glu Ser Glu Gly Gly Leu Ile Glu Thr Trp Asn Ser Gln His Pro Glu Leu 55 Gln Cys Ala Gly Val Thr Val Ser Lys Arg Thr Leu Asn Arg Asn Gly Ser His Leu Pro Ser Tyr Leu Pro Tyr Pro Gln Met Ile Ile Val Val 85 Gln Gly Lys Gly Ala Ile Gly Phe Ala Phe Pro Gly Cys Pro Glu Thr 105 Phe Glu Lys Pro Gln Gln Gln Ser Ser Arg Arg Gly Ser Arg Ser Gln 120 Gln Gln Leu Gln Asp Ser His Gln Lys Ile Arg His Phe Asn Glu Gly 135 Asp Val Leu Val Ile Pro Leu Gly Val Pro Tyr Trp Thr Tyr Asn Thr 150 155 Gly Asp Glu Pro Val Val Ala Ile Ser Pro Leu Asp Thr Ser Asn Phe 170 165 Asn Asn Gln Leu Asp Gln Asn Pro Arg Val Phe Tyr Leu Ala Gly Asn 185 . 180 Pro Asp Ile Glu His Pro Glu Thr Met Gln Gln Gln Gln Gln Lys 200 Ser His Gly Gly Arg Lys Gln Gly Gln His Arg Gln Gln Glu Glu Glu 215 Gly Gly Ser Val Leu Ser Gly Phe Ser Lys His Phe Leu Ala Gln Ser 230 235 Phe Asn Thr Asn Glu Asp Thr Ala Glu Lys Leu Arg Ser Pro Asp Asp 250 Glu Arg Lys Gln Ile Val Thr Val Glu Gly Gly Leu Ser Val Ile Ser 265 Pro Lys Trp Gln Glu Gln Glu Asp Glu Asp Glu Asp Glu Asp Glu Glu 280 Tyr Gly Arg Thr Pro Ser Tyr Pro Pro Arg Arg Pro Ser His Gly Lys His Glu Asp Asp Glu Asp Glu Asp Glu Glu Asp Gln Pro Arg Pro 310 315 Asp His Pro Pro Gln Arg Pro Ser Arg Pro Glu Gln Gln Glu Pro Arg 330 325 Gly Arg Gly Cys Gln Thr Arg Asn Gly Val Glu Glu Asn Ile Cys Thr 345 Met Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe Tyr 360 Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu Pro 375 380 Ala Leu Arg Gln Phe Gly Leu Ser Ala Gln Tyr Val Val Leu Tyr Arg 395 390 Asn Gly Ile Tyr Ser Pro Asp Trp Asn Leu Asn Ala Asn Ser Val Thr 410 405

130

36 Met Thr Arg Gly Lys Gly Arg Val Arg Val Val Asn Cys Gln Gly Asn 420 425 Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Leu Val Val Pro 440 Gln Asn Pro Ala Val Ala Glu Gln Gly Glu Gln Gly Leu Glu Tyr 450 455 Val Val Phe Lys Thr His His Asn Ala Val Ser Ser Tyr Ile Lys Asp 470 475 Val Phe Arg Val Ile Pro Ser Glu Val Leu Ser Asn Ser Tyr Asn Leu 485 490 Gly Gln Ser Gln Val Arg Gln Leu Lys Tyr Gln Gly Asn Ser Gly Pro 500 505 Leu Val Asn Pro 515 <210> 27 <211> 1446 <212> DNA <213> Glycine max <220> <221> CDS <222> (1)..(1443) <223> glycinin G3 subunit atg get aag ett gtt ett tee ett tgt ttt etg ett tte agt gge tge 48 Met Ala Lys Leu Val Leu Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys 10 tgc ttc gct ttc agt ttc aga gag cag cca cag caa aac gag tgc cag 96 Cys Phe Ala Phe Ser Phe Arg Glu Gln Pro Gln Gln Asn Glu Cys Gln 20 25 atc caa cgc ctc aat gcc cta aaa ccg gat aac cgt ata gag tca gaa Ile Gln Arg Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu 35 ggt ggc ttc att gag aca tgg aac cct aac aac aag cca ttc cag tgt Gly Gly Phe Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys 55 gcc ggt gtt gcc ctc tct cgc tgc acc ctc aac cgc aac gcc ctt cgc 240 Ala Gly Val Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg 75 aga cct tcc tac acc aac gct ccc cag gag atc tac atc caa caa ggt 288 Arg Pro Ser Tyr Thr Asn Ala Pro Gln Glu Ile Tyr Ile Gln Gln Gly · 85 90 agt ggt att ttt ggc atg ata ttc ccg ggt tgt cct agc aca ttt gaa 336 Ser Gly Ile Phe Gly Met Ile Phe Pro Gly Cys Pro Ser Thr Phe Glu 100 gag cct caa caa aaa gga caa agc agc ccc caa gac cgt cac cag 384 Glu Pro Gln Gln Lys Gly Gln Ser Ser Arg Pro Gln Asp Arg His Gln 115 120 aag atc tat cac ttc aga gag ggt gat ttg att gca gtg cca acc ggt Lys Ile Tyr His Phe Arg Glu Gly Asp Leu Ile Ala Val Pro Thr Gly

•	-
- 4	- 4
_	•

WO 03/078629

				•						<i>J</i> /						
	_			atg Met				_	_			-	_	-	_	480
				acc Thr 165									-	_		528
				ctt Leu												576
_				cag Gln										_	_	624
_		-	_	gaa Glu					-		_				_	672
_	_		_	gaa Glu				_		_		_			_	720
				gag Glu 245												768
				ctc Leu	_			_			_	_			caa Gln	816
	_			gaa Glu												864
			_	caa Gln	_	_				-				_		912
				cac His												960
				ggt Gly 325												1008
_		_		ctc Leu			_	_	_					_	_	1056
	-	_		gtg Val							_		_			1104
				gga Gly												1152
				gat Asp			_				_					1200
				gcg Ala 405												1248

WO 03/078629	
--------------	--

WO 03/078629							PCT/EP03/02	735
		•		38				
tat gtt tca Tyr Val Ser				Pro Ser				1296
ggt gca aac Gly Ala Asn 435						Ile		1344
act ttt aac Thr Phe Asn 450								1392
cct ttc agc Pro Phe Ser 465					Gln Arg			1440
gct tag Ala								1446
<210> 28 <211> 481 <212> PRT <213> Glyci	ne max							
<400> 28 Met Ala Lys 1	Leu Val	Leu Ser	Leu Cys	Phe Leu 10	Leu Phe	Ser (Gly Cys 15	
Cys Phe Ala	Phe Ser 20	Phe Arg	Glu Gln 25	Pro Gln	Gln Asn	Glu (Cys Gln	
Ile Gln Arg 35	Leu Asn	Ala Leu	Lys Pro	Asp Asn	Arg Ile	Glu s	Ser Glu	
Gly Gly Phe 50	Ile Glu	Thr Trp 55	Asn Pro	Asn Asn	Lys Pro 60	Phe (Gln Cys	
Ala Gly Val 65	Ala Leu	Ser Arg 70	Cys Thr	Leu Asn 75	_	Ala I	Leu Arg 80	
Arg Pro Ser	Tyr Thr 85	Asn Ala	Pro Gln	Glu Ile 90	Tyr Ile	Gln (Gln Gly 95	
Ser Gly Ile	Phe Gly 100	Met Ile	Phe Pro 105		Pro Ser	Thr 1	Phe Glu	
Glu Pro Gln 115	Gln Lys	Gly Gln	Ser Ser 120	Arg Pro	Gln Asp 125	Arg I	His Gln	
Lys Ile Tyr 130	His Phe	Arg Glu 135	Gly Asp	Leu Ile	Ala Val 140	Pro 1	Thr Gly	
Phe Ala Tyr 145	Trp Met	Tyr Asn 150	Asn Glu	Asp Thr 155		Val A	Ala Val 160	
Ser Leu Ile	Asp Thr 165	Asn Ser	Phe Gln	Asn Gln 170	Leu Asp		Met Pro 175	
Arg Arg Phe	Tyr Leu 180	Ala Gly	Asn Gln 185	Glu Gln	Glu Phe	Leu (Gln Tyr	
Gln Pro Gln 195			200		205	_	_	
Gln Gln Glu 210	Glu Glu	Asn Glu 215	Gly Gly	Ser Ile	Leu Ser 220	Gly I	Phe Ala	

Pro Glu Phe Leu Glu His Ala Phe Val Val Asp Arg Gln Ile Val Arg

39 Lys Leu Gln Gly Glu Asn Glu Glu Glu Glu Lys Gly Ala Ile Val Thr 250 Val Lys Gly Gly Leu Ser Val Ile Ser Pro Pro Thr Glu Glu Gln Gln 265 Gln Arg Pro Glu Glu Glu Lys Pro Asp Cys Asp Glu Lys Asp Lys 280 285 His Cys Gln Ser Gln Ser Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr 295 Met Arg Leu Arg His Asn Ile Gly Gln Thr Ser Ser Pro Asp Ile Phe 310 Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser Leu Asp Phe Pro 330 325 Ala Leu Ser Trp Leu Lys Leu Ser Ala Gln Phe Gly Ser Leu Arg Lys Asn Ala Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile 360 Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val Asn Cys Asn Gly 375 370 Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gln Val Leu Ile Val 390 Pro Gln Asn Phe Ala Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu 405 410 Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile Gly Asn Leu Ala 425 420 Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln Gln 440 Thr Phe Asn Leu Arg Arg Gln Gln Ala Arg Gln Val Lys Asn Asn Asn 455 460

Pro Phe Ser Phe Leu Val Pro Pro Lys Glu Ser Gln Arg Arg Val Val 470 465

Ala

<210> 29

<211> 1482

<212> DNA

<213> Helianthus annuus

<220>

<221> CDS

<222> (1)..(1479)

<223> 11S storage protein G3-D1

atg gca tcc aaa gca act ttg ctc tta gct ttt acc ctt ctc ttt gcc Met Ala Ser Lys Ala Thr Leu Leu Leu Ala Phe Thr Leu Leu Phe Ala 1

act tgc att gcc cgc cac cag caa cgg caa cag caa cag aac cag tgc 96 Thr Cys Ile Ala Arg His Gln Gln Arg Gln Gln Gln Asn Gln Cys 20

			PCT	T/E P 03	/02735
gaa Glu		Ile		gct Ala	144
	Gln			cag Gln	192
aac Asn	ctg Leu	gtg Val	gcc Ala	ttc Phe 80	240
				gag Glu	288
		tcg Ser 110	Gln	gag Glu	336
		gag Glu		aca Thr	384
		ggt Gly		gtg Val	432
		gac Asp			480
	cat His	gag Glu		cag Gln	528
		cct Pro 190		gct Ala	576
Pro		Gln		tct Ser	624
caa Gln 220	ggt Gly	cag Gln	aac Asn	gcc Ala	672
att Ile	gca Ala	caa Gln	tca Ser	ttc Phe 240	720
		Asn		cag Gln	768
caa Gln	Ile	gtc Val 270	cgc Arg	cca Pro	816
gag	caa	gcg	acg	tct	864

cag ctt caa aac atc gag gcg ctc gag ccc atc Gln Leu Gln Asn Ile Glu Ala Leu Glu Pro Ile 35 gad gcc ggt gtg acc gaa att tgg gac gcc tat Glu Ala Gly Val Thr Glu Ile Trp Asp Ala Tyr 55 tgt gcg tgg tcg att tta ttc gac acc gga ttc Cys Ala Trp Ser Ile Leu Phe Asp Thr Gly Phe 70 tct tgc ctt cct acg tca aca ccc cta ttt tgg Ser Cys Leu Pro Thr Ser Thr Pro Leu Phe Trp 85 ggg gtt ata ttg ccg gga tgc cgc aga acc tat Gly Val Ile Leu Pro Gly Cys Arg Arg Thr Tyr 100 caa cag ttt tcc ggt gag ggt ggc cgc aga gga Gln Gln Phe Ser Gly Glu Gly Gly Arg Arg Gly 115 ttc agg acc gtc atc aga aag tta gag aac tta Phe Arg Thr Val Ile Arg Lys Leu Glu Asn Leu 130 135 gtt gcc atc ccc acc gga aca gct cac tgg ctt Val Ala Ile Pro Thr Gly Thr Ala His Trp Leu 150 aca gaa ctt gtg gtc gtc ttc ttg gat act cag Thr Glu Leu Val Val Val Phe Leu Asp Thr Gln 165 ctt gac gaa aac caa agg aga ttc ttc tta gcc Leu Asp Glu Asn Gln Arg Arg Phe Phe Leu Ala 180 185 caa gct caa agc cag cag caa caa caa aga caa Gln Ala Gln Ser Gln Gln Gln Gln Arg Gln 195 200 cct caa agg caa agg caa agg caa ggg Pro Gln Arg Gln Arg Gln Arg Gln Gly 215 .ggc aac atc ttc aac ggt ttc acc ccc gag ctc Gly Asn Ile Phe Asn Gly Phe Thr Pro Glu Leu 230 . aac gtc gac caa gag acc gcc cag aag cta caa Asn Val Asp Gln Glu Thr Ala Gln Lys Leu Gln 245 aga ggc cac att gtt aat gtc gga caa gac ctt Arg Gly His Ile Val Asn Val Gly Gln Asp Leu (265 cca caa gac aga cgc tct cct cgc caa caa caa g Pro Gln Asp Arg Arg Ser Pro Arg Gln Gln Gln Gln Gln Ala Thr Ser 275 280 cct cgc caa caa caa gag cag cag caa ggc aga cgt ggc gga tgg agc 912 Pro Arg Gln Gln Gln Gln Gln Gln Gly Arg Arg Gly Gly Trp Ser 290 295 300

WO 03/078629	
--------------	--

W	O 03/0	78629								41				PCT	/EP03/0	2735
	Gly									aag Lys 315					att Ile 320	960·
										ccg Pro						1008
										ctc Leu						1056
										gcc Ala						1104
tgg Trp	aca Thr 370	atc Ile	aac Asn	gcc Ala	cac His	aat Asn 375	ctt Leu	ctc Leu	tac Tyr	gta Val	acc Thr 380	gag Glu	gga Gly	gcc Ala	ttg Leu	1152
										tca Ser 395						1200
ctc Leu	cgt Arg	gag Glu	gga Gly	cag Gln 405	gtg Val	gtg Val	gtg Val	atc Ile	Pro 410	cag Gln	aac Asn	ttt Phe	gcg Àla	gtg Val 415	.atc Ile	1248
										gtg Val						1296
gat Asp	aat Asn	gcc Ala 435	atg Met	ata Ile	gca Ala	aac Asn	ctt Leu 440	gca Ala	Gly ggg	cgt Arg	gtg Val	tcc Ser 445	gca Ala	tca Ser	gca Ala	1344
										tat Tyr						1392
										gag Glu 475						1440
										gct Ala			taa			1482
<211 <212	> 30 > 49 > PR > He	3 2 T	thus	ann	uus											
<400 Met	> 30 Ala		Lys	Ala	Thr	Leu	Leu	Leu	Ala	Phe	Thr	Leu	Leu	Phe	Ala	
1 Thr				5			•		10					15		

Thr Cys Ile Ala Arg His Gln Gln Arg Gln Gln Gln Asn Gln Cys

Gln Leu Gln Asn Ile Glu Ala Leu Glu Pro Ile Glu Val Ile Gln Ala

Glu Ala Gly Val Thr Glu Ile Trp Asp Ala Tyr Asp Gln Gln Phe Gln

Cys Ala Trp Ser Ile Leu Phe Asp Thr Gly Phe Asn Leu Val Ala Phe

Glu Ala Gln Gln Leu Lys Phe Ser Gln Arg Glu Thr Val Leu Phe Ala 465 470 475 480

Pro Ser Phe Ser Arg Gly Gln Gly Ile Arg Ala Ser Arg
485
490

<210> 31 <211> 537 <212> DNA <213> Brassica napus <220>														
<220> <221> CDS <222> (1)(534) <223> NAPIN														
<pre><400> 31 atg gcg aac aag ctc ttc ctc gtc tcg gca act ctc gcc ttc ttc ttc Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe 1 5 . 10 15</pre>	48													
ctt ctc acc aat gcc tcc atc tac cgg acg gtc gtc gag ttc gac gaa Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Asp Glu 20 25 30	96													
gat gat gcc aca gac tca gcc ggc cca ttt agg att cca aaa tgt agg Asp Asp Ala Thr Asp Ser Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg 35 40 45	144													
aag gag ttt cag caa gca caa cac cta aga gct tgc cag cag tgg ctc Lys Glu Phe Gln Gln Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu 50 55 60	192													
cac aag caa gca atg cag tct ggc ggt ggt cct agc tgg acc ctc gac His Lys Gln Ala Met Gln Ser Gly Gly Gly Pro Ser Trp Thr Leu Asp 65 70 75 80	240													
ggt gag ttt gac ttt gaa gac gac atg gag aac ccg cag ggt cca cag Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln 85 90 95	288													
cag aga ccg cct cta ctc cag cag tgc tgt aac gag ctc cac cag gaa Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu 100 105 110	336													
gag ccc ctt tgc gtt tgc cca acc ttg aaa gga gca tcc aaa gcg gtt Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val 115 120 125	384													
aaa caa caa att caa caa cag gga caa cag caa gga aag cag c	432													
gtg agc cgt atc tac cag acc gct acg cac tta cct aaa gtt tgc aac Val Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn 145 150 155 160	480													
atc ccg caa gtt agc gtt tgt ccc ttc cag aag acc atg cct ggg ccc Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro 165 170 175	528													
tcc tac tag . Ser Tyr	537													

<210> 32 <211> 178 <212> PRT

<213> Brassica napus

<400> 32

Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe 1 5 10 . 15

Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Asp Glu 20 25 30

Asp Asp Ala Thr Asp Ser Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg 35 40 45

Lys Glu Phe Gln Gln Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu 50 55 60

His Lys Gln Ala Met Gln Ser Gly Gly Pro Ser Trp Thr Leu Asp
65 70 75 80

Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln 85 · 90 95

Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu 100 105 110

Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val 115 120 125

Lys Gln Gln Ile Gln Gln Gln Gln Gln Gln Gln Gln Het 130 135 140

Val Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn 145 150 155 160

Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro 165 170 175

. Ser Tyr

<210> 33

<211> 537

<212> DNA

<213> Brassica juncea

<220>

<221> CDS

<222> (1)..(534)

<223> 2S storage protein

<400> 33

atg gcg aac aag ctc ttc ctc gtc tcg gca act ctc gcc ttc ttc ttc 48 Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe 1 5 10 15

ctt ctc acc aat gcc tcc atc tac cgg acg gtc gtc gag ttc gac gaa 96 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Asp Glu 20 25 30

gat gat gcc aca gac tca gcc ggc cca ttt agg att cca aaa tgt agg 144 Asp Asp Ala Thr Asp Ser Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg 35 40 45

aag gag ttt cag caa gca caa cac cta aga gtc tgc cag cag tgg ctc 192 Lys Glu Phe Gln Gln Ala Gln His Leu Arg Val Cys Gln Gln Trp Leu 50 55 60

- 4	1	-
-4	L	-

	aag Lys		_	_	_				_		_				_	240
	gag Glu		-		-				_			_			_	288
	aga Arg															336
	ccc Pro															384
	caa Gln 130					_			_			_	_		_	432
	agc Ser	_						-					_	_		480
	ccg Pro															528
	tac Tyr	tag														537
<213)> 34 L> 17	78														
<213	2> PF 3> Br	assi	ica :	junce	ea								•			٠
<213 <400 Met		assi l				Leu	Val	Ser		Thr	Leu	Ala	Phe		Phe	
<213 <400 Met 1	3> Bi 3> 34	assi l Asn	Lys	Leu 5	Phe				10					15		
<213 <400 Met 1 Leu	3> B1)> 34 Ala	assi l Asn Thr	Lys Asn 20	Leu 5 Ala	Phe Ser	Ile	Tyr	Arg 25	10 Thr	Val	Val	Glu	Phe 30	15 Asp	Glu	
<213 <400 Met 1 Leu Asp	8> Br 0> 34 Ala Leu	Asn Thr Ala	Lys Asn 20 Thr	Leu 5 Ala Asp	Phe Ser Ser	Ile Ala	Tyr Gly 40	Arg 25 Pro	10 Thr Phe	Val Arg	Val Ile	Glu Pro 45	Phe 30 Lys	15 Asp Cys	Glu Arg	
<213 <400 Met 1 Leu Asp	3> Bi 34 Ala Leu Asp	Asn Thr Ala 35	Lys Asn 20 Thr	Leu 5 Ala Asp Gln	Phe Ser Ser	Ile Ala Gln 55	Tyr Gly 40 His	Arg 25 Pro Leu	10 Thr Phe Arg	Val Arg Val	Val Ile Cys 60	Glu Pro 45 Gln	Phe 30 Lys Gln	15 Asp Cys Trp	Glu Arg Leu	
<213 <400 Met 1 Leu Asp Lys His 65	3> Br 30> 34 Ala Leu Asp Glu 50	Thr Ala 35 Phe Gln	Lys Asn 20 Thr Gln Ala	Leu 5 Ala Asp Gln Met	Phe Ser Ser Ala Gln 70	Ile Ala Gln 55 Ser	Tyr Gly 40 His	Arg 25 Pro Leu Gly	10 Thr Phe Arg Gly	Val Arg Val Val Leu 75	Val Ile Cys 60 Ser	Glu Pro 45 Gln Trp	Phe 30 Lys Gln Thr	15 Asp Cys Trp Leu	Glu Arg Leu Asp 80	
<213 <400 Met 1 Leu Asp Lys G5 Gly	3> Br 3> 34 Ala Leu Asp Glu 50 Lys	Thr Ala 35 Phe Gln	Lys Asn 20 Thr Gln Ala Asp	Leu 5 Ala Asp Gln Met	Phe Ser Ser Ala Gln 70 Glu	Ile Ala Gln 55 Ser Asp	Tyr Gly 40 His Gly Asp	Arg 25 Pro Leu Gly Met	10 Thr Phe Arg Gly Glu 90	Val Arg Val Leu 75 Asn	Val Ile Cys 60 Ser Ser	Glu Pro 45 Gln Trp Gln	Phe 30 Lys Gln Thr	15 Asp Cys Trp Leu Pro 95	Glu Arg Leu Asp 80 Gln	
<213 <400 Met 1 Leu Asp Lys Gly Gln	3> Br 3> 34 Ala Leu Asp Glu 50 Lys Glu	Thr Ala 35 Phe Gln Phe Pro	Lys Asn 20 Thr Gln Ala Asp Pro 100	Leu 5 Ala Asp Gln Met Phe 85 Leu	Phe Ser Ser Ala Gln 70 Glu Leu	Ile Ala Gln 55 Ser Asp Gln	Tyr Gly 40 His Gly Asp Gln	Arg 25 Pro Leu Gly Met Cys 105	10 Thr Phe Arg Gly Glu 90 Cys	Val Arg Val Leu 75 Asn	Val Ile Cys 60 Ser Ser	Glu Pro 45 Gln Trp Gln Leu	Phe 30 Lys Gln Thr Gly His 110	15 Asp Cys Trp Leu Pro 95 Gln	Glu Arg Leu Asp 80 Gln Glu	
<213 <400 Met 1 Leu Asp Lys 65 Gly Gln Glu	3> Br 3> 34 Ala Leu Asp Glu 50 Lys Glu Arg	Thr Ala 35 Phe Gln Phe Pro Leu 115	Lys Asn 20 Thr Gln Ala Asp Pro 100 Cys	Leu 5 Ala Asp Gln Met Phe 85 Leu Val	Phe Ser Ser Ala Gln 70 Glu Leu Cys	Ile Ala Gln 55 Ser Asp Gln Pro	Tyr Gly 40 His Gly Asp Gln Thr 120	Arg 25 Pro Leu Gly Met Cys 105 Leu	10 Thr Phe Arg Gly Glu 90 Cys	Val Val Leu 75 Asn Gly	Val Ile Cys 60 Ser Ser Glu Ala	Glu Pro 45 Gln Trp Gln Leu Ser 125	Phe 30 Lys Gln Thr Gly His 110 Lys	Asp Cys Trp Leu Pro 95 Gln	Glu Arg Leu Asp 80 Gln Glu Val	
<213 <400 Met 1 Leu Asp Lys 65 Gly Gln Glu Lys	3> Br 3> 34 Ala Leu Asp Glu 50 Lys Glu Arg Pro Gln	Thr Ala 35 Phe Gln Phe Pro Leu 115 Gln	Lys Asn 20 Thr Gln Ala Asp Pro 100 Cys Ile	Leu 5 Ala Asp Gln Met Phe 85 Leu Val Gln	Phe Ser Ser Ala Gln 70 Glu Leu Cys Gln	Ile Ala Gln 55 Ser Asp Gln Pro Gln 135	Tyr Gly 40 His Gly Asp Gln Thr 120 Gly	Arg 25 Pro Leu Gly Met Cys 105 Leu Gln	10 Thr Phe Arg Gly Glu 90 Cys Lys Gln	Val Arg Val Leu 75 Asn Gly Gln	Val Ile Cys 60 Ser Ser Glu Ala Gly 140	Glu Pro 45 Gln Trp Gln Leu Ser 125 Lys	Phe 30 Lys Gln Thr Gly His 110 Lys	Asp Cys Trp Leu Pro 95 Gln Ala	Glu Arg Leu Asp 80 Gln Glu Val	
<213 <400 Met 1 Leu Asp Lys 65 Gly Gln Glu Lys Val 145	3> Br 3> Br 3> 34 Ala Leu Asp Glu 50 Lys Glu Arg Pro Gln 130	Thr Ala 35 Phe Gln Pro Leu 115 Gln Arg	Lys Asn 20 Thr Gln Ala Asp Pro 100 Cys Ile	Leu 5 Ala Asp Gln Met Phe 85 Leu Val Gln Tyr	Phe Ser Ser Ala Gln 70 Glu Leu Cys Gln Gln 150	Ile Ala Gln 55 Ser Asp Gln Pro Gln 135 Thr	Tyr Gly 40 His Gly Asp Gln Thr 120 Gly Ala	Arg 25 Pro Leu Gly Met Cys 105 Leu Gln Thr	10 Thr Phe Arg Gly Glu 90 Cys Lys Gln His	Val Arg Val Leu 75 Asn Gly Gln Leu 155	Val Ile Cys 60 Ser Ser Glu Ala Gly 140 Pro	Glu Pro 45 Gln Trp Gln Leu Ser 125 Lys	Phe 30 Lys Gln Thr Gly His 110 Lys Gln Val	Asp Cys Trp Leu Pro 95 Gln Ala Gln	Glu Arg Leu Asp 80 Gln Glu Val Met Asn 160	

Ser Tyr

<213	0> 3! 1> 5: 2> DI 3> B:	37	ica (olera	acea									
<222	L> C1 2> (:	1)			otei	n		•						٠
<400)> 3	5									•			
					ttc Phe									48
					tcc Ser									96
					cca Pro									144
_			-		gca Ala			_	_	_	_	_		192
					cag Gln 70									240
					gaa Glu									288
					ctc Leu									336
					tgc Cys									384
					caa Gln									432
					cag Gln 150									480
					gtt Val									528
cc Ser	tac Tyr	tag												537
<211 <212	> 36 > 17 > PR > Br	8	ca c	olera	acea									

WC	03/0	78629)										PCT	/EP03/
47															
<40	0> 30	5													
Met 1	Ala	Asn	Lys	Leu 5	Phe	Leu	Val	Ser	Ala 10	Thr	Leu	Ala	Phe	Phe 15	Phe
Leu	Leu	Thr	Asn 20	Ala	Ser	Ile	Tyr	Arg 25	Thr	Val	Val	Glu	Phe 30	Asp	Glu
Asp	Asp	Ala 35	Thr	Asn	Pro	Ala	Gly 40	Pro	Phe	Arg	Ile	Pro 45	Lys	Cys	Arg
Lys	Glu 50	Phe	Gln	Gln	Ala	Gln 55	His	Leu	Arg	Ala	Cys 60	Gln	Gln	Trp	Leu
His 65	Lys	Gln	Ala	Met	Gln 70	Ser	Gly	Gly	Gly	Pro 75	Ser	Trp	Thr	Leu	Asp 80
Ser	Glu	Phe	Asp	Phe 85	Glu	Asp	Asp	Met	Glu 90	Asn	Pro	Gln	Gly	Pro 95	Gln
Gln	Arg	Pro	Pro 100	Leu	Leu	Leu	Gln	Cys 105	Cys	Asn	Glu	Leu	Asp 110		Glu
Glu	Pro	Leu 115	Cys	Val	Cys	Pro	Thr 120	Leu	Lys	Gly	Ala	Ser 125	Lys	Ala	Val
Lys	Gln 130	Gln	Ile	Gln	Gln	Gln 135	Gly	Gln	Gln	Gln	Gly 140	Lys	Gln	Gln	Met
Val 145	Ser	Arg	Ile	Tyr	Gln 150	Thr	Ala	Thr	His	Leu 155	Pro	Lys	Val	Cys	Asn 160
Ile	Pro	Gln	Val	Ser 165	Val	Cys	Pro	Phe	Gln 170	Lys	Thr	Met		Gly 175	Pro
Ser	Tyr														
<21°)> 37	7													
	l> 54														
	2> D1														
						_									

<213> Brassica napus cv. Topas <220> <221> CDS <222> (1)..(540) <223> Napin <400> 37 atg gcg aac aag ctc ttc ctc gtc tcg gca act ctt gcc ttc ttc ttc Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe Phe 10 ctt etc acc aac gcc tcc atc tac egc acc atc gtg gaa gtc gac gaa 96 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Ile Val Glu Val Asp Glu 20 gat gat gcc aca aac cca gcc ggc cca ttt agg att cca aaa tgt agg Asp Asp Ala Thr Asn Pro Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg 35 40 aag gag ttt cag caa gca caa cac ctg aaa gct tgc caa caa tgg ctc 192 Lys Glu Phe Gln Gln Ala Gln His Leu Lys Ala Cys Gln Gln Trp Leu 50 55 cac aag cag gca atg cag tee ggt agt gge cca age tgg acc ete gae His Lys Gln Ala Met Gln Ser Gly Ser Gly Pro Ser Trp Thr Leu Asp 65 70 80 · 75

					•				•	48	•					
	gag Glu															288
	agg Arg											Leu				336
	cca Pro													_	_	384
	caa Gln 130															432
	gta Val															480
	aac Asn											_		_		528
	ccc Pro			tag						٠					•	543
<211 <212	0> 38 L> 18 2> PE 3> Br	30 RT	ica r	napus	s cv.	. Тор	pas									
)> 38 Ala		Lvs	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe	
1			-2-													
				5					10					15		
Leu	Leu	Thr	Asn 20		Ser	Ile	Tyr	Arg 25		Ile	Val	Glu	Val 30		Glu	
	Leu Asp		20	Ala				25	Thr				30	Asp		
Asp		Ala 35	20 Thr	Ala Asn	Pro	Ala	Gly 40	25 Pro	Thr Phe	Arg	Ile	Pro 45	30 Lys	Asp Cys	Arg	
Asp Lys	Asp Glu	Ala 35 Phe	20 Thr Gln	Ala Asn Gln	Pro Ala	Ala Gln 55	Gly 40 His	25 Pro Leu	Thr Phe Lys	Arg Ala	Ile Cys 60	Pro 45 Gln	30 Lys Gln	Asp Cys Trp	Arg Leu	
Asp Lys His 65	Asp Glu 50	Ala 35 Phe Gln	20 Thr Gln Ala	Ala Asn Gln Met	Pro Ala Gln 70	Ala Gln 55 Ser	Gly 40 His	25 Pro Leu Ser	Thr Phe Lys Gly	Arg Ala Pro 75	Ile Cys 60 Ser	Pro 45 Gln Trp	30 Lys Gln Thr	Asp Cys Trp Leu	Arg Leu Asp 80	
Asp Lys His 65 Gly	Asp Glu 50 Lys	Ala 35 Phe Gln Phe	20 Thr Gln Ala Asp	Ala Asn Gln Met Phe 85	Pro Ala Gln 70 Glu	Ala Gln 55 Ser Asp	Gly 40 His Gly Asp	25 Pro Leu Ser Met	Thr Phe Lys Gly Glu 90	Arg Ala Pro 75 Asn	Ile Cys 60 Ser	Pro 45 Gln Trp Gln	30 Lys Gln Thr	Asp Cys Trp Leu Pro 95	Arg Leu Asp 80 Gln	
Asp Lys His 65 Gly	Asp Glu 50 Lys Glu	Ala 35 Phe Gln Phe	20 Thr Gln Ala Asp Pro 100	Ala Asn Gln Met Phe 85 Leu	Pro Ala Gln 70 Glu Leu	Ala Gln 55 Ser Asp Gln	Gly 40 His Gly Asp	25 Pro Leu Ser Met Cys 105	Thr Phe Lys Gly Glu 90 Cys	Arg Ala Pro 75 Asn Asn	Ile Cys 60 Ser Pro Glu	Pro 45 Gln Trp Gln Leu	30 Lys Gln Thr Gly His 110	Asp Cys Trp Leu Pro 95 Gln	Arg Leu Asp 80 Gln Glu	
Asp Lys His 65 Gly Gln Glu	Asp Glu 50 Lys Glu Arg	Ala 35 Phe Gln Phe Pro Leu 115	20 Thr Gln Ala Asp Pro 100 Cys	Ala Asn Gln Met Phe 85 Leu Val	Pro Ala Gln 70 Glu Leu Cys	Ala Gln 55 Ser Asp Gln Pro	Gly 40 His Gly Asp Gln Thr 120	25 Pro Leu Ser Met Cys 105 Leu	Thr Phe Lys Gly Glu 90 Cys Lys	Arg Ala Pro 75 Asn Asn Gly	Ile Cys 60 Ser Pro Glu Ala	Pro 45 Gln Trp Gln Leu Ser 125	30 Lys Gln Thr Gly His 110 Lys	Asp Cys Trp Leu Pro 95 Gln Ala	Arg Leu Asp 80 Gln Glu Val	·
Asp Lys His 65 Gly Gln Glu Lys	Asp Glu 50 Lys Glu Arg Pro	Ala 35 Phe Gln Phe Pro Leu 115 Gln	20 Thr Gln Ala Asp Pro 100 Cys	Ala Asn Gln Met Phe 85 Leu Val Arg	Pro Ala Gln 70 Glu Leu Cys Gln	Ala Gln 55 Ser Asp Gln Pro Gln 135	Gly 40 His Gly Asp Gln Thr 120 Gln	25 Pro Leu Ser Met Cys 105 Leu Gly	Thr Phe Lys Gly Glu 90 Cys Lys Gln	Arg Ala Pro 75 Asn Asn Gly Gln	Cys 60 Ser Pro Glu Ala Gly 140	Pro 45 Gln Trp Gln Leu Ser 125 Gln	30 Lys Gln Thr Gly His 110 Lys	Asp Cys Trp Leu Pro 95 Gln Ala Leu	Arg Leu Asp 80 Gln Glu Val	
Asp Lys His 65 Gly Gln Glu Lys Gln 145	Asp Glu 50 Lys Glu Arg Pro Gln 130	Ala 35 Phe Gln Phe Pro Leu 115 Gln	Thr Gln Ala Asp Pro 100 Cys Val Ser	Ala Asn Gln Met Phe 85 Leu Val Arg	Pro Ala Gln 70 Glu Leu Cys Gln Ile 150	Ala Gln 55 Ser Asp Gln Pro Gln 135 Tyr	Gly 40 His Gly Asp Gln Thr 120 Gln	25 Pro Leu Ser Met Cys 105 Leu Gly	Thr Phe Lys Gly Glu 90 Cys Lys Gln Ala	Arg Ala Pro 75 Asn Asn Gly Gln Thr 155	Ile Cys 60 Ser Pro Glu Ala Gly 140 His	Pro 45 Gln Trp Gln Leu Ser 125 Gln Leu	30 Lys Gln Thr Gly His 110 Lys Gln Pro	Asp Cys Trp Leu Pro 95 Gln Ala Leu	Arg Leu Asp 80 Gln Glu Val Gln Val	

<21 <21 <21 <22 <22 <22 <22	0> 3: 1> 4: 2> Di 3> S: 0> 1> Ci 2> (:33> Co	35 NA inap: DS	(432))	rtia	l sii	nl s	torac	ie n	rote	in					
	0> 3!		,	ı pu.				Jozas	,c p.	. 000.						
	gcc Ala															48
	caa Gln															96
	tct Ser															144
	gat Asp 50															192
	cag Gln															240
	cca Pro															288
	cag Gln															336
	agc Ser															384
Ile	agg Arg 130	${\tt Gln}$			Val		Pro			Lys						432
tcc																435
<211 <212)> 40 .> 14 !> PF !> Si	14 RT	.s a]	.ba												
	> 40		_													
Pro 1	Ala	Gly	Pro	Phe 5	Gly	Ile	Pro	Lys	Cys 10	Arg	Lys	Glu	Phe	Gln 15	Gln	
	Gln		20					25					30			
Gln	Ser	Gly 35	Ser	Gly	Pro	Ser	Trp 40	Thr	Leu	Asp	Asp	Glu 45	Phe	Asp	Phe	
Glu	Asp 50	Asp	Met	Glu	Asn	Pro 55	Gln	Gly	Pro	Gln	Gln 60	Arg	Pro	Pro	Leu	

Leu 65		Gln	Cys	Cys	Asn 70	Glu	Leu	His	Gln	Glu 75	Glu	Pro	Leu	Суѕ	Val 80	
Cys	Pro	Thr	Leu	Lys 85	Gly	Ala	Ser	Lys	Ala 90	Val	Lys	Gln	Gln	Val 95	Arg	
Gln	Gln	Leu	Glu 100	Gln	Gln	Gly	Gln	Gln 105	Gly	Pro	His	Leu	Gln 110	His	Val	
Ile	Ser	Arg 115	Ile	Tyr	Gln	Thr	Ala 120	Thr	His	Leu	Pro	Arg 125	Val	Суѕ	Asn	
Ile	Arg 130	Gln	Val	Ser	Val	Cys 135	Pro	Phe	Gln	Lys	Thr 140	Met	Pro	Gly	Pro	
<210> 41 <211> 468 <212> DNA <213> Glycine max <220>																
<22 <22	1> C1 2> (:	1)	(465) oumin													
atg		aag	ctt Leu													48
			gcc Ala 20													96
			aag Lys													144
			gct Ala													192
			agg Arg													240
			gaa Glu													288
_	_	_	gag Glu 100	_					-	_	_				_	336
			gat Asp													384
			aga Arg													432
			ggg Gly						-	-	tga					468

WO 03/078629 <210> 42 <211> 155 <212> PRT <213> Glycine max <400> 42

Met Thr Lys Leu Thr Ile Leu Leu Ile Ala Leu Leu Phe Ile Ala His 10

51

Thr Cys Cys Ala Ser Lys Trp Gln Gln His Gln Gln Glu Ser Cys Arg 25

Glu Gln Leu Lys Gly Ile Asn Leu Asn Pro Cys Glu His Ile Met Glu 40

Lys Ile Gln Ala Gly Arg Arg Gly Glu Asp Gly Ser Asp Glu Asp His

Ile Leu Ile Arg Thr Met Pro Gly Arg Ile Asn Tyr Ile Arg Lys Lys 70

Glu Gly Lys Glu Glu Glu Glu Gly His Met Gln Lys Cys Cys Ser 85

Glu Met Ser Glu Leu Lys Ser Pro Ile Cys Gln Cys Lys Ala Leu Gln

Lys Ile Met Asp Asn Gln Ser Glu Gln Leu Glu Gly Lys Glu Lys Lys 120

Gln Met Glu Arg Glu Leu Met Asn Leu Ala Ile Arg Cys Arg Leu Gly

Pro Met Ile Gly Cys Asp Leu Ser Ser Asp Asp 155

<210> 43

<211> 477

<212> DNA

<213> Glycine max

<220>

<221> CDS

<222> (1)..(474)

<223> 2S albumine

<400> 43

atg acc aag ttc aca atc ctc ctc atc tct ctc ttc tgc atc gcc 48 Met Thr Lys Phe Thr Ile Leu Leu Ile Ser Leu Leu Phe Cys Ile Ala 10

cac act tgc agc gcc tcc aaa tgg cag cac cag caa gat agc tgc cgc 96 His Thr Cys Ser Ala Ser Lys Trp Gln His Gln Gln Asp Ser Cys Arg 25

aag cag ctc cag ggg gtg aac ctc acg ccc tgc gag aag cac atc atg 144 Lys Gln Leu Gln Gly Val Asn Leu Thr Pro Cys Glu Lys His Ile Met 35 45

gag aag atc caa ggc cgc ggc gat gac gat gat gat gat gac gac gac Glu Lys Ile Gln Gly Arg Gly Asp Asp Asp Asp Asp Asp Asp Asp 50

aat cac att ctc agg acc atg cgg gga aga atc aac tac ata agg agg 240 Asn His Ile Leu Arg Thr Met Arg Gly Arg Ile Asn Tyr Ile Arg Arg 65 70 75

WO 03/078629	
WO 03/078629	

WO 03/078629								PCT/EP03/02735					
							52						
aac gaa gga Asn Glu Gly	aaa q Lys 1	gac gaa Asp Glu 85	gac Asp	gaa Glu	gaa Glu	gaa Glu 90	gaa Glu	gga Gly	cac His	atg Met	cag Gln 95	aag Lys	288
tgc tgc aca Cys Cys Thr	gaa a Glu N 100	atg agc Met Ser	gag Glu	ctg Leu	aga Arg 105	agc Ser	ccc Pro	aaa Lys	tgc Cys	cag Gln 110	tgc Cys	aaa Lys	336

gcg ctg cag aag ata atg gag aac cag agc gag gaa ctg gag gag aag Ala Leu Gln Lys Ile Met Glu Asn Gln Ser Glu Glu Leu Glu Glu Lys 115 120

cag aag aag aaa atg gag aag gag ctc att aac ttg gct act atg tgc 432 Gln Lys Lys Met Glu Lys Glu Leu Ile Asn Leu Ala Thr Met Cys 130 135

agg ttt gga ccc atg atc cag tgc gac ttg tcc tcc gat gac taa 477 Arg Phe Gly Pro Met Ile Gln Cys Asp Leu Ser Ser Asp Asp 145 150

<210> 44

<211> 158

<212> PRT

<213> Glycine max

<400> 44

Met Thr Lys Phe Thr Ile Leu Leu Ile Ser Leu Leu Phe Cys Ile Ala 10

His Thr Cys Ser Ala Ser Lys Trp Gln His Gln Gln Asp Ser Cys Arg 25

Lys Gln Leu Gln Gly Val Asn Leu Thr Pro Cys Glu Lys His Ile Met 45

Glu Lys Ile Gln Gly Arg Gly Asp Asp Asp Asp Asp Asp Asp Asp 55

Asn His Ile Leu Arg Thr Met Arg Gly Arg Ile Asn Tyr Ile Arg Arg

Asn Glu Gly Lys Asp Glu Asp Glu Glu Glu Gly His Met Gln Lys

Cys Cys Thr Glu Met Ser Glu Leu Arg Ser Pro Lys Cys Gln Cys Lys 105

Ala Leu Gln Lys Ile Met Glu Asn Gln Ser Glu Glu Leu Glu Glu Lys 120

Gln Lys Lys Lys Met Glu Lys Glu Leu Ile Asn Leu Ala Thr Met Cys 135

Arg Phe Gly Pro Met Ile Gln Cys Asp Leu Ser Ser Asp Asp 145 150

<210> 45

<211> 537

<212> DNA

<213> Brassica nigra

<220>

<221> CDS

<222> (1)..(534)

<223> 2S storage protein

		1								JJ						
	0> 4															
Met 1	Ala	aac Asn	aag Lys	Leu 5	Phe	ctc Leu	gtc Val	tcg Ser	gca Ala 10	Thr	ctc Leu	gcc Ala	Phe	Phe 15	ttc Phe	48
Leu	Leu	Thr	Asn 20	Ala	Ser	Ile	Tyr	Arg 25	Thr	Val	Val	Glu	Phe 30	Asp	gaa Glu	96
gat Asp	gat Asp	gac Asp 35	aca Thr	aac Asn	caa Gln	gcc Ala	gga Gly 40	cca Pro	ttt Phe	agg Arg	att	cca Pro 45	aga Arg	tgt Cys	cga Arg	144
aag Lys	gag Glu 50	ttt Phe	cgg	caa Gln	gca Ala	caa Gln 55	cat His	cta Leu	aga Arg	gct Ala	tgc Cys 60	cag Gln	caa Gln	tgg Trp	ctc Leu	192
cac His 65	agg Arg	cag Gln	gca Ala	atg Met	cag Gln 70	tcc Ser	ggt Gly	agt Ser	ggt Gly	cca Pro 75	agc Ser	tgg Trp	acc Thr	ctg Leu	gac Asp 80	240
ggt Gly	gag Glu	ttt Phe	gac Asp	ttt Phe 85	gaa Glu	gac Asp	gaç Asp	atg Met	gag Glu 90	aac Asn	caa Gln	cag Gln	ggc Gly	cca Pro 95	cag Gln	288
cag Gln	agg Arg	cca Pro	cct Pro 100	cta Leu	ctc Leu	cag Gln	caa Gln	tgc Cys 105	tgc Cys	aac Asn	gag Glu	ctc Leu	cac His 110	cag Gln	gaa Glu	336
gag Glu	gca Ala	ctt Leu 115	tgt Cys	gtt Val	tgc Cys	cca Pro	acc Thr 120	ttg Leu	aaa Lys	gga Gly	gca Ala	tcc Ser 125	Lys	gcg Ala	gtt Val	384
aga Arg	caa Gln 130	cag Gln	gtt Val	cga Arg	caa Gln	cag Gln 135	gga Gly	cac His	cag Gln	cag Gln	cag Gln 140	atg Met	cag Gln	cat His	gta Val	432
att Ile 145	agc Ser	cgt Arg	atc Ile	tac Tyr	cag Gln 150	acc Thr	gct Ala	acg Thr	cac His	tta Leu 155	cct Pro	aga Arg	gtt Val	tgc Cys	aac Asn 160	480
atc Ile	ccg Pro	caa Gln	gtt Val	agc Ser 165	gtt Val	tgt Cys	ccc Pro	ttc Phe	cag Gln 170	aag Lys	acc Thr	atg Met	cct Pro	ggg Gly 175	ccc Pro	528
tcc Ser	tac Tyr	tag														537
<211 <212	> PF	8	ca n	igra												
<400	> 46			_												
Met 1	Ala	Asn	Lys	Leu 5	Phe	Leu	Val	Ser	Ala 10	Thr	Leu	Ala	Phe	Phe 15	Phe	
Leu	Leu	Thr	Asn 20	Ala	Ser	Ile	Tyr	Arg 25	Thr	Val	Val	Glu	Phe 30	Asp	Glu	
Asp	Asp	Asp 35	Thr	Asn	Gln	Ala	Gly 40	Pro	Phe	Arg	Ile	Pro 45	Arg	Суѕ	Arg	
Lys	Glu 50	Phe	Arg	Gln	Ala	Gln 55	His	Leu	Arg	Ala	Cys 60	Gln	Gln	Trp	Leu	
His 65	Arg	Gln .	Ala	Met	Gln 70	Ser	Gly	Ser	Gly	Pro 75	Ser	Trp	Thr	Leu	Asp 80	

WO 03/078629				(

Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Gln Gly Pro Gln Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Ala Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Arg Gln Gln Val Arg Gln Gln Gly His Gln Gln Met Gln His Val 135 Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Arg Val Cys Asn 150 155 Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro 165 170 Ser Tyr <210> 47 <211> 435 <212> DNA <213> Sinapis alba <220> <221> CDS <222> (1)..(432) <223> sin5 storage protein <400> 47 cca gcc ggc cca ttt ggg att cca aaa tgt agg aag gag ttt caa caa 48 Pro Ala Gly Pro Phe Gly Ile Pro Lys Cys Arg Lys Glu Phe Gln Gln 96 gca caa cac cta aga gct tgc cag caa tgg ctc cac aag cag gca atg Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu His Lys Gln Ala Met cag tot ggt agt ggt cca agc tgg acc ctc gac gat gag ttt gat ttt 144 Gln Ser Gly Ser Gly Pro Ser Trp Thr Leu Asp Asp Glu Phe Asp Phe 35 192 Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln Gln Lys Pro Pro Leu ctc cag caa tgc tgc aac gag ctt cac cag gag gag cca ctt tgc gtt 240 Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Pro Leu Cys Val tgc cca act ttg aaa gga gct tcc aaa gcc gtt aaa caa cag gtt cga 288 Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Lys Gln Gln Val Arg 90 caa cag ttg ggg cag cag gga cag cag gga ccg cag gtg cag cat gta 336 Gln Gln Leu Gly Gln Gln Gly Gln Gly Pro Gln Val Gln His Val 105 100 att age egt ate tae eag ace get aeg eac tta eet aaa gtt tge aac 384 Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn 115 120 atc ccc caa gta agc gtt tgt ccc ttc aag aag acc atg cct gga ccc 432 Ile Pro Gln Val Ser Val Cys Pro Phe Lys Lys Thr Met Pro Gly Pro

135

130 '

WO 03/078629

tcc . 435 <210> 48 <211> 144 <212> PRT <213> Sinapis alba <400> 48 Pro Ala Gly Pro Phe Gly Ile Pro Lys Cys Arg Lys Glu Phe Gln Gln 10 Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu His Lys Gln Ala Met 25 Gln Ser Gly Ser Gly Pro Ser Trp Thr Leu Asp Asp Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln Gln Lys Pro Pro Leu 50 55 Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Pro Leu Cys Val 75 Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Lys Gln Gln Val Arg 85 Gln Gln Leu Gly Gln Gln Gln Gln Gly Pro Gln Val Gln His Val 105 Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn 120 Ile Pro Gln Val Ser Val Cys Pro Phe Lys Lys Thr Met Pro Gly Pro 130 135 <210> 49 <211> 888 <212> DNA <213> Helianthus annuus <220> <221> CDS <222> (1)..(885) <223> HaG5 2S albumine atg gca aag caa ata gtt ctc gca ctc gct ttc gcc gcc ctt gta gcc 48 Met Ala Lys Gln Ile Val Leu Ala Leu Ala Phe Ala Ala Leu Val Ala 10 ttt gct acc gcc cac aca acc ata atc acc acc acc atc gaa gac gag 96 Phe Ala Thr Ala His Thr Thr Ile Ile Thr Thr Thr Ile Glu Asp Glu 20 25 aac ccg atc tcc gga caa agg caa gtg agc caa cgg ata cag gga caa 144 Asn Pro Ile Ser Gly Gln Arg Gln Val Ser Gln Arg Ile Gln Gly Gln 35 40 agg ctg aac cag tgt cgc atg ttc ctc cag cag ggt cag aac att cct 192 Arg Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Asn Ile Pro 50 cgc gaa ttc gat aac cct cag atg ggg cgg cag cag gag cag cag ctc 240 Arg Glu Phe Asp Asn Pro Gln Met Gly Arg Gln Gln Glu Gln Leu 65 70 75

WO 03/078629	
--------------	--

WC	03/0	78629												PCT	/EP03/0	2735
		-						•		56						
cag Gln	cag Gln	tgt Cys	tgt Cys	caa Gln 85	gag Gl _i u	ctc Leu	caa Gln	aac Asn	atc Ile 90	gaa Glu	Gly aaa	cag Gln	tgc Cys	caa Gln 95	tgt Cys	288
Glu	Ala	Val	Lys 100	Gln	Val	Phe	Arg	Glu 105	Ala	Gln	Gln	Gln	Val 110	caa Gln	Gln	336
caa Gln	cag Gln	gga Gly 115	cgg Arg	cag Gln	ctt Leu	gta Val	ccc Pro 120	ttc Phe	cgc Arg	ggt Gly	tcg Ser	cag Gln 125	cag Gln	acc Thr	caa Gln	384
cag Gln	ttg Leu 130	aag Lys	cag Gln	aag Lys	gct Ala	cag Gln 135	att Ile	ctc Leu	cct Pro	aac Asn	gta Val 140	tgc Cys	aac Asn	ctt Leu	caa Gln	432
tca Ser 145	aga Arg	cga Arg	tgt Cys	gaa Glu	atc Ile 150	gga Gly	acc Thr	atc Ile	acc Thr	acc Thr 155	acc Thr	gtc Val	acc Thr	gag Glu	agc Ser 160	480
aat Asn	atc	gat Asp	atc Ile	ccc Pro 165	ttc Phe	cgt Arg	gac Asp	agg Arg	ccc Pro 170	ttt Phe	ggc Gly	act Thr	gga Gly	tca Ser 175	Gln	528
														caa Gln		576
														cca Pro		624
														caa Gln		672
caa Gln 225	tgc Cys	tgc Cys	aac Asn	gag Glu	cta Leu 230	caa Gln	aac Asn	gtg Val	aag Lys	agg Arg 235	gag Glu	tgt Cys	cat His	tgc Cys	gag Glu 240	720
gca Ala	att Ile	caa Gln	gaa Glu	gtg Val 245	gct Ala	agg Arg	aga Arg	gtg Val	atg Met 250	agg Arg	cag Gln	cca Pro	cag Gln	cag Gln 255	cag Gln	768
cag Gln	cag Gln	caa Gln	cgt Arg 260	cgt. Arg	ggg Gly	cag Gln	ttc Phe	ggt Gly 265	ggg Gly	cag Gln	gag Glu	atg Met	gaa Glu 270	acc Thr	gcg Ala	816
agg Arg	agg Arg	gtg Val 275	att Ile	cag Gln	aat Asn	ctg Leu	ccc Pro 280	aac Asn	cag Gln	tgc Cys	gac Asp	ttg Leu 285	gaa Glu	gtc Val	cag Gln	864
caa Gln							tga			•						888
<210: <211: <212: <213:	> 29 > PR	5 T	thus	ann	uus											
<400 Met 1			Gln	Ile 5	Val	Leu	Ala	Leu	Ala 10	Phe	Ala	Ala	Leu	Val 15	Ala	
Phe 1	Ala	Thr	Ala 20	His	Thr	Thr	Ile	Ile 25	Thr	Thr	Thr	Ile	Glu	Asp	Glu	

Asn Pro Ile Ser Gly Gln Arg Gln Val Ser Gln Arg Ile Gln Gly Gln 40 Arg Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Asn Ile Pro 55 Arg Glu Phe Asp Asn Pro Gln Met Gly Arg Gln Gln Glu Gln Leu 70 75 Gln Gln Cys Cys Gln Glu Leu Gln Asn Ile Glu Gly Gln Cys Gln Cys 85 90 Glu Ala Val Lys Gln Val Phe Arg Glu Ala Gln Gln Gln Val Gln Gln 105 Gln Gln Gly Arg Gln Leu Val Pro Phe Arg Gly Ser Gln Gln Thr Gln 120 Gln Leu Lys Gln Lys Ala Gln Ile Leu Pro Asn Val Cys Asn Leu Gln 135 Ser Arg Arg Cys Glu Ile Gly Thr Ile Thr Thr Val Thr Glu Ser 150 155 Asn Ile Asp Ile Pro Phe Arg Asp Arg Pro Phe Gly Thr Gly Ser Gln 165 170 Gln Cys Arg Glu Thr Glu Ile Gln Arg Pro Val Gly Glu Cys Gln Arg 185 Phe Val Glu Gln Gln Met Gln Gln Ser Pro Arg Ser Thr Arg Pro Tyr 200 Gln Gln Arg Pro Gly Gln Gln Gln Gln Gln Arg Gly Leu Gln Gln 215 Gln Cys Cys Asn Glu Leu Gln Asn Val Lys Arg Glu Cys His Cys Glu 230 235 Ala Ile Gln Glu Val Ala Arg Arg Val Met Arg Gln Pro Gln Gln Gln 250 Gln Gln Gln Arg Arg Gly Gln Phe Gly Gly Gln Glu Met Glu Thr Ala Arg Arg Val Ile Gln Asn Leu Pro Asn Gln Cys Asp Leu Glu Val Gln 275 280 Gln Cys Thr Thr Cys Thr Gly 290 <210> 51 <211> 973 <212> DNA <213> Helianthus annuus <220> <221> CDS <222> (2)..(970) <223> coding for partial 2S albumine

g gca aag ata aca ctt ctc ttg ctc gcc tta gct gct ctt gta gcc ttg 49
Ala Lys Ile Thr Leu Leu Leu Leu Ala Leu Ala Ala Leu Val Ala Leu

1 5 10 15

gct aca gcc cac aca acc atc acc acc acc acc acc gac gag aac 97
Ala Thr Ala His Thr Thr Ile Ile Thr Thr Thr Ile Asp Asp Glu Asn
20 25 30

		PCT	/ EP03 /0	2735
cag	gga	caa	agg	14

ccg Pro	atc Ile	tcc Ser 35	Glu	caa Gln	agg Arg	caa Gln	tgt Cys 40	tgg Trp	caa Gln	cag Gln	gta Val	cag Gln 45	Gly	caa Gln	agg Arg	145
Leu	aac Asn 50	Gln	tgt Cys	cgc Arg	atg Met	ttc Phe 55	ctc Leu	cag Gln	caa Gln	ggt Gly	cag Gln 60	agg Arg	Gly	cag Gln	caa Gln	193
cac His 65	caa Gln	cag Gln	caa Gln	cag Gln	cat His 70	cag Gln	cag Gln	cag Gln	gag Glu	cag Gln 75	cag Gln	ctc Leu	ctc Leu	cag Gln	cag Gln 80	241
tgt Cys	tgt Cys	caa Gln	gag Glu	ctt Leu 85	caa Gln	aac Asn	atc Ile	gaa Glu	gga Gly 90	cag Gln	tgc Cys	caa Gln	tgt Cys	gag Glu 95	gcg Ala	289
gtg Val	aag Lys	cag Gln	gtg Val 100	gtc Val	cga Arg	gat Asp	gct Ala	cag Gln 105	cga Arg	cac His	gag Glu	caa Gln	cag Gln 110	cga Arg	ccg Pro	337
cga Arg	gtg Val	ccc Pro 115	ttc Phe	cag Gln	ggt Gly	tct Ser	cag Gln 120	cag Gln	tct Ser	caa Gln	cag Gln	ttg Leu 125	aag Lys	cag Gln	agg Arg	385
gct Ala	cag Gln 130	att Ile	ctc Leu	cct Pro	aac Asn	gta Val 135	tgc Cys	aac Asn	ctt Leu	caa Gln	tca Ser 140	aga Arg	cga Arg	tgc Cys	gaa Glu	433
atc Ile 145	gaa Glu	agc Ser	gtc Val	agg Arg	agt Ser 150	gtt Val	gct Ala	gag Glu	agc Ser	aat Asn 155	ttt Phe	gaa Glu	atc Ile	cca Pro	ttt Phe 160	481
gat Asp	atg Met	ccg Pro	ttt Phe	gat Asp 165	atc Ile	cct Pro	tgg Trp	ccc Pro	ttt Phe 170	cgc Arg	cca Pro	agc Ser	tca Ser	gag Glu 175	tca Ser	529
cag Gln	caa Gln	tgc Cys	aga Arg 180	cag Gln	agt Ser	gaa Glu	atc Ile	caa Gln 185	agg Arg	cct Pro	gtg Val	agt Ser	cag Gln 190	tgc Cys	caa Gln	577
agg Arg	tat Tyr	gtg Val 195	gag Glu	cag Gln	caa Gln	att Ile	cag Gln 200	tcc Ser	tcc Ser	agg Arg	cca Pro	tac Tyr 205	caa Gln	cag Gln	agc Ser	625
ccg Pro	tac Tyr 210	gac Asp	cgg Arg	agg Arg	caa Gln	cag Gln 215	agc Ser	cca Pro	tac Tyr	gac Asp	cgg Arg 220	agg Arg	caa .Gln	cag Gln	agc Ser	673
cca Pro 225	tat Tyr	gaa Glu	cag Gln	agg Arg	caa Gln 230	gga Gly	cca Pro	tac Tyr	gaa Glu	cag Gln 235	agg Arg	cca Pro	tac Tyr	gaa Glu	cag Gln 240	721
agg Arg	cca Pro	tac Tyr	caa Gln	cag Gln 245	cga Arg	gga Gly	gga Gly	cga Arg	cag Gln 250	cag Gln	gag Glu	cag Gln	caa Gln	ggg Gly 255	ctc Leu	769
cag Gln	caa Gln	tgc Cys	tgc Cys 260	aac Asn	gag Glu	ctc Leu	Gln	aac Asn 265	gtg Val	agg Arg	agg Arg	gag Glu	tgt Cys 270	cag Gln	tgc Cys	817
gag Glu	Ala	att Ile 275	aag Lys	gaa Glu	gtg Val	Gly	caa Gln 280	aga Arg	atg Met	agg Arg	Gln	cag Gln 285	caa Gln	caa Gln	caa Gln	865
caa Gln	cgt Arg 290	agg Arg	cag Gln	tat Tyr	ggt Gly	ggg Gly 295	cag Gln	cag Gln	aca Thr	caa Gln	act Thr 300	gtg Val	gag Glu	aga Arg	att Ile	913

										צכ						
ctt Leu 305	Glu	aat Asn	.ctg .Leu	cct Pro	aac Asn 310	Gln	tgc Cys	gac Asp	cta Leu	gat Asp 315	Val	cag Gln	caa Gln	tgc. Cys	aac Asn 320	961
		tac Tyr	tga						-							973
<21 <21	0> 5 1> 3 2> P 3> H	23 RT	nthu	s an	nuus											
<40	0> 5	2														
Ala 1		Ile	Thr	Leu 5	Leu	Leu	Leu	Ala	Leu 10	Ala	Ala	Leu	Val	Ala 15	Leu	
Ala	Thr	Ala	His 20	Thr	Thr	Ile	Ile	Thr 25	Thr	Thr	Ile	Asp	Asp 30	Glu	Asn	
Pro	Ile	Ser 35	Glu	Gln	Arg	Gln	Cys 40	Trp	Gln	Gln	Val	Gln 45	Gly	Gln	Arg	
Leu	Asn 50	Gln	Cys	Arg	Met	Phe 55	Leu	Gln	Gln	Gly	Gln 60	Arg	Gly	Gln	Gln	
His 65	Gln	Gln	Gln	Gln	His 70	Gln	Gln	Gln	Glu	Gln 75	Gln	Leu	Leu	Gln	Gln 80	
Cys	Cys	Gln	Glu	Leu 85	Gln	Asn	Ile	Glu	Gly 90	Gln	Суѕ	Gln	Cys	Glu 95	Ala	
Val	Lys	Gln	Val 100	Val	Arg	Asp	Ala	Gln 105	Arg	His	Glu	Gln	Gln 110	Arg	Pro	
Arg	Val	Pro 115	Phe	Gln	Gly	Ser	Gln 120	Gln	Ser	Gln	Gln	Leu 125	Lys	Gln	Arg	
	130		Leu			135					140					
145			Val		150					155					160	
			Phe	165					170					175		
•			Arg 180				•	185					190			
		195	Glu		•		200					205				
	210		Arg			215					220					
225			Gln		230					235					240	
Arg				245				-	250					255		
Gln			260					265					270			
Glu		275					280					285				
Gln	Arg 290	Arg	Gln	Tyr	Gly	Gly 295	Gln	Gln	Thr	Gln	Thr 300	Val	Glu	Arg	Ile	


```
PCT/EP03/02735
```

Leu Glu Asn Leu Pro Asn Gln Cys Asp Leu Asp Val Gln Gln Cys Asn 305 315 Ile Pro Tyr <210> 53 <211> 1114 <212> DNA <213> Künstliche Sequenz <223> Beschreibung der künstlichen Sequenz: DNA construct coding for dsRNA <400> 53 ggccgcgtgt tccatttggc cggaaacaac cagcagggag gctttggcgg ttcacagcaa 60 caacaagaac agaaaaactt gtggagcggg ttcgacgcac aggtcatagc tcaagcattg 120 aaaattgacg ttcagttggc tcagcagctt cagaaccaac aagacagcag aggaaacatc 180 gttcgtgtta agggaccttt ccaggtcgtg aggccacctc taagacagcc ctacgagagc 240 gaggagtgga gacacccacg tagcccacag ggcaacggcc ttgaggagac tatctgcagc 300 atgaggtece acgagaacat tgacgaecet getegtgetg acgtgtacaa geecageeta 360 ggtcgcgtga ccagcgtcaa cagctatacc ttgcccatct tggagtatgt caggctcagt 420 gccactcgtg gcgttctcca gggtggatcc ttctgtaaca tttgacaaaa catgtgaaca 480 cgtcatccgt catatagaac ttccaatttt aatatgtttt gctaaagaaa aaaaaaagga 540 ataaatatct atcaaattca tttttaaaac atttgtatac gttcttaaat aatttaggat 600 tgtacttaca ccctggagaa cgccacgagt ggcactgagc ctgacatact ccaagatggg 720 caaggtatag ctgttgacgc tggtcacgcg acctaggctg ggcttgtaca cgtcagcacg 780 ageagggteg teaatgttet egtgggaeet eatgetgeag atagteteet eaaggeegtt 840 gccctgtggg ctacgtgggt gtctccactc ctcgctctcg tagggctgtc ttagaggtgg 900 cctcacgacc tggaaaggtc ccttaacacg aacgatgttt cctctgctgt cttgttggtt 960 ctgaagctgc tgagccaact gaacgtcaat tttcaatgct tgagctatga cctgtgcgtc 1020 gaacccgctc cacaagtttt tctgttcttg ttgttgctgt gaaccgccaa agcctccctg 1080 ctggttgttt ccggccaaat ggaacacgcg gccg <210> 54 <211> 1114 <212> RNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz: RNA sequence for forming dsRNA <400> 54 ggccgcgugu uccauuuggc cggaaacaac cagcagggag gcuuuggcgg uucacagcaa 60 caacaagaac agaaaaacuu guggagcggg uucgacgcac aggucauagc ucaagcauug 120 aaaauugacg uucaguuggc ucagcagcuu cagaaccaac aagacagcag aggaaacauc 180 guucguguua agggaccuuu ccaggucgug aggccaccuc uaagacagcc cuacgagagc 240 gaggagugga gacacccacg uagcccacag ggcaacggcc uugaggagac uaucugcagc 300 augagguece aegagaacau ugaegaeceu geuegugeug aeguguacaa geecageeua 360 gguegeguga ceagegueaa cageuauace uugeecaucu uggaguaugu caggeucagu 420 gecacuegug geguucueca ggguggauec uucuguaaca uuugacaaaa caugugaaca 480 cgucauccgu cauauagaac uuccaauuuu aauauguuuu gcuaaagaaa aaaaaaagga 540 auaaauaucu aucaaauuca uuuuuaaaac auuuguauac guucuuaaau aauuuaggau 600 uguacuuaca cccuggagaa cgccacgagu ggcacugagc cugacauacu ccaagauggg 720 caagguauag cuguugacgc uggucacgcg accuaggcug ggcuuguaca cgucagcacg 780 agcagggucg ucaauguucu cgugggaccu caugcugcag auagucuccu caaggccguu 840


```
gcccuguggg cuacguggu gucuccacuc cucgcucucg uagggcuguc uuagaggugg 900 ccucacgacc uggaaagguc ccuuaacacg aacgauguuu ccucugeugu cuuguugguu 960 cugaagcugc ugagccaacu gaacgucaau uuucaaugcu ugagcuauga ccugugguc uuguugcugu gaaccgcca agccucccug 1020 cugguuguuu ccggccaaau ggaacacgcg gccg 1114
```

<212> DNA <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: DNA construct coding for dsRNA

<400> 55

```
geggeegegg atecteaggg tetttettg eccaetteet tgaacgeegg caaacteaeg 60
tttgttgttc acggaagggg tctaatggga agagttattc cgggatgcgc cgagacgttc 120
atggagtcac cggtatttgg agaaggtcaa ggtcagggtc agagtcaagg gttccgtgac 180
atgcaccaga aagtagagca cctacggtgc ggtgacacca ttgcaacacc atctggtgta 240
gctcaatggt tctacaacaa tggaaatgag cctctcattc ttgttgcagc cgcggatctc 300
gccagcaacc agaaccagct tgaccgcaac cttagaccat ttttgatagc cggaaacaac 360
ccacaagggc aggaatggct acaaggccga aagcaacaga agcaaaacaa catcttcaat 420
ggcttcgcac ctgagatctt ggctcaagcc ttcaagatca atgtcgagac ggctcagcag 480
ctccagaacc agcaagataa ccgtggcaac atcgtcaagg tcaacggacc tttcggcgtc 540
attaggccac cettgagacg cggcgaagge ggccaacaac cacatgaaat agctaatggt 600
ttagaggaga ctttgtgcac catgcgatgc actgaaaacc tcgatgaccc gtcggatgct 660
gacgtgtaca agccatcact cggatacatt agcacactta acagctacaa tcttcctatc 720
ctcagacttc tccgccttag cgctcttcgt ggctccatcc gtaaaactcg aggtaagctc 780
aacaaatctt tagaaaatta attttatgtg acatatgcaa taatttgatt tggcaagata 840
aactaataga ttttgcgatt tggagtttta aactctaaat aatctaaatc gttttcaatt 900
ggtttaaata tatatettge atttttaate gtttttaatt aaaaaatata tatatatata 960
tatatcttgc atttttaatc gttttcaatt taaaaaatat cttgcacgca gaacgctqtc 1020
gagttttacg gatggagcca cgaagagcgc taaggcggag aagtctgagg ataggaagat 1080
tgtagctgtt aagtgtgcta atgtatccga gtgatggctt gtacacgtca gcatccgacg 1140
qqtcatcqag gttttcagtg catcgcatgg tgcacaaagt ctcctctaaa ccattagcta 1200
tttcatgtgg ttgttggccg ccttcgccgc gtctcaaggg tggcctaatg acgccgaaag 1260
gtccgttgac cttgacgatg ttgccacggt tatcttgctg gttctggagc tgctgagccg 1320
tctcgacatt gatcttgaag gcttgagcca agatctcagg tgcgaagcca ttgaagatgt 1380
tgttttgctt ctgttgcttt cggccttgta gccattcctg cccttgtggg ttgtttccgg 1440
ctatcaaaaa tggtctaagg ttgcggtcaa gctggttctg gttgctggcg agatccgcgg 1500
ctgcaacaag aatgagaggc tcatttccat tgttgtagaa ccattgagct acaccagatg 1560
gtgttgcaat ggtgtcaccg caccgtaggt gctctacttt ctggtgcatg tcacggaacc 1620
cttgactctg accctgacct tgaccttctc caaataccgg tgactccatg aacgtctcgg 1680
cgcatcccgg aataactctt cccattagac cccttccgtg aacaacaaac gtgagtttgc 1740
cggcgttcaa gaaagtgggc aagaaaagac cctgaggatc cgcggccgc
                                                                  1789
```

<210> 56

<211> 1789

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: : RNA sequence for forming dsRNA

<400> 56

geggeegegg auceucaggg ucuuuucuug eecacuuucu ugaaegeegg caaacucaeg 60 uuuguuguuc aeggaagggg ucuaauggga agaguuauuc egggaugege egagaeguuc 120 auggagucae egguauuugg agaaggucaa ggucaggguc agagucaagg guucegugae 180 augeaecaga aaguagagea eeuaegguge ggugaeacca uugeaacacc aucuggugua 240


```
gcucaauggu ucuacaacaa uggaaaugag ccucucauuc uuguugcagc cgcggaucuc 300
 gccagcaacc agaaccagcu ugaccgcaac cuuagaccau uuuugauagc cggaaacaac 360
 ccacaagggc aggaauggcu acaaggccga aagcaacaga agcaaaacaa caucuucaau 420
 ggcuucgcac cugagaucuu ggcucaagcc uucaagauca augucgagac ggcucagcag 480
 cuccagaacc agcaagauaa ccguggcaac aucgucaagg ucaacggacc uuucggcguc 540
 auuaggccac ccuugagacg cggcgaaggc ggccaacaac cacaugaaau agcuaauggu 600
 uuagaggaga cuuugugcac caugcgaugc acugaaaacc ucgaugaccc gucggaugcu 660
 gacguguaca agccaucacu cggauacauu agcacacuua acagcuacaa ucuuccuauc 720
 cucagacuuc uccgccuuag cgcucuucgu ggcuccaucc guaaaacucg agguaagcuc 780
 aacaaaucuu uagaaaauua auuuuaugug acauaugcaa uaauuugauu uggcaagaua 840
 aacuaauaga uuuugcgauu uggaguuuua aacucuaaau aaucuaaauc guuuucaauu 900
gguuuaaaua uauaucuugc auuuuuaauc guuuuuaauu aaaaaauaua uauauauaua 960
uauaucuugc auuuuuaauc guuuucaauu uaaaaaauau cuugcacgca gaacgcuguc 1020
gaguuuuacg gauggagcca cgaagagcgc uaaggcggag aagucugagg auaggaagau 1080
uguagcuguu aagugugcua auguauccga gugauggcuu guacacguca gcauccgacg 1140
ggucaucgag guuuucagug caucgcaugg ugcacaaagu cuccucuaaa ccauuagcua 1200
uuucaugugg uuguuggccg ccuucgccgc gucucaaggg uggccuaaug acgccgaaag 1260
guccguugac cuugacgaug uugccacggu uaucuugcug guucuggagc ugcugagceg 1320
ucucgacauu gaucuugaag gcuugagcca agaucucagg ugcgaagcca uugaagaugu 1380
uguuuugcuu cuguugcuuu cggccuugua gccauuccug cccuuguggg uuguuuccgg 1440
cuaucaaaaa uggucuaagg uugcggucaa gcugguucug guugcuggcg agauccgcgg 1500
cugcaacaag aaugagaggc ucauuuccau uguuguagaa ccauugagcu acaccagaug 1560
guguugcaau ggugucaccg caccguaggu gcucuacuuu cuggugcaug ucacggaacc 1620
cuugacucug acccugaccu ugaccuucuc caaauaccgg ugacuccaug aacgucucgg 1680
cgcauccegg aauaacucuu eccauuagac eccuucegug aacaacaaac gugaguuuge 1740
cggcguucaa gaaagugggc aagaaaagac ccugaggauc cgcggccgc
                                                                   1789
<210> 57
<211> 1273
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: DNA
      construct coding for dsRNA
<400> 57
geggeegegg atecatgget aacaagetet teetegtetg egeaactete geeetetget 60
tectecteae caaegettee atetaeegea eegttgtega attegaagaa gatgaegeea 120
gcaaccccgt aggtccaaga cagagatgcc agaaggagtt tcagcaatca.caacacctaa 180
gagettgeea gagatggatg ageaageaaa tgaggeaagg aegtggtggt ggteetteee 240
tegacgatga gttegattte gagggeecce ageagggata ceagetacte cageagtget 300
gcaacgaget tegecaggaa gagecagttt gegtttgeec caeettgaaa caagetgeea 360
gggcagttag cctccaggga cagcacggac cattccaatc caggaaaatt taccagtcag 420
ctaagtactt gcctaacatt tgcaagatcc agcaagttgg tgaatgtccc ttccagacca 480
ccatcccttt cttccctcct tactactagg gtactcgagg taagctcaac aaatctttag 540
aaaattaatt ttatgtgaca tatgcaataa tttgatttgg caagataaac taatagattt 600
tgcgatttgg agttttaaac tctaaataat ctaaatcgtt ttcaattggt ttaaatatat 660
atcttgcatt tttaatcgtt tttaattaaa aaatatatat atatatat atcttgcatt 720
tttaatcgtt ttcaatttaa aaaatatctt gcacgcagaa cgctgtcgac taccctagta 780
gtaaggaggg aagaaaggga tggtggtctg gaagggacat tcaccaactt gctggatctt 840
gcaaatgtta ggcaagtact tagctgactg gtaaattttc ctggattgga atggtccgtg 900
ctgtccctgg aggctaactg ccctggcagc ttgtttcaag gtggggcaaa cgcaaactgg 960
ctcttcctgg cgaagctcgt tgcagcactg ctggagtagc tggtatccct gctgggggcc 1020
ctcgaaatcg aactcatcgt cgagggaagg accaccacca cgtccttgcc tcatttgctt 1080
gctcatccat ctctggcaag ctcttaggtg ttgtgattgc tgaaactcct tctggcatct 1140
ctgtcttgga cctacggggt tgctggcgtc atcttcttcg aattcgacaa cggtgcggta 1200
gatggaagcg ttggtgagga ggaagcagag ggcgagagtt gcgcagacga ggaagagctt 1260
gttagccatg gat
                                                                  1273
```



```
63
<210> 58
<211> 1273
<212> RNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: : RNA
      sequence for forming dsRNA
<400> 58
geggeegegg auccauggeu aacaageueu uecuegueug egeaacueuc geecueugeu 60
uccuccucac caacgcuucc aucuaccgca ccguugucga auucgaagaa gaugacgcca 120
gcaaccccqu agguccaaga cagagaugcc agaaggaguu ucagcaauca caacaccuaa 180
gaqcuuqcca gagauggaug agcaagcaaa ugaggcaagg acgugguggu gguccuuccc 240
ucqacqaugà guucgauuuc gagggccccc agcagggaua ccagcuacuc cagcagugcu 300
gcaacgagcu ucgccaggaa gagccaguuu gcguuugccc caccuugaaa caagcugcca 360
gggcaguuag ccuccaggga cagcacggac cauuccaauc caggaaaauu uaccagucag 420
cuaaquacuu qccuaacauu uqcaagaucc agcaaquugg ugaauquccc uuccaqacca 480
ccaucccuuu cuucccuccu uacuacuagg guacucgagg uaagcucaac aaaucuuuag 540
aaaauuaauu uuaugugaca uaugcaauaa uuugauuugg caagauaaac uaauagauuu 600
ugcgauuugg aguuuuaaac ucuaaauaau cuaaaucguu uucaauuggu uuaaauauau 660
aucuuqcauu uuuaaucguu uuuaauuaaa aaauauauau auauauaua aucuuqcauu 720
uuuaaucguu uucaauuuaa aaaauaucuu gcacgcagaa cgcugucgac uacccuagua 780
guaaggaggg aagaaaggga ugguggucug gaagggacau ucaccaacuu gcuggaucuu 840
gcaaauguua ggcaaguacu uagcugacug guaaauuuuc cuggauugga augguccgug 900
cugucccugg aggcuaacug cccuggcagc uuguuucaag guggggcaaa cgcaaacugg 960
cucuuccuqq cqaaqcucqu uqcaqcacuq cuggaquagc uqquaucccu gcuqqqqqcc 1020
cucgaaaucg aacucaucgu cgagggaagg accaccacca cguccuugcc ucauuugcuu 1080
gcucauccau cucuggcaag cucuuaggug uugugauugc ugaaacuccu ucuggcaucu 1140
cuqueuugga ecuaeggggu ugeuggegue aucuucuueg aauuegaeaa eggugeggua 1200
gauggaagcg uuggugagga ggaagcagag ggcgagaguu gcgcagacga ggaagagcuu 1260
                                                                   1273
guuagccaug gau
<210> 59
<211> 1575
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1)..(1572)
<223> 12S cruciferin
<400> 59
atg gtt aag ctc agc aat ctc ctc gtt gca acc ttc ggg gtt ctc ctc
                                                                   48
Met Val Lys Leu Ser Asn Leu Leu Val Ala Thr Phe Gly Val Leu Leu
                                     10
gtc ctt aac ggc tgc ctt gcg agg cag tca ctt ggg gtt cct cct cag
                                                                   96
Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln
                                 25
             20
cta cag aac gag tgt aac ctc gac aac cta gat gtt ctc caa gcc acc
                                                                   144
Leu Gln Asn Glu Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Ala Thr
         35
                             40
                                                 45
gaa act atc aag agt gaa gcc ggt cag atc gag tac tgg gac cac aac
                                                                   192
Glu Thr Ile Lys Ser Glu Ala Gly Gln Ile Glu Tyr Trp Asp His Asn
     50
cac cct cag ctc cga tgt gtt ggt gtt tcc gtt gct cgt tat gta att
                                                                   240
His Pro Gln Leu Arg Cys Val Gly Val Ser Val Ala Arg Tyr Val Ile
```

70

WO 03/078629	

w	03/0	78629)							PCT	/EP03/02	735
							64	•				
	caa Gln											288
	tac Tyr											336
	gcc Ala											384
	caa Gln 130			Gly								432
	cag Gln											480
	cag Gln											528 ·
	tgg Trp											576
	cag Gln											624
	ggc Gly 210											672
	atc Ile										_	720
	cct Pro											768
	ggt Gly											816
	gca Ala											864
	cag Gln 290											912
	gga Gly											960
	gag Glu											1008
gag Glu	act Thr											1056

					65				
egt get gad Arg Ala Asp 355	Val Tyr								1104
agc tat acc Ser Tyr Thr 370			Glu Ty		Arg I				1152
ggc gtt ctc Gly Val Leu 385									1200
gct aac gag Ala Asn Glu	atc ttg Ile Leu 405	Tyr Cys	act gg Thr Gl	ra gga y Gly 410	caa g Gln G	gga agg Gly Arg	Ile G	aa gtg 31n Val 115	1248
gtc aac gac Val Asn Asp				u Asp					1296
cag ctc gtg Gln Leu Val 435	Val Ile	cca caa Pro Gln	ggg tt Gly Ph 440	c gca e Ala	tac c Tyr V	gtt gtc Val Val 445	cag t Gln s	cc cac Ser His	1344
gga aac aag Gly Asn Lys 450					Thr A				1392
atc agc act Ile Ser Thr 465	ttg gcg Leu Ala	ggt aga Gly Arg 470	acc to Thr Se	g ctc r Leu	ttg a Leu A 475	agg gca Arg Ala	ttg c Leu F	ca ttg ro Leu 480	1440
gag gtc ata Glu Val Ile	tca aat Ser Asn 485	Gly Phe	cag at Gln Il	c tct e Ser 490	ccc g Pro G	gag gaa Slu Glu	Ala A	gg aag rg Lys 95	1488
atc aag ttc Ile Lys Phe	aac aca Asn Thr 500	ctt gag Leu Glu	acc ac Thr Th 50	r Leu	acc c	gc gct Arg Ala	gcc g Ala G 510	gt agg ly Arg	1536
caa caa caa Gln Gln Gln 515									1575
<210> 60 <211> 524 <212> PRT <213> Arabi	dopsis t	haliana							
<400> 60					_				
Met Val Lys 1	Leu Ser 5	ASH Leu	Leu va	1 A1a	inr P	ne GIY		eu Leu 15	
Val Leu Asn	20		2	5			30		
Leu Gln Asn 35	Glu Cys	Asn Leu	Asp As 40	n Leu	Asp V	al Leu 45	Gln A	la Thr	
Glu Thr Ile 50	Lys Ser	Glu Ala 55	Gly Gl	n Ile		yr Trp 60	Asp H	is Asn	
His Pro Gln 65	Leu Arg	Cys Val 70	Gly Va	l Ser	Val A 75	la Arg	Tyr V	al Ile 80	
Glu Gln Gly	Gly Leu 85	Tyr Leu	Pro Th	r Phe 90	Phe T	hr Ser		ys Ile 95	

										66					
Ser	Tyr	Val	Val 100	Gln	Gly	Thr	Gly	Ile 105	Ser	Gly	Arg	Val	Val 110	Pro	Gly
Cys	Ala	Glu 115	Thr	Phe	Met	Asp	Ser 120	Gln	Pro	Met	Gln	Gly 125		Gln	Gln
Gly	Gln 130		Trp	Gln	Gly	Arg 135	Gln	Gly	Gln	Gln	Gly 140	Gln	Pro	Trp	Glu
Gly 145	Gln	Gly	Gln	Gln	Gly 150	Gln	Gln	Gly	Arg	Gln 155	Gly	Gln	Pro	Trp	Glu 160
Gly	Gln	Gly	Gln	Gln 165	Gly	Gln	Gln	Gly	Arg 170	Gln	Gly	Gln	Gln	Gly 175	Gln
Pro	Trp	Glu	Gly 180	Gln	Gly	Gln	Gln	Gly 185		Gln	Gly	Phe	Arg 190	Asp	Met
		195	Val				200					205			
	210		Ala		•	215					220				
Ile 225	Ile	Ala	Leu	Leu	Asp 230	Ile	Ala	Asn	Tyr	Gln 235	Asn	Gln	Leu	Asp	Arg 240
			Val	245					250				•	255	
			Gln 260					265				_	270		
		275	Val				280					285			
	290		Gln			295					300				
305		•	Phe		310					315					320
			Trp	325					330		_		_	335	
			Cys 340					345					350		
		355	Val				360					365			
	370		Leu			375					380				_
Gly 385					390					395					400
Ala				405					410					415	•
Val			420					425					430		_
Gln		435					440					445			
	450					455					460				
Ile 465	Ser	Thr	Leu		Gly 470	Arg	Thr	Ser	Leu	Leu 475	Arg	Ala	Leu	Pro	Leu 480

Glu Val Ile Ser Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Lys 485 490 495

Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Ala Gly Arg

500 505

Gln Gln Gln Leu Ile Glu Glu Ile Val Glu Ala

· 515 520

<210> 61

<211> 1419

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1416)

<223> 12S Cra1 storage protein

<400> 61

atg gct cga gtc tct tct ctt ctt tct tcc tgc tta aca ctt ttg atc 48

Met Ala Arg Val Ser Ser Leu Leu Ser Phe Cys Leu Thr Leu Leu Ile

1 10 15

ctt ttc cat ggc tac gcg gct caa cag ggt cag cag ggt cag cag ttt 96
Leu Phe His Gly Tyr Ala Ala Gln Gln Gln Gln Gln Gln Gln Gln Phe
20 25 30

ccg aac gag tgc cag ctc gac cag ctc aat gcg ctc gag ccg tca cac 144
Pro Asn Glu Cys Gln Leu Asp Gln Leu Asn Ala Leu Glu Pro Ser His
35 40 45

gta ctg aag agc gag gct ggt cgc atc gag gtg tgg gac cac cac gct 192
Val Leu Lys Ser Glu Ala Gly Arg Ile Glu Val Trp Asp His His Ala
50 55 60

cct cag ctc cgt tgc tca ggt gtc tcc ttt gca cgt tac atc atc gag 240 Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Ala Arg Tyr Ile Ile Glu 65 70 75 80

tet aag ggt etc tac ttg eec tet tte ttt aac ace geg aag etc tet 288 Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Asn Thr Ala Lys Leu Ser 85 90 95

ttc gtg gct aag gga cga ggt ctt atg gga aaa gtg atc cct gga tgc 336
Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys
100 105 110

gcc gaa aca ttc caa gac tca tca gag ttc caa cca cgc ttc gaa ggt 384
Ala Glu Thr Phe Gln Asp Ser Ser Glu Phe Gln Pro Arg Phe Glu Gly

caa ggt caa agc cag agg ttc cgt gac atg cac cag aaa gtg gag cac 432 Gln Gly Gln Ser Gln Arg Phe Arg Asp Met His Gln Lys Val Glu His 130 135 140

att agg agc ggt gat acc att gcc aca aca ccc ggt gta gca cag tgg

1le Arg Ser Gly Asp Thr Ile Ala Thr Thr Pro Gly Val Ala Gln Trp

145

150

160

ttc tac aac gac gga cag cag cca ctt gtc atc gtc agc gtc ttc gat 528

Phe Tyr Asn Asp Gly Gln Gln Pro Leu Val Ile Val Ser Val Phe Asp
165 170 175

cta gcc agt cac cag aac cag ctt gac cgc aac cca agg cca ttt tac 576
Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr
180 185 190

									00						
	_							_				gga Gly	_		624
	_		_	_								gag Glu	_		672
_		_	_	_		_	_		_	_		ctt Leu	_		720
	-	-			-							ccg Pro			768
												gag Glu 270		-	816
_	_		_				-				-	gag Glu			864
_	_	-		_		_	•	_	7			cgt Arg	_	_	912
		_		_				_				agt Ser			960
												gga Gly			1008
												gcg Ala 350			1056
												gta Val			1104
			_									cag Gln			1152
												agc Ser			1200
												atc Ile			1248
												gaa Glu 430			1296
												gtc Val			1344
												gct Ala			1392

gga agg cca aga gtg gct gca gct taa Gly Arg Pro Arg Val Ala Ala Ala

1419

<210> 62

<211> 472

<212> PRT

<213> Arabidopsis thaliana

<400> 62

Met Ala Arg Val Ser Ser Leu Leu Ser Phe Cys Leu Thr Leu Leu Ile 1 5 10 15

Leu Phe His Gly Tyr Ala Ala Gln Gln Gln Gln Gln Gln Gln Phe
20 25 30

Pro Asn Glu Cys Gln Leu Asp Gln Leu Asn Ala Leu Glu Pro Ser His
35 40 45

Val Leu Lys Ser Glu Ala Gly Arg Ile Glu Val Trp Asp His His Ala 50 55 60

Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Ala Arg Tyr Ile Ile Ġlu 65 70 75 80

Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Asn Thr Ala Lys Leu Ser 85 90 95

Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys
100 105 110

Ala Glu Thr Phe Gln Asp Ser Ser Glu Phe Gln Pro Arg Phe Glu Gly
115 120 125

Gln Gly Gln Ser Gln Arg Phe Arg Asp Met His Gln Lys Val Glu His 130 135 140

Ile Arg Ser Gly Asp Thr Ile Ala Thr Thr Pro Gly Val Ala Gln Trp
145 150 155 160

Phe Tyr Asn Asp Gly Gln Gln Pro Leu Val Ile Val Ser Val Phe Asp 165 170 175

Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr 180 185 190

Leu Ala Gly Asn Asn Pro Gln Gly Gln Val Trp Leu Gln Gly Arg Glu
195 200 205

Gln Gln Pro Gln Lys Asn Ile Phe Asn Gly Phe Gly Pro Glu Val Ile 210 215 220

Ala Gln Ala Leu Lys Ile Asp Leu Gln Thr Ala Gln Gln Leu Gln Asn 225 230 . 235 240

Gln Asp Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe Gly 245 250 255

Val Ile Arg Pro Pro Leu Arg Gly Gln Arg Pro Gln Glu Glu Glu 265 270

Glu Glu Gly Arg His Gly Arg His Gly Asn Gly Leu Glu Glu Thr Ile 275 280 285

Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Arg Ala Asp 290 295 300

Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp 305 310 315 320

110

W O 03/0/0025	7				1161 03/02/33
		•	70		
Leu Pro Ile Leu	a Arg Phe I 325		Ser Ala Leu : 330	Arg Gly Ser 335	
Arg Gln Asn Ala		Leu Pro Gln 345	Trp Asn Ala	Asn Ala Asn 350	Ala
Ile Leu Tyr Glu 355		360		365	
Asn Gly Asn Arg 370	3	375	380		
Ala Val Pro Gli 385	390	•	395		400
Phe Gln Trp Va	405		410	415	
Leu Ala Gly Arg),	425		430	
Thr Asn Gly Pho 435		440		445	
Asn Thr Leu Gla 450		Leu Thr His 455	Ser Ser Gly 460	Pro Ala Ser	Tyr
Gly Arg Pro Arg 465	y Val Ala <i>I</i> 470	Ala Ala 			
<210> 63 <211> 1419 <212> DNA <213> Arabidop <220> <221> CDS <222> (1)(14 <223> At5g4421	16)		cein		
<400> 63 atg gct cga gt Met Ala Arg Va 1	c tct tct o 1 Ser Ser 1 5	ctt ctt tct Leu Leu Ser	ttc tgc tta Phe Cys Leu 10	aca ctt tto Thr Leu Leu 15	ı Ile
ctt ttc cat gg Leu Phe His Gl 2	y Tyr Ala i	gct caa cag Ala Gln Gln 25	ggt cag cag Gly Gln Gln	ggt cag cag Gly Gln Glr 30	g ttt 96 n Phe
ccg aac gag tg Pro Asn Glu Cy 35	c cag ctc (s Gln Leu i	gac cag ctc Asp Gln Leu 40	aat gcg ctc Asn Ala Leu	gag ccg tca Glu Pro Sei 45	a cac 144 His
gta ctg aag ag Val Leu Lys Se 50	c gag gct q r Glu Ala (ggt cgc atc Gly Arg Ile 55	gag gtg tgg Glu Val Trp 60	gac cac cac Asp His His	gct 192 Ala
cct cag ctc cg Pro Gln Leu Ar 65	t tgc tca (g Cys Ser (70	ggt gtc tcc Gly Val Ser	ttt gca cgt Phe Ala Arg 75	tac atc atc Tyr Ile Ile	gag 240 Glu 80
tct aag ggt ct Ser Lys Gly Le	c tac ttg u Tyr Leu : 85	ccc tct ttc Pro Ser Phe	ttt aac acc Phe Asn Thr 90	gcg aag cto Ala Lys Len 9	ı Ser

ttc gtg gct aag gga cga ggt ctt atg gga aaa gtg atc cct gga tgc Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys

100

-	•	
•	1	

	•					<i>,</i> –						
gaa Glu								_		_		384
ggt Gly 130												432
agg Arg												480
tac Tyr	-	 _	_		_		_	_	-		-	528
gcc Ala												576
gcc Ala					-					_		624
cag Gln 210												672
caa Gln							-			_		720
gat Asp												768
att Ile												816
gaa Glu												864
agc Ser 290												912
tac Tyr												960
ccc Pro												1008
caa Gln												1056
ctt Leu												1104
ggt Gly 370												1152

WO 03/078629			
	7	_	

		PCT	EP03/027
aca	agc	aac	сда

								•	•	72						
	Val	cca Pro														1200
		tgg Trp														1248
		gga Gly														1296
acc Thr	aat Asn	ggg Gly 435	ttc Phe	caa Gln	atc Ile	tca Ser	ccc Pro 440	gaa Glu	gaa Glu	gca Ala	agg Arg	agg Arg 445	gtc Val	aag Lys	ttc [.] Phe	1344
aac Asn	acg Thr 450	ctc Leu	gag Glu	acc Thr	act Thr	ttg Leu 455	act Thr	cac His	agc Ser	agt Ser	ggc Gly 460	cca Pro	gct Ala	agc Ser	tac Tyr	1392
		cca Pro						taa								1419
<21:	0> 64 1> 4' 2> Pl	72 RT														
		rabio	aqoi	is th	nalia	ana										
	0> 64 Ala	4 Arg	Val	Ser 5	Ser	Leu	Leu	Ser	Phe 10	Cys	Leu	Thr	Leu	Leu 15	Ile	
Leu	Phe	His	Gly 20	Tyr	Ala	Ala	Gln	Gln 25	Gly	Gln	Gln	Gly	Gln 30	Gln	Phe	
		Glu 35					40					45				
Val	Leu 50	Lys	Ser	Glu	Ala	Gly 55	Arg	Ile	Glu	Val	Trp 60	Asp	His	His	Ala	•
65		Leu			70					75					80	
		Gly		85					90					95		
		Ala	100					105					110	_	_	
		Thr 115					120					125				•
	130	Gln				135					140					
145		Ser			150					155					160	
		Asn		165					170					175	_	
Len	71-	Sar	His	Gln	Asn	Gln	Leu	Asp	Arg	Asn	Pro	Arg	Pro	Phe	Tyr	
		Gly	180					185					190			

										13					
Ġln	Gln 210		Gln	Lys	Asn	Ile 215		Asn	Gly	Phe	Gly 220		Glu	. Val	Ile
Ala 225	Gln	Ala	Leu	Lys	Ile 230	Asp	Leu	Gln	Thr	Ala 235	Gln	Gln	Leu	Gln	Asn 240
Gln	Asp	Asp	Asn	Arg 245		Asn	Ile	Val	Arg 250	Val	Gln	Gly	Pro	Phe 255	Gly
Val	Ile	Arg	Pro 260	Pro	Leu	Arg	Gly	Gln 265	Arg	Pro	Gln	Glu	Glu 270		Glu
Glu	Glu	Gly 275	Arg	His	Gly	Arg	His 280	Gly	Asn	Gly	Leu	Glu 285		Thr	Ile
Cys	Ser 290	Ala	Arg	Cys	Thr	Asp 295	Asn	Leu	Asp	Asp	Pro 300	Ser	Arg	Ala	Asp
305			Pro		310					315					320
Leu	Pro	Ile	Leu	Arg 325	Phe	Ile	Arg	Leu	Ser 330	Ala	Leu	Arg	Gly	Ser 335	Ile
			Ala 340					345					350		
		355	Val				360					365			_
Asn	Gly 370	Aşn	Arg	Val	Phe	Asp 375	Gly	Gln	Val	Ser	Gln 380	Gly	Gln	Leu	Ile
Ala 385	Val	Pro	Gln	Gly	Phe 390	Ser	Val	Val	Lys	Arg 395	Ala	Thr	Ser	Asn	Arg 400
Phe	Gln	Trp	Val	Glu 405	Phe	Lys	Thr	Asn	Ala 410	Asn	Ala	Gln	Ile	Asn 415	Thr
Leu	Ala	Gly	Arg 420	Thr	Ser	Val	Leu	Arg 425	Gly	Leu	Pro	Leu	Glu 430	Val	Ile
Thr	Asn	Gly 435	Phe	Gln	Ile	Ser	Pro 440	Glu	Glu	Ala	Arg	Arg 445	Val	Lys	Phe
Asn	Thr 450	Leu	Glu	Thr		Leu 455	Thr	His	Ser	Ser	Gly 460	Pro	Ala	Ser	Tyr
Gly 465	Arg	Pro	Arg	Val	Ala 470	Ala	Ala								
<210 <211 <212 <213 <220 <221 <222 <223 <400	> 13 > DN. > Ar > CD > (1 > 12.	68 A abid S)(S Cr	1365 b st) orag	e pr	otei									
atg g Met (ggt (Gly)	cga Arg	gtc Val	tca Ser 5	tct Ser	att Ile	atc Ile	tct Ser	ttc Phe 10	tct Ser	ttg Leu	aca Thr	ctc Leu	Leu	atc Ile
ctc 1	ttc a	aat	ggc	tac	act	gcc	caa	cag	taa	ccc	aac	asa	toc	15 cag	ctc
Leu 1	Phe I	Asn	Gly	Tyr	Thr .	Ala	Gln	Gln	Trp	Pro	Asn	Glu	Cys	Gln	Leu

WO 03/078629		
--------------	--	--

									•	74						
Asp	Gln	Leu 35	Asn	Ala	Leu	Glu	Pro 40	tcc Ser	Gln	Ile	Ile	Lys 45	Ser	Glu	Gly	144
ggt Gly	cgc Arg 50	atc Ile	gag Glu	gtc Val	tgg Trp	gac Asp 55	cac His	cat His	gca Ala	ccc Pro	cag Gln 60	ctc Leu	cgt Arg	tgc Cys	tcc Ser	192
ggc Gly 65	ttt Phe	gcc Ala	ttt Phe	gag Glu	cgt Arg 70	ttc Phe	gtc Val	att Ile	gag Glu	cct Pro 75	cag Gln	ggt Gly	ctt Leu	ttc Phe	ttg Leu 80	240
Pro	Thr	Phe	Leu	Asn 85	·Ala	Gly	Lys	ctc Leu	Thr 90	Phe	Val	Val	His	Gly 95	Arg	288
Gly	Leu	Met	Gly 100	Arg	Val	Ile	Pro	gga Gly 105	Cys	Ala	Glu	Thr	Phe 110	Met	Glu	336
Ser	Pro	Val 115	Phe	Gly	Glu	Gly	Gln 120	ggt Gly	Gln	Gly	Gln	Ser 125	Gln	Gly	Phe	384
Arg	Asp 130	Met	His	Gln	Lys	Val 135	Glu	cac His	Leu	Arg	Cys 140	Gly	Asp	Thr	Ile	432
Ala 145	Thr	Pro	Ser	Gly	Val 150	Ala	Gln	tgg Trp	Phe	Tyr 155	Asn	Asn	Gly	Asn	Glu 160	480
Pro	Leu	Ile	Leu	Val 165	Ala	Ala	Ala	gat Asp	Leu 170	Ala	Ser	Asn	Gln	Asn 175	Gln	528
Leu	Asp	Arg	Asn 180	Leu	Arg	Pro	Phe	ttg Leu 185	Ile	Ala	Gly	Asn	Asn 190	Pro	Gln	576
Gly	Gln	Glu 195	Trp	Leu	Gln	Gly	Arg 200	aag Lys	Gln	Gln	Lys	Gln 205	Asn	Asn	Ile	624
Phe	Asn 210	Gly	Phe	Ala	Pro	Glu 215	Ile	ttg Leu	Ala	Gln	Ala 220	Phe	Lys	Ile	Asn	672
Val 225	Glu	Thr	Ala	Gln	Gln 230	Leu	Gln	aac Asn	Gln	Gln 235	Asp	Asn	Arg	Gly	Asn 240	720
Ile	Val	Lys	Val	Asn 245	Gly	Pro	Phe	ggc Gly	Val 250	Ile	Arg	Pro	Pro	Leu 255	Arg	768
Arg	Gly	Glu	Gly 260	Gly	Gln	Gln	Pro	265	Glu	lle	Ala	Asn	Gly 270	Leu	Glu	816
Glu	Thr	Leu 275	Суѕ	Thr	Met	Arg	280	Thr	Glu	Asn	Leu	Asp 285	Asp	Pro	tcg Ser	864
gat Asp	gct Ala 290	Asp	gtg Val	tac Tyr	aag Lys	cca Pro 295	Ser	cto Lev	gga Gly	tac Tyr	att Ile 300	Ser	aca Thr	ctt Leu	aac Asn	912

WO 03/078629

ago Ser 305	tac Tyr	aat Asn	ctt Leu	cct Pro	atc Ile 310	ctc Leu	aga Arg	ctt Leu	ctc Leu	cgc Arg 315	Leu	agc Ser	gct Ala	ctt Leu	cgt Arg 320	960
Gly	tcc Ser	Ile	Arg	Lys 325	Asn	Ala	Met	Val	Leu 330	Pro	Gln	Trp	Asn	Val 335	Asn	1008
gca Ala	aac Asn	gcg Ala	gca Ala 340	ctc Leu	tac Tyr	gtg Val	aca Thr	aac Asn 345	gga Gly	aag Lys	gct Ala	cat His	ata Ile 350	caa Gln	atg Met	1056
Val	aac Asn	Asp 355	Asn	Gly	Glu	Arg	Val 360	Phe	Asp	Gln	Glu	Ile 365	Ser	Ser	Gly	1104
cag Gln	tta Leu 370	cta Leu	gtc Val	gtg Val	cca Pro	caa Gln 375	ggc Gly	ttt Phe	tcg Ser	gtc Val	atg Met 380	aaa Lys	cat His	cgc Arg	ata Ile	1152
ggc Gly 385	gaa Glu	cag Gln	ttc Phe	gag Glu	tgg Trp 390	atc Ile	gaa Glu	ttc Phe	aag Lys	aca Thr 395	aac Asn	gaa Glu	aac Asn	gca Ala	cag Gln 400	1200
gtc Val	aac Asn	aca Thr	ctc Leu	gcg Ala 405	ggc Gly	cgt Arg	acc Thr	Ser	gtc Val 410	atg Met	aga Arg	ggt Gly	ttg Leu	ccg Pro 415	ctt Leu	1248
	gtt Val															1296
gta Val	aag Lys	ttt Phe 435	agc Ser	acg Thr	att Ile	gag Glu	acc Thr 440	aca Thr	ctg Leu	acc Thr	cat His	agc Ser 445	agt Ser	cca Pro	atg Met	1344
	tac Tyr 450						tga									1368
<211 <212	0> 66 L> 45 2> PR 3> Ar	5 T	lopsi	s th	nalia	ına										
<400)> 66	;	_			٠.										
Met 1	Gly	Arg	Val	Ser 5	Ser	Ile	Ile	Ser	Phe 10	Ser	Leu	Thr	Leu	Leu 15	Ile	
Leu	Phe	Asn	Gly 20	Tyr	Thr	Ala	Gln	Gln 25	Trp	Pro	Asn	Glu	Cys 30	Gln	Leu	
Asp	Gln	Leu 35	Asn	Ala	Leu	Glu	Pro 40	Ser	Gln	Ile	Ile	Lys 45	Ser	Glu	Gly	
Gly	Arg 50	Ile	Glu	Val	Trp	Asp 55	His	His	Ala	Pro	Gln 60	Leu	Arg	Сув	Ser	
Gly 65	Phe	Ala	Phe	Glu	Arg 70	Phe	Val	Ile	Glu	Pro 75	Gln	Gly	Leu	Phe	Leu 80	
Pro	Thr	Phe	Leu	Asn 85	Ala	Gly	Lys	Leu	Thr 90	Phe	Val	Val	His	Gly 95	Arg	
	Leu Pro		100					105					110			

										76					
Arg	Asp 130	Met	His	Gln	Lys	Val 135	Glu	His	Leu	Arg	Cys 140	Gly	Asp	Thr	Ile
Ala 145	Thr	Pro	Ser	Gly	Val 150	Ala	Gln	Trp	Phe	Tyr 155	Asn	Asn	Gly	Asn	Glu 160
Pro	Leu	Ile	Leu	Val 165	Ala	Ala	Ala	Asp	Leu 170	Ala	Ser	Asn	Gln	Asn 175	Gln
Leu	Asp	Arg	Asn 180	Leu	Arg	Pro	Phe	Leu 185	Ile	Ala	Gly	Asn	Asn 190	Pro	Gln
Gly	Gln	Glu 195	Trp	Leu	Gln	Gly	Arg 200	Lys	Gln	Gln	Lys	Gln 205	Asn	Asn	Ile
Phe	Asn 210	Gly	Phe	Ala	Pro	Glu 215	Ile	Leu	Ala	Gln	Ala 220	Phe	Lys	Ile	Asn
Val 225	Glu	Thr	Ala	Gln	Gln 230	Leu	Gln	Asn	Gln	Gln 235	Asp	Asn	Arg	Gly	Asn 240
Ile	Val	Lys	Val	Asn 245	Gly	Pro	Phe	Gly	Val 250	Ile	Arg	Pro	Pro	Leu 255	Arg
Arg	Gly	Glu	Gly 260	Gly	Gln	Gln	Pro	His 265	Glu	Ile	Ala	Asn	Gly 270	Leu	Glu
Glu	Thr	Leu 275	Cys	Thr	Met	Arg	Cys 280	Thr	Glu	Asn	Leu	Asp 285	Asp	Pro	Ser
Asp	Ala 290	Asp	Val	Tyr	Lys	Pro 295	Ser	Leu	Gly	Tyr	Ile 300	Ser	Thr	Leu	Asn
Ser 305	Tyr	Asn	Leu	Pro	Ile 310	Leu	Arg	Leu	Leu	Arg 315	Leu	Ser	Ala	Leu	Arg 320
Gly	Ser	Ile	Arg	Lys 325	Asn	Ala	Met	Val	Leu 330	Pro	Gln	Trp	Asn	Val 335	Asn
Ala	Asn	Ala	Ala 340	Leu	Tyr	Val	Thr	Asn 345	Gly	Lys	Ala	His	Ile 350	Gln	Met
Val	Asn	Asp 355	Asn	Gly	Glu	Arg	Val 360	Phe	Asp	Gln	Glu	Ile 365	Ser	Ser	Gly
Gln	Leu 370	Leu	Val	Val	Pro	Gln 375		Phe	Ser	Val	Met 380	Lys	His	Arg	Ile
Gly 385	Glu	Gln	Phe	Glu	Trp 390		Glu	Phe	Lys	Thr 395		Glu	Asn	Ala	Gln 400
Val	Asn	Thr	Leu	Ala 405		Arg	Thr	Ser	Val 410		Arg	Gly	Leu	Pro 415	Leu
Glu	Val	Ile	Thr 420	Asn	Gly	Tyr	Gln	Ile 425		Pro	Glu	Glu	Ala 430		Arg
Val	Lys	Phe 435	Ser	Thr	Ile	Glu	Thr 440		Leu	Thr	His	Ser 445		Pro	Met
	450		Arg	Pro	Arg	Ala 455									

<210> 67

<211> 1356

<212> DNA

<213> Arabidopsis thaliana

								•		,,						
<22	1> C 2> (1)	(135 ive		stor	age ;	prot	ein								
	<400> 67															
atg	cat His	aag	ctt Leu													48
ctc Leu	ctc Leu	ttc Phe	ttc Phe 20	cat His	ggc	gcc Ala	gag Glu	gca Ala 25	cgc Arg	cag Gln	cga Arg	gag Glu	gcg Ala 30	ccg Pro	ttt Phe	96
cca Pro	aac Asn	gcc Ala 35	tgc Cys	cat His	ttc Phe	agc Ser	caa Gln 40	atc Ile	aac Asn	agc Ser	ctc Leu	gcg Ala 45	ccc Pro	gct Ala	cag Gln	144
			ttc Phe													192
cct Pro 65	gag Glu	ctc Leu	cga Arg	tgc Cys	gcc Ala 70	ggt Gly	gta Val	acg Thr	gtg Val	gct Ala 75	cgc Arg	atc Ile	acc Thr	ctt Leu	cag Gln 80	240
			att Ile													288
			caa Gln 100													336
			ttt Phe													384
gga Gly	gac Asp 130	ccg Pro	ggt Gly	cga Arg	cgt Arg	ttt Phe 135	gag Glu	gac Asp	atg Met	cac His	cag Gln 140	aag Lys	ttg Leu	gag Glu	aat Asn	432
			ggg ggg													480
			cgc Arg													528
			aga Arg 180													576
Leu	Ala	Gly 195	agc Ser	Arg	Thr	Gln	Glu 200	Glu	Glu	Gln	Pro	Leu 205	Thr	Trp	Pro	624
Ser	Gly 210	Asn	aac Asn	Ala	Phe	Ser 215	Gly	Phe	Asp	Pro	Asn 220	Ile	Ile	Ala	Glu	672
gca Ala 225	ttc Phe	aaa Lys	atc Ile	aac Asn	atc Ile 230	gag Glu	aca Thr	gct Ala	aag Lys	caa Gln 235	cta Leu	caa Gln	aac Asn	cag Gln	aag Lys 240	720
			gga Gly													768

	•	•			•				•	78						
				cgt Arg												816
-				tgc Cys	_	_	-						-	_		864
				cat His												912
	_			ctc Leu						-	_			-		960
_				tac Tyr 325	_			Met		_				_	_	1008
				gtg Val												1056
		_	-	aat Asn		_	_									1104
				gtg Val												1152
	-	_		ttc Phe						_			-		-	1200
				ctg Leu 405												1248
				aaa Lys												1296
				agt Ser											agc Ser	1344
	tct Ser 450		taa									•				1356
<211 <212)> 68 .> 45 !> PF !> Ar	1 ?T	dopsi	is tl	nalia	ana										
)> 68 His		Leu	Leu	Phe	Ser	Leu	Leu	Ser	Val	Val	Ser	Leu	Ser	Phe	
1				5 His					10					15		
			20		_			25					30			
Pro	Asn	Ala 35	Cys	His	Phe	Ser	Gln 40	Ile	Asn	Ser	Leu	Ala 45	Pro	Ala	Gln	

Val Asp Val Ile Lys Ala Ser Tyr Gly Val Asn Glu Glu Glu Ala Lys

425

									1	81						
	_		_	_	_		_	_	_				acg Thr			624
				-									atc Ile			672
_								_	_				aac Asn	-	-	720
_		_					_	_				•	cat His		•	768
		_		_	_		_		_			_	aat Asn 270			816
_				_	_	_	-						gat Asp	_		864
													agc Ser			912
	_					_							aac Asn			960
													tgg Trp			1008
Asn	Ala	His	Thr 340	Val	Leu	Tyr	Val	Thr 345	Gly	Gly	Gln	Ala	aag Lys 350	Ile	Gln	1056
													gtg Val			1104
					_			_	_	• _	_		aaa Lys	_	_	1152
	_	_			_					_			gat Asp		-	1200
													gca Ala			1248
													gaa Glu 430			1296
~ -		_		_	_				_	_		_	aca Thr		_	1344
	tct Ser 450		taa													1356

<210> 70 <211> 451 <212> PRT <213> Arabidopsis thaliana <400> 70 Met His Lys Leu Leu Phe Ser Leu Leu Ser Val Val Ser Leu Ser Phe 10 Leu Leu Phe Phe His Gly Ala Glu Ala Arg Gln Arg Glu Ala Pro Phe Pro Asn Ala Cys His Phe Ser Gln Ile Asn Ser Leu Ala Pro Ala Gln Ala Thr Lys Phe Glu Ala Gly Gln Met Glu Val Trp Asp His Met Ser 60 Pro Glu Leu Arg Cys Ala Gly Val Thr Val Ala Arg Ile Thr Leu Gln Pro Asn Ser Ile Phe Leu Pro Ala Phe Phe Ser Pro Pro Ala Leu Ala Tyr Val Val Gln Gly Glu Gly Val Met Gly Thr Ile Ala Ser Gly Cys 100 105 Pro Glu Thr Phe Ala Glu Val Glu Gly Ser Ser Gly Arg Gly Gly 120 Gly Asp Pro Gly Arg Arg Phe Glu Asp Met His Gln Lys Leu Glu Asn 135 140 Phe Arg Arg Gly Asp Val Phe Ala Ser Leu Ala Gly Val Ser Gln Trp 155 150 Trp Tyr Asn Arg Gly Asp Ser Asp Ala Val Ile Val Ile Val Leu Asp 170 165 Val Thr Asn Arg Glu Asn Gln Leu Asp Gln Val Pro Arg Met Phe Gln 185 Leu Ala Gly Ser Arg Thr Gln Glu Glu Glu Gln Pro Leu Thr Trp Pro 200 Ser Gly Asn Asn Ala Phe Ser Gly Phe Asp Pro Asn Ile Ile Ala Glu 215 Ala Phe Lys Ile Asn Ile Glu Thr Ala Lys Gln Leu Gln Asn Gln Lys 235 230 Asp Asn Arg Gly Asn Ile Ile Arg Ala Asn Gly Pro Leu His Phe Val 250 245 Ile Pro Pro Pro Arg Glu Trp Gln Gln Asp Gly Ile Ala Asn Gly Ile 265 Glu Glu Thr Tyr Cys Thr Ala Lys Ile His Glu Asn Ile Asp Asp Pro 280 Glu Arg Ser Asp His Phe Ser Thr Arg Ala Gly Arg Ile Ser Thr Leu 295 Asn Ser Leu Asn Leu Pro Val Leu Arg Leu Val Arg Leu Asn Ala Leu 315 310 Arg Gly Tyr Leu Tyr Ser Gly Gly Met Val Leu Pro Gln Trp Thr Ala 330 Asn Ala His Thr Val Leu Tyr Val Thr Gly Gly Gln Ala Lys Ile Gln 345

WO 03/078629)	PCT	/EP03/0	2735
										;	B3					•	
	Val	Val	Asp 355	Asp	Asn	Gly	Gln	Ser 360	Val	Phe	Asn	Glu	Gln 365	Val	Gly	Gln	
	Gly	Gln 370	Ile	Ile	Val	Ile	Pro 375	Gln	Gly	Phe	Ala	Val 380	Ser	Lys	Thr	Ala	
	Gly 385	Glu	Thr	Gly	Phe	Glu 390	Trp	Ile	Ser	Phe	Lys 395	Thr	Asn	Asp	Asn	Ala 400	
	Tyr	Ile	Asn	Thr	Leu 405	Ser	Gly	Gln	Thr	Ser 410	Tyr	Leu	Arg	Ala	Val 415	Pro	
	Val	Asp	Val	Ile 420	Lys	Ala	Ser	Tyr	Gly 425	Val	Asn	Glu	Glu	Glu 430	Ala	Lys	
	Arg	Ile	Lys 435	Phe	Ser	Gln	Gln	Glu 440	Thr	Mẹt	Leu	Ser	Met 445	Thr	Pro	Ser	
	Ser	Ser 450	Ser														٠
	<210> 71 <211> 867 <212> DNA <213> Arabidopsis thaliana																
	<222	L> CI 2> (1	L)	(864) oitir				-									
	<400)> 73	L														
													ggt Gly				48
													ctc Leu				96
													gcc Ala 45				144
													gag Glu				· 192
•													gac Asp				240
													gat Asp				288
													gca Ala				336
													gag Glu				384

cct tct ata atc aac gag act ttg aaa gct gtg gtt gct cag tac aat Pro Ser Ile Ile Asn Glu Thr Leu Lys Ala Val Val Ala Gln Tyr Asn

									;	84						-
				att Ile												480
				gaa Glu 165												528
				aac Asn												576
				gtg Val												624
				gaa Glu												672
				agt Ser												720
				acg Thr 245												768
				aac Asn												816
				cta Leu												864
tag											•					867
<211 <212)> 72 L> 28 2> PF 3> Ar	88 RT	dops:	is tl	nalia	ana										
	> 72															
1				Lys 5					10					15		
			20	Val	_			25					30			
		35		Tyr			40					45				
Asn	Arg 50	Leu	Val	Gly	Ile	Lys 55	Asp	Lys	Val	Tyr	Pro 60	Glu	Gly	Thr	His	
Leu 65	Met	Ile	Pro	Trp	Phe 70	Glu	Arg	Pro	Val	Ile 75	Tyr	Asp	Val	Arg	Ala 80	
				Val 85					90					95		
			.100	Leu				105					110			
Pro	Glu	Ile 115	Tyr	Arg	Ser	Leu	Gly 120	Glu	Asn	Tyr	Ser	Glu 125	Arg	Val	Leu	

									(53						
Pro	Ser 130	Ile	Ile	Asn	Glu	Thr 135	Leu	Lys	Ala	Val	Val 140	Ala	Gln	Tyr	Asn	
Ala 145	Ser	Gln	Leu	Ile	Thr 150	Gln	Arg	Glu	Ala	Val 155	Ser	Arg	Glu		Arg 160	
Lys	Ile	Leu	Thr	Glu 165	Arg	Ala	Ala	Asn	Phe 170	Asn	Val	Ala	Leu	Asp 175	Asp	
Val	Ser	Ile	Thr 180	Asn	Leu	Thr	Phe	Gly 185	Lys	Glu	Phe	Thr	Ala 190	Ala	Ile	
Glu	Ala	Lys 195	Gln	Val	Ala	Ala	Ģln 200	Ğlu	Ala	Glu	Arg	Ala 205	Lys	Phe	Ile	
Val	Glu 210	Lys	Ala	Glu	Gln	Asp 215	Lys	.Arg	Ser	Ala	Val 220	Ile	Arg	Ala	Gln	
Gly 225	Glu	Ala	Lys	Ser	Ala 230	Gln	Leu	·Ile	Gly	Gln 235	Ala	Ile	Ala	Asn	Asn 240	
Gln	Ala	Phe	Ile	Thr 245	Leu	Arg	Lys	Ile	Glu 250	Ala	Ala	Arg	Glu	Ile 255	Ala	
Gln	Thr	Ile	Ala 260	Asn	Ser	Aļa	Asn	Lys 265	Val	Tyr	Leu	Ser	Ser 270	Asp	Asp	
Leu	Leu	Leu 275	Asn	Leu	Gln	Gly	Met 280	Asn	Leu	Asp	Val	Asp 285	Ala	Lys	Asn	
<pre><210> 73 <211> 40 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:</pre>																
)> 74 ggate		tctg	taac	at t	tgac	aaaa	c at	g							33
<211 <212)> 7! L> 4(2> D) 3> Ki) AIA	lich	e Se	quen	z		•								
<220 <223	3> B			ung e				hen	Sequ	enz:						
	<400> 75															
			ggcc	gcgt	gt t	ccat	ttgg	c cg	gaaa	caac						4(
)> 7: l> 4:															

	86	
<212> <213>	DNA Künstliche Sequenz	
<220> <223>	Beschreibung der künstlichen Sequenz: oligonucleotid primer	
<400> ataaga	•	44
<210> <211> <212> <213>	45	
<220> <223>	Beschreibung der künstlichen Sequenz: oligonucleotid primer	
<400> ataaga	77 aatge ggeegeggat eeeteagggt ettttettge eeact	45
<210><211><211><212><213>	30	
<220> <223>	Beschreibung der künstlichen Sequenz: oligonucleotid primer	
<400> ccgcto	78 cgagt ttacggatgg agccacgaag	30
<210><211><211><212><213>	30	
<220> <223>	Beschreibung der künstlichen Sequenz: oligonucleotid primer	•
<400> ccgcto	79 egagg taageteaac aaatetttag	30
<210> <211> <212> <213>	31	
<220> <223>	Beschreibung der künstlichen Sequenz: oligonucleotid primer	
<400> acgcgi	80 tcgac gcgttctgcg tgcaagatat t	31
<210><211><211><212><213>	46	
<220> <223>	Beschreibung der künstlichen Sequenz:	


```
<400> 81
ataagaatgc ggccgcggat ccatggctaa caagctcttc ctcgtc
                                                                  46
<211> 45
<212> DNA
<213> Künstliche Sequenz
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotid primer
<400> 82
ataagaatgc ggccgcggat ccctagtagt aaggagggaa gaaag
                                                                  45
<210> 83
<211> 4954
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: DNA
      construct coding for dsRNA for suppression of
      multiple storage proteins
<400> 83
agcttggtac cgagctcgga tccactagta acggccgcca gtgtgctgga attcgccctt 60
gcggccgcgt gttccatttg gccggaaaca accagcaggg aggctttggc ggttcacagc 120
aacaacaaga acagaaaaac ttgtggagcg ggttcgacgc acaggtcata gctcaagcat 180
tgaaaattga cgttcagttg gctcagcagc ttcagaacca acaagacagc agaggaaaca 240
tegttegtgt taagggaeet ttecaggteg tgaggeeaee tetaagaeag eeetaegaga 300
gcgaggagtg gagacaccca cgtagcccac agggcaacgg ccttgaggag actatctgca 360
gcatgaggtc ccacgagaac attgacgacc ctgctcgtgc tgacgtgtac aagcccagcc 420
taggtcgcgt gaccagcgtc aacagctata ccttgcccat cttggagtat gtcaggctca 480
gtgccactcg tggcgttctc cagggtggat ccttctgtaa catttgacaa aacatgtgaa 540
cacgtcatcc gtcatataga acttccaatt ttaatatgtt ttgctaaaga aaaaaaaag 600
gaataaatat ctatcaaatt catttttaaa acatttgtat acgttcttaa ataatttagg 660
atatgactaa tttttctttt tggtaaaaat gttaatatct atatttaatt tattaagaaa 720
aatgtactta caccetggag aacgeeacga gtggeactga geetgacata etceaagatg 780
ggcaaggtat agctgttgac gctggtcacg cgacctaggc tgggcttgta cacgtcagca 840
cgagcagggt cgtcaatgtt ctcgtgggac ctcatgctgc agatagtctc ctcaaggccg 900
ttgccctgtg ggctacgtgg gtgtctccac tcctcgctct cgtagggctg tcttagaggt 960
ggcctcacga cctggaaagg tcccttaaca cgaacgatgt ttcctctgct gtcttgttgg 1020
ttctgaagct gctgagccaa ctgaacgtca attttcaatg cttgagctat gacctgtgcg 1080
togaacccgc tocacaagtt tttctgttct tgttgttgct gtgaaccgcc aaagcctccc 1140
tgctggttgt ttccggccaa atggaacacg cggccgcaag ggcgaattct gcagatatcc 1200
atcacactgg cggccgctcg acgtaagctc aacaaatctt tagaaaatta attttatgtg 1260
acatatgcaa taatttgatt tggcaagata aactaataga ttttgcgatt tggagtttta 1320
aactctaaat aatctaaatc gttttcaatt ggtttaaata tatatcttgc atttttaatc 1380
gtttttaatt aaaaaatata tatatatata tatatcttgc atttttaatc gttttcaatt 1440
taaaaaatat cttgcacgca gaacgctctc gagcggccgc ggatcctcag ggtcttttct 1500
tgcccacttt cttgaacgcc ggcaaactca cgtttgttgt tcacggaagg ggtctaatgg 1560
gaagagttat teegggatge geegagaegt teatggagte aceggtattt ggagaaggte 1620
aaggtcaggg tcagagtcaa gggttccgtg acatgcacca gaaagtagag cacctacggt 1680
geggtgacae cattgeaaca ceatetggtg tageteaatg gttetacaae aatggaaatg 1740
agceteteat tettgttgea geegeggate tegecageaa ceagaaceag ettgaeegea 1800
accttagace attittgata geeggaaaca acceacaagg geaggaatgg etacaaggee 1860
gaaagcaaca gaagcaaaac aacatettea atggettege acetgagate ttggeteaag 1920
ccttcaagat caatgtcgag acggctcagc agctccagaa ccagcaagat aaccgtggca 1980
acatcgtcaa ggtcaacgga cctttcggcg tcattaggcc acccttgaga cgcggcgaag 2040
geggecaaca accacatgaa atagetaatg gtttagagga gaetttgtge accatgegat 2100
```


<210> 84

<211> 4954

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: RNA coding for dsRNA for suppression of multiple storage proteins

<400> 84

ucquucququ uaagggaccu uuccaggucg ugaggccacc ucuaagacag cccuacgaga 300 gcgaggagug gagacaccca cguagcccac agggcaacgg ccuugaggag acuaucugca 360 gcaugagguc ccacgagaac auugacgacc cugcucgugc ugacguguac aagcccagcc 420 uagguegegu gaccagegue aacageuaua ceuugeceau euuggaguau gucaggeuea 480 gugecacueg uggeguucue caggguggau ecuucuguaa cauuugacaa aacaugugaa 540 cacqucaucc qucauauaga acuuccaauu uuaauauguu uugcuaaaga aaaaaaaaag 600 gaauaaauau cuaucaaauu cauuuuuaaa acauuuguau acguucuuaa auaauuuagg 660

auaugacuaa uuuuucuuuu ugguaaaaaau guuaauaucu auauuuaauu uauuaagaaa 720 aauguacuua cacccuggag aacgccacga guggcacuga gccugacaua cuccaagaug 780 ggcaagguau agcuguugac gcuggucacg cgaccuaggc ugggcuugua cacgucagca 840 cgagcagggu cgucaauguu cucgugggac cucaugcugc agauagucuc cucaaggccg 900 uugeeeugug ggeuaegugg gugueueeae ueeuegeueu eguagggeug ueuuagaggu 960 ggccucacga ccuggaaagg ucccuuaaca cgaacgaugu uuccucugcu gucuuguugg 1020 uucuqaaqcu qcuqagccaa cugaacguca auuuucaaug cuugagcuau gaccuquqcg 1080 ucqaacccgc uccacaaguu uuucuguucu uguuguugcu gugaaccgcc aaagccuccc 1140 ugcugguugu uuccggccaa auggaacacg cggccgcaag ggcgaauucu gcagauaucc 1200

aucacacugg cggccgcucg acguaagcuc aacaaaucuu uagaaaauua auuuuaugug 1260 acauaugcaa uaauuugauu uggcaagaua aacuaauaga uuuugcgauu uggaguuuua 1320 aacucuaaau aaucuaaauc guuuucaauu gguuuaaaua uauaucuugc auuuuuaauc 1380 дишишааши аааааашаша шашашаша шашашсшидс ашишишаашс дишишсааши 1440 uaaaaaauau cuugcacgca gaacgcucuc gagcggccgc ggauccucag ggucuuuucu 1500 ugcccacuuu cuugaacgcc ggcaaacuca cguuuguugu ucacggaagg ggucuaaugg 1560 gaagaguuau uccgggaugc gccgagacgu ucauggaguc accgguauuu ggagaagguc 1620 aaggucaggg ucagagucaa ggguuccgug acaugcacca gaaaguagag caccuacggu 1680

gcggugacac cauugcaaca ccaucuggug uagcucaaug guucuacaac aauggaaaug 1740 agccucucau ucuuguugca gccgcggauc ucgccagcaa ccagaaccag cuugaccgca 1800 accuuagacc auuuuugaua geeggaaaca acceacaagg geaggaaugg cuacaaggec 1860 gaaagcaaca gaagcaaaac aacaucuuca auggcuucgc accugagauc uuggcucaag 1920 ccuucaagau caaugucgag acggcucagc agcuccagaa ccagcaagau aaccguggca 1980 acaucgucaa ggucaacgga ccuuucggcg ucauuaggcc acccuugaga cgcggcgaag 2040 geggecaaca accacaugaa auagcuaaug guuuagagga gacuuuguge accaugegau 2100 gcacugaaaa ccucgaugac ccgucggaug cugacgugua caagccauca cucggauaca 2160

guggcuccau ccguaaaacu cgagguaagc ucaacaaauc uuuagaaaau uaauuuuaug 2280 ugacauaugc aauaauuuga uuuggcaaga uaaacuaaua gauuuugcga uuuggaguuu 2340 uaaacucuaa auaaucuaaa ucguuuucaa uugguuuaaa uauauaucuu gcauuuuuaa 2400 ucquuuuuaa uuaaaaaaua uauauauaua uauauaucuu gcauuuuuaa ucquuuucaa 2460 uuuaaaaaau aucuugcacg cagaacgcug ucgaguuuua cggauggagc cacgaagagc 2520 gcuaaggcgg agaagucuga ggauaggaag auuguagcug uuaagugugc uaauguaucc 2580 gagugauggc uuguacacgu cagcauccga cgggucaucg agguuuucag ugcaucgcau 2640 ggugcacaaa gucuccucua aaccauuagc uauuucaugu gguuguuggc cgccuucgcc 2700

uuagcacacu uaacagcuac aaucuuccua uccucagacu ucuccgccuu agcgcucuuc 2220

gcgucucaag gguggccuaa ugacgccgaa agguccguug accuugacga uguugccacg 2760 guuaucuugc ugguucugga gcugcugagc cgucucgaca uugaucuuga aggcuugagc 2820 caaqaucuca ggugcgaagc cauugaagau guuguuuugc uucuguugcu uucggccuug 2880 uagecauuee ugeeeuugug gguuguuuee ggeuaueaaa aauggueuaa gguugeggue 2940 aagcugguuc ugguugcugg Cgagauccgc ggcugcaaca agaaugagag gcucauuucc 3000

auuguuguag aaccauugag Cuacaccaga ugguguugca auggugucac cgcaccguag 3060 gugcucuacu uucuggugca ugucacggaa cccuugacuc ugacccugac cuugaccuuc 3120 uccaaauacc ggugacucca ugaacgucuc ggcgcauccc ggaauaacuc uucccauuag 3180

accccuuccg ugaacaacaa acgugaguuu gccggcguuc aagaaagugg gcaagaaaag 3240 acccugagga uccgcggccg cgcaugcauc uagcucgagg uaagcucaac aaaucuuuag 3300 aaaauuaauu uuaugugaca uaugcaauaa uuugauuugg caagauaaac uaauagauuu 3360


```
ugcgauuugg aguuuuaaac ucuaaauaau cuaaaucguu uucaauuggu uuaaauauau 3420
aucuugcauu uuuaaucguu uuuaauuaaa aaauauauau auauauaua aucuugcauu 3480
uuuaaucguu uucaauuuaa aaaauaucuu gcacgcagaa cgcuagggcc gcggccgcgg 3540
auccauggeu aacaageucu uccucgucug egcaacucuc geccucugeu uccuccucac 3600
caacgcuucc aucuaccgca ccguugucga auucgaagaa gaugacgcca gcaaccccgu 3660
agguccaaga cagagaugcc agaaggaguu ucagcaauca caacaccuaa gagcuugcca 3720
gagauggaug agcaagcaaa ugaggcaagg acgugguggu gguccuuccc ucgacgauga 3780
guucgauuuc gagggccccc agcagggaua ccagcuacuc cagcagugcu gcaacgagcu 3840
ucgccaggaa gagccaguuu gcguuugccc caccuugaaa caagcugcca gggcaguuag 3900
ccuccaggga cagcacggac cauuccaauc caggaaaauu uaccagucag cuaaguacuu 3960
gccuaacauu ugcaagaucc agcaaguugg ugaauguccc uuccagacca ccaucccuuu 4020
cuucccuccu uacuacuagg guacucgagg uaagcucaac aaaucuuuag aaaauuaauu 4080
uuaugugaca uaugcaauaa uuugauuugg caagauaaac uaauagauuu ugcgauuugg 4140
aguuuuaaac ucuaaauaau cuaaaucguu uucaauuggu uuaaauauau aucuugcauu 4200
uuuaaucguu uuuaauuaaa aaauauauau auauauaua aucuugcauu uuuaaucguu 4260
uucaauuuaa aaaauaucuu gcacgcagaa cgcugucgac uacccuagua guaaggaggg 4320
aagaaaggga ugguggucug gaagggacau ucaccaacuu gcuggaucuu gcaaauguua 4380
ggcaaguacu uagcugacug guaaauuuuc cuggauugga augguccgug cugucccugg 4440
aggcuaacug cccuggcagc uuguuucaag guggggcaaa cgcaaacugg cucuuccugg 4500
cgaagcucgu ugcagcacug cuggaguagc ugguaucccu gcugggggcc cucgaaaucg 4560
aacucaucgu cgagggaagg accaccacca cguccuugcc ucauuugcuu gcucauccau 4620
cucuggcaag cucuuaggug uugugauugc ugaaacuccu ucuggcaucu cugucuugga 4680
ccuacggggu ugcuggcguc aucuucuucg aauucgacaa cggugcggua gauggaagcg 4740
uuggugagga ggaagcagag ggcgagaguu gcgcagacga ggaagagcuu guuagccaug 4800
gaucaauucg cccuauagug agucguauua caauucacug gccgucguuu uacaacgucg 4860
ugacugggaa aacccuggcg uuacccaacu uaaucgccuu gcagcacauc ccccuuucgc 4920
                                                                 . 4954
cagcuggcgu aauagcgaag aggcccgcac cgau
<210> 85
<211> 4456
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: DNA
      construct coding for dsRNA for suppression of
      multiple storage proteins
<400> 85
agcttggtac cgagctcgga tccactagta acggccgcca gtgtgctgga attcgccctt 60
gcggccgcgg atcctcaggg tcttttcttg cccactttct tgaacgccgg caaactcacg 120
tttgttgttc acggaagggg tctaatggga agagttattc cgggatgcgc cgagacgttc 180
atggagtcac cggtatttgg agaaggtcaa ggtcagggtc agagtcaagg gttccgtgac 240
atgcaccaga aagtagagca cctacggtgc ggtgacacca ttgcaacacc atctggtgta 300
gctcaatggt tctacaacaa tggaaatgag cctctcattc ttgttgcagc cgcggatctc 360
gccagcaacc agaaccagct tgaccgcaac cttagaccat ttttgatagc cggaaacaac 420
ccacaagggc aggaatggct acaaggccga aagcaacaga agcaaaacaa catcttcaat 480
ggcttcgcac ctgagatctt ggctcaagcc ttcaagatca atgtcgagac ggctcagcag 540
ctccagaacc agcaagataa ccgtggcaac atcgtcaagg tcaacggacc tttcggcgtc 600
attaggccac ccttgagacg cggcgaaggc ggccaacaac cacatgaaat agctaatggt 660
ttagaggaga ctttgtgcac catgcgatgc actgaaaacc tcgatgaccc gtcggatgct 720
gacgtgtaca agccatcact cggatacatt agcacactta acagctacaa tcttcctatc 780
```

ctcagacttc tccgccttag cgctcttcgt ggctccatcc gtaaaaggat ccgcggccgc 840 aagggcgaat tctgcagatc cttcagggtc ttttcttgcc cactttcttg aacgccggca 900 aactcacgtt tgttgttcac ggaaggggtc taatgggaag agttattccg ggatgcgccg 960 agacgttcat ggagtcaccg gtatttggag aaggtcaagg tcaggggtcag agtcaagggt 1020 tccgtgacat gcaccagaaa gtagagcacc tacggtgcgg tgacaccatt gcaacaccat 1080 ctggtgtagc tcaatggttc tacaacaatg gaaatgagcc tctcattctt gttgcagccg 1140 cggatctcgc cagcaaccag aaccagcttg accgcaacct tagaccatt ttgatagccg 1200

	acaagggcag					
tcttcaatgg	cttcgcacct	gagatcttgg	ctcaagcctt	caagatcaat	gtcgagacgg	1320
ctcagcagct	ccagaaccag	caagataacc	gtggcaacat	cgtcaaggtc	aacggacctt	1380
tcggcgtcat	taggccaccc	ttgagacgcg	gcgaaggcgg	ccaacaacca	catgaaatag	.1440
ctaatggttt	agaggagact	.ttgtgcacca	tgcgatgcac	tgaaaacctc	gatgacccgt	1500
cggatgctga	cgtgtacaag	ccatcactcg	gatacattag	cacacttaac	agctacaatc	1560
ttcctatcct	cagacttctc	cgccttagcg	ctcttcgtgg	ctccatccgt	aaaagatcct	1620
atggctaaca	agctcttcct	cgtctgcgca	actctcgccc	tctgcttcct	cctcaccaac	1680
gcttccatct	accgcaccgt	tgtcgaattc	gaagaagatg	acgccagcaa	ccccgtaggt	1740
ccaagacaga	gatgccagaa	ggagtttcag	caatcacaac	acctaagagc	ttgccagaga	1800
tggatgagca	agcaaatgag	gcaaggacgt	ggtggtggtc	cttccctcga	cgatgagttc	1860
gatttcgagg	gcccccagca	gggataccag	ctactccagc	agtgctgcaa	cgagcttcgc	1920
caggaagagc	cagtttgcgt	ttgccccacc	ttgaaacaag	ctgccagggc	agttagcctc	1980
cagggacagc	acggaccatt	ccaatccagg	aaaatttacc	agtcagctaa	gtacttgcct	2040
aacatttgca	agatccagca	agttggtgaa	tgtcccttcc	agaccaccat	ccctttcttc	2100
cctccttact	actagggtag	atatccatca	cactggcggc	cgctcgacgt	aagctcaaca	2160
aatctttaga	aaattaattt	tatgtgacat	atgcaataat	ttgatttggc	aagataaact	2220
aatagatttt	gcgatttgga	gttttaaact	ctaaataatc	taaatcgttt	tcaattggtt	2280
taaatatata	tcttgcattt	ttaatcgttt	ttaattaaaa	aatatata	tatatatata	2340
tcttgcattt	ttaatcgttt	tcaatttaaa	aaatatcttg	cacqcaqaac	gcctcgacta	2400
	aaggagggaa					
tggatcttgc	aaatgttagg	caagtactta	gctgactggt	aaattttcct	ggattggaat	2520
agtccatact	gtccctggag	gctaactgcc	ctggcagctt	gtttcaaggt	adadcaaaca	2580
caaactggct	cttcctggcg	aagctcotto	cagcactgct	ggagtagctg	gtatecetge	2640
tagagaccct	cgaaatcgaa	ctcatcgtcg	agggaaggac	caccaccacq	teettacete	2700
	tcatccatct					
	gtcttggacc					
gtgcggtaga	tggaagcgtt	aataaaaaa	aaggagagag	caagaattac	acadacdadd	2880
aagagettgt	tagccatagg	atcttttacq	gatggaggg	casaasacac	taaggcgagg	2000
aagtstgagg	ataggaagat	tataactatt	aagtgtgcca	atotatoona	atastaactt	3000
gtacacgtca	gcatccgacg	ggtcatcgag	attttcaata	catcocatoo	tacacaaaat	3060
	ccattagcta					
togcctaato	acgccgaaag	gtccgttgac	cttgacgatg	ttaccacaat	tatcttqctq	3180
gttctggagc	tgctgagccg	tctcgacatt	gatettgaag	acttaaacca	agateteagg	3240
tacaaaacca	ttgaagatgt	tattttactt	ctattacttt	caacettata	agaceteagg	3240
cccttataaa	ttgtttccgg	ctatcaaaaa	taatctaaaa	ttacaatcaa	actaatteta	3360
	agatccgcgg					
	acaccagatg					
	tcacggaacc					
	aacgtctcgg					
	gtgagtttgc cgcccttgcg					
	gtctgaggat					
	acacgtcagc					
	cctctaaacc					
	gcctaatgac					
	tctggagctg					
	cgaagccatt					
	cttgtgggtt					
	tgctggcgag					
	attgagctac					
	ggtgcatgtc					
	actccatgaa					
	caacaaacgt	gagtttgccg	gcgttcaaga	aagtgggcaa	gaaaagaccc	
tgactcgagc	atgcat			•		4456
<210> 86						

<210> 86 <211> 4456

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: RNA coding for dsRNA for suppression of multiple storage proteins

<400> 86 agcuugguac cgagcucgga uccacuagua acggccgcca gugugcugga auucgcccuu 60 geggeegegg auceucaggg ucuuuucuug eecacuuucu ugaacgeegg caaacucaeg 120 uuuguuguuc acggaagggg ucuaauggga agaguuauuc cgggaugcgc cgagacguuc 180 auggagucac cgguauuugg agaaggucaa ggucaggguc agagucaagg guuccgugac 240 augcaccaga aaguagagca ccuacggugc ggugacacca uugcaacacc aucuggugua 300 gcucaauggu ucuacaacaa uggaaaugag ccucucauuc uuguugcagc cgcggaucuc 360 gccagcaacc agaaccagcu ugaccgcaac cuuagaccau uuuugauagc cggaaacaac 420 ccacaagggc aggaauggcu acaaggccga aagcaacaga agcaaaacaa caucuucaau 480 ggcuucgcac cugagaucuu ggcucaagcc uucaagauca augucgagac ggcucagcag 540 cuccagaacc agcaagauaa ccguggcaac aucgucaagg ucaacggacc uuucggcguc 600 auuaggccac ccuugagacg cggcgaaggc ggccaacaac cacaugaaau agcuaauggu 660 uuagaggaga cuuugugcac caugcgaugc acugaaaacc ucgaugaccc gucggaugcu 720 gacguguaca agccaucacu cggauacauu agcacacuua acagcuacaa ucuuccuauc 780 cucagacuuc uccgccuuag cgcucuucgu ggcuccaucc guaaaaggau ccgcggccgc 840 aagggcgaau ucugcagauc cuucaggguc uuuucuugcc cacuuucuug aacgccggca 900 aacucacguu uguuguucac ggaagggguc uaaugggaag aguuauuccg ggaugcgccg 960 agacguucau ggagucaccg guauuuggag aaggucaagg ucagggucag agucaagggu 1020 ucegugacau gcaccagaaa guagagcacc uacggugegg ugacaccauu gcaacaccau 1080 cugguguage ucaaugguuc uacaacaaug gaaaugagee ucucauucuu guugcageeg 1140 cggaucucgc cagcaaccag aaccagcuug accgcaaccu uagaccauuu uugauagccg 1200 gaaacaaccc acaagggcag gaauggcuac aaggccgaaa gcaacagaag caaaacaaca 1260 ucuucaaugg cuucgcaccu gagaucuugg cucaagccuu caagaucaau gucgagacgg 1320 cucagcagcu ccagaaccag caagauaacc guggcaacau cgucaagguc aacggaccuu 1380 ucggcgucau uaggccaccc uugagacgcg gcgaaggcgg ccaacaacca caugaaauag 1440 cuaaugguuu agaggagacu uugugcacca ugcgaugcac ugaaaaccuc gaugacccgu 1500 cggaugcuga cguguacaag ccaucacucg gauacauuag cacacuuaac agcuacaauc 1560 uuccuauccu cagacuucuc cgccuuagcg cucuucgugg cuccauccgu aaaagauccu 1620 auggeuaaca ageucuuccu egucugegea acucuegeee ucugeuuccu eeucaecaac 1680 gcuuccaucu accgcaccgu ugucgaauuc gaagaagaug acgccagcaa ccccguaggu 1740 ccaagacaga gaugccagaa ggaguuucag caaucacaac accuaagagc uugccagaga 1800 uggaugagca agcaaaugag gcaaggacgu gguggugguc cuucccucga cgaugaguuc 1860 gauuucgagg gcccccagca gggauaccag cuacuccagc agugcugcaa cgagcuucgc 1920 caggaagagc caguuugcgu uugccccacc uugaaacaag cugccagggc aguuagccuc 1980 cagggacage acggaccauu ccaauccagg aaaauuuacc agucagcuaa guacuugccu 2040 aacauuugca agauccagca aguuggugaa ugucccuucc agaccaccau cccuuucuuc 2100 ccuccuuacu acuaggguag auauccauca cacuggcggc cgcucgacgu aagcucaaca 2160 aaucuuuaga aaauuaauuu uaugugacau augcaauaau uugauuuggc aagauaaacu 2220 aauagauuuu gcgauuugga guuuuaaacu cuaaauaauc uaaaucguuu ucaauugguu 2280. uaaauauaua ucuugcauuu uuaaucguuu uuaauuaaaa aauauauaua uauauauau 2340 ucuugcauuu uuaaucguuu ucaauuuaaa aaauaucuug cacgcagaac gccucgacua 2400 cccuaguagu aaggagggaa gaaagggaug guggucugga agggacauuc accaacuugc 2460 uggaucuugc aaauguuagg caaguacuua gcugacuggu aaauuuuccu ggauuggaau 2520 gguccgugcu gucccuggag gcuaacugcc cuggcagcuu guuucaaggu ggggcaaacg 2580 caaacuggcu cuuccuggcg aagcucguug cagcacugcu ggaguagcug guaucccugc 2640 ugggggcccu cgaaaucgaa cucaucgucg agggaaggac caccaccacg uccuugccuc 2700 auuugcuugc ucauccaucu cuggcaagcu cuuagguguu gugauugcug aaacuccuuc 2760 uggcaucucu gucuuggacc uacgggguug cuggcgucau cuucuucgaa uucgacaacg 2820 gugcgguaga uggaagcguu ggugaggagg aagcagaggg cgagaguugc gcagacgagg 2880 aagaqcuuqu uaqccauagg aucuuuuacg gauggagcca cgaagagcgc uaaggcggag 2940


```
aagucugagg auaggaagau uguagcuguu aagugugcua auguauccga gugauggcuu 3000
guacaeguca gcaucegacg ggucaucgag guuuucagug caucgcaugg ugcacaaagu 3060
cuccucuaaa ccauuagcua uuucaugugg uuguuggccg ccuucgccgc gucucaaggg 3120
uggecuaaug aegeegaaag gueeguugae cuugaegaug uugeeaeggu uaucuugeug 3180
guucuggagc ugcugagccg ucucgacauu gaucuugaag gcuugagcca agaucucagg 3240
ugcgaagcca uugaagaugu uguuuugcuu cuguugcuuu cggccuugua gccauuccug 3300
cccuuguggg uuguuuccgg cuaucaaaaa uggucuaagg uugcggucaa gcugguucug 3360
quuqcuqqcg agauccgcgg cugcaacaag aaugagaggc ucauuuccau uquuquaqaa 3420
ccauugagcu acaccagaug guguugcaau ggugucaccg caccguaggu gcucuacuuu 3480
cuggugcaug ucacggaacc cuugacucug acccugaccu ugaccuucuc caaauaccgg 3540
ugacuccaug aacgucucgg cgcaucccgg aauaacucuu cccauuagac cccuuccgug 3600
aacaacaaac gugaguuugc cggcguucaa gaaagugggc aagaaaagac ccugaaggau 3660
cugcagaauu cgcccuugcg gccgcggauc cuuuuacgga uggagccacg aagagcgcua 3720
aggeggagaa gucugaggau aggaagauug uagcuguuaa gugugcuaau guaucegagu 3780
gauggeuugu acacgucage auccgaeggg ucaucgaggu uuucagugca ucgcauggug 3840
cacaaagucu ccucuaaacc auuagcuauu ucaugugguu guuggccgcc uucgccgcgu 3900
cucaagggug gccuaaugac gccgaaaggu ccguugaccu ugacgauguu gccacgguua 3960
ucuugcuggu ucuggagcug cugagccguc ucgacauuga ucuugaaggc uugagccaag 4020
aucucaggug cgaagccauu gaagauguug uuuugcuucu guugcuuucg gccuuguagc 4080
cauuccugec cuuguggguu guuuccggcu aucaaaaaug gucuaagguu geggucaage 4140
ugguucuggu ugcuggcgag auccgcggcu gcaacaagaa ugagaggcuc auuuccauug 4200
uuguagaacc auugagcuac accagauggu guugcaaugg ugucaccgca ccguaggugc 4260
ucuacuuucu ggugcauguc acggaacccu ugacucugac ccugaccuug accuucucca 4320
aauaccggug acuccaugaa cgucucggcg caucccggaa uaacucuucc cauuagaccc 4380
cuuccgugaa caacaaacgu gaguuugccg gcguucaaga aagugggcaa gaaaagaccc 4440
ugacucgage augeau
                                                                  4456
<210> 87
<211> 33
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer
<400> 87
aaaaggeetg tgttccattt ggeeggaaac aac
                                                                  33
<210> 88
<211> 31
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer
                                                                  31
aaagatatca ccctggagaa cgccacgagt g
<210> 89
<211> 33
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer
<400> 89
                                                                  33
aaaaggccta tggctaacaa gctcttcctc gtc
```


								•	7-3						
<210> <211> <212> <213>	32	liche	e Seç	nenz	:				,						
<220> <223>	Beschi oligo						nen S	segue	enz:						٠
<400>			i												
_	tatcc 1	cagta	igtaa	ig ga	ıggga	agaa	a ag								32
<210><211><211><212><213>	32	liche	· e Sec	quenz	:										
<220> <223>	Besch:						nen S	Seque	nz:						
<400>	91 cgagc t	tcagg	gtct	t tt	cttg	jecea	a ct								32
<210><211><212><212><213>	32	liche	e Sec	zuenz	ž										
<220> <223>	Besch:						nen S	Seque	enz:						
<400>	92 cgacc	tagta	agtaa	ag ga	aggga	aagaa	a ag								32
<210><211><211><212><213>	1500	dopsi	is tŀ	nalia	ına			•							
	CDS (1)globu	-	-	e pro	oteir	1			•						
<400>															4.0
atg ad Met Th 1	ct aga nr Arg	Phe	gcg Ala 5	gta Val	Leu	Pro	Leu	Ser 10	Val	Leu	Leu	Leu	Val 15	Leu	48
	tc ctc ne Leu														96
	ac gtc sp Val 35														144
Ile Ly	ag aaa ys Lys 50														192
	ca acc er Thr														240

									!	95						
			tcc Ser													288
			tcc Ser 100													336
			gtt Val													384
			agg Arg													432
			tgc Cys													480
			gag Glu													528
			ctg Leu 180	_											agt Ser	576
			tgc Cys													624
			aag Lys													672
			gag Glu													720
			gtt Val													768
_			acg Thr 260				_									816
			gtt Val													864
_			aat Asn			_										912
			gtt Val													960
tca Ser	gag Glu	tgt Cys	aag Lys	aac Asn 325	gtg Val	agg Arg	ttt Phe	aaa Lys	gta Val 330	gag Glu	gaa Glu	gga Gly	gat Asp	att Ile 335	ttc Phe	1008
			cgg Arg 340													1056

				9	96						
tcg tta gtg tt Ser Leu Val Ph 355	c gtt ggg e Val Gly	ttt act Phe Thr 360	act Thr	tca Ser	gct Ala	aag Lys	aat Asn 365	aac Asn	gag Glu	ccg Pro	1104
cag ttc tta go Gln Phe Leu Al 370	a Gly Glu	Asp Ser 375	Ala	Leu	Arg	Met 380	Leu	Asp	Arg	Gln	1152
gta ttg gct gc Val Leu Ala Al 385	a Ser Leu 390	Asn Val	Ser	Ser	Val 395	Thr	.Ile	Asp	Gly	Leu 400	1200
ttg gga gct ca Leu Gly Ala Gl	g aag gaa n Lys Glu 405	gct gtt Ala Val	atc Ile	ttg Leu 410	gaa Glu	tgt Cys	cat His	tct Ser	tgt Cys 415	gcg Ala	1248
gaa gga gag at Glu Gly Glu Il 42	e Glu Lys	ctt aag Leu Lys	gtg Val 425	gag Glu	ata Ile	gag Glu	agg Arg	aag Lys 430	aaa Lys	ata Ile	1296
gat gat gag ag Asp Asp Glu Ar 435	g aag agg g Lys Arg	aga cat Arg His 440	gat Asp	gaa Glu	agg Arg	aag Lys	aaa Lys 445	gaa Glu	gaa Glu	gaa Glu	1344
gag gcg aag ag Glu Ala Lys An 450											1392
gag aag aag co Glu Lys Lys Ai 465	g tgg cca g Trp Pro 470	cct caa Pro Gln	caa Gln	cca Pro	cca Pro 475	caa Gln	gaa Glu	gaa Glu	gaa Glu	ctt Leu 480	1440
agg gaa cgg ca Arg Glu Arg Gl											1488
gag gag agt ta Glu Glu Ser	a										1500
<210> 94 <211> 499 <212> PRT <213> Arabidor	sis thali	ana									
<400> 94				_	-	_	_	_		_	
Met Thr Arg Ph 1	e Ala Val 5	Leu Pro	Leu	Ser 10	Val	Leu	Leu	Leu	Va1 15	Leu	
Leu Phe Leu Cy	rs Thr Glu :0	Ser Leu	Ala 25	Lys	Ser	Glu	Glu	Ser 30	Glu	Glu	
Tyr Asp Val Al	a Val Pro	Ser Cys 40	Суѕ	Gly	Phe	Ser	Ser 45	Pro	Leu	Leu	
Ile Lys Lys As	p Gln Trp	Lys Pro 55	Ile	Phe	Glu	Thr 60	Lys	Phe	Gly	Gln	
Ile Ser Thr Va	d Gln Ile 70	Gly Asn	Gly	Cys	Gly 75	Gly	Met	Gly	Pro	Tyr 80	
Lys Ile His Se	er Ile Thr 85	Leu Glu	Pro	Asn 90	Thr	Ile	Leu	Leu	Pro 95	Leu	•
Leu Leu His So	er Asp Met 00	Val Phe	Phe 105	Val	Asp	Ser	Gly	Ser 110	Gly	Ile	
Leu Asn Trp Va	al Asp Glu	Glu Ala 120	_	Ser	Thr	Glu	Ile 125	Arg	Leu	Gly	

										97					
Asp	Val 130	Tyr	Arg	Leu	Arg	Pro 135	Gly	Ser	Val	Phe	Tyr 140	Leu	Gln	Ser	Lys
Pro 145	Asp	Pro	Cys	Phe	Gly 150	Ala	Tyr	Ser	Ser	Ile 155	Thr	Asp	Leu	Met	Phe 160
Gly	Phe	Asp	Glu	Thr 165	Ile	Leu	Gln	Ser	Ala 170	Phe	Gly	Val	Pro	Glu 175	Gly
Ile	Ile	Glu	Leu 180	Met	Arg	Asn	Arg	Thr 185	Lys	Pro	Pro	Leu	Ile 190	Val	Ser
Glu	Thr	Leu 195	Cys	Thr	Pro	Gly	Val 200	Ala	Asn	Thr	Trp	Gln 205	Leu	Gln	Pro
Arg	Leu 210	Leu	Lys	Leu	Phe	Ala 215	Gly	Ser	Ala	Asp	Leu 220	Val	Asp	Asn	Lys
Lys 225	Lys	Lys	Glu	Lys	Lys 230	Glu	Lys	Lys	Glu	Lys 235	Val	Lys	Lys	Ala	Lys 240
Thr	Phe	Asn	Val	Phe 245	Glu	Ser	Glu	Pro	Asp 250	Phe	Glu	Ser	Pro	Tyr 255	Gly
Arg	Thr	Ile	Thr 260	Ile	Asn	Arg	Lys	Asp 265	Leu	Lys	Val	Leu	Lys 270	Gly	Ser
Met	Val	Gly 275	Val	Ser	Met	Val	Asn 280	Leu	Thr	Gln	Gly	Ser 285	Met	Met	Gly
Pro	His 290	Trp	Asn	Pro	Trp	Ala 295	Cys	Glu	Ile	Ser	Ile 300	Val	Leu	Lys	Gly
Ala 305	Gly	Met	Val	Arg	Val 310	Leu	Arg	Ser	Ser	Ile 315	Ser	Ser	Asn	Thr	Ser 320
Ser	Glu	Cys	Lys	Asn 325	Val	Arg	Phe	Lys	Val 330	Glu	Glu	Gly	Asp	Ile 335	Phe
Ala	Val	Pro	Arg 340	Leu	His	Pro	Met	Ala 345	Gln	Met	Ser	Phe	Asn 350	Asn	Asp
Ser	Leu	Val 355	Phe	Val	Gly	Phe	Thr 360	Thr	Ser	Ala	Lys	Asn 365	Asn	Glu	Pro
	370			Gly		375					380	•			
Val 385	Leu	Ala	Ala	Ser	Leu 390	Asn	Val	Ser	Ser	Val 395	Thr	Ile	Asp	Gly	Leu 400
Leu	Gly	Ala	Gln	Lys 405	Glu	Ala	Val	Ile	Leu 410	Glu	Суѕ	His	Ser	Cys 415	Ala
Glu	Gly	Glu	Ile 420	Glu	Lys	Leu	Lys	Val 425	Glu	Ile	Glu	Arg	Lys 430	Lys	Ile
Asp	Asp	Glu 435	Arg	Lys	Arg	Arg	His 440	Asp	Glu	Arg	Lys	Lys 445	Glu	Glu	Glu
Glu	Ala 450	Lys	Arg	Glu	Glu	Glu 455	Glu	Arg	Arg	Lys	Arg 460	Glu	Glu	Glu	Glu
465	_			Trp	470					475					480
Arg	Glu	Arg	Gln	Leu 485	Pro	Met	Glu	Lys	Glu 490	Trp	Glu	Met	Glu	Gly 495	Glu
Glu	Glu	Ser													

							•									
<210 <211 <212 <213	> 12 > DN	84 A	ıe ma	ıx												
	> CI > (1	.)(1281 d gl		.ine											
	> 95															
atg Met 1	gct Ala	tcc Ser	atc Ile	ctc Leu 5	cac His	tac Tyr	ttt Phe	tta Leu	gcc Ala 10	ctc Leu	tct Ser	ctt Leu	tct Ser	tgc Cys 15	tct Ser	48
ttt Phe	ctt Leu	ttc Phe	ttc Phe 20	tta Leu	tcc Ser	gac Asp	tca Ser	gtc Val 25	acc Thr	cct Pro	aca Thr	aaa Lys	cca Pro 30	ata Ile	aac Asn	96
ctt Leu	gtt Val	gtt Val 35	cta Leu	ccc Pro	gtt Val	caa Gln	aat Asn 40	gat Asp	ggţ Gly	tcc Ser	aca Thr	ggg Gly 45	ctc Leu	cat His	tcg Ser	144
gcc Ala	aac Asn 50	ctc Leu	caa Gln	aaa Lys	aga Arg	acc Thr 55	cct Pro	cta Leu	atg Met	caa Gln	gta Val 60	cca Pro	gtc Val	ctg Leu	gtg Val	192
gac Asp 65	ctc Leu	aat Asn	gga Gly	aat Asn	cac His 70	ttg Leu	tgg Trp	gtt Val	aac Asn	tgt Cys 75	gag Glu	cag Gln	cag Gln	tac Tyr	tca Ser 80	240
tcc Ser	aaa Lys	acg Thr	tac Tyr	caa Gln 85	gca Ala	ccc Pro	ttc Phe	tgc Cys	cac His 90	tcc Ser	acc Thr	caa Gln	tgc Cys	tct Ser 95	aga Arg	288
gcc Ala	aac Asn	acc Thr	cac His 100	caa Gln	tgc Cys	ctc Leu	agt Ser	tgc Cys 105	ccc Pro	gcg Ala	gca Ala	tca Ser	agg Arg 110	cca Pro	ggg Gly	336
tgc Cys	cac His	aaa Lys 115	aac Asn	acg Thr	tgt Cys	ggc	ctc Leu 120	atg Met	tcc Ser	act Thr	aat Asn	ccc Pro 125	atc Ile	acc Thr	caa Gln	384
caa Gln	acc Thr 130	ggt Gly	tta Leu	ggt Gly	gaa Glu	cta Leu 135	gga Gly	gaa Glu	gac Asp	gtt Val	ctt Leu 140	gca Ala	atc Ile	cac His	gcc Ala	432
aca Thr 145	caa Gln	ggg Gly	tcg Ser	acc Thr	caa Gln 150	caa Gln	ctt Leu	ggc	cca Pro	ttg Leu 155	gtc Val	aca Thr	gtc Val	cca Pro	caa Gln 160	480
ttc Phe	ctc Leu	ttt Phe	tct Ser	tgt Cys 165	gca Ala	cct Pro	tcc Ser	ttc Phe	ctt Leu 170	gtt Val	caa Gln	aag Lys	ggt Gly	ctt Leu 175	cct Pro	528
aga Arg	aac Asn	act Thr	caa Gln 180	ggt Gly	gtg Val	gct Ala	Gly	tta Leu 185	Gly	cat His	gca Ala	cca Pro	att Ile 190	tct Ser	ctt Leu	576
cca Pro	aac Asn	caa Gln 195	ctc Leu	gct Ala	tcc Ser	cac His	ttt Phe 200	Gly	cta Leu	caa Gln	cgc Arg	caa Gln 205	ttc Phe	acc Thr	act Thr	624
			cgc Arg									Ile				672

WO 03/078629

										99						
-	cct Pro			-	_						-				-	720
_	gcc Ala								_	_		_				768
_	gtc Val				_			_		_				_		816
	ata Ile					-		_			Gly					864
	acc Thr 290															912
	act Thr															960
	gtg Val															1008
	cct Pro															1056
	atc Ile															1104
	ttg Leu 370															1152
	ggg ggg										Val					1200
	tca Ser															1248
	tgt Cys									_	tga					1284
<211 <212)> 96 L> 42 2> PF 3> GJ	27 RT	ne ma	æx												
	> 96		~ 1 ~	T	73° -	m	DL -	T ~	- ר מ	T 0**	C	T	E	C**~	Sex.	
Met 1	Ala	ser	тте	Leu 5	nis	тўľ	Pne	ьeu	10	nen	ser	· eu	Ser	15	set.	
Phe	Leu	Phe	Phe 20	Leu	Ser	Asp	Ser	Val 25	Thr	Pro	Thr	Lys	Pro 30	Ile	Asn	
Leu	Val	Val 35	Leu	Pro	Val	Gln	Asn 40	Asp	Gly	Ser	Thr	Gly 45	Leu	His	Ser	

								•	1	.00					
Ala	Asn 50	Leu	Gln	Lys	Arg	Thr 55	Pro	Leu	Met	Gln	Val 60	Pro	Val	Leu	Val
Asp 65	Leu	Asn	Gly	Asn	His 70	Leu	Trp	Val	Asn	Cys 75	Glu	Gln	Gln	Tyr	Ser 80
Ser	Lys	Thr	Tyr	Gln 85	Ala	Pro	Phe	Cys	His 90	Ser	Thr	Gln	Cys	Ser 95	Arg
Ala	Asn	Thr	His 100	Gln	Cys	Leu	Ser	Cys 105	Pro	Ala	Ala	Ser	Arg 110	Pro	Gly
Cys	His	Lys 115	Asn	Thr	Cys	Gly	Leu 120	Met	Ser	Thr	Asn	Pro 125	Ile	Thr	Gln
Gln	Thr 130	Gly	Leu	Gly	Glu	Leu 135	Gly	Glu	Asp	Val	Leu 140	Ala	Ile	His	Ala
Thr 145	Gln	Gly	Ser	Thr	Gln 150	Gln	Leu	Gly	Pro	Leu 155	Val	Thr	Val	Pro	Gln 160
Phe	Leu	Phe	Ser	Cys 165	Ala	Pro	Ser	Phe	Leu 170	Val	Gln	Lys	Gly	Leu 175	Pro
Arg	Asn	Thr	Gln 180	Gly	Val	Ala	Gly	Leu 185	Ġly	His	Ala	Pro	Ile 190	Ser	Leu
Pro	Asn	Gln 195	Leu	Ala	Ser	His	Phe 200	Gly	Leu	Gln	Arg	Gln 205	Phe	Thr	Thr
_	210		-			215					Ile 220				
225					230					235	Asp				240
Leu	Ala	Phe	Thr	Pro 245	Leu	Thr	Ile	Thr	Leu 250	Gln	Gly	Glu	Tyr	Asn 255	Val
Arg	Val	Asn	Ser 260	Ile	Arg	Ile	Asn	Gln 265	His	Ser	Val	Phe	Pro 270	Leu	Asn
Lys	Ile	Ser 275	Ser	Thr	Ile	Val	Gly 280	Ser	Thr	Ser	Gly	Gly 285	Thr	Met	Ile
	290					295					300				Ala
Phe 305	Thr	Gln	Val	Phe	Ala 310	Gln	Gln	Leu	Pro	Lys 315	Gln	Ala	Gln	Val	Lys 320
Ser	Val	Ala	Pro	Phe 325	Gly	Leu	Сув	Phe	Asn 330	Ser	Asn	Lys	Ile	Asn 335	Ala
Tyr	Pro	Ser	Val 340	qaA	Leu	Val	Met	Asp 345	Lys	Pro	Asn	Gly	Pro 350	Val	Trp
Arg	Ile	Ser 355	Gly	Glu	Asp	Leu	Met 360	Val	Gln	Ala	Gln	Pro 365	Gly	Val	Thr
Cys	Leu 370	Gly	Val	Met	Asn	Gly 375	Gly	Met	Gln	Pro	Arg 380	Ala	Glu	Ile	Thr
Leu 385	Gly	Ala	Arg	Gln		Glu	Glu -	Asn	Leu	Val 395	Val	Phe	Asp	Leu	Ala 400
Arg	Ser	Arg	Val	Gly 405	Phe	Ser	Thr	Ser	Ser 410	Leu	His	Ser	His	Gly 415	Val
Lys	Cys	Ala	Asp 420	Leu	Phe	Asn	Phe	Ala 425	Asn	Ala					

<210: <211: <212: <213:	> 81 > DN	. 4 IA	ıys							
<220><221><222><222>	> CI > (1) (-		
<400>				 			 	 		
atg g Met A										48
aac g Asn V										96
tct o										144
agg o										192
act c Thr V 65										240
cta t Leu 7										288
cca a										336
caa d Gln (384
gct t Ala 1										432
agc o Ser I 145										480
caa g Gln V										528
cca t Pro I										576
caa (Gln (gcc Ala	624
ttc t Phe I										672

aat cct acc acc tta ttg cag cag ccc acc att ggt ggt gcc atc ttc 72 Asn Pro Thr Thr Leu Leu Gln Gln Pro Thr Ile Gly Gly Ala Ile Phe 225 230 235 240	
tagatttttt atgctttata ctgtaataat aaagttctca tactgatatg tgcaacttct 78	0
cagtaataaa agattagaga tctatatttt atta 81	4
<210> 98 <211> 240 <212> PRT <213> Zea mays	
<400> 98	
Met Ala Ala Lys Ile Phe Ala Leu Leu Ala Leu Leu Ala Leu Ser Ala 1 5 10 15	
Asn Val Ala Thr Ala Thr Ile Ile Pro Gln Cys Ser Gln Gln Tyr Leu 20 25 30	
Ser Pro Val Thr Ala Ala Arg Phe Glu Tyr Pro Thr Ile Gln Ser Tyr 35 40 45	
Arg Leu Gln Gln Ala Ile Ala Ala Ser Ile Leu Arg Ser Leu Ala Leu 50 55 60	
Thr Val Gln Gln Pro Tyr Ala Leu Leu Gln Gln Pro Ser Leu Val Asn 65 70 75 80	
Leu Tyr Leu Gln Arg Ile Val Ala Gln Gln Leu Gln Gln Gln Leu Leu .85 90 95	
Pro Thr Ile Asn Glu Val Val Ala Ala Asn Leu Asp Ala Týr Leu Gln 100 105 110	
Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Gly Val Asn Pro Ala 115 120 125	
Ala Tyr Leu Gln Ala Gln Gln Leu Leu Pro Phe Asn Gln Leu Val Arg 130 135 140	
Ser Pro Ala Ala Phe Leu Leu Gln Gln Gln Leu Leu Pro Phe His Leu 145 150 155 160	
Gln Val Val Ala Asn Ile Ala Ala Phe Leu Gln Gln Gln Leu Leu 165 170 175	
Pro Phe Tyr Pro Gln Val Val Gly Asn Ile Asn Ala Phe Leu Gln Gln 180 185 190	
Gln Gln Leu Leu Pro Phe Tyr Pro Gln Asp Val Ala Asn Asn Val Ala 195 200 205	
Phe Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala Leu Thr 210 215 220	
Asn Pro Thr Thr Leu Leu Gln Gln Pro Thr Ile Gly Gly Ala Ile Phe 225 230 235 240	
<210> 99	

```
<210> 99
```

WO 03/078629

<211> 705

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)..(702)

<223> 19 kd zein B1

WO 03/07862

•••	0070								4	0.3				10.	I, LI US,	02733
		·							. ا	.03						
<400															~~~	48
Met 1	Ala	Ala	Lys	Ile 5	Phe	Cys	Leu	Leu	Met 10	Leu	ctt Leu	Gly	Leu	Ser 15	Ala	40
agt Ser	gct Ala	gct Ala	acg Thr 20	gcg Ala	acc Thr	att Ile	ttc Phe	cca Pro 25	caa Gln	tgc Cys	tca Ser	caa Gln	gct Ala ·30	cct Pro	ata Ile	96
gct Ala	tcc Ser	ctt Leu 35	ctt Leu	ccc Pro	ccg Pro	tac Tyr	ctc Leu 40	tca Ser	cca Pro	gcg Ala	gtg Val	tct Ser 45	tcg Ser	gta Val	tgt Cys	144
gaa .Glu	aac Asn 50	cca Pro	att Ile	ctt Leu	caa Gln	ccc Pro 55	tat Tyr	agg Arg	atc Ile	caa Gln	cag Gln 60	gca Ala	atc Ile	gca Ala	gct Ala	192
ggc Gly 65	atc Ile	tta Leu	cct Pro	tta Leu	tca Ser 70	ccc Pro	ttg Leu	ttc Phe	ctc Leu	caa Gln 75	caa Gln	tca Ser	tca Ser	gcc Ala	cta Leu 80	240
tta Leu	cag Gln	cag Gln	tta Leu	cct Pro 85	ttg Leu	gtg Val	cat His	tta Leu	ttg Leu 90	gca Ala	caa Gln	aac Asn	atc Ile	agg Arg 95	gca Ala	288
caa Gln	caa Gln	cta Leu	caa Gln 100	caa Gln	ctt Leu	gtg Val	cta Leu	gca Ala 105	aac Asn	ctt Leu	gct Ala	gcc Ala	tac Tyr 110	tct Ser	cag Gln	336
Gln	Gln	Gln 115	Phe	Leu	Pro	Phe	Asn 120	Gln	Leu	Ala	gca Ala	Leu 125	Asn	Ser	Ala	384
Ser	Tyr 130	Leu	Gln	Gln	Gln	Gln 135	Leu	Pro	Phe	Ser	cag Gln 140	Leu	Ser	Ala	Ala	432
Tyr 145	Pro	Gln	Gln	Phe	Leu 150	Pro	Phe	Asn	Gln	Leu 155	aca Thr	Ala	Leu	Asn	Ser 160	480
Pro	Ala	Tyr	Leu	Gln 165	Gln	Gln	Gln	Leu	Leu 170	Pro	ttc Phe	Ser	Gln	Leu 175	Ala	528
Gly	Val	Ser	Pro 180	Ala	Thr	Phe	Leu	Thr 185	Gln	Pro	caa Gln	Leu	190	Pro	Phe	576
Tyr	Gln	His 195	Ala	Ala	Pro	Asn	Ala 200	Gly	Thr	Leu	Leu	Gln 205	Leu	Gln	caa Gln	624
ttg Leu	ctg Leu 210	cca Pro	ttc Phe	aac Asn	caa Gln	ctt Leu 215	Ala	ttg Leu	aca Thr	aac Asn	cca Pro 220	Thr	gca Ala	ttc Phe	tac Tyr	672
				att Ile		Gly					ŗ					705
<21 <21 <21	0> 1 1> 2 2> P 3> Z	34 RT ea m	ays	-												
<40 Met 1		00 Ala	Lys	: Ile		cys	Lev	ı Lev	Met		ı Lev	Gly	/ Lev	Ser 15	Ala	

			_						1	.04						
Ser	Ala	Ala	Thr 20	Ala	Thr	Ile	Phe	Pro 25	Gln	Cys	Ser	Gln	Ala 30	Pro	Ile	
Ala	Ser	Leu 35	Leu	Pro	Pro	Tyr	Leu 40	Ser	Pro	Ala	Val	Ser 45	Ser	Val	Cys	
Glu	Asn 50	Pro	Ile	Leu	Gln	Pro 55	Tyr	Arg	Ile	Gln	Gln 60	Ala	Ile	Ala	Ala	
Gly 65	Ile	Leu	Pro	Leu	Ser 70	Pro	Leu	Phe	Leu	Gln 75	Gln	Ser	Ser	Ala	Leu 80	
Leu	Gln	Gln	Leu	Pro 85	Leu	Val	His	Leu	Leu 90	Ala	Gln	Asn	Ile	Arg 95	Ala	
Gln	Gln	Leu	Gln 100	Gln	Leu	Val	Leu	Ala 105	Asn	Leu	Ala	Ala	Tyr 110	Ser	Gln	
Gln	Gln	Gln 115	Phe	Leu	Pro	Phe	Asn 120	Gln	Leu	Ala	Ala	Leu 125	Asn	Ser	Ala	
	Tyr 130	Leu	Gln	Gln	Gln	Gln 135	Leu	Pro	Phé	Ser	Gln 140	Leu	Ser	Ala	Ala	
Tyr 145	Pro	Gln	Gln	Phe	Leu 150	Pro	Phe	Asn	Gln	Leu 155	Thr	Ala	Leu	Asn	Ser 160	
Pro	Ala	Tyr	Leu	Gln 165	Gln	Gln	Gln	Leu	Leu 170	Pro	Phe	Ser	Gln	Leu 175	Ala	
Gly	Val	Ser	Pro 180	Ala	Thr	Phe		Thr 185	Gln	Pro	Gln	Leu	Leu 190	Pro	Phe	
Tyr	Gln	His 195	Ala	Ala	Pro	Asn	Ala 200	Gly	Thr	Leu	Leu	Gln 205	Leu		Gln	
Leu	Leu 210	Pro	Phe	Asn	Gln	Leu 215	Ala	Leu	Thr	Asn	Pro 220	Thr	Ala	Phe	Tyr	
Gln 225	Gln	Pro	Ile	Ile	Gly 230	Gly	Ala	Leu	Phe							
<213 <213	0> 10 L> 80 2> DN 3> Ze) 4 JA	ays													
<222)> L> CI 2> (1 3> 19	_)														
atg)> 1(gca Ala	gcc														48
	gct Ala															96
	tcc Ser															144
	aat Asn 50										_			_	_	192

									1	.05		_				
_	atc Ile													_		240
	cag Gln	-													_	288
	caa Gln															336
	cag Gln															384
	caa Gln 130							-			_	_			_	432
	caa Gln															480
_	tat Tyr	_	_													528
	tac Tyr															576
	cat His															624
_	gct Ala 210		_		-	_				-			-		-	672
	tac Tyr															720
	ttg Leu															768
	caa Gln							-			tag					804
<211 <212)> 10 .> 26 !> PF !> Ze	7 LT	ıys				•									
)> 10 Ala		Lys	Ile	Phe	Cys	Leu	Ile	Met	Leu	Leu	Gly	Leu	Ser	Ala	
1	-			5		_			10				_	15		
Ser	Ala	Ala	Thr 20	Ala	Ser	Ile	Phe	Pro 25	Gln	Cys	Ser	Gln	Ala 30	Pro	Ile	
Ala	Ser	Leu 35	Leu	Pro	Pro	Tyr	Leu 40	Ser	Pro	Ala	Met	Ser 45	Ser	Val	Cys	

WO 03/078629 PCT/EP03/02735

									1	106					
Glu	Asn 50	Pro	Ile	Leu	Leu	Pro 55	Tyr	Arg	Ile	Gln	Gln 60	Ala	Ile	Ala	Ala
Gly 65	Ile	Leu	Pro	Leu	Ser 70	Pro	Leu	Phe	Leu	Gln 75	Gln	Ser	Ser	Ala	Leu 80
Leu	Gln	Gln	Leu	Pro 85	Leu	Val	His	Leu	Leu 90	Ala	Gln	Asn	Ile	Arg 95	Ala
Gln	Gln	Leu	Gln 100	Gln	Leu	Val	Leu	Ala 105	Asn	Leu	Ala	Ala	Tyr 110	Ser	Gln
Gln	Gln	Gln 115	Leu	Pro	Leu	Val	His 120	Leu	Leu	Ala	Gln	Asn 125	Ile	Arg	Ala
Gln	Gln 130	Leu	Gln	Gln	Leu	Val 135	Leu	Ala	Asn	Leu	Ala 140	Ala	Tyr	Ser	Gln
Gln 145	Gln	Gln	Phe	Leu	Pro 150	Phe	Asn	Gln	Leu	Ala 155	Ala	Leu	Asn	Ser	Ala 160
Ala	Tyr	Leu	Gln	Gln 165	Gln	Gln	Leu	Leu	Pro 170	Phe	Ser	Gln	Leu	Ala 175	Ala
Ala	Tyr	Pro	Arg 180	Gln	Phe	Leu	Pro	Phe 185	Asn	Gln	Leu	Ala	Ala 190	Leu	Asn
Ser	His	Ala 195	Tyr	Val	Gln	Gln	Gln 200	Gln	Leu	Leu	Pro	Phe 205	Ser	Gln	Leu
Ala	Ala 210	Val	Ser	Pro	Ala	Ala 215	Phe	Leu	Thr	Gln	Gln 220	His	Leu	Leu	Pro
Phe 225	Tyr	Leu	His	Thr	Ala 230	Pro	Asn	Val	Gly	Thr 235	Leu	Leu	Gln	Leu	Gln 240
Gln	Leu	Leu	Pro	Phe 245	Asp	Gln	Leu	Ala	Leu 250	Thr	Asn	Pro	Ala	Val 255	Phe
Tyr	Gln	Gln	Pro 260	Ile	Ile	Gly	Gly	Ala 265	Leu	Phe					
<210)> 10	13													
	.> 80														
	> DN			•											
<213	> 7.6	a ma	vs												

<213> Zea mays <220> <221> CDS <222> (1)..(798) <223> 22kd alpha-zein

atg gct acc aag ata tta gcc ctc ctt gcg ctc ctt tcc ctt tca gtg Met Ala Thr Lys Ile Leu Ala Leu Leu Ala Leu Leu Ser Leu Ser Val

age gea aca act gea tte att att eca caa tge tea ett get eet aat 96 Ser Ala Thr Thr Ala Phe Ile Ile Pro Gln Cys Ser Leu Ala Pro Asn

gcc att att cca cag ttc ctc cca tca gtt aca tca atg ggc atc gaa 144 Ala Ile Ile Pro Gln Phe Leu Pro Ser Val Thr Ser Met Gly Ile Glu 35

cac cct att gtg caa gcc tat agg cta caa caa gcg ctt gcg gcg agc 192 His Pro Ile Val Gln Ala Tyr Arg Leu Gln Gln Ala Leu Ala Ala Ser 50 55 60

									1	.07						
gtc Val 65	tta Leu	caa Gln	caa Gln	ccg Pro	ttt Phe 70	gcc Ala	caa Gln	tta Leu	caa Gln	caa Gln 75	caa Gln	tcc Ser	ttg Leu	gca Ala	cat His 80	240
											caa Gln					288
											tcc Ser					336
											aac Asn					384
											gct Ala 140					432
											caa Gln					480
tct Ser	agc Ser	cca Pro	ctc Leu	gct Ala 165	gtg Val	ggc Gly	aat Asn	gcg Ala	gct Ala 170	aca Thr	tac Tyr	ctg Leu	caa Gln	cag Gln 175	cag Gln	528
ctg Leu	cta Leu	caa Gln	cag Gln 180	atc Ile	gta Val	ccg Pro	gct Ala	ctt Leu 185	agt Ser	cag Gln	cta Leu	gtt Val	gtg Val 190	gcg Ala	aac Asn	576
											aac Asn					624
											caa Gln 220					672
											ctg Leu					720
											ctt Leu					768
			atc Ile 260							tag						801
<21:	0> 10 1> 20 2> Pl 3> Ze	56 RT	ays													
	0> 10 Ala		Lys	Ile 5	Leu	Ala	Leu	Leu	Ala 10		Leu	Ser	Leu	Ser 15	Val	
Ser	Ala	Thr	Thr 20	Ala	Phe	Ile	Ile	Pro 25	Gln	Cys	Ser	Leu	Ala 30	Pro	Asn	
Ala	Ile	Ile 35	Pro	Gln	Phe	Leu	Pro 40		Val	Thr	Ser	Met 45	Gly	Ile	Glu	

His Pr 5	o Ile O	Val	Gln	Ala	Tyr 55	Arg	Leu	Gln	Gln	Ala 60	Leu ·	Ala	Ala	Ser	
Val Le 65	u Gln	Gln	Pro	Phe 70	Ala	Gln	Leu	Gln	Gln 75	Gln	Ser	Leu	Ala	His 80	
Leu Th	r Ile	Gln	Thr 85	Ile	Ala	Thr	Gln	Leu 90	Glu	Gln	Gln	Phe	Val 95	Pro	
Ala Le	u Ser	Gln 100	Leu	Ala	Ala	Val	Asn 105	Pro	Val	Ser	Tyr	Leu 110	Gln	Gln	
Gln Me	t Leu 115		Ser	Asn	Pro	Leu 120	Ala	Leu	Ala	Asn	Thr 125	Ala	Ala	Tyr	
Gln Gl 13		Leu	Gln	Leu	Gln 135	Gln	Phe	Leu	Pro	Ala 140	Leu	Ser	Gln	Leu	
Ala Ar 145	g Val	Asn	Pro	Ala 150	Thr	Tyr	Leu	Gln	Gln 155	Gln	Gln	Leu	Leu	Ser 160	
Ser Se	r Pro	Leu	Ala 165	Val ·	Gly	Asn	Ala	Ala 170	Thr	Tyr	Leu	Gln	Gln 175	Gln	
Leu Le	u Gln	Gln 180	Ile	Val	Pro	Ala	Leų 185	Ser	Gln	Leu	Val	Val 190	Ala	Asn	
Pro Th	r Ala 195		Leu	Gln	Gln	Leu 200	Leu	Pro	Phe	Asn	Gln 205	Leu	Asp	Val.	
Ala As 21		Ala	Ala	Tyr	Leu 215	Gln	Gln	Arg	Gln	Gln 220	Leu	Leu	Asn	Pro	
Leu Al 225	a Ala	Ala	Asn	Pro 230	Leu	Val	Ala	Ala	Phe 235	Leu	Gln	Gln	Gln	Gln 240	
Phe Le	u Pro	Tyr	Asn 245	Gln	Ile	Ser	Leu	Met 250	Asn	Leu	Ala	Leu	Ser 255	Arg	
Gln Gl	n Pro	Ile 260	Val	Gly	Gly	Ala	Ile 265	Phe							
<210><211><211><212><213>	471 DNA	sat:	iva												
<220> <221> <222> <223>	(1)	•)								,				
<400> atg aa		att	ttc	σta	ttt	act	ctc	ctt	act	att	att	σca	tac	aac	48
Met Ly															
gct tc Ala Se															96
cta ca Leu Gl	_	His													144
gag tt Glu Ph 5	e Val														192

cca					•				_	.09						
	gct Ala															240
	caa Gln															288
	agc Ser															336
	gtc Val															384
	aac Asn 130	_													_	432
	agg Arg											tga				471
<21:	0> 10 1> 1! 2> PI 3> O:	56 RT	sati	iva												
	0> 10							_	_					_	_	
Met 1	Lys	TTE	тте		Val	Pne	Ala	ьeu	ren	Ата	He	vaı	Ala	Cys	Asn	
				5					10					15		
Ala	Ser	Ala	Arg 20	_	Asp	Ala	Leu	Ser 25		Ser	Tyr	Arg	Gln 30			
	Ser Gln		20	Phe				25	Gln				30	Tyr	Gln	
Leu		Ser 35	20 His	Phe Leu	Leu	Leu	Gln 40	25 Gln	Gln Gln	Val	Leu	Ser 45	30 Pro	Tyr Cys	Gln Ser	
Leu Glu	Gln Phe	Ser 35 Val	20 His Arg	Phe Leu Gln	Leu Gln	Leu His 55	Gln 40 Ser	25 Gln Ile	Gln Gln Val	Val Ala	Leu Thr 60	Ser 45 Pro	30 Pro Phe	Tyr Cys Trp	Gln Ser	
Leu Glu Pro 65	Gln Phe 50	Ser 35 Val Thr	20 His Arg Phe Leu	Phe Leu Gln	Leu Gln Leu 70 Leu	Leu His 55 Ile	Gln 40 Ser Asn	25 Gln Ile Asn	Gln Gln Val Gln	Val Ala Val 75 Ser	Leu Thr 60 Met	Ser 45 Pro	30 Pro Phe Gln	Tyr Cys Trp Gln	Gln Ser Gln Cys 80	
Leu Glu Pro 65 Cys	Gln Phe 50 Ala	Ser 35 Val Thr	20 His Arg Phe Leu	Phe Leu Gln Gln Arg 85	Leu Gln Leu 70 Leu	Leu His 55 Ile Val	Gln 40 Ser Asn Ala	25 Gln Ile Asn Gln	Gln Gln Val Gln Gln 90	Val Ala Val 75 Ser	Leu Thr 60 Met	Ser 45 Pro Gln Tyr	30 Pro Phe Gln Gln	Tyr Cys Trp Gln Ala 95	Gln Ser Gln Cys 80 Ile	
Leu Glu Pro 65 Cys Ser	Gln Phe 50 Ala Gln	Ser 35 Val Thr Gln Val	20 His Arg Phe Leu Gln 100	Phe Leu Gln Gln Arg 85 Ala	Leu Gln Leu 70 Leu Ile	Leu His 55 Ile Val	Gln 40 Ser Asn Ala	25 Gln Ile Asn Gln Gln 105	Gln Gln Val Gln Gln 90 Leu	Val Ala Val 75 Ser Gln	Leu Thr 60 Met His	Ser 45 Pro Gln Tyr	30 Pro Phe Gln Gln 110	Tyr Cys Trp Gln Ala 95 Val	Gln Ser Gln Cys 80 Ile Gly	
Leu Glu Pro 65 Cys Ser Val	Gln Phe 50 Ala Gln Ser	Ser 35 Val Thr Gln Val Tyr 115	20 His Arg Phe Leu Gln 100 Phe	Phe Leu Gln Gln Arg 85 Ala Asp	Leu Gln 70 Leu Ile Gln	Leu His 55 Ile Val Val Thr	Gln 40 Ser Asn Ala Gln Gln 120	25 Gln Ile Asn Gln Gln 105 Ala	Gln Val Gln Gln 90 Leu Gln	Val Ala Val 75 Ser Gln Ala	Leu Thr 60 Met His Leu Gln	Ser 45 Pro Gln Tyr Gln Ala 125	30 Pro Phe Gln Gln 110 Leu	Tyr Cys Trp Gln Ala 95 Val Leu	Gln Ser Gln Cys 80 Ile Gly Ala	
Leu Glu Pro 65 Cys Ser Val Leu	Gln Phe 50 Ala Gln Ser Val Asn	Ser 35 Val Thr Gln Val Tyr 115 Leu	20 His Arg Phe Leu Gln 100 Phe Pro	Phe Leu Gln Gln Arg 85 Ala Asp	Leu Gln Teu 70 Leu Ile Gln Ile	Leu His 55 Ile Val Val Thr Cys 135	Gln 40 Ser Asn Ala Gln Gln 120 Gly	25 Gln Ile Asn Gln 105 Ala Ile	Gln Val Gln Gln 90 Leu Gln Tyr	Val Ala Val 75 Ser Gln Ala Pro	Leu Thr 60 Met His Leu Gln Asn 140	Ser 45 Pro Gln Tyr Gln Ala 125	30 Pro Phe Gln Gln 110 Leu	Tyr Cys Trp Gln Ala 95 Val Leu	Gln Ser Gln Cys 80 Ile Gly Ala	

<210> 107

<211> 645

<212> DNA

<213> Avena sativa

<220>

<221> CDS

PCT/EP03/02735

<222> (1)..(642) <223> avenin <400> 107 atg aag atc ttc ttc ttc tta gct ctc ctt gct ctg gta gtg agc gcc 48 Met Lys Ile Phe Phe Phe Leu Ala Leu Leu Ala Leu Val Val Ser Ala acc ttt gca caa tat gca gaa tct gac ggt agt tat gag gaa gtg gag 96 Thr Phe Ala Gln Tyr Ala Glu Ser Asp Gly Ser Tyr Glu Glu Val Glu 25 ggt tct cat gat cga tgc caa caa cat cag atg aag ctg gac tct tgc 144 Gly Ser His Asp Arg Cys Gln Gln His Gln Met Lys Leu Asp Ser Cys 40 aga gag tac gtg gcg gag cgg tgc aca acg atg aga gat ttt ccg atc 192 Arg Glu Tyr Val Ala Glu Arg Cys Thr Thr Met Arg Asp Phe Pro Ile 50 acc tgg cca tgg aaa tgg tgg aag ggt tgc gag gag ctc cgc aat 240 Thr Trp Pro Trp Lys Trp Trp Lys Gly Gly Cys Glu Glu Leu Arg Asn 65 288 gag tgc tgc caa ctg ttg ggc cag atg cca tcg gag tgt cgc tgt gat Glu Cys Cys Gln Leu Leu Gly Gln Met Pro Ser Glu Cys Arg Cys Asp 85 gcg att tgg aga tca atc cag cgc gag ctt ggt ggc ttc ttt gga act 336 Ala Ile Trp Arg Ser Ile Gln Arg Glu Leu Gly Gly Phe Phe Gly Thr 105 100 caa caa ggt ctg ata ggg aaa agg ttg aag ata gcc aag agt ttg ccc 384 Gln Gln Gly Leu Ile Gly Lys Arg Leu Lys Ile Ala Lys Ser Leu Pro 120 acg cag tca aca tgg gcc ctg agt gca ata tcc cca aac tcc atg gtt 432 Thr Gln Ser Thr Trp Ala Leu Ser Ala Ile Ser Pro Asn Ser Met Val 135 130 age cae att get gga aag age tee att ett egt gee ttg eee gtg gat 480 Ser His Ile Ala Gly Lys Ser Ser Ile Leu Arg Ala Leu Pro Val Asp 155 150 gtc ctc gcc aat gca tac cgc att tcc agg caa gaa gcc cga aac ctc 528 Val Leu Ala Asn Ala Tyr Arg Ile Ser Arg Gln Glu Ala Arg Asn Leu 170 165 aaa aac aac agg gga caa gag tct ggt gta ttc act cca aaa ttt acc 576 Lys Asn Asn Arg Gly Gln Glu Ser Gly Val Phe Thr Pro Lys Phe Thr 185 180 caa acg agc ttc caa cct tat cca gag ggc gag gat gag tca tct ttg 624 Gln Thr Ser Phe Gln Pro Tyr Pro Glu Gly Glu Asp Glu Ser Ser Leu 205 195 645 att aat aag gca tca gag taa Ile Asn Lys Ala Ser Glu 210 <210> 108 <211> 214 <212> PRT <213> Avena sativa <400> 108 Met Lys Ile Phe Phe Phe Leu Ala Leu Leu Ala Leu Val Val Ser Ala 5

WO 03/078629

111 Thr Phe Ala Gln Tyr Ala Glu Ser Asp Gly Ser Tyr Glu Glu Val Glu Gly Ser His Asp Arg Cys Gln Gln His Gln Met Lys Leu Asp Ser Cys 40 Arg Glu Tyr Val Ala Glu Arg Cys Thr Thr Met Arg Asp Phe Pro Ile Thr Trp Pro Trp Lys Trp Trp Lys Gly Gly Cys Glu Glu Leu Arg Asn Glu Cys Cys Gln Leu Leu Gly Gln Met Pro Ser Glu Cys Arg Cys Asp 90 Ala Ile Trp Arg Ser Ile Gln Arg Glu Leu Gly Gly Phe Phe Gly Thr 105 Gln Gln Gly Leu Ile Gly Lys Arg Leu Lys Ile Ala Lys Ser Leu Pro 120 Thr Gln Ser Thr Trp Ala Leu Ser Ala Ile Ser Pro Asn Ser Met Val 135 Ser His Ile Ala Gly Lys Ser Ser Ile Leu Arg Ala Leu Pro Val Asp 155 150 145 Val Leu Ala Asn Ala Tyr Arg Ile Ser Arg Gln Glu Ala Arg Asn Leu 170 165 Lys Asn Asn Arg Gly Gln Glu Ser Gly Val Phe Thr Pro Lys Phe Thr 185 Gln Thr Ser Phe Gln Pro Tyr Pro Glu Gly Glu Asp Glu Ser Ser Leu 200 205 195 Ile Asn Lys Ala Ser Glu 210 <210> 109 <211> 1044 <212> DNA <213> Hordeum vulgare <220> <221> CDS <222> (1)..(1041) <223> c-hordein <220> <221> misc_feature <222> (481)..(482) <223> /transl_except=(pos:481..483,aa:OTHER) atg aag acg ttc ctc acc ttt gtc ctc ctt gcc atg gcg atg agc atc Met Lys Thr Phe Leu Thr Phe Val Leu Leu Ala Met Ala Met Ser Ile 10 gtc act acc gct agg cag cta aac cct agc cac caa gag ttg caa tca Val Thr Thr Ala Arg Gln Leu Asn Pro Ser His Gln Glu Leu Gln Ser 20 25 cca caa caa cca ttt ctg aaa caa caa tca tat ctg caa caa cca tat Pro Gln Gln Pro Phe Leu Lys Gln Gln Ser Tyr Leu Gln Gln Pro Tyr 35

112 cca caa caa cca tat cta ccg cag caa cca ttc ccc aca ccc caa caa 192 Pro Gln Gln Pro Tyr Leu Pro Gln Gln Pro Phe Pro Thr Pro Gln Gln 55 ttt ttc ccc tat cta cca cag caa aca ttt ccc cca tcc caa caa cca 240 Phe Phe Pro Tyr Leu Pro Gln Gln Thr Phe Pro Pro Ser Gln Gln Pro 75 70 65 aac ccc cta caa cca caa cca ttc ccc ctg caa ccc caa cca cca 288 Asn Pro Leu Gln Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Pro Pro 90 caa caa cct ttt cct cag ccc caa caa cca aat ccc cag caa cca caa 336 Gln Gln Pro Phe Pro Gln Pro Gln Pro Asn Pro Gln Gln Pro Gln 100 105 caa cct ttc ccc cgg caa cca caa caa ata gta ccc cag caa cca caa 384 Gln Pro Phe Pro Arg Gln Pro Gln Gln Ile Val Pro Gln Gln Pro Gln 120 caa cca ttc cct cag caa cca caa cct ttt cct cag ccc caa caa 432 Gln Pro Phe Pro Gln Gln Pro Gln Pro Phe Pro Gln Pro Gln Gln 135 130 cca ttc tct tgg caa cca caa caa cca ttt ctc cag ccc cta caa cta 480 Pro Phe Ser Trp Gln Pro Gln Gln Pro Phe Leu Gln Pro Leu Gln Leu 155 150 145 tag ccc ctg caa gca caa caa cca ttc ccc ttg caa cct caa cta cca 528 Pro Leu Gln Ala Gln Gln Pro Phe Pro Leu Gln Pro Gln Leu Pro 170 ttt ccg caa ccc caa caa cca att gga cag caa cca aaa caa cca ctc 576 Phe Pro Gln Pro Gln Gln Pro Ile Gly Gln Gln Pro Lys Gln Pro Leu 185 ctg cag caa cca caa caa aca att ccc cag caa cca caa caa cca ttc 624 Leu Gln Gln Pro Gln Gln Thr Ile Pro Gln Gln Pro Gln Gln Pro Phe 200 672 Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Leu 215 ccc caa caa ccc caa caa ata att tcc cag caa ccc caa caa cca ttc .720 Pro Gln Gln Pro Gln Gln Ile Ile Ser Gln Gln Pro Gln Gln Pro Phe 240 235 230 225 cet eta caa ect caa caa eca tte ece caa ece caa eca tte ece cag 768 Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Pro Phe Pro Gln 250 245 gag caa ccc caa caa gca ttc ccc cta caa ccg caa caa cca ttc ccc 816 Glu Gln Pro Gln Gln Ala Phe Pro Leu Gln Pro Gln Gln Pro Phe Pro 265 gag gaa tca gaa caa ata att acc caa caa cca ttc cct cta caa cca 864 Glu Glu Ser Glu Gln Ile Ile Thr Gln Gln Pro Phe Pro Leu Gln Pro 280 caa caa ctg ttc ccc cag caa cca caa caa cca ctt ccc cag ccc caa 912 Gln Gln Leu Phe Pro Gln Gln Pro Gln Pro Leu Pro Gln Pro Gln 300 295 290

caa cca ttc cgc caa cta cca aaa tat ata att ccc cag caa cct caa

Gln Pro Phe Arg Gln Leu Pro Lys Tyr Ile Ile Pro Gln Gln Pro Gln

315

310

				•					1	.13						
caa Gln	cca Pro	ttc Phe	ctt Leu	ctg Leu 325	caa Gln	cca Pro	cac His	caa Gln	cct Pro 330	cag Gln	caa Gln	cct Pro	tat Tyr	gca Ala 335	caa Gln	1008
caa Gln	gac Asp	atc Ile	tgg Trp 340	agt Ser	gat Asp	ata Ile	gcc Ala	ctc Leu 345	ttg Leu	ggc Gly	taa					1044
)> 11 L> 16															
<212	?> PF !> Ho	T	ım vi	ılgaı	ce											
<400)> 11	0														
			Phe	Leu 5	Thr	Phe	Val	Leu	Leu 10	Ala	Met	Ala	Met	Ser 15	Ile	
	Thr	Thr	Ala 20	Arg	Gln	Leu	Asn	Pro 25	Ser	His	Gln	Glu	Leu 30	Gln	Ser	
Pro	Gln	Gln 35	Pro	Phe	Leu	Lys	Gln 40	Gln	Ser	Tyr	Leu	Gln 45	Gln	Pro	Tyr	
	50					5.5					60		Pro			
65					70					75	• •		Gln		80	
				85					90				Gln	95		
			100					105					Gln 110			
		115					120					125	Gln			
	130					135					140		Pro			
Pro 145	Phe	Ser	Trp	Gln	Pro 150	Gln	Gln	Pro	Phe	Leu 155	Gln	Pro	Leu	Gln	Leu 160	
<210)> 11	L1		•												
	L> 18															
	2> PF 3> Ho		um v	ulga	re											
)> 13												_	_		
· 1				5					10			•		15		
			20					25	•				Pro 30			
		35					40					45	Pro			
	50					55					60		Pro			
65					70					75			Pro		80	
				85					90				Pro	. 95		
			100					105					Phe 110			
		115					120					125				
	130					135					140		Pro			
Pro . 145	Phe	Arg	Gln	Leu	150		туr	тте	. TTE	155		r GTD	Pro	GIU	160	

Pro Phe Leu Leu Gln Pro His Gln Pro Gln Gln Pro Tyr Ala Gln Gln
165 170 175

Asp Ile Trp Ser Asp Ile Ala Leu Leu Gly
180 185

<210> 112 <211> 924 <212> DNA <213> Triticum aestivum	
<220> <221> CDS <222> (1)(921) <223> glutenin-1D1	
<400> 112	
atg aag acc ttc ctc gtc ttt gcc ctc ctc gcc gtt gcg gcg	48
gca att gcg cag atg gag act aga tgc atc cct ggt ttg gag aga cca Ala Ile Ala Gln Met Glu Thr Arg Cys Ile Pro Gly Leu Glu Arg Pro 20 25 30	96
tgg cag cag caa cca tta cca cca caa cag aca ttt cca caa caa cca Trp Gln Gln Pro Leu Pro Pro Gln Gln Thr Phe Pro Gln Gln Pro 35 40 45	144
cta ttt tca caa caa caa caa caa cta ttt cct caa caa	192
ttt tcg cag caa caa cca cca ttt tgg cag caa caa cca cca ttt tct Phe Ser Gln Gln Gln Pro Pro Phe Trp Gln Gln Gln Pro Pro Phe Ser 65 70 75 80	240
cag caa caa cca att cta cca cag caa cca cca ttt tcg cag caa caa Gln Gln Gln Pro Ile Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln 85 90 95	288
caa cta gtt cta ccg caa caa cca cca ttt tca cag caa caa cca Gln Leu Val Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro 100 105 110	336
gtt tta cct cca caa caa tca cct ttt cca caa ca	384
caa cag ctg gtg caa caa caa atc cct gtt gtt cag cca tcc att ttg Gln Gln Leu Val Gln Gln Gln Ile Pro Val Val Gln Pro Ser Ile Leu 130 135 140	432
cag cag cta aac cca tgc aag gta ttc ctc cag cag cag tgc agc cct Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Gln Cys Ser Pro 145 150 155 160	480
gtg gca atg cca caa cgt ctt gct agg tcg caa atg ttg cag cag agc Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Leu Gln Gln Ser 165 170 175	528
agt tgc cat gtg atg caa caa caa tgt tgc cag cag ttg ccg caa atc Ser Cys His Val Met Gln Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile 180 185 190	576
ccc cag caa tcc cgc tat gag gca atc cgt gct atc atc tac tcc atc Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile 195 200 205	624

									_	10						
atc Ile	ctg Leu 210	caa Gln	gaa Glu	caa Gln	Gln	cag Gln 215	gtt Val	cag Gln	ggt Gly	tcc Ser	atc Ile 220	caa Gln	tct Ser	cag Gln	cag Gln	672
cag Gln 225	caa Gln	ccc Pro	caa Gln	cag Gln	ttg Leu 230	ggc Gly	caa Gln	tgt Cys	gtt Vạl	tcc Ser 235	caa Gln	ccc Pro	caa Gln	cag Gln	cag Gln 240	720
tcg Ser	cag Gln	cag Gln	caa Gln	ctc Leu 245	Gly ggg	caa Gln	caa Gln	cct Pro	caa Gln 250	caa Gln	caa Gln	caa Gln	ttg Leu	gca Ala 255	cag Gln	768
ggt Gly	acc Thr	ttt Phe	ttg Leu 260	cag Gln	cca Pro	cac His	${\tt Gln}$	ata Ile 265	gct Ala	cag Gln	ctt Leu	gag Glu	gtg Val 270	atg Met	act Thr	816
tcc Ser	att Ile	gcg Ala 275	ctc Leu	cgt Arg	atc Ile	ctg Leu	cca Pro 280	acg Thr	atg Met	tgc Cys	agt Ser	gtt Val 285	aat Asn	gtg Val	ccg Pro	864
ttg Leu	tac Tyr 290	aga Arg	acc Thr	acc Thr	act Thr	agt Ser 295	gtg Val	cca Pro	ttc Phe	ggc Gly	gtt Val 300	ggc Gly	acc Thr	gga Gly	gtt Val	912
	gcc Ala		tga													924
<211 <212)> 11 L> 3(2> PF 3> Tr)7 RT	cum a	aesti	ivum											
<400 Met)> 13 Lys	13 Thr	Phe	Leu 5	Val	Phe	Ala	Leu	Leu 10	Ala	Val	Ala	Ala	Thr 15	Ser	
Met 1	Lys	Thr							10					15		
Met 1 Ala	Lys Ile	Thr Ala	Gln 20	5	Glu	Thr	Arg	Cys 25	10 Ile	Pro	Gly	Leu	Glu 30	15 Arg	Pro	
Met 1 Ala Trp Leu	Ile Gln Phe 50	Thr Ala Gln 35 Ser	Gln 20 Gln Gln	5 Met Pro Gln	Glu Leu Gln	Thr Pro Gln 55	Arg Pro 40 Gln	Cys 25 Gln	10 Ile Gln Leu	Pro Thr	Gly Phe Pro 60	Pro 45 Gln	Glu 30 Gln Gln	15 Arg Gln Pro	Pro Pro Ser	
Met 1 Ala Trp Leu Phe 65	Lys Ile Gln Phe 50 Ser	Thr Ala Gln 35 Ser Gln	Gln 20 Gln Gln	5 Met Pro Gln	Glu Leu Gln Pro 70	Thr Pro Gln 55	Arg Pro 40 Gln Phe	Cys 25 Gln Gln Trp	10 Ile Gln Leu Gln	Pro Thr Phe Gln 75	Gly Phe Pro 60 Gln	Pro 45 Gln	Glu 30 Gln Gln Pro	15 Arg Gln Pro	Pro Pro Ser Ser 80	
Met 1 Ala Trp Leu Phe 65 Gln	Lys Ile Gln Phe 50 Ser Gln	Thr Ala Gln 35 Ser Gln Gln	Gln 20 Gln Gln Gln Pro	5 Met Pro Gln Gln Ile 85	Glu Leu Gln Pro 70 Leu	Thr Pro Gln 55 Pro	Pro 40 Gln Phe	Cys 25 Gln Gln Trp	10 Ile Gln Leu Gln Pro	Pro Thr Phe Gln 75 Pro	Gly Phe Pro 60 Gln Phe	Pro 45 Gln Pro Ser	Glu 30 Gln Gln Pro	15 Arg Gln Pro Phe Gln 95	Pro Pro Ser Ser 80 Gln	
Met 1 Ala Trp Leu Phe 65 Gln	Ile Gln Phe 50 Ser Gln Leu	Thr Ala Gln 35 Ser Gln Gln Val	Gln 20 Gln Gln Fro Leu 100	5 Met Pro Gln Gln Ile 85 Pro	Glu Leu Gln Pro 70 Leu Gln	Thr Pro Gln 55 Pro Pro	Pro 40 Gln Phe Gln	Cys 25 Gln Gln Trp Gln Pro 105	10 Ile Gln Leu Gln Pro 90 Phe	Pro Thr Phe Gln 75 Pro	Gly Phe Pro 60 Gln Phe Gln	Pro 45 Gln Pro Ser	Glu 30 Gln Gln Pro Gln Gln	15 Arg Gln Pro Phe Gln 95 Gln	Pro Pro Ser Ser 80 Gln Pro	
Met 1 Ala Trp Leu Phe 65 Gln Gln Val	Ile Gln Phe 50 Ser Gln Leu Leu	Thr Ala Gln 35 Ser Gln Gln val	Gln 20 Gln Gln Pro Leu 100 Pro	5 Met Pro Gln Gln Ile 85 Pro Gln	Glu Leu Gln Pro 70 Leu Gln Gln	Thr Pro Gln 55 Pro Gln Gln Scr	Pro 40 Gln Phe Gln Pro 120	Cys 25 Gln Gln Trp Gln Pro 105 Phe	10 Ile Gln Leu Gln Pro 90 Phe	Pro Thr Phe Gln 75 Pro Ser	Gly Phe Pro 60 Gln Phe Gln	Pro 45 Gln Pro Ser Gln Gln Gln	Glu 30 Gln Gln Pro Gln Gln 110	15 Arg Gln Pro Phe Gln 95 Gln Gln	Pro Pro Ser Ser 80 Gln Pro His	
Met 1 Ala Trp Leu Phe 65 Gln Gln Val	Ile Gln Phe 50 Ser Gln Leu Gln 130	Thr Ala Gln 35 Ser Gln Gln Val Pro 115 Leu	Gln 20 Gln Gln Pro Leu 100 Pro Val	5 Met Pro Gln Gln Ile 85 Pro Gln	Glu Leu Gln Pro 70 Leu Gln Gln	Thr Pro Gln 55 Pro Gln Ser Gln 135	Pro 40 Gln Phe Gln Pro 120 Ile	Cys 25 Gln Gln Trp Gln Pro 105 Phe	10 Ile Gln Leu Gln Pro 90 Phe Pro Val	Pro Thr Phe Gln 75 Pro Ser Gln Val	Gly Phe Pro 60 Gln Phe Gln Gln Gln 140	Pro 45 Gln Pro Ser Gln Gln 125	Glu 30 Gln Gln Gln Gln 110 Gln	15 Arg Gln Pro Phe Gln 95 Gln Gln	Pro Pro Ser Ser 80 Gln Pro His	
Met 1 Ala Trp Leu Phe 65 Gln Gln Val Gln Gln	Ile Gln Phe 50 Ser Gln Leu Gln 130 Gln	Thr Ala Gln 35 Ser Gln Gln Val Pro 115 Leu Leu	Gln 20 Gln Gln Pro Leu 100 Pro Val	Met Pro Gln Gln Ile 85 Pro Gln Gln Fro	Glu Leu Gln Pro 70 Leu Gln Gln Gln Cys 150	Thr Pro Gln 55 Pro Gln Ser Gln 135	Pro 40 Gln Phe Gln Pro 120 Ile	Cys 25 Gln Gln Trp Gln Pro 105 Phe	Ile Gln Leu Gln Pro 90 Phe Pro Val	Pro Thr Phe Gln 75 Pro Ser Gln Val	Phe Pro 60 Gln Phe Gln Gln Gln Gln	Pro 45 Gln Pro Ser Gln 125 Pro	Glu 30 Gln Gln Gln Gln 110 Gln Ser	15 Arg Gln Pro Phe Gln 95 Gln Cln Ser	Pro Pro Ser Ser 80 Gln Pro His Leu	
Met 1 Ala Trp Leu Phe 65 Gln Gln Val Gln Gln 145 Val	Ile Gln Phe 50 Ser Gln Leu Gln 130 Gln Ala	Thr Ala Gln 35 Ser Gln Gln Val Pro 115 Leu Leu Met	Gln 20 Gln Gln Gln Pro Leu 100 Pro Val Asn	Met Pro Gln Gln Ile 85 Pro Gln Gln Gln Gln Pro	Glu Leu Gln Pro 70 Leu Gln Gln Gln Cys 150 Arg	Thr Pro Gln 55 Pro Gln Ser Gln 135 Lys	Pro 40 Gln Phe Gln Pro 120 Ile	Cys 25 Gln Gln Trp Gln Pro 105 Phe Pro	Gln Leu Gln Pro 90 Phe Pro Val Leu Ser 170	Pro Thr Phe Gln 75 Pro Ser Gln Val	Phe Pro 60 Gln Phe Gln Gln 140 Gln 140	Pro 45 Gln Pro Ser Gln 125 Pro Gln	Glu 30 Gln Gln Pro Gln 110 Gln Ser Cys	Gln Pro Phe Gln 95 Gln Gln Gln Gln Gln Tle	Pro Pro Ser Ser 80 Gln Pro His Leu Pro 160 Ser	

```
116
Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile
                            200
Ile Leu Gln Glu Gln Gln Gln Gln Gln Ser Ile Gln Ser Gln Gln
                        215
Gln Gln Pro Gln Gln Leu Gly Gln Cys Val Ser Gln Pro Gln Gln Gln
                                        235
                    230
Ser Gln Gln Gln Leu Gly Gln Gln Pro Gln Gln Gln Leu Ala Gln
                                    250
                245
Gly Thr Phe Leu Gln Pro His Gln Ile Ala Gln Leu Glu Val Met Thr
                                                    270
                                265
            260
Ser Ile Ala Leu Arg Ile Leu Pro Thr Met Cys Ser Val Asn Val Pro
                            280
Leu Tyr Arg Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly Val
                                            300
                        295
    290
Gly Ala Tyr
305
<210> 114
<211> 8482
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: binary
      expression vector
<400> 114
ttccatggac atacaaatgg acgaacggat aaaccttttc acgccctttt aaatatccga 60
ttattctaat aaacgctctt ttctcttagg tttacccgcc aatatatcct gtcaaacact 120
gatagtttaa actgaaggcg ggaaacgaca atcagatcta gtaggaaaca gctatgacca 180
tgattacgcc aatcaccact ttgtacaaga aagctgggtc tagatgacgg acaatcagta 240
aattgaacgg agaatattat tcataaaaat acgatagtaa cgggtgatat attcattaga 300
atgaaccgaa accggcggta aggatctgag ctacacatgc tcaggttttt tacaacgtgc 360
acaacagaat tgaaagcaaa tatcatgcga tcataggcgt ctcgcatatc tcattaaagc 420
aggaggcett ctagactgca ggcggccgcc caccgcggtg ggctggctat gaagaaatta 480
taatcgtgta aaacttagtg agtgtgtatg aatgaaagta ttgcaaaatc ctcattatat 540
agactacatg cataactagt tgcatgtaaa tttgtagttt tcttcattat tgcatcctcc 600
aagtggatgt catggtttta cacatggctt ccatgcaaat catttccaaa atattttaa 660
actttccaca gggcatccat gcatgcacct caaaacttgt gtgtggtaac attgttgtct 720
tgaaaaatta ctaaaccttt tgtccacgtg acgttcatgc acctcaaatc ttgtgtggta 780
ccattattat cctcaagaat tattgaatgt ttggtgtata tgccatccat gcagcattgc 840
aacaattaaa totocaaaco ttgtggtaco atattoacto actttaatto tootatagta 900
gaaatattag caaatattta catttccagt tgattagtat atgtatttag aagacaaaaa 960
 taatttagaa tcaattaatc aacttgcaaa ttgctaagtg ttggcaaacg ttagcataaa 1020
 aggtgttata aatttagtac caaatataaa aatttatcgc aaatcaaata cataacacac 1080
 atagtaaaac aaaaacaaat tacaagggtt tagacgttta gtggcaatgt gtaaatttgc 1140
 tcgactgaat tggttccttt aagcctgctt ttttgtacaa acttgtgata attcactggc 1200
 cgtcgtttta caacgactca ggatcctgtc aaacactgat agtttaaact gaaggcggga 1260
 aacgacaatc tgatcatgag cggagaatta agggagtcac gttatgaccc ccgccgatga 1320
 cgcgggacaa gccgttttac gtttggaact gacagaaccg caacgttgaa ggagccactc 1380
 agccgcgggt ttctggagtt taatgagcta agcacatacg tcagaaacca ttattgcgcg 1440
```

ttcaaaagtc gcctaaggtc actatcagct agcaaatatt tcttgtcaaa aatgctccac 1500 tgacgttcca taaattcccc tcggtatcca attagagtct catattcact ctcaatccaa 1560 ataatctgca ccggatctgg atcgtttcgc atgattgaac aagatggatt gcacgcaggt 1620 tctccggccg cttgggtgga gaggctattc ggctatgact gggcacaaca gacaatcggc 1680

taatataata		aaaaatataa	~~~~~~	~~~~~	++++	1740
				gcccggttct		
				cagcgcggct		
				tcactgaagc		
				catctcacct		
				atacgcttga		
				cacgtactcg		
ggtcttgtcg	atcaggatga	tctggacgaa	gagcatcagg	ggctcgcgcc	agccgaactg	2100
ttcgccaggc	tcaaggcgcg	catgcccgac	ggcgaggatc	tcgtcgtgac	ccatggcgat	2160
gcctgcttgc	cgaatatcat	ggtggaaaat	ggccgctttt	ctggattcat	cgactgtggc	2220
				ctacccgtga		
				acggtatcgc		
				tctgagcggg		
				cacagacccg		
				atcctgttgc		
				taataattaa		
				cgcaattata		
				tatcgcgcgc		
				ataattgtca		
				agtatcaaac		
				ctaagcgtca		
				gaccggcagc		
				ttgaccgtgt		
				agcgggcgcg		
				ccggcacaga		
				gcggctgcac		
-				gaagtgacgc		
				gccgacgccc		
				aggacggcca		
				ccgggtacgt		
cccgcgcacg	tctcaaccgt	gcggctgcat	gaaatcctgg	ccggtttgtc	tgatgccaag	3480
ctggcggcct	ggccggccag	cttggccgct	gaagaaaccg	agcgccgccg	tctaaaaagg	3540
tgatgtgtat	ttgagtaaaa	cagcttgcgt	catgcggtcg	ctgcgtatat	gatgcgatga	3600
gtaaataaac	aaatacgcaa	ggggaacgca	tgaaggttat	cgctgtactt	aaccagaaag	3660
gcgggtcagg	caagacgacc	atcgcaaccc	atctagcccg	cgccctgcaa	ctcgccgggg	3720
				ccgcgattgg		
				gacgattgac		
				gccccaggcg		
				ggtgcagcca		
				gcgcattgag		
				aggcacgcgc		
				tgagtcccgt		
				tcttgaatca		
				taaatcaaaa		
				ctaagtgccg		
				gacacgccag		
				aagatgtacg		
				cagctaccag		
				aggcggcatg		
				aggaacgggc		
				tggaacccc		
				atcggcgcgg		
				cggcaacgca		
				atccgcaaag		
				aagggcgacg		•
				agtcgcagca		
				gaggtgatcc		
rccagacggg	cacgtagagg	tttccgcagg	gccggccggc	atggccagtg	rgrgggatta	2100


```
<210> 115
<211> 575
<212> DNA
<213> Brassica napus
<220>
<221> misc_feature
<222> (1)..(6)
<223> restriction site
<220>
<221> misc_feature
<222> (570)..(575)
<223> restriction site
<220>
<221> misc_feature
<222> (7)..(575)
<223> coding for homogentisate-1,2-dioxygenase (HDG)
gtcgacgggc cgatggggc gaagggtctt gctgcaccaa gagattttct tgcaccaacg 60
gcatggtttg aggaagggct acggcctgac tacactattg ttcagaagtt tggcggtgaa 120
ctctttactg ctaaacaaga tttctctccg ttcaatgtgg ttgcctggca tggcaattac 180
gtgccttata agtatgacct gcacaagttc tgtccataca acactgtcct tgtagaccat 240
ggagatccat ctgtaaatac agttctgaca gcaccaacgg ataaacctgg tgtggccttg 300
cttgattttg tcatattccc tcctcgttgg ttggttgctg agcatacctt tcgacctcct 360
tactaccatc gtaactgcat gagtgaattt atgggcctaa tctatggtgc ttacgaggcc 420
aaagctgatg gatttctacc tggtggcgca agtcttcaca gttgtatgac acctcatggt 480
ccagatacaa ccacatacga ggcgacgatt gctcgtgtaa atgcaatggc tccttataag 540
ctcacaggca ccatggcctt catgtttgag gtacc
<210> 116
<211> 1386
<212> DNA
<213> Arabidopsis thaliana
<221> CDS
<222> (1)..(1383)
<223> coding for homogentisate-1,2-dioxygenase (HDG)
                                                                   48
atg gaa gag aag aag gag ctt gaa gag ttg aag tat caa tca ggt
Met Glu Glu Lys Lys Lys Glu Leu Glu Glu Leu Lys Tyr Gln Ser Gly
                                     10
ttt ggt aac cac ttc tca tcg gaa gca atc gcc gga gct tta ccg tta
                                                                   96
Phe Gly Asn His Phe Ser Ser Glu Ala Ile Ala Gly Ala Leu Pro Leu
             20
gat cag aac agt cct ctt ctt tgt cct tac ggt ctt tac gcc gaa cag
                                                                   144
Asp Gln Asn Ser Pro Leu Leu Cys Pro Tyr Gly Leu Tyr Ala Glu Gln
                             40
         35
atc tcc ggt act tct ttc act tct cct cgc aag ctc aat caa aga agt
                                                                   192
Ile Ser Gly Thr Ser Phe Thr Ser Pro Arg Lys Leu Asn Gln Arg Ser
                          55
tgg ttg tac cgg gtt aaa cca tcg gtt aca cat gaa ccg ttc aag cct
                                                                   240
Trp Leu Tyr Arg Val Lys Pro Ser Val Thr His Glu Pro Phe Lys Pro
cgt gta cca gct cat aag aag ctt gtg agt gag ttt gat gca tca aat
                                                                   288
Arg Val Pro Ala His Lys Lys Leu Val Ser Glu Phe Asp Ala Ser Asn
                                                          95
```

agt Ser	cgt Arg	acg Thr	aat Asn 100	ccg Pro	act Thr	cag Gln	ctt Leu	cgg Arg 105	tgg Trp	aga Arg	cct Pro	gag Glu	gat Asp 110	att Ile	cct Pro	336
gat Asp	tcg Ser	gag Glu 115	att Ile	gat Asp	ttc Phe	gtt Val	gat Asp 120	Gly	tta Leu	ttt Phe	acc Thr	att Ile 125	tgt Cys	gga Gly	gct Ala	384
gga Gly	agc Ser 130	tcg Ser	ttt Phe	ctt Leu	cgc Arg	cat His 135	ggc Gly	ttc Phe	gct Ala	att Ile	cac His 140	atg Met	tat Tyr	gtg Val	gct Ala	432
Asn 145	Thr	Gly	Met	Lys	Asp 150	Ser	Ala	Phe	Cys	Asn 155	Ala	gat Asp	Gly	qaA	Phe 160	480
Leu	Leu	Val	Pro	Gln 165	Thr	Gly	Arg	Leu	Trp 170	Ile	Glu	act Thr	Glu	Cys 175	Gly	528
agg Arg	ctt Leu	ttg Leu	gta Val 18.0	act Thr	cct Pro	ggt Gly	gag Glu	att Ile 185	Ala	gtt Val	ata Ile	cca Pro	caa Gln 190	ggt Gly	ttc Phe	576
cgt Arg	ttc Phe	tcc Ser 195	ata Ile	gat Asp	tta Leu	ccg Pro	gat Asp 200	ggg ggg	aag Lys	tct Ser	cgt Arg	ggt Gly 205	tat Tyr	gtt Val	gct Ala	624
gaa Glu	atc Ile 210	tat Tyr	ggg Gly	gct Ala	cat His	ttt Phe 215	cag Gln	ctt Leu	cct Pro	gat Asp	ctt Leu 220	gga Gly	cca Pro	ata Ile	ggt Gly	672
gct Ala 225	aat Asn	ggt Gly	ctt Leu	gct Ala	gca Ala 230	tca Ser	aga Arg	gat Asp	ttt Phe	ctt Leu 235	gca Ala	cca Pro	aca Thr	gca Ala	tgg Trp 240	720
ttt Phe	gag Glu	gat Asp	gga Gly	ttg Leu 245	cgg Arg	cct Pro	gaa Glu	tac Tyr	aca Thr 250	att Ile	gtt Val	cag Gln	aag Lys	ttt Phe 255	Gly	768
Gly	Glu	Leu	Phe 260	Thr	Ala	Lys	Gln	Asp 265	Phe	Ser	Pro	ttc Phe	Asn 270	Val	Val	816
Ala	Trp	His 275	Gly	Asn	Tyr	Val	Pro 280	Tyr	Lys	Tyr	Asp	ctg Leu 285	Lys	Lys	Phe	864
tgt Cys	cca Pro 290	Tyr	aac Asn	act Thr	gtg Val	ctt Leu 295	Leu	gat Asp	cat His	gga Gly	gat Asp 300	Pro	tct Ser	ata Ile	aat Asn	912
aca Thr 305	Val	ctt Leu	aca Thr	gca Ala	cca Pro	Thr	gat Asp	aaa Lys	cct Pro	ggt Gly 315	' Val	gcc Ala	ttg Leu	ctt Leu	gat Asp 320	960
ttt Phe	gtc Val	ata Ile	ttt Phe	cct Pro	Pro	cga Arg	tgg Trp	ttg Lev	gtt Val 330	Ala	gag Glu	cat His	act Thr	Phe 335	cga Arg	1008
cct Pro	cct	tac Tyr	tat Tyr 340	His	cgt Arg	aac JAST	tgo Cys	ato Met	: Ser	gaa Glu	ttt Phe	atg Met	ggc Gly 350	Leu	atc lle	1056
tac Tyr	ggt Gly	gca Ala 359	а Туз	gaç Glu	g gcg 1 Ala	g aaa a Lys	gct Ala 360	a Asp	gga Gly	ttt Phe	cto Lev	cct Pro 365	G17	ggt Gly	gca Ala	1104

									_	21						
agt Ser	ctt Leu 370	cat His	agc Ser	tgt Cys	atg Met	aca Thr 375	cct Pro	cat His	ggt Gly	cca Pro	gat Asp 380	act Thr	acc Thr	acg Thr	tac Tyr	1152
gag Glu 385	gcg Ala	aca Thr	att Ile	gct Ala	cga Arg 390	gta Val	aat Asn	gca Ala	atg Met	gct Ala 395	cct Pro	tct Ser	aaa Lys	ctc Leu	aca Thr 400	1200
ggt Gly	acg Thr	atg Met	gct Ala	ttc Phe 405	atg Met	ttc Phe	gaa Glu	tca Ser	gca Ala 410	ttg Leu	atc Ile	cct Pro	aga Arg	gtc Val 415	tgt Cys	1248
cat His	tgg Trp	gct Ala	ctg Leu 420	gag Glu	tct Ser	cct Pro	Phe	ctg Leu 425	gat Asp	cac His	gac Asp	tac Tyr	tac Tyr 430	cag Gln	tgt Cys	1296
tgg Trp	att Ile	ggc Gly 435	ctc Leu	aag Lys	tct Ser	cat His	ttc Phe 440	tcg Ser	cgc Arg	ata Ile	agc Ser	ttg Leu 445	gac Asp	aag Lys	aca Thr	1344
aat Asn	gtt Val 450	gaa Glu	tca Ser	aca Thr	gag Glu	aaa Lys 455	gaa Glu	cca Pro	gga Gly	gct Ala	tcg Ser 460	gag Glu	taa	-		1386
<213 <213)> 11 l> 46 2> PF	51 RT	_		. 7.2											
<213	3> A1	rabio	iops	is th	nalla	ana										
)> 11 Glu		Lys	Lys 5	Lys	Glu	Leu	Glu	Glu 10	Leu	Lys	Tyr	Gln	Ser 15	Gly	
			20			Ser		25					30			
_		35				Leu	40					45				
	50					Thr 55					60					
65					70	Pro				75					80	
				85		Lys			90					95		
			100			Gln		105					110			
_		115				Val	120				•	125				
_	130					His 135					140					
145					150					155					160	
				165		Gly			170					175		
_			180			Gly		185				•	190			
_				_	_	D	λen	C331	Tare	C~~	7~~	G137	The same	Val	Al⇒	

									_							
Glu	Ile 210	Tyr	Gly	Ala	His	Phe 215	Gln	Leu	Pro	Asp	Leu 220	Gly	Pro	Ile	Gly	
Ala 225	Asn	Gly	Leu	Ala	Ala 230	Ser	Arg	Asp	Phe	Leu 235	Ala	Pro	Thr	Ala	Trp 240	
Phe	Glu	Asp	Gly	Leu 245	Arg	Pro	Glu	Tyr	Thr 250	Ile	Val	Gln	Lys	Phe 255	Gly	
Gly	Glu	Leu	Phe 260	Thr	Ala	Lys	Gln	Asp 265	Phe	Ser	Pro	Phe	Asn 270	Val	Val	
Ala	Trp	His 275	Gly	Asn	Tyr	Val	Pro 280	Tyr	Lys	Tyr	Asp	Leu 285	Lys	Lys	Phe	
Cys	Pro 290	Tyr	Asn	Thr	Val	Leu 295	Leu	Asp	His	Gly	Asp 300	Pro	Ser	Ile	Asn	
Thr 305	Val	Leu	Thr	Ala	Pro 310	Thr	Asp	Lys	Pro	Gly 315	Val	Ala	Leu	Leu	Asp 320	
Phe	Val	Ile	Phe	Pro 325	Pro	Arg	Trp	Leu	Val 330	Ala	Glu	His	Thr	Phe 335	Arg	
Pro	Pro	Tyr	Tyr 340	His	Arg	.Asn	Cys	Met 345	Ser	Glu	Phe	Met	Ġly 350	Leu	Ile	
Tyr	Gly	Ala 355	Tyr	Glu	Ala	Lys	Ala 360	Asp	Gly	Phe	Leu	Pro 365	Gly	Gly	Ala	
Ser	Leu 370	His	Ser	Cys	Met	Thr 375	Pro	His	Gly	Pro	Asp 380	Thr	Thr	Thr	Tyr	
Glu 385	Ala	Thr	Ile	Ala	Arg 390	Val	Asn	Ala	Met	Ala 395	Pro	Ser	Lys	Leu	Thr 400	
Gly	Thr	Met	Ala	Phe 405	Met	Phe	Glu	Ser	Ala 410		Ile	Pro	Arg	Val 415	Cys	
His	Trp	Ala	Leu 420	Glu	Ser	Pro	Phe	Leu 425	Asp	His	Asp	Tyr	Tyr 430	Gln	Cys	
Trp		Gly 435	Leu	Lys	Ser	His	Phe 440		Arg	Ile	Ser	Leu 445		Lys	Thr	
Asn	Val 450	Glu	Ser	Thr	Glu			Pro	Gly	Ala	Ser 460					
<21 <21 <21	450 455 460 <210> 118 <211> 815 <212> DNA <213> Arabidopsis thaliana															
<22	1> C 2> (37).	.(70 g fo	5) r ma	leyl	acet	oace	etate	: isc	omera	ıse (MAAI	;)			
<40 gta	0> 1 atct	18 .ccg	aaga	.agaa	ıca a	atto	cttg	jc tg	raato	atg Met	Ser	tat Tyr	gtt Val	acc Thr	gat Asp	54
ttt Phe	tat Tyr	cag Gln	gcg Ala	Lys	r ttg : Lev	aag Lys	g cto Lev	tac Tyr 15	: Sei	tac Tyr	tgg Trp	aga Arg	ago Ser 20	Ser	tgt Cys	102

									4	43						
gct Ala	cat His	cgc Arg 25	gtc Val	cgt Arg	atc Ile	gcc Ala	ctc Leu 30	act Thr	tta Leu	aaa Lys	Gly ggg	ctt Leu 35	gat Asp	tat Tyr	gaa Glu	150
tat Tyr	ata Ile 40	ccg Pro	gtt Val	aat Asn	ttg Leu	ctc Leu 45	aaa Lys	ggg Gly	gat Asp	caa Gln	tcc Ser 50	gat Asp	tca Ser	gat Asp	ttc Phe	198
aag Lys 55	aag Lys	atc Ile	aat Asn	cca Pro	atg Met 60	ggc Gly	act Thr	gta Val	cca Pro	gcg Ala 65	ctt Leu	gtt Val	gat Asp	ggt Gly	gat Asp 70	246
gtt Val	gtg Val	att Ile	aat Asn	gac Asp 75	tct Ser	ttc Phe	gca Ala	ata Ile	ata Ile 80	atg Met	tac Tyr	ctg Leu	gat Asp	gat Asp 85	aag Lys	294
tat Tyr	ccg Pro	gag Glu	cca Pro 90	ccg Pro	ctg Leu	tta Leu	cca Pro	agt Ser 95	gac Asp	tac Tyr	cat His	aaa Lys	cgg Arg 100	gcg Ala	gta Val	342
aat Asn	tac Tyr	cag Gln 105	gcg Ala	acg Thr	agt Ser	att Ile	gtc Val 110	atg Met	tct Ser	ggt Gly	ata Ile	cag Gln 115	cct Pro	cat His	caa Gln	390
aat Asn	atg Met 120	gct Ala	ctt Leu	ttt Phe	agg Arg	tat Tyr 125	ctc Leu	gag Glu	gac Asp	aag Lys	ata Ile 130	aat Asn	gct Ala	gag Glu	gag Glu	438
aaa Lys 135	act Thr	gct Ala	tgg Trp	att Ile	act Thr 140	aat Asn	gct Ala	atc Ile	aca Thr	aaa Lys 145	gga Gly	ttc Phe	aca Thr	gct Ala	ctc Leu 150	486
gag Glu	aaa Lys	ctg Leu	ttg Leu	gtg Val 155	agt Ser	tgc Cys	gct Ala	gga Gly	aaa Lys 160	tac Tyr	gcg Ala	act Thr	ggt Gly	gat Asp 165	gaa Glu	534
gtt Val	tac Tyr	ttg Leu	gct Ala 170	gat Asp	ctt Leu	ttc Phe	cta Leu	gca Ala 175	cca Pro	cag Gln	atc Ile	ċac His	gca Ala 180	gca Ala	ttc Phe	582
aac Asn	aga Arg	ttc Phe 185	cat His	att Ile	aac Asn	atg Met	gaa Glu 190	cca Pro	ttc Phe	ccg Pro	act Thr	ctt Leu 195	gca Ala	agg Arg	ttt Phe	630
tac Tyr	gag Glu 200	tca Ser	tac Tyr	aac Asn	gaa Glu	ctg Leu 205	Pro	gca Ala	ttt Phe	caa Gln	aat Asn 210	Ala	gtc Val	ccg .Pro	gag Glu	678
	Gln			act						ttct	gtg	aacc	gtaa	gc		725
ttc	tctc	agt	ctca	.gctc	aa t	aaaa	tctc	t ta	ggaa	acaa	caa	.caaċ	acc	ttga	acttaa	785
atg	tatc	ata	tgaa	.ccag	tt t	acaa	ataa	t								815
<21 <21	0> 1 1> 2 2> P 3> A	23 RT	eqob.	is t	hali	ana										
<40 Met		19 Tyr	· Val	. Thr		Phe	туг	Glr	Ala 10		: Lev	ı Lys	: Lev	Tyr 15	Ser	
Тут	Trp	Arg	Ser 20		Cys	Ala	His	Arg 25		L Arg	, Il∈	e Ala	Lev 30		Leu	

Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu 180 Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro 195 200 Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 215 220 <210> 120 <211> 1227 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser 1 5 10 cct atc cag aat ctc cct tat ggt gtc ttc aaa ccg gaa tcg Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser 20 act cct cgt cct gcc gtc gct atc ggc gat ttg gtc ctg gac Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp 35 40 gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys		
Ala Leu Val Asp Gly Asp Val Val Ile Asn Asp Ser Phe Ala 1	: Gly Asp	•
Met Tyr Leu Asp Asp Lys Tyr Pro Glu Pro Pro Leu Leu Pro S	: Val Pro	
Tyr His Lys Arg Ala Val Asn Tyr Gln Ala Thr Ser Ile Val 100 Gly Ile Gln Pro His Gln Asn Met Ala Leu Phe Arg Tyr Leu (115) Lys Ile Asn Ala Glu Glu Lys Thr Ala Trp Ile Thr Asn Ala 130 135 155 Lys Gly Phe Thr Ala Leu Glu Lys Leu Leu Val Ser Cys Ala (140) Lys Gly Phe Thr Ala Leu Glu Lys Leu Leu Val Ser Cys Ala (155) Tyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu 165 Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu 180 185 190 Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro 195 Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 	a Ile Ile 80	
100 105 110	95	
Lys Ile Asn Ala Glu Glu Lys Thr Ala Trp Ile Thr Asn Ala : 130)	
Lys Gly Phe Thr Ala Leu Glu Lys Leu Leu Val Ser Cys Ala Glu Fyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu 165 Tyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu 165 Tyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu 165 Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu 185 Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro 195 Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 <210		
145 Tyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu 165 Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu 180 Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro 195 Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 <210		
Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu 180	160	
Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro 195 200 205 Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 215 220 <210> 120 <211> 1227 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser 1 5 10 cct atc cag aat ctc cct tat ggt gtc ttc aaa ccg gaa tcg Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser 20 25 30 act cct cgt cct gcc gtc gct atc ggc gat ttg gtt ctg gac Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp 35 40 45 gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys	175	
Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr 210 215 220 <210> 120 <211> 120 <211> 1227 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser 1 5 10 cct atc cag aat ctc cct tat ggt gtc ttc aaa ccg gaa tcg Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser 20 25 30 act cct cgt cct gcc gtc gct atc ggc gat ttg gtt ctg gac Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp 35 40 45 gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys	0	
<pre>210 215 220 <210> 120 <211> 1227 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser</pre>		
<pre><211> 1227 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser</pre>	r Ile	
<pre><220> <221> CDS <222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser 1</pre>		
<pre><222> (1)(1224) <223> coding for fumarylacetoacetate hydrolase (FAAH) <400> 120 atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser</pre>		
atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcgMet Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser1510cct atc cag aat ctc cct tat ggt gtc ttc aaa ccg gaa tcgPro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser202530act cct cgt cct gcc gtc gct atc ggc gat ttg gtt ctg gacThr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp354045gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aagAla Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys		
Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser 1		4.0
Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser 20 25 30 act cct cgt cct gcc gtc gct atc ggc gat ttg gtt ctg gac Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp 35 40 45 gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys	er His Phe 15	48
Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp 35 40 45 gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys	er Asn Ser	96
gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys	c ctc tcc p Leu Ser	144
50 55 60	ng gac gca ys Asp Ala	192
gat tgc ttt ctt cag cct aat ttg aat aag ttc ttg gcc atg Asp Cys Phe Leu Gln Pro Asn Leu Asn Lys Phe Leu Ala Met 65 70 75	ng gga cgg et Gly Arg 80	240

Pro	gcg Ala	Trp	Lys	Glu 85	Ala	Arg	Ser	Thr	Leu 90	Gln	Arg	Ile	Leu	Ser 95	Pne	288
Leu	tta Leu	Phe	Gly 100	Phe	Lys	Val	Leu	Val 105	Leu	Val	Cys	Phe	His 110	Ala	Ala	336
Asn	gaa Glu	Pro 115	Ile	Leu	Arg	Asp	Asn 120	Asp	Val	Leu	Arg	Arg 125	Lys	Ser	Phe	384
His	cag Gln 130	Met	Ser	Lys	Val	Glu 135	Met	Ile	Val	Pro	Met 140	Val	Ile	Gly	Asp	432
Tyr 145	aca Thr	Asp	Phe	Phe	Ala 150	Ser	Met	His	His	Ala 155	Lys	Asn	Cys	Gly	Leu 160	480
atg Met	ttc Phe	cgt Arg	Gly ggg	cct Pro 165	gag Glu	aat Asn	gcg Ala	ata Ile	aac Asn 170	cca Pro	aat Asn	tgg Trp:	ttt Phe	cgt Arg 175	ctt Leu	528
ccc Pro	att Ile	gca Ala	tat Tyr 180	cat His	gga Gly	cgg Arg	gca Ala	tca Ser 185	tct Ser	att Ile	gtc Val	atc Ile	tct Ser 190	Gly	act Thr	576
gac Asp	att Ile	att Ile 195	cga Arg	cca Pro	aga Arg	ggt Gly	cag Gln 200	ggc Gly	cat His	cca Pro	caa Gln	gga Gly 205	aac Asn	tct Ser	gaa Glu	624
Pro	tat Tyr 210	Phe	Gly	Pro	Ser	Lys 215	Lys	Leu	Asp	Phe	Glu 220	Leu	Glu	Met	Ala	672
Ala 225	gtg Val	Val	Gly	Pro	Gly 230	Asn	Glu	Leu	Gly	Lys 235	Pro	Ile	Asp	Val	Asn 240	720
Asn		Ala	Asp	His 245	Ile	Phe	Gly	Leu	Leu 250	Leu	Met	Asn	Asp	Trp 255	Ser	768
gct Ala	agg Arg	Asp	att Ile 260	Gln	gcg Ala	Trp	Glu	Tyr	Val	Pro	Leu	Gly	cct Pro 270	Phe	ctg Leu	816
Gly	aag Lys	agt Ser 275	Phe	Gly	act Thr	act Thr	ata Ile 280	Ser	cct Pro	tgg Trp	att Ile	gtt Val 285	Thr	ttg Leu	gat Asp	864
gcg Ala	ctt Leu 290	Glu	cct Pro	ttt Phe	ggt Gly	tgt Cys 295	Gln	gct Ala	ccc Pro	aag Lys	cag Gln 300	. Asp	cca Pro	cct Pro	cca Pro	912
ttg Leu 305	Pro	tat Tyr	ttg Leu	gct Ala	gag Glu 310	Lys	gag Glu	tct Ser	gta Val	aat Asn 315	ı Tyr	gat Asp	ato Ile	tco Ser	ttg Leu 320	960
gag Glu	cta Leu	gca Ala	cac His	cat His	Thr	gtt Val	aac Asr	ggt Gly	tgc Cys 330	Asr	ttg Lev	agg Arg	r cct	ggt Gly 335	gat Asp	1008
ctc Leu	ctt Leu	. ggc	aca Thr	Gl _y	a acc	ata Ile	ago Sei	gga Gly 345	Pro	gag Glu	g cca 1 Pro	a gat Asp	tca Ser 350	Ty:	Gly Ggg	1056

126

									4	146						
_	cta Leu			_					_						aat Asn	1104
	aca Thr 370															1152
	gta Val															1200
	aaa Lys		_			-		tga		٠						1227
<213 <212	0> 12 L> 4(2> PI 3> A1	8 RT	dopsi	is tì	nalia	ana										
)> 12 Ala		Leu	Lys 5	Ser	Phe	Ile	Asp	Val 10	Gly	Ser	Asp	Ser	His 15	Phe	
Pro	Ile	Gln	Asn 20	Leu	Pro	Tyr	Gly	Val 25	Phe	Lys	Pro	Glu	Ser 30	Asn	Ser	
Thr	Pro	Arg 35	Pro	Ala	Val	Ala	Ile 40	Gly	Asp	Leu	Val	Leu 45	Asp	Leu	Ser	
Ala	Ile 50	Ser	Glu	Ala	Gly	Leu 55	Phe	Asp	Gly	Leu	Ile 60	Leu	Lys	Asp	Ala	
Asp 65	Cys	Phe	Leu	Gln	Pro 70	Asn	Leu	Asn	Lys	Phe 75	Leu	Ala	Met	Gly	Arg 80	
Pro	Ala	Trp	Lys	Glu 85	Ala	Arg	Ser	Thr	Leu 90	Gln	Arg	Ile	Leu	Ser 95	Phe	
Leu	Leu	Phe	Gly 100	Phe	Lys	Val	Leu	Val 105	Leu	Val	Cys	Phe	His 110	Ala	Ala	
Asn	Glu	Pro 115	Ile	Leu	Arg	qaA	Asn 120	Asp	Val	Leu	Arg	Arg 125	Lys	Ser	Phe	
His	Gln 130	Met	Ser	Lys	Val	Glu 135	Met	Ile	Val	Pro	Met 140	Val	Ile	Gly	Asp	
Tyr 145	Thr	Asp	Phe	Phe	Ala 150	Ser	Met	His	His	Ala 155	Lys	Asn	Cys	Gly	Leu 160	
Met	Phe	Arg	Gly	Pro 165	Glu	Asn	Ala	Ile	Asn 170	Pro	Asn	Trp	Phe	Arg 175	Leu	
Pro	Ile	Ala	Tyr 180	His	Gly	Arg	Ala	Ser 185	Ser	Ile	Val	Ile	Ser 190	Gly	Thr	
Asp	Ile	Ile 195	Arg	Pro	Arg	Gly	Gln 200	Gly	His	Pro	Gln	Gly 205	Asn	Ser	Glu	
Pro	Tyr 210	Phe	Gly	Pro	Ser	Lys 215	Lys	Leu	Asp	Phe	Glu 220	Leu	Glu	Met	Ala	
Ala 225	Val	Val	Gly	Pro	Gly 230	Asn	Glu	Leu	Gly	Lys 235	Pro	Ile	Asp	Val	Asn 240	
Asn.	Ala	Ala	Asp	His 245	Ile	Phe	Gly	Leu	Leu 250	Leu	Met	Asn	Asp	Trp 255	Ser	


```
Ala Arg Asp Ile Gln Ala Trp Glu Tyr Val Pro Leu Gly Pro Phe Leu
                                265
Gly Lys Ser Phe Gly Thr Thr Ile Ser Pro Trp Ile Val Thr Leu Asp
        275
                            280
Ala Leu Glu Pro Phe Gly Cys Gln Ala Pro Lys Gln Asp Pro Pro Pro
                                             300
                        295
Leu Pro Tyr Leu Ala Glu Lys Glu Ser Val Asn Tyr Asp Ile Ser Leu
                    310
                                        315
Glu Leu Ala His His Thr Val Asn Gly Cys Asn Leu Arg Pro Gly Asp
                                    330
                325
Leu Leu Gly Thr Gly Thr Ile Ser Gly Pro Glu Pro Asp Ser Tyr Gly
                                345
Cys Leu Leu Glu Leu Thr Trp Asn Gly Gln Lys Pro Leu Ser Leu Asn
                            360
                                                 365
Gly Thr Thr Gln Thr Phe Leu Glu Asp Gly Asp Gln Val Thr Phe Ser
                        375
                                             380
Gly Val Cys Lys Gly Asp Gly Tyr Asn Val Gly Phe Gly Thr Cys Thr
                    390
                                        395
385
Gly Lys Ile Val Pro Ser Pro Pro
                405
```

```
<210> 122
```

<220>

<223> Beschreibung der künstlichen Sequenz: supression construct 2 p3300.1-Toc159-GFP-RNAi

<400> 122

aattegttte teeataataa tgtgtgagta gtteecagat aagggaatta gggtteetat 60 agggtttcgc tcatgtgttg agcatataag aaacccttag tatgtatttg tatttgtaaa 120 atacttctat caataaaatt tctaattcct aaaaccaaaa tccagtacta aaatccagat 180 cccccqaatt aattcggcgt taattcagca attcgtaatc atggtcatag ctgtttcctg 240 tgtgaaattg ttatccgctc acaattccac acaacatacg agccggaagc ataaagtgta 300 aagectgggg tgcctaatga gtgagctaac tcacattaat tgcgttgcgc tcactgcccg 360 ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 420 gaggcggttt gcgtattggc tagagcagct tgccaacatg gtggagcacg acactctcgt 480 ctactccaag aatatcaaag atacagtctc agaagaccaa agggctattg agacttttca 540 acaaagggta atatcgggaa acctcctcgg attccattgc ccagctatct gtcacttcat 600 caaaaggaca gtagaaaagg aaggtggcac ctacaaatgc catcattgcg ataaaggaaa 660 ggctatcgtt caagatgcct ctgccgacag tggtcccaaa gatggacccc cacccacgag 720 gagcatcgtg gaaaaagaag acgttccaac cacgtcttca aagcaagtgg attgatgtga 780 taacatggtg gagcacgaca ctctcgtcta ctccaagaat atcaaagata cagtctcaga 840 agaccaaagg gctattgaga cttttcaaca aagggtaata tcgggaaacc tcctcggatt 900 ccattgccca gctatctgtc acttcatcaa aaggacagta gaaaaggaag gtggcaccta 960 caaatgccat cattgcgata aaggaaaggc tatcgttcaa gatgcctctg ccgacagtgg 1020 teccaaagat ggaceeccac ceaegaggag categtggaa aaagaagaeg ttecaaceae 1080 gtcttcaaag caagtggatt gatgtgatat ctccactgac gtaagggatg acgcacaatc 1140 cgctgaaatc accagtctct ctctacaaat ctatctctct cgagtctacc atgagcccag 1260 aacgacgccc ggccgacatc cgccgtgcca ccgaggcgga catgccggcg gtctgcacca 1320 tegteaacca ctacategag acaagcaegg teaactteeg tacegageeg caggaaccge 1380

<211> 11667

<212> DNA

<213> Künstliche Sequenz

						4060
	ggctttgggt					
	cctgctaggg					
	ccctcgatca					
	ttcaaatcgt					
	ttcttgaact					
	tctgccttgc					
	atcaaaaagt					
	cggtacatcc					
	acgatcttgt					
	ttggccttct					
	accaggtcgt					
	acgtgtggac					
	gattcggtta					
	ccggccggcc					
	ccagctcgtc					
	tcgcgggtgc					
	ggcggcttcc					
tttgcggatt	cgatcagcgg	ccgcttgcca	cgattcaccg	gggcgtgctt	ctgcctcgat	5880
gcgttgccgc	tgggcggcct	gcgcggcctt	caacttctcc	accaggtcat	cacccagcgc	5940
cgcgccgatt	tgtaccgggc	cggatggttt	gcgaccgtca	cgccgattcc	tcgggcttgg	6000
	gccattgcag					
ccgttcctcc	acacatgggg	cattccacgg	cgtcggtgcc	tggttgttct	tgattttcca	6120
tgccgcctcc	tttagccgct	aaaattcatc	tactcattta	ttcatttgct	catttactct	6180
ggtagctgcg	cgatgtattc	agatagcagc	tcggtaatgg	tcttgccttg	gcgtaccgcg	6240
tacatcttca	gcttggtgtg	atcctccgcc	ggcaactgaa	agttgacccg	cttcatggct	6300
	ccaggctggc					
	tgtttgtgct					
	ttcagcggcc					
attcaagaac	ggttgtgccg	gcggcggcag	tgcctgggta	gctcacgcgc	tgcgtgatac	6540
gggactcaag	aatgggcagc	tcgtacccgg	ccagcgcctc	ggcaacctca	ccgccgatgc	6600
	gatcgcccgc					
caatgcgctg	cttaaccagc	tccaccaggt	cggcggtggc	ccatatgtcg	taagggcttg	6720
	aatcagcacg					
	tccgtcgatc					
caatcgtcgg	gcggtcgatg	ccgacaacgg	ttagcggttg	atcttcccgc	acggccgccc	6900
	actgccctgg					
gcagggcgcg	ggctagatgg	gttgcgatgg	tcgtcttgcc	tgacccgcct	ttctggttaa	7020
gtacagcgat	aaccttcatg	cgttcccctt	gcgtatttgt	ttatttactc.	. atcgcatcat	7080
atacgcagcg	accgcatgac	gcaagctgtt	ttáctcaaat	acacatcacc	tttttagacg	7140
	gtttcttcag					
	aggatttcat					
	gcgatcatct					
gccgtcctgg	tgcggtttca	tgcttgttcc	tcttggcgtt	cattctcggc	ggccgccagg	7380
gegteggeet	cggtcaatgc	gtcctcacgg	aaggcaccgc	gccgcctggc	ctcggtgggc	7440
	cgctgcgctc					
	ctttcacggt					
	tgagggtagg					
	gggtgcggtc					
	ccatgcggcc					
cgcaggcccg	cgccggcctc	ctggatgcgc	tcggcaatgt	ccagtaggtc	gcgggtgctg	7800
	ggtctagcct					
	gctccgggcg					
	ccgcgtgcag					
	agcccagcag					
	aagtattcta					
	cggcagcctg					
gacggctgca	ctgaacgtca	gaagccgact	gcactatagc	agcggagggg	ttggatcaaa	8220

ttggcactac tcacagcacc accatcctcc ttatcggcgg ctgcagcagc agcggcggcg 11580

<210> 126

<211> 26 <212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: oligonucleotide primer

<400> 126

ggatccttaa agctcatcat gtttgt

26

In Application No PCT/EP 03/02735

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/11 C12N15/82 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Υ WO 93 23551 A (SEYMOUR GRAHAM BARRON 1-17 ;TUCKER GREGORY ALAN (GB); GRIERSON DONALD () 25 November 1993 (1993-11-25) Ansprüche, examples 1-8 Υ FIRE A ET AL: "Potent and specific 1-17 genetic interference by double-stranded RNA in Caenorhabditis elegans" NATURE, MACMILLAN JOURNALS LTD. LONDON, vol. 391, 19 February 1998 (1998-02-19), pages 806-811, XP002095876 ISSN: 0028-0836 cited in the application the whole document Further documents are listed in the continuation of box ${\bf C}.$ Patent family members are listed in annex.

Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another ditation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
later than the priority date claimed Date of the actual completion of the international search	*&' document member of the same patent family Date of mailing of the international search report
19 August 2003 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	27/08/2003 Authorized officer
NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Kalsner, I

Internation Application No PCT/EP 03/02735

		PCT/EP 03/02735
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α .	WO 02 00894 A (CROPDESIGN N V ;ZHOU ZHONGYI (BE); BROEKAERT WILLEM (BE); MIRONOV) 3 January 2002 (2002-01-03) the whole document	1-17
A	FIRE A: "RNA-triggered gene silencing" TRENDS IN GENETICS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 15, no. 9, 1 September 1999 (1999-09-01), pages 358-363, XP004176656 ISSN: 0168-9525 the whole document	1-17
A	MONTGOMERY ET AL: "RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 95, December 1998 (1998-12), pages 15502-15507, XP002138441 ISSN: 0027-8424 the whole document	1-17
A	WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 27, no. 6, September 2001 (2001-09), pages 581-590, XP002187670 ISSN: 0960-7412 the whole document	1-17

In Application No
PCT/EP 03/02735

Patent document cited in search report		Publication date		Patent family member(s)	Publication date	
WO 9323551	A	25-11-1993	AU EP WO US ZA	4079493 A 0644942 A1 9323551 A1 5942657 A 9303361 A	13-12-1993 29-03-1995 25-11-1993 24-08-1999 23-09-1994	
WO 0200894	Α	03-01-2002	AU WO	9165601 A 0200894 A2	08-01-2002 03-01-2002	

In the Aktenzelchen
PCT/EP 03/02735

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C12N15/11 C12N15/82 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C12N Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. 1-17 WO 93 23551 A (SEYMOUR GRAHAM BARRON ;TUCKER GREGORY ALAN (GB); GRIERSON DONALD () 25. November 1993 (1993-11-25) Ansprüche, Beispiele 1-8 Y FIRE A ET AL: "Potent and specific 1-17 genetic interference by double-stranded RNA in Caenorhabditis elegans" NATURE, MACMILLAN JOURNALS LTD. LONDON, Bd. 391, 19. Februar 1998 (1998-02-19), Seiten 806-811, XP002095876 ISSN: 0028-0836 in der Anmeldung erwähnt das ganze Dokument Siehe Anhang Patentfamilie Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu *T' Sp

ßlere Ver

öffentlichung, die nach dem internationalen Anmeldedatum oder dem Priorit

ätsdatum ver

öffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verst

ändnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden 'L' Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zwelfelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tällgkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Annehtedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recharchenberichts Datum des Abschlusses der Internationalen Recherche 19. August 2003 27/08/2003 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Kalsner, I Fax: (+31-70) 340-3016

	es Aktenzeichen
PCT/EP	03/02735

ALS WESENTLICH ANGESEHENE UNTERLAGEN	
ichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile Betr. Anspruch Nr.
O 02 00894 A (CROPDESIGN N V ;ZHOU HONGYI (BE); BROEKAERŤ WILLEM (BE); IIRONOV) 3. Januar 2002 (2002-01-03) las ganze Dokument	1–17
TRE A: "RNA-triggered gene silencing" RENDS IN GENETICS, ELSEVIER SCIENCE RUBLISHERS B.V. AMSTERDAM, NL, Rd. 15, Nr. 9, Rd. 15	1-17
MONTGOMERY ET AL: "RNA as a target of louble-stranded RNA-mediated genetic nterference in Caenorhabditis elegans" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, Bd. 95, Dezember 1998 (1998-12), Seiten 15502-15507, XP002138441 (1998-12)	1-17
WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, 8d. 27, Nr. 6, September 2001 (2001-09), Seiten 581-590, XP002187670 [SSN: 0960-7412] dias ganze Dokument	1-17
	O 02 00894 A (CROPDESIGN N V; ZHOU HONGYI (BE); BROEKAERT WILLEM (BE); IRONOV) 3. Januar 2002 (2002-01-03) las ganze Dokument IRE A: "RNA-triggered gene silencing" RENDS IN GENETICS, ELSEVIER SCIENCE UBLISHERS B.V. AMSTERDAM, NL, id. 15, Nr. 9, September 1999 (1999-09-01), Seiten 358-363, XP004176656 SSN: 0168-9525 Las ganze Dokument MONTGOMERY ET AL: "RNA as a target of louble-stranded RNA-mediated genetic nterference in Caenorhabditis elegans" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, id. 95, Dezember 1998 (1998-12), Seiten 15502-15507, XP002138441 SSN: 0027-8424 Las ganze Dokument JESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, 327, Nr. 6, September 2001 (2001-09), Seiten 581-590, XP002187670 SSN: 0960-7412

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	ı	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9323551	A	25-11-1993	AU EP WO US ZA	4079493 A 0644942 A1 9323551 A1 5942657 A 9303361 A	13-12-1993 29-03-1995 25-11-1993 24-08-1999 23-09-1994
WO 0200894	Α	03-01-2002	AU WO	9165601 A 0200894 A2	08-01-2002 03-01-2002