Khôlles de Mathématiques - Semaine 15

Hugo Vangilluwen, Ober George, Felix Rondeau

20 Janvier 2024

1 Théorème de composition des limites

Soient g une fonction définie sur $\mathcal{D}_g \subset \mathbb{R}$ et f une fonction définie sur $\mathcal{D}_f \subset \mathbb{R}$ telle que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. Si f admet g admet une limite g en g et g en g et g admet g admet g comme limite en g.

Démonstration. Traitons le cas où $\ell \in \mathbb{R}$, $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

Soit $\varepsilon \in \mathbb{R}_+^*$ fixé quelconque.

Appliquons la définition de la convergence de g(y) vers ℓ en b pour cet ε :

$$\exists \eta_q \in \mathbb{R}_+^* : \forall y \in \mathcal{D}_q, |y - b| \leqslant \eta_q \implies |g(y) - \ell| \leqslant \varepsilon$$

Appliquons la définition de la convergence de f(x) vers b en a pour cet η_a :

$$\exists \eta_f \in \mathbb{R}_+^* : \forall x \in \mathcal{D}_f, |x - a| \leqslant \eta_f \implies |f(x) - b| \leqslant \eta_a$$

Soit $x \in \mathcal{D}_f$ fixé quelconque tel que $|x - a| \leq \eta_f$.

Alors, $|f(x) - b| \le \eta_g$ d'où $|g(f(x)) - \ell| \le \varepsilon$. Ce qui est exactement la définition de la convergence de $g \circ f$ vers ℓ en a.

2 Caractérisation séquentielle de la limite

Soit $f: \mathcal{D}_f \to \mathbb{R}, \ a \in \overline{\mathcal{D}_f} \ \text{et} \ \ell \in \overline{\mathbb{R}}$

$$f \text{ admet } \ell \text{ pour limite en } a \iff \left\{ \begin{array}{l} \text{pour toute suite } u \in \mathcal{D}_f^{\mathbb{N}}, \\ \text{si } u \text{ tend vers } a, \text{ alors } f(u) \text{ tend vers } \ell \end{array} \right.$$

Démonstration.

* Supposons que f admet ℓ pour limite en a. Traitons le cas $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$. Soit $u \in \mathcal{D}_f^{\mathbb{N}}$ fixée quelconque telle que u tend vers a. Soit $\varepsilon > 0$ fixé quelconque. Appliquons la définition de la limite de f en a pour ε :

$$\exists \eta > 0 : \forall x \in \mathcal{D}_f, |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon$$

Fixons un tel η et appliquons la définition de la convergence de u pour $\varepsilon \leftarrow \eta$:

$$\exists N \in \mathbb{N} : \forall n \geqslant N, |u_n - a| \leqslant \eta$$

Fixons un tel N. Soit $n \in \mathbb{N}$ tel que $n \ge N$. On a alors

$$|u_n - a| \leqslant \eta \implies |f(u_n) - \ell| \leqslant \varepsilon$$

Ce qui montre la convergence de $(f(u_n))_{n\in\mathbb{N}}$ vers ℓ .

* Réciproquement, raisonnons par contraposée et montrons l'implication suivante

$$\operatorname{non}(f \text{ admet } \ell \text{ pour limite en } a) \implies \underbrace{\operatorname{non}\left\{ \begin{array}{l} \text{pour toute suite } u \in \mathcal{D}_f^{\mathbb{N}}, \\ \text{si } u \text{ tend vers } a, \text{ alors } f(u) \text{ tend vers } \ell \end{array} \right.}_{\exists u \in \mathcal{D}_f^{\mathbb{N}}: u \text{ tend vers } a \text{ et } f(u) \text{ ne tend pas vers } \ell}$$

Supposons donc

$$\operatorname{non}(f \text{ admet } \ell \text{ pour limite en } a) \iff \operatorname{non}(\forall \varepsilon > 0, \exists \eta > 0 : \forall x \in \mathcal{D}_{\{}, |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon)$$

$$\iff \exists \varepsilon > 0 : \forall \eta > 0, \exists x \in \mathcal{D}_{f} : |x - a| \leqslant \eta \text{ et } |f(x) - \ell| > \varepsilon$$

$$\tag{2}$$

Fixons donc un tel ε et construisons une suite $u \in \mathcal{D}_f^{\mathbb{N}}$ telle que u tend vers a et f(u) ne tend

Soit $n \in \mathbb{N}$ fixé quelconque. Appliquons l'hypothèse (2) pour $\eta \leftarrow \frac{1}{2^n}$:

$$\exists x_n \in \mathcal{D}_f : |x_n - a| \leqslant \frac{1}{2^n} \text{ et } |f(x_n) - \ell| > \varepsilon$$

En relâchant le caractère fixé de n, on a constuit une suite $(x_n)_{n\in\mathbb{N}}\in\mathcal{D}_f^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, |x_n - a| \leqslant \underbrace{\frac{1}{2^n}}_{n \to \infty} 0$$

Donc $(x_n)_{n\in\mathbb{N}}$ tend vers a.

La suite vérifie aussi

$$\forall n \in \mathbb{N}, |f(x_n) - \ell| > \varepsilon$$

ce qui montre que $(f(x_n))_{n\in\mathbb{N}}$ ne converge pas vers ℓ car

$$\operatorname{non}((f(x_n))_{n\in\mathbb{N}} \text{ converge vers } \ell) \iff \operatorname{non}(\forall \varepsilon_1 > 0, \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies |f(x_n) - \ell| \leqslant \varepsilon_1)$$
$$\iff \exists \varepsilon_1 > 0 : \forall N \in \mathbb{N}, \exists n \in \mathbb{N} : n \geqslant N \text{ et } |f(x_n) - \ell| > \varepsilon_1$$

Ce qui est immédiat en posant $\varepsilon_1 = \varepsilon$ et pour n'importe quel N en posant n = N.

Deux stratégies pour prouver qu'une fonction n'admet 3 pas de limite en un point

Démonstration.

- Soit en exhibant une suite $(y_n)_{n\in\mathbb{N}}\in\mathcal{D}_f^{\mathbb{N}}$ qui tend vers a et telle que $(f(y_n))_{n\in\mathbb{N}}$ n'admet pas de limite en a.
 - Par exemple $f(x) = \cos \frac{1}{x}$ n'a pas de limite en zéro : observons que la suite $y = \left(\frac{1}{n\pi}\right)_{n \in \mathbb{N}^*}$ converge vers 0 tandis que la suite $f(y) = ((-1)^n)_{n \in \mathbb{N}^*}$ diverge.
- Soit en exhibant deux suites y, z qui tendent vers a et telles que $(f(y_n))_{n\in\mathbb{N}}$ et $(f(z_n))_{n\in\mathbb{N}}$ admettent deux limites différentes.
 - Par exemple, pour montrer que $f(x) = \sin x$ n'admet pas de limite en $+\infty$, il suffit d'observer que les suites $y=(n\pi)_{n\in\mathbb{N}}$ et $z=(2n\pi+\frac{\pi}{2})_{n\in\mathbb{N}}$ tendent vers $+\infty$ et ont respectivement pour suites images 0 et 1 qui convergent respectivement vers 0 et 1.

Passage à la limite dans une inégalité

Soient f et g définies sur \mathcal{D} et $a \in \overline{\mathcal{D}}$. Si

- $f \leq g$ sur un voisinnage de a
- ullet f et g admettent une limite finie en a

alors $\lim_{x \to a} f(x) \leqslant \lim_{x \to a} g(x)$

* En utilisant la caractérisation séquentielle de la limite

Traitons le cas $a = +\infty$.

Posons $\ell_f \in \mathbb{R}$ et $\ell_q \in \mathbb{R}$ les limites finies respectives de f et g.

Par définition de $a \in \overline{\mathcal{D}}$, $\exists (a_n)_{n \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}} : \lim_{n \to \infty} a_n = a = +\infty$.

Par définition de voisinnage de a en $+\infty$, $\exists A \in \mathbb{R} : \forall x \in \mathcal{D}, x \geqslant A \implies f(x) \leqslant g(x)$.

Fixons un tel A et appliquons la définition de la divergence de $(a_n)_{n\in\mathbb{N}}$ vers $+\infty$ pour A:

$$\exists N \in \mathbb{N} : \forall n \geqslant N, a_n \geqslant A$$

Fixons un tel N. On a alors

$$\forall n \geqslant N, a_n \geqslant A \implies f(a_n) \leqslant g(a_n)$$

Donc par passage à la limite dans l'inégalité pour les suites

$$\lim_{n \to \infty} f(a_n) \leqslant \lim_{n \to \infty} g(a_n)$$

donc par caractérisation séquentielle de la limite

$$\lim_{x \to a = +\infty} f(x) \leqslant \lim_{x \to a = +\infty} g(x)$$

★ En utilisant le caractère local de la limite Tout d'abord $f \leq g$ sur un voisinnage de a, donc $g - f \geq 0$ sur un voisinnage de a donc g - f = |g - f| sur un voisinnage de a. Or,

$$\lim_{x \to a} g(x) = \ell_g \\ \lim_{x \to a} f(x) = \ell_f \end{cases} \implies \lim_{x \to a} |g(x) - f(x)| = |\ell_g - \ell_f|$$

Donc, avec le caractère local de la limite, puisque g-f et |g-f| coïncident sur un voisinnage de a,

$$\lim_{x \to a} g(x) - f(x) = \lim_{x \to a} |g(x) - f(x)| = |\ell_g - \ell_f|$$

Or, on a aussi $\lim_{x\to a} g(x) - f(x) = \ell_g - \ell_f$. Donc

$$\ell_g - \ell_f = |\ell_g - \ell_f| \geqslant 0 \implies \ell_g \geqslant \ell_f$$

5 Limite de fonctions monotones sur un segment.

Soit f une fonction croissante définie sur]a,b[avec $(a,b)\in \overline{\mathbb{R}}^2, a < b.$

- Si f est majorée, alors f admet une limite finie en b qui vaut $\lim_{x\to b} f(x) = \sup f(|a,b|)$.
- Si f n'est pas majorée, alors f tend vers $+\infty$ en b.

Démonstration.

* Supposons que f est majorée sur]a,b[. L'ensemble f(]a,b[) est une partie de \mathbb{R} , non vide et majorée, donc admet une borne supérieure $S \in \mathbb{R}$. Montrons que $\lim_{x\to b} f(x) = S$. Soit $\varepsilon > 0$ fixé quelconque. On veut construire un $\eta > 0$ tel que $\forall x \in]b-\eta,b[$, $|f(x)-S| \leq \varepsilon$. D'après la caractérisation de la borne supérieure par les epsilon appliquée pour ε ,

$$\exists y_{\varepsilon} \in f([a, b[) : S - \varepsilon < y_{\varepsilon} \leqslant \varepsilon$$

Or, $y_{\varepsilon} \in f(]a, b[) \implies \exists x_{\varepsilon} \in]a, b[: y_{\varepsilon} = f(x_{\varepsilon}).$

Posons $\eta=b-x_{\varepsilon}>0$ et vérifions qu'il convient. Soit $x\in]b-\eta,b[$ fixé quelconque. on a

$$b - \eta < x \implies b - (b - x_{\varepsilon}) < x \implies x_{\varepsilon} < x \implies \underbrace{f(x_{\varepsilon})}_{y_{\varepsilon}} \leqslant f(x)$$

De plus, $f(x) \leq S$ par définition de la borne supérieure, donc

$$S - \varepsilon < y_{\varepsilon} \leqslant f(x) \leqslant S$$

Donc $|f(x) - S| \le \varepsilon$ ce qui prouve la convergence.

 \star Supposons que f n'est pas majorée sur]a,b[. On veut montrer que f tend vers $+\infty$, autrement dit que

$$\forall A \in \mathbb{R}, \exists \eta > 0 : \forall x \in]b - \eta, b[, f(x) \geqslant A$$

Soit $A \in \mathbb{R}$ fixé quelconque. f n'est pas majorée, donc $\exists x_0 \in]a, b[: f(x_0) \geqslant A$. Posons $\eta = b - x_0 > 0$. Soit $x \in]b - \eta, b[$ fixé quelconque.

$$b - \eta < x \implies b - (b - x_0) < x \implies x_0 < x \implies f(x_0) \leqslant f(x)$$

Donc $f(x) \ge f(x_0) \ge A$, donc $\forall x \in]b - \eta, b[, f(x) \ge A$. Ainsi f tend vers $+\infty$ en b.

6 Théorème des valeurs intermédiaires

Soit une fonction continue $f : [a; b] \to \mathbb{R}$ avec $(a, b) \in \mathbb{R}^2$ et a < b. Si $f(a)f(b) \leq 0$ alors $\exists c \in [a; b] : f(c) = 0$.

 $D\'{e}monstration$. La démonstration repose sur la technique de la dichotomie.

Soient a, b, f de tels objets. Procédons à la construction des suites $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}}$. Posons $a_0 = a, b_0 = b$ et $c_0 = \frac{a+b}{2}$ (le milieu du segment [a;b]).

Nous avons, par hypothèse $f(a_0)f(b_0) \leq 0$. Soit $n \in \mathbb{N}$ fixé quelconque.

Supposons les trois suites construites au rang n telles que $f(a_n)f(b_n) \leq 0$ et $c_n = \frac{a_n + b_n}{2}$.

— Si
$$f(a_n)f(c_n) \leq 0$$
, posons

$$\begin{cases} a_{n+1} = a_n \\ b_{n+1} = c_n \\ c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2} \end{cases}$$

— Sinon $f(a_n)f(c_n) > 0$. Comme $f(a_n)f(b_n) \leq 0$, on a en multipliant par $f(a_n)f(b_n)$

$$f(a_n)^2 f(b_n) f(c_n) \le 0$$
 donc $f(b_n) f(c_n) \le 0$

Posons

$$\begin{cases} a_{n+1} = c_n \\ b_{n+1} = b_n \\ c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2} \end{cases}$$

Ainsi, nous avons bien construits $a_{n+1}, b_{n+1}, c_{n+1}$ telles que $f(a_{n+1})f(b_{n+1}) \leq 0$ et $c_{n+1} = \frac{a_{n+1}+b_{n+1}}{2}$. Par récurrence immédiate, $(a_n)_{n \in \mathbb{N}}$ est croissante, $(b_n)_{n \in \mathbb{N}}$ est décroissante et $\forall n \in \mathbb{N}, b_n - a_n = \frac{b-a}{2^n}$ d'où $b_n - a_n \xrightarrow[n \to +\infty]{} 0$. Les suites a et b sont donc adjacentes.

D'après le théorème des suites adjacentes, elles convergent vers la même limite. Notons la c. D'après le bonus de ce même théorème, $\forall n \in \mathbb{N}, a_n \leqslant c \leqslant b_n$ donc pour $n=0, a \leqslant c \leqslant b$. Ainsi, $c \in [a;b]$.

Par ailleurs, $\forall n \in \mathbb{N}, f(a_n)f(b_n) \leq 0$. Par continuité de f sur [a;b] donc en c, $f(a_n) \xrightarrow[n \to +\infty]{} f(c)$ et $f(b_n) \xrightarrow[n \to +\infty]{} f(c)$. Ainsi, par passage à limite dans l'inégalité,

$$f(c) \times f(c) \leqslant 0$$

Or $f(c)^2 \ge 0$, d'où $f(c)^2 = 0$. Ainsi,

$$f(c) = 0$$

Donc c est un point fixe.

7 Théorème de Weierstraß

L'image d'un segment par une fonction continue sur ce segment est un segment : soient $(a,b) \in \mathbb{R}^2$ tels que a < b et $f : [a,b] \to \mathbb{R}$. Si $f \in \mathcal{C}^0([a,b],\mathbb{R})$ alors $\exists (x_1,x_2) \in \mathbb{R}^2 : f([a,b]) = [f(x_1),f(x_2)]$.

Démonstration.

— Étape 1 Montrons que f([a,b]) est majoré. Par l'absurde, supposons que f([a,b]) n'est pas majoré

Alors

$$\forall A \in \mathbb{R}, \exists x \in [a, b] : f(x) > A \tag{3}$$

Soit $n \in \mathbb{N}$ fixé quelconque. Appliquons (3) pour $A \leftarrow n : \exists x \in [a,b] : f(x) > n$, et fixons un tel x que l'on note x_n Nous venons de créer la suite $(x_n)_{n \in \mathbb{N}} \in [a,b]^{\mathbb{N}}$ qui vérifie :

$$\forall n \in \mathbb{N}, f(x_n) \geqslant n \\ \lim_{n \to \infty} n = +\infty \end{cases} \} \underset{\text{th\'eor\`eme de divergence par minoration}}{\Longrightarrow} f(x_n) \xrightarrow[n \to +\infty]{} +\infty$$

 $(x_n)_{n\in\mathbb{N}}$ est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

$$\exists \ell \in \mathbb{R}: \exists \varphi: \mathbb{N} \to \mathbb{N}: \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} +\infty \end{cases}$$

donc $(f(x_{\varphi(n)}))_{n\in\mathbb{N}}$, tend vers $+\infty$, ce qui est absurde, donc f est majorée. On fait de même pour la minoration.

Étape 2: Montrons que f([a,b]) admet un pge et un ppe. Montrons donc que f([a,b]) admet une borne sup, qui, puisque c'est une valeur atteinte, deviendra un max.

$$f([a,b])$$
 est
$$\begin{cases} & \text{une partie de } \mathbb{R} \\ & \text{non vide car contient } f(a) \\ & \text{majorée d'après l'étape 1} \end{cases}$$

f([a,b]) admet donc une borne supérieure σ .

Appliquons la caractérisation séquentielle de la borne supérieure :

$$\exists (y_n)_{n\in\mathbb{N}}, \in f([a,b])^{\mathbb{N}} : (y_n) \text{ converge vers } \sigma$$

$$\forall n \in \mathbb{N}, y_n \in f([a, b]) \implies \exists x_n \in [a, b] : f(x_n) = y_n$$

Fixons un tel x_n pour tout y_n . On a donc construit $(x_n)_{n\in\mathbb{N}}\in[a,b]^{\mathbb{N}}:f(x_n)\xrightarrow[n\to+\infty]{}\sigma$

De plus, (x_n) est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

$$\exists \ell \in \mathbb{R} : \exists \varphi : \mathbb{N} \to \mathbb{N} : \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or,

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} \sigma \end{cases}$$

Par unicité de la limite, $\sigma = f(\ell)$.

On montre de même qu'il existe $\ell' \in [a, b] : f(\ell') = \inf f([a, b])$

Ainsi,
$$f(\ell) = \max f([a, b])$$
 et $f(\ell') = \min f([a, b])$

— Étape 3: Montrons que $f([a,b]) = [f(\ell'), f(\ell)].$

Par la construction précédente, $\forall y \in f([a,b]), y \in [f(\ell'), f(\ell)].$

Ainsi, $f([a,b]) \subset [f(\ell'), f(\ell)].$

Réciproquement, l'image par la fonction continue f du segment [a,b] qui est un intervalle est un intervalle :

$$\left. \begin{array}{l} f([a,b]) \text{ est un intevalle} \\ f(\ell) \in f([a,b]) \\ f(\ell') \in f([a,b]) \end{array} \right\} \implies [f(\ell'),f(\ell)] \subset f([a,b])$$

D'où $[f(\ell'), f(\ell)] = f([a, b])$

8 Théorème de la bijection

Soit f une fonction continue et strictement monotone définie sur un intervalle I. Alors

- (i) f est une bijection de I dans f(I)
- (ii) f^{-1} est une fonction strictement monotone et continue sur f(I).

Démonstration.

- ightharpoonup Résultat préliminaire. Soit f une fonction monotone définie sur un intervalle $I \subset \mathbb{R}$. Supposons que f est croissante (il suffit d'appliquer ce résultat à -f pour prouver l'autre cas). Soit $x_0 \in I$ fixé quelconque.
 - * Supposons que x_0 est un point intérieur à I. Alors, $\exists \eta \in \mathbb{R}_+^* : [x_0 \eta, x_0 + \eta] \subset I$. La fonction f est croissante sur $[x_0 \eta, x_0[$ et majorée par $f(x_0)$ donc f admet une limite finie à gauche ℓ_g en x_0 .

De même, f étant croissante sur $]x_0, x_0 + \eta]$, elle admet une limite finie à droite ℓ_d en x_0 .

De plus,

$$f(x_0 - \eta) \leqslant \ell_q \leqslant f(x_0) \leqslant \ell_d \leqslant f(x_0 + \eta)$$

Supposons que $\ell_g < f(x_0)$. Montrons alors que $y_0 = \frac{\ell_g + f(x_0)}{2}$ ne possède aucun antécédent par f ce qui contredit le fait que f(I) est un intervalle car

$$(f(x_0 - \eta), f(x_0)) \in f(I)^2 \implies [f(x_0 - \eta), f(x_0)] \subset f(I)$$

en effet,

- si $x \in I$ vérifie $x < x_0$, alors $f(x) \leq \sup f(I \cap]-\infty, x_0[) = \ell_q < y_0$
- si $x \in I$ vérifie $x \ge x_0$, alors $f(x) \ge f(x_0) > y_0$

par conséquent, $y_0 \notin f(I)$.

Ainsi, $\ell_g = f(x_0)$ et on montre de même que $f(x_0) = \ell_d$ si bien que nous pouvons conclure que f est continue en x_0 .

- * Supposons à présent que x_0 est un bord de I. Il suffit d'adapter la preuve ci-dessus en ne considérant que l'intervalle contenant I à choisir entre $[x_0, +\infty[$ et $]-\infty, x_0]$.
- \triangleright **Preuve du théorème.** Soit de tels objets. La preuve de la surjectivité est triviale car on se limite à f(I). Celle de l'injectifité vient de la stricte monotonie de f. Montrons donc le second point.
 - f est continue sur l'intervalle I donc J = f(I) est un intervalle.
 - f est bijective et monotone donc f^{-1} est monotone, et de plus, $f^{-1}(I) = J$ est un intervalle donc (résultat précédent), f^{-1} est continue sur J.