SF1626 Flervariabelanalys Föreläsning 10

Hans Thunberg

Institutionen för matematik, KTH

VT 2018, Period 4

SF1626 Flervariabelanalys

Dagens Lektion

■ Dubbelintegraler: Avsnitt 14.1-14.2

SF1626 Flervariabelanalys

Envariabelintegral definierad av Riemannsumma

Envariabelintegralen ges av gränsvärden av Riemannsummor.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty, \max \Delta x_{i} \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}$$

där c_k är någon godtycklig punkt i intervallet $[x_{k-1}, x_k]$.

Ändliga Riemannsummor ger approximationer till integralen, $\int_a^b f(x) dx \approx \sum_{k=1}^n f(c_k) \Delta x_k.$

Att beräkna volym under en funktionsgraf, i rummet.

Se: http://demonstrations.wolfram.com/InterpretingDoubleIntegralAsAVolume/

Figur: Grov approximation

Figur: Finare approximation

Vad är en dubbelintegral?

Dubbelintegralen av *f* över den axelparallella rektangeln *D* definieras via gränsvärden av Riemannsummor

$$\iint_D f(x,y) \, dxdy = \lim \sum_{j,k} f(x_{jk}^*, y_{jk}^*) \, \Delta x_j \Delta y_k$$

Gränsvärdet tas genom att antalet delrektanglar går mot oändligheten och att delrektanglarna blir mindre och mindre.

Vad är en dubbelintegral?

Dubbelintegralen av *f* över den axelparallella rektangeln *D* definieras via gränsvärden av Riemannsummor

$$\iint_D f(x,y) \, dxdy = \lim \sum_{j,k} f(x_{jk}^*, y_{jk}^*) \, \Delta x_j \Delta y_k$$

Gränsvärdet tas genom att antalet delrektanglar går mot oändligheten och att delrektanglarna blir mindre och mindre.

Varje term $f(x_{jk}^*, y_{jk}^*) \Delta x_j \Delta y_k$ är volymen av en rätblock, enligt figuren ovan. Riemannsumman $\sum_{j,k} f(x_{jk}^*, y_{jk}^*) \Delta x_j \Delta y_k$ är summan av alla dessa volymer.

Hemma: Läs sidorna 809–811, egenskaper hos integraler.

Approximation av dubbelintegral?

Uppgift: Låt D vara kvadraten $|x| \le 2$, $|y| \le 2$. Approximera dubbelintegralen

$$\iint_D (x^2 + y^2) \, dx dy$$

med hjälp av en Riemannsumma med fyra delrektanglar.

Obs att det finns många olika sätt att göra detta som ger oilka approximativa värden

Två användbara egenskaper hos dubbelintegraler (sida 811)

1. Om $D=D_1\cup D_2$ och $D_1\cap D_2=\emptyset$ så är

$$\iint_D f(x,y) dA = \iint_{D_1} f(x,y) dA + \iint_{D_2} f(x,y) dA,$$

Kan användas i beräkningar, då området D är komplicerat, och kan delas upp i enklare delar.

Två användbara egenskaper hos dubbelintegraler (sida 811)

1. Om $D=D_1\cup D_2$ och $D_1\cap D_2=\emptyset$ så är

$$\iint_D f(x,y) dA = \iint_{D_1} f(x,y) dA + \iint_{D_2} f(x,y) dA,$$

Kan användas i beräkningar, då området D är komplicerat, och kan delas upp i enklare delar.

2. $\iint_D 1 dA = \text{arean av } D$.

Kan användas för areaberäkningar.

Dubbelintegraler över allmänna områden

Om integrationsområdet D inte är en axelparallell rektangel gör man följande lilla trick för att definiera integralen av f över D:

Låt R vara en axelparallell rektangel sådan att $D \subset R$. Inför funktionen

$$\hat{f}(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$$

och defniera sedan

$$\iint_D f(x,y) dA = \iint_R \hat{f}(x,y) dA$$

Uppgift: Dubbelintegraler - att utnyttja symmetrier

Låt D vara området som ges av olikheterna $0 \le y \le 1 - x^2$. Beräkna integralen

$$\iint_D x \, dx dy$$

Tips: Rita området och visualisera grafen till z(x, y) = x.

Uppgift: Dubbelintegraler - att utnyttja symmetrier

Låt D vara området som ges av olikheterna $0 \le y \le 1 - x^2$. Beräkna integralen

$$\iint_D x \, dx dy$$

Tips: Rita området och visualisera grafen till z(x, y) = x.

Svar: 0.

Beräkning genom upprepade enklintegraler över **enkla områden**

Figur: Enkel i x-riktning. $c \le y \le d$, $h_1(y) \le x \le h_2(y)$

Figur: Enkel i y-riktning. $a \le x \le b$, $g_1(x) \le y \le g_2(x)$

Beräkning genom upprepade enklintegraler över **enkla områden**

För enkla områden enligt bilderna ovan gäller att

Beräkning genom upprepade enklintegraler över **enkla områden**

För enkla områden enligt bilderna ovan gäller att

Enkel i x-riktning: Integrera först i x-led, sedan i y-led,

$$\iint_D f(x,y)dA = \int_c^d \left(\int_{h_1(y)}^{h_2(y)} f(x,y)dx \right) dy.$$

Beräkning genom upprepade enklintegraler över **enkla områden**

För enkla områden enligt bilderna ovan gäller att

Enkel i x-riktning: Integrera först i x-led, sedan i y-led,

$$\iint_D f(x,y)dA = \int_c^d \left(\int_{h_1(y)}^{h_2(y)} f(x,y)dx \right) dy.$$

Enkel i y-riktning: Integrera först i y-led, sedan i x-led,

$$\iint_D f(x,y)dA = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y)dy \right) dx.$$

Dubbelintegraler över axelparallella rektanglar

Exempel 1. För $D = \{(x, y) : 0 \le x \le 2 \text{ och } 0 \le y \le 1\}$ beräkna

$$\iint_D xy^2 \, dxdy.$$

Dubbelintegraler över axelparallella rektanglar

Exempel 1. För $D = \{(x, y) : 0 \le x \le 2 \text{ och } 0 \le y \le 1\}$ beräkna

$$\iint_D xy^2 dxdy.$$

D är en axelparallell rektangel och därför enkel i både x- och y-led. Vi väljer att integrera i x-led först.

$$\iint_D xy^2 dxdy = \{\text{skriv om}\} = \int_0^1 y^2 \left(\int_0^2 x dx\right) dy$$

Dubbelintegraler över axelparallella rektanglar

Exempel 1. För $D = \{(x, y) : 0 \le x \le 2 \text{ och } 0 \le y \le 1\}$ beräkna

$$\iint_D xy^2 dxdy.$$

D är en axelparallell rektangel och därför enkel i både x- och y-led. Vi väljer att integrera i x-led först.

$$\iint_{D} xy^{2} dxdy = \{\text{skriv om}\} = \int_{0}^{1} y^{2} \left(\int_{0}^{2} x dx\right) dy$$
$$= \int_{0}^{1} y^{2} \left(\left[x^{2}/2\right]_{0}^{2}\right) dy =$$

Dubbelintegraler över axelparallella rektanglar

Exempel 1. För $D = \{(x, y) : 0 \le x \le 2 \text{ och } 0 \le y \le 1\}$ beräkna

$$\iint_D xy^2 dxdy.$$

D är en axelparallell rektangel och därför enkel i både x- och y-led. Vi väljer att integrera i x-led först.

$$\iint_{D} xy^{2} dxdy = \{\text{skriv om}\} = \int_{0}^{1} y^{2} \left(\int_{0}^{2} x dx \right) dy$$
$$= \int_{0}^{1} y^{2} \left(\left[x^{2}/2 \right]_{0}^{2} \right) dy = \int_{0}^{1} 2y^{2} dy = \frac{2}{3}.$$

Hemma: Börja istället med att integrera i y-led.

Dubbelintegraler över axelparallella rektanglar

Uppgift: För $D = \{(x, y) : 1 \le x \le 3 \text{ och } 2 \le y \le 4\}$ beräkna

$$\iint_D (x+xy)\,dxdy.$$

Dubbelintegraler över axelparallella rektanglar

Uppgift: För $D = \{(x, y) : 1 \le x \le 3 \text{ och } 2 \le y \le 4\}$ beräkna

$$\iint_D (x+xy)\,dxdy.$$

Lösning:

$$\iint_{D} (x + xy) \, dxdy = \int_{1}^{3} \int_{2}^{4} (x + xy) \, dy \, dx$$
$$= \int_{1}^{3} [xy + xy^{2}/2]_{2}^{4} \, dx$$
$$= \int_{1}^{3} 8x \, dx$$
$$= 32$$

Dubbelintegraler över enkla områden

$$\iint_{D} xydA.$$

Dubbelintegraler över enkla områden

$$\iint_D xydA.$$

Dubbelintegraler över enkla områden

$$\iint_D xydA.$$

$$\iint_D xydA = \int_0^1 y \left(\int_0^y x \, dx \right) dy$$

Dubbelintegraler över enkla områden

$$\iint_D xydA.$$

$$\iint_{D} xydA = \int_{0}^{1} y \left(\int_{0}^{y} x dx \right) dy$$
$$= \int_{0}^{1} y \left(\left| \left[x^{2}/2 \right]_{0}^{y} dx \right) dy$$

Dubbelintegraler över enkla områden

$$\iint_D xydA.$$

$$\iint_{D} xydA = \int_{0}^{1} y \left(\int_{0}^{y} x dx \right) dy$$
$$= \int_{0}^{1} y \left(\left| \left[x^{2}/2 \right]_{0}^{y} dx \right) dy$$
$$= \int_{0}^{1} y (y^{2}/2) dy = 1/8.$$

Dubbelintegraler i enkla områden

Uppgift: Beräkna samma integral som ovan, dock m.a.p. y-variabel först.

$$\iint_D xydA = \int_{?}^{?} x \left(\int_{?}^{?} y \, dy \right) dx$$

Uppgift:

Beräkna samma integral då D är triangeln med hörn i (0,0), (1,1), (2,0)

Dubbelintegraler i enkla områden

Uppgift: Beräkna samma integral som ovan, dock m.a.p. y-variabel först.

$$\iint_D xydA = \int_{?}^{?} x \left(\int_{?}^{?} y \, dy \right) dx$$

Uppgift:

Beräkna samma integral då D är triangeln med hörn i (0,0), (1,1), (2,0)

Svar 1/3.

Volymberäkning med dubbelintegral

Beräkna volymen hos den tetraeder som begränsas av plan som passerar genom punkterna

samt koordinatplanen:
$$z = 0$$
, $x = 0$, $y = 0$.

Volymberäkning

Lösning

Volymen *V* ges av en dubbelintegral över det mörkblåa området i xy-planet där integranden är "övre yta - undre yta". ¹

¹Alternativ:.en trippelintegral av funktionen f(x, y, z) = 1 över tetraedern.

Volymberäkning

Lösning

Volymen *V* ges av en dubbelintegral över det mörkblåa området i xy-planet där integranden är "övre yta - undre yta". ¹

Vi måste hitta ekvatione för det planet som går genom de tre punkterna A, B och C ("övre ytan"), och sedan hitta gränserna för x, y-variablerna som bestämmer den mörkblåa triangeln AOB i xy-planet.

¹ Alternativ:.en trippelintegral av funktionen f(x, y, z) = 1 över tetraedern.

Volymberäkning

Lösning

Volymen *V* ges av en dubbelintegral över det mörkblåa området i xy-planet där integranden är "övre yta - undre yta". ¹

Vi måste hitta ekvatione för det planet som går genom de tre punkterna A, B och C ("övre ytan"), och sedan hitta gränserna för x, y-variablerna som bestämmer den mörkblåa triangeln AOB i xy-planet.

Ekvationen för planet genom A, B, C blir 6x + 3y + 2z = 6. Vi ser att z = (6 - 3y - 6x)/2.

¹ Alternativ:.en trippelintegral av funktionen f(x, y, z) = 1 över tetraedern.

Volymberäkning

Lösning

Volymen *V* ges av en dubbelintegral över det mörkblåa området i xy-planet där integranden är "övre yta - undre yta". ¹

Vi måste hitta ekvatione för det planet som går genom de tre punkterna A, B och C ("övre ytan"), och sedan hitta gränserna för x, y-variablerna som bestämmer den mörkblåa triangeln AOB i xy-planet.

Ekvationen för planet genom A, B, C blir 6x + 3y + 2z = 6. Vi ser att z = (6 - 3y - 6x)/2.

Vidare varierar x, y i triangeln AOB.

¹ Alternativ:.en trippelintegral av funktionen f(x, y, z) = 1 över tetraedern.

Volymberäkning

Lösning: Låt D vara triangeln AOB. Vi får då

$$V = \iint_D \frac{6 - 3y - 6x}{2} - 0 \, dA = \iint_D \frac{6 - 3y - 6x}{2} \, dA.$$

Volymberäkning

Lösning: Låt D vara triangeln AOB. Vi får då

$$V = \iint_D \frac{6 - 3y - 6x}{2} - 0 \, dA = \iint_D \frac{6 - 3y - 6x}{2} \, dA.$$

Volymberäkning

Lösning: Låt D vara triangeln AOB. Vi får då

$$V = \iint_D \frac{6 - 3y - 6x}{2} - 0 \, dA = \iint_D \frac{6 - 3y - 6x}{2} \, dA.$$

Linjen genom AB ges av y = 2 - 2x, och därför är

Volymberäkning

Lösning: Låt D vara triangeln AOB. Vi får då

$$V = \iint_D \frac{6 - 3y - 6x}{2} - 0 \, dA = \iint_D \frac{6 - 3y - 6x}{2} \, dA.$$

Linjen genom AB ges av y = 2 - 2x, och därför är

$$D = \{0 < x < 1, \ 0 < y < 2 - 2x\}$$

Volymberäkning

Lösning fortsättning:

$$\iint_{D} \frac{6 - 3y - 6x}{2} dA = \int_{0}^{1} \left(\int_{0}^{2 - 2x} \frac{6 - 3y - 6x}{2} dy \right) dx$$
$$= \frac{1}{2} \int_{0}^{1} \left[6y - \frac{3}{2}y^{2} - 6xy \right]_{0}^{2 - 2x} dx = 3 \int_{0}^{1} (1 - 2x + x^{2}) dx = 1$$

Användning av symmetri

Uppgift: : Vad blir (utan att räkna) dubbelintegralerna

$$\iint_D x \, dxdy, \qquad \iint_D y \, dxdy, \qquad \iint_D (ax + by) \, dxdy$$

om *D* är cirkelskivan som ges av $x^2 + y^2 \le 1$?

Se flera exempel i de gamla tentorna.

Uppgift 3b) i Tentamen 2017-10-26

https://kth.instructure.com/courses/2523/files/510231/download?wrap=1 Uppgift 2b) i Tentamen 2017-08-17

https://kth.instructure.com/courses/2523/files/284126/download?wrap=1

minitenta

1) Beräkna integralen

$$\int_0^1 dx \int_x^1 e^{y^2} dy$$

Går det att byta integrationsordning?

2) Beräkna arean av området D som ges av

$$D = \{(x, y) : y^2 - 1 \le x \le 1 - y^2\}$$

3) Beräkna volymen av den kropp som ligger mellan ytorna

$$z = 4 - x^2$$
 och $z = x + y$

 $d\mathring{a} |x| \le 1 \text{ och } |y| \le 1$