

រៀបរៀចដោយ **លឹម ផល្គូល សិច សែល ពិសិជ្ជ** ចរិញ្ញាចត្រដ្ឋែកគណិតទិញ

ស្រម**តាម**គម្ភទីនីសិត្សាថ្ងឺ

កណះកម្មាការជិពជ្ជ ជិជ រៀបរៀជ លោក លឹម ផល្គុន លោក សែន ពិសិដ្ឋ កណះកម្មាការត្រួតពិជិត្យបច្ចេកាឧស

កណះកម្មាការត្រួតពិន្យអក្ខារាវិរុន្ឋ លោក លឹម មិត្តសិរ

ការិយកុំព្យុ ខែ ខេខា ខំព័រ និ ខែ ក្រម លោក អ៊ឹង សំណាង ហេក ព្រំ ម៉ាឡា កញ្ញា លី តុណ្ណាកា

ទាតិតារ

		នំព័រ
ខំពុ គនិ១	តក្កទិន្យា	009
៩ពុ គនិ២	စိသိရ ဲ့	900%
ខំពុ ភនិ៣	ចំនួន ពេសុធា ម្រព័ន្ធខោច់	00ଶ
ខំពុ គនិ៍៤	សទីភា៖	geo
ខំពុ គនិ៥	ស្ទឹងនៃទំនួនពិង	oอ๗
ខំពុ គនិ៦	អតុគមស៍គ្រីអោណមាត្រ	obd
ខពុ ភនិ៧	អនុគមន៍អិចស្បូណទ់ស្យែល និទ លោការីគ	om&
ខំពុ គនិ ៤	ญี่อีส ถือ สาดชาช์โลหลุลชล์	ome
ខំពុ គនិ៩	ជេរី ខេ នៃអនុគមន៍	0હેર્દ
ខំពុ គនិ១០	អាំ១ គេ គ្រាល	Oଝଗ
ខំពុ គនិ១១	សទីភារឌីផេរទ់ស្យែស	990
៩ពុភនិ១២	ទឹន រ័ ដ្ ខលំមា	09&
ខំពុ ភនិ១៣	ចំ នួ នកុំផ្លិច	odu
ខំពុ ភនិ១៤	ទ្រឹស្តីមនត្តទទ្រីកោណ	0 ಡೆ ಡೆ
ខំពុ គនិ១៥	ទឹស មនាពទំនួនពិ ង	909
ខ្វីជំង្គង្គ	ลาดเ ัยห ะ าช่	999
ខំពុ កនិ១៧	អតុគមស៍អ៊ីពែច្លល់ិក	995
ខំពុ កនី១៤	ទឹនាគមល្ស	໑ຓ໑

ខំពុកន៍0១

តត្តទិន្សា

9_ക്ജേ

ខ្លួយឧត្តល

- ្ន សំណើ គឺជាអំណៈអំណាងទាំងឡាយណាដែលគេអាចសម្រេចថាពិត ឬក៏ មិនពិត ។
- ្ន គេតាងឈ្មោះនៃសំណើដោយអក្សរ p ,q ,r , s ,.... ។
- ្ន បើ ${f p}$ ជាសំណើពិតនោះ ${f p}$ មានតម្លៃភាពពិតស្មើនឹង ${f 1}$ គឺ គ. $({f p})$ = ${f 1}$
- $_{-}$ បើ $_{\mathbf{p}}$ ជាសំណើមិនពិតនោះ $_{\mathbf{p}}$ មានតម្លៃភាពពិតស្មើនឹង $_{\mathbf{0}}$ គឺ ត $_{-}$ ($_{\mathbf{p}}$) $_{\mathbf{0}}$

២_ឈ្ងាច់តក្អទិន្យា

ក.ឈ្លាច់និទ (^)

- ្ន គេកំនត់សរសេរ **p**∧q អានថា **p** និង q
- សំណើ p∧q ពិតតែក្នុងករណីសំណើ p និង q ពិត ខ.ឈ្លាច់ចូ (∨)
- ្ គេកំនត់សរសេរ p v q អានថា p ប្ q
- _ សំណើ $\mathbf{p} orall \mathbf{q}$ មិនពិតតែក្នុងករណីសំណើ \mathbf{p} និង \mathbf{q} មិនពិតទាំងពីរ

ម្រស្មីរួមមន្តគណិតទិន្សា

a.wpisso (____)

- ្ន គេកំនត់សរសេរ $\stackrel{-}{\mathbf{p}}$ អានថា មិន \mathbf{p}
- ្ន សំណើ \mathbf{p} និង សំណើ \mathbf{p} មានតម្លៃភាពពិតខុសគ្នា ។ \mathbf{w} .ឈ្លាច់សំឡ (\Longrightarrow)
- $_{-}$ គេកំនត់លរលេរ $\mathbf{p} \Rightarrow \mathbf{q}$ អានថា \mathbf{p} នាំឲ្យ \mathbf{q}
- _ សំណើ **p** ⇒ **q** មិនពិតតែក្នុងករណីសំណើ **p** ពិត និង **q** មិនពិត ក្រៅពីនេះវាជាសំណើពិត ។
 - 🗷 p ជាលក្ខខណ្ឌគ្រប់គ្រាន់ដើម្បីឲ្យ q ។
 - 🗷 q ជាលក្ខខណ្ឌចាំបាច់ដើម្បីឲ្យ p ។

e.wrighted (\Leftrightarrow)

- _ គេកំនត់សរសេរ $\mathbf{p} \Leftrightarrow \mathbf{q}$ អានថា \mathbf{p} សមមូល \mathbf{q}
- _ សំណើ **p** ⇔ **q** ពិតតែក្នុងករណីដែលសំណើ **p** និងសំណើ **q** មានតម្លៃភាពបិតដូចគ្នា ។
 - 🗷 p ជាលក្ខខណ្ឌចាំបាច់ និងគ្រប់គ្រាន់ដើម្បីឲ្យ q ។
- $\text{ ingist } p \Leftrightarrow q = (p \Rightarrow q) \land (q \Rightarrow p)$

ម្រស្សមមន្តគណិតទិន្យា

៣_ទ្រនេងនៃសទ្រាយមញ្ជាក់

ក. សម្រាយមញ្ជាក់ដោយផ្ទាល់

ប្រភេទនៃសម្រាយបញ្ហាក់នេះគឺជាការស្រាយបញ្ហាក់ត្រង់ៗទៅតាមអ្វីដែល គេចង់បាន ។

ខ. សម្រាយបញ្ជាក់តាមសំណើឡុយពីសម្មតិកម្ម

រប្បើបដោះស្រាយ

ឧបមាថា គេចង់បង្ហាញសំណើ $\mathbf{p} \Rightarrow \mathbf{q}$ ពិត

- ្ន ជំហ៊ានទី១ ត្រូវកំនត់សំណើ **p** និង សំណើ **q** ឲ្យបានត្រឹមត្រូវ។
- ្ន ជំហ៊ានទី២ ត្រូវកំនត់សំណើ $\stackrel{-}{\mathbf{p}}$ និងសំណើ $\stackrel{-}{\mathbf{q}}$ ។
- ្ន ជំហ៊ានទី៣ គេផ្តើមពី \mathbf{q} បញ្ជាក់រហូតគេបានសំណើ \mathbf{p} ដែលជា សំណើផ្តុយពីសម្មតិកម្ម គឺមានន័យថាគេបានបង្ហាញថា $\mathbf{q} \Rightarrow \mathbf{p}$ ពិត ដូចនេះគេបានសំណើ $\mathbf{p} \Rightarrow \mathbf{q}$ ពិត ។

គ. សម្រាយបញ្ជាក់ផ្ទុយពីភារពិត

រប្បើបដោះស្រាយ

- ្ន ជំហ៊ានទី១ តាង **p** ជាសំណើដែលត្រូវបង្ហាញ ។
- ្ន ជំហ៊ានទី២ ត្រូវកំនត់សំណើ $ar{f p}$ ។
- $_{-}$ ជំហ៊ានទី៣ ឧបមាថាសំណើ $_{f p}^{-}$ ពិត រួចបកស្រាយបន្តបន្ទាប់រហូត

រុមស្ទឹមមន្ត្តគណិតទិន្សា

ដល់បានលទ្ធផលផ្ទុយពីទ្រឹស្តីគណិតវិទ្យា ។ គេបានសំណើ $\bar{\mathbf{p}}$ មិនពិត ។ ដូចនេះសំណើ \mathbf{p} ពិត (ព្រោះតម្លៃភាពពិតរវាងសំណើ \mathbf{p} និង $\bar{\mathbf{p}}$ មានតម្លៃផ្ទុយគ្នា) ។

ឃ. សម្រាយបញ្ជាក់តាមធ្វេលក្នុខណ្ឌ

រប្បើបដោះស្រាយ

- _ ជំហ៊ានទី១ បង្ហាញលក្ខខណ្ឌចាំបាច់ $\mathbf{p} \Rightarrow \mathbf{q}$
- _ ជំហ៊ានទី២ បង្ហាញលក្ខខណ្ឌគ្រប់គ្រាន់ $\mathbf{q} \Rightarrow \mathbf{p}$

សម្រាយមញ្ជាក់កាមខ្មួនរមរណ៍ផ្តុញ្ញ

វិធីនេះតម្រូវឲ្យគេរកឧទាហរណ៍មួយមកបញ្ជាក់ថាសំណើដែលត្រូវបង្ហាញ ជាសំណើមិនពិត ។

ម្រស្មីរួមមន្ត្តគណិតទិន្សា

មិព្ធភិត្តិ ១

សំណ៌្

- 🗷 សំណុំ គឺជាបណ្ដុំនៃវត្ថុ ដែលកំនត់ដោយលក្ខខណ្ឌជាក់លាក់ ។
- 🗷 ចំនួនធាតុនៃសំណុំ A តាងដោយ $\mathbf{n}(\mathbf{A})$ ។
- 🗷 សំណុំទទេ គឺជាសំណុំដែលគ្មានធាតុសោះ ហើយតាងដោយ 🗘 ។
- ការកំនត់សំណុំមានពីររប្យេប ៖ កំនត់តាមការរ្យេបរាប់ឈ្មោះធាតុនិង កំនត់តាមលក្ខណៈរួមនៃធាតុ ។
- ៩ សំណុំរាប់អស់ជាសំណុំដែលមានចំនួនធាតុជាចំនួនកំនត់ ។ សំណុំ អនន្តជាសំណុំដែលមានចំនួនធាតុច្រើនរាប់មិនអស់ ។
- 🗷 សំណុំស្មើគ្នាកាលណាសំណុំទាំងពីរមានបញ្ជីឈ្មោះធាតុដូចគ្នា ។
- \mathcal{L} ប៊ើ \mathbf{A} ជាសំណុំរង់នៃ \mathbf{B} នោះ $\mathbf{n}(\mathbf{A}) \leq \mathbf{n}(\mathbf{B})$ ។
- \mathcal{L} បើ \mathbf{A} ជាសំណុំរងផ្ទាល់នៃ \mathbf{B} នោះ $\mathbf{n}(\mathbf{A}) < \mathbf{n}(\mathbf{B})$ ។
- សំណុំសកលគឺជាសំណុំដែលមានគ្រប់ធាតុដែលគេបានជ្រើសរើសយកមកសិក្សា ។
- \mathcal{L} សំណុំប្រល្ធ $\mathbf{A} \cap \mathbf{B} = \{ \mathbf{x} \in \mathbf{A} \ \hat{\mathbf{S}}$ ង $\mathbf{x} \in \mathbf{B} \}$

ម្រស្ស៊ីមេមន្តគណិតទិន្សា

$$\mathcal{L}$$
 សំណុំ \mathbf{A} និង \mathbf{B} ជាសំណុំដាច់គ្នាលុះត្រាតែ $\mathbf{A} \cap \mathbf{B} = \emptyset$ ។

$$A \cap \overline{A} = \emptyset$$
 , $A \cup \overline{A} = U$

🗷 បើ A និង B ជាសំណុំរាប់អស់នោះគេបានរូបមន្ត ៖

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

🗷 លក្ខណៈ DeMogan ៖

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 ; $\overline{A \cap B} = \overline{A} \cup \overline{B}$

🗷 ហិរ៉ូឃៈម្ដុំ

$$1/ A \cap (B \cap C) = (A \cap B) \cap C$$

$$2/ A \cup (B \cup C) = (A \cup B) \cup C$$

🗷 លក្ខណៈបំបែក

$$1/ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$2/ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

ខំពុភន៍om

តូមីខ ៥សំនា ខែជទីសេត្

១. ចំនួន

🗷 បន្ទាត់ចំនួន

🗷 លក្ខណៈនៃតម្លៃដាច់ខាត

.
$$|a| = a$$
 îû $a ≥ 0$

$$. |a| = -a \quad \text{if} \quad a < 0$$

🗷 សំណុំចំនួនគត់ធម្មជាតិ IN = { 1, 2, 3, }

🗷 ចំនួនសនិទានមានទម្រង់ $\frac{\mathbf{m}}{\mathbf{n}}$ ដែល \mathbf{m} និង \mathbf{n} ជាចំនួនគតវីឡាទីប

🗷 សំណុំចំនួនសនិទានតាងដោយ **Q**

ម្រស្ស៊ីមេមន្តគណិតទិន្សា

 $m{z}$ គ្រប់ចំនួនពិតវិជ្ជមាន $m{a}$ និង $m{b}$ គេបាន $m{a} < m{b} \Leftrightarrow \sqrt{m{a}} < \sqrt{m{b}}$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 , $\sqrt{a^2} = (\sqrt{a})^2$

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

🗷 ទម្រង់ពន្លាតនៃប្រព័ន្ឋរបាប់គោល 10 មានរាង

$$abcd_{10} = a \times 10^3 + b \times 10^2 + c \times 10 + d$$

🗷 ទម្រង់ពន្លាតនៃប្រព័ន្ឋរបាប់គោល 2 មានរាង

$$\mathbf{abcd}_2 = \mathbf{a} \times 2^3 + \mathbf{b} \times 2^2 + \mathbf{c} \times 2 + \mathbf{d}$$

២. ៦គនា និ១ ពេទ្ធនា

- ឯកធាគឺជាកន្សោមដែលប្រមាណវិធីលើអថេរមានតែវិធីគុណ និងស្វ័យគុណដែលមាននិទស្សន្តគត់វិជ្ជមាន ឬ សូន្យ ។
- 🗷 ឯកធាដូចគ្នា គឺជាឯកធាដែលមានផ្នែកអថេរដូចគ្នា ។
- 🗷 ដឺក្រេនៃឯកធា ជាផលបូកនិទស្សន្តរបស់អថេរនីមួយៗនៃឯកធា ។
- 🗷 ពហុធា ជាផលបូកនៃច្រើនឯកធាខុសៗគ្នា ។
- 🗷 ដឺក្រេនៃពហុធា គឺជាដឺក្រេរបស់តួដែលមានដឺក្រេខ្ពស់ជាងគេ ។

ម្រស្មីរួមមន្តកណិតទិន្សា

៣. រុមមាណទិឌីលើ ពហុឌា

🗷 ដើម្បីបូក ឬ ដកពីរពហុធា គេត្រូវបូក ឬ ដកឯកធាដែលដូចគ្នា ។

ដើម្បីគុណពហុធា និង ពហុធាគេយកតួនីមួយៗនៃពហុធាទីមួយគុណដើម្បីគុណពហុធាទីពីរ រួចធ្វើប្រមាណវិធី ។

é. 5588

9.
$$(a+b)^2 = a^2 + 2ab + b^2$$

$$\mathbb{D}$$
. $(a-b)^2 = a^2 - 2ab + b^2$

$$(a-b)(a+b) = a^2 - b^2$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

ef.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$b$$
. $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

$$\emptyset$$
. $(a+b)(a^2-ab+b^2) = a^3-b^3$

6.
$$(a-b)(a^2+ab+b^2)=a^3+b^3$$

ಠೆ.
$$acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$$

ชะ เบราณอิธิเธรทฤษาลา

∠ ខុបមាថាគេមានកន្សោមពីរ A និង B ដែលមានអថេរដូចគ្នា
 ហើយមានដីក្រេញុងគ្នា m និង n ។ បើ m≥n គេអាចរកកន្សោម

រុមស្តីរួមមន្ត្តកណិតទិន្សា

ពីជគណិតពីរ \mathbf{Q} និង \mathbf{R} ដែល $\mathbf{A} = \mathbf{B} \times \mathbf{Q} + \mathbf{R}$ ។ ដីក្រេនៃ \mathbf{R} តូចជាងដីក្រេនៃ \mathbf{B} ។ \mathbf{Q} ជាផលចែក ហើយ \mathbf{R} ជា សំណល់នៃក្នុងវិធីចែក ។ ផលចែក \mathbf{Q} មានដីក្រេ $\mathbf{m} - \mathbf{n}$ ។ $\boldsymbol{\varnothing}$ បើ $\mathbf{R} = \mathbf{0}$ គេបាន $\mathbf{A} = \mathbf{B} \times \mathbf{Q}$ នោះគេថា \mathbf{A} ចែកដាច់នឹង \mathbf{B}

- តូខែការូមនំមំផុត និ១ ពហុគុណរួមតូចមំផុត
- 🗷 តួចែករួមធំបំផុតនៃកន្សោម 🗛 និង **B** គឺជាផលគុណកត្តារួមដែល មាននិទស្សន្តតូចជាងគេ ។
- ៩ ពហុគុណរួមតូចបំផុត គឺជាផលគុណគ្រប់កត្តារួមដែលមាននិទស្សន្ត ចំជាងគេ ។

៧. ອື່ສາຄ

- ដើម្បីគណនាតួចែករួមធំបំផុត ៖
 ១-ដាក់ជផលគុណកត្តា គ្រប់តួទាំងអស់
 ២-ជ្រើសរើសយកតែកត្តារួមដែលមាននិទស្សន្តតូចជាងគេ។
 ៣-តួចែករួមធំបំផុត ជាផលគុណនៃកត្តារួមទាំងនោះ ។
- ដើម្បីគណនាតួចែករួមតូចប់ផុត ៖
 ១_ដាក់ជផលគុណកគ្គា គ្រប់តួទាំងអស់
 ២_ជ្រើសរើសយកតែកត្តាមិនរួម និង ក្តារួមដែលមាននិទស្សន

រុមខ្ញុំរួមមន្ត្តគណិតទិន្សា

ធំជាងគេ។

៣_ពហុគុណរួមតូចបំផុត ជាផលគុណនៃកត្តាទាំងនោះ ។

៤. ច្រមាណទិនីមួក ឬ ៩កកល្សេមប្រភាគ

$$\frac{A}{C} + \frac{B}{C} = \frac{A+B}{C}$$
 និង $\frac{A}{C} - \frac{B}{C} = \frac{A-B}{C}$

໕. ອື່ສາຄ

ដើម្បីធ្វើ វិធីបូក ឬ ដកកន្សោមប្រភាគគេត្រូវ ៖
 ១-តម្រូវប្រភាគនីមួយៗឲ្យមានភាគបែងរួមដូចគ្នា
 ២-ធ្វើប្រមាណវិធីបូក ឬ ដកតែភាគយក រក្សាទុកភាគបែងរួម
 ៣-សម្រួលលទ្ឋផល

90. ប្រមាណទិឌីគុណ សិទ ប្រមាណទិឌីថែក

$$\frac{\mathbf{A}}{\mathbf{B}} \times \frac{\mathbf{C}}{\mathbf{D}} = \frac{\mathbf{A} \times \mathbf{C}}{\mathbf{B} \times \mathbf{D}}$$
 និង $\frac{\mathbf{A}}{\mathbf{B}} \div \frac{\mathbf{C}}{\mathbf{D}} = \frac{\mathbf{A} \times \mathbf{D}}{\mathbf{B} \times \mathbf{C}}$ ដែល \mathbf{B} , \mathbf{C} , \mathbf{D} ខុសពីសូន្យ ។

໑໑. ອື່ສາຄ

- 🗷 ដាក់ភាគយក និង ភាគបែងនៃកន្សោមទាំងអស់ជាផលគុណកត្តា
- 🗷 លម្រួលកន្សោមប្រភាគនីមួយៗ
- 🗷 ធ្វើប្រមាណវិធីគុណ ឬ វិធីចែកតាមរូបមន្តខាងលើ ។

ខំពុកន៍០៤

សទីគារ និទ ទិសទីគារ

១_សទីគារជីត្រេធីពីទោនទួយអញ្ញាត

ង-ខូតឧងខ

សមីការដែលមានរាងទូទៅ $ax^2 + bx + c = 0$ ហៅថាសមីការដ៏ក្រេទីពីរ មានមួយអញ្ឆ្លាតដែល x ជាអញ្ឆ្លាត ហើយលេខមេគុណ a,b,c ជាចំនួនថេរ និង $a \neq 0$ ។

១_ជំណោះស្រាយសទីការជីព្រុកនីពីរ

-បើ $\Delta > 0$ សមីការមានឬសពីរជាចំនួនពិតផ្សេងគ្នាគឺ :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
; $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

-ប៊េ
$$\Delta = 0$$
 សមីការមានឬសឌុប $\mathbf{x}_1 = \mathbf{x}_2 = -\frac{\mathbf{b}}{2\mathbf{a}}$

-បើ $\Delta < 0$ សមីការមានឬសពីរផ្សេងគ្នាជាចំនួនកុំផ្ចិចឆ្លាស់គ្នា :

$$x_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
; $x_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

ម្រស្ទំរួមមន្តកណិតទិន្សា

គ_នំនាក់នំន១ឫស និ១ សេខមេគុណ

បើ α និង β ជាឬសរបស់សមីការ $ax^2+bx+c=0$, $a\neq 0$ នោះគេមាន :

-ផលបូកឬស
$$\mathbf{S} = \mathbf{\alpha} + \mathbf{\beta} = -\frac{\mathbf{b}}{\mathbf{a}}$$

-ផលគុណឬស
$$P = \alpha . \beta = \frac{c}{a}$$

ឃ_មុខាគณលរម្មសនៃសមីការេី ក្រេន៍ពីខោយ

ឧបមាថាគេមានសមីការដឺក្រេទីពីរ $ax^2 + bx + c = 0$, $a \neq 0$

-ប៊ើ
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$$
 សមីការមានឬស $\mathbf{x}_1 = \mathbf{1}$; $\mathbf{x}_2 = \frac{\mathbf{c}}{\mathbf{a}}$

-ឃើ
$$\mathbf{b} = \mathbf{a} + \mathbf{c}$$
 សមីការមានឬស $\mathbf{x}_1 = -1$, $\mathbf{x}_2 = -\frac{\mathbf{c}}{\mathbf{a}}$

១_ម្រមន្ត្តជាក់ខាន់លគុណកគ្នា

បើ α និង β ជាឬសរបស់សមីការ $ax^2 + bx + c = 0$, $a \neq 0$ នោះគេបាន :

$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$
 4

ច_ចខ្លើតសទីការជីព្រុកនីពីរ

បើគេដឹងផលបូក $\alpha + \beta = S$ និង ផលគុណ $\alpha\beta = P$ នោះ α និង β

ជាឬសសមីការដ៏ក្រេទីពីរ $\mathbf{x}^2 - \mathbf{S}\mathbf{x} + \mathbf{P} = \mathbf{0}$ ។

ម្រស្មីមេមឆ្គងលិតទិន្យា

២_ទឹសមនាព

ក_លក្ខណៈទិសមភាព

1. ចំពោះគ្រប់ចំនួនពិត a , b , c បើ a > b នោះគេបាន a + c > b + c

2. ចំពោះ គ្រប់ចំនួនពិត a , b , c គេមាន :

-ប៊េ a > b និង c > 0 នោះ ac > bc

-ប៊េ a > b និង c < 0 នោះ ac < bc

១-ខ្មុខខុងនេះ ខេត្ត ខេត្

ចំពោះគ្រប់ចំនួនពិត $a \ge 0$ និង $b \ge 0$ គេមាន :

$$\frac{a+b}{2} \ge \sqrt{ab} \quad \forall$$

ិវិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែ $\mathbf{a} = \mathbf{b}$ ។

៣_ទឹសទីភាគេឡៃជាច់ខាត

បើ α>0 នោះគេបាន:

1.
$$|ax+b| < \alpha \Leftrightarrow ax+b < \alpha$$
 និង $ax+b > -\alpha$

2.
$$|ax+b| > \alpha \Leftrightarrow ax+b > \alpha$$
 $\Im ax+b < -\alpha$

3.
$$|ax + b| = \alpha \Leftrightarrow ax + b = \pm \alpha$$

ម្រស្សមមន្តគណិតទិន្យា

៤_សញ្ញារមស់ឆ្ងេនាជីព្រុកនីមួយ

ចំពោះទ្វេធា $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{b}$ មាន $\mathbf{x} = -\frac{\mathbf{b}}{\mathbf{a}}$ ជាប្ញុស គេកំណត់សញ្ហាទ្វេធានេះ ទៅតាមសញ្ហារបស់ \mathbf{a} ដូចតារាងខាងក្រោម :

៥_សញ្ញារេទស់ត្រីនាជីព្យួរនីពីរ

ចំពោះត្រីធា $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$ មានឬសពីរ α និង β ដែល $\alpha < \beta$ ។

$$\mathbf{x}$$
 $-\infty$ α β $+\infty$ $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$ សញ្ហាដូច \mathbf{a} \mathbf{c} \mathbf{c}

៦_ចឡើយទិសទីគារជីព្រុធពីរ

_ការេស៊ី
$$\Delta > 0$$
 សិខ $a > 0$ មានម្ដង α , β $(\alpha < \beta)$

ក.
$$ax^2 + bx + c > 0$$
 មានចម្លើយ $x < \alpha$, $x > \beta$ ។

2.
$$ax^2 + bx + c < 0$$
 មានចម្លើយ $\alpha < x < \beta$ ។

គ.
$$ax^2 + bx + c \ge 0$$
 មានចម្លើយ $x \le \alpha$, $x \ge \beta$ ។

ឃ.
$$ax^2 + bx + c \le 0$$
 មានចម្លើយ $\alpha \le x \le \beta$ ។

$$oldsymbol{-}$$
ការស៊ី $\Delta=0$ ស៊ិខ $a>0$ មានម្មសឌុម

ម្រស្ស៊ីមេមន្តគណិតទិន្សា

 ${\sf T.}\ {\sf ax}^2 + {\sf bx} + {\sf c} > {\sf 0}\ {\sf }$ មានចម្លើយគ្រប់ចំនួនពិតលើកលែងតែ ${\sf x} = -rac{{\sf b}}{2{\sf a}}$

2. $ax^2 + bx + c < 0$ គ្នានចម្លើយ ។

គ. $ax^2 + bx + c \ge 0$ មានចម្លើយគ្រប់ចំនួនពិតទាំងអស់ ។

 $\mathbf{w}.\ \mathbf{ax}^2 + \mathbf{bx} + \mathbf{c} \leq \mathbf{0}$ មានចម្លើយ $\mathbf{x} = -\frac{\mathbf{b}}{2\mathbf{a}}$ ។

_ក នេះ $\Delta < 0$ និខ a > 0 មាន ឬស៩ ខំនួន កុំខ្លឹម

ក. $ax^2 + bx + c > 0$ មានចម្លើយគ្រប់ចំនួនពិតទាំងអស់ ។

2. $ax^2 + bx + c < 0$ គ្មានចម្លើយ ។

គ. $ax^2 + bx + c \ge 0$ មានចម្លើយគ្រប់ចំនួនពិតទាំងអស់ ។

ឃ. $ax^2 + bx + c \le 0$ គ្មានចម្លើយ ។

ខំពុភន៍0៥

ស្ទឹងខែចំនួនពិត

I ស្ទឹងសព្វស្គ សិ១ ស្ទឹងនរេសិមាត្រ

១_ស្ទឹងចំនួនពិង

ស្វ៊ីតនៃចំនួនពិតគឺជាអនុគមន៍លេខដែលកំនត់ពីសំណុំ $_{
m IN}$ ទៅសំណុំ $_{
m IR}$ ។ គេកំនត់សរសេរស្វ៊ីតមួយដោយ $({f U}_n)$ ឬ $({f U}_n)$ $_{
m n\in IN}$ ដែល ${f U}_n={f f}(n)$

២.អថេរភាពនៃស្ថិត

ក-ស្វ៊ីតកើន

គេថាស្វ៊ីត (U_n) ជាស្វ៊ីតកើនលើ IN កាលណាគ្រប់ $_{n\in IN}$ គេមាន $U_{n+1}>U_n$

ខ-ស្វ៊ីពចុះ

គេថាស្វ៊ីត (\mathbf{U}_{n}) ជាស្វ៊ីតចុះលើ IN កាលណាគ្រប់ $\mathbf{n} \in \mathbf{IN}$ គេមាន $\mathbf{U}_{n+1} < \mathbf{U}_{n}$

ព-ស្វិតម៉ូណូតូន

គេថាស្វ៊ីត (Un) ជាស្វ៊ីតម៉ូណូតូនកាលណាវាជាស្វ៊ីតកើនជានិច្ច ឬ ជាស្វ៊ីត ចុះជានិច្ច ។

រួមស្ទឹមមន្ត្តគណិតទិន្សា

៣.ស្វិតទាល់

ក-ស្ទឹតទាល់លើ

គេថាស្វ៊ីត(\mathbf{U}_n) ជាស្វ៊ីតទាល់លើកាលណាមានចំនួនពិត \mathbf{M} ដែលបំពេញ លក្ខ័ខណ្ឌ័ $\forall \mathbf{n} \in \mathbf{IN}: \mathbf{U}_\mathbf{n} \leq \mathbf{M}$ ។

ខ-ស្ទឹតទាល់ក្រោម

គេថាស្វ៊ីត (Un) ជាស្វ៊ីតទាល់ក្រោមកាលណាមានចំនួនពិត \mathbf{m} ដែល ចំពោះ $\forall \mathbf{n} \in \mathbf{IN}: \mathbf{U_n} \geq \mathbf{m}$ ។

គ-ស្ទីតទាល់

គេថាស្វ៊ីត (Un) ជាស្វ៊ីតទាល់កាលណាវ៉ាជាស្វ៊ីត ទាល់លើផង និងទាល់ ក្រោមផង ។

៤.ស្ថិតខ្លួប

គេថាស្វ៊ីត (\mathbf{U}_n) ជាស្វ៊ីតខួបដែលមានខួបស្លើ p កាលណា ចំពោះ $\forall n \in \mathbf{IN}: \mathbf{U}_{n+p} = \mathbf{U}_n$, $p \in \mathbf{IN}*$ ។

្ត្រាម្មាន ខ្លាំង ខ្លាំ

-ស្វ៊ីតនព្វន្ត គឺជាស្វ៊ីតនៃចំនួនពិតដែលមានតួនីមួយ σ (ក្រៅពីតួទីមួយ) ស្វ៊ើនឹងតួមុនបន្ទាប់បូកចំនួនថេរ d មួយហៅថាផលសងរួម ឬ រេសុងនៃស្វ៊ីត រូបមន្តផលសងរួម $d=u_{n+1}-u_n$ ។ -តួទី n នៃស្វ៊ីតនព្វន្ត $u_n=u_1+(n-1)d$

-ផលបូក n តួដំបូងនៃស្វ៊ីតនព្វន្ត

$$S_n = \sum_{k=1}^n (u_k) = u_1 + u_2 + u_3 + \dots + u_n = \frac{n(u_1 + u_2)}{2}$$

៣-ស្ទឹងឆរឡើងរង្វ

-ស្វីតធរណីមាត្រ គឺជាស្វីតនៃចំនួនពិតដែលមានតួនីមួយ១ (ក្រៅពីតួទីមួយ)

ស្មើនឹងតួមុនបន្ទាប់គុណនឹងចំនួនថេរ $m{q}$ មួយដែលខុសពីសូន្យ ។

ចំនួនថេរ $m{q}$ ហៅថាផលធ្យើបរួម ឬ រេសុងនៃស្ទឹត ។

រូបមន្តផលធ្យើបរួម
$$q=rac{u_{n+1}}{u_n}$$
 ។

- -តូទី n នៃស្វ៊ីតធរណីមាត្រ $u_n = u_1 imes q^{n-1}$
- -ផលបូក n តួដំបូងនៃស្វិតធរណីមាត្រ

$$S_n = \sum_{k=1}^n (u_k) = u_1 + u_2 + u_3 + \dots + u_n = u_1 \frac{q^n - 1}{q - 1}$$

៤-រុមមន្តផលមុកស្ទឹតលព្វន្តមាល់ជាម់ខ្ពស់

$$1/\sum_{k=1}^{n} (k) = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

$$2/\sum_{k=1}^{n} (k^2) = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$3/\sum_{k=1}^{n} (k^3) = 1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$

ម្រស្សមមន្តគណិតទិន្យា

11_រមេៗមគណនាន់សមុគត្តនៃស្ទឹងផ្សេចៗ

១_និម្លឹតសញ្ញា Σ សម្រាច់ផលពុកនៃស្ទឹត

ផលបូក n តួដំបូងនៃស្វីត $u_1, u_2, u_3,, u_n$ កំនត់តាងដោយ :

$$S_n = \sum_{k=1}^n (u_k) = u_1 + u_2 + u_3 + \dots + u_n$$

២_លត្តសា:ផលចុកតូនៃស្ទឹត

9.
$$\sum_{k=1}^{n} (\lambda) = \lambda + \lambda + \lambda + \dots + \lambda = n\lambda$$

២.
$$\sum_{k=1}^{n} (\lambda u_k) = \lambda \sum_{k=1}^{n} (u_k)$$
 (λ ជាចំនួនថេរ)

$$\text{ m. } \sum_{k=1}^{n} (u_k + v_k - w_k) = \sum_{k=1}^{n} (u_k) + \sum_{k=1}^{n} (v_k) - \sum_{k=1}^{n} (w_k)$$

$$6. \sum_{k=1}^{n} (u_k + v_k)^2 = \sum_{k=1}^{n} (u_k^2) + 2 \sum_{k=1}^{n} (u_k v_k) + \sum_{k=1}^{n} (v_k^2)$$

៣_-មេរៀមគណនាងសមុកស្ទឹកដែលមាននរុមថ់ ៖

$$S_n = 1^p + 2^p + 3^p + \dots + n^p$$
 in $p = 1; 2; 3; \dots$

ដើម្បីគណនាផលបូកនេះគេត្រូវអនុវត្តន៍តាមជំហានខាងក្រោម:

-កណ្ឋា
$$(n+1)^{p+1} - n^p$$

-ឱ្យតម្លៃ
$$n = 1; 2; 3;; n$$

ម្រស្ស៊ីមេមន្តគណិតទិន្សា

៤_មេរៀមគណនាផលមុកស្ទឹកដែលមាននម្រច់ ៖

$$S_n = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \frac{1}{a_3 a_4} + \dots + \frac{1}{a_n a_{n+1}}$$

ដែល $a_{n+1}-a_n=d$ ថេរ ហើយ $d\neq 0$ ។

ដើម្បីគណនាផលបូកនេះគេត្រូវ :

-បទ័ម្ព ងត្ល
$$\frac{1}{a_n a_{n+1}} = \frac{1}{d} \cdot \frac{a_{n+1} - a_n}{a_n a_{n+1}} = \frac{1}{d} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right)$$

-ឱ្យតម្លៃ
$$n = 1; 2; 3;; n$$

៥_មេរ្យិមគណនាផលមុកស្ទឹតដែលមាននរួមខំ :

$$S_n = \frac{1}{a_1 a_2 a_3} + \frac{1}{a_2 a_3 a_4} + \frac{1}{a_3 a_4 a_5} + \dots + \frac{1}{a_n a_{n+1} a_{n+2}}$$

ដែល $a_{n+2}-a_n=d$ ថេរ ហើយ $d\neq 0$ ។

ដើម្បីគណនាផលបូកនេះគេត្រូវ:

$$-\text{Uind} \frac{1}{a_n a_{n+1} a_{n+2}} = \frac{1}{d} \cdot \frac{a_{n+2} - a_n}{a_n a_{n+1} a_{n+2}} = \frac{1}{d} \left(\frac{1}{a_n a_{n+1}} - \frac{1}{a_{n+1} a_{n+2}} \right)$$

-ឱ្យតម្លៃ
$$n = 1; 2; 3;; n$$

ម្រស្សមមន្តគណិតទិន្យា

b_មេទ្សិតមាខាងសត់ងស្នឹង ខែប្រសាសន៍ ៖

$$S_n = a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_nb_n$$

ដែល (a_n) ជាស្វ៊ីតនព្វន្តមានផលសង្ឃម d និង (b_n) ជាស្វ៊ីតធរណីមាម្រានរេសុង q ។ ដើម្បីគណនាផលបូកនេះគេត្រូវគណនា $S_n-q\,S_n$ រួចទាញរក S_n ។

៧_សំគាល់

ដើម្បីគណនាផលបូកខាងលើនេះគេត្រូវ:

-សរសេរត្ត
$$u_k$$
 ជារាង $u_k = t_{k+1} - t_k$ ឬ $u_k = t_k - t_{k+1}$ (បើអាច)

-ករណីគេអាចសរសេរ $u_k = t_{k+1} - t_k$ នោះគេបាន :

$$S_n = \sum_{k=1}^n (u_k) = \sum_{k=1}^n (t_{k+1} - t_k) = t_{n+1} - t_1$$

-ករណីគេអាចសរសេរ $u_k = t_k - t_{k+1}$ នោះគេបាន :

$$S_n = \sum_{k=1}^n (u_k) = \sum_{k=1}^n (t_k - t_{k+1}) = t_1 - t_{n+1}$$

III_មេទ្យិចអំពង់តួនី *n* តាមផលស១តូនៃស្ទឹត

១_ផលស១តួលំជាច់នឹមួយ ៖

- គេមានស្ដីត
$$(a_n)$$
: a_1 ; a_2 ; a_3 ; ; a_n ហើយ $b_1=a_2-a_1$; $b_2=a_3-a_2$; $b_3=a_4-a_3$;..... ទោះគេថាស្ដីត (b_n) : b_1 ; b_2 ; b_3 ; ; b_n ជាផលសងត្លលំដាប់ទីមួយនៃស្ដីត (a_n) ។ – រូបមន្តគណនាត្ល a_n

ព្រេមាន
$$b_n = a_{n+1} - a_n$$

រ៉ោលន
$$\sum_{k=1}^{n-1} (b_k) = \sum_{k=1}^{n-1} (a_{k+1} - a_k)$$

ដោយ
$$\sum_{k=1}^{n-1} (a_{k+1} - a_k) = (a_2 - a_1) + (a_3 - a_2) + \dots + (a_n - a_{n-1})$$

$$=a_n-a_1$$

រ៉ោលន
$$\sum_{k=1}^{n-1} (b_k) = a_n - a_1$$

ដូចនេះ
$$a_n = a_1 + \sum_{k=1}^{n-1} (b_k)$$
 ។

២_ផលស១គួលំជាម់នីពី៖ ៖

_គេមានស៊ី្ីត
$$(a_n):a_1\;;\;a_2\;;a_3\;;.....\;;\;a_n\;$$
 ហើយ

$$b_1 = a_2 - a_1; b_2 = a_3 - a_2; b_3 = a_4 - a_3;; b_n = a_{n+1} - a_n$$
 $(b_n): b_1; b_2; b_3;; b_n$ ជាផលសងត្លលំដាប់ទីមួយនៃស្វ៊ីត (a_n)

ម្រស្សមមន្តគណិតទិន្យា

-រូបមន្តគណនាត្ល a_n គឺ $a_n = a_1 + \sum_{k=1}^{n-1} (b_k)$ ។ - ស្គីត (c_n) ជាផលសងលំដាប់ទីពីរនៃស្គីត (a_n) គឺជាផលសងលំដាប់ទីមួយនៃស្គីត (b_n) ដែល $c_n = b_{n+1} - b_n$; $n = 1, 2, 3, \ldots$ រូបមន្តគណនាត្លទី n គឺ $b_n = c_1 + \sum_{i=1}^{n-1} (c_i)$; $n \ge 2$ ។

IV_ฮ็ยาเหลุษาลเูษฅณิตฮิลฏ

តិយមត្ថយ **:**

P(n) ជាសំណើដែលទាក់ទងនឹងចំនួនគត់ n ដើម្បីស្រាយបញ្ជាក់ថា P(n) ពិតចំពោះ គ្រប់ $n \in IN$ * គេត្រូវ :

- 1. ផ្ត្វេងផ្ចាត់ថា P(n) ពិតចំពោះ n=1
- 2. ឧបមាថា P(n) ពិតចំពោះតម្លៃ n
- 3. ស្រាយបញ្ហាក់ថា P(n) ពិតនាំឱ្យបាន P(n+1) ពិត

IV_មេៗមកលាសាតួនូនៅនៃស្ទឹតតាមនំលាក់នំល១កំណើល

9_หเณ็ญก่ะ หา่ะ หะกัน $u_{n+1} = a \, u_n + b$

បើគេស្គាល់ថា (u_n) ជាស្គីតនៃចំនួនពិតហើយផ្ទៀងផ្ទាត់ ទំនាក់ទំនងកំណើន $u_{n+1}=a\,u_n+b$ ចំពោះគ្រប់ $n\in IN*$ និងមានត្ល $u_1=\alpha$ $(|a|\neq 1,a\neq 0)$ ។ ដើម្បីកំនត់រកត្ល u_n គេត្រូវពិចារណាដូចខាងក្រោម ៖

- ភាងស្ទឹតជំនួយ $V_n = u_n r$ រួចត្រូវបង្ហាញថា (V_n) ជាស្ទឹតធរណីមាត្រ ។
- ្រា រកឱ្យឃើញនូវត្ន V_n បន្ទាប់មកគេទាញ $u_n = V_n + r$ ។

២_ការស៊ីស្គាល់នំនាក់នំនេចកំណើន $u_{n+2}=a\,u_{n+1}+bu_n$

បើគេស្គាល់ថា (u_n) ជាស្តីតនៃចំនួនពិតហើយផ្ទៀងផ្ទាត់ ទំនាក់ទំនងកំណើន $u_{n+2}=a\,u_{n+1}+b\,u_n$ ចំពោះគ្រប់ $n\in IN*$ និងមានត្ល $u_1=\alpha$, $u_2=\beta$

ដើម្បីកំនត់រកត្ល u_n គេត្រូវពិចារណាសមីការ $r^2 = ar + b$ ឬ $(E): r^2 - a.r - b = 0$ (ហៅថាសមីការសំគាល់នៃស្ទីតនេះ)
គេត្រូវសិក្សាករណីផ្សេងៗដូចខាងក្រោម ៖

$$\tilde{\mathbf{U}} \quad \tilde{\mathbf{U}} \quad \Delta = a^2 + 4b > 0$$

ម្រស្ទំរួមមន្តកណិតទិន្សា

សមីការសំគាល់ (E) មានឬសពីរផ្សេងគ្នាជាចំនួនពិត r_1 និង r_2 ។ ក្នុងករណីនេះដើម្បីគណនា u_n យើងត្រូវអនុវត្តន៍ដូចខាងក្រោម ៖ - តាងស្វ៊ីតជំនួយពីរគី

្នាក់ប្រភេទនៃស្វ៊ីត (x_n) និង (y_n)

រួចគណនា x_n និង y_n ជាអនុគមន៍នៃ n ។

ឧបមាថាគេហាន $x_n = f(n)$ និង $y_n = g(n)$

- ឃើងបានប្រព័ន្ឋសមីការ
$$\begin{cases} u_{n+1} - r_1 u_n = f(n) \\ u_{n+1} - r_2 u_n = g(n) \end{cases}$$

្នដោះស្រាយរក u_n គេទទួលបាន $u_n = \frac{f(n) - g(n)}{r_2 - r_1}$ ។

$$\tilde{\mathbf{U}} \quad \tilde{\mathbf{U}} \quad \Delta = a^2 + 4b = 0$$

សមីការសំគាល់ (E) មានឬសឌុប $r_1=r_2=r_0$

ក្នុងករណីនេះដើម្បីគណនា u_n យើងត្រូវអនុវត្តន៍ដូចខាងក្រោម st

-តាងស្វ៊ីតជំនួយ $V_n = u_{n+1} - r_0 \, u_n$ ្ធ្លាចរកប្រភេទនៃស្វ៊ីត (V_n)

និងគណនា V_n ជាអនុគមន៍នៃ n ។ ឧបមាថា $V_n = f(n)$ ។

្ន គេទាញជានសមីការ $u_{n+1} - r_0 u_n = f(n)$

្ទចត្រូវបំលែងជាទម្រង់ ៖

$$\frac{u_{n+1}}{r_0^{n+1}} - \frac{u_n}{r_0^n} = \frac{f(n)}{r_0^{n+1}}$$
 (ប៉ែកសមីការនឹង r_0^{n+1})

រួមស្ទឹមមន្តគណិតទិន្សា

_ទាញឱ្យបាន
$$u_n = r_0^n \left[\frac{u_1}{r_0} + \sum_{k=1}^{n-1} \left[\frac{f(k)}{r_0^{k+1}} \right] \right]$$
 ។

 $\vec{\mathbf{S}} \quad \mathbf{i} \vec{\mathbf{U}} \quad \Delta = a^2 + 4b < 0$

សមីការសំគាល់ (E) មានឬសពីរជាចំនួនកុំផ្ចិចឆ្នាស់គ្នា

ที่ $r_1 = p + i.q$, $r_2 = p - i.q$, $p, q \in IR$ ๆ

ក្នុងករណីនេះដើម្បីគណនា u_n យើងត្រូវអនុវត្តន៍ដូចខាងក្រោម st

- តាងស្វ៊ីតជំនួយ $Z_n = u_{n+1} - (p+i.q)u_n$ ្ឋចត្រូវស្រាយថា

 (Z_n) ជាស្វ៊ីតធរណីមាត្រនៃចំនួនកុំផ្ចិច ។

រូចគណនា Z_n ជាអនុគមន៍នៃ n ។

_ឧ្បមាថា $Z_n = A_n + i.B_n$; $A_n \, , \, B_n \in IR \, , \, n \in IN \, ^*$ ។

្រាបានសម៊ីការ $u_{n+1}-(p+iq)\;u_n=A_n+i.B_n$

្ន មាញឱ្យបានថា $u_n = -\frac{B_n}{q}$ ។

 \mathfrak{m} _ការណ៍ស្គាល់នំនាក់នំនេចកំណើន $u_{n+2}=a\,u_{n+1}+bu_n+c$

បើគេស្គាល់ថា (u_n) ជាស្ទីតនៃចំនួនពិតហើយផ្ទៀងផ្ទាត់

ទំនាក់ទំនងកំណើន $u_{n+2}=a\,u_{n+1}+b\,\,u_n$ ចំពោះគ្រប់ $n\in IN\,*$

និងមានត្ល $u_1=lpha$, $u_2=eta$ ។

ដើម្បីកំនត់រកត្ត u_n គេត្រូវអនុវត្តន៍ដូចខាងក្រោម st

 $^{\text{CP}}$ តាងស្វ៊ីតជំនួយ $w_n = u_n + \lambda$

រុមស្ទីមេខត្តគណិតទិន្យា

៊ែប៉ាន
$$u_n=w_n-\lambda$$
 , $u_{n+1}=w_{n+1}-\lambda$, $u_{n+2}=w_{n+2}-\lambda$

ម៉ា
$$u_n$$
 , u_{n+1} , u_{n+2} ជំនួសក្នុង $u_{n+2}=a\,u_{n+1}+bu_n+c$ គេបានសមីការ ៖

$$w_{n+2} - \lambda = a(w_{n+1} - \lambda) + b(w_n - \lambda) + c$$

 $w_{n+2} = a \ w_{n+1} + b \ w_n + (1 - a - b) \lambda + c$

្គ្រីវិទ្យុ
$$(1-a-b)\lambda+c=0$$
 គេមាញមាន $\lambda=rac{c}{a+b-1}$ (ដែល $a+b
eq 1$) ។

摩 ក្នុងករណីនេះគេបានទំនាក់ទំនងកំណើន

$$w_{n+2} = a \ w_{n+1} + b \ w_n$$

ដោះស្រាយរកត្ល w_n តាមវិធីសាស្ត្រដែលបានសិក្សារួចហើយ ខាងលើ បន្ទាប់មកទាញរកត្ល $u_n = w_n - \lambda = w_n - \frac{c}{a+b-1}$

ខំពុកនិ០៦

អនុគមន៍ត្រីកោណមាត្រ

រួមខ្សុំរួមមន្តគណិតទិន្សា

១. នំលាក់នំលចគ្រឹះ

1.
$$\sin^2\theta + \cos^2\theta = 1$$

4.
$$\tan \theta \cdot \cot \theta = 1$$

2.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

5.
$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$

3.
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

6.
$$1 + \cot^2 \theta = \frac{1}{\sin^2 \theta}$$

២. រួមមន្ត្តសម្មក សិខ ផលជក

1.
$$\sin(a+b) = \sin a \cos b - \sin b \cos a$$

2.
$$cos(a + b) = cos a cos b - sin a sin b$$

3.
$$tan(a+b) = \frac{tan a + tan b}{1 - tan a tan b}$$

4.
$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

5.
$$cos(a - b) = cos a cos b + sin a sin b$$

6.
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

៣. រួមន្តម៉ូឌុម

1.
$$\sin 2a = 2\sin a \cos a$$

2.
$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - \sin^2 a$$

3.
$$\tan 2a = \frac{2\tan a}{1-\tan^2 a}$$

$$4. \cot 2a = \frac{\cot^2 a - 1}{2 \cot a}$$

រុមស្ទឹមមន្ត្តការតិតទិន្សា

៤. រួមមន្ត្តកន្លះមំ

1.
$$\sin^2 \frac{a}{2} = \frac{1 - \cos a}{2}$$

2.
$$\cos^2 \frac{a}{2} = \frac{1 + \cos a}{2}$$

3.
$$\tan^2 \frac{a}{2} = \frac{1 - \cos a}{1 + \cos a}$$

៥. គន្សោម $\sin x$, $\cos x$, $\tan x$ ខាអនុគមន៍ $t = \tan \frac{x}{2}$

$$1. \sin x = \frac{2t}{1+t^2}$$

2.
$$\cos x = \frac{1-t^2}{1+t^2}$$

3.
$$\tan x = \frac{1-t^2}{1+t^2}$$

b. គឡេម sin 3a , cos 3a , tan 3a

$$1. \sin 3a = 3\sin a - 4\sin^3 a$$

$$2. \cos 3a = 4\cos^3 a - 3\cos a$$

2.
$$\cos 3a = 4\cos^3 a - 3\cos a$$
 3. $\tan 3a = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}$

៧. រួមមន្ត្តមំលែខពីផលគុណនៅផលមុក

1.
$$\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$$

2.
$$\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$$

រួមស្ទុំមេមឆ្គងឈិតទិន្សា

3.
$$\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$$

4.
$$\sin b \cos a = \frac{1}{2} [\sin(a+b) - \sin(a-b)]$$

៦. រួមមន្ត្តមំលែខពីផលម្តុកនៅផលគុណ

1.
$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

2.
$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

3.
$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

4.
$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

5.
$$\tan p + \tan q = \frac{\sin(p+q)}{\cos p \cos q}$$

6.
$$\tan p - \tan q = \frac{\sin(p-q)}{\cos p \cos q}$$

7.
$$\cot p + \cot q = \frac{\sin(p+q)}{\sin p \sin q}$$

8.
$$\cot p - \cot q = \frac{\sin(q-p)}{\sin p \sin q}$$

៧. សទឹការគ្រឹកោណទារគ្រ

1. សមីការ $\sin u = \sin v$ មានចម្លើយ

$$\left[\begin{array}{l} u=v+2k\pi \\ u=\pi-v+2k\pi \end{array} \right. , \ k\in Z$$

ម្រស្សមមន្តគណិតទិន្យា

2. សមីការ $\cos u = \cos v$ មានចម្លើយ

$$\left[\begin{array}{l} u=v+2k\pi \\ u=-v+2k\pi \end{array} \right. , \ k\in Z$$

- 3. សមីការ tan u = tan v មានចម្លើយ $u = v + k\pi$
- ៤. រួមមន្តមម្លែ១ឆ្លូះជំលត្តគត់សំគាល់

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$$
4.
$$\sin\left(\pi + \theta\right) = -\sin\theta$$

$$\tan\left(\pi + \theta\right) = \tan\theta$$
5.
$$\sin\left(\theta + 2k\pi\right) = \sin\theta$$

$$\cos\left(\theta + 2k\pi\right) = \cos\theta$$

$$\tan\left(\theta + k\pi\right) = \tan\theta$$
4.
$$\forall k \in \mathbb{Z}$$

ម្រស្ទំរួមមន្តគណិតទិន្សា

៩. គ្រាឆ្វិកអនុគមន៍ត្រីកោណទាត្រ

1. ខ្សែក្រោងអនុគមន៍ $\mathbf{y} = \sin \mathbf{x}$

2. ខ្សែកោងអនុគមន៍ $\mathbf{y} = \cos \mathbf{x}$

ម្រស្ទិរួមមន្ត្តការពិតទិន្សា

3. ខ្សែកោងអនុគមន៍ $\mathbf{y} = an \mathbf{x}$

4. ខ្សែកោងអនុគមន៍ $\mathbf{y} = \mathbf{cot}\,\mathbf{x}$

ខំពួភនិ០៧

អតុគមត៍អិចស្ប៉ូណច់ស្យែស តិ១ អតុគមត៍លោកាតែ

1-អនុគមន៍អិចស្ព៉ូររាង់ស្យែល

ិអនុគមន៍អិចស្ប៉ូណង់ស្យែល ជាអនុគមន៍កំនត់ ដោយ y=f(x)=a^x ដែល x ∈ IR និង a ជាចំនូនពិត វិជ្ជមាន និងខុសពី 1 ។

ិក្រាបនៃអនុគមន៍អិចស្ប៉ូណង់ស្យែល

ម្រស្សិចននិងនាងខ្លួង

ិចំពោះគ្រប់ចំនួនពិត a>0 និង a≠1 គេបាន

$$1/a^x = a^k \Leftrightarrow x = k$$

$$2/a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$$

2-អនុគមន៍លោការឹត

ិបើគេមាន $y=a^x$ នោះ $x=\log_a y$ ដែល y>0,a>0និង $a\neq 1$ ។ គេហ $f(x)=a^x$ មានអនុគមន៍ច្រាស់ $f^{-1}(x)=\log_a x$ ។ ដូចនេះ $y=\log_a x$ ហៅថាអនុគមន៍លោការីតនៃ x មានគោល a ។

ិលក្ខណះនៃលោកាវីត

គ្រប់ចំនួនពិតវិជ្ជមាន x និង y , a > 0,a ≠ 1 គេមាន

$$1/\log_a(xy) = \log_a x + \log_a y$$

$$2/\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$$

$$3/\log_a x^n = n\log_a x$$

$$4/\log_a x = \frac{1}{\log_x a}$$

$$5/\log_{a} a = 1$$

$$6/\log_a 1 = 0$$

$$7/a^{\log_a b} = b$$

ម្រស្សុមមន្តការភិតខិន្សា

ិក្រាបនៃអនុគមន៍លោកាវីត

ខំពុកន៍០៨

លីទឹង សិទ ងាព៩រថសែអសុគមស៍

១_លិទឹតនៃអនុគមន៍ត្រខំទំនួនកំណត់

🗷 និយមន័យ :

អនុគមន៍ ${f f}$ មានលីមីតស្ទើ ${f L}$ កាលណា ${f x}$ ខិតជិត ${f a}$ បើគ្រប់ ចំនួន ${f \epsilon}>0$ មានចំនួន ${f \delta}>0$ ដែល $0<|{f x}-{f a}|<{f \delta}$ នាំឱ្យ $|{f f}({f x})-{f L}|<{f \epsilon}$ ។ គេសរសេរ : $\lim_{{f x}\to{f a}} {f f}({f x})={f L}$ ។

🗷 និយមន័យ :

គេថាអនុគមន៍ f ខិតទៅ $+\infty$ ឬ $-\infty$ កាលណា x ខិតទៅជិត a បើចំពោះគ្រប់ចំនួន M>0 មាន $\delta>0$ ដែល $0<|x-a|<\delta$ នាំឱ្យ f(x)>M ឬ f(x)<-M ។ គេសរសេរ $\lim_{x\to a}f(x)=+\infty$ ឬ $\lim_{x\to a}f(x)=-\infty$ ។

២_លីទឹងខែអន់ងនាំមិនទំអន់

គេសរសេរ $\lim_{x \to +\infty} f(x) = L$ ឬ $\lim_{x \to -\infty} f(x) = L$ ។

- \mathscr{L} គេថាអនុគមន៍ \mathbf{f} មានលីមីត $+\infty$ កាលណា \mathbf{x} ទៅជិត $+\infty$ បើចំពោះគ្រប់ចំនួន $\mathbf{M}>\mathbf{0}$ គេមាន $\mathbf{N}>\mathbf{0}$ ដែល $\mathbf{x}>\mathbf{N}$ នាំឱ្យ $\mathbf{f}(\mathbf{x})>\mathbf{M}$ ។គេសរសេរ $\lim_{\mathbf{x}\to +\infty}\mathbf{f}(\mathbf{x})=+\infty$ ។

๓_รูยฺฆฌอิธิเชีเชียิธ

បើ $\lim_{x\to a} f(x) = L$; $\lim_{x\to a} g(x) = M$ និង $\lim_{x\to a} h(x) = N$ ដែល L ; M ; N ជាចំនួនពិតនោះគេបាន :

- $1/\lim_{x\to a} [f(x)\pm g(x)] = L\pm M$ (a ជាចំនួនកំណត់ ឬអនន្ត)
- $2/\lim_{x\to a} [f(x) + g(x) h(x)] = L + M N$
- $3/\lim_{x\to a} [kf(x)] = k \lim_{x\to a} [f(x)]$
- 4/ $\lim_{x\to a} [f(x).g(x).h(x)] = L.M.N$

5/
$$\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{M}$$
; $M \neq 0$

 $6/\lim_{x \to a} [f(x)]^n = L^n$ ដែល n ជាចំនួនគត់ធម្មជាតិមិនសូន្យ ។

๔_ณีซีสเลหลุลขล์หผลิฆล

$$1/\lim_{x\to a} \left(\sqrt[n]{x}\right) = \sqrt[n]{a}$$
 ចំពោះ $a\ge 0$ និង $n\in IN$

$$2/\lim_{x\to a} \left(\sqrt[n]{x}\right) = \sqrt[n]{a}$$
 ចំពោះ $a<0$ និង n ជាចំនួនគត់សេស

$$3/\lim_{x\to a}\left[\sqrt[n]{f(x)}\right] = \sqrt[n]{\lim_{x\to a}\left[f(x)\right]} = \sqrt[n]{L}$$

បើ $\mathbf{L} \geq \mathbf{0}$ និង \mathbf{n} ជាចំនួនគត់គូ ឬ $\mathbf{L} < \mathbf{0}$ និង \mathbf{n} ជាចំនួនគត់សេស។ $\mathbf{\ell}$ -ស៊ីទឹងនៃអនុគទន៍ទន្ទោក់

បើ \mathbf{f} និង \mathbf{g} ជាអនុគមន៍ដែលមាន $\lim_{\mathbf{x} \to \mathbf{a}} [\mathbf{g}(\mathbf{x})] = \mathbf{L}$

និង
$$\lim_{x \to L} f(x) = f(L)$$
 នោះ $\lim_{x \to a} f[g(x)] = f(L)$ ។

៦_លីទឹតតាទការប្រៀបនៀប

 \mathcal{L} បើគេមានអនុគមន៍ \mathbf{f} ; \mathbf{g} និងចំនួនពិត \mathbf{A} ដែល $\lim_{\mathbf{x} \to +\infty} \mathbf{g}(\mathbf{x}) = +\infty$

និង
$$\mathbf{f}(\mathbf{x}) \geq \mathbf{g}(\mathbf{x})$$
 ចំពោះក្រប់ $\mathbf{x} \geq \mathbf{A}$ នោះ $\lim_{\mathbf{x} \to +\infty} \mathbf{f}(\mathbf{x}) = -\infty$ ។

 \mathcal{L} បើគេមានអនុគមន៍ \mathbf{f} ; \mathbf{g} និងចំនួនពិត \mathbf{A} ដែល $\lim_{\mathbf{x} \to +\infty} \mathbf{g}(\mathbf{x}) = +\infty$

និង
$$\mathbf{f}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x})$$
 ចំពោះគ្រប់ $\mathbf{x} \geq \mathbf{A}$ នោះ $\lim_{\mathbf{x} \to +\infty} \mathbf{f}(\mathbf{x}) = -\infty$ ។

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = \lambda$$
 ទឹង $g(x) \le f(x) \le h(x)$

ចំពោះគ្រប់ $\mathbf{x} \geq \mathbf{A}$ នោះ $\lim_{\mathbf{x} \to +\infty} \mathbf{f}(\mathbf{x}) = \lambda$ ។

 \mathcal{L} បើគេមានអនុគមន៍ \mathbf{f} ; \mathbf{g} និងចំនួនពិត \mathbf{A} ដែល $\lim_{\mathbf{x}\to+\infty}\mathbf{f}(\mathbf{x})=\lambda$ $\lim_{\mathbf{x}\to+\infty}\mathbf{g}(\mathbf{x})=\lambda'$ និង $\mathbf{f}(\mathbf{x})\leq\mathbf{g}(\mathbf{x})$ ចំពោះគ្រប់ $\mathbf{x}\geq\mathbf{A}$ នោះ $\lambda\leq\lambda'$ ។

ส_ณีรัสกอริลล์ล

 ${f r}$ នៅ ដើម្បីគណនាលីមីតដែលមានរាងមិនកំនត់ ${0\over 0}$ គេត្រូវបំបែក ភាគយក និង ភាគបែងជាផលគុណកត្តា ហើយសម្រួលកត្តារួម រួចគណនា លីមីតនៃកន្សោមថ្ងី ។

 \varnothing លីមីតដែលមានរាងមិនកំនត់ $\stackrel{\infty}{\sim}$

វិធាន ដើម្បីគណនាលីមីតដែលមានរាងមិនកំនត់ $\frac{\infty}{\infty}$ គេត្រូវដាក់តួ ដែលមានដឺក្រេធំជាងគេនៅភាគយក និង ភាគបែងជាផលគុណកត្តា ហើយសម្រួលកត្តារួម រួចគណនាលីមីតនៃកន្សោមថ្មី ។

Ø លីមីតដែលមានរាងមិនកំនត់ +∞ -∞

វិធាន ដើម្បីគណនាលីមីតដែលមានរាងមិនកំនត់ +∞-∞ គេត្រូវ ដាក់តួដែលមានដីក្រេធំជាងគេនៅភាគយក និង ភាគបែងជាផលគុណ

រួមស្ទឹមមន្ត្តគណិតទិន្សា

នៃកត្តា ហើយសម្រួលកត្តារួម រួចគណនាលីមីតនៃកន្សោមថ្មី ។

៤_លីទឹតនៃអនុគមន៍ទ្រឹកោណមាត្រ

-បើ a ជាចំនួនពិតស្ថិនៅក្នុងដែនកំនត់នៃអនុគមន៍ត្រីកោណមាត្រដែល

ឱ្យនោះតេហ៊ុន
$$\lim_{x\to a} \sin x = \sin a$$
 ; $\lim_{x\to a} \cos x = \cos a$

និង
$$\lim_{x\to a} \tan x = \tan a$$

-វិធាន បើ x ជារងញវាស់មុំ ឬធ្នូគិតជារ៉ាដ្យង់នោះគេបាន

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \quad \hat{\mathbf{S}}\mathbf{S} \quad \lim_{x\to 0} \frac{1-\cos x}{x} = 0 \quad \mathbf{S}$$

៩_លីទីតនៃអនុគមន៍អ៊ិចស្ប៉ូណខ់ស្យែល

$$1/\lim_{x\to +\infty} e^x = +\infty$$

$$2/\lim_{x\to-\infty}e^x=0$$

$$3/\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$$

$$4/\lim_{x\to+\infty}\frac{e^x}{x^n}=+\infty \quad (n>0)$$

$$5/\lim_{x\to +\infty}\frac{x^n}{e^x}=0 \quad (n>0)$$

រុមស្ទីរួមមន្ត្តកណិតទិន្សា

១០_លិទឹងនៃអនុងមន៍លោកាដែនេពែ

$$1/\lim_{x\to +\infty} \ln x = +\infty$$

$$2/\lim_{x\to 0^+} \ln x = -\infty$$

$$3/\lim_{x\to+\infty}\frac{\ln x}{x}=0$$

$$4/\lim_{x\to 0}x\ln x=0$$

$$5/\lim_{x\to+\infty}\frac{\ln x}{x^n}=0 \ (n>0)$$

$$6 / \lim_{x \to 0^{+}} x^{n} \ln x = 0$$

១១_លីទឹងស្ទឹង ឆិខ ស៊េរី

♦ ប្រមាណវិធីលើលីមីត

គេមានស្ត៊ីត
$$(a_n)$$
 និង (b_n) ដែលមាន $\lim_{n \to +\infty} a_n = M$

និង
$$\lim_{n \to +\infty} \mathbf{b}_n = \mathbf{N}$$
 តេជន

$$\tilde{n}$$
. $\lim_{n \to +\infty} ka_n = k.M$

2.
$$\lim_{n \to +\infty} (a_n + b_n) = M + N$$
 , $\lim_{n \to +\infty} (a_n - b_n) = M - N$

គ.
$$\lim_{n\to +\infty} (a_n b_n) = M.N$$

ប៊ើ
$$\mathbf{N} \neq \mathbf{0}$$
 នោះ $\lim_{n \to +\infty} \frac{\mathbf{a}_n}{\mathbf{b}_n} = \frac{\mathbf{M}}{\mathbf{N}}$

លិមិតស្វ៊ីតធរណីមាត្រអនន្ត

- lacktriangle ស្វ៊ីតធរណីមាត្រអនន្តដែលរួម : ស្វ៊ីត $(\mathbf{r}^{\mathrm{n}})$ សមមូល $-1 \leq \mathbf{r} \leq 1$
- ♦ ស៊េរីរួម និង ស៊េរីរីក :

ក-បើស៊េរី
$$\sum_{n=1}^{\infty} (a_n)$$
 ជាស៊េរីរួមនោះ $\lim_{n \to +\infty} a_n = 0$

ខ-បើស្តីត
$$(a_n)$$
 មិនរួមរក 0 ទេនោះ $\sum_{n=1}^{\infty}(a_n)$ ជាស៊េរីរីក ។

⇒ ភាពរួមនិងរីកនៃស៊េរីធរណីមាត្រអនន្ត :

គ្រប់ស៊េរិធរណីមាត្រអនន្ត
$$\mathbf{a} + \mathbf{ar} + \mathbf{ar}^2 + \mathbf{ar}^3 + \dots + \mathbf{ar}^{n-1} + \dots$$

ដែល $\mathbf{a} \neq \mathbf{0}$ ជាស៊េរីរួម ឬ រីកទៅតាមករណីដូចខាងក្រោម :

ក-បើ
$$|\mathbf{r}| < 1$$
 នោះស៊េរីរួមទៅរក $\frac{\mathbf{a}}{1-\mathbf{r}}$ ។

ខ-បើ |r|≥1 នោះស៊េរីរីក ។

១២_នាពខាម់នៃអនុគមន៍ទ្រង់មួយមំនុច

🗷 និយមន័យ :

អនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ជាប់ត្រង់ចំនុច $\mathbf{x} = \mathbf{c}$ កាលណា \mathbf{f} បំពេញ លក្ខខណ្ឌទាំងបីដូចខាងក្រោម

- 1- \mathbf{f} កំណត់ចំពោះ $\mathbf{x} = \mathbf{c}$
- 2- ${f f}$ មានលីមិតកាលណា ${f x}
 ightarrow {f c}$
- $3-\lim_{x\to c}f(x)=f(c)$

១៣_លក្ខណៈខែអតុគមន៍ខាម់

បើ \mathbf{f} និង \mathbf{g} ជាអនុគមន៍ជាប់ត្រង់ $\mathbf{x} = \mathbf{c}$ នោះគេបាន

- 9. $\mathbf{f}(\mathbf{x}) \pm \mathbf{g}(\mathbf{x})$ ជាអនុគមន័ជាប់ត្រង់ $\mathbf{x} = \mathbf{c}$
- ២. f(x).g(x) ជាអនុគមន៍ជាប់ត្រង់ x=c
- $\mathbf{m}.\,rac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}$ ជាអនុគមន៍ជាប់ត្រង់ $\mathbf{x}=\mathbf{c}$ ដែល $\mathbf{g}(\mathbf{c})
 eq \mathbf{0}$ ។

១៤_នាពខាច់សើចន្លោះ

🗷 និយមន័យ :

-អនុគមន៍ f ជាប់លើចន្លោះបើក (a,b) លុះត្រាតែ f ជាប់ចំពោះ គ្រប់តម្លៃ x នៃចន្លោះបើនោះ ។

រួមស្ទឹមមន្ត្តគណិតទិន្សា

-អនុគមន៍ \mathbf{f} ជាប់លើចន្លោះបិទ $[\mathbf{a},\mathbf{b}]$ លុះត្រាតែ \mathbf{f} ជាប់ លើចន្លោះ បើក (\mathbf{a},\mathbf{b}) និងមានលីមីត $\lim_{\mathbf{x}\to\mathbf{a}^+}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})$; $\lim_{\mathbf{x}\to\mathbf{b}^-}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{b})$ (អនុគមន៍ \mathbf{f} ជាប់ត្រង់ \mathbf{a} ខាងស្ដាំ ជាប់ត្រង់ \mathbf{b} ខាងឆ្វេង)

១៥_នាពខាច់នៃអនុគមន៍ចណ្ណាក់

បើអនុគមន៍ ${f g}$ ជាប់ត្រង់ ${f x}={f c}$ និងអនុគមន៍ ${f f}$ ជាប់ត្រង់ ${f g}({f c})$ នោះអនុគមន៍បណ្តាក់ $({f f}\circ{f g})({f x})={f f}\left[{f g}({f x})\right]$ ជាប់ត្រង់ ${f c}$ ។

១៦_អតុទគ្គន៍ អតុគមន៍មន្តាយកាមគាពខាម់

បើ ${\bf f}$ ជាអនុគមន៍មិនកំនត់ត្រង់ ${\bf x}={\bf a}$ និងមានលីមីត $\lim_{{\bf x}\to{\bf a}} {\bf f}({\bf x})={\bf L}$ នោះអនុគមន៍បន្លាយនៃ ${\bf f}$ តាមភាពជាប់ត្រង់ ${\bf x}={\bf a}$ កំនត់ដោយ

$$\mathbf{g}(\mathbf{x}) = \begin{cases} \mathbf{f}(\mathbf{x}) & \mathbf{i} \mathbf{\hat{v}} & \mathbf{x} \neq \mathbf{a} \\ \mathbf{L} & \mathbf{i} \mathbf{\hat{v}} & \mathbf{x} = \mathbf{a} \end{cases}$$

១៧_រុន្តិ៍ស្ពីមនកម្លៃកណ្ដាល

ទ្រឹស្តីបទ : បើអនុគមន៍ f ជាប់លើចន្លោះបិទ [a , b] និង k ជាចំនួនមួយនៅចន្លោះ f(a) និង f(b) នោះមានចំនួនពិត c មួយយ៉ាងតិចក្នុងចន្លោះបិទ [a , b] ដែល f(c) = k ។

ខំពុកន៍០៩

នើទៃ នៃអនុគមន៍

១_ជេីខេេតែអេលុគមស៍គ្រេខំ $\mathbf{X}_{\mathbf{0}}$

🗷 និយមន័យ :

ដើរវៃនៃអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ជាលីមីត (បើមាន) នៃផលធ្យេប

កំនើន $\frac{\Delta y}{\Delta x}$ កាលណា Δx ខិតទៅជិត 0 ។

គេកំនត់សរសេរ

$$y'_{0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}} = \lim_{h \to 0} \frac{f(x_{0} + h) - f(x_{0})}{h}$$

២_នាពមានដើមេ និទ នាពខាម់

សន្ទតថាអនុគមន៍ f(x) កំនត់លើចន្លោះ I ហើយ x_0 ជាចំនួនពិតនៅក្នុង ចន្លោះ I និង h ជាចំនួនពិតមិនសូន្យដែល x_0+h ជារបស់ I ។ -ចំនួនដើរវេធ្វេងត្រង់ចំនួន x_0 នៃអនុគមន៍ f(x) កំនត់តាងដោយ

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 4

-ចំនួនដើរវេស្តាំត្រង់ចំនួន \mathbf{x}_0 នៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$ កំនត់តាងដោយ

$$f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 4

-ដើរវេនៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$ ត្រង់ $\mathbf{x_0}$ បើមាន កំនត់តាងដោយ

ម្រស្មីរួមមន្ត្តគណិតទិន្សា

$$f'(x_0) = \lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\lim_{h\to 0^{-}} \frac{f(x_{0}+h)-f(x_{0})}{h} = \lim_{h\to 0^{+}} \frac{f(x_{0}+h)-f(x_{0})}{h} \quad \forall$$

๓_หลุลชล์เฉเีย

ក.និយមន័យ

-បើf ជាអនុគមន៍មួយកំនត់លើចន្លោះ I និងមានដើរវេត្រង់គ្រប់ចំនុច នៅក្នុងចន្លោះ I នោះគេថាអនុគមន៍ f មានដើរវេលើចន្លោះ I ។ -អនុគមន៍ដែលគ្រប់ $x \in I$ ផ្សំបានចំនួនដើរវេនៃ f ត្រង់ x ហៅថា អនុគមន៍ដើរវៃនៃ f ដែលគេកំនត់សរសេរ $f: x \mapsto f'(x)$ ។

ចំនួនដើរវៃនៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$ ត្រង់ចំនុច \mathbf{x}_0 គឺជាមេគុណប្រាប់ទិសនៃ

រុមស្តីរួមមន្ត្តកណិតទិន្សា

បន្ទាត់ប៉ះនឹងខ្សែកោង $(\mathbf{c}):\mathbf{y}=\mathbf{f}(\mathbf{x})$ ត្រង់ចំនុចមានអាប់ស៊ីស $\mathbf{x}=\mathbf{x}_0$

ហើយសមីការបន្ទាត់ប៉ះនោះកំនត់ដោយ ÷

(T):
$$y - y_0 = f'(x_0) (x - x_0)$$

៤_ដើមែខនៃអសុគមន៍មណ្ណាក់

ប៊ើ $\mathbf{y} = \mathbf{f}(\mathbf{u})$ និង $\mathbf{u} = \mathbf{g}(\mathbf{x})$ នោះគេបាន

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = y' \times u' \quad \text{if } \frac{d}{dx} f[u(x)] = f'(u) \times u'(x)$$

๕_เธลชียเรเยอเชเลลล

រន្ធតមន៍	ដើរវេ
1	

$$y' = 0$$

2.
$$y = x^n$$
 $y' = n x^{n-1}$

3.
$$y = \frac{1}{x}$$
 $y' = -\frac{1}{x^2}$

4.
$$\mathbf{y} = \sqrt{\mathbf{x}}$$
 $\mathbf{y'} = \frac{1}{2\sqrt{\mathbf{x}}}$

5.
$$\mathbf{y} = \mathbf{e}^{\mathbf{x}}$$
 $\mathbf{y'} = \mathbf{e}^{\mathbf{x}}$

6.
$$y = a^x$$
 $y' = a^x \ln a$

7.
$$\mathbf{y} = \ln \mathbf{x}$$
 $\mathbf{y'} = \frac{1}{\mathbf{x}}$

8.
$$y = \sin x$$
 $y = \cos x$

9.
$$y = \cos x$$
 $y' = -\sin x$

ម្រស្ទីមេមឆ្គងលិតទិន្យា

10.
$$y = tan x$$

$$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

11.
$$y = \cot x$$

$$y' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$$

12.
$$y = \arcsin x$$

$$\mathbf{y'} = \frac{1}{\sqrt{1 - \mathbf{x}^2}}$$

13.
$$y = \arccos x$$

$$\mathbf{y'} = -\frac{1}{\sqrt{1-\mathbf{x}^2}}$$

14.
$$y = \arctan x$$

$$y' = \frac{1}{1 + x^2}$$

***** ជាទូទៅ

$$1.y = u^n$$

$$y' = n.u'.u^{n-1}$$

2.
$$\mathbf{y} = \sqrt{\mathbf{u}}$$

$$y' = \frac{u'}{2\sqrt{u}}$$

$$3.\mathbf{y} = \mathbf{u.v}$$

$$y' = u'v + v'u$$

4.
$$y = \frac{\mathbf{u}}{\mathbf{v}}$$

$$\mathbf{y'} = \frac{\mathbf{u'} \, \mathbf{v} - \mathbf{v'} \, \mathbf{u}}{\mathbf{v}^2}$$

5.
$$y = \ln u$$

$$y' = \frac{u'}{u}$$

6.
$$y = \sin u$$

$$y' = u' \cdot \cos u$$

7.
$$y = \cos u$$

$$y' = -u'\sin u$$

8.
$$y = e^u$$

$$y' = u'.e^u$$

9.
$$y = tan u$$

$$y' = u'(1 + \tan^2 u)$$

10.
$$y = \arcsin u$$

$$y' = \frac{u'}{\sqrt{1 - u^2}}$$

រុមស្ទីរួមមន្ត្តកណិតទិន្សា

11.
$$\mathbf{y} = \arccos \mathbf{u}$$
 $\mathbf{y'} = -\frac{\mathbf{u'}}{\sqrt{1 - \mathbf{u}^2}}$

12. $\mathbf{y} = \arctan \mathbf{u}$ $\mathbf{y'} = \frac{\mathbf{u'}}{1 + \mathbf{u}^2}$

13. $\mathbf{y} = \mathbf{u}^{\mathbf{V}}$ $\mathbf{y'} = \mathbf{u}^{\mathbf{V}} \left(\mathbf{v'} \ln \mathbf{u} + \mathbf{v} \frac{\mathbf{u'}}{\mathbf{u}} \right)$

b_เชรีเธณิชาช่อู่

បើអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ មានដើរវេបន្តបន្ទាប់ដល់លំដាប់ \mathbf{n} នោះ $\mathbf{y}^{(n)} = \mathbf{f}^{(n)}(\mathbf{x})$ ហៅថាដើរវេទី \mathbf{n} នៃអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ហើយ $\mathbf{f}^{(n)}(\mathbf{x}) = \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}\mathbf{f}^{(n-1)}(\mathbf{x})$ ។

ส_เชฏุ์ลเลยชลา

🗷 និយមន័យ :

ល្បឿន នៃចលនាមួយនៅខណ: t គឺ $V(t) = S'(t) = \frac{dS}{dt}$

ដែល S(t) ជាចម្ងាយនៅខណ: t ។

៨_សំនុះនៃខេលនា

សំទុះនៃចលនាមួយនៅខណះ t គឺ $\mathbf{a}(t) = \frac{\mathbf{d}\mathbf{V}(t)}{\mathbf{d}t} = \mathbf{V'}(t)$

ដែល $\mathbf{V}(\mathbf{t})$ ជាល្បឿននៃចលនានៅខណៈ \mathbf{t} ។

ម្រស្មីរួមមន្តគណិតទិន្សា

๕_หญุสษณ์หผมิญภ

.អនុតមន៍
$$y=\sqrt{ax+b}$$
 ដែល $a \neq 0$

ដែនកំណត់ : អនុគមន៍មានន័យកាលណ $\mathbf{a}\mathbf{x} + \mathbf{b} \geq \mathbf{0}$

-ហ៊ើ
$$a>0$$
 នោះ $x\geq -\frac{b}{a}$ ហ៊ើយ $D=[-\frac{b}{a},+\infty)$

-ហ៊ើ
$$a < 0$$
 នោះ $x \le -\frac{b}{a}$ ហ៊ើយ $D = (-\infty, -\frac{b}{a}]$

ដើរវេ
$$\mathbf{y'} = \frac{\mathbf{a}}{2\sqrt{\mathbf{a}\mathbf{x} + \mathbf{b}}}$$

-បើ $\mathbf{a} < \mathbf{0}$ នោះ $\mathbf{y'} < \mathbf{0}$ នាំឱ្យអនុគមន៍ចុះជានិច្ចលើដែនកំណត់។

-បើ $\mathbf{a} > \mathbf{0}$ នោះ $\mathbf{y'} > \mathbf{0}$ នាំឱ្យអនុគមន៍កើនជានិច្ចលើដែនកំណត់ ។

.អនុកមន៍
$$y=\sqrt{ax^2+bx+c}$$
 មាន $\Delta=b^2-4ac$

lacktriangleដែនកំណត់ : អនុគមន៍មានន័យកាលណា $ax^2+bx+c\geq 0$

_ករណី a > 0

ក្រាបនៃ $y = ax^2 + bx + c$ មានអាស៊ីមតូតទ្រេតពីរគឺ

ក-ប៊ើ
$${f x}
ightarrow + \infty$$
 នោះ ${f y} = \sqrt{a}({f x} + {b\over 2a})$ ជាអាស៊ីមតូតទ្រេត ។

ក-ប៊េ
$$\mathbf{x} \to -\infty$$
 នោះ $\mathbf{y} = -\sqrt{\mathbf{a}}(\mathbf{x} + \frac{\mathbf{b}}{2\mathbf{a}})$ ជាអាស៊ីមតូតទ្រេត

_ករណី a < 0

រួមស្តីរួមមន្ត្**គ**ឈិតទិន្សា

ក្រាបនៃអនុគមន៍ $\mathbf{y} = \sqrt{a\mathbf{x}^2 + b\mathbf{x} + c}$ គ្មានអាស៊ីមតូតទេ ។

$$lacktriangle$$
 ដើរវ៉េ $y' = \frac{2ax + b}{2\sqrt{ax^2 + bx + c}}$ មានសញ្ហាដូច $2ax + b$

$$-$$
បើ $\mathbf{a} < \mathbf{0}$ អនុគមន៍មានអតិបរមាមួយត្រង់ $\mathbf{x} = -\frac{\mathbf{b}}{2\mathbf{a}}$ ។

-បើ
$$\mathbf{a} > \mathbf{0}$$
 អនុគមន៍មានអប្បបរមាមួយត្រង់ $\mathbf{x} = -\frac{\mathbf{b}}{2\mathbf{a}}$ ។

១០_អនុគមន៍ត្រីកោណមាត្រចម្រុះ

.ចំណុចសំខាន់>សម្រាប់សិក្សាអនុតមន៏ត្រីកោណមាត្រ

- -ដែនកំណត់
- -ខូបនៃះនុគមន៍
- -ភាពគូសេសនៃអនុគមន៍
- -ទិសដៅអថេរភាពនៃអនុគមន៍

.ខូបនៃអនុកមន៏

$$-$$
ខួបនៃអនុគមន៍ $y = \sin(ax)$ គឺ $\frac{2\pi}{|a|}$

$$-$$
ខួបនៃអនុគមន៍ $y = \cos(ax)$ គឺ $\frac{2\pi}{|a|}$

.ភាពក្លូសេសនៃអនុតមន៍

-អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាអនុគមន៍សេសលើ \mathbf{I} កាលណា $\forall \mathbf{x} \in \mathbf{I}$, $-\mathbf{x} \in \mathbf{I}$

ម្រស្មីរួមមន្ត្តគណិតទិន្សា

ហើយ $\mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$ ។ $-អនុគមន៍ \mathbf{f}(\mathbf{x})$ ជាអនុគមន៍គូលើ \mathbf{I} កាលណា $\forall \mathbf{x} \in \mathbf{I}$, $-\mathbf{x} \in \mathbf{I}$ ហើយ $\mathbf{f}(-\mathbf{x}) = \mathbf{f}(\mathbf{x})$ ។

១១_ន្ទ្រឹស្តីមន

បើមានពីរចំនួនពិត m និង M ដែលចំពោះ គ្រប់ $x \in I: m \le f'(x) \le M$ នោះ គ្រប់ចំនួនពិត a , $b \in I$ ដែល a < b គេបាន $m(b-a) \le f(b) - f(a) \le M(b-a)$ ។

- ullet គេឱ្យអនុគមន័ ${f f}$ មានដើរវើលើចន្លោះ $[{f a}\,,{f b}\,]$ ។ បើមានចំនួន ${f M}$ ដែលគ្រប់ ${f x}\in [{f a},{f b}\,]:|{f f}'({f x})|\!\!\leq\! {f M}$ នោះគេបាន : $|{f f}({f b})\!-\!{f f}({f a})|\!\!\leq\! {f M}\,|{f b}\!-\!{f a}|$ ។
- ullet បើf ជាអនុគមន៍ជាប់លើចន្លោះ $[a\ ,b\]$ មានដើរវេលី ចន្លោះ $[a\ ,b\]$ មិង f(a)=f(b) នោះមានចំនួន $c\in(a\ ,b\)$ មួយ យ៉ាងតិចដែលf'(c)=0 ។
- ullet បើf ជាអនុគមន៍ជាប់លើចន្លោះ $[a\,,b\,]$ មានដើរវេលើ ចន្លោះ $(a\,,b\,)$ នោះមានចំនួន $c\in(a,b\,)$ មួយយ៉ាងតិច ដែល $f'(c)=rac{f(b)-f(a)}{b-a}$ ។

ខំពុកនិ១០

អាំ១តេក្ខាល

១_អាំទតេក្រាលទីខកំណត់

🗷 ក្រីទីនីទ

គ. និយមន័យ

សន្មតថា f(x) ជាអនុគមន៍កំនត់លើចន្លោះ I ។ គេថា F(x) ជាព្រីមីទីវនៃ f(x) លើចន្លោះ I កាលណា ឧទាហរណ៍១ អនុគមន៍ $\mathbf{F}(\mathbf{x}) = \mathbf{x}^3$ ជាព្រឹមីទីវមួយនៃអនុគមន៍ $f(x) = 3x^2$ ហើយខ្លែរ $] - \infty, + \infty$ ពីព្រោះ $F'(x) = 3x^2 = f(x)$ ចំពោះគ្រប់ $x \in]-\infty, +\infty$ ឧទាហរណ៍២ អនុគមន៍ $\mathbf{F}(\mathbf{x}) = \sin \mathbf{x}$ ជាព្រឹមីទីវមួយនៃអនុគមន៍ $f(x) = \cos x$ ហើយន្លោះ $] - \infty, + \infty$ ពីព្រោះ $F'(x) = \cos x = f(x)$ ចំពោះគ្រប់ $x \in]-\infty$ $+\infty$ [។ ឧទាហរណ៍៣ អនុគមន៍ $\mathbf{F}(\mathbf{x}) = \ln \mathbf{x}$ ជាព្រឹមីទីវមួយនៃអនុគមន៍ $f(x) = \frac{1}{1}$ លើចន្លោះ $0, +\infty$ ពីព្រោះ $F'(x) = \frac{1}{x} = f(x)$ ចំពោះគ្រប់ $x \in (0, +\infty)$

ម្រស្ទំរួមមន្តកណិតទិន្សា

ខ. ត្រូំស្ពីមន

បើអនុគមន៍ F(x) និង G(x) ជាព្រីមីទីវនៃអនុគមន៍ f(x) លើចន្លោះ I នោះគេមាន F(x) = G(x) + c ចំពោះគ្រប់ $x \in I$ ។ ដែល c ជាចំនួនថេរ ។

🗷 អាំខតេក្រាលទិនកំនត់

គ. និយទន័យ បើអនុគមន៍ F(x) ជាព្រីមីទីវនៃអនុគមន៍ f(x) នោះអាំងតេក្រាលមិនកំនត់នៃអនុគមន៍ f(x) កំនត់ដោយ $\int f(x).dx = F(x) + c$ ដែល c ជាចំនួនថេរ ។

e. រួនិស្នីមន

សន្មតថា $\mathbf{f}(\mathbf{x})$ និង $\mathbf{g}(\mathbf{x})$ ជាអនុគមន៍ពីរមានព្រីមីទីវលើចន្លោះរួម

I តេមាន ÷

a/
$$\int [f(x) + g(x)] dx = \int f(x) . dx + \int g(x) . dx$$

b/ $\int [k.f(x)] dx = k \int f(x) . dx$

🗷 រួមទទួសំ១តេក្រាលសំខាត់ៗ

$$9. \int \mathbf{k} \cdot \mathbf{dx} = \mathbf{kx} + \mathbf{c}$$

$$0. \int x^{n} dx = \frac{1}{n+1} x^{n+1} + c , n \neq -1$$

$$\text{G. } \int \frac{\mathrm{d}x}{x^2} = -\frac{1}{x} + c$$

រួមស្ទីមេខត្តគណិតទិន្សា

ਖ.
$$\int \frac{\mathrm{d}x}{\sqrt{x}} = 2\sqrt{x} + c$$

$$\Im. \int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + c$$

$$\text{fil. } \int \frac{dx}{\sqrt{ax+b}} = \frac{2}{a} \sqrt{ax+b} + c$$

$$\mathbf{G}. \int \mathbf{e}^{\mathbf{x}} \mathbf{dx} = \mathbf{e}^{\mathbf{x}} + \mathbf{c}$$

$$\delta. \int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

90.
$$\int a^{x} dx = \frac{1}{\ln a} \cdot a^{x} + c$$

$$99. \int \frac{dx}{\cos^2 x} = \tan x + c$$

$$\Im \mathbb{D}. \int \frac{\mathrm{dx}}{\sin^2 x} = -\cot x + c$$

$$\Im \mathbf{m}. \int \sin x. dx = -\cos x + \mathbf{c}$$

ગલ.
$$\int \cos x \cdot dx = \sin x + c$$

ງປ.
$$\int \cot x. dx = \ln |\sin x| + c$$

$$\Im \iint \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \cdot \ln \left| \frac{x - a}{x + a} \right| + c$$

$$\mathfrak{IG}$$
. $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$

ગ્રે.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln|x + \sqrt{x^2 + a^2}| + c$$

ម្រស្មីមេមឆ្លួកសិតទិន្យា

$$00. \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln |x + \sqrt{x^2 - a^2}| + c$$

$$\text{E9.} \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + c$$

$$\text{BB. } \int \sqrt{x^2 + a^2} . dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln|x + \sqrt{x^2 + a^2}| + c$$

$$\text{Dm. } \int \sqrt{x^2 - a^2} . dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + c$$

છ દ.
$$\int \sqrt{a^2 - x^2} . dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + c$$

🗷 ទីនីប្តូរអថេរត្ត១អាំ១តេក្រាលទីនកំនត់

9_ឧបមាថាគេមានអាំងតេក្រាល $I = \int f[g(x)].g'(x).dx$

ប៊ើតេតាង $\mathbf{u} = \mathbf{f}(\mathbf{x})$ នោះ $\mathbf{d}\mathbf{u} = \mathbf{f}'(\mathbf{x}).\mathbf{d}\mathbf{x}$

រែកបាន
$$I = \int f[g(x)].g'(x).dx = \int f(u).du = F(u) + c$$
 ។

២-ឧបមាថាគេមានអាំងគេក្រាល $\mathbf{I} = \int \mathbf{f}(\mathbf{x}) . d\mathbf{x}$

តាដ
$$\mathbf{x} = \mathbf{\phi}(\mathbf{t})$$
 នោះ $\mathbf{d}\mathbf{x} = \mathbf{\phi}'(\mathbf{t}).\mathbf{d}\mathbf{t}$

រោហិន
$$I = \int f(x).dx = \int f[\phi(t)].\phi'(t).dt$$
 ។

$$\int \mathbf{k} \mathbf{P'}(\mathbf{x}) . d\mathbf{x} = \mathbf{k} . \mathbf{P}(\mathbf{x}) + \mathbf{c}$$

រួមស្ទឹមមន្តគណិតទិន្សា

$$\partial_{-}\int [P(x)]^{n}.P'(x).dx = \frac{1}{n+1}.P^{n+1}(x) + c$$
, $n \neq -1$

$$\tilde{n} = \int \frac{P'(x)}{P(x)} dx = \ln |P(x)| + c$$

$$\text{ i.d. } \int \frac{P'(x)}{\sqrt{P(x)}} . dx = 2\sqrt{P(x)} + c$$

$$abla = e^{P(x)} \cdot P'(x) \cdot dx = e^{P(x)} + c$$

$$\vec{v}$$
 $\int \frac{P'(x)}{P^2(x)} dx = -\frac{1}{P(x)} + c$

🗷 អាំខតេក្រាលដោយផ្នែក

បើ គេមាន
$$\mathbf{u} = \mathbf{f}(\mathbf{x})$$
 និង $\mathbf{v} = \mathbf{g}(\mathbf{x})$ គេបាន ÷
$$\int \mathbf{u} \cdot d\mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \int \mathbf{v} \cdot d\mathbf{u}$$
 ។

២_អាំ១តេក្រាល់កំណត់

.និយមន័យ

f ជាអនុគមន៍ជាប់លើចន្លោះ [a,b] ។

អាំងតេក្រាលកំណត់ពី \mathbf{a} ទៅ \mathbf{b} នៃ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ កំណត់ដោយ

$$\int_{a}^{b} f(x).dx = F(b) - F(a)$$
 ដែល $F'(x) = f(x)$ ។

.ផ្ទៃក្រឡានៃផ្នែកប្លង់

-បើអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ជាប់លើចន្លោះ $[\mathbf{a},\mathbf{b}]$ នោះផ្ទៃក្រឡា

នៃផ្នែកប្លង់ដែលខណ្ឌដោយខ្សែកោង អក្ស័អាប់ស៊ីស បន្ទាត់ឈរ

x = a , x = b កំណត់ដោយ $S = \int_{a}^{b} f(x) . dx$ ប៊ើ $f(x) \ge 0$

-បើអនុគមន៍ y = f(x) ជាប់លើចន្លោះ [a,b] នោះផ្ទៃក្រឡា

នៃផ្នែកប្លង់ដែលខណ្ឌដោយខ្សែកោង អក្ស័អាប់ស៊ីស បន្ទាត់ឈរ

x = a , x = b កំណត់ដោយ $S = -\int_{a}^{b} f(x) . dx$ បើ $f(x) \le 0$ ។

-បើ f និង g ជាអនុគមន៍ជាប់លើ [a,b]នោះគេបានផ្ទៃក្រឡា នៅចន្លោះខ្សែកោងតាងអនុគមន៍ទាំងពីរកំណត់ដោយ :

$$S = \int_{a}^{b} [f(x) - g(x)].dx$$

ដែល $\mathbf{f}(\mathbf{x}) \geq \mathbf{g}(\mathbf{x})$ គ្រប់ $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ ។

- ullet បើអនុគមន៍ ${f f}$ វិជ្ជមានហើយជាប់លើចន្លោះ $[{f a},{f b}]$ នោះមាឌុនៃសូលីដ បរិវត្តន៍បានពីរង្វិលជុំវិញអក្ស័អាប់ស៊ីសនៃផ្ទៃដែលខណ្ឌដោយក្រាបតាង អនុគមន៍ ${f y}={f f}({f x})$ អក្ស័អាប់ស៊ីស បន្ទាត់ឈរ ${f x}={f a}$ និង ${f x}={f b}$ កំណត់ដោយ ${f V}=\lim_{n\to +\infty}\sum_{k=1}^n \left[\pi {f f}^2({f x}_k).\Delta {f x}\right]=\pi\int\limits_a^b {f f}^2({f x}).d{f x}$ ។
- ullet មាឌុនៃសូលីដបរិវត្តកំណត់បានពីរង្វិលជុំវិញអក្ស័ (ox) នៃផ្ទៃ ខណ្ឌដោយ ក្រាប y = f(x) និង y = g(x) លើចន្លោះ [a,b]

ដែល $\mathbf{f}(\mathbf{x}) \geq \mathbf{g}(\mathbf{x})$ កំណត់ដោយ $\mathbf{V} = \pi \int_{a}^{b} \left[\mathbf{f}^{2}(\mathbf{x}) - \mathbf{g}^{2}(\mathbf{x}) \right] d\mathbf{x}$ ។

- ulletអនុគមន៍ \mathbf{F} ដែលកំណត់លើចន្លោះ $[\mathbf{a},\mathbf{b}]$ ដោយ $\mathbf{F}(\mathbf{x})=\int\limits_a^\mathbf{x}\mathbf{f}(t).\mathbf{d}t$ ហៅថាអនុគមន៍កំណត់តាមអាំងតេក្រាលកំណត់ ។
- ulletតម្លៃមធ្យមនៃ f កំណត់ជាប់លើ [a,b] គឺ $y_m = \frac{1}{b-a} \int_a^b f(x).dx$
- ullet ប្រវែងធ្នូនៃក្រាបតាងf លើ[a,b] គឺ $L=\int\limits_a^b\sqrt{1+f'^2\left(x\right)}.dx$

ខំពុកនិ១១

សទីភារឌីផេរ៉ាច់ស្យែល

១_សទឹការឌីនេះខែស្វែលសំជាច់នី១

សមីការឌីផេរ៉ង់ស្យែលលំដាប់ទី 1 មានរាងទូទៅ

- . $\frac{dy}{dx} = f(x)$ មានចម្លើយទូទៅ $y = \int f(x).dx + c$
- . $g(y).\frac{dy}{dx}=f(x)$ មានចម្លើយទូទៅ G(y)=F(x)+C ដែល $G(y)=\int g(y).dy$ ។
- . y'+ay=0 ឬ $\frac{dy}{dx}+ay=0$ មានចម្លើយទូទៅ $y=A.e^{-ax}$ ដែល A ជាចំនួនថេរ ។
- . $\mathbf{y'}+\mathbf{ay}=\mathbf{p}(\mathbf{x})$ មានចម្លើយទូទៅ $\mathbf{y}=\mathbf{y_e}+\mathbf{y_p}$ ដែល $\mathbf{y_e}$ ជាចម្លើយនៃសមីការ $\mathbf{y'}+\mathbf{ay}=\mathbf{0}$ និង $\mathbf{y_p}$ ជាចម្លើយពិសេសមួយ នៃសមីការ $\mathbf{y'}+\mathbf{ay}=\mathbf{p}(\mathbf{x})$ ។

២_សន្ទឹងរង្វើស្វេសស្វសស្វងាច់ន្ទី២

ក_សទឹការឌីនៅខែស្វែលស៊ីនេអ៊ែលំជាម៉យ

និយមន័យ :

សមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់ទី២ អូម៉ូសែន និងមាន មេគុណជាចំនួនថេរជាសមីការដែលអាចសរសេរជារាងទូទៅ :ឧ ay''+by'+cy=0 ដែល $a\neq 0$, $a,b,c\in IR$ ។ ខ_ជំណោះស្រាយសមីអារឌីផេរ៉ខ់ស្យែលសំដាច់នឹង

-សមិការសម្គាល់

សមីការសម្គាល់នៃសមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់ទី២ អូម៉ូសែន និងមានមេគុណជាចំនួនថេរ $\mathbf{ay''}+\mathbf{by'}+\mathbf{cy}=\mathbf{0}$ ជាសមីការដឺក្រេទីពីរ $\mathbf{a}\lambda^2+\mathbf{b}\lambda+\mathbf{c}=\mathbf{0}$ ដែល $\mathbf{a}\neq\mathbf{0}$, $\mathbf{a},\mathbf{b},\mathbf{c}\in\mathbf{IR}$ -វិធីដោះស្រាយសមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់២ ឧបមាថាគេមានសមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់ខដូចខាងក្រោម:

$$(E): y''+by'+cy=0$$
 ដែល $b,c\in IR$ ។

- ulletសមីការ (E) មានសមីការសម្គាល់ $\lambda^2 + b\lambda + c = 0$ (1)
- \bullet គណនា $\Delta = \mathbf{b}^2 4\mathbf{c}$
- -ករណី $\Delta>0$ សមីការ (1) មានឬសពីរជាចំនួនពិតផ្សេងគ្នាគឺ

 $\lambda_1=\alpha$ និង $\lambda_2=\beta$ នោះសមីការ (\mathbf{E}) មានចម្លើយទូទៅ ជាអនុគមន៍រាង $\mathbf{y}=\mathbf{A}.\mathbf{e}^{\alpha x}+\mathbf{B}.\mathbf{e}^{\beta x}$

ដែល A , B ជាចំនួនថេរមួយណាក៏បាន ។

-ករណី $\Delta=0$ សមីការ (1) មានឬសឌុបគឺ $\lambda_1=\lambda_2=\alpha$ នោះសមីការ (E) មានចម្លើយទូទៅជាអនុគមន៍រាង

 $y = Ax.e^{\alpha x} + B.e^{\alpha x}$

ដែល A , B ជាចំនួនថេរមួយណាក៏បាន ។

-ករណី $\Delta < 0$ សមីការ (1) មានឬសពីរផ្សេងគ្នា

ជាចំនួនកុំផ្លិចឆ្លាស់គ្នាគឺ $\lambda_1=\alpha+i.\beta$ និង $\lambda_2=\alpha-i.\beta$

 $(\alpha,\beta\in IR)$ នោះសមីការ (E) មានចម្លើយទូទៅជាអនុគមន៍រាង

 $y = (A\cos\beta x + B\sin\beta x)e^{\alpha x}$

ដែល A , B ជាចំនួនថេរមួយណាក៏បាន ។

ឌ-ជុំឈោះស្រែតាម្នាន្ត្រអង្គេះនេះទុំខ្មែរប្រសូត្រភ្នំពន្ធ្រង់គំនិ

ឧបមាថាគេមានសមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់ទី2មិនអូម៉ូសែន

y''+by'+cy=P(x) ដែល $P(x) \neq 0$ ។

ដើម្បីដោះស្រាយសមីការនេះគេត្រូវ:

ulletស្វែងរកចម្លើយពិសេសមិនអូម៉ូសែន តាងដោយ $\mathbf{y}_{\mathbf{P}}$

ម្រស្ទីរួមមន្ត្តគណិតទិន្សា

របស់សមីការy''+by'+cy=P(x) ដែល y_P មានទទ្រង់ដូច P(x) ។

- ullet រកចម្លើយទូទៅតាងដោយ \mathbf{y}_{c} នៃសមីការលីនេអ៊ែ លំដាប់ទី2អូម៉ូសែន $\mathbf{y}''+\mathbf{b}\mathbf{y}'+\mathbf{c}\mathbf{y}=\mathbf{0}$ ។
 - ullet គេបានចម្លើយទូទៅនៃសមីការឌីផេរ៉ង់ស្យែលលីនេអ៊ែលំដាប់ទី2 មិនអូម៉ូសែនជាផលប្តូករវាង $\mathbf{y_P}$ និង $\mathbf{y_c}$ គឺ $\mathbf{y} = \mathbf{y_P} + \mathbf{y_C}$ ។

ខ្លួំង ខ្លួំ ខ្លួំ

ខ្ញុំចន្ទដូចលំបា

១-វ៉ិចទ័រក្នុងលិហ

ក/ និយមន័យ

អង្កត់មានទិសដៅ AB នៅក្នុងលំហហៅថាវ៉ិចទ័រ ក្នុងលំហដែលមាន A ជាគល់និង B ជាចុង។

គេកំនត់សរសេរដោយ $\overrightarrow{\mathbf{AB}}$ ។

ខ/ កូអរដោធេនៃវ៉ិចទ័រក្នុងលំហ

ក្នុងលំហប្រកបដោយតម្រុយ (O,i,j,k) ចំពោះ គ្រប់ចំនុច P មានត្រីធាតុ (a,b,c) តែមួយគត់ដែល

 $\overrightarrow{U} = \overrightarrow{OP} = a \cdot \overrightarrow{i} + b \cdot \overrightarrow{j} + c \cdot \overrightarrow{k}$ ។ ត្រីធាតុ (a,b,c) ហៅថា កូអរដោនេនៃចំនុច P ដែលគេសរសេរ P(a,b,c) ។

២-ផលតុលាស្កាលែនៃវ៉ិចទ័រក្នុងលំហ ក/ និយមន័យ

l

រុមស្តីរួមមន្ត្តកណិតទិន្សា

- ផលគុណស្កាលែនៃពីរវ៉ិចទ័រ \mathbf{u} និង \mathbf{v} គឺជាចំនួនពិត

កំនត់ដោយ
$$\overset{\rightarrow}{\mathbf{u}}.\overset{\rightarrow}{\mathbf{v}}=|\overset{\rightarrow}{\mathbf{u}}|.|\overset{\rightarrow}{\mathbf{v}}|\cos\theta$$
 ។

(θ ជាមុំរវាងវ៉ិចទ័រ $\overset{
ightarrow}{\mathbf{u}}$ និង $\overset{
ightarrow}{\mathbf{v}}$)

- ប៊ើ
$$\vec{u}=0$$
 ឬ $\vec{v}=0$ នោះ $\vec{u}.v=0$ ។

ខ/គោល និង តម្រុយអវត្តណរម៉ាល់

គេហៅគោលអរត្ចណរម៉ាល់នៃវ៉ិចទ័រ គឺគ្រប់ត្រីធាតុ

$$(\overset{
ightarrow}{\mathbf{i}},\overset{
ightarrow}{\mathbf{j}},\overset{
ightarrow}{\mathbf{k}})$$
 ដែល $|\overset{
ightarrow}{\mathbf{i}}|=|\overset{
ightarrow}{\mathbf{j}}|=|\overset{
ightarrow}{\mathbf{k}}|=1$

និង
$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$$
 ។

រួមស្ទឹមមន្ត្តគណិតទិន្សា

ត/ ទ្រឹស្តីបទ

ក្នុងគោលអរត្វណរម៉ាល់នៃលំហផលគុណស្កាលែរវាង ពីវេវ៉ិចទ័រ $\overset{
ightarrow}{\mathbf{u}}=(\mathbf{x}_1,\mathbf{y}_1,\mathbf{z}_1)$ និង $\overset{
ightarrow}{\mathbf{v}}=(\mathbf{x}_2\,,\mathbf{y}_2,\mathbf{z}_2)$ គឺជាចំនួន ពិតកំនត់ដោយ $\overset{
ightarrow}{\mathbf{u}}.\overset{
ightarrow}{\mathbf{v}}=\mathbf{x}_1\mathbf{x}_2+\mathbf{y}_1\mathbf{y}_2+\mathbf{z}_1\mathbf{z}_2$ ។

ឃ/ ក្លូវិល

-ពីវត្ថិចទីវ
$$\overset{
ightarrow}{\mathbf{u}}=(\mathbf{x}_1,\mathbf{y}_1,\mathbf{z}_1)$$
 និង $\overset{
ightarrow}{\mathbf{v}}=(\mathbf{x}_2\;,\mathbf{y}_2\;,\mathbf{z}_2)$

អរត្វក្ខណាល់គ្នាលុះត្រាតតែ $\stackrel{\rightarrow}{\mathbf{u}}.\mathbf{v}=\mathbf{0}$ បានន័យថា

$$\overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{v}} \iff \mathbf{x}_1 \mathbf{x}_2 + \mathbf{y}_1 \mathbf{y}_2 + \mathbf{z}_1 \mathbf{z}_2 \qquad \Im$$

-ស្កាលែ និង ណមនៃវ៉ិចទ័រ $\overset{
ightarrow}{\mathbf{u}}=(\mathbf{a},\mathbf{b}\,,\mathbf{c}\,)$ កំនត់ដោយ

$$(\stackrel{\rightarrow}{\mathbf{u}})^2 = \mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2$$
 និង $|\stackrel{\rightarrow}{\mathbf{u}}| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2}$ ។

-មុំរវាងពីរវ៉ិចទ័រ
$$\mathbf{u} = (\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$$
 និង $\mathbf{v} = (\mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2)$

កំនត់ដោយ
$$\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cos \theta \Rightarrow \cos \theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}$$

$$\mathbf{y} \quad \cos \theta = \frac{\mathbf{x_1} \mathbf{x_2} + \mathbf{y_1} \mathbf{y_2} + \mathbf{z_1} \mathbf{z_2}}{\sqrt{\mathbf{x_1}^2 + \mathbf{y_1}^2 + \mathbf{z_1}^2} \cdot \sqrt{\mathbf{x_2}^2 + \mathbf{y_2}^2 + \mathbf{z_2}^2}} \quad \mathbf{y}$$

៣-សមីការស្វែក្នុងលំហ

និយមន័យ

សំណុំនៃចំនុច P(x,y,z) ដែលមានចម្ងាយថេរ ស្មើ R ពីចំនុចនឹង I(a;b;c) ហៅថាស្វ៊ែផ្ចិត I កាំ R។ សមីការរបស់ស្វ៊ែនេះគឺ

(S):
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

៤-សមិការបន្ទាត់ក្នុងលំហ

សមីការបន្ទាត់ (L) កាត់តាមចំនុច $\mathbf{A}(\mathbf{x}_{\mathrm{A}}\,,\mathbf{y}_{\mathrm{A}}\,,\mathbf{z}_{\mathrm{A}})$

ហើយមានវ៉ិចទ័រប្រាប់ទិស $\stackrel{
ightarrow}{u}(a\,,b\,,c\,)$ កំនត់ដោយ

$$(L): egin{cases} x = x_A + at \ y = y_A + bt \ z = z_A + ct \ ; \ t \in IR \end{cases}$$
 (ហៅថាសមីការប៉ារ៉ាម៉ែត)

$$(L): \frac{\mathbf{x} - \mathbf{x}_{\mathbf{A}}}{\mathbf{a}} = \frac{\mathbf{y} - \mathbf{y}_{\mathbf{A}}}{\mathbf{b}} = \frac{\mathbf{z} - \mathbf{z}_{\mathbf{A}}}{\mathbf{c}}$$
 (ហៅថាសមីការឆ្លុះ)

៥-សមិការប្លង់ក្នុងតម្រុយអរត្តធារម៉ាល់ r/∞ មិការប្លង់កាត់តាមចំនុចមួយនឹងវ៉ិចទ័រធារម៉ាល់មួយ សមីការប្លង់កាត់តាមចំនុច $A(x_A\,,y_A\,,z_A)$ ហើយមាន វ៉ិចទ័រណរម៉ាល់ $\vec{n}(a;b;c)$ កំនត់ដោយ $(P):a(x-x_A)+b(y-y_A)+c(z-z_A)=0$ ។ 2/ចម្ងាយពីចំនុចមួយទៅប្លង់មួយក្នុងលំហ

ចម្ងាយពីចំណុច $\mathbf{A}(\mathbf{x}_{\mathrm{A}}\,;\mathbf{y}_{\mathrm{A}}\,;\mathbf{z}_{\mathrm{A}})$ ទៅប្លង់ (\mathbf{P}) ដែល

ម្រស្មីរួមមន្ត្តគណិតទិន្សា

មានសមីការ ax + by + cz + d = 0 កំនត់ដោយ

$$d(A; (P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

៦-ផលគុណនៃពីវ៉េចទ័វក្នុងលំហ

1.និយមន័យជល់គុណនៃពីវិទិចទ័រ

បើ $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1 \cdot \vec{\mathbf{i}} + \vec{\mathbf{u}}_2 \cdot \vec{\mathbf{j}} + \vec{\mathbf{u}}_3 \cdot \vec{\mathbf{k}}$ និង $\vec{\mathbf{v}} = \vec{\mathbf{v}}_1 \cdot \vec{\mathbf{i}} + \vec{\mathbf{v}}_2 \cdot \vec{\mathbf{j}} + \vec{\mathbf{v}}_3 \cdot \vec{\mathbf{k}}$ ជាវ៉ិចទវក្នុងលំហ ។

ផលគុណនៃវ៉ិចទវ័ \mathbf{u} និង \mathbf{v} គឺជាវ៉ិទវ័កំណត់ដោយ:

$$\overrightarrow{u} \times \overrightarrow{v} = (u_2 v_3 - u_3 v_2) \overrightarrow{i} - (u_1 v_3 - u_3 v_1) \overrightarrow{j} + (u_1 v_2 - u_2 v_1) \overrightarrow{k}$$
 ដើម្បីងាយស្រួលក្នុងការគណនាផលគុណនៃពីវវ៉ិចទ័រ \overrightarrow{u} និង \overrightarrow{v} គេសន្ទត ប្រើដេទែមីណង់លំដាប់បីដូចខាងក្រោម :

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{vmatrix}$$

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \mathbf{u}_2 & \mathbf{u}_3 \\ \mathbf{v}_2 & \mathbf{v}_3 \end{vmatrix} \overrightarrow{\mathbf{i}} - \begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_3 \\ \mathbf{v}_1 & \mathbf{v}_3 \end{vmatrix} \overrightarrow{\mathbf{j}} + \begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_2 \\ \mathbf{v}_1 & \mathbf{v}_2 \end{vmatrix} \overrightarrow{\mathbf{k}}$$

2.លក្ខណៈនៃជល់គុណនៃពីវ៉ិចទវ

 \vec{v} \vec{u} \vec{v} និង \vec{w} ជាវ៉ិចទ័រក្នុងលំហ និង \vec{c} ជាចំនួនពិតនោះគេបាន :

$$\widetilde{\text{n.}}\overset{\rightarrow}{u\times}\vec{v}=-(\overset{\rightarrow}{v\times}\vec{u})$$

$$?. \overset{\rightarrow}{\mathbf{u} \times} (\overset{\rightarrow}{\mathbf{v} + \mathbf{w}}) = \overset{\rightarrow}{\mathbf{u} \times} \overset{\rightarrow}{\mathbf{v} + \mathbf{u} \times} \overset{\rightarrow}{\mathbf{w}}$$

$$\vec{n}$$
. $\mathbf{c}(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = (\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{v}})$

ង.
$$\mathbf{u} \times \mathbf{u} = \mathbf{o}$$

$$\overrightarrow{u}.\overrightarrow{u}.(\overrightarrow{v}\times\overrightarrow{w}) = (\overrightarrow{u}\times\overrightarrow{v}).\overrightarrow{w}$$

3.បំណកស្រាយនៃជល់កុណនៃពីវិទ្ធិចទីកោមបែបចំណើមាត្រ

រុមស្តីរួមមន្ត្តគណិតទិន្សា

 $\overline{\overset{-}{\longrightarrow}\overset{-}{\longrightarrow}}$ $\overrightarrow{\mathsf{n.u}} imes\mathbf{v}$ អរតូកូណាល់ទៅនឹង \mathbf{u} ផង និង \mathbf{v} ផង ។

$$\exists . \mid \overrightarrow{u} \times \overrightarrow{v} \mid = \mid \overrightarrow{u} \mid . \mid \overrightarrow{v} \mid . \sin \theta$$

គ. បើ $\mathbf{u} \times \mathbf{v} = \mathbf{o}$ នោះ \mathbf{u} និង \mathbf{v} ជាវ៉ិចទវក្លីនេអ៊ែនឹងគ្នា ។

 \overrightarrow{u} . $|\overrightarrow{u}\times\overrightarrow{v}|$: ជាផ្ទៃក្រឡានៃប្រលេឡូក្រាមដែលសង់លើ \overrightarrow{u} និង \overrightarrow{v} ។

ង. $\frac{1}{2} |\stackrel{\rightarrow}{\mathbf{u}} \times \stackrel{\rightarrow}{\mathbf{v}}|$: ជាផ្ទៃក្រឡានៃត្រីកោលដែលសង់លើ $\stackrel{\rightarrow}{\mathbf{u}}$ និង $\stackrel{\rightarrow}{\mathbf{v}}$ ។

4.ម៉ូម៉ង់ $\stackrel{ ightharpoonup}{\mathbf{M}}$ នៃកម្លាំង $\stackrel{ ightharpoonup}{\mathbf{F}}$ ចំពោះចំណុច \mathbf{P}

បើ ${f Q}$ ជាចំណុចចាប់នៃកម្លាំង $\overset{
ightarrow}{{f F}}$ នោះម៉ម៉ង់នៃកម្លាំង $\overset{
ightarrow}{{f F}}$ ចំពោះចំណុច

$$P \stackrel{\rightarrow}{n} | \stackrel{\rightarrow}{M} | = | \stackrel{\rightarrow}{PQ} \times \stackrel{\rightarrow}{F} |$$
 ។

ម្រស្សមមន្តគណិតទិន្យា

5.ជល់គុណចម្រុះនៃប៊ីវ៉ិចទីក្នែងលំហ

ក.និយមន័យ

គេមានវ៉ិចទ័របី $\overset{\rightarrow}{\mathbf{u}}$, $\overset{\rightarrow}{\mathbf{v}}$ និង $\overset{\rightarrow}{\mathbf{w}}$ នៅក្នុងលំហ ។ ផលគុណចម្រុះ នៃ $\overset{\rightarrow}{\mathbf{u}}$, $\overset{\rightarrow}{\mathbf{v}}$ និង $\overset{\rightarrow}{\mathbf{w}}$ តាមលំដាប់គឺជាចំនួនពិតកំណត់ដោយ $\overset{\rightarrow}{\mathbf{u}}$. $(\overset{\rightarrow}{\mathbf{v}}\times\overset{\rightarrow}{\mathbf{w}})=\mathbf{r}$ ។

ខ.ទ្រឹស្តីបទទី១

បើគេមានវ៉ិចទីរ
$$\overset{\rightarrow}{\mathbf{u}} = \mathbf{u}_1 . \overset{\rightarrow}{\mathbf{i}} + \mathbf{u}_2 . \overset{\rightarrow}{\mathbf{j}} + \mathbf{u}_3 . \overset{\rightarrow}{\mathbf{k}}$$

$$\overset{\rightarrow}{\mathbf{v}} = \overset{\rightarrow}{\mathbf{v}_1} . \overset{\rightarrow}{\mathbf{i}} + \overset{\rightarrow}{\mathbf{v}_2} . \overset{\rightarrow}{\mathbf{j}} + \overset{\rightarrow}{\mathbf{v}_3} . \overset{\rightarrow}{\mathbf{k}}$$

$$\overset{\rightarrow}{\mathbf{v}} = \overset{\rightarrow}{\mathbf{v}_1} . \overset{\rightarrow}{\mathbf{i}} + \overset{\rightarrow}{\mathbf{v}_2} . \overset{\rightarrow}{\mathbf{j}} + \overset{\rightarrow}{\mathbf{v}_3} . \overset{\rightarrow}{\mathbf{k}}$$

$$\overset{\rightarrow}{\mathbf{v}} . \overset{\rightarrow}{\mathbf{v}} \overset{\rightarrow}$$

ត.ទ្រឹស្តីបទទី២

មាឌរបស់ប្រលេពីប៉ែតកែងដែលសង់លើវ៉ិចទវ័ \mathbf{u} , \mathbf{v} និង \mathbf{w} គឺ:

$$\mathbf{V} = |\overrightarrow{\mathbf{u}}.(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})|$$
និងមាឌ \mathbf{W} របស់តេត្រាអ៊ែតគឺ : $\mathbf{W} = \frac{|\overrightarrow{\mathbf{u}}.(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})|}{6}$ បានន័យថាយកមាឌូរបស់តេត្រាអ៊ែតចែកនឹង $\mathbf{6}$ ។

6.បន្ទាត់ និង ប្លង់ក្នុងលំហ

ក_បង្ខាត់ក្នុងលំបា

ត្រីស្ដីបទ:

ullet គេមានបន្ទាត់ ${\bf L}$ មួយស្របនឹងវ៉ិចទវ័ ${f v}=({\bf a},{\bf b},{\bf c})$ ហើយកាត់តាម ចំនុច ${f P}_0({f x}_0,{f y}_0,{f z}_0)$ នោះសមីការប៉ារ៉ាំម៉ែត្រនៃបន្ទាត់ ${f L}$ គឺ :

$$x = x_0 + at , y = y_0 + bt , z = z_0 + ct (t \in IR)$$

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases} ; t \in IR$$

$$z = z_0 + ct$$

lacktriangle បើ a , b , c ខុសពីសូន្យនោះសមីការឆ្លុះ នៃបន្ទាត់ L គឺ :

$$L: \frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{a}} = \frac{\mathbf{y} - \mathbf{y}_0}{\mathbf{b}} = \frac{\mathbf{z} - \mathbf{z}_0}{\mathbf{c}} \quad \forall$$

ខ_ប្តង់ក្នុងលំបា

ទ្រឹស្តីបទ : បើប្លង់មួយកាត់តាមចំណុច $\mathbf{P}(\mathbf{x_0},\mathbf{y_0},\mathbf{z_0})$

និងមានវ៉ិចទវ័ណវម៉ាល់ $\overset{
ightarrow}{\mathbf{n}}=(\mathbf{a},\mathbf{b},\mathbf{c})$ នោះប្លង់មានសមីការស្តង់ដា :

$$\mathbf{a}(\mathbf{x}-\mathbf{x}_0)+\mathbf{b}(\mathbf{y}-\mathbf{y}_0)+\mathbf{c}(\mathbf{z}-\mathbf{z}_0)=\mathbf{0}$$
 ដោយពន្លាតសមីការនេះហើយតាង $\mathbf{d}=-(\mathbf{a}\mathbf{x}_0+\mathbf{b}\mathbf{y}_0+\mathbf{c}\mathbf{z}_0)$ នោះគេបានសមីការទូទៅ $\mathbf{a}\mathbf{x}+\mathbf{b}\mathbf{y}+\mathbf{c}\mathbf{z}+\mathbf{d}=\mathbf{0}$ ។

ម្រស្សមមន្តគណិតទិន្យា

ត_ចុំរវាងខ្លង់ពីរ

គេមានប្លង់ពីរ α_1 និង α_2 មានវ៉ិចទវ័ណរម៉ាល់វៀងគ្នា \mathbf{n}_1 និង \mathbf{n}_2 នោះមុំ θ វវាងពីវវ៉ិចទវ័នេះ ជាមុំវវាងប្លង់ទាំងពីវដែលអាចកំណត់បាន $\overset{\rightarrow}{\mathbf{n}_1 \cdot \mathbf{n}_2}$

តាមទំនាក់ទំនង
$$\cos\theta = \frac{\begin{vmatrix} \overrightarrow{n}_1 \cdot \overrightarrow{n}_2 \end{vmatrix}}{\begin{vmatrix} \overrightarrow{n}_1 \end{vmatrix} \cdot \begin{vmatrix} \overrightarrow{n}_2 \end{vmatrix}}$$
 ។

ឃ_សថីការស្វ៊ែ

សមីការស្តង់ដានៃស្វែដែលមានផ្ចិត $C(x_0,y_0,z_0)$ និងកាំ \mathbf{r} គឺ

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$
 4

ពន្លាតសមីការស្ដង់ដាគេបានសមីការទូទៅនៃស្វែដែលមានរាង

$$x^2 + y^2 + z^2 - 2x_0x - 2y_0y - 2z_0z + k = 0$$

ដែល $k = x_0^2 + y_0^2 + z_0^2 - r^2$ ។

ង - ចម្ងាយពីចំណុចចួយ ទៅឬង់ក្នុងលំបា

ត្រីស្តីបទ ចម្ងាយពីចំនុច ${f Q}$ ទៅប្លង់ ${f lpha}$ ដែលចំណុច ${f Q}$ មិននៅក្នុងប្លង់

$$\alpha$$
 កំណត់ដោយ $\mathbf{D} = \frac{|\overrightarrow{\mathbf{PQ}}.\overrightarrow{\mathbf{n}}|}{|\overrightarrow{\mathbf{n}}|}$ ដែល \mathbf{P} ជាចំណុចនៅក្នុងប្លង់ហើយ $\overrightarrow{\mathbf{n}}$

ជាវ៉ិចទវ័ណរម៉ាល់នៃប្លង់ ។

ម្រស្សមមន្តគណិតទិន្យា

ច_ចម្ងាយពីចំណុចម្ដួយទៅបន្ទាត់ក្នុងលំបា

ទ្រឹស្តីបទ ចម្ងាយពីចំនុច Q ទៅបន្ទាត់ L ក្នុងលំហកំណត់ដោយ :

$$\mathbf{D} = \frac{|\overrightarrow{\mathbf{PQ}} \times \overrightarrow{\mathbf{u}}|}{|\overrightarrow{\mathbf{u}}|}$$
 ដែល \mathbf{P} ជាចំណុចនៅលើបន្ទាត់ហើយ $\overrightarrow{\mathbf{u}}$ ជាវ៉ិចទវ័

ប្រាប់ទិសនៃបន្ទាត់ **L** ។

ខំពុគន៌១៣

ចំ**នួ**តអុំផ្លឹច

១ – តិយមត័យ :

- . ចំនួនកុំផ្លិចជាចំនួនដែលមានទម្រង់ $\mathbf{z} = \mathbf{a} + \mathbf{i}.\mathbf{b}$ ដែល \mathbf{a} និង \mathbf{b} ជាពីរចំនួនពិត ហើយ \mathbf{i} ហៅថាឯកតានិម្ចិតដែល $\mathbf{i}^2 = -1$ ឬ $\mathbf{i} = \sqrt{-1}$ ។
- . គេតាងសំណុំចំនួនកុំផ្លិចដោយ 🕻 ។
- . \mathbf{a} ហៅថាផ្នែកពិតដែលគេកំនត់តាងដោយ $\mathbf{Re}(\mathbf{z}) = \mathbf{a}$ ។
- . \mathbf{b} ហៅថាផ្នែកនិច្ចិតដែលគេកំនត់តាងដោយ $\mathbf{Im}(\mathbf{z}) = \mathbf{b}$ ។

២ -ប្រមាណវិធីលើចំនួនកុំថ្លិច

ក. ប្រមាណវិធីបូក និង ប្រមាណវិធីដក

សន្ទតថាគេមាន
$$\mathbf{z}_1 = \mathbf{a}_1 + \mathbf{i}.\mathbf{b}_1$$
 និង $\mathbf{z}_2 = \mathbf{a}_2 + \mathbf{i}.\mathbf{b}_2$

តេជានរូបមន្ត
$$\mathbf{z}_1 + \mathbf{z}_2 = (\mathbf{a}_1 + \mathbf{a}_2) + \mathbf{i.}(\mathbf{b}_1 + \mathbf{b}_2)$$

និង
$$\mathbf{z}_1 - \mathbf{z}_2 = (\mathbf{a}_1 + \mathbf{a}_2) - \mathbf{i} \cdot (\mathbf{b}_1 + \mathbf{b}_2)$$

រួមស្ទឹមមន្ត្តគណិតទិន្សា

ខ. ប្រមាណវិធីគុណ និង ប្រមាណវិធីចែក

សន្ទតថាគេមាន
$$\mathbf{z}_1 = \mathbf{a}_1 + \mathbf{i}.\mathbf{b}_1$$
 និង $\mathbf{z}_2 = \mathbf{a}_2 + \mathbf{i}.\mathbf{b}_2$

ដែល $\mathbf{a}_1, \mathbf{a}_2, \mathbf{b}_1, \mathbf{b}_2 \in \mathbf{IR}$ ។

តេជានរូបមន្ត
$$\mathbf{z}_1 \times \mathbf{z}_2 = (\mathbf{a}_1 \mathbf{a}_2 - \mathbf{b}_1 \mathbf{b}_2) + \mathbf{i.}(\mathbf{a}_1 \mathbf{b}_2 + \mathbf{a}_2 \mathbf{b}_1)$$

និង
$$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{\mathbf{a}_1 \mathbf{a}_2 + \mathbf{b}_1 \mathbf{b}_2}{\mathbf{a}_2^2 + \mathbf{b}_2^2} + \mathbf{i} \cdot \frac{\mathbf{a}_2 \mathbf{b}_1 - \mathbf{a}_1 \mathbf{b}_2}{\mathbf{a}_2^2 + \mathbf{b}_2^2}$$
 ។

៣ -ចំតួតកុំថ្លិចឆ្លាស់និងថ្វីឌល់តែចំតួតកុំថ្លិច

. ចំនួនកុំផ្លិចឆ្លាស់ នៃចំនួនកុំផ្លិច $\mathbf{z} = \mathbf{a} + \mathbf{i}.\mathbf{b}$ គឺជាចំនួនកុំផ្លិចដែលតាងដោយ

$$\overline{z} = a - i.b$$
 4

. ក្នុងតម្រុយអរតូនរម៉ាល់ គេអាចតាងចំនួនកុំផ្លិច $\mathbf{z} = \mathbf{a} + \mathbf{i.b}$ ដោយចំនុច

$$P(a,b)$$

រួមស្ទឹមមន្តគណិតទិន្យា

. រង្វាស់
$$\mathbf{OP}=\mathbf{r}=\mid\mathbf{z}\mid$$
 ហៅថាម៉ូឌុលនៃចំនួនកុំផ្លិច $\mathbf{z}=\mathbf{a}+\mathbf{i.b}$ គេកំនត់សរសេរ : $\mid\mathbf{z}\mid=\mathbf{r}=\sqrt{\mathbf{a}^2+\mathbf{b}^2}$ ។

៥-ស្វ័យតុធានៃ i

ចំពោះគ្រប់ចំនួនគត់ k ∈ IN គេមានស្វ័យគុណនៃ i ដូចខាងក្រោម :

$$\mathbf{i}^{4\mathbf{k}}=\mathbf{1}$$
 , $\mathbf{i}^{4\mathbf{k}+1}=\mathbf{i}$, $\mathbf{i}^{4\mathbf{k}+2}=-\mathbf{1}$ ទិង $\mathbf{i}^{4\mathbf{k}+3}=-\mathbf{i}$ ។

ឧទាហរណ៍: គណនា $S = 1 + i + i^2 + i^3 + \dots + i^{2006}$ ។

តាមរូបមន្តផលបូកស្វ៊ីតធរណីមាត្រ $1+q+q^2+q^3+....+q^n=rac{1-q^{n+1}}{1-q}$

តេហ្គន
$$\mathbf{S} = \frac{1 - \mathbf{i}^{2007}}{1 - \mathbf{i}}$$
 ដោយ $\mathbf{i}^{2007} = \mathbf{i}^{4 \times 501 + 3} = -\mathbf{i}$

ដូចនេះ
$$S = \frac{1+i}{1-i} = \frac{(1+i)^2}{(1-i)(1+i)} = \frac{1+2i-1}{1+1} = \frac{2i}{2} = i$$
 ។

៦ –អតុវត្តឥក្នុងជំណោះស្រាយសមីការដីក្រេទីពីរ

គេមានសមីការដឺក្រេទីពីរ $az^2 + bz + c = 0$

ដែល a ≠ 0 និង a,b,c∈ IR ។

ឌីសគ្រីមីណង់នៃសមីការគឺ $\Delta = \mathbf{b}^2 - 4\mathbf{a}\mathbf{c}$ ។

-បើ $\Delta > 0$ សមីការមានឬសពីរជាចំនួនពិតគឺ :

$$-$$
បើ $\Delta=0$ សមីការមានឬសឌុបជាចំនួនពិតគឺ: $\mathbf{z}_1=\mathbf{z}_2=-rac{\mathbf{b}}{2\mathbf{a}}$ ។

ម្រស្ទំរួមមន្តកណិតទិន្សា

-បើ $\Delta < 0$ សមីការមានឬសពីរជាចំនួនកុំផ្ចិចឆ្លាស់គ្នាគឺ :

$$\mathbf{z}_1 = \frac{-\mathbf{b} + \mathbf{i}\sqrt{|\Delta|}}{2\mathbf{a}}$$
 , $\mathbf{z}_2 = \frac{-\mathbf{b} - \mathbf{i}\sqrt{|\Delta|}}{2\mathbf{a}}$ 4

๗ -រប្បេបតណតាឬសការេតៃចំនួនកុំផ្លិច :

ដើម្បីគណនាឬសការេនៃចំនួនកុំផ្លិច z = a + i.b គេត្រូវអនុវត្តន៍ដូចតទៅ :

-តាង
$$W = x + i.y$$
 ; $x,y \in IR$ ជាប្លួសការេ នៃ $z = a + i.b$ ។

-តេហ្ទន
$$\mathbf{W}^2 = \mathbf{z}$$
 ដោយ $\mathbf{W}^2 = (\mathbf{x} + \mathbf{i} \cdot \mathbf{y})^2 = (\mathbf{x}^2 - \mathbf{y}^2) + 2\mathbf{i}\mathbf{x}\mathbf{y}$

-តេហ្គន
$$(x^2 - y^2) + 2ixy = a + i.b$$

-គេទាញជានប្រពន្ឋ័
$$\begin{cases} x^2 - y^2 = a \\ 2xy = b \end{cases}$$

(ត្រូវដោះស្រាយប្រពន្ឋ័នេះរកគូចម្លើយ **x;y**)

៤ -ទម្រង់ត្រីកោលចេត្រតៃចំនួតកុំថ្លិច

នៅក្នុងប្លង់កុំផ្លិច (xoy) គេំឱ្យចំនុច P(a;b) តាងឱ្យចំនួនកុំផ្លិច z=a+i.b ។

រួមស្ទឹមមន្ត្តគណិតទិន្សា

តាង
$$\theta$$
 ជាមុំតូចបំផុតនៃ $\left(\overrightarrow{\mathbf{0x}};\overrightarrow{\mathbf{0P}}\right)$ ។

ដែលហៅថាអាគុយម៉ង់នៃចំនួនកុំផ្លិច z = a + i.b ។

ក្នុងត្រីកោណកែង \mathbf{OPR} គេមាន $\mathbf{OP}^2 = \mathbf{OR}^2 + \mathbf{RP}^2$

ដោយ
$$\begin{cases} \mathbf{OP} = \mathbf{r} = \mid \mathbf{z} \mid \\ \mathbf{OR} = \mathbf{a} \\ \mathbf{RP} = \mathbf{OQ} = \mathbf{b} \end{cases}$$

គេបាន $\mathbf{r}^2 = \mathbf{a}^2 + \mathbf{b}^2$ ឬ $\mathbf{r} = \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$ (ហៅថាម៉ូឌលនៃ $\mathbf{z} = \mathbf{a} + \mathbf{i}.\mathbf{b}$) ។

ម្យ៉ាងទៀត
$$\begin{cases} \cos\theta = \frac{OR}{OP} = \frac{a}{r} \\ \sin\theta = \frac{RP}{OP} = \frac{b}{r} \end{cases} \quad \text{sign} \quad \begin{cases} a = r.\cos\theta \\ b = r.\sin\theta \end{cases}$$

គេបាន $z = a + i.b = r.\cos\theta + i.r.\sin\theta = r(\cos\theta + i.\sin\theta)$

ដូចនោះ
$$z = r.(\cos \theta + i.\sin \theta)$$
 ដែល $\begin{cases} \cos \theta = \frac{a}{r} ; \sin \theta = \frac{b}{r} \\ r = \sqrt{a^2 + b^2} > 0 \end{cases}$

៩-ប្រចាសាវិធីលើចំនួនកុំផ្លិចត្រីកោណចាត្រ

ក. រូបមន្តវិធីគុណ :

សន្ទតថា
$$\mathbf{Z}_1 = \mathbf{r}_1 \ \left(\cos\theta_1 + \mathbf{i}.\sin\theta_1\right)$$
 និង $\mathbf{Z}_2 = \mathbf{r}_2 \ \left(\cos\theta_2 + \mathbf{i}.\sin\theta_2\right)$

តេហ្ទ
$$\mathbf{Z}_1 \times \mathbf{Z}_2 = \mathbf{r}_1 \cdot \mathbf{r}_2 \left[\cos(\theta_1 + \theta_2) + i \cdot \sin(\theta_1 + \theta_2) \right]$$
 ។

ខ. រូបមន្តវិធីចែក :

រួមស្ទឹមមន្ត្តគណិតទិន្សា

សន្ទតថា
$$\mathbf{Z}_1 = \mathbf{r}_1 \left(\cos \theta_1 + \mathbf{i} \cdot \sin \theta_1 \right)$$
 និង $\mathbf{Z}_2 = \mathbf{r}_2 \left(\cos \theta_2 + \mathbf{i} \cdot \sin \theta_2 \right)$

គេបាន
$$\frac{\mathbf{Z}_1}{\mathbf{Z}_2} = \frac{\mathbf{r}_1}{\mathbf{r}_2} \left[\cos(\theta_1 - \theta_2) + \mathbf{i.}\sin(\theta_1 - \theta_2) \right]$$

គ. ស្វ័យគុណទី n នៃចំនួនកុំផ្ចិចត្រីកោណមាត្រ :

សន្ទតថាគេមាន $\mathbf{Z} = \mathbf{r} \, \left(\cos \theta + \mathbf{i} . \sin \theta \right)$ និងគ្រប់ចំនួនគត់ $\mathbf{n} \in \mathbf{Z}$

គេបាន
$$\mathbf{Z}^{n} = [\mathbf{r}. (\cos \theta + \mathbf{i}.\sin \theta)]^{n} = \mathbf{r}^{n} [\cos(n\theta) + \mathbf{i}.\sin(n\theta)]$$

ឃ. រូបមន្តដឹមវ័ :

ចំពោះគ្រប់
$$\mathbf{n} \in \mathbf{Z}$$
 គេមាន $\left(\cos\theta + \mathbf{i}.\sin\theta\right)^{\mathbf{n}} = \cos(\mathbf{n}\theta) + \mathbf{i}.\sin(\mathbf{n}\theta)$

១០ -ឬសទីn ដៃចំផ្ទុងកុំថ្មិច:

ច្រឹស្តីបទ: សន្មតថា $\mathbf{Z} = \mathbf{r} \; (\cos \theta + \mathbf{i}.\sin \theta)$ ជាចំនួនកុំផ្ចិចមិនសូន្យ ហើយ $\mathbf{n} \in \mathbf{IN}$ ។

បើ $\mathbf{W_k}$ ជាឬសទី \mathbf{n} នៃចំនួនកុំផ្ចិចខាងលើនោះគេបាន :

$$W_{k} = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \cdot \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$

ដែល $\mathbf{k} = 0 , 1, 2, 3 , \dots, n-1$ ។

១១ –ទម្រង់ស៊ិចស្ប៊ីណង់ស្វែលនៃចំតួតកុំថ្លិច:

ចំនួនកុំផ្លិច \mathbf{Z} ដែលមានម៉ូឌុល | $\mathbf{Z} \models \mathbf{r}$ និង អាគុយម៉ង់ $\mathbf{arg}(\mathbf{Z}) = \mathbf{\theta}$ មានទម្រង់អ៊ិចស្ប៉ូណង់ស្យែលកំនត់ដោយ $\mathbf{Z} = \mathbf{r} \cdot \mathbf{e}^{\mathbf{i} \cdot \mathbf{\theta}}$ ។

ខំពុកនិ១៤

រិទ្ធ ខ្លែន ខេត្ត ខេត ខេត្ត ខេត

១-ទំនាក់ទំនងមាត្រក្នុងត្រីកោលាកែង

ឧបមាថាគេមានត្រីកោណ ABC មួយកែងត្រង់ កំពូល A និងមានកំពស់ AH ។ គេមានទំនាក់ទំនងសំខាន់ៗដូចខាងក្រោម

$$1/AB^2 = BH.BC$$

$$2/AC^2 = HC.BC$$

$$3/AH^2 = BH.HC$$

$$4/BC^2 = AB^2 + AC^2$$
 (ទ្រឹស្តីបទពីតាហ្គរ័)

$$5/AH.BC = AB.AC$$

$$6/\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AC^2}$$

$$7/\sin\alpha = \frac{AB}{BC}$$

$$8/\cos\alpha = \frac{AC}{BC}$$

9/
$$\tan \alpha = \frac{AB}{AC}$$

២-ទ្រឹស្តីបទស៊ីឌូស

ឧបមាថាគេមានត្រីកោណ ABC មួយចារឹកក្នុង រង្វង់កាំ R ហើយមានជ្រុង BC=a; AC=b និង AB=c ។

គេមានទំនាក់ទំនង $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

៣-ទ្រឹស្តីបទកូស៊ីនូស

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ។ គេមានទំនាក់ទំនង

$$1/a^2 = b^2 + c^2 - 2bccsoA$$

$$2/b^2 = c^2 + a^2 - 2ca \cos B$$

$$3/c^2 = a^2 + b^2 - 2ab \cos C$$

៤-រូបមន្តចំណោលកែង

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ។ គេមានទំនាក់ទំនង

$$1/a = b\cos C + c\cos B$$

$$2/b = c \cos A + a \cos C$$

$$3/c = a\cos B + b\cos A$$

៥-ទ្រឹស្តីបទតង់ហ្សង់

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ។ គេមានទំនាក់ទំនង

$$1/\frac{a-b}{a+b} = \frac{\tan\frac{A-B}{2}}{\tan\frac{A+B}{2}}$$

$$2/\frac{b-c}{b+c} = \frac{\tan\frac{B-C}{2}}{\tan\frac{B+C}{2}}$$

$$3/\frac{c-a}{c+a} = \frac{\tan\frac{C-A}{2}}{\tan\frac{C+A}{2}}$$

៦-កាំរង្វង់ចារឹកក្នុងមុំនៃត្រីកោណមួយ

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ហើយ $p=\frac{a+b+c}{2}$ ។ តាង $r_{_A}$, $r_{_B}$, $r_{_C}$ ជាកាំរង្វង់ចារឹកក្នុងមុំ A, B, C នៃត្រីកោណ ABC ។គេមានទំនាក់ទំនង

1/
$$r_{A} = p. \tan \frac{A}{2} = \frac{p-c}{\tan \frac{B}{2}} = \frac{p-b}{\tan \frac{C}{2}}$$

2/ $r_{B} = p. \tan \frac{B}{2} = \frac{p-a}{\tan \frac{C}{2}} = \frac{p-c}{\tan \frac{A}{2}}$
3/ $r_{C} = p. \tan \frac{C}{2} = \frac{p-b}{\tan \frac{A}{2}} = \frac{p-a}{\tan \frac{B}{2}}$

៧-កន្សោមការង្វង់ចារឹកក្នុងនៃត្រីកោរវាមួយ

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ហើយ $p=\frac{a+b+c}{2}$ ។ តាង r ជាកាំរង្វង់ចារឹកក្នុងនៃត្រីកោណនេះ ។ គេមានទំនាក់ទំនង

$$r = (p-a)\tan\frac{A}{2} = (p-b)\tan\frac{B}{2} = (p-c)\tan\frac{C}{2}$$

៨-រូបមន្តគណនាផ្ទៃក្រឡាត្រីកោណ

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ហើយ $p=\frac{a+b+c}{2}$ ជាកន្លះបរិមាត្រ។ តាងr និងR រៀងគ្នាជាកាំរង្វង់ចារឹកក្នុងនិងក្រៅ នៃត្រីកោណនេះ , តាង $\mathbf{r}_{_{\!A}}$, $\mathbf{r}_{_{\!B}}$, $\mathbf{r}_{_{\!C}}$ ជាកាំរង្វង់ ចារឹកក្នុងទំ និង $\mathbf{h}_{_{\!A}}$, $\mathbf{h}_{_{\!A}}$, $\mathbf{h}_{_{\!C}}$ ជាកាល់គូស ពីកំពូលA, B, C នៃត្រីកោណ ។

1/
$$S = \frac{1}{2}a.h_a = \frac{1}{2}b.h_b = \frac{1}{2}c.h_c$$

$$2/S = \frac{abc}{4R} = pr$$

3/
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

4/ S =
$$\frac{1}{2}$$
b.c sin A = $\frac{1}{2}$ c.a sin B = $\frac{1}{2}$ a.b sin C

5/ S = p(p-a)
$$\tan \frac{A}{2}$$
 = p(p-b) $\tan \frac{B}{2}$ = p(p-c) $\tan \frac{C}{2}$

$$6/S = 2R^2 \sin A \sin B \sin C$$

7/
$$S = (p-a)r_A = (p-b)r_B = (p-c)r_C$$

8/
$$S = \sqrt{r.r_A.r_B.r_C}$$

៩-ទ្រឹស្តីបទមេដ្យានក្នុងត្រីកោណ

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ។ AL= m_a ; AM= m_b ; AN= m_c ជាមេដ្យាននៃត្រីកោណ ABC ។

គេមានទំនាក់ទំនង

1/
$$m_a^2 = \frac{b^2 + c^2}{2} - \frac{a^2}{4}$$

2/ $m_b^2 = \frac{c^2 + a^2}{2} - \frac{b^2}{4}$
3/ $m_c^2 = \frac{a^2 + b^2}{2} - \frac{c^2}{4}$

១០-ទ្រឹស្តីបទបន្ទាត់ពុះម៉ុក្នុង

ត្រីកោណ ABC មួយមានជ្រុង BC=a; AC=b និង AB=c ។ AA'= L_a ; BB'= L_b ; CC'= L_c ជាប្រវែងនៃបន្ទាត់ពុះក្នុងនៃមុំ A,B,C ។

គេមានទំនាក់ទំនង

1/
$$L_a = \frac{2bc}{b+c}\cos\frac{A}{2}$$

2/ $L_b = \frac{2ac}{a+c}\cos\frac{B}{2}$
3/ $L_c = \frac{2ab}{a+b}\cos\frac{C}{2}$

ម្រស្មីមេមឆ្លួកសិតទិន្យា

$$\begin{split} \mathfrak{DD-hi} & \mathfrak{F} \mathfrak{J} \mathfrak{F} \cos \frac{A}{2} \, ; \cos \frac{B}{2} \, ; \cos \frac{C}{2} \\ & \cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}} \, ; \cos \frac{B}{2} = \sqrt{\frac{p(p-b)}{ac}} \\ & \cos \frac{C}{2} = \sqrt{\frac{p(p-c)}{ab}} \\ \mathfrak{DD-hi} & \sin \frac{A}{2} \, ; \sin \frac{B}{2} \, ; \sin \frac{C}{2} \\ & \sin \frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}} \, ; \sin \frac{B}{2} = \sqrt{\frac{(p-a)(p-c)}{ac}} \\ & \sin \frac{C}{2} = \sqrt{\frac{(p-a)(p-b)}{ab}} \\ \mathfrak{DM-hi} & \sin \frac{A}{2} \, ; \tan \frac{B}{2} \, ; \tan \frac{C}{2} \\ & \tan \frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}} \, ; \, \tan \frac{B}{2} = \sqrt{\frac{(p-a)(p-c)}{p(p-b)}} \\ & \tan \frac{C}{2} = \sqrt{\frac{(p-a)(p-b)}{p(p-c)}} \end{split}$$

១៤-ទំនាកទំនងផ្សេងៗទៅ្វឥត្តកត់សំតាល់

ក្នុងត្រីកោណ ABC មួយគេមានទំនាក់ទំនង ខាងក្រោម

$$1/\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

2/
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

$$3/\tan A + \tan B + \tan C = \tan A \tan B \tan C$$

$$4/\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$$

5/
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

6/
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$$

$$7/\sin^2 A + \sin^2 B + \sin^2 C = 1 - 2\cos A\cos B\cos C$$

$$8/\cos^2 A + \cos^2 B + \cos^2 C = 2 + 2\cos A \cos B \cos C$$

9/
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + 2\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

10/
$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

១៥-ទ្រឹស្តីបទ Ceva

ក្នុងត្រីកោណ ABC មួយ,បន្ទាត់បី AD; BE; CF ប្រសព្វគ្នាត្រង់ចំនុច K តែមួយលុះត្រាតែ

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1$$
 1

១៦-ទ្រឹស្តីបទ Menelaus

គេមានបីចំនុច F,D,E ស្ថិតនៅលើ AB,BC,AC នៃត្រីកោណ ABC ។ បីចំនុច F,D,E រត់ត្រង់គ្នា $\mathfrak{A}_{F}^{F}: \frac{BD}{CD} \cdot \frac{CE}{AE} = 1$ ។

១៧-ទ្រឹស្តីបទឡិបនិច

ក្នុងត្រីកោណ ABC ដែលមានជ្រុង a;b;c ចារឹក ក្នុងរង្វង់ផ្ចិត oកាំ R ហើយ Gជាទីប្រជុំទម្ងន់នៃ

ម្រស្មីមេមឆ្គងសិតទិន្យា

ត្រីកោណ ABC គេមាន $OG^2 = R^2 - \frac{\overline{a^2 + b^2 + c^2}}{9}$ ។

១៧-ទ្រឹស្តីបទ Stewart

បើ Lជាចំនុចនៅលើជ្រុង BCនៃត្រីកោណABC

ដែល AL = l; BL = m; LC = n, a,b,c ជាជ្រុង

នោះគេមាន $a(l^2+mn)=b^2m+c^2n$ ។

ខ្លួងខ្លួចផ្

ទឹសមនាពចំនួនពិត

១/វិសមតាព មធ្យមនព្ទន្ត មធ្យមធរណីមាត្រ

(The AM-GM Inequality)

ចំពោះគ្រប់ចំនួនពិតមិនអវិជ្ជមាន a₁ ,a₂ ,a₃ ,...,a_n គេហ៊ុន $\frac{a_1 + a_2 + a_3 + ... + a_n}{n} \ge \sqrt[n]{a_1 . a_2 . a_3 ... a_n}$ ។ វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែ និង គ្រាន់តែ $a_1 = a_2 = a_3 = \dots = a_n$ ។

សម្រាយបញ្ជាក់

្រាមាន
$$\frac{\mathbf{a}_1+\mathbf{a}_2}{2} \geq \sqrt{\mathbf{a}_1\mathbf{a}_2}$$
 សមមូល $(\sqrt{\mathbf{a}_1}-\sqrt{\mathbf{a}_2})^2 \geq 0$

ដូចនេះវិសមភាពពិតចំពោះ $\mathbf{n}=\mathbf{2}$ ។

_ឧបមាថាសមភាពនេះពិតដល់តួទី $\mathbf{n} = \mathbf{k}$ គឺ

$$\frac{a_1 + a_2 + a_3 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \cdot a_2 \cdot a_3 \cdot \dots \cdot a_k}$$
 ពិត

យើងនឹងស្រាយថាវាពិតដល់តួទី k+1 គឺ ៖

$$\frac{a_1 + a_2 + a_3 + \dots + a_k + a_{k+1}}{k+1} \ge k+1 \quad k+1 \quad a_1 \cdot a_2 \cdot a_3 \cdot \dots \cdot a_k \cdot a_{k+1}$$

ពាងអនុគមន៍

f(x) =
$$\frac{(x+a_1+a_2+a_3+.....+a_k)^{k+1}}{x}$$
ដែល $x>0$, $a_k>0$, $k=1$, 2 , 3 , ... \forall
ដើល $x>0$, $a_k>0$, $k=1$, 2 , 3 , ... \forall
ដើល $x>0$, $a_k>0$, $k=1$

ចំពោះ $\forall x \geq 0$ យើងទាញ្ចុបាន ៖

$$\begin{split} &(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^{\ 2} + a_2^{\ 2} + ... + a_n^{\ 2})(b_1^{\ 2} + b_2^{\ 2} + ... + b_n^{\ 2}) \quad \mbox{U} \\ &\left(\sum_{k=1}^n \left(a_kb_k^{\ }\right)\right)^2 \leq \sum_{k=1}^n \left(a_k^2\right) \times \sum_{k=1}^n \left(b_k^2\right) \quad \mbox{I} \end{split}$$

វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែនិងគ្រាន់តែ

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a_n}{b_n}$$
 ។ សម្រាយបញ្ជាក់

យើងជ្រើលរើលអនុគមន៍មួយកំនត់ ∀x∈ IR ដោយ ៖

$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2$$

$$f(x) = \sum_{k=1}^{n} (a_k^2) x^2 + 2 \sum_{k=1}^{n} (a_k b_k) x + \sum_{k=1}^{n} (b_k^2)$$

ដោយ $\forall x \in IR$ ត្រីធា $f(x) \geq 0$ ជានិច្ចនោះ $egin{cases} a_f > 0 \\ \Delta' \leq 0 \end{cases}$

ដោយ
$$a_f = a_1^2 + a_2^2 + \dots + a_n^2 > 0$$

ហេតុនេះគេបានជានិច្ច $\Delta' \leq 0$

$$\Delta' = \left(\sum_{k=1}^{n} \left(a_k b_k\right)\right)^2 - \sum_{k=1}^{n} \left(a_k^2\right) \times \sum_{k=1}^{n} \left(b_k^2\right) \le 0$$

$$\mathfrak{U}\left(\sum_{k=1}^{n} \left(a_k b_k\right)\right)^2 \leq \sum_{k=1}^{n} \left(a_k^2\right) \times \sum_{k=1}^{n} \left(b_k^2\right)$$

2/ Cauchy-Schwarz in Engle form

ចំពោះគ្រប់ចំនួនពិត $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n, \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n > \mathbf{0}$ គេបាន

$$\frac{{x_1}^2}{y_1} + \frac{{x_2}^2}{y_2} + \dots + \frac{{x_n}^2}{y_n} \ge \frac{(x_1 + x_2 + \dots + x_n)^2}{y_1 + y_2 + \dots + y_n}$$

វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែនិងគ្រាន់តែ

$$\frac{X_1}{y_1} = \frac{X_2}{y_2} = \frac{X_3}{y_3} = \dots = \frac{X_n}{y_n}$$
 1

សម្រាយបញ្ហាក់

តាមវិសមភាព
$$\left(\sum\limits_{k=1}^n \left(a_k b_k\right)\right)^2 \leq \sum\limits_{k=1}^n \left(a_k^2\right) \times \sum\limits_{k=1}^n \left(b_k^2\right)$$

បើគេយក
$$\mathbf{a}_{\mathbf{k}} = \frac{\mathbf{x}_{\mathbf{k}}}{\sqrt{\mathbf{y}_{\mathbf{k}}}}$$
 , $\mathbf{b}_{\mathbf{k}} = \sqrt{\mathbf{y}_{\mathbf{k}}}$

រោបាន
$$\left(\sum_{k=1}^{n} \left(\frac{\mathbf{X}_{k}}{\sqrt{\mathbf{y}_{k}}}.\sqrt{\mathbf{y}_{k}}\right)\right)^{2} \leq \sum_{k=1}^{n} \left(\frac{\mathbf{X}_{k}^{2}}{\mathbf{y}_{k}}\right) \times \sum_{k=1}^{n} \left(\mathbf{y}_{k}\right)$$

គេទាញ
$$\sum_{k=1}^{n} \left(\frac{{x_k}^2}{y_k} \right) \ge \frac{\left(\sum_{k=1}^{n} (x_k) \right)^2}{\sum_{k=1}^{n} (y_k)} ,$$

៣/ វិសមតាពហ្មូលខ្ល័រ (Hölder's Inequality)

ទ្រឹស្តិ៍បទ គ្រប់ចំនួនពិតវិជ្ជមាន $\mathbf{a}_{\mathbf{i},\mathbf{j}}$, $1 \leq \mathbf{i} \leq \mathbf{m}$, $1 \leq \mathbf{j} \leq 1$

គេបាន
$$\prod_{i=1}^m \left(\sum_{j=1}^n a_{ij}\right) \geq \left(\sum_{j=1}^n \sqrt[m]{\prod_{i=1}^m a_{ij}}\right)^m$$
 ។

រូបមន្តផ្សេងទៀតនៃ Hölder's Inequality

គ្រប់ចំនួនវិជ្ជមាន $x_1, x_2,, x_n$ និង $y_1, y_2, ..., y_n$

ចំពោះ
$$p > 0, q > 0$$
 និង $\frac{1}{p} + \frac{1}{q} = 1$

នោះគេបាន
$$\sum_{k=1}^{n} (x_k y_k) \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}$$
 ។

៤/ វិសមតាពមិនកូស្តី (Minkowski's Inequality)

ទ្រឹស្តីបទទី១ ចំពោះចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ និង

 $\mathbf{b_1,b_2,....,b_n}$; $\forall \mathbf{n} \in \mathbb{N}$ និងចំពោះ $\mathbf{p} \geq 1$ គេបាន :

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}$$

ទ្រឹស្តីបទទី២ ចំពោះចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ និង

 $\mathbf{b_1,b_2,....,b_n}$; $\forall n \in \mathbb{N}$ ដែល $n \geq 2$ គេបាន

$$\sqrt[n]{\prod_{k=1}^{n} (a_k)} + \sqrt[n]{\prod_{k=1}^{n} (b_k)} \le \sqrt[n]{\prod_{k=1}^{n} (a_k + b_k)} \quad 1$$

ដ/វិសមតាពីបន្ទូលី(Bernoulli's Inequality)

- . ចំពោះ x > -1, n < 1 គេបាន: $(1+x)^a > 1+ax$

อ/ โกษกาก CHEBYSHEV (Chebyshev's Inequality)

គេអោយពីរស្វឹតនៃចំនួនពិតវិជ្ជមាន

$$a_1, a_2, ..., a_n$$
 និង $b_1, b_2,, b_n$ និង $n \in \mathbb{N}^*$

-ចំពោះ
$$\mathbf{a}_1 \leq \mathbf{a}_2 \leq ... \leq \mathbf{a}_n$$
 និង $\mathbf{b}_1 \leq \mathbf{b}_2 \leq ... \leq \mathbf{b}_n$

ម្រស្ទីមេមឆ្លួកសិកទិន្យា

គេហ្ ន :
$$\sum_{k=1}^{n} (a_k b_k) \ge \frac{1}{n} \sum_{k=1}^{n} (a_k) \times \sum_{k=1}^{n} (b_k)$$

-ចំពោះ $a_1 \le a_2 \le ... \le a_n$ និង $b_1 \ge b_2 \ge ... \ge b_n$

គេបាន
$$\sum_{k=1}^{n} (a_k b_k) \le \frac{1}{n} \sum_{k=1}^{n} (a_k) \times \sum_{k=1}^{n} (b_k)$$

៧/ វិសមតារា JENSEN (Jensen's Inequality)

รื่อยราก Jensen ฮเซล่ฮ็ว

គេឲ្យ n ចំនួនពិត $x_1, x_2, ..., x_n \in I$

. ប្រើ $\mathbf{f}''(\mathbf{x}) < \mathbf{0}$ និង $\forall \mathbf{x}_{\mathbf{k}} \in \mathbf{I}$ គេបាន:

$$\frac{1}{n} \sum_{k=1}^{n} \left[f(x_k) \right] \le f \left[\frac{1}{n} \sum_{k=1}^{n} (x_k) \right]$$

. បើ f''(x) > 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{1}{n} \sum_{k=1}^{n} \left[f(x_k) \right] \ge f \left[\frac{1}{n} \sum_{k=1}^{n} (x_k) \right]$$

รื่อยฐาต jensen ฮุเซล่ฮีย

គេឲ្យ n ចំនួនពិត $x_1, x_2, ..., x_n \in I$ និងចំពោះគ្រប់ ចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ ដែលផលបូក $\sum\limits_{k=1}^n \left(a_k\right) = 1$

. បើ f''(x) < 0 និង $\forall x_k \in I$ គេបាន:

$$\sum_{k=1}^{n} \left[a_k f(x_k) \right] \le f \left[\sum_{k=1}^{n} (a_k x_k) \right]$$

. បើ f''(x) > 0 និង $\forall x_k \in I$ គេបាន:

$$\sum_{k=1}^{n} \left[f(a_k x_k) \right] \ge f \left[\sum_{k=1}^{n} (a_k x_k) \right]$$

รื่อยราก Jensen *รเยล่ร์ก*

គេឲ្យ n ចំនួនពិត $x_1, x_2, ..., x_n \in I$ និងចំពោះគ្រប់ ចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ ។

. បើ f''(x) < 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{\sum_{k=1}^{n} \left[a_k f(x_k) \right]}{\sum_{k=1}^{n} \left(a_k \right)} \leq f \begin{bmatrix} \sum_{k=1}^{n} \left(a_k x_k \right) \\ \sum_{k=1}^{n} \left(a_k \right) \end{bmatrix}$$

. បើ f''(x) > 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{\sum_{k=1}^{n} \left[a_k f(x_k) \right]}{\sum_{k=1}^{n} \left(a_k \right)} \ge f \begin{bmatrix} \sum_{k=1}^{n} \left(a_k x_k \right) \\ \sum_{k=1}^{n} \left(a_k \right) \end{bmatrix}$$

៨/វិសមតាព Schur (Schur's Inequality)

គ្រប់ចំនួនពិតវិជ្ជមាន a,b,c និង n > 0 គេបាន

$$a^{n}(a-b)(a-c)+b^{n}(b-c)(b-a)+c^{n}(c-a)(c-b) \ge 0$$

វិសមភាពនេះពិតចំពោះ a=b=c ។

៩/ វិសមតាព (Rearrangement's Inequality)

គេឲ្យ $\left(a_{n}\right)_{n\geq1}$ និង $\left(b_{n}\right)_{n\geq1}$ ជាស្វីតនៃចំនួនពិតវិជ្ជមាន

កើន ឬចុះព្រមគ្នា ។ ចំពោះគ្រប់ចម្លាស់ $(\mathbf{c_n})$ នៃចំនួន

$$\left(b_{n}\right)$$
 គេបាន $\sum\limits_{k=1}^{n}\left(a_{k}b_{k}\right)\geq\sum\limits_{k=1}^{n}\left(a_{k}c_{k}\right)\geq\sum\limits_{k=1}^{n}\left(a_{k}b_{n-k+1}\right)$

ខំពុងខ្លួំ១១

สากเยลราย์ ล็อ อิธีเยลหีสู้ส

1.ភាពថែកដាច់ក្នុង Z

ក_និយមន័យ

_ចំនួនគត់វ៉ឺឡាទីប a ជាពហុគុណនៃចំនួនគត់វឺឡាទីប b លុះត្រាតែមាន ចំនួនវ៉ឺឡាទីប q មួយដែល a = b.q ។

ក្នុងករណីនេះ b ហៅថាតូចែកនៃ a ។

-បើ b ≠ 0 នោះគេថា b ជាតូចែកមួយនៃ a ឬ b ចែកដាច់a ហើយ គេកំនត់សរសេរ b | a អានថា b ចែកដាច់ a ។

ខ_លក្ខណះចែកដាច់នៃជលបូកនិងជលដក

មាន a , b , c និង x ជាចំនួនគត់វិទ្យាទីបដែល x ខុសពីសូន្យ ។ បើ x | a , x | b និង x | c នោះ x | (a + b - c) ។

ត_លក្ខណះចែកដាច់នឹងមួយចំន<u>ួ</u>ន

-មួយចំនួនគត់ចែកដាច់នឹង 2 លុះត្រាតែលេខខ្ទង់រាយចែកដាច់នឹង 2 បានន័យថាចំនួននោះត្រូវមានលេខខាងចុងជាលេខគូ : (0,2,4,6,8) ។

រុមទំរុមមន្តគណិតទិន្សា

- -មួយចំនួនចែកដាច់នឹង 5 លុះត្រាតែវាមានលេខចុង 0 ឬ 5 ។
- -មួយចំនួនចែកដាច់នឹង 4 លុះត្រាតែចំនួនពីរខ្ទង់ខាងចុងចែកដាច់នឹង 4
- -មួយចំនួនចែកដាច់នឹង 25 លុះត្រាតែចំនួនពីរខ្ទង់ខាងចុងចែកដាច់នឹង 25 គឺ 00, 25, 50, 75 ។
- -មួយចំនួនចែកដាច់នឹង 3 (នឹង 9) លុះត្រាតែផលបូកលេខគ្រប់ខ្ទង់នៃ ចំនួននោះចែកដាច់នឹង 3 (នឹង 9) ។
- -មួយចំនួនចែកដាច់នឹង 11 លុះត្រាតែផលដករវាងផលបូកលេខខ្ទង់សេស និងផលបូកលេខខ្ទង់គូនៃចំនួននោះ (រាប់ពីស្ដាំទៅឆ្វេង) ចែកដាច់នឹង 11 ។

2.វិធីចែកបែបអ៊ីត្តីក

ក_និយមន័យ

ធ្វើវិធីចែកបែបអឺគ្លីតនៃចំនួនគត់រឺឡាទីប ${\bf a}$ និងចំនួនគត់ធម្មជាតិ ${\bf b}$ គឺ កំណត់ចំនួនគត់រឺឡាទីប ${\bf q}$ និងចំនួនគត់ធម្មជាតិ ${\bf r}$ ដែល ${\bf a}={\bf b}{\bf q}+{\bf r}$ ដោយ ${\bf 0}\leq{\bf r}<{\bf b}$ ។

a ហៅថាតំណាំងចែក , b ហៅថាតួចែក ,q ហៅថាផលចែក និង r ហៅថាសំណល់ ។

ម្រស្មីរួមមន្ត្តគណិតទិន្សា

ខ_ត្រឹស្តីបទ បើ a ជាចំនួនគត់វិឡាទីប និង b ជាចំនួនគត់ធម្មជាតិ នោះមានចំនួនគត់ វ៉ឺឡាទីប q តែមួយគត់ និង ចំនួនគត់ធម្មជាតិ r តែមួយគត់ដែល a = b.q + r ដោយ $0 \le r < b$ ។

ចំនួនបឋម កូចែករួម និង ពហុតុណរួម

🗷 ចំនួនមថម

- ្នកថាចំនួនគត់ធម្មជាតិ n ជាចំនួនបថមកាលណា n មានតួចែក តែពីគត់គឺ 1 និង n ខ្លួនឯង ។
- $_{\rm l}$ គ្រប់ចំនួនគត់ធម្មជាតិ $_{\rm l}$ $_{\rm l}$ មានតូចែកជាចំនួនបឋមមួយដែលជា តូចែកតូចបំផុតក្រៅពី $_{\rm l}$ ។
- ្ន ហើ $\mathbf{n} \in \mathbf{IN}$ ហើយ \mathbf{n} មិនមែនជាចំនួនបថម នោះមានចំនួនបថម \mathbf{b} ដែល \mathbf{n} ចែកដាច់នឹង \mathbf{b} និង $\mathbf{b}^2 \leq \mathbf{n}$ ។
- -ដើម្បីស្គាល់ថាចំនួនគត់ធម្មជាតិ a ណាមួយជាចំនួនបថម គេត្រូវចែក a និងចំនួនបថមតៗគ្នាដែលតូចជាងវា ។ បើគ្នានវិធីចែកណាមួយផ្តល់ សំណល់សូន្យទេនោះ និង ផលចែកតូចជាងតួចែកដែលបានយកមកប្រើ នោះ a ជាចំនួនបថម ។
- ្ចបើ \mathbf{n} ∈ \mathbb{N} ហើយ \mathbf{n} ចែកមិនដាច់នឹងចំនួនបថមដែលមានការេតូច

ម្រស្សមមន្តគណិតទិន្យា

ជាងឬស្ទើ n នោះ n ជាចំនួនបថម ។

- -ស្វ៊ីតនៃចំនួនបថម ជាស្វ៊ីតអនន្តតួ ។
- ្រុក គ្រប់ចំនួនគត់ធម្មជាតិមិនបថម ហើយធំជាង 1 អាចបំបែកជាផលគុណ នៃកត្តាបថមបាន ហើយបានតែមួយបែគត់ ។

🗷 តូខែករួម និទ ពហុគុណរួម

- ្នកខៀ a និង b ជាចំនួនគត់ធម្មជាតិ ។ ចំនួនគត់ធម្មជាតិ d ជាតូចែក រួម នៃ a និង b កាលណា d ជាតូចែក នៃ a ផង និងជាតូចែក នៃb ផង ។ តូចែក រួម ធំបំផុត នៃចំនួនគត់ធម្មជាតិ a និង b ជាចំនួនគត់ធំជាងគេ នៃបណ្តាតូចែក រួម នៃ a និង b ។ និម្មិតសញ្ញា $\delta = PGCD(a,b)$ ឬ $\delta = GCD(a,b)$ ជាតំណាងឱ្យតូចែក រួម ធំបំផុត នៃចំនួនគត់ធម្មជាតិ a និង b ។
- -ចំនួនគត់ធម្មជាតិ ${f a}$ និង ${f b}$ ជាចំនួនបឋមរវាងគ្នាកាល ${f m}$ តួចែករួមធំបំផុត ${f GCD}({f a},{f b})=1$ និងច្រាស់មកវិញ ។
- ្មារ \mathbf{a} , \mathbf{b} $\in \mathbb{N}$ ដែល $\mathbf{a} = \mathbf{b}\mathbf{q} + \mathbf{r}$, $\mathbf{0} < \mathbf{r} < \mathbf{b}$ នោះគេបាន $\mathbf{GCD}(\mathbf{a}, \mathbf{b}) = \mathbf{GCD}(\mathbf{b}, \mathbf{r})$ ។
- _គ្រប់ a , b ∈ $\mathbb N$ និងគ្រប់តួចែករួម d នៃ a និង b គេបាន :

ក. GCD(na,nb) = nG(a,b) ដែល $n \in \mathbb{N}$

$$e$$
. $GCD\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{GCD(a, b)}{d}$

- គ្រឹស្តីមាន Bezout ចំនួនគត់ធម្មជាតិ a និង b

បថមរវាងគ្នាលុះត្រាតែមានចំនួនគត់វ៉ឺឡាទីប u និង v

ដែល au + bv = 1 ។

្សន៍ស្ពីមន Gauss:

បើ $c \mid ab$ និង GCD(a,b) = 1 នាំឱ្យ $c \mid b$ ។

 $_{\tt l}$ ប៊ើ $a \mid n \; ; b \mid n \;$ និង $GCD(a,b) = 1 \;$ នាំឱ្យ $ab \mid n \;$ ។

្ពបាកុណរួមតូចបំផុត នៃពីរចំនួនគត់ a និង b គឺជាចំនួនគត់ធម្មជាតិ

ដែលតូចជាងគេក្នុងបណ្ដាពហុគុណរួមវិជ្ជមានខុសពីសូន្យ នៃ ${f a}$ និង ${f b}$

ដែលកំណត់ដោយ $\mu = PPCM(a,b)$ ឬ $\mu = LCM(a,b)$

-គ្រប់ចំនួនគត់ធម្មជាតិ \mathbf{a} , \mathbf{b} និង \mathbf{n} និងគ្រប់តួចែករួម \mathbf{a} និង \mathbf{b}

គេបាន ក. LCM(na,nb) = nLCM(a,b)

$$e. LCM(\frac{a}{d}, \frac{b}{d}) = \frac{LCM(a, b)}{d}$$

- រូន្និ៍ស្តីទន : បើ a និង b ជាចំនួនគត់ធម្មជាតិនោះគេបាន

$$GCD(a,b) \times LCM(a,b) = a \times b$$
 4

ខំពួកនិ១៧

អនុគមនអ៊ីពេទ្យិក

(Hyperbolic Functions)

1.កន្សោមពីជតលិតក្ដង់ដា

អនុគមន៍អ៊ីពែបូលិកមាន:

- igoplusស៊ីនូសអ៊ីពែបូលិក កំណត់ដោយសមីការ $\sinh x = \frac{e^x e^{-x}}{2}$
- lacklack កូស៊ីនូសអ៊ីពែបូលិក កំណត់ដោយសមីការ $\cosh x = \frac{e^x + e^{-x}}{2}$
- lacktriang តង់សង់អ៊ីពែបូលិក កំណត់ដោយសមីការ $anh x = rac{e^x e^{-x}}{e^x + e^{-x}}$
- lacklackក្ខុតង់សង់អ៊ីពែបូលិក កំណត់ដោយសមីការ $\coth x = rac{e^x e^{-x}}{e^x + e^{-x}}$

2.ទំនាក់ទំនងសំខាន់ៗ

$$\tilde{n}$$
. $\cosh^2 x - \sinh^2 x = 1$

$$2. \tanh x = \frac{\sinh x}{\cosh x}$$

គ.
$$coth x = \frac{\cosh x}{\sinh x}$$

$$\mathbb{W}$$
. $\tanh \mathbf{x} = \frac{1}{\coth \mathbf{x}}$

ង.
$$1 - \tanh^2 x = \frac{1}{\cosh^2 x}$$

$$\vec{v}. \cot h^2 x - 1 = \frac{1}{\sinh^2 x}$$

សម្រាយបញ្ជាក់

ដោយ
$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 និង $\cosh x = \frac{e^x + e^{-x}}{2}$

ត្រាបន $\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2$

$$= \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4}$$

$$= \frac{e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}}{4}$$

$$= 1$$
ដូចនេះ $\cosh^2 x - \sinh^2 x = 1$ ។

តាម $\cosh^2 x - \sinh^2 x = 1$ ។

 $\cosh^2 x - \sinh^2 x = \frac{1}{\cosh^2 x}$ ដោយ $\tanh x = \frac{\sinh x}{\cosh x}$
ដូចនេះ $1 - \tanh^2 x = \frac{1}{\cosh^2 x}$ ។

ម្យ៉ាងឡើត $\frac{\cosh^2 x - \sinh^2 x}{\sinh^2 x} = \frac{1}{\sinh^2 x}$ ដោយ $\coth x = \frac{\cosh x}{\sinh x}$
ដូចនេះ $\coth^2 x - 1 = \frac{1}{\sinh^2 x}$ ដោយ $\coth x = \frac{\cosh x}{\sinh x}$

រួមស្ទុះមន្តគណិតទិន្សា

3.រូបមន្តជលបូក

- 1. sinh(x + y) = sinh x cosh y + sinh y cosh x
- 2. cosh(x + y) = cosh x cosh y + sinh x sinh y

3.
$$tanh(x + y) = \frac{tanh x + tanh y}{1 + tanh x tanh y}$$

4.
$$coth(x + y) = \frac{coth x coth y + 1}{coth x + coth y}$$

សំរាយបញ្ជាក់

បូកសមីការ (a) និង (b) គេបាន:

$$\sinh x \cosh y + \sinh y \cosh x = \frac{e^{x+y} - e^{-(x-y)}}{2} = \sinh(x+y)$$

្រ្ថុំរួមមន្ត្តកណិតទិន្សា

ម្យ៉ាងទ្វេត
$$\cosh x \cosh y = \frac{(e^x + e^{-x})(e^y + e^{-y})}{4}$$

$$\cosh x \cosh y = \frac{e^{x+y} + e^{x-y} + e^{-x+y} + e^{-(x+y)}}{4} \quad (c)$$

$$\text{TMW sinh } x \sinh y = \frac{(e^x - e^{-x})(e^y - e^{-y})}{4}$$

$$\sinh x \sinh y = \frac{e^{x+y} - e^{x-y} - e^{-x+y} + e^{-(x+y)}}{4} \quad (d)$$

$$\text{Uniforwith} (c) \text{ Bu } (d) \text{ this is:}$$

$$\cosh x \cosh y + \sinh x \sinh y = \frac{e^{x+y} + e^{-(x+y)}}{2} = \cosh(x+y)$$

$$\text{Sinh } x \cosh y + \sinh x \sinh y = \frac{e^{x+y} + e^{-(x+y)}}{2} = \cosh(x+y)$$

$$\text{Sinh } x \cosh y + \sinh x \sinh y \quad \text{This is tanh} (x+y) = \frac{\sinh(x+y)}{\cosh(x+y)}$$

$$= \frac{\sinh x \cosh y + \sinh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y}$$

$$= \frac{\cosh x \cosh y (\frac{\sinh x}{\cosh x} + \frac{\sinh y}{\cosh x})}{\cosh x \cosh y}$$

$$= \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

$$\text{Sinh } x + \tanh y}{1 + \tanh x \tanh y} \quad \text{This is tanh} (x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} \quad \text{This is tanh} (x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

3.អនុកមន៍នៃអាកុយម៉ង់អវិជ្ជមាន

$$1. \sinh(-\mathbf{x}) = -\sinh \mathbf{x}$$

$$2. \cosh(-x) = \cosh x$$

3.
$$tanh(-x) = -tanh x$$

$$4. \coth(-x) = -\coth x$$

សម្រាយបញ្ជាក់

គេមាន
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

គេជាន
$$sinh(-x) = \frac{e^{-x} - e^x}{2} = -\frac{e^x - e^{-x}}{2} = -sinh x$$

ហើយ
$$cosh x = \frac{e^x + e^{-x}}{2}$$

ពេយន
$$cosh(-x) = \frac{e^{-x} + e^x}{2} = cosh x$$
 ។

$$tanh(-x) = \frac{\sinh(-x)}{\cosh(-x)} = -\frac{\sinh x}{\cosh x} = -\tanh x$$

$$\coth(-x) = \frac{\cosh(-x)}{\sinh(-x)} = -\frac{\cosh x}{\sinh x} = -\coth x$$

5.រូបមន្តជលដក

1.
$$sinh(x - y) = sinh x cosh y - sinh y cosh x$$

2.
$$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$$

រួមស្ទុំមេមន្តគណិតទិន្សា

3.
$$tanh(x - y) = \frac{tanh x - tanh y}{1 - tanh x tanh y}$$
4. $coth(x - y) = \frac{1 - coth x coth y}{coth x - coth y}$

សម្រាយបញ្ជាក់

តេមាន
$$\sinh(x+y) = \sinh x \cosh y + \sinh y \cosh x$$
 (i) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$ (ii) $\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$ (iii) $\coth(x+y) = \frac{\coth x \coth y + 1}{\coth x + \coth y}$ (iv) ដោយជំនួស y ដោយ $-y$ ក្នុង (i), (ii), (iii) និង (iv) គោជន $\sinh(x-y) = \sinh x \cosh(-y) + \sinh(-y) \cosh x$ $= \sinh x \cosh(-y) + \sinh(-y) \cosh x$ $\cosh(x-y) = \cosh x \cosh(-y) + \sinh x \sinh(-y)$ $= \cosh x \cosh(x-y) + \sinh(x + \tanh(-y))$ $= \tanh x + \tanh(-y)$ $= \tanh(-x)$ $= \tanh(x + \tanh(-y)$ $= \tanh(x + \tanh(-y)$

ម្រស្ទីមេមន្តគណិតទិន្សា

6.រូបមន្តមុំឌុប (DOUBLE ANGLE FORMULAS)

1.
$$\sinh 2x = 2 \sinh x \cosh x$$

$$2. \cosh 2x = \cosh^2 x + \sinh^2 x$$

$$= 2\cosh^{2} x - 1 = 1 + 2\sinh^{2} x$$
3. $\tanh 2x = \frac{2\tanh x}{1 + \tanh^{2} x}$
4. $\coth 2x = \frac{1 + \coth^{2} x}{2\coth x}$

សម្រាយបញ្ជាក់

គេមាន sinh(x + y) = sinh x cosh y + sinh y cosh x (i)

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y \quad (ii)$$

$$\tanh(x + y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} \quad (iii)$$

$$coth(x + y) = \frac{\coth x \coth y + 1}{\coth x + \coth y} \quad (iv)$$

ដោយជំនួស y ដោយ x ក្នុង (i),(ii),(iii) និង (iv) គេបាន :

 $\sinh 2x = 2 \sinh x \cosh x$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

tanh
$$2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$
 \hat{S} $\tanh 2x = \frac{1 + \coth^2 x}{2 \coth x}$

ម្រស្ទំរួមមន្តគណិតទិន្សា

7.រូបមន្តកន្លះមុំ (HALE ANGLE FORMULAS)

$$1. \sinh^2 \frac{x}{2} = \frac{\cosh x - 1}{2}$$

$$2. \cosh^2 \frac{x}{2} = \frac{\cosh x + 1}{2}$$

$$3. \tanh^2 \frac{x}{2} = \frac{\cosh x - 1}{\cosh x + 1}$$

$$4. \coth^2 \frac{x}{2} = \frac{\cosh x + 1}{\cosh x - 1}$$

8.រូបមន្ត្យាហ្សមុំ (MULTIPLE ANGLE FORMULAS)

$$1.\sinh 3x = 3\sinh x + 4\sinh^3 x$$

$$2.\cosh 3x = 4\cosh^3 x - 3\cosh x$$

$$3.\tanh 3x = \frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x}$$

 $4.\sinh 4x = 8\sinh^3 x \cosh x + 4\sinh x \cosh x$

$$5.\cosh 4x = 8\cosh^4 x - 8\cosh^2 x + 1$$

6.tanh
$$4x = \frac{4 \tanh x + 4 \tanh^3 4x}{1 + 6 \tanh^2 x + \tanh^4 x}$$

9.រូបមន្តថលបូក_ថលដក និង ថលគុណ

(Sum-Difference and Product of Hyperbolic Functions)

1.
$$\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2}$$

2.
$$\cosh x + \cosh y = 2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2}$$

3.
$$\sinh x - \sinh y = 2\sin\frac{x-y}{2}\cosh\frac{x+y}{2}$$

4.
$$\cosh x - \cosh y = 2 \sinh \frac{x+y}{2} \sinh \frac{x-y}{2}$$

5.
$$\tanh x + \tanh y = \frac{\sinh(x+y)}{\cosh x \cosh y}$$

6.
$$\tanh x - \tanh y = \frac{\sinh(x - y)}{\cosh x \cosh y}$$

7.
$$\coth x + \coth y = \frac{\sinh(x+y)}{\sinh x \sinh y}$$

8.
$$coth x - coth y = \frac{\sinh(y - x)}{\sinh x \sinh y}$$

9.
$$\sinh x \sinh y = \frac{1}{2} [\cosh(x+y) - \cosh(x-y)]$$

រុមស្ទីរួមមន្ត្តកណិតទិន្សា

10.
$$\cosh x \cosh y = \frac{1}{2} \left[\cosh(x+y) + \cosh(x-y) \right]$$

11.
$$\sinh x \cosh y = \frac{1}{2} [\sinh(x+y) + \sinh(x-y)]$$

12.
$$\sinh y \cosh x = \frac{1}{2} \left[\sinh(x+y) - \sinh(x-y) \right]$$

10.ក្រាបនៃអនុកមន៍អ៊ីពែបូលិក

(Graphs of Hyperbolic Functions)

1. $y = \sinh x$

ម្រត្តំរួមមន្ត្តកាណិតទិន្សា

2. $y = \cosh x$

3. $y = \tanh x$

ម្រស្ទំរួមមន្តកណិតទិន្សា

4. $y = \coth x$

11.ទំនាក់ទំនងវោងអនុតមន៍អ៊ីពែបូលិកនិងអនុតមន៍ត្រីកោលមាត្រ

(Relationships between Hyperbolic and Trigonometry Functions)

1.
$$sin(ix) = i sinh x$$

4.
$$sinh(ix) = i sin x$$

2.
$$cos(ix) = cosh x$$

5.
$$\cosh(ix) = \cos x$$

3.
$$tan(ix) = i tanh x$$

6.
$$tanh(ix) = i tan x$$

សម្រាយបញ្ជាក់

តាមរូបមន្តអ៊ីលៃ
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 និង $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

ជំនួស x ដោយ ix គេបាន:

$$cos(ix) = \frac{e^{i(ix)} + e^{-i(ix)}}{2} = \frac{e^{-x} + e^{x}}{2} = cosh x$$

$$\sin(ix) = \frac{e^{i(ix)} - e^{-i(ix)}}{2i} = \frac{e^{-x} - e^{x}}{2i} = i\frac{e^{x} - e^{-x}}{2} = i\sinh x$$

ហើយ
$$tan(ix) = \frac{sin(ix)}{cos(ix)} = \frac{i sinh x}{cosh x} = i tanh x$$
 ។

12.អនុវត្តន៏

គេមាន $\sinh(x + y) = \sinh x \cosh y + \sinh x \cosh y$

ងំនួស
$$\mathbf{x} = \mathbf{i}\mathbf{a}$$
 និង $\mathbf{y} = \mathbf{i}\mathbf{b}$ គេបាន :

sinh i(a + b) = sinh(ia) cosh(ib) + sinh(ib) cos(ia)

ដោយ $\sinh i(a + b) = i \sin(a + b)$, $\sinh(ia) = i \sin a$

រុមស្ទីរួមមន្ត្តកណិតទិន្សា

sinh(ib) = i sin b, cosh(ia) = cos a, cosh(ib)

គេបាន $i \sin(a + b) = i \sin a \cos b + i \sin b \cos a$

គេមាន $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$

ងំនួស $\mathbf{x} = \mathbf{i}\mathbf{a}$ និង $\mathbf{y} = \mathbf{i}\mathbf{b}$ គេបាន :

 $\cosh i(a + b) = \cosh(ia)\cosh(ib) + \sinh(ia)\sinh(ib)$

ដោយ $\cosh i(a + b) = \cos(a + b)$, $\sinh(ia) = i \sin a$

sinh(ib) = i sin b, cosh(ia) = cos a, cosh(ib)

ត្រេប្រន $cos(a+b) = cos a cos b + i^2 sin a sin b$ ដោយ $i^2 = -1$

13.លីមីកនៃអនុកមន៍អ៊ីពែបូលិក

$$1. \lim_{x \to 0} \frac{\sinh x}{x} = 1$$

$$2. \lim_{x \to 0} \frac{\tanh x}{x} = 1$$

សម្រាយបញ្ជាក់

គេមាន
$$\sinh x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$$

រត្តបាន
$$\lim_{x\to 0} \frac{\sinh x}{x} = \lim_{x\to 0} \frac{e^{2x}-1}{2xe^x} = \lim_{x\to 0} \frac{e^{2x}-1}{2x} \cdot \frac{1}{e^x} = 1$$
 ។

14.ដើវេនៃអនុកមន៍អ៊ីពែបូលិក

1.
$$y = \sinh x \Rightarrow y' = \cosh x$$

2.
$$y = \cosh x \Rightarrow y' = \sinh x$$

3.
$$y = \tanh x \Rightarrow y' = \frac{1}{\cosh^2 x}$$

4.
$$y = \coth x \Rightarrow y' = -\frac{1}{\sinh^2 x}$$

15.អាំងកេក្រាលនៃអនុកមន៍អ៊ីពែបូលិក

1.
$$\int \sinh x \cdot dx = \cosh x + c$$
 3. $\int \tanh x \cdot dx = \ln(\cosh x) + c$

2.
$$\int \cosh x \cdot dx = \sinh x + c$$
 4. $\int \coth x \cdot dx = \ln(\sinh x) + c$

ខំពុកនី១៨

ទឹតាគមល្អំ សិទ ប្រូលុទិ៍សីតេ

I- ទឹតាគមល្ម

១.ហ្វាក់ត្តវ័រ្យល (Factorial) :

ដែលហៅថាហ្វាក់តូរ៉ែ្សល់នៃចំនួន ${f n}$ ជាផលគុណនៃ ${f n}$ ចំនួនគត់វិជ្ជមានដំបូង ឬ ជាផលគុណចំនួនគត់វិជ្ជមានតគ្នា ពី 1 រហូតដល់ n ដែលគេកំនត់សរសេរ:

$$n!=1\times2\times3\times....\times n$$

២.តំរ្យេបចិតសារឡើងវិញ (Arrangement) :

តំរ្យេប ${f p}$ ធាតុក្នុងចំណោម ${f n}$ ធាតុនៃសំនុំ ${f E}$ គឺជាសំនុំរងនៃ ${f E}$ ដែលមាន ${f p}$ ធាតុខុសៗគ្នា

រៀបតាមលំដាប់មួយកំនត់ ។ គេកំនត់តាងចំនួនតំរៀប ${f p}$ ធាតុក្នុងចំនោម ${f n}$ ធាតុដោយ :

$$A(n,p) = \frac{n!}{(n-p)!} = n(n-1)(n-2)....(n-p+1)$$

តា.ចំលាស់ចិតសាឡើងវិញ (Permultation) :

ចំលាស់ n ធាតុខុសៗគ្នា គឺជាតំរ្យេប n ធាតុ ក្នុងចំណោម n ធាតុ ។

គេកំនត់ចំនួនចំលាស់ \mathbf{n} ធាតុដោយ $\mid \mathbf{P} = \mathbf{n}! = \mathbf{1} \times \mathbf{2} \times \mathbf{3} \times \dots \times \mathbf{n}$

$$P = n! = 1 \times 2 \times 3 \times \dots \times n$$

ម្រត្តំរួមមន្តកណិតទិន្សា

៤.បត្សំចិតសារ ឡើងវិញ (Combination) :

បន្សំ p ធាតុក្នុងចំណោម n ធាតុ ជាតំរ្យេបមិនគិតលំដាប់ដែលកំនត់ដោយ :

$$C(n,p) = \frac{A(n,p)}{p!} = \frac{n!}{p!.(n-p)!}$$
 $(n \ge p)$ 4

៥.តំរៀបសារឡើងវិញ (Arrangement with Repetition):

តំរ្យេបសារឡើងវិញ p ធាតុ ក្នុងចំណោម n ធាតុគឺជាតំរ្យេបដែលធាតុនីមួយៗ អាចមានវត្តមាន 1,2,3,...,n ដង ។

គេកំនត់សរសេរ: $\overline{\mathbf{A}(\mathbf{n},\mathbf{p})} = \mathbf{n}^{\mathbf{p}}$ ។

5.ចំលាស់សារឡើងវិញ (Permultation with Repetition):

គេអោយសំនុំ ${\bf E}$ មាន ${\bf n}$ ធាតុ ដែលក្នុងនោះ ${\bf n}_1$ ជាធាតុប្រភេទទី១ , ${\bf n}_2$ ជាធាតុប្រភេទទី២ , ${\bf n}_3$ ជាធាតុប្រភេទទី៣ ,...., ${\bf n}_p$ ជាធាតុប្រភេទទី ${\bf p}$ ដែល ${\bf n}_1+{\bf n}_2+{\bf n}_3+....+{\bf n}_p={\bf n}$

ចំនួនចំលាស់សារឡើងវិញ្ជីន n ធាតុ គឺជាចំលាស់អាចបែងចែកបានដែលកំនត់តាងដោយ :

$$\overline{P} = \frac{n!}{n_1! \cdot n_2! \cdot n_3! \cdot \dots \cdot n_p!} \quad | \quad \forall$$

ស.បត្សំសារឡើងវិញ (Combiation with Repetition):

បន្សំសារឡើងវិញនៃ p ធាតុ ក្នុងចំនោម n ធាតុគឺជាបន្សំ ដែលធាតុនីមួយៗអាចមាន វត្តមានច្រើនដង។

រួមស្ទឹមមន្ត្តគណិតទិន្សា

គេតាងបន្សំសារឡើងវិញ្ទៃ p ធាតុ ក្នុងចំនោម n ធាតុដោយ :

$$\frac{(n+p-1)!}{C(n,p) = \frac{(n+p-1)!}{p!.(n-1)!}}$$

៤. ទ្វេចាញ្ញុតុត (Binom de Newton)

$$(a+b)^n = C_n^0 a^n + C_n^2 a^{n-1}.b + C_n^2 a^{n-2}.b^2 + \dots + C_n^n b^n$$

ដែល
$$\mathbf{C}_{\mathbf{n}}^{\mathbf{p}} = \mathbf{C}(\mathbf{n},\mathbf{p}) = \frac{\mathbf{n}!}{\mathbf{p}!(\mathbf{n}-\mathbf{p})!}$$
 ។

សំតាល់: ទ្វេធាសំខាន់១គួរកត់សំគាល់

1.
$$(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + C_n^3 x^3 + \dots + C_n^n x^n$$

2.
$$(x+1)^n = C_n^0 x^n + C_n^1 x^{n-1} + C_n^2 x^{n-2} + \dots + C_n^0$$

II-ម្រូលទីលីគេ

ប្រូបប៊ីលីតេ មានសារះសំខាន់ក្នុងជីវភាពប្រចាំថ្ងៃរបស់យើង ដែលយើងប្រើប្រាស់វ៉ាសំរាប់ វ៉ាស់ក៏រិតនៃភាពមិនទៀងទាត់ ។ កាលណាយើងគ្រោងធ្វើអ្វីមួយកាលណាអ្នកឧតុនិយម ទស្សន៍ទាយអាកាសធាតុឬ ក្រុមហ៊ុនធានារ៉ាប់រងធ្វើគោលនយោបាយរបស់ក្រុមហ៊ុន ចាំបាច់ ត្រូវប្រើ ប្រូបប៊ីលីតេ ដើម្បីធ្វើសេចក្តីសំរេចចិត្ត ឬធ្វើ ការជ្រើសរើស ។

រុមទំរុមមន្តគណិតទិន្សា

១ - ព្រឹត្តិការណ៍ - លំបាសំណាក :

ក.វិញ្ញាសា :

វិញ្ញាសា គឺជាការពិសោធន៍មួយដែល:

- -អាចអោយគេដឹង នូវសំណុំលទ្ធផលដែលបានកើតឡើង
- -ពុំអាចដឹងប្រាកដថា លទ្ធផលណាដែលនឹងកើតមានឡើង
- -ការពិសោធន៍ អាចសារឡើងវិញ ជាច្រើនដង ក្នុងលក្ខ័ខណ្ឌដូចគ្នា ។

ខ.សកល ប្តលំបាសំណាក :

សំនុំនៃលទ្ធផលទាំងអស់ដែលអាចមាន របស់វិញ្ញសាមួយ ហៅថា សកល

ដែលគេតាងដោយ S ។

គ.ព្រឹត្តិការណ៍: ជាសំណុំរង របស់សកល ឬលំហសំណាក ។

ឧទាហរណ៍ :

បើយើងបោះកាក់ដែលមានមុខ H និងខ្នង T ចំនួនមួយដងនោះគេអាចបានលទ្ធផល

H បូT ។

- -សំនុំ $\{H,T\}$ ហៅថា លំហសំណាក តាងដោយ $S=\{H,T\}$ ។
- -បើគេប្រាថ្នាបោះបានមុខ ${f H}$ នោះសំណុំ ${f H}$ ហៅថាព្រឹត្តិការណ៍ តាងដោយ ${f A}={f H}$
- -ចំនួនធាតុនៃលំហសំណាក ហៅថាចំនួនករណីអាច គេតាងដោយ $\mathbf{n}(\mathbf{S}) = \mathbf{2}$ ។
- -ចំនួនធាតុនៃព្រឹត្តិការណ៍ ហៅថាចំនួនករណីស្រប គេតាងដោយ $\mathbf{n}(\mathbf{A}) = \mathbf{1}$ ។

រុមស្ទឹមមន្ត្តគណិតទិន្សា

២.រូបមន្តគោលនៃប្រូបាប :

នៅក្នុងពិសោធន៍មួយ ដែលមានលំហសំណាក S ប្រូបាប៊ីលីតេនៃព្រឹត្តិការណ៍ A កើតឡើងកំនត់ដោយ :

$$P(A) = \frac{\mathring{\sigma}_{s,s} = \pi_{s,s} \pi_{s,s} \pi_{s,s} \pi_{s,s}}{\mathring{\sigma}_{s,s} = \pi_{s,s} \pi_{s,s} \pi_{s,s}} = \frac{n(A)}{n(S)}$$

ដោយ $\mathbf{A} \subseteq \mathbf{S}$ នោះ $\mathbf{0} \le \mathbf{P}(\mathbf{A}) \le \mathbf{1}$ ។

៣.រូបមត្តកណតាប្រូបប៊ីលីតេ :

ក-រូបមន្ត ប្រូបាប៊ីលីតេនៃប្រជុំព្រឹត្តិការណ៍ពីរ

☀ បើ A និង B ជាព្រឹត្តិការណ៍ពីរមិនចុះសំរុងគ្នានោះគេបាន:

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ខ-រូបមន្ត ប្រូបាប៊ីលីតេនៃប្រជុំព្រឹត្តិការណ៍ថី :

☀ បើ A ,B និង C ជាព្រឹត្តិការណ៍បីមិនចុះសំរុងគ្នាពីៗនោះគេបាន :

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

ម្រស្សមមន្តគណិតទិន្យា

គ-ជាទូទៅ :

st បើ $A_1,A_2,A_3,....,A_n$ ជាព្រឹត្តិការណ៍មិនចុះសំរុងគ្នាពីៗនោះគេបាន :

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

ឃ-រូបមន្តប្រូបាបនៃព្រឹត្តិការណ៍ពីរផ្ទុយគ្នា :

បើ ${f A}$ និង ${f \overline A}$ ជាព្រឹត្តិការណ៍ពីរផ្ទុយគ្នានោះគេបាន :

$$P(A)+P(\overline{A})=1 \Leftrightarrow P(\overline{A})=1-P(A)$$

ង-រូបមន្តប្រូបាថិលិតេមានលក្ខ័ខ័ណ្ឌ :

* ប្រូបាប៊ីលីតេនៃព្រឹត្តិការណ៍ A ដោយដឹងថា មានព្រឹត្តិការណ៍ B បានកើត ឡើងរួចហើយ ហៅថា ប្រូបាបមានលក្ខ័ខ័ណ្ឌ ដែលគេតាងដោយ P(A/B) អានថាប្រូបាបនៃ A ដោយបានដឹង B ។

ដូចនេះ ចំពោះព្រឹត្តិការណ៍ A និង B ដោយ $P(B) \neq 0$ គេមានរូបមន្ត :

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 ឬគេអាចទាញ $P(A \cap B) = P(A/B) \times P(B)$

ច-រូបមន្តប្រូបាបនៃព្រឹត្តិការណ៍ពីរថិនទាក់ទងគ្នា :

០ និង B ដែលអាស្រយ័នឹងគ្នាក្នុងវិធីដែលការកើតឡើងនៃព្រឹត្តិការណ៍មួយ មិនមានជាប់ពាក់ពន្ធ័នឹងការកើតឡើងនៃព្រឹត្តិការណ៍មួយ មិនមានជាប់ពាក់ពន្ធ័នឹងការកើតឡើងនៃព្រឹត្តិការណ៍មួយទៀត យើងហៅថា ព្រឹត្តិការណ៍មិនទាក់ទងគ្នា ។

ម្រស្មីមេមឆ្គងសិតទិន្សា

$$P(A \cap B) = P(A) \times P(B)$$

រ្យើបរ្យើងដោយ **លឹម ន់ស្គុន**

Tel: 017 768 246

Email:lim_phalkun@ymail.com

Website: www.mathtoday.wordpress.com

www.todaymath.blogspot.com