zero-base/

Chapter 19. k Nearest Neighber

kNN이란

- 새로운 데이터가 있을 때, 기존 데이터의 그룹 중 어떤 그룹에 속하는지를 분류하는 문제
- k는 몇 번째 가까운 데이터까지 볼 것인가를 정하는 수치

좀더 상세히

레이터	x좌표	у좌표	그룹
Α	1	5	•
В	2	6	•
С	4	5	•
D	5	2	_
E	6	3	_
F	7	1	_
N	4	4	?

k=5로 설정하면 5번째까지 가까운 데이터

k값에 따라 결과값이 바뀔 수 있다

거리를 계산하는 것? - 유클리드 기하

단위에 따라 바뀔 수도 있다 - 표준화 필요

장단점

- 실시간 예측을 위한 학습이 필요치 않다.
- 결국 속도가 빨라진다.
- 고차원 데이터에는 적합하지 않다.

iris 데이터

kNN 학습

accuracy

간단한 성과

```
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, pred))
print(classification_report(y_test, pred))
 [[10 0
  [ 0
       9 1]
  [ 0
      0 10]]
               precision
                          recall f1-score
                                               support
                    1.00
                              1.00
                                        1.00
                                                    10
            0
                    1.00
                              0.90
                                        0.95
                                                    10
                    0.91
                              1.00
                                        0.95
                                                    10
                                        0.97
                                                    30
     accuracy
                    0.97
                              0.97
                                        0.97
                                                    30
    macro avg
 weighted avg
                    0.97
                              0.97
                                        0.97
                                                    30
```