Тема II. Линейные операторы

§ 6. Изометрические операторы. Самосопряженные операторы

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Изометрические операторы и движения

Определение

Линейный оператор $\mathcal{U}\colon V_1\to V_2$ пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}$ называется *изометрическим*, если он сохраняет скалярное произведение, т.е. $\forall \mathbf{x},\mathbf{y}\in V_1$ $\mathbf{x}\mathbf{y}=\mathcal{U}\mathbf{x}\mathcal{U}\mathbf{y}$.

Ясно, что изометрический оператор сохраняет длины векторов, т.е. является *движением* в смысле элементарной геометрии. Оказывается, верно и обратное:

Теорема (о движениях)

Если линейный оператор $\mathcal{U}\colon V_1\to V_2$ пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}$ сохраняет длины векторов, он является изометрическим.

Благодаря теореме легко приводить примеры изометрических операторов – таковыми будут всевозможные повороты и симметрии.

Изометрические операторы и движения (2)

 \mathcal{A} оказательство. Дано, что $\mathbf{x}\mathbf{x}=\mathcal{U}\mathbf{x}\mathcal{U}\mathbf{x}$ для любого $\mathbf{x}\in V_1$. Тогда для любых $\mathbf{x},\mathbf{y}\in V_1$ имеем $(\mathbf{x}+\mathbf{y})(\mathbf{x}+\mathbf{y})=\mathcal{U}(\mathbf{x}+\mathbf{y})\mathcal{U}(\mathbf{x}+\mathbf{y})$. Из свойств скалярного произведения и линейности оператора \mathcal{U} заключаем, что

$$\mathbf{x}\mathbf{x} + \mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{x} + \mathbf{y}\mathbf{y} = \mathcal{U}\mathbf{x}\mathcal{U}\mathbf{x} + \mathcal{U}\mathbf{x}\mathcal{U}\mathbf{y} + \mathcal{U}\mathbf{y}\mathcal{U}\mathbf{x} + \mathcal{U}\mathbf{y}\mathcal{U}\mathbf{y}.$$

Отсюда

$$xy + yx = \mathcal{U}x\mathcal{U}y + \mathcal{U}y\mathcal{U}x. \tag{1}$$

Если пространства V_1 и V_2 евклидовы, то из (1) сразу следует $\mathbf{x}\mathbf{y} = \mathcal{U}\mathbf{x}\mathcal{U}\mathbf{y}$. Если пространства V_1 и V_2 унитарны, подставим вместо \mathbf{x} вектор $i\mathbf{x}$:

$$ixy - iyx = i\mathcal{U}x\mathcal{U}y - i\mathcal{U}y\mathcal{U}x.$$

Сократив на i, получим

$$xy - yx = \mathcal{U}x\mathcal{U}y - \mathcal{U}y\mathcal{U}x. \tag{2}$$

Складывая (1) и (2) получаем
$$\mathbf{x}\mathbf{y} = \mathcal{U}\mathbf{x}\mathcal{U}\mathbf{y}$$
.

Изометрические операторы в конечномерных пространствах

Пусть $\mathcal{U}\colon V_1 \to V_2$ – изометрический оператор конечномерных пространств со скалярным произведением над полем $F \in \{\mathbb{R}, \mathbb{C}\}$. Тогда для \mathcal{U} существует сопряженный оператор $\mathcal{U}^*\colon V_2 \to V_1$. Комбинируя определение изометрического оператора с ключевым свойством сопряженного оператора, получаем, что для всех $\mathbf{x}, \mathbf{y} \in V_1$

$$xy = \mathcal{U}x\mathcal{U}y = x\mathcal{U}^*(\mathcal{U}y) = x(\mathcal{U}\mathcal{U}^*)y.$$

Отсюда $\mathbf{y} = (\mathcal{U}\mathcal{U}^*)\mathbf{y}$ по ослабленному закону сокращения, т.е. $\mathcal{U}\mathcal{U}^*$ – тождественный оператор на пространстве V_1 .

 ${\it Bonpoc:}$ Можно ли утверждать, что ${\cal U}^*{\cal U}$ – тождественный оператор на V_2 ?

Пусть теперь $V_1=V_2=V$. Тогда из равенства $\mathcal{U}\mathcal{U}^*=\mathcal{E}$ вытекает, что оператор \mathcal{U} обратим и $\mathcal{U}^*=\mathcal{U}^{-1}$. Поскольку \mathcal{U} и \mathcal{U}^{-1} перестановочны, каждый изометрический оператор на конечномерном пространстве со скалярным произведением нормален.

Изометрические операторы на евклидовом пространстве называются *ортогональными*, а изометрические операторы на унитарном пространстве называются *унитарными*. Те же термины применяют к матрицам:

- ullet матрица A над $\mathbb R$ называется *ортогональной*, если $A^{-1}=A^T$;
- матрица A над \mathbb{C} называется унитарной, если $A^{-1} = A^*$.

Свойства изометрических операторов

 $\nabla 1$. Изометрические операторы на данном пространстве образуют группу. Эта группа называется унитарной в случае унитарных пространств и ортогональной в случае евклидовых пространств.

В соответствии с Эрлангенской программой Клейна ортогональная группа (*группа движений*) евклидова пространства задает евклидову геометрию; если пространство трехмерно, получаем «школьную» геометрию.

∇2. Изометрические операторы переводят ортонормированные базисы в ортонормированные базисы. Обратно, если линейный оператор переводит хотя бы один ортонормированный базис в ортонормированный базис, то он изометрический.

Доказательство. Прямое утверждение очевидно.

Пусть V — пространство со скалярным произведением размерности n и оператор $\mathcal{U}\colon V\to V$ таков, что для какого-то ортонормированного базиса $\mathbf{e}_1,\dots,\mathbf{e}_n$ (1) в V система векторов $\mathcal{U}\mathbf{e}_1,\dots,\mathcal{U}\mathbf{e}_n$ (2) также образует ортонормированный базис в V. Выразим произвольный вектор $\mathbf{x}\in V$ через базис (1): $\mathbf{x}=x_1\mathbf{e}_1+\dots+x_n\mathbf{e}_n$. Применив \mathcal{U} , получим выражение вектора $\mathcal{U}\mathbf{x}$ через базис (2): $\mathcal{U}\mathbf{x}=x_1\mathcal{U}\mathbf{e}_1+\dots+x_n\mathcal{U}\mathbf{e}_n$. Вычисляя $\mathbf{x}\mathbf{x}$ через координаты в базисе (1) и $\mathcal{U}\mathbf{x}\mathcal{U}\mathbf{x}$ через координаты в базисе (2), получим одно и то же выражение $x_1\overline{x_1}+\dots+x_n\overline{x_n}$. Итак, $\mathbf{x}\mathbf{x}=\mathcal{U}\mathbf{x}\mathcal{U}\mathbf{x}$, т.е. \mathcal{U} сохраняет длины. Поэтому \mathcal{U} — изометрический оператор.

Свойства изометрических операторов (2)

На матричном языке $\nabla 2$ означает, что в унитарном (евклидовом) пространстве матрица перехода от одного ортонормированного базиса к другому будет унитарной (ортогональной).

 $\nabla 3$. Собственные значения изометрического оператора по модулю равны 1. Доказательство. Пусть $\mathcal U$ – унитарный оператор, λ – его собственное значение, а $\mathbf x$ – собственный вектор, принадлежащий λ . Тогда

$$\mathbf{x}\mathbf{x} = \mathcal{U}\mathbf{x}\mathcal{U}\mathbf{x} = (\lambda\mathbf{x})(\lambda\mathbf{x}) = \lambda\overline{\lambda}\mathbf{x}\mathbf{x}.$$

Отсюда $\lambda\overline{\lambda}=1$, т.е. $|\lambda|^2=1$ и $|\lambda|=1$.

Если \mathcal{U} — ортогональный оператор, то его комплексификация — унитарный оператор с той же матрицей и теми же собственными значениями.

Обратное утверждение к $\nabla 3$, вообще говоря, неверно. Например,

у матрицы $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ оба собственных значения равны 1, но A

не является ортогональной, так как $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}
eq A^T.$

Мы вскоре увидим, что для нормальных операторов $\nabla 3$ обратимо.

Строение унитарного оператора

Теорема (строение унитарного оператора)

Линейный оператор $\mathcal A$ на унитарном пространстве V унитарен тогда и только тогда, когда в V существует ортонормированный базис, в котором матрица оператора $\mathcal A$ диагональна, причем все диагональные элементы по модулю равны 1.

Доказательство. Необходимость получается, если скомбинировать теорему о строении нормального оператора на унитарном пространстве с $\nabla 3$. Достаточность. Если матрица A оператора $\mathcal A$ в каком-то ортонормированном базисе диагональна, то в этом базисе матрица сопряженного оператора $\mathcal A^*$ равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Вычисляя произведение AA^* , получим диагональную матрицу, у которой на диагонали стоят произведения вида $\lambda \overline{\lambda}$, где λ – диагональный элемент матрицы A. Поскольку $|\lambda|=1$, имеем $\lambda \overline{\lambda}=1$, откуда $AA^*=E$. Итак, $\mathcal AA^*=\mathcal E$, т.е. $\mathcal A$ – унитарный оператор.

Следствие

Если все собственные значения нормального оператора на унитарном пространстве по модулю равны 1, то оператор унитарен.

Строение ортогонального оператора

Теорема (строение ортогонального оператора)

Линейный оператор $\mathcal A$ на евклидовом пространстве V ортогонален тогда и только тогда, когда в V есть ортонормированный базис, в котором матрица оператора $\mathcal A$ блочно-диагональна с диагональными блоками либо размера 1 и вида ± 1 , либо размера 2 и вида $\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$.

Доказательство. Необходимость получается, если скомбинировать теорему о строении нормального оператора на евклидовом пространстве с $\nabla 3$. Достаточность. Для действительных матриц эрмитово сопряжение сводится к транспонированию. Легко проверяется, что каждый блок блочно-диагональной матрицы из формулировки теоремы при умножении на транспонированный блок дает единичную матрицу (проверьте!). Значит, матрица оператора $\mathcal A$ ортогональна.

Следствие

Если все собственные значения нормального оператора на евклидовом пространстве по модулю равны 1, то оператор ортогонален.

Классификация движений трехмерного пространства

Следствие (теорема Шаля)

Любое движение трехмерного пространства есть комбинация параллельного переноса с одним из следующих движений:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \text{тождественное преобразование;}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} - \text{симметрия относительно плоскости;}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} - \text{симметрия относительно прямой;}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} - \text{симметрия относительно точки;}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{pmatrix} - \text{поворот вокруг оси на угол } \varphi;$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{pmatrix} - \text{композиция поворота вокруг оси на угол } \varphi \text{ и симметрии.}$$

Самосопряженные операторы

Определение

Линейный оператор $\mathcal A$ на пространстве V со скалярным произведением над полем $F\in\{\mathbb R,\mathbb C\}$ называется *самосопряженным*, если он равен своему сопряженному, т.е. если $\mathcal A\mathbf x\mathbf y=\mathbf x\mathcal A\mathbf y$ для любых $\mathbf x,\mathbf y\in V$.

Матрицы самосопряженных операторов в ортонормированных базисах равны своим эрмитово сопряженным. Действительные матрицы с таким свойством называются *симметрическими*, а комплексные — эрмитовыми.

abla 4. Собственные значения самосопряженного оператора действительны. Доказательство. Пусть $\mathcal A$ — самосопряженный оператор на унитарном пространстве, λ — его собственное значение, а $\mathbf x$ — собственный вектор, принадлежащий λ . Тогда

$$\lambda \mathbf{x} \mathbf{x} = (\lambda \mathbf{x}) \mathbf{x} = (\mathcal{A} \mathbf{x}) \mathbf{x} = \mathbf{x} (\mathcal{A} \mathbf{x}) = \mathbf{x} (\lambda \mathbf{x}) = \overline{\lambda} \mathbf{x} \mathbf{x}.$$

Отсюда $\lambda = \overline{\lambda}$, т.е. λ – действительное число. Если \mathcal{U} – самосопряженный оператор на евклидовом пространстве, оператор, его комплексификация – самосопряженный оператор на унитарном пространстве с той же матрицей и теми же собственными значениями.

Строение самосопряженного оператора

Теорема (строение самосопряженного оператора)

Линейный оператор $\mathcal A$ на пространстве V со скалярным произведением самосопряжен тогда и только тогда, когда в V есть ортонормированный базис, в котором матрица оператора $\mathcal A$ диагональна и действительна.

Доказательство. Необходимость. Самосопряженный оператор нормален. Остается применить теоремы о строении нормального оператора и $\nabla 4$. Достаточность. Если матрица A оператора $\mathcal A$ в ортонормированном базисе диагональна и действительна, то в этом базисе матрица сопряженного оператора $\mathcal A^*$ тоже равна A. Значит, $\mathcal A = \mathcal A^*$.

В качестве следствия отметим частичное обращение наблюдения $\nabla 4$:

Следствие

Если все собственные значения нормального оператора действительны, то оператор самосопряжен.

Вопрос: Верно ли обращение наблюдения $\nabla 4$ в общем случае?

Геометрический и физический смысл самосопряженных операторов

Геометрический смысл самосопряженного оператора довольно прост — это растяжение или сжатие вдоль нескольких взаимно перпендикулярных осей, возможно в сочетании с отражением.

На рисунке вектора ортонормированного базиса ${\bf u}_1, {\bf u}_2, {\bf u}_3$ принадлежат собственным значениям 2, -1 и $\frac{1}{2}.$

В физике (квантовой механике) самосопряженные операторы – это *наблюдаемые*, а их собственные значения – это те результаты, которые могут быть зарегистрированы при наблюдении.

Матричные следствия

Переводя доказанные результаты на матричный язык и комбинируя их с теоремой о замене матрицы, получаем два важных следствия:

Следствие об эрмитовых матрицах

Квадратная матрица A над полем $\mathbb C$ эрмитова тогда и только тогда, когда существуют унитарная матрица U и действительная диагональная матрица D, что $D=U^*AU$.

Следствие о симметрических матрицах

Квадратная матрица A над полем $\mathbb R$ симметрична тогда и только тогда, когда существуют ортогональная матрица U и диагональная матрица D такие, что $D=U^TAU$.