CMSC 828T Vision, Planning And Control In Aerial Robotics

Quadrotor HW

Bare Minimum - Quads/Quadrotor/Quadcopter

<Recall> Quadrotor Dynamics

Frames

- 1. Degrees of freedom
 - a. Translation (X-Y-Z)
 - b. Rotation (Roll, Pitch, & Yaw)
- 2. Frames types and configurations
- Frame Materials
 - a. Wood
 - b. Plastic
 - c. Aluminum
 - d. Carbon Fiber
- 4. Choosing frames considerations
 - a. Dimensions
 - b. Configuration
 - c. Weight
 - d. Strength
 - e. Material
 - f. Price
 - g. Appearance

Inertial Measurement Unit (IMU)

- 1. Gyroscope (3-DOF, IMU 3-DOF)
 - a. Measures: Angular Rate
 - b. Provides: Roll, Pitch, & Yaw
- 2. Accelerometer (3-DOF, IMU 6-DOF)
 - a. Measures: Linear Accelerations
 - b. Altitude change Z-axis
 - c. Movement change XY-plane
- 3. Magnetometer (3-DOF, IMU 9-DOF)
 - a. Measures: Magnetism
 - b. Provides: Orientation
- 4. Barometer (1-DOF, IMU 10-DOF)
 - a. Measures: Air Pressure
 - b. Provides: Altitude

Inertial Measurement Unit (IMU)

1. Understanding specs

3. Random Walk $\begin{bmatrix} 0 \\ 0 \\ -a \end{bmatrix} \pm \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{bmatrix}$ Rounding
Significant Bits
Error

4. IMU data plots

Example: iNEMO inertial module:3D accelerometer, 3D gyroscope, 3D magnetometer http://www.st.com/content/st_com/en/products/mems-and-sensors/inemo-inertial-modules/lsm9ds1.html

Example of how orientation can be achieved using IMU https://youtu.be/6ijArKE8vKU?t=10s

Motors (BLDC)

Brushless Direct Current Motors (BLDC)

- 1. More Efficient & Reliable, Longer lasting, and Less Noisy
- 2. Parts
 - a. Rotor Permanent Magnet
 - b. Stator (Electromagnet Coil Sets)
- 3. Good reference for BLDC working principle: https://www.youtube.com/watch?v=bCEiOnuODac

Electronic Speed Controllers (ESC)

- How it works
 - a. Three phase motor
 - b. For jerk free, continuous rotation:
 - i. Which coil to energize?
 - ii. When to energize?
 - c. This is the job of the ESCs
- 2. Wiring
 - a. Battery to ESC
 - b. Ground and Signal from the Flight controller
 - c. Three state connectors from ESC to BLDC

Batteries - Lithium Polymer (LiPO)

Eg. of types: Alkaline, Pb, NiCd, NMh, LiPo, etc.

2. Understanding the battery specifications:

a. 4S -- 4 Cells of 3.7V in series (S=Series, P=Parallel)

b. 14.8V -- Fully Charged Voltage Level

c. 3300mAh -- Power capacity

d. 48.8Wh -- Power capacity (14.8*3.3 = 48.8 Wh)

e. 50C Max Cont. Discharge -- 50*3.3 =165 Amps

f. 5C Max Charge Rate -- 5*3.3 =16.5 Amps

3. Charging

- a. Never discharge to too low voltage levels
- b. Set the appropriate cell type
- c. Set the appropriate charge rate

4. Safety

- a. Flexible
- b. Flammable/ Explosive
- c. Prone to puncture
- d. Overheat/ Overcharge
- 5. Storing
 - a. Should be stored in lipo bags
 - b. Voltage level should be charged to storing mode ~3.7V per cell, not higher

Radios

- 1. Most Popular Ones
 - a. Spectrum
 - b. FrSky
 - c. Futaba
- 2. Considerations
 - a. Number of Channels
 - b. Binding
 - c. Connection to Simulators
 - d. Price
- 3. Wiring Protocols to the receiver PWM, PPM, PCM, DSM2, DSMX, UART, SBUS, IBUS
- 4. Pairing -- Will be covered in the lab session

Beyond Bare Minimum

INPUT (SENSORS)

- 1. Ultrasonic Range Sensor
- 2. LIDAR
- 3. GPS
- 4. FLIR
- 5. Light sensor
- Sound sensor
- 7. Gas Sensor
- 3. Temperature Sensor
- 9. Humidity Sensor
- Vibration Sensor
- 11. Buttons/ Switch
- 12. Camera (The Swiss Army Knife)
 - a. OF,
 - b. VIO
 - c. SFM
 - d. SLAM etc
 - e. The reason why we focus on vision on this course

OUTPUT

- 1. LEDs
- 2. Buzzer
- 3. Display
- 4. Servo Release

COMMUNICATION

- 1. Wifi
- 2. Bluetooth/ BLE
- 3. Zigbee
- 4. LTE
- 5. ...

Safety and FAA Regulations: In & outside the lab

Safely Tips

- a. Must calibrate IMU
- b. Check communications antennas are secure
- c. Test it out without propellers
- d. Check your battery charge levels
- e. Know how to Arm, Disarm, Emergency land, Home button (Drones with GPS)
- f. When working in groups, loudly and clearly communicate
- g. Safety gears
 - i. Gloves
 - ii. Goggles
 - iii. Fly behind a net when flying indoors

2. FAA Regulations and Registration

More Details can be found: http://www.faa.gov/uas/registration

- a. Flying outdoors, drones between 0.5 to 55 lbs must be registered. More than 55 lbs drones are not legal without a special permission
- b. Stick the registration number on the drone and carry your certificate when flying
- c. Always use B4UFLY mobile app to check FAA requirements based on your GPS location
- d. Further than 5 miles from any airports, unless otherwise authorized
- e. Fly below 400 ft
- f. Don't fly above people (Has to be higher than 50 ft)
- g. Has to be without visual line of sight (FPV does not quality for visual line of sight)
- h. Must fly during the day light
- i. Must fly at less than 100 mph

