3.4)	(Martins) Uma	variável	aleatória	discreta	pode	assumir	cinco	valores,	conforme	a d	listribuição (de
	probabilidade:											

x_i	1	2	3	5	8
$p(x_i)$	0,20	0,25	?	0,30	0,10

- (a) Encontrar o valor de p(3).
- (b) Qual é o valor da função acumulada para x = 5?
- (c) Encontrar a média da distribuição.
- (d) Calcular a variância e o desvio-padrão.

$$0.20 + 0.25 + 0.30 + 0.10 + p(3) = 1$$

$$p(3) = 0.15$$

$$E(x) = (1.0.20) + (2.0.25) + (3.0.15) + (5.0.30) + (8.0.10)$$

¹ Falsos positivos: são os testes com resultados positivos em pacientes sabidamente sadios.

² Falsos negativos: são os testes com resultados negativos em pacientes sabidamente doentes.

$$\frac{d}{dx}$$
 Variancia $(x) = E(x^2) - [E(x)]^2$

$$E(x^{2}) = E(x) = \sum x^{2} \rho(\alpha_{1})$$

$$E(x^{2}) = (1 \cdot 0.25) + (2 \cdot 0.25) + (3 \cdot 0.15) + (5 \cdot 0.30) + (8 \cdot 0.10)$$

$$L_{0} E(x^{2}) = (1 \cdot 0.25) + (4 \cdot 0.25) + (9 \cdot 0.15) + (25 \cdot 0.30) + (64 \cdot 0.10)$$

$$L_{0} E(x^{2}) = 0.20 + 1.00 + 1.35 + 7.50 + 6.40$$

$$L_{0} E(x^{2}) = 16.45$$

Variância
$$(\chi) = E(\chi^2) - [E(\chi)]^2$$