Sorting by Reversals

Jonas Hübotter

July 10, 2020

Outline

Motivation

Symmetric group Reversal distance problem

MIN-SBR

Breakpoint graph

3/2-approximation

Reversal graph Matching graph Approximation bound

We define the symmetric group $\langle S_n, \circ \rangle$ as the group whose elements are all bijections over [1, n]

We define the symmetric group $\langle S_n, \circ \rangle$ as the group whose elements are all bijections over [1, n] with

$$S_n = \{(0 \ \pi_1 \ \dots \ \pi_n \ n+1) \mid \{\pi_1, \dots, \pi_n\} = [1, n]\}$$

where $\pi_i = \pi(i)$, $\pi_0 = 0$, and $\pi_{n+1} = n + 1$.

We define the symmetric group $\langle S_n, \circ \rangle$ as the group whose elements are all bijections over [1, n] with

$$S_n = \{(0 \ \pi_1 \ \dots \ \pi_n \ n+1) \mid \{\pi_1, \dots, \pi_n\} = [1, n]\}$$

where $\pi_i = \pi(i)$, $\pi_0 = 0$, and $\pi_{n+1} = n + 1$.

 $\pi \in S_n$ is a permutation.

We define the symmetric group $\langle S_n, \circ \rangle$ as the group whose elements are all bijections over [1, n] with

$$S_n = \{(0 \ \pi_1 \ \dots \ \pi_n \ n+1) \mid \{\pi_1, \dots, \pi_n\} = [1, n]\}$$

where $\pi_i = \pi(i)$, $\pi_0 = 0$, and $\pi_{n+1} = n + 1$.

 $\pi \in S_n$ is a permutation.

 $id = (0 \ 1 \ \dots \ n \ n+1) \in S_n$ is the identity permutation.

A reversal $\rho(i,j) \in S_n$ is defined as

$$\rho(i,j) = (0 \ 1 \ \cdots \ i-1 \ j \ j-1 \ \cdots \ i+1 \ i \ j+1 \ \cdots \ n \ n+1)$$

for some $i, j \in [1, n]$ with $j \ge i$.

A reversal $\rho(i,j) \in S_n$ is defined as

$$\rho(i,j) = (0 \ 1 \ \cdots \ i-1 \ j \ j-1 \ \cdots \ i+1 \ i \ j+1 \ \cdots \ n \ n+1)$$

for some $i, j \in [1, n]$ with $j \ge i$.

Example

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$.

Then

$$\pi \circ \rho(2,4) = (0\ 1\ 2\ 4\ 3\ 5).$$

Definition 3 (reversal distance problem)

Given two permutations $\sigma, \tau \in S_n$ find a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\sigma \circ \rho_1 \circ \cdots \circ \rho_d = \tau$$

and d is minimal.

Definition 3 (reversal distance problem)

Given two permutations $\sigma, \tau \in S_n$ find a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\sigma \circ \rho_1 \circ \cdots \circ \rho_d = \tau$$

and d is minimal.

d is called reversal distance between σ and τ .

Definition 3 (reversal distance problem)

Given two permutations $\sigma, \tau \in S_n$ find a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\sigma \circ \rho_1 \circ \cdots \circ \rho_d = \tau$$

and d is minimal.

d is called reversal distance between σ and τ .

Observation: The reversal distance between σ and τ is the same as the reversal distance between $\tau^{-1} \circ \sigma$ and id.

Let $\pi = \tau^{-1} \circ \sigma \in S_n$.

Let $\pi = \tau^{-1} \circ \sigma \in S_n$. Sorting by Reversals is the problem of finding a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\pi \circ \rho_1 \circ \cdots \circ \rho_d = id$$

and d is minimal.

Let $\pi = \tau^{-1} \circ \sigma \in \mathcal{S}_n$.

Sorting by Reversals is the problem of finding a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\pi \circ \rho_1 \circ \cdots \circ \rho_d = id$$

and d is minimal.

Example

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$.

Let $\pi = \tau^{-1} \circ \sigma \in S_n$.

Sorting by Reversals is the problem of finding a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\pi \circ \rho_1 \circ \cdots \circ \rho_d = id$$

and d is minimal.

Example

Let
$$\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$$
.

$$\pi \circ \rho(2,4) = (0\ 1\ 2\ 4\ 3\ 5)$$

Let $\pi = \tau^{-1} \circ \sigma \in S_n$.

Sorting by Reversals is the problem of finding a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\pi \circ \rho_1 \circ \cdots \circ \rho_d = id$$

and d is minimal.

Example

Let
$$\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$$
.

$$\pi \circ \rho(2,4) = (0\ 1\ 2\ 4\ 3\ 5)$$

 $\pi \circ \rho(2,4) \circ \rho(3,4) = (0\ 1\ 2\ 3\ 4\ 5) = id$

Let $\pi = \tau^{-1} \circ \sigma \in S_n$.

Sorting by Reversals is the problem of finding a sequence of reversals $\rho_1, \ldots, \rho_d \in S_n$ such that

$$\pi \circ \rho_1 \circ \cdots \circ \rho_d = id$$

and d is minimal.

Example

Let
$$\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$$
.

$$\pi \circ \rho(2,4) = (0\ 1\ 2\ 4\ 3\ 5)$$

 $\pi \circ \rho(2,4) \circ \rho(3,4) = (0\ 1\ 2\ 3\ 4\ 5) = id$

$$\implies d(\pi) \leq 2.$$

A different perspective: $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5)$

A different perspective: $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5)$

Definition 5

Let $i \sim j$ if |i - j| = 1.

A pair of consecutive elements π_i and π_j is

- an adjacency if $\pi_i \sim \pi_j$; and
- a breakpoint if $\pi_i \not\sim \pi_j$.

A different perspective: $\pi = (0\ 1\ |\ 3\ 4\ |\ 2\ |\ 5)$

Definition 5

Let $i \sim j$ if |i - j| = 1.

A pair of consecutive elements π_i and π_j is

- an adjacency if $\pi_i \sim \pi_j$; and
- a breakpoint if $\pi_i \nsim \pi_i$.

 $b(\pi)$ denotes the number of breakpoints in $\pi \in S_n$.

A different perspective: $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5)$

Definition 5

Let $i \sim j$ if |i - j| = 1.

A pair of consecutive elements π_i and π_j is

- an adjacency if $\pi_i \sim \pi_j$; and
- a breakpoint if $\pi_i \nsim \pi_i$.

 $b(\pi)$ denotes the number of breakpoints in $\pi \in S_n$.

Observation: $b(\pi) = 0$ iff $\pi = id$

A different perspective: $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5)$

Definition 5

Let $i \sim j$ if |i - j| = 1.

A pair of consecutive elements π_i and π_j is

- an adjacency if $\pi_i \sim \pi_i$; and
- a breakpoint if $\pi_i \nsim \pi_i$.

 $b(\pi)$ denotes the number of breakpoints in $\pi \in S_n$.

Observation: $b(\pi) = 0$ iff $\pi = id$ and any reversal can at most eliminate two breakpoints.

A different perspective: $\pi = (0\ 1\ |\ 3\ 4\ |\ 2\ |\ 5)$

Definition 5

Let
$$i \sim j$$
 if $|i - j| = 1$.

A pair of consecutive elements π_i and π_j is

- an adjacency if $\pi_i \sim \pi_j$; and
- a breakpoint if $\pi_i \nsim \pi_i$.

 $b(\pi)$ denotes the number of breakpoints in $\pi \in S_n$.

Observation: $b(\pi) = 0$ iff $\pi = id$ and any reversal can at most eliminate two breakpoints.

Corollary 6 (lower bound, Kececioglu et al.)

$$d(\pi) \geq \left\lceil \frac{b(\pi)}{2} \right\rceil$$
 for all $\pi \in S_n$.

Definition 7 (breakpoint graph, Bafna et al.)

Let $G(\pi) = (V, E)$ with

• vertices V = [0, n+1] representing the elements of π

Definition 7 (breakpoint graph, Bafna et al.)

Let $G(\pi) = (V, E)$ with

- vertices V = [0, n+1] representing the elements of π ; and
- edges $E = R \cup B$ with
 - a red edge for every breakpoint in π ; and
 - a blue edge for every missing adjacency in π .

Let $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5) \in S_4$.

Let $\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5) \in S_4$. Then $G(\pi)$ is

Let
$$\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5) \in S_4$$
. Then $G(\pi)$ is

Observation: Each vertex has an equal number of incident red and blue edges.

Let
$$\pi = (0 \ 1 \ | \ 3 \ 4 \ | \ 2 \ | \ 5) \in S_4$$
. Then $G(\pi)$ is

Observation: Each vertex has an equal number of incident red and blue edges.

Corollary 8 (Bafna et al.)

 $G(\pi)$ can be decomposed into edge-disjoint alternating cycles.

A reversal is called k-reversal if it removes k breakpoints.

A reversal is called k-reversal if it removes k breakpoints.

A reversal acts on two red edges of $G(\pi)$ if those two edges represent the breakpoints that are split apart by the reversal.

A reversal is called k-reversal if it removes k breakpoints.

A reversal acts on two red edges of $G(\pi)$ if those two edges represent the breakpoints that are split apart by the reversal.

An alternating cycle in $G(\pi)$ is a k-cycle if it has k constituting red edges.

A reversal is called k-reversal if it removes k breakpoints.

A reversal acts on two red edges of $G(\pi)$ if those two edges represent the breakpoints that are split apart by the reversal.

An alternating cycle in $G(\pi)$ is a k-cycle if it has k constituting red edges.

We call an alternating cycle C in $G(\pi)$ oriented if there is a 1- or 2-reversal acting on two constituting red edges of C.

Let $c(\pi)$ denote the maximum number of alternating cycles in any alternating cycle decomposition of $G(\pi)$.

Let $c(\pi)$ denote the maximum number of alternating cycles in any alternating cycle decomposition of $G(\pi)$.

Theorem 10 (Bafna et al.)

Let $\pi, \rho \in S_n$ and ρ be a reversal.

Let $c(\pi)$ denote the maximum number of alternating cycles in any alternating cycle decomposition of $G(\pi)$.

Theorem 10 (Bafna et al.)

Let $\pi, \rho \in S_n$ and ρ be a reversal. Then

$$b(\pi) - b(\pi \circ \rho) + c(\pi \circ \rho) - c(\pi) \leq 1.$$

To show: $b(\pi) - b(\pi \circ \rho) + c(\pi \circ \rho) - c(\pi) \le 1$. We consider each case $b(\pi) - b(\pi \circ \rho) \in [-2, 2]$ separately.

To show: $b(\pi) - b(\pi \circ \rho) + c(\pi \circ \rho) - c(\pi) \le 1$. We consider each case $b(\pi) - b(\pi \circ \rho) \in [-2, 2]$ separately.

1. A 2-reversal removes at least one alternating cycle from the maximum alternating cycle decomposition.

To show: $b(\pi) - b(\pi \circ \rho) + c(\pi \circ \rho) - c(\pi) \le 1$. We consider each case $b(\pi) - b(\pi \circ \rho) \in [-2, 2]$ separately.

1. A 2-reversal removes at least one alternating cycle from the maximum alternating cycle decomposition.

To show: $b(\pi) - b(\pi \circ \rho) + c(\pi \circ \rho) - c(\pi) \le 1$. We consider each case $b(\pi) - b(\pi \circ \rho) \in [-2, 2]$ separately.

1. A 2-reversal removes at least one alternating cycle from the maximum alternating cycle decomposition.

2. A 1-reversal does not add an alternating cycle to the maximum alternating cycle decomposition.

Proof for other cases similar.

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

$$d(\pi_i) = d(\pi_{i-1}) + 1$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

$$d(\pi_i) = d(\pi_{i-1}) + 1$$

$$\stackrel{(10)}{\geq} d(\pi_{i-1}) + b(\pi_i) - b(\pi_{i-1}) + c(\pi_{i-1}) - c(\pi_i)$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

$$d(\pi_{i}) = d(\pi_{i-1}) + 1$$

$$\stackrel{(10)}{\geq} d(\pi_{i-1}) + b(\pi_{i}) - b(\pi_{i-1}) + c(\pi_{i-1}) - c(\pi_{i})$$

$$\iff d(\pi_{i}) - (b(\pi_{i}) - c(\pi_{i})) \geq d(\pi_{i-1}) - (b(\pi_{i-1}) - c(\pi_{i-1}))$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

$$d(\pi_{i}) = d(\pi_{i-1}) + 1$$

$$\stackrel{(10)}{\geq} d(\pi_{i-1}) + b(\pi_{i}) - b(\pi_{i-1}) + c(\pi_{i-1}) - c(\pi_{i})$$

$$\iff d(\pi_{i}) - (b(\pi_{i}) - c(\pi_{i})) \geq d(\pi_{i-1}) - (b(\pi_{i-1}) - c(\pi_{i-1}))$$

$$\geq d(\pi_{0}) - (b(\pi_{0}) - c(\pi_{0}))$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

$$d(\pi_{i}) = d(\pi_{i-1}) + 1$$

$$\stackrel{(10)}{\geq} d(\pi_{i-1}) + b(\pi_{i}) - b(\pi_{i-1}) + c(\pi_{i-1}) - c(\pi_{i})$$

$$\iff d(\pi_{i}) - (b(\pi_{i}) - c(\pi_{i})) \geq d(\pi_{i-1}) - (b(\pi_{i-1}) - c(\pi_{i-1}))$$

$$\geq d(\pi_{0}) - (b(\pi_{0}) - c(\pi_{0})) = 0$$

Let $\pi \in S_n$. Then

$$d(\pi) \geq b(\pi) - c(\pi).$$

Proof.

Let $\pi_t = \pi, \pi_0 = id$ and ρ_1, \dots, ρ_t a shortest sequence of reversals from π_t to π_0 . Then

$$d(\pi_{i}) = d(\pi_{i-1}) + 1$$

$$\stackrel{(10)}{\geq} d(\pi_{i-1}) + b(\pi_{i}) - b(\pi_{i-1}) + c(\pi_{i-1}) - c(\pi_{i})$$

$$\iff d(\pi_{i}) - (b(\pi_{i}) - c(\pi_{i})) \geq d(\pi_{i-1}) - (b(\pi_{i-1}) - c(\pi_{i-1}))$$

$$\geq d(\pi_{0}) - (b(\pi_{0}) - c(\pi_{0})) = 0$$

Setting i = t, proves the theorem.

Theorem 12 (lower bound with 2-cycles, Christie)

Let $\pi \in S_n$ and \mathcal{C} be a maximum alternating cycle decomposition of $G(\pi)$. Let $c_2(\pi)$ be the minimum number of alternating 2-cycles in any such \mathcal{C} . Then

$$d(\pi) \geq \frac{2}{3}b(\pi) - \frac{1}{3}c_2(\pi).$$

By theorem 12, an algorithm that finds a sorting sequence of reversals of at most length $b(\pi) - \frac{1}{2}c_2(\pi)$ achieves an approximation bound of $\frac{3}{2}$.

By theorem 12, an algorithm that finds a sorting sequence of reversals of at most length $b(\pi) - \frac{1}{2}c_2(\pi)$ achieves an approximation bound of $\frac{3}{2}$.

We find such an algorithm in two steps:

1. given an alternating cycle decomposition $\mathcal C$ of $G(\pi)$ we find a sorting sequence of reversals for π

By theorem 12, an algorithm that finds a sorting sequence of reversals of at most length $b(\pi) - \frac{1}{2}c_2(\pi)$ achieves an approximation bound of $\frac{3}{2}$.

We find such an algorithm in two steps:

- 1. given an alternating cycle decomposition $\mathcal C$ of $G(\pi)$ we find a sorting sequence of reversals for π ; and
- 2. we find an alternating cycle decomposition of $G(\pi)$ maximizing the number of 2-cycles.

By theorem 12, an algorithm that finds a sorting sequence of reversals of at most length $b(\pi) - \frac{1}{2}c_2(\pi)$ achieves an approximation bound of $\frac{3}{2}$.

We find such an algorithm in two steps:

- 1. given an alternating cycle decomposition $\mathcal C$ of $G(\pi)$ we find a sorting sequence of reversals for π ; and
- 2. we find an alternating cycle decomposition of $G(\pi)$ maximizing the number of 2-cycles.

Lastly, we prove the approximation bound.

Given an alternating cycle decomposition C of $G(\pi)$,

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

• an isolated blue vertex for each adjacency in π

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

- an isolated blue vertex for each adjacency in π ;
- m vertices for each m-cycle in $\mathcal C$ each representing the reversal $\rho(u)$ acting on the two red edges connected by a blue edge

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

- an isolated blue vertex for each adjacency in π ;
- m vertices for each m-cycle in $\mathcal C$ each representing the reversal $\rho(u)$ acting on the two red edges connected by a blue edge;
 - a vertex is red if the represented reversal is a 1- or 2-reversal
 - a vertex is blue otherwise

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

- an isolated blue vertex for each adjacency in π ;
- m vertices for each m-cycle in $\mathcal C$ each representing the reversal $\rho(u)$ acting on the two red edges connected by a blue edge;
 - a vertex is red if the represented reversal is a 1- or 2-reversal
 - a vertex is blue otherwise
- connect two vertices with an edge if their corresponding blue edges interleave.

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

- an isolated blue vertex for each adjacency in π ;
- m vertices for each m-cycle in $\mathcal C$ each representing the reversal $\rho(u)$ acting on the two red edges connected by a blue edge;
 - a vertex is red if the represented reversal is a 1- or 2-reversal
 - a vertex is blue otherwise
- connect two vertices with an edge if their corresponding blue edges interleave.

Observation: The only alternating cycle decomposition of G(id) is $\mathcal{C} = \emptyset$.

Given an alternating cycle decomposition C of $G(\pi)$, define R(C) with

- an isolated blue vertex for each adjacency in π ;
- m vertices for each m-cycle in $\mathcal C$ each representing the reversal $\rho(u)$ acting on the two red edges connected by a blue edge;
 - a vertex is red if the represented reversal is a 1- or 2-reversal
 - a vertex is blue otherwise
- connect two vertices with an edge if their corresponding blue edges interleave.

Observation: The only alternating cycle decomposition of G(id) is $\mathcal{C}=\emptyset$.

Corollary 14 (Christie)

 $R(\emptyset)$ consists of n+1 isolated blue vertices.

Let
$$\pi = (0 \ 1 \ 3 \ 4 \ 2 \ 5) \in S_4$$
.

Given the alternating cycle decomposition $\mathcal C$ of $G(\pi)$

$$\mathcal{C} = \{(\{1,3\}, \{2,3\}, \{2,4\}, \{4,5\}, \{2,5\}, \{1,2\})\}$$

Let
$$\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$$
.

Given the alternating cycle decomposition $\mathcal C$ of $G(\pi)$

$$\mathcal{C} = \{(\{1,3\}, \{2,3\}, \{2,4\}, \\ \{4,5\}, \{2,5\}, \{1,2\})\}$$

construct R(C).

Let
$$\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$$
.

Given the alternating cycle decomposition $\mathcal C$ of $G(\pi)$

$$C = \{(\{1,3\}, \{2,3\}, \{2,4\}, \\ \{4,5\}, \{2,5\}, \{1,2\})\}$$

construct R(C).

Idea: Each connected component of R(C) can be sorted separately.

Definition 15

Denote by C_u the alternating cycle decomposition of $G(\pi \circ \rho(u))$ that is obtained from C.

Definition 15

Denote by C_u the alternating cycle decomposition of $G(\pi \circ \rho(u))$ that is obtained from C.

Lemma 16 (Christie)

 $R(C_u)$ can be derived from R(C) by making the following changes to R(C):

Definition 15

Denote by C_u the alternating cycle decomposition of $G(\pi \circ \rho(u))$ that is obtained from C.

Lemma 16 (Christie)

 $R(C_u)$ can be derived from R(C) by making the following changes to R(C):

1. flip the color of every vertex adjacent to u

Definition 15

Denote by C_u the alternating cycle decomposition of $G(\pi \circ \rho(u))$ that is obtained from C.

Lemma 16 (Christie)

 $R(C_u)$ can be derived from R(C) by making the following changes to R(C):

- 1. flip the color of every vertex adjacent to u;
- 2. flip the adjacency of every pair of vertices adjacent to u

Definition 15

Denote by C_u the alternating cycle decomposition of $G(\pi \circ \rho(u))$ that is obtained from C.

Lemma 16 (Christie)

 $R(C_u)$ can be derived from R(C) by making the following changes to R(C):

- 1. flip the color of every vertex adjacent to u;
- 2. flip the adjacency of every pair of vertices adjacent to u; and
- 3. if u is a red vertex, turn it into an isolated blue vertex.

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$ and $u = \{1, 2\}$.

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$ and $u = \{1, 2\}$.

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$ and $u = \{1, 2\}$.

Lemma 17 (Christie)

All vertices arising from the same alternating cycle in $\mathcal C$ are in the same connected component of $R(\mathcal C)$.

Lemma 17 (Christie)

All vertices arising from the same alternating cycle in C are in the same connected component of R(C).

Lemma 18 (Christie)

Vertices arising from an unoriented 2-cycle of $\mathcal C$ must be in a connected component of $R(\mathcal C)$ with vertices arising from at least one more alternating cycle of $\mathcal C$.

Figure 1: Unoriented 2-cycle

We call a connected component of R(C) oriented if it contains a red vertex or if it consists solely of an isolated blue vertex.

We call a connected component of R(C) oriented if it contains a red vertex or if it consists solely of an isolated blue vertex.

Let A be a connected component of R(C). We denote by A_u the subgraph of $R(C_u)$ that contains all the vertices of A.

We call a connected component of R(C) oriented if it contains a red vertex or if it consists solely of an isolated blue vertex.

Let A be a connected component of R(C). We denote by A_u the subgraph of $R(C_u)$ that contains all the vertices of A.

Lemma 20 (Christie)

If a connected component A of R(C) is oriented and not an isolated blue vertex, it contains a red vertex u such that A_u is still oriented.

Example (elimination sequence)

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$

Example (elimination sequence)

Let $\pi = (0 \ 1 \ 3 \ 4 \ 2 \ 5) \in S_4$ and $u_1 = \{1, 2\}$

Example (elimination sequence)

Let $\pi = (0\ 1\ 3\ 4\ 2\ 5) \in S_4$ and $u_1 = \{1, 2\}, u_2 = \{2, 3\}.$

$$\left(\left\{0,1\right\}\right)$$

• Every connected component A arising from k different alternating cycles of $G(\pi)$, eventually reduces to k 2-cycles.

- Every connected component A arising from k different alternating cycles of $G(\pi)$, eventually reduces to k 2-cycles.
- There exists an elimination sequence of A with k 2-reversals and remaining 1-reversals.

- Every connected component A arising from k different alternating cycles of $G(\pi)$, eventually reduces to k 2-cycles.
- There exists an elimination sequence of A with k 2-reversals and remaining 1-reversals.
- An unoriented connected component requires one initial 0-reversal.

- Every connected component A arising from k different alternating cycles of $G(\pi)$, eventually reduces to k 2-cycles.
- There exists an elimination sequence of A with k 2-reversals and remaining 1-reversals.
- An unoriented connected component requires one initial 0-reversal.

Theorem 21 (Christie)

Let $\pi \in S_n$ and \mathcal{C} be an alternating cycle decomposition of $G(\pi)$. Then

$$d(\pi) \leq b(\pi) - |\mathcal{C}| + u(\mathcal{C})$$

where u(C) is the number of unoriented components in R(C).

Idea 22

1. Construct a matching graph $F(\pi)$ where vertices represent red edges in $G(\pi)$ and vertices u, v are adjacent if they form a 2-cycle in $G(\pi)$.

Idea 22

- 1. Construct a matching graph $F(\pi)$ where vertices represent red edges in $G(\pi)$ and vertices u, v are adjacent if they form a 2-cycle in $G(\pi)$.
- 2. Find maximum cardinality matching M of $F(\pi)$.

Idea 22

- 1. Construct a matching graph $F(\pi)$ where vertices represent red edges in $G(\pi)$ and vertices u, v are adjacent if they form a 2-cycle in $G(\pi)$.
- 2. Find maximum cardinality matching M of $F(\pi)$.
- 3. Use a ladder graph L(M) with vertices representing 2-cycles in M and form connected components (ladders) with 2-cycles sharing a blue edge in $G(\pi)$.

We call a 2-cycle selected if its corresponding edge of $F(\pi)$ is in M.

We call a 2-cycle selected if its corresponding edge of $F(\pi)$ is in M.

A selected 2-cycle is called independent if it is not part of a ladder. Otherwise it is called a ladder 2-cycle.

We call a 2-cycle selected if its corresponding edge of $F(\pi)$ is in M.

A selected 2-cycle is called independent if it is not part of a ladder. Otherwise it is called a ladder 2-cycle.

Let z be the number of independent 2-cycles, and y the number of ladder 2-cycles.

We call a 2-cycle selected if its corresponding edge of $F(\pi)$ is in M.

A selected 2-cycle is called independent if it is not part of a ladder. Otherwise it is called a ladder 2-cycle.

Let z be the number of independent 2-cycles, and y the number of ladder 2-cycles.

Theorem 24 (Christie)

Given a maximum cardinality matching M of $F(\pi)$ it is possible to find an alternating cycle decomposition $\mathcal C$ of $G(\pi)$ that contains at least $\left\lceil \frac{y}{2} \right\rceil$ ladder 2-cycles and z independent 2-cycles.

Theorem 25 (Christie)

Let $\pi \in S_n$. Then

$$d(\pi) \leq \frac{b(\pi)}{2} - \frac{1}{2}c_2(\pi).$$

Theorem 25 (Christie)

Let $\pi \in S_n$. Then

$$d(\pi) \leq b(\pi) - \frac{1}{2}c_2(\pi).$$

Proof.

Using theorem 24, first find an alternating cycle decomposition $\mathcal C$ of $G(\pi)$ with at least $\left\lceil \frac{y}{2} \right\rceil$ 2-cycles as part of ladders and z independent 2-cycles.

• Let k be the number of 2-cycles in oriented connected components of $R(\mathcal{C})$.

- Let k be the number of 2-cycles in oriented connected components of R(C).
- Let u be the number of unoriented connected components in $R(\mathcal{C})$ that include I selected 2-cycles and that contain vertices representing remaining unselected 2-cycles.

- Let k be the number of 2-cycles in oriented connected components of R(C).
- Let u be the number of unoriented connected components in R(C) that include l selected 2-cycles and that contain vertices representing remaining unselected 2-cycles.
- Let v be the number of remaining unoriented connected components consisting only of vertices representing m independent selected 2-cycles.

- Let k be the number of 2-cycles in oriented connected components of R(C).
- Let u be the number of unoriented connected components in $R(\mathcal{C})$ that include l selected 2-cycles and that contain vertices representing remaining unselected 2-cycles.
- Let v be the number of remaining unoriented connected components consisting only of vertices representing m independent selected 2-cycles.

By theorem 21, we can sort π using at least k+l+u+m 2-reversals and only u+v 0-reversals.

- Let k be the number of 2-cycles in oriented connected components of R(C).
- Let u be the number of unoriented connected components in $R(\mathcal{C})$ that include l selected 2-cycles and that contain vertices representing remaining unselected 2-cycles.
- Let v be the number of remaining unoriented connected components consisting only of vertices representing m independent selected 2-cycles.

By theorem 21, we can sort π using at least k+l+u+m 2-reversals and only u+v 0-reversals. Therefore

$$d(\pi) \le b(\pi) - k - l - u - m + u + v$$

= $b(\pi) - k - l - m + v$

- Let k be the number of 2-cycles in oriented connected components of R(C).
- Let u be the number of unoriented connected components in $R(\mathcal{C})$ that include l selected 2-cycles and that contain vertices representing remaining unselected 2-cycles.
- Let v be the number of remaining unoriented connected components consisting only of vertices representing m independent selected 2-cycles.

By theorem 21, we can sort π using at least k+l+u+m 2-reversals and only u+v 0-reversals. Therefore

$$d(\pi) \le b(\pi) - k - l - u - m + u + v$$

= $b(\pi) - k - l - m + v$

Left to show:
$$-k-l-m+v \leq -\frac{1}{2}c_2(\pi)$$
.

Left to show: $k+l+m-v \geq \frac{1}{2}c_2(\pi)$.

Left to show: $k+l+m-v \ge \frac{1}{2}c_2(\pi)$. We know that

1. $k+l+m \geq \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in $\mathcal C$

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \lfloor \frac{z}{2} \rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18)

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \left\lfloor \frac{z}{2} \right\rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18); and
- 3. $|M| = y + z \ge c_2(\pi)$.

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \left\lfloor \frac{z}{2} \right\rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18); and
- 3. $|M| = y + z \ge c_2(\pi)$.

$$k+l+m-v \ge \left\lceil \frac{y}{2} \right\rceil + z - v \tag{1}$$

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \left\lfloor \frac{z}{2} \right\rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18); and
- 3. $|M| = y + z \ge c_2(\pi)$.

$$k+l+m-v \ge \left\lceil \frac{y}{2} \right\rceil + z - v \tag{1}$$

$$\geq \left\lceil \frac{y}{2} \right\rceil + z - \left\lfloor \frac{z}{2} \right\rfloor \tag{2}$$

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \lfloor \frac{z}{2} \rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18); and
- 3. $|M| = y + z \ge c_2(\pi)$.

$$k + l + m - v \ge \left\lceil \frac{y}{2} \right\rceil + z - v \tag{1}$$

$$\ge \left\lceil \frac{y}{2} \right\rceil + z - \left\lfloor \frac{z}{2} \right\rfloor \tag{2}$$

$$= \left\lceil \frac{y}{2} \right\rceil + \left\lceil \frac{z}{2} \right\rceil$$

- 1. $k+l+m \ge \left\lceil \frac{y}{2} \right\rceil + z$ as $\left\lceil \frac{y}{2} \right\rceil + z$ is the number of selected 2-cycles in \mathcal{C} ;
- 2. $v \leq \lfloor \frac{z}{2} \rfloor$ as every unoriented component representing a 2-cycle represents at least one more alternating cycle (lemma 18); and
- 3. $|M| = y + z \ge c_2(\pi)$.

$$k + l + m - v \ge \left\lceil \frac{y}{2} \right\rceil + z - v \tag{1}$$

$$\ge \left\lceil \frac{y}{2} \right\rceil + z - \left\lfloor \frac{z}{2} \right\rfloor \tag{2}$$

$$= \left\lceil \frac{y}{2} \right\rceil + \left\lceil \frac{z}{2} \right\rceil$$

$$\ge \frac{1}{2} c_2(\pi) \tag{3}$$

Run time: $O(n^4)$, can be improved to $O(n^2)$ (Kaplan et al.).

Summary

- the number of alternating cycles in a breakpoint graph $G(\pi)$ is related to $d(\pi)$
- a sorting sequence of reversals can be constructed from an alternating cycle decomposition of $G(\pi)$

Outlook

- there exists a 1.375-approximation (Berman et al.)
- MIN-SBR for signed permutations is in *P* (Hannenhalli et al.)

References I

- [HP95] Sridhar Hannenhalli and Pavel Pevzner. "Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals". In: *Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing.* STOC '95. 1995, pp. 178–189. DOI: 10.1145/225058.225112.
- [KS95] J Kececioglu and D Sankoff. "Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement". In: Algorithmica 13.1 (1995), p. 180. DOI: 10.1007/BF01188586.
- [BP96] Vineet Bafna and Pavel A Pevzner. "Genome Rearrangements and Sorting by Reversals". In: SIAM J. Comput. 25.2 (1996), pp. 272–289. DOI: 10.1137/S0097539793250627.

References II

- [KST97] Haim Kaplan, Ron Shamir, and Robert Tarjan. "Faster and simpler algorithm for sorting signed permutations by reversals". In: vol. 29. 1997, p. 163. DOI: 10.1137/S0097539798334207.
- [Chr98] David A Christie. "A 3/2-Approximation Algorithm for Sorting by Reversals". In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '98. 1998, pp. 244–252. ISBN: 0898714109.
- [BHK01] Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. "1.375-Approximation Algorithm for Sorting by Reversals". In: *Electronic Colloquium on Computational Complexity (ECCC)* 8 (Jan. 2001).