МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по учебной практике

Тема: Нахождение экстремальных точек полиномиальной функции (степень не выше 9) на заданном интервале

Студенты гр. 0304	Гурьянов С.О. Свечников И.В
Руководитель	 Жангиров Т.Р.

Санкт-Петербург 2022

ЗАДАНИЕ

на учебную практику

Студенты Гурьянов С.О., Свечников И.В.
Группа 0304
Гема практики: Нахождение экстремальных точек полиномиальной функции
(степень не выше 9) на заданном интервале
Задание на практику:
Для заданного полинома не выше 9 степени необходимо найти глобальный ми-
нимум.
Входные данные:
- Коэффициенты полинома 9 степени а0, а1, а2,, а10
- Интервал поиска [l, r]
Сроки прохождения практики: 29.06.2022 – 12.07.2022
Дата сдачи отчета: 2.07.2022
Дата защиты отчета: 2.07.2022
Гурьянов С.О.
Студенты Свечников И.В.
Руководитель Жангиров Т.Р.

АННОТАЦИЯ

Целью работы является знакомство и применение на практике генетических алгоритмов, а также их оптимизаций, для решения поставленной задачи о назначениях. Генетические алгоритмы — это адаптивные методы поиска, которые в последнее время используются для решения задач оптимизации. В них используются как аналог механизма генетического наследования, так и аналог естественного отбора. При этом сохраняется биологическая терминология в упрощенном виде и основные понятия линейной алгебры.

СОДЕРЖАНИЕ

	Введение	5		
1	Итерация 2	6		
1.1.	Скетч с GUI, который планируется реализовать.			
1.2.	Описание сценариев взаимодействия пользователя с	7		
	программой			
1.3	Определение и обоснование параметров модификации ГА для			
	решения задачи.			
	Заключение	9		
	Список использованных источников	10		

ВВЕДЕНИЕ

Целью работы является программная реализация решения поставленной оптимизационной задачи на языке Python с использованием ГА. Основными задачами выполнения работы являются: формирование прототипа GUI и выбор метода решения задачи, частичная реализация программы, в которой присутствует GUI и реализовано хранения данных и основные элементы ГА. Также создана инструкция по сборке и запуску программы. На конечной итерации должна быть выполнена цель работы, а именно программа должна полностью работать вместе с её графической частью, ГА должен гарантированно находить решения.

1. Итерация 2

1.1. Скетч с GUI, который планируется реализовать.

Ввод данных						
	Через файл	Через графический интерфейс				
d ₀	d _e	Интервал поиска:				
q ^s	d ₁	Размер популяции:				
d 3	ds]				
d _y	d ₃	Вероятность мутации:				
	Найти глобальны	й минимум				

1.2. Описание сценариев взаимодействия пользователя с программой

Сценарий взаимодействия пользователем с программой:

- 1) Запуск программы.
- 2) Выбор способа ввода данных.
- 3) Проверка корректности данных.
- 4) Вывод результата в виде таблице и графика.

1.3 Определение и обоснование параметров модификации ГА для решения задачи.

Для решения данной задачи будет использоваться метод прерывистого равновесия. Обосновано это тем, что данный метод позволяет эффективно выходить за пределы локальных ям и формировать глобальный минимум. Опера-

тором выбора родителей будет являться панмиксия. Получившиеся в результате кроссинговера потомки и наиболее пригодные родители случайным образом смешиваются. Из общей массы в новое поколение попадут лишь те особи, пригодность которых выше средней. Тем самым достигается управление размером популяции в зависимости от наличия лучших особей. В качестве оператора кроссинговера будет выбран одноточечный кроссингновер, а в качестве оператора мутации — одноточечная мутация, поскольку метод прерывистого равновесия предполагает их использование. Таким образом, необходимо учитывать вероятность мутации, заданную пользователем. Оператор отбора в новую популяцию - элитарный отбор, поскольку необходимо случайным образом смешать родителей и получившихся потомков.

ЗАКЛЮЧЕНИЕ

Был создан скетч GUI, а также выбрана модификация генетического алгоритма для решения поставленной задачи. Приведено обоснование выбора данных параметров алгоритма.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Панченко Т.В.	Учебно-методическое пособие	"Генетический алгоритмы".