

人工智能

第10讲: 生成式人工智能

自编码器、变分自编码器

张晶

2025年春季

● 参考资料: 吴飞,《人工智能导论:模型与算法》,高等教育出版社

● 在线课程: https://www.icourse163.org/course/ZJU-1003377027?from=searchPage

● 本部分参考: 李宏毅, 《机器学习》课程, 台湾大学

- 一、生成式人工智能概念
- 二、从主成分分析到自编码器
- 三、从自编码器到生成模型
- 四、变分自编码器

- 一、生成式人工智能概念
- 二、从主成分分析到自编码器
- 三、从自编码器到生成模型
- 四、变分自编码器

人工智能 (Artificial Intelligence, AI)

人工智能(目标) 让机器展现"智能"

生成式人工智能(Generative AI)

• 让机器产生复杂有结构的对象

图像 由像素所组成

生成式人工智能

机器学习: 从数据中学习知识

• 语音识别

• 图像分类

• 围棋游戏

生成式人工智能

人工智能(目标) 生成式人工智能 (目标之一) 机器学习(手段) 深度学习(更厉害的手段)

生成式人工智能

人工智能(目标)

机器学习(手段)

深度学习(更厉害的手段)

生成式人工智能

目前的生成式人工智能多以深度学习为手段

内容生成: AI-Generated Content (AIGC)

(同一输入可以产生不同输出。)

• AIGC是一种对"创意"有需求的任务

绘画

聊天机器人

生成模型举例: GPT

生成策略

Autoregressive Generation

生成策略

图像版 GPT

https://openai.com/blog/image-gpt/

- 一、生成式人工智能概念
- 二、从主成分分析到自编码器
- 三、从自编码器到生成模型
- 四、变分自编码器

回顾: 主成分分析

$$x \approx c_1 w^1 + c_2 w^2 + \dots + c_K w^K + \overline{x}$$

手写数字
图像的像
素值表达

$$\mathbf{x} - \overline{\mathbf{x}} \approx c_1 \mathbf{w}^1 + c_2 \mathbf{w}^2 + \dots + c_K \mathbf{w}^K = \widehat{\mathbf{x}}$$

重构误差: $\|(x-\overline{x})-\widehat{x}\|_2$

优化问题:通过最小化L得到w,

$$L = \min_{\{w^1, ..., w^K\}} \sum_{k=1}^{K} \left\| (x - \overline{x}) - (\sum_{k=1}^{K} c_k w^k) \right\|_{2}$$

$$L = \min_{\{\boldsymbol{w}^{1}, \dots, \boldsymbol{w}^{K}\}} \sum \left\| (\boldsymbol{x} - \overline{\boldsymbol{x}}) - (\sum_{k=1}^{K} c_{k} \boldsymbol{w}^{k}) \right\|_{2}$$

如果 $\{w^1, w^2, ... w^K\}$ 即为主成分 $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$K = 2$$
:

最小化重构误差:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$L = \min_{\{\boldsymbol{w}^1, \dots, \boldsymbol{w}^K\}} \sum \left\| (\boldsymbol{x} - \overline{\boldsymbol{x}}) - (\sum_{k=1}^K c_k \boldsymbol{w}^k) \right\|_2$$

如果 $\{w^1, w^2, \dots w^K\}$ 即为主成分 $\{u^1, u^2, \dots u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$K = 2$$
:

最小化重构误差:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$L = \min_{\{\boldsymbol{w}^{1},\dots,\boldsymbol{w}^{K}\}} \sum \left\| (\boldsymbol{x} - \overline{\boldsymbol{x}}) - (\sum_{k=1}^{K} c_{k} \boldsymbol{w}^{k}) \right\|_{2}$$

如果 $\{w^1, w^2, ... w^K\}$ 即为主成分 $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

最小化重构误差:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

PCA 可以看做单隐层的神经网络 (线性激活)

自编码器

如果 $\{w^1, w^2, \dots w^K\}$ 即为主成分 $\{u^1, u^2, \dots u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

最小化重构误差:

$$c_k = (x - \bar{x}) \cdot w^k$$

K = 2:

加深层数

深度自编码器

请思考,单隐藏层线性自编码器经过梯度下降得到的结果跟主成分分析PCA结果一样吗?为什么?

自编码器 Auto-encoder

无标注图像

Embedding, Representation, Code 为下游任务学习新的特征表示

Why Auto-encoder?

去噪自编码器 De-noising Auto-encoder

The idea sounds familiar? ©

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

请回顾,我们在深度学习中介绍的哪个模型类似于去噪自编码器?

回顾: BERT

重建

图像生成: 自编码器 Auto-encoder

请思考,直接用自编码器的解码器作为生成器,会有什么问题?

- 一、生成式人工智能概念
- 二、从主成分分析到自编码器
- 三、从自编码器到生成模型
- 四、变分自编码器

图像生成: Network as Generator

• 无条件生成

图像生成: Network as Generator

• 带条件生成

图像生成: Why distribution?

256 x 256 images → 65536 pixels 每一个像素独立绘制

图像生成: Why distribution?

基本模型: 自编码器

图像生成模型: 变分自编码器 VAE

图像生成模型: 扩散模型 Diffusion Model

图像生成模型: 生成对抗网络 GAN

