Example 1:

print(max_error)

```
[9] import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   sns.set_theme(style="whitegrid")
   h = 0.1
   x = np.arange(0, 2*np.pi, h)
   y = np.cos(x)
   forward_diff = np.diff(y)/h
   x_diff = x[:-1:]
   exact_solution = -np.sin(x_diff)
   h = 0.1
   x = np.arange(0, 2*np.pi, h)
   y = np.cos(x)
   forward_diff = np.diff(y)/h
   x_diff = x[:-1]
   exact_solution = -np.sin(x_diff)
   plt.figure(figsize = (12, 8))
   plt.legend()
   plt.show()
   max_error = max(abs(exact_solution - forward_diff))
   print(max_error)
   plt.legend()
   plt.show()
   max_error = max(abs(exact_solution - forward_diff))
```


Example 3:

```
import numpy as np
x0 = 0.7
h = 2.**-np.arange(1, 30)
df = (np.cos(x0 + h) - np.cos(x0)) / h
true_value = -np.sin(x0)
print("k | Approximation
print("---|------
                                    | Ratio of Errors | Relative Difference")
previous_approximation = None
previous_error = None
for k in range(1, len(h) + 1):
     approximation = df[k - 1]
     error = np.abs(approximation - true_value)
     ratio = np.abs(previous_error / error) if previous_error is not None else "N/A" relative_difference = np.abs((approximation - previous_approximation) / previous_approximation) if previous_approximation is not None else "N/A"
    formatted_approximation = f"{approximation:.15f}"
import numpy as np
x0 = 0.7
h = 2.**-np.arange(1, 30)
df = (np.cos(x0 + h) - np.cos(x0)) / h
true_value = -np.sin(x0)
                                    | Ratio of Errors
print("---|---
previous_approximation = None
previous_error = None
for k in range(1, len(h) + 1):
     approximation = df[k - 1]
     error = np.abs(approximation - true_value)
     ratio = np.abs(previous_error / error) if previous_error is not None else "N/A"
     relative_difference = np.abs((approximation - previous_approximation) / previous_approximation) if previous_approximation is not None else "N/A"
     formatted_approximation = f"{approximation:.15f}"
formatted_ratio = f"{ratio:.6f}" if isinstance(ratio, float) else ratio
formatted_relative_difference = f"{relative_difference:.10f}" if isinstance(relative_difference, float) else relative_difference
      print(f"\{\bar{x}:<3\}| \{formatted\_approximation:<2\bar{1}\}| \{formatted\_ratio:<17\}| \{formatted\_relative\_difference:<20\}"\} 
     previous_error = error
     previous_approximation = approximation
print(f"\nTrue value of the derivative: {true_value:.17f}")
```

 k	Approximation	Ratio of Errors	Relative Difference
k -	Approximation 	Ratio of Errors 	Relative Difference
1	-0.804968865615630	l ['] N/A	I N/A
2	-0.732636391282420	1.818068	0.0898574807
3	-0.690281773285188	1.919472	0.0578112397
4	-0.667691895578365	j 1 . 962328	0.0327255891
5	-0.656062525879001	j 1.981809	0.0174172695
6	-0.650166682293637	j 1.991065	0.0089867099
7	-0.647198783534563	1.995573	0.0045648275
8	-0.645709879406184	1.997797	0.0023005360
9	-0.644964193616318	1.998901	0.0011548310
1		1.999451	0.0005785603
1		1.999726	0.0002895669
1		1.999863	0.0001448552
1		1.999931	0.0000724455
1		1.999966	0.0000362273
1		1.999982	0.0000181147
1		1.999991	0.0000090577
1		1.999990	0.0000045289
1		1.999971	0.0000022644
1		2.000021	0.0000011323
2		1.999483	0.0000005660
2		1.998967	0.0000002830
2		2.000487	0.0000001417
2		1.980742	0.000000701
2		1.942939	0.0000000347
2		1.892038	0.000000173
2		2.467260	0.000000116
2		0.405308	0.0000000116
2		1.000000	0.0000000000
2	9 -0.644217729568481	0.295966	0.0000000463
True value of the derivative: -0.64421768723769102			