Shusen Wang

Warm-up: Linear Regression

Linear Regression (Task)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Inherently assume y_i is a linear function of \mathbf{x}_i .

Linear Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \mathbf{w} \mathbf{y} \right| \right|_2^2$.

Tasks

Methods

Linear Regression

Least Squares Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \mathbf{w} \mathbf{y} \right| \right|_2^2$.

Tasks

Methods

Algorithms

Linear Regression

Least Squares Regression

Analytical Solution

Gradient Descent (GD)

Conjugate Gradient

The Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ such that $f(\mathbf{x}) \approx y$.

Question: f is unknown! So how to learn f?

Answer: polynomial approximation; f is a polynomial function.

Polynomial Regression: 1D Example

Input: scalars $x_1, \dots, x_n \in \mathbb{R}$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \approx y$.

One-dimensional example: $f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_p x^p$.

Polynomial regression:

- 1. Define a feature map $\mathbf{\phi}(x) = [1, x, x^2, x^3, \dots, x^p]$.
- 2. For j=1 to n, do the mapping $x_j\mapsto \mathbf{\Phi}(x_j)$.
 - Let $\mathbf{\Phi} = [\mathbf{\Phi}(x_1); \cdots, \mathbf{\Phi}(x_n)]^T \in \mathbb{R}^{n \times (p+1)}$
- 3. Solve the least squares regression $\min_{\mathbf{w} \in \mathbb{R}^{p+1}} ||\mathbf{\Phi} \mathbf{w} \mathbf{y}||_2^2$.

Polynomial Regression: 2D Example

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Two-dimensional example: how to do feature mapping?

Polynomial features:

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1x_2^2, x_1^2x_2].$$

degree-0 degree-1 degree-2 degree-3

```
import numpy
  X = numpy.arange(6).reshape(3, 2)
  print('X = ')
  print(X)
  X =
  [0 1]
   [2 3]
   [4 5]]
  from sklearn.preprocessing import PolynomialFeatures
  poly = PolynomialFeatures(degree=3)
  Phi = poly.fit transform(X)
  print('Phi = ')
  print(Phi)
  Phi =
  [[1. 0. 1. 0. 0. 1. 0. 0. 0. 1.]
     1. 2. 3. 4. 6. 9. 8. 12. 18. 27.]
               5. 16. 20. 25. 64. 80. 100. 125.]]
          degree-1
                     degree-2
                                      degree-3
degree-0
```

- x: d-dimensional
- $\phi(x)$: p-degree polynomial
- The dimension of $\phi(\mathbf{x})$ is $O(d^p)$

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Training, Testing, and Overfitting

Polynomial Regression: Training

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Feature map: $\phi(\mathbf{x}) = \bigotimes^{\mathbf{p}} \overline{\mathbf{x}}$. Its dimension is $O(d^{\mathbf{p}})$.

Least squares: $\min_{\mathbf{w}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2$.

Question: what will happen as *p* grows?

- 1. For sufficiently large p, the dimension of the feature $\phi(x)$ exceeds n.
- 2. Then you can find w such that $\Phi w = y$. (Zero training error!)

Overfitting

Train: Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $\mathbf{f} : \mathbb{R}^d \mapsto \mathbb{R}$ such that $\mathbf{f}(\mathbf{x}_i) \approx y_i$.

Test: Input: a never-seen-before feature vectors $\mathbf{x}' \in \mathbb{R}^d$.

Input: predict its label by $f(\mathbf{x}')$.

Question: for the polynomial regression model, how to determine the degree p?

Answer: the degree p leads to the smallest test error.

Training Set

Train a 1-degree polynomial regression

Train a 2-degree polynomial regression

Train a 3-degree polynomial regression

Train a 4-degree polynomial regression

Train a 5-degree polynomial regression

Train a 6-degree polynomial regression

Train a 7-degree polynomial regression

Train a 8-degree polynomial regression

Test Set

Test MSE = 23.2

Test MSE = 19.0

Test MSE = 16.7

Test MSE = 12.2

Test MSE = 14.8

 \rightarrow Test MSE = 25.1

Test MSE = 39.4

Test MSE = 53.0

Training Set

Train a 1-degree polynomial regression

Train a 2-degree polynomial regression

Train a 3-degree polynomial regression

Train a 4-degree polynomial regression

Train a 5-degree polynomial regression

Train a 6-degree polynomial regression

Train a 7-degree polynomial regression

Train a 8-degree polynomial regression

Test Set

Test MSE = 23.2

→ Test MSE = 19.0

Test MSE = 16.7

Test MSE = 12.2

Test MSE = 14.8

Test MSE = 25.1

 \rightarrow Test MSE = 39.4

Test MSE = 53.0

Wrong! The test labels are unavailable!

- Even if you have the test labels, never do this! An established researcher got fired because of this stupid mistake.
- egree polynomial regression

Cross-Validation (Naïve Approach) for Hyper-Parameter Tuning

Training Set		TestSet
Train a 1-degree polynomial regression	\longrightarrow	Test MSE = 23.2
Train a 2-degree polynomial regression	\longrightarrow	Test M \$5 = 19.0
Train a 3-degree polynomial regression	\longrightarrow	Test M \$ = 16.7
Train a 4-degree polynomial regression	\longrightarrow	Test MS 12.2
Train a 5-degree polynomial regression	\longrightarrow	Test MS 14.8
Train a 6-degree polynomial regression	\longrightarrow	Test MS 25.1
Train a 7-degree polynomial regression		Test MS 39.4
Train a 8-degree polynomial regression	\longrightarrow	Test MSE 53.0

Training Set

Train a 1-degree polynomial regression

Train a 2-degree polynomial regression

Train a 3-degree polynomial regression

Train a 4-degree polynomial regression

Train a 5-degree polynomial regression

Train a 6-degree polynomial regression

Train a 7-degree polynomial regression

Train a 8-degree polynomial regression

Validation Set

Valid. MSE = 23.1

→ Valid. MSE = 19.2

→ Valid. MSE = 16.3

→ Valid. MSE = 12.5

→ Valid. MSE = 14.4

→ Valid. MSE = 25.0

Valid. MSE = 39.1

Valid. MSE = 53.5

k-Fold Cross-Validation

k-Fold Cross-Validation

- 1. Propose a grid of hyper-parameters.
 - E.g. $p \in \{1, 2, 3, 4, 5\}$.
- 2. Randomly partition the training samples to k parts.
 - k-1 parts for training.
 - One part for test.
- 3. Compute the averaged test errors of the k repeats.
 - The average is called the validation error.
- 4. Choose the hyper-parameter *p* that leads to the smallest validation error.

Example: 5-fold cross-validation

Example: 10-Fold Cross-Validation

validation error

Example: 10-Fold Cross-Validation

I	parameter	validation error	
	p=1	23.19	
	p=2	21.00	
	p=3	18.54	
	p=4	24.36	

Real-World Machine Learning Competition

The Available Data

Training Public Private

Labels: y unknown unknown

Features: X X_{public} $X_{private}$ Test Data

The public and private are mixed; Participants cannot distinguish them.

Train A Model

Labels:

Features:

Training

7

X

Model

Public

unknown

X_{public}

Private

unknown

Xprivate

Prediction

Submission to Leaderboard

Training

y

Features: X

Labels:

Public Private unknown unknown Xpublic **X**private ypublic **y**private **Submission** Score=0.9527 Secret!

Submission to Leaderboard

Training

Labels: y

Features: X

Question: Why two leaderboards?

Answer: The score can be evilly used _ for hyper-parameter tuning (cheating).

Summary

- Polynomial regression for non-linear problems.
- Polynomial regression has a hyper-parameter p.
- Tune the hyper-parameters using cross-validation.
- Make your model parameters and hyper-parameters independent of the test set!!!