State of Graph Neural Network:

Message Passing, High-Order Modeling, Biconnectivity

2024-08-30

Li Peng-Hsuan 李朋軒

Knowledge Graph

Social Network

Molecular Structure

Single Cell Trajectory Tree

Graph Embedding

Graph Isomorphism

Agenda

(~2018) Message passing

→ Graph isomorphism, Weisfeiler-Leman, MPNN

(~2022) High-order modeling

→ Node features, k-WL (k-GNN, k-IGN), subgraph GNN

(~2024) Biconnectivity

→ Biconnectivity, GD-WL, Graphormer-GD

Agenda

(~2018) Message passing

→ Graph isomorphism, Weisfeiler-Leman, MPNN

(~2022) High-order modeling

→ Node features, k-WL (k-GNN, k-IGN), subgraph GNN

(~2024) Biconnectivity

→ Biconnectivity, GD-WL, Graphormer-GD

Comparing Sets

The Same Set

"=": a bijective mapping s.t. member labels are preserved

Comparing Graphs

Graph Isomorphism

"=": a bijective mapping s.t. nodes (labels), edges (labels) are preserved

Graph Isomorphism Test

NP-completeness not known

- The current algorithm with the best claim:
 - \rightarrow Quasi-polynomial time $\exp\left((\log n)^{O(1)}\right)$

Original

Collect neighbors

Refine colors

Collect neighbors

Refine colors → converged

Result: not distinguished

Very fast

$$O(n+e)$$

Sound

Any isomorphic graphs ⇒ not distinguished

Incomplete

[fail to accomplish] any non-isomorphic graphs ⇒ distinguished

Weisfeiler-Leman: Limitations

Weisfeiler-Leman: Limitations

Weisfeiler-Leman: Limitations

MPNN

- Message-Passing Neural Network (MPNN)
 - → The vanilla GNN
 - → Encode each node and its neighbors
 - → Iterate (multi-layers)

MPNN: Graph Isomorphism

- Expressive power of MPNN
 - → MPNNs are at most as powerful as Weisfeiler-Leman
 - → GCN, GraphSAGE, GAT are less powerful than Weisfeiler-Leman
 - → GIN is as powerful as Weisfeiler-Leman

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$$

Agenda

(~2018) Message passing

→ Graph isomorphism, Weisfeiler-Leman, MPNN

(~2022) High-order modeling

→ Node features, k-WL (k-GNN, k-IGN), subgraph GNN

(~2024) Biconnectivity

→ Biconnectivity, GD-WL, Graphormer-GD

Node Features

- Add domain specific features
- Add substructure (triangle, clique, cycle) counting features
- Add node IDs
 - → Arbitrary fixed id—modeling one big graph
 - → Random id—generalizability to unseen graphs

High-Order Weisfeiler-Leman

Weisfeiler-Leman (MPNN)

k-WL (k-GNN)

k-WL (k-GNN)

• Just like Weisfeiler-Leman (MPNN), but

"Nodes" → k-node subgraphs

"Neighbors" → subgraphs with a (k-1)-node intersection

Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. https://doi.org/10.1609/aaai.v33i01.33014602

Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings. https://doi.org/10.48550/arXiv.1904.01543

k-WL (k-GNN): Graph Isomorphism

Expressive power

- \rightarrow 1-WL (Weisfeiler-Leman) = 2-WL < 3-WL < 4-WL < ...
- \rightarrow 3-WL = 2-FWL = 3-IGN

Complexity

$$\rightarrow O(n^k)$$

Invariant and Equivariant Graph Networks. https://doi.org/10.48550/arXiv.1812.09902

On the Universality of Invariant Networks. https://doi.org/10.48550/arXiv.1901.09342

Subgraph GNN

Subgraph GNN: Graph Isomorphism

- Expressive power
 - \rightarrow Subgraph GNN (SUN) = 3-IGN = 3-WL
- Empirical performance
 - \rightarrow Subgraph GNN (SUN \geq GNN-AK⁺ \geq DSS-GNN) > k-WL / k-IGN

Agenda

(~2018) Message passing

→ Graph isomorphism, Weisfeiler-Leman, MPNN

(~2022) High-order modeling

→ Node features, k-WL (k-GNN, k-IGN), subgraph GNN

(~2024) Biconnectivity

→ Biconnectivity, GD-WL, Graphormer-GD

Biconnectivity

- Edge-biconnected graph
 - → Remove any edge and the graph is still connected

edge-biconnected

not edge-biconnected

Biconnectivity

- Node-biconnected graph
 - → Remove any node and the graph is still connected

node-biconnected

not node-biconnected

Biconnectivity

A connected graph → a tree of biconnected components

Biconnectivity

 A connected graph → a tree of biconnected components connected graph

cut-node tree

Biconnectivity: Importance

- Real world implications
 - Cut edges → molecule bonds for chemical reactions
 - Cut nodes → key persons linking social groups
 - etc.
- Computational complexity
 - Can be solved in O(n+e) algorithmically \rightarrow should be solved by GNN

Biconnectivity Problems

- Identify cut edge / cut node
- Distinguish graphs with different cut-edge trees / cut-node trees

Biconnectivity: Contrasting Examples

Biconnectivity: GNNs

- Methods that fail biconnectivity problems
 - → 1-WL (MPNN), substructure counting, GraphSNN, GNN-AK, ...

- Methods that solves biconnectivity problems
 - → RD-WL, ESAN (DSS-GNN), 3-WL, 3-IGN

1-WL

For each node: collect <color> from neighbors

Distance-WL

For each node: collect <color, distance> from all nodes

GD-WL

- Generalized Distance (GD)
 - → Referring to any valid metric for node distance

- Shortest-Path Distance (SPD)
 - → SPD-WL solves cut edge and cut-edge tree problems
 - → SPD-WL fails cut node and cut-node tree problems

Resistance Distance (RD)

RD(A, B) = resistance(A, B) =
$$\frac{5}{3}$$
 (Ω)

GD-WL

- Generalized Distance (GD)
 - → Referring to any valid metric for node distance

- Shortest-Path Distance (SPD)
 - → SPD-WL only solves cut edge and cut-edge tree problems

- Resistance Distance (RD)
 - → RD-WL solves all biconnectivity problems

GD-WL: GNN

To model GD-WL, a GNN must be

invariant to node permutation
⇒ for the nature of graph data
expressive at node level
⇒ for encoding node features
modeling global node-node distance
⇒ for GD

iterating → for WL

GD-WL: GNN

To model GD-WL, a GNN must be

invariant to node permutation
⇒ attention, (node-level) MLP
expressive at node level
⇒ (node-level) MLP
modeling global node-node distance
⇒ relative distance
⇒ stacking layers

Transformer

GD-Transformer (Graphormer-GD)

$$\mathbf{A}^{h}(\mathbf{X}^{(l)}) = \phi_{1}^{l,h}(\mathbf{D}) \odot \operatorname{softmax} \left(\mathbf{X}^{(l)} \mathbf{W}_{Q}^{l,h} (\mathbf{X}^{(l)} \mathbf{W}_{K}^{l,h})^{\top} + \phi_{2}^{l,h}(\mathbf{D}) \right)$$

$$\hat{\mathbf{X}}^{(l)} = \mathbf{X}^{(l)} + \sum_{h=1}^{H} \mathbf{A}^{h} (\mathbf{X}^{(l)}) \mathbf{X}^{(l)} \mathbf{W}_{V}^{l,h} \mathbf{W}_{O}^{l,h}$$

$$\mathbf{X}^{(l+1)} = \hat{\mathbf{X}}^{(l)} + \text{GELU}(\hat{\mathbf{X}}^{(l)}\mathbf{W}_1^l)\mathbf{W}_2^l$$

Agenda

(~2018) Message passing

→ Graph isomorphism, Weisfeiler-Leman, MPNN

(~2022) High-order modeling

→ Node features, k-WL (k-GNN, k-IGN), subgraph GNN

(~2024) Biconnectivity

→ Biconnectivity, GD-WL, Graphormer-GD

		1-WL	GD-WL	Subgraph GNN	3-WL
Model		MPNN	Transformer + GD	Node deletion + GNNs	High-order GNN
Complexity		O(n)	$O(n^2)$	$O(n^2)$	$O(n^3)$
Theoretical expressiveness	1-WL	0	0	0	Ο
	Biconnectivity	X	0	0	Ο
	3-WL	X	?	0	Ο
Empirical performance		Bad	Good	Good	Bad
Model variants		GCN, GAT, GraphSAGE, GIN ¹	GD-Graphormer ²	SUN³, GNN-AK+4, ESAN (DSS-GNN) ⁵	k-GNN ⁶ , δ-k-LWL ⁺⁷ , k-IGN ⁸

[1] GIN

How Powerful are Graph Neural Networks? https://doi.org/10.48550/arXiv.1810.00826

[2] GD-Graphormer

Rethinking the Expressive Power of GNNs via Graph Biconnectivity. https://doi.org/10.48550/arXiv.2301.09505

[3] SUN

Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries. https://doi.org/10.48550/arXiv.2206.11140

[4] GNN-AK+

From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness. https://doi.org/10.48550/arXiv.2110.03753

[5] ESAN (DSS-GNN)

Equivariant Subgraph Aggregation Networks. https://doi.org/10.48550/arXiv.2110.02910

[6] k-GNN

Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. https://doi.org/10.1609/aaai.v33i01.33014602

[7] δ -k-LWL+

Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings. https://doi.org/10.48550/arXiv.1904.01543

[8] k-IGN

Universal Invariant and Equivariant Graph Neural Networks. https://doi.org/10.48550/arXiv.1905.04943