Лекция № 11

Линейные эконометрические модели с автокоррелированными случайными возмущениями (нарушена предпосылка №3 теоремы Гаусса-Маркова)

- 1. Тест Дарбина-Уотсена об отсутствии автокорреляции у случайного возмущетния (причиной нарушения этой предпосылки является пропуск объясняющей переменной);
- 2. Фундаментальная модель автокорреляции случайного возмущения (модель авторегрессии первого порядка);
- 3. Трансформации модели с автокоррелированным случайным возмущением к модели, где справедлива предпосылка № 3 теоремы Гаусса-Маркова;
- 4. Оценивание трансформированной модели нелинейным итерационным методом наименьших квадратов.

Предпосылка №2

$$Var(u_1) = Var(u_2) = \dots = Var(u_n)$$

Предпосылка № 2 означает независимость дисперсий случайных возмущений от значений объясняющих переменных. И в этом случае случайное возмущение в моделе и в этом случае случайные возущения называются <u>гомоскедастичным</u>.

Предпосылка №3

$$Cov(u_i, u_j) = 0, i \neq j$$

Предпосылка № 3 обозначает некоррелируемость или предпосылка об отсутсвии автокорреляции у случайного возмущения.

На предыдущей лекции приступили к посроению оптимальных процедур оценивания эконометрических моделей в ситуации, когда оказываются нарушенными предпосылки №2, № 3 теоремы Гаусса-Маркова. Обсудили оптимальную процедуру оценивания модели с гетескедастичными случайными возмущениями.

Сегодня мы обсудим тест предпосылки № 3, затем обсудим фундаментальную модель автокорреляции случайного возмущения и наконец изучим процедуру оценивания модели с автокоррелированным случайным возмущением.

Рассмотрим базовую модель эконометрики:

$$\begin{cases} y = a_0 + a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_k \cdot x_k + u_t \\ E(u_t) = 0; E(u_t^2) = \sigma_u^2 \end{cases}$$
 (1.1)

В ситуации когда нарушена предпосылка № 3 теоремы Гаусса-Маркова, а все остальные предпосылки справедливы. Тест предпосылки № 3 базируется на следующей теореме.

Теорема. Пусть в модели (1.1) справеливы все предпосылки Гаусса-Маркова и составлены все уравнения наблюдений:

$$\begin{cases} y_1 = a_0 + a_1 \cdot x_{1,1} + a_2 \cdot x_{2,1} + \dots + a_k \cdot x_{k,1} + u_1 \\ y_2 = a_0 + a_1 \cdot x_{1,2} + a_2 \cdot x_{2,2} + \dots + a_k \cdot x_{k,2} + u_2 \\ \dots \\ y_n = a_0 + a_1 \cdot x_{1,n} + a_2 \cdot x_{2,n} + \dots + a_k \cdot x_{k,n} + u_n \end{cases}$$

$$(1.2)$$

Тогда следующая случайная величина V вычесленная по правилу (1.5)

$$V = \frac{\sum_{i=1}^{n-1} (\widetilde{u}_{i+1} - u_i)^2}{\sum_{i=1}^{n} (\widetilde{u}_i)^2}$$
 (1.6)

имеет математическое ожидание примерное равное 2; математическое ожидание числителя и знаменателя рассчитываются по следующим правилам:

$$E\left(\sum_{i=1}^{n-1} \left(\widetilde{u}_{i+1} - u_i\right)^2\right) = 2 \cdot (n-1) \cdot \sigma_u^2$$

$$E\left(\sum_{i=1}^n \left(\widetilde{u}_i\right)^2\right) = n \cdot \sigma_u^2;$$

$$\implies E(V) \approx 2$$

Тест Дарбина-Уотсена гипотезы о некоррелированности случайных возмущений в уравнениях наблюдений (1.2)

Проверяемая гипотеза в этом тесте имеет вид:

$$H_0: Cov(u_{t+1}, u_t) = 0$$
 (1.7)

Альтернативная гипотеза заключается в положительном значении ковариации u_{t+1}, u_t :

$$H_1: Cov(u_{t+1}, u_t) > 0$$
 (1.8)

Замечание. Альтернатива (1.8) имеет наиболее важное для практики значение. Если справедлива данная альтернатива, то причина этого обстоятельства чаще всего заключается в ошибочной спецификации модели (1.1). Например, в отстутсвии в этой модели значящих объясняющих переменных.

Тест *DW*(Дарбина – Уотсена) проводится в итоге следующих шагов:

Шаг 1. По уравнениям наблюдений оценивается модель (1.1) и вычисляется по правилу (1.9)

$$DW = \frac{\sum_{i=1}^{n-1} (\widetilde{u}_{i+1} - u_i)^2}{\sum_{i=1}^{n} (\widetilde{u}_i)^2}$$
 (1.9)

статистика критерия гипотезы H_0 .

Шаг 2. По таблицам Дарбина-Уотсена

п	$k^1 = 1$		$k^1 = 2$		$k^1 = 3$		$k^1 = 4$		$k^1 = 5$	
	d_L	d_U								
6	0,61	1,40	144	==: 7	40	1-2				
7	0,70	1,36	0,47	1,90	:	-				
8	0,76	1,33	0,56	1,78	0,37	2,29				
9	0,82	1,32	0,63	1,70	0,46	2,13				
10	0,88	1,32	0,70	1,64	0,53	2,02				
11	0,93	1,32	0,66	1,60	0,60	1,93				
12	0,97	1,33	0,81	1,58	0,66	1,86				
13	1,01	1,34	0,86	1,56	0,72	1,82				
14	1.05	1.35	0.91	1.55	0.77	1.78				
16	1,10	1,37	0,98	1,54	0,86	1,73	0,74	1,93	0,62	2,15
17	1,13	1,38	1,02	1,54	0,90	1,71	0,78	1,90	0,67	2,10
18	1,16	1,39	1,05	1,53	0,93	1,69	0,82	1,87	0,71	2,06
19	1,18	1,40	1,08	1,53	0,97	1,68	0,86	1,85	0,75	2,02
20	1,20	1,41	1,10	1,54	1,00	1,68	0,90	1,83	0,79	1,99
21	1,22	1,42	1,13	1,54	1,03	1,67	0,93	1,81	0,83	1,96
22	1,24	1,43	1,15	1,54	1,05	1,66	0,96	1,80	0,86	1,94
23	1,26	1,44	1,17	1,54	1,08	1,66	0,99	1,79	0,90	1,92
24	1,27	1,45	1,19	1,55	1,10	1,66	1,01	1,78	0,93	1,90
25	1,29	1,45	1,21	1,55	1,12	1,66	1,04	1,77	0,95	1,89
26	1,30	1,46	1,22	1,55	1,14	1,65	1,06	1,76	0,98	1,88
27	1,32	1,47	1,24	1,56	1,16	1,65	1,08	1,76	1,01	1,86
28	1,33	1,48	1,26	1,56	1,18	1,65	1,10	1,75	1,03	1,85
29	1,34	1,48	1,27	1,56	1,20	1,65	1,12	1,74	1,05	1,84
30	1,35	1,49	1,28	1,57	1,21	1,65	1,14	1,74	1,07	1,83

Figure 1: Значения статистики Дарбина - Уотсона

Выбираются две величины d_L , d_U используя два входа n, k.

Шаг 3. Определяется один из трёх интервалов в который попадает статистика DW.

Если DW попало в I_3 , то H_0 принимается, если в I_1 , то гипотеза H_0 отвергается в пользу гипотезы H_1 ; если в интервал I_2 , то ничего сказать нельзя - это интервал неопределённости.

Проверка гипотезы (1.7) при альтернативе $Cov(u_{t+1}, u_t) < 0$

Первые два шага остаются без изменений, а чертёж с интервалами выглядит так:

Если статистика DW попадает I_1 , то гипотеза H_0 отклонятся в пользу гипотезы H_1 (очень редкий случай), если в I_2 то ничего сказать нельзя - это интервал неопределённости; Кесли DW попадает в I_3 , то H_0 принимается.

ДЗ Сформулировать тест Дарбина Уотсена на основании обсуждённого материала проверки гипотезы H_0 против альтернативы $Cov(u_{t+1}, u_t) \neq 0$.

ДЗ В выражении (1.9) статистики Дарбина-Уотсена раскрыть в числителе квадрат разности двух чисел и после преобразования этой формулы показать справделивость следующего утверждения: обозначим символом ρ коэффициент корреляции случайных остатков модели в два соседние момента времени. Тогда:

1. Если $\rho \to +1$, то $DW \to 0^+$; если $\rho \to 0$, то $DW \to 2$. Если $\rho \to -1$, то $DW \to 0^-$. Указание. Коэффициент корреляции ρ (точнее оценка $\widetilde{\rho}$), может

$$DW o 0^-$$
. Указание. Коэффициент корреляция $\widetilde{\rho} = rac{\displaystyle\sum_{i=1}^{n-1} u_i \cdot u_{i+1}}{\displaystyle\sum_{i=1}^n \left(\widetilde{u}_i
ight)^2}.$

Замечание. В тесте Дарбина Уотсена предполагается, что во-первых: в модели (1.1) присутсвует свободный член a_0 , второе: среди объясняющих переменных нет лаговых значений энодогенной переменной y_t .

Выходим в соответсвующую модель этой предпосылки. Ниже потребуется модель автокорреляции случайного возмущения u_t в линейного модели множественной регресии. Эта модель имеет абривиатуру AR(1) и её спецификация выглядит так:

$$\begin{cases} u_t = \rho \cdot u_{t-1} + \xi_t, \\ Var(u_t) \equiv \sigma_u^2, \\ |\rho| < 1, \\ Var(\xi_t) \equiv \sigma_{\varepsilon}^2 \end{cases}$$
 (2.2)

Первая строчка этой модели описывает процесс формирования значения случайного возмущения в период времени t. Значение u_t складывается из двух величин, а именно: из части случайного возмущения в предшествующий период времени $\rho \cdot u_{t-1}$ и независимой случайной величины ξ_t [кси тэ], которая имеет $E(\xi) = 0$, постоянную дисперсию $Var(\xi_t) \equiv \sigma_{\varepsilon}^2$ и некоррелированные уровни во все периоды времени. Величину ξ_t принято называть *белым шумом*. Позже проверим, что параметр ρ равен коэффициенту корреляции u_t, u_{t-1} .

Трансформации модели с автокоррелированным случайным возмущением к модели, где справедлива предпосылка № 3 теоремы Гаусса-Маркова Вернёмся к спецификации текущей модели и лаконично обозначим функцию регрессии без свободного члена $\vec{a}^T \cdot \vec{x}_t$, то есть:

$$y = a_0 + \vec{a}^T \cdot \vec{x}_t + u_t$$

С учётом модели мы можем переписать спецификаю в следующем виде:

$$\begin{cases} y_{t} = a_{0} + \overrightarrow{a}^{T} \cdot \overrightarrow{x}_{t} + u_{t} \\ E(u_{t}) = 0; E(u_{t}^{2}) = \sigma_{u}^{2} = \frac{\sigma_{\xi}^{2}}{1 - \rho^{2}}; \\ u_{t} = \rho \cdot u_{t-1} + \xi_{t}. \end{cases}$$
 (2.5)

Выпишем уравнение модели в период времени t-1:

$$y_{t-1} = a_0 + \vec{a}^T \cdot \vec{x}_{t-1} + u_{t-1}$$

Предполагая, что ho известно умножим последнее уравнение на ho в итоге получим:

$$\rho \cdot y_{t-1} = \rho \cdot a_0 + \rho \cdot \vec{a}^T \cdot \vec{x}_{t-1} + \rho \cdot u_{t-1}$$
 (2.6)

Наконец из первого уравнения в спецификации (2.5) вычтем (2.6) в итоге получим спецификаю трансформированной модели (2.7):

$$y_t - \rho \cdot y_{t-1} = a_0 \cdot (1 - \rho) + \overrightarrow{a}^T \cdot \left(\overrightarrow{x}_t - \rho \cdot \overrightarrow{x}_{t-1}\right) + \xi_t$$
$$E(\xi) = 0, \ E\left(\xi^2\right) = \sigma_{\xi}^{\alpha}, Cov(\xi_t, \xi_{t-1}) = 0$$

Случайное возмущение ξ_t является белым шумом и удовлетворяется всем предпосылкам Гаусса-Маркова.