

BỘ LỌC IIR

Biểu diễn bộ lọc số IIR trong miền n

$$y(n) = \sum_{r=0}^{M} b_r x(n-r) - \sum_{k=1}^{N} a_k y(n-k)$$
 (a₀ = 1)

Hàm truyền đạt:

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{N} b_r z^{-r}}{1 + \sum_{r=0}^{N} a_r z^{-r}}$$

Đáp ứng tần số:

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n} = |H(e^{j\omega})|e^{-j\varphi(\omega)}$$

BỘ LỌC IIR (tt)

Cấu trúc dạng trực tiếp của bộ lọc số IIR (N = 3; M = 3): (a)

Cấu trúc dạng tầng của bộ lọc số FIR (bậc 3): (b)

$$H(z) = p_0 \prod_{k} \left(\frac{1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

Đặc điểm bộ lọc số IIR

Ưu điểm:

 Đạt được bộ chỉ tiêu kỹ thuật đã cho với bậc của bộ lọc thấp hơn nhiều so với bộ lọc FIR

Nhược điểm:

- Pha phi tuyến
- Không phải bộ lọc IIR nào cũng ốn định

TỔNG HỢP BỘ LỌC SỐ IIR TỪ BỘ LỌC TƯƠNG TỰ

- Các phương pháp chính:
 - 1. PP bất biến xung
 - 2. PP biến đổi song tuyến
 - 3. PP tương đương vi phân
 - 4. PP biến đổi z tương ứng

Với điều kiện đã tổng hợp được $H_a(s)$

- Để tổng hợp được $H_a(s)$, có 3 phương pháp:
 - Butterworth
 - Tchebyshef
 - Cauer

Phương pháp bất biến xung

$$H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_{pk}}$$

$$H(z) = \sum_{k=1}^{N} \frac{A_k}{1 - e^{s_{pk}T_s} z^{-1}}$$

[s: là biến số phức, $s = \sigma + j\Omega$]

Ví du 1: Cho mạch điện tương tự như sau. Hãy chuyến sang mạch điện số bằng phương pháp bất biến xung? Giải:

$$H_a(s) = \frac{u_{\rm ra}}{u_{\rm vào}}$$

$$H_a(s) = \frac{u_{\text{ra}}}{u_{\text{vào}}} \qquad u_{\text{vào}} = i\left(R + \frac{1}{s.C}\right) \qquad u_{\text{ra}} = i\frac{1}{s.C}$$

$$u_{\rm ra} = i \frac{1}{s.C}$$

$$H_a(s) = \frac{\frac{1}{s.C}}{\left(R + \frac{1}{s.C}\right)} = \frac{1}{\left(s.RC + 1\right)} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}$$

$$U_{vào} \downarrow \qquad \qquad i \qquad C \qquad \qquad \downarrow$$

Điểm cực:
$$s_{p_1} = -\frac{1}{RC}$$
 $A_1 = \frac{1}{RC}$

$$A_1 = \frac{1}{RC}$$

Biến đổi:

$$H(z) = \frac{A_1}{1 - e^{s_{p_1}T_s} \cdot z^{-1}} = \frac{\frac{1}{RC}}{1 - e^{-\frac{1}{RC}T_s} \cdot z^{-1}}$$

$$M = 0 \Rightarrow b_0 = \frac{1}{RC}$$
 $N = 1 \Rightarrow a_1 = -e^{-\frac{1}{RC}T_s}$

Thay vào công thức ta được:

$$H\left(z\right) = \frac{b_0}{1 + a_1 z^{-1}}$$

$$y(n) = b_0 x(n) + (-a_1) y(n-1)$$

Vdụ 2: Cho một mạch điện tương tự có hàm truyền đạt:

$$H_a(s) = \frac{1}{(s-2)(s-3)}$$

Hãy tìm H(z) và vẽ sơ đồ mạch số bằng phương pháp bất biến xung?

Giải:

$$H_a(s) = \frac{1}{(s-2)(s-3)} = \frac{A_1}{s-2} + \frac{A_2}{s-3}$$

$$A_1 = (s-2)\frac{1}{(s-2)(s-3)}\Big|_{s=2} = -1$$
 $A_2 = (s-3)\frac{1}{(s-2)(s-3)}\Big|_{s=3} = 1$

$$H(z) = \frac{-1}{1 - e^{2T_s} z^{-1}} + \frac{1}{1 - e^{3T_s} z^{-1}} = \frac{-(1 - e^{3T_s} z^{-1}) + (1 - e^{2T_s} z^{-1})}{(1 - e^{2T_s} z^{-1})(1 - e^{3T_s} z^{-1})}$$

$$H(z) = \frac{\left(e^{3T_s} - e^{2T_s}\right)z^{-1}}{1 - \left(e^{2T_s} + e^{3T_s}\right)z^{-1} + e^{5T_s}z^{-2}}$$

$$M = 1 \Rightarrow b_0 = 0, b_1 = e^{3T_s} - e^{2T_s}$$

$$N = 2 \Rightarrow a_1 = -\left(e^{2T_s} + e^{3T_s}\right), a_2 = e^{5T_s}$$

Phương pháp biến đổi song tuyến

Miền tương tự

$$s = \frac{2}{T_s} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Miền số

$$H(z) = H_a(s)|_{s=\frac{2}{T_s}\frac{1-z^{-1}}{1+z^{-1}}}$$

 Vdu 3: Cho mạch điện tương tự. Hãy chuyến mạch điện này thành mạch số bằng phương pháp biến đổi song tuyến? Vẽ sơ đồ mạch số?

Giải:
$$H_a(s) = \frac{1}{RCs+1} = \frac{1}{RC\frac{2}{T_s}\frac{1-z^{-1}}{1+z^{-1}}+1}$$
 $U_{vào}$

$$H(z) = \frac{T_s(1+z^{-1})}{2RC(1-z^{-1})+T_s(1+z^{-1})} = \frac{T_s+T_sz^{-1}}{2RC+T_s+(T_s-2RC)z^{-1}}$$

$$H(z) = \frac{\frac{T_s}{A} + \frac{T_s}{A}z^{-1}}{1 + \frac{T_s - 2RC}{A}z^{-1}}$$

$$A = 2RC + T_s$$

$$M=1 \Rightarrow b_0 = \frac{T_s}{A}, b_1 = \frac{T_s}{A}$$

$$A = 2RC + T_s$$

$$N = 1 \Rightarrow a_1 = \frac{T_s - 2RC}{A}$$

Vdu 4: Cho hàm truyền đạt của bộ lọc tương tự:

$$H_a(s) = \frac{4}{(s-3)(s-5)}$$

Hãy tìm hàm truyền đạt H(z) của bộ lọc số tương ứng bằng pp biến đổi song tuyến. Vẽ sơ đồ thực hiện bộ lọc.

Phương pháp tương đương vi phân

(độ chính xác không cao)

Miền tương tự

$$s = \frac{1 - z^{-1}}{T_s}$$

Miền số

$$H(z) = H_a(s) \Big|_{s = \frac{1 - z^{-1}}{T_s}}$$

Vdu 5: Cho một bộ lọc tương tự có hàm truyền đạt:

$$H_a(s) = \frac{1}{s+1}$$

Hãy tìm hàm truyền đạt H(z) của bộ lọc số tương ứng bằng pp tương đương vi phân. Vẽ sơ đồ thực hiện bộ lọc.

Giải:

$$H(z) = H_a(s) \Big|_{s = \frac{1 - z^{-1}}{T_s}}$$

$$= \frac{1}{\frac{1 - z^{-1}}{T_s} + 1} = \frac{T_s}{(1 + T_s) - z^{-1}}$$

 Vdu 6: Cho mạch điện tương tự. Hãy chuyển mạch điện này thành mạch số bằng phương pháp tương đương vi phân? Vẽ sơ đồ?

Giải:
$$H(z) = \frac{1}{RC \frac{1-z^{-1}}{T_s} + 1} = \frac{T_s}{RC - RCz^{-1} + T_s} = \frac{T_s}{RC + T_s - RCz^{-1}}$$

$$H(z) = \frac{\frac{T_s}{A}}{1 - \frac{RC}{A}z^{-1}} \qquad A = RC + T_s$$

$$M = 0 \Rightarrow b_0 = \frac{T_s}{A}$$
 $N = 1 \Rightarrow a_1 = -\frac{RC}{A}$

$$y(n) = b_0 x(n) + (-a_1) y(n-1)$$

