1. Perform each matrix multiplication if possible:

(a)
$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 2 & 3 \\ 0 & 1 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$$

- 2. Find the matrix of the linear transformation from R^2 to R^2 that doubles each vertical vector and reverses the orientation of each horizontal vector (keeping its length unchanged).
- 3. Consider the linear transformation T from R^3 to R^2 where

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = x_1 \left[\begin{array}{c} 2\\ 1 \end{array}\right] - 3x_3 \left[\begin{array}{c} 0\\ 4 \end{array}\right].$$

Find the matrix of the linear transformation A.

4. Solve each linear system, using either Gaussian elimination with backsubstitution or Gauss-Jordan reduction:

$$\begin{array}{rcl}
x & + & 3y & = & 1 \\
(c) & 2x & + & 7y & = & 5 \\
x & + & 4y & = & 4
\end{array}$$

- 5. Find the elementary matrices that perform the following row operations on a 3×4 matrix:
 - (a) $r_3 5r_2 \to r_3$
 - (b) $r_1 \leftrightarrow r_3$.
- 6. If possible, find the inverse of each matrix:

(a)
$$\begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & -2 & 2 \end{bmatrix}, \quad \mathbf{b.} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 1 & 3 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

- 7. Let A be a 3×3 matrix such that $A^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & -3 & 0 \\ 1 & 4 & 1 \end{bmatrix}$ and let $B = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (a) Calculate $(B^{-1}A)^{-1}$
 - (b) Find a 3×1 solution matrix \overrightarrow{x} to the linear system $A\overrightarrow{x} = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix}$.
 - (c) Are the matrices A and B row equivalent? Justify your answer.

8. Let
$$V = R^2$$
 with the operations defined by $\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} y+y' \\ x+x' \end{bmatrix}$ and $c \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cy \\ cx \end{bmatrix}$. Determine whether the following properties hold:

(a)
$$c(d\overrightarrow{u}) = (cd)\overrightarrow{u}$$

(b)
$$c(\overrightarrow{u} + \overrightarrow{v}) = (c\overrightarrow{u}) + (c\overrightarrow{v})$$

9. Which of the following sets W are subspaces of \mathbb{R}^3 ?

(a)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x = 2y = 3z \right\},$$

(b)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \ge y \right\},$$

(c)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : z = 4 \right\}.$$

10. (a) Is the set of all polynomials $a_2t^2 + a_1t + a_0$ such that $a_0 + 3a_2 = 0$ a subspace of P_2 ?

(b) Is the set of all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that are **symmetric** a subspace of M_{22} ?

11. Consider the set of vectors $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix} \right\}$ in \mathbb{R}^3 .

Find the dimension of span S and describe span S geometrically (as a line, a plane, etc.). If possible, find an example of a vector that is outside span S.

12. For each set of vectors below, determine if the set is linearly dependent. If it is, express one vector as a linear combination of the rest.

(a) Set
$$S = \left\{ \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1\\1 \end{bmatrix} \right\}$$
 of vectors in \mathbb{R}^4 .

(b) Set
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$
 of vectors in M_{22} .

(c) Set
$$S = \{t^3 + t + 2, t^3 + t^2 + t + 3, t^3 - 2t^2 + t\}$$
 of vectors in P_3 .

13. Find a basis for R^3 that includes the vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

14. If the position vector \overrightarrow{v} of each of the corner points of the letter "F" pictured here

undergoes the linear transformation $F(\overrightarrow{v}) = A\overrightarrow{v}$, and the corresponding points are connected in the same way, write the matrix A that results in each transformed letter using -2, -1, 0, 1, or 2 as entries.

15. Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ be a matrix whose determinant is 5. Calculate the determinant of a. $\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$, b. $\begin{bmatrix} a_{13} & a_{12} & a_{11} \\ a_{23} & a_{22} & a_{21} \\ a_{33} & a_{32} & a_{31} \end{bmatrix}$, c. $(A^{-1})^2$, d. (-3)A.

a.
$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}, b. \begin{bmatrix} a_{13} & a_{12} & a_{11} \\ a_{23} & a_{22} & a_{21} \\ a_{33} & a_{32} & a_{31} \end{bmatrix}, c. (A^{-1})^2, d. (-3)A.$$

- 16. Evaluate det $\begin{bmatrix} 2 & -3 & -1 & 1 \\ 3 & 0 & 1 & 1 \\ 1 & 0 & 2 & -2 \\ -1 & 2 & 1 & 1 \end{bmatrix}.$
- 17. (a) Exercises 31-40, p. 13-14.
 - (b) Exercises 15-26, p. 22.
 - (c) Exercises 13-22, p. 28-29.
 - (d) Exercises 27-37, p. 72.
 - (e) Exercises 13-15, p. 84.
 - (f) Exercises 23-30, p. 95.
 - (g) Exercises 14-21, p. 126.
 - (h) Exercises 13-17, p. 136.
 - (i) Exercises 31-34, p. 158.
 - (j) Exercises 21-24, p. 170.
 - (k) Exercises 33-38, p. 183.