Open in Colab

Python Final Project - Team Python Charmers

```
In [ ]: # Loading Packages
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.cluster import KMeans
        from sklearn.preprocessing import StandardScaler
        from sklearn.pipeline import make pipeline
In [ ]: # Loading Data From Source.
        def load data():
          url = r'https://raw.githubusercontent.com/Python-Charmer/Final-Project-Team-Python-Cha
        rmer/master/Phase1/Data/BreastCancerWisconsin.csv'
          df = pd.read csv(url)
          names = ['Scn','A2','A3','A4','A5','A6','A7', 'A8','A9','A10','Class']
          df.columns = names
          return df
In [ ]: | # Understanding Missing Values
        def clean missing(df):
          df['A7'] = df['A7'].replace('?',np.NaN)
          df['A7'] = pd.to_numeric(df['A7'])
          print("Below are how many missing values for each column\n")
          print(df.isnull().sum())
          print("\nCleaning missing values with column means\n")
          df = df.fillna(round(df.mean(skipna = True),2))
          print(df.isnull().sum())
          return df
In [ ]: | # Calculating Summary Metrics
        def sum metrics(df):
          print("\n Below are the summary metrics of the data \n" + str(df.describe()))
          print ("\n\nThere are " + str(df.shape[0]) + " rows and " + str(df.shape[1]) + " Colum
        ns in this data frame")
          print("\nThere are " + str(len(df['Scn'].unique())) + " unique scn values in the datas
        et.\n")
          print("Below are the duplicate rows in the dataset.\n")
          print(str(df.loc[df.duplicated(), :]) + "\n")
In [ ]: # Plotting graphs
        def plot_graphs(df):
          print("\nBelow are the histograms of A2:A10 \n")
          df.iloc[:,1:10].hist(bins = 8, color="blue", grid="False",alpha = .5, figsize=(12,6))
          plt.tight_layout(rect=(0,0,1.2,1.2))
          plt.show()
          df['Class'].value_counts().plot.bar().set_title("Class Variable: 2 = Benign 4 = Malign
          df.plot.scatter(x='A3', y='A4').set_title("Scatter of A3 & A4 90% corr")
```

```
In [ ]: # We are getting centers for K = 4 clusters
        def get mids(X):
          clss = KMeans(n_clusters = 4)
          clss.fit(X)
          cent = clss.cluster_centers_
          print("\n Below are the centers of K = 4 clusters \n")
          print(pd.DataFrame(cent ,columns = X.columns))
In [ ]: | # We are plotting intertia plot to find optimal K
        def find optimal K(X):
          print("\n Below is the intertia chart \n")
          inertia = []
          k = []
          for i in range(1,15):
            clss = KMeans(n clusters = i)
            clss.fit(X)
            iner = clss.inertia
            k.append(i)
            inertia.append(iner)
          res = pd.concat([pd.DataFrame(k), pd.DataFrame(inertia)],axis = 1)
          res.columns = ['K','Inertia']
          ax = res.plot("K",marker='o', linestyle='dashed', title = "Optimal K = 2" )
          ax.set_xlabel("Number of Clusters")
          ax.set_ylabel("Inertia")
In [ ]: # Plotting SD plot to understand the data variance
        def sd_plot(X):
          dt = pd.DataFrame(X.std()).sort values(by = 0, ascending = False)
          dt.reset index()
          fig, ay = plt.subplots()
          x val = dt.index
          y val = dt[0].values
          ay.bar(x = x_val, height = y_val)
          ay.set_xlabel("Features")
          ay.set ylabel("Standard Deviation")
          ay.set title("Standard Deviation Plot")
        # Plotting Box plot to understand the data variance
        def var_plot(df):
          # Box plot showing variation of the columns A2:A10
          data = []
          for i in range(1, 10):
              data.append(df.iloc[:, i])
          # Multiple box plots on one Axes
          fig, ax = plt.subplots()
          plt.title("Boxplot showing Variation of Features")
          plt.xlabel("Columns A2 thru A10")
          plt.ylabel("Values")
          ax.boxplot(data, 0,showbox=True,showmeans=True)
          top = 12
          bottom = -2
          ax.set ylim(bottom, top)
          ax.set_xticklabels(df.iloc[:,1:-1].columns, rotation=45, fontsize=8)
          plt.show()
```

```
In [ ]: #Getting centers of optimal K = 2
        def get_centers(X):
          print("\n Below are the centers of K = 2 clusters n \n"
          mdl = make_pipeline(StandardScaler(), KMeans(n_clusters = 2, n_init=20))
          mdl.fit(X)
          centers = pd.DataFrame(mdl.named_steps['kmeans'].cluster_centers_)
          centers.columns = X.columns
          print(centers)
In [ ]: # Cross tabulating the cluster labels with "Class"
        def lables(i,df):
          print("\nBelow are the predicted labels with k = " + str(i) + "\n")
          if i == 4:
            mdl = KMeans(n clusters = i)
          else:
            mdl = make_pipeline(StandardScaler(), KMeans(n_clusters = i, n_init=20))
          labels = mdl.fit_predict(df.iloc[:,1:-1])
          ctf = pd.DataFrame({'labels': labels, 'Class': df["Class"]})
          print(pd.crosstab(ctf['labels'], ctf['Class']))
```

```
In [11]: # Main Function Phase 1
    df = load_data()
    df = clean_missing(df)
    sum_metrics(df)
    plot_graphs(df)
    print("The columns that need standardization are: A7,A3,& A9 because they have the highe st amount of variance compared to other factors.")
```

Scn Α2 0 Α3 0 0 Α4 Α5 0 Α6 0 Α7 16 0 Α8 Α9 0 0 A10 Class dtype: int64

Cleaning missing values with column means

0 Scn Α2 0 Α3 0 Α4 0 Α5 0 Α6 0 Α7 0 Α8 0 Α9 0 A10 0 Class 0 dtype: int64

Below are the summary metrics of the data

	Scn	A2	A3	A4	A5	\
count	6.990000e+02	699.000000	699.000000	699.000000	699.000000	
mean	1.071704e+06	4.417740	3.134478	3.207439	2.806867	
std	6.170957e+05	2.815741	3.051459	2.971913	2.855379	
min	6.163400e+04	1.000000	1.000000	1.000000	1.000000	
25%	8.706885e+05	2.000000	1.000000	1.000000	1.000000	
50%	1.171710e+06	4.000000	1.000000	1.000000	1.000000	
75%	1.238298e+06	6.000000	5.000000	5.000000	4.000000	
max	1.345435e+07	10.000000	10.000000	10.000000	10.000000	

	A6	A7	A8	A9	A10	Class
count	699.000000	699.000000	699.000000	699.000000	699.000000	699.000000
mean	3.216023	3.544549	3.437768	2.866953	1.589413	2.689557
std	2.214300	3.601852	2.438364	3.053634	1.715078	0.951273
min	1.000000	1.000000	1.000000	1.000000	1.000000	2.000000
25%	2.000000	1.000000	2.000000	1.000000	1.000000	2.000000
50%	2.000000	1.000000	3.000000	1.000000	1.000000	2.000000
75%	4.000000	5.000000	5.000000	4.000000	1.000000	4.000000
max	10.000000	10.000000	10.000000	10.000000	10.000000	4.000000

There are 699 rows and 11 Columns in this data frame

There are 645 unique scn values in the dataset.

Below are the duplicate rows in the dataset.

	Scn	A2	Α3	Α4	Α5	Α6	Α7	Α8	Α9	A10	Class
208	1218860	1	1	1	1	1	1.0	3	1	1	2
253	1100524	6	10	10	2	8	10.0	7	3	3	4
254	1116116	9	10	10	1	10	8.0	3	3	1	4
258	1198641	3	1	1	1	2	1.0	3	1	1	2

272	320675	3	3	5	2	3	10.0	7	1	1	4
338	704097	1	1	1	1	1	1.0	2	1	1	2
561	1321942	5	1	1	1	2	1.0	3	1	1	2
684	466906	1	1	1	1	2	1.0	1	1	1	2

Below are the histograms of A2:A10

The columns that need standardization are: A7,A3,& A9 because they have the highest amount of variance compared to other factors.


```
In [12]: #Main Functions Phase 2
    X = df.drop(['Scn','Class'], axis = 1)
    y = df['Class']
    get_mids(X)
    lables(4,df)
    find_optimal_K(X)
    sd_plot(X)
    var_plot(df)
    print('\n Based on the Box and SD plot above we can see features A7,A9 has the most variations.\n')
    get_centers(X)
    lables(2,df)
```

	A2	А3	A4	A5	A6	A7	A8	\
0	7.204082	4.846939	5.010204	4.816327	4.071429	9.158571	5.224490	
1	2.984716	1.266376	1.386463	1.312227	2.054585	1.352576	2.080786	
2	6.721519	8.367089	8.405063	7.810127	6.734177	9.227848	7.367089	
3	7.562500	7.421875	7.062500	4.250000	5.875000	3.619063	5.562500	

A9 A10 0 3.795918 1.642857 1 1.213974 1.102620 2 7.822785 3.822785 3 7.156250 2.234375

Below are the predicted labels with k = 4

2	4
7	64
444	10
7	87
0	80
	7 444 7

Below is the intertia chart

Based on the Box and SD plot above we can see features A7,A9 has the most variations.

Below are the centers of K = 2 clusters

A2 A3 A4 A5 A6 A7 A8 \
0 -0.496223 -0.60690 -0.602092 -0.514917 -0.509713 -0.580604 -0.547702
1 0.986083 1.20602 1.196465 1.023233 1.012892 1.153765 1.088383

A9 A10 0 -0.530778 -0.303758 1 1.054751 0.603622

Below are the predicted labels with k = 2

Class 2 4 labels 0 446 19 1 12 222

```
In [25]: #Main Phase 3
         mdl = make_pipeline(StandardScaler(), KMeans(n_clusters = 2, n_init=20, max_iter = 500
         ))
         labels = mdl.fit predict(X)
         df['Predicted'] = labels
         for x in range(df.shape[0]):
           if df.iloc[x,11] == 0:
             df.iloc[x,11] = 2
           else:
             df.iloc[x,11] = 4
         print("\nBelow are the first 15 rows of the dataframe \n")
         print(df.head(15))
         print("\nBelow are the observtions where the predicted did not match the class \n")
         print(df[df['Class'] != df['Predicted']])
         def error_rate(predicted,actual):
           tab = pd.crosstab(actual, predicted)
           error2 = tab.iloc[0,1]
           total2 = tab.iloc[0,0] + tab.iloc[1,0]
           error4 = tab.iloc[1,0]
           total4 = tab.iloc[0,1] + tab.iloc[1,1]
           B = str(round(error2/total2,4)*100) + "%"
           M = str(round(error4/total4,4)*100) + "%"
           tot_error = str(round((error2 + error4)/(total2 + total4),4)*100) + "%"
           print("\nThe error rate for beningn cells is " + str(B) + "\n")
           print("The error rate for malignent cells is " +str(M) + "\n")
           print("The total error rate is " +str(tot_error) + "\n")
         error_rate(df['Predicted'], df['Class'])
```

Below are the first 15 rows of the dataframe

	Scn	A2	Α3	Α4	Α5	Α6	Α7	A8	Α9	A10	Class	Predicted
0	1000025	5	1	1	1	2	1.0	3	1	1	2	2
1	1002945	5	4	4	5	7	10.0	3	2	1	2	4
2	1015425	3	1	1	1	2	2.0	3	1	1	2	2
3	1016277	6	8	8	1	3	4.0	3	7	1	2	4
4	1017023	4	1	1	3	2	1.0	3	1	1	2	2
5	1017122	8	10	10	8	7	10.0	9	7	1	4	4
6	1018099	1	1	1	1	2	10.0	3	1	1	2	2
7	1018561	2	1	2	1	2	1.0	3	1	1	2	2
8	1033078	2	1	1	1	2	1.0	1	1	5	2	2
9	1033078	4	2	1	1	2	1.0	2	1	1	2	2
10	1035283	1	1	1	1	1	1.0	3	1	1	2	2
11	1036172	2	1	1	1	2	1.0	2	1	1	2	2
12	1041801	5	3	3	3	2	3.0	4	4	1	4	2
13	1043999	1	1	1	1	2	3.0	3	1	1	2	2
14	1044572	8	7	5	10	7	9.0	5	5	4	4	4

Below are the observtions where the predicted did not match the class

	Scn	Α2	А3	Α4	Α5	A6	A7	A8	Α9	A10	Class	Predicted
1	1002945	5	4	4	5	7	10.00	3	2	1	2	4
3	1016277	6	8	8	1	3	4.00	3	7	1	2	4
12	1041801	5	3	3	3	2	3.00	4	4	1	4	2
25	1065726	5	2	3	4	2	7.00	3	6	1	4	2
40	1096800	6	6	6	9	6	3.54	7	8	1	2	4
51	1108449	5	3	3	4	2	4.00	3	4	1	4	2
57	1113038	8	2	4	1	5	1.00	5	4	4	4	2
58	1113483	5	2	3	1	6	10.00	5	1	1	4	2
59	1113906	9	5	5	2	2	2.00	5	1	1	4	2
63	1116132	6	3	4	1	5	2.00	3	9	1	4	2
101	1167439	2	3	4	4	2	5.00	2	5	1	4	2
103	1168359	8	2	3	1	6	3.00	7	1	1	4	2
146	1185609	3	4	5	2	6	8.00	4	1	1	4	2
179	1202812	5	3	3	3	6	10.00	3	1	1	4	2
196	1213375	8	4	4	5	4	7.00	7	8	2	2	4
222	1226012	4	1	1	3	1	5.00	2	1	1	4	2
247	145447	8	4	4	1	2	9.00	3	3	1	4	2
252	1017023	6	3	3	5	3	10.00	3	5	3	2	4
259	242970	5	7	7	1	5	8.00	3	4	1	2	4
273	428903	7	2	4	1	3	4.00	3	3	1	4	2
296	616240	5	3	4	3	4	5.00	4	7	1	2	4
315	704168	4	6	5	6	7	3.54	4	9	1	2	4
319	721482	4	4	4	4	6	5.00	7	3	1	2	4
326	752904	10	1	1	1	2	10.00	5	4	1	4	2
348	832226	3	4	4	10	5	1.00	3	3	1	4	2
352	846832	3	4	5	3	7	3.00	4	6	1	2	4
356	859164	5	3	3	1	3	3.00	3	3	3	4	2
434	1293439	6	9	7	5	5	8.00	4	2	1	2	4
455	1246562	10	2	2	1	2	6.00	1	1	2	4	2
489	1084139	6	3	2	1	3	4.00	4	1	1	4	2
657	1333877	5	4	5	1	8	1.00	3	6	1	2	4

The error rate for beningn cells is 2.58%

The error rate for malignent cells is 8.12%

The total error rate is 4.43%