#### **EXPERIMENT 8**

#### Name -

Mehul Kavdia (2018A8PS0860P)
Pranamya Jain (2018A8PS0769P)
Yash Raj Agarwal (2018A8PS0782P)
Jash Shah (2018A8PS0507P)
Jaskaran Singh (2018A8PS0806P)

**Sec No. - 4** 

Group No. - 10

**Date - 15/04/21** 

**Objective -** Study of 3 Phase Inverters in 120-degree mode and 180-degree mode

**Software tool:** MATLAB Simulink, Simscape toolbox (power GUI)

#### **Components used:**

IGBT; AC source; Resistor, inductor; Voltage and current sensors; Display; Scope

## 1. Study of 3 Phase Inverter Operating in 120-degree mode



# **Observations:**

Input Supply Voltage (DC) = 100V

Frequency = 50 HZ

Formulae used:

Von/Vin =  $10^(g/20)$  [here g is in dB]

THD =  $(g_3^2 + g_5^2 + g_7^2)^{0.5} / g_1$  [here g is not in dB]

## FFT data for THD calculations

| Frequency(Hz)    | Harmonic value(dB) | Vo/Vi  |
|------------------|--------------------|--------|
| 50 (fundamental) | 58                 | 794.3  |
| 150 (third)      | Absent             | -      |
| 250 (Fifth)      | 44                 | 158.49 |
| 350 (Seventh)    | 42                 | 125.9  |

THD(Considering n=7 harmonics) =  $(g_3^2 + g_5^2 + g_7^2)^{0.5} / g_1 = 0.255$ 

## Waveforms:



Waveform 1 – Input Pulse Waveforms



Waveform 2 – Line to Ground Output Waveforms



Waveform 3 – Line to Line Output Waveforms

# 2. Study of 3 Phase Inverter Operating in 180-degree mode



# **Observations:**

Input Supply Voltage (DC) = 100V

Frequency = 50 HZ

Formulae used:

 $Von/Vin = 10^{(g/20)}$  [here g is in dB]

THD =  $(g_3^2 + g_5^2 + g_7^2)^{0.5} / g_1$  [here g is not in dB]

#### FFT data for THD calculations

| Frequency(Hz)    | Harmonic value(dB) | Vo/Vi   |
|------------------|--------------------|---------|
| 50 (fundamental) | 60                 | 1000    |
| 150 (third)      | Absent             | -       |
| 250 (Fifth)      | 46                 | 158.525 |
| 350 (Seventh)    | 42                 | 125.9   |

THD(Considering n=7 harmonics) =  $(g_3^2 + g_5^2 + g_7^2)^{0.5} / g_1 = 0.236$ 

# Waveform:



Waveform 1 – Input Pulse Waveforms



Waveform 2 – Line to Ground Output Waveforms



Waveform 3 – Line to Line Output Waveforms

# **Results and Conclusions:**

- 1) The models were simulated in Simulink using Simscape library
- 2) THD for 120 degree mode is approximately 0.255
- 3) THD for 180 degree mode is approximately 0.236