# **Imports**

```
In [1]: # Data handling
        import numpy as np
        import pandas as pd
        # Visualization
        import matplotlib.pyplot as plt
        # Scikit-learn: model selection, preprocessing, metrics
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_scor
        # Scikit-learn: regressors and decomposition
        from sklearn.linear_model import Ridge, Lasso
        from sklearn.decomposition import PCA
        from sklearn.linear_model import LinearRegression
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
        from sklearn.neural_network import MLPRegressor
        # Statsmodels and Scipy
        import statsmodels.api as sm
        import scipy.stats as stats
        # XGBoost
        from xqboost import XGBRegressor
        # TensorFlow / Keras
        import tensorflow as tf
        from tensorflow import keras
        from tensorflow.keras import layers
        from tensorflow.keras.callbacks import EarlyStopping
```

# Data Prep

```
In [7]: scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)

In [8]: scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
```

# **Linear Regression**

Out [10]: Modelo MSE RMSE MAE R2 N\_features

**0** Linear Regression 6138.514703 78.348674 61.638441 0.70014

```
In [11]: X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, random_state=42
         ridge = Ridge(alpha=1.0)
         ridge.fit(X train, y train)
         y_pred_ridge = ridge.predict(X_test)
         lasso = Lasso(alpha=0.1)
         lasso.fit(X_train, y_train)
         y_pred_lasso = lasso.predict(X_test)
         results = pd.DataFrame({
              'Modelo': ['Ridge', 'Lasso'],
              'MSE': [
                 mean_squared_error(y_test, y_pred_ridge),
                 mean_squared_error(y_test, y_pred_lasso)
             ],
             'RMSE': [
                 np.sqrt(mean_squared_error(y_test, y_pred_ridge)),
                 np.sqrt(mean_squared_error(y_test, y_pred_lasso))
```

12

```
],
    'MAE': [
        mean_absolute_error(y_test, y_pred_ridge),
        mean_absolute_error(y_test, y_pred_lasso)
    ],
    'R2': [
        r2_score(y_test, y_pred_ridge),
        r2_score(y_test, y_pred_lasso)
    1
})
print(results.to_string(index=False))
residuals = y_test - y_pred_ridge
plt.figure()
stats.probplot(residuals, dist="norm", plot=plt)
plt.title("QQ-plot de residuos (Ridge)")
plt.xlabel("Cuantiles teóricos")
plt.ylabel("Cuantiles muestrales de residuos")
plt.grid(True)
plt.show()
res_lasso = y_test - y_pred_lasso
plt.figure()
stats.probplot(res_lasso, dist="norm", plot=plt)
plt.title("QQ-plot de residuos (Lasso)")
plt.xlabel("Cuantiles teóricos")
plt.ylabel("Cuantiles muestrales de residuos")
plt.grid(True)
plt.show()
```

Modelo MSE RMSE MAE R2 Ridge 6139.201206 78.353055 61.638011 0.700107 Lasso 6135.228052 78.327697 61.628791 0.700301



#### **KNN**

```
In [12]: knn = KNeighborsRegressor(n_neighbors=5, weights='uniform', metric='euclidea
          knn.fit(X_train_scaled, y_train)
         y_pred = knn.predict(X_test_scaled)
In [13]: mse = mean_squared_error(y_test, y_pred)
          rmse = np.sqrt(mse)
         mae = mean_absolute_error(y_test, y_pred)
          r2 = r2_score(y_test, y_pred)
In [14]: | \text{new row} = \{ \}
              'Modelo'
                           : 'k-NN Regressor (k=5) escaladas',
              'MSE'
                           : mse,
              'RMSE'
                           : rmse,
              'MAE'
                           : mae,
              'R2'
                           : r2,
              'N features': len(X.columns)
          results_reg = pd.concat([results_reg, pd.DataFrame([new_row])], ignore_index
          results_reg
Out[14]:
                      Modelo
                                       MSE
                                                 RMSE
                                                             MAE
                                                                        R2 N_features
          0
              Linear Regression
                                6138.514703
                                             78.348674 61.638441 0.700140
                                                                                    12
                k-NN Regressor
          1
                              10640.480296 103.152704 80.952047 0.480224
                                                                                    12
                (k=5) escaladas
```

## KNN + PCA & GridSearch

```
cv=5,
        scoring='neg_mean_squared_error',
        n jobs=-1,
        verbose=0
    )
    knn_cv.fit(Xtr, y_train)
    cv_mse = -knn_cv.best_score_
    y pred = knn cv.predict(Xte)
    test_mse = mean_squared_error(y_test, y_pred)
    test_rmse = np.sqrt(test_mse)
    test_mae = mean_absolute_error(y_test, y_pred)
    test_r2 = r2_score(y_test, y_pred)
    if cv mse < best['cv mse']:</pre>
        best.update({
            'n_comp' : n_comp,
'params' : knn_cv.best_params_,
'cv_mse' : cv_mse,
             'test_mse' : test_mse,
             'test_rmse' : test_rmse,
             'test_mae' : test_mae,
'test_r2' : test_r2
        })
new row = {
                 : f"k-NN grid (k={best['params']['n_neighbors']}, comp={best
    'Modelo'
    'MSE'
                 : best['test_mse'],
                : best['test_rmse'],
    'RMSE'
    'MAE'
                : best['test_mae'],
    'R2'
                : best['test r2'],
    'N_features': best['n_comp']
results_reg = pd.concat([results_reg, pd.DataFrame([new_row])], ignore_index
results_reg
```

| Out[15]: | Modelo |                                   | MSE          | RMSE       | MAE       | R2       | N_features |
|----------|--------|-----------------------------------|--------------|------------|-----------|----------|------------|
|          | 0      | Linear Regression                 | 6138.514703  | 78.348674  | 61.638441 | 0.700140 | 12         |
|          | 1      | k-NN Regressor<br>(k=5) escaladas | 10640.480296 | 103.152704 | 80.952047 | 0.480224 | 12         |
|          | 2      | k-NN grid (k=17,<br>comp=12)      | 9812.593252  | 99.058534  | 77.475050 | 0.520666 | 12         |

#### OLS

```
In [16]: X_train_ols = sm.add_constant(X_train_scaled)
    X_test_ols = sm.add_constant(X_test_scaled)

ols = sm.OLS(y_train, X_train_ols).fit()
    y_pred_ols = ols.predict(X_test_ols)
```

```
mse_ols = mean_squared_error(y_test, y_pred_ols)
rmse_ols = np.sqrt(mse_ols)
mae_ols = mean_absolute_error(y_test, y_pred_ols)
r2_ols = r2_score(y_test, y_pred_ols)
new_row = {
    'Modelo' : 'OLS Regression escaladas',
   'MSE'
                : mse_ols,
   'RMSE'
                : rmse_ols,
   'MAE'
                : mae_ols,
   'R2'
                : r2_ols,
   'N_features' : len(X.columns)
results_reg = pd.concat([results_reg, pd.DataFrame([new_row])], ignore_index
display(results_reg)
print(ols.summary())
```

|   | Modelo                            | MSE          | RMSE       | MAE       | R2       | N_features |
|---|-----------------------------------|--------------|------------|-----------|----------|------------|
| 0 | Linear Regression                 | 6138.514703  | 78.348674  | 61.638441 | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas | 10640.480296 | 103.152704 | 80.952047 | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)      | 9812.593252  | 99.058534  | 77.475050 | 0.520666 | 12         |
| 3 | OLS Regression escaladas          | 6138.514703  | 78.348674  | 61.638441 | 0.700140 | 12         |

#### OLS Regression Results

| =========                               | ======== |             | :====== |         | ====================================== |         | ======= |
|-----------------------------------------|----------|-------------|---------|---------|----------------------------------------|---------|---------|
| ==                                      |          |             |         |         |                                        |         |         |
| Dep. Variab  25                         | le:      |             | Y       | R-sq    | uared:                                 |         | 0.7     |
| Model:<br>22                            |          |             | 0LS     | Adj.    | R-squared:                             |         | 0.7     |
| Method:<br>6.1                          |          | Least Squ   | uares   | F-st    | atistic:                               |         | 25      |
| Date:                                   | 1        | Thu, 26 Jun | 2025    | Prob    | (F-statistic)                          | :       | 2.28e-3 |
| 16<br>Time:                             |          | 20:3        | 36:21   | Log-l   | Likelihood:                            |         | -676    |
| 2.1<br>No. Observat                     | tions:   |             | 1178    | AIC:    |                                        |         | 1.355e+ |
| 04<br>Df Residuals                      | S:       |             | 1165    | BIC:    |                                        |         | 1.362e+ |
| 04                                      |          |             |         |         |                                        |         |         |
| Df Model:                               |          |             | 12      |         |                                        |         |         |
| Covariance 7                            |          |             |         |         |                                        |         |         |
| ======================================= | =======  | ========    | ======  | =====   | ========                               | ======  | ======= |
|                                         | coef     | std err     |         | t       | P> t                                   | [0.025  | 0.97    |
| 5]                                      |          |             |         |         | 1 1                                    | •       |         |
|                                         |          |             |         |         |                                        |         |         |
|                                         |          |             | _       |         |                                        |         |         |
|                                         | -2.3697  | 2.206       | -1      | .074    | 0.283                                  | -6.698  | 1.9     |
| 58<br>x1                                | -0.4162  | 2.217       | -0      | 188     | 0.851                                  | -4.766  | 3.9     |
| 33                                      | 014102   | 2.217       | 0       | 100     | 0.031                                  | 41700   | 3.3     |
| x2                                      | 5.2817   | 2.218       | 2       | .381    | 0.017                                  | 0.930   | 9.6     |
| 34                                      |          |             |         |         |                                        |         |         |
| x3                                      | 67.1600  | 2.215       | 30      | 327     | 0.000                                  | 62.815  | 71.5    |
| 05<br>x4                                | 0.9542   | 2.210       | 0       | 432     | 0.666                                  | -3.381  | 5.2     |
| 90                                      | 0.9342   | 2.210       | U       | 432     | 0.000                                  | -3.301  | 3.2     |
| x5                                      | 40.3338  | 2.220       | 18      | . 166   | 0.000                                  | 35.978  | 44.6    |
| 90                                      |          |             |         |         |                                        |         |         |
| x6                                      | 3.8796   | 2.219       | 1       | .749    | 0.081                                  | -0.473  | 8.2     |
| 33                                      | 0 0022   | 2 220       | 4       | 010     | 0.000                                  | 4 5 4 7 | 12.2    |
| x7<br>57                                | 8.9022   | 2.220       | 4       | .010    | 0.000                                  | 4.547   | 13.2    |
| x8                                      | 7.9245   | 2.212       | 3       | . 583   | 0.000                                  | 3.585   | 12.2    |
| 64                                      | , 132 13 |             |         | . 505   | 0.000                                  | 31303   |         |
| x9                                      | 29.0109  | 2.220       | 13      | 066     | 0.000                                  | 24.654  | 33.3    |
| 67                                      |          |             |         |         |                                        |         |         |
| x10                                     | 20.5627  | 2.220       | 9       | 262     | 0.000                                  | 16.207  | 24.9    |
| 19<br>x11                               | 71.4295  | 2.219       | 22      | . 195   | 0.000                                  | 67.077  | 75.7    |
| 82                                      | 71.4293  | 2.219       | 32      | 193     | 0.000                                  | 0/10//  | /3./    |
| x12                                     | 46.1045  | 2.218       | 20      | .786    | 0.000                                  | 41.753  | 50.4    |
| 56                                      |          |             |         |         |                                        |         |         |
| =========                               |          |             | ======  | =====   | =========                              | ======  | ======= |
| ==                                      |          | _           | . 775   | D 1     |                                        |         | 4.0     |
| Omnibus:<br>24                          |          | 1           | L.775   | Durb.   | in-Watson:                             |         | 1.9     |
| Prob(Omnibus                            | 5):      | a           | 412     | Jaro    | ue-Bera (JB):                          |         | 1.6     |
| ob (omitbus                             | ., •     | •           | ,       | 3 a 1 q | DC. G (JD/1                            |         | 1.0     |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## **Decision Tree**

```
In [17]: | dt = DecisionTreeRegressor(random_state=42)
         dt.fit(X_train_scaled, y_train)
         y_pred_dt = dt.predict(X_test_scaled)
         mse_dt = mean_squared_error(y_test, y_pred_dt)
         rmse_dt = np.sqrt(mse_dt)
         mae_dt = mean_absolute_error(y_test, y_pred_dt)
         r2_dt = r2_score(y_test, y_pred_dt)
         new_row = {
             'Modelo'
                       : 'Decision Tree escaladas',
             'MSE'
                        : mse dt,
             'RMSE'
                        : rmse dt,
             'MAE'
                        : mae_dt,
             'R2'
                        : r2_dt,
             'N_features' : len(X.columns)
         results_reg = pd.concat([results_reg, pd.DataFrame([new_row])],
                                 ignore_index=True)
         display(results_reg)
```

|   | Modelo                            | MSE          | RMSE       | MAE        | R2       | N_features |
|---|-----------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                 | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)      | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas          | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas        | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |

## **Random Forest**

```
In [18]: | rf = RandomForestRegressor(n_estimators=100, random_state=42)
         rf.fit(X_train_scaled, y_train)
         y_pred_rf = rf.predict(X_test_scaled)
         mse_rf = mean_squared_error(y_test, y_pred_rf)
         rmse_rf = np.sqrt(mse_rf)
         mae_rf = mean_absolute_error(y_test, y_pred_rf)
         r2_rf = r2_score(y_test, y_pred_rf)
         new row = {
                       : 'Random Forest escaladas',
             'Modelo'
             'MSE'
                        : mse_rf,
             'RMSE'
                        : rmse_rf,
             'MAE'
                        : mae_rf,
             'R2' : r2_rf,
             'N_features' : len(X.columns)
         results_reg = pd.concat([results_reg, pd.DataFrame([new_row])],
                                 ignore_index=True)
         display(results_reg)
```

|   | Modelo                            | MSE          | RMSE       | MAE        | R2       | N_features |
|---|-----------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                 | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)      | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas          | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas        | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 5 | Random Forest<br>escaladas        | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |

#### Ada Boost

```
In [19]: param_grid_ada = {
        'n_estimators' : [50, 100, 150],
        'learning_rate' : [0.01, 0.1, 1.0],
        'loss' : ['linear', 'square', 'exponential']
}
grid_search_ada = GridSearchCV(
```

```
estimator=AdaBoostRegressor(random_state=42),
   param_grid=param_grid_ada,
   cv=5,
   scoring='neg_mean_squared_error',
   n_{jobs=-1}
   verbose=1
grid_search_ada.fit(X_train_scaled, y_train)
best_ada = grid_search_ada.best_estimator_
y_pred_ada = best_ada.predict(X_test_scaled)
print("Mejores parámetros AdaBoost:", grid_search_ada.best_params_)
mse_ada = mean_squared_error(y_test, y_pred_ada)
rmse_ada = np.sqrt(mse_ada)
mae_ada = mean_absolute_error(y_test, y_pred_ada)
r2_ada = r2_score(y_test, y_pred_ada)
new_row = {
    'Modelo'
                : 'AdaBoostRegressor (grid) escaladas',
    'MSE'
                : mse_ada,
    'RMSE'
                : rmse_ada,
    'MAE'
                : mae_ada,
    'R2'
                : r2_ada,
    'N_features' : len(X.columns)
results_reg = pd.concat([results_reg, pd.DataFrame([new_row])], ignore_index
display(results_reg)
```

Fitting 5 folds for each of 27 candidates, totalling 135 fits
Mejores parámetros AdaBoost: {'learning\_rate': 1.0, 'loss': 'square', 'n\_est imators': 150}

|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |

## **XGBoost**

```
In [20]: param_grid_xgb = {
             'n_estimators' : [50, 100, 150],
             'learning_rate' : [0.01, 0.1, 0.2],
             'max_depth' : [3, 5, 7], 'subsample' : [0.8, 1.0]
         grid_search_xgb = GridSearchCV(
             estimator=XGBRegressor(
                 objective='reg:squarederror', random_state=42,
             ),
             param_grid=param_grid_xgb,
             cv=5,
             scoring='neg_mean_squared_error',
             n jobs=-1,
             verbose=1
         grid_search_xgb.fit(X_train_scaled, y_train)
         best_xgb = grid_search_xgb.best_estimator_
         y_pred_xgb = best_xgb.predict(X_test_scaled)
         print("Mejores parámetros XGBoost:", grid_search_xgb.best_params_)
         mse_xgb = mean_squared_error(y_test, y_pred_xgb)
         rmse_xgb = np.sqrt(mse_xgb)
         mae_xgb = mean_absolute_error(y_test, y_pred_xgb)
         r2 xgb = r2 score(y test, y pred xgb)
         new_row = {
                          : 'XGBRegressor (grid) escaladas',
             'Modelo'
                          : mse_xgb,
             'MSE'
             'RMSE'
                         : rmse_xgb,
             'MAE'
                          : mae xgb,
             'R2'
                         : r2_xgb,
             'N_features' : len(X.columns)
         results_reg = pd.concat([results_reg, pd.DataFrame([new_row])], ignore_index
         display(results_reg)
```

Fitting 5 folds for each of 54 candidates, totalling 270 fits Mejores parámetros XGBoost: {'learning\_rate': 0.1, 'max\_depth': 3, 'n\_estima tors': 100, 'subsample': 0.8}

|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |

## **Redes Neuronales**

```
In [21]: reg = MLPRegressor(
             hidden_layer_sizes=(60,),
             solver='lbfgs',
             alpha=1.0,
             random_state=1,
             max iter=1000
         reg.fit(X train scaled, y train)
         n_features = X_train_scaled.shape[1]
         y_pred_reg = reg.predict(X_test_scaled)
         mse = mean_squared_error(y_test, y_pred_reg)
         r2 = r2_score(y_test, y_pred_reg)
         print(f"MLPRegressor MSE: {mse:.4f}")
         print(f"MLPRegressor R2: {r2:.4f}")
         plt.figure(figsize=(6,6))
         plt.scatter(y_test, y_pred_reg, alpha=0.6)
         plt.plot([y_test.min(), y_test.max()],
                   [y_test.min(), y_test.max()],
                  'r--', lw=2)
         plt.xlabel("True Targets")
         plt.ylabel("Predicted Targets")
         plt.title("MLPRegressor: True vs. Predicted")
         plt.grid(True)
         plt.show()
```

```
results_reg.loc[len(results_reg)] = {
    'Modelo': 'MLPRegressor',
    'MSE': mean_squared_error(y_test, y_pred_reg),
    'RMSE': np.sqrt(mean_squared_error(y_test, y_pred_reg)),
    'MAE': mean_absolute_error(y_test, y_pred_reg),
    'R2': r2_score(y_test, y_pred_reg),
    'N_features': n_features
}
display(results_reg)
```

/Users/enriquegomeztagle/anaconda3/envs/ML/lib/python3.11/site-packages/skle
arn/neural\_network/\_multilayer\_perceptron.py:546: ConvergenceWarning: lbfgs
failed to converge (status=1):
STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.

Increase the number of iterations (max\_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
 self.n\_iter\_ = \_check\_optimize\_result("lbfgs", opt\_res, self.max\_iter)

MLPRegressor MSE: 17228.6159 MLPRegressor R<sup>2</sup>: 0.1584

#### MLPRegressor: True vs. Predicted



|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |
| 8 | MLPRegressor                          | 17228.615924 | 131.257822 | 100.251268 | 0.158401 | 12         |

```
In [22]: def build_regression_model(input_dim):
             model = keras.Sequential([
                 layers.Dense(64, activation='relu', input_shape=(input_dim,)),
                 layers.Dropout(0.3),
                 layers.Dense(32, activation='relu'),
                 layers.Dense(1)
             ])
             model.compile(
                 optimizer=keras.optimizers.RMSprop(learning_rate=0.001),
                 loss='mean_squared_error',
                 metrics=['mean_absolute_error']
             return model
         model_reg = build_regression_model(X_train_scaled.shape[1])
         early_stop = EarlyStopping(
             monitor='mean_absolute_error',
             patience=5,
             restore_best_weights=True,
             verbose=1
         history = model_reg.fit(
             X_train_scaled, y_train,
             validation_split=0.2,
             epochs=100,
             batch_size=16,
             callbacks=[early_stop],
             verbose=1
```

```
mse_nn, mae_nn = model_reg.evaluate(X_test_scaled, y_test, verbose=0)
print(f"Neural Net Regression MSE: {mse nn:.4f}")
print(f"Neural Net Regression MAE: {mae_nn:.4f}")
print(f"Neural Net Regression R2: {r2_score(y_test, model_reg.predict(X_test
plt.figure()
plt.plot(history.history['loss'], label='train loss')
plt.plot(history.history['val loss'], label='val loss')
plt.xlabel('Epoch')
plt.ylabel('MSE Loss')
plt.title('Training vs. Validation Loss')
plt.legend()
plt.grid(True)
plt.show()
y_pred_nn = model_reg.predict(X_test_scaled).flatten()
plt.figure(figsize=(6,6))
plt.scatter(y_test, y_pred_nn, alpha=0.6)
plt.plot([y_test.min(), y_test.max()],
         [y_test.min(), y_test.max()],
         'r--', lw=2)
plt.xlabel("True Targets")
plt.ylabel("Predicted Targets")
plt.title("Keras NN: True vs. Predicted")
plt.grid(True)
plt.show()
results_reg.loc[len(results_reg)] = {
    'Modelo':
                'KerasNN',
    'MSE':
                 mean squared error(y test, y pred nn),
    'RMSE':
                 np.sqrt(mean_squared_error(y_test,
                                                      y pred nn)),
    'MAE':
                 mean_absolute_error(y_test, y_pred_nn),
    'R2':
                r2 score(y test,
                                            y_pred_nn),
    'N_features': n_features
display(results reg)
```

/Users/enriquegomeztagle/anaconda3/envs/ML/lib/python3.11/site-packages/kera s/src/layers/core/dense.py:93: UserWarning: Do not pass an `input\_shape`/`in put\_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().\_\_init\_\_(activity\_regularizer=activity\_regularizer, \*\*kwargs)

```
Epoch 1/100
                   1s 3ms/step - loss: 19429.8848 - mean absolute er
59/59 —
ror: 111.0767 - val loss: 20289.2207 - val mean absolute error: 112.5766
Epoch 2/100
59/59 —
              ______ 0s 1ms/step - loss: 19286.1309 - mean_absolute_er
ror: 108.2360 - val loss: 19806.6426 - val mean absolute error: 111.2844
               ———— 0s 2ms/step — loss: 20579.1172 — mean absolute er
59/59 ———
ror: 113.0644 - val loss: 18874.8184 - val mean absolute error: 108.6872
Epoch 4/100
59/59 -
                    ____ 0s 2ms/step - loss: 19047.1914 - mean_absolute_er
ror: 108.3297 - val loss: 17357.2871 - val mean absolute error: 104.2612
Epoch 5/100
                       - 0s 3ms/step - loss: 17270.4004 - mean absolute er
ror: 104.6618 - val loss: 15237.5488 - val mean absolute error: 97.4573
Epoch 6/100
59/59 -
                      — 0s 3ms/step - loss: 14672.7129 - mean absolute er
ror: 95.8562 - val_loss: 12923.5508 - val_mean_absolute_error: 89.2519
Epoch 7/100
59/59 -
                 ———— 0s 3ms/step — loss: 11723.9609 — mean absolute er
ror: 84.3580 - val_loss: 10436.2910 - val_mean_absolute_error: 79.9274
ror: 78.3146 - val_loss: 8359.9541 - val_mean_absolute_error: 71.3009
Epoch 9/100
59/59 ——
                      — 0s 2ms/step - loss: 8480.8906 - mean absolute err
or: 72.8031 - val_loss: 6936.4512 - val_mean_absolute_error: 64.0104
Epoch 10/100
                      — 0s 1ms/step - loss: 6904.8154 - mean absolute err
or: 66.9279 - val_loss: 6178.8081 - val_mean_absolute_error: 60.0091
Epoch 11/100
59/59 —
                  _____ 0s 2ms/step - loss: 6624.9761 - mean absolute err
or: 65.6615 - val_loss: 5852.2461 - val_mean_absolute_error: 58.5222
or: 64.0445 - val_loss: 5706.0527 - val_mean_absolute_error: 58.0441
Epoch 13/100

59/59 — Os 1ms/step - loss: 5953.6270 - mean_absolute_err
or: 61.9539 - val_loss: 5634.2690 - val_mean_absolute_error: 57.9979
Epoch 14/100
59/59 ———
              ———— 0s 2ms/step — loss: 5988.6016 — mean absolute err
or: 62.4010 - val_loss: 5616.0620 - val_mean_absolute_error: 58.1801
Epoch 15/100
                 Os 1ms/step - loss: 6346.8838 - mean absolute err
or: 63.0376 - val_loss: 5578.9072 - val_mean_absolute_error: 57.9864
Epoch 16/100
                    ____ 0s 2ms/step - loss: 6456.8193 - mean absolute err
or: 65.2667 - val_loss: 5543.4775 - val_mean_absolute_error: 57.7983
Epoch 17/100
59/59 —
                      — 0s 2ms/step - loss: 6334.5015 - mean absolute err
or: 63.7222 - val_loss: 5552.5562 - val_mean_absolute_error: 57.7570
Epoch 18/100
                   ____ 0s 1ms/step - loss: 6387.6592 - mean absolute err
59/59 ———
or: 63.6772 - val_loss: 5521.9326 - val_mean_absolute_error: 57.4786
Epoch 19/100
59/59 ———
                 Os 2ms/step - loss: 5518.4829 - mean absolute err
```

```
or: 58.5842 - val_loss: 5517.7173 - val_mean_absolute_error: 57.4570
Epoch 20/100
                         - 0s 5ms/step - loss: 5862.9019 - mean absolute err
59/59 —
or: 61.4726 - val_loss: 5509.1123 - val_mean_absolute_error: 57.4692
Epoch 21/100
                          - 1s 8ms/step - loss: 6215.4385 - mean_absolute_err
59/59 -
or: 64.0857 - val_loss: 5480.2207 - val_mean_absolute_error: 57.2351
Epoch 22/100
                         - 0s 4ms/step - loss: 6072.4941 - mean absolute err
59/59 -
or: 62.8933 - val_loss: 5470.9751 - val_mean_absolute_error: 57.2685
Epoch 23/100
                         — 0s 3ms/step - loss: 5592.7959 - mean absolute err
59/59 -
or: 60.1789 - val loss: 5448.9961 - val mean absolute error: 57.1208
Epoch 24/100
59/59 -
                        — 0s 2ms/step - loss: 6053.5244 - mean absolute err
or: 62.8069 - val_loss: 5465.5322 - val_mean_absolute_error: 57.3513
Epoch 24: early stopping
Restoring model weights from the end of the best epoch: 19.
Neural Net Regression MSE: 6364.3892
Neural Net Regression MAE: 62.8619
10/10 -
                         - 0s 10ms/step
Neural Net Regression R<sup>2</sup>: 0.6891
```

#### Training vs. Validation Loss



- 0s 2ms/step

10/10 -



|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |
| 8 | MLPRegressor                          | 17228.615924 | 131.257822 | 100.251268 | 0.158401 | 12         |
| 9 | KerasNN                               | 6364.388966  | 79.777121  | 62.861893  | 0.689107 | 12         |

results\_reg = results\_reg.sort\_values(by='MSE', ascending=True)
display(results\_reg)

|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 9 | KerasNN                               | 6364.388966  | 79.777121  | 62.861893  | 0.689107 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 8 | MLPRegressor                          | 17228.615924 | 131.257822 | 100.251268 | 0.158401 | 12         |
|   |                                       |              |            |            |          |            |

In [24]: results\_reg = results\_reg.sort\_values(by='R2', ascending=False)
 display(results\_reg)

|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 9 | KerasNN                               | 6364.388966  | 79.777121  | 62.861893  | 0.689107 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 8 | MLPRegressor                          | 17228.615924 | 131.257822 | 100.251268 | 0.158401 | 12         |

In [25]: results\_reg = results\_reg.sort\_values(by=['MSE', 'R2'], ascending=[True, Fal
display(results\_reg)

|   | Modelo                                | MSE          | RMSE       | MAE        | R2       | N_features |
|---|---------------------------------------|--------------|------------|------------|----------|------------|
| 0 | Linear Regression                     | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 3 | OLS Regression escaladas              | 6138.514703  | 78.348674  | 61.638441  | 0.700140 | 12         |
| 9 | KerasNN                               | 6364.388966  | 79.777121  | 62.861893  | 0.689107 | 12         |
| 7 | XGBRegressor (grid)<br>escaladas      | 6939.093852  | 83.301224  | 64.691668  | 0.661033 | 12         |
| 5 | Random Forest<br>escaladas            | 7293.616879  | 85.402675  | 67.020350  | 0.643715 | 12         |
| 6 | AdaBoostRegressor<br>(grid) escaladas | 7793.258046  | 88.279432  | 69.394143  | 0.619308 | 12         |
| 2 | k-NN grid (k=17,<br>comp=12)          | 9812.593252  | 99.058534  | 77.475050  | 0.520666 | 12         |
| 1 | k-NN Regressor<br>(k=5) escaladas     | 10640.480296 | 103.152704 | 80.952047  | 0.480224 | 12         |
| 4 | Decision Tree<br>escaladas            | 16578.446162 | 128.757315 | 103.574863 | 0.190161 | 12         |
| 8 | MLPRegressor                          | 17228.615924 | 131.257822 | 100.251268 | 0.158401 | 12         |

## Comentarios

- Se entrenaron y compararon 9 modelos de regresión: Regresión Lineal, OLS, K-NN, Árbol de Decisión, Random Forest, AdaBoost, XGBoost, un MLP de *scikit-learn* y una red neuronal densa en Keras, todos con la misma partición 80/20 y variables escaladas cuando era necesario.
- Las métricas de referencia muestran que la Regresión Lineal simple lidera con MSE≈6139, RMSE≈78 y R²≈0.70; el modelo OLS alcanza las mismas métricas.
- Se aplicó regularización con Ridge ( $\alpha$ =1.0) y Lasso ( $\alpha$ =0.1):
  - Ridge obtuvo MSE  $\approx$  6 139, RMSE  $\approx$  78.35, MAE  $\approx$  61.64 y R<sup>2</sup>  $\approx$  0.7001.
  - Lasso obtuvo MSE  $\approx$  6 135, RMSE  $\approx$  78.33, MAE  $\approx$  61.63 y R<sup>2</sup>  $\approx$  0.7003.

Los QQ-plots de residuos de ambos modelos (Ridge y Lasso) muestran una excelente aproximación a la normalidad, pero la regularización no mejoró el R<sup>2</sup> ni redujo de forma significativa el error respecto al modelo lineal sin penalización.

- Aún con ensambles no mejoró el desempeño:
  - Random Forest (100 árboles) alcanza R<sup>2</sup>0.64.
  - AdaBoost óptimo con 150 stumps y learning\_rate 1.0 se queda en R<sup>2</sup> 0.62.

XGBoost con 100 árboles (profundidad 3, eta 0.1) llega a R<sup>2</sup> 0.66.
 El grid search confirma que aumentar la complejidad no aporta una ganancia real.

- K-NN, aún tras probar distintos valores de k y aplicar reducción de dimensión con PCA, no se logró un buen desempeño: obtiene RMSE≈99 y R²≈0.52. Esto se debe a que, aunque las variables están escaladas, ninguna de ellas tiene relación significativa con la variable objetivo.
- El Árbol de Decisión y el MLP muestran error de entrenamiento casi nulo pero caen a R² ≤ 0.19 y 0.18 en prueba, lo que podría indicar un sobreajuste.
- Sugerimos elegir entre Regresión Lineal/OLS por su transparencia, costo computacional mínimo y desempeño destacado.

In [ ]: