MOBILES ARE BANNED

4	M	S	

MOBILES ARE BANNED USN: 1 M S | 6 I S | 2 4 DEPARTMENT OF MATHEMATICS, M.S.R.I.T, BANGALORE-560054

Sub Code:	MAT101	Sub:	Engineering Mathematics-I		Test:	II
Time:	11.00-12.00pm	Term:	08-08-2016 to 17-12-2016		Marks:	30
Date:	10-11-2016	Semester:	I	Sections:	A to I	

Note: Answer any TWO full questions. Each main question carries 15 marks

Q.No.		Questions		CO's	Marks
1.	(a)	Write the expression to find the volume of solid of revolution for a Cartesian curve when rotated about x – axis and y – axis.	LI	CO2	2
	(b)	Find the total perimeter of cardioid $r = a(1 - \cos\theta), a > 0$	L2	CO2	3
	(c)	Find the surface area of the solid obtained when cycloid $x = a(\theta + sin\theta), y = a(1 + cos\theta)$ is rotated about its base.	L3	CO2	5
	(d)	Evaluate $\int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx$, $a > -1$ by using differentiation under the integral sign.	L4	CO2	5
2.	(a)	With the help of neat diagram mark the region of integration for the integral $\iint_R x \sin y dy dx$ where R is the region bounded by $y = 4x$; $x + y = 3$; $x - ax$ is and $y = 2$.	LI	CO3	2
	(b)	Find $\int_{0}^{2\pi} \int_{a \sin \theta}^{a} r dr d\theta.$	L2	СОЗ	3
	(c)	Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$. by changing the order of integration.	L3	CO3	5
	(d)	Evaluate $\int_{1}^{2} \int_{-2}^{z-1} \int_{2}^{5} \frac{x}{y} dy dx dz$	L5	СОЗ	5
3.	(a)	Write the relation between Cartesian and spherical coordinate system	Ll	CO3	2
	(b)	Find the area of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.	L2	CO2	3
	(c)		L3	CO3	5
	(d)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using triple integration.	L4	СОЗ	5