1. Problems

1.1. Verification part 1, (3P). Given the function

$$f(x) = \frac{1}{2}x - 3.$$

1. Approximate the value $\int_0^8 f(x) dx$

First, we note that f is continuous. Hence we can apply all quadrature rules.

- 1) Aproximation
 - a) using the midpoint rule : -8
 - b) using the trapezoidal rule : -8
 - c) using the composite trapezoidal rule: -8
- 2. Are the values exact? Justify why.

YES, all results are exact up to rounding errors, since f is affine linear

1.2. Verification part 2, (5P). Given the function

$$f(x) = e^x - 1.$$

approximate $\int_0^3 f(x) dx$.

1. Design a composite rule similar to (3) using the midpoint rule.

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx \approx \sum_{i=1}^{n-1} (x_{i+1} - x_{i}) \cdot f\left(\frac{x_{i+1} + x_{i}}{2}\right).$$

- 2. Apply this rule and approximate $\int_0^3 f(x) dx$ on 5 subdivisions of the interval [0, 3] into $n \in \{1, 2, 4, 8, 16\}$ subintervals.
 - a) calculate (theoretically) the exact value.

$$\to \int_0^3 f(x) \, \mathrm{d}x = e^3 - 4 \approx 16.0855369231877$$

b) for each $n \in \{1, 2, 4, 8, 16\}$, record the approximated values and fill the following table:

Again, we note that f is continuous. Hence we can apply the quadrature rule.

\overline{n}	approximate value	relative error
1	10.44507	0.3506547366
2	14.40710	0.1043442411
4	15.64545	0.0273590958
8	15.97416	0.0069237563
16	16.05761	0.0017362609