Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 1

- 1. Пусть $z=\frac{3}{2}+\frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{\sqrt{3}+i}$ имеет аргумент $-\pi$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4-4i) + y(10-13i) = -103 + 147i \\ x(2+6i) + y(-12-13i) = 181 + 191i \end{cases}$$

- 3. Найти корни многочлена $-2x^6-16x^5+20x^4+260x^3-678x^2-2964x+3380$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-5-i, x_2=3+2i, x_3=-5.$
- 4. Даны 3 комплексных числа: 15+6i, -24-i, -21-18i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}$, $z_2 = -3i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5 + i| < 1 \\ |arg(z + 6 - 2i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-8, -7, 3), b = (-9, -5, 4), c = (-4, 0, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-6,3,-10) и плоскость P:12x-4y-14z+122=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(4,6,-4), $M_1(-2,-6,3)$, $M_2(10,-2,3)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -11x + 27y + 29z + 857 = 0 \\ -13x + 17y + 13z + 483 = 0 \end{cases} \qquad L_2: \begin{cases} 2x + 10y + 16z + 2894 = 0 \\ -15y - 8z - 2211 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.