Curso Estruturas de Dados e Algoritmos Expert

Prof. Nelio Alves

# **Grafos (parte 4)**



1

# Algoritmos de Menor Caminho

https://devsuperior.com.br

Prof. Dr. Nelio Alves

#### O problema do menor caminho

- Um motorista deseja encontrar o <u>caminho mais curto</u> possível entre duas cidades.
- Ele consulta um aplicativo de mapas: a partir de um mapa de sua região, que representa rodovias e distâncias entre cada par de cidades, como determinar uma <u>rota mais curta</u> entre as cidades?
- Podemos modelar esse problema com o auxílio de grafos
  - O Representamos cidades como vértices
  - O Representamos rodovias como arestas
  - O Dois vértices estão ligados se duas cidades estão unidas por rodovia
  - O peso das arestas indica o custo associado

3

#### O problema do menor caminho

• Qual o menor caminho entre a cidade 0 e a cidade 6?



### O problema do menor caminho

• Qual o menor caminho entre a cidade 0 e a cidade 6?

Possibilidade 1

$$dist(0, 6) = 4 + 8 + 7$$
  
 $dist(0, 6) = 19$ 



5

### O problema do menor caminho

• Qual o menor caminho entre a cidade 0 e a cidade 6?

Possibilidade 1

Possibilidade 2

$$dist(0, 6) = 4 + 2 + 5 + 6$$
  
 $dist(0, 6) = 17$ 

dist(0, 6) = 17



### O problema do menor caminho

• Qual o menor caminho entre a cidade 0 e a cidade 6?

#### Possibilidade 1

$$dist(0, 6) = 4 + 8 + 7$$
  
 $dist(0, 6) = 19$ 

#### Possibilidade 2

$$dist(0, 6) = 4 + 2 + 5 + 6$$
  
 $dist(0, 6) = 17$ 

#### Possibilidade 3

$$dist(0, 6) = 8 + 1 + 6$$

dist(0, 6) = 15



Menor caminho neste grafo!

7

#### O problema do menor caminho

- Soluções?
  - O Enumerar todas as rotas e selecionar a mais curta?
- Problemas
  - Complexidade Pior Caso
    - Se considerarmos um grafo completo não direcionado, o número de rotas pode ser na ordem de O(n<sup>n</sup>), **superexponencial**!
    - Para n = 15, precisaríamos de cerca de 138 anos para concluir uma execução.
  - O Grafo Direcionado com Ciclos
    - O número de caminhos é potencialmente infinito sem restrições na geração do caminho.

Surgem então algoritmos para resolver o problema com tempo melhor!

### Variações do problema do menor caminho

O problema do caminho pode aparecer de diferentes maneiras:

- Caminhos mais curtos de origem única
  - Algoritmo de Dijkstra
  - Algoritmo de Bellman-Ford
- Caminhos mais curtos de todos os pares
  - Algoritmo de Floyd-Warshall
- Caminhos mais curtos de destino único
  - Equivalente a origem única no grafo invertido
- Caminho mais curto de par único
  - Também usa métodos de origem única para resolver

9

#### **Conceitos fundamentais**

- Partindo de um vértice inicial s, podemos associar cada vértice a um valor d(v), que nos diz o valor do menor caminho de s até v.
- d(v) mantém a estimativa do custo do menor caminho

Exemplo: d(6) = min(d(4)+7, d(3)+10, d(5)+6)



#### **Conceitos fundamentais**

- Inicialmente faremos um estimativa pessimista para o valor do caminho mínimo até cada vértice: d(v) = ∞
- Relaxamento de arestas
  - O Processo no qual verificamos se podemos melhorar nossa estimativa pessimista, fazendo um caminho que passa pela aresta (u, v)
  - O Conceito central em algoritmos de caminho mínimo



11

#### Sub-rotina de relaxamento de arestas

#### Pseudocódigo

```
relax(u, v, w)

if d[v] > d[u] + w(u, v)

d[v] = d[u] + w(u, v)

antecessor[v] = u
```

onde

- (u, v) é a aresta
- w é seu peso
- d é a estimativa de distância

https://devsuperior.com.br

Prof. Dr. Nelio Alves

13

### Algoritmo de Dijkstra

#### **Características**

- Caminhos mais curtos de origem única
- Admite <u>ciclos</u>
- Só admite pesos positivos

#### Estratégia

- 1. Começa a partir de um nó inicial e faz estimativas pessimistas (infinito)
- 2. Seleciona o vértice u mais próximo não visitado para processar
- 3. Relaxa as arestas adjacentes a u
- 4. Marca u como visitado
- 5. Volta ao passo 2 até que visitemos todo o grafo



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       |                    |                     |
| В       |                    |                     |
| С       |                    |                     |
| D       |                    |                     |
| E       |                    |                     |
| F       |                    |                     |

visitados = []

15

# Algoritmo de Dijkstra

Começar em A e fazer estimativas pessimistas



| visitados = [] |  |
|----------------|--|

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| А       | 0                  | Α                   |
| В       | 8                  |                     |
| С       | 8                  |                     |
| D       | 8                  |                     |
| Е       | 8                  |                     |
| F       | 8                  |                     |

Relaxa vértices adjacentes ao A



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 8                  |                     |
| С       | 8                  |                     |
| D       | 8                  |                     |
| E       | ∞                  | _                   |
| F       | ∞                  |                     |

visitados = []

17

# Algoritmo de Dijkstra

Relaxa vértices adjacentes ao A



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 9                  | Α                   |
| С       | 3                  | Α                   |
| D       | ∞                  |                     |
| E       | ~                  |                     |
| F       | ∞                  |                     |

visitados = []

Relaxa vértices adjacentes ao A



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 9                  | Α                   |
| С       | 3                  | Α                   |
| D       | 8                  |                     |
| E       | ∞                  |                     |
| F       | ∞                  |                     |

visitados = []

19

# Algoritmo de Dijkstra

Marca A como visitado e vai ao vértice mais próximo



| visitados = | ſΑΊ   |
|-------------|-------|
| VISITAGOS — | [, ,] |

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 9                  | Α                   |
| С       | 3                  | Α                   |
| D       | 8                  |                     |
| Е       | 8                  |                     |
| F       | 8                  |                     |

Relaxa vértices adjacentes a C



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 9                  | Α                   |
| С       | 3                  | Α                   |
| D       | 8                  |                     |
| E       | ∞                  |                     |
| F       | ∞                  |                     |

visitados = [A]

21

# Algoritmo de Dijkstra

Atualiza vértices B e E pois achou distância menor



|             | 3 + 2 | E |  |
|-------------|-------|---|--|
| visitados = | [A]   |   |  |

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 8                  |                     |
| E       | 5                  | С                   |
| F       | 8                  |                     |

Marca C como visitado e vai ao vértice mais próximo



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | ∞                  |                     |
| E       | 5                  | С                   |
| F       | ∞                  |                     |

visitados = [A, C]

23

# Algoritmo de Dijkstra

Relaxa vértices adjacentes a B



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | ∞                  |                     |
| E       | 5                  | С                   |
| F       | ∞                  |                     |

visitados = [A, C]

Atualiza vértice D pois achou distância menor



| Vértice | Menor<br>distância | Vértice<br>Anterior |  |  |
|---------|--------------------|---------------------|--|--|
| Α       | 0                  | Α                   |  |  |
| В       | 4                  | С                   |  |  |
| С       | 3                  | Α                   |  |  |
| D       | 10                 | В                   |  |  |
| E       | 5                  | С                   |  |  |
| F       | 8                  |                     |  |  |

visitados = [A, C]

25

# Algoritmo de Dijkstra

Marca B como visitado e vai ao vértice mais próximo



visitados = [A, C, B]

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | ∞                  |                     |

Relaxa vértices adjacentes a E



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | ∞                  |                     |

visitados = [A, C, B]

27

# Algoritmo de Dijkstra

Atualiza vértice F pois achou distância menor



visitados = [A, C, B]

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 13                 | E                   |

Marca E como visitado e vai ao vértice mais próximo



| visitados = | ſΑ, | C, | В, | Εl |
|-------------|-----|----|----|----|

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 13                 | F                   |

29

# Algoritmo de Dijkstra

Relaxa vértices adjacentes a F



visitados = [A, C, B, E]

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 13                 | F                   |

Atualiza vértice F pois achou distância menor



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

31

# Algoritmo de Dijkstra

Marca D como visitado a vai ao vértice mais próximo



visitados = [A, C, B, E, D]

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

Não há vizinhos válidos para relaxar, marca F e finaliza



| visitados = | [Α, | C, | В, | Ε, | D, | F] |
|-------------|-----|----|----|----|----|----|

| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

33

# Algoritmo de Dijkstra

Q: Como recuperar caminho a partir do vértice anterior?



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

Q: Como recuperar caminho a partir do vértice anterior?

Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |  |
|---------|--------------------|---------------------|--|
| Α       | 0                  | Α                   |  |
| В       | 4                  | С                   |  |
| С       | 3                  | Α                   |  |
| D       | 10                 | В                   |  |
| E       | 5                  | С                   |  |
| F       | 12                 | D                   |  |

Caminho até F = [F]

35

### Algoritmo de Dijkstra

Q: Como recuperar caminho a partir do vértice anterior? Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

Caminho até F = [F, D]

Q: Como recuperar caminho a partir do vértice anterior?

Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

Caminho até F = [F, D, B]

37

### Algoritmo de Dijkstra

Q: Como recuperar caminho a partir do vértice anterior? Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |  |
|---------|--------------------|---------------------|--|
| Α       | 0                  | Α                   |  |
| В       | 4                  | С                   |  |
| С       | 3                  | Α                   |  |
| D       | 10                 | В                   |  |
| E       | 5                  | С                   |  |
| F       | 12                 | D                   |  |

Caminho até F = [F, D, B, C]

Q: Como recuperar caminho a partir do vértice anterior?

Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| E       | 5                  | С                   |
| F       | 12                 | D                   |

Caminho até F = [F, D, B, C, A]

39

### Algoritmo de Dijkstra

Q: Como recuperar caminho a partir do vértice anterior? Percorremos vértices anteriores até achar origem.



| Vértice | Menor<br>distância | Vértice<br>Anterior |
|---------|--------------------|---------------------|
| Α       | 0                  | Α                   |
| В       | 4                  | С                   |
| С       | 3                  | Α                   |
| D       | 10                 | В                   |
| Е       | 5                  | С                   |
| F       | 12                 | D                   |

Caminho até F = [F, D, B, C, A] = A  $\longrightarrow$  C  $\longrightarrow$  B  $\longrightarrow$  D  $\longrightarrow$  F

#### • Produz solução ótima?

Sim, produz sempre o caminho mínimo em um grafo com pesos positivos.

#### • Por que funciona?

- Pois sempre busca pelo vértice mais leve (abordagem gulosa).
- Como o algoritmo examina os vértices na ordem de distância da origem, uma vez que um vértice é processado, sua distância final à origem está determinada e não será reconsiderada.

41

### Exercício de fixação

Calcule os caminhos mínimos para o grafo abaixo a partir do vértice 0 aplicando o algoritmo de Dijkstra.



#### Algoritmo de Dijkstra - Implementação

- Possui algumas formas de implementar, cada um com seu melhor caso de uso
- Implementação para grafos densos
  - O Procura próxima visita em array ordenado
  - O Complexidade: O(V<sup>2</sup> + EV)
- Implementação para grafos esparsos
  - O Procura próxima visita em fila de prioridade (heap binário)
  - Complexidade: O((V+E) log V)
  - o Mais usada em geral

43

# Algoritmo de Bellman-Ford

https://devsuperior.com.br

Prof. Dr. Nelio Alves

#### Motivação

• Como lidar com ciclos negativos em um grafo?



Caminho mínimo direto:

- $\bullet \quad 0 \longrightarrow 1 \longrightarrow 2$
- Peso: 1 + 2 = 3

Caminho mínimo com ciclo negativo:

- $\bullet \quad 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 2$
- Peso: 1 + 2 5 + 4 3 = -1

Conseguimos melhorar a resposta infinitamente ao incluir <u>ciclos negativos</u>, logo <u>não existe</u> <u>caminho válido</u>.

Possível solução: Algoritmo de Bellman-Ford!

45

#### Algoritmo de Bellman-Ford

#### **Características**

- Caminhos mais curtos de origem única
- Arestas podem ter peso negativo
- Detecta ciclos negativos

#### Ideia

- Caminho simples: um caminho sem ciclos tem no máximo (|V| 1) arestas
- Logo, em no máximo (|V| 1) passos é possível encontrar o menor caminho para todos os vértices

#### Método

- Parte de um vértice inicial e faz estimativas pessimistas para cada vértice
- Relaxa todas as arestas (|V| 1) vezes
- Se após isso os pesos continuarem diminuindo, detectamos um ciclo negativo

### Algoritmo de Bellman-Ford

#### Exemplo

Quais são os menores caminhos com origem em 0?



47

# Algoritmo de Bellman-Ford



|      | 0 | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|---|
| dist | 0 | ∞ | ∞ | ∞ | ∞ | ∞ |

Começando em 0 e fazendo estimativas pessimistas...

































Algoritmo de Bellman-Ford Iteração 2 6 1 8 -1 14 2 dist 3 -1 (-2) + dist -5 -2 3 0 3 -1 Relaxando a partir de 4



Algoritmo de Bellman-Ford Iteração 2 6 1 8 3 -1 14 2 dist -1 5 4 dist -5 -2 3 0 2 + -3-1 Relaxando a partir de 5



Algoritmo de Bellman-Ford Iteração 2 6 1 8 3 -1 14 2 dist -1 -2 4 dist -5 3 0 -3 5 -1 Finalizamos segunda iteração







Algoritmo de Bellman-Ford Iteração 3 8 + 6dist 8 -1 14 2 0 3 -1 dist -5 -1 -2 2 0 dist 0 -5 3 -2 2 -1 -1 Relaxando a partir de 1



Algoritmo de Bellman-Ford Iteração 3 6 1 8 3 14 2 dist 0 -1 -1 dist -5 -1 -2 2 0 dist 3 -2 2 -5 -1 3 + -1 Relaxando a partir de 2



Algoritmo de Bellman-Ford Iteração 3 6 1 -4+(-1) 8 3 14 2 dist 0 -1 -1+(-1) dist -5 3 -1 -2 2 0 dist 3 -2 2 -5 -1 -1 Relaxando a partir de 3



Algoritmo de Bellman-Ford Iteração 3 6 1 2 8 14 dist 0 3 -1 2 (-2) + 4 5 dist -5 3 -1 -2 2 3 0 dist 3 -2 2 -5 -1 3 -1 Relaxando a partir de 4



Algoritmo de Bellman-Ford Iteração 3 6 1 -4 8 14 2 dist 0 3 -1 -1 5 4 dist -5 3 -1 -2 2 3 0 dist 3 -2 2 -5 -1 2 + -3-1 Relaxando a partir de 5





## Algoritmo de Bellman-Ford

#### Iteração 3



|      | 0 | 1  | 2 | 3  | 4  | 5 |
|------|---|----|---|----|----|---|
| dist | 0 | 8  | 3 | -1 | 14 | 2 |
| dist | 0 | -5 | 3 | -1 | -2 | 2 |
| dist | 0 | -5 | 3 | -1 | -2 | 2 |

Os valores não mudaram desde a última iteração, podemos finalizar pois já convergiu!

89

# Algoritmo de Bellman-Ford

#### Iteração 3



|      | 0 | 1  | 2 | 3  | 4  | 5 |
|------|---|----|---|----|----|---|
| dist | 0 | 8  | 3 | -1 | 14 | 2 |
| dist | 0 | -5 | 3 | -1 | -2 | 2 |
| dist | 0 | -5 | 3 | -1 | -2 | 2 |

Estes são os valores dos menores caminhos a partir de 0.

#### Iteração 1





91

# Como o Bellman-Ford detecta ciclos negativos?

## Iteração 1



|      | 0 | 1 | 2 |
|------|---|---|---|
| dist | 0 | 2 | ∞ |

Relaxa a partir do vértice 0, atualiza vértice 1

Iteração 1



|      | 0 | 1 | 2  |
|------|---|---|----|
| dist | 0 | 2 | -2 |

Relaxa a partir do vértice 1, atualiza vértice 2

93

# Como o Bellman-Ford detecta ciclos negativos?

Iteração 1



|      | 0  | 1 | 2  |
|------|----|---|----|
| dist | -3 | 2 | -2 |

Relaxa a partir do vértice 2, atualiza vértice 0

Iteração 2



|      | 0  | 1  | 2  |
|------|----|----|----|
| dist | -3 | 2  | -2 |
| dist | -3 | -1 | -2 |

Relaxa a partir do vértice 0, atualiza vértice 1

95

# Como o Bellman-Ford detecta ciclos negativos?

Iteração 2



|      | 0  | 1  | 2  |
|------|----|----|----|
| dist | -3 | 2  | -2 |
| dist | -3 | -1 | -5 |

Relaxa a partir do vértice 1, atualiza vértice 2

Iteração 2



|      | 0  | 1  | 2  |
|------|----|----|----|
| dist | -3 | 2  | -2 |
| dist | -6 | -1 | -5 |

Relaxa a partir do vértice 2, atualiza vértice 0

97

## Como o Bellman-Ford detecta ciclos negativos?

Iteração 3



|      | 0  | 1  | 2  |
|------|----|----|----|
| dist | -3 | 2  | -2 |
| dist | -6 | -1 | -5 |
| dist | -6 | -1 | -5 |

Já concluímos |V| - 1 iterações, vamos testar se ainda é possível melhorar a resposta.

#### Iteração 3



|      | 0  | 1  | 2  |
|------|----|----|----|
| dist | -3 | 2  | -2 |
| dist | -6 | -1 | -5 |
| dist | -6 | -4 | -5 |

Tentamos relaxar a partir do 0 e conseguimos atualizar! Logo o grafo possui ciclo negativo.

99

#### Algoritmo de Bellman-Ford

#### • Produz solução ótima?

Sim, produz sempre o caminho mínimo em um grafo com pesos positivos ou negativos, em até (|V| - 1) iterações.

#### • Por que funciona?

- No pior caso, o caminho mais curto pode ter no máximo |V| 1 arestas, pois selecionando mais formaremos ciclos
- Relaxando arestas |V| 1 vezes garantimos que as estimativas foram atualizadas a valores ótimos
- Após |V| 1 um ciclo é detectado se os valores continuarem a mudar

#### Algoritmo de Bellman-Ford - Implementação

- Em geral, utiliza uma lista de arestas para iterar sobre todas a cada ciclo de execução.
- Percorre todas as arestas |V| 1 vezes, realizando relaxamento a partir delas.

101

#### Algoritmo de Bellman-Ford - Complexidade

- As operações envolvidas são:
  - Percorrer todos as arestas: O(|A|)
  - o Fazer |V| 1 iterações: O(|V|)
- Como percorremos todas as arestas |V| 1 vezes, a complexidade de tempo é:
  - o O(VE)
    - V = número de vértices
    - E = número de arestas



https://devsuperior.com.br

Prof. Dr. Nelio Alves

103

#### Motivação

- Suponha que um grafo orientado ponderado representa os possíveis vôos de uma companhia aérea conectando pares de cidades
- Queremos construir uma tabela com as melhores rotas, ou os menores caminhos, entre todas as cidades

Como resolver esse problema?

## **Caminhos Mais Curtos de <u>Todos os Pares</u>**

- Soluções?
  - O Utilizar o algoritmo de Dijkstra, calculando as distâncias considerando cada vértice como uma origem.
- Solução mais direta
  - O Algoritmo de Floyd-Warshall

105

#### Vértices intermediários em caminhos



Menor caminho entre o vértice 0 e o vértice 1?

Podemos tentar os seguintes caminhos:

- (0 → 1) = 6
- $(0 \rightarrow 1) = (0 \rightarrow 2) + (2 \rightarrow 1) = 5$
- $(0 \rightarrow 1) = (0 \rightarrow 3) + (3 \rightarrow 1) = 5$
- $(0 \rightarrow 1) = (0 \rightarrow 4) + (4 \rightarrow 1) = 4$

$$(0 \longrightarrow \mathbf{2}) + (\mathbf{2} \longrightarrow 4) = 3$$

Ou seja, um caminho de i até j, pode passar por **vértices intermediários** k!

dist[i][j] = dist[i][k] + dist[k][j]

#### Características

- Caminhos mais curtos de todos os pares
- Arestas podem ter peso negativo
- Utiliza uma matriz A ij de tamanho |V|x|V| para calcular o custo entre vértices i e j

#### Ideia

- Um caminho mais curto de um vértice i até outro vértice j pode passar por um vértice intermediário k
- Verificar então se um caminho passando por k é mais curto que o caminho direto entre i e j (relaxamento)

#### Método

- Preencher matriz com distâncias conhecidas, e infinitos para distâncias desconhecidas
- Iterar sobre todos os pares possíveis (i, j), para cada vértice intermediário k
- Atualizar matriz de distâncias se o caminho passando por k for mais curto

107







0 1 2 0 1 2 1 2

- Iremos preencher uma matriz A inicial com os custos conhecidos.
- Diagonal é zerada

109



- Iremos preencher uma matriz A<sup>(o)</sup> com os custos conhecidos.
- Diagonal é zerada



 $A^{(0)}$  0 1 2 0 0 8 5 1 3 0  $\infty$  2  $\infty$  2 0

- Matriz é percorrida n = |V| vezes
- A cada iteração tentaremos usar um vértice k (0 ≤ k < n) como intermediário
- Verificaremos se um caminho entre um par de vértices (i, j) pode ser encurtado passando por k

A[i][j] = min(A[i][j], A[i][k] + A[k][j])

111

## Algoritmo de Floyd-Warshall





Resumindo:

A[i][j] = min(A[i][j], A[i][k] + A[k][j])

• Iterações:

$$k = 1, 2, 3$$

• Em cada iteração calculamos:

$$A^{(1)}$$
,  $A^{(2)}$ ,  $A^{(3)}$ 



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[0][0], A[0][0] + A[0][0])$$

$$i = 0, j = 0, k = 0$$

113

## Algoritmo de Floyd-Warshall



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[0][1], A[0][0] + A[0][1])$$

$$i = 0, j = 1, k = 0$$



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[0][2], A[0][0] + A[0][2])$$

$$i = 0, j = 2, k = 0$$

115



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$A[0][0] = min(A[1][0], A[1][0] + A[0][0])$$

$$i = 1, j = 0, k = 0$$



$$A^{(1)}$$
 $0$ 
 $1$ 
 $2$ 
 $0$ 
 $0$ 
 $8$ 
 $5$ 
 $1$ 
 $3$ 
 $0$ 
 $\infty$ 
 $2$ 
 $\infty$ 
 $2$ 
 $0$ 

$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[1][1], A[1][0] + A[0][1])$$

$$i = 1, j = 1, k = 0$$

117



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[1][2], A[1][0] + A[0][2])$$

$$i = 1, j = 2, k = 0$$



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[1][2], A[1][0] + A[0][2])$$

$$i = 1, j = 2, k = 0$$



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[2][0], A[2][0] + A[0][0])$$

$$i = 2, j = 0, k = 0$$



$$A^{(1)}$$
 0 1 2 0 0 8 5 1 3 0 8 2  $\infty$  2 0

$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[2][1], A[2][0] + A[0][1])$$

$$i = 2, j = 1, k = 0$$

121



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][0] = min(A[2][2], A[2][0] + A[0][2])$$

$$i = 2, j = 2, k = 0$$



- Ao fim da iteração k = 0, temos os custos dos caminhos mais curtos entre i e j que passam pelo vértice
   0
- Repetimos o processo para k = 1 ek = 2

123



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[2][0] = min(A[2][0], A[2][1] + A[1][0])$$



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[2][0] = min(A[2][0], A[2][1] + A[1][0])$$

$$k = 1$$

# Algoritmo de Floyd-Warshall



A<sup>(3)</sup> 

A[0][1] = min(A[0][1], A[0][2] + A[2][1])

k = 2



$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

$$\downarrow$$

$$A[0][1] = min(A[0][1], A[0][2] + A[2][1])$$

$$k = 2$$



- A<sup>(3)</sup>
- Na iteração k, a matriz A<sup>(k)</sup> diz os custos dos menores caminhos que passam pelos vértices 1, 2, ..., k
- A matriz final A<sup>(n)</sup> diz os custos dos menores caminhos entre cada par de vértices (i, j)

#### Algoritmo de Floyd-Warshall - Implementação

#### **Algoritmo**

- Inicializar matriz com custos conhecidos e a diagonal zerada
- Fazem-se 3 fors aninhados para variar os valores (i, j, k)

$$\circ$$
 k = [0, n - 1]

- $\blacksquare$  i = [0, n 1]
  - j = [0, n 1]
- Para cada trio de valores (i, j, k), tenta-se relaxamento segundo a regra:

$$A[i][j] = min(A[i][j], A[i][k] + A[k][j])$$

129

#### Algoritmo de Floyd-Warshall - Complexidade

Complexidade: O(|V|<sup>3</sup>)

- Por que?
  - Operações envolvidas:
    - O Percorrer a matriz O(|V|²)
      - Relaxamento: O(1)
    - Realizar iterações O(|V|)
  - Logo, realizando-se O(|V|) iterações, onde se percorre a matriz em cada uma...

$$O(|V|) * O(|V|^2)$$
  
 $O(|V|^3)$ 

#### Algoritmo de Floyd-Warshall - Observações

- Que paradigma de resolução de problemas o algoritmo usa?
  - o Programação Dinâmica!
    - Abordagem iterativa onde calculamos estados de uma função f(i, j, k) representando a distância ótima
- Para que tipo de grafos o Floyd-Warshall é bom?
  - o Grafos densos: muito mais arestas que vértices
  - O Para grafos esparsos o Algoritmo de Johnson é mais adequado
- É possível <u>recuperar o caminho</u> guardando o antecessor no relaxamento