Доказателства на някои твърдения по ЛА

Иво Стратев

15 декември 2018 г.

Теорема за ранга и дефекта

Твърдение

Нека $\mathbb V$ е крайно мерно линейно пространство над полето $\mathbb F$ и нека $\varphi \in \mathrm{Hom} \mathbb V$. Тогава $d(\varphi) + r(\varphi) = \dim \mathbb V$.

Доказателство:

Случай 1: $Ker \varphi = \{\theta\}$

Тогава dim $\mathrm{Ker}\varphi = d(\varphi) = 0$.

Следователно трябва да покажем, че $r(\varphi) = \dim \mathbb{V}$, тоест $\dim \operatorname{Im} \varphi = \dim \mathbb{V}$, което ще получим ако докажем, че $\operatorname{Im} \varphi \cong \mathbb{V}$.

Нека $\tau : \mathbb{V} \to \text{Im}\varphi$ и нека $\forall v \in \mathbb{V} \ \tau(v) = \varphi(v)$.

Ще покажем, че τ е изоморфизъм.

Първо ще покажем, че τ е хомоморфизъм.

$$\forall a, b \in \mathbb{V} \ \tau(a+b) = \varphi(a+b) = \varphi(a) + \varphi(b) = \tau(a) + \tau(b)$$
$$\forall a \in \mathbb{V} \ \forall \lambda \in \mathbb{F} \ \tau(\lambda.a) = \varphi(\lambda.a) = \lambda \varphi(a) = \lambda \tau(a)$$

Следователно $\tau \in \text{Hom}(\mathbb{V}, \text{Im}\varphi)$.

Сега ще покажем, че τ е биекция, като покажем, че е инекция и сюрекция. Нека $v, u \in \mathbb{V}$ са такива, че $v \neq u$, тогава да допуснем, че $\tau(v) = \tau(u)$.

$$\tau(v) = \tau(u) \implies \varphi(v) = \varphi(u) \implies \varphi(v) - \varphi(u) = \theta \implies \varphi(v) + \varphi(-u) = \theta \implies \varphi(v + -u) = \theta \implies v - u \in \operatorname{Ker}\varphi \implies v - u = \theta \implies v = u$$

Това е противоречие, следователно $\tau(v) \neq \tau(u)$. Така получаваме $\forall v, u \in \mathbb{V} \ v \neq u \implies \tau(v) \neq \tau(u)$, което е дефиницията за инекция. Остава ни сюрекция.

Нека $v \in \text{Im}\varphi$. Тогава по дефиниция $\exists u \in \mathbb{V} \varphi(u) = v$.

Нека $u \in \mathbb{V}$ $\varphi(u) = v$ следователно $\tau(u) = v$. Така $\forall v \in \operatorname{Im} \varphi \exists u \in \mathbb{V}$ $\tau(u) = v$, което е дефиницията за сюрекция. Следователно τ е биекция и значи τ е изоморфизъм. Следователно $\operatorname{Im} \varphi \cong \mathbb{V}$ и така $\operatorname{dim} \operatorname{Im} \varphi = \operatorname{dim} \mathbb{V}$, тоест $r(\varphi) = \dim \mathbb{V}$, от където $r(\varphi) + 0 = \dim \mathbb{V}$, тоест $d(\varphi) + r(\varphi) = \dim \mathbb{V}$.

Случай 2: $Ker \varphi \neq \{\theta\}$

 $\operatorname{Ker} \varphi \neq \{\theta\} \implies d(\varphi) > 0$. Нека $k = d(\varphi), \ n = \dim \mathbb{V}$ и нека b_1, b_2, \ldots, b_n е базис на \mathbb{V} и нека b_1, b_2, \ldots, b_k е базис на $\operatorname{Ker} \varphi$.

Тогава ще се борим да покажем, че $r(\varphi) = n - k$.

Нека пресметнем φ върху произволна линейна комбинация на базиса на $\dim \mathbb{V}$.

Нека
$$\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{F}$$
 и нека $v = \sum_{i=1}^n \lambda_i b_i$ тогава

$$\varphi(v) = \varphi\left(\sum_{i=1}^n \lambda_i b_i\right) = \varphi\left(\sum_{i=1}^k \lambda_i b_i + \sum_{j=k+1}^n \lambda_j b_j\right) = \varphi\left(\sum_{i=1}^k \lambda_i b_i\right) + \varphi\left(\sum_{j=k+1}^n \lambda_j b_j\right) = \varphi\left(\sum_{j=k+1}^k \lambda_j b_j\right$$

$$\theta + \varphi\left(\sum_{j=k+1}^n \lambda_j b_j\right) = \sum_{j=k+1}^n \lambda_j \varphi(b_j)$$
, защото $\sum_{i=1}^k \lambda_i b_i \in \mathrm{Ker} \varphi$. Но $\varphi(v) \in \mathrm{Im} \varphi$.

Тоест всеки вектор от образа е линейна комбинация на $\varphi(b_{k+1}), \varphi(b_{k+2}), \ldots, \varphi(b_n)$. Тогава някак естествено е да се борим да покажем, че $\varphi(b_{k+1}), \varphi(b_{k+2}), \ldots, \varphi(b_n)$ е базис на $\operatorname{Im}\varphi$, понеже това са n-k вектора от образа и всеки вектор от образа е тяхна лин. комбинация. За да са базис остава да покажем, че са линейно независими. Директно не можем да направим това, но нека допуснем противното, тоест че са линейно зависими. Тогава

$$\exists \mu_1, \mu_2, \dots, \mu_{n-k} \in \mathbb{F} : (\mu_1, \mu_2, \dots, \mu_{n-k}) \neq (0, 0, \dots, 0) \land \sum_{s=1}^{n-k} \mu_s \varphi(b_{k+s}) = \theta.$$

Нека $\mu_1, \mu_2, \dots, \mu_{n-k} \in \mathbb{F}$ са такива, че

$$(\mu_1,\mu_2,\ldots,\mu_{n-k}) \neq (0,0,\ldots,0)$$
 и $\sum_{s=1}^{n-k} \mu_s \varphi(b_{k+s}) = \theta$ тогава $\varphi\left(\sum_{s=1}^{n-k} \mu_s b_{k+s}\right) = \theta$

и значи $\sum_{s=1}^{n-\kappa}\mu_s b_{k+s}\in \mathrm{Ker} \varphi$, следователно вектора $\sum_{s=1}^{n-\kappa}\mu_s b_{k+s}$ има линейна ком-

бинация спрямо базиса на ядрото b_1, b_2, \ldots, b_k . Нека тогава $\gamma_1, \gamma_2, \ldots, \gamma_k \in \mathbb{F}$ са

такива, че
$$\sum_{s=1}^{n-k} \mu_s b_{k+s} = \sum_{i=1}^k \gamma_i b_i$$
. Следователно $\sum_{s=1}^{n-k} \mu_s b_{k+s} - \sum_{i=1}^k \gamma_i b_i = \theta$, тоест

 $\sum_{i=1}^{k} (-\gamma_i)b_i + \sum_{s=1}^{n-k} \mu_s b_{k+s} = \theta$. Така получаваме, че линейната комбинация с кое-

фициенти $(-\gamma_1, -\gamma_2, \ldots, -\gamma_k, \mu_1, \mu_2, \ldots, \mu_{n-k})$ давва нулевия вектор. Но $(\mu_1, \mu_2, \ldots, \mu_{n-k}) \neq (0, 0, \ldots, 0)$ следователно

 $(-\gamma_1, -\gamma_2, \ldots, -\gamma_k, \mu_1, \mu_2, \ldots, \mu_{n-k}) \neq (0, 0, \ldots, 0, 0, 0, \ldots, 0)$, което значи, че векторите b_1, b_2, \ldots, b_n са линейно зависими, което е противоречние, защото те са базис. В частност линейно независими. Следователно $\varphi(b_{k+1}), \varphi(b_{k+2}), \ldots, \varphi(b_n)$ са линейно независими и значи са базис на $\text{Im}\varphi$. Значи $\text{dim}\text{Im}\varphi = n - k$, тоест $r(\varphi) = n - k$. Така получаваме точно $d(\varphi) + r(\varphi) = \text{dim}\mathbb{V}$, което искахме да докажем.

Неравенство на Силвестър

Нека
$$\mathbb{F}$$
 е поле и $A \in M_{m \times n}(\mathbb{F}), B \in M_{n \times k}(\mathbb{F})$ тогава $r(A) + r(B) - n \le r(AB) \le \min\{r(A), r(B)\}$

Доказателство:

Ще докажем еквивалентното на това твърдение, но за линейни изображения, от където ще получим горното твърдение почти на готово. За това нека $\mathbb{V}, \mathbb{W}, \mathbb{U}$ са крайно мерни линейни пространства над \mathbb{F} и нека $\varphi \in \mathrm{Hom}(\mathbb{U}, \mathbb{V})$ и $\psi \in \mathrm{Hom}(\mathbb{V}, \mathbb{W})$.

Започваме от следното помощно твърдение $\mathrm{Im}(\psi \circ \varphi) = \mathrm{Im} \psi|_{\mathrm{Im} \varphi}$

II.T. 1 $\operatorname{Im}(\psi \circ \varphi) = \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$

Първи начин:

Нека $w \in \text{Im}(\psi \circ \varphi)$ тогава $\exists u \in \mathbb{U} \ (\psi \circ \varphi)(u) = w$.

Нека тогава $u \in \mathbb{U}$ $(\psi \circ \varphi)(u) = w$. следователно $\psi(\varphi(u)) = w$, но $\varphi(u) \in \operatorname{Im} \varphi$, тоест $w \in \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$. Така $\forall w \in \operatorname{Im} (\psi \circ \varphi) \ w \in \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$, тоест $\operatorname{Im} (\psi \circ \varphi) \subseteq \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$. Нека $w \in \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$ тогава $\exists v \in \operatorname{Im} \varphi \quad \psi|_{\operatorname{Im} \varphi}(v) = w$. Нека $v \in \operatorname{Im} \varphi \quad \psi|_{\operatorname{Im} \varphi}(v) = w$, тоест $\psi(v) = w$, но $v \in \operatorname{Im} \varphi$ следователно $\exists u \in \mathbb{U} \ \varphi(u) = v$. Нека $u \in \mathbb{U} \ \varphi(u) = v$. Тогава $\psi(v) = w \implies \psi(\varphi(u)) = w \implies (\psi \circ \varphi)(u) = w \implies w \in \operatorname{Im} (\psi \circ \varphi)$. Така $\forall w \in \operatorname{Im} \psi|_{\operatorname{Im} \varphi} \ w \in \operatorname{Im} (\psi \circ \varphi)$, тоест $\operatorname{Im} \psi|_{\operatorname{Im} \varphi} \subseteq \operatorname{Im} (\psi \circ \varphi)$.

Следователно $\operatorname{Im}(\dot{\psi} \circ \varphi) = \operatorname{Im} \psi|_{\operatorname{Im} \varphi}$.

Втори начин:

 $\operatorname{Im}\psi|_{\operatorname{Im}\varphi}=\{\psi|_{\operatorname{Im}\varphi}(v)\mid v\in\operatorname{Im}\varphi\}=\{\psi(v)\mid v\in\operatorname{Im}\varphi\}=\{\psi(\varphi(u))\mid u\in\mathbb{U}\}=\{(\psi\circ\varphi)(u)\mid u\in\mathbb{U}\}=\operatorname{Im}(\psi\circ\varphi)$ Следват редица помощни доказателства, за които ще се нуждаем от произволно подпространство на \mathbb{V} . За това нека $\mathbb{L}\leq\mathbb{V}$.

II.T. 2 $\operatorname{Ker}\psi|_{\mathbb{L}} = \operatorname{Ker}\psi \cap \mathbb{L}$

Първи начин:

Нека $v \in \text{Ker}\psi|_{\mathbb{L}}$ тогава $\psi|_{\mathbb{L}}(v) = \theta$ в частност $v \in \mathbb{L}$, от където $\psi(v) = \theta$ и $v \in \mathbb{L}$ следователно $v \in \text{Ker}\psi \cap \mathbb{L}$. Тоест $\forall v \in \text{Ker}\psi|_{\mathbb{L}} \ v \in \text{Ker}\psi \cap \mathbb{L}$ така $\text{Ker}\psi|_{\mathbb{L}} \subseteq \in \text{Ker}\psi \cap \mathbb{L}$.

Нека $v \in \text{Ker}\psi \cap \mathbb{L}$ тогава $v \in \text{Ker}\psi$ и $v \in \mathbb{L}$ така $\psi(v) = \theta$ и $v \in \mathbb{L}$ тоест $\psi|_{\mathbb{L}}(v) = \theta$. Следователно $v \in \text{Ker}\psi|_{\mathbb{L}}$ така $\forall v \in \text{Ker}\psi \cap \mathbb{L}$ $v \in \text{Ker}\psi|_{\mathbb{L}}$ тоест $\text{Ker}\psi \cap \mathbb{L} \subseteq \text{Ker}\psi|_{\mathbb{L}}$. Следователно $\text{Ker}\psi|_{\mathbb{L}} = \text{Ker}\psi \cap \mathbb{L}$

Втори начин:

$$\begin{split} \operatorname{Ker} & \psi|_{\mathbb{L}} = \{l \in \mathbb{L} \mid \psi|_{\mathbb{L}}(l) = \theta\} = \{l \in \mathbb{L} \mid \psi(l) = \theta\} = \\ \{v \in \mathbb{V} \mid v \in \mathbb{L} \land \psi(l) = \theta\} = \operatorname{Ker} \psi \cap \mathbb{L} \end{split}$$

Π .T. 3 Ker $\psi|_{\mathbb{L}} \leq \text{Ker}\psi$

Първи начин:

От предното твърдение $\operatorname{Ker}\psi|_{\mathbb{L}}=\operatorname{Ker}\psi\cap\mathbb{L}.$

От лекции $\text{Ker}\psi \leq \mathbb{V}$.

От лекции знаем, че сечението на подпространство е подпространство, следователно $\operatorname{Ker}\psi\cap\mathbb{L}\leq\mathbb{V}$. Тоест $\operatorname{Ker}\psi\cap\mathbb{L}$ е линейно пространство.

Очевидно $\operatorname{Ker}\psi \cap \mathbb{L} \subseteq \operatorname{Ker}\psi$ Тогава $\operatorname{Ker}\psi \cap \mathbb{L}$ бидейки линейно пространство и подмножество на $\operatorname{Ker}\psi$, то $\operatorname{Ker}\psi \cap \mathbb{L} \leq \operatorname{Ker}\psi$ и значи $\operatorname{Ker}\psi|_{\mathbb{L}} \leq \operatorname{Ker}\psi$.

Втори начин:

Очевидно $\operatorname{Ker}\psi \cap \mathbb{L} \subseteq \operatorname{Ker}\psi$ и следователно $\operatorname{Ker}\psi|_{\mathbb{L}} \subseteq \operatorname{Ker}\psi$ и както знаем, от лекции ядрото на всяко линейно изображение е линейно подпространство на домейна си, тоест $\operatorname{Ker}\psi|_{\mathbb{L}} \leq \mathbb{L}$. Значи $\operatorname{Ker}\psi|_{\mathbb{L}} \leq \operatorname{Ker}\psi$.

В частност:

 $\dim \operatorname{Ker} \psi|_{\mathbb{L}} \leq \dim \operatorname{Ker} \psi$, тоест $d(\psi|_{\mathbb{L}}) \leq d(\psi)$.

П.Т. 4 $\operatorname{Im}\psi|_{\mathbb{L}} \leq \operatorname{Im}\psi$

Доказателство:

Първо подмножество. Нека $w \in \text{Im}\psi|_{\mathbb{L}}$ тогава $\exists l \in \mathbb{L} \ \psi|_{\mathbb{L}}(l) = w$. Нека тогава $l \in \mathbb{L} \ \psi|_{\mathbb{L}}(l) = w$ следователно $\psi(l) = w$, но $l \in \mathbb{L} \leq \mathbb{V}$ и значи $w \in \text{Im}\psi$. Така $\forall w \in \text{Im}\psi|_{\mathbb{L}} \ w \in \text{Im}\psi$, тоест $\text{Im}\psi|_{\mathbb{L}} \subseteq \text{Im}\psi$.

От лекции знаем, че образа на всяко линейно изображение е линейно подпространство на ко-домейна си, в частност е линейно пространство, тогава получаваме ${\rm Im}\psi|_{\scriptscriptstyle \parallel}\leq {\rm Im}\psi.$

В частност:

 $\dim \operatorname{Im} \psi|_{\mathbb{L}} \leq \dim \operatorname{Im} \psi, \text{ тоест } r(\psi|_{\mathbb{L}}) \leq r(\psi).$

II.T. 5 $r(\psi|_{\mathbb{L}}) \leq \dim \mathbb{L}$

Доказателство:

Сещаме се, че има теорема, която връзва размерностите на ранга и домейна на линейно изображение. Това е теоремата за ранга и дефекта. Прилагаме я и получаваме $r(\psi|_{\mathbb{L}}) + d(\psi|_{\mathbb{L}}) = \dim \mathbb{L}$. Ползваме, че $0 \le d(\psi|_{\mathbb{L}}) \le \dim \mathbb{L}$ и така получаваме исканото твърдение $r(\psi|_{\mathbb{L}}) \le \dim \mathbb{L}$.

Така поглеждайки твърдението, което искаме да докажем

 $r(\varphi)+r(\psi)-\dim\mathbb{V}\leq r(\psi\circ\varphi)\leq \min\{r(\varphi),r(\psi)\}$ и досещайки се, че $\mathrm{Im}\varphi\leq\mathbb{V}$, да замесим \mathbb{L} с $\mathrm{Im}\varphi$ от горните твърдения и да видим с какво разполагаме:

Ot Π .T. 1 $r(\psi \circ \varphi) = r(\psi|_{\operatorname{Im}\varphi})$

Ot Π .T. $3 d(\psi|_{\operatorname{Im}\varphi}) \leq d(\psi)$

Ot Π .T. $4 r(\psi|_{\operatorname{Im}\varphi}) \leq r(\psi)$

Ot II.T. 5 $r(\psi|_{\text{Im}\varphi}) \leq \text{dimIm}\varphi = r(\varphi)$

От Th (За г и d) $d(\varphi) + r(\varphi) = \dim \mathbb{U}$

От Th (За г и d) $d(\psi) + r(\psi) = \dim \mathbb{V}$

От Th (За г и d) $d(\psi|_{\operatorname{Im}\varphi}) + r(\psi|_{\operatorname{Im}\varphi}) = \dim \operatorname{Im}\varphi = r(\varphi)$

II.T. 6 $r(\psi \circ \varphi) < \min\{r(\varphi), r(\psi)\}$

$$r(\psi \circ \varphi) = r(\psi|_{\operatorname{Im}\varphi}) \le r(\varphi)$$

 $r(\psi \circ \varphi) = r(\psi|_{\operatorname{Im}\varphi}) \le r(\psi)$

Следователно $r(\psi \circ \varphi) \leq \min\{r(\varphi), r(\psi)\}$

II.T. 7
$$r(\varphi) + r(\psi) - \dim \mathbb{V} < r(\psi \circ \varphi)$$

$$d(\psi|_{\operatorname{Im}\varphi}) \leq d(\psi) \implies$$

$$d(\psi|_{\operatorname{Im}\varphi}) + r(\psi|_{\operatorname{Im}\varphi}) \leq d(\psi) + r(\psi|_{\operatorname{Im}\varphi}) \implies$$

$$r(\varphi) \leq d(\psi) + r(\psi|_{\operatorname{Im}\varphi}) \implies$$

$$r(\varphi) + r(\psi) \leq r(\psi) + d(\psi) + r(\psi|_{\operatorname{Im}\varphi}) \implies$$

$$r(\varphi) + r(\psi) \leq \dim \mathbb{V} + r(\psi|_{\operatorname{Im}\varphi}) \implies$$

$$r(\varphi) + r(\psi) - \dim \mathbb{V} \leq r(\psi \circ \varphi)$$

Следователно

$$r(\varphi) + r(\psi) - \dim \mathbb{V} \leq r(\psi \circ \varphi) \leq \min\{r(\varphi), r(\psi)\}$$

Сега остава да съобразим, че за да е вярно изконното твърдение трябва да са в сила:

$$\dim \mathbb{V}=n$$
 $\dim \mathbb{U}=k$ $\dim \mathbb{W}=m$ f_1,f_2,\ldots,f_n - базис на \mathbb{V} g_1,g_2,\ldots,g_k - базис на \mathbb{U} h_1,h_2,\ldots,h_m - базис на \mathbb{W} $A=M_f^h(\psi)$ $B=M_g^f(\varphi)$

Тогава

$$r(A) + r(B) - n \le r(AB) \le \min\{r(A), r(B)\}\$$

Лема на Фитинг

Твърдение

Нека $\mathbb V$ е крайно мерно линейно пространство над полето $\mathbb F$ и нека $\varphi\in\mathrm{Hom}\mathbb V$ тогава $\exists m\in\mathbb N$ $\mathrm{Ker}\varphi^m\oplus\mathrm{Im}\varphi^m=\mathbb V$

Доказателство:

II.T. 1 $\forall k \in \mathbb{N} \operatorname{Ker} \varphi^k \leq \operatorname{Ker} \varphi^{k+1}$

Доказателство:

Нека $k \in \mathbb{N}$.

За да докажем $\mathrm{Ker} \varphi^k \leq \mathrm{Ker} \varphi^{k+1}$ трябва последователно да докажем, че $\mathrm{Ker} \varphi^k \subseteq \mathrm{Ker} \varphi^{k+1}$ и това, че $\mathrm{Ker} \varphi^k$ е затворено относно събиране и умножение със скалар.

Нека $v \in \operatorname{Ker}\varphi^k$ тогава $\varphi^k(v) = \theta$ тогава $\varphi^{k+1}(v) = \varphi(\varphi^k(v)) = \varphi(\theta) = \theta$ следователно $v \in \operatorname{Ker}\varphi^{k+1}$. Така $\forall v \in \operatorname{Ker}\varphi^k$ $v \in \operatorname{Ker}\varphi^{k+1}$ тоест $\operatorname{Ker}\varphi^k \subseteq \operatorname{Ker}\varphi^{k+1}$.

$$\forall a, b \in \operatorname{Ker}\varphi^{k} \varphi^{k}(a+b) = \varphi^{k}(a) + \varphi^{k}(b) = \theta + \theta = \theta \implies a+b \in \operatorname{Ker}\varphi^{k}$$
$$\forall a \in \operatorname{Ker}\varphi^{k} \ \forall \lambda \in \mathbb{V} \ \varphi^{k}(\lambda.a) = \lambda \varphi^{k}(a) = \lambda \theta = \theta \implies \lambda.a \in \operatorname{Ker}\varphi^{k}$$

Следователно $\mathrm{Ker} \varphi^k \leq \mathrm{Ker} \varphi^{k+1}$. От където $\forall k \in \mathbb{N} \; \mathrm{Ker} \varphi^k \leq \mathrm{Ker} \varphi^{k+1}$.

II.T. 2 $\forall k \in \mathbb{N} \operatorname{Im} \varphi^k \geq \operatorname{Im} \varphi^{k+1}$

Доказателство:

Нека $k \in \mathbb{N}$.

За да докажем ${\rm Im}\varphi^k\ge {\rm Im}\varphi^{k+1}$ трябва последователно да докажем, че ${\rm Im}\varphi^k\supseteq {\rm Im}\varphi^{k+1}$ и това, че ${\rm Im}\varphi^{k+1}$ е затворено относно събиране и умножение със скалар.

Нека $u \in \operatorname{Im}\varphi^{k+1}$ следователно $\exists w \in \mathbb{V} \ \varphi^{k+1}(w) = u$. Нека $w \in \mathbb{V} \ \varphi^{k+1}(w) = u$, тоест $\varphi^k(\varphi(w)) = u$, но $\varphi(w) \in \operatorname{Im}\varphi \leq \mathbb{V}$, в частност $\varphi(w) \in \mathbb{V}$, но тогава $u \in \operatorname{Im}\varphi^k$. Така $\forall u \in \operatorname{Im}\varphi^{k+1} \ u \in \operatorname{Im}\varphi^k$, тоест $\operatorname{Im}\varphi^{k+1} \subseteq \operatorname{Im}\varphi^k$.

Нека $a,b\in \mathrm{Im}\varphi^{k+1}$ тогава $\exists a',b'\in \mathbb{V}$ $\varphi^{k+1}(a')=a\wedge \varphi^{\overline{k}+1}(b')=b.$ Нека $a',b'\in \mathbb{V}$

са такива, че $\varphi^{k+1}(a') = a \wedge \varphi^{k+1}(b') = b$. Тогава $a+b=\varphi^{k+1}(a')+\varphi^{k+1}(b')=\varphi^{k+1}(a'+b')$ следователно $a+b\in \mathrm{Im}\varphi^{k+1}$. Така $\forall a,b\in \mathrm{Im}\varphi^{k+1}$ $a+b\in \mathrm{Im}\varphi^{k+1}$. Нека $a\in \mathrm{Im}\varphi^{k+1}$ и нека $\lambda\in \mathbb{F}$ тогава $\exists a'\in \mathbb{V}\ \varphi^{k+1}(a')=a$. Нека $a'\in \mathbb{V}\ e$ такъв, че $\varphi^{k+1}(a')=a$. Тогава $\lambda.a=\lambda\varphi^{k+1}(a')=\varphi^{k+1}(\lambda.a')$ следователно $\lambda.a\in \mathrm{Im}\varphi^{k+1}$. Така $\forall a\in \mathrm{Im}\varphi^{k+1}\ \forall \lambda\in \mathbb{V}\ \lambda.a\in \mathrm{Im}\varphi^{k+1}$. Следователно $\mathrm{Im}\varphi^k\geq \mathrm{Im}\varphi^{k+1}$ От където $\forall k\in \mathbb{N}\ \mathrm{Im}\varphi^k\geq \mathrm{Im}\varphi^{k+1}$.

П.Т. 3 Ако $\operatorname{Ker}\varphi^k = \operatorname{Ker}\varphi^{k+1}$, то $\operatorname{Ker}\varphi^{k+1} = \operatorname{Ker}\varphi^{k+2}$

Доказателство:

Нека $k \in \mathbb{N}$ и нека $\operatorname{Ker} \varphi^k = \operatorname{Ker} \varphi^{k+1}$. От П.Т. 1 знаем, че е изпълнено $\operatorname{Ker} \varphi^{k+1} \leq \operatorname{Ker} \varphi^{k+2}$. В частност $\operatorname{Ker} \varphi^{k+1} \subseteq \operatorname{Ker} \varphi^{k+2}$. Остава да покажем обратното включване $\operatorname{Ker} \varphi^{k+2} \subseteq \operatorname{Ker} \varphi^{k+1}$. Нека $v \in \operatorname{Ker} \varphi^{k+2}$ тогава $\varphi^{k+2}(v) = \theta$, тоест $\varphi^{k+1}(\varphi(v)) = \theta$. Следователно $\varphi(v) \in \operatorname{Ker} \varphi^{k+1}$, значи $\varphi(v) \in \operatorname{Ker} \varphi^k$. Тогава $\varphi^k(\varphi(v)) = \theta$, тоест $\varphi^{k+1}(v) = \theta$. Следователно $v \in \operatorname{Ker} \varphi^{k+1}$. Така $\forall v \in \operatorname{Ker} \varphi^{k+2} \operatorname{Ker} \varphi^{k+1}$, тоест $\operatorname{Ker} \varphi^{k+2} \subseteq \operatorname{Ker} \varphi^{k+1}$ и значи $\operatorname{Ker} \varphi^{k+1} = \operatorname{Ker} \varphi^{k+2}$.

П.Т. 4 Ако $\text{Im}\varphi^k = \text{Im}\varphi^{k+1}$, то $\text{Im}\varphi^{k+1} = \text{Im}\varphi^{k+2}$

Доказателство:

Нека $k \in \mathbb{N}$ и нека $\mathrm{Im} \varphi^k = \mathrm{Im} \varphi^{k+1}$. От П.Т. 2 знаем, че е изпълнено $\mathrm{Im} \varphi^k \geq \mathrm{Im} \varphi^{k+1} \geq \mathrm{Im} \varphi^{k+2}$. От П.Т. 1 знаем, че е изпълнено $\mathrm{Ker} \varphi^k \leq \mathrm{Ker} \varphi^{k+1} \leq \mathrm{Ker} \varphi^{k+2}$. Понеже $\mathrm{Im} \varphi^k = \mathrm{Im} \varphi^{k+1}$, то $\mathrm{Ker} \varphi^k = \mathrm{Ker} \varphi^{k+1}$. От П.Т. 3 следва $\mathrm{Ker} \varphi^{k+1} = \mathrm{Ker} \varphi^{k+2}$. Следователно $\mathrm{Im} \varphi^{k+1} = \mathrm{Im} \varphi^{k+2}$.

Π .Т. 5 Съществува $m \in \mathbb{N}$, такова че

$$\operatorname{Ker} \varphi < \operatorname{Ker} \varphi^2 < \dots < \operatorname{Ker} \varphi^m = \operatorname{Ker} \varphi^{m+1} = \operatorname{Ker} \varphi^{m+2} = \dots$$
$$\operatorname{Im} \varphi > \operatorname{Im} \varphi^2 > \dots > \operatorname{Im} \varphi^m = \operatorname{Im} \varphi^{m+1} = \operatorname{Im} \varphi^{m+2} = \dots$$

Доказателство:

От П.Т. 1 и П.Т. 2 знаем

$$\operatorname{Ker} \varphi \leq \operatorname{Ker} \varphi^2 \leq \cdots \leq \operatorname{Ker} \varphi^m \leq \operatorname{Ker} \varphi^{m+1} \leq \operatorname{Ker} \varphi^{m+2} \leq \cdots$$

$$\operatorname{Im} \varphi > \operatorname{Im} \varphi^2 > \cdots > \operatorname{Im} \varphi^m > \operatorname{Im} \varphi^{m+1} > \operatorname{Im} \varphi^{m+2} > \cdots$$

От П.Т. 3 и П.Т. 4 е ясно, че ако някое от неравенствата е равенство всички след него също са равенства. Теоремата за ранга и дефекта гарантира, че знаците за ядрата и образите се съгласуват. Тогава строги неравенства са възможни само в началото. Не може всички неравенства да са строги, защото всички размерности са ограничени в целочисления интервал $[0, \dim \mathbb{V}]$ и при строго неравенство размерносто се променя поне с единица. То съществува $s \in \mathbb{N}$, такова че

$$\operatorname{Ker} \varphi^{s} \leq \operatorname{Ker} \varphi^{s+1} \leq \operatorname{Ker} \varphi^{s+2} \leq \dots$$

 $\operatorname{Im} \varphi^{s} \geq \operatorname{Im} \varphi^{s+1} \geq \operatorname{Im} \varphi^{s+2} \geq \dots$

Нека $m \in \mathbb{N}$ е най-малкото число s с това свойство. Тогава

$$\operatorname{Ker}\varphi < \operatorname{Ker}\varphi^2 < \dots < \operatorname{Ker}\varphi^m = \operatorname{Ker}\varphi^{m+1} = \operatorname{Ker}\varphi^{m+2} = \dots$$

 $\operatorname{Im}\varphi > \operatorname{Im}\varphi^2 > \dots > \operatorname{Im}\varphi^m = \operatorname{Im}\varphi^{m+1} = \operatorname{Im}\varphi^{m+2} = \dots$

П.Т. 6 Ако $\psi \in \text{Hom} \mathbb{V}$ е такова, че $\psi^2 = \psi$, то $\text{Ker} \psi \cap \text{Im} \psi = \{\theta\}$ и $\text{Ker} \psi \oplus \text{Im} \psi = \mathbb{V}$

Доказателство:

Нека $\psi \in \text{Hom} \mathbb{V}$ е такова, че $\psi^2 = \psi$.

Нека $v \in \text{Ker}\psi \cap \text{Im}\psi$ следователно $v \in \text{Ker}\psi$ и $v \in \text{Im}\psi$. Така $\psi(v) = \theta$ и $\exists u \in \mathbb{V}$ $\psi(u) = v$. Нека $u \in \mathbb{V}$ $\psi(u) = v$ тогава $\psi(\psi(u)) = \theta$, но от условието, следва че $\psi(u) = \theta$, понеже $\psi^2 = \psi$. Тогава $v = \theta$ следователно $\forall v \in \text{Ker}\psi \cap \text{Im}\psi = \theta$. Тоест $\text{Ker}\psi \cap \text{Im}\psi \subseteq \{\theta\}$, но понеже $\theta \in \text{Ker}\psi \cap \text{Im}\psi$, то $\text{Ker}\psi \cap \text{Im}\psi = \{\theta\}$. Нека $a \in \mathbb{V}$ тогава

$$a = a \implies$$

$$a + \theta = a \implies$$

$$a + (\psi(a) - \psi(a)) = a \implies$$

$$\psi(a) + (a - \psi(a)) = a$$

Очевидно $\psi(a) \in \text{Im}\psi$. Остава да покажем, че $a - \psi(a) \in \text{Ker}\psi$. $\psi(a - \psi(a)) = \psi(a + \psi(-a)) = \psi(a) + \psi(\psi(-a)) = \psi(a) + \psi^2(-a) = \psi(a) + \psi(-a) = \psi(a) + -\psi(a) = \theta$. Следователно $a - \psi(a) \in \text{Ker}\psi$. По дефиниция $\psi(a) + (a - \psi(a)) \in \text{Im}\psi + \text{Ker}\psi$, следователно $a \in \text{Im}\psi + \text{Ker}\psi$. Така $\forall a \in \mathbb{V}$ $a \in \text{Im}\psi + \text{Ker}\psi$, тоест $\mathbb{V} \subseteq \text{Im}\psi + \text{Ker}\psi$. Понеже $\text{Ker}\psi \leq \mathbb{V}$ и $\text{Im}\psi \leq \mathbb{V}$, то $\text{Im}\psi + \text{Ker}\psi \leq \mathbb{V}$ и значи $\text{Ker}\psi + \text{Im}\psi = \mathbb{V}$. От предното $\text{Ker}\psi \cap \text{Im}\psi = \{\theta\}$. Следователно $\text{Ker}\psi \oplus \text{Im}\psi = \mathbb{V}$. Нека m е числото от П.Т. 5 тогава понеже $\text{Ker}\varphi^m = \text{Ker}\varphi^{2m}$ и $\text{Im}\varphi^m = \text{Im}\varphi^{2m}$. То $\varphi^m = \varphi^{2m} = (\varphi^m)^2$ и тогава от П.Т. 6 $\text{Ker}\varphi^m \oplus \text{Im}\varphi^m = \mathbb{V}$.