This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(30) Données relatives à la priorité:

94/05562

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

B01D 71/02

(11) Numéro de publication internationale: WO 95/29751

(43) Date de publication internationale: 9 novembre 1995 (09.11.95)

FR

(21) Numéro de la demande internationale: PCT/FR95/00552

(22) Date de dépôt international: 27 avril 1995 (27.04.95)

44) Date de debot miss

(71) Déposant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel-Ange, F-75016 Paris (FR).

29 avril 1994 (29.04.94)

(72) Inventeurs: GIROIR-FENDLER, Anne; 23, rue Chanteclair, F-69005 Lyon (FR). JULBE, Anne; 9, rue Leenhardt, F-34000 Montpellier (FR). RAMSAY, John, D., F.; Laboratoire des Matériaux et Procédés Membranaires ENSCM, 8, rue de l'Ecole-Normale, F-34053 Montpellier Cédex 1 (FR). DALMON, Jean-Alain; 5E, avenue Général-de-Gaulle, F-69300 Caluire (FR).

(74) Mandataire: CABINET GERMAIN & MAUREAU; Boîte Postale 3011, F-69392 Lyon Cédex 03 (FR).

(81) Etats désignés: brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

(54) Title: POROUS COMPOSITE INORGANIC MATERIAL, PARTICULARLY IN MEMBRANE FORM, AND METHOD FOR MAKING SAME

(54) Titre: MATERIAU INORGANIQUE COMPOSITE POREUX, NOTAMMENT SOUS FORME DE MEMBRANE, ET PROCEDE D'OBTENTION D'UN TEL MATERIAU

(57) Abstract

: [

A porous composite inorganic material including a porous inorganic substrate (2, 3) and a solid mineral phase (1) with a molecular sieve-type porous crystalline structure, e.g. a zeolite material, bonded to the substrate with no intergranular bonding matrix, wherein most of the porous solid mineral phase is directly synthesised within the substrate and continuously and uniformly fills the porous inner space thereof with a filling rate high enough to ensure that any permeation of a fluid through said composite material is controlled or restricted by said inner solid phase alone; and the average pore diameter of the starting substrate is between a maximum diameter beyond which the synthesised inner solid phase is no longer continuous, and a minimum diameter below which the porous inner space of the substrate contains substantially no inner solid phase.

(57) Abrégé

Matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse (2, 3), et une phase solide minérale (1), à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique, liée au substrat sans matrice de liaison intergranulaire, caractérisé en ce que, en combinaison: majoritairement, la phase solide minérale poreuse est obtenue par synthèse directement au sein du substrat et remplit de manière continue et homogène son volume interne poreux, et remplit de manière continue et homogène son volume interne poreux,

et rempin de mantete commande de remplissage dudit volume suffisant pour que toute avec un taux de remplissage dudit volume suffisant pour que toute perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne synthétisée diamètre moyen de pore du substrat de départ est composite soit contrôlée ou limitée uniquement par ladite phase solide interne.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AU Aus BB Barb BB Bel BB Bel BB	riche stralie bade Igique dicha Faso Iganie ain	GB GE GN GR HU IB IT JP KE KG KP LL LL LV MC MC MC MD MG MIL MN	Royaume-Uni Géorgie Guinée Grèce Hougrie Irlande Italie Japon Kenya Kirghizistan République populaire démocratique de Corée République de Corée Karakhstan Liechtenstein Sri Lanka Luxembourg Lettonie Monaco République de Moldova Madagascar Mali Mongolie	MR MW NE NL NO NZ PL PT RO RU SD SE SI SK SN TO TG TJ TT UA US VN	Mauritanie Malswi Niger Pays-Bas Norvège Nouvelle-Zélande Pologne Portugal Roumanie Fédération de Russie Soudan Suède Slovénie Slovénie Slovénie Slovénie Tonad Togo Tadjikistan Trinié-et-Tobago Ukraine Etats-Unis d'Amériqu Ourbékistan Viet Nam
---	---	---	--	---	---

Matériau in rganiqu composite p reux, notamment sous forme de membrane, et procédé d'obtention d'un tel matériau

La présente invention concerne les matériaux 5 composites, inorganiques et poreux, tels qu'utilisés ou proposés pour constituer des membranes, et notamment des membranes poreuses de perméation.

Plus précisément, l'invention s'intéresse aux matériaux à base de tamis moléculaires, comprenant de 10 manière générale :

- un substrat inorganique de nature poreuse, par exemple une céramique telle qu'une alumine α;
- et une phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique de synthèse, rapportée et liée audit substrat, pour enrober en quelque sorte ce dernier, considéré alors comme un simple support.

De tels matériaux composites possèdent pour l'essentiel les propriétés des tamis moléculaires qu'ils incorporent, lesquelles peuvent être contrôlées, de manière connue en soi, par exemple :

- en termes de sélectivité: hydrophobie/hydrophilie, caractéristiques du système microporeux, notamment taille et forme des pores, incorporation de métaux actifs, par exemple platine ou argent, et activité catalytique du fait d'ions alcalins ou alcalino-terreux, etc...;
- en termes de perméabilité : dimensions des canaux et coefficient de diffusion, etc....
- On connaît déjà et on a décrit des matériaux inorganiques composites poreux, sous forme de membranes, pour lesquels le substrat inorganique de nature poreuse présente au moins une surface extérieure et apparente, plane ou courbe, sur laquelle est liée une couche de tamis moléculaire constituant une phase solide minérale rapportée.

30

Ces matériaux sont obtenus, en général :

- en préparant un milieu intermédiaire, sous forme d sol homogène, contenant de manière dispersée et homogène des précurseurs d'un tamis moléculaire, par exemple silice, alumine et soude, en général de l'eau, dans le cas d'une matière zéolithique, et éventuellement un agent structurant de cristallisation, ou "template", en général une base organique faible;
- en mettant en contact, selon un processus hydrothermal,
 le milieu intermédiaire ou sol, avec le substrat inorganique poreux, moyennant quoi une matière cristalline poreuse se trouve déposée, sous la forme d'une phase solide, liée audit substrat, sans matrice de liaison intergranulaire;
- 15 et en lavant, séchant et calcinant le substrat, pour obtenir le tamis moléculaire lié à ce dernier.

Ce protocole d'obtention doit en général être répété plusieurs fois, pour obtenir une phase de tamis moléculaire en plusieurs couches, ou selon l'épaisseur désirée, et exempte de défauts.

Conformément aux documents EP-A-0 511 739 et WO-A-93 17781, on a proposé un matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse, par exemple une céramique du type alumine, et une couche extérieure, déposée ou accrochée sur la surface apparente du substrat, de phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une zéolithe, ladite couche étant liée au substrat sans matrice de liaison intergranulaire.

Selon ces deux documents, il existe une pénétration partielle de la phase solide minérale, dans le substrat inorganique, limitée à l'accrochage superficiel de ladite phase sur ledit substrat, à l'exclusion de tout remplissage continu du volume interne dudit substrat avec ladite phase. Différentes preuves de cet accrochage

superficiel sont d'ailleurs données dans ces deux documents:

- l'existence d'un film ou couche superficielle de zéolithe est soit montrée par microscopie électronique, soit par un dessin;
- le mode de synthèse retenu pour la formation de la zéolithe, en relation avec la taille des pores du substrat, s'oppose à toute pénétration importante dans ce dernier de la phase zéolithique;
- 10 la phase zéolithique obtenue ne présente d'ailleurs pas, directement, les propriétés requises, notamment en termes de continuité, et il faut répéter plusieurs fois l'étape de synthèse hydrothermale par exemple.
- Conformément à la publication de Meng-Dong Jia et al. 15 ayant pour titre "Ceramic zeolite composite membranes; preparation, characterization and gas permeation", parue dans les pages 15 à 26 du N° 82 de 1993 du Journal of Membrane Science, on a décrit un matériau inorganique composite et poreux tel que défini sous forme de membrane, dont le tamis précédemment, 20 moléculaire est sous forme polycristalline dense avec une sans matériau structure tridimensionnelle, ce et intergranulaire. Dans liaison đe conclusions, les auteurs observent que la couche de tamis apparaissant défauts, moléculaire présente différents 25 notamment lors de la calcination du "template", de telle sorte que la perméation dans ladite membrane ne s'effectue de tamis couche pas seulement au travers de moléculaire.
 - Le document US-C-4 699 892 présente un 30 enseignement comparable à celui du document EP-A-0 511 739.

Conformément au document EP-0 180 200, on a proposé un matériau inorganique composite poreux, tel que défini précédemment, mais selon une autre voie, à savoir :

- en partant d'un substrat inorganique poreux, dont les pores présentent des dimensions relativement importantes, par exemple une alumine «
- tant en revêtissant la surface externe et apparente du substrat, qu'en remplissant son volume interne, avec un tamis moléculaire comprenant, outre ce dernier, une matrice de liaison intergranulaire entre les cristallites du tamis, par exemple une alumine γ.

Un tel matériau n'est pas susceptible de 10 constituer une membrane de perméation, contrôlée ou limitée par le tamis.

Les matériaux et procédé décrits précédemment présentent différents inconvénients.

Ils constituent des matériaux hétérogènes, en 15 termes d'épaisseur, de composition, de cristallinité, et de forme des grains dans l'épaisseur du matériau.

L'accrochage du tamis moléculaire, en couche ou film mince, sur la surface du substrat poreux demeure limitée, ce qui peut conduire au détachement de la phase cristalline poreuse du substrat, dans certaines applications, par exemple à température relativement élevée.

Le tamis moléculaire en couche demeure présenter différents défauts, fractures ou fissures, qui en quelque sorte ruinent les performances des tamis pour laisser apparaître les propriétés et limites du substrat poreux.

La présente invention se propose de remédier à tous ces inconvénients.

Conformément à la présente invention, et s'agissant d'une phase solide minérale, à structure cristalline poreuse, constituée par un tamis moléculaire, on a tout d'abord découvert que l'on pouvait former in situ, par nucléation et cristallisation confinée, ledit tamis, dans le substrat inorganique poreux, y compris dans ses pores, à la condition, d'une part d'utiliser un milieu intermédiaire très particulier, à savoir un liquide

homogène, comprenant des oligomères d'au moins une espèce minérale appartenant à la composition du tamis moléculaire que l'on veut synthétiser, par exemple silice ou silicate pour une matière zéolithique, et d'autre part, d'imprégner et faire pénétrer ce liquide dans et au sein du substrat.

Avec de tels précurseurs zéolithiques, non cristallins, et en solution, il devient possible, lors du processus hydrothermal, de former un tamis moléculaire continu dans le volume interne du substrat, notamment à l'intérieur des pores de ce dernier, et ce, sans aucune matrice de liaison intergranulaire.

Au cours du procédé selon la présente invention, de manière caractéristique, interviennent des phénomènes physico-chimiques permettant la croissance interne du 15 tamis moléculaire. Sans que le déposant soit limité dans la portée de ses droits par l'explication ci-après, ces effet un sur pourraient être basés phénomènes confinement des oligomères dans les pores. Ce confinement favorise en définitive la nucléation et la croissance in 20 situ du tamis moléculaire. Par ailleurs, selon ce même procédé, les différents additifs, et notamment l'agent structurant de cristallisation ("template") sont éliminés facilement lors du processus de séchage/calcination, et en continuité préservant la particulier en moléculaire interne. 25

De cette manière, une fois le procédé d'obtention terminé, majoritairement (en poids) et pour l'essentiel, voire en totalité, le tamis moléculaire remplit de manière interne poreux le volume homogène continue et 30 substrat; en d'autres termes, il n'existe pratiquement pas ou peu de tamis moléculaire à l'extérieur du réseau poreux du substrat, ou sur le substrat poreux. Ce tamis une phase au moins situ in constitue moléculaire matrice liaison de sans continue, substantiellement interconnectés cristaux les 35 intergranulaire, d nt remplissent pratiquement au moins une partie du v lume

poreux du substrat. Et le taux de remplissage du volume poreux interne du substrat est suffisant pour que toute perméation d'un fluide au travers du matériau composite obtenu soit contrôlée ou limitée uniquement par la phase solide interne synthétisée in situ.

Dans le cas d'un substrat poreux asymétrique, à plusieurs couches de porosités respectivement différentes, tel que représenté et décrit ci-après par référence à la figure 1, le tamis moléculaire ne remplit qu'une partie du 10 volume poreux, en l'occurrence la ou les couches dont le diamètre des pores est adapté aux conditions de synthèse composition tamis moléculaire (notamment traitement du durée et température solution, hydrothermal), et permet un confinement suffisant des 15 espèces oligomériques, sans toutefois limiter trop la diffusion de ces espèces, et pour permettre ainsi leur croissance pour former une phase continue.

Le tamis moléculaire intégré selon l'invention au sein du substrat peut être caractérisé par plusieurs 20 techniques d'analyse, de telles méthodes confirmant l'existence du tamis dans le substrat sous la forme d'une phase continue.

Par exemple, l'analyse du tamis moléculaire peut se faire avec les techniques dites SEM ("Scanning electron microscopy"), EDX ("Energy dispersive X-ray"). En particulier, pour les matières zéolithiques, l'analyse par RMN du ²⁹Si (MASNMR) permet de détecter la présence et d'estimer le degré de cristallinité des espèces siliciées dans le substrat macroporeux d'alumine a. Les détails de la méthode sont décrits dans "High Resolution Solid-State NMR of Silicates and Zeolites", de G. Engelhardt et D. Michel, Wiley (1987).

La texture poreuse du matériau composite (support macroporeux plus phase interne de tamis moléculaire) peut également être déterminée par porosimétrie à mercure et par adsorption isotherme d'azote.

Selon l'invention et après synthèse du tamis moléculaire, des changements importants de la taille des pores sont effectivement observés. Ces changements correspondent à la formation de tamis moléculaire, dont les cristaux recouvrent les grains du support macroporeux. Le remplissage selon l'invention se traduit donc par une diminution de taille et éventuellement une disparition des pores du substrat. La calcination ne change que peu, ou pas du tout, la structure poreuse obtenue après synthèse hydrothermale. Ceci indique une stabilité thermique accrue de la phase interne de tamis moléculaire.

applicable pour méthode autre Une caractérisation du tamis moléculaire au sein du substrat poreux est la détermination de la perméabilité du matériau 15 composite obtenu à l'azote. De telles mesures peuvent être effectuées avant et après synthèse in situ du tamis moléculaire. On observe notamment que le substrat poreux perméabilité une situ synthèse in avant présente importante qui augmente linéairement avec la pression, en accord avec un mécanisme d'écoulement de Poiseuille dans les pores de grande taille. Après synthèse in situ du tamis est réduite perméabilité moléculaire, la comportement n'est plus typique du régime de Poiseuille. Ces mesures sont importantes parce qu'elles indiquent que le tamis moléculaire interne est pratiquement sans défaut.

La présente invention est applicable à toute phase solide minérale, à structure cristalline poreuse, notamment une matière zéolithique proprement dite, dès lors que ladite phase peut être synthétisée au sein du substrat inorganique poreux de départ, dans les mêmes conditions et avec les mêmes résultats que ceux définis précédemment.

La phase solide poreuse interne peut aussi être un tamis moléculaire autre qu'une matière zéolithique proprement dite, choisi parmi les

alumino-phosphates (ALPO), les silicoaluminates (SAPO), et les gallophosphates (GAPO), par exemple la clovérite.

Mais, selon l'invention, il est essentiel que le diamètre moyen de pore du substrat de départ soit compris entre un diamètre maximum, au-delà duquel la phase solide interne synthétisée n'est plus continue, et un diamètre minimum, en-deçà duquel le volume interne poreux du substrat demeure substantiellement vide de toute phase solide interne.

10 Ces valeurs maximum et minimum du diamètre moyen de pore sont déterminables par l'homme du métier, par des essais de routine, en fonction des substrats et tamis moléculaires retenus. S'agissant par exemple d'une matière zéolithique constituant la phase solide interne, par exemple d'une silicalite, le diamètre moyen de pore du substrat de départ est compris entre 5 nm et 10 μ m, et notamment entre 0,1 μ m et 1 μ m.

Selon la présente invention, c'est en définitive le taux de remplissage du volume poreux interne avec la 20 phase solide synthétisée in situ, qui détermine le régime de perméation du matériau composite finalement obtenu.

Ce régime de perméation peut être aisément contrôlé.

On peut tout d'abord établir ou connaître le régime d'écoulement, d'une part du substrat poreux de départ, et d'autre part du tamis moléculaire en tant que tel, puis établir le régime d'écoulement du matériau poreux composite, pour retrouver un régime différent ou similaire à celui du tamis moléculaire, selon que ce dernier ne remplit pas ou remplit, sous forme solide continue, le substrat poreux.

Quant au remplissage avec le tamis moléculaire, on peut rechercher, par tous moyens d'analyse appropriés tels que la microscopie SEM, EDX, la présence et quantité dudit 35 tamis au sein du substrat poreux, par exemple en établissant le rapport Si/Al pour une zéolithe selon l'épaisseur du substrat, par exemple dans le cas de silicalite déposée dans un alumine poreuse.

Le substrat inorganique est intrinsèquement résistant mécaniquement. Il est aussi résistant aux températures relativement élevées, par exemple supérieures à 150°C, et/ou relativement inerte par rapport à toute agression chimique, par exemple une corrosion en phase oxydante.

Un tel substrat inorganique peut être choisi parmi
10 les matériaux céramiques, par exemple des alumines, des
silices, des zircones, des oxydes de titane, les verres,
les métaux, par exemple l'aluminium, l'acier, et le
carbone fritté.

Le substrat inorganique poreux de départ peut 15 comporter des pores du type méso ou macro-pores.

Avantageusement, la phase solide minérale interne, ou tamis moléculaire, est une matière zéolithique.

En général, ces matières zéolithiques présentent une structure cristalline ordonnée et poreuse, telle que les aluminosilicates, dans lesquels il existe une grande quantité de cavités ou pores de diamètre déterminé. Cette caractéristique permet leur utilisation en tant que tamis moléculaires, puisque les pores empêchent le passage de molécules d'une dimension supérieure au diamètre de ces premiers. Ainsi, les zéolithes sont utilisées dans diverses applications telles que la séparation de fluides complexes, ou dans des procédés catalytiques, etc...

Typiquement, ces matières zéolithiques ont des pores de diamètre de l'ordre de 3 x 10⁻¹⁰ m à 10 x 10⁻¹⁰ m.

30 Leur composition chimique peut varier en fonction des applications envisagées, mais en général, elles consistent en un réseau de SiO₂ dans lequel on substitue certains des atomes Si a des ions bi-, tri- ou tétravalents tels que les ions de Be, Al, B, Ga, Fe, Ti ou Ge, ou une combinaison de ceux-ci. Dans le cas d'une substitution par un ion bivalent ou trivalent, il y aura également des

cations tels que ceux de Na, K, Ca, NH₄ ou H, présents dans la structure. On peut citer par exemple des zéolithes ayant des pores de petit diamètre, tels que la NaA, la CaA, et l'érionite; des zéolithes ayant des pores de taille moyenne telles que la ZSM-5, la ZSM-11, la ZSM-22, la ZSM-23, la ZSM-48, la ZSM-12 et la zéolithe béta; et des zéolithes ayant des pores de grand diamètre tels que la zéolithe L, la ZSM-4 (oméga), la NaX, la NaY, la CaY, la REY, la US-Y, la ZSM-20 et la mordénite.

Les matières zéolithiques comprennent également 10 des aluminosilicates contenant des cations positifs, et ayant une structure rigide tridimensionnelle de tétraèdres de SiO4 et AlO4, dans laquelle les tétraèdres sont réticulés par liaison covalente des atomes d'oxygène, et 15 dans laquelle le rapport du nombre total des atomes de silice et d'aluminium avec ceux d'oxygène est de 1:2. L'électro-valence des tétraèdres est complétée par l'ajout de cations dans la matrice cristalline, par exemple des cations alcalins ou alcalino-terreux. Le rapport entre Al 20 et ces cations, tels que Ca2+, Sr2+, Na+, K+ ou Li+ est égal à 1. Ainsi, on peut échanger ces cations en partie ou entièrement avec d'autres cations par la voie classique d'échange d'ions, afin de varier les propriétés l'aluminosilicate choisi. Les espaces entre les tétraèdres d'eau, molécules des 25 sont occupés par déshydratation.

Le rapport atomique Si/Al peut varier selon la zéolithe recherchée; par exemple, dans certaines zéolithes, la limite supérieure pour Si est non définie.

30 Un exemple d'une telle zéolithe est la ZSM-5, dans laquelle le rapport atomique Si/Al est au moins égal à 12.

Avantageusement, la matière zéolithique est choisie parmi les zéolithes suivantes, la NaA, la CaA, l'rionite, la ZSM-5, la ZSM-11, la ZSM-22, la ZSM-23, la ZSM-48, la ZSM-12, la zéolithe béta, la zéolithe L, la ZSM-4 (oméga), la NaX, la NaY, la CaY, la REY, la US-Y, la

ZSM-20, la mordénite ou encore l s z'olithes A, X, Y, ZK-5, ZK-4, ZSM-35, ZSM-38 ou de la silicalite. De préférence, on utilisera comme zéolithe la silicalite.

Selon un mode d'exécution particulièrement intéressant de la présente invention, le matériau inorganique composite poreux, défini précédemment de manière générale, peut appartenir, ou être intégré dans une structure inorganique comportant plusieurs couches, elles-mêmes inorganiques et poreuses. A cette fin, une telle structure comprend :

- une couche inactive, par exemple de support, constituée par un support inorganique de nature poreuse, et substantiellement vide de toute phase solide minérale poreuse, interne, à savoir de tamis moléculaire;
- 15 et au moins une couche active d'un matériau inorganique composite poreux, tel que défini précédemment, et constitué pour l'essentiel par un substrat inorganique poreux, et une phase solide interne de tamis moléculaire.
- 20 La structure définie précédemment peut comprendre plusieurs couches actives de matériaux inorganiques composites poreux selon l'invention, différant les unes des autres par exemple par leurs diamètres moyens de pore respectifs, le substrat inorganique poreux des différentes couches actives demeurant le même.

Préférentiellement, le diamètre moyen de pore d'une couche inactive est inférieur au diamètre minimum du substrat de départ de la couche active, en deçà duquel le demeure substrat dudit interne poreux 30 substantiellement vide de toute phase solide interne, à savoir de tamis moléculaire, tel que défini précédemment. Dans ce cas, la couche inactive évite ou développement du tamis moléculaire, à l'extérieur de la structure asymétrique, sur la ou ses surfaces apparentes, jouant en quelque sorte le rôle d'un bouclier, 35 en vis-à-vis de la phase solide interne de tamis moléculaire.

Le diamètre moyen de pore d'une couche inactive de la structure définie précédemment peut être supérieur au diamètre maximum du substrat de départ de la couche active, au delà duquel la phase solide interne du substrat de ladite couche active n'est plus continue. Dans ce cas, la couche inactive joue par exemple le rôle d'une couche de support de la couche active.

selon le mode préféré d'exécution de l'invention, une ou plusieurs couches actives sont disposées entre deux couches inactives, l'une de support, dont le diamètre moyen de pore est supérieur au diamètre maximum précité, et l'autre du type bouclier, dont le diamètre moyen de pore est inférieur au diamètre minimum précité.

Dans la structure multi-couches définie 15 précédemment, les différentes couches peuvent être au contact les unes des autres, ou séparées les unes des autres par des intercalaires perméables.

La forme d'un matériau ou d'une structure selon l'invention peut varier selon l'application envisagée. On citera notamment des structures en forme de plaques minces, de tubes, de poly-tubes, de fibres creuses, de nids d'abeille, de plaques convexes ou concaves, ou de plaques ayant un profil variable, ou toute autre forme. De préférence, la structure est sous la forme d'un tube, préférence, la structure est sous la surface apparente externe et la surface apparente interne constituent respectivement une interface d'entrée et une interface de sortie, ou inversement, pour un fluide traversant ladite structure.

Un autre mode préféré de l'invention consiste en une membrane de filtration de gaz ou de liquide, de séparation de gaz, d'osmose inverse, ou pervaporation, comprenant un matériau composite selon la définition donnée ci-dessus.

Dans le cas d'une phase solide interne constituée par une matière zé lithique, le procédé d'obtention du

matériau inorganique composite poreux s'effectue, à partir d'un substrat inorganique de nature poreuse, de la manière générale suivante :

- on prépare d'abord un milieu intermédiaire, contenant,
 de manière dispersée et homogène, des précurseurs zéolithiques;
 - on met ensuite en contact, selon un processus hydrothermal, le milieu intermédiaire avec le substrat, sans matériau de liaison intergranulaire, moyennant quoi une matière zéolithique se trouve déposée et liée audit substrat, sans matrice de liaison intergranulaire;
 - et enfin, on lave, sèche et calcine le substrat avec la matière zéolithique.
- Selon l'invention, le milieu intermédiaire utilisé dans le 15 procédé est un liquide homogène, susceptible de pénétrer et imprégner le substrat, et il contient des oligomères d'une espèce minérale à base de silicium, telle que silice ou silicate. Ce liquide n'a plus la composition classique d'un sol précurseur de zéolithes, puisqu'il 20 contient des oligomères de silice de petite taille en solution, et non plus des colloïdes. Ces oligomères ont un accès aisé à la structure poreuse du substrat, en raison de leur petite taille, de l'ordre du nanomètre ; cette taille est bien inférieure à celle des précurseurs d'une 25 solution de silice colloïdale, au-dessus d'une dizaine de nanomètres, et qui de ce fait se trouvent exclus de tels substrats poreux. De préférence, le milieu intermédiaire est un milieu basique contenant une base organique faible, à titre d'agent structurant de cristallisation, 30 l'exclusion de toute base minérale forte. Par exemple, la base organique faible peut être un hydroxyde d'ammonium tetraalkylé, tel que l'hydroxyde d'ammonium tetrapropylé (TPAOH) ou tetraméthylé (TMAOH).

Avantageusement, le rapport molaire entre l'espèce 35 minérale à base de silicium et la base organique faible est c mpris entre 0,25 et 4, et préférentiellement ntre 1

35

et 2. Ce rapport ainsi que la non utilisati n d'une base minérale forte, permet d'avoir un sol oligomérique et non un sol colloïdal. Ce type de sol n'est pas du tout classique pour obtenir une croissance de zéolithes (en poudre) dans le sol.

dans des conditions hydrothermales effet, classiques (180°C, pendant plusieurs heures), on n'obtient quasiment pas de zéolithe dans l'autoclave en l'absence de tout substrat poreux. Par contre, la présence d'un tel 10 substrat permet de générer une croissance zéolithique à l'intérieur des pores, par un effet de confinement des cavités restreintes. La oligomères dans des optimale des pores favorisant la croissance des cristaux conditions aux adaptée est substrat le dans 15 expérimentales, telles que la composition du sol, température et la durée du traitement hydrothermal.

Par ailleurs, le milieu intermédiaire peut être soumis à une étape de vieillissement ou mûrissement, par exemple pendant plusieurs jours, avant d'être mis au contact du substrat.

une étape permet cette constate que On restructuration ou réorganisation des espèces dans le formation de la favorable à intermédiaire, précurseurs de la structure zéolithique.

A titre d'exemple, s'agissant d'une matière zéolithique constituée par de la silicalite, au moins l'un des paramètres opératoires suivants est préféré :

- (1) le temps de mûrissement, est de 1 heure à 100 heures, préférentiellement de 15 heures à 72 heures;
- (2) en combinaison, d'une part la température de synthèse hydrothermale est comprise entre 150° C et 220° C, et préférentiellement de 180° C à 200° C, et d'autre part, la durée de synthèse hydrothermale est comprise entre 12 heures à

120 heures, préférentiellement entre 24 heures et 96 heures;

(3) la température de calcination est comprise de 300° C à 900°C, préférentiellement de 400° C à 500° C; l'atmosphère de calcination peut être oxydante ou non.

L'invention sera mieux comprise à l'aide des exemples suivants, qui ne limitent aucunement la portée de l'invention, et en se référant aux Figures 1 à 5.

La Figure 1 représente une vue schématique d'une structure multi-couches, composite, inorganique et poreuse, selon la présente invention, à base d'alumines α et γ; cette structure a la forme d'un tube.

La Figure 2 représente un cliché en microscopie 15 électronique d'une section transversale de la structure illustrée par la Figure 1, avant synthèse du tamis moléculaire, à savoir de la zéolithe.

La Figure 3 représente un spectre de RMN du ²⁹Si (état liquide) d'une solution d'espèces oligomériques de 20 silice (ou milieu intermédiaire selon le procédé selon l'invention), après vieillissement, en vue d'une synthèse hydrothermale selon l'invention.

La Figure 4 représente un spectre de RMN du ²⁹Si (état solide) de la silicalite dans le support poreux, 25 après synthèse hydrothermale selon l'invention.

La Figure 5 représente un cliché similaire à celui de la Figure 2, après synthèse in situ de la zéolithe, dont calcination.

30 EXEMPLE 1

Le support macroporeux utilisé dans cet exemple était multi-couches et fourni par la Société des Céramiques Techniques, et avait au départ la forme d'un tube de 150 mm de long et de 10 mm de diamètre externe. Il consistait selon la Figure 1 en tr is couches concentriques 1 à 3

d'alumine a avec une couche mince 4 d'alumine, comme couche intérieur. Ces couches avaient les dimensions données dans le tableau 1 ci-dessous et illustrées schématiquement par la Figure 1. La Figure 2 montre une vue microscopique en section transversale de la structure selon Figure 1, avant synthèse in situ de la zéolithe, dans lequel les différentes couches 1 à 4 peuvent être identifiées.

10

TABLEAU 1

Couche	Epaisseur (µm)	Diamètre des pores (µm)
N° 1 Al ₂ O ₃ α	2000	12
N° 2 Al ₂ O ₃ α	40	0,8
N° 3 Al ₂ 0 ₃ a	20	0,2
N° 4 Al ₂ O ₃ 7	3	0,005

Conformément à l'invention :

- la couche 1 d'alumine «, affectée au support inactif des couches actives 2 et 3, restera, après synthèse in situ, substantiellement vide de phase solide interne de tamis moléculaires;
 - les couches actives 2 et 3 d'alumine α servant de substrats poreux, sont remplies au moins partiellement, après synthèse in situ, avec la matière zéolithique;
- après synthèse in situ, de la couche d'alumine γ, formant l'interface interne et la couche 4 d'alumine γ, formant l'interface interne du tube, sert de "bouclier" vis-à-vis de toute formation de matière zéolithique à l'extérieur de la structure

multi-couches; cette couche 4 peut être ultérieurement éliminée, par exemple après lavage à l'acide nitrique.

La synthèse de la membrane zéolithique sel n Figure 1 a été effectuée à partir d'une solution d'espèces . 5 de silice oligomériques, laquelle avait été préparée en dissolvant 12 g de silice finement divisée (Aerosil 380) dans 100 ml d'une solution d'hydroxyde d'ammonium tetrapropylé (TPAOH; 1.0 mol/dm^{-3}). Le rapport molaire de SiO2/TPAOH dans cette solution oligomérique était de 2:1. Cette soumise période à une ensuite était 10 solution vieillissement de 100 heures. Pendant cette période, il y a eu une restructuration et une réorganisation des espèces oligomériques en solution, ainsi que cela avait été confirmé par l'analyse par RMN du ²⁹Si (état liquide).

Cette restructuration est représentée par 15 Figure 3, dans laquelle les numéros de référence Q1, Q2, Q3, et Q4 correspondent aux composants différents de la solution. Les composants Q1 et Q2 représentent des espèces ayant un taux d'hydroxylation élevé, et donc peu de 20 structure oligomérique, tandis que les composants Q3 et Q4 structurées. plus correspondent des espèces composant Q4 comporte une structure particulier, le hautement oligomérique avec des liaisons du type -Si-O-Si semblables à celles qu'on trouve dans des sols ou des silice couramment utilisées pour 25 suspensions de préparation de zéolithes, mais qui ne peuvent être résolus par l'analyse RMN du ²⁹Si (état liquide).

La deuxième étape consistait en le traitement hydrothermal de la solution oligomérique après sa mise en contact avec la structure composite multi-couches selon Figure 1; c'est-à-dire cette dernière était immergée dans la solution oligomérique, et les deux introduits dans un réacteur tubulaire en PTFE placé dans une étuve à 180° C pendant 100 heures. Dans ces conditions, il n'a pratiquement pas été observé de matériau solide synthétisé en dehors de la structure multi-couches.

Dans cet état intermédiaire, il est possible de vérifier que la structure composite a une perméabilité nulle, due à la présence de l'agent structurant dans le réseau poreux de ladite structure. On contrôle ainsi l'absence de défaut dans le matériau ainsi préparé. Ceci montre que selon l'invention une seule étape de synthèse hydrothermale peut suffire pour former une phase zéolithique continue au sein du substrat poreux. Et la calcination permet ensuite d'éliminer l'agent structurant, et d'obtenir le matériau composite selon l'invention.

Cette étape est donc suivie du lavage et du séchage de la structure composite obtenue.

la structure zéolithique Après la synthèse, obtenue a été analysée au moyen des techniques SEM, EDX et 15 RMN du 29Si afin de déterminer sa nature. Les deux clichés selon Fig. 2 et Fig.5 respectivement, présentent des vues en coupe du tube, avant et après synthèse de la zéolithe. On notera qu'une structure plus finement divisée, zéolithe, remplit tout la l'occurrence de 20 intergranulaire des couches N° 2 et 3. La distribution de la phase de zéolithe dans la structure macroporeuse d'alumine a a été déterminée par des mesures EDX d'une structure multi-couches, section transversale de la d'après la méthode décrite dans Applied Caralysis, 96, (1993), 25 page 83. Cette méthode permet de mesurer le rapport atomique Si/Al dans les différentes couches de la structure multicouches après synthèse de la zéolithe. Ce rapport est approximativement constant dans les couches N° 2 et 3. Il est par contre beaucoup plus faible dans la couche N° 1, 30 en bon accord avec l'absence de remplissage de cette couche (clichés Fig. 2 et 5). Il devient très faible lorsqu'on analyse la couche de surface (couche N° 4), ce démontre que l'on n'a pas dans cet exemple formation de zéolithe en dehors du réseau poreux 35 substrat des couches N° 2 et 3 (il a en effet été observé par ailleurs que lorsqu'il y avait croissance de zéolithe sur l'interface intern du tube, le rapport Si/Al devenait al rs très grand).

La cristallinité de la phase de zéolithe formée dans la structure poreuse d'alumine des couches N° 2 et 3 a également été déterminée par RMN du ²⁹Si, ainsi que représentée par la Figure 4, et diffraction des rayons X. Ces techniques ont montré qu'après synthèse hydrothermale et calcination, on était en présence d'une zéolithe de type silicalite, bien cristallisée et exempte d'aluminium.

L'adsorption isothermique d'azote à 77 K permet la 10 détermination de la texture de la phase de silicalite. En général, les matériaux préparés selon l'invention sont calcinés à 400°C et 700°C respectivement, avant d'être analysés. On observe que les isothermes ont un caractère 15 de type I (suivant la définition IUPAC), ce qui indique la phase interne zéolithique a une structure microporeuse. A titre d'exemple, pour un substrat poreux asymétrique, à plusieurs couches, tel que représenté et décrit par référence à la figure 1, on note que le volume 20 total des micropores, déterminé à partir du volume d'azote adsorbé au point de saturation, est approximativement égal à 0,01 cm^3/g du substrat. Cette valeur faible indique que seulement 3 % de la structure multi-couches de la membrane composite sont constitués par la phase de silicalite, ce 25 qui concorde avec les résultats obtenus par ailleurs par porosimétrie au mercure, SEM, EDX et d'autres méthode analytiques.

La présence de cette phase microporeuse dans le réseau macroporeux de la structure multi-couches a été confirmée par porosimétrie au mercure, qui ne met plus en évidence que la couche de diamètre de pore de 12 μm.

L'ensemble de ces données indique qu'il y a eu synthèse d'un matériau zéolithique de type silicalite à l'intérieur de la structure multi-couches macroporeuse, et préférentiellement dans la couche N° 3 de plus faible taille de pore (0,2 µm). L'absence quasi-total de

matériau synthétisé en dehors du tube selon Figure 1 suggère que des effets de confinement dans le support favorisent un processus de germination locale de la zéolithe.

5

EXEMPLE 2

On part du même substrat ou support macroporeux que celui selon Exemple 1, et représenté à la Figure 1.

- On met en oeuvre le même procédé que celui 10 l'Exemple 1, en modifiant explicité et défini dans seulement les paramètres suivants :
 - la période de vieillissement de la solution d'espèces de silice oligomériques est limitée à 24 heures ;
- 15 le traitement hydrothermal s'effectue à 190 °C, pendant 24 heures.

Dans ces conditions, il n'est pas observé de phase de tamis moléculaire continue, à l'extérieur du support révèle comme SEM l'analyse par Et macroporeux. la présence d'une silicalite dans les 20 précédemment, couches N° 2 et 3 du support macroporeux.

EXEMPLE 3

25

Le support utilisé dans cet exemple est un produit commercial de la Société TechSep. Il est constitué d'une couche de carbone fritté de 3 μm de taille moyenne de pore et d'une couche à base de ZrO2-TiO2 de 10 nm de taille 30 moyenne de pore.

Ce support a été soumis au même protocole que celui décrit dans l'Exemple 1, à l'exception de la durée de la synthèse hydrothermale qui est ici de 20 heures.

caractérisé par été а matériau obtenu Le 35 microscopie électronique SEM. Cette étude indique présence d'une phase zéolithique dans les pores de la

couche carbone ainsi que l'absence de matière zéolithique synthétisée dans et en surfac d la couche ${\tt ZrO_2-TiO_2}$.

EXEMPLE 4

Le tube selon Figure 1 formant membrane, préparé selon l'Exemple 1 a été testé pour déterminer ses propriétés de séparation gazeuse. Ces propriétés ont été étudiées en mélangeant les deux isomères 2,2 diméthylbutane et n-hexane en rapport 1:1 et en introduisant le mélange à l'intérieur du tube préparé selon l'exemple 1.

L'analyse a montré que le perméat contenait 15 entre 97 % et 99,5 % de n-hexane suivant la température de l'expérience. Ce résultat suggère que la membrane à base de zéolithe selon l'invention, et notamment à base de silicalite, est exempte de défauts.

Les nouveaux matériaux inorganiques composites s'avèrent invention présente la 20 poreux selon particulièrement résistants, tant au plan mécanique qu'au particulier peuvent en Ils physico-chimique. supporter, sans altération ou modification substantielle, des conditions d'utilisation particulièrement sévères, par 25 exemple hautes températures, milieux oxydants, ou en phase aqueuse par exemple. C'est en particulier dans ces conditions d'utilisation qu'ils apportent performance et matériaux composites aux rapport par durabilité, phase structure lesquels la pour traditionnels, 30 cristalline poreuse constitue une couche superficielle accrochée sur un substrat poreux.

Ces matériaux peuvent être associés à des matières actives en matière de catalyse, ou être modifiés pour constituer eux-mêmes des catalyseurs, par exemple par échange d'ions de la zéolithe. Dans ces applications catalytiques, les matériaux composites selon la présente

invention apportent de bien meilleures performances que celles obtenues avec des catalyseurs traditionnels dans la même application, par exemple une réaction de déshydrogénation d'un substrat organique, oxydante ou non.

Les matériaux selon l'invention peuvent être mis en forme selon toutes formes ou configurations appropriées à leurs applications.

Les applications des matériaux selon l'invention sont diverses et variées, et on citera notamment :

- 10 la séparation de gaz et liquides complexes ;
 - les réacteurs catalytiques avec membranes ;
 - les électrodes sélectives à base de zéolithes ;
 - les capteurs chimiques, sélectifs en taille et forme ;
 - les capteurs d'humidité, d'hydrocarbure ;
- 15 les détecteurs de gaz carbonique ;
 - etc...

REVENDICATIONS

- 1) Matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse, et une phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique, liée au substrat sans matrice de liaison intergranulaire, caractérisé en ce que, en combinaison:
- majoritairement, la phase solide minérale poreuse est obtenue par synthèse directement au sein du substrat et remplit de manière continue et homogène son volume interne poreux, avec un taux de remplissage dudit volume suffisant pour que toute perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne;
- et le diamètre moyen de pore du substrat de départ est compris entre un diamètre maximum, au-delà duquel la phase solide interne synthétisée n'est plus continue, et un diamètre minimum, en deçà duquel le volume interne poreux du substrat demeure substantiellement vide de toute phase solide interne.
- 2) Matériau selon la revendication 1, caractérisé en ce que le diamètre moyen de pore du substrat de départ est compris entre 5 nm et 10 μ m, et notamment entre 0,1 μ m 25 et 1 μ m.
- 3) Matériau selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le substrat est choisi parmi les matériaux suivants, à savoir céramiques, dont silices, alumines et zircones, les verres, les métaux, par exemple le titane, l'aluminium et l'acier, et le carbone fritté.
 - 4) Matériau selon la revendication 1, caractérisé en ce que le substrat inorganique de départ comporte des pores du type macropores ou mésopores.
- 5) Matériau selon la revendication 1, caractérisé en ce que la phase solide interne est un matière

zéolithique choisie parmi les zé lithes suivantes, à savoir silicalite, érionite, mordénite, ZSM, A et Y.

- 6) Matériau selon la revendication 1, caractérisé en ce que la phase solide interne est un tamis moléculaire choisi parmi les aluminophosphates (ALPO), les silicoaluminophosphates (SAPO), et les gallophosphates (GAPO), par exemple la clovérite.
 - 7) Structure inorganique composite poreuse, caractérisée en ce qu'elle comprend :
- 10 une couche inactive, constituée par un support inorganique de nature poreuse, substantiellement vide de toute phase solide minérale poreuse et interne;
 - et au moins une couche active d'un matériau inorganique composite poreux selon l'une quelconque des revendications 1 à 6.
 - 8) Structure selon la revendication 7, caractérisée en ce qu'elle comprend deux couches actives ayant des substrats de départ respectivement différents, notamment par leurs diamètres moyens de pores respectifs.
 - 20 9) Structure selon la revendication 7, caractérisée en ce que le diamètre moyen de pore de la couche inactive est supérieur au diamètre maximum du substrat de départ de la couche active, défini selon la revendication 1.
 - 25 10) Structure selon la revendication 7, caractérisée en ce que le diamètre moyen de pore de la couche inactive est inférieur au diamètre minimum du substrat de départ de la couche active, défini selon la revendication 1.
 - 11) Structure selon les revendications 7, 9 et 10, caractérisée en ce que la couche active est disposée entre deux couches inactives, à savoir l'une selon la revendication 9 et l'autre selon la revendication 10.
 - 12) Procédé d'obtention d'un matériau inorganique 35 comp site poreux, à partir d'un substrat inorganique de nature poreuse, selon lequel :

- n prépare un milieu intermédiaire, contenant de manière dispersée et homogène des précurseurs d'un tamis moléculaire;
- selon un processus hydrothermal, on met en contact le milieu intermédiaire avec le substrat, sans matériau de liaison intergranulaire, moyennant quoi une matière cristalline poreuse se trouve déposée, sous la forme d'une phase solide interne liée audit substrat, sans matrice de liaison intergranulaire;
- on lave, sèche et calcine le substrat avec la matière cristalline poreuse;

caractérisé en ce que le milieu intermédiaire est un liquide homogène, susceptible de pénétrer dans et imprégner le substrat, et comprend des oligomères d'au moins une espèce minérale appartenant à la composition moléculaire du tamis moléculaire à synthétiser.

- 13) Procédé selon la revendication 12, caractérisé en ce que le milieu intermédiaire basique contient une base organique faible, à titre d'agent structurant de cristallisation, et à l'exclusion de toute base minérale forte.
- 14) Procédé selon la revendication 13, selon lequel le tamis moléculaire est une matière zéolithique, caractérisé en ce que le rapport molaire entre l'espèce 25 minérale à base de silicium et la base organique est compris entre 0,25 et 4, et préférentiellement entre 1 et 2.
- 15) Procédé selon la revendication 12, caractérisé en ce que le milieu intermédiaire est soumis à une étape 30 de vieillissement, avant d'être mis au contact du substrat.

FIG 2

FEUILLE DE REMPLACEMENT (REGLE 26)

FEUILLE DE REMPLACEMENT (REGLE 26)

FEUILLE DE REMPLACEMENT (REGLE 26)

4/4

FIG 5

INTERNATIONAL SEARCH REPORT

Inter al Application No

PC 6	CATION OF SUBJECT MATTER B01D71/02	
cording to	nternational Patent Classification (IPC) or to both national classification and IPC	
FIELDS S	EARCHED	
PC 6	numentation searched (classification system followed by classification symbols) B01D	
ocumentati	on searched other than minimum documentation to the extent that such documents are in	ncluded in the fields searches
		A seems worth
lectronic de	ta base consulted during the international search (name of data base and, where practice	al, scaren with warmy
c. DOCUM	ENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Reference Cally No.
X	EP,A,O 511 739 (NGK INSULATORS, LTD.) 4 November 1992	1-5,7,9, 10,12
	see page 2, line 50 - page 3, line 24 see page 3, line 51 - line 57 see page 4, line 22 - page 6, line 3 see claims; table 1	
X	WO,A,93 17781 (WORCESTER POLYTECHNIC INSTITUTE) 16 September 1993	1-5,7,9, 10,12,13
4	see the whole document	14,15
A	WO,A,93 19840 (THE BRITISH PETROLEUM COMPALY PLC) 14 October 1993 see the whole document	1,3-7,9, 10,12,14
	-/	
X F	inther documents are listed in the continuation of box C. X Patent f	family members are listed in annex.
'Special	ment defining the general state of the art which is not cited to un- sidered to be of particular relevance invention	nent published after the international filing date date and not in conflict with the application but iderstand the principle or theory underlying the of particular relevance; the claimed invention
"E" earli filit "L" doct	er document but published on or after the international cannot be involve an involve an epic cited to establish the publication date of another very document or involve an epic or color property special reason (as specified)	considered to the the document is taken alone in inventive step when the document is taken alone of particular relevance; the claimed invention considered to involve an inventive step when the considered to involve an inventive step when the
	ument referring to an oral disclosure, use, exhibition or ments, asc	t is combined with one of situate to a person skilled ch combination being obvious to a person skilled

Name and mailing address of the ISA

Date of the actual completion of the international search

European Patent ffice, P.B. 5818 Patentiaan 2 NL - 2220 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

11 August 1995

24.08.95

Stevnsborg, N

Authorized officer

regory *	Citation of document, with interaction, what appropriate, or the comments of the comments of the citation of t	Relevant to claim No.
	US,A,5 019 263 (MOBIL OIL CORP.) 28 May	1,5,6
•	see the whole document	
•		
		·
	·	

INTERNATIONAL SEARCH REPORT

auformation on patent family members

Inter us Application No PCT/FR 95/00552

Patent document ited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0511739	04-11-92	JP-A- US-A-	5105420 5266542	27-04-93 30-11-93
 WO-A-9317781	16-09-93	US-A-	5258339	02-11-93
WO-A-9319840	14-10-93	AU-B- EP-A- JP-T-	3894493 0632743 7505331	08-11-93 11-01-95 15-06-95
US-A-5019263	28-05-91	AT-T- AU-B- AU-A- CA-A- DE-D- DE-T- EP-A- JP-A- US-A- US-A-	119066 642499 7803791 2043592 69107684 69107684 0460512 4227826 5100596 5110478 5069794	15-03-95 21-10-93 12-12-91 06-12-91 06-04-95 29-06-95 11-12-91 17-08-92 31-03-92 05-05-92

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 B01D71/02

į

Scion la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 B01D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche

Base de données electronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est realisable, termes de recherche milistes)

Lategorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	EP,A,O 511 739 (NGK INSULATORS, LTD.) 4 Novembre 1992 voir page 2, ligne 50 - page 3, ligne 24 voir page 3, ligne 51 - ligne 57 voir page 4, ligne 22 - page 6, ligne 3 voir revendications; tableau 1	1-5,7,9, 10,12
X A	WO,A,93 17781 (WORCESTER POLYTECHNIC INSTITUTE) 16 Septembre 1993 voir le document en entier	1-5,7,9, 10,12,13 14,15
A	WO,A,93 19840 (THE BRITISH PETROLEUM COMPALY PLC) 14 Octobre 1993 voir le document en entier	1,3-7,9, 10,12,14
	-/- -	
		·
	·	

X Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
* Catégories spéciales de documents cités: *A* document définissant l'état général de la technique, non considère comme particulièrement pertanent	T' document ultrieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe
"E" document anterieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à	ou la théorie constituant la base de l'invention X' document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y' document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, octre combination étant évidente
"P" document publié avant la date de dépôt international, mais posteneurement à la date de priorité revendiquée	pour une personne du métier & document qui fait parce de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
11 Août 1995	2 4 -08 - 1995
Nom et adresse postale de l'administration chargée de la recherche international	Fonctionnaire autorist
Office Europeen des Brevetz, P.B. 5818 Patentiain 2 NL - 2230 HV Riprovijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Stevnsborg, N

Dem: Internationals No PCT/FR 95/00552

(suite) DC	CUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, svec, le cas échéant, l'indication des passages pertinents	no, des revendications vistes
	US,A,5 019 263 (MOBIL OIL CORP.) 28 Mai 1991 voir le document en entier	1,5,6
	•	
		·
		·
-		·.
} }		
		·
	·	

RAFFURI DE RECHERCHE INTERNATIONAL

Renseignements relatifs aux membres de familles de brevets

Demr internationale No
PCT/FR 95/00552

•	•			
Document brevet cité u rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP-A-0511739	04-11-92	JP-A- 5105420 US-A- 5266542		27-04-93 30-11-93
WO-A-9317781	16-09-93	US-A-	5258339	02-11-93
WO-A-9319840	14-10-93	AU-B- EP-A- JP-T-	3894493 0632743 7505331	08-11-93 11-01-95 15-06-95
US-A-5019263	28-05-91	AT-T- AU-B- AU-A- CA-A-	119066 642499 7803791 2043592	15-03-95 21-10-93 12-12-91 06-12-91
		DE-D- DE-T- EP-A- JP-A-	69107684 69107684 0460512 4227826 5100596	06-04-95 29-06-95 11-12-91 17-08-92 31-03-92
•		US-A- US-A- US-A-	5110478 5169794	05-05-92 03-12-91

THIS PAGE BLANK (USPTO)

,

.