A survey of some Machine Learning models

Chris Cornwell

April 1, 2025

Outline

Support Vector Machines, continued

Kernels

Review - Goal of Maximum margin

The goal with a support vector machine, given sample data $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$, with $\mathbf{x}_i \in \mathbb{R}^d$, is to find parameters $\omega = (\mathbf{w},b)$, where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, so that $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$ is satisfied for all i, and the norm of \mathbf{w} is minimized (conventionally, you use half of the norm squared as a function to minimize).

Review - Goal of Maximum margin

The goal with a support vector machine, given sample data $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$, with $\mathbf{x}_i \in \mathbb{R}^d$, is to find parameters $\omega = (\mathbf{w},b)$, where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, so that $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$ is satisfied for all i, and the norm of \mathbf{w} is minimized (conventionally, you use half of the norm squared as a function to minimize). Minimizing the norm of \mathbf{w} makes the *marginal hyperplanes*, where $\mathbf{w} \cdot \mathbf{x} + b = \pm 1$, be as far as possible from the hyperplane $\{\mathbf{x} \mid \mathbf{w} \cdot \mathbf{x} + b = 0\}$ as possible.

Using the method of Lagrange multipliers

Recall, can understand minimizing $\frac{1}{2}|\mathbf{w}|^2$ subject to $y_i(\mathbf{w}\cdot\mathbf{x}_i+b)\geq 1$ through Lagrange multipliers.

Using the method of Lagrange multipliers

Recall, can understand minimizing $\frac{1}{2}|\mathbf{w}|^2$ subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ through Lagrange multipliers.

For $\underline{\alpha}=(\alpha_1,\ldots,\alpha_n)$, with $\alpha_i\in\mathbb{R}$, Lagrangian is

$$L(\mathbf{w}, b, \underline{\alpha}) = \frac{1}{2} |\mathbf{w}|^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right).$$

It is minimized when

$$\begin{split} \nabla_{\mathbf{w}} \mathbf{L} &= 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i; \\ \nabla_{\mathbf{b}} \mathbf{L} &= 0 \quad \Rightarrow \quad \sum_{i=1}^n \alpha_i y_i = 0; \\ \alpha_i \left(y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right) &= 0 \quad \Rightarrow \quad \alpha_i = 0 \quad \text{OR} \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + b) = 1. \end{split}$$

Using the method of Lagrange multipliers

Recall, can understand minimizing $\frac{1}{2}|\mathbf{w}|^2$ subject to $y_i(\mathbf{w}\cdot\mathbf{x}_i+b)\geq 1$ through Lagrange multipliers.

For $\underline{\pmb{\alpha}}=(\pmb{\alpha}_1,\ldots,\pmb{\alpha}_{\sf n})$, with $\pmb{\alpha}_i\in\mathbb{R}$, Lagrangian is

$$L(\mathbf{w}, b, \underline{\alpha}) = \frac{1}{2} |\mathbf{w}|^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right).$$

It is minimized when

$$\nabla_{\mathbf{w}} L = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i};$$

$$\nabla_{b} L = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0;$$

$$\alpha_{i} (y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1) = 0 \quad \Rightarrow \quad \alpha_{i} = 0 \quad \text{OR} \quad y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) = 1.$$

Support vectors are those \mathbf{x}_i for which $\alpha_i \neq 0$, and so $\mathbf{w} \cdot \mathbf{x}_i + b = \pm 1$.

The previous constrained minimization problem only has a solution if the ± 1 -labeled data is linearly separable.

The previous constrained minimization problem only has a solution if the ± 1 -labeled data is linearly separable.

To accommodate for data that is not linearly separable, so-called **slack** variables ξ_i , with $1 \le i \le n$, are introduced in the constrained as follows.

Minimize:
$$\lambda |\mathbf{w}|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$
 and $\xi_i \ge 0$ for all i

The previous constrained minimization problem only has a solution if the ± 1 -labeled data is linearly separable.

To accommodate for data that is not linearly separable, so-called **slack** variables ξ_i , with $1 \le i \le n$, are introduced in the constrained as follows.

Minimize:
$$\lambda |\mathbf{w}|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$
 and $\xi_i \ge 0$ for all i

This minimization problem can likewise be approached through Lagrange multipliers.

The previous constrained minimization problem only has a solution if the ± 1 -labeled data is linearly separable.

To accommodate for data that is not linearly separable, so-called **slack** variables ξ_i , with $1 \le i \le n$, are introduced in the constrained as follows.

Minimize:
$$\lambda |\mathbf{w}|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$
 and $\xi_i \ge 0$ for all i

This minimization problem can likewise be approached through Lagrange multipliers.

However, given \mathbf{x}_k in the data, the corresponding $\boldsymbol{\xi}_k$ ought to be zero precisely if \mathbf{x}_k is on the side of the hyperplane corresponding to its label y_k (and past the marginal hyperplane); that is, when $y_k(\mathbf{w}\cdot\mathbf{x}_k+b)\geq 1$. We'll use this observation to convert to the problem of minimizing a loss function.

Fix some point $(\mathbf{x},y)\in\mathbb{R}^d\times\{1,-1\}.$ Given parameters \mathbf{w},b , we define a function

$$\ell((\mathbf{w}, b), (\mathbf{x}, y)) = \max\{0, 1 - y(\mathbf{w} \cdot \mathbf{x} + b)\}.$$

Fix some point $(\mathbf{x},y) \in \mathbb{R}^d \times \{1,-1\}$. Given parameters \mathbf{w},b , we define a function

$$\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y)) = \max\{0,1-y(\mathbf{w}\cdot\mathbf{x}+b)\}.$$

Note that $\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y)) \neq 0$ if and only if $y(\mathbf{w} \cdot \mathbf{x} + b) < 1$. We also noticed that, for some $(\mathbf{x}_{\mathit{R}},y_{\mathit{R}}) \in \mathcal{S}$, we should only have $\boldsymbol{\xi}_{\mathit{R}} \neq 0$ when $y_{\mathit{R}}(\mathbf{w} \cdot \mathbf{x}_{\mathit{R}} + b) < 1$.

Fix some point $(\mathbf{x},y) \in \mathbb{R}^d \times \{1,-1\}$. Given parameters \mathbf{w},b , we define a function

$$\ell((\mathbf{w}, b), (\mathbf{x}, y)) = \max\{0, 1 - y(\mathbf{w} \cdot \mathbf{x} + b)\}.$$

Note that $\ell((\mathbf{w},b),(\mathbf{x},y)) \neq 0$ if and only if $y(\mathbf{w} \cdot \mathbf{x} + b) < 1$. We also noticed that, for some $(\mathbf{x}_k,y_k) \in \mathcal{S}$, we should only have $\xi_k \neq 0$ when $y_k(\mathbf{w} \cdot \mathbf{x}_k + b) < 1$.

And so, define $\mathcal{L}_{S}^{\mathit{hinge}}((\mathbf{w},b))$ to be the average

$$\mathcal{L}_{\mathcal{S}}^{hinge}((\mathbf{w},b)) = \frac{1}{n} \sum_{i=1}^{n} \ell((\mathbf{w},b),(\mathbf{x}_{i},y_{i})).$$

Fix some point $(\mathbf{x},y) \in \mathbb{R}^d \times \{1,-1\}$. Given parameters \mathbf{w},b , we define a function

$$\ell((\mathbf{w}, b), (\mathbf{x}, y)) = \max\{0, 1 - y(\mathbf{w} \cdot \mathbf{x} + b)\}.$$

Note that $\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y)) \neq 0$ if and only if $y(\mathbf{w}\cdot\mathbf{x}+b) < 1$. We also noticed that, for some $(\mathbf{x}_k,y_k) \in \mathcal{S}$, we should only have $\boldsymbol{\xi}_k \neq 0$ when $y_k(\mathbf{w}\cdot\mathbf{x}_k+b) < 1$.

And so, define $\mathcal{L}_{S}^{hinge}((\mathbf{w},b))$ to be the average

$$\mathcal{L}_{\mathcal{S}}^{hinge}((\mathbf{w},b)) = \frac{1}{n} \sum_{i=1}^{n} \ell((\mathbf{w},b),(\mathbf{x}_{i},y_{i})).$$

Claim: The constrained minimization problem of the previous slide is equivalent to minimizing the function $\lambda |\mathbf{w}|^2 + \mathcal{L}_S^{hinge}((\mathbf{w},b))$.

Fix some point $(\mathbf{x},y) \in \mathbb{R}^d \times \{1,-1\}$. Given parameters \mathbf{w},b , we define a function

$$\boldsymbol{\ell}((\mathbf{w}, b), (\mathbf{x}, y)) = \max\{0, 1 - y(\mathbf{w} \cdot \mathbf{x} + b)\}.$$

Note that $\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y)) \neq 0$ if and only if $y(\mathbf{w}\cdot\mathbf{x}+b) < 1$. We also noticed that, for some $(\mathbf{x}_k,y_k) \in \mathcal{S}$, we should only have $\boldsymbol{\xi}_k \neq 0$ when $y_k(\mathbf{w}\cdot\mathbf{x}_k+b) < 1$.

And so, define $\mathcal{L}_{\mathcal{S}}^{\mathit{hinge}}((\mathbf{w},b))$ to be the average

$$\mathcal{L}_{\mathcal{S}}^{hinge}((\mathbf{w},b)) = \frac{1}{n} \sum_{i=1}^{n} \ell((\mathbf{w},b),(\mathbf{x}_{i},y_{i})).$$

Claim: The constrained minimization problem of the previous slide is equivalent to minimizing the function $\lambda |\mathbf{w}|^2 + \mathcal{L}_{S}^{hinge}((\mathbf{w}, b))$.

Proof.

Given $1 \le k \le n$, the best choice for ξ_k is 0 if $\ell((\mathbf{w}, b), (\mathbf{x}_k, y_k)) = 0$. Otherwise, by the constraint, we have $\xi_k \ge 1 - y_k(\mathbf{w} \cdot \mathbf{x}_k + b)$ and so the best choice is $\xi_k = \ell((\mathbf{w}, b), (\mathbf{x}_k, y_k))$.

Say that $\mathbf{x}=(x_1,x_2,\ldots,x_d)$, and let $x_{d+1}=1$. The function $\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y))$ has the following partial derivatives:

$$\frac{\partial \ell}{\partial w_j} = \begin{cases} 0, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) > 1 \\ -y\mathbf{x}_j, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) < 1, \end{cases}$$

for all $1 \le j \le d + 1$.

Say that $\mathbf{x} = (x_1, x_2, \dots, x_d)$, and let $x_{d+1} = 1$. The function $\ell((\mathbf{w}, b), (\mathbf{x}, y))$ has the following partial derivatives:

$$\frac{\partial \ell}{\partial w_j} = \begin{cases} 0, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) > 1 \\ -yx_j, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) < 1, \end{cases}$$

for all $1 \le j \le d + 1$.

Note that the derivative is not defined if $y(\mathbf{w} \cdot \mathbf{x} + b) = 1$. However, this constitutes a set in \mathbb{R}^d of volume zero – it will be encountered with probability zero.

Say that $\mathbf{x} = (x_1, x_2, \dots, x_d)$, and let $x_{d+1} = 1$. The function $\ell((\mathbf{w}, b), (\mathbf{x}, y))$ has the following partial derivatives:

$$\frac{\partial \ell}{\partial w_j} = \begin{cases} 0, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) > 1\\ -yx_j, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) < 1, \end{cases}$$

for all $1 \le j \le d + 1$.

Note that the derivative is not defined if $y(\mathbf{w} \cdot \mathbf{x} + b) = 1$. However, this constitutes a set in \mathbb{R}^d of volume zero – it will be encountered with probability zero.

If doing batch gradient descent, the above partial derivatives allow us to compute the gradient of the SVM regularized loss function, namely

$$2\lambda \mathbf{w} + \frac{1}{n} \sum_{i=1}^{n} \nabla \ell((\mathbf{w}, b), (\mathbf{x}_i, y_i)).$$

Say that $\mathbf{x}=(x_1,x_2,\ldots,x_d)$, and let $x_{d+1}=1$. The function $\boldsymbol{\ell}((\mathbf{w},b),(\mathbf{x},y))$ has the following partial derivatives:

$$\frac{\partial \ell}{\partial w_j} = \begin{cases} 0, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) > 1\\ -yx_j, & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) < 1, \end{cases}$$

for all $1 \le i \le d + 1$.

Note that the derivative is not defined if $y(\mathbf{w} \cdot \mathbf{x} + b) = 1$. However, this constitutes a set in \mathbb{R}^d of volume zero – it will be encountered with probability zero.

If doing batch gradient descent, the above partial derivatives allow us to compute the gradient of the SVM regularized loss function, namely

$$2\lambda \mathbf{w} + \frac{1}{n} \sum_{i=1}^{n} \nabla \ell((\mathbf{w}, b), (\mathbf{x}_i, y_i)).$$

However, if doing stochastic gradient descent (SGD, which only the loss on a single point from S), then for that selected point (\mathbf{x},y) , we get

$$2\lambda \mathbf{w} + \nabla \ell((\mathbf{w}, \mathbf{b}), (\mathbf{x}, y)).$$

A Procedure for SGD on SVM

The following is a procedure that will carry out Stochastic Gradient Descent for an SVM (with slack variables).

Outline

Support Vector Machines, continued

Kernels

To use a hyperplane with normal vector \mathbf{w} , and shift b, but to get a predictive model that has non-linear decision boundary: first send the data through a map $\psi: \mathbb{R}^d \to \mathbb{R}^D$, with D > d (usually); then, use a hyperplane in \mathbb{R}^D .

To use a hyperplane with normal vector \mathbf{w} , and shift b, but to get a predictive model that has non-linear decision boundary: first send the data through a map $\psi: \mathbb{R}^d \to \mathbb{R}^D$, with D > d (usually); then, use a hyperplane in \mathbb{R}^D .

Example. Define $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ so that, for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)$ we have

$$\psi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}.$$

To use a hyperplane with normal vector \mathbf{w} , and shift b, but to get a predictive model that has non-linear decision boundary: first send the data through a map $\psi: \mathbb{R}^d \to \mathbb{R}^D$, with D > d (usually); then, use a hyperplane in \mathbb{R}^D .

Example. Define $\pmb{\psi}: \mathbb{R}^2 \to \mathbb{R}^3$ so that, for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)$ we have

$$\psi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}.$$

Letting $\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and b = -3, the set of points $\mathbf{x} \in \mathbb{R}^2$

such that $\mathbf{w} \cdot \psi(\mathbf{x}) + b = 0$ is union of two curves depicted to the right.

To use a hyperplane with normal vector \mathbf{w} , and shift b, but to get a predictive model that has non-linear decision boundary: first send the data through a map $\psi: \mathbb{R}^d \to \mathbb{R}^D$, with D > d (usually); then, use a hyperplane in \mathbb{R}^D .

Example. Define $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ so that, for $\mathbf{x}=(x_1,x_2)$ we have

$$\psi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}.$$

Letting
$$\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 and $b = -3$, the set of points $\mathbf{x} \in \mathbb{R}^2$

such that $\mathbf{w} \cdot \bar{\boldsymbol{\psi}}(\mathbf{x}) + b = 0$ is union of two curves depicted to the right.

The set of $\mathbf{x} \in \mathbb{R}^2$ that this model would label positively are those such that $\mathbf{w} \cdot \psi(\mathbf{x}) + b > 0$, shaded in blue. (A hyperplane in \mathbb{R}^3 separates images, under ψ , of positively and negatively labeled points.)

Example (cont'd). We have

$$\psi(\mathbf{x}) = \begin{vmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{vmatrix}$$

and $\mathbf{w} = (w_1, w_2, w_3)$. Say that the data is modeled well by this *type* of decision boundary (maybe not perfectly separated though).

Example (cont'd). We have

$$\psi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

and $\mathbf{w}=(w_1,w_2,w_3)$. Say that the data is modeled well by this *type* of decision boundary (maybe not perfectly separated though).

Then solving the minimization problem, over $\mathbf{w} \in \mathbb{R}^3$, $b \in \mathbb{R}$,

$$\min_{\mathbf{w},b} \quad \lambda |\mathbf{w}|^2 + \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(\mathbf{w} \cdot \boldsymbol{\psi}(\mathbf{x}_i) + b)\}$$

is a non-linear SVM (potentially with some points having a non-zero slack variable).

Example (cont'd). We have

$$\psi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

and $\mathbf{w}=(w_1,w_2,w_3)$. Say that the data is modeled well by this *type* of decision boundary (maybe not perfectly separated though).

Then solving the minimization problem, over $\mathbf{w} \in \mathbb{R}^3$, $b \in \mathbb{R}$,

$$\min_{\mathbf{w},b} \quad \lambda |\mathbf{w}|^2 + \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(\mathbf{w} \cdot \boldsymbol{\psi}(\mathbf{x}_i) + b)\}$$

is a non-linear SVM (potentially with some points having a non-zero slack variable).

But, how can we do this? Especially if the map ψ is not known beforehand?

Lagrangian Dual Problem

Recall (from earlier SVM lecture), the Lagrange multiplier method leads to a "dual" maximization problem that is an equivalent one:¹

$$\max_{\underline{\alpha}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j).$$

¹This is the version without slack variables. There is one with slack variables.

²The Lagrange multipliers then, in turn, determine both \mathbf{w} and b.

Lagrangian Dual Problem

Recall (from earlier SVM lecture), the Lagrange multiplier method leads to a "dual" maximization problem that is an equivalent one:¹

$$\max_{\underline{\alpha}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,i=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j).$$

Note that this does not require knowing the actual points $\mathbf{x}_i \in \mathbb{R}^d$, only the dot products between pairs \mathbf{x}_i and \mathbf{x}_j . It also does not require that we determine (\mathbf{w}, b) , but the multipliers $\alpha_1, \ldots, \alpha_n$ instead. ²

¹This is the version without slack variables. There is one with slack variables.

 $^{^{2}}$ The Lagrange multipliers then, in turn, determine both **w** and b.

Lagrangian Dual Problem

Recall (from earlier SVM lecture), the Lagrange multiplier method leads to a "dual" maximization problem that is an equivalent one:¹

$$\max_{\underline{\alpha}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j).$$

Note that this does not require knowing the actual points $\mathbf{x}_i \in \mathbb{R}^d$, only the dot products between pairs \mathbf{x}_i and \mathbf{x}_j . It also does not require that we determine (\mathbf{w}, b) , but the multipliers $\alpha_1, \ldots, \alpha_n$ instead. ²

These observations are part of a more general phenomenon.

¹This is the version without slack variables. There is one with slack variables.

²The Lagrange multipliers then, in turn, determine both \mathbf{w} and b.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an arbitrary function and let $R: \mathbb{R}_{\geq 0} \to \mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi: \mathbb{R}^d \to H$.

³Really only need *non-decreasing*: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega=(\mathbf{w},b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\omega} f(\langle \omega, \psi(\mathbf{x}_1) \rangle, \dots, \langle \omega, \psi(\mathbf{x}_n) \rangle) + R(|\omega|). \quad (\dagger)$$

³Really only need *non-decreasing*: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega=(\mathbf{w},b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\omega}} \quad f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

Our SVM optimization is an instance of this with⁴ $f(a_1, \ldots, a_n) = \frac{1}{n} \sum \max\{0, 1 - y_i a_i\}$ and $R(a) = \lambda a^2$.

³Really only need *non-decreasing*: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\omega}} \quad f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

Our SVM optimization is an instance of this with⁴ $f(a_1, \ldots, a_n) = \frac{1}{n} \sum \max\{0, 1 - y_i a_i\}$ and $R(a) = \lambda a^2$.

Often, $H = \mathbb{R}^D$ for some integer D > 0. However, this theorem works more generally, H being something called a *Hilbert space*.

³Really only need *non-decreasing*: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\omega}} \quad f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

Our SVM optimization is an instance of this with⁴

$$f(a_1,\ldots,a_n)=\frac{1}{n}\sum\max\{0,1-y_ia_i\}$$
 and $R(a)=\lambda a^2$.

Often, $H = \mathbb{R}^D$ for some integer D > 0. However, this theorem works more generally, H being something called a *Hilbert space*.

Theorem (Representer Theorem)

There exists vector $\underline{\alpha} \in \mathbb{R}^n$ such that $\omega = \sum_{i=1}^n \alpha_i \psi(\mathbf{x}_i)$ is a minimizer of (†).

³Really only need non-decreasing: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\omega}} \quad f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

Our SVM optimization is an instance of this with⁴

$$f(a_1,\ldots,a_n)=rac{1}{n}\sum\max\{0,1-y_ia_i\}$$
 and $R(a)=\lambda a^2$.

Often, $H = \mathbb{R}^D$ for some integer D > 0. However, this theorem works more generally, H being something called a *Hilbert space*.

Theorem (Representer Theorem)

There exists vector
$$\underline{\alpha} \in \mathbb{R}^n$$
 such that $\omega = \sum_{i=1}^n \alpha_i \psi(\mathbf{x}_i)$ is a minimizer of (†).

Proof sketch.

Given ω from theorem statement, if ω^* is minimizer, can write $\omega^* = \omega + v$ with v orthogonal to $\psi(\mathbf{x}_i)$ for all i, which implies $|\omega|^2 \le |\omega^*|^2$.

³Really only need non-decreasing: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\sigma}} f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

• Our SVM optimization is an instance of this with⁴ $f(a_1, \ldots, a_n) = \frac{1}{n} \sum \max\{0, 1 - y_i a_i\}$ and $R(a) = \lambda a^2$.

Often, $H = \mathbb{R}^D$ for some integer D > 0. However, this theorem works more generally, H being something called a *Hilbert space*.

Theorem (Representer Theorem)

There exists vector
$$\alpha \in \mathbb{R}^n$$
 such that $\omega = \sum_{i=1}^n \alpha_i \psi(\mathbf{x}_i)$ is a minimizer of (†).

Proof sketch.

Given ω from theorem statement, if ω^* is minimizer, can write $\omega^* = \omega + v$ with v orthogonal to $\psi(\mathbf{x}_i)$ for all i, which implies $|\omega|^2 \leq |\omega^*|^2$. This means $R(|\omega|) \leq R(|\omega^*|)$; can check that $v_i \langle \omega, \psi(\mathbf{x}_i) \rangle = v_i \langle \omega^*, \psi(\mathbf{x}_i) \rangle$ for all i.

³Really only need *non-decreasing*: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be an arbitrary function and let $R:\mathbb{R}_{\geq 0}\to\mathbb{R}$ be an increasing³ function. Further, say that we have a map $\psi:\mathbb{R}^d\to H$. We consider the minimization problem

$$\min_{\boldsymbol{\omega}} \quad f(\langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_1) \rangle, \dots, \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_n) \rangle) + R(|\boldsymbol{\omega}|). \quad (\dagger)$$

Our SVM optimization is an instance of this with⁴

$$f(a_1,\ldots,a_n)=rac{1}{n}\sum\max\{0,1-y_ia_i\}$$
 and $R(a)=\lambda a^2$.

Often, $H = \mathbb{R}^D$ for some integer D > 0. However, this theorem works more generally, H being something called a *Hilbert space*.

Theorem (Representer Theorem)

There exists vector
$$\underline{\alpha} \in \mathbb{R}^n$$
 such that $\omega = \sum_{i=1}^n \alpha_i \psi(\mathbf{x}_i)$ is a minimizer of (†).

Proof sketch.

Given ω from theorem statement, if ω^* is minimizer, can write $\omega^* = \omega + v$ with v orthogonal to $\psi(\mathbf{x}_i)$ for all i, which implies $|\omega|^2 \leq |\omega^*|^2$. This means $R(|\omega|) \leq R(|\omega^*|)$; can check that $y_i \langle \omega, \psi(\mathbf{x}_i) \rangle = y_i \langle \omega^*, \psi(\mathbf{x}_i) \rangle$ for all i. Put together \Longrightarrow value of (\dagger) on ω is not more than its value on ω^* .

³Really only need non-decreasing: if $a_1 < a_2$ then $R(a_1) \le R(a_2)$.

⁴Suppose last coordinate of $\psi(\mathbf{x})$ to be 1 and $\omega = (\mathbf{w}, b)$.

Kernel Trick

By the Representer Theorem, we can consider the optimal $\omega = \sum_{i=1}^{n} \alpha_i \psi(\mathbf{x}_i)$. Then we are able to rewrite the optimization problem (†).

$$\begin{split} \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_j) \rangle &= \sum_{i=1}^n \alpha_i \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle \\ |\boldsymbol{\omega}|^2 &= \langle \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i), \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i) \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle. \end{split}$$

We put these expressions into f and R in (†); they only depend on $\alpha_1, \ldots, \alpha_n$ and the dot products⁵ between $\psi(\mathbf{x}_i)$ and $\psi(\mathbf{x}_i)$.

⁵Inner products, more generally.

Kernel Trick

By the Representer Theorem, we can consider the optimal $\omega = \sum_{i=1}^{n} \alpha_i \psi(\mathbf{x}_i)$. Then we are able to rewrite the optimization problem (†).

$$\begin{split} \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_j) \rangle &= \sum_{i=1}^n \alpha_i \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle \\ |\boldsymbol{\omega}|^2 &= \langle \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i), \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i) \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle. \end{split}$$

We put these expressions into f and R in (\dagger); they only depend on $\alpha_1, \ldots, \alpha_n$ and the dot products⁵ between $\psi(\mathbf{x}_i)$ and $\psi(\mathbf{x}_i)$.

A "trick": don't figure out ψ , but decide on a function $K(\mathbf{x}, \mathbf{x}')$ that will determine the dot products $\langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle$.

⁵Inner products, more generally.

Kernel Trick

By the Representer Theorem, we can consider the optimal $\omega = \sum_{i=1}^{n} \alpha_i \psi(\mathbf{x}_i)$. Then we are able to rewrite the optimization problem (†).

$$\begin{split} \langle \boldsymbol{\omega}, \boldsymbol{\psi}(\mathbf{x}_j) \rangle &= \sum_{i=1}^n \alpha_i \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle \\ |\boldsymbol{\omega}|^2 &= \langle \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i), \sum_{i=1}^n \alpha_i \boldsymbol{\psi}(\mathbf{x}_i) \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \langle \boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j) \rangle. \end{split}$$

We put these expressions into f and R in (\dagger); they only depend on $\alpha_1, \ldots, \alpha_n$ and the dot products⁵ between $\psi(\mathbf{x}_i)$ and $\psi(\mathbf{x}_i)$.

A "trick": don't figure out ψ , but decide on a function $K(\mathbf{x},\mathbf{x}')$ that will determine the dot products $\langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle$. Often the dimension D used by ψ needs to be fairly large and dot products in high dimension can be computationally expensive. However, if we choose K and get the **Gram matrix**, with (i,j) entry $K(\mathbf{x}_i,\mathbf{x}_j)$, such dot products not needed; optimize the parameters α_i only.

⁵Inner products, more generally.

Two common choices for kernel function *K* are listed below. In general, the corresponding Gram matrix should be symmetric and *positive semi-definite*.

Two common choices for kernel function *K* are listed below. In general, the corresponding Gram matrix should be symmetric and *positive semi-definite*.

1. **Polynomial kernels.** For constants $r \ge 0$, $\gamma > 0$, and positive integer d, set

$$K(\mathbf{x}, \mathbf{x}') = (r + \gamma(\mathbf{x} \cdot \mathbf{x}'))^d.$$

In the definition, $\mathbf{x}\cdot\mathbf{x}'$ is usually the standard dot product, but could be another inner product.

Two common choices for kernel function *K* are listed below. In general, the corresponding Gram matrix should be symmetric and *positive semi-definite*.

1. **Polynomial kernels.** For constants $r \ge 0$, $\gamma > 0$, and positive integer d, set

$$K(\mathbf{x}, \mathbf{x}') = (r + \gamma(\mathbf{x} \cdot \mathbf{x}'))^d.$$

In the definition, $\mathbf{x} \cdot \mathbf{x}'$ is usually the standard dot product, but could be another inner product.

2. **Gaussian kernels.** For constant $\gamma > 0$, set

$$K(\mathbf{x},\mathbf{x}')=e^{-\gamma|\mathbf{x}-\mathbf{x}'|^2}.$$

These kernels are also called "Radial Basis Function" (RBF) kernels.

Two common choices for kernel function *K* are listed below. In general, the corresponding Gram matrix should be symmetric and *positive semi-definite*.

1. **Polynomial kernels.** For constants $r \ge 0$, $\gamma > 0$, and positive integer d, set

$$K(\mathbf{x}, \mathbf{x}') = (r + \gamma(\mathbf{x} \cdot \mathbf{x}'))^d.$$

In the definition, $\mathbf{x} \cdot \mathbf{x}'$ is usually the standard dot product, but could be another inner product.

2. **Gaussian kernels.** For constant $\gamma > 0$, set

$$K(\mathbf{x},\mathbf{x}')=e^{-\gamma|\mathbf{x}-\mathbf{x}'|^2}.$$

These kernels are also called "Radial Basis Function" (RBF) kernels.

Think about a polynomial kernel with $r=\gamma=1$ and d=2. Further, say that ${\bf x}$ and ${\bf x}'$ are in \mathbb{R}^2 . Check that

$$\pmb{\psi}(\pmb{x})=(\pmb{x}_1^2,\sqrt{2}\pmb{x}_1\pmb{x}_2,\pmb{x}_2^2,\sqrt{2}\pmb{x}_1,\sqrt{2}\pmb{x}_2,1)\in\mathbb{R}^6$$
 will give the equation

$$K(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x}) \cdot \psi(\mathbf{x}').$$

Here is the SGD procedure with a kernel (using the Gram matrix $[K(\mathbf{x}_i, \mathbf{x}_i)]$).

Here is the SGD procedure with a kernel (using the Gram matrix $[K(\mathbf{x}_i, \mathbf{x}_j)]$). The algorithm uses gradient descent to iteratively find $\alpha_1^{(t)}, \ldots, \alpha_n^{(t)}$ at step t. During it, scalars $\beta_1^{(t)}, \ldots, \beta_n^{(t)}$ are used. Writing beta[i] [t] for $\beta_i^{(t)}$ and psi for ψ , the relation to our previous SGD algorithm is theta[t] = sum(beta[i][t]*psi(X[i]), i=1,...,n).

Here is the SGD procedure with a kernel (using the Gram matrix $[K(\mathbf{x}_i, \mathbf{x}_j)]$). The algorithm uses gradient descent to iteratively find $\alpha_1^{(t)}, \ldots, \alpha_n^{(t)}$ at step t. During it, scalars $\beta_1^{(t)}, \ldots, \beta_n^{(t)}$ are used. Writing beta[i] [t] for $\beta_i^{(t)}$ and psi for ψ , the relation to our previous SGD algorithm is theta[t] = sum(beta[i][t]*psi(X[i]), i=1,...,n).

Here is the SGD procedure with a kernel (using the Gram matrix $[K(\mathbf{x}_i, \mathbf{x}_j)]$). The algorithm uses gradient descent to iteratively find $\alpha_1^{(t)}, \ldots, \alpha_n^{(t)}$ at step t. During it, scalars $\beta_1^{(t)}, \ldots, \beta_n^{(t)}$ are used. Writing beta[i] [t] for $\beta_i^{(t)}$ and psi for ψ , the relation to our previous SGD algorithm is theta[t] = sum(beta[i][t]*psi(X[i]), i=1,...,n).

Note: The vectors $W^{(t)}$ of previous algorithm are $\sum_{i=1}^n \alpha_i^{(t)} \psi(\mathbf{x}_i)$. But, writing \overline{W} for average of the $W^{(t)}$, to get prediction on unseen $\mathbf{x} \in \mathbb{R}^d$ we just need

$$\langle \overline{W}, \psi(\mathbf{x}) \rangle = \sum \overline{\alpha}_i K(\mathbf{x}_i, \mathbf{x}).$$