POLS/CS&SS 503: Advanced Quantitative Political Methodology

TRANSFORMATIONS

May 5, 2015

Jeffrey B. Arnold

Overview

Logarithms and Power Transformations

Linear Transformations of Regressions

Life Expectancy (years) on GDP per capita (2007)

Residuals of Life Expectancy (years) on GDP per capita (2007)

Life Expectancy (years ⁴) on log GDP per capita (2007)

Residuals of Life Expectancy (years ⁴) on log GDP per capita (2007)

Logarithms and Power Transformations

Linear Transformations of Regressions

Interpreting Logarithms

How would you interpret the following?

- GDP per cap $_i = \alpha + \beta \log (\text{school})_i$
- $\log \text{GDP per cap}_i = \alpha + \beta \text{(school)}_i$
- $\log \text{GDP per cap}_i = \alpha + \beta \log (\text{school})_i$

Linearizing Functions

Can you linearize these functions by taking the logarithms of both sides?

Exponential

$$y_i = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon_i}$$

Yes

$$\log y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon_i$$

Gravity Equation

$$\mathrm{trade}_{ij} = \frac{\alpha \mathrm{GDP}_i^{\beta_1} \mathrm{GDP}_j^{\beta_2}}{\delta d_{ij}^{\beta_3}}$$

Yes

$$\log \operatorname{trade}_{ij} = (\log \alpha + \log \delta) + \beta_1 \log \operatorname{GDP}_i + \beta_2 \operatorname{GDP}_j - \beta_3 d_{ij}$$

Cobb-Douglas Production Function

$$y = \alpha x_1^{\beta} x_2^{\gamma}$$

Yes

$$\log y = \log \alpha + \beta \log x_1 + \delta \log x_2$$

CES Production Function

$$y = \alpha (\delta x_1^{\rho} + (1 - \delta) x_2^{\rho})^{\gamma/\rho}$$

No

$$\log y = \log \alpha + (\gamma/\rho) \log(\delta x_1^\rho + (1-\delta)x_2^\rho)$$

Can't simplify $\log(\delta x_1^{\rho} + (1 - \delta)x_2^{\rho})$.

Why can diff in logs be interpreted as a $\%\Delta$

Note: $\log(1+r) \approx r$ when r small Then,

$$\log(x) - \log(x(1+r)) = \log(1+r) \approx r$$
$$= \%\Delta x/100$$

This property only holds for the natural logarithm. Base e.

Box-Cox Family of Transformations

Plot for
$$\lambda=0.25, 0.5, 0, 2, 4, 8$$
 for $\boldsymbol{x}=(0,4]$

Box-Cox Family of Transforms

$$\begin{cases} f(x,\lambda) = \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ f(x,\lambda) = \log x & \text{if } \lambda = 0 \end{cases}$$

- Requires x > 0. If negative, use x + c for some value of c to make make all x postiive, or Yeo-Johnson.
- Can solve for λ to transform x as close to wrt. Normal skew.
- car function: powerTransform, bcTransform.
- In regression: If know λ can transform y or x.

Logarithms and Power Transformations

Linear Transformations of Regressions

Linear Transformations of Regression

Scalar Multiplication

$$y = \alpha + \beta x_i + \epsilon$$

Multiplying x_i by a just changes the slope to βa

$$y = \alpha + (\beta a)x_i + \epsilon$$

Linear Transformations of Regression

Scalar Addition

$$y = \alpha + \beta x_i + \epsilon$$

Adding a constant c to x_i

$$y = \alpha + \beta(x_i + c) + \epsilon$$

Standardized Coefficients / Regressors

$$y = \alpha + \beta_0 + \beta_1 \frac{x_i - \bar{x}}{SD(x)} + \epsilon_i$$

- Can be useful for default interpretation (controversial)
- But about same as comparing x + SD(x) post-estimation.
- Bad for skewed variables, binary variables?
- Transform regressors, not functions of regressors.
- Gelman: Continuous: divide by 2 SD(x); Binary: center at mean.
- No need for them for default interpretation. With computational power, simulations better.
- ${f \cdot}$ Very important to standardize X in machine learning applications, or anywhere with complicated optimization problems.