L3: Building Direct Link Networks I

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

□ What problems do we need to solve to build even a direct link network?

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

- Encoding
 - Encoding bits onto transmission medium
- **□** Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control (specific to multiple access networks)
 - Mediating access to shared link

Physical Medium

- □ Guided media: transmission in "bounded media (wires)"
 - Examples: Twisted pair, coaxial cable, optical fiber
- □ Unguided media: transmission in "open space (wireless)"
 - Examples: Radio, Sonar
- Some wave oscillation propagates in the medium and carries signal
 - Frequency of carrier waves (or carrier signals)
- Problem: convert digital data to physical signal that is transmitted in a physical medium

Modulation

■ Modulation

 Varying frequency, amplitude, or phase of carrier signal with a modulating signal that carries information

Encoding

- □ Encoding
 - Encode bits (binary data) into the signals
 - Modulation is not our focus
 - Assume working with two discrete signals: high and low
- □ Nonreturn-to-zero (NRZ)
- □ Nonreturn-to-zero-inverted (NRZI)
- □ Manchester
- **□** 4B/5B

Non-Return-to-Zero (NRZ)

- \square Low $\rightarrow 0$
- \square High $\rightarrow 1$

- □ Long strings of 1s or 0s
 - Baseline wander
 - Difficult to recover clock

Non-Return-to-Zero-Inverted (NRZI)

- \square Signal transition $\rightarrow 1$
- \square No transition $\rightarrow 0$

- □ Solve the problem caused by consecutive 1's
- □ The problem caused by consecutive 0's remains

9

Manchester

 $0 \rightarrow low-to-high transition$

- $1 \rightarrow \text{high-to-low transition}$
- □ That is, NRZ signal ⊕ Clock signal

- □ Solve the problems caused by both consecutive 1's and 0's
- New problem
 - 50% efficient: Two samples per clock cycle to detect a transition, bit rate is 50% of baud rate (rate of signal changes)

Exercise L3-1

■ Encode bit sequence 01101 using NRZ, NRZI, Manchester encoding by indicating bits and by drawing clock, NRZ, NRZI, and Manchester signals as in page 80 of the textbook

4B/5B

- **□** Motivations
 - To cope with baseline wander
 - To ease clock recovery
 - To increase encoding efficiency (bit rate/baud rate)

4B/5B

□ Break long strings of repeated 0's and 1's

- before transmission: 4 bits \rightarrow 5 bits
 - Every 4 bits of actual data are encoded in a 5-bit code
 - 4 bits data symbols: $2^4 = 16$
 - **5** bits codes: $2^5 = 32$
 - No more than 1 leading 0's in codes and no more than 2 trailing 0's
 - □ No pair of 5-bit codes results in more than 3 consecutive 0's
 - □ 11111: line is idle 01101: control symbols
- Transmit codes using NRZI: 80% efficiency

4B/5B Encoding

4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111

4-Bit Data Symbol	5-Bit Code
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Exercise L3-2

■ Encode bit sequence 01011000 using 4B/5B encoding by showing the conversion between 4-bit sequences of data and their 5-bit sequences of codes and drawing clock and 4B/5B signals

4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111

4-Bit Data Symbol	5-Bit Code
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Direct Link Networks

Framing

- □ Packet-switched networks → block of data are exchanged between nodes
 - Breaking bits into frames
- Key issue: identity where a frame begins and the ends
- To discuss in the context of point-to-point links
 - Byte-oriented framing: frame as a collection of bytes
 - Bit-oriented framing: frame as a collection of bits
 - Clock-based framing (vs. sentinel-based approaches)
- □ Framing is a fundamental problem that must be addressed in multiple-access networks as well.

Byte-Oriented Framing

- Example: Binary Synchronous Communication (BISYNC)
- □ A frame is illustrated as a sequence of labeled fields

BISYNC

- Uses special characters known as *sentinel characters* to indicate whether frames begins and ends
- □ The beginning of a frame: SYN
- ☐ The data portion of the frame is contained between STX and ETX
- □ The start of header: SOH

BISYNC

- □ Problem: ETX may appear in the data
- □ Solution: escaping
 - ETX \rightarrow DLE ETX
 - DLE \rightarrow DLE DLE

Exercise L3-3

- □ DATA = 1A E2 02 2A 16 10 20. Use the sentinels in ASCII table, what would be the bytes in the *body* of the frame using BISYNC?
- □ In the *body* of a frame using BISYNC, is it possible to see the following byte sequence and why?

4A 10 51 6B

Bit-Oriented Framing

- □ View a frame as a collection of bits
- Example: High-level Data Link Control (HDLC)

HDLC

- Beginning and ending sequence: 011111110
- □ 01111110 may appear in the body of the frame → bit stuffing
 - $111111 \rightarrow 1111110 \rightarrow \text{no } 6 \text{ 1's in a row in the body}$

Clock-based Framing

- □ Versus sentinel-based approaches
- **■** Example: SONET
 - Popular in network backbone
 - Has a close tie with telephony systems
 - Specification takes entire book
 - Frame is of fixed length
 - 125 µs for STS-1 (51.84 Mbps)
 - Q: How big is a Mega (sidebar in page 45)
 - 125 μ s = ? Bytes
 - Detect the frame header at each interval of frame size

Summary

- \square Bits \rightarrow signal
 - Encoding
- \square Bits \rightarrow frames
 - Framing
- □ Q: What if the link is not error free? In other words, what if a frame is corrupted?
 - Error detection
 - Reliable transmission