

Homework 2

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. We call a collection of sets $\mathcal{R} \subset P(X)$ a ring if it is closed under finite unions and differences, that is, if $E, F \in \mathcal{R}$, then $E \setminus F \in \mathcal{R}$. If it is closed under countable unions, we call it a σ -ring.
 - a) Let \mathcal{R} be a ring such that $X \in \mathcal{R}$. Show that \mathcal{R} is also an algebra. (The same holds for σ -rings/ σ -algebras).
 - b) Construct an example of a ring that is not an algebra.
 - c) If \mathcal{R} is a σ -ring, then

$$\mathcal{A}_1 = \{ E \subset X \mid E \in \mathcal{R} \text{ or } E^c \in \mathcal{R} \}$$

and

$$\mathcal{A}_2 = \{ E \subset X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R} \}$$

are both σ -algebras.

- 2. a) Let X be a non-empty set and $\mathcal{A}_1, \mathcal{A}_2, \ldots$ be a collection of σ -algebras on X. Verify that $\bigcap_{j=1}^{\infty} \mathcal{A}_j$ is a σ -algebra on X. (Recall we state this in lecture but never verified it).
 - b) Provide an example to show that the analogous statement about a union of σ -algebras is false.
 - c) Suppose we add the condition that $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \dots$ Is it now the case that $\bigcup_{j=1}^{\infty} \mathcal{A}_j$ is a σ -algebra? Prove it or provide a counter example.
- 3. An algebra \mathcal{A} is a σ -algebra if and only if for any collection $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$ with $E_1 \subset E_2 \subset \ldots, \cup_{j=1}^{\infty} E_j \in \mathcal{A}$.