

## Distributed Algorithms 2020

# Introduction

• Initially: each node only aware of itself

- Initially: each node only aware of itself
- **Finally:** each node knows *its own part* of the solution

- Initially: each node only aware of itself
- Communication rounds: each node exchanges messages with its own neighbors

- Initially: each node only aware of itself
- Communication rounds: each node exchanges messages with its own neighbors
- **Finally:** each node knows *its own part* of the solution

#### Example: coloring

- Each node knows its own color
- Why enough?
- Coloring used for scheduling:

"I know my color is 5"

"I can safely be active during time slot number 5"

## Locality

Fast distributed algorithm

Small number of communication rounds

\_

Nodes only use information in their own **local neighborhood** 

- Before round 1: each node only knows about itself
- During round 1: everyone tells about themselves to their neighbors
- After round 1: everyone now knows about their neighbors — they see everything up to distance 1

- Before round 2: everyone knows about their *neighbors* — i.e. up to **distance 1**
- During round 2: everyone can send this information to their neighbors
- After round 2: everyone also aware of their neighbors' neighbors they see everything up to distance 2

- Before round 3: everyone knows everything up to distance 2
- During round 3: everyone can send this information to their neighbors
- After round 3: everyone now knows everything up to distance 3

- Before round T: everyone knows everything up to distance T − 1
- During round 7: everyone can send this information to their neighbors
- After round T: everyone now knows everything up to distance T

## Locality

- Which graph problems are local?
  - can be solved so that each node only looks at its own local neighborhood
- Which graph problems are **global**?
  - cannot be solved using only local information
  - we need to see the whole input graph

#### Two perspectives

#### Mathematics:

• graph theory, locality, distances...

#### Communication networks:

• computers, network connections, message-passing, algorithms...

#### Cost of communication

#### Communication:

get **one** bit from another computer in the same local network ≈ **0.5** milliseconds

#### Computation:

one *billion* arithmetic operations ≈ 0.5 milliseconds

#### Understanding nature

- What are the fundamental limitations of all kinds of systems that consist of interacting entities?
  - computer networks
  - biological systems
  - social networks
  - job markets
  - animal populations ...

#### Negative results

- How to prove that some problems cannot be solved efficiently in distributed settings?
- How to prove that some problems are inherently global?