

Agilent EEsof EDA

Presentation on Simulating Phase Locked Loops using ADS

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent's line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/find/eesof

Simulating Phase Locked Loops Using ADS

Outline

What ADS is able to simulate, concerning PLLs

Basic concepts about Envelope simulation and PLL component behavioral modeling

Deriving sensitivity of a transistor-level phase/frequency detector and charge pump

An all-behavioral-model PLL

How to add phase noise from various components

Open- and closed-loop phase noise and spurs

Running a fractional-N simulation

Using a sigma delta modulator to generate the divide ratio

Summary

August 25, 2006

The PLL simulation problem (at transistor level)

With purely time-domain simulator, need small time step to sample VCO signal and capture digital signals in PFD and divider. Transient response may require milliseconds => millions of time points

What ADS is able to simulate (utilizing mostly

behavioral models)

Open- and closed-loop frequency responses

 Optimization of unity-gain frequency and phase margin

•Phase noise – two methods: frequency domain and time domain

-100-

-110

-120 -130

-140-

-150--160

-170-

-180-

1.00k

What ADS is able to simulate (2)

- Applying modulation within the loop
- Transient responses
- Co-simulation with a behavioral sigmadelta modulator

About Circuit Envelope

Phase/Frequency Detector Behavioral Model

August 25, 2006

PFD Input and Charge Pump Waveforms

Reference leads divided VCO. Charge pump current is positive.

Divided VCO leads reference. Charge pump current is negative.

Why are Reference and Divided VCO Signals Sawtooth Waves?

Ideally, charge pump current pulse width is equal to time difference between PFD input signals. But in simulation, this width must be a multiple of the timestep.

Envelope uses interpolation to get finer resolution than the timestep. Sawtooth waves are easiest to interpolate.

Ideal current pulse (can't be simulated)

Current pulse, 1 timestep wide, amplitude reduced to give same area as ideal pulse

August 25, 2006

Phase/Frequency Detector Dead zone

Mean charge pump current versus phase difference between two input signals

August 25, 2006

VCO/Divide-By-N Behavioral Model

VCO/Divide-By-N Behavioral Model

Step in Vtune, and VCO phase indicating 2 MHz increase in frequency

0.2 V step in Vtune forces VCO freq. to increase by 0.2 X 10 MHz

For VCO_DivideByN_Pulse component, dN inputs must be clocked.

phase(VCO[1])

Deriving sensitivity of PFD and charge pump

Computing average sensitivity using markers

August 25, 2006

An all-behavioral-model, fractional-N PLL

VCO spectrum has large spurs

Including VCO phase noise in the simulation

Simulation results, VCO only

Adding VCO phase noise within the loop

Open- and closed-loop phase noise results with reference spurs

Adding phase noise to the reference source

This is simpler, because the reference "signal" is actually the phase of the reference source. Just add the phase noise to the reference phase.

Adding the frequency divider phase noise (1)

Adding the frequency divider phase noise (2)

Fractional-N Synthesizer PLL Top-Level Ptolemy Schematic

Fractional-N Simulation Results

0 Hz corresponds to N0*ReferenceFreq = 1023*(1.728 MHz) = 1.767744 GHz

Fraction = $101/(2^{10}) = 0.098633$

Synthesized frequency = (N0 + Fraction)*ReferenceFreq

= 1.767744 GHz + 0.098633*1.728 MHz

= 1.767744 GHz + 170.438 kHz

Simulating PLL with Multi-Stage Sigma-Delta Modulator

Delta N Signal and Spectrum

Resulting VCO Spectrum

0 Hz corresponds to N0*ReferenceFreq = 1023*(1.728 MHz) = 1.767744 GHz

Fraction = $501/(2^{10}) = 0.489258$

Synthesized frequency = (N0 + Fraction)*ReferenceFreq

= 1.767744 GHz + 0.489258*1.728 MHz

= 1.767744 GHz + 845.438 kHz

VCO Spectrum, within Sigma-Delta PLL, Including VCO's Phase Noise

Stepping fraction, with transistor PFD/CP

Fraction constant, with transistor PFD/CP

Review and Summary

What ADS is able to simulate, concerning PLLs

Basic concepts about Envelope simulation and PLL component behavioral modeling

Deriving sensitivity of a transistor-level phase/frequency detector and charge pump

An all-behavioral-model PLL

How to add phase noise from various components

Open- and closed-loop phase noise and spurs

Running a fractional-N simulation

Using a sigma delta modulator to generate the divide ratio

Appendix: More information on Sigma-Delta Modulator simulation

Modeling the Accumulator

Accumulator Simulation Results

Fraction that is summed is 100/(2¹⁰), so the accumulator overflows about once every 10 clock cycles

Index	AccumOut	AccumOverflow	AdderOut
0	0.09765625000	0.00000000000	0.09765625000
1	0.19531250000	0.00000000000	0.19531250000
2	0.29296875000	0.00000000000	0.29296875000
3	0.39062500000	0.00000000000	0.39062500000
4	0.48828125000	0.00000000000	0.48828125000
5	0.58593750000	0.00000000000	0.58593750000
6	0.68359375000	0.00000000000	0.68359375000
7	0.78125000000	0.00000000000	0.78125000000
8	0.87890625000	0.00000000000	0.87890625000
9	0.97656250000	0.00000000000	0.97656250000
10	0.07421875000	1.000000000000	1.07421875000
11	0.17187500000	0.00000000000	0.17187500000
12	0.26953125000	0.00000000000	0.26953125000

Using a Sigma-Delta Modulator as an Accumulator

When accumulator core overflows, 1-bit quantizer outputs a 1.

August 25, 2006

Sigma-Delta Modulator Z-Domain Equation

$$Y(z) = .F(z) + (1-z^{-1})Eq(z)$$

The quantization noise, Eq(z), is high-pass filtered, (let $z=e^{j\omega}$ then $1-z^{-1}=1-e^{-j\omega}\approx j\omega$ for ω small) if .F(z) is sufficiently random. But the fraction is constant, so the quantization noise varies periodically, generating spurs.

August 25, 2006

Using a 3-Stage Sigma Delta Modulator

3-Stage Sigma-Delta Modulator Equation

Z-domain equation for frequency:

$$F_{out}(z) = N.F(z)F_{ref} + (1-z^{-1})^3 F_{ref}E_{q3}(z)$$

3rd-stage quantization noise is more random than 1st, and this noise has a more high-pass shape

A Three-Stage Sigma-Delta Modulator

Differentiator in Ptolemy

A differentiator/summer block for the sigma delta modulator. ovf is a single input with "1.0" precision, that is treated as [0,-1] twos complement. Input is twos_complement with "Bits.0" precision. Output is twos_complement with "Bits+1.0" precision.

3-Stage Sigma-Delta Modulator Signals

Where are the examples that are referenced in this presentation?

Slide 5

Frequency response, phase margin, unity gain frequency: examples\RF_Board\PLL_Examples\PLL_Freq_Resp_prj\PLL_Freq_Resp

Phase noise:

examples\RF_Board\PLL_Examples\PLL_PhaseNoise2_prj\PLL_Noise_Contrib or PLL_Noise_Contrib2 or

PLL NoiseContrib3

examples\RF_Board\PLL_Examples\PLL_PhaseNoise1_prj\PLL_PhNoise

Slide 6

Various step responses, each from a loop with a different phase margin:

 $examples\RF_Board\PLL_Examples\DECT_LO_Synth_prj\PL_Tran_SweptPhMargin.$

"VCO spectrum" and "Frequency Error in Hz" are from a Knowledge Center example, "Simulation of PLL Using Sigma-Delta Modulator to Attain High Frequency Resolution."

http://edocs.soco.agilent.com/display/eesofkc/Simulation+of+P LL+Using+Sigma-

Delta+Modulator+to+Attain+High+Frequency+Resolution

Slides 9, 11, 12, 13, 14, 15

These are from the ADS project, PLL_ModelingSem_prj, which may be downloaded from:

http://edocs.soco.agilent.com/display/eesofkc/PLL+component+behavioral+models

Slide 16 and 17

Not in an example, but similar to examples\RF_Board\PLL_Examples\PLL_FracN_prj.

Slides 18 and 19

This is from Knowledge Center example "Adding phase noise from a text file to a reference osc. or VCO for time- or frequency-domain noise simulation" (ID #240058.) It is design RefOscPhNoiseTimeDom.

http://edocs.soco.agilent.com/display/eesofkc/adding+phase+noise+from+text+file+reference+osc+or+vco+time+or+frequencydomain+noise+simulation

Slides 20-24

These are from a Knowledge Center example (ID #301439.) http://edocs.soco.agilent.com/display/eesofkc/adding+phase+noise+behavioral+model+pll+simulations+time+domain

Slides 25-30, 35-36, 41-43

These are from a Knowledge Center example (ID #216107.)

http://edocs.soco.agilent.com/display/eesofkc/Simulation+of+P LL+Using+Sigma-

Delta+Modulator+to+Attain+High+Frequency+Resolution

Slides 31 and 32

These are from a Knowledge Center example (ID #301447.)

http://edocs.soco.agilent.com/display/eesofkc/sigmadelta+modulator+pll+simulation+with+transistorlevel+pfd+charge+pump

For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866

1 800 226 008

Europe & Middle East

Thailand

Austria	0820 87 44 11		
Belgium	32 (0) 2 404 93 40		
Denmark	45 70 13 15 15		
Finland	358 (0) 10 855 2100		
France	0825 010 700*		
	*0.125 €/minute		
Germany	01805 24 6333**		
	**0.14 €/minute		
Ireland	1890 924 204		
Israel	972-3-9288-504/544		
Italy	39 02 92 60 8484		
Netherlands	31 (0) 20 547 2111		
Spain	34 (91) 631 3300		
Sweden	0200-88 22 55		
Switzerland	0800 80 53 53		
United Kingdom	44 (0) 118 9276201		
Other European Countries:			
www.agilent.com/find/contactus			

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010 Printed in USA, August 19, 2010 5989-9471EN

Revised: March 27, 2008

