МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Выпуская квалификационная работа бакалавра

Метод восстановления дефокусированных изображений на основе определенных параметров искажения

Студент: Сироткина Полина Юрьевна

Группа: ИУ7-86Б

Научный руководитель: Филиппов Михаил Владимирович

Цель и задачи работы

<u>Цель</u> работы – разработка и программная реализация метода восстановления дефокусированных изображений на основе кепстрального анализа.

<u>Задачи</u>:

- о провести анализ предметной области дефокусированных изображений;
- о провести сравнительный анализ методов классической деконволюции;
- о разработать метод восстановления дефокусированных изображений на основе определенных параметров искажения;
- о спроектировать и реализовать программное обеспечение для реализации разрабатываемого метода;
- о исследовать разработанный метод на применимость при работе с различными типами дефокусировки, а также исследовать зависимость времени обработки от размера изображения и цветовой модели.

Актуальность

Среди способов восприятия человеком информации с помощью органов чувств зрение занимает 1 место – таким образом воспринимается около 80% всей информации.

Системы фотосъемки используются в криминалистике, биомедицине, археологии, кинематографии, исследовании космоса и во многих других сферах.

Дефокусировка — одно из наиболее распространенных искажений в процессе получения и обработки сигналов.

Повторное получение изображений может быть невозможным или дорогостоящим, либо сопряженным с риском для жизни.

В связи с этим существует потребность в восстановлении дефокусированного изображения.

Причина дефокусировки фотокамеры

Оценка вида ФРТ в случае дефокусировки

Пусть ρ - радиус пятна, в которое отображается точка на реальной матрице. Рассмотрим некоторую точку $A(\varepsilon,\eta)$ на идеальной матрице с интенсивностью $\omega(\varepsilon,\eta)$.

Постановка задачи слепой деконволюции в виде интегрального уравнения:

$$\iint_{\Omega} k(x - \varepsilon, y - \eta) \omega(\varepsilon, \eta) d\varepsilon d\eta = g(x, y),$$

где
$$\Omega = \sqrt{(x - \varepsilon)^2 + (y - \eta)^2} \le \rho$$
.

Откуда получаем:

$$k(x,y) = \begin{cases} \frac{1}{\pi \rho^2}, \sqrt{x^2 + y^2} \le \rho \\ 0, & \text{иначе.} \end{cases}$$

Анализ существующих методов классической деконволюции

Критерий Метод	Область вычислений	Устойчивость к шуму	Необходимость пост- или предобработки	Сложность вычислений
Инверсная фильтрация	Частотная	Отсутствует	Нет	Низкая
Фильтр Винера	Частотная	Низкая	Нет	Низкая
Метод Люси-Ричардсона	Пространственная	Средняя	Да	Средняя
Регуляризация Тихонова	Частотная	Высокая	Да	Высокая

Постановка задачи

Ограничения:

- 1. Обработка изображений, подвергнутых существенному сжатию.
- 2. Обработка изображений с высоким уровнем шума.

Разработанный метод

Кепстральный анализ

Моделирование ФРТ на основе кепстрального анализа

Кепстр изображения: $C(u, v) = \ln(|F(u, v)^2|)$, где F – спектр сигнала.

Зависимость структуры кепстра изображения от радиуса дефокусировки:

Алгоритм "слепой" деконволюции

В случае, если цифровое изображение цветное, то обработка происходит для каждого канала отдельно.

Для предварительной оценки качества был выбран критерий пиковое соотношение сигнал-шум (PSNR).

Структура программного обеспечения

Исследование вычислительной сложности метода

Исследование точности вычисления

Предложенная метрика точности: пусть
$$t=1-\frac{|R_{calc}-R_{real}|}{R}$$
, тогда $\mathbf{M}=\begin{cases} 0 \text{, если } t<0 \text{ или } |t|>1\\ t*100 \text{, иначе.} \end{cases}$

Исследование случаев восстановления

1. Идеальный случай: M = 100%, PSNR = 15.

2. Нормальный случай. M = 80%, PSNR = 20.

3. Плохой случай. M = 70%, PSNR = 15.

Заключение

Был разработан метод восстановления дефокусированных изображений на основе определенных параметров искажения, а именно спектрального анализа.

Были решены следующие задачи:

- о произведен анализ предметной области дефокусированных изображений;
- о произведен сравнительный анализ методов классической и слепой деконволюции;
- о разработан метод восстановления дефокусированных изображений на основе определенных параметров искажения;
- о спроектировано и реализовано программное обеспечение для реализации разрабатываемого метода;
- разработанный метод был исследован на применимость при работе с различными типами дефокусировки.
- о произведена оценка полноты решения.

Направления развития

- 1. Учет сложной модели искажения, возникающей в реальных ситуациях, помимо моделирования стандартных ФРТ.
- 2. Стабилизация работы метода при наличии шума.
- 3. Возможность применимости методов слепой деконволюции к видеофайлам.