Key points about alpha-beta pruning:

Initially, Alpha = - \infty, Beta = + \infty

Alpha = max(current_alpha_value, value_from_child)

Beta = min(current_beta_value, value_from_child)

Node_value = maximum value among children if it's the turn of Max

= minimum value among children if it's turn of Min

- The Max player will only update the value of alpha.
- The Min player will only update the value of beta.
- While backtracking the tree, the node values will be passed to upper nodes instead of values of alpha and beta.
- Only alpha and beta values are passed to the child nodes.

Example: Determine the nodes to be pruned from following game tree using Alpha-beta pruning procedure.

→ Solution: The procedure can be depicted as in following table.

Step No.	Node	Player	Value of α	Value of B	$\alpha \geq \beta$	Pruning	Node Value	Remarks and Description
1	A	Max	- ∞	+ ∞	False	No	Not Fixed	$\alpha = -\infty$ and $\beta = +\infty$ are passed to a child node, B
2	В	Min	- ∞	+ ∞	False	No	Not Fixed	$\alpha = -\infty$ and $\beta = +\infty$ are passed to a child node, D
3	D	Max	$\max(-\infty, 3) = 3$	+ ∞	False	No	5	α is updated and backtracking to B. Here, node value 5 is backtracked (passed to B).
			max(3,5) = 5	+ ∞	False	No		
4	В	Min	- ∞	= min (+ ∞,5)=5	False	No	Not Fixed	β is updated and Traversing next child of B i.e. E. Here, $\alpha = -\infty$ and $\beta = 5$ are passed to a child node,E
5	Е	Max	max(- ∞,6)=6	5	True	Yes	6	α is updated, Here $\alpha \ge \beta$ (6>=5) so right child of E is pruned. The node value of E is set to 6 and Backtracked to B.
6	В	Min	- ∞	5	False	No	5	Node value is set to 5 (minimum of node values of child D and E) and Backtracking to A.
7	A	Max	$\max(-\infty,5)=5$	+ ∞	False	No	Not Fixed	$\alpha = 5$ and $\beta = +\infty$ are passed to a child node, C
8	С	Min	5	$+\infty$	False	No	Not Fixed	$\alpha = 5$ and $\beta = +\infty$ are passed to a child node, F
9	F	Max	$\max(5,1) = 5$	+ ∞	False	No	2	α is updated, node value of F is set to 2 and Backtracking to C
			max(5,2) = 5	+ ∞	False	No		

10	С	Min	5	$\min(+\infty,2)=2$	True	Yes	2	β is updated, Here $\alpha \ge \beta$ (5>=2) so right child of C i.e. G is pruned. The node value of C is set to 2 which is passed to A.
11	A	Max	max(5,2)=5	+ ∞	False	No	5	At A, best value of A is = $max(5,2) = 5$

 $Hence, Right\ child\ of\ Node\ E\ and\ Right\ Child\ of\ Node\ C\ i.e\ . Node\ G\ are\ pruned\ from\ given\ game\ tree.$