

Système d'équations associé à un automate

octobre 2015

1 Exemple 1

Automate déterministe A:

Système d'équations des langages L_q associé à l'automate :

$$\mathcal{L}(A) = L_0 = aL_1 + bL3 \tag{e_0}$$

$$L_1 = aL_1 + bL2 \tag{e_1}$$

$$L_2 = aL_0 + bL3 \tag{e_2}$$

$$L_3 = bL_3 + \epsilon \tag{e_3}$$

Voici la résolution du système en suivant fidèlement l'algorithme vu en cours.

— L'équation e_0 est déjà sous la bonne forme

$$L_0 = aL_1 + bL3 \tag{e_0'}$$

— Il faut éliminer la variable L_1 de l'équation e_1 , ce qui peut se faire en utilisant le lemme d'Arden

$$L_1 = aL_1 + bL2$$

 $L_1 = a^*bL_2$ (e'₁)

— Dans l'équation e_2 , éliminons d'abord L_0 puis L_1 en utilisant les deux équations ci-dessus

$$L_{2} = aL_{0} + bL_{3}$$

$$= a(aL_{1} + bL_{3}) + bL_{3}$$

$$= aaL_{1} + (ab + b)L_{3}$$

$$= aaa^{*}bL_{2} + (ab + b)L_{3}$$
(e₂)

 L_2 est ensuite éliminée via Arden :

$$L_2 = (aaa^*b)^*(ab+b)L_3 (e_2')$$

— Dans l'équation e_3 , l'élimination de la variable L_3 fournit la solution

$$L_3 = b^* (e_3')$$

Le système a été triangularisé et on a une solution pour L_3 . On peut maintenant « remonter » les différentes équations pour obtenir les solutions :

$$L_2 = (aaa^*b)^*(ab+b)b^* (e_2'')$$

$$L_1 = a^*b(aaa^*b)^*(ab+b)b^*$$
 (e''₁)

$$L_0 = aa^*b(aaa^*b)^*(ab+b)b^* + bb^*$$
 (e''₀)

 $\mathcal{L}(A) = aa^*b(aaa^*b)^*(ab+b)b^* + bb^*$

2 Exemple 2

Automate B:

$$\mathcal{L}(B) = L_0 = aL_0 + bL_1 + \epsilon \tag{e_0}$$

$$L_1 = aL_1 + bL_2 \tag{e_1}$$

$$L_2 = bL_0 + aL_2 \tag{e_2}$$

Voici tout d'abord l'application de l'algorithme, en traitant les équations dans l'ordre de leur numérotation

$$L_0 = aL_0 + bL_1 + \epsilon$$

= $a^*(bL_1 + \epsilon)$ (e₀)

$$L_0 = a^* b L_1 + a^* (e_0')$$

$$L_1 = aL_1 + bL_2 \tag{e_1}$$

$$L_1 = a^*bL_2 \tag{e_1'}$$

$$L_2 = bL_0 + aL_2$$

$$= b(a^*bL_1 + a^*) + aL_2$$
(e₂)

$$= ba^*bL_1 + ba^* + aL_2$$

= $ba^*ba^*bL_2 + ba^* + aL_2$

$$= ba ba bL_2 + ba + aL_2$$
$$= (ba^*ba^*b + a)L_2 + ba^*$$

$$L_2 = (ba^*ba^*b + a)^*ba^* (e_2')$$

$$L_1 = a^*b(ba^*ba^*b + a)^*ba^* (e_1'')$$

$$L_0 = a^*ba^*b(ba^*ba^*b + a)^*ba^* + a^*$$
 (e''₀)

Le langage reconnu par l'automate peut donc être dénoté par $a^*ba^*b(a+ba^*ba^*b)^*ba^*+a^*$

On constate que l'expression obtenue est assez longue et complexe.

On aurait très bien pu résoudre le système en traitant les équations dans un ordre différent (la numérotation des états étant bien évidemment arbitraire). Par exemple :

$$L_2 = bL_0 + aL_2 \tag{e_2}$$

$$= a^*bL_0 (E_2')$$

$$L_1 = aL_1 + bL_2 \tag{e_1}$$

$$= a^*bL_2 \tag{E_1'}$$

$$L_{0} = aL_{0} + bL_{1} + \epsilon$$

$$= aL_{0} + ba^{*}bL_{2} + \epsilon$$

$$= aL_{0} + ba^{*}ba^{*}bL_{0} + \epsilon$$

$$= (a + ba^{*}ba^{*}b)L_{0} + \epsilon$$

$$= (a + ba^{*}ba^{*}b)^{*}$$

$$(E'_{0})$$

L'expression obtenue ici : $\mathcal{L}(B) = L_0 = (a + ba^*ba^*b)^*$ est cette fois optimale.

3 Exercice

Laissé au lecteur : reprendre l'automate donné en premier exemple et montrer, en résolvant les équations dans un ordre différent, que $\mathcal{L}(A) = L_0 = (aa^*ba)^*(aa^*b^2b^* + bb^*) = (aa^*ba)^*(aa^*b + \epsilon)bb^*$