PSALTer results panel

$$S = \iiint \left(\rho \, \varphi + h^{\alpha\beta} \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, \left(12 \, \partial_{\alpha} \partial^{\alpha} \varphi - 4 \, \partial_{\alpha} h^{\beta}_{\beta} \, \partial^{\alpha} \varphi - 6 \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + 4 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\beta}_{} - 4 \, \partial_{\beta} h^{\beta}_{\alpha} - \partial_{\beta} h^{\alpha}_{\alpha} - \partial_{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\lambda} h^{\beta}_{\alpha} - 2 \, \partial_{\beta} h^{\alpha}_{\beta} + \partial_{\lambda} h^{\beta}_{\beta} \right) + \\ \alpha_{1} + \left(-2 \, \partial_{\beta} \partial_{\alpha} h^{\lambda}_{\lambda} \partial^{\beta} \partial^{\alpha} \varphi - 2 \, \partial_{\beta} \partial_{\alpha} \varphi \, \partial^{\beta} \partial^{\alpha} \varphi + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\alpha} h^{\beta}_{\alpha} - 2 \, \partial^{\lambda} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\alpha} h^{\beta}_{\alpha} \partial_{\delta} \partial_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\alpha}$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$ \frac{\theta^{+}}{\cdot}\rho = \frac{\theta^{+}}{\cdot}\mathcal{T}^{\parallel} $	$\partial_{\alpha}\partial^{\alpha}\rho + \partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\mathcal{T}^{\alpha}_{\alpha}$	1
° 7 == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = 0$	1
1- _α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	5	

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Massiess particle	Massiess particle	
Pole residue: $\left \frac{1}{\frac{\alpha}{1}} > 0 \right $	Pole residue: $\left \frac{p^2}{\alpha_1} > 0 \right $	
Polarisations: 1	Polarisations: 1	

Unitarity conditions

$$\alpha_{\cdot} > 0$$