Programme n°28

THERMODYNAMIQUE

TH2 Le premier principe de la thermodynamique Cours et exercices
TH3 Le second principe de la thermodynamique (Cours et exercices)

- Introduction Nécessité d'un second principe
 - Rappels :Transformations réversibles, Principales causes d'irréversibilité
- Le second principe de la thermodynamique : Enoncé, Quelques cas, Remarque
- Entropie d'un échantillon de corps pur Le gaz parfait
 - Phase condensée incompressible
- Entropie d'un système diphasé
- Expression de l'entropie pour un système diphasé
- Entropie de changement d'état
- Exemples de bilans d'entropie- Echanges thermiques, Système de dimension fini ou contact avec une source
 - Détente de Joules Gay Lussac
 - Changement de phases

4. Deuxième principe. Bilans d'entropie	
Deuxième principe : fonction d'état entropie,	Définir un système fermé et établir pour ce système
entropie créée, entropie échangée.	un bilan entropique. Relier l'existence d'une
$\Delta S = S_{ech} + S_{créé}$ avec $S_{ech} = \Sigma Q_i / T_i$.	entropie créée à une ou plusieurs causes
	physiques de l'irréversibilité.
Variation d'entropie d'un système.	Utiliser l'expression fournie de la fonction d'état entropie.
	Exploiter l'extensivité de l'entropie.
Loi de Laplace.	Connaître la loi de Laplace et ses conditions d'application.
Cas particulier d'une transition de phase.	Connaître et utiliser la relation entre les variations d'entropie et d'enthalpie associées à une transition de phase : Δ h ₁₂ (T) = T Δ s ₁₂ (T)

TH4 Les machines thermiques (Cours uniquement)

- Inégalité de Clausius Carnot : Système en contact avec un thermostat et Généralisation
- Machine monotherme
- Machines dithermes Notations et relations
 - Principe du moteur ditherme
 - Etude de la machine frigorifique
 - Etude de la pompe à chaleur
- Le cycle de Carnot
- Cycle de Carnot pour un gaz parfait→ Travail et chaleur reçus par le gaz au cours du cycle → Relation entre Q_F et Q_c
- Cycle de Carnot pour un système diphasé
- Système en écoulement permanent : système ouvert Modèle du système ouvert
 - Choix du système
 - Equation de conservation de la masse
 - Le premier principe

- Les diagrammes des frigoristes
- Présentation du diagramme
- Cycle d'une machine frigorifique

5. Machines thermiques	
Application du premier principe et du deuxième	Donner le sens des échanges énergétiques pour
principe aux machines thermiques cycliques dithermes : rendement, efficacité, théorème de	un moteur ou un récepteur thermique ditherme.
Carnot.	Analyser un dispositif concret et le modéliser par une machine cyclique ditherme.
	Définir un rendement ou une efficacité et la relier aux énergies échangées au cours d'un cycle. Justifier et utiliser le théorème de Carnot.
	Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.
Exemples d'études de machines thermodynamiques réelles à l'aide de diagrammes (p,h).	Utiliser le 1er principe dans un écoulement stationnaire sous la forme h ₂ -h ₁ =w _u +q, pour étudier une machine thermique ditherme.

SOLUTIONS AQUEUSES

AQ3 L'oxydoréduction

Cours et exercices

AQ4 Diagrammes potentiel-pH (Cours uniquement)

- Définition et conventions
 - Définition
 - Frontières d'un diagramme E-pH
 - Conventions
 - Méthode générale conseillée
- Diagramme E-pH de l'eau
- Diagramme E-pH du fer
 - Les données
 - Frontières verticales : pH d'apparition des précipités
 - Frontières horizontales
 - Tracer du diagramme

- Tracer du diagramme	oupdoited oxiginion
Diagrammes potentiel-pH	
Principe de construction d'un diagramme potentiel-	Attribuer les différents domaines d'un diagramme
pH.	fourni à des espèces données.
	Retrouver la valeur de la pente d'une frontière dans
Lecture et utilisation des diagrammes potentiel-pH	un diagramme potentiel-pH.
Limite thermodynamique du domaine d'inertie	Justifier la position d'une frontière verticale.
électrochimique de l'eau.	Prévoir le caractère thermodynamiquement
	favorisé ou non d'une transformation par
	superposition de diagrammes.
	Discuter de la stabilité des espèces dans l'eau.
	Prévoir la stabilité d'un état d'oxydation en fonction
	du pH du milieu.
	Prévoir une éventuelle dismutation ou médiamutation.
	Confronter les prévisions à des données
	expérimentales et interpréter d'éventuels écarts en
	termes cinétiques.
	Mottre en couvre une démorabe expérimentale
	Mettre en œuvre une démarche expérimentale s'appuyant sur l'utilisation d'un diagramme potentiel-pH.

TP

Dosage redox du fer II par le cesium IV. Mise en place d'un protocle pour doser les ions Ag⁺ par les ions Cl⁻ (redox et conductimètrique)

Spectrométrie : vérification de le loi de Beer Lambert, détermination du pKA du BBT

Calorimètrie : méthode des mélanges pour déterminer la valeur en eau du calorimètre, méthode électrique pour déterminer la capacité d'un liquide, mesure de l'enthalpie de fusion de la glace