M2 Course content

Introduction

- · Language reminders:
 - · VBA
 - Python
- Classes in VBA
- Classes in Python
- Project: Option pricing with a lattice

Pricing model landscape

Here are the three types of pricing models:

	Closed-form formulas	Trees	Monte-Carlo
Examples	Black-Scholes, Heston, SABR	Hull & White	Longstaff-Schwartz
European ex.	Yes	Yes	Yes
American ex.	No	Yes	Hard
Path dependent	No	Hard	Yes
Speed	Instantaneous	Fast	Slow
Precision	Perfect	Error ≥ 1/Nb Steps	Error ≥ 1/√Nb Draws
Memory	Light	Depends	Depends
PIO			

Lattice node VBA class

- Goal #1, practice PDE and trees:
 - Simulate a stock price in a recombining lattice
 - Price European and American calls and puts
 - Assess convergence with Black-Scholes
- Goal #2, code and use classes:
 - Define classes for the lattice node and tree
 - Build a tree with reconnecting nodes
 - Price options on this lattice

Stock price behavior

- In the « Derivatives Pricing and Stochastic Calculus » course by Elie & Kharroubi we can see for Black & Scholes p. 61:
- ullet The risky asset. We suppose that the risky asset S is given by the SDE

$$\begin{cases}
dS_t = S_t \left(\mu dt + \sigma dW_t \right), & t \in [0, T] \\
S_0 = S_0
\end{cases}$$
(6.2.1)

where μ and σ are two constants such that $\sigma > 0$.

- We can use those assumptions for the interest rate and the volatility
- But the dividend is discrete and it is simplistic to define μ as: μ = rate - dividend

Discrete dividends

- Dividends in a near future are known
- Dividends in several years can be approximated as a % of the stock price
- Example with a stock price S₀ = 100 €
 - First annual dividend = 3 €
 - Second annual dividend = 2 € + 1% of X_{1Y}
 - Third annual dividend = 1.4 € + 1.6% of X_{2Y}
 - Fourth annual dividend = 1 € + 2% of X_{3Y}

0

Tenth annual dividend = 3% of X_{10Y}

Dividend model

- The dividend is discrete and moves from constant to proportional to the stock price
- Example of possible functional form:
 - $D_t = \rho (S_0 e^{-\lambda(t-t_0)} + S_t (1 e^{-\lambda(t-t_0)}))$ on ex-div. dates
 - ∘ D_t = 0 on all other dates
- $dS_t = S_t r dt + S_t \sigma dW_t D_t$

Trinomial lattice

Example of trinomial lattice:

Degrees of freedom and constraints:

Degrees of freedom	Constraints	
Time steps	Match expected value	
Nodes values	Match variance	
Choice of next middle node	Positive probabilities	
Transition probabilities	Sum of probabilities = 1	

Trinomial tree assumptions

- We use the following assumptions:
 - Time steps are all equal: Δt
 - The middle node is equal to the forward price
 - Nodes values are geometric series: $\alpha = S_{up}/S_{mid}$
 - The next middle node is the closest to the forward price
- Example with a dividend on the fifth date:

Lattice building

- Start from the root on date d₀: N_{start} with S_{start} = s₀
- Branch to the next central node: N_{mid}

$$S_{mid} = S_{start} \exp(r \Delta t) - D_1$$

- Build other nodes on date d₁: S_{up} = S_{mid} α
- α is defined by a multiple of the standard deviation over one time step ≈ S_t σ sqr(Δt):

$$S_{up}$$
 - $S_{mid} \approx \sqrt{3} StdDev = \sqrt{3} S_{mid} \sqrt{e^{\sigma^2 \Delta t} - 1}$

- Divide by S_{mid} : $\alpha \approx 1 + \sqrt{3} StdDev / S_{mid}$
- The actual formula is: $\alpha = e^{\sigma\sqrt{3\Delta t}}$
 - Please note: $\sqrt{3}$ is indicative. $\sqrt{2}$ as well as 2 work too

Probabilities (1)

- For each node N we calculate the probabilities:
 - The sum of the three probabilities is equal to 1:

$$p_{up} + p_{mid} + p_{down} = 1$$

• Matching the expected value means:

$$E_{i+1} = p_{up} S_{i+1,up} + p_{mid} S_{i+1,mid} + p_{down} S_{i+1,down} = E \left[S_{t_{i+1}} \middle| S_{t_i} \right]$$

• With
$$S_{t_{i+1}} = S_{t_i} e^{\left(r - \frac{1}{2}\sigma^2\right)\Delta t + \sigma W_{\Delta t}} - D_{t_{i+1}}$$

$$E\left[S_{t_{i+1}}\left|S_{t_{i}}\right] = S_{t_{i}}e^{r\Delta t} - D_{t_{i+1}}$$

Probabilities (2)

Matching the variance on the step after N means:

$$\begin{split} V_{i+1} + E_{i+1}^2 &= p_{up} S_{i+1,up}^2 + p_{mid} S_{i+1,mid}^2 + p_{down} S_{i+1,down}^2 \\ V_{i+1} &= E \left[\left(S_{t_{i+1}} - E \left[S_{t_{i+1}} \left| S_{t_i} \right] \right)^2 \middle| S_{t_i} \right] \\ & \circ V_{i+1} = E \left[S_{t_i}^2 \left(e^{\left(r - \frac{1}{2} \sigma^2 \right) \Delta t + \sigma W_{\Delta t}} - e^{r \Delta t} \right)^2 \middle| S_{t_i} \right] \end{split}$$

$$V_{i+1} = S_{t_i}^2 e^{2r\Delta t} E\left[e^{-\sigma^2 \Delta t + 2\sigma W_{\Delta t}} - 2e^{-\frac{1}{2}\sigma^2 \Delta t + \sigma W_{\Delta t}} + 1\right]$$

$$V_{i+1} = S_{t_i}^2 e^{2r\Delta t} \left(e^{\sigma^2 \Delta t} - 1 \right)$$

Probabilities (3)

- The three constraints make a linear system:
 - $\circ \ \ 1 = p_{up} + p_{mid} + p_{down}$
 - $\circ \ E_{i+1} = p_{up} \ S_{i+1,up} + p_{mid} \ S_{i+1,mid} + p_{down} \ S_{i+1,down}$
 - $v_{i+1} + E_{i+1}^2 = p_{up} S_{i+1,up}^2 + p_{mid} S_{i+1,mid}^2 + p_{down} S_{i+1,down}^2$
- That can be written as a matrix product:

$$\begin{pmatrix} 1 & 1 & 1 \\ S_{i+1,up} & S_{i+1,mid} & S_{i+1,down} \\ S_{i+1,up}^2 & S_{i+1,mid}^2 & S_{i+1,down}^2 \end{pmatrix} \begin{pmatrix} p_{up} \\ p_{mid} \\ p_{down} \end{pmatrix} = \begin{pmatrix} 1 \\ E_{i+1} \\ V_{i+1} + E_{i+1}^2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & S_{i+1,mid} & 0 \\ 0 & 0 & S_{i+1,mid}^2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \alpha & 1 & \alpha^{-1} \\ \alpha^2 & 1 & \alpha^{-2} \end{pmatrix} \begin{pmatrix} p_{up} \\ p_{mid} \\ p_{down} \end{pmatrix} = \begin{pmatrix} 1 \\ E_{i+1} \\ V_{i+1} + E_{i+1}^2 \end{pmatrix}$$

Probabilities (4)

The system has a unique solution with $\alpha>1$ and $S_{i+1}>0$:

$$\begin{pmatrix} 1 & 1 & 1 \\ \alpha & 1 & \alpha^{-1} \\ \alpha^{2} & 1 & \alpha^{-2} \end{pmatrix} \begin{pmatrix} p_{up} \\ p_{mid} \\ p_{down} \end{pmatrix} = \begin{pmatrix} 1 \\ S_{i+1,mid}^{-1} E_{i+1} \\ S_{i+1,mid}^{-2} (V_{i+1} + E_{i+1}^{2}) \end{pmatrix}$$

Solve by substitutions:

$$\begin{pmatrix} 1 & 1 & 1 \\ \alpha - 1 & 0 & \alpha^{-1} - 1 \\ \alpha^{2} - 1 & 0 & \alpha^{-2} - 1 \end{pmatrix} \begin{pmatrix} p_{up} \\ p_{mid} \\ p_{down} \end{pmatrix} = \begin{pmatrix} 1 \\ S_{i+1,mid}^{-1} E_{i+1} - 1 \\ S_{i+1,mid}^{-2} (V_{i+1} + E_{i+1}^{2}) - 1 \end{pmatrix}$$

Subtract (α +1) times the second line to the third to get:

$$(1 - \alpha)(\alpha^{-2} - 1) p_{down}$$

$$= S_{i+1,mid}^{-2} (V_{i+1} + E_{i+1}^2) - 1 - (\alpha + 1) (S_{i+1,mid}^{-1} E_{i+1} - 1)$$

 p_{down} has no dimension (good!), but is not guaranteed to be in [0, 1]

Probabilities (5)

$$p_{down} = \frac{S_{i+1,mid}^{-2} \left(V_{i+1} + E_{i+1}^{2}\right) - 1 - (\alpha + 1) \left(S_{i+1,mid}^{-1} E_{i+1} - 1\right)}{(1 - \alpha)(\alpha^{-2} - 1)}$$

When there is no dividend, $S_{i+1,mid} = E_{i+1}$ and we have:

$$p_{down} = \frac{S_{i+1,mid}^{-2} V_{i+1}}{(1-\alpha)(\alpha^{-2}-1)} = \frac{e^{\sigma^2 \Delta t} - 1}{(1-\alpha)(\alpha^{-2}-1)}$$

Use the second row to solve
$$p_{up}$$
:
$$(\alpha-1)p_{up} + (\alpha^{-1}-1)p_{down} = S_{i+1,mid}^{-1}E_{i+1} - 1$$

- Without div: $p_{up} = \frac{p_{down}}{\alpha}$
- Use the sum to solve p_{mid}

European option pricing

- Build a lattice with N steps and t_N = T, the option maturity
- Then value the payoff on each node on T
 - ∘ On ITM nodes the payoff is for a call: S_N K
 - On OTM nodes the payoff is equal to 0
- Propagate the net future value on t_{N-1} nodes:
 - NFV_{N-1} = sum of probability x next node value x DF
 - DF is the discount factor = exp(-r Δt)
- NFV₀ = NPV is the net present value of the option

American option pricing

- Same as European options except for the early exercise
- At any time before the maturity the option holder can exercise the option
- On each interim node the value is the maximum of two quantities:
 - Hold: value = discounted value like for European case
 - Exercise: value = max(S_i K, 0) for a call

Assignment (1)

- Build a trinomial lattice and an option pricer
 - Start with few steps, no dividend, European exercise
 - Try to have as much code as possible in the classes
 - Check that the price converges to Black formula
 - Describe the gap as a function of the number of steps
 - Describe the gap as a function of the strike
- Add the American vs. European exercise
 - Study the difference of price American European
 - Observe the effect of the interest rate (>0 or <0)
 - Describe the cases where the two prices are equal

Assignment (2)

- Add the dividend
 - With interest rates = 0, see the impact on the call and the put
- · Other possible extensions:
 - Graph tree
 - · Option value
 - Exercise frontier
 - Search the limit of number of steps (time, memory)
 - Try to remove nodes with very low probability
 - Describe the effect on run time for 1000 steps
 - Extend the number of steps
 - Set the number of steps from a user-defined precision

Assignment (5)

- Other trick to calculate delta and gamma:
 - · Add up and down nodes around the root
 - Calculate the option prices in the whole tree
 - Deduce the delta from the option and underlying prices on the up and down nodes
 - Ditto for the gamma from the three nodes
- There is no similar variation for vega and vomma

Assignment (6) Report: short and informative When you write 10 pages, I read 250 Express: What you did Your noticeable findings Your difficulties... Your difficulties... nand how you overcame them (when you did) I love nice graphs I love nice graphs

Tree "pruning" (1)

- It consists in not allocating nodes which probability is too small
- A typical design consists in branching to the middle node only, with a probability = 1
- The "monomial" branching can be triggered by one of two designs:
 - 1. by the probability to reach a node, calculated from the root
 - 2. or by a number of standard deviations of the node from the middle one

Tree "pruning" (2)

- We can calculate the probability to reach a node by:
 - starting with the root node with probability = 100%
 - any other node has a probability equal to the sum of previous nodes connected to it x transition probability
 - Example: the top node has a probability equal to the top node on the previous date x transition probability
 - If the move up probability is, say, 0.18, the probability to be on the top node decreases like 0.18ⁱ, with i the number of the column date. After 9 steps the top node probability is close to 2.10⁻⁷.

Tree "pruning" (3)

- We can also deduce a node probability by its number of standard deviations from the middle:
 - The process on date i is: $\frac{S_{t_i}}{S_{forward_i}} = e^{\sigma W_{i\Delta t} \frac{1}{2}\sigma^2 \Delta t}$
 - $\circ ln\left(\frac{S_{t_i}}{S_{forward_i}}\right) \text{ standard deviation} = \sigma \sqrt{i \Delta t}$
 - The relative space between nodes is $\sigma\sqrt{3\Delta t}$
 - If we allocate nodes over 4 standard deviations we need k nodes on either sides:

 $k\sigma\sqrt{3\Delta t} \ge 4\sigma\sqrt{i\,\Delta t}$, which simplifies into: $k \ge 4\sqrt{\frac{i}{3}}$

Calculate number of steps (3)

- Idea: consider the ATM forward option
- Gap \approx lost value of node where S = K
- Value of that node with BS:

Red triangle x density =
$$\frac{1}{2} \left(\frac{\Delta S}{2} \right)^2 \frac{1}{\sqrt{2\pi} \Sigma}$$

$$\Delta S = Fwd(T) (\alpha - 1)$$

$$\Delta S = (S_0 e^{rT} - D) \left(e^{r\Delta t + \sigma \sqrt{3\Delta t}} - 1 \right)$$

$$\Sigma = S_0 e^{rT} \sqrt{e^{\sigma^2 T} - 1}$$

Calculate number of steps (4)

Gap function of Δt (i.e. of NbSteps) is:

Gap function of
$$\Delta t$$
 (i.e. of NbSteps) is:
$$Gap(NbSteps) \approx \frac{3 S_0}{8\sqrt{2\pi}} \frac{\left(e^{\sigma^2 \Delta t} - 1\right)e^{2r\Delta t}}{\sqrt{e^{\sigma^2 T} - 1}} \stackrel{\Delta S}{\longrightarrow} 0$$

• The main dependency on Δt is in $e^{\sigma^2 \Delta t} - 1$

$$\Delta t \approx \frac{1}{\sigma^2} ln \left(1 + \frac{8\sqrt{2\pi} Gap \sqrt{e^{\sigma^2 T} - 1}}{3 S_0} \right)$$

$$NbSteps = \frac{T}{\Delta t} \approx \frac{\sigma^2 T}{ln \left(1 + \frac{8\sqrt{2\pi} Gap \sqrt{e^{\sigma^2 T} - 1}}{3 S_0} \right)}$$

Calculate number of steps (5)

O

Remarks:

- $\frac{Gap}{S_0}$ is a relative precision on the stock price
- For small gaps, NbSteps = T / Δt is inversely proportional to the gap (and the gap to NbSteps)
- · Simplified formulas:

$$Gap \approx \frac{3 S_0}{8\sqrt{2\pi}} \frac{\sigma^2 \Delta t}{\sqrt{e^{\sigma^2 T} - 1}} \quad \Delta t \approx \frac{8\sqrt{2\pi}}{3} \frac{Gap}{S_0} \frac{\sqrt{e^{\sigma^2 T} - 1}}{\sigma^2}$$

$$NbSteps = \frac{T}{\Delta t} \approx \frac{3}{8\sqrt{2\pi}} \frac{S_0}{Gap} \frac{\sigma^2 T}{\sqrt{e^{\sigma^2 T} - 1}}$$

$$\sqrt{e^{\sigma^2 T} - 1}$$

Calculate number of steps (6)

Remarks:

• With T = 1 year, σ = 30%, we have:

$$\circ \ \frac{Gap}{S_0} \approx \frac{1}{N} \frac{3}{8\sqrt{2\pi}} \frac{0.3^2}{\sqrt{e^{0.3^2} - 1}}$$

• N=1:
$$\frac{Gap}{S_0}$$
 = 4%

$$\circ$$
 N=10: $\frac{Gap}{S_0} = 0.4\%$

$$\circ$$
 N=100: $\frac{Gap}{S_0}$ = 0.04%

$$\circ$$
 N=1000: $\frac{Gap}{S_0}$ = 0.004%

How to check prices?

- You can check several results:
 - European options without dividends compared to Black-Scholes prices
 - European calls with strike = 0, compared with the forward price on maturity, including with dividends
 - American options are harder to test, but the risk of error is lower (very little code is involved) and you can check the exercise frontier

Recursive vs. backward model

- · Backward model:
 - Go to last date
 - · Price up and down nodes
 - Go to preceding date on the trunk
 - · Price up and down nodes
 - Repeat until reaching the root
- This requires a backward link on trunk nodes
 - In Python: define a TrunkNode class that inherits from the Node class

Recursive vs. backward model

- Comparative run times between the recursive and backward pricers in Python
 - Histogram of run times on a sample of 500 runs

Equality between dates (1) Initial date + n x time step can seem different from the ex-dividend date Solution: define the equality with a tolerance ' returns True if the div falls between the current date (excluded) and the next one (included) Public Function IsDivAfterThisDate() As Boolean Dim divDate As Date Let divDate = Me.TheTree.Market.DivExDate Let IsDivAfterThisDate = Not (Me.AreEqualDates(Me.ColumnDate, divDate)) _ And Me.ColumnDate < divDate And (divDate < Me.NextDate() Or Me.AreEqualDates(divDate, Me.NextDate())) **End Function** ' returns True if the two dates are closer than a small fraction of time Function AreEqualDates(ByVal d1 As Date, ByVal d2 As Date) As Boolean Let AreEqualDates = Abs(d1 - d2) < 1 / Me. The Tree. nb Steps / 1000 **End Function**

Analysis

- Underlying prices differ only by the last 2 digits
- The same for forward rates
- Variances are all exactly equal
- In the debugger, the only visible gap is between the forward and the value on the next node, just on the last digit
- · Is it enough?

```
of fwd = {float} 112.5221169271960
nextN = {Node} <node.Node object at 0x000001B1EC563850
on nxtMidPr = (float) 112.52211692719605
self = {Node} <node.Node object at 0x000001B1EC13D6A0>
   downNode = (Node) <node.Node object at 0x000001B1EC5C26A0>
   hasOptionValue = {bool} False
   nextDown = {Node} <node.Node object at 0x000001B1ED9F3B80>
  = nextMid = {Node} <node.Node object at 0x000001B1EC563850>
  nextUp = (TruncNode) < node. TruncNode object at 0x000001B1EC6085E0>
  on nodeProba = (float) 0.22232133775183982
  on optionValue = {float} -1.0
  or probaDown = {float} 0.1667410085750615
  on probaMid = (float) 0.0
   probaUp = {float} 0.16659234635228332
  = tree = {Tree} <tree.Tree object at 0x000001B1E3968580>
  ounderlyingPrice = (float) 112.49129317258068
```

Detailed calculation

The down probability has the following code:

self.probaDown = ((variance + fwd * fwd) / (nxtMidPr * nxtMidPr) - 1 - (a + 1) * (fwd / nxtMidPr - 1)) / ((1 - a) * (1 / (a * a) - 1))

$$p_{down} = \frac{S_{i+1,j'}^{-2} (V_{i+1,j} + E_{i+1,j}^2) - 1 - (\alpha+1) \left(S_{i+1,j'}^{-1} E_{i+1,j} - 1 \right)}{(1-\alpha)(\alpha^{-2}-1)}$$

- The numerator is 2.7 10⁻⁷ and the denominator 1.6 10⁻⁶. Therefore a small error in the numerator is magnified in p_{down}.
- The solution is to use the simplified formula when there is no dividend (store 3 values in tree)

Other precision points

It also helps to rephrase the math formula:

$$\frac{V_{i+1,j} + E_{i+1,j}^2}{S_{i+1,j'}^2} - 1$$

 It is less precise when the next node and forward values are close than this variation:

$$\frac{V_{i+1,j} + \left(E_{i+1,j} + S_{i+1,j'}\right)\left(E_{i+1,j} - S_{i+1,j'}\right)}{S_{i+1,j'}^2}$$

Ditto for the other term:

$$\frac{E_{i+1,j}}{S_{i+1,j'}} - 1 = \frac{E_{i+1,j} - S_{i+1,j'}}{S_{i+1,j'}}$$

Organization

- For questions, please use Moodle Forum.
- Please post your spreadsheet on Moodle before Sunday 2nd of November
- · Please include your name in the files, like this:
 - Folder Anna-M Julien-P...
 - Anna-M_Julien-P_...xlsm
 - Anna-M_Julien-P_...: Word or pdf file
 - main.py,
 - · tree.py, etc.