Internet of Things Laboratory

Assignment 7

Prajakta Deokule

C22019221332

4329

Problem Statement: Write an application for Blinking LED and play a Buzzer using Raspberry Pi.

1.Differentiate between Raspberry Pi and Arduino.

	Raspberry Pi	Arduino
License	Hardware and	Arduino is an open
	software of	source project. Both
	Raspberry Pi is closed	its hardware and
	source.	software design are
		open source.
Control Unit	From ARM family	From Atmega family
RAM	Requires large	Requires less
	RAM(more than 1GB)	RAM(2KB)
Clock Frequency	Up to 1.4GHz	16MHz (Arduino
		UNO)
Logic Level	Raspberry Pi's logic	Arduino's logic level
	level is 3V	is 5V
Power Consumption	Raspberry Pi	Arduino consumes
	consumes about	about 200MW of

	700MW of power	power
Based On	Raspberry Pi is based	Arduino is a
	on a microprocessor	microcontroller
Hardware Structure	Complex hardware	Simple hardware
	structure	structure
	Raspberry Pi supports	Arduino boards are
Software	its own Linux based	programmable using
	operating system	C/C++ languages.
	Raspberry Pi OS. You	
	can also install the OS	
	you like.	
Internet	Raspberry Pi has built	Arduino does not
	in Ethernet port and	have internet
	wifi support	support. You need additional modules or
		shields to connect it
		to the Internet.
CPU Architecture	64 bit	8 bit
Ci o Arcintecture	O4 Bit	O DIC
Cost	Raspberry pi boards	Arduino boards are
	are expensive	cheaper
Current Drive	Lower current drive	Higher current drive
strength	strength	strength
How thoy bandla	Pacaborny Di roquiros	Arduino devices
How they handle power drop	Raspberry Pi requires the same care as a	begin executing code
power arop	PC. You have to shut	when they are turned
	down the OS	on. Hence when
	properly.	power is turned off
		abruptly the OS does
		not become corrupt.
Capability	Raspberry Pi can	Arduino is generally
	perform multiple	used to perform
	tasks simultaneously	single and simple

		tasks repeatedly
Wireless	Raspberry Pi supports	Arduino does not
Connectivity	Bluetooth and wifi	support Bluetooth or
		wifi
	Robot controllers,	Traffic light
Applications	game servers, stop	countdown timer,
	motion cameras etc	Parking iot counter,
		Weighing machines,
		etc

2. Differentiate between Raspberry Pi and Beagle Bone Black.

Parameter	Raspberry Pi	Beagle Bone Black
Model Tested	It uses Model B version.	It uses Rev A5 version
Processor Type	Uses ARM11 processor	Uses ARM Cortex-A8 processor
RAM	It uses 700 MHz for processing	It uses 1 GHz for processing
Min Power	It requires power supply of 700mA (3.5W)	It uses minimum power of 210mA(1.05W) for its functioning.
GPIO Pins	It has 12 GPIO pins	It has 69 GPIO pins
Flash	It has dedicated SD Card socket for loading operating system.	It uses 4GB (microSD) for loading OS and data storage
USB Master	It has 2 USB 2.0 on board.	It has 1 USB 2.0 on board.
Dev IDE	It uses IDLE, Scratch,	It uses Python,

	Squeak, Linux to perform tasks.	Scratch, Squeak, Cloud9/Linux to perform a particular task.
Audio Output	Supports HDMI,	Uses Analog output
	Analog audio output	for audio
Video Output	It uses HDMI and	No specific video
	composite output for	output
	video.	
UART	It uses 1 UART to	It uses 5 UART to
	transmit and receive	transmit and receive
	serial data	serial data.
No of I/O pins	8 digital and 0 analog	65 digital and 7
	pins	analog pins

3. What is BCM mode in Raspberry Pi?

BCM means Broadcom chip specific pin numbers. These pin numbers follow the lower-level numbering system defined by the Raspberry Pi's Broadcomchip. The BCM pin mapping refers to the GPIO pins that have been directly connected to the System on a Chip (SoC) of the Raspberry Pi.We have direct links to the brain of Raspberry Pi to connect sensors and components for use.

4. How is the Raspberry Pi board different from BBB in programming?

- In Raspberry Pi, we use the BCM mode for programming. Such a mode setting is not applicable for Beaglebone Black.
- The python library used for Raspberry Pi programming is RPi.GPIO, whereas the library used in case of BBB is Adafruit_BBIO.GPIO.

5. Write a code for blinking LED using Raspberry Pi.

import RPi.GPIO as GPIO

import time

led = 8

```
GPIO.setmode(GPIO.BCM)

GPIO.setup(led, GPIO.OUT)

try:

while True:

GPIO.output(led, GPIO.HIGH)

time.sleep(2)

GPIO.output(led, GPIO.LOW)

time.sleep(2)

except:

print ("Error Occurred")
```

Code

```
import time
import RPi.GPIO as GPIO
pin=25
buzzer=3
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(buzzer,GPIO.OUT)
GPIO.setup(pin,GPIO.OUT)
while True:
        GPIO.output(pin,1)
       GPIO.output(buzzer,1)
       time.sleep(2)
       GPIO.output(pin,0)
       GPIO.output(buzzer,0)
       time.sleep(2)
GPIO.cleanup()
```