9 Superfícies: Curvatura. Línies de curvatura

Exercici 94: (La banda de Möbius) La imatge següent

que s'obté considerant $(u, v) \in (0, 2\pi) \times (-1/4, 1/4)$ i definint la parametrització

$$\varphi(u,v) = \Big((1 + v \cos(u/2)) \cos(u), (1 + v \cos(u/2)) \sin(u), v \sin(u/2) \Big)$$

és el recorregut d'un segment de longitud 1/2 que es desplaça sobre la circumferència unitat al mateix temps que gira sobre si mateix, a una velocitat igual a la meitat de la velocitat que té sobre la circumferència, i determina una superfície homeomorfa a una banda de Möbius. (En particular, és una superfície reglada).

- 1. Calculeu el vector normal a la superfície i comproveu que quan $u \to 0$ i quan $u \to 2\pi$ els vectors normals tendeixen a dos vectors diferents.
- 2. Doneu una expressió en funció dels paràmetres (u, v) per a la curvatura de Gauss. Comproveu que no és 0 en cap punt (sempre és estrictament negativa).

(Podeu trobar instruccions per a construir bandes de Möbius amb curvatura nul·la a l'article de l'enllaç següent: http://mat.uab.cat/matmat/PDFv2013/v2013n07.pdf. Aquestes superfícies seran les que millor s'adapten a la construcció d'una cinta de paper amb els extrems enganxats després de donar mitja volta a un dels dos).

Exercici 95: Recordeu que una línia de curvatura d'una superfície és una corba tal que el seu vector tangent és una direcció principal en cada punt.

- 1. Demostreu que una corba $\alpha: I \to S$ és línia de curvatura de S si i només si $(\mathcal{N} \circ \alpha)'(t)$ és múltiple de $\alpha'(t) \ \forall t \in I$, on \mathcal{N} és el normal a S.
- 2. Suposem que dues superfícies S_1 i S_2 es tallen en una corba C, que és línia de curvatura de S_1 . Demostreu que C és línia de curvatura de S_2 si i només si l'angle entre S_1 i S_2 és constant al llarg de C.

Exercici 96: Considereu un helicoide parametritzat per

$$\varphi(u,v) = (v \cos(u), v \sin(u), c u)$$

(on c és una constant qualsevol). Determineu les seves línies de curvatura.

Exercici 97: (Superfície de Enneper) Sigui S la superfície parametritzada per

$$\varphi(u,v) = (u + u v^2 - u^3/3, v + u^2 v - v^3/3, u^2 - v^2).$$

25

- 1. Calculeu els coeficients de la primera i la segona formes fonamentals.
- 2. Comproveu que la curvatura mitjana és 0 (superfície minimal).
- 3. Quines són les curvatures principals?
- 4. Determineu les línies de curvatura.

Exercici 98: Sigui S la superfície de revolució generada per la corba $\alpha(u)=(a(u),b(u))$ (parametritzada per l'arc i amb a(u)>0) donada per

$$\varphi(u,v) = (a(u) \cos(v), a(u) \sin(v), b(u))$$

Determineu les curvatures principals i les línies de curvatura.