raport.md 2024-03-17

Heurystyki zachłanne

Autorzy sprawozdania

Filip Marciniak 148148, Szymon Pasternak 148146

Wstęp

W ramach zadania należało przeprowadzić badania dotyczące trzech algorytmów:

- 1. Heurystyka najbliższego sąsiada (nearest neighbor)
- 2. Metoda rozbudowy cyklu (greedy cycle)
- 3. Heurystyka zachłanna oparta na żalu (regret heuristics)

na przykładzie zmodyfikowanego problemu komiwojażera. W problemie należy dla danego zbioru wierzchołków oraz symetrycznej macierzy odległości ułożyć dwa rozłączne cykle, z których każdy zawiera 50% wierzchołków. Celem jest minimalizacja łącznej długości obu cykli.

W pracy rozważane są dwie instancje - kroA100 oraz kroB100 pochodzące z biblioteki TSPLib[1]. Odległości pomiędzy wierzchołkami obliczone zostały jako odległości euklidesowe oraz zaokrąglone matematycznie.

Kod programu

Kod programu dostępny jest w repozytorium: https://github.com/Johnybonny/IMO

Opis algorytmów

Wszystkie z podanych poniżej algorytmów akceptują na wejściu macierz odległości pomiędzy danymi wierzchołkami.

Algorytm Nearest Neighbor

Pseudokod programu

Algorytm Greedy Cycle

Pseudokod programu

Algorytm 2-regret

Pseudokod programu

Wyniki

raport.md 2024-03-17

Każdy algorytm uruchomiony został 100 razy - dla każdego wierzchołka, który wyznaczany był jako startowy. W tabeli przedstawione zostały wyniki działania programu.

	kroA100			kroaB		
	min	mean	max	min	mean	max
Nearest neighbor	26521.5	30908	33929.6	26937.5	29309.5	31521.7
Greedy cycle	26308.9	28710.8	29981.1	27177.4	28538.1	30196.7
2-Regret	22317.6	27738.5	34116.2	23876.2	28720.3	34631.9

Wnioski

Bibliografia

[1] https://github.com/mastqe/tsplib