Funciones derivables 1 / 6

Funciones derivables

2015-01-30 7:00

1 Definición

2 Reglas de derivación

3 Ecuaciones de Cauchy-Riemann

Derivada

Definición

Sean $A \subseteq \mathbb{C}$ y z_0 en el interior de A. Decimos que $f: A \to \mathbb{C}$ es derivable en z_0 si el límite

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

existe. En caso de existir, al valor del límite lo denotamos por $f'(z_0)$.

Teorema

Dados $A \subseteq \mathbb{C}$ y z_0 en el interior de A, son equivalentes:

Teorema

Dados $A \subseteq \mathbb{C}$ y z_0 en el interior de A, son equivalentes:

• f es derivable en z_0 .

Teorema

Dados $A \subseteq \mathbb{C}$ y z_0 en el interior de A, son equivalentes:

- f es derivable en z_0 .
- El límite

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

existe.

Teorema

Dados $A \subseteq \mathbb{C}$ y z_0 en el interior de A, son equivalentes:

- f es derivable en z_0 .
- El límite

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

existe.

• Existen $c \in \mathbb{C}$ y una función $E: A \to \mathbb{C}$ tal que

$$f(z) = f(z_0) + c(z - z_0) + E(z)$$

$$con \lim_{z \to z_0} \frac{E(z)}{z - z_0} = 0.$$

Observaciones

• Dada $f: A \to \mathbb{C}$, se define $f': B \to \mathbb{C}$, donde $B \subseteq A$ es el conjunto de puntos donde f es derivable.

Observaciones

- Dada $f: A \to \mathbb{C}$, se define $f': B \to \mathbb{C}$, donde $B \subseteq A$ es el conjunto de puntos donde f es derivable.
- Si f es derivable en z_0 , entonces es continua en z_0 .

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

• $(cf)'(z_0) = cf'(z_0),$

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

- $(cf)'(z_0) = cf'(z_0),$
- $(f+g)(z_0) = f(z_0) + g(z_0)$,

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

- $(cf)'(z_0) = cf'(z_0),$
- $(f+g)(z_0) = f(z_0) + g(z_0)$,
- $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0),$

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

- $(cf)'(z_0) = cf'(z_0),$
- $(f+g)(z_0) = f(z_0) + g(z_0)$,
- $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0),$
- $(\frac{f}{g})'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

Supongamos que $f, g: A \to \mathbb{C}$ son derivables en $z_0 \in A$ y $c \in \mathbb{C}$. Entonces cf, f+g, fg son derivables en z_0 . También $\frac{f}{g}$ es derivable en z_0 si $g(z_0) \neq 0$. Además:

- $(cf)'(z_0) = cf'(z_0),$
- $(f+g)(z_0) = f(z_0) + g(z_0)$,
- $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0),$
- $(\frac{f}{g})'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

Teorema

Para todo $z \in \mathbb{Z}$ se tiene que $f(z) = z^n$ es diferenciable y $f'(z) = nz^{n-1}$.

Sea $f: A \to \mathbb{C}$ derivable en z_0 . Si f = u + iv, entonces

$$u_x(z_0) = v_y(z_0), \qquad u_y(z_0) = -v_x(z_0).$$