## Over a GCD Domain - Part II

In this section we establish some important results about irreducibility and factorization for polynomials over a GCD domain.

**Proposition 1** (Gauss' Lemma – Part II). Let R be a GCD domain with field of fractions F, and let  $p(x) \in R[x]$  have positive degree. Then p(x) is irreducible in R[x] if and only if p(x) is irreducible in F[x] and primitive in R[x].

Proof. (type this)  $\Box$ 

Combined with Eisenstein's criterion, Gauss's lemma provides an easy-to-apply irreducibility criterion.

**Corollary 2.** If  $p(x) \in R[x]$  (R a GCD domain) is Eisenstein and primitive, then p(x) is irreducible in R[x].

*Proof.* Suppose p(x) = a(x)b(x) with  $a, b \in R[x]$ . Since p is Eisenstein, WLOG a(x) is a constant; say  $a(x) = a_0$ . Now  $a_0|p$  in R[x], so that  $a_0|$ content(p) in R. Since p(x) is primitive, a is a unit in R, hence a unit in R[x]. So p(x) is irreducible in R[x].

This criterion can be used to quickly verify that a given polynomial is irreducible – when it applies. Unfortunately there are plenty of irreducible polynomials to which this criterion does not apply. For example,  $p(x) = x^2 + 1$  is primitive in  $\mathbb{Z}[x]$ , and in fact is irreducible. But it is not Eisenstein at any prime.

**Proposition 3** (Rational Root Theorem). Let R be a GCD domain with fraction field F. Suppose  $p(x) \in R[x]$ . Let  $\frac{u}{v} \in F$  be a fraction in lowest terms; that is, gcd(u,v) = 1 in R. If  $\frac{u}{v}$  is a root of p(x), then u divides the constant coefficient of p, and v divides the leading coefficient of p.

The Rational Root Theorem allows us to restrict the possible "rational roots" (that is, those in F, or equivalently factors over R of the form ax - b) to a finite list of possibilities. For example, applying this theorem to  $p(x) = x^2 + 1$  we see that the only possible rational roots of p(x) are  $\pm 1$ , and it is easily seen that neither of these is a root. So by (???) this p is irreducible in  $\mathbb{Z}[x]$ .

## **Exercises**

1. Let R be a GCD domain with  $p(x), q(x) \in R[x]$  so that q is irreducible (hence prime), and let k be a natural number. Show that  $q^{k+1}$  divides p in R[x] iff q|p and  $q^k|p'$  in R[x]. In particular, show that p is squarefree iff gcd(p, p') = 1.