

Challenging the Necessity of a Perfect Prior: Insights from a Replication and Robustness Study of NeRP

Meha Goyal, Kriti Gupta, Danny Jiang, Elaine Liu, Sonika Potnis, Jenny Xu

Introduction & Motivation

- **Problem:** High-quality CT scans are crucial for diagnoses and treatment, but traditional recon methods require dense sampling (1000+ projections), leading to increased acquisition time and radiation exposure.
- Solution: NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction [1]
- High-quality recon with sparsely sampled data (~20 projs)
- State-of-the-art performance
- Learns a patient-specific neural representation with a prior
 - Non-reliant on big training sets (like conventional DL methods)
 - Generalizable to various imaging modalities & body sites
- Research Gap: The impact of lower-quality prior images on recon performance has not been extensively studied.
- Objectives of Our Project:
 - Replicate NeRP for the task of 2-D CT reconstruction.
- Evaluate NeRP's robustness with lower-quality priors.

Methodology

- Implicit Neural Representation Learning: A Multi-Layer Perceptron learns a continuous function that maps coordinates to intensities.
- Prior Embedding(Initialization): A previous CT scan of the same patient is used for pre-training in the image domain.
- **Network Training**: Sparse measurements of the target CT are used to fine-tune the MLP's weights through back propagation.
- Image Inference: By feeding coordinates into the MLP, the final reconstruction can be retrieved for performance evaluation.

Computed Tomography (CT) Reconstruction

- Attenuated X-rays captured as projections from different angles.
- An inverse problem formulated as y = Ax + e.
- Goal: retrieve x (the CT scan) from y (the projection signals).
- A Radon Transform; e acquisition noise.

Dataset & Pre-Processing

 Publicly available chest CT image data from The Cancer Imaging Archive (TCIA) [2], preprocessed manually to remove device bed.

Evaluation Metrics

- Peak Signal-to-Noise Ratio
 (PSNR) quantifies the ratio of
 the maximum possible power
 of a signal to that of noise.
 Higher means better.
- Structural Similarity Index
 Measure (SSIM) evaluates the
 quality by comparing luminance,
 contrast, and structural similarity.
 1.0 means perfect similarity.

Replication Results

 Results of 2D CT image recon in NeRP and our replication using 20 projections.

	With Prior	Without Prior		
	PSNR/SSIM	PSNR/SSIM		
Replication	30.42/0.734	28.61/0.623		
NeRP 2D	34.87/0.886	27.08/0.660		

References

[1] Shen, L.; Pauly, J.; and Xing, L. 2022. NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction. IEEE Transactions on Neural Networks and Learning Systems, 770–782.

[2] An, P.; Xu, S.; Harmon, S. A.; Turkbey, E. B.; Sanford, T. H.; Amalou, A.; Kassin, M.; Varble, N.; Blain, M.; Anderson, V.; Patella, F.; Carrafiello, G.; Turkbey, B. T.; and Wood, B. J. 2020. CT Images in COVID-19 [Dataset].

Extension

- Motivation: High-quality priors may not always be available due to noise, misalignment, or sparse sampling.
- Goal: Test NeRP's robustness by evaluating the effect of lowering the quality of priors through gaussian noise, sparse sampling, and spatial misalignment.

Extension Results

Prior Type	PSNR(dB)	SSIM			
Perfect Prior	30.89	0.821	Prior	Reconstruction	Ground Truth
Gaussian Noise (Image Domain)	30.80	0.819	Α	В	C
Gaussian Noise (Signal Domain)	31.13	0.819	677		
Sparse Sampling	31.32	0.848			
Results of CT recon with noisy p	riors of PSNF	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Ground Truth with Perfect Prior	with Noisy P (Gaussian S		Device	e bed incons	sistency

30.89	0.921			
50.07	0.821	Recon		
30.67	0.826	with		
29.41	0.735	Shifted		
28.74	0.668	Prior	E nivel	20-pixel
	29.41 28.74	29.41 0.735	29.41 0.735 Shifted 28.74 0.668 Prior	29.41 0.735 Shifted 28.74 0.668 Prior 5-pixel

Conclusions & Societal Impact

- Robustness: NeRP proves <u>robust</u> against various types of noise, indicating more potential applications in clinical settings.
- Guidance for Application: Spatial misalignment and device bed inconsistency have a <u>negative effect</u> on reconstruction quality.
- Towards Efficient CT Reconstruction: Reduced scanning time and radiation exposure for the benefits of patients.
- **Broad Implication**: New opportunities for effective imaging solutions in healthcare.