MTH1102D Calcul II

Chapitre 6, section 5 : Les applications des intégrales doubles

Centre de masse d'une plaque mince

Introduction

- Premiers moments d'une plaque mince.
- Centre de masse d'une plaque mince.

Premiers moments d'une masse ponctuelle

 Les premiers moments par rapport aux axes de coordonnés d'une masse m située au point (x₀, y₀) sont

$$M_x = I_x m = y_0 m$$

$$M_y = I_y m = x_0 m.$$

- Les quantités l_x et l_y sont appelées bras de levier.
- Les premiers moments mesurent la tendance de m à tourner autour des axes.

Premiers moments d'une masse ponctuelle

 Les premiers moments par rapport aux axes de coordonnés d'une masse m située au point (x₀, y₀) sont

$$M_x = I_x m = y_0 m$$

$$M_y = I_y m = x_0 m.$$

- Les quantités l_x et l_y sont appelées bras de levier.
- Les premiers moments mesurent la tendance de m à tourner autour des axes.
- Le moment d'un système de masses est la somme des moments individuels.

Premiers moments d'une plaque mince

Le (premier) moment d'une plaque mince D de densité $\rho(x,y)$ par rapport à l'axe des x est

$$M_{x} = \iint_{D} y \rho(x, y) \, dA.$$

Premiers moments d'une plaque mince

Le (premier) moment d'une plaque mince D de densité $\rho(x,y)$ par rapport à l'axe des x est

$$M_{x} = \iint_{D} y \rho(x, y) \, dA.$$

dA = aire d'une petite région de la plaque

Premiers moments d'une plaque mince

Le (premier) moment d'une plaque mince D de densité $\rho(x,y)$ par rapport à l'axe des x est

$$M_{x} = \iint_{D} y \rho(x, y) dA.$$

dA = aire d'une petite région de la plaque

 $\rho(x,y) dA \approx \text{masse d'une petite région de la plaque}$

Premiers moments d'une plaque mince

Le (premier) moment d'une plaque mince D de densité $\rho(x,y)$ par rapport à l'axe des x est

$$M_{x} = \iint_{D} y \rho(x, y) \, dA.$$

dA = aire d'une petite région de la plaque

 $\rho(x, y) dA \approx \text{masse d'une petite région de la plaque}$

 $y\rho(x,y) dA =$ bras de levier \times masse \approx moment d'une petite région de la plaque

Premiers moments d'une plaque mince

Le (premier) moment d'une plaque mince D de densité $\rho(x,y)$ par rapport à l'axe des x est

$$M_{x} = \iint_{D} y \rho(x, y) \, dA.$$

dA = aire d'une petite région de la plaque

 $\rho(x, y) dA \approx \text{masse d'une petite région de la plaque}$

 $y\rho(x,y) dA =$ bras de levier \times masse \approx moment d'une petite région de la plaque

 $\iint_D y \rho(x,y) dA = \text{ } \ll \text{ somme } \gg \text{ des moments en chaque point }$ de la plaque

Premiers moments d'une plaque mince

Définition

Soit une plaque mince de densité $\rho(x,y)$ occupant une région D du plan.

1 Le (premier) moment par rapport à l'axe des x de la plaque est

$$M_{x} = \iint_{D} y \rho(x, y) \, dA.$$

2 Le (premier) moment par rapport à l'axe des y de la plaque est

$$M_y = \iint_D x \rho(x, y) dA.$$

Centre de masse d'une plaque mince

Définition

Le centre de masse d'une plaque mince est le point (\bar{x}, \bar{y}) de coordonnées

$$ar{x} = rac{M_y}{m}$$
 et $ar{y} = rac{M_x}{m}$.

- Les nombres \bar{x} et \bar{y} sont les « moyennes » des premiers moments de la plaque.
- Si la plaque est supportée au point (\bar{x}, \bar{y}) alors elle sera en équilibre.
- Si on néglige la rotation, la friction et les déformations, on peut simplifier l'étude du mouvement d'une plaque mince en considérant seulement le mouvement de son centre de masse.

Centre de masse d'une plaque mince

Définition

Le *centroïde* d'une plaque mince est son centre de masse si on considère la densité constante et égale à 1.

On appelle aussi ce point le centre géométrique de la plaque.

(Facultatif)

En probabilités, si X et Y sont des variables aléatoires ayant une fonction de densité conjointe $\rho(x,y)$ alors les seconds moments en x et en y se calculent avec les mêmes formules et correspondent aux *moyennes* de X et de Y.

Résumé

- Premiers moments d'une plaque mince.
- Centre de masse d'une plaque mince.
- Interprétation physique du centre de masse.