

<u>Course</u> > <u>Unit 7:</u> ... > <u>Lec. 14:</u>... > 12. Exe...

12. Exercise: Continuous unknown and observation

Exercises due Apr 8, 2020 05:29 IST Completed

Exercise: Continuous unknown and observation

4/4 points (graded)

Let Θ and X be jointly continuous nonnegative random variables. A particular value x of X is observed and it turns out that $f_{\Theta|X}(\theta\,|\,x)=2e^{-2\theta}$, for $\theta\geq 0$.

The following facts may be useful: for an exponential random variable Y with parameter λ , we have $\mathbf{E}[Y]=1/\lambda$ and $\mathsf{Var}(Y)=1/\lambda^2$.

a) The LMS estimate (conditional expectation) of Θ is

1/2

✓ Answer: 0.5

b) The conditional mean squared error $\mathbf{E}ig[(\Theta-\widehat{\Theta}_{ ext{LMS}}ig)^2\,|\,X=x]$ is

1/4

✓ Answer: 0.25

c) The MAP estimate of Θ is

0

✓ Answer: 0

d) The conditional mean squared error $\mathbf{E}ig[(\Theta-\widehat{\Theta}_{\mathrm{MAP}}ig)^2\,|\,X=x]$ is

1/2

✓ Answer: 0.5

Solution:

- a) The posterior PDF is exponential with parameter 2. The LMS estimate is the mean of this distribution, which is 1/2.
- b) Since $\widehat{\Theta}_{LMS}$ is the conditional mean, the mean squared error is the conditional variance, that is, the variance of an exponential random variable with parameter 2, and is equal to 1/4.
- c) The posterior PDF, which is exponential, is largest at zero.
- d) Since $\widehat{\Theta}=0$, the conditional mean squared error is the second moment of the exponential distribution (that is, of the form ${f E}[Y^2]$, where Y is exponential with parameter
- 2). Using the formula $\mathbf{E}\left[Y^{2}
 ight]=\mathsf{Var}\left(Y
 ight)+\left(\mathbf{E}\left[Y
 ight]
 ight)^{2}$, we obtain

$$\mathbf{E}[Y^2] = rac{1}{4} + \left(rac{1}{2}
ight)^2 = rac{1}{2}.$$

Note that the LMS estimator results in a smaller mean squared error.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 14: Introduction to Bayesian inference / 12. Exercise: Continuous unknown and observation

Show all posts

About a)
Why is the LMS estimate the mean of this distribution? LMS is least mean square, how does directly usin...

Part d
Why is the conditional mean squared error the "second moment of the exponential distribution", and w...

Why use MAP at all if LMS performs better?
As far as I understand, the LMS estimator always minimises the MSE, so why would I every use the MAP

2	help on a Sorry, did he actually explain how to d a) (LMS). I saw formulas, but nothing corresponding to what we h	3
?	Part (c) MAP estimate From lecture, it says the MAP estimate of theta is the value of theta which maximizes the value of the Co	7
	Confused about given f Isn't f (given in the second sentence of the problem statement) the PMF of possible thetas? So shouldn't	2
?	Confusion over conditional PDF	2
2	No integration is needed for all the questions.	5
?	Need some help on b I think that I can leverage $E[Y]=1/\lambda$, but I need some help on understanding how to determine $E[(\Theta-\Theta_L]]$	5
?	How to calculate a) hint?	3
4		

© All Rights Reserved

