November 09, 2024 Thesis Proposal Defense

Skeleton-based Human Action Recognition Based on modified Graph Convolution Network

Samihah Binte Sharif [C211250] Takia Sultana Nova [C211219] Kazi Taspia Tahlin [C211246]

Department of Computer Science and Engineering International Islamic University Chittagong

Supervisor: Md. Khaliluzzaman

Why Skeleton-based Action Recognition?

- Robust Against:
 - → Complex Backgrounds
 - → Camera View Changes
- Represents natural human body topology
- Helps models focus on semantically relevant features
- Lower computational cost

Graph Convolutional Networks(GCN)

- Skeletons can be represented as graphs where:
 - Joints -> vertices
 - natural topology (bones) between adjacent joints -> spatial edges
 - temporal correlations of adjacent frames -> temporal edges
- GCNs can effectively model these spatial relationships.

Problem Statement

Challenge of Modeling Long-Range Dependencies:

- Over-smoothing issue
- Indirect dependencies

Temporal Redundancy in Skeleton Frames:

- Keyframe Selection
- Loss of Semantic Focus

Research Objectives

To model long-range dependencies more accurately between joints

To improve temporal robustness by focusing on key, semantics-related poses

To design an efficient, scalable model that balances accuracy with computational cost

Ref.	Findings	Dataset	Methods used	Accuracy				Limitations
				Top-1	Top-5	X-Sub	X-View	
[1]	Introduces ST-GCN, a model that applies graph convolutional networks (GCNs) to human skeleton data for action recognition	Kinetics	Graph convolution, Temporal convolution, Specialized convolution kernels	30.7%	52.8%			Fixed Skeleton Graph, Lack of Flexibility Across Layers, Inflexibility for Different Actions
		NTU-RGB+ D				81.5	88.3%	

Ref.	Findings	Dataset	Methods used	Accuracy				Limitations
				Top-1	Top-5	X-Sub	X-View	
[2]	2s-AGCN allows the model to adaptively learn graph topologies rather than	Kinetics - Skeleton	Adaptive Graph Convolution, Two-Stream Framework	36.1%	58.7%			Increased Computational Cost, Potential Overfitting, Limited Testing
	relying on fixed, manually set ones.	NTU-RGB+ D				88.5 %	95.1%	on Unseen Actions

Ref.	Findings	Dataset	Methods used	Accuracy				Limitations
				Top-1	Top-5	X-Sub	X-View	
[3]	convolutions to more effectively	Skeleton 400 NTU-RGB+	Disentangled Graph Convolutions, Unified Graph Convolution, Hierarchical Aggregation	38.0%	60.9%	86.9 %	88.4%	Complexity in Model Design, Higher Computational Demand, Limited Adaptability to Unseen Skeleton
	dependencies	NTU-RGB+ D 60				91.5 %	96.2%	Variants

Ref.	Findings	Dataset	Methods used	Accuracy				Limitations
				Top-1	Top-5	X-Sub	X-View	
[4]	AAM-GCN solves the problem of over-smoothing, automatically increasing the	Kinetics - Skeleton	Attention Adjacency Matrix , Dimension Attention Mechanism, Spatial-Temporal Convolution Blocks	37.5%	60.5%			Limited generalizability due to primary testing on large-scale datasets, Increased computational cost
	number of convolution kernels with the increase of the complexity of the topological structure of graphs	NTU-RGB+ D				90.4	96.2%	

Methodology

Applications

Healthcare & Rehabilitation

Human-Robot Interaction

Virtual Reality (VR)

Sports Analysis

Surveillance Systems

Entertainment & Gaming

Expected Contribution and Outcome

Enhance skeleton-based action recognition by effectively capturing long-range dependencies

The model's efficiency and robustness will enable its use in real-world applications like virtual reality, robotics.

Practical Applications

Improved Accuracy

Expected to outperform existing models on standard datasets like NTU-RGBD and Kinetics-Skeleton.

Expected Contribution and Outcome

This work will provide a foundation for future developments in human action recognition.

Thesis Significance

Enhanced Action Recognition

This thesis advances skeleton-based action recognition by addressing key gaps, improving accuracy, and robustness in challenging conditions.

Broad Applicability

The model can benefit fields like VR, healthcare, robotics, and surveillance, where precise movement detection is essential.

Efficiency and Scalability

The balanced design ensures the model is both accurate and resource-efficient, suitable for various environments.

GANTT CHART

Conclusion

Research Focus

Developed adaptive strategies for enhanced skeleton-based action recognition.

Expected Outcomes

- Improved recognition accuracy and robustness across datasets.
- Reduced computational costs while maintaining model adaptability.

Potential Impact

Applications in fields like virtual reality, robotics, and abnormal behavior detection.

- [1] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for skeleton-based action recognition, 2018. 1, 3, 7, 8
- [2] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Adaptive spectral graph convolutional networks for skeleton-based action recognition. CoRR, abs/1805.07694, 2018. 1, 3, 5, 6, 7, 8
- [3] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang. Disentangling and unifying graph convolutions for skeleton-based action recognition. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 140–149, 2020. doi: 10.1109/CVPR42600.2020.00022 1, 2, 3, 7
- [4] B. Jxa, B. Qma, B. Rla, B. Wxa, T. C. Lei, Z. C. Sheng, and D. Xg. Attention adjacency matrix based graph convolutional networks for skeleton-based action recognition sciencedirect. Neurocomputing, 440:230 239, 2021. 3, 6, 7

Thank you