Lembar Jawaban Kalkulasi Neural Network

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	X ₂	X 3	α	Threshold	$\mathbf{Y}_{d,6}$	
0.7	0.8	0.9	0.1	-1	0	

Initial Random

V	N ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ4	θ ₅	θ ₆
(0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya •••••

Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function

$$\begin{array}{lll} Y_4 & = sigmoid(x_1W_{14} + x_2W_{24} + x_3W_{34} - \theta_4) \\ & = 1/[1 + e - (0.7 \times 0.5 + 0.8 \times 0.3 + 0.9 \times -1.0 - 0.2)] \\ & = 0.3751 \\ Y_5 & = sigmoid(x_1W_{15} + x_2W_{25} + x_3W_{35} - \theta_5) \\ & = 1/[1 + e - (0.7 \times 0.6 + 0.8 \times 1.1 + 0.9 \times 0.1 - 0.3)] \\ & = 0,7485 \\ Y_6 & = sigmoid(Y_4W_{46} + Y_5W_{56} - \theta_6) \\ & = 1/[1 + e - (0.3751 \times (-1.1) + 0,7485 \times (-0.7) - 0.4] \\ & = 0,2079 \\ e & = Yd,6 - Y6 \\ & = 0 - 0.1498 \\ & = -0,2079 \\ \end{array}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₄ Y ₅		е	
0,3751	0,7485	0,2079	-0,2079	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections

$$δ_6$$
= $Y_6(1 - Y_6)e$

= $0,2079 \times (1 - 0,2079) \times (-0,2079)$

= $-0,0342$
 $∇_{46}$
= $α \times Y_4 \times δ_6$

= $0.1 \times 0,3751 \times (-0,0342)$

= $-0,0013$
 $∇_{56}$
= $α \times Y_5 \times δ_6$

= $0.1 \times 0,7485 \times (-0,0342)$

= $-0,0026$
 $∇_{6}$
= $α \times δ_6$

= $0.1 \times (-0,2079)$

= $-0,0034$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	∇_{46}	$ abla_{56}$	∇θ6	
-0,0342	-0,0013	-0,0026	-0,0034	

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Laver/Hidden Laver

$$\begin{split} \delta_4 &= Y_4(1\text{-}Y_4)\delta_6W_{46} \\ &= 0.3751 \text{ x } (1\text{-}0.3751) \text{ x } (\text{-}0,0342) \text{ x } (\text{-}1.1) \\ &= 0.0088 \\ \delta_5 &= Y_5(1\text{-}Y_5)\delta_6W_{56} \\ &= 0,7485 \text{ x } (1\text{-}0,7485) \text{ x } (\text{-}0,0342) \text{ x } (\text{-}0.7) \\ &= 0.0045 \end{split}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	δ_5
0,0088	0,0045

Langkah 4: Hitung weight corrections

$$\nabla w_{14} = \alpha x_1 \delta_4$$

$$= 0.1 \times 0.7 \times 0.0088$$

$$= 0,0006$$

$$\nabla w_{24} = \alpha x_2 \delta_4$$

$$= 0.1 \times 0.8 \times 0.0088$$

$$= 0,0007$$

$$\nabla w_{34} = \alpha x_3 \delta_4$$

$$= 0.1 \times 0.9 \times 0.0088$$

$$= 0,0008$$

$$\nabla \theta_4 = \alpha \times \delta_4$$

$$= 0.1 \times 0.0088$$

$$= -0,0009$$

$$\nabla w_{15} = \alpha x_1 \delta_5$$

$$= 0.1 \times 0.7 \times 0.0045$$

$$= 0.00003$$

$$\nabla w_{25} = \alpha x_2 \delta_5$$

$$= 0.1 \times 0.8 \times 0.0045$$

$$= 0.00004$$

$$\nabla w_{35} = \alpha x_3 \delta_5$$

$$= 0.1 \times 0.9 \times 0.0045$$

$$= 0.00004$$

$$\nabla \theta_5 = \alpha \times \delta_5$$

$$= 0.1 \times 0.0045$$

= 0.00005

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇w ₁₄	∇ w ₂₄	∇W ₃₄	∇θ4	∇ w ₁₅	∇w ₂₅	∇ w ₃₅	∇θ5
0,0006	0,0007	0,0008	-0,0009	0,0003	0,0004	0,0004	-0,0005

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

$$W_{14} = W_{14} + \nabla W_{14}$$

$$= 0.5 + 0,0006$$

$$= 0,5006$$

$$W_{15} = W_{15} + \nabla W_{15}$$

$$= 0.6 + 0,0003$$

$$= 0,6003$$

$$W_{24} = W_{24} + \nabla W_{24}$$

$$= 0.3 + 0,0007$$

$$= 0,3007$$

$$\begin{aligned} w_{25} &= W_{25} + \nabla w_{25} \\ &= 1.1 + 0,0004 \\ &= 1,1004 \\ w_{34} &= W_{34} + \nabla w_{34} \\ &= (-1.0) + 0,0008 \\ &= -0,9992 \\ w_{35} &= W_{35} + \nabla w_{35} \\ &= 0.1 + 0,0004 \\ &= 0,1004 \\ \theta_4 &= \theta_4 + \nabla \theta_4 \\ &= 0.2 + (-0,0009) \\ &= 0,1991 \\ \theta_5 &= \theta_5 + \nabla \theta_5 \\ &= 0.3 + (-0,0005) \\ &= 0,2996 \\ \theta_6 &= \theta_6 + \nabla \theta_6 \\ &= 0.4 + (-0,0034) \\ &= 0,3966 \end{aligned}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ ₄	θ_5	θ_6
0,5006	0,6003	0,3007	1,1004	-0,9992	0,1004	0,1991	0,2995	0,3966

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-