Quantum Monte Carlo solving Schrödinger's equation

Seyed Mohammad Farzaneh ECE Department, NYU

December 14, 2017

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{i=1}^{K} \frac{1}{M_i} \nabla_i^2 - \sum_{i=1}^{N} \sum_{j=1}^{K} \frac{Z_j e^2}{|\boldsymbol{r}_i - \boldsymbol{R}_j|} + \sum_{i < j}^{N} \frac{e^2}{|\boldsymbol{r}_i - \boldsymbol{r}_{i'}|} + \sum_{i < j}^{K} \frac{Z_j Z_{j'} e^2}{|\boldsymbol{R}_j - \boldsymbol{R}_{j'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{i=1}^{K} \frac{1}{M_i} \nabla_i^2 - \sum_{i=1}^{N} \sum_{j=1}^{K} \frac{Z_j e^2}{|\boldsymbol{r}_i - \boldsymbol{R}_j|} + \sum_{i < j}^{N} \frac{e^2}{|\boldsymbol{r}_i - \boldsymbol{r}_{i'}|} + \sum_{i < j}^{K} \frac{Z_j Z_{j'} e^2}{|\boldsymbol{R}_j - \boldsymbol{R}_{j'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 - rac{\hbar^2}{2} \sum_{i=1}^K rac{1}{M_i}
abla_i^2 - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|} + \sum_{i < j}^K rac{Z_j Z_{j'} e^2}{|m{R}_j - m{R}_{j'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{i=1}^{K} \frac{1}{M_i} \nabla_i^2 - \sum_{i=1}^{N} \sum_{j=1}^{K} \frac{Z_j e^2}{|\boldsymbol{r}_i - \boldsymbol{R}_j|} + \sum_{i < j}^{N} \frac{e^2}{|\boldsymbol{r}_i - \boldsymbol{r}_{i'}|} + \sum_{i < j}^{K} \frac{Z_j Z_{j'} e^2}{|\boldsymbol{R}_j - \boldsymbol{R}_{j'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{i=1}^{K} \frac{1}{M_i} \nabla_i^2 - \sum_{i=1}^{N} \sum_{j=1}^{K} \frac{Z_j e^2}{|\boldsymbol{r}_i - \boldsymbol{R}_j|} + \sum_{i < j}^{N} \frac{e^2}{|\boldsymbol{r}_i - \boldsymbol{r}_{i'}|} + \sum_{i < j}^{K} \frac{Z_j Z_{j'} e^2}{|\boldsymbol{R}_j - \boldsymbol{R}_{j'}|}$$

Born-Oppenheimer Approximation

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 \ - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|}$$

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

Choose a Trial Wavefunction $\Psi_T(oldsymbol{R},lpha)$ 3N dimensional, variational parameters

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

- Choose a Trial Wavefunction $\,\Psi_T(oldsymbol{R},lpha)\,$ 3N dimensional, variational parameters
- Evaluate $\langle \mathcal{H} \rangle = \frac{\int \Psi_T^*(\boldsymbol{R}) \mathcal{H} \Psi_T(\boldsymbol{R}) \, d\boldsymbol{R}}{\int \Psi_T^*(\boldsymbol{R}) \Psi_T(\boldsymbol{R}) \, d\boldsymbol{R}} \geq E_0$

$$\mathcal{H} = -rac{\hbar^2}{2m} \sum_{i=1}^N
abla_i^2 - \sum_{i=1}^N \sum_{j=1}^K rac{Z_j e^2}{|m{r}_i - m{R}_j|} + \sum_{i < j}^N rac{e^2}{|m{r}_i - m{r}_{i'}|}$$

$$\mathcal{H}\Psi = E\Psi$$

- Choose a Trial Wavefunction $\,\Psi_T(oldsymbol{R},lpha)\,$ 3N dimensional, variational parameters
- Evaluate $\langle \mathcal{H} \rangle = \frac{\int \Psi_T^*({m R}) \mathcal{H} \Psi_T({m R}) \, d{m R}}{\int \Psi_T^*({m R}) \Psi_T({m R}) \, d{m R}} \geq E_0$
- if $\langle \mathcal{H} \rangle \neq E_0$ Change variational parameters and repeat

$$E_L(m{R}, lpha) = rac{1}{\Psi_T(m{R}, lpha)} \mathcal{H} \Psi_T(m{R}, lpha)$$
 Local Energy

$$P(m{R}, lpha) = rac{|\Psi_T(m{R})|^2}{\int \Psi_T^*(m{R}) \Psi_T(m{R}) \, dm{R}}$$

$$E_L(\pmb{R},\alpha) = \frac{1}{\Psi_T(\pmb{R},\alpha)} \mathcal{H} \Psi_T(\pmb{R},\alpha) \qquad \qquad P(\pmb{R},\alpha) = \frac{|\Psi_T(\pmb{R})|^2}{\int \Psi_T^*(\pmb{R}) \Psi_T(\pmb{R}) \, d\pmb{R}}$$
 Local Energy
$$\text{PDF}$$

$$\langle E_L(\pmb{R},\alpha) \rangle = \int P(\pmb{R},\alpha) E_L(\pmb{R},\alpha) d\pmb{R}$$

$$E_L(\pmb{R},\alpha) = \frac{1}{\Psi_T(\pmb{R},\alpha)} \mathcal{H} \Psi_T(\pmb{R},\alpha) \qquad \qquad P(\pmb{R},\alpha) = \frac{|\Psi_T(\pmb{R})|^2}{\int \Psi_T^*(\pmb{R}) \Psi_T(\pmb{R}) \, d\pmb{R}}$$
 Local Energy
$$\text{PDF}$$

$$\langle E_L(\pmb{R},\alpha) \rangle = \int P(\pmb{R},\alpha) E_L(\pmb{R},\alpha) d\pmb{R}$$

Choose an electron and calculate a trial position $\mathbf{R}' = \mathbf{R} + r\Delta\mathbf{R}; \ r \in [0,1]$

$$oldsymbol{R}' = oldsymbol{R} + r\Delta oldsymbol{R}; \quad r \in [0, 1]$$

$$E_L(\pmb{R},\alpha) = \frac{1}{\Psi_T(\pmb{R},\alpha)} \mathcal{H} \Psi_T(\pmb{R},\alpha) \qquad \qquad P(\pmb{R},\alpha) = \frac{|\Psi_T(\pmb{R})|^2}{\int \Psi_T^*(\pmb{R}) \Psi_T(\pmb{R}) \, d\pmb{R}}$$
 Local Energy
$$\qquad \qquad \text{PDF}$$

$$\langle E_L(\pmb{R},\alpha) \rangle = \int P(\pmb{R},\alpha) E_L(\pmb{R},\alpha) d\pmb{R}$$

- Choose an electron and calculate a trial position $\mathbf{R}' = \mathbf{R} + r\Delta\mathbf{R}; \ r \in [0,1]$
- Accept or Reject the move with probability $\min\left(1, \frac{P({m R}', lpha)}{P({m R}, lpha)}\right)$

$$E_L(\pmb{R},\alpha) = \frac{1}{\Psi_T(\pmb{R},\alpha)} \mathcal{H} \Psi_T(\pmb{R},\alpha) \qquad \qquad P(\pmb{R},\alpha) = \frac{|\Psi_T(\pmb{R})|^2}{\int \Psi_T^*(\pmb{R}) \Psi_T(\pmb{R}) \, d\pmb{R}}$$
 Local Energy
$$\langle E_L(\pmb{R},\alpha) \rangle = \int P(\pmb{R},\alpha) E_L(\pmb{R},\alpha) d\pmb{R}$$

- Choose an electron and calculate a trial position $\mathbf{R}' = \mathbf{R} + r\Delta\mathbf{R}; \ r \in [0,1]$
- Accept or Reject the move with probability $\min\left(1, \frac{P(\mathbf{R}', \alpha)}{P(\mathbf{R}, \alpha)}\right)$
- If accepted $oldsymbol{R}=oldsymbol{R}'$ then calculate $E_L(oldsymbol{R},lpha)$ and repeat

Trial Wavefunction

Any wave function that is physical and for which the value, the gradient and the laplacian of the wave function may be efficiently computed can be used.

Trial Wavefunction

Any wave function that is physical and for which the value, the gradient and the laplacian of the wave function may be efficiently computed can be used.

$$\Psi_T(\mathbf{R}) = \psi(\mathbf{r}_1)\psi(\mathbf{r}_2)\cdots\psi(\mathbf{r}_N)\prod_{i< j} f(r_{ij})$$

Trial Wavefunction

Any wave function that is physical and for which the value, the gradient and the laplacian of the wave function may be efficiently computed can be used.

$$\Psi_T(\mathbf{R}) = \psi(\mathbf{r}_1)\psi(\mathbf{r}_2)\cdots\psi(\mathbf{r}_N)\prod_{i< j} f(r_{ij})$$

$$\psi(\boldsymbol{r}_i) = \sum_{j=1}^K e^{-\alpha|\boldsymbol{r}_i - \boldsymbol{R}_j|}$$

single electron Wavefunction

$$f(r_{ij}) = \left(\frac{r_{ij}}{2(1+\beta r_{ij})}\right)$$

electron-electron correlation

Monte Carlo in Action

Next Steps

- Spin terms in trial wavefunction
- Pseudopotential for heavier atoms
- Parallelization (QMC is very suitable for parallel processing)
- Calculate energy of solids

Any Questions?