TRIGONOMETRY Chapter 20

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS EN POSICIÓN NORMAL II

HELICO-MOTIVACIÓN

La Trigonometría, ¿Para qué sirve o Para qué la usamos?

La trigonometría nos sirve para calcular distancias sin la necesidad de recorrerlas.

La trigonometría en la vida real es muy utilizada ya que podemos medir alturas o distancias, realizar medición de ángulos, entre otras cosas.

DEFINICIÓN DE LAS R.T PARA UN ÁNGULO EN POSICIÓN NORMAL II

DONDE:

x: abscisa del punto P

y: ordenada del punto P

r: radio vector del punto P

NOTA:

$$r = \sqrt{x^2 + y^2}$$
 ; $r > 0$

SE DEFINE:

$$\cot \theta = \frac{\text{Abscisa del punto P}}{\text{Ordenada del punto P}} = \frac{x}{y}$$

$$\sec \theta = \frac{\text{Radio vector del punto P}}{\text{Abscisa del punto}} = \frac{1}{3}$$

$$\frac{P}{Pordenada del punto} = \frac{r}{y}$$

1. Del gráfico, complete los espacios en blanco:

Recuerda:

$$\cot \theta = \frac{x}{y}$$
, $\sec \theta = \frac{r}{x}$ y $\csc \theta = \frac{r}{y}$

Resolución:

$$\cot(\varphi) = \frac{3}{4}$$

$$\sec(\varphi) = \frac{5}{3}$$

$$csc(\varphi) = \frac{5}{4}$$

$$x = 3$$
 $y = 4$ $r = 5$

Hallamos r:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$\mathbf{r} = \sqrt{(3)^2 + (4)^2}$$

$$\mathbf{r} = \sqrt{9 + 16}$$

$$\mathbf{r} = \sqrt{25}$$

$$r = 5$$

2. Del gráfico, calcule sec²θ.

Recuerd

$$\sec\Theta = \frac{r}{x}$$

Resolución:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$\mathbf{r} = \sqrt{(12)^2 + (9)^2}$$

$$\mathbf{r} = \sqrt{144 + 81}$$

$$\mathbf{r} = \sqrt{225}$$

$$x = 12$$
 $y = 9$ $r = 15$

Reemplazamos en:

$$(\frac{15}{12})^2$$

iMuy bien! $\frac{225}{144}$

Del gráfico, efectúe $E = \sqrt{15} cscΦ$

Resolución:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$\mathbf{r} = \sqrt{(-\sqrt{11})^2 + (2)^2}$$

$$\mathbf{r} = \sqrt{11 + 4}$$

$$r = \sqrt{15}$$

$$x = -\sqrt{11}$$
 $y = 2$ $r = \sqrt{15}$

Reemplazamos en E:

$$E = \sqrt{15} csc\Phi$$

$$\mathsf{E=} \qquad (\frac{\sqrt{15}}{2})$$

$$\therefore E = \frac{15}{2}$$

iMuy bien!

Si el punto (-2;3) pertenece al lado final de un ángulo en posición normal Φ, efectúe:

$$K = sec\Phi.csc\Phi$$

Resolución:

$$\mathbf{r} = \sqrt{x^2 + y^2}$$

$$\mathbf{r} = \sqrt{(-2)^2 + (3)^2}$$

$$\mathbf{r} = \sqrt{4} + 9$$

$$r = \sqrt{13}$$

$$x = -2$$
 $y = 3$ $r = \sqrt{13}$

Reemplazamos en K:

$$K = \sec \Phi . \csc \Phi$$

$$K = (\frac{\sqrt{13}}{-2})(\frac{\sqrt{13}}{3})$$

$$\therefore K = -\frac{13}{6}$$

iMuy bien!

 $\sec\theta = \frac{r}{x}$, $\csc\theta = \frac{r}{v}$

Del gráfico, efectúe $H = csc\theta + cot\theta$

Recuerda:

$$\cot \Theta = \frac{x}{y}, \ \csc \Theta = \frac{r}{y}$$

Resolución:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$\mathbf{r} = \sqrt{(5)^2 + (12)^2}$$

$$\mathbf{r} = \sqrt{25 + 144}$$

$$r = \sqrt{169} \ r = 13$$

$$x = 5$$
 $y = 12$ $r = 13$

Reemplazamos en H:

$$H = \csc\theta + \cot\theta$$

$$H = \frac{13}{12} + \frac{5}{12}$$

$$H = \frac{18}{12}$$

$$\therefore H = \frac{3}{2}$$

Del gráfico, si cot $\theta = -\frac{2}{5}$; calcule el valor de n:

Recuerda:

$$\cot\theta = \frac{x}{y}$$

Resolución:

Del gráfico

$$\cot \theta = \frac{10}{2n-1}$$
 ... I

Del dato:

$$\cot\theta = -\frac{2}{5}$$
... II

De I y II

$$\frac{10}{2n-1} = -\frac{2}{5}$$

$$50 = -2(2n - 1)$$

$$50 = -4n + 2$$

$$48 = -4 \text{ h}$$

$$\therefore \mathbf{n} = -12$$

Del gráfico, calcule cota

Resolución:

Hallamos la coordenada del punto M

$$M\begin{cases} x = \frac{-7 + (-1)}{2} = -4 \\ y = \frac{1 + 5}{2} = 3 \end{cases}$$

$$M(-4;3)$$

Reemplazamos:

$$x = -4 \qquad y = 3$$

$$\cot\alpha = \frac{-4}{3} = -\frac{4}{3}$$

 $\cot \alpha = \frac{\alpha}{-}$

Jhon ha rendido su examen de R.M. obteniendo una calificación A. Para averiguar dicha calificación tendrás que resolver lo siguiente:

$$A = 5 - 8 \sec \beta$$

¿Cuál es la calificación de

Resolución:

Hallamos la coordenada del punto

$$M\begin{cases} x = \frac{-6 + (-2)}{2} = -4 \\ M \begin{cases} y = \frac{-1 + (-5)}{2} = -3 \end{cases}$$

$$\therefore M(-4; -3)$$

Hallamos r:

$$\mathbf{r} = \sqrt{(-4)^2 + (-3)^2}$$

$$\mathbf{r} = \sqrt{16 + 9}$$

$$\mathbf{r} = \sqrt{25} \quad \mathbf{r} = \mathbf{5}$$

En A

$$x = -4 \quad y = -3 \quad r = 5$$

$$A = 5 - 8 \sec \beta$$

$$A = 5 - 8 \left(\frac{5}{4} \right)$$

$$A = 5 + 10$$

La calificación de Jhon es 15

iMuy bien!

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA