Continuity and uniform convergence

Thm 22.3 (Continuity of uniform limits and sums)

(a) Let $f_n(x)$ be continuous on I for $n \geq 0$.

Suppose $f_n(x) \Rightarrow f(x)$ on I.

Then f(x) is continuous on I.

(b) Let $u_k(x)$ be continuous on I for $k \geq 0$, and suppose

 $\sum u_k(x)$ converges uniformly on I.

Then the sum $f(x) = \sum u_k(x)$ is continuous on I.

Pf. (a) Suffices to show f(x) is conti at an arbitrary point $x_0 \in I$.

Assume first x_0 is not an endpoint of I.

Basic idea for the pf: Fix $x_0 \neq \text{end point of } I$. Then

$$|f(x) - f(x_0)| \leq \underbrace{|f(x) - f_N(x)|}_{\equiv I} + \underbrace{|f_N(x) - f_N(x_0)|}_{\equiv II} + \underbrace{|f_N(x_0) - f(x_0)|}_{\equiv III} \quad (N: \text{ a big natural number})$$

I & III are sufficiently small, since $f_n(x) \Rightarrow f(x)$ on I

II is small for $x \approx x_0$, since $f_N(x)$ is continuous at x_0 .

To give a rigorous pf of (a), let $\varepsilon > 0$ be given.

Since $f_n(x) \rightrightarrows f(x)$ on I, we can choose $N(\gg 1)$ so that

$$f_N(x) \approx f(x)$$
 for all $x \in I$ $---(i)$

By the way, since
$$f_N(x)$$
 is continuous at x_0 ,
$$f_N(x) \ \approx \ f_N(x_0) \ \text{for } x \approx x_0 \ --- (\text{ii})$$

It follows that

$$f(x) \quad \mathop \approx \limits_\varepsilon^{\text{(i)}} \quad f_N(x) \quad \mathop \approx \limits_\varepsilon^{\text{(ii)}} \quad f_N(x_0) \quad \mathop \approx \limits_\varepsilon^{\text{(i)}} \quad f(x_0) \ \text{ for } x \approx x_0$$

$$f(x)$$
 $\underset{3\varepsilon}{\approx}$ $f(x_0)$ for $x \approx x_0$ \therefore $f(x)$ is continuous at x_0

Alternative pf = essentially the above idea: Let $\varepsilon > 0$ be given. Then

$$\begin{split} |f(x) - f(x_0)| & \leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \\ & \leq \|f - f_N\|_I + |f_N(x) - f_N(x_0)| + \|f - f_N\|_I = 2\|f - f_N\|_I + |f_N(x) - f_N(x_0)| \\ & < 2\varepsilon + |f_N(x) - f_N(x_0)| \quad \text{when } N \gg 1, \text{ since } f_n \implies f \text{ on } I \\ & < 2\varepsilon + \varepsilon = 3\varepsilon \quad \text{for } x \approx x_0, \text{ since } f_N \text{ is conti at } x_0 \end{split}$$

If x_0 is the left (or right) endpoint of I, the above pf can be easily modified by using $x \approx x_0^+$ (or $x \approx x_0^-$).

(b) $f_n(x) \stackrel{\text{let}}{=} \sum_{k=0}^n u_k(x) \Rightarrow f_k \text{ is contion } I \text{ for } n \geq 0, \text{ since each } u_k \text{ is contion } I.$

 $f_n(x) \implies \sum_{k=0}^{\infty} u_k(x) \equiv f(x)$ on I

$$\therefore \stackrel{\text{(a)}}{\Rightarrow} f(x) \text{ is contion } I.$$

Cor. Any p.s. $\sum_{n=0}^{\infty} a_n x^n$ represents a continuous function inside its radius of convergence R.

That is,
$$f(x) \equiv \sum_{n=0}^{\infty} a_n x^n$$
 is continuous on $(-R, R)$.

Pf. Fix an arbitrary $x_0 \in (-R,R)$, and choose L so that $\mid x_0 \mid < L < R$.

$$\begin{array}{c|cccc}
 & & L \\
 & & \downarrow & \\
-R & & 0 & x_0 & R
\end{array}$$

Then $\stackrel{\text{by a property of }R}{\Rightarrow}$ (Thm 22.2-C) $\sum_{0}^{\infty}a_{n}x^{n}$ converges uniformly on [-L,L]

i.e.,
$$\sum_{\substack{0 \text{ conti on } (-\infty, \infty)}}^{n} a_k x^k$$
 \Rightarrow $\sum_{0}^{\infty} a_k x^k$ on $[-L, L]$

$$\therefore f(x) = \sum_{n=0}^{\infty} a_n x^n \text{ is conti on } [-L, L] \text{ (by Thm 22.3-(b))}$$

In particular, f(x) is conti at x_0 since $x_0 \in [-L, L]$.

Since x_0 was an arbitrary point in (-R, R), f(x) is conti on (-R, R).

22.4 Integration term-by-term (항별적분)

Thm A (Integration of a uniform limit)

Assume that, on a finite interval [a, b], every $f_n(x)$ is continuous and $f_n \rightrightarrows f$.

$$\Rightarrow \qquad \int_a^b f_n(x) \, dx \quad \to \quad \int_a^b f(x) \, dx$$

i.e., $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b \lim_{n\to\infty}f_n(x)\,dx$ (i.e., limit and integral can be interchanged)

Pf. Every $f_n(x)$ is conti on [a, b] and $f_n \Rightarrow f$ on [a, b]

- \Rightarrow f(x) is conti on [a, b] (by Thm 22.3-(a))
- \Rightarrow f(x) is integrable on [a, b].

Now

$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} f_{n}(x) dx \right| = \left| \int_{a}^{b} \left(f(x) - f_{n}(x) \right) dx \right| \le \int_{a}^{b} \left| f(x) - f_{n}(x) \right| dx$$

$$\le \sup_{x \in [a,b]} \left| f(x) - f_{n}(x) \right| \cdot (b-a) \stackrel{\text{i.e.}}{=} \left\| f - f_{n} \right\|_{[a,b]} \cdot (b-a) \to 0 \text{ since } f_{n} \Rightarrow f \text{ on } [a,b]$$

Thm B (Term-by-term Integration of a series) Assume

(i) for each k, $u_k(x)$ is conti on [a, b]

(ii)
$$\sum_{k=0}^{\infty} u_k(x) = f(x) \text{ uniformly on } [a, b]$$

Then

$$\int_a^b \sum_{0}^{\infty} u_k(x) \, dx \left(\stackrel{\text{i.e.}}{=} \int_a^b f(x) \, dx \right) = \sum_{0}^{\infty} \int_a^b u_k(x) \, dx$$

$$\sum_{0}^{n} u_{k}(x) \text{ is conti on } [a, b] \text{ for every } n, \text{ and } \sum_{0}^{n} u_{k}(x) \implies \sum_{0}^{\infty} u_{k}(x) \text{ on } [a, b]$$

$$\stackrel{\text{Thm 22.4-A}}{\Rightarrow} \lim_{n \to \infty} \int_{a}^{b} \sum_{0}^{n} u_{k}(x) \, dx = \int_{a}^{b} \sum_{0}^{\infty} u_{k}(x) \, dx$$

$$\parallel \leftarrow \text{ Linearity thm for integrals}$$

$$\lim_{n \to \infty} \sum_{n=0}^{n} \int_{a}^{b} u_{k}(x) \, dx = \sum_{n=0}^{\infty} \int_{a}^{b} u_{k}(x) \, dx$$

Cor. Any p.s. can be integrated term-by-term inside its open interval of convergence (-R, R): that is,

$$\text{if} \quad \sum_{0}^{\infty} a_n x^n = f(x) \quad \text{for} \quad -R < x < R \quad \text{then}$$

$$\sum_{0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \int_0^x f(t) \, dt \quad \text{for} \quad -R < x < R$$

$$(\text{i.e.,} \quad \int_0^x \sum_{0}^{\infty} a_n t^n \, dt = \sum_{0}^{\infty} a_n \int_0^x t^n \, dt \quad \text{for} \quad -R < x < R)$$

$$\text{Pf. Let} \quad 0 < x < R. \qquad \underbrace{\qquad \qquad \qquad }_0$$

Then $\sum_{n=0}^{\infty} a_n t^n$ converges uniformly on [0, x] (by Thm 22.2-C)

$$\overset{\text{Thm 22.4-B}}{\Rightarrow} \quad \int_{0}^{x} \sum_{n=0}^{\infty} a_{n} t^{n} dt = \sum_{n=0}^{\infty} a_{n} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$$

Same argument gives the result for -R < x < 0.

Question. Let R(>0) be the radius of convergence of the p.s. $\sum_{n=0}^{\infty} a_n x^n$.

What's the radius of convergence of the integrated series $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$?

Ans: It is R

A popular way 1: Let R' be the radius of convergence of $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n} x^n$. Then

$$R' = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{\frac{|a_{n-1}|}{n}}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{n}} \cdot \overline{\lim_{n \to \infty}} \sqrt[n]{|a_{n-1}|}} = \frac{1}{\frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_{n-1}|}}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} - \frac{1}{n} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n-1} \right)}} = \frac{1}{\overline{\lim_{n \to \infty}} \left(|a_{n-1}| \frac{1}{n-1} \frac{1}{n} - \frac{1}{n-1} - \frac{1}$$

Here we used: $a_n \geq 0 \ \& \ b_n \geq 0 (\forall n) \Rightarrow \overline{\lim_{n \to \infty}} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \overline{\lim_{n \to \infty}} b_n$ whenever $\lim_{n \to \infty} a_n$ exists

A popular way 2: Note that $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = x \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$. Since multiplication by x does not

change the set on which the series $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$ converges, we have

$$\frac{1}{R'} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{\mid a_n \mid}{n+1}} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n+1}} \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{\mid a_n \mid} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\mid a_n \mid}} \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{\mid a_n \mid} = \overline{\lim}_{n \to \infty} \sqrt[n]{\mid a_n \mid} = \frac{1}{R} \quad \therefore \quad R' = R$$

Another way will be given later: we need some theorems about term-by-term differentiation.

Ex. Apply term-by-term integration if possible to

(a)
$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots, \quad |x| < 1 \quad (R=1)$$

(b)
$$x = \underbrace{\frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots\right)}_{\text{trigonometric series}}, \quad 0 \le x \le \pi$$

Sol. (a) Let
$$|x| < 1$$
.

$$\Rightarrow \int_{0}^{x} \frac{1}{1+t} dt = \int_{0}^{x} 1 dt - \int_{0}^{x} t dt + \int_{0}^{x} t^{2} dt - \dots = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots \\
\parallel \ln(1+x)$$

(b) (Note that the RHS of (b) is not a p.s.)

$$\left| \frac{\cos(2n+1)x}{(2n+1)^2} \right| \le \frac{1}{(2n+1)^2} \quad 0 \le \forall x \le \pi$$
 & $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ converges

$$\overset{\text{Weierstrass M-test}}{\Rightarrow} \quad \sum_{0}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2} \quad \text{converges uniformly on} \quad [0,\,\pi]$$

$$\therefore \quad \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2} \quad \text{converges uniformly on } [0, \pi]$$

By Thm 22.4-B, the series can be integrated term-by-term:

$$\int_0^x t \, dt = \int_0^x \frac{\pi}{2} \, dt - \frac{4}{\pi} \left[\int_0^x \cos t \, dt + \int_0^x \frac{\cos 3t}{3^2} \, dt + \cdots \right], \quad 0 \le \forall x \le \pi$$
i.e.,
$$\frac{x^2}{2} = \frac{\pi x}{2} - \frac{4}{\pi} \left(\sin x + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \cdots \right), \quad 0 \le \forall x \le \pi$$

22.5 Differentiation term-by-term (항별미분)

Theorem A (Differentiation of a limit of functions)

Suppose that for every n

$$f'_n(x)$$
 is conti on an interval I ,

and

$$f_n(x) \rightarrow f(x)$$
 and $f'_n(x) \Rightarrow g(x)$ on I

Then
$$f$$
 is diff, and $f'(x) = g(x)$ on I (Therefore, $f'_n(x) \implies f'(x)$ on I)

Pf. Fix an arbitrary point $a \in I$.

Since $f'_n(x) \implies g(x)$ on I, we have for any $x \in I$

$$\int_{a}^{x} f'_{n}(t) dt \longrightarrow \int_{a}^{x} g(t) dt \quad \text{(by Thm 22.4-A)}$$

$$\parallel \leftarrow 1 \text{st FTC}$$

$$f_n(x) - f_n(a) \rightarrow f(x) - f(a)$$
 since $f_n \rightarrow f$ pointwise on I .

$$\therefore$$
 $f(x) - f(a) = \int_a^x g(t) dt$ (by the uniqueness of limit)

Note that g is conti on I because $f'_n(x)$ is conti on I & $f'_n(x) \Rightarrow g(x)$ on I

$$2^{\mathrm{nd}}$$
 FTC implies that $\int_a^x g(t)\,dt$ is diff and $\frac{d}{dx}\int_a^x g(t)\,dt=g(x)$ on I

$$f(x)$$
 is diff and $f'(x) = g(x)$ on I

Theorem B (Term-by-term differentiation of series) Assume that on an interval I,

(a) for each k, $u'_k(x)$ is conti

(b)
$$\sum_{k=0}^{\infty} u_k(x)$$
 converges (pointwise)

(c)
$$\sum_{k=0}^{\infty} u'_k(x)$$
 converges uniformly

Then on I

the sum
$$f(x) \equiv \sum_{k} u_k(x)$$
 is diff and $f'(x) = \sum_{k} u'_k(x)$ (i.e., $\left(\sum_{k} u_k(x)\right)' = \sum_{k} u'_k(x)$)

Pf. Let
$$S_n(x) = \sum_{k=0}^n u_k(x)$$
 and $g(x) = \sum_{k=0}^\infty u_k'(x)$. Then for every n ,

 $S'_n(x)$ is conti on I and

$$S_n(x) \to f(x)$$
 and $S'_n(x) \rightrightarrows g(x)$ on I

Thus by Thm 22.5-A,

$$f(x)$$
 is diff and $f'(x) = g(x)$ on I $\therefore S'_n(x) \Rightarrow f'(x)$ on I

In particular, $S'_n(x) \to f'(x)$ on I

$$\therefore f'(x) = \lim_{n \to \infty} S'_n(x) = \lim_{n \to \infty} \left(\sum_{n \to \infty}^n u_k(x) \right)' = \lim_{n \to \infty} \sum_{n \to \infty}^n u_k'(x) = \sum_{n \to \infty}^\infty u_k'(x) \text{ on } I$$

Exa. Let
$$f(x) = \sum_{1}^{\infty} \frac{\cos nx}{n^3}$$
.

Prove that f(x) converges and f'(x) exists $\forall x \in (-\infty, \infty)$, and find f'(x).

Sol.
$$\sum_{1}^{\infty} \left| \frac{\cos nx}{n^3} \right| \le \sum_{1}^{\infty} \frac{1}{n^3}$$
 conv

Comparison thm
$$\Rightarrow$$
 $\sum_{1}^{\infty} \frac{\cos nx}{n^3}$ conv absolutely for $\forall x \in (-\infty, \infty)$

$$\therefore \quad \sum_{1}^{\infty} \frac{\cos nx}{n^3} \text{ converges for } \forall x \in (-\infty, \infty).$$

On the other hand, for every $n \ge 1$

$$\left(\frac{\cos nx}{n^3}\right)' = -\frac{\sin nx}{n^2}$$
 is conti $\forall x \in (-\infty, \infty)$

&

$$\sum_{i=1}^{\infty} \left(\frac{\cos nx}{n^3}\right)' \quad \text{converges uniformly on } (-\infty, \infty) \, .$$

$$\left(\because \sum_{1}^{\infty} \left(\frac{\cos nx}{n^{3}}\right)' = \sum_{1}^{\infty} \frac{-\sin nx}{n^{2}} \qquad \& \qquad \sum_{1}^{\infty} \left|\frac{-\sin nx}{n^{2}}\right| \le \sum_{1}^{\infty} \frac{1}{n^{2}} \text{ conv}$$

$$\overset{\text{M-test}}{\Rightarrow} \quad \sum_{1}^{\infty} \frac{-\sin nx}{n^2} \text{ conv uniformly on } (-\infty, \infty) \quad)$$

Therefore, by Thm 22.5-B,

$$\left(\sum_{1}^{\infty} \frac{\cos nx}{n^3}\right)' = \sum_{1}^{\infty} \left(\frac{\cos nx}{n^3}\right)' = -\sum_{1}^{\infty} \frac{\sin nx}{n^2} \qquad \forall x \in (-\infty, \infty)$$

Most general version of the previous Theorem A and Theorem B [on Differentiation]

Theorem A [General version] (Differentiation of a limit of functions)

Suppose that for each n

$$f_n(x)$$
 is diff on the interval $[a,b]$,

and

$$f_n(x_0) \rightarrow f(x_0)$$
 at some $x_0 \in [a,b]$ and $f'_n(x) \Rightarrow (a \text{ fet}) g(x)$ on $[a,b]$

Then
$$f_n
ightharpoonup \left[\text{a fct} =: \lim_{n \to \infty} f_n =: f \right]$$
 on $[a,b]$ and f is diff on $[a,b]$.

Moreover,
$$f'(x) = g(x)$$
 on $[a,b]$ $\Rightarrow f'_n(x) \Rightarrow \left(\lim_{n \to \infty} f_n(x)\right)'$ for each $x \in [a,b]$

Namely,
$$f'(x) = \left(\lim_{n \to \infty} f_n(x)\right)' = \lim_{n \to \infty} f'_n(x)$$
 for each $x \in [a,b]$

Its proof is **not** easy [A proof can be found in Rudin-PMA]

Theorem B [General version] (Differentiation term-by-term)

Assume that

- (a) for each $\ k, \ u_k(x)$ is diff on a bounded interval $\ [a,b]$
- (b) $\sum_{k=0}^{\infty} u_k(x_0)$ converges at some point $x_0 \in [a,b]$
- (c) $\sum_{k=0}^{\infty} u_k'(x)$ converges uniformly on [a,b]

Then
$$\left(\sum_{k=0}^{\infty} u_k(x)\right)' = \sum_{k=0}^{\infty} u_k'(x)$$
 for each $x \in [a,b]$

Its proof comes from the above Theorem A [General version]

Weierstrass Theorem [remember the statement]:

Let $f \in C[a,b]$ with complex-valued]. Then \exists a sequence of polynomials P_n such that

$$P_n \Longrightarrow f$$
 on $[a,b]$ i.e., $\lim_{n\to\infty} \sup_{x\in[a,b]} |P_n(x)-f(x)| = 0$

If f is real, the P_n may be taken real.

Application: Prove

$$f \in C[0,1]$$
 and $\int_0^1 f(x)x^n dx = 0 \ \forall n = 0,1,2,\dots \Rightarrow f(x) = 0 \ \text{on } [0,1]$

Hint: Use the Weierstrass theorem to show that $\int_0^1 f^2(x)dx = 0$

Return to sophisticated but important examples:

Exa. Show that (the Weierstrass nowhere-diff function) $f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \sin(5^n \pi x)$ is continuous on \mathbb{R}

Pf.
$$\sum_{n=0}^{\infty} \left| \frac{1}{2^n} \sin(5^n \pi x) \right| \le \sum_{n=0}^{\infty} \frac{1}{2^n} : \text{conv}$$

Thus

$$\sum_{n=0}^{\ell} \frac{1}{2^n} \sin(5^n \pi x) \quad \Rightarrow \quad \sum_{n=0}^{\infty} \frac{1}{2^n} \sin(5^n \pi x) \quad \text{(by M-test)}$$

By Uniform Convergence Theorem, $f(x)=\sum_{n=0}^{\infty}\frac{1}{2^n}\sin(5^n\pi x)$ is continuous on $\mathbb R$

Exa. Let $r_1, r_2, \cdots, r_n, \cdots$ be an enumeration of the rational numbers & let

$$f_k(x) = \begin{cases} 1 & \text{if } x \ge \eta_k \\ 0 & \text{if } x < \eta_k \end{cases} \quad (k = 1, 2, \cdots)$$

It is clear that each $f_k(x)$ is conti at every point except r_k

Now we define
$$f(x) = \sum_{k=1}^{\infty} 2^{-k} f_k(x)$$

Prove:

- ① f(x) is continuous at every irrational number
- ② f(x) is discontinuous at every rational number
- 4 f(x) is \uparrow (increasing) on \mathbb{R}

Pf.
$$3 \quad 0 \le f(x) = \sum_{k=1}^{\infty} 2^{-k} f_k(x) = \sum_{k=1}^{\infty} 2^{-k} |f_k(x)| \le \sum_{k=1}^{\infty} 2^{-k} = 1$$

$$\therefore$$
 $f(x)$ is \uparrow (increasing)

① Choose an arbitrary irrational number x_0 and fix it.

We will show that f(x) is continuous at x_0

Note that every $2^{-k} f_k(x)$ is continuous at x_0 .

We have seen that

$$|2^{-k}f_k(x)| \le 2^{-k} \quad \forall x \in \mathbb{R}$$
 &
$$\sum_{k=1}^{\infty} 2^{-k} : \text{converges} \quad (\text{in fact}, \ \sum_{k=1}^{\infty} 2^{-k} = 1 < \infty)$$

Thus by **M-test**, $\sum_{k=1}^{\infty} 2^{-k} f_k(x)$ converges uniformly on $\mathbb R$.

Since
$$\sum_{k=1}^{n} 2^{-k} f_k(x) \implies \sum_{k=1}^{\infty} 2^{-k} f_k(x)$$
 on \mathbb{R} ,

the limit function $\sum_{k=1}^{\infty} 2^{-k} f_k(x)$ is contiat x_0 (by Uniform Convergence Theorem)

② Choose any rational number x_0 and fix it. Then $x_0 = r_m$ for some m

We will show that f(x) is not continuous at r_m

Write
$$f(x) = \frac{1}{2^m} f_m(x) + \sum_{k \neq m}^{\infty} \frac{1}{2^k} f_k(x)$$

Recall that each $\frac{1}{2^k} f_k(x)$ is conti at every point x if $x \neq r_k$

& disconti at
$$x = r_k$$

Thus if $k \neq m$, then $\frac{1}{2^k} f_k(x)$ is contiat r_m

So $\sum_{k\neq m}^{\infty} \frac{1}{2^k} f_k(x)$ is conti at the point r_m (by M-test + Uniform Convergence Theorem)

& clearly
$$\frac{1}{2^m} f_m(x)$$
 is discontiat r_m

If f(x) is contiat r_m , then $f(x) - \sum_{k \neq m}^{\infty} \frac{1}{2^k} f_k(x)$ should be contiat r_m .

Then $\frac{1}{2^m}f_m(x)$ is contiat r_m . This is a contradiction.

Therefore, f(x) is not continuous at r_m

HS. Prove that $f(x) = \sum_{n=1}^{\infty} \frac{\cos(2^n x)}{3^n}$ is differentiable everywhere on \mathbb{R} , and that $f'(x) = -\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n \sin(2^n x) \quad \forall x \in \mathbb{R}$

22.6 Power series and analytic functions

Theorem (Differentiation of P.S.)

Any p.s. $\sum_{n} a_n x^n$ can be differentiated term-by-term within its radius R of convergence. That is, if

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad |x| < R$$

then f(x) is differentiable and

$$f'(x) = \sum_{1}^{\infty} n a_n x^{n-1}, \quad |x| < R$$

Pf. Claim: Let R' be the radius of convergence of the p.s. $\sum_{1}^{\infty} na_n x^{n-1}$. Then $R' \geq R$

To verify the claim, it suffices to show that

$$0 < L < R$$
 \Rightarrow $\sum_{1}^{\infty} n a_n x^{n-1}$ converges at $x = L$

 $\mbox{Choose any} \ \, M \ \ \, \mbox{such that} \ \, 0 < L < M < R.$

Note that
$$\boxed{(*): \quad 0 < r < 1 \quad \Rightarrow \quad \lim_{n \to \infty} n r^n = 0 } \ \, \text{because}$$

$$\lim_{n \to \infty} n r^n = \lim_{x \to \infty} x r^x = \lim_{x \to \infty} x e^{x \ln r} \quad \underset{\ln r < 0}{=} \quad \lim_{x \to \infty} x e^{-kx} \ \, (k > 0) = \lim_{x \to \infty} \frac{x}{e^{kx}} \quad \overset{\text{L'Hospital}}{=} \quad 0 \, .$$

Since
$$0<\frac{L}{M}<1,$$
 it follows from $(*)$ that $\lim_{n\to\infty}n\Big(\frac{L}{M}\Big)^n=0$

$$\therefore \quad n \left(\frac{L}{M}\right)^n < L \quad \text{ for } n \gg 1, \quad \text{ say for } n \geq N \qquad \text{ i.e., } nL^{n-1} < M^n \quad \text{ for } n \geq N$$

$$\therefore \sum_{N}^{\infty} n \mid a_{n} \mid L^{n-1} < \underbrace{\sum_{N}^{\infty} \mid a_{n} \mid M^{n}}_{N} : \text{converges since } \sum_{n=0}^{\infty} a_{n} x^{n} \text{ converges absolutely inside }$$

its radius of convergence R and M < R

$$\therefore \quad \sum_{N}^{\infty} n \mid a_n \mid L^{n-1} \quad \text{converges by Comparison theorem.} \qquad \therefore \quad \sum_{N}^{\infty} n a_n L^{n-1} \quad \text{converges.}$$

Thus, by Tail-convergence theorem, $\sum_{n=0}^{\infty} na_n L^{n-1}$ converges.

i.e.,
$$\sum_{1}^{\infty} na_n x^{n-1}$$
 converges at $x = L$

Now, let $\mid x_0 \mid < R$ and will show that f is diff at x_0 .

$$\text{Choose } L \text{ so that } 0 < \mid x_0 \mid < L < R.$$

$$\sum_{1}^{\infty} n a_n x^{n-1} \quad \text{converges uniformly on } [-L, L] \quad \text{since the } \ R' \geq R > L$$

Thus by Theorem 22.5-B,

$$f(x) (= \sum_{n=0}^{\infty} a_n x^n)$$
 is diff and $f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$ on $[-L, L]$.

In particular, f is diff at x_0 and $f'(x_0) = \sum_{1}^{\infty} n a_n x_0^{n-1}$

Since x_0 was an arbitrary point satisfying $|x_0| < R$,

$$f$$
 is diff and $f'(x) = \sum_{1}^{\infty} na_n x^{n-1}$ on $|x| < R$.

Remark. Indeed, R' = R

Pf. Just proved $R' \ge R$. We now show $R' \le R$. By the definition of R',

$$g(x) := f'(x) = \sum_{1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots$$
 converges for $|x| < R'$

$$\stackrel{\text{Cor } 22.4}{\Rightarrow} \underbrace{\int_0^x g(t) dt}_{=f(x)-f(0)} = a_1 x + a_2 x^2 + a_3 x^3 + \dots = \sum_1^{\infty} a_n x^n \quad \text{converges for } |x| < R'$$

$$\therefore f(x) = f(0) + \sum_{n=1}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n x^n \text{ for } |x| < R'$$

$$\therefore R \geq R'$$

Another popular way:

Let R & R' be the resp. radius of convergence of $\sum_{n=0}^{\infty}a_nx^n$ & $\sum_{n=1}^{\infty}na_nx^{n-1}(=\sum_{n=0}^{\infty}(n+1)a_{n+1}x^n)$. Then

$$R' = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[q]{(n+1) \mid a_{_{n+1}} \mid}} = \frac{1}{\overline{\lim_{_{_{n-\infty}}}} \left\{ \left\{ (n+1) \mid a_{_{_{n+1}}} \mid \right\}^{\frac{1}{_{_{n+1}}} \frac{n+1}{n}}} \right\}} = \frac{1}{\overline{\lim_{_{_{n-\infty}}}} \left\{ \left\{ (n+1) \mid a_{_{_{n+1}}} \mid \right\}^{\frac{1}{_{_{n+1}}}} \right\}} = \frac{1}{\overline{\lim_{_{_{n-\infty}}}} \left\{ \left\{ (n+1) \mid a_{_{_{n+1}}} \mid \right\}^{\frac{1}{_{_{n+1}}} \frac{n+1}{n}}} \right\}} = \frac{1}{\overline{\lim_{_{_{n-\infty}}}} \left\{ \left\{ (n+1) \mid a_{_{_{n+1}}} \mid \right\}^{\frac{1}{_{_{n+1}}} \frac{n+1}{n}}} \right\}} = \frac{1}{\overline{\lim_{_{_{_{n-\infty}}}}} \left\{ \left\{ (n+1) \mid a_{_{_{_{n+1}}}} \mid \right\}^{\frac{1}{_{_{_{n+1}}}} \frac{n+1}{n}}} \right\}} = \frac{1}{\overline{\lim_{_{_{_{n-\infty}}}}} \left\{ \left\{ (n+1) \mid a_{_{_{_{n+1}}}} \mid \right\}^{\frac{1}{_{_{_{_{n+1}}}} \frac{n+1}{n}}} \right\}} = \frac{1}{\overline{\lim_{_{_{_{_{_{n+1}}}}}} \left\{ \left\{ (n+1) \mid a_{_{_{_{_{n+1}}}} \mid a_{_{_{_{n+1}}}} \mid a_{_{_{n+1}}} \mid a_{_{_{_{n+1}}}} \mid a_{_{_{n+1}}} \mid a_{_{_{n+1}}} \mid a_{_{_{_{n+1}}}} \mid a_{_{_{n+1}}} \mid a_{$$

Another easy way: Note that $x\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=1}^{\infty}na_nx^n$. Since multiplication by x does not change

the set on which the series $\sum_{n=0}^{\infty} n a_n x^{n-1}$ converges , we have

$$\frac{1}{R'} = \overline{\lim}_{n \to \infty} \sqrt[n]{n \left| a_n \right|} = \lim_{n \to \infty} \sqrt[n]{n} \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{\left| a_n \right|} = \overline{\lim}_{n \to \infty} \sqrt[n]{\left| a_n \right|} = \frac{1}{R} \qquad \qquad \therefore \quad R' = R$$

$$\text{Exa A.} \quad \text{Evaluate} \quad f(x) = \frac{x^2}{1 \cdot 2} + \frac{x^3}{2 \cdot 3} + \dots + \frac{x^n}{(n-1)n} + \dots = \left(\begin{array}{c} = \sum_{1}^{\infty} \frac{x^n}{(n-1)n} \end{array} \right)$$

Sol. The radius of convergence for the series is 1 because

$$a_n = \frac{1}{(n-1)n} \quad \Rightarrow \quad R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} = \lim_{n \to \infty} \frac{n(n+1)}{(n-1)n} = 1$$

Thus by term-by-term differentiation (twice)

$$f''(x) = 1 + x + x^2 + x^3 + \cdots$$
 for $|x| < 1$

RHS (of the above) =
$$\frac{1}{1-x}$$
 for $|x| < 1$

$$\therefore f''(x) = \frac{1}{1-x} \quad \text{for } |x| < 1$$

Integrate both sides \Rightarrow

$$\int_{0}^{x} f''(t) dt = \int_{0}^{x} \frac{1}{1-t} dt, |x| < 1$$

$$\| \qquad \qquad \|$$

$$f'(x) - f'(0) - \ln(1-x)$$

$$f'(0)=0 \Rightarrow f'(x) = -\ln(1-x), |x| < 1$$

Integrate once again ⇒

are once again
$$\Rightarrow$$

$$\int_0^x f'(t) dt = \int_0^x -\ln(1-t) dt = \int_0^x (1-t)' \ln(1-t) dt, \quad |x| < 1$$
|| integration by parts
$$f(x) - f(0) \stackrel{f(0)=0}{=} f(x) \qquad x + (1-x) \ln(1-x), \quad |x| < 1$$

Cor A (Taylor series theorem) [Every power series (with R > 0) is a Taylor series]

Let $\sum_{n=0}^{\infty} a_n x^n$ have the radius of convergence R > 0. Then the function

$$f(x) = \sum_{0}^{\infty} a_n x^n$$
 is infinitely diff in $(-R, R)$, and

 $\sum_{n=0}^{\infty} a_n x^n \text{ is its Taylor series around } x = 0, \text{ that is, } a_n = \frac{f^{(n)}(0)}{n!} \text{ for every } n \ge 0.$

Pf.
$$f(x) = \sum_{0}^{\infty} a_n x^n, \qquad |x| < R$$

$$\Leftrightarrow \qquad f'(x) = \sum_{1}^{\infty} n a_n x^{n-1}, \qquad |x| < R$$

$$\uparrow / - \text{again} \Rightarrow \qquad f''(x) = \sum_{1}^{\infty} n(n-1) a_n x^{n-2}, \qquad |x| < R$$

$$\vdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\therefore \quad f \in C^{\infty}(-R, R)$$

To calculate the a_n , we observe that

$$f^{(n)}(x) = n \,!\, a_n \,+\, c_1 x \,+\, c_2 x^2 \,+\, \cdots, \quad \mid x\mid \,<\, R \quad \text{for some constants} \ c_1, c_2, \cdots$$

Putting
$$x = 0$$
 \Rightarrow $a_n = \frac{f^{(n)}(0)}{n!}$

Cor B (Zero theorem for p.s.)

Let
$$R > 0$$
. If $\sum_{n=0}^{\infty} a_n x^n = 0$ for $|x| < R$, then $a_n = 0$ for every $n \ge 0$

Pf.
$$f(x) \stackrel{\text{let}}{=} \sum_{n=0}^{\infty} a_n x^n \stackrel{\text{Hypo}}{=} 0 \text{ for } \forall x \text{ with } |x| < R$$

$$\Rightarrow \forall n \geq 0, \quad f^{(n)}(x) = 0 \quad \text{for} \quad |x| < R. \quad \text{In particular,} \quad f^{(n)}(0) = 0 \quad \forall n \geq 0$$

$$\therefore \quad a_n \quad \stackrel{\text{Taylor series thm (CorA)}}{=} \quad \frac{f^{(n)}(0)}{n!} = 0 \quad \forall n \geq 0$$

Cor C (Uniqueness of p.s.)

Let
$$R > 0$$
. If $\sum_{0}^{\infty} a_n x^n = \sum_{0}^{\infty} b_n x^n$ for $|x| < R$, then $a_n = b_n$ for every $n \ge 0$
Pf. $\sum_{0}^{\infty} a_n x^n \stackrel{\text{let}}{=} f(x) = \sum_{0}^{\infty} b_n x^n$ for $|x| < R$
 $\Rightarrow a_n = \frac{f^{(n)}(0)}{n!} = b_n$ for every $n \ge 0$

Exa B. Find a power series solution y(x) to the differential equation

$$\begin{cases} y' + xy = 0\\ y(0) = 1 \end{cases}$$

Sol. Assume that for some R > 0, y(x) has a p.s. representation

$$y = \sum_{n=0}^{\infty} a_n x^n$$
, for $|x| < R$

Then by using term-by-term differentiation

$$y' + xy = \sum_{1}^{\infty} n a_n x^{n-1} + \sum_{1}^{\infty} a_n x^{n+1}, \quad \text{for } |x| < R$$
$$= \sum_{1}^{\infty} (n+1) a_{n+1} x^n + \sum_{1}^{\infty} a_{n-1} x^n, \quad \text{where } a_{-1} \stackrel{\text{def}}{=} 0$$

Since y' + xy = 0, we get

$$0 = \sum_{n=0}^{\infty} [(n+1)a_{n+1} + a_{n-1}]x^n \quad \text{for} \quad |x| < R$$

$$\Rightarrow$$
 $(n+1)a_{n+1}+a_{n-1}=0$ for $n\geq 0$ (by the Zero theorem for p.s.)

Replacing n by $n+1 \Rightarrow$

$$(n+2)a_{n+2} + a_n = 0 \quad \text{for } n \ge -1$$
i.e., $a_{n+2} = -\frac{a_n}{(n+2)} \quad \text{for } n \ge -1$

$$a_{-1} = 0 \text{ (by def)} \quad \to \quad a_1 = 0 \quad \to \quad a_3 = 0 \quad \to \quad \cdots \quad a_{2n-1} = 0$$

$$a_0 = 1(\leftarrow y(0) = 1) \quad \to \quad a_2 = -\frac{a_0}{2} = -\frac{1}{2} \quad \to \quad a_4 = -\frac{a_2}{4} = \left(-\frac{1}{4}\right)\left(-\frac{1}{2}\right)$$

$$\to \quad \cdots \quad a_{2n} = \left(-\frac{1}{2n}\right)\left(-\frac{1}{(2n-2)}\right)\cdots\left(-\frac{1}{4}\right)\left(-\frac{1}{2}\right) = \frac{(-1)^n}{2n(2n-2)\cdots 4\cdot 2} = \frac{(-1)^n}{2^n n!}$$

$$\therefore \quad y = \sum_{n=0}^{\infty} a_{2n}x^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!}x^{2n} = \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{x^2}{2}\right)^n = e^{-\frac{x^2}{2}}$$

Remark. Alternative way for finding the solution of the diff equation $\begin{cases} y'+xy=0\\ y(0)=1 \end{cases}$

Sol.
$$\times e^{x^2/2}$$
 \Rightarrow $\underbrace{e^{x^2/2}y' + xe^{x^2/2}y}_{\parallel} = 0$ $\therefore e^{x^2/2}y = c \text{ (constant)}$
$$\underbrace{\left(e^{x^2/2}y\right)'}_{\parallel}$$

$$y(0) = 1 \quad \Rightarrow \quad c = 1 \quad \Rightarrow \quad y = e^{-x^2/2}$$

Def. (Real) Analytic functions (= 급수 전개가능한 함수)

A function f(x) which can be represented as a p.s. around the origin with a positive radius of convergence is said to be (real) analytic at the origin. That is, if $\exists R > 0$ such that

$$f(x)$$
 = $\sum_{\text{can be represented as}}^{\infty} \sum_{n=0}^{\infty} a_n x^n$, $|x| < R$

then we say that f is (real) analytic at the origin.

Fact

- f is (real) analytic at the origin \Leftrightarrow The Taylor series for f(x) around the origin converges to f(x)
- f is (real) analytic at the origin $\Rightarrow f$ has a unique p.s. representation i.e., if f is (real) analytic at the origin, then $\exists R > 0$ such that

$$f(x) = \sum_{0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \quad \forall \mid x \mid < R$$

Accordingly, if f is real analytic at the origin $\stackrel{\text{Cor } 22.6 \text{ A}}{\Rightarrow}$ $f \in C^{\infty}(-R,R)$

Question: $f \in C^{\infty}(-R, R) \stackrel{?}{\Rightarrow} f$ is real analytic at the origin Ans is NO:

$$f(x) \equiv \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\overset{\text{not hard}}{\Rightarrow} f \in C^{\infty}(-\infty, \infty) \quad \& \quad \underbrace{f^{(n)}(0) = 0 \text{ for } n \ge 0}_{\text{seen earlier}}$$

Suppose f is real analytic at the origin. Then

$$\exists \ R>0 \quad \text{such that} \quad f(x)=\sum_{0}^{\infty}\frac{f^{(n)}(0)}{n\,!}\,x^n \qquad \forall \mid x\mid < R$$

$$\stackrel{f^{(n)}(0)=0}{\Rightarrow} \forall n \geq 0 \qquad \forall \mid x \mid < R \qquad \text{--- contradiction}$$

Ex. Find an $f \in C^{\infty}(-\infty, \infty)$, such that

its Taylor series at the origin
$$(=\sum_{0}^{\infty}\frac{f^{(n)}(0)}{n\,!}x^n)$$
 is $\sum_{0}^{\infty}\frac{x^n}{n\,!}$

yet
$$f(x) \neq e^x$$
 for $x \approx 0$

Sol.

$$f(x) \equiv \begin{cases} e^x + e^{-1/x^2} & x \neq 0 \\ e^x & x = 0 \end{cases}$$

$$\Rightarrow f \in C^{\infty}(-\infty, \infty)$$
 & $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ (see the previous example)

But, obviously

$$f(x) \neq e^x$$
 for $x \neq 0$ $\therefore f(x) \neq e^x$ for $x \approx 0$

Proposition. Suppose $f \in C^{\infty}(-R, R)$, R > 0.

If $\exists M > 0$ such that $|f^{(n)}(x)| \le M$ (or M^n) for all $x \in (-R,R)$ & $n \in \mathbb{N}$, then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$
 for all $x \in (-R, R)$

Pf. Fix any
$$x \in (-R,R)$$
. Recall $R_{n-1}(x) = \frac{f^{(n)}(c)}{n!}x^n$

$$\mid R_{n-1}(x)\mid = \frac{\mid f^{(n)}(c)\mid}{n\,!} \mid x\mid^{n} \leq \frac{M}{n\,!} \mid x\mid^{n} \left[\text{ or, } \frac{M^{n}}{n\,!} \mid x\mid^{n}\right] \quad \forall n \in \mathbb{N}$$

Notice that $\frac{M |x|^n}{n!} \left[\text{or, } \frac{M^n |x|^n}{n!} \right] \to 0 \text{ as } n \to \infty \quad \left[\leftarrow \text{Ratio test} \right]$

$$\therefore$$
 $R_{n-1}(x) \to 0$ for every $x \in (-R, R)$

Applications:

(i) $\sin x & \cos x$ are real analytic at x = 0, and

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots, \qquad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

(ii)
$$e^x$$
 is real analytic at $x = 0$, and $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

Pf. (i)
$$f(x) := \sin x \Rightarrow |f^{(n)}(x)| \le 1 \text{ for all } x \in \mathbb{R}$$

$$f$$
 is real analytic at $x = 0$, and $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$ holds for all $x \in \mathbb{R}$

(ii)
$$f(x) := e^x \Rightarrow |f^{(n)}(x)| = |e^x| \le e^R = M \text{ for all } x \in [-R, R] \text{ & all } n \in \mathbb{N}$$

$$f$$
 is real analytic at $x = 0$, and $f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ on $[-R, R]$

Since R > 0 was arbitrary, we conclude that

$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 holds for all $x \in \mathbb{R}$