Intro To Very Special Math

MATH123

Contents

1	Some section			2
	1.1	Some s	subsection	2
		1.1.1	Some subsubsection	2
2	Ann	endiv		2

1 Some section

1.1 Some subsection

1.1.1 Some subsubsection

Definition 1.1 (Composite)

Given $f: A \to B$ and $g: B \to C$, the **composite** $g \circ f$ of f and g is the function $g \circ f: A \to C$, defined by the equation $(g \circ f)(a) = g(f(a))$. The rule of this composition:

$$\{(a,c)\,|\, \textit{For some}\, b\in B, f(a)=b \;\textit{and}\, g(b)=c\}$$

Using the si-unit package, big numbers look pretty nice, 1×10^{-10} .

Lemma 1.1

Two equivalence classes are either disjoint or equal.

2 Appendix

Lemma 1.1

Two equivalence classes are either disjoint or equal.

Proof Proof of Lemma 1.1: Let E be the equivalence class determined by x and E' the equivalence class determined by x'. Assume $E \cap E' \neq \emptyset$, and take $y \in E \cap E'$. By definition of equivalence classes, $y \sim x$ and $y \sim x'$.

By the property of symmetry, $x \sim y$, and by transivity, $x \sim x'$. Thus, $x \in E'$, and it follows that since $x \in E$, $E \subset E'$. The same logic applies in the other direction, such that $E' \subset E$, and thus E = E'.