

Deep Reinforcement Learning

Professor Mohammad Hossein Rohban

Solution for Homework 14:

Meta Reinforcement Learning

Ву:

Payam Taebi 400104867

Grading

The grading will be based on the following criteria, with a total of 110 points:

• Model-Agnostic Meta-Learning : 100 points

• Clarity and Quality of Code: 5 points

• Clarity and Quality of Report : 5 points

Contents

1 Model-Agnostic Meta-Learning

1

1 Model-Agnostic Meta-Learning

Overview. This notebook implements Model-Agnostic Meta-Learning (MAML) for a continuous-control variant of the HalfCheetah task where the agent is rewarded for *running backward*. The pipeline consists of: (i) a custom environment wrapper that inverts the forward-velocity reward, (ii) a diagonal-Gaussian stochastic policy with state-independent log-standard-deviations, (iii) trajectory collection with discounted-return computation, (iv) an evaluation routine that renders a video, and (v) a MAML training loop that performs one-step inner adaptation and an outer meta-update. Below we dissect design choices, mathematical foundations, implementation subtleties, expected behavior, failure modes, and practical extensions—focusing on why each component is written as it is and how it affects meta-learning dynamics.

Environment Design: HalfCheetahBackward. The wrapper constructs HalfCheetah-v5 with render_mode=rg and forwards action_space and observation_space so downstream code can introspect dimensions without querying the base env. The reward is

$$r_t = -w_f \, \text{reward_forward}_t + w_c \, \text{reward_ctrl}_t,$$

with $w_f=1$ and $w_c=0.05$. In MuJoCo's HalfCheetah, reward_ctrl ≤ 0 (a penalty on torques), so adding w_c reward_ctrl still discourages large control magnitudes. This simple shaping flips the task objective (move backward) without altering the dynamics. Correct Gymnasium API handling is crucial: reset returns (obs, info) and step returns (obs, r, terminated, truncated, info). The wrapper mirrors these semantics to avoid subtle bugs during rollouts and video generation.

Policy Parameterization. The policy is a Gaussian $\pi_{\theta}(a \mid s) = \mathcal{N}(\mu_{\theta}(s), \operatorname{diag}(\sigma^2))$ with

$$\mu_{\theta}(s) = f_{\theta}(s), \quad \log \sigma = \phi \in \mathbb{R}^{d_a}$$
 (state-independent).

An MLP backbone with Tanh activations projects observations to the mean via a linear head. The log-std vector log_std is a learned parameter independent of s, enabling a minimal yet effective exploration scheme. Using Independent(Normal(mean, std), 1) yields scalar $\log \pi_{\theta}(a \mid s)$ per sample by summing over action dimensions, matching the policy-gradient estimator's expectation. Because MuJoCo actions are bounded, actions are clipped to the environment's action space; this is pragmatic but introduces off-manifold gradients at the bounds. A more principled alternative is a Tanh-squashed Gaussian with a log-det Jacobian correction, though that adds complexity.

Trajectory Collection and Returns. The rollout function gathers $\{(s_t, a_t, \log \pi_\theta(a_t \mid s_t), r_t)\}_{t=0}^{T-1}$ for up to max_steps. Discounted returns are computed as

$$G_t = \sum_{k=0}^{T-t-1} \gamma^k r_{t+k},$$

producing a per-timestep return vector $\mathbf{G} \in \mathbb{R}^T$. Two details are critical for MAML: (i) do *not* wrap policy sampling/log-prob in torch.no_grad(), and (ii) avoid detaching $\log \pi$. The inner update requires higher-order gradients through the loss, so the computational graph must remain intact from $\log \pi$ back to θ . The implementation satisfies this by computing $\log \pi$ in standard autograd mode and returning it unmodified.

Evaluation Logic. The evaluation uses the deterministic mean action $a=\mu_{\theta}(s)$ to reduce variance and provides an optional video of the first episode. This is a conventional diagnostic: during training, stochasticity aids exploration; during eval, determinism clarifies whether the learned policy genuinely captures the backward-running behavior. Mean episodic return over multiple trials is reported to smooth out variability due to stochastic transitions and termination conditions.

Policy Gradient Objective. Within a trajectory, the REINFORCE-style objective maximizes expected return:

$$J(\theta) \approx \frac{1}{T} \sum_{t=0}^{T-1} G_t \log \pi_{\theta}(a_t \mid s_t).$$

The inner (support) and outer (query) losses are implemented as negative of this estimator:

$$\mathcal{L}_{PG}(\theta) = -\frac{1}{T} \sum_{t} G_t \log \pi_{\theta}(a_t \mid s_t).$$

Variance reduction: the code currently uses raw returns G_t as a baseline-free estimator. In practice, normalizing G_t within a trajectory (zero mean, unit variance) or subtracting a learned value baseline (advantages) can materially stabilize learning. The provided L2 regularization (both inner explicit L2 and outer optimizer weight decay) also dampens high-variance parameter excursions.

MAML Mechanics. Given a task T_i (here, a single environment instance with backward reward), the one-step inner update is

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{support}}(\theta),$$

and the meta-objective is

$$\min_{\boldsymbol{\theta}} \ \sum_{i=1}^{B} \mathcal{L}_{\mathsf{query}}(\boldsymbol{\theta}_i') \ = \ \sum_{i=1}^{B} \mathcal{L}_{\mathsf{query}}\!\!\left(\boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathsf{support}}(\boldsymbol{\theta})\right)\!,$$

with meta-batch size B. The implementation obtains support data under θ , computes $\nabla_{\theta} \mathcal{L}_{\text{support}}$ with create_graph=True, forms θ' via a functional update, then evaluates the query loss under θ' by running a new rollout. The gradient $\nabla_{\theta} \mathcal{L}_{\text{query}}(\theta')$ is automatically computed by autograd through the inner update thanks to the preserved higher-order graph.

Functional Adaptation. A subtle but elegant choice is to keep the meta-parameters θ intact and instantiate an *adapted* stateless view using torch.nn.utils.stateless.functional_call. Concretely, after computing the gradient list g, the code constructs

$$\theta' = \theta - \alpha q,$$

maps names to tensors, and calls the same forward functions using θ' without mutating θ . This ensures: (i) the outer optimizer always steps θ , (ii) higher-order derivatives propagate correctly, and (iii) no in-place ops break the graph. One caveat is ordering: the code zips gradients (produced in model.parameters() order) with named_parameters() dict items. Because PyTorch preserves module registration order, these align; still, a more explicit mapping (e.g., deriving grads from named_parameters() directly) further reduces risk.

Regularization and Stability. Two layers of regularization appear: an explicit inner L2 term with coefficient 10^{-3} and an outer Adam weight decay 10^{-4} . Dual regularization can be beneficial but also may underfit if too strong; tuning both is recommended. Additional stabilizers that commonly help in MuJoCo tasks include: (i) gradient clipping on both inner and outer steps, (ii) standardizing returns within each trajectory, (iii) entropy regularization to prevent premature collapse of exploration (i.e., add $-\beta \mathbb{H}[\pi_{\theta}(\cdot|s)]$ to the loss), and (iv) using advantages from a learned value function as a baseline. The current code favors simplicity and clarity over maximal stability.

Hyperparameters and Their Roles. A reasonable starting configuration is $\alpha = inner_lr = 0.1$, outer_lr = $3 \cdot 10^{-4}$, $B = meta_batch_size = 5$, horizon $T = max_episode_len = 200$, and $\gamma=0.99$. Increasing B reduces meta-gradient variance but linearly grows sample cost. Larger α accelerates adaptation but can destabilize the meta-gradient (since higher-order sensitivities amplify), while smaller α weakens adaptation pressure on θ . The code currently performs *one* inner step; extending to multiple steps requires iterating support rollouts and updates (or reusing the same support data) and re-wrapping parameters at each step.

Computational Footprint. Higher-order autograd increases memory usage: backpropagating through the inner update retains the computation graph built for the support loss and the policy forward passes that produced $\log \pi$. Practical measures when memory is tight: reduce horizon T, truncate episodes on termination, use smaller networks, or adopt first-order MAML (FOMAML) by setting create_graph=False—sacrificing exact higher-order terms for substantial savings.

Diagnostics and Expected Learning Signal. Two time-series are plotted: (i) meta-loss (average query loss) and (ii) average query reward. As training progresses, meta-loss should trend down while average query return trends up. Because the task rewards backward velocity, a qualitative confirmation is to render the evaluation video and visually verify consistent backward motion. If learning stalls, common culprits are: (a) $\log \pi$ detached anywhere in the pipeline, (b) incorrect Gymnasium return handling causing premature termination or missing frames, (c) action scaling/clipping issues, and (d) excessively high/low α or outer_lr.

Potential Extensions. Multi-step inner loop: iterate the functional update several times before computing the query loss. Advantage estimation: fit a value baseline (e.g., GAE- λ) to reduce variance and improve sample efficiency. Entropy bonus: encourage exploration during both support and query rollouts. Task distribution: introduce heterogeneity (e.g., randomize mass, joint damping, friction, or backward target speeds) to better showcase meta-learning's cross-task generalization. Tanh-squashed policy: replace clipping with a squashed Gaussian and include the Jacobian term in $\log \pi$ to restore proper gradients near bounds.

Limitations. The present code treats each env instance as the same "task" modulo stochasticity; true meta-learning benefits from a distribution of tasks. Without task diversity, MAML tends to mimic vanilla policy gradient with an unconventional regularizer. Moreover, using raw returns as weights is high variance; in practice, advantage normalization and entropy regularization are almost always required for robust convergence on MuJoCo benchmarks.

Takeaways. This implementation captures the essence of MAML in continuous control: preserving higher-order gradients by avoiding detaches, performing a differentiable inner update, and evaluating a query loss under adapted parameters via a stateless functional call. The environment wrapper cleanly

1 Model-Agnostic Meta-Learning

inverts the objective with minimal code changes. With modest tuning (return normalization, entropy bonus, and possibly a value baseline), the agent should reliably adapt to the backward-running task in a few gradient steps—validating the core MAML hypothesis that one can meta-learn initializations that are primed for rapid adaptation.

References

- [1] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
- [2] A Survey of Meta-Reinforcement Learning