Enoncés: M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis

Corrections: F. Sarkis

Théorème des fonctions implicites

Exercice 1

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par $f(x, y, z) = (x^2 - y^2 + z^2 - 1, xyz - 1)$. Soit $(x_0, y_0, z_0) \in \mathbb{R}^3$ tel que $f(x_0, y_0, z_0) = (0, 0)$. Montrez qu'il existe un intervalle I contenant x_0 et une application $\varphi: I \to \mathbb{R}^2$ tels que $\varphi(x_0) = (y_0, z_0)$ et $f(x, \varphi(x)) = 0$ pour tout $x \in I$.

Correction ▼ [002541]

Exercice 2

Soit $F: \mathbb{R}^2 \to \mathbb{R}$ l'application $F(x,y) = x^2 + y^2 - 1$. Démontrer que, pour x suffisamment proche de 0, il existe un nuique y = y(x) > 0 tel que F(x,y) = 0. Vérifier, sans résolution explicite, que y'(x) = -x/y.

Exercice 3

On considère le système d'équations :

$$\begin{pmatrix} x^2 + y^2 - 2z^2 = 0 \\ x^2 + 2y^2 + z^2 = 4 \end{pmatrix}$$

Montrer que, pour x proche de l'origine, il existe des fonctions positives y(x) et z(x) telles que (x,y(x),z(x)) soit solution du système. On déterminera y' en fonctionde x,y et z' en fonction de x,z.

Exercice 4

Considérons $F(x,y) = y^n + a_{n-1}(x)y^{n-1} + ... + a_1(x)y + a_0(x)$ un polynôme à coefficients variables. On suppose :

- 1. Les fonctions $x \to a_j(x)$ sont C^1 , j = 0, 1, ..., n 1.
- 2. pour un certain $x_0 \in \mathbb{R}$, le polynôme $y \to F(x_0, y)$ a un zéro simple $y_0 \in \mathbb{R}$.

Démontrer que, dans ces conditions, F(x,y) possède, pour x voisin de x_0 , un zéro y(x) qui lui est proche de y_0 et que la dépendance $x \to y(x)$ est C^1 .

Exercice 5

Donner l'allure de $C = \{(x,y) \in \mathbb{R}^2; x^4 + y^3 - y^2 + x - y = 0\}$ au voisinage des points (0,0) et (1,1).

Correction ▼ [002545]

Exercice 6

Montrer que l'équation $e^x + e^y + x + y - 2 = 0$ définit, au voisinage de l'origine, une fonction implicite φ de x dont on calculera le développement limité d'ordre trois en 0.

Correction de l'exercice 1 A

Soit $(x_0, y_0, z_0) \in \mathbb{R}^3$ tel que $f(x_0, y_0, z_0) = (0, 0)$ (par exemple (1, 1, 1)). f est C^1 car coordonnées polynomiales.

$$MatD_{2}f(x_{0},y_{0},z_{0}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial y}(x_{0},y_{0},z_{0}) & \frac{\partial f_{1}}{\partial z}(x_{0},y_{0},z_{0}) \\ \frac{\partial f_{2}}{\partial y}(x_{0},y_{0},z_{0}) & \frac{\partial f_{2}}{\partial z}(x_{0},y_{0},z_{0}) \end{pmatrix} = \begin{pmatrix} -2y_{0} & 2z_{0} \\ x_{0}y_{0} & x_{0}y_{0} \end{pmatrix}$$

 $\det(\mathit{MatD}_2f(x_0,y_0,z_0)) = -2x_0(y_0^2 + z_0^2) \neq 0 \text{ car } x_0y_0z_0 = 1 \text{ donc } x_0 \neq 0, y_0 \neq 0, z_0 \neq 0. \text{ D'après le théorème}$ des fonctions implicites, il existe I intervalle contenant x_0 et $g: I \to \mathbb{R}^2$ tel que f(x, g(x)) = 0 pour tout $x \in I$ et $g(x_0) = (y_0, z_0).$

Correction de l'exercice 5 ▲

Correction de l'exercice 5 A
Posons $f(x,y) = x^4 + y^3 - x^2 - y^2 + x - y$, f(0,0) = 0 et f(1,1) = 0. \mathbb{R} est un espace de Banach et f est de classe C^1 car polynomiale.

$$\frac{\partial f}{\partial y} = 3y^2 - 2y - 1$$

Étude au point (0,0), $\frac{\partial f}{\partial y}(0,0)=-1$, c'est un isomorphisme de \mathbb{R} . Nous sommes dans les conditions d'application du théorème des fonctions implicites. Il existe I contenant 0, J contenant 0 et $g: I \to J$, C^1 tel que g(0) = 0et $f(x,g(x)) = 0, \forall x \in I$. On a

$$x^4 + (g(x))^3 - x^2 - (g(x))^2 + x - g(x) = 0$$

En dérivant on obtient :

$$4x^3 + 3g^2(x)g'(x) - 2x - 2g(x)g'(x) + 1 - g'(x) = 0$$

d'où g'(0) = 1. On dérive encore :

$$12x^2 + 6g(x)g'(x)^2 + 3g^2(x)g''(x) - 2 - 2g'(x)^2 - 2g(x)g''(x) - g''(x) = 0$$

d'où

$$g''(0) = -4.$$

Étude au point (1,1), $\frac{\partial f}{\partial y}(1,1) = 0$. Ce n'est plus un difféo, on ne peut pas appliquer le théorème des fonctions implicites. Dans ce cas, on prend la dérivée par rapport à la première variable.

$$\frac{\partial f}{\partial x} = 4x^3 - 2x + 1$$

et donc $\frac{\partial f}{\partial x}(1,1)=3$. Donc, d'après le théorème des fonctions implicites, il existe I contenant 1,J contenant 1 et $g:I\to J$ de classe C^1 tels que g(1)=1 et $f(g(x),x)=0, \forall y\in I$. On a

$$g(y)^4 - g^2(y) + g(y) + y^3 - y^2 - y = 0$$

En dérivant

$$4g^3g' - 2gg' + g' + 3y^2 - 2y - 1 = 0$$

d'où 4g'(1) - g'(1) = 0 et donc g'(1) = 0.

$$12g^2(g')^2 + 4g^3g'' - 2gg'' - 2(g')^2 + g'' + 6y - 2 = 0$$

d'où g''(1) = -4/3.