

MS90C385B

----+3.3V 150MHz 的 24bit 平板显示器 (FPD) LVDS 信号发送器

功能概述

MS90C385B 芯片能够将 28bit 的 TTL 数据转换成 4 通道的低压差分型号(LVDS)。时钟通道经过锁相之后与数据通道并行输出。在时钟频率为 150MHz 时,24bit 的 RGB 数据、3bit 的 LCD 时序数据和 1bit 的控制数据以 1050Mbps 的速率在每个 LVDS 数据通道中传输。输入时钟频率为 150MHz 时,数据的传输速率为 525Mbytes/sec。MS90C385B 的 R_FB 管脚可以选择在时钟的上升沿或者下降沿有效。此款芯片是解决高带宽、高速 TTL 信号层面的电磁干扰和电缆长度问题的理想产品。

特点

- 频率范围: 20-150MHz 时钟信号
- 较少的总线减少了连线尺寸和费用
- 内核供电电源 3.3V
- IO 供电电源 1.8V、3.3V 兼容
- 低功耗模式
- 支持 VGA、SVGA、XGA、SXGA
- 支持扩展频谱时钟产生
- 内部集成输入抖动滤波器
- 525Megabytes/sec 帯宽
- 减小 LVDS 摆幅来减小电磁干扰 (200mV 或 345mV LVDS 摆幅可供选择)
- PLL 不需要外部结构
- 遵循 TIA/EIA-644 LVDS 标准

管脚定义

MS90C385B 管脚说明

MD20C200D E Wt 0[:31	•		
管脚名	管脚序号	管脚类型	描述
TXOUTO+, TXOUTO-	47, 48	LVDS 输出	LVDS 差分数据输出
TXOUT1+, TXOUT1-	45, 46	LVDS 输出	
TXOUT2+, TXOUT2-	41, 42	LVDS 输出	
TXOUT3+, TXOUT3-	37, 38	LVDS 输出	
TCLK+, TCLK-	39, 40	LVDS 输出	LVDS 差分时钟输出
TXO ~ TX6	51, 52, 54, 55, 56,	输入	TTL 级数据输入。
	2, 3	相りへ	包括: 8 RED, 8 GREEN, 8 BLUE, 4
TX7 ~ TX13	4, 6, 7, 8, 10, 11, 1	输入	个控制信号(HSYNC, VXYNC, DE)
	2	相がく	
TX14 ~ TX20	14, 15, 16, 18, 19,	 輸入	
	20, 22	1111/人	
TX21 $^{\sim}$ TX27	23, 24, 25, 27, 28,	 輸入	
	30, 50	机八	
CLK IN	31	输入	TTL 级时钟输入。
/PDN	32	 輸入	TTL 级输入。高:正常工作
		1111/人	低: 低功耗
R_FB	17	 輸入	选择有效边沿。
		1111/人	高:上升沿 低:下降沿
RS	1	 輸入	LVDS 摆幅控制(正常 RS=VCC, 小
		1017 \	摆幅 RS=GND)
VCC	9	电源	TTL 级输入电源
IOVCC	26	IO 电源	I0 口电源, 1.8V 和 3.3V 兼容
GND	5, 13, 21, 29, 53	地	TTL 级输入地
LVDS VCC	44	电源	LVDS 输出电源
LVDS GND	36, 43, 49	地	LVDS 输出地
PLL VCC	34	电源	PLL 电源
PLL GND	33, 35	地	PLL 地

结构框图

推荐工作条件

电源电压 (VCC) -0.3V - 4.0V

 CMOS/TTL 输入电压
 -0.3V - (VCC+0.3V)

 CMOS/TTL 输出电压
 -0.3V - (VCC+0.3V)

 LVDS 驱动输出电压
 -0.3V - (VCC+0.3V)

结点温度 +150℃

温度范围 -65℃ - 150℃

最大功耗 (25℃)

MS90C385B 1.4W

电学特性

符号 参数	条件	Min	Тур	Max	Units
---------	----	-----	-----	-----	-------

MS90C385B

$V_{\scriptscriptstyle \mathrm{IH}}$	输入高电平		1.5	V_{cc}	V
$V_{\scriptscriptstyle \mathrm{IL}}$	输入低电平		GND	0.8	V
$I_{\scriptscriptstyle \mathrm{IN}}$	输入电流	$0 \leqslant V_{IN} \leqslant V_{CC}$		±10	uA
$I_{ ext{PD}}$	低功耗状态电流	$R_FB=V_{CC}$, $V_{IH}=V_{CC}$		10	uA

开关特性

开大行注	T		ı			T
符号	参数		Min	Тур	Max	Units
T_{TCIT}	时钟信号过渡时间				5. 0	ns
T_{TCP}	时钟周期		11. 76	T	50	ns
T_{TCH}	时钟高电平持续时间		0. 35T	0. 5T	0.65T	ns
T_{TCL}	时钟低电平持续时间		0. 35T	0. 5T	0.65T	ns
T_{TS}	TTL 数据建立时间		2. 5			ns
T_{TH}	TTL 数据保持时间		0			ns
T_{LVT}	LVDS 信号转换时间			0.6		ns
T_{TCD}	时钟输入与差分时钟信号	号延迟		2T/7+2.3		ns
T_{TDP1}	输出数据位 0	150MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			0. 95		ns
T_{TDP6}	输出数据位 2			1. 90		ns
T_{TDP5}	输出数据位3			2.86		ns
T_{TDP4}	输出数据位 4			3. 81		ns
T_{TDP3}	输出数据位5			4. 76		ns
T_{TDP2}	输出数据位 6			5. 71		ns
T_{TDP1}	输出数据位0	100MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			1. 43		ns
T_{TDP6}	输出数据位 2			2.86		ns
T_{TDP5}	输出数据位3			4. 29		ns
T_{TDP4}	输出数据位 4			5. 71		ns
T_{TDP3}	输出数据位 5			7. 14		ns
T_{TDP2}	输出数据位 6			8. 47		ns
T_{TDP1}	输出数据位0	85MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			1. 68		ns
T_{TDP6}	输出数据位 2			3. 36		ns
T_{TDP5}	输出数据位3			5. 04		ns
T_{TDP4}	输出数据位 4			6. 72		ns
T_{TDP3}	输出数据位5			8. 40		ns
T_{TDP2}	输出数据位 6			10.08		ns
T_{TDP1}	输出数据位 0	50MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			2.86		ns
T_{TDP6}	输出数据位 2			5. 71		ns

MS90C385B

	1			1		
T_{TDP5}	输出数据位3			8. 57		ns
T_{TDP4}	输出数据位 4			11.42		ns
T_{TDP3}	输出数据位5			14. 28		ns
$T_{\tiny TDP2}$	输出数据位 6			17. 14		ns
T_{TDP1}	输出数据位 0	35MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			4. 08		ns
T_{TDP6}	输出数据位 2			8. 16		ns
T_{TDP5}	输出数据位3			12. 24		ns
T_{TDP4}	输出数据位 4			16. 33		ns
T_{TDP3}	输出数据位5			20. 41		ns
T_{TDP2}	输出数据位 6			24. 49		ns
T_{TDP1}	输出数据位0	20MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			7. 14		ns
T_{TDP6}	输出数据位2			14. 28		ns
T_{TDP5}	输出数据位3			21.42		ns
T_{TDP4}	输出数据位 4			28. 57		ns
T_{TDP3}	输出数据位 5			35. 71		ns
T_{TDP2}	输出数据位 6			42.86		ns
T_{TPLLS}	锁相环设置时间		_	-	10	ms

直流特性

符号	参数	条件	Min	Тур	Max	Units
V _{od}	差分输出电压(RS=VCC)		250	345	450	mV
	差分输出电压(RS=GND)		100	200	300	
$\triangle V_{od}$		RL=100 Ω			35	mV
V _{oc}	共模电压(RS=VCC)	KL-100 \$2	1. 125	1.25	1.375	V
	共模电压(RS=GND)			1.20		
$\triangle V_{oc}$					35	mV
I_{oz}		/PDN=0V			±10	uA

电源电流

符号	参数	条件	Тур	Max	Units
$I_{ ext{cctg}}$	供电电流 16 Grayscale MS90C385B	f=20MHz	21		mA
		f=35MHz	27		mA
		f=50MHz	29		mA
		f=85MHz	31		mA
		f=100MHz	34		mA
		f=150MHz	37		mA
$I_{ ext{CCTP}}$	Power down 时的电流	/PDN=0V	21		uA

交流时序图

图 1.测试模板 "Worst Case Pattern"

图 2. 测试模板 "16 Grayscale Test Pattern"

图 3. TTL 输入

图 4. LVDS 输出

 $V_{\text{diff}} = (TXOUT+) - (TXOUT-)$

图 5. 锁相环设置时间

图 6. 发送器状态

Vdiff= (TXOUT+) - (TXOUT-), ······ (TCLK+) - (TCLK-)

图 7. 并行 TTL 输入数据与 LVDS 输出数据匹配关系

图 8. 上升、下降时间与高电平、低电平保持时间

图 9. 输入时钟与输出时钟间延迟

封装图

