解析概論 D 演習 期末試験問題

2016年1月22日第3時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

問題 1, 問題 2, 問題 3, 問題 4, 問題 5 は全員が答えのみを答えよ. 問題 6, 問題 7, 問題 8, 問題 9 から 2 題以上を選択して答えよ.

問題 1 (答えのみ).

$$\int_{-\infty}^{\infty} e^{-x^2} dx を求めよ.$$

問題 2 (答えのみ).

曲線 C: (3t, 4t, 5t) (0 < t < 1) に対して

$$\int_C (x+y+z) \, ds$$

を求めよ. ただし, ds は線素である.

問題 3 (答えのみ).

単位球面 $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ を

 $p(u,v) = (\sin u \cos v, \sin u \sin v, \cos u)$ $((u,v) \in [0,\pi] \times [-\pi,\pi])$ と表示するとき、第一基本量 E, F, G と面素 dS を求めよ.

問題 4 (答えのみ).

 $B_4^3:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2<16\}$ とし, $m{F}:\overline{B_4^3} o\mathbb{R}^3$ を $m{F}(x,y,z):=(4x,y,-2z)\;((x,y,z)\in\overline{B_4^3})$ で定める. このとき,

$$\iint_{\partial B_{\tau}^3} \boldsymbol{F} \cdot \boldsymbol{n} \, dS$$

を計算せよ. ただし, n は外向き単位法線ベクトルである.

問題 5 (答えのみ).

 $\omega = f \, dx + g \, dy + h \, dz$ を \mathbb{R}^3 上の一次微分形式とする. ここで, f, g, h は \mathbb{R}^3 上の滑らかな関数である. このとき, 外微分 $d\omega$ を求めよ. なお, 微分の記号として, $\frac{\partial f}{\partial x} = f_x$ などの省略記法を用いてよい.

以下余白 計算用紙として使ってよい.

略解

問題 1 $\sqrt{\pi}$

問題 2 $30\sqrt{2}$

問題 3 $E=1, F=0, G=\sin^2 u, dS=\sin u \, du$

問題 4 256 π

問題 5 $df = (h_y - g_z)dy \wedge dz + (f_z - h_x)dz \wedge dx + (g_x - f_y)dx \wedge dy$

問題 6.

3 次元単位球面

$$\mathbb{S}^3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

の面積を求めたい. 次の問いに答えよ.

(1)
$$\int_{B_1} dx_1 dx_2 dx_3 dx_4$$
 を計算せよ.

(2)
$$\int_{B_1}^1 dx_1 dx_2 dx_3 dx_4 = \frac{1}{4} \int_{\mathbb{S}^3} dS$$
 を示せ、そして、 \mathbb{S}^3 の面積を求めよ、

問題 7.

 $\Omega \subset \mathbb{R}^n$ を有界領域, $\partial \Omega$ は滑らかとする. f,g を $\overline{\Omega}$ 上連続で滑らかなスカラー場, \mathbf{F} を $\overline{\Omega}$ 上連続で滑らかなベクトル場とする. このとき, 次を示せ. ただし, \mathbf{n} は $\partial \Omega$ 上の外向き単位法線ベクトルとする.

(1)
$$\int_{\Omega} \mathbf{F} \cdot \nabla f \, dx = \int_{\partial \Omega} f \mathbf{F} \cdot \mathbf{n} \, dS - \int_{\Omega} f \operatorname{div} \mathbf{F} \, dx.$$
(2)
$$\int_{\Omega} (f \Delta g + \nabla f \cdot \nabla g) \, dx = \int_{\Omega} f \nabla g \cdot \mathbf{n} \, dS$$

(2)
$$\int_{\Omega} (f\Delta g + \nabla f \cdot \nabla g) \, dx = \int_{\partial \Omega} f \nabla g \cdot \boldsymbol{n} \, dS$$

(3)
$$\int_{\Omega} (f\Delta g - g\Delta f) \, dx = \int_{\partial\Omega} (f\nabla g \cdot \boldsymbol{n} - g\nabla f \cdot \boldsymbol{n}) \, dS$$

問題 8.

滑らかな境界をもつ有界領域 $\Omega \subset \mathbb{R}^3$ に対して, $u:\overline{\Omega} \to \mathbb{R}$ は Neumann 境界条件をみたす調和関数, すなわち

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial x} \nu_1 + \frac{\partial u}{\partial y} \nu_2 + \frac{\partial u}{\partial z} \nu_3 = 0 & \text{on } \partial \Omega \end{cases}$$

をみたすとする. ただし, $\nu=(\nu_1,\nu_2,\nu_3)$ は $\partial\Omega$ 上の外向き単位法線ベクトルである. $\phi:\overline{\Omega}\to\mathbb{R}$ を滑らかな関数とする. さらに

$$I(t) := \frac{d}{dt} \left(\frac{1}{2} \iiint_{\Omega} |\nabla(u + t\phi)|^2 dx dy dz \right) \qquad (-1 < t < 1)$$

とおく.

- (1) I(t) を $\frac{d}{dt}$ を用いずに表せ. なお, 微分と積分の交換は証明なし に用いてよい.
- (2) I(0) = 0 を示せ.

問題 9.

 \mathbb{R}^3 上の滑らかな関数 $f: \mathbb{R}^3 \to \mathbb{R}$ に対して d(df) = 0 を示せ.

以下余白 計算用紙として使ってよい.

略解

問題 6

- (1) $\int_{-1}^{1} \frac{3}{4} \pi (1 r^2)^{\frac{3}{2}} dr$ を計算すれば, $\frac{\pi^2}{2}$ がわかる.
- (2) $\int_{\mathbb{S}^3} x \cdot \mathbf{n} \, dS$ に Gauss の発散定理を用いればよい. 答えは $2\pi^2$ となる.

問題 7

- (1) $\int_{\Omega} \operatorname{div}(f\mathbf{F}) dx$ に Gauss の発散定理を用いよ.
- (3) (2) で f, g を入れかえた式を作り, 差をとる.

問題8

- (1) $\int_{\Omega} (\nabla (u + t\phi) \cdot \nabla \phi) dx$
- J_{Ω} (2) Gauss の発散定理を用いる. 境界積分は境界条件から 0 になる.

問題 9

 $df = f_x dx + f_y dy + f_z dz$ となる. d(df) の計算は問題 5 の結果を用いてもよい.