Patterns:

What we need first, is a recursive relation, and what we want to do, is to find a matrix M which can lead us to the desired state from a set of already known states. Let, we know k states of a given recurrence relation, and want to find the (k+1)th state. Let M be a k x k matrix, and we build a matrix A: $[k \times 1]$ matrix from the known states of the recurrence relation, now we want to get a matrix B: $[k \times 1]$ which will represent the set of next states, i.e. M x A = B, as shown below:

So, if we can design M accordingly, job's done!, the matrix will then be used to represent the recurrence relation.

Type 1:

Lets start by the simplest one, f(n) = f(n-1) + f(n-2).

So,
$$f(n+1) = f(n) + f(n-1)$$

Let, we know, f(n) and f(n-1); we want to get f(n+1)

From the above situation, matrix A and B can be formed as shown below:

Matrix A Matrix B

```
| f(n) |
```

[Note: matrix A will be always designed in such a way that, every state on which f(n+1) depends, will be present]

So, now, we need to design a 2x2 matrix M such that, it satisfies M x A = B as stated above.

The first element of B is f(n+1) which is actually f(n) + f(n-1). To get this, from matrix A, we need, 1 f(n) and 1 f(n-1). So, the 1st row of M will be [1 1].

[Note: ---- means, we are not concerned about this value]

Similarly, 2nd item of B is f(n) which we can get by simply taking 1 f(n) from A. So, the 2nd row of M is [1 0].

[I hope you know how a matrix multiplication is done and how the values ar assigned!]

Thus we get the desired 2 x 2 matrix M:

If you are confused about how the above matrix is calculated, you might try doing it this way:

We know, the multiplication of an n x n matrix M with an n x 1 matrix A will generate an n x 1 matrix B, i.e. M x A = B. The k'th element in the product matrix B is the product of k'th row of the n x n matrix M with the n x 1 matrix A in the left side.

In the above example, the 1st element in B is f(n+1) = f(n) + f(n-1). So, it's the product of 1st row of matrix M and matrix B. Let, the first row of M is $[x \ y]$. So, according to matrix multiplication,

$$x * f(n) + y * f(n-1) = f(n+1) = f(n) + f(n-1)$$

 $\Rightarrow x = 1, y = 1$

Thus we can find the first row of matrix M is [1 1]. Similarly, let, the 2nd row of matrix M is [x y], and according to matrix multiplication:

$$x * f(n) + y * f(n-1) = f(n)$$

$$\Rightarrow$$
 x = 1, y = 0

Thus we get the second row of M is [10].

Type 2:

Now, we make it a bit complex: find f(n) = a * f(n-1) + b * f(n-2), where a, b are some constants.

This tells us, f(n+1) = a * f(n) + b * f(n-1).

By this far, this should be clear that the dimension of the matrices will be equal to the number of dependencies, i.e. in this particular example, again 2. So, for A and B, we can build two matrices of size 2 x 1:

Matrix A Matrix B

| f(n) |

| f(n-1) |

| f(n+1) |

| f(n) |

Now for f(n+1) = a * f(n) + b * f(n-1), we need [a b] in the first row of objective matrix M instead of [1 1] from the previous example. Because, now we need a of f(n)'s and b of f(n-1)'s.

And, for the 2nd item in B i.e. f(n), we already have that in matrix A, so we just take that, which leads, the 2nd row of the matrix M will be [1 0] as the previous one.

So, this time we get:

Pretty simple as the previous one...

Type 3:

We've already grown much older, now lets face a bit complex relation: find f(n) = a * f(n-1) + c * f(n-3).

Ooops! a few minutes ago, all we saw were contiguous states, but here, the state f(n-2) is missing. Now? what to do?

Actually, this is not a problem anymore, we can convert the relation as follows: f(n) = a * f(n-1) + 0 * f(n-2) + c * f(n-3), deducing f(n+1) = a * f(n) + 0 * f(n-1) + c * f(n-2). Now, we see that, this

is actually a form described in Type 2. So, here, the objective matrix M will be 3 x 3, and the elements are:

These are calculated in the same way as Type 2. [Note, if you find it difficult, try on pen and paper!]

Type 4:

Life is getting complex as hell, and Mr. problem now asks you to find f(n) = f(n-1) + f(n-2) + c where c is any constant.

Now, this is a new one and all we have seen in past, after the multiplication, each state in A transforms to its next state in B.

$$f(n) = f(n-1) + f(n-2) + c$$

 $f(n+1) = f(n) + f(n-1) + c$
 $f(n+2) = f(n+1) + f(n) + c$
.....so on

So, normally we can't get it through the previous fashions. But, how about now we add c as a state?

```
| f(n) | | f(n+1) |

M x | f(n-1) | = | f(n) |

| c | | c |
```

Now, its not much hard to design M according to the previous fashion. Here it is done, but don't forget to verify on yours:

Type 5:

Lets put it altogether: find matrix suitable for f(n) = a * f(n-1) + c * f(n-3) + d * f(n-4) + e.

I would leave it as an exercise to reader. The final matrix is given here, check if it matches with your solution. Also find matrix A and B.

[Note: you may take a look back to Type 3 and 4]

Type 6:

Sometimes, a recurrence is given like this:

$$f(n) = if n is odd, f(n-1) else, f(n-2)$$

In short:

$$f(n) = (n\&1) * f(n-1) + (!(n\&1)) * f(n-2)$$

Here, we can just split the functions in the basis of odd even and keep 2 different matrix for both of them and calculate separately. Actually, there might appear many different patterns, but these are the basic patterns.

Type 7:

Sometimes we may need to maintain more than one recurrence, where they are interrelated. For example, let a recurrence relation be:

g(n) = 2g(n-1) + 2g(n-2) + f(n), where, f(n) = 2f(n-1) + 2f(n-2). Here, recurrence g(n) is dependent upon f(n) and the can be calculated in the same matrix but of increased dimensions. Lets design the matrices A, B then we'll try to find matrix M.

Matrix A Matrix B

Now that we have seen how matrix multiplication can be used to maintain recurrence relations, we are back to out first question, how this helps us in solving recurrences on a huge range.

Recall the recurrence f(n) = f(n-1) + f(n-2).

We already know that:

How about we multiply M multiple times? Like this:

$$M \times M \times | f(n) | = | f(n+1) |$$

 $| f(n-1) | | f(n) |$

Replacing from (1):

$$M \times M \times | f(n) | = M \times | f(n+1) | = | f(n+2) |$$

 $| f(n-1) | | f(n) | | f(n+1) |$

So, we finally get:

Similarly we can show:

Thus we can get any state f(n) by simply raising the power of objective matrix M to n-1 in O(d3log(n)), where d is the dimension of square matrix M. So, even if n = 1000000000, still this can be calculated pretty easily as long as d3 is sufficiently small.