

From Web Attacks to Malware

Can Secure Software Development Help Internet Banking Security?

Giorgio Fedon
Owasp Italy – Technical Director

giorgio.fedon@mindedsecurity.com

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

Presentazione

- Ricerca
 - ▶ OWASP Italy Technical Director
 - ▶ OWASP Antimalware project leader
 - ▶ Testing Guide Contributor
 - ▶ Analisi e scoperta di importanti problematiche di sicurezza
- Minded Security
 - ▶ Chief Operation Officer
 - ► Leading hundreds of Penetration Testing activities and Code Reviews; many of them for the Bank Industry
 - ▶ Blog: http://blog.mindedsecurity.com

Recenti News

- ▶ 2005 Una banca Svedese ha avvisato la stampa che i suoi clienti sono stati frodati per 700000 euro attraverso l'uso di uno specifico malware
- ▶ 2007 "Silent Banker Trojan crea attacchi mirati per 400 Banche ed è in grado di effettuare il bypass di modalità di autenticazione a più fattori"
- ▶ 2008 Un attacco di SQL Injection ad "Heartland Payment Systems" rivela i dati di circa 100 Milioni di carte di credito
- ▶ 2009 Un attacco di phishing ad una banca Spagnola permette agli attaccanti di impadronirsi di circa 10000 credenziali degli utenti

Le modalità di attacco più ricorrenti

Phishing

▶ Email inviate agli utenti dall'attaccante con link a siti fasulli

Malware Bancario

▶ Software in grado di manipolare i contenuti web visionati e inviati dall'utente

■ SQL Injection

Accesso alla base dati direttamente dal portale di internet banking

Veloce confronto fra le precedenti categorie

- Modalità *note al settore* da diversi anni
- Colpiscono *ambiti differenti* (utenti vs
 infrastruttura)
- Efficacia *alta* con effort relativamente *basso* (attacchi in gran parte automatizzabili)

Importante è creare un piano nello sviluppo delle applicazioni per una migliore razionalizzazione delle risorse

Piano di Sicurezza nello Sviluppo

Before SDLC	Define&Design	Development	Deploy&Maintenance	:
Policy and Standards Develop metrics	Security Requirement Threat Modeling	Code Walkthrough Code Review	Application Testing Management reviews Health checks	Security in SDLC
Awareness	Building	Review	Test	

Il ciclo si ripete su base temporale, in vista delle problematiche riscontrate e dei nuovi sviluppi

Banking Attack Process

Alcune statistiche

Attacchi all'infrastruttura

Infrastructural Attack
WEB APPLICATIONS NETWORK

- 1. Tecniche di scansione mediante tool automatizzati per ricercare problematiche infrastrutturali
- 2. Dalle statistiche le problematiche "Web" di data validation e configurazione rappresentano più del 60% degli attacchi infrastrutturali effettuati con successo
- 3. Il target si considera raggiunto nel caso in cui l'attaccante trovi importanti vulnerabilità

Toolset "cinese" per attacchi di SQL Injection

Malware Attack

1 Data Collection And Analysis 2 Identify Targets and Weaknesses 3 Custom Impersonation Attacks

- 1. Nelle "dropzone" vengono collezionati i dati sottratti; nelle fasi preliminari viene effettuato il log del traffico HTTP dell'utente
- 2. Dalle informazioni ottenute l'attaccante studia le misure di sicurezza offerte dalla banca (modalità di autenticazione, alert lato utente, etc.)
- 3. L'attaccante crea una configurazione personalizzata per l'attacco

Malware for

Luckysploi

Silver Edition

- Antivirüs programları ile sorun yaşanması halinde 4 ay boyunca (en fazla 3 kez) yenisi ile değiştirme garantisi
- 7/24 e-mail ve anlık mesajlaşma sistemleri aracılığıyla teknik destek
- Windows 95/98/ME/NT/2000/XP/Vista desteği
- Webcam görüntüsü alabilme
- Clipboard değişikliklerini farkedip kaydedebilme

Ürün Bedeli: 179\$ (Amerikan Doları) - 214.00 YTL

Gold Edition

- Antivirüs programları ile sorun yaşanması halinde 6 ay boyunca(sınırsız) ya da 9 ay boyunca (en fazla 3 kez) yenisi ile değiştirme garantisi (seçimlik olarak kullanılabilir)
- 7/24 e-mail ve anlık mesajlaşma sistemleri aracılığıyla teknik destek
- Windows 95/98/ME/NT/2000/XP/Vista desteği
- MS-DOS komutları kullanabilme
- Webcam görüntüsü,ses ve msn loglarını alabilme
- Uzak bilgisayarı klavye ve mouse ile kontrol edebilme
- Clipboard değişikliklerini farkedip kaydedebilme
- Kurulum ve sonrasında birebir destek
- Uzak bilgisayardaki resimleri download etmeden görebilme

Ürün Bedeli: 249\$ (Amerikan Doları) - 300.00 YTL

Bronze Edition

- Bu ürün Turkojan 3.0'da bulunan sorunların giderilip daha da geliştirildiği bir sürüm olup çeşitli kısıtlamalar içerir(Webcam görüntüsü,ses ve msn konuşmaları alınamamaktadır)
- Antivirüs programları ile sorun yaşanması halinde 1 ay boyunca yenisi ile değiştirme garantisi
- 7/24 e-mail vasıtasıyla teknik destek
- Windows 95/98/ME/NT/2000/XP desteği

Ürün Bedeli: 99\$ (Amerikan Doları) - 118.00 YTL

er infettare i er vulnerabili a 500 dollari

Data collection and analysis

- Analisi delle infromazioni collezionate
 - L'attaccante cercherà di conoscere come l'applicazione bancaria funziona
 - ▶ La seguente configurazione permette di analizzare il traffico HTML direttamente dal PC dell'utente:

```
ghjfe87=0
hgknc87=*secure.newbank.com
hgknn87 = <html>
```

- ▶ Le pagine HTML diventano decine di migliaia. Questo facilita un attaccante nel conoscere le funzionalità presenti su portali sconosciuti
- ▶ Recent analysis of Torpig, shows the same approach

Regole Personalizzate

Custom HTML injection (Silent Banker)

```
[jhw144]
pok=insert
qas=secureportal.bank.cm/index.do
dfr=16
req=100
xzq=9
rek=<input type="hidden" name="username_phish" value="">
<input type="hidden" name="password_phish" value="">
njd=name="login_Form"
xzn=value="">
```

La precedente configurazione istruisce il malware ad utilizzare la string "login_Form" come riferimento, poi inserirà il contenuto in "rek" dopo il successivo value="">

Interazioni

■ Reciproco Potenziamento

 Gli attacchi diretti verso l'infrastruttura accrescono il potenziale degli attacchi verso gli utenti e vice-versa

Processo di attacco

Malware e ritorno di investimento

Zeus and Nethell Dropzones

Information Category	Number	Percentage	
Credit Cards		5682	3,44
Paypal		5000	3,02
Bank Accounts		5200	3,15
Email Passwords		149458	90,39

Rif: Holz, Engelberth, Freiling - Learning more About the Underground Economy

Silent Banker Dropzone

Information Category	Number	Percentage	
Credit Cards		1120	6,35
Bank Accounts		865	4,91
Paypal		220	1,25
Email Passwords		15430	87,5

Rif: Owasp Antimalware

Torpig Dropzone

Information Category	Number	Percentage	
Paypal		1170	1,84
Bank Accounts		6600	10,39
Credit Cards		1160	1,83
Email Passwords		54590	85,94

Rif: Stone, Cavallari, Vigna and others

Your Botnet is My Botnet: Analysis of Botnet takeover
OWASP Day IV Milano, 6 Novembre 2009

Come proteggersi?

- Pre SDLC
- Define and Design
- Development
- Deploy And Maintenance

Pre SDLC Define and Design

Primi step nella messa in sicurezza

- Dare la giusta priorità agli interventi
 - Overview dell'infrastruttura in senso ampio
 - ▶ Threat Modeling e Risk Rating
- Comprendere quali requisiti di sicurezza adottare
 - Analisi di settore
- Valutare le soluzioni prima dell'adozione
 - Solution Selection
 - ▶ Valutare i costi e benefici dei futuri investimenti tecnologici nel modo più oggettivo possibile

Estensione del perimetro di analisi

■ La condivisione di risorse fra elementi differenti dell'infrastruttura è un punto di attenzione

Estensione del perimetro di analisi (2)

■ Potenziale di Attacco in caso di compromissione del customer service

Estensione del perimetro di analisi (3)

- Individuare dove il portale di internet banking interagisce con contenuti di terze parti
- Un attaccante potrebbe compromettere il portale passando da un fornitore

Includere Javascript esterno in modo dinamico è un rischio:

```
<!-- BEGIN Marketing Tag. PLACE IT BEFORE THE /BODY TAG -->
<script language='javascript' src='https//www.unsafeagency.com/bank.com.js' >
<!- END Marketing Tag. -->
```


Definire le aree con maggior priorità

- Necessità di individuare dove siano presenti i maggiori rischi
- Assessment "rapido" e preciso
 - Assessment Network e Web
 - ▶ Black-Box o Grey Box
- Creazione di un cruscotto con i rischi infrastrutturali associati
 - ▶ In base ai rischi si vanno a delineare le priorità di intervento, su quali applicazioni e processi investire maggiormente in sicurezza

Definizione dei requisiti

- Fase preliminare per la messa in sicurezza di una applicazione
 - ▶ Definire i requisiti di sicurezza
 - ▶ Definire dove questi requisiti debbano essere presenti
- Le scelte effettuate in questa fase difficilmente possono essere cambiate a posteriori
 - ▶ Esempio: scelta delle modalità di autenticazione

Applies to: corporate.bank.cm

Identificare dove applicare le modalità di autenticazione scelte

Solution Selection

Password

- ▶ TAN (Gridcard, Scratch Card)
 - Transaction Authorization Numbers
- ▶ OTP (Time Based, Clic
 - One Time password
- ▶ CAP (Ray
- ges
- ▶ Cellphone Caller ID

Silent Banking e Social Engineering

Qui è dato come presupposto che il computer dell'utente sia infetto.

- L'attaccante costantemente aggiorna le definizioni per un alto numero di banche
- Quando un utente effettua una transazione, il malware chiede il codice corretto e sostituisce i dettagli della transazione
- L'utente autorizza una transazione differente

Solution Selection (2)

- E' importante valutare i costi vs benefici, ovvero quale è l'incidenza?:
 - ▶ In Italia circa 1/5 delle macchine sono infette
 - Di queste solo 1/10* sono infette da un Trojan Stealer e/o Trojan Banker
 - Di queste infezioni solo 1/10* operano contro le autenticazioni a più fattori proprie della banca usata dall'utente
 - » = 2 utenti su Mille!
- Oltre alle precedenti esistono soluzioni progettate in modo specifico per contenere i Malware
- Esistono operazioni di contenimento che possono rafforzare le misure esistenti

Metodi di contenimento

- Rinforzare l'informativa verso l'utente
 - ▶ Indicazioni costanti dei movimenti
 - ▶ Utilizzando possibilmente canali differenti (es. SMS)
 - Proteggere la possibilità di disabilitare queste funzioni
- Una transazione fraudolenta può essere bloccata se individuata in tempi rapidi

■ L'informativa addizionale è importante, poiché il saldo via Web può essere "ricomputato"

Metodi di contenimento (2)

- Awareness e training
- Meglio se effettuato nel tempo utilizzando test case reali

SMS challenge + Informativa

■ Esempio di soluzione di contenimento, mantenendo modalità pre-esistenti

SMS "autenticare la Transfer to UK: cc Autenticare la transazione **1293 – Mark Fr**** transazione all'utente *all'utente* con eur 200 dettagli comprensibili" Token: 339856 **OTP** Non protegge da SIM Swap Attacks, Cell phone theft

Development e Deployment

La sicurezza nello sviluppo è fondamentale

■ Il secure design non protegge l'applicazione dalle vulnerabilità inserite nella fase di sviluppo

Es. Broken Access Control su funzionalità dispositiva

Problematiche costanti nella fase di sviluppo

- Broken Access Control in lettura
 - Passando il numero di conto si accede ai dati di quel conto, senza verificarne l'appartenenza
 - ▶ Estratto conto in PDF, se l'ID è corretto viene restituito il file PDF senza verificarne l'appartenenza
- Uso di funzioni pericolose
 - ▶ Esecuzione di codice in modo dinamico → Eval() server side
- Errori nella gestione del Session State
 - ▶ Problematica del "Back Home"

Problematiche costanti nella fase di sviluppo

- Upload di file
 - ▶ Le funzionalità di upload permettono spesso di poter creare file con estensioni arbitrarie → Code Execution
- Creazione insicura di file
 - ▶ Possibilità di sovrascrivere un file esistente → Code Execution
- Path Traversal
 - Possibilità di leggere file arbitrari, specificando una risorsa posta ad un livello inferiore

Path Traversal

Path Traversal ed accesso in lettura a file arbitrari: http://www.sito-.com/sito/download.jsp?id=.././../../../etc/passwd%00

Es. di Cross Site Scripting

Attacco di Phishing tramite XSS

Problematiche di configurazione

- Interfacce di Management Esposte
 - ▶ Possibilità di esecuzione di codice o di inserimento di contenuto permanente nel caso in cui sia possibile accedervi
- Open Proxy
 - ▶ Un reverse proxy configurato come proxy standard, può consentire l'accesso a risorse interne
- Contenuti protetti da URL Rewriting
 - Possibilità spesso di bypassare la protezione tramite appropriati encoding

Contenuti protetti da URL Rewriting

Double Encoding, utile per ingannare i filtri

Es: http://www.sito-.com/sito/%252e%252e/

Parameter Tampering

- Problematica comune di configurazione
 - Simile alla "Positive Authentication"
 - ▶ Identificabile facilmente se vengono protetti esplicitamente SOLO alcuni metodi
 - Avviene solitamente quando l'applicazione ha un unico utente ed il controllo di accesso viene fatto sul metodo
- METODI HTTP → GET, POST, HEAD...
- METODI INESISTENTI → GIO, METHOD, ...

Questions

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org