Elements of Machine Learning

Exercise Sheet 4
Winter Term 2023/2024

William LaCroix - wila
00001@stud.uni-saarland.de - 7038732 Philipp Hawlitschek - phha
00002@stud.unisaarland.de - 7043167 $\,$

Problem 3 (T, 4 Points). **Dependencies.**

Consider the following small example with p=2 predictors and n=2 samples. Suppose that $x_{11}=x_{12}, x_{21}=x_{22}$. Furthermore, suppose that $y_1+y_2=0, x_{11}+x_{21}=0$ and $x_{12}+x_{22}=0$, so that the estimated intercept in a least squares model is zero, $\hat{\beta}_0=0$.

1. [2pts] What is the linear regression solution $\hat{\beta}$ in this case?

Since $x_{11} = x_{12}$ and $x_{21} = x_{22}$, then the solution $\hat{\beta}_1 = -\hat{\beta}_2$ fulfils the conditions trivially. Furthermore, if we derive the OLS solution by our typical partial derivative exercise, we will always end up estimating the same value for $\hat{\beta}_1$ and $\hat{\beta}_2$, thus any $\hat{\beta}_1 = \hat{\beta}_2$ also fulfils the conditions.

2. [2pts] What problem do you see?

 X_1 and X_2 are colinear, since $x_{11} = -x_{21}$ and $x_{12} = -x_{22}$, the two variables are perfectly (negatively) correlated, which makes it hard to separate the effects of the predictor coefficients.