MATH 571, Homework 6

Colin Roberts

February 23, 2018

Solutions

Problem 1. Hatcher Exercise 17 on page 80: Given a group G and a normal subgroup N, show that there exists a normal covering space $\tilde{X} \to X$ with $\pi_1(X) \cong G$, $\pi_1(\tilde{X}) \cong N$, and deck transformation group $G(\tilde{X}) \cong G/N$.

:

Proof. Note that we can construct a space X as a CW-complex so that $\pi_1(X) \cong G$. We construct X with a single 0-cell, a 1-cell for each generator with endpoints identified with the 0-cell, and finally by gluing in a 2-cell along the proper 1-cells for each relation in the group presentation. Then the classification theorem states that there exists a covering space \tilde{X} for each subgroup of $\pi_1(X)$, and hence we specifically have an \tilde{X} so that $\pi_1(\tilde{X}) \cong N \subseteq G$. We also know that \tilde{X} is a normal covering space since $\pi_1(\tilde{X})$ is a normal subgroup of $\pi_1(X)$. This then yields the desired deck transformation group $G(\tilde{X}) \cong G/N \cong \pi_1(X)/\pi_1(\tilde{X})$ since $\pi_1(\tilde{X})$ is normal.

Problem 2. Hatcher Exercise 4 on page 131: Compute the 0-, 1-, 2-, and 3-dimensional simplicial homology groups of the "triangular parachute" obtained from Δ^2 by identifying its three vertices to a single point.

:

Proof. Denote this triangular parachute space as X and label our single vertex as v, the three edges as a, b and c, and the single face as f. See the drawing below.

Now we have that $\Delta_0(X) \cong \mathbb{Z}$, $\Delta_1(X) \cong \mathbb{Z}^2$, $\Delta_2(X) \cong \mathbb{Z}$, $\Delta_3(X) \cong 0$, and $\Delta_4(X) \cong 0$. We then have

$$\partial_0(\Delta_0(X)) \cong 0 \implies \ker \partial_0 \cong \mathbb{Z} \quad \operatorname{im} \partial_0 \cong 0.$$

Now we also get

$$\partial_1(\Delta_1(X)) \cong 0,$$

since each edge is mapped to the identity since, for example, $a \mapsto v - v = 0$. This then implies

$$\ker \partial_1 \cong \mathbb{Z}^3 \quad \operatorname{im} \partial_1 \cong 0.$$

Next, we have

$$\partial_2(\Delta_2(X)) = a - b + c,$$

which tells us specifically that

$$\ker \partial_2 \cong 0 \quad \operatorname{im} \partial_2 \cong \mathbb{Z}.$$

More easily, we finally see that

$$\ker \partial_3 \cong 0 \quad \operatorname{im} \partial_3 \cong 0 \quad \text{and}$$

 $\ker \partial_4 \cong 0 \quad \operatorname{im} \partial_4 \cong 0.$

We then compute the homology groups per usual. So we have

$$H_0^{\Delta}(X) \cong Z$$

$$H_1^{\Delta}(X) \cong \mathbb{Z}^2$$

$$H_2^{\Delta}(X) \cong 0$$

$$H_3^{\Delta}(X) \cong 0.$$

This shows we have a single connected components, two 1-dimensional holes, and no 2- (or higher) dimensional holes. \Box

Problem 3. Hatcher Exercise 5 on page 131: Compute the 0-, 1-, and 2-dimensional simplicial homology groups of the Klein bottle using the Δ -complex structure on page 102.

Proof. We first write down the chain groups:

$$\Delta_0(X) \cong \mathbb{Z}$$

$$\Delta_1(X) \cong \mathbb{Z}^3$$

$$\Delta_2(X) \cong \mathbb{Z}^2$$

$$\Delta_3(X) \cong 0.$$

Investigating each boundary map, we find for ∂_0 that

$$v\mapsto 0.$$

For ∂_1 ,

$$a \mapsto v - v = 0$$

$$b \mapsto v - v = 0$$

$$c \mapsto v - v = 0.$$

For ∂_2 ,

$$U \mapsto b - c + a$$
$$L \mapsto a - b + c.$$

Finally, for ∂_3 , there are no 3-simplicies so $\operatorname{im}\partial_3\cong\ker\partial_3\cong 0$. We then compute homology,

$$H_0^{\Delta}(X) \cong \mathbb{Z},$$

 $H_1^{\Delta}(X) \cong Z \oplus \mathbb{Z}/2\mathbb{Z},$

since for $\operatorname{im} \partial_1$ we have a basis $\{a,b,c\}$ and for $\ker \partial_2$ we have a basis $\{b-c+a,a-b+c\}$ which can be rewritten as $\{b-c+a,2c\}$. When we take $H_1^{\Delta}(X) \cong \operatorname{im} \partial_1/\ker \partial_2$ we mod out a copy of $\mathbb Z$ for the element b-c+a and we get a single $\mathbb Z/2\mathbb Z$ term since 2c is an identity in $H_1^{\Delta}(X)$. The other copy of $\mathbb Z$ left was from $\ker \partial_1$. Finally

$$H_2^{\Delta}(X) \cong 0.$$