	Teste de Matemática A
	2020 / 2021
Teste N.º 1	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica de tinta a	•
Não é permitido o uso de corretor. Risque aquilo É permitido o uso de calculadora.	o que pretende que nao seja classificado.
Apresente apenas uma resposta para cada item	
As cotações dos itens encontram-se no final do	

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. A D. Maria está à janela de sua casa a olhar para o prédio vizinho, que se encontra à distância de 6 metros de sua casa. Sabe-se que a janela da D. Maria também se encontra à distância de 6 metros do solo e que, considerando a figura, $C\hat{A}B = 110^{\circ}$.

Determine a altura, com aproximação às décimas, do prédio vizinho da D. Maria.

Se em cálculos intermédios proceder a arredondamentos, conserve, no mínimo, três casas decimais.

2. Qual das seguintes expressões designa um número real positivo, para qualquer *x* pertencente ao terceiro quadrante?

(A)
$$\cos x + \sin x$$

(B)
$$\operatorname{tg} x \times \cos x$$

(C)
$$\operatorname{tg} x - \cos x$$

(D)
$$\frac{\sin x}{\tan x}$$

3. Considere $A(x) = \cos^2(2021\pi + x) + \sin(\frac{3\pi}{2} + x) - \cos(\pi - x) - 2\sin(3\pi - x) + \cos^2(-\frac{\pi}{2} - x)$. Sem recorrer à calculadora, resolva as alíneas seguintes.

- **3.1.** Mostre que $A(x) = 1 2 \sin x$.
- **3.2.** Seja θ , tal que $\frac{3\pi}{2} < \theta < 2\pi$.

Sabendo que tg $(2020 \pi - \theta) = \frac{1}{3}$, determine o valor exato de $A(\theta)$.

Apresente a sua resposta na forma $a + b\sqrt{c}$, com $a, b, c \in \mathbb{Q}$.

3.3. Seja f a função real de variável real definida por $f(x) = 1 - 2 \operatorname{sen} x$. Determine uma expressão geral dos maximizantes de f.

4. Na figura estão representadas, num referencial o.n. Oxy, a circunferência trigonométrica e a reta r.

Sabe-se que:

- os pontos A, B e C pertencem à circunferência;
- o ponto B pertence ao eixo das abcissas;
- a reta r é tangente à circunferência no ponto B;
- o ponto D é o ponto de interseção da reta r com a semirreta $\dot{O}A$;
- o ponto E é o ponto de interseção da reta r com a semirreta $\dot{O}C$;
- $\overline{BD} = \overline{BE}$;
- α é a amplitude, em radianos, do ângulo AOB, com $\alpha \in \left]0, \frac{\pi}{2}\right[$.

Qual das seguintes expressões representa, em função de α , a área da região a sombreado?

(A)
$$\frac{\sin \alpha - \alpha}{2}$$

(B) tg
$$\alpha - \alpha$$

(C) sen
$$\alpha - \alpha$$

(D)
$$\frac{\operatorname{tg} \alpha - \alpha}{2}$$

5. Considere a função f definida por $f(x) = \operatorname{tg}(4x) - \operatorname{sen}^2\left(\frac{x}{2}\right)$.

Qual dos seguintes conjuntos pode representar o domínio da função f?

(A)
$$\mathbb{R}\setminus\left\{x\colon x=\frac{\pi}{2}+\frac{k\pi}{4}, k\in\mathbb{Z}\right\}$$

(B)
$$\mathbb{R} \setminus \left\{ x : x = \frac{\pi}{2} + \frac{k\pi}{2}, k \in \mathbb{Z} \right\}$$

(C)
$$\mathbb{R}\setminus\left\{x\colon x=\frac{\pi}{8}+\frac{k\pi}{2},k\in\mathbb{Z}\right\}$$

(D)
$$\mathbb{R} \setminus \left\{ x : x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \right\}$$

6. Considere a função f, de domínio $]-\pi$, π [, definida por:

$$f(x) = \frac{\sin^2 x}{\cos^2 x + 3\cos x + 2}.$$

- **6.1.** Mostre que $f(x) = \frac{1 \cos x}{2 + \cos x}$.
- **6.2.** Recorrendo a processos exclusivamente analíticos, determine as abcissas dos pontos do gráfico de f de ordenada 1.
- 6.3. Qual das seguintes afirmações é verdadeira?
 - (A) A função f é uma função injetiva.
 - (B) A função f é uma função ímpar.
 - (C) A função f é uma função par.
 - (D) A função f não tem zeros.

7. Seja α um valor pertencente ao intervalo $\left[\pi, \frac{3\pi}{2}\right]$. Para cada $k \in \mathbb{R}$, considere a condição $k^2 + 2\cos\alpha = 1$. Quais os valores reais de k para os quais a condição é possível?

(A)
$$\left[-\sqrt{3}, -1\right] \cup \left[1, \sqrt{3}\right]$$
 (B) $\left[-\sqrt{3}, -1\right] \cup \left[1, \sqrt{3}\right]$ (C) $\left[-1, 0\right]$ (D) $\left[-\sqrt{3}, -1\right]$

(B)]
$$-\sqrt{3}$$
, -1] \cup [1, $\sqrt{3}$ [

(D)
$$[-\sqrt{3}, -1[$$

8. Num determinado ecossistema marinho, o número de uma espécie de ouriços-do-mar variou ao longo do ano de 2019 de acordo com diversos fatores. Os biólogos marinhos que estudavam essa espécie concluíram que o número N de ouriços-do-mar, em milhares, pode ser modelado, ao longo desse ano, por uma função da forma

$$N(t) = A + B \cos\left(\frac{\pi t}{25}\right)$$

onde A e B representam constantes e t representa o tempo, em meses, sendo que t=0corresponde às 0 horas do dia 1 de janeiro de 2019.

(o argumento da função cosseno está expresso em radianos).

8.1. Sabendo que no início do ano havia nesse ecossistema 16 000 ouriços-do-mar e que no início do mês de outubro desse mesmo ano havia 12 500, determine, recorrendo a processos exclusivamente analíticos, os valores das constantes A e B.

Apresente os valores pedidos com arredondamento às décimas.

8.2. Considere agora que A=10 e B=6. Num certo instante de 2019, os biólogos marinhos responsáveis por este estudo registaram o número existente, em milhares, da espécie de ouriços-do-mar.

Sabe-se que, dois meses após esse instante, o número de elementos dessa espécie diminuiu 10%. Determine, recorrendo às capacidades gráficas da calculadora, o instante t em que tal contagem foi efetuada.

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente o valor de t, com aproximação às centésimas.

COTAÇÕES

	Item												
	Cotação (em pontos)												
1.	2.	3.1.	3.2.	3.3.	4.	5.	6.1.	6.2.	6.3.	7.	8.1.	8.2.	
15	10	20	20	20	10	10	20	15	10	10	20	20	200

