Corrigé de la feuille d'exercices 15

1 Ensembles de matrices

Exercice 1. Soient $u, v, s, t \in [1, n]$.

Posons $E_{u,s} = (e_{i,j}) = (\delta_{i,u}\delta_{j,s})_{i,j \in [1,n]}, E_{v,t} = (f_{i,j}) = (\delta_{i,v}\delta_{j,t})_{i,j \in [1,n]}, E_{u,t} = (n_{i,j}) = (\delta_{i,u}\delta_{j,t})_{i,j \in [1,n]}.$ Posons $E_{u,s} \times E_{v,t} = (m_{i,j}))_{i,j \in [1,n]}$. Soit $(i, j) \in [1, n]^2$.

$$m_{i,j} = \sum_{k=1}^{n} e_{i,k} f_{k,j}$$

$$= \sum_{k=1}^{n} \delta_{i,u} \delta_{k,s} \delta_{k,v} \delta_{j,t}$$

$$= \delta_{i,u} \delta_{j,t} \sum_{k=1}^{n} \delta_{k,s} \delta_{k,v}$$

$$= \delta_{s,v} \delta_{i,u} \delta_{j,t}$$

$$= \delta_{s,v} n_{i,j}$$

Ainsi, $E_{u,s}E_{v,t} = \delta_{s,t}E_{u,t}$.

Exercice 2. Soit $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$ On a: $X^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}.$

Ainsi.

$$X^{2} - 2X = \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix} \iff \begin{pmatrix} a^{2} + bc - 2a & ab + bd - 2b \\ ac + cd - 2c & bc + d^{2} - 2d \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix}$$

$$\iff \begin{cases} a^{2} + bc - 2a = -1 \\ (a + d - 2)b = 0 \\ (a + d - 2)c = 6 \\ bc + d^{2} - 2d = 3 \end{cases}$$

Avec la troisième équation, on en déduit que $a+d-2\neq 0$. Ainsi,

$$X^{2} - 2X = \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix} \iff \begin{cases} a^{2} + bc - 2a = -1 \\ b = 0 \\ (a + d - 2)c = 6 \\ cbc + d^{2} - 2d = 3 \end{cases}$$

$$\iff \begin{cases} a^{2} - 2a = -1 \\ b = 0 \\ (a + d - 2)c = 6 \\ d^{2} - 2d = 3 \end{cases}$$

$$\iff \begin{cases} a^{2} - 2a + 1 = 0 \\ b = 0 \\ (a + d - 2)c = 6 \\ d^{2} - 2d - 3 = 0 \end{cases}$$

$$\iff \begin{cases} a = 1 \\ b = 0 \\ (a + d - 2)c = 6 \\ d \in \{-1, 3\} \end{cases}$$

$$\iff \begin{cases} a = 1 \\ b = 0 \\ d = -1 \\ c = -3 \end{cases} \qquad \begin{cases} a = 1 \\ b = 0 \\ d = 3 \\ c = 3 \end{cases}$$

Finalement, l'équation admet deux solutions à savoir : $\begin{pmatrix} 1 & 0 \\ -3 & -1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 0 \\ 3 & -3 \end{pmatrix}$

Exercice 3. On pose $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$, $D = (d_{i,j}) \in \mathcal{M}_n(\mathbb{K})$, $AD = (u_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ et $DA = (t_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Soit $(i,j) \in [1,n]$ tels que $i \neq j$.

$$u_{i,j} = \sum_{k=1}^{n} a_{i,k} d_{k,j}$$

Or, D est diagonale donc :

$$u_{i,j} = \sum_{k=1}^{n} a_{i,k} d_{k,j} = a_{i,j} d_{j,j}.$$

De même:

$$t_{i,j} = \sum_{k=1}^{n} d_{i,k} a_{k,j} = d_{i,i} a_{i,j}.$$

Or, AD = DA donc:

$$a_{i,j}d_{j,j} = a_{i,j}d_{i,i}.$$

D'où : $a_{i,j}(d_{i,i}-d_{j,j})=0$ avec $d_{i,i}-d_{j,j}\neq 0$ car $i\neq j$ et les termes diagonaux de D sont deux à deux distincts. Ainsi, $a_{i,j}=0$.

On a donc montré que : $\forall i, j \in [1, n], i \neq j \implies a_{i,j} = 0$ donc A est bien diagonale.

Exercice 4. 1. Posons $C_1 = \{A \in \mathcal{M}_n(\mathbb{K}), \forall B \in \mathcal{M}_n(\mathbb{K}), AB = BA\}.$

Soit $A \in C_1$. Alors : $\forall B \in \mathcal{M}_n(\mathbb{K}), AB = BA$.

Exploitons cette égalité pour toutes les matrices élémentaires.

Soit $(r, s) \in [1, n]$.

Posons $E_{r,s} = (e_{i,j})_{1 \le i,j \le n} = (\delta_{i,r}\delta_{j,s})_{1 \le i,j \le n}, AE_{r,s} = (b_{i,j})_{1 \le i,j \le n} \text{ et } E_{r,s}A = (c_{i,j})_{1 \le i,j \le n}.$

Soit $i, j \in [1, n]$, on $\bar{\mathbf{a}}$:

$$b_{i,j} = \sum_{k=1}^{n} a_{i,k} e_{k,j} = \sum_{k=1}^{n} a_{i,k} \delta_{k,r} \delta_{j,s} = a_{i,r} \delta_{j,s}$$

$$c_{i,j} = \sum_{k=1}^{n} e_{i,k} a_{k,j} = \sum_{k=1}^{n} \delta_{i,r} \delta_{k,s} a_{k,j} = \delta_{i,r} a_{s,j}$$

Ainsi:

$$\forall i, j \in [1, n], \ a_{i,r}\delta_{j,s} = \delta_{i,r}a_{s,j}.$$

Ceci étant vrai pour toutes les matrices élémentaires :

$$\forall i, j, r, s \in [1, n], \ a_{i,r} \delta_{j,s} = \delta_{i,r} a_{s,j}$$

Soient $i \in [1, n]$, $r \in [1, n]$ tel que $r \neq i$, soient $j \in [1, n]$, prenons s = j, on obtient : $a_{i,r} \times 1 = 0 \times a_{j,j} = 0$. Donc :

$$\forall i, r, i \neq r \implies a_{i,r} = 0$$

Donc A est diagonale.

Soit $r, s \in [1, n]$, en prenant i = r et j = s, on obtient : $a_{r,r} = a_{s,s}$.

Ainsi:

$$\forall r, s \in [1, n], \ a_{r,r} = a_{s,s}.$$

Donc finalement $A = a_{1,1}I_n$.

Réciproquement, Soit $\lambda \in \mathbb{K}$ et $A = \lambda I_n$. A commute avec tous les éléments de $\mathcal{M}_n(\mathbb{K})$.

Ainsi $C_1 = \{\lambda I_n, \ \lambda \in \mathbb{K}\}.$

2. Posons $C_2 = \{A \in \mathcal{M}_n(\mathbb{K}), \forall B \in \mathcal{D}_n(\mathbb{K}), AB = BA\}.$

Soit $A \in C_2$. Alors : $\forall B \in \mathcal{D}_n(\mathbb{K}), AB = BA$.

Exploitons cette égalité pour toutes les matrices élémentaires diagonales.

Soit $r \in [1, n]$.

Posons $E_{r,r} = (e_{i,j})_{1 \le i,j \le n} = (\delta_{i,r}\delta_{j,r})_{1 \le i,j \le n}$, $AE_{r,r} = (b_{i,j})_{1 \le i,j \le n}$ et $E_{r,r}A = (c_{i,j})_{1 \le i,j \le n}$. Soit $i,j \in [\![1,n]\!]$, on a :

$$b_{i,j} = \sum_{k=1}^{n} a_{i,k} e_{k,j} = \sum_{k=1}^{n} a_{i,k} \delta_{k,r} \delta_{j,r} = a_{i,r} \delta_{j,r}$$

$$c_{i,j} = \sum_{k=1}^{n} e_{i,k} a_{k,j} = \sum_{k=1}^{n} \delta_{i,r} \delta_{k,r} a_{k,j} = \delta_{i,r} a_{r,j}$$

Ainsi:

$$\forall i, j \in [1, n], \ a_{i,r} \delta_{j,r} = \delta_{i,r} a_{r,j}$$

Ceci étant vrai pour toutes les matrices élémentaires diagonales :

$$\forall i, j, r \in [1, n], \ a_{i,r} \delta_{j,r} = \delta_{i,r} a_{r,j}$$

Soient $i \in [1, n]$, $r \in [1, n]$ tel que $r \neq i$, prenons j = r, on obtient : $a_{i,r} \times 1 = 0 \times a_{r,r} = 0$.

Donc:

$$\forall i, r, i \neq r \implies a_{i,r} = 0$$

Donc A est diagonale.

Réciproquement, Soit $A = (a_{i,j})$ une matrice diagonale.

Soit $D = (d_{i,j}) \in \mathcal{D}_n(\mathbb{K})$. Alors, AD et DA sont diagonales et : le coefficient d'indice (i,i) de AD vaut $a_{i,i}d_{i,i}$ tout comme celui de DA d'indice (i,i).

Ainsi, A commute avec toute matrice diagonale.

Ainsi $C_2 = \mathcal{D}_n(\mathbb{K})$.

3. Posons $C_3 = \{ A \in \mathcal{M}_n(\mathbb{K}), \forall B \in \mathcal{T}_n^+(\mathbb{K}, AB = BA) \}.$

Soit $A \in C_3$. Alors : $\forall B \in \mathcal{T}_n^+(\mathbb{K}), AB = BA$.

Exploitons cette égalité pour toutes les matrices élémentaires triangulaires supérieurs.

Soit $r, s \in [1, n]$ tels que $r \leq s$.

Posons $E_{r,s} = (e_{i,j})_{1 \le i,j \le n} = (\delta_{i,r}\delta_{j,s})_{1 \le i,j \le n}$, $AE_{r,s} = (b_{i,j})_{1 \le i,j \le n}$ et $E_{r,s}A = (c_{i,j})_{1 \le i,j \le n}$. Soit $i,j \in [\![1,n]\!]$, on a :

$$b_{i,j} = \sum_{k=1}^{n} a_{i,k} e_{k,j} = \sum_{k=1}^{n} a_{i,k} \delta_{k,r} \delta_{j,s} = a_{i,r} \delta_{j,s}$$

$$c_{i,j} = \sum_{k=1}^{n} e_{i,k} a_{k,j} = \sum_{k=1}^{n} \delta_{i,r} \delta_{k,s} a_{k,j} = \delta_{i,r} a_{s,j}$$

Ainsi:

$$\forall i, j \in [1, n], \ a_{i,r}\delta_{j,s} = \delta_{i,r}a_{s,j}.$$

Ceci étant vrai pour toutes les matrices élémentaires triangulaires supérieures :

$$\forall i, j, r, s \in [1, n], \ r \le s \implies a_{i,r} \delta_{j,s} = \delta_{i,r} a_{s,j}$$

Soient $i \in [1, n]$, $r \in [1, n]$ tel que $r \neq i$, prenons s = j = r, on obtient : $a_{i,r} \times 1 = 0 \times a_{r,r} = 0$. Donc :

$$\forall i, r, i \neq r \implies a_{i,r} = 0$$

Donc A est diagonale.

Soit $s \in [1, n]$, en prenant j = s, i = r = 1 on obtient : $a_{1,1} \times a_{s,s}$.

Ainsi: $\forall s \in [1, n], \ a_{1,1} = a_{s,s}.$

Donc finalement $A = a_{1,1}I_n$.

Réciproquement, soit $\lambda \in \mathbb{K}$ et $A = \lambda I_n$.

A commute avec tous les éléments de $\mathcal{T}_n^+(\mathbb{K})$.

Ainsi $C_3 = \{\lambda I_n, \ \lambda \in \mathbb{K}\}.$

Exercice 5. On remarque tout d'abord que $U^2 = nU$, $U^3 = n^2U$.

Montrons par récurrence que : $\forall k \in \mathbb{N}^*, \ U^k = n^{k-1}U.$

- Pour k=0, on a $U^1=n^0U$ donc la propriété est vraie pour k=0.
- Soit $k \in \mathbb{N}$, supposons que $U^k = n^{k-1}U$. On a alors, $U^{k+1} = U^k \times U$. Ainsi, $U^{k+1} = n^{k-1}U \times U = n^{k-1} \times (nU) = n^kU$. Ainsi, la propriété est vraie au rang k+1.
- On a prouvé par récurrence que :

$$\forall k \in \mathbb{N}^n, U^k = n^{k-1}U.$$

Exercice 6. Posons
$$N = \begin{pmatrix} 0 & 2 & 6 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
.

On a
$$N^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $N^3 = 0$. Donc : $\forall k \ge 3, \ N^k = 0$.

On a $M = N + I_3$.

Soit $n \in \mathbb{N}$, $M^n = (I_3 + N)^n$. Or, N et I_3 commutent donc d'après la formule du binôme de Newton,

$$M^{n} = \sum_{k=0}^{n} \binom{n}{k} I_{3}^{n-k} N^{k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} N^{k}$$

Si $n \ge 2$, on a:

$$M^{n} = \sum_{k=0}^{2} \binom{n}{k} N^{k}$$
$$= \binom{n}{0} I_{3} + \binom{n}{1} N + \binom{n}{2} N^{2}$$

Donc:
$$\forall n \geq 2$$
, $A^n = I_3 + nN + \frac{n(n-1)}{2}N^2 = \begin{pmatrix} 1 & 2n & 2n(n+2) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$.

Or, pour
$$n = 0$$
 $\begin{pmatrix} 1 & 2n & 2n(n+2) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 = A^0$

pour
$$n = 1$$
, $A^{1} = \begin{pmatrix} 1 & 2n & 2n(n+2) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = A^{1}$.

Ainsi:

$$\forall n \in \mathbb{N}, \ A^n = \begin{pmatrix} 1 & 2n & 2n(n+2) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

Exercice 7. 1. Soient $a, a', b, b' \in \mathbb{R}$. Supposons que aA + bI = a'A + b'I. On a alors : (a - a')A = (b' - b)I. Or, A et I ne sont pas proportionnelles. Ainsi, a - a' = 0 et b - b' = 0.

2. On calcule $A^2 = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix}$ d'où $A^2 - 5A = -4I_3$.

Ainsi, $A^2 = 5A - 4I_3$.

- 3. Pour tout $p \in \mathbb{N}$, on pose $\mathcal{P}(p)$: « il existe $(\alpha_p, \beta_p) \in \mathbb{R}^2$ tels que $A^p = \alpha_p A + \beta_p I_3 \gg$.
 - Pour $p=0,\ A_0=I_3=0\times A+1\times I_3.$ On pose $\alpha_0=0$ et $\beta_0=1.$ Ainsi, $A^0=\alpha_0A+\beta_0I_3$ donc $\mathcal{P}(0)$ est vraie.
 - Soit $p \in \mathbb{N}$, supposons $\mathcal{P}(p)$ est vraie. Ainsi, il existe $\alpha_p, \beta_p \in \mathbb{R}$ tels que $A^p = \alpha_p A + \beta_p I_3$. On a alors:

$$A^{p+1} = A \times A^{p}$$

$$= A \times (\alpha_{p}A + \beta_{p}I_{3})$$

$$= A(\alpha_{p}A + \beta_{p}I_{3})$$

$$= \alpha_{p}A^{2} + \beta_{p}A$$

$$= \alpha_{p}(5A - 4I_{3}) + \beta_{p}A$$

$$= (5\alpha_{p} + \beta_{p})A - 4\alpha_{p}I_{3}$$

Posons $\alpha_{p+1} = 5\alpha_p + \beta_p$ et $\beta_{p+1} = -4\alpha_p$. Ainsi, $A^{p+1} = \alpha_{p+1}A + \beta_{p+1}I_3$ donc $\mathcal{P}(p+1)$ est vraie.

• Ainsi, on a prouvé par récurrence que pour tout $p \in \mathbb{N}$, il existe α_p , $\beta_p \in \mathbb{R}$, tels que $A^p = \alpha_p A + \beta_p I_3$. De plus, par unicité (question 1), on a :

$$\forall p \in \mathbb{N}, \begin{cases} \alpha_{p+1} = 5\alpha_p + \beta_p \\ \beta_{p+1} = -4\alpha_p \end{cases}$$

Ainsi, on a : $\forall p \in \mathbb{N}, \ \alpha_{p+2} = 5\alpha_{p+1} + \beta_{p+1} = 5\alpha_{p+1} - 4\alpha_p \text{ et } \alpha_0 = 0, \ \alpha_1 = 1.$ Donc, il existe $a, b \in \mathbb{R}$ tels que : $\forall p \in \mathbb{N}, \ \alpha_p = a + b4^p$.

$$\begin{cases} a+b=0 \\ a+4b=1 \end{cases} \iff \begin{cases} b=-a \\ a=-\frac{1}{3} \end{cases}$$
$$\iff \begin{cases} b=\frac{1}{3} \\ a=-\frac{1}{3} \end{cases}$$

Ainsi :
$$\forall p \in \mathbb{N}$$
, $\alpha_p = \frac{1}{3}(4^p - 1)$ et $\beta_p = \frac{1}{3}(4^{p+1} - 1 - 5 \times 4^p + 5) = \frac{4}{3}(-4^{p-1} + 1)$.
4. Soit $p \in \mathbb{N}$, $A^p = \frac{1}{3}(4^p - 1)A + \frac{4}{3}(1 - 4^{p-1})I_3 = \frac{1}{3}\begin{pmatrix} 4^p + 2 & 4^p - 1 & 4^p - 1 \\ 4^p - 1 & 4^p + 2 & 4^p - 1 \\ 4^p - 1 & 4^p - 1 & 4^p + 2 \end{pmatrix}$

1. Posons $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On a $N^2 = 0$ donc : $\forall k \ge 2, \ N^k = 0$. Exercice 8.

On a $A = aI_2 + bN$.

Soit $n \in \mathbb{N}$, donc $A^n = (aI_2 + bN)^n$. Or, bN et aI_2 commutent donc d'après la formule du binôme de Newton :

$$A^{n} = (aI_{2} + bN)^{n} = \sum_{k=0}^{n} \binom{n}{k} (bN)^{k} (aI_{2})^{n-k} = \sum_{k=0}^{n} \binom{n}{k} b^{k} a^{n-k} N^{k}$$

Si $n \ge 1$:

$$A^{n} = \sum_{k=0}^{1} \binom{n}{k} b^{k} a^{n-k} N^{k}$$
$$= a^{n} I_{2} + nba^{n-1} N$$
$$= \binom{a^{n} \quad na^{n-1}b}{0 \quad a^{n}}$$

De plus, pour n = 0, $N^0 = I_2$.

Remarque : on peut aussi intuiter la formule et la prouver par récurrence.

2. On remarque que $A^2 = 2I_2$.

Montrons par récurrence que : $\forall p \in \mathbb{N}, A^{2p} = 2^p I_2$ et $A^{2p+1} = 2^p A$.

- Pour $p=0, A^0=I_2$ et $A^1=A=2^0A$. Ainsi, la propriété est vraie pour p=0.
- Soit $p \in \mathbb{N}$. Supposons que $A^{2p} = 2^p I_2$ et $A^{2p+1} = 2^p A$ On a :

$$A^{2(p+1)} = A^{2p+2} = A^{2p+1} \times A = 2^p A \times A = 2^p \times 2I_2 = 2^{p+1}I_2$$

 et

$$A^{2(p+1)+1} = A^{2p+3} = A^{2p+2} \times A = 2^{p+1}I_2 \times A = 2^{p+1}A$$

- On a donc : $\forall p \in \mathbb{N}$, $A^{2p} = 2^p I_2$ et $A^{2p+1} = 2^p A$. 3. Commençons par calculer $A^2 = \begin{pmatrix} \cos(\theta)^2 \sin(\theta)^2 & -2\sin(\theta)\cos(\theta) \\ 2\sin(\theta)\cos(\theta) & \cos(\theta)^2 \sin(\theta)^2 \end{pmatrix} = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}$. Montrons par récurrence que : $\forall p \in \mathbb{N}$, $A^p = \begin{pmatrix} \cos(p\theta) & -\sin(p\theta) \\ \sin(p\theta) & \cos(p\theta) \end{pmatrix}$. Pour p = 0, on a $A^0 = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(0) & -\sin(0) \\ \sin(0) & \cos(0) \end{pmatrix}$.

- Soit $p \in \mathbb{N}$. Supposons que $A^p = \begin{pmatrix} \cos(p\theta) & -\sin(p\theta) \\ \sin(p\theta) & \cos(p\theta) \end{pmatrix}$. On a:

$$\begin{split} A^{p+1} &= A^p \times A \\ &= \begin{pmatrix} \cos(p\theta)\cos(\theta) - \sin(p\theta)\sin(\theta) & -\sin(\theta)\cos(p\theta) - \sin(p\theta)\cos(\theta) \\ \sin(\theta)\cos(p\theta) + \sin(p\theta)\cos(\theta) & \cos(p\theta)\cos(\theta) - \sin(p\theta)\sin(\theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos((p+1)\theta) & -\sin((p+1)\theta) \\ \sin((p+1)\theta) & \cos((p+1)\theta) \end{pmatrix} \end{split}$$

4. Ainsi, on a :
$$\forall p \in \mathbb{N}, A^p = \begin{pmatrix} \cos(p\theta) & -\sin(p\theta) \\ \sin(p\theta) & \cos(p\theta) \end{pmatrix}$$
.

Exercice 9. Posons $N = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$. On a:

$$N^2 = \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad N^3 = 0_3.$$

Ainsi : $\forall k \geq 3, \ N^k = 0_3$.

De plus, $M = 3I_3 + N$.

Soit $n \in \mathbb{N}$, on a $M^n = (3I_3 + N)^n$.

Or, N et $3I_3$ commutent donc d'après le binôme de Newton, on a :

$$M^{n} = (I_{3} + N)^{n}$$
$$= \sum_{k=0}^{n} {n \choose k} N^{k} (3I_{3})^{n-k}$$

Si $n \geq 2$, on a:

$$M^{n} = \sum_{k=0}^{2} {n \choose k} 3^{n-k} N^{k}$$

$$= 3^{n} I_{3} + n 3^{n-1} N + \frac{n(n-1)}{2} \times 3^{n-2} N^{2}$$

$$= {3^{n} 2n 3^{n-1} 4n(n-1) \times 3^{n-2} + n 3^{n} \choose 0 0 3^{n} 4n 3^{n-1} \choose 0 0 3^{n}}$$

De plus,

• Pour
$$n = 0$$
, on a :
$$\begin{pmatrix} 3^n & 2n3^{n-1} & 4n(n-1) \times 3^{n-2} + n3^n \\ 0 & 3^n & 4n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 = M^0.$$
• Pour $n = 1$, on a :
$$\begin{pmatrix} 3^n & 2n3^{n-1} & 4n(n-1) \times 3^{n-2} + n3^n \\ 0 & 3^n & 4n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix} = I_3 = M^0.$$

• Pour
$$n = 1$$
, on a:
$$\begin{pmatrix} 3^n & 2n3^{n-1} & 4n(n-1) \times 3^{n-2} + n3^n \\ 0 & 3^n & 4n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix} = I_3 = M^0.$$

Ainsi, on a:

$$\forall n \in \mathbb{N}, \ M^n = \begin{pmatrix} 3^n & 2n3^{n-1} & 4n(n-1) \times 3^{n-2} + n3^n \\ 0 & 3^n & 4n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}$$

Exercice 10. On a $A^2 = 6A$ par le calcul. Montrons par récurrence que : $\forall n \in \mathbb{N}^*, A^n = 6^{n-1}A$.

- Pour n=1, on a $A^1=A$ et $6^0A=A$. Ainsi, la propriété est vraie pour n=1.
- Soit $n \in \mathbb{N}^*$, supposons que $A^n = 6^{n-1}A$.

$$A^{n+1} = A^n \times A = 6^{n-1}A^2 = 6^{n-1} \times 6A = 6^n A$$

$$\bullet \text{ Ainsi, on a}: \forall n \in \mathbb{N}^*, \, A^n 6^{n-1} A = \left(\begin{array}{ccc} 6^{n-1} & 2.6^{n-1} & 3.6^{n-1} \\ 6^{n-1} & 2.6^{n-1} & 3.6^{n-1} \\ 6^{n-1} & 2.6^{n-1} & 3.6^{n-1} \end{array} \right).$$

Exercice 11. Posons
$$U_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$
. On a : $M_{a,b} = bU_n + (a-b)I_3$.

Soit $k \in \mathbb{N}^*$, $M_{a,n}^k = (bU_n + (a - b)I_3)^k$

Or, d'après l'exercice 5, on sait que : $\forall p \in \mathbb{N}^*, U_n^p = n^{p-1}U_n$.

De plus, I_3 et U_n commutent. Ainsi, on a d'après le binôme de Newton :

$$\begin{split} M_{a,b}^k &= ((a-b)I_3 + bU_n)^k \\ &= \sum_{p=0}^k \binom{k}{p} ((a-b)I_3)^{k-p} (bU_n)^p \\ &= \sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} b^p U_n^p \\ &= \left(\sum_{p=1}^k \binom{k}{p} (a-b)^{k-p} b^p U_n^p \right) + (a-b)^k I_n \\ &= \left(\sum_{p=1}^k \binom{k}{p} (a-b)^{k-p} b^p n^{p-1} U_n \right) + (a-b)^k I_n \\ &= \frac{1}{n} U_n \left(\sum_{p=1}^k \binom{k}{p} (a-b)^{k-p} (bn)^p \right) + (a-b)^k I_n \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right) \\ &= \frac{1}{n} U_n \left(\sum_{p=0}^k \binom{k}{p} (a-b)^{k-p} (bn)^p - (a-b)^k I_n \right)$$

Exercice 12. Pour tout $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

Soit $n \in \mathbb{N}$, le système équivaut à $X_{n+1} = AX_n$ où $A = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \end{pmatrix}$.

On a alors : $\forall n \in \mathbb{N}, \ X_n = A^n X_0$.

Ce résultat se prouve par récurrence.

- Pour n = 0. $A^n X_0 = I_n X_0 = X_0$. Le résultat est vérifié pour n = 0.
- Soit $n \in \mathbb{N}$, supposons que $X_n = A^n X_0$. On a $X_{n+1} = AX_n = AA^n X_0 = A^{n+1} X_0$.
- Ainsi, on a prouvé par récurrence que : $\forall n \in \mathbb{N}, \ X_n = A^n X_0$.

Il nous faut donc calculer A^n .

On a:
$$A = \frac{1}{2}I_3 + \frac{1}{6}U$$
 avec $U = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Soit $n \in \mathbb{N}^*$, on a $A^n = \left(\frac{1}{2}I_3 + \frac{1}{6}U\right)^n$. Or, $\frac{1}{2}I_3$ et $\frac{1}{6}U$ commutent donc d'après le binôme de Newton, on a :

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{6}U\right)^{k} \left(\frac{1}{2}I_{3}\right)^{n-k}$$
$$= \left(\frac{1}{2}\right)^{n} I_{3} + \sum_{k=1}^{n} \binom{n}{k} \left(\frac{1}{6}\right)^{k} \left(\frac{1}{2}\right)^{n-k} U^{k}$$

Or, d'après l'exercice 5, pour tout $k \in \mathbb{N}^*, \, U^k = 3^{k-1}U.$

Ainsi,

$$A^{n} = \frac{1}{2^{n}}I_{3} + \sum_{k=1}^{n} \binom{n}{k} \frac{1}{6^{k}} \frac{1}{2^{n-k}}U^{k}$$

$$= \frac{1}{2^{n}}I_{3} + \sum_{k=1}^{n} \binom{n}{k} \frac{1}{6^{k}} \frac{1}{2^{n-k}} 3^{k-1}U$$

$$= \frac{1}{2^{n}}I_{3} + \frac{1}{3 \times 2^{n}}U \left(\sum_{k=1}^{n} \binom{n}{k} \frac{1}{6^{k}} 3^{k} \times 2^{k}\right)$$

$$= \frac{1}{3 \times 2^{n}}U \left(\sum_{k=1}^{n} \binom{n}{k}\right) + \frac{1}{2^{n}}I_{3}$$

$$= \frac{1}{3 \times 2^{n}}U \left(\sum_{k=0}^{n} \binom{n}{k} - 1\right) + \frac{1}{2^{n}}I_{3}$$

$$= \frac{1}{3 \times 2^{n}}U (2^{n} - 1) + \frac{1}{2^{n}}I_{3}$$

$$= \frac{1}{3}U + \frac{1}{2^{n}}(I_{3} - \frac{1}{3}U)$$

$$= \begin{pmatrix} \frac{1}{2^{n}} \left(1 - \frac{1}{3}\right) + \frac{1}{3} & \frac{1}{3} \left(1 - \frac{1}{2^{n}}\right) & \frac{1}{3} \left(1 - \frac{1}{2^{n}}\right) \\ \frac{1}{3} \left(1 - \frac{1}{2^{n}}\right) & \frac{1}{3} \left(1 - \frac{1}{2^{n}}\right) & \frac{1}{3} \left(1 - \frac{1}{3}\right) + \frac{1}{3} \end{pmatrix}$$

Or, $-1 < \frac{1}{2} < 1$ donc $\lim_{n \to +\infty} \frac{1}{2^n} = 0$. On a :

$$\forall n \in \mathbb{N}^*, \ \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = A^n \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} \left[\frac{1}{2^n} \left(1 - \frac{1}{3} \right) + \frac{1}{3} \right] x_0 + \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] y_0 + \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] z_0 \\ \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] x_0 + \left[\frac{1}{2^n} \left(1 - \frac{1}{3} \right) + \frac{1}{3} \right] y_0 + \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] z_0 \\ \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] x_0 + \left[\frac{1}{3} \left(1 - \frac{1}{2^n} \right) \right] y_0 + \left[\frac{1}{2^n} \left(1 - \frac{1}{3} \right) + \frac{1}{3} \right] z_0 \end{pmatrix}$$

Ainsi, $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = \lim_{n \to +\infty} z_n = \frac{1}{3} (x_0 + y_0 + z_0).$

Opérations élémentaires sur une matrice 2

 $\textbf{Exercice 13.} \ \ \text{Commençons par réaliser des opérations sur les lignes de } A \ \text{et appliquons l'algorithme de Gauss-Jordan} :$

$$A = \begin{pmatrix} 1 & -4 & -3 & -2 & -2 \\ 2 & -6 & -6 & -4 & -2 \\ -3 & 12 & 12 & 6 & 3 \\ 0 & 1 & 2 & 0 & -1 \end{pmatrix} \qquad \stackrel{\sim}{\sim} \qquad \begin{pmatrix} 1 & -4 & -3 & -2 & -2 \\ 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & -3 \\ 0 & 1 & 2 & 0 & -1 \end{pmatrix} \qquad \stackrel{L_2 \leftarrow L_2 - 2L_1}{L_3 \leftarrow L_3 + 3L_1}$$

$$\stackrel{\sim}{\sim} \qquad \begin{pmatrix} 1 & -4 & -3 & -2 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & -3 \\ 0 & 1 & 2 & 0 & -1 \end{pmatrix} \qquad \stackrel{L_2 \leftarrow \frac{1}{2}L_2}{L_2}$$

$$\stackrel{\sim}{\sim} \qquad \begin{pmatrix} 1 & 0 & -3 & -2 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & -3 \\ 0 & 0 & 2 & 0 & -2 \end{pmatrix} \qquad \stackrel{L_1 \leftarrow L_1 + 4L_2}{L_4 \leftarrow L_4 - L_2}$$

$$\stackrel{\sim}{\sim} \qquad \begin{pmatrix} 1 & 0 & -3 & -2 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & -3 \\ 0 & 0 & 2 & 0 & -2 \end{pmatrix} \qquad \stackrel{L_4 \leftarrow L_4 - L_2}{L_4 \leftarrow L_4 - L_2}$$

$$\stackrel{\sim}{\sim} \qquad \begin{pmatrix} 1 & 0 & -3 & -2 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 0 & -2 \end{pmatrix} \qquad \stackrel{L_1 \leftarrow L_1 + 3L_3}{L_4 \leftarrow L_4 - 2L_3}$$

$$\stackrel{\sim}{\sim} \qquad A' = \begin{pmatrix} 1 & 0 & 0 & -2 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \stackrel{L_1 \leftarrow L_1 + 3L_3}{L_4 \leftarrow L_4 - 2L_3}$$

On a montré que $A \sim A'$.

Réalisons désormais les opérations suivantes sur les colonnes de la matrice A^\prime :

$$A' \sim C \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad C_4 \leftarrow C_4 + 2C_1 \\ C_5 \leftarrow C_5 + C_1 - C_2 + C_3$$

Ainsi, on peut bien passer de A à J en réalisant des opérations élémentaires sur les lignes et les colonnes de A.

3 Matrices carrées inversibles

Exercice 14. 1. On calcule
$$A^2 = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix}$$
. D'où $A^2 - 5A = -4I_3$ donc $A^2 = 5A - 4I_3$.

Ainsi, a = 5 et b = -4 conviennent

Anisi,
$$u = 5$$
 et $v = -4$ conviennent.
2. On sait que $A^2 - 5A = -4I_3$ donc $A(A - 5I_3) = -4I_3$ d'où $A \times \left(-\frac{1}{4}(A - 5I_3)\right) = I_3$. De même, $(A - 5I_3)A = -4I_3$ d'où $\left(-\frac{1}{4}(A - 5I_3)\right) \times A = I_3$. Donc A est inversible et on a $A^{-1} = -\frac{1}{4}(A - 5I_3) = \begin{pmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{pmatrix}$.

Exercice 15. Soit $n \geq 2$

Posons
$$U_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

On a $A + I_n = U_n$. D'après l'exercice 5, on a : $(A + I_n)^2 = U_n^2 = nU_n$. Ainsi, $(A + I_n)^2 = n(A + I_n)$. On en déduit que $A^2 + 2A + I_n = n(A + I_n)$. D'où $A^2 + (2 - n)A = (n - 1)I_n$. Ainsi, $\frac{1}{n-1}(A + (2-n)I_n)A = I_n \ (n-1 \neq 0)$.

Ainsi,
$$\frac{1}{n-1}(A+(2-n)I_n)A = I_n \ (n-1 \neq 0)$$

Donc, A est inversible et $A^{-1} = \frac{1}{n-1}(A + (2-n)I_n)$.

Exercice 16. 1. Soient $A = (a_{i,j})$, $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{K})$, $\lambda, \mu \in \mathbb{R}$.

$$\operatorname{tr}(\lambda A + \mu B) = \sum_{i=1}^{n} (\lambda a_{i,i} + \mu b_{i,i})$$
$$= \sum_{i=1}^{n} \lambda a_{i,i} + \sum_{i=1}^{n} \mu b_{i,i}$$
$$= \lambda \sum_{i=1}^{n} a_{i,i} + \mu \sum_{i=1}^{n} b_{i,i}$$
$$= \lambda \operatorname{tr}(A) + \mu \operatorname{tr}(B)$$

2. Soient $A = (a_{i,j})$, $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Posons $AB = (c_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ et $BA = (d_{i,j}) \in \mathcal{M}_n(\mathbb{K})$

$$tr(AB) = \sum_{i=1}^{n} c_{i,i}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,i}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{k,i} a_{i,k}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} b_{k,i} a_{i,k}$$

$$= \sum_{k=1}^{n} d_{k,k}$$

$$= tr(BA)$$

3. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$.

$$\operatorname{tr}(PAP^{-1}) = \operatorname{tr}(P(AP^{-1}))$$

= $\operatorname{tr}(AP^{-1}P)$ d'après le 2
= $\operatorname{tr}(A)$

Exercice 17. On a $A, B \in \mathcal{T}_n^s(\mathbb{R})$.

Montrons que A et B sont inversibles.

D'après le cours, une matrice triangulaire supérieure est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

Soit $i \in [1, n]$.

$$a_{i,i} = t^{i-i} \binom{i}{i} = 1$$
 et $b_{i,i} = (-1)^{i+i} t^{i-i} \binom{i}{i} = (-1)^{2i} = 1$.

Donc $A, B \in \mathcal{T}_n^s(\mathbb{R})$ et leurs coefficients diagonaux sont tous non nuls donc $A, B \in GL_n(\mathbb{R})$ et $AB \in \mathcal{T}_n^s(\mathbb{R})$.

Montrons que $AB = I_n$.

Posons $AB = (c_{i,j}) \in \mathcal{T}_n^s(\mathbb{R}).$

Soient $i, j \in [1, n]$.

- Si i = j, $c_{i,i} = a_{i,i}b_{i,i}$ car $A, B \in \mathcal{T}_n^s(\mathbb{R})$ donc $c_{i,i} = 1$.
- Si i > j, comme $AB \in \mathcal{T}_n^s(\mathbb{R})$, on a $c_{i,j} = 0$.
- Si i < j,

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = \sum_{k=1}^{i-1} a_{i,k} b_{k,j} + \sum_{k=i}^{j} a_{i,k} b_{k,j} + \sum_{k=j+1}^{n} a_{i,k} b_{k,j}.$$

Si
$$k \in [1, i-1], a_{i,k} = 0$$
.
Si $k \in [j+1, n], b_{k,j} = 0$.

Ainsi, on a:

$$c_{i,j} = \sum_{k=i}^{j} a_{i,k} b_{k,j}$$

$$= \sum_{k=i}^{j} t^{k-i} \binom{k}{i} (-1)^{k+j} t^{j-k} \binom{j}{k}$$

$$= \sum_{k=i}^{j} t^{j-i} (-1)^{k+j} \binom{k}{i} \binom{j}{k}$$

$$= t^{j-i} (-1)^{j} \sum_{k=i}^{j} (-1)^{k} \binom{k}{i} \binom{j}{k}$$

Or, on sait que

Ainsi, on a:

$$c_{i,j} = t^{j-i} (-1)^j \sum_{k=i}^j (-1)^k \binom{j}{i} \binom{j-i}{k-i} = t^{j-i} (-1)^j \binom{j}{i} \sum_{k=i}^j \binom{j-i}{k-i} (-1)^k$$
$$= t^{j-i} (-1)^j \binom{j}{i} \sum_{r=0}^{j-i} \binom{j-i}{p} (-1)^{p+i} = t^{j-i} (-1)^{i+j} \binom{j}{i} \sum_{r=0}^{j-i} \binom{j-i}{p} (-1)^p$$

Or,
$$\sum_{p=0}^{j-i} {j-i \choose p} (-1)^p = (-1+1)^{j-i} = 0^{j-i} = 0 \text{ car } j > i.$$

Donc $c_{i,j} = 0$ si i < j.

Finalement, on a montré que pour tout $i, j \in [\![1, n]\!], c_{i,j} = \left\{ \begin{array}{ll} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{array} \right.$ donc $AB = I_n$ et A et B sont inverses l'une de l'autre.

Exercice 18. • Méthode 1 :

$$\begin{pmatrix} 3 & 2 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 1 & 0 \\ 2 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \mathcal{L} \quad \begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 0 \\ 3 & 2 & -1 & 1 & 0 & 0 \\ 2 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad \mathcal{L}_2 \leftrightarrow \mathcal{L}_1$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 5 & -4 & 1 & -3 & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{pmatrix} \qquad \mathcal{L}_2 \leftarrow \mathcal{L}_2 - 3\mathcal{L}_1$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -\frac{4}{5} & \frac{1}{5} & -\frac{3}{5} & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{pmatrix} \qquad \mathcal{L}_2 \leftarrow \mathcal{L}_2 - 3\mathcal{L}_1$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\ 0 & 1 & -\frac{4}{5} & \frac{1}{5} & -\frac{3}{5} & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{pmatrix} \qquad \mathcal{L}_1 \leftarrow \mathcal{L}_1 + \mathcal{L}_2$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\ 0 & 1 & -\frac{4}{5} & \frac{1}{5} & -\frac{3}{5} & 0 \\ 0 & 0 & 1 & 0 & -2 & 1 \end{pmatrix} \qquad \mathcal{L}_3 \leftarrow -\mathcal{L}_3$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 0 & \frac{1}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} & 1 & -\frac{4}{5} \\ 0 & 1 & 0 & \frac{1}{5} & 1 & -\frac{4}{5} \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad \mathcal{L}_1 \leftarrow \mathcal{L}_1 - \frac{1}{5}\mathcal{L}_3$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 0 & \frac{1}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} & 1 & -\frac{4}{5} \\ 0 & 0 & 1 & 0 & 2 & -1 \end{pmatrix} \qquad \mathcal{L}_1 \leftarrow \mathcal{L}_1 - \frac{1}{5}\mathcal{L}_3$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 0 & \frac{1}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} & 1 & -\frac{4}{5} \\ 0 & 0 & 1 & 0 & 2 & -1 \end{pmatrix} \qquad \mathcal{L}_2 \leftarrow \mathcal{L}_2 + \frac{4}{5}\mathcal{L}_3$$

Ainsi, $A \underset{L}{\sim} I_3$ donc A est inversible et on a $A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 5 & -4 \\ 0 & 10 & -5 \end{pmatrix}$.

• Méthode 2 :
Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K})$.

$$AX = Y \iff \begin{cases} 3x_1 + 2x_2 - x_3 = y_1 \\ x_1 - x_2 + x_3 = y_2 \\ 2x_1 - 2x_2 + x_3 = y_3 \end{cases}$$

$$\iff \begin{cases} x_1 - x_2 + x_3 = y_2 & L_2 \leftrightarrow L_1 \\ 3x_1 + 2x_2 - x_3 = y_1 \\ 2x_1 - 2x_2 + x_3 = y_3 \end{cases}$$

$$\iff \begin{cases} x_1 - x_2 + x_3 = y_2 & L_2 \leftarrow L_2 - 3L_1 \\ -x_3 = -2y_2 + y_3 & L_3 \leftarrow L_3 - 2L_1 \end{cases}$$

$$\iff \begin{cases} x_1 - x_2 + x_3 = y_2 \\ x_2 - \frac{4}{5}x_3 = \frac{1}{5}y_1 - \frac{3}{5}y_2 & L_2 \leftarrow \frac{1}{5}L_2 \\ -x_3 = -2y_2 + y_3 \end{cases}$$

$$\iff \begin{cases} x_1 + \frac{1}{5}x_3 = \frac{1}{5}y_1 + \frac{2}{5}y_2L_1 \leftarrow L_1 + L_2 \\ x_2 - \frac{1}{5}x_3 = \frac{1}{5}y_1 - \frac{3}{5}y_2 \\ -x_3 = -2y_2 + y_3 \end{cases}$$

$$\iff \begin{cases} x_1 + \frac{1}{5}x_3 = \frac{1}{5}y_1 + \frac{2}{5}y_2 \\ x_2 - \frac{1}{5}x_3 = \frac{1}{5}y_1 - \frac{3}{5}y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + \frac{1}{5}x_3 = \frac{1}{5}y_1 + \frac{2}{5}y_2 \\ x_2 - \frac{1}{5}x_3 = \frac{1}{5}y_1 - \frac{3}{5}y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + \frac{1}{5}x_3 = \frac{1}{5}y_1 + \frac{2}{5}y_2 \\ x_2 - \frac{1}{5}x_3 = \frac{1}{5}y_1 - \frac{3}{5}y_2 \end{cases}$$

$$\iff \begin{cases} x_1 = \frac{1}{5}y_1 + \frac{1}{5}y_3L_1 \leftarrow L_1 - \frac{1}{5}L_3 \\ x_2 = \frac{1}{5}y_1 + y_2 - \frac{4}{5}y_3 & L_2 \leftarrow L_2 + \frac{4}{5}L_3 \\ x_3 = 2y_2 - y_3 \end{cases}$$

Ainsi, le système admet une unique solution donc A est inversible et on a $A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 5 & -4 \\ 0 & 10 & -5 \end{pmatrix}$.

Exercice 19.

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -2 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - L_1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} L_2 \leftarrow -L_2 \\ L_2 \leftarrow -L_2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix} \qquad \begin{pmatrix} L_1 \leftarrow L_1 - L_2 \\ L_3 \leftarrow L_3 + L_2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix} \qquad \begin{pmatrix} L_1 \leftarrow L_1 - L_3 \\ L_1 \leftarrow L_1 - L_3 \end{pmatrix}$$

Ainsi, $A \underset{L}{\sim} I_3$ donc A est inversible et on a $A^{-1} = \begin{pmatrix} -2 & 2 & -1 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

$$\begin{pmatrix} -1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{matrix} L_1 \leftrightarrow -L_1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} L_2 \leftrightarrow L_3 \\ L_2 \leftrightarrow L_3 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} L_2 \leftarrow -L_2 \\ L_2 \leftarrow L_2 + L_3 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & -1 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} L_1 \leftarrow L_1 + 2L_3 \\ L_2 \leftarrow L_2 + L_3 \end{matrix}$$

Ainsi, $B \sim I_3$ donc B est inversible et on a $B^{-1} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

$$\begin{pmatrix} 1 & -1 & 2 & 1 & | & 1 & 0 & 0 & 0 \\ -1 & 3 & 1 & 0 & | & 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & -1 & | & 0 & 0 & 0 & 1 \end{pmatrix}) \sim \\ \sim \begin{pmatrix} 1 & -1 & 2 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & | & 1 & 1 & 0 & 0 \\ 0 & 2 & -5 & -1 & -2 & 0 & 1 & 0 \\ 0 & -1 & 4 & 1 & | & 2 & 0 & 0 & 1 \end{pmatrix}) \qquad L_2 \leftarrow L_2 + L_1 \\ L_3 \leftarrow L_3 - 2L_1 \\ L_4 \leftarrow L_4 + 2L_1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -1 & 2 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 4 & 1 & | & 2 & 0 & 0 & 1 \\ 0 & 2 & -5 & -1 & -2 & 0 & 1 & 0 \\ 0 & 2 & 3 & 1 & | & 1 & 1 & 0 & 0 \end{pmatrix} \qquad L_2 \leftrightarrow L_4$$

$$\sim \begin{pmatrix} 1 & -1 & 2 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & -5 & -1 & -2 & 0 & 1 & 0 \\ 0 & 2 & -5 & -1 & -2 & 0 & 0 & -1 \\ 0 & 2 & -5 & -1 & -2 & 0 & 0 & -1 \\ 0 & 2 & -5 & -1 & -2 & 0 & 0 & -1 \\ 0 & 2 & 3 & 1 & | & 1 & 1 & 0 & 0 \end{pmatrix} \qquad L_2 \leftarrow -L_2$$

$$\sim \begin{pmatrix} 1 & 0 -2 & 0 & | & -1 & 0 & 0 & 0 \\ 0 & 1 & -4 & -1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 3 & 1 & | & 2 & 0 & 0 & 1 \\ 0 & 0 & 11 & 1 & | & 5 & 1 & 0 & 2 \end{pmatrix} \qquad L_4 \leftarrow L_4 + L_4$$

Ainsi, $C \sim I_4$ donc C est inversible et on a $C^{-1} = \begin{pmatrix} -2 & 1 & -3 & -5 \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -1 \\ -\frac{1}{2} & \frac{1}{2} & -\frac{3}{2} & -2 \\ \frac{7}{2} & -\frac{3}{2} & \frac{11}{2} & 8 \end{pmatrix}$.

Exercice 20. 1. On a:

$$A^{2} = \begin{pmatrix} 9 & 0 & 17 \\ 7 & -5 & 11 \\ 1 & -2 & -4 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 35 & -16 & 44 \\ 20 & -13 & 12 \\ -4 & 8 & -9 \end{pmatrix}$$

On obtient alors : $A^3 - 4A^2 + 8A = 15I_3$.

Ainsi : $A(A^2 - 4A + 8I_3) = 15I_3$ donc $A \times \frac{1}{15}(A^2 - 4A + 8I_3) = I_3$.

Donc A est inversible et $A^{-1} = \frac{1}{15}(A^2 - 4A + 8I_3) = \frac{1}{15} \begin{pmatrix} 9 & -8 & 5 \\ 3 & -1 & -5 \\ -3 & 6 & 0 \end{pmatrix}$.

2. Soient
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \text{ et } Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$$

$$AX = Y \iff \begin{cases} 2x_1 + 2x_2 + 3x_3 = y_1 \\ x_1 + x_2 + 4x_3 = y_2 \\ x_1 - 2x_2 + x_3 = y_3 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + 4x_3 = y_2 \\ 2x_1 + 2x_2 + 3x_3 = y_1 \\ x_1 - 2x_2 + x_3 = y_3 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + 4x_3 = y_2 \\ -5x_3 = y_1 - 2y_2 & L_2 \leftarrow L_2 - 2L_1 \\ -3x_2 - 3x_3 = y_3 - y_2 & L_3 \leftarrow L_3 - L_1 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + 4x_3 = y_2 \\ -5x_3 = y_1 - 2y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + 4x_3 = y_2 \\ -3x_2 - 3x_3 = y_3 - y_2 & L_3 \leftrightarrow L_2 \\ -5x_3 = y_1 - 2y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + 4x_3 = y_2 \\ x_2 + x_3 = -\frac{1}{3}(y_3 - y_2) & L_2 \leftrightarrow -\frac{1}{3}L_2 \\ -5x_3 = y_1 - 2y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + 3x_3 = \frac{2}{3}y_2 + \frac{1}{3}y_3 & L_1 \leftarrow L_1 - L_2 \\ x_2 + x_3 = \frac{1}{3}y_2 - \frac{1}{3}y_3 \\ -5x_3 = y_1 - 2y_2 \end{cases}$$

$$\iff \begin{cases} x_1 + 3x_3 = \frac{2}{3}y_2 + \frac{1}{3}y_3 & L_1 \leftarrow L_1 - L_2 \\ x_2 + x_3 = \frac{1}{3}y_2 - \frac{1}{3}y_3 \\ x_3 - \frac{1}{5}(y_1 - 2y_2) & L_3 \leftarrow -\frac{1}{5}L_3 \end{cases}$$

$$\iff \begin{cases} x_1 = \frac{3}{5}y_1 - \frac{8}{15}y_2 + \frac{1}{3}y_3 & L_1 \leftarrow L_1 - 3L_3 \\ x_2 = \frac{1}{5}y_1 - \frac{1}{15}y_2 - \frac{3}{3}y_3 & L_2 \leftarrow L_2 - L_3 \end{cases}$$
Ainsi, pour tout $Y \in \mathcal{M}_{3,1}(\mathbb{R})$, le système $AX = Y$ admet une unique solution donc la n

Ainsi, pour tout $Y \in \mathcal{M}_{3,1}(\mathbb{R})$, le système AX = Y admet une unique solution donc la matrice A est inversible.

De plus,
$$A^{-1} = \frac{1}{15} \begin{pmatrix} 9 & -8 & 5 \\ 3 & -1 & -5 \\ -3 & 6 & 0 \end{pmatrix}$$
.

3.

Ainsi, $A \sim I_3$ donc A est inversible et $A^{-1} = \frac{1}{15} \begin{pmatrix} 9 & -8 & 5 \\ 3 & -1 & -5 \\ -3 & 6 & 0 \end{pmatrix}$.

Exercice 21.

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & -1 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix} \qquad \begin{matrix} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \\ 0 & -2 & 1 & -1 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} L_3 \leftrightarrow L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & -1 \\ 0 & -2 & 1 & -1 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} L_2 \leftrightarrow -L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & -1 & 2 \end{pmatrix} \qquad \begin{matrix} L_1 \leftarrow L_1 - L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & -1 & 2 \end{pmatrix} \qquad \begin{matrix} L_3 \leftrightarrow -L_3 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & -1 & 2 \end{pmatrix} \qquad \begin{matrix} L_1 \leftarrow L_1 - L_3 \\ L_2 \leftarrow L_2 + L_3 \end{matrix}$$

Ainsi, $P \underset{L}{\sim} I_3$ donc P est inversible et $P^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$. 2. $AP = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$ et $D = P^{-1}(AP) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

2.
$$AP = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$
 et $D = P^{-1}(AP) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

$$\forall n \in \mathbb{N}^*, \ D^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}.$$

- 3. On a $A = PDP^{-1}$. Soit $n \in \mathbb{N}^*$, $A^n = (PDP^{-1})^n = PD^nP^{-1}$. Ce résultat se prouve par récurrence :
 - Pour n = 1, on a $A^1 = A = PDP^{-1} = PD^1P^{-1}$.
 - Soit $n \in \mathbb{N}^*$. Supposons que $A^n = PD^nP^{-1}$. On a : $A^{n+1} = A^n A = PD^n P^{-1} PDP^{-1} = PD^n DP^{-1} = PA^{n+1} P^{-1}$.
 - Ainsi : $\forall n \in \mathbb{N}^*, \ A^n = PD^nP^{-1}$.

$$\operatorname{Or}, D^n P^{-1} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 1 \\ -(-1)^n & -(-1)^n & 2(-1)^n \end{array} \right) \operatorname{d} "" \operatorname{ou}" A^n = P D^n P^{-1} = \left(\begin{array}{ccc} 0 & -1 & 1 \\ -(-1)^n & 1 - (-1)^n & -1 + 2(-1)^n \\ -(-1)^n & -(-1)^n & 2(-1)^n \end{array} \right)$$

Exercice 22.

$$\begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{matrix} \sim \\ L & \begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & -1 & 0 & 1 \end{pmatrix} \qquad \begin{matrix} L_3 \leftarrow L_3 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{matrix}$$

$$\sim \begin{matrix} \sim \\ L & \begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & -1 & 1 \end{pmatrix} \qquad \begin{matrix} L_3 \leftarrow L_3 - L_2 \\ L_3 \leftarrow L_3 - L_2 \\ L_2 \leftarrow L_2 - L_3 \end{matrix}$$

$$\sim \begin{matrix} \sim \\ L & \begin{pmatrix} 1 & 0 & 0 & | & 0 & -1 & 1 \\ 0 & 1 & 0 & | & 1 & 2 & -1 \\ 0 & 0 & 1 & | & -1 & -1 & 1 \end{pmatrix} \qquad \begin{matrix} L_1 \leftarrow L_1 + L_3 \\ L_2 \leftarrow L_2 - L_3 \end{matrix}$$

Ainsi, $P \sim I_3$ donc P est inversible et $P^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$.

2. On a
$$AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
 donc $D = P^{-1}(AP) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Ainsi, D est diagonale. On a donc :

$$\forall n \in \mathbb{N}, \ D^n = \left(\begin{array}{ccc} (-1)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3^n \end{array} \right).$$

3. On a $A = PDP^{-1}$. Soit $n \in \mathbb{N}$, $A^n = (PDP^{-1})^n = PD^nP^{-1}$

$$\operatorname{Or}, D^{n}P^{-1} = \begin{pmatrix} 0 & -(-1)^{n} & (-1)^{n} \\ 1^{n} & 2 & -1 \\ -3^{n} & -3^{n} & 3^{n} \end{pmatrix} \operatorname{d'où} A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 3^{n} & 3^{n} - (-1)^{n} & (-1)^{n} - 3^{n} \\ 1 - 3^{n} & 2 - 3^{n} & 3^{n} - 1 \\ 1 - 3^{n} & 2 - 3^{n} - (-1)^{n} & (-1)^{n} - 1 + 3^{n} \end{pmatrix}$$

Exercice 23. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0$ tel que AX = 0. Les x_i sont non tous nul, donc il existe $i \in [1, n]$ tel que $|x_i| > 0$.

Notons k l'entier de [1, n] tel que $|x_k|$ soit maximal (on a donc $|x_k| > 0$).

Comme AX = 0, on a $\sum_{j=1}^{n} a_{k,j} x_j = 0$ (k-ème coordonnée du produit AX) donc $-x_k a_{k,k} = \sum_{j \in [\![1,n]\!]\setminus \{k\}} x_j a_{k,j}$.

Ainsi,

$$|x_{k}a_{k,k}| = |\sum_{j \in [\![1,n]\!] \setminus \{k\}} x_{j}a_{k,j}|$$

$$\leq \sum_{j \in [\![1,n]\!] \setminus \{k\}} |x_{j}a_{k,j}|$$

$$\leq \sum_{j \in [\![1,n]\!] \setminus \{k\}} |x_{j}||a_{k,j}|$$

$$\leq |x_{k}| \sum_{j \in [\![1,n]\!] \setminus \{k\}} |a_{k,j}| \quad \text{car } |x_{k}| \text{ est maximal}$$

$$< |x_{k}||a_{k,k}| \quad \text{car } |x_{k}| > 0 \text{ et } \sum_{j \in [\![1,n]\!] \setminus \{k\}} |a_{k,j}| < |a_{k,k}|$$

$$< |x_{k}a_{k,k}|$$

Absurde!

Ainsi, l'équation AX = 0 n'admet que la solution nulle donc A est inversible.

4 Transposition et matrices Symétriques

Exercice 24. Soit $M \in \mathcal{M}_n(\mathbb{R})$.

Raisonnons par analyse synthèse.

Analyse : Supposons qu'il existe $(S, A) \in \mathcal{S}_n(\mathbb{K}) \times \mathcal{AS}_n(\mathbb{K})$ tel que M = S + A.

On alors: $\begin{cases} M = S + A \\ {}^tM = {}^tS + {}^tA = S - A \end{cases}$ Ainsi, en sommant et soustrayant ces deux égalités, on obtient : $S = \frac{1}{2}(M + {}^tM)$ et $A = \frac{1}{2}(M - {}^tM)$.

Synthèse : Posons $S = \frac{1}{2}(M + {}^tM)$ et $A = \frac{1}{2}(M - {}^tM)$.

On a ${}^tS = \frac{1}{2}({}^tM + M) = S$ et ${}^tA = \frac{1}{2}({}^tM - M) = -A$. Ainsi, S est symétrique et A est antisymétrique. De plus, M = S + A.

Ainsi, M se décompose de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique. Finalement, on a prouvé que toute matrice symétrique se décompose en la somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 25. 1. Soit $X \in \mathcal{M}_n(\mathbb{K})$. Supposons X symétrique, on a alors ${}^tX = X$. D'où:

ou: ${}^t f(X) = {}^t ({}^t AX) + {}^t (XA) = {}^t X^t ({}^t A) + {}^t A^t X = {}^t XA + {}^t A^t X = XA + {}^t AX = f(X)$

Donc f(X) est symétrique.

2. Soit $X \in \mathcal{M}_n(\mathbb{K})$. Supposons X antisymétrique, on a alors ${}^tX = -X$. D'où :

$$^{t}f(X) = ^{t}(^{t}AX) + ^{t}(XA) = ^{t}X^{t}(^{t}A) + ^{t}A^{t}X = ^{t}XA + ^{t}A^{t}X = -XA - ^{t}AX = -f(X)$$

Donc f(X) est antisymétrique.

Exercice 26. 1. Notons d_1, \ldots, d_n les coefficients diagonaux de D.

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}).$$

On a alors $DX = \begin{pmatrix} d_1x_1 \\ \vdots \\ d_nx_n \end{pmatrix}$ puis ${}^tXDX = \sum_{k=1}^n d_kx_k^2$ (en identifiant une matrice 1, 1 et le nombre réel associé).

- 2. Une condition nécessaire et suffisante pour que D soit positive est : $\forall i \in [1, n], d_i \geq 0$.
 - Supposons que : $\forall i \in [1, n], d_i \geq 0$.

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$
, on a ${}^tXDX = d_1x_1^2 + \dots + \dots d_nx_n^2 \geq 0$ (comme somme de réels positifs)

donc D est positive.

• Montrons désormais que si D est positive alors : $\forall i \in [1, n], d_i \geq 0$. Soit $i \in [1, n]$.

Soit X le vecteur colonne dont toutes les coordonnées sont nulles, sauf la i-ème, qui vaut 1. D'après la question 1, on a ${}^t XDX = d_i \geq 0$. Ainsi : $\forall i \in [\![1,n]\!], d_i \geq 0$.

Finalement, D est positive si et seulement si : $\forall i \in [1, n], d_i \geq 0$.

Exercise 27. Posons $A = (a_{i,j})_{1 \le i,j \le n}$ et ${}^t A = (a'_{i,j})_{1 \le i,j \le n}$

Par hypothèse, on a : $\forall i, j \in [1, n], i > j \Longrightarrow a_{i,j} = 0$. Montrons par double implication que :

$$^{t}AA = A^{t}A \iff A \in \mathcal{D}_{n}(\mathbb{R}).$$

• Supposons que ${}^tAA = A^tA$. Posons ${}^tAA = (c_{i,j})$ et $A^tA = (d_{i,j})$. Soient $i, j \in [1, n]$,

$$c_{i,j} = \sum_{k=1}^{n} a'_{i,k} a_{k,j} = \sum_{k=1}^{n} a_{k,i} a_{k,j}$$

$$d_{i,j} = \sum_{k=1}^{n} a_{i,k} a'_{k,j} = \sum_{k=1}^{n} a_{i,k} a_{j,k}$$

Ainsi, on a:

$$\sum_{k=1}^{n} a_{k,i} a_{k,j} = \sum_{k=1}^{n} a_{i,k} a_{j,k}$$

Or:
$$\forall k > i, \ a_{k,i} = 0 \text{ et } \forall k > j, \ a_{k,j} = 0. \text{ Ainsi, } \sum_{k=1}^{n} a_{k,i} a_{k,j} = \sum_{k=1}^{\min(i,j)} a_{k,i} a_{k,j}.$$

De même :
$$\forall k < i, \ a_{i,k} = 0 \text{ et } \forall k < j, \ a_{j,k} = 0. \text{ Ainsi, } \sum_{k=1}^{n} a_{i,k} a_{j,k} = \sum_{k=\max(i,j)}^{n} a_{i,k} a_{j,k}.$$

Finalement, on a:

$$\sum_{k=1}^{\min(i,j)} a_{k,i} a_{k,j} = \sum_{k=\max(i,j)}^n a_{i,k} a_{j,k}$$

D'où:

$$\forall i, j \in [1, n], i \leq j \implies \sum_{k=1}^{i} a_{k,i} a_{k,j} = \sum_{k=j}^{n} a_{i,k} a_{j,k} \qquad (*)$$

<u>Réflexion</u>:

- Posons i=j=n, il vient : $\sum_{k=1}^n a_{k,n}^2=a_{n,n}^2.$ Ainsi : $\forall k\in [\![1,n-1]\!],\, a_{k,n}=0.$
- Posons i=j=n-1, il vient : $\sum_{k=1}^{n-1}a_{k,n-1}^2=\sum_{k=n-1}a_{n-1,k}^2=a_{n-1,n-1}^2+a_{n-1,n}^2=a_{n-1,n-1}^2.$ Ainsi, pour tout $k\in [\![1,n-2]\!],$ $a_{k,n-1}=0.$
- Ainsi de suite.

<u>Rédaction</u>:

Pour tout $l \in [1, n]$, on note :

$$\mathcal{P}(l): \ll \forall k \in [1, l-1], a_{k,l} = 0 \gg$$

On prouve ceci par récurrence forte descendante sur l.

- Pour l = n, prenons i = j = n dans (*), on obtient : $\sum_{k=1}^{n} a_{k,n}^2 = a_{n,n}^2$. Ainsi, pour tout $k \in [1, n-1]$, $a_{k,n} = 0$.
- Soit $l \in [\![2,n]\!]$, supposons que pour tout $p \in [\![l,n]\!]$, $\mathcal{P}(p)$ est vraie. Ainsi : $\forall p \in [\![l,n]\!]$, $\forall k \in [\![1,p-1]\!]$, $a_{k,p} = 0$. En prenant i = j = l-1 dans (*), on obtient :

$$\sum_{k=1}^{l-1} a_{k,l-1}^2 = \sum_{k=l-1}^n a_{l-1,k}^2$$

Or, par hypothèse de récurrence, on a :

$$\sum_{k=l-1}^{n} a_{l-1,k}^2 = a_{l-1,l-1}^2 + \sum_{k=l}^{n} a_{l-1,k}^2 = a_{l-1,l-1}^2$$

D'où:

$$\sum_{k=1}^{l-1} a_{k,l-1}^2 = a_{l-1,l-1}^2$$

Ainsi:

$$\forall k \in [1, l-2], \ a_{k,l-1} = 0$$

• Ainsi, on a prouvé par récurrence que :

$$\forall l \in [1, n], \ \forall k \in [1, l-1], \ a_{k,l} = 0.$$

Autrement dit:

$$\forall k, l \in [1, n], k < l \implies a_{k,l} = 0$$

Donc $A \in \mathcal{T}_n^-(\mathbb{K})$. Or, on savait déjà que $A \in \mathcal{T}_n^+(\mathbb{K})$. Donc :

$$\forall i, j \in [1, n], \quad i < j \implies a_{i,j} = 0.$$

On a donc:

$$\forall i,j \in [\![1,n]\!], \quad i \neq j \quad \Longrightarrow \quad a_{i,j} = 0.$$

Ainsi, A est diagonale.

• Supposons A est diagonale. On a alors que ${}^tA = A$. Ainsi : ${}^tAA = A^2 = A^tA$.