

AMATÉRSKÉ RÁDIO

ŘADA B - PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU
ROČNÍK XL/1991 ● ● ČÍSLO 1

V TOMTO SEŠITĚ

Vážení čtenáři 1

ELEKTRICKÉ KYTARY A JEJICH PŘÍSLUŠENSTVÍ

Kytarové snímače	2
Jednocívkové	2
Dvoucívkové	3
Korekční obvody kytar	4
Předzesilovače	6
Kytarové transmittery (vysílače)	7
Kytarové efekty	7
Phasery	9
Generátory obálky	10
Filtry	13
Jednoduchý kytarový syntezátor	14
Digitální efekty	19
Stručné charakteristiky popisovaných efektů	20
Poslední článek zvukového efektu - nf zesilovače	21
Nf zesilovače s polovodičovými součástkami	21
Nf zesilovače s elektronikami	35
Náhrada elektronek FET	35
Nová generace obvodů pro BTV (dokončení)	36
UAA2022, sérioparalelní převodník	38
Mikroprocesorový systém RISC 32 bitů	39
Inzerce	40

AMATÉRSKÉ RÁDIO ŘADA B

Vydává vydavatelství MAGNET-PRESS, s. p., Vladislavova 26, 135 66 Praha 1, tel. 26 06 51-7. Šéfredaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 9,80 Kčs, polopletní předplatné 29,40 Kčs, roční 58,80 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET-PRESS, administrace Vladislavova 26, Praha 1. Informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelská střediska. Objednávky do zahraničí vyfizuje PNS - ústřední expedice a doručovatel Národní pošta Praha 6. Tiskne NAŠE VOJSKO, s. p., závod 08, 160 00 Praha 6, Vlastina ulice č. 889/23.

Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má využít podle plánu 1. 2. 1991.

© Vydavatelství MAGNET-PRESS.

Vážení čtenáři,

především bychom vám chtěli poprát vše nejlepší do nového roku 1991, mnoho štěstí, zdraví a spokojenosti jak ve škole, na pracovišti, tak i v osobním životě. I když bychom si přáli sdělovat vám pouze příjemný véci, musíme bohužel začít s témi nepříjemnými – jak jste jistě zjistili, je Amatérské rádio řady B, pro konstruktéry, v letošním roce dražší než v minulosti, stejně jako prakticky všechny ostatní noviny a časopisy. Je to dáno jednak zdražením cen papíru, zdražením tiskárenských prací a jednak dodatečnou daní.

To je skutečnost, s níž bohužel redakce nemůže nic dělat. Abychom však alespoň částečně kompenzovali vyšší cenu, budeme se snažit o vyšší kvalitu: uděláme vše, co je v našich silách, aby v publikovaných materiálech bylo co nejméně závad a chyb, aby jednotlivá čísla byla co nejzajímavější a probíraná tématika co nejaktuálnější. K tomu nám můžete pomoci i vy – vašimi připomínkami jak k náplni časopisu, tak ke způsobu zpracování; vaše dopisy v žádném případě v koší neskončí. Stejně tak uvítáme i vaše nabídky na zpracování určitého námětu pro jednotlivá čísla AR řady B, případně i jiný kontakt s redakcí, neboť „časy se mění“ a my bychom se chtěli měnit s nimi, abychom pomohli co nejlépe jak v zájmové elektronické činnosti, tak i v praktickém životě co největšímu počtu čtenářů. Např. i při rekvizitaci, získání nového „životního zaměření“, podnikatelům nejrůznějšího zaměření atd. Jisté je jedno: tento časopis si během let získal určitou čtenářskou obec a určité, domniváme se, že dobré jméno, naši snažou tedy je, abychom si jak čtenáře, tak ono dobré jméno udrželi i nadále. Doufáme, že se nám to s vaší pomocí podaří.

A na závěr ještě jednu, částečně nepříjemnou, částečně příjemnou zprávu. Po-

štovní novinová služba jednostranně pro tento rok snížila náklad časopisu tím, že objednala jako monopolní rozšiřovatel naší produkce podstatně menší počet výtisků oproti minulému roku. To bude mít zřejmě za následek, že čtenáři našeho časopisu budou mít v tomto roce problémy s nákupem AR řady B (a také řady A, kde je situace stejná). Proto se vydavatelství Magnet-press rozhodlo umožnit každému, kdo si to bude přát, odběr časopisu přímo z naší administrace.

Jak na to? Stačí si na poště vyzvednout čistou poštovní poukázku, do rubriky „SBČS a číslo účtu“ vyplnit „60 útvár 711 – 5029–881“, do rubriky „konstantní symbol“ napsat 79, jako adresáta uvést MAGNET-PRESS, Vladislavova 26, 113 66 Praha 1 a pod čáru 125 07 VAKUS Praha 5, do rubriky „variabilní symbol“ uvést AR-B 1991. Cena ročního či půlročního předplatného je uvedena vlevo na této stránce dole v titráži časopisu. Je-li tento postup příliš složitý, zkuste uveřejnit v příštím čísle celou složenkou tak, aby ji bylo možno vystříhnout a po doplnění odesílatele poslat na adresu našeho vydavatelství. Pokud byste tuto cestu použili, prosíme, abyste předplatné uhradili výlučně na poště, nikoli kupř. ze svého sporožirového účtu. Při platbě ze sporožira nedostaneme totiž druhý díl poštovní poukázky, nýbrž jen sdělení banky s číslem konta, které má u SBČS příslušná pobočka spořitelny. Z tohoto údaje ovšem nezjistíme, kdo předplatné poukazuje, takže dodávku nemůžeme zajistit.

Pokud byste si předplatili 6 čísel např. až od čísla 3, dostanete samozřejmě i první dvě čísla z následujícího ročníku, a to domů, poštou v papírovém přebalu.

Věříme, že budete s naší novou službou spokojeni.

PF 1991

† Ing. Václav Teska

Motto: Tak všechno od nás odchází,
veliká láska, láska malá,
hlas matčin nad zimozáry,
řeka, jež ani nepostála,
a po každém z nich jinak se nám stýská.
(J. Vrchlický)

16. listopadu 1990 zemřel náhle jeden z našich nejstálejších a nejspolehlivějších spolupracovníků, ing. Václav Teska, ve věku 55 let. Byl dlouholetým zaměstnancem výzkumného ústavu A. S. Popova v Praze, nesmírně činorodý a erudovaný, po dlouhých letech spolupráce kamarád s dobrotom v srdci a s poctivostí ve své duši.

Stýská se nám, Václave, a budeš nám chybět.

-OU-

ELEKTRICKÉ KYTARY a jejich příslušenství

Bohumil Lipka

Elektrické kytary a jejich příslušenství tvoří v současné době nepostradatelnou součást moderní hudby. Protože vývoj elektrických kytar začal již v padesátých letech, bylo na toto téma napsáno a uveřejněno mnoho článků různého rozsahu a zaměření, bylo postaveno mnoho nástrojů a přístrojů různé jakosti technické a zvukové. U nás se elektrické kytary začaly rozšiřovat s příchodem jazzové („gibsony“) a big-beatové hudby (masivní kytary E). Od té doby se však vývoj u nás téměř zastavil. Jakost nástrojů a aparatur se téměř nezlepšila, popř. zůstala na nízké úrovni. Proto si většina hudebníků pomáhá jak může: kupuje drahá (či předražená) zařízení západních firem, často již používaná či opotřebovaná, bez záruky či možnosti servisu. Většina těch, kteří v tomto směru mají chuť něco dělat, se potýká s nedostatkem vhodné literatury a dalších informací. Celá problematika by se dala z pohledu amatéra shrnout do těchto částí:

- a) problematika zapojení kytar, snímačů, korekčních prvků a případně předesilovačů,
- b) zapojení různých přístrojů pro efekty, vysílačů, syntezátorů, korekčních členů, přístrojů pro digitální efekty apod.,
- c) zapojení zesilovače.

A vše souvisí se vším – kdo by se domníval, že zvuk kytary na koncertě závisí na kvalitním nástroji, „krabičce“ či zesilovači, velmi by se mylil. Zvuk kytary je tvoren celým řetězcem kytara–efekt–zesilovač–reprodukтор–zvukař. Zřetel je třeba brát na každou část tohoto řetězce. Nyní již slyším námitky hudebníků: „To se to říká, když jen obyčejná kytara stojí celý plat a se zesilovači a bednami naší výroby je to cenově ještě horší.“ Za hodně peněz málo muziky. Domnínám se však, že není třeba hned kupovat drahá zařízení. Dobrý zvuk lze vyrobít i v amatérských podmírkách. Ve svém příspěvku bych chtěl k tomuto cíli přispět trochu svých zkušeností a znalostí i zkušenostmi svých přátel.

Kytarové snímače

Základní podmínkou k tomu, abychom dostali z přístroje silný a dobře znějící zvuk, je vhodný a jakostní kytarový snímač. Vždy je třeba, aby snímač dobře snímal signály v celém kmitočtovém spektru tónů, tedy od výšek k hloubkám, s dostatečnou úrovní. Již z konstrukce snímačů vyplývá, že snímač bude mít vždy „kmitočtové“ nedostatky buď ve výších nebo v nižších kmitočtech a velké odchyly výstupního signálu v závislosti na jeho kmitočtu. Proto se většinou volí kompromisy – do kytary se vsadí snímač snímající lépe střední a hluboké tóny, hrající silněji, se snímači, které snímají lépe vysoké tóny, avšak s menší výstupní úrovní. Snímače se slabým výstupním signálem se pak umístí do místa největšího rozkmitu strun a snímače s větším výstupním signálem se umístí do

místa, kde struny kmitají méně. V praxi se tohoto kompromisu dosahuje jednocívkovými či dvoucívkovými snímači.

Jednocívkové snímače

Jednocívkové snímače (singl), jak již vyplývá z názvu, mají jednu cívku, do níž se „indukuje“ signál, vznikajícím rozkmitáním struny. Výhodou tohoto snímače je, že sníma dobré tóny o vyšších kmitočtech. Je to dáné tím, že snímač s jednou cívkou má vzhledem k relativně malé indukčnosti vyšší rezonanční kmitočet než snímač se dvěma cívками, obvykle zapojenými do série. Pokud pak chceme dosáhnout u jednocívkových snímačů dobrého přenosu i signálů nízkých kmitočtů, pomáháme si jak pasivními, tak aktivními korekčními obvody.

Nevýhodou jednocívkového snímače je jeho menší výstupní signál oproti dvoucívkovému vzhledem k menšímu počtu závitů cívky, navíc je jeho magnetické pole rozptýlené „do prostoru“, takže je snímač náchylný na vnější rušivé vlivy, především na různá brumová napětí. Tento nedostatek se kompenzuje jak různými způsoby konstrukce, tak zapojeními. O některých budou pojednávat další úvahy.

Obr. 1. Magnetické pole snímače je rozptýlené v prostoru

Z obr. 1 je zřejmé, že magnetické pole jednocívkového snímače je rozptýlené do prostoru. Tento nedostatek lze řešit tím, že se pokusíme uzavřít obvod magnetických silových čar.

První konstrukcí je snímač se dvěma nástavci, obr. 2. Z obrázku je vidět, že druhý nástavec, na němž není cívka, tvoří „protipól“, přes který se uzavírá magnetický tok. Pole se pak nerozptýlí také do prostoru,

Obr. 2. Snímač s nástavcem (čím bude nástavec nižší, tím méně bude magnetické pole ovlivňováno strunou)

odkud by se do něho mohlo indukovat rušivé napětí (brum). Tento konstrukce se využívá u některých novějších snímačů (Gibson), nejvíce se však používá u snímačů staršího typu. Pokud máte takový snímač ve své kytáře, můžete nástavcem bez cívky ovlivnit magnetickou „nevýváženosť“ strun. Lze to udělat tak, že se do nástavce vypilují jakési zuby („cimburi“) podle toho, která struna jak zní. Obvykle struna „h“ přehluší nepřijemně zvuk ostatních strun, zatímco basové struny znějí slabě. Čím má být tón z určité struny hlasitěji slyšet, tím blíže k ní musí zasahovat nástavec. Způsob úpravy je na obr. 3.

Častější konstrukcí snímače je snímač se zkratovacími magnetickými můstky, obr. 4. U něho se přibližováním magnetického můstku k nástavci cívky dosahuje uzavření magnetického toku tímto můstkem, přičemž magnetické pole není pak tak silné ovlivňováno

Obr. 3. Snímač s upravenými nástavci

Obr. 4. Nezkratovaný obvod (a) a obvod zkratovací (b)

kmitající strunou. Snímače tohoto typu se u nás vyráběly pod značkou Briliant de Luxe (obr. 5).

Obr. 5. Pohled na sestavené snímače se zkratovacími můstky

Posledním typem snímače, dnes nejvíce používaným, je snímač s půlovými nástavci, tvorenými šrouby. Tento typ snímače umožňuje kompenzovat magnetickou nevyváženosť strun jednoduše tím, že lze magnet pod příslušnou strunou buď vyšroubovat nebo zašroubovat. Takový snímač je na obr. 6.

Obr. 6. Snímač s upravenou střední částí (posouvatelnou)

Tento druh snímačů vyrábějí dnes firmy, v jejichž výrobním programu jsou kytry Jazz Bass, Fender Stratocaster apod.

Variantou uvedeného typu snímače je snímač, který nemá nastavitelné nástavce, viz obr. 7.

Obr. 7. Snímač s přídavným trvalým magnetem

Oba posledně uvedené typy snímačů mají, jak jste si jistě všimli, dvě cívky a přesto jede o jednocívkové typy. Jedna cívka slouží jako „zvuková“, druhá jako tzv. parazitní – je to jeden ze způsobů, jak snímač ochránit před rušivými vlivy. Parazitní cívka je k cívce zvukové připojena paralelně, avšak v protifázi, obr. 8a. „Protifáze“ znamená, že snímačový vývod bliže ke středu cívky (začátek vinutí) se spojí s koncem vinutí druhého snímače (vývod na povrchu snímače). Cást shodného zvukového spektra (zejména brumy) indukované do těchto cívek se vzájemně odruší.

Obr. 8. Připojení „parazitní“ cívky

jemně díky fázování odečte (zruší) a zůstánu pouze signály těch kmitočtů, které se vzájemně liší. Zůstane tedy pouze zvuk, který má vyšší složku středových kmitočtů a část vysokých kmitočtů. Zvuk ze snímače má kovový charakter, brumy nejsou reprodukovány.

Tento druh odrušení je v dnešních snímačích nejběžnější. Pro vylepšení kmitočtové útlumové charakteristiky směrem k výškám se používají aktivní korektory. Spojení aktivních filtrů s metodou parazitních cívek je nejprogresivnějším řešením problémů jednocívkových snímačů v současné době.

Ještě jeden neduh se vyskytuje u snímačů relativně často – bývají náchylné na mechanické otřesy, jsou tedy mikrofonické. Tomu lze zabránit jak pevnou konstrukcí snímače, tak i např. zatímní vnitřní části snímače parafinem, Resistinem či jinou hmotou na bázi vosku.

Brumy z reprodukce lze do jisté míry odstranit také tím, že zapojíme vrchní část vinutí cívky jako uzemněný pól snímače. Vrchní část vinutí se pak chová jako stínění. Snímač můžeme odstínit i tlustším plechem (tloušťka asi 1 mm) z nemagnetického kovu (mosaz, měď).

Pokud si chce hudebník zhotovit snímač sám, měl bych pro něj několik rad: Ke zhotovení snímače jsou nejvhodnější kovové magnety, které jsou oproti feritovým „silnější“ a lze je snadněji zhotovit. Feritové magnety jsou tvrdé, špatně se opracovávají a jsou i nesnadno dostupné, navíc zvuk feritových snímačů nedosahuje zdaleka kvality snímačů s kovovými magnety. Magnety je nejlepší zhotovit z magneticky tvrdého materiálu, např. z drátu, z nichž se vyrábějí kuličky do ložisek. Zmagnetovat je možné i předtím zakalené dírky vrtáků do oceli. Dírky se nejprve oddělí od vrtné části, upraví se (např. je lze opatřit drážkou pro šroubovák), opatří závitem a pak se zakalí. Kalime např. tak, že dírky „nažhavíme“ (autogenem) do cihlové žluté barvy a ihned zchládíme v oleji, kalit je samozřejmě třeba v silném magnetickém poli. Potom se však již takový nástavec opracovávat nedá vzhledem ke značné tvrdosti.

Podobně je třeba zakalit každý nástavec, zhotovený z magneticky tvrdé oceli. Zmagnetovat takový nástavec lze např. na magnetovacím přístroji, který vlastní v každé elektrické dílně či v provozu, kde se vyrábějí kovové zakalené předměty, které je pak třeba magnetovat či odmagnetovat.

Hotové nástavce vestavíme do cívky a nemusíme používat žádné přídavné magnety. Je samozřejmě, že všechny magnety musí mít souhlasné poláry na jedné straně. Příklad provedení magnetického nástavce je na obr. 9. Materiály vhodné pro magnetování: ocel 17030 nebo 19800. Můžeme se samozřejmě pokusit sehnat vhodné originální sní-

Obr. 9. Příklad magnetického nástavce

mačové magnety ze zahraničních snímačů, to je samozřejmě nejjednodušší cesta. Tyto magnety jsou jakostní jak po stránce magnetické, tak po stránce provedení, jsou odolny z Al-Ni-Co a dodávají snímači příjemný „tepely“ zvuk. Navíc některé z nich mají dutou vrchní část, což dodává jimi snímanému zvuku „kulatější“ charakterové zabarvení. Takový nástavec je na obr. 10.

Obr. 10. Nástavec s otvorem pro imbusový klíč

Vinutí cívky snímače je velmi pracné. Pokud máme možnost, necháme si cívku navinout u odborníků. K vinutí je nejvhodnější drát o $\varnothing 0,05$ mm, počet závitů je asi 4000. Ideální je stejnosměrný odpor cívky asi max. 5 k Ω . Větší odpor má za následek zvětšení impedance a tedy menší citlivost pro signály vyšších kmitočtů. Kostříčku cívky lze zhotovit z organického skla, odlit z dentakrylu, moduritu nebo z polyesteru ChS-104.

Dvoucívkové snímače

Dvoucívkové snímače (dual) mají dvě cívky, umístěné vedle sebe. Výhodou těchto snímačů je, že mají velkou úroveň výstupního signálu, dále že vzhledem ke konstrukci a zapojení jsou méně náchylné na brumy z okolí. Snímají lépe signály středních a hlubokých tónů, neboť mají větší impedance (jde o dvě cívky v sérii) než snímače jednocívkové. Odpovídající úrovni signálů vyšších kmitočtů lze dosáhnout aktivními korektory nebo zkratováním cívky blížší „zemí“ (čímž se ze snímače stane jednocívkový), ovšem za cenu současného zmenšení „dynamiky“ výstupního signálu. Konstrukce dvoucívkového snímače je na obr. 11.

Obr. 11. Konstrukce dvoucívkového snímače

Zapojení snímače je na obr. 12. Cívky jsou zapojeny do série, spínač S₁ umožňuje zkratovat cívku L₂ a tím zvýšit rezonanční kmitočet snímače. Jak vyplývá z obr. 11, magnetický tok snímače se uzavírá a magnetické pole není tedy tak rozptýlené do okolí. Proto je snímač odolný proti rušivým vlivům.

Známí výrobci snímačů kladou důraz také na vhodnou vzájemnou vzdálenost jednotlivých

Obr. 12. Zapojení cívek dvoucívkového snímače

Obr. 13. Možné rozmištění snímačů na kytaře

vých cívek snímačů, neboť ta má vliv na uzavírání magnetického pole a vzájemné ovlivňování indukovaných signálů. Konstrukce jsou obvykle velmi propracované a bývají výrobním tajemstvím výrobčů (např. Gibson Humbucking, Di Margio Super Humbucking, Dirty Fingers apod.). U nás kromě továrně vyráběných typů Helios, Safir apod. vyrábí snímače i soukromá firma BECK v Bratislavě.

Dvacívkové snímače se na kytaře umisťují u kobyly, kde kmitají více strun pro vysoké kmitočty, čímž se vyrovnává nonlinearita výstupního napětí v závislosti na kmitočtu. Jednocijkové snímače se naopak umisťují blíže ke krku kytary, kde mají větší rozkmit strun pro hlubší tóny, což opět vyrovnává opačnou nonlinearity výstupního napětí v závislosti na kmitočtu těchto snímačů. Při konstrukci kytar je také velmi choulostivý odhad vzdálenosti mezi jednotlivými snímači, který je důležitý vzhledem k jejich vzájemnému ovlivňování. Snímače umístěné vzájemně blízko musí mít u sebe vždy opačné póly magnetů. Tím se netlumí rozkmit strun. Pro různé snímače je vhodné vždy tyto vzdálenosti odzkoušet. Příklad umístění snímačů je na obr. 13.

Plasticový snímač

Poněkud zvláštním případem mezi snímači je tzv. plasticový snímač. Je to snímač, který má pod každou strunou individuální cívek s magnetem. Ke zhotovení tohoto druhu snímačů lze využít např. cívek z měřidel, do těchto cívek lze pak jen zhotovit magnety podle dřívějšího popsaného návodu. Ke zhotovení snímačů lze použít i cívek z vojenských sluchátek, které mají uprostřed plochý otvor. Ty je třeba doplnit magnety po stranách. Na

Obr. 14. „Plasticový“ snímač

Obr. 15. Zapojení „plastického“ snímače

obr. 14 a 15 jsou nákresy jednotlivých segmentů.

Pokud máme cívek dostatečné množství, můžeme je zapojit jako hlavní a parazitní k lepšemu odstranění brumu. Cívek zapojíme paralelně a v protifázi. Jak je vidět z obr. 14 a 15, magnetické pole těchto snímačů se přidáním magnetu a cívek uzavře, takže snímač není náhodný na brum. Snímače podle obr. 14 a 15 umístíme vždy pod jednu strunu a uzemnění jednotlivých snímačů spojíme tak, jak je nakresleno na obr. 16. Vývody cívek je třeba zesílit tlustším drátem.

Obr. 16. Spojení jednotlivých snímačů pod strunami

Výstupní signály jednotlivých cívek je nutné zesílit a smíchat. Výsledný zvuk je pak plasticový rozestřen a při doprovodné hře nespívá v celek, který často nepůsobí příliš dobrým dojem. Navíc můžeme pro každou strunu upravit korekce podle potřeby stejně jako velikost snímaného signálu před zesilovačem – to vše ještě před smícháním jednotlivých strunových signálů. Jako předzesilovače mohou sloužit např. několikanásobné operační zesilovače typu 1458, TL082, 084 apod. Tento předzesilovač je vhodné umístit do kytary, obvykle postačí tři OZ (dvojitě), napájení bude obvykle 9 V. Odběr proudu je nepatrný, asi 3 mA, takže lze použít i malou baterii 9 V. Operační zesilovače jsou nejvhodnější proto, že mají malý odběr proudu, velký vstupní odpor a volitelné zesílení mezi 1 a např. 1000.

Schéma vhodného předzesilovače je na obr. 17. Jde o běžné zapojení bez nějakých závludností, vyzkoušené a plně vyhovující danému účelu. Odporovými trimry 15 k Ω a 10 M Ω (pevný rezistor v sérii s trimrem co nejmenším odporu vzhledem ke stálosti nastavení) lze nastavit shodnou „dynamiku“ strun. Výstupní signál pak vedeme ke korekčním obvodům kytary; kmitočtovou charakteristikou jednotlivých snímačů můžeme upravit také kondenzátory (C₂) paralelně připojenými k zpětnovazebním odporům (ve

Obr. 17. Schéma kytarového předzesilovače

schématu čárkováně) nebo kondenzátorem v cestě signálu (C₁).

Při použití efektů chorus, delay nebo flanger lze dosáhnout při tomto uspořádání velmi působivého zvuku.

Návštěva této kapitoly bych se chtěl ještě zmínit o tomto druhu snímačů v souvislosti s kytarovými syntezátory. Polyfonní syntezátory zpracovávají zvuk každé struny zvlášť. K tomu se používají právě takové plasticové snímače, jejichž signály se vydávají z kytary několikažilovým káblem. V zahraničí se proto tyto snímače zcela běžně vyrábějí.

Korekční obvody kytar

Korekčních obvodů pro kytary se vyrábí pravděpodobně takové množství typů, kolik je výrobci. Některí výrobci pracují se zapojením snímačů, jiní s článek RC, další dávají přednost elektronickým korektorem. Podle mých zkušeností je ideální spojit některé z uvedených postupů.

Některé snímače (zvláště zahraniční) mají oba vývody vyvedeny jako „živé“ a stínění je zvlášť. Možná zapojení takových snímačů jsou uvedena dále:

zapojení vývodů snímače je na obr. a, cívek 1 a 2 jsou v jednom dvoucívkovém

snímači, na obr. b je zapojení pro tzv. „dual sound“ (dvojitý zvuk) se dvěma páčkovými spínači, elektrické schéma zapojení na spodní části obr. b (poloha prepínače – tla-

čítka – spínače č. 1 – cívek do série, poloha č. 2 – cívek paralelně soufázové pro levou část obrázku, prepínač v pravé části obr.

b přepojuje fázi). Na obr. c je zapojení „single coil“ – jediné cívky opět se dvěma přepínači, v levé části obrázku nakreslený přepínač přehazuje fázi na výstupu při přepínači v pravé části obrázku v poloze 1 (tj. při Př₂ v poloze 1), výstupní signál z cívky 1 nebo 2 se volí přepínačem Př₁, při poloze 2 Př₂. V poloze 1 Př₂ jsou cívky 1 a 2 v sérii se signálem v protifázi, v poloze 2 Př₂ jde na výstup pouze signál jedné z cívek.

Korekční obvod „Dual“ je na obr. d: je-li potenciometr „tón“ v poloze 1 (viz schéma), je cívka 2 zkratována, snímač se chová jako

jednocívkový a vliv kapacity kondenzátoru C je minimální (kondenzátor je připojen jedním vývodem k zemi přes odpor celé odporné dráhy potenciometru „hlas.“). Je-li potenciometr „tón“ v poloze 2, je cívka 2 v sérii s cívou 1, snímač se chová jako dvoucívkový, uplatňuje se plně kondenzátor C („uzemňuje“ signály vyšších kmitočtů).

Obvod „Phase“. Poloha 1 přepínače Př₁ – cívky jsou (obr. e) v sérii, cívka 1 je blíže „země“, 2 – cívky jsou v sérii, blíže „zemi“ je cívka 2. Potenciometr „tón“ pracuje jako v zapojení „dual“.

V současné době se na trhu objevila kytara značky Kramer-Schaller, vyráběná u nás v licenci uvedené firmy. Nástroj má jakostní snímače Al-Ni-Co, potenciometr „volume“ (hlasitost) a čtyři přepínače snímačů (1 dual, 2 singl). Vnitřní zapojení kytary je na obr. f. V polohách a, b přepínače 1 a 2 jsou vyžádany z činnosti „singly“ 1 a 2. Je-li přepínač 4 v poloze b, jsou na výstupu signály ze singlu, pokud jsou zapnuty, a jedna cívka „humBUCKERU“, je-li přepínač 3 v poloze b.

Je-li přepínač 3 v poloze a, jsou na výstupu signály z obou singlu (zapnuty) a snímač 3, humbucker, se chová také jako singl.

Je-li přepínač 4 v poloze a, jsou singly vypnuté a současně je od výstupu odpojen i střední vývod humBUCKERU. Na výstupu je tedy dualový zvuk humBUCKERU.

Je-li přepínač 4 v poloze b a přepínač 3 v poloze b, je na výstupu „dualový humBUCKER“ + oba singly (zapnuty).

U starších osvědčených typů (Fender, Gibson) se kombinují články RC s propojením snímačů. U dvoucívkových snímačů se zkratuje jedna z cívek (pro ziskání vysokých tónů) a u jednocívkových se připojují pasivní korekční články (pro ziskání hlubokých tónů). Na obr. 18a je příklad korekci pro kytary se dvěma jednocívkovými a jedním jednocívkovým snímačem. Dvoucívkový snímač je blíže u kobylky, jednocívkové s korekcí u krku kytary. Páčkový přepínač je

pětipolohový, u nás se však podobný nevyrobí, proto ho nahradíme buď otočným přepínačem, nebo si můžeme podobný přepínač zhotovit sami. Na obr. 18b je zapojení složitéjší, používající několikapaketový otočný přepínač, upravený jako páčkový. Podobné zapojení se vyskytuje u některých kytar Fender. U kytar typu Gibson jsou většinou použity dvoucívkové snímače. Na obr. 19 je příklad zapojení korekci takové kytary.

Přepínače jsou páčkové, Př₁ je třípolohový, při středové poloze tohoto přepínače není zkratována žádná z cívek snímačů. Přepínačem Př₂ volíme snímač, jehož signál se vede na výstup. Zvuk je upravován běžným korektory.

Pokud je na kytaře snímač staršího typu, bývá obvykle problémem získat z něj dostatečně silný signál, potřebný k dalšímu zpracování. Tento jev řeší výrobci různě: bud' vyrábějí snímače s vestavěnými aktivními

Obr. 18. Zapojení korekci pro kytaře se dvěma jednocívkovými a jedním dvoucívkovým snímačem (a), návrh zapojení kytařových snímačů (b) – polohy přepínače: a – na výstup je připojen dual, b – na výstup je připojen dual s jedním zkratovaným vinutím parallelně s prostředním singlem, který je zapojen v protifázi, c – na výstup je připojen singl ve středu, d) na výstup jsou připojeny oba singly parallelně, v protifázi, e) na výstup je připojen singl u krku; úprava přepínače (c) – výrez ve vrchní stěně je takový, aby výše odpovídala pěti přepnutím (tj. zhruba asi 45° pro přepínač dvanáctipolohový) nebo šesti přepnutím pro přepínač 18polohový

Kytarové transmittery (vysílače)

V současné době se na trhu stále častěji objevují nejen bezdrátové mikrofony (tzv. mikroporty), ale i bezdrátové „krabičky“ pro kytaristy. Takovou „krabičku“ si kytarista zavěší na opasek nebo popruh kytary a od kytary do ní přivede signál krátkou šňůrou a spojení je hotovo. Velkou výhodou této koncepce je, že odpadá riziko poškození kabelů od kytary k zesilovači při produkci, a tedy jejich častá výměna. Navíc toto řešení přináší i „elektrické“ výhody, neboť dlouhý kabel znamená vždy značnou kapacitu, připojovanou k výstupu předzesilovače, popř. snímače, působící nepravidelně na velikost i jakost signálu; kromě toho čím delší je kabel, tím větší je i nebezpečí nakmitání rušivých signálů, znehodnocujících užitečný signál. Dlouhý kabel znamená i napěťové ztráty signálu. Kytarové vysílače odstraňují všechny tyto nedostatky.

I když jsou dálé uvedeny příklady zapojení vysílačů pro kytary, upozorňujeme, že je třeba se před stavbou seznámit s dosud platnými předpisy pro provozování těchto zařízení, jde především o výkon a kmitočet, na němž se vysílá. Podrobné informace sdělí na požádání všechny pobočky Inspektorátu radiokomunikací v krajských městech.

Na obr. 27 je jednoduchý vysílač s tranzistorem KF173. Trimrem 100 kΩ nastavujeme maximální napětí na vstupu, při němž je ještě přenos nezkreslený. Trimr 4,7 kΩ nastavíme po připojení napájecího napětí tak,

Obr. 27. Jednoduchý vysílač s tranzistorem KF173

aby se rozkmital oscilátor (to se projeví podstatným zvětšením odebíraného proudu). Běžný přijímač VKV nastavíme asi na kmitočet 72 MHz a na cívku vysílače začneme poklepávat nekovovou tyčinkou. Přijímač přeladujeme tak dlouho, až se z jeho reproduktoru ozve zvuk, odpovídající tomuto poklepávání. Jakmile poklepávání v přijímači zachytíme, doladíme odporný trimr 4,7 kΩ tak, aby při nulovém vstupním signálu do vysílače měl přijímač co nejméní šum a aby byl přenos přitom nezkreslený. Je-li cívka mikrofonická, zalijeme ji do vosku a na vstup vysílače přivedeme signál. Ten by se měl po doladění trimru 100 kΩ ozvat z přijímače čistě a nezkresleně.

Roztažováním závitů cívky lze vysílač přelaďovat v širokém kmitočtovém rozsahu. Na kmitočtu oscilátoru se samozřejmě podílí

Obr. 29. Vysílač s krystalem [5]

i kondenzátor C. Čím menší má kondenzátor kapacitu, tím výšší je vysílací kmitočet.

Dosáh vysílače lze zvětšit připojením v kabiku na druhý závit cívky od země. Cívka L₁ má 5 závitů drátu CuAg na průměru 1 mm samonosně. Tloušťka drátu by měla být asi 1 mm.

Na obr. 28 je další vysílač, který se v zahraničí používá jako bezdrátový mikrofon. Většina vysílače se skládá z dokonale odstíněného oscilátoru s tranzistorem T₁. K oscilátoru je navázán zesilovací stupeň. Toto uspořádání zajišťuje dobrou stabilitu kmitočtu a minimální vyuzařování signálů vyšších harmonických kmitočtů. Vysílací kmitočet lze měnit v okolí 150 MHz trimrem C₂, 30 pF. Zesilovač modulátoru používá tranzistory KC508, má velký vstupní odpor, proto minimálně zatěžuje výstup z kytary. Slouží tedy jako kytarový předzesilovač. Zvuk předzesilovače s velkým vstupním odporem je ostrý, s rychlým náběhem, nechybějí ani výšší kmitočty.

Kmitočtovou modulaci základního signálu zabezpečuje varikap KA213. Zdvih lze nastavovat kapacitním trimrem C₁, 10 pF. Ke zvětšení dosahu vysílače lze na výstup, laděný kapacitním trimrem C₃, 30 pF, připojit čtvrtivlnou anténu.

Cívka L₁ má 2,5 závitů drátu CuAg samonosně na Ø 5 mm, tloušťka drátu je 1 mm. Odbočka je na 12. mm délky drátu, měřeno od zemního konca.

Cívka L₂ je navinuta na třmenu tvaru U o rozměrech 18×15 mm drátem CuAg o průměru 1,5 mm.

Varikap by měl mít při napětí 30 V kapacitu asi 3,8 až 5,5 pF; poměr C₃ v/C₃₀ v by měl být přibližně 2,4 až 2,7.

Další zapojení pracuje s krystalem na kmitočtu 145 MHz. Kmitočet krystalu je 72,5 MHz, dvoustupňový vysílač má výkon 30 mW při napájení 9 V, výstup na anténu má impedanci 60 Ω. Odebíraný proud je asi 20 mA. Vysílač pracuje s výkřemkovými tranzistory typu BSX29, KSY..., TR..., KWF....

V díle vysílače s tranzistorem T₁ pracuje jako oscilátor v zapojení SB. Pracovní bod tranzistoru je nastaven rezistory R₁ a R₂. Proud báze je omezen rezistorem R₃, kterým je dostatečně stabilizován celý obvod. Kondenzátor C₁ vysokofrekvenčně blokuje bázi T₁. Laděný obvod je navržen s ohledem na kmitočet krystalu; musí být nastaven velmi pečlivě. Tlumivka T₁ je zkratem pro výkřemkový efekt.

Obr. 28. Vysílač, používaný v zahraničí jako bezdrátový mikrofon [4]

dený“ konec laděného obvodu je uzemněn přes kondenzátor C₃.

Signál z oscilátoru se vede na zdvojovač kmitočtu – koncový stupeň vysílače. Obě funkce zastavá obvod tranzistoru T₂. Jeho pracovní bod se nastavuje rezistorem R₄. Modulační signál se zavádí na kolektor druhého tranzistoru přes transformátor Tr₁. Tlumivka T₂ slouží k oddělení modulačního a výkřemkového signálu. Veľký vstupní odpor koncového stupně vysílače se transformuje cívkou L₃ na 60 Ω. Zdírka ZD je tvořena např. souosým konektorem.

Maximální napájecí napětí je 15 V. Při tomto napětí je výkon vysílače asi 100 mW. Pro tento výkon však musíme tranzistory opatřit chladiči. Vysílač je na obr. 29.

Cívka L₁ má indukčnost 0,4 μH, je navinuta drátem CuAg o Ø 1 mm na průměru 8 mm samonosně, má 7,5 závitu s odbočkou na 2,5. závit.

Cívka L₂ je navinuta stejným drátem, její indukčnost je 0,2 μH, má 3,5 závitu na průměru 8 mm.

Cívka L₃ je tvořena jedním závitem drátem o Ø 0,5 mm v bužírce, je umístěna uvnitř cívky L₂.

Transformátor Tr₁ volíme co nejmenších rozměrů, zvolený typ je vhodné odzkoušet pro různá vstupní napětí (modulaci).

Signály uvedených vysílačů lze zachytit na tranzistorových přijímačích, popř. na přijímačích, jejichž stavba byla již mnohokrát popsána v naší odborné literatuře. Znovu upozorňujeme na předpisy, které je třeba již před stavbou prostudovat – jde o vysílače zařízení, jehož zhotovení vyžaduje souhlas Inspektorátu radiokomunikací!

Kytarové efekty

Kytarové efekty ovlivňují zvuk kytary. Efektová zařízení lze rozdělit v zásadě na dvě hlavní skupiny: na analogové a digitální. Mezi analogové „efekty“ patří všechny boostery, fuzzy, distortiony, kvákadla, phasery, generátory obálky, octavery, modulátory, vibráta, tremola, Leslie-efekty... Mezi digitální efekty patří např. delay, echo, flanger, expander i kytarové syntezátory nejrůznějších konstrukcí. Nejprve tedy k analogovým efektům.

Mezi nejpoužívanější efekty patří boostery, fuzzy a distortiony, pracující na principu omezování amplitudy kmitočtu signálu, cílem je získat pravoúhlý průběh signálu. Pravoúhlý signál obsahuje totiž mnoho sudých harmonických kmitočtů a je možno jej snadno upravovat filtry. Kvalita těchto přístrojů je různá – kolísá podle složitosti zapojení (obvykle). Dále budou proto uvedena různá zapojení, od nejjednodušších ke složitějším až po nejsložitější.

Na obr. 30 je tzv. supafuzz. Tento přístroj vyrábí pravoúhlé signály, které jsou upravovány filtrem tvořeným z rezistorů R₁, R₂, R₃ a z kondenzátoru C₁. Se součástkami pří-

Obr. 30. Supafuzz

stroje lze experimentovat, především u filtru. Tranzistory jsou běžné, germaniové nebo křemíkové.

Obr. 31. „Klasický“ fuzz s běžnými nf tranzistory

Na obr. 31 je klasický fuzz s tranzistory KC507. „Fuzzovaný“ signál pravoúhlého průběhu se přivádí z kondenzátoru 1 nF a přičítá se k „čistému“ signálu z kondenzátoru 470 nF. Vzniká zajímavý zvuk, který můžeme dál zpracovávat.

reagovat tehdy, není-li již výstupní signál boosteru dostačující pro správnou funkci děličů. Zesilovač VCA bude popsán v dalším textu.

Na obr. 34 je fuzz s OZ typu 741 (operační zesilovač bez vnitřní kompenzace). Tento fuzz vytváří ze signálu k kytyrám pravoúhlé impulsy na principu ořezávání napěťových špiček diodami. Většina fuzzů má tu nevýhodu, že nemohou být připojeny ke kytarovému snímači s velkou výstupní impedancí. Uvedený nedostatek je v tomto obvodu odstraněn. Emitorový sledovač na vstupu, tvořený tranzistorem T_1 , odděluje obvod fuzzu od vstupního obvodu. Operační zesilovač omezuje signál; omezení lze nastavit potenciometrem P_1 . Začnou-li vést diody D_1 a D_2 , tzn. zvětší-li se signál, vznikne fuzzový efekt.

Na výstupu fuzzu je opět emitorový sledovač, jehož výstupní odpor umožňuje připojit fuzz bez problémů k výkonovému zesilovači.

Na obr. 36 je fuzz s aktivními korekcemi. Pracuje na stejném principu jako předešlo zapojení, navíc jsou v něm vestavěny aktivní korekce, zastoupené potenciometry P_1 a P_2 , které ovlivňují signály na kmitočtech 3 kHz a 6 kHz. Potenciometrem P_3 lze regulovat výstupní napětí, potenciometrem P_2 se nastavuje úroveň zkreslení fuzzu.

Na obr. 37 je booster s velkou citlivostí. Je vhodný pro všechny druhy kytyr. Vstupní signál je veden přes filtr brumu (článek dvojité T). Od vstupního signálu 0,2 mV je signál omezený. Signál z boosteru je velmi dlouhý (až 1,5 minut), avšak dozvívání je ke konci nespojitě. Proto je třeba za tento booster zařadit VCA, který je popsán v dalším textu.

Další efektové doplňky jsou tzv. efektové zdvojovače kmitočtu, občas označované jako „distortiony“. Podstatou těchto efektů je zdvojení (usměrnění) střídavého signá-

Obr. 32. Běžný tranzistorový „booster“

Na obr. 32 je běžný tranzistorový booster. Pracuje na principu přebuzeného zesilovače. Úroveň přebuzení se nastavuje odporovým trimrem 100 kΩ. Barvu zvuku lze měnit potenciometrem P_2 .

Působivý efekt vznikne, zařadíme-li před tento booster aktivní filtr např. podle obr. 55. Při přeladování tohoto filtru vzniká zajímavé „přebuzené“ kvákání.

Na obr. 33 je booster s OZ typu 748 (s vnitřním kompenzačním kondenzátorem). Výhodou tohoto boosteru je možnost plynule přecházet od zkresleného k nezkreslenému signálu. Vhodně volená úroveň výstupního signálu umožňuje připojit za tento booster děličky TTL – pak je ovšem třeba uplatnit v zapojení VCA (voltage controlled amplifier), napětím řízený zesilovač, který bude

Obr. 33. Booster s operačním zesilovačem typu 748

Obr. 34. Fuzz s operačním zesilovačem typu 741 [6]

Obr. 35. Fuzz z obr. 34 signál nepřebuzuje, ale omezuje

lu sinusového průběhu. Dále jsou popsány některé typické druhy těchto zařízení.

Na obr. 38 je zdvojovač, pracující zejména se silnými signály harmonického průběhu, tedy se signály jednotlivých tónů. Akordy jsou po průchodu tímto obvodem zkreslené jako po průchodu boosterem. Symetrie obou

Obr. 36. Fuzz s aktivními korekcemi

Obr. 37. Booster s velkou citlivostí [2]

Obr. 38. Zdvojovač signálu s nastavením symetrie půlvln

půvln harmonického signálu se nastavuje odporovým trimrem $10\text{ k}\Omega$. Oba operační zesilovače jsou napájeny symetrickým napětím $\pm 12\text{ V}$.

Obr. 39. Zdvojovač signálu s můstkovým usměrňovačem [7]

Na obr. 39 je zdvojovač signálu pracující s můstkovým usměrňovačem. Diodový můstek je zapojen v obvodu zpětné vazby operačního zesilovače, takže nelineární přenosová charakteristika diod neovlivňuje průchozí signál ani částečně.

První operační zesilovač (741) zesiluje tóny z kytary. Jeho zesílení se nastavuje trimrem P_1 tak, aby výstupní signál nebyl omezen. Odporovým trimrem se nastavuje úroveň výstupního signálu tak, aby byla stejná jako je vstupní úroveň. Přepínačem P_1 lze výstupní signál přepínat, v horní poloze přepínače je výstupní signál shodný se vstupním, v dolní poloze je na výstupu signál „zdvojený“.

Tento „oktálový posouvač“ signál nejen zdvojuje, ale také mění tvar výstupních kmitočtů. Tón pak na poslech jakoby zvoní a je ostřejší, než tón základní. Tóny např. baskytary po průchodu tímto obvodem znějí jako obyčejná elektrická kytara.

Obr. 40. Zdvojovač na principu celovlnného usměrnění signálu

Další zapojení zdvojovače je na obr. 40. Obvod pracuje na principu celovlnného usměrnění signálu, přitom se výstupní signál pochopitelně zkresluje, což mění jeho barvu vzhledem ke vstupnímu signálu. Obvod je osazen dvojitým operačním zesilovačem typu 1458, lze použít i dva jednoduché operační zesilovače typu 741. První OZ pracuje jako vstupní zesilovač. Jeho zesílení je třeba nastavit tak, aby v bodu A bylo při „úderu“ do strun napětí 4 V. Při tomto napětí je na výstupu druhého operačního zesilovače napětí asi 180 mV. Dělič R_1/P_1 upravuje signál tak, že maximální výstupní napětí je asi 80 mV.

Druhý operační zesilovač pracuje tak, že záporné půvlny vstupního signálu za D_1 jsou vedeny na invertující vstup, takže se na výstupu OZ objeví jako impulzy kladné polarity. Kladné impulsy za diodou D_2 přejdou na výstup operačního zesilovače bez změny polarity. Princip činnosti obvodu je zřejmý z obr. 41. Pokud bychom chtěli, aby měl výstupní signál menší počet signálů harmo-

Obr. 41. Princip činnosti zdvojovače z obr. 40

Fázovací jednotka s tranzistory KC507 je na obr. 42. Zapojení obsahuje tři fázovací stupně a je navíc doplněno směšovačem upraveným signálů. Funkci proměnných rezistorů, které nastavují úroveň fázování, zastávají fotorezistory. Toto „vibrátor“ je vhodné jak pro elektronické, tak pro elektrofonické

Obr. 43. LFO, pomaluběžný oscilátor

Značné oblíb kytaristů se těší stále fázovací obvody, tzv.

Phasery

Phasery pracují na principu smíchání dvou signálů, přičemž jeden je oproti druhému fázově posunut. Vzniká efekt, zvukově podobný Leslie-efektu. Pokud signál fázově posunuté a fázově neposunuté nesmícháme, ale vvedeme je na stereofonní vstup zesilovače, získáme tzv. stereo-phaser, který ze vstupního monofonního signálu vytvoří dva vzájemně rozdílné signály, z nichž jeden je reprodukován levým a druhý pravým kanálem. To má za následek, že vznikne možný dojem prostorovosti.

ké nástroje. Nástroje by mely produkovat co nejvíce počet signálů vysokých harmonických kmitočtů, které pak po průchodu tímto fázovacím vytvoří velmi intenzívní fázovací efekt, známý také pod názvy „Small Stone“ či „Efekt hřebenového filtru“. Modulační signál pro fotorezistory získáme z pomaluběžného oscilátoru podle obr. 43.

Fázovacích článků lze zařadit několik za sebe. Potenciometry $10\text{ k}\Omega$ volíme měcháční jednotlivě fázově posunutých signálů ve výstupním signálu.

Oscilátor dodává signály od kmitočtu 1 Hz do 20 Hz. Kmitočet lze měnit v tomto rozmezí tandemovým potenciometrem P_1 , hloubku modulace ovlivňuje nastavení potenciometru P_2 .

Obr. 42. Fázovací jednotka s tranzistory typu KC507

Obr. 44. Složitější zapojení efektu „phasor“ [8]

Poněkud složitější obvod je na obr. 44. Operační zesilovač OZ₁ pracuje jako vstupní zesilovač s velkou impedancí. Na výstup zařízení (výstup OZ₂) jsou přivedeny jak nesfázovaný, tak sfázovaný signál. Fázovací obvod je tvořen šesti operačními zesilovači (jednotlivými částmi TL084). Tranzistory FET plní funkci napěťové řízeného odporu. Čím větší bude odpor těchto tranzistorů, tím menší bude fázový posuv. Odporovým trimrem P₄ ve zpětné vazbě OZ lze nastavit potřebnou výstupní úroveň signálu.

V generátoru signálu pravouhlého průběhu (ve spodní části obr. 44) je použit dvojitý operační zesilovač typu 1458. První OZ pracuje jako neinvertující zesilovač (klopový obvod), druhý OZ pracuje jako integrátor. Velikost kmitočtu se řídí potenciometrem P₁. Přepínačem P₁ lze volit modulaci fázového můstku bud' tímto generátorem nebo ručně (pomocí P₂). Odporovým trimrem P₃ lze určit poměr mezi fázovým posunutým a fázově neposunutým signálem a tedy i intenzitu efektu.

Dalším velmi oblíbeným efektem je

kruhový modulátor

Kruhovým modulátorem lze získat zvuk charakteristický pro znění kovových předmětů (údery do zvonu, zvonků, kovových tyčí apod.), zejména moduluje-li signál signály vysokých kmitočtů.

Na obr. 45 je jednoduchý modulátor, který se ovládá dvěma potenciometry. Potenciometr P₁ určuje hloubku modulace, potenciometr P₂ nastavuje modulační kmitočet (od 10 Hz do 18 kHz). Potenciometrem P₃ se ovládá střída modulačního signálu. Obvod je napájen symetrickým napětím ± 12 V, jako operační zesilovače slouží dvojitý typ 1458.

hradly NAND (4011) se signál přivádí na elektronické spínače (4066). Ze spínačů se tyto signály přivádějí na hradla EXOR (celý pochod se řídí přepínačem P₁). Hradla signálny vyhodnocují a vzniká signál průběhu, který je i sám o sobě zvukově velmi zajímavý. Tímto signálem se moduluje signál na vstupu fázovacího článku.

Zvuk, produkován tímto přístrojem, se při úplné modulaci (lze nastavit potenciometrem P₅) podobá výchozímu signálu jen velmi málo. Zajímavé efekty vzniknou i při smíchání původního signálu se signálem z tohoto přístroje.

Místo oscilátorů podle obr. 46 lze k hradlům připojit napěťově řízené oscilátory (VCO), např. s IO typu 4046, jejichž signál lze různě modulovat (tremola, octavery) signálem z kláves nebo z jiného nástroje. Vznikne pak efekt, který připomíná efekt „metализér“. Zapojení takového přístroje je blokové

Obr. 47. Obvod zvukového efektu, připomínajícího efekt „metализér“

Obr. 48. Zapojení generátoru obálky pro boostery, tvořené Schmittovým obvodem nebo obvodem TTL, pracujícími s nespojité dozívajícími signály

Obr. 45. Jednoduchý modulátor

Na obr. 46 je modulátor, který používá k modulaci hradla typu EXOR. Ze čtyř nezávisle nastavitelných oscilátorů tvořených

Obr. 46. Modulátor s logickými hradly typu EXOR

uvezeno na obr. 47. Čím mají v tomto případě modulační signály vyšší kmitočet, tím je výsledný zvuk srozumitelnější. Oscilátory VCO jsou modulovány signálem LFO (low frequency oscillator), obstarávajícím kmitočtové vibráto jednotlivých VCO. Hloubka modulace VCO signálem se řídí potenciometry P₁' až P₄'. Hloubka modulace VCO signálem se řídí potenciometry P₁ až P₄. Pro tento přístroj je třeba také zesilovač VCA (napěťově řízený zesilovač), který zamezí průniku nespojitých signálů na fázovací článek.

Generátory obálky

U každého syntezátoru či efektového přístroje by neměl chybět generátor obálky (Envelope nebo Attack-Release Generator), který umožňuje vytvořit libovolný průběh signálové dynamiky. Navrhli jsem generátor, vhodný pro připojení k napěťově řízeným zesilovačům (jako tremola) a k napěťově řízeným filtry.

První obvod je určen pro boostery, tvořený Schmittovým klopovým obvodem nebo výstupy obvodů TTL, které pracují s nespojité dozívajícími signály. Kopíruje totiž obálku signálu kytarové struny. Jeho zapojení je na obr. 48.

Mezi body A-B lze zařadit efektový přístroj. Dostatečnou úroveň signálu pro efekt lze nastavit potenciometrem P₁. Body A-B lze též propojit, pak při maximálním zášlepení operačního zesilovače OZ₁ nastává booster-efekt. Do bodu M lze připojit i jiný modulační signál. Odporovým trimrem P₂ se nastavuje ovlivnění VCA (jeho úroveň), tedy jak dlouho bude obálka signálu z kytary ovlivňovat vstupní signál (tedy délku dozívání). Odporovým trimrem P₃ se nastavuje využití VCA, aby jeho výstupní signál nebyl zkreslený a nesymetrický. Odporovým trimrem P₄ se nastavuje úroveň výstupního signálu z efektového obvodu, konečně odporným trimrem P₅ lze nastavit úroveň výstupního signálu ze zesilovače.

Obr. 49. Zvýšení výstupní úrovně generátoru obálky zvětšením kladného napájecího napětí

Obr. 50. Obvod napěťově řízeného zesilovače, doplněný generátory obálek a pomaluběžnými oscilátory

Chceme-li zvětšit úroveň signálu obálky z bodu EP (envelope point), musíme zvětšit odpor rezistoru R₁ (3,3 kΩ); pozor však na přebození obvodu. Chceme-li, aby signál nebyl omezen, aby přesně kopíroval obálku, nesmí překročit výstupní zesílené napětí velikost napájecího napětí. Situace je zjevná z obr. 49. Uroveň signálu EG lze zvětšit při zvětšení napájecího napětí. Tento obvod se nazývá VCA – napěťově řízený zesilovač.

Zapojení, které bylo právě popsáno, pouze kopíruje obálku signálu z kytry. Chceme-li však, aby obvod moduloval signál signálem jiných průběhů, je nutno k obvodu VCA připojit navíc další generátory obálek a pomaluběžné oscilátory (Envelope Generator, EG, a Low Frequency Oscillatator, LFO).

Klasickým zapojením takového generátoru jsou obvody s časovači 555, řízené signálem „gate“ (hradlo, brána). Takový generátor je na obr. 50. Připojuje se na VCA (který byl popsán dříve), ze signálu EP je odvozen hradlovací signál „gate“ a startovací impuls pro časovače. Obvod pracuje takto: Klopový obvod z operačního zesilovače OZ₁ vytvoří z průběhu EG průběh „gate“. Signál tohoto průběhu spouští časovače 555, bude-li spínací „trig. mode“ přepnut do polohy 1. V poloze 2 tohoto spínače jsou časovače spouštěny impulsy z pomaluběžného oscilátoru LFO. Oscilátor LFO je spouštěn buď průběhem „gate“, nebo kmitá samovolně. Signál z LFO je harmonický, trojúhelníkovitého průběhu, jeho úroveň a kmitočet se řídí potenciometrem P₂, popř. P₃. Potenciometrem P₁ se řídí velikost úrovně obálek EG, tedy signál S₁.

Seznam součástek pro generátor EG, deska KS-3

Rezistory (nejlépe TR 151)

R	3,9 kΩ (470 Ω)
R ₁	1 kΩ
R ₂	4,7 kΩ
R ₃	100 kΩ
R ₄	100 Ω
R ₅	120 kΩ
R ₆	100 Ω
R ₇ až R ₁₀	120 kΩ
Potenciometry TP 160 (N – lineární, G – logarithmický)	
P ₂	0,22 MΩ/N
P ₃ , P ₆ , P ₉	10 kΩ/N
P ₄ , P ₇	0,5 MΩ/G
P ₅ , P ₈	2,5 MΩ/G
Kondenzátory	
C ₁ až C ₃	10 nF, TC 237
C ₄	5 μF/10 V
C ₅	10 μF/10 V
C ₆ , C ₇	50 μF/10 V
C	10 nF, TC 237 (82 nF)

Položidlovičové součástky

D ₁ až D ₄	GA501
IO ₁	MH7400
IO ₂ až IO ₄	555
IO ₅	741

Obr. 50a. Deska s plošnými spoji KS-3 (deska Z200) pro část zapojení z obr. 50

Obr. 51. Jednotlivé průběhy signálů z obr. 50

Z LFO vychází signál S₂. Generátor EG₁ vyrábí první obálku signálu z kytary. Náběh a dobeh průběhu (obr. 51) lze řídit potenciometry P₄ a P₅. Výstupní úroveň první obálky (S₃) lze regulovat potenciometrem P₆. Shodně pracuje i EG₂, vyrábějící druhou obálku signálu z kytary. Tento obvod má však navíc i průběh sustain, což znamená, že dobeh signálu (release) se uplatní až po doznamení strny (konec signálu „gate“). Signál z EG₂ se řídí potenciometrem P₉ (úroveň), P₇ a P₈ (náběh, dobeh) a přepínačem P₁ (sustain).

Signály S₁ až S₄ se spojí za rezistory R₈, R₉ a R₁₀ (120 kΩ) a vedou se na vstup VCA nebo na napěťově řízený filtr (VCF).

Průběhy v klíčových místech obvodu jsou na obr. 51. Impuls TTL má mít šířku 50 µs, což zajišťuje odpor rezistoru R a kapacita kondenzátoru C v obvodu generátoru impulsů. Signál LFO (jeho kmitočet) lze vypočítat ze vztahu

$$t = 1,1(R_2 + P_2)C_1, f = 1/t.$$

Pro naše zapojení ze vztahu vyplývá, že mezními kmitočty při minimálním a maximálním odporu odporové dráhy potenciometru P₂ jsou 0,08 Hz a 4 Hz. Kdybychom chtěli kmitočet LFO zvýšit, bylo by třeba změnit

kapacitu kondenzátoru. Pro C₁ = 10 µF jsou mezními kmitočty 0,4 Hz a 19 Hz.

Pokud jde o konstrukční řešení, nevhodnější je stavět tato zařízení na deskách s plošnými spoji. Příklad zapojení generátoru EG je na obr. 50a. Na desce jsou vyznačeny i všechny připojovací body a místa, z nichž lze snímat průběhy rozhodujících signálů.

Výhodou zapojení z obr. 50 je i to, že s ním lze úspěšně experimentovat: výstupy z jednotlivých generátorů obálky můžeme vyvést také z bodů před potenciometry P₁, P₃, P₆ a P₉ a kromě modulace VCA je použit i pro modulaci VCF, phaseru, či některého z digitálních efektů. To vše závisí na fantazii zájemce.

Nastavíme-li generátor EG₁ na velmi pomalý náběh a zařadíme-li za něj klopový obvod s OZ, např. podle OZ₁ na obr. 50, můžeme získat zpožděný průběh „gate 2“, tento signál pak může s nastavitelným zpožděním spouštět další generátory EG. Blokové schéma a průběhy signálu takového zpožďovacího členu jsou na obr. 52.

Protože spojení všech obálek dá dohromady signál s dosti dlouhým trváním, nemí obvykle tón z kytary natolik dlouhý, aby ho mohli signálem obálek modulovat (kromě

tónu zpětné vazby, kterou můžeme udržovat libovolně dlouho). Proto je vhodnější dodávat za tento generátor obálek signál např. z klávesových nástrojů.

Popsaný generátor obálek s doplňkovými efekty (VCF, phaser, ...) lze použít u klávesových syntezátorů k efektům srovnatelným s efekty ze syntezátorů zahraničních výrob-

ců. Najde-li se zájemce, toužící po číslicově řízeném generátoru AR – generátoru EG či po číslicově řízeném syntetizéru, rád bych upozornil na možnost použít „číslicově řízený odpor“. Tvoří ho analogový multiplexer AMX, který pracuje jako odporový dělič. Jeho zapojení je na obr. 53. AMX jako proměnný odpor je na obr. 54.

Obr. 53. Zapojení AMX jako odporového děliče

K obr. 53: Pokud na adresovací vstupy přivedeme adresu vstupu S₅, propojí se tento vstup s výstupem a dostaneme dělič, tvořený rezistory R₁ a R₂'. K obr. 54: Pokud na adresovací vstupy přivedeme adresu vstupu S₅, spojí se tento vstup s výstupem D a do cesty signálu je zařazen rezistor R₂' (tj. součet odporu rezistorů R₁ až R₄). Pokud bude adresován propojen výstup D se vstupem S₈, zařadí se do cesty signálu odpor všech rezistorů R₁ až R₇ (tj. R₁). Podle potřebného odporu R₁', lze skládat jednotlivé rezistory různých odporů, navíc můžeme jejich výběrem dosáhnout různých průběhů „potenciometru“ z AMX (lineární, exponenciální, logaritmický), i velmi speciálních. Nevýhodou (asi jedinou) je, že pro vytvoření jednoho takového potenciometru potřebujeme vždy jeden AMX, které jsou u nás ještě

Obr. 52. Blokové schéma s průběhy zpoždovacího členu; U'₁, U'₂ – úroveň překlápení OZ₂, nastavená odporovým trimrem R₁₁ (obr. 50), čím větší úroveň, tím delší překlápení. Čím delší je attack a decay, tím delší je průběh GATE₂

Obr. 54. Zapojení AMX jako proměnného odporu

relativně drahé (MACO8 - 215,- Kčs, MAC16 - 150,- Kčs). Podle potřebných úrovní můžeme použít buď osmi nebo šestnáctistupové multiplexery.

Ještě bych se rád vrátil k využití VCA a EG a VCF. Na vstup VCA je možno připojit také šumový generátor (případně i na vstup VCF), který modulujeme generátorem EG. Potom můžeme imitovat „úderem“ do strun výbuchy, hrom, svíšení blesků, výtruziny, přelet proudové stíhačky, mořský příboj, či různé bicí nástroje (tleskače, bonga, pady). Při modulaci šumu signálem o kmitočtu asi 30 Hz vznikne zvuk motorového letadla, zvláště věrný při použití CF (napěťové řízeného filtru). S VCF a generátorem EG dosahujeme zvuku bublajícího potůčku, kapk, dopadajících na různě tlumící povrchy, či „čurající“ proud vody. Spojí-li se uvedené zvuky se „stereo chorusem“ či „hallem“ nebo efektem „delay“ (což jsou obměny zpožďovacích zařízení), vzniknou krásné a působivé efekty. Signál z kytry můžeme míchat se zvukem příboje, přebuzenou (metalovou) kytry se zvukem hromu či vichřice apod.

Filtry

jsou dalším důležitým článkem kytarových efektů, ať jsou již řízeny ručně nebo napěťově. Filtry upravují signál pokud jde o jejich kmitočtové spektrum, přičemž vznikají efekty známé jako „wah-wah“ u kvákadla či známé bublání či syčení u klávesových „mogogů“ či zvuků motorového letadla u „phase-rů“. Na obr. 55 je klasický, ručně ovládaný

Obr. 55. Klasický, ručně ovládaný filtr typu pásmová propust

filtr typu pásmová propust. Jak již vyplývá z názvu, filtr propouští jen určitou část kmitočtového spektra příslušného signálu. Změnou kapacit kondenzátorů C a odporu potenciometru P lze měnit rezonanční kmitočet filtru. Filtr na obr. 55 pracuje asi od 3 kHz. Operační zesilovač může být jakýkoli, nejlépe však používá typy MAC155 nebo MAA741. S pevnými kondenzátory C lze rezonanční kmitočet filtru měnit změnou nastavení P (filt se „ladí“).

Velmi vtipné řešení filtru je na obr. 56. Filtr využívá vnitřní kmitočtové kompenzace ope-

Obr. 56. Vtipné řešení filtru

račního zesilovače typu 748. Přeladování tohoto filtru silně ovlivňuje kmitočtovou charakteristiku. Filtr se přeladuje kondenzátorovým trimrem 30 pF. Na stejném principu lze zkonstruovat i jednoduché a jakostní kvákadlo ke kytaře, aniž bychom museli často vyměňovat opotřebovaný potenciometr. Přeladovací kondenzátor, pokud je umístěn ve vyhovujícím krytu, je prakticky nezničitelný.

Obr. 57. Filtr SVF (state variable filter), filtr s přeladitelným základním kmitočtem

ný; navíc má-li kondenzátor větší kapacitu, stačí pro účinný efekt jen malé otočení hřídele kondenzátoru (v tomto případě např. ladíciho ze starých rozhlasových přijímačů).

Dalším příkladem častěji používaného filtru je tzv. filtr SVF (State Variable Filter), tedy filtr s přeladitelným základním kmitočtem. Tento filtr se používá u některých kytarových aparatur COMBO zahraničních firem. SVF má dva vstupy, vstup high je pro vstup signálů velkých úrovní, vstup low pro signály s malými úrovněmi (obr. 57). Odporovým trimrem R_1 se nastavuje základní zesílení tak, aby výstupní signál ze SVF nebyl zkreslený. Potenciometry HIGH, MIDDLE a BASS se nastavují podél hlubokých, středních a vysokých tónů ve výstupním signálu. Potenciometrem SVF LEVEL se nastavuje velikost výstupního signálu z SVF. Dvojitý potenciometr CUTOFF předává základní rezonanční kmitočet filtru, a to směrem k vy-

Kdybychom chtěli tento filtr ovlivňovat signálem z generátoru obálky, můžeme místo tandemového potenciometru použít dva fotorezistory, osvětlované jednou svítivou diodou, popř. dva polem řízené tranzistory. Způsob ovlivňování filtru je zcela v rukou případných zájemců o toto zařízení.

Filtr SVF lze osadit jakýmkoli operačním zesilovačem, nejvhodnější jsou typy s velkým vstupním odporem (se vstupními tranzistory J-FET), tedy typu 084, 082, 074, 072, MAC155 až 7, lze však použít i typy 1458 (741). Několikanásobné typy operačních zesilovačů jsou vhodnější z hlediska použití menšího počtu obvodů, které jsou u nás stále ještě velmi drahé.

Pravděpodobně nejdokonalejším filtrem, u něhož lze řídit rozsah přeladění, rezonanční kmitočet a jakost filtru, je tzv. žebříčkový filtr Moog. Filtr pracuje takto (obr. 58): Na zdířku ENV se přivedou signály S_1 , S_2 , S_3

Obr. 58. Žebříčkový filtr Moog

a S_4 z generátoru EG (obr. 50). Potenciometry CUTOFF se pak mění napětí, v kterém se filtr přeladuje v celém spektru slyšitelných kmitočtů. Potenciometrem RANGE určujeme horní možnou mez, po níž lze filtr signálem z EG přeladit. Jakost filtru se ovlivňuje potenciometrem RESONANCE a odporovým trimrem „max. Q“. Potenciometrem se ovlivňuje rezonance filtru nezávisle na nastaveném kmitočtu. Odporovým trimrem R_1 se vlastně určuje maximální možné změny signálu potenciometrem RESONANCE.

Protože na nastavení R_1 závisí do značné míry vlastnosti filtru, je vhodné jeho nastavení věnovat patřičnou pozornost. Ideálně se

R_1 nastavuje takto: Potenciometr RESONANCE nastavíme na maximální jakost filtru, což se projeví nejintenzívnejším „kvákáním“ při otáčení hřídelem potenciometru CUTOFF. Odpovídající trim pak nastavujeme tak dlouho, až se filtr samovolně rozkmitá na rezonanční kmitočtu. Potenciometrem RESONANCE máme nyní možnost regulovat jakost filtru od nulové (filtr propouštějící celý signál bez zlepšení) až po maximální (filtr se samovolně rozkmitává v rytme kmitočtu signálu z generátoru EG). Přivedeme-li na rozkmitaný filtr modulační signál o kmitočtu 4 Hz (na zdířku ENV), vzniká typický bublavý hvízdot, známý ze syntezátoru MOOG. Odpovídající trimem R_2 se nastavuje vhodné výstupní napětí z filtru.

Jednoduchý kytarový syntezátor

Ze zapojení, která byla dosud uvedena, lze sestavit jednoduchý kytarový syntezátor, který uspokojí i náročné uživatele. Tímto přístrojem lze dosáhnout nejen výsledného zvuku, jaký mají „klasické“ nástroje, ale i vytvářet různé zvukové „kreace“. Syntezátor bude obsahovat: dva kmitočtové expander, řízené společným signálem (avšak s nezávislými výstupy), dodávající signály 4 oktať (směrem k nízkým kmitočtům) pravoúhlému průběhu, generátor šumu, 3 generátory obálek, obsluhující oba expander a generátor šumu, 3 VCF, obsluhované generátory EG a filtrující signály expanderů a generátoru šumu, a konečně kruhový modulátor. Protože jde o analogový syntezátor, nemáme možnost přeladovat kmitočet expanderů, můžeme pouze před vstupem druhého expanderu zařadit děličku, která posune (směrem dolů) kmitočet o určitý interval, nebo do syntezátoru zařadit VCO (napětím řízený oscilátor), s nímž však bývají u těchto zařízení problémy vzhledem k nestabilitě kmitočtu při dozvívání signálu ze struny.

Popsaný syntezátor produkuje zvuky srovnatelné s některými zvuky syntezátoru KORG Poly 800.

Na závér tohoto článku uvedu některé kombinace úrovní jednotlivých dílů syntezátoru, imitujičí nebo vyrábějíci zajímavé zvuky či nástroje.

Zařadíme-li za tento syntetizér (syntezátor) obvody pro digitální efekty (delay, chorus, harmoniser), získáme kvalitní „nástroj“, velmi vhodný i k experimentování. Vzhledem k velkému počtu nastavovaných prvků by bylo samozřejmě lepší, kdyby bylo možné parametry přístroje nastavovat pomocí dráve uvedených číslicově řízených potenciometrů. Pak by se parametry určitých zvuků zakódovaly pod určité číslo (adresu) a to by se uložilo do paměti počítače či na disketu. Tento způsob zapojování obvodů ovšem

Obr. 60. Blok syntezátoru, umístěný na desce s plošnými spoji KS-1 (deská Z201) – vstupní zesilovač, generátory průběhu S_1 a GATE, kytarový korektor a dvouoktačové děliče

Obr. 60a. Deska s plošnými spoji pro zapojení z obr. 60 (Z201)

Obr. 59. Blokové schéma syntezátoru

výzaduje již nejen značnou praxi, ale i dobré znalosti v oboru hardware i software počítačů – což bohužel není můj obor. Proto by se zájemce asi neobešel bez konzultací s odborníkem.

Jednotlivé bloky syntezátoru lze samozřejmě kombinovat, přidávat či ubírat, vše podle potřeby hudebníka. Proto uvedu možné díly syntezátoru jednotlivě i s deskami s plošnými spoji – z nich si bude pak každý moci vybrat přístroje nebo obvody podle potřeby.

Blokové schéma syntezátoru je na obr. 59. Vstupní zesilovač upravuje signál pro obě děličky (octavery), kytarový zesilovač a generátory obálek. Generátory obálek EG1, až EG3, spuštěné buď signálem z kytary nebo LFO, modulují VCF1 až VCF3 (napětím řízeným).

Seznam součástek bloku podle obr. 60

Kondenzátory

C ₁	330 nF, TC 181 (TGL)
C ₂	100 pF, TK 764
C ₃	220 nF, TC 181 (TGL)
C ₄	15 nF, TK 756
C ₅ , C ₆	nepoužity
C ₇	20 μ F/15 V
C ₈	56 nF, TC 181
C ₉	5,6 nF, TC 237
C ₁₀	22 nF, TC 237
C ₁₁	4,7 nF, TC 237
C ₁₂	1 nF, TGL ...
C ₁₃	100 pF, TK 754
C ₁₄	5 μ F/15 V

Rezistory TR 151

R ₁ , R ₄	10 k Ω
R ₂ , R ₅	0,47 M Ω
R ₃	4,7 k Ω
R ₆	2,2 k Ω
R ₇	1 k Ω
R ₈	8,2 k Ω
R ₉	33 k Ω
R ₁₀	0,82 M Ω
R ₁₁	39 k Ω
R ₁₂ , R ₁₃	15 k Ω
R ₁₄	3,3 k Ω
R ₁₅ až R ₁₇	1,2 k Ω
R ₁₈ až R ₂₀	10 k Ω
R ₂₁	3,3 k Ω
R ₂₂	1,8 k Ω
R ₂₃	270 Ω
R ₂₄	1 k Ω
R ₂₅ až R ₃₄	47 k Ω

Potenciometry (pro oba octavery) a odporové trimry

P ₁ až P ₅	10 × 0,22 M Ω /N, TP 640
P _{1k} , P _{2k}	0,1 M Ω /N, TP 160
P _{3k}	0,5 M Ω /N, TP 160
P _{4k}	0,1 M Ω , TP 041 (095)
P _{5k}	10 k Ω , TP 041 (095)

Polovodičové součástky

D ₁ až D ₄	KA261
D ₅	LED (např. LQ110)
IO ₁ , IO ₂	MH7493
IO ₃ , IO ₄	MH7400
IO ₅ až IO ₇	TL082 (MA1458)

kytarový zesilovač (korektor) nebo octaver2. Všechny čtyři signály, octave 1, octave 2, kytarový zesilovač a generátor šumu se směšují na vstupu kruhového modulátoru KM, kde je možno signál modulovat jiným signálem o frekvenci 10 Hz až 15 kHz, tedy vytvářet zvukové kreace podobné znění kovových předmětů. Odtud jde pak signál na výstup.

První konstrukční blok syntezátoru je na obr. 60, skládá se ze vstupního zesilovače, generátoru signálu S₁ a GATE, obsluhujících generátory EG, z kytarového korektoru a z dvou oktačních děliček, produkujících jednotlivé oktače tónu pro octavery. Vlastní octavery jsou složeny z IO MH7400, 7493 a z potenciometrů P₁ až P₁₀. Tlačítka Tl₁ a Tl₂ můžeme využít k změně děličky. Na výstup pak postupuje pouze signál z R₂₅ (tedy booster). Přepínačem P_{1a,b} se připojuje výstup kytarového korektoru buď k VCF₂ (místo octavera 2), nebo na kruhový modulátor.

Deska s plošnými spoji tohoto bloku (KS-1) je na obr. 60a.

Dalším blokem syntezátoru je napěťově řízený zesilovač 1 (VCA₁) a napěťově řízený filtr (VCF₁), shodný s blokem VCA₂, VCF₂ na obr. 61.

Parametry napěťově řízeného zesilovače se pevně nastavují trimry R₁₄, R₁₃ a R₁₅. Zesilovače VCA₁ (VCA₂) nastavujeme při maximálním signálu z octavera tak, aby se při zmenšení signálu z kyty podmez, když ještě octaver produkuje průběhy TTL, zmenší hlasitost signálu z VCA na minimum. Tím zabráníme průniku nespojitých signálů na výstup VCA. Odpovídající trimrem R₁₄ se ur-

Obr. 61. Blok syntezátoru, umístěný na desce s plošnými spoji KS-2 (deska Z202) – napěťově řízený zesilovač a filtry

Seznam součástek

Generátor šumu (deska KS-5)

Resistory (TR 151)

R ₁	12 kΩ
R ₂	33 kΩ
R ₃	0,15 MΩ
R ₄	220 Ω
R ₁₉	4,7 kΩ, odporový trimr TP 040 (095)

Kondenzátory

C ₁	470 nF, TC 181 (TGL)
----------------	----------------------

Potenciometry

P ₁	50 kΩ/N, TP 160
P ₂	10 kΩN, TP 160

Polovodičové součástky

T	KC508
---	-------

OZ	MAA741
----	--------

Modulátor + výstupní zesilovač (deska KS-4)

Resistory (TR 151)

R ₁ , R ₂	47 kΩ
R ₃ , R ₄	0,1 MΩ, 1%
R ₅	1,5 kΩ
R ₆	1 kΩ
R ₇	2,2 kΩ
R ₈	4,7 kΩ
R ₉ až R ₁₂	8,2 kΩ
R ₁₃	1,2 kΩ

Odporové trimry

R ₁₇	4,7 kΩ, TP 040 (095)
R ₁₈	0,1 MΩ, TP 040 (095)

Potenciometry

P ₁	10 kΩ/N, TP 160
P ₂	0,5 MΩ/G, TP 280
P ₃ až P ₆	0,5 MΩ/N, TP 160

Kondenzátory

C ₁	1 μF, TC 215
C ₂	20 μF/15 V
C ₃	15 nF, TC 237
C ₄	22 nF, TC 237
C ₅	33 nF, TC 237
C ₆	47 nF, TC 237

Polovodičové součástky

D ₁	KA261
LED	LQ110 i jiné typy
IO ₁ až IO ₃	IO34011
IO ₄	4066
IO ₅	MA1458 (TL082)
IO ₆	4030

Obr. 61a. Deska s plošnými spoji pro zapojení z obr. 61 (Z203) (místo C₅ jsem použil R₁₆; C₅ je přemístěn, nejlépe pod T₄)

Obr. 62. Generátor šumu pro syntezátor

Obr. 62a. Deska s plošnými spoji KS-5 (deska Z204) zapojení z obr. 62

Obr. 63. Kruhový modulátor syntezátoru

čuje mezi zesílení VCA tak, aby výstupní signál na VCF₁ (VCF₂) nebyl zkreslen. Trimrem „max. Q“ nastavujeme začátek samovolného kmitání VCF při potenciometru RESONANCE na maximu, potenciometrem LEVEL₂ (LEVEL₂) absolutní velikost signálu z celého bloku octaver-VCA-VCF. VCA₁ i VCA₂ jsou řízeny signálem S₁. Potenciometry RANGE a CUTOFF – jejich činnost jsem popsal již v předchozím textu. T₁ až T₇ jsou dvojitě tranzistory KC810.

Celý blok je na desce s plošnými spoji podle obr. 61a.

Dalším blokem syntezátoru je generátor šumu na obr. 62. Šumový signál se získává zesílením šumu přechodu báze-emitor běžného tranzistoru KC508. Šum přechodu se zesiluje operačním zesilovačem typu 741. Zesílení signálu je nastaveno na zvolenou mezi odporovým trimrem R₁₉. VCF₃ (napřevě řízený filtr), zařazený za tento generátor šumu, je shodný s VCF₁, VCF₂. Z VCF₃ se pak odeberá signál o úrovni LEVEL₃.

Jakost a zabarvení šumu generovaného obvodem podle obr. 62 určuje nastavení potenciometru Q ŠUMU (Noise quality). Přes tento potenciometr je napájen tranzistor, potenciometr je zapojen jako proměnný odpór.

Signály LEVEL₁ až LEVEL₄ jsou na konec smíchány a pokračují na společný modulátor KM, v němž jsou buď modulovány kruhovým modulátorem nebo procházejí na výstup bez změny. Jsou-li modulovány, má výsledný zvuk „kovový“ charakter (úder do tyče nebo sklenice). Schéma kruhového modulátoru je na obr. 63.

Deska s plošnými spoji generátoru šumu je na obr. 62a, deska s plošnými spoji kruhového modulátoru je na obr. 63a.

Tlačítkem T₁ se vyřazuje ze činnosti modulační signál. Přepne-li se T_{1a} na -U_b, rozpojí T_{1b} výstup EXOR od D₁. Potenciometry RATE 1 až RATE 4 můžeme určit rezonanční kmitočty jednotlivých generátorů, potenciometr KM LEVEL určuje intenzitu modulačního signálu oscilátorů. Hradla EXOR (4030) vytvářejí ze signálů RATE signály nejrůznějších průběhů. Některé z těchto průběhů jsou na obr. 64. Neobvyklý tón vznikne smíšením ovlivněného a neovlivněného signálu.

Posledním blokem syntezátoru jsou generátory EG (envelope generator), tedy generátory obálky. Všechny generátory EG jsou řízeny jediným signálem GATE z desky KS-1. Základní průběhy signálu z tohoto generátoru jsou na obr. 64. Cást impulsu „attack“ (náběh) a „decay“ (pokles, doběh) je generována časovačem EG_{1a}, „Break point“ (bod zlomu, úniku) určuje okamžik, kdy prů-

Obr. 64. Základní signály generátoru obálky a jejich průběhy

běh „slope“ (svah) začíná nahrazovat konec zmenšujícího se „decay“. Tento bod lze určit nastavením celkové úrovně signálu z EG_{1b} a úrovně části impulsu „decay“ a „slope“. Sustain představuje stálou úrovně impulsu, definovanou signálem GATE. Jakmile zmizí signál GATE (log. 0), skončí „sustain“ a začne „release“ (pokles), který celý impuls ukončí. Celý průběh impulsu lze i měnit (zvlnit) přivedením signálu z LFO (pomaluběžného oscilátoru) trojžáhlíkovitého průběhu. Sustain lze zapojit spínačem SUSTAIN. Pokud sustain vypneme, navazuje část impulsu „release“ přímo na „slope“, nezávisle na signálu GATE. Sustain lze použít nejlépe s klávesovým syntezátorem. Rád bych upozornil, že spínač sustain-öff pracuje jen u signálů s kratším náběhem. U déletrvajících náběhů se C₆ (C₇) nikdy nenabije na napětí potřebné pro překlopení časovače na log. 0.

Dvojitý přepínač TRIG MODE umožňuje nastavit ovlivňování EG buď pomocí LFO, který je pak startován signálem GATE z kytry a cyklicky spouští signály EG_{1a}, EG_{1b}, nebo signálem přímo z kytry; přičemž LFO kmitá samovolně a jeho signál se přičítá k ostatním signálům.

Shodné je i zapojení EG₂ a EG₃. Schéma generátoru EG bylo uvedeno na obr. 50, deska s plošnými spoji na obr. 50a.

Jako ovládací potenciometry syntezátoru jsem zvolil typy TP 160. Jsou menších rozmerů, můžeme je tedy umisťovat na ovládacím panelu blízko u sebe. Tahové potenciometry jsem zvolil pouze pro regulaci oktav u octaverů 1 a 2. Tento způsob ovládání je výhodný z důvodu lepší přehlednosti při volbě oktav. Nevhodou je u tahových potenciometrů nutnost vypilovat drážky u panelu, což je bez použití speciální frézky dosti pracné. Octavery jsou z činnosti využívány nožními spínači, nožními spínači se připojuje i kruhový modulátor a vnější signál GATE. Návrh čelního panelu syntezátoru je na obr. 65.

Ovládací prvky jsou umístěny podle toho, jak se tvoří tón, zleva doprava a shora dolů,

tedy nejprve první expander a generátor EG₁ s VCF₁, totéž dvakrát, pak zesilovač kytry (korektor), šumový generátor a modulátor KM. Výstup „line out synthetizer“ má výstupní napětí 100 mV. Tento výstup lze zhotovit jako „stereofonní“ nebo využít na pětikolikovou zásuvku signály LEVEL 1 a 4 zvlášť ještě před smicháním.

Některé získatelné zvukové barvy jsou v tab. 1.

Ještě k součástkám: u syntezátoru jsem použil jako operační zesilovače typy MA1458 nebo TL082 (084) – podle toho, co bylo právě na trhu. Seženete-li však čtyřnásobné operační zesilovače, bude třeba upravit desku s plošnými spoji, neboť ta je navržena pro dvojitě OZ. Všechny OZ jsou napájeny napětím ± 12 V, tedy souměrným, číslicovým obvodům napětím 5 V. Místo číslicových obvodů TTL lze použít i obvody MOS řady 4000, podstatně se tím zmenší odběr proudu. V takovém případě by bylo možno zrušit zdroj 5 V a celý přístroj napájet napětím 12 V. To by však vyžadovalo opět upravit nebo znova navrhnut desky s plošnými spoji.

Jednotlivé desky s plošnými spoji jsou pro snadnou montáž opatřeny pájecími očky, která lze občas zakoupit v prodejnách Domácích potřeb. U každého očka je na desce příslušný symbol (Centrofixem). Desky s plošnými spoji jsou „usazeny“ na distanční sloupky z druhé strany subpanelu. Ze strany plošných spojů vedou přívody k potenciometrům. Vrchní část s pájecími očky slouží k měření. Uspořádání je zřejmé z obr. 66.

Přístup k měřicí straně je ze spodu syntezátoru pod odklápacím víkem („pantíky“). Tak jsou umístěny v přístroji všechny desky s plošnými spoji. Tato koncepce je ovšem pouze jednou z možných, desky by bylo možno např. i umístit do levních klávesových hráček typu Vermona či Delicia a tak z nich zhotovit kvalitní syntezátory.

Zdroj napětí pro syntezátor jsem zvolil jako externí, napětí ± 12 V se do přístroje přivádí ze zdírek na zadním panelu, uvnitř

Obr. 63a. Deska s plošnými spoji KS-4 (deska Z205) pro zapojení z obr. 63 (jako R₁, R₂, R₃, R₄ jsou označeny P₃ až P₆, tedy RATE 1 až 4)

Tab. 1. Některé zajímavé zvukové barvy, dosažitelné při použití kytarového syntezátoru

Použivatel může samozřejmě měnit parametry přístroje podle svého vkusu. Kovové znějící tóny modulujeme kruhovým modulátorem a přidáme více šumu (činely), duté znějící zvuky mícháme poměrem oktáv od nejhlušší k nejvyšší, $16/2 = 32/1$, čím nižší oktáva, tím větší úroveň. Za syntezátor je nevhodnější zapojit chorus a delay.

LEV...LEVEL, CUT...CUTOFF, RES...RESONANCE, RAN...RANGE, Q...QUALITY, NL...NOISE LEVEL, ATT...ATTACK, DEC...DECAY, SL...SLOPE, VEL...VELOCITY

Zvukové "hlasy" označené tečkou, jsou nevhodné pro zapojení syntezátoru ke klávesovému nástroji.

Obr. 65. Příklad uspořádání čelního a zadního panelu syntezátoru

Obr. 66. Příklad umístění desek se součástkami

přístroje se stabilizátorem MA7805 odvozuje napětí 5 V pro obvody TTL. Celý zdroj by bylo samořejmě možné umístit i do syntezátoru, dostatek místa by byl např. pod subpanelem octaver 2. Pak bych však doporučoval dobré odstínit siťový transformátor a celý přístroj dobře uzemnit. Napětí 220 V je

třeba přivádět trojitou síťovou šňůrou (tedy přivést i tzv. nulák) a do zadní části panelu přidat zdiřky pojistek.

Digitální efekty

Mezi dnes nejvíce používané efekty patří efekty digitální. Přístroje pro digitální efekty jsou v zahraničí velmi levné a ve většině případů i jakostní. Mezi nejznámější digitální efekty patří např. delay-reverb, chorus, flanger, pitch-shifter nebo různé harmonisery či vocoder. Podstata všech těchto přístrojů je zhruba shodná: signál z kytry (nebo jiného nástroje) se vzorkuje („sampluje“) do paměti a z ní je potom pomocí různých „smyček“ a speciálních obvodů „čten“ s určitým zpožděním (delay-reverb), nebo se mění časová konstanta vzorkovacího kmitočtu (chorus, pitch-shifter), nebo se čte zápis z paměti z různých míst, několikrát za sebe či pozátku. Vznikají tak známé „koktavé“ efekty, známé z různých nahrávek rapových skupin či skupin House-music.

Zvláštností posledně jmenovaných zapojení je, že jestliže se zvyšuje nebo snižuje kmitočet signálu (tedy přeladuje) v důsledku rychlejšího nebo pomalejšího čtení zápisu v paměti, vzniká jev, známý u gramofonových desek, které přehráváme jinou rychlosť, než jakou byl na nich záznam pořízen. Vzniky tedy určitý kmitočtový posuv směrem nahoru či dolů; ten posluchači prozradí, že vysledného zvuku bylo dosaženo uměle.

V dalším textu si popíšeme základní principy zpracování signálu z analogového „delay“, což je přístroj, na jehož principu pracují všechny digitální efekty. Delay zpožďuje signál tím, že ho na vstupu navzorkuje a jednotlivé vzorky postupně připojuje na vstup posuvného registru. Posuvný registr jednotlivé vzorky posouvá v rytmu hodinového (taktovacího) kmitočtu na výstup registru, ovšem s určitým zpožděním, daným dobou průchodu přes registr. Čím více buněk má registr, tím déle trvá průchod signálu registr a tedy tím déle je zpoždění výstupního signálu nebo „ozvěna“, delay, způsobená tímto obvodem. Jednotlivé vzorky signálu se v registru přemisťují v podobě různě velkých nábojů na kondenzátorech (zjednodušeno pro lepší pochopení) pomocí přepínačů – tak vzorky postupují na výstup. Tam se opět skládá z těchto vzorků signál, který se vyhlaďuje dolní propustí. Je-li např. vzorkovací kmitočet 1 kHz a počet buněk v registru 1024 (1 kilobite), bude doba zpoždění vstup–výstup poměrem těchto veličin

$$\tau_{sp} = \frac{1024}{2 \text{ kHz}} \approx 0,50 \text{ s.}$$

Do jmenovatele zlomku se zapisuje dvojnásobek vzorkovacího kmitočtu, neboť při jednom vzorkovacím impulsu se přepojí vzorek pouze na sudé a teprve pak na liché kondenzátory, propojí se tedy vždy dva a dva sou-sední kondenzátory. Pro toto střídavé přepojování jsou třeba hodinové impulsy vzájemně fázově otočené.

Na obr. 67 je znázorněno posouvání náboje směrem na výstup a vzorkování signálu. Důležité je, aby byl průběh ovzorkován alespoň třikrát za půlvlnu – zabrání se tím intermodulačnímu zkreslení. Liché spínače na obr. 67a, S₁, S₃ atd. jsou řízeny hodinovým signálem φ₁ v opačné fázi (obr. 67b). V okamžiku, kdy má hodinový impuls φ₁ logickou úroveň 0, jsou liché spínače rozpojeny a sudé sepnuty (φ₂ má úroveň log. 1). Na C₁ a C₂ je tedy stejný náboj (obr. 67a). Při další půlvlně hodinového signálu je φ₁ = log. 1 a φ₂ = log. 0, proto se náboj, který byl na C₁ a C₂, přemístí na C₃ a na C₁, se přemístí další vzorek ze vstupu (obr. 67c).

Obr. 67. Posouvání náboje a vzorkování signálu; a – spínače jsou řízeny hodinovými signály podle obr. b, c – stav pro další půlvlnu, d – vzorkování signálu

Spínače vregistrech jsou zhotoveny technologií FET, proto na nich nevznikají téměř žádné ztráty signálu (napětí vzorku se nemění). Kondenzátory v registru mají kapacitu řádu v monolitických integrovaných obvodech.

Názorně je vidět zpoždění signálu průchodem registrem na obr. 68.

Obr. 68. Znázornění průběhu zpoždění

Blokové schéma efektu delay je na obr. 69. Čím vyšší je kmitočet delay, tzn. čím vyšší je taktovací kmitočet (hodiny), tím menší je zpoždění signálu, ale tím může být vyšší jeho kmitočet. Pokud signál echo přimícháme na vstup zařízení, vznikne tzv. hall (reverb).

Obr. 69. Blokové schéma efektu „delay“

Bude-li se hodinový signál rozmitat, vzniká kmitočtové vibráto. Přimíchá-li se tento vibrátorový signál k původnímu signálu, vznikne efekt, známý chorus. Pokud signál chorus přivedeme do zpětné vazby a na vstup, získáme dvojnásobný chorus, známý pod označením flanger.

Obr. 70. Blokové schéma efektu „chorus“

Schéma chorusu je blokové na obr. 70, schéma flangeru na obr. 71.

Zvýší-li se prudce po vzorkování signálu kmitočet vzorkovacího signálu, změní se i signál na výstupu (přeladí se do vyšších oktaў). Na tomto principu pracují oktaové posouvače (pitch-shifter). Lépe vybavení zařízení mají možnost předvolby místa (adresy), z něhož můžeme číst obsah registru, případně kterým směrem ho budeme číst a kolikrát. To se však lépe realizuje u číslicových pamětí, které si napěťovou úroveň vzorku převedou na dvojkové číslo a to pak uloží do paměťové buňky.

Touto předvolbou výběru vzniká efekt harmonizer (a vocoder). K nejpoužívanějším obvodům ke zpožďování signálu patří analogová zpožďovací linka (Analog Delay Line) SAD1024 (obr. 72). Tento integrovaný obvod je použit v mnoha různých přístrojích zahraničních firem. Jeho kapacita je 1024 buněk, složených v 2×512 sadách. Používá hodinové signály, vytvářené obvody 4011 a 4013 a má i přepínač pro vnější hodinové signály. Pokud se vnejší hodinový signál rozmití kmitočtově, získáme jako výsledný efekt již zmíněný chorus či flanger.

Z výstupu lze odebrat jak samotný zpožděný signál (výstup reverber), tak směs původního a zpožděného signálu. Zvyšování kmitočtu hodinového signálu zmenšuje zpoždění a naopak.

Přepínačem P₁ lze volit efekty hall nebo chorus (michání zpožděného a nezpožděného signálu). Přepínačem P₂ lze zvětšit intenzitu efektu hall (potenciometrem FEEDBACK – zpětná vazba – nebo FLANGER při

výstupu). Přepínačem P₃ lze vypnout vnitřní hodinový signál. Svítivá dioda signalizuje přítomnost signálu. Jednotlivé odporové trimry slouží k symetrizaci signálu z operačních zesilovačů a k nastavení symetrie jednotlivých výstupních signálů z obvodů SAD1024. Operační zesilovače jsou

původní signál

zpožděný signál +

+původní signál (hall + echo)

typu TL082, OZ₁ je typu 741. Všechny elektrolytické kondenzátory v obvodu jsou tantalové typy. Kanály L₁ a L₂ mají zpoždění posunuté v poměru 1:2. Přepínač P₃ vypíná vnitřní hodinový signál, odporový trimr R_H se

původní signál

zpožděný signál

(chorus)

gen. rozmitání 0,4 až 10 Hz

Obr. 71. Blokové schéma efektu „flanger“

nastavuje tak, aby nebyl obvod zahlcen při potenciometru FEEDBACK nastaveném na maximum.

Vnější hodinový signál lze rozmittat signálem z napěťově řízeného oscilátoru (VCO), např. s 4046, jeho zapojení je na obr. 73. Operační zesilovače (TL082) tvorí pomaloběžný oscilátor, jehož výstupní signál rozmitta signál z VCO.

Zpožďovací obvod může být tvořen i např. posuvnými registry typu AM2533, 2833 nebo MM5058. Signál pro tyto obvody se zpracovává obvykle vzorkovacím převodníkem A/D-D/A typu FX209. Registrů tohoto typu (AM, MM) můžeme řadit za sebou několik, címž získáme delší zpoždění. Jeden registr je pro 1024 bitů. Můžeme např. zařadit za sebou deset registrů a přepínáním (popř. číslicově řízenými spínači) můžeme přivádět na vstup hallu signály s různým zpožděním. Zapojení vývodů těchto registrů je na obr. 74.

Obr. 74. Zapojení vývodů posuvných registrů typu AM2533, AM2833 a MM5058

Obr. 73. Pomaloběžný oscilátor, jehož signálem se rozmittá VCO

Obr. 75. Schematické zapojení převodníku A/D-D/A typu FX209

Schematické zapojení převodníku A/D-D/A je na obr. 75, zapojení hallu s obvody AM (MM) je na obr. 76, kde je i praktické zapojení převodníku FX209. Hall je napájen napětím +5, -12 V (4011, AM2533, popř. 2833) a napětím -12 V (FX209).

- [6] Elektor č. 79-80/1977.
- [7] AR B3/1982.
- [8] Elektor č. 77/1977.
- [9] ST č. 5/1976.

Literatura k první části

- [1] Syrovátko, M.: Zapojení s polovodičovými součástkami. SNTL: Praha 1980.
- [2] Sýkora, R. a kol.: Elektronické hudební nástroje a jejich obvody. SNTL: Praha 1981.
- [3] AR B3/1982.
- [4] Das Elektron International č. 3, 4/1968.
- [5] Funk-Technik č. 2/1969.

Stručné charakteristiky popisovaných efektů

Fuzzy, boostery a distortiony pracují na principu vytváření signálů pravoúhlých průběhů z původních sinusových průběhů. Tyto efekty používají především kytaristé heavy-metalových skupin. Pravděpodobně nejvhodnější jsou úpravy původního signálu distortiony, neboť ty pouze „orežou“ vrsky

Obr. 72. Analogová zpožďovací linka typu SAD1024 a její zapojení

Obr. 76. Zapojení k získání efektu „hall“ s obvody AM2533 (AM2833) nebo MM5058 a převodníky FX209

sinusovek (diodami). Zvuk je pak měkčí, tedy ne tak chrívý jako např. u boosteru.

Zdrojovače kmitočtu používají především baskytaristé. „Zdrojený“ tón basy se obvykle zavádí do boosteru – to kytaristovi umožňuje kromě klasické basové linky podkreslovat jednoduchými akordy sólovou kytaru (zvláště tehdy, je-li v kapele jen jedna).

Fázovací jednotky způsobují spektrální modulaci podobnou Leslie efektu. Nejlépe je PHASER slyšet ve skladbě And the cradle will rock skupiny van Halen. Kytarista Eddie van Halen používá ve starších nahrávkách fázovač velmi často.

Kruhový modulátor používá např. Radim Hladík ve skladbách na desce R. H. + Modrý efekt, kde je na tuto skutečnost upozorněn posluchač textem na obálcce desky. Kovový zvuk modulátoru, připomínající zvon, je nejlépe slyšet na začátku skladby Neznámý genius na albu Mozek skupiny Progress 2.

Jednotlivé efekty **kytarového syntezátora** je možno slyšet u mnoha našich i zahraničních hráčů. Zpomalený náhěb tónu, filtrovaný a s přídavkem šumu (který připomíná flétnu) je nejlépe slyšet ve skladbě Sněžný muž (orchestrálka) na elpičku Bent out of Shape skupiny Rainbow. Na stejně desce používá Richie Blackmore i digitální zdvojovač v orchestrále Kodokoliv. Oktárový posouvač směrem dolů používá spolu s původním zvukem (mix) např. van Halen na desce 5150; na stejně desce lze slyšet i např. signály z filtru VCF, modulované oktávou kytarového tónu (ve skladbě Why can't this be love). „Oktávy dělící“ smíchané s původním signálem používá i kytarista Richie Sambora v sólu skladby You give love a bad name. I v tomto případě je efekt součástí kytarového syntezátoru. Zvláštní způsob přelaďování VCF je použit ve skladbě Livin' on a prayer (skupina Bon Jovi). Kmitočtové spektrum však v tomto případě vzniká v trubici, jejíž ústí je možno odkrývat a tak měnit její rezonanční kmitočet. Uvnitř trubice je mikrofon, z nějž se vede signál do boosteru.

U nás používají kytarový syntezátor např. Radim Hladík (LP „33“), Michal Pavláček (LP Stromboli, Rány, Pražský výběr), Andonis Cicopoulos (LP Stíny výsluní), Miloš Morávek (LP Ostrov země, 3. kniha džungli ...). Zvukové spektrum a možnosti kytarových syntezátorů jsou tak rozmanité, že jen stěží lze rozpoznat, co je zvuk kytary a co klávesového syntezátoru.

Efekty **delay** je slyšet nejlépe ve skladbě M. Morávka Echoes na LP 3. kniha džunglí skupiny Progress 2, **chorus** na LP Rock de

luxe skupiny Katapult. Celá tato deska je vlastní chorus + overdrive. Chorus je na začátku skladby skupiny Iron Maiden Children of the Damned, kde je part „čisté“ kytary, znějící jako kytara dvanáctistrunná.

Ve velké míře používá digitální efekty i Mike Oldfield na svých LP deskách (nepřeberné spektrum různých ozvěn, modulátorů a octaverů).

Poslední článek zvukového efektu

Posledním článkem zvukového efektu je výkonový zesilovač. I zde platí, že zahraniční výrobky jsou v porovnání s našimi „daleko vpředu“, jak technicky, tak designem – a ovšem i cenou. Pokud byste si totiž chtěli opatřit zahraniční výrobek střední třídy (např. pouze COMBO zahraniční firmy s nf výkonem kolem 50 W), pohybovala by se jeho cena kolem 10 000 Kčs, spíše však nad 10 000,- Kčs. Přitom pro průměrného zkušeného technika (i amatéra) není dnes problém takový nf zesilovač zkonastruovat. Uvedu proto několik zapojení výkonových zesilovačů, které stojí za odzkoušení. Jejich vlastnosti jsou přitom po všech stránkách pro použití k kytáre vhodné a uspokojivé. Začnu několika jednoduššími typy, budou však uvedeny i typy složitější a „výkonovější“.

První zapojení (obr. 77) používá doplňkovou dvojici tranzistorů KD607 a KD617. Tranzistory by mely být párované (mely by mít shodné vlastnosti ve zvolených pracovních bodech v mezích asi $\pm 10\%$). Zesilovač má nf výkon (sinus) asi 50 W při impedanci zátěže 4Ω . Lze tedy očekávat, že jeho hudební výkon bude asi 70 W. Rezistor 10Ω , označený ve schématu hvězdičkou, je třeba volit tak, aby při vstupním signálu pod určitou úrovni nebyl výstupní signál zkreslený (v důsledku nedostatečného otevření jednoho nebo obou tranzistorů koncového stupně).

Obr. 77. Nf zesilovač 50 W/4 Ω

Obr. 78. Nf zesilovač – invertor

Pokud bychom chtěli výkonnější zesilovač tohoto typu, můžeme zapojit dva takovéto zesilovače do můstku – tedy tak, aby dva popsané zesilovače pracovaly do společné zátěže (jedné reproduktarové soustavy), přičemž jeden z nich musí mít výstupní signál opačné fáze oproti druhému. Toho lze dosáhnout např. použitím invertoru vstupního signálu pro jeden zesilovač (obr. 78). Odporový trimr $1\text{ M}\Omega$ na vstupu zesilovače je třeba nastavit tak, aby signál v bodech A a B nebyl při jakémkoli úrovni vstupního signálu zkreslený. Na osciloskopu je pak třeba zkonto rovat, jsou-li skutečně signály dostatečně fázově posunuty. Na fázový povrch mají vliv součástky v obou větvích obvodu. Součástky invertoru by mely mít co nejmenší tolerance (především rezistory).

Celý zesilovač v můstkovém zapojení je na obr. 79. Lze z něj odebírat za „optimálních okolností“ (pečlivá práce a nastavení) až 100 W (na zátěži 8Ω) „sinusového“ výkonu, tedy asi až 120 W hudebního výkonu. Použijeme-li reproduktarové soustavy o impedanci 4Ω , lze dosáhnout výkonu až 180 W. Nesmíme ovšem zapomenout, že pro takový výkon musíme mít i odpovídající zdroj napájecího napětí, tzn. zdroj, který je schopen dodat při žádaném napětí ± 27 V proud až 4 A do každé z větví zesilovače; stejně tak nesmíme zapomenout na odpovídající chlazení výkonových tranzistorů.

Vstupní napětí pro jmenovitý výkon je asi 300 mV. Změnou odporu trimru $1\text{ M}\Omega$ v bázi fázovacího tranzistoru KF507 nastavujeme nezkreslené výstupní napětí jak emitorové, tak kolektorové větve. Pro kontrolu fáze výstupních signálů je nejvhodnější dvoukanálový osciloskop.

Další výkonový zesilovací stupeň je na obr. 80. Je převzat z katalogu původního výrobce integrovaného obvodu typu 2020,

Obr. 79. Nf zesilovač v můstkovém zapojení 100 W/8 Ω

Obr. 82. Deska s plošnými spoji zesilovače z obr. 80 (bez výkonových tranzistorů). Obvod 2020 je připájen ze strany spojů až po přípevní chladiče. Chladič nesmí být vodičem napájecích napětí

firmy SGS-ATES, která tento obvod vyrábí pod označením TDA2020; u nás se obvod vyrábí pod označením MDA2020. Zesilovač podle firemních údajů dosahuje při napájecím napětí ± 22 V výkonu až 90 W (± 2 A napájecí proud), v můstkovém zapojení až 180 W.

Budící stupeň zesilovače je tvořen integrovaným obvodem TDA2020, k tomuto stupni je připojena dvojice výkonových tranzistorů typu KD607, KD617, popř. dvojice odpovídajících zahraničních tranzistorů (např. BDW51, BDW52). Tranzistory by měly být párovány.

Dvojice koncových tranzistorů je buzena přes rezistor s odporem 4Ω , z něhož je též odvozen signál pro proudové a výkonové omezení. V omezovacím obvodu se používá rychlá spínací dioda typu 1N4148 (z našich typů lze použít např. diodu typu KA207). Dioda je zapojena anodou na vývod 12 integrovaného obvodu.

Obr. 80. Nf zesilovač s MDA2020 s výkonovými tranzistory

Článek C_3 , R_5 je Boucherotův člen, který zabraňuje rozkmitání zesilovače na nf kmitočtech. Tento článek je třeba připojovat při realizaci zesilovače co nejbliže vývodu integrovaného obvodu (stejně jako filtrační kondenzátory v přívodech napájecího napětí, ty nejsou na schématu zesilovače zakresleny). Návrh desky s plošnými spoji je uveden dále. Desku s plošnými spoji lze připevnit i na chladič, integrovaný obvod je pak ovšem třeba připájet ze strany spojů.

Použijeme-li k realizaci zesilovače naše integrované obvody, tedy MDA2020, je třeba zmenšit napájecí napětí na ± 18 V, neboť některé z integrovaných obvodů při větším napětí (přes 20 V) „pracují jako spinač“, tzn. níčí se.

Na obr. 81 je můstkové zapojení popsaných zesilovačů, v němž je možno dosáhnout nf výkonu až 180 W. Zkreslení u obou druhů popsaných zesilovačů (jak v běžném, tak můstkovém zapojení) by mělo být při maximálním vybuzení menší než 1 %. Zesilovač v můstkovém zapojení pracuje nejlépe do zátěže s dvojnásobnou impedancí oproti běžnému zapojení, tedy do zátěže s impedancí 4Ω .

Na obr. 82 je návrh desky s plošnými spoji pro zesilovač, přesněji pro jeho vstupní část s integrovaným obvodem. Obvod 2020 je připájen ze strany spojů až po důkladném „dotažení“ chladiče dvěma šrouby. Chladič nesmí být vodičem napájecích napětí ani se zemí, ani s kladným nebo záporným pólem napájecího napětí!

Dalším zajímavým a užitečným zapojením je výkonový zesilovač s tranzistory v Darlingtonově zapojení (obr. 83). Lze použít např. naše tranzistory typu KD366B a KD367B. Na vstupu zesilovače je zapojen operační zesi-

lovač, na který navazuje koncový stupeň. Zapojení splňuje náročné požadavky, kladené na výkonové zesilovače (malé zkreslení při maximálním výkonu a kmitočtová charakteristika v mezi 10 až 55 000 Hz v rozmezí ± 1 dB). Tranzistory T_1 a T_2 je třeba vybrat tak, aby jejich napětí U_{CEO} bylo spolehlivě 80 V, T_3 a T_4 musí mít U_{CEO} alespoň 100 V. To však nebude pravděpodobně žádný problém – tranzistory typu KFY mají tak velká závěrná napětí alespoň ze 30 %, tj. zhruba každý třetí.

Jako diody D_{13} a D_{14} lze použít typy KY708 nebo KY710, popř. i jiné z téže řady. Jako diody D_{16} a D_{17} je třeba použít rychlé spínací diody, např. KA222, popř. KA207 nebo i jiné z této řady. Obě dvě Zenerovy diody KZ260/15 vybereme se stejným Zenerovým napětím (je lhostejné, bude-li to 14 nebo 15 V, popř. v okolí téhoto napětí).

Jako operační zesilovač můžeme použít typ MAA501, popř. MAA748 (pak je třeba změnit součástky kmitočtové kompenzace C_7 , R_{17}). Operační zesilovač typu 741 není vhodný. Rezistory R_3 až R_5 jsou na zatížení 1 W, R_9 , R_{12} až R_{14} na zatížení 0,5 W. Rezistory R_{15} a R_{16} jsou navinuty odporovým drátem na tělisku rezistoru 1 W.

Na vstupu zesilovače by bylo možné vyzkoušet i některý z moderních operačních zesilovačů (FET OZ). Tim by se dosáhlo i lepších vlastností zesilovače (zkreslení SID a TIM závislé na rychlosti přeběhu OZ).

Dalším zajímavým zapojením je výkonový zesilovač jednoduchého zapojení se jmenovitým výstupním výkonem minimálně 20 W

Obr. 81. Zesilovač z obr. 80 v můstkovém zapojení

Obr. 83. Nf zesilovač 80 W/8 Ω

Obr. 84. Nf zesilovač 20 W/4 Ω

na obr. 84. Vstupní napětí pro dosažení tohoto výkonu je asi 800 mV.

Koncové tranzistory KD605 není třeba párovat, musí však mít proudový zesilovací činítel při jmenovitém napětí a při proudu $I_E = 4 A$ větší než 50. Odporovým trimrem 33 kΩ se nastavuje napěťová souměrnost výkonového stupně, tj. polovina napájecího napěti na kladném pólu výstupního kondenzátoru (shodné zesílení kladné a záporné půlvlny signálu), a to nejlépe při mírném přebuzení zesilovače. Odporový trimr 2,2 kΩ slouží k nastavení optimální velikosti zpětné vazby, která kompenzuje nelineární zkreslení zesilovače, způsobené zejména odlišným zesílením jeho aktivní části pro zesílení kladné a záporné půlvlny signálu.

Tranzistor T₃ je buzen z kolektorového obvodu tranzistoru T₄, což umožňuje diodu D₂ s krátkou zotavovací dobou. Záporná zpětná vazba je zavedena děličem R₆, R₅. Korektní články RC R₁C₂, R₁₄C₉ a kondenzátory C₅, C₆ zabezpečují kmitočtovou stabilitu zesilovače. Nelineární zkreslení zesilovače je v celém akustickém pásmu menší než 0,2 % při plném výkonu. Přechodové

zkreslení je běžnými prostředky neměřitelné.

Na obr. 85 je výkonový zesilovač s jmenovitým výkonem 20 W. K zesílení tohoto výkonu je třeba zesilovač budit napětím 100 mV. Nepárované výkonové tranzistory T₄ a T₅ pracují ve třídě B bez klidového proudu. Nelineární zkreslení zesilovače je opět zmenšeno zavedením pomocné zpětné vazby, a to z kolektoru tranzistoru T₃ do báze T₂.

Optimální velikost zpětné vazby lze nastavit odporovým trimrem R₁₀ (např. na co nejmenší přechodové zkreslení). Odporovým trimrem se nastavuje napěťová souměrnost zesilovače, tj. polovina napájecího napěti na spojených emitorech koncových tranzistorů.

Tranzistor T₃ má kolektorovou ztrátu asi 3 W, je jej třeba proto opatřit chladičem, chladiče koncových tranzistorů je třeba navrhovat na výkonovou ztrátu asi 10 W.

Zkreslení zesilovače lze zjišťovat nejlépe na osciloskopu, na vstup zavedeme napětí pravoúhlého průběhu, osciloskop připojme na výstup (výstup není zatížen). Měříme při vstupním mezivrcholovém napětí 10 mV v kmitočtovém pásmu 50 až 20 000 Hz.

Na obr. 86 je zesilovač s jmenovitým výstupním výkonem (sinus) 100 W, tj. hudebním výkonem asi 120 W při jmenovité zátěži 4 Ω. Zesilovač je určen k vestavění do reproduktorských soustav a není chráněn proti zkratu na výstupu. Vstupní napětí, potřebné k dosažení jmenovitého výkonu, je 300 mV. Koncepcie zesilovače je podobná zesilovači na obr. 84. Ke zmenšení přechodového zkreslení na zanedbatelnou míru v celém kmitočtovém i výkonovém rozsahu zesilovače pracují výkonové tranzistory T₆ a T₇ s klidovým proudem, stabilizovaným zápornou zpětnou vazbou, odvozenou ze snímacího rezistoru R₁₉, tranzistoru T₃ a děliče R₁₄ a R₁₅. Velikost klidového proudu je dána približně vztahem

$$I_0 = \frac{R_{15}}{R_{14} + R_{15}} \frac{U_{BE}}{R_{19}}$$

kde U_{BE} je napětí báze-emitor tranzistoru T₃ a T₅ (asi 0,7 V).

Výkonové tranzistory T₆ a T₇ není třeba párovat. Optimální velikost zpětné vazby se nastavuje odporovým trimrem R₁₁.

Chladiče výkonových tranzistorů (společné pro T₄, T₅, T₆ a T₇ – T₄ a T₅ je třeba izolovat) jsou dimenzovány na výkonovou ztrátu asi 30 W, chladič diody KY193 na 5 W.

Na obr. 87 je jednoduchý zdroj symetrického napěti $\pm 35 V$. Transformátor je pro

Obr. 85. Nf zesilovač 20 W/4 Ω

Obr. 85. Nf zesilovač 20 W/4 Ω

Obr. 87. Napájecí zdroj pro zesilovač (a)
a jeho síťový transformátor (b)

výkon asi 150 W, kondenzátory jsou na napětí 50 V. Pokud podobný transformátor nevlastníte, mohli by vám vyjít vstřík v některém podniku, kde pracují s elektromotory a transformátory vám navinout (co dělají v této oblasti soukromníci?). K usnadnění návrhu transformátoru uvádíme dále tabulku pro různou sekundární napětí (orientačně) – tloušťku drátu, proklady a další podrobnosti kolem návrhu a zhotovení síťových transformátorů najdete i v každé učebnici základů elektrotechniky. Tedy stručně: vzorec pro výpočet průřezu jádra transformátoru je

$$P = (Q/1,2)^2,$$

kde P je požadovaný výkon ve VA, Q průřez středního sloupku jádra v cm^2 . Např. pro výkon 100 W vychází $Q = 12 \text{ cm}^2$, tj. střední sloupek jádra má rozměry $3,5 \times 3,5 \text{ cm}$, viz obr. 87b. Pro tento transformátor lze počet závitů sekundárního vinutí např. určit z tabulek – počet závitů je 3,2 závitu/1 V, tzn. že např. pro sekundární napětí 10 V je třeba 32 závitů, pro 45 V 114 závitů. Otázky kolem napájecích zdrojů, dimenzování součástek, pojistek, bezpečnostních předpisů apod. jsou jednak předmětem státních norm, jednak byly probrány i v několika číslech AR pro konstruktéry, např. v AR B1/1986. Přehledně jsou např. normalizované transformátory uvedeny v knize Vašiček: Typizované napájecí transformátory a tlumivky, kterou vydalo SNTL v roce 1963. V minulých ročnících AR byly probrány i způsoby návrhu transformátorů na jiných jádrech než běžných EI a M. V každém případě je si třeba uvědomit, že odpovědný návrh síťového transformátoru a vlastně i celého zdroje je základem úspěšné konstrukce jakéhokoli zařízení, napájeného ze světelné sítě (podrobně je návrh síťových transformátorů uveden i v knize J. Pohanka: Stavba síťových transformátorů, SNTL: Praha 1960).

Obr. 88 Nf zesilovač 100 W/4 Ω

Obr. 89. Napájecí zdroj pro zesilovač z obr. 88

Další zesilovač 100 W dnes již klasické koncepcie je na obr. 88. Při jmenovitém výkonu má zkreslení maximálně 0,3 %, pracuje do impedance 4 Ω. Vstupní citlivost je 0,75 V pro plné vybuzení. Vstupní impedance je asi 50 kΩ, kmitočtový rozsah v pásmu 3 dB je 20 Hz až 85 kHz.

Zesilovač má na vstupu stabilizační člen, který je velmi důležitý pro dosažení kmitočtové stability na vysokých kmitočtech. Zmenšuje totiž při nich vstupní impedance. Vstupní obvod je tvořen tranzistory v diferenčním zapojení (dva tranzistory v jednom pouzdru, typ KC809, KC810) s velmi malým napěťovým driftem a velkou teplotní stabilitou. Nulová stejnosměrná složka na výstupu dvojitého tranzistoru (tedy symetrie signálů) se nastavuje odporovým trimrem R₃. Trimrem R₁₃ se nastavuje klidový proud. Na velikost klidového proudu se podílí i tranzistor T₅, který musí být tepelně spojen s chladičem koncových tranzistorů.

Napěťové zesílení zesilovače je asi 27, což při vstupním napětí 0,75 V znamená, že na výstupu bude napětí asi 21 V. Při zatěžovací impedance 4 Ω bude proud koncovými tranzistory asi 5 A, což odpovídá výstupnímu výkonu 105 W (sinus).

Tranzistory T₂ a T₄ tvoří zdroje konstantního proudu. Napětí jejich bází stabilizuje svítivá dioda LQ110, která slouží současně jako signalační prvek provozu zesilovače.

Proudové zesilovací činitele koncových tranzistorů by se neměly lišit o více než ±5 % v celém rozsahu možných kolektových proudů. U tranzistorů T₆ a T₇ je jediným nutným požadavkem $U_{CEO} = 64$ V. Na tyto pozice jsou nejvhodnější novější typy nf tranzistorů, např. KC307 a KC237.

Napájecí napětí nemusí být stabilizované, jako ostatně u téměř všech výkonových zesilovačů, je však nutná „tvrdá“ filtrace (tj. co největší kapacita filtracích kondenzátorů ve zdroji). Transformátor zdroje je na jádře EI40, výška svazku 35 mm, primární vinuti

má 704 závity drátu o Ø 0,7 mm, sekundární vinutí má 2 × 82 závity (2 × 26 V) drátu CuL o Ø 1,4 mm. Schéma napájecího zdroje je na obr. 89.

Výstupní výkon zesilovače začne být omezen v při 110 W. Pokud bychom chtěli používat větší výkon, bylo by třeba zapojit dva tyto zesilovače do můstku.

Dalším z řady zesilovačů s nf výkonem kolem 100 W je zesilovač na obr. 90. Jako budící stupeň je v zesilovači použit obvod TDA(MDA)2020, koncový stupeň s doplňkovými tranzistory pracuje do zatěžovací impedance 4 Ω. Zesilovač je tedy podobné koncepte jako zesilovač na obr. 80.

Na rozdíl oproti zapojení na obr. 80 nejsou však koncové tranzistory vázány na integrovaný obvod 2020 a nejsou tedy jištěny proti přetížení. Popisované uspořádání má však tu výhodu, že jsou koncové tranzistory napájeny zvlášť, lze tedy pro ně volit v podstatě libovolné napájecí napětí a tím ovlivňovat i výstupní nf výkon.

Při reálnici zesilovače je třeba dbát na to, aby všechny aktivní prvky měly chladiče, odpovídající jejich ztrátovému výkonu a aby byly dobré odděleny od země zesilovače i od sebe navzájem. Koncové tranzistory lze však např. vestavět i do reproduktorových soustav a budit je signálem z bodu A zesilovače (síťovou dvoulinkou).

Koncové tranzistory lze v tomto uspořádání budit i jiným „predzesilovačem“ (místo MDA2020) – vyhoví prakticky každý zesilovač s výkonem okolo 15 až 20 W. Jak jsem již upozornil v zapojení na obr. 80, není vhodné volit pro integrovaný obvod MDA2020 napájecí napětí větší než ±18 V (i když katalog připouští až ±22 V).

Na obr. 91 je zapojení zesilovače s doplňkovými tranzistory, převzaté z katalogu americké firmy Texas Instruments. Jde o zapojení z doby před několika lety, kdy se objevily na trhu výkonové tranzistory v pouzdrách z plastických hmot. Zesilovač má asymetrické napájení, výstupní tranzistory jsou

Obr. 90. Nf zesilovač 100 W/4 Ω

Obr. 91. Nf zesilovač TI

doplňkové typy, které lze nahradit v podstatě libovolnými doplňkovými tranzistory i tuzemské produkce.

U zesilovače je zavedena 100% záporná zpětná vazba, která zajišťuje dokonalou stabilizaci stejnosměrného pracovního režimu celého zesilovače. Napěťové zesílení poloviny zesilovače je asi 100. Vstupní odpor zesilovače je asi $23\text{ k}\Omega$ (paralelní spojení dvou rezistorů $47\text{ k}\Omega$). Záporná zpětná vazba (dělič tvořený rezistory R_{11} a R_{12}) je na jednom konci R_{11} blokován na zem pro střídavý proud kondenzátorem $25\text{ }\mu\text{F}$ určuje výsledné zesílení celého zesilovače na 47. Klidová úroveň kolektorového proudu koncových tranzistorů se nastavuje (obvod s tranzistorem T_4) odporovým trimrem R_2 . Tranzistor T_4 zároveň slouží i jako teplotní čidlo k teplotní stabilizaci kolektorového proudu koncových tranzistorů. Proto se musí tranzistor T_4 umístit tak, aby měl těsný teplotní kontakt s chladičem výkonových tranzistorů.

Zesilovač je doplněn obvodem pro souměrné omezení výstupního proudu při přetížení (T_9 a T_{10}). Tranzistory T_9 a T_{10} musí mít malé saturační napětí U_{CES} (~0,5 V). Činnost této pojistiky je velmi rychlá – zachytí jakékoli přetížení při kladné nebo záporné půlvlně signálu.

Vazební kondenzátor na výstupu má poměrně malou kapacitu ($800\text{ }\mu\text{F}$), která by v běžném zapojení nemohla zaručit vyhovující přenos signálů nižších kmitočtů. V daném případě však vyhoví beze zbytku, neboť zápornou zpětnou vazbu, vyvedenou až za tímto kondenzátorem, se zmenšuje výstupní impedance zesilovače. Za těchto podmínek se výstupní impedance zesilovače na jeho kmitočtové charakteristice ne-uplatní.

Vstupní napětí pro plné vybuzení je asi -250 mV , výstupní výkon je 15 W do zatěžovací impedance $15\text{ }\Omega$.

Tranzistory v originálném zapojení lze bez změny vlastností zesilovače nahradit našimi nebo běžnými typy takto:

T_1, T_2 – BC182L, KC810
 T_3, T_6 – BC212L – BC313 (GD617)
 T_4 – BC182L – KFY46
 T_5 – BC182L – BC211 (GD607)
 T_7, T_8 – TIP32A, TIP31A – BD355, BD354 nebo jiné

dioda 1S2082A – Zenerova dioda jako T_9, T_{10} byly nevhodnější germaniové tranzistory, popř. tranzistory z řady KSY (p-n-p a n-p-n).

Z katalogu Texas Instruments je i zapojení na obr. 92, jde o zajímavý zesilovač velmi dobrých vlastností s nf výstupním výkonom 100 W . Z připojené tabulky je zřejmé, jaká

napětí a proudy musíme u zesilovače předpokládat při různých zatěžovacích impedancích:

zat. impedance [Ω]	U_{vyst} ef. [V]	Ampl. U_{vyst} [V]	I_{vyst} ef. [A]	Ampl. I_{vyst} [A]	P_{vyst} [W]
8	28,3	80,2	3,53	5	90
4	20	96,6	5	7,06	64

Z tabulky vyplývá, že při zatěžení $8\text{ }\Omega$ je třeba použít pro budicí a koncovou část zesilovače tranzistory se závěrným napětím U_{CEO} větší než 100 V , při zatěžení $4\text{ }\Omega$ tranzistory se závěrným napětím větší než 70 V . Výkonové tranzistory musí mít dostatečně velké proudové zesílení i při proudech 5 až 7 A. Takové tranzistory ovšem shánět nebude me, problém lze vyřešit celkem snadno pomocí můstkového zapojení, čímž se podstatně zmenší proudové zatížení koncových stupňů při větší zatěžovací impedance.

Vstupní differenční zesilovač je tvořen dvojicí tranzistorů T_1, T_2 – BC184L. Ty by bylo možno nahradit tuzemským výrobkem, dvojicí tranzistorů v jednom pouzdro typu KC 8 10. Pro zmenšení vlivu indukovaných rušivých signálů je báze tranzistoru T_1 blokována na zem kondenzátorem 10 nF . Vstupní odpory zesilovačů s tranzistory T_3 a T_4 jsou poměrně velké a tak není třeba uvažovat jejich vliv na činnost differenčního zesilovače. Napěťové zesílení differenčního zesilovače je asi 15. Napětí na kolektorech tranzistorů T_1 a T_2 je třeba nastavit na $28,5\text{ V}$ a to odporovým trimrem P_1 , kterým lze současně zvětšovat napětí na kolektoru T_1 a zmenšovat napětí na kolektoru T_2 . Pokud změnou odporu trimru nedosáhneme žádaného napětí, použijeme místo rezistoru R_7 s odporem $12\text{ k}\Omega$ rezistor s odporem $10\text{ k}\Omega$ v sérii s trimrem $4,7\text{ k}\Omega$.

Koncové tranzistory mají tyto parametry: napětí U_{CEO} asi 60 V , kolektorový proud max. 10 A , výkonovou ztrátu 150 W . Pro kolektorový proud 5 A potřebujeme proud báze asi 250 mA , který dodávají budicí tranzistory s těmito parametry: napětí U_{CEO} větší než 60 V , max. kolektorový proud $I_C = 1\text{ A}$, cel-

ková ztráta $P_{tot} = 2\text{ W}$. Při proudu 250 mA musí mít budicí tranzistory (TIP29A, TIP30A) proudový zesilovací činitel h_{21E} větší než 40. Klidový proud budiců je asi $4,5\text{ mA}$, lze jej nastavit odporovými trimry P_2 a P_3 .

Způsob oživení zesilovače:

- Mezi vstup a zem se zapojí rezistor s odporem $10\text{ k}\Omega$, mezi rozpojený výstup se zapojí stejnosměrný voltmetr.
- Běžeče odporové trimry P_2 a P_3 se nastaví ke konci odporové dráhy, spojeným s kolektory tranzistorů T_7 a T_8 .
- Odporový trimr P_1 se nastaví do středu odporové dráhy.
- Do série s přívodem napájecího napětí se zapoji proměnný rezistor s odporem $5\text{ k}\Omega/10\text{ W}$ a stejnosměrný ampérmetr na rozsahu (nejlépe) 300 mA .
- Připojí se napájecí napětí a je-li vše v pořádku, zmenší se odpor proměnného rezistoru $5\text{ k}\Omega$ k nule. Odběr proudu by neměl být při minimálním odporu proměnného rezistoru větší než asi 100 mA . Pokud je odběr proudu větší, je třeba napájecí napětí odpojit a zkонтrolovat jak zapojení, tak součástky zesilovače.
- Odporným trimrem P_1 se nastaví na výstupu nulové napětí (možná tolerance $\pm 50\text{ mV}$).
- Odpojíme měřicí přístroje a proměnný odpor $5\text{ k}\Omega$. Mezi výstupní svorky připojíme místo voltmetu odporovou zátěž (dva rezistory $4,7\text{ }\Omega$ v sérii nebo rezistor $10\text{ }\Omega$ na větší zatížení). Připojíme napájecí napětí a změříme napětí na odporové zatěži. Musí být v mezech $\pm 50\text{ mV}$.
- Změříme emitorový proud tranzistorů T_{15} a T_{16} a nastavíme jej trimry P_2, P_3 na 50 mA .
- Opět změříme výstupní napětí a není-li nulové nebo alespoň v uvedené toleranci, snažíme se opět nastavit „nulu“ na výstupu na reproduktor odporovým trimrem P_1 . Změříme, je-li na svorkách pro reproduktory stejnosměrné napětí proti zemi shodné, tj. $26,2\text{ V}$.
- Na výstup připojíme generátor sinusového signálu a na svorky pro připojení reproduktoru připojíme střídavý voltmetr.

Obr. 93. Stabilizovaný napájecí zdroj pro zesilovač z obr. 92

11. Zkontrolujeme po zapnutí napájecí napětí (mělo by být 50 V) a zesilovač vybudíme sinusovým signálem bez zátěže až na mez, kdy bude signál na výstupu omezován (limitace). Zkontrolujeme, zda je signál omezován souměrně. Je-li vše v pořádku, napájecí napětí odpojíme.

12. Mezi výstupní svorky pro reproduktor zapojíme zátěž $8 \Omega / 100 \text{ W}$ (výkonové rezistory, zapojené paralelně, např. $4 \times 33 \Omega / 25 \text{ W}$ nebo různé kombinace). Zapojíme napájecí napětí a zesilovač opět vybudíme napětím až na mez omezování, opět zkontrolujeme souměrnost omezování.

13. Zjistíme-li již bez zátěže, že některý obvod zesilovače kmitá nebo zakmitává (i nepravidelně), je třeba okamžitě odpojit napájecí napětí a upravit kapacity kompenzačních kondenzátorů tak, aby oscilace bezpečně zanikly (C_{10}, C_{11} zvětšit až na 100 pF , C_2, C_3 až na 150 pF).

Při oživování zesilovače je vhodné používat zdroj s elektronickou nastavitelnou po-

jistkou a samozřejmě osciloskop. Po oživení lze zesilovač napájet z jednoduše stabilizovaného zdroje, schéma zdroje vhodného pro tento zesilovač je na obr. 93. Jako usměrňovací diody pro řídící napětí lze použít KY132/300, Zenerova dioda 1S3062 má Zenerovo napětí asi 52 V, lze ji nahradit dvěma diodami KZ714. Jako T_1 lze použít KF508 (KFY34, 46), jako T_2 BD355 a jako T_3 např. KD503. Jako usměrňovací diody napájecího napětí jsou vhodné např. KY710. V malých mezech lze výstupní napětí nastavit odpovědným trimrem P_1 . Budící tranzistory T_1 a T_2 zmenšují závislost zdroje referenčního napětí na odberu proudu (na zatížení výkonovým tranzistorem). Podmínek správné činnosti zdroje je, aby napětí na bázi T_1 bylo vždy „kladnější“ (tj. větší) než je požadované výstupní napětí. Proto je třeba diody KZ714 vybírat tak, aby jejich celkové Zenerovo napětí bylo větší než 52 V. Vzhledem k relativně velkému rozptylu U_z těchto diod jich bude asi třeba vyzkoušet několik.

Jednou z možností, jak řešit výkonové zesilovače, je používat v zapojení tranzistory v Darlingtonově zapojení. Průkopníkem ve vývoji a výrobě těchto tranzistorů byla firma Motorola, která s jejich výrobou začala počátkem 70. let. Z vybraných typů tranzistorů této firmy (nebo odpovídajících typů jiných výrobců) lze při zapojení do stejněho základního schématu získat změnu napájecího napětí několik variant výkonových zesilovačů pro výstupní výkon od 15 W až do např. 60 W. Základní schéma zesilovače je na obr. 94. Diodu MZ2361 lze sestavit ze dvou kusů KA206.

Přehled komplementárních výkonových tranzistorů v Darlingtonově zapojení

Komplementární dvojice		U_{CE0} [V]	I_C [A]	P_z [W]	h_{21E} při I_C	Typ
n-p-n	p-n-p					
MJ4000	MJ4010	60	4	75	2500/1,5 A	1
MJ4001	MJ4011	80	4	75	2500/1,5 A	2
MJ1000	MJ900	60	5	90	2500/3 A	3
MJ1001	MJ901	80	5	90	2500/3 A	4
MJ1090	MJ1100	60	5	70	2500/4 A	5
MJ1093	MJ1103	80	5	70	2500/4 A	6
MJ3000	MJ2500	60	10	150	2500/5 A	7
MJ3001	MJ2501	80	10	150	2500/5 A	8
MJ4033	MJ4030	60	16	150	2500/10 A	9
MJ4034	MJ4031	80	16	150	2500/10 A	10
MJ4035	MJ4032	100	16	150	2500/10 A	11

Obr. 94. Nf zesilovač s Darlingtonovými tranzistory

Zapojení na obr. 94 je v současné době atraktivní i u nás, neboť výkonové tranzistory v Darlingtonově zapojení se začaly vyrábět, i když s více než dvacetiletým zpožděním, i u nás. V následující tabulce je jako příklad uveden přehled výkonových tranzistorů v Darlingtonově zapojení firmy Motorola, z nichž by bylo možno nahradit našimi typy KD366, 367 typy, uvedené např. v prvním nebo pátém rádku (tj. MJ4000, 4010, popř. MJ1090, 1100). V dnešní době se vyrábí podobných tranzistorů i v Evropě velké množství, takže nahrazení tranzistorů Motorola by jistě nebyla žádným problémem.

Univerzálnost použití těchto a podobných tranzistorů vyuvidá z další tabulky, v níž jsou uvedeny součástky pro různé výstupní výkonové zesilovače z obr. 94 a to i při různé zatěžovací impedance. Použití tuzemských tranzistorů by odpovídalo asi předposlednímu rádku tabulky.

Jako T_1 a T_4 jsou v původním zapojení uvedeny tranzistory MPSA05 (MPSAO6), jako T_2 MPSA55 (56), jako T_3 MPSU01 (MJE520). Bylo by je možné nahradit v podstatě libovolnými tranzistory s odpovídajícím napětím a odpovídající kolektorovou ztrátou (vždy by pravděpodobně vyhověly běžné tranzistory KC, popř. KF). R v tabulce je teplotní odpor chladiče, požadovaný při teplotě okolo 55°C . T_5, T_6 jsou uvedeny v tabulce.

Vstupní odpor zesilovače je asi $60 \text{ k}\Omega$. Tranzistor T_1 pracuje jako napěťový zesilovač vstupního signálu se zesílením, určeným přibližně odpory rezistorů R_5, R_6 . Z výstupu zesilovače je do emitoru T_1 zavedena 100 % záporná zpětná vazba, která udržuje výstupní klidové napětí (mezi emitory konkavných tranzistorů) asi na polovině napájecího napětí.

Hlavní podíl na celkovém zesílení zesilovače má tranzistor T_2 , jehož zátěž je jednak

impedance mezi kolektorem a emitorem tranzistoru T_3 (teplotní stabilizace), a jednak výkonný dynamický odpor v kolektoru tranzistoru T_4 . Napětí kolektor-emitor tranzistoru T_3 lze nastavit odporovým trimrem R_{11} . Tranzistor T_5 je současně součástí automatiky, která zajišťuje teplotní kompenzaci klidového proudu koncových tranzistorů, proto musí být v těsném tepelném kontaktu s pouzdry výkonových tranzistorů. K teplotní stabilizaci koncových tranzistorů přispívají i rezistory malých odporů v jejich emitorech.

Díky nesymetrickému napájení musí být výstupní signál zesilovače veden na reproduktor přes kondenzátor s velkou kapacitou (na jeho kapacitě závisí přenos signálů nízkých kmitočtů).

Rezistor R_2 ($82 \text{ k}\Omega$) můžeme zaměnit na $68 \text{ k}\Omega$ a odporový trimr v sérii – nastavením trimru lze pak kompenzovat tolerance součástek a nastavit na výstupu přesně polovinu napájecího napětí; pak lze dosáhnout maximálního výstupního výkonu při minimálním zkreslení signálu. Pracovní bod T_4 je nastaven teplotně kompenzovaným dletem R_7, D_1 a emitorovým rezistorem. Způsob napájení tranzistoru a použité součástky zabezpečují tranzistoru T_4 stálé proudové zesílení, nezávislé do jisté míry na vnějších podmínkách.

Výkonový zesilovač navržený firmou Motorola se souměrným napájecím napětím je na obr. 95. Vstupní část je zapojena jako diferenciální zesilovač s tranzistory T_1 a T_2 . Jako stupeň k rozdělení signálu pracuje obvod s tranzistorem T_3 ; tranzistor pracuje jako zesilovač se společnou bází, v kolektoru má zapojeny tři přechody emitor-báze tranzistorů p-n-p (lze je nahradit typem KF517) a dynamický odpor kolektoru tranzistoru T_4 .

Součástky zesilovače z obr. 94 pro různé výstupní výkony a různé výstupní impedance

P_{vyst} [W]	R_z [Ω]	U_b [V]	R_5 [Ω]	R_7 [kΩ]	T_5, T_6 typ	C_1 na napětí [V]	C_2, C_3 [V]	C_4 [V]	R_t [°C/W]
15	4	32	620	33		35	20	40	9,5
	8	38	510	39	MJE1100	40	25	45	9,5
20	44	36	560	39	MJE1090	40	25	45	7
	8	46	470	47		50	30	55	7
25	4	38	560	39	MJE1102	40	25	45	5
	8	48	390	47	MJE1092	50	30	55	5
35	4	44	470	47	typ 7	45	25	50	6
	8	56	330	56	typ 3	60	35	65	6
50	4	50	390	47	typ 7	50	30	60	4
	8	65	270	68	typ 7	65	35	75	4
60	4	56	330	56	typ 8	60	35	65	3
	8	72	220	68	typ 8	75	40	80	3

Obr. 95. Nf zesilovač Motorola

Tranzistor T₄ slouží jako zdroj konstantního proudu, jehož pracovní bod je nastaven diodami D₄ a D₅ a rezistorem R₈.

Zesilovač na obr. 95 je schopen odevzdávat do zátěže 8 Ω výkon 65 W, kmitočtová charakteristika je rovná v pásmu 20 Hz až 50 kHz. Celkové nonlineární zkreslení je při výstupním výkonu od 0,1 do 50 W menší než 0,3 %.

Při malém rozkmitu signálu je napětí mezi kolektorem a emitorem T₁ relativně malé, asi 4 V. Rovněž ve stupni s tranzistorem T₃ je rozkmit signálu ještě relativně malý – signál se napěťově zesiluje především v budiči s tranzistory T₅ a T₆ a samozřejmě i v koncovém výkonovém stupni.

Na obr. 96 je zesilovač s výkonovými tranzistory v kvazikomplementárním zapojení, a to s tzv. aktivní zátěží. Vstupní část tvoří opět diferenční dvojice tranzistorů T₁, T₂. Jsou použity tranzistory p-n-p, neboť s těmito se dosahne lepších šumových poměrů. Jejich emitorový odpór je vytvořen zdrojem konstantního proudu s tranzistory T₃ a T₄. Na diferenční zesilovač je navázán napěťový zesilovač s tranzistorem T₈, který pracuje do zátěže, dané tranzistory T₅ a T₆. Volbou pracovního bodu T₁₅ se nastavuje klidový proud budičů a koncových tranzistorů. Tranzistor T₁₅ pracuje současně jako teplotní čidlo a umisťuje se na chladič výkonových tranzistorů v blízkosti jejich pouzder. Při zvýšující se teplotě se tranzistor otevírá, čímž se zmenšuje úbytek napětí mezi vývody 7 a 11 budiče. Koncové tranzistory se touto zápornou zpětnou vazbou přivírají a klidové proudu

Obr. 96. Nf zesilovač s diferenčním vstupem

dy se tím udržují na původně nastavené velikosti.

V kolektoru T₈ je využita aktivní zátěž, vytvořená proudovým zdrojem s T₆.

Při zatížení koncových tranzistorů zátěží 5 Ω se výsledné zesílení obou stupňů zmenší asi na 400 z původních 4000 a napěťové zesílení stupně s aktivní zátěží se zmenší při zatížení vstupním odporem dalších stupňů asi na 130. I když se tedy zesílení značně zmenší, je přesto rezerva pro zápornou zpětnou vazbu dostatečná.

Napěťové zesílení celého zesilovače je dáno poměrem odporů rezistorů R₅ a R₆, je tedy asi 15. Odporným trimrem P₁ se nastavuje na výstupu nulové stejnosměrné napětí. Kondenzátory C₅ a C₆ tvoří kmitočtovou kompenzaci zesilovače. Omezovací tranzistor T₁₀ pracuje tak, že při zvětšování odběru proudu ze záporné větve napájecího napětí se úbytkem napěti na rezistoru R₁₄ otevří tranzistor T₁₀ a blokuje se tak buzení T₈; obdobně pracuje i T₁₄. Přídavný rezistor R₁₇ spolu s rezistory pro omezení signálu poněkud zmenšuje amplitudu výstupního signálu, na druhé straně však účinně chrání tranzistory T₁₃, T₁₆ před proudovým přetížením a následným zničením např. vlivem zkratu na výstupu nebo teplotním přetížením. Rezistorem R₆ je zavedena 100 % zpětná vazba na T₂, čímž je ušetřen jinak běžně používaný odporný trim (ten je v tomto zapojení nahrazen rezistorem 470 Ω).

Na obr. 97 je zesilovač s doplňkovými (komplementárními) tranzistory, který se liší od velice podobného zapojení na obr. 96 jen jinak řešeným koncovým stupněm.

Budíci i koncový stupeň jsou zapojeny jako komplementární třístupňové emitorové sledovače. V ostatních částech jsou obě zapojení shodná.

Tranzistor T₅ pracuje jako aktivní člen pojistiky. Tranzistor je třeba umístit na chladič co nejbliže k výkonovým tranzistorům. Musí mít dobrý tepelný kontakt, nesmí však být vodič spojen s chladičem.

Přívody napájecího napětí je třeba blokovat proti zemi keramickými kondenzátory (na desce s plošnými spoji u příslušných spojů). Kondenzátory musí omezit možnost vzniku případných vazeb na přívodech napájecího napětí. Při konstrukci je třeba brát v úvahu i proudy, procházející vodiči a vodiče dimenzovat podle maximálního dosažitelného výkonu. Např. vodič o Ø 1 mm vyhoví ještě asi při proudu do 3 A; stejně je třeba dbát na vhodné dimenzování jednotlivých spojů na desce s plošnými spoji, nutnou šířku spoje při určité tloušťce fólie lze odhadnout podle údajů o možném zatížení spojů, již několikrát uveřejněných jak v různých publikacích, tak v AR.

Při konstrukci je třeba se vyvarovat i různých smyček na vodičích, součástky je třeba zemnit do společného bodu (nejlépe „zemní“ pól filtročního kondenzátoru napájecí).

Při napájení zesilovače napětím ±28 V je možno dosáhnout při zátěži 4 Ω nízkofrekvenčního výkonu většího než 50 W (signál 1 kHz sinus). Kmitočtové charakteristiky jsou pro plný výstupní výkon rovné s odchylkou ±1 dB v pásmu 20 Hz až 40 kHz (napájecí napětí ±23 V, zatěžovací impedance 4 Ω, nf výkon asi 35 W). Šum přepočtený na vstup při zkratovaném vstupu má zesilovač menší než 25 μV, při rozpojeném vstupu menší než 400 μV. Nonlineární i intermodulační zkreslení je u obou variant zesilovače menší než 0,2 %. U varianty podle obr. 97 je nonlineární zkreslení ještě asi o řadu menší.

Tranzistorové dvojice bylo třeba párovat (pro nejlepší dosažitelný výsledek) takto: proudový zesilovační činitel se musí měřit při alespoň zhruba odpovídajícím napětí (podle zapojení a napájecího napětí) a při proudu

Obr. 97. Nf zesilovač 50 W/4 Ω

dech, v jejichž rozmezí tranzistor pracuje, tj. např. T_1, T_2 při proudu $I_C = 1 \text{ mA}$, T_5, T_6 při proudu $I_C = 10 \text{ mA}$, T_{10} při $I_C = 3 \text{ mA}$, T_8, T_{11} při $I_C = 10 \text{ a } 100 \text{ mA}$. Dvojice T_9, T_{12} by měla mít shodný zesilovací činitel při plném napájecím napětí a při proudech $I_C = 100 \text{ mA}$ a $1,5 \text{ A}$.

Dále je nezbytné kontrolovat u tranzistorů závěrné napětí U_{CE0} , které musí být větší (nebo alespoň stejně), než je celkové napětí mezi kladnou a zápornou větví zdroje, tj. při napájecím napětí $\pm 28 \text{ V}$ musí být větší (nebo shodné) než 56 V . Menší jsou nároky na velikost závěrného napětí u tranzistorů T_1, T_2, T_3, T_5 a T_6 . Stejně tak doporučují používat kondenzátory na takové napětí, které je alespoň o $1/3$ větší, než jaké bude napětí, kterému budou vystaveny. Odporové trimry doporučují na keramice (vzhledem ke stálosti nastavení). Filtrační kondenzátory zdroje by měly mít kapacitu nejméně $2000 \mu\text{F}$ v každé věti, cím větší bude jejich kapacita, tím lépe zamezí případné nestabilitě na nízkých kmitočtech. Zdroj má dodávat v obou větvích proud až 2 A – podle toho je třeba navrhnut síťový transformátor a usměrňovací diody. Požadavky na souměrnost napájecího napětí nejsou náročné, neboť přenosová charakteristika zesilovače na této souměrnosti příliš nezávisí. Jediným důsledkem nesouměrnosti napájecího napětí je menší dosažitelná amplituda výstupního napětí.

Na obr. 98 je zapojení zesilovače se jmenovitým výkonem 100 W na zatěžování impedanci 4Ω . Jmenovité vstupní napětí pro tento výkon je 300 mV . Zesilovač byl použit v elektronických varhanách VEGA. Napájecí zdroj je symetrický, výstup je zátěží spojen bez vazebního kondenzátoru. Koncové tranzistory pracují ve třídě B s malým klidovým proudem (pro odstranění přechodového zkreslení hlavně i signálů vysokých kmitočtů).

Vstupní obvod je osazen dvojicí tranzistorů n-p-n v jednom pouzdru. Výstupní proudem tohoto diferenčního stupně je buzen přes T_2 tranzistor T_3 . Z emitoru T_3 jsou pak přes rezistory R_{17} a R_{19} napájeny báze výkonových tranzistorů T_6 a T_8 . Pomocná dioda D_2 omezuje maximální proud tranzistorem T_3 a udržuje tak zotavení zesilovače po přetížení, tj. tehdy, když začnou působit elektronické ochranné obvody.

Tranzistory T_4 a T_5 pracují jako omezovače okamžitého výstupního proudu zesilovače. Pomocné diody D_{14} a D_{15} chrání výstup výkonového zesilovače před napěťovým na-

Obr. 99. Nf zesilovač 20 W s operačním zesilovačem

máháním při vypínání a zapínání výstupního proudu zesilovače v zátěži indukčního charakteru (reproduktor). Další pomocná dioda, D_4 , zabraňuje vypínání zesilovače při jeho buzení do záporné polarity výstupního napětí.

Ochranný obvod z tyristoru T_y a tranzistoru T_{10} a T_{11} slouží k ochraně reproduktoru připojených k zesilovači při jeho případné poruše, která by měla za následek zvětšení stejnosměrného napětí na výstupu a následné zničení reproduktoru. Zvětší-li se napětí na výstupu, T_{10} a T_{11} se otevřou, otevře se tedy i T_y . Ten propojí kladné napájecí napětí se záporným přes rezistory R_{33}, R_{34} , tím se zvětší proud, odebrány ze zdroje a přeruší se tak pojistky P_0 a P_1 . Celý zesilovač bude tedy odpojen od napájecího zdroje.

Při případné realizaci by bylo možné nahradit starší typy tranzistorů p-n-p novějšími, tj. místo 2T3850 použít buď KF517 nebo KC308 apod., místo n-p-n spínacích tranzistorů řady KU tranzistory z řady KD.

Na obr. 98 je zesilovač s nf výkonem 20 W s operačním zesilovačem staršího typu (MAA504). OZ je kompenzován rezistorem R_8 a kondenzátory C_4 a C_5 . Na jeho místo by bylo možno použít novější typy 741 nebo 748, u 748 s vnějším kompenzačním kondenzátorem. Diody D_1 a D_2 chrání vstup před špičkami vstupního napětí většími než asi $\pm 5 \text{ V}$. Kapacita diod je asi 2 pF – v zapojení se tedy neuplatní. Stejně tak se neuplatní odpor R_{kA} -A diod. Toto uspořádání je velmi jednoduché a přitom dobře vyhovuje pro všechny běžné aplikace.

Koncový stupeň je jištěn proti přetížení tím, že má oproti zbytku zesilovače rozdílné napájecí napětí. Tranzistor T_3 je buzen napěťově z výstupu sledovače emitorového T_2 ; tranzistor T_5 je buzen z kolektoru T_4 . Použili jsme obvyklé linearizační rezistory, které mají vliv na linearitu především rezistor v emitoru T_3 . Mnohem větší význam má však zpětná vazba z výstupu. Stejných výsledků lze však zřejmě dosáhnout i jedním rezistorem, zapojeným ve schématu jako R_{17} , který je v sérii se zatěžovacím odporem. Toho lze využít i při návrhu pojistiky:

Předpokládejme zkrat na výstupu. Diody D_3, D_4 omezují v tomto případě maximální budící napětí na U_2 . Potom I_{max} , který může být týkem kolektorem T_3 (T_5) při zkratu na zátěži, je

$$I_{max} \text{ výst} = -U_{D3(4)} - U_p + U_{BE}/R_0$$

kde $U_p = U_{CE T_1}$ a $R = R_{17}$.

Bude-li mít R_{17} nevhodně zvolený odpor, může se stát, že se diody D_3 nebo D_4 otevřou příliš brzy a omezí špičky zesilovaného signálu i při výkonu menším, než je jmenovitý.

Koncový stupeň je jištěn ještě tavnou pojistikou pro případ vadného tranzistoru v koncovém stupni. Žárovka slouží v zapojení jako rezistor s proměnným odporem – při přetížení výstupu operačního zesilovače se zvětšíuje odpor vlákna žárovky (ohřívá se), čímž chrání OZ před zničením. Současně svým svitem žárovka signalizuje přetížení zesilovače.

Zdroj pro zesilovač je na obr. 100. Sekundární napětí síťového transformátoru by mělo být asi $2 \times 20 \text{ V}$. Ve zdroji lze tranzistor T_3 nahradit výkonnéjším typem (např.

Obr. 98. Nf zesilovač $100 \text{ W}/4 \Omega$

T_1 – KC810
 T_2, T_9, T_{11} – 2T3850
 T_3 – KU612
 T_4 – KC148
 T_5 – KF517B
 T_6 – KD607
 T_7 – KD617
 T_8, T_9 – KDF503
 T_y – KT702
 $D_1, D_2, D_4, D_{16}, D_{17}$ – KA262
 D_3 – KZ260/5V1
 D_{18} – 2x1/2 KY930/80
 D_{10} – KT193 (Ty)
 D_{14}, D_{15} – KY132/80

Obr. 100. Zdroj pro zesilovač z obr. 99

KD607, KD503), je-li třeba odebírat větší proud ze stabilizované větve zdroje. Konzervátory volíme na takové napětí, které je o 1/3 větší než pracovní napětí, tj. u C₄, C₅ asi 25 V, C₃ a C₂ asi 50 V a C₁ asi 25 V. Germaniový tranzistor T₅ lze nahradit křemíkovým p-n-p o odpovídající kolektorové ztrátě (5 až 10 W). Zenerova dioda 8N70 chrání koncové tranzistory před napěťovými špičkami (při běžném provozu nevede).

Na obr. 101 je výkonový zesilovač DYNACO 120, výrobek stejnojmenné americké firmy. Zesilovač umožňuje odebírat 25 až 30 W nf výkonu na zátěži 4 až 8 Ω. Kmitočtová charakteristika je rovná v mezích 10 Hz až 50 kHz, harmonické zkreslení je menší než 0,5 %. To vše při napájecích napětích kolem 50 V. Při napájecím napětí 72 V dodá

zesilovač výkon až 60 W v mezích 20 Hz až 20 kHz s intermodulačním zkreslením menším než 0,5 % při 50 W a libovolné kombinaci měřicích kmitočtů.

Vstupní dvojice tranzistorů je navázána na komplementární budiče nikoli stejnosměrné, nýbrž střídavé přes kondenzátor $50\text{ }\mu\text{F}$. Neprítomnost stabilizační stejnosměrné vazby přes celý zesilovací nevadí, neboť pouze křemikové tranzistory jí vyžadují. Výkonové i budicí dvojice tranzistorů jsou pak ucelenými stejnosměrně vázanými bloky, výkonovou dvojici při malém signálu neprochází proud, takže pracuje jen budič. Předpětí je vytvářeno spádem napětí na diodách v emitoru spodního budiče (T_4). Jsou to běžné

křemíkové diody s předním napětím asi 0,7 V při proudu 100 mA, proud diodami určuje rezistor 300 Ω /7 W. Toto je zřejmě „nej slabší“ místo zapojení, jakási „vada na krásce“, avšak je vyvážena tím, že je zesilovač velmi stabilní a že přechodové zkreslení při malých signálech má zcela zanedbatelnou velikost. Celý obvod spolu s třetí diodou v budiči pracuje navíc jako automatická pojistka proti zkratu na výstupu vybuženého zesilovače. Zkrat na výstupu potlačí přes obvod s diodami i vstupní signál budiče, takže zesilovač nemůže být přetížen. Náchylnost ke kmitání v oblasti f_1 je potlačena členy RLC na výstupu a kondenzátorem 100 pF a rezistory 4,7 k Ω na vstupu. Cívka L na výstupu zesilovače má 15 závitů drátu o \varnothing 1,5 mm samonosně (nebo na odporném tělisku) na \varnothing 4,5 mm.

Ve firemní literatuře firmy Hitachi byl popsán běžný zesilovač 20 W/8 Ω se zajímavou a jednoduchou i účinnou elektronickou pojistkou, používající pouze tranzistor, tři diody a několik pasivních součástek. Zesilovač je na obr. 102.

Zesilovač je osazen běžnými křemíkovými tranzistory, jejichž nahradby jsou uvedeny ve schématu. Na výstupu je Boucherotův člen, který zabraňuje rozkmitání zesilovače na vysokých kmitočtech. Vybavovací napětí pro pojistku se odebírá z kolektoru tranzistoru p-

Obr. 101. Výkonový zesilovač Dynaco 120

Obr. 102. Řešení pojistky v nf zesilovači

Obr. 103. Jiné řešení pojistky zesilovače

n-p (KF517). Spínací tranzistor T pojistky je křemíkový s mezním kmitočtem f_T asi 100 MHz. Ten ovládá velikost napájecího napětí pro vstupní tranzistor KC509 – při běžném provozu tranzistor pojistky nevede, na jeho bázi je asi 0,3 V. Vstupní tranzistor má plné napájecí napětí a pracuje s nastaveným (maximálním) zesílením. Při zkratu na výstupu nebo při přetížení se zvětšuje kolektový proud budícího stupně, na rezistoru 330 Ω se zvětšuje úbytek napětí. Tento vybavovací signál se přivádí oddělovací diodou D_s (detekční hrotová germaniová dioda) přes filtrační člen na bázi spínacího tranzistoru. Bude-li totto napětí větší než asi 1,4 V, T_s se otevře ($U_{EB\ T_s} + U_{KA\ D_s}$). Spádem na rezistoru 1 kΩ v jeho kolektorovém obvodu se zmenší napájecí napětí vstupního tranzistoru, tím se zmenší zesílení tohoto tranzistoru a zamezí se tedy možností přebuzení zesílovače. Ochranný obvod lze použít i pro stereofonní zesílovače (viz D_{s2}). Odporným trimrem 10 kΩ lze v malých mezích regulovat okamžík sepnutí spínacího tranzistoru. Jako tranzistor T_s je třeba použít rychlý spínací typ, tedy tranzistor s dostatečně vysokým mezním kmitočtem (asi více než 20 MHz). Totéž platí i o diodách v obvodu pojistky. Za našich součástek bylo možno vyzkoušet jako tranzistor typ KSY71 (72), jako diody 0A7, GAZ51, popř. křemíkové typy KA206, K222 apod.

Na obr. 103 je schéma zesílovače Grundig RTV600. Tento zesílovač je napájen symetrickým napětím ±20 V (koncový stupeň) a nesymetrickým napětím 56 V (vstupní část). Zesílovač odevzdá při plném vybuzení výkon 20 W/4 Ω v kmitočtovém pásmu 10 Hz až 50 kHz ±0,5 dB.

Koncové tranzistory lze nahradit našimi typy KD3055, jako T₁ lze použít KC149, T₂ KC507 (KC237B), T₃ KF507, T₄ KD607, T₅ KD617 a T₆ GC515. Z emitoru tranzistoru T₈ se odebírá vybavovací signál (bod B) pro pojistku. Germaniový tranzistor AD153 pojistky je zapojen jako dioda a je stále otevřen. Ve stavu bez signálu se proto nastaví v bodě A pojistky napětí -0,55 V, oddělovací diody D₁ a D₂ nevedou, pojistka činnost zesílovače neovlivňuje. Při jmenovitém výkonu teče koncovými tranzistory proud až 3,16 A, napětí v bodě B bude tedy asi 1,26 V (kladně proti záporné věti napájení). Tento střídavý signál se přivede přes kondenzátor 50 μF na emitor T₆. Signál se superponuje (tj. přičte) ke stejnosměrnému napětí na vstupním dělící pojistky a v bodě A se objeví kladné špičky

napětí až asi 0,7 V, kterými se nabíjí integrační kondenzátor 500 μF. Diody D₁ a D₂ stále ještě nevedou.

Je-li však zesílovač přetížen, špičky napětí v bodě A otevřou obě diody, přes ně přejde kladné napětí na emitorové rezistoru vstupních tranzistorů, které se zavírají. Tím se zmenší buzení koncových tranzistorů a jejich kolektový proud se udržuje v bezpečné oblasti. Pojistka je doplněna tavou pojistkou, která se přeruší, překročí-li střední proud koncovými tranzistory 2,5 A.

Zesílovač má velmi dobrou teplotní stabilitu. Napájení ze souměrného zdroje dovolilo vypustit na výstupu oddělovací kondenzátor, takže zesílovač má velmi dobrý přenos i signálů nejnižších kmitočtů.

Další z dobré pracujících pojistek je na obr. 104. Jde o pojistku ze zesílovače Fairchild (nf výkon 22 W/8 Ω). Vstupní odporník zesílovače je 150 kΩ, výstupní menší než 0,5 Ω/1 kHz. Při běžném provozu jsou tranzistory pojistky zavřeny, nevedou. V nevodivém stavu jsou i diody D₁₀, D₁₁. Vybavovací napětí pojistky se vytváří na rezistoru R₁ a R₂. Přetížení výstupu způsobí zvětšení maximálního proudu koncovými tranzistory a tím i úbytek napětí na rezistoru R₁, R₂ (nebo i pouze na jednom z nich). Zvětší-li se napětí např. na R₁ na více než asi 0,6 V, tranzistor T₇ (v originále 2N3505) se otevře (obdobně je tomu u R₂ a T₈). Je-li jedná z tranzistorů T₇, T₈ otevřen, otevře se i druhý vlivem přímé galvanické vazby mezi jejich elektrodami B a E. Pak se otevřou i diody D₁₀, D₁₁ a svádějí k zemi budící signál pro koncové tranzistory.

Zesílovač se do provozního stavu uvede vypnutím zdroje na tak dlouho, až se napětí v obvodu zmenší natolik, že se tranzistory T₇ a T₈ opět uzavřou.

Pojistka je navržena pro výstupní výkon 22 W/8 Ω, špičkový proud je pojistkou omezen na 3,5 A. Tranzistory T₇ a T₈ mají $U_{BE} = 0,55$ V, z našich tranzistorů bylo možno použít typy KSY (n-p-n, p-n-p). Z uvedeného napětí emitor-báze vyplývají i odpory rezistorů R₁, R₂. Kondenzátor 10 nF v obvodu pojistky jeji činnost zrychlí.

Vstupní napětí pro plné vybuzení zesílovače je 250 mV.

Na obr. 105 je zesílovač s výstupním výkonem až 100 W/8 Ω. Používá tranzistory firmy RCA, je celkem běžného zapojení se symetrickým napájením.

Stejnosměrný pracovní bod tranzistoru T₁ je nastaven odporným trimrem 100 Ω

v emitoru budicího tranzistoru T₄. Ochranný obvod je velmi jednoduchý – tvorí jej rezistor 0,3 Ω v obvodu koncových tranzistorů a Zenerova dioda D₅ se Zenerovým napětím 4,7 V/1 W. Zenerova dioda je zapojena mezi „bod symetrie“, A, a společný bod diod D₁, D₂, které spolu s diodou D₃ a odporným trimrem 100 Ω tvoří obvyklý obvod pro nastavení pracovního bodu budicích tranzistorů T₄, T₅. V běžném provozu D₅ nevedou. Pojistka se uvede samočinně v činnost, jakmile se proud koncovými tranzistory zvětší nad 5 A. Pak je napětí na R₂ tak velké, že záporné půlvlny signálu otevřou diodu D₅ a jsou proto zkratovány na zem přes impedanci zátěže, která je dostatečně malá. Podobně jsou omezeny i kladné půlvlny. Dioda D₄ upravuje symetrii činnosti pojistky pro obě půlvlny. Ve zjednodušené variantě pojistky lze diodu D₄ vypustit, vybavovací rezistory pak musí mít různé odpory, R₁ = 0,33 Ω, R₂ = 0,27 Ω.

Na obr. 106 je zesílovač, navržený pro polovodičové součástky Siemens, se souměrným napájecím napětím. Přestože jsou při symetrickém napájení poměrně značné požadavky na malý výstupní odporník („tvrdost“ napětí), na dobrou kmitočtovou stabilitu, na šumové vlastnosti apod., je snaha vhodným návrhem zapojení výkonového zesílovače zmenšit závislost jeho vlastností na přenosnosti symetrie napájecího napětí. U dobrých koncových stupňů je tato závislost prakticky nulová nebo tak malá, aby nebyly v žádném případě ohroženy reproduktory. Zesílovač s těmito vlastnostmi pro několik variant výstupního výkonu je právě na obr. 106.

Jako vstupní část zesílovače slouží diferenční stupeň s T₁, T₂. Na první tranzistor je přiveden vstupní signál, na druhý záporná zpětná vazba. Tato vazba je pro ss signál 100 %. Jakákoli odchylka výstupního klidového napětí od nuly se celá přivádí do báze druhého tranzistoru. Toto automatické vyvážování výstupního napětí se uplatňuje nejen při širších tolerancích součástek, ale je dostatečně účinné i při částečném či úplném porušení souměrnosti napájecího napětí. Proti případnému zničení je vstup zesílovače chráněn tranzistorem KC238, který omezuje amplitudu vstupního signálu v závislosti na teplotě termistoru K252 (40 kΩ při 20 °C), umístěném na chladiči koncových tranzistorů. Teplotní stabilita pracovního režimu T₁, T₂ je zlepšena Zenerovou diodou se Zenerovým napětím 8,2 V. Nesouměrnost vlastností vstupních tranzistorů se upravuje odporným trimrem P₁.

Stupeň s T₃ napěťově rozděluje a zesiluje vstupní signál. Proti velkému vstupnímu sig-

Obr. 103. Schéma zesílovače Grundig RTV600

Obr. 105. Schéma zesílovače s výkonem 100 W/8 Ω

Obr. 106. Nf zesilovač Siemens

nálu je T_3 chráněn dvojicí diod D_1, D_2 . Transistor T_3 má v kolektoru jako pracovní odpor $T_6 (+R_4 \text{ a } R_5)$. Zpětná vazba z výstupu je zavedena na kondenzátor $47 \mu\text{F}$.

Na budiče je navázán koncový zesilovač v kvazikomplementárním zapojení. Podle výstupního výkonu je koncový zesilovač osazen dvojicí KD3055 nebo paralelně zapojenými tranzistory z řady KD. Koncové tranzistory jsou chráněny souměrnou ochra-

nou s tranzistory KC238-308, proti dlouhodobému přetížení tavnými pojistkami.

Mezi báze ochranných tranzistorů jsou proti zemi zapojeny diody D_3, D_4 . Toto opatření zaručuje souměrnou limitaci, výstupního proudu i tehdy, nebude-li na výstupu přesně 0 V; v opačném případě by se zmenšoval užitečný výstupní výkon.

V tabulce jsou pak přehledně uvedeny součástky pro různé výstupní výkony zesilovače.

Varianta	I	II	III	IV	V
Výstupní výkon [W], $k=1\%$, 1 kHz	15	30	40	60	120
Zatěžovací odpor [Ω]	4	4	8	4	4
Napájecí napětí [V]	± 14	± 23	± 30	± 28	± 38
Odběr proudu [A] při $P_{výst} = 0 \text{ W}$ $P_{výst} = \text{max.}$	0,8	1,5	0,1 1,1	1,9	2,6
Zkreslení při $1/2 P_{výst} \text{ max.}$ $a f = 50 \text{ Hz až } 16 \text{ kHz } [\%]$			$\leq 0,4$		
Vstupní napětí [V] pro plné vybuzení	1,1		1,5		
Vstupní odpor [$\text{k}\Omega$]			40		
Výkonová šířka pásma (-1 dB)			20 Hz až 16 kHz		
Napěťová šířka pásma (-1 dB)			10 Hz až 20 kHz		
Teplotní odpor [K/W] pro T_3 T_4, T_5 T_6, T_7	3 <40 <7	3 <30 <5	3 <30 <3	100 <20 <3,5	35 <10 <4
T_1, T_2	BC307B	BC307B	BC307B	BC307B	BCY77
T_3	BC377	BC141	BC141	BC141	BSX47
$T_4/T_5 - \text{BD} \dots$	135/136	235/236	237/238	237/238	237/238
$R_1 [\text{k}\Omega]$	1,2	2,2	3,3	3,3	3,3
$R_2 [\text{k}\Omega]$	15	15	15	15	8,2
$R_3 [\text{k}\Omega]$	5,6	3,9	3,3	3,3	3,3
$R_4 [\Omega] / \text{W}$	330/0,5	330/0,5	330/1	330/1	330/1
$R_5 [\text{k}\Omega]$	3,3	3,3	3,3	3,3	3,3/0,5
$R_6 [\Omega]$	27	22	27	22	10
$R_7 [\Omega]$	1000	560	560	560	270
$R_8 [\Omega]$	500	250	250	250	100
$R_9, R_{10} [\Omega]$	390	220	220	220	120
$R_{11}, R_{12} [\text{k}\Omega]$	150	150	150	150	150
$R_{13} [\Omega]$	1,2	1,3	1,2	1,2	1,2
$R_{14} [\Omega]$	27	27	27	27	22
$R_{15}, R_{16} [\Omega] / \text{W}$	15	15	15	15	12
Pojistky [A]	0,47/2	0,47/2	1/2	0,47/2	0,33/5
	135	2	2	3	4

Obr. 107. Nf zesilovač 50 W/4 Ω

Na obr. 107 je zesilovač s výstupním výkonem 50 W do zátěže 4 Ω při vstupním napětí 250 mV. Napájecí napětí zesilovače je zajištěno zdrojem z obr. 108. Vstupní odpor zesilovače je 50 k Ω , napěťové zesílení 35 dB, nelineární zkreslení je menší než 1 %. Pro $P_{výst} = 50 \text{ W}$, kmitočtový rozsah je 30 Hz až 30 kHz ($\pm 0,5 \text{ dB}$) při $P_{výst} = 50 \text{ W}$. Odstup šumu od signálu je 70 dB. Zesilovač byl konstruován pro součástky TESLA a splňuje i velmi přesné nároky na nf zařízení. Při větší zatěžovací impedanci dodá do zátěže: při 8 Ω asi 25 W, při 16 Ω asi 12 W. Max. výstupní napětí je asi 14,5 V.

Na vstupu zesilovače je diferenční stupeň, v němž lze místo uvedených tranzistorů použít s výhodou dvojitý tranzistor KC810. Pak pro nejlepší šumové poměry by bylo asi třeba změnit i proud tranzistoru, tzn. změnit odpory rezistorů R_2, R_3 . Z kolektoru T_1 je buzen tranzistor T_3 , který zesiluje signál napěťově, čímž je zajištěn potřebný rozkmit signálu na bázi invertoru T_4, T_6 . Pracuje s tzv. dynamickou zátěží, kterou tvoří tranzistor T_8 s tranzistorem T_9 jako zdroj proudu. Rezistor R_4 a kondenzátor C_2 omezují zesílení na vf kmitočtech a brání tak vf rozkmitání zesilovače.

Z invertoru jsou buzeny výkonové tranzistory T_5 a T_7 . Zátěž není od výstupu zesilovače oddělena kondenzátorem, protože vstupní diferenční dvojice tranzistorů zajišťuje nutlivé ss napětí proti „středu“ napájecího zdroje.

Před stavbou zesilovače je třeba vzhledem k použitímu napájecímu napětí změnit napětí U_{CE0} prakticky všech tranzistorů (kromě T_1 a T_2). Mělo by být alespoň 60 V. Pro nejlepší výsledky je třeba párovat tranzistory T_4-T_6 a T_5-T_7 . Souběžný parametr by měl být alespoň $\pm 10\%$, raději však lepší. Tranzistory T_3 až T_8 (kromě koncových, výkonových) je třeba opatřit hvězdicovými chladiči o výšce asi 1 cm.

Zdroj na obr. 108 je určen k napájení obou kanálů zesilovače z obr. 107, popř. i jiných zesilovačů s nf výstupním výkonem $2 \times 50 \text{ W}$. Síťový transformátor je na jádře EI32 a při výšce svazku plechů 4 cm je schopen dodat výkon až 120 W. Sekundární vinutí má $2 \times 30 \text{ V}$. Referenční napětí pro stabilizátor se získává dvěma Zenerovými diodami, D_7, D_8 , volbou odporu rezistorů R_1 a R_2 lze podle druhu použitých Zenerových diod volit vhodný pracovní proud diodami. Pro výstupní napětí 28 V mají mít Zenerovy diody napětí 28 V (např. KZ714), pro shodné výstupní napětí je třeba, aby diody měly shodné Zenerovo napětí.

Rezistory R_3, R_4 se volí podle potřebného maximálního výstupního proudu, tvoří sou-

Obr. 108. Zdroj pro zesilovač na obr. 107

časné tzv. předzátěž, která má dobrý vliv na stabilitu výstupního napětí zdroje v celém rozsahu výstupních proudů.

Na obr. 109 je zesilovač s nf výstupním výkonem 20 W do zátěže 15 Ω, popř. kolem 30 W do zátěže 8 Ω. V celém slyšitelném rozsahu kmitočtů a v celém rozsahu výkonů má zkreslení (intermodulační) menší než 0,003 %. Úroveň šumu je -120 dB pod polovičním výkonem. Maximální výstupní proud je asi 3 A.

Jak je z uvedených parametrů zřejmé, má zesilovač velmi malé zkreslení a to i při velké „účinnosti“ (pracuje ve třídě B). Tranzistor T₁ má napěťové zesílení maximálně 5, posouvá především stejnosměrnou úroveň (střed napájecího napětí mezi emitoru koncových tranzistorů). Hlavní podíl na napěťovém zesílení (asi 400) má stupeň s tranzistorem T₂. Tranzistor T₃ s aktivním zátěží (T₆ – proudový zdroj) signál napěťové nezesiluje. Dioda D₃ zabrání tomu, aby se T₃ nedostal do hluboké saturace, přijde-li na vstup T₁, „velká“ kladná půlvlna.

Druhá část zesilovače rozděluje signál do dvou větví (T₄, T₅). Pracovní režim budičů a koncového stupně se nastavuje rezistorem R₁₁ tak, aby byl v lineární části těsně na hranici mezi lineární a nelineární oblastí přechodu. Část obvodu slouží k získání přibližně stejného napětí, jaké je na výstupu (1/2 U_b) pro bázi tranzistoru T₁ (R₇, D₄, D₅, R₈, T₂). Tranzistor T₂ může mít výstupní proud až asi 10 mA. Pracuje s téměř plným napájecím napětím.

Obr. 110. Nf zesilovač 55 W/4 Ω

Na obr. 110 je jakostní zesilovač s nf výkonem 55 W při napájecím napětí ±27 V do zátěže 4 Ω (popř. asi 30 W do 8 Ω) při vstupním efektivním napětí 1,26 V. Harmonické zkreslení je lepší než asi 0,5 %, střední napájecí proud je asi 1,5 A. Vstupní impedance je 47 kΩ, výstupní impedance je 0,1 Ω, maximální výstupní napětí je 15 V, odstup signál-šum asi 90 dB a kmitočtová charakteristika je rovná při 50 W při maximálním výstupním výkonu v mezích 20 Hz až 40 kHz.

Napájecí zdroj k tomuto zesilovači je na obr. 111. Pro použití k zesilovači na obr. 110 výstupní napětí není třeba stabilizovat, stačí pouze zaručit, že výstupní napětí zdroje nebude větší než asi 30 V. Pro maximální výstupní výkon zesilovače je však třeba dobře navrhnut transformátor, aby se výstupní stejnosměrná napětí i při velkých odběrech proudu měnila co nejméně.

Postup při oživování zesilovače: Pokud jsme použili předem změřené součástky (což doporučujeme při každé konstrukci), připojíme k zesilovači bez výkonových tranzistorů napájecí zdroj přes ampérmetr – odběr proudu by neměl být větší než asi 15 mA. Dále změříme výstupní ss napětí – musí být nulové (za L₁). Je-li skutečně nulové, nastavíme

Obr. 111. Zdroj pro zesilovač na obr. 110

odporový trimr R₂₂ tak, aby úbytek napětí na R₃₃ (R₃₄) byl asi 0,55 V.

Pak připojíme na běžec potenciometr hlasitosti nf generátor, na výstup zesilovače osciloskop nebo střídavý milivoltmetr. Generátor nastavíme na 1 kHz a měníme výstupní napětí generátoru v mezích 0 až 1 V. Osciloskopem kontrolujeme linearitu výstupního signálu (obou půlvln). Dále překontrolujeme výstupní signál pro vstupní signály různých kmitočtů a zjišťujeme chování zesilovače především na horních kmitočtech akustického pasma.

Je-li vše v pořádku, odpojíme napájecí napětí, připojíme výkonové tranzistory a opět zkontrolujeme, je-li na výstupu 0 V. Odporovým trimrem nastavíme odběr proudu ze zdroje asi na 25 mA. Vstup spojíme se zemí a můžeme při změně napětí v jedné z napájecích větví překontrolovat činnost zesilovače při mírně nesouměrném napájecím napětí. Výstupní úroveň by se i při velkých změnách napětí kladně nebo záporně větve neměla lišit od nuly o více než asi ±1 V, což je dánou použitím diferenčního vstupního obvodu.

Je-li vše v pořádku, připojíme k výstupu zesilovače jmenovitou zátěž 4 Ω a Boucheerotův člen (1 Ω, 100 nF). Zesilovač budíme na větší výstupní výkony a zjišťujeme na osciloskopu jeho chování především po stránce kmitočtové stability. Pokud zjistíme, že základní signál je „modulován“ signálem vyššího kmitočtu, zvětšíme C₃ na 470 pF, popř. i více.

Při jakýchkoli potížích (pokud jde o kmitočtovou stabilitu) je třeba vždy překontrolovat zemní spoje – jsou-li dostatečně tlusté a co nejkratší, jsou-li skutečně spojeny v jednom bodě (minus pól kondenzátoru C₁ zdroje).

Pro případné opravy nebo hledání závad jsou v tabulce napětí na elektrodrádach tranzistorů při jmenovitém napájecím napětí.

Obr. 109. Nf zesilovač 20 W/15 Ω

C	-6	-10,6	2,6	1,4	6	10,6	-2,6	-1,3	1,4
B	0	0	5,8	6	0	0	-5,8	-6	-0,75
E	0,55	0,55	6,4	6,6	-0,55	-0,55	-6,4	-6,6	-1,4

C	25,5	-25,5	0,5	-0,5	0	0	26,5	-26,5
B	1,3	-1,3	26	-26	26,5	-26,5	27	-27
E	0,4	-0,4	26,5	-26,5	27	-27	27	-27

Výkonový zesilovač na obr. 112 je osazen koncovými tranzistory p-n-p, n-p-n. Tranzistory tedy zatěžují napěťový zesilovač při obou polaritách zpracovávaného signálu rovnoramenně. Napěťové zesílení bez zpětné vazby je asi 20, což se projeví u zesilovače se zpětnou vazbou zmenšením zkreslení asi o řád. Výstupní odpor zesilovače je asi 0,1 Ω, vstupní odpor asi 15 kΩ. Šířka pásmá je pro plný výstupní výkon 20 Hz až 30 kHz, ±0,5 dB. Zesilovač byl ověřován se zátěží jak 4, tak 8 Ω a nebyly zjištěny žádné rušivé

jevy ani při vypínání nebo zapínání zdroje. Použitím proudových zdrojů s tranzistory (aktivní pracovní odpory) se podstatně zlepší teplotní drift klidové úrovně výstupu: v rozmezí teplot 20 až 70°C je při konvenčním způsobu řešení zesilovače s diferenčním vstupem drift výstupu asi ± 100 mV; s proudovým zdrojem v diferenčním a napěťovém zesilovači (T_3 , T_4 , T_9) se drift výstupního napětí změnuje pro stejně rozmezí teploty na ± 40 mV (pro tzv. nejhorší případ).

Ještě několik rad k napájení zesilovačů, které byly dosud uvedeny: jako zdroj napájecího napětí je možno použít v podstatě libovolný stabilizovaný zdroj, který je schopen dodat požadovaný proud. U většiny zesilovačů však postačí jako napájecí zdroj zapojení podle obr. 113. Ke zdrojům jen dvě poznamky – diody volíme samozřejmě podle požadovaného proudu a napětí (s rezervou až asi 20 %, popř. diody umístíme na chladič), pracovní napětí kondenzátorů by mělo být asi 3/4 povoleného napětí (nebo jinak – jmenovité napětí kondenzátorů by mělo být asi 1,5násobkem napájecího napětí). A po-

kud jde o síťové transformátory, je vhodné prokládat každou vrstvu sekundárního vinutí (a několik vrstev primárního vinutí) alespoň dvěma vrstvami transformátorového papíru a celek pak po dohotovení transformátoru napustit parafinem (rozehřátým) nebo Resistinem (je vhodné Resistin ohřát na vyšší teplotu, lépe pak vzlíná). Pro spoje ve zdroji a ze zdroje stačí do proudu 1,5 až 2 A drát o Ø 1 mm, čím je drát tlustší, tím lépe.

Jak je možné řešit tranzistorové zesilovače s výkonem stovek wattů je zřejmé z obr. 114, na němž je zesilovač, popsáný před časem v anglickém časopisu Wireless World. Zesilovač je osazen součástkami firmy Motorola a má výstupní výkon 1000 W. Jako koncové stupně pro obě polarity signálu slouží čtvrtice tranzistorů MJE413. Tranzistory mají závěrné napětí větší než 500 V a kolektorový proud 8 A, jejich výkonová ztráta je větší než 150 W. Bylo by zajímavé, zkoušit je nahradit typy SU167 a SU169, které lze získat i u nás. Náhrada spinacími tranzistory však není pro akustické účely vhodná, neboť spinací tranzistory mívají vysoké mezní kmitočet a další nevýhodné vlastnosti, které způsobují jejich náchylnost ke kmitání.

Koncepcie zesilovače je však adaptovatelná pro menší nf výkony od 60 W, pro něž jsou zapotřebí koncové tranzistory s většími kolektorovými ztrátami. Můstková zapojení zesilovačů, které byly dosud popsány, umožňují dosáhnout nf výkonu maximálně asi 180 W – větších výkonů bylo možno

Obr. 113. Síťové zdroje se souměrným a nesouměrným výstupním napětím pro nf zesilovače

Obr. 112. Výkonový zesilovač s dobrou stabilitou

Obr. 114. Nf zesilovač 100 W/10 Ω

dosáhnout jen přidáváním dalších koncových stupňů, podobně jako je tomu u tohoto zesilovače.

Vstupní zesilovač na obr. 114 je tvořen diferenciálním zapojením T_1 a T_2 ($U_{CE0} = 150$ V). Přes rezistory R_1 a R_2 je zavedena stejnosměrná i střídavá zpětná vazba. Celkové napěťové zesílení zesilovače je 42 dB. Ss vazba je 100 %, což zajišťuje stálou úroveň ss napětí na výstupu. Dvojice Zenerových diod ve vstupním obvodu určuje pracovní body vstupních tranzistorů. Zenerova dioda DF_1 slouží k posuvu stejnosměrné úrovně signálu o 145 V na klidovou úroveň asi 2,5 V, nutnou pro čtyři emitorové přechody v sérii. Odporovým trimrem 10 k Ω se

Problémy by byly i s náhradami Zenerových diod ($U_z = 100$ V, 145 V, 50 V).

Při studiu zahraničních pramenů se často stává, že potřebujeme rychle najít ekvivalenty zahraničních tranzistorů, abychom se mohli rozhodnout, je-li to či ono zapojení realizovatelné. Potřebné údaje se však shání nesnadno. Proto je v následující tabulce stručný přehled hlavních parametrů nejčastěji se vyskytujících polovodičových součástek, kromě toho byla většina nejčastěji používaných tranzistorů evropských výrobců uveřejněna během posledních 10 let i v AR řady A. Uvedené typy tranzistorů jsou výrobky firmy Texas Instr., Valvo, Intermetal, SGS a Motorola.

Tranzistor	Typ. vod.	$P_{max}/P_{25} \text{ °C}$ [W]	I_{Cmax} [A]	U_{CBO}	U_{CE0} max. [V]	U_{EBO}	$h_{21E}/U_{CE0}/I_C$ [-N/mA]	f_T [MHz]
BSY53, 2N1613	n	3/0,8	0,75	75	30	7	až 120/10/0,15	100
BSX40	p	2,5/0,6	0,5	30	30	5	až 120/10/0,15	100
BSY54, 2N1711	n	3/0,8	0,75	75	30	7	až 300/10/0,15	145
BSX41	p	2,5/0,6	0,5	30	30	5	až 300/10/0,15	150
BC142	n	5/0,8	-	80	60	5	až 100/10/10	20
BC143	p	3/0,7	-	60	60	5	až 130/10/10	100
2N3053	n							
40389	n	5/1	0,7	60	40	5	až 250/10/150	20
40394	n							
2N4037	p							
40391	p	7/3,5	1	60	40	7	až 250/10/150	20
40394	p							
2N2102	n	5/1	1	120	65	7	až 120/10/150	120
2N4036	p	7/1	1	90	65	7	až 140/10/150	60
40361	n							
40362	p	5/1	0,7	-	70	4	až 200/4/50	100
2N2218	n	3/0,8	0,8	60	30	5	až 120/10/150	200
2N2904	p	3/0,6	0,6	60	40	5	až 120/10/150	200
2N2222	n	1,8/0,5	0,8	60	30	5	až 300/10/150	200
2N2907	p	1,8/0,4	0,6	60	40	5	až 300/10/150	200
BC125	n	0,8/0,3	0,5	50	30	5	až 75/10/10	20
BC126	p	0,8/0,3	0,6	35	30	5	až 85/10/10	100
2N1613	n	-0,8	1	75	50	7	až 120/10/150	60
2N1132	p	-0,6	-	50	50	5	až 90/-150	60

nastavuje klidový proud T_1 , T_2 . Zvětšením tohoto proudu se následně zvětší i klidový proud koncových výkonových tranzistorů (ten by měl být asi 200 mA). Kmitočtové je zesilovač kompenzován obvodem R_3 , C_2 .

Aby byl diferenční stupeň zatěžován souměrně, je v obou větvích různý počet tranzistorů. Koncové výkonové tranzistory mají vzhledem ke svému paralelnímu zapojení v emitorech a bázích vyrovnanávací rezistory.

Vstupní impedance zesilovače je dána rezistorem, 2,2 k Ω v sérii s kondenzátorem 2 μF . Při buzení zesilovače signálem s $U_{el} = 1$ V je na výstupu $U_{el} = 100$ V, což při zátěži 10 Ω odpovídá proudu 10 A. tedy výstupnímu nf výkonu 1 kW.

V horní části schématu zapojení je napájecí zdroj zesilovače. Jako usměrňovací diody bylo možno použít naše typy KY930/600 nebo podobné, kondenzátory, filtrující usměrněné sekundární napětí z transformátoru jsou na napětí 500, popř. 350 V. Jako tranzistory T_3 až T_7 bylo možno vyzkoušet SU167, tj. spínací typy, neboť jiné tranzistory na našem trhu (na tak velká napětí) nejsou. Jako T_8 až T_{17} byly nevhodnější typy KD3773, KD3442. Je ovšem třeba upozornit na to, že při konstrukci zesilovače se pracuje s relativně velkými napětmi a proudy, tzn. že hrozí nebezpečí úrazu elektrickým proudem!

určit plochu hladkého hliníkového chladiče s černě eloxovaným matným povrchem. Chladič musí mít poměr stran 1:2 a jeho tloušťka musí být alespoň 2 mm. Při použití žebrovaných profilů je možno vypočítanou plochu úmerně zmenšit. Má-li naopak chladič světlý a lesklý povrch, musí se vypočítat plocha vynásobit 1,2.

Při používání nomogramu se postupuje takto:

1. Určí se maximální výkonová ztráta koncových tranzistorů.

2. Pro danou výkonovou ztrátu se určí přípustná teplota tranzistorových přechodů (T_j) ze závislosti výkonové ztráty na teplotě T_j , uváděné v katalogu.

3. Určí se ΔT_j – rozdíl mezi max. teplotou tranzistorových přechodů a teplotou okolí.

4. Spoje si odpovídající body na stupni A (T_j) a stupnici B (P_Z). Spojnice těchto bodů, protínající stupnici C (°C/W), určuje potřebný tepelný odpor R_{ja} mezi tranzistorovými přechody a okolím.

5. Vypočítá se tepelný odpor mezi chladičem a okolím, R_{sa} , ze vztahu $R_{sa} = R_{ja} - R_{cs}$, kde R_{ja} je tepelný odpor mezi přechody tranzistoru a pouzdrem tranzistoru (uvádí výrobce v katalogu, např. pro pouzdro typu T0-3 bývá asi 1,5 °C/W) a R_{cs} je tepelný odpor mezi pouzdem a chladičem, jeho typické velikosti jsou v tabulce.

Pouzdro	Přímý kontakt	Slíďová podložka	Tvrzadlá podložka z Al
T0-3	0,05	2	0,15
T0-66	0,4	2,4	0,6
plast. 77	3	6	
plast. 90	1,2	2,2	

T0-3 = T39 až T42 podle katalogu TESLA, stejně jako T0-66, plast. 77 a 90 = T43, T44 podle katalogu TESLA.

K návrhu chladičů pro výkonové zesilovače

Při řešení výkonových zesilovačů je velmi důležitou součástí konstrukce návrh chladiče pro výkonové tranzistory. Jako pomůcka k určení plochy chladiče může sloužit nomogram na obr. 115. Z tohoto nomogramu lze

Obr. 115. Nomogram k určení plochy chladiče výkonových tranzistorů (WW č. 1423/1971)

Z obvodu určeného vypočítaným R_{sa} na stupni C se pak vede přes konstrukční bod přímka, jejíž průsečík se stupnicí D určí plochu S chladiče v modulu, který po výnášení číslem 6,45 udává plochu chladiče v cm². K údajům ve sloupci „přímý kontakt“ tabulky bych chtěl dodat, že tepelný odpor lze zmenšit až asi o 1/4 dané velikosti tím, že stykovou plochu chladiče a tranzistoru potřeme tenkou vrstvou silikonové vazeliny (lze ji zakoupit např. v prodejnách rybářských potřeb za 2,40 Kčs). Vazelina by neměla mít kontakt s vývody tranzistoru, a to ani po dotažení připevnovacích šroubů.

Vzhledem k tomu, že černé chladiče (ať již hliníkové nebo duralové) mají lepší odvod tepla, lépe vyzařují teplo do okolí, uvedu i návod na černění chladičů. Navíc, pokud jsou chladiče i po mechanické stránce vzhledné, lze je umisťovat vně přístroje, přičemž lépe plní svoji úlohu než při umístění uvnitř, neboť se tím zlepší přestup tepla do okolí.

Černě barvíci lázeň

Roztok 60 g dusičnanu mangatého se rozpustí v 1000 ml vody. Černěný předmět se smáčí roztokem, pak se usuší na vzduchu a prudce ohřeje nad plamenem. Nakonec se očistí a okartáčeji.

Jiná černě barvíci lázeň

800 ml denatuovaného lihu smícháme s 90 g chloridu antimoničního a 80 % koncentrované kyseliny (I). Předmět se tímto roztokem potře, osuší a přeleští.

Jiná černě barvíci lázeň

20 g chloridu měďnatého se rozpustí v 800 ml vody – předmět tímto roztokem potíráme tak dlouho, až je zbarvení stejnoměrné.

Sytě černici lázeň

180 g modré skalice a 80 g chlorečnanu draselného se rozpustí ve 1000 ml vody. Černěný předmět se dobře odmasti, opláchně zředěnou kyselinou solnou a vodou a pak ponorí do roztoku. Používat pouze čirý roztok, nikoli usazenou sedlinu!

Nf zesilovač s elektronkami

Prestože světoznámé firmy na výrobu zvukových aparatur nabízejí nejrůznější zařízení k zesilování a úpravě nf signálů, která jsou osazena nejmodernějšími elektronickými aktivními součástkami, u hudebníků se stále těší značné oblíbě zařízení, osazená

elektronkami (např. výrobky Marshall, ať již výkonové boxy či aparát COMBO pro kytry). Elektronková zařízení jsou sice v některých parametrech (rušivé signály, zkreslení, dynamika) horší než polovodičová (především s FET), u kytrových aparatur to však nevadí, naopak velkou přednost elektronkových zařízení je mnohem „sympatičtější“ a „teplejší“ zvuk, jemuž mnozí hudebníci dávají přednost. Srovnatelným zvukem (s elektronkovými zařízeními) se vyznačují zařízení, osazena FET, tranzistory řízenými polem.

Než budou tyto součástky běžně k dosažení, může si hudebník, který dává přednost elektronkovým zařízením, postavit než zesilovač s elektronkami podle obr. 116. Zesilovač je osazen běžnými typy elektronek; svým výkonom i vlastnostmi je vhodný do kytrového aparátu COMBO, jeho vlastnosti velmi dobré vyhoví např. ve spojení s běžnými kytrovými boxy, které hudebníci používají jako odposlechové jednotky a z nichž se mikrofonem odebírá signál z kytry pro směšovací zařízení (mixpult).

Zesilovač má výkon (sin.) 50 W. Vstupní citlivost pro plné vybuzení je asi 4,5 mV.

Odporové trimry R₁ a R₂ se nastavují tak, aby na obou katodách koncových pentod bylo napětí 0,125 V, a aby buzení elektronek bylo symetrické. Transformátor na výstupu je typu 3AN 673 02, je možno si jej i navinout – L₁ a L₂ mají 2 × 950 závitů drátu o Ø 0,1 mm a L₃ 48 závitů drátu o Ø 3 mm. Transformátor je ná jadře EIXX, výška sloupu XX mm.

Kdybychom chtěli zvětšit výkon na 100 W, je třeba změnit R₁ na 12 kΩ, R₈ na 750 Ω, L₁, L₂ musí mít pak po 2700 závitech, U_b by se muselo zvětšit ze 450 na 800 V. Na výstupu by pak bylo asi 200 V, 0,9 A, což odpovídá nf výkonu asi 100 W. Průměr drátu L₃ by bylo třeba též zvětšit, a to na 1 mm.

Buderme-li používat reproduktory s malou impedancí (4 až 16 Ω), je třeba u vinutí 100 V/45 W použít k připojení reproduktorů přizpůsobovací transformátor 11676/66, který má na jádru EIXX jako primární vinutí 2 × 515 závitů drátu o Ø 0,2 mm, jako sekundární vinutí 122 závitů drátu o Ø 0,71 mm.

Elektronky EF86 mají žhavení 6,3 V/0,2 A, stejně jako ECC83, EL34 má 6,3 V/1,5 A.

Vstupní obvod zesilovače by bylo možno nahradit zapojením s tranzistory řízenými polem podle obr. 117. Odporový trimry v napájecích větvích lze nastavit požadované napětí na elektrodách D (drain) FET, v zapojení lze použít v podstatě libovolné typy FET s kanálem N nebo N-MOS (bylo by možné vyzkoušet i tuzemské KF520), lepší jsou však v každém případě nyní běžně dostupné FET BF245, zapojení jejich vývodu je na obr. 118.

Obr. 118. Zapojení vývodů FET

Pokud bychom chtěli, aby zesilovač obsahoval i obvod overdrive, je možné na vstup zapojit obvod podle obr. 119 (místo vstupního předzesilovače s T₁ podle obr. 117).

Podobné zapojení obvodu overdrive s elektronkami je na obr. 120.

Obr. 117. Náhrada vstupního obvodu zesilovače z obr. 116 zapojením s FET (paralelně k 68 kΩ u T₄, T₅ lze přidat C = 50 μF)

Obr. 116. Výkonový zesilovač s elektronkami

Obr. 119. Overdrive s FET

Obr. 122. Kytarový předzesilovač s FET

Obr. 120. Overdrive s elektronkami

Obr. 121. Jednoduchý elektronkový nf zesilovač

Podobně bylo možno u nejrůznějších zapojení s elektronkami používat dílčí obvody s FET při zachování původních vlastností – je pouze třeba dbát na správní napěťové přizpůsobení. Zapojení s FET jsou vynikající i proto, že mají větší možnosti pokud jde o přebuzení, jsou tedy „dynamičtější“.

Jiné zapojení nf zesilovače s elektronkami je na obr. 121. I když jde o zapojení zřetelně jednodušší než na obr. 116, jsou vlastnosti obou zesilovačů téměř shodné. Zesilovač má výstupní transformátor na jádru EIIX, primární vinutí má 2x 800 závitů drátu, o Ø 0,25 až 0,3 mm, sekundární vinutí jsou pro 4 Ω 48 závitů, pro 8 Ω 65 a pro 16 Ω 90 závitů drátu o Ø 1 až 1,2 mm CuL.

S oživováním zesilovače by neměly být žádné problémy. Odporovými trimry 1 MΩ se nastaví na katodách elektronek 0,125 V, popř. symetrie výstupního signálu. Tím je zesilovač nastaven. Celý zesilovač lze vystavět i s reproduktorem (nejlépe širokopásmovým) do malé skříně, čímž vznikne COMBO především pro domácí cvičení, pro odposlech a popř. i pro odebírání signálu do směšovače při veřejném vystupování.

Kdyby měl někdo zájem pořídit si zesilovač soupravu s elektronkami, avšak nesehnal by potřebné součástky, může si zesilovač objednat u soukromé firmy BECK v Bratislavě. Do aparatury si může zájemce obejdnat overdrive, ekvalizér, filtry – vše podle potřeb zájemce. Aparatury jsou osazeny jak elektronkami, tak i FET.

I když již byla řeč o FET – na závěr si uvedeme zapojení předzesilovače s FET, který je vhodný zejména pro vestavění do kytary. Odporovým trimrem 4,7 kΩ (obr.

121) se nastavuje na elektrodě D (kolektoru) polovina napájecího napětí. Odporový trimr 10 kΩ určuje zesílení. Vstupní odpor dalšího stupně by měl být alespoň 50 kΩ, výstupní

efektivní napětí je pak 0,7 mV. Požadovaný vstupní odpor je možno nastavit volbou R_v (vstupní odpor tranzistoru je až 10¹² Ω). Vhodný R_v pracuje-li předzesilovač ve spojení s kytarovým snímačem, je 4,7 MΩ. Odber předzesilovače je asi 0,5 mA, takže baterie 9 V vydrží v kytáře při každodenním cvičení déle než 3 měsíce. Tranzistor lze zakoupit i v našich prodejnách (18,50 Kčs).

A zcela na závěr – především u zapojení s elektronkami je třeba dbát maximální opatrnosti, neboť elektronky jsou napájeny značně velkým napětím a při neobrátné nebo neopatrné manipulaci se zesilovačem je možnost úrazu elektrickým proudem. Obřímky pro elektronky (především pro EL34) jsou nejvhodnější keramické, neboť elektronky využívají značné množství tepla. I tak je však třeba dbát na dobrou cirkulaci vzduchu v zesilovači (větrací díry). Je také vhodné umisťovat elektrolytické kondenzátory v dostatečné vzdálenosti od zdrojů tepla, jako je síťový transformátor a koncové elektronky, protože v opačném případě kondenzátory rychleji vysychají a ztrácejí kapacitu.

Literatura

AR řady A i B, Radiový konstruktér, firemní literatura.

NOVÁ GENERACE OBVODŮ PRO BTV

Ing. Václav Teska

(Dokončení)

Při současné aktivaci několika vstupů Z (nebo vstupů Z a vstupu X) IO nepracuje. Když SSM=H, musí být spojen vstup Z a výstup DR, jinak není generován kód. Je-li jeden ze vstupů X nebo Z spojen s několika výstupy DR, je považován za správný poslední ohledaný signál. Maximální odpor tlačítka je 7 kΩ.

Přehled povelů je v tab. 26 a skupin v tab. 27. Parametry SAA3006 jsou v tab. 28 a zapojení vysílače s tímto IO je na obr. 24.

Zesilovače infračerveného (IC) signálu, TDA4050

Vysílaný signál IC je přijímán fotodiódou D₁₉ na obr. 25 a přiveden na vstup T₅, který má pro zlepšení selektivity zapojen mezi kolektor a emitor selektivní obvod R₂₅, R₂₆, C₁₆, C₁₇. Z kolektoru T₅ je signál veden přes C₁₂ na vstup zesilovače 1 přes vývod 8 IO₁, který pracuje jako regulovaný zesilovač řízený napětím z výstupu zesilovače 3, který je

řízen ss napětím z výstupu detektora. Detektor je buzen napětím z výstupu zesilovače 2, který má nastaven konstantní zisk. Mezi vstup detektoru a výstup zesilovače 2 je zapojen laděný obvod C₁₈, L₂ naladěný a sl. na 33 kHz. Z výstupu zesilovače 2 je signál veden do omezovače a přes vývod 3 IO₁ na výstup a do mikropočítače IO₄. Výstupní napětí detektoru je filtrováno C₁₁, R₂₂, pracovní bod je blokován C₁₃ v obvodu zesilovače 2. Parametry TDA4050 jsou v tab. 29.

Předzesilovač signálu IC, TDA3048

Předzesilovač TDA3048 na obr. 25 je vhodný pro příjem modulovaných signálů IC a za určitých omezení i k příjmu impulsních signálů IC nemodulovaných. Mezi jeho hlavní výhody lze zařadit malý ztrátový výkon (napájecí proud 2,1 mA), napájecí napětí 5 V, rozdílový zesilovač s rozsahem regulační 66 dB, velkou citlivost, značnou odolnost

Tab. 26. Povely v matici X-DR

Kód č.	Vodiče X 0 1 2 3 4 5 6 7	Vodiče DR 0 1 2 3 4 5 6 7	Bity povelu 5 4 3 2 1 0
0	o		0 0 0 0 0 0 0
1	o	o	0 0 0 0 0 1
2	c	o	0 0 0 0 1 0
3	o	o	0 0 0 0 1 1
4	o		0 0 0 1 0 0
5	o	o	0 0 0 1 0 1
6	o	o	0 0 0 1 1 0
7	o	o	0 0 0 1 1 1
8	o	o	0 0 1 0 0 0
9	o	o	0 0 1 0 0 1
10	o	o	0 0 1 0 1 0
11	o	o	0 0 1 0 1 1
12	o	c	0 0 1 1 0 0
13	o	o	0 0 1 1 1 0
14	o	o	0 0 1 1 1 1
15	o		0 1 0 0 0 0
16	o	c	0 1 0 0 0 1
17	o	o	0 1 0 0 1 0
18	o	o	0 1 0 0 1 1
19	o		0 1 0 1 0 0
20	o	o	0 1 0 1 0 1
21	o	o	0 1 0 1 1 0
22	o	o	0 1 0 1 1 1
23	o	o	0 1 1 0 0 0
24	o	o	0 1 1 0 0 1
25	o	o	0 1 1 0 1 0
26	o	o	0 1 1 1 0 1
27	o	o	0 1 1 1 1 0
28	o	o	0 1 1 1 1 1
29	o		0 1 1 1 1 0 1
30	o	o	0 1 1 1 1 1 0
31	c		0 1 1 1 1 1 1
32	o	c	1 0 0 0 0 0 0
33	o	o	1 0 0 0 0 0 1
34	o		1 0 0 0 1 0 0
35	o	o	1 0 0 0 1 1 0
36	o	o	1 0 0 1 0 0 0
37	o	o	1 0 0 1 0 0 1
38	o	o	1 0 0 1 1 0 0
39	o	o	1 0 0 1 1 1 0
40	o	o	1 0 1 0 0 0 0
41	o	o	1 0 1 0 0 0 1
42	o	o	1 0 1 0 0 1 0
43	o		1 0 1 0 1 1 0
44	o	o	1 0 1 1 0 0 0
45	o	o	1 0 1 1 0 0 1
46	o	o	1 0 1 1 1 1 0
47	o	o	1 0 1 1 1 1 1
48	o	o	1 1 0 0 0 0 0
49	o	o	1 1 0 0 0 1 0
50	o	o	1 1 0 0 1 1 0
51	o	o	1 1 0 1 0 0 0
52	o	o	1 1 0 1 0 0 1
53	o	o	1 1 0 1 0 1 0
54	o	o	1 1 0 1 1 1 0
55	o		1 1 0 1 1 1 1
56	o	o	1 1 1 0 0 0 0
57	o	o	1 1 1 0 0 0 1
58	o	o	1 1 1 0 1 0 0
59	o	o	1 1 1 0 1 0 1
60	o	o	1 1 1 1 0 0 0
61	o	o	1 1 1 1 0 0 1
62	o	o	1 1 1 1 1 1 0
63	o		1 1 1 1 1 1 1

o - o označuje propojení vstupů X s výstupy DR

vůči velkým vstupním signálům, demodulaci signálu synchrodetektorem, omezení amplitudy při vstupním signálu větším než 600 mV, tlumení vstupního obvodu v závislosti na vstupním signálu (řízení Q) a možnost provozu v úzko nebo širokopásmovém režimu.

Signál dopadající na D₁ je přes C₇ přiveden na vstup rozdílového zesilovače (vývody 2, 3 IO₅) a na obvod řízení Q. Druhý vstup rozdílového zesilovače je blokován C₃ na vývodu 15 IO₅. Mezi vývody 4, 13 a 5, 6 jsou zapojeny pro stabilizaci zisku rozdílového zesilovače C₅ a C₉. Zesílený signál je veden do synchrodemodulátoru, který má na vývodech 7 a 10 zapojen referenční obvod L₁, C₄, naladěný na 37,5 kHz.

Demodulovaný signál je přes tvarovač impulů a výstupní budič (vývod 9 IO₅) veden do mikropočítáče IO₄. Signál před Schmittovým klopným obvodem (SKO) je filtrován C₁ na vývodu 11 IO₅. Ze synchrodemodulátoru je signál veden i do detektoru a zesilovače

AVC, který řídí vstupní zesilovač. Časová konstanta AVC je nastavena C₂ na vývodu 12 IO₅. Jakost obvodu C₈, L₂ v závislosti na vstupním signálu je řízena obvodem řízení Q na vývodech 3, 14 IO₅. Při vstupním signálu přes 600 mV je doplňkově omezen signál omezovačem na vývod 1 IO₅. Dolní mezní kmitočet rozdílového zesilovače je určen C₅, C₉, z nichž větší vliv má C₅. Kapacity kondenzátorů C₅, C₉ musí být voleny tak, aby bylo potlačeno rušení. Horní mezní kmi-

Tab. 27. Skupiny v matici Z-DR

Skupina	Vodiče Z 0 1 2 3	Vodiče DR 0 1 2 3 4 5 6 7	Bity skupiny 4 3 2 1 0
0	o	o	0 0 0 0 0 0 0
1	o	o	0 0 0 0 0 0 1
2	c	o	0 0 0 0 1 0 0
3	o	o	0 0 0 0 1 1 1
4	o		0 0 0 1 0 0 0
5	o	o	0 0 0 1 0 0 1
6	o	o	0 0 0 1 1 1 0
7	o	o	0 0 0 1 1 1 1
8	o	o	0 0 1 0 0 0 0
9	o	o	0 0 1 0 0 0 1
10	o	o	0 0 1 0 1 0 0
11	o	o	0 0 1 0 1 0 1
12	o	o	0 0 1 1 0 0 0
13	o	o	0 0 1 1 0 0 1
14	o	o	0 0 1 1 1 1 0
15	o	o	0 0 1 1 1 1 1
16	o		0 1 0 0 0 0 0
17	o	c	0 1 0 0 0 0 1
18	o	o	0 1 0 0 1 0 0
19	o	o	0 1 0 0 1 1 1
20	o	o	0 1 0 1 0 0 0
21	o	o	0 1 0 1 0 1 0
22	o	c	0 1 0 1 1 1 0
23	o	o	0 1 0 1 1 1 1
24	o	o	0 1 1 0 0 0 0
25	o	o	0 1 1 0 0 0 1
26	o	o	0 1 1 0 0 1 0
27	o	o	0 1 1 0 1 1 1
28	o	o	0 1 1 1 0 0 0
29	o	o	0 1 1 1 0 0 1
30	o	o	0 1 1 1 1 1 0
31	o		0 1 1 1 1 1 1

Tab. 28. Parametry SAA3006

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U _{DD} [V]	-0,5		8,5
Vstupní napětí, U _I [V]	-0,5		U _D +0,5
Vstupní proud, I _I [mA]	-0,5		10
Výstupní napětí, U _O [V]	-0,5		U _D +0,5
Výstupní proud, I _O [mA]			10
Ztrátový výkon výstupu oscilátoru, P _{Z osc} [mW]			50
Celkový ztrátový výkon, P _Z [mW]			200
Jmenovité údaje pro U _{SS} = 0 V			
Napájecí napětí, U ₂₈ [V]	2		7
Napájecí proud pro I _O = 0, U ₂₈ = 7 V, I ₂₈ [μ A]			10
Vstupní proud vstupu pro			
U _I = 0 V, TP=SSM=L, U ₂₈ = 2 až 7 V,			
-I _I [μ A]	10		600
Vstupní napětí H při U ₂₈ = 2 až 7 V [V]	0		0,7U _{DD}
L [μ H]			0,3U _{DD}
Vstupní svodový proud pro TP=H, U _I = 0 až 7 V, I _{LI} [μ A]			1
Vstupní svodový proud oscilátoru pro			
U _I = 0 V, TP1 = H, Z ₂ = Z ₃ = L, U _{DD} = 2 až 7 V, I _{osc} [μ A]			2
Výstupní napětí U _{7,8} [V] H při -I _O =			
0,4 mA, U _{DD} = 2 až 7 V			U _{DD} -0,3
L při I _O = 0,6 mA, U _{DD} = 2 až 7 V			0,3
Výstupní svodový proud při U _O = 7 V, I _O [μ A]			10
U _O = 0 V, -I _O [μ A]			20
Výstupní napětí L při I _O = 0,3 mA, U _{DD} = 2 až 7 V			0,3
U ₉ až 13, U ₁₅ až 17 [V]			30
Proud oscilátoru při U ₁₈ = U _{DD} , I ₁₈ [μ A]	4,5		450
Maximální kmitočet oscilátoru při C _z = 40 pF			120
U _{DD} = 2 V, f _{osc} [kHz]			
Volnoběžný kmitočet oscilátoru při U _{DD} = 2 V, f _{osc} [kHz]			

točet asi 1 MHz je dán převážně vnitřními kapacitami.

Rušení pronikající po napájení jsou potlačena R₁, C₆. Při přímém navázání L₂ je cívka zatlumena vstupním odporem IO₅, takže navázání je v poměru 3:1. Při větším poměru se zzužuje přenášené pásmo, čímž se zmenšuje

Obr. 25. Zapojení ovládání BTVP

vstupní citlivost. L_2 má $Q = 13$ a šířku pásma asi 2,9 kHz. Obvody lze navázat i kapacitně rozdělením C_8 na 2,2 nF a 560 pF, 2,2 nF je zapojen z vývodu 2 IO₅ na zem. Když IO₅ zapojíme jako širokopásmový zesilovač, budou nezapojeny vývody 1, 3, 14. D₁ je přes 10 nF připojena na vývody 2 a 15 IO₅ a přes rezistory 12 kΩ proti zemi z vývodu 12 IO₅. C₁ a C₄ se změní na 2,2 nF a L₁ na 8,2 mH. L₁ má $Q = 7$. Součástky C₈, L₂ se vypustí a ostatní součástky zůstávají stejné. Parametry TDA3048 jsou v tab. 30.

UAA2022 (D718D), sérioparalelní převodník

IO₂, IO₃ na obr. 25 budí tři segmentovky DP1 až DP3, svítivé diody D₆, D₇ (příjem NTSC), D₈ (zvuk 2), D₉, D₁₀, D₁₃, D₁₄ (indikace stereo), D₁₁, D₁₂ (PAL), D₁₅, D₁₆ (SECAM) a D₁₇ (zvuk 1). UAA2022 převádí sériová data na data pro buzení 16 diod LED, výstupy jsou zdroje proudu, takže mezi LED a IO nemusí být žádné rezistory. IO můžeme zapojovat do kaskády a protože pracuje v nemultiplexovaném režimu, neruší svými signály okolí. Umožňuje i regulovat jas LED vnějším napětím (řídí LED se společnou

anodou). IO₂, IO₃ přijímá 16bitová sériová data z mikropočítače IO₄ přes vstup VDR (volba čipu – vývod 20), CLOCK (hodiny – vývod 19) a DATA IN (vývod 21). Vstupními údaji je napájen 16bitový posuvný registr, který svoje výstupní údaje ukládá do střadače, z nichž jsou řízeny výstupní budiče, které mají charakter zdrojů proudu. Sesupnou hranou signálu VDR se odpojí střadače od posuvného registru a je možné přijmout novou informaci. Náběžnou hranou VDR se střadače znovu připojí a nová informace je přenesena na výstupy.

Posuvný registr má i sériový výstup dat (vývod 22), přes který je možné přenášet data k dalším UAA2022, a jejich umístění volit adresou přes vývod 20. Výstupy budičů

Tab. 29. Parametry TDA4050, jmenovité údaje pro $U_6 = 15$ V, $f_C = 31$ kHz

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U_6 [V]	9		16
Rozsah vstupních kmitočtů, f [kHz]	0		100
Napájecí proud pro $R_z = 10$ k Ω , I_6 [mA]	6	9	12
Vstupní napětí pro nasazení regulace, U_8 [μ V] výstupní signál, U_8 [μ V]		50	
Napětí na výstupu filtru, U_4 [mV] (ef.)	350	450	550
Zisk, U_{4-8} [dB]	74	77	85
U_{3-4} [dB]		21	
Rozsah AVC, dU [dB]	74	77	84
Regulační napětí při $U_{vst} = 0$, U_2 [mV]	1325	1425	1525
Regulační napětí při $U_8 = 0,1$ mV, U_2 [V]	1,5		2,1
Regulační napětí U_2 [V] při $U_8 = 0,1$ mV $U_8 = 10$ mV	1,5		2,1
$U_8 = 1$ V	1,9		2,45
Pracovní bod, $U_{4,5,6}$ [V]	2,1		2,6
Výstupní proud pro $U_3 = U_6$, I_3 [mA]	2,2		2,8
Ss výstupní napětí při úrovni L, U_{3L} [V] H , U_{3H} [V]		20	
Nabíjecí proud při $U_8 = 100$ mV (ef.), $U_2 = 1,6$ V, $-I_2$ [mA] $U_8 = 10$ mV (ef.), I_2 [μ A]	14,6	0,4	1
Vstupní odpor, R_8 [k Ω]	0,4		3
Výstupní odpor, R_3 [k Ω]		1,8	
Impedance dvojitého článku T, R_4 [k Ω]	2	10	

Tab. 30. Parametry TDA3048

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U_6 [V]			13,2
Výstupní proud tvarovače impulsů, I_{11} [mA]			10
Napětí mezi vývody, U_{2-15} , U_{4-13} , U_{5-6} [V] U_{7-10} , U_{9-11} [V]			4,5
			4,5
Jmenovité údaje pro $U_6 = 5$ V			
Napájecí napětí, U_6 [V]	4,65	5	5,35
Napájecí proud, I_6 [mA]	1,2	2,1	3
Min. vstupní signál při $f = 36$ kHz, $U_6 = L$, U_{2-15} [μ V] mv $U_6 = H$, U_{2-15} [μ V] mv		15	25
Rozsah AVC bez řízení Q [dB]	60	66	5
Vstupní signál pro jakostní provoz a 100% AM, U_{2-15} [mV] mv	0,03		200
Vypnut obvod řízení Q ($I_3 = I_{14} < 500$ nA), U_{2-15} [mV] mv			0,14
Zapnut obvod řízení Q ($I_3 = I_{14} = 7$ μ A), U_{2-15} [mV] mv	28		
Vstupní napětí, U_{15-16} , U_{2-18} [V]	2,25	2,45	2,65
Vstupní odpor, R_{2-15} [k Ω]	10	15	20
Vstupní kapacita, C_{2-15} [pF]		3	
Omezení na vstupu při $L_1 = 3$ mA, U_{1-16} [V]		0,8	0,9
Výstupní napětí H při $-I_9 = 75$ μ A, U_{9-8} [V]		0,1	0,5
Výstupní napětí L při $-I_9 = 75$ μ A, U_{9-16} [V]		0,1	0,5
Výstupní proud při výst. napětí L, I_9 [μ A] $-U_{9-8} = 4,5$ V, = 3 V = 1 V	75	120	
Výstupní proud při výst. napětí H, $-U_{9-8} = 0,5$ V, $-I_9$ [μ A]	75	130	
Výstupní odpor, R_{7-10} [k Ω]	75	140	
Práh sepnutí U_9 z H na L, U_{11-18} [V] z L na H, U_{11-16} [V]	75	120	
Nabíjecí proud C_{12} , $-I_{12}$ [μ A]	3,1	4,7	6,2
Vybíjecí proud, I_{12} [μ A]	3,75	3,9	4,05
Výstupní proud pro $U_{12-16} = 2$ V, $-I_3$ [μ A] $-I_{14}$ [μ A]	3,4	3,55	3,7
	67	100	133
	2,5	7,5	20
	2,5	7,5	20

jsou na vývodech 1 až 6, 8 až 15, 23, 24 (zdroje proudu). Vstup pro řízení jasu LED (vývod 16) reguluje výstupní proud budičů. Při $U_{16} = U_{CC}$ je jas maximální a při $U_{16} = 2$ V je výstupní proud budičů nulový. Přes vývod 18 (TEST LED) je možné při jeho připojení na zem sepnout všechny výstupy budičů. Taktovací signál je přiváděn na vývod 19 (CLOCK) a dále do posuvného registru, který při náběžné hraně „hodin“ posouvá data. Při VDR=L mají „hodiny“ úroveň H a lze nastavit začátek a konec taktovacího impulu. VDR (vývod 20) při úrovni L dovoluje výběr čípu. Data jsou přes vývod 21 (DATA) sériově vedena na posuvný registr, řídící střadače a výstupní budiče, které se spínají logickou „1“.

IO D718D NDR se od UAA2022 liší rozdílným vývodům: 1 – výstup 2, 2 – výstup 1, 3 – zem, 4 – DATA IN, 5 – VDR, 6 – CLOCK, 7 – U_{CC} , 8 – regulace výstupního proudu budičů, 9 – DATA OIU, 10 – zem, 11 – výstup 16, 12 až 24 – výstupy 15 až 3.

Literatura (vesměs firemní)

- Fisher: Colour television chassis 057.
Grundig: Service manual CUC 2600, CUC 2800 stereo, CUC 3510.
Hitachi: IC memories HM6264P.
LOHJA: CCT-teletext-service manual.
Nordmende: Service information, chassis F14.

Philips: Integrated circuits. Book ICO2, a, b. 1988.

Philips: Technical publication 169. Single-chip multi-standard colour decoder TDA4555/4556.

Philips: Technical publication 255. Enhanced computer-controlled teletext circuit SAA5243.

Philips: Tentative device specification TDA4502.

Salora: Service manual 14L10/14L17, 15L30/15L37, 21L50/21L57, 24L50/24L57.

Siemens: IC's für Unterhaltungselektronik. Datenbuch 1986/87.

Siemens: Schaltnetzteile mit den Bausteinen der Familie TDA4600.

Siemens: SDA3202-Preliminary data. 1987.

Siemens: SDA2080-Preliminary data. 1985.

Thomson: Service information. Videotextplatine TDVTX 05 N2/986.583A.

Valvo: TI 830304 – TDA3047 und TDA3048, zwei low power Vorverstärker für Infrarot-Fernbedienungssignale.

Valvo: TI 860530 – Farbfernsehempfänger Kleinsignal Teil mit zwei integrierten Schaltungen.

Valvo: TI 840228 – Versteilerung von Farbsignalsprüngen und Leuchtdichtesignal. Verzögerung mit der Schaltung TDA4560.

Mikroprocesorový systém RISC 32 bitů

Známý americký výrobce 16bitových mikroprocesorů, firma Motorola, která dodává tyto součástky výrobcům počítačů Mackintosh, Atari ST, Sinclair QL a dalším, začala s výrobou nové řady 32bitových mikropočítačů s architekturou RISC. Mikroprocesory RISC pracují se změšeným souborem instrukcí. Základní soubor součástek mikroprocesorového systému RISC obsahuje pouze dva integrované obvody – centrální procesorovou jednotku CMMU typu MC88100 a manažérskou jednotku paměti cache MC88200.

Obvod MC88100 sdružuje 32 třicetidvojitové registry, aritmetickou jednotku stálých a proměnných, rozšířitelný soubor instrukcí, vhodný i pro rozšíření architektury. Při hodinovém kmitočtu 20 MHz může jediný procesor zpracovat 15 MIPS (miliónů instrukcí za sekundu). „Nejšíří“ možná konfigurace může obsahovat čtyři současně pracující mikroprocesorové obvody.

Pomocný obvod MC88200 sdružuje rychlou paměť RAM 16 kB a jednotku pro řízení paměti počítače. Minimální pracovní sestava se skládá z jednoho obvodu MC88100 a dvou obvodů MC88200. Sběrnice dat a adres je pro zvětšení kapacity systému rozdělena pro instrukce programu a jeho dat. Možná je též sestava osmi obvodů CMMU do jedné centrální procesorové jednotky, čímž se vytváří rychlá zápisníková paměť s kapacitou 128 kB, přístupná v procesoru. Tyto sestavy nabízí Motorola jako hotové funkční moduly pod názvem moduly HYPER. Ty značně ulehčí projektování nových zařízení, neboť jimi se vyřešilo množství technických problémů, s nimiž by se museli

Tab. 31. Parametry UAA2022 (D718)

Parametr	Min.	Jmen.	Max.
Logické vstupní napětí, U_{19} až U_{21} [V]			10
Řídící napětí, $U_{16}, 18$ [V]			10
Výstupní napětí pro $I_{22}=2$ mA, U_{22} [V]			10
Napájecí napětí, U_{17} [V]			10
Výstupní napětí pro $U_{17}=5,5$ V, U_1 až U_6 , U_8 až U_{15} , U_{23} , U_{24} [V]			6
Jmenovité údaje pro $U_{17}=5$ V			
Vstupní napětí úrovně L, U_{19} až U_{21} [V] H, U_{19} až U_{21} [V]	0 2		0,8 6
Vstupní proud úrovně L, $-I_{19}$ až $-I_{21}$ [mA] H, $-I_{19}$ až $-I_{21}$ [mA]			0,1 10
Řídící napětí, U_{16} [V]	0		U_{17}
Řídící napětí úrovně L, U_{18} [V] H, U_{18} [V]	0 4,5		0,5 5,5
Napájecí napětí, U_{17} [V]	4,5		5,5
Výstupní napětí „O“ pro $I_{22}=1$ mA, U_{22} [V]			0,5
Výstupní odpór, R_{22} [$\text{k}\Omega$]			15
Výstupní proud, I_1 až I_6 , I_8 až I_{15} , I_{23} , I_{24} [mA]	9	11	13
Změna výstupního proudu [%]	-7		7
Saturační napětí, U_1 až U_6 , U_8 až U_{15} , U_{23}, U_{24} [V]		1,2	1,8
Svodový proud na vývodech 1 až 6, 8 až 15, 23, 24 při napětí 5 V [μA]			10
Výstupní impedance, R_1 až R_6 , R_8 až R_{15} , R_{23}, R_{24} [$\text{k}\Omega$]			100
Napájecí proud pro $U_{18}=5$ V, I_{18} [mA]	3	4,3	6
Ztrátový výkon při sepnutých budičích, P_z [mW]			650
Doba hodin při H a L, t_{CH} , t_{CL} [μs]	3		
Doba mezi sestupnou hranou VDR a první hranou hodin, T_{LVC} [μs]	10		
Doba mezi poslední hranou hodin a následnou hranou VDR, t_{LCV} [μs]	1		
Doba změny dat do náběžné hrany hodin, t_{LDC} [μs]	1		
Doba od náběžné hrany hodin do změny dat, t_{LCD2D} [μs]	1		
Doba náběžné hrany VDR, clock, data [μs] sestupné hrany			2
			2

potýkat projektanti. Součástky tvoří vlastně vzájemně nestejně standardy výměny informací mezi centrální a paměťovou jednotkou.

Rovněž obchodní politika firmy Motorola je v oboru programového vybavení zajímavá. Již v první etapě prodeje mikroprocesorového systému RISC nabízí vývojové a aplikační technické vybavení. Je to zcela netypický přístup k trhu, kde většina výrobčů integrovaných obvodů mikroprocesorových systémů se nezábývá programovým vybavením (to platí i o tak význačném výrobci

jako je Intel). Tento přístup samozřejmě nepřispívá k okamžitému využívání nových mikroprocesorových systémů.

Všeobecně jsou dostupné překladače většiny programovacích jazyků jako je C, Fortran, Pascal, Lisp, Prolog, Cobol a ADA. Dvě americké firmy – Phoenix Technologies a Insignia Solution – zpracovávají programy, umožňující další práce na aplikačních programech řízeného operačního systému MS-DOS s procesorem MC88100. Předpokládané použití systému MC88000 s několika souběžně pracujícími mikroprocesorovými obvodami s větší kapacitou zpracování dat je v počítačích, které by mohly sloužit k řešení problémů umělé inteligence a projektování pomocí počítačů CAD.

Nová série mikroprocesorových obvodů Motorola MC88000 se objevila na světovém trhu asi jeden rok po nabídce transputerů firmy INMOS, integrované obvody nejsou ovšem běžně dostupné v odborných obchodech. Během času se teprve pozná, nakolik budou konkurovat součástkám INMOS. Americký výrobce Motorola, který je vedoucím výrobcem polovodičových součástek vůbec, disponuje nepoměrně větším finančním a výzkumným zázemím, než jeho britsko-americký konkurent INMOS, což by mohlo sehrát v budoucnosti rozhodující úlohu.

TZ

• PAMĚTI •

Špičková kvalita za minimální cenu

EPROM M2764AF1 – po 1 ks 120 Kčs, tubus 15 ks – 95 Kčs/ks, zapečetěné výrobní balení 60 ks – 89 Kčs/ks;

DRAM 41256 – ceny na dotaz (již od 58 Kčs/ks).

Na dobríku, organizacím na fakturu.
Objednávky pouze písemně na adresu:

DÖE
Box 540
111 21 Praha 1

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press, inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9 linka 294. Uzávěrka tohoto čísla byla 4. 12. 1990, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuverejníme. Text piše čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předloh.

PRODEJ

Krystaly 10,0 MHz: 4,194304 MHz i jiné (à 59). M. Lhotský, Komenského 465, 431 51 Klášterec n. Ohří.

Objímky na DIL 14 (10), objímky DIL 16 (10), objímky DIL 24 (15) nové, nepoužité, odber na doberku. P. Tunklová, Šafářkova 10, 040 11 Košice.

BFR90, 91 (à 29); BFG65 (115); SO42P (70); keramický trimer 2,5–6 pF (14); μA733 (80); 7805, 7905 (à 25); IDA1053 (30). M. Kaflik, 023 45 Horný Vadičov 331.

Širokopásmové zesilňovače 40–800 MHz: BFG65 + BFR91, 24 dB, 75/75 Ω, pre slabé TV signály (360), BFG65 + BFR96, 24 dB, 75/75 Ω, pre malé domové rozvody TV (370), zhotovím zlučovače. F. Ridarčík, Karpatská 1, 040 01 Košice.

EPROM 27128, 2764 (170, 170), RAM 41256 SMD (70), INTEL 8748, 8751, 80386-16 (280, 380, 500), 8250 + 1488 + 1489 (400), WD 2797 (500), koprocesor 8087, 80287-10 (3200, 12 000), joystick IBM (450), tiskárnu Präsident 6313 (6200), monitor CGA (1500), floppy 1,2 a 1,44 MB (3800), tuner VKV vstup Němec + mf AR 12/83 (300, 280), 2 reprobedny 300 W (350), osciloskop BM 463 (2x 20 MHz) (4000), sat. konvertor 1,2 dB (4700), vlnovodná výhodka HV (3300). M. Štikar, Dělostřelecká 47, 162 00 Praha 6.

TDA5660P (290); SL1451 (890); SL1452 (890); MC14566B (120). Min. varicap ITT 1-9 pF; BB601 (60). Sat. kon. Maspro F = 1,3 dB (5700); Fuba OEK 888 (6500); kon. Amstrad (kon + pol + fid) (5900). F. Krunt, Řepová 554, 196 00 Praha 9, tel. 68 70 870.

KOUPE

5 ks UAA2001. M. Šebo, Rozkvet 2012/32,

017 01 Pov. Bystrica

Krystal. 27, 120 MHz (200). J. Kubáň, Bělohorá

ská 63, 636 00 Brno, tel. 63 93 88.

POKROK
výrobné družstvo,
Košická 4,
010 82 Žilina

Stredisko služieb ponúka rádioamatérom zo svojich zásob plošné spoje z AR rada A i B od r. 1971.

V prípade písomnej objednávky vyrubí plošné spoje, ktoré vychádzali od r. 1971. Obráťte sa na horeuvedenú adresu, popričade na tel. 456 86 alebo 479 32-36 linka 57, 58.