## Preservation of normality by transducers

Olivier Carton<sup>1</sup> Elisa Orduna<sup>2</sup>

<sup>1</sup>IRIF Université Paris Diderot & CNRS

<sup>2</sup>Universidad de Buenos Aires partially funded by LIA INFINIS

ANR Delta December 2018

### Context

 $\mathsf{Random} \ \mathsf{sequence} \leadsto \boxed{\mathsf{Transformation}} \leadsto \mathsf{Random} \ \mathsf{sequence} \ ?$ 



### Context





### Outline

#### Context

Normal words

Deterministic transducers

Selectors

#### Results

Weighted automata

A weighted automaton for frequencies

Deciding preservation of normality

#### Normal words

A normal word is an infinite word such that all finite words of the same length occur in it with the same frequency.

More precisely, let A be an alphabet.

#### Definition

If  $x \in A^{\omega}$  and  $w \in A^*$ , the frequency of w in x is defined as follows:

$$freq(x, w) = \lim_{n \to \infty} \frac{|x[1 \dots n]|_w}{n}$$

where  $|z|_w$  denotes the number of occurrences of w in z.

A word  $x \in A^{\omega}$  is normal if for each  $w \in A^*$ :

$$freq(x, w) = \frac{1}{|A|^{|w|}}$$

## Normal Words (continued)

### Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0,1) is a normal word in the alphabet  $\{0,1,...,9\}$ .

Nevertheless, not so many examples have been proved normal. Some of them are:

Champernowne 1933 (natural numbers):

```
12345678910111213141516171819202122232425\cdots
```

Besicovitch 1935 (squares):

```
149162536496481100121144169196225256289324 · · ·
```

► Copeland and Erdős 1946 (primes):

```
235711131719232931374143475359616771737983\cdots
```



#### **Transducers**

An input-deterministic transducer (aka sequential) is a deterministic automaton whose transitions, not only consume a symbol from an input alphabet A, but also produce a finite word in the output alphabet B as output.

### Example



## Preservation of normality

A functional transducer  $\mathcal{T}$  is said to preserve normality if for every normal word  $x \in A^{\omega}$ ,  $\mathcal{T}(x)$  is also normal.

### Question

Given a deterministic complete transducer  $\mathcal{T}$ , does  $\mathcal{T}$  preserve normality?

#### Selectors

A selector is a complete input-deterministic transducer such that:

- ▶ each transition is either of type  $p \xrightarrow{a|a} q$  or of type  $p \xrightarrow{a|\lambda} q$ .
- ▶ all transitions starting from each state *p* have the same type.

### Example



### Theorem (Agafonov 68)

Selectors do preserve normality.



## Weighted Automata

A weighted automaton  $\mathcal{T}$  is an automaton whose transitions, not only consume a symbol from an input alphabet A, but also have a transition weight in  $\mathbb{R}$  and whose states have initial weight and final weight in  $\mathbb{R}$ .



This weighted automaton computes the value of a binary number.



The weight of a run  $q_0 \xrightarrow{b_1} q_1 \xrightarrow{b_2} \cdots \xrightarrow{b_n} q_n$  in  $\mathcal{A}$  is the product of the weights of its n transitions times the initial weight of  $q_0$  and the final weight of  $q_n$ .



weight 
$$_{4}(q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2) = 1 * 1 * 1 * 2 * 1 = 2$$



The weight of a run  $q_0 \xrightarrow{b_1} q_1 \xrightarrow{b_2} \cdots \xrightarrow{b_n} q_n$  in  $\mathcal{A}$  is the product of the weights of its n transitions times the initial weight of  $q_0$  and the final weight of  $q_n$ .



The weight of a word w in A is given by the sum of weights of all runs labeled with w:

$$\mathsf{weight}_\mathcal{A}(w) = \sum_{\mathsf{C} \in \mathsf{VID} \mid \mathsf{CP} \mid \mathsf{W}} \mathsf{weight}_\mathcal{A}(\gamma)$$

$$\begin{split} \text{weight}_{\mathcal{A}}(110) \; = \; \text{weight}_{\mathcal{A}}(q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_1) \; + \\ \text{weight}_{\mathcal{A}}(q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_1) \; = 2 + 4 = 6 \end{split}$$

#### Theorem

For every strongly connected deterministic transducer  $\mathcal T$  there exists a weighted automaton  $\mathcal A$  such that for any finite word w and any normal word x, weight<sub> $\mathcal A$ </sub>(w) is exactly the frequency of w in  $\mathcal T(x)$ .

### Example



### Recurrent strongly connected components

A strongly connected component is **recurrent** if it has no outgoing transitions.



## Key ingredients

#### Fact 1

A run labeled with a normal word always reaches a recurrent SCC.

## Key ingredients

#### Fact 1

A run labeled with a normal word always reaches a recurrent SCC.

#### Fact 2

Each state of a SCC transducer has a frequency in a run labeled by a normal word.

This frequency is given exactly by the stationary distribution of the weighted automaton interpreted as a Markov chain.

Hence, the frequency with which each state of a SCC transducer is visited is the same for any normal word.

#### Fact 3

From any state q of a SCC transducer, all paths of the same length starting at q are visited with the same frequency when consuming a normal input word.

## Deciding preservation of normality

### Proposition

Such a weighted automaton can be computed in cubic time with respect to the size of the transducer.

To determine whether  $\mathcal{T}$  preserves normality, the automaton  $\mathcal{A}$  can be compared to the automaton  $\mathcal{B}$  that realizes the expected frequencies  $1/|\mathcal{A}|^{|w|}$  for any finite word.



The comparison between these automata can be made using Schützenberger's algorithm, and it is decidable as all weights are rational numbers.



### Future work

- ► Enlarge the class of transducers for which the algorithm solves the problem.
- ▶ Adapt the algorithm to solve similar problems.

## Algorithm

**Input:** A deterministic complete transducer  $\mathcal{T}$ .

**Output:** True if  $\mathcal{T}$  preserves normality, False otherwise.

- ▶ For each recurrent strongly connected component S of T:
  - Build a weighted automaton associated to T.
    - Normalize the transducer
    - ▶ Build a weighted automaton A using the normalized transducer
    - Assign A's states final and initial weights.
  - Using A analyze whether T preserves normality.

We use Kosaraju's algorithm to find the set of strongly connected components of  $\mathcal T$  and then filter the ones that are recurrent.



## Normalizing the transducer

We normalize the transducer  $\ensuremath{\mathcal{T}}$  so that the output of any transition has length at most



#### Motivation

We aim to calculate freq $(\mathcal{T}(x), w)$  for any normal word  $x \in A^{\omega}$  and any word  $w \in B^*$ .

We first solve the this auxiliary problem:

Compute the frequency in the infinite run of each finite sequence of transitions of the form

$$p \xrightarrow{a_1|\lambda} q_1 \xrightarrow{a_2|\lambda} q_2 \cdots q_{n-1} \xrightarrow{a_n|\lambda} q_n \xrightarrow{a_{n+1}|b} q$$

for each pair of states p, q and for each  $b \in B$ .



- lacktriangle The states of  ${\mathcal A}$  are the same as in  ${\mathcal T}$
- ▶ For each pair of states p, q, and each symbol  $b \in B$ , there is a transition  $p \xrightarrow{b} q$ .
- ▶ The weight weight( $p \xrightarrow{b} q$ ) of a transition is precisely the frequency of finite sequences of transitions from p to q that produce exactly b

#### Procedure

- 1. Assigns weight to the transducer's transitions:
  - transitions with non empty input have weight 1/|A|,
  - transitions with empty input have weight 1,

#### Procedure

- 2. Consider the matrix E whose (p,q) entry has the sum of the weights of transitions of the form  $p \xrightarrow{a|\lambda} q$ .
- 3. Compute  $E^* = Id + E + E^2 + \cdots + E^n + \cdots$ . Note that:
  - The matrix  $E^n$  has in its (p, q) entry the frequency with which paths of length n from p to q with output  $\lambda$  are taken:

$$p \xrightarrow{a_1|\lambda} q_1 \xrightarrow{a_2|\lambda} q_2 \cdots q_{n-1} \xrightarrow{a_n|\lambda} q$$

The matrix  $E^*$  has in its (p, q) entry the frequency with which paths from p to q of any length with output  $\lambda$  are taken.



#### Procedure

- 4. For each  $b \in B$ , consider the matrix  $N_b$  having in its (p, q) entry the sum of the weights of transitions of the form  $p \xrightarrow{a|b} q$ .
- 5. Define the weighted automaton A so that

$$\mathsf{weight}(p \xrightarrow{b} q) = (E^* \cdot N_b)_{p,q}$$

## Example

$$\begin{array}{c|c} a|\lambda \\ \hline & a|\lambda \\ \hline & & q_1 \\ \hline & b|\lambda \\ \hline & b|a \\ \hline & & b|b \\ \hline \\ & & & \\ \hline & & \\ & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$$

$$E = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad E^* = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 4 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E^*.N_a = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{bmatrix}$$

$$E^*.N_b = \left[ \begin{array}{ccc} 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{array} \right]$$



### Example





## Assign initial and final weights to states

#### Procedimiento

i. Consider the matrix T that in its (p,q) entry has the sum of the weights of the transitions  $p \xrightarrow{b_{[w]}} q$  of A.

The matrix T is an stochastic matrix, and has an associated stochastic distribution, in other words, a vector  $\pi$  such that:

$$\pi \cdot T = \pi$$

- ii. Assign the *i*-th state initial weight  $\pi_i$ .
- iii. Assign every state final weight 1.



# Assign initial and final weights to states



$$T = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0 & 1/2 & 1/2 \\ \end{bmatrix}$$