CSE446: Instance-based Learning (a.k.a. non-parametric methods) Winter 2015

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

Linear Regression: What can go wrong?

What do we do if the bias is too strong?

- Might want the data to drive the complexity of the model!
- Try instance-based Learning (a.k.a. non-parametric methods)?

Using data to predict new data

Nearest neighbor with lots of data!

Univariate 1-Nearest Neighbor

Given data (x^1, y^1) (x^2, y^2) .. (x^N, y^N) , where we assume y=f(x) for some unknown function f.

Given query point x, your job is to predict y=f(x)

Nearest Neighbor:

1. Find the closest x^i in our set of datapoints

$$i(nn) = \operatorname{argmin} |x^i - x|$$

2. Predict yⁱ⁽ⁿⁿ⁾

Here's a dataset with one input, one output and four datapoints.

1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Instance-based learning, four things to specify:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

Instance-based learning, four things to specify:

- A distance metric
 Often Euclidian (many more are possible)
- How many nearby neighbors to look at?
- 3. A weighting function (optional)
 Unused
- 4. How to fit with the local points?

 Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

Classification

Regression

Notable distance metrics (and their level sets)

Weighted Euclidian (L₂)

Mahalanobis

L₁ norm (absolute)

 L_{∞} (max) norm

Consistency of 1-NN

- Consider an estimator f_n trained on n examples
 - e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
 - e.g., for no noise data, consistent if for any data distribution p(x):

$$\lim_{n\to\infty} MSE(f_n) = 0 \qquad MSE(f_n) = \int_x p(x) (f_n(x) - y_x)^2 dx$$

- Linear regression is not consistent!
 - Representation bias
- 1-NN is consistent
 - What about noisy data?
 - What about variance?

1-NN overfits?

k-Nearest Neighbor

Instance-based learning, four things to specify:

1. A distance metric

Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?

Return the average output

predict: $(1/k) \Sigma_i y^i$ (summing over k nearest neighbors)

k-Nearest Neighbor

Which is better? What can we do about the discontinuities?

Weighted distance metrics

Suppose the input vectors x^1 , x^2 , ... x^N are two dimensional:

$$\mathbf{x}^{1} = (x_{1}^{1}, x_{2}^{1}), \mathbf{x}^{2} = (x_{1}^{2}, x_{2}^{2}), ... \mathbf{x}^{N} = (x_{1}^{N}, x_{2}^{N}).$$

Nearest-neighbor regions in input space:

$$Dist(\mathbf{x}^{i},\mathbf{x}^{j}) = (x^{i}_{1} - x^{j}_{1})^{2} + (x^{i}_{2} - x^{j}_{2})^{2}$$

$$Dist(\mathbf{x}^{i},\mathbf{x}^{j}) = (x^{i}_{1} - x^{j}_{1})^{2} + (3x^{i}_{2} - 3x^{j}_{2})^{2}$$

The relative scaling of the distance metric affect region shapes

Weighted Euclidean distance metric

Or equivalently,
$$D(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{i} \sigma_{i}^{2} \left(x_{i} - x'_{i}\right)^{2}}$$

$$D(\mathbf{x},\mathbf{x}') = \sqrt{(\mathbf{x}-\mathbf{x}')^{T} \sum_{i} (\mathbf{x}-\mathbf{x}')}$$
 where

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

Other Metrics...

• Mahalanobis, Rank-based, Correlation-based,...

Kernel regression

Instance-based learning:

- 1. A distance metric Euclidian (and many more)
- 2. How many nearby neighbors to look at?
 All of them

3. A weighting function $w^i = exp(-D(x^i, query)^2 / K_w^2)$

Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

predict =
$$\sum w^i y^i / \sum w^i$$

Many possible weighting functions

 $w^i = \exp(-D(x^i, query)^2 / K_w^2)$

Typically:

- Choose D manually
- Optimize K_w using gradient descent

(Our examples use Gaussian)

Kernel regression predictions

Increasing the kernel width K_w means further away points get an opportunity to influence you.

As $K_w \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases

Choosing a good K_w is important! Remind you of anything we have seen?

Kernel regression: problem solved?

 $K_W = Best.$

 $K_W = Best.$

Where are we having problems?

- Sometimes in the middle...
- Generally, on the ends (extrapolation is hard!)

Time to try something more powerful...!!!

Locally weighted regression

Kernel regression:

- Take a very very conservative function approximator called AVERAGING.
- Locally weight it.

Locally weighted regression:

- Take a conservative function approximator called LINEAR REGRESSION.
- Locally weight it.

Locally weighted regression

Instance-based learning, four things to specify:

- A distance metric
 - Any
- How many nearby neighbors to look at?
 All of them
- A weighting function (optional)
 - Kernels: $w^i = exp(-D(xi, query)^2 / Kw^2)$
- How to fit with the local points?

General weighted regression:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{k=1}^{N} (w^{k} (y^{k} - w^{T} x^{k}))^{2}$$

How LWR works

Same parameters for all queries

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Locally weighted regression

 Solve weighted linear regression for each query

$$\beta = ((WX)^{T}WX)^{-1}(WX)^{T}WY$$

$$W = \begin{pmatrix} w_{1} & 0 & 0 & 0 \\ 0 & w_{2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_{n} \end{pmatrix}$$

LWR on our test cases

Kernel regression

 $K_W = 1/32$ of x-axis width.

 K_W =1/32 of x-axis width.

 $\kappa_{\rm w}$ =1/16 axis width.

 $K_{W} = 1/16$ of x-axis width.

 $K_W = 1/32$ of x-axis width.

 $K_W = 1/8$ of x-axis width.

Locally weighted polynomial regression

Kernel Regression: Kernel width K_w at optimal level.

 $K_W = 1/100 \text{ x-axis}$

 $K_{W} = 1/40 \text{ x-axis}$

 $K_{W} = 1/15 \text{ x-axis}$

Local quadratic regression is easy: just add quadratic terms to the WXTWX matrix. As the regression degree increases, the kernel width can increase without introducing bias.

Challenges for instance based learning

- Must store and retrieve all data!
 - Most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - But, there are fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features
 - In high dimensional spaces, all points will be very far from each other
 - Typically need a number of examples that is exponential in the dimension of X
 - But, sometimes you are ok if you are cleaver about features

Curse of the irrelevant feature

This is a contrived example, but similar problems are common in practice Need some form of feature selection!!

What you need to know about instancebased learning

k-NN

- Simplest learning algorithm
- With sufficient data, very hard to beat "strawman" approach
- Picking k?

Kernel regression

- Set k to n (number of data points) and optimize weights by gradient descent
- Smoother than k-NN

Locally weighted regression

Generalizes kernel regression, not just local average

Curse of dimensionality

- Must remember (very large) dataset for prediction
- Irrelevant features often killers for instance-based approaches

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials