

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 5

Large and Fast: Exploiting Memory Hierarchy

Principle of Locality

 Programs access a small proportion of their address space at any time

- Items accessed recently are likely to be accessed again soon
- e.g., instructions in a loop, induction variables

- Items near those accessed recently are likely to be accessed soon
- E.g., sequential instruction access, array data

Taking Advantage of Locality

- Memory hierarchy
- Store everything on
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - -
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - attached to CPU

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - = 1 hit ratio
 - Then accessed data supplied from upper level

Memory Technology

- Static RAM (SRAM)
 - 0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

Memory Technology

 IBM 701 adopted 72 3-inch Williams-Kilburn tubes to realize 2048 36-bit words.

Disk Storage

Non-volatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID

- Data (512 bytes, 4096 bytes proposed)
- Error correcting code (ECC)
 - Used to hide defects and recording errors
- Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Disk Access Example

- Given
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
 - 4ms seek time
 - $+ \frac{1}{2} / (15,000/60) = 2$ ms rotational latency
 - + 512 / 100MB/s = 0.005ms transfer time
 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - Average read time = 3.2ms

Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times
- Smart disk controller allocates physical sectors on disk
 - Present logical sector interface to host
 - SCSI (Small Computer Systems Interface), ATA (Advanced Technology Attachment), SATA (Serial ATA)
- Disk drives include caches (i.e., buffers)
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay

Flash Storage

- Non-volatile semiconductor storage
 - 100× 1000× faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time (seq.) access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 10000 ~ 100000 writes
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
- Quad data rate (QDR) DRAM
 - Separate DDR inputs and outputs

DRAM Generations

Year	Capacity	\$/GB
1980	64Kbit	\$1500000
1983	256Kbit	\$500000
1985	1Mbit	\$200000
1989	4Mbit	\$50000
1992	16Mbit	\$15000
1996	64Mbit	\$10000
1998	128Mbit	\$4000
2000	256Mbit	\$1000
2004	512Mbit	\$250
2007	1Gbit	\$50

Cache Memory

- Cache memory
 - The level of the memory hierarchy closest to the CPU
- Given accesses X₁, ..., X_{n-1}, X_n

X ₄
X ₁
X_{n-2}
X _{n-1}
X ₂
X ₃

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X _n
X ₃

- How do we know if the data is present?
- Where do we look?

b. After the reference to X_n

a. Before the reference to X_n

Direct Mapped Cache

- Location determined by address
- Direct mapped: only one choice

Memory

(Block address) modulo (#Blocks in cache)

N-way associative: N choices offset index tag 000 001 010 110 111 ! W.O. **B.O.** index tag #Blocks is a power of 2 Use low-order address bits 00001 00101 01001 01101 10001 10101 11001 11101 block address; address to a block

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag
- What if there is no data in a location?
 - Valid bit: 1 = present, 0 = not present
 - Initially 0

- 8-blocks, 1 word/block, direct mapped
- Initial state

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Hit	110
26	11 010	Hit	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	Y	10	Mem[10000]
001	N		
010	Y	11	Mem[11010]
011	Y	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Address Subdivision

- 32-bit byte address, a direct-mapped cache, cache size 2ⁿ blocks, block data size 2^m words (2^{m+2} bytes)
 - Tag size: 32 (n+m+2)
 - Total number of bits:

$$2^{n} \times (2^{m} \times 32 + (32 - n - m - 2) + 1) =$$

$$2^{n} \times (2^{m} \times 32 + 31 - n - m)$$

 16KB data, 4-word blocks, assume a 32bit address

$$2^{10} \times (4 \times 32 + (32 - 10 - 2 - 2) + 1) =$$

 $2^{10} \times 147 = 147 \text{ Kbits}$

Example: Larger Block Size

- 64 blocks, 16 bytes/block (i.e., 4 words/block)
 - To what block number does address 1200 map?
- Block address = \[1200/16 \] = 75
- Block number = 75 modulo 64 = 11

Block Size Considerations

- Larger blocks should reduce miss rate
 - Due to spatial locality
- But in a fixed-sized cache
 - Larger blocks ⇒ fewer of them
 - More competition ⇒ increased miss rate
 - Larger blocks ⇒ pollution
- Larger
 - Can override benefit of reduced miss rate

Cache Misses

- On cache hit, CPU proceeds normally
- On cache miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

Write-Through

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 cycles
 - Effective CPI = 1 + 0.1×100 = 11
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
- When a dirty block is replaced
 - Write it back to memory

Write Allocation

- What should happen on a write miss?
- For write-through
 - Write around: don't fetch the block and write directly into memory (write no-allocate)
 - Allocate on miss: fetch the block into cache (write allocate)

Example: Intrinsity FastMATH

- Embedded MIPS processor
 - 12-stage pipeline
 - Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
 - Each 16KB: 256 blocks × 16 words/block
 - D-cache: write-through or write-back
- SPEC2000 miss rates
 - I-cache: 0.4%
 - D-cache: 11.4%
 - Weighted average: 3.2%

Example: Intrinsity FastMATH

Main Memory Supporting Caches

- Use DRAMs for main memory
 - Fixed width (e.g., 1 word)
 - Connected by fixed-width clocked bus
 - Bus clock is typically slower than CPU clock
- Example cache block read
 - 1 bus cycle for address transfer
 - 15 bus cycles per DRAM access
 - 1 bus cycle per data transfer
- For 4-word cache block, 1-word-wide DRAM
 - Miss penalty = $1 + 4 \times 15 + 4 \times 1 = 65$ bus cycles
 - Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Increasing Memory Bandwidth

Measuring Cache Performance

- Components of CPU time
 - Program execution cycles
 - Includes cache hit time
 - Memory stall cycles
 - Mainly from cache misses
- With simplifying assumptions
 - In terms of cycle count

Memory stall cycles

Cache Performance Example

- Given
 - I-cache miss rate = 2%
 - D-cache miss rate = 4%
 - Miss penalty = 100 cycles
 - Base CPI (ideal cache) = 2
 - Load & stores are 36% of instructions
- Miss cycles per instruction
 - I-cache:
 - D-cache:
- Actual CPI =
 - Ideal CPU is ______times faster

Average Access Time

- Hit time is also important for performance
- Average memory access time (AMAT)
 - AMAT = Hit time + Miss rate × Miss penalty
 - In terms of time
 - Hit time: cache/hardware design, etc.
 - Miss rate: block size, etc.
 - Miss penalty: memory organization, etc.
- Example
 - CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, cache miss rate = 5%
 - \blacksquare AMAT = 1 + 0.05 × 20 = 2 ns
 - AMAT per instruction = 2 cycles

Performance Summary

- When CPU performance increased
 - Miss penalty becomes more significant
 - Performance is a function of CPI and clock rate
- Decreasing base CPI
 - Greater proportion of time spent on memory stalls
- Increasing clock rate
 - Memory stalls account for more CPU cycles
- Can't neglect cache behavior when evaluating system performance

Associative Caches

- Fully associative
 - Allow a given block to go in any cache entry
 - Requires all entries to be searched at once
 - Comparator per entry (expensive)
- n-way set associative
 - Each set contains n entries
 - Block number determines which set
 - (Block number) modulo (#Sets in cache)
 - Search all entries in a given set at once
 - n comparators (less expensive)

Associative Cache Example

Spectrum of Associativity

For a cache with 8 entries

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

Associativity Example

- Compare 4-block caches
 - Direct mapped, 2-way set associative, fully associative
 - Increasing associativity shrinks index, expands tag
 - Block access sequence: 0, 8, 0, 6, 8
- Direct mapped

Block	Cache	Hit/miss	Cache content after access			
address	index		0	1	2	3
0 (0000)	0 (00)	miss	Mem[0]			
8 (1000)	0 (00)	miss	Mem[8]			
0 (0000)	0 (00)	miss	Mem[0]			
6 (0110)	2 (10)	miss	Mem[0]		Mem[6]	
8 (1000)	0 (00)	miss	Mem[8]		Mem[6]	

Associativity Example

2-way set associative

Block	Cache	Hit/miss	Cache content after access			
address	index		Se	Set 0		1
0 (0000)	0 (0)	miss	Mem[0]			
8 (1000)	0 (0)	miss	Mem[0]	Mem[8]		
0 (0000)	0 (0)	hit	Mem[0]	Mem[8]		
6 (0110)	0 (0)	miss	Mem[0]	Mem[6]		
8 (1000)	0 (0)	miss	Mem[8]	Mem[6]		

Fully associative

Block	Hit/miss	Cache content after access				
address						
0 (0000)	miss	Mem[0]				
8 (1000)	miss	Mem[0]	Mem[8]			
0 (0000)	hit	Mem[0]	Mem[8]			
6 (0110)	miss	Mem[0]	Mem[8]	Mem[6]		
8 (1000)	hit	Mem[0]	Mem[8]	Mem[6]		

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing returns
 - Extra search needed
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000
 - 1-way: 10.3%
 - 2-way: 8.6%
 - 4-way: 8.3%
 - 8-way: 8.1%

Set Associative Cache Organization

4-to-1 Multiplexer

Replacement Policy

- Direct mapped: no choice
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose among entries in the set
 - Choose the one unused for the longest time
 - Simple for 2-way, manageable for 4-way, too hard beyond that
 - Gives approximately the same performance as LRU for high associativity

Multilevel Caches

- Primary cache attached to CPU
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Multilevel Cache Example

- Given
 - CPU base CPI = 1, clock rate = 4GHz
 - Miss rate/instruction = 2%
 - Main memory access time = 100ns
- With just primary cache
 - Clock cycle = 1/4GHz = 0.25ns
 - Miss penalty = 100ns/0.25ns = 400 cycles
 - Effective CPI = $1 + 0.02 \times 400 = 9$

Example (cont.)

- Now add L-2 cache
 - Access time = 5ns
 - Global miss rate to main memory = 0.5%
- Primary miss with L-2 hit
 - Penalty = 5ns/0.25ns = 20 cycles
- Primary miss with L-2 miss
 - Extra penalty = 400 cycles
- \blacksquare CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
- Performance ratio = 9/3.4 = 2.6

Multilevel Cache Considerations

- Primary cache
 - Focus on minimal hit time
- L-2 cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact
- Empirical results
 - L-1 cache usually smaller than a single cache
 - L-1 block size smaller than L-2 block size

Interactions with Advanced CPUs

- Out-of-order CPUs can execute instructions during cache miss
 - Pending store stays in load/store unit
 - Dependent instructions wait in reservation stations
 - Independent instructions continue
- Effect of miss depends on program data flow
 - Much harder to analyze
 - Use system simulation

Dependability

- Fault: failure of a component
 - May or may not lead to system failure

Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTTF MTTR

 MTBF

repair 🦱

- MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault prediction and correction
 - Reduce MTTR: improved tools and processes for (self-)diagnosis and (self-)repair

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses

•	VM	"block"	is called	a	
---	----	---------	-----------	---	--

VM translation	"miss" is	s called a	
----------------	-----------	------------	--

Address Translation

Fixed-size pages (e.g., 4KB/page)

Virtual addresses Address translation Disk addresses

Virtual address

Physical address

Since only a portion of pages exist in main memory, | physical page number | < | virtual page number |

Page Fault Penalty

- On page fault, the page must be fetched from disk
 - Takes millions of clock cycles
 - Handled by OS code
- Try to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms

Page Tables

- Stores placement information
 - Array of page table entries (PTEs), indexed by virtual page number
 - Page table register in CPU points to page table in physical memory
- If page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Translation Using a Page Table

Mapping Pages to Storage

Replacement and Writes

- To reduce page fault rate, prefer leastrecently used (LRU) replacement
 - Reference bit (aka use bit) in PTE set to 1 on access to page
 - Periodically cleared to 0 by OS
 - A page with reference bit = 0 has not been used recently
- Disk writes take millions of cycles
 - Block/page at once, not individual locations
 - Write-through is impractical
 - Use write-back
 - Dirty bit in PTE set when page is written

Page Table Problems

- Page table is too big
 - 4MB for 4KB per page and 4 bytes per PTE with a 32-bit virtual address

- Access to page table is too slow
 - One extra memory read

Fast Translation Using a TLB

- Address translation would appear to require extra memory references
 - One to access the PTE
 - Then the actual memory access
- But access to page tables has good locality
 - So use a fast cache of PTEs within the CPU
 - Called a
 - Less entries than a real page table (in main memory)
 - Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate
 - Misses could be handled by hardware or software

Fast Translation Using a TLB

TLB Misses

- If page is in memory
 - Load the PTE from memory and retry
 - Could be handled in hardware
 - Can get complex for more complicated page table structures
 - Or in software
 - Raise a special exception, with optimized handler
- If page is not in memory (page fault)
 - OS handles fetching the page and updating the page table
 - Then restart the faulting instruction

TLB Miss Handler

- TLB miss indicates
 - Page present, but PTE not in TLB
 - Page not present
- Must recognize TLB miss before destination register overwritten (for "load")
 - Raise exception
- Handler copies PTE from memory to TLB
 - Then restarts instruction
 - If page not present, page fault will occur

Page Fault Handler

- Use faulting virtual address to find PTE
- Locate page on disk
- Choose page to replace if there is no free memory page
 - If dirty, write to disk first
- Read page into memory and update page table
- Make process runnable again
 - Restart from faulting instruction

TLB and Cache – Interaction

Physically/virtually addressed cache Virtual address 31 30 29 3 2 1 0 Virtual page number 12 Valid Dirtv Physical page number TLB TLB hit → Page offset Physical page number Physical address Byte Block Physical address tag Cache index 12 Data Valid Tag Cache Cache hit 32

- If cache tag uses physical address
 - Need to translate before cache lookup
 - Cache hit requires a
 TLB access and a
 cache access.
- Virtually addressed cache (rarely used)
 - remove TLB access
 - Complications due to aliasing
 - Different virtual addresses for shared physical address

TLB and Cache – Flow

Memory Protection

- Different tasks can share parts of their virtual address spaces
 - But need to protect against errant access
 - Requires OS assistance
- Hardware support for OS protection
 - Privileged supervisor mode (aka kernel mode)
 - Privileged instructions
 - Page tables and other state information only accessible in supervisor mode
 - System call exception (e.g., syscall in MIPS)

The Memory Hierarchy

The BIG Picture

- Common principles apply at all levels of the memory hierarchy
 - Based on notions of caching
- At each level in the hierarchy
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Block Placement

- Determined by associativity
 - Direct mapped (1-way associative)
 - One choice for placement
 - n-way set associative
 - n choices within a set
 - Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Increases complexity, cost, and access time

Finding a Block

Associativity	Location method	Tag comparisons
Direct mapped	Index	1
n-way set associative	Set index, then search entries within the set	n
Fully	Search all entries	#entries
associative	Table lookup, e.g., page table	0

Hardware caches

- Reduce comparisons to reduce cost
- Virtual memory
 - Full table lookup makes full associativity feasible
 - Benefit in reduced miss rate

Replacement

- Choice of entry to replace on a miss
 - Least recently used (LRU)
 - Complex and costly hardware for high associativity
 - Random
 - Close to LRU, easier to implement
- Virtual memory
 - LRU approximation with hardware support

Write Policy

- Write-through
 - Update both upper and lower levels
 - Simplifies replacement, but may require write buffer
- Write-back
 - Update upper level only
 - Update lower level when block is replaced
 - Need to keep more state
- Virtual memory
 - Only write-back is feasible, given disk write latency

3-Level Cache Organization

Characteristic	ARM Cortex-A8	Intel Nehalem		
L1 cache organization	Split instruction and data caches	Split instruction and data caches		
L1 cache size	32 KiB each for instructions/data	32 KiB each for instructions/data per core		
L1 cache associativity	4-way (I), 4-way (D) set associative	4-way (I), 8-way (D) set associative		
L1 replacement	Random	Approximated LRU		
L1 block size	64 bytes	64 bytes		
L1 write policy	Write-back, Write-allocate(?)	Write-back, No-write-allocate		
L1 hit time (load-use)	1 clock cycle	4 clock cycles, pipelined		
L2 cache organization	Unified (instruction and data)	Unified (instruction and data) per core		
L2 cache size	128 KiB to 1 MiB	256 KiB (0.25 MiB)		
L2 cache associativity	8-way set associative	8-way set associative		
L2 replacement	Random(?)	Approximated LRU		
L2 block size	64 bytes	64 bytes		
L2 write policy	Write-back, Write-allocate (?)	Write-back, Write-allocate		
L2 hit time	11 clock cycles	10 clock cycles		
L3 cache organization	. 	Unified (instruction and data)		
L3 cache size		8 MiB, shared		
L3 cache associativity	42%	16-way set associative		
L3 replacement	-	Approximated LRU		
L3 block size	-	64 bytes		
L3 write policy	-75X	Write-back, Write-allocate		
L3 hit time		35 clock cycles		

2-Level TLB Organization

Characteristic	ARM Cortex-A8	Intel Core i7
Virtual address	32 bits	48 bits
Physical address	32 bits	44 bits
Page size	Variable: 4, 16, 64 KiB, 1, 16 MiB	Variable: 4 KiB, 2/4 MiB
TLB organization	1 TLB for instructions and 1 TLB for data	1 TLB for instructions and 1 TLB for data per core
	Both TLBs are fully associative, with 32 entries, round robin replacement	Both L1 TLBs are four-way set associative, LRU replacement
	TLB misses handled in hardware	L1 I-TLB has 128 entries for small pages, 7 per thread for large pages
		L1 D-TLB has 64 entries for small pages, 32 for large pages
		The L2 TLB is four-way set associative, LRU replacement
		The L2 TLB has 512 entries
		TLB misses handled in hardware

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Cache Design Trade-offs

Design change	Effect on miss rate	Negative performance effect
Increase cache size	Decrease capacity misses	May increase access time
Increase associativity	Decrease conflict misses	May increase access time
Increase block size	Decrease compulsory misses	Increases miss penalty. For very large block size, may increase miss rate due to pollution.

TLB, Page Table and Cache

 The possible combinations of events in the TLB, virtual memory system, and physically indexed (tagged) cache.

TLB	Page table	Cache	Possible ? If so, under what circumstance ?
Hit	Hit	Miss	Possible
Miss	Hit	Hit	Possible
Miss	Hit	Miss	Possible
Miss	Miss	Miss	Possible
Hit	Miss	Miss	Impossible
Hit	Miss	Hit	Impossible
Miss	Miss	Hit	Impossible

Cache Coherence Problem

- Suppose two CPU cores share a physical address space
 - Write-through caches

Time step	Event	CPU A's cache	CPU B's cache	Memory
0				0
1	CPU A reads X	0		0
2	CPU B reads X	0	0	0
3	CPU A writes 1 to X	1	0	1

Coherence Defined

- Informally: Reads return most recently written value
- Formally:
 - P writes X; P reads X (no intervening writes)
 - ⇒ read returns written value (program order)
 - P₁ writes X; P₂ reads X (sufficiently later)
 - ⇒ read returns written value (coherence)
 - c.f. CPU B reading X after step 3 in example
 - P₁ writes X, P₂ writes X
 - ⇒ all processors see writes in the same order
 - End up with the same final value for X

Cache Coherence Protocols

- Operations performed by caches in multiprocessors to ensure coherence
 - Migration of data to local caches
 - Reduces bandwidth for shared memory
 - Replication of read-shared data
 - Reduces contention for access
- Snooping protocols
 - Each cache monitors bus reads/writes
- Directory-based protocols
 - Caches and memory record sharing status of blocks in a directory

Invalidating Snooping Protocols

- Cache gets exclusive access to a block when it is to be written
 - Broadcasts an invalidate message on the bus
 - Subsequent read in another cache misses
 - Owning cache supplies updated value

CPU activity	Bus activity	CPU A's cache	CPU B's cache	Memory
				0
CPU A reads X	Cache miss for X	0		0
CPU B reads X	Cache miss for X	0	0	0
CPU A writes 1 to X	Invalidate for X	1		0
CPU B read X	Cache miss for X	1	1	1

Memory Consistency

- When are writes seen by other processors
 - "Seen" means a read returns the written value
 - Can't be instantaneously
- Assumptions
 - A write completes only when all processors have seen it
 - A processor does not reorder writes with other accesses
- Consequence
 - P writes location X then writes location Y
 ⇒ all processors that see new Y also see new X
 - Processors can reorder reads, but not writes

Pitfalls

- Byte (what we used) vs. word addressing
 - Example: 32-byte direct-mapped cache, 4-byte blocks
 - Byte 36 maps to block 1
 - Word 36 maps to block 4

0...000100101100

- Example: 256-byte cache and 32 bytes per block
 - Byte address 300 maps to block number 1
- Ignoring memory system effects when writing or generating code
 - Example: iterating over rows vs. columns of arrays
 - Large strides result in poor locality

```
for (i = 0; ...)
for (j = 0; ...)
x[i][j] = x[i][j]+y[i][j]
```


Pitfalls

- In multiprocessor with shared L2 or L3 cache
 - Less associativity than cores results in conflict misses
 - More cores ⇒ need to increase associativity
- Using AMAT to evaluate performance of out-of-order processors
 - Ignores effect of non-blocked accesses
 - Instead, evaluate performance by simulation

Concluding Remarks

- Fast memories are small, large memories are slow
 - We really want fast, large memories ⊗
 - Caching gives this illusion ©
- Principle of locality
 - Programs use a small part of their memory space frequently
- Memory hierarchy
 - L1 cache ↔ L2 cache ↔ ... ↔ DRAM memory↔ disk
- Memory system design is critical for multiprocessors

