# ECOLOGÍA DE POBLACIONES

# **GENERALIDADES**





Javier Rodríguez Barrios

Docente — Universidad del Magdalena

\*Grupo de Ecología Neotropical - GIEN

| Semana                   | Valoración Seguimiento 1                                                                      | Valoración | 5                                |
|--------------------------|-----------------------------------------------------------------------------------------------|------------|----------------------------------|
| <b>1</b><br>(ago. 7 y 9) | Clase magistral: Introducción a la ecología                                                   |            | Azul Asignaciones                |
|                          | Presentación de la asignatura y de estudiantes.                                               | 20         | Verde Entrega de asignaciones    |
|                          | <ol> <li>Taller introductorio</li> <li>Taller de Cómputo. Análisis Climático</li> </ol>       | 20         | Morado Pautas de asignaciones    |
|                          | Pautas para la asignación 1. Intro a Ecología                                                 | 20         | Naranja Taller (computo, granja) |
|                          | radias para la asignación 1. millo a Ecología                                                 | OK         |                                  |
| <b>2</b> (ago. 14 y 16)  | Clase magistral: El clima en los ecosistemas                                                  | /          |                                  |
|                          | 1. Taller de cómputo - análisis climático                                                     | )          |                                  |
|                          | Entrega y socialización de la asignación 1. Intro                                             |            |                                  |
|                          | 3. Mesa redonda - Organismos y el Ambiente Pautas para la asignación 3. Mesa redonda ambiente | 30         |                                  |
|                          | rautas para la asignación 5. Mesa redonda ambiente                                            |            |                                  |
| <b>3</b> (ago. 21 y 23)  | Clase magistral: Agua y Suelo en los ecosistemas                                              |            |                                  |
|                          | Entrega y socialización de la asignación 1 (cont.)                                            |            |                                  |
|                          | Entrega y socialización de la asignación 2. Climáticos                                        |            |                                  |
| <b>4</b> (ago. 28 y 30)  | Clase magistral: Interacciones de organismos y ambiente.                                      |            |                                  |
|                          | Retroalimentación de la clase.                                                                |            |                                  |
|                          | Entrega y socialización de la asignación 3. Ambiente                                          |            |                                  |
| <b>5</b><br>(sep. 4 y 6) | Clase magistral: Ecología de poblaciones. Modelos                                             |            |                                  |
|                          | exponenciales.                                                                                |            |                                  |
|                          | Entrega y socialización de la asignación 3 (cont.)                                            |            |                                  |
|                          | 2. Taller de cómputo. Modelos exponenciales y logísticos                                      |            |                                  |
| (55)                     | 4. Pautas del foro de poblaciones                                                             | 0          |                                  |
|                          | Entrega de cuestionario de modelos exponenciales y logísticos                                 |            |                                  |
|                          | P                                                                                             |            |                                  |

|                         |                                                                                                                                                                                                 |   | REPROD                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------|
| Semana                  | Valoración Seguimiento 1 Valoración                                                                                                                                                             | 5 |                                                                                      |
| 6<br>(sept. 11 y<br>13) | Clase magistral: Poblaciones. Modelos Logísticos.  4. Quiz de modelos logísticos  2. T. cómputo. Modelos exponenciales y logísticos (cont.)  6. Tablas de vida y demografía de Homo sapiens  30 |   | Asignaciones Entrega de asignaciones Pautas de asignaciones Taller (computo, granja) |
| 7<br>(sep. 18 y 20      | Clase magistral: Poblaciones. Estructura de Edad Tablas de vida y modelos de edad ) Control de tabulación de cementerios 5. Parcial 1. Ambiente y poblaciones  Total Seguimiento 1  150         |   |                                                                                      |
| al DE                   | CLASE. JAMIER RODRIGUEL                                                                                                                                                                         |   |                                                                                      |



# **ECOLOGÍA DE POBLACIONES**

#### **DEFINICIONES**

Demografía

~ ~

**Inmigraciones** 

**Nacimientos** 



Muertes

Emigraciones

**Dinámica Poblacional** 



## MODELO DE CRECIMIENTO EXPONENCIAL

"Forma que asumirá este incremento y como modelarlo matemáticamente"

# 1) Crecimiento Exponencial, Geométrico o Malthusiano

- 1. Las poblaciones son cerradas (no hay emigración ni emigración).
- 2. Las generaciones son discretas (pulsos en el tiempo). ó
- 3. Crecimiento continuo (sin interrupción en el tiempo).
- 4. Individuos son iguales (todos con igual probabilidad de morir).
- 5. Recursos ilimitados (independientes de la densidad).
- 6. No se incluye el efecto ambiental.
- 7. Se comportan como población panmitica.
- 8. Modelo determinístico (el crecimiento es predecible).

# MODELO LOGÍSTICO

# **GENERALIDADES**





Javier Rodríguez Barrios

Docente – Universidad del Magdalena

\*Grupo de Ecología Neotropical - GIEN



# MODELO DE CRECIMIENTO LOGÍSTICO

"Forma que asumirá este incremento y como modelarlo matemáticamente"

# 2.) Crecimiento logístico, denso -dependiente

- 1. Las poblaciones son cerradas (no hay emigración ni imigración).
- 2. Las generaciones son discretas (pulsos en el tiempo). o
- 3. Crecimiento continuo (sin interrupción en el tiempo).
- 4. Individuos son iguales (todos con igual probabilidad de morir).
- 5. Recursos limitados (dependientes de la densidad).
- 6. No se incluye el efecto ambiental.
- 7. Se comportan como población panmitica.
- 8. Modelo determinístico (el crecimiento es predecible).



# MODELO DE CRECIMIENTO LOGÍSTICO

#### **INTERPRETACIÓN**

#### **Ecuaciones Generales**

$$\frac{dN}{dt} = rN$$

Modelo exponencial

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

Modelo logístico

 $1 - \frac{N}{K}$  representa la porción no utilizada de K K= capacidad de carga, limite de crecimiento

 $\frac{dN}{dt}$ = Tasa de crecimiento de la población (indv./tiempo)



# MODELO DE CRECIMIETO LOGÍSTICO

#### **EJERCICIO EN CLASE**

### **Ejemplo**

Una población de pasálidos crece de acuerdo a la ecuación logística. Si la capacidad de carga es de 500 individuos, su r=0.1 ind/ind.mes y su densidad inicial es de 200 individuos,

- (a) ¿cuál es la tasa de crecimiento para la población?
- (b) ¿cuál es la máxima tasa de crecimiento para la población?
- (c) ¿cuál es la tasa de crecimiento para la población, si la población aumentase a 600 individuos?
- (d) ¿Cuál será la densidad de la población en 5 meses?
- (e) ¿Cuánto tiempo tardará la población en alcanzar 400 individuos, partiendo de los 200 individuos? Probar el cálculo.

$$\frac{dN}{dt} = r. N. \left(1 - \frac{N}{K}\right)$$

$$\frac{dN}{dt} m \acute{a} x = r. \left(\frac{k}{2}\right) \cdot \left[1 - \frac{\binom{k}{2}}{k}\right]$$

$$N_t = \frac{K}{1 + \left[\frac{k - N_0}{N_0}\right] \cdot e^{-rt}}$$





# MODELO DE CRECIMIETO LOGÍSTICO

#### **EJERCICIO EN CLASE**

$$N_t = \frac{K}{1 + \left[1 - \frac{N_0}{k}\right] \cdot e^{-rt}}$$

1-N/K representa la porción no utilizada de KK= capacidad de carga, limite de crecimiento

## **Ejemplo**

De acuerdo al ejercicio anterior con No= 250 mariposas, K= 500 mariposas y r= 0.1 ind/ind.més ¿Cuál será el valor de  $N_5$ ?

$$N_1 = \frac{500}{1 + \left[1 - \frac{250}{500}\right] \cdot e^{(-0.1x5)}}$$

# MODELO DE CRECIMIETO LOGÍSTICO

#### **EJERCICIO EN CLASE**

## Interpretación de gráficas

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

En el modelo de crecimiento logístico la velocidad máxima de crecimiento (dN/dt) se alcanza en:

$$dN/dt_{máx} = K/2$$



# GRACIAS

