

TD N• :2

Exercice1:

Ecrire un algorithme qui détermine la Nième valeur Un (N étant fourni en donnée) de la suite de « **FIBONACCI** » définie comme suit :

$$\begin{cases}
U1=1 \\
U2=1 \\
Un=Un-1+Un-2 \quad \text{pour } n>2
\end{cases}$$

L'algorithme comporte les étapes suivantes :

- Lire un entier
- Calculer Un correspondant à l'entier saisi
- Afficher le résultat

Exercice2:

Ecrire un algorithme qui permet de convertir une information binaire en décimale. L'information binaire est un entier positif (contient uniquement des « $\mathbf{0}$ » et des « $\mathbf{1}$ ») saisi au clavier [**Exemple**: 1101 (base 2) \rightarrow 13 (base 10)]

L'algorithme comporte les étapes suivantes :

- Lire une information binaire
- Convertir l'information binaire en décimale
- Afficher le résultat

Exercice3:

Parmi tous les entiers supérieurs à 100, seuls quatre entiers peuvent être représentés par la somme des cubes de leurs chiffres (Exemple : 153 = 1*1*1+5*5*5+3*3*3).

Ecrire un algorithme qui permet de trouver les nombres d'AMSTRONG en répondant aux questions suivantes :

- Tester la caractéristique d'un nombre d'AMSTRONG pour un entier saisi au clavier
- Afficher les nombres d'AMSTRONG