	y(t)	$L\{y(t)\} = Y(s)$
1	7(7	
	c , constante	$\frac{c}{s}$
2	t	$\frac{1}{s^2}$
3	t^n	$\frac{n!}{s^{n+1}} , n \in Z^+$
4	e^{at}	$\frac{1}{s-a}$
5	and (at)	S
5	cos(at)	$\overline{s^2 + a^2}$
6	sen(at)	$\frac{a}{s^2 + a^2}$
		S
7	cosh(at)	$\frac{s}{s^2 - a^2}$
8	senh(at)	$\frac{a}{s^2 - a^2}$
9	te ^{at}	$\frac{1}{(s-a)^2}$
10	$t^n e^{bt}$	$\frac{1}{(s-a)^2}$ $\frac{n!}{(s-b)^{n+1}} , n \in \mathbb{Z}^+$
11	$e^{bt}cos(at)$	$\frac{s-b}{(s-b)^2+a^2}$
12	$e^{bt}sen(at)$	$\frac{a}{(s-b)^2 + a^2}$
13	$e^{bt}cosh(at)$	$\frac{s-b}{(s-b)^2-a^2}$
14	e ^{bt} senh(at)	$\frac{a}{(s-b)^2 - a^2}$
15	y'(t)	sY(s)-y(0)
16	y''(t)	$s^2Y(s) - sy(0) - y'(0)$
17	y'''(t)	$s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)$
18	$y^{(n)}(t)$	$s^{n}Y(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \cdots - y^{(n-1)}(0)$

	- L	
19	$\frac{e^{at}-e^{bt}}{a \neq b}$	$\frac{1}{a}$. $a \neq b$
	$\frac{e}{a-b}$, $a \neq b$	$\frac{1}{(s-a)(s-b)} , a \neq b$
20	$\frac{ae^{at} - be^{bt}}{a - b} , a \neq b$	$\frac{s}{(s-a)(s-b)} , \ a \neq b$
	$\frac{a-b}{a-b}$, $a \neq b$	$(s-a)(s-b)$, $a \neq b$
21	sen(at) - atcos(at)	1
	${2a^3}$	$\overline{(s^2+a^2)^2}$
22	tsen(at)	2as
		$\overline{(s^2+a^2)^2}$
23	sen(at) + atcos(at)	s^2
	2a 1	$\frac{\overline{(s^2+a^2)^2}}{s^3}$
24	1 accept attende	s ³
	$cosat - \frac{1}{2}atsenat$	$\frac{\overline{(s^2+a^2)^2}}{}$
25	tcos(at)	$s^2 - a^2$
		$\overline{(s^2+a^2)^2}$
26	sen²(at)	$2a^2$
		$\overline{s(s^2+4a^2)}$
27	$cos^2(at)$	$s^2 + 2a^2$
		$\overline{s(s^2+4a^2)}$
28	atcosh(at) - senh(at)	1
	a^3	$\overline{(s^2-a^2)^2}$
29	tsenh(at)	S
	<u> </u>	$\overline{(s^2-a^2)^2}$
30	senh(at) + atcosh(at)	s^2
		$\frac{s^2}{(s^2 - a^2)^2}$
31	$cosh(at) + \frac{1}{2}atsenh(at)$	s ³
	$cosn(at) + \frac{1}{2}atsenn(at)$	$\overline{(s^2-a^2)^2}$
32	tcoshat	$s^2 + a^2$
		$\overline{(s^2-a^2)^2}$
33	$senh^2(at)$	$2a^2$
	• •	$\overline{s(s^2-4a^2)}$
34	$cosh^2(at)$	$s^2 - 2a^2$
		$\overline{s(s^2-4a^2)}$
35	$(3-a^2t^2)sen(at) - 3atcos(at)$	1
	$8a^5$	$\overline{(s^2+a^2)^3}$
36	$tsen(at) - at^2cos(at)$	S
	$8a^3$	$\overline{(s^2+a^2)^3}$

27	$(1 + \alpha^2 + 2) \operatorname{ann}(\alpha +) \operatorname{ataga}(\alpha +)$	s^2
37	$\frac{(1+a^2t^2)sen(at)-atcos(at)}{a^2}$	_
	$8a^3$	$\overline{(s^2+a^2)^3}$
38	$3tsen(at) + at^2cos(at)$	s^3
	$8a^3$	$\overline{(s^2+a^2)^3}$
39	$(3-a^2t^2)sen(at) + 5atcos(at)$	s ⁴
		$\overline{(s^2+a^2)^3}$
40	$(8 - a^2t^2)cos(at) - 7atsen(at)$	s ⁵
	8	$\overline{(s^2+a^2)^3}$
41	t²sen(at)	$3s^2 - a^2$
		$\overline{(s^2+a^2)^3}$
42	$(3+a^2t^2)senh(at) - 3atcosh(at)$	1
72	$\frac{(3+u+)sem(ut)-success(ut)}{8a^5}$	$\frac{1}{(s^2-a^2)^3}$
43	$at^2cosh(at) - tsenh(at)$	S
	${}$ $8a^3$	$\overline{(s^2-a^2)^3}$
44	$atcosh(at) + (a^2t^2 - 1)senh(at)$	s ²
	$8a^3$	$\frac{s^2}{(s^2 - a^2)^3}$
45	$a = \frac{-at}{2} \left(3at \left(\sqrt{3}at \right) \left(\sqrt{3}at \right) \right)$	1
	$\frac{e^{\frac{-at}{2}}}{3a^2} \left\{ e^{\frac{3at}{2}} - \cos\left(\frac{\sqrt{3}at}{2}\right) - \sqrt{3}sen\left(\frac{\sqrt{3}at}{2}\right) \right\}$	$\overline{s^3-a^3}$
46	$\frac{-at}{a}$ (2at ($\sqrt{2}$ at) ($\sqrt{2}$ at)	S
	$\frac{e^{\frac{-at}{2}}}{3a} \left\{ e^{\frac{3at}{2}} - \cos\left(\frac{\sqrt{3}at}{2}\right) + \sqrt{3}sen\left(\frac{\sqrt{3}at}{2}\right) \right\}$	$\frac{s}{s^3-a^3}$
47	$1/$ -at $(\sqrt{3}at)$	$\frac{s^2}{s^3 - a^3}$
	$\frac{1}{3}\left(e^{at} + 2e^{\frac{-at}{2}}cos\left(\frac{\sqrt{3}at}{2}\right)\right)$	$\overline{s^3-a^3}$
48	1 (() () () ()	1
	$\frac{1}{4a^3} (sen(at)cosh(at) - cos(at)senh(at))$	$\overline{s^4 + 4a^4}$
49	1-cos(at)	a^2
		$\overline{s(s^2+a^2)}$
50	sen(at)senh(at)	S
	${2a^2}$	$\overline{s^4 + 4a^4}$
51	$\frac{1}{(san(at)sash(at) + cas(at)sanh(at))}$	s ²
	$\frac{1}{2a} (sen(at)cosh(at) + cos(at)senh(at))$	$\overline{s^4 + 4a^4}$
52	at — senat	a^3
		$\overline{s^2(s^2+a^2)}$
53	cos(at)cosh(at)	s ³
		$\overline{s^4 + 4a^4}$

		,
54	$\frac{1}{2a^3}\big(senh(at)-sen(at)\big)$	$\frac{1}{s^4 - a^4}$
55	$\frac{1}{2a^2} \big(cosh(at) - cos(at) \big)$	$\frac{s}{s^4 - a^4}$
56	$\frac{1}{2a}\big(senh(at) + sen(at)\big)$	$\frac{s^2}{s^4 - a^4}$
57	$\frac{1}{2} (\cosh(at) + \cos(at))$	$\frac{s^3}{s^4 - a^4}$
58	$\frac{1}{ab} + \frac{be^{-at} - ae^{-bt}}{ab(a-b)}$	$\frac{1}{s(s+a)(s+b)}$
59	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$	$\frac{1}{(s+a)(s+b)(s+c)}$
60	$\frac{1}{a^2}(e^{-at}+at-1)$	$\frac{1}{s^2(s+a)}$
61	$\frac{1}{a^2b^2} \left[\frac{1}{(a-b)} \left(a^2 e^{-bt} - b^2 e^{-at} \right) + abt - a - b \right]$	$\frac{1}{s^2(s+a)(s+b)}$
62	$\frac{1}{a^2 + b^2} \left(e^{-at} + \frac{a}{b} sen(bt) - cos(bt) \right)$	$\frac{1}{(s+a)(s^2+b^2)}$
63	$\frac{1}{ab^2} - \frac{1}{a^2 + b^2} \left(\frac{senbt}{b} + \frac{acosbt}{b^2} + \frac{e^{-at}}{a} \right)$	$\frac{1}{s(s+a)(s^2+b^2)}$
64	$\frac{1}{b^2 - a^2} \left(\frac{sen(at)}{a} - \frac{sen(bt)}{b} \right)$	$\frac{1}{(s^2 + a^2)(s^2 + b^2)}$
65	$\frac{\cos(at) - \cos(bt)}{b^2 - a^2} , \qquad a^2 \neq b^2$	$\frac{s}{(s^2 + a^2)(s^2 + b^2)}$
66	$\frac{1 - e^{-at} - ate^{-at}}{a^2}$	$\frac{1}{s(s+a)^2}$
67	$\frac{t}{a^2} - \frac{2}{a^3} + \frac{te^{-at}}{a^2} + \frac{2e^{-at}}{a^3}$	$\frac{1}{s^2(s+a)^2}$
68	$\frac{e^{-at} + [(a-b)t - 1]e^{-bt}}{(a-b)^2}$	$\frac{1}{(s+a)(s+b)^2}$
69	$\frac{senh(at)}{a^3} - \frac{t}{a^2}$	$\frac{1}{s^2(s^2-a^2)}$
70	$\frac{\cosh(at)-1}{a^4}-\frac{t^2}{2a^3}$	$\frac{1}{s^3(s^2-a^2)}$

71	$e^{-at}(1-at)$	S
'	e (1 – ut)	$\overline{(s+a)^2}$
		()
72	$\frac{1}{a^2+h^2}\left(t-\frac{2a}{a^2+h^2}\right)+\frac{e^{-at}sen(bt+\Phi)}{h(a^2+h^2)}$,	1
	$a^2 + b^2$ $a^2 + b^2$ $b(a^2 + b^2)$	$\overline{s^2[(s+a)^2+b^2]}$
	, b	
	$\Phi = 2 \tan^{-1} \left(\frac{b}{a} \right)$	
	(a)	
	e^{-ct} $e^{-at}sen(bt-\Phi)$	1
73	$\frac{e^{-ct}}{b^2 + (c-a)^2} + \frac{e^{-at}sen(bt - \Phi)}{b\sqrt{(c-a)^2 + b^2}} ,$	$\overline{(s+c)[(s+a)^2+b^2]}$
	a = 1 b	
	$\Phi = \tan^{-1} \left(\frac{b}{c - a} \right)$	
74	$\frac{1}{e^{-ct}}$	1
	$\frac{1}{c(a^2+b^2)} - \frac{1}{c[(a-c)^2+b^2]}$	$\overline{s(s+c)[(s+a)^2+b^2]}$
	$+\frac{e^{-at}sen(bt+\Phi)}{b\sqrt{(a^2+b^2)[(a-c)^2+b^2]}}$,	
	$b\sqrt{(a^2+b^2)[(a-c)^2+b^2]}$	
	(b)	
	$\Phi = \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{b}{a-c}\right)$	
	(d)	
75	$-ae^{-at}$ be^{-bt} ce^{-ct}	$\frac{s}{(s+a)(s+b)(s+c)}$
	$\frac{(c-a)(b-a)}{(a-b)(c-b)} - \frac{(a-c)(b-c)}{(a-c)(b-c)}$	(s+a)(s+b)(s+c)
76	e^{-at} e^{-bt}	1
	$\frac{(b-a)(a^2+c^2)}{(a-b)[b^2+c^2]}$	$(s+a)(s+b)(s^2+c^2)$
	$+ rac{sen(ct - \Phi)}{c\sqrt{c^2(a+b)^2 + (ab-c^2)^2}}$,	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	$\Phi = \tan^{-1}\left(\frac{c}{a}\right) + \tan^{-1}\left(\frac{c}{h}\right)$	
	w v	
77	$\frac{1}{c(a^2+b^2)} \left(t - \frac{1}{c} - \frac{2a}{a^2+b^2} \right)$	1
		$s^2(s+c)[(s+a)^2+b^2]$
	$+\frac{e^{-ct}}{256}$	
	$+\frac{1}{c^2[(c-a)^2+b^2]}$	
	$+ \frac{e^{-at}sen(bt+\Phi)}{b(a^2+b^2)\sqrt{[(c-a)^2+b^2]}}$,	
	$b(a^2+b^2)\sqrt{[(c-a)^2+b^2]}$	
	1 (b) 1 (b)	
	$\Phi = 2 \tan^{-1} \left(\frac{b}{a} \right) - \tan^{-1} \left(\frac{b}{c-a} \right)$	
78	$\frac{1}{ab^2} - \frac{e^{-at}}{a(a-b)^2} - \left[\frac{t}{b(a-b)} + \frac{a-2b}{b^2(a-b)^2}\right]e^{-bt}$	1
	ab^2 $a(a-b)^2$ $\left[b(a-b) \cdot \frac{b^2(a-b)^2}{b^2}\right]^e$	$s(s+a)(s+b)^2$

NOTAS DE ELIZABETH FELIX M.

79	$\frac{e^{-at}}{a^2(b-a)^2} + \frac{1}{ab^2} \left(t - \frac{1}{a} - \frac{2}{b} \right)$	$\frac{1}{s^2(s+a)(s+b)^2}$
	$+ \left[\frac{t}{b^2(a-b)} + \frac{2(a-b)-b}{b^3(b-a)^2} \right] e^{-bt}$	
80	$\left[\frac{t}{(a-b)(a-c)} + \frac{2a-b-c}{(a-b)^2(a-c)^2}\right]e^{-at}$	$\frac{1}{(s+b)(s+c)(s+a)^2}$
	$+\frac{e^{-bt}}{(c-b)(a-b)^2} + \frac{e^{-ct}}{(b-c)(a-c)^2}$	
	$(b-c)(a-c)^2$	
81	$\frac{sen(at+\Phi)}{a(a^2+b^2)} + \left[\frac{t}{a^2+b^2} + \frac{2b}{(a^2+b^2)^2}\right]e^{-bt} ,$	$\frac{1}{(s^2 + a^2)(s+b)^2}$
	$\Phi = 2 \tan^{-1} \left(\frac{a}{b} \right)$	
82	$\frac{te^{-at}}{(b-a)^2} - \frac{2e^{-at}}{(b-a)^3} + \frac{te^{-bt}}{(a-b)^2} - \frac{2e^{-bt}}{(a-b)^3}$	$\frac{1}{(s+a)^2(s+b)^2}$
83	$\frac{1}{a^3} - \left[\frac{t^2}{2a} + \frac{t}{a^2} + \frac{1}{a^3}\right]e^{-at}$	$\frac{1}{s(s+a)^3}$
84	$\frac{t^2}{2a^2} + \frac{\cos(at) - 1}{a^4}$	$\frac{1}{s^3(s^2+a^2)}$
85	$\left[1 - \frac{at}{2}\right]te^{-at}$	$\frac{s}{(s+a)^3}$
86	$\left[2 + (k_1 - 2a)t + \frac{(a^2 + k_1 a + k_0)t^2}{2}\right]e^{-at}$	$\frac{s^2 + k_1 s + k_0}{(s+a)^3}$
87	$\frac{(b^2 - k_1 b + k_0)e^{-bt}}{a^2 + b^2}$	$s^2 + k_1 s + k_0$
	$+\frac{sen(at+\Phi)}{a}\sqrt{\frac{(a^2-k_0)^2+(ak_1)^2}{a^2+b^2}}$,	$\frac{s^2 + k_1 s + k_0}{(s+b)(s^2 + a^2)}$
	$\Phi = \tan^{-1}\left(\frac{b}{a}\right) - \tan^{-1}\left(\frac{k_0 - a^2}{ak_1}\right)$	
88	$\frac{k_0}{a^2} + \left[\frac{(ak_1 - k_0 - a^2)t}{a} + \frac{a^2 - k_0}{a^2} \right] e^{-at}$	$s^2 + k_1 s + k_0$
	$\begin{bmatrix} a^2 & \begin{bmatrix} a & & a^2 \end{bmatrix}^2 \end{bmatrix}$	$\frac{s^2 + k_1 s + k_0}{s(s+a)^2}$
89	$\left(\frac{a^2}{2}t^2 + 2at + 1\right)e^{at}$	$\frac{s^2}{(s-a)^3}$

		<u> </u>
90	$\frac{1}{a^2+b^2} \left(-ae^{-at}+bsen(bt)+acos(bt)\right)$	$\frac{s}{(s+a)(s^2+b^2)}$
91	$\frac{1}{a^2+b^2} \left(a^2 e^{at} + absen(bt) + b^2 cos(bt)\right)$	$\frac{s^2}{(s-a)(s^2+b^2)}$
92	$\frac{1}{a^5} \left[4(1 - e^{at}) + at \left(3 + at + \frac{a^2}{6} t^2 + e^{at} \right) \right]$	$\frac{1}{s^4(s-a)^2}$
93	$\frac{1}{a^3} \left[1 - at + \frac{a^2}{2} t^2 - e^{-at} \right]$	$\frac{1}{s^3(s+a)}$
94	$\frac{-e^{at}}{(b-a)^3} \left(1 + (b-a)t + \frac{(b-a)^2}{2} t^2 \right) + \frac{e^{bt}}{(b-a)^3}$	$\frac{1}{(s-a)^3(s-b)}$
95	$\frac{1}{abc^2} \left(t - \frac{1}{a} - \frac{1}{b} \right) + \frac{e^{-at}}{a(a-b)(a^2 + c^2)} + \frac{e^{-bt}}{b^2(a-b)(b^2 + c^2)}$	$\frac{1}{s^2(s+a)(s+b)(s^2+c^2)}$
	$+\frac{\cos(ct+\Phi)}{c^2\sqrt{[(ab-c^2)^2+(a+b)^2c^2]}},$	
	$\Phi = \tan^{-1}\left(\frac{b}{c}\right) - \tan^{-1}\left(\frac{c}{a}\right)$	
96	$\frac{1-\cos(at)}{a^4} - \frac{tsen(at)}{2a^3}$	$\frac{1}{s(s^2+a^2)^2}$
97	$\frac{e^{-bt}\big(sen(at) - atcos(at)\big)}{2a^3}$	$\frac{1}{[(s+b)^2 + a^2]^2}$
98	$[(k_0-a+b^2t)sen(bt)\\ +(a-k_0)btcos(bt)]\frac{e^{-at}}{2b^3}$	$\frac{s + k_0}{[(s+a)^2 + b^2]^2}$
99	$\frac{(k_0 - a)e^{-at}}{(a - b)^2} + \left[\frac{(k_0 - b)}{a - b}t + \frac{a - k_0}{(a - b)^2}\right]e^{-bt}$	$\frac{s+k_0}{(s+a)(s+b)^2}$
100	$\frac{sen(at)sen(bt)}{2ab}$	$\frac{s}{(s^2 + (a+b)^2)(s^2 + (a-b)^2)}$
		a≠b

101	$\frac{a^2e^{-at}}{(a-b)} + \left[\frac{b^2}{a-b}t + \frac{(b^2 - 2ab)}{(a-b)^2}\right]e^{-bt}$	$\frac{s^2}{(s+a)(s+b)^2}$
102	$\frac{1}{(a-b)(a^2+c^2)(b^2+c^2)}[a(b^2+c^2)e^{at} \\ -b(a^2+c^2)e^{bt} \\ +(a-b)(ab-c^2)cos(ct) \\ -c(a^2-b^2)sen(ct)]$	$\frac{s}{(s-a)(s-b)(s^2+c^2)}$
103	$\frac{e^{-bt}sen(at - \varphi)}{a(a^2 + (b - c)^2)} + \frac{2(c - b)e^{-ct}}{[(b - c)^2 + a^2]^2} + \frac{te^{-ct}}{a^2 + (b - c)^2}$ $\varphi = 2tan^{-1} \left(\frac{a}{c - b}\right)$	$\frac{1}{(s+c)^2[(s+b)^2+a^2]}$
104	$\frac{sen(t)}{t}$	$arctan\left(\frac{1}{s}\right)$
105	$\frac{e^{-at}-e^{-bt}}{t}$	$ln\left(\frac{s+b}{s+a}\right)$

NOTAS DE ELIZABETH FELIX M. Página 8