Отчёт №3

第3次报告

1 Цель работы

Обработка кардиологического дата-сета для решения задач бинарной классификации

2 Метод

H2O AutoML, LightAutoML

3 Обсуждение

Данные были предварительно обработаны и очищены;

Фреймворки H2O AutoML и LightAutoML были выбраны для бинарного моделирования на основе результатов работы в программе-примере:

-Использовали фреймворк H2O AutoML, установили максимальное время обучения 60 секунд, автоматически выбрали подходящую модель из вариантов Gradient Boosting Machine (GBM), Random Forest, Deep Learning и Generalised Linear Model (GLM) и завершили настройку гиперпараметров; -Использовали предустановки TabularAutoML из LightAutoML, установили задачу на бинарную (Task('binary')), задали ограничение по таймауту и ресурсам CPU;

Вывели отчет о классификации, оценку F1, матрицу смешения, ROC-кривую, пороговую кривую F1 и другие графики.

1 目标

处理心脏病学数据集以解决二分类问题

2 方法

H2O AutoML 框架, LightAutoML 框架

3 操作

对数据进行了预处理和清洗

根据示例程序中的表现挑选了 H2O AutoML 框架 和 LightAutoML 框架进行二分类建模:

- ·使用了 H2OAutoML 框架,设置了最大训练时间 60 秒,自动从梯度提升机 (GBM)、随机森林、深度学习 (Deep Learning)、广义线性模型 (GLM) 等模型选择中选择合适的模型并完成了超参数调优
- ·使用了 LightAutoML 中的 TabularAutoML 预设,设置了任务为二分类 (Task('binary')),设置了超时时长限制和 CPU 资源限制输出了分类报告、F1 分数,生成了混淆矩阵、ROC 曲线、F1-阈值曲线等图表

Figure 1: H2O Confusion Matrix

ation Report:			
precision	recall	f1-score	support
0.94	0.70	0.80	747
0.53	0.88	0.66	288
		0.75	1035
0.73	0.79	0.73	1035
0.82	0.75	0.76	1035
	0.94 0.53	0.94 0.70 0.53 0.88 0.73 0.79	precision recall f1-score 0.94 0.70 0.80 0.53 0.88 0.66 0.75 0.73 0.79 0.73

Macro F1: 0.7306 Weighted F1: 0.7616 ROC AUC: 0.8457

Figure 2: H2O Report

Figure 3: H2O Receiver Operating Characteristic Curve

Figure 4: H2O F1 Score

Figure 1: H2O 混淆矩阵

H20 Classific	ation Report:			
	precision	recall	f1-score	support
Unhealthy	0.94	0.70	0.80	747
Healthy	0.53	0.88	0.66	288
accuracy			0.75	1035
macro avg	0.73	0.79	0.73	1035
weighted avg	0.82	0.75	0.76	1035

Macro F1: 0.7306 Weighted F1: 0.7616 ROC AUC: 0.8457

Figure 2: H2O 分类报告

Figure 3: H2O ROC 曲线

Figure 4: H2O F1 分数

Figure 5: LightAutoML Confusion Matrix

LightAutoML	Classification	Report:		
	precision	recall	f1-score	support
Unhealthy	0.84	0.91	0.88	498
Healthy	0.71	0.56	0.62	192
accuracy			0.81	690
macro avg	0.78	0.73	0.75	690
weighted avg	0.81	0.81	0.81	690

Macro F1: 0.7498 Weighted F1: 0.8056 ROC AUC: 0.8882

Figure 6: LightAutoML Report

Figure 7: LightAutoML Receiver Operating Characteristic Curve

Figure 8: LightAutoML F1 Score

Figure 5: LightAutoML 混淆矩阵

LightAutoML	Classification	Report:		
	precision	recall	f1-score	support
Unhealth	0.84	0.91	0.88	498
Healthy	0.71	0.56	0.62	192
accuracy	/		0.81	690
macro av	0.78	0.73	0.75	690
weighted av	0.81	0.81	0.81	690

Macro F1: 0.7498 Weighted F1: 0.8056 ROC AUC: 0.8882

Figure 6: LightAutoML 分类报告

Figure 7: LightAutoML ROC 曲线

Figure 8: LightAutoML F1 分数

4 Ссылки на литературу

References

- [1] Набор данных для лабораторных работы и исследований сайт. 2025. URL: https://github.com/AI-is-out-there/data2lab (Дата обращения: 16.03.2025)
- [2] ML ECG classification: caйт. 2025. URL: https://github.com/TAUforPython/BioMedAI/blob/main/ML%20ECG%20classification.ipynb (Дата обращения: 06.04.2025)
- [3] H2O AutoML: Automatic Machine Learning: caйт. 2025. URL: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (Дата обращения: 06.04.2025)
- [4] LightAutoML documentation: сайт. 2025. URL: https://lightautoml.readthedocs.io/en/v.0. 4.0/ (Дата обращения: 06.04.2025)
- [5] Summary of common model evaluation metrics for machine learning models: caйт. 2025. URL: https://blog.csdn.net/weixin_42521211/article/details/144224113 (Дата обращения: 06.04.2025)

4 参考文献

References

- [1] AI-is-out-there. Набор данных для лабораторных работы и исследований[EB/OL]. (2025-03-16)[2025-04-06]. https://github.com/AI-is-out-there/data2lab
- [2] TAUforPython. ML ECG classification[EB/OL]. (2025-04-06)[2025-04-06]. https://github.com/TAUforPython/BioMedAI/blob/main/ML%20ECG% 20classification.ipynb
- [3] H2O.ai. H2O AutoML: Automatic Machine Learning[EB/OL]. (2025-04-06)[2025-04-06]. https://docs.h2o.ai/h2o/latest-stable/ h2o-docs/automl.html
- [4] LightAutoML Team. LightAutoML documentation[EB/OL]. (2025-04-06)[2025-04-06]. https://lightautoml.readthedocs.io/en/v.0.4.0/
- [5] CSDN. Summary of common model evaluation metrics for machine learning models[EB/OL]. (2025-04-06)[2025-04-06]. https://blog.csdn.net/ weixin_42521211/article/details/144224113