Digital System Assignment 3

He Tianyang

March 27, 2024

1 Problem 1

Utilize an 8-bit Mux CT74LS151 for the implementation of a 4-bit even-odd checker. The input consists of a 4-bit binary number, producing an output of 1 if the count of 1s in the input is even, and 0 if it is odd. Refer to the truth table provided below. Additionally, furnish the circuit diagram along with comprehensive design steps.

Solves:

First, we need to design the truth table of the 4-bit even-odd checker. The truth table is shown below.

Input	Output	
0000	1	
0001	0	
0010	0	
0011	1	
0100	0	
0101	1	
0110	1	
0111	0	
1000	0	
1001	1	
1010	1	
1011	0	
1100	1	
1101	0	
1110	0	
1111	1	

Based on the truth table, we can draw the Karnaugh map of the 4-bit even-odd checker using dimension reduction method. The K-map is shown below.

AB C	0	1
00	\overline{D}	D
01	D	\overline{D}
11	\overline{D}	D
10	D	\overline{D}

Therefore, the circuit diagram of the 4-bit even-odd checker is shown in Figure 1.

Figure 1: Circuit diagram of the 4-bit even-odd checker.