Задача А. Мультисет

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Обработайте запросы двух видов:

Формат входного файла

В первой строке вводится одно число n ($1 \le n \le 300\ 000$) — число запросов. В каждой из следующих n строк вводятся строка s и число x ($1 \le x \le 10^9$), описывающие запрос. Гарантируется, что есть хотя бы один запрос типа "ask".

Формат выходного файла

На каждый запрос типа "ask" надо вывести в отдельной строке количество вхождений числа x в мультимножество.

стандартный ввод	стандартный вывод
4	0
ask 4	1
add 4	0
ask 4	
ask 5	

[&]quot;add x" — добавить число x в мультимножество.

[&]quot; $ask\ x$ " — вывести количество вхождений числа x в мультимножество.

Задача В. Простое двоичное дерево поиска

Имя входного файла: bstsimple.in Имя выходного файла: bstsimple.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Реализуйте двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- ullet insert x добавить в дерево ключ x
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо
- ullet exists x- если ключ x есть в дереве выведите «true», если нет «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none» если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

bstsimple.in	bstsimple.out
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Задача С. Двоичное дерево поиска

Имя входного файла: bst.in
Имя выходного файла: bst.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Реализуйте двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100000. В каждой строке находится одна из следующих операций:

- ullet insert x добавить в дерево ключ x
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо
- ullet exists x- если ключ x есть в дереве выведите «true», если нет «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none» если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

bst.in	bst.out
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Задача D. К-ый максимум

Имя входного файла: kthmax.in Имя выходного файла: kthmax.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество команд $(n \le 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \le 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходного файла

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

kthmax.in	kthmax.out
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача Е. И снова сумма...

Имя входного файла: sum2.in
Имя выходного файла: sum2.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \le x \le r$.

Формат входного файла

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходного файла

Для каждого запроса выведите одно число — ответ на запрос.

sum2.in	sum2.out
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	

Задача F. Вставка ключевых значений

Имя входного файла: key.in
Имя выходного файла: key.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Bac наняла на работу компания MacroHard, чтобы вы разработали новую структуру данных для хранения целых ключевых значений.

Эта структура выглядит как массив A бесконечной длины, ячейки которого нумеруются с единицы. Изначально все ячейки пусты. Единственная операция, которую необходимо поддерживать — это операция Insert(L,K), где L — положение в массиве, а K — некоторое положительное целое ключевое значение.

Операция выполняется следующим образом:

- Если ячейка A[L] пуста, то присвоить A[L] := K.
- ullet Если ячейка A[L] непуста, выполнить Insert(L+1,A[L]), а затем присвоить A[L]:=K.

По заданной последовательности из N целых чисел L_1, L_2, \ldots, L_N вам необходимо вывести содержимое этого массива после выполнения следующей последовательности операций:

 $Insert(L_1, 1)$ $Insert(L_2, 2)$... $Insert(L_N, N)$

Формат входного файла

В первой строке входного файла содержится N — число операций Insert и M — максимальный номер позиции, которую можно использовать в операции Insert. ($1 \le N \le 131\,072, 1 \le M \le 131\,072$).

В следующей строке даны N целых чисел L_i , которые описывают операции $Insert\ (1 \le L_i \le M)$.

Формат выходного файла

Выведите содержимое массива после выполнения данной последовательности операций Insert. На первой строке выведите W — номер последней несвободной позиции в массиве. Далее выведите W целых чисел — $A[1], A[2], \ldots, A[W]$. Для пустых ячеек выводите нули.

key.in	key.out
5 4	6
3 3 4 1 3	4 0 5 2 3 1

Задача G. Переворачивания

Имя входного файла: reverse.in Имя выходного файла: reverse.out Ограничение по времени: 5 секунд Ограничение по памяти: 256 мебибайт

Учитель физкультуры школы с углубленным изучением предметов уже давно научился считать суммарный рост всех учеников, находящихся в ряду на позициях от l до r. Но дети играют с ним злую шутку. В некоторый момент дети на позициях с l по r меняются местами. Учитель заметил, что у детей не очень богатая фантазия, поэтому они всегда «переворачивают» этот отрезок, т. е. l меняется с r, l+1 меняется с r-1 и так далее. Но учитель решил не ругать детей за их хулиганство, а все равно посчитать суммарный рост на всех запланированных отрезках.

Формат входного файла

В первой строке записано два числа n и m ($1 \le n, m \le 200\,000$) — количество детей в ряду и количество событий, произошедших за все время. Во второй строке задано n натуральных чисел — рост каждого школьника в порядке следования в ряду. Рост детей не превосходит $2 \cdot 10^5$. Далее в m строках задано описание событий: три числа q, l, r в каждой строке ($0 \le q \le 1, 1 \le l \le r \le n$). Число q показывает тип события: 0 показывает необходимость посчитать и вывести суммарный рост школьников на отрезке [l, r]; 1 показывает то, что дети на отрезке [l, r] «перевернули» свой отрезок. Все числа во входном файле целые.

Формат выходного файла

Для каждого события типа 0 выведите единственное число на отдельной строке — ответ на этот запрос.

reverse.in	reverse.out
5 6	15
1 2 3 4 5	9
0 1 5	8
0 2 4	7
1 2 4	10
0 1 3	
0 4 5	
0 3 5	

Задача H. Range Minimum Query

Имя входного файла: rmq.in
Имя выходного файла: rmq.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Компания <u>Giggle</u> открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу.

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і j» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і х» добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входного файла

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходного файла

Для каждой операции в отдельной строке выведите её результат.

rmq.in	rmq.out
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

Задача I. Переместить в начало

Имя входного файла: movetofront.in Имя выходного файла: movetofront.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайта

Вам дан массив $a_1 = 1, a_2 = 2, \ldots, a_n = n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2,3,6,1,5,4, после операции (2,4) новый порядок будет 3,6,1,2,5,4. А после применения операции (3,4) порядок элементов в массиве будет 1,2,3,6,5,4.

Выведите порядок элементов в массиве после выполнения всех операций.

Формат входного файла

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходного файла

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

movetofront.in	movetofront.out
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	