Linear Convergence Rate in Convex Setup is Possible! First- and Zero-Order Algorithms under Generalized Smoothness

Aleksandr Lobanov

Moscow Institute of Physics and Technology, Dolgoprudny, Russia Skolkovo Institute of Science and Technology, Moscow, Russia ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia

lobbsasha@mail.ru

Today's plan

- Problem Statement and Background
- 2 (Stochastic) Gradient Descent Method
- 3 Normalized Stochastic Gradient Descent
- 4 Clipped Stochastic Gradient Descent
- Summary of results
- 6 Numerical experiments
- Useful links
- 8 Contact me

Problem Statement and Background

This work focuses on a stochastic optimization problem:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, \xi) \right] \right\}, \tag{1}$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is a smooth convex, possibly stochastic function.

Gradient Descent (Cauchy, 1847) [1]

$$\boxed{x^{k+1} = x^k - \eta_k \nabla f(x^k)} \qquad \to \qquad f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N}\right)$$

Accelerated Gradient Descent (Nesterov, 1983) [2]

$$x^{k+1} = x^k - \eta_k \nabla f\left(x^k + \beta_k(x^k - x^{k-1})\right) + \beta_k(x^k - x^{k-1}) \qquad \to \qquad f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N^2}\right)$$

Problem Statement and Background

This work focuses on a stochastic optimization problem:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, \xi) \right] \right\}, \tag{1}$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is a smooth convex, possibly stochastic function.

Gradient Descent (Cauchy, 1847) [1]

$$\boxed{x^{k+1} = x^k - \eta_k \nabla f(x^k)} \qquad \to \qquad f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N}\right)$$

Accelerated Gradient Descent (Nesterov, 1983) [2]

$$\boxed{ x^{k+1} = x^k - \eta_k \nabla f\left(x^k + \beta_k(x^k - x^{k-1})\right) + \beta_k(x^k - x^{k-1}) } \quad \to \quad f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N^2}\right)$$

Problem Statement and Background

This work focuses on a stochastic optimization problem:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, \xi) \right] \right\}, \tag{1}$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is a smooth convex, possibly stochastic function.

Function f is L-smooth if the following inequality is satisfied for any $x,y\in\mathbb{R}^d$:

$$\boxed{\|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|.}$$

Gradient Descent (Cauchy, 1847) [1]

$$x^{k+1} = x^k - \eta_k \nabla f(x^k)$$
 \rightarrow $f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N}\right)$

Accelerated Gradient Descent (Nesterov, 1983) [2]

$$\boxed{x^{k+1} = x^k - \eta_k \nabla f\left(x^k + \beta_k(x^k - x^{k-1})\right) + \beta_k(x^k - x^{k-1})} \quad \to \quad f(x^N) - f^* \lesssim \mathcal{O}\left(\frac{LR^2}{N^2}\right)$$

Relaxed Smoothness Condition [3

A second order differentiable function f is (L_0, L_1) -smooth $\forall x \in \mathbb{R}^d$ if

$$\left\|\nabla^2 f(x)\right\| \le L_0 + L_1 \left\|\nabla f(x)\right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0, L_1) -smooth $\forall x, y \in \mathbb{R}^d$ with $||y - x|| \le \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0,L_1) -smooth $\forall x\in\mathbb{R}^d$ if

$$\left\| \nabla^2 f(x) \right\| \le L_0 + L_1 \left\| \nabla f(x) \right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0, L_1) -smooth $\forall x, y \in \mathbb{R}^d$ with $||y - x|| \le \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0,L_1) -smooth $\forall x\in\mathbb{R}^d$ if

$$\left\| \nabla^2 f(x) \right\| \le L_0 + L_1 \left\| \nabla f(x) \right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0, L_1) -smooth $\forall x, y \in \mathbb{R}^d$ with $\|y - x\| \leq \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0, L_1) -smooth $\forall x \in \mathbb{R}^d$ if

$$\left\| \nabla^2 f(x) \right\| \le L_0 + L_1 \left\| \nabla f(x) \right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0,L_1) -smooth $\forall x,y\in\mathbb{R}^d$ with $\|y-x\|\leq \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5]

①: $f(x) = ||x||^{2n}$, where $n \in \mathbb{N}$. f(x) is (2n, 2n - 1)-smooth, but is not L-smooth for $n \geq 2$.

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0, L_1) -smooth $\forall x \in \mathbb{R}^d$ if

$$\left\| \nabla^2 f(x) \right\| \le L_0 + L_1 \left\| \nabla f(x) \right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0, L_1) -smooth $\forall x, y \in \mathbb{R}^d$ with $\|y - x\| \leq \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5]

①: $f(x) = ||x||^{2n}$ where $n \in \mathbb{N}$. f(x) is (2n, 2n - 1)-smooth, but is not L-smooth for $n \geq 2$.

 $\mathfrak{D}: f(x) = \exp(a^\mathsf{T} x)$, where $a \in \mathbb{R}^d$. f(x) is (0, ||a||)-smooth, but is not L-smooth for $a \neq 0$.

28.03.2025

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0,L_1) -smooth $\forall x\in\mathbb{R}^d$ if

$$\left\| \nabla^2 f(x) \right\| \le L_0 + L_1 \left\| \nabla f(x) \right\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0, L_1) -smooth $\forall x, y \in \mathbb{R}^d$ with $\|y - x\| \leq \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5]

①: $f(x) = ||x||^{2n}$, where $n \in \mathbb{N}$. f(x) is (2n, 2n - 1)-smooth, but is not L-smooth for $n \geq 2$.

②: $f(x) = \exp(a^\mathsf{T} x)$, where $a \in \mathbb{R}^d$. f(x) is (0, ||a||)-smooth, but is not L-smooth for $a \neq 0$.

 $\mathfrak{B}: f(x) = \log(1 + \exp(-a^{\mathsf{T}}x)), \text{ where } a \in \mathbb{R}^d. \ L = ||a||^2. \text{ However, } L_0 = 0 \text{ and } L_1 = ||a||.$

Relaxed Smoothness Condition [3]

A second order differentiable function f is (L_0, L_1) -smooth $\forall x \in \mathbb{R}^d$ if

$$\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$$

More Relaxed Smoothness Condition [4]

A function f is (L_0,L_1) -smooth $\forall x,y\in\mathbb{R}^d$ with $\|y-x\|\leq \frac{1}{L_1}$ if:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|y - x\|$$

Function examples [5]

①: $f(x) = ||x||^{2n}$, where $n \in \mathbb{N}$. f(x) is (2n, 2n - 1)-smooth, but is not L-smooth for $n \geq 2$. ②: $f(x) = \exp(a^T x)$, where $a \in \mathbb{R}^d$. f(x) is (0, ||a||)-smooth, but is not L-smooth for $a \neq 0$.

 $\mathfrak{S}: f(x) = \log(1 + \exp(-a^{\mathsf{T}}x)), \text{ where } a \in \mathbb{R}^d. \ L = ||a||^2. \ \text{However, } L_0 = 0 \text{ and } L_1 = ||a||^2$

(Stochastic) Gradient Descent Method

Algorithm 1 Stochastic Gradient Descent Method (SGD)

Input: initial point $x_0 \in \mathbb{R}^d$, iterations number N, batch size B, step size $\eta_k > 0$

for
$$k = 0$$
 to $N - 1$ do

1. Draw fresh i.i.d. samples $\xi_1^k, ..., \xi_B^k$

2.
$$\nabla f(x^k, \xi^k) = \frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k, \xi_i^k)$$

3.
$$x^{k+1} \leftarrow x^k - \eta_k \cdot \nabla f(x^k, \boldsymbol{\xi}^k)$$

end for

Ass:
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$$

$$\text{Ass: } \mathbb{E}\left[\left\|\nabla f(x,\xi) - \mathbb{E}\left[\nabla f(x,\xi)\right]\right\|^2\right] \leq \sigma^2$$

① Step size
$$[\eta_k = \eta \leq (L_0 + L_1 M)^{-1}]$$
:

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \frac{R^2}{2\eta N} + \frac{\sigma^2 \eta}{B}$$

② Step size
$$\eta_k = \eta \leq (L_0 + L_1 M)^{-1}$$

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \left(1 - \eta\mu\right)^N F_0 + \frac{\sigma^2}{2\mu B}$$

(Stochastic) Gradient Descent Method

Algorithm 1 Stochastic Gradient Descent Method (SGD)

Input: initial point $x_0 \in \mathbb{R}^d$, iterations number N, batch size B, step size $\eta_k > 0$

for
$$k = 0$$
 to $N - 1$ do

1. Draw fresh i.i.d. samples $\xi_1^k,...,\xi_B^k$

2.
$$\nabla f(x^k, \xi^k) = \frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k, \xi_i^k)$$

3.
$$x^{k+1} \leftarrow x^k - \eta_k \cdot \nabla f(x^k, \boldsymbol{\xi}^k)$$

end for

Ass:
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$$

$$\text{Ass: } \mathbb{E}\left[\left\|\nabla f(x,\xi) - \mathbb{E}\left[\nabla f(x,\xi)\right]\right\|^2\right] \leq \sigma^2$$

① Step size
$$\eta_k = \eta \leq (L_0 + L_1 M)^{-1}$$

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \frac{R^2}{2\eta N} + \frac{\sigma^2 \eta}{B}$$

② Step size
$$\eta_k = \eta \leq (L_0 + L_1 M)^{-1}$$
 :

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \left(1 - \eta\mu\right)^N F_0 + \frac{\sigma^2}{2\mu B}$$

(Stochastic) Gradient Descent Method

Algorithm 1 Stochastic Gradient Descent Method (SGD)

Input: initial point $x_0 \in \mathbb{R}^d$, iterations number N, batch size B, step size $\eta_k > 0$

for k = 0 to N - 1 do

- 1. Draw fresh i.i.d. samples $\xi_1^k, ..., \xi_B^k$
- 2. $\nabla f(x^k, \xi^k) = \frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k, \xi_i^k)$
- 3. $x^{k+1} \leftarrow x^k \eta_k \cdot \nabla f(x^k, \boldsymbol{\xi}^k)$

end for

③ Step size
$$\left[\eta_k = \min \left\{ (L_0 + L_1 \| \nabla f(x^k) \|)^{-1} \right\} \right]$$
:

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \left(1 - \frac{1}{4L_1R}\right)^K F_0 + \frac{L_0R^2}{N-K}$$

Ass:
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$$

$$\text{Ass: } \mathbb{E}\left[\left\|\nabla f(x,\xi) - \mathbb{E}\left[\nabla f(x,\xi)\right]\right\|^2\right] \leq \sigma^2$$

① Step size
$$\eta_k = \eta \leq (L_0 + L_1 M)^{-1}$$

$$\mathbb{E}\left[f(x^N)\right] - f^* \le \frac{R^2}{2\eta N} + \frac{\sigma^2 \eta}{B}$$

② Step size
$$\eta_k = \eta \leq (L_0 + L_1 M)^{-1}$$
:

$$\mathbb{E}\left[f(x^N)\right] - f^* \le (1 - \eta\mu)^N F_0 + \frac{\sigma^2}{2\mu B}$$

Normalized Stochastic Gradient Descent

Algorithm 2 Normalized Stochastic Gradient Descent Method (NSGD)

Input: initial point $x_0 \in \mathbb{R}^d$, iterations number N, batch size B, step size $\eta_k > 0$ and hyperparameter $\lambda > 0$

for
$$k = 0$$
 to $N - 1$ do

1. Draw fresh i.i.d. samples $\xi_1^k, ..., \xi_B^k$

2.
$$\nabla f(x^k, \xi^k) = \frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k, \xi_i^k)$$

3.
$$x^{k+1} \leftarrow x^k - \eta_k \cdot \frac{\nabla f(x^k, \boldsymbol{\xi}^k)}{\|\nabla f(x^k, \boldsymbol{\xi}^k)\|}$$

end for

Return: x^N

Step size
$$\left[\eta_k = \eta \leq \lambda / \left[2(L_0 + L_1 \lambda) \right] \right]$$
; $F_k = \mathbb{E}\left[f(x^k) \right] - f^*$

$$\mathbb{E}\left[f(x^N)\right] - f^* \lesssim \left(1 - \frac{\eta}{R}\right)^N F_0 + \frac{\sigma^2 MR}{B\lambda^2} + \lambda R$$

6/12

Clipped Stochastic Gradient Descent

Algorithm 3 Clipped Stochastic Gradient Descent Method (ClipSGD)

Input: initial point $x_0 \in \mathbb{R}^d$, iterations number N, batch size B, step size $\eta_k > 0$ and clipping radius c > 0

for
$$k = 0$$
 to $N - 1$ do

- 1. Draw fresh i.i.d. samples $\xi_1^k,...,\xi_B^k$
- 2. $\nabla f(x^k, \boldsymbol{\xi}^k) = \frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k, \xi_i^k)$
- 3. $\mathrm{clip}_c(\nabla f(x^k, \pmb{\xi}^k)) = \min\{1, \frac{c}{\|\nabla f(x^k, \pmb{\xi}^k)\|}\} \nabla f(x^k, \pmb{\xi}^k)$
- 4. $x^{k+1} \leftarrow x^k \eta_k \cdot \text{clip}_c(\nabla f(x^k, \boldsymbol{\xi}^k))$

end for

Step size
$$\eta_k = \eta \leq [4(L_0 + L_1 c)]^{-1}$$
; $F_k = \mathbb{E}\left[f(x^k)\right] - f^*$; $\mathcal{R} = \left(\eta + \frac{MR}{c^2} + \frac{R}{c}\right)$

$$F_N \lesssim \left(1 - \frac{\eta c}{R}\right)^K F_0 + \frac{R^2}{\eta(N - K)} + \frac{\sigma^2 \mathcal{R}}{B}$$

Summary of results

Table 1: Comparison of iteration complexity of SGD (Algorithm 1), NSGD (Algorithm 2) and ClipSGD (Algorithm 3) under strong growth condition for smoothness $((L_0, L_1)$ -smoothness with $L_0 = 0$). Notation: $\eta_k > 0$ – step size; c > 0 – clipping radius; $M = \max_k \{ \|\nabla f(x^k)\| \}$; $R = \|x^0 - x^*\|$; $\varepsilon = \text{desired accuracy}$; LCR = linear convergence rate; CSS = constant step size.

Reference	Algorithm	Iteration Complexity $\#N$	Step Size	Convex? $(\mu = 0)$	LCR?	CSS?
Theorem 3.1	SGD	$\mathcal{O}\left(\frac{L_1MR^2}{\varepsilon}\right)$	$\eta_k = \eta \le (L_1 M)^{-1}$	✓	X	✓
Theorem 3.3	SGD	$\mathcal{O}\left(L_1R\lograc{1}{arepsilon} ight)$	$\eta_k = (L_1 \ \nabla f(x^k, \xi^k)\)^{-1}$	✓	✓	×
Theorem 3.4	SGD	$\mathcal{O}\left(rac{L_1M}{\mu}\lograc{1}{arepsilon} ight)$	$\eta_k = \eta \le (L_1 M)^{-1}$	X	✓	1
Theorem 3.5	NSGD	$\mathcal{O}\left(L_1R\log\frac{1}{\varepsilon}\right)$	$\eta_k = \eta \le (2L_1)^{-1}$	✓	✓	✓
Theorem 4.1	ClipSGD	$\mathcal{O}\left(L_1R\log\frac{1}{\varepsilon} + \frac{L_1cR^2}{\varepsilon}\right)$	$\eta_k = \eta \le (4L_1c)^{-1}$	✓	✓	✓

Numerical experiments

Figure: Comparison of convergence of SGD, NSGD and ClipSGD on w1a dataset $\left(B=1000\right)$

Useful links

Where were the materials sourced from?

- Linear Convergence Rate in Convex Setup is Possible! Gradient Descent Method Variants under (L_0, L_1) -Smoothness
- ullet Power of (L_0,L_1) -Smoothness in Stochastic Convex Optimization: First- and Zero-Order Algorithms

Thank you for your attention!

Figure: Contact me

Reference I

- [1] Augustin Cauchy et al. "Méthode générale pour la résolution des systemes d'équations simultanées". In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–538.
- [2] Yurii Nesterov. "A method for unconstrained convex minimization problem with the rate of convergence O (1/k2)". In: *Dokl. Akad. Nauk. SSSR.* Vol. 269. 3. 1983, p. 543.
- [3] Jingzhao Zhang et al. "Why Gradient Clipping Accelerates Training: A Theoretical Justification for Adaptivity". In: *International Conference on Learning Representations*.
- [4] Bohang Zhang et al. "Improved analysis of clipping algorithms for non-convex optimization". In: *Advances in Neural Information Processing Systems* 33 (2020), pp. 15511–15521.
- [5] Eduard Gorbunov et al. "Methods for convex (l_-0, l_-1) -smooth optimization: Clipping, acceleration, and adaptivity". In: $arXiv\ preprint\ arXiv:2409.14989\ (2024)$.