| 10/28/2019 | Another way to calculate Attion                                          |
|------------|--------------------------------------------------------------------------|
|            |                                                                          |
|            | using $\Delta H_f$ .                                                     |
|            | in                                                                       |
|            |                                                                          |
|            | AHan                                                                     |
|            | ΔΠαn                                                                     |
|            | STD conditions: Gases: latin                                             |
|            | Solute: 1 M                                                              |
|            | Solid/Lig: pure                                                          |
|            |                                                                          |
|            | AH° : AH° when we from I mad of                                          |
|            | ΔH¢: ΔHrxn when we form I mol of  formation specified substance from its |
|            | primation specified substance from its                                   |
|            | elements in their most stable form.                                      |
|            | A 11 ° C                                                                 |
|            | ex: Appendix: DHf (CH4(g)) = -74.6 KJ/mol                                |
|            | relement 1 md                                                            |
|            | C(s, graphiti) + 2H2(g) - CH4(g); AHm=-74.61CJ                           |
|            |                                                                          |
|            | allotropes: diffit forms of an element                                   |
|            | ex: Carbon: graphit, diamond                                             |
|            | J                                                                        |
|            | AH; (NaH(0315)) = -950.8KJ/mol                                           |
|            | 1311 (14411CO3157) - 130-0-7MOI                                          |
|            | 11                                                                       |
|            | Na(s) + = H2(g) + (1sigraphite) + = 02(g) - NaH(03(s); AH=950.8kg        |
|            |                                                                          |
|            | Oxygen: Oz(g) "Oxygen"  Oz(g) Ozone (Appendix II)                        |
|            | Oz (a) ozone (Appendix II)                                               |
|            |                                                                          |



## **Standard Conditions**

- The **standard state** is the state of a material at a defined set of conditions.
  - Pure gas at exactly 1 atm pressure
  - Pure solid or liquid in its most stable form at exactly 1 atm pressure and temperature of interest
    - Usually 25 °C
  - Substance in a solution with concentration 1 M
- The standard enthalpy change, ΔH°, is the enthalpy change when all reactants and products are in their standard states.
- The **standard enthalpy of formation**,  $\Delta H_{\rm f}^{\circ}$ , is the enthalpy change for the reaction forming 1 mole of a pure compound from its constituent elements.
  - The elements must be in their standard states.
  - The  $\Delta H_{\rm f}^{\circ}$ , for a pure element in its standard state = 0 kJ/mol.



Copyright © 2020 Pearson Education, Inc. All Rights Reserved

75

## Standard Enthalpies of Formation (1 of 3)

| Formula               | ΔH <sub>f</sub> °, (kJ/mol) |
|-----------------------|-----------------------------|
| Bromine               |                             |
| Br(g)                 | 111.9                       |
| Br <sub>2</sub> (I)   | 0                           |
| HBr(g)                | -36.3                       |
| Calcium               |                             |
| Ca(s)                 | 0                           |
| CaO(s)                | -634.9                      |
| CaCO <sub>3</sub> (s) | -1207.6                     |
| Carbon                |                             |
| C(s, graphite)        | 0                           |
| C(s, diamond)         | 1.88                        |

| Formula                                                  | ΔH <sub>f</sub> °, (kJ/mol) |
|----------------------------------------------------------|-----------------------------|
| CO(g)                                                    | -110.5                      |
| CO <sub>2</sub> (g)                                      | -393.5                      |
| CH <sub>4</sub> (g)                                      | -74.6                       |
| CH <sub>3</sub> OH(I)                                    | -238.6                      |
| C <sub>2</sub> H <sub>2</sub> (g)                        | 227.4                       |
| C <sub>2</sub> H <sub>4</sub> (g)                        | 52.4                        |
| C <sub>2</sub> H <sub>6</sub> (g)                        | -84.68                      |
| C <sub>2</sub> H <sub>5</sub> O H( <i>I</i> )            | -277.6                      |
| C <sub>3</sub> H <sub>8</sub> (g)                        | -103.85                     |
| C <sub>3</sub> H <sub>6</sub> O( <i>I</i> , acetone)     | -248.4                      |
| C <sub>3</sub> H <sub>8</sub> O( <i>I</i> , isopropanol) | <b>−318</b> .               |



Copyright © 2020 Pearson Education, Inc. All Rights Reserved

## **Standard Enthalpies of Formation** (2 of 3)

| Formula                                                      | ΔH <sub>f</sub> °, (kJ/mol) |
|--------------------------------------------------------------|-----------------------------|
| C <sub>6</sub> H <sub>6</sub> ( <i>I</i> )                   | 49.1                        |
| C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> (s, glucose)   | -1273.3                     |
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> (s, sucrose) | -2226.1                     |
| Chlorine                                                     |                             |
| CI(g)                                                        | 121.3                       |
| $\operatorname{Cl}_2(g)$                                     | 0                           |
| HCI(g)                                                       | -92.3                       |
| Fluorine                                                     |                             |
| F(g)                                                         | 79.38                       |
| F <sub>2</sub> (g)                                           | 0                           |
| HF(g)                                                        | -273.3                      |

| Formula                             | ΔH <sub>f</sub> °, (kJ/mol) |
|-------------------------------------|-----------------------------|
| Hydrogen                            |                             |
| H(g)                                | 218.0                       |
| H <sub>2</sub> (g)                  | 0                           |
| Nitrogen                            |                             |
| N <sub>2</sub> (g)                  | 0                           |
| NH <sub>3</sub> (g)                 | -45.9                       |
| NH <sub>4</sub> NO <sub>3</sub> (s) | -365.6                      |
| NO(g)                               | 91.3                        |
| $N_2O(g)$                           | 81.6                        |
| Oxygen                              |                             |
| O <sub>2</sub> (g)                  | 0                           |

? Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

77

## **Standard Enthalpies of Formation** (3 of 3)

| Formula                             | ΔH <sub>f</sub> °, (kJ/mol) |
|-------------------------------------|-----------------------------|
| O <sub>3</sub> (g)                  | 142.7                       |
| H <sub>2</sub> O( <i>g</i> )        | -241.8                      |
| H <sub>2</sub> O( <i>I</i> )        | -285.8                      |
| Silver                              |                             |
| Ag(s)                               | 0                           |
| AgCl(s)                             | -127.0                      |
| Sodium                              |                             |
| Na(s)                               | 0                           |
| Na(g)                               | 107.5                       |
| NaCl(s)                             | -411.2                      |
| Na <sub>2</sub> CO <sub>3</sub> (s) | -1130.7                     |

| Formula                            | ΔH <sub>f</sub> °, (kJ / mol) |
|------------------------------------|-------------------------------|
| NaHCO <sub>3</sub> (s)             | -950.8                        |
| Sulfur                             |                               |
| S <sub>8</sub> (s, rhombic)        | 0                             |
| S <sub>8</sub> (s, monoclinic)     | 0.3                           |
| SO <sub>2</sub> (g)                | -296.8                        |
| SO <sub>3</sub> (g)                | -395.7                        |
| H <sub>2</sub> SO <sub>4</sub> (I) | -814.0                        |

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

78

| Chapter 8 Quantum mechanics of the atom                  |
|----------------------------------------------------------|
| light: dectromagnetic (EM) wave                          |
| electric field                                           |
| De distance                                              |
| magnetic field.  wavelength                              |
|                                                          |
| 2 unib: m (SI)                                           |
| (lambda) count Hwaves passing thru'                      |
| every second                                             |
| (nu) ~ frequency of wave: #waves: unity: 1 or 5-1, or Hz |
| Hertz.                                                   |
|                                                          |
|                                                          |
|                                                          |