<u>Опр:</u> G — ориентированный граф, $g\mapsto |g|$ — отображение его вершин в целые числа. Если для любого ребра g_1g_2 выполняется $|g_2|=|g_1|+1$, то G называется градуированным графом.

<u>Опр:</u> Градуированный граф G называется <u>модулярным</u>, если для любых двух вершин g_1, g_2 множества $\{g \mid gg_1, gg_2 \in E(G)\}$ и $\{g \mid g_1g, g_2g \in E(G)\}$ либо оба пусты, либо каждое состоит из одной вершины.

<u>Опр:</u> Граф G называется <u>Y-графом</u>, если он модулярен и для каждой вершины количество последователей на один больше, чем предков.

<u>Опр:</u> Косая диаграмма — выпуклое конечное подмножество решетки \mathbb{Z}^2 с градуировкой |(x,y)|=x+y. Внимание! Тут подразумевается другое понятие выпуклости, которое можно воспринимать так: косая диаграмма должна являться объединением клеток 1×1 .

//Далее косая диаграмма всегда обозначается S

Опр: Верхняя и нижняя границы косой диаграммы S определяются формулами:

$$\partial_{+}(S) = \{(x, y) \in S : (x, y + 1) \land (x + 1, y) \land (x + 1, y + 1) \notin S\}$$

$$\partial_{-}(S) = \{(x, y) \in S : (x, y - 1) \land (x - 1, y) \land (x - 1, y - 1) \notin S\}$$

Основные примеры графов, которые рассматривались в докладе:

1. Граф Юнга У

Вершины — диаграммы Юнга.

Последовательности $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ соответствует диаграмма Юнга, у которой n строк, в i-ой строке λ_i клеток, клетки выравнены по левой стороне. Градуировка — количество клеток. Предки — диаграммы Юнга, которые могут быть получены удалением одной клетки.

2. Граф Юнга-Фибоначчи УГ

Вершины — конечные слова в алфавите $\{1,2\}$. Градуировка — сумма цифр. Слову g предшествуют слова, которые получаются из g удалением первой единицы, а также все слова, которые получаются заменой любой двойки, состоящей перед первой единицей, на 1.

<u>Лемма:</u> Графы У и У*F* являются *Y*-графами.

<u>Опр:</u> <u>Ростом</u> будем называть отображение $grow: T \to G$ одного градуированного графа в другой такой, что:

$$t_1t_2 \in E(T) \lor t_1 = t_2 \Rightarrow grow(t_1)grow(t_2) \in E(G) \lor grow(t_1) = grow(t_2)$$

Такое отображение может склеивать две связанные вершины в одну.

<u>Опр:</u> <u>Обобщенная перестановка</u> σ — это конечное множество клеток диаграммы S (никакие две из них не лежат в одной строке или столбце).

Обычный RSK устанавливает соответствие между множествами двустрочных лексикографических упорядоченных массивов и парами таблиц Юнга (или другой вариант формулировки: RSK связывает с любой перестановкой пару путей в графе Юнга). Обобщенный RSK верен не только для графа Юнга, но и для любого модулярного графа. Его связь с обычным RSK: обобщенный можно конкретизировать для графа Юнга и получить классическое соответствие.

Сейчас будет очень кратко сформулировано обобщенное RSK-соответствие для модулярных графов, ибо для того, чтобы сформулировать его хоть немного подробнее, потребуется в два раза больше определений (3). В целом, я надеюсь, что Гиршу хватит только теоремы ниже, ибо и так достаточно сложно вышло.

Теорема (Обобщенное RSK-соответствие для модулярного графа G):

Пусть S – косая диаграмма. Тогда обобщенное RSK-соответствие – это сквозное отображение, сопоставляющее произвольному росту $\partial_+(S) \to G$ обобщенную перестановку.

<u>Опр:</u> Пусть S – косая диаграмма. Тогда рост $grow: S \to G$ называется двумерным.

<u>Опр:</u> Двумерный рост $M: S \to \mathbb{Z}$ называется <u>полумодулярным</u>, если значения $m_{00}, m_{10}, m_{01}, m_{01}$, которые он принимает в вершинах произвольной клетки диаграммы S, связаны неравенством $m_{00}+m_{11}\geq m_{01}+m_{10}$.

<u>Опр:</u> Если $grow: T \to G$ – рост, то отображение $t \mapsto |grow(t)|$ является ростом $T \to \mathbb{Z}$, называется модулем роста grow и обозначается |grow|.

Теорема (Обобщенное RSK-соответствие для Y-графа G):

Пусть G является Y-графом, S – косая диаграмма. Тогда существует биективное соответствие, сопоставляющее каждому росту $grow^+: \partial_+(S) \to G$ пару $(grow^-, M)$, состоящую из роста $grow^-: \partial_-(S) \to G$ и полумодулярного роста $M: S \to \mathbb{Z}$, сужение которого на $\partial_-(S)$ совпадает с $|grow^-|$.

Теорема (если Вы устали читать, а Вы устали, то на нее точно можно забить):

Пусть диаграмма S имеет вид:

(Рядом с каждым отрезком указана его длина).

Количество неориентированных замкнутых путей в Y-графе G, начинающихся в нуле графа и имеющих следующую структуру: a_1 ребер "вверх" (в направлении ориентации графа G; напомню, что G ориентированный граф), затем a_2 ребер "вниз" (против ориентации графа), далее a_3 ребер "вверх" и т.д. равно числу n-клеточных перестановок, состоящих из клеток диаграммы S.