Relatório – Classificação com Rede Neural Artificial

1. O que foi feito e como foi feito

O presente experimento teve como objetivo construir e treinar uma Rede Neural Artificial (RNA) para classificar amostras com base em um conjunto de dados extraído de uma planilha do Excel.

Etapas do processo:

- Carregamento e tratamento dos dados
 - o **Bibliotecas usadas:** pandas, numpy
 - A base de dados foi carregada a partir de um arquivo .xlsx usando a biblioteca pandas.
 - Uma fatia da base foi selecionada (linhas 8 a 107, colunas 5 a 11 para atributos e coluna 12 para o rótulo).
 - Os rótulos foram convertidos para valores binários com numpy.
- Divisão dos dados em treino e teste
 - o Biblioteca usada: sklearn.model selection
 - o A base foi dividida em 60 amostras para treino e 40 para teste.
 - Foi utilizado train_test_split com o parâmetro stratify para manter o balanceamento das classes.
- Normalização (padronização)
 - Biblioteca usada: sklearn.preprocessing
 - Os dados foram padronizados com StandardScaler para garantir que todas as variáveis de entrada tivessem média 0 e desvio padrão 1.
- Criação da Rede Neural
 - Biblioteca usada: tensorflow.keras
 - o A rede foi construída com Sequential() e três camadas:
 - Camada densa com 16 neurônios e ativação ReLU
 - Camada intermediária com 8 neurônios e ativação ReLU
 - Camada de saída com 1 neurônio e ativação sigmoid
 - A compilação utilizou o otimizador Adam, função de perda binary_crossentropy e métrica accuracy.

• Treinamento do modelo

- o Biblioteca usada: tensorflow.keras
- A RNA foi treinada por 200 épocas com batch_size = 8 usando o método .fit() com dados de validação.

Avaliação do modelo

- o **Biblioteca usada:** tensorflow.keras
- Após o treinamento, a RNA foi avaliada no conjunto de teste com .evaluate() para obter a acurácia final.

Visualização da curva de aprendizado

- o Bibliotecas usadas: matplotlib.pyplot, time
- o Um gráfico foi gerado com a acurácia por época (treino e validação).
- A acurácia final foi impressa sobre o gráfico e também exibida no terminal antes da janela do gráfico.

2. Resultados obtidos

Foram realizados múltiplos treinamentos da rede neural com a mesma estrutura, mas sujeitos à aleatoriedade do processo de inicialização e divisão dos dados. Abaixo estão os resultados de acurácia final no conjunto de teste, registrados ao longo das execuções:

Execução Acurácia (%)

1	90.00
1	90.00

2 92.50

3 90.00

4 92.50

5 95.00

6 90.00

Média e consistência:

• Média de acurácia:

 $(90+92.5+90+92.5+95+90) \div 6 = 91.67$

Desempenho consistente:

As variações foram pequenas, indicando que o modelo apresenta estabilidade e boa capacidade de generalização.

Conclusão

A RNA implementada mostrou-se eficaz para o problema proposto, atingindo **uma acurácia média de aproximadamente 91,67%**, com picos de até **95%**. A arquitetura utilizada é adequada, e o uso de normalização e divisão estratificada contribuiu para os bons resultados.