中国矿业大学 2017-2018 学年第 1 学期

《 高等数学 A (1)》试卷 (A) 卷答案

考试时间: 100 分钟

考试方式: 闭卷

学院_		班级	姓名_	学号	annegeri yan birayat ganrashki nashi qarash
	题号			 四	总分
	得分				
	阅卷人				

一、填空(每题4分,共20分)

$$1.极限 \lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{\ln(1+x)} = \underline{\hspace{1cm}}.$$

2.当
$$a =$$
 时, $f(x) = \begin{cases} (1 + \frac{x}{a})^{\frac{1}{x}} & x \neq 0 \\ e^2 & x = 0 \end{cases}$ 在 $x = 0$ 处连续.

3. 己知
$$y = \sin x$$
,则 $y^{(n)} =$

4. 设
$$f(x) = \begin{cases} x^2 & x \ge 1 \\ kx - 1 & x < 1 \end{cases}$$
, 如果 $f'(1)$ 存在,则 $k =$ ______.

5. 设
$$r = \theta e^{\theta} (1 + \ln \theta)$$
,则 $dr =$ ______

二、单项选择题(每题只有一个正确答案. 每题 4 分, 共 20 分)

(A) 3; (B) 4; (C) 0; (D)
$$\frac{4}{3}$$
.

2. 设
$$f(x) = \frac{4x^2 + 3}{x - 1} + ax + b$$
, 若 $\lim_{x \to \infty} f(x) = 0$, 则 a , b 的值用数组(a , b)表示为()

3. 不能导出y = f(x)在 x_0 处连续的极限式是()

(A)
$$\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0;$$
 (B) $\lim_{x \to x_0} f(x) = f(x_0);$

(B)
$$\lim_{x \to x_0} f(x) = f(x_0);$$

(C)
$$\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0 - \Delta x)] = 0$$
;

(C)
$$\lim_{\Delta x \to 0} \left[f(x_0 + \Delta x) - f(x_0 - \Delta x) \right] = 0;$$
 (D)
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 74.

4. 过点 $M_0(2,0)$ 引曲线 $y=3-x^2$ 的切线中的一条的方程是(

$$(A)y = -4(x-2)$$
;

$$(B)2x+y=4;$$

$$(C)y = 2x - 4$$
;

$$(D)y = -(x-2)$$
.

- 5. 设 $\lim_{n\to\infty} a_n$ 不存在, $\lim_{n\to\infty} b_n$ 存在,则(

 - (A) $\lim_{n\to\infty} a_n^2$ 必不存在; (B) $\lim_{n\to\infty} a_n b_n$ 必不存在;
 - (C) $\lim_{n\to\infty} (a_n + b_n)$ 必不存在; (D) $\lim_{n\to\infty} |a_n|$ 必不存在.
- 三、计算题(每题9分,共54分)

2. 设函数 y = y(x) 由方程 $e^{y} + xy = e$ 所确定, 求 v'(0).

3. 设
$$\begin{cases} x = \sin^2 t + 1 \\ y = \tan^2 t \end{cases}$$
确定了函数 $y = y(x)$, 求 $\frac{d^2 y}{dx^2}$.

4. 求极限 $\lim_{t\to x} (\frac{\sin t}{\sin x})^{\frac{x}{\sin t-\sin x}}$,设此极限为函数 f(x),求 f(x) 的间断点,并指出其类型.

- 5. 设数列 $\{a_n\}$ 满足: $a_1 > -2$, $a_{n+1} = \sqrt{a_n + 2}$.
- (1) 证明 $|a_{n+1}-2| \leq \frac{1}{2}|a_n-2|$; (2) 求 $\lim_{n\to\infty} a_n$.

6. 设 $y = \arctan[f(f(e^x))] \cdot f(x)$, f(u) 为可导函数, 求 y'(x).

四、证明题(本题 6 分)设对任意 x,y $(xy \neq 0)$ 有 f(xy) = f(x) + f(y),且在 x = 1 点处 f'(1) = a 存在,试证:当 $x \neq 0$ 时, $f'(x) = \frac{a}{x}$.