Calculus I Intervals of increase and concavity, part 2

Todor Milev

2019

Sketch the curve
$$y = \frac{2x^2}{x^2 - 1}$$
.

Domain

The domain of the function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.

Sketch the curve
$$y = \frac{2x^2}{x^2 - 1}$$
.

Intercepts

- y-intercept: f(0) = 0.
- x-intercept: f(x) = 0 when x = 0.
- The only intercept is (0,0).

Sketch the curve
$$y = \frac{2x^2}{x^2-1}$$
.

Symmetry

$$f(-x) = \frac{2(-x)^2}{(-x)^2 - 1} = \frac{2x^2}{x^2 - 1} = f(x)$$

Therefore *f* is even.

Sketch the curve
$$y = \frac{2x^2}{x^2-1}$$
.

Asymptotes

$$\lim_{x \to \pm \infty} \frac{2x^2}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{2}{1 - 1/x^2} = 2$$

y = 2 is a horizontal asymptote.

$$\lim_{x \to 1^{+}} \frac{2x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to 1^{-}} \frac{2x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to -1^{+}} \frac{2x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to -1^{-}} \frac{2x^{2}}{x^{2} - 1} = \infty$$

 $x = \pm 1$ are vertical asymptotes.

Sketch the curve $y = \frac{2x^2}{y^2 - 1}$.

Interval	I/D	Concavity
$(-\infty, -1)$	I	
(-1,0)	I	
(0,1)	D	
$(1,\infty)$	D	

Intervals of increase or decrease

$$f'(x) = \frac{(x^2 - 1)(4x) - 2x^2(2x)}{(x^2 - 1)^2}$$
$$= \frac{-4x}{(x^2 - 1)^2}$$

	-4x	$(x^2-1)^2$	f'
$(-\infty, -1)$	+	+	+
(-1,0)	+	+	+
(0,1)	_	+	_
$(1,\infty)$	_	+	_

Sketch the curve $y = \frac{2x^2}{x^2 - 1}$.

Interval	I/D	Concavity
$(-\infty, -1)$	I	
(-1,0)	I	
(0,1)	D	
$(1,\infty)$	D	

Local maxima and minima

	-4x	$(x^2-1)^2$	f'
$(-\infty, -1)$	+	+	+
(-1,0)	+	+	+
(0,1)	_	+	_
$(1,\infty)$	_	+	_

- f' changes sign from + to at 0.
- Therefore (0,0) is a local maximum.

Sketch the curve $y = \frac{2x^2}{x^2 - 1}$.

Interval	I/D	Concavity
$(-\infty, -1)$	I	up
(-1,0)	I	down
(0,1)	D	down
$(1,\infty)$	D	up

Oncavity and points of inflection f''(x)

$$= \frac{-4(x^2 - 1)^2 + 4x \cdot 2(x^2 - 1)2x}{(x^2 - 1)^4}$$
$$= \frac{12x^2 + 4}{(x^2 - 1)^3}$$

No points of inflection because ± 1 are not in the domain of f.