

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$		$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_{1}^{#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$\omega_{2^{-}}^{\#1}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	<u>5</u> 2	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_{2+}^{\#1} +^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

	Massive particle		
? $J^P = 2^- $?	Pole residue:	$-\frac{1}{r_1} > 0$	
$J^2 \equiv 2$	Polarisations:	5	
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
	Parity:	Odd	

e	71.
$-\frac{1}{r_1} > 0$	× 0 &&
5	χt_1
$-\frac{t_1}{2r_1} > 0$	V 0
2	

(No massless particles)