Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики, Физика-механический институт

«Прикладная математика и информатика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «Интервальный анализ»

Выполнил студент группы 5030102/80201

Войнова Алёна

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	1100	становка задачи	2
	1.1	Внешнее оценивание множества решений ИСЛАУ в І В	2
	1.2	Внешнее оценивание множества решений нелинейных задач в \mathbb{IR}	2
2	Teo	рия	2
	2.1	Внешнее множество решений	2
	2.2	Метод Кравчика	3
	2.3	Выбор начального приближения	3
3	Pea	видация	3
4	Рез	ультаты	4
	4.1	Спектральный радиус $ I-\Lambda A $	4
	4.2	Оценка бруса начального положения	4
	4.3	Результаты применения метода Кравчика для задачи (1)	4
	4.4	Результаты применения метода Кравчика для задачи (2)	7
5	Обо	суждение	10
5		суждение иложения	10 10
6	Прі		
6	Прі	иложения сок иллюстраций Множество Ξ _{uni}	10
6	При Пис 1 2	иложения СОК ИЛЛЮСТРАЦИЙ Множество Ξ _{uni}	10 4 5
6	При 1 2 3	ИЛОЖЕНИЯ СОК ИЛЛЮСТРАЦИЙ Множество Ξ _{uni}	10 4 5 6
6	При 1 2 3 4	иложения СОК ИЛЛЮСТРАЦИЙ Множество Ξ _{uni}	10 4 5 6 6
6	При 1 2 3 4 5	иложения СОК ИЛЛЮСТРАЦИЙ Множество Ξ_{uni}	10 4 5 6 6 7
6	При 1 2 3 4 5 6	иложения СОК ИЛЛЮСТРАЦИЙ Множество Ξ_{uni}	10 4 5 6 6 7 8
6	При 1 2 3 4 5	иложения СОК ИЛЛЮСТРАЦИЙ Множество Ξ_{uni}	10 4 5 6 6 7

1 Постановка задачи

1.1 Внешнее оценивание множества решений ИСЛАУ в \mathbb{R}

Дана ИСЛАУ

$$\begin{cases} x_1 + x_2 = [1, 4] \\ x_1 - [2, 4] \cdot x_2 = 0 \end{cases}$$
 (1)

Необходимо произвести оценку внешнего множества решений с помощью метода Кравчика и:

- Определить спектральный радиус матрицы
- Провести оценку начального бруса решения
- Проиллюстрировать положение брусов при итерациях
- Проиллюстрировать радиусы брусов при итерациях
- Проиллюстрировать расстояние центров брусов при итерациях до центра последнего бруса

1.2 Внешнее оценивание множества решений нелинейных задач в \mathbb{IR}

Дана нелинейная система уравнений

$$\begin{cases} x_1 + 2x_2 = [1, 4] \\ \frac{x_1}{x_2} = [2, 4] \end{cases}$$
 (2)

Необходимо произвести оценку внешнего множества решений с помощью метода Кравчика и:

- Проиллюстрировать положение брусов при итерациях
- Проиллюстрировать радиусы брусов при итерациях
- Проиллюстрировать расстояние центров брусов при итерациях до центра последнего бруса

2 Теория

2.1 Внешнее множество решений

Под внешним множеством решений понимается объединенное множество решений, образованное решениями всех точечных систем F(a,x)=b

$$\Xi_{\text{uni}} = \{ x \in \mathbb{R}^n | \exists a \in a, \exists b \in b : F(a, x) = b \}$$

2.2 Метод Кравчика

Метод Кравчика - это итерационная процедура уточнения двусторонней границы решений системы п уравнений с п неизвестными F(x) = 0, $x \in X \subset IR^n$, определенной на некотором брусе X. Данный метод позволяет не только произвести оценку, но и убедиться, что решений не существует.

Отображение $\mathcal{K}(X,\overline{x}) = \overline{x} - \Lambda \cdot F(\overline{x}) - (I - \Lambda \cdot L) \cdot (X - \overline{x})$ называется оператором Кравчика на X относительно точки \overline{x} . Если $\rho(I - \Lambda \cdot L) < 1$, то по теореме Шрёдера у отображения существует единственная неподвижная точка, являющаяся решением рассматриваемой системы уравнений.

Метод Кравчика заключается в построении последовательности $\{X^k\}_{k=0}^\infty$ по формуле

$$X^{k+1} = X^k \cap \mathcal{K}(X^k, \overline{x}^k)$$

Начальный брус, точки \overline{x} , предобуславливатель Λ и матрица L выбираются исходя из эмпирических соображений для каждой конкретной системы уравнений. Для решения задачи (2) будут использованы следующие формулы:

$$X^{0} = \begin{pmatrix} [0.1, 5] \\ [0.1, 5] \end{pmatrix}, \ \overline{x}^{k} = \text{mid } X^{k}, \ \Lambda = \Lambda(x) = (\text{mid } J(x))^{-1}, \ L = L(x) = J(x)$$

где J(x) - якобиан.

Частный случай метода Кравчика для ИСЛАУ выглядит следующим образом:

$$x^{k+1} = (\Lambda \cdot b + (I - \Lambda \cdot A) \cdot x^k) \cap x^k,$$

где A - матрица ИСЛАУ, b - вектор правой части. Для решения задачи (1) предобуславливатель будет выбран как $\Lambda = (\text{mid } A)^{-1}$.

2.3 Выбор начального приближения

Для систем общего вида выбор начального бруса - отдельная задача, которая не поддается обобщению. Тем не менее, в случае ИСЛАУ справедливо следующее утверждение:

$$\eta = ||I - \Lambda \cdot A||_{\infty} < 1 \Rightarrow \Xi_{\text{uni}} \subset \begin{pmatrix} [-\theta, \, \theta] \\ \cdots \\ [-\theta, \, \theta] \end{pmatrix}, \; \theta = \frac{||\Lambda \cdot b||_{\infty}}{1 - \eta}$$

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств в среде разработки Matlab. Использованы библиотеки IntLab для реализации вычислений интервальной арифметики. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Спектральный радиус $|I - \Lambda A|$

Для того, чтобы итерационный процесс сходился, необходимо, чтобы спектральный радиус матрицы $|I-\Lambda A|$ был меньше 1.

$$\Lambda \approx \begin{pmatrix} 0.6 & 0.4 \\ 0.2 & -0.2 \end{pmatrix}$$
$$|I - \Lambda A| \approx \begin{pmatrix} 0 & 0.4001 \\ 0 & -0.2001 \end{pmatrix}$$
$$\rho(|I - \Lambda A|) \approx 0.2 < 1$$

Итерационный процесс сходящийся, можно пользоваться методом Кравчика.

4.2 Оценка бруса начального положения

 $||I-\Lambda\cdot A||_{\infty}\approx 0.4001<1$. Следовательно, можно воспользоваться описанным выше способом выбора X^0 .

$$\theta = \frac{||\Lambda \cdot b||_{\infty}}{1 - \eta} \approx 4 \Rightarrow X^0 = \begin{pmatrix} [-4, 4] \\ [-4, 4] \end{pmatrix}$$

4.3 Результаты применения метода Кравчика для задачи (1)

Рис. 1: Множество $\Xi_{\rm uni}$

Результатом выполнения метода Кравчика являются следующие брусы:

Рис. 2: Иллюстрация работы метода Кравчика для ИСЛАУ

Рис. 3: График радиусов брусов для ИСЛАУ

Рис. 4: График сходимости брусов для ИСЛАУ

4.4 Результаты применения метода Кравчика для задачи (2)

Рис. 5: Множество $\Xi_{\rm uni}$

Результатом выполнения метода Кравчика являются следующие брусы:

Рис. 6: Иллюстрация работы метода Кравчика для нелинейной системы

Рис. 7: График радиусов брусов для нелинейной системы

Рис. 8: График сходимости брусов для нелинейной системы

5 Обсуждение

- Метод Кравчика для ИСЛАУ из грубой оценки всего за 2-4 итерации привел к брусу, который мало отличается от последнего в построенной последовательности => метод показал хорошую сходимость. Таже По графикам 2 6 видно, что ИСЛАУ дала намного более точное решение.
- Из графиков 2, 6 понятно, что на последних итерациях уточняется лишь одна грань бруса => процесс не сойдется к интервальной оболочке множества
- При решении нелинейной задачи была использована начальная оценка так, чтобы начальный брус лежал в первом ортанте, чтобы избежать деление на 0 в вычислении якобиана. Наблюдается более медленная сходимость, которая замедляется с каждой итерацией. Данную заономерность можно объяснить тем, что движение центра брусов, которое соответствует внешней оценке по первой координате и небольшому изменению по второй координате - минимально и не прекращается даже спустя большое число итераций, в отличие от линейного случая.

6 Приложения

Код программы на GitHub, URL: https://github.com/pikabol88/IntervalAnalysis/tree/main/lab2