Decomposing the Dashboard Example for a Distributed Implementation

Jason Shamberger

EE249 Fall 1999

Mentor: Dr. Alberto Ferrari

Outline:

- Motivation for a distributed system
- CAN specification
- Behavioral modeling
- Mapping to architecture
- Simulation and results
- Synthesis
- Conclusion

Goal of Project

- Evaluate POLIS for designing a distributed real-time system
 - By using POLIS, we can explore different network architectures and then move directly to synthesis
- Motivation: As more electronics are in modern cars, need to use network to share communications

Controller Area Network (CAN)

- Used for communication with real-time constraints
- Small amounts of data up to 8 bytes of data per packet
- Total packet size up to 120 bits
- Higher priority device always transmits first

Original design of dashboard

New dashboard design

Architecture Proposed

Communication Refinement

Architecture Mapping

Modeling in POLIS

- CAN controller only stores one packet from each sender
- Give different priorities to different types of data
 - High priority: belt alarm, fuel alarm, water alarm
 - Low priority: speedometer, tachometer, odometer

Modeling in POLIS

- Assume the CAN bus already has traffic on it
- Traffic distribution:
 - High frequency small data (1 packet) at regular intervals
 - High frequency small data (1 packet) with Poisson distribution
 - Low frequency, larger data (multiple packets)

Modeling in POLIS

- Ensure that traffic + dashboard messages do not exceed total bandwidth
- Place the dashboard system on the same CAN bus and see what priority is necessary for dashboard to function satisfactorily

Results of Traffic Modeling

- Assume small delay in data is ok, goal is to avoid losing packets
- Measured number of overwrites in network controller - lost data

Initial Priorities
Engine Speed
Highest Priority

75% Bandwidth	90% Bandwidth
38 overwrites	341 overwrites
0 overwrites	16 overwrites

Synthesis

- For simulation, network interface is modeled by a CFSM which muxes inputs onto network channel
- Replace mux with code to call APIs of CAN controller

Conclusion

- POLIS can be used to model a distributed system
- The network can be simulated and design decisions made
- Move directly on to synthesis (hopefully)