Отчет о выполненой лабораторной работе 1.1.1

Антон Хмельницкий, Б01-306

September 19, 2023

Измерение удельного сопротивления нихромовой проволоки

1 Аннотация

В данной лабораторной работе измеряется удельное сопротивление нихромовой проволки. Для этого используются методы:

- 1. Определение углового коэффициента наклонной в зависимости U(I) напряжения от тока, измеряемых с помощью цифрового амперметра и аналогового вольтметра.
- 2. Измерение сопротивления с помощью моста постоянного тока.

С помощью линейки, штангенциркуля и микрометра измеряются геометрические размеры проволоки. Отдельное внимание уделяется случайным и систематическим погрешностям в измерениях.

2 Теоретические сведения

Удельное сопротивление материала проволоки круглого сечения изготовленной из однородного материала и имеющей постоянную толщину определяется по формуле:

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4}$$

где $R_{\rm np}$ -сопротивление измеряемого отрезка проволоки, l - его длина, d - диаметр. Поэтому измеряем длину, диаметр и электрическое сопротивление проволоки.

Диаметр у проволоки не постоянный поэтому нужно учесть случайную погрешность.

По закону Ома: $R_{\rm np}=\frac{V_a}{I_a}$, где V_a и I_a - показания вольтметра и амперметра. Для измерения используем схему а) из учебника "Лабораторный практикум по общей физике т.1 Гладов" - рис.1, т.к. погрешность в измерениях там меньше чем в схеме б) (расчет будет в соответствующем параграфе).Получаем формулы для расчета: $R_{\rm np1}=\frac{V_a}{I_a}=R_{\rm np}\frac{R_v}{R_{\rm np}+R_v}$.

Преобразовываем: $R_{\rm np} = \frac{R_{\rm np1}}{1 - (R_{\rm np1}/R_v)} \approx R_{\rm np1} (1 + \frac{R_{\rm np1}}{R_v})$ (Используется приближение, т.к. сопротивление вольтметра $R_v \gg R_{\rm np}, R_{\rm np1}$).

График зависимости $V_a(I_a)$ должен представлять прямую, угловой коэффициент которой и будет равен R_1 .

3 Оборудование и системные погрешности

- Линейка: $\sigma_{\text{лин}} = \pm 0.5$ мм (по цене деления).
- Штангенциркуль: $\sigma_{\text{штан}} = \pm 0.1$ мм (маркировка производителя).
- Микрометр: $\sigma_{\text{микр}} = \pm 0.01$ мм (маркировка производителя).

	Вольтметр	Амперметр
Система	Магнитоэлектрическая	Электромагнитная
Класс точности	0.5	0.5
Погрешность измерений	0.2%(по маркировке)	$\sigma_A = \pm (0.002x + 0.02), \mathrm{x}$ - величина измерения.
Число делений шкалы n	150 на 600 мВ	цифровой дисплей, 5 ед. на 000.00 мА
Внутреннее сопротивление прибора	4 кОм	1.2 Ом

Сравним погрешности для а) и б):

для a): $R_{\text{пр}}/R_V = 10/4000 = 0.0025$, т.е. 0.25%.

для б): $R_A/R_{\rm np} = 1.2/10 = 0.12$, т.е. 12%.

Значит схема а) более точна с погрешностью 0.25%

Рис. 1. Схемы для измерения сопротивления при помощи амперметра и вольтметра

Рисунок 1: Схема для измерения сопротивления

Так как погрешность от половины цены деления больше чем погрешность измерений, то итоговая погрешность вольтметра будет $\sigma_V = \pm (600/150)/2 \text{MB} = \pm 2 \text{ MB}$.

Для значений амперметра от 50 мA до 300 мA погрешность будет составлять от $\sigma_A=\pm 0.06$ мA до $\sigma_A=\pm 0.6$ мA. Мост постоянного тока P4833: Класс точности - 0.1, Разрядность магазина сопротивлений - 5 ед., Множитель - $N=10^{-2}$, Погрешность $\sigma_{\rm M}=0.1\% \Rightarrow \sigma_{\rm M}=0.001$ Ом.

4 Результаты измерений и обработка данных

4.1 Измерение диаметра проволоки

		1	2	3	4	5	6	7	8	9	10
	$d_{\text{штанг}}$, мм	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
ĺ	d_{mukp} , mm	0.35	0.34	0.35	0.34	0.34	0.33	0.34	0.35	0.34	0.34

Погрешности: Для штангенциркуля в 10 замерах был результат 0.4, погрешности будут считаться для микрометра как более точного инструмента.

• Среднее значение: $\langle d \rangle = \frac{1}{n} \sum_{i=1}^n d_i = 0.342$ мм.

• Стандартное отклонение: $\sigma_{\rm d} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - \langle d \rangle)^2} = 0.0063$ мм.

• Стандартная погрешность опыта: $\sigma_{\rm cp} = \frac{\sigma_{\rm d}}{\sqrt{n}} = 0.002$ мм.

• Полная погрешность: $\sigma_{\text{полн}} = \sqrt{\sigma_{\text{ср}}^2 + \sigma_{\text{микр}}^2} = 0.0102$ мм.

Итоговые результаты:

Штангенциркуль: $d_{\text{штанг}} = 0.4 \pm 0.5$ мм.

Микрометр: $d_{\text{микр}} = 0.342 \pm 0.0102$ мм. $(\varepsilon_d = 3\%)$

4.2 Измерение сопротивления проволоки

	$l=20~\mathrm{cm}$										
$V_{\rm B1}$, мВ	0	340	240	280	560	520	480	440	320	400	360
I_{A1} , MA	0	157.8	111.13	129	260	241	223.45	204.56	148.4	185.5	166.45
						1 =	30 см				
$V_{\rm B2}$, мВ	0	560	340	240	280	320	360	400	440	520	480
$I_{\rm A2},~{ m mA}$	0	173.4	104.5	74	86.35	98.73	111	123.2	135.38	161.35	148.3
		$l=50~\mathrm{cm}$									
$V_{\rm B3}$, мВ	0	320	360	400	440	480	520	560	340	380	420
I_{A3} , мА	0	59.35	67	74.3	81.7	89.1	97.05	104.36	63.24	70.5	78.09

Результаты исследований зависимостей показаний вольтметра V_a от показаний амперметра I_a представлены на рисунке 2. С помощью метода наименьших квадратов были построены аппроксимирующие прямые $V_B = \langle R \rangle I_A$ по формуле:

$$\langle R \rangle = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

Погрешность угла наклона в аппроксимации(т.е. погрешность $\langle R \rangle$) найдем как косвенную погрешность наименьших квадратов по формуле: $\sigma_{R\text{случ}} = \sqrt{\frac{1}{n-1}(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \langle R \rangle^2)}$.

Систематическую погрешность найдем как частные производные за значения выбрав наибольшие измерения:

$$\sigma_{R_{\text{CHCT}}} = R\sqrt{\left(\frac{\sigma_{V}}{Vmax}\right)^{2} + \left(\frac{\sigma_{I}}{Imax}\right)^{2}}$$

Полную погрешность вычислим по формуле:

$$\sigma_{R$$
полн} = $\sqrt{\left(\sigma_{R$ случ}\right)^2 + \left(\sigma_{Rсист}\right)^2}

Занесем итоговые значения и погрешности в таблицу и сравним их с измерениями полученными на мосту Р4833:

l, см	$\langle R \rangle$, Ом	σ_{R случ, Ом	$\sigma_{R_{\text{СИСТ}}}$, Ом	$\sigma_{R_{\Pi O J H}},$ Ом	ε_R , %	R_{moct} , Om
20 см	2.156	0.0018	0.0092	0.0094	0.43	2.168 ± 0.001
30 см	3.240	0.0033	0.0161	0.0164	0.5	3.2538 ± 0.001
50 см	5.377	0.0039	0.0364	0.0366	0.68	5.3728 ± 0.001

Заметим, что случайная составляющая на порядок меньше чем системная, и ,сравнивая измерения с моста, видно, что расхождения со значениями с моста не больше чем $\pm 2\sigma_{R_{\text{полн}}}$.

4.3 Вычисление удельного сопротивления

Найдем удельное сопротивление нихромовой проволоки по формуле из теор. части, используя $d_{\text{микр}}$ и $\langle R \rangle$.

Заметим что относительная погрешность сопротивления $\varepsilon_R < 1\%$ и по сравнению с относительной погрешностью диаметра проволоки $\varepsilon_d = 3\%$ мало, значит можно ей пренебречь. Поэтому учитывать будем только $\sigma_{R\text{полн}}$.

Используя формулу погрешности косвенных величин:

$$\sigma_a^2 = \left(\frac{\partial f}{\partial b}\right)^2 \sigma_b^2 + \dots$$

Для зависимости удельного сопротивления получаем:

$$\sigma_{\rho}^{2} = \left(\frac{\partial \rho}{\partial d}\right)^{2} \sigma_{d}^{2} = \left(\frac{R\pi 2d}{4l}\right)^{2} \sigma_{d}^{2}$$

Итого получаем $\sigma_{\rho} \approx \frac{2\sigma_d}{d} \rho$. Теперь занесем данные в таблицу и затем усредним результаты:

1, см	$\rho, 10^{-6} \text{ Om} \cdot \text{M}$
20	0.9898 ± 0.0590
30	0.9916 ± 0.0592
50	0.9879 ± 0.0589

Берем среднее за 3 эксперимента $\langle \rho \rangle = (0.99 \pm 0.059) \cdot 10^{-6} \ {\rm Om} \cdot {\rm m.} \ (\varepsilon_{\rho} = 5.9\%)$

4.4 Выводы

В процессе работы было рассчитано удельное сопротивление нихромовой проволоки с точностью $\sim 6\%$. Табличное значение удельного сопротивления нихромового сплава $\rho_{\text{табл}}$ лежит в пределах от 0.97 до $1.14 \cdot 10^{-6}\,\text{Om} \cdot \text{m}$. Значит, полученный результат $\rho_{\text{итог}} = (0.99 \pm 0.059) \cdot 10^{-6}\,\text{Om} \cdot \text{m}$. попадает в табличный диапазон.

В данной работе было уделено особое внимание погрешностям. Сравнивая их видно, что случайная погрешность обычно на порядок меньше чем, поэтому приходим к выводу, что основная часть погрешности возникает из-за неидеальности приборов, в данном случае погрешность микрометра в 6 раз больше погрешности вольтметра и амперметра и системная погрешность микрометра больше случайной в 5 раз. Поэтому учитывалась только погрешность микрометра и именно она как видно в итоге оказала наибольшее влияние на погрешность удельного сопротивления.

Рисунок 2: График измерений для зависимости $V_a(I_a)$ для проволок разной длины с аппроксимацией у = kx. Погрешности измерений равняются инструментальным погрешностям: $\sigma_V=\pm 2$ мВ и $\sigma_A=\pm 0.6$ мА. Т.к. эти величины на 2 порядка меньше измеряемых, то они не будут указаны на графике из-за потери наглядности и информативности.