Hydrothermal systems

- Where hydrothermal vent systems exist
- How fluid flows through vents
- Reactions that take place during hydrothermal activity
- Tracing hydrothermal activity using He

Trace element resource - eGeotraces

https://www.egeotraces.org/

Dissolved Cobalt, Atlantic cruises

Basin-scale videos available at website, or individual section plots / data

Dissolved Fe, Pacific

What sources do you notice?

Ridge Crest / arc systems and (known) hydrothermal vents

v2024

- I. Seawater flows into fractured basalt
 - 2C, oxygenated

- I. Seawater flows into fractured basalt
 - 2C, oxygenated
- 2. Water percolates into crust, some heating

- I. Seawater flows into fractured basalt
 - 2C, oxygenated
- 2. Water percolates into crust, some heating
- 3. Strong heating, dissolving of volatiles
 - SO₂ (will combine with water to make H₂SO₄), HCl, HF - all strong acids, CO₂ (H₂CO₃)
 - Will mobilize rock material (metal concentrations increase)
 - O_2 decreases to anoxia (reduced material comes out and oxidized (Fe²⁺ + $O_2 \rightarrow$ Fe³⁺)

- I. Seawater flows into fractured basalt
 - 2C, oxygenated
- 2. Water percolates into crust, some heating
- 3. Strong heating, dissolving of volatiles
 - SO₂ (will combine with water to make H₂SO₄), HCl, HF - all strong acids, CO₂ (H₂CO₃)
 - Will mobilize rock material (metal concentrations increase)
 - O_2 decreases to anoxia (reduced material comes out and oxidized (Fe²⁺ + $O_2 \rightarrow$ Fe³⁺)
- 4. Buoyant hydrothermal plume
 - Rapid entrainment / dilution until neutrally buoyant
 - Huge redox gradients

- I. Seawater flows into fractured basalt
 - 2C, oxygenated
- 2. Water percolates into crust, some heating
- 3. Strong heating, dissolving of volatiles
 - SO₂ (will combine with water to make H₂SO₄), HCl, HF - all strong acids, CO₂ (H₂CO₃)
 - Will mobilize rock material (metal concentrations increase)
 - O_2 decreases to anoxia (reduced material comes out and oxidized (Fe²⁺ + $O_2 \rightarrow$ Fe³⁺)
- 4. Buoyant hydrothermal plume
 - Rapid entrainment / dilution until neutrally buoyant
 - Huge redox gradients
- 5. Precipitation of metaliferous sediments

v2024

Hydrothermal vent, East Pacific Rise

Black smoker reactions

High temperature reactions:

$$Mg^{2+} + SO_4^{2-} \rightarrow MgSO_{4(s)}$$

(53mM) (28 mM) – sulfate runs out first
~25mM Mg²⁺ left

$$Mg^{2+} + CaSiO_3 \rightarrow Ca^{2+} + MgSiO_{3(s)}$$

Mg²⁺ consumed to ~ 0 mM

$$2K^{+} + CaSiO_{3} \rightarrow Ca^{2+} + K_{2}SiO_{3(s)}$$

Both of these salts are normally very stable, so these are major sinks of these ions in seawater. Also major source of Ca²⁺

■ Production of H⁺ can also create acidic waters

Mackenzie and Garrels 1966 ... from Day 2

Major ion		SO ₄ ²⁻	Ca ²⁺	Cl-	Na ⁺	Mg^{2+}	K^{+}	H ₄ SiO ₄	HCO ₃
Mass removed in $10^8 y (10^{18} mol)$		429	1238	821	861	477	143	589	3573
Mineral formed	Moles Removed	Amount of ion remaining after reaction							
Pyrite, FeS ₂	215ª	214	1238	821	861	477	143	589	3573
Anhydrite, CaSO ₄	214 ^a	0	1024	821	861	477	143	589	3573
Calcium Carb., CaCO ₃	1024		0	821	861	477	143	589	1525
Sodium Chloride, NaCl	821			0	40	477	143	589	1525
Opal, SiO ₂	630 ^b				40	477	143	0	1525

^a Assume half of the SO₄ is removed by pyrite formation and half by CaSO₄ formation

(b) Formation reactions:

Pyrite:
$$SO_4^{2-} + 2CH_2O(s) \rightleftarrows S^{2-} + 2CO_2 + H_2O \text{ followed by } Fe^{2+} + S^{2-} + S^0 \rightleftarrows FeS_2$$

Anhydrite:
$$Ca^{2+} + SO_4^{2-} \rightleftarrows CaSO_4(s)$$

Calcium Carbonate:
$$Ca^{2+} + 2HCO_3^- \rightleftharpoons CaCO_3(s) + CO_2 + H_2O$$

Sodium Chloride:
$$Na^+ + Cl^- \rightleftharpoons NaCl(s)$$

Opal:
$$H_4SiO_4 \rightleftharpoons SiO_2(s) + 2H_2O$$

^b The biogenic opal (SiO₂) burial is taken from Tregeur and DeLaRocha, 2013

How do you sample hydrothermal waters?

How do you know if you're actually measuring the correct water?

How do you sample hydrothermal waters?

Vent composition / flow can change over time

Von Damm (2000) and German & Seyfried, 2014

Elemental impacts from hydrothermal vents

Enriched with respect to seawater on a CI-normalized basis
Depleted with respect to seawater on a CI-normalized basis
Enriched and depleted

German & Seyfried, 2014

How do you sample hydrothermal waters?

How do you know if you're actually measuring the correct water?

Reactions as hydrothermal waters mix

What if your measurements follow a different shape?

Reactions as hydrothermal waters mix

What if your measurements follow a different shape?

White smokers: Off axis

- If you are too far from the magma source, may still have high heat but no volatiles
- $H_2O + H^+ + MgSilicates$ or FeSilicates (olivine)
 - Consumes acid, so pH rises (becomes more basic)
 - Can form Silicate, CaSO₄, or CaCO₃
 - Remember that when the pH is very high, most of DIC is CO₃²⁻ → so Carbonates can precipitate

White smokers: Off axis

Lost City

- If you are too far from the magma source, may still have high heat but no volatiles
- $H_2O + H^+ + MgSilicates$ or FeSilicates (olivine)
 - Consumes acid, so pH rises (becomes more basic)
 - Can form Silicate, CaSO₄, or CaCO₃
 - Remember that when the pH is very high, most of DIC is CO₃²⁻ → so Carbonates can precipitate

How do we know where hydrothermal vents exist?

- Helium in the atmosphere 5 ppm
 - Two isotopes ³He & ⁴He

Some small fraction reaches escape velocity, leaves the atmosphere

- ⁴He generated through radioactive decay in the crust
 - ^{238}U → $^{206}Pb + 8x ^{4}He$
- ³He released from hydrothermal vents not generated by anything on earth (all ³He from formation of earth)

How do we know where hydrothermal vents exist?

 ³He released from hydrothermal vents – acts as a tracer of hydrothermal release

How much hydrothermal venting is occurring?

- Calculate an inventory of ³He in an ocean basin
- Ocean overturning (~1000 years)

$$\frac{\sum {}^{3}He}{{\tau _{ocean}}}$$
 = venting supply

~500-1000 mol ³He/yr

How much hydrothermal venting is occurring?

- Calculate an inventory of ³He in an ocean basin
- Ocean overturning (~1000 years)

$$\frac{\sum^{3}He}{\tau_{ocean}}$$
 = venting supply

~500-1000 mol ³He/yr

Can use ³He to then scale other non-conservative tracers

Ex. Hydrothermal Fe flux (J_{Fe})

$$J_{Fe,HT} = J_{3He} * Fe/^3He$$