

T tipi flip floplardan oluşan bir kaydedicinin S sinyali ile set edilmesi (tüm çıkışlarının 1 olması) isteniyor. Kullanılacak T tipi flip flopların uyarma işlevi ne olur? (Not: 1 bitlik tasarım yeterlidir, n bit için geçerli olacaktır.)

A T = 5'.q'

B = T = S.q*

C T = S.q

SR tipi flip floptan JK tipi flip flop elde etmek istersek S ucunun uyarma işlevi ne olur?

A S=J

B S=J.q

C S=J'

D S=J.q'

Aşağıdaki gibi bir sayıcıyı 3 tane T tipi flip flop kullanarak gerçekleştirmek istersek T_2 'nin uyarma işlevi ne olur? (Not: q_2 :MSB q_0 :LSB alınız. Sistemin x diye bir girişi ve z diye bir çıkışı yoktur.)

A
$$T_2 = (q_2 \oplus q_0) + q_1'$$

$$T_2 = q_1'.q_0$$

$$T_2 = q_1 \cdot q_0 \cdot q_2$$

D
$$T_2 = q_2 + q_1.q_0$$

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

١.	- 1	Tooon acecurat
	1000h	LDA #1006h
		BSR ~ 03h
		INCR
		INCR
		HLT
		PSH
		INCR
		RTS
ı		

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Bu program bellekte kaç byte yer kaplar?

Δ 11

3 0 9

C 8

D 7

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR€TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ← AR+1
T= T7* IDEC03*ADRMD2	DR.←M(AR)
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir
	sc ← o

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

T4, T5 ve T6 adımları için, ortak yol ile bağlantılı dekoderlerin girişlerine uygulanacak kontrol sinyalleri ne olmalıdır?

y3:y2:y1:y0 = (S+R):Q:Q:(Q+R) d3:d2:d1:d0 = 0:R:R:R

B y3:y2:y1:y0 = 0:R:R:(Q+R) d3:d2:d1:d0 = R:Q:Q:(Q+R)

C y3:y2:y1:y0 = S:R:R:R d3:d2:d1:d0 = Q:0:0:Q

y3:y2:y1:y0 = S:R:R:(R+S) d3:d2:d1:d0 = Q:R:R:(Q+R)

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR←TR
S= T6* IDECD3*ADRMD2	DR, ←M[AR], AR ← AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir
	sc ← 0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komut bellekte kaç byte yer kaplar?

A 2

B 4

C 0 1

D 3

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

- 1	Toopii acpeii ac
1000h	LDA #1006h
	BSR ~ 03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Programın işletimi tamamlandığında Aküdeki değer ne olur?

A 100Bh

B 100Ah

C 1008h

D 1009h

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

c ye de	1000ii degeri ata
1000h	LDA #1006h
	BSR ~03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Program bitiminde, SP hangi bellek gözünü gösterir?

A 00FCh

B 0098h

C 00FDh

D 00FEh

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR←TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ← AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir, SC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komutun opcode değeri nedir?

A 12h

B 0Ah

C 23h

D 2Ah

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

c ye de	1000ii degeri ata
1000h	LDA #1006h
	BSR ~ 03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Program bitiminde, Stack bölgesinin en üst gözünde hangi bilgi vardır?

A 1005h

B 1006h

C 1010h

D 1008h

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR€TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ← AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir, sc←o

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komutun execute (işlet) saykılında, AR'nin Load (LD) girişine uygulanacak olan kontrol sinyalleri ne olmalıdır?

A P+R+S

B P+R

C P+S

D R

)Oh	01h
11h	2Ah
12h	00h
13h	SOh
14h	2Bh
15h	00h
16h	52h
17h	10h
18h	FFh
79h	AAh
1Ah	52h
)Bh	01h
XCh	01h
Dh	03h
)Eh	B0h
0Fh	ooh
lOh	50h

1h

l2h

L3h

4h

l5h

16h

SOh

51h

52h

53h

91h

00h

50h

40h

02h

0Eh

AAh

0Fh

0Ah

FOh

		Adresleme Modu						
Komut	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli	
ADD	AC ←AC+DR	-	10h	20h	30h	40h	-	
LDA	Aküye yükle		1Ah	2Ah	3Ah	4Ah	-	
OR	Lojik OR işlemi		18h	2Bh	38h	48h	-	
STA	Aküden belleğe yaz	-	-	A0h	B0h	C0h	-	
CLR	Aküyü temizle	01h	-	-	-	-	-	
BCS	Elde biti 1 ise dallan		-	-	-	-	52h	
BRA	Şartsız dallan	-	-	-	-	-	50h	
INCR	Aküyü 1 arttır	03h	-	-	-	-	-	
LDIX	IX kaydedicisine yükle		91h	Alh	B1h	C1h	-	
HLT	Dur	0Eh	-	-	-	-	-	

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

s mod ADD komutu işletilirken *etkin adres hesaplama birimi* ngi *etkin adres* değerini hesap etmiştir?

AAOFh

0050h

0052h

01h
2Ah
00h
50h
28h
00h
52h
10h
FFh
AAh
52h
01h
01h
03h
BOh
00h
50h
91h
00h
50h
40h
02h
0Eh
AAh

OFh 0Ah F0h

		Adresleme Modu						
Komut	Açıklama	Doğal	İvedi	Direkt	Dolaylı	Indis	Gőreceli	
ADD	AC €AC+DR	-	10h	20h	30h	40h	-	
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-	
OR	Lojik OR işlemi	-	18h	28h	38h	48h	-	
STA	Aküden belleğe yaz	-	-	A0h	B0h	C0h		
CLR	Aküyü temizle	01h	-	-	-	-		
BCS	Elde biti 1 ise dallan	-	-	-	-	-	52h	
BRA	Şartsız dallan	-	-	-		-	50h	
INCR	Aküyü 1 arttır	03h	-	-	-	-	-	
LDIX	IX kaydedicisine yükle		91h	A1h	B1h	C1h		
HLT	Dur	0Eh	-	-	-	-	-	

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

eki program kaç komuttan oluşmaktadır?

17

11

		Adresleme Modu						
Komut	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli	
ADD	AC ←AC+DR	-	10h	20h	30h	40h	-	
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-	
OR	Lojik OR işlemi	-	1Bh	2Bh	3Bh	48h	-	
STA	Aküden belleğe yaz	-	-	A0h	B0h	C0h	-	
CLR	Aküyü temizle	01h	-	-	-	-	-	
BCS	Elde biti 1 ise dallan	-	-	-	-	-	52h	
BRA	Şartsız dallan		-	-	-	-	50h	
INCR	Aküyü 1 arttır	03h	-	-	-	-	-	
LDX	IX kaydedicisine yükle	-	91h	A1h	B1h	C1h	-	
HLT	Dur	0Eh	-	-	-	-	-	

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır.

Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

jin AA0Fh adresinde hangi veri vardır?

01h 2Ah 00h 50h 2Bh 00h 52h 10h FFh AAh 52h 01h 01h 03h B0h 00h

50h

91h

00h

50h 40h 02h 0Eh

AAh OFh OAh FOh

B59Ah

0001h

AAAAh

0000h

Girişin (x) 0'dan 1'e geçişini algılayan ve çıkışında (z) 1 clock saykılı boyunca 1 sinyalini üreten Moore tipi ardışık bir devrenin D tipi flip floplarla tasarlanması isteniyor. (Not: Bu problem 3 durum ile çözülebilmektedir. A başlangıç durumudur ve bu durumda çıkışı 0 alınız. Diğer durumlar da sırasıyla B ve C durumlarıdır. A durumundayken girişin 1 olması durumunda sistem B durumuna gitmektedir.)

şağıdaki 2 soruyu bu bilgilere göre yanıtlayınız.

kışın lojik ifadesi ne olur?

$$A = z = q_1 + q_0$$

$$z = q_1.q_0$$

$$D = q_1$$

00h	01h
APPLIES TO THE	2Ah
102h	ooh
103h	50h
04h	2Bh
105h	00h
06h	52h
107h	10h
08h	FFh
09h	AAh
OAh	52h
OBh	01h
0Ch	01h
ODh	03h
ЮEh	B0h
XXFh	00h
10h	50h
11h	91h
10.75	00h
13h	50h
14h	40h
15h	02h
16h	0Eh
50h	AAh

51h

152h

53h

0Fh

0Ah

F0h

		Adresleme Modu						
Komut	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli	
ADD	AC ←AC+DR		10h	20h	30h	40h	-	
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-	
OR	Lojik OR işlemi		18h	28h	38h	48h	-	
STA	Aküden belleğe yaz		-	A0h	B0h	C0h	-	
CLR	Aküyü temizle	01h	-	-	-	-	-	
BCS	Elde biti 1 ise dallan		-	-	-	-	52h	
BRA	Şartsız dallan		-	-		-	50h	
INCR	Aküyü 1 arttır	03h	-	-	-	-	-	
LDX	IX kaydedicisine yükle		91h	A1h	B1h	C1h	-	
HLT	Dur	0Eh	-	-	-	-	-	

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

gram sonlandığında aküdeki (AC) değer ne olur?

0000h

0001h

AAAAh

B59Ah

Girişin (x) 0'dan 1'e geçişini algılayan ve çıkışında (z) 1 clock saykılı boyunca 1 sinyalini üreten Moore tipi ardışık bir devrenin D tipi flip floplarla tasarlanması isteniyor. (Not: Bu problem 3 durum ile çözülebilmektedir. A başlangıç durumudur ve bu durumda çıkışı 0 alınız. Diğer durumlar da sırasıyla B ve C durumlarıdır. A durumundayken girişin 1 olması durumunda sistem B durumuna gitmektedir.)

Aşağıdaki 2 soruyu bu bilgilere göre yanıtlayınız.

Flip flopların uyarma işlevleri ne olur? (Not: A durumuna 00, B durumuna 01 ve C durumuna 11 atayarak çözüm yapınız. q₁:MSB q₀:LSB 'dir)

- $A = D_1=x.q_0 D_0=x$
- B D₁=x D₀=q₀'
- C D₁=0 D₀=q₀'
- D D₁=x D₀=q₀

LDAX #2000H /İndex kaydedicisine yükle

#: ivedi adresleme modu

():Dolaylı adresleme modu

*: Index adresleme modu

İşaret kullanılmamışsa: direkt adresleme modu

LDA #3000H /Aküye değer yükle STA 2000H /Aküden belleğe yaz

LDA #5000H

STA 3000H

ADD (2000H) / AC ←AC+DR INCR /Aküyü 1 arttır

ADD *00H

HLT /Sonlandır

Aşağıdaki 3 soruyu yukarıdaki programa göre yanıtlayınız.

Programın işletimi tamamlandığında, Aküdeki değer ne olur?

A B001h

B 8001h

C D001h

A001h

LDAX #2000H /İndex kaydedicisine yükle

LDA #3000H /Aküye değer yükle

STA 2000H / Aküden belleğe yaz

LDA #5000H

STA 3000H

ADD (2000H) / AC ←AC+DR INCR /Aküyü 1 arttır

ADD *00H

HLT /Sonlandır

#: ivedi adresleme modu

İşaret kullanılmamışsa: direkt adresleme modu

() :Dolaylı adresleme modu

*: Index adresleme modu

Aşağıdaki 3 soruyu yukarıdaki programa göre yanıtlayınız.

Programın işletimi tamamlandığında, DR'nin (Data Register) değeri ne olur?

(DR, özellikle bellekten okunan bilgilerin 16 bit olarak oluşturulması için kullanılmaktadır. Aritmetik ve lojik işlemlerde karşımıza çıkmaktadır.)

A 5000h

B 3000h

C 2000h

D 7000h

	Açıklama	Adresleme Modu					
Komut		Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli
ADD	AC ←AC+DR		10h	20h	30h	40h	-
LDA	Aküye yükle		1Ah	2Ah	3Ah	4Ah	-
OR	Lojik OR işlemi		18h	2Bh	38h	48h	-
STA	Aküden belleğe yaz		-	A0h	B0h	C0h	-
CLR	Aküyü temizle	01h		-	-	-	-
BCS	Elde biti 1 ise dallan		-	-	-	-	52h
BRA	Şartsız dallan		-	-	-	-	50h
INCR	Aküyü 1 arttır	03h	-	-	-	-	-
LDX	IX kaydedicisine yükle		91h	A1h	B1h	C1h	-
HLT	Dur	0Eh	-	-	-	-	-

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

komutu işletilirken *etkin adres hesaplama birimi*

ıgi *etkin adres* değerini hesap etmiştir?

000Ch

00h

01h

02h

03h

04h

05h

06h

07h

180

09h

MΑ

)Bh

)Ch

Dh

DEh

0Fh

10h

1h

12h

I3h

14h

15h

16h

SOh

51h

52h

53h

01h

2Ah

00h

SOh

2Bh

00h

52h

10h

FFh

AAh

52h

01h

01h

03h

BOh

ooh

50h

91h

00h

50h

40h

02h

0Eh

AAh

0Fh

0Ah

F0h

- 0050h
- 000Dh
- 0051h

bitlik bir kaydedicinin (q2q1q0) Shift sinyali (S) 0 iken durumunu koruması, Shift inyali 1 iken; en anlamlı biti 0 ise sıfır ile sağa kaydırılması, en anlamlı biti 1 iken ifir ile sola kaydırılması istenmektedir. T tipi flip floplarla tasarım yapıldığında en nlamlı flip flobun uyarma işlevi ne olur?

$$T_2=S.q_1$$

$$T_2=S.(q_1+q_2)$$

$$T_2=S.q_0$$

ağıdaki devrenin Q1 çıkışının lojik ifadesi nedir?

$$Q_1 = x'q_1 + x.q_1'.q_0$$

$$Q_1 = x.q_1'.q_0'$$

ğıdakilerden hangisi/hangileri yanlıştır ?
atik RAM'ler dinamik RAM'lerden daha hızlıdır.
tatik RAM'ler dinamik RAM'lerden daha maliyetlidir.
tatik RAM'ler cache bellek oluşturmak için kullanılır.
tatik RAM'lerde bilgi kalıcı olarak depolanır.
inamik RAM'ler uçucu (volatile) yapıya sahiptir.
1,2 ve 4
2, 4 ve 5
4
5
Seçimi Boş Bırakmak İstiyorum