PATENT ABSTRACTS OF JAPAN

(11) Publication number:

09-287438

(43) Date of publication of application: 04.11.1997

(51)Int.CI.

F01N 3/20

B01J 23/44

B01J 29/068

B01J 29/072

F01N 3/10

F01N 3/24

F01N 3/28

(21)Application number: 08-104999

(71)Applicant: NISSAN MOTOR CO LTD

(22)Date of filing:

25.04.1996

(72)Inventor: **TAKATANI SHINKO**

MUROFUSHI YASUYUKI OGAWA HIROSUMI

(54) EXHAUST EMISSION CONTROL DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To improve control property of hydrocarbon discharged at the time of cold start by arranging a three-way catalyst carrying and containing palladium on a heat resistance inorganic carrier, and an adsorption catalyst carrying and containing zeolite on the heat resistance inorganic carrier both in an upstream and downstream of exhaust.

SOLUTION: In an exhaust emission control device having good activity in hydrocarbon in the case where an exhaust gas temperature is low at the time of engine start of an internal combustion engine, a three-way catalyst carrying and containing palladium on a heat resistance inorganic carrier, and an adsorption catalyst carrying and containing zeolite on the heat resistance inorganic carrier, are arranged on an exhaust upstream and an exhaust downstream. At this time, more preferably, palladium concentration in the three-way catalyst is set to 4 to 15 weight % per inorganic carrier 1g, and the pd rate thereof is set to 100 to 500q/cf. The adsorption catalyst is formed by containing zeolite on a lower layer, and containing one kind selected from the group consisting of platinum, palladium, and rhodium on an upper layer.

LEGAL STATUS

[Date of request for examination]

28.01.2002

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-287438

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			-	技術表	 支示箇所
F01N 3/20			F01N	3/20		н		2012277
B01J 23/44			B01J	23/44		Α	•	
29/068				29/068		Α		
29/072				29/072		A		
F01N 3/10			F01N	3/10		Α		
		水髓查審	未請求 請求	領の数5	OL	(全 11 頁)	最終頁	に続く
(21)出願番号	特顯平8 -104999		(71)出願	۸ '000003	997			
					動車株	化会计		
(22)出顧日	平成8年(1996)4月	25日	1			市神奈川区5	ご町 2級・地	
			(72)発明者			1-112011	T1 2 H ND	
						市神奈川区 全	町2番舶	日確
			f		株式会社		7 1 - HVD	нде
			(72)発明者	全全人	康行			
						市神奈川区宝	町2番地	日産
					株式会社			
			(72)発明者	1 小川	俗純			
				神奈川	具横浜 T	萨神奈川区宝	町2番地	日産
		}	•		朱式会社			
			(74)代理人	、弁理士	杉村	暁秀 (外	-7名)	
		}						

(54) 【発明の名称】 排気ガス浄化装置

(57)【要約】

【課題】 内燃機関のエンジン始動時の排気ガス温度が 低い場合でも炭化水素に対して優れた浄化活性を有する 排気ガス浄化装置を提供する。

【解決手段】 耐熱性無機担体上にパラジウムを担持含有する三元触媒と、耐熱性無機担体上にゼオライトを担持含有する吸着触媒とを含む触媒コンパータを、排気上流部と排気下流部に少なくとも2個配置してなる。また上記三元触媒を排気流入側に、上記吸着触媒を排気流出側に配置して触媒コンパータを構成する。

20

【特許請求の範囲】

【請求項1】 耐熱性無機担体上にパラジウムを担持含 有する三元触媒(A)と、耐熱性無機担体上にゼオライ トを担持含有する吸着触媒(B)とを含む触媒コンバー タを、排気上流部と排気下流部に少なくとも2個配置し てなることを特徴とする排気ガス浄化装置。

【請求項2】 上記三元触媒(A)を排気流入側に、上 記吸着触媒(B)を排気流出側に配置して触媒コンバー タを構成することを特徴とする請求項 1 記載の排気ガス 浄化装置。

【請求項3】 上記三元触媒(A)中のパラジウム濃度 が無機担体1gあたり4~15重量%で、Pd量が10 0~500g/cfであることを特徴とする請求項1又 は2記載の排気ガス浄化装置。

【請求項4】 上記吸着触媒(B)は、ゼオライトを下 層に、白金、パラジウム及びロジウムから成る群より選 ばれた少なくとも一種を上層として含有することを特徴 とする請求項1~3いずれかの項記載の排気ガス浄化装 置。

【請求項5】 ゼオライトが、パラジウム、白金、銅、 コパルト及び銀から成る群より選ばれる金属成分を0. 1~15重量%担持することを特徴とする請求項4記載 の排気ガス浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、排気ガス浄化装置 に関し、特に内燃機関のエンジン始動時の排気ガス温度 が低い場合でも炭化水素に対して優れた活性を有する排 気ガス浄化装置に関する。

[0002]

【従来の技術】従来、内燃機関の始動時における排気ガ ス温度が低い場合でも炭化水素に対して活性を有する排 気ガス浄化装置としては、電熱触媒のように触媒を強制 的に加熱することで浄化性能を得る装置や、炭化水素吸 着触媒を用いて冷間始動時に排出される炭化水素を一時 的に吸着し、その後排気ガス温度が上昇した時に吸着し ていた炭化水素を脱離させ処理する装置が知られてい る。

【0003】また、特開平5-319931号公報に は、排気流入側に三元触媒を配置し、排気流出側に触媒 40 活性成分を備えるゼオライト層を含有する吸着触媒を配 置した排気ガス浄化装置が開示されている。

[0004]

【発明が解決しようとする課題】しかし、電熱触媒や炭 化水素吸着触媒を用いた従来の装置は、その構造が複雑 になるという問題があった。

【0005】また、特開平5-319931号公報に記 載されたような排気ガス浄化装置は、排気流入側に用い た三元触媒の浄化性能が、排気ガス温度が低い場合には

の炭化水素吸着触媒から炭化水素が脱離してしまってい た。即ち、吸着した炭化水素は吸着触媒温度の条件に従 って脱離するが、吸着触媒の自己浄化能力や三元触媒の 活性能力は、触媒活性温度に達する前には十分でなく、 そのため炭化水素が脱離してしまうのである。また一旦 脱離してしまった炭化水素は、二次的浄化システムが無 いため浄化できず、エンジン始動時の排気ガスを十分に 浄化できなかった。

【0006】従って、本発明の目的は、簡易な方法によ りエンジン冷間始動時に排出される炭化水素を十分に浄 化することができる排気ガス浄化装置を提供することで ある。

[0007]

【課題を解決するための手段】本発明者らは、上記課題 を解決するために研究した結果、三元触媒と吸着触媒と を組み合わせたタンデム触媒を排気上流部のマニーブリ 位置と排気下流部の床下位置の少なくとも2ケ所に配置 することにより、触媒配置位置の排気上流及び下流にて 発生する温度差と吸着触媒の温度による炭化水素の吸着 ・脱離サイクルとを有効に利用して、排気ガス温度が低 い場合にも炭化水素を十分に浄化することができること を見い出し、本発明に達成した。

【0008】本発明に係る排気ガス浄化装置は、耐熱性 無機担体上にパラジウムを担持含有する三元触媒 (A) と、耐熱性無機担体上にゼオライトを担持含有する吸着 触媒(B)とを含む触媒コンバータを、排気上流部と排 気下流部に少なくとも2個配置してなることを特徴とす る。

【0009】本発明に係る排気ガス浄化装置の好適例 30 は、上記三元触媒(A)を排気流入側に、上記吸着触媒 (B)を排気流出側に配置して触媒コンバータを構成す ることを特徴とする。

【0010】更に、本発明に係る排気ガス浄化装置の他 の好適例は、上記三元触媒(A)中のパラジウム濃度が 無機担体1gあたり4~15重量%で、Pd量が100 ~500g/cfであることを特徴とする。

【0011】更に、本発明に係る排気ガス浄化装置の他 の好適例は、上記吸着触媒(B)は、ゼオライトを下層 に、白金、バラジウム及びロジウムから成る群より選ば れた少なくとも一種を上層として含有することを特徴と する。

【0012】更に、本発明に係る排気ガス上記装置の他 の好適例は、ゼオライトが、パラジウム、白金、銅、コ バルト及び銀から成る群より選ばれる金属成分を0.1 ~15重量%担持することを特徴とする。

[0013]

【発明の実施の形態】本発明の排気ガス浄化装置は、内 燃機関の排気系に炭化水素吸着材とその上流に少なくと も1個以上の三元触媒を備えた、内燃機関の始動時の排 十分でないため触媒活性温度に達する前に、排気流出側 50 気ガスを有効に浄化する装置であって、排気流入側に活

性アルミナを主成分とした無機物にバラジウムを4~1 5重量%/gとなるように担持した粉末を用い、バラジウム担持量が100~500g/cfになるように前記粉末をハニカム担体に塗布して理論空燃比均衡で炭化水素、一酸化炭素、窒素炭化物を浄化する三元触媒とした触媒Aを配置し、排気流出側にハニカム担体に炭化水素の吸着に有効なゼオライトをコーティングした吸着触媒Bを配置し、さらに吸着触媒Bがゼオライトとしてモルデナイト、Y、USY、βーゼオライト、ZSM-5か

らゼオライト層上に貴金属成分として白金及びロジウム、バラジウム、バラジウムおよびロジウム、白金及びバラジウム及びロジウムの組み合わせからなる群から選ばれた触媒層を備えている吸着触媒+三元触媒のタンデム型触媒を、排気上流部(マニーブリ位置)と排気下流部(床下位置)の少なくとも2ケ所に配置する。

らなる群から選ばれた少なくとも一種以上を用い、とれ 10

【0014】即ち、本発明の排気ガス浄化装置においては、排気流入側に活性アルミナを主成分とした無機物担体に、バラジウムを濃度4~15重量%/gとなるとなるように担持した粉末を用い、バラジウム担持量が80 20~500g/cfになるように前記粉末をハニカム担体に塗布して理論空燃比均衡で炭化水素、一酸化炭素、窒素炭化物を浄化する三元触媒Aを配置している。

【0015】貴金属成分としてパラジウムは低温域での酸化性能に優れているが、パラジウムを使用しただけでは必ずしも充分な低温域での酸化活性が得られない。そこで、パラジウムの担持濃度として4重量%以上とすることで担持されたパラジウムの粒子径をあらかじめ触媒反応に適した粒子径とし、低温域の酸化性能を向上させている。担持濃度が15重量%を超えると、逆に担持し30たパラジウムの粒子径が大きくなりすぎ、触媒反応の活性点が減少して、充分な低温域での活性向上が得られない。

【0016】またパラジウム担持量が80g/cf未満では、低温での触媒活性能力が不足して、本システムは成立せず、500g/cfを超ても、コスト高となるのみで浄化効果の向上が観られない。

【0017】排気流出側には、ハニカム担体に炭化水素の吸着に有効なゼオライトをコーティングした吸着触媒Bを配置している。吸着触媒(B)に用いられるゼオラ 40イトとしては、排気ガス中に含まれる炭化水素の径に対応した、Y、USY、モルデナイト、βーゼオライト、ZSM-5を用いることができる。さらに、多種類の炭化水素を効率よく吸着するため、細孔径の異なる2種以上のゼオライトを混合することも可能である。

【0018】各種ゼオライトは、H型でも充分な吸着能力を有するが、Pd, Pt, Cu, CO, Ag等の金属成分をイオン交換、含浸法、浸漬法等の通常の方法を用いて担持することにより、炭化水素の吸着特性及び脱離特性をさらに向上させることができる。各担持量は触媒 50 になるまで繰り返す。

活性に悪影響を与えない限り特に限定されないが、例えば0.1~15重量%が好ましい。0.1重量%より少ないと炭化水素の吸着特性及び脱離抑制効果が少なく、逆に15重量%を超えても効果は変わらない。

【0019】該ゼオライト層上に貴金属成分として白金及びロジウム、パラジウム、パラジウム及びロジウム、白金及びバラジウム及びロジウムの組み合わせからなる群から選ばれた触媒層を備えることが好ましい。このように、ゼオライト層上に、白金及びロジウム触媒、パラジウム及びロジウム触媒、白金及びロジウム触媒、パラジウム及びロジウム触媒等の三元触媒層をコーティングすることで、ゼオライト吸着材にて低温時に付着していた炭化水素が、排気温度が上昇することで脱離してくる場合に、上層の三元触媒層で浄化することができ、更に排気温度が充分に上昇した条件下では、上流側の三元触媒で充分に浄化できなかった未浄化の排気ガス成分を上層の三元触媒層で、浄化することができる。

【0020】このように、三元触媒(A)を排気流入側に、吸着触媒(B)を排気流出側に配置するのは吸着・ 脱離タイミング差を利用して、排気ガスを浄化する作用 のためである。

【0021】このようなタンデム触媒型の触媒コンバータを、排気上流部(マニーブリ位置)と、排気下流部 (床下位置) に少なくとも2個配置する。このように、排気上流部と排気下流部との少なくとも2ケ所に配置するのは、排気上流及び下流側にて発生する温度差と、吸着触媒の温度に依る炭化水素の吸着・脱離サイクルを有効に利用するためである。

[0022]

30 【実施例】本発明を次の実施例及び比較例により説明する。

実施例1

Pdを4重量%担持した活性アルミナ粉末1410g、活性アルミナ590g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.3L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このテーティング作業を塗布量が、焼成後に約200g/Lになるまで繰り返し、Pd担持量が160g/cfとなるようにして、排気下流部床下三元触媒AU-1を得た。

【0023】次に、H型USYゼオライト(SiO、/Al、O、=50)1000g、シリカゾル(固形分20%)1000g、水1000gをボールミルポットに投入し粉砕して得られたスラリーをコーディエライト製モノリス担体(1.3L、400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に150g/Lになるまで繰り返す。

【0024】さらに、前記と同様にしてUSY層の上に Pd-アルミナ触媒層を100g/Lになるように塗布 し、乾燥後、400℃で1時間焼成を行ない、排気下流 部床下吸着触媒BU-1を得た。

【0025】排気流入側に上記排気下流部床下三元触媒AU-1、排気流出側に上記排気下流部床下吸着触媒BU-1を組み合わせ、排気下流部タンデム型床下触媒ABU-1を得た。

【0026】Pdを4重量%担持した活性アルミナ粉末 1410g、活性アルミナ590g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.0L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約200g/Lになるまで繰り返し、Pd担持量が123g/cfとなるようにして、排気上流部ライトオフ三元触媒AL-1を得た。

【0027】次に、H型USYゼオライト(SiO, /A1, O, =50)1000g、シリカゾル(固形分20%)1000g、水1000gをボールミルボットに投入し粉砕して得られたスラリーをコーディエライト製モノリス担体(1.0L,400セル)に塗布し乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に150g/Lになるまで繰り返す。

【0028】さらに、前記と同様にしてUSY層の上に Pdーアルミナ触媒層を100g/Lになるように塗布 し、乾燥後、400℃で1時間焼成を行ない、排気上流 部ライトオフ吸着触媒BL−1を得た。

【0029】排気流入側に上記排気上流部ライトオフ三元触媒AL-1、排気流出側に上記排気上流部ライトオフ吸着触媒BL-1を組み合わせ、排気上流部タンデム型ライトオフ触媒ABL-1を得た。

【0030】排気上流部(マニーブリ位置)にタンデム型ライトオフ触媒ABL-1、排気下流部に(床下位置)にタンデム型床下触媒ABU-1を配置して、排気ガス浄化触媒システム1を得た。

【0031】実施例2

実施例1のPd担持濃度を4重量%の代わりに8重量% 40 にし、塗布量を150g/Lとした以外は、実施例1と同様な排気ガス浄化装置とした。即ち、Pdを8重量%担持した活性アルミナ粉末940g、活性アルミナ1060g、2%硝酸溶液2000gを磁性ボットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.3L400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担持機が180g/150g/Lになるまで繰り返し、Pd担待機が180g/150g/Lになるまで繰り返し、Pd担待機が180g/150g/Lによりに対している。

ようにして、排気下流部床下三元触媒AU-2を得た。【0032】また、Pdを8重量%担持した活性アルミナ粉末940g、活性アルミナ1060g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.0 L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約150g/Lになるまで繰り返し、Pd担持量が123g/cfとなるようにして、排気上流部ライトオフ三元触媒AL-2を得た。

【0033】排気流入側に上記排気下流部床下三元触媒 AU-2、排気流出側に実施例1で得られた排気下流部 床下吸着触媒BU-1を組み合わせ、排気下流部タンデ ム型床下触媒ABU-2を得た。

【0034】また、排気流入側に上記排気上流部ライトオブ三元触媒AL-2、排気流出側に実施例1で得られた排気上流部ライトオフ吸着触媒BL-1を組み合わせ、排気上流部タンデム型ライトオフ触媒ABL-2を得た。

【0035】排気上流部(マニーブリ位置)にタンデム型ライトオフ触媒ABL-2、排気下流部に(床下位置)にタンデム型床下触媒ABU-2を配置して、排気ガス浄化触媒システム2を得た。

【0036】実施例3

実施例1のPd担持濃度を4重量%の代わりに12重量%にし、塗布量を150g/Lとした以外は、実施例1と同様な排気装置ガス浄化とした。即ち、Pdを12重量%担持した活性アルミナ粉末630g、活性アルミナ1370g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.3L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約150g/Lになるまで繰り返し、Pd担持量が160g/cfとなるようにして、排気下流部床下三元触媒AU-3を得た。

【0037】また、Pdを12重量%担持した活性アルミナ粉末630g、活性アルミナ1370g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。とのスラリーをコーディエライト製モノリス担体(1.0 L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。とのコーティング作業を塗布量が、焼成後に約150g/Lになるまで繰り返し、Pd担持量が123g/cfとなるようにして、排気上流部ライトオフ三元触媒AL-3を得た。

プィング作業を整布重が、焼成後に約150g/Lに 【0038】排気流入側に上記排気下流部床下三元触媒なるまで繰り返し、Pd担持量が160g/cfとなる 50 AU-3、排気流出側に実施例1で得られた排気下流部

床下吸着触媒 B U - 1 を組み合わせ、排気下流部タンデ ム型床下触媒ABU-3を得た。

【0039】また、排気流入側に上記排気上流部ライト オフ三元触媒AL-3、排気流出側に実施例1で得られ た排気上流部ライトオフ吸着触媒 B L - 1 を組み合わ せ、排気上流部タンデム型ライトオフ触媒ABL-3を 得た。

【0040】排気上流部(マニープリ位置) にタンデム 型ライトオフ触媒ABL-3、排気下流部に (床下位 置)にタンデム型床下触媒ABU-3を配置して、排気 10 るまで繰り返し、Pd担持量が480g/cfとなるよ ガス浄化触媒システム3を得た。

【0041】実施例4

実施例1のPd担持濃度を4重量%の代わりに8重量% にし、塗布量を240g/Lとした以外は、実施例1と 同様な排気ガス浄化装置とした。即ち、Р d を 8 重量% 担持した活性アルミナ粉末1410g、活性アルミナ5 90g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造した。とのスラリーをコーディエライト製モ ノリス担体(1.3L,400セル)に塗布し、乾燥 後、400℃で1時間、空気雰囲気中で仮焼成した。と のコーティング作業を塗布量が、焼成後に約150g/ Lになるまで繰り返し、Pd担持量が240g/cfと なるようにして、排気下流部床下三元触媒AU-4を得

【0042】また、Pdを8重量%担持した活性アルミ ナ粉末1410g、活性アルミナ590g、2%硝酸溶 液2000gを磁性ポットに仕込み、振動ミル装置で混 合粉砕し、ウォッシュコートスラリーを製造した。との スラリーをコーディエライト製モノリス担体(1.0 L, 400セル) に塗布し、乾燥後、400℃で1時 間、空気雰囲気中で仮焼成した。とのコーティング作業 を塗布量が、焼成後に約150g/Lになるまで繰り返 し、Pd担持量が184g/cfとなるようにして、排 気上流部ライトオフ三元触媒AL-4を得た。

【0043】排気流入側に上記排気下流部床下三元触媒 AU-4、排気流出側に実施例1で得られた排気下流部 床下吸着触媒 B U - 1 を組み合わせ、排気下流部タンデ ム型床下触媒ABU-4を得た。

【0044】また、排気流入側に上記排気上流部ライト オフ三元触媒AL-4、排気流出側に実施例1で得られ た排気上流部ライトオフ吸着触媒BL-1を組み合わ せ、排気上流部タンデム型ライトオフ触媒ABL-4を 得た。

【0045】排気上流部(マニープリ位置) にタンデム 型ライトオフ触媒ABL-4、排気下流部に(床下位 置)にタンデム型床下触媒ABU-4を配置して、排気 ガス浄化触媒システム2を得た。

【0046】実施例5

にし、塗布量を220g/Lとした以外は、実施例1と 同様な排気ガス浄化装置とした。即ち、Pdを8重量% 担持した活性アルミナ粉末1920g、活性アルミナ8 0g、2%硝酸溶液2000gを磁性ポットに仕込み、 振動ミル装置で混合粉砕し、ウォッシュコートスラリー を製造した。とのスラリーをコーディエライト製モノリ ス担体(1. 3 L, 400セル)に塗布し、乾燥後、4 00℃で1時間、空気雰囲気中で仮焼成した。とのコー ・ティング作業を塗布量が、焼成後に約220g/Lにな うにして、排気下流部床下三元触媒AU-5を得た。

【0047】また、Pdを8重量%担持した活性アルミ ナ粉末1920g、活性アルミナ80g、2%硝酸溶液 2000gを磁性ポットに仕込み、振動ミル装置で混合 粉砕し、ウォッシュコートスラリーを製造した。とのス ラリーをコーディエライト製モノリス担体(1.0L, 400セル) に塗布し、乾燥後、400℃で1時間、空 気雰囲気中で仮焼成した。このコーティング作業を塗布 量が、焼成後に約220g/Lになるまで繰り返し、P 20 d担持量が480g/cfとなるようにして、排気上流 部ライトオフ三元触媒AL-5を得た。

【0048】排気流入側に上記排気下流部床下三元触媒 AU-5、排気流出側に実施例1で得られた排気下流部 床下吸着触媒BU-1を組み合わせ、排気下流部タンデ ム型床下触媒ABU-5を得た。

【0049】また、排気流入側に上記排気上流部ライト オフ三元触媒AL-5、排気流出側に実施例1で得られ た排気上流部ライトオフ吸着触媒 B L - 1 を組み合わ せ、排気上流部タンデム型ライトオフ触媒ABL-5を 30 得た。

【0050】排気上流部(マニープリ位置) にタンデム 型ライトオフ触媒ABL-5、排気下流部に(床下位 置)にタンデム型床下触媒ABU-5を配置して、排気 ガス浄化触媒システム5を得た。

【0051】実施例6

実施例1のUSYゼオライトの代わりに、USYゼオラ イトとβ-ゼオライトとの混合物を用いた以外は、実施 例1と同様な排気ガス浄化装置とした。即ち、H型US g、H型β-ゼオライト (SiO, /Al, O, =10 0)500g、シリカゾル(固形分20%)1000 8、水1000gをボールミルポットに投入し、粉砕し て得られたスラリーをコーディエライト製モノリス担体 (1.3L,400セル) に塗布し、乾燥後、400℃ で1時間、空気雰囲気中で仮焼成した。このコーティン グ作業を塗布量が、焼成後に150g/Lになるまで繰 り返す。

【0052】さらに、実施例1と同方法で、USYと8 - ゼオライトの混合層の上にP d - アルミナ触媒層を 1 実施例1のPd担持濃度を4重量%の代わりに8重量% 50 00g/Lになるように塗布し、乾燥後、400℃で1

時間焼成を行ない、排気下流部床下吸着触媒BU-2を 得た。

【0053】H型USYゼオライト(SiO, /Al, O, =50) 500g、H型βーゼオライト (SiO, /A l, O, = 1 0 0) 5 0 0 g、シリカゾル (固形分 20%) 1000g、水1000gをボールミルポット に投入し、粉砕して得られたスラリーをコーディエライ ト製モノリス担体(1.0L,400セル)に塗布し、 乾燥後、400℃で1時間、空気雰囲気中で仮焼成し た。このコーティング作業を塗布量が、焼成後に150 g/Lになるまで繰り返す。

【0054】さらに、実施例1と同方法で、USYと8 - ゼオライトの混合層の上にP d - アルミナ触媒層を 1 00g/Lになるように塗布し、乾燥後、400℃で1 時間焼成を行ない、排気上流部ライトオフ吸着触媒BL -2を得た。

【0055】排気流入側に実施例1で得られた排気下流 部床下三元触媒AU-1、排気流出側に上記排気下流部 床下吸着触媒BU-2を組み合わせ、排気下流部タンデ ム型床下触媒ABU-6を得た。

【0056】排気流入側に実施例1で得られた排気上流 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-2を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-6を得た。

【0057】排気上流部(マニーブリ位置)にタンデム 型ライトオフ触媒ABL-6、排気下流部に(床下位 置)にタンデム型床下触媒ABU-6を配置して、排気 ガス浄化触媒システム6を得た。

【0058】実施例7

実施例1のUSYゼオライトの代わりに、USYゼオラ イトとβ - ゼオライトとΖ SM5 との混合物を用いた以 外は、実施例1と同様な排気ガス浄化装置とした。即 ち、H型USYゼオライト (SiO, /Al, O, =5 0) 200g、H型β-ゼオライト (SiO, /Al, O, =100) 400g、H型ZSM5ゼオライト (S i O, /A l, O, =700) 400g、シリカゾル (固形分20%) 1000g、水1000gをボールミ ルポットに投入し、粉砕して得られたスラリーをコーデ ィエライト製モノリス担体(1.3L,400セル)に 塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮 40 焼成した。このコーティング作業を塗布量が、焼成後に 150g/Lになるまで繰り返す。

【0059】さらに、実施例1と同方法で、USYと8 ーゼオライトと2SM5の混合層の上にPd −アルミナ 触媒層を100g/Lになるように塗布し、乾燥後、4 00℃で1時間焼成を行ない、排気下流部床下吸着触媒 BU-3を得た。

【0060】H型USYゼオライト(SiO, /Al, O, =50) 200g、H型β-ゼオライト (SiO,

イト (SiO, /Al, O, =700) 400g、シリ カゾル (固形分20%) 1000g、水1000gをボ ールミルポットに投入し、粉砕して得られたスラリーを コーディエライト製モノリス担体(1.0L,400セ ル)に塗布し、乾燥後、400℃で1時間、空気雰囲気 中で仮焼成した。このコーティング作業を塗布量が、焼 成後に150g/Lになるまで繰り返す。

【0061】さらに、実施例1と同方法で、USYと8 -ゼオライトの混合層の上にPd-アルミナ触媒層を1 00g/Lになるように塗布し、乾燥後、400℃で1 時間焼成を行ない、排気上流部ライトオフ吸着触媒BL - 3を得た。

【0062】また、排気流入側に実施例1で得られた排 気下流部床下三元触媒AU-1、排気流出側に上記排気 下流部床下吸着触媒BU-3を組み合わせ、排気下流部 タンデム型床下触媒ABU-7を得た。

【0063】排気流入側に実施例1で得られた排気上流 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-3を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-7を得た。

【0064】排気上流部 (マニーブリ位置) にタンデム 型ライトオフ触媒ABL-7、排気下流部に(床下位 置) にタンデム型床下触媒ABU-7を配置して、排気 ガス浄化触媒システム7を得た。

【0065】実施例8

実施例1のUSYゼオライトの代わりに、B-ゼオライ トとZSM5との混合物を用いた以外は、実施例1と同 様な排気ガス浄化装置とした。即ち、H型βーゼオライ ト(SiO, /Al, O, =100)500g、H型Z $SM5 \forall x \ni 7 \vdash (SiO_2 /Al_2O_3 = 700) 5$ 00g、シリカゾル(固形分20%)1000g、水1 000gをボールミルポットに投入し、粉砕して得られ たスラリーをコーディエライト製モノリス担体(1.3 L, 400セル) に塗布し、乾燥後、400℃で1時 間、空気雰囲気中で仮焼成した。このコーティング作業 を塗布量が、焼成後に150g/Lになるまで繰り返 す。

【0066】さらに、実施例1と同方法で、β-ゼオラ イトとZSM5の混合層の上にPd-アルミナ触媒層を 100g/Lになるように塗布し、乾燥後、400℃で 1時間焼成を行ない、排気下流部床下吸着触媒BU-4

【0067】H型β-ゼオライト (SiO, /Al, O 』=100)500g、H型ZSM5ゼオライト (Si O, /A I, O, = 700) 500g、シリカゾル (固 形分20%) 1000g、水1000gをボールミルボ ットに投入し、粉砕して得られたスラリーをコーディエ ライト製モノリス担体(1.0L,400セル)に塗布 し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成 /Al, O, =100)400g、H型ZSM5ゼオラ 50 した。このコーティング作業を塗布量が、焼成後に15

0g/Lになるまで繰り返す。

【0068】さらに、実施例1と同方法で、β-ゼオラ イトとZSM5の混合層の上にPd-アルミナ触媒層を 100g/Lになるように塗布し、乾燥後、400℃で 1 時間焼成を行ない、排気上流部ライトオフ吸着触媒B L-4を得た。

【0069】また、排気流入側に実施例1で得られた排 気下流部床下三元触媒AU-1、排気流出側に上記排気 下流部床下吸着触媒 B U - 4 を組み合わせ、排気下流部 タンデム型床下触媒ABU-8を得た。

【0070】排気流入側に実施例1で得られた排気上流 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-4を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-8を得た。

【0071】排気上流部(マニーブリ位置)にタンデム 型ライトオフ触媒ABL-8、排気下流部に(床下位 置)にタンデム型床下触媒ABU-6を配置して、排気 ガス浄化触媒システム8を得た。

【0072】実施例9

実施例1のUSYゼオライトの代わりに、βーゼオライ 20 トとモルデナイトとの混合物を用いた以外は、実施例1 と同様な排気ガス浄化装置とした。即ち、H型βーゼオ ライト (SiO, /Al, O, =100) 500g、H 型モルデナイト (SiO, /Al, O, =200)50 0g、シリカゾル(固形分20%)1000g、水10 00gをボールミルポットに投入し、粉砕して得られた スラリーをコーディエライト製モノリス担体(1.3 L, 400セル) に塗布し、乾燥後、400℃で1時 間、空気雰囲気中で仮焼成した。このコーティング作業 を塗布量が、焼成後に150g/Lになるまで繰り返 す。

【0073】さらに、実施例1と同方法で、βーゼオラ イトとモルデナイトの混合層の上にP d -アルミナ触媒 層を100g/Lになるように塗布し、乾燥後、400 ℃で1時間焼成を行ない、排気下流部床下吸着触媒BU -5を得た。

【0074】H型β-ゼオライト (SiO, /Al, O ,=100)500g、H型ZSM5ゼオライト (Si O, /Al, O, =700) 500g、シリカゾル (固 形分20%)1000g、水1000gをボールミルボ 40 リーを製造し、このスラリーを用いてβーゼオライトと ットに投入し粉砕して得られたスラリーをコーディエラ イト製モノリス担体(1.0L,400セル)に塗布 し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成 した。とのコーティング作業を塗布量が、焼成後に15 0g/Lになるまで繰り返す。

【0075】さらに、実施例1と同方法で、βーゼオラ イトとZSM5の混合層の上にPd-アルミナ触媒層を 100g/Lになるように塗布し、乾燥後、400℃で 1 時間焼成を行ない、排気上流部ライトオフ吸着触媒 B L-5を得た。

【0076】また、排気流入側に実施例1で得られた排 気下流部床下三元触媒AU-1、排気流出側に上記排気 下流部床下吸着触媒BU-5を組み合わせ、排気下流部 タンデム型床下触媒ABU-9を得た。

12

【0077】排気流入側に実施例1で得られた排気上流 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-2を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-9を得た。

【0078】排気上流部(マニーブリ位置) にタンデム 10 型ライトオフ触媒ABL-9、排気下流部に(床下位 置)にタンデム型床下触媒ABU-9を配置して、排気 ガス浄化触媒システム9を得た。

【0079】実施例10

実施例8のβーゼオライトとΖSM5の混合層の上に、 Pd触媒層の代わりに Pt/Rh触媒層を用いた以外 は、実施例8と同様な排気ガス浄化装置とした。

【0080】即ち、実施例8と同じ方法で、βーゼオラ イトとZSM5の混合物を、塗布量が焼成後に約150 g/Lになるようにコーディエライトモノリス担体に塗 布する。

【0081】次に、Ptを2重量%担持した活性アルミ ナ粉末1130g、Rhを3重量%担持した活性アルミ ナ粉末80g、酸化セリウム550g、活性アルミナ2 40g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造し、このスラリーを用いて、上記βーゼオラ イトとZSM5の混合層の上に乾燥後の触媒担体の塗布 量が100g/Lになるようにコートし、乾燥後、40 0 ℃で1 時間焼成を行ない、排気下流部床下吸着触媒 B 30 U-6を得た。

【0082】また、実施例8と同方法で、βーゼオライ トとZSM5の混合物を塗布量が、焼成後に約150g /Lになるようにコーディエライトモノリス担体に塗布 する。

【0083】次に、Ptを2重量%担持した活性アルミ ナ粉末1130g、Rhを3重量%担持した活性アルミ ナ粉末80g、酸化セリウム550g、活性アルミナ2 40g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ ZSM5の混合層の上に乾燥後の触媒担体の塗布量が1 00g/Lになるようにコートし、乾燥後、400℃で 1 時間焼成を行ない、排気上流部ライトオフ吸着触媒 B L-6を得た。

【0084】また、排気流入側に実施例1で得られた排 気下流部床下三元触媒AU-1、排気流出側に上記排気 下流部床下吸着触媒 B U - 6を組み合わせ、排気下流部 タンデム型床下触媒ABU-6を得た。

【0085】排気流入側に実施例1で得られた排気上流 50 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-6を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-10を得た。

【0086】排気上流部(マニーブリ位置)にタンデム 型ライトオフ触媒ABL-10、排気下流部に(床下位 置) にタンデム型床下触媒ABU-10を配置して、排 気ガス浄化触媒システム10を得た。

【0087】実施例11

実施例8の8-ゼオライトと25M5の混合層の上に、 Pd触媒層の代わりにPd/Rh触媒層を用いた以外 は、実施例8と同様な排気浄化装置とした。

【0088】即ち、実施例8と同じ方法で、β-ゼオラ イトとZSM5の混合物を、塗布量が焼成後に約150 g/Lになるようにコーディエライトモノリス担体に塗 布する。

【0089】次に、Pdを4重量%担持した活性アルミ ナ粉末1300g、Rhを3重量%担持した活性アルミ ナ粉末160g、酸化セリウム270g、活性アルミナ 270g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造し、このスラリーを用いてβ-ゼオライトと 20 ZSM5の混合層の上に乾燥後の触媒担体の塗布量が1 00g/Lになるようにコートし、乾燥後、400℃で 1時間焼成を行ない、排気下流部床下吸着触媒BU-7 を得た。

【0090】また、実施例8と同方法で、βーゼオライ トとZSM5の混合物を塗布量が、焼成後に約150g /Lになるようにコーディエライトモノリス担体に塗布 する。

【0091】次に、Pdを4重量%担持した活性アルミ ナ粉末1300g、Rhを3重量%担持した活性アルミ 30 ナ粉末160g、酸化セリウム270g、活性アルミナ 240g、2硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造し、このスラリーを用いてβーゼオライトと ZSM5の混合層の上に乾燥後の触媒担体の塗布量が1 00g/Lになるようにコートし、乾燥後、400℃で 1時間焼成を行ない、排気上流部ライトオフ吸着触媒B L-7を得た。

【0092】また、排気流入側に実施例1で得られた排 下流部床下吸着触媒BU-7を組み合わせ、排気下流部 タンデム型床下触媒ABU-11を得た。

【0093】排気流入側に実施例1で得られた排気上流 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-7を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-11を得た。

【0094】排気上流部(マニーブリ位置) にタンデム 型ライトオフ触媒ABL-11、排気下流部に(床下位 置)にタンデム型床下触媒ABU-11を配置して排気 ガス浄化触媒システム11を得た。

【0095】実施例12

実施例8の8-ゼオライトと25M5の混合層の上に、 Pd触媒層の代わりに、Pt/Pd/Rh触媒層を用い た以外は、実施例8と同様な排気ガス浄化装置とした。 【0096】即ち、実施例8と同じ方法で、βーゼオラ イトとZSM5の混合物を、塗布量が焼成後に約150 g/Lになるようにコーディエライトモノリス担体に塗 布する。

14

【0097】次に、Pdを4重量%担持した活性アルミ 10 ナ粉末1180g、Rhを3重量%担持した活性アルミ ・ナ粉末160g、Ptを2重量%担持した活性アルミナ 粉末240g、酸化セリウム270g、活性アルミナ1 50g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造し、このスラリーを用いてβーゼオライトと ZSM5の混合層の上に乾燥後の触媒担体の塗布量が1 00g/Lになるようにコートし、乾燥後、400℃で 1時間焼成を行ない、排気下流部床下吸着触媒BU-8 を得た。

【0098】また、実施例8と同方法で、β-ゼオライ トとZSM5の混合物を塗布量が、焼成後に約150g /しになるようにコーディエライトモノリス担体に塗布

【0099】次に、Pdを4重量%担持した活性アルミ ナ粉末1180g、Rhを3重量%担持した活性アルミ ナ粉末160g、Ptを2重量%担持した活性アルミナ 粉末240g、酸化セリウム270g、活性アルミナ1 50g、2%硝酸溶液2000gを磁性ポットに仕込 み、振動ミル装置で混合粉砕し、ウォッシュコートスラ リーを製造し、このスラリーを用いてβーゼオライトと ZSM5の混合層の上に乾燥後の触媒担体の塗布量が1 00g/Lになるようにコートし、乾燥後、400℃で 1 時間焼成を行ない、排気上流部ライトオフ吸着触媒 B L-8を得た。

【0100】また、排気流入側に実施例1で得られた排 気下流部床下三元触媒AU-1、排気流出側に上記排気 下流部床下吸着触媒BU-8を組み合わせ、排気下流部 タンデム型床下触媒ABU-12を得た。

【0101】排気流入側に実施例1で得られた排気上流 気下流部床下三元触媒AU-1、排気流出側に上記排気 40 部ライトオフ触媒AL-1、排気流出側に上記排気上流 部ライトオフ触媒BL-8を組み合わせ、排気上流部タ ンデム型ライトオフ触媒ABL-12を得た。

【0102】排気上流部(マニーブリ位置) にタンデム 型ライトオフ触媒ABL-12、排気下流部に (床下位 置)にタンデム型床下触媒ABU-12を配置して、排 気ガス浄化触媒システム12を得た。

【0103】上記各実施例に用いるゼオライトには、H 型ゼオライト以外に、Pt,Pd,Ag,Cu,Co等 の金属を担持したゼオライトを用いることも可能であ

50 る。

た。

【0104】比較例1

Pdを2重量%担持した活性アルミナ粉末1410g、活性アルミナ590g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.3L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約200g/Lになるまで繰り返し、Pd担持量が61.5g/cfとなるようにして、排気上流部ライトオフ三10元触媒AL-6を得た。

【0105】また、Pdを2重量%担持した活性アルミナ粉末1410g、活性アルミナ590g、2%硝酸溶液2000gを磁性ポットに仕込み、振動ミル装置で混合粉砕し、ウォッシュコートスラリーを製造した。このスラリーをコーディエライト製モノリス担体(1.0 L,400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に約200g/Lになるまで繰り返し、Pd担持量が80g/cfとなるようにして、排気 20下流部床下三元触媒AU-6を得た。

【0106】排気流入側に上記排気下流部床下三元触媒 AU-6、排気流出側に実施例1で得られた排気下流部 床下吸着触媒BU-1を組み合わせ、排気下流部タンデ ム型床下触媒ABUR-1を得た。

【0107】また、排気流入側に上記排気上流部ライトオフ三元触媒AL-6、排気流出側に実施例1で得られた排気上流部ライトオフ吸着触媒BL-1を組み合わせ、排気上流部タンデム型ライトオフ触媒ABLR-1を得た。

【0108】排気上流部(マニーブリ位置)にタンデム型ライトオフ触媒ABLR-1、排気下流部に(床下位置)にタンデム型床下触媒ABUR-1を配置して、排気ガス浄化触媒システムR1を得た。

【0109】<u>比較例2</u>

H型USYゼオライト (SiO, /AI, O, =50) 1000g、シリカゾル (固形分20%) 1000g、水1000gをボールミルボットに投入し、粉砕して得られたスラリーをコーディエライト製モノリス担体 (1.0L,400セル) に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に150g/Lになるまで繰り返し、排気上流部ライトオフ吸着触媒BL-9を得

【0110】H型USYゼオライト(SiO, /AI, O, =50)1000g、シリカゾル(固形分20%)1000g、水1000gをボールミルボットに投入し、粉砕して得られたスラリーをコーディエライト製モノリス担体(1.3L, 400セル)に塗布し、乾燥後、400℃で1時間、空気雰囲気中で仮焼成した。このコーティング作業を塗布量が、焼成後に150g/Lになるまで繰り返し、排気下流部床下吸着触媒BL-9を得た。

【0111】排気流入側に実施例1で得られた排気下流 30 部床下三元触媒AU-1、排気流出側に上記排気下流部 床下吸着触媒BU-9を組み合わせ、排気下流部タンデ ム型床下触媒ABUR-2を得た。

【0112】排気流入側に実施例1で得られた排気上流部ライトオフ三元触媒AL-1、排気流出側に上記排気上流部ライトオフ吸着触媒BL-9を組み合わせ、排気上流部タンデム型ライトオフ触媒ABLR-2を得た。【0113】排気上流部(マニーブリ位置)にタンデム型ライトオフ触媒ABLR-2、排気下流部に(床下位置)にタンデム型床下触媒ABUR-2を配置して、排気ガス浄化触媒システムR2を得た。

【0114】上記実施例 $1\sim12$ 及び比較例 $1\sim2$ で得られた触媒システムについての触媒仕様を表1,表2に示す。

[0115]

【表1】

ı		T	Т-					丹	
-	<i>9</i> 1	システム		排気上流部ライトオフ触線(マニープリ位置)					
ı	李 与 ·		_	非包括入例		排気波出側			7
ŀ		╅	\$##EX		MAR	b 触媒性機1層	目 触媒仕様 2 周	自检查。	
ŀ	共选闭	SASLEM-	N-1	160g/cf	} BL−:	USY	Pd	APL-1	_
L	英雄門	STSTEM- 8	AL-2	Pd 8 tt %ーアルミフ . 180g/cf	BL-1	USY	Pdates	ABL-2	_
	芝生 河 3	SYSTEM— 3	W-3	Pd12=136-711 = 1 .160g/cf	BL-1	USY	PdA	AH.—3	_
1	SH9 4	STSTEM- 4	AL-4	Pd8w1%-TNE+ .240s/cf	BL-1	USY	PdMix	ABL-4	
3	CM -715	STSTEM- 5	AL - 5	Pd 8 mt %ーアルミナ . 480g/cf	BL-1	USY	Pdhilt	ABL-5	1
3	遊門6	SYSTRI — 6	41-1	Pd 4 wt %ーアルミナ . 160g/cf	HL - 2	USY. ターゼオライト	PdA	AML-S	1
1	进97	SYSTEM - 7	AL-1	Pd 4 vt % - T n ? + . 160z/cf	HL-3	SUT . 8-121 5		AM 7	1
1	3859V 8	SYSTEM— 8	AL-I	Pd 4 vt %ーアルミナ . 160g/cf	BL-4	SUT. 8-449	PdMik	AEL - 8	ł
2	9	2121EH 8	AL-1	Pd 4 vt%ーアルミナ . 160g/cf	BL-5	STY. <i>8</i> -ゼオラ イト. ZSM5	Paren	ABL-9	l
2	16 5-j10	STSTEE -10	AL-1	Pd 4 vt%ーアルミナ . 160g/cf	BL-6	SUT. 8-447 11. ZSM5	Pt/RhMit	AHL-10	
夹	MPH1	21215H-17	AL-1	Pd 4 vt%ーアルミナ . 160g/cf	BL-7	βーゼオライト. SM5	Pd/Rhmm	ABL-11	
丸	110	STSTEM-12	M-1	Pd 4 vt.%ーアルミナ 160g/cf	BL - 8	<i>B−ゼオラ</i> イト. SM5	Pt/Pd/Rb	ARL -12	
出	25F4]	SYSTEM—K)	AL-S	12st%ーアルミナ 80g/cf	EL – 1	USY	PdAME		
址	X912	SYSTEM-83	KL− 1 .	141%-TAZ+ 160g/cf	BL — 9	USY	無し	ASIR-2	

[0116]

* *【表2】

放煤仕模一整

		7					好倒枯果
A	システム	-		# 21 7 1	液部床下		
"	春号	AMERIC			排気流		床下烛舞
—	+	JOSEPH N	124 XX 11 48	HAIR	a 触維仕様 1 層	目 放媒仕様 2 層	E No.
丸柱列	1 SYSTEM-1	W−1	160 g/cf	B07— 1	USY	Pdass	ABO- 1
突旋列	SYSTEM-2	AU — 2	Pd 8 at %ーアルミナ - 180g/cf	BV - 1	USY	P d ASSE	ABD~ 2
実施例:	SYSTEM-3	M-3	Pd12mt%-7/12+ . 160g/cf	30 – 1	USY	PdM	ABD-3
突旋网 4	SYSTEM-4	AII 4	Pd 8 wt % - アルミナ . 240g/cf	BO-1	USY	PdMX	ABD- 4
爽強例 5	SYSTEM-5	AD 5	Pd8 vt%ーアルミナ . 480g/cf	W−1	USY	PdMX	ABU - 5
实施到6	SYSTEM-6	VD- T	Pd 4 mt 96-712+	80 – 2	USY. ターゼオライト	PdMG	ABU-6
突筋河 7	SYSTEM-7	VD-1	Pd 4 vt %ーアルミナ . 160g/cf	BU — 3	β−ゼオライト. SM5	Pana	ABU-7
突進到8	STSTEM-8	AD 1	Pd 4 mt %ーアルミナ . 160g/cf	BO - 4	8-4771). SM5	Pdss	ABU – B
実施約9	SYSTEM-9	AU- 1	Pd 4mt%ーアルミナ . 160g/cf	BU-5	βーゼオライト. モルテナイト	Pdate	ABU - 9
実施到10	SYSTEM-10	AU-1	Pd 4 wt %ーアルミナ . 160g/cf	BD-6	βーゼオライト SM5	Pt/Rh##	ASU-10
突然到11	SYSTEM-11		Pd 4 mt%ーアルミナ . 160g/cf	BÚ 7	<i>βーゼオライト</i> , SM5	Pd/Rh###	ABU-11
突航到12	STSTEM-12		Pd 4 wi %ーアルミナ . 160g/cf	BU-8	βーゼオライト. SM5	Pt/Pd/Rh	
比較例1	STSTEW-R1		Pd 2 vt %-7.0 \(\tau \)	BU – 1	USY	Panes	AE0-12
H-182912	STSTEM-R2		MANIN-TAL+	-	USY	能し	AUR-2

【0117】試験例

上記実施例1~12,比較例1~2で得られた触媒シス (期 テムについて下記評価条件でHC浄化特性評価(ECモ 50 す。

ード評価,1サイクル)を、日産自動車(株)製車両 (排気量3L)を用いて行なった。その結果を表3に示す。

性能評価条件

エンジン始動時に排出されるHC浄化能を評価するた め、ECモード、1 サイクル (0~200秒) における エミッション低減率を測定した。

[0118]

【表3】

		HC低減率(%)				
64	システム番号	BCモード 1サイクル				
		0~2008				
実施例 1	system -1	7 7				
実施例 2	SYSTEM -2	8 3				
実施例 3	SYSTEM -3	. 81				
実施例 4	System -4	8 6				
実施例 5	System -5	8 8				
突施例 6	SYSTEM -6	7 8				
実施例 7	SYSTEM -7	8.0				
実施例8	SYSTEM -8	. 77				
実施例 9	SYSTEM —9	7 6				
実施例10	SYSTEM -10	7 6				
実施例11	SYSTEM -11	7 9				
実施例12	SYSTEM -12	8 2				
比較例1	System -ri	5 8				
比較例2	SYSTEM -R2	4 8				
	OTOTOM - RZ	4 8				

* [0119]

【発明の効果】本発明の排気ガス浄化装置は、排気流入 側の三元触媒と、排気流出側の吸着触媒とから構成され るタンデム触媒を少なくとも2ケ所に配置するシステム であり、従来では吸着して脱離した炭化水素は三元触媒 もしくは吸着触媒の自己浄化能にのみ依存していたが、 本発明では排気上流部(マニープリ位置)と排気下流部 (床下位置)の少なくとも2ケ所に三元+吸着のタンデ ム触媒を配置することにより、設置位置の排気上流、下 10 流にて発生する温度差と、吸着触媒の温度による炭化水 素の吸着、脱離のサイクルを利用し、排気上流部タンデ ム触媒で炭化水素を1次吸着し、排気上流部タンデム触 媒の温度上昇と共に1次排出され、浄化しきれなかった 炭化水素を排気下流部タンデム触媒で 1 次排出と同時に 2次吸着. 浄化することができ、エンジン始動時の排気 温度が低い時から排気ガス成分を十分に浄化することが できる。

20

*

フロントページの続き

(51)Int.C7.6 F01N

識別記号 庁内整理番号

FΙ

3/24

В

技術表示箇所

3/24 3/28

FOIN 3/28