3.1

(a) Sample space:

	C, 0, p=1/4	C, 1, p=1/2	C, 2, p=1/4
M, 0, p=1/4	(0,0)	(0,1)	(0,2)
M, 1, p=1/2	I, 1, p=1/2 (1,0)		(1,2)
M, 2, p=1/4	(2,0)	(2,1)	(2,2)

	C, 0	C, 1	C, 2
M, 0	1/16	1/8	1/16
M, 1	1/8	1/4	1/8
M, 2	1/16	1/8	1/16

(b) Mapping

	C, 0	C, 1	C, 2
M, 0	0	1	2
M, 1	1	1	2
M, 2	2	2	2

(c) Probabilities:

$$P(X=0)=1/16$$
,

$$P(X=1)=1/8+1/8+1/4=1/2;$$

$$P(X=2)=1-1/16-1/2=7/16$$
.

- (a) $S = \{0000,0001,\dots,1110,1111\}$, each element has an equal probability 1/16;
- (b) Mapping: 0000->0, 0001->1, ···, 1110->14, 1111->15;
- (c) $P(X=0)=P(X=1)=\cdots=P(X=15)=1/16$;
- (d) $P(Y=0)=\cdots=P(Y=7)=1/32$; $P(Y=8)=\cdots=P(Y=15)=3/32$;

3.7

	B1	B50								
B1	Χ	2	2	2	2	2	2	2	2	51
B1	2	Χ	2	2	2	2	2	2	2	51
B1	2	2	Χ	2	2	2	2	2	2	51
B1	2	2	2	Χ	2	2	2	2	2	51
B1	2	2	2	2	Χ	2	2	2	2	51
B1	2	2	2	2	2	Χ	2	2	2	51
B1	2	2	2	2	2	2	Χ	2	2	51
B1	2	2	2	2	2	2	2	Χ	2	51
B1	2	2	2	2	2	2	2	2	Χ	51
B50	51	51	51	51	51	51	51	51	51	X

 $X = \{0,2\};$

P(X=2) = (9*9-9)/(10*10-10) = 4/5; P(X=51) = 1-4/5 = 1/5.

3.11

(a)

(b)

	C, 0, p=1/16	C, 1, p=3/8	C, 2, p=9/16
M, 0, p=1/4	0	1	2
M, 1, p=1/2	1	1	2
M, 2, p=1/4	2	2	2

$$P(X=0) = 1/4*1/16=1/64;$$

$$P(X=1) = 3/8*(1/4+1/2)+1/16*1/2=5/16;$$

$$P(X=2) = 1-1/64-5/16=43/64.$$

3.14

$$P(X>=8) = P(X=8) + \cdots + P(X=15) = 1/2;$$

$$P(Y>=8) = P(Y=8) + \cdots + P(Y=15) = 3/4.$$

3.23

(a)
$$E[X] = sum_{i=0}^15 [P(X=i)*i] = 15/2;$$

(b)
$$E[X^2] = sum_{i=0}^15 [P(X=i)*i^2] = 155/2;$$

Hence, $Var[X] = E[X^2] - E[X]^2 = 85/4$;

3.32

- (a) $E[g(x)]=sum_{i=11}^15 P(X=i) = p1*sum_{i=11}^15 1/i = 0.1173;$
- (b) $E[g(x)]=sum_{i=11}^{15} P(X=i) = p1*sum_{i=11}^{15} (1/2)^{(i-1)} = 0.000946;$
- (c) $E[g(x)]=sum_{i=11}^15 P(X=i) = p1*sum_{i=11}^15 (1/2) ^(i*(i-1)/2);$

3.35

- (a) P(X=1|X>0) = (1/2)/(1/2+7/16) = 8/15; P(X=2|X>0) = (7/16)/(1/2+7/16) = 7/15;
- (b) P(X=1|M=1) = ((1/2)*(1/4)+(1/2)*(1/2))/(1/2) = 3/4;P(X=2|M=1) = (1/2)*(1/4)/(1/2) = 1/4.

(c)

	C00,1/4	C01,1/4	C01,1/4	C11,1/4
M00, 1/4				
M01, 1/4				
M10, 1/4	X=1, 1/16	X=1, 1/16	X=1, 1/16	X=2, 1/16
M11, 1/4	X=2, 1/16	X=2, 1/16	X=2, 1/16	X=2, 1/16

P(X=1|M(1)=1) = 3/8, P(X=2|M(1)=1) = 5/8,

(d) P(C=2|X=2) = 1*9/16/(1*9/16+1/4*1/16+1/4*3/8)=36/43

3.41

(a) P(X=2|1st draw=1) = 8/9, P(X=51|1st draw=1) = 1/9; P(X=51|1st draw=50) = 1;

(b)E[X|1st draw=1] = 8/9*2 + 1/9*51=67/9;

E[X|1st draw=50] = 51;

(c)E[X] = E[X|1st draw=1]*9/10+E[X|1st draw=50]*1/10=11.8;

(d) $E[X^2]=(2^2*8/9 + 51^2*(1/9))*9/10 + 51^2*1/10=523.4$

 $Var[X] = E[X^2] - E[X]^2 = 384.16$

3.50

(a)
$$p_X(k+1) = C(n,k+1) p^{(k+1)} (1-p)^{(n-k-1)}$$

$$p_X(k) = C(n,k) p^k(k) (1-p)^k(n-k)$$

 $p_X(k+1)/p_X(k) = [n*\cdots*(n-k)] / [n*\cdots*(n-k+1)] * k!/(k-1)! * p/(1-p) = (n-k)/(k+1) * p/(1-p); It is easy to verify that the equation holds when k = 0;$

(b) $p_X(k+1)/p_X(k) = 1 + [(n+1)p-k]/[k*(1-p)]$. When 0 <= k < (n+1)*p, $p_X(k+1)/p_X(k) < 1$, otherwise $p_X(k+1)/p_X(k) > 1$. Therefore $k_{max} = (n+1)*p$ denotes the peak value. If (n+1)*p is an integer, $p_X(k+1) = p_X(k)$.