Elektronik 2

FS 24 Guido Keel (Michael Lehmann) Autoren:

Simone Stitz, Laurin Heitzer

Version: 1.0.20240514

https://github.com/P4ntomime/elektronik-2

Inhaltsverzeichnis

1	Feldeffekt-Transistoren	2	10 Schaltregler	5
	1.1 FET-Typen und Symbole	2	10.1 Spannungswandler mit Spulen	5
	1.2 Sperrschicht-FET / Junction FET (JFET)		10.2 Energien in den Komponenten	5
	1.3 MOS-FETs		10.3 Aufwärtswandler (Boost, Step-Up Converter)	5
	1.4 Verstärkerschaltungen mit FETs		10.4 Aufwärtswandler: Lückender Betrieb	6
	1.5 MOS-FET als (Leistungs-)Schalter		10.5 Abwärtswandler (Buck, Step-Down Converter)	6
	1.6 Transmission Gate		10.6 Invertierender Wandler (Buck-Boost Converter)	6
	1.0 Transmission Gate	2	10.7 Flyback (Sperrwandler)	6
,	Transistor-Transistor-Logik	2	10.8 Power Fail Control (PFC)	6
_	2.1 Resistor Transistor Logik (RTL)	- 1	10.9 Aufbau Modernes Netzteil	6
			10.10Fazit Spannungswandler SMPS	6
	2.2 Dioden-Transistor-Logik (DTL)	- 1	10.101 azit Spannungswandier Sivir S	U
	2.3 Transistor-Transistor-Logik (TTL)	3	11 Passive Filter	6
2	CMOS-Logik	3	11.1 Tiefpassfilter 1. Ordnung	6
,		-	11.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung	6
		- 1	11.3 Filter 2. Ordnung	7
	3.2 Dualität NMOS – PMOS		11.4 Filter höherer Ordnung	7
	3.3 Verlustleistung bei CMOS-Logik		11.5 Zeitverhalten: Schrittantwort	7
	3.4 Verzögerungszeit	3	11.6 Schrittantworten verschiedener Polgüten	7
4	Schmitt Trigger	3	11.7 Filter 2. Ordnung (passiv und aktiv)	7
•	~	3	11.7 Then 2. Ordinang (passiv and artiv)	,
	e ee		12 Aktive Filter	7
	4.2 Aufbau invertierender digitaler Schmitt-Trigger	- 1	12.1 Sallen-Key-Filter (Einfachmitkopplung)	7
	4.3 Schmitt-Trigger vs. CMOS-Logik	3	12.2 Multiple-Feedback-Struktur	7
_	Cianaliihantuaayna	3	12.3 Sallen-Key vs. Multiple-Feedback Struktur	7
3	Signalübertragung 5.1 Leitungstheorie	- 1	1210 Sailen 1105 151 112anapie 1 coasant Strainai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
	e e e e e e e e e e e e e e e e e e e		13 Zustandsvariablen-Filter (Biquad-Filter)	7
	5.2 Einfluss / Relevanz von Refelxionen	3	13.1 Zustandsvariablen-Filter (Biquad-Filter)	7
6	High-Speed-Logik	3	13.2 Vorgehen: UTF aus OPV-Filterschaltung ermitteln	8
U	6.1 Emitter Coupled Logic (ECL)	- 1		
	6.2 Current Mode Logic (CML)		14 Analyse von Filterschaltungen mit Signalflussdiagrammen	8
	0.2 Current Would Logic (CML)	7	14.1 Eingangsadmittanzen / (Eingangsimpedanzen)	8
7	Spannungsreferenzen	4	14.2 OpAmp Impedanzfunktionen	8
•	7.1 Spanungsteiler	- 1	14.3 Regel von Mason (vereinfacht)	8
	7.2 Diodenreferenz			
	7.3 Spannungsreferenz mit mehreren Dioden		15 Switched-Capacitor-Verstärker	8
	7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)		15.1 Switched-Capacitor-Verstärker	8
	7.5 Bootstrap-Referenz (VD Stromquelle)		15.2 Vergleich RC- und SC-Integrator	8
	7.5 Bootstrap-Referenz (VD Stromquene)		15.3 RC- / SC-Filter	8
	1 , ,		15.4 Fazit Filter	8
	7.7 Bandgap-Spannungsreferenz	4	16 Ciana Daka Wandlan	0
8	Lineare Spannungsregler	4	16 Sigma-Delta-Wandler	8
	8.1 Spannungsstabilisierung mit Z-Diode und BJT		16.1 Dual-Slope-Wandler	8
	8.2 Linearer Spannungsregler		16.2 Single-Slope-Wandler	9
	8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)		16.3 Dual-Slope-Wandler für pos. und neg. Eingangsspannungen	9
	8.4 Einstellbarer Serie-Spannungsregler		16.4 Aufbau Sigma-Delta-ADC	9
	6.4 Emstendarer Serie-Spannungsregier	3	16.5 Sigma-Delta-Modulator 1. Ordnung	9
9	Spannungswandler mit Ladungspumpen	5	16.6 Sigma-Delta-Modulator im Zeitbereich	9
-	9.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)		16.7 Modellierung Sigma-Delta-Modulator im Frequenzbereich	9
	9.2 Grundprinzip Ladungspumpen		16.8 Fazit Sigma-Delta-Modulatoren 1. Ordnung	9
	9.3 Allgemeine Funktionsweise geschaltete Kapazitäten		16.9 Oversampling / Signal-Rausch-Abstand (SNR)	9
		J	ID IIINIGTO 2-LIEU 2-Wandler / Liraning	ų
		5	10.1051gma-Detta-wandiel 2. Ordining	
	9.4 Spannungsinversion mit Switched Capacitors			0
		5	17. Anhang 17.1 Temperaturabhängigkeit von Widerständen	9

1 Feldeffekt-Transistoren

1.1 FET-Typen und Symbole

1.1.1 Anschlüsse eines FET

Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

1.2 Sperrschicht-FET / Junction FET (JFET)

1.2.1 Kennlinien

1.2.2 Linearer Bereich (gesteuerter Widerstand)

- Für kleinen Spannung-Unterschied V_{DS}
- V_{GS} ändert Dicke der Raumladungszone (Kanal)
- \bullet n-Kanal JFET: Je negativer V_{GS} , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_D = \frac{2 \cdot I_{DSS}}{V_p^2} (V_{GS} - V_p - \frac{V_{DS}}{2}) V_{DS}$$

1.2.3 Sättigungs-Bereich (Stromquelle)

- Für hohes V_{DS} wird leitender Kanal abgeschürt
- → Strom kann nicht weiter steigen (Stromquelle)
- ullet Übergang gest. Widerstand zu Stromquelle @ V_{DSP} $\rightarrow V_{DSP} = V_{GS} - V_p (V_p = \text{Pinch-Off-Spannung})$

$$I_D = \frac{I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p)^2$$

Verstärkungsmass Transkonduktanz:

$$g_m = \frac{2 \cdot I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p) = \frac{2}{|V_p|} \cdot \sqrt{I_{DSS} \cdot I_D} \qquad [g_m] = S$$

1.3 MOS-FETs

1.3.1 Aufbau

- L Länge des Transistors
- Breite des Transistors
- N-Kanal FET: Drain und Source sind n-dotiert
- Kanal ist p-dotiert

1.3.2 Kennlinien

1.3.3 Bereiche

- Sperrbereich: $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich: $V_{GS} > V_{TH}$
- Sättigungsbereich (Stromquelle): $V_{DS} > V_{GS} V_{TH}$

Anlaufbereich (Linearer Bereich)

Sättigungsbereich (Stromquelle)

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad \qquad I_{D,sat} = \frac{\beta}{2} \cdot (V_{GS} - V_{TH})^2$$

1.3.4 Kleinsignal-Ersatzschaltung (MOS-FET)

1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie

Für den n-Kanal FET gilt:

- Threshold-Spannung V_{TH} sinkt mit 1-2 $\frac{\mu V}{V}$
- β sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt I_D für fixes V_{GS} konstant

1.4 Verstärkerschaltungen mit FETs

1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von R_L in das Ausgangskennlinienfeld eingezeichnet:

1.4.2 Push-Pull / Digitaler Inverter

- V_{in} geht auf NMOS und PMOS
- Ermöglicht grössere Verstärkung

Für
$$V_{\rm in} \approx \frac{V_{\rm DD}}{2}$$
 gilt:

$$A_{V0} = -(g_{m1} + g_{m2}) \cdot (r_{DS1} || r_{DS2})$$

1.5 MOS-FET als (Leistungs-)Schalter

Wenn der FET als Schalter eingesetzt wird, so arbeitet er im linearen Bereich $(V_{\text{GS}} > V_{\text{TH}}, \text{d.h. } V_{\text{out}} < V_{\text{DD}} - V_{\text{TH}})$

$$I_{\text{D,lin}} = \beta \cdot (V_{\text{GS}} - V_{\text{TH}} - \frac{V_{\text{DS}}}{2}) \cdot V_{\text{DS}}$$
 $r_{\text{DS}} = \frac{\text{d}V_{\text{DS}}}{\text{d}I_D} = \frac{1}{\beta \cdot (V_{\text{GS}} - V_{\text{TH}})}$

$$r_{\text{DS}} = \frac{\text{d}V_{\text{DS}}}{\text{d}I_D} = \frac{1}{\beta \cdot (V_{\text{GS}} - V_{\text{TH}})}$$

Schalter geschlossen: $R_{\text{FET}} = R_{\text{DS(on)}}$

Schalter offen: $R_{\text{FET}} = \infty$

1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{\rm DS} * I_{\rm DS}^2 = 0 \,\mathrm{W}$$

$$\Delta T = R_{\rm th} \cdot P_V$$

1.6 Transmission Gate

Im Bild links gilt: $V_{DD} = 5 \text{ V}$, $V_{SS} = 0 \text{ V}$

- NMOS (oben) leitet für $V_{\rm in} < V_{\rm DD} T_{\rm TH,n}$ PMOS (unten) leitet für $V_{\rm in} > V_{\rm SS} T_{\rm TH,p}$
- Source und Drain austauschbar
 - → Strom kann in beide Richtungen fliessen

Transistor-Transistor-Logik

- · Meist statischer Stromverbrauch
- Asymmetrische Schaltschwellen (weniger Marge als CMOS-Logik)

2.1 Resistor Transistor Logik (RTL)

- Ausgangsspannung $V_{\rm out} = V_+$ oder $V_{\rm out} = V_{\rm CE,sat}$ Fan-Out ist begrenzt (Werden zu viele weitere Gatter an
- den Ausgang gehängt, so reicht der Strom nicht mehr, um diese zu treiben → Spannungslevel stimmen nicht mehr, um Transisoren durchzusteuern)

2.2 Dioden-Transistor-Logik (DTL)

Bild: NAND-Gate

- Fan-Out grösser, da Transistor aktiv nach '0' zieht
- R₂ muss keine Gatter treiben (kein grosser Stromfluss)
- Nachteile: Sehr tiefer Störabstand; Transistor leitet schon bei Spannungen, welche kaum > 0 V sind

2.3 Transistor-Transistor-Logik (TTL)

- Schaltschwelle am Eingang wird durch Dioden V₃ und V₄ um 1.4 V erhöht
- Dioden V₁ und V₃ bilden npn-Struktur
 → npn-Transistor

3 CMOS-Logik

- Entweder leitender Pfad nach V_{SS} (NMOS) oder V_{DD} (PMOS)
- Kein statischer Stromverbrauch
- · Langsamer als Bipolar
- Symmetrische Schaltschwellen bei ca. $\frac{V_{\text{DD}}}{2}$ (Übertragungskennlinie)
- Output-Level $V_{\rm ol}$, $V_{\rm oh}$ näher bei Speisung als Input Level $V_{\rm il}$, $V_{\rm ih}$ \Rightarrow mehr Marge
- Höhere Speisespannung → weniger propagation delay
- Nicht geeignet zur Datenübertragung über längere Strecken (kein 50 Ω Abschluss)

3.1 Grundgatter in CMOS-Logik

3.2 Dualität NMOS – PMOS

3.3 Verlustleistung bei CMOS-Logik

$$P_V = C \cdot V_{\rm CC}^2 \cdot f$$

C Kapazität (aus Datenblatt)

f Frequenz

3.4 Verzögerungszeit

Linearer Bereich

$$t_{\rm pHL} = 0.69 \cdot R_{\rm on} \cdot C_L$$

→ Exponentielle Entladung!

Sättigung (Stromquellen-Bereich)

$$t_{\text{pHL}} = \frac{C_L \cdot \frac{V_{\text{swing}}}{2}}{I_{\text{sat}}} \approx \frac{C_L}{k_n \cdot V_{\text{DD}}}$$

→ Lineare Entladung!

4 Schmitt-Trigger

- Schaltschwellen müssen nicht sehr genau sein
- Schmitt-Trigger garantieren auch bei verrauschten Signalen saubere (einmalige) Schaltschwellen, dank der Hysterese

4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger

- M_1, M_2 : Digitale Inverter
- M₃, M₄: gesteuerte Widerstände
- Für $V_{\text{out}} = 0$: M_4 leitet, M_3 sperrt
- Für V_{out} = 1: M₃ leitet, M₄ sperrt
 M₃, M₄ verschieben Schaltschwellen abhängig von

4.2 Aufbau invertierender digitaler Schmitt-Trigger

- Ohne M_5 , M_6 : Normaler Inverter mit je 2 Serie-Transistoren
- Für $V_{\text{out}} = 1$: Durch M_5 fliesst Strom in M_1
- V_{in} muss höher sein, um Strom der PMOS aufzunehmen
 → Höhere Schaltschwelle für High-Log-Übergang
- 'Inverses' gilt für M_6 und M_4

4.3 Schmitt-Trigger vs. CMOS-Logik

5 Signalübertragung

5.1 Leitungstheorie

- Leitungen haben Widerstände, Kapazitäten und Induktivitäten → RLC-Netzwerke
- Fortpflanzungsgeschwindigkeit Signal: v = 10 20 cm/ns (Lichtgeschwindigkeit: c = 30 cm/ns)
- • Ev. Impedanzanpassungen zur Verhinderung von Reflexionen nötig (meistens $50\,\Omega$)
- CMOS-Logik: tiefen Quellenwiderstand, hohen Eingangswiderstand
 Nicht geeignet zur Datenübertragung über 'längere Strecken'

5.2 Einfluss / Relevanz von Refelxionen

5.2.1 Keine Reflexionen

Wenn nichts anderes bekannt gilt: $T_r = \frac{1}{10} \cdot T$

$$T_d < \frac{1}{2} \cdot T_r$$

 $T_r = T_f$ Anstiegs-/bzw. Abfallzeit des Signals

 T_d Laufzeit des Signals T Periodendauer

5.2.2 Reflexionen

max Maximal enthaltene Frequenz im Signal

l Länge der Leitung

6 High-Speed-Logik

- Sättigung verhindern, da langsam (bei Bipolar-Transistoren)
- Reduzierter Spannungshub
- Stromsteuerung, da Ströme schneller geschaltet werden als Spannungen

6.1 Emitter Coupled Logic (ECL)

- 2 Familien: 10k (langsamer) und 100k (schneller)
- Positive Speisung: $V_{CC} = 0 \text{ V}$
- Negative Speisung: $V_{\text{EE}} = -4.5 \text{ V} / V_{\text{EE}} = -5.2 \text{ V}$
- ICs werden warm (40 mW pro Gatter)

- Eingangssignal $V_{\rm I}$ wird mit fixer Referenz $V_{\rm R}$ verglichen
- Von $V_{\rm R}$ 100 mV bis $V_{\rm R}$ + 100 mV **kippt Ausgangsspannung** von $V_{\rm CC}$ auf $V_{\rm CC}$ $R_{\rm C}$ · $I_{\rm C}$
- Differentieller Spannungshub der Ausgänge:
- $V_{\mathrm{diff}} = \pm R_{\mathrm{C}} \cdot I_{\mathrm{C}}$

6.1.1 Positive Emitter Coupled Logic PECL

- Positive Speisung: $V_{\text{CC}} = 5 \text{ V}$
- Negative Speisung: $V_{\text{EE}} = 0 \text{ V}$
- Ausgangsbeschaltung mit 50 Ω Abschluss zu V_{CC} 2 V
 ⇒ Reduktion der Reflexionen!
- · Spannungspegel sind kompatibel zu CMOS / TTL

6.1.2 Low Voltage Positive ECL (LVPECL)

- Speisespannungen: $V_{\text{CC}} = 3.3 \text{ V}$; $V_{\text{EE}} = 0 \text{ V}$
- Weniger Leistung als 5 V Logik; leichter anpassbar an 3.3 V Logik

6.2 Current Mode Logic (CML)

- Terminierung am Eingang der Folgestufe gegen $V_{\rm CC}$
- Äquivalenter Widerstand: $R_{\text{C}_{\text{eq}}} = 50 \,\Omega \parallel 50 \,\Omega = 25 \,\Omega$

Differentielle Spannung: $V_{\text{diff}} = \pm R_{\text{Ceq}} \cdot I_q$

6.2.1 CML vs. ECL

CML

- Diff-Amp mit Transistor-Buffer; Ausgang am Emitter
- Single-ended Input (2. Eingang auf fixer Spannung)
- Single-ended Output (z.T. auch differentiell)
- Ausgang direkt vom Diff-Amp
- · Differentieller Input und differentieller Output
- Impedanzanpassung zur Reduktion von Reflexionen (50 Ω)

6.2.2 Vorteile / Nachteile von CML gegenüber CMOS-Logik

- + high Speed
- konstanter Strom (kaum Speisungseinbrüche)
- + differentiell: wenig Störung
- + kann Kabel treiben

- hoher statischer Stromverbrauch
- differentiell: benötigt doppelt so viele Leitungen
- aufwändiges PCB-Layout wegen angepassten Leistungsimpedanzen nötig

7 Spannungsreferenzen

- Referenzspannungsquellen liefern idealerweise Ausgangsspannungen, welche unabhängig von Temperatur, Speisespannung und Last sind
- 2 Hauptprinzipien: Zenerdioden (meistens mit $V_Z = 5.6 \,\mathrm{V}$) und Bandgap-Quellen mit $V_{\text{out}} = 1.25 \text{ V}$

7.1 Spanungsteiler

VPOS REF

Speisespannungsabhängigkeit

Spannungsänderung:

$$\Delta V_{\text{ref}} = \Delta V_{\text{POS}} \frac{R_2}{R_1 + R_2}$$

$$V_{\text{ref}} S = \frac{\frac{\Delta V_{\text{ref}}}{\Delta V_{\text{POS}}}}{\frac{\Delta V_{\text{POS}}}{\Delta V_{\text{POS}}}} = 1 \implies \text{schlecht}$$

Sensitivität:

Temperaturabhängigkeit

Da die Widerstände gleiche Temperaturkoeffizienten haben ändert sich der Strom durch R₁ und R₂, jedoch nicht das Widerstandsverhältnis $\Rightarrow V_{\text{ref}}$ bleibt **konstant** \Rightarrow gut

Spannungsänderung bei Lastwechsel

Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

 $R_P = R_1 || R_2 \implies$ sehr lastabhängig, da R_P gross

7.2 Diodenreferenz

$$V_{\text{ref}} = V_D = n \cdot V_T \cdot \ln\left(\frac{I}{I_S}\right) \quad \text{mit } V_T = \frac{kT}{q} \approx 25 \text{ mA}$$

Speisespannungsabhängigkeit

Sensitivität:

$$\frac{V_{\text{ref}}}{S} = \frac{1}{\ln\left(\frac{I}{I_S}\right)} = 0.065 \implies \text{gut}$$

Temperaturabhängigkeit

Diode hat einen Temperaturkoeffizient von $-2\frac{mV}{K}$, d.h. V_{ref} ändert ebenfalls mit $-2\frac{mV}{K}$ \Rightarrow schlecht

Spannungsänderung bei Lastwechsel

Diode durch Kleinsignal-Ersatzschaltung ersetzen und Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

 $R_{\rm P} = R_1 \| r_D$ \Rightarrow weniger lastabhängig, da $r_D = \frac{n \cdot V_T}{I_D} \approx 7 \,\Omega$

7.3 Spannungsreferenz mit mehreren Dioden

- m = Anzahl Dioden in Serie (links: m = 4)
- Strom durch Dioden muss \geq 0 A sein, damit $V_D \approx 0.7 \,\mathrm{V}$
- Spannung über m Dioden: $V_{\text{out}} = m \cdot V_D$
- Max. Ausgangsstrom: $I_{\text{out,max}} = \frac{V_{\text{pos}} V_{\text{out}}}{R_1}$
- Temperaturabhängigkeit: $TK_{\text{tot}} = m \cdot -2 \frac{\text{mV}}{V}$

7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)

Shunt-Regler: Überflüssiger Strom wird durch ein Element abgeführt → Je nach Last wird mehr oder weniger Strom in Z-Diode verheizt

- V_{REF} entspricht Zener-Spannung der Z-Diode
- Häufigste Zener-Spannung: $5.6 \text{ V} \implies \text{TK} = 0 \frac{\text{mV}}{\text{K}}$
- Strom $I = \frac{V_{\text{POS}} V_{\text{REF}}}{R_1}$ fliesst entweder durch Diode oder durch Last $I_{\text{out}} < I_{\text{out}, \max} = \frac{V_{\text{POS}} V_{\text{REF}}}{R_1}$

7.5 Bootstrap-Referenz (V_D Stromquelle)

- Stromspiegel M₃ und M₄ ⇒ I₁ = I₂
 Stromspiegel M₁ und M₂ ⇒ V_{GS1} = V_{GS1} da I₁ = I₂
- Da Temperaturkoeffizient von $V_{D1} \approx -2 \frac{\text{mV}}{\text{K}}$ nimmt I_{out} mit steigender Temperatur ab → schlechte Referenz
- Schaltung hat zwei mögliche Arbeitspunkte $(AP I_1 = I_2 = 0 \text{ ist unerwünscht!})$

$$V_{D1} = I_2 \cdot R_2 = V_{R2}$$
 $I_{REF} = I_1 = I_2$

$$I_{\text{REF}} = I_1 = I_2$$

7.6 Proportional To Absolute Temperature (PTAT)

$$\begin{split} V_D &= n \cdot \frac{kT}{q} \cdot \ln \left(\frac{I_D}{I_S} \right) \quad V_D N = n \cdot \frac{kT}{q} \cdot \ln \left(\frac{I_D}{N \cdot I_S} \right) \\ \\ \Delta V_D &= V_D - V_D N = n \cdot \frac{kT}{q} \cdot \ln(N) = TK \cdot T \end{split}$$

 $\Rightarrow \Delta V_T$ ist Proportional zur absoluten Temperatur T

7.7 Bandgap-Spannungsreferenz

$$V_{\text{REF}} = K \cdot V_{\text{PTAT}} + V_D$$

- Der positive Temperaturkoeffizient von V_{PTAT} wird mit dem Faktor K verstärkt, sodass $K \cdot TK_{\text{PTAT}} = +2 \frac{\text{mV}}{\text{K}}$
- Der nun positive Temperaturkoeffizient wird mit einer Diodenquelle mit $TK_{\text{Diode}} = -2\frac{\hat{m}V}{K}$ kompensiert
- Der gesamte Temperaturkoeffizient $TK_{\text{bandgap}} = 0 \frac{\text{mV}}{\text{K}}$
- V_{REF} buffern, damit der Ausgang belastet werden darf

Beispiel: LM4041 Shunt Voltage Bandgap Reference

$$V_{\text{out}} = V_Z = V_{\text{REF}} \left(1 + \frac{R_2}{R_1} \right)$$

- Einstellbare Referenzspannung $V_Z = V_{\text{out}}$
- Interne Referenz: $V_{REF} = 1.25 \text{ V}$ (Bandgap-Referenz)

8 Lineare Spannungsregler

8.1 Spannungsstabilisierung mit Z-Diode und BJT

$$V_{\rm out} = V_Z - V_{\rm BE}$$

- Ausgang kann viel Strom liefern
- Ausgangsspannung sinkt um ca. 20 mV bei Verdoppelung des Stroms
- Ausgangsspannung sinkt um $-2\frac{\text{mV}}{\text{K}}$
- Keine Regelung der Ausgangsspannung
- · Schnell und stabil, aber nicht genau

8.2 Linearer Spannungsregler

$$V_{\rm a} = V_{\rm ref} \Big(1 + \frac{R_1}{R_2} \Big)$$

$$P_{\rm V} = V_{\rm CE} \cdot I$$

- OpAmp Ausgang ändert so lange, bis für die Spannungen $V_{R2} = V_{\text{ref}} (= 1.25 \text{ V}) \text{ gilt}$
- Minimaler Spannungsabfall V_{CE} über Regler: bis 2.5 V
- Regler kann sehr warm werden \Rightarrow Verlustleistung P_V

8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)

- Feedback auf positiven OpAmp-Eingang!
- Ansteuerung Längstransistor mit Basisspannung < Vout
- Kleiner minimaler Spannungsabfall V_{CE} über Regler ($V_{\text{CE,sat}}$) • Auch erhältlich mit PMOS-Transistor statt pnp-Transistor
- → Dropout-Spannung über Regler (PMOS) ist dann abhängig vom Laststrom (PMOS = gesteuerter Widerstand)

8.4 Einstellbarer Serie-Spannungsregler

$$V_{\rm a} = V_{\rm ref} \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{\rm adj} \cdot R_2$$

- Widerstände R_1 und R_2 sind **extern** beschaltet!
- Interne Referenz: $V_{\text{ref}} = 1.25 \text{ V}$ (Bandgap)
- OpAmp regelt, damit $V_{R_1} = V_{\text{ref}}$
- Damit wird $V_{R2} = V_{\text{ref}} \cdot \frac{R_2}{R_1} + I_{\text{adj}} \cdot R_2$

9 Spannungswandler mit Ladungspumpen

- · Ladung kann nicht springen und nicht vernichtet werden
- → Ladung wird umverteilt!
- Ladungspumpen sind billige, effiziente Spannungswandler (Wirkungsgrad > 99 % möglich)

 $Q = C \cdot V$

9.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)

Hinweis: R_S entspricht dem Schalter-Widerstand Weiter gilt: $t^* = t - \frac{T}{2}$

wetter gift.
$$t = t - \frac{1}{2}$$

Phase PH1 (S1 geschl.)
$$I_{\text{in}} = I_{\text{C}} = \frac{V_{\text{in}}}{R_{\text{S}}} \cdot e^{\frac{t}{R_{\text{S}}} \cdot C}$$

$$I_C = -I_{\text{out}} = -\frac{v_{\text{in}}}{R_{\text{S}}} \cdot e^{R_{\text{S}} \cdot C}$$

$$\overline{I_{\text{out}}} = \frac{\Delta Q}{T} = \frac{C}{T} \cdot V_{\text{in}}$$

Phase PH2 (S2 geschl.) $I_C = -I_{\text{out}} = -\frac{V_{\text{in}}}{R_{\text{S}}} \cdot e^{\frac{f^*}{R_{\text{S}} \cdot C}}$ Durchschnittl. Strom $\overline{I_{\text{out}}} = \frac{\Delta Q}{T} = \frac{C}{T} \cdot V_{\text{in}}$ Der 'switched capacitor' C hat einen **äquivalenten Wider**-

9.2 Grundprinzip Ladungspumpen

Ausgangsspannung V_{out} nähert sich schrittweise exponentiell der Eingangsspannung

Im ersten Zyklus ist $V_{\text{out}} = 0 \text{ V}$

Phase PH1 Kapazität C_1 wird auf V_{in} geladen

$$Q_1 = C_1 \cdot V_{\text{in}} \text{ und } Q_2 = C_2 \cdot V_{\text{out}}$$

Phase PH2 Ladung verschiebt sich von C_1 auf C_2 , bis beide Kapazitäten dieselbe Spannung aufweisen

 $Q_{\text{tot}} = Q_1 + Q_2 = C_1 \cdot V_{\text{in}} + C_2 \cdot V_{\text{out}}$

⇒ Neue Ausgangsspannung: $V_{\text{out}} = \frac{Q_{\text{tot}}}{C_1 + C_2}$ Wichtig: Die PH0 muss vollstädig abgeschlossen sein, bevor PH2 beginnt.

9.3 Allgemeine Funktionsweise geschaltete Kapazitäten

Switched Capacitor C1

Ersatzschaltung mit Req

- Strom fliesst in 'Paketen': $\Delta O = C_1 \cdot \Delta V$
- Durchschnittlicher Strom proportional zu C_1 , ΔV und Schaltfrequenz f

- Durchschnittlicher Strom proportional zu ΔV und $\frac{1}{R}$
- Geschaltetes C_1 bildet äquivalenten Widerstand $R_{eq} = \frac{1}{f \cdot C_1} = \frac{I}{C}$

den **Spannungsteiler** von R_L und R_{eq} bestimmt wird:

$$V_{\text{out}} = V_{\text{in}} \cdot \frac{R_L}{R_{\text{eq}} + R_L}$$

$$I = \frac{V_1 - V_2}{R_{\text{eq}}}$$

9.4 Spannungsinversion mit Switched Capacitors

Ausgangsspannung V_{out} nähert sich schrittweise exponentiell $-V_{\text{SRC}}$ an! Im ersten Zyklus ist $V_{\text{out}} = 0 \text{ V}$

Phase PH1 Kapazität C_1 wird auf V_{SRC} geladen

 $Q_1 = C_1 \cdot V_{SRC}$ und $Q_2 = C_2 \cdot V_{out}$

Phase PH2 Positiver Anschluss von C_1 wird mit GND verbunden

 \rightarrow Negativer Anschluss von C_1 auf Potential $-V_{SRC}$

$$Q_{\text{tot}} = Q_2 - Q_1 = C_2 \cdot V_{\text{out}} - C_1 \cdot V_{\text{SRC}}$$

 \rightarrow Neue Ausgangsspannung: $V_{\text{out}} = \frac{Q_{\text{tot}}}{C_1 + C_2}$

Für $C_1 = C_2$ ändert sich die Ausgangsspannung V_{out} folgendermassen:

$$V_{\text{out}} = \left(-\frac{1}{2}, -\frac{3}{4}, -\frac{7}{8} \cdots - 1\right) \cdot V_{\text{SRC}}$$

9.5 Spanungsverdoppler mit Switched Capacitors

- PH1: C₁ wird auf Eingangsspannung V_{in} aufgeladen
- PH2: Negativer Anschluss CAPN wird mit V_{SRC} verbunden
 - → Positiver Anschluss C₁ springt auf 2 · V_{SRC}
- Ladung teilt sich zwischen C_1 und C_2 auf, sodass V_{out} schrittweise ansteigt

9.6 Dickson Charge Pump (Spannungsvervielfacher)

- Mehrstufige Spannungsvervielfacher (hier: einstufig)
- Anzahl Dioden n
- Kaskadierung möglich

$$V_{\mathrm{out}} = n \cdot (V_{\mathrm{SRC}} - V_D)$$

9.6.1 Mehrstufige Dickson Charge Pump

· Mehrstufige Spannungsvervielfacher (hier: n = 5)

$$V_{\text{out}} = n \cdot (V_{\text{SRC}} - V_D)$$

10 Schaltregler

SMPS (switched-mode-power-supply) sind getaktete Systeme, deren übliche Schaltfrequenzen im Bereich von 20 kHz bis zu einigen MHz liegen.

10.1 Spannungswandler mit Spulen

- Grundprinzip
 - Energie wird aus einer (Spannungs-)Quelle bezogen, in verlustarmen Elementen (Spulen, Kondensatoren) zwischengespeichert, auf die gewünschte Spannung ge-
- Gemeinsamkeiten aller aufgeführten Spannungswandler mit Spulen
 - Energie wird in Magnetfeld gespeichert $E_L = \frac{1}{2}L \cdot i_L^2$
 - Spannung über Spule bewirkt Änderung des Stroms
 - $V_L = L \cdot \frac{di_L}{dt}$ oder $I_L = \frac{1}{L} \int V_L(t) dt + I_0 = \frac{V_L}{L} \cdot t + I_0$
 - Zur Stabilisierung der Spannung werden Kondensatoren benötigt (potentieller LC-Schwingkreis!)
 - Für die meisten Rechnungen kann man annehmen, dass:
 - * Vin und Vout konstant sind
 - * Die Schalter ideal sind (kein Schaltwiderstand)
 - * Die Dioden keinen Spannungsabfall haben

Für beide Schaltungen gilt, dass der finale Wert der Ausgangsspannung Vout = V2 durch Hinweis: Zur Steigerung der Effizienz werden Dioden manchmal durch MOS-FETs ersetzt ('nur' R_{DS.on} statt grosser Spannungsabfall). Die Schalter werden in der Praxis ebenfalls mit einem FET realisiert.

10.2 Energien in den Komponenten

Energie in Spule

$$\begin{split} E_L &= \tfrac{1}{2} \cdot L \cdot i_L^2 \\ E_C &= \tfrac{1}{2} \cdot C \cdot V_C^2 \end{split}$$

Energie in Kondensator

Energie in Last (pro Periode) $E_{\text{load}} = \frac{1}{2} P_{\text{load}} \cdot T_{\text{clk}} = \frac{1}{2} \cdot \frac{V_{\text{out}}^2}{R_{\text{load}}} \cdot T_{\text{clk}}$

10.3 Aufwärtswandler (Boost, Step-Up Converter)

· Schalter geschlossen

• $V_L = V_{\text{in}}$ liegt an Spule an

- 1. Phase Energie in Spule speichern
 - Schalter offen
 - - Strom sinkt, wenn $V_{\text{out}} > V_{\text{in}}$
- i_L muss nicht bei $I_0 = 0$ starten! • Eingeschwungener Zustand: $i_L = I_0$

In beiden Phasen gelten die folgenden Formeln:

Ladephase

 $\Delta I_{L_{\rm on}} = \frac{1}{L} \cdot V_{\rm in} \cdot t_{\rm on}$ $I_{L_{\text{on}}} = \frac{1}{L} \cdot V_{\text{in}} \cdot t_{\text{on}} + I_0$ $\Delta I_{L_{\text{off}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{off}}$

Entladephase

 $I_{L_{\text{off}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{off}} + I_0$

Gleichgewicht (eingeschwungen) Ausgangsspannung

$$\begin{split} \Delta I_{L_{\text{on}}} &= -\Delta I_{L_{\text{off}}} \\ V_{\text{out}} &= V_{\text{in}} \cdot \left(1 + \frac{t_{\text{on}}}{t_{\text{off}}}\right) \end{split}$$

Die Ausgangsspannung V_{out} ist abhängig von der Last \Rightarrow Bei hochohmiger Last kann die Ausgangsspannung sehr gross werden!

10.3.1 Synchronous Boost Converter

- Diode ersetzt durch Schalter SW2
- Entweder SW1 oder SW2 geschlossen
- VSW somit immer leitend verbunden, entweder mit GND oder mit V_{out}
 - → In Spule fliesst immer ein Strom

Achtung: Bei kleinen Lasten fliesst Strom in die Quelle zurück und die Verlustleistung in der Spule ist grösser (Drahtwiderstand)

10.4 Aufwärtswandler: Lückender Betrieb

- Es existiert ein 3. Zustand, in welchem kein Strom durch Spule fliesst
- Aus $i_I = 0$ folgt $V_I = 0$
- Schalter SW offen, damit Spannung am Knoten SW = V_{in} wird → Diode sperrt
- Control schliesst Schalter, nachdem $V_{\text{out}} < V_{\text{out,soll}}$ ist \Rightarrow Regelung von V_{out}

10.4.1 Regelung der Ausgangsspannung: voltage-mode control

- Verstärker mit Verstäkung A0
- Komparator vergleicht V_{ERROR} mit V_{RAMP}
- $V_{\mathrm{OUT}} V_{\mathrm{REF}} \uparrow$, $V_{\mathrm{ERROR}} \uparrow$, Schalter muss länger geschlossen bleiben
- \Rightarrow grösserer Duty Cycle $\Rightarrow V_{\text{OUT}} \uparrow$

10.4.2 Regelung der Ausgangsspannung: current-mode control

- Strom wird mit Shunt-Widerstand durch Spannung V_{SENSE} gemessen
- Verstärker mit Verstäkung A0
- Komparator resetted Flip-Flop
 - → Schalter (FET) öffnet
- Häufiger zur Regelung verwendet als vorherige Schaltung

10.5 Abwärtswandler (Buck, Step-Down Converter)

Vereinfachungen: Vout konstant, kein Spannungsabfall über Diode und Schalter Formeln gelten nur, wenn immer ein Strom in der Spule fliesst

Ladephase

 $\Delta I_{L_{\text{on}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{on}}$ $I_{L_{\text{on}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{on}} + I_0$

Entladephase

 $\Delta I_{L_{\text{off}}} = -\frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}}$ $I_{L_{\text{off}}} = -\frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}} + I_{0}$ $\Delta I_{L_{\text{on}}} = -\Delta I_{L_{\text{off}}}$

Gleichgewicht (eingeschwungen)

Ausgangsspannung

 $V_{\text{out}} = V_{\text{in}} \cdot \frac{t_{\text{or}}}{T}$

10.6 Invertierender Wandler (Buck-Boost Converter)

Der Converter kann im buck-mode oder boost-mode betrieben werden buck-mode: Duty Cycle $\frac{t_{on}}{T}$ < 0.5; boost-mode: Duty Cycle $\frac{t_{on}}{T}$ > 0.5

Ladephase

Entladephase ($V_{\text{out}} < 0$)

Gleichgewicht (eingeschwungen) Ausgangsspannung

$$\Delta I_{L_{\text{on}}} = \frac{1}{L} \cdot V_{\text{in}} \cdot t_{\text{on}}$$

$$\Delta I_{L_{\text{off}}} = \frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}}$$

$$\Delta I_{L_{\text{on}}} = -\Delta I_{L_{\text{off}}}$$

$$V_{\text{out}} = -V_{\text{in}} \cdot \frac{I_{\text{on}}}{I_{L_{\text{off}}}}$$

10.7 Flyback (Sperrwandler)

- Ermöglicht galvanische Trennung zwischen Ein- und Ausgang
- Transformator mit grosser Induktivität nötig zur Energiespeicherung (mit Luftspalt)
- Phase 1 (Schalter geschlossen)
 - Linear steigender Strom auf Primärseite; Energie wird im Magnetfeld gespeichert
- Phase 2 (Schalter offen)
 - Linear sinkender Strom auf Sekundärseite; Magnetfeld baut sich über Sekundärspule ab
- Phase 3 (LC-Schwingkreis)
 - C parallel zu Schalter auf Primärseite wird wirksam

10.8 Power Fail Control (PFC)

- Ohne PFC
- Strom fliesst nur wenn $V_{\rm in} > V_C$ (nur bei Spannungsmaximum) → erzeugt Oberwellen (Blindleistung)
- fliessen, nicht nur beim Spannungsmaximum
- Lösung: 1. Stufe mit Boost Converter

Strom soll möglichst sinusförmig

10.9 Aufbau Modernes Netzteil

- 1. Stufe: Gleichrichtung und Boost Converter mit PFC
- 2. Stufe: Reduktion auf Systemspannung (Bus voltage) mit Flyback-Converter
- 3. Stufe: Buck Converter (ev. mehrere)

10.10 Fazit Spannungswandler SMPS

- Geschaltete Spannungsregler generieren weniger Verlustleistung als Linearregler
- Ausgangsspannung geschalteter Spannungsregler hat Rippel der Schaltfrequenz
 - → Muss ev. mit Linearregler zusätzlich stabilisiert werden

11 Passive Filter

Cut-Off-Frequency, Corner-Frequency $f_{3 \, dB}$

Dämpfung von 3 dB (d.h. Amplitude wird mit $\frac{1}{\sqrt{2}}$ 'verstärkt'), Phase: -45°

Sampling-Frequenz (ADC, digitale Filter) f_S

 \rightarrow Alle Frequenzen über $\frac{f_S}{2}$ müssen unterdrückt werden

UTF Übertragungsfunktion G(s)

11.1 Tiefpassfilter 1. Ordnung

Hinweis: Die Zeitkonstante T entspricht immer dem Parameter vor dem s. Beim Tiefpass 1. Ordnung entspricht dies $T = R \cdot C$

11.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung

1. Ordnung

Abfall von −20 dB / Dekade

• Abfall von -40 dB / Dekade

• Phasenschiebung von maximal -90° (bei $f_g = -45^\circ$)

 Phasenschiebung von maximal −180° (bei $f_g = -90^\circ$)

2. Ordnung

11.3 Filter 2. Ordnung

11.3.1 Kaskadierung von zwei gleichen Filtern

$$G_{11}(s) = \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T}} \cdot \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T}}$$

$$T_{2} = \frac{\sqrt{\sqrt{2} - 1}}{2\pi f_{3 \, dB}} \approx 0.64 \cdot T_{1}$$

Daraus folgt, dass bei 2 identischen Stufen die Grenzfrequenz $f_{3\,\mathrm{dB}}$ der einzelnen Stufen $\frac{1}{0.64}=1.56$ mal **höher** gewählt werden muss als bei einem Filter 1. Ordnung.

11.3.2 Filter 2. Ordnung mit komplexen Polen

$$G(s) = \frac{A_0 \cdot p_1 \cdot p_2}{(p_1 + s) \cdot (p_2 + s)} = \frac{A_0 \cdot \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

$$p_i \quad \text{Polstellen} \quad \text{komplex für } Q > \frac{1}{2}$$

$$p_{1,2} = \frac{\omega_0}{2Q} (1 \pm \sqrt{1 - 4Q^2})$$

$$Q \quad \text{Polgüte / Filtergüte}$$

$$\omega_0 \quad \text{Polfrequenz}$$

11.4 Filter höherer Ordnung

- Systeme höherer Ordnung können in kaskadierte Teilsysteme 1. & 2. Ordnung aufge-
- Höhere Ordnung und komplexe Pole ermöglichen steileren Übergang zwischen Durchlass- und Sperrbereich

Folgende Filter erzielen durch unterschiedliche Polverteilungen untersch. Verhalten:

- Butterworth: Konstant im Durchlassbereich der UTF
- Bessel: Beste Rechteckübertragung, kein Überschwingen
- Tschebyscheff: Steilster Abfall im Sperrbereich der UTF

11.5 Zeitverhalten: Schrittantwort

- 1. Frengenzbereich: Multiplikation der UTF mit $\frac{1}{2}$
- 2. Rücktransformation in den Zeitbereich, um $t_{\text{step}}(t)$ zu erhalten

11.5.1 Tiefpass 1. Ordnung

$$t_{\text{step},1}(t) = 1 - e^{-\frac{t}{T_1}}$$

11.5.2 Tiefpass 2. Ordnung

$$t_{\text{step2a}}(t) = 1 - e^{-\frac{t}{T_1}} \cdot \left(1 + \frac{t}{T_1}\right)$$

$$t_{\text{step2b}}(t) = 1 - \left[\frac{T_1 \cdot e^{-\frac{t}{T_1}} - T_2 \cdot e^{-\frac{t}{T_2}}}{T_1 - T_2} \right]$$

11.6 Schrittantworten verschiedener Polgüten

Komplexe Pole (Q > 0) führt zu Über-

schwingern. Bei einer Polgüte von $Q = \frac{1}{\sqrt{2}} \approx 0.7$ (grüne Kruve) schwingt das System am schnells-

11.7 Filter 2. Ordnung (passiv und aktiv)

Tiefpass

$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A_0}{\frac{1}{\omega_0^2} s^2 + \frac{1}{\omega_0 \cdot Q} s + 1}$

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A_0 \cdot \frac{1}{\omega_0^2} \cdot s^2}{\frac{1}{\omega_0^2} s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A \cdot \frac{\omega_0}{Q} \cdot s}{s^2 + \frac{1}{\omega_0 \cdot Q} s + 1}$$

- - Alle Terme positiv
 - s²-Term definiert Grenzfrequenz
 - Im s-Term ist Dämpfung enthalten - s-Term gross → grosse Dämpfung

 - s-Term = 0 → Oszillator!

Passive RC-Filter können maximal Güte 0.5 haben (entkoppelte reelle Pole). Filter höherer Güte benötigen entweder Spulen oder Verstärker.

→ Die Formeln gelten aber f
ür passive und aktive Filter!

Beispiel: UTF Tiefpass 2. Ordnung

$$A_0 = 1 \qquad \omega_0 = \frac{1}{\sqrt{C_1 C_2 R_1 R_2}}$$

$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 R_2 + C_2 R_2 + C_3 R_3}$$

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + (C_1 R_1 + C_2 R_1 + C_2 R_2) \cdot s + C_1 C_2 R_1 R_2 \cdot s^2}$$

12 Aktive Filter

12.1 Sallen-Key-Filter (Einfachmitkopplung)

Stromgleichungen:

V2:
$$0 = (V_2 - V_{\text{in}}) \frac{1}{R_1} + (V_2 - V_3) \frac{1}{R_2} + (V_2 - V_{\text{out}}) \cdot s \cdot C_1$$

V3: $0 = (V_3 - V_2) \frac{1}{R_2} + V_3 \cdot s \cdot C_2$

12.1.1 Sallen-Key-Filter bei hohen Frequenzen

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \approx \frac{r_{\text{OL}}}{R_1 + r_{\text{OL}}}$$

r_{OL} ist der OpAmp open-loop Ausgangswiderstand (bei hohen Frequenzen $\approx 100 \,\Omega$)

• Dämpfung ist limitiert auf obigen Spannungsteiler → Sallen-Key-Filter sind nicht geeignet für Systeme mit hohen Frequenzanteilen z.B. PWM-DAC

12.2 Multiple-Feedback-Struktur

OpAmp:
$$G_0 = -\frac{R_2}{R_1}$$

$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 \left(R_2 + R_2 + R_3 \frac{R_2}{R_1}\right)}$$

$$G_0$$

$$G(s) = \frac{G_0}{1 + C_2 \left(R_2 + R_2 + R_3 \frac{R_2}{R_1}\right) \cdot s + C_1 C_2 R_2 R_3 \cdot s^2}$$

Stromgleichungen:

V2:
$$0 = (V_2 - V_{in}) \frac{1}{R_1} + (V_2 - V_{out}) \frac{1}{R_2} + (V_2 - V_3) \frac{1}{R_3} + V_2 \cdot s \cdot C_1$$

V3: $0 = (V_3 - V_2) \frac{1}{R_2} + (V_3 - V_{out}) \cdot s \cdot C_2$

12.3 Sallen-Key vs. Multiple-Feedback Struktur

Sallen-Key

Multiple-Feedback

- Nicht-invertierend
- Q sensitiver auf Toleranzen
- Vorwärtspfad für hohe Frequenzen
- Noise-Gain: A
- Eher für
 - Hochpass
 - kleine Verstärkungen
- Invertierend
- fg sensitiver auf Toleranzen
- Noise-Gain: A + 1
- Eher für
 - Tiefpass, Bandpass
 - grössere Verstärkungen

13 Zustandsvariablen-Filter (Biquad-Filter)

13.1 Zustandsvariablen-Filter (Biquad-Filter)

Mit dieser Topologie sind alle drei Parameter f_0 , Q und A_0 frei

An Vout herrscht

$$G(s) = \frac{-\frac{R_{\rm fb}}{R_{\rm in}}}{s^2 \cdot C_{i1} C_{i2} R_{\rm fb} R_{i2} \frac{R_{\rm f}}{R_2} + s \cdot C_{\rm fb} R_{\rm fb} + 1}$$

$$f_0 = \frac{1}{2\pi \sqrt{C_{i1}C_{i2}R_{\rm fb}R_{i2}\frac{R_1}{R_2}}} \qquad Q = \frac{1}{C_{\rm fb}} \sqrt{C_{i1}C_{i2}\frac{R_1}{R_2R_{\rm fb}}} \qquad A_0 = -\frac{R_{\rm fb}}{R_{\rm in}}$$

13.1.1 Allgemein: Filter mit mehreren OpAmps

Mit der Filter-Struktur aus Abschnitt 13.1 können auch Bandpass- und Hochpass-Filter gebildet werden:

- **Tiefpass:** Abgriff beim 3. OpAmp (V_{out} gemäss Abschnitt 13.1)
- Bandpass: Abgriff beim 2. OpAmp (an Knoten V2)
- Hochpass: Abgriff beim 2. OpAmp, Einspeisung am neg. Eingang des 2. OpAmps

13.2 Vorgehen: UTF aus OPV-Filterschaltung ermitteln

- Stromgleichungen (Knotengleichungen) aufstellen
- Gleichungen ineinander einsetzen
- Umformen nach $G(s) = \frac{V_{\text{out}}}{V_{\text{out}}}$

14 Analyse von Filterschaltungen mit Signalflussdiagram-

Arther Filterschaltungen (mit OpAmps) können mittels Signalflussdiagrammen (SFDs) PH1 analysiert werden. Dazu wird die gesamte Schaltung in einzelne Komponenten aufgeteilt. PH2 Diese Komponenten werden dann mit Impedanz- bzw. Admittanzfunktionen abgebildet. Um die Übertragungsfunktion (UTF) der gesamten Schaltung zu erhalten, muss die Regel von Mason angewendet werden.

14.1 Eingangsadmittanzen / (Eingangsimpedanzen)

Hinweis: Es wird normalerweise mit Eingangsadmittanzen gearbeitet!

Komponente	Admittanz Y	(Impedanz Z)	
Widerstand R	$Y_{\text{res}} = \frac{1}{R}$	$(Z_{\text{res}} = R)$	
Kapazität C	$Y_{\text{cap}} = s \cdot C$	$(Z_{\text{cap}} = \frac{1}{s \cdot C})$	
Induktivität L	$Y_{\text{ind}} = \frac{1}{s \cdot L}$	$(Z_{\text{ind}} = s \cdot L)$	

14.2 OpAmp Impedanzfunktionen

Hinweis: Es geht um negatives Feedback bzw. Gegenkopplung

Schaltung (Feedback)	Impedanz Z
Widerstand R_f im Feedback	$Z_{\rm op} = -R_f$
Kapazität C_f im Feedback	$Z_{\text{op}} = -\frac{1}{s \cdot C_f}$
$R_f C_f$ (parallel) im Feedback	$Z_{\rm op} = -\frac{R_f}{1 + s \cdot C_f \cdot R_f}$

Beispiel: Summierender Verstärker

Beispiel: Aktiver Tiefpass 1. Ordnung

14.3 Regel von Mason (vereinfacht)

UTF:
$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{\text{Produkt der Transmittanzen im Vorwärtspfad}}{1 - \text{Summe aller Schleifentransmittanzen}}$$

Beispiel: Analyse Bandpass mittels SFD und Regel von Mason

15 Switched-Capacitor-Verstärker

15.1 Switched-Capacitor-Verstärker

→ Funktionsweise von SC-Schaltungen siehe Abschnitt 9.2

15.1.1 Invertierender Verstärker

Hinweis: Absolut-Werte von C_x variieren um bis zu 10 %, aber Verhältnisse können sehr exakt sein!

PH1
$$V_{\text{out}} = 0$$

$$Q \cdot C_1 = Q \cdot C_2 = 0$$

$$\Delta V_{\text{out}} = \frac{\Delta Q_1}{2} = -\frac{C_1}{2} V_1$$

15.1.2 Nicht-invertierender Verstärker

Hinweis: Ansteuerung vertauscht: Aufladung von C_2 in PH0, gleichzeitig mit C_2 -RESCL AMOUNT sehen der invertierende und nicht-invertierende SC-Verstärker gleich aus! Verstärkung A

PH1
$$V_{\text{out}}^{\bigtriangledown} = 0$$
 $Q \cdot C_1 = V_{\text{in}} \cdot C_1$ $Q \cdot C_2 = 0$
PH2 $\Delta Q_1 = -C_1 \cdot V_{\text{in}}$ $\Delta V_{\text{out}} = \frac{\Delta Q_1}{C_2} = \frac{C_1}{C_2} V_{\text{in}}$

15.1.3 (Invertierender) SC-Integrator

Spannungsänderung $\Delta V_{\text{out}(T_{\text{n}})} = -\frac{C_{1}}{C_{2}}V_{\text{in}}$ Ausgangsspannung $V_{\text{out}}(t) \cong -\frac{C_{1}}{C_{2}}\frac{1}{T}\int V_{\text{in}}(t)\,\mathrm{d}t$ **Hinweis:** $V_{\text{out}}(t)$ gilt für $t\gg T$ und langsam ändern-

- In jedem Zyklus wird C_1 aufgeladen mit $Q = V_{in} \cdot C_1$
- Ladungen werden in C₂ akkumuliert
- · Ausgangsspannung macht Sprünge!

15.1.4 Nicht-invertierender SC-Integrator

- Geänderte Schalter-Ansteuerung ⇒ In PH1 wird C_1 aufgeladen mit $V_{in} \cdot C_1$
- In PH0 fliesst Entladestrom in $C_2 \Rightarrow SC$ bildet einen 'negativen Widerstand' mit $R_{\text{eq}} = -\frac{T_{\text{per}}}{C_1}$
- Spannungs-Sprünge sind um eine halbe Periode verschoben

15.2 Vergleich RC- und SC-Integrator

$$V_{\text{out}}(t) = -\frac{1}{R_i \cdot C_i} \int V_{\text{in}}(t) \, dt = -\frac{1}{R_i \cdot C_i} V_{\text{in}} \cdot t \qquad V_{\text{out}}(t) = -\frac{C_1}{C_2 \cdot T} V_{\text{in}} \cdot t$$

$$V_{\text{out}}(t) = -\frac{C_1}{C_2 \cdot T} V_{\text{in}} \cdot t$$

$$V_{\text{out}}(t) = -\frac{C_1}{C_2 \cdot T} V_{\text{in}} \cdot t$$

$$V_{\text{out}}(t) = -\frac{C_1}{C_2 \cdot T} V_{\text{in}} \cdot t$$

UTF:
$$G(s) = -\frac{1}{s \cdot R_i \cdot C_i}$$

$$V_{\text{out}}(t) = -\frac{C_1}{C_2 \cdot T} V_{\text{in}} \cdot t$$

$$\text{UTF:} \quad G(s) = -\frac{C_1}{s \cdot C_2 \cdot T}$$

$$\Rightarrow R_{\text{eq}} = \frac{T}{C_1}$$

15.3 RC- / SC-Filter

RC-Filter

$$\omega_0 = \frac{1}{\sqrt{C_{i1}C_{i2}R_{i2}R_{\rm fb}}}$$

SC-Filter

$$\omega_0 = \frac{1}{T} \sqrt{\frac{C_{\text{rfb}} C_{r2}}{C_{i1} C_{i2}}}$$

- - C_{r2} wird umgekehrt angesteuert \Rightarrow bildet 'negativen Widerstand
 - Kapazitäts-Verhältnisse und Taktperiode T bestimmen f_0 bzw. ω_0

15.4 Fazit Filter

- Aktive Filter sind nötig für Polgüten > 0.5 (oder Spulen)
- Filter werden aufgeteilt in Stufen 1. oder 2. Ordnung
- Strkturen mit mehreren opAmps sind weniger sensitiv auf Bauteiltoleranzen und auf Nichtidealitäten der OpAmps
- Als integrierte Schaltungen werden oft Switched-Capacitor-Schaltungen eingesetzt

16 Sigma-Delta-Wandler

n Anzahl Bits

Digitaler Wert $D < 2^n$ D

Quantisierungsschritt (1 LSB) q

 \bar{B}_0 Bitwert 0 (LSB)

Bitwert n - 1 (MSB) B_{n-1}

$$q = \frac{V_{\text{refp}} - V_{\text{refn}}}{2^n}$$

$$D = \frac{V_{\rm in} - V_{\rm refn}}{V_{\rm refp} - V_{\rm refn}} \, 2^n$$

 $\overline{V_{\rm in}} \cdot T_{\rm int}$

 $R_i \cdot C_i$

16.1 Dual-Slope-Wandler

DC:
$$V_{\text{int}} = V_{\text{AGND}} - \frac{1}{R_i \cdot C_i} (V_{\text{in1}} - V_{\text{AGND}}) \cdot T_{\text{int}}$$

$$\Delta V_{\text{abint}} = V_{\text{AGND}} - V_{\text{int}} = -\frac{1}{R_i \cdot C_i} (V_{\text{ref}} - V_{\text{AGND}}) \cdot T_{\text{abint}}$$

$$T_{\text{abint}} = -\frac{V_{\text{in1}} \cdot T_{\text{int}}}{V_{\text{ref}}}$$

Allgemein:
$$V_{\text{int}} = \int_{0}^{T_{\text{int}}} -\frac{1}{R_i \cdot C_i} V_{\text{in1}} dt + V_{\text{int,0}}$$

$$\boxed{ -\frac{\overline{V_{\text{in}}}}{V_{\text{ref}}} = \frac{T_{\text{abint}}}{T_{\text{int}}} = \frac{T_{\text{abint}}}{T_{\text{int}}} = \frac{T_{\text{obstable}}}{T_{\text{int}}} = \frac{T_{\text{abint}}}{T_{\text{int}}} = \frac{T_{\text{abint}}}{T_{\text{int}$$

$$-\frac{\overline{V_{\rm in}}}{V_{\rm ref}} = \frac{T_{\rm abint}}{T_{\rm int}} = \frac{n \cdot T_{\rm clk}}{N \cdot T_{\rm clk}}$$

16.1.1 Frequenzverhalten vom Dual-Slope-Wandler

Frequenzen $f = \frac{1}{T}$, wobei T der Intergrationszeit entspricht, werden perfekt unterdrückt \Rightarrow Integrationszeit $T = 20 \,\text{ms}$ unterdrückt Netzbrumm von 50 Hz

16.2 Single-Slope-Wandler

- Einfacher als Dual-Slope
- \bullet $V_{\rm in}$ wird auf $C_{\rm sample}$ übertragen
- C_{sample} wird mit I_{sink} entladen
- Zeit bis $V(C_{\text{sample}}) = 0$ wird gemessen

- Kein OpAmp, nur zwei Schalter
- Schnell, da $T_{\text{sample}} < T_{\text{int}}$
- $V_{\rm in} \sim T_{\rm abint}$, $C_{\rm sample}$, $I_{\rm sink}$
- C_{sample} und I_{sink} streuen stark

16.3 Dual-Slope-Wandler für pos. und neg. Eingangsspannungen

- · Auf- und Abintegration wechseln ab
- Je nach Komparator-Ausgang wird S2 oder S3 geschlossen
- Für V_{in} < V_{AGND} wird in richtung positive Speisung integriert
- Für $V_{\text{in}} > V_{\text{AGND}}$ wird in richtung GND integriert

16.3.1 Eigenschaften von Dual-Slope-Wandlern

- Unabhängig von Bauteiltoleranzen
- · Höhere Auflösung bedingt längere Integrationszeit (bei fixem clk) → Doppelte Zeit für 1 zusätzliches Bits
- Höhere Frequenzen werden stärker unterdrückt → reduziert Bandbreite
- · Auflösung wird gegen Bandbreite getauscht

16.4 Aufbau Sigma-Delta-ADC

Sigma-Delta-ADC

Detail: Sigma-Delta-Modulator

16.5 Sigma-Delta-Modulator 1. Ordnung

- # Taktzyklen, in denen Modulator-Ausgang = 1

$$\text{Allgemein: } V_{\text{int}}(t) = \Delta V_{\text{int}} + V_{\text{int},0} = -\frac{1}{C_i} \int\limits_0^t \left(\frac{V_{\text{in-A}_{\text{GND}}}}{R_{i1}} + \frac{V_{\text{ref-A}_{\text{GND}}}}{R_{i2}} \right) \mathrm{d}\tilde{t} + V_{\text{int},0}$$

- Sigma-Delta-Wandler machen gleichzeitig Auf- und Abintegration (Feedback-Pfad)
- 'Digitales Filter' \Rightarrow 'Mittelwertbildung' um $V_{\rm in}$ zu berechnen
- Eingangsspannungsbereich: $V_{\text{refn}} \leq V_{\text{in}} \leq V_{\text{refp}} \Rightarrow I_{\text{Eingang}} \leq I_{\text{Feedback}}$
- Summe aller Ladungen muss gesamthaft 0 sein! $\Rightarrow \Delta Q = C \cdot \Delta U = I \cdot \Delta t = 0$

16.6 Sigma-Delta-Modulator im Zeitbereich

16.6.1 DC-Eingangssignale

Je nach V_{in} ergibt sich ein anderer DutyCycle $\frac{n}{N}$ (mod out). Für $V_{\text{refn}} = -V_{\text{refp}}$ gilt die aufgeführte Ta-

\mathbf{V}_{in}	Duty Cycle ⁿ / _N
$\begin{array}{c} 0\mathrm{V} \\ \frac{1}{2}V_{\mathrm{refn}} \\ \frac{7}{8}V_{\mathrm{refn}} \\ \frac{1}{10}V_{\mathrm{refp}} \\ 0.02\cdotV_{\mathrm{refp}} \end{array}$	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{4} \\ \frac{1}{16} \\ \frac{1}{20} \\ \frac{51}{100} \end{array}$

Fazit DC-Eingangssignale

- DC-Eingangssignale erzeugen repetitive Sequenzen mit hohen Frequenz-Anteilen
- \bullet Ist V_{in} nahe bei Bruchteil vin V_{ref} entstehen lange repetitive Sequenzen mit tiefen Frequenz-Anteilen
- Lange repetitive Sequenzen können nicht von Signal unterschieden werden ⇒ Pattern Noise

16.6.2 AC-Eingangssignale

AC-Eingangssignale können durch Mittelwertbildung (z.B. mit Tiefpassfilter mit entsprechend hoch dimensinierter Zeitkonstante) des Signals V_{int} rekonstruiert werden.

16.7 Modellierung Sigma-Delta-Modulator im Frequenzbereich

16.7.1 Übertragungsfunktionen Sigma-Delta Modulator

<u>Signal-Übertragungsfunktion $H_s(s)$ </u> (Quantisierungsrauschen Q(s) = 0)

$$Y(s) = [X(s) - Y(s)] \cdot \frac{1}{s \cdot T}$$

$$H_s(s) = \frac{Y(s)}{X(s)} = \frac{1}{1 + s \cdot T}$$
 (Tiefpass)

Noise-Übertragungsfunktion $H_n(s)$ (Eingangssignal X(s) = 0)

$$Y(s) = -Y(s) \cdot \frac{1}{s \cdot T} + Q(s)$$

$$H_n(s) = \frac{Y(s)}{Q(s)} = \frac{s \cdot T}{1 + s \cdot T}$$
 (Hochpass)

16.8 Fazit Sigma-Delta-Modulatoren 1. Ordnung

- + Signal wird nicht (wenig) verändert mit **Tiefpass**
- 1 Bit DAC perfekt linear
- + 1. SNR-Erhöhung durch Oversampling (3 dB pro Oktave)
- + 2. SNR-Erhöhung durch Noise Shaping (6 dB pro Oktave)
- Immer stabil (90° Phasenschiebung)
- 1 Bit ADC (Komparator) nichtlinear
- **Pattern Noise**

16.9 Oversampling / Signal-Rausch-Abstand (SNR)

Rauschleistung = Rauschleistungsdichte * Bandbreite =
$$\frac{q^2}{12}$$
 = konstant

- · Oversampling verteilt Quantisierungsrauschen über grösseren Frequenzbereich
- Da die Rauschleistung konstant ist, wird die Rauschleistungsdichte (also die 'Amplitude' des Rauschens) kleiner
- Ein Digitalfilter reduziert die Bandbreite des ADCs weiter

16.9.1 Noise-Shaping

- Nicht nur Oversampling und Rauschen gleichmässig verteilen, sondern Rauschleistungsdichte 'formen'
- Nur bei Sigma-Delta-Wandlern mög-

16.10 Sigma-Delta-Wandler 2. Ordnung

$$SNR \approx \log_{10} \left(\frac{3}{2} \cdot \frac{2 \cdot M + 1}{\pi^{2M}} \cdot OSR^{2M+1} \right)$$

OSR Oversampling-Rate Ordnung des Modulators

- Ordnung $M = 2 \implies 2$ Integratoren
- Quantisierungsrauschen Q(s) wird mit Hochpass 2. Ordnung gefiltert
- Je höher Ordnung M, desto stärker das Noise-Shaping (6 dB pro Ordnung und Oktave)
- Je höher Oversampling (OSR), desto höher SNR (3 dB Oktave)

17 Anhang

17.1 Temperaturabhängigkeit von Widerständen

$$R_{\vartheta} = R_{20} + \Delta R$$

$$\Delta R = R_{20} \cdot \alpha \cdot \Delta \vartheta$$

R_{ϑ}	Widerstand bei Temperatur ϑ	$[R_\vartheta] = \Omega$
R_{20}	Widerstand bei 20 °C	$[R_{20}] = \Omega$
α	Temperaturkoeffizient	$[\alpha] = \frac{1}{K}$
$\Delta \vartheta$	Temperaturdifferenz $\theta - 20 ^{\circ}\text{C}$	$[\Delta \vartheta] = {}^{\circ}C$