Using RAMPAGE to identify and annotate regulatory elements in insect genomes

R. Taylor Raborn^{*1,2} and Volker P. Brendel^{1,2}

¹Department of Biology, Indiana University ²School of Informatics and Computing, Indiana University

Department of Biology and School of Informatics and Computing, Indiana University
212 S. Hawthorne Drive 205 Simon Hall, Bloomington, IN 47401, USA http://www.brendelgroup.org

Abstract. Application of Transcription Start Site (TSS) profiling technologies, coupled with large-scale next-generation sequencing (NGS) has yielded valuable insights into the location, structure and activity of promoters across diverse metazoan model systems. In insects, TSS profiling has been used to characterize the promoter architecture of *D. melanogaster*, and, shortly thereafter, to reveal widespread transposondriven alternative promoter usage.

In this chapter we highlight the utility of one TSS profiling method, RAMPAGE (RNA annotation and mapping of promoters for analysis of gene expression), for the precise, quantitative identification of promoters in insect genomes. We demonstrate this using our tools GoRAMPAGE and TSRchitect, providing details instructions with the aim of taking the user from raw reads to processed results.

Keywords: *cis*-regulatory regions, promoter architecture, transcription initiation, transcription start sites (TSSs)

1 Introduction

1.1 TSS Profiling Identifies Promoters at Genome-Scale

- 3 The promoter, defined in eukaryotes as the genomic region bound by RNA Poly-
- 4 merase II immediately prior to transcription initiation [1], is the site where
- 5 regulatory signals unite to direct gene expression. The identification of pro-
- 6 moter regions is a valuable step for understanding the cis-regulatory signals
- that are present in an organism, and is important for genome annotation. How-
- 8 ever, despite the rapid accumulation of genome sequences across metazoan and
- arthropod diversity, accurate annotation of promoter regions remains sparse.
- 10 This is because—empirical mapping of TSSs—precisely identifying sequence
- motifs that demarcate the promoter is unreliable. In contrast with current in

^{*} Correspondence: rtraborn@indiana.edu

silico approaches, direct mapping of TSSs identifies the location of the core 12 promoter. Cap Analysis of Gene Expression (CAGE) [2], one of the first meth-13 ods devised to identify 5'-ends of mRNAs at large-scale, involves selective capture of 5'-capped transcripts, first-strand reverse-transcription and ligation of a 15 short oligonucleotide (CAGE tag), CAGE was initially utilized by the FANTOM 16 (Functional Annotation of the Mammalian Genome) consortium to identify pro-17 moter architecture in human and mouse [3], providing the first glimpse of the 18 global landscape of transcription initiation. At the onset of the NGS era, CAGE 19 was coupled with massively-parallel sequencing to generate 5'-ends of mRNAs 20 at substantially higher scale. This advance provided more extensive coverage of 21 22 the expressed transcriptome, and provided increased sensitivity for quantitative measurements *i.e.* measurement of promoter activity. 23

24 1.2 Promoter Architecture of Drosophila melanogaster

Hoskins and colleagues [4] performed CAGE in D. melanogaster as part of the 25 modENCODE consortium, identifying promoters at large-scale and character-26 izing the promoter architecture of an insect genome for the first time. Hoskins 27 [4] indicated that TSS distributions at *Drosophila* promoters exhibit a range 28 of shapes that can be generally grouped into two major classifications: peaked 29 and broad. Peaked promoters have a single, major TSS position occupying a 30 narrow genomic region, whereas broad promoters lack a single, major TSS and 31 contain TSSs across a wider region [5][6]. The authors also showed a strong asso-32 ciation between promoter class and motif composition (consistent with previous 33 findings [5, 7]). Peaked promoters were associated with positionally-enriched cis-34 regulatory motifs including TATA, Initiator (Inr) and DPE, while broad promot-35 ers contained an enrichment of less-well characterized motifs, including Ohler6 and Ohler [8]. The existence of two promoter classes appears to be conserved 37 among metazoans, and has been reported (using TSS profiling methodolgies) in 38 insects, cladocerans [9], fish [10] and mammals [11, 6].

40 1.3 Promoter Structure of Insects

Beyond D. melanogaster, few investigations have utilized TSS profiling in insect 41 genomes. As a consequence, what is known about promoter architecture in insects is largely restricted to the *Drosophila* genus. As part of the modENCODE 43 effort, CAGE was performed in multiple tissues and developmental stages of the Drosophila pseudoobscura. TSSs were found to be highly similar between species: more than 80% of TSSs (81%) of aligned, CAGE-identified TSSs from D. pseudoobscura were positioned within 20nt of their counterparts in D. melanogaster. 47 An enrichment of the CA dinucleotide was detected at the TSS ([-1, +1]), and 48 the motifs corresponding to TATA, Inr and DPE were positioned at the same locations relative to the TSS in both species. The one other insect species for which TSS profiling has been applied is the Tsetse fly (Glossina morsitans mor-51 sitans) [12]. Using TSS-seq (specifically Oligo-capping; for details on this method 52 see [13]), the authors identified 3134 mapping to 1424 genes. The authors found a preference for CA and AA dinucleotides at the TSS, and observe the major core promoter elements observed in *Drosophila*: TATA, Inr, DPE, in addition to MTE (Motif Ten Element). As in *D. melanogaster*, peaked promoters were more likely to contain TATA and Inr than broad promoters. While the taxonomic sampling of species for TSS profiling has been limited, the existing studies are sufficient to provide a general picture of insect promoter architecture. A major demarcation between the promoter architecture of insects and mammals appears to be the large fraction of mammalian promoters found in CpG islands [12]. CpG island promoters (CPIs) form the largest class of promoter in mammals [14]; by contrast, CPIs are not known to exist as a class in invertebrates.

1.4 Paired-end TSS Profiling with RAMPAGE

The most recent major methodological advance in TSS Profiling is RAMPAGE (RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression). RAMPAGE is a protocol for 5'-cDNA sequencing that combines cap 67 trapping and template-switching with paired-end sequence information. A key advantage of generating paired-end sequence is transcript connectivity, which provides a direct link between a given 5'-end and its associated mRNA molecule. 70 Because short or spurious RNAs are found within the transcriptome, transcript 71 connectivity allows the TSSs (and thus promoters) of full-length mRNAs to 72 be unambiguously identified, which benefits genome annotation. Batut and col-73 leagues generated libraries from total RNA isolated from 36 stages across the life 74 cycle of D. melanogaster providing a comprehensive gene expression and promoter atlas for fruit fly and in the process demonstrating the utility of RAM-PAGE. RAMPAGE is currently being applied as part of the latest iteration of 77 ENCODE to identify promoters in human, but as of this writing it has not 78 been applied to any non-Drosophila insect species. In anticipation of the future 79 application of TSS profiling into other insect model systems here we provide a 80 documented protocol for the computational processing RAMPAGE data, using 81 selected libraries from Batut et al.. This method will consist of two parts: first, 82 we will process, filter and align the sequenced RAMPAGE libraries to the D. 83 melanogaster genome. Second, we will identify TSSs and promoters from the aligned sequences and associate them with coding regions. In closing, we will 85 consider further applications of this data and discuss the utility of reproducible 86 workflows in bioinformatic analysis.

88 2 Materials

The analyses described herein require a workstation capable for modern bioinformatics. An intermediate understanding of the Linux/Unix command line will be extremely useful, although we make efforts to explain the procedures with clarity. In addition, it will likely be necessary for the participant to have superuser privileges on the machine. If you do not have a machine (or access to one) that meets

- these requirements, it is recommended that you consider cloud-based cyberinfrastructure, including Amazon Web Services (AWS; https://aws.amazon.com/)
- or CyVerse (http://www.cyverse.org/). The former is a well-known pay-per-use
- 97 solution, while the latter is an NSF-funded resource that is made freely available
- 98 to the public.

101

108

111

113

99 2.1 Hardware Requirements

```
- x86-64 compatible processors
```

- At least 8GB RAM

102 - 30GB+ hard disk space

103 2.2 Software Requirements

```
    Operating system: 64 bit Linux (preferred) or Mac OS X (with Command
    Line Tools from XCode)
```

- R (version 3.4)

- Bioconductor (version 3.5)

- FASTX-Toolit (version 0.0.13)

- Samtools (version 1.3 or above)

- SRA Toolkit (version 2.3.4-2 or above)

- STAR aligner (version 2.4 or above)

- TagDust (version 2.33)

2.3 Installation of R packages

For installation of the software listed above, please follow the instructions provided by each respective package. Part of our analysis will require the use of R packages found in the Bioconductor suite. To install Bioconductor, please type the following from an R console:

```
source ("https://bioconductor.org/biocLite.R")
biocLite()
```

We will use the R package *TSRchitect* to identify promoters from aligned RAMAPGE libraries. First, we will need to install a series of prerequisite packages to *TSRchitect* from Bioconductor. Please install these packages as follows (as before, from an R console):

```
source ("https://bioconductor.org/biocLite.R")
biocLite(c("AnnotationHub", "BiocGenerics", "BiocParallel",
"ENCODExplorer", "GenomicAlignments", "GenomeInfoDb",
"GenomicRanges", "IRanges", "methods",
"Rsamtools", "rtracklayer", "S4Vectors",
"SummarizedExperiment"))
```

To install *TSRchitect*, please type the following from an R console:

```
source ("https://bioconductor.org/biocLite.R")
biocLite ("TSRchitect")
```

Finally, please confirm that TSRchitect has been installed correctly by loading it from your R console as follows:

library (TSRchitect)

3 Methods

4 Notes

135

136

137

143

146

147

148

150

151

153

154

156

159

161

162

138 Acknowledgments

Disclosure Declaration

The authors declare that they have no competing interests.

5 Figures

For LATEX users, we recommend using the *graphics* or *graphicx* package and the \includegraphics command.

Please check that the lines in line drawings are not interrupted and are of a constant width. Grids and details within the figures must be clearly legible and may not be written one on top of the other. Line drawings should have a resolution of at least 800 dpi (preferably 1200 dpi). The lettering in figures should have a height of 2 mm (10-point type). Figures should be numbered and should have a caption which should always be positioned *under* the figures, in contrast to the caption belonging to a table, which should always appear *above* the table; this is simply achieved as matter of sequence in your source.

Please center the figures or your tabular material by using the \centering declaration. Short captions are centered by default between the margins and typeset in 9-point type (Fig. 1 shows an example). The distance between text and figure is preset to be about 8 mm, the distance between figure and caption about 6 mm.

To ensure that the reproduction of your illustrations is of a reasonable quality, we advise against the use of shading. The contrast should be as pronounced as possible.

If screenshots are necessary, please make sure that you are happy with the print quality before you send the files.

Please define figures (and tables) as floating objects. Please avoid using optional location parameters like "[h]" for "here".

Fig. 1. One kernel at x_s (dotted kernel) or two kernels at x_i and x_j (left and right) lead to the same summed estimate at x_s . This shows a figure consisting of different types of lines. Elements of the figure described in the caption should be set in italics, in parentheses, as shown in this sample caption.

₄ 5.1 Formulas

Displayed equations or formulas are centered and set on a separate line (with an extra line or halfline space above and below). Displayed expressions should be numbered for reference. The numbers should be consecutive within each section or within the contribution, with numbers enclosed in parentheses and set on the right margin – which is the default if you use the *equation* environment, e.g.,

$$\psi(u) = \int_{o}^{T} \left[\frac{1}{2} \left(\Lambda_{o}^{-1} u, u \right) + N^{*}(-u) \right] dt . \tag{1}$$

Equations should be punctuated in the same way as ordinary text but with a small space before the end punctuation mark.

5.2 Footnotes

The superscript numeral used to refer to a footnote appears in the text either directly after the word to be discussed or – in relation to a phrase or a sentence – following the punctuation sign (comma, semicolon, or period). Footnotes should appear at the bottom of the normal text area, with a line of about 2 cm set immediately above them.¹

¹ The footnote numeral is set flush left and the text follows with the usual word spacing.

178 5.3 Program Code

```
Program listings or program commands in the text are normally set in typewriter
179
   font, e.g., CMTT10 or Courier.
    Example of a Computer Program
181
   program Inflation (Output)
182
      {Assuming annual inflation rates of 7%, 8%, and 10%,...
183
       years};
       const
185
         MaxYears = 10;
186
187
         Year: 0..MaxYears;
         Factor1, Factor2, Factor3: Real;
189
       begin
190
         Year := 0;
191
         Factor1 := 1.0; Factor2 := 1.0; Factor3 := 1.0;
         WriteLn('Year 7% 8% 10%'); WriteLn;
193
         repeat
194
           Year := Year + 1;
195
           Factor1 := Factor1 * 1.07;
196
           Factor2 := Factor2 * 1.08;
197
           Factor3 := Factor3 * 1.10;
           WriteLn(Year:5,Factor1:7:3,Factor2:7:3,Factor3:7:3)
         until Year = MaxYears
201
   (Example from Jensen K., Wirth N. (1991) Pascal user manual and report. Springer,
202
   New York)
203
```

204 5.4 Citations

For citations in the text please use square brackets and consecutive numbers: [?], [?], [?] – provided automatically by LATEX's \cite...\bibitem mechanism.

207 5.5 Page Numbering and Running Heads

There is no need to include page numbers. If your paper title is too long to serve as a running head, it will be shortened. Your suggestion as to how to shorten it would be most welcome.

6 References

References

- J. T. Kadonaga, "Perspectives on the RNA polymerase II core promoter." Wiley
 Interdisciplinary Reviews: Developmental Biology, vol. 1, no. 1, pp. 40–51, Jan.
 2012.
- 216 2. R. Kodzius, M. Kojima, H. Nishiyori, M. Nakamura, S. Fukuda, M. Tagami,
 217 D. Sasaki, K. Imamura, C. Kai, M. Harbers, Y. Hayashizaki, and P. Carninci,
 218 "CAGE: cap analysis of gene expression." *Nature Methods*, vol. 3, no. 3, pp. 211–
 219 222, Mar. 2006.
- 3. P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. C. Frith, N. Maeda, 220 R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V. B. 221 222 Bajic, S. E. Brenner, S. Batalov, A. R. R. Forrest, M. Zavolan, M. J. Davis, L. G. Wilming, V. Aidinis, J. E. Allen, A. Ambesi-Impiombato, R. Apweiler, R. N. Atu-223 raliya, T. L. Bailey, M. Bansal, L. Baxter, K. W. Beisel, T. Bersano, H. Bono, A. M. 224 Chalk, K. P. Chiu, V. Choudhary, A. Christoffels, D. R. Clutterbuck, M. L. Crowe, 225 E. Dalla, B. P. Dalrymple, B. de Bono, G. Della Gatta, D. di Bernardo, T. Down, 226 P. Engstrom, M. Fagiolini, G. Faulkner, C. F. Fletcher, T. Fukushima, M. Furuno, 227 S. Futaki, M. Gariboldi, P. Georgii-Hemming, T. R. Gingeras, T. Gojobori, R. E. 228 Green, S. Gustincich, M. Harbers, Y. Hayashi, T. K. Hensch, N. Hirokawa, D. Hill, 229 L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, 230 M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S. P. T. Kr-231 232 ishnan, A. Kruger, S. K. Kummerfeld, I. V. Kurochkin, L. F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, 235 S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K. C. 236 Pang, W. J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J. F. 237 Reid, B. Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S. L. Salzberg, A. Sandelin, 238 C. Schneider, C. Schönbach, K. Sekiguchi, C. A. M. Semple, S. Seno, L. Sessa, 239 Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, 240 E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S. L. Tan, 241 S. Tang, M. S. Taylor, J. Tegner, S. A. Teichmann, H. R. Ueda, E. van Nimwegen, 242 R. Verardo, C. L. Wei, K. Yagi, H. Yamanishi, E. Zabarovsky, S. Zhu, A. Zimmer, W. Hide, C. Bult, S. M. Grimmond, R. D. Teasdale, E. T. Liu, V. Brusic, 244 J. Quackenbush, C. Wahlestedt, J. S. Mattick, D. A. Hume, C. Kai, D. Sasaki, 245 Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, 246 J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, 247 M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, 248 C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, 249 Y. Okamura-Oho, H. Suzuki, J. Kawai, Y. Hayashizaki, F. Consortium, R. G. E. R. 250 Group, and G. S. G. G. N. P. C. Group, "The transcriptional landscape of the mam-251 malian genome," Science (New York, NY), vol. 309, no. 5740, pp. 1559–1563, Sep. 252 253
- 4. R. A. Hoskins, R. A. Hoskins, J. M. Landolin, J. M. Landolin, J. B. Brown, J. B. Brown, J. E. Sandler, J. E. Sandler, H. Takahashi, H. Takahashi, T. Lassmann, T. Lassmann, C. Yu, C. Yu, B. W. Booth, B. W. Booth, D. Zhang, D. Zhang, K. H. Wan, K. H. Wan, L. Yang, L. Yang, N. Boley, N. Boley, J. Andrews, J. Andrews, T. C. Kaufman, T. C. Kaufman, B. R. Graveley, B. R. Graveley, P. J. Bickel, P. J. Bickel, P. Carninci, J. W. Carlson, J. W. Carlson, S. E. Celniker,

- and S. E. Celniker, "Genome-wide analysis of promoter architecture in Drosophila melanogaster." *Genome Research*, vol. 21, no. 2, pp. 182–192, Feb. 2011.
- 5. E. A. Rach, H.-Y. Yuan, W. H. Majoros, P. Tomancak, and U. Ohler, "Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome." Genome Biology, vol. 10, no. 7, p. R73, 2009.
 - 6. B. Lenhard, A. Sandelin, and P. Carninci, "Metazoan promoters: emerging characteristics and insights into transcriptional regulation." *Nature Reviews Genetics*, vol. 13, no. 4, pp. 233–245, Apr. 2012.

266

268

- 7. T. Ni, D. L. Corcoran, E. A. Rach, S. Song, E. P. Spana, Y. Gao, U. Ohler, and J. Zhu, "A paired-end sequencing strategy to map the complex landscape of transcription initiation." *Nature Methods*, vol. 7, no. 7, pp. 521–527, Jul. 2010.
- 8. U. Ohler, G.-c. Liao, H. Niemann, and G. M. Rubin, "Computational analysis of core promoters in the Drosophila genome." *Genome Biology*, vol. 3, no. 12, pp. research0087.1–0087.12, 2002.
- 9. R. T. Raborn, K. Spitze, V. P. Brendel, and M. Lynch, "Promoter Architecture and Sex-Specific Gene Expression in Daphnia pulex." *Genetics*, vol. 204, no. 2, pp. 593–612, Aug. 2016.
- 10. C. Nepal, Y. Hadzhiev, C. Previti, V. Haberle, N. Li, H. Takahashi, A. M. M. Suzuki, Y. Sheng, R. F. Abdelhamid, S. Anand, J. Gehrig, A. Akalin, C. E. M. Kockx, A. A. J. van der Sloot, W. F. J. van IJcken, O. Armant, S. Rastegar, C. Watson, U. Strahle, E. Stupka, P. Carninci, B. Lenhard, and F. Muller, "Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis," Genome Research, vol. 23, no. 11, pp. 1938–1950, Nov. 2013.
- 11. P. Carninci, A. Sandelin, B. Lenhard, S. Katayama, K. Shimokawa, J. Ponjavic, 285 C. A. M. Semple, M. S. Taylor, P. G. Engström, M. C. Frith, A. R. R. For-286 rest, W. B. Alkema, S. L. Tan, C. Plessy, R. Kodzius, T. Ravasi, T. Kasukawa, 287 S. Fukuda, M. Kanamori-Katayama, Y. Kitazume, H. Kawaji, C. Kai, M. Naka-288 mura, H. Konno, K. Nakano, S. Mottagui-Tabar, P. Arner, A. Chesi, S. Gustincich, 289 F. Persichetti, H. Suzuki, S. M. Grimmond, C. A. Wells, V. Orlando, C. Wahlest-290 edt, E. T. Liu, M. Harbers, J. Kawai, V. B. Bajic, D. A. Hume, and Y. Hayashizaki, 291 "Genome-wide analysis of mammalian promoter architecture and evolution," Na-292 ture Genetics, vol. 38, no. 6, pp. 626-635, Apr. 2006. 293
- 12. S. Mwangi, G. Attardo, Y. Suzuki, S. Aksoy, and A. Christoffels, "TSS seq based core promoter architecture in blood feeding Tsetse fly (Glossina morsitans morsitans) vector of Trypanosomiasis," BMC Genomics, vol. 16, no. 1, p. 722, Sep. 2015.
- 13. K. Tsuchihara, Y. Suzuki, H. Wakaguri, T. Irie, K. Tanimoto, S.-i. Hashimoto,
 K. Matsushima, J. Mizushima-Sugano, R. Yamashita, K. Nakai, D. Bentley, H. Esumi, and S. Sugano, "Massive transcriptional start site analysis of human genes in hypoxia cells," *Nucleic Acids Research*, vol. 37, no. 7, pp. 2249–2263, Apr. 2009.
- 14. N. Cvetesic and B. Lenhard, "Core promoters across the genome," *Nature Biotech-nology*, vol. 35, no. 2, pp. 123–124, Feb. 2017.

In order to permit cross referencing within LNCS-Online, and eventually between different publishers and their online databases, LNCS will, from now on, be standardizing the format of the references. This new feature will increase the visibility of publications and facilitate academic research considerably. Please base your references on the examples below. References that don't adhere to this

style will be reformatted by Springer. You should therefore check your references thoroughly when you receive the final pdf of your paper. The reference section must be complete. You may not omit references. Instructions as to where to find a fuller version of the references are not permissible.

We only accept references written using the latin alphabet. If the title of the book you are referring to is in Russian or Chinese, then please write (in Russian) or (in Chinese) at the end of the transcript or translation of the title.

The following section shows a sample reference list with entries for journal articles [?], an LNCS chapter [?], a book [?], proceedings without editors [?] and [?], as well as a URL [?]. Please note that proceedings published in LNCS are not cited with their full titles, but with their acronyms!

³²⁰ 7 Checklist of Items to be Sent to Volume Editors

321	Here is a checklist of everything the volume editor requires from you:
322	☐ The final LaTEX source files
323	☐ A final PDF file
324 325	A copyright form, signed by one author on behalf of all of the authors of the paper.
326	☐ A readme giving the name and email address of the corresponding author.