### Reproducible Research with knitr

Thomas J. Leeper

Department of Political Science and Government Aarhus University

October 28, 2014

1 Overview

2 Activity

- 3 Literate Programming
- 4 knitr in Depth

1 Overview

2 Activity

3 Literate Programming

4 knitr in Depth

## **Teaching/Learning Approach**

- Hands-on practice
- Work independently to enhance your own workflow
- You will not learn everything today

#### **Outline for afternoon**

- A short activity
- History and philosophy of literate programming
- Work through basics together
- Independent project work
- Wrap up and move forward

1 Overview

2 Activity

3 Literate Programming

4 knitr in Depth

### Think about your own workflow

- Think about: *How do I get outputs from my data?*
- Draw a map or diagram of your workflow
- Include relevant steps and tools, such as:
  - Tables
  - Figures
  - In-text citations and reference list
  - In-text analysis summaries
  - Cross-referencing (tables, figures, sections)
  - Document layout
- Make notes about areas that are time-consuming and/or difficult

1 Overview

2 Activity

- 3 Literate Programming
- 4 knitr in Depth

### Literate programming

- Origins in computer program documentation
- Software source code should describe how to use that software
- Early tools
  - WEB by Donald Knuth (author of TeX)
  - noweb by Norman Ramsey (1989)
- Two operations to create two different outputs
  - Weave: Nice Documentation
  - *Tangle*: Executable code

#### **Sweave**

- Released in 2002 by Friedrich Leisch<sup>1</sup>
- Written for S (the language of R)
- Focused on creating articles
- Two operations to create two different outputs
  - SWeave: LaTeX document (and PDF)
  - STangle: Executable R code

<sup>&</sup>lt;sup>1</sup>Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis

#### knitr

- Released in 2012 by Yihui Xie<sup>2</sup>
- Conceptual descendant of Sweave
  - Easier than Sweave
  - Much more functionality and flexibility
- Three operations to create two different outputs
  - knit: PDF (and LaTeX document)
  - purl: Executable R code
  - spin: PDF (from pure R code)
- Also create various outputs from non-LaTeX input

<sup>&</sup>lt;sup>2</sup>knitr Homepage

### How knitr Works<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>Image by Ari B. Friedman

### knitr Input

```
knitr_basics.Rnw ×
                                                            \neg
Run 📴 Chunks 🕶
    \documentclass{article}
   \begin{document}
    Here is a code chunk.
 7 - <<>>=
    a <- 1+1
10
    @
11
    You can also write inline expressions, \Sexpr{a}.
12
13
    \end{document}
14
15
15:1
     (Top Level) $
                                                          R Sweave $
```

## PDF Output

Here is a code chunk.

```
a <- 1+1
a
## [1] 2
```

You can also write inline expressions, 2.

### LaTeX Intermediary

```
\begin{document}
Here is a code chunk.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{a} \hlkwb{<-} \hlnum{1}\hlopt{+}\hlnum{1}
hlstd{a}
\end{alltt}
\begin{verbatim}
## [1] 2
\end{verbatim}
\end{kframe}
\end{knitrout}
You can also write inline expressions, 2.
\end{document}
```

### Workflows for knitr

|                | Analysis | Output          |
|----------------|----------|-----------------|
| Irreproducible | R        | Copy-paste      |
| No knitr       | R        | Manual includes |
| Output only    | R        | Load and knit   |
| Full knitr     | knitr    | n/a             |

#### Workflows for knitr<sup>4</sup>





<sup>&</sup>lt;sup>4</sup>Image by Ari B. Friedman

Overview

2 Activity

3 Literate Programming

4 knitr in Depth

#### **Code Chunks**

- Code chunks contain three parts
- Label
  - Used for referencing chunks
- Options
  - Control chunk behavior and appearance
- Contents
  - R code to be evaluated

## **Code Chunks: Anatomy**

### **Code Chunks: Options**

echo

eval

hold

- tidy and highlight
- error, warning, message

#### Code Chunks: Inline Code

- In addition to chunks, code can be written in-line
- Anything in Sexpr is evaluated
- Useful for in-line reporting of analyses

#### **Externalization**

■ Possible to *externalize* R code

- "Child" documents
  - Code chunks in separate file
- Reading code chunks
  - Keep code in specially formatted R script

## **Chunk Caching**

- knitr runs every chunk every time
- The cache chunk option changes this
- Cached chunks are only run after changes

# **Chunk Caching: How it Works**

# **Chunk Caching: Chunk Dependencies**

### **Figures**

- Two ways to include figures:
- Using knitr chunk options for figures
  - Handles lots of details automatically
  - Takes work to customize
- Manually using includegraphics
  - Somewhat finer control
  - Requires more LaTeX overhead

#### **Tables**

■ LaTeX tables are tedious

- Doing them by-hand is irreproducible and a waste of time
- Lots of ways to create tables with knitr
  - kable
  - xtable
  - stargazer

## **Package Versioning**

 Reproducibility requires knowing software used to conduct analyses

- Including package names using library or require is not enough
- Your future self (and others) need to know package versions

■ How do we handle that?

### Package Versioning: Do it Manually

- Record versions and either:
  - Put these in a README
  - Have knitr fail on wrong version
- Manually install package version:
  - devtools
  - repmis

Tedious

### Package Versioning: packrat

- Package developed by RStudio
- Work in an isolated software environment

Install packages into a local project directory

Share your packrat directory as part of your reproducible directory

### Package Versioning: checkpoint

- Package developed by Revolution Analytics
- Register a "checkpoint" (a date) for your analyses
- All packages are drawn from MRAN, a daily snapshot of the R package universe

■ No need to store/share a large package directory

### Wrapup

- What questions/concerns do you have?
- How have today's activities helped you think about your own reproducible workflow?

### Things we probably didn't cover

- knitr's spin function: Creates a PDF from an R script
  - Really useful for teaching assignments
- Language engines: Embed non-R code
  - Python, Bash, Julia, FORTRAN, Stata(?)
- rmarkdown: knit without using LaTeX markup

o Next Other Tools knitr Resources

### Other Reproducible Research Tools

- Git: Version control
- GitHub and Bitbucket: Git cloud services<sup>5</sup>
- Pandoc: Command-line tool to convert documents between formats
- Tools for R package versioning
  - devtools
  - repmis
  - packrat
  - checkpoint

<sup>&</sup>lt;sup>5</sup> "Collaborating with Git and Bitbucket"

#### knitr Resources

- knitr website
- CRAN Reproducible Research TaskView
- Dynamic Documents with R and knitr
- Reproducible Research with R and RStudio
- knitr Google Group
- knitr on StackOverflow

