Crawo Fisica Thu 4.

- Grawo RC

- MMM
- B
- F

A T=0 viene dineser
l'interrottore ed initio
un processo le exceso
del ecularisore fina
a \$\phi=CE

 $\mathcal{E} = V_{R} + V_{C}$ un T generies

even $V_{R} = RT(t)$ e $V_{C} = \frac{CP(t)}{C}$

wan Re It)= (q(t)

Mills correct le N finds oul contensione = & con correct 700 de po= C& Volon roggiani essinoi comunie

La content à le mossima un T=0 ~ I = & II)

decresemble apponentialmente anniblandos. II)

per T-200 eure culculantia lote da

v= RC

 $\begin{cases} X_{A} - X_{B} = IR \\ X_{B} - X_{C} = \frac{Q}{C} \\ Y_{C} - X_{C} = \frac{Q}{C} \\ IR + \frac{Q}{C} - \frac{Q}{C} = 0 \end{cases}$ $IR + \frac{Q}{C} - \frac{Q}{C} = 0$ $\frac{dQ}{dx} + \frac{Q}{C} - \frac{Q}{C} = 0$

 $\frac{Rd\theta}{dt} = \mathcal{E} - \frac{Q}{C} \quad \text{as } RCd\theta = C\mathcal{E} - \theta$ $\frac{d\theta}{dt} = \frac{dt}{C} \quad \text{as } \frac{d\theta}{Q - C\mathcal{E}} = \frac{dt}{QC}$ $\frac{d\theta}{Q - C\mathcal{E}} = \frac{dt}{QC}$

eau $\varphi(\tau=0)=0$ e $\varphi(t)=\varphi$ $\int_{0}^{\varphi} \frac{d\varphi}{\varphi(t)} = -\frac{1}{RC} \int_{0}^{C} \frac{dz}{z} \, dz \, dz \int_{0}^{C} \frac{dz}{z} = -\frac{T}{RC}$ $\varphi(t) = C \mathcal{E}(1-\varphi^{\frac{1}{2}}z) \int_{0}^{C} \frac{dz}{z} \int_{0}^{C} \frac{dz}{z} dz$

I(c)

8/2

 $V_{c}(t) = -\frac{q(t)}{c} = \frac{400}{c}$ $E(t) = -\frac{q(t)}{c} = \frac{400}{c}$ $E(t) = V_{0}\Omega$