Correctievoorschrift HAVO

2013

tijdvak 1

natuurkunde

Het correctievoorschrift bestaat uit:

- 1 Regels voor de beoordeling
- 2 Algemene regels
- 3 Vakspecifieke regels
- 4 Beoordelingsmodel
- 5 Inzenden scores
- 6 Bronvermeldingen

1 Regels voor de beoordeling

Het werk van de kandidaten wordt beoordeeld met inachtneming van de artikelen 41 en 42 van het Eindexamenbesluit v.w.o.-h.a.v.o.-m.a.v.o.-v.b.o.

Voorts heeft het College voor Examens (CvE) op grond van artikel 2 lid 2d van de Wet CvE de Regeling beoordelingsnormen en bijbehorende scores centraal examen vastgesteld.

Voor de beoordeling zijn de volgende passages van de artikelen 36, 41, 41a en 42 van het Eindexamenbesluit van belang:

- De directeur doet het gemaakte werk met een exemplaar van de opgaven, de beoordelingsnormen en het proces-verbaal van het examen toekomen aan de examinator. Deze kijkt het werk na en zendt het met zijn beoordeling aan de directeur. De examinator past de beoordelingsnormen en de regels voor het toekennen van scorepunten toe die zijn gegeven door het College voor Examens.
- 2 De directeur doet de van de examinator ontvangen stukken met een exemplaar van de opgaven, de beoordelingsnormen, het proces-verbaal en de regels voor het bepalen van de score onverwijld aan de gecommitteerde toekomen.
- 3 De gecommitteerde beoordeelt het werk zo spoedig mogelijk en past de beoordelingsnormen en de regels voor het bepalen van de score toe die zijn gegeven door het College voor Examens.

- De gecommitteerde voegt bij het gecorrigeerde werk een verklaring betreffende de verrichte correctie. Deze verklaring wordt mede ondertekend door het bevoegd gezag van de gecommitteerde.
- 4 De examinator en de gecommitteerde stellen in onderling overleg het aantal scorepunten voor het centraal examen vast.
- Indien de examinator en de gecommitteerde daarbij niet tot overeenstemming komen, wordt het geschil voorgelegd aan het bevoegd gezag van de gecommitteerde. Dit bevoegd gezag kan hierover in overleg treden met het bevoegd gezag van de examinator. Indien het geschil niet kan worden beslecht, wordt hiervan melding gemaakt aan de inspectie. De inspectie kan een derde onafhankelijke gecommitteerde aanwijzen. De beoordeling van de derde gecommitteerde komt in de plaats van de eerdere beoordelingen.

2 Algemene regels

Voor de beoordeling van het examenwerk zijn de volgende bepalingen uit de regeling van het College voor Examens van toepassing:

- De examinator vermeldt op een lijst de namen en/of nummers van de kandidaten, het aan iedere kandidaat voor iedere vraag toegekende aantal scorepunten en het totaal aantal scorepunten van iedere kandidaat.
- Voor het antwoord op een vraag worden door de examinator en door de gecommitteerde scorepunten toegekend, in overeenstemming met het beoordelingsmodel. Scorepunten zijn de getallen 0, 1, 2, ..., n, waarbij n het maximaal te behalen aantal scorepunten voor een vraag is. Andere scorepunten die geen gehele getallen zijn, of een score minder dan 0 zijn niet geoorloofd.
- 3 Scorepunten worden toegekend met inachtneming van de volgende regels:
 - 3.1 indien een vraag volledig juist is beantwoord, wordt het maximaal te behalen aantal scorepunten toegekend;
 - 3.2 indien een vraag gedeeltelijk juist is beantwoord, wordt een deel van de te behalen scorepunten toegekend, in overeenstemming met het beoordelingsmodel;
 - 3.3 indien een antwoord op een open vraag niet in het beoordelingsmodel voorkomt en dit antwoord op grond van aantoonbare, vakinhoudelijke argumenten als juist of gedeeltelijk juist aangemerkt kan worden, moeten scorepunten worden toegekend naar analogie of in de geest van het beoordelingsmodel;
 - 3.4 indien slechts één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, wordt uitsluitend het eerstgegeven antwoord beoordeeld;
 - 3.5 indien meer dan één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, worden uitsluitend de eerstgegeven antwoorden beoordeeld, tot maximaal het gevraagde aantal;
 - 3.6 indien in een antwoord een gevraagde verklaring of uitleg of afleiding of berekening ontbreekt dan wel foutief is, worden 0 scorepunten toegekend, tenzij in het beoordelingsmodel anders is aangegeven;
 - 3.7 indien in het beoordelingsmodel verschillende mogelijkheden zijn opgenomen, gescheiden door het teken /, gelden deze mogelijkheden als verschillende formuleringen van hetzelfde antwoord of onderdeel van dat antwoord;
 - 3.8 indien in het beoordelingsmodel een gedeelte van het antwoord tussen haakjes staat, behoeft dit gedeelte niet in het antwoord van de kandidaat voor te komen;

- 3.9 indien een kandidaat op grond van een algemeen geldende woordbetekenis, zoals bijvoorbeeld vermeld in een woordenboek, een antwoord geeft dat vakinhoudelijk onjuist is, worden aan dat antwoord geen scorepunten toegekend, of tenminste niet de scorepunten die met de vakinhoudelijke onjuistheid gemoeid zijn.
- 4 Het juiste antwoord op een meerkeuzevraag is de hoofdletter die behoort bij de juiste keuzemogelijkheid. Voor een juist antwoord op een meerkeuzevraag wordt het in het beoordelingsmodel vermelde aantal scorepunten toegekend. Voor elk ander antwoord worden geen scorepunten toegekend. Indien meer dan één antwoord gegeven is, worden eveneens geen scorepunten toegekend.
- 5 Een fout mag in de uitwerking van een vraag maar één keer worden aangerekend, tenzij daardoor de vraag aanzienlijk vereenvoudigd wordt en/of tenzij in het beoordelingsmodel anders is vermeld.
- 6 Een zelfde fout in de beantwoording van verschillende vragen moet steeds opnieuw worden aangerekend, tenzij in het beoordelingsmodel anders is vermeld.
- Indien de examinator of de gecommitteerde meent dat in een examen of in het beoordelingsmodel bij dat examen een fout of onvolkomenheid zit, beoordeelt hij het werk van de kandidaten alsof examen en beoordelingsmodel juist zijn. Hij kan de fout of onvolkomenheid mededelen aan het College voor Examens. Het is niet toegestaan zelfstandig af te wijken van het beoordelingsmodel. Met een eventuele fout wordt bij de definitieve normering van het examen rekening gehouden.
- 8 Scorepunten worden toegekend op grond van het door de kandidaat gegeven antwoord op iedere vraag. Er worden geen scorepunten vooraf gegeven.
- 9 Het cijfer voor het centraal examen wordt als volgt verkregen. Eerste en tweede corrector stellen de score voor iedere kandidaat vast. Deze score wordt meegedeeld aan de directeur. De directeur stelt het cijfer voor het centraal examen vast op basis van de regels voor omzetting van score naar cijfer.
- NB1 Het aangeven van de onvolkomenheden op het werk en/of het noteren van de behaalde scores bij de vraag is toegestaan, maar niet verplicht.
 Evenmin is er een standaardformulier voorgeschreven voor de vermelding van de scores van de kandidaten.
 Het vermelden van het schoolexamencijfer is toegestaan, maar niet verplicht.
 Binnen de ruimte die de regelgeving biedt, kunnen scholen afzonderlijk of in gezamenlijk overleg keuzes maken.
- NB2 Als het College voor Examens vaststelt dat een centraal examen een onvolkomenheid bevat, kan het besluiten tot een aanvulling op het correctievoorschrift.

 Een aanvulling op het correctievoorschrift wordt zo spoedig mogelijk nadat de onvolkomenheid is vastgesteld via Examenblad.nl verstuurd aan de examensecretarissen.

Soms komt een onvolkomenheid pas geruime tijd na de afname aan het licht. In die gevallen vermeldt de aanvulling:

NB

- a. Als het werk al naar de tweede corrector is gezonden, past de tweede corrector deze aanvulling op het correctievoorschrift toe.
- b. Als de aanvulling niet is verwerkt in de naar Cito gezonden WOLF-scores, voert Cito dezelfde wijziging door die de correctoren op de verzamelstaat doorvoeren.

Een onvolkomenheid kan ook op een tijdstip geconstateerd worden dat een aanvulling op het correctievoorschrift ook voor de tweede corrector te laat komt. In dat geval houdt het College voor Examens bij de vaststelling van de N-term rekening met de onvolkomenheid.

3 Vakspecifieke regels

Voor dit examen kunnen maximaal 74 scorepunten worden behaald.

Voor dit examen zijn de volgende vakspecifieke regels vastgesteld:

- 1 Een afwijking in de uitkomst van een berekening door acceptabel tussentijds afronden wordt de kandidaat niet aangerekend.
- 2 Het laatste scorepunt, aangeduid met 'completeren van de berekening/bepaling', wordt niet toegekend als:
 - een fout in de nauwkeurigheid van de uitkomst gemaakt is (zie punt 3),
 - een of meer rekenfouten gemaakt zijn,
 - de eenheid van een uitkomst niet of verkeerd vermeld is, tenzij gezien de vraagstelling het weergeven van de eenheid overbodig is, (In zo'n geval staat in het beoordelingsmodel de eenheid tussen haakjes.)
 - antwoordelementen foutief met elkaar gecombineerd zijn,
 - een onjuist antwoordelement een substantiële vereenvoudiging van de berekening/bepaling tot gevolg heeft.
- De uitkomst van een berekening mag één significant cijfer meer of minder bevatten dan op grond van de nauwkeurigheid van de vermelde gegevens verantwoord is, tenzij in de vraag is vermeld hoeveel significante cijfers de uitkomst dient te bevatten.
- 4 Het scorepunt voor het gebruik van een formule wordt toegekend als de kandidaat laat zien kennis te hebben van de betekenis van de symbolen uit de formule. Dit blijkt als:
 - de juiste formule is geselecteerd, én
 - voor minstens één symbool een waarde is ingevuld die past bij de betreffende grootheid.

4 Beoordelingsmodel

Vraag Antwoord Scores

Opgave 1 Radontherapie

1 maximumscore 2

voorbeeld van een antwoord:

Uit de figuur blijkt dat door het verval een kern ontstaat met twee protonen en in totaal vier nucleonen minder dan Rn-222.

In een α -deeltje zitten vier nucleonen waarvan twee protonen. Er is bij het verval dus inderdaad een α -deeltje vrijgekomen.

- constatering dat bij het verval een kern ontstaat met twee protonen en in totaal vier nucleonen minder dan Rn-222
- inzicht dat in een α -deeltje vier nucleonen zitten waarvan twee protonen 1

Vraag

Antwoord

Scores

maximumscore 3 2

antwoord:

 \rightarrow atoomnummer Z en symbool

- weergeven van het α-verval
- weergeven van het β -verval
- conclusie dat ²¹⁰₈₂Pb ontstaat

1

3 maximumscore 3

voorbeeld van een berekening:

Per liter lucht en per seconde vervallen er 65 Rn-222-kernen.

Omdat zich 6,0 liter lucht in de longen bevindt, vervallen er in een uur $65 \cdot 6, 0 \cdot 60 \cdot 60 = 1,404 \cdot 10^6$ kernen.

De longen absorberen dan $1,404 \cdot 10^6 \cdot 3,1 \cdot 10^{-12} = 4,4 \cdot 10^{-6}$ J.

- inzicht dat er per liter lucht en per seconde 65 Rn-222-kernen vervallen 1
- inzicht dat vermenigvuldigd moet worden met het aantal liter lucht in de longen
- completeren van de berekening

4 maximumscore 3

uitkomst: $H = 3,0.10^{-3} \text{ Sy}$

voorbeeld van een berekening:

De equivalente dosis H die zijn longen ontvangen, is: $H = Q \frac{E}{m}$, waarin

$$Q = 20$$
, $E = 32 \cdot 4, 4 \cdot 10^{-6} = 1,41 \cdot 10^{-4}$ J en $m = 0,95$ kg.

Hieruit volgt dat
$$H = \frac{20 \cdot 1,41 \cdot 10^{-4}}{0,95} = 3,0 \cdot 10^{-3} \text{ Sv.}$$

- inzicht dat de energie die per uur wordt geabsorbeerd vermenigvuldigd moet worden met 32
- omrekenen van g naar kg
- completeren van de berekening 1

5 maximumscore 3

uitkomst: $8.8 \cdot 10^2$ (WL)

voorbeeld van een berekening:

De radonactiviteit in de mijn is $65 \text{ Bq L}^{-1} = 65 \cdot 10^3 \text{ Bq m}^{-3}$.

1,0 Bq =
$$\frac{1}{3.7 \cdot 10^{10}}$$
 = 2,70·10⁻¹¹ curie.

Het stralingsniveau in de mijn is dus $\frac{65 \cdot 10^3 \cdot 2,70 \cdot 10^{-11}}{2,0 \cdot 10^{-9}} = 8,8 \cdot 10^2 \text{ WL}.$

- omrekenen van L naar m³
- omrekenen van Bq naar curie 1
- completeren van de berekening

1

1

Opgave 2 Skydiven

6 maximumscore 3

voorbeeld van een antwoord:

Voor de versnelling geldt: $a = \frac{\Delta v}{\Delta t}$, waarin $\Delta v = 19 \text{ m s}^{-1}$ en $\Delta t = 2,0 \text{ s}$.

Hieruit volgt dat $a = \frac{19}{2,0} = 9,5 \text{ ms}^{-2}$ en dat is bijna gelijk aan de

valversnelling. (De luchtweerstand is dus inderdaad vrijwel te verwaarlozen.)

- gebruik van $a = \frac{\Delta v}{\Delta t}$
- aflezen van Δv en Δt 1
- berekenen van a (met een marge van 0.5 ms^{-2}) en completeren

7 maximumscore 3

voorbeelden van een antwoord:

methode 1

De afstand waarover de skydiver valt, is gelijk aan de oppervlakte onder de (v,t)-grafiek. Het aantal hokjes onder de grafiek is ongeveer gelijk aan 89. De oppervlakte van één hokje correspondeert met een afstand van 10 m. De skydiver valt dus over afstand van $89 \cdot 10 = 890 = 9,0 \cdot 10^2$ m = 0,9 km.

- inzicht dat de afstand waarover de skydiver valt gelijk is aan de oppervlakte onder de (v,t)-grafiek
- bepalen van het aantal hokjes onder de grafiek met een marge van 3
- inzicht dat de oppervlakte van één hokje correspondeert met een afstand van 10 m en completeren

methode 2

De afstand waarover de skydiver valt, is gelijk aan de oppervlakte onder de (v,t)-grafiek.

De oppervlakte is te bepalen door een zodanige horizontale lijn te trekken dat de oppervlakte onder deze lijn gelijk is aan de oppervlakte onder de grafiek.

Die lijn ligt bij ongeveer 45 m s^{-1} dus de skydiver valt over een afstand van $20 \cdot 45 = 9,0 \cdot 10^2 \text{ m} = 0,9 \text{ km}.$

inzicht dat de afstand waarover de skydiver valt gelijk is aan de oppervlakte onder de (v,t)-grafiek
 inzicht dat de oppervlakte te bepalen is door een zodanige horizontale lijn te trekken dat de oppervlakte onder deze lijn gelijk is aan de oppervlakte onder de grafiek
 completeren

Opmerking

Als gerekend is met s = vt, waarin voor v niet de gemiddelde snelheid is ingevuld: 0 scorepunten.

8 maximumscore 3

uitkomst: t = 44 s

voorbeeld van een berekening:

Tussen t = 20 s en het openen van de parachute valt de skydiver 3,0-0,9-0,8=1,3 km met een snelheid van 55 ms^{-1} .

Dat duurt $\frac{1300}{55}$ = 23,6 s. De tijd tussen het verlaten van het vliegtuig en het openen van de parachute is dus t = 20 + 23,6 = 44 s.

inzicht dat de skydiver 1,3 km valt tussen t = 20 s en het openen van de parachute
 inzicht dat zijn snelheid dan 55 ms⁻¹ is
 completeren van de berekening

9 maximumscore 2

uitkomst: $V = 8.0 \cdot 10^2 \text{ m}^3$

voorbeeld van een berekening:

Per seconde gaat er $(55 \cdot A)$ m³ lucht door de tunnel, waarin A = 14,5 m².

Er wordt dan $V = 55.14, 5 = 8,0.10^2 \text{ m}^3$ lucht door de windtunnel geblazen.

• inzicht dat er per seconde $(55 \cdot A)$ m³ lucht door de tunnel gaat

completeren van de berekening

10 maximumscore 2

voorbeeld van een antwoord:

De vector van de luchtweerstand is even groot als en tegengesteld aan de zwaartekracht omdat er ook in deze situatie geen resulterende kracht / geen versnelling is.

- inzicht dat de vector van de luchtweerstand even groot als en tegengesteld aan de zwaartekracht is
- toelichting waaruit blijkt dat de eerste wet van Newton is begrepen

11 maximumscore 3

uitkomst: $F_{res} = 80 \text{ N}$

voorbeeld van een berekening:

In zwevende toestand geldt: $F_{lucht} = F_z = mg = 82.9, 81 = 804 \text{ N}.$

Door de toename van A wordt die kracht 0,10.804 = 80 N groter.

Dus is op dat moment $F_{\text{res}} = 80 \text{ N}.$

- inzicht dat in zwevende toestand $F_{lucht} = mg$
- inzicht dat door de toename van A die kracht $0,10 \cdot mg$ groter wordt
- completeren van de berekening

12 maximumscore 3

uitkomst:
$$\in 1080 = \left(\in 1, 1 \cdot 10^3 \right)$$

voorbeeld van een berekening:

Voor de energie die de ventilatoren verbruiken geldt: E = Pt, waarin

$$P = 2, 4 \cdot 10^3$$
 kW en $t = 5, 0$ h. Dus $E = 2, 4 \cdot 10^3 \cdot 5, 0 = 1, 2 \cdot 10^4$ kWh.

- gebruik van E = Pt
- berekenen van het energieverbruik in kWh
- completeren van de berekening

Opmerking

Er hoeft bij deze vraag geen rekening gehouden te worden met significantie.

Opgave 3 Elektriciteit op een plankje

13 maximumscore 4

voorbeeld van een antwoord:

Voor de weerstand van een stuk draad geldt: $R = \rho \frac{\ell}{A}$ waarin $R = 2,0 \Omega$,

$$\ell = 0.138 \text{ m en } A = 3.1 \cdot 10^{-8} \text{ m}^2.$$

Hieruit volgt dat
$$\rho = \frac{RA}{\ell} = \frac{2,0 \cdot 3,1 \cdot 10^{-8}}{0.138} = 0,45 \cdot 10^{-6} \ \Omega \text{m}.$$

Dit komt overeen met de waarde die in Binas staat, voor de soortelijke weerstand van constantaan.

• gebruik van
$$R = \rho \frac{\ell}{A}$$

- omrekenen van mm² naar m²
- completeren van de berekening
- opzoeken van ρ en consistente conclusie

14 maximumscore 4

uitkomst: I = 0.80 A

voorbeeld van een berekening:

Voor de vervangingsweerstand van de schakeling geldt: $\frac{1}{R_v} = \frac{1}{R_1} + \frac{1}{R_2}$,

waarin
$$R_1 = 2,0 \Omega$$
 en $R_2 = 2,0+2,0+2,0=6,0 \Omega$.

Hieruit volgt dat
$$\frac{1}{R_v} = \frac{1}{2.0} + \frac{1}{6.0} = \frac{4}{6.0}$$
, dus $R_v = 1.5 \Omega$.

Voor de stroomsterkte door de meter geldt: $I = \frac{U}{R_v}$, dus $I = \frac{1,2}{1,5} = 0,80$ A.

• gebruik van
$$\frac{1}{R_{y}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

• inzicht dat
$$R_1 = 2.0 \Omega$$
 en $R_2 = 6.0 \Omega$

• inzicht dat
$$I = \frac{U}{R_{\rm v}}$$

15 maximumscore 3

uitkomst: $U_{AC} = 0.80 \text{ V}$

voorbeelden van een berekening:

methode 1

De spanning tussen de punten A en B is 1,2 V. Omdat de drie weerstanden even groot zijn, is de spanning over elke weerstanden tussen AD, DC en CB gelijk aan 0,40 V, zodat $U_{\rm AC} = U_{\rm AD} + U_{\rm DC} = 0,40 + 0,40 = 0,80$ V.

• inzicht dat
$$U_{AB} = 1,2 \text{ V}$$

• inzicht dat
$$U_{\rm AD} = U_{\rm DC} = U_{\rm CB} = 0,40 \text{ V}$$

• inzicht dat
$$U_{AC} = U_{AD} + U_{DC}$$
 en completeren van de berekening

methode 2

De spanning tussen de punten A en B is 1,2 V.

De stroomsterkte door de tak ADCB = $\frac{1,2}{6,0}$ = 0,20 A.

De spanning tussen A en C is dan $U_{AC} = 0.20 \cdot (2.0 + 2.0) = 0.80 \text{ V}.$

• inzicht dat
$$U_{AB} = 1.2 \text{ V}$$

• inzicht dat de stroomsterkte door de tak ADCB =
$$\frac{1,2}{6,0}$$
 = 0,20 A

16 maximumscore 3

uitkomsten: $I_1 = 1,2 \text{ A en } I_2 = 0,60 \text{ A}$

voorbeeld van een berekening:

Door de twee weerstanden tussen AD en DC loopt nu geen stroom. Op de batterij zijn dus als het ware twee weerstanden van 2,0 Ω parallel aangesloten. Daarvan is de vervangingsweerstand 1,0 Ω .

Stroommeter A_1 geeft dus de totale stroomsterkte $\frac{1,2}{1,0} = 1,2$ A aan, terwijl

stroommeter A2 de stroomsterkte in een paralleltak aangeeft,

dus
$$\frac{1,2}{2} = 0,60 \text{ A}.$$

- inzicht dat de batterij nu op twee weerstanden van 2,0 Ω parallel aangesloten is
- inzicht dat de vervangingsweerstand hiervan 1,0 Ω is
- inzicht dat stroommeter A₁ de totale stroomsterkte aangeeft en stroommeter A₂ de stroomsterkte in een paralleltak aangeeft en completeren van de berekeningen

1

Opgave 4 Slinger van Huygens

17 maximumscore 3

uitkomst: $\ell = 0,582 \text{ m}$

voorbeeld van een bepaling:

Voor de slingertijd T geldt: $T = 2\pi \sqrt{\frac{\ell}{g}}$, waarin T = 1,53 s en g = 9,81 m s⁻².

Hieruit volgt dat $\ell = \frac{T^2 g}{4\pi^2} = \frac{(1,53)^2 \cdot 9,81}{4\pi^2} = 0,582 \text{ m}.$

- gebruik van $T = 2\pi \sqrt{\frac{\ell}{g}}$
- bepalen van T in drie significante cijfers (met een marge van 0,02 s)
- completeren 1

18 maximumscore 3

uitkomst: $v = 0.3 \text{ m s}^{-1}$

voorbeeld van een bepaling:

De snelheid v waarmee het blokje de evenwichtsstand passeert, is (bij benadering) gelijk aan zijn gemiddelde snelheid in de tijd dat de sensor

verduisterd is: $v = v_{\text{gem}} = \frac{\Delta s}{\Delta t}$, waarin $\Delta s = 3.0$ cm en $\Delta t = 0.09$ s.

Hieruit volgt dat $v = \frac{3.0 \cdot 10^{-2}}{0.09} = 0.3 \text{ m/s}^{-1}$.

- inzicht dat $v = v_{\text{gem}} = \frac{\Delta s}{\Delta t}$
- aflezen van Δt (met een marge van 0,01 s)
- completeren 1

19 maximumscore 2

voorbeeld van een antwoord:

Het zwaartepunt met twee blokjes moet zich op dezelfde hoogte bevinden als met één blokje. Ze moet de blokjes dus naast elkaar hangen.

- inzicht dat het zwaartepunt met twee blokjes zich op dezelfde hoogte moet bevinden als met één blokje
- conclusie 1

1

Opmerking

Een antwoord zonder of met een foute toelichting: 0 scorepunten.

20 maximumscore 2

voorbeeld van een antwoord:

Tijdens een meting mag de beginhoek niet of zo min mogelijk veranderen. Methode a is dus het beste.

inzicht dat tijdens een meting de beginhoek niet of zo min mogelijk
 mag veranderen
 conclusie

Opmerking

Een antwoord zonder of met een foute toelichting: 0 scorepunten.

21 maximumscore 2

voorbeeld van een antwoord:

T moet constant zijn. Dat geldt voor hoeken tot 10 graden.

inzicht dat T constant moet zijn
aflezen dat dit geldt voor hoeken tot 10 graden (met een marge van 2 graden)

22 maximumscore 2

voorbeeld van een antwoord:

Wanneer de slinger contact maakt met de boogjes, wordt (het vrije deel van) de slinger korter. De slingertijd wordt dan kleiner. (Omdat bij grotere beginhoeken de slingertijd toeneemt, wordt die toename gecompenseerd.)

inzicht dat (het vrije deel van) de slinger korter wordt bij contact met de boogjes
 inzicht dat de slingertijd dan kleiner wordt

Opgave 5 Achteruitkijkspiegel

23 maximumscore 3

uitkomst: n = 1, 5

voorbeeld van een bepaling:

Voor de breking van glas naar lucht geldt: $\frac{\sin i}{\sin r} = \frac{1}{n}$, waarin $i = 32^{\circ}$ en

 $r = 53^{\circ}$. Hieruit volgt dat $n = \frac{\sin 53^{\circ}}{\sin 32^{\circ}} = 1, 5$.

- toepassen van de wet van Snellius
- opmeten van i en r (elk met een marge van 2°)
- completeren

24 maximumscore 2

voorbeeld van een antwoord:

In de gekantelde stand komt alleen het licht dat door het glas is weerkaatst in het oog van de bestuurder, terwijl in de normale stand juist de gebroken lichtstraal het oog treft. De intensiteit van de weerkaatste lichtstraal (in figuur 2) is minder dan de intensiteit van de gebroken lichtstraal (in figuur 1). (De bestuurder ziet het licht dus gedimd.)

- inzicht dat in de gekantelde stand alleen het licht dat door het glas is weerkaatst het oog treft
- inzicht dat de intensiteit van de weerkaatste lichtstraal minder is dan de intensiteit van de gebroken lichtstraal

Opmerking

Als de intensiteit van de weerkaatste lichtstraal vergeleken wordt met de intensiteit van de lichtstraal die op de spiegel invalt: maximaal l scorepunt.

25 maximumscore 3

uitkomst: 0,053 V lux⁻¹ (met een marge van 0,002 V lux⁻¹)

voorbeeld van een bepaling:

De gevoeligheid van de sensor is gelijk aan de steilheid van de grafiek.

Deze steilheid is $\frac{4,9-0,7}{80} = 0,053 \text{ V lux}^{-1}$.

- inzicht dat de gevoeligheid van de sensor gelijk is aan de steilheid van
- aflezen van ΔU en de bijbehorende verandering van de lichtsterkte 1
- completeren

Opmerking

Als de reciproque waarde van de steilheid is bepaald: maximaal 2 scorepunten.

26 maximumscore 3

voorbeeld van een schakeling:

$$U_{\text{ref, 1}} = 2.3 \text{ V}$$

$$U_{\text{ref. 2}} = 3.3 \text{ V}$$

- aansluiten van een EN-poort op punt A
 - 1 completeren van de schakeling 1
- aflezen van de referentiespanningen (elk met een marge van 0,1 V)

27 maximumscore 2

voorbeeld van een antwoord:

Met de aan/uit schakelaar kan het dimsysteem aan of uit worden gezet.

 Als de versnelling in de achteruit staat, is het dimsysteem uitgeschakeld.

per juiste eis

Opmerking

Wanneer als antwoord alleen 'veiliger' genoemd wordt: 0 scorepunten.

5 Inzenden scores

Verwerk de scores van de alfabetisch eerste vijf kandidaten per school in het programma WOLF.

Zend de gegevens uiterlijk op 3 juni naar Cito.

6 Bronvermeldingen

Opgave 2 website van Indoor Skydive te Roosendaal

Opgave 4 uit Universiteits Bibliotheek Leiden (UBL), brief van Huygens aan P. Petit, 01-11-1658