$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Función	Derivada
$k, \operatorname{con} k \in \mathbb{R}$	0
x	1
	kf'(x)
$mx + b$, con $m, b \in \mathbb{R}$	m
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$\frac{f(x)}{g(x)}, \operatorname{con} g(x) \neq 0$	$\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^2}$
x^n , con $n \in \mathbb{R}$	nx^{n-1}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x} = x^{1/n}$, con $n \in \mathbb{Z}$, $n \ge 2$	$\frac{1}{n}x^{1/n-1}$
e^x , con $e \approx 2.718281828459045$	e^x
k^x , con $k > 0$	$k^x \ln k$
$-\frac{1}{\ln x}$	$\frac{1}{x}$, con $x > 0$
$\log_b x, \operatorname{con} b > 0, b \neq 1$	$\frac{1}{x \ln b}$, con $x > 0$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
$\cot x$	$-\csc^2 x$
sec x	sec x tan x
csc x	$-\csc x \cot x$
f(g(x))	$f'(g(x)) \cdot g'(x)$, "regla de la cadena"