DIIT Departamento de Ingenieria e Investigaciones Tecnológicas

Cuerpo rígido | Tensores de inercia

- 1. Se tiene una barra de $m=1\,\mathrm{kg}$ de sección despreciable frente a $l=1\,\mathrm{m}$. De alinear un eje (\hat{z}) con ella,
 - a) ¿cuales son sus momentos de inercia?,
- b) ¿existen los productos de inercia?
- 2. Dibuje sistemas de ejes conveniente para calcular momentos de inercia.

- 3. Calcule para el sistema de ambas m (la masa de brazos y ejes es despreciable)
 - a) tensor de inercia $\overline{\overline{I}}$ respecto a A,
 - b) momento angular $\vec{L}\Big|_{A} = \overline{\overline{I}}\vec{\Omega}$ y torque $\vec{\tau} = \dot{\vec{L}}$.

La porción vertical de la barra se mantiene con rulemanes que impiden su movimiento vertical, pero posibilitan que el eje rote sin fricción con velocidad angular Ω , que puede no ser constante, respecto el marco inercial O_{xyz} .

- 4. Calcule los momentos de inercia para una molécula de H_2O . En CNPT se abre con un ángulo de $104,5^{\circ}$ y median 95,84 pm entre O y H.
- 5. Marion (e) ex. 11-3 Tensor de inercia de un cubo con arista b.
 - a) Calcule el tensor de inercia desde el sistema de ejes x_i con origen en el centro de masa O.
 - b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo en el sistema X_i con origen en el vértice Q
- er b Q b
- 6. En una plancha metálica se calaron dos aberturas en forma simétrica. Esta pendul'ea desde el punto A manteniendose siempre en el plano x,y por lo que es relevante conocer su momento de inercia I_{zz} . Por pesado se determinó la m de la planchuela calada y se midieron todas las dimensiones que indica la figura. Calcule I_{zz} desde A en función de esos datos.

7. Landau §32 6

Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

8. Landau §32 2e y Landau §32 7

Calcule:

- a) En un sistema de ejes conveniente calcule el tensor de inercia de este cono homogéneo de altura h y radio en su base R.
- b) Energía cinética de dicho cono rodando sobre el χ plano XY. El contacto instantáneo \overline{OA} forma un ángulo de θ con \hat{X} .

