Homework guidelines:

- Each problem I assign, unless otherwise stated, is asking you to prove something. Give a full mathematical proof using only results from class or Wade.
- Submit a PDF or JPG to gradescope. The grader has ~ 250 proofs to grade: please make his job easier by submitting each problem on a different page.
- If you submit your homework in Latex, you get 2% extra credit.

Problems (5 total, 10 pts each)

Problem 1. Let $f: E \to \mathbb{R}$ be continuous on a nonempty set $E \subset \mathbb{R}$ and let $F \subset E$ be a nonempty subset. Define $g = f|_F$ to be the **restriction** of f to F, defined by

$$g(x) = f(x)$$
 for $x \in F$.

Note that, as a function, $g: F \to \mathbb{R}$. Prove that g is continuous on F.

Proof. Let assumptions be as in the problem statement. Since we are given that f is continuous on E, then we know for $\epsilon > 0$, $\delta > 0$, then $|x - a| < \delta$ and $x \in E$ implies that $|f(x) - f(a)| < \epsilon$ for all points $a \in E$. Given the restriction on g, we know that g(x) = f(x); therefore, for all $a \in F$, $a \in E$ for $a \in E$ for $a \in E$ for $a \in E$ for $a \in E$ implies that $|g(x) - g(a)| = |f(x) - f(a)| < \epsilon$ for all $a \in E$. Therefore, we know that $a \in E$ implies that $|g(x) - g(a)| = |f(x) - f(a)| < \epsilon$ for all $a \in E$. Therefore, we know that $a \in E$ implies that $|g(x) - g(a)| = |f(x) - f(a)| < \epsilon$

Problem 2. Prove that the function

$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1} & x \neq 1\\ 3 & x = 1 \end{cases}$$

is continuous on \mathbb{R} .

We will prove this in two parts, $\frac{x^2+x-2}{x-1}$ is continuous on \mathbb{R} then that f(x) is continuous at x=1.

Claim: $\frac{x^2+x-2}{x-1}$ is continuous on \mathbb{R} .

Proof. Let us simplify $\frac{x^2+x-2}{x-1} = \frac{(x+2)(x-1)}{x-1} = x+2$. So we need to show that x+2 is continuous on \mathbb{R} . If we fix $a \in \mathbb{R}$, for $x \in \mathbb{R}$ we have that |f(x)-f(a)| = |x+2-(a+2)| = |x-a|. Given $\epsilon > 0$ if we choose $\delta = \epsilon$. So we have that $|f(x)-f(a)| = |x-a| < \delta = \epsilon$

Claim: f(x) is continuous at x = 1.

Proof. Using the same simplification from the first part of this proof that we can write $\frac{x^2+x-2}{x-1} = \frac{(x+2)(x-1)}{x-1} = x+2$ for $\epsilon > 0$ if we choose $\delta = \epsilon$. Then if $|x-1| < \delta$ we get that $|f(x) - f(3)| = |x+2-3| = |x-1| < \delta = \epsilon$. Therefore, we know that f(x) is continuous at x=3.

Since we have that $\frac{x^2+x-2}{x-1}$ is continuous on \mathbb{R} and that f(x) is continuous at x=1 then we know that f(x) is continuous on \mathbb{R} .

Problem 3. Prove or disprove (find a counterexample) to the following statement: Let $E \subset \mathbb{R}$ and let $f, g : E \to \mathbb{R}$. If $f + g : E \to \mathbb{R}$ is continuous on E, then both f and g are continuous on E.

Let's take $f(x) = \begin{cases} 1 & x \leq 0 \\ 0 & x > 0 \end{cases}$ and $g(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases}$. If we take f(x) + g(x) = 1 at all x, then in this case $E = \mathbb{R}$, we know it is continuous on E. However, f(x), g(x) themselves are not continuous on E.

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$, and for $\epsilon > 0$ define $g_{\epsilon}(x) := \sup_{y \in [x - \epsilon, x + \epsilon]} f(y)$. Prove that if f is continuous at $x \in \mathbb{R}$, then

$$f(x) = \lim_{\epsilon \to 0} g_{\epsilon}(x) .$$

You may freely use the following subsequential characterization of one-sided limits: if $h:(0,\infty)\to\mathbb{R}$, then $\lim_{\epsilon\to 0+}h(\epsilon)$ exists and equals some $L\in\mathbb{R}$ iff for all sequences $(\epsilon_n)\subset(0,\infty)$ with $\epsilon_n\to 0$, we have that $\lim_{n\to\infty}h(\epsilon_n)\to L$.

Proof. Let assumptions be as above. Let us consider the interval of $I = [x - \epsilon, x + \epsilon]$ where we have defined $g_{\epsilon}(x) := \sup_{y \in I} f(y)$. If we take the $\lim_{\epsilon \to 0} g_{\epsilon}(x) = \lim_{\epsilon \to 0} \sup_{y \in I} f(y)$ then we get that $y \in [x - \epsilon, x + \epsilon] \to [x - 0, x + 0]$ as $\epsilon \to 0$. Therefore, since this interval I is closed and bounded and a subset of \mathbb{R} and given that f(y) is continuous at $x \in \mathbb{R}$ by the Bolzano-Weierstrass theorem we are able to write a subsequence y_{ϵ} over the interval I such that y_{ϵ} converges to x. This then allows us to say that $\lim_{\epsilon \to 0} \sup_{y \in I} f(y) = f(y_{\epsilon}) = f(x)$ as desired.

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be an everywhere-continuous function such that

$$f(x+y) = f(x) + f(y) \tag{1}$$

for all $x, y \in \mathbb{R}$. Prove that there exists a fixed value $m \in \mathbb{R}$ such that

$$f(x) = m \cdot x$$
 for all $x \in \mathbb{R}$.

Hint: To start, you should expect that m = f(1) (why?). You might also find it useful to show that starting from the identity (1), we have that f(0) = 0 and f(-x) = -f(x) for all $x \in \mathbb{R}$. Now, with m := f(1), show first that $f(n) = m \cdot n$ for all $n \in \mathbb{Z}$, and then that $f(q) = m \cdot q$ for $q \in \mathbb{Q}$. To conclude the desired identity for all $x \in \mathbb{R}$, approximate a given $x \in \mathbb{R}$ by a sequence q_n of rational numbers, using the facts that (i) f was assumed continuous; and (ii) \mathbb{Q} is dense in \mathbb{R} : for any $\alpha \in \mathbb{R}$ there exists a sequence $f(q_n)$ of rational numbers such that $f(q_n) \to \alpha$.

Proof. Let assumptions be as above. Given that f(x+y) = f(x) + f(y) we can say that f(x+0) = f(x) + f(y)f(x) + f(0) = f(x), this shows us that we can then say that f(0) = 0. Similarly we could further say that f(2x) = f(x+x) = f(x) + f(x) = 2f(x) and further we can say that for f(ax) for some $a \in \mathbb{Z}^+$ we get that f(x+x+...+x) = f(x) + f(x) + ... + f(x) = af(x). Alternatively, for given that 0 = f(0) we know that f(0) = f(x + -x) = f(x) + f(-x) implying that -f(x) = f(-x). Then we can say f(-ax) = -f(ax) = -af(x). This allows us to generally say that f(ax) = af(x)for $a \in \mathbb{Z}$ (not necessarily positive integers now). Next consider if we have $f(x) = f(\frac{x}{2} + \frac{x}{2}) =$ $f(\frac{x}{2}) + f(\frac{x}{2}) = 2f(\frac{x}{2}) \Rightarrow \frac{1}{2}f(x) = f(\frac{x}{2})$. More generally we are able to then say $f(\frac{x}{n}) = \frac{1}{n}f(x)$ for $n \in \mathbb{Z}$. Combining these two statements we get that $f(\frac{a}{n}x) = af(\frac{1}{n}x) = \frac{a}{n}f(x)$. We can simplify this to say that for $q \in \mathbb{Q}$ that f(qx) = qf(x). This then allows us to take that f(q) = f(q * 1) = qf(1); let us then say that f(1) = m for some constant $m \in \mathbb{R}$, then we can say that f(q) = mq for any rational q. Lastly, given that f(x) is continuous on \mathbb{R} we have that it can be expressed over a sequence of rational numbers q_n . Since \mathbb{Q} is dense in \mathbb{R} we know that we for any $\alpha \in R$ there exists a sequence q_n of rational numbers such that $q_n \to \alpha$. This then implies that for appropriate q_n that we can say that $f(\alpha) = f(q_n) = q_n f(1) = q_n m = \alpha m$. Therefore, we get that we can write $f(x) = m * x \text{ for } x \in R \text{ and fixed } m \in \mathbb{R} \text{ as desired.}$