Natural Language Processing & Word Embeddings

Quiz, 10 questions

Congratulations! You passed!	Next Item
1/1 point	
1. Suppose you learn a word embedding for a vocabulary of 10000 words. Then the en 10000 dimensional, so as to capture the full range of variation and meaning in those	
True	
False	
Correct The dimension of word vectors is usually smaller than the size of the vocabulary. word vectors ranges between 50 and 400.	Most common sizes for
1/1 point	
2. What is t-SNE?	
A linear transformation that allows us to solve analogies on word vectors	
A non-linear dimensionality reduction technique	
Correct Yes	
A supervised learning algorithm for learning word embeddings	
An open-source sequence modeling library	

Natural Language aprocessing & World Find Special Services and a huge corpus of text. You then Quily so this world embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

False

1/1 point

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{qirl} pprox e_{brother} - e_{sister}$$

Yes!

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

Un-selected is correct

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Correct

This should not be selected

False

1/1 point

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t Natural-Languager Processing by Word Embeddings
Quiz, 10 questions
c is a sequence of several words immediately before $t.$
c is the one word that comes immediately before t .
$igcup_c$ and t are chosen to be nearby words.
Correct
igcap c is the sequence of all the words in the sentence before $t.$
1/1
point
8.
Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec
model uses the following softmax function:
$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_{t'}^T e_c}}$
Which of these statements are correct? Check all that apply.
$ heta_t$ and e_c are both 500 dimensional vectors.
Connect
Correct
$oxedsymbol{ heta}_t$ and e_c are both 10000 dimensional vectors.
Un-selected is correct
$lacksquare$ $ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
Correct
After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.

Un-selected is correct

Quiz, 10 questions Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 θ_i and e_i should be initialized to 0 at the beginning of training.

This should not be selected

The variables should not be initialized to 0 at the beginning of training.

 θ_i and e_j should be initialized randomly at the beginning of training.

 X_{ij} is the number of times word i appears in the context of word j.

The weighting function f(.) must satisfy f(0) = 0.

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

1/1 point

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

$$m_1 >> m_2$$

Correct

$$m_1 << m_2$$

Natural Language Processing & Word Embeddings

Quiz, 10 questions

