XV. Nemzetközi Magyar Matematika Verseny

Zenta, 2006. márc. 18-22.

10. osztály

1. feladat: Oldjuk meg a következő egyenletet a valós számok körében $(a \in \mathbb{R}, (\sqrt[3]{a})^3 = a)$:

$$\sqrt[3]{\frac{2+x}{x}} - \sqrt[3]{\frac{2-6x}{x}} = 1.$$

Pintér Ferenc (Nagykanizsa)

1. feladat I. megoldása: Végezzük el az alábbi átalakítást:

$$\sqrt[3]{\frac{2+x}{x}} - \sqrt[3]{\frac{2-6x}{x}} = 1$$
$$\sqrt[3]{\frac{2}{x}+1} - \sqrt[3]{\frac{2}{x}-6} = 1.$$

Vezessünk be új változót, például legyen $y = \frac{2}{x} - 6$, s ekkor a

$$\sqrt[3]{y+7} - \sqrt[3]{y} = 1$$

egyenlethez jutunk. Emeljük köbre a kapott egyenletet a következő azonosság alapján: $(a - b)^3 = a^3 - b^3 + 3ab(a - b)$, és használjuk fel, hogy jelen esetben a - b = 1. Ekkor a következőt kapjuk:

$$y + 7 - y - 3\sqrt[3]{(y+7)y} \cdot 1 = 1,$$

rendezve

$$\sqrt[3]{y^2 + 7y} = 2$$

$$y^2 + 7y - 8 = 0$$

$$y_1 = 1 \text{ és } y_2 = -8.$$

Visszahelyettesítve x-re a következőt kapjuk:

$$x_1 = \frac{2}{7}, x_2 = -1.$$

Ellenőrzéssel beláthatjuk, hogy mindkét gyök kielégíti az eredeti egyenletet.

2. feladat: Az ABC háromszögben AC = BC, a BC, CA, AB oldalakat a beírt kör rendre az A', B', C' pontokban érinti. Az AA' szakasz a beírt kört D-ben, a B'D egyenes az AB oldalt E-ben metszi. Mutassuk meg, hogy AE = EC'.

Katz Sándor (Bonyhád)

2. feladat I. megoldása: Jelöljük az ABC háromszög alapon fekvő szögeit α -val, az A'AB szöget φ -vel.

Szimmetria miatt A'B'||AB, ezért $DA'B' \angle = \varphi$.

DA'B' a DB' ívhez tartozó kerületi szög, ugyanezen ívhez tartozó érintőszárú kerületi szög az AB'D szög. Így $AB'D \angle = \varphi$.

 $AB'ED \sim ABA'D$, mert megegyeznek két szögben (α és φ). B-ből és szimmetria miatt A-ból a körhöz húzott érintő szakaszok egyenlők, ezért A'B:AB=1:2. A hasonlóság miatt AE:AB'=1:2, tehát AE=AC'/2.

3. feladat: Legyen $A=3+3^2+3^3+\ldots+3^{2005}+3^{2006}$ és $B=2+2^2+2^3+\ldots+2^{2005}+2^{2006}$. Bizonyítsuk be, hogy nincs olyan C pozitív egész szám, amelyre $B^2+C^2=A^2$.

Bíró Bálint (Eger)

3. feladat I. megoldása: Ismeretes, hogy a 2 pozitív egész kitevőjű hatványainak utolsó számjegyeiből álló sorozat periodikus, mégpedig ez a periódus a 2; 4; 8; 6 számokból áll. Hasonlóképpen periodikus a 3 pozitív egész kitevőjű hatványainak utolsó számjegyeiből álló sorozat is, ez a periódus: 3; 9; 7; 1.

Ha egy-egy perióduson belül összeadjuk a 2 hatványait, akkor látható, hogy az így kapott szám 0-ra végződik. Ugyancsak 0-ra végződik egy perióduson belül a 3 hatványainak összege is. Mivel $2006 = 4 \cdot 501 + 2$, ezért A utolsó számjegyét az egy perióduson belüli első két számjegy összege dönti el. Eszerint A utolsó számjegye 2. Hasonlóan kapjuk, hogy B utolsó számjegye 6. Mindebből következik, hogy A^2 és B^2 utolsó számjegyei 4 illetve 6.

Ha létezne olyan C egész szám, amelyre a feltétel szerint $B^2+C^2=A^2$ teljesülne, akkor az előzőek szerint C^2 utolsó számjegye 8 volna, hiszen ekkor $C^2=A^2-B^2$ is igaz lenne. De C^2 négyzetszám és a négyzetszámok végződése nem lehet 8 .

Ezzel beláttuk, hogy nincs olyan C pozitív egész szám, amelyre $B^2+C^2=A^2.$

 $Megjegyz\acute{e}s$: ezzel azt is bebizonyítottuk, hogy nincs olyan egész szám oldalhosszúságú derékszögű háromszög, amelynek egyik befogója B, átfogója pedig A.

4. feladat: Az ABCD négyzet AB oldalán legyen E az A-hoz közelebbi harmadoló pont, F a CD oldal felezőpontja. Az ED, illetve BF egyenesek messék az AC átlót az M, illetve az N pontban. Hasonlók lesznek-e az AEM és a CNF háromszögek? Indokoljuk.

Kántor Sándorné és Sípos Elvira (Debrecen illetve Zenta)

4. feladat I. megoldása: Az AEM és a CNF háromszögben $EAM \angle = FCN \angle = 45^\circ$, valamint az AEM és MDC háromszögek hasonlóak. Így $|AB|:|AC|=\sqrt{2}:2, |AM|:|MC|=|AE|:|CD|=1:3,$ ezért $|AE|:|AM|=1/3|AB|:1/4|AC|=2\sqrt{2}/3.$

Másrészt |CN|: |NA| = |CF|: |AB| = 1:2 és $|CN|: |CF| = 1/3|AC|: 1/2|AB| = 2\sqrt{2}/3$.

|AE|:|AM|=|CN|:|CF|, amiből következik az AEM és a CNF háromszögek hasonlók (két oldal aránya és a közbezárt szög megegyezik).

4. feladat II. megoldása: Az AEM és a CNF háromszögben $EAM \angle = FCN \angle = 45^\circ$. tg $AEM \angle = 3$, tg $CFN \angle = 2$, $AME \angle = 180^\circ - 45^\circ - AEM \angle$,

 $\operatorname{tg} AME \angle = -\operatorname{tg} (45^{\circ} + AEM \angle) = -\frac{1+3}{1-3} = 2$. Ezért $AME \angle = CFN \angle$, tehát az AEM és a CNF háromszögek hasonlók (két-két szögük megegyezik).

5. feladat: Ha az adott a_1, a_2, a_3 valós számokra és $b_1, b_2, b_3 \in \mathbb{R} \setminus \{0\}$ számokra fennáll az $1 \le \frac{a_i}{b_i} \le 2$ (i = 1, 2, 3) egyenlőtlenség, akkor bizonyítsuk be, hogy

$$a_1^2 + a_2^2 + a_3^2 + 2(b_1^2 + b_2^2 + b_3^2) \le 3(a_1b_1 + a_2b_2 + a_3b_3).$$

Szabó Magda (Szabadka)

5. feladat I. megoldása: Az $x^2 - 3x + 2 \le 0$ egyenlőtlenség az $x \in [1, 2]$ esetén teljesül, tehát az i = 1, 2, 3 értékeire teljesülnek a következő egyenlőtleségek:

$$\left(\frac{a_i}{b_i}\right)^2 - 3\frac{a_i}{b_i} + 2 \le 0,$$

amelynek átalakításával $a_i^2+2b_i^2\leq 3a_ib_i$ az i=1,2,3 értékeire, és ezen egyenlőtlenségek összeadása eredményezi a bizonyítandó egyenlőtlenséget.

6. feladat: Vonalas füzetünkben a szomszédos egyenesek távolsága 1 egység. Létezik-e olyan téglalap, amely oldalainak hossza egész és csúcsai négy különböző vonalra illeszkednek?

Bogdán Zoltán (Cegléd)

6. feladat I. megoldása: Az ábrán x,y egész, a két, α szöget tartalmazó derékszögű háromszög hasonló. Az $\frac{x}{a}=\cos\alpha$ és $\frac{y}{b}=\sin\alpha$ összefüggés-ben α -t úgy kell megválasztani, hogy $\sin\alpha$ és $\cos\alpha$ racionális legyen.

Ekkor a és b is racionális. Ha legalább egyik nem egész, akkor az a és b számokat közös nevezőre hozva, a nevezőnek megfelelő arányú C középpontú középpontos hasonlósággal a téglalapot felnagyítva egy kívánt megoldást kapunk. Meg kell mutatni, hogy van olyan α , amelyre $\sin \alpha$, $\cos \alpha$ racionális. Ilyen például a $\sin \alpha = \frac{3}{5}$, $\cos \alpha = \frac{4}{5}$, a 3, 4, 5 pitagoraszi számhármasból. Elképzelhető olyan megoldás is, hogy valamely pitagoraszi számhármasból spekulatív úton ad valaki megoldást (például egy 5 egység oldalán négyzetet).