编译原理第六次作业

201300035 方盛俊

Ex. 6.1.1

Ex. 6.3.1

我们认为 int 类型占据 4 个字节的宽度, float 字节占据 8 个字节的宽度, 表格中的 Env 代表 当前使用的符号表.

行号	id	Env	类型 (type)	相对地址 (offset)
(1)	X	0	float	0
(2)	X	1	float	0
(2)	у	1	float	8

行号	id	Env	类型 (type)	相对地址 (offset)
(2)	р	0	record(Env(1))	8
(3)	tag	2	int	0
(3)	X	2	float	4
(3)	у	2	float	12
(3)	q	0	record(Env(2))	24

Ex. 6.4.3 (2)

翻译结果如下:

```
t_1 = i * a_i_width
t_2 = j * a_j_width
t_3 = t_1 + t_2
t_4 = a[t_3]
t_5 = i * b_i_width
t_6 = j * b_j_width
t_7 = t_5 + t_6
t_8 = b[t_7]
t_9 = t_4 + t_8
x = t_9
```

Ex. 6.4.6 (2)

(2)

由于 i 和 j 是 1-base 且按行存放的, 我们可以使用公式 (i - 1) * 20 * 4 + (j - 1) * 4 进行计算, 因此我们有:

A[10, 8]: (10 - 1) * 20 * 4 + (8 - 1) * 4 = 748

Ex. 6.4.7 (2)

(2)

由于 i 和 j 是 1-base 且按行存放的, 我们可以使用公式 (j - 1) * 10 * 4 + (i - 1) * 4 进行计算, 因此我们有:

A[10, 8]: (8 - 1) * 10 * 4 + (10 - 1) * 4 = 316

Ex. 6.6.1 (1)

添加 S -> repeat S_1 while B 的语法制导定义规则如下:

```
S_1.next = newlabel()
B.true = newlabel()
B.false = S.label
S.code = label(B.true) || S.code || label(S_1.next) || B.code
```

Ex. 6.6.4 (1)

if (a == b && c == d || e == f) x == 1; 对应的翻译为:

```
ifFalse a == b goto L3
  if c == d goto L2
L3: ifFalse e == f goto L1
L2: x == 1
L1:
```