

Machine Learning Design Patterns for ML Ops

Valliappa (Lak) Lakshmanan Global Head of Analytics & Al Solutions, Google Cloud

Twitter: @lak_gcp lak@google.com

66

The story of enterprise Machine Learning: "It took me 3 weeks to develop the model. It's been >11 months, and it's still not deployed."

@DineshNirmalIBM #StrataData #strataconf

10:19 AM - 7 Mar 2018

Design patterns are formalized best practices to solve common problems when designing a software system.

O'REILLY®

Machine Learning Design Patterns

Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

Valliappa Lakshmanan, Sara Robinson & Michael Munn

https://github.com/GoogleCloudPlatform/ml-design-patterns

Workflow Pipeline

Typical development workflow is monolithic

Experiments are ad-hoc and not repeatable

Hyperparameter tuning has wasteful repetition

MLOps has some DevOps concepts, and adds data validation & continuous evaluation/training

But MLOps differs from DevOps in important ways

	DevOps	MLOps
1		Also test and validate data, data schemas, and models
2		Also consider the whole system, the ML training pipeline
3	Deploy code and move to the next task	Constantly monitor, retrain and serve the model

A pipeline is an executable DAG of ML steps

Each step of the pipeline is a container

Pipeline runs can be grouped into Experiments

Logs are associated with each step of each run

An artifact repository stores the parameters & data passed between steps

Workflow Pipeline

Capture ML workflows in a DAG

The pipeline DAG:

- Executable as a whole or in parts
- Can be triggered by events
- Logging and monitoring for each step, run, experiment
- Artifacts stored in repository

Prebuilt components, which:

- Understand training vs. inference
- Avoid rerunning if output artifact already up-to-date in repository
- Run as containers on the pipelines platform

Transform

Imagine a model to predict the length of rentals

Who does transformation during prediction?

Ideally, client code does not have to know about all the transformations that were carried out

Leading cause of training-serving skew

```
SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle_model,(
   350 AS duration
   , 'Kings Cross' AS start_station_name
   , '3' as dayofweek
   , '18' as hourofday
))
```

TRANSFORM ensures transformations are automatically applied during ML.PREDICT

```
CREATE OR REPLACE MODEL ch09edu.bicycle model
OPTIONS(input label cols=['duration'],
        model type='linear reg')
AS
SELECT
  duration
  , start station name
  , CAST(EXTRACT(dayofweek from start date) AS STRING)
         as dayofweek
  , CAST(EXTRACT(hour from start date) AS STRING)
         as hourofday
FROM
  `bigguery-public-data.london bicycles.cycle hire`
 SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle model,(
   350 AS duration
   , 'Kings Cross' AS start station name
     '3' as dayofweek
   , '18' as hourofday
```

```
SELECT * FROM ML.PREDICT(MODEL ch09edu.bicycle_model,(
   350 AS duration
   , 'Kings Cross' AS start_station_name
   , CURRENT_TIMESTAMP() as start_date
))
```

In TensorFlow/Keras, do transformations in Lambda Layers so that they are part of the model graph

Moving an ML model to production is much easier if you keep inputs, features, and transforms separate

Transform pattern: the model graph should include the transformations

Multimodal input

Is this an image classification problem?

The input is multimodal: an image and some structured data

Much clearer in the case of free form text in tabular data

There are multiple ways of representing the text feature (length, sentiment, language, etc.)

Plus, most models will need a mix of structured and unstructured data

Concatenate the multimodal representations

Concatenate the inputs as a layer in the model, so that it is part of the model graph (like the Transform pattern)

Chapter	Design pattern	Problem solved	Solution
Data Representation	Multimodal Input	Choose between several potential data representations	Concatenate all the available data representations
Problem Representation	Cascade	Simpler used wit	
	Transform	The inputs to a model must be transformed to create the features the model expects and that process must be consistent between training and serving	Explicitly capture and store the transformations applied to convert the model inputs into features Is part of
Reproducibility	Workflow Pipeline	When scaling the ML workflow, you need a way to run trials independently and track performance for each step of the pipeline.	Make each step of the ML workflow a separate, containerized service which can be chained together to make a pipeline that can be run with a single REST API call
	Feature Store		

Connections between patterns

https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/08_connected_patterns/machine-learning-design-patterns.png

Feature Store

Feature Store:

Centralized location to store feature sets (data storage)

Lambda architecture:

- Store/serve features for low-latency inference
- Store/serve features for large batch access in training
- Metadata layer for versioning of different feature sets

API to manage loading and retrieving feature data.

Feast

Developed by Google and GoJek

Feature Store

taxi rides:

Ingesting into Feast

Four steps:

- create a FeatureSet
- 2. add entities and features
- 3. register the FeatureSet (returns JSON schema)
- 4. ingest feature data into the FeatureSet.

Feast, like TFX, uses Beam for feature creation

Retrieving from Feast

Feature data can be retrieved either offline, using historical features for model training, or online, for serving.

Two separate REST endpoints

Feast uses Redis and BigQuery for storage for online and batch respectively

Cascade

Some ML problems benefit from being broken up

What is the training data for model #2?

(a) Same as original training dataset: WHERE seller_type="reseller"

(b) Use predictions of first model: WHERE prob_reseller > 0.5

Training this model requires training a Cascade

Use Cascade to handle rare scenarios with less data & simpler models

Use Workflow
Pipeline to
automate Cascade
even during
development

Sensitive to upstream changes

Summary

O'REILLY®

Machine Learning Design Patterns

Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

Valliappa Lakshmanan, Sara Robinson & Michael Munn Workflow Pipeline
Transform
Multimodal Input
Feature Store
Cascade

https://github.com/GoogleCloudPlatform/ml-design-patterns

Data Representation	Multimodal Input	Choose between several potential data representations	Concatenate all the available data representations
Problem Representation	Cascade	Maintainability or drift issues when a machine learning problem is broken into a series of ML problems	Treat your ML system as a unified workflow for the purposes of training, evaluation, and prediction.
	Transform	The inputs to a model must be transformed to create the features the model expects and that process must be consistent between training and serving	Explicitly capture and store the transformations applied to convert the model inputs into features
Reproducibility	Workflow Pipeline	When scaling the ML workflow, you need a way to run trials independently and track performance for each step of the pipeline.	Make each step of the ML workflow a separate, containerized service which can be chained together to make a pipeline that can be run with a single REST API call
	Feature Store	The ad-hoc approach to feature engineering slows model development and leads to duplicated effort between teams as well as work stream inefficiency.	Create a Feature Store, a centralized location to store and document feature datasets that will be used in building machine learning models and can be shared across projects and teams

Solution

Problem solved

Design pattern

Chapter

O'REILLY®

Machine Learning Design Patterns

Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

Valliappa Lakshmanan, Sara Robinson & Michael Munn Read the book (Nov 2020) https://bit.ly/ml-design-patterns

Follow me on Twitter:

@lak_gcp

Read my blog:

https://medium.com/@lakshmanok

Check out implementations:

https://github.com/GoogleCloudPlatform/ml-design-patterns