INTRODUCTION

The KA9258D is a quad power operational amplifier to drive spindle motor, sled motor, focus actuator and tracking actuator.

FEATURES

- 4-channel BTL driver
- Built in 5V regulator
- Built-in thermal shut down circuit
- Operating supply voltage: 6 ~ 13V

ORDERING INFORMATION

Device Package		Operating Temperature		
KA9258D	28-SSOPH-375	-25°C~ +75°C		

BLOCK DIAGRAM

Fig. 1

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description	
1	DO1.1	0	DRIVE OUTPUT	
2	DO1.2	0	DRIVE OUTPUT	
3	DI1.1	I	DRIVE INPUT	
4	DI1.2	1	DRIVE INPUT	
5	REG		REGULATOR	
6	REO	0	REGULATOR OUTPUT	
7	MUTE	I	MUTE	
8	GND1	-	GROUND	
9	DI2.1	1	DRIVE INPUT	
10	DI2.2	1	DRIVE INPUT	
11	DO2.1	0	DRIVE OUTPUT	
12	DO2.2	0	DRIVE OUTPUT	
13	GND2	-	GROUND	
14	OPOUT	0	OPAMP OUTPUT	
15	OPIN (-)	1	OPAMP INPUT (-)	
16	OPIN (+)	I	OPAMP INPUT (+)	
17	DO3.1	0	DRIVE OUTPUT	
18	DO3.2	0	DRIVE OUTPUT	
19	Dl3.1	I	DRIVE INPUT	
20	Dl3.2	I	DRIVE INPUT	
21	VCC1	-	SUPPLY VOLTAGE	
22	VCC2	-	SUPPLY VOLTAGE	
23	VREF	I	2.5V BIAS VOLTAGE	
24	DI4.1	I	DRIVE INPUT	
25	DI4.2	I	DRIVE INPUT	
26	DO4.1	0	DRIVE OUTPUT	
27	DO4.2	0	DRIVE OUTPUT	
28	GND3	-	GROUND	

ABSOLUTE MAXIMUM RATINGS (Ta = 25 C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	18	V
Power Dissipation	P _D	1.7	W
Operating Temperature	T _{OPR}	-25 ~ + 75	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

(NOTE) Power Dissipation value: at V $_{\text{CC}}$ = 8V.

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{CC} = 8V, Unless Otherwise Specified)

A. REGULATOR PART

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Regulator Output Voltage	V_{REG}	$I_L = 100 \text{mA}$	4.75	5	5.25	٧
Load Regulation	ΔV_{RL}	$I_L = 0mA \text{ to } 200mA$	-40.0	0	10.0	mV
Line Regulation	ΔV_{CC}	$I_L = 200 \text{mA}, V_{CC} = 6 \text{ to } 9V$	-10.0	0	20.0	mV

B. DRIVER PART

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit	Iccq	V _I = 0	5.5	9.5	13.5	mA
Current						
Input Bias Current	I _{BOP}	V _I = 0			300	n A
Input offset voltage	V _{OFOP}		-5.0	0	5.0	mV
Output offset voltage	Voo		-3.0	0	30	1
Maximum Sink	I _{SINK}	RL = 4ohm, V _{cc}	0.5	0.8		Α
Current						
Maximum Source	Isouce	RL = 4ohm, GND	0.5	0.8		
Current						
Maximum Output	V _{MA}	$V_{I} = 2V_{rms}$, 1KHz	2.5	3.0		V _{rms}
Voltage						
Closed loop Voltage	A _{VF}	$V_I = 0.1V_{rms}$, 1KHz	4.5	6.5	7.5	dB
Gain						
Ripple Rejection Ratio	RR	V _I = -20dB, 120Hz	60 .0	80.0		
Slew Rate	SR	100Hz, Squarewave	1.0	2.0		V/us

Test Circuit

APPLICATION CIRCUIT

* THERMAL SHUT DOWN CIRCUIT

The IC is breaked down by the heat when overload condition continue for a long time. So KA9258D have thermal shut down circuit to prevent this case. At that time the temperature of IC rise over 175 °C, the circuit is operating and protect the IC against breakdown.

