

REAL FUNCTIONS

Why

We name functions whose domain is the real numbers.

Definition

A real function is a real-valued function The domain is often an interval of real numbers, but may be any non-empty set.

Notation

 $f: \mathbf{R} \to \mathbf{R}$. f is a real function. To speak of functions defined on intervals, let $a, b \in \mathbf{R}$. $g: [a, b] \to \mathbf{R}$. is a real function defined on a closed interval. $h: (a, b) \to \mathbf{R}$ is a real function defined on an open interval.

We regularly declare the interval and the function in one pass: Let $f:[a,b] \to \mathbb{R}$, read aloud as "f from closed a b to \mathbb{R} ." Or, let $f:(a,b) \to \mathbb{R}$ read aloud as "f from open a b to \mathbb{R} ".

Examples

Example 1. Let $c \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f(x) = c for every $x \in \mathbb{R}$. f is a real function.

Example 2.

Let $f : \mathsf{R}to\mathsf{R}$ with $f(x) = 2x^2 + 1$ for all $x \in R$. f is a real function.

Example 3. Let $f : \mathsf{R} \to \mathsf{R}$ with

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbf{Q} \\ 0 & \text{otherwise.} \end{cases}$$

f is a real function.

