Machine Learning cheat sheet

General problem

Machine learning problems are almost everytime taking the form:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} l(f_w(x_i), y_i) + \lambda C(w)$$

where:

- l is a loss function
- f_w is the prediction function (w is the parameter to optimize)
- C is a regularization function and λ a regularization factor

Linear case

Here, $f_w(x) = w^T x$, and for a given dataset in $\mathcal{X} \times \mathcal{Y}$, $\phi_i(\cdot) = l(\cdot, y_i)$: We can apply Fenchel duality and we have:

Primal	Dual
$\frac{\min_{w} \frac{1}{n} \sum_{i=1}^{n} \phi_i(w^T x_i) + C(w)}{C(w)}$	$\max_{\alpha} \frac{1}{n} \sum_{i=1}^{n} -\phi_{i}^{*}(-\alpha_{i}) - C^{*}(\sum_{i=1}^{n} \alpha_{i} x_{i})$

Where ϕ_i^* and C^* are the convex conjugate of ϕ_i and C (defined by $f^*(a) =$ $\max_z (za - f(z))$. And $x_i^*(\cdot)$ is the adjoint operator of $(\cdot^T x_i)$ $(w^{T^*} = \overline{w})$

It can be shown that if \hat{w} and $\hat{\alpha}$ are the optimal solutions of those problems, then we have:

$$P(\hat{w}) = P(w(\hat{\alpha})) = D(\hat{\alpha})$$

Loss functions:

Name	l(x,y)	$l^*(-a,y)$
L^1	x-y	$-ay, a \in [-1, 1]$
L^2	$(x-y)^2$	$-ay + \frac{a^2}{4}$
Logistic	$\ln(1 + e^{-xy})$	$ay_i \ln(ay) + (1 - ay) \ln(1 - ay), ay \in [0, 1]$
Hinge loss	$\max(0, 1 - xy)$	$-ay, ay \in [0,1]$

Regularizations:

- L^2 : $C(w) = ||w||_2^2$ L^1 : $C(w) = ||w||_1$

Problems

test

Regression

 test

Classification

 test