Math for economists 2021-01-29, ICEF

- 1. (10 points) Consider the set $A = \bigcup_{n=1}^{\infty} \left\{ \frac{3+2n}{n+6} \right\} \subset \mathbb{R}$.
 - (a) Is the set A bounded? Open? Closed? Compact?
 - (b) Roughly sketch the set $A \times A$
- 2. (10 points) Consider the system of equations

$$\begin{cases} xyz^2 + x^3y + 4y^3z^3 - 2x = 4\\ 2x^2yz + z^2 + 3xy + 5yx^3 = -5 \end{cases}$$

- (a) Are the function x(z) and y(z) defined around the point A = (-1, 1, 1)?
- (b) Find df/dz, where f(z) = x(z)y(z)
- 3. (10 points) Consider the functions $f(x,y) = x^2 + 2x + y^2 + 6y + 7$ and $g(x,y) = x^2 8x + y^2 10y + 9$. Find all the points where the gradients are parallel.
- 4. Find and classify all the local extrema of the function $g(x,y) = y^3 12y + x^2e^y$. Which of them are global?
- 5. (10 points) The level curves of the function f(x,y) are given by the equation $y-x^2=c$. Draw two level curves of the function g(x,y)=f(|x|-2,|y|+1).
- 6. (10 points) Use the first-order differential to approximate $\sqrt[3]{4 \cdot 0.9^2 + 2.2^2}$.
- 7. (20 points) Let $u(c_t)$ be utility function of consumption c_t at time t which is discrete, $t \in \mathbb{N}$, (\mathbb{N} set of natural numbers). Function u is continuously differentiable and strictly concave for c > 0, u(0) = 0, u'(c) > 0, $\lim_{c \to 0+} u'(c) = +\infty$.
 - (a) (5 points) Consider maximization problem: $\sum_{t=1}^{T} u(c_t) \to \max$ subject to $\sum_{t=1}^{T} c_t = s$, $c_t \ge 0$, where the parameter s is positive. Let T=2. Show that if (c_1^*, c_2^*) is the optimal bundle then $c_1^*=c_2^*$.
 - (b) (7 points) Generalize this result for any natural T. You may refer to the Lagrange method.
 - (c) (8 points) Let $(c_1^*, c_2^*, c_3^*, \dots, c_T^*)$ be the optimal bundle. Find the limit of $\sum_{t=1}^T u(c_t^*)$ as $T \to \infty$ or show that it does not exist.
- 8. (20 points) In the method of least squares the straight line a+bx is fit to the data $\{(x_i,y_i),\ i\in 1,2,\ldots,n\}$, by minimizing the sum $S=\sum_{i=1}^n(y_i-(a+bx_i))^2$ with respect to a and b.
 - (a) (15 points) Using first-order conditions find optimal a and b. Under what conditions does the solution for a and b exist?
 - (b) (5 points) Show that the sufficient conditions are met.

Midterm retake Good luck!