#### MUTHAYAMMAL ENGINEERING COLLEGE

**Department of Electronics and Communication Engineering** 

# Smart Farmer-IOT Enabled Smart Farming Application IBM NALAIYATHIRAN

## **SPRINT DELIVERY – 4**

| TITLE            | Smart Farmer-IOT Enabled Smart Farming Application |
|------------------|----------------------------------------------------|
| DOMAIN NAME      | INTERNET OF THINGS                                 |
| TEAM ID          | PNT2022TMID19105                                   |
| LEADER NAME      | B. BALA KRISHNA                                    |
| TEAM MEMBER NAME | I.RAVI KIRAN G.SUMANTH REDDY J.BHUVANESWAR         |
| MENTOR NAME      | SUBHASUNDHARI                                      |

## **Receiving commands from IBM cloud using Python program**

import time import

sys

import ibmiotf.application

while True:

```
#Provide your IBM Watson Device Credentials
"orgId": "ck2tfo",
"typeId": "NodeMLIC",
"deviceId": "1234"
 "token": "87654321"
# Initialize GPIO def myCommandCallback(cmd):
   print("Command received: %s" %
cmd.data['command']) status=cmd.data['command']
                                                     if
status=="motoron": print ("motor is on")
                                         elif status ==
"motoroff":
                print ("motor is off")
                                         else:
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e: print("Caught exception
      connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
```

#### #Get Sensor Data from

#### DHT11

```
temp=random.randint(90,110) Humid=random.randint(60,100)
Mois=random. Randint(20,120) data = {
  'temp': temp, 'Humid': Humid,
'Mois': Mois}
   #print data def myOnPublishCallback(
):
     print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson") success
     = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback)
                                             if not success:
      print("Not connected to IoTF")
                    deviceCli.commandCallback
time.sleep(10)
myCommandCallback # Disconnect the device
application from the cloud deviceCli.disconnect()
```

```
*SMARTFARMER.PY - C:\Users\Priya\AppData\Local\Programs\Python\Python311\SMARTFARMER.PY (3.11.0)*
                                                                                                  ×
File Edit Format Run Options Window Help
import time
import sys
import ibmio.application
import ibmiotf.device
import random
#provide your IBM Watson Device Credentials
organization = "ck2tfo"
deviceType = "NodeMLIC"
deviceID = "1234"
authMethod = "token"
authToken = "87654321"
#Initialize GPIO
def myCommandCallback(cmd):
    print("message received from IBM Iot Platform: %s" %cmd.data['command'])
    m=cmd.data['command']
    if (m=="motoron"):
        print("motor is switched on")
    elif(m=="motoroff"):
       print("motor is switched OFF")
print("please send proper command")
   deviceoptions = ("org": organization, "type":deviceType, "id":deviceId, "auth-method":authme
   devicecli = ibmiotf.device.client(deviceoptions)
```



#### Flow Chart



#### Observations & Results





# Temperature





Humidity

# Moisture



### Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

#### Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

#### Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.