

AK Femtoscopy in Pb-Pb collisions at 2.76 TeV

Non-Flat Background

Outline

- Significant non-femtoscopic, non-flat background observed in all Cfs at large k*
 - Increases with decreasing centrality
 - Same amongst all \(\Lambda K^{ch} \) pairs
 - More pronounced for ΛK⁰_S system
- Suggested effect is due primarily to particle collimation associated with elliptic flow
 - A Kisiel, Acta Physica Polonica B, 48
- > How does the background behave at low k*?
 - How should we handle this contribution in the fit?

All Cfs out to large *k**

Background from elliptic flow

Same event (signal)

 In "mixed" sample large-k* pair are relatively enhanced (resulting in negative correlation function slope)

Background Correction

- Ideal world (1): Rotate all events to align event plane (EP) angles
 - Not applicable, as azimuthal angle acceptance is not perfectly uniform
- Ideal world (2): Bin events in EP angle, and only mix events within a given bin
 - Finite EP resolution prevents this
 - Slight decrease in background observed when using EP bin size = $\pi/8$
 - \rightarrow No additional reduction observed when using bin size = $\pi/16$
- Real world: We must account for the background in our fit

Binning Events in EP Angle

Fit Function

- Multiplicative factor introduced in fitter to account for non-flat background
 - $C_{fit}(k^*) = C_{th}(k^*) F_{bqd}(k^*)$
 - F_{bqd} fit with linear, polynomial, or Gaussian form
- Three options
 - (1) Fit F_{bgd} first, at large k^* (0.6-0.9 GeV/c), before fitting femtoscopic region (0-0.3 GeV/c)
 - \rightarrow F_{bgd} treated as constant during fitting of femtoscopic region
 - (2) Allow F_{bgd} to vary during fit, and fit over larger region in k^* (0-0.5 GeV/c?)
 - → Fitter given more degrees of freedom, makes fitting more difficult
 - → Less emphasis placed on signal region
 - (3) Use simulation to fix F_{bgd} before fit
 - → Best option to most accurately describe F_{bgd} in femtoscopic region?

Parameters used in THERM THE OHIO STATE

		THERMINATOR	Data extraction
ΛK+	Re[f _o]	-0.5	-1.16
	Im[f _o]	0.5	0.51
	d_o	0	1.08
ΛK-	Re[f _o]	0.25	0.41
	Im[f _o]	0.5	0.47
	d_o	0	-4.89
ΛK ⁰ _S	Re[f _o]	-0.25	-0.41
	Im[f _o]	0.25	0.20
	d_o	0	2.08

Simulations

- Both AMPT and THERMINATOR reproduce the non-flat background reasonably well
 - THERMINATOR does better in signal reason, as I input rough scattering parameters into the code
- AMPT is statistics hungry
 - Need significantly more events
 - Is this feasible, and where do I obtain these?
- > THERMINATOR seems like the better option
 - All b = 8.7 fm events were generated over ~ 3 days
 - I have hypersurfaces from hydro code for b = {2.3, 3.1, 5.7, 7.4, 8.7, 9.9, 10.9, 11.9} fm
 - Could likely generate enough statistics, across all centrality bins, in ~1-2 weeks

THERMINATOR

- Initially, did not observe background
- Calculated EP angle for events, and found all were close to zero
 - Non-flat background results from mixing events with unlike EP angles
 - Not surprising that I was not observing a background
- Remedy: Rotate events by a random angle
 - i.e. rotate momenta and positions of all particles in an event by a common, random, angle

More on THERMINATOR

- THERMINATOR allows me the freedom to better match the data in the signal region
 - When filling numerators, weight pairs with |Ψ|²
 - → Input f_0 and d_0 into code
 - → Also possible with AMPT, but must additionally supply R parameter
 - → Methods already implemented in THERMINATOR code, would have to incorporate into AMPT
 - In the end, matching the signal region is not important, as I am interested in the background
 - → Obtained using unit weights in numerator, instead of $|\Psi|^2$
 - → Although, closely matching the data will make those reviewing my analysis more comfortable

THERMINATOR

Simulation

Quantitative use of THERM

From the previous slide:

$$Cf \ w \ / \ o \ Bgd = \frac{Cf \ w \ . \ Bgd}{Bgd} \qquad \longrightarrow \qquad Cf_{th} = \frac{Cf_{\exp}}{F_{Bad}} \qquad \longrightarrow \qquad Cf_{\exp} = Cf_{th} \cdot F_{Bgd}$$

- Proposed fit solution
 - (1) Generate THERMINATOR events needed to build backgrounds for all centrality bins
 - (2) Before fit: Fit the THERMINATOR background, over all k^* (0-2 GeV/c) to obtain F_{bgd}
 - → Adam, in paper, suggests 6th order polynomial
 - → Shown, for data, backgrounds for:
 - $\Lambda K + = \overline{\Lambda} K = \Lambda K = \overline{\Lambda} K +$
 - $\Lambda K_S^0 = \overline{\Lambda} K_S^0$
 - Combine to obtain best statistics, and most stable fit to background
 - (3) Keep F_{bgd} constant while fitting over the signal region

BACKUP

Fit Bgd Beforehand (1)

Fit Bgd Simultaneously (2)

