>

 \square $\stackrel{.}{\bowtie}$ $\mathring{\mathtt{O}}$

AI共學社群 > 機器學習百日馬拉松 > D63:深度學習簡介

D63:深度學習簡介

簡報閱讀

範例與作業

問題討論

深度學習簡介

知識地圖

本日知識點目標 >

機器學習與深度學習介紹 >

機器學習與深度學習比較 >

深度學習歷史 >

深度學習應用爆發的三大關鍵

類神經網路 (Neural Network)

深度學習簡介

知識地圖

• 類神經歷史與深度學習概念

Introduction of Machine Learning

Unsupervised Learning

分群 Clustering 階層分群法 Hierarchical Clustering

比較

深度學習 - 巨觀結構

- 類神經網路與深度學習的比較以及差異性
- 深度學習能解決哪些問題?
- 深度類神經網路常見名詞與架構

機器學習與深度學習介紹

機器學習

電腦透過資料中的不同特徵進行學習進而產生預測結果

深度學習

將影像、文字匯入電腦中經由大量運算,使得電腦能夠自動判別

機器學習與深度學習比較

Amount of Data	Small	Big
Features	Create your own	Learns automatically
Time	Short	Long
Accuracy	Good	BEST
Debugging	Easy	Very Tough
Expensive	Less	More
Decision Path	Yes	No

深度學習歷史

深度學習應用爆發的三大關鍵

後,才重回主流舞台。

深度學習相比於過去,到底有哪些關鍵優勢呢?

1.算法改良

網路結構:CNN 與 RNN 等結構在神經連結上做有意義的 精省,使得計算力得以用在刀口。

細節改良: DropOut (隨機移除) 同時有節省連結與集成的效果, BatchNormalization (批次正規化) 讓神經層間有更好的傳導力。

2.計算機硬體能力提升

圖形處理器 (GPU) 的誕生,持續了晶片摩爾定律,讓計算成為可行。

3. 巨量資料

細節改良:個人行動裝置的普及及網路速度的持續提升, 帶來巨量的資料量,使得深度學習有了可以學習的素材。

類神經網路 (Neural Network)

- 在1956年的**達特茅斯會議**中誕生,以數學模擬神經傳 導輸出預測,在初期人工智慧領域中就是重要分支。
- 因層數一多**計算量**就**大幅增加**等問題,過去無法解 決,雖不斷有學者試圖改善,在歷史中仍不免大起大 落。

流。

類神經網路與深度學習的比較

- 就基礎要素而言,深度學習是比較多層的類神經網路
- 但就實務應用的層次上,因著**設計思路**與**連結架構**的 不同,兩者有了很大的差異性

	類神經網路 (Neural Network)	深度學習 (Deep Learning)
隱藏層數量	1~2層	十數層到百層以上不等
活躍年代	1956~1974	2011至今
代表結構	感知器 (Perceptron) 啟動函數 (Activation Function)	卷積神經網路(CNN) 遞歸神經網路(RNN)
解決問題	基礎迴歸問題	影像、自然語言處理等多樣問題

深度學習 - 巨觀結構

• 輸入層:輸入資料進入的位置

• 輸出層:輸出預測值的最後一層

• 隱藏層:除了上述兩層外,其他層都稱為隱藏層

神經網路架構示意圖介紹

神經網路架構介紹

一個最簡單的神經網路,架構分成輸入層、隱藏層、輸出層(稱為正向傳播)

• 輸入層(input layer)

輸入層由多個節點所構成,主要功能為接收資料並輸入訊息,此層呈現神經網路之輸入變數,神經元數目會依照輸入的參數決定輸入之數量。

• 隱藏層(hidden layer)

隱藏層介於輸入層與輸出層之間,表示輸入變數間的交互 影響。利用活化函數將神經元以非線性的模式,從輸入層 至隱藏層及輸出層,以解決較複雜的非線性問題。 路複雜程度較高,在學習過程中可能會有難以收斂之情形,因此必須衡量隱藏層的數量再做訓練。

• 輸出層(output layer)

輸出層主要功能為處理隱藏層所輸出的資料,此層呈現神經網路之輸出變數。

深度學習 - 微觀結構

- 啟動函數(Activation Function): 位於神經元內部,將 上一層神經元的輸入總和,轉換成這一個神經元輸出 值的函數
- 損失函數(Loss Function): 定義預測值與實際值的誤差大小
- 倒傳遞(Back-Propagation):將損失值,轉換成類神經權重更新的方法

神經網路實務應用-卷積神經網路 (CNN, Convolutional Neural Network)

- 設計目標:影像處理
- 結構改進: CNN 參考像素遠近省略神經元,並且用影像特徵的平移不變性來共用權重,大幅減少了影像計算的負擔
- **衍伸應用**:只要符合上述兩種特性的應用,都可以使用 CNN 來計算,例如 AlphaGo 的v18 版的兩個主網路都是 CNN

神經網路實務應用-遞歸神經網路 (RNN, Recurrent Neural Network)

• 設計目標:時序資料處理

● **結構改進:RNN** 雖然看似在 NN 外增加了時序間 的橫向傳遞,但實際上還是依照時間遠近省略了部 分連結

用 RNN 來計算,近年在<mark>自然語言處理 (NLP)</mark> 上的應用反而成為大宗

重要知識點複習

- 深度學習不僅僅在深度高於類神經,因著算法改良、硬體能力提升以及巨量資料等因素,已經成為目前最熱門的技術
- 不同的深度學習架構適用於不同種類的應用,如卷積 神經網路(CNN)適用於影像處理,遞歸神經網路(RNN) 適用於自然語言處理,至今這些架構仍在持續演進與 改良。
- 深度神經網路巨觀結構來看,包含輸入層/隱藏層/輸出層等層次,局部則是由啟動函數轉換輸出,藉由預測與實際值差距的損失函數,用倒傳遞方式更新權重,以達成各種應用的學習目標。

神經網路參考影片

Machine Learning VS Deep Learning: [Whats The Difference] (作者: vishal kalia)

我的

Deep Learning In 5 Minutes | What Is Deep Learning? | Deep Learning Explained Simply | Simplilearn(作者: Simplilearn)

Deep Learning In 5 Minutes | What Is Deep

深度學習基本概念(作者:中國大學MOOC-慕課)

人工神經網路 VS 生物神經網路(作者:周莫煩)

科普: 人工神经网络 VS 生物神经网络

延伸閱讀

閱讀

- 除了每日知識點的基礎之外,推薦的延伸閱讀能 補足學員們對該知識點的了解程度
- 建議您解完每日題目後,若有多餘時間,可再補充延伸閱讀文章內容

推薦延伸閱讀

人工智慧大歷史

林守德教授演講 / Mora Chen 筆記

人工智慧大歷史 - Mora chen -

(The history of Artificial intelligence)

medium.com

- 本文重點如下圖,主要是希望同學大致了解所謂人工智慧/類神經網路的大起大落,大概每個階段發生了什麼事情藉由歷史我們可以對「為什麼今天能,而過去不能」有更深刻的認知。
- 同學對於其中的名詞不用過於深究,與應用相關的部分我們會在後面的課程中仔細講解,這邊只要知道大概即可。

解題時間

下一步:閱讀範例與完成作業