Hardware for Machine Learning Lecture 5: Sophia Shao DNN Kernel Computation

Ian Buck

I have completed my Ph.D. at Stanford and currently work at NVIDIA LinedIn Profile: http://www.linkedin.com/pub/ian-buck/15/13/192 Contact Info:

408-486-2000 2701 San Tomas Expressway Santa Clara, CA 95050

ibuck@nvidia.com

BrookGPU

BrookGPU is a compiler and runtime implementation of the Brook stream programming language which provides an easy, C-like programming environment for today's GPU. As the programmability and performance of modern GPUs continues to increase, many researchers are looking to graphics hardware to solve problems previously performed on general purpose CPUs. In many cases, performing general purpose computation on graphics hardware can

provide a significant advantage over implementations on traditional CPUs.

CUDA (Compute Unified Device Architecture)

Hardware for Machine Learning

Review

- AlexNet's cost function and optimization function
- Floating-point and fixed-point representations
- Hardware implications:
 - Fewer # of bits -> Energy/storage efficiency
- DNN Quantization
 - Using the "slope and bias" of fixed-point representation: $y = s^*x + z$
 - Scaling factor
 - How to scale? How to choose threshold value?
 - Zero point
 - Post-training quantization vs Quantization-aware training
 - State-of-the-art hardware support for low-precision DNNs

Quantization-Aware Training

- Typically performs better than post-training quantization
- "Simulate" quantization effects in the forward pass
- Weights and biases are updated in floating point during backpropagation so that they can be nudged by small amounts.

Bfloat16 for Google's Tensor Processing Unit

- · fp32 IEEE single-precision floating-point
- · fp16 IEEE half-precision floating point
- bfloat16 16-bit brain floating point

https://cloud.google.com/tpu/docs/bfloat16

MS-FP in Brainwave FPGA @ Microsoft

- " 'neural'-optimized data formats based on 8- and 9-bit floating point, where mantissas are trimmed to 2 or 3 bits. "
- "These formats, referred to as msfp8 and ms-fp9, exploit efficient packing into reconfigurable resources and are comparable in FPGA area"

Serving DNNs in Real Time at Datacenter Scale with Project Brainwave

DNN Kernels

- Overview
- Convolution
 - Basics
 - Transformation
- Pooling
- BatchNorm

AlexNet Model

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Convolutional Neural Networks Everywhere

Classification

No errors

A white teddy bear sitting in

A man riding a wave on

top of a surfboard

A man in a baseball

Somewhat related

A woman is holding a

cat in her hand

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

Stanford CS231n Lecture 5

Captions generated by Justin Johnson using Neuraltalia

Image

20151

Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei,

[Farabet et al., 2012] Reproduced with permission.

Satys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016

DNN Kernels

- Overview
- Convolution
 - Basics
 - Transformation
- Pooling
- BatchNorm

Convolutional Neural Nets

https://github.com/vdumoulin/conv_arithmetic

10

Hardware for Machine Learning Shao Spring 2021 © UCB

H: Height of Input ActivationW: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

b d C g k p S u W

Weight

H: Height of Input Activation

W: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

Н

2-D Convolution (stride = 1)

Hardware for Machine Learning

2-D Convolution (stride = 1)

Hardware for Machine Learning

2-D Convolution (stride = 1)

d b C g k m p W

Weight

Q

Ε

Output Activation

> **H:** Height of Input Activation W: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

stride: # of rows/columns

traversed per step

Н

2-D Convolution (stride = 1, valid conv.)

Input Activation

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

W

Weight

 $P = \frac{(H - R)}{stride} + 1$

$$Q = \frac{(W - S)}{stride} + 1$$

Output Activation

Q

H: Height of Input Activation

W: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

stride: # of rows/columns

traversed per step

Н

2-D Convolution (stride = 1, padding = 1)

W

Weight

Output Activation

H: Height of Input Activation

W: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

stride: # of rows/columns

traversed per step padding: # of zero rows/columns added

$$Q = \frac{(W - S + 2 * pad)}{stride} + 1$$

H: Height of Input Activation

W: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

stride: # of rows/columns

traversed per step
padding: # of zero
rows/columns added

C: # of Input Channels

H: Height of Input ActivationW: Width of Input Activation

R: Height of Weight

S: Width of Weight

P: Height of Output Activation

Q: Width of Output Activation

stride: # of rows/columns

traversed per step padding: # of zero rows/columns added

C: # of Input Channels

K: # of Output Channels

Convolution Loop Nest


```
for (n=0; n<N; n++) {
                                 for each output activation
  for (k=0; k<K; k++) {
    for (p=0; p<P; p++) {
      for (q=0; q<Q; q++) {
        OA[n][k][p][q] = 0;
        for (r=0; r<R; r++) {
                                            convolution window
          for (s=0; s<S; s++) {
            for (c=0; c<C; c++) {
              h = p * stride - pad + r;
              w = q * stride - pad + s;
              OA[n][k][p][q] +=
                            IA[n][c][h][w]
                            * W[k][c][r][s];
        OA[n][k][p][q] = Activation(OA[n][k][p][q]);
```


Fully-Connected Layer

Input Activation Weight **Output Activation** H = 1W = 1R Н P = 1W Q = 1K Ν Ν stride = 1. . . padding= 0 C: # of Input Channels Н **K:** # of Output Channels N: Batch size R W S Q

Depth-wise Convolution

Administrivia

Lab 1 due this Friday.

Lab 2 will release next Monday.

Week 3 reading is posted.

DNN Kernels

- Overview
- Convolution
 - Basics
 - Transformation
- Pooling
- BatchNorm

Option 1: Direct Convolution


```
for (n=0; n<N; n++) {
  for (k=0; k<K; k++) {
    for (p=0; p<P; p++) {
      for (q=0; q<Q; q++) {
        OA[n][k][p][q] = 0;
        for (r=0; r<R; r++) {</pre>
          for (s=0; s<S; s++) {
            for (c=0; c<C; c++) {
              h = p * stride - pad + r;
              w = q * stride - pad + s;
              OA[n][k][p][q] +=
                            IA[n][c][h][w]
                            * W[k][c][r][s];
        OA[n][k][p][q] = Activation(OA[n][k][p][q]);
```


Option 2: GEMM

Converting convolution to GEMM via im2col

Convolution

GEMM

Weight

Input Activation

Output Activation

Option 2: GEMM

Converting convolution to GEMM via im2col

Convolution

GEMM (w/ data duplication)

Weight

Input Activation

Output Activation

Option 3: FFT-based Convolution

Convolution theorem:

convolution in the time domain is equivalent to pointwise multiply in the frequency domain.

$$fst g=\mathcal{F}^{-1}ig\{\mathcal{F}\{f\}\cdot\mathcal{F}\{g\}ig\}$$

The asterisk denotes convolution, not multiplication.

Eyeriss tutorial

Option 3: FFT-based Convolution

Option 3: FFT-based Convolution

Fast Convolutional Nets with fbfft: A GPU Performance Evaluation

Option 4: Winograd Transform

- Re-association of intermediate values to reduce # of multiplications.
- Works well for 3x3 convolution.

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$
(5)

where

$$m_1 = (d_0 - d_2)g_0$$
 $m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$
 $m_4 = (d_1 - d_3)g_2$ $m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$

Before: 6 MULs, 4 ADDs

After:

• IA (d): 4 ADDs

• W (g): 3 ADDs, 2 MULs

• OA (m): 4 MULs, 4 ADDs

$$Y = A^T [(Gg) \odot (B^T d)]$$
 (6)

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{3} \end{bmatrix}^{T}$$

$$(7)$$

DNN Kernels

- Overview
- Convolution
 - Basics
 - Transformation
- Pooling
- BatchNorm

Pooling Layer

- Progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network, and hence to also control overfitting.
- Parameters:
 - Type: MAX and AVG
 - Pooling kernel size
 - Pooling stride

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

cs231n notes

DNN Kernels

- Overview
- Convolution
 - Basics
 - Transformation
- Pooling
- BatchNorm

BatchNorm Layer

- Goal: make it easier to train by providing zero-mean, unit-variance activations.
 - The training is complicated by the fact that the inputs to each layer are affected by the parameters of all preceding layers – so that small changes to the network parameters amplify as the network becomes deeper.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

36

Hardware for Machine Learning Shao Spring 2021 © UCB

BatchNorm Layer

Training Time

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \text{shape is D}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \mbox{Per-channel var,} \quad \mbox{shape is D}$$

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + eta_j$$
 Output, Shape is N x D

Test Time

$$\mu_j = \text{\tiny (Running) average of values seen during training} \quad \text{\tiny Per-channel mean,} \\ \text{\tiny shape is D}$$

$$\sigma_j^2 = \text{\tiny (Running) average of } \\ \text{\tiny values seen during training} \qquad \text{\footnotesize Per-channel var,} \\ \text{\tiny shape is D}$$

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Review

- Deep neural networks typically have a sequence of convolutional, fully-connected, pooling, batch normalization, and activation layers.
- Convolution is one of the fundamental kernel in DNNs.
 - 2-D convolution
 - Stride and padding
 - 3-D convolution with input/output channels
 - Batch size
- Convolution can be calculated in different ways.
 - Direct, GEMM, FFT-based, Winograd-based.
- Pooling and Batch Normalization layers.

