INTERSOB

U 5. Fyzikální párování - řešení

NEWTONOVA KONSTANTA $G = (6,67384 \pm 0,00080) \cdot 10^{-11} N m^2 kg^{-2}$	konstanta úměrnosti mezi gravitační silou a součinem hmotností interagujících těles děleným kvadrátem vzdálenosti mezi tělesy
EULEROVO ČÍSLO e≈2,71828183	limita posloupnosti $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$
BOLTZMANOVA KONSTANTA $k = (1,380648 \pm 0,000013) \cdot 10^{-23} J K^{-1}$	množství energie potřebné k zahřátí jedné částice ideálního plynu o jeden stupeň Celsia
COMPTONOVA VLNOVÁ DÉLKA $\lambda_C = 2,4263102389(16) \cdot 10^{-12} m$	konstanta úměrnosti mezi změnou vlnové délky dopadajícího a rozptýleného elektromagnetického záření a funkcí rozptylového úhlu
BOHRŮV MAGNETON $\mu_B = 9,27400915(23)\cdot 10^{-24} JT^{-1}$	magnetický dipólový moment elektronu
KLIDOVÁ HMOTNOST ELEKTRONU m_e =9,10938291(40)·10 ⁻³¹ kg	velikost hmotnosti nositele elementárního náboje, kterou naměří pozorovatel, vůči němuž je toto těleso v klidu
HUBBLEOVA KONSTANTA $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$	veličina určující, o kolik se zvětší rychlost vzdalování dalekého vesmírného objektu, když jeho vzdálenost vzroste o milion parseků
PERMEABILITA VAKUA $\mu_0 = 4 \pi \cdot 10^{-7} H m^{-1}$	míra magnetisace prázdného prostoru v důsledku působícího magnetického pole
RYDBERGOVA KONSTANTA $R_{\infty} = 10973731,568527(73) m^{-1}$	nejvyšší možný vlnočet světla, který může vyzářit nejjednodušší atom - vodík
VON KLITZINGOVA KONSTANTA $R_{K-90} = 25812,807 \Omega$	kvantum odporu Hallova jevu
FARADAYOVA KONSTANTA $F = 9,6481 \cdot 10^4 C mol^{-1}$	celkový elektrický náboj 1 molu látky úplně disociované nebo ionisované na částice s elementárním nábojem