INTRODUCTION TO GRAPHS

CS340

Graphs

- G = (V, E)
- A graph consists of a set of vertices, and a set of edges representing some kind of connection between specific vertices.
- Edges and vertices are abstractions that can represent virtually anything

Graphs can represent...

- Computer networks
- Design of computer chips
- Communications networks
- Water flow
- Streets and traffic
- Airline routes
- The structure of the internet
- Linguistic models
- Chemical reactions
- Protein interactions
- Molecular interactions
- Coloring problems
- Social interactions
- Rumor spreading
- Epidemiology
- Covert crime networks
- Acquaintanceships
- Friendships
- Matchmaking
- Collaborations
- Economic transactions

Terminology

- Adjacent (neighbors)
 - Vertices u and v are adjacent if an edge e is incident with the vertices u and v
- Degree
 - The degree of a vertex in an undirected graph is the number of edges incident with it.
- The Handshaking Theorem
 - Let G = (V,E) be an undirected graph with m edges. The total number of edges in the graph equals half the sum of the degrees of each vertex. Mathematically,
 - $2m = \sum_{v \in V} degree(v)$

Terminology

- Complete
 - A graph that has all possible edges.
- Directed/Undirected
 - A directed edge is directed from one vertex to another. It flows in one direction.
- Weighted
 - Edges of a graph have associated weights.

Terminology

- Sparse graph
 - The size of the set of edges |E| is much less than the square of the size of the set of vertices $|V|^2$. Counter-concept is a **dense** graph.
- Cycle
 - Traversal of a graph that starts and ends at the same vertex but otherwise has no repeated vertices or edges.
- Acyclic
 - Containing no cycles
- Tree
 - An acyclic graph

Representation of graphs

- Adjacency list
- Adjacency matrix

Graph is undirected, so adjacency matrix is symmetric along the diagonal.

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representation of a directed graph

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representation of graphs

- Adjacency list
 - Array Adj of |V| lists, one per vertex.
 - Preferred for sparse graphs (why?)
 - Weights and other info can be stored with each vertex
 - Time: to list all vertices adjacent to u: Θ(degree(u))
 - Time: to determine whether (u, v) ∈ E: O(degree(u))
- Adjacency matrix
 - 1 or weight in matrix represents an edge
 - Preferred for dense graphs
 - Preferred if we need to determine quickly if an edge exists (why?)
 - Time: to list all vertices adjacent to u: Θ(V)
 - Time: to determine whether (u, v) ∈ E: Θ(1)