

System F6

Paul Eremenko
Tactical Technology Office

Program Overview Briefing

08 June 2011

Enablers of Fractionated Space Architectures

- Cluster maintenance
- Rapid cluster maneuvering
- Relative navigation
- Wireless networking
- Real-time resource sharing
- Multi-level security
- 24/7 LEO-ground connectivity
- Open F6 Developer's Kit
- Modular F6 Tech Package
- Adaptability Metrics

Key Program Outputs

- On-orbit demonstration of key technologies
- F6 Developer's Kit
- F6 Technology Package
- Space Global Commons

Demo 1: Long-Duration Cluster/Network Maintenance

Demo 2: Resource Sharing at Multiple Security Levels

Demo 3: Cluster-Level Fault Tolerance

Demo 4: Defensive Scatter and Re-Gather

Fractionated System

F6 combines the strategies of distribution, modularization, and servicing into a single architecture, creating *virtual spacecraft* made up of free-flying, wirelessly networked elements. In addition to diversifying cost, schedule, and performance **risk**, this approach provides a more **responsive**, **adaptable** and **survivable** system than traditional, monolithic satellites.

Monolithic System

Program Philosophy

- Focus on architecture development, standards, and protocols
- Make information assurance a centerpiece of the architecture
- Write the software first, including new design tools, and plan for Verification & Validation
- Target best-of-class performers, including non-traditional and international
- Everything is open-source and maximally ITAR-free
- Build a community around the technology; use it to build the standard

Program Structure - Top-level Goals

- Demonstrate the feasibility and benefits of replacing large monolithic spacecraft with a cluster of wirelessly-interconnected modules capable of sharing/utilizing resources.
- Develop open interface standards (FDK) that enable a space “global commons” for the sustainment and development of future fractionated systems
- Develop technology packages (F6TP) that can be installed on a wide range of spacecraft buses to enable them to fully participate in a fractionated cluster.
- Develop a space-based transceiver to utilize existing Broadband Global Area Network (BGAN) service of the Inmarsat network.
- Functional demos
 - Semi-autonomous long-duration maintenance of a cluster and network and ability to add or remove modules.
 - Securely share resources across the cluster network with real time guarantees across multiple security domains.
 - Autonomously reconfigure the cluster for safety and mission

Program Structure – Artifacts

- F6 Developer's Kit – everything needed for an independent third party to develop a module that can fully participate in a fractionated cluster
 - Interface standards, protocols, software, behaviors/rules
 - Reference implementation
 - Freely distributed under an open source license
- F6 Tech Package(s) – modular physical instantiation of the FDK that enables a spacecraft bus to become a fractionated cluster module
 - Cross-link, protocol stack, middleware, cluster flight software
 - Multiple sources, capable of supporting multiple bus types
 - Goal is for a fully productized commercial off-the-shelf item
- Shared Resource Payloads (e.g., Inmarsat SB-SAT)
- Spacecraft Buses
- Launch Vehicle(s)

Program Schedule

System F6 Technical Areas

- Four key enabling technologies:
 - Design Tools for Adaptable Systems
 - Wireless Inter-Module Communications
 - Information Architecture
 - Cluster Flight

Design Tools for Adaptable Systems

- Scope
 - When does the business case for fractionated architectures close?
 - When it does close, how should a system be optimally fractionated?
 - Quantitative measure of adaptability
 - Quantitative trade-offs between adaptability and traditional system attributes (size, weight, power, cost, performance, etc.)
- Deliverables
 - Milestone A: Algorithm development complete, prototype implementation
 - Milestone B: Fully-functional, polished, well-documented, user-friendly tool
 - Milestone C: Tool validated against real data sets

Wireless Inter-Module Communications

- Scope
 - Layers 1 and 2* inter-spacecraft wireless communications for up to 20 modules
 - Looking for interesting point solutions—no specific performance requirements
 - Ranges and data rates of interest: 100 m to 100 km, 100 kbps to 10 Gbps
 - Interested in throughput, availability, scalability, size, weight, power, pointing requirements, interference resistance, detection range
- Deliverables
 - Milestone A: Preliminary design, parametric model, draft FDK
 - Milestone B: Detailed design, full terrestrial prototype test, final FDK
 - Milestone C: Four complete flight-ready units

** Layer numbers refer to the OSI Reference Model*

Information Architecture

- Scope
 - Layers 3 through 7 information architecture for space and terrestrial network
 - Expose spacecraft and terrestrial devices as network-addressable nodes
 - Provide real-time distributed resource sharing across multiple security domains
 - Real-time fault tolerance, i.e., network and resource reconfiguration to maintain safety-critical functions and gracefully degrade mission capability
 - Link encryption requirements—details
 - TAP functions and
 - V&V approach for distributed dynamic systems
 - Additional considerations:
 - Throughput of available space-capable hardware
 - Principal security controls corresponding to DCID 6/3 PL5
- Deliverables
 - Milestone A: Preliminary design, draft FDK
 - Milestone B: Detailed design, complete implementation, final FDK

Cluster Flight

- Scope
 - Long-duration semi-autonomous cluster ops for up to 20 modules
 - Autonomous rapid maneuvering capability—defensive scatter (20 km, 5 mins)
 - Holistic approach to collision avoidance—safe to most probable failure modes
 - Looking for interesting point solutions—no specific performance requirements
 - Cluster size range of interest: 100 m to 100 km
- Deliverables
 - Milestone A: Preliminary design, parametric model, draft FDK
 - Milestone B: Detailed design, complete implementation, final FDK
 - Milestone C: V&V for flight

- TA1: Design Tools for Adaptable Systems
 - Catholic University of America (CUA)
 - Palo Alto Research Center (PARC)
 - Caltech Jet Propulsion Laboratory (JPL)
 - Stevens Institute of Technology
 - Univ of So Cal Info Sciences Inst (USC/ISI)
- TA2: Wireless Inter-Module Communications
 - Aeronix
 - Argon ST
 - Southwest Research Institute (SwRI)
 - Space Micro
- TA3: Information Architecture
 - Carnegie Mellon University (CMU)
 - Vanderbilt University
 - QinetiQ North America
 - mZeal Communications
 - Raytheon BBN
 - Referentia Systems
 - University of Pittsburgh
 - Univ of So Cal Info Sciences Inst (USC/ISI)
- TA4: Cluster Flight
 - Microcosm
 - Aurora Flight Sciences
 - Northrop Grumman
 - Emergent Space
- Other Performers
 - Inmarsat Navigation Ventures Ltd (INVL)
 - Naval Postgraduate School (NPS)
 - Johns Hopkins Appl Physics Lab (JHU/APL)
- Government Team
 - NASA Ames Research Center
 - Naval Research Laboratory
 - Booz Allen Hamilton
 - Kinsey Technical Services (KTSi)
 - Oxford Systems Inc
 - RKF Engineering
 - Value-Driven Design Institute
 - National Security Agency (NSA)

www.darpa.mil