

Independent check of gain corrections based on the E/p ratio III

Europe ω_a

Sam Grant 12th April 2019

Calo Fiducial Cut

- 3 columns and 2 rows of crystals
- Looked at E/p vs XY and cut out the noisy or low stats regions (which is why it's asymmetrical)

E/p vs E - Fiducial

Set binning to > 3% resolution, so 200 MeV width.

Energy in calo [GeV]

0.955

0.95

1.4

1.6

1.8

Energy in calo [GeV]

- Time cut at 30 µs applied
- Behaviour perhaps due to the presence of an aluminium wall between tracker and calo

E/p vs E - Non Fiducial

- Set binning to > 3% resolution, so 200 MeV width.
 - Time cut at 30 µs applied
 - Station 19 stands out here

Long vs short lifetime breaker boards

- Short Life Times (by xtal) = {0, 9, 10, 11, 14, 15, 18, 19, 20, 23, 24, 27, 30, 31, 34, 35, 36, 39, 40, 43, 44, 45}
- Different breaker boards mean different recovery times

Recovery times per station

$$G(t) = G_0(1 - Ae^{-t/\tau_r})$$

St 13 I E/p vs t, Short Lifetime

St 19 I E/p vs t, Short Lifetime

St 13 I E/p vs t, Long Lifetime

St 19 I E/p vs t, Long Lifetime

Now look at fiducial regions of crystals

Recovery times per station inside individual crystal (not calo!) fiducial region

St 19 I E/p vs t, Short Lifetime, Fiducial

St 13 I E/p vs t, Long Lifetime, Fiducial

St 19 I E/p vs t, Long Lifetime, Fiducial

Microseconds not nanoseconds

Gain per crystal

Gain per crystal, consistent with MIP peaks?

MIP Peaks

10	159.536+/-2.233	
11	167.267+/-1.455	j
12	169.089+/-0.797	1
13	223.666+/-1.500	
14	160.698+/-1.631	
15	174.256+/-1.150	1
16	170.618+/-1.298	
17	169.311+/-3.016	
18	170.758+/-1.193	
19	161.574+/-1.426	
20	168.817+/-0.736	

Just looking at the step sizes, they don't match. What's happening?

Comments

- Since each crystal has it's own gain, I have been trying to normalise the time plots crystal by crystal... So far: bugs!
- I should also put a cut on the energy fraction per crystal relative to the most energetic crystal
- Hopefully these two changes will improve the fits to the time distributions