Análisis Matemático I Clase 3: concepto intuitivo de límite

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Marzo, 2024

Objetivo de la clase 3: continuar con los objetivos anteriores y además se espera que el estudiante comience a familiarizarse con la idea intuitiva de límite y que aplique técnicas analílicas (factorización, racionalización, teorema de la compresión, etc.) para el cálculo de los mismos.

Introducción a tasas de cambio.

¿Qué es el Cálculo?

Primera respuesta: El Cálculo es una herramienta matemática que nos permite comprender cómo varían o cambian las funciones

Tasa de cambio promedio o rapidez promedio

Problema 1: se deja caer un objeto desde lo alto de un edificio.

- Determinar:
- (1) La rapidez promedio durante los primeros 2 s
- (2) La rapidez promedio durante el intervalo de tiempo de un segundo a dos segundos.

Tasa de cambio promedio o rapidez promedio

Problema 1: se deja caer un objeto desde lo alto de un edificio.

Determinar:

- (1) La rapidez promedio durante los primeros 2 s
- (2) La rapidez promedio durante el intervalo de tiempo de un segundo a dos segundos.

Solución:

(1) Caida libre: la distancia recorrida por el objeto viene dada por:

$$y(t) = \frac{1}{2}gt^2$$
, donde $g \approx 32ft/s^2$.

Entonces la rapidez promedio durante los primeros 2 segundos es:

$$\frac{\Delta y}{\Delta t} = \frac{y(2) - y(0)}{2 - 0} = 32 ft/s.$$

Tasa de cambio promedio

(2) Rapidez promedio en el intervalo [1, 2]:

$$\frac{\Delta y}{\Delta t} = \frac{y(2) - y(1)}{2 - 1} = 48ft/s.$$

Tasa de cambio promedio

(2) Rapidez promedio en el intervalo [1, 2]:

$$\frac{\Delta y}{\Delta t} = \frac{y(2) - y(1)}{2 - 1} = 48 ft/s.$$

Problema 2: ¿Qué pasa si queremos calcular la rapidez promedio en un intervalo [1, 1+h]?

Solución: longitud del intervalo: h. Entonces la rapidez promedio en el intervalo [1, 1+h] es:

$$\frac{\Delta y}{\Delta t} = \frac{y(1+h) - y(1)}{h} = \frac{16(1+h)^2 - 16(1)^2}{h}.$$

Tasa de cambio

Tasa de cambio promedio

La tasa de cambio promedio de una función y = f(x) con respecto a la variable x en el intervalo $[x_1, x_1 + h]$ es:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Interpretar geométricamente.

Introducción a la tasa de cambio instantánea

Recordar que la tasa de cambio promedio de $y = 16t^2$ en $[t_0, t_0 + h]$ es:

$$\frac{16(t_0+h)^2-16t_0^2}{h}.$$

Observemos la siguiente situación:

valor de h	tasa promedio de $y=16t^2$ para $t_0=1$ en $[1,1+h]$		
1	48		
0.1	33.6		
0.01	32.16		
0.001	32.016		
0.0001	32.0016		

Introducción a la tasa de cambio instantánea

Recordar que la tasa de cambio promedio de $y = 16t^2$ en $[t_0, t_0 + h]$ es:

$$\frac{16(t_0+h)^2-16t_0^2}{h}.$$

Observemos la siguiente situación:

valor de h	tasa promedio de $y=16t^2$ para $t_0=1$ en $[1,1+h]$	
1	48	
0.1	33.6	
0.01	32.16	
0.001	32.016	
0.0001	32.0016	

Así, podemos decir que para $t_0=1$, la tasa de cambio promedio de y con respecto a t tiende al valor 32 a medida que la longitud del intervalo [1,1+h] tiende a cero (es decir, a medida que h tiende a 0.) **Decimos que 32 (ft/s) es la tasa de cambio instantánea de** y **con respecto a** t **en** $t_0=1$. Luego aprenderemos a calcular la rapidez instantánea en forma precisa.

Marzo, 2024

Interpretación geométrica de la tasa instantánea

Interpretación geométrica de la tasa instantánea

Conclusión

Tasa instantánea de f en t_0 = pendiente de la recta tangente al gráfico de f en $(t_0, f(t_0))$.

¿Cómo determinar el comportamiento de una función alrededor de un punto?

¿Cómo determinar el comportamiento de una función alrededor de un punto?

La búsqueda de respuestas a esta pregunta nos lleva al concepto de LÍMITE de una función Observar que en algunas situaciones, podemos responder los interrogantes sobre el comportamiento de una función a través de su gráfica. Por ejemplo:

Entonces, si nos preguntamos cuál es la tendencia de f cuando x se acerca cada vez más a x_0 , diríamos que los valores de f tienden a L. En símbolos, vamos a escribir:

$$\lim_{x\to x_0} f(x) = L$$

y leemos: el límite (es decir, la tendencia) de f cuando x tiende a x_0 es L.

Pablo D. Ochoa (Facultad de Ingeniería)

Por otro lado, cuando disponemos de la fórmula de la función es posible intentar obtener el comportamiento de la función cerca de x_0 dándole valores a la variable independiente x cada vez más cercanos a x_0 y evaluándolos en la función. Por ejemplo, consideremos la función:

$$f: (-\infty, 1) \cup (1, \infty) \to \mathbb{R},$$
$$f(x) = \frac{x^2 - 1}{x - 1}.$$

Supongamos que queremos saber cuál es la tendencia de f cuando x tiende a $x_0=1$. Observar que no podemos evaluar f directamente en 1 pues este número no pertenece al dominio de f. Lo que haremos es construir una tabla de valores apropiada.

X	f(x)
0,9	1.9
0,99	1.99
0,999	1.999
1,1	2.1
1,01	2.01
1,001	2.001
1,0001	2.0001

Tabla: Valores de f cuando x tiende a 1.

Observar que los valores que se eligen deben estar cada vez más cerca de $x_0=1$, tanto por derecha como por izquierda. Además, excluímos el punto $x_0=1$ de la tabla.

En conclusión, diríamos que la tendencia de f cuando x se acerca cada vez más a $x_0 = 1$ es 2. En símbolos:

$$\lim_{x\to 1} f(x) = 2.$$

Sin embargo, tanto el enfoque gráfico como el numérico (tabla) presentan limitaciones para calcular límites. En el primer caso, cuando la función a analizar presenta un gráfico complejo o que no se puede determinar con claridad, resulta difícil encontrar el límite con este método. En el caso de la tabla de valores, darle solamente algunos valores a la variable independiente, cercanos al punto de análisis, no garantiza que el límite sea la tendencia observada en la tabla. Por ende, es necesario recurrir a herramientas analíticas que nos permitan obtener respuestas exactas. Con la finalidad de encontrar resultados exactos sin necesidad de gráficas ni tablas, vamos a introducir la definición de **límite** y estrategias para su cálculo.

Comenzaremos con la definición informal de límite:

Definición informal de límite

Supongamos que f está definida en un intervalo abierto alrededor de x_0 , excepto posiblemente en el punto x_0 . Si los valores f(x) de la función f están arbitrariamente cercanos a un número L, para toda x suficientemente cercana al punto x_0 , decimos que f tiende a L cuando x tiende a x_0 , y escribimos:

$$\lim_{x\to x_0} f(x) = L.$$

Concepto intuitivo de límite: ejemplos

Estudiar el límite de las siguientes funciones cuando x tiende a 1.

(a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

(a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 (b) $g(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$

$$(c) \ h(x) = x + 1$$

Concepto intuitivo de límite: ejemplos

Estudiar el límite de las siguientes funciones cuando x tiende a 1.

¡En todos los ejemplos, el límite considerado es 2!

Observación importante: el límite de una función cuando la variable independiente tiende a un valor x_0 puede existir sin que la función esté definida en el punto x_0 . Es decir, para calcular límites, no es relavante si la función está definida o no en el punto de interés!!!

Funciones identidad y constante

Funciones identidad y constante

En el primer caso lím $_{x\to x_0}$ $x=x_0$ y en el segundo lím $_{x\to x_0}$ k=k, para todo $x_0\in\mathbb{R}$.

Más ejemplos: analizar si existe o no el límite de las siguientes funciones cuando x tiende a 0.

Más ejemplos: analizar si existe o no el límite de las siguientes funciones cuando x tiende a 0.

(a) El límite lím $_{x\to 0}$ U(x) no existe pues cuando x se acerca a 0 por la izquierda (valores negativos), la función U(x) vale siempre 0, mientras que cuando x se acerca a 0 por la derecha (valores positivos), la función U(x) vale siempre 1. Como los valores de la función U no se acercan a un número para todo x suficientemente cercano a 0, el límite estuadiado no existe.

- (b) El límite lím $_{x\to 0} g(x)$ no existe pues cuando x tiende a 0 por la derecha los valores de la función y=g(x) se hacen arbitrariamente grandes. Así, los valores de g no se acercan a un determinado valor cuando x tiende a 0.
- (c) Las oscilaciones de la función f cuando x tiende a 0 por la derecha hacen que los valores de la función no se acerquen a un determinado valor. Luego, $\lim_{x\to 0} f(x)$ no existe.

Propiedades de los límite y cálculo de límites

Teorema

Supongamos que los límites:

$$\lim_{x \to c} f(x)$$
 y $\lim_{x \to c} g(x)$, existen.

Entonces:

- $\lim_{x\to c} (f(x)+g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$.
- $\lim_{x\to c} (f(x) g(x)) = \lim_{x\to c} f(x) \lim_{x\to c} g(x)$.
- Si $k \in \mathbb{R}$, entonces $\lim_{x \to c} (k \cdot f(x)) = k \lim_{x \to c} f(x)$.
- $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x) \cdot \lim_{x\to c} g(x)$.
- Si $\lim_{x\to c} g(x) \neq 0$, entonces $\lim_{x\to c} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)}$.
- $\lim_{x\to c} [f(x)]^n = [\lim_{x\to c} f(x)]^n$, n es un entero positivo.
- $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to c} f(x)}$, n es un entero positivo. Cuando n es par, se pide que el límite de f sea no negativo.

Propiedades de los límites

Consecuencias: cálculo de límites de funciones polinómicas y racionales

Si
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, entonces:
$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

Además, si P y Q son polinomios y $Q(c) \neq 0$, entonces:

$$\lim_{x\to c}\frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}.$$

Así, por ejemplo

$$\lim_{x \to 1} \frac{x+2}{x^2 - x + 1} = \frac{3}{1} = 3.$$

Propiedades de los límites

Consecuencias: cálculo de límites de funciones polinómicas y racionales

Si
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, entonces:
$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

Además, si P y Q son polinomios y $Q(c) \neq 0$, entonces:

$$\lim_{x\to c}\frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}.$$

Así, por ejemplo

$$\lim_{x \to 1} \frac{x+2}{x^2 - x + 1} = \frac{3}{1} = 3.$$

Pregunta: ¿qué sucede si Q(c) = 0?

Ejemplo: calcular

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}.$$

Ejemplo: calcular

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}.$$

Observar que la función no está definida ni en 0 ni en 1:

Observar que el denominador:

$$x^2 - x$$

se anula en x=1 (el punto de análisis del límite). Por ende, para calcular el límite no se puede reemplazar directamente por x=1 en el cociente. Sin embargo, se puede eliminar el problema mediante factorización:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x(x - 1)} = \lim_{x \to 1} \frac{x + 2}{x}.$$

Observar que en el último caso, el denominador no se anula en x=1. Por ende podemos reemplazar en el último cociente x por 1 y obtener:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \frac{1 + 2}{1} = 3.$$

Ejercicio: calcular

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}.$$