Mathematik I Anwendungen in der Kryptographie

Prof. Dr. Doris Bohnet Sommersemester 2020

Lernziele

- Begriffe bzw. Aussagen kennen:
 - ✓ Ring, Körper
 - ✓ RSA-Verschlüsselung
 - ✓ Diffie-Hellmann-Verschlüsselung
- Beispiele für Ringe und endliche Körper kennen
- Wichtige Eigenschaften von Körpern kennen
- Prinzip der RSA-Verschlüsselung und der Diffie-Hellmann-Verschlüsselung kennen

Wiederholungsfragen - Kahoot

1.) inverses Element von
$$(1,1) \in \mathbb{Z}_2 \times \mathbb{Z}_3$$

$$(1,1) + (a,b) = (0,0) \text{ neutrales Element}$$

$$also (1,2) : (1,1) + (1,2) = (2,3) = (0,0)$$
2.) \mathbb{Z}_7^*
2, $2^2 \mod 7 = 4 \mod 7$

$$2^3 \mod 7 = 1 \mod 7 = 0 \mod(2) = 3$$
, also hein Energy dum $1\mathbb{Z}_7^* = 6$
3.) 1: $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7 = (0,0)$

3.)
$$f: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_3 \times \mathbb{Z}_4$$
, $f(a) = (a \mod 3, a \mod 4)$
 $f(4) = (4 \mod 3, 4 \mod 4) = (1, 0)$

Wiederholung

Chinesischer Resisontz

Far
$$n_1, \dots, n_k \in \mathbb{N}$$
 teilerfiemd and $x_1, \dots, x_k \in \mathbb{Z}$
gibt en genau eine Lösung $x \in \mathbb{Z}_n$, $n = n_1 \cdot \dots \cdot n_k$
so dars
$$x \mod n_1^* = (x_1^*) \mod n_2^* \qquad i = 1, 2, \dots, k$$

Beispiel:
$$\times \mod 2 = 0 \mod 2$$
, $\times \mod 3 = 0 \mod 3$, $\times \mod 5 = 3 \mod 5$
 $n_1 = 2$ $n_2 = 3$ $n_3 = 5$ $n_4 = n_4 \cdot n_2 \cdot n_3 = 2 \cdot 3 \cdot 5 = 30$
 $\times = 1$ $\times = 1$

$$n_2$$
: $ggT(n_2, \frac{n}{n_2}) = ggT(3_10) = 1$ n_2 : $n_3 = ggT(3_10) = 1$ $n_3 = ggT(5_16) = 1$ $n_3 = ggT(5_$

az×z mod30

Anwendung des Chinesischen Restsatzes

"CRT"

Seien $n_1, n_2, \dots, n_k \in \mathbb{N}$ zueinander teilerfremde Zahlen. Dann gilt:

Beispiel - Ring

Definition - Ring

Eine Menge R mit zwei Verknüpfungen $+,\cdot$ heißt (**Remarket**) Ring, falls

(R1) (R, +) ist eine abelsche Gruppe.

(R2) Die Verknüpfung · ist assoziativ.
$$a(bc) = (ab)c$$
 $\forall a,b,c \in \mathbb{R}$

(R3) Das Distributivgesetz gilt. a (b+c) = ab + ac

Beispiel:
$$\nearrow$$
 (\mathbb{Z}_n , +, \circ) $n \in \mathbb{N}$ 2.3. (\mathbb{Z}_{4} , +, \circ) \qquad (\mathbb{Z}_{4} , +, \circ) \qquad genade \forall ablen

Beispiel - Körper

Definition - Körper

Eine Menge K mit zwei Verknüpfungen $+,\cdot$, so dass (K1) (K,+) eine abelsche Gruppe mit neutralem Element 0 ist, (K2) $(K \setminus \{0\},\cdot)$ eine Gruppe mit neutralem Element 1 ist und (K3) das Distributivgesetz gilt, heißt **Körper.**

inverse Elemente du Multiplikation!

Beispiele:
$$(R, +, \cdot)$$
 Körper $(Q, +, \cdot)$ Körper $(Z_p, +, \cdot)$ Primtohl $eindenliq$ lösbar, de un en gibt a^{-1} : $x = a^{-1}b$

Endliche Körper

Die Ringe $(\mathbb{Z}_p,+,\cdot)$ sind genau dann Körper, wenn p eine Primzahl ist.

Folgerung:	Gleichungen wir ax = b sind eindeutig lösbar.
	7. B. in Z12: 2x mod 12 = 1 mod 12
	ist night lösbar
	3 x mod 12 = 0 mod 12
	hat mehrere L'osungen:
	X = 4, $X = 0$, $X = 8$
	in \mathbb{Z}_{11} : aller eindentig lösbor

RSA-Verschlüsselung

2. Wable
$$e \in \mathbb{Z}_{p(n)}^{*}$$
 mit $n = p \cdot q$
 $99T(e, (p-1)(q-1)) = 1$

3. Berechne
$$d \in \mathbb{Z}_{\varphi(n)}^*$$
 des Inverse von e:
 n, d privater $e \cdot d = 1 \mod \varphi(n)$
12.05.2020 Schlissel Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 9

$$N \in \mathbb{Z}_{p^{\bullet}q}$$
 $d.h. N < p^{\bullet}q$
 $q(n) = q(p^{\bullet}q)$
 $q(n) = (p-1)(q-1)$

n, e offentlicher Sellissel von Bab

Anwendung: RSA-Verfahren

- 1. Es werden Primzahlen p, q gewählt.
- 2. Es wird der öffentliche Schlüssel berechnet: $n=p\cdot q$, $e\in\mathbb{Z}_{\phi(n)}^*$
- 3. Es wird der private Schlüssel berechnet: $\mathbf{d} \in \mathbb{Z}^*_{(p-1)(q-1)}: d \cdot e = 1 \ mod \ \phi(n)$
- Eine Nachricht $N \in \mathbb{Z}_n$ für X wird mit dem öffentlichen Schlüssel von X verschlüsselt als: $S = N^e \mod n$
- 5. Von X wird sie mit Hilfe des privaten Schlüssels entschlüsselt: $N = S^d \mod n$

Einfaches Beispiel

$$p = 3, q = 5$$

öffentlichen Schlüssel:
$$n = p \cdot q = 15$$

$$e \in \mathbb{Z}_{\varphi(n)}^* = \mathbb{Z}_8^*$$

$$7.8. e = 7$$

$$(n,e) = (15,7)$$

privater Schlüssel:
$$d \in \mathbb{Z}_{q(n)}^* = \mathbb{Z}_{s}^*$$

So doss e.d = 1 mod 8
 $7 \cdot d = 1 \mod 8$

Nechrich:
$$N = 12$$
 < 15: $S = 12^{+} \mod 15 = 3 \mod 15$
Entschlüßelung: $N = 3^{+} \mod 15 = 5 \mod 15$
12.05.2020 Mathematik I - Prof. Dr. Doris Bohnet-Vorlesung 9d 15

$$\frac{NR}{9(n)} = \varphi(15) = \varphi(3)\varphi(5)$$

$$= (3-1)(5-1)$$

$$\varphi(15) = 8$$

$$\frac{7}{8} = \frac{1}{3}, \frac{5}{7}, \frac{7}{3}$$

$$12^{2} \mod 15 = \frac{12^{4} \mod 15}{12^{4} \mod 15}$$

127 mod 15 = (122 · 124 · 12) mod 15

Anwendung: Diffie-Hellmann

Es soll eine Nachricht zwischen Alice und Bob ausgetauscht werden.

- 1. Es wird eine Primzahl p gewählt und ein Erzeuger a von \mathbb{Z}_p^* bestimmt.
- 2. Alice und Bob wählen 2 Zufallszahlen: q_A , $q_B < p-1$
- 3. Alice schickt an Bob: $r_A = a^{q_A} mod p$
- 4. Bob schickt an Alice: $r_B = a^{q_B} mod p$
- 5. Alice rechnet: $r_B^{q_A} = a^{q_A q_B} mod \ p = K$
- 6. Bob rechnet: $r_A^{q_B} = a^{q_A q_B} mod \ p = K$
- 7. Alice verschlüsselt $N \in \mathbb{Z}_p$: $S = K \cdot N \mod p$.
- 8. Bob entschlüsselt: $N = K^{-1} \cdot S \mod p$.