Trace semantics of well-founded processes via commutativity

For Gordon Plotkin on his 70th birthday

Nathan Bowler (Hamburg) and Paul Blain Levy (Birmingham)

November 23, 2016

Outline

- Setting Up
- 2 Determinism
- 3 Finite nondeterminism
- 4 Categorical description
- Countable nondeterminism
- 6 Finite probabilistic choice
- Countable probabilistic choice

$$egin{aligned} M &::= & ext{input}_{ ext{age}}(M_n)_{n\in\mathbb{N}} \ & | ext{input}_{ ext{happy}}(M_{ ext{yes}}, M_{ ext{no}}) \ & | ext{input}_{ ext{bve}}() \mid M ext{ or } M \end{aligned}$$

$$egin{aligned} M &::= & & \operatorname{input}_{\mathsf{age}}(M_n)_{n \in \mathbb{N}} \ & & | & \operatorname{input}_{\mathsf{happy}}(M_{\mathsf{yes}}, M_{\mathsf{no}}) \ & & | & \operatorname{input}_{\mathsf{bye}}() \mid M \ \mathsf{or} \ M \end{aligned}$$

- $input_{age}(M_n)_{n\in\mathbb{N}}$ prints What is your age? and pauses.
 - If the user enters n, it proceeds to execute M_n .

$$egin{aligned} M &::= & & \operatorname{input}_{\mathsf{age}}(M_n)_{n\in\mathbb{N}} \ & & | & \operatorname{input}_{\mathsf{happy}}(M_{\mathsf{yes}},M_{\mathsf{no}}) \ & & | & \operatorname{input}_{\mathsf{bye}}() \mid M \ \mathsf{or} \ M \end{aligned}$$

- $input_{age}(M_n)_{n\in\mathbb{N}}$ prints What is your age? and pauses.
 - If the user enters n, it proceeds to execute M_n .
- $input_{happy}(M_{yes}, M_{no})$ prints Are you happy? and pauses.
 - If the user enters Yes, it executes M_{yes} .
 - If the user enters No, it executes M_{no} .

$$egin{aligned} M &::= & & \operatorname{input}_{\mathsf{age}}(M_n)_{n\in\mathbb{N}} \ & & | & \operatorname{input}_{\mathsf{happy}}(M_{\mathsf{yes}},M_{\mathsf{no}}) \ & & | & \operatorname{input}_{\mathsf{bye}}() \mid M \ \mathsf{or} \ M \end{aligned}$$

- $input_{age}(M_n)_{n\in\mathbb{N}}$ prints What is your age? and pauses.
 - If the user enters n, it proceeds to execute M_n .
- $input_{happy}(M_{yes}, M_{no})$ prints Are you happy? and pauses.
 - If the user enters Yes, it executes M_{yes} .
 - If the user enters No, it executes M_{no} .
- input_{bye}() prints Goodbye and pauses.

$$egin{aligned} M &::= & & \operatorname{input}_{\mathsf{age}}(M_n)_{n\in\mathbb{N}} \ & & | & \operatorname{input}_{\mathsf{happy}}(M_{\mathsf{yes}},M_{\mathsf{no}}) \ & & | & \operatorname{input}_{\mathsf{bye}}() \mid M \ \mathsf{or} \ M \end{aligned}$$

- input_{age} $(M_n)_{n\in\mathbb{N}}$ prints What is your age? and pauses.
 - If the user enters n, it proceeds to execute M_n .
- $input_{happy}(M_{yes}, M_{no})$ prints Are you happy? and pauses.
 - If the user enters Yes, it executes M_{yes} .
 - If the user enters No, it executes M_{no} .
- input_{bye}() prints Goodbye and pauses.
- M or N nondeterministically chooses to execute M or N.

Signature

An I/O signature consists of

• a set K of operations

Example $K = \{age, happy, bye\}$

Signature

An I/O signature consists of

• a set K of operations

Example
$$K = \{age, happy, bye\}$$

• for each operation k, a set Ar(k) of argument indices, called the arity of k.

Example Ar(age) =
$$\mathbb{N}$$

Ar(happy) = {yes, no}
Ar(bye) = \emptyset

Signature

An I/O signature consists of

• a set *K* of operations

Example
$$K = \{age, happy, bye\}$$

• for each operation k, a set Ar(k) of argument indices, called the arity of k.

Example Ar(age) =
$$\mathbb{N}$$

Ar(happy) = {yes, no}
Ar(bye) = \emptyset

Each signature $S = (Ar(k))_{k \in K}$ gives rise to a language:

$$M := input_k(M_i)_{i \in Ar(k)} \mid M \text{ or } M$$

Operational semantics

Write Comm for the set of commands.

Operational semantics is a function $\zeta: \mathsf{Comm} \to \mathcal{P}^+_\mathsf{f} \sum_{k \in \mathcal{K}} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

where $\mathcal{P}_f^+ X$ is the set of nonempty finite subsets of X.

Operational semantics

Write Comm for the set of commands.

Operational semantics is a function ζ : Comm $\to \mathcal{P}_f^+ \sum_{k \in K} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

where $\mathcal{P}_f^+ X$ is the set of nonempty finite subsets of X.

More succinctly, (Comm, ζ) is a $\mathcal{P}_{\mathrm{f}}^{+}H^{\mathcal{S}}$ -coalgebra

where H^S : $Y \mapsto \sum_{k \in K} Y^{Ar(k)}$.

Traces of a command?

A play is a sequence $k_0, i_0, k_1, i_1, \ldots$, where for all n

- $k_n \in K$
- $i_n \in Ar(k_n)$.

It can be active-ending (even length), passive-ending (odd length) or infinite.

Traces of a command?

A play is a sequence $k_0, i_0, k_1, i_1, \ldots$, where for all n

- $k_n \in K$
- $i_n \in Ar(k_n)$.

It can be active-ending (even length), passive-ending (odd length) or infinite.

A play is a trace of a command M when

there exists a sequence u_0, \ldots, u_n , with $u_r \in \mathsf{Comm}^{\mathsf{Ar}(k_r)}$,

such that $(k_0, u_0) \in \zeta M_0 \wedge \cdots \wedge (k_n, u_n) \in \zeta M_n$

writing $M_0 \stackrel{\text{def}}{=} M$ and $M_{r+1} \stackrel{\text{def}}{=} u_r i_r$.

No infinite traces

No command has an infinite trace $k_0, i_0, k_1, i_1, \ldots$

No infinite traces

No command has an infinite trace $k_0, i_0, k_1, i_1, \ldots$ (Comm, ζ) is a well-founded $\mathcal{P}_f^+ H^S$ -coalgebra (Taylor).

Bisimilarity and traces

Two important equivalence relations on commands

More generally: on states of $\mathcal{P}_f^+ H^S$ -coalgebras.

Commands M and N are

- bisimilar when there is a bisimulation that relates them.
- trace equivalent when they have the same traces.

Bisimilarity implies trace equivalence.

A play process is a set D of passive-ending plays that is prefix-closed:

• $tki \in D$ implies $t \in D$

Let D^+ be the corresponding set of enabled active-ending plays:

$$D^+ = \{\varepsilon\} \cup \{ski \mid sk \in D, i \in Ar(k)\}\$$

A play process is a set D of passive-ending plays that is prefix-closed:

• $tki \in D$ implies $t \in D$

Let D^+ be the corresponding set of enabled active-ending plays:

$$D^+ = \{\varepsilon\} \cup \{ski \mid sk \in D, i \in Ar(k)\}\$$

A response to $t \in D^+$ is $k \in K$ such that $tk \in D$.

A play process is a set D of passive-ending plays that is prefix-closed:

• $tki \in D$ implies $t \in D$

Let D^+ be the corresponding set of enabled active-ending plays:

$$D^+ = \{\varepsilon\} \cup \{ski \mid sk \in D, i \in Ar(k)\}\$$

A response to $t \in D^+$ is $k \in K$ such that $tk \in D$.

The trace set of any command is a play process.

A play process is a set D of passive-ending plays that is prefix-closed:

• $tki \in D$ implies $t \in D$

Let D^+ be the corresponding set of enabled active-ending plays:

$$D^+ = \{\varepsilon\} \cup \{ski \mid sk \in D, i \in Ar(k)\}\$$

A response to $t \in D^+$ is $k \in K$ such that $tk \in D$.

The trace set of any command is a play process.

More generally, the trace set of any state of a $\mathcal{P}H^S$ -coalgebra.

Two questions

• Under what conditions is a play process *D* the trace set of a command?

Two questions

- Under what conditions is a play process D the trace set of a command?
- 2 Can we give an axiomatic theory of trace equivalent commands?

Tree = deterministic process

A tree is a play process D such that every $t \in D^+$ has a unique response.

Tree = deterministic process

A tree is a play process D such that every $t \in D^+$ has a unique response.

 D^{∞} is the set of infinite branches, i.e. infinite plays whose passive-ending prefixes are all in D.

If this set is empty, *D* is well-founded.

Tree = deterministic process

A tree is a play process D such that every $t \in D^+$ has a unique response.

 D^{∞} is the set of infinite branches, i.e. infinite plays whose passive-ending prefixes are all in D.

If this set is empty, D is well-founded.

A play process is the trace set of a deterministic command iff it is a well-founded tree.

Deterministic commands M and M' have the same trace set iff M = M'.

S-algebras

An S-algebra consists of

- a set X
- for each operation $k \in K$, a function

$$\operatorname{op}_k : X^{\operatorname{Ar}(k)} \to X$$

S-algebras

An S-algebra consists of

- a set X
- for each operation $k \in K$, a function

$$\operatorname{op}_k : X^{\operatorname{Ar}(k)} \to X$$

Famous theorem

The set of well-founded trees is an initial object in the category of S-algebras.

A play process *D* is

- total when every $t \in D^+$ has at least one response
- finitely nondeterministic when every $t \in D^+$ has only finitely many responses; we then write D^{∞} for the set of infinite plays whose prefixes are all in D
- König when it is finitely nondeterministic and D^{∞} is empty.

A play process *D* is

- total when every $t \in D^+$ has at least one response
- finitely nondeterministic when every $t \in D^+$ has only finitely many responses; we then write D^{∞} for the set of infinite plays whose prefixes are all in D
- König when it is finitely nondeterministic and D^{∞} is empty.

The trace set of any command is total and König.

A play process *D* is

- total when every $t \in D^+$ has at least one response
- finitely nondeterministic when every $t \in D^+$ has only finitely many responses; we then write D^{∞} for the set of infinite plays whose prefixes are all in D
- König when it is finitely nondeterministic and D^{∞} is empty.

The trace set of any command is total and König.

More generally, the trace set of any well-founded $\mathcal{P}_{\mathrm{f}}^{+}H^{S}$ -coalgebra.

A play process *D* is

- *total* when every $t \in D^+$ has at least one response
- finitely nondeterministic when every $t \in D^+$ has only finitely many responses; we then write D^{∞} for the set of infinite plays whose prefixes are all in D
- König when it is finitely nondeterministic and D^{∞} is empty.

The trace set of any command is total and König.

More generally, the trace set of any well-founded $\mathcal{P}_{\mathrm{f}}^{+}\mathit{H}^{S}$ -coalgebra.

Conversely, any total and König play process is the trace set of a command.

Basic axioms

The or operation is idempotent, commutative and associative.

$$M ext{ or } M = M$$
 $M ext{ or } N = N ext{ or } M$
 $M ext{ or } (N ext{ or } P) = (M ext{ or } N) ext{ or } P$

Basic axioms

The or operation is idempotent, commutative and associative.

$$M \text{ or } M = M$$
 $M \text{ or } N = N \text{ or } M$
 $M \text{ or } (N \text{ or } P) = (M \text{ or } N) \text{ or } P$

This characterizes bisimilarity.

What axioms should we add for trace equivalence?

Commuting operations

Let X be a set equipped with operations $f: X^I \to X$ and $g: X^J \to X$. These operations commute when

$$f(g(x_{i,j})_{j\in J})_{i\in I} = g(f(x_{i,j})_{i\in I})_{j\in J}$$

for any $I \times J$ -matrix $(x_{i,j})_{i \in I, j \in J}$ of elements of X.

I/O commutes with nondeterminism

For trace equivalence, the or operation commutes with $input_k$ for each $k \in K$.

$$\operatorname{input}_k(M_i \text{ or } N_i)_{i \in \operatorname{Ar}(k)} = \operatorname{input}_k(M_i)_{i \in \operatorname{Ar}(k)} \text{ or input}_k(N_i)_{i \in \operatorname{Ar}(k)}$$

I/O commutes with nondeterminism

For trace equivalence, the or operation commutes with \mathtt{input}_k for each $k \in K$.

$$\operatorname{input}_k(M_i \text{ or } N_i)_{i \in \operatorname{Ar}(k)} = \operatorname{input}_k(M_i)_{i \in \operatorname{Ar}(k)} \text{ or input}_k(N_i)_{i \in \operatorname{Ar}(k)}$$

Note: this follows from idempotency if k is a constant.

I/O commutes with nondeterminism

For trace equivalence, the or operation commutes with \mathtt{input}_k for each $k \in K$.

$$\operatorname{input}_k(M_i \text{ or } N_i)_{i \in \operatorname{Ar}(k)} = \operatorname{input}_k(M_i)_{i \in \operatorname{Ar}(k)} \text{ or input}_k(N_i)_{i \in \operatorname{Ar}(k)}$$

Note: this follows from idempotency if k is a constant.

We now have a sound and complete axiomatic theory. (Plotkin)

Commuting semilattice algebras

A semilattice is

- a set X equipped with an idempotent, commutative and associative operation ∨
- or equivalently: a poset (X, \leq) with binary joins.

Commuting semilattice algebras

A semilattice is

- a set X equipped with an idempotent, commutative and associative operation ∨
- or equivalently: a poset (X, \leq) with binary joins.

An semilattice S-algebra is a semilattice (X, \vee) equipped with operations op_k : $X^{\operatorname{Ar}(k)} \to X$ for all $k \in K$. Not necessarily monotone.

Commuting semilattice algebras

A semilattice is

- a set X equipped with an idempotent, commutative and associative operation ∨
- or equivalently: a poset (X, \leq) with binary joins.

An semilattice S-algebra is a semilattice (X, \vee) equipped with operations $op_k : X^{Ar(k)} \to X$ for all $k \in K$.

Not necessarily monotone.

An semilattice S-algebra is commuting when for all $k \in K$ it satisfies

$$\operatorname{op}_k(x_i \vee y_i)_{i \in \operatorname{Ar}(k)} = \operatorname{op}_k(x_i)_{i \in \operatorname{Ar}(k)} \vee \operatorname{op}_k(y_i)_{i \in \operatorname{Ar}(k)}$$

This implies that op_k is monotone.

Summary: universal property

The set of total and König play processes

Summary: universal property

The set of total and König play processes is an initial object in the category of commuting semilattice *S*-algebras.

Countable nondeterminism

$$M := input_k(M_i)_{i \in Ar(k)} \mid M \text{ or } M \mid choose (M_n)_{n \in \mathbb{N}}$$

Operational semantics is a function ζ : Comm $\to \mathcal{P}_c^+ \sum_{k \in K} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

Countable nondeterminism

$$M := input_k(M_i)_{i \in Ar(k)} \mid M \text{ or } M \mid choose (M_n)_{n \in \mathbb{N}}$$

Operational semantics is a function ζ : Comm $\to \mathcal{P}_{\mathsf{c}}^+ \sum_{k \in \mathcal{K}} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

- Under what conditions is a play process D the trace set of a command?
- Can we give an axiomatic theory of trace equivalent commands?

Definable play processes

A play process D is

- countably nondeterministic when every $t \in D^+$ has only countably many responses
- well-foundedly total when for all $t \in D^+$ there is a well-founded tree E such that $\{ts \mid s \in E\} \subseteq D$.

Definable play processes

A play process D is

- countably nondeterministic when every $t \in D^+$ has only countably many responses
- well-foundedly total when for all $t \in D^+$ there is a well-founded tree E such that $\{ts \mid s \in E\} \subseteq D$.

The trace set of any command has these properties.

More generally, the trace set of any well-founded $\mathcal{P}_c^+ H^S$ -coalgebra.

Definable play processes

A play process D is

- countably nondeterministic when every $t \in D^+$ has only countably many responses
- well-foundedly total when for all $t \in D^+$ there is a well-founded tree E such that $\{ts \mid s \in E\} \subseteq D$.

The trace set of any command has these properties.

More generally, the trace set of any well-founded $\mathcal{P}_{\mathrm{c}}^{+}\mathit{H}^{S}\text{-coalgebra}.$

Conversely, any play process with these properties is the trace set of a command.

Basic axioms

The or operation is idempotent, commutative and associative.

The choose operation is idempotent and extrusive, and or distributes over it.

$$\begin{array}{rcl} \text{choose}\;(M)_{n\in\mathbb{N}} &=& M\\ \\ \text{choose}\;(M_n)_{n\in\mathbb{N}} &=& \text{choose}\;(M_n)_{n\in\mathbb{N}}\;\text{or}\;M_n\\ \\ \text{choose}\;(M_n)_{n\in\mathbb{N}}\;\text{or}\;N &=& \text{choose}\;(M_n\;\text{or}\;N)_{n\in\mathbb{N}} \end{array}$$

Basic axioms

The or operation is idempotent, commutative and associative.

The choose operation is idempotent and extrusive, and or distributes over it.

$$\begin{array}{rcl} \text{choose}\;(M)_{n\in\mathbb{N}} &=& M\\ \\ \text{choose}\;(M_n)_{n\in\mathbb{N}} &=& \text{choose}\;(M_n)_{n\in\mathbb{N}}\;\text{or}\;M_n\\ \\ \text{choose}\;(M_n)_{n\in\mathbb{N}}\;\text{or}\;N &=& \text{choose}\;(M_n\;\text{or}\;N)_{n\in\mathbb{N}} \end{array}$$

This characterizes bisimilarity.

What axioms should we add for trace equivalence?

I/O commutes with nondeterminism

For trace equivalence, the choose operation commutes with \mathtt{input}_k for each $k \in K$.

$$\mathrm{input}_k((\mathrm{choose}\ (M_{i,n})_{n\in\mathbb{N}})_{i\in\mathrm{Ar}(k)}\ =\ \mathrm{choose}\ (\mathrm{input}_k(M_{i,n})_{i\in\mathrm{Ar}(k)})_{n\in\mathbb{N}}$$

Note: this follows from idempotency if k is a constant.

We now have a sound and complete axiomatic theory.

Finite probabilistic choice

$$M := \operatorname{input}_k(M_i)_{i \in \operatorname{Ar}(k)} \mid M +_p M \quad (p \in (0,1))$$

Operational semantics is a function ζ : Comm $\to \mathcal{D}_f \sum_{k \in K} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

Probabilistic play processes

A probabilistic play process is a function μ from plays to [0,1] such that for every active-ending play t we have

$$\mu^+(t) = \sum_{k \in K} \mu(tk)$$

where we write

$$\mu^{+}(\varepsilon) = 1$$

$$\mu^{+}(ti) = \mu(t)$$

Probabilistic play processes

A probabilistic play process is a function μ from plays to [0,1] such that for every active-ending play t we have

$$\mu^+(t) = \sum_{k \in K} \mu(tk)$$

where we write

$$\mu^{+}(\varepsilon) = 1$$

$$\mu^{+}(ti) = \mu(t)$$

Any command gives a probabilistic play process.

More generally, any state of a $\mathcal{D}H^S$ -coalgebra.

Probabilistic play processes

A probabilistic play process is a function μ from plays to [0,1] such that for every active-ending play t we have

$$\mu^+(t) = \sum_{k \in K} \mu(tk)$$

where we write

$$\mu^{+}(\varepsilon) = 1$$

$$\mu^{+}(ti) = \mu(t)$$

Any command gives a probabilistic play process.

More generally, any state of a $\mathcal{D}H^S$ -coalgebra.

The support of μ is the set of passive-ending plays t with $\mu(t) > 0$. It is a total and countably nondeterministic play process.

Our questions again

When is a probabilistic play process μ definable by a command?

ullet When the support of μ is König.

What must we add to the basic axioms of probabilistic choice to obtain a theory of trace equivalence?

• Commutativity of $+_p$ with input_k.

Countable probabilistic choice

$$egin{aligned} M &::= & ext{input}_k(M_i)_{i\in \operatorname{Ar}(k)} \mid M+_p M & (p\in (0,1)) \ \mid & \sum_{n\in \mathbb{N}} p_n M_n & (p_n>0,\sum_{n\in \mathbb{N}} p_n=1) \end{aligned}$$

Operational semantics is a function ζ : Comm $\to \mathcal{D} \sum_{k \in K} \mathsf{Comm}^{\mathsf{Ar}(k)}$.

Counterstrategies

A set *C* of active-ending plays is a counterstrategy when:

- It is prefix-closed.
- It contains the empty play.
- Every $s \in C^+$ has at most one response.

Write C^{Fail} for the set of failures of C, i.e. $s \in C^+$ with no response.

Failing against a play process

Let C be a counterstrategy.

- For a tree D there's a unique play in $(D \cap C^{\text{Fail}}) \cup (D^{\infty} \cap C^{\infty})$. If it's in the left part, C fails against D.
- C frequently fails against a play process D when every play in $D^+ \cap C$ extends to a play in $D \cap C^{\text{Fail}}$.
- C almost surely fails against a probabilistic play process μ when

$$\sum_{s \in D \cap C^{\mathsf{Fail}}} \mu(s) = 1.$$

All counterstrategies failing

- A tree is well-founded iff every counterstrategy fails against it.
- A play process is well-foundedly total iff every counterstrategy frequently fails against it.
- A probabilistic play process is victorious when every counterstrategy almost surely fails against it.

All counterstrategies failing

- A tree is well-founded iff every counterstrategy fails against it.
- A play process is well-foundedly total iff every counterstrategy frequently fails against it.
- A probabilistic play process is victorious when every counterstrategy almost surely fails against it.

Definable = victorious.

Commutativity?

What must we add to the basic axioms of probabilistic choice to obtain a theory of trace equivalence?

Commutativity of $+_p$ and $\sum_{n\in\mathbb{N}} p_n$ with input_k gives a sound logic.

But is it complete?

Commutativity?

What must we add to the basic axioms of probabilistic choice to obtain a theory of trace equivalence?

Commutativity of $+_p$ and $\sum_{n\in\mathbb{N}} p_n$ with input_k gives a sound logic.

But is it complete?

This is an open problem, even for the signature consisting of a binary operation and a constant.

Conclusions

• In all cases we have characterized the definable play processes.

Conclusions

- In all cases we have characterized the definable play processes.
- In all cases commutativity gives a sound logic of trace equivalence.
- It is complete for finite and countable nondeterministic choice, and finite probabilistic choice.

Conclusions

- In all cases we have characterized the definable play processes.
- In all cases commutativity gives a sound logic of trace equivalence.
- It is complete for finite and countable nondeterministic choice, and finite probabilistic choice.
- In these cases the set of play processes satisfying the appropriate condition is an initial object in the appropriate category of commuting algebras.