Solitões escuros e respiradores como solução da equação não linear de Schrödinger

Francisco Lobo

Yuliy Bludov

Departamento de ciências Universidade do Minho

Projeto de Investigação, Agosto 2021

1 Introdução e Motivação

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- SolitãoDefinição

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão
 - Definição
 - Solitão Escuro

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

Definição Respirador

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

Definição Respirador

Respirador de Akhmediev

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

Definição Respirador

Respirador de Akhmediev

Respirador de Kuznetson-Ma

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

Definição Respirador Respirador de Akhmediev Respirador de Kuznetson-Ma

Solitão Peregrino

- 1 Introdução e Motivação
- 2 Modulação de Instabilidade
- Solitão

Definição

Solitão Escuro

Solitão Cinzento

4 Respiradores

Definição Respirador Respirador de Akhmediev

Respirador de Kuznetson-Ma

Solitão Peregrino

6 Conclusões

Exemplo de equações não lineares

$$\frac{du}{dx} + u^2 = 0, \quad \frac{d^2\theta}{dt^2} + \sin(\theta) = 0, \quad \frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + 6u\frac{\partial u}{\partial x} = 0$$

Exemplo de equações não lineares

$$\frac{du}{dx} + u^2 = 0, \quad \frac{d^2\theta}{dt^2} + \sin(\theta) = 0, \quad \frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + 6u\frac{\partial u}{\partial x} = 0$$

Exemplo de equações não lineares

$$\frac{du}{dx} + u^2 = 0, \quad \frac{d^2\theta}{dt^2} + \sin(\theta) = 0, \quad \frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + 6u\frac{\partial u}{\partial x} = 0$$

Equação não linear de Schrödinger (forma adimensional)

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + \sigma |\psi(x, t)|^2 \psi(x, t) = 0$$

Equação não linear de Schrödinger (forma adimensional)

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + \sigma |\psi(x, t)|^2 \psi(x, t) = 0$$

Equação não linear de Schrödinger (forma adimensional)

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + \sigma |\psi(x, t)|^2 \psi(x, t) = 0$$

Solução de Onda Plana

$$\psi(\mathbf{x},t) = \rho e^{iQ\mathbf{x} - i\Omega t}$$

Equação não linear de Schrödinger (forma adimensional)

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + \sigma |\psi(x, t)|^2 \psi(x, t) = 0$$

Solução de Onda Plana

$$\psi(x,t) = \rho e^{iQx - i\Omega t}$$

Relação de Dispersão num meio não linear

$$\Omega = Q^2 \pm \sigma \rho^2$$

Equação não linear de Schrödinger (forma adimensional)

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + \sigma |\psi(x, t)|^2 \psi(x, t) = 0$$

Solução de Onda Plana

$$\psi(x,t) = \rho e^{iQx - i\Omega t}$$

Relação de Dispersão num meio não linear

$$\Omega = Q^2 \pm \sigma \rho^2$$

Relação de Dispersão num meio não linear homogéneo

$$\Omega = \pm \rho^2$$

Perturbação pequena, $|V(x,t)| \ll \rho$

$$V(x,t) = Ae^{iqx - i\omega t} + B^*e^{-iqx + i\omega^* t}$$

Perturbação pequena, $|V(x,t)| \ll \rho$

$$V(x,t) = Ae^{iqx-i\omega t} + B^*e^{-iqx+i\omega^*t}$$

Modulação de Instabilidade

$$\omega = \pm |q| \sqrt{(q^2 - 2\sigma\rho^2)}$$

Perturbação pequena, $|V(x,t)| \ll \rho$

$$V(x,t) = Ae^{iqx-i\omega t} + B^*e^{-iqx+i\omega^*t}$$

Modulação de Instabilidade

$$\omega = \pm |q| \sqrt{(q^2 - 2\sigma \rho^2)}$$

Meio modulacionalmente estável: $\sigma < 0$ ou $[\sigma > 0$ e $q > \sqrt{2\sigma}\rho]$

 $\omega \in \mathbb{R} \Rightarrow$ Fundo estável de amplitude constante

Perturbação pequena, $|V(x,t)| \ll \rho$

$$V(x,t) = Ae^{iqx - i\omega t} + B^*e^{-iqx + i\omega^* t}$$

Modulação de Instabilidade

$$\omega = \pm |q| \sqrt{(q^2 - 2\sigma\rho^2)}$$

Meio modulacionalmente estável: $\sigma < 0$ ou $[\sigma > 0$ e $q > \sqrt{2\sigma}\rho]$

 $\omega \in \mathbb{R} \Rightarrow$ Fundo estável de amplitude constante

Meio modulacionalmente instável: $\sigma > 0$ e $q < \sqrt{2\sigma}\rho$

 $\omega \in \mathbb{C} \Rightarrow \mathsf{Fundo} \mathsf{\ instavel}$

Solitão

Solução de onda localizada que se propaga mantendo a sua forma e velocidade constante devido ao equilíbrio entre difração natural e efeitos não lineares do meio. Numa colisão estes permanecem inalterados expecto por uma mudança de fase.

Solitão

Solução de onda localizada que se propaga mantendo a sua forma e velocidade constante devido ao equilíbrio entre difração natural e efeitos não lineares do meio. Numa colisão estes permanecem inalterados expecto por uma mudança de fase.

Difração linear

Comprimentos de onda maiores têm maior velocidade

Solitão

Solução de onda localizada que se propaga mantendo a sua forma e velocidade constante devido ao equilíbrio entre difração natural e efeitos não lineares do meio. Numa colisão estes permanecem inalterados expecto por uma mudança de fase.

Difração linear

Comprimentos de onda majores têm major velocidade

Difração não linear de Kerr

Amplitudes maiores têm maior velocidade

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Solitão Escuro

$$\psi(x,t) = \phi(x)e^{-i\Omega t}$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Solitão Escuro

$$\psi(x,t) = \phi(x)e^{-i\Omega t}$$

Condições de Fronteira

$$\phi(+\infty) = \pm \rho, \quad \phi(-\infty) = \mp \rho, \quad \frac{d\phi}{dx}\Big|_{x=+\infty} = 0$$

$$\Omega\phi + \frac{\partial^2\phi}{\partial x^2} - \phi^3 = 0$$

$$\Omega\phi + \frac{\partial^2\phi}{\partial x^2} - \phi^3 = 0$$

$$\Omega\phi^2 + \left(\frac{\partial\phi}{\partial x}\right)^2 - \frac{1}{2}\phi^4 = C$$

$$\Omega\phi + \frac{\partial^2\phi}{\partial x^2} - \phi^3 = 0$$

$$\Omega\phi^2 + \left(\frac{\partial\phi}{\partial x}\right)^2 - \frac{1}{2}\phi^4 = C$$

$$C = \Omega \rho^2 - \frac{1}{2}\rho^4 = \frac{\Omega^2}{2}$$

$$\frac{\partial \phi}{\partial x} = \pm \frac{1}{\sqrt{2}} \left(\Omega - \phi^2 \right)$$

$$\frac{\partial \phi}{\partial x} = \pm \frac{1}{\sqrt{2}} \left(\Omega - \phi^2 \right)$$

$$\frac{d\phi}{\Omega - \phi^2} = \pm \sqrt{\frac{1}{2}} dx$$

$$\frac{\partial \phi}{\partial x} = \pm \frac{1}{\sqrt{2}} \left(\Omega - \phi^2 \right)$$

$$\frac{d\phi}{\Omega - \phi^2} = \pm \sqrt{\frac{1}{2}} dx$$

$$y = \sqrt{\frac{1}{\Omega}}\phi(x), \quad \int \frac{dy}{1 - y^2} = \pm \sqrt{\frac{\Omega}{2}} \int dx$$

Solução Solitão Escuro

$$\psi_D(x,t) = \sqrt{\Omega} anh \left(\sqrt{rac{\Omega}{2}}x
ight) e^{-i\Omega t}$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Solitão Cinzento

$$\psi(x,t) = [f(x-vt) + ig(x-vt)]e^{-i\Omega t}$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Solitão Cinzento

$$\psi(x,t) = [f(x-vt) + ig(x-vt)]e^{-i\Omega t}$$

Condições de Fronteira

$$\{f(\pm\infty)\}^2 + \{g(\pm\infty)\}^2 = \rho^2 = \Omega, \quad \left. \frac{d\phi}{d\xi} \right|_{\xi=\pm\infty} = 0 \text{ onde } \xi = x - vt$$

Equação não linear de Schrödinger com $\sigma=-1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} - |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Solitão Cinzento

$$\psi(x,t) = [f(x-vt) + ig(x-vt)]e^{-i\Omega t}$$

Condições de Fronteira

$$\{f(\pm\infty)\}^2 + \{g(\pm\infty)\}^2 = \rho^2 = \Omega, \quad \frac{d\phi}{d\xi}\Big|_{\xi=+\infty} = 0 \text{ onde } \xi = x - vt$$

Condição imposta

$$g(x - vt) = const = G = \pm v/\sqrt{2}$$

Solução Solitão Cinzento

$$\psi_G(x,t) = \sqrt{\Omega} \left(i \sin(\theta) + \cos(\theta) anh \left[rac{\sqrt{\Omega}}{\sqrt{2}} \cos(\theta) (x - v_c \sin(\theta) t)
ight]
ight) e^{-i\Omega t}$$

Substituições para Parâmetro Único

$$\sin \theta = \frac{v}{v_c}, \quad \cos \theta = \sqrt{1 - \frac{v^2}{v_c^2}}, \quad v_c = \sqrt{2\Omega}$$

Solução Solitão Cinzento

$$\psi_G(x,t) = \sqrt{\Omega} \left(i \sin(\theta) + \cos(\theta) \tanh \left[\frac{\sqrt{\Omega}}{\sqrt{2}} \cos(\theta) (x - v_c \sin(\theta) t) \right] \right) e^{-i\Omega t}$$

Respirador

Solução de onda periódica não linear fortemente localizada.

Respirador

Solução de onda periódica não linear fortemente localizada.

Equação não linear de Schrödinger com $\sigma=+1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + |\psi(x, t)|^2 \psi(x, t) = 0$$

Respirador

Solução de onda periódica não linear fortemente localizada.

Equação não linear de Schrödinger com $\sigma=+1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + |\psi(x, t)|^2 \psi(x, t) = 0$$

Ansatz Respirador

$$\psi(x,t) = [Q(x,t) + i\delta(t)]e^{i\varphi(t)}$$

Respirador

Solução de onda periódica não linear fortemente localizada.

Equação não linear de Schrödinger com $\sigma=+1$

$$i\frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + |\psi(x,t)|^2 \psi(x,t) = 0$$

Ansatz Respirador

$$\psi(x,t) = [Q(x,t) + i\delta(t)]e^{i\varphi(t)}$$

Constantes de Parametrização

$$D = 16a^2$$
, $H = 4a - \frac{1}{2}$, $W = 4a - 1$,

Respirador de Akhmediev

Solução Respirador de Akhmediev

$$\psi_{A}(x,t) = \left[1 + \frac{\beta^{2} \cosh(\alpha t) + i\alpha \sinh(\alpha t)}{\sqrt{2a} \cos(\beta x) - \cosh(\alpha t)}\right] e^{it}$$

Definição das constantes a, α , β

$$0 < a < 1/2, \quad \beta = \sqrt{2(1-2a)}, \quad \alpha = 2\sqrt{a}\beta$$

Respirador de Kuznetsov-Ma

Definição das constantes a, α , β

$$0 < a < 1/2$$
, $\beta = \sqrt{2(1-2a)}$, $\alpha = 2\sqrt{a}\beta$

Alterações caso a > 1/2

$$\beta = i\beta', \quad \alpha = i\alpha'$$

 $\cosh(\alpha t) = \cos(\alpha' t)$, $\sinh(\alpha) = i \sinh(\alpha' t)$, $\cos(\beta x) = \cosh(\beta' x)$

Respirador de Kuznetsov-Ma

Solução Respirador de Kuznetsov-Ma

$$\psi(x,t) = \left[1 - \frac{(\beta')^2 \cos(\alpha't) + i\alpha' \sin(\alpha't)}{\sqrt{2a} \cosh(\beta'x) - \cos(\alpha't)}\right] e^{it}$$

Definição das constantes a, α , β

$$a > 1/2$$
, $\beta' = \sqrt{2(2a-1)}$, $\alpha' = 2\sqrt{a}\beta'$

Solitão Peregrino

Definição das constantes a, α , β

$$0 < a < 1/2, \quad \beta = \sqrt{2(1-2a)}, \quad \alpha = 2\sqrt{a}\beta$$

Aproximações caso $a \rightarrow 1/2$

$$\alpha \approx \sqrt{2}\beta$$
, $\sqrt{2a} \approx 1 - \beta^2/4$

 $\cos(\beta x) \approx 1 - (\beta x)^2/2$, $\sinh(\alpha t) \approx \sqrt{2}\beta t$, $\cosh(\alpha t) \approx 1 + (\beta t)^2$

Solitão Peregrino

Solução Solitão Peregrino

$$\psi_P(x,t) = \left[1 - 4\frac{1 + 2it}{1 + 2x^2 + 4t^2}\right]e^{it}$$

- 1) Estacionário 2) Mínimo nulo no centro
- 3) Phase shift abrupto de π no centro

Solitão escuro

- 1) Estacionário 2) Mínimo nulo no centro
- 3) Phase shift abrupto de π no centro

Solitão cinzento

1) Não estacionário 2) Mínimo não nulo no centro 3) Phase shift gradual

Solitão escuro

- 1) Estacionário 2) Mínimo nulo no centro
- 3) Phase shift abrupto de π no centro

Solitão cinzento

1) Não estacionário 2) Mínimo não nulo no centro 3) Phase shift gradual

Respirador de Akhmediev

Localizado no tempo mas oscila no espaço

Solitão escuro

- 1) Estacionário 2) Mínimo nulo no centro
- 3) Phase shift abrupto de π no centro

Solitão cinzento

1) Não estacionário 2) Mínimo não nulo no centro 3) Phase shift gradual

Respirador de Akhmediev

Localizado no tempo mas oscila no espaço

Respirador de Kuznetsov-Ma

Localizado no espaço mas oscila no tempo

Solitão escuro

- 1) Estacionário 2) Mínimo nulo no centro
- 3) Phase shift abrupto de π no centro

Solitão cinzento

1) Não estacionário 2) Mínimo não nulo no centro 3) Phase shift gradual

Respirador de Akhmediev

Localizado no tempo mas oscila no espaço

Respirador de Kuznetsov-Ma

Localizado no espaço mas oscila no tempo

Solitão Peregrino

Localizado no espaço e no tempo

Agradecimentos

Obrigado!