

Math&Maroc Competition

Day 1
Date: July 29, 2024

Duration: 4 hours Each problem is worth 10 points

Problem 1:

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $\forall x \in \mathbb{R}$, we have $f(x)^2 + f'(x)^2 \neq 0$. Show that for every bounded subset E of \mathbb{R} , f has at most a finite number of zeros in E.

Problem 2:

Let $A \in \mathcal{M}_{2n}(\mathbb{R})$ be a symmetric matrix. *i.e.* $a_{ij} = a_{ji}$ for every $1 \leq i, j \leq 2n$. Let's assume further that A admits 2n eigenvalues such that:

$$\lambda_1 \ge \cdots \lambda_n > 1 > \lambda_{n+1} \ge \cdots \ge \lambda_{2n}$$

We define $V = \{x^T A x = x^T x | x \in \mathbb{R}^{2n}\}$. Show that V contains a vector subspace of dimension at least or equal to n.

Problem 3:

Find all functions $f: \mathcal{P}(\mathbb{R}_+) \to \mathbb{R}_+$ that verify:

- $\forall A, B \in \mathcal{P}(\mathbb{R}_+)$, if $A \subseteq B$ then $f(B) \leq f(A)$,
- $\forall A, B \in \mathcal{P}(\mathbb{R}_+)$, we have f(A+B) = f(A) + f(B),

where $\mathcal{P}(\mathbb{R}_+)$ is the power set of \mathbb{R}_+ excluding the empty set. Furthermore, given two sets A and B we define their sum, noted as A + B by:

$$A + B := \{a + b \mid a \in A, b \in B\}$$

Problem 4:

Let $n \in \mathbb{N}$ and $p, q \geq 3$ two prime numbers that verify p < q < 2p. Let G(n, p) be the coefficient in front of the monomial $x_1^n \cdot x_2^n \cdot \cdots \cdot x_p^n$ of the polynomial

$$Q_{n,p} = (x_1 + x_2 + \dots + x_p)^{np}$$

Show that G(n, p) is not divisible by q, if and only if, the expression of n in the base q only contains 0's and 1's.

Math&Maroc Competition

Journée 1 Date: 29 Juillet 2024

Durée: 4 heures

Chaque problème est noté sur 10 points

Problème 1:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que $\forall x \in \mathbb{R}$, on a $f(x)^2 + f'(x)^2 \neq 0$. Montrer que pour tout sous-ensemble E borné de \mathbb{R} , f a au plus un nombre fini de zéros dans E.

Problème 2:

Soit $A \in \mathcal{M}_{2n}(\mathbb{R})$ une matrice symmétrique. *i.e* $a_{ij} = a_{ji}$ pour tout $1 \le i, j \le 2n$. On suppose de plus que A admette 2n valeurs propres telles que:

$$\lambda_1 \ge \cdots \ge \lambda_n > 1 > \lambda_{n+1} \ge \cdots \ge \lambda_{2n}$$

On définit l'ensemble $V = \{x^T A x = x^T x | x \in \mathbb{R}^{2n}\}$. Montrer que V contient un sous-espace vectoriel de dimension au moins n.

Problème 3:

Trouver toutes les fonctions $f: \mathcal{P}(\mathbb{R}_+) \to \mathbb{R}_+$ qui vérifient:

- $\forall A, B \in \mathcal{P}(\mathbb{R}_+)$, si $A \subseteq B$ alors $f(B) \le f(A)$,
- $\forall A, B \in \mathcal{P}(\mathbb{R}_+)$, on a f(A+B) = f(A) + f(B),

où $\mathcal{P}(\mathbb{R}_+)$ est l'ensemble des parties non-vides de \mathbb{R}_+ . De plus, étant donné deux ensembles A et B, on définit leur somme, notée A+B par:

$$A + B := \{a + b \mid a \in A, b \in B\}$$

Problème 4:

Soit $n \in \mathbb{N}$ et $p, q \geq 3$ deux entiers naturels premiers qui vérifient p < q < 2p. Soit G(n, p) le coefficient devant le monôme $x_1^n \cdot x_2^n \cdot \cdots \cdot x_p^n$ du polynôme

$$Q_{n,p} = (x_1 + x_2 + \dots + x_p)^{np}$$

Montrer que G(n, p) n'est pas divisible par q, si et seuelement si l'écriture de n dans la base q ne contient que des 0 et des 1.