Guía de Redes de Computadoras Unidad 1

Antonio Emiko Ochoa Adame

14 de febrero de 2019

1. Definiciones

Las redes se basan en protocolos.

Sin uno o más de los 5 elementos de la comunicación, esta no puede existir.

Modulación de banda base.- Pasar de señal digital a señal analógica.

Medio guiado.- La información va de origen a destino sin pasar los límites del medio.

2. Factores que afectan la comunicación

2.1. Factores externos

- Diafonía.- Empalme de señales.
- Calidad de la ruta
- Calidad de veces que el mensaje cambia de forma.

2.2. Factores internos

- Tamaño del mensaje.
- Importancia del mensaje.

3. Símbolos/dispositivos de las redes de datos

Switch.- Importante en interconexión. Se usa para hacer una red. Conecta más de dos dispositivos entre sí.

HUB.- Es concentrado de señales y las transmite (ya no se utiliza tanto).

El switch hace lo mismo que el HUB, pero administra a quién le manda el mensaje; esto lo hace a través del direccionamiento.

Una conexión inalámbrica siempre proviene de una conexión alámrica.

4. Protocolos

Protocolo.- Reglas de transmisión de un mensaje.

Protocolos.- Son reglas que rigen la comunicación de los datos.

Se utilizan a través de estándares.

5. Modelo OSI

- (7)Aplicación
- (6)Presentación
- (5)Sesión
- (4)Transporte
- (3)Red
- (2)Enlace
- (5)Física

Aplicación

Se genera el mensaje.

Presentación

Determina el formato de los datos.

Sesión

Abre sesión entre dos dispositivos.

Transporte

Control de flujo y segmentación del mensaje.

Rec

Verifica direccionamiento IP y determina la ruta.

Enlace

Determina con qué tecnología se enviará un mensaje (UTP, coaxial, Wi-Fi).

Física

Intraestructua; cableado, bits, modulación.

6. Otros

MAC

(Media Access Control). Se compone de 48 bits y su valor está representado en hexadecimal.

Es un ID único asignado a un NIC (Controlador de Interfaz de Red).

Los primeros 24 bits es de OUI y los últimos 24 son del número de serie del fabricante.

El proceso del modelo OSI se llama encapsulamiento y desencapsulamiento.

7. Clasificación de Redes

- Por alcance.
 - PAN
 - LAN
 - WAN
 - CAN
 - MAN
- Por relación funcional.
 - Cliente-servidor
 - peer-to-per
- Por topología.
 - Red en bus
 - Red de anillo
 - Red de estrella
 - Red en malla (todos conectados con todos)
 - Red en árbol
- Por modo de direccionamiento/modo de transmisión de datos.
 - Simplex
 - Half-duplex o semi-duplex (Ambos sentidos pero no al mismo tiempo)
 - Full-duplex (Ambos sentidos pero y al mismo tiempo)
- Por grado de autenticación.

- Red privada
- Red de acceso público
- Por grado de difusión.
 - Intranet
 - Internet
- Por servicio o función
 - Red comercial
 - Red educativa
 - Red para procesado de datos

8. Cliente-servidor

Listen.- Primitiva de servicio.

Request.- Primitiva de servicio.

EL servidor está a la escucha mientras el cliente hace solicitudes.

Ejemplos de servidores:

- Servidores de correo
- Servidores web
- Servidores de ftp

9. Otros

Las redes privadas tienen un segmeneto de direccionamiento privado. Routear un mensaje.- A qué segmento de red estoy conectado. Direccionamiento

A.- 0-127

B.- 127-191

C.- 191-223

10. Redes convergentes

Son múltiples servicios sobre una misma red.

Utlizan una misma infraestructura de red para utilizar todos los servicios.

Redes de información inteligentes.- Basadas en dispositivos inteligentes.

11. Arquitectura de una red

Son los servicios y medios que conforman una red.

Es lo que "tiene que tener una red":

- Tolerancia a fallos
- Escalabilidad
- Calidad en el sevicio
- Seguridad

Tolerancia a fallos

Ejemplo: Si un router falla, buscar una ruta redundante/alterna para evitar la pérdida de servicio.

Esto ofrece una experiencia positiva al usuario; que nunca deje de tener acceso a internet, por ejemplo.

Escalabilidad

Que pueda crecer / tener conexiones adicionales siempre y cuando no disminuya el rendimiento actual de la red.

Calidad del servicio

Se admnistra dentro del router.

Los servicios se pueden clasificar por grado de importancia.

Ejemplo: Los streamings tienen prioridad alta o mayor sobre que un correo electrónico, por ejemplo.

Seguridad

Medidas de seguridad protegen la red de accesos no autorizados.

Ejemplos: contraseñas, inicios de sesión, etc.

Los admin. protegen las redes con hardware y software evitando así el acceso físico a la red.

12. Modelos de protocolo y referencia

Modelo de referencia.- Modelo OSI.

Modelo de protocolo.- TCP/IP.

El modelo de referencia (OSI) dice cómo debe ser la transmisión de un mensaje; dan una idea de cómo debe fluir la información en la red sin involucrar procesos.

El modelo de protocolo tiene 4 capas y se basa en protocolos; indica las reglas exactas. Es la forma "real" de cómo se aplica la comunicación.

Capas de TCP/IP:

- Aplicación
- Transporte
- Internet
- Acceso a la red (genera la ruta del origen al destino)

Direccionamiento lógico.- Direcciones IP.

Encapsulamiento.- Proceso en el que la infoque pasa por la red en cada etapa se le añade info que necesita.

13. PDU

PDU.- Unidad de Datos de Protocolo (Protocol Data Unit).

El PDU cambia de nombre dependiendo de la capa y se añade uno por cada para por la que pasa.

PDU en Aplicación: Se llaman datos.

PDU en Transporte: Se llaman **segmento o datagrama** dependiendo de si es TCP o UDP respectivamente.

PDU en Internet: Se llaman **paquete**. Direccionamiento está en el encabezado de red.

Acceso a la red (medio) se divide en 2:

- Enlace de datos
- Física

PDU en Enlace de datos: Se llaman **trama**. Dirección MAC, control de flujo (trailar).

PDU en Física: Se llaman bits.

Entonces:

 $\label{eq:pdus} PDUs = Datos -> segmento/datagrama -> Paquete -> Trama -> Bits.$

14. TCP y UDP

 $\mathbf{TCP} :$ Protocolo de Control de Tranferencia (Transmission Control Protocol).

UCP: Protocolo de datagramas.

Datagrama: Diagramas de usuario.

Características de TCP

Es seguro y es orientado a la conexión. Símil con una llamada.

Características de UCP

Es no orientado a la conexión. Símil con telegrama.

 $\mathbf{IP}.\text{-}$ Protocolo de direccionamiento (Internet Protocol). Solo entrega paquetes.

Router.- Se encarga de definir las rutas de envío de paquetes.

15. Modelo OSI y Modelos TCP/IP

Capa de presentación.- Es el formato de los datos. Se encarga de que los usuarios puedan enviar y recibir el mismo formato.

- Compresión de los datos
- Cifrado (si lo requiere)

Capa de sesión.- Modos de diágologo.

Capa de Aplicación.- Genera los mensajes.

16. Servicios

16.1. Servidor DNS

Asocia una dirección IP con un nombre de dominio.

16.2. Servidor TELNET

Escritorio remoto.

Conexión remota para manipular la red desde otra ubicación.

Sirve para el monitereo o manipulación de equipos a distancia.

Desventaja: Es inseguro porque los datos van en texto plano.

16.3. Servidor Email

SMTP, POP e IMAP(a veces).

SMTP.- Simple Mail Transfer Protocol.

POP.- Post Office Protocol.

Para enviar y recibir correos.

16.4. Servidor DHCP

Para asignar direcciones IP de manera dinámica.

Tengo una dirección mientras estás navegando y se libera dicha dirección cuando me desconecto.

16.5. Servidor web

HTTP.- Hyper Text Transfer Protocol.

Para cliente-servidor de páginas web.

16.6. Servidor FTP

Para almacenar, transferir o descargar archivos de la capa de app.

Servicio o proceso.- Es lo que está ejecutando un protocolo.

17. Modelo cliente-servidor

El servidor procesa todos los requisitos el cliente.

Descarga.- Servidor envía respuesta para que el cliente la procese.

Carga.- El cliente solicita al servidor para que almacene info.

EL servidor puede hacer procesamiento paralelo (centralizado).

Los servidores son depósitos de info.

Daemon.- Modo escucha (servicio que está activo).

18. DNS

Es cliente-sevidor.

- 1. El servidor
- 2. Petición (soliticat web page)
- 3. Verificar
- 4. Resuelve
- 5. Devuelve la IP
- 6. EL cliente recibe la IP

Hay jerarquías

19. HTTP

- 1. Procesa la dirección IP
- 2. Resuelve un código HTML
- 3. Se obtiene la página web

20. HTTP

21. Control de flujo y conexión segura

En la capa de transporte hay 2 protoclos: TCP y UDP.

3 operacines básicas de confiabilidad:

- Seguimiento de datos transmitidos
- Acuse de recibo de los datos recibidos
- Retransmisión de cualquier paquete sin acuse de recibo.

21.1. UDP

- No solicita reenvío
- Es rápido
- Tiene menor carga
- Entrega los datos cuando los recibe

Ejemplos: Telefonía IP y streaming de video.

21.2. TCP

- Confiable
- Acuse de recibo
- Reenvío de datos perdidos
- Los segmentos se entregan en el orden eviado

Ejemplos: SMTP, POP y HTTP. Los correos se reciben o no, pero nunca a la mitad.

22. Encabezado de Transporte

Debe de llevar info para realizar el proceso de control.

Encabezado de segmento (TCP)

- 20 bytes
- Tiene muchos campos
- Mucha información

Encabezado de segmento (UDP)

- 8 bytes
- Tiene pocos campos
- Ligero
- Mínimo esfuerzo

23. Puertos

Entrada y salida de datos.

Los datagramas y segmentos deben indicar de qué puerto viene y hacia cual va.

Bien conocidos.- 0-1023. Registrados.- 1023-49151. Privados y/o dinámicos.- 49151-65535.

Disclaimer: La finalidad de este documento es servir como apoyo de estudio. El autor de la versión original de este documento no se hace responsable del uso indebido del mismo.