Deterministic Finite Automata - examples

1. $L = \{w \in \{0,1,2\}^* \mid w \text{ is a ternary representation of a multiple of 5}\}.$

Assume that the empty string is in the language. That is, $D(\epsilon) = 0$.

- For $w \in \{0,1,2\}^*$, let D(w) denote its decimal value.
- Let $w \in \{0,1,2\}^*$ and $D(w) \mod 5 = i$. Then, $D(w) = 5 \times q + i$ for all natural numbers q and $i \in \{0,1,2,3,4\}$.
 - What about D(wj) for $j \in \{0, 1, 2\}$?
 - $* \ D(wj) \ = \ 3D(w) \ + \ j \ = \ 3 \ \times \ (5 \ \times \ q \ + \ i) \ + \ j.$
 - $* D(wj) \mod 5 = (3 \times i + j) \mod 5.$
- The DFA M will have 5 states q_i for $0 \le i \le 4$ such that:
 - $-q_0$ is the start state,
 - $-\hat{\delta}(q_0, w) = q_{D(w) \mod 5}$, and
 - $-q_0$ is the only accepting state.
- To accomplish this, define the transition function as follows:
 - $-\delta(q_i, j) = q_{(3i + j) \mod 5}.$
- CLAIM: $\hat{\delta}(q_0, w) = q_{D(w) \text{ mod } 5}$
 - By induction on |w|.
 - -|w| = 0: True.
 - $-|w| \ge 1$: Let w = uj for $j \in \{0,1,2\}$ and $u \in \{0,1,2\}^*$.

$$\begin{split} \hat{\delta}(q_0, uj) &= \delta(\hat{\delta}(q_0, u), j) \\ &= \delta(q_{D(u) \mod 5}, j) \\ &= q_{(3D(u) + j) \mod 5} \\ &= q_{D(uj) \mod 5} \end{split}$$

2. Let $L_3 = \{w \in \{0,1\}^* \mid \text{the third symbol from the right is 1}\}$. Design a DFA for L_3 .

Solution: Store the last 3 bits seen in the input in the state. That is, the DFA has 2^3 states labeled with all possible bit strings of length 3.

From a state labeled $x_1x_2x_3$ (where $x_i \in \{0,1\}$) there is a transition to state labeled x_2x_30 on input 0 and to state labeled x_2x_31 on input 1.

The final states are those that are labeled $1x_2x_3$ for $x_i \in \{0, 1\}$.

3. Let A and B be two regular languages over a finite alphabet Σ .

Define the language perfect - shuffle(A, B) as follows:

$$\{w | w = a_1b_1\cdots a_kb_k, \text{ where each } a_i, b_i \in \Sigma, a_1\cdots a_k \in A \text{ and } b_1\cdots b_k \in B\}.$$

Show that perfect - shuffle(A, B) is regular.

Solution: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA that accepts A. Let $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be a DFA that accepts B. Construct a DFA M that, on an input, alternatively runs M_1 and M_2 on one symbol: if the current move is using M_1 (M_2) then make the next move using M_2 (M_1 , respectively).

Define a DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows.

- $Q = Q_1 \times Q_2 \times \{1, 2\}.$
- For all $p \in Q_1, q \in Q_2$, and $a \in \Sigma$ define:

$$- \delta(\langle p, q, 1 \rangle, a) = \langle \delta_1(p, a), q, 2 \rangle.$$

$$- \delta(\langle p, q, 2 \rangle, a) = \langle p, \delta_2(q, a), 1 \rangle.$$

- $\bullet \ q_0 = \langle q_1, q_2, 1 \rangle.$
- $\bullet \ F = F_1 \times F_2 \times 1.$