Исследование образной и процедурной компонент картины мира субъекта деятельности

Александр Панов

ИСА РАН научный руководитель д.ф.-м.н., проф. Г. С. Осипов

25 февраля 2015 г.

Проблема соотношени мозга и психики

Изучение физиологических основ психической деятельности и поведения человека привело к нахождению нейрофизиологических коррелятов многих низших психических и высших когнитивных функций. Однако единая математическая модель проявления психической функции на основе нейронного субстрата мозга до сих пор не построена.

Картина мира и нейрофизиология

По нейрофизиологическим данным (В. Маунткасл, 1981; Дж. Хокинс, 2009; С. Гроссберг, 2014), в том числе в теории повторного входа или информационного синтеза (Д. Эдельман, 1987; А. М. Иваницкий, 2010) возникновение ощущения, т. е. активизация некоторого элемента картины мира субъекта, происходит при замыкании контура распространения нервного возбуждения от сенсорного входа. При этом происходит наложение значения сигнала (гиппокамп) и эмоционального отношения к нему (гипоталамус) на поступившую сенсорную информацию.

Картина мира и психология

В культурно—историческом подходе (А.Р. Лурия, 1970; Л.Н. Выготский, 1982) вводится понятие знака как основного инструмента познавательной деятельности субъекта. В теории деятельности (А.Н. Леонтьев, 1975) раскрывается структура знака и его роль в формировании не только познавательной, но и любой другой деятельности субъекта.

По Леонтьеву образующими картины мира, т. е. компонентами знака, являются образ, значение и личностный смысл. «В значениях представлена преобразованная и свёрнутая в материи языка идеальная форма существования предметного мира ... раскрываемая в совокупной общественной практикой». Личностный смысл является «значением—для—меня».

«Движение, соединяющее абстрактное значение с чувственным миром, представляет собой одно из существеннейших движений сознания» (А.Н. Леонтьев).

Знак — элемент картины мира

Знак имеет следующие компоненты:

- имя,
- образ,
- значение и
- личностный смысл.

Предмет и цель исследования

Предмет исследования — построение знаковых моделей картины мира субъекта деятельности и некоторых когнитивных функций.

Целью исследования является разработка моделей и алгоритмов формирования образа и значения элемента знаковой картины мира субъекта деятельности.

Таким образом, в настоящей работе рассматриваются алгоритмы формирования двух основных компонент знака: образа и значения. Исследуется сходимость процесса связывания этих компонент и рассматриваются некоторые функции знаковой картины мира

Задачи исследования

В качестве модели компонент знака в работе строится специальный распознающий автомат, функционирование которого соответствует (с некоторыми упрощениями) нейрофизиологическим данным о работе указанных областей головного мозга человека.

Основные задачи:

- исследовать автоматную функцию иерархии распознающих автоматов с заданным множеством состояний, полученными в результате процесса обучения (например, по алгоритму HTM или HQSOM);
- на основе построенной модели разработать итерационный алгоритм формирования двух основных компонент знака: образа и значения;
- исследовать сходимость построенного алгоритма.

Признаки и распознающие автоматы

Для уточнения постановки задачи введём следующие объекты:

- ullet \mathcal{R} совокупность распознающих автоматов или R-автоматов,
- ullet \mathcal{F} совокупность допустимых признаков.

Введём бинарное отношение \dashv , определённое на декартовом произведении $\mathcal{F} \times \mathcal{R}$, и будем читать $f_k \dashv R_i^j$ как «признак f_k распознаётся R-автоматом R_i^j ».

Множество всех распознаваемых R-автоматом R_i^j признаков будем обозначать F_i^{*j} , т. е. $\forall f^* {\in} F_i^{*j} f^* {\dashv} R_i^j, F_i^{*j} {\subseteq} \mathcal{F}$.

Иерархия распознающих автоматов

Представим иерархию в виде связного ориентированного ярусного граф $G_R = (V, E)$:

- ullet $V=\mathcal{R}$ множество вершин,
- ullet $E\subset \mathcal{R} imes \mathcal{R}$ множество рёбер,
- ullet каждая вершина, принадлежащая j-ому ярусу графа G_R , является R-автоматом R_i^j уровня j,
- каждое ребро $e=(R_i^j,R_k^{j+1}){\in}E$ обозначает иерархическую связь между дочерним R-автоматом R_i^j и R-автоматом родителем R_k^{j+1} .

Входные признаки и функции распознавания

Введём следующие определения.

- Признак $f\dashv R_k^{j-1}$ называется входным для R-автомата R_i^j , если R_k^{j-1} является дочерним автоматом по отношению к R_i^j . Всё множество входных признаков для R_i^j будем обозначать F_i^j .
- Для каждого признака $f^* {\in} F_i^{*j}$ введём функцию распознавания $\hat{f}(x_1,\dots,x_q)=x^*$, где $x^* {\in} (0,1)$ вес распознаваемого признака f^* , а $x_1,\dots,x_q {\in} (0,1)$ веса признаков из множества входных признаков F_i^j . Всю совокупность функций распознавания для R_i^j будем обозначать \hat{F}_i^j .

Задача исследования образной компоненты

Таким образом задача состоит в следующем:

- построить алгоритм вычисления автоматной функции распознающего автомата,
- построить четыре типа операторов распознавания (два статических для начального и промежуточного моментов времени, динамический и иерархический),
- на основе этих операторов исследовать автоматную функцию,
- доказать теоремы о корректности линейных замыканий построенных операторов.

Динамика распознающего автомата

- вектор $\bar{x}_i^j(t)$ длины q_i^j входной сигнал (вектор весов входных признаков),
- ullet вектор $ar{x}_i^{*j}(t)$ длины l_i^j выходной сигнал (вектор весов распознаваемых признаков),
- вектор $\hat{x}_i^{j+1}(t)$ длины l_i^j управляющий вектор, задающий начальное состояние в моменты времени $0, h_i^j, 2h_i^j, \ldots$
- ullet вектор $\hat{x}_i^j(t)$ длины q_i^j вектор состояния (вектор ожиданий входных признаков в следующий момент времени),
- ullet h_i^{\jmath} глубина памяти R-автомата R_i^{\jmath} .

Входы и выходы распознающего автомата

Матрица предсказаний

Для определения состояния R-автомата и его автоматной функции, поставим каждой функции распознавания \hat{f}_k из множества \hat{F} в соответствие набор булевых матриц предсказания $Z_k = \{Z_1^k, \dots, Z_m^k\}$ размерности $q \times h$. Тогда

- столбец $ar{z}_u^r = (z_{u1}^k, \dots, z_{uq}^k)$ матрицы Z_r^k это вектор предсказания входных признаков из множества F_i^j в момент времени $au_s + u, \ z_{uq}^k \in \{0,1\}$,
- ullet матрица Z_r^k задаёт последовательность битовых векторов, наличие бита в котором свидетельствует о присутствии распознаваемого функцией \hat{f}_k признака,
- ullet $\mathcal{Z}-$ множество всех матриц предсказания R-автомата R.

Входные и выходные функции

Таким образом, R-автомат R является бесконечным автоматом Мили с переменной структурой и конечной памятью и определяется следующим набором $R=< X \times \hat{X}^{j+1}, 2^{\mathcal{Z}}, X^* \times \hat{X}^j, \varphi, \vec{\eta}>$, где

- X множество входных сигналов,
- X^* множество выходных сигналов,
- ullet \hat{X}^{j+1} множество управляющих сигналов с верхнего уровня иерархии,
- ullet \hat{X}^{j} множество управляющих сигналов на нижний уровень иерархии,
- $2^{\mathcal{Z}}$ множество состояний (множество подмножеств множества матриц предсказания),
- ullet $\varphi: X imes \hat{X}^{j+1} o 2^{\mathcal{Z}} -$ функция переходов,
- ullet $ec{\eta}: 2^{\mathcal{Z}} o X^* imes \hat{X}^j$ вектор—функция выходов.

Алгоритм \mathfrak{A}_{th} функционирования R-автомата

В работе построен пороговый алгоритм $\mathfrak{A}_{th}(c_1,c_2)$ вычисления функции переходов φ и выходной функции $\vec{\eta}$ по начальному моменту времени τ_s , управляющему воздействию $\hat{x}^{j+1}(\tau_s)$ и входному воздействию ω .

Для исследования автоматной функции на основании разработанного алгоритма ниже будут построены 4 типа операторов распознавания, сформулированы задачи классификации и доказаны теоремы корректности линейных замыканий множеств этих операторов.

Статический оператор распознавания

Зафиксируем момент времени t, равный началу некоторого s-го вычислительного цикла au_s , т. е. рассмотрим первый этап алгоритма \mathfrak{A}_{th} — задание начального состояния R-автомата.

В этом случае, R-автомат R можно рассматривать как статический оператор распознавания $R(\hat{x}^{j+1}(\tau_s),\mathcal{Z},\bar{x}(\tau_s))=R(\hat{x}^{j+1},\mathcal{Z},\bar{x})=\bar{x}^*.$

Задача классификации в статическом случае

Пусть

- Q совокупность задач классификации,
- ullet \mathcal{A} множество алгоритмов, переводящих пары (\hat{x}, \bar{x}) в вектора $\bar{\beta}$, составленные из элементов $0, 1, \Delta: A(\hat{x}, \bar{x}) = \bar{\beta}$.

Задача $Q(\hat{x}, \bar{x}, \bar{\alpha}) \in \mathcal{Q}$ состоит в построении алгоритма, вычисляющего по поступившему вектору ожиданий \hat{x} и входному вектору \bar{x} значения информационного вектора $\bar{\alpha} = (\alpha_1, \dots, \alpha_l), \alpha_i \in \{0, 1\}$ присутствия признаков f_1^*, \dots, f_l^* .

Свойство корректности алгоритма

Определение 1

Алгоритм A называется корректным для задачи Q, если выполнено равенство

$$A(\hat{x}, \bar{x}) = \bar{\alpha}.$$

Алгоритм A, не являющийся корректным для Q, называется некорректным.

Далее будем считать, что множество ${\cal A}$ является совокупностью, вообще говоря, некорректных алгоритмов.

Разложение алгоритма классификации

Утверждение 1 (аналог теоремы Ю.И. Журавлёва о введении пространства оценок)

Каждый алгоритм $A\in\mathcal{A}$ представим как последовательность выполнения алгоритмов R и C, где $R(\hat{x},\bar{x})=\bar{x}^*$, \bar{x}^* — вектор действительных чисел, $C(\bar{x}^*)=\bar{\beta}$, $\beta_i\in\{0,1,\Delta\}$.

- R оператор распознавания,
- ullet C решающее правило.

Решающее правило и операции над алгоритмами

Определение 2

Решающее правило C^* называется корректным на множестве входных векторов X, если для всякого вектора \bar{x} из некоторого конечного подмножества X существует хотя бы один числовой вектор \bar{x}^* такой, что $C^*(\bar{x}^*) = \bar{\alpha}$, где $\bar{\alpha}$ — информационный вектор входного вектора \bar{x} .

В множестве операторов $\mathcal R$ введём операции умножения на скаляр, сложения и умножения. Пусть r' — скаляр, $R',R''\in\mathcal R$. Определим операторы $r'\cdot R',\ R'+R''$ и $R\cdot R''$ следующим образом:

$$r' \cdot R' = (r' \cdot x_1^{*\prime}, \dots, r' \cdot x_l^{*\prime}), \tag{1}$$

$$R' + R'' = (x_1^{*'} + x_1^{*''}, \dots, x_1^{*'} + x_l^{*''}), \tag{2}$$

$$R' \cdot R'' = (x_1^{*'} \cdot x_1^{*''}, \dots, x_1^{*'} \cdot x_l^{*''}). \tag{3}$$

Замыкание множества алгоритмов

Утверждение 2

Замыкание $L(\mathcal{R})$ множества \mathcal{R} относительно операций (1) и (2) является векторным пространством.

Утверждение 3

Замыкание $\mathfrak{U}(\mathcal{R})$ множества \mathcal{R} относительно операций (1), (2) и (3) является ассоциативной линейной алгеброй с коммутативным умножением.

Определение 3

Множества $L(\mathcal{A})$ и $\mathfrak{U}(\mathcal{A})$ алгоритмов $A=R\cdot C^*$ таких, что $R{\in}L(\mathcal{R})$ и $R\in\mathfrak{U}(\mathcal{R})$, называются линейными и алгебраическими замыканиями множества \mathcal{A} соответственно.

Свойство полноты задачи

Зафиксируем пару (\hat{x},\bar{x}) управляющего вектора и входного вектора. Будем рассматривать задачи $Q(\hat{x},\bar{x})$, обладающие следующим свойством относительно множества операторов распознавания \mathcal{R} .

Определение 4

Если множество векторов $\{R(\hat{x},\bar{x})|R\in\mathcal{R}\}$ содержит базис в пространстве числовых векторов длины l, то задача $Q(\hat{x},\bar{x},\bar{\alpha})$ называется полной относительно \mathcal{R} .

Связь свойств полноты и корректности

Имеет место следующее утверждение.

Утверждение 4 (аналог теоремы Журавлёва о корректности линейного замыкания)

Если множество задач $\mathcal Q$ состоит лишь из задач, полных относительно $\mathcal R$, то линейное замыкание $L(\{R{\cdot}C^*|R\in\mathcal R\})$ $(C^*-$ произвольное фиксированное корректное решающее правило) является корректным относительно $\mathcal Q$.

Теорема корректности в статическом случае

Будем рассматривать только такие задачи $Q(\hat{x}, \bar{x}, \bar{\alpha})$, для которых удовлетворяется следующее условие: \bar{x} не является нулевым вектором.

В работе доказано следующее утверждение.

Теорема 1

Линейное замыкание $L(\mathcal{A})$ семейства алгоритмов $\mathcal{A}=\{R\cdot C^*|R\in\mathcal{R}\}$ с произвольным корректным решающим правилом C^* и операторами распознавания \mathcal{R} , определёнными алгоритмом \mathfrak{A}_{th} , является корректным на \mathcal{Q} .

Операторы распознавания R^t

Пусть $au_s < t < au_s + h$, тогда операторы распознавания примут вид $R(\hat{x}^{j+1}(au_s),\mathcal{Z},\omega^j_{i\Delta t}),\;\Delta t=[au_s,t)$, кратко $R^t.$

Для этих операторов постановка задачи распознавания выглядит таким же образом как и для операторов R, формулировки определений полноты и корректности идентичны.

Теорема о корректности линейного замыкания $L(\{R^t \cdot C^* | R^t \in \mathcal{R}^t\})$ доказывается аналогично.

Динамические операторы распознавания

Будем фиксировать не конкретный момент времени t, а полуинтервал $\Delta t = [au_s, au_s + h).$

В этом случае R-автомат R можно рассматривать как динамический оператор распознавания $\hat{R}(\hat{x}^{j+1}(\tau_s), \mathcal{Z}, \omega_{\Delta t}) = \gamma_{\Delta t}$

- принимающий функцию входного воздействия ω и
- ullet выдающий функцию выходной величины $\gamma.$

Задача классификации в динамическом случае

Задача $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$ состоит в построении алгоритма \hat{A} , вычисляющего по поступившему начальному (управляющему) вектору ожиданий \hat{x} и матрице входных воздействий $\omega_{\Delta t}$ информационный вектор $\bar{\alpha}$.

Искомый оператор распознавания \hat{R} должен выдавать весовую матрицу распознаваемых признаков $\gamma_{\Delta t}$, столбцы которой должны сходиться (с учётом корректного решающего правила) к информационному вектору: $\lim_{t \to \tau_s + h} \bar{x}^*(t) = \bar{\alpha}$.

Представление динамического оператора

Т. к. из всех столбцов выходной матрицы $\gamma_{\Delta t}$ равенство информационному вектору требуется только для последнего столбца, а на остальные накладывается некоторое ограничение, то эквивалентным по действию оператору \hat{R} будет являться статический оператор R^{h-1} со следующим ограничением на выходные вектора в моменты времени $0\leqslant t< h$:

$$\|\bar{x}^*(\tau_s) - \alpha\| \geqslant \|\bar{x}^*(\tau_s + 1) - \alpha\| \geqslant \dots \geqslant \|\bar{x}^*(\tau_s + h - 1) - \alpha\|.$$

Будем обозначать такие операторы как \hat{R}' , а их множество соответственно $\hat{\mathcal{R}}'$.

Разложимость алгоритма в динамическом случае

Утверждение 5

Каждый алгоритм $\hat{A} \in \hat{\mathcal{A}}$ представим как последовательность выполнения алгоритмов \hat{R}' и \hat{C} , где $\hat{R}'(\hat{x},\mathcal{Z},\omega_{\Delta t})=\bar{x}^*(\tau_s+h-1)$, $\bar{x}^*(\tau_s+h-1)$ — вектор действительных чисел, $\hat{C}(\bar{x}^*(\tau_s+h-1))=\bar{\beta}$, $\bar{\beta}$ — вектор значений $\beta_i \in \{0,1,\Delta\}$.

Основная теорема корректности в динамическом случае

Зафиксируем начальный вектор ожиданий \hat{x} и последовательность входных векторов $\omega_{\Delta t}.$

Будем рассматривать только такие задачи $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$, для которых в матрице $\omega_{\Delta t}$ нет нулевых столбцов.

В работе доказано следующее утверждение.

Теорема 2

Линейное замыкание $L(\hat{\mathcal{A}})$ семейства алгоритмов $\hat{\mathcal{A}} = \{\hat{R}' \cdot C^* | \hat{R} \in \hat{\mathcal{R}} \}$ с произвольным корректным решающим правилом C^* и операторами распознавания $\hat{\mathcal{R}}'$, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на $\hat{\mathcal{Q}}$.

Иерархический оператор распознавания

Рассмотрим пример из двухуровневой иерархии, на каждом уровне которой находится по одному оператору: статический $R_{i_1}^{j+1}(\hat{x}_{i_1}^{j+2},\bar{x}_{i_1}^{j+1}(\tau_s),\bar{\alpha}_{i_1}^{j+1})$ на верхнем уровне и динамический $\hat{R}_{i_2}^j(\hat{x}_{i_2}^{j+1},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_2}^j)$ — на нижнем.

Эту схему можно рассматривать как иерархический оператор распознавания $\hat{R}^2_{e,j}(\hat{x}^{j+1}_{i_1}(au_s),\mathcal{Z}^{j+1}_{i_1},\mathcal{Z}^{j}_{i_2},\omega^{j}_{i_2\Delta t})=\bar{x}^{*j+1}_{i_1}.$

Задача классификации в случае двухуровневой иерархии

Задача $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$ состоит в построении алгоритма \hat{A}_e , вычисляющего по поступившему начальному вектору ожиданий $\hat{x}_{i_1}^{j+2}$ и матрице входных воздействий $\omega_{i_2\Delta t}^j$ значения информационного вектора $\bar{\alpha}_{i_1}^{j+1}$.

Основная теорема корректности в иерархическом случае

Зафиксируем начальный вектор ожиданий $\hat{x}_{i_1}^{j+2}$ и последовательность входных векторов $\omega_{i_2\Delta t}^j$. Если рассматривать только такие задачи $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$, для которых в матрице $\omega_{i_2\Delta t}^j$ нет нулевых столбцов, то можно сформулировать следующую теорему.

В работе доказано следующее утверждение.

Теорема 3

Линейное замыкание $L(\hat{\mathcal{A}}_e)$ семейства алгоритмов $\hat{\mathcal{A}}_e = \{\hat{R}_{e,j}^2 \cdot \hat{C}_e^* | \hat{R}_{e,j}^2 \in \hat{\mathcal{R}}_{e,j}^2 \}$ с произвольным корректным решающим правилом \hat{C}_e^* и операторами распознавания $\hat{\mathcal{R}}_{e,j}^2$, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на множестве задач $\hat{\mathcal{Q}}_{e,j}^2$.

Формирование пары «образ — значение»

Применим введённые понятия для решения задачи формирования пары «образ — значение» элемента картины мира субъекта.

Уточним постановку задачи.

Отношение поглощения признаков

Введём семейство бинарных отношений $\{\Box, \Box^1, \Box^2, \dots\}$, определённых на декартовом произведении $\mathcal{F} \times \mathcal{F}$.

Признак f_1 поглощается признаком f_2 : $f_1 \sqsubset f_2$, в том случае, если $f_1\dashv R_i^j,\, f_2\dashv R_{i}^{j+1},\, R_{i}^{j+1}$ — родительский R-автомат по отношению к R_i^j и в множестве матриц предсказания \mathbb{Z}_2 признака f_2 существует как минимум одна матрица \mathbb{Z}_r^2 , содержащая некоторый столбец \bar{z}_{u}^{r} с элементом $z_{uv}^{r} \neq 0$, где v индекс признака f_1 во входном векторе для R-автомата R_2^{j+1} .

Процедрные и объектные признаки

Значение знака будем рассматривать как множество правил, каждое из которых соответствует некоторому действию. Правило для простоты будем представлять в виде пары «условия — эффект действия» так, как это принято в искусственном интеллекте.

Введём операцию Λ , которая по множеству матриц распознавания \mathcal{Z}_k признака f_k определяет два набора индексов столбцов матриц из Z_k . Первый набор $I_c = \{i_1^c, i_2^c, \dots\}, \ \forall k \ 0 \leqslant i_k^c < h$, составляют индексы столбцов условий, в которых ненулевые элементы определяют условия проявления признака f_k . Второй набор $I_e = \{i_1^e, i_2^e, \dots\}, \ \forall k \ 0 \leqslant i_k^e < h$, состоит из индексов столбцов эффектов, в которых ненулевые элементы определяют эффекты проявления признака f_k .

Процедрные и объектные признаки

Определение 5

Признаки, для матриц предсказания которых процедура Λ выдаёт непустые множества индексов I_c и I_e , будем называть процедурными признаками, остальные — объектными признаками.

Пополним семейство отношений $\{ \sqsubset, \sqsubset^1, \sqsubset^2, \dots \}$ двумя отношениями: \sqsubset^c и \sqsubset^e , принадлежность к которым пары признаков (f_1, f_2) свидетельствует о том, что признак f_1 присутствует соответственно в столбце условий и эффектов как минимум в одной матрице предсказания процедурного признака f_2 .

Образ знака

Пусть S — множество знаков. Будем считать, что между множествами S и ${\mathcal F}$ установлено некоторое взаимно-однозначное соответствие.

Определение б

Если f_1 — признак, соответствующий знаку s_1 , то подмножество $\tilde{p}(f_1)\subset \mathcal{F}$ таких признаков, что $\forall f_i\in \tilde{p}(f_1)f_i\sqsubset f_1$, будем называть образом знака s_1 (признака f_1).

На множестве всех образов $ilde{P}$ введём метрику $ho_p(ilde{p}(f_1), ilde{p}(f_2))$, $f_1\dashv R_i^j, f_2\dashv R_u^s$, вычисляемую по следующему правилу:

$$\rho_p(\tilde{p}(f_1),\tilde{p}(f_2)) = \begin{cases} \infty, & \text{если } R_i^j \neq R_u^s, \\ \min_{\substack{Z_1^r \in Z_1 \\ Z_s^s \in Z_2}} \frac{1}{q \cdot h} \sum_{u=1}^h \|\bar{z}_u^r - \bar{z}_u^s\|, & \text{если } R_i^j = R_u^s. \end{cases}$$

Значение знака

Определение 7

Если f_1 — признак, соответствующий знаку s_1 , f_2 — процедурный признак и $f_1 \sqsubset^c f_2$, то будем называть f_2 элементом значения знака s_1 (признака f_1). Множество всех элементов значения признака f_1 будем обозначать $\tilde{m}(f_1)$.

На множестве всех значений \tilde{M} введём метрику $\rho_m(\tilde{m}(f_1),\tilde{m}(f_2))$ следующим образом:

$$\rho_m(\tilde{m}_1(f_1), \tilde{m}_2(f_2)) = \min_{\substack{f_i \in \tilde{m}(f_1) \\ f_j \in \tilde{m}(f_2)}} \rho_p(\tilde{p}(f_i), \tilde{p}(f_j)). \tag{4}$$

Процедурный признак как правило

Любой элементарный процедурный признак f_p , распознаваемый R-автоматом R, можно представить в виде правила $r_p = \langle F_C(f_p), F_A(f_p), F_D(f_p) \rangle$, в котором:

- ullet $F_C(f_p)\subseteq F_i^j$ множество признаков условий правила: $\forall f\in F_C(f_p)\ f\sqsubset^c f_p;$
- ullet $F_A(f_p)\subseteq F_i^j$ множество добавляемых правилом признаков: $\forall f\in F_A(f_p)\; f\sqsubset^e f_p, f\notin F_C;$
- ullet $F_D(f_p)\subseteq F_i^{\jmath}$ множество удаляемых правилом признаков: $orall f\in F_D(f_p)\ f
 otin F_A, f\in F_C.$

Опыт наблюдения

Пусть опыт наблюдения субъекта записывается в виде функции Ψ_p^m . $\Psi_p^m(\tilde{p})=\tilde{m}$, в том случае, если $\tilde{p}\in \tilde{P}$ является образом некоторого знака s, а $\tilde{m}\in \tilde{M}$ — значением того же знака s.

В работе построен итерационный алгоритм \mathfrak{A}_{pm} доопределения функции Ψ_p^m , который обеспечивает формирование такого образа из множества признаков \hat{F} , при котором формируемое значение знака сходится к заданному значению $\tilde{m}^0=\{f_p\}$.

Теорема корректности алгоритма \mathfrak{A}_{pm}

Имеет место следующее утверждение.

Теорема 4

Алгоритм \mathfrak{A}_{pm} корректен, т. е. последовательность значений $\langle \tilde{m}^{*(0)}, \tilde{m}^{*(1)}, \ldots \rangle$, которая строится с помощью алгоритма \mathfrak{A}_{pm} для значения \tilde{m}^0 , полученного из внешней среды, сходится к \tilde{m}^0 .

Результаты

- Построена модель компонент знака элемента картины мира субъекта деятельности.
- Остроены четыре типа операторов распознавания (два статических оператора, динамический и иерархический операторы) в терминах алгебраической теории для образной компоненты знака.
- Доказаны теоремы корректности линейных замыканий множеств построенных в работе операторов распознавания (статических, динамического и иерархического).
- Построен итерационный алгоритм формирования и связывания двух компонент знака: образа и значения.
- Исследована сходимость итерационного алгоритма формирования и связывания двух компонент знака.

Спасибо за внимание!

ИСА РАН, лаб. «Динамические интеллектуальные системы», pan@isa.ru