6對數與對數律

重點整理

1. 對數的定義與性質:

設 a>0 , $a\ne 1$, b>0 , 定義 $\log_a b$ 表示方程式 $a^x=b$ 的實數解 x ,稱為以 a 為底數時 b 的對數,其中 b 稱為真數,即 $a^x=b \Leftrightarrow x=\log_a b$,由定義知 $\log_a a=1$, $\log_a 1=0$, $a^{\log_a b}=b$, $\log_a a^x=x$ 。

2. 常用對數的對數律:

設r>0, s>0, 則

(1)
$$\log rs = \log r + \log s$$
 \circ

$$(2) \log \frac{r}{s} = \log r - \log s \circ$$

(3)
$$\log r^t = t \log r$$
 (t 是實數)。

(4)
$$\log_a b = \frac{\log b}{\log a}$$
 (換底公式)。($a > 0$, $b > 0$, $a \ne 1$)

※3. 一般對數的對數律:

設a>0, $a\neq 1$,r>0, $r\neq 1$,s>0, $s\neq 1$,則

$$(1) \log_a rs = \log_a r + \log_a s \circ$$

$$(2) \log_a \frac{r}{s} = \log_a r - \log_a s \circ$$

(3)
$$\log_a r^n = n \log_a r$$
 , $\log_{a^m} r^n = \frac{n}{m} \log_a r$ 。 (m 、 n 是實數 , $m \neq 0$)

(4)
$$\log_a b = \frac{1}{\log_b a}$$
,即 $\log_a b \times \log_b a = 1$ (倒數關係)。($b > 0$, $b \neq 1$)

(5)
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 (換底公式)。($b > 0$, $c > 0$, $c \ne 1$)

註:符號※表示:非課綱的內容,教師可視情況延伸補充。

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

) **1.** 因為16=(-2)⁴,所以可知log₋₂16=4。

) **2.** $\log(5+8) = \log 5 \times \log 8$ °

) **3.** $\log_3 5 = \frac{1}{\log_5 3}$ •

) 4. 半衰期是指放射性物質衰變至原來含量之一半所需的時間,已知一放射性物質 的半衰期約為10年,若在西元2000年時測量其放射性物質含量為 a 單位,則在 西元 2030 年時測量其放射性物質含量大約為 $\frac{1}{8}a$ 單位。

)5. 若小數 $a=10^{-140.5}$,則a從小數點後第140位開始出現不為0的數。

44 單元6 對數與對數律

一、填充題(每題7分,共70分)

1. 求下列各對數的值。

$$(1)\log_4\frac{1}{64} = \underline{\hspace{1cm}} \circ (2 \%)$$

$$(2)\log_3 9\sqrt{3} = \underline{\hspace{1cm}} \circ (2 \cancel{2})$$

$$(3)5^{\log_5 7} = ___ \circ (2 分)$$

$$(4)\log_{\pi} 1 = \underline{\hspace{1cm}} \circ (1 \, \text{分})$$

3. 設x為實數,若對數 $\log_{x-1}(6x^2-5x-4)$ 有意義,則x的範圍為_____。

4. 試求下列各式的值。

$$(1)\log_3 7 \times \log_7 9 =$$
 。 $(3 分)$

(2)
$$\frac{1}{\log_4 \frac{1}{6}} + \frac{1}{\log_9 \frac{1}{6}} = \frac{\circ (4 \%)}{\circ (4 \%)}$$

5. 將 $\left(\frac{2}{3}\right)^{100}$ 表示成小數時,從小數點後第_____位開始出現不為0的數字。 (已知 $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$)

6. 2¹⁰⁰×3¹⁰⁰⁰是_____位數,其最高位數字為____。 (第 1 格 3 分,第 2 格 4 分)(已知 log 2 ≈ 0.3010, log 3 ≈ 0.4771)

46 單元 6 對數與對數律

7. 設 $\log_2 3 = a$, $\log_3 7 = b$,則 $\log_{14} 6 =$ _____。(以a、b表示)

8. 設 $a \cdot b \cdot c$ 為異於1的正實數,abc=1,求 $\log_a b + \log_b a + \log_b c + \log_c b + \log_c a + \log_a c$ 的 值為_____。

9. 設 $a \cdot b$ 為正實數,且 $\log a = \log_{100} b = \log_{1000} (a+b)$,求a的值為_____。

二、素養混合題(共20分)

第 11 至 12 題為題組

芮氏地震規模(M)最早是在 1935 年由兩位來自美國加州理工學院的地震學家芮克特(Charles Francis Richter)和古騰堡(Beno Gutenberg)共同制定,而古騰堡進一步提出芮氏 規模(M)與震源釋放的能量(E)(單位:爾格)之間的關係為 $\log E(M)$ =11.8+1.5M。臺灣位於板塊交界地帶,地震活動頻繁,近幾年來災情較嚴重的地震分別是 2018 年花蓮縣近海發生芮氏規模 6.2 的地震,造成17 人罹難,以及 2016 年高雄市美濃區發生芮氏規模 6.6 的強震,造成117 人罹難、551 人受傷,此為 921 地震後最嚴重的地震,也是臺灣有史以來單一建築物倒塌罹難人數最多的災害。

(已知 $\log 3 \approx 0.4771$ 、 $\log 4 \approx 0.6021$ 、 $\log 5 \approx 0.6990$ 、 $\log 6 \approx 0.7782$)

- ()**11.** 試問 2016 年高雄市美濃區發生之地震釋放的能量約為 2018 年花蓮縣近海發生 之地震的幾倍?(單選題,10分)
 - (A) 2 倍 (B) 3 倍 (C) 4 倍 (D) 5 倍 (E) 6 倍。
- **12.** 美軍在1945年對日本廣島市投下史上第一枚原子彈,而此枚原子彈釋放 5.5×10²¹ 爾格的能量。921地震發生於1999年9月21日凌晨1時47分,南投縣集集鎮發生芮氏規模 7.3的強震,試問 921 地震釋放的能量是否多於這一枚原子彈所釋放的能量?請說明原因。(非選擇題,10分)(已知10^{0.7404}≈5.5)

