

SENIOR THESIS IN MATHEMATICS

Thesis Outline

Author: Advisor: Firstname Lastname Dr. Firstname Lastname

Submitted to Pomona College in Partial Fulfillment of the Degree of Bachelor of Arts

October 12, 2017

Abstract

In this paper we don't really do much. However, there are a lot of *real* theorems that still need to be proved. That is what you will probably do in your thesis. For now we have the thesis outline.

Contents

1	Introduction	1
	1.1 What will go here?	1
2	Toy Example	2
	2.1 What is a toy example?	2
3	The Model	3
	3.1 What model?	3
4	Multiobjective Facility Location Problems	4
	4.1 What?	4
5	Discrete Facility Location Problems	5
	5.1 What? pt. II	5
6	Applications	6

Introduction

1.1 What will go here?

In the introduction I will explain the history of operations research and how it tends to be most utilized in the private sector. I will detail the development of (and necessity for) community-based operations research, and then explain that I will be examining a particular case study: the problem of developing new public parks in Bogotá, Colombia. I will perhaps provide a literature review here, a roadmap of what I will cover in the rest of the thesis, and anything else that may fit and come to mind later.

Toy Example

2.1 What is a toy example?

In this chapter I will present a simplified version of the model I will be observing. We will take the problem of park allocation and make it significantly easier to understand. We will have less variables, which I will present and explain, as well as less objective functions (since the actual model has six objective functions), and possibly even less constraints. I will walk through the problem explanation, present any relevant information, formulate the model, and solve it. We move on to the real model.

The Model

3.1 What model?

In here I will actually look at the model, taken straight from the paper I am reading. I will expand upon the toy example, explain the actual situation in more detail, and make note of the extra constraints and objective functions that we will take into account. I will present the mathematical formulation of the model, and examine the solution. Perhaps I will make commentary on particular decisions and assumptions the modelers made when constructing their model.

Multiobjective Facility Location Problems

4.1 What?

Here we will look at the general class of Multiobjective facility location problems, which is the class of problems that contains the main model/problem I will be looking at for my thesis.

Discrete Facility Location Problems

5.1 What? pt. II

The problem I will be examining also falls under this category. I am not sure how much this would vary from the previous chapter. But if it turns out there is a significant difference between both types of problems, it might be helpful to provide a dedicated chapter for both. Maybe the only difference is that the other class of problems has many objective functions.

Applications

If I have time to apply what I have learned to another problem, maybe this will go here. But this may be a bit ambitious. Stay tuned.