Санкт-Петербургский Национальный Исследовательский Университет Информационных Технологий, Механики и Оптики

ФКТиУ, кафедра Вычислительной техники

Лабораторная работа №3

по дисциплине «Основы вычислительной техники»

Выполнил: Студент группы Р3233 Сабитов Данил Тимурович

> Преподаватель: Блохина Елена Николаевна

Санкт-Петербург 2021 г. Задание: (113 вариант)

3E8: AAF6 3E9: F003

3EA: AEF6 3EB: 0700

3DE:	03F0	3EC:	EEF4
3DF:	0200	3ED:	83E0
3E0:	E000	3EE:	CEF9
3E1:	0200	3EF:	0100
3E2:	+ 0200	3F0:	0300
3E3:	EEFD	3F1:	0000
3E4:	AF05	3F2:	C3E3
3E5:	EEFA	3F3:	0480
3E6:	AEF7	3F4:	0000
3E7:	EEF7		

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарий				
3E2	+0200	CLA	Очистка аккумулятора				
3E3	EEFD	ST 3E1	Прямая относительная: ST IP-3				
			Сохранение АС->М				
3E4	AF05	LD #5	Прямая загрузка 5 -> АС				
3E5	EEFA	ST 3E0	Прямая относительная: ST IP-6				
			Сохранение АС->М				
3E6	AEF7	LD 3DE	Прямая относительная: ST IP-9				
			Загрузка М->АС				
3E7	EEF7	ST 3DF	Прямая относительная: ST IP-9				
			Сохранение АС->М				
3E8	AAF6	LD 3DF	Косвенная автоинкрементная: (IP-10)+				
			Загрузка М->АС				
3E9	F003	BEQ (IP+3)	Если было равенство, переходим в IP+3=3ED				
3EA	AEF6	LD 3E1	Прямая относительная: ST IP-10				
			Загрузка М->АС				
3EB	0700	INC	Инкремент АС + 1 -> АС				
3EC	EEF4	ST 3E1	Прямая относительная: ST IP-12				
			Сохранение АС->М				
3ED	83E0	LOOP 3E0	M - 1-> M; Если M <= 0, то 3EF-> IP				
3EE	CEF9	JUMP 3E8	Прямая относительная: ST IP-7;				
			Переход 3E8 -> IP				
3EF	0100	HLT	Отключение ТГ, переход в пультовый режим				

Описание программы:

Программа предназначена для нахождения количества ненулевых элементов в массиве.

Область представления:

- · A (3DE) адрес первого элемента массива, 11-разрядное беззнаковое число.
- B (3DF) адрес следующего после последнего выбранного числа массива, 11разрядное беззнаковое число.
- · C (3E0) счетчик цикла, знаковое 16-ти разрядное число.
- D (3E1) результат, количество ненулевых элементов, знаковое 16-ти разрядное число.
- · E-I (3F0 3F4) числа массива, знаковые 16-ти разрядные числа.

Область допустимых значений:

- D результат, количество ненулевых чисел массива, увеличивается в зависимости от количества чисел, удовлетворяющим программе, то есть ОДЗ: 0<=D<=5
- С счетчик цикла, данное число загружается в программу с помощью команды ААF6. Следовательно ОД3: С = 5, так как при заданной программе загружается именно это число.
- E, F, G, H, I ОДЗ для чисел массива может быть любым знаковым числом, то есть ОДЗ: $-2^{15} <= (E-I) <= 2^{15}-1$
- Так как В зависит от А и С, где С-смещение, то расположения массива А:

1 случай: Начало лежит до команд программы: $[000_{16} \le A \le 3E2_{16} - C]$;

2 случай: Начало лежит после команд программы: $[3F0_{16} \le A \le 7FF_{16} - C]$

Расположение в памяти ЭВМ программы, исходных данных и результатов:

Расположение программы: 3E2 — 3EF

Расположение исходных данных: 3DE – 3E1

■ 3DE — адрес первого элемента массива

■ 3DF — адрес следующего после последнего выбранного числа массива

■ 3E0 – счетчик цикла

· **Результат:** 071

■ 3E1 - количество чисел, результат

Массив: 3F0 – 3F4

Адреса первой и последней выполняемой команд программы:

Первая выполняемая команда располагается в ячейке ЗЕ2, последняя – в ячейке ЗЕГ

По выданному варианту:

- E − 7896₁₀
- F--987₁₀
- $G 0_{10}$
- H − 0₁₀
- I − 5672₁₀

Таблица трассировки:

	Выполняемая Содержание регистров процессора после выполнени команда команды					інения	Ячейка, содержимое которой изменилось после выполнения команды				
Адр.	Знач.	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
3E2	0200	3E2	0000	000	0000	000	0000	0000	0100		
3E2	0200	3E3	0200	3E2	0200	000	03E2	0000	0100		
3E3	EEFD	3E4	EEFD	3E1	0000	000	FFFD	0000	0100	3E1	0000
3E4	AF05	3E5	AF05	3E4	0005	000	0005	0005	0000		
3E5	EEFA	3E6	EEFA	3E0	0005	000	FFFA	0005	0000	3E0	0005
3E6	AEF7	3E7	AEF7	3DE	03F0	000	FFF7	03F0	0000		
3E7	EEF7	3E8	EEF7	3DF	03F0	000	FFF7	03F0	0000	3DF	03F0
3E8	AAF6	3E9	AAF6	3F0	1ED8	000	FFF6	1ED8	0000	3DF	03F1
3E9	F003	3EA	F003	3E9	F003	000	03E9	1ED8	0000		
3EA	AEF6	3EB	AEF6	3E1	0000	000	FFF6	0000	0100		
3EB	0700	3EC	0700	3EB	0700	000	03EB	0001	0000		
3EC	EEF4	3ED	EEF4	3E1	0001	000	FFF4	0001	0000	3E1	0001
3ED	83E0	3EE	83E0	3E0	0004	000	0003	0001	0000	3E0	0004
3EE	CEF9	3E8	CEF9	3EE	03E8	000	FFF9	0001	0000		
3E8	AAF6	3E9	AAF6	3F1	FC25	000	FFF6	FC25	1000	3DF	03F2
3E9	F003	3EA	F003	3E9	F003	000	03E9	FC25	1000		
3EA	AEF6	3EB	AEF6	3E1	0001	000	FFF6	0001	0000		
3EB	0700	3EC	0700	3EB	0700	000	03EB	0002	0000		
3EC	EEF4	3ED	EEF4	3E1	0002	000	FFF4	0002	0000	3E1	0002
3ED	83E0	3EE	83E0	3E0	0003	000	0002	0002	0000	3E0	0003
3EE	CEF9	3E8	CEF9	3EE	03E8	000	FFF9	0002	0000		

3E8	AAF6	3E9	AAF6	3F2	0000	000	FFF6	0000	0100	3DF	03F3
3E9	F003	3ED	F003	3E9	F003	000	0003	0000	0100		
3ED	83E0	3EE	83E0	3E0	0002	000	0001	0000	0100	3E0	0002
3EE	CEF9	3E8	CEF9	3EE	03E8	000	FFF9	0000	0100		
3E8	AAF6	3E9	AAF6	3F3	0000	000	FFF6	0000	0100	3DF	03F4
3E9	F003	3ED	F003	3E9	F003	000	0003	0000	0100		
3ED	83E0	3EE	83E0	3E0	0001	000	0000	0000	0100	3E0	0001
3EE	CEF9	3E8	CEF9	3EE	03E8	000	FFF9	0000	0100		
3E8	AAF6	3E9	AAF6	3F4	1628	000	FFF6	1628	0000	3DF	03F5
3E9	F003	3EA	F003	3E9	F003	000	03E9	1628	0000		
3EA	AEF6	3EB	AEF6	3E1	0002	000	FFF6	0002	0000		
3EB	0700	3EC	0700	3EB	0700	000	03EB	0003	0000		
3EC	EEF4	3ED	EEF4	3E1	0003	000	FFF4	0003	0000	3E1	0003
3ED	83E0	3EF	83E0	3E0	0000	000	FFFF	0003	0000	3E0	0000
3EF	0100	3F0	0100	3EF	0100	000	03EF	0003	0000		

Диапазон всех ячеек памяти, где может размещаться массив исходных данных:

 $M \in [0_{16}; 3DD_{16}];$

 $M \in [3F0_{16}; 7FF_{16}]$

Вывод:

В результате проделанной лабораторной работы я изучил различные режимы адресации в БЭВМ. Кроме этого, я познакомился с командами ветвления, циклами и массивами в БЭВМ.