Chapitre 15. Convexité

Dans tout le chapitre, *I* désigne un intervalle non trivial.

1 Généralités

Définitions 1.1

Définition 1.1.

* Une fonction $f: I \to \mathbb{R}$ est convexe si $\forall a, b \in I, \forall \lambda \in [0,1]$

$$f((1-\lambda)a + \lambda b) \le (1-\lambda)f(a) + \lambda f(b)$$

* Elle est dite concave si $\forall a, b \in I, \forall \lambda \in [0, 1]$

$$f((1-\lambda)a + \lambda b) > (1-\lambda)f(a) + \lambda f(b)$$

Opérations 1.2

Proposition 1.2. Soit $f, g: I \to \mathbb{R}$

- * Si f et g sont convexes (resp. concaves), alors f + g aussi.
- * Si f et g sont convexes, max(f,g) est convexe.
- * Si f et g sont concaves, min(f,g) est concave.
- * L'opposé d'une fonction convexe est concave et réciproquement.

1.3 Inégalité de Jensen

Définition 1.3. Soit $x_1, ..., x_n \in \mathbb{R}$

Une <u>combinaison convexe</u> de $x_1, ..., x_n$ est un nombre de la forme $\lambda_1 x_1 + ... + \lambda_n x_n$ où $\begin{cases} \lambda_1, ..., \lambda_n \in \mathbb{R}_+ \\ \lambda_1 + ... + \lambda_n = 1 \end{cases}$

On parle aussi de <u>barycentre</u> des $a_1, ..., a_n$ (et dans le cas $\lambda_1 = ... = \lambda_n = \frac{1}{n}$ on parle d'isobarycentre)

Théorème 1.4 (Inégalité de Jensen / de convexité). Soit $f:I\to\mathbb{R}$ convexe, $a_1,\ldots,a_n\in\mathbb{R}$ et $\lambda_1,\ldots,\lambda_n\in\mathbb{R}_+$ tels que $\lambda_1 + ... + \lambda_n = 1$

Alors

$$f\left(\sum_{i=1}^{n} \lambda_i a_i\right) \le \sum_{i=1}^{n} \lambda_i f(a_i)$$

1.4 Position de sécantes

Proposition 1.5. Soit $f: I \to \mathbb{R}$ convexe et $a < b \in I$. Alors :

* Sur $I \cap]-\infty, a]$ le graphe de f est au-dessus (au sens large) de la droite reliant $\begin{pmatrix} a \\ f(a) \end{pmatrix}$ et $\begin{pmatrix} b \\ f(b) \end{pmatrix}$

1

- * Sur $I \cap [b, +\infty]$ idem.
- * Sur [a, b] le graphe est en-dessous de la droite.

1.5 Pentes

Proposition 1.6 (Inégalité de trois pentes). Soit $f: I \to \mathbb{R}$ et $s < t < u \in I$

Alors

$$\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}$$

Remarque : Chacune des trois inégalités contenues dans le théorème est équivalent à deux autres

et au faut que $\binom{t}{f(t)}$ est sous la courbe joignant $\binom{s}{f(s)}$ et $\binom{u}{f(u)}$ Les trois inégalités équivalent à

 $(u-s)f(t) \le (u-t)f(s) + (t-s)f(u)$

ou encore

$$f(t) \le \underbrace{\frac{u-t}{u-s}}_{1-\lambda} f(s) + \underbrace{\frac{t-s}{u-s}}_{\lambda} f(u)$$

avec λ tel que $t = (1 - \lambda)s + \lambda u$

Proposition 1.7. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si, pour tout $a \in I$, la fonction taux d'accroissement

 $\tau_{[f,a]} \begin{cases} I \setminus \{a\} \to \mathbb{R} \\ x \mapsto \frac{f(x) - f(a)}{x - a} \end{cases}$

est croissante.

2 Convexité et régularité

2.1 Régularité automatique

Proposition 2.1. Soit $f: I \to \mathbb{R}$ convexe et $a \in I$ intérieur.

Alors f est dérivable à gauche et à droite en a et $f'_g(a) \le f'_d(a)$

Théorème 2.2. Une fonction convexe est continue en tout point intérieur de son intervalle de définition.

Corollaire 2.3. Si *I* est un intervalle ouvert, toute fonction $f: I \to \mathbb{R}$ convexe est continue.

2.2 Caractérisation des fonctions convexes (deux fois) dérivables

Théorème 2.4. Soit $f: I \to \mathbb{R}$ dérivable.

Alors f est convexe ssi f' croît.

Corollaire 2.5. Soit $f: I \to \mathbb{R}$ deux fois dérivable.

Alors f est convexe ssi $f'' \ge 0$

Corollaire 2.6. Soit $f \in D^1(I)$ convexe et $a < b \in I$

On a

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

2.3 Applications

Le critère de convexité pour les fonctions deux fois dérivables montre directement que :

- * exp est convexe.
- * In est concave.
- * sin est concave sur $[0, -\pi]$

Proposition 2.7 (Inégalité arithmético-géométrique générale). Soit $\alpha_1, ..., \alpha_n \in \mathbb{R}_+$ de somme 1 et $x_1, ..., x_n \in \mathbb{R}_+^*$ Alors

$$x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \le \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$

2.4 Position par rapport à la tangente

Proposition 2.8. Soit $f \in D^1(I)$ convexe et $a \in I$

Alors
$$\forall x \in I$$
, $f(x) \ge f(a) + f'(a)(x - a)$

Cette proposition permet de retrouver des inégalités classiques :

- * $\forall x \in \mathbb{R}, e^x \ge 1 + x$
- * $\forall x \in \mathbb{R}_+^*$, $\ln(x) \le x + 1$
- * $\forall h \in]-1, +\infty[, \ln(1+h) \leq h$

La concavité sur $[0, \pi]$ de sin donne :

 $\forall x \in [0, \pi], \sin(x) \le x \text{ (on a même } \forall x \in \mathbb{R}, |\sin(x)| \le |x|)$

La position par rapport aux sécantes montre aussi

$$\forall x \in \left[0, \frac{\pi}{2}\right], \sin(x) \ge \frac{2}{\pi}x$$