Section 2.8

Subspaces of \mathbb{R}^n

Motivation

Today we will discuss subspaces of \mathbb{R}^n .

Motivation

Today we will discuss **subspaces** of \mathbb{R}^n .

A subspace turns out to be the same as a span, except we don't know *which* vectors it's the span of.

Motivation

Today we will discuss **subspaces** of \mathbb{R}^n .

A subspace turns out to be the same as a span, except we don't know *which* vectors it's the span of.

This arises naturally when you have, say, a plane through the origin in \mathbb{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.

Definition

A subspace of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V.

Definition

A subspace of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V.

"not empty"

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V. "not empty"
- 2. If u and v are in V, then u + v is also in V.

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.

"not empty"

"closed under addition"

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbb{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbb{R} , then cu is in V.

- "not empty"
- "closed under addition"
- "closed under \times scalars"

What does this mean?

If v is in V, then all scalar multiples of v are in V by (3).

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbb{R} , then cu is in V.

- "not empty"
- "closed under addition"
- "closed under \times scalars"

What does this mean?

If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

- If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.
- ▶ If u, v are in V, then xu and yv are in V for scalars x, y by (3).

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

- If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.
- If u, v are in V, then xu and yv are in V for scalars x, y by (3). So xu + yv is in V by (2).

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

- If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.
- If u, v are in V, then xu and yv are in V for scalars x, y by (3). So xu + yv is in V by (2). So Span{u, v} is contained in V.

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V. "closed under × scalars"

"not empty"

"closed under addition"

3. If u is in V and c is in \mathbb{R} , then cu is in V.

- If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.
- If u, v are in V, then xu and yv are in V for scalars x, y by (3). So xu + yv is in V by (2). So Span $\{u, v\}$ is contained in V.
- Likewise, if v_1, v_2, \ldots, v_n are all in V, then Span $\{v_1, v_2, \ldots, v_n\}$ is contained in V.

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- The zero vector is in V. "not empty"
 If u and v are in V, then u + v is also in V. "closed under addition"
- 3. If u is in V and c is in R, then cu is in V. "closed under \times scalars"

What does this mean?

- ▶ If *v* is in *V*, then all scalar multiples of *v* are in *V* by (3). That is, the line through *v* is in *V*.
- ▶ If u, v are in V, then xu and yv are in V for scalars x, y by (3). So xu + yv is in V by (2). So $Span\{u, v\}$ is contained in V.
- Likewise, if v_1, v_2, \ldots, v_n are all in V, then $\text{Span}\{v_1, v_2, \ldots, v_n\}$ is contained in V.

A subspace V contains the span of any set of vectors in V.

Example

A line L through the origin: this contains the span of any vector in L.

Example

A line L through the origin: this contains the span of any vector in L.

Example

A plane P through the origin: this contains the span of any vectors in P.

Example

A line L through the origin: this contains the span of any vector in L.

Example

A plane P through the origin: this contains the span of any vectors in P.

Example

All of \mathbf{R}^n : this contains 0, and is closed under addition and scalar multiplication.

Example

A line L through the origin: this contains the span of any vector in L.

Example

A plane P through the origin: this contains the span of any vectors in P.

Example

All of \mathbb{R}^n : this contains 0, and is closed under addition and scalar multiplication.

Example

The subset $\{0\}$: this subspace contains only one vector.

Example

A line L through the origin: this contains the span of any vector in L.

Example

A plane P through the origin: this contains the span of any vectors in P.

Example

All of \mathbb{R}^n : this contains 0, and is closed under addition and scalar multiplication.

Example

The subset $\{0\}$: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails:

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A line L (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle ${\it C}$ is not a subspace. Fails:

Non-Example

A line L (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle C is not a subspace. Fails: 1,2,3.

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle ${\cal C}$ is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example

The first quadrant in \mathbf{R}^2 is not a subspace. Fails:

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example

The first quadrant in \mathbb{R}^2 is not a subspace. Fails: 3 only.

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example

The first quadrant in \mathbb{R}^2 is not a subspace. Fails: 3 only.

Non-Example

A line union a plane in \mathbb{R}^3 is not a subspace. Fails:

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example

The first quadrant in \mathbf{R}^2 is not a subspace. Fails: 3 only.

Non-Example

A line union a plane in \mathbb{R}^3 is not a subspace. Fails: 2 only.

Subsets and Subspaces They aren't the same thing

A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

Subsets and Subspaces They aren't the same thing

A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

All of the non-examples are still subsets.

Subsets and Subspaces They aren't the same thing

A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

All of the non-examples are still subsets.

A **subspace** is a special kind of subset, which satisfies the three defining properties.

Subsets and Subspaces

They aren't the same thing

A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

All of the non-examples are still subsets.

A **subspace** is a special kind of subset, which satisfies the three defining properties.

Subset: yes Subspace: no

Spans are Subspaces

Theorem

Any $\mathsf{Span}\{\textit{v}_1,\textit{v}_2,\ldots,\textit{v}_n\}$ is a subspace.

Spans are Subspaces

Theorem

Any $Span\{v_1, v_2, \dots, v_n\}$ is a subspace.

Every subspace is a span, and every span is a subspace.

Spans are Subspaces

Theorem

Any Span $\{v_1, v_2, \dots, v_n\}$ is a subspace.

Definition

If $V = \text{Span}\{v_1, v_2, \dots, v_n\}$, we say that V is the subspace **generated by** or **spanned by** the vectors v_1, v_2, \dots, v_n .

Poll

Is the empty set $\{\}$ a subspace? If not, which property(ies) does it fail?

Poll

Is the empty set $\{\}$ a subspace? If not, which property(ies) does it fail?

The zero vector is not contained in the empty set, so it is *not* a subspace.

Poll

Is the empty set $\{\}$ a subspace? If not, which property(ies) does it fail?

The zero vector is not contained in the empty set, so it is not a subspace.

Question: What is the difference between $\{\}$ and $\{0\}$?

Subspaces Verification

Let
$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}$$
 in $\mathbf{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.

Let
$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}$$
 in $\mathbf{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.

We conclude that V is *not* a subspace.

Let
$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}$$
 in $\mathbf{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.

We conclude that V is *not* a subspace. A picture is above. (It doesn't look like a span.)

An $m \times n$ matrix A naturally gives rise to two subspaces.

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

► The column space of A is the subspace of R— spanned by the columns of A. It is written Col A.

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

Nul
$$A = \{x \text{ in } \mathbf{R}^- \mid Ax = 0\}.$$

This is a subspace of R-.

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{x \text{ in } \mathbf{R}^n \mid Ax = 0\}.$$

This is a subspace of \mathbb{R}^n .

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{ x \text{ in } \mathbf{R}^n \mid Ax = 0 \}.$$

This is a subspace of \mathbb{R}^n .

The column space is defined as a span, so we know it is a subspace.

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{ x \text{ in } \mathbf{R}^n \mid Ax = 0 \}.$$

This is a subspace of \mathbb{R}^n .

The column space is defined as a span, so we know it is a subspace. It is the range (as opposed to the codomain) of the transformation T(x) = Ax.

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{ x \text{ in } \mathbf{R}^n \mid Ax = 0 \}.$$

This is a subspace of \mathbf{R}^n .

The column space is defined as a span, so we know it is a subspace. It is the range (as opposed to the codomain) of the transformation T(x) = Ax.

Check that the null space is a subspace:

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the column space:

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the column space:

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the column space:

Let's compute the null space:

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the column space:

Let's compute the null space:

The column space of a matrix A is defined to be a span (of the columns).

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0.

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form!

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to Ax=0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$
 if, say, x_3 and x_4 are the free variables.

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to Ax=0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \begin{array}{ll} \text{if, say, } x_3 \text{ and } x_4 \\ \text{are the free} \\ \text{variables. So} \end{array} \quad \text{Nul } A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to Ax = 0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \begin{array}{ll} \text{if, say, } x_3 \text{ and } x_4 \\ \text{are the free} \\ \text{variables. So} \end{array} \quad \text{Nul } A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for $\S1.5$ (Solution Sets).

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to Ax = 0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \begin{array}{l} \text{if, say, } x_3 \text{ and } x_4 \\ \text{are the free} \\ \text{variables. So} \end{array} \quad \text{Nul } A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §1.5 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.

The Null Space is a Span Example, revisited

Find vector(s) that span the null space of
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

The Null Space is a Span Example, revisited

Find vector(s) that span the null space of
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Subspaces Summary

How do you check if a subset is a subspace?

▶ Is it a span? Can it be written as a span?

Subspaces Summary

- ▶ Is it a span? Can it be written as a span?
- ► Can it be written as the column space of a matrix?

Subspaces Summary

- ▶ Is it a span? Can it be written as a span?
- ► Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?

- ▶ Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?

- ▶ Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

How do you check if a subset is a subspace?

- ▶ Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- ► Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

How do you check if a subset is a subspace?

- ▶ Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- ► Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

How do you check if a subset is a subspace?

- ▶ Is it a span? Can it be written as a span?
- ► Can it be written as the column space of a matrix?
- ► Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

Can you verify directly that it satisfies the three defining properties?

What is the smallest number of vectors that are needed to span a subspace?

What is the *smallest number* of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

What is the *smallest number* of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

1. $V = \mathsf{Span}\{v_1, v_2, \dots, v_m\}$, and

What is the *smallest number* of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

What is the *smallest number* of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Definition

Let V be a subspace of \mathbb{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \operatorname{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

- V = Span{v₁, v₂,..., v_m}, and
 {v₁, v₂,..., v_m} is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Definition

Let V be a subspace of \mathbb{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \operatorname{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and 2. $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Why is a basis the smallest number of vectors needed to span?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \operatorname{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

- V = Span{v₁, v₂,..., v_m}, and
 {v₁, v₂,..., v_m} is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the span gets bigger.

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \operatorname{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

- V = Span{v₁, v₂,..., v_m}, and
 {v₁, v₂,..., v_m} is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't span V.

Definition

Let V be a subspace of \mathbb{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and 2. $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't span V.

Important

A subspace has many different bases, but they all have the same number of vectors (see the exercises in $\S 2.9$).

Question

What is a basis for \mathbb{R}^2 ?

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that $\textit{span}\ \textbf{R}^2$ and are linearly independent.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that $span \mathbf{R}^2$ and are linearly independent. $\{e_1,e_2\}$ is one basis.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that $span \ \mathbf{R}^2$ and are $linearly independent. <math>\{e_1,e_2\}$ is one basis.

1. They span: $\binom{a}{b} =$

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that $span \mathbf{R}^2$ and are linearly independent. $\{e_1, e_2\}$ is one basis.

1. They span: $\binom{a}{b} = ae_1 + be_2$.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbf{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbb{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbb{R}^2 ?

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbb{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbb{R}^2 ?

Any two nonzero vectors that are not collinear.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbf{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbb{R}^2 ?

Any two nonzero vectors that are not collinear. $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ is also a basis.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbf{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbb{R}^2 ?

Any two nonzero vectors that are not collinear. $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ is also a basis.

1. They span: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every row.

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbf{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbb{R}^2 ?

Any two nonzero vectors that are not collinear. $\left\{ \binom{1}{0}, \binom{1}{1} \right\}$ is also a basis.

- 1. They span: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every row.
- 2. They are linearly independent: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every column.

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n .

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n .

1. They span: I_n has a pivot in every row.

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \dots, e_n .

1. They span: I_n has a pivot in every row.

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \dots, e_n .

- 1. They span: I_n has a pivot in every row.
- 2. They are linearly independent: I_n has a pivot in every column.

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \dots, e_n .

- 1. They span: I_n has a pivot in every row.
- 2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^n if and only if the matrix

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix}$$

has a pivot in every row and every column, i.e. if A is ______.

The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \dots, e_n .

- 1. They span: I_n has a pivot in every row.
- 2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbf{R}^n if and only if the matrix

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix}$$

has a pivot in every row and every column, i.e. if A is *invertible*.

Basis of a Subspace Example

Example

Let

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x + 3y + z = 0 \right\} \qquad \mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}.$$

Verify that \mathcal{B} is a basis for V.

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to Ax=0 always form a basis for Nul A.

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to Ax=0 always form a basis for Nul A.

Example

Fact
The *pivot columns* of *A* always form a basis for Col *A*.

The *pivot columns* of A always form a basis for Col A.

Warning: I mean the pivot columns of the original matrix A, not the row-reduced form.

The *pivot columns* of A always form a basis for Col A.

Warning: I mean the pivot columns of the *original* matrix A, not the row-reduced form. (Row reduction changes the column space.)

The pivot columns of A always form a basis for Col A.

Warning: I mean the pivot columns of the original matrix A, not the row-reduced form. (Row reduction changes the column space.)

Example

The *pivot columns* of A always form a basis for Col A.

Warning: I mean the pivot columns of the original matrix A, not the row-reduced form. (Row reduction changes the column space.)

Example

Why? End of §2.8, or ask in office hours.