

Figure 51.14: Figure (1) shows the graph in \mathbb{R}^3 of $f(x,y) = ||(x,y)||_2 = \sqrt{x^2 + y^2}$. Figure (2) shows the supporting hyperplane with normal $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -1)$, where $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \in \partial f(0)$.

iff

$$\langle z, y \rangle \le \langle x, y \rangle$$
 for all $z \ge 0$.

In particular, for z=0 we get $\langle x,y\rangle\geq 0$, and for $z=2x\geq 0$, we have $\langle x,y\rangle\leq 0$, so $\langle x,y\rangle=0$. As a consequence, $y\in N_C(x)$ iff $\langle x,y\rangle=0$ and

$$\langle z, y \rangle \le 0$$
 for all $z \ge 0$.

For $z = e_j \ge 0$, we get $y_j \le 0$. Conversely, if $y \le 0$ and $\langle x, y \rangle = 0$, since $x \ge 0$, we get $\langle z, y \rangle \le 0$ for all $z \ge 0$, and so

$$\partial f(x) = \{ y = (y_1, \dots, y_n) \in \mathbb{R}^n \mid y \le 0, \ \langle x, y \rangle = 0 \}.$$

But for $x \ge 0$ and $y \le 0$ we have $\langle x, y \rangle = \sum_{j=1}^n x_j y_j = 0$ iff $x_j y_j = 0$ for $j = 1, \dots, n$, thus we see that $y \in \partial f(x)$ iff we have

$$x_j \ge 0, \ y_j \le 0, \ x_j y_j = 0, \quad 1 \le j \le n,$$

which are complementary slackness conditions.

Supporting hyperplanes to the epigraph of a proper convex function f can be used to prove a property which plays a key role in optimization theory. The proof uses a classical result of convex geometry, namely the Minkowski supporting hyperplane theorem.