Mathematics Department C3 SOW

Specification	Reference	Notes/Extra Material
 1. Algebra and Functions Simplification of rational expressions including factorising & cancelling, and algebraic division. 	Heinemann Chapter 1 Section 1:1 to 1.4 - Exercises 1A, 1B, 1C & 1D	Denominators of rational expressions will be linear or quadratic, eg $\frac{1}{ax + b}$ or $\frac{ax + b}{px^2 + qx + r}$ or $\frac{x^3 + 1}{x^2 - 1}$ Mixed Exercise 1E Revision Exercise 1
 Definition of a function. Domian and range of functions. Composition of functions. Inverse functions and their graphs. 	Heinemann Chapter 2 Section 2.1 to 2.5 Exercises 2A, 2B, 2C, 2D & 2E Section 2.3 Exercise 2C/2D Sections 2.2 – 2.5 Exercises 2B – 2E	The concept of a function as a one-one or many-one mapping from R (or a subset of R) to R. The notation $f: x \to$ and $f(x)$ will be used. Candidates should know that fg will mean 'do g first, then f'. Candidates should know that if f^{-1} exists, then $f^{-1}f(x) = ff^{-1}(x) = x$. Mixed Exercise 2F Revision Exercise 2
The modulus function	Heinemann Chapter 5 Section 5.1 to 5.3 Exercises 5A, 5B & 5C	Candidates should be able to sketch the graphs of $y = 1 ax + b 1$ and the graphs of $y = 1 f(x) 1$ and $y = f(1x) 1$, given the graph of $y = f(x)$.

 Combinations of the transformations y = f(x) as represented by y = af(x), y = f(x) + a, y = f(x + a), y = f(ax). 	Heinemann Chapter 5 Sections 5.4 to 5.5 - Exercises 5D & 5E	Candidates should eb able to sketch the graph of e.g. $y = 2f(3x)$, $y = f(-x) + 1$, given the graph of $y = f(x)$ or the graph of, e.g. $y = 3 + \sin 2x$, $y = -\cos (x + \pi/4)$. The graph of $y = f(ax + b)$ will not be required.
	Summary of key points	Mixed Exercise 5F Revision Exercise 5
2. Trigonometry • Knowledge of secant, cosecant and cotangent and of arcsin, arcos and arctan. Their relationships to sine, cosine and tangent. Understanding of their graphs and appropriate restricted domains.	Heinemann Chapter 6 Sections 6.1 – 6.5 - Exercises 6A, 6B, 6C, 6D & 6E	Angles measured in both degrees and radians. Mixed Exercise 6F Revision Exercise 6
 Knowledge and use of sec² θ = 1 + tan² θ and cosec² θ = 1 + cot² θ Knowledge and use of double angle formulae; use of formulae for sin (A ± B), cos (A ± B) and tan (A ± B) and of expressions for acos θ + bsinθ in the equivalent forms of rcos (θ ± α) or rsin (θ±α). 	Heinemann Chapter 7 Sections 7.1 to 7.5 - Exercises 7A, 7B, 7C, 7D & 7E Summary of key points	To include application to half-angles. Knowledge of the t (tan $\frac{1}{2}\theta$) formula will not be required. Candidates should be able to solve equations such as $a\cos\theta + b\sin\theta = c$ ina given interval and to prove simple identities such as $\cos x \cos 2x + \sin x \sin 2x = \cos x$ Mixed Exercise 7F Revision Exercise 7

Heinemann Chapter 3	
Sections 3.1 to 3.3 - Exercises 3A & 3B	To include the graph of $y = e^{ax+b} + c$ Solution of equations of the form $e^{ax+b} = p$ and $\ln (ax + b) = q$ is expected.
Summary of key points	Mixed Exercise 3C Revision Exercise 3
Heinemann Chapter 8 Sections 8.1 to 8.10 - Exercises 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H, 8I & 8J	Differentiation of cosec x, cot x and sec x are required. Skill will be expected in the differentiation of functions generated from standard forms using products, quotients and composition, such as $2x^4 \sin x$, e^{3x} / x , $\cos x^2$ and $\tan^2 2x$.
Summary of key points	Mixed Exercise 8K Revision Exercise 8
	Sections 3.1 to 3.3 - Exercises 3A & 3B Summary of key points Heinemann Chapter 8 Sections 8.1 to 8.10 - Exercises 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H, 8I & 8J

	metho	

- Location of roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x in which f(x) is continuous.
- Approximate solution of equations using simple iterative methods, including recurrence relations of the form x_{n+1} = f(x_n)

Heinemann Chapter 4

Sections 4.1 – 4.2

- Exercises 4A & 4B

Summary of key points

Solutions of equations by use of iterative procedures for which leads will be given.

Mixed Exercise 4C Revision Exercise 4