Chapter 9

9.1. The next-state and output expressions for the circuit in Figure P9.1 are

$$\begin{array}{rcl} Y_1 & = & \overline{w}_1 + y_1 \overline{y}_2 \\ Y_2 & = & \overline{w}_2 + \overline{y}_1 + w_1 y_2 \\ z_1 & = & \overline{y}_1 \\ z_2 & = & \overline{y}_2 \end{array}$$

This gives the excitation table

	Present	Ne	Next state						
	state	$w_2w_1=00$	01	10	11	$z_{2}z_{1}$			
	y_2y_1		Y	$_{2}Y_{1}$					
A	00	11	10	11	10	11			
В	01	11	11	01)	<u>(01)</u>	10			
C	10	11	(10)	11	(10)	01			
D	11	(11)	10	01	10	00			

The resulting flow table is

Present	Nex	t state	e		
state	$w_2w_1=00$	01	10	11	$z_{2}z_{1}$
A	D	C	D	C	11
В	D	D	\bigcirc B	\bigcirc B	10
С	D	\bigcirc	D	(C)	01
D	D	C	В	C	00

The behavior is the same as described in the flow table in Figure 9.21a, if the state interchanges A \leftrightarrow D and B \leftrightarrow C are made.

9.2. The waveforms are

The flow table is

Present	Next state	Outp	outs, z_2z_1
state	C = 0 1	0	1
0	1 0	00	10
1	\bigcirc 0	01	00

The circuit generates a non-overlapping 2-phase clock.

9.3. The partitioning procedure gives

$$\begin{array}{lcl} P_1 & = & (ADGJMPT)(BEHR)(CF)(ILOSV)(KNU) \\ P_2 & = & (AD)(GP)(JMT)(B)(E)(HR)(C)(F)(ILOSV)(KNU) \\ P_3 & = & (A)(D)(GP)(JMT)(B)(E)(HR)(C)(F)(ILOSV)(KNU) \\ P_4 & = & P_3 \end{array}$$

This gives the flow table

Present	Nex	t state	;		
state	$w_2w_1=00$	01	10	11	z
A	A	В	C	_	0
В	D	\bigcirc B	_	_	0
C	G	_	\bigcirc	_	0
D	D	E	F	_	0
Е	G	E	_	_	0
F	J	_	\bigcirc F	_	0
G	G	Н	I	_	0
Н	J	\bigcirc H	_	_	0
I	A	_		_	1
J	\bigcirc	K	I	_	0
K	A	\bigcirc K	_	_	1

The corresponding merger diagram is

This leads to the reduced flow table

Present	Next state				
state	$w_2w_1=00$	01	10	11	z
A	A	В	C	_	0
В	D	\bigcirc B	_	_	0
С	G	(C)	\bigcirc	_	0
D	D	C	F	_	0
F	J	\bigcirc F	\bigcirc F	_	0
G	G	F	I	_	0
I	A	\bigcirc	\bigcirc I	_	1
J	1	I	I	_	0

9.4. The partitioning procedure gives

 $\begin{array}{rcl} P_1 & = & (AF)(BEGL)(CJ)(DK)(HM) \\ P_2 & = & (AF)(BG)(EL)(CJ)(DK)(HM) \\ P_3 & = & (A)(F)(BG)(EL)(CJ)(DK)(HM) \\ P_4 & = & P_3 \end{array}$

Replacing states B and G, E and L, C and J, D and K, and H and M with new states B, E, C, D, and H, respectively, produces the following flow table:

Present	Nex	Next state				
state	$w_2w_1=00$	01	10	11	z	
A	A	В	C		0	
В	D	\bigcirc B	_	Н	0	
С	F	_	\bigcirc	Н	0	
D	D	E	C	_	1	
Е	A	\bigcirc	_	Н	0	
F	F	E	C	_	0	
Н	_	В	C	$\underbrace{\boldsymbol{H}}$	1	

The merger diagram is

Only C and F can be merged if the Moore model is to be preserved. Therefore, the reduced flow table is

Present	Next state						
state	$w_2w_1=00$	01	10	11	z		
A	A	В	C	_	0		
В	D	\bigcirc B	_	Н	0		
C	\bigcirc	E	\bigcirc	Н	0		
D	D	E	C	_	1		
Е	A	\bigcirc	_	Н	0		
Н	-	В	C	$\stackrel{\textstyle (H)}{\textstyle \ }$	1		

9.5. Relabel the flow table as

Present	Next state		Outp	out z	
state	$w_2w_1 = 00$ 01 10 11	00	01	10	11
A	1 3 7 2	0	_	1	1
В	5 (3) (4) 8	0	1	0	0
С	5 6 4 2	0	1	0	1
D	1 6 7 8	_	_	1	0

The transition diagram is

The diagonal transitions cannot be avoided without introducing additional states. A possible modification is

This transition diagram can be embedded onto a 3-cube as follows:

Then the modified flow table is

Present	Nex	t state	e		Output z			
state	$w_2w_1=00$	01	10	11	00	01	10	11
A	A	В	D	\bigcirc	0	-	1	1
В	G	\bigcirc B	\bigcirc B	F	0	1	0	0
С	\bigcirc	\bigcirc	G	A	0	1	0	1
D	A	E	\bigcirc	\bigcirc	_	_	1	0
Е	_	C	_	_	_	1	_	-
F	_	_	_	D	_	_	_	0
G	С	_	В	_	0	_	0	_

The excitation table is

	Present	Present Next state				Output			
	state	$w_2w_1=00$	01	10	11	00	01	10	11
	$y_3y_2y_1$		Y_3Y_2Y	1				z	
A	000	(000)	(001)	010	(000)	0	-	1	1
В	001	101	001	(001)	011	0	1	0	0
C	100	(100)	(100)	101	000	0	1	0	1
D	010	000	110	(010)	(010)	_	_	1	0
E	110	_	100	_	_	_	1	_	-
F	011	_	_	_	010	_	_	_	0
G	101	100	_	001	_	0	_	0	_

The next-state and output expressions are

$$\begin{array}{rcl} Y_3 & = & \overline{w}_2 y_3 + \overline{w}_2 \overline{w}_1 y_1 + \overline{w}_1 y_3 y_1 \\ Y_2 & = & w_2 \overline{w}_1 \overline{y}_3 \overline{y}_1 + w_1 \overline{y}_3 y_2 \overline{y}_1 + w_2 \overline{y}_3 y_2 \overline{y}_1 + w_2 w_1 \overline{y}_3 \overline{y}_2 y_1 \\ Y_2 & = & \overline{y}_3 \overline{y}_2 y_1 + \overline{w}_2 w_1 \overline{y}_3 \overline{y}_2 + w_2 \overline{w}_1 y_3 \overline{y}_2 + w_2 \overline{w}_1 \overline{y}_2 y_1 \\ z & = & \overline{w}_2 w_1 + w_1 \overline{y}_2 \overline{y}_1 + w_2 \overline{w}_1 \overline{y}_3 \overline{y}_1 \end{array}$$

9.6. Relabel the flow table in Figure 9.42 as

Present	Next state		Output z			
state	$w_2w_1 = 00$ 01 10 11	00	01	10	11	
A	1 3 7 2	0	_	1	1	
В	5 3 4 8	0	1	0	0	
С	5 6 4 2	0	1	0	1	
D	1 6 7 8	_	_	1	0	

Using pairs of equivalent states gives the following transition diagram:

Therefore, the modified flow table is

Present	Nex	xt state	e		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
state	$w_2w_1=00$	01	10	11	00	01	10	11
A1	(A1)	B1	A2	(A1)	0	_	1	1
A2	$\stackrel{\frown}{\text{A2}}$	B2	D1	$\stackrel{\frown}{(A2)}$	0	_	1	1
B1	C2	B 1	(B1)	B2	0	1	0	0
B2	B1	<u>B2</u>	(B2)	D2	0	1	0	0
C1	<u>C1</u>	\bigcirc 1	C2	A1	0	1	0	1
C2	<u>C2</u>	$\overline{\mathbb{C}^2}$	B1	C1	0	1	0	1
D1	A2	C1	(D1)	(D1)	_	_	1	0
D2	D1	C2	(D2)	(D2)	ı	_	1	0

The excitation table is

	Present	Ne	ext stat	e			Outp	out z	
	state	$w_2w_1=00$	01	10	11	00	01	10	11
	$y_3y_2y_1$		z						
A1	000	(000)	010	001	(000)	0	_	1	1
A2	001	(001)	011	101	(001)	0	_	1	1
B1	010	110	(010)	(010)	011	0	1	0	0
B2	011	010	(011)	(011)	111	0	1	0	0
C1	100	(100)	(100)	110	000	0	1	0	1
C2	110	(110)	(110)	010	100	0	1	0	1
D1	101	001	100	(101)	(101)	-	_	1	0
D2	111	101	110	(111)	(111)	_	_	1	0

The next-state and output expressions are

$$\begin{array}{rcl} Y_3 & = & \overline{w}_2\overline{w}_1y_2\overline{y}_1 + \overline{w}_1y_3\overline{y}_2\overline{y}_1 + w_2\overline{w}_1\overline{y}_2y_1 + w_2w_1y_2y_1 + \\ & & y_3y_2y_1 + \overline{w}_2w_1y_3 + w_1y_3y_2 + w_1y_3y_1 \\ Y_2 & = & \overline{y}_3y_2 + \overline{w}_2w_1y_3 + \overline{w}_1y_2\overline{y}_1 + \overline{w}_2w_1y_2 + w_2y_2y_1 + w_2\overline{w}_1y_3\overline{y}_2 \\ Y_1 & = & w_2y_1 + \overline{w}_1\overline{y}_2y_1 + w_1\overline{y}_3y_1 + w_2\overline{w}_1\overline{y}_3\overline{y}_2 \\ z & = & \overline{w}_2y_1 + w_2\overline{y}_3\overline{y}_2 + w_1y_3\overline{y}_2 + \overline{w}_1y_3y_1 \end{array}$$

9.7. Using the one-hot encoding, the FSM in Figure 9.42 can be implemented as

State	Present	Ne	Next state				Outp	out z	
assignment	state	$w_2w_1=00$	01	10	11	00	01	10	11
0001	A	A) E	F	A	0	_	1	1
0010	В	G	\bigcirc B	\bigcirc B	Н	0	1	0	0
0100	C	C	(C)	G	I	0	1	0	1
1000	D	F	J	D	\bigcirc	_	_	1	0
0011	Е	_	В	-	_	_	1	_	_
1001	F	A	_	D	_	0	_	1	_
0110	G	C	_	В	_	0	_	0	_
1010	Н	_	_	-	D	_	_	_	0
0101	I	_	_	_	A	_	_	_	1
1100	J	_	C	_	_	_	1	_	_

9.8. Using the merger diagram in Figure 9.40a, the FSM in Figure 9.39 becomes

Present	Next state	Output
state	$w_2w_1 = 00$ 01 10 1	1 2
A	(A) G E -	- 0
В	<u>В</u> С <u>В</u> г	0
C	В С Е О	1
D	– С Е (Г	0 0
Е	А – (Е) Г) 1
G	В (G) – П) 1

9.9. The relabeled flow table is

Present	Nex	t state	•		Output
state	$w_2w_1=00$	01	10	11	z
A	1	2	3	1	
В	4	2	_	7	
C	6	_	3	7	
D	4	5	3	_	
Е	1	(5)	_	7	
F	6	5	3	_	
G	_	2	3	7	

The corresponding transition diagram is as follows. Note that the diagonal transitions are shown only when they involve a transition to a stable state.

The diagonal transition $D \to C$ labeled 3 can be removed by using the unspecified entry in row E, such that the required transition is performed as $D \to E \to F \to C$; this involves placing a label 3 on the paths from D to E and E to F. Similarly, the diagonal transition $E \to G$ labeled 7 can be removed by using the unspecified entry in row A, such that the required transition is performed as $E \to A \to C \to G$. These modifications produce the following transition diagram:

Then the modified flow table is

Present	Nex	t state	•		Output
state	$w_2w_1=00$	01	10	11	z
A	A	В	C	C	0
В	D	\bigcirc B	_	G	0
C	F	_	(C)	G	0
D	\bigcirc	E	E	_	1
Е	A	\bigcirc	F	A	0
F	F	E	C	_	0
G	_	В	C	\bigcirc	1

Thus, a possible state assignment is: A=000, B=001, C=100, D=011, E=010, F=110, and G=101. Then, the state-assigned table is

	Present		N	ext state	e		
	state	$w_2w_1=00$)	01	10	11	Output
	$y_3y_2y_1$			Y_3Y_2Y	1		z
A	000	(000)	001	100	100	0
В	001	011	1	(001)	_	101	0
C	100	110)	_	(100)	101	0
D	011	(01)	<u> </u>	010	010	_	1
E	010	000)	(010)	110	000	0
F	110	(110)	010	100	_	0
G	101)	-	001	100	(101)	1

The next-state and output expressions are

$$\begin{array}{rcl} Y_3 & = & w_2\overline{y}_2 + \overline{w}_1y_3 + w_2\overline{w}_1\overline{y}_1 \\ Y_2 & = & \overline{w}_1\overline{y}_3y_1 + \overline{w}_2y_3\overline{y}_1 + \overline{w}_2w_1y_2 + w_2\overline{w}_1\overline{y}_3y_2 + y_2y_1 \\ Y_1 & = & w_1y_3\overline{y}_2 + \overline{w}_2w_1\overline{y}_2 + \overline{w}_2\overline{w}_1y_1 + \overline{y}_3y_2y_1 \\ z & = & y_2y_1 + y_3y_1 \end{array}$$

9.10. The minimum-cost hazard-free implementation is

$$f = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_1 x_2 x_4 + x_1 x_3 x_4$$

9.11. The minimum-cost hazard-free implementation is

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_4 \overline{x}_5 + \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 + x_1 x_2 \overline{x}_3 \overline{x}_4 + x_1 x_2 \overline{x}_4 x_5$$

9.12. The minimum-cost hazard-free POS implementation is

$$f = (x_1 + x_2 + x_4)(x_1 + x_2 + \overline{x_3})(x_1 + \overline{x_3} + \overline{x_4})(x_2 + \overline{x_3} + x_4)$$

9.13. The minimum-cost hazard-free POS implementation is

$$f = (x_1 + x_2 + \overline{x}_4 + x_5)(x_1 + x_2 + \overline{x}_3 + \overline{x}_4)(\overline{x}_1 + \overline{x}_2 + x_4)$$

9.14. If A=B=D=E=1 and C changes from 0 to 1, then f changes $0\to 1\to 0$ and g changes $0\to 1\to 0\to 1$. Therefore, there is a static hazard on f and a dynamic hazard on g.

9.16. The flow diagram in Figure P9.3 meets the vending machine specification if $w_2 = D$ and $w_1 = N$. Therefore, the reduced flow table is the same as the same as the answer to Problem 9.3. The relabeled flow table is

Present	N	Next state						
state	DN=00	01	10	11	z			
A	1	2	4	_	0			
В	5	2	_	_	0			
С	8	3	4	_	0			
D	(5)	3	7	_	0			
F	11	6	7	-	0			
G	8	6	10	_	0			
I	1	9	(10)	_	1			
J	(11)	9	10	_	0			

The transition diagram is

A suitable state assignment is: A=000, B=001, C=010, D=011, F=111, G=110, I=100, and J=101. Then the state-assigned table is

	Present	1	Next state						
	state	DN=00	01	10	11	Output			
	$y_3y_2y_1$		$Y_3Y_2Y_1$						
A	000	(000)	001	010	1	0			
В	001	(011)	(001)	_	_	0			
C	010	110	(010)	(010)	_	0			
D	011	(011)	010	111	_	0			
F	111	101	(111)	(111)	_	0			
G	110	(110)	111	100	_	0			
I	100	000	(100)	(100)	_	1			
J	101	(101)	100	100	_	0			

The next-state and output expressions are

$$\begin{array}{rcl} Y_{3} & = & Dy_{3} + Ny_{3} + y_{3}y_{1} + y_{3}y_{2} + Dy_{1} + \overline{D}y_{2}\overline{y}_{1}\overline{N} \\ Y_{2} & = & D\overline{y}_{3} + \overline{y}_{3}y_{2} + \overline{N}\overline{y}_{3}y_{1} + Ny_{2} + Dy_{2}y_{1} + \overline{D}y_{2}\overline{y}_{1} \\ Y_{1} & = & \overline{N}\overline{y}_{3}y_{1} + \overline{D}y_{1}\overline{N} + N\overline{y}_{3}\overline{y}_{2} + Ny_{3}y_{2} + \overline{y}_{3}\overline{y}_{2}y_{1} + y_{3}y_{2}y_{1} \\ z & = & y_{3}\overline{y}_{2}\overline{y}_{1} \end{array}$$

9.17. A possible Moore-type flow table is

Present	Ne	xt sta	te		Output
state	wc = 00	01	10	11	z
A	A	В	D		0
В	A	\bigcirc B	_	C	0
С	_	В	D	\bigcirc	0
D	A	_	$\bigcirc\!$	E	0
Е	A	\bigcirc E	D	$\underbrace{\mathbf{E}}$	1

A merger diagram for this flow table is

Merging states A, B and C into a new state A, and states D and E into a new state E, gives the Mealy-type flow table

Present	Ne	Output z						
state	wc = 00	01	10	11	00	01	10	11
A	A	A	D	A	0	0	0	0
D	A	\bigcirc	\bigcirc	\bigcirc	0	1	0	1

Then, the excitation table is

Present	Ne	Output						
state	wc = 00 01 10 11				00	01	10	11
У	Y				z			
0	0	0	1	0	0	0	0	0
1	0	(1)	(1)	\bigcirc	0	1	0	1

The next-state expression is

$$Y = w\overline{c} + cy + wy$$

Note that the term wy is included to prevent a static hazard. The output expression is

$$z = cy$$

The resulting circuit is

9.18. A possible Moore-type flow table is

Present	Ne	xt sta	te		Output
state	wc = 00	01	10	11	z
A	A	В	D		0
В	A	\bigcirc B	_	C	0
С	_	В	D	\bigcirc	0
D	A	_	\bigcirc	E	0
Е	A	\bigcirc E	F	\bigcirc	1
F	A	В	\bigcirc F	\bigcirc F	0

The corresponding merger diagram is

Merging rows A, B, and C into a new row A gives the reduced flow table

Present	Next state	Output z
state	wc = 00 01 10 11	z
A	(A) (A) D (A)	0
D	A – D E	0
Е	A E F E	1
F	A A F F	0

To determine a suitable state assignment, relabel the flow table as follows:

Present	Next state				Output
state	wc = 00	01	10	11	z
A	1	2	4	(3)	0
D	1	_	\bigcirc 4	6	0
Е	1	(5)	7	6	1
F	1	2	7	8	0

The transition diagram is

The flow table is

Both diagonal transitions, under the label 1, can be omitted because there exist alternate paths along the edges for this label. Let the transition from E to A take place via D. Then, a possible state assignment is A=00, D=01, E=11, and F=10, which leads to the excitation table:

	Present					
	state	wc = 00	01	10	11	Output
	y_2y_1	Y_2Y_1	Y_2Y_1	Y_2Y_1	Y_2Y_1	z
A	00	00	00	01	00	0
D	01	00	_	<u>(01)</u>	11	0
E	11	01	(11)	10	(11)	1
F	10	00	00	10	10	0

The resulting next-state expressions are

$$Y_2 = wy_2 + cy_1$$

$$Y_1 = cy_1 + \overline{w}y_1y_2 + w\overline{y}_2\overline{c} + wy_1\overline{y}_2$$

The product term $wy_1\overline{y}_2$ is included to avoid a static hazard.

The output expression is $z = y_1 y_2$.

9.19. A possible state diagram for the three-input arbiter is

9.20. Using the mutual exclusion element, the input valuation $r_2r_1=11$ cannot occur. Hence, the flow table is

Present	Nex	Output			
state	$r_2r_1=00$	01	10	11	Output g_2g_1
A	A	В	С	_	00
В	A	\bigcirc	C	_	01
С	A	В	\bigcirc	_	10

The excitation table is

	Present	Ne				
	state	$r_2r_1=00$	01	10	11	Output
	y_2y_1		Y_2Y_1			g_2g_1
A	00	00	01	10	_	00
В	01	00	01)	10	_	01
C	10	00	01	10	_	10
D	11	_	_	_	_	_

The resulting next state and output equations are

$$Y_1 = r_1$$

$$Y_2 = r_2$$

$$g_1 = y_1$$