INTRODUÇÃO AO MATLAB®

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

Agosto de 2005 última atualização em 27 de maio de 2009 2 SUMÁRIO

Sumário

1	Introdução	3
2	Cálculos CientíficosCálculos Simples2.1 Área de Trabalho2.2 Variáveis2.3 Funções Científicas2.4 Formatos Numéricos	() ()
3	Variáveis e Expressões Simbólicas	10
4	Instalando o Pacote gaal	15
5	Desenhando Gráficos de Funções	17
6	Matrizes 6.1 Exercícios	21 25
\mathbf{R}	eferências	26

1 Introdução

O Matlab[®] ¹ é um software destinado a fazer cálculos com matrizes (Matlab[®] = Matrix Laboratory). Os comandos do Matlab são muito próximos da forma como escrevemos expressões algébricas, tornando mais simples o seu uso. Podem ser incorporados às rotinas prédefinidas, pacotes para cálculos específicos. Escrevemos um pacote chamado gaal com funções que são direcionadas para um curso de Geometria Analítica e Álgebra Linear.

O programa Matlab® pode ser adquirido gratuitamente na compra do Guia do Usuário [1]. Por exemplo, através da internet, na livraria Blackwell's na Inglaterra (http://bookshop.blackwell.co.uk), o Guia do Usuário foi adquirido por US\$ 68,00 incluindo a despesa com o transporte, acompanhado de um CD com o programa.

Uma vez inicializado o MATLAB®, aparecerá na janela de comandos um prompt >> ou EDU>>. O prompt significa que o MATLAB® está esperando um comando. Todo comando deve ser finalizado teclando-se **Enter**.

No Matlab®, pode-se obter ajuda sobre qualquer comando ou função. O comando $>> \mathsf{help}$

(sem o prompt >>) mostra uma listagem de todos os pacotes disponíveis. Ajuda sobre um pacote específico ou sobre um comando ou função específica é obtida com o comando

>> help nome,

(sem a vírgula) onde nome pode ser o nome de um pacote ou o nome de um comando ou função.

 $^{^1\}mathrm{MATLAB^{\circledR}}$ é marca registrada de The Mathworks, Inc.

2 Cálculos Científicos

Cálculos Simples

O Matlab® faz cálculos simples e científicos como uma calculadora. Por exemplo, suponha que você vai a uma loja e compra 3 objetos que custam 25 reais cada e 5 objetos que custam 12 reais cada. Quanto custou a sua compra?

No Matlab® você pode resolver este problema de pelo menos duas maneiras. A mais simples é

```
EDU>> 3*25 + 5*12
ans =
135
```

Observe que no MATLAB® a multiplicação tem precedência sobre a adição. Note também que ele chamou o resultado de ans.

Alternativamente, você pode usar variáveis para armazenar informação.

```
EDU>> q1=3, p1=25, q2=5, p2=12
q1 =
        3
p1 =
        25
q2 =
        5
p2 =
        12
```

```
EDU>> total=q1*p1+q2*p2
total =
    135
```

Primeiro, criamos quatro variáveis, q1, p1, q2 e p2, atribuindo a elas os seus valores respectivos. Observe que no Matlab® o sinal de igual tem um sentido diferente daquele da Matemática. Aqui, igual significa atribuição. O que estiver à direita do sinal de igual é "colocado" na variável que estiver à esquerda. Finalmente, criamos uma variável chamada total que recebeu o total da compra. Usamos a vírgula para separar os comandos que são dados em uma mesma linha. Esta separação poderia ser feita com ponto e vírgula. Mas, neste caso o Matlab® não mostra os resultados dos comandos. No exemplo anterior teríamos

```
EDU>> q1=3; p1=25; q2=5; p2=12;
EDU>> total=q1*p1+q2*p2;
```

Em qualquer momento, podemos ver o valor que está contido em uma variável, simplesmente digitando no prompt o seu nome.

```
EDU>> total
total =
135
```

O Matlab® oferece as seguintes operações aritméticas:

- >> a+b soma a e b. Por exemplo, 5+6.
- >> a-b subtrai a de b. Por exemplo, 15-12.
- >> a*b multiplica a por b. Por exemplo, 3.14*0.15.

 \Rightarrow a^b calcula a elevado a b. Por exemplo, 5^(1/2).

A ordem com que são avaliadas as expressões é dada pela seguinte regra: expressões são avaliadas da esquerda para a direita, com a potência tendo a mais alta precedência, seguida pela multiplicação e divisão que têm igual precedência, seguidas pela adição e subtração que têm igual precedência. Parêntesis podem ser usados para alterar esta ordem. Sendo que neste caso, os parêntesis mais internos são avaliados antes dos mais externos.

2.1 Área de Trabalho

Comandos que foram dados anteriormente podem ser obtidos novamente usando as teclas \uparrow e \downarrow . Por exemplo, pressionando a tecla \uparrow uma vez você obtem o último comando digitado no prompt. Pressionando repetidamente a tecla \uparrow se obtem os comandos digitados anteriormente, um de cada vez na direção para trás. Analogamente, pressionando-se a tecla \downarrow , mas na direção para frente. Mais ainda, digitando no prompt os primeiros caracteres de um comando dado anteriormente e então pressionando-se a tecla \uparrow , obtem-se o comando mais recente tendo aqueles caracteres iniciais. Em qualquer momento, as teclas \leftarrow , \rightarrow podem ser usadas para se mover o cursor dentro de um comando, no prompt. Desta forma um comando pode ser corrigido, além das teclas **Delete** e **Backspace**.

2.2 Variáveis

O Matlab® tem certas regras para nomear as variáveis. Os nomes de variáveis devem ser nomes iniciados por letras não podem conter espaços nem caracteres de pontuação. O Matlab® faz diferença entre letras maiúsculas e minúsculas. Alguns nomes são usados para variáveis predefinidas. Estas são:

ans - variável usada para os resultados.

```
pi - número \pi.

eps - menor número tal que, quando adicionado a 1, cria um número maior que 1 no

computador.

flops - armazena o número de operações em ponto flutuante realizadas.
```

inf - significa infinito. NaN ou nan - significa não é um número, por exemplo, 0/0.

i e j - unidade imaginária $\sqrt{-1}$.

nargin - número de argumentos de entrada de uma função.

nargout - número de argumentos de saída de uma função.

realmin - menor número que o computador pode armazenar.

realmax - maior número que o computador pode armazenar.

As variáveis podem ser redefinidas a qualquer momento, bastando para isso atribuí-las um novo valor.

2.3 Funções Científicas

O Matlab® tem uma série de funções científicas pré-definidas. A maioria pode ser usada da mesma forma que seria escrita matematicamente. Por exemplo:

```
EDU>> x=sqrt(2)/2
x =
     0.7071
EDU>> y=acos(x)
y =
     0.7854
```

```
EDU>> y_graus=y*180/pi
y_graus =
    45.0000
```

Estes comandos calculam o arco cujo cosseno é $\sqrt{2}/2$, inicialmente em radianos, depois em graus. Abaixo segue uma lista de funções científicas disponíveis:

```
abs(x) - valor absoluto de x.
acos(x) - arco cujo cosseno é x.
asin(x) - arco cujo seno é x.
atan(x) - arco cuja tangente é x.
cos(x) - cosseno de x.
exp(x) - exponencial e<sup>x</sup>.
gcd(x,y) - máximo divisor comum de x e y.
lcm(x,y) - mínimo múltiplo comum de x e y.
log(x) - logaritmo de x na base e.
log10(x) - logaritmo de x na base 10.
rem(x,y) - resto da divisão de x por y.
sin(x) - seno de x.
sqrt(x) - raiz quadrada de x.
tan(x) - tangente de x.
```

2.4 Formatos Numéricos

Quando o Matlab® mostra um resultado numérico ele segue certas regras. No caso de

nenhum formato estar definido, se um resultado é um número inteiro, o Matlab® mostra como um inteiro. Este foi o caso no exemplo das compras, que fizemos anteriormente. Quando um resultado é um número real, o Matlab® mostra uma aproximação com até quatro casas decimais. Este foi o caso no exemplo do arco cosseno, que fizemos ateririmente. Se os dígitos significativos estiverem fora desta faixa, o Matlab® mostra o resultado em notação científica. Você pode definir um formato diferente. Abaixo seguem algumas possibilidades:

```
format short - exibe 5 dígitos.
format long - exibe 16 dígitos.
format rat - exibe no formato racional.
```

É importante salientar que o MATLAB® não muda a sua forma de representar os números internamente, quando formatos diferentes de exibição de números são escolhidos.

3 Variáveis e Expressões Simbólicas

Agora, vamos ver como podemos manipular com expressões que além de números e variáveis numéricas, contém também variáveis simbólicas. Por exemplo:

```
EDU>> syms x
EDU>> simplify((sin(x))^2+(cos(x))^2)
ans =
1
```

Estes comandos mandam o Matlab® simplificar a expressão $\sin^2 x + \cos^2 x$. Primeiro precisamos dizer ao Matlab® que \mathbf{x} é uma variável simbólica, depois pedimos para simplificar a expressão que envolve \mathbf{x} . Neste caso usamos uma **função** chamada **simplify**. A palavra função no Matlab® tem um significado diferente daquele que tem na Matemática. Aqui função é um comando, que pode ter alguns argumentos de entrada e alguns de saída. Neste caso, a função **simplify** tem como argumento de entrada uma expressão simbólica e de saída também.

Uma vez definido que a variável \mathbf{x} é uma variável simbólica, podemos definir expressões que envolvem esta variável. Por exemplo, dadas duas funções

$$f(x) = 2x^2 + 3x - 5$$
 e $g(x) = x^2 - x + 7$,

podemos fazer uma série de operações algébricas envolvendo estas funções.

```
EDU>> f=2*x^2+3*x-5; g=x^2-x+7;
EDU>> f+g
ans =
3*x^2+2*x+2
EDU>> f-g
```

```
ans =
x^2+4*x-12
EDU>> f*g
ans =
(2*x^2+3*x-5)*(x^2-x+7)
EDU>> expand(ans)
ans =
2*x^4+x^3+6*x^2+26*x-35
EDU>> f/g
ans =
(2*x^2+3*x-5)/(x^2-x+7)
EDU>> expand(ans)
ans =
2/(x^2-x+7)*x^2+3/(x^2-x+7)*x-5/(x^2-x+7)
EDU>> pretty(ans)
                                     Х
                 2 ----- + 3 ------
                   x - x + 7 x - x + 7 x - x + 7
EDU>> f^3
```

```
ans =
(2*x^2+3*x-5)^3
EDU>> expand(ans)
ans =
8*x^6+36*x^5-6*x^4-153*x^3+15*x^2+225*x-125
```

Observe que o Matlab® não faz as simplificações ou expansões automaticamente. Para isso, usamos os comandos simplify que simplifica e expand que faz a expansão. Além destes, usamos acima também o comando pretty, que mostra a expressão de uma forma mais fácil de enxergar. Além destes, que já vimos, existe o comando simple, que tenta encontrar a forma mais simples de escrever uma expressão.

O MATLAB® pode realizar operações mais avançadas sobre expressões simbólicas. A função compose calcula a composição das funções f(x) e g(x) em f(g(x)), a função finverse encontra a inversa funcional de uma expressão e a função subs substitui uma variável por um número (ou por outra variável) em uma expressão. Por exemplo:

```
EDU>> f=1/(1-x^2); g=sin(x);
EDU>> compose(f,g)
ans = 1/(1-sin(x)^2)
EDU>> compose(g,f)
ans = sin(1/(1-x^2))
EDU>> finverse(g)
ans = asin(x)
EDU>> subs(f,x,2)
ans = -1/3
```

O Matlab® pode resolver equações. Por exemplo, para resolver a equação

$$ax^2 + bx + c = 0,$$

algebricamente, podemos usar os comandos:

```
EDU>> syms a b c x

EDU>> solve(a*x^2+b*x+c)

ans =

[1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]
```

O Matlab® pode exibir este resultado de uma forma mais fácil de enxergar usando a função pretty.

Abaixo segue um resumo das funções para manipulação de expressões algébricas:

```
diff(f) - calcula a derivada de f. compose(f,g) - determina a composta f(g(x)). expand(expr) - expande uma expressão expr. finverse(expr) - determina a inversa funcional da expressão expr. pretty(expr) - exibe a expressão expr numa forma mais bonita. simple - procura encontrar uma forma mais simples de escrever uma expressão expr. simplify(expr) - simplifica a expressão expr. solve(expr) - acha a(s) solução(es) da equação expr= 0. subs(expr,x,a) - substitui na expressão expr a variável x por a. syms x y z a b - define as variáveis simbólicas x, y, z, a e b.
```

Existem várias outras funções para manipulação de expressões algébricas. Você pode obter informações sobre elas digitando help symbolic. Uma função interessante que mostra as capacidades do Matlab® em tratar com funções matemáticas é funtool que é uma calculadora para funções.

4 Instalando o Pacote gaal

- 1. Faça o "download" do pacote gaal que está no site http://www.mat.ufmg.br/~regi.
- 2. Extraia os arquivos em MATLAB\toolbox. Deve ser criada uma pasta aí com nome gaal.
- 3. Inicialize o Matlab®, se já não o tiver feito.
- 4. Na barra de ferramentas

clique com o botão esquerdo do mouse no botão

5. Clique no botão Add to Path....

Clique duas vezes com o botão esquerdo do mouse em toolbox e depois o mesmo em gaal. Depois clique em Add to Back

- 6. Clique em OK. Depois, em Save Settings e por último em Close
- 7. Verifique se o Matlab® adicionou o pacote gaal aos outros, digitando no prompt winhelp. Ele deve aparecer na última linha ou na primeira. Caso contrário repita o processo acima, com mais cuidado.
- 8. Para informações sobre o pacote gaal digite no prompt do MATLAB® help gaal

5 Desenhando Gráficos de Funções

Para desenhar o gráfico de uma função de uma variável, existe no pacote gaal a função plotf1 (use help plotf1 para saber seu uso). Para colocar os eixos coordenados temos no pacote gaal a função eixos. Usando a função $f(x) = 1/(1-x^2)$ que definimos acima temos: EDU>> plotf1(f,[-10,10],200)

EDU>> eixos

Podemos mudar a escala do gráfico com a função axis

EDU >> axis([-5,5,-5,5])

Neste caso como os eixos já estavam traçados, o resultado não foi bom. Então, vamos limpar a figura com o comando ${\tt clf}$ e com a seta para cima \uparrow vamos recuperar comandos que haviamos digitado anteriormente.

EDU>> clf
EDU>> plotf1(f,[-10,10])
EDU>> axis([-5,5,-5,5])
EDU>> eixos

6 Matrizes

Para criar uma variável onde é armazenada uma matriz, basta escrever os elementos da matriz entre colchetes [...], sendo os elementos de uma mesma linha da matriz separados por vírgula e as linhas separadas por ponto e vírgula. Por exemplo, para armazenar a matriz

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$$

numa variável de nome A usamos o comando

Podemos acessar os elementos de uma matriz usando os comandos

```
EDU >> A(2,3)
ans =
     6
EDU>> A(2,:)
ans =
     4
                   6
EDU>> A(:,1)
ans =
     1
     4
EDU >> A(:,1:2)
ans =
     1
            2
            5
```

O primeiro comando foi para mostrar o elemento (1,2) da matriz A. O segundo, é para exibir a 2a. linha e o terceiro, é para exibir a 1a. coluna. Finalmente, o quarto comando é para exibir a submatriz formada pela 1a. e 2a. colunas da matriz A.

As matrizes podem ser concatenadas

```
EDU>> B=[A,[7;8]]
B =

    1    2    3    7
4    5    6    8

EDU>> [A;[7,8,9]]
ans =

    1    2    3
4    5    6
7    8    9
```

As operações matriciais são executadas de forma semelhante a que são executadas operações escalares

```
EDU>> C*A
ans =
    18
          26
          -2
EDU>> B*A
??? Error using ==> *
Inner matrix dimensions must agree.
EDU>> A^2
ans =
     7
          10
    15
          22
EDU>> (A*C)^2
ans =
   -50
        144
  -176
         430
  O Matlab® tem funções que geram matrizes especiais
EDU>> I=eye(3)
I =
     1
           0
           1
     0
                 0
           0
EDU>> 0=zeros(3,1)
0 =
     0
```

6 MATRIZES

0

Além destas, o pacote gaal oferece as funções randi para gerar uma matriz com elementos inteiros aleatórios e matvand que cria a matriz de Vandermonde.

```
EDU>> A=randi(3)
A =

0 3 2
2 1 0
-2 -1 -1
EDU>> B=randi(3,1)
B =

4
2
-3
EDU>> C=matvand(B,2)
C =

16 4 1
4 2 1
9 -3 1
```

Abaixo um resumo das operações matriciais

```
>> A=[a11,a12,...,a1n;a21,a22,...; ...,amn] cria uma matriz, m por n, usando os elementos a11, a12, ..., amn e a armazena numa variável de nome A.
>> A+B é a soma de A e B,
>> A-B é a diferença A menos B,
>> A*B é o produto de A por B,
>> A i é a transposta de A,
>> A k é a potência A elevado a k.
```

6.1 Exercícios 25

>> Aj=A(:,j) é a coluna j da matriz A,>> Ai=A(i,:) é a linha i da matriz A.

6.1 Exercícios

1. Sejam

$$A = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 4 & -2 \end{bmatrix} \quad \text{e} \quad X = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}.$$

Verifique que $AX = 3A_1 + 2A_2 + 5A_3$, onde A_j é a j-ésima coluna de A, para j = 1, 2, 3.

2. Encontre um valor de x tal que $AB^t = 0$, onde

$$A = \begin{bmatrix} x & 4 & -2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2 & -3 & 5 \end{bmatrix}$.

3. Use o Matlab® para encontrar o menor inteiro k > 1 tal que $A^k = A$, onde

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right];$$

4. Use o Matlab® para calcular os membros da seqüência $A, A^2, A^3, \dots, A^k, \dots$, para (a)

$$A = \begin{bmatrix} 1 & 1/2 \\ 0 & 1/3 \end{bmatrix}; \qquad A = \begin{bmatrix} 1/2 & 1/3 \\ 0 & -1/5 \end{bmatrix}.$$

A sequência parece estar convergindo para alguma matriz? Se estiver, para qual?

Referências

[1] Mathworks Inc. Student Edition of MATLAB Version 5 for Windows. Prentice Hall, Upper Saddle River, New Jersey, 1997.