Teoria Dados Absolutos e Relativos

A coleta de amostras de uma população pode ser:

Dados absolutos: não sofreram manipulação, no máximo contagem e ordenação. Dados relativos: fácil entendimento, ajuda na comparação entre quantidades

Percentil Índices Coeficientes Taxas

```
In [1]: import pandas as pd
        import numpy as np
In [2]: dados={'emprego':['Administrador','Programador','Executivo'],
               'São Paulo':[700, 300, 45],
               'Minas Gerais':[1200,200,9]
               }
        type(dados)
Out[2]: dict
        dataset=pd.DataFrame(dados)
In [3]:
        dataset
Out[3]:
               emprego São Paulo Minas Gerais
         O Administrador
                               700
                                           1200
             Programador
                               300
                                            200
         2
                Executivo
                                45
                                              9
In [4]: dataset['São Paulo'].sum()
Out[4]: 1045
In [5]: dataset['Minas Gerais'].sum()
Out[5]: 1409
        dataset['%_SP']=(dataset['São Paulo'])/dataset['São Paulo'].sum()
In [6]:
In [7]:
        dataset
Out[7]:
               emprego São Paulo
                                    Minas Gerais
                                                    % SP
           Administrador
                               700
                                           1200 0.669856
             Programador
                               300
                                            200 0.287081
                                              9 0.043062
         2
                Executivo
                                45
In [8]:
        dataset['%_SP']*=100
        dataset
```

Out[8]:		emprego	São Paulo	Minas Gerais	%_ SP			
	0	Administrador	700	1200	66.985646			
	1	Programador	300	200	28.708134			
	2	Executivo	45	9	4.306220			
In [9]:	da	taset['%_MG']	=(dataset['São Paulo']),	/dataset[':	São Paulo']	.sum()*100	
In [10]:	#d	lataset.drop(co	oLumns=['%	MG'])				
In [11]:	da	taset						
Out[11]:		emprego	São Paulo	Minas Gerais	%_SP	%_MG		
	0	Administrador	700	1200	66.985646	66.985646		
	1	Programador	300	200	28.708134	28.708134		
	2	Executivo	45	9	4.306220	4.306220		

Base census dados relativos entre educacao e renda

Método convencional e direto

```
In [12]: dataset_censo=pd.read_csv('data_base/census.csv')
    dataset_censo
```

Out[12]:

	age	workclass	final- weight	education	education- num	marital- status	occupation	relationsl
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not- fan
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husba
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not- fan
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husba
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	W
•••								
32556	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	W
32557	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husba
32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarr
32559	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-ch
32560	52	Self-emp- inc 15 columns	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	W

In [13]: dataset_ed_inc=dataset_censo[['education','income']] dataset_ed_inc

>

Out[13]:		education	income
	0	Bachelors	<=50K
	1	Bachelors	<=50K
	2	HS-grad	<=50K
	3	11th	<=50K
	4	Bachelors	<=50K
	•••		
	32556	Assoc-acdm	<=50K
	32557	HS-grad	>50K
	32558	HS-grad	<=50K
	32559	HS-grad	<=50K
	32560	HS-grad	>50K

32561 rows × 2 columns

Out[14]:	educa	tion	income	
	10th		<=50K	871
			>50K	62
	11th		<=50K	1115
			>50K	60
	12th		<=50K	400
			>50K	33
	1st-4	4th	<=50K	162
			>50K	6
	5th-6	5th	<=50K	317
			>50K	16
	7th-8	3th	<=50K	606
			>50K	40
	9th		<=50K	487
			>50K	27
	Asso	c-acdm	<=50K	802
			>50K	265
	Asso	c-voc	<=50K	1021
			>50K	361
	Bache	elors	<=50K	3134
			>50K	2221
	Doct	orate	<=50K	107
			>50K	306
	HS-gı	rad	<=50K	8826
			>50K	1675
	Maste	ers	<=50K	764
			>50K	959
	Pres	chool	<=50K	51
	Prof	-school	<=50K	153
			>50K	423
	Some-	-college	<=50K	5904
			>50K	1387
	Name:	education	, dtype:	int64

In [15]: dataset_group.index

```
Out[15]: MultiIndex([(
                                  ' 10th', ' <=50K'),
                                  ' 10th', ' >50K'),
                                 ' 11th', ' <=50K'),
                                 ' 11th', ' >50K'),
                                  ' 12th', ' <=50K'),
                                  ' 12th', ' >50K'),
                              ' 1st-4th', ' <=50K'),
' 1st-4th', ' >50K'),
                               '5th-6th', '<=50K'),
                              '5th-6th', '>50K'),
                              ' 7th-8th', ' <=50K'),
                               ' 7th-8th', ' >50K'),
                                   ' 9th', ' <=50K'),
                                    ' 9th',
                                             ' >50K'),
                           ' Assoc-acdm', ' <=50K'),
                           ' Assoc-acdm', ' >50K'), ' Assoc-voc', ' <=50K'),
                            ' Assoc-voc', ' >50K'),
' Bachelors', ' <=50K'),
                             'Bachelors', '>50K'),
                            ' Doctorate', ' <=50K'),
' Doctorate', ' >50K'),
                               'HS-grad', '<=50K'),
                              ' HS-grad', ' >50K'),
                              ' Masters', ' <=50K'),
                             ' Masters', ' >50K'),
' Preschool', ' <=50K'),
                          ' Prof-school', ' <=50K'),
                          ' Prof-school', '>50K'),
                        (' Some-college', ' <=50K'),
                        ('Some-college', '>50K')],
                       names=['education', 'income'])
In [16]: dataset_group[' Bachelors', ' <=50K'], dataset_group[' Bachelors', ' >50K']
Out[16]: (3134, 2221)
In [17]: testdataset=pd.DataFrame(dataset group)
In [18]: for x,y in dataset_group.index:
               print(x,y)
```

```
10th <=50K
10th >50K
11th <=50K
11th >50K
12th <=50K
12th >50K
1st-4th <=50K
1st-4th >50K
5th-6th <=50K
5th-6th >50K
7th-8th <=50K
7th-8th >50K
9th <=50K
9th >50K
Assoc-acdm <=50K
Assoc-acdm >50K
Assoc-voc <=50K
Assoc-voc >50K
Bachelors <=50K
Bachelors >50K
Doctorate <=50K
Doctorate >50K
HS-grad <=50K
HS-grad >50K
Masters <=50K
Masters >50K
Preschool <=50K
Prof-school <=50K
Prof-school >50K
Some-college <=50K
Some-college >50K
```

resolucao torta

```
In [19]: censo_segmentado=pd.DataFrame(dataset_censo['education']).join(pd.DataFrame(data
In [20]: censo_segmentado
```

Out[20]:		education	income
	0	Bachelors	<=50K
	1	Bachelors	<=50K
	2	HS-grad	<=50K
	3	11th	<=50K
	4	Bachelors	<=50K
	•••		•••
	32556	Assoc-acdm	<=50K
	32557	HS-grad	>50K
	32558	HS-grad	<=50K
	32559	HS-grad	<=50K
	32560	HS-grad	>50K

32561 rows × 2 columns

```
In [21]: np.unique(censo_segmentado['education'].values, return_counts=True)[1]
Out[21]: array([ 933, 1175, 433, 168, 333, 646, 514, 1067, 1382, 5355, 413, 10501, 1723, 51, 576, 7291], dtype=int64)
In [22]: censo_segmentado['education'].values.astype(str)
Out[22]: array([' Bachelors', ' Bachelors', ' HS-grad', ..., ' HS-grad', ' HS-grad', ' HS-grad'], dtype='<U13')
In [23]: censo_segmentado.groupby('education',sort=True).count()</pre>
```

Out[23]: income

education	
10th	933
11th	1175
12th	433
1st-4th	168
5th-6th	333
7th-8th	646
9th	514
Assoc-acdm	1067
Assoc-voc	1382
Bachelors	5355
Doctorate	413
HS-grad	10501
Masters	1723
Preschool	51
Prof-school	576
Some-college	7291

In [24]: censo_segmentado.groupby('income').count()

Out[24]: education

income

<=**50K** 24720 >**50K** 7841

In [25]: censo_segmentado[censo_segmentado['income']==' <=50K']</pre>

Out[25]:		education	income
	0	Bachelors	<=50K
	1	Bachelors	<=50K
	2	HS-grad	<=50K
	3	11th	<=50K
	4	Bachelors	<=50K
	•••	•••	•••
	32553	Masters	<=50K
	32555	Some-college	<=50K
	32556	Assoc-acdm	<=50K
	32558	HS-grad	<=50K
	32559	HS-grad	<=50K

24720 rows × 2 columns

education

Bachelors 2221

In [27]: censo_segmentado[censo_segmentado['education']==' Bachelors']

Out[27]:		education	income
	0	Bachelors	<=50K
	1	Bachelors	<=50K
	4	Bachelors	<=50K
	9	Bachelors	>50K
	11	Bachelors	>50K
	•••	•••	
	32530	Bachelors	>50K
	32531	Bachelors	<=50K
	32533	Bachelors	>50K
	32536	Bachelors	>50K
	32538	Bachelors	>50K

5355 rows × 2 columns

Coeficiente e Taxa de Variação

```
In [28]: tabela={'Ano Escolar':['10','20','30','40'],'matriculas março':[70,50,47,23],'ma
          tabela
          {'Ano Escolar': ['1°', '2°', '3°', '4°'],
Out[28]:
           'matriculas março': [70, 50, 47, 23],
           'matriculas abril': [65, 48, 40, 22]}
In [29]: dataset tabela=pd.DataFrame(tabela)
          dataset_tabela
Out[29]:
             Ano Escolar matriculas março matriculas abril
          0
                      1°
                                       70
                                                      65
          1
                      2°
                                       50
                                                      48
          2
                      3°
                                       47
                                                      40
                      4°
          3
                                       23
                                                      22
```

A ideia é que o coeficiente de variação pelo total, a taxa de variação pode ser estudada em cima de um montante, nesse caso abaixo temos o 1° ano escolar com uma taxa de desistência de 7.14 a cada 100 pessoas ou 70 a cada 1000, ou seja é uma portagem do quando diminuiu em relação a março

taxa desistência= variação março - abril/matricula março * 100 coeficiente= variação março - abril/matricula março

```
In [30]: dataset_tabela['taxa desistencia']=(dataset_tabela['matriculas março']-dataset_t
```

In [31]: dataset_tabela

Out[31]:		Ano Escolar	matriculas março	matriculas abril	taxa desistencia
	0	1°	70	65	7.142857
	1	2°	50	48	4.000000
	2	3°	47	40	14.893617
	3	4°	23	22	4.347826

In []: