Mesterséges Intelligencia

Fuzzy halmazok és logikák

Fő forrás: Botzheim János Dr. - Kóczy T. László Dr. - Tikk Domonkos: Intelligens rendszerek. Győr: Széchenyi István Egyetem, 2008. 287 p. [elektronikus jegyzet (pdf)]

FONTOS

- Az alábbi anyag munkavázlat, hibákat tartalmazhat. Amennyiben hibát találnak, kérem, a portálon keresztül üzenetben jelezzék, hogy melyik heti előadás, vagy jegyzet melyik részében, milyen hibát véltek felfedezni!
- Az anyagok kizárólag a Széchenyi István Egyetem 2021-2022 tavaszi félévében Mesterséges Intelligencia kurzust felvett hallgatói számára készültek, kizárólag az adott félév kurzusaihoz használható fel!
- Az alábbi hivatkozásokon megnyitott minden fájl automatikusan begyűjti a hallgató különböző egyedi azonosítóit, mely alapján beazonosítható lehet. Ennek megfelelően a hivatkozásokat ne osszák meg egymással (különösen a kurzust nem hallgatókkal), mert abból az egyedi azonosítók visszakereshetők és a személyazonosság meghatározható!
- Az alábbi anyagra vonatkozóan minden jog fenntartva!
- Az anyagok bármely részének vagy egészének nyomtatása, másolása, megosztása, sokszorosítása, terjesztése, értékesítése módosítással vagy módosítás nélkül egyaránt szigorúan tilos!

A lecke főbb témakörei

- Logikák
- Fuzzy halmazok
 - tulajdonságaik
 - Műveletek
- Nyelvi változók

Fuzzy halmazok és logikák

Logikák

Logikák

- Halmazalgebrai struktúra
 - Absztrakt algebrák
 - Hálók
- Szoros kapcsolat a halmazok és logikák között
- A logikáknak számos fajtája van

2-értékű logikák

- Igaz/hamis
- Arisztotelészi logika
 - Boole foglalta axiomatikus rendszerbe
- Többféle 2-értékű logika is van
- Predikátum logika

Többértékű logikák

- 3/4/N-értékű logikák
 - Megjelennek új értékek, "eldönthetetlen", "eldöntetlen"
- A végtelen logika a cél

Fuzzy logika

- Lotfi Zadeh
 - Fuzzy halmaz 1965
- Végtelen értékű logika
 - A Boole logika általánosítása
 - Részleges igazságot is megenged
 - Egy (logikai) állítás nem csak "igaz" és "hamis" lehet, hanem "többékevésbé igaz"
- A szimbólumokhoz dimenziónként szubszimbolikus információt rendel
 - Tagsági függvény formájában
- Motiváció a nagy bonyolultságú feladatok megoldása volt
- Az emberi gondolkodásmód könnyebb modellezése
- Bizonytalanság kezelése
 - (*homokkupac)

Fuzzy halmazok és logikák

Fuzzy halmazok

Fuzzy halmazok

- Fuzzy halmazok kontextusában a klasszikus, hagyományos halmazokat CRISP halmazoknak hívjuk
- Fuzzy halmazok kontextusában (amennyiben nincsenek más típusú halmazok) nem minden esetben kerül jelölésre a "fuzzy", vagyis simán halmazoknak hívjuk
- Crisp halmazokat a legáltalánosabb formában a karakterisztikus egyenlet segítségével definiá $\chi_A(x) = \begin{cases} 1, & \text{ha } x \in A \\ 0, & \text{ha } x \notin A \end{cases}$
- Fuzzy halmazokat a tagsági függvénnyel definiainatunk

$$\mu_A: X \to [0,1] \\ A: X \to [0,1] \\ \mu_A = \frac{1}{1+5(x-10)^2} \\ \mu_B = \begin{cases} 0 & \text{if} \quad x \le 5 \\ 0.2(x-5) & \text{if} \quad x < 5 \le 10 \\ -1/7(x-17) & \text{if} \quad 10 < x \le 1 \\ 0 & \text{if} \quad x > 17 \end{cases}$$

Fuzzy halmazok

$$\mu_A:X \to \left[0,l\right]^n = \underbrace{\left[0,l\right] \times \cdots \times \left[0,l\right]}_{n \text{ times}}$$

- A fuzzy halmazoknak is van több változata
 - Vektor értékű fuzzy halmazo
 - 2-es típusú fuzzy halmazok
 - ...N-típusú fuzzy halmazok
 - Intervallum értékű fuzzy halmazok

 $\mu: X \to P([0,1])$

 $\mu: X \rightarrow e([0,1])$

Gyakori fuzzy halmaz típusok

Fuzzy halmaz példa

- Boole logikai kérdés
 - "Kinek van jogosítványa?"
 - Ez egy egyértelműen eldöntendő kérdés ("igen"/"nem")
- Fuzzy logikai kérdés
 - "Ki tud vezetni?"
 - A tudás mértéke eltérő lehet
 - Természetesen van egyértelmű "igen" és "nem" válasz is

Fuzzy halmaz példa

- Az alaphalmaz (X)
 - Az összes lehetséges elem ami szóba kerül
- Crisp válasz
 - Az alaphalmaz egy részhalmaza
 - Karakterisztikus függvény
- Fuzzy válasz
 - Tagsági függvény

Fuzzy halmazok

Fuzzy halmazok tulajdonságai

Fuzzy halmazok tulajdonságai: magasság

 Egy az X alaphalmazon (univerzumon) értelmezett A fuzzy halmaz magasságán (height) az azt leíró tagsági függvény szuprémumát értjük, azaz

$$\operatorname{height}(A) = \max_{x}(\mu_{A}(x)) \Longrightarrow \sup_{x}(\mu_{A}(x)) \hspace{1cm} X \in X$$

Fuzzy halmazok tulajdonságai: tartó

 Egy az X univerzumon értelmezett A fuzzy halmaz tartóján azon alaphalmazbeli elemeket értjük, melyekre teljesül, hogy a hozzájuk rendelt tagsági érték nagyobb, mint 0, vagyis

 $supp(A) = \{x | \mu_A(x) > 0\}$

 Ha a fuzzy halmaz magassága 0, akkor az adott halmaz tartója üres halmaz

Fuzzy halmazok tulajdonságai: normalitás

 Egy az univerzumon értelmezett A fuzzy halmaz normális, ha magassága 1

$$height(A) = 1$$

Fuzzy halmazok tulajdonságai: szubnormális

 Egy az alaphalmazon definiált A fuzzy halmaz szubnormális, ha annak magassága kisebb, mint 1, azaz

height(A) < 1

Fuzzy halmazok tulajdonságai: mag

 Egy az X univerzumon értelmezett A fuzzy halmaz magján (core, kernel) azon alaphalmazbeli elemeket értjük, melyekre a tagsági függvény 1 értéket vesz fel, vagyis formálisan

$$kernel(A) = \{x | \mu_A(x) = 1\}$$

 Ha az adott fuzzy halmaz szubnormális, akkor a magja következésképp üres halmaz lesz, mivel nincs olyan alaphalmazbelj-elem, melynek tagsági értéke 1 (egy) lenne, azaz

Fuzzy halmazok tulajdonságai: αvágat

 Egy az X univerzumon definiált A fuzzy halmaz α-vágatán azon alaphalmazbeli elemeket értjük, melyekre teljesül, hogy a tagsági érték nagyobb vagy egyenlő, mint a megadott α érték, formálisan

$$A_{\alpha} = \{x | \mu_{A}(x) \ge \alpha \}$$

- Az α értéknek értelemszerűen [0;1] intervallumba kell tartoznia, hiszen az egy adott tagsági fokot jelöl
- Az α -vágat és a mag definíciójából egyértelműen látható, hogy egy fuzzy halmaz magja tulajdonképpen nem más, mint az α = 1 értékű α -vágata, vagyis azon alaphalmazbeli elemek, melyek tagsági értéke nagyobb, vagy egyenlő, mint 1
- Természetesen az 1 értéknél nagyobb tagsági érték nem megengedett, így csak az egyenlőség teljesülhet

Fuzzy halmazok tulajdonságai: szigorú α-vágat

 Az α-vágathoz hasonlóan a szigorú α-vágat alatt egy az X univerzumon értelmezett A fuzzy halmaz azon alaphalmazbeli elemeit értjük, melyekre teljesül, hogy a tagsági érték nagyobb, mint az adott α érték, azonban itt az egyenlőséget nem engedjük meg, vagyis

 A fentiek alapján könnyen belátható, hogy az α = 0 értékű szigorú α-vágat nem más, mint az adott fuzzy halmaz tartója

Fuzzy halmazok tulajdonságai: konvexitás

 Egy az X univerzumon értelmezett A fuzzy halmaz akkor és csakis akkor konvex, ha minden α-vágata (tetszőleges α értékre) klasszikus értelemben véve konvex. Másképp megfogalmazva tekintsük az X alaphalmazt egy nedfokú valós univerzumnak, vagyis

 ekkor az ezen definiált A fuzzvihalmaz akkor és csakis akkor konvex, ha

$$\mu_A(\lambda x + (1 - \lambda)y) \ge \min(\mu_A(x), \mu_A(y))$$

esetén teljesül, hogy

Fuzzy halmazok, logikák és relációk

Fuzzy komplemens

Fuzzy komplemens

- A fuzzy halmazokon értelmezett c komplemens függvény formálisan az alábbi módon adható meg c:[0;1]→[0;1]
- Jelölése

$$\mu_{\pi}(x) = c(\mu_{A}(x))$$
 $x \in X$

- Axiomatikus váz
 - 1. axióma: a peremfeltételek, melyek biztosítják, hogy a komplemens függvény a peremértékeken a Boole-féle negáció művelettel megegyező eredményt adjon, tehát
 - 2. axióma: a @ komplemens≤függvény monoton, vagyis

Fuzzy komplemens

- Kiegészítő axiómák
 - 1. kiegészítő axióma: a c függvény folytonos
 - 2. kiegészítő axióma: c komplemens függvény involutiv, vagyis

 ∀a ∈ [0;1] c(c(a)) = a
- Zadeh által definiált komplemens ∀a ∈ [0;1] c(a)=1-a
- Számos további komplemens létezik
 - Sugeno $c_{\lambda} = \frac{1-a}{1+\lambda a}$ $\lambda \in (-1, \infty)$ $c_{\lambda}(a) = (1-a^{*})^{1/a}$ $w \in [0; \infty]$ $a \in [0; 1]$
 - Yager

Fuzzy komplemens

Egyensúlyi pont (ekvilibrium)
 e=c(e)

Fuzzy halmazok és logikák

Fuzzy metszet

Fuzzy metszet (t-norma)

- Az X univerzumon definiált A és B fuzzy halmazokon értelmezett metszet, vagy más néven t-norma (trianguláris norma) egy két (tagsági érték) bemenetű függvényként értelmezhető az egységnégyzet felett, formálisan ^{t:[0;1]×[0;1]→[0;1]}
- Jelölése

$$\mu_{A \cap B} = t[\mu_A(x), \mu_B(x)]$$
 $x \in X$

Fuzzy metszet (t-norma)

- Axiómatikus váz
 - 1. axióma: a peremfeltételek
 - 2. axióma: t kommutatí $v^{t(1,1)} = 1$ t(1,0) = t(0,1) = t(0,0) = 0
 - 3. axióma: t asszociatív t(a,b) = t(b,a) $a = \mu_A(x)$ $b = \mu_B(x)$ $x \in X$ $a,b \in [0;1]$
 - 4. axióma: a t függvény monoton

```
t(a,b) \le t(a',b') b \le b' a \le a' a,b,a',b' \in [0;1]
```

- Kiegészítő axiómák
 - 1. kiegészítő axióma: A t függvény folytonos
 - 2. kiegészítő axióma: A t függvény idempotens t(a,a) = a
 - vagy szubidempotens

$$t(a,a) < a \qquad a \in [0;1]$$

Fuzzy metszet (t-norma)

- Az idempotencia túl szigorú feltétel lenne a tnormák számára
- Megmutatható, hogy az egyetlen idempotens tnorma a Zadeh által definiált t-norma, vagyis a minimum függvény

 $t_{Zadeh}(a,b) = \min(a,b)$

Számos további (szubidempotens) t-norma létezik

Fuzzy halmazok és logikák

Fuzzy unió

Fuzzy unió (t-konorma, s-norma)

 Az X univerzumon definiált A és B fuzzy halmazokon értelmezett unió művelet, más néven s-norma, vagy t-konorma (trigonometrikus társnorma) egy az egységnégyzeten értelmezett két bemenetű függvényként adható meg az alábbiak szerint

 $s:[0;1]\times[0;1]\to[0;1]$

Jelölése

$$\mu_{A \cup B} = s[\mu_A(x), \mu_B(x)]$$
 $X \in X$

Fuzzy unió (t-konorma, s-norma)

Axiómatikus váz

- 1. axióma: a peremfeltételek s(0,0) = 0 s(1,0) = s(0,1) = s(1,1) = 1
- 2. axióma: s kommutatív s(a,b)=s(b,a) $a=\mu_A(x)$ $b=\mu_B(x)$ $x\in X$ $a,b\in [0,1]$
- 3. axióma: s asszociatív s(a, s(b, c)) = s(s(a, b), c) $a, b, c \in [0;1]$
- 4. axióma: az s függvény monoton

$$s(a,b) \le s(a',b')$$
 $a \le a'$ $b \le b'$ $a,b,a',b' \in [0;1]$

Kiegészítő axiómák

- 1. kiegészítő axióma: Az s függvény folytonos
- 2. kiegészítő axióma:
 - Az s függvény idempotens s(a,a)=a
 - vagy szuperidempotens s(a,a) > a $a \in [0;1]$

Fuzzy unió (t-konorma, s-norma)

 A Zadeh-féle t-normához hasonlóan az s-normákról is megállapítható, hogy az egyetlen idempotens unió művelet a Zadeh által definiált s-norma, vagyis a maximum függvény

$$s_{Zadeh}(a,b) = max(a,b)$$

minden tovább s függvény szuperidempotens

$$s_{algebrai}(a,b) = a + b - a * b$$