Let V be a vector space. For any nonempty subset $S \subseteq V$, we make the following definitions:

- (1) If every element of V can be expressed as a linear combination of elements from S in <u>at most</u> one way, then S is *linearly independent*.
- (2) If every element of V can be expressed as a linear combination of elements from S in <u>at least</u> one way, then S spans V. We also say that S is a spanning subset of V.
- (3) If both are true, then S is a basis of V.
- (4) V is finite-dimensional if it has a finite spanning subset.

In this case, any two bases of V have the same (finite) size. This number is called the *dimension* of V, denoted $\dim(V)$. Any vector subspace of a finite-dimensional vector space is finite-dimensional.

(5) The span of S, denoted span(S), is the subset of all linear combinations of elements of S. It is a vector subspace of V.

Key facts about linear independence:

- (6) If $S \subseteq T$ and T is linearly independent, then S is linearly independent.
- (7) Any linearly independent subset of V is contained in a basis of V.

Therefore, if S is linearly independent, then $|S| \leq \dim(V)$.

- (8) The following statements about a nonempty subset $S \subseteq V$ are equivalent:
 - (a) S is linearly independent.
 - (b) Any nontrivial linear combination of elements in S is nonzero.
 - (c) $\dim(\operatorname{span}(S)) = |S|$.
 - (d) The span of any proper subset of S is smaller than span(S).
 - (e) S is a basis for the vector space span(S).
- (9) If S is linearly independent, and $v \in V$ is a vector, then $S \cup \{v\}$ is linearly independent if and only if $v \notin \text{span}(S)$. In this case, $\dim(\text{span}(S \cup \{v\})) = \dim(\text{span}(S)) + 1$.

Key facts about spanning subsets:

- (10) If $S \subseteq T$ and S spans, then T spans.
- (11) Any spanning subset of V contains a basis of V.

Therefore, if S spans, then $|S| \ge \dim(V)$.

Key facts about bases:

- (12) The following statements about a nonempty subset $S \subseteq V$ are equivalent:
 - (a) S is a basis.
 - (b) S is a linearly independent subset of size $\dim(V)$.

(By (7), this is the largest possible size for a linearly independent subset.)

(c) S is a spanning subset of size $\dim(V)$.

(By (11), this is the smallest possible size for a spanning subset.)

¹If S is not linearly independent, we say that it is *linearly dependent*. It would be more grammatically correct to say that the *elements* of S are linearly dependent or are linearly independent.

(c) $col(A) = \mathbb{R}^n$.

Orthonormality implies linear independence:

m, so the claim follows from (15).

(17) v_1, \ldots, v_m are a basis if and only if A is invertible.

(13)	Let $\{v_1, \ldots, v_n\}$ be a basis. Then every element of V can be expressed uniquely as a linear combination of v_1, \ldots, v_n , so there is a bijection $V \simeq \mathbb{R}^n$ defined as follows: $(\lambda_1, \ldots, \lambda_n)$ in \mathbb{R}^n matches up with $\lambda_1 v_1 + \cdots + \lambda_n v_n$ in V ,
	for any $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.
	concepts are related to the column space and null space of matrices. Let A be an $n \times m$ matrix, and $\ldots, v_m \in \mathbb{R}^n$ be the columns of A .
(14)	$\operatorname{span}(\{v_1,\ldots,v_m\})=\operatorname{col}(A).$
	<i>Proof.</i> By definition, $\operatorname{col}(A) \subseteq \mathbb{R}^n$ is the set of all linear combinations of the columns of A , which are the v_1, \ldots, v_m .
(15)	The following are equivalent:
	(a) v_1, \ldots, v_m are linearly independent.
	(b) $rank(A) = m$.
	(c) $null(A) = \{0\}.$
	Proof. We have
	$\operatorname{rank}(A) = \dim(\operatorname{col}(A))$
	$= \dim(\mathrm{span}(\{v_1, \dots, v_m\}))$
	by (14). Applying the statement (a) \Leftrightarrow (c) in (8), we conclude that v_1, \ldots, v_m are linearly independent if and only if this number equals m .
(16)	The following are equivalent:
	(a) v_1, \ldots, v_m are a spanning subset of \mathbb{R}^n .
	(b) $rank(A) = n$.

Proof. rank(A) = n if and only if $col(A) = \mathbb{R}^n$. Thus the statement follows from (14).

rank(A) = n. But this is true if and only if A is invertible, as can be seen from the SVD.

(18) If $v_1, \ldots, v_m \in \mathbb{R}^n$ are an orthonormal collection of vectors, then they are linearly independent.

Proof. By (3), (14), and (15), we see that v_1, \ldots, v_m are a basis if and only if A is square and

Proof. The v_1, \ldots, v_m are the columns of an $n \times m$ orthogonal matrix Q. We've seen that $\operatorname{rank}(Q) = 1$