Non-Paramatric Statistics Exercise 3

Osman Ceylan, Jiahui Wang, Zhuoyao Zeng

24. November 2020

Exercise 1.5

Let (X, \mathcal{A}) be a measurable space and μ be a probability measure on X. Moreover, let \mathbf{P} be a probability measure on X that has a μ -density $h: X \to [0, \infty)$, and let $L_{\text{dens}}: X \times \mathbb{R} \to [0, \infty)$ be the corresponding loss function. Compute the excess L_{dens} -risks for both \mathbf{P} and μ . Which one is better suited for capturing the intuitive goal of density estimation?

Solution:

$$h$$
 is a μ -density of $\mathbf{P} \Rightarrow \forall A \in \mathcal{A} : \mathbf{P}(A) = \int_A h \, \mathrm{d}\mu$.

Recall from lecture: $\forall x \in X, t \in \mathbb{R} : L_{dens}(x,t) = |h(x) - t|$.

 $\forall x \in X : L_{\text{dens}}(x, h(x)) = 0 \implies \text{The Bayes Risk of } L_{\text{dens}} \text{ related to any measure of X is 0.}$ (*) Suppose now we have an estimated density h' of h.

This means that:
$$h' \geq 0 \land \int_X h' d\mu = 1 \land \forall A \in \mathcal{A} : \mathbf{P}'(A) := \int_A h' d\mu$$
.

As the excess L_{dens} -risks of μ , we obtain:

$$\mathcal{R}_{L_{\mathrm{dens}},\mu}(h') - \mathcal{R}^*_{L_{\mathrm{dens}},\mu} \stackrel{(*)}{=} \mathcal{R}_{L_{\mathrm{dens}},\mu}(h') \stackrel{\mathrm{Def.}}{=} \int_X L_{\mathrm{dens}}(x,h'(x)) \,\mathrm{d}\mu(x) = \int_X |h-h'| \,\mathrm{d}\mu$$

As for the excess L_{dens} -risks of \mathbf{P} , we obtain:

$$\mathcal{R}_{L_{\mathrm{dens}},\mathbf{P}}(h') - \mathcal{R}_{L_{\mathrm{dens}},\mathbf{P}}^* \stackrel{(*)}{=} \mathcal{R}_{L_{\mathrm{dens}},\mathbf{P}}(h') \stackrel{\mathrm{Def.}}{=} \int_X L_{\mathrm{dens}}(x,h'(x)) \, \mathrm{d}\mathbf{P}(x) = \int_X |h - h'| \, \mathrm{d}\mathbf{P} = \int_X |h - h'| \, h \, \mathrm{d}\mu.$$

The excess risk relating to \mathbb{P} is more suitable for capturing the intuitive goal of density estimation because we can see that compared with that of excess risk under \mathbb{P} , the integrand of excess risk under μ has an additional function h, and thus, the value of the integrand will be larger for $x \in X : h(x) > 1$, and smaller for $x \in X : h(x) < 1$. This means that the risk penalty for the part, where h is "relatively large", is larger, and the risk penalty for the part, where h is "relatively small", is then smaller.

Exercise 2.1

Let $X \neq \emptyset$ and $\mathfrak{A} = (A_j)_{j \in J}$ be an at most countable partition of X. Describe the space $\mathcal{L}_0(X)$ of measurable functions $X \to \mathbb{R}$ for the corresponding σ -algebra $\mathcal{A} := \sigma(\mathfrak{A})$.

Solution:

We construct $\Sigma := \{ S \subseteq X | \exists I \subseteq J : S = \bigcup_{i \in I} A_i \}.$

 $\mathfrak{A} = (A_j)_{j \in J}$ is a countable partition of $X \Leftrightarrow X = \dot{\bigcup}_{j \in J} A_j$.

 \Rightarrow A simple verification of the axioms of σ -algebra shows that Σ is a σ -algebra containing \mathfrak{A} .

Meanwhile it is also easy to see that
$$\Sigma \subseteq \sigma(\mathfrak{A}) \Rightarrow \Sigma = \sigma(\mathfrak{A})$$
. (i)

Moreover, recall the following theorem from measure theory:

Let $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ be messable spaces and $f: \Omega_1 \to \Omega_2$.

Also let $(M_n)_{n\in\mathbb{N}}$ a sequence from \mathcal{F}_1 and at the same time a partition of Ω_1 .

For $\forall n \in \mathbb{N}$ denote $\mathcal{F}_1 \mid M_n := \{A \cap M_n | A \in \mathcal{F}_1\}.$

Then it holds that: f is \mathcal{F}_1 - \mathcal{F}_2 -measurable $\Leftrightarrow \forall n \in \mathbb{N} : f|_{M_n}$ is $\mathcal{F}_1|M_n$ - \mathcal{F}_2 -measurable.

 $(A_j)_{j\in J}$ is paarwise disjoint $\Rightarrow \forall j\in J: \mathcal{A}|A_j=\{\emptyset,A_j\}.$

$$\Rightarrow \forall j \in J \,\forall f \in \mathcal{L}_0(X) : f|_{A_j}^{-1}(\mathcal{B}) \in \mathcal{A}|A_j = \{\emptyset, A_j\}. \tag{ii}$$

We also know that $\forall c \in \mathbb{R} : \{c\} \in \mathcal{B}$.

With (ii) we can then deduce that
$$\forall j \in J \ \forall f \in \mathcal{L}_0(X) : f|_{A_i}^{-1}(\{c\}) \in \{\emptyset, A_j\}.$$
 (iii)

Combining all considerations , we conclude that:

$$\mathcal{L}_{0}(X) \stackrel{\text{Def}}{=} \{ f : X \to \mathbb{R} \mid f^{-1}(\mathcal{B}) \subseteq \mathcal{A} \}$$

$$\stackrel{(i)}{=} \{ f : X \to \mathbb{R} \mid \forall B \in \mathcal{B} \exists I_{B} \subseteq J : f^{-1}(B) = \bigcup_{i \in I_{B}} A_{i} \}$$

$$\stackrel{(ii)}{=} \{ f : X \to \mathbb{R} \mid \forall j \in J : f|_{A_{j}}^{-1}(\mathcal{B}) = \emptyset \ \lor \ f|_{A_{j}}^{-1}(\mathcal{B}) = A_{j} \}$$

$$\stackrel{(iii)}{=} \{ f : X \to \mathbb{R} \mid f = \sum_{i \in I} c_{i} \mathbb{1}_{A_{i}} \}.$$