CSE215 Foundations of Computer Science

State University of New York, Korea

Why we need proof in CS?

- Reliability
- Security
- Optimization
- Limitation of Computation

Real-World Application: Proof in DARPA (US Defense Advanced Research Projects Agency)

This following part is not confidential.

Project Motivation

- C memory error contribute to 85% bugs in Microsoft
- Rust language is, by design, free of most memory bugs
- Trust Large Language Models to translate C into Rust
- But verify the translation with state-of-the-art software techniques
- Formal proof is usually considered the very best verification.
- Reddit: https://www.reddit.com/r/rust/comments/1efvfrm/ darpas_translating_all_c_to_rust_tractor_program/

Proposition we aim to prove

- Let C be the original C program
- Let R be the translated Rust program
- For any input of the original C program x, C(x) = R(x)
- "=" for observational run-time behavior

Final 2021

Problem 5. [5 points]

Prove using contradiction that the cube root of an irrational number is irrational.

Definitions and facts about numbers

Symbols

- Integers Z
- Natural numbers N
- Real numbers R
- | X |
- sum Σ
- a | b
- b mod a

Formal definitions

- Even/Odd numbers
- Rational/Irrational numbers
- Prime/Composite numbers

Even/odd numbers

We say an integer n is even if: $\exists k \in \mathbf{Z}$ such that n = 2k

How can you define an odd number?

Rational/Irrational numbers

We say a real number r is rational if $\exists m, n \in \mathbb{Z}$ such that r = n/m (and n and m have no common divisor).

Prime/Composite numbers

We say a natural number n is prime if n > 1, and

$$\forall r, s \in \mathbb{N}, n = rs \rightarrow (r = 1 \lor s = 1)$$

d n

We say a non-zero integer d divides an integer n, if

 $\exists k \in \mathbf{Z}$, such that n = k * d.

Direct proof

Methods of mathematical proof

Statements	Method of proof
Proving existential statements	Constructive proof
(Disproving universal statements)	Non-constructive proof
Proving universal statements	Direct proof
(Disproving existential statements)	Proof by mathematical induction
	Well-ordering principle
	Proof by exhaustion
	Proof by cases
	Proof by contradiction

What can Direct Proof prove?

- For all x, P(x)
- For all x, $P(x) \rightarrow Q(x)$
- There exists x, P(x)

- Prove: If p is an even number, then p^2 is an even number
- Proof.
 - Assume p is an even integer. By definition of an even number, p = 2k for some integer k
 - Squaring both sides of "p=2k", we get $p^2 = 4k^2$
 - Thus $p^2 = 2 (2k^2)$ which is twice an integer
 - Thus p^2 is even
- QED.

Even + odd = odd

Proposition

• Sum of an even integer and an odd integer is odd.

- Proof.
 - Suppose n is an even number, and m is an odd number, we need to show n+m is odd
 - since n is an even number, n = 2k for some integer k
 - since m is an odd number, m = 2k'+1 for some integer k'
 - Thus n+m = 2(k+k')+1 which shows n+m is odd.
- QED.

n is odd $\Rightarrow n^2$ is odd

Proposition

• The square of an odd integer is odd.

- Proof.
 - Suppose n is an odd number. We want to show that n^2 is an odd number.
 - Since n is odd, n = 2k+1 for some integer k
 - $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 - Thus n^2 is odd
- QED.

If a|b and b|c, then a|c

Proposition

ullet (Transitivity) For integers a,b,c, if a|b and b|c, then a|c.

- Proof.
 - Suppose a, b, c are three integers and a|b, b|c.
 - Since a|b, we have b = ak for some integer k
 - Since b|c, we have c = bk' for some integer k'
 - Thus, c = a (k*k')
 - Thus a c.
- QED.

Summary

- Proof techniques direct proof. Commonly used for proving "for all x, P(x) -> Q(x)".
- Also used in many variants

- How to prove "If A, then B"
 - Suppose A, ... Therefore B.

- How to prove "for all real number x, P(x)"
 - Let x be a real number. ... Therefore P(x).

- How to prove "for all real number x, P(x) -> Q(x) "
 - Let x be a real number. Suppose P(X). ... Therefore Q(x).

- How to prove "there exists x, P(x)"
 - Let x be <something you choose>. We have P(x) holds.

Direct Proof Exercises

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

- Proof.
 - We need to prove the following:
 - for any integer n, (2n+1)^2 + (2n+3)^2 is even.
 - Let n be an arbitrary integer.
 - We have $(2n+1)^2 + (2n+3)^2 = 8n^2 + 20n + 2 = 2(4n^2 + 10n+1)$ following algebraic Identities.
 - Therefore, $(2n+1)^2 + (2n+3)^2$ is even.
- QED.

Problem 5. Direct proof (points = 5)

Suppose a, b and c are integers. If a^2lb and b^3lc , then a^6lc .

- Proof.
 - Let a, b, and c be three integers.
 - Suppose a^2 | b and b^3 | c
 - By definition, we have b = k a^2 for some integer k, and c = k' b^3 for some integer k'.
 - Thus, $c = (k' k^3) a^6$
 - Therefore a^6 | c.
- QED

Prove: For any natural number n, n² + 3n + 2 is composite

For any integer x, y, if x is even, then xy is even.

Prove: there exist two irrational number r1, r2, such that r1*r2 is a rational number.

Prove: Suppose a is an integer. If 7|4a, then 7|a.