## Semantic Theory 2025: Exercise 9 Key

## Question 1

Consider the following sentences:

- i. Either John is out of hay or his donkey is eating in the stable.
- ii. Either John has no donkey or his donkey is eating in the stable.
- a. Specify the presuppositions of (i) and (ii)—i.e. which presuppositions are projected to the sentence level? What is the difference between the two sentences?
  - i. "There is someone named John", "there is a donkey that John owns", "there is a stable".
  - ii. "There is someone named John", "there is a stable". The presupposition "there is a donkey that John owns" does not project in this sentence, because it is filtered by the left-hand disjunct ("John has no donkey").
- b. Give proto-DRSs for (i) and (ii). You can represent "is out of hay" by the one place predicate out-of-hay(x) and "is eating in" by the two place predicate eat-in(x,y).

i.



ii.



- c. Resolve the two proto-DRSs. Explicitly describe the applied resolution constraints you apply.
  - i. First, we accommodate  $\alpha x$ , because there is no anaphor it can bind to. The highest possible DRS is preferred for accommodation, so we accommodate in the top-level DRS:



To resolve an  $\alpha$ -DRS, its conditions must be  $\alpha$ -free, so we have to resolve  $\alpha z$  and  $\alpha w$  before  $\alpha y$ . We can resolve  $\alpha z$  by binding to x (binding is preferred over accommodation):



There is no possible anaphor for  $\alpha w$ , so we resolve through accommodation. Again, the highest possible DRS is preferred for accommodation:



Now we can resolve  $\alpha y$ . There is no possible anaphor, so we again resolve through accommodation:



This is truth-conditionally equivalent to the FOL statement:  $\exists y \exists w [donkey(y) \land of(y, j') \land stable(w) \land (out\text{-}of\text{-}hay(j') \lor eat\text{-}in(y, w))]$ 

## ii. We resolve $\alpha x$ as in (i):



 $\alpha z$  and  $\alpha w$  can also be resolved as in (i):



As in (i), there is no possible anaphor for  $\alpha y$  (u is inaccessible), so we must resolve through accommodation. However, we cannot accommodate  $\alpha y$  in the top-level DRS, because this would violate the local consistency constraint (no sub-DRS can be inconsistent with any superordinate DRS):  $\neg[\{u\} \mid \{donkey(y), own(x, u)\}]$  would be inconsistent with the conditions donkey(y), of(y, z), x = john, z = x. So we must accommodate  $\alpha y$  at the next-highest possible DRS:



This is truth-conditionally equivalent to the FOL statement:  $\exists w[stable(w) \land (\neg \exists u[donkey(u) \land own(j', u)] \lor \exists y[donkey(y) \land of(y, j') \land eat\text{-}in(y, w)])]$ 

Crucially, John's donkey is not anaphorically available to the subsequent discourse, unlike in (i).