

IMP

Informatik, Mathematik, Physik Malte Voß | 29. Januar 2020

ABTEILUNG FÜR DIDAKTIK DER MATHEMATIK

Gliederung

- 1 IMP
- ② Graphen
- Videos
- Graphen II

- IMP ist ein Profilfach
- wird in Klassenstufe 8 bis 10 unterrichter
- alternativ zu NWT oder 3. Fremdsprach
- vierstündig
- Inhalte zu je unterschiedlichen Teilen

- IMP ist ein Profilfach
- wird in Klassenstufe 8 bis 10 unterrichtet
- alternativ zu NWT oder 3. Fremdsprach
- vierstündig
- Inhalte zu je unterschiedlichen Teilen

- IMP ist ein Profilfach
- wird in Klassenstufe 8 bis 10 unterrichtet
- alternativ zu NWT oder 3. Fremdsprach
- vierstündig
- Inhalte zu je unterschiedlichen Teilen

- IMP ist ein Profilfach
- wird in Klassenstufe 8 bis 10 unterrichtet
- alternativ zu NWT oder 3. Fremdsprach
- vierstündig
- Inhalte zu je unterschiedlichen Teilen

- IMP ist ein Profilfach
- wird in Klassenstufe 8 bis 10 unterrichtet
- alternativ zu NWT oder 3. Fremdsprach
- vierstündig
- Inhalte zu je unterschiedlichen Teilen

Lehrplan - inhaltsbezogene Kompetenzen

3.3 Klasse 10			=
3.3.1 Informatik	3.3.1.1 Daten und Co- dierung	3.3.1.2 Algorithmen	3.3.1.3 Rechner und Netze
	3.3.1.4 Informations- gesellschaft und Da- tensicherheit		
3.3.2 Mathematik	3.3.2.1 Mathematische Grundlagen der Kryp- tologie	3 3	3.3.2.3 Geometrie
	3.3.2.4 Funktionen im Sachkontext		
3.3.3 Physik	3.3.3.1 Numerische Verfahren in der Me- chanik	3.3.3.2 Erde und Welt- all: Himmelsmechanik und Astrophysik	

[2] http://www.bildungsplaene-bw.de/,Lde/LS/BP2016BW/ALLG/GYM/IMP

o●o Malte Voß – IMP

IMP

Prozessbezogene Kompetenzen

2.20 MATHEMA	

2.21 Argumentieren und Beweisen

2.22 Probleme lösen

2.23 Modellieren

2.24 Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen

2.25 Kommunizieren

[2]

Was sind Graphen?

Formale Definition

"Ein gerichteter Graph ist festgelegt durch ein Paar G = (V, E), wobei $E \subset V \times V$ ist"[3].

etwas handlicher

Ein Graph besteht aus Knoten und Kanten, wobei jede Kante zwei Knoten verbindet.

etwas mathematischer

Ein Graph stellt eine Relation zwischen Objekten dar.

Was sind Graphen?

Formale Definition

"Ein gerichteter Graph ist festgelegt durch ein Paar G = (V, E), wobei $E \subset V \times V$ ist"[3].

etwas handlicher

Ein Graph besteht aus Knoten und Kanten, wobei jede Kante zwei Knoten verbindet.

etwas mathematischer

Ein Graph stellt eine Relation zwischen Objekten dar.

Was sind Graphen?

Formale Definition

"Ein gerichteter Graph ist festgelegt durch ein Paar G = (V, E), wobei $E \subset V \times V$ ist"[3].

etwas handlicher

Ein Graph besteht aus Knoten und Kanten, wobei jede Kante zwei Knoten verbindet.

etwas mathematischer

Ein Graph stellt eine Relation zwischen Objekten dar.

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
-

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
-

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
-

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
- ...

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lerner
- ...

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
- . . .

- Straßennetz modellieren
- Abläufe modellieren
- Navigationssysteme
- Automaten darstellen
- Soziale Netzwerke
- Maschinelles Lernen
-

Abbildung: Good Will Hunting, Gus Van Sant 1997

IMP

Das Haus vom Nikolaus

$$\begin{split} V &:= \{1, \dots, 5\} \\ E &:= \big\{ \{1, 2\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\} \big\} \end{split}$$

Abbildung: Das Haus vom Nikolaus

Besprechung der Hausaufgabe:

- Grad der Knoten?
- Bedeutung des Grads
- HvN in einem Zug zeichenbar?

Das Haus vom Nikolaus

$$V := \{1, \dots, 5\}$$

$$E := \{\{1, 2\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$$

Abbildung: Das Haus vom Nikolaus

Besprechung der Hausaufgabe:

- Grad der Knoten?
- Bedeutung des Grads
- HvN in einem Zug zeichenbar?

Das Haus vom Nikolaus

$$\begin{split} V &:= \{1, \dots, 5\} \\ E &:= \big\{ \{1, 2\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\} \big\} \end{split}$$

Abbildung: Das Haus vom Nikolaus

Besprechung der Hausaufgabe:

- Grad der Knoten?
- Bedeutung des Grads
- HvN in einem Zug zeichenbar?

Königsberger Brückenproblem I

Abbildung: Königsberg 1937 [1]

Königsberger Brückenproblem II

Abbildung: wikimedia.org

"Die Einwohner fragten sich, ob es möglich sei, durch die Stadt zu spazieren und dabei alle Brücken genau einmal zu überqueren."

000000000

Graphen

Videos

Graphen II

IMP

Abbildung: Königsberg als Graph

Begriffe: Eulerweg, -kreis

Malte Voß - IMP

Abbildung: Königsberg als Graph

Begriffe: Eulerweg, -kreis

Planare Graphen

Abbildung: Kantenmodell eines Würfel

Abbildung: Der gleiche Graph

Bemerkung

Wenn wir einen Graphen zeichnen können, ohne dass sich Kanten schneiden, nennen wir ihn planar.

ii	۸.	Л	c	5	
Ш					
()	c	5	C)

Malte Voß - IMP

Planare Graphen

Abbildung: Kantenmodell eines Würfel

Abbildung: Der gleiche Graph

Bemerkung

Wenn wir einen Graphen zeichnen können, ohne dass sich Kanten schneiden, nennen wir ihn planar.

Planare Graphen

Abbildung: Kantenmodell eines Würfel

Abbildung: Der gleiche Graph

Bemerkung

Wenn wir einen Graphen zeichnen können, ohne dass sich Kanten schneiden, nennen wir ihn planar.

Versorger-Verbraucher-Problem

Leitungen

Drei Häuser sollen an je drei Versorger angeschlossen werden, damit jedes mit Wasser, Strom und Fernwärme versorgt wird. Die Leitungen dürfen sich nicht kreuzen.

- Betrachte die Versorger und Häuser als Knoten
- Die Leitungen stellen Kanten dar
- Kanten dürfen sich nicht schneiden

Versorger-Verbraucher-Problem

Leitungen

Drei Häuser sollen an je drei Versorger angeschlossen werden, damit jedes mit Wasser, Strom und Fernwärme versorgt wird. Die Leitungen dürfen sich nicht kreuzen.

- Betrachte die Versorger und Häuser als Knoten
- Die Leitungen stellen Kanten dar
- Kanten dürfen sich nicht schneiden

Nicht planare Graphen

Abbildung: K₅

Nicht planare Graphen

Abbildung: K_5

Satz von Kuratowski

Graphen, die nicht K_5 oder $K_{3,3}$ als (topologischen) Minor enthalten sind planar.

Graphen und Euler-Characteristik

Euler-Characteristik

$$\chi = e - k + f$$

https://www.youtube.com/watch?v=-90Uyo8NFZg

- Welche neuen Begriffe sind im Video gefallen?
- Notiere wichtige Aussagen des Videos.

Graphen und Euler-Characteristik

Euler-Characteristik

$$\chi = e - k + f$$

https://www.youtube.com/watch?v=-90Uyo8NFZg

- Welche neuen Begriffe sind im Video gefallen?
- Notiere wichtige Aussagen des Videos.

Graphen färben

Färbbarkeitsproblem

Wie viele Farben brauche ich, damit je zwei benachbarte Knoten eines Graphen *nicht* die gleiche Farbe haben?

Abbildung: Bundesstaaten sind Knoten, Nachbarn sind Nachbarn

П	١./	ic	5	
Ш	IV	u		
	_	_		

Graphen färben

Färbbarkeitsproblem

Wie viele Farben brauche ich, damit je zwei benachbarte Knoten eines Graphen *nicht* die gleiche Farbe haben?

Abbildung: Bundesstaaten sind Knoten, Nachbarn sind Nachbarn

IN	1D	
ш	/11	
0	00	

Graphen färben

4-Farben-Satz

Planare Graphen sind mit höchstens vier Farben färbbar, um das Färbbarkeitsproblem zu lösen.

Von Inductiveload - Based on a this raster image by chas zzz brown on en.wikipedia., CC BY-SA 3.0, https:

//commons.wikimedia.org/w/index.php?curid=1680050

Dijkstra-Algorithmus

- berechnet kürzesten Weg in einem Graph von A nach B
- naive Beschreibung:
 Laufe immer die kürzeste bekannte Route vom Startknoten, bis du am Ziel bist

19/20

Videos

Dijkstra-Algorithmus

- berechnet kürzesten Weg in einem Graph von A nach B
- naive Beschreibung:
 Laufe immer die k\u00fcrzeste bekannte Route vom Startknoten, bis du am Ziel bist.

Quellen I

- Bundesamt für Kartographie und Geodäsie.
 https://www.bkg.bund.de/SharedDocs/Downloads/BKG/DE/
 Downloads-Karten/Karte-TK25-Koenigsberg.pdf.
- Ministerium für Kultus, Jugend und Sport. http://www.bildungsplaene-bw.de/,Lde/LS/BP2016BW/ALLG/GYM/IMP.
- Worsch, Thomas und Wacker, Simon: *Grundbegriffe der Informatik Skript*, 2016.

Malte Voß – IMP 29, Januar 2020

20/20

Vielen Dank für die Aufmerksamkeit!

Abbildung: QR-Code zu http://invote.de/15949