点集拓扑作业 (8)

Problem 1 A 是拓扑空间 X 的子集, Y 是Hausdorff空间, $f: A \to Y$ 是连续映射. 假设存在两 个连续映射 $g_i:\overline{A} \to Y, i=1,2$ 满足 $g_i|_A=f$, 证明: $g_1=g_2$.

定义 $\varphi: \overline{A} \to Y \times Y, \varphi(x) = (g_1(x), g_2(x)),$ 则 φ 连续, 于是 $\varphi^{-1}(\Delta)$ 是闭集, 其中 $\Delta = \{(x, x) | x \in Y\}.$

记 $M = \varphi^{-1}(\Delta) = \{t \in \overline{A} | g_1(t) = g_2(t)\}$. 于是 $A \subseteq M \subseteq \overline{A}$. 接下来用反证法证明: $M = \overline{A}$. 假设 $\exists x \in \overline{A}, x \notin M,$ 则 $x \notin A$. 所以 $g_1(x) \neq g_2(x), Y$ 是Hausdorff空间, 所以 $\exists U, V$ 是 Y 中的开集, 满 足 $g_1(x) \in U, g_2(x) \in V, U \cap V = \phi. x \in g_1^{-1}(U) \cap g_2^{-1}(V)$ 是开集. 根据 $\overline{A} = A \cup A'$, 所以 $x \in A'$. 因此 $\exists y \in A, y \neq x, y \in g_1^{-1}(U) \cap g_2^{-1}(V)$, 即 $g_1(y) \in U, g_1(y) = g_2(y) \in V$. 这与 $U \cap V = \phi$ 矛盾! 命题成立.

Problem 2 给定拓扑空间 X, 若 $\exists J, X = \bigcup_{\underline{\ }} U_{\alpha},$ 则称 $\{A_{\alpha} | \alpha \in J\}$ 是 X 的覆盖. 若 $\forall x \in X, \exists U$ 是 x的开邻域, 且 U 仅和有限个 A_{α} 交集非空, 则称该覆盖为局部有限覆盖. 现设 $\{A_{\alpha} | \alpha \in J\}$ 是局部有限覆盖且 $\forall \alpha \in J, A_{\alpha}$ 是闭集.若 $f: X \to Y$ 在每个 A_{α} 上的限制均连续, 证明: f 连 续.

记 $f_{\alpha}: A_{\alpha} \to Y$ 是 f 在 A_{α} 上的限制. $\forall U$ 是 Y 上的闭集, 注意到 $f_{\alpha}^{-1}(U)$ 是子空间 A_{α} 上的闭集, 所以 $\exists W_{\alpha}$ 是 X 中的闭集, 使得 $f_{\alpha}^{-1}(U) = W_{\alpha} \cap A_{\alpha}$ 是 X 上的闭集.

接下来先证明: 局部有限的任意闭集族的并均为闭集. 设 $W=\bigcup_{\alpha\in J_0}A_\alpha, \forall J_0\subseteq J. \ \forall x\in X-W,$ 都

$$\exists V_x$$
 是 x 的开邻域,使得 $J_x = \{ \alpha \in J | V_x \cap A_\alpha \neq \phi \}$ 是有限集. 由于 $x \notin A_\alpha, \forall \alpha \in J_0$,于是 $x \in V_x - \left(\bigcup_{\alpha \in J_x - J_0} A_\alpha \right) = \bigcap_{\alpha \in J_x - J_0} (V_x - A_\alpha)$ 是开集的有限交,且 $V_x - \left(\bigcup_{\alpha \in J_x - J_0} A_\alpha \right) \subseteq X - W$. 所

以 X-W 是开集, 进而 W 是闭集. 于是记 $J_U=\{\alpha\in J|A_\alpha\cap f^{-1}(U)\neq \phi\}$, 则:

$$f^{-1}(U)=f^{-1}(U)\cap X=\bigcup_{\alpha\in J}(f^{-1}(U)\cap A_\alpha)=\bigcup_{\alpha\in J_U}(f^{-1}(U)\cap A_\alpha)=\bigcup_{\alpha\in J_U}f_\alpha^{-1}(U)$$

后者是局部有限的闭集族的并, 因而是闭集. 所以 f 连续.

Problem 3 设 $A_{\alpha}(\alpha \in J)$ 是 X 的一族连通子空间, A 是 X 的连通子空间, 且 $A\cap A_lpha
eq \phi(orall lpha\in J)$. 证明: $A\cup\left(igcup_{lpha\in J}A_lpha
ight)$ 是连通的.

采用反证法, 假设 $I=A\cup\left(\bigcup_{\alpha\in I}A_{\alpha}\right)$ 不连通, 则 $\exists M,N$ 是 I 上的非空开集,

 $M \cap N = \phi, M \cup N = I$. 由于 A 是 I 的连通子集, 不妨设 $A \subseteq M$. 又 $\forall \alpha \in J, A_{\alpha}$ 均为连通子空间, 所以 $A_{\alpha} \subseteq M$ 或 $A_{\alpha} \subseteq N$. 若为后者, 则 $A_{\alpha} \cap A = \phi$, 矛盾! 所以 $A_{\alpha} \subseteq M$. 于是 $N = \phi$, 矛盾! 所以 I 是连通的.

Problem 4 设 (Y, \mathcal{T}_Y) 是拓扑空间, $f: X \to Y$ 是映射, 问 : X 上是否存在使得 f 连续的最粗糙 拓扑?

我们证明 $\mathcal{T}_X = \{f^{-1}(U)|U \subseteq \mathcal{T}_Y\}$ 即为所求. 首先验证 \mathcal{T}_X 是一个拓扑. $\phi = f^{-1}(\phi) \in \mathcal{T}_X, X = f^{-1}(Y) \in \mathcal{T}_X$. 接着, 设 $\forall \alpha \in J, A_\alpha = f^{-1}(U_\alpha) \in \mathcal{T}_X, \text{都有} \bigcup_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in J} f^{-1}(U_\alpha) = f^{-1}\left(\bigcup_{\alpha \in J} U_\alpha\right) \in \mathcal{T}_X.$ 最后, 设 $A_i = f^{-1}(U_i) \in \mathcal{T}_X(\forall i \leq n), \text{满足} \bigcap_{i=1}^n A_i = f^{-1}\left(\bigcap_{i=1}^n A_i\right) \in \mathcal{T}_X.$ 假设 \mathcal{T} 是 X 的拓扑, 使得 f 连续, 则 $\forall U = f^{-1}(V) \in \mathcal{T}_X$,都有 $U \in \mathcal{T}$. 因此 $\mathcal{T}_X \subseteq \mathcal{T}$. 故而得证.