Stationary Phases in Gas Chromatography

Max Shi

Gas Chromatography (GC)

- Chromatography: Separation of chemicals by changing velocity
- GC: Chromatography with gas carrier
 - Interaction with stationary phase and volatility changes velocity
- Effects of stationary phase on GC
 - Type of column chosen
 - Compound chosen for stationary phase

Columns Used in GC

• Columns

- Carrier gas passes through GC columns
- Stationary phase lining columns interact with analyte

Packed Columns

- Contains particles of porous solid
- Can be coated with liquid stationary phase, or can be by itself
- Open Tubular (capillary) columns
 - Stationary phase lines walls of column
 - Also allows liquid or solid stationary phases

Types of Open Tubular Columns

- Wall-coated open tubular column (WCOT)
 - Column wall is coated with liquid stationary phase
- Support-coated open tubular column (SCOT)
 - Column wall is coated with solid particles
 - Particles are coated with liquid stationary phase
- Porous-layer open tubular column (PLOT)
 - Column wall is coated with solid particles
 - Solid stationary phase

Support-coated

open tubular

column

(SCOT)

Porous-layer

open tubular

column

(PLOT)

Wall-coated

open tubular

column

(WCOT)

Solid Stationary Phases

- Porous polymers, high surface-area carbons or Alumina (Al₂O₃)
 - Used for separating hydrocarbons
- Molecular sieves
 - Can retain small molecules
 - Separates molecules like H₂, O₂, N₂, CO₂, CH₄

Polarity of Liquid Stationary Phases

- Polarity of stationary phase affects separation quality
- Based on concept of "like dissolves like"
 - Polar stationary phases will interact more with polar compounds
 - Vice-versa is true
- "Like" compounds will be separated more effectively
 - Polar compounds will interact more with polar stationary phase
 - Two compounds with similar boiling points can be separated
- Choice is dependent on compounds in mixture

Examples of compounds used

Polar compounds

Polyethylene glycol

- Strongly polar
- (Cyanopropylphenyl) $_{0.14}$ (dimethyl) $_{0.86}$ polysiloxane
 - Intermediate polarity

$$\begin{bmatrix} CN \\ -CH_3 \\ -CH_3 \\ -CH_3 \end{bmatrix}$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Nonpolar compounds

Dimethyl-polysyloxane

• (Diphenyl)(dimethyl)-polysyloxane

An interesting aside

- The ratio of diphenyl and dimethyl groups changes polarity
- Also changes the temperature range
 - Important to prevent stationary phase "bleed"

Structure	Polarity	Temperature range (°C)
$ \begin{array}{c c} \hline O & Si & CH_3 \\ \hline O & Si & CH_3 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_3 \\ \\ COphenyl)_x(dimethyl)_{1-x} \end{array} $	x = 0 Nonpolar x = 0.05 Nonpolar x = 0.35 Intermediate polarity x = 0.65 Intermediate polarity	-60°-320° -60°-320° 0°-300° 50°-370°

Chirality of Stationary Phase

- Chiral stationary phases have an effect on chiral analytes
- Cyclodextrins (a) are bonded to polysyloxane groups
- Enantiomers have different interactions through center of ring
 - Causes separation of enantiomers

References

- 1. 12.4: Gas Chromatography https://chem.libretexts.org/Courses/Northeastern University/12%3A Chromatographic and Electropho retic Methods/12.4%3A Gas Chromatography (accessed Dec 4, 2020).
- Attygalle, A. Instrumental Analysis I Lecture and Laboratory Manual https://sit.instructure.com/courses/38802/files/6982711?module_item_id=1042514 (accessed Dec 6, 2020).
- 3. Gas Chromatography
 <a href="https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental Modules (Analytical Chemistry)/Instrumental Analysis/Chromatography/Gas Chromatography (accessed Dec 4, 2020).
- 4. Harris, D. C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman and Co: New York, 2010. Chapter 23.