

PREDICTING CUSTOMER CHUM USING MACHINE LEARNING TO UNCOVER HIDDEN PATTERN

Student Name: Priya dharshini.R

Register Number: 510623243041

Institution: C.ABDUL HAKEEM COLLEGE OF

ENGINEERING AND TECHNOLOGY

Department: BTECH AI&DS

Date of Submission: 08/05/2025

Github Repository Link: https://github.com/Priyadharshini-

R123/phase 2.git

1. Problem Statement

Customer churn—the loss of clients or subscribers—is a critical issue for subscription-based businesses, as acquiring new customers is often more costly than retaining existing ones. Despite traditional efforts to mitigate churn, many underlying behavioral patterns and risk indicators remain undetected due to the complexity and volume of customer data.

This project aims to develop a machine learning model that can accurately predict customer churn by analyzing historical customer data and uncovering hidden patterns related to engagement, transaction history, demographics, and support interactions. By identifying high-risk customers early, the organization can proactively implement targeted retention strategies, reduce churn rates, and enhance overall customer lifetime value.

2. Project Objectives

To develop a machine learning model that predicts customer churn by analyzing historical customer data and uncovering hidden behavioral patterns, enabling proactive retention strategies and improved customer lifetime value.

3. Flowchart of the Project Workflow

Data Collection

 \rightarrow Gather customer data (transactions, demographics, usage patterns, support logs, etc.)

Data Preprocessing

- → Handle missing values
- → Encode categorical variables
- → Normalize/scale numerical data
- → Feature engineering

Exploratory Data Analysis (EDA)

- → Visualize churn trends
- → *Identify correlations and hidden patterns*

Feature Selection

→ Select relevant variables using statistical tests or model-based methods

Model Selection & Training

- → Train ML models (e.g., Logistic Regression, Random Forest, XGBoost, Neural Networks)
- \rightarrow Perform cross-validation

Model Evaluation

 \rightarrow Evaluate with metrics like accuracy, precision, recall, F1-score, AUC-ROC

Model Interpretation

→ Use SHAP, LIME, or feature importance to understand key churn drivers

Deployment

 \rightarrow Integrate model into a production system or dashboard for real-time churn prediction

Monitoring & Updating

- \rightarrow Monitor model performance
- → Retrain periodically with new data

4. Data Description

Feature Name	Description
CustomerID	Unique identifier for each customer
Gender	Customer's gender (e.g., Male, Female)
Age	Age of the customer
Tenure	Number of months the customer has been with the company
SubscriptionType	Type of subscription plan (e.g., Basic, Premium, Family)
MonthlyCharges	Amount charged monthly
TotalCharges	Total amount charged to the customer
PaymentMethod	Method used by the customer to pay (e.g., Credit Card, Bank Transfer)

Feature Name	Description
ContractType	Contract duration (e.g., Month-to-month, One year, Two year)
InternetService	Type of internet service (e.g., DSL, Fiber Optic, None)
OnlineSecurity	Whether the customer has online security addon (Yes/No)
TechSupport	Whether the customer has technical support add-on (Yes/No)
StreamingServices	Use of streaming services (e.g., TV, Movies, Music)
CustomerSupportCalls	Number of times the customer contacted support
LastInteractionDate	Date of the last customer activity
Churn (Target)	Whether the customer churned ($1 = Yes$, $0 = No$)

5. Data Preprocessing

1. Data Cleaning

- Remove duplicates: Drop any duplicate rows using drop_duplicates().
- o Handle missing values:
 - Numerical: Fill with median/mean or use interpolation.

 Categorical: Fill with mode or use a placeholder like "Unknown".

2. Feature Engineering

- Create new features (e.g., AverageMonthlySpend = TotalCharges / Tenure).
- *Convert dates*: Calculate recency (days_since_last_interaction from LastInteractionDate).
- o **Bin continuous variables**: Group age or tenure into categories if helpful.

3. Encoding Categorical Variables

- o **Label Encoding** for binary features (e.g., Yes/No).
- **One-Hot Encoding** for multi-class features (e.g., SubscriptionType, PaymentMethod).

4. Scaling / Normalization

 Use StandardScaler or MinMaxScaler for continuous features (e.g., MonthlyCharges, TotalCharges) to normalize the range.

5. Outlier Detection and Treatment

- Use Z-score or IQR methods to detect and optionally cap/transform outliers in numerical columns.
- 6. Class Imbalance Handling (if churned vs. not churned is imbalanced)
 - Use SMOTE (Synthetic Minority Over-sampling Technique) to oversample minority class.
 - o Or use class weights in model training.

7. Train-Test Split

• Split the dataset (e.g., 80% training, 20% test) using stratified sampling to maintain churn ratios.

8. Save Preprocessed Data

o Optionally, export the cleaned and encoded dataset to CSV or a binary format (e.g., pickle) for reuse.

6. Exploratory Data Analysis (EDA)

1. Understand the Target Variable

• Value Counts & Distribution

python

CopyEdit

df['Churn'].value_counts(normalize=True).plot(kind='bar', title='Churn Distribution')

o Helps identify class imbalance.

2. Summary Statistics

- *Use df.describe() to summarize numerical features.*
- *Use df.info() to check data types and null values.*

3. Univariate Analysis

• Numerical Features: Histograms or KDE plots (e.g., Age, MonthlyCharges, Tenure)

python

CopyEdit

df['Tenure'].hist(bins=20)

• Categorical Features: Bar plots

python

CopyEdit

df['ContractType'].value counts().plot(kind='bar')

4. Bivariate Analysis

• Churn vs. Numerical Variables: Boxplots or violin plots

python

CopyEdit

sns.boxplot(x='Churn', y='MonthlyCharges', data=df)

• Churn vs. Categorical Variables: Stacked bar plots or heatmaps

python

CopyEdit

pd.crosstab(df['ContractType'], df['Churn']).plot(kind='bar', stacked=True)

5. Correlation Analysis

• Correlation Heatmap for numerical variables

python

CopyEdit

sns.heatmap(df.corr(), annot=True, cmap='coolwarm')

o Reveals multicollinearity or redundant features.

6. Feature Interactions

• Use pair plots or scatter matrix to explore interactions (use sample to reduce overload)

python

CopyEdit

sns.pairplot(df[['Tenure', 'MonthlyCharges', 'TotalCharges', 'Churn']], hue='Churn')

7. Customer Segmentation (Optional)

• Apply clustering (e.g., KMeans) or PCA for dimensionality reduction to visualize customer groups.

7. Feature Engineering

1. Basic Derived Features

- AverageMonthlySpend = TotalCharges / Tenure
 (Use only if Tenure > 0, avoid divide-by-zero)
- IsSenior = Age > 60
- *HasMultipleServices* = *Combine streaming, internet, and security flags*

2. Customer Engagement Features

- EngagementScore = Weighted score of usage/activity-based features (e.g., usage of streaming, support calls, internet type)
- DaysSinceLastInteraction = Current date LastInteractionDate

• SupportCallRate = CustomerSupportCalls / Tenure

3. Subscription Characteristics

- ContractLength = Map "Month-to-month" \rightarrow 1, "One year" \rightarrow 12, "Two year" \rightarrow 24
- IsAutoPay = PaymentMethod in ['Credit card (automatic)', 'Bank transfer (automatic)']
- IsLongTermCustomer = Tenure > 24 (arbitrary threshold)

4. Binary Flags for Add-ons

- UsesTechSupport = Yes/No to 1/0
- UsesStreaming = Combine multiple streaming services (TV, music, etc.)
- *HasOnlineSecurity = Binary flag for security service*

5. Customer Lifetime Metrics

- *LifetimeValue* = *MonthlyCharges* × *Tenure*
- ChurnRiskScore = Create rule-based score using a weighted sum of red flags (e.g., short tenure, high support calls, month-to-month contract)

6. Interaction Features

- MonthlyCharges × ContractLength → Measures financial commitment
- Tenure \times ContractLength \rightarrow Loyalty-adjusted commitment

Tips for Good Feature Engineering

- Consider business logic: Features must make real-world sense.
- Avoid data leakage: Don't use features that are only available after churn.
- Evaluate feature importance later using tree-based models or SHAP values.

8. Model Building

1. Split Data

python

CopyEdit

from sklearn.model selection import train test split


```
X = df.drop('Churn', axis=1)
y = df['Churn']
X_{train}, X_{test}, y_{train}, y_{test} = train_{test} split(
X, y, test_{size}=0.2, stratify=y, random_{state}=42
```

2. Select and Train Models

Try several models to compare performance.

python

CopyEdit

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from xgboost import XGBClassifier

 $models = \{$

"Logistic Regression": LogisticRegression(max_iter=1000),

"Random Forest": RandomForestClassifier(n_estimators=100),


```
"XGBoost": XGBClassifier(use_label_encoder=False, eval_metric='logloss')

for name, model in models.items():

model.fit(X_train, y_train)

print(f"{name} trained.")
```

3. Evaluate Models

```
Use appropriate metrics for binary classification.
```

python

CopyEdit

from sklearn.metrics import accuracy_score, precision_score, recall_score, fl score, roc auc score

```
def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    y_prob = model.predict_proba(X_test)[:, 1]
    return {
        "Accuracy": accuracy_score(y_test, y_pred),
        "Precision": precision_score(y_test, y_pred),
```



```
"Recall": recall_score(y_test, y_pred),

"F1": f1_score(y_test, y_pred),

"ROC AUC": roc_auc_score(y_test, y_prob)

}

for name, model in models.items():

scores = evaluate_model(model, X_test, y_test)

print(f"\n{name} Scores:")

for metric, score in scores.items():

print(f"{metric}: {score:.4f}")
```

4. Tune the Best Model (Optional)

```
\label{thm:continuous} Use\ grid\ search\ or\ randomized\ search\ for\ hyperparameter\ optimization.
```

python

CopyEdit

from sklearn.model selection import GridSearchCV

```
param_grid = {
    'n estimators': [100, 200],
```



```
'max_depth': [4, 6, 8],

grid = GridSearchCV(RandomForestClassifier(), param_grid, cv=5,
scoring='roc_auc')

grid.fit(X_train, y_train)

best_model = grid.best_estimator_
```

5. Interpret the Model

Use feature importance or SHAP to understand churn drivers.

python

CopyEdit

import shap

explainer = shap.TreeExplainer(best_model)

 $shap_values = explainer.shap_values(X_test)$

shap.summary_plot(shap_values, X_test)

9. Visualization of Results & Model Insights

1. Churn Distribution

Purpose: Understand class imbalance.

python

CopyEdit

df['Churn'].value_counts().plot(kind='bar', title='Churn Distribution')

2. Feature Importance (Tree-Based Models)

Purpose: Identify top predictors of churn.

python

CopyEdit

importances = best model.feature importances

features = X train.columns

Plot

import matplotlib.pyplot as plt

import seaborn as sns

feat imp = pd.Series(importances, index=features).sort values(ascending=False)

sns.barplot(x=feat_imp[:10], y=feat_imp.index[:10])
plt.title("Top 10 Feature Importances")

3. SHAP Summary Plot

Purpose: Explain model predictions globally and locally.

python

CopyEdit

import shap

explainer = shap.TreeExplainer(best model)

 $shap\ values = explainer.shap\ values(X\ test)$

shap.summary plot(shap values, X test)

- Color: Red = high feature value, Blue = low feature value
- X-axis: Impact on churn probability

4. Confusion Matrix

Purpose: Visualize model performance.

python

CopyEdit

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

ConfusionMatrixDisplay.from estimator(best model, X test, y test)

5. ROC Curve

Purpose: Evaluate classification threshold and trade-offs.

python

CopyEdit

from sklearn.metrics import roc curve, auc

```
y\_prob = best\_model.predict\_proba(X\_test)[:, 1]
```

fpr, tpr, _ = roc_curve(y_test, y_prob)

plt.plot(fpr, tpr, label=f"AUC = {auc(fpr, tpr):.2f}")

plt.plot([0, 1], [0, 1], '--')

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("ROC Curve")

plt.legend()

6. Partial Dependence Plot (Optional)

Purpose: Show marginal effect of features.

python

CopyEdit

from sklearn.inspection import plot_partial_dependence

plot_partial_dependence(best_model, X_test, ['Tenure', 'MonthlyCharges'])

Model Insights (Example)

- Top Churn Drivers:
 - Short tenure
 - Month-to-month contracts
 - o High monthly charges
 - Multiple support calls
- Customer Segments at Risk:
 - New users (<6 months) on flexible contracts
 - o Users not using add-ons like online security or tech support
- Business Actions:

- o Offer loyalty discounts
- o Encourage annual plans
- o Improve support experience

10. Tools and Technologies Used

Data Collection & Storage

- CSV/Excel/SQL Storing and retrieving customer data
- **Pandas** Data manipulation and analysis
- NumPy Numerical operations

Data Preprocessing

- Scikit-learn (sklearn) Imputation, encoding, scaling, train-test split
- Pandas Profiling / Sweetviz Automated EDA reports (optional)

Exploratory Data Analysis (EDA)

- Matplotlib / Seaborn Visualization (bar plots, histograms, heatmaps)
- Plotly Interactive charts (optional)

Model Building

- Scikit-learn Logistic Regression, Random Forest, model evaluation
- XGBoost / LightGBM Gradient boosting models for high accuracy

• Imbalanced-learn — SMOTE, under-/oversampling

Model Interpretation

- SHAP Explainable AI to interpret feature contributions
- **LIME** Local model interpretability (optional)
- Feature Importance Plots Built into tree-based models

Model Evaluation

• **Scikit-learn** — ROC curve, confusion matrix, F1 score, accuracy, precision, recall

Model Deployment (Optional)

- Flask / FastAPI Build REST API for model inference
- **Streamlit / Dash** Create interactive dashboards
- **Docker** Containerize the model
- AWS / Azure / GCP Deploy model to the cloud

Version Control & Collaboration

- Git / GitHub Versioning and team collaboration
- Jupyter Notebook For prototyping and documentation

11. Team Members and Contributions

NAME	ROLE	RESPONSIBLITY
PRIYADHARSHINI R	Lead	Oversee project
		development,
		coordinate team
		activities, ensure
		timely delivery of
		milestones, and
		contribute to
		documentation and
		Data Engineer final
NANDHITHA M	Data Engineer	Collect data from
		APIs (e.g., Twitter),
		manage dataset
		storage, clean and
		preprocess text data,
		and ensure quality of
		input data
Varshini.S,	NLP Specialist /	Build sentiment and
Vaishnavi.A	Data	emotion classification
Vaisimavi.21		models, perform
		feature engineering,
		and evaluate
		model performance
0 " 0	5 (4) (/	using suitable metrics
Sonika.R	Data Analyst /	Conduct exploratory
	Visualization	data analysis (EDA),
		generate insights, and
		develop visualizations
		such as word clouds,
		emotion trends, and
		sentiment

