Lab 7 Report: Common Collector Amplifier

Cory Lanker

2023-07-30

Introduction

This lab sets the operating point the BJT in a common collector amplifier and then uses LTspice simulations to confirm the DC operating point. I did not have enough time to prototype the circuit and measure the DC and AC characteristics.

Design Procedure

Here are the calculated values for this biasing topology:

The formulae for the voltage ratios are:

$$\frac{v_{out}}{v_{in}} = \frac{(\beta+1)R_E'}{r_{\pi} + (\beta+1)R_E'} \frac{v_{in}}{v_s} = \frac{R_{in}}{R_S + R_{in}}$$

where

$$R'_{E} = R_{E} \parallel R_{L} \parallel r_{o}R_{in} = R_{B} \parallel (r_{\pi} + (\beta + 1)R'_{E})$$

The calculations are $v_{out}/v_s = (v_{out}/v_{in})(v_{in}/v_s) = (0.793)(0.926) = 0.73$ which is confirmed by the operating point plot of v_{out} vs. v_s .

Output waveform being sinusoidal

The output waveform has gain reduction when the base voltage is reduced by a large amount. The amount depends on the load resistor, as $R_L = 1k\Omega$ was able to tolerate a larger negative voltage. The reason for

this is the v_{out}/v_{in} equation and its $r_{\pi}=\frac{\beta\,V_T}{I_C}$ in the denominator. Look at how V_{BE} changes greatly when the base voltage decreases:

This change for V_{BE} explains why the current changes so much (and goes to zero if V_B is greatly reduced):

As r_{π} is inversely proportional to I_C , the reduced V_B kills the collector current which caused the voltage ratio v_{out}/v_{in} to be greatly reduced.