** 7.6 等价关系与划分

定义7. 15 设R为非空集合上的关系。如果R是自反的、对称的和传递的,则称R为A上的等价关系(equivalent relation)。设R是一个等价关系,若〈x,y〉∈R,称x等价于y,记做x~y。

举例。平面上三角形集合中,三角形的相似关系。

…等价(equivalence)关系定义

- 例: 判断是否等价关系(A是某班学生):
- □ R₁={<x, y>|x, y∈A∧x与y同年生}
- □ R_2 ={ $\langle x, y \rangle | x, y \in A \land x = S \in A$
- □ R₃={<x, y>|x, y∈A∧x的年龄不比y小}
- □ R₄={<x, y>|x, y∈A∧x与y选修同门课程}
- □ R₅={<x, y>|x, y∈A∧x的体重比y重}

∷ 例 (续)

	定义	自反	对称	传递	等价关系
R ₁	x与y同年生	1	√	1	√
R ₂	x与y同姓	1	1	1	√
R ₃	x的年龄不比y小	1	×	1	×
R ₄	x与y选修同门课程	1	√	×	×
R ₅	x的体重比y重	×	×	1	×

… 例7.16

例7.16 设A={1,2,...,8},如下定义A上的关系R:
R={<x,y>|x,y∈A∧x≡y(mod 3)}
其中x≡y(mod 3)叫做x与y模3相等,即x除以3的余数与y除以3的余数相等。不难验证R为A上的等价关系,因为

 $\forall x \in A$, $f(x) = x \pmod{3}$

 $\forall x, y \in A$, 若x $\equiv y \pmod{3}$, 则有y $\equiv x \pmod{3}$

 $\forall x, y, z \in A$, 若x $\equiv y \pmod{3}$, $y \equiv z \pmod{3}$, 则有x $\equiv z \pmod{3}$

:: 等价类

定义7. 16 设R为非空集合A上的等价关系, $\forall x \in A$,令 $[x]_R = \{y \mid y \in A \land xRy\}$ 称 $[x]_R \rightarrow x$ 关于R的等价类,简称为x的等价类,简记为 [x] 或 \overline{x} 。

- □x的等价类是A中所有与x等价的元素构成的集合。
- □例7.16中的等价类是:

$$[1] = [4] = [7] = \{1, 4, 7\}$$

$$[2] = [5] = [8] = \{2, 5, 8\}$$

$$[3] = [6] = \{3, 6\}$$

:: 整数集合Z上的模n等价关系

设x是任意整数,n为给定的正整数,则存在唯一的整数q和r,使得 x=qn+r 其中 $0 \le r \le n-1$,称r为x除以n的余数。

例如n=3, 那么一8除以3的余数为1, 因为 -8=-3×3+1

对于任意的整数x和y, 定义模n相等关系~x~y ⇔ x≡y(mod n)

不难验证它是整数集合Z上的等价关系。

将Z中的所有整数根据它们除以n的余数分类如 10

余数为0的数,其形式为nz,z∈Z 余数为1的数,其形式为nz+1,z∈Z

余数是n-1的数,其形式为nz+n-1,z∈Z

以上构成了n个等价类,使用等价类的符号可记为 [i]={nz+i | z ∈ Z}, i=0, 1, ..., n-1

… 等价类的性质

定理7.14 设R是非空集合A上的等价关系,则

- (1) ∀x∈A, [x]是A的非空子集。
- (2) ∀x, y∈A,如果xRy,则[x]=[y]。
- 【3)∀x,y∈A,如果<x,y>∉R,则[x]与[y]不交。
- $(4) \cup \{[x] \mid x \in A\} = A.$
- 证明(1) 由等价类的定义可知, ∀x∈A有[x]⊆A。
 又由于等价关系的自反性有x∈[x], 即[x]非空。

(2) ∀x, y∈A, 如果xRy, 则[x]=[y]。

任取z,则有 z∈[x]

 $\Rightarrow \langle x, z \rangle \in \mathbb{R}$

 $\Rightarrow \langle z, x \rangle \in \mathbb{R}$

(因为R是对称的)

 $\Rightarrow \langle z, x \rangle \in \mathbb{R} \land \langle x, y \rangle \in \mathbb{R}$

 $\Rightarrow \langle z, y \rangle \in \mathbb{R}$

(因为R是传递的)

 $\Rightarrow \langle y, z \rangle \in \mathbb{R}$

(因为R是对称的)

 $\Rightarrow z \in [y]$.

所以 [x]⊆[y]。

同理可证 [y]⊆[x]。

因此, [x]=[y]。

(3) ∀x, y∈A,如果<x, y>∉R,则[x]与[y]不交。

假设 [x]∩[y]≠∅, 则存在 z∈[x]∩[y], 从而有 z∈[x]∧z∈[y].

即<x, z>∈R∧<y, z>∈R成立。

根据R的对称性和传递性,必有 $\langle x, y \rangle \in R$,与 $\langle x, y \rangle \notin R$ 矛盾,即假设错误,原命题成立。

** 定理7.14

```
(4) \cup \{[x] | x \in A\} = A.
 先证 U{[x] x ∈ A} ⊂A
 任取y, y∈∪{[x]|x∈A}
       \Rightarrow \exists x (x \in A \land y \in [x])
       ⇒ y∈A (因为[x]⊂A)
 从而有U{[x] x∈A}c A。
 再证 A⊂U {[x] |x∈A}
 任取y, y \in A \Rightarrow y \in [y] \land y \in A
                \Rightarrow y \in \bigcup \{[x] | x \in A\}
 从而有A⊆{[x] | x ∈ A} 成立。
 综上所述得 U {[x] | x ∈ A} = A。
```

∷ 商集

定义7.17 设R为非空集合A上的等价关系,以R的所有等价类作为元素的集合称为A关于R的商集(quotient set),记做A/R,即

$$A/R=\{[x]_R|x\in A\}$$

例7.16中的商集为

整数集合Z上模n等价关系的商集是

$$\{ \{ nz+i \mid z \in Z \} \mid i=0, 1, ..., n-1 \}$$

- \square 例: 设A= $\{a_1, a_2, ..., a_n\}$, I_A , E_A ,
 - $\square R_{ij}=I_A \cup \{\langle a_i, a_j \rangle, \langle a_j, a_i \rangle\}$
- □ 都是A上等价关系, 求对应的商集,其中 a_i , $a_j \in A$, $i \neq j$. Ø是A上等价关系吗?
- □ 解: A/ I_A ={ {a₁}, {a₂}, ..., {a_n} }
- \Box A/E_A={ {a₁, a₂, ..., a_n } }
- □ Ø不是A上等价关系(非自反). #

:::划分

定义7. 18 设A为非空集合,若A的子集族 $\pi(\pi \subseteq P(A)$,是A的子集构成的集合)满足下面的条件:

- (1) Ø∉ π
- (2) $\forall x \forall y (x, y \in \pi \land x \neq y \rightarrow x \cap y = \emptyset)$
- (3) $\bigcup \pi = A$

则称 π 是A的一个划分(partitions),称 π 中的元素为A的划分块。

- 说明
- □ 设集合 π 是A的非空子集的集合,若这些非空子集两两 不相交,且它们的并等于A,则称 π 是集合A的划分。

:: 例7.17

```
例7. 17 设A= {a, b, c, d}, 给定\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, 如下: \pi_1 = \{\{a, b, c\}, \{d\}\}\}
\pi_2 = \{\{a, b\}, \{c\}, \{d\}\}\}
\pi_3 = \{\{a\}, \{a, b, c, d\}\}\}
\pi_4 = \{\{a, b\}, \{c\}\}\}
\pi_5 = \{\emptyset, \{a, b\}, \{c, d\}\}\}
\pi_6 = \{\{a, \{a\}\}, \{b, c, d\}\}\}
判断哪一个是A的划分
```

 π_1 和 π_2 是A的划分,其它都不是A的划分。

因为 π_3 中的子集 $\{a\}$ 和 $\{a, b, c, d\}$ 有交, $\cup \pi_4 \neq A$, π_5 中含有空集,而 π_6 根本不是A的子集族。

**划分(举例)

□ 设 $\emptyset \neq A_1, A_2, ..., A_n \subset E$,则以下都是划分: $\pi_{i} = \{A_{i}, \sim A_{i}\}, (i=1, 2, ..., n)$ $\pi_{i,i} = \{A_i \cap A_i, \sim A_i \cap A_i, A_i \cap \sim A_i, \sim A_i \cap \sim A_i\} - \{\emptyset\}$ $(i, j = 1, 2, ..., n \land i \neq j)$ $\pi_{12\dots n} = \{ \sim A_1 \cap \sim A_2 \cap \dots \cap \sim A_n, \dots, \}$ $\sim A_1 \cap \sim A_2 \cap \dots \cap \sim A_{n-1} \cap A_n, \dots$ $A_1 \cap A_2 \cap \dots \cap A_n - \{\emptyset\}$.

∷ 划分(举例,续)

- □ 加细: 设A≠Ø, π_1 , π_2 ⊆P(A), 若 π_1 , π_2 是A的两个划分, 且满足
- □则称π1为π2的加细,也称划分π1加细了划分π2。

若 π_1 为 π_2 的加细,且 $\pi_1 \neq \pi_2$,则称 π_1 是 π_2 的真加例如 设 $A=\{1,2,3,4,5,8,9,10\}$ $\pi_1=\{\{1,2\},\{4,5\},\{3,8\},\{9,10\}\}$ $\pi_2=\{\{1,2\},\{3\},\{4,5\},\{8\},\{9,10\}\}$ π_2 是 π_1 的加细,且为真加细。

:: 等价关系与划分是——对应的

- □ 命题: 设A≠Ø, 则
- □ (1) R是A上等价关系 ⇒ A/R是A的划分(称为由A上的等价关系R所诱导出的划分)
- □ (2) A是A的划分 $\Rightarrow R_A$ 是A上等价关系, 其中
 - \square $xR_Ay \Leftrightarrow \exists z (z \in A \land x \in z \land y \in z)$
- □ R_A称为由划分A 所定义的等价关系(同块关系)(称为由A上的划分A 所诱导出的等价关系). #

… 例7.18

例7. 18 给出A= {1, 2, 3} 上所有的等价关系

这些划分与A上的等价关系之间的一一对应是:

 π_1 对应于全域关系 E_A ,

π₅的对应于恒等关系I_A,

 π_2 , π_3 和 π_4 分别对应于等价关系 R_2 , R_3 和 R_{40} 其中

 $R_2 = {\langle 2, 3 \rangle, \langle 3, 2 \rangle} \cup I_A$

 $R_3 = \{ \langle 1, 3 \rangle, \langle 3, 1 \rangle \} \cup I_A$

 $R_4 = \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle \} \cup I_A$

··例题

例题 问集合A= {a, b, c, d} 上有多少个不同的等价关系? 解答 只要求出A上的全部划分,即为等价关系。 划分为一个块的情况: 1种, 即 {a, b, c, d} 划分为两个块的情况:7种,即 {{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}} {{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, { {d}, {a, b, c} } 划分为三个块的情况: 6种,即 {{a, b}, {c}, {d}}, {{a, c}, {b}, {d}}, {{a, d}, {b}, {c}}, {{a}, {b}, {c, d}}, {{a}, {c}, {b, d}}, {{a}, {d}, {b, c}} 划分为四个块的情况: 1种, 即 {a}, {b}, {c}, {d}} 因此,共有15种不同的等价关系。

:: Bell数(Bell number)

- □问题:给n个对象分类,共有多少种分法?
- □答案: Bell数 B_n=

答案: Bell数
$$B_n$$
=
(Eric Temple Bell, n 1883 1960) n +

- □ Stirling子集数(Stirling subset number)
- □ 把n个对象分成k个非空子集的分法个数.

$${n \brace 0} = 0, {n \brace 1} = 1, {n \brace 2} = 2^{n-1} - 1, {n \brace n - 1} = C_n^2, {n \brace n} = 1.$$

递推公式:

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}.$$

** Stirling子集数

n	B _n	n	B _n
1	1	8	4, 140
2	2	9	21, 147
3	5	10	115, 975
4	15	11	678, 570
5	52	12	4, 213, 597
6	203	13	27, 644, 437
7	877	14	190, 899, 322

- □ 问A={a, b, c, d} 上有多少种等价关系?
- □ 解:

$$B_4 = \begin{cases} 4 \\ 1 \end{cases} + \begin{cases} 4 \\ 2 \end{cases} + \begin{cases} 4 \\ 3 \end{cases} + \begin{cases} 4 \\ 4 \end{cases} = 1 + (2^3 - 1) + C_4^2 + 1 = 1 + 7 + 6 + 1 = 15.$$

Ц

第二类Stirling($S(n,k) = {n \choose k}$)数表

n\k	0	1	2	3	4	5	6	7	8	9
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1, 170	1, 050	266	28	1	
9	0	1	255	3, 035	7, 770	6, 951	2, 646	462	36	1
10	0	1	511	9, 330	34, 501	42, 525	22, 827	5, 880	750	45

命题1 设R₁和R₂是非空集合X上的两个等价关 系。若 $R_1 \subseteq R_2$,则 $\forall a \in X$,有 $[a]_{R_1} \subseteq [a]_{R_2}$ 。 证明 $\forall a \in X$, $\forall x \in [a]_{R_1}$, $\langle x, a \rangle \in R_1$ 又由于 $R_1 \subseteq R_2$ 所以 $\langle x,a\rangle \in \mathbb{R}_2$,从而有 $x\in [a]_{\mathbb{R}_2}$,因此 $[a]_{\mathbb{R}_1}\subseteq [a]_{\mathbb{R}_2}$ 设X={1,2,3,4,5}, $R_1 = I_X \cup \{<1,2>,<2,1>,<4,5>,<5,4>\},$ $R_2=I_X \cup \{<1,2>,<2,1>,<2,3>,<3,2>,<1,3>,<3,1>,$ <4,5>,<5,4>} $X/R_1 = \{\{1,2\},\{3\},\{4,5\}\}, X/R_2 = \{\{1,2,3\},\{4,5\}\}\}$ 由命题1知,若两个等价关系相等,则每个元素 所对应的等价类也相同。

•••

命题2 设 R_1 和 R_2 是非空集合X上的两个等价关系。 若 $\forall a \in X$,有 $[a]_{R_1} \subseteq [a]_{R_2}$,则 $R_1 \subseteq R_2$ 。

证明 $\forall \langle x,y \rangle \in \mathbb{R}_1, y \in [x]_{\mathbb{R}_1}$ 由 $\forall a \in X$,有

 $[a]_{R_1}\subseteq [a]_{R_2}$,知 $[x]_{R_1}\subseteq [x]_{R_2}$,从而 $y\in [x]_{R_2}$,

因而有 $\langle x,y\rangle \in \mathbb{R}_2$ 由 $\langle x,y\rangle$ 的任意性可得

 $\mathbf{R}_1 \subseteq \mathbf{R}_2$.

由命题2知,若两个等价关系的等价类集合相等,则两个等价关系相同。

:: 例

例设 R_1 和 R_2 是非空集合X上的两个等价关系,试问 R_1 U R_2 和 R_1 八 R_2 是否是等价关系?试证明之。解: R_1 八 R_2 是等价关系,而 R_1 U R_2 不是等价关系

 $\forall x \in X$,由于 $R_1 \Rightarrow R_2 \in X$ 上的等价关系,所以 $\langle x, x \rangle \in R_1 \land \langle x, x \rangle \in R_2 \Rightarrow \langle x, x \rangle \in R_1 \cap R_2$,即 $R_1 \cap R_2 \Leftrightarrow \langle x, y \rangle \in R_1 \land \langle x, y \rangle \in R_2$ 又 R_1 , $R_2 \Rightarrow \langle y, x \rangle \in R_1 \land \langle y, x \rangle \in R_2 \Leftrightarrow \langle y, x \rangle \in R_1 \cap R_2$,即 $R_1 \cap R_2 \in X$,如 $R_1 \cap X$,如 $R_1 \cap X$,如 $R_1 \cap X$,如 $R_2 \cap X$,如 $R_2 \cap X$,如 $R_1 \cap X$,如 $R_2 \cap X$,如 $R_2 \cap X$,如 $R_1 \cap X$,如 $R_2 \cap X$,如 $R_2 \cap X$,如 $R_2 \cap X$,如

 $\forall \langle x,y \rangle \in R_1 \cap R_2 \land \langle y,z \rangle \in R_1 \cap R_2 \Leftrightarrow$ $\langle x,y \rangle \in R_1 \land \langle x,y \rangle \in R_2 \land \langle y,z \rangle \in R_1 \land \langle y,z \rangle \in R_2$

::例 (頻解)

又 R_1 , R_2 都是等价关系 $\Rightarrow \langle x,z \rangle \in R_1 \land \langle x,z \rangle \in R_2$ $\Leftrightarrow \langle x,z \rangle \in R_1 \cap R_2$,即 $R_1 \cap R_2$ 是传递的 所以 $R_1 \cap R_2$ 是X上的等价关系。

设 $X=\{1,2,3\},R_1=\{<1,1>,<2,2>,<2,3>,<3,2>,<3,3>\}$ $R_2=\{<1,1>,<1,2>,<2,1>,<2,2>,<3,3>\}$ 都是X上的等价关系,但 $R_1\cup R_2=I_X\cup \{<1,2>,<2,1>,<2,3>,<3,2>\}$ 确不是X上的等价关系(因为它不满足传递性)