Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406

EquiSim User's Manual

Toufik BENTALEB

March 15, 2021

Abstract

This manual is intended to help users to run and to know how and where they can perform any modification in the EquiSim software tool. This software tool was developed to allow human balance prevention and recovery to be performed using MATLAB and using linear model predictive control (LMPC) algorithm. A "Quick Start" approach to using this software will be presented, along with a detailed section containing full explanations and examples for using this tool.

Contents

1	Intro	oduction	3		
2	Syst	System Requirements			
3	How	v files are organised	3		
4	Con	trol scheme	4		
5	Get t 5.1	ting started with software The main function	5		
6	Scri	pt files	8		
	6.1	script_constant	8		
	6.2	script_init_storage_qp_result			
	6.3	script_init_storage_physical_model			
	6.4	script_init_storage_sensor_dynamics	8		
7	Clas	sses files	9		
	7.1	classdef_create_robot	9		
	7.2	classdef_create_experiment	9		
	7.3	classdef_physical_model	12		
	7.4	classdef_MPC_problem_inputs	13		

1 Introduction

The aim of this document is to help users to use the MATLAB software tool for human/robot balance prevention and recovery. It is intended to provide all necessary information in a simple way. A "Quick Start" approach to using this tool will be presented, along with a detailed. The EquiSim user's manual contains a thorough description of all files in the software tool.

2 System Requirements

In order to get the code to execute properly, the following programs are required:

- 1. The program has been developed for use in the MATLAB environment and it is running perfectly on MATLAB 2017b (MATLAB 9.03.0).
- 2. To solve the quadratic programming problem using quadprog function the OPTIMIZATION TOOLBOX is required.

3 How files are organised

The folder EquiSim_folder contains all files necessary of the software tool, were divided into many categories:

- The main Matlab script file main_EquiSim.m to run the program.
- The folder core_test contains classdef, function, and script folders because the software was built using Object-Oriented (OO) techniques.
- The folder core_MPC contains classdef, function, and script folders.
- The folder core_physical_model contains classdef, function, and script folders.
- The folder results contains results graphs, for the test performed, in format of *.JPG, *.EPS and *.PDF.

4 Control scheme

The feedback loop used to simulate the balance recovery is shown in the Fig. 1. When you run the main function main_EquiSim, the software starts to add all subfolders to matlab path and prepare storage files after that, it runs classdef_create_experiment which is shown in the scheme below by <code>Desired final states</code>. After creating the human model (using <code>script_constant.m</code>), and the experiment steps (using classdef_create_experiment), the inputs of a MPC iteration are created. The <code>Mechanical Model</code> is the physical model of the human, in the code we use classdef_physical_model to run it. To add the disturbance to the physical model just uncomment physical_model_storage.add_storage_sensors and comment physical_model_storage.add_storage. The same for the delay in the model (the <code>Sensors</code> in the scheme) you need just give the neural time delay (neural_time_delay) and uncomment <code>sensor_dynamics.sensor_dynamics_iteration</code>.

Figure 1: Flow diagram of the human balance recovery

5 Getting started with software

This section will take you through one example in order to get you started with the MATLAB software tool for human/robot balance prevention and recovery.

5.1 The main function

The m-script main_EquiSim.m is the only file visible in the folder EquiSim_folder to run the software, and you can call it from the command line. Shown below (Fig. 2) is a part of the main function and their parameters are described in the Table 1 and Table 2.

```
1 clear all, close all, clc,
  path(pathdef); %clear the pathdef of include library
4 %addpath script/
5 addpath core_physical_model/function/ core_physical_model/classdef/ ...
      core_physical_model/script/
6 addpath core_test/function/ core_test/classdef/
7 addpath core_MPC/classdef/ core_MPC/classdef/linear_trajectories/ ...
      core_MPC/function/ core_MPC/script/
9 robot_type='human';
phase_duration_type='phase_duration_01';
walking_type=4;
12 cop_ref_type='ankle_center';
13 polyhedron_position='waist_center';
14 kinematic_limit='hexagonTranslation';
15 COM_form='comPolynomial';
17 run('core_test_all_axis/script/script_constant.m')
18 run('core_test_all_axis/script/script_init_storage_qp_result.m')
run('core_physical_model/script/script_init_storage_physical_model.m')
20 run('core_physical_model/script/script_init_storage_sensor_dynamics.m')
23 .
```

Figure 2: File saved as main_EquiSim.m

File/Variable/String	Description
robot_type	Name of a m-file script that contains the physical properties
	of a human or robot bodies:
	$robot_type="human" \rightarrow human model.$
	$robot_type="hrp4" \rightarrow hrp4 robot model.$
	$robot_type="hrp2" \rightarrow hrp2 robot model.$
	robot_type="human" was chosen as a case study.
	The "human" string is used to call the m-file script human.m.
	The default Center of Mass (CoM) height h_com.
	COM height limits to the floor with respect to h^{com} are
	h_{max}^{com} and h_{min}^{com} .
	Initial standing state default with release angle θ ,
	$\omega_0 = \sqrt{(g/(h^{com} \cdot \cos(\theta)))}$ and $\zeta_0 = 1/\omega_0^2$
	where g is the gravity.
	The parameters in the file are:
	$x_0^{com} = [h^{com} \cdot \sin(\theta); 0; ((h^{com} \cdot \sin(\theta))/\zeta_0)];$
	$y_0^{com} = [0; 0; 0];$
	$z_0^{com} = [h^{com} \cdot \cos(\theta); 0; 0];$
	The feet initial positions: $x_{r,0}^{step}$, $y_{r,0}^{step}$, $x_{l,0}^{step}$, and $y_{l,0}^{step}$.
phase_duration_type	Name of a script file that contains the duration
	and sampling time of the phases:
	$phase_duration_r \rightarrow Swing phase of the right foot.$
	$phase_duration_l \rightarrow Swing phase of the left foot.$
	$\verb phase_duration_b \to Double \ support \ phase.$
	$\mathtt{phase_duration_RT} \rightarrow \text{Reaction time}.$
	phase_duration_APA→ Anticipatory postural
	adjustments (APA) phase.
	phase_duration_start→Starting phase.
	$\mathtt{phase_duration_stop} \to \operatorname{Stop} \ \mathrm{phase}.$
	$\mathbb{N}_{r} \to \text{Right foot swing phase sampling time.}$
	$N_1 \rightarrow \text{Left foot swing phase sampling time.}$
	$\mathbb{N}_b \to \text{Double support phase sampling time.}$
	$N_RT \rightarrow$ sampling time of the reaction time.
	N_APA→ Anticipatory postural
	adjustments (APA) phase sampling time.

Table 1: The constant parameters of the simulation case (part 1) $\,$

File/Variable/String	Description
walking_type	to select which type of walking area
	$walking_type \rightarrow walking flat.$
	walking_type→ walking airbus stairs.
	walking_type→ walking flat quick.
	walking_type→ walking walking flat fixed foot step positions.
	walking_type→ walking airbus stairs fixed foot step positions.
cop_ref_type	translate the step position to the
	cop_ref_type→ 'ankle_center' Center of pressure reference
	centered on the ankle.
	cop_ref_type→ 'foot_center' Center of pressure reference
	centered on the middle of the foot.
polyhedron_position	Polyhedron centered:
	$ exttt{polyhedron_position} ightarrow ext{'ankle_center'} ext{ on the ankle.}$
	polyhedron_position→ 'foot_center' hexagon kinematic
	limits.
	$ exttt{polyhedron_position} ightarrow ext{'hexagonTranslation'} ext{hexagon}$
	kinematic limits with translation.
kinematic_limit	The kinematic limit:
	$\mathtt{kinematic_limit} o$ '' very simple polyhedron.
	$kinematic_limit \rightarrow$ 'hexagon' on the middle of the foot.
	$ ext{kinematic_limit} ightarrow ext{'waist_center'} ext{ on the middle of the}$
	waist.
COM_form	COM trajectory form:
	COM_form→ 'comPolynomial' COM with piece-wise jerk.
	COM_form→ 'comExponential' ZMP with piece-wise velocity.
	COM_form→ 'comPolyExpo' COM with polynomial of
	exponential.
firstSS	First-foot stepping:
	firstSS→ 'r' Right foot.
	firstSS→ 'l' Left foot.
	firstSS→ 'b' Both feet.
nb_foot_step	Number of steps.

Table 2: The constant parameters of the simulation case (part 2) $\,$

6 Script files

In the beginning, the main function main_EquiSim calls many other scripts to load human model parameters, creating the experiment test, preparation of storage data from tree type of physical models such as the model used in MPC controller, the physical model without noise, and the physical model with noise.

6.1 script_constant

First, this script m-file calls the object-oriented script classdef_create_robot to define the human model parameters (see section 7.1), then it calls the object-oriented script classdef_create_experiment to create the experiment (case study) (see section 7.2).

6.2 script_init_storage_qp_result

This script m-file calls the script script_init_storage_qp_result to initialize the MPC storage of MPC iteration from QP result. The storage result contains the COM position, velocity, and acceleration along x-y-z axis and feet positions.

6.3 script_init_storage_physical_model

This script m-file is used for initial storage of the physical model states. This script_init_storage_physical_model.m initialize object of the class classdef_physical_model (see Section 7.3).

6.4 script_init_storage_sensor_dynamics

Here, the script_init_storage_sensor_dynamics.m file stores the model states recorded from the sensors, i.e. after adding the delay on the states of the physical model.

7 Classes files

The Matlab class is used to define an object that encapsulates data and the operations performed on that data.

7.1 classdef_create_robot

The class classdef_create_robot is created to define the properties of the parameters of the human model after choosing the robot_type (see Table 1). The script file "robot_type".m initiates the human model parameters. The properties that contain the numeric data stored in this object of the class are shown in the table 3.

Parameters	Description
h_com	CoM height
h_com_max	COM height maximum limit to the floor with respect
	to the COM height
h_com_min	COM height minimum limit to the floor with respect
	to the COM height
xcom_0	Initial standing state default X-CoM
ycom_0	Initial standing state default Y-CoM
zcom_0	Initial standing state default Z-CoM
xstep_r_0	Initial right foot position on the x-axis
ystep_r_0	Initial right foot position on the y-axis
xstep_1_0	Initial left foot position on the x-axis
ystep_1_0	Initial left foot position on the y-axis
backtoankle	from back to ankle of foot
fronttoankle	from front to ankle of foot
exttoankle	from exterior to ankle of foot
inttoankle	from interior to ankle of foot
sole_margin	from floor to ankle of foot
xankmax	stepping forward max
xankmin	stepping forward min (if negative, it means stepping backward max)
yankmin	width min between ankles
yankmax	width max between ankles.

Table 3: The constant parameters classdef_create_robot

7.2 classdef_create_experiment

The class classdef_create_experiment is created to define the properties of the experiment "case study". The script file "robot_type".m initiates the human model parame-

ters. The properties that contain the numeric data stored in this object of the class are shown in the table 4 table 5.

Parameters	Description
g	Gravity
omega_temp	$\omega_0 = \sqrt{(g/h^{com})}$
zeta_temp	$\zeta_0 = 1/\omega_0^2$
phase_duration_r	Right foot phase duration
phase_duration_l	Left foot phase duration
phase_duration_b	Double support phase duration
phase_duration_RT	Reaction time phase duration
phase_duration_SPT	APA phase duration
phase_duration_start	Start phase duration
phase_duration_stop	Stop phase duration
N	Sampling time
	N_r
	N_1
	N_b
	N_RT
	N_SPT
	N_start
	N_stop
preview_windows_duration	Prediction horizon
phase_duration	Phase duration definition
phase_duration_iteration	
phase_duration_cumul	
phase_duration_iteration_cumul	
T	$\mathtt{T}_{-}=\mathtt{phase_duration}_{-}/\mathtt{N}_{-}$
T_r	
T_l	
T_b	
T_RT	
T_SPT	
T_start	
T_stop	
phase_type	
phase_type_sampling	
phase_duration_sampling	
phase_duration_sampling_cumul	
phase_sampling_length	

Table 4: The constant parameters classdef_create_experiment (part 1)

Parameters	Description
phase_type_decouple	phase decoupling
MoS_sampling	Margin of stability (MoS)
yaw	Foot orientation array
yaw_sampling	Foot orientation sampling time
Px_step_ref	
plan_hexagon	Polyhedron from hexagone
z_leg_min	
z_decalage_tot	
translate_step_polyhedron_type	
OptimCostWeight	MPC weights
step_number_pankle_fixed	Fixed step position after initial
	step state position
vcom_ref	COM reference velocity
vcom_change	Change of reference velocity
vcom_1	First part of reference velocity
vcom_2	Second part of reference velocity
zfloor_ref	Horizontal position of the floor
hcom_ref	COM reference position
hcom_ref_max	
zeta_up_ref	
zeta_down_ref	
zstep_l_0	Left foot step height at t=0
zstep_r_0	Right foot step height at t=0
zstep_l_ref	Left foot step height reference
zstep_r_ref	Right foot step height reference

Table 5: The constant parameters classdef_create_experiment (part 2)

7.3 classdef_physical_model

The properties of the classdef_physical_model and their detailed explanation, see the table below (Table 6). This class has different functions such as

- add_storage_sensors function to add noise to the physical model. The noise types added to the model are
 - rand is an uniformly distributed pseudorandom numbers
 - awgn is a white Gaussian noise to a signal
- physical_model_iteration_.. functions for different physical models

Properties	Description
ХС	COM end position of the next iteration along x-axis
xdc	COM end velocity of the next iteration along x-axis
xddc	COM end acceleration of the next iteration along x-axis
ус	COM end position of the next iteration along y-axis
ydc	COM end velocity of the next iteration along y-axis
yddc	COM end acceleration of the next iteration along y-axis
ZC	COM end position of the next iteration along z-axis
zdc	COM end velocity of the next iteration along z-axis
zddc	COM end acceleration of the next iteration along z-axis
xstep	foot step position along x-axis
ystep	foot step position along y-axis
zstep	foot step position along z-axis
	(not an optimization variable)
xzmp	zmp position along x-axis
	(not an optimization variable)
yzmp	zmp position along y-axis
	(not an optimization variable)
zzmp	zmp position along z-axis
	(not an optimization variable)

Table 6: The properties of the classdef_physical_model and their detailed explanation

7.4 classdef_MPC_problem_inputs

The class classdef_MPC_problem_inputs is used to define the inputs of MPC controller. The properties of this class and their detailed explanation, see the table below (Table 7).

Properties	Description
g	Gravity acceleration constant
omega_temp	Temporary value of ω
N	Number of sample of the preview window
phase_duration_sampling	Duration of each sample of the preview window
phase_type_sampling	Phase type of each sample of the preview window
MoS_sampling	Margin of stability
zeta_temp	Value of ζ during each sample of the preview window
zeta_up	Value of ζ superior bound during each sample of the
	preview window
zeta_down	Value of ζ inferior bound during each sample of the
	preview window
c_init	Matrix of CoM initial state with row [c;dc;ddc] and
	with column along axis [x y z]
dc_ref	Reference value of CoM velocity during each sample
	of the preview window with column along axis [x y]
Px_step	Px matrix of support foot for the preview window
yaw	Feet orientation
no_double_support	Matrix of no double support
no_double_support_capture	Matrix of no captured double support
double_support	Matrix of double support

Table 7: The properties of the classdef_MPC_problem_inputs and their detailed explanation