	HOMEWORK 6
	15.3:20,50 15.4:2,6 15.5:8,53 — not graded.
15.31	20 Find the first fartual derivatives of the function z = tan(xy)
	$\frac{\partial z}{\partial x} = \sec^2(xy) \frac{\partial}{\partial x}(xy)$ $= 4 \sec^2(xy)$
	$\frac{\partial f}{\partial y} = \sec^2(xy) \frac{\partial}{\partial y}(xy)$ $= \sec^2(xy) \times x.$
15.3	50: Find the first partial derivatives
<u>a)</u>	$z = f(x)g(y)$ $\frac{\partial z}{\partial x} = f'(x)g(y)$
6)	$\frac{\partial^2}{\partial y} = f(x)g'(y)$ $\frac{\partial^2}{\partial x} = f'(xy)g'(xy) = f'(xy)y.$ $\frac{\partial^2}{\partial y} = f'(xy)x.$

.

c)
$$z = f(x|y)$$
. $\frac{\partial z}{\partial x} - f'(x|y) \frac{\partial z}{\partial x} (x|y)$
 $= f'(x|y) \frac{\partial z}{\partial y}$
 $= f'(x|y)$

Same setup as previous problem $f(x,y) = e^{x} + \frac{1}{2} + \frac{1}{2$ 15.4:16 $z = f(1,-1) + 7f(1,-1) \circ (x-1,y+1)$ = 1 + (2,2) \cdot (x-1,y+1) = 1+2(x-1)+2(y+1) formula for dangent plane. 15.5:8 Find Os & Ot For Z=SIN (X-y)
where x = 52+ 12 & y = 1-2st. Recall: d 2/n/(t)=2=> f=z[n(2)=> 1= co2(2) ff $\Rightarrow \frac{dS}{dt} = \frac{1}{\cos(S)} = \frac{1}{V_1 - \sin(S)}$ 12 = 12 1x + 12 ly
15 0x 05 7y 05
12 02 0x 0 04
04 04

$$\frac{\partial t}{\partial x} = (1 - (x - y)^{2})^{1/2} \\
\frac{\partial x}{\partial y} = (1 - (x - y)^{2})^{1/2} \\
\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t \\
\frac{\partial y}{\partial x} = -\lambda t, \quad \frac{\partial y}{\partial t} = -\lambda s$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial y}{\partial t} = -\lambda s$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial y}{\partial t} = -\lambda s$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial y}{\partial t} = -\lambda s$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial y}{\partial t} = -\lambda s$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial t} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial y} = -\lambda t$$

$$\frac{\partial x}{\partial y} = -\lambda t, \quad \frac{\partial x}{\partial$$

COMPUTATION OF PARTIAL DERIVATIVES OF O

$$\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{1} + \frac{\partial}{\partial x} \right)^{2} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{1})^{2}} \frac{\partial}{\partial x} \left(\frac{1}{1} \right)$$

$$= \frac{1}{1 + (\frac{1}{$$

COMPUTATION OF PARTIAL DERIVATIVES OF Y

$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)$$

$$= \frac{1}{2} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)$$

$$= \frac{1}{2} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)$$

$$= \frac{1}{2} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)$$

$$= \frac{1}{2} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{x^{2} + y^{2}}{x^{2} + y^{2}} \right)^{-1/2} \frac{\partial}{\partial x} \left(\frac{$$

$$= \frac{1}{2} \frac{$$