דפי נוסחאות

I. גבולות

- 1. הגדרת הגבול : נאמר כי s>0 אם לכל $\varepsilon>0$ אם לכל $\int s = L$ אם לכל : נאמר כי . $|f(x)-L| < \varepsilon$ מתקיים $0<|x-x_0| < \delta$
 - . $\lim_{x \to x_0} \left| f(x) \right| = 0$ אם ורק אם $\lim_{x \to x_0} f(x) = 0$.2
- .3 משפט הכדיך (סנדוויץ') : תהיינה $f(x),\ g(x),\ h(x)$ פונקציות המוגדרות בטביבה נקובה $h(x) \le f(x) \le g(x)$ של $h(x) \le f(x) \le g(x)$ אם התנאי התנאי $\lim_{x \to x_0} f(x) = L$ הגבולות $\lim_{x \to x_0} f(x) = L$ אז קיים גם הגבול , $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = L$
- x_0 אם חסומה בסביבה נקובה של פונקציה אפסה בפונקציה חסומה) אם .4 $\lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = 0 \quad \text{ Im} \quad \lim_{x \to x_0} g(x) = 0$ ואם $\lim_{x \to x_0} g(x) = 0$
 - 5. גבולות מיוחדים:

$\lim_{x\to\pm\infty} (1+\frac{a}{x})^x = e^a$	$\lim_{x\to 0} (1+ax)^{\frac{1}{x}} = e^a$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{\sin x}{x} = 1$
--	--	---	---------------------------------------

II. <u>פונקציות רציפות</u>

- ו. אז בנקודה g(x) ו- f(x) היינה תהיינת רציפות בנקודה x_0 היינה של פונקציות רציפות. תהיינה
 - (f+g)(x), (f-g)(x), רציפות בנקודה ((f+g)(x)) א.
 - . $g(x_0) \neq 0$ בתנאי ש- (f/g)(x) רציפה בנקודה (f/g)(x)
- . f(c)=0 כך ש- כך $c\in \left(a,b\right)$ הז קיימת נקודה ה $f(a)\cdot f(b)<0$ ו- $\left[a,b\right]$ רציפה ב- f(x) .2
 - רציפה ב- $\left[a,b\right]$ ו- הוא מספר ממשי כך ש .3 f(x) אם f(x) אם פר ממשי כך ש .3 f(c)=t שר $c\in \left(a,b\right)$ או f(a)< t< f(b)

<u>נגזרות</u> . III

- . $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$:הגדרת הנגזרת.
- $f(x_0 + \Delta x) \cong f(x_0) + f'(x_0) \cdot \Delta x$: נוסחת הקירוב הלינארי
- : אם $(x_0,f(x_0))$ גזירה ב- y=f(x) אז משוואת הישר המשיק לגרף y=f(x) היא: . $y=f(x_0)+f'(x_0)(x-x_0)$

וסופיים וסופיים קיימים הגבולות הבאים x_0 אם וגזירה בסביבה של x_0 וגזירה רציפה ב- x_0 אם וגזירה בסביבה של אם הגבולות הבאים קיימים וסופיים .4

:TR
$$L_{+} = \lim_{x \to x_{0}^{+}} f'(x), \quad L_{-} = \lim_{x \to x_{0}^{-}} f'(x)$$

.
$$f'(x_0) = L_{\!\scriptscriptstyle +} = L_{\!\scriptscriptstyle -}$$
 ומתקיים x_0 - גזירה ב- $f(x) \ \ \, \Leftarrow \ \, L_{\!\scriptscriptstyle +} = L_{\!\scriptscriptstyle -}$.

.
$$x_0$$
 - לא גזירה ב $f(x) \ \ \, \ \, \leftarrow L_{\!\scriptscriptstyle +}
eq L_{\!\scriptscriptstyle -}$ ב.

 $.\,x_{_{0}}$ -בנוסף, אם $L_{_{+}}$ או ∞ או ∞ או הם ∞ או הם $L_{_{+}}$ לא גזירה ב-

אז x פונקציות גזירות בנקודה f(x), g(x) 5.

. (
$$g(x) \neq 0$$
 ש בתנאי ש $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - g'(x)f(x)}{\left(g(x)\right)^2}$ $\left(f(x)g(x)\right)' = f(x)g'(x) + f'(x)g(x)$

- $ig(g\circ fig)(x)$ אזי , $y_0=f(x_0)$ בירה ב- g(x) ווירה ב- x_0 גזירה ב- f(x) אזי f(x) הזירה ב- $(g\circ f)'(x_0)=g'(f(x_0))\cdot f'(x_0)$ בירה ב- x_0 ווירה ב- x_0
- $f'(x_0)=0$ אז f(x) אז משפט פרמה: אם אם גזירה ב- x_0 ואם אם x_0 ואם אורה ב- x_0 אז אורה ב-
- -8. משפט דול: תהי f(a) = f(b) אם f(a) = f(b) אם f(a) = f(b) רציפה ב- f(a,b) רציפה ב- f(a,b) אם f(c) = 0
- $c\in(a,b)$ אז קיימת (a,b) אז הערך הממוצע של לגרנג': אם f(x) רציפה ב $\left[a,b\right]$ רציפה ב- $\left[a,b\right]$ רציפה
 - ניח כי: g(x) -1 וניח מסוימת של x_0 (אחת מהגירסאות): יהיו יהיו וf(x) ו- f(x) ויהיו (אחת מהגירסאות)

.
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L$$
 (ג) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (ב) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (ב) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (ב) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (ב) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (ב) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (2) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (2) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (2) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (3) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (2) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (3) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (3) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (4) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (5) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (5) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (5) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (5) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (6) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (7) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (8) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (8) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (8) $\lim_{x \to x_0} f(x) = 0$ (8) $\lim_{x \to x_0} f(x) = 0$ (9) $\lim_{x \to x_0} f(x) = 0$ (10) $\lim_{x \to x_0} f(x) = 0$ (11) $\lim_{x \to x_0} f(x) = 0$ (12) $\lim_{x \to x_0} f(x) = 0$ (13) $\lim_{x \to x_0} f(x) = 0$ (13) $\lim_{x \to x_0} f(x) = 0$ (13) $\lim_{x \to x_0} f(x) = 0$ (14) $\lim_{x \to x_0} f(x) = 0$ (15) $\lim_{x \to x_0} f$

.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L$$
 ומתקיים $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ אז קיים גם הגבול

11. משפט: תהי f(x) אם ורק אם מתקיימים שני f(x) אז וווסונית עולה (במובן חזק) אם ורק אם מתקיימים שני f(x) התנאים:

(a,b) לא קטע חלקי באופן זהותי באף קטע ל'(x) לא f'(x) (ב) א כל $f'(x) \geq 0$ (א)

מקומית קיצון מקומית x_0 , אז x_0 , אז x_0 נקודת קיצון מקומית ב0. ב10. משפט: תהי x_0 פונקציה רציפה ב x_0 משנה את סימנה כאשר היא עוברת דרך הנקודה x_0 אם ורק אם x_0 משנה את סימנה כאשר היא עוברת דרך הנקודה x_0

- f(x) כי ונניח ($f'(x_0)=0$ כלומר (כלומר f(x)) ונניח כי אוניח כי x_0 נקודה טטציונרית של (x_0) ונניח כי (x_0) ונניח כי (x_0) ונניח כי (x_0) אוירה פעמיים ב- x_0
- אז x_0 נקודת מכסימום מקומי (ב) אם $f''(x_0) < 0$ אז אז x_0 נקודת מינימום מקומי (ב) אם $(x_0) > 0$ אז אז $(x_0) > 0$ אז אם
 - 14. משפט (מבחן הנגזרת ה- n-ית): תהי x_0 נקודה כך ש- f(x) גזירה f(x) נקודה כך x_0 וכך שמתקיים . $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$
 - : מקומי קיצון קיצון או אי-זוגי אז x_0 אי-זוגי אז איננה נקודת קיצון מקומי (ii) אם אי
- . אם x_0 אז x_0 אז x_0 אז x_0 נקודת מכטימום מקומי ב. אם x_0 או x_0 אז x_0 אז x_0 אז x_0 או x_0

- f(x) אז $f''(x_0)>0$ אם . $f''(x)\neq 0$ ונניח כי x_0 ונניח בנקודה פעמיים בנקודה פעמיים בנקודה x_0 אם .15 . x_0 -2 פונקציה גזירה פעמיים בנקודה x_0 אם .15 אם . x_0 אם
- $\lim_{x \to \infty} (f(x) ax) = b$ -ו $\lim_{x \to \infty} \frac{f(x)}{x} = a$ אם ורק אם y = f(x) לגרף y = f(x) הוא אטימפטוטה ב- y = ax + b .16

אינטגרלים . **IV**

$$\int f(ax+b) \, dx = \frac{1}{a} F(ax+b)$$
 אז $a \neq 0$ ו- $f(x)$ היא פונקציה קדומה של . 1

. $\int f(u(x))u'(x)dx = F(u(x)) + C$ אז f(x) או פונקציה קדומה של F(x) אם .2

.
$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$
 ב. נוסחת אינטגרציה בחלקים: 3

 $c \in (a,b)$ אז קיימת , $\left[a,b\right]$ אז פונקציה רציפה בקטע f(x) אז קיימת .4

$$f\left[a,b
ight]$$
 נקרא הערך הממוצע של $f_{ave}=rac{\int\limits_{a}^{b}f(x)dx}{b-a}$ נקרא הערך הממוצע של $\int\limits_{a}^{b}f(x)dx=f(c)ig(b-aig)$ כך ש

5. המשפט היסודי של החשבון האינטגרלי:

אם $F(x) = \int\limits_a^x f(t)dt$ אזי הפונקציה אזירה בקטע , $\left[a,b\right]$ אזי היא פונקציה אוירה בקטע f(x)

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$
 ומתקיים השוויון [a,b]

$$\frac{d}{dx} \left(\int_{g(x)}^{h(x)} f(t)dt \right) = f(h(x))h'(x) - f(g(x))g'(x) \quad .6$$

של פונקציה קדומה F(x) ותהי הייפון פונקציה קדומה פונקציה פונקציה חדי תהי פונקציה פו

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$
 אז מתקיים $f(x)$

- , y=f(x) בכל נקודה בקטע .[a,b] יהי A התחום הכלוא בין העקומות $f(x)\geq g(x)$.8 . $a\leq x\leq b$, y=g(x)
 - . $S = \int_{a}^{b} [f(x) g(x)] dx$: A השטח של התחום .1
- $V=\pi\int\limits_a^b \left[f^2(x)-g^2(x)\right]dx$:x-מסתובב סביב ציר הA מסתום התחום .2

טבלת נגזרות ואינטגרציה

1A.	$\int x^n dx = \frac{x^{n+1}}{n+1} + C , (n \neq -1)$	1B.	$(x^n)' = nx^{n-1}$
2A.	$\int \frac{dx}{x} = \ln x + C$	B.2	$(\ln x)' = \frac{1}{x}$
3A.	$\int \sin x dx = -\cos x + C$	3B.	$(\cos x)' = -\sin x$
4A.	$\int \cos x dx = \sin x + C$	4B.	$(\sin x)' = \cos x$
5A.	$\int \frac{dx}{\cos^2 x} = tgx + C$	5B.	$(tgx)' = \frac{1}{\cos^2 x}$
6A.	$\int \frac{dx}{\sin^2 x} = -ctgx + C$	6B.	$(\cot x)' = -\frac{1}{\sin^2 x}$
7A.	$a > 0 \int a^x dx = \frac{a^x}{\ln a} + C$	7B.	$(a^x)' = a^x \ln a (a > 0)$
8A.	$\int e^x dx = e^x + C$	8B.	$(e^x)'=e^x$
9A.	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$	9B.	$(arc \cot x)' = \frac{-1}{1+x^2}$ $(arctgx)' = \frac{1}{1+x^2}$
10A.	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	10B.	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}$
11A.	$\int \sinh x = \cosh x + C$	11B.	$(\cosh x)' = \sinh x$
12A.	$\int \cosh x = \sinh x + C$	12B.	$(\sinh x)' = \cosh x$

<u>נוסחאות טריגונומטריות</u>

1. זהויות בסיסיות

$\cos(-\alpha) = \cos(\alpha)$	$\sin(-\alpha) = -\sin(\alpha)$	$\sin^2\alpha + \cos^2\alpha = 1$
	$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$

2.. פונקציות טריגונומטריות של זוויות מיוחדות

$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$	$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$	$\sin\left(\frac{\pi}{2}\right) = 1 = \cos 0$	$\sin 0 = 0 = \cos\left(\frac{\pi}{2}\right)$
$tg\left(\frac{\pi}{3}\right) = \sqrt{3} = ctg\left(\frac{\pi}{6}\right)$	$ctg\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} = tg\left(\frac{\pi}{6}\right)$	$tg\left(\frac{\pi}{4}\right) = 1$	$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} = \cos\left(\frac{\pi}{4}\right)$

3. פונקציות טריגונומטריות של סכום והפרש זוויות

$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
	$tg(\alpha \pm \beta) = \frac{tg \ \alpha \pm tg \ \beta}{1 \mp tg \ \alpha \ tg \ \beta}$
	$1 \mp tg \alpha tg \beta$

4. פונקציות טריגונומטריות של זווית כפולה

$\sin(2\alpha) = 2\sin\alpha\cos\alpha$	$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$
$\cos(2\alpha) = \frac{1 - tg^2 \alpha}{1 + tg^2 \alpha}$	$\sin(2\alpha) = \frac{2tg\alpha}{1 + tg^2\alpha}$

5. נוסחאות המרה מכפל לסכום

$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$	$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$
	$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$

6. נוסחאות המרה מסכום לכפל

$\cos \alpha + \cos \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$
$\cos \alpha - \cos \beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha - \sin \beta = 2\cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$

פונקציות היפרבוליות

$\cosh(2x) = \cosh^2(x)$	$^2 x + \sinh^2 x$	$\cosh^2 x - \sinh^2 x = 1$	$e^x - e^{-x}$	$e^x + e^{-x}$
sinh(2x) = 2 sinh	$g(x)\cosh(x)$		$sinh x = {2}$	$ cosh x = {2} $

נוסחאות אלגבריות

$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$(a+b)^2 = a^2 + 2ab + b^2$
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$a^2 - b^2 = (a - b)(a + b)$