1 振り返りと導入

前回は期待値と分散を定義した。本稿では次のことを行う:

- 対数分配関数 ψ の C^{∞} 性と、微分と積分の順序交換ができることを示す。
- 分散の基本的な性質を調べる。

前回に引き続き、可測空間 X 上の確率測度全体の集合を $\mathcal{P}(X)$ と書くことにする。また、Einstein の記法を用いる。

2 対数分配関数

本節ではXを可測空間、 $\mathcal{P} \subset \mathcal{P}(X)$ をX上の指数型分布族、 (V,T,μ) を \mathcal{P} の次元mの実現、 $\Theta \subset V^{\vee}$ を自然パラメータ空間、 $\psi \colon \Theta \to \mathbb{R}$ を対数分配関数とする。 V^{\vee} における Θ の内部を Θ° と書くことにする。さらに関数 $h \colon X \times \Theta \to \mathbb{R}$ および $\lambda \colon \Theta \to \mathbb{R}$ を

$$h(x,\theta) := e^{\langle \theta, T(x) \rangle} \qquad ((x,\theta) \in X \times \Theta)$$
 (2.1)

$$\lambda(\theta) := \int_{\mathcal{X}} h(x, \theta) \, \mu(dx) \quad (\theta \in \Theta)$$
 (2.2)

と定める (つまり $\psi(\theta) = \log \lambda(\theta)$ である)。

本節の目標は次の定理を示すことである。

定理 2.1 (λ と ψ の C^{∞} 性と積分記号下の微分). $\varphi = (\theta_1, \ldots, \theta_m)$: $\Theta^{\circ} \to \mathbb{R}^m$ を Θ° 上のチャートとする。この とき、任意の $k \in \mathbb{Z}_{\geq 1}, i_1, \ldots, i_k \in \{1, \ldots, m\}$ に対し、

$$\partial_{i_k} \cdots \partial_{i_1} \lambda(\theta) = \int_{\mathcal{X}} \partial_{i_k} \cdots \partial_{i_1} h(x, \theta) \, \mu(dx) \quad (\theta \in \Theta^{\circ})$$
 (2.3)

が成り立つ (∂_i は $\frac{\partial}{\partial \theta_i} \in \Gamma(T\Theta^\circ)$ の略記)。ただし、左辺の微分可能性および右辺の可積分性も定理の主張に含まれる。とくに λ および ψ は Θ° 上の C^∞ 関数である。

定理 2.1 の証明には次の事実を用いる。

事実 2.2 (積分記号下の微分). $\mathcal Y$ を可測空間、 ν を $\mathcal Y$ 上の測度、 $I\subset\mathbb R$ を開区間、 $f:\mathcal Y\times I\to\mathbb R$ を

- (i) 各 $t \in I$ に対し $f(\cdot,t)$: $\mathcal{Y} \to \mathbb{R}$ が可測
- (ii) 各 $y \in \mathcal{Y}$ に対し $f(y,\cdot): I \to \mathbb{R}$ が微分可能

をみたす関数とする。このとき、fに関する条件

- (1) 各 $t \in I$ に対し $f(\cdot,t) \in L^1(\mathcal{Y},\nu)$ である。
- (2) ある ν -可積分関数 Φ : $\mathbf{y} \to \mathbb{R}$ が存在し、すべての $t' \in I$ に対し $\left| \frac{\partial f}{\partial t}(y,t') \right| \leq \Phi(y)$ a.e.y である。

が成り立つならば、関数 $I \to \mathbb{R}$, $t \mapsto \int_{\mathcal{Y}} f(y,t) \nu(dy)$ は微分可能で、

$$\frac{\partial}{\partial t} \int_{\mathcal{Y}} f(y,t) \, \nu(dy) = \int_{\mathcal{Y}} \frac{\partial f}{\partial t}(y,t) \, \nu(dy) \tag{2.4}$$

が成り立つ。

定理 2.1 の証明において最も重要なステップは、事実 2.2 の前提が満たされることの確認である。そのための補題を次に示す。

補題 2.3 (優関数の存在). e^i ($i=1,\ldots,m$) を V^\vee の基底とし、この基底が定める Θ° 上のチャートを $\varphi = (\theta_1,\ldots,\theta_m) \colon \Theta^\circ \to \mathbb{R}^m$ とおく。このとき、任意の $k \in \mathbb{Z}_{\geq 1},\ i_1,\ldots,i_k \in \{1,\ldots,m\}$ に対し、次が成り立つ:

- (1) 任意の $\theta \in \Theta^{\circ}$ に対し、関数 $\partial_{i_k} \cdots \partial_{i_1} h(\cdot, \theta)$: $X \to \mathbb{R}$ は $L^1(X, \mu)$ に属する。
- (2) 任意の $\theta \in \Theta^{\circ}$ に対し、 Θ° における θ のある近傍 U と、ある μ -可積分関数 $\Phi: X \to \mathbb{R}$ が存在し、すべての $\theta' \in U$ に対し $|\partial_{i_k} \cdots \partial_{i_1} h(x, \theta')| \leq \Phi(x)$ a.e.x が成り立つ。

証明 (1) は (2) より直ちに従うから、(2) を示す。そこで $\theta \in \Theta^{\circ}$ を任意とする。補題の主張は座標 $\theta_1, \ldots, \theta_m$ を平行移動して考えても等価だから、点 θ の座標は $\varphi(\theta) = 0 \in \mathbb{R}^m$ であるとしてよい。

Step 1: U の構成 $\varepsilon > 0$ を十分小さく選び、 \mathbb{R}^m 内の閉立方体

$$A_{2\varepsilon} := \prod_{i=1}^{m} [-2\varepsilon, 2\varepsilon] \quad A_{\varepsilon} := \prod_{i=1}^{m} [-\varepsilon, \varepsilon]$$
 (2.5)

が $\varphi(\Theta^\circ)$ に含まれるようにしておく。すると $U := \varphi^{-1}(\operatorname{Int} A_\varepsilon) \subset \varphi(\Theta^\circ)$ は θ の近傍となるが、これが求める U の条件を満たすことを示す。

Step 2: h の座標表示 まず具体的な計算のために h の座標表示を求める。いま各 $\theta' \in U$ に対し

$$h(x, \theta') = \exp\langle \theta', T(x) \rangle = \exp\langle \theta_i(\theta')e^i, T(x) \rangle = \exp\left(\theta_i(\theta')T^i(x)\right)$$
 (2.6)

が成り立っている。ただし $T^i: X \to \mathbb{R}, x \mapsto \langle e^i, T(x) \rangle$ (i = 1, ..., m) とおいた。したがって

$$\partial_{i_k} \cdots \partial_{i_1} h(x, \theta') = T^{i_1}(x) \cdots T^{i_k}(x) \exp\left(\theta_i(\theta') T^i(x)\right)$$
(2.7)

と表せることがわかる。

<u>Step 3: Φ の構成</u> Φ を構成するため、式 (2.7) の絶対値を上から評価する。表記の簡略化のため $t' \coloneqq (t'_1, \ldots, t'_m) \coloneqq \varphi(\theta') \in \mathbb{R}^m$ とおいておく。まず $\frac{k+1}{\varepsilon} \frac{\varepsilon}{k+1} = 1$ より

$$\left| T^{i_1}(x) \cdots T^{i_k}(x) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right) \right| = \left(\frac{k+1}{\varepsilon}\right)^k \left(\prod_{\alpha=1}^k \frac{\varepsilon}{k+1} |T^{i_\alpha}(x)|\right) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right)$$
(2.8)

$$\prod_{\alpha=1}^{k} \frac{\varepsilon}{k+1} |T^{i_{\alpha}}(x)| \le \prod_{\alpha=1}^{k} \left(\exp\left(\frac{\varepsilon}{k+1} T^{i_{\alpha}}(x)\right) + \exp\left(-\frac{\varepsilon}{k+1} T^{i_{\alpha}}(x)\right) \right) \quad (\because s \le e^{s} + e^{-s} \ (s \in \mathbb{R}))$$
 (2.9)

$$= \sum_{\alpha \in \{\pm 1\}^k} \exp \left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x) \right) \quad (:: 式の展開)$$
 (2.10)

(ただし σ_{α} は σ の第 α 成分)となるから、式(2.8)と式(2.10)を合わせて

$$(2.8) \le C \sum_{\alpha \in \{+1\}^k} \exp\left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x)\right) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right)$$

$$(2.11)$$

$$= C \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x) + \sum_{i=1}^m t_i' T^i(x)\right)$$
(2.12)

となる。ただし $C:=\left(\frac{k+1}{\varepsilon}\right)^k\in\mathbb{R}_{>0}$ とおいた。ここで最終行の exp の中身について、各 $i=1,\ldots,m$ に対し $T^i(x)$ の係数を評価することで、ある $t''\in A_{2\varepsilon}$ が存在して

$$(2.12) = C \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{i=1}^m t_i'' T^i(x)\right) = 2^k C \exp\left(\sum_{i=1}^m t_i'' T^i(x)\right)$$
(2.13)

と表せることがわかる。そこで $|t_i''| \le 2\varepsilon$ (i = 1, ..., m) より

$$(2.13) \le 2^k C \prod_{i=1}^m \left(\exp\left(2\varepsilon T^i(x)\right) + \exp\left(-2\varepsilon T^i(x)\right) \right)$$
(2.14)

$$=2^{k}C\sum_{\tau\in\{\pm 1\}^{m}}\exp\left(\sum_{i=1}^{m}2\varepsilon\tau_{i}T^{i}(x)\right) \tag{2.15}$$

を得る。この右辺は (t' によらないから) θ' によらない X 上の関数であり、また \sum の各項が $2\varepsilon\tau\in A_{2\varepsilon}$ ゆえに μ -可積分だから式全体も μ -可積分である。したがってこれが求める優関数である。

目標の定理 2.1 を証明する。

定理 2.1 の証明. 定理 2.1 のステートメントで与えられているチャート $\varphi = (\theta_1, ..., \theta_m)$ は (V^{\vee}) の基底が定めるものとは限らない) 任意のものであるが、実は定理の主張を示すには、 V^{\vee} の基底をひとつ選び、その基底が定めるチャート $\widetilde{\varphi} = (\widetilde{\theta}_1, ..., \widetilde{\theta}_m)$ に対して定理の主張を示せば十分である。その理由は次である:

- 式 (2.3) の左辺の微分可能性は、 λ が C^{∞} であればよいから、チャート $\widetilde{\varphi}$ で考えれば十分。
- 式 (2.3) の右辺の可積分性および式 (2.3) の等号の成立については、Leibniz 則より、 λ の $\widetilde{\theta}_1, \ldots, \widetilde{\theta}_m$ に関する k 回偏導関数が、 λ の $\theta_1, \ldots, \theta_m$ に関する k 回以下の偏導関数たちの (x によらない) $C^{\infty}(\Theta^{\circ})$ -係数の線型結合に書けることから従う。

そこで、以降 φ は V^{\vee} の基底が定めるチャートとする。

補題 2.3 (1) より、式 (2.3) の右辺の可積分性はわかっている。よって、残りの示すべきことは

- (i) 式 (2.3) の左辺の微分可能性
- (ii) 式 (2.3) の等号の成立

の2点である。

まず k=1, $i_k=1$ の場合に (i), (ii) が成り立つことを示す。そのためには、 $t=(t_1,\ldots,t_m)\in\varphi(\Theta^\circ)$ を任意に固定したとき、 t_1 を含む $\mathbb R$ の十分小さな開区間 I が存在して、関数

$$g: \mathcal{X} \times I \to \mathbb{R}, \quad (x, s) \mapsto h(x, \varphi^{-1}(s, t_2, \dots, t_m))$$
 (2.16)

が事実 2.2 の仮定 (1), (2) をみたすことをいえばよい。

いま $\varphi^{-1}(t) \in \Theta^{\circ}$ だから、補題 2.3(2) のいう Θ° における $\varphi^{-1}(t)$ の近傍 U と μ -可積分関数 $\Phi: X \to \mathbb{R}$ が存在する。このとき $\varphi(U)$ は \mathbb{R}^m における t の近傍となるから、 t_1 を含む \mathbb{R} の十分小さな開区間 I が存在して

$$I \times \{t_2\} \times \dots \times \{t_m\} \subset \varphi(U) \tag{2.17}$$

が成り立つ。この I を用いて定まる関数 g が事実 2.2 の仮定 (1), (2) をみたすことを確認する。

まず補題 2.3 の結果 (1) より、g は事実 2.2 の仮定 (1) をみたす。また補題 2.3 の結果 (2) より、g は事実 2.2 の仮定 (2) をみたす。したがって k=1, $i_k=1$ の場合について (i),(ii) が示された。

同様にして $i_k=2,\ldots,m$ の場合についても示される。以降、k に関する帰納法で、すべての $k\in\mathbb{Z}_{\geq 1}$ および $i_1,\ldots,i_k\in\{1,\ldots,m\}$ に対して示される。これで定理の証明が完了した。

定理2.1から次の系が従う。

系 2.4. $\varphi = (\varphi_1, \dots, \varphi_m)$: $\Theta^{\circ} \to \mathbb{R}^m$ を V^{\vee} の基底が定めるチャートとする。また、各 $\theta \in \Theta$ に対し、X 上の確率測度 P_{θ} を $P_{\theta}(dx) = e^{\langle \theta, T(x) \rangle - \psi(\theta)}$ $\mu(dx)$ と定める。このとき、任意の $k \in \mathbb{Z}_{\geq 1}$, $i_1, \dots, i_k \in \{1, \dots, m\}$ に対し、

$$E_{P_{\theta}}[T^{i_k}(x)\cdots T^{i_1}(x)] = \frac{\partial_{i_k}\cdots\partial_{i_1}\lambda(\theta)}{\lambda(\theta)} \quad (\theta \in \Theta^{\circ})$$
(2.18)

が成り立つ。ただし、左辺の期待値の存在も系の主張に含まれる。

例 2.5 (正規分布族における原点周りのモーメント). \mathcal{P} が $X = \mathbb{R}$ 上の正規分布族であるとき、任意の $P \in \mathcal{P}$ に対し、P に関する x, x^2, \ldots の期待値 $E_P[x], E_P[x^2], \ldots$ が存在する。

3 分散の性質

以降、本節ではXを可測空間、V を m 次元 \mathbb{R} -ベクトル空間 ($m \in \mathbb{Z}_{\geq 0}$)、p を X 上の確率測度、 $f: X \to V$ を可測写像とする。

前回の正規分布族の例では、十分統計量の分散が正定値対称であることをみた。一般に、分散は次の性質を持つ。

定理 3.1 (分散の半正定値対称性). $f \in L^2(X,p;V)$ とする。このとき、 $\mathrm{Var}_p[f] \in V \otimes V$ は、対称かつ半正定値である。

証明 まず $\operatorname{Var}_p[f]$ が対称であることを示す。そこで V の基底 e_i $(i=1,\ldots,m)$ をひとつ選んで固定し、 $f,E_p[f]$ の成分表示をそれぞれ $f^i\colon X\to\mathbb{R}$ および $a^i\in\mathbb{R}$ $(i=1,\ldots,m)$ とおく。すると

$$\operatorname{Var}_{p}[f] = E_{p}[(f - E_{p}[f])^{2}] = \left(\int_{\mathcal{X}} (f^{i}(x) - a^{i})(f^{j}(x) - a^{j}) \, p(dx) \right) e_{i}e_{j} \tag{3.1}$$

となり、最終行の成分は添字i,jの置換に関し不変である。したがって $V_{v}[f]$ は対称である。

つぎに $\mathrm{Var}_p[f]$ が半正定値であることを示す。示すべきことは、 $\mathrm{Var}_p[f]$ を V^\vee 上の \mathbb{R} -双線型形式とみなして、各 $\theta \in V^\vee$ に対し $\mathrm{Var}_p[f](\theta,\theta) \geq 0$ が成り立つことであるが、これは

$$\operatorname{Var}_{p}[f](\theta,\theta) = \sum_{i,j=1}^{m} \left(\int_{\mathcal{X}} (f^{i}(x) - a^{i})(f^{j}(x) - a^{j}) \, p(dx) \right) \theta(e_{i}) \theta(e_{j}) \tag{3.2}$$

$$= \int_{X} \left(\sum_{i=1}^{m} \theta(e_i) (f^i(x) - a^i) \right)^2 p(dx) \tag{3.3}$$

$$\geq 0 \tag{3.4}$$

より従う。したがって $\operatorname{Var}_{v}[f]$ は半正定値である。

分散が0であることの特徴づけを与えておく。

命題 3.2 (分散が 0 であるための必要十分条件). $f \in L^2(X,p;V)$ に関し、次は同値である:

- (1) $\operatorname{Var}_{p}[f] = 0$
- (2) f は p-a.e. 定数

証明には次の事実を用いる。

事実 3.3. \mathbf{y} を可測空間、 μ を \mathbf{y} 上の測度とする。このとき、 μ -可積分関数 $g: \mathbf{y} \to \mathbb{R}$ であって $g(y) \geq 0$ μ -a.e. $y \in \mathbf{y}$ をみたすものに関し、次は同値である:

$$(1) \quad \int_{\mathcal{Y}} g(y) \, \mu(dy) = 0$$

(2)
$$g(y) = 0$$
 μ -a.e. $y \in \mathcal{Y}$

命題 3.2 の証明. ここでは「p-a.e.」を「a.e.」と略記する。V の基底 e_i ($i=1,\ldots,m$) をひとつ選んで固定し、f , $E_v[f]$ の成分表示をそれぞれ $f^i: X \to \mathbb{R}$ および $a^i \in \mathbb{R}$ ($i=1,\ldots,m$) とおいておく。

(<u>←</u>) f が a.e. 定数ならば、 $f^i(x) = a^i$ a.e.x (i = 1, ..., m) したがって $(f^i(x) - a^i)(f^j(x) - a^j) = 0$ a.e.x (i, j = 1, ..., m) である。よって $\int_X (f^i(x) - a^i)(f^j(x) - a^j) p(dx) = 0$ (i, j = 1, ..., m) だから $\operatorname{Var}_p[f] = 0$ である。

(⇒) 対偶を示すため、f は a.e. 定数ではないと仮定する。すると、 f_i が a.e. 定数ではないようなある $i \in \{1,\ldots,m\}$ が存在する。このとき $(f^i-a^i)^2=0$ a.e. ではないから、事実 3.3 より $\int_X (f^i(x)-a^i)^2 p(dx)>0$ である。したがって $\mathrm{Var}_p[f]\neq 0$ である。

4 今後の予定

- Hessian の定義と ψ の Hessian の正定値性を示す。
- KL ダイバージェンスを定義する。
- Fisher 計量を定義する。

5 参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[Bro86] L. D. Brown, Fundamentals of statistical exponential families: with applications in statistical decision theory, Institute of Mathematical Statistics, 1986.

[Dud03] Richard Dudley, **18.466 Mathematical Statistics**, Spring **2003**, 2003, https://dspace.mit.edu/handle/1721.1/103814, Last accessed on 2023-05-14.