MATH S1202:	Calculus IV	Name:	

 $\mathbf{Summer}\ \mathbf{2018}$

Exam Number 1

June 5, 2018

Time Limit: 95 minutes

Question	Points	Score
1	10	
2	10	
3	12	
4	12	
5	10	
6	14	
7	18	
8	14	
Total	100	

1. [10 points] Find the area of the region bounded by the curve $y = x^2$ and the lines y = 0 and x = 1.

Exam Number 1

2. [10 points] Compute the integral of $f(x,y) = \sqrt{1+y^3}$ over the region D bounded by the curve $y = \sqrt{x}$ and the lines y = 1 and x = 0.

3. [12 points] Compute the volume of the solid region lying above the xy-plane and below the surface $z = \sqrt{1 - x^2 - y^2}$.

4. [12 points] Compute the surface area of the portion of the plane z+9x+3y=6 lying in the first octant.

Exam Number 1

5. [10 points] Rewrite the iterated integral

$$\int_{-2}^{2} \int_{0}^{4-x^{2}} \int_{8-2y}^{8} f(x, y, z) \, dz \, dy \, dx$$

as an iterated integral in the order dx dy dz.

6. [14 points] Find the integral $\iiint_E (x^2 + y^2 + z^2)^{-1} dV$ where E is the region that lies above the cone $z = \sqrt{x^2 + y^2}$ and between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.

7. [18 points] Evaluate

$$\iint_{R} \frac{x-y}{x+y} \, dA$$

where R is the square with vertices (1,0), (1/2,1/2), (1,1), (3/2,1/2).

Exam Number 1

(7. continued)

8. [14 points] Fix a point (a, b) in the plane. Compute the volume of the solid region lying in the cylinder $(x-a)^2+(y-b)^2=1$, above the xy-plane, and below the paraboloid $z=(x-a)^2+(y-b)^2$. (Hint: Consider the shifted polar coordinates $x=r\cos(\theta)+a$ and $y=r\sin(\theta)+b$.)

Exam Number 1

Exam Number 1

(8. continued)