DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Advanced Probability Theory and Statistics: Inequalities, Convergence of Random Variables, Confidence Intervals, and Hypothesis Tests

Kim Steenstrup Pedersen

Probability theory

- Bounds on expectations and tail probabilities
- Limit theorems for random variables
- Student-t distribution and Chi-square distribution

Statistics

- Confidence intervals
- Hypothesis tests the t-test

- It is not always possible to compute expectations and probabilities analytically (exactly).
- Instead we can do
 - Simulation by sampling the Monte Carlo approach. More on this after Christmas
 - Bounds using inequalities. Has many applications in statistics and in theoretical machine learning. This is todays topic.
 - Approximations using limit theorems. This is also todays topic.

Bounds using Inequalities

Cauchy-Schwarz: A marginal bound on joint expectation

 Theorem Cauchy-Schwarz: For any random variables (r.v.) X and Y with finite variances,

$$|E[XY]| \le \sqrt{E[X^2]E[Y^2]}$$

where $|\cdot|$ denotes absolute value.

• Simple example: Using the trick $X = X \cdot 1$ and Cauchy-Schwarz, we have $|E[X \cdot 1]| \le \sqrt{E[X^2]E[1^2]}$

Rearranging and substitution gives

$$|E[X \cdot 1]| = |E[X]| \le \sqrt{E[X^2]} \Rightarrow (E[X])^2 \le E[X^2]$$

Hence variance is always nonnegative.

Jensen's Inequality: Functions of r.v.'s and expectations

- Theorem Jensen's Inequality: Let X be a r.v. If g is a convex function, then $E[g(X)] \ge g(E[X])$. If g is concave, then $E[g(X)] \le g(E[X])$. Equality holds only, if there are constants a and b, such that g(X) = a + bX (g is linear) with probability 1.
- (This theorem is important within Mathematical Information Theory.)

Markov, Chebyshev: Bounds on tail probabilities

Theorem Markov: For any r.v. X and constant a > 0,

$$P(|X| \ge a) \le \frac{E[|X|]}{a}$$

• Theorem Chebyshev: Let X have mean μ and variance σ^2 , then for any a > 0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

(A specialization of the Markov inequality)

Tail probabilities

Markov inequality for a Normal distributed r.v. X with $N(0,\sigma^2)$

$$\lim_{a \to \infty} \frac{E[|X|]}{a} = 0, \text{ hence } \lim_{a \to \infty} P(|X| \ge a) = 0$$

Convergence properties of sums of random variables

Law of Large Numbers

• Consider independent and identically distributed (i.i.d.) r.v.'s X_1 , X_2 , X_3 , ... with finite mean μ and finite variance σ^2 and the sample mean

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

• Realize that this is also a r.v. (a function of r.v.'s) with

$$E\left[\overline{X}_{n}\right] = \frac{1}{n}E\left(X_{1} + \dots + X_{n}\right) = \frac{1}{n}\left(E\left[X_{1}\right] + \dots + E\left[X_{n}\right]\right) = \frac{1}{n}\left(n\mu\right) = \mu$$

$$\operatorname{Var}\left[\overline{X}_{n}\right] = \frac{1}{n^{2}}\operatorname{Var}\left(X_{1} + \dots + X_{n}\right) = \frac{1}{n^{2}}\left(\operatorname{Var}\left[X_{1}\right] + \dots + \operatorname{Var}\left[X_{n}\right]\right)$$

$$= \frac{1}{n^{2}}\left(n\sigma^{2}\right) = \frac{\sigma^{2}}{n}$$

Law of Large Numbers

- **Intuition:** The law of large numbers state that as *n* increases, the sample mean $\,\overline{\!X}_{\scriptscriptstyle x}\,$ converges to the true mean μ . It comes in two flavours – the strong and weak law of large numbers.
- Theorem Weak law of large numbers: For all $\varepsilon > 0$, $\lim_{n\to\infty} P(\left|\overline{X}_n - \mu\right| > \varepsilon) = 0$
- Proof: We just need to use Chebyshev's inequality

$$P(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$$

 $P(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$ and since $\lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0$, so does the probability.

The Central Limit Theorem

- What's the distribution of the r.v. \bar{X}_n as n increases?
- Central Limit Theorem: As $n \to \infty$,

$$\sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \rightarrow N(0,1)$$
 in distribution

we consider the distribution of this r.v.

• Note: Standardization of r.v. refers to subtracting the mean and division by the standard deviation. This is done above to $\overline{X}_{\scriptscriptstyle n}$

Lets look at a couple of named distributions we need now

Chi-square (χ_n^2) distribution

- **Definition:** Let $V = Z_1^2 + ... + Z_n^2$ where $Z_1^2, ..., Z_n$ are i.i.d. N(0,1). Then V is said to have the Chi-square distribution with n degrees of freedom and we write $V \sim \chi_n^2$.
- The χ_n^2 distribution is a special case of the Gamma distribution, $\operatorname{Gamma}\left(\frac{n}{2},\frac{1}{2}\right)$
- The probability density function (PDF) is given by

$$f_V(v) = \frac{1}{\Gamma(n/2)} \left(\frac{1}{2}v\right)^{n/2} \frac{1}{v} e^{-\frac{1}{2}v}, v > 0$$

Relates to the distribution of sample variance.

 Definition: The t-distribution with n degrees of freedom is defined as by this r.v.

$$T = \frac{Z}{\sqrt{V/n}}$$

where $Z \sim N(0,1)$ and $V \sim \chi_n^2$ and Z is independent if V.

The PDF is given by

$$f_T(t) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} (1+t^2/n)^{-(n+1)/2}$$

Confidence intervals and hypothesis testing

Parameter estimation

- We want to estimate parameters of a probability distribution model.
- The function computing the estimate is called an estimator.
- If the estimator provides a specific value for our parameter, this is called a **point estimate**.
- **Example:** Computing the sample mean of a Normal distributed r.v. is a point estimator for the mean parameter. Let $x_1, ..., x_n$ be samples from a normal distributed r.v. X, then the **sample mean** is

$$\overline{x} = \frac{1}{n} \left(x_1 + \dots + x_n \right)$$

 But we can also compute an interval within which the true estimate (value) lies with a chosen probability (confidence level). This is referred to as a confidence interval.

Confidence interval for the mean of a normal distribution with known variance.

Step 1. Choose a confidence level γ (95%, 99%, or the like).

Step 2. Determine the corresponding c: \leftarrow Critical value

γ	0.90	0.95	0.99	0.999	
c	1.645	1.960	2.576	3.291	

Step 3. Compute the mean \bar{x} of the sample x_1, \dots, x_n .

Step 4. Compute $k = c\sigma/\sqrt{n}$. The confidence interval for μ is

CONF,
$$\{\bar{x} - k \le \mu \le \bar{x} + k\}$$
.

Confidence level?

Pick an interval [-c,c] such that with probability γ (e.g. 95%), the true parameter value is within this interval

- First consider the mean estimator as a r.v. and transform so it becomes standard normal distributed (i.e. X~N(0,1)).
- Our problem can then be defined as

$$P\left(-c \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le c\right) = \Phi(c) - \Phi(-c) = \gamma$$

• Where $\Phi(c)$ is the CDF of the standard normal distribution.

Table A8 Normal Distribution

Values of z for given values of $\Phi(z)$ [see (3), Sec. 24.8] and $D(z) = \Phi(z) - \Phi(-z)$ Example: z = 0.279 if $\Phi(z) = 61\%$; z = 0.860 if D(z) = 61%.

%	z(Φ)	z(D)	%	₹(Φ)	z(D)	%	г(Φ)	z(D)
1	-2.326	0.013	41	-0.228	0.539	81	0.878	1.311
2	-2.054	0.025	42	-0.202	0.553	82	0.915	1.341
3	-1.881	0.038	43	-0.176	0.568	83	0.954	1.372
4	-1,751	0.050	44	-0.151	0.583	84	0.994	1.405
5	-1.645	0.063	45	-0,126	0.598	85	1,036	1.440
6	-1.555	0.075	46	-0.100	0.613	86	1.080	1,476
7	-1.476	0.088	47	-0.075	0.628	87	1.126	1.514
8	-1.405	0.100	48	-0.050	0.643	88	1.175	1.555
9	-1.341	0.113	49	-0.025	0.659	89	1.227	1.598
10	-1.282	0.126	50	0.000	0.674	90	1.282	1.645
11	-1.227	0.138	51	0.025	0.690	91	1.341	1.695
12	-1.175	0.151	52	0.050	0.706	92	1.405	1.751
13	-1.1 2 6	0.164	53	0.075	0.722	93	1.476	1.812
14	-1.080	0.176	54	0.100	0.739	94	1.555	1.881
15	-1.036	0.189	55	0.126	0.755	95	1.645	1.960

How to find the interval limits c?

- First consider the mean estimator as a r.v. and transform so it becomes standard normal distributed (i.e. X~N(0,1)).
- Our problem can then be defined as

$$P\left(-c \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le c\right) = \Phi(c) - \Phi(-c) = \gamma$$

- Where Φ(c) is the CDF of the standard normal distribution.
- In python we can compute this by

Percent Point Function (PPF): Inverse lookup in the CDF

Confidence interval for the mean of a normal distribution with known variance.

Step 1. Choose a confidence level γ (95%, 99%, or the like).

Step 2. Determine the corresponding c:

γ	0.90	0.95	0.99	0.999	
c	1.645	1.960	2.576	3.291	

Step 3. Compute the mean \bar{x} of the sample x_1, \dots, x_n .

Step 4. Compute $k = c\sigma/\sqrt{n}$. The confidence interval for μ is

CONF,
$$\{\bar{x} - k \leq \mu \leq \bar{x} + k\}$$
.

Confidence interval for mean of the Normal distribution with unknown variance

Step 1. Choose a confidence level γ (95%, 99%, or the like).

Step 2. Determine the solution c of the equation

Whats this?
$$F(c) = \frac{1}{2}(1 + \gamma)$$

from the table of the *t*-distribution with n-1 degrees of freedom (Table A9 in App. 5; or use a CAS; n = sample size).

Step 3. Compute the mean \bar{x} and the variance s^2 of the sample x_1, \dots, x_n .

Step 4. Compute $k = cs/\sqrt{n}$. The confidence interval is

$$CONF_{\gamma} \{ \bar{x} - k \leq \mu \leq \bar{x} + k \}.$$

Why do we need the t-distribution for the critical value?

• **Theorem:** Let $X_1, ..., X_n$ be i.i.d. normal r.v.'s with mean μ and variance σ^2 . Then the r.v.

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

is t-distributed with n-1 degrees of freedom (d.f). Where \overline{X} is the sample mean and the sample variance is

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (X_{j} - \bar{X})^{2}$$

How to find the interval limits c?

- As before we consider the mean estimator as a r.v. and transform so it zero mean and unit variance.
- Our problem can then be defined as

$$P\left(-c \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le c\right) = F(c) - F(-c) = \gamma$$

- Where F(c) is the CDF of the t-distribution of d.f. n-1.
- Using symmetry of the t-distribution F(-c)=1-F(c) and substition in above gives us

$$F(c) - F(-c) = \gamma \Rightarrow 2F(c) = 1 + \gamma \Rightarrow F(c) = (1 + \gamma)/2$$

In python we can compute this by

Confidence interval for mean of the Normal distribution with unknown variance

Step 1. Choose a confidence level γ (95%, 99%, or the like).

Step 2. Determine the solution c of the equation

$$F(c) = \frac{1}{2}(1 + \gamma)$$

from the table of the *t*-distribution with n-1 degrees of freedom (Table A9 in App. 5; or use a CAS; n = sample size).

Step 3. Compute the mean \bar{x} and the variance s^2 of the sample x_1, \dots, x_n .

Step 4. Compute $k = cs/\sqrt{n}$. The confidence interval is

$$CONF_{\gamma} \{ \bar{x} - k \leq \mu \leq \bar{x} + k \}.$$

Confidence intervals for parameters of other distributions

- No problem! We just need to invoke the central limit theorem and use more samples.
- This works as long as the individual r.v.'s are i.i.d. and have finite variance and our estimator is a sum of these r.v.'s (e.g. computing the sample mean).
- If so, then we can just use one of the techniques mentioned to compute confidence intervals.

- What's the distribution of the r.v. \bar{X}_n as n increases?
- Central Limit Theorem: As $n \to \infty$,

$$\sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \rightarrow N(0,1)$$
 in distribution

• Note: Standardization of r.v. refers to subtracting the mean and division by the standard deviation. This is done above to $\overline{X}_{\scriptscriptstyle n}$

Hypothesis testing

- Assume we have a set of samples $x_1, ..., x_n$ from some r.v. X, and we would like to verify whether a specific assumption about the data is correct or not.
- **Example:** We hypothesize that the average price of food in the Biocenter canteen have stayed constant since last year, where the average price was kr. 50,-. We have collected data by buying 8 meals and recording the price. Using hypothesis testing we can evaluate whether the hypothesis holds or not.

Hypothesis testing - intuition

Pick a (null) hypothesis, a significance level α , and find a critical value c based on the distribution of a test statistics (function of the samples).

Fig. 531. t-distribution in Example 1

Types of (null) hypotheses and alternatives

• Consider an unknown parameter θ and the null hypothesis θ = θ_0 . There are 3 types of alternatives

 $\theta > \theta_0$ $\theta < \theta_0$ $\theta \neq \theta_0$ Called right-sided, left-sided, and two-sided tests.

6 steps of hypothesis testing

- 1. Formulate a **hypothesis** $\theta = \theta_0$ to be tested (also called the **null hypothesis**)
- 2. Formulate an **alternative** $\theta = \theta_1$.
- 3. Choose significant level α (e.g. 5%, 1%, 0.1%, ...).
- 4. Use a r.v. $\Theta = g(X_1, ..., X_n)$ as test statistics, whose distribution depends on the hypothesis and alternative. Compute a critical value c based on this distribution by $P(\Theta \le c) = \alpha$.
- 5. Use samples $x_1, ..., x_n$ to compute observed value $\theta = g(x_1, ..., x_n)$.
- 6. Accept or reject the hypothesis, depending on the size of θ relative to c based on the choice of test type.

T-test (a specific choice of test statistics)

• Assume that the data is normal distributed with known mean μ but unknown variance σ^2 , then the relevant test statistics is

$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

which we, by now, know is t-distributed with n-1 d.f.'s – this is what we use to find the critical value *c*.

- **Example:** We hypothesize that the average price of food in the Biocenter canteen have stayed constant since last year, where the average price was kr. 50,-. We have collected data by buying *n*=8 meals and recording the price. Using hypothesis testing we can evaluate whether the hypothesis holds or not.
- The observed prices are x = [55, 54, 48, 75, 61, 65, 61, 49]

Example of a two-sided t-test

- Lets assume the prices are normal distributed with mean 50 kr, but unknown variance.
- We choose the null hypothesis μ_0 = 50 kr
- The alternative is µ₁ ≠ µ₀, hence we have to perform a two-sided t-test.
- Lets choose the significance level to be α =5% (its not a live or death decision we are making here)
- Our test statistics is t-distributed with d.f. n-1 = 7

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

Example of a two-sided t-test

- The sample mean is $\bar{x} = 58.5$ and sample standard deviation is s = 8.94
- Our test statistics is for the samples we have

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{58.5 - 50}{8.94 / \sqrt{8}} = 2.69$$

- Since we are doing a two-sided t-test at significance level α =5%, we find c_1 and c_2 by inverse lookup in the t-distribution CDF at P(T $\leq c_1$)= $\alpha/2$ and P(T $\leq c_2$)=1- $\alpha/2$. We get c_1 = -2.37 and c_2 = 2.37.
- Since t>c₂, we reject the hypothesis of constant price. In fact, it is increasing!

Summary

- Inequalities, law of large numbers, and the central limit theorem can be used to proof various central results of probability theory and statistics.
- Inequalities are also essential in Machine Learning to proof theoretical bounds on the performance of algorithms.
- Confidence intervals provide an interval estimate of a parameter from a sample of data. The mid-point of the interval can act as point estimate and the interval as error bars on the estimate.
- Perform a statistical test of a hypothesis based on a sample of data. We looked specifically at the t-test.

Reading material

- Inequalities, law of large numbers, central limit theorems, and distributions:
 - Blitzstein & Hwang, Ch. 10.1 10.5
- Confidence intervals and hypothesis tests:
 - Kreyszig, Ch. 25.1, 25.3, 25.4
- Supplemental reading:
 - Blitzstein & Hwang, Ch. 4.4 on indicator random variables and the fundamental bridge (needed for some proofs and examples in Ch. 10).