Ficha nº 1 de Preparação para o Teste

- 1. Selecione a opção correta de entre as alternativas que lhe são apresentadas.
- 1.1 Sabendo que a área do quadrado [ABCD] é de $36\ cm^2$ diz qual é o raio do círculo circunscrito ao quadrado.

3√2 cm

 $2\sqrt{3}$ cm

1.2 O valor da expressão $\frac{\left(1-\sqrt{3}\right)^2-4}{1-\sqrt{3}}$ é igual a:

$$3+\sqrt{3}$$

 $\frac{3+\sqrt{3}}{3}$

$$-\frac{3+\sqrt{3}}{3}$$

 $\frac{-3+\sqrt{3}}{3}$

1.3 Considera a expressão $\frac{a}{2\sqrt[4]{a}}$, com $a \in \mathbb{N}$.

Indica qual das opções apresenta uma expressão equivalente à dada.

 $\sqrt[4]{a^3}$

 $\frac{\sqrt[4]{a}}{2}$

 $\frac{\sqrt[4]{a^3}}{2}$

⁴√a

1.4 Simplificando a expressão obtém-se:

$$\frac{\sqrt[6]{3}\times\sqrt{2}\times\sqrt[3]{2}}{\sqrt[6]{32}}-\frac{\sqrt[6]{3}}{2}$$

∜3

 $\frac{\sqrt{3}}{2}$

 $\frac{\sqrt[6]{3}}{2}$

 $\sqrt{3}$

1.5 A expressão $\sqrt[3]{-x^5}$ é equivalente, em \mathbb{R} , a:							
	$x^{3}\sqrt{x^{2}}$						
1.6 Indica, das opções seguintes, a que representa uma expressão equivalente a:							
	$\frac{\sqrt[3]{a^5}}{\sqrt{a^3}}$, $a>0$						
	a						
$\sqrt[6]{a}$	$\sqrt[3]{a^2}$						
1.7 A expressão $\sqrt{5(x-1)^2}$ é equivalente, em \mathbb{R} , a:							
$\sqrt{5}(x-1)$	5(x-1)						
$\boxed{ 5 x-1 }$	$\sqrt{5} x-1 $						
1.8 Seja a um número real superior a um. Então $rac{\sqrt{a}-a}{1-\sqrt{a}}$ é igual a:							
$\boxed{ 1 - a\sqrt{a}}$	\sqrt{a}/a						
$a-\sqrt{a}$	\sqrt{a}						
1.9 Considera o polinómio $P(x) = ax^3 - 3$	ax + 5, onde a é um número real diferente de zero.						
O valor real de a parao qual -1 é raiz do polinómio $P(x)$ é:							
$-\frac{5}{2}$	$\frac{5}{2}$						
$-\frac{5}{4}$	$\frac{5}{4}$						

1.10 Sejam x e y dois números reais positivos. A expressão seguinte é equivalente a:

$$\frac{\sqrt{x} \times \sqrt[3]{y^2}}{\sqrt[6]{x^2 \times y}}$$

$$x^{\frac{1}{2}} \times y^{\frac{1}{3}}$$

$$x^{\frac{1}{2}} \times y^{\frac{1}{6}}$$

$$x^{\frac{1}{6}} \times y^{\frac{1}{2}}$$

$$x^{\frac{1}{6}} \times y^{\frac{1}{3}}$$

1.11 O resto da divisão de $A(x) = x^5 - 3x^2 + 2x + 1$ por B(x) = x - 1 é:

$$-8x + 52$$

$$3x^2 - 2x + 12$$

$$3x^3 + 10x^2 + 40x + 160$$

$$x^2-2x$$

1.12 Qual das seguintes afirmações é necessariamente verdadeira?

		A soma de	dois	polinómios	de grau	dois é	um	polinómio	de grau	dois.
--	--	-----------	------	------------	---------	--------	----	-----------	---------	-------

A diferença de dois polinómios de grau dois é um polinómio de grau zero.

O produto de	dois polinómios	de grau do	is é um po	linómio de	grau quatro
- p a.		g			9.00.90.00.0

O quociente de dois polinómios de grau dois é um polinómio de grau um.

2. Resolve, em \mathbb{R} , as seguintes equações:

$$2.1 x^2 = 64$$

$$2.2 x^2 = -64$$

$$2.3 x^3 = 64$$

$$2.4 x^3 = -64$$

$$2.5 x^4 = 0$$

$$2.6 x^5 = 1$$

3. Simplifica as seguintes expressões, apresentando o resultado com denominador racional.

$$3.1 \, \frac{\sqrt{5} - \sqrt{20}}{1 - \sqrt{5}}$$

$$3.2\frac{\left(1-\sqrt{2}\right)^2-3}{\sqrt{2}}$$

$$3.3 \frac{\sqrt{125} + \sqrt{20} - \sqrt{45}}{\sqrt{5} - 3}$$

4. Na figura 2 está representada parte da reta numérica e nela assinalados os pontos O, A, B, C, D e E.

Sabe-se que $\overline{\it CE}=10$. Determina, sem recorrer à calculadora, o valor exato de $\frac{\overline{\it AC}}{\overline{\it OD}}$.

Apresenta o resultado na forma mais simplificada possível $a + b\sqrt{c}$, sendo $a, b \in c$ números reais e c > 0.

5. Considera a expressão $a^2 \times \left(a^{-1} + b^{\frac{2}{3}}\right) \times \left(\frac{1}{a} - \left(\frac{1}{b}\right)^{-\frac{2}{3}}\right)$, sendo a e b números reais positivos.

Mostra que a expressão dada pode ser representada por $1 - a^2 b \sqrt[3]{b}$.

- 6. Determina, utilizando o algoritmo da divisão inteira de polinómios, o quociente e o resto da divisão de $A(x) = x^4 + x^2 3$ por $B(x) = -x^2 + 3x + 1$.
- 7. Determina, utilizando a Regra de Ruffini, o quociente e o resto da divisão inteira de A(x) por B(x):

7.1
$$A(x) = 4x^3 + 7x^2 - 3x + 1$$
 e $B(x) = x - 1$

7.2
$$A(x) = 2x^3 + 5x^2 - 8x + 5$$
 e $B(x) = 2x + 1$

7.3
$$A(x) = -2x^4 + 3x^2 + 7x - 1$$
 e $B(x) = x^2 - 1$

- 8. Mostra, por três processos diferentes, que o polinómio $A(x) = -x^4 + 4x^2 5x + 2$ não é divisível por x + 4.
- 9. Determina a multiplicidade da raiz -1 do polinómio $A(x) = x^4 + 2x^3 2x 1$.
- 10. Considera o polinómio $A(x) = 2x^3 7x^2 + 7x 2$. Sabe-se que A(2) = 0.

Mostra que uma factorização possível para o polinómio A(x) é A(x) = (x-2)(x-1)(2x-1).

11. Sabe-se que o resto da divisão do polinómio $P(x) = x^4 + 2x^2 + ax + b$, com $a, b \in \mathbb{R}$, por x + 2 é 23 e que P(1) = 3. Determina $a \in b$.

- 12. Considera os polinómios $A(x) = -x^3 + x^2 + 5x + 3$, $B(x) = x^2 + x 1$ e C(x) = x + 1.
- 12.1 Determina o quociente e o resto da divisão de A(x) por B(x).
- 12.2 Mostra que A(x) é divisível por C(x), sem efetuar a divisão.
- 12.3 Com base na conclusão tirada em 7.2, fatoriza A(x) em polinómios de grau menor ou igual a 1.
- 13. Considera o polinómio $P(x) = x^4 + 4x^3 x^2 20x 20$.
- 13.1 Determina os zeros de P(x).
- 13.2 Fatoriza P(x), usando fatores de menor grau possível.