ZZ-Gripper v2.0

Robotica Movel Inteligente - 2017.2

Desiree Santos

November 7, 2017

Desiree Santos LCM November 7, 2017 1 / 13

Overview

- Projeto
 - Definicao
 - Especificacao V1.0
 - Especificação V2.0
- 2 Especificação
- Resultados Preminares
- Resultados Planejados
- 5 Plano de Trabalho

Desiree Santos LCM November 7, 2017 2 / 13

Definicao

Desenvolvido em 2014 no Laboratorio de Sistemas Autonomos(LSA) - FACIN/PUCRS, visando aplicacoes pick-and-place integrada com o robo Turtlebot.

Definicao

Pick and Place

Desenvolver uma garra inteligente para o Turtlebot para que ele possa carregar objetos do ambiente.

Hardware - V1.0

- Microcontrolador: Arduino nano
- Driver: TB6612-Dual Motor Driver
- Atuadores: 2 Graus de liberdade
- Sensores:
 - Sensor de forca
 - Sensor ultrasonico
 - Sensor de corrente
 - Chave fim de curso
- Forca aplicada a objeto: 500g
- Peso maximo de sustentao: 700g

Software - V1.0

Desenvolvido protocolo de comunicao para captar os dados do microcontrolador arduino e publicar no tpico ROS, afim de controlar o robo turtle.

Desiree Santos LCM November 7, 2017 6 / 13

Hardware - V2.0

- Microprocessador: Raspberry Pi
- Driver: TB6612-Dual Motor Driver
- Fonte de energia 12v 1A
- Atuadores: 2 Graus de liberdade
- Sensores:
 - Laser
 - Sensor de forca
 - Sensor ultrasonico
 - Sensor de corrente
 - Chave fim de curso
- Forca aplicada a objeto: 500g
- Peso maximo de sustentao: 700g

Desiree Santos LCM November 7, 2017 7 / 13

Especificacao

- Estrutura do pacote:
 - Linguagem unificada Python
 - Modulo para controle do hardware
 - Modulo para manipular imagens
 - Modulo para integraao do ROS
 - Script de instalao para dependncias
 - Modelagem do ambiente

Resultados Preminares

- Hardware:
 - Sonar
 - Controle da garra(2 servos motores)
 - Ontrole ga garra (motor de passo)
 - Sensor de fora com modulo Analogico-Digital
 - SaspCam camera para raspberry
 - Diagrama de componentes fritzing
 - Documentao tecnica do projeto eletrico, firmware e do driver
- Software:
 - OpenCV
 - Raspberry(Zero W Rasp 3) com ROS kinetic

Resultados Planejados

Hardware:

Integrados com a rasp

- Sonar
- Controle da garra(2 servos motores)
- 3 Controle ga garra(motor de passo)
- Sensor de fora com mdulo Analogico-Digital
- RaspCam camera para raspberry
- Laser
- © Encode/Decode
- Migrar da protoboard para PCB *
- GUI para controlar a garra *
- Software:
 - OpenCV
 - Raspberry(Zero W Rasp 3) com ROS kinetic
 - Node para controle integrado com a camera
 - Oriver ROS: interface baseada em ROS actions

Resultados Preminares

Desiree Santos LCM November 7, 2017 11 / 13

Resultados Preminares

```
#!/usr/bin/python
    import time
    import RPi.GPIO as GPIO
    import Adafruit_ADS1x15
    # Set which GPIO pins the drive outputs are connected
    HAND_LEFT = 13
    HAND_RIGHT = 16
    STBY = 22
    PWMB = 23
   BIN1 = 24
   BIN2 = 25
   TRIG = 20
    ECH0 = 26
16 # MOTOR LEFT/RIGHT
17  GPIO.setmode(GPIO.BCM)
18 GPIO.setup(HAND LEFT, GPIO.OUT)
    GPIO.setup(HAND RIGHT, GPIO.OUT)
```

Cronograma

Semana	Tarefa	Encode/Decode	Laser	PCB	ROS	Documentação
6 -nov	- Novembro					
13 -nov						
20 -nov						
27 -nov						
4 -dez	Dezembro					