Select Protein Band and Excise

Research gate

Select Protein Band and Excise

IIT ROORKEE

Enzymes used for Protein Digestion to Peptides

Site of Cleavage
Lys, Arg (C)
Phe, Trp, Tyr (C)
Asp, Glu (C)
Leu, Phe, Trp, Tyr (N)
Ala, Gly, Ser (C)
Met (C)
Lys (C)

Enzyme Selection and Specification

Protease	Cleavage site	Example of use
Trypsin Specific protease	NNNR NNNK NNN (R is arginine, K is lysine)	Protease of choice for most applications; generates peptides 7–20 amino acids in length with charge characteristics optimal for mass spec analysis
Trypsin/Lys-C Mix, Mass Spec Grade Specific protease	NNNR NNNK NNN (R is arginine, K is lysine)	Reduces missed lysine cleavage sites, increases peptide/protein identification; active under strong denaturing conditions
Lys-C Specific protease	NNNN K NNN (K is lysine)	Digests membrane and other proteolytically resistant proteins; generates larger peptides than tryptic peptides—advantage for certain mass spec methods (for example, electron transfer dissociation)
Arg-C Specific protease	NNNNR NNN (R is arginine) Arg-C also can, to a lesser degree, cleave at lysine	Facilitates analysis of histone posttranslational modifications; used in proteome-wide analysis
Glu-C Specific protease	NNNNE NNN (E is glutamate) Glu-C also can, to a lesser degree, cleave at aspartate residues	Used as an alternative to trypsin if trypsin produces peptides that are too short or too long or if tryptic cleavage sites are not accessible
Asp-N Specific protease	NNNN D NNN (D is aspartate)	Similar to Glu-C

Chymotrypsin Low Specific protease	NNNN(F/Y/W) NNN (F, Y and W are aromatic residues phenylalanine, tyrosine and tryptophan, respectively)	Digests hydrophobic proteins (for example, membrane proteins)
Pepsin Nonspecific protease	Nonspecific protease (advantage— active at low pH)	Used in structural protein studies and antibody analysis; digests proteolytically resistant, tightly folded proteins
Thermolysin Nonspecific protease	Nonspecific protease (advantage— remains active at high temperature)	Digests proteolytically difficult, tightly folded proteins; used in structural protein studies
Elastase Nonspecific protease	Nonspecific protease	Used to increase protein coverage

https://www.proteomics.omicstech.com/

Trypsin Digesting Peptides

Addition of DTT and IAA/Acrylamide

ResearchGate

Addition of Enzyme

Protein resists digestion due to tight folding. Protein denatures and is available for digestion.

Lys-C digests protein into relatively large fragments. Trypsin is reversibly inactivated by urea.

Trypsin reactivates and completes digestion.

Trypsin Digestion Protocol

Mass Spectrometry

Research gate

C18 versus C8

Reverse Phase Gradient Elution

Physical Representation

Pediaa.com

Columns and Flow Rates

Column Internal Diameter (ID)	Typical Flow Rate Range
75 µm-100 µm (nanoscale)	100 nL/min–1 µL/min
150-300 µm (capillary scale)	3 μL/min–10 μL/min
500 μm-1 mm (microscale)	10 μL/min–100 μL/min
1 mm-2.1 mm (analytical scale)	50 μL/min–2.0 mL/min

Parts of Mass Spectrometer

Matrix

2,5-dihydroxybenzoic Acid (2,5-DHB)

2,4,6-trihydroxyacetophenone (THAP)

α-cyano-4-hydroxycinnamic Acid (CHCA)

3-hydroxypicolinic Acid (3-HPA)

sinapinic Acid (SA)

dithranol

2-nitrophloroglucinol

Research gate

Ionization (generation of ions) in MALDI

Shimadzu

Ionization (generation of ions) in MALDI

Linear Mode in MALDI

Sigma-Aldrich

Reflectron Mode in MALDI

Parent and Daughter Ion Formation

MagLab

Data Dependent Acquisition

Researchgate

Data Dependent Acquisition

MS Spectra

Figure 1 Tandem mass spectrometry (MS/MS) for manning posttranslational modificatic Semantic Scholar

Advantages and Disadvantages of MALDI

Advantages

greater mass have been reported.

Typical sensitivity on the order of low femtomole to low picomole. Reports have indicated that attomole sensitivity is possible.

Soft ionization with little to no fragmentation observed.

Practical mass range of up to

300,000 Da. Species of much

Tolerance of salts in millimolar concentrations.

Suitable for the analysis of complex mixtures.

Disadvantages

Low resolution (see Chapter 2). Some MALDI instruments are capable of higher resolution; however, this is only in a relatively low mass range and is accomplished at the expense of sensitivity.

Matrix background, which can be problem for compounds below a mass of 1000 Da. This background interference is highly dependent on the matrix material.

Possibility of photodegradation by laser desorption/ionization.

Electrospray Ionisation-Mass Spectrometry (ESI-MS)

Creative Biolabs

University of Bristol

What Happens inside the Mass Spectrometer

Quantitation of Proteins based on Intensity

What Happens inside the Mass Spectrometer

Fragmentation of Peptides to Form b and Y ions

Quantitation of Proteins

Quantitation of Proteins

Common label-free quantification in proteomics studies. Two common label-free quantification approaches in use are based on spec ScienceDirect

De nova Sequencing

BLAST Search

Distribution of 491 Blast Hits on the Query Sequence

Mouse-over to show defline and scores, click to show alignments


```
ry=
qth=588
                                                                 Score
uences producing significant alignments:
                                                                (Bits) Value
028577118.1 PREDICTED: Perca flavescens type-2 ice-structurin... 94.9
                                                                         1e-15
028577120.1 PREDICTED: Perca flavescens type-2 ice-structurin... 89.1
                                                                         6e-14
028577119.1 PREDICTED: Perca flavescens type-2 ice-structurin... 89.1
                                                                         6e-14
028577117.1 PREDICTED: Perca flavescens type-2 ice-structurin... 89.1
                                                                         6e-14
028564253.1 PREDICTED: Perca flavescens type-2 ice-structurin... 85.3
                                                                         8e-13
028564599.1 PREDICTED: Perca flavescens galactose-specific le... 81.4
                                                                         le-11
028564252.1 PREDICTED: Perca flavescens ladderlectin-like (LO... 81.4
                                                                        le-11
028564251.1 PREDICTED: Perca flavescens ladderlectin-like (LO... 81.4
                                                                        le-11
030429847.1 PREDICTED: Sparus aurata galactose-specific lecti... 77.6
                                                                         2e-10
030429846.1 PREDICTED: Sparus aurata galactose-specific lecti... 77.6
                                                                         2e-10
030429845.1 PREDICTED: Sparus aurata galactose-specific lecti... 77.6
                                                                        2e-10
```

Home.cc.umanitoba.ca

Database Searches

