$$f[x_0, x_1, x_2] = f[x_1, x_2, x_0] = f[x_2, x_0, x_1] = f[x_2, x_1, x_0] = f[x_1, x_0, x_2]$$

I) Forma de Newton para o Polinômio Interpolador.

Seja $f(x) \in \mathbb{C}^{\circ}$ e com tantas derivadas contínuas quantas forem necessárias em [a,b]. Sejam $a = x_0 < x_1 < x_2 < ... < x_n = b$, (n + 1) pontos. Construiremos o polinômio p_n que interpola f(x) em $x_0, x_1, x_2, ..., x_n$.

Iniciaremos a construção obtendo $p_0(x)$ que interpola f(x) em $x = x_0$. E assim, sucessivamente, construiremos $p_k(x)$ que interpola f(x) em $x_0, x_1, ..., x_k$; k = 0, 1,..., n sendo que :

Teorema 4.3.1-3:
$$P_{k+1} = P_k(x) + (x - x_0) \dots (x - x_k) \cdot f(x_0, x_1, \dots, x_k, x_{k+1})$$
 (4.3.1-4)

dem.: Seja $p_0(x)$ o polinômio de grau zero que interpola f(x) em $x = x_0$. Então

$$p_0(x) = f(x_0) = f[x_0]$$
 (4.3.1-5)

Temos que para $\forall x \in [a,b]$, $x \neq x_0$:

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \quad (\Rightarrow)$$

$$(\Rightarrow) \quad f(x) \, = \, f(\,x_{_{0}}\,) \, + (x \, - \, x_{_{0}}\,) \, . \, f[\,x_{_{0}}\,, x\,\,] \qquad (\Rightarrow) \quad f(x) \, = \, p_{_{0}}(x) \, + (x \, - \, x_{_{0}}\,) \, . \, f[\,x_{_{0}}\,, x\,\,]$$

$$E_0 = (x - x_0). f[x_0, x]$$

 $E_0 = f(x) - p_0(x)$: erro cometido ao se aproximar f(x) por $p_0(x)$. Agora, considere $p_1(x)$, o polinômio de grau 1, que interpola f(x) em x_0, x_1 . Temos que:

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} =$$