

Advanced Topics in Electronics-1

Under supervision of:
Dr. Mohamed mobarak
Eng. Ahmed Atef

Students Names: Kerolos Hanna Fayez 1200049

Schematic of design including the Voltages and currents

🛱 🗹 🗞 Global Variables					
Global Variables V	95				
· ☑ 🖪 MRF	6				
· ☑ 🖪 NOFRF	32				
☑ 🖪 VDC	2.6				
· ☑ 🖪 WLO	600n				
☑ 🖪 WRF	600n				
· ☑ 🖪 WTAIL	600n				
·· 🗹 🖪 VGSPMOS	600m				
. □ 🖪 F_LO	F_RF-1				
□ 団 F_RF	12G				
· ☑ 🖪 I_WLO	50				
- 🔲 🖪 Pin	-40				
- ☑ 🖪 RD	1				
·· ☑ 🖪 WPMOS	600n				
· ☑ 🖪 NOBIAS	4				
- □ 团 PLO	0				
- ☑ 🖪 LG	3n				
- ☑ 🖪 LS	120p				
- ☑ 🗄 CS	200f				
🗹 🖽 RE	100				
· 🗹 🖪 NPMOS	32				
- ☑ 🖪 WP	1				
- ☑ 🖪 MPMOS	5				
□ ✓ ☑ IDC □ ✓ ☑ RB □ ✓ ☑ CB □ ✓ ☑ RBIAS	1u				
□ ✓ ∰ RB □ ✓ ∰ CB □ ✓ ∰ RBIAS □ ✓ ∰ NOPMOS	50				
- ☑ 🖪 CB	10f				
- ☑ 🖪 RBIAS	100				
. ✓ NOPMOS	32				

RBIAS	100
NOPMOS	32
LM	360p
CL	400f
LE	1
NOFR	1
CS2	41f
LS2	1.8n
F_IF	1:1G:30
CP	10f
VGSBIAS	36m
LR	300p
NOFBIAS	32
CT	300f
LT	50p
LT2	720p
F_RF2	12G
F_RFtwo	F_RF+1
	NOPMOS LM CL LE NOFR CS2 LS2 F_IF CP VGSBIAS LR NOFBIAS CT LT LT2 F_RF2

All variable used in the schematic with sizing

In the previous design I used current bleeding technique using a pmos to increase linearity and decrease current drop on the resistance , I used a matching network of series inductor ,shunt cap, series inductor .

To achieve a S11 under -10 , the following graph was drawn against RF frequency

The S22 was achieved by a resistive load of 50 ohm , choking inductor to increase gain.

It was required to have IF=RF-LO, so I used a shunt inductor and shunt capacitor at IF outputs to filter the RF+LO.

/lixer_Ass:Mixer_sch:1	NEmin	expr	getData("NFmin" ?result "hbsp")	point		
lixer_Ass:Mixer_sch:1	H21 dB20	expr	db(hp(2 1 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1	GP dB10	expr	db10(gp(sp(1 1 ?result "hbsp") sp(1 2 ?result "hbsp") sp(2 1 ?result "hbsp") sp(2 2 ?result "hbsp")))	point	~	
lixer_Ass:Mixer_sch:1	Gmax dB10	expr	db10(gmax(sp(1 1 ?result "hbsp") sp(1 2 ?result "hbsp") sp(2 1 ?result "hbsp") sp(2 2 ?result "hbsp"))))	point		
/lixer_Ass:Mixer_sch:1	NF	expr	getData("NF" ?result "hbsp")	point	~	
lixer_Ass:Mixer_sch:1	S22 dB20	expr	db(spm('hbsp 2 2))	point	✓	
lixer_Ass:Mixer_sch:1	S11 dB20	expr	db(spm('hbsp 1 1))	point	~	
/lixer_Ass:Mixer_sch:1	Gmin	expr	gmin(getData("Gopt" ?result "hbsp") getData("Bopt" ?result "hbsp") zref(1 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1		expr	xval(value(db10(getData("Fmin" ?result "sp_noise")) 1.3e+10))	point		
/lixer_Ass:Mixer_sch:1		expr	waveVsWave(?x xval(getData("NFmin" ?result "hbsp")) ?y getData("NFmin" ?result "hbsp"))	point		
/lixer_Ass:Mixer_sch:1		expr	waveVsWave(?x (xval(getData("NFmin" ?result "hbsp")) - 1.2e+10) ?y getData("NFmin" ?result "hbsp"))	point		
/lixer_Ass:Mixer_sch:1	p(/PORT0/PLUS /net019); hb_mt dBmP	expr	dbm(pvi('hb "/net019" 0 "/PORT0/PLUS" 0))	point		
/lixer_Ass:Mixer_sch:1	p(/PORT0/PLUS /net019) F_RF=14G; hb_mt dBmP	expr	dbm(value(pvi('hb "/net019" 0 "/PORT0/PLUS" 0) 'F_RF 1.4e+10))	point		
lixer_Ass:Mixer_sch:1	ZM 3 reOhms	expr	real(zm(3 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1	ZM 2 reOhms	expr	real(zm(2 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1	ZM 1 reOhms	expr	real(zm(1 ?result "hbsp"))	point	✓	
lixer_Ass:Mixer_sch:1	ZM 3 imOhms	expr	imag(zm(3 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1	ZM 2 imOhms	expr	imag(zm(2 ?result "hbsp"))	point		
lixer_Ass:Mixer_sch:1	S23 mag	expr	spm('hbsp 2 3)	point		
lixer_Ass:Mixer_sch:1	S33 mag	expr	spm('hbsp 3 3)	point		
lixer_Ass:Mixer_sch:1	S33 dB20	expr	db(spm('hbsp 3 3))	point		
lixer_Ass:Mixer_sch:1	ipnCurves	expr	ipnVRICurves(v("/net037" ?result "hb_mt_fi") '(2 -1) '(1 0) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -40)	point		
/lixer_Ass:Mixer_sch:1	Input Referred IP3 Point	expr	ipnVRI(v("/net037" ?result "hb_mt_fi") '(2 -1) '(1 0) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -40)	point		
/lixer_Ass:Mixer_sch:1	1st Order freq	expr	"cadar(setof(x harmonicFreqList(?result \"hb_mt_fi\") equal(car(x) '(1 0))))"	point		
lixer_Ass:Mixer_sch:1		signal	/PORT2/PLUS	point		✓
lixer_Ass:Mixer_sch:1	compressionCurves	expr	compressionVRICurves(v("/net037" ?result "hb_mt_fi") '(1 0) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -40 ?gcomp 1)	point		
lixer_Ass:Mixer_sch:1	Input Referred 1dB Compression Point	expr	compressionVRI(v("/net037" ?result "hb_mt_fi") '(1 0) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -40 ?gcomp 1)	point		
lixer_Ass:Mixer_sch:1	Input Referred IP3 Points	expr	ipnVRI(v("/net037" ?result "hb_mt_fi") '(2 -1) '(1 0) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -20 ?psweep nil)	point		
lixer_Ass:Mixer_sch:1	p(/PORT2/PLUS /net037) h=1,0; hb_mt dBmP	expr	dbm(pvi('hb "/net037" 0 "/PORT2/PLUS" 0 '((1 0))))	point		
lixer_Ass:Mixer_sch:1	Input-referred	expr	_drplCompressionPointCurve("Input-referred")	point	✓	
lixer_Ass:Mixer_sch:1	Input Referred 1dB Compression Points	expr	compressionVRI(v("/net037" ?result "hb_mt_fi") '(0 1) ?iport i("/PORT2/PLUS" ?result "hb_mt_fi") ?epoint -30 ?gcomp 1)	point		
/lixer_Ass:Mixer_sch:1	p(/PORT2/PLUS /net037) Pin=-30; hb_mt dBmP	expr	dbm(value(pvi('hb "/net037" 0 "/PORT2/PLUS" 0) 'Pin -30))	point		

test bench used for runs

1- Plot gain, IIP3, IP1dB, and NF versus RF freuquecy at IF frequency=100MHz

It was required to have IF = 100MHZ so a sweep OF F_RF = 10.1G:13.1G With F_LO = F_RF - 0.1G .

1-plot gain

Configuration used for test noise figure and gain.

2- plot NF Applications Places System Mon Dec 30, 5:29:21 AM cādence | □ | - □ | lame Vis V1 LS2 52.0 48.0 40.0 36.0 9 32.0 28.0 24.0 16.0 12.0 -3- plot IIP3 Applications Places System 🖍 🖪 🐚 🕼 🖟 Wed Jan 1, 8:54:22 AM Virtuoso (R) Visualization & Analysis XL: Mixer_Ass Mixer_sch adexl Subwindows: 1 18.9 18.8 18.7 18.6 18.5 18.4 18.3 图 18.2 18.1 18.0 17.6 17.5 17.4 11.0 12.2 13.0 10.8 12.4 12.8 10.0 10.4 10.6 12.0 12.6

3 tone test was used to get IIp3 where

F_LO=F_RF-0.1G

F_RFtwo=F_RF+0.1G

4-plot P1dB

2- Plot gain, IIP3, IP1dB, and NF versus IF frequency at LO frequency = 12GHz

F_LO=12GHZ & F_RF = 12G:1G:15G

1-plot gain

2- plot NF

3- plot IIP3

4-plot P1dB

3- Plot LO to RF isolation and LO to IF isolation versus LO frequency, during this simulation assume LO transistor sizes are different by 1% (i.e. increase width of one side of LO transistor by 1%)

LO to RF isolation:

LO to IF isolation:

	Spec	achieved
Conversion Gain	3	>3
NF	15db	<10
IIP3	17dbm	17-18
LO to RF Isolation	30db	-60
LO to IF Isolation	40db	-80
IP1dB	7dbm	>7