8.1 Puu

Ennen kuin käydään käsiksi kekoon, määritellään sen tueksi käsite *puu*.

Puu on:

• rakenne, joka koostuu solmuista, joilla on mielivaltainen määrä lapsia.

- Binääripuussa lasten määrä on rajoitettu välille 0–2. Tällöin lapset nimetään vasen (left) ja oikea (right)
- solmu on lapsiensa *isä (parent)*
- lapseton solmu on *lehti (leaf)*, ja muut solmut ovat *sisäsolmuja (internal node)*
- puussa on korkeintaan yksi solmu, jolla ei ole isää. Isätön solmu on puun *juuri (root)*.
 - kaikki muut solmut ovat juuren lapsia, lastenlapsia jne.

• puun rakenne on rekursiivinen: kunkin solmun jälkeläiset muodostavat puun *alipuun,* jonka juuri kyseinen solmu on

Kuva 13: Binääripuun rekursiivisuus

• puun solmun korkeus (height) on pisimmän solmusta

suoraan alas lehteen vievän polun pituus

- pituus lasketaan kaarien mukaan, jolloin lehden korkeus on 0
- puun korkeus on sen juuren korkeus
- puu on täydellisesti tasapainotettu (completely balanced), jos sen juuren lasten määräämien alipuiden korkeudet eroavat toisistaan enintään yhdellä, ja alipuut on täydellisesti tasapainotettu
- n-solmuisen puun korkeus on vähintään $\lfloor \lg n \rfloor$ ja korkeintaan n 1 (logaritmin kantaluku riippuu lasten maksimimäärästä) $\Rightarrow O(n)$ ja $\Omega(\lg n)$

Puun solmut voidaan käsitellä monessa eri järjestyksessä.

- esijärjestys (preorder) eli ensin käsitellään juuri, sitten rekursiivisesti lapset.
 - kutsu:
 PREORDER-TREE-WALK(T.root)
 - esimerkin käsittelyjärjestys on 18, 13, 8, 5, 3, 6, 9, 15, 14, 25, 22, 23, 30, 26, 33, 32, 35

 $\mathsf{PREORDER}\text{-}\mathsf{TREE}\text{-}\mathsf{WALK}(x)$

```
1 if x \neq NIL then
```

2 käsittele alkio x

3 for child in $x \rightarrow children$ do

4 PREORDER-TREE-WALK(child)

- välijärjestys (inorder)
 - välijärjestys koskee lähinnä bi- sisäsolmuja → nääripuuta, siinä käsitellään ensin rekursiivisesti vasen lapsi, sitten juuri ja lopuksi rekursiivisesti oikea lapsi
 - esimerkissä 3, 5, 6, 8, 9, 13, 14, 15, 18, 22, 23, 25, 26, 30, 32, 33, 35

INORDER-TREE-WALK(x)

- 1 if $x \neq NIL$ then
- 2 INORDER-TREE-WALK $(x \rightarrow left)$
- 3 käsittele alkio x
- 4 Inorder-Tree-Walk $(x \rightarrow right)$

- jälkijärjestys (postorder), eli ensin käsitellään rekursiivisesti lapset, lopuksi vasta juuri
 - esimerkissä 3, 6, 5, 9, 8, 14, 15, 13, 23, 22, 26, 32, 35, 33, 30, 25, 18

```
Postorder-Tree-Walk(x)
```

```
1 if x \neq NIL then
```

2 for child in $x \rightarrow children$ do

3 Postorder-Tree-Walk(child)

4 käsittele alkio x

Puun läpikäynnin ajankäyttö:

- ullet ajoaika $\Theta(n)$, algoritmit kutsuvat itseään kahdesti joka solmussa: kerran vasemmalle ja kerran oikealle lapselle
- \bullet lisämuistin tarve = $\Theta(\mbox{rekursion maksimisyvyys})$ = $\Theta(h+1)$ = $\Theta(h)$