Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа По основам дискретной математики Часть 2 Вариант 39

Выполнила:

Джантуре Назерке

Группа:

P3108

Проверил:

Поляков Владимир Иванович

Оглавление

Условие	.3
Таблица истинности	
Минимизация булевых функция на картах Карно	
Преобразование системы булевых функций	
Синтез многовыходной комбинационной схемы в булевом базисе	

Условие

Построить комбинационную схему, реализующую функцию C=A / B, где A — 3 битное беззнаковое число, B — 2 битное, C — 3 битное.

Таблица истинности

b1b2!=0

$N_{\underline{0}}$	a1a2a3	b1b2	c1c2c3	
1	000	01	000	
2	000	10	000	
3	000	11	000	
4	001	01	001	
5	001	10	000	
6	001	11	000	
7	010	01	010	
8	010	10	001	
9	010	11	000	
10	011	01	011	
11	011	10	001	
12	011	11	001	
13	100	01	001	
14	100	10	010	
15	100	11	001	
16	101	01	101	
17	101	10	010	
18	101	11	001	
19	110	01	110	
20	110	10	011	
21	110	11	010	
22	111	01	111	
23	111	10	011	
24	111	11	010	

Минимизация булевой функции на картах Карно

		b1b2					
		00	01	11	10		
	00	0	0	0	0		
a2a3	01	0	1	0	0		
	11	0	1	0	0		
	10	0	1	0	0		
	a1 = 1						

a1=0 c1 = a1b2 (SQ = 2)

a2a3

a1 = 0

 $c2 = a1a2b2 \ V \ a1b1 \neg b2 \ V \ \neg a1a2b2 \ (SQ = 11)$

b1b2 a2a3 a1 = 1

 $c3 = \neg a1 \, a3 \neg b1 \, b2 \, V \, \neg a1 \, a2 \, a3 \, b2 \, V \, \neg a1 \, a2 \, b1 \neg b2 \, V \, a1 \neg a2 \, b2 \, V$ $a1 \, a3 \neg b1 \, b2 \, V \, a1 \, a2 \, b1 \neg b2 \, (SQ = 31)$

Преобразование системы булевых функций

$$c1 = a1b2 (SQ = 2)$$

$$c2 = a1a2b2 \ V \ a1b1 \neg b2 \ V \ \neg a1 \ a2b2 (SQ = 11)$$

$$c3 = \neg a1 \ a3 \neg b1b2 \ V \ \neg a1 \ a2a3b2 \ V \ \neg a1 \ a2b1 \neg b2 \ V \ a1 \neg a2b2 \ V$$

$$a1a3 \neg b1b2 \ V \ a1 \ a2b1 \neg b2 (SQ = 31)$$

Раздельная факторизация системы

$$c1 = a1b2 (SQ = 2)$$

$$c2 = b2a2 \ Va1b1 \neg b2 (SQ = 6)$$

$$c3 = \neg a1 \ \& (b2 \ (a3 \neg b1 \ Va2)) \ Va1 \& (b2 \& (\neg a2 \ Va3 \neg b1) \ Va2b1 \neg b2)$$

$$(SQ = 18)$$

Совместная декомпозиция

$$f1 = a3 \neg b1$$

$$f2 = a2b2$$

$$f3 = b2f1$$

$$f4 = a1b2$$

$$f5 = \neg a2 \ Vf1$$

$$c1 = a1b2$$

$$c2 = f2 \ Va1b1 \neg b2$$

$$c3 = \neg a1 \& (f3 \ Vb2a2) \ Vf4f5 \ Va1a2b1 \neg b2$$

Синтез многовыходной комбинационной схемы в булевом базисе

Будем анализировать схему на следующем наборе аргументов:

$$a1 = 1$$
, $a2 = 0$, $a3 = 1$, $b1 = 0$, $b2 = 1$

Выходы схемы из таблицы истинности:

$$c1 = 1, c2 = 0, c3 = 1$$

 $f1 = f1; f2 = f2; f3 = f3; f4 = f4; f5 = f5.$

