

Lecture 16 Optimization Algorithms (III)

Algorithm Design

zhangzizhen@gmail.com

Metaheuristics

- Single-Solution Based Metaheuristics
 - Simulated Annealing (模拟退火)
 - Tabu Search (禁忌搜索)
 - Iterated Local Search
 - Variable Neighborhood Search
- Population Based Metaheuristics
 - Genetic Algorithm (遗传算法)
 - Scatter Search
 - Ant Colony Optimization
 - Particle Swarm Optimization

Tabu Search

- TS was invented by Fred Glover (http://leeds-faculty.colorado.edu/glover/).
- TS is one of the most widespread Single-metaheuristics.
- The use of memory, which stores information related to the search process, represents the particular feature of TS.
- TS behaves like a steepest LS algorithm, but it accepts non-improving solutions to escape from local optima when all neighbors are non-improving solutions.
- TS works in a deterministic manner.

Tabu Search

- The best solution in the neighborhood is selected as the new incumbent (现任的) solution; this may generate cycles.
- TS discards some neighbors that have been visited previously to avoid cycles.
- TS manages a memory of the solutions or moves recently applied, which is called the tabu list, which constitutes the short-term memory.
- At each iteration of TS, the short-term memory is updated.

TS Components

- Tabu list (禁忌表): The goal of using the short-term memory is to avoid cycles. Storing the list of all visited solutions is not practical for efficiency issues.
- Aspiration criterion (特赦原则): selecting a tabu move if it generates a solution that is better than the best found solution so far.
- Intensification (medium-term memory): The medium-term memory stores the elite (e.g., best) solutions found during the search.
- Diversification (long-term memory): The long-term memory stores information on the visited solutions along the search. It explores the unvisited areas of the solution space.

TS Algorithm

Template of tabu search algorithm.

```
s = s<sub>0</sub>; /* Initial solution */
Initialize the tabu list, medium-term and long-term memories;
Repeat
Find best admissible neighbor s'; /* non tabu or aspiration criterion holds */
s = s';
Update tabu list, aspiration conditions, medium and long term memories;
If intensification_criterion holds Then intensification;
If diversification_criterion holds Then diversification;
Until Stopping criteria satisfied
Output: Best solution found.
```

Tabu List

- Store the recent history of the search.
- Recording all visited solutions during the search high complexity of data storage and computational time.
- Recording the last k visited solutions.
- The most popular way to represent the tabu list is to record the move attributes.

Example—Tabu list based on move attributes

- Let us consider a permutation optimization problem, where the neighborhood is based on exchanging two elements of the permutation.
- Given a permutation π , a move is represented by two indices (*i*, *j*). This move generates the neighbor solution π ' such that

$$\pi'(k) = \begin{cases} \pi(k) & \text{for } k \neq i \text{ and } k \neq j \\ \pi(j) & \text{for } k = i \\ \pi(i) & \text{for } k = j \end{cases}$$

- The inverse move (j, i) may be stored in the tabu list and is forbidden for a certain number of iterations, called tabu tenure.
- A stronger tabu representation may be related to the indices i and j. This will disallow any move involving the indices i and j.

$$D = (d_{ij}) = \begin{bmatrix} 0 & 1 & 0.5 & 1 \\ 1 & 0 & 1 & 1 \\ 1.5 & 5 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

- Initial solution: $x_0 = (ABCD)$, $f(x_0) = 4$
- City A is the starting and ending vertex
- Neighborhood operator: 2-swap (swap a pair of cities).

Step 1:

Solution:

A B C D

$$f(x^0) = 4$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	4.5 ^e
BC	7.5
BD	8

Step 2:

Solution:

A B D C

$$f(x^1)=4.5$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	4.5 ^T
BC	3.5 ^e
BD	4.5

SUN YAT-SEN UNIVERSITY

Step 3:

Solution:

$$f(x^2)=3.5$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	8 T
BC	4.5 T
BD	3.5 ^e

Step 4:

Note the length of the Tabu list

Solution:

A C B D

$$f(x^3)=7.5$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	4.5 T
BC	4.5 T
BD	3.5 T

13/

Step 4:

Solution:

A C B D

$$f(x^3)=7.5$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	4.5 •
BC	4.5 T
BD	3.5 ^T

Step 5:

Solution:

A C B D

$$f(x^4)=4.5$$

Tabu list:

Candidate solution:

Swap	Fitness
CD	7.5 T
BC	8 •
BD	4.5 ^T

Genetic Algorithm (GA)

 A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection.

Genetic Algorithm (GA)

Template of an evolutionary algorithm.

```
Generate(P(0)); /* Initial population */
t = 0;

While not Termination_Criterion(P(t)) Do

Evaluate(P(t));

P'(t) = \text{Selection}(P(t));

P'(t) = \text{Reproduction}(P'(t)); Evaluate(P'(t));

P(t+1) = \text{Replace}(P(t), P'(t));

t = t+1;

End While

Output Best individual or best population found.
```


Main Components in Genetic Algorithm

- Representation: the encoded solution is referred as chromosome while the decision variables within a solution are genes.
- Population Initialization: generate a set of initial solutions.
- Objective Function: This is a common search component for all heuristics. In GA, the term fitness function refers to the objective function.
- Selection Strategy: The selection strategy addresses the following question: "Which parents for the next generation are chosen with a bias toward better fitness?"

Main Components in Genetic Algorithm

- Reproduction Strategy: The reproduction strategy consists in designing suitable mutation and crossover operators to generated new individuals (offspring).
- Replacement Strategy: The new offsprings compete with old individuals for their place in the next generation.
- Stopping Criteria: This is a common search component for all metaheuristics.

Crossover

- The role of crossover operators is to inherit some characteristics of the two parents to generate offsprings.
- The main characteristic of the crossover operator is heritability. The offsprings should inherit genetic materials from both parents.
- The crossover operator should produce valid solutions.
- The crossover rate p_c ($p_c \in [0, 1]$) represents the proportion of parents on which a crossover operator will act. The most commonly used rates are in the interval [0.45, 0.95].

1-Point Crossover

- A crossover site k is randomly selected
- Two offsprings are created by interchanging the segments of the parents.

n-Point Crossover

n-point crossover

- n crossover sites are randomly selected.
- The individuals A|BCD|E and a|bcd|e generate two offsprings
 A|bcd|E and a|BCD|e.

Uniform Crossover

- Each element of the offspring is selected randomly from either parent.
- Each parent will contribute equally to generate the offsprings.

Crossover for Permutations

- Applying classical crossover operators to permutations will generate solutions that are not permutations (i.e., infeasible solutions).
- Hence, many permutation crossover operators have been designed as follows:
- Order Crossover (OX)

Crossover for Permutations

Partially Mapped Crossover (PMX)

An example of partially mapped crossover for permutation code

Mutation

- Mutations represent small changes of selected individuals of the population.
- The probability p_m defines the probability to mutate each element (gene) of the representation.
- In general, small values are recommended for this probability (e.g., p_m ∈[0.001, 0.01]).
- Some strategies initialize mutation probability to 1/k
 where k is the number of decision variable

Selection Methods

- The better an individual is, the higher its chance of being parent.
- Worst individuals still have some chance to be selected.
- Roulette (轮盘赌) Wheel Selection
 - It will assign to each individual a selection probability that is proportional to its relative fitness.
 - Let f_i be the fitness of the individual i in the population
 P. Its probability to be selected is:

$$p_i = f_i / \left(\sum_{j=1}^n f_j \right)$$

 A pie graph can be constructed where each individual is assigned a space on the graph that is proportional to its fitness.

Selection Methods

- An outer roulette wheel is placed around the pie.
- The selection of μ individuals is performed by μ independent spins (旋转) of the roulette wheel.
- Better individuals have more space and then more chance to be chosen.

Individuals: 1 2 3 4 5 6 7
Fitness: 1 1 1 1.5 1.5 3 3

Selection Methods

Tournament (锦标赛) Selection

- Randomly select k individuals; the parameter k is called the size of the tournament group
- Then, select the best one from the selected k individuals.

Tournament selection strategy. For instance, a tournament of size 3 is performed. Three solutions are picked randomly from the population. The best solution from the picked individuals is then selected.

Summary

- Enhancing the Quality of the End Result
 - How to balance the Intensification and Diversification
 - Too much intensification -> local search
 - Too much diversification -> random search
 - Initialization Method
 - Hybrid Method
 - Operator Enhancement
- Reducing the Running Time
 - Parallel Computing
 - Employing Advanced Data Structures
 - Redesigning the procedure of Metaheuristics

Thank you!

