m과 nol 서울 소이면 Zm x Zn ~ Zmo 이다. Thm Claim) m과 nol 서로 소이면 Zm X Zn ol 순환군이다. (98) Conjecture) $|\langle (1.1)\rangle| = |cm(m.n)|$ Conjecture 을 이용하면, |<(1.1)>| = |cm(m.n) = mn Thm MA NO HEER ONE Zm X Zn + Zmn (PB) Claim) | < (a.b) > | < mn ≤ lcm (m,n)

(s) mn → m,no| 431 4423. 28강 11절 3 : 유한생성 가횐군 정기 Corol 11.6 m; 중 어느 두개를 선택해도 서로 소이면 $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_n} \simeq \mathbb{Z}_{m,m_2 \cdots m_n}$ of cf. 두개만 합칠수 있음을 이용 ! (Pb) Zm, x Zm2 x ... x Zm,

 $= \mathbb{Z}_{m_1 m_2 m_3} \times \mathbb{Z}_4 \times \cdots \times \mathbb{Z}_{m_b}$ $= \cdots = \mathbb{Z}_{m_1 m_2 \cdots m_b}$

 $= \mathbb{Z}_{m_1 m_2} \times \mathbb{Z}_{m_3} \times \cdots \times \mathbb{Z}_{m_n}$

Corol p_1 \rightarrow A3 48 48 460 $n = p_1^{n_1}p_2^{n_2} \cdots p_r^{n_r}$ 0 4 314.

 $246 \quad \mathscr{L}_n \cong \mathscr{L}_{\rho_n^{n_1}} \times \mathscr{L}_{\rho_n^{n_2}} \times \cdots \times \mathscr{L}_{\rho_r^{n_r}} \stackrel{old}{\sim} \cdots$

유한생성가환군 (Finitely generated abelian group)

유한생성 기환군의 기본정의 Thm 11.12 모든 유한생성가관군 G는 Zpin x Zpin x ··· x Zpin x ··· x Z 와 등형 → 여기서 Pi 들은 소수이고 서오 4를 필요는 없음. ra 들은 양의 정수 → 직접용은 인수들의 군서를 바꾸는 것을 무시하면 유일! 유한생성가환군 G의 교의 개수를 the Betty number of G Def (Ex) 동령을 무시하고 위수가 360인 가흰군을 모두 찾아라. ─ 유현생성기원군의 기본청익에 의하여 G는 Z_m SS는 Z 의 직접용이다 → G가 유한하기 때문에, G의 인수에 Z는 존재하지 않는다 우선 360 소인수 분해 360 = 2³ × 3² × 5 (PB) $Z_{360} \simeq Z_2 \times Z_2 \times Z_2 \times Z_3 \times Z_3 \times Z_5 \bigcirc$ = Z2 x Z4 x Z3 x Z3 x Z5 2 = Z3 x Z3 x Z3 x Z5 = Z₂ × Z₂ × Z₂ × Z₉ × Z₅ (4) = Z2 X Z4 X Z9 X Z5 **(5)** = Z 8 × Z 9 × Z 5 29강 11절 4 : 분해가능군 분해 가능 vs 분해 불가능 Def ||.|나| 군 G가 그개의 비자명 전부분군들 (proper nontrivial subgroups) 의 직접공과 능형이라면 decomposable group $G = A \times B$ Binhb A.B + fei → G=feixG → 그렇지 않은 경우, G는 Indecomposable group. 6= 2.3 분해 가능 기 = | · 기 분해 발가능 Thm 11.15 decomposable 한 유한가환국은 소수의 역을 위수고 갖는 순환군 뿅. Zpr × Zpl × ··· 이런게 하나만 있는거지 [Pb] G는 유한가환군이으로 Zp,ri x Zp,ri x ··· x Zp,ri (k≥1)의 끌로 쓸수 있다.

> (귀쥬법) 만약 G가 Zpr 꼴이 아니라면 k≥ 2 이다. → G= Zpr, x (…) 이으로 분해가능 (→←)

> > ㅋ 따라서 G૨ Zp, 꼴이다

Januara de la Coma	
decomposable Group * स्वयंक्रम क्षेत्र । स्वव महिस्स म्हण्यामा । (व सर्व न । मा।का)	
Thm 11.16	만약 mol 유한기원군 G의 위수들 나는 다면 G는 위수 m인 부분군을 갖는다.
* 보충설명	유한가환군은 리그렇지 정리보다 더 강한 정리를 만족
$G = Z_{+} \times Z_{+}$ $+ G = 2^{2} \cdot 3^{2}$ (P6)	G = 교 _위 , x 교 _{위, s} x - x 교 _{위, s} (Px 는 14미요 무호선 다음 필요 X)
$ \begin{array}{ccc} & f & 0 \\ 3 & \langle 0 \rangle \times \langle 3 \rangle = \{(0,0), (0,3), (0,6) \\ 3^* & \langle 0 \rangle \times \langle 1 \rangle = f(0,0), (0,1), (0,2) \\ \end{array} $	$\Rightarrow G = \rho_1^{r_1} \cdot \rho_2^{r_2} \cdot \cdots \cdot \rho_k^{r_k}$
2:1 (2) × (0) (0.3), (0.4), (0.5) 2:3 (2) × (3) (0.6), (0.7), (0.8)	$= p_1^{S_1} \cdots p_k^{S_k} (S_k \leq t_k) \text{if } \text{ β} \text{if } .$
2·3² <2> X <1> ① 부을 모르 나라에 그 26 이므로 2² <1> X <0> 이를 로 나무면 이면 mud = 0	H = < p1 15-5
2*. 3 <1> x <3> 속 나누어주면 generalar 찾을 2*. 5*<1> x <1>	

* Thm II.16 이 라그랑지 정리와 차이정?

· In Lagrange Thm |G|= |2 → 1,2.3,4.6.12

이 중에서 IHI를 고출수 있는 것 위수 6인 군이 항상 존재? Not ensure.

이 크기를 갖는 부분들이 다 콘잭. ` 유한생성가환군 ' 조건 때문.