CS-201Computational Physics

Lab-4 28 . 02 . 2020

4 Phase plot of First - Order Autonomous Systems

4.a $f(x) = x^2 - 1$; x(0) = 0.99 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: -1

4.b
$$f(x) = -x^3$$
 ; $x(0) = 1$; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: 0

4.c
$$f(x) = x^3$$
 ; $x(0) = 0.1$; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: No Stable Point

4.d $f(x) = x^2$; x(0) = 0.01 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: No Stable Point

4.e $f(x) = 4x^2 - 16$; x(0) = 1 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: -2

4.f $f(v) = 1 - x^{14}$; x(0) = 0.9 ; $0 \le t \le 3$, $\Delta t = 0.001$

Stable Point approached: 1

4.g
$$f(x) = x - x^3$$
 ; $x(0)=0.9$; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: 1

4.h $f(x) = e^{-x} \sin(x)$; x(0)=1 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: π

4.i $f(x) = 1 + 0.5 \cos(x)$; x(0)=0 ; $0 \le t \le 100$, $\Delta t = 0.001$

Stable Point approached: No Stable Point

4.j $f(x) = 1 - 2\cos(x)$; x(0)=0 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: -1

4.k $f(x) = e^x - \cos(x)$; x(0)=0 ; $0 \le t \le 10$, $\Delta t = 0.001$

Stable Point approached: -1.297

