Harvard Cosmic-Ray Telescope with MMFE8: Plans and Progress

M. Bledsoe, N. Felt, M. Franklin, B. Garber, P. Giromini, J. Grotto, J. Huth, C. Rogan, A. Tuna, A. Wang

ATLAS NSW Electronics - March 21, 2016

Outline

- Goal: Cosmic-ray telescope with MMFE-8 front-end boards for testing MicroMegas readout and trigger
 - DAQ requirements and strategy
 - Timing and amplitude calibration

- Observed issues from calibration stress-tests
 - Diagnoses and treatment

Outlook

ATLAS Harvard Cosmic Ray Telescope

Harvard Cosmic Ray Telescope (HCRT)

ATL-COM-UPGRADE-2014-038

- Have previously collected cosmic ray data using Mini-1 board with VMM1
- Working to reproduce set-up with octuplet equipped with MMFE-8 and VMM2

DAQ Requirements

- On-going work on multiple needs of working DAQ system:
 - Testing/debugging MMFE-8 firmware provided by Arizona
 - Multiple MMFE-8 simultaneous readout (see Alex Tuna's talk)
 - Scintillator/PMT trigger interface to FE boards and DAQ
 - VMM synchronization over multiple boards

Trigger distribution

- Trigger distribution system under development
- To be used for VMM synchronization (see next slide), synchronized test-pulsing (ART testing), and triggered readout

VMM synchronization

- Plan for data-taking with 8 MMFE-8 boards x 8 VMM/board includes synchronization using an external trigger and common soft resets. See Ann Wang's talk discussing these plans: (2/12/2016) https://indico.cern.ch/event/496030/
- Firmware code for necessary components of scheme completed
 - stopping/synchronizing CKBC
 - registers to signal arrival of external trigger to DAQ gui interface
 - soft resets (currently required to preserve token logic)
 and FIFO resets
- Waiting for trigger-setup to fully test code and system

ATLAS Timing and amplitude calibration

- Developing calibration system for amplitude (PDO) and timing (TDO) measurements
- Calibration of multiple MMFE8 boards with multiple
 VMMs requires ability to efficiently scan over all boards/
 VMMs/channels with different configuration variations
 - test pulse DAC variations for PDO calibration
 - test pulse timing variations (w.r.t. CKBC) for TDO calibration
 - studies of effects of other variations (DAC threshold, peaking time, TAC slope, etc.) on amplitude and timing measurements

Calibration routine gui

 Python-based gui adapted from DAQ gui from Arizona with builtin, automated, and configurable calibration routine implementation

Calibration routine gui

Automated calibration routine parameters

configurable using interactive gui panel

- Configurable data output in custom .dat
 (txt) and .root format along with requested
 number of test pulses per configuration
- Configurable scan parameters. Each parameter can be **fixed** or **looped** over multiple parameters. Nested for-loops scan over all combinations of looped parameters:
 - channels
 - VMMs
 - delay time (TDO calibration)
 - test pulse DAC
 - threshold DAC
 - TAC slope
 - peaking time

Calibration routine test

First tests of calibration routine on single MMFE8 immediately revealed previously unknown issues...

Through-out this talk, default calibration routine configuration used unless otherwise noted:

- All channels/all VMMs scanned
- 100 test pulses per channel/configuration
- test pulse DAC = 120
- threshold DAC = 220
- TAC slope = 125 ns
- peaking time = 200 ns
- gain = 9 mV/fC
- DAQ termination for each channel/configuration once 200 data instances with
 pulsed channel = recorded channel are registered

should never encounter forced termination...

Christopher Rogan - ATLAS NSW Electronics Meeting - March 21, 2016

Pulsed channels with more than 100 recorded events indicate presence of additional erroneous events

Channels with more than 200 recorded events indicate misassignment of channel addresses in recorded data

Issue #1

- **Issue:** Re-discovered "Class II"-like events as described by Wenxiang Ding (http://indico.cern.ch/event/465405/)
- **Symptoms:** simultaneously pulsing a "bad" channel (always ch1-4) and "healthy" channel results in channel address mis-assignment with colorful modular arithmetic:
 - Ex. VMM #5, channel 4:
 - Pulsing ch4 + ch5 \Rightarrow data in ch1 (even if masked!)
 - Pulsing $ch4 + ch6 \Rightarrow data in ch2$
 - Pulsing $ch4 + ch7 \Rightarrow data in ch3$
 - Pulsing $ch4 + ch8 \Rightarrow data in ch4$
 - Pulsing $ch4 + ch9 \Rightarrow data in ch1$
 - Pulsing $ch4 + ch10 \Rightarrow data$ in ch2
 - **...**
 - modular arithmetic with modulus set by "bad" channel number...
- Treatment: masking observed "bad" channels removes problem

- Issue #1 treatment does not fix other observed issues
- VMM #2 exhibits large number of additional, erroneous events
- PDO and TDO values of zero for all these VMM #2 events

 Events are assigned to a collection of re-occuring channels (rarely the correct one)

"Healthy" output should look like the above-right figure

Issue #2

- **Issue:** On MMFE8 tested, VMM #2 records too many events, with zero PDO and TDO, with incorrectly-assigned channel addresses
- **Symptoms:** Dedicated tests reveal that global reset plus VMM loading (even with intermediate system reset) fills FPGA FIFO with erroneous events

■ **Treatment:** Performing additional system reset after VMM load clears FIFO of these events ⇒ observed issue disappears

Excess events also appear on VMM #6

Recorded channel addresses reveals rich modular-arithmetic structure...

- Majority of events are assigned to channels 1-4, depending on ch / 16
- Other events assigned throughout rest of VMM channels, in steps of 4 channels offset by ch / 16
- PDO for correctly
 assigned addresses have
 ~healthy values,
 mis-assigned events
 appear pathological

ATLAS Internal

MMFE8 Analysis

Seemingly inconsequential changes to firmware (removing redundant sensitivities, re-ordering orderinsensitive code lines,...) can cause issue to move to different VMMs

Exhibits same channel address pattern

Also changed CKTK duty cycle to 35% (suggestion of Gianluigi) ⇒ important change that helped us understand phenomenology

Truncated data0 on scope corresponds to pathological recorded data

- "dt_state" signal in firmware corresponds to 9-state state-machine which manages data acquisition from VMMs into FPGA FIFO
- Observed to "jump" states in problematic VMMs (state 1 → state 3)
- four flip-flops control dt_state , so '0001' \rightarrow '0011' indicative of first one "sticking"

Issue #3

- **Issue/Symptoms:** Varying VMMs exhibiting incorrect channel assignment and pathological data for all channels, corresponding to truncated data0, incorrect state-machine progression, and often problems with CKTK not disabling during data acquisition by the on-board FPGA
- **Diagnosis/Treatment:** Data arriving from VMMs sometimes does not satisfy timing requirements of state-machine (different VMMs w/ different time skew), causing observed problems with problematic sensitivity to unstable timing
 - Fixed by feeding VMM data0 signals through two flip-flops clocked on 200 MHz clock

• First flip-flop synchronizes data0 signal, second guards against meta-stable states

(< 5 ns to steady-state)

new to toplevel.vhd:

```
sync_data0: process (clk_200)
begin
  if rising_edge(clk_200) then
    for I in 0 to 7 loop
      vmm_data0_sync_vec(I) <= vmm_data0_async_vec(I);
      vmm_data0_vec(I) <= vmm_data0_sync_vec(I);
    end loop;
end if;
end process sync_data0;</pre>
```

■ Should do this for all signals arriving from VMMs (currently done for data0 and data1)

Resolved issues

Fixes for issues #1-#3 removes all extra events (apart from some 'Class II' channels 1-4)

Average PDO's appear ~sane...
...can now proceed with
calibration!

PDO calibration

Average PDO scales as expected with input test pulse DAC

PDO calibration

For some channels we observe loss of least significant ADC bits (all peaks 16 counts apart...)

xADC PDO calibration

- Even with same input test pulse DAC, DAC conversion is different for each VMM
- We are using the FPGA on-board ADC built by Arizona to more accurately calibrate channel PDOs in automated procedure

 Tested and appears to be working correctly

Harvard undergrad Ben Garber

VMM #1 pulse DAC linearity

TDO calibration

Timing (TDO) measurement calibration through varying timing delay by:

- Synchronizing CKTP to CKBC
- Delaying CKTP relative to CKBC by N "delay counts" on 200 MHz mother clock (5 ns steps)

See Ann Wang's talk for more details:

(https://indico.cern.ch/event/496030/)

Timing calibration

- Can see effect of 5 ns delay counts on measured TDO
- First look reveals relatively wide TDO distributions
- Distribution becomes narrower for increasing PDO this dependence of TDO resolution on PDO previously not observed with VMM1 ⇒ under investigation

Outlook

- Goal of working DAQ for Harvard cosmic-ray telescope with MicroMegas octuplet + MMFE-8 +VMM2 progressing rapidly on several fronts
- Stress test of MMFE-8 readout with automated calibration routine revealed several issues ⇒ have developed fixes for all observed problems
 - Masking problematic channels
 - Additional system resets to clear FPGA FIFO
 - Timing fixes to firmware for asynchronous data signals from VMMs
- Now proceeding with timing and amplitude calibration for all VMMs/channels on available MMFE-8's (currently 2)

Additional Slides

Previous Notes and Talks

- "Test of a resistive micromega v3.0 prototype with VMM1 readout using ≥ 0.8 GeV/c² cosmic muons",
 - ATL-COM-UPGRADE-2014-038
- "Test of the VMM1 Address in Real Time (ART) output using $\geq 0.8 \text{ GeV/c}^2$ cosmic muons",

ATL-COM-MUON-2014-069

- "Re-analysis of the 2012 test-beam data",
 ATL-COM-MUON-2014-051
- "Bench test of VMM2 mini-1 boards", ATL-COM-MUON-2015-078
- Measurement of the Noise in an MMFE-8 Front-End Board, https://indico.cern.ch/event/465405/
- DAQ System for Testing the Micromega Trigger with Cosmic Rays at Harvard, https://indico.cern.ch/event/496030/