

Outline

- Introduce to Canny edge detection
- Hardware description
 - Block diagram
 - I/O Information
- Lab6 Implementation
 - Finding the gradient magnitude and direction
 - Non-maximum suppression
 - Hysteresis thresholding
 - Memory read/write operation
- Criteria
 - Simulation Result
 - Grading policy
 - Requirement & file format

Introduce to Canny Edge Detection

- □ Canny Edge Detection is a technique used in image processing to detect edges, which are regions of rapid intensity changes in the image.
- Proposed by John Canny in 1986.
- ☐ Three main steps:
 - 1. Finding the gradient :
 - Magnitude
 - Direction
 - 2. Non-maximum suppression
 - 3. Hysteresis thresholding

LPHPLHB VLSI Design LAB

Introduce to Canny Edge Detection

Input image

Output image

Block Diagram

□ I/O Information

Signal	I/O	length	Desc.	
clk	I	1	positive-edged triggered	
rst	I	1	asynchronous positive-edged triggered	
enable	I	1	enable signal to start processing	
ird	0	1	Active high read enable signal for Grayscale_RAM	
iaddr	0	14	Address for Grayscale_RAM	
idata	l	8	Read data from Grayscale_RAM , 8-bit , unsigned	
cwr_mag_0	0	1	Active high write enable signal for LO_Magnitude_RAM	
cdata_mag_wr0	0	13	Write data to LO_Magnitude_RAM · 13-bit · signed	
crd_mag_0	0	1	Active high read enable signal for LO_Magnitude_RAM	
cdata_mag_rd0	I	13	Read data from LO_Magnitude_RAM · 13-bit · signed	
caddr_mag_0	0	14	Address for LO_Magnitude_RAM	

□ I/O Information

Signal	1/0	length	Desc.
cwr_ang_0	0	1	Active high write enable signal for LO_Angle_RAM
cdata_ang_wr0	0	13	Write data to LO_Angle_RAM · 13-bit · signed
crd_ang_0	0	1	Active high read enable signal for LO_Angle_RAM
cdata_ang_rd0	I	13	Read data from LO_Angle_RAM · 13-bit · signed
caddr_ang_0	0	14	Address for LO_Angle_RAM
cwr1	0	1	Active high write enable signal for L1_RAM
cdata_wr1	0	13	Write data to L1_RAM · 13-bit · signed
crd1	0	1	Active high read enable signal for L1_RAM
cdata_rd1	I	13	Read data from L1_RAM , 13-bit , signed
caddr_1	0	14	Address for L1_RAM

□ I/O Information

Signal	I/O	length	Desc.
cwr2	0	1	Active high write enable signal for L2_RAM
cdata_wr2	0	13	Write data to L2_RAM · 13-bit · signed
caddr_2	0	14	Address for L2_RAM
done	0	1	Finish signal

pixel

LPHPLHE VLSI Design LAB

Implementation

Layer0:Finding the gradient magnitude and direction

Convolution with sobel operator Sx and Sy to get Gx and Gy.

(no need for zero-padding)

pixel0	•	pixel 127
pixel 16256		pixel 16383

reading 128*128 pixels of unsigned 8bits data from Grayscale_RAM

3'b111	3'b000	3'b001	
(-1)	(0)	(1)	
3'b110	3'b000	3'b010	
(-2)	(0)	(2)	
3'b111	3'b000	3'b001	
(-1)	(0)	(1)	

Sx,3-bit signed

\mathcal{S}			
	3'b111	3'b110	

3'b111	3'b110	3'b111	
(-1)	(-2)	(-1)	
3'b000	3'b000	3'b000	
(0)	(0)	(0)	
3'b001	3'b010	3'b001	
(1)	(2)	(1)	

Sy,3-bit signed

pixel0

Gx(126*126),13-bit,signed

pixel0		pixel 125
		•
	·	
pixel 15750		pixel 15875

Gy(126*126),13-bit,signed

- ☐ Layer0:Finding the gradient magnitude and direction
 - Convolution implementation ex:

Data format: 8-bit unsigned * 3-bit signed = 13-bit signed.
(Grayscale data) (Sx,Sy) (Gx,Gy)

1	2	3	0	1
0	1	2	3	0
3	0	1	2	3
2	3	0	1	0
2	3	0	4	1

-1	0	1	
-2	0	2	
-1	0	1	

4	4	-4
-4	4	2
-8	-1	3

example

- □ Layer0:Finding the gradient magnitude and direction
 - Convolution implementation ex:

$$1*(-1)+2*0+3*1+0*(-2)+1*0+2*2+3*(-1)+0*0+1*1=4$$
 $2*(-1)+3*0+0*1+1*(-2)+2*0+3*2+0*(-1)+1*0+2*1=4$
 $1*(-1)+2*0+3*1+0*(-2)+1*0+0*2+0*(-1)+4*0+1*1=3$

Data format: 8-bit unsigned * 3-bit signed = 13-bit signed.
(Grayscale data) (Sx,Sy) (Gx,Gy)

1	2	3	0	1
0	1	2	3	0
3	0	1	2	3
2	3	0	1	0
2	3	0	4	1

-1	0	1
-2	0	2
-1	0	1

4	4	-4
-4	4	2
-8	-1	3

example

- ☐ Layer0:Finding the gradient magnitude and direction
 - Convolution implementation ex:

$$1*(-1)+2*0+3*1+0*(-2)+1*0+2*2+3*(-1)+0*0+1*1=4$$
 $2*(-1)+3*0+0*1+1*(-2)+2*0+3*2+0*(-1)+1*0+2*1=4$
 $1*(-1)+2*0+3*1+0*(-2)+1*0+0*2+0*(-1)+4*0+1*1=3$

Data format: 8-bit unsigned * 3-bit signed = 13-bit signed.
(Grayscale data) (Sx,Sy) (Gx,Gy)

1	2	3	0	1
0	1	2	3	0
3	0	1	2	3
2	3	0	1	0
2	3	0	4	1

4	4	-4
-4	4	2
-8	-1	3

example

- ☐ Layer0:Finding the gradient magnitude
 - ♦ |Gx|+|Gy| to get magnitude.
 - Storing the result to LO_Magnitude_RAM.
 - Data format : 13-bit signed + 13-bit signed = 13-bit signed.
 (|Gx|) (|Gy|) (cdata_mag_wr0)

L0_Magnitude_RAM

pixel0	• • •	pixel 125
pixel 15750		pixel 15875

|Gx|+|Gy|

pixel 0
pixel 1
•
pixel 15874
pixel 15875

- □ Layer0:Finding the gradient direction:arctan(Gy/Gx)
 - Fixed point division : 13-bit integer + 16-bit fraction
 - Gy should left-shifted 16-bit for fractional part.
 - ◆ (Gy << 16) / Gx = temp_result.</p>
 - temp_result is a 29-bit fixed-point number comprising a 13-bit integer part and a 16-bit fractional part.
 - The angle is rounded to one of four angles: 0°,45°,90°,135°:
 - temp_result<29'h00006A09 || temp_result>29'h1FFF95F7 maps to 0°.
 - temp_result>29'h00006A09 && temp_result<29'h00026A09 maps to 45°.
 - temp_result>29'h00026A09 || temp_result<29'h1FFD95F7 maps to 90°.
 - temp_result<29'h1FFF95F7 && temp_result>29'h1FFD95F7 maps to 135°.

NOTE: If Gx=0, it maps to 90°

- Layer0:Finding the gradient direction :arctan(Gy/Gx)
 - Storing the angle result(13'd0,13'd45,13'd90,13'd135) of each pixel to L0_Angle_RAM.

step3

store

LPHPLMB VLSI Design LAB

Implementation

- Layer1:Non-maximum suppression
 - Comparing the magnitude of the current pixel with neighboring pixels along the gradient direction, if the magnitude of the current pixel is the largest, the value will be preserved. Otherwise, the value will be set to 0.

(Outermost pixels set to 0)

L1_RAM

step1

pixel0	pixel1	pixel2		pixel 125
pixel 126	45°	pixel 128		pixel 251
pixel 252	pixel 253	pixel 254		pixel 377
•	•	•	•	
			-	
pixel 15750	pixel 15751	pixel 15752		pixel 15875

Data read from LO_Angle_RAM

step2

pixel0	pixel1	120		pixel 125
pixel 126	80	pixel 128		pixel 251
50	pixel 253	pixel 254		pixel 377
-	-			•
-	-		-	•
			-	-
pixel 15750	pixel 15751	pixel 15752		pixel 15875

Data read from LO Magnitude RAM

pixel	0=0

pixel 1	=0
---------	----

.

pixel 127=0

pixel 15874=0

| pixel 15875=0

step3

store

Implementation

- Layer1:Non-maximum suppression
 - Comparing the magnitude of the current pixel with neighboring pixels along the gradient direction, if the magnitude of the current pixel is the largest, the value will be preserved. Otherwise, the value will be set to 0.

(Outermost pixels set to 0)

L1_RAM

step1

pixel0	pixel1	pixel2	pixel3	•	pixel 125
pixel 126	pixel 127	135°	pixel 129		pixel 251
pixel 252	pixel 253	pixel 254	pixel 255		pixel 377
	•		•	•	•
	-		-		-
	.				
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 15875
	-				

Data read from LO_Angle_RAM

step2

pixel0	38	pixel2	pixel3		pixel 125
pixel 126	pixel 127	200	pixel 129		pixel 251
pixel 252	pixel 253	pixel 254	45		pixel 377
-	-		-	-	
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 15875

Data read from LO_Magnitude_RAM

pixel	0=0

pixel 1=0

.

pixel 128=200

.

pixel 15874=0

pixel 15875=0

- ☐ Layer1:Non-maximum suppression
 - Comparing the magnitude of the current pixel with neighboring pixels along the gradient direction, if the magnitude of the current pixel is the largest, the value will be preserved. Otherwise, the value will be set to 0.

(Outermost pixels set to 0)

L1_RAM

step1

pixel0	pixel1	pixel2	pixel3		pixel 125
pixel 126	pixel 127	pixel 128	pixel 129	•	pixel 251
pixel 252	pixel 253	0°	pixel 255		pixel 377
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 15875

Data read from LO_Angle_RAM

step2

pixel0	pixel1	pixel2	pixel3		pixel 125
pixel 126	pixel 127	pixel 128	pixel 129	•	pixel 251
pixel 252	30	70	45		pixel 377
	-			-	-
				-	
				-	
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 1587

Data read from LO_Magnitude_RAM

pixel	0=0

pixel 1=0

store .

step3

pixel 254=70

.

pixel 15874=0

pixel 15875=0

LPHPLAB VLSI Design LAB

Implementation

- Layer1:Non-maximum suppression
 - Comparing the magnitude of the current pixel with neighboring pixels along the gradient direction, if the magnitude of the current pixel is the largest, the value will be preserved. Otherwise, the value will be set to 0.

(Outermost pixels set to 0)

L1_RAM

step1

pixel0	pixel1	pixel2	pixel3		pixel 125
pixel 126	pixel 127	pixel 128	pixel 129		pixel 251
pixel 252	pixel 253	pixel 254	90°		pixel 377
pixel 378	pixel 379	pixel 380	pixel 381		pixel 503
	-			-	•
	-				-
	•		-	•	•
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 15875

Data read from LO Angle RAM

step2

pixel0	pixel1	pixel2	pixel3		pixel 125
pixel 126	pixel 127	pixel 128	35		pixel 251
pixel 252	pixel 253	pixel 254	45		pixel 377
pixel 378	pixel 379	pixel 380	45		pixel 503
		-		-	-
-		-			
					-
pixel 15750	pixel 15751	pixel 15752	pixel 15753		pixel 15875

Data read from LO Magnitude RAM

step3 pixel 0=0

pixel 1=0

-

store

pixel 255=45

.

pixel 15874=0

pixel 15875=0

- Layer2:Hysteresis thresholding
 - ♦ If the magnitude of the current pixel >= 13'd100, it's marked as a strong edge pixel(set to 13'd255).
 - If the magnitude of the current pixel < 13'd50, it's marked as a weak edge pixel(set to 13'd0).</p>

- Layer2:Hysteresis thresholding
 - If the magnitude of the current pixel >=13'd50 and <13'd100, it checks whether there is a magnitude of the pixel >= 13'd100 around the current pixel. If so, the current pixel will be marked as a strong edge pixel(set to 13'd255). If not, it will be marked as a weak edge pixel(set to 13'd0).
 L2 RAM

126 0 0 pixel pixel 0 200 127 **129** pixel 0 253 store pixe pixel pixel 126 0 379 381 0 0 0 0 Data read from L1 RAM

pixel 0=0
pixel 1=0

:
pixel 128=255
:
pixel 254=255
pixel 255=0
:
pixel 15874=0
pixel 15875=0

LPHPLNB VLSI Design LAB

Implementation

- The timing information for Read/Write SRAM
 - Read operation(delay one cycle)

- √ The memory will output values on the negative edge, and you need to capture data on the positive edge
- Write operation

- Grading policy(100%)
 - Pattern1&2 Layer 0 Magnitude simulation pass (12%)
 - Pattern1&2 Layer 0 Angle simulation pass (13%)
 - Pattern1&2 Layer 1 simulation pass (25%)
 - Pattern1&2 Layer 2 simulation pass (30%)
 - Report (20%)

```
VSIM 6> run -all
       Simulation Start
 **************
 Pattern 0, Layer 0(Mag) is pass
 Pattern 0, Layer 0(Ang) is pass!
 Pattern 0, Layer 1
 Pattern O. Laver 2
                        is pass
  Pattern 1, Layer 0(Mag) is pass
 Pattern 1, Layer 0(Ang) is pass!
 Pattern 1, Layer 1
 Pattern 1, Layer 2
  Your score = 80
  ** Note: $finish : C:/Users/User/Desktop/ca
```

```
pattern1&2 All Pass
```


pattern1&2 Layer1,2 failed

pattern1 all pass but pattern2 failed

Criteria

- Simulation result visualization
 - It will generate the input picture and your output result in a BMP file when your simulation is finished.

Requirement & file format

- ☐ File format
- Deadline:2024/04/11 8:59

Requirement & file format

Friendly reminder

- Please complete the assignment by your own, discussion with peers is recommended, but do not cheat.
- Warning! Any dishonesty found will result in zero grade.
- Warning! Any late submission will also receive zero.
- Warning! Please make sure that your code can be compiled in Modelsim, any dead body that we cannot compile will also receive zero.
- Warning! Please submit your work according to the specified file format, making sure not to include any unnecessary files. Any unnecessary file found, will lead to 10% deduction from the overall score.

Thanks for listening

