1. Zakon Lorentzove sile – napisati i reći definicije E i B.

Lorentzova sila – sila koja djeluje na električni naboj q koji se giba brzinom v u magnetskom polju B i na njega djeluje električno polje E.

$$\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

Jakost električnog polja (E) – omjer je sile na naboj u mirovanju (v = 0) i iznosa naboja q. Iznos ispitanog naboja mora biti što manji $(q \rightarrow 0)$ kako njegovo unošenje ne bi mijenjalo polje koje se mjeri.

$$\vec{E} = \lim_{q \to 0} \left[\frac{\vec{F}}{q} \right]; \ v = 0$$

Magnetska indukcija (B) – pojava da se u vodiču koji u magnetskom polju ima komponentu brzine okomitu na smjer magnetskog polja inducira napon

$$\vec{v} \times \vec{B} = \left(\frac{\vec{F}}{q} - \vec{E}\right)$$

2. Odredi putanju nabijene čestice koja okomito upada u homogeno el.polje.

Ravnotežna sila: $m \cdot \vec{a} = -e \cdot \vec{E}$

$$m \cdot \vec{a} = m \cdot \left(\overrightarrow{a_x} \frac{d^2 x}{dt^2} + \overrightarrow{a_y} \frac{d^2 y}{dt^2} \right)$$
 $\vec{F} = -e \cdot \vec{E}$ $\vec{E} = E \cdot \overrightarrow{a_y}$

$$\vec{F} = -e \cdot \vec{E} \qquad \vec{E} = E \cdot \vec{a}$$

$$-e \cdot E \cdot \overrightarrow{a_y} = m \cdot \left(\overrightarrow{a_x} \frac{d^2 x}{dt^2} + \overrightarrow{a_y} \frac{d^2 y}{dt^2} \right)$$

$$\overrightarrow{v_0} = \overrightarrow{v_0} \cdot \overrightarrow{a_x}$$

$$(\overrightarrow{a_x}) \qquad v_0 = v_{x(x=0)}$$

$$\frac{d^2x}{dt^2} = 0 / \int \rightarrow \frac{dx}{dt} = v_x = C_1 \rightarrow C_1 = v_0 \quad \frac{dx}{dt} = v_0 / \int \rightarrow x_{(t)} = v_0 \cdot t + C_2$$

PU:
$$t = 0 \rightarrow C_2 = 0$$

$$\underline{x_{(t)}} = v_0 \cdot t$$

$$(\overrightarrow{a}_{v})$$

$$-e \cdot E = m \cdot \frac{d^2 y}{dt^2} / \int \rightarrow \frac{dy}{dt} = \frac{-e \cdot E}{m} \cdot t + C_1$$

$$PU: t = 0 \rightarrow C_1 = 0$$

$$\frac{dy}{dt} = \frac{-e \cdot E}{m} \cdot t / \int \rightarrow y = \frac{-e \cdot E}{m} \cdot \frac{t^2}{2} + C_2$$

PU:
$$t = 0 \to C_2 = 0$$

$$\underline{y_{(t)} = \frac{-e \cdot E}{m} \cdot \frac{t^2}{2}}$$

3. Gustoća naboja i struje – definicija λ , σ , ρ i J.

Linijski naboj (λ) je naboj raspodijeljen po presjeku debljine nula, pa je njegova gustoća

$$\lambda$$
 na liniji l : $\lambda = \lim_{\Delta l \to 0} \frac{\Delta Q}{\Delta l} = \frac{dQ}{dl}$

Plošni naboj (σ) je naboj raspodijeljen u sloju debljine nula, pa je njegova gustoća σ na

plohi
$$S: \quad \sigma = \lim_{\Delta S \to 0} \frac{\Delta Q}{\Delta S} = \frac{dQ}{dS}$$

Gustoća naboja (ρ) je količina el. naboja u nekoj točki prostora:

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta Q}{\Delta V} = \frac{dQ}{dV}$$

Gustoća struje (J) tok el. naboja po jedinici površine u jedinici vremena:

$$\vec{J} = \vec{a_v} \lim_{\Delta S \to 0} \frac{\Delta Q}{\Delta t \cdot \Delta S} = \vec{a_v} \frac{dI}{dS}$$

4. Jednadžba kontinuiteta – integralni oblik i izvod diferencijalnog oblika.

Tok električnog naboja (struja) I iz zatvorenog konačnog prostora volumena V kojeg obrubljuje ploha S je jednak iznosu smanjenja naboja Q unutar tog prostora, zbog zakona očuvanja ukupnog naboja.

$$I = -\frac{dQ}{dt} \qquad \qquad \iint_{S} \vec{J} \cdot \vec{n} \cdot dS = -\iiint_{V} \frac{\partial \rho}{\partial t} dV$$

Primjenom Gaussovog teorema $\oint \vec{A} \cdot \vec{n} \cdot dS = \iiint \nabla \cdot \vec{A} \cdot dV$ dobijemo:

$$div\vec{J} = \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

5. Coulombov zakon – izraz i definicija E

Sila između dva vrlo mala nabijena tijela koja se nalaze u vakuumu na udaljenosti koja je puno veća od dimenzija tijela proporcionalna naboju na svakom od tijela i obrnuto proporcionalna kvadratu udaljenosti između tijela.

$$F = k \frac{Q_1 \cdot Q_2}{R^2}; \qquad k = \frac{1}{4\pi\varepsilon_0}; \qquad \varepsilon_0 = 8.854 \cdot 10^{-12} \, As/Vm; \qquad F = \frac{Q_1 \cdot Q_2}{4\pi\varepsilon_0 R^2}$$

Jakost električnog polja (E) definiramo kao silu na jedinični naboj.

$$\vec{E} = \frac{\vec{F}}{Q} = \frac{Q}{4\pi\varepsilon_0 R^2} \vec{a_r}$$

6. Odredite jakost električnog polja jednoliko nabijene dužine.

Naboj je raspodijeljen po liniji l s linijskom gustoćom λ . Ukupna jakost električnog polja je zbroj doprinosa diferencijalnih naboja $dQ = \lambda \cdot dl$ integracijom po l.

$$\vec{E}(\vec{r}) = \int_{L} \frac{dQ}{4\pi\varepsilon_{0}R^{3}} \vec{R} = \int_{L} \frac{\lambda \cdot dl}{4\pi\varepsilon_{0}R^{3}} \vec{R} = \frac{1}{4\pi\varepsilon_{0}} \int_{L} \frac{\vec{R}}{R^{3}} \cdot \lambda(\vec{r}) \cdot dl$$

7. Poissonova i Laplaceova jednadžba.

Poissonova jednadžba je diferencijalna jednadžba i primjenjuje se na rješavanje potencijala u homogenom sredstvu:

$$\nabla \cdot \overrightarrow{D} = \nabla \cdot \left(\varepsilon \cdot \overrightarrow{E} \right) = \rho_s ; \qquad \overrightarrow{E} = -\nabla \varphi ; \qquad \nabla \cdot \left[\varepsilon \cdot \left(-\nabla \varphi \right) \right] = \rho_s$$

$$\nabla \cdot \nabla \varphi = -\frac{\rho_s}{\varepsilon} \qquad \Delta \varphi = -\frac{\rho_s}{\varepsilon}$$

Ako u prostoru nema slobodnih naboja $\rho_s=0$, tada Poissonova jednadžba prelazi u **Laplaceovu jednadžbu** u homogenom prostoru: $\Delta \varphi=0$

8. Metoda odslikavanja.

Sve silnice električnog polja nekog naboja završavaju na vodljivoj ravnini i na njoj stvore naboje suprotnog predznaka. Plošna gustoća stvorenog naboja na ravnini je različita i opada s povećanjem udaljenosti od naboja. Ako se ta ravnina zamijeni s nabojem suprotnog predznaka jednako udaljenim od ravnine, na mjestu ravnine potencijal će biti nula $(\varphi = 0)$. Taj se naboj naziva *odslikani naboj*, a postupak zamjene naziva se *metoda odslikavanja*.

9. Polje voda iznad površine tla.

Vrijedi sve iz zadatka 8, samo što naboj nije točkasti već linijski, a površina tla predstavlja vodljivu ravninu. Pa formula za udio električnog polja pojedinog voda glasi:

$$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{a}_r$$

10. Energija sustava točkastih naboja.

Za dovođenje prvog naboja Q_1 iz beskonačnosti u točku P_1 nije potrebno utrošiti nikakav rad budući da u prostoru ne postoji nikakvo električno polje.

Za dovođenje drugog naboja Q_2 iz beskonačnosti u točku P_2 potrebno je utrošiti energiju jer postoji električno polje stvoreno nabojem Q_1 . Istu bi energiju trebalo utrošiti da smo prvo iz beskonačnosti doveli naboj Q_2 u točku P_2 , a zatim iz beskonačnosti u točku P_1 doveli naboj Q_1 .

$$W_2 = \varphi_{12} \cdot Q_2 = \frac{Q_1}{4\pi \varepsilon R_{12}} Q_2$$

Za dovođenje trećeg naboja Q_3 iz beskonačnosti u točku P_3 potrebno je utrošiti energiju jer postoji električno polje stvoreno nabojima Q_1 i Q_2 .

$$W_3 = \varphi_{13} \cdot Q_3 + \varphi_{23} \cdot Q_3 = \frac{Q_1}{4\pi \varepsilon R_{13}} Q_3 + \frac{Q_2}{4\pi \varepsilon R_{23}} Q_3$$

Isti postupak je za dovođenje n-tog naboja Q_n iz beskonačnosti u točku P_n . Ukupna energija dobije se zbrojem svih energija:

$$W = W_2 + W_3 = (\varphi_{12} \cdot Q_2) + (\varphi_{13} \cdot Q_3 + \varphi_{23} \cdot Q_3)$$

Isto bi se dobilo da su se naboji dovodili različitim redoslijedom:

$$W = W_2 + W_3 = (\varphi_{21} \cdot Q_1) + (\varphi_{31} \cdot Q_1 + \varphi_{32} \cdot Q_2)$$

Ako zbrojimo i podijelimo s dva ova dva rješenja dobije se:

$$W = \frac{1}{2} [(\varphi_{21} + \varphi_{31})Q_1 + (\varphi_{12} + \varphi_{32})Q_2 + (\varphi_{21} + \varphi_{21})Q_3]$$

Kako vrijedi da je:

$$\varphi_1 = \varphi_{21} + \varphi_{31};$$
 $\varphi_2 = \varphi_{12} + \varphi_{32};$ $\varphi_3 = \varphi_{13} + \varphi_{23}$

Izraz za ukupnu energije prelazi u:

$$W = \frac{1}{2} (\varphi_1 \cdot Q_1 + \varphi_2 \cdot Q_2 + \varphi_3 \cdot Q_3)$$

Za skupinu od *n* točkastih naboja vrijedi:

$$W = \frac{1}{2} \sum_{i=1}^{n} Q_i \cdot \varphi_i$$

11. Energija prostorne raspodijele naboja i sustava vodljivih tijela

Ako imamo naboj prostorne gustoće ρ raspodijeljen po volumenu V, u diferencijalno malom volumenu dV nalazi se diferencijalni naboj $dQ = \rho \cdot dV$ pa ga možemo smatrati točkastim nabojem kojemu je energija određena s:

$$W = \frac{1}{2} \sum_{i=1}^{n} Q_i \cdot \varphi_i$$

Kako se ovdje radi o kontinuiranoj raspodijeli naboja, umjesto sume potrebno je provesti integraciju po volumenu V:

$$W = \frac{1}{2} \iiint_{V} \rho \cdot \varphi \cdot dV$$
 - energija prostorne raspodijele naboja

Sustav vodljivih tijela se može prikazati nadomjesnom shemom parcijalnih kapaciteta. Električno polje \vec{E} u tom sustavu povezano je preko naboja Q na vodičima s naponom U (razlikom potencijala).

12. Energija prikazana vektorima električnog polja.

Primijenimo izraze za Gaussov zakon u diferencijalnom obliku i energiju prostorne raspodijele naboja:

$$\nabla \cdot \overrightarrow{D} = \rho_s \qquad W = \frac{1}{2} \iiint_V \rho \cdot \varphi \cdot dV$$

Općenito vrijedi:

$$\nabla \cdot \left(\varphi \cdot \overrightarrow{D} \right) = \varphi \cdot \left(\nabla \cdot \overrightarrow{D} \right) + \overrightarrow{D} \cdot \left(\nabla \cdot \varphi \right) \Rightarrow \varphi \cdot \left(\nabla \cdot \overrightarrow{D} \right) = \nabla \cdot \left(\varphi \cdot \overrightarrow{D} \right) - \overrightarrow{D} \cdot \left(\nabla \cdot \varphi \right) = \nabla \cdot \left(\varphi \cdot \overrightarrow{D} \right) + \overrightarrow{D} \cdot \overrightarrow{E}$$

Pa se uvrštavanjem dobije:

$$W = \frac{1}{2} \iiint_{V} \varphi \cdot (\nabla \cdot \overrightarrow{D}) dV = \frac{1}{2} \iiint_{V} \nabla \cdot (\varphi \cdot \overrightarrow{D}) \cdot dV + \frac{1}{2} \iiint_{V} \overrightarrow{D} \cdot \overrightarrow{E} \cdot dV$$

$$W = \frac{1}{2} \oiint_{S} \varphi \cdot \overrightarrow{D} \cdot \overrightarrow{n} \cdot dS + \frac{1}{2} \iiint_{V} \overrightarrow{D} \cdot \overrightarrow{E} \cdot dV$$

Prvi integral predstavlja doprinos energiji električnog polja u prostoru izvan volumena V, a drugi integral predstavlja energiju sadržanu u volumenu. Kako uzimamo cijeli prostor, kada $r \to \infty$, a doprinos energiji opada s $1/r^3$, podintegralna funkcija u prvom integralu će težiti k nuli. Pa imamo:

$$W = \frac{1}{2} \iiint_{V} \vec{D} \cdot \vec{E} \cdot dV = \frac{1}{2} \iiint_{V} \varepsilon \cdot E^{2} \cdot dV$$

13. Kapacitet i energija pohranjena u kondenzatoru.

Kondenzatori su najčešće dva međusobno izolirana vodljiva tijela, nabijena istim nabojima Q suprotnog predznaka i služe za pohranjivanje naboja, odnosno energije električnog polja. Električno polje \vec{E} u tom sustavu povezano je nabojima na vodičima i naponom (razlikom potencijala).

$$Q = C \cdot (\varphi_1 - \varphi_2) = C \cdot U_{12} = C \cdot U \qquad C = \frac{Q}{U}$$

Veličinu C, koja je konstanta, nazivamo *kapacitetom kondenzatora*. U kondenzatoru naboj na elektrodama je isti, suprotnih predznaka $\pm Q$. Energija naboja na pozitivno nabijenoj elektrodi čiji je potencijal φ_1 je:

$$W_{1} = \frac{1}{2} \iint_{S} \boldsymbol{\sigma} \cdot \boldsymbol{\varphi}_{1} \cdot dS = \frac{1}{2} \boldsymbol{\varphi}_{1} \iint_{S} \boldsymbol{\sigma} \cdot dS = \frac{1}{2} \cdot \boldsymbol{Q} \cdot \boldsymbol{\varphi}_{1}$$

Energija naboja na negativno nabijenoj elektrodi čiji je potencijal φ_2 je:

$$W_2 = \frac{1}{2} \iint_S \boldsymbol{\sigma} \cdot \boldsymbol{\varphi}_2 \cdot dS = \frac{1}{2} \boldsymbol{\varphi}_2 \iint_S \boldsymbol{\sigma} \cdot dS = -\frac{1}{2} \cdot \boldsymbol{Q} \cdot \boldsymbol{\varphi}_2$$

Ukupna energija sadržana u električnom polju kondenzatora je:

$$W = W_1 + W_2 = \frac{1}{2}Q \cdot \varphi_1 - \frac{1}{2}Q \cdot \varphi_2 = \frac{1}{2}Q \cdot (\varphi_1 - \varphi_2) = \frac{1}{2}Q \cdot U_{12} = \frac{1}{2}Q$$

Odnosno uz
$$Q = C \cdot U$$
 slijedi: $W = \frac{1}{2}C \cdot U^2 = \frac{1}{2}\frac{Q^2}{C}$

14. Kapacitet dvoslojnog pločastog kondenzatora (granica paralelna s pločama).

$$\vec{E}_{t1} = \vec{E}_{t2} = \vec{E}$$

$$Q = \bigoplus_{S_1} \overrightarrow{D} \cdot \overrightarrow{n} \cdot dS + \bigoplus_{S_2} \overrightarrow{D} \cdot \overrightarrow{n} \cdot dS = D_1 \cdot S_1 + D_2 \cdot S_2 = \varepsilon_1 \cdot E \cdot S_1 + \varepsilon_2 \cdot E \cdot S_2$$

$$U = U_{AB} = -\int_{1}^{A} \vec{E} \cdot d\vec{l} = E \cdot d$$

$$C = \frac{Q}{U} = \varepsilon_1 \cdot \frac{S_1}{d} + \varepsilon_2 \cdot \frac{S_2}{d}$$

15. Kapacitet dvoslojnog pločastog kondenzatora (granica okomita na ploče).

$$\overrightarrow{D}_{n1} = \overrightarrow{D}_{n2} = D; \qquad \varepsilon_1 \cdot E_1 = \varepsilon_2 \cdot E_2$$

$$\varepsilon_1 \cdot E_1 = \varepsilon_2 \cdot E_2$$

$$Q = \iint_{S_1} \vec{D} \cdot \vec{n} \cdot dS = D \cdot S \Rightarrow D = \frac{Q}{S}$$

$$U = U_{AB} = -\int_{B}^{A} \vec{E} \cdot d\vec{l} = -\int_{B}^{C} E_{2} \cdot dx - \int_{C}^{A} E_{1} \cdot dx = -\int_{d_{1}+d_{2}}^{d_{1}} E_{2} \cdot dx - \int_{d_{1}}^{0} E_{2} \cdot dx = \frac{D}{\varepsilon_{2}} \cdot d_{2} + \frac{D}{\varepsilon_{1}} \cdot d_{1}$$

$$U = Q \cdot \left(\frac{d_2}{\varepsilon_0 \varepsilon_{x,2} S} + \frac{d_2}{\varepsilon_0 \varepsilon_{x,1} S} \right)$$

$$U = Q \cdot \left(\frac{d_2}{\varepsilon_0 \varepsilon_{r2} S} + \frac{d_2}{\varepsilon_0 \varepsilon_{r1} S}\right); \qquad \qquad \frac{U}{Q} = \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d_2}{\varepsilon_0 \varepsilon_{r2} S} + \frac{d_2}{\varepsilon_0 \varepsilon_{r1} S}$$

$$C_1 = \varepsilon_0 \varepsilon_{r_1} \frac{S}{d_1}; \qquad C_2 = \varepsilon_0 \varepsilon_{r_2} \frac{S}{d_2}$$

16. Sile u električnom polju – Konstantni naboji u sustavu i konstantni potencijali u sustavu.

Analizom sustava statičkog električnog polja kojeg stvara N nabijenih vodiča zamislimo da je električna sila koja djeluje na jedan vodič iz tog sustava pomaknula taj vodič za virtualno mali pomak δs u smjeru osi s. Ako je s-komponenta sile na taj vodič F_s , ta je sila izvršila rad δA_s , pa je s-komponenta sile:

$$F_s = \frac{\delta A_s}{\delta s}$$

Rad električne sile δA_s možemo izraziti iz promjene energije pohranjene u statičkom električnom polju.

Konstantni naboji u sustavu (izolirani sustav). Vodiče smo spojili na izvor, nabili i nakon toga odspojili od izvora. Svi pomaci u sustavu (rad) u tom slučaju mogu biti izvršeni samo na račun energije pohranjene u statičkom električnom polju $\delta A_e = -\delta W_e$:

$$F_s = -\frac{\delta W_e}{\delta s}$$

Konstantni potencijali u sustavu (neizolirani sustav). Vodiči su ostali spojeni na izvore koji ima održavaju potencijale konstantnim bez obzire na pomake. Pri pomaku vodiča za δs mora se iz izvora dovesti na sve vodiče dodatni naboj δQ_k jer su se promijenili parcijalni kapaciteti pa se mijenjaju i naboji na vodičima. Ukupni rad δA_i kojeg pri tome obave izvori je:

$$\delta A_i = \sum_{k=1}^N \varphi_k \cdot \delta Q_k$$

Prema zakonu o očuvanju energije taj se rad može utrošiti na rad električnih sila δA_e i na povećanje energije pohranjene u polju:

$$\delta\!A_{i} = \delta\!A_{e} + \delta\!W_{e}; \qquad \delta\!W_{e} = \frac{1}{2} \sum_{k=1}^{N} \varphi_{k} \cdot \delta\!Q_{k}; \qquad \delta\!A_{e} = \delta\!W_{e} = \frac{1}{2} \sum_{k=1}^{N} \varphi_{k} \cdot \delta\!Q_{k}$$

Pa sila iznosi:

$$F_s = \frac{\delta W_e}{\delta s}$$

17. Sile na elektrode izoliranog kuglastog kondenzatora.

Općenito kod izoliranog kondenzatora naboj konstantan:

$$F_{s} = -\left\{\frac{\delta W_{e}}{\delta s}\right\}_{Q=konst.} = -\frac{\partial}{\partial s} \left\{\frac{1}{2} \frac{Q^{2}}{C}\right\}_{Q=konst.} = -\frac{1}{2} Q^{2} \frac{\partial}{\partial s} \left(\frac{1}{C}\right)$$

18. Sile na elektrode cilindričnog kondenzatora spojenog na izvor napona.

Općenito kod izoliranog kondenzatora napon konstantan:

$$F_{s} = \left\{ \frac{\partial W_{e}}{\partial s} \right\}_{U = konst.} = \frac{\partial}{\partial s} \left\{ \frac{1}{2} C U^{2} \right\}_{U = konst.} = \frac{1}{2} U^{2} \frac{\partial C}{\partial s}$$

19. Gaussov zakon za električno polje – integralni i diferencijalni oblik.

$$\oint_{S} \overrightarrow{D} \cdot \overrightarrow{n} \cdot dS = \iiint_{V} \rho_{s} \cdot dV; \qquad \nabla \cdot \overrightarrow{D} = \rho_{s}$$

20. Izvod Gaussova zakona iz Coulombovog zakona

Tok električnog polja kroz bilo kakvu zatvorenu površinu oko točkastog naboja Q, kao izvora električnog polja, uvijek je isti neovisno o obliku zatvorene površine $(\Phi_e = \Phi'_e)$.

Iz Coulombovog zakona vrijedi:

$$\vec{F} = \frac{Q_1 \cdot Q_2}{4\pi\varepsilon \cdot R^3} \vec{R}; \qquad E = \frac{F}{Q}; \qquad \vec{E} = \frac{Q}{4\pi\varepsilon \cdot R^2} \vec{a}_r = konst.$$

Vektor \overrightarrow{D} je također konstantnog iznosa i radijalan:

$$\vec{D} = \varepsilon \cdot \vec{E} = \frac{Q}{4\pi \cdot R^2} \vec{a}_r = konst.$$

Normala na kuglu je radijalan vektor $(\vec{n} = \vec{a}_r)$ pa vrijedi:

$$\vec{D} \cdot \vec{n} = \frac{Q}{4\pi \cdot R^2} \vec{a}_r \cdot \vec{a}_r = \frac{Q}{4\pi \cdot R^2} = konst.$$

Pa je električni tok kroz zatvorenu površinu S jednak:

$$\Phi_e = \iint_S \vec{D} \cdot \vec{n} \cdot dS = \iint_S \frac{Q}{4\pi \cdot R^2} dS = \frac{Q}{4\pi \cdot R^2} \iint_S dS = \frac{Q}{4\pi \cdot R^2} S = \frac{Q}{4\pi \cdot R^2} \cdot 4\pi \cdot R^2 = Q$$

Ukupni električni tok kroz zatvorenu površinu koja obuhvaća naboj Q po iznosu je jednaka naboju Q.

$$\iint_{S} \vec{D} \cdot \vec{n} \cdot dS = \iiint_{V} \rho_{s} \cdot dV$$

21. Skalarni električni potencijal – veza skalarnog električnog potencijala i rada.

Električni potencijal u nekoj točki električnog polja je omjer potencijalne energije naboja u toj točki polja i iznosa tog naboja:

$$\varphi(a) = \frac{W_p(a)}{q}$$

Potencijalna energija naboja q u nekoj točki električnog polja a jednaka je radu kojeg je potrebno izvršiti da bi se naboj q iz beskonačnosti doveo u točku polja a, suprotno djelovanju sile električnog polja:

$$W_p(a) = -\int_{-\infty}^{a} q \cdot \vec{E} \cdot d\vec{l}$$

Promjena potencijalne energije pri pomaku naboja q od točke a do točke b je **utrošeni** rad.

$$W_{p}(a) + W_{p}(b) = -q \int_{b}^{a} \vec{E} \cdot d\vec{l} = q \cdot (\varphi(a) - \varphi(b)) = q \cdot U_{ab}$$

22. Potencijal točkastog naboja; Potencijal jednoliko nabijene dužine.

Jakost električnog polja točkastog naboja Q je:

$$\vec{E} = \frac{Q}{4\pi\varepsilon \cdot r^2} \vec{a}_r$$

Izračun potencijala neovisan je o putu integracije pa uzimamo radijalni jer je najkraći $d\vec{l} = dr \cdot \vec{a}_r$. Potencijal točke koja je na udaljenosti r od točkastog naboja je:

$$\varphi(r) = -\int_{0}^{r} \vec{E} \cdot d\vec{l} = -\frac{Q}{4\pi\varepsilon} \int_{0}^{r} \frac{1}{r^{2}} \cdot \vec{a}_{r} \cdot \vec{a}_{r} \cdot dr = \frac{Q}{4\pi\varepsilon \cdot r}$$

Kada je naboj raspodijeljen po liniji l sa zadanom gustoćom λ , na diferencijalno maloj

dužini dl se nalazi diferencijalna količina naboja $dQ = \lambda \cdot dl$. Ukupni potencijal se izračunava integriranjem diferencijalnih naboja dQ po liniji l.

$$\varphi(r) = \int_{l} \frac{dQ}{4\pi\varepsilon R} = \int_{l} \frac{\lambda \cdot dl}{4\pi\varepsilon R} = \frac{1}{4\pi\varepsilon} \int_{l} \frac{\lambda \cdot dl}{R} = \frac{1}{4\pi\varepsilon} \int_{l} \frac{\lambda \cdot dl}{|\vec{r} - \vec{r}|}$$

23. Izvod veze jakosti električnog polja i skalarnog električnog potencijala

Izvod sličan kao u 21. zadatku. *Električni potencijal* u nekoj točki električnog polja je omjer potencijalne energije naboja u toj točki polja i iznosa tog naboja:

$$\varphi(a) = \frac{W_p(a)}{q}$$

Potencijalna energija naboja q u nekoj točki električnog polja a jednaka je radu kojeg je potrebno izvršiti da bi se naboj q iz beskonačnosti doveo u točku polja a, suprotno djelovanju sile električnog polja:

$$W_p(a) = -\int_{-\infty}^{a} q \cdot \vec{E} \cdot d\vec{l}$$

Pa se dobije:

$$\varphi(a) = \frac{1}{q} \cdot \left(-\int_{-\infty}^{a} q \cdot \vec{E} \cdot d\vec{l} \right) = -\int_{-\infty}^{a} \vec{E} \cdot d\vec{l}$$

24. Dokaz neovisnosti razlike potencijala o putu integracije.

Potencijalna energija u nekoj točki a iznosi:

$$W_p(a) = -\int_{a_{ref}}^{a} q \cdot \vec{E} \cdot d\vec{l}$$

Rad je jednak razlici potencijalnih energija dviju točaka a i b integriranjem po nekom putu l:

$$W_p(a) - W_p(b) = -\int_b^a q \cdot \overrightarrow{E} \cdot d\overrightarrow{l}$$

Isti rezultat bismo dobili integriranjem po putu l' koji ima obrnuti smjer od puta l:

$$W_p(b) - W_p(a) = -\int_a^b q \cdot \vec{E} \cdot d\vec{l}$$

Zbrojimo li te dvije relacije dobije se:

$$0 = -\int_{b}^{a} q \cdot \vec{E} \cdot d\vec{l} - \int_{a}^{b} q \cdot \vec{E} \cdot d\vec{l} \Rightarrow \oint_{c} q \cdot \vec{E} \cdot d\vec{l} = 0$$

25. Izvod Ohmovog zakona u elementarnom obliku.

$$I = J \cdot S = \kappa \cdot E \cdot S \Rightarrow E = \frac{I}{\kappa \cdot S}$$

$$U = U_{AB} = -\int_{B}^{A} \vec{E} \cdot d\vec{l} = E \cdot l = \frac{I}{\kappa \cdot S} \cdot l$$

$$U = I \cdot R \; ; \qquad \qquad R = \frac{l}{\kappa \cdot S}$$

26. Ponašanje slobodnih naboja u vodiču, u vanjskom električnom polju (relaksacija).

Ako se vodljivi materijal postavi u električno polje, električno polje će na slobodne elektrone u vodiču djelovati silom koja je usmjerena suprotno od smjera električnog polja.

Slobodni elektroni u vodiču će se grupirati uz površinu vodiča na dijelu vodiča gdje električno polje ulazi u vodič, a na suprotnoj strani preostat će manjak slobodnih elektrona.

Ova pojava se naziva *električna influencija*, a razdvojeni pozitivni i negativni naboj na vodiču se naziva *inducirani naboj*.

Inducirani naboj stvara u vanjskom prostoru svoje vlastito električno polje koje se superponira na vanjsko narinuto polje.

Djelovanje vanjskog električnog polja na vodič može se nadomjestiti odgovarajućom raspodjelom plošnog slobodnog naboja na vodiču gustoće σ_{inf} .

27. Izolatori u električnom polju – polarizacija; Gustoća električnog toka – definicija i veza s polarizacijom.

Izolatori ili dielektrični materijali ne posjeduju slobodne elektrone, već su njihovi elektroni vezani za matične atome i ne mogu ih pod djelovanjem vanjskog električnog polja napuštati.

U dielektričnim materijalima, pod djelovanjem vanjskog električnog polja dolazi do poremećaja u raspodjeli pozitivnog i negativnog naboja koji se naziva električna polarizacija.

Gustoća električnog toka (vektor električnog pomaka) je vektor istog smjera kao i vanjsko električno polje.

Služi za kvantificiranje utjecaja električnog polja na dielektrični materijal.

$$\vec{D} = \varepsilon_0 \cdot \vec{E} + \vec{P}$$

28. Uvjeti na granici – Izvod uvjeta za jakost električnog polja.

$$\oint_{l} \vec{E} \cdot d\vec{l} = 0 \qquad d\vec{l} = -d\vec{l}_{1} = d\vec{l}_{2}$$

$$\vec{E}_{1} \cdot d\vec{l}_{1} + \vec{E}_{2} \cdot d\vec{l}_{2} + (doprinos_na_stranicama_h) = 0$$

$$\vec{E}_1 \cdot d\vec{l}_1 + \vec{E}_2 \cdot d\vec{l}_2 + (doprinos_na_stranicama_h) = 0$$

Ako stranice h smanjujemo $(h \rightarrow 0)$ dobije se:

$$\lim_{h\to 0} \left\{ \vec{E}_1 \cdot d\vec{l}_1 + \vec{E}_2 \cdot d\vec{l}_2 + \left(doprinos_na_stranicama_h\right) \right\} = 0$$

Ako smanjimo stranice, smanjit ce se i doprinos na stranicama h:

$$-\vec{E}_1 \cdot d\vec{l}_1 = \vec{E}_2 \cdot d\vec{l}_2 \Rightarrow \vec{E}_1 \cdot d\vec{l} = \vec{E}_2 \cdot d\vec{l}$$

Vrijedi:

$$\vec{E}_1 \cdot d\vec{l} = E_1 \cdot dl \cdot \cos(90^\circ - \alpha_1) = E_1 \cdot dl \cdot \sin \alpha_1$$

$$\vec{E}_2 \cdot d\vec{l} = E_2 \cdot dl \cdot \cos(90^\circ - \alpha_2) = E_2 \cdot dl \cdot \sin \alpha_2$$

To prelazi u:

$$E_1 \cdot dl \cdot \sin \alpha_1 = E_2 \cdot dl \cdot \sin \alpha_2$$

Ako podijelimo s dl, dobije se:

$$E_1 \cdot \sin \alpha_1 = E_2 \cdot \sin \alpha_2 \Rightarrow E_{1t} = E_{2t}$$

$$\vec{n}_{12} \times (\vec{E}_2 - \vec{E}_1) = 0$$

29. Uvjeti na granici – Izvod uvjeta za gustoću električnog toka.

$$\iint\limits_{S} \vec{D} \cdot \vec{n} \cdot dS = \iiint\limits_{V} \rho_{s} \cdot dV$$

$$\vec{D}_1 \cdot \vec{n}_1 \cdot dS_1 + \vec{D}_2 \cdot \vec{n}_2 \cdot dS_2 + (doprinos_toku_kroz_plašt) = \rho_s \cdot h \cdot dS$$

Ako visinu cilindra h smanjujemo $(h \rightarrow 0)$ dobije se:

$$\lim_{h\to 0} \left\{ \overrightarrow{D}_1 \cdot \overrightarrow{n}_{12} \cdot dS_1 + \overrightarrow{D}_2 \cdot \overrightarrow{n}_{12} \cdot dS_2 + \left(doprinos _toku _kroz _plašt \right) \right\} = \lim_{h\to 0} \left\{ \rho_s \cdot h \cdot dS \right\}$$

Kada smanjimo visinu cilindra h, smanjit će se i doprinos toku kroz plašt cilindra:

$$\vec{D}_1 \cdot \vec{n}_{12} \cdot dS_1 + \vec{D}_2 \cdot \vec{n}_{12} \cdot dS_2 = \rho_s \cdot h \cdot dS$$

Podijelimo li sdS, na desnoj strani dobijemo plošnu gustoću slobodnog naboja $\sigma_{\scriptscriptstyle s}$:

$$\vec{n}_{12} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma_s$$

Ako na granici nema slobodnog naboja $\sigma_s = 0$, onda su normalne komponente vektora gustoće električnog toka \vec{D} s obje strane granice jednake:

$$\vec{n}_{12} \cdot \left(\vec{D}_2 - \vec{D}_1 \right) = 0 \Rightarrow D_{1n} = D_{2n}$$

30. Pločasti kondenzator nabijen i odspojen od izvora – promjena napona, energije i kapaciteta s razmicanjem ploča.

Razmicanjem ploča nabijenog i odspojenog kondenzatora d se povećava pa stoga:

$$C = \varepsilon \cdot \frac{S}{d}$$

- kapacitet opada

$$U = \frac{Q}{C} = Q \cdot \frac{d}{\varepsilon \cdot S}$$

- napon raste

$$W = \frac{1}{2} \cdot Q \cdot U = \frac{1}{2} \cdot Q^2 \cdot \frac{d}{\varepsilon \cdot S}$$

- energija raste