$$\Box \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{-1} = \underline{\hspace{2cm}}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \underline{\hspace{2cm}}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^n =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^n =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}^n = \underline{\hspace{1cm}}$$

□ shimit 正交化:

 α_1 、 α_2 、 α_3 线性无关

$$\beta_1 = \underline{\hspace{1cm}}$$

$$oldsymbol{eta}_2 =$$

$$\beta_3 =$$

- □ 证^{|A|<n},方法:
 - 1
 - 2
 - (3)
 - $\widehat{4}$
 - 5
- \square AB=0, 可以退出:
 - (1) (2)
- $\square \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T =$
 - $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}^{-1} = \underline{\hspace{1cm}}$
 - $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}^{-1} = \underline{\hspace{1cm}}$
- \square $\sharp A^n$
- 注: $[A+B]^n =$

□ 求逆矩阵 A⁻¹

(1)		
2_		
2		
(4)		

正交矩阵:
$$AA^T = E$$
 $A^* = |A|A^{-1} = |A|A^T$
$$\Rightarrow \begin{cases} 1 \\ A^* = \pm A^T \end{cases}$$

□ 秩:

$$Ax = 0$$
有非 0 解 $\Leftrightarrow r(A) < n$

$$r(A^T) = \underline{\hspace{1cm}}$$

$$r(kA) = \underline{\qquad} \qquad (k \neq 0)$$

$$r(OE - A) =$$

$$r(A-E) = \underline{\qquad} \le r(A+B) \le \underline{\qquad}$$

$$r(AB) \le \underline{\qquad}$$

$$r(A^{T}A) = \underline{\qquad}$$

$$r\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} = \underline{\qquad}$$

$$r(AB) \le r(A)$$
 or $r(B)$
 $\le r(A+B) \le r(A) + r(B)$

\square $\alpha_1 \alpha_2 \cdots \alpha_s$ 线性相关	□ 向量组的计算:拼起来算
2	
定 (3)	
理 4	□ 表出的证明(定理部分)
推论⇒	
① ②	
3	
4	
	□ 极大无关组
□ 证线性无关	$Ax = 0$ 的基础解系: $\alpha_1 \cdots \alpha_s$
	$\Rightarrow \begin{cases} ① \\ 2 \\ \end{cases}$ 条件
3	特征值,特征向量
	①未给方程组
Note: $AC = B(\beta_1, \beta_2, \beta_3 \overline{\Box} \oplus \alpha_1, \alpha_2, \alpha_3 \underline{\Box} \oplus \overline{\Box}, \angle C \overline{\Box} \oplus r(A) = r(B)$	②给了方程组
□ 线性表出 $\Rightarrow \beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n$	

若 β 可由 α_1 ··· α_t 表出

则

公众号: 空卡空空卡 $(A+kE)\alpha = A\alpha + k\alpha = (\lambda + k)\alpha$ $A^*\alpha = |A|A^{-1}\alpha = A\alpha$ $A^n\alpha = A^{n-1}\lambda\alpha = \lambda^n\alpha$ $A \quad A + kE \quad A^n \quad A^{-1} \quad A^* \quad P^{-1}AP$ \square A-n \mathfrak{M} , r(A)=1则 $|\lambda E - A| =$ ______ $\underline{}$, $\lambda_2 = \cdots = \lambda_n = \underline{}$ □ 特征向量 特征值性质: □ 相似:

$$A \sim B \qquad P^{-1}AP = B$$

□ 和<u>对角矩阵</u>相似

$$A \sim \Lambda$$

 $\Leftrightarrow \begin{cases} \boxed{0} \\ \boxed{2} \\ \boxed{3} \end{cases}$

□ 实对称矩阵:	Ž.
----------	----

	$\boxed{\mathbb{Q}}$
$\Rightarrow <$	2
	(3)

□ 实对称矩阵: 用正交求特征向量

\square $\Re A^n \beta$

[法一	
法二	

□ 合同: 即∃可逆C,使 $C^TAC=B$

- ⇔正负惯性指数 〈规范型〉
- 方法

□ 正定:

证明正定: step1

拉普拉斯:

$$\begin{vmatrix} A & 0 \\ * & B \end{vmatrix} = \underline{\hspace{1cm}}$$

$$\begin{vmatrix} * & A_m \\ B_n & 0 \end{vmatrix} = \underline{\hspace{1cm}}$$

