Rectas y Planos

gmunoz@udistrital.edu.co

Intersección de planos en 3D

 Cada plano es una ecuación lineal. El conjunto de puntos que está en la intersección de los planos, corresponde al conjunto solución del sistema de ecuaciones lineales.

	# de var. libres	
Inconsistente	-	No hay puntos donde se intersecan todos los planos
Consistente	0	Sólo hay un punto
Consistente	1	Los planos se intersecan en una recta
Consistente	2	Todos los planos corresponden al mismo plano

Tres planos paralelos

- La forma escalón tiene un pivote en los términos constantes.
- Por lo tanto el sistema de ecuaciones es inconsistente.

Dos planos paralelos

- La torma escaion tiene un pivote en los terminos constantes.
- Por lo tanto el sistema de ecuaciones es inconsistente.

Túnel con planos

```
ec1 : x + z = 1
 ec2 : x - z = -1
 f: z = -1
\mathsf{M} = \left( egin{array}{cccc} 1 & 0 & 1 & 1 \ 1 & 0 & -1 & -1 \ 0 & 0 & 1 & -1 \end{array} 
ight)^{*}
  m1 = EscalonadaReducida(№)
 \rightarrow \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)
 Entrada...
```


- La forma escalón tiene un pivote en los términos constantes.
- Por lo tanto el sistema de ecuaciones es inconsistente.

Los planos se intersecan en un punto

• Por lo tanto tiene solución única.

Los planos se intersecan en una recta

- El sistema es consistente y tiene una variable libre.
- Por lo tanto tiene infinitas soluciones, con dimensión 1.

Rectas en 3D

Recta en 3D

_{Por cada igualdad}: Variables a la izquierda y constantes a la derecha

Dos ecuaciones lineales con 3 variables. 1 variable libre y 2 variables delanteras.

$$w_x x + w_y y + w_z z = d_1$$

$$vx + v_y y + v_z z = d_2$$

de la recta en \mathbb{R}^3

 $x = P_{r} + tu_{r}$

 $y = P_{v} + tu_{v}$

 $z = P_z + tu_z$

Solución general del sistema de dos ecuaciones

Ecuaciones simétricas

$$\int \frac{x - P_x}{u_x} = \frac{y - P_y}{u_y} = \frac{z - P_z}{u_z}$$

$$\int \frac{x - P_x}{u_x} = \frac{y - P_y}{u_y} = \frac{z - P_z}{u_z} \qquad \text{Si } u_x \neq 0, u_y \neq 0, u_z \neq 0$$

$$\sqrt{\frac{a-P_a}{u_a}} = \frac{b-P_b}{u_b}$$
, $c = P_c$ Si $u_a \neq 0$, $u_b \neq 0$, $u_c = 0$

Si
$$u_a \neq 0$$
, $u_b \neq 0$, $u_c = 0$

$$b = P_b$$
 , $c = P_c$

$$b = P_b$$
, $c = P_c$ Si $u_a \neq 0$, $u_b = 0$, $u_c = 0$

Se despeja *t* y se igualan

 \vec{u} es la dirección P es un punto

Ecuaciones paramétricas
$$\begin{bmatrix} x \\ y \\ P_z \end{bmatrix} = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} + t \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$

 $\vec{x} = P + t_1 \vec{u}$

Dos puntos , $P \neq Q$

$$P = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix}, \qquad Q = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$$

las ecuaciones

Recta en 3D

Variables a la izquierda Y constantes a la derecha Dos ecuaciones lineales con 3 variables. 1 variable libre y 2 variables delanteras.

$$w_x x + w_y y + w_z z = d_1$$

$$vx + v_y y + v_z z = d_2$$

Solución general del sistema de dos ecuaciones

Ecuaciones simétricas

$$\int \frac{x - P_x}{u_x} = \frac{y - P_y}{u_y} = \frac{z - P_z}{u_z} \quad \text{Si } u_x \neq 0, u_y \neq 0, u_z \neq 0$$

Si
$$u_x \neq 0$$
, $u_y \neq 0$, $u_z \neq 0$

$$\frac{a-P_a}{u_a} = \frac{b-P_b}{u_b}$$
, $c = P_c$ Si $u_a \neq 0$, $u_b \neq 0$, $u_c = 0$

Si
$$u_a \neq 0$$
, $u_b \neq 0$, $u_c = 0$

$$b = P_b$$
 , $c = P_c$

$$b = P_b$$
 , $c = P_c$ Si $u_a \neq 0$, $u_b = 0$, $u_c = 0$

Se despeja *t* y se igualan las ecuaciones

 \vec{u} es la dirección P es un punto

$$\underbrace{\begin{pmatrix} x \\ y \\ es \end{pmatrix}}_{\text{as}} = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} + t \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$

 $\vec{x} = P + t_1 \vec{u}$

1 def sol_gen(t):

Ecuaciones paramétricas

 $x = P_x + tu_x$

 $y = P_{v} + tu_{v}$

 $z = P_z + tu_z$

de la recta en \mathbb{R}^3

$$2 x = 4 + -1*t$$

$$3 y=-3 + 0*t$$

$$4 z = 0 + 1*t$$

Dos puntos , $P \neq Q$

$$P = \begin{pmatrix} P_{\chi} \\ P_{y} \\ P_{z} \end{pmatrix}, \qquad Q = \begin{pmatrix} Q_{\chi} \\ Q_{y} \\ Q_{z} \end{pmatrix},$$

$$\frac{x-4}{-1} = \frac{z-0}{1}$$

$$x + 4 = -z$$

$$x + z = 4$$

$$y = -3$$

Recta en \mathbb{R}^3

• Punto
$$\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 y dirección $\vec{v} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

Ecuación vectorial Ecuación paramétrica

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + t \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$\begin{pmatrix}
 x_1 = b_1 + tc_1 \\
 x_2 = b_2 + tc_2 \\
 x_3 = b_3 + tc_3
 \end{pmatrix}$$

$$t = \frac{x_1 - b_1}{c_1} = \frac{x_2 - b_2}{c_2} = \frac{x_3 - b_3}{c_3}$$

$$\frac{x_1 - b_1}{\frac{c_1}{c_2}} = \frac{x_2 - b_2}{\frac{c_2}{c_2}} \Rightarrow \begin{bmatrix} c_2 x_1 - c_1 x_2 = c_2 b_1 - c_1 b_2 \\ c_3 x_2 - c_2 x_3 = c_3 b_2 - c_2 b_3 \end{bmatrix}$$

Planos de la recta

Si
$$c_{\alpha}=0$$

$$x_{\alpha}=b_{\alpha}$$

$$x_{\beta}=b_{\beta}+tc_{\beta}$$

$$x_{\gamma}=b_{\gamma}+tc_{\gamma}$$

$$t=\frac{x_{\beta}-b_{\beta}}{c_{\beta}}=\frac{x_{\gamma}-b_{\gamma}}{c_{\gamma}}$$

$$\frac{x_{\beta} - b_{\beta}}{c_{\beta}} = \frac{x_{\gamma} - b_{\gamma}}{c_{\gamma}} \Rightarrow \begin{vmatrix} x_{\alpha} = b_{\alpha} \\ c_{\gamma}x_{\beta} - c_{\beta}x_{\gamma} = c_{\gamma}b_{\beta} - c_{\beta}b_{\gamma} \\ \text{Planos de la recta} \end{vmatrix}$$

Si
$$c_{\alpha}=0$$
 y $c_{\beta}=0$
$$x_{\alpha}=b_{\alpha}$$

$$x_{\beta}=b_{\beta}$$

$$x_{\gamma}=b_{\gamma}+tc_{\gamma}$$

$$x_{\alpha}=b_{\alpha}$$

$$x_{\beta}=b_{\beta}$$
 Planos de la recta

Ejercicio

Complete cada renglón con la respectiva información que corresponde a la misma recta.

Intersección de dos planos no dependientes	Una forma paramétrica	Un par de puntos	Ecuaciones simétricas	Dibujo
3x+2y+3z=6 x+y+z=1				
	x=3+2t y=-1+t z=-t			
		(3,5,1) (2,4,1)		

Rectas en 2D

Recta en 3D

_{Por cada igualdad}: Variables a la izquierda y constantes a la derecha

Dos ecuaciones lineales con 3 variables. 1 variable libre y 2 variables delanteras.

$$w_x x + w_y y + w_z z = d$$

$$vx + v_y y + v_z z = d$$

Solución general del sistema de dos ecuaciones

Ecuaciones simétricas

$$\int \frac{x - P_x}{u_x} = \frac{y - P_y}{u_y} = \frac{z - P_z}{u_z}$$

$$\int \frac{x - P_x}{u_x} = \frac{y - P_y}{u_y} = \frac{z - P_z}{u_z} \qquad \text{Si } u_x \neq 0, u_y \neq 0, u_z \neq 0$$

$$\sqrt{\frac{a-P_a}{u_a}} = \frac{b-P_b}{u_b}$$
, $c = P_c$ Si $u_a \neq 0$, $u_b \neq 0$, $u_c = 0$

Si
$$u_a \neq 0$$
, $u_b \neq 0$, $u_c = 0$

$$b = P_b$$
 , $c = P_c$

$$b = P_b$$
, $c = P_c$ Si $u_a \neq 0$, $u_b = 0$, $u_c = 0$

Se despeja *t* y se igualan las ecuaciones

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} + t \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} P$$

Ecuaciones paramétricas de la recta en \mathbb{R}^3

$$x = P_x + tu_x$$
$$y = P_y + tu_y$$

$$z = P_z + tu_z$$

 \vec{u} es la dirección P es un punto

$$\vec{x} = P + t_1 \vec{u}$$

Dos puntos, $P \neq Q$

$$P = \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \end{pmatrix}, \qquad Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \end{pmatrix}$$

Recta en 2D

Variables a la izquierda Y constantes a la derecha

Una ecuación lineal con 2 variables 1 variable libre y 1 variable delantera $w_{x}x + w_{y}y = d$

Solución general del/

Ecuación punto pendiente

y = mx + d Si la recta no es vertical

Si la recta es vertical

sistema de una ecuación

P es un punto

 \vec{u} es la dirección

Ecuación vectorial de la recta en \mathbb{R}^2 , $\vec{u} \neq \vec{0}$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} P_x \\ P_y \end{pmatrix} + t \begin{pmatrix} u_x \\ u_y \end{pmatrix}$$

$$\vec{x} = P + t\vec{u}$$

Ecuaciones paramétricas de la recta en \mathbb{R}^2

$$x = P_x + tu_x$$

$$y = P_y + tu_y$$

Dos puntos, $P \neq Q$

$$P = \begin{pmatrix} P_x \\ P_y \end{pmatrix}, \qquad Q = \begin{pmatrix} Q_x \\ Q_y \end{pmatrix}$$

Ejercicio

1- Complete cada renglón con la información que corresponde a la misma recta, si es posible.

La forma pendiente intersección	Una forma estándar	Una forma paramétrica	La intersección con ejes x,y	Un par de puntos que no están en los ejes.	Dibujo
y=3x+2					
	0x+3y=6				
		x=3+2t y=-1+t			
			Eje x en 3 Eje y en 4		
				(3,5) y (2,4)	

2- Encuentre la intersección entre las rectas del primer y del tercer renglón. Solucionar de dos formas, primero usando las ecuaciones en forma estándar y luego usando las ecuaciones en forma paramétrica.

• Ejercicios Nakos 2.7.{1,11,13}