28. a.	Prove that the premises	$p \rightarrow q, q \rightarrow r, s \rightarrow \neg r$ and	$p \wedge s$ are inconsistent.
--------	-------------------------	--	--------------------------------

b.	Using	mathematical	induction,	prove	that 10	3	3	1
	$1^2 + 3^2 + 5^2 +$	$\dots + (2n-1)^2 = \frac{1}{3}n$	(2n-1)(2n+1).	-				

10 3 3 1

29. a. Define cyclic group and subgroup. Prove that every subgroup of a cyclic group 10 3 4 1 is also cyclic.

(OR)

b. Define generator matrix. Find the code words generated by the encoding 10 3 4 1 function $e: B^{3} \rightarrow B^{6}$ with respect to the parity check matrix.

$$H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

30. a. Using Kruskal's algorithm, determine a minimum spanning tree for the 10 4 5 2 weighted graph given below:

(OR)

- b.i. Prove that the number of odd degree vertices in an undirected group is always 5 4 5 2 even.
- ii. Determine whether the following two graphs are isomorphic. Justify with valid 5 4 5 2 reasons.

Page 4 of 4

* * * *

29NF6/7-18MAB302T

Reg. No.			
		1 - 1 - 1	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18MAB302T - DISCRETE MATHEMATICS FOR ENGINEERS

No	te:		(For the candidates admitted	from the a	cademic year 2018-2019 to 2019-2020))			
	(i)	Pa	rt - A should be answered in ON	IR sheet w	vithin first 40 minutes and OMR shee	t choul	d ba	hor	. 4 . 4
		OVO	er to half inviguator at the end of	40 ^m minute		t Shoul	u be	11111	iaea
	(ii)	Pa	rt - B should be answered in answ	ver booklet					
Tiı	ne:	2½ Ho	niire			2.6	4	_	
- 11		2/2 110	Juis			Max.	Ma	rks:	75
			PART – A (25	\times 1 = 25 N	Marks)	Marks	BL	со	PO
			Answer AL	L Questio	ons				
	1.	Give	n sets A and B, the set A-B wil	l have ele	ements belonging to	1	1	1	1
		(A)	Both A and B	(B)	Only A and not in B				
		(C)	Only B and not in A	(D)	Neither in A nor in B				
	2.	If the	set A has 3 elements, then its 1	ower set	P(A) will have elements.	1	2	1	2
•		(A)	3	(B)	6				
		(C)	8	(D)	9				
	3.	Comr	position of functions is			1	1	1	1
		(A)	Associative	(B)	Commutative	1	1	1	1
		(C)	Reflexive	. ,					
		(0)	TOTIONIVO	(D)	Anti-reflexive				
	4.	Warsh	nall algorithm is used to evalu	ate the	of a matrix relation.	.1	2	1	2
		(A)	Reflexive closure	(B)	Symmetric closure				
		(C)	Anti-symmetric closure	(D)	Transitive closure				
	5.	If A a	and B are disjoint sets, then	$A \cup B \models$, where A denote the	1	1	1	1
			ality of A.		, where 21 denote the				-
		(A)	A + B	(B)	A . B				
		(C)	A - B	(D)	A . B B - A				
		()	[-] [-]	(D)	D - A				
	6.	If n	10	ed by	n+1 pigeons, then atleast	1	2	2	2
			pigeonhole(s) will have a	nore than	one pigeons.				
		(A)	One	(B)	Two				
		(C)	n/2	(D)	n+1/2				
	7	3 T 1							
	1.	Numb	er of ways in which r persons o	an be sea	ted round a table is	1	1	2	1

8. Choose n such that \sqrt{n} is rational.

(B)

(C) 4 (D) 5
Page 1 of 4

9	If n is	a prime number such that p divi	des a ² , 1	then	1 2	. 2	2		. 1 .1		aranh than the graph is ca	11ed 1	1	5	1
	_	a will divide p	(B)	p will divide a				21. If eve	ery vertex has th	ne same degree in a	graph, then the graph is ca	iiod			
	` '	p will divide $a^2 + p + 1$	(D)	p will divide $(a+p)^2+1$				(A)	Tree	(B)	Regular graph				
	. ,	p will divide w . p						(A) (C)	Path	(D)	Eulerian				
ın -	If a div	vides b and b divides c, which ar	nong th	ne following is true?	1 2	2 2	2	(C)	1 441						
		a divides b+c	(B)	a divide bc+ca+1				22. The n	umber of odd deg	gree vertices in an und	irected graph is	1		1 5	1
	` /	a=b	` '	a divides c				(A)	Odd	(B)	Even				
	(0)							(C)	One	(D)	Zero				
11.	p→q i	s logically equivalent to			1 1	1 3	1				1 1 6.4 1	1 يىنسىد		2 5	5 2
	(A)	$\neg p \lor \neg q$	(B)	$\neg p \land \neg q$				23. A gra will b		s and m edges. Then t	the order of the adjacency ma	unx			
	(C)	$\neg p \lor q$	(D)	$\neg p \land q$				(A)	m×m	(B)	n×n				
					1 2	2 3	2	(C)	m×n	(D)	n×m				
12.	The co	ontrapositive of q→p is	Λ		1 2	2 3	2				*11.1	1		2 5	5 2
	(A)	$p \rightarrow q$	(B)	$\neg p \rightarrow \neg q$				24. Let T			rill havevertices.				
	(C)	$p \rightarrow p$	(D)	$\neg q \rightarrow \neg p$				(A)	10		100				
					1	1 3	1	(C)	11	(D)	100				
13.	In the	proposition $p\rightarrow q$, the proposition		called as			-	05 T -+ C	The a smanh with	5 vertices and 7 edge	Then the snanning tree T	of G		2	5 2
	(A)	Premise	(B)	Conclusion					ave graph with	tices in it.	co. Then the spanning is a				
	(C)	Consequence	(D)	Tautology				(A)	5		7				
		that is maither a torr	tology.	nor a contradiction is called a	1	2 3	2	(C)	12		35				
14.	A pro	oposition that is heither a tau	lology	nor a contradiction is called a				(0)	,						
	(A)	Hypothesis	(B)	Contingency					DA	DT $R (5 \times 10 = 50)$	Marks)	Ma	rks	BL C	.O P
	(C)	Premise	(D)	Conclusion					TA.						
1.5					1	1 3	1			THIS WOLLTED Queen					
15.	$p \vee -$		(B)	-n				26. a. Let					0	3	1
	(A)	p T	(B) (D)	¬p F				$A = \{$	1.2.3.4.5} and R=	$=\{(1,1),(1,5),(2,3),(2,$	4),(1,3),(3,3),(4,2),(4,4),(5,4	t) }.			
	(C)	1	(D)	•				Find	the transitive clo	sure of R using Warsh	nall's algorithm.				
16	Δ orc	oup of 10 elements will have	j	identity element(s) in it.	1	2 4	2	Tilla	the transitive die	,0010 01 11 000-110 01 01 01 01 01 01 01 01 01 01 01 01	i.it. Then T will havevertices. 1 2 5 2 (B) 9 (D) 100 es and 7 edges. Then the spanning tree T of G 1 2 5 2 (B) 7 (D) 35 (5 × 10 = 50 Marks) ALL Questions (5, 2,3), (2,4), (1,3), (3,3), (4,2), (4,4), (5,4)}. I using Warshall's algorithm. (OR) on $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined by $x^2 + 2$ is injective Prove that if the inverse of f exists, then it is d the GCD(1819, 3587) and also express GCD 10 4 2				
10.	(A)	1		- 2									_	2	1
	(C)	5	(D)	10				b.i Dete	rmine whether th	he function $f:\mathbb{Z}^+ \to$	\mathbb{Z}^+ defined by $x^2 + 2$ is injection	ctive	5	3	1
	(-)				1	1 4	1		nd surjective.	no fanotion y v=	_ ,				
17.	A gro	oup which is commutative is call	ed as _		1	1 4	. 1								
	(A)	Bijective	(B)	Permutative				ii. Defi	ne inverse of a fu	unction f. Prove that if	the inverse of f exists, then it	is	5	3	1
	(C)	Abelian	(D)	Translation				uniq							
18	The	generators of the group G	={1,-1	$\{i,i,-i\}$ under multiplication are	1	2 4	1 2	•	•			TOP.	10	4	2
10.	1110	Perentage of the Start	()	-				27 a. Usir	ng Euclidean algo	orithm find the GCD(1	819, 3587) and also express C	iCD '	10	7	2
	(A)	$\{1,-1\}$	(B)	$\{1,i\}$				as a	linear combination	on of the given numbe	rs.				
	(C)	$\{i,-i\}$	(D)	$\{-1,-i\}$						(OP)					
	(0)	(*, *)	(-)	(' ')					1 1 1 2 10 1	(OK)	atal distance of 15 km. It is k	nown	5	4	2
19.	The	distance between $x=110110$ and	y = 000	0101 is	1	2	4 2	An	nan hiked for 10 l	hours and covered a u	by 2 km in the last hour Show	w that.			
	(A)	2	(B)	4				b.i. that	he hiked 6 km in	t the tirst flour and on	ertain period of 2 consecutive l	ours.			
	(C)	6	(D)	0				ne n	nusi nave nikeu at	t icast 7 km within a cc	Avail Porton or 2 compounts of	-			
20.			wo cod	le words is 3, then the number of	1	1	4 1			rings of length 8 either	start with a "1" bit or end wit	h two	5	4	2
		rs can be detected is	— (P)	4				bits	"00"?		×				
	(A)	5	(B)							:e:				34040	
	(C)	3	(D)	29NF6/7-	-18MAF	3302T		Page 3 of 4				29NF6/7-18	SiVLA.J	530ZT	

Page 2 of 4