Normally the first step in debugging is to attempt to reproduce the problem. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. It is usually easier to code in "high-level" languages than in "low-level" ones. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Different programming languages support different styles of programming (called programming paradigms). Whatever the approach to development may be, the final program must satisfy some fundamental properties. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Normally the first step in debugging is to attempt to reproduce the problem. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them.