Class 8: Mini Project

AUTHOR

Alexis Galano (PID: A17628362)

Before we get stuck into project work we will have a quick look at applying PCA to some example RNAseq data (tail end of lab 7).

Read the data

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)
head(rna.data)</pre>
```

```
    wt1
    wt2
    wt3
    wt4
    wt5
    ko1
    ko2
    ko3
    ko4
    ko5

    gene1
    439
    458
    408
    429
    420
    90
    88
    86
    90
    93

    gene2
    219
    200
    204
    210
    187
    427
    423
    434
    433
    426

    gene3
    1006
    989
    1030
    1017
    973
    252
    237
    238
    226
    210

    gene4
    783
    792
    829
    856
    760
    849
    856
    835
    885
    894

    gene5
    181
    249
    204
    244
    225
    277
    305
    272
    270
    279

    gene6
    460
    502
    491
    491
    493
    612
    594
    577
    618
    638
```

Q. How many genes are in this dataset?

```
nrow(rna.data)
```

[1] 100

Run PCA

```
## Again we have to take the transpose of our data
pca <- prcomp(t(rna.data), scale=TRUE)

## Simple un polished plot of pc1 and pc2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2")</pre>
```

localhost:3332 1/19

summary(pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251

PC8 PC9 PC10
Standard deviation 0.62065 0.60342 3.457e-15
Proportion of Variance 0.00385 0.00364 0.000e+00
Cumulative Proportion 0.99636 1.00000 1.000e+00

pca\$x

 PC1
 PC2
 PC3
 PC4
 PC5
 PC6

 wt1
 -9.697374
 1.5233313
 -0.2753567
 0.7322391
 -0.6749398
 1.1823860

 wt2
 -9.138950
 0.3748504
 1.0867958
 -1.9461655
 0.7571209
 -0.4369228

 wt3
 -9.054263
 -0.9855163
 0.4152966
 1.4166028
 0.5835918
 0.6937236

 wt4
 -8.731483
 -0.7468371
 0.5875748
 0.2268129
 -1.5404775
 -1.2723618

 wt5
 -9.006312
 -0.2945307
 -1.8498101
 -0.4303812
 0.8666124
 -0.2496025

 ko1
 8.846999
 2.2345475
 -0.1462750
 -1.1544333
 -0.6947862
 0.7128021

 ko2
 9.213885
 -3.2607503
 0.2287292
 -0.7658122
 -0.4922849
 0.9170241

 ko3
 9.458412
 -0.2636283
 -1.5778183
 0.2433549
 0.3654124
 -0.5837724

localhost:3332 2/19

```
ko4 8.883412 0.6339701 1.5205064 0.7760158 1.2158376 -0.1446094
ko5 9.225673 0.7845635 0.0103574 0.9017667 -0.3860869 -0.8186668
PC7 PC8 PC9 PC10
wt1 -0.24446614 1.03519396 0.07010231 3.073930e-15
wt2 -0.03275370 0.26622249 0.72780448 1.963707e-15
wt3 -0.03578383 -1.05851494 0.52979799 2.893519e-15
wt4 -0.52795595 -0.20995085 -0.50325679 2.872702e-15
wt5 0.83227047 -0.05891489 -0.81258430 1.693090e-15
ko1 -0.07864392 -0.94652648 -0.24613776 4.052314e-15
ko2 0.30945771 0.33231138 -0.08786782 3.268219e-15
ko3 -1.43723425 0.14495188 0.56617746 2.636780e-15
ko4 -0.35073859 0.30381920 -0.87353886 3.615164e-15
ko5 1.56584821 0.19140827 0.62950330 3.379241e-15
```

```
# We have 5 wt and 5 ko samples
mycols <- c(rep("blue", 5), rep("red", 5))
mycols</pre>
```

[1] "blue" "blue" "blue" "blue" "blue" "red" "red" "red" "red" "red"

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", col=mycols)
```


localhost:3332 3/19

```
head(sort(abs(pca$rotation[,1]), decreasing = T))
```

```
gene100 gene66 gene45 gene68 gene98 gene60 0.1038708 0.1038455 0.1038402 0.1038395 0.1038372 0.1038055
```

Analysis of Breast Cancer FNA data

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radi	us_mean	texture_mean	perimeter_mean	area_mean	
842302	М	17.99	10.38	122.80	1001.0	
842517	М	20.57	17.77	132.90	1326.0	
84300903	М	19.69	21.25	130.00	1203.0	
84348301	М	11.42	20.38	77.58	386.1	
84358402	М	20.29	14.34	135.10	1297.0	
843786	М	12.45	15.70	82.57	477.1	
	smoothness_mea	n compa	ctness_mean c	oncavity_mean co	oncave.poin	ts_mean
842302	0.1184	9	0.27760	0.3001		0.14710
842517	0.0847	1	0.07864	0.0869		0.07017
84300903	0.1096	9	0.15990	0.1974		0.12790
84348301	0.1425	9	0.28390	0.2414		0.10520
84358402	0.1003	9	0.13280	0.1980		0.10430
843786	0.1278	9	0.17000	0.1578		0.08089
	symmetry_mean	fractal_	_dimension_me	an radius_se tex	kture_se pe	rimeter_se
842302	0.2419		0.078	71 1.0950	0.9053	8.589
842517	0.1812		0.056	67 0.5435	0.7339	3.398
84300903	0.2069		0.059	99 0.7456	0.7869	4.585
84348301	0.2597		0.097	44 0.4956	1.1560	3.445
84358402	0.1809		0.058	83 0.7572	0.7813	5.438
843786	0.2087		0.076	13 0.3345	0.8902	2.217
	area_se smooth	ness_se	compactness_	se concavity_se	concave.po	ints_se
842302	153.40 0	.006399	0.049	0.05373		0.01587
842517	74.08 0	.005225	0.013	0.01860		0.01340
84300903	94.03 0	.006150	0.040	0.03832		0.02058
84348301	27.23 0	.009110	0.074	0.05661		0.01867
84358402	94.44 0	.011490	0.024	0.05688		0.01885
843786	27.19 0	.007510	0.033	45 0.03672		0.01137
	symmetry_se fr	actal_d	imension_se r	adius_worst text	ture_worst	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	
	perimeter_wors	t area_v	worst smoothn	ess_worst compa	ctness_wors	t
842302	184.6	26	019.0	0.1622	0.665	6
842517	158.8	9 19	956.0	0.1238	0.186	6

localhost:3332 4/19

84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.point	s_worst	symmetry_worst	
842302	0.7119		0.2654	0.4601	
842517	0.2416		0.1860	0.2750	
84300903	0.4504		0.2430	0.3613	
84348301	0.6869		0.2575	0.6638	
84358402	0.4000		0.1625	0.2364	
843786	0.5355		0.1741	0.3985	
	fractal_dimension	on_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Note that the first column here wisc\$diagnosis is a pathologist

```
diagnosis <- as.factor(wisc.df$diagnosis)
diagnosis</pre>
```

```
[186] B M B B B M B B M M B M M M M B M M M B M B M B B M B M M M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M M B B M B B M M B B M B B M M B B M B B M B B M M B B M B B M B B M M B B M B B M B B M M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B B M B 
[223] В М В В В В В М М В В М В В М М В В В В В В В В В В В В В В М М М М М М М
[556] B B B B B B B M M M M M M B
Levels: B M
```

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

```
radius_mean texture_mean perimeter_mean area_mean smoothness_mean
               17.99
842302
                                            122.80
                             10.38
                                                      1001.0
                                                                      0.11840
                                            132.90
842517
               20.57
                             17.77
                                                      1326.0
                                                                      0.08474
84300903
               19.69
                             21.25
                                            130.00
                                                      1203.0
                                                                      0.10960
84348301
               11.42
                             20.38
                                             77.58
                                                       386.1
                                                                      0.14250
```

localhost:3332 5/19

Class 8: Mini Project

1/24, 12:31 PM			Cla	ass 8: Mini Proje	ct
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poir	nts_mean sym	nmetry_mean
842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimension	n_mean radius_s	e texture_se	perimeter_s	se area_se
842302	6	.07871 1.095	0.9053	8.58	39 153.40
842517	6	.05667 0.543	5 0.7339	3.39	98 74.08
84300903	6	.05999 0.745	6 0.7869	4.58	94.03
84348301	6	.09744 0.495	6 1.1560	3.44	15 27.23
84358402	6	.05883 0.757	2 0.7813	5.43	38 94.44
843786	6	.07613 0.334	5 0.8902	2.21	l7 27.19
	smoothness_se co	mpactness_se co	ncavity_se co	oncave.point	s_se
842302	0.006399	0.04904	0.05373	0.6	1587
842517	0.005225	0.01308	0.01860	0.6	1340
84300903	0.006150	0.04006	0.03832	0.6	92058
84348301	0.009110	0.07458	0.05661	0.6	1867
84358402	0.011490	0.02461	0.05688	0.6	91885
843786	0.007510	0.03345	0.03672		91137
	symmetry_se frac	tal_dimension_s	e radius_wors	st texture_v	vorst
842302	0.03003	0.00619			17.33
842517	0.01389	0.00353			23.41
84300903	0.02250	0.00457			25.53
84348301		0.00920			26.50
84358402	0.01756	0.00511			16.67
843786	0.02165	0.00508			23.75
0.400.00	perimeter_worst			compactness	
842302	184.60	2019.0	0.1622		0.6656
842517	158.80	1956.0	0.1238		0.1866
84300903	152.50	1709.0	0.1444		0.4245
84348301	98.87	567.7	0.2098		0.8663
84358402	152.20 103.40	1575.0	0.1374		0.2050
843786		741.6	0.1791		0.5249
842302	concavity_worst 0.7119	_	.2654	0.4601	
842517	0.2416		.1860	0.4601	
84300903	0.4504		.2430	0.3613	
84348301	0.6869		.2575	0.6638	
84358402	0.4000		.1625	0.2364	
843786	0.5355		.1741	0.3985	
0-1-27-00	fractal_dimension		• 4 / 74	0.5505	
842302	-	0.11890			
842502		0.08902			
84300903		0.08758			
84348301		0.17300			
0.040001		2.2,500			

localhost:3332 6/19

```
84358402 0.07678
843786 0.12440
```

Q1. How many observations are in this dataset?

```
nrow(wisc.df)
```

[1] 569

A1. 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

```
B M
```

A2. 212 have a malignant diagnosis.

Q3. How many variables/features in the data are suffixed with _mean?

colnames(wisc.data)

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity mean"
                                "concave.points mean"
[9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture se"
[13] "perimeter_se"
                                "area se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal dimension worst"
grep("_mean", colnames(wisc.data), value = T)
```

localhost:3332 7/19

```
[1] "radius_mean" "texture_mean" "perimeter_mean"
[4] "area_mean" "smoothness_mean" "compactness_mean"
[7] "concavity_mean" "concave.points_mean" "symmetry_mean"
[10] "fractal_dimension_mean"

length(grep("_mean", colnames(wisc.data), value = T))
```

[1] 10

A3. 10 variables in the data are suffixed with "_mean".

Principal Component Analysis

Here we will use "prcom()' on the 'wisc.data' object First, we have to decide whether to use the 'scale=TRUE'

We can look at the means and sd of each column. If they are similar then we are all good to go.

```
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	smoothness_mean	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	<pre>concave.points_mean</pre>	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>
1.216853e+00	4.051721e-01	6.279761e-02
<pre>smoothness_se</pre>	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	<pre>concavity_se</pre>	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	<pre>fractal_dimension_se</pre>	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	smoothness_worst
2.721885e-01	2.542650e-01	1.323686e-01
<pre>fractal_dimension_worst</pre>	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

```
apply(wisc.data, 2, sd)
```

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	smoothness_mean	area_mean
5.281276e-02	1.406413e-02	3.519141e+02

localhost:3332 8/19

```
concavity_mean
                            concave.points_mean
                                                           symmetry_mean
          7.971981e-02
                                   3.880284e-02
                                                            2.741428e-02
fractal_dimension_mean
                                      radius_se
                                                              texture_se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                        area_se
                                                           smoothness_se
                                                            3.002518e-03
          2.021855e+00
                                   4.549101e+01
                                   concavity_se
                                                       concave.points_se
        compactness_se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
                           fractal dimension se
                                                            radius worst
           symmetry se
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture worst
                                perimeter_worst
                                                              area worst
          6.146258e+00
                                   3.360254e+01
                                                            5.693570e+02
      smoothness worst
                              compactness_worst
                                                         concavity worst
          2.283243e-02
                                   1.573365e-01
                                                            2.086243e-01
                                 symmetry_worst fractal_dimension_worst
  concave.points_worst
          6.573234e-02
                                   6.186747e-02
                                                            1.806127e-02
```

These are very different so we should set scale=TRUE

```
wisc.pr <- prcomp(wisc.data, scale = T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
Cumulative Proportion
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                      0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)? > A4. 44.27%

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data? > A5. 3 PCs capture 72.6% of the original variance.

localhost:3332 9/19

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data? > A6. 7 PCs capture 91% of the original variance.

Plotting the PCA results

#biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

A7. It is difficult to understand because its so messy and impossible to read all the stacked numeric values.

We need to make our own plot.

```
attributes(wisc.pr)
```

```
$names
```

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=diagnosis)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[,1], wisc.pr$x[,3], col=diagnosis)
```


A8. The plots show that PC1 is capturing a separation of malignant from benign samples. PC2 shows more variance in the original data than PC3.

```
library(ggplot2)

pc <- as.data.frame(wisc.pr$x)

ggplot(pc) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
ggplot
```

```
function (data = NULL, mapping = aes(), ..., environment = parent.frame())
{
    UseMethod("ggplot")
}
<bytecode: 0x000001af8a3057f0>
<environment: namespace:ggplot2>
```

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Communicaing PCA results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

A9. -0.26 is the component of the loading vector for the feature concave.points_mean.

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
tbl <- summary(wisc.pr)
tbl$importance[3,] > 0.8
```

```
PC1
      PC2
           PC3
                PC4
                      PC5
                           PC6
                                PC7
                                     PC8
                                          PC9
                                              PC10 PC11 PC12 PC13
FALSE FALSE FALSE
                     TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
PC14 PC15 PC16 PC17
                     PC18
                          PC19
                               PC20
                                    PC21
                                          PC22
                                               PC23 PC24 PC25 PC26
TRUE TRUE TRUE TRUE
                          TRUE TRUE TRUE TRUE TRUE TRUE TRUE
                     TRUE
PC27
     PC28
          PC29
                PC30
TRUE TRUE TRUE TRUE
```

```
which(tbl$importance[3,] > 0.8 )[1]
```

PC5

A10. PC5 is the minimum to explain 80% of the variance.

Hierarchical Clustering

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
d <- dist( scale(wisc.data))
wisc.hclust <- hclust(d)
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

```
plot(wisc.hclust)
abline(h=18, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

```
grps <- cutree(wisc.hclust, h=18)
table(grps)</pre>
```

```
grps

1 2 3 4 5

177 5 383 2 2
```

A11. At a height of about 18 the clustering model has 4 clusters.

Come back here later to see how our cluster grps correspond to M or B groups.

Jumping down to Section 5, skip 4.

5. Combining methods

Here we will perform clustering on our PCA results rather than the original data.

In other words we will cluster using 'wisc.pr\$x' - our new better variables or PCs. We can choose as many or as few PCs to use as we like. It is your call!

```
d.pc <- dist(wisc.pr$x[, 1:3])
wisc.pr.hclust <- hclust(d.pc, method = "ward.D2")
plot(wisc.pr.hclust)
abline(h=80, col="red")</pre>
```

Cluster Dendrogram

d.pc hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, h=80)
table(grps)</pre>
```

grps 1 2 203 366

We can use 'table()' function o make a cross-table as well as just a count table.

```
table(diagnosis)
diagnosis
```

В М 357 212

```
table(grps, diagnosis)
```

```
diagnosis
grps B M
1 24 179
2 333 33
```

Write a note here about how to read this cross-table result. The results indicates that our cluster 1 mostly captures cancer (M) and our cluster 2 mostly captures healthy (B) samples/individuals.

7. Prediction

```
#url <- "new samples.csv"</pre>
url <- "https://tinyurl.com/new-samples-CSV"</pre>
new <- read.csv(url)</pre>
npc <- predict(wisc.pr, newdata=new)</pre>
npc
          PC1
                    PC2
                              PC3
                                         PC4
                                                                        PC7
                                                  PC5
                                                             PC6
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
           PC8
                              PC10
                                        PC11
                                                  PC12
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
         PC15
                    PC16
                               PC17
                                           PC18
                                                      PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC23
                                          PC24
                                                     PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
            PC27
                        PC28
                                    PC29
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
plot(wisc.pr$x[,1:2], col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


This principal analysis method can be very helpful for organizing data that is usually messy or harder to read.

Q18. Which of these new patients should we prioritize for follow up based on your results? > A18. Patient 2 should be prioritized.