1 様々なケイリーグラフ

本章では本レポートで取り扱う様々なケイリーグラフに関して述べる.

1.1 ハイパーキューブ (hypercube) Q_n

 $m{u}=(u_1,u_2,\ldots,u_n)$ を 0 と 1 からなる作られるビット列とする. 整数 $i(1\leq i\leq n)$ に対して記号反転操作 $Q_i(m{u})$ を次のように定義する.

$$Q_i(\mathbf{u}) = (u_1, u_2, \dots, (u_i + 1) \mod 2, \dots, u_n)$$

無向グラフ G(V,E) に対して n-hypercube $Q_n=(V,E)$ の V,E を以下に示す.

$$V = \{u_1u_2 \dots u_n \mid 0$$
 と 1 からなる作られる長さ n の全てのビット列 $\}$ $E = \{(\boldsymbol{u},Q_i(\boldsymbol{u}))|\boldsymbol{u}\in V, 1\leq i\leq n\}$

以後 n-ハイパーキューブ を Q_n とする。図 1 に n が 4 の場合のハイパーキューブ を示す。表 1 に Q_n の性質を示す。

表 1 n-ハイパーキューブ の性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	2^n	n	n	n

図1 4-ハイパーキューブ

1.2 スターグラフ (star graph) S_n

 $m u=(u_1,u_2,\dots,u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. $S_j(u_1u_2\dots u_n)=u_j,u_2\dots u_{j-1}u_1u_{j+1}\dots u_n$ と定義する. 無向グラフ G(V,E) に対して n-star graph $S_n=(V,E)$ の V,E を以下に示す.

$$V=~\{u_1u_2\dots u_n~|1,2,\dots,n~$$
からなる全ての順列 $\}$ $E=~\{(oldsymbol{u},S_i(oldsymbol{u}))|u\in V,2\leq i\leq n)\}$

以後 n-スターグラフを S_n とする。図 2 に n が 4 の場合のスターグラフを示す。表 2 にスターグラフの性質を示す。

表 2 n-スターグラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	n-1	n-1	$\lfloor 3(n-1)/2 \rfloor$

図2 4-スターグラフ

1.3 パンケーキグラフ (pancake graph) P_n

 $m{u}=(u_1,u_2,\ldots,u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. $PR_i(u_1u_2\ldots u_n)=u_iu_{i-1}\ldots u_1u_{i+1}u_{i+2}\ldots u_n$ と定義する。無向グラフ G(V,E) に対して n-パンケーキグラフ $P_n=(V,E)$ の V,E を以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n$$
からなる全ての順列 $\}$ $E = \{(\boldsymbol{u}, PR_i(\boldsymbol{u})) | u \in V, 2 \leq u \leq n)\}$

以後 n-パンケーキグラフグラフを P_n とする。図 3 に n が 4 の場合のパンケーキグラフを示す。表 3 に P_n の性質を示す。

- 32 3 - 11-1 1 イ	表 3	<i>n</i> -パンケー	ーキグラ゙	フグラフの性質
-------------------	-----	----------------	-------	---------

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	n-1	n-1	$\leq \lceil 5(n+1)/3 \rceil$

図3 4-パンケーキグラフ

1.4 焦げたパンケーキグラフ (burnt pancake graph) BP_n

 $m u=(u_1,u_2,\dots,u_n)$ を 1 から n までの n 種類の符号付き記号で作られる順列とする.次に符号付き前置反転操作 $SR_i(u_1u_2\dots u_n)=\overline{u_iu_{i-1}}\dots\overline{u_1}u_{i+1}u_{i+2}\dots u_n$ と定義する。無向グラフG(V,E) に対して n-焦げたパンケーキグラフ $BP_n=(V,E)$ の V,E を以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n$$
からなる全ての順列 $\}$ $E = \{(u, PR_i(u) | u \in V, 1 \leq u \leq n)\}$

以後 n-焦げたパンケーキグラフを BP_n とする。図 4 に n が 3 の場合の焦げたパンケーキグラフを示す。表 4 に BP_n の性質を示す。

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
ves	ves	ves	$n! \times 2^n$	n	n	< 2n + 3

表 4 n-焦げたパンケーキグラフの性質

図 4 3-焦げたパンケーキグラフ

1.5 ローテータグラフ (rotator graph) R_n

 $m{u}=(u_1,u_2,\ldots,u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. 有向グラフ G(V,E) に対して n-ローテータグラフ $R_n=(V,E)$ の V,E を以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n \text{ からなる全ての順列 } \}$$
 $E = \{(\boldsymbol{u}, \boldsymbol{v}) | \boldsymbol{u} \in V, \boldsymbol{v} \in V, \boldsymbol{u} = (u_1, u_2, \dots u_n), \boldsymbol{v} = (v_1, v_2, \dots v_n) \text{ の場合}$
 \boldsymbol{u} に対して \boldsymbol{u} から \boldsymbol{v} への有向辺が
 $v_1 = u_2, v_2 = u_3, \dots, v_{i-1} = u_i, v_i = u_1, v_{i+1} = u_{i+1}, \dots, v_n = u_n$ を満たす $i(2 \le i \le n)$ があれば存在 $\}$

以後 n-ローテータグラフを R_n とする。図 5 に n が 3 の場合のローテータグラフを示す。表 5 に R_n の性質を示す。

表 5 n-ローテータグラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	n-1	n-1	n-1

図5 3-ローテータグラフ

1.6 バイローテータグラフ (rotator graph) BR_n

 $m u=(u_1u_2\dots u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. 整数 $i(2\leq i\leq n)$ に対して正のローテーション操作 $R_i^+(m u)$ と負のローテーション操作 $R_i^-(m u)$ を次のように定義する.

$$R_i^+(\mathbf{u}) = (u_2, u_3, \dots, u_i, u_1, u_{i+1}, u_{i+2}, \dots, u_n)$$

 $R_i^-(\mathbf{u}) = (u_i, u_1, u_2, \dots, u_{i-1}, u_{i+1}, u_{i+2}, \dots, u_n)$

有向グラフG(V,E)に対してn-バイローテータグラフ $BR_n = (V,E)$ のV,Eを以下に示す。

$$V=~\{u_1u_2\dots u_n~|1,2,\dots,n~$$
からなる全ての順列 } $E=~\{(oldsymbol{u},oldsymbol{v})|oldsymbol{u}\in V,oldsymbol{v}\in V,oldsymbol{v}\in R_i^+(oldsymbol{u})~or~oldsymbol{v}=R_i^-(oldsymbol{u}),2\leq i\leq n\}$

以後 n-バイローテータグラフを BR_n とする。図 6 に n が 3 の場合のローテータグラフを示す。表 6 に BR_n の性質を示す。

表 6 n-バイローテータグラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	2n-3	2n-3	n-1

図6 3-バイローテータグラフ

1.7 トランスポジショングラフ (transpostion graph) T_n

 $\mathbf{u} = (u_1, u_2, \dots, u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. 整数 $i, j (1 \le i < j \le n)$ に対してトランスポジション操作 $Ti, j(\mathbf{u})$ を次のように定義する.

$$T_{i,j}(\mathbf{u}) = (u_1, u_2, \dots, u_{i-1}, u_j, u_{i+1}, \dots, u_{j-1}, u_i, u_{j+1}, \dots, u_n)$$

無向グラフG(V,E)に対してn-トランスポジショングラフ $T_n=(V,E)$ のV,Eを以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n$$
からなる全ての順列 } $E = \{(\boldsymbol{u}, T_{i,j}(\boldsymbol{u})) | \boldsymbol{u} \in V, 1 \leq i < j \leq n\}$

以後 n-トランスポジショングラフを T_n とする。図 7 に n が 4 の場合のトランスポジショングラフを示す。表 7 に T_n の性質を示す。

表 7 n-トランスポジショングラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	(n-1)(n-2)/2	(n-1)(n-2)/2	n-1

図7 4-トランスポジショングラフ

1.8 部分文字列反転グラフ (substring reversal graph) SR_n

 $m{u} = (u_1 u_2 \dots u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. 整数 $i,j (1 \leq i < j \leq n)$ に対して部分文字列反転操作 $SR_{i,j}(m{u})$ を次のように定義する.

$$SR_{i,j}(\mathbf{u}) = (u_1, u_2, \dots, u_{i-1}, u_j, u_{j-1}, \dots, u_{i+1}, u_i, u_{j+1}, \dots, u_n)$$

無向グラフ G(V,E) に対して n-部分文字列反転グラフ $SR_n = (V,E)$ の V,E を以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n$$
からなる全ての順列 }
$$E = \{(\boldsymbol{u}, SR_{i,j}(\boldsymbol{u})) | \boldsymbol{u} \in V, 1 \leq i < j \leq n\}$$

以後 n-部分文字列反転グラフを SR_n とする。図 8 に n が 4 の場合の部分文字列反転グラフを示す。表 8 に SR_n の性質を示す。

表 8 n-部分文字列反転グラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	(n-1)(n-2)/2	(n-1)(n-2)/2	$\leq n-1$

図8 4-部分文字列反転グラフ

1.9 バーブルソートグラフ (bubble sort graph) B_n

 $\mathbf{u}=(u_1,u_2,\ldots,u_n)$ を 1 から n までの n 種類の記号で作られる順列とする. 整数 $i(1\leq i\leq n-1)$ に対して隣接交換操作 $B_i(\mathbf{u})$ を次のように定義する.

$$B_i(\mathbf{u}) = (u_1, u_2, \dots, u_{i-1}, u_{i+1}, u_i, u_{i+1}, \dots, u_n)$$

無向グラフG(V,E)に対してn-バーブルソートグラフ $B_n=(V,E)$ のV,Eを以下に示す。

$$V = \{u_1u_2 \dots u_n \mid 1, 2, \dots, n$$
からなる全ての順列 } $E = \{(\boldsymbol{u}, B_i(\boldsymbol{u})) | \boldsymbol{u} \in V, 1 \leq i \leq n-1\}$

以後 n-バーブルソートグラフを B_n とする。図 9 に n が 4 の場合のバーブルソートグラフを示す。表 9 に B_n の性質を示す。

表 9 n-バーブルソートグラフの性質

単純グラフ	再帰性	対称性	頂点数	次数	連結度	直径
yes	yes	yes	n!	n-1	n-1	(n-1)n/2

図 9 4-バーブルソートグラフ