Multiple Linear Regression

we have seen the concept of simple linear regression where a single predictor variable X was used to model the response variable Y.

In many applications, there is more than one factor that influences the response. Multiple regression models thus describe how a single response variable Y depends linearly on a number of predictor variables.

Examples:

- The selling price of a house can depend on the desirability of the location, the number of bedrooms, the number of bathrooms, the year the house was built, the square footage of the lot and a number of other factors.
- The height of a child can depend on the height of the mother, the height of the father, nutrition, and environmental factors.

Simple regression considers the relation between a single explanatory variable and response variable

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. The goal of multiple linear regression (MLR) is to model the linear relationship between the explanatory (independent) variables and response (dependent) variable

Regression Modeling

- A simple regression model (one independent variable) fits a regression line in 2-dimensional space
- A multiple regression model with two explanatory variables fits a regression plane in 3-dimensional space

FIGURE 15.1 Three-dimensional response plane

Multiple Regression Model

A multiple regression model with *k* independent variables fits a regression "surface" in k + 1 dimensional space (cannot be visualized)

Earlier simple regression example

Sr No	Height (cms)	Weight (Kg)
1	135	57
2	165	70
3	155	63
4	160	65
5	150	62

Multiple Linear Regression

- More than one input /explanatory variables (features): say x_1, x_2, \dots, x_n
- Number of training examples : say m
- One dependent (output)/response variable : y

Sr No	Height in cms x_1	Age in years x_2	Activity profile (Calorie burned) in Kcal x_3	Food (K Calories) x_4	Weight in kg y
1	158	20	2.5	2.1	52
2	150	39	2.1	2.5	70
3	170	45	1.8	2.0	60
4	165	56	1.7	2.8	80

Example

$$m = 4; n = 4$$

 x_{ij} denotes value of input variable (feature) x_i for jth training example.

First suffix is for index of input variable and second suffix is for the index of training example

 x_{13} means value of first input variable (feature) for third training example , in this example height of person number 3

 x_{31} means value of third input variable (feature) for first training example , in this example activity profile of person number 1

Matrix form

Age of person in fourth training example is represented as $x_{??}$

What is the value of x_{21} ? Describe x_{21} in words.

Value of ----- variable in ----- training example.

What is vector 2nd training example?

What does x_{42} stand for? Describe in words pertaining to this example

Examples: $\underline{m=4}$.

J	Size (feet²)	t ²) Number of Number of bedrooms floors		Age of home (years)	Price (\$1000)	
 x_0	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	7
1	1416	3	2	40	232	l
1	1534	3	2	30	315	
1	852	2	_1	36	178	٧
<u></u>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	2104 5 1 416 3 2 534 3 2 852 2 1	2 30	$\underline{y} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	460 232 315 178	1esto

Vector $[x_{1i}, x_{2i}, ..., x_{ni}]$ represents i^{th} training example Vector $[x_{j1}, x_{j2}, ..., x_{jm}]'$ represents vector of values of j^{th} input variable

x_1	x_2	x_3	 x_n	y
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	 x_{n1}	y_1
<i>x</i> ₁₂	<i>x</i> ₂₂	<i>x</i> ₃₂	 x_{n2}	y_2
			 • • •	
x_{1i}	x_{2i}	x_{3i}	 x_{ni}	y_i
x_{1m}	x_{2m}	x_{3m}	 x_{nm}	\mathcal{Y}_m

Hyper plane to be fitted

- $y(x_1, x_2, ..., x_n) = b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n$ using least square technique
- $y = b_0 + \sum_{i=1}^{n} b_i x_i$
- $y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_n x_{ni}$ for $i = 1, 2, \ldots, m$
- $y = b_0 + \sum_{i=1}^{n} b_i x_i$

Matrix form to be fitted

- For convenience of writing the expressions introduce zeroth variable x_0 ; which always takes the value 1
- Hypothesis function is $y = y(x_1, x_2, ..., x_n) = b_0 x_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$;

•
$$\boldsymbol{b} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{R}^{n+1}$$
, $\boldsymbol{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$ $\in \mathcal{R}^{n+1}$; $\boldsymbol{b}^T = (b_0, b_1, \dots, b_n)$ is $1 \times (n+1)$ vector and \boldsymbol{x} is $(n+1) \times 1$ vector

•
$$\boldsymbol{b^Tx}$$
 is 1x1 vector := (b_0, b_1, \ldots, b_n) . $\begin{pmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{pmatrix}$

- = $b_0 x_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$
- $y = b^T x$ is the hypothesis function

x_0	x_1	x_2	\boldsymbol{x}_3	 x_n	y
1	<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	 x_{n1}	y_1
1	x_{12}	x_{22}	x_{32}	 x_{n2}	y_2
1				 	
1	x_{1i}	x_{2i}	x_{3i}	 x_{ni}	y_i
1				 	
1	x_{1m}	x_{2m}	x_{3m}	 x_{nm}	y_m

Predicted Values

•
$$b_0 x_{01} + b_1 x_{11} + b_2 x_{21} + \dots + b_n x_{n1} = \widehat{y_1}$$

•
$$b_0 x_{02} + b_1 x_{12} + b_2 x_{22} + \dots + b_n x_{n2} = \widehat{y_2}$$

- •
- $b_0 x_{0i} + b_1 x_{1i} + b_2 x_{2i} + \dots + b_n x_{ni} = \widehat{y}_i$
- •
- $b_0 x_{0m} + b_1 x_{1m} + b_2 x_{2m} + \dots + b_n x_{nm} = \widehat{y_m}$
- $b_0 x_{0i} + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_n x_{ni} = \hat{y_i} \text{ for } i = 1, 2, \ldots, m$
- $\sum_{i} b_{i} x_{ji} = \hat{y}_{i} fori = 1, 2, ..., m; j = 0, 1, ..., n$

Least Square method

- $e_i = y_i \hat{y}_i = y_i \sum_j b_j x_{ji} \text{ for } i = 1, 2, ..., m$
- $e_i^2 = (y_i \hat{y}_i)^2 = (y_i \sum_j b_j x_{ji})^2$ for i = 1, 2, ..., m
- SSE = $\sum_{i} e_{i}^{2} = \sum_{i} (y_{i} \sum_{j} b_{j} x_{ji})^{2}$
- Observations in n+1 dimensional space
- For least square fit, need to find b_j for $j=0,1,\ldots,n$ so that SSE is minimum. Denote SSE as S.
- Partial derivatives of S with respect to each of the parameters must be zero.

$$\frac{\partial S}{\partial b_j} = 0$$
; for $j = 0, 1, ..., n$

Normal Equations

- $\frac{\partial S}{\partial b_j} = 0$; for j = 0, 1, ..., n
- $S = \sum_{i} (y_i \sum_{j} b_j x_{ji})^2;$
- $\frac{\partial S}{\partial b_i} = \frac{\partial}{\partial b_i} \sum_i (y_i \sum_j b_j x_{ji})^2$
- $\frac{\partial S}{\partial b_j} = \sum_i \frac{\partial}{\partial b_j} (y_i \sum_j b_j x_{ji})^2$
- $\frac{\partial \dot{S}}{\partial b_i} = 2\sum_i (y_i \sum_j b_j x_{ji}) (-x_{ji}) = 0$ for j = 0, 1, ..., n
- $\sum_i (y_i \sum_j b_j x_{ji}) (x_{ji}) = 0$ for j = 0, 1, ..., n are n+1 simultaneous linear equations in b_j 's for j = 0, 1, ..., n called normal equations
- For example for j = 0:
- $\sum_{i} y_{i} = b_{0} \sum_{i} x_{0i} + b_{1} \sum_{i} x_{1i} + b_{2} \sum_{i} x_{2i} + \dots + b_{n} \sum_{i} x_{ni}$

Normal Equations

- For example for j = 0:
- $\sum_{i} y_{i} = b_{0} \sum_{i} x_{0i} + b_{1} \sum_{i} x_{1i} + b_{2} \sum_{i} x_{2i} + \dots + b_{n} \sum_{i} x_{ni}$
- For j = 1
- $\sum_{i} x_{1i} y_i = b_0 \sum_{i} x_{1i} x_{0i} + b_1 \sum_{i} x_{1i}^2 + b_2 \sum_{i} x_{1i} x_{2i} + \dots + b_n \sum_{i} x_{1i} x_{ni}$
- •
- For j = n
- $\sum_{i} x_{ni} y_{i} = b_{0} \sum_{i} x_{ni} x_{0i} + b_{1} \sum_{i} x_{ni} x_{1i} + b_{2} \sum_{i} x_{ni} x_{2i} + \dots + b_{n} \sum_{i} x_{ni}^{2}$
- Solution of above equations

Normal Equations for two input variables

i	x_0	x_1	x_2	x_1^2	$x_1 x_2$	x_2^2	у	x_1y	x_2y
1	1								
2	1								
3	1								
	1								
Total	m								

Illustration: (Home Work)

- Suppose that a random sample of five families yielded the following data (income in thousand dollars)
- Estimate the multiple regression equation of S on I and W

Solution: Savings dependent variable *y*

Input variables income x_1 and Assets x_2

Family	Saving S	Income I	Assets W
Α	0.6	8	12
В	1.2	11	6
С	1.0	9	6
D	0.7	6	3
E	0.3	6	18