

APPRENTISSAGE MACHINE ET DEEP LEARNING

Dates:

13 juin 2017

Durée : 1 jour Lieu :

ONERA/Toulouse

Conférenciers:

Philippe Besse (INSA/IMT)

Jérôme Morio (DTIS)

Marina Gruet (DPhIEE)

Organisation:

Alexandre Boulch (DTIS)

Adrien ChanHonTong (DTIS)

Stéphane Herbin (DTIS)

Bertrand Le Saux (DTIS)

CONTEXTE

L'apprentissage machine et l'apprentissage statistique jouent aujourd'hui un rôle clé dans de multiples applications comme la traduction automatique, la reconnaissance d'images ou la fouille de *Big Data*. Les développements les plus récents tels que le *Deep Learning* ont permis d'atteindre des niveaux de performance que l'on ne pouvait imaginer il y a dix ans. Cependant ces méthodes complexes de traitement de données sont difficiles à appréhender et de nombreuses questions se posent à qui veut en utiliser tout le potentiel : quels sont les principes sous-jacents, comment formuler un problème dans ce formalisme, quelle approche utiliser pour une application spécifique, comment se servir des nombreux outils logiciels existants ?

Cette journée se propose de donner une vue d'ensemble de l'apprentissage machine et d'en présenter les concepts clés. Les approches telles que les réseaux de neurones profonds et les machines à vecteurs de support seront étudiées en détail afin de permettre leur utilisation dans des cas concrets. Enfin de nombreux exemples de mise en application dans des domaines tels que le *Big Data*, les systèmes aéronautiques ou l'observation de l'espace seront proposés.

PUBLIC CIBLE

Ingénieurs amenés à travailler avec de grands volumes de données et confrontés à des problèmes d'estimation, de prédiction et de classification.

PRÉ-REQUIS

De préférence, connaissance de base en probabilités et statistiques.

OBJECTIFS

- Maîtriser les principes de l'apprentissage machine et des approches standard (machines à vecteur de support, etc.)
- Appréhender la formalisation de problèmes concrets et la mise en forme des données (biais des données, validation croisée, etc.)
- Comprendre les approches de *Deep Learning* et modéliser de bout en bout une chaîne complète de traitement de données
- Analyser de manière critique les résultats en termes de performances

PÉDAGOGIE

Cours théorique et conférences invitées.

PROGRAMME

Matinée : 9h - 9h15Introduction DSP / DRH / Orga. (15mn) 9h15 - 10h Principes de l'apprentissage machine (45mn) 10h - 10h45 Modèles d'apprentissage standard (45mn) Pause (15mn) 11h - 11h45 Réseaux de neurones (architecture, optimisation) (45mn) 11h45 - 12h30 Deep Learning (45mn) Après-midi: 13h30 - 14h Conférence invitée de Marina Gruet (ONERA/DPhIEE) : Les réseaux de neurones appliqués à la météorologie spatiale (30mn) 14h - 14h30 Conférence invitée de Jérôme Morio (ONERA/DTIS): Traitement de données issues du trafic aérien pour l'évaluation des risques (30mn)

Pause (15mn)

14h45 – 15h45 Conférence invitée de **Philippe Besse**

(INSA Toulouse/Institut de Mathématiques de Toulouse) :

De statisticien à Data Scientist (1h)

15h45 – 16h30 Table ronde et discussion de clôture (45mn) 17h00 Fin de journée

Page 1/1