Advanced Machine Learning

Multi-Target Prediction: Loss Functions

Learning goals

- Get to know loss functions for multi-target prediction problems
- Know the Bayes predictor for Hamming loss and subset 0/1 loss
- Understand the difference between macro-, micro-, and instance-wise-losses

MULTIVARIATE LOSS FUNCTIONS

- In MTP: For a feature vector \mathbf{x} , predict a tuple of score vectors $f(\mathbf{x}) = (f(x)_1, f(x)_2, \dots, f(x)_l)^{\top}$ for l tasks with a function (hypothesis) $f: \mathcal{X} \to \mathbb{R}^{g_1} \times \dots \times \mathbb{R}^{g_l}$.
- Following loss minimization in machine learning, we need a multivariate loss function

$$L: (\mathcal{Y}_1 \times \cdots \times \mathcal{Y}_l) \times (\mathbb{R}^{g_1} \times \cdots \times \mathbb{R}^{g_l}) \to \mathbb{R}.$$

- In multi-target regression: $\mathcal{Y}_1 = \ldots = \mathcal{Y}_l = \mathbb{R}$, and $g_1 = \ldots = g_l = 1$.
- In multi-label classification: $\mathcal{Y}_1 = \ldots = \mathcal{Y}_l = \{0, 1\}$, and $g_1 = \ldots = g_l = 1$. \Rightarrow I.e., each task is a binary classification.

MULTIVARIATE LOSS FUNCTIONS

• L is decomposable over instances if

$$L = \sum_{i=1}^{n} L(\mathbf{y}^{(i)}, f(\mathbf{x}^{(i)})),$$

i.e., as a sum of losses over all examples.

• L is decomposable over targets if

$$L(\mathbf{y}, f) = \sum_{m=1}^{l} L_m(y_m, f(\mathbf{x})_m)$$

with single-target losses L_m .

Two categories: micro- and instance-wise-losses.

MICRO LOSSES

 Micro-losses: L corresponds to aggregating the pointwise losses over the targets and instances.

$$L = \frac{1}{n \cdot I} \sum_{i,m} L_m(y_m^{(i)}, f(\mathbf{x})_m^{(i)}),$$

where $L_m: \mathcal{Y}_m \times \mathbb{R}^{g_m} \to \mathbb{R}$ in this case.

• Example Squared error loss (i.e. used in multivariate regression):

$$L(\mathbf{y},f)=\sum_{m=1}^{l}(y_m-f(\mathbf{x})_m)^2.$$

• Can also be used for cases with missing entries.

INSTANCE-WISE LOSSES

- Given a label vector **y**, it computes the loss on single instance.
- Hamming loss averages over mistakes on individual scores:

$$L_{H}(\mathbf{y},\mathbf{h}) = \frac{1}{I} \sum_{m=1}^{I} \mathbb{1}_{[y_{m} \neq h_{m}(x)]},$$

where $h_m(x) := [f(\mathbf{x})_m \ge c_m]$ is the threshold function for task m with threshold c_m .

- Hamming loss is identical to the average 0/1 loss if computed on the entire dataset.
- The subset 0/1 loss simply checks for entire correctness:

$$L_{0/1}(\mathbf{y},\mathbf{h}) = \mathbb{1}_{[\mathbf{y}\neq\mathbf{h}]} = \max_{m} \mathbb{1}_{[y_m\neq h_m(x)]}$$

HAMMING VS. SUBSET 0/1 LOSS

• The risk minimizer for the Hamming loss is the *marginal mode*:

$$f^*(\mathbf{x})_m = \arg\max_{y_m \in \{0,1\}} \Pr(y_j \mid \mathbf{x}), \quad m = 1, \dots, I,$$

while for the subset 0/1 loss it is the *joint mode*:

$$f^*(\mathbf{x}) = \arg\max_{\mathbf{y}} \Pr(\mathbf{y} \mid \mathbf{x}).$$

• Marginal mode vs. joint mode:

y	$Pr(\mathbf{y})$	
0000	0.30	
0111	0.17	Marginal mode:
1011	0.18	Joint mode:
1101	0.17	
1110	0.18	

1111