1 09-04-18

We will learn about : Basics of functions of several variables. In this lecture:

A sequence in the Euclidean space and its application

Using these notation:

- \mathbb{N} : set of natural number ($\mathbb{N} = \{1, 2, 3, \dots\}$)
- \mathbb{Z} : set of integers $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$
- \mathbb{Q} : set of rational number $(\mathbb{Q} = \{0, \pm 1, \pm 2, \frac{2}{3}, \dots\})$
- \mathbb{R} : set of real number
- \mathbb{C} : set of complex number

Definition 1. A sequence $(x_n)_{n=1}^{\infty}$ is an assignment of (real) number $x_n \in \mathbb{R}$ to natural number $n \in \mathbb{N}$ $(x_n \in \mathbb{R})$. $Example: x_n = \frac{1}{n}. \ x_1 = 1, x_2 = \frac{1}{2}, \dots$

Definition 2. A subsequence of a sequence $(x_n)_{n=1}^{\infty}$ is a sequence $(y_j)_{j=1}^{\infty}$ defined by $y_j = x_{n_j}$ for some sequence

 $(n_{j})_{j=1}^{\infty} \text{ in } \mathbb{N} \text{ such that } n_{j} < n_{j+1} \text{ } (j=1,2,\ldots).$ $Example : \text{ sequence } (x_{n})_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{100} \text{ , takes } n_{1} = 1, n_{2} = 3, n_{3} = 5, n_{4} = 100$ $\text{subsequence } (x_{n_{j}})_{j=1}^{\infty} = x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, x_{n_{4}} = 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{100}.$

Definition 3. Let $(x_n)_{n=1}^{\infty}$ be a sequence converges to $\alpha \in \mathbb{R}$ if for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $n > N, |x_n - \alpha| < \epsilon.$

In the mathematical symbol $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n > N, |x_n - \alpha| < \epsilon \text{ for } n > N.$ In this case we write, $\lim_{n\to\infty}$ or $x_n\to\alpha$ $(n\to\infty)$

Example 1.

Theorem 1. $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}$ is sequence. Suppose $x_n \to \alpha$ and $y_n \to \beta$ as $n \to \infty$.

- 1. $x_n \pm y_n \to \alpha \pm \beta$, $(n \to \infty)$
- 2. $x_n \cdot y_n \to \alpha \cdot \beta$, $(n \to \infty)$
- 3. if $\beta \neq 0$, $\frac{x_n}{y_n} \to \frac{\alpha}{\beta}$, $(n \to \infty)$

Remark 1. On 3, $\frac{x_n}{y_n}$ is not defined for all $n \in \mathbb{N}$ because $y_n = 0$ possibly for some $n \in \mathbb{N}$. But, since $y_n \to \beta \neq 0$, $y_n \to 0$ eventually is not 0. Hence $\frac{x_n}{u_n}$ is defined eventually.

Theorem 2. $(x_n)_{n=1}^{\infty}$ a sequence. If $(x_n)_{n=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$, any subsequence of $(x_n)_{n=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$. \therefore Let $(x_n)_{n=1}^{\infty}$ be a subsequence. Because $x_n \to \alpha(n \to \infty), \forall \epsilon > 0, \exists N \in \mathbb{N}$. Take $J_0 \in \mathbb{N}$ such that $n_j > N_\theta$ for all $y > J_0$. Then $|x_{n_j > N_\theta} - \alpha| < \epsilon$ for $j > J_0$. $x_{n_j} \to \alpha(j \to \infty), (n_j)_{j=1}^\infty$ also a sequence, $n_j \in \mathbb{N}, n_j < n_{j+1}$.

Completeness Axiom. Let $(x_n)_{n=1}^{\infty}$ be a monotonically increasing (decreasing) sequence (i.e. $x_n \leq x_{n+1}, n \in \mathbb{N}$). Suppose that there is an $M \in \mathbb{R}$ such that $x_n \leq M(n \in \mathbb{N})$ $(x_n \geq M)$. Then, $(x_n)_{n=1}^{\infty}$ converges $(\exists \alpha \in \mathbb{R} \text{ such that }$

Theorem 3. Bolzano-Weirstrass. $(x_n)_{n=1}^{\infty}$ a sequence in \mathbb{R} . Suppose $(x_n)_{n=1}^{\infty}$ is bounded in the sense that $|x_n| \leq$ $M, \forall n \in \mathbb{N}$. Then $(x_n)_{n=1}^{\infty}$ contains a convergent subsequence. x_n is a peak of $(x_n)_{n=1}^{\infty}$ if $x_n > x_m$ for m > n.

1

2 16-04-18

2.1 n-dimensional space

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \dots, x_n) | x_i \in \mathbb{R}\}.$ Takes n = 2, $\mathbb{R}^2 \Leftrightarrow \text{plane}$, we have P(a, b). For n = 3, we have P(a, b, c).

Definition 4. $P_m = (x_1^m, \dots, x_n^m) \in \mathbb{R}^n$, and $\{P_m\}_{m=1}^{\infty}$: a sequence in \mathbb{R}^n . $\{P_m\}$ converges to $A = (a_1, \dots, a_n) \in \mathbb{R}^n$, if $\forall k = 1, \dots, n, \ x_k^m \to a_k$ as $n \to \infty$.

Definition 5. Inner product and norm.

 $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$. We can define : $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$; inner product $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$; norm

Example 2. $\mathbf{x} \cdot \mathbf{y} = 0 \Leftrightarrow \mathbf{x}$ is perpendicular to \mathbf{y} Takes n = 0 then

$$\begin{array}{rcl} x_1y_1 + x_2y_2 & = & 0 \\ x_1y_1 & = & -x_2y_2 \\ \frac{y_1}{y_2} & = & -\frac{x_2}{x_1} \\ then \ (x_1, x_2) = c \cdot (-y_2, y_1) \end{array}$$

pict:

Example 3. $\|\mathbf{x}\| = 0 \Leftrightarrow x = 0$ $(\Rightarrow) \ 0 = \|x\|^2 = x_1^2 + \dots + x_n^2$, then $x_1^2 = 0 \ (\forall i = 1, \dots, n)$ and finally $x_1 = 0$.

Notes 1. ||x|| is the distance between $\mathbf{0} = (0, \dots, 0) \in \mathbb{R}^n$ and $\mathbf{x} = (x_1, \dots, x_n)$. For notation, we will use $P, Q \in \mathbb{R}^n$ as points and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ as vectors. We also use $||x - y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ as distance between \mathbf{x} and \mathbf{y} . ||P - Q|| is distance between P and Q.

$$\mathbf{x} \pm \mathbf{y} = (x_1 \pm y_1, \dots, x_n \pm y_n)$$

$$P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n), \text{ then } P + Q = (p_1 + q_1, \dots, p_n + q_n)$$

$$\alpha \in \mathbb{R}, \ \alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_n), \alpha P = (\alpha p_1, \dots, \alpha p_n)$$

$$\{P_m\}_{m=1}^{\infty} : \text{a sequence in } \mathbb{R}^n, \ P_m \to A \Leftrightarrow \|P_m - A\| \to 0$$

Theorem 4. Cauchy-Schwarz inequality. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$|\mathbf{x} \cdot \mathbf{y}| \le ||x|| ||y||$$

"=" $\Rightarrow a\mathbf{y} = b\mathbf{x} \text{ for some } a, b \in \mathbb{R}.$:: We may assume $\mathbf{x} \neq \emptyset$, $\forall t \in \mathbb{R}.$

$$0 \le ||t\mathbf{x} + \mathbf{y}|| = (t\mathbf{x} + \mathbf{y})(t\mathbf{x} + \mathbf{y}) = t^2 ||\mathbf{x}||^2 + 2t(\mathbf{x} \cdot \mathbf{y}) + ||\mathbf{y}||^2$$
$$D/4 \le 0$$

Theorem 5. Bolzano=Weierstrass. Let $(P_m)_{m=1}^{\infty} \subset \mathbb{R}^n$ be a sequence. Suppose that $(P_m)_{m=1}^{\infty}$ is bounded. In the sense that $||P_m|| \leq M(m \in \mathbb{N})$ for some $M \geq 0$. Then $(P_m)_{m=1}^{\infty}$ contains a convergent subsequence.

Definition 6. Ball. $A \in \mathbb{R}^n, R > 0$

$$\mathbf{B}(A,R) = \{ P \in \mathbb{R}^n | \|P - A\| < R \}; \text{ open ball of center } A \text{ with radius } R$$

$$\overline{\mathbf{B}}(A,R) = \{P \in \mathbb{R}^n | ||P - A|| \le R\}; \ closed \ ball$$

Definition 7. 1. $E \subset \mathbb{R}^n$ is said to be **an open set** if $E = \emptyset$ or $\forall A \in E, \exists R > 0$ such that $\mathbf{B}(A, R) \subset E$.

2. $E \subset \mathbb{R}^n$ is said to be **a closed set** if $E^c \in \mathbb{R}^n$ E is an open set. E: open, then neighbor in any point

Definition 8. Accumulation point. $E \subset \mathbb{R}^n$; a set. $A \in \mathbb{R}^n$ is called an accumulation point of E if $\forall R > 0$, $(\mathbf{B}(A,R) - \{A\}) \cap E \neq \emptyset$.

Notes 2. $E \subset \mathbb{R}^n$ is closed if and only if E contains any accumulation point of E. Homework report, prove this

Notes 3. 1. Both \emptyset and \mathbb{R}^n are open and closed

- 2. $\{E_{\lambda}\lambda \in A\}$; a collection of open sets \Rightarrow union $\lambda \in AE_{\lambda}$ is also open
- 3. $\{E_{\lambda}\}_{\lambda=1}^{N}$, a finite collection of open sets \Rightarrow irisan $_{lamda=1}^{N}E_{\lambda}$ is also open.
- 4. Rephrase of Bolzano Weierstrass theorem. $E \subset \mathbb{R}^n$; a bounded closed set $\Leftrightarrow E$ is a closed set such that $E \subset \mathbf{B}(\mathbf{0},R)$ for some R>0. E; a bounded closed set then any sequence of E contains a convergent subsequence whose limit is in E.

Definition 9. A bounded closed set in \mathbb{R}^n is called **compact**.

Example 4. $\overline{\mathbf{B}}(A,R)$ is compact. Report! prove this

2.2 Continuity and differentiability of a function

2.2.1 Continuity

E: a set in \mathbb{R}^n and f: is a function of E (real valued function). i.e. f is an assignment a (real) number to a point in E.

Definition 10. 1. f is continuous at $A \in E$ if $\forall (P_m)_{m=1}^{\infty} \subset E$: sequence with $P_m \to A$ $(m \to \infty)$

$$f(P_m) \to f(A) \ (m \to \infty)$$

2. f is continuous on E if f is continuous at any point of E.

2.2.2 Basic of continuous function on an interval in \mathbb{R}

Theorem 6. Intermediate value theorem. f: function on a closed interval $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$. Suppose that $f(a) \le f(b)$. Then, $\forall \gamma$ with $f(a) \le \gamma \le f(b)$, $\exists c \in [a,b]$ with $f(c) = \gamma$.

Theorem 7. Extreme value theorem. f is a continuous function on a closed interval [a,b]. Then, f attains a maximum and a minimum on [a,b].

Name: Afifah Maya Iknaningrum (1715011053)

REPORT 1

- 1. $E \subset \mathbb{R}^n$ is closed if and only if E contains any accumulation point of E
- 2. $\overline{\mathbf{B}}(A, R)$ is compact.

Proof:

1. (\Rightarrow) if E is closed then E contains all of its accumulation point. Let x accumulation point of E, $x \in E$ and E is closed then E^c is open .

Let $x \in E^c$ and $R > 0 \Rightarrow \forall x \in E^c$, $\exists B(x, R)$ such that $\forall y \in B(x, R) \Rightarrow y \in E^c$. Suppose x is accumulation point of E that is not in E. Then, $\forall e \in B(x, R), \exists y \neq x \text{ with } y \in e \cap E$. $y \in e \cap E \Rightarrow y \notin E^c$ contradiction.

 (\Leftarrow) E contains all of its accumulation point then E is closed.

Suppose E contains all of its accumulation point. Suppose E^c is not open. $\exists x \in E^c$ such that $\forall e \in B(x,R), R > 0, \exists y \in e$ that also in E. Its contradict the premise, because x is accumulation point.

2. Suppose $x \notin \overline{B}(A, R) \Rightarrow ||x - A|| > R$. So let $||x - A|| - R = \epsilon > 0$. Consider $y \in B(x, \epsilon/2)$,

$$\begin{array}{rcl} \|y - A\| & \geq & \|x - A\| - \|y - x\| \\ \|y - A\| & \geq & R + \epsilon - (\epsilon/2) \\ \|y - A\| & \geq & R + (\epsilon/2) \\ \|y - A\| & > & R \end{array}$$

shows that $y \in \overline{B}(A, R)$. Hence $B(x, \epsilon/2)$ subset of $\overline{B}(A, R)^c$. Because $\overline{B}(A, R)^c$ hence $\overline{B}(A, R)$ is closed.

By definition, $\overline{B}(A,R)=\{x\in\mathbb{R}^n|\|x-A\|\leq R\}$ Then $\forall x\in\overline{B}(A,R)$ we can find

$$||x - A|| \le R$$

$$-R \le |x - A| \le R.$$
(1)

shows that $\overline{B}(A,R)$ is bounded.

Because closed and bounded, $\overline{B}(A, R)$ is compact.

3 23-04-18

f is <u>continuous function</u> on $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$

Theorem 8. Intermediate Value Theorem. Suppose $f(a) \leq f(b)$ then $\forall \gamma \in \mathbb{R}$ with $f(a) \leq \gamma \leq f(b)$, $\exists c \ in[a,b]$ such that $f(c) = \gamma$.

Theorem 9. Extreme value theorem. f attains a maximum and a minimum on [a, b].

3.1 Differentiable function on intervals

f: function defined around $x = a \in \mathbb{R}$.

f is differentiable at x = a if the limit $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ exist.

f: function on $(a, b) = \{x \in \mathbb{R} | a < x < b\}$

f is differentiable on (a,b) if f is differentiable at any point of (a,b).

Properties: if f is differentiable at x = a then f is continuous at x = a.

$$\therefore f(a+h) = f(a) + h \frac{f(a+h) - f(a)}{h} = f(a) + h f'(a). \text{ Because } h \to 0 \text{ then } f(a+h) \to f(a).$$

Theorem 10. Rolle's theorem. f: continue on [a,b] and differentiable on (a,b). If f(a) = f(b) then $\exists c \in (a,b)$ such that f'(c) = 0.

: if f is a constant function, $f'(x) = 0, \forall x \in (a,b)$. Suppose that f is not a constant function, by <u>extreme value theorem</u>, f attain max at $x = c_1$ and min at $x = c_2$ with $c_1 \neq c_2$. (Otherwise $max = f(c_1) = f(c_2) = min$)

$$\forall x \in [a, b], f(c_2) \leq \min \leq f(x) \leq \max \leq f(a). \text{ We may assume } c_1 \in (a, b).$$

$$(Otherwise, consider - f instead f; (-f)'(a) = \lim_{h \to 0} \frac{-f(a+h) - (-f(a))}{h} = -f'(a))$$

$$\frac{f(c_1+h)-f(c_1)}{h} \le 0, h < 0. \quad \text{for } h \to 0, \quad f'(c_1) \le 0$$
$$\frac{f(c_1+h)-f(c_1)}{h} \ge 0, h > 0. \quad \text{for } h \to 0, \quad f'(c_1) \ge 0$$

Then, we can conclude that $f'(c_1) = 0$

Theorem 11. Meanvalue theorem. f: continuous on [a,b] and differntiable on (a,b).

$$\exists c \in (a,b) \text{ such that } \frac{f(b)-f(a)}{b-a}=f'(c).$$

$$\therefore$$
 consider $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ and apply the Rolle's theorem.

3.2 Basic of function of several variables

 $D \subset \mathbb{R}^n$ is a domain $\Leftrightarrow D$ is open. Any two points of D are connected by a polygonal arc in D. We can consider a ball $\mathbf{B}(P,R)$.

Note: From now on, we discuss with \mathbb{R}^2 for simplicity.

3.2.1 The partial derivative at P(a, b)

1D:
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
.
2D: $f_x(a,b) = \frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$.
 $f_y(a,b) = \frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$

Definition 11. f is <u>partially differentiable at P(a,b)</u> if $f_x(a,b), f_y(a,b)$ exist. And f is <u>partially differentiable on D</u> if f is partially differentiable at any point on D.

3.2.2 Landau symbol

O: big o and o: small o describe the behavior of function.