Heritability of Human Structural Connectomes

Jaewon Chung

(he/him) - NeuroData lab Johns Hopkins University - Biomedical Engineering

⊠ j1c@jhu.edu

(Github)

gj1c (Twitter)

What is heritability?

- Variations in phenotype caused by variations in genotype.
- Potentially discover relationships between diseases and genetics.

Are the patterns of brain connectivity heritable?

Brain connectivity as connectomes

(aka networks or graphs)

- Vertex: region of the brain
- Edges: connectivity measure between a pair of vertices
- Structural connectomes: estimated # of neuronal fibers
- Undirected: neurons have no direction

How do we get structural connectomes?

Heritability as causal problem

• Directed acyclic graph

Do genomes affect connectomes?

Our hypothesis:

```
H_0: F({\sf Connectome}|{\sf Genome}) = F({\sf Connectome})
H_A: F({\sf Connectome}|{\sf Genome}) 
eq F({\sf Connectome})
```

Alternatively:

```
H_0: F(	ext{Connectome}, 	ext{Genome}) = F(	ext{Connectome})F(	ext{Genome})
H_A: F(	ext{Connectome}, 	ext{Genome}) 
eq F(	ext{Connectome})F(	ext{Genome})
```

- Known as independence testing
- Test statistic: distance correlation (dcorr)
- Implication if false: there exists an associational heritability.

What is distance correlation?

- Measures dependence between two multivariate quantities.
 - For example: connectomes, genomes.
- Can detect nonlinear associations.
- Measures correlation between pairwise distances.

How to compare genomes?

- Typical twin studies do not sequence genomes.
- Coefficient of kinship (ϕ_{ij})
 - Probabilities of finding a particular gene at a particular location.
- $d(Genome_i, Genome_j) = 1 2\phi_{ij}$.

Relationship	ϕ_{ij}	$1-2\phi_{ij}$
Monozygotic	$\frac{1}{2}$	0
Dizygotic	$\frac{1}{4}$	$\frac{1}{2}$
Non-twin siblings	$\frac{1}{4}$	$\frac{1}{2}$
Unrelated	0	1

How to compare connectomes?

- Random dot product graph (RDPG)
 - \circ Each vertex (region of interest) has a low d dimensional latent vector (position).
 - \circ Estimate latent position matrix X via adjacency spectral embedding.

• $\mathsf{d}(\mathsf{Connectome}_k, \mathsf{Connectome}_l) = ||X^{(k)} - X^{(l)}R||_F$

Human Connectome Project

- Brain scans from identical (monozygotic), fraternal (dizygotic), non-twin siblings.
- Regions defined using Glasser parcellation (180 regions).

Zygosit y	Monozygoti c	Dizygotic	Non-twin siblings
N	322	212	490
Sex	196 F, 126 M	125 F, 87 M	237 F, 253 M
Age (mean)	29.6 (3.3)	28.9 (3.4)	28.3 (3.9)
Age (range)	22-36	22-36	22-37

Genome and connectomes are dependent

Sex	All	Females	Males
p-value	$< 1 imes 10^{-5}$	$< 1 imes 10^{-3}$	$<1 imes10^{-2}$

Neuroanatomy (effect mediator)

- Literature show neuroanatomy (e.g. brain volume) is highly heritable.
- Want to test

 $H_0: F({\sf Neuroanatomy}, {\sf Genome}) = F({\sf Neuroanatomy})F({\sf Genome})$

 $H_A: F({\sf Neuroanatomy}, {\sf Genome})
eq F({\sf Neuroanatomy})F({\sf Genome})$

• $d(Neuroanatomy_i, Neuroanatomy_j) = ||Neuroanatomy_i - Neuroanatomy_j||_F$

Genome and neuroanatomy are dependent

Sex	All	Females	Males
p-value	$< 1 imes 10^{-3}$	$<1 imes10^{-2}$	$<1 imes10^{-2}$

DAG including interactions of neuroanatomy

Do genomes affect connectomes given neuroanatomy?

Want to test:

```
H_0: F(\mathsf{Conn.}, \mathsf{Genome}|\mathsf{Neuro.}) = F(\mathsf{Conn.}|\mathsf{Neuro.})F(\mathsf{Genome}|\mathsf{Neuro.})
H_A: F(\mathsf{Conn.}, \mathsf{Genome}|\mathsf{Neuro.}) \neq F(\mathsf{Conn.}|\mathsf{Neuro.})F(\mathsf{Genome}|\mathsf{Neuro.})
```

- Known as conditional independence test
- Test statistic: Conditional distance correlation (cdcorr)
- Implication if false: there exists causal dependence of connectomes on genomes.

What is conditional distance correlation?

Augment distance correlation procedure with third distance matrix.

Connectomes are still dependent on genome

• All tests are significant.

Sex	All	Females	Males
p-value	$< 1 imes 10^{-2}$	$< 1 imes 10^{-2}$	$< 1 imes 10^{-2}$

Summary

- Present a causal model for heritability of connectomes.
- Leveraged recent advances:
 - i. Statistical models for networks, allowing meaningful comparison of connectomes.
 - ii. Distance and conditional distance correlation as test statistic for causal analysis 1 .
- Connectomes are dependent on genome, suggesting heritability.

¹ Bridgeford, Eric W., et al. "Batch Effects are Causal Effects: Applications in Human Connectomics." (2021).

Additional slides

Causal model

- ullet X denote exposure, Y denote outcome, W denote measured covariates, Z denote unmeasured covariates
- ullet Want to estimate the effect of different exposures on the outcome, which is quantified using the backdoor formula if W and Z close all backdoor paths.

$$f_{w,z}(y|x) = \int_{\mathcal{W} imes\mathcal{Z}} f(y|x,w,z) f(w,z) \mathrm{d}(w,z)$$

Above integrates over all measured and unmeasured covariates.

$$f(y|x) = \int_{\mathcal{W} imes\mathcal{Z}} f(y|x,w,z) f(w,z|x)(w,z)$$

 Averages the true outcome distribution over the conditional distribution of the measured and unmeasured covariates.

Causal model (cont.)

- ullet We observe the triples (x_i,y_i,w_i) for $i\in [n]$.
- Only be able to estimate the functions of (X,Y,W)
- The corresponding hypothesis test is:

$$H_0: f(y|x,w) = f(y|w) \quad ext{vs} \quad H_A: f(y|x,w)
eq f(y|w).$$

Shortcomings - Network model

- Problems with connectome estimation.
 - o Inability to determine the precise origin/termination of connections in the cortex.
 - -> false negatives
 - Crossing fibers
 - -> false positives
- RDPG can only represent subset of independent edge networks.

Shortcomings - Model assumptions

- No interaction between genome and environment
- No epistatsis
 - Effect of one gene is dependent on another
 - Ex: black hair and baldness
- No dominance effects
- Strong assumptions in genetic distances

What are environmental effects?

- Shared
 - Common experiences of siblings living in the same household.
 - household income, the family's living situation, the dynamics between the parents, food consumed
- Non-shared
 - Everything else
 - Epigenetics
 - Luck
 - schools, peers

Random dot product graphs

- Adjacency spectral embedding
- representation of the vertices of the graphs into d dimensions via its singular value decomposition, given by $A = USU^{\top}$ where $U \in \mathbb{R}^{n \times n}$ is the orthogonal matrix of eigenvectors and $S \in \mathbb{R}^{n \times n}$ is a diagonal matrix containing the eigenvalues of A ordered by magnitude.
- $ASE(A) = \hat{X} = \hat{U}\hat{S}^{1/2}$ where $\hat{U} \in \mathbb{R}^{n \times d}$ contains the first d columns of U, which correspond to the largest eigenvectors, and $\hat{S} \in \mathbb{R}^{d \times d}$ is the submatrix of \$ S \$ corresponding to the d largest eigenvalues in magnitude.