

Field Matching: an Electrostatic Paradigm to Generate and Transfer Data

Alexander Kolesov^{1,2}, Stepan Manukhov ^{1,3}, Vladimir V. Palyulin¹, Alexander Korotin^{1,2}

¹Skolkovo Institute of Science and Technology (Moscow, Russia)

²Artificial Intelligence Research Institute (Moscow, Russia)

³Moscow State University, Faculty of Physics (Moscow, Russia)

Overview

Our **idea** is to consider distributions as electric charge densities, placed on plates of capacitor.

- Take 2 any data distributions $\mathbb{P}(\mathbf{x})$ and $\mathbb{Q}(\mathbf{x})$
- Assign samples from $\mathbb{P}(\mathbf{x})$ as positive charges
- Assign samples from $\mathbb{Q}(\mathbf{x})$ as negative charges
- Choose the distance ${\cal L}$ between plates
- Place $\mathbb{P}(\mathbf{x}^+)$ and $\mathbb{Q}(\mathbf{x}^-)$ on these plates
- Define **Ground-truth** field via Coulomb's law
- Approximate the field by Neural net
- Simulate sampling from one plate to another

Maxwell's electrostatics

The point charge q at a point \mathbf{x}' creates electric field:

$$\mathbf{E}(\mathbf{x}) = \frac{q}{4\pi} \frac{\mathbf{x} - \mathbf{x'}}{||\mathbf{x} - \mathbf{x'}||^3}.$$

The electric field from a charge distribution q(x) is found with the superposition principle as follows:

$$\mathbf{E}(\mathbf{x}) = \int \frac{1}{4\pi} \frac{(\mathbf{x} - \mathbf{x'})}{||\mathbf{x} - \mathbf{x'}||^3} q(\mathbf{x'}) d\mathbf{x'}.$$

An electric strength line of the field $\mathbf{E}(\mathbf{x})$ is a curve x(t) whose tangent to each point is parallel to the electric field. Thus, the motion along the field is represented as:

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{E}(\mathbf{x}(t))$$

The electric field flux

The **field flux** of **E(x)** through a surface Σ is defined as:

$$\Phi = \iint_{\Sigma} d\Phi = \iint_{\Sigma} \mathbf{E} \cdot \mathbf{dS}, \tag{2}$$

where **dS** is an area element of the finite surface Σ .

The flux of electric field Φ indicates the density of field lines passing through the finite surface Σ .

If we consider a point charge q, then the density of field lines is **uniform** through a spherical surface with q at its center as depicted in the figure

Poisson Flow Generative Models¹

D-dimensional distibution $\mathbb{P}_0(\cdot)$ is considered whose samples \widetilde{x} located on plane z=0:

$$(x_1, x_2, ..., x_D, z) = (\mathbf{x}, z) = \widetilde{\mathbf{x}} \in \mathbb{R}^{D+1}.$$

Samples $\widetilde{\mathbf{x}}$ are interpreted as positive charges that create electric field $\widetilde{E}(\widetilde{\mathbf{x}})$ whose flux through plane z=0 equals to distribution \mathbb{P}_0 .

If we move away from z = 0 to infinity, then the field of plane is field of a point charge:

The electric field lines define the correspondence between easy-sampled distribution and untractable distribution.

[1] - Xu, Y., Liu, Z., Tegmark, M., Jaakkola, T. (2022). Poisson flow generative models. Advances in Neural Information Processing Systems, 35, 16782-16795.

Our methodology

We develop **EFM** methodology suitable to **both** <u>noise-to-data</u> and data-to-data scenarios unlike PFGM.

We consider distributions as charge densities:

- $\mathbb{P}(\mathbf{x}^+)$ distribution of positive charges, $\mathbf{x}^+ \in \mathbb{R}^D$
- $\mathbb{Q}(\mathbf{x}^-)$ distribution of negative charges, $\mathbf{x}^- \in \mathbb{R}^D$

We augment \mathbf{x}^+ and \mathbf{x}^- with z=0 and z=L: $q^+(\widetilde{\mathbf{x}})=q^+(\mathbf{x},z)=q^+(\mathbf{x})\delta(z), \quad q^+(\mathbf{x})=\mathbb{P}(\mathbf{x}),$

 $\mathbf{q}^{-}(\widetilde{\mathbf{x}}) = q^{-}(\mathbf{x}, z) = q^{-}(\mathbf{x})\delta(z - L), q^{-}(\mathbf{x}) = \mathbb{Q}(\mathbf{x});$

Since each plate creates own field in a point $\widetilde{\mathbf{x}} \in \mathbb{R}^{D+1}$, then we use **Superpoisition principle** to define total field in this interplate point:

$$\mathbf{E}(\widetilde{\mathbf{x}}) = \mathbf{E}_{+}(\widetilde{\mathbf{x}}) + \mathbf{E}_{-}(\widetilde{\mathbf{x}}).$$

In accordance with Coulomb's law, the exact expression of each summand is defined via the follwoing formulation, where S_D is D-dimensional unit sphere:

$$\mathbf{E}_{\pm}(\widetilde{\mathbf{x}}) = \int \frac{1}{S_D} \frac{\widetilde{\mathbf{x}} - \widetilde{\mathbf{x}}'}{||\widetilde{\mathbf{x}} - \widetilde{\mathbf{x}}'||^{D+1}} q^{\pm}(\widetilde{\mathbf{x}}') d\widetilde{\mathbf{x}}'. \tag{2}$$

Again, the main goal is to approximate field by a neural network.

Algorithm

To better approximate the **Ground-truth** field between plates by neural-network, it is necessary to choose appropriate inter-plate points. In our paper, we use linear interpolation as $\widetilde{\mathbf{x}} = t\widetilde{\mathbf{x}}^+ + (1-t)\widetilde{\mathbf{x}}^- + \widetilde{\varepsilon}$, where $\widetilde{\varepsilon}$ is a noise. This approach is one of possible ways to determine intermediate points and is not connected to **Flow Matching**.

Algorithm 1 EFM Training

- 1: **procedure** Training stage
- Input: Distributions accessible by samples: $\mathbb{P}(\mathbf{x}^+)\delta(z)$ and $\mathbb{Q}(\mathbf{x}^-)\delta(z-L)$; NN approximator $f_{\theta}(\cdot): \mathbb{R}^{D+1} \to \mathbb{R}^{D+1}$;
- 2: Output: The learned electrostatic field $f_{\theta}(\cdot)$.
- 3: Repeat until converged:
- Sample a batch of points $\widetilde{\mathbf{x}}^+ \sim \mathbb{P}(\mathbf{x}^+) \delta(z)$
- Signal Sample a batch of points $\widetilde{\mathbf{x}}^- \sim \mathbb{Q}(\mathbf{x}^-)\delta(z-L)$
- Sample a batch of times $t \sim \mathcal{U}(0, L)$ 7: Sample a batch of noise $\widetilde{\varepsilon}$
- Calculate $\widetilde{\mathbf{x}} = t\widetilde{\mathbf{x}}^+ + (1-t)\widetilde{\mathbf{x}}^- + \widetilde{\varepsilon}$
- Estimate $\mathbf{E}_{+}(\widetilde{\mathbf{x}})$ and $\mathbf{E}_{-}(\widetilde{\mathbf{x}})$ by (2)
- o: Calculate $\mathbf{E}(\widetilde{\mathbf{x}})$ by Superposition principle.
- 11: Compute $\mathcal{L} = \mathbb{E}_{\widetilde{\mathbf{X}}} ||f_{\theta}(\widetilde{\mathbf{X}}) \frac{\mathbf{E}(\widetilde{\mathbf{X}})}{||\mathbf{E}(\widetilde{\mathbf{X}})|}||_2^2 \to \min_{\theta}$
- 12: Update θ by using $\frac{\partial \mathcal{L}}{\partial \theta}$
- 13: end procedure

Algorithm 2 EFM Sampling

- 1: **procedure** Inference
- 2: Input: Sample $\tilde{\mathbf{x}}^+$ from $\mathbb{P}(\mathbf{x}^+)\delta(z)$; step size $\Delta \tau > 0$; the learned field $f_{\theta}^*(\cdot) : \mathbb{R}^{D+1} \to \mathbb{R}^{D+1}$;.
- 3: Output: mapped sample $\tilde{\mathbf{x}}^-$ approximating $\mathbb{Q}(\mathbf{x}^-)\delta(z-L)$.
- 4: Set: $\tilde{\mathbf{x}}_0 = \tilde{\mathbf{x}}^+$.
- 5: for $\tau \in \{0, \Delta \tau, 2\Delta \tau, \dots, L \Delta \tau\}$ do
- 6: Calculate $f_{\theta}^*(\tilde{\mathbf{x}}_{\tau}) = (f_{\theta}^*(\tilde{\mathbf{x}}_{\tau})_x, f_{\theta}^*(\tilde{\mathbf{x}}_{\tau})_z)$
- 7: $\tilde{\mathbf{x}}_{\tau+\Delta\tau} = \left[(\tilde{\mathbf{x}}_{\tau})_x + f_{\theta}^* (\tilde{\mathbf{x}}_{\tau})_z^{-1} f_{\theta}^* (\tilde{\mathbf{x}}_{\tau})_x \Delta \tau; \tau + \Delta \tau \right]$
- 8: $\tilde{\mathbf{x}}^- \leftarrow \tilde{\mathbf{x}}_L$
- 9: end procedure

Contact: A.Kolesov@skoltech.ru

Toy experiments

We consider $\mathbb{P}(\mathbf{x})$ as a zero-mean Gaussian distribution and $\mathbb{Q}(\mathbf{x})$ as Swiss-roll.

The distance L between plates of D-dimensional capacitor is the **crucial** hyper-parameter that has signifact influence to our's method performance.

- When L is small, mapping recovers accurately (Fig. c)
- When L is large, mapping recovers poorly (Fig. d)

Data-to-Data scenario

We consider unpaired translation task between colored digits. We assign colored digits 3 as positive charges and digits 2 as negative. We demonstrate that **our** method accurately recovers the target distribution, preserving perfectly colors of initial digits.

Noise-to-Data scenario

We also consider unconditional generation task with CIFAR-10 dataset and colored digits. We place white noise on the left plate and samples from datasets to the right. We see that our method accourately recovers the initial distribution.

Conclusion

We developed the novel physics-inpired generative model that is adopted for **both** scenarios: noise-to-data and data-to-data.

