Работа 2.1.6 Эффект Джоуля-Томсона

Валеев Рауф Раушанович группа 825

18 февраля 2019 г.

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваалься "а"и "b"

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; мокровольтметр; балластный баллон; манометр.

Краткая теоретическая справка

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

В работе исследуется изменение температуры идеального газа при его течении по трубке с пористой перегородкой (рис.1).

Рассматривая 2 произвольных сечения записываем уравнение

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right)$$

Учитывая некоторые формулы мы получаем, что

$$\mu_{D-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}$$

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

Ход работы

- 1. Устанавливаем на контактном термометре температуру, близкую к T_k , то есть к комнатной.
- 2. Включаем вольтметр и убеждаемся, что изначально он показывает 0.
- 3. Открываем регулирующий вентиль В настолько, чтобы изыбточное давление составило примерно 4 атм.
- 4. Через 10-15 минут после подачи давления, когда полностью затухнут переходные процессы, зписываем показания вольтметра.
- 5. Постепенно уменьшаем давления по 0,5 атм и записываем значения вольтметра.
- 6. Окончив измерения устанавливаем на термометре температуру в 46 градусов и проводим опять пункты 1-5 для 46 и затем для 70 градусов. Все значения записываем в таблицы.

294 K				
ΔP , atm	ΔU , мкВ	ΔT , ${}^{0}K$		
0	0,000	0,000		
1,3	44,000	1,081		
1,8	63,000	1,548		
2,4	87,000	2,138		
2,7	101,000	2,482		
3,0	112,000	2,752		
3,4	131,000	3,219		
3,7	145,000	3,563		
4,0	160,000	3,931		

328~K				
ΔP , atm	ΔU , мкВ	ΔT , ${}^{0}K$		
0,0	0,000	0,000		
1,0	25,000	0,588		
1,5	38,000	0,894		
2,0	50,000	1,176		
2,5	63,000	1,482		
3,0	85,000	2,000		
3,5	102,000	2,400		
4,0	120,000	2,824		

348 K				
ΔP , atm	ΔU , мкВ	ΔT , ${}^{0}K$		
0,000	0,000	0,000		
1,000	13,000	0,295		
1,500	19,000	0,431		
2,000	28,000	0,635		
2,500	39,000	0,884		
3,000	48,000	1,088		
3,500	61,000	1,383		
4,000	77,000	1,746		

7. Откладываем полученные значения на графике и определяем μ_{D-T} для каждой температуры.

8. решаем систему уравнений:

$$\begin{cases} \mu_1 = \frac{\frac{2a}{RT_1} - b}{4R} \\ \mu_2 = \frac{\frac{2a}{RT_2} - b}{4R} \\ \mu_3 = \frac{\frac{2a}{RT_3} - b}{4R} \end{cases}$$

из этой системы получаем, что

$$a = \frac{2R^2(\mu_2 - \mu_1)}{\frac{1}{T_1} - \frac{1}{T_2}}$$

$$b = \frac{2a}{RT_1} - 4R\mu_1$$

9. Все коэффициенты и погрешности для них заносим в таблицу:

T , ${}^{0}K$	μ , ${}^0K/{ m atm}$	σ_{μ} , ${}^{0}K/{ m atm}$	ε_{μ}
294,000	0,987	0,212	21%
328,000	0,708	0,230	33%
348,000	0,431	0,220	51%

$a, H \cdot m^4$ /моль ⁴	$\sigma_a, H \cdot m^4 / \text{моль}^4$	ε_a	b, см ³ /моль	σ_b , см ³ /моль	ε_b	T , ${}^{0}K$
1,095	1,225	112%	568,046	898,877	158%	2309

Уравнение Бертло

Наблюдаем, что из-за неидеальности системы, а конкретно не изолированности, мы получаем не те значения и огромную погрешность.

Рассмотрим другое приближение идеального газа: по Бертло.

$$\left(p + \frac{a}{TV^2}\right)(V - b) = RT$$

$$pV + \frac{a}{TV} - \frac{ab}{TV^2} - bp = RT$$

$$\left(\frac{\partial V}{\partial T}\right)_p \left(p - \frac{a}{TV^2} + \frac{2ab}{TV^3}\right) - \frac{a}{VT^2} + \frac{ab}{T^2V^2} = R$$

$$\left(\frac{\partial V}{\partial T}\right)_p = \frac{(RV^2T^2 + aV - ab)(V - b)}{T\left(RT^2V^2 - 2a(V - b) + \frac{2ab(V - b)}{V}\right)} \Rightarrow \mu = \frac{\frac{3a}{RT^2} - b}{C_p}$$

Для него получаем:

$$\begin{cases} \mu_1 = \frac{\frac{3a}{RT_1^2} - b}{4R} \\ \mu_2 = \frac{\frac{2a}{RT_2^2} - b}{4R} \\ \mu_3 = \frac{\frac{2a}{RT_3^2} - b}{4R} \end{cases}$$

из этой системы получаем, что

$$a = \frac{4R^2(\mu_2 - \mu_1)}{3\left(\frac{1}{T_1^2} - \frac{1}{T_2^2}\right)}$$
$$b = \frac{3a}{RT_1^2} - 4R\mu_1$$

	Решения системы уравнений	σ	ϵ
$a, H \cdot m^4 \cdot K/$ моль ⁴	113,142	126,630	111,92%
b, см ³ /моль	144,478	533,54	369,29%