Lecture 11: Inference for Two Means STAT 310, Fall 2020

#### Difference Between Two Means

- In this lecture we discuss how to construct confidence intervals and perform hypothesis tests for the difference between two populations means  $\mu_1 \mu_2$ , where the data come from two independent samples.
- Just as with a single sample, we need to check whether certain conditions are satisfied for the confidence interval or hypothesis test to be valid.
- ▶ An important question we address is whether the difference between the two population means is significantly different than 0.

#### Confidence Interval

Confidence interval for the difference between two population means  $\mu_1 - \mu_2$ :

$$ar{x}_1 - ar{x}_2 \pm t^* \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

- ▶ The degrees of freedom for the critical value  $t^*$  can be calculated with the formula  $df = \min(n_1 1, n_2 1)$
- ➤ The formula for the degrees of freedom computed using software (t.test() function in R) is more complex.<sup>1</sup>

<sup>1</sup>https://en.wikipedia.org/wiki/Welch%27s\_t-test@> < \bar{2} > \bar{2} > \cdot \bar{2} > \cdot

# Hypothesis Test

Hypothesis test for the difference between two population means:

 $H_0: \mu_1 = \mu_2$ 

 $H_A: \mu_1 \neq \mu_2$ 

Test Statistic:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- ▶ The degrees of freedom are the same as the confidence interval.
- ► Can also do a one-sided test (e.g.,  $H_A: \mu_1 > \mu_2$ ), but we will focus on two-sided tests when comparing two means.

#### **Conditions**

Conditions for a confidence interval or hypothesis test for the difference between two population means:

- ► The data in each group comes from a random sample, or randomized experiment. Additionally, the two groups are independent of each other (the cases in the first group are not related to the cases in the second group).
- ▶ The sample sizes are large ( $n_1 \ge 30$  and  $n_2 \ge 30$ ). Otherwise, if the samples sizes are small, the data in each group should be approximately normal.
- There should be no extreme outliers.

## Example

Are action or comedy movies rated higher on IMDb? Below are some summary statistics for a random sample of 50 action movies and 50 comedy movies rated on IMDb. Use a hypothesis test to determine whether there is a statistically significant difference between the two means.

|      | IMDb Rating |        |
|------|-------------|--------|
|      | Action      | Comedy |
| Mean | 5.46        | 6.18   |
| SD   | 1.55        | 1.24   |
| n    | 50          | 50     |



(a) Write the null and alternative hypotheses.

(b) Check the conditions for the test.

(c) Calculate the test statistic.

(d) Calculate the p-value, and and make a decision using  $\alpha=0.05$  significance level.



(e) What is the conclusion of the test in the context of the data?

### Example

Calculate and interpret a 95% confidence interval for the difference between the mean rating of action and comedy movies on IMDb.