#### P-værdier og konfidensintervaller

Læsning:

Jens Ledet Jensen kap. 2+3



#### Hypotesetest





#### <u>Teststørrelse:</u>

 $\Rightarrow x = \text{antal successer}$ = 152

#### Statistisk model:

 $x \sim binomial(580,1/4)$ 

Hvis p = 1/4 og n = 580, hvordan bør data så se ud?

#### Hypotesetest

 Vi vurderer holdbarheden af en hypotese ved at sammenligne de observerede data med, hvad man typisk vil se, hvis hypotesen er sand.

# Data simuleret på baggrund af hypotesen (H: $p = \frac{1}{4}$ )

Resultat af 100 simulationer i Matlab



#### Teststørrelsen og dens fordeling

Teststørrelsen antages binomialfordelt:

$$X \sim binomial(n = 580, p = 1/4)$$



#### P-værdien

- Vi vurderer holdbarheden af en hypotese ved at sammenligne de observerede data med, hvad man typisk vil se, hvis hypotesen er sand.
- Dette gøres ved at beregne p-værdien.
- Stor p-værdi:
  - Data strider ikke mod hypotesen
- Lille p-værdi:
  - Data strider hypotesen

#### Beregning af p-værdi

Sandsynligheden for at observere en teststørrelse, som er mere ekstrem end x = 152:

```
pval = \Pr(X \le np - |np - x| \cup X > np + |np - x|)
= \Pr(X \le 145 - |145 - 152|) + \Pr(X > 145 + |145 - 152|)
= \Pr(X \le 145 - 7) + \Pr(X > 145 + 7)
= \Pr(X \le 138) + \Pr(X > 152)
= F_{binomial}(138) + (1 - F_{binomial}(152))
= 0.50
>> binocdf (152, 580, 1/4)
ans =
0.7652
```

#### Signifikansniveau

- Når man laver et hypotesetest (og det hedder altså et test inden for statistisk...), må man vælge et passende niveau for p-værdien.
- Dette kaldes signifikansniveauet og betegnes  $\alpha$ .
- Hvis p-værdien er større end  $\alpha$ 
  - Data strider ikke mod hypotesen
- Hvis p-værdien er mindre end lpha
  - Data strider mod hypotesen
- Typiske værdier for  $\alpha$  er 0.05 eller 0.01.

## Beregning af p-værdi

Sandsynligheden for at observere en teststørrelse, som er mere ekstrem end x = 152:

```
\begin{aligned} pval &= \Pr(X \leq np - |np - x| \cup X > np + |np - x|) \\ &= \Pr(X \leq 145 - |145 - 152|) + \Pr(X > 145 + |145 - 152|) \\ &= \Pr(X \leq 145 - 7) + \Pr(X > 145 + 7) \\ &= \Pr(X \leq 138) + \Pr(X > 152) \\ &= F_{binomial}(138) + \left(1 - F_{binomial}(152)\right) \\ &= 0.50 \end{aligned}
```

Da pval > 0.05, strider data ikke mod hypotesen.

Konklusion på Mendels eksperiment:

Data strider ikke imod antagelsen om lige udspaltning af de fire genotyper.



Hvis middelværdien af alderen er 50 år, hvordan bør data så se ud?

## Teststørrelsen og dens fordeling



## Beregning af p-værdi

Sandsynligheden for at observere en teststørrelse, som er mere ekstrem end z = -55.4453

#### P-værdi:

```
\Pr(Z \le -|z| \cup Z > |z|)
= \Pr(Z \le -55.4453) + \Pr(Z > 55.4453)
= \Phi(-55.4453) + (1 - \Phi(55.4453))
= (1 - \Phi(55.4453)) + (1 - \Phi(55.4453))
= 2(1 - \Phi(55.4453)) 
= 2(1 - 1) = 0
>> normcdf (55.4453)
ans =
```

Da pval < 0.05, strider data mod hypotesen!

#### **Konklusion:**

Data strider imod antagelsen om, at middelværdien af alderen er 50 år.

# Uddybning af binomialfordelingen

Husk, at

$$X = \sum_{i=1}^{n} B_i$$

hvor  $B_i \sim bernoulli(p)$  og uafhængige.

Middelværdi

$$E[X] = E\left[\sum_{i=1}^{n} B_i\right] = \sum_{i=1}^{n} E[B_i] = n \cdot p$$

**Varians** 

$$Var(X) = Var\left(\sum_{i=1}^{n} B_i\right) = \sum_{i=1}^{n} Var(B_i) = n \cdot p(1-p)$$

$$E[X + Y] = E[X] + E[Y]$$
 linearitet af middelværdi (14)  
 $Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$  (15)

$$Var(X+Y) = Var(X) + Var(Y) + 2 \cdot Cov(X,Y)$$
 (15)

#### Standardisering af binomialfordelte data

Hvis

$$X \sim binomial(n, p)$$

og  $n \cdot p > 5$  og  $n \cdot (1 - p) > 5$ , så er X cirka normalfordelt.

- Standardiseret teststørrelse (z)
  - Træk middelværdien fra den observerede værdi (x = antal successer)
  - Og del med standardafvigelsen

$$z = \frac{x - np}{\sqrt{np(1 - p)}} \sim N(0, 1)$$

Så er

$$Pr(X \le x) = F_{binomial}(x) \approx \Phi(z)$$

#### Approximativ p-værdi

$$\Pr(X \le np - |np - x| \cup X > np + |np - x|)$$

$$= \Pr(X \le 145 - |145 - 152|) + \Pr(X > 145 + |145 - 152|)$$

$$= \Pr(X \le 145 - 7) + \Pr(X > 145 + 7)$$

$$= \Pr(X \le 138) + \Pr(X > 152)$$

$$= F_{binomial}(138) + (1 - F_{binomial}(152))$$

$$= \Phi\left(\frac{138 - 1/4 \cdot 580}{\sqrt{580 \cdot 1/4 \cdot (1 - 1/4)}}\right) + \left(1 - \Phi\left(\frac{152 - 1/4 \cdot 580}{\sqrt{580 \cdot 1/4 \cdot (1 - 1/4)}}\right)\right)$$

$$= 0.50$$

$$\uparrow$$

$$z = \frac{x - np}{\sqrt{np(1 - p)}}$$

Da pval > 0.05, strider data ikke mod hypotesen.





#### Teststørrelse

- Teststørrelsen er en funktion af data, W = W(x).
- Teststørrelsen er en stokastisk variabel!!!
- Teststørrelsen bruges til at bestemme graden af overensstemmelse mellem data og hypotese.

#### Statistisk model

- Beskriver teststørrelsens sandsynlighedsfordeling.
- Fordelingen afhænger af en eller flere parametre.





#### Parameter

- Vi antager, at de samplede data kommer fra en population, hvor den sande værdi af parameteren i den statistiske model er ukendt.
- Hvis vi gentager eksperimentet under identiske betingelser, vil den sande parameter være uændret, selvom vi får andre data.
- Parameter-skøn eller estimat
  - Et skøn af parameteren beregnes på baggrund af de observerede data.

#### **Notation**

- Generelt betegner vi den sande parameter  $\theta$ .
  - Bemærk,  $\theta$  kan være en vektor.
- Parameter estimatet betegnes  $\hat{\theta} = \hat{\theta}(x)$ 
  - og er altså en funktion af data (x).
- Estimatet er en stokastisk variabel!!!

#### Det gode estimat

#### Unbiased

- Forventningsværdien af estimatet skal være den sande værdi af parameteren.
- $-E[\hat{\theta}] = \theta$
- Usikkerhed på estimatet
  - $-Var(\hat{\theta})$  så lille som mulig.
- Optimal
  - $-\hat{\theta}$  er "optimal", hvis den maksimerer sandsynligheden for data, givet  $\hat{\theta}$ .
  - Man siger, at  $\hat{\theta}$  er maximum likelihood estimatet af  $\theta$ .

# Population: Gule og grønne ærtebælge Sample på 580 ærtebælge

#### **Estimation**



Givet data, hvad kan vi sige om parameteren p

- Estimat:  $\hat{p} = ?$
- Usikkerhed: Konfidensinterval

#### Binomialfordelingen

• Data er  $b_1, b_2, \dots, b_n$ , men typisk observerer vi kun teststørrelsen,

$$x = \sum_{i=1}^{n} b_i = antal \ successer \sim binomial(n, p)$$

Estimat af parameteren, p

$$\hat{p} = \hat{p}(x) = \frac{x}{n}$$

Unbiased:

$$E[\hat{p}] = E\left[\frac{x}{n}\right] = \frac{1}{n}E[x] = \frac{1}{n}(n \cdot p) = p$$

Varians:

$$\operatorname{Var}(\hat{p}) = \operatorname{Var}\left(\frac{x}{n}\right) = \frac{1}{n^2} \operatorname{Var}(x) = \frac{1}{n^2} \left(n \cdot p \cdot (1-p)\right) = \frac{1}{n} p \cdot (1-p)$$

#### Maximum likelihood

- Er vores estimat  $(\hat{p})$  optimalt?
- Tæthedsfunktionen for de observerede data, givet  $\hat{p}$ , er

$$f(x|\hat{p}) = \binom{n}{x} \hat{p}^x (1-\hat{p})^{n-x}$$

- For at finde det optimale parameterskøn, maksimerer vi ovenstående.
  - Vi kan se bort fra binomialkoefficienten, da den ikke afhænger af  $\hat{p}$ .
  - Vi må også tage logaritmen til udtrykket, da logaritmen er monoton.
- Løsningen skal maksimere dette udtryk:

$$x \cdot \log(\hat{p}) + (n - x) \cdot \log(1 - \hat{p})$$

## Maximum likelihood - løsning

Løsningen er

$$\arg \max_{\hat{p}} (x \cdot \log(\hat{p}) + (n - x) \cdot \log(1 - \hat{p}))$$

Differentier og sæt lig med nul:

$$\frac{x}{\hat{p}} - \frac{n-x}{1-\hat{p}} = 0$$

• Vi isolerer  $\hat{p}$  og får:

$$\hat{p} = \frac{x}{n}$$

Hurra!!!

#### Opsummering - binomialfordelingen

• Det optimale estimat af parameteren, p, er

$$\hat{p} = \hat{p}(x) = \frac{x}{n}$$

Unbiased:

$$E[\hat{p}] = p$$

• Varians:

$$Var(\hat{p}) = \frac{1}{n}p \cdot (1-p)$$

#### Opsummering - binomialfordelingen

#### Matlab

- Tæthedsfunktion: Pr(X = x) = binopdf(x, n, p)
- Fordelingsfunktion:  $Pr(X \le x) = binocdf(x, n, p)$
- Bruges når man har et eksperiment med en sekvens af ja/nej hændelser.
- Ofte kender man ikke sekvensen, men får man blot oplyst en brøk, som angiver succes-raten

$$\hat{p} = \frac{x}{n}$$

## Usikkerhed på estimatet

- Da parameterskønnet  $\hat{\theta}(x)$  varierer fra gentagelse til gentagelse på grund af tilfældige variationer, er den skønnede værdi i sig selv ikke særlig informativ uden samtidig at angive noget om denne tilfældige variation.
- Man vælger ofte at gøre det, at i stedet for blot at angive et enkelt punkt  $\hat{\theta}(x)$  i parameterrummet, så angiver man et helt interval af værdier omkring  $\hat{\theta}(x)$ .
- Ideen er, at enhver værdi i dette interval er, med de givne data, også et rimeligt gæt på værdien af parameteren.

#### 95% konfidensinterval

#### Definition:

 Sandsynligheden for, at 95% konfidensintervallet indeholder den sande parameterværdi, skal være 0,95:

$$Pr(\theta \ er \ indeholdt \ i \ intervallet \ [\theta_-; \theta_+]) = 0.95$$

#### Bogens overordnede strategi

- Vi ser kun på fordelinger, som har parameter  $\theta$ , og som kan approksimeres med en normalfordeling.
- Beregn den standardiserede teststørrelse:  $z = \frac{x-\mu}{\sigma} \sim N(0,1)$
- Så gælder der, at  $Pr(-1.96 \le z \le 1.96) = 0.95$
- Brug dette til at beregne 95% konfidensintervallet,  $[\theta_-; \theta_+]$ .

# 95% konfidensinterval for binomialfordelingen

Hvad skal der gælde om intervalgrænserne?

$$Pr(p_{-}(x) \le p \le p_{+}(x)) = 0.95$$

- Hvad ved vi?
  - Antag, vi kan bruge normal approksimationen for binomialfordelte data

$$z = \frac{x - np}{\sqrt{n \cdot p \cdot (1 - p)}} \sim N(0, 1)$$

Så er

Tjek:
>> normcdf(1.96)
ans =
 0.9750

$$Pr(-1.96 \le Z \le 1.96) = \Phi(1.96) - (1 - \Phi(1.96)) = 1 - 2(1 - \Phi(1.96)) = 0.95$$

# 95% konfidensinterval for binomialfordelingen

Vi sætter ind

$$\Pr(-1,96 \le z \le 1,96) = \Pr\left(-1,96 \le \frac{x - np}{\sqrt{n \cdot p \cdot (1 - p)}} \le 1,96\right) = 0.95$$

Regner man lidt på dette, får man

$$\Pr\left(\frac{1}{n+1,96^2}\left[x+\frac{1,96^2}{2}-1.96\sqrt{\frac{x(n-x)}{n}+\frac{1,96^2}{4}}\right] \le p \le \frac{1}{n+1,96^2}\left[x+\frac{1,96^2}{2}+1.96\sqrt{\frac{x(n-x)}{n}+\frac{1,96^2}{4}}\right]\right)$$

$$= \Pr(p_{-}(x) \le p \le p_{+}(x)) = 0.95$$

# 95% konfidensinterval for binomialfordelingen

Mendels eksperiment (binomialfordeling)

$$x = antal\ successer \sim binomial(n, p)$$

Observation

$$x = 152$$

Parameterskøn

$$\hat{p}(x) = \frac{x}{n} = \frac{152}{580} = 0,2621$$

95% konfidensinterval

$$p_{-}(x) = \frac{1}{n+1,96^2} \left[ x + \frac{1,96^2}{2} - 1.96 \sqrt{\frac{x(n-x)}{n} + \frac{1,96^2}{4}} \right] = 0,2312$$

$$p_{+}(x) = \frac{1}{n+1,96^2} \left[ x + \frac{1,96^2}{2} + 1.96 \sqrt{\frac{x(n-x)}{n} + \frac{1,96^2}{4}} \right] = 0,3026$$

# Sammenhæng mellem konfidensinterval og p-værdi

- Betragt situationen fra tidligere med en statistisk model indeholdende en parameter  $\theta$ .
- Lad  $pval(x; \theta_0)$  være p-værdien for et test af hypotesen

$$H: \theta = \theta_0$$

baseret på observationen x.

- Hvis  $pval(x; \theta_0) > \alpha$ , strider data som bekendt ikke mod hypotesen.
- Der vil typisk være mange valg af  $\theta_0$ , som opfylder denne betingelse.
- Vi definerer derfor mængden af alle sådanne parametre:

$$\{\theta | pval(x; \theta) > \alpha\}$$

# Sammenhæng mellem konfidensinterval og p-værdi

• Vi får altså et interval af parameterværdier, som stemmer overens med data (x):

$$\{\theta | pval(x; \theta) > \alpha\}$$

- Dette er  $(1 \alpha) \cdot 100\%$  konfidensintervallet.
- Fx, hvis  $\alpha = 0.05$ , får vi 95% konfidensintervallet.

# $(1-\alpha)\cdot 100\%$ konfidensintervallet for binomialfordelingen

Nedre grænse

$$p_{-}(x) = \frac{1}{n+u^2} \left| x + \frac{u^2}{2} - u \sqrt{\frac{x(n-x)}{n} + \frac{u^2}{4}} \right|$$

Øvre grænse

$$p_{+}(x) = \frac{1}{n+u^{2}} \left[ x + \frac{u^{2}}{2} + u \sqrt{\frac{x(n-x)}{n} + \frac{u^{2}}{4}} \right]$$

Hvor

$$u = \Phi^{-1}(1 - \frac{\alpha}{2})$$

Matlab

$$u = \Phi^{-1} \left( 1 - \frac{0.05}{2} \right) = \text{norminv} (1 - 0.05/2) = 1.96$$

# Testkatalog for binomialfordelingen

- Statistisk model
  - $X \sim binomial(n, p)$
  - Parameterskøn:  $\hat{p} = \frac{x}{n}$
  - Hvor observationen er x = antal successer
- Hypotesetest
  - $H: p = p_0$
  - Teststørrelse:  $z = \frac{x np_0}{\sqrt{n \cdot p_0 \cdot (1 p_0)}}$
  - Approksimativ p-værdi:  $pval = 2 \cdot |1 \Phi(|z|)|$
- Approksimativt 95% konfidensinterval
  - $[p_{-}(x); p_{+}(x)] = \left[\frac{1}{n+u^2}\left[x + \frac{u^2}{2} u\sqrt{\frac{x(n-x)}{n} + \frac{u^2}{4}}\right]; \frac{1}{n+u^2}\left[x + \frac{u^2}{2} + u\sqrt{\frac{x(n-x)}{n} + \frac{u^2}{4}}\right]\right]$
  - Hvor u = 1.96
- Forudsætninger for approksimationen:  $n \cdot p_0 > 5$  og  $n \cdot (1 p_0) > 5$ .

### Mendels eksperiment i Matlab

```
%% Eksempel 1 - Mendels eksperiment
x = 152;
n = 580;
p0 = 1/4;
u = 1.96;
% Hypotesetest (approksimativ p-værdi)
z = (x-n*p0)/sqrt(n*p0*(1-p0))
pval = 2*(1-normcdf(abs(z)))
% Parameterskøn
p est = x/n
% 95% konfidensinterval
p nedre = 1/(n+u^2) * (x + u^2/2 - u*sqrt(x*(n-x)/n + u^2/4))
p oevre = 1/(n+u^2) * (x + u^2/2 + u*sqrt(x*(n-x)/n + u^2/4))
```

- Drenge- og pigefødsler
  - I 2005 blev der i Holme-Højbjerg-Skåde området i Aarhus født 231 personer, hvoraf 108 var piger og 123 var drenge.
  - Vi ønsker at undersøge, om pige- og drengefødsler er lige hyppige.
- Statistisk model
  - x = antal pigefødsler = 108
  - $X \sim binomial(n, p)$ , hvor n = 231

- Hypotese
  - $H: p = p_0 = \frac{1}{2}$
- Teststørrelse

• 
$$z = \frac{x - np_0}{\sqrt{n \cdot p_0 \cdot (1 - p_0)}} = \frac{108 - 231 \cdot \frac{1}{2}}{\sqrt{231 \cdot \frac{1}{2} \cdot (1 - \frac{1}{2})}} = -0,9869$$

- Approksimativ p-værdi
  - $pval = 2 \cdot |1 \Phi(|z|)| = 2 \cdot (1 0.8382) = 0.3237$

 pval > 0.05: Vi kan ikke afvise hypotesen om, at pigeog drengefødsler er lige hyppige.

#### Parameterskøn

• 
$$\hat{p}(x) = \frac{x}{n} = \frac{108}{231} = 0.4675$$

#### 95% konfidensinterval

$$[p_{-}(x); p_{+}(x)] = \left[\frac{1}{n+u^{2}}\left[x + \frac{u^{2}}{2} - u\sqrt{\frac{x(n-x)}{n} + \frac{u^{2}}{4}}\right]; \frac{1}{n+u^{2}}\left[x + \frac{u^{2}}{2} + u\sqrt{\frac{x(n-x)}{n} + \frac{u^{2}}{4}}\right]\right]$$

- Hvor u = 1,96
- $p_{-}(x) = 0.4124$
- $p_+(x) = 0.5401$

#### Eksempel i Matlab

```
%% Eksempel 2 - Drenge- og pigefødsler
x = 108;
n = 231;
p0 = 1/2;
u = 1.96;
% Hypotesetest (approksimativ p-værdi)
z = (x-n*p0)/sqrt(n*p0*(1-p0))
pval = 2*(1-normcdf(abs(z)))
% Parameterskøn
p est = x/n
% 95% konfidensinterval
p nedre = 1/(n+u^2) * (x + u^2/2 - u*sqrt(x*(n-x)/n + u^2/4))
p oevre = 1/(n+u^2) * (x + u^2/2 + u*sqrt(x*(n-x)/n + u^2/4))
```

- Bruges til en beskrive en proces med forskellige ankomsttider.
  - Atomare henfald
  - Trafiksimulering (fx tilfældig ankomst af biler ved et lyskryds)
- Model
  - Opdel tidsaksen i N intervaller af længde  $\Delta t$ .
  - I hvert interval er der  $B_i = 1$  eller  $B_i = 0$  ankomster, hvor



 Hvad er sandsynligheden for at observere X = x ankomster i tidsintervallet [1; N]?

$$X = \sum_{i=1}^{n} B_i \sim binomial(N, \lambda \cdot \Delta t)$$

$$Pr(X = x) = {N \choose x} (\lambda \cdot \Delta t)^{x} (1 - \lambda \cdot \Delta t)^{N-x}$$



Observation

$$N \cdot (\lambda \cdot \Delta t) = konstant = \frac{t}{\Delta t} \cdot (\lambda \cdot \Delta t) = t \cdot \lambda = \gamma$$

• I grænsen  $\Delta t \rightarrow 0$ , kan man vise, at

$$Pr(X = x) = \frac{(\lambda \cdot t)^x}{x!} e^{-\lambda \cdot t} = \frac{\gamma^x}{x!} e^{-\gamma}$$



# Effekt af $\gamma$



Notation

$$X \sim poisson(t \cdot \lambda)$$
  
 $X \sim poisson(\gamma)$ 

Middelværdi

$$E[X] = \gamma = t \cdot \lambda$$

Varians

$$Var(X) = \gamma = t \cdot \lambda$$

• Der gælder også, at hvis  $X_1 \sim poisson(\gamma_1)$  og  $X_2 \sim poisson(\gamma_2)$  og uafhængige, så er  $X_1 + X_2 \sim poisson(\gamma_1 + \gamma_2)$ 

# Uddybning af poissonfordelingen

Tæthedsfunktion

$$f(x) = \Pr(X = x) = \frac{(\lambda \cdot t)^x}{x!} e^{-\lambda \cdot t} = \frac{\gamma^x}{x!} e^{-\gamma}$$

Data

$$x = antal \ ankomster$$

Parameterskøn

$$\hat{\lambda} = \frac{x}{t}$$

Unbiased

$$E[\hat{\lambda}] = \lambda$$

# Uddybning af poissonfordelingen

Tæthedsfunktion

$$f(x) = \Pr(X = x) = \frac{(\lambda \cdot t)^x}{x!} e^{-\lambda \cdot t} = \frac{\gamma^x}{x!} e^{-\gamma}$$

Matlab

- Tæthedsfunktion: Pr(X = x) = poisspdf(x, gamma)

- Fordelingsfunktion:  $Pr(X \le x) = poisscdf(x, gamma)$ 

- En butik har 300 besøgende på 2 timer.
- Hvad er sandsynligheden for, at der kommer mere end 170 besøgende den næste time?
- Data: x = 300
- Parameterskøn:  $\hat{\lambda} = \frac{300}{2} = 150$  besøgende/time
- Beregn Pr(X > 170) for t = 1 time

$$\Pr(X > 170) = 1 - \Pr(X \le 170) = 1 - \sum_{k=0}^{170} \frac{(\hat{\lambda} \cdot t)^k}{k!} e^{-\hat{\lambda} \cdot t}$$

Matlab

1-poisscdf (170, 150) 
$$\approx 5\%$$

Bemærk: Her er t=1, hvilket medfører, at  $\lambda = \gamma$ .

#### Standardisering af poissonfordelte data

Hvis

$$X \sim poisson(\gamma = \lambda \cdot t)$$

og  $\gamma = \lambda \cdot t > 5$ , så er X cirka normalfordelt.

- Standardiseret teststørrelse (z)
  - Træk middelværdien fra den observerede værdi (x = antal ankomster)
  - Og del med standardafvigelsen

$$z = \frac{x - t\lambda}{\sqrt{t \cdot \lambda}} = \frac{x - \gamma}{\sqrt{\gamma}} \sim N(0, 1)$$

Så er

$$\Pr(X \le x) = F_{poisson}(x) \approx \Phi(z)$$

# Testkatalog for poissonfordelingen

- Statistisk model
  - $X \sim poisson(\lambda \cdot t)$
  - Parameterskøn:  $\hat{\lambda} = \frac{x}{t}$
  - Hvor observationen er  $x = antal \ ankomster \ i \ tidsintervallet \ t$
- Hypotesetest
  - $H: \lambda = \lambda_0$
  - Teststørrelse:  $z = \frac{x t\lambda_0}{\sqrt{t \cdot \lambda_0}}$
  - Approksimativ p-værdi:  $pval = 2 \cdot |1 \Phi(|z|)|$
- Approksimativt 95% konfidensinterval

• 
$$[\lambda_{-}(x); \lambda_{+}(x)] = \left[\frac{1}{t}\left[x + \frac{u^{2}}{2} - u\sqrt{x + \frac{u^{2}}{4}}\right]; \frac{1}{t}\left[x + \frac{u^{2}}{2} + u\sqrt{x + \frac{u^{2}}{4}}\right]\right]$$

- Hvor u = 1.96
- Forudsætninger for approksimationen:  $t \cdot \lambda_0 > 5$ .

- Rutherford & Geiger
  - 2608 tællinger af radioaktive henfald
  - I tidsintervaller af 72 sekunders varighed

| Antal henfald              | 0  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----------------------------|----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|
| Antal tids-<br>intervaller | 57 | 203 | 383 | 525 | 532 | 408 | 273 | 139 | 45 | 27 | 10 | 4  | 0  | 1  | 1  |

Statistisk model

$$X_i \sim poisson(72 \cdot \lambda), for i = 0, 1, ..., 2608$$

$$X = \sum_{i=1}^{2608} X_i \sim poisson(2608 \cdot 72 \cdot \lambda)$$

#### Parameterskøn

• 
$$\hat{\lambda}(x) = \frac{x}{t} = \frac{\det totale \ antal \ henfald}{samlet \ tid} = \frac{11571}{187776} = 0.0616$$

#### 95% konfidensinterval

$$[\lambda_{-}(x); \lambda_{+}(x)] = \left[\frac{1}{t} \left[ x + \frac{u^{2}}{2} - u \sqrt{x + \frac{u^{2}}{4}} \right]; \frac{1}{t} \left[ x + \frac{u^{2}}{2} + u \sqrt{x + \frac{u^{2}}{4}} \right] \right]$$

- Hvor u = 1,96
- $\lambda_{-}(x) = 0.0605$
- $\lambda_{+}(x) = 0.0628$