

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

@ Adolfo Zavelani Rossi, Politecnico di Milano

D

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB}=$$
 $N_{BC}=$ $N_{CD}=$ $N_{EB}=$ $N_{FC}=$ $N_{BG}=$ $N_{CH}=$ $N_{EA}=$ $N_{EA}=$ $N_{EA}=$ $N_{EB}=$

$$N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

$$V_F =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b = -8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b + 3H_{BA}b = -8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db + 3H_{GB}b = -3Xb - 4Fb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

iviati	ice ui	equilib	110								
	$V_D b$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$\boldsymbol{H}_{BE}\boldsymbol{b}$	$\mathbf{H}_{\mathrm{CF}}\mathbf{b}$	$\boldsymbol{H}_{GB}\boldsymbol{b}$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	12	0	0	0	0	0	0		0	-8	
ϕ_{EF}	12	3	0	0	0	0	0		0	-8	
ϕ_{FG}	8	0	0	0	0	3	0		-3	-4	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0		0	0]	

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{BE} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -2/3 \\ 0 & 0 \\ -1 & 4/9 \\ 0 & 4/9 \\ 0 & 0 \\ -1 & 8/9 \\ 0 & 8/9 \end{bmatrix}$$

 $N_{BG} = -5/18F$

 $N_{AB} = 0$

$$H_A = 0$$
 $V_A = -1/3F$ $V_D = -2/3F$

$$N_{AB} = 0$$
 $N_{BC} = 2/3F$ $N_{CD} = 0$ $N_{EB} = 5/9F$ $N_{FC} = 5/18F$

$$N_{CH} = 10/9F$$
 $N_{EF} = -4/9F$ $N_{FG} = -2/3F$ $N_{GH} = -8/9F$ $N_{EA} = -1/3F$ $N_{FB} = -1/6F$

$$N_{CG} = 1/6F$$
 $N_{DH} = -2/3F$

SPOSTAMENTI ASSOLUTI

 $u_F = 107/27(Fb/EA)$

 $v_F = 2233/162(Fb/EA)$

⊢ 40 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo C

Calcolare lo spostamento verticale del nodo C

@ Adolfo Zavelani Rossi, Politecnico di Milano

$$H_A = V_A = V_D =$$

 $N_{AB} =$ $N_{BC} =$ $N_{CD} =$

 $N_{EB} =$ $N_{FC} =$

 $N_{GH} =$

 $N_{CH} =$

 $N_{FG} =$

 $N_{FB} =$

 $N_{CG} =$

 $N_{DH} =$

SPOSTAMENTI ASSOLUTI

$$u_c =$$

$$v_c =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b = -4Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b + 3H_{BA}b = -4Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db + 3H_{GB}b = -3Xb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

Matrice di equilibrio											
	$[V_D b]$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$\boldsymbol{H}_{BE}\boldsymbol{b}$	$\mathbf{H}_{\mathrm{CF}}\mathbf{b}$	$\boldsymbol{H}_{GB}\boldsymbol{b}$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	12	0	0	0	0	0	0		0	-4	
ϕ_{EF}	12	3	0	0	0	0	0		0	-4	
ϕ_{FG}	8	0	0	0	0	3	0		-3	0	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0		0	0]	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{GB} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -1/3 \\ 0 & 0 \\ -1 & 8/9 \\ 0 & 8/9 \\ 0 & 0 \\ -1 & 4/9 \\ 0 & 4/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -2/3F$ $V_D = -1/3F$

 $N_{AB} = 0$ $N_{BC} = 3/4F$

 $N_{CD} = 0$ $N_{EB} = 10/9F$

 $N_{FC} = -55/144F$

 $N_{BG} = 25/144F$ $N_{CH} = 5/9F$ $N_{EF} = -8/9F$

 $N_{FG} = -7/12F$

 $N_{GH} = -4/9F$

 $N_{EA} = -2/3F$ $N_{FB} = -37/48F$

 $N_{CG} = -5/48F$

 $N_{DH} = -1/3F$

SPOSTAMENTI ASSOLUTI

 $u_C = 3(Fb/EA)$

 $v_{c} = 2233/162(Fb/EA)$

⊢ 50 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo B

Calcolare lo spostamento verticale del nodo B @ Adolfo Zavelani Rossi, Politecnico di Milano (±)

$$H_A = V_A = V_D =$$

 $N_{AB} =$ $N_{BC} =$ $N_{CD} =$

 $N_{EB} =$

 $N_{CH} =$

 $N_{FG} =$ $N_{GH} =$

 $N_{FC} =$

 $N_{FB} =$

 $N_{CG} =$

 $N_{DH} =$

SPOSTAMENTI ASSOLUTI

$$u_B =$$

 $V_B =$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b = -8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b + 3H_{BA}b = -8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db + 3H_{GB}b = -3Xb - 4Fb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

	$[V_D b]$	H _{BA} b	$H_{DC}b$	$H_{BE}b$	$H_{CF}b$	$H_{GB}b$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	12	0	0	0	0	0	0		0	-8	
ϕ_{EF}	12	3	0	0	0	0	0		0	-8	
ϕ_{FG}	8	0	0	0	0	3	0		-3	-4	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0]		0	0]	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{GB} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -2/3 \\ 0 & 0 \\ -1 & 4/9 \\ 0 & 0 \\ -1 & 8/9 \\ 0 & 8/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -1/3F$ $V_D = -2/3F$

 $N_{AB} = 0$ $N_{BC} = 3/4F$ $N_{CD} = 0$ $N_{EB} = 5/9F$

 $N_{FC} = 25/144F$

 $N_{BG} = -55/144F$ $N_{CH} = 10/9F$ $N_{EF} = -4/9F$ $N_{FG} = -7/12F$

 $N_{GH} = -8/9F$

 $N_{EA} = -1/3F$ $N_{FB} = -5/48F$

 $N_{CG} = -37/48F$

 $N_{DH} = -2/3F$

SPOSTAMENTI ASSOLUTI

 $V_B = 2233/162(Fb/EA)$

⊢ 50 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo G

Calcolare lo spostamento verticale del nodo G

@ Adolfo Zavelani Rossi, Politecnico di Milano

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EB} = N_{FC} = N_{BG} =$$

$$N_{\text{CH}} =$$
 $N_{\text{EF}} =$ $N_{\text{FG}} =$ $N_{\text{GH}} =$ $N_{\text{EA}} =$ $N_{\text{FB}} =$

$$N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

$$V_G =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $-12V_Db = 4Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b + 3H_{BA}b = 4Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $-8V_{D}b + 3H_{GB}b = -3Xb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $-4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$\boldsymbol{H}_{BE}\boldsymbol{b}$	$\mathbf{H}_{\mathrm{CF}}\mathbf{b}$	$\boldsymbol{H}_{GB}\boldsymbol{b}$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	-12	0	0	0	0	0	0		0	4	
ϕ_{EF}	-12	3	0	0	0	0	0		0	4	
ϕ_{FG}	-8	0	0	0	0	3	0		-3	0	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	-4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0		0	0]	

Soluzione del sistema

$$\begin{bmatrix} X_D & F_D \\ H_{BA} & & & \\ H_{BE} & & & \\ H_{DE} & & & \\ H_{DC} & & & \\ H_{CF} & & & \\ H_{HC} & & & \\ \end{bmatrix} = \begin{bmatrix} X_D & F_D \\ 0 & -1/3 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & 0 & -8/9 \\ 0 & 0 \\ -1 & -4/9 \\ 0 & -4/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -2/3F$ $V_D = -1/3F$

$$N_{AB} = 0$$
 $N_{BC} = 2/3F$ $N_{CD} = 0$ $N_{EB} = 10/9F$ $N_{FC} = -5/18F$ $N_{BG} = 5/18F$

$$N_{CH} = 5/9F$$
 $N_{EF} = -8/9F$ $N_{FG} = -2/3F$ $N_{GH} = -4/9F$ $N_{EA} = -2/3F$ $N_{FB} = 1/6F$

$$N_{CG} = -1/6F$$
 $N_{DH} = -1/3F$

SPOSTAMENTI ASSOLUTI

 $u_{G} = 35/27(Fb/EA)$

 $v_G = 2233/162(Fb/EA)$

⊢ 40 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F @ Adolfo Zavelani Rossi, Politecnico di Milano (H)

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EB} = N_{FC} = N_{BG} =$$

$$N_{\text{CH}} =$$
 $N_{\text{EF}} =$ $N_{\text{FG}} =$ $N_{\text{GH}} =$ $N_{\text{EA}} =$ $N_{\text{FB}} =$

$$N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

$$v_F =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b = 8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b + 3H_{BA}b = 8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $-8V_{D}b + 3H_{GB}b = -3Xb + 4Fb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $-4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

iviati	Matrice di equilibrio										
	$V_D b$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$\boldsymbol{H}_{BE}\boldsymbol{b}$	$\mathbf{H}_{\mathrm{CF}}\mathbf{b}$	$\boldsymbol{H}_{GB}\boldsymbol{b}$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	-12	0	0	0	0	0	0		0	8	
ϕ_{EF}	-12	3	0	0	0	0	0		0	8	
ϕ_{FG}	-8	0	0	0	0	3	0		-3	4	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	-4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0		0	0]	

Soluzione del sistema

$$\begin{bmatrix} X_D & F_D \\ H_{BA} & 0 \\ H_{GB} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2/3 \\ 0 & 0 \\ -1 & -4/9 \\ 0 & -4/9 \\ 0 & 0 \\ H_{CF} & 0 \\ H_{HC} & 0 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -1/3F$ $V_D = -2/3F$

$$N_{CH} = 10/9F$$
 $N_{EF} = -4/9F$ $N_{FG} = -2/3F$ $N_{GH} = -8/9F$ $N_{EA} = -1/3F$ $N_{FB} = -1/6F$

 $N_{CD} = 0$ $N_{EB} = 5/9F$ $N_{FC} = 5/18F$ $N_{BG} = -5/18F$

$$N_{CG} = 1/6F$$
 $N_{DH} = -2/3F$

 $N_{AB} = 0$ $N_{BC} = 2/3F$

SPOSTAMENTI ASSOLUTI

 $u_F = -107/27(Fb/EA)$

 $v_F = 2233/162(Fb/EA)$

⊢ 40 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo C

Calcolare lo spostamento verticale del nodo C

@ Adolfo Zavelani Rossi, Politecnico di Milano

G

REAZIONI

$$H_A = V_A = V_D =$$

 $N_{AB} =$ $N_{BC} =$ $N_{CD} =$

 $N_{EB} =$ $N_{FC} =$

 $N_{GH} =$

 $N_{CH} =$

 $N_{CG} =$

 $N_{FG} =$

 $N_{DH} =$

 $N_{FB} =$ SPOSTAMENTI ASSOLUTI

 $V_C =$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b = 4Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b + 3H_{BA}b = 4Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $-8V_{D}b + 3H_{GB}b = -3Xb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $-4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

	$V_{D}b$	$H_{BA}b$	$H_{DC}b$	$H_{BE}b$	$H_{CF}b$	$H_{GB}b$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	-12	0	0	0	0	0	0]		0	4	
ϕ_{EF}	-12	3	0	0	0	0	0		0	4	
ϕ_{FG}	-8	0	0	0	0	3	0		-3	0	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	-4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	0	0	3	0	0	0	0]		0	0]	

@ Adolfo Zavelani Rossi, Politecnico di Milano

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{BE} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -1/3 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & -8/9 \\ 0 & 0 \\ -1 & -4/9 \\ 0 & -4/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -2/3F$ $V_D = -1/3F$

 $N_{AB} = 0$ $N_{BC} = 3/4F$

 $N_{CD} = 0$ $N_{EB} = 10/9F$

 $N_{FC} = -55/144F$

 $N_{BG} = 25/144F$ $N_{CH} = 5/9F$ $N_{EF} = -8/9F$

 $N_{FG} = -7/12F$

 $N_{GH} = -4/9F$

 $N_{EA} = -2/3F$ $N_{FB} = -37/48F$

 $N_{CG} = -5/48F$

 $N_{DH} = -1/3F$

SPOSTAMENTI ASSOLUTI

 $u_C = -3(Fb/EA)$

 $v_{c} = 2233/162(Fb/EA)$

⊢ 50 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo B

Calcolare lo spostamento verticale del nodo B @ Adolfo Zavelani Rossi, Politecnico di Milano (±)

@ Adolfo Zavelani Rossi, Politecnico di Milano

G

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} =$$

$$N_{BC} = N_{CD} = N_{EB} = N_{FC} = N_{CH} = N$$

$$N_{EA} = N_{FB} = N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

$$V_B =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b = 8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $-12V_{D}b + 3H_{BA}b = 8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $-8V_{D}b + 3H_{GB}b = -3Xb + 4Fb$

Rotazione intorno a F: aste FB BC BG

 $3H_{BA}b + 3H_{BE}b - 3H_{GB}b = 3Xb$

Rotazione intorno a G: aste GH HD

 $-4V_{D}b + 3H_{DC}b + 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $-3H_{DC}b + 3H_{CF}b - 3H_{HC}b = -3Xb$ Rotazione intorno a H: aste HD

 $3H_{DC}b = 0$

Matrice di equilibrio

	$V_{D}b$	$H_{BA}b$	$H_{DC}b$	$H_{BE}b$	$H_{CF}b$	$H_{GB}b$	$H_{HC}b$		[Xb	Fb]	
ϕ_{AE}	-12	0	0	0	0	0	0]		0	8	
ϕ_{EF}	-12	3	0	0	0	0	0		0	8	
ϕ_{FG}	-8	0	0	0	0	3	0		-3	4	
ϕ_{FB}	0	3	0	3	0	-3	0	=	3	0	
ϕ_{GH}	-4	0	3	0	0	0	3		0	0	
ϕ_{GC}	0	0	-3	0	3	0	-3		-3	0	
ϕ_{HD}	[o	0	3	0	0	0	0		0	0]	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{BE} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -2/3 \\ 0 & 0 \\ -1 & -4/9 \\ 0 & -4/9 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & -8/9 \end{bmatrix}$$

5/48F

$$H_A = 0$$
 $V_A = -1/3F$ $V_D = -2/3F$

 $N_{AB} = 0$ $N_{BC} = 3/4F$ $N_{CD} = 0$ $N_{EB} = 5/9F$

 $N_{FC} = 25/144F$

 $N_{BG} = -55/144F$ $N_{CH} = 10/9F$ $N_{EF} = -4/9F$ $N_{FG} = -7/12F$

 $N_{GH} = -8/9F$

 $N_{EA} = -1/3F$ $N_{FB} = -5/48F$

 $N_{CG} = -37/48F$

 $N_{DH} = -2/3F$

SPOSTAMENTI ASSOLUTI

 $u_{R} = 0$

 $V_B = 2233/162(Fb/EA)$

⊢ 50 Fb/EA

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo G

Calcolare lo spostamento verticale del nodo G

@ Adolfo Zavelani Rossi, Politecnico di Milano

D

 $N_{BG} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} =$$

$$N_{\text{CH}} = \qquad \qquad N_{\text{FF}} = \qquad \qquad N_{\text{FG}} = \qquad \qquad N_{\text{GH}} = \qquad \qquad N_{\text{FA}} = \qquad \qquad N_{\text{FB}} = \qquad N_$$

 $N_{EB} =$

 $N_{FC} =$

$$N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b = -8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b - 3H_{BA}b = -8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db - 3H_{GB}b = 3Xb$

Rotazione intorno a F: aste FB BC BG

 $-3H_{BA}b - 3H_{BE}b + 3H_{GB}b = -3Xb$

Rotazione intorno a G: aste GH HD

 $4V_{D}b - 3H_{DC}b - 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $3H_{DC}b - 3H_{CF}b + 3H_{HC}b = 3Xb$ Rotazione intorno a H: aste HD

 $-3H_{DC}b = 0$

Matrice di equilibrio

	manes a squiens											
	$[V_D b]$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$\boldsymbol{H}_{BE}\boldsymbol{b}$	$H_{CF}b$	$\boldsymbol{H}_{GB}\boldsymbol{b}$	$H_{HC}b$		[Xb	Fb]		
ϕ_{AE}	12	0	0	0	0	0	0		0	-8		
ϕ_{EF}	12	-3	0	0	0	0	0		0	-8		
ϕ_{FG}	8	0	0	0	0	-3	0		3	0		
ϕ_{FB}	0	-3	0	-3	0	3	0	=	-3	0		
ϕ_{GH}	4	0	-3	0	0	0	-3		0	0		
ϕ_{GC}	0	0	3	0	-3	0	3		3	0		
ϕ_{HD}	0	0	-3	0	0	0	0		0	0		

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{GB} b \\ H_{DC} b \\ H_{CF} b \\ H_{HC} b \end{bmatrix} = \begin{bmatrix} Xb & Fb \\ 0 & -2/3 \\ 0 & 0 \\ -1 & -16/9 \\ 0 & -16/9 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & -8/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -4/3F$ $V_D = -2/3F$

$$N_{AB} = 0$$
 $N_{BC} = -4/3F$ $N_{CD} = 0$ $N_{EB} = -20/9F$ $N_{FC} = 5/9F$ $N_{BG} = -5/9F$

$$N_{CH} = -10/9F$$
 $N_{EF} = 16/9F$ $N_{FG} = 4/3F$ $N_{GH} = 8/9F$ $N_{EA} = 4/3F$ $N_{FB} = -1/3F$

$$N_{CG} = 1/3F$$
 $N_{DH} = 2/3F$

SPOSTAMENTI ASSOLUTI

 $u_{G} = 70/27(Fb/EA)$

 $v_G = 2233/81(Fb/EA)$

⊢ 80 Fb/EA

 $\leftarrow \bot \rightarrow$

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F @ Adolfo Zavelani Rossi, Politecnico di Milano (±)

@ Adolfo Zavelani Rossi, Politecnico di Milano

D

 $N_{BG} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EB} = N_{FC} =$$

$$N_{\text{CH}} = \qquad \qquad N_{\text{FF}} = \qquad \qquad N_{\text{FG}} = \qquad \qquad N_{\text{EA}} = \qquad \qquad N_{\text{FB}} = \qquad N_{\text{FB}} = \qquad \qquad N_{\text{FB}} = \qquad N_{\text{FB}}$$

$$N_{CG} = N_{DH} =$$

SPOSTAMENTI ASSOLUTI

$$v_F =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b = -16Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b - 3H_{BA}b = -16Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db - 3H_{GB}b = 3Xb - 8Fb$

Rotazione intorno a F: aste FB BC BG

 $-3H_{BA}b - 3H_{BE}b + 3H_{GB}b = -3Xb$

Rotazione intorno a G: aste GH HD

 $4V_{D}b - 3H_{DC}b - 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $3H_{DC}b - 3H_{CF}b + 3H_{HC}b = 3Xb$ Rotazione intorno a H: aste HD

 $-3H_{DC}b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$\boldsymbol{H}_{DC}\boldsymbol{b}$	$H_{\text{BE}}b$	$\mathbf{H}_{\mathrm{CF}}\mathbf{b}$	H_GBb	$H^{HC}p$		[Xb	Fb]	
ϕ_{AE}	12	0	0	0	0	0	0		0	-16	
ϕ_{EF}	12	-3	0	0	0	0	0		0	-16	
ϕ_{FG}	8	0	0	0	0	-3	0		3	-8	
ϕ_{FB}	0	-3	0	-3	0	3	0	=	-3	0	
ϕ_{GH}	4	0	-3	0	0	0	-3		0	0	
ϕ_{GC}	0	0	3	0	-3	0	3		3	0	
ϕ_{HD}	0	0	-3	0	0	0	0		0	0	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{GB} b \\ H_{DC} b \\ \end{bmatrix} = \begin{bmatrix} 0 & -4/3 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & -8/9 \\ 0 & 0 \\ 0 & 0 \\ 0 & -16/9 \end{bmatrix}$$

050

$$H_A = 0$$
 $V_A = -2/3F$ $V_D = -4/3F$

$$N_{AB} = 0$$
 $N_{BC} = -4/3F$ $N_{CD} = 0$ $N_{EB} = -10/9F$ $N_{FC} = -5/9F$ $N_{BG} = 5/9F$

$$N_{CH} = -20/9F$$
 $N_{EF} = 8/9F$ $N_{FG} = 4/3F$ $N_{GH} = 16/9F$ $N_{EA} = 2/3F$ $N_{FB} = 1/3F$

$$N_{CG} = -1/3F$$
 $N_{DH} = 4/3F$

SPOSTAMENTI ASSOLUTI

 $u_F = -214/27(Fb/EA)$

 $v_F = 2233/81(Fb/EA)$

⊢ 80 Fb/EA

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Calcolare lo spostamento orizzont. del nodo C

Calcolare lo spostamento verticale del nodo C @ Adolfo Zavelani Rossi, Politecnico di Milano

 $N_{BG} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} =$$

$$N_{BC} = N_{CD} =$$

$$N_{CH} =$$
 $N_{EF} =$ $N_{FG} =$ $N_{GH} =$ $N_{EA} =$ $N_{FB} =$

 $N_{EB} =$

 $N_{FC} =$

$$N_{CG} = N_{DH} =$$

$$u_C = v_C =$$

Rotazione intorno a A: aste AE EB EF FC FG FB BC BG GH GC CD CH HD

 $12V_Db = -8Fb$

Rotazione intorno a E: aste EF FC FG FB BC BG GH GC CD CH HD

 $12V_{D}b - 3H_{BA}b = -8Fb$

Rotazione intorno a F: aste FG GH GC CD CH HD

 $8V_Db - 3H_{GB}b = 3Xb$

Rotazione intorno a F: aste FB BC BG

 $-3H_{BA}b -3H_{BE}b +3H_{GB}b = -3Xb$

Rotazione intorno a G: aste GH HD

 $4V_Db - 3H_{DC}b - 3H_{HC}b = 0$

Rotazione intorno a G: aste GC CD CH

 $3H_{DC}b - 3H_{CF}b + 3H_{HC}b = 3Xb$ Rotazione intorno a H: aste HD

 $-3H_{DC}b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$H_{DC}b$	$H_{BE}b$	$H_{CF}b$	$H_{GB}b$	H _{HC} b]		[Xb	Fb]	
ϕ_{AE}	12	0	0	0	0	0	0		0	-8	
ϕ_{EF}	12	-3	0	0	0	0	0		0	-8	
ϕ_{FG}	8	0	0	0	0	-3	0		3	0	
ϕ_{FB}	0	-3	0	-3	0	3	0	=	-3	0	
ϕ_{GH}	4	0	-3	0	0	0	-3		0	0	
ϕ_{GC}	0	0	3	0	-3	0	3		3	0	
ϕ_{HD}	0	0	-3	0	0	0	0		0	0]	

$$\begin{bmatrix} X_{b} & F_{b} \\ H_{BA}b \\ H_{GB}b \\ H_{BC}b \\ H_{DC}b \\ H_{CF}b \\ H_{HC}b \end{bmatrix} = \begin{bmatrix} X_{b} & F_{b} \\ 0 & -2/3 \\ 0 & 0 \\ -1 & -16/9 \\ 0 & -16/9 \\ 0 & 0 \\ -1 & -8/9 \\ 0 & -8/9 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -4/3F$ $V_D = -2/3F$

$$N_{AB} = 0$$
 $N_{BC} = -3/2F$ $N_{CD} = 0$ $N_{EB} = -20/9F$ $N_{FC} = 55/72F$ $N_{BG} = -25/72F$

$$N_{CH} = -10/9F$$
 $N_{EF} = 16/9F$ $N_{FG} = 7/6F$ $N_{GH} = 8/9F$ $N_{EA} = 4/3F$ $N_{FB} = 37/24F$

 $N_{CG} = 5/24F$ $N_{DH} = 2/3F$

SPOSTAMENTI ASSOLUTI

 $u_C = -6(Fb/EA)$

 $v_{c} = 2233/81(Fb/EA)$

----- 100 Fb/EA

