Aufgabe 1

Für ein Zufallsexperiment werden eine Münze und zwei Tetraeder (vierseitige Pyramide) genutzt. Beide Tetraeder sind auf allen vier Seiten mit jeweils einer Zahl beschriftet, Tetraeder A mit 1, 2, 3, 4; Tetraeder B mit 1, 1, 2, und 3. Die Münze ist auf einer Seite mit einem Minus "□", auf der anderen Seite mit einem Plus "+" beschriftet.

Zunächst wird die Münze geworfen. Zeigt die Münze "+", so wird anschließend Tetraeder A einmal geworfen, zeigt sie "-", so wird Tetraeder B einmal geworfen. Die geworfene Zahl wird mit dem Vorzeichen notiert.

1.1 Stellen Sie das Zufallsexperiment in einem beschrifteten Baumdiagramm dar.

3 BE

1.2 Berechnen Sie die Wahrscheinlichkeit dafür, dass die gewürfelte Zahl ungerade oder kleiner als 3 ist.

2 BE

Teil- auf- gab e	BE
3.1	3
3.2	2

Leitideen						
L1 L2 L3 L4 L5						
				Х		
				Χ		

al	allgemeine mathematische Kompetenzen							
K1	K2	K5	K6					
		I	I					
	II	П		I				
	•							

Anforderungs- bereich					
_	Ш				
3					
1	1				

Aufgabe 2

Für zweistufiges Zufallsexperiment werden eine Münze und ein Würfel verwendet.

Die Münze ist auf einer Seite mit 1, auf der anderen mit 2 beschriftet. Der Würfel ist mit 1, 1, 2, 2, 3 und 4 beschriftet.

Zunächst wird die Münze einmal geworfen. Anschließend wird der Würfel einmal geworfen. Das Ergebnis des Zufallsversuchs ist eine zweistellige Zahl.

a) Stellen Sie das Zufallsexperiment in einem beschrifteten Baumdiagramm dar.

3 BE

b) Berechnen Sie die Wahrscheinlichkeit dafür, eine Primzahl zu erhalten.

2 BE

1.1	3	
1.2	2	

Teil- auf- gabe	BE
1.1	3
1.2	2

Leitideen								
L1 L2 L3 L4 L5								
				Х				
				Х				

allgemeine mathematische Kompetenzen						
K1	K2	К3	K4	K5	K6	
		I	I		I	
	Ш	Ш		I		

Anforderungs- bereich					
I	II	Ш			
3					
	2				

Aufgabe 3:

In einer Urne befinden sich blaue und gelbe Kugeln. Es wird einmal verdeckt gezogen. Es befinden sich 6 gelbe Kugeln in der Urne.

Dabei gilt: Ereignis B: eine blaue Kugel wird gezogen, P(B) = 0.7.

- a) Bestimmen Sie die Anzahl der blauen Kugeln.
- b) In einer Urne befinden sich blaue und gelbe Kugeln. Es wird zweimal verdeckt mit Zurücklegen gezogen. Es befinden sich 5 gelbe Kugeln in der Urne.

Dabei gilt: $Ereignis\ B$: $mindestens\ eine\ blaue\ Kugel\ wird\ gezogen, <math>P(B)=0.75$. Um die Anzahl der Kugeln in der Urne zu bestimmen, wurde folgender Rechenweg angegeben. Interpretieren Sie die einzelnen Lösungsschritte.

(1):
$$P(G) = 1 - 0.75 = 0.25$$

$$(2): \frac{5}{n} \cdot \frac{5}{n} = 0.25$$

(3):
$$\frac{n}{n^2} = 0.25 \rightarrow n = 10$$
 In der Urne befinden sich 10 Kugeln.

а	Ereignis G: eine gelbe Kugel wird gezogen \Rightarrow P(G) = 1 - P(B) = 0,3 = $\frac{6}{n}$ \Rightarrow n = 20 b: Anzahl der blauen Kugeln \Rightarrow b = n - 6 = 14	1 1
b	 (1): Die Wahrscheinlichkeit, dass zweimal Gelb gezogen wird, ist die Gegenwahrscheinlichkeit zu P(B) (2): Bei 5 gelben Kugeln und zweimal Ziehen mit Zurücklegen wird hier der Term nach Pfadregel für zweimal Ziehen einer gelben Kugel angegeben (3): Der Term wird umgeformt um die Gesamtzahl der Kugeln zu berechnen 	1 1 1

Teil- auf- gabe	BE
1.1	2
1.2	3

	Leitideen						
L1	L2	L3	L4	L5			
Х				Х			
				Х			

al	allgemeine mathematische Kompetenzen					
K1	K2	К3	K4	K5	K6	
	Ш	I		1-11		
					Ш	

	Anforderungs- bereich			
ı	II	III		
1	1			
1	2			

Aufgabe 4:

In den Urnen U_1 und U_2 befinden sich Kugeln, die sich nur in ihrer Farbe unterscheiden:

U₁: 6 rote und 4 blaue Kugeln

U2: 1 rote und 4 blaue Kugeln

4.1 Aus der Urne $\,U_1\,$ werden zwei Kugeln nacheinander ohne Zurücklegen zufällig gezogen.

Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden gezogenen Kugeln die gleiche Farbe haben.

2 BE

4.2 Es wird eine der beiden Urnen zufällig ausgewählt. Aus dieser wird eine Kugel zufällig gezogen. Die gezogene Kugel ist rot.

Bestimmen Sie die Wahrscheinlichkeit dafür, dass diese Kugel aus der Urne U₁ stammt.

3 BE

4.	Ansatz für Wahrscheinlichkeit: $P(E_1) = \frac{6}{10} \cdot \frac{5}{9} + \frac{4}{10} \cdot \frac{3}{9}$; Wahrscheinlichkeit: $\frac{7}{15}$	2
4.2	Ansatz für Wahrscheinlichkeit z. B.: Baumdiagramm 1 6	3
	Term für Wahrscheinlichkeit: $P(E_2) = P(U_1 r) = \frac{\frac{1}{2} \cdot \frac{3}{10}}{\frac{1}{2} \cdot \frac{6}{10} + \frac{1}{2} \cdot \frac{1}{5}}$ Wkt: 3/4	

Aufgabe 5:

Ein Glücksrad ist in einen blauen, einen gelben und in einen roten Sektor unterteilt. Beim Drehen des Glücksrades tritt "Blau" mit der Wahrscheinlichkeit p und "Rot" mit der Wahrscheinlichkeit $2 \cdot p$ ein.

5.1 Geben Sie an, welche Werte für *p* bei diesem Glücksrad möglich sind.

2 BE

5.2 Das Glücksrad wird zweimal gedreht.

Betrachtet wird das Ereignis E: Es tritt mindestens einmal "Rot" ein.

Zeigen Sie, dass das Ereignis E mit der Wahrscheinlichkeit $P(E) = 4 \cdot p - 4 \cdot p^2$ eintritt.

3 BE

5.1	0	2
5.2	$P(E) = 1 - (1 - 2 \cdot p)^2 = 4 \cdot p - 4 \cdot p^2$	3

Aufgabe 6:

In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

6.1 Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

2 BE

6.2 Betrachtet wird das Ereignis E: Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A.

Untersuchen Sie, ob das Ereignis E eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

3 BE

6.1	rrwww, rrrww, rwwww	2
6.2	$P(E) = P(ww) + P(rr) = \frac{3}{10} + \frac{4}{15} = \frac{17}{30}$ E ist wahrscheinlicher als sein Gegenereignis, da $P(\overline{E}) = 1 - \frac{17}{30} = \frac{13}{30}$.	3