HOMEWORK 1

MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham18, Ch. 1, $\S1.1$]:

• Chapter 2 Section 2.9, Exercises: 2, 3, 4, 5. Section 2.10, Exercises: 2, 4, 10. Section 4, Exercises: 1, 2, 5, 7, 9.

CONTENTS

Chapter 2	1
Ch.2, §2.9, Exercise 2, 3, 4, 5	1
Ch.2, §2.10, Exercise 2, 4, 10	2
Ch.4, §4, Exercise 1	3
Ch.4, §4, Exercise 3	3
Ch.4, §4, Exercise 5	3
Ch.4, §4, Exercise 7	4
References	5

CHAPTER 2

Ch.2, §2.9, Exercise 2, 3, 4, 5. Translate each of the following sentences into symbolic logic.

Date: February 28, 2020.

- 2. The number x is positive but the number y is not positive.
- 3. If x is prime, then \sqrt{x} is not a rational number.
- 4. For every prime number p there is another prime number q with q ¿ p.
- 5. For every positive number ε , there is a positive number δ for which $|x a| < \delta$ implies $|f(x) f(a)| < \varepsilon$.

Solution to Ch.2, §2.9, Exercise 2, 3, 4, 5.

- 2. (x is positive) \land (y is not positive)
- 3. (x is prime) \implies (\sqrt{x} is not prime)
- 4. $\exists q$ ∈ primes, $(\forall p$ ∈ primes, q > p)

5.
$$\exists \delta, (\delta > 0) \land [\forall \varepsilon, ((\varepsilon > 0) \land (|x - \alpha| < \delta)) \implies (f(x) - f(a)| < \varepsilon]$$

Ch.2, §2.10, Exercise 2, 4, 10. Negate the following sentences.

- 2. If x is prime, then \sqrt{x} is not a rational number.
- 4. For every positive number ε , there is a positive number δ such that $|x a| < \delta$ implies $|f(x) f(a)| < \varepsilon$.
- 10. If f is a polynomial and its degree is greeter than 2, then f' is not constant.

Solution to Ch.2, §2.10, *Exercise* 2, 4, 10.

2. x is prime, \sqrt{x} is a rational number.

- 4. There is a positive number ε , such that for all positive number δ , $(|x a| < \delta) \land (|f(x) f(a)| \ge \varepsilon)$.
- 10. f is a polynomial and it s degree is greeter than 2, f' is constant.

Ch.4, §**4, Exercise 1.** Use the method of direct proof to prove the following statements: If x is an even integer, then x^2 is even.

Solution to Ch.4, §4, *Exercise 1*.

Proposition If x is an even integer, then x^2 is even.

Proof. Suppose x is even. Then x = 2a for some $a \in \mathbb{Z}$, by definition of an even number. Thus $x^2 = 4a^2 = 2(2a^2)$, so $x^2 = 2b$ where $b = 2a^2 \in \mathbb{Z}$. Therefore x^2 is even, by definition of an even number.

Ch.4, §4, Exercise 3. Use the method of direct proof to prove the following statements: If a is an odd integer, then $a^2 + 3a + 5$ is odd.

Solution to Ch.1, §1.1, Exercise 30.

Proposition If *a* is an odd integer, then $a^2 + 3a + 5$ is odd.

Proof. Suppose a is odd. Then a=2b+1 for some $b\in\mathbb{Z}$, by definition of an odd number. Thus $a^2+3a+5=4b^2+10b+9=2(2b^2+5b+4)+1$, so $a^2+3a+5=2b+1$ where $b=(2b^2+5b+4)\in\mathbb{Z}$. Therefor a^2+3a+5 is odd, by definition of an odd number.

Ch.4, §**4, Exercise 5.** Use the method of direct proof to prove the following statements: Suppose $x, y \in \mathbb{Z}$. If x is even, then xy is even.

Solution to Ch.1, §1.1, *Exercise 38*.

Proposition Suppose $x, y \in \mathbb{Z}$. If x is even, then xy is even.

Proof. x is even. Then x = 2a for some $a \in \mathbb{Z}$, by definition of even numbers.

Case 1. Suppose y is odd. Then y = 2b + 1 for some $b \in \mathbb{Z}$, by definition of odd numbers. Thus x * y = 2a * (2b + 1) = 4ab + 2a =2(2ab + a), so x * y = 2c where $c = (2ab + a) \in \mathbb{Z}$. Therefor x * y is even, by definition of an even number.

Case 2. Suppose y is even. Then y = 2d for some $d \in \mathbb{Z}$, by definition of an even number. Thus x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 4ad = 2(2ad), so x * y = 2a * 2d = 2ad2e where $e = 2ad \in \mathbb{Z}$. Therefor x * y is even, by definition of an even number.

Because $y \in \mathbb{Z}$, y is either even or odd. In both cases, x * y is even.

Ch.4, §4, Exercise 7. Use the method of direct proof to prove the following statements: Suppose $a, b \in \mathbb{Z}$. If a|b, then $a^2|b^2$.

Solution to Ch.1, $\S 1.1$, Exercise 40.

Proposition Suppose $a, b \in \mathbb{Z}$. If a|b, then $a^2|b^2$.

Proof Suppose a|b where $a,b \in \mathbb{Z}$. Then a = b * c for some $c \in \mathbb{Z}$, by definition. Thus $a^2 = (b*c)^2 = b^2*c^2$, so $a^2 = b^2*d$ where $d = c^2 \in \mathbb{Z}$. There for $a^2 | b^2$, by definition.

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu