Foundation of Cryptography (0368-4162-01), Lecture 2

Pseudorandom Generators

Iftach Haitner, Tel Aviv University

Tel Aviv University.

February 25, 2014

Part I

Statistical Vs. Computational distance

Section 1

Distributions and Statistical Distance

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set U. Their statistical distance (also known as, variation distance) is defined as

$$SD(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{S \subseteq \mathcal{U}} (P(S) - Q(S))$$

We will only consider finite distributions.

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set U. Their statistical distance (also known as, variation distance) is defined as

$$SD(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{S \subseteq \mathcal{U}} (P(S) - Q(S))$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution P and Q, it holds that

$$SD(P,Q) = \max_{D} \{ \Pr_{x \leftarrow P}[D(x) = 1] - \Pr_{x \leftarrow Q}[D(x) = 1] \},$$

where D is any algorithm.

Some useful facts

Let P, Q, R be finite distributions, then

Triangle inequality:

$$SD(P,R) \leq SD(P,Q) + SD(Q,R)$$

Repeated sampling:

$$SD((P, P), (Q, Q)) \leq 2 \cdot SD(P, Q)$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists \ \mathsf{PPT} \ Samp$ with $\mathsf{Sam}(\mathsf{1}^n) \equiv P_n$.

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists \ \mathsf{PPT} \ Samp$ with $\mathsf{Sam}(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathbb{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = \text{neg}(n)$.

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists \ \mathsf{PPT} \ Samp$ with $\mathsf{Sam}(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathbb{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = \text{neg}(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P},\mathbb{Q})}^{\mathbb{D}}(n)\right| = \operatorname{neg}(n)$, for any algorithm \mathbb{D} , where

$$\Delta_{(\mathcal{P},\mathbb{Q})}^{D}(n) := \Pr_{x \leftarrow P_n}[D(1^n, x) = 1] - \Pr_{x \leftarrow Q_n}[D(1^n, x) = 1]$$
 (1)

Section 2

Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles $\mathcal P$ and $\mathbb Q$ are computationally indistinguishable, if $\left|\Delta_{(\mathcal P,\mathbb Q)}^{\mathbb D}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathbb{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P},\mathbb{Q})}^{\mathbb{D}}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

• Can it be different from the statistical case?

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathbb{Q} are computationally indistinguishable, if $\left|\Delta^{\mathbb{D}}_{(\mathcal{P},\mathbb{Q})}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant

Definition 4 (computational indistinguishability)

Two distribution ensembles $\mathcal P$ and $\mathbb Q$ are computationally indistinguishable, if $\left|\Delta_{(\mathcal P,\mathbb Q)}^{\mathbb D}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves differently then expected!

Question 5

Assume that \mathcal{P} and \mathbb{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathbb{Q}^2=(\mathbb{Q},\mathbb{Q})$ are?

Question 5

Assume that \mathcal{P} and \mathbb{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathbb{Q}^2=(\mathbb{Q},\mathbb{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n) \right|$

Question 5

Assume that \mathcal{P} and \mathbb{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathbb{Q}^2 = (\mathbb{Q}, \mathbb{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n) \right|$

$$\delta(n) = \left| \Pr_{x \leftarrow P_n^2} [D(x) = 1] - \Pr_{x \leftarrow Q_n^2} [D(x) = 1] \right|$$

$$\leq \left| \Pr_{x \leftarrow P_n^2} [D(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)} [D(x) = 1] \right|$$

$$+ \left| \Pr_{x \leftarrow (P_n, Q_n)} [D(x) = 1] - \Pr_{x \leftarrow Q_n^2} [D(x) = 1] \right|$$

Question 5

Assume that \mathcal{P} and \mathbb{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathbb{Q}^2 = (\mathbb{Q}, \mathbb{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n) \right|$

$$\begin{split} \delta(n) &= |\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]| \\ &\leq |\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)}[D(x) = 1]| \\ &+ |\Pr_{x \leftarrow (P_n, Q_n)}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]| \\ &= |\Delta_{(\mathcal{P}^2, (\mathcal{P}, \mathbb{Q})}^D(n)| + |\Delta_{((\mathcal{P}, \mathbb{Q}), \mathbb{Q}^2)}^D(n)| \end{split}$$

Question 5

Assume that \mathcal{P} and \mathbb{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathbb{Q}^2 = (\mathbb{Q}, \mathbb{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n) \right|$

$$\begin{split} \delta(n) &= |\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]| \\ &\leq |\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)}[D(x) = 1]| \\ &+ |\Pr_{x \leftarrow (P_n, Q_n)}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]| \\ &= |\Delta_{(\mathcal{P}^2, (\mathcal{P}, \mathbb{Q})}^D(n)| + |\Delta_{((\mathcal{P}, \mathbb{Q}), \mathbb{Q}^2)}^D(n)| \end{split}$$

So either $|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,(\mathcal{P},\mathbb{Q})}(n)| \geq \delta(n)/2$, or $|\Delta^{\mathbb{D}}_{((\mathcal{P},\mathbb{Q}),\mathbb{Q}^2)}(n)| \geq \delta(n)/2$

• Assume D is a PPT and that $\left|\Delta^{\mathrm{D}}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \mathsf{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{\mathrm{D}}_{\mathcal{P}^2,(\mathcal{P},\mathbb{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.

- Assume D is a PPT and that $\left|\Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \text{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{D}_{\mathcal{P}^2,(\mathcal{P},\mathbb{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that \mathcal{P} and \mathbb{Q} are computationally close?

- Assume D is a PPT and that $\left|\Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \text{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{D}_{\mathcal{P}^2,(\mathcal{P},\mathbb{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that P and Q are efficiently samplable

- Assume D is a PPT and that $\left|\Delta^{D}_{(\mathcal{P}^2,\mathbb{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \text{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{D}_{\mathcal{P}^2,(\mathcal{P},\mathbb{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that \mathcal{P} and \mathbb{Q} are efficiently samplable
- Non-uniform settings

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathbb{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathbb{Q}^t are?

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathbb{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathbb{Q}^t are?

Proof:

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathbb{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathbb{Q}^t are?

Proof:

Induction?

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathbb{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathbb{Q}^t are?

Proof:

- Induction?
- Hybrid

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^t, \mathbb{Q}^t)}(n) \right|$.

• Fix $n \in \mathbb{N}$, and for $i \in \{0, \dots, t = t(n)\}$, let $H^i = (p_1, \dots, p_i, q_{i+1}, \dots, q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta_{(\mathcal{P}^t, \mathbb{Q}^t)}^{D}(n) \right|$.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, \dots, t = t(n)\}$, let $H^i = (p_1, \dots, p_i, q_{i+1}, \dots, q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- Since $\delta(n) = \left| \Delta_{H^i, H^0}^{D}(t) \right| = \left| \sum_{i \in [t]} \Delta_{H^i, H^{i-1}}^{D}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{D}(t) \right| \ge \delta(n)/t(n)$.

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta_{(\mathcal{P}^t, \mathbb{Q}^t)}^{D}(n) \right|$.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, \dots, t = t(n)\}$, let $H^i = (p_1, \dots, p_i, q_{i+1}, \dots, q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- Since $\delta(n) = \left| \Delta^{\mathsf{D}}_{H^i, H^0}(t) \right| = \left| \sum_{i \in [t]} \Delta^{\mathsf{D}}_{H^i, H^{i-1}}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta^{\mathsf{D}}_{H^i, H^{i-1}}(t) \right| \ge \delta(n)/t(n)$.
- How do we use it?

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta^{\mathbb{D}}_{H^i, H^{i-1}}(t) \right| \geq \delta(n)/2t(n)$
- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$,.

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{\mathbb{D}}(t) \right| \geq \delta(n)/2t(n)$
- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$,.
- how do we find *i*? why $\delta(n)/2t(n)$

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{\mathbb{D}}(t) \right| \geq \delta(n)/2t(n)$
- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$,.
- how do we find *i*? why $\delta(n)/2t(n)$
- Easy in the non-uniform case

Using hybrid argument via sampling

Algorithm 8 (D')

- **○** Sample $i \leftarrow [t = t(n)]$
- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$.

Using hybrid argument via sampling

Algorithm 8 (D')

- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$.

$$\left|\Delta_{(\mathcal{P},\mathbb{Q})}^{\mathsf{D}'}(n)\right| = \left|\Pr_{p \leftarrow P_n}[\mathsf{D}'(p) = 1] - \Pr_{q \leftarrow Q_n}[\mathsf{D}'(q) = 1]\right|$$

Using hybrid argument via sampling

Algorithm 8 (D')

Input: 1^n and $x \in \{0, 1\}^*$

- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$.

$$\begin{vmatrix} \Delta_{(\mathcal{P},\mathbb{Q})}^{D'}(n) \end{vmatrix} = \begin{vmatrix} \Pr_{p \leftarrow P_n}[D'(p) = 1] - \Pr_{q \leftarrow Q_n}[D'(q) = 1] \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_i}[D(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_{i-1}}[D(x) = 1] \end{vmatrix}$$

Using hybrid argument via sampling

Algorithm 8 (D')

Input: 1^n and $x \in \{0, 1\}^*$

- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P}, \mathbb{Q})}^{D'}(n) \right| &= \left| \Pr_{p \leftarrow P_n} [D'(p) = 1] - \Pr_{q \leftarrow Q_n} [D'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_i} [D(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_{i-1}} [D(x) = 1] \right| \\ &= \left| \frac{1}{t} \left(\Pr_{x \leftarrow H_t} [D(x) = 1] - \Pr_{x \leftarrow H_0} [D(x) = 1] \right) \right| \end{aligned}$$

Using hybrid argument via sampling

Algorithm 8 (D')

Input: 1^n and $x \in \{0, 1\}^*$

- **2** Let $(p_1, ..., p_i, q_{i+1}, ..., q_t) \leftarrow H^i$
- **3** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P}, \mathbb{Q})}^{D'}(n) \right| &= \left| \Pr_{p \leftarrow P_n} [D'(p) = 1] - \Pr_{q \leftarrow Q_n} [D'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_i} [D(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_{i-1}} [D(x) = 1] \right| \\ &= \left| \frac{1}{t} \left(\Pr_{x \leftarrow H_t} [D(x) = 1] - \Pr_{x \leftarrow H_0} [D(x) = 1] \right) \right| \\ &= \delta(n) / t(n) \end{aligned}$$

Part II

Pseudorandom Generators

Definition 9 (pseudorandom distributions)

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)
- Do they have any use?

Section 3

Hardcore Predicates

Building blocks in constructions of PRGS from OWF

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPT P.

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPT P.

 Does the existence of a hardcore predicate for f, implies that f is one way?

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPT P.

 Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any PRG has HCP (homework).

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any PRG has HCP (homework).
- Fact: any OWF has a hardcore predicate (next class)

Section 4

PRGs from OWPs

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $\rho \in \text{poly}$ with

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/p(n)$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $\rho \in \text{poly}$ with

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/p(n)$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

• We assume wlg. that $\Pr[D(g(U_n)) = 1] - \Pr[D(U_{n+1}) = 1] \ge \varepsilon(n)$ for any $n \in \mathcal{I}$ (?), and fix $n \in \mathcal{I}$.

• Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\begin{array}{lcl} \delta & = & \Pr[\mathsf{D}(f(U_n), U_1) = 1] \\ & = & \Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = b(U_n)] \\ & + & \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}] \end{array}$$

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\begin{array}{lcl} \delta & = & \Pr[\mathsf{D}(f(U_n),U_1)=1] \\ & = & \Pr[U_1=b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=b(U_n)] \\ & + & \Pr[U_1=\overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}] \\ & = & \frac{1}{2}(\delta+\varepsilon) + \frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}]. \end{array}$$

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\begin{split} \delta &=& \text{Pr}[D(f(U_n),U_1)=1] \\ &=& \text{Pr}[U_1=b(U_n)] \cdot \text{Pr}[D(f(U_n),U_1)=1 \mid U_1=b(U_n)] \\ &+& \text{Pr}[U_1=\overline{b(U_n)}] \cdot \text{Pr}[D(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}] \\ &=& \frac{1}{2}(\delta+\varepsilon) + \frac{1}{2} \cdot \text{Pr}[D(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}]. \end{split}$$

Hence,

$$\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon$$
 (2)

- $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$

- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- 2 If D(y, c) = 1 output c, otherwise, output \overline{c} .

- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- 2 If D(y, c) = 1 output c, otherwise, output \overline{c} .
 - It follows that

$$Pr[P(f(U_n)) = b(U_n)]$$

$$= Pr[c = b(U_n)] \cdot Pr[D(f(U_n), c) = 1 \mid c = b(U_n)]$$

$$+ Pr[c = \overline{b(U_n)}] \cdot Pr[D(f(U_n), c) = 0 \mid c = \overline{b(U_n)}]$$

- $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- 2 If D(y, c) = 1 output c, otherwise, output \overline{c} .
 - It follows that

$$\begin{aligned} & \Pr[\mathsf{P}(f(U_n)) = b(U_n)] \\ &= & \Pr[c = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= & \frac{1}{2} \cdot (\delta + \varepsilon) + \frac{1}{2} (1 - \delta + \varepsilon) = \frac{1}{2} + \varepsilon. \end{aligned}$$

Remark 14

Prediction to distinguishing (homework)

Remark 14

- Prediction to distinguishing (homework)
- PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to convert into "almost" permutation. (2) Any OWF, harder

Section 5

PRG Length Extension

PRG Length Extension

Construction 15 (iterated function)

```
Given g: \{0,1\}^n \mapsto \{0,1\}^{n+1} and i \in \mathbb{N}, define g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i} as g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,\dots,n+1}), where g^0(x) = x.
```

PRG Length Extension

Construction 15 (iterated function)

Given $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i}$ as $g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,...,n+1}),$ where $g^0(x) = x$.

Claim 16

Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}: \{0,1\}^n \mapsto \{0,1\}^{n+t(n)}$ is a PRG, for any $t \in \text{poly}$.

PRG Length Extension

Construction 15 (iterated function)

Given $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i}$ as $g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,...,n+1}),$ where $g^0(x) = x$.

Claim 16

Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}: \{0,1\}^n \mapsto \{0,1\}^{n+t(n)}$ is a PRG, for any $t \in \text{poly}$.

Proof: Assume \exists a PPT D, an infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with

$$\left|\Delta_{g^t(U_n),U_{n+t(n)}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/\rho(n),$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of g.

• Fix $n \in \mathbb{N}$, for $i \in \{0, \dots, t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)

- Fix $n \in \mathbb{N}$, for $i \in \{0, \dots, t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

- Fix $n \in \mathbb{N}$, for $i \in \{0, \dots, t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- Sample $i \leftarrow [t]$
- 2 Return $D(1^n, U_{t-i}, y_1, g^{i-1}(y_2,...,n+1))$.

- Fix $n \in \mathbb{N}$, for $i \in \{0, \dots, t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- Sample $i \leftarrow [t]$
- 2 Return D(1ⁿ, U_{t-i} , y_1 , $g^{i-1}(y_{2,...,n+1})$).

Claim 18

It holds that $\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right|>\varepsilon(n)/t(n)$

- Fix $n \in \mathbb{N}$, for $i \in \{0, \dots, t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n})$
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- Sample $i \leftarrow [t]$
- 2 Return D(1ⁿ, U_{t-i} , y_1 , $g^{i-1}(y_{2,...,n+1})$).

Claim 18

It holds that $\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right|>\varepsilon(n)/t(n)$

Proof: ...