INSTREAM reductions Delta F.A.R.M.

Mark Hill

10/28/2020

Contents

JRBIDITY	2
Harris Bayou	2
Porter Bayou	4
OTAL SUSPENDED SOLIDS	6
Harris Bayou	6
Porter Bayou	
OTAL NITROGEN 1	0
Harris Bayou	0
Porter Bayou	2

TURBIDITY

Harris Bayou

Historical Harris Bayou sites

```
## n Mean Median
## 1 80 287.475 187
```

Data from Harris Bayou site associated with the original Delta FARM project $\,$

```
## n Mean Median
## 1 22 78.37273 58.55
```

Plot the data points.

Small P-value here indicates that we can reject the null hypothesis that the difference is not less than zero and conclude, at a %95 confidence level, that the values of our recent data is in fact lower than the historical data.

Percent reduction in the median value

```
x <- median(oldharris$TUR, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TUR"])
(y-x)/x * 100</pre>
```

```
## [1] -68.68984
```

Here we would use median values because there are outliers and apparent skewness from the boxplot. The mean reduction is even greater (%72). Negative value represents a dcrease relative to the historical data.

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 107 150.7751 27.2

Data from Porter Bayou site associated with the original Delta FARM project

n Mean Median ## 1 24 564.8042 426.5

Plot the data points.


```
wilcox.test(y= oldporter$TUR, x= instreamdata[instreamdata$LOCCODE alternative = "greater")  
##

## Wilcoxon rank sum test with continuity correction

##

## data: instreamdata[instreamdata$LOCCODE == "PB", "TUR"] and oldporter$TUR

## W = 2339, p-value = 1.757e-10

## alternative hypothesis: true location shift is greater than 0

Small P-value here indicates that we can reject the null hypothesis that the difference is not greater than zero and conclude, at a %95 confidence level, that the values of our recent data is in fact higher than the historical data.

H_0: old data \geq new data

H_a: old data \leq new data
```

Percent reduction in the median value

```
x <- median(oldporter$TUR, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TUR"])
(y-x)/x * 100</pre>
```

```
## [1] 1468.015
```

Here we would use median values because there are outliers and apparent skewness from the boxplot. Postive values represents a relative increase. This relative change can range from (-) 100% decrease to (+) infinite increase.

TOTAL SUSPENDED SOLIDS

Harris Bayou

Historical Harris Bayou sites

n Mean Median ## 1 267 129.5443 67

Data from Harris Bayou site associated with the original Delta FARM project $\,$

n Mean Median ## 1 22 53.77727 39.4

Plot the data points.

P-value of less than alpha = 0.05 means we can conclude the alternative hypothesis. H_a : our recent samples had less total suspended solids than our historical observations

Percent reduction in the median value

```
x <- median(oldharris$TSS, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TSS"])
(y-x)/x * 100
## [1] -41.19403</pre>
```

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 214 293.7352 42

Data from Porter Bayou site associated with the original Delta FARM project $\,$

n Mean Median ## 1 24 324.8958 235.65

Plot the data points.

^{*} some outliers clipped from visualization

Percent reduction in the median value

```
x <- median(oldporter$TSS, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TSS"])
(y-x)/x * 100
## [1] 461.0714</pre>
```

 H_a : new data is greater than the old data The test lends statistical significance to old porter bayou data values being less than what we recently collected.

This positive number represents a four fold increase from values formerly observed in porter bayou.

TOTAL NITROGEN

Harris Bayou

Historical Harris Bayou sites

n Mean Median ## 1 97 3.462268 1.83

Data from Harris Bayou site associated with the original Delta FARM project $\,$

n Mean Median ## 1 22 1.867727 1.455

Plot the data points.

Percent reduction in the median value

```
x <- median(oldharris$TN, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TN"])
(y-x)/x * 100
## [1] -20.4918</pre>
```

Negative value here represents a twenty percent reduction over the historical observations.

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 51 2.380196 1.41

Data from Porter Bayou site associated with the original Delta FARM project

n Mean Median ## 1 24 2.791667 2.62

Plot the data points.


```
wilcox.test(y= oldporter$TN, x= instreamdata[instreamdata$LOCCODE == "PB", "TN"], alternative = "greater")

##

## Wilcoxon rank sum test with continuity correction

##

## data: instreamdata[instreamdata$LOCCODE == "PB", "TN"] and oldporter$TN

## W = 848.5, p-value = 0.003675

## alternative hypothesis: true location shift is greater than 0

Reject null hypothesis that porter bayou TN concentrations are \leq old observations. H_a: new observations are greater than old ones.
```

Percent reduction in the median value

```
x <- median(oldporter$TN, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TN"])
(y-x)/x * 100
## [1] 85.8156</pre>
```

This postive value represents an ncrease from the historical observations.