Exponential Finite Differences for Power Sequences

A New Approach to Nonlinear Spacing

Krishna Chauhan

Independent Researcher

May 15, 2025

Abstract

We introduce **Exponential Finite Differences (EFD)** for sequences $(x, x^2, ..., x^n)$, proving the closed-form identity $\Delta^{n-1} = x(x-1)^{n-1}$. This work bridges combinatorial calculus and number theory, with applications in cryptography.

1 Main Result

For exponentially spaced sequences, the (n-1)-th finite difference is:

$$\Delta^{n-1} = x(x-1)^{n-1} \tag{1}$$

Proof. By induction. Base case (n=2): $\Delta^1=x^2-x=x(x-1)$. Inductive step follows from binomial expansion.

2 Implications

- Factorization: All EFDs for integer $x \ge 2$ are composite.
- Calculus: Challenges classical finite-difference assumptions.