T8. Conversión Analógica/Digital (A/D) y Digital /Analógica (D/A).

Procesado de la señal con AO

- **Objetivos.**
- 1 Introducción.
- **②** Conversores D/A.
- **Sample & Hold.**
- **û** Conversores A/D.

Objetivos

Conocer algunos de los conversores D/A y A/D más comunes.

Introducción

- Los sensores nos proporcionan señales de tensión o corriente analógicas relacionadas con la magnitud a medir: sonido (P), temperatura, desplazamiento, etc.
- Para tratar una señal con un procesador hemos de pasarla a formato digital.
 - » Señal digital sólo puede tomar unos valores determinados y en unos instantes de tiempo determinados.
- Sistemas de adquisición de señales: miden señales analógicas y las pasa al procesador en formato digital.

Conversor D/A

Conceptos básicos:

$$V_0 = K_v \cdot V_r \cdot \left(b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n}\right)$$
 ganancia tensión de referencia

Conversor D/A

$$V_0 = K_v \cdot V_r \cdot (b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n})$$

- Conceptos básicos: (cont.)
 - » Rango de fondo de escala (FSR): V_{fs}=K_V-V_r
 - » Número de valores posibles: 2ⁿ.
 - » Rango dinámico: 20-log₁₀(2ⁿ).
 - » Valor de fondo de escala (máximo): $V_{fs}^*(2^n-1)/2^n = V_{fs}^*(1-2^{-n})$.
 - » Resolución (discretización de tensión): V_{fs}/2ⁿ.
 - » LSB (Least significant bit): bit menos significativo. (su contribución es la resolución).

110

101

100

Conversor D/A

⚠ Conversor D/A de resistencias ponderadas:

$$V_0 = -\frac{R_F}{R} \cdot V_r \cdot (b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n})$$

Conversor D/A

$$V_0 = -\frac{R_F}{R} \cdot V_r \cdot (b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n})$$

Conversor D/A

- Parámetros no-ideales de conversores D/A:
 - » Exactitud absoluta: Máxima desviación de la salida con respecto a la ideal $K_r \cdot V_r \cdot (b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n})$. Se expresa en fracciones de LSB. Ej: ½LSB
 - » Error de offset: V_o cuando $V_i=0$.
 - » Error de ganancia: Anchura de los escalones diferente a la ideal. → rotación de la curva.
 - » No-linealidad diferencial: Máxima desviación de la anchura de un escalón respecto al ideal. Se expresa en fracc. LSB.
 - » <u>No-monotonicidad</u>: Ocurre si al incrementar en 1 la entrada, la salida disminuye.
 - » <u>Tiempo de establecimiento</u>: Tiempo que tarda la salida en establecerse entre ±½LSB entorno al valor final.

Sample & Hold

- Sample & Hold permite capturar el valor de una medida y mantenerla constante a la salida para leer el valor.
- **n** Funcionamiento:

Sample & Hold

业 ¿Cómo se construyen?

Sample & Hold

♠ Funcionamiento:

Conceptos básicos:

$$(b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n}) = \frac{V_i}{K_v \cdot V_r}$$

- Conceptos básicos: (cont.)
 - » Los parámetros son análogos al conversor D/A.
 - » En A/D, es importante el tiempo de conversión.
 - Depende mucho del tipo de conversor.
- Muchos se basan en el uso de un conversor D/A.
 - » Se va variando su entrada (digital) y la salida se compara con la señal de entrada del A/D (que queremos convertir).
 - » Por tanto se necesita un buscador de los dígitos y un comparador.

Conversor A/D contador (en rampa):

∍nt

- Conversor A/D contador (en rampa): (cont.)
 - » El conversor D/A ha de tener un offset de ½LSB con respecto al contador para tener exactitud de ±½LSB.
 - » La velocidad del contador ha de ser suficientemente baja para permitir estabilizarse el DAC y el comparador.
 - » En general, es lento. Peor caso, el contador ha de realizar todo el rango de la cuenta.

⚠ Conversor A/D seguidor:

№ Conversor A/D de aproximaciones sucesivas:

- Conversor A/D de aproximaciones sucesivas: (cont.)
 - » El método más usado.
 - » Más rápido que otros métodos.
 - » La salida del DAC ha de tener un offset de -1/2 LSB.

⚠ Conversor A/D paralelo:

- Conversores A/D integradores:
 - » Se realiza una conversión de V_i a tiempo.
 - » Este tiempo se utiliza para realiza otra conversión (más sencilla).

- Conversor A/D de doble pendiente (o doble rampa):
 - » Fase de integración de la señal:

- Conversor A/D de doble pendiente (o doble rampa): (cont.)
 - » Fase de descarga:

