Матричные разложения и их применения в машинном обучении

Гарницкий Марк

Сингулярные числа и векторы

Неотрицательное вещественное число σ называется **сингулярным числом** матрицы M тогда и только тогда, когда существуют два вектора единичной длины $u \in K^m$ и $v \in K^n$ такие, что:

$$Mv=\sigma u$$
, и $M^*u=\sigma v$.

Такие векторы u и v называются, соответственно, **левым сингулярным вектором** и **правым сингулярным вектором**, соответствующим сингулярному числу σ .

Сингулярное разложение

$$M=U\Sigma V^*$$

Приближение матрицы с помощью SVD

$$X pprox U \cdot V^T \ | X < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d > V < d >$$

Преимущество SVD:

 лучшее низкоранговое приближение с точки зрения средне-квадратичного отклонения

Недостаток:

• сложность вычислений

Примеры использования SVD в машинном обучении:

- удаление шумов с изображения
- рекомендательные системы

Алгоритм уменьшения размерности РСА

Рассмотрим простую выборку с размерностью 2 y = 2x + np.random.randn(10)*2

Для описания формы случайного вектора необходима ковариационная матрица

Направление максимальной дисперсии у проекции всегда совпадает с собственным вектором, имеющим максимальное собственное значение, равное величине этой дисперсии

Пример работы PCA: MNIST

Сколько компонент оставить?

