Introducció

Recordatori de conceptes bàsics de probabilitat i estadística.

Una població es una variable aleatoria X.

Una mostra aleatòria de mida n de X és un conjunt de variables aleatòries X_1, \ldots, X_n independents i que compleixen el seguent $\forall A \subset \mathbb{R}, i \in 1, \ldots, n : P(X_i \in A) = P(X \in A)$

Els paràmetres són característiques numèriques poblacionals que solen ser desconegudes, com

- La mitjana $\mu = E(X)$
- La variància $\sigma^2 = Var(X)$
- La desviació estàndard $\sigma = \sqrt{Var(X)}$

Estadistics

Donada una mostra aleatòria X_1, \ldots, X_n de X, un estadístic és una funció d'aquestes variables, i potser de constants conegudes.

Exemples: La mitjana mostral $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

La variància mostral (corregida) $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$.

La variància mostral (no corregida) $S'^2 = \frac{n-1}{n}S^2$.

La quasi-variància mostral $\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ on μ és la mitjana poblacional de X.

Estimadors

Un estimador és un estadístic que es fa servir per estimar un determinat parametre.

Notació: Un estadístic que s'usa per estimar el paràmetre θ es denotat com $\hat{\theta}$. Llavors tenim

- $\hat{\mu} = \overline{X}$.
- $\hat{\sigma}^2 = S^2$.

Distingim entre estimadors (és variable aleatòria) i estimació (valor concret, que es la seva realització, en minúscula).

Distrubucions mostrals més usuals

Donat un estadístic funció de la mostra X_1, \ldots, X_n que és una variable aleatòria, la seva distribució és la distribució de mostral de l'estadístic. Propietats de la llei de la mitjana mostral:

- $\mu_{\overline{X}} = E(\overline{X}) = \mu$.
- $\sigma \frac{2}{X} = Var(\overline{X}) = \frac{\sigma^2}{n}$.

Si $X \sim N(\mu, \sigma^2)$, aleshores $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$.

Propietats de la llei de la variància mostral (corregida), sense corregir i quasivariància:

- $E(\tilde{S}^2) = \sigma^2$.
- $E(S^2) = \sigma^2$.
- $E(S'^2) = \frac{n-1}{n}\sigma^2$.

Si $X \sim N(\mu, \sigma^2)$, aleshores $\frac{n\tilde{S}^2}{\sigma^2} = \frac{1}{\sigma^2} \sim_{i=1}^n (X_1 - \mu)^2 \sim \chi_n^2$, on χ_n^2 és la distribució khi-quadrat amb n graus de llibertat. Això es fa servir si μ és coneguda.

Teorema 1 (Teorema de Fisher). Si X_1, \ldots, X_n és una mostra aleatòria de $X \sim N(\mu, \sigma^2)$, aleshores:

 $1. \overline{X}$ i S^2 són independents.

2. A més
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi_{n-1}^2$$
.

Aixó es fa servir si μ és desconeguda.

 t_{n-1} és la distribució t
 de Student amb n-1 graus de llibertat.

Distribucions mostrals asimptòtiques

Si X_1, \ldots, X_n és una mostra aleatòria de X amb llei qualsevol i mida n tal que $E(X) = \mu$ i $Var(X) = \sigma^2$, aleshores $\underline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$, equivalentment $Z_n = \frac{\overline{X}_n - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \approx N(0, 1)$.

També si n és prou gran i σ és desconeguda, aleshores tenim el seguent $\frac{\overline{X}_n - \mu}{\left(\frac{S_n}{\sqrt{n}}\right)} \approx N(0, 1)$. A la majoria de distribucions l'approximació es prou bona a partir de $n \geq 30$.

Mostra de mida n de X amb distribució qualsevol

 $\frac{\hat{p}_n - p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)$, on \hat{p}_n és la proporció mostral, p és la proporció

poblacional i n és la mida de la mostra.

Quan més gran sigui np(1-p) millor es l'aproximació. Es considera acceptable si $np(1-p) \geq 5$.

Estadístics d'ordre

Donada una mostra de mida n de $X: X_1, \ldots, X_n$, els estadístics d'ordre són les variables aleatòries $X_{(1)}, \ldots, X_{(n)}$ que són les dades ordenades de menor a major.

Exemples importants:

- La mediana, el valor que separa la meitat superior de la inferior $Q_2 = \begin{cases} X_{((n+1)/2)} & \text{si } n \text{ \'es senar} \\ \frac{X_{(n/2)} + X_{(n/2+1)}}{2} & \text{si } n \text{ \'es parell} \end{cases}$
- Els quartils, els valors que divideixen la mostra en 4 parts iguals: $Q_1 = X_{(n/4)}, \, Q_3 = X_{(3n/4)}.$
- El rang interquartílic, $IQR = Q_3 Q_1$. Ajuda a entendre la dispersió de les dades centrals.

Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores la funció de dist. de la v.a. màxim és $F_{X_{(n)}}(t) = (F_X(t))^n \ \forall t \in \mathbb{R}$. Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores la funció de dist. de la v.a. mínim és $F_{X_{(1)}}(t) = 1 - (1 - F_X(t))^n \ \forall t \in \mathbb{R}$.

Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores

la funció de dist. de la v.a. k-èssim és $F_{X_{(k)}}(t) = \sum_{j=k}^{n} {n \choose j} (F_X(t))^j (1-t)$ $F_X(t))^{n-j} \ \forall t \in \mathbb{R}.$

Apendix A

La distribució χ^2

Si Z_1, \ldots, Z_n són v.a. independents amb distribució N(0,1), aleshores la v.a. $Y = Z_1^2 + \cdots + Z_n^2$ llavors $Y \sim \chi_n^2$ amb n graus de llibertat. Propietats:

• La variable Y pren valors positius; la seva funció de densitat

$$f_Y(x) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2 - 1} e^{-x/2} & \text{si } x > 0 \end{cases}$$

Amb Γ la funció gamma d'Euler.

- La seva funció generatriu de moments és $\phi_Y(t) = (1-2t)^{-n/2}, \ t < 0$
- E(Y) = n, Var(Y) = 2n.
- Si $Z \sim N(0,1)$ aleshores $Z^2 \sim \chi_1^2$.
- \bullet Quan n és suficientment gran es pot fer servir l'aproximació $\sqrt{2\chi_n^2} \approx N(\sqrt{2n-1},1)$.

La distribució t de Student

Si $Z \sim N(0,1)$ i $Y \sim \chi_n^2$ són independents, aleshores la v.a. $T = \frac{Z}{\sqrt{Y/n}} Y \sim t_n$, la t de Student amb n graus de llibertat. Propietats:

• La funció de densitat de $T \sim t_n$ és

$$f_T(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

- La densitat de la t de Student és no nul·la en tot \mathbb{R} . També és simètrica respecte l'eix vertical. $n \to \infty \Rightarrow t_n \to N(0,1)$.
- Si $T \sim t_n$ aleshores $E(T^k)$ només existeix si k < n. A més, $E(T) = 0 \text{ si } n > 1 \text{ i } Var(T) = \frac{n}{n-2} \text{ si } n > 2.$

Intervals de confiança

Sigui X una v.a. i θ qualsevol paràmetre desconegut de la llei de X. Fixem un valor $\gamma \in (0,1)$. Un interval de confiança per θ és una parella de nombres reals $t_1 < t_2$ tals que θ està entre t_1 i t_2 amb una confiança de γ . γ és el nivell de confiança de l'interval.

Com? Es tracta de trobar dos estadístics T_1 i T_2 tal que $P(T_1 < \theta < \theta)$ $T_2) \geq \gamma$.

El metode més comú per trobar intervals de confiança és el mètode del pivot.

Mètode del pivot

Un pivot és una v.a. T tal que és una funció de la mostra i del parametre γ i no depén de cap parametre desconegut $T = T(X_1, \dots, X_n; \theta)$. La llei de T és coneguda i no depén de cap paràmetre desconegut excepte θ .

Per mitjana normal amb variància coneguda

Tenim una població identificada amb una v.a. $X \sim N(\mu, \sigma^2)$ amb $\sigma > 0$ coneguda però μ desconeguda. I tenim una mostra de mida nde X. Un pivot per a μ és $Z = \frac{X - \mu}{\frac{\sigma}{Z}}$.

Llavors, apliquem:

- 1. $P(a \le Z \le b) = \gamma$, com $a = -b = z_{\alpha/2}$
- 2. Tenim llavors $P(a \leq \frac{\overline{X} \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} = \gamma$
- 3. Aïllem μ i obtenim $P(\overline{X} z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) = \gamma$ on $\alpha = 1 - \gamma$
- 4. Finalment, tenim

$$IC_{\gamma}(\mu) = [t_1, t_2] = [\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

S'anomena error de precisió de l'interval de confiança $IC_{\gamma}(\mu)$ al valor (la constant) $e = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$. L'error satisfà el seguent

- $1. P(|\overline{X} \mu| \le e) = \gamma$
- 2. és la semi-amplitud de l'interval de confiança. Quant més gran és l'error, menys precís l'interval.
- 3. Depén de la mida de la mostra n, del nivell de confiança γ i de la desviació tipica poblacional σ .
- (a) L'error és una funció creixent del nivell de confiança.
- (b) L'error és una funció creixent de la desviació típica poblacional.
- (c) L'error és una funció decreixent de la mida de la mostra.
- 4. Per tal que l'error de precisió d'un interval de confiança sigui el menor menor posible i donat que σ és una constant que no podem modificar, ens queden dues opcions:
- (a) El recurs fonamental és augmentar la mida de la mostra.
- (b) L'altre recurs és menys recomenable: disminuir el nivell de confi-

Però això incrementa el risc de donar un interval que no contingui el paràmetre.

Si fixem un error màxim $\varepsilon > 0$ i un nivell de confiança, podem trobar la mida de la mostra necessària per aconseguir-ho.

Per fer-ho, hem d'aïllar n de la designaltat $e=z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\leq \varepsilon$ i ob-

tenim
$$n \ge \left(\frac{z_{1-\alpha/2}\sigma}{\varepsilon}\right)^2$$
.

Llavors, agafem el primer nombre enter $n = \left\lceil \left(\frac{z_{1-\alpha/2}\sigma}{\varepsilon} \right)^2 \right\rceil$

Per mitjana normal amb variància desconeguda

Tenim una població identificada amb una v.a. $X \sim N(\mu, \sigma^2)$ amb μ i $\sigma > 0$ desconeguda. Llavors tenim un pivot $T = \frac{X - \mu}{\underline{S}}$.

on
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 és la desviació típica mostral.

Si repetim el mateix procediment que abans, obtenim $IC_{\gamma}(\mu) =$ $[\overline{X} - t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}]$

Notem que l'error serà $e = t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$. Satisfà les mateixes propietats que abans menys que depèn de \mathring{S} en canvi de σ .

Analogament amb abans, si fixem un error màxim $\varepsilon > 0$ i un nivell de confiança, podem trobar la mida de la mostra necessària per aconseguir-ho. Aquesta serà $n = \left| \left(\frac{t_{n-1,1-\alpha/2}S}{\varepsilon} \right)^2 \right|$.

Per variància normal amb mitjana desconeguda

Suposem que tant μ com σ^2 són desconeguts. Llavors, tenim un pivot $\Psi = \frac{(n-1)S^2}{2}.$

La llei de $\Psi \sim \chi_{n-1}^2$. No podem fer com anteriorment, ja que χ^2 no es simètrica.

Llavors tenim $P(a \le \Psi \le b) = \gamma$, on $a = \chi^2_{n-1,\alpha/2}$ i $b = \chi^2_{n-1,1-\alpha/2}$. Aïllem σ^2 i obtenim $P\left(\frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}\right) = \gamma$, es dir $IC_{\gamma}(\sigma^{2}) = \left[\frac{(n-1)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}, \frac{(n-1)S^{2}}{\chi_{n-1,\alpha/2}^{2}}\right]$ I, obviament, $IC_{\gamma}(\sigma) = \left[\sqrt{\frac{(n-1)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}}, \sqrt{\frac{(n-1)S^{2}}{\chi_{n-1,\alpha/2}^{2}}}\right]$

I, obviament,
$$IC_{\gamma}(\sigma) = \left[\sqrt{\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}}, \sqrt{\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}}\right]$$

Per variància normal amb mitjana coneguda

El pivot es $\Psi = \frac{nS^2}{\sigma^2} \sim \chi_n^2$.

No es simètrica, fem el mateix que abans i tindrem en aïllar σ^2 i o $IC_{\gamma}(\sigma^2) = \left[\frac{n\hat{S}^2}{\chi^2_{n,1-\alpha/2}}, \frac{n\hat{S}^2}{\chi^2_{n,\alpha/2}} \right] \text{ i } IC_{\gamma}(\sigma) = \left[\sqrt{\frac{n\hat{S}^2}{\chi^2_{n,1-\alpha/2}}}, \sqrt{\frac{n\hat{S}^2}{\chi^2_{n,\alpha/2}}} \right]$

Asimptòtics, per mitjana i la proporció, mostres grans

Si n és prou gran (n > 30), podem aproximar amb una normal.

 $\frac{X-\mu}{\sigma/\sqrt{n}} \approx \frac{X-\mu}{S/\sqrt{n}} \sim N(0,1)$ ja que S és un estimador de σ .

Si fem servir com pivot $IC_{\gamma}(\mu) = \left[\overline{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$ i $IC_{\gamma}(\mu) = \left[\overline{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$ respectivement.

Si tenim una població dicotomica $X \sim B(p)$ i ens interesa trobar p tenim el seguent pivot $\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx N(0,1)$, on $\hat{p}=$

Llavors tenim el seguent interval de confiança $IC_{\gamma}(p) =$

$$\left[\hat{\hat{p}} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{\hat{p}} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right] \text{ on } \hat{\hat{p}} = \overline{x} \text{ és la realit-zació de } \hat{p} = \overline{X}. \text{ S'aplica si } n\hat{\hat{p}}(1-\hat{\hat{p}}) \geq 18$$

Això s'interpreta de forma analoga a abans. L'error de precisió serà $e=z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ i si volem determinar la mida de la mostra tenim $n = \left| \left(\frac{z_{1-\alpha/2}}{2\varepsilon} \right)^2 \right|$

IC per la desigualtat de Txebixov

Sigui X_1, \ldots, X_n una mostra de X. Volem estimar μ però no es prou gran per aproximar-ho via normal.

Llavors tenim
$$IC_{\gamma}(\mu) = \left[\overline{X} - \sqrt{\frac{\widehat{Var(X)}}{n\alpha}}, \overline{X} + \sqrt{\frac{\widehat{Var(X)}}{n\alpha}}\right]$$
 on

Var(X) és una bona aproximació de σ^2 . Sí fos coneguda podem fer servir σ^2 en canvi de Var(X).

IC per comparar dues poblacions

Dos poblacions: $X^{(1)}$ i $X^{(2)}$ amb mitjanes μ_1 i μ_2 , variàncies σ_1^2 i σ_2^2 respectivament.

amb mostres independents

La variança es coneguda:

Considerem
$$X^{(1)} \sim N(\mu_1, \sigma_1^2)$$
 i $X^{(2)} \sim N(\mu_2, \sigma_2^2)$.

Aleshores tenim que $E(\overline{X}^{(1)} - \overline{X}^{(2)}) = \mu_1 - \mu_2 i \overline{Var}(\overline{X}^{(1)} - \overline{X}^{(2)}) = \mu_1 - \mu_2 i \overline{Var}(\overline{X}^{(2)} - \overline{X}^{(2)}) = \mu_1 - \mu_2 i \overline{Var$

i a més tenim
$$\overline{X}^{(1)} - \overline{X}^{(2)} \sim N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$$

Podem agafar la seguent funció pivot: $Z=\frac{(\overline{X}^{(1)}-\overline{X}^{(2)})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim$

N(0, 1)

Fem com sempre i tenim el seguent $IC_{\gamma}(\mu_1 - \mu_2) =$

$$\left[(\overline{x}_1 - \overline{X}_2) - z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{x}_1 - \overline{X}_2) + z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

Important: Si les variables no son normals pero $n_1, n_2 > 30$ podem fer servir aquesta aproximació.

La variança no es coneguda pero que es poden suposar iguals:

Si suposem que $\sigma_1^2 = \sigma_2^2 = \sigma^2$ tenim que $\overline{X}^{(1)} - \overline{X}^{(2)} \sim N(\mu_1 - \overline{X}^{(2)})$ $\mu_2, \sigma^2(1/n_1 + 1/n_2)$

Llavors estimem σ^2 amb $S^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ i tenim que T =

$$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S\sqrt{1/n_1 + 1/n_2}} \sim t_{n_1 + n_2 - 2}$$

Llavors tenim $IC_{\gamma}(\mu_1 - \mu_2) =$

$$(\overline{x}_1 - \overline{x}_2) - t_{n_1 + n_2 - 2, 1 - \alpha/2} S \sqrt{1/n_1 + 1/n_2},$$

$$(\overline{x}_1 - \overline{x}_2) + t_{n_1 + n_2 - 2, 1 - \alpha/2} S \sqrt{1/n_1 + 1/n_2}$$

Important: Si $n_1, n_2 > 30$ podem canviar $t_{n_1+n_2-2,1-\alpha/2}$ per $z_{1-\alpha/2}$. Per variancies desconegudes que NO es poden suposar iguals:

Llavors tenim que $T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{2}}$ que té distribució apro-

ximadament t_{ν} on $\nu = \left| \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} \right|$

$$IC_{\gamma}(\mu_{1} - \mu_{2}) = \left[(\overline{x}_{1} - \overline{x}_{2}) - t_{\nu, 1 - \alpha/2} \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}, (\overline{x}_{1} - \overline{x}_{2}) + t_{\nu, 1 - \alpha/2} \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}} \right]$$

f com abans, si $n_1, n_2 > 30$ podem canviar $t_{\nu, 1-\alpha/2}$ per $z_{1-\alpha/2}$. Per al quocient de variàncies amb poblacions normals. Com les dues son normals, sabem que $U_1 = \frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi_{n_1-1}^2$ i $U_2 =$ $\frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi_{n_2-1}^2$. Fem servir la distro F de Fisher-Hipercor, lla-

vors tenim
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}$$
. La fem pivotar i llavors $IC_{\gamma}(\frac{\sigma_2^2}{\sigma_1^2}) = \left[\frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,\alpha/2}, \frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,1-\alpha/2}\right]$

Aquest interval no es simètric. No es gens robust en front a la manca de normalitat.

Asimptòtic per a la diferencia de proporcions amb poblacions binàries: Suposem que $X^{(1)} \sim B(p_1)$ i $X^{(2)} \sim B(p_2)$, son independents. Denotem $\overline{X}_1 = \hat{p}_1$ i $\overline{X}_2 = \hat{p}_2$. Llavors tenim que la seguent funció pivot $\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\overline{p}(1-\overline{p})(1/n_1 + 1/n_2)}} \sim N(0,1)$ on $\overline{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$. Es necesita que $n_1\hat{p}_1(1-\hat{p}_1)\geq 18$ i $n_2\hat{p}_2(1-\hat{p}_2)\geq 18$. Llavors tenim $IC_{\gamma}(p_1-p_2) = (\hat{p}_1 - \hat{p}_2) \pm z_{1-\alpha/2} \sqrt{\overline{p}(1-\overline{p})(1/n_1+1/n_2)}$, sent $\overline{\overline{p}} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}.$

Dades aparellades

Si $X_1^{(1)}, \ldots, X_n^{(1)}$ i $X_1^{(2)}, \ldots, X_n^{(2)}$ son mostres aleatòries de mida nsent $X^{(1)} \sim N(\mu_1, \sigma_1^2)$ i $X^{(2)} \sim N(\mu_2, \sigma_2^2)$, es diuen aparellades si hi ha dependencia $\forall i = 1, \ldots, n$.

Llavors, es calculen diferencies $D_1 = X_1^{(1)} - X_1^{(2)}, \dots, D_n = X_n^{(1)}$ $X_n^{(2)}$, amb $D \sim N(\mu = \mu_1 - \mu_2, \sigma^2)$ on σ^2 es desconeguda, ja que no savem la covariancia.

Llavors tenim $IC_{\gamma}(\mu_1 - \mu_2) = \overline{d} \pm t_{n-1,1-\alpha/2} \frac{S_D}{\sqrt{n}}$ on \overline{d} i S_D son mitjana i desviació mostral respectivament.

Apendix B

Distribució F de Fisher-Hipercor

Si $X \sim \chi_n^2$ i $Y \sim \chi_m^2$ son independents, llavors la variable aleatòria $F = \frac{X/n}{V/m}$ es diu que te distribució F de Fisher-Hipercor amb n i mgraus de llibertat. Propietats:

- La funció de densitat es $f_F(x) = \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} (\frac{n}{m})^{n/2} x^{n/2-1} \left(1 + \frac{n}{m}x\right)^{-(n+m)/2} \text{ quan } x \ge 0$
- $P(F_{n,m} \leq x) = P(F_{m,n} \leq \frac{1}{x}$, aixó serveix per exemple quan $P(F \le x) = 0.05 \Rightarrow P(F \ge x) = 0.95 = P(F \le \frac{1}{x})$

Recordatori de probabilitat

Distribució	Esperança	Variància	Funció de probabilitat
$X \sim Bin(n,p)$	np	np(1-p)	$\binom{n}{k} p^k (1-p)^{n-k}$
$X \sim Geo(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{k-1}$
$X \sim BinNeg(r,p)$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\begin{pmatrix} k-1 \\ r-1 \end{pmatrix} p^r (1-p)^{k-r}$
$X \sim HGeo(N,K,n)$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$X \sim Poiss(\lambda)$	λ	λ	$e^{-\lambda} \frac{\lambda^k}{k!}$
$X \sim U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a}$
$X \sim Exp(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\overline{b-a}}{\lambda e^{-\lambda x}}$
$X \sim Gamma(r, \lambda)$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	$\frac{\lambda^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}$
$X \sim Erlang(r, \lambda)$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	$\frac{\lambda^r}{(r-1)!}x^{r-1}e^{-\lambda x}$

Tests d'hipòtesis

Introducció

Un test d'hipòtesis consisteix en el plantejament de dues hipòtesis estadístiques contradictòries i una regla de decisió permet quedar-nos amb la més plausible.

- Hipòtesi nul·la (H_0) : és la hipòtesi afavorida i no serà rebutjada llevat que hi hagui una evidència forta.
- Hipòtesi alternativa (H_1) : L'altre.

Tipus d'errors

		Hipòtesi amb la qual ens "quedem"		
		H_0	H_1	
Hipòtesi certa	H_0	No error	Error de tipus I	
	H_1	Error de tipus II	No error	

Fixarem $\alpha \in (0,1)$ petita, anomenada nivell de significació i construim tal que $P(\text{Error de tipus I}) \leq \alpha \text{ (si pot ser} = \alpha).$

Quan la probabilitat de l'error de tipus I puja, la probabilitat de l'error de tipus II baixa. Idem al revés.

Si la regla de decisió ens porta a quedar-nos amb H_1 ho farem amb convenciment. Si ens porta a quedar-nos amb H_0 ho farem sense convenciment.

Això genera dos subconjunts, la regió d'acceptació i la regió de rebuig o crítica. Si està en RA ens quedem amb H_0 i si està en RR rebutgem

p-valor és el màxim valor de nivell de significació pel qual NO es rebutja H_0 .

Nivell de confiança del test

El nivell de confiança del test és $1-\alpha$ i és la probabilitat de no cometre l'error de tipus I.

La funció de potència del test permet tractar simultàniament les probabilitats de l'error de tipus I i II. Es la probabilitat de rebutjar H_0 quan el valor del paràmetre és θ .

$$\pi(\theta) = P(\text{Rebutjar } H_0 | \theta) = \begin{cases} \alpha(\theta) & \text{si } \theta \text{ verifica } H_0 \\ 1 - \beta(\theta) & \text{si } \theta \text{ verifica } H_1 \end{cases}$$
• LS: $RR = \{\psi < \chi^2_{n-1,\alpha}\}$
• TS: $RR = \{\psi < \chi^2_{n-1,\alpha/2} \circ \psi > \chi^2_{n-1,1-\alpha/2}\}$

Per una població

Remarquem que tenim:

- Unilateral dret (RS) $\begin{cases} H_0 : \theta = \theta_0 \\ H_1 : \theta > \theta_0 \end{cases}$
- Unilateral esquerre (LS) $\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta < \theta_0 \end{cases}$
- Bilateral (TS) $\begin{cases} H_0 : \theta = \theta_0 \\ H_1 : \theta \neq \theta_0 \end{cases}$

Mitjana normal, desviació coneguda

Llavors l'estadístic de contrast és $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$ I tenim les següents regions crítiques:

- RS: $RR = \{z > z_{1-\alpha}\}$
- LS: $RR = \{z < -z_{1-\alpha}\}$
- TS: $RR = \{|z| > z_{1-\alpha/2}\}$

La mida de la mostra per obtenir una probabilitat d'error de tipus II en els one-sided donada per a un valor concret $\mu=\mu_1$ en la hipòtesi alternativa és:

$$n = \left[\left(\frac{(z_{1-\alpha} + z_{1-\beta})\sigma}{\mu_1 - \mu_0} \right)^2 \right]$$

en la bilateral:

$$n = \left[\left(\frac{(z_{1-\alpha/2} + z_{1-\beta})\sigma}{\mu_1 - \mu_0} \right)^2 \right]$$

Mitjana normal, desviació desconeguda

L'estadístic de contrast és $T = \frac{X - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$ I tenim les següents regions crítiques:

- RS: $RR = \{t > t_{n-1,1-\alpha}\}$
- LS: $RR = \{t < -t_{n-1,1-\alpha}\}$
- TS: $RR = \{|t| > t_{n-1.1-\alpha/2}\}$

Variància normal amb mitjana desconeguda

L'estadístic de contrast és $\Psi = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$ I tenim les següents regions crítiques:

- RS: $RR = \{\psi > \chi^2_{n-1,1-\alpha}\}$

Variància normal amb mitjana coneguda

L'estadístic de contrast és $\Psi = \frac{n\tilde{S}^2}{\sigma_n^2} \sim \chi_n^2$

I tenim les següents regions crítiques:

- RS: $RR = \{\psi > \chi^2_{n,1-\alpha}\}$
- LS: $RR = \{ \psi < \chi_{n,\alpha}^2 \}$
- TS: $RR = \{ \psi < \chi^2_{n,\alpha/2} \circ \psi > \chi^2_{n,1-\alpha/2} \}$

Tests asimptòtics per mitjana i proporció, mostres grans

Per a la mitjana d'una variable amb mostra gran:

L'estadístic de contrast és $Z = \frac{X - \mu_0}{\sigma / \sqrt{n}} \approx N(0, 1)$

I tenim les següents regions crítiques:

- RS: $RR = \{z > z_{1-\alpha}\}$
- LS: $RR = \{z < -z_{1-\alpha}\}$
- TS: $RR = \{|z| > z_{1-\alpha/2}\}$

Per la proporció p d'una $X \sim B(p)$ amb mostra gran:

L'estadístic de contrast és $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \approx N(0,1)$

I tenim les següents regions crítiques:

- TS: $RR = \{|z| > z_{1-\alpha/2}\}$

Normalitat de les dades

Podem fer un test de normalitat de les dades per descartar el cas de mostres clarament no provinents d'una normal.

El test de Shapiro-Wilk és el més recomanable, es fa només a R i té les següents hipòtesis:

 H_0 : Les dades provenen d'una distribució normal H_1 : Les dades NO provenen d'una distribució normal

En R es fa així: shapiro.test(dades). Això ens dona el p-valor.

Tests no parametrics per la mediana per mostres petites

Test dels rangs amb signes de Wilcoxon:

 H_0 : La mediana de la mostra és igual a un valor μ_0 $\left\{ egin{aligned} H_1: ext{La mediana de la mostra \'es} & ext{diferent} \\ ext{m\'es gran} \\ ext{m\'es petita} \end{aligned}
ight.$ a un valor En R és fa así:

wilcox.test(dades, mu = μ_0 , alternative = "two.sided"/"greater"/"less"). Això ens dona el p-valor.

Per dues poblacions: mostres independents

Comparació de variancies normals

Les hipòtesis són les típiques, $H_0: \mu_1^2 = \mu_2^2$

Llavors tindrem $\frac{S_1^2}{S_2^2} \sim F_{n_1-1,n_2-1}$

I tenim les següents regions crítiques:

• RS:
$$RR = \{f > F_{n_1-1,n_2-1,1-\alpha}\}$$

• LS:
$$RR = \{ f < F_{n_1-1, n_2-1, \alpha} \}$$

• TS:
$$RR = \{ f < F_{n_1-1,n_2-1,\alpha/2} \circ f > F_{n_1-1,n_2-1,1-\alpha/2} \}$$

Comparació de mitjanes normals

Llavors tindrem:

- Variàncies conegudes: $Z = \frac{\overline{X}_1 \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{\pi} + \frac{\sigma_2^2}{\pi}}} \sim N(0, 1)$ amb les següents
- regions crítiques:

$$-RS: RR = \{z > z_{1-\alpha}\}$$

-LS:
$$RR = \{z < -z_{1-\alpha}\}$$

-TS:
$$RR = \{|z| > z_{1-\alpha/2}\}$$

• Variàncies desconegudes, considerades iguals: $T = \frac{\overline{X}_1 - \overline{X}_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim$ $t_{n_1+n_2-2}$ amb les següents regions crítiques:

-RS:
$$RR = \{t > t_{n_1+n_2-2,1-\alpha}\}$$

-LS:
$$RR = \{t < -t_{n_1+n_2-2,1-\alpha}\}$$

-TS:
$$RR = \{|t| > t_{n_1+n_2-2,1-\alpha/2}\}$$

- Variàncies desconegudes, considerades diferents: $T = \frac{\overline{X}_1 \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \approx t_{\nu}$
- on ν es calcula com abans, $\nu=\left\lceil\frac{\left(\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2\,\left(\frac{S_2^2}{n_2}\right)^2}\right\rceil$. Amb les següents

regions crítiques:

-RS:
$$RR = \{t > t_{\nu,1-\alpha}\}$$

-LS:
$$RR = \{t < -t_{\nu,1-\alpha}\}$$

-TS:
$$RR = \{|t| > t_{\nu,1-\alpha/2}\}$$

Tests asimptòtics: per a mitjanes i les proporcions, mostres grans

Per a la mitjana de dues poblacions amb mostres grans: Estadístic de contrast: $Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \approx N(0, 1) \text{ si } n_1, n_2 \ge 30$

I tenim les següents regions crítiques:

- RS: $RR = \{z > z_{1-\alpha}\}$
- LS: $RR = \{z < -z_{1-\alpha}\}$
- TS: $RR = \{|z| > z_{1-\alpha/2}\}$

Si coneixem σ_1^2 i σ_2^2 les substituïm per S_1^2 i S_2^2 respectivament. En cas de $X^{(1)} \sim B(p_1)$ i $X^{(2)} \sim B(p_2)$ llavors tenim: $\hat{p} = \frac{n_1 \hat{p_1} + n_2 \hat{p_2}}{n_1 + n_2}$. Llavors l'estadistic de contrast es $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1+1/n_2)}} \approx N(0,1)$ si $n_1\hat{p}_1(1-\hat{p}_1) \ge 18$ i $n_2\hat{p}_2(1-\hat{p}_2) \ge 18$.

I tenim les regions crítiques de la normal.

Per dues poblacions: mostres aparellades

Siguin $X_1^{(1)}, \ldots, X_n^{(1)}, X_1^{(2)}, \ldots, X_n^{(2)}$ dues mostres aparellades NOR-MALS. Tindrem $D_1 = X_1^{(1)} - X_1^{(2)}, \dots, D_n = X_n^{(1)} - X_n^{(2)}$ Test d'hipòtesis $\mu_1 = \mu_2$, és a dir, $\mu_d = 0$.

L'estadístic de contrast és $T = \frac{d}{S_d/\sqrt{n}} \sim t_{n-1}$

Les regions crítiques són:

- RS: $RR = \{t > t_{n-1,1-\alpha}\}$
- LS: $RR = \{t < -t_{n-1,1-\alpha}\}$
- TS: $RR = \{|t| > t_{n-1,1-\alpha/2}\}$

NOTA: Si les dades no són normals però la mostra és gran podem fer servir aquest test amb l'estadistic de contrast seguent

$$T = \frac{\overline{d}}{S_d/\sqrt{n}} \approx N(0,1)$$

Tests de la khi quadrat

De bondat d'ajustament

Suposem que la v.a. X pot prendre k valors (x_1, \ldots, x_k) amb probabilitats p_1, \ldots, p_k .

Si tenim una mostra de mida n, fem la següent hipòtesi nul·la:

Si tenim una mostra de mida
$$n$$
, fem la següent hipòtesi nul·la:
$$H_0: \begin{cases} p_1 = p_1^0 \text{ (important, \'es notaci\'o, no \'es elevat a 0)} \\ \vdots \\ p_k = p_k^0 \end{cases}$$

i d'hipòtesi alternativa:

$$H_1: p_i \neq p_i^0 \text{ per algun } i = 1, \dots, k$$

Llavors l'estadístic de contrast és:

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i^0)^2}{np_i^0} \approx \chi_{k-1}^2$$

això ens deixa amb la següent regió crítica: $RR = \{\chi^2 > \chi^2_{k-1,1-\alpha}\}$ En R es fa així: chisq.test(dades, $p = c(p_1^0, \ldots, p_k^0)$). Això ens dona el p-valor (no surt als apunts). Es pot fer si n és gran, això si es compleix una de les condicions següents:

- $k \ge 5$ i $np_i^0 \ge 5 \ \forall i \in \{1, \dots, k\}.$
- $k < 5 \text{ i } np_i^0 > 5 \ \forall i \in \{1, \dots, k\}$

Nota: Si no es compleixen aquestes condicions, es pot fer el test ajuntant categories fins que es compleixin.

D'independència (||*||)

Suposem que tenim dues variables aleatòries X i Y amb r i c valors respectivament.

Denotem que $p_{i\bullet} = P(X = x_i)$ i $p_{\bullet j} = P(Y = y_j)$. Fem les següents hipòtesis:

> H_0 : Les variables són independents $\Leftrightarrow p_{ij} = p_{i \bullet} p_{\bullet j} \ \forall i, j$ H_1 : Les variables no són independents

Fem una taula de contingència amb les dades:

Llavors l'estadístic de contrast és:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - \frac{n_{i\bullet}n_{\bullet j}}{n})^2}{\frac{n_{i\bullet}n_{\bullet j}}{n}} \approx \chi^2_{(r-1)(c-1)}$$

Rebuitgem H_0 si $\chi^2 > \chi^2_{(r-1)(c-1),1-\alpha}$

En R es fa a ma. Que no! Es fa així: chisq.test(taula). Això ens dona el p-valor (no surt als apunts).

CAS 2x2!!! Si tenim una taula de contingència 2×2 podem fer servir La correcció de Yates, llavors serà

$$\tilde{\chi}^2 = \frac{n \left(|n_{11} n_{22} - n_{12} n_{21}| - \frac{n}{2} \right)^2}{n_{1 \bullet} n_{2 \bullet} n_{\bullet 1} n_{\bullet 2}} \approx \tilde{\chi}_1^2$$

Regressió lineal

Això ja ho hauries de saber... però bé, aquí ho tens.

Regressió lineal simple

Es fa mitjançant el mètode dels mínims quadrats (Gràcies, Francesc Bars).

Es farà tal que
$$y = b_0 + b_1 x$$
, llavors $b_1 = \frac{(\sum\limits_{i=1}^n x_i y_i) - n\overline{x}\overline{y}}{(\sum\limits_{i=1}^n x_i^2) - n\overline{x}^2}$ i $b_0 = \overline{y} - b_1 \overline{x}$.

Nota: $b_{0,x} \neq b_{0,y}, b_{1,x} \neq b_{1,y}$

Coeficient de correlació

$$r = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2)(\sum_{i=1}^{n} y_i^2 - n\overline{y}^2)}}$$

r és un valor entre -1 i 1. Si es negatiu significa que la recta de regressió es descendent. Quan |r| és més prop a 1 més lineal és la relació. Si fem servir $R=r^2$ obtenim el coeficient de determinació, que ens diu la variabilitat total de les dades. Com més proper a 1 millor és l'aproximació.

Les prediccions

$$\hat{y}|_{x_0} = b_0 + b_1 x_0$$

això es pot fer mentre x_0 estigui dins del rang de les dades i r^2 sigui proxim a 1. NOTA: Si volem predir el corresponent \hat{x} no es pot fer aïllant.

Interferència sobre els coeficients de la recta de regressió

(vale si has mirat això no em queixo)

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2) \ i = 1, \dots, n$$

Si suposem que Y_i son independents entre sí, tenim:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \ i = 1, \dots, n$$

Definim els residus com $e_i = y_i - \hat{y}|_{x_i}$ Llavors tenim $\hat{\hat{\sigma}}^2 = \frac{\sum\limits_{i=1}^n e_i^2}{n-2}$ Tindrem un estimador tal que $\frac{\hat{\sigma}^2}{\sigma^2}(n-2) \sim \chi_{n-2}^2$ Llavors per β_0 tenim el següent estadístic de contrast: $T=\frac{b_0-\beta_0^0}{\hat{\sigma}\sqrt{\frac{\sum\limits_{i=1}^n x_i^2}{n(\sum\limits_{i=1}^n x_i^2)-n^2\overline{x}^2}}} \sim t_{n-2}$

$$\frac{b_0 - \beta_0^0}{\hat{\sigma} \sqrt{\frac{\sum_{i=1}^n x_i^2}{n(\sum_{i=1}^n x_i^2) - n^2 \overline{x}^2}}} \sim t_{n-2}$$

I les regions crítiques són:

- RS: $RR = \{t > t_{n-2,1-\alpha}\}$
- LS: $RR = \{t < -t_{n-2,1-\alpha}\}$
- TS: $RR = \{|t| > t_{n-2,1-\alpha/2}\}$

Per β_1 tenim el següent estadístic de contrast: $T = \frac{b_1 - \beta_1^0}{\hat{\sigma} \sqrt{\frac{1}{(\sum x_i^2) - n\bar{x}^2}}} \sim$

 t_{n-2}

I les regions crítiques són:

- RS: $RR = \{t > t_{n-2,1-\alpha}\}$
- LS: $RR = \{t < -t_{n-2,1-\alpha}\}$
- TS: $RR = \{|t| > t_{n-2,1-\alpha/2}\}$

Amb R

Si x = c(loquesea) i y = c(loquesea) llavors dades = data.frame(algo=x, otro=y):

Fer una grafica: ggplot(dades, aes(x=Algo, y=otro)) + geom_point() Fer una regressió: $reg = lm(otro \sim algo, data = dades)$

Veure els coeficients: summary(reg)

Predicció: noves_dades = data.frame(algo = c(1.5) llavors predict(reg,noves_dades)