3.1) Conditional Expectation and Projection

Vitor Kamada

December 2018

1/14

Reference

Tables, Graphics, and Figures from:

Hansen (2018). **Econometrics.** Ch 2.

Law of Iterated Expectation (Total Expectation)

$$E[E(Y|X)] = E[g(X)]$$

$$\sum_{x} g(x)P(X = x)$$

$$\sum_{x} [\sum_{y} yP(Y = y|X = x)]P(X = x)$$

$$\sum_{y} y\sum_{x} P(Y = y, X = x)$$

$$\sum_{y} yP(Y = y) = E(Y)$$

Example: Law of Iterated Expectation

$$E[E(Y|X)] = E(Y)$$

 $E(Wage) = 10.9$ and $E(Educ) = 11.5$

$$E(Wage|Educ) = 4 + .6Educ$$

 $E[E(Wage|Educ)] = E[4 + .6Educ]$

$$= E(4) + .6E(Educ)$$

= $4 + .6 * 11.5 = 10.9$

Projection Interpretation

$$E[(Y - E(Y|X))h(X)]$$

$$E[h(X)Y] - E[h(X)E(Y|X)]$$

$$E[h(X)Y] - E[E(h(X)Y|X)] = 0$$

Linear Regression: Assumptions

$$Y = \alpha + \beta X + \epsilon$$

$$E(\epsilon) = E[E(\epsilon|X)]$$

$$= E(0) = 0$$

$$E(\epsilon X) = E[E(\epsilon X|X)]$$

$$= E[XE(\epsilon|X)]$$

$$= E(0) = 0$$

Linear Regression: Estimation

$$Y = \alpha + \beta X + \epsilon$$

$$= Cov(X, \alpha) + \beta Cov(X, X) + Cov(X, \epsilon)$$

$$= \beta Var(X)$$

$$\beta = \frac{Cov(X,Y)}{Var(X)}$$

Conditional Variance

$$Var(Y) = E[Y - E(Y)]^{2}$$

$$= E\{Y^{2} - 2YE(Y) + [E(Y)]^{2}\}$$

$$= E(Y^{2}) - [E(Y)]^{2}$$

$$Var(Y|X) = E\{[Y - E(Y|X)]^2|X\}$$

= $E(Y^2|X) - [E(Y|X)]^2$

Law of Total Variance

$$g(X) = E(Y|X) \text{ and } E[g(X)] = E(Y)$$

$$E[Var(Y|X)]$$

= $E[E(Y^2|X) - g(X)^2] = E(Y^2) - E[g(X)^2]$

$$= E[g(X)^{2}] - [E(g(X))]^{2} = E[g(X)^{2}] - [E(Y)]^{2}$$

$$Var(Y) = E[Var(Y|X)] + Var[E(Y|X)]$$

Vitor Kamada ECO 7100 Econometrics I December 2018 9 / 14

Homoskedasticity vs Heteroskedasticity

$$Y = \alpha + \beta X + \epsilon$$

$$Var(\epsilon|X) = E(\epsilon^2|X) - [E(\epsilon|X)]^2$$

$$E(\epsilon^2|X) = \sigma^2$$

$$E(\epsilon^2|X) = \sigma^2(X)$$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Conditional Independence Assumption (CIA)

$$E(\epsilon|x_1,x_2)=E(\epsilon|x_2)$$

$$E(W_J|C=0) = 10$$
 and $E(W_J|C=1) = 20$

$$E(W_G|C=0) = 8$$
 and $E(W_G|C=1) = 12$

 $\frac{1}{2}$ of people is J, and other $\frac{1}{2}$ is G

$$ACE = \$7$$

Violation of CIA

$$P(C|H) = 3/4$$
 and $P(C|L) = 1/4$
 $P(H|J) = 3/4$ and $P(H|G) = 1/4$

$$P(C|J) = P(\frac{C}{H})P(\frac{H}{J}) + P(\frac{C}{L})P(\frac{L}{J}) = 62.5\%$$
$$P(C|G) = 37.5\%$$

	\$8	\$10	\$12	\$20	Mean
High-School	10	6	0	0	\$8.75
College	0	0	6	10	\$17.00

$$E(W|C) = 8.75 + 8.25C$$

Conditioning on the Test Score

	\$8	\$10	\$12	\$20	Mean
High-School + High Test Score	1	3	0	0	\$9.50
College + High Test Score	0	0	3	9	\$18.00
$High ext{-}School + Low \;Test \;Score$	9	3	0	0	\$8.50
College + Low Test Score	0	0	3	1	\$14.00

$$E(W|C, H) = 8.5 + 1H + 5.5C + 3HC$$

 $E(C|H) = 18 - 9.5 = 8.5$
 $E(C|L) = 14 - 8.5 = 5.5$
 $ACE = \$7$

Selection Bias

	Potential Job Degree		Causal Wage		Job Avg Wage	
			Degree		Degree	
Туре	No	Yes	No	Yes	No	Yes
Always Blue	Blue	Blue	1K	1.5K	1.5K 3K	1.5K
Blue White	Blue	White	2K	2.5K		3K
Always White	White	White	3K	3.5K		311