2020年春季大学物理实验(3)——凸透镜焦距测量

专业班级: <u>电气 1908 班</u> 学号: <u>u201912072</u> 姓名: <u>柯依娃</u> 日期: <u>2020 年 7 月 24 日</u>

实验名称: 凸透镜焦距测量

实验目的:掌握一般光路的光学元件的共轴调节方法;了解掌握共轭法或自准直法测凸透镜的原理与方法;利用日常生活中材料完成实验,锻炼动手能力、分析问题能力。

实验仪器材料:光源: led 阵列 F 屏,物屏:白色平整屏,透镜:普通凸透镜

实验方案 (装置) 设计: 相关理论 (公式) 、原理图、思路等

由于

$$u_1 = \frac{D - d}{2} = v_2$$

$$u_2 = \frac{D + d}{2} = v_1$$

$$\frac{1}{f} = \frac{1}{u_1} + \frac{1}{v_1}$$

推导可得

$$f = \frac{D^2 - d^2}{4D}$$

实验过程: 实验步骤、实验现象观察、出现的问题及解决方法等

实验步骤:

- 1. 粗测凸透镜焦距:通过头顶的灯光照射凸透镜,在手上形成一个近似清晰的像,焦距约为手掌与凸透镜的距离
- 2. 光学系统共轴调节:依次摆放光源、物屏、凸透镜、像屏,物屏与像屏间距离大于 4 倍粗测焦距。各仪器等高同轴调节(使用自准直法),各元件中心一条直线上,测量物屏位置 L1,与像屏位置 L2,D=|L2-L1|;
- 3. 放大和缩小的清晰像: 凸透镜由靠近物屏端开始,逐渐远离物屏,记录物屏上成清晰倒立实像时凸透镜位置,在大像处左右分布趋近,测得左右趋近分别为 x1 和 x2,在小像处左右分布趋近,测得左右趋近分别为 x3 和 x4, $d=\left|\frac{x_1+x_2}{2}-\frac{x_3+x_4}{2}\right|$

4.重复10次, 计算每次的焦距, 取焦距的平均值, 计算焦距。

数据分析处理:数据记录(表格)、计算过程及结果等

次数n	物像距离 D	第一次清 晰成像成 像透镜位 置	第二次清 晰成像成 像透镜位 置		焦距f	物屏距离L1	像屏距离 L2	大像左x1	大像右x2	小像左x3	小像右x4
1	69.04	100.84	69.95	30.89	13.80478527	120.04	51	100.9	100.78	69.94	69.96
2	77.32	107.735	67.11	40.625	13.99376544	126.05	48.73	107.52	107.95	67.22	67
3	72	80.74	46.86	33.88	14.01439444	100	28	80.65	80.83	46.74	46.98
4	66.1	89.75	63.99	25.76	14.01525113	110	43.9	89.94	89.56	64.08	63.9
5	73.69	96.5	59.615	36.885	13.80686957	115	41.31	96.52	96.48	59.73	59.5
6	70.33	91.375	58.83	32.545	13.81747432	110.37	40.04	91.4	91.35	59.08	58.58
7	65.01	84.79	60.345	24.445	13.95455343	105.05	40.04	84.83	84.75	60.6	60.09
8	74.97	96.44	58.65	37.79	13.98031479	115	40.03	96.18	96.7	58.5	58.8
9	79.98	101.915	58.135	43.78	14.00385096	120.02	40.04	101.83	102	58.12	58.15
10	59.03	87.66	73.595	14.065	13.91968776	110.03	51	87.9	87.42	73.36	73.83
焦距情况					平均值	方差					
					13. 93109471	0.007848982					

认为此凸透 镜焦距为 13.9cm+-0.1cm 实验小结: 误差来源、实验收获等

误差来源:

底座不稳定,彼此底座不完全相同,底座圆心不一定完全共线,元件方向不一定完全准确(可能有 偏角) , 测量误差, 成像无法完全精准定位导致的误差

问题探究:

还可以怎样粗测凸透镜的焦距? 共轭法测透镜焦距时成像有哪些特点?

- 在各种平行光源或者近似平行光源下正对成像,粗略测量
- 2 点光源经透镜得到近似平行光

$$\frac{1}{f} = \frac{1}{u_1} + \frac{1}{v_1}$$
 直接套用公式 $f = \frac{1}{u_1} + \frac{1}{v_1}$ 测 u v 得到 f

- 3
- 4 使用凸透镜由近到远看汉字,在恰好无法放大变得模糊时认为距离为焦距
- 1 有大像有小像
- 2 大像小像位置对称

对于凸透镜中心位置没有测量要求,方便测量(比如黑盒子可测)

自准直法测透镜焦距时成像有哪些特点?如何判断物像重合?

(高中做过此实验,以此做完实验现象描述)

- 1 对共轴要求极高
- 2 大小相同方向颠倒成像
- 使用对称图案,将中心位置用黑笔标出,使得像中心与之对齐(共轴调节),使得像顶端与顶 端对齐,底端与低端对齐,为方便观察形状可使用 F 型

凸透镜旋转 180°后测得的焦距一样吗? 为什么?

一样

1 因为光程是可逆的(光路可逆)(个人认为此为本质原因)

$$\frac{1}{f} = \frac{1}{u_1} + \frac{1}{v_1}$$
 2 因为 $f = \frac{1}{u_1} + \frac{1}{v_1}$ 的 uv 是可逆的

- 因为根据折射定律是可颠倒(可逆的)
- n' n n' n因为s' s r 是在空间可逆的
- 注:实验报告不超过2面。可手写(拍照上传)、也可电脑上完成。 实验装置及材料,拍照,单独上传。 实验数据可以手制表格记录(拍照上传)、也可软件截图上传。