Developing A Flight Delay Prediction ModelUsing Machine Learning

Project domain: Data science

Team ID:PNT2022TMID36549

TEAM LEAD
Akshaya.S(112719104003)

TEAM MEMBERS

Dhanisha.R.M(112719104009)

Jayasree.M(112719104016)

Pooja.B(112719104027)

ST.PETER'S COLLEGE OF ENGINERING AND TECHNOLOGY

Avadi -600 054

DEVELOPING A FLIGHT DELAY PREDICTION MODEL USING MACHINE LEARNING

Bonafide record of work done by

Akshaya.S (112719104003)

Dhanisha.R.M (112719104009)

Jayasree.M (112719104016)

Pooja.B(112719104027)

Project report submitted in partial fulfillment of the requirements for the degree of

BACHELOR OF ENGINEERING

BRANCH: INFORMATION TECHNOLOGY

Of Anna University

NOVEMBER 2022

CONTENTS

1. INTRODUCTION

- . Project Overview
- . Purpose

2. LITERATURE SURVEY

- . Existing problem
- . References
- . Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- . Empathy Map Canvas
- . Ideation & Brainstorming
- . Proposed Solution
- . Problem Solution fit

4. REQUIREMENT ANALYSIS

- . Functional requirement
- . Non-Functional requirements

5. PROJECT DESIGN

- . Data Flow Diagrams
- . Solution & Technical Architecture
- . User Stories

6. PROJECT PLANNING & SCHEDULING

- . Sprint Planning & Estimation
- . Sprint Delivery Schedule
- . Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with

code)

- . Feature 1
- . Feature 2
- . Database Schema (if Applicable)

8. TESTING

- . Test Cases
- . User Acceptance Testing

9. RESULTS

. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

CHAPTER 1 INTRODUCTION

Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies . We took several independent variables such as humidity, pressure and precipitation for predicting the flight delay. In this project we uses regression techniques of machine learning to predict the flight delay. By predicting the flight delay beforehand, the airport can reduce the cost of waiting.

PROJECT OVERVIEW

Figure 1.1. Technical Architecture

Flight arrival delays can be predicted using a machine learning algorithm. Rows of feature vectors, such as departure date, delay, travel time between the two airports, and scheduled arrival time, provide the input to our algorithm. The decision tree classifier is then used to determine whether or not the flight arrival will be delayed. When there is more than a 15-minute gap between the scheduled and actual arrival timings, a flight is deemed to be delayed. For various figures of merit, we contrast the decision tree classifier with logistic regression and a straightforward neural network.

PURPOSE

The main goal of this project is to predict the flight delay using machine learning algorithms. Flight planning is one of the difficulties in the industrial environment because there are many un predictabilities. One such condition is the incidence of delays, which can result from a variety of causes and impose significant expenses on airlines, operators, and passengers. Delays in departure can be brought on by inclement weather, seasonal and holiday demands, airline policies, technical issues with airport infrastructure, baggage handling, and mechanical equipment, and a buildup of delays from earlier flights. Hence Predicting flight delays can improve airline operations and passenger satisfaction, which will result in a positive impact on the economy.

CHAPTER 2 LITERATURE SURVEY

YEAR	AUTHOR	METHODOLOGY	OBJECTIVES	FINDINGS	PROBLEMS
2017	Gopalakrishnan Balakrishnan	Variables like quarter of the year, year, month, day of month, and day of week have been used to get insights on seasonality. Other variables that were investigated include the origin and destination airports and departure and arrival times.	After the identification of input variables, we collected the relevant data on those variables. Several classification models were then trained and tested. The data collection process data pre-processing in data transformation and description of classification models. After the identification of input variables, we collected the relevant data on those variables. Several classification models were then trained and tested. The data collection process data pre-processing in data transformation and description of classification models.	Variables to be used to study the impact on airline On-Time performance.	For a decision maker, understanding the factors that may impact the outcome of their decision is important.
2020	Maryam Farshchian Yazdi, Seyed Reza Kamel	As the air travels have a significant role in economyof agencies and airports, it is necessary for themto increasequality of theirservices. One ofthe important modern life challenges of airports and airline agencies is fight delay.	In this section, we issues to represent a technique in which we tried to solve the problems related to massive data, processing complications lack of computational space, over fitting and existing noise in data	The model is designed using Machine Learning inTensor flow and is installed on a system of 40 core CPU at frequency of 2.6 hz.	Flight delay has a negative impact on paasengers, Agencies and airports. So, estimation of Flight delay is useful.

	Γ	T		I	
2020	Yogitha bose Vital vora	Flight Planning is one of the challenges in industrial world which faces many uncertain conditions. One such condition is delay occurrence, which stems from various factors and imposes considerable costs on airlines, operators, and travelers.	Various methodology can be applied to implement the system that predicts the delay in flight. Decision Tree: As the name suggest the main idea behind decision tree algorithm is to make a tree like structure and get the answers in form oftrue of false. Themodel begins from aroot node and ends on the decision	As discussed, weather condition plays an important role in proper And timely functioning of flights. We propose a flight delay prediction system which focuses mainly on predicting delay of a flight based on the weather situation	As discussed, considering thestandard Taxonomy of the flight delay and its problems, one will contemplate the scope of prediction. Statistical model requires the use of correlation analysis, parametric and non parametric tests, analysis and econometric models.
2020	L. Carvalho A. Sternberg	The mainproblems related to flight delay prediction are identified and organized in a taxonomy. It includes scopes, models, and ways of handling flight delay prediction.	The flight delay prediction problem may be modeled in many ways, depending on the objectives of the research. Methods were divided into five groups they are Statistical analysis, Probabilistic, Network, Machine learning, Operational.	Root delay propegation Researchers create prediction models to tackle root delay, predicting when and where a delay will occur and what are its reasons and sources.	Problem is the core feature in Domain taxonomy. As seen there are three major concerns regarding the flight delay prediction Problem: delay propagation, root delay and cancellation.

2021	Viran Raj	We are proposing	A. Using Linear	A.Logistics	No data
2021	Satyam Singh	machine learning	Regression:Sincelogi	Regression	mining
	Suryum Singii	algorithms like	stic regression is	Model	projects
		Linear regression	appropriate for	B.Linear	could be
		Techniques. The	categorical	Regression	finished
		aim of this research	values, and we expect	Model	without
		work isto predict	to predict the potential	C. Initial Data	thoroughly
		Flight Delay.	delayed time, which is	Exploring	understand
		I light Delay.	a numerical valuable,	D.	the data
			it makes more sense to	Dimensionality	first.We
			apply Linear	Reduction.	renamed the
			Regression for our	Reduction.	original data
			model.		column
			B. Using Logistic		names and
			Regression:		validated the
			Actual Arrival time -		nulls,
			Expected		however
			Arrival		with a little
			Time + (Actual		different
			Departure time		
			Departure time		approach. After data
			Evenanted Departure		
			Expected Departure.		cleaningwe start the first
					process of
					exploring our
					data if
					there were
					any
					patterns
					within the
					independent
					variables.

Existing System

Airlines, airports, and passengers would all benefit from a more accurate flight delay prediction model. Currently, models used by airlines to predict flight delays are based on historical data and do not take into account real-time data such as weather conditions. This can lead to delays and cancellations, as well as increased cost.

Reference Link

https://ieeexplore.ieee.org/document/8903554 https://ieeexplore.ieee.org/document/9512525

https://www.sciencedirect.com/science/article/abs/pii/S1270963821003321

https://ieeexplore.ieee.org/document/9129110

CHAPTER 3 IDEATION & PROPOSED SOLUTION

Figure 3.1. Empathy Map

IDEATION & BRAINSTORMING

Step 1 - Team Gathering, Collaboration and Selecting the Problem Statement

Step 2 - Brainstorm

Step 3 – Grouping ideas

Step 4 - Idea Prioritization

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

♠ 20 minute

3.3. PROPOSED SOLUTION

S.No.	Parameter	Description			
1	Problem Statement (Problem to be solved)	Flight arrival delays can be predicted using a machine learning algorithm. Rows of feature vectors, such as departure date, delay, travel time between the two airports, and scheduled arrival time, provide the input to our algorithm. The decision tree classifier is then used to determine whether or not the flight arrival will be delayed. When there is more than a 15-minute gap between the scheduled and actual arrival timings, a flight is deemed to be delayed. Additionally, for various figures of merit, we contrast the decision tree classifier with logistic regression and a straightforward neural network.			
2	Idea / Solution description	Using ML Algorithms to predict the delay in flight arrival, informing them to the customers using a Mobile Application or a Web Application. We are developing a software that will allow passengers who use airplanes to foresee flight delays. They may effectively plan their travelusing this application, which will help them save time. Thetool will have an intuitive user interface. To estimate delays and execute the most effective and efficient methods in the tool, we will use a variety of machine learning algorithms.			
3	Novelty / Uniqueness	 Building a full-fledged application in which the customers can track whether the flights will be delayed or not. Combining the results of one or more ML models using the techniques of ensembling 			
4	Social Impact / Customer Satisfaction	Flight delays not only anger and disturb air travelers' plans,but they also reduce productivity, raise capital costs, reallocate flight crews and aircraft, and add to crew costs. Higher operating costs for airline firms are			

		unavoidable as flight delays necessitate the consumption of more labor capital, and other necessary inputs. Flight delays could make the transportation system less effective an have a negative impact on how an airport is planned. Delayed flight subject airlines to penalties, fines, and additional expenses.
5	Business Model (Revenue Model)	The cost of airline tickets and flight delays are now uncertain. Even for the same airplane and seat class, ticket costs are dynamic and frequently change. To increase their revenue, airline firms use a variety of algorithms to adjust the prices dynamically. These models are not accessible to the general public due to the intense competition among airline operators. Additionally, the flight is delayed due to a number of micro and macro causes. The air route status, the prior flight's delay airplane capacity, air traffic management, airline properties, etc. are the main elements that have an impact on airlines. To save "Time and Money," it is necessary to forecast airline flight delays and ticket costs.
6	Scalability of the Solution	The proposed system can be scaled up to take actions — book another flight for passengers or if a particular flight is getting delayed often, the same can be examined by memorizing the outputs of this system. The can be scaledup to predict the delay of flights in every airport.

3.4. PROBLEM SOLUTION FIT

1.CUSTOMER SEGMENTS

delays gradually Flight are increasing and bring more financial difficulties and customer dissatisfaction to airline companies. To resolve this situation, supervised machine learning models were implemented to predict flight delays.

6.CUSTOMER LIMITATIONS

The results show that adverse weather conditions, low ceilings, and low visibility conditions strongly influence flight delays. Similarly, Asfe et al. Investigated the major causal factors of flight delays by ranking different factors using the analytical hierarchical process.

5.AVAILABLE SOLUTIONS

Therefore, predicting flight delays can improve airline operations and passenger satisfaction, which will result in a positive impact on the economy. In this study, the main goal is to compare the performance of machine learning classification algorithms when predicting flight delays..

2.PROBLEM/PAINS

Flight delays not only irritate air passengers and disrupt their schedules but also cause a decrease in efficiency, an increase in capital costs, reallocation of flight crews and aircraft, and additional crew expenses

9.PROBLEM ROOT/CAUSE

Fight delay prediction problem can be treated by Different point of view: (i) delay propagation, (ii) root delay and cancellation. In delay propagation, one study how delay propagates through the network of the transportation system. On the other hand, considering that new problems may happen eventually, it is also important to predict further delays and understand their causes.

7.BEHAVIOR

As the air travels have a significant role in economy of agencies and airports, it is necessary for them to increase quality of their services. One of the important modern life challenges of airports and airline agencies is flight delay. . In addition, delay in flight makes passengers concerned and this matter causes extra expenses for the agency and the airport itself.

3.TRIGGERS TO ACT

The main public datasets and the papers analyzed, we have organized them main commonly attributes used into seven classes depicted in the data model . They abstract the main input attributes for delay pre-diction models.

10.YOUR SOLUTION

This context, researchers created a Fight delay models for delay prediction over the last years, and this work contributes with an analysis of these models from a Data Science perspective. developed a taxonomy scheme and it can be classified models in respect of detailed component

8.CHANNELS OF BEHAVIOR

A typical operation of a commercial Fight. Stages can take place at terminal boundaries, airports, runways, and airspace, being susceptible to different kinds of delays. Some examples include mechanical problems, weather conditions, ground delays, air traffic control, runway queues and capacity constraints

4.EMOTIONS

We are going to develop a user friendly web application. Our algorithm gives the best accuracy in identifying the delays and can satisfy the passengers.

CHAPTER 4 REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Registered User -Login	Login through password(Form)
		Login through Gmail
		Login through LinkedIn
FR-4	Verify the link provided by the	User inputs the link to be verified
	user	
FR-5	Display the result	If the site link is a prediction site, user must be aware and
		read the precautions displayed
		If the site link is legit, exit the application
FR-6	Share Queries	If any doubts, send query Read FAQs

NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Knowing when the flight will be delayed enables improved operational planning at the airport of destination based on anticipated flight delay at origin.
NFR-2	Security	It is highly secure and the passengers who log in to the application will be able to view the status
NFR-3	Reliability	As we train with more data the model will be reliable.
NFR-4	Performance	 This was done statistically, and the delay time was thought to be shorter. Using variables that occur close to the destination's arrival time, it has projected the delay at the destination.
NFR-5	Availability	The mobile application must be accessible to users in India 99.98% of the time each month between EST and IST business hours.
NFR-6	Scalability	 The main problem for airlines and travellers is flight delay. According to the flight schedule, the anticipated arrival delay considers both flight information and the weather at the airports of origin and destination.

CHAPTER 5 PROJECT DESIGN

DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flowswithin a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Figure 5.1. Data flow diagram

Figure 5.2. Solution Architecture

Figure 5.3. Technology Stack

Components & Technologies

S.No	Component	Description	Technology
1.	User Interface	Web Application to interact with the user.	Flask
2.	Login/Sign up	Login/ Sign up – The user can enter the details and get them validated	Python
3.	Database	The Database to store the login details of the user	MySQL
4.	Cloud Database	The database to keep track of the flight details from the travel agency, input to the Machine Learning Model	Firebase
5.	Machine Learning Model	To Predict whether the flight will get delayed or not.	SVM, KNN Classifier, Logistic Regression, Decision Trees
6.	Deep Learning Model	To Predict whether the flight will get delayed or not	Fully Connected Neural Networks
7.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	IBM Cloud

Application Characteristics

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Web application – Flask ML – Sklearn, Tensorflow, Keras API	Deep Learning, Python
2.	Security Implementations	The data is secured that it is encrypted in IBM cloud	AES (256-bit)
3.	Scalable Architecture	Can be scaled upto many airports, many users with more training	Firebase
4.	Availability	The status will be updated frequently	IBM Cloud
5.	Performance	Can make as many number of requests per second to get the prediction	IBM Cloud

User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard with Gmail Login	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login & access the dashboard	High	Sprint-1
	Core	USN-6	As a user, I can enter my flight details	I can feed the inputs to the system	High	Sprint-2
		USN-7	As a user, I can look at the flight details	I can see whether my flight is getting delayed or not	High	Sprint-3

CHAPTER 6 PROJECT PLANNING & SCHEDULING

SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Engineering	USN-1	Data Collection, Data Preprocessing and Feature Extraction	4	High	Sujith Kumar M A
Sprint-1	Machine Learning Prediction Model	USN-2	Building a Machine Model for Flight Delay Prediction, Testing with different metrics.	4	High	Anusha Devi R
Sprint-2	Flask Web Page	USN-3	Building Home Page and Prediction Page.	4	Low	Nandish Chandrasekar
Sprint-1	Integration.	USN-4	Integrating the flask pages with the ML Model and IBM Cloud Deployment	4	Medium	Tamilselvan M

SPRINT DELIVERY SCHEDULE

Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
4	6 Days	24 Oct 2022	29 Oct 2022	4	29 Oct 2022
4	6 Days	31 Oct 2022	05 Nov 2022	4	05 Nov 2022
4	6 Days	07 Nov 2022	12 Nov 2022	4	12 Nov 2022
4	6 Days	14 Nov 2022	19 Nov 2022	4	19 Nov 2022
	190 C. O. D. V. O. S. C.	Points 4 6 Days 4 6 Days 4 6 Days	Points 4 6 Days 24 Oct 2022 4 6 Days 31 Oct 2022 4 6 Days 07 Nov 2022	Points (Planned) 4 6 Days 24 Oct 2022 29 Oct 2022 4 6 Days 31 Oct 2022 05 Nov 2022 4 6 Days 07 Nov 2022 12 Nov 2022	Points (Planned) Completed (as on Planned End Date) 4 6 Days 24 Oct 2022 29 Oct 2022 4 4 6 Days 31 Oct 2022 05 Nov 2022 4 4 6 Days 07 Nov 2022 12 Nov 2022 4

Figure 6.1 - Burndown Chart

CHAPTER 7

CODING AND SOLUTIONING

This will help us to find out the correlation between the variables in the dataset whichwould help us to find out the columns that are unnecessary and hence to be dropped.

FEATURE 2 - ONE HOT ENCODING

In [39]:	data=p	od.get_du	ımmies(d	ata,columns=['	ORIGIN','DEST	'])							
In [40]:	data[ˈ	ARR_DEL1	5'].val	ue_counts()									
Out[40]:	1.0	9668 1375 ARR_DEL1	l5, dtyp	e: int64									
In [41]:	data.t	tail()											
Out[41]:		FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	CRS_ARR_TIME	DEP_DEL15	ARR_DEL15	ORIGIN_0	ORIGIN_1	ORIGIN_2	ORIGIN_3	ORIGIN_4
	11226	1715	12	30	5	12	0.0	0.0	0	1	0	0	0
	11227	1770	12	30	5	20	1.0	0.0	0	0	0	0	1
	11228	1823	12	30	5	22	0.0	0.0	0	1	0	0	0
	11229	1901	12	30	5	18	0.0	0.0	1	0	0	0	0
	11230	2005	12	30	5	9	0.0	0.0	1	0	0	0	0

The cities in both Origin and Destination are one-hot encoded using the above code

CHAPTER 8

TESTING

TEST

User No	Flight No	Month	Day of month	Day of week	Origin	Destination	Scheduled Departure Time	Scheduled Arrival Time	Actual Departure Time	Actual Inputs
1	1232	1	1	1	ATL	MSP	1905	2305	1945	Delayed
2	1399	1	1	1	ATL	SEA	1805	2410	1855	Delayed
3	2351	1	2	3	ATL	DTW	1305	2305	1305	Not Delayed
4	2637	2	1	3	DTW	ATL	1500	2410	1505	Not Delayed
JSER A	CCEPT	FANCE T	ESTING	÷						

This report shows the number of test cases that have passed and failed

User No	Flight No	Month	Day Of Month	Day Of Week	Origin	Destin -ation	Scheduled Departure Time	Scheduled Arrival Time	Actual Departure Time	Actual Output	Predict -ed Output	Correct-ne ss
1	1232	1	1	1	ATL	MSP	1905	2305	1945	Delayed	Delayed	Correct
2	1399	1	1	1	ATL	SEA	1805	2410	1855	Delayed	Delayed	Correct
3	2351	1	2	3	ATL	DTW	1305	2305	1305	Not Delayed	Not Delayed	Correct
4	2637	2	1	3	DTW	ATL	1500	2410	1505	Not Delayed	Not Delayed	Correct

CHAPTER 9 RESULTS

PERFORMANCE METRICS

Training Accuracy

MODEL EVALUATION

```
acc=accuracy_score(predicted,y_test)
acc
0.8791308284291535
```

Confusion Matrix

Classification Model

```
from sklearn.metrics import classification_report
print(classification_report(predicted, y_test, labels=[1, 2, 3]))
```

		precision	recall	f1-score	support
	1	0.48	0.46	0.47	255
	2	0.00	0.00	0.00	0
	3	0.00	0.00	0.00	0
micro	avg	0.48	0.46	0.47	255
macro	avg	0.16	0.15	0.16	255
weighted	avg	0.48	0.46	0.47	255

CHAPTER 10 ADVANTAGES AND DISADVANTAGES

Advantages

- Customers are happy
- The available flights are easily identified
- Prior information will be sent if in case the flight is delayed
- The current status of the flight can be tracked

Disadvantages

- Wrong prediction due to noise of input data
- If the prediction is wrong, then there will be extra expenses for the agencies, passengers and airport
- Passengers with medical emergencies gets affected

CHAPTER 11

CONCLUSION

In this project, we use flight data, weather, and demand data to predict flight departure delay. In the end, our model correctly predicts the delayed and non-delayed flights correctly. As a result, there can be additional features related to the causes of flight delay that are not yet discovered using our existing data sources.

CHAPTER 12 FUTURE SCOPE

Based on data analysis from the year 2008, this project. There is a sizable dataset accessible from 1987 to 2008, but managing a larger dataset necessitates extensive preprocessing and purification of the data Therefore, adding a larger dataset is a part of this project's future effort. Preprocessing a bigger dataset can be done in a variety of methods, such as establishing a Spark cluster on a computer or using cloud services likeAWS and Azure. Now that deep learning has advanced, we can employ neural networks algorithms to analyze aviation and meteorological data. Neural networks employ a formof pattern matching.

The project's focus is primarily on flight and weather data for India, but we can also include data from other nations like China, the United States, and Russia. We can broaden the project's scope by including flight information from international flights ratherthan just domestic flights.

CHAPTER 13 APPENDIX

Source code

Flask Application

```
from flask import Flask, request, render_template
import numpy as np
import pandas as pd
import pickle
import os
model = pickle.load(open('flight_new.pk1','rb'))
app = Flask( name
@app.route('/')
def home():
  return render_template("mainpage.html")
@app.route('/prediction',methods=['GET','POST'])def
predict():
  name = request.form['fname']
  month = request.form['month']
  dayofmonth = request.form['daymonth']
  dayofweek = request.form['dayweek']
  origin = request.form['origin']
  if(origin == "msp"):
     if(origin == "dtw"):
     origin1, origin2, origin3, origin4, origin5 = 1,0,0,0,0
  if(origin == "jfk"):
     origin1, origin2, origin3, origin4, origin5 = 0.0,1.0,0,
  if(origin == "sea"):
     origin1, origin2, origin3, origin4, origin5 = 0.1,0,0,0
```

```
if(origin == "atl"):
     origin1, origin2, origin3, origin4, origin5 = 0.0,0.1,0
  destination = request.form['destination']
  if(destination == "msp"): destination1, destination2, destination3, destination4, destination5 =
     0,0,0,0,1
  if(destination == "dtw"): destination1, destination2, destination3, destination4, destination5 =
     1,0,0,0,0
  if(destination == "jfk"): destination1, destination2, destination3, destination4, destination5 =
     0,0,1,0,0
  if(destination == "sea"): destination1,destination2,destination3,destination4,destination5 =
     0,1,0,0,0
  if(destination == "atl"): destination1,destination2,destination3,destination4,destination5 =
     0,0,0,1,0
  dept = request.form['sdeparttime']
  arrtime = request.form['sarrivaltime']
  actdept = request.form['adeparttime']
  dept15 = int(dept)-int(actdept)
  total =
[[name,month,dayofmonth,dayofweek,arrtime,dept15,origin1,origin2,origin3,origin4,origi
n5,destination1,destination2,destination3,destination4,destination5]]
  y_pred = model.predict(total)
  print(y_pred)
  if(y_pred == [0.]):
     ans = "The Flight will be on time"
  else:
     ans = "The Flight will be delayed"
  return render_template("index.html",data = ans)
app.run(debug=True)
```

Github Link:
Gittiub Link.
https://github.com/IBM-EPBL/IBM-Project-36932-1660298968
Video Demo Link:
https://drive.google.com/drive/u/0/folders/1DX8Jpt0-uB-VRfUFkrVJAubv8VK0lWHc

