POLITECNICO MILANO 1863

DEPARTMENT OF MECHANICAL ENGINEERING

EXERCISE CLASS 1 (part 1/2)

Review of basic statistical concepts: assumptions check and hypotesis testing (1 sample)

Name Surname

DIPARTIMENTO DI ECCELLENZA

MIUR 2018-2022

Probability Distributions

A **sample** is a collection of measurements selected from some larger source or population

Statistical methods allow us to study a sample and to **draw conclusions about their source** (i.e., about the process that generated them)

A *probability distribution* is a **mathematical model** that relates the value of the variable with the **probability of occurrence** of the value in the population.

Such a model could serve as a basis for judgement of observed data

Probability Distributions

• Continuous distribution: variable expressed on a continuous scale

Probability density function *f(x)*

If *X* is a continuous variable, then, for every $x_1 < x_2$:

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) =$$

$$= P(x_1 \le X < x_2) = P(x_1 < X < x_2)$$

Cumulative distribution function F(x):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

For $-\infty < x < \infty$

Normal (Gaussian) distribution

A random variable X with probability density function:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad \text{for } -\infty < x < \infty$$

has a normal distribution with parameters μ and σ where

$$-\infty < \mu < \infty$$
 and $\sigma > 0$

Also,

$$E(x) = \mu$$
 and $V(x) = \sigma^2$

Normal (Gaussian) distribution

A normal random variable with $\mu = 0$ and $\sigma^2 = 1$ is called a *standard* normal variable.

A standard normal variable is usually denoted as Z.

Suppose X is a normal random variable with mean μ and variance σ^2 . Then

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P(Z \le z) = \Phi(z)$$

Z is a standard normal random variable and $z = (x - \mu)/\sigma$ is the z-value obtained by standardizing x.

Statistical inference

We want to infer properties of the source population by analysing data that are sampled from that distribution

Point estimators

A **point estimate** of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$

The **point estimator** $\widehat{\Theta}$ is an unbiased estimator of the parameter θ if:

$$E(\widehat{\Theta}) = \theta$$

If the estimator is not unbiased, then the difference $E(\widehat{\Theta}) - \theta$ is called **bias** of the estimator $\widehat{\Theta}$

Statistical inference

Remind:

Unknown Parameter θ	Statistic Ĥ	Point Estimate $\hat{\theta}$
μ	$\overline{X} = \frac{\sum X_i}{n}$	\overline{x}
σ^2	$S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$	s^2
$\mu_1-\mu_2$	$\overline{X}_1 - \overline{X}_2 = \frac{\sum X_{1i}}{n_1} - \frac{\sum X_{2i}}{n_2}$	$\overline{x}_1 - \overline{x}_2$
$p_1 - p_2$	$\hat{P}_1 - \hat{P}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}$	$\hat{p}_1 - \hat{p}_2$

A synthetic fiber used in manufacturing industry has an ultimate tensile strength that is normally distributed with mean 75.5 psi and standard deviation 3.5 psi.

Compute the probability that a random sample of 6 observations has a sample mean larger than 75.75 psi.

$$\mu = 75.5$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{3.5}{\sqrt{6}} = \text{1,428}$$

$$P(\bar{X} \ge \mu_0) = P(\frac{\bar{X} - \mu}{\sigma_{\bar{X}}} \ge \frac{\mu_0 - \mu}{\sigma_{\bar{X}}}) = P(Z \ge \frac{75.75 - 75.5}{1.429}) = 1 - P(Z \le 0.175)$$

Minitab outcome:

Normal with mean = 75,5 and standard deviation = 1,428
$$\begin{array}{c|c}
x & P(X \le x) \\
\hline
75,75 & 0,569488
\end{array}$$

The probability of observing a sample mean larger than 75,75 is:

$$P(X \ge x) = 1 - P(X \le x) =$$

= 1 - 0,569 = **43,1** %

A random sample of size 16 is drawn from a normal population with mean 75 and standard deviation 8. A second sample of size 9 is drawn from a normal population with mean 70 and standard deviation 12.

- a. Compute the probability that the **sample mean difference** between the first and the second sample is greater than 4 (assume that the two populations are independent).
- b. Compute the probability that the sample mean difference between the first and the second sample ranges between 3.5 and 5.5 (same assumption).

a. Compute the probability that the **sample mean difference** between the first and the second sample is **greater** than 4 (assume that the two populations are independent).

Minitab outcome:

$$P(\overline{X}_1 - \overline{X}_2 > 4)$$

 $P(Z > \frac{4-5}{\sqrt{20}}) = P(Z > -0.2236) = 1 - P(Z \le -0.2236)$
 $= 1 - 0.4115 = 0.5885$

Normal with mean = 5 and standard deviation = 4,472

$$\frac{x \quad P(X \le x)}{4 \quad 0,411529}$$

b. Compute the probability that the sample mean difference between the first and the second sample **ranges** between 3.5 and 5.5 (same assumption).

$$Pr(3.5 \le \bar{X}_1 - \bar{X}_2 \le 5.5) = Pr(\frac{3.5 - 5}{\sqrt{20}} \le Z \le \frac{5.5 - 5}{\sqrt{20}}) = Pr(Z \le \frac{5.5 - 5}{\sqrt{20}}) - Pr(Z \le \frac{3.5 - 5}{\sqrt{20}})$$

Normal with mean = 5 and standard deviation = 4,472

$$x P(X \le x)$$

3,5 0,368654

Normal with mean = 5 and standard deviation = 4,472

$$x P(X \le x)$$

5,5 0,544512

Solution:

P (
$$3.5 \le X1 - X2 \le 5.5$$
) = $0.544 - 0.369 = 17.5$ %

HYPOTESIS TESTING

Hypotesis testing

A **statistical hypotesis** is a statement either about the **parameters** of a probability distribution or the parameters of a model.

Taking a random sample from a population, a **test statistic** is computed. Then, it is possible **to reject or fail to reject the null hypothesis H0**.

Part of the testing procedure is specifying the set of values for the test statistic that leads to the rejection of H0 (**critical region**)

Example: hypotesis testing on a population mean

- H_0 : μ = 50 is the *null hypotesis*
- H_1 : $\mu \neq$ 50 is the alternative hypotesis

The critical region for H_0 : $\mu = 50$ versus H_1 : $\mu \neq 50$ and n = 10.

Hypotesis testing

• One sample tests:

Test for mean (known variance): one-sample z-test

• Test for mean (unknown variance): one-sample t-test

• Test for variance: chi-squared test (variance)

Two samples tests

• Test for mean difference (known var): two-sample z-test

Test for mean difference (unknown var): two-sample t-test

• Test for mean of paired data (unknown var): paired t-test

• Test for equality of variances: F-test (variances)

Hypotesis testing - errors

Two kinds of errors may be committed when testing hypothesis

Decision	H_0 Is True	H_0 Is False
Fail to reject H_0	no error	type II error
Reject H_0	type I error	no error

 $\alpha = P(type\ I\ error) = P(reject\ H_0|H_0\ is\ true)$ 'Probability of rejecting a good product'
Also known as: significance level

 $\beta = P(type\ II\ error) = P(fail\ to\ reject\ H_0|H_0\ is\ false)$ 'Probability of accepting a nonconforming product'

Hypotesis testing - errors

Hypotesis testing – general procedure

- 1. From the problem context, identify the parameter of interest.
- 2. State the null hypothesis, H_0 .
- 3. Specify an appropriate alternative hypothesis, H_1 .
- **4.** Choose a significance level α .

- 5. State an appropriate test statistic.
- **6.** State the rejection region for the statistic.
- 7. Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute that value.
- 8. Decide whether or not H_0 should be rejected and report that in the problem context.

Thus:

Specify a value of α (Type I error) and design a procedure such that β (Type II error) has a suitably small value

Hypotesis testing – Confidence Intervals

There is a direct link between hypothesis testing and *confidence intervals*

Let [L, U] be a $100(1 - \alpha)\%$ confidence interval for the parameter θ , then the hypothesis test:

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

with significance level α will yield the rejection of the null hypothesis H_0 if and only if θ_0 is NOT included into the $100(1 - \alpha)\%$ confidence interval [L, U].

REMIND:

 $L \le \theta \le U$ such that $P(L \le \theta \le U) = 1 - \alpha$ is called $100(1 - \alpha)\%$ confidence interval for the (unknown) parameter θ

Interpretation: if, in repeated random samplings, a large number of such intervals is constructed, $100(1 - \alpha)\%$ of them will contain the true value of θ .

Hypotesis testing – p-value

The **P-value** is the smallest level of significance that would lead to rejection of the null hypothesis H_0

It is the probability that the test statistic will take on a value that is at least as extreme as the observed value of the statistic when the null hypothesis is true

$$P = \begin{cases} 2[1 - \Phi(|z_0|)] & \text{for a two-tailed test: } H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0 \\ 1 - \Phi(z_0) & \text{for an upper-tailed test: } H_0: \mu = \mu_0, \quad H_1: \mu > \mu_0 \\ \Phi(z_0) & \text{for a lower-tailed test: } H_0: \mu = \mu_0, \quad H_1: \mu < \mu_0 \end{cases}$$

E.g.: p-value=0.0012 means that only (100*0.0012)%=0.12% of population is more extreme than Z_0

Very small p-value: reject H_0

MODELLING PROCESS DATA: THE IMPORTANCE OF THE ASSUMPTIONS

Assumptions - IID data

Statistical inference and hypothesis testing require data to be independent and identically distributed ("iid").

This means that the assumptions of independence and normality must be verified.

IID = INDEPENDENCE + NORMALITY

Without these conditions, results may be biased or unreliable.

As consequence, methods to check these assumptions must be always applied before any analysis.

Assumptions	Hypothesis test (to check the assumption)
"independence" (random pattern)	Runs testBartlett's testLBQ's test
Normal distribution	Normality test

Exercise 1

A study was performed by ComputerTek Co to determine the time series of order processing durations. Data in the file `days.csv` refer to the period 1995, July – 1997, October. Each datum represents the time (in days) to ship the order.

INDEPENDENCE:

- 1. Determine the value of n and m in observed runs
- 2. Assuming that the runs distribution is random, which is the expected number of runs? And the 95% confidence interval for the number of runs?
- 3. Test the null hypothesis of observation randomness (significance level 5%)

NORMALITY:

4. Test the null hypothesis of observation **normality** (significance level 5%)

AFTER ASSUMPTIONS CHECK:

- 5. Assume to know that the variable representing the days to ship the order is normally distributed standard deviation (known) 7 [days].
 - 5.1 Is there statistical evidence to state that the mean life of neon lights is larger than 31 days (confidence level: 95%)?
 - 5.2 Is there statistical evidence to state that the mean life of neon lights is different from 31 days (confidence level: 95%)?
 - 5.3 Compute the power curve for the test of Point 5.1.
- 6. Assume to know that the variable representing the days to ship the order is normally distributed with mean 30 [days], and the standard deviation is **unknown**. Is there statistical evidence to state that the mean life of neon lights is **larger** than 31 days (confidence level: 95%)?
- 7. Compute the upper limit of the one-sided interval for the variance (99%) and the two-sided confidence interval for the standard deviation (98%)

Data exploration

Import the file Ese_1.csv:

Data exploration

Graph \rightarrow Histogram /Boxplot \rightarrow Simple \rightarrow click on column name ('Days'), then 'Select'

Stat → Time Series → Time Series plot

Determine the value of n and m in observed runs

Stat → Basic Statistics → Display Descriptive Statistics

Statistics

 Variable
 N N*
 Mean SE Mean
 StDev Minimum Q1 Median Q3 Maximum

 Days
 66
 0 30,1364
 1,03232
 8,38659
 16 26
 29,5 34
 80

 $n: n^{\circ}$ of observations $m: n^{\circ}$ of +

Number of observations: n = 66

Number of + (above mean: 30,136): **m = 30**

Number of runs (Y): 34

Assuming that the runs distribution is random, which is the expected number of runs? And the 95% confidence interval for the number of runs?

Expected number of runs:
$$E(Y) = \frac{2m(n-m)}{n} + 1 = 33,73$$

Confidence interval (CI) computation

$$E(Y) \mp z_{\alpha/2} \sqrt{V(Y)}$$

Where the variable: $Y \sim N(E(Y), V(Y))$

is a Normal approximation of a Poisson distribution

$$CI = (25.894, 41.561)$$

Inverse Cumulative Distribution Function:

$$\frac{P(X \le x)}{0,025} = Z_{\alpha/2}$$

Calc → Probability Distributions → Normal

95% CI $\rightarrow \alpha/2 = 0.025$

Point 3 Test the null hypothesis of observation randomness (significance level 5%)

We can verify if the process is random by using:

- time series plot (qualitative)
- runs test (quantitative)
- ACF/PACF (qualitative)
- Bartlett's test (quantitative)
- LBQ test (quantitative)

Test statistic:
$$Z_0 = \frac{Y - E(Y)}{\sqrt{V(Y)}} \approx 0$$

$$|Z_0| > z_{\alpha/2}$$

$$z_{\alpha/2} = 1.95996$$

Therefore, there is statistical evidence to state that process is random (95%).

Stat → Nonparamentrics → Runs test

RUNS TEST

Test

Null hypothesis H₀: The order of the data is random Alternative hypothesis H₁: The order of the data is not random

Number of Runs
Observed Expected P-Value
34 33,73 0,946

P-value > Significance level

Descriptive Statistics

Number of Observations

$$\frac{N}{66} \frac{K}{30,1364} \frac{\leq K}{36} > K$$

K = sample mean

Point 3 Test the null hypothesis of observation randomness (significance level 5%)

We can verify if the process is random by using:

- time series plot (qualitative)
- runs test (quantitative)
- ACF/PACF (qualitative)
- Bartlett's test (quantitative)
- LBQ test (quantitative)

BARTLETT's TEST for a specific lag

$$H_0: \rho_k = 0 \qquad H_1: \rho_k \neq 0$$

 ρ_k : true autocorr at lag k r_k : sample autocorr at lag k

To test the absence of autocorrelation at 1 predefined lag.

In this case, lag 1

Test statistic: r_k

Critical (rejection) region:
$$|r_k| > \frac{Z_{\alpha/2}}{\sqrt{n}} = 0.24$$

Stat → Time Series → Autocorrelation

Point 3 Test the null hypothesis of observation randomness (significance level 5%)

We can verify if the process is random by using:

- time series plot (qualitative)
- runs test (quantitative)
- ACF/PACF (qualitative)
- Bartlett's test (quantitative)
- LBQ test (quantitative)

Ljung-Box (LBQ) TEST for a global test

$$H_0: \rho_k = 0, k = 1, ..., L$$
 $H_1: \exists k \in [1, L] / \rho_k \neq 0$

Test statistic:
$$LBQ = n(n+2) \sum_{k=1}^{L} \frac{r_k^2}{n-k}$$
 L = 6 (number of lags to test)

$$LBQ \sim \chi_L^2 \Rightarrow$$
 rejection region : $LBQ > \chi_{\alpha,L}^2$

Lag	ACF	Т	LBQ	
1	-0,001466	-0,01	0,00	
2	0,022790	0,19	0,04	
3	-0,189604	-1,54	2,60	
4	0,021469	0,17	2,63	
5	-0,057189	-0,45	2,87	
6	0,170806	1,34	5,05	LBQ

Inverse Cumulative Distribution Function:

Calc → Probability Distributions → Chi Squared

Stat → Time Series → Autocorrelation

Point 4 Test the null hypothesis of observation **normality** (significance level 5%)

Normality can be tested with:

- Shapiro-wilk test
- Anderson-Darling test

H0: process is Normal H1: process in <u>not</u> Normal

How much is this result influenced by the **outlier**? We can try to remove the outlier and check for normality again:

Point 4 Test the null hypothesis of observation **normality** (significance level 5%)

Normality can be tested with:

- Shapiro-wilk test
- Anderson-Darling test

H0: process is Normal H1: process in <u>not</u> Normal

P-value > significance level

No statistical evidence to reject the null hypothesis of Normality

Stat → Basic Statistics → Normality test

Assume to know that the variable representing the days to ship the order is normally distributed with standard deviation (known) 7 [days].

ONE-SAMPLE Z-TEST

· One sample tests:

• Test for mean (known variance):

· Test for variance:

one-sample z-test

Two samples tests

• Test for mean difference (known var):

• Test for mean difference (unknown var):

• Test for mean of paired data (unknown var): paired t-test

Test for equality of variances:

Assumptions

- $X_1, X_2, ..., X_n$ is a random sample of size n from a population.
- Population is normal.
- The **variance** of the population is **known**.

Under those assumptions, the quantity Z follows a standard normal distribution N(0,1).

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Null hypothesis: $H_0: \mu = \mu_0$

Where:

 $\circ \mu$ is the population mean

 $\circ \mu_0$ is the hypothesized population mean

o *n* is the sample size

Test statistic: $Z_0 = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}}$

Alternative hypotheses	Rejection criterion	
$H_1: \mu eq \mu_0$	$ Z_0 >z_{lpha/2}$	
$H_1: \mu > \mu_0$	$Z_0>z_lpha$	
$H_1: \mu < \mu_0$	$Z_0 < -z_{lpha}$	

Point 5.1

Assume to know that the variable representing the days to ship the order is normally distributed with standard deviation (known) 7 [days].

Is there statistical evidence to state that the mean life of neon lights is **larger** than 31 days (confidence level: 95%)? Compute the associated one-sided confidence interval.

Stat → Basic Statistics → 1-Sample Z

p-value > 0,05

No statistical evidence to

reject the null hypothesis

Point 5.2

Assume to know that the variable representing the days to ship the order is normally distributed with standard deviation (known) 7 [days].

Is there statistical evidence to state that the mean life of neon lights is **different** from 31 days (confidence level: 95%)? Compute the associated two-sided confidence interval.

Stat \rightarrow Basic Statistics \rightarrow 1-Sample Z

Point 5.3

Assume to know that the variable representing the days to ship the order is normally distributed with standard deviation (known) 7 [days].

Compute the **power curve** for the test of Point 5.1.

The power of a statistical test is the probability of rejecting the null hypotesis when the alternative hypotesis is true.

$$power = 1 - eta = P(rejectH_0|H_0false) = 1 - \Phi\left(Z_{lpha/2} - rac{\delta\sqrt{n}}{\sigma}
ight) + \Phi\left(-Z_{lpha/2} - rac{\delta\sqrt{n}}{\sigma}
ight)$$

where *Z_alpha/2* is the critical value, *delta* is the difference between the hypothesized mean and the true mean, *sigma* is the standard deviation of the population, and *n* is the sample size.

- Reducing *beta*, the power increases.
- The estimation of beta depends on H1.

Stat \rightarrow Power and Sample size \rightarrow 1-Sample Z

Assume to know that the variable representing the days to ship the order is normally distributed, and the standard deviation is **unknown**

ONE-SAMPLE t-TEST

- One sample tests:
 - Test for mean (known variance):
 - Test for mean (unknown variance):
 - Test for variance:

one-sample z-test one-sample t-test chi-squared test (variance)

Assumptions

- $X_1, X_2, ..., X_n$ is a random sample of size n from a population.
- Population is **normal**.
- The **variance** of the population is **unknown**

Under those assumptions, the quantity T follows a Student-t distribution with n-1 degrees of freedom.

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Where:

ullet S is the sample standard deviation

Null hypothesis: $H_0: \mu = \mu_0$

Test statistic: $t_0=rac{ar{X}-\mu_0}{S/\sqrt{n}}$

Alternative hypotheses	Rejection criterion
$H_1: \mu eq \mu_0$	$ t_0 >t_{lpha/2,n-1}$
$H_1: \mu > \mu_0$	$t_0 > t_{lpha,n-1}$
$H_1: \mu < \mu_0$	$t_0 < -t_{lpha,n-1}$

Assume to know that the variable representing the days to ship the order is normally distributed, and the standard deviation is **unknown**.

Is there statistical evidence to state that the mean life of neon lights is **larger** than 31 days (confidence level: 95%)?

Stat → Basic Statistics → 1-Sample t

Compute the upper limit of the one-sided **interval for the variance** (99%) and the two-sided confidence **interval for the standard deviation** (98%)

CHI-SQUARED TEST

One sample tests:

Test for mean (known variance):

Test for mean (unknown variance):

Test for variance:

one-sample z-test one-sample t-test chi-squared test (variance)

The Chi-squared test statistic is:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

where S^2 is the sample variance and σ^2 is the population variance.

The one-sided CI on the variance is computed from:

$$\sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}$$

