Teoría de la Computación y Lenguajes Formales

Gramáticas Libres de Contexto (GLC)

Prof. Hilda Y. Contreras
Departamento de Computación
hyelitza@ula.ve

Contenido

- Gramática Libre de Contexto
- Árbol de derivación.
- Ambigüedad.
- Algoritmos de Simplificación de Gramáticas:
 - Eliminación de Producciones Nulas.
 - Eliminación de Producciones Unitarias.
 - Eliminación de Símbolos y Producciones Inútiles.
- Formas Normales:
 - Forma Normal de Chomsky.
 - Forma Normal de Greibach.
- Parsing
- Ejemplos

Lenguaje Libre de Contexto

Lenguaje Libre de Contexto y GLC

Jerarquía de Chomsky (Lenguaje Regular - Tipo 3)

Tipo	Lenguaje	Máquina	Gramática
0	Recursivamente enumerable	Máquina de Turing	Sin restricciones
1	Dependiente del Contexto	Autómata linealmente acotado	Gramática dependiente del contexto αΑβ → αγβ
2	Independiente del Contexto	Autómata de Pila	Gramática independiente de contexto A → γ, γ en (V U T)*
3	Lenguaje Regular	Autómata finito	Gramática Regular A → aB A → a

Gramática

- Gramática expresa la competencia lingüística. Modelar el comportamiento lingüístico en el proceso de comunicación (comprensión y generación de la lengua)
- Gramática: Especificación rigurosa y explicita de la estructura de un lenguaje (No ambigua, predictiva, aplicativa).

Gramática Generativa

- En 1957 aparece la denominada "Gramática Generativa" tras la publicación de la obra de Noam Chomsky "Estructuras Sintácticas".
- En este libro Chomsky expone que una gramática de constituyentes inmediatos no es totalmente válida para explicar el mecanismo mediante el cual los hablantes de una lengua son capaces de producir y entender oraciones.

Gramáticas Generativas

Una gramática generativa es una cuádrupla (V, T, P, S) en la que:

- V es un conjunto de variables o símbolos no terminales. Sus elementos se suelen representar con letras mayúsculas.
- **T** es el alfabeto, conjunto de símbolos terminales. Sus elementos se suelen representar con letras minúsculas.
- P es un conjunto de pares (α, β), llamados reglas de producción, donde α, β en (V U T)* y α contiene, al menos un símbolo de V. El par (α, β) se suele representar como α → β
- **S** es un elemento de V, llamado símbolo de partida o inicial.

Paso de Derivación

Dada la Gramática G = (V, T, P, S) y dos palabras α , β en (V U T)* β es derivable a partir de α en un paso (α => β) si y solo si existen palabras δ_1 , δ_2 en (V U T)* y una producción $\gamma \rightarrow \phi$ tales que:

$$\alpha = \delta_1 \gamma \delta_2$$
 γ $\beta = \delta_1 \phi \delta_2$

la derivación sería:

$$\delta_1 \gamma \delta_2 => \delta_1 \phi \delta_2$$

Secuencia de Derivación

Sucesión [1 a ∞] de pasos de derivación β es derivable de α ($\alpha = >^* \beta$) si y solo si existe una sucesión de palabras $\gamma_1, \ldots, \gamma_n$ ($n \ge 1$) tales que:

$$\alpha => \gamma_1 => \gamma_2 => \ldots => \gamma_n => \beta$$

Lenguaje Generado

Se define como lenguaje generado por una gramática G = (V, T, P, S) al conjunto de cadenas formadas por símbolos terminales en V y que son derivables a partir del símbolo de partida S.

Es decir,

$$L(G) = \{ w \mid w \text{ en } T^* \text{ y } S =>^* w \}$$

Gramática Libre de Contexto

Una Gramática Libre de contexto es una Gramática Generativa G = (V,T,P,S)

Donde el conjunto P de producciones tiene la forma:

$$A \rightarrow \lambda$$

donde A en V y λ en (V U T)*

El lenguaje generado L(G) es libre de contexto

Gramática Libre de Contexto

GLC para el siguiente lenguaje:

$$\begin{array}{c} \textbf{L_1 = \{ \, \textbf{0}^{\textbf{n}} \textbf{1}^{\textbf{n}} \, | \, \textbf{n} \geq \textbf{0} \, \} \\ & \text{Ver: } \underline{\textbf{0n1n.jff}} \, \textbf{y} \, \underline{\textbf{0n1n.pl}} \\ \textbf{L_1 = \{ \, \lambda, \, 01, \, 0011, \, 000111, \, 00001111, \dots \} } \\ & \textbf{G = (\{S\}, \{0,1\}, P, S)} \\ \textbf{P = \{ \, S \, \Rightarrow \, \lambda \, , \, S \, \Rightarrow \, 0S1 \, \} \, \acute{\textbf{o}} \, \{ \, S \, \Rightarrow \, \lambda \, | \, 0S1 \, \} } \\ & \underline{\textbf{Derivación:}} \\ \textbf{S => 0S1 => } \, 00S11 => \, 000S111 => \, 000\lambda111 = \\ & 000111 \\ \textbf{S =>^* } \, 000111 \, \, \textbf{y} \, \text{esta en L_1} \end{array}$$

Gramática Libre de Contexto

GLC para el siguiente lenguaje:

$$L_2 = \{ 0^n1^m \mid n > m, n,m \ge 0 \}$$

Ver: $\underline{\text{On1m-NMayorM.pl}}$ y $\underline{\text{On1m-NmayorM.jff}}$ L₂ = { 0, 000, 001, 00011, 00001, 000011, 0000111,... } G = ({S},{0,1},P,S)

Derivación:

$$P = \{ S \rightarrow 0 \mid 0S \mid 0S1 \}$$

 $S => 0S1 => 00S11 => 0000S11 => 00000S11 => 000000S11 => 00000S11 => 0000000S11 => 00000S11 => 00000S11 => 00000S11 => 00000S11 => 00000S1$

Gramática Libre de Contexto

GLC para el lenguajes de todos los binarios palindromes

Ver: <u>palindromo.pl</u> y <u>palindromo.jff</u> $L_3 = \{ 0,1,00,010,11,111,000,11011... \}$ $G = (\{S\},\{0,1\},P,S)$

Derivación:

P = { S
$$\rightarrow$$
 0 | 00 | 1 | 11 | 0S0 | 1S1 }
S => 0S0 => 01S10 => 010S010 => 0101010
S =>* 0101010 esta en L₃

Derivación expresada en forma de árbol:

- Cada nodo del árbol va a contener un símbolo.
- En el nodo raíz se pone el símbolo inicial S.
- Se efectúa una ramificación del árbol por cada producción que se aplique: Si a la variable de un nodo, A, se le aplica una determinada regla A → α, entonces para cada símbolo que aparezca en α se añade un hijo con el símbolo correspondiente, situados en el orden de izquierda a derecha.
- Este proceso se repite para todo paso de la derivación.
- Si la parte derecha es una cadena vacía, entonces se añade un solo hijo, etiquetado con λ.
- En cada momento, leyendo los nodos de izquierda a derecha se lee la palabra generada.

Arbol de derivación

Por ejemplo:

$$S \rightarrow aAS \mid S \rightarrow a$$
, $A \rightarrow SbA \mid SS \mid ba$

La cadena "aabbaa" tiene asociado el árbol:

Un árbol de derivación puede proceder de dos cadenas de derivación distintas:

1. Se llama derivación por la izquierda asociada a un árbol a aquella en la que siempre se deriva primero la primera variable (más a la izquierda) que aparece en la palabra.

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow$$

 $aabAS \Rightarrow aabbaS \Rightarrow aabbaa$

Arbol de derivación

2. Se llama derivación por la derecha asociada a un árbol a aquella en la que siempre se deriva primero la última variable (más a la derecha) que aparece en la palabra.

$$S \Rightarrow aAS \Rightarrow aAa \Rightarrow$$
 $aSbAa \Rightarrow aSbbaa \Rightarrow aabbaa$

Por ejemplo para el árbol de la cadena aabbaa

Derivación por la izquierda:

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabAS \Rightarrow aabbaS \Rightarrow aabbaa$$

Derivación por la derecha:

$$S \Rightarrow aAS \Rightarrow aAa \Rightarrow aSbAa \Rightarrow aSbbaa \Rightarrow aabbaa$$

Arbol de derivación

Derivación por la izquierda:

Derivación por la derecha:

$$S \Rightarrow aAS \Rightarrow aAa \Rightarrow$$
 $aSbAa \Rightarrow aSbbaa \Rightarrow$
 $aabbaa$

Gramática ambigua

Una gramática se dice ambigua si existe una palabra con dos árboles de derivación distintos.

Ejemplo: L = { $a^{2+3i} | i \ge 0$ } La gramática G = ({S,A},{a},P,S) P: S \rightarrow AA, A \rightarrow aSa, A \rightarrow a,

Tiene para la palabra "aaaaa" las siguientes derivaciones por la izquierda:

S => AA => aA => aaSa => aaAAa => aaaAa => aaaaa S => AA => aSaA => aAAaA => aaAaA => aaaaA => aaaaa

Gramática ambigua

Ejemplo: Por tanto la gramática S → AA, A → aSa, A → a **es ambigua**, ya que la palabra "aaaaa" tiene 2 árboles de derivación:

S => **A**A => a**A** => aa**S**a => aa**A**Aa => aaa**A**a => aaaaa **S** => **A**A => a**S**aA => a**A**AaA => aa**A**aA => aaaa**A** => aaaaa

Gramática ambigua

Ejemplo: La gramática $E \rightarrow I$, $E \rightarrow I - E$, $E \rightarrow E - I$, $I \rightarrow a \mid b \mid c \mid d$, es ambigua, ya que la palabra "a - b - c" admite dos árboles de derivación distintos:

Lenguaje inherentemente ambiguo

- Un lenguaje libre de contexto es inherentemente ambiguo si toda gramática que lo genera es ambigua.
- Ejemplo: el lenguaje L = { a^{2+3i} | $i \ge 0$ } La gramática G = ({S,A},{a},P,S), P: S \rightarrow AA, A \rightarrow aSa, A \rightarrow a, es ambigua.
- L puede ser generado por otra gramática: S → aa | aaU, U → aaaU | aaa, que no es ambigua. Por tanto el lenguaje no es inherentemente ambiguo

Simplificación de GLC

- Algoritmos de Simplificación de Gramáticas:
 - Eliminación de Producciones Nulas.
 - Eliminación de Producciones Unitarias.
 - Eliminación de Símbolos y Producciones Inútiles.

Producción Nula

• Producción nula: $A \rightarrow \lambda$

Idea: dada una gramática G, construye una gramática G_1 sin producciones nulas y tal que $L(G_1) = L(G) - \{\lambda\}$.

- Si tenemos: $A \rightarrow \lambda$, $D \rightarrow aABc$
- D => aABc => aBc, entonces Añadimos $D \rightarrow$ aBc y podemos eliminar $A \rightarrow \lambda$.
- Si también $B \rightarrow \lambda$, entonces habría que añadir: $D \rightarrow aBc$, $D \rightarrow aAc$, $D \rightarrow ac$

Variables Nulificables

- Variables Nulificables son aquellas variables tales que en algún momento aparece producción: A → λ o si desde la variables se puede derivar λ: A =>* λ
- Idea: Identificar dichas variables nulificables, eliminar todas las producciones nulas y a añadir las producciones que compensen esta eliminación.

Algoritmo

```
Dada G = (V,T,P,S)

Algoritmo (variables nulificables en N_i)

i= 0

N_0= { A | A \rightarrow \lambda una P y A en V }

REPETIR

i= i +1

N_i= N_{i-1} U { A | A \rightarrow \alpha en P y \alpha en N_i* }

HASTA (N_i = N_{i-1})
```

Identificar variables nulificables

Ejemplo:

$$S \rightarrow ABCBD$$
 $A \rightarrow CD$
 $B \rightarrow Cb$
 $C \rightarrow a \mid \lambda$
 $D \rightarrow bD \mid \lambda$

- $N_0 = \{C, D\}$
- $N_1 = N_0 U \{A\} = \{C, D, A\}$
- $N_2 = N_1 \cup \Phi = \{C, D, A\}$

Simplificar sin variables nulificables

```
P'= Si A \rightarrow X<sub>1</sub> X<sub>2</sub> ... X<sub>n</sub> en P, entonces
agregamos a P' las producciones A \rightarrow \alpha_1
\alpha_2 ... \alpha_n: (1) Si X<sub>i</sub> no esta en N<sub>i</sub>, \alpha_i = X<sub>i</sub> (2)
X<sub>i</sub> esta en N<sub>i</sub> entonces \alpha_i = X<sub>i</sub> o \alpha_i = \lambda, (3)
No todos los \alpha_i son \lambda
```

N_i = {C, D, A} Selfa: <u>selfa-nulificable.txt</u>

Producción Unitaria

Dada la gramática G = (V,T,P,S)

Es una producción unitaria: A → B, A y B en V (en el cuerpo hay solo una variable)

Definición de derivable de A:

- Si A → B es una producción, entonces B es derivable de A.
- Si C es derivable de A, A → B es una producción y B → C, entonces C es derivable de B.

Algoritmo: Producción Unitaria

Algoritmo: dada la GLC G = (V, T, P, S)
Precondición = {G no contiene producciones λ}

- $1.P_1 = P$
- 2. Para todos A en V = {B | B es derivable de A}
- Para cada par (A, B) tal que B es derivable a A y cada producción no unitaria B → α, añadir la producción A → α a P₁ sino esta presente ya en P₁.
- 4. Eliminar todas las producciones unitarias de P₁.

Algoritmo: Producción Unitaria

Ejemplo:

```
P_1 = \{

S \rightarrow ABCBD \mid BCBD \mid ABCB \mid

ABBD \mid ABB \mid BBD \mid BCB \mid BB

A \rightarrow CD \mid C \mid D

B \rightarrow Cb \mid b

C \rightarrow a

D \rightarrow bD \mid b \}
```

Paso 3: Pares
- (A, C)
$$P_1$$
 U {A \rightarrow a}
- (A, D) P_1 U {A \rightarrow bD y A \rightarrow b}

Paso 4: Eliminar producciones unitarias:

- (A C) P - (A → C)

- (A, C)
$$P_1$$
 - {A \rightarrow C}
- (A, D) P_1 - {A \rightarrow D}

Algoritmo: Producción Unitaria

Ejemplo: Selfa: selfa-unitaria.txt

Símbolo inútil

Los símbolos útiles son variables V y terminales T que son generadoras de terminales y alcanzables desde S:

```
Sea G = (V, T, P, S), X es un símbolo útil si S =>* \alphaX\beta =>* w para \alpha y \beta en (V U T)* y en w en T*
```

Algoritmo: Variable Derivable

```
VV = VN = { A | A \rightarrow w en P y w en T* }

MIENTRAS VN \neq VV HACER

VV = VN

VN = VV U {A | A \rightarrow α en P y α en (VV U T)*}

// (A \rightarrow X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub> cada X<sub>i</sub> esta en T o en VV)

FINMIENTRAS

V' = VN

P' = { A \rightarrow α | A en V' y α en (V' U T)* }
```

Algoritmo: Derivable

Ejemplo: Inicio:

$$VN = \{S,A\}$$

 $P = S \rightarrow BA \mid a$ $T = \{a\}$
 $A \rightarrow a$ 1. $VV = \{S,A\}$
 $VN = \{S,A\} \cup \{S,A\} = \{S,A\}$

Parada (VV = VN)
V'=
$$\{A, S\}$$

P'= $S \rightarrow a$
 $A \rightarrow a$

Algoritmo: Símbolo alcanzable

VV = TV = TN =
$$\Phi$$
; VN = {S}

MIENTRAS (VV \neq VN) o (TV \neq TN) HACER

VV = VN; TV = TN;

VN = VV U {X | A $\rightarrow \alpha_1 \alpha_2 ... \alpha_n$ en P, X en V,

X en algún α_i y A en VV}

TN = TV U {X | A $\rightarrow \alpha_1 \alpha_2 ... \alpha_n$ en P, X en T,

X en algún α_i y A en VV}

FINMIENTRAS

V'= VN; T'= TN;

P'= { A $\rightarrow \alpha$ | A en V', α en (V'UT`)*, $A \rightarrow \alpha$ en P}

Algoritmo: Alcanzable

Ejemplo:
$$VN = \{S\}$$
 2. $VV = \{S, A\}$
 $P = S \rightarrow Aa \mid a$ 1. $VV = \{S\}$ $TV = \{a\}$
 $A \rightarrow a$ $TV = \Phi$ $VN = \{S, A\}$
 $B \rightarrow SA$ $VN = \{S, A\}$ $TN = \{a\}$
 $TN = \{a\}$

$$V' = \{S, A\}$$
 $T' = \{a\}$
 $P' = S \rightarrow Aa \mid a$
 $A \rightarrow a$

Formas Normales

Formas Normales:

Forma Normal de Chomsky (FNC):

 $A \rightarrow BC$

 $A \rightarrow a$

A,B y C en V y a en T

Forma Normal de Greibach (FNG):

 $A \rightarrow a\alpha$

a en T y α en V*

Forma Normal de Chomsky

(Chomsky, 1959)

Teorema: Cualquier GLC sin λ-producciones puede ser generada a una gramática en donde las producciones son de la forma A → BC o A → a

Hay dos operaciones básicas:

- -Eliminar terminales en producciones que no sean $A \rightarrow a$
- -Eliminar producciones con un cuerpo de variables de longitud mayor de 2

Algoritmo: FNC

Sea A \rightarrow X₁X₂... X_m en P y m \geq 2

- 1. Producciones del tipo A → a :
 - Si X_i es Terminal y X_i = a entonces agregamos a P' la producción $C_a \rightarrow a$ y reempleamos X_i por C_a . V' = V U $\{C_a\}$
- 2. Producciones A → BCPara los casos en que m ≥ 3, hacemos:

 $A \rightarrow BD_1; D_1 \rightarrow B_2D_2; ..., D_{m-2} \rightarrow B_{m-1}B_m$ Agregamos las respectivas variables y producciones V'= V U $\{D_1, D_2, ..., D_{m-2}\}$

Algoritmo: FNC

Ejemplo: Selfa: selfa-FNC.txt

S --> bA | aB

A --> bAA | aS | a

B --> aBB | bS | b

Paso 1: $A \rightarrow a$ $S \rightarrow C_b A \mid C_a B$ $A \rightarrow C_b A A \mid$ $C_a S \mid a$ $B \rightarrow C_a B B \mid$ $C_b S \mid b$ $C_a \rightarrow a$ $C_b \rightarrow b$

Paso 2: $A \rightarrow BC$ $S \rightarrow C_b A \mid C_a B$ $A \rightarrow C_b D_1 \mid C_a S \mid a$ $B \rightarrow C_a D_2 \mid C_b S \mid b$ $C_a \rightarrow a$ $C_b \rightarrow b$

 $D_1 \rightarrow AA$

 $D_2 \rightarrow BB$

G en FNC: S ---> CA | DB A ---> a | CE | DS B ---> DF | CS E ---> AA F ---> BB C ---> b D ---> a

B ---> b

Forma Normal de Chomsky

Árbol de derivación binario

(GLC original)

S => bA => bbAA => bbaA => bbaa

(GLC en FNC)

=> bbaA => bbaa

FNC no parece tener aplicaciones importantes en lingüística natural. Tiene aplicación como una forma eficiente de comprobar si una cadena pertenece a un LLC

Si |w| = k entonces el número de pasos es 2k-1

Forma Normal de Greibach

(Sheila Greibach, 1965)

 Teorema: todo LLC sin λ- producciones pueden ser generado por una GCL en donde las producciones son de forma:

A \rightarrow a α , a en T y α en V*

FNG genera un símbolo terminal por cada forma sentencial y entonces una cadena de longitud n tiene exactamente n pasos de derivación.

Actividad: revisar el algoritmo

Forma Normal de Greibach

$$G = (\{S\},\{0,1\},P,S)$$
 $P = \{S \rightarrow 0 \mid 00 \mid 1 \mid 11 \mid 0S0 \mid 1S1\}$

FNG

 $P = \{S \rightarrow 0 \mid 0A \mid 1 \mid 1B \mid 0SA \mid 1SB, A \rightarrow 0 B \rightarrow 1\}$
 $S => 0SA => 01BA => 011A => 0011$

Selfa: selfa-FNG.txt

Parsing

Un algoritmo de parsing es un procedimiento que prueba las diferentes maneras de combinar las reglas de una gramática para encontrar una combinación que genere un árbol que represente la estructura de una cadena del lenguaje (Allen, 1987)

Parsing

Según el procesamiento del lenguaje una GLC tiene: Reglas (A \rightarrow α , α tiene al menos una variable) y Lexicón (A \rightarrow a)

%reglas

s --> sn,sv | sv. sv --> v | v,sn | v, sp | v, sn, sp. sn --> n | pron | det, n. sp --> prep, sn. % lexicon
prep --> [a] | [de].
v --> [tiene] | [ama] | [habla].
n --> [ana].
pron --> [yo] | [tu] | [ella] | [nosotros].
det --> [el] | [la] | [una].

Prolog: pln.pl

Parsing

Esquema general de un proceso de parsing (Winograd, 1983)

Parsing

Los algoritmos de parsing mas utilizados son para GLC:

- Deciden que regla probar y en que orden
- Combinan estructuras de trabajo y diferentes parámetros

Clasificación:

- Análisis descendente/ascendente
- Procesamiento secuencial/paralelo
- Procesamiento determinista o no determinista

Parsing

Algunos ejemplos de algoritmos de parsing:

- Backtracking
- Algoritmo de Earley
- Algoritmo de Cocke-Younger-Kasami (CYK)
- Algoritmo de Graham-Harrison-Ruzzo (GHR)
- Recursive-Descent-Parser
- Chart-Parser
- Left-Corner-Parser
- LR-Parser

Ejemplo de Parsing XML

Estructura de un XML

Ejemplo de Parsing XML

```
Un Ejemplo de archivo XML: libro.xml
<?xml version="1.0" encoding="ISO-
    8859-1"?>
bro>
    <autor>Deepak Chopra</autor>
    <titulo>El sendero del Mago</titulo>
    <precio moneda="bolivares">60</precio>
</libro>
```

Reglas sintácticas XML

Contenido del Elemento

Elemento y Contenido

Reglas sintácticas XML

Estructura Jerárquica de Árbol

Técnica de validación XML

Existen 2 formas de definir los elementos que contiene un documento XML a través de reglas gramaticales de los elementos, atributos y entidades:

DTD (Document Type Definition)

Archivos con extensión .dtd

XML Schema

Archivos con extensión .xsd

GLC

GLC G = (V,T,P,S) del cuerpo de un libro en XML:

S → <libro>A</libro>

A → BCDEFGH | BCDEFG

B → <autor>K</autor> | BB

C → <titulo>K</titulo>

D → <isbn>K</isbn>

E → <editorial>K</editorial>

F → <sumario>K</sumario>

G → recio moneda="K">K</precio>

 $H \rightarrow \langle otro \rangle K \langle otro \rangle$

 $K \rightarrow KK | a|b|...|z|0|1...|9|.|!...$

GLC en DTD

```
Un ejemplo de DTD: libro2.dtd
<!ELEMENT libro (autor+, titulo, isbn, editorial, sumario, precio, otro?)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT titulo (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT editorial (#PCDATA)>
<!ELEMENT sumario (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT precio moneda CDATA #REQUIRED>
<!ELEMENT otro (#PCDATA)>
```

GLC en XML Schema

Un ejemplo de XML Schema: libro2.xsd

```
<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<element name="libro">
  <complexType>
   <sequence>
       <xsd:element name="autor" type="xsd:string"/>
       <xsd:element name="titulo" type="xsd:string"/>
       <xsd:element name="isbn" type="xsd:string"/>
       <xsd:element name="editorial" type="xsd:string"/>
       <xsd:element name="sumario" type="xsd:string"/>
       <xsd:element name="precio" type="xsd:string">
           <attribute name="moneda" type="string" use="required"/>
       </xsd:element>
       <xsd:element name="otro" type="xsd:string"/>
   </sequence>
  </complexType>
</element>
</xsd:schema>
```

Parsing XML

Separación de procesamiento, presentación, estructura y contenido:

Parsing y Tranformación

Muchas formas de presentación a partir de un documento XML:

Parsing XML en la práctica

Parser del Navegador

Ejemplo de sistemas de Lindenmayer

L-Sistemas:

- Son gramáticas formales de derivación paralela (en oposición a las de Chomsky, secuenciales).
- Creadas para expresar el desarrollo de organismos vivos: gran capacidad expresiva.
- Ver: <u>http://www.destinofractal.com/tutoriales/L-</u> Systems/lsystems.htm

Chomsky vs. Lindenmayer

Gramáticas de Chomsky:

- Se sigue una secuencia para aplicar las reglas de una en una.
- Los componentes de la gramática se justifican así:
 - Hay símbolos a los que no se puede aplicar reglas porque ya son símbolos finales (terminales).
 - Los demás no pueden estar en la expresión final (no terminales)
 - El proceso comienza con el símbolo que representa lo que se quiere analizar / construir (axioma)
 - La expresión final obtenida (que pertenece al lenguaje generado por la gramática) está compuesta sólo por terminales. Las palabras intermedias no pertenecen a él.

Chomsky vs. Lindenmayer

Sistema Lindenmayer:

- Se ha aplicado reglas a todos los símbolos de cada palabra simultáneamente.
- Es necesario añadir las siguientes reglas de transformación:
 - Por lo que ya no hay distinción entre símbolos terminales y no terminales y siempre se puede derivar.
 - Todas las palabras (intermedias también) pertenecerían al lenguaje del sistema.

Sistemas de Lindenmayer

- Motivación biológica: Surgen como herramienta para describir el desarrollo de organismos pluricelulares incorporando aspectos: Genéticos, Citológicos y Fisiológicos
- Usada para modelar los procesos de crecimiento de las plantas.
- Los L-sistemas fueron introducidos en 1965 por el biólogo y botánico húngaro Aristid Lindenmayer (1925-1989), profesor de la Universidad de Utrech.

Sistemas de Lindenmayer

Definición formal del L-sistema = (Σ, P, ω) Donde, (al par (Σ, P) se le llama esquema L)

- Σ es un alfabeto.
- P es un conjunto de reglas de producción del tipo
- ω el axioma.

Sistemas de Lindenmayer

Ejemplo:

 Se define un sistema-L que genera cadenas cuyo número de símbolos b es la serie de Fibonacci:

```
L = {{a,b}, {a → b, b → ab}, a}
Alguna de sus cadenas:
{a, b, ab, bab, abbab, bababbab, ...}
```

Sistemas de Lindenmayer

- Las reglas se aplican iterativamente (tantas como sea posible en cada iteración) desde el estado inicial.
- Un L-sistema se dice libres del contexto si las reglas se aplican sobre símbolos individuales, sin considerar sus vecinos. En caso contrario, se llama sensibles al contexto.
- Si hay una regla para cada símbolo, el sistema es determinista (si ademas es libres de contexto, se llama D0L-sistema). Si hay muchas reglas escogidas con cierta probabilidad, se llama L-sistema estocástico

Sistemas de Lindenmayer

Podemos usar L-sistemas para generar gráficos, asociando por ejemplo, los símbolos a comandos gráficos (comandos de tortuga, similares al lenguaje Logo)

Por ejemplo:

- F Dibujar una línea hacia delante de longitud predeterminada.
- Girar hacia la izquierda el ángulo predeterminado.
- + Girar hacia la derecha el ángulo predeterminado.

Sistemas de Lindenmayer

Jflap: tree.jff

Axioma: R ~ ## B

Reglas:

B → [~## T L - B + + B]

L → [{-g++g%--g}]

R →!@@R

T → T g

Color = brown polygonColor = forestGreen

