FORMELBLAD

Data-, Elektro-, Medicinsk teknik

Version augusti 2024

ALGEBRA

ΔI_{\odot}	ےhrء	icka	form	l۵r
AIU	leni c	115Kd	101111	lei

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

Potenser

För reella x och y, a,b>0

$$a^{x}a^{y} = a^{x+y} \qquad a^{x}b^{x} = (ab)^{x}$$
$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

$$a^{y} = a$$
 $b^{x} = b$

$$(a^x)^y = a^{xy} \quad a^{1/n} = \sqrt[n]{a}, \ n \text{ heltal } \ge 2$$
$$a^0 = 1 \qquad \qquad a^{-x} = \frac{1}{a^x}$$

Absolutbelopp

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Kvadratkomplettering

$$x^{2} + px = x^{2} + px + \left(\frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2} = \left(x + \frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2}$$

$$x^2 + px + q = 0 \Rightarrow x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Logaritmer

$$a^{x} = b \Leftrightarrow x = \log_{a} b$$

 $e^{x} = a \Leftrightarrow x = \ln a$
 $10^{x} = a \Leftrightarrow x = \lg a$

Logaritmlagar

För
$$A, B, a, b, p > 0$$

$$\log_a AB = \lg A + \lg B$$

$$\log_a \left(\frac{A}{B}\right) = \log_a A - \log_a B$$

$$\log_a A^p = p \log_a A$$

TRIGONOMETRI

Enhetscirkeln

$$\cos(v) = x$$

$$\sin(v) = y$$

Grundekvationer

$$\cos \theta = x \iff \theta = \pm \arccos x + n \cdot 2\pi$$

$$\sin \theta = x \Leftrightarrow \begin{cases} \theta_1 = \arcsin x + n \cdot 2\pi \\ \theta_2 = \pi - \arcsin x + n \cdot 2\pi \end{cases}$$

$$\tan \theta = x \iff \theta = \arctan x + n \cdot \pi$$

Vinl	cel v	sin v	COS V	tan v
Grader	Radianer			
0	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	-

TRIGONOMETRISKA FORMLER OCH IDENTITETER

$\sin\theta = \sin(\theta + n \cdot 2\pi)$	$\sin(\pi - \theta) = \sin\theta$
$\cos\theta = \cos(\theta + n \cdot 2\pi)$	$\cos(\pi - \theta) = -\cos\theta$
$\tan\theta = \tan(\theta + n \cdot \pi)$	$\tan(\pi - \theta) = -\tan\theta$
$\cos(-\theta) = \cos\theta$	$\sin(\pi + \theta) = -\sin\theta$
$\sin(-\theta) = -\sin\theta$	$\cos(\pi + \theta) = -\cos\theta$
$\tan(-\theta) = -\tan\theta$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$	$\sin 2\theta = 2\sin\theta \cdot \cos\theta$
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta = \frac{1}{\tan\theta}$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$
$\sin^2\theta + \cos^2\theta = 1$	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$

DERIVATOR

Definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x), y', y'(x), Df(x), \frac{dy}{dx}, f''(x), y'', y''(x), D^2f(x), \frac{d^2y}{dx^2}$$

Funktion	Derivata
x^n	nx^{n-1}
e ^x	e ^x
a^x , $a > 0$	$a^x \ln a$
$ \ln x, \ x > 0 $	$\frac{1}{x}$
$\sin x$	cos x
$\cos x$	$-\sin x$
tan x	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$

Funktion	Derivata
arcsin x	1
	$\sqrt{1-x^2}$
arccos x	1
	$-\frac{1}{\sqrt{1-x^2}}$
arctan x	1
	$\overline{1+x^2}$
arccot x	1
	$-\frac{1}{1+x^2}$

DERIVERINGSREGLER

(af + bg)' = af' + bg', a, b konstanter

$$f = f(x), \quad g = g(x)$$

Produktregeln: (fg)' = f'g + fg'

Kvotregeln:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Kedjeregeln: Om f och g är deriverbara så är också

f(g(x)) deriverbar då gäller

$$\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \text{ dvs } \frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$$

då
$$y = f(z)$$
 och $z = g(x)$.

TANGENT OCH NORMAL

Räta linjens ekvation: y = kx + m

Tangenten till kurvan y = f(x) i punkten (a, f(a))

med
$$k = f'(x)$$
:

$$y-f(a)=f'(a)(x-a).$$

Mellan tangentens och normalens k-värde gäller

sambandet:
$$k_{\text{normal}} = -\frac{1}{k_{\text{tangent}}}$$

INTEGRALER

Funktion	Primitiv funktion	REGLER FÖR INTEGRATION
x ⁿ	x^{n+1}	Partiell integration
	$\frac{x^{n+1}}{n+1} + C, n \neq -1$	$\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx$
e^{kx}	$\frac{e^{kx}}{k} + C$	$\int_{a}^{b} f(x) g(x) dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x) g'(x) dx$
a^x	$\frac{a^x}{\ln a} + C \ (0 < a \ne 1)$	" Integration genom substitution
cos kx	$\frac{\sin kx}{k} + C$	$\int f[g(x)] \cdot g'(x) dx = \begin{cases} t = g(x) \\ dt = g'(x) dx \end{cases} = \int f(t) dt$
sin kx	$\frac{-\cos kx}{k} + C$	(t-a(r))
$\frac{1}{x+a}$	$ \ln x+a + C x \neq -a $	$\int_{a}^{b} f[g(x)] \cdot g'(x) dx = \begin{cases} t - g(x) \\ dt = g'(x) dx \\ x = a \Rightarrow t = g(a) \\ x = b \Rightarrow t = g(b) \end{cases} = \int_{g(a)}^{g(b)} f(t) dt$
$\frac{1}{\cos^2 x}$	$\tan x + C$	$\left(x = b \Longrightarrow t = g(b)\right)$
1	$-\cot x + C$	ROTATIONSVOLYMER
$\frac{\sin^2 x}{1}$ $\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	Skivmetod: $V = \pi \int_{a}^{b} y^{2} dx$ eller $V = \pi \int_{c}^{d} x^{2} dy$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos x + C$	Skalmetod: $V = 2\pi \int_{a}^{b} xy dx$ eller $V = 2\pi \int_{c}^{d} xy dy$
$\frac{1}{1+x^2}$	$\arctan x + C$	Längden av en kurva: $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$

TAYLOR FORMELN

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R$$

 $\operatorname{där} R = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \quad \text{och } c \text{ är ett tal som ligger mellan } a \text{ och } x.$

I'HOSPITALS REGEL

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \ g'(x) \neq 0$$

STANDARDGRÄNSVSÄRDEN

$\lim_{x \to \infty} \frac{\ln x}{e^x} = 0$	$\lim_{x \to \infty} \frac{x^p}{e^x} = 0$	$\lim_{x \to \infty} \frac{e^x}{x^p} = 0, \ p > 0$
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

DIFFERENTIALEKVATIONER

Separabla Differentialekvationer

$$g(y)y' = f(x) \Rightarrow \int g(y)dy = \int f(x)dx$$

Linjära ekvationer av första ordningen:

 $y' + ay = 0 \Rightarrow y = Ce^{-ax}$ där C är en godtycklig konstant.

$$y'+f(x)y=g(x) \Rightarrow y(x)=\left(\int g(x)e^{F(x)}dx+C\right)e^{-F(x)}$$
.

Linjära ekvationer av andra ordningen: y'' + ay' + by = f(x) där a och b är konstanter, har lösningen

$$y = y_h + y_p.$$

Homogena ekvationen y'' + ay' + by = 0 har karakteristisk ekvation: $r^2 + ar + b = 0$ med rötterna r_1 och r_2 .

1. r_1 och r_2 är reella och $r_1 \neq r_2$: $y_h = Ae^{r_1x} + Be^{r_2x}$

2. r_1 och r_2 är reella och $r_1 = r_2 = r$: $y_h = (A + Bx)e^{rx}$

3. r_1 och r_2 är komplexa och $r_{1,2} = \alpha \pm \beta i$: $y_h = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Partikulär lösning y_p

$$f(x)$$
 är polynom, $f(x) = k_0 + k_1 x + k_2 x^2 + ...$ $y_p = A_0 + A_1 x + A_2 x^2 + ...$

f(x) är trigonometrisk funktion, $f(x) = B_1 \sin kx + B_2 \cos kx$ $y_p = C \sin kx + D \cos kx$

f(x) är exponential funktion, $f(x) = Ce^{kx}$

✓ k är inte en rot till karakteristiska ekvationen, $y_n = Ae^{kx}$.

✓ k är en rot till karakteristiska ekvationen, $y_n = Axe^{kx}$

✓ k är en dubbelrot till karakteristiska ekvationen, $y_p = Ax^2e^{kx}$.

KOMPLEXA TAL

Låt z = x + yi vara ett komplext tal. Re z = x och Im z = y

$$i^2 = -1$$

Absolutbelopp av z	Argumentet av z	Konjugatet till z
$ z = r = \sqrt{x^2 + y^2}$	$\theta = \arg z = \arctan\left(\frac{y}{x}\right)$	De Moivre:
		$z^n = r^n(\cos\theta +$
		Rektangulär fori
$ z_1 \cdot z_2 = z_1 \cdot z_2 $	$\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$	Polär form: $z = i$
$\left \frac{z_1}{z_2} \right = \frac{ z_1 }{ z_2 }$	$\arg\left(\frac{z_1}{z_2}\right) = \arg\left(z_1\right) - \arg\left(z_2\right)$	Potens form: z :
$\left z^{n}\right = \left z\right ^{n}$	$\arg(z^n) = n \cdot \arg(z)$	$e^{i\theta} = \cos\theta + i\sin\theta$
I	l	I

 \overline{z} : $\overline{z} = x - yi$

$$z^{n} = r^{n}(\cos\theta + i\sin\theta)^{n} = r^{n}(\cos n\theta + i\sin n\theta)$$

rm: z = x + yi

 $r(\cos\theta + i\sin\theta)$

 $= re^{i\theta}$

 $in\theta$

VEKTORER I ETT TREDIMENSIONELLT ORTONORMERAT SYSTEM

Två punkter, $A = (x_1, y_1, z_1)$ och $B = (x_2, y_2, z_2)$, ger vektorn $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$.

Vektorlängd: $|\overrightarrow{AB}|$.

Avståndsformeln: $d = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Mittpunktens koordinater: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$.

Låt vektorerna $\vec{u} = (u_1, u_2, u_3), \vec{v} = (v_1, v_2, v_3)$ och $\vec{w} = (w_1, w_2, w_3)$.

Skalärprodukt: $\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$ där θ är vinkeln mellan vektorerna.

Vektorprodukt (kryssprodukt): $\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v & v_1 & v_2 \end{vmatrix}$ eller $\vec{u} \times \vec{v} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_2 \end{vmatrix}$.

Vektorprodukt: $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$ där θ är vinkeln mellan vektorerna.

Vektorprojektion av \overrightarrow{F} på vektorn \overrightarrow{a} : $proj_{\overrightarrow{a}}(\overrightarrow{F}) = (\overrightarrow{F} \circ \overrightarrow{a_e})\overrightarrow{a_e}$ där $\overrightarrow{a_e} = \frac{a}{|\overrightarrow{a}|}$.

Skalär trippelprodukt: $(\vec{u} \times \vec{v}) \circ \vec{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$.

Volymen av en parallellepiped som spänns upp av \vec{u} , \vec{v} och \vec{w} : $V = |(\vec{u} \times \vec{v}) \circ \vec{w}|$

Ekvationen för en linje genom punkten $P = (x_1, y_1, z_1)$ och har riktningsvektorn $\vec{v} = (v_1, v_2, v_3) \neq \vec{0}$:

vektorform: $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{tv}$ där R är en godtycklig punkt på linjen och O = (0,0,0).

parameterform:
$$(x, y, z) = (x_1, y_1, z_1) + t(v_1, v_2, v_3)$$
 eller
$$\begin{cases} x = x_1 + t \cdot v_1 \\ y = y_1 + t \cdot v_2 \\ z = z_1 + t \cdot v_3 \end{cases}$$

Linjer på parameterfriform:
$$\frac{x-x_1}{v_1} = \frac{y-y_1}{v_2} = \frac{z-z_1}{v_3}$$

Ekvationen för ett plan med normalvektorn
$$\vec{n} = (A, B, C)$$
: $Ax + By + Cz + D = 0$

Ekvationen för en sfär med medelpunkten
$$(x_0, y_0, z_0)$$
 och radien $r: (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$

MATRISER

Låt A, B och C vara godtyckliga matriser:

Identitetsmatris (enhetsmatris):	Multiplikation med tal:
I = diag(1,1,,1)	$\lambda(A+B) = \lambda A + \lambda B$
AI = IA = I	
Addition:	Multiplikation:
(A+B)+C=A+(B+C)	(AB)C = A(BC)
A+B=B+A	(A+B)C = AC + BC
	A(B+C) = AB + AC
Matrisinvers:	Transponering:
$A^{-1}A = AA^{-1} = I$	$\left(A+B\right)^T=A^T+B^T$
$(AB)^{-1} = B^{-1}A^{-1}$	$\left(AB\right)^T = B^T A^T$
$\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$	$\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$
$A^{-n} = (A^{-1})^n = (A^n)^{-1}$	

Låt
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Determinanten av A: $\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Egenvärden och egenvektorer: $\vec{Ax} = \lambda \vec{x}$ där λ är egenvärde och \vec{x} egenvektor.