Примене Теорије Група

Даниел Силађи

13. јануар 2014.

Садржај

1	Мотивација, групе и симетрије		
	1.1	Симетрије раванских фигура	2
	1.2	Симетрије тродимензионалних тела	
	1.3	Симетрије у физици	
2	Увод	д у теорију група	6
	2.1	Основне дефиниције	6
	2.2	Групе реда 1, 2, 3, 4	
	2.3	Симетрична група S_n , пермутације	8
	2.4	Лагранжова теорема	10
	2.5	Инваријантне подгрупе, фактор група	11
3	Теорија група у физици 12		
	3.1	Векторски простор	12
		3.1.1 Основне дефиниције	
		3.1.2 Унитарни векторски простори	13
		3.1.3 Линеарне трансформације	14
	3.2	Изометријске трансформације n -димензионог простора	15
	3.3	Дводимензионалне тачкасте кристалографске групе	15
	3.4	Lorentz-ова група	16
4	Закл	ьучак	17

Мотивација, групе и симетрије

У свакодневном животу се често дешава да се сусрећемо са предметима за које кажемо да су "симетрични". Шта је заправо симетрија? На пример, можемо рећи да је неки објекат симетричан ако "изгледа исто" кад га гледамо са различитих тачака гледишта.

Формалније, симетрија неког објекта је нека трансформација у простору која пресликава тај објекат на њега самог. Временом, људи су приметили да све овакве трансформације имају још нека својства, карактеристична за све трансформације:

- 1. Трансформације симетрије су бијективне, тј. за сваку трансформацију постоји инверзна трансформација која "поништава" њен ефекат, и доводи објекат у почетно стање. На пример, у случају ротације за угао φ око неке осе, инверзна трансформација је ротација за угао $-\varphi$, односно $2\pi-\varphi$ око исте те осе. Неке трансформације, попут осне симетрије могу бити и саме себи инверзне.
- 2. Комбиновањем (композицијом) две трансформације такође добијамо трансформацију. На пример, композиција две ротације (са заједночком осом ротације) је опет ротација, композиција две симетрије може бити транслација или ротација, ...
- 3. Сваки објекат има једну (тривијалну) симетрију, идентичко пресликавање, које слика сваку тачку у њу саму.

Касније ћемо видети да скуп трансформација (и уопште било каквих апстрактних математичких објеката) са оваквим својствима чини *групу* (групу трансформација у овом случају).

1.1 Симетрије раванских фигура

За почетак, кренимо од неких једноставнијих фигура, правилних многоуглова. Опет, од њих је најједноставнији (једнакостранични) троугао.

Као што видимо, постоји 6 трансформација симетрије:

- Ротације око центра троугла: r (за $\pi/3$), $r \circ r = r^2$ (за $2\pi/3$) и $r \circ r \circ r = r^3 = e$ (за 2π , односно 0 радијана идентичко пресликавање)
- Осне симетрије s_1, s_2 і s_3 у односу на праве ℓ_1, ℓ_2, ℓ_3 . Приметимо да опет важи $s_i \circ s_i = s_i^2 = e$, за $i \in \{1,2,3\}$, али и $s_1 s_2 = r^2$, ...

Слика 1.1: Симетрије једнакостраничног троугла

Слично се дешава и код квадрата и правилног шестоугла, само са више оса симетрије и већим степеном ротационе симетрије:

Слика 1.2: Simetrije kvadrata i pravouglog šestougla

Са друге стране, постоје и примери код којих се јавља и транслациона симетрија. Јасно је да то морају бити бесконачни цртежи код којих се један или више основних елементата понављају по једној (*frieze*) или две димензије (*wallpaper*). Интересантно је да се обе врсте оваквих цртежа могу потпуно класификовати у зависности од симетрија које поседују. Тако имамо 7 frieze-група и 17 wallpaper-група трансформација.

1.2 Симетрије тродимензионалних тела

У три димензије, добро су познате симетрије правилних полиедара (тетраедра, коцке, октаедра и икосаедра), али су значајне и групе симетрија молекула и кристала (кристалографске групе), које се такође могу комплетно класификовати, као у дводимензионалном случају.

Слика 1.3: Примери frieze цртежа

Слика 1.4: Примери wallpaper-a

1.3 Симетрије у физици

Коначно, симетрије нашег простора (Poincaré-ова и Lorentz-ова група у специјалној теорији релативности) произилазе из свих квантних теорија поља, док је сам Стандардни Модел (најприхваћенија таква теорија) базиран на унутрашњим симетријама групе $SU(3) \times SU(2) \times U(1)$ (касније ће бити бити објашњено шта то значи).

Увод у теорију група

2.1 Основне дефиниције

Као што је већ било речено, елементи неке групе не морају нужно да буду трансформације, већ елементи произвољног скупа G, за које смо дефинисали операцију "множења" (формално: операцију групе) која задовољава следеће особине:

- 1. Ако a и b припадају G, онда и њихов производ, ab припада G
- 2. Операција множења је асоцијативна, односно важи a(bc) = (ab)c
- 3. G садржи јединични елемент e, за који важи ae = ea = a, за свако $a \in G$
- 4. За свако $a \in G$ постоји $b \in G$, за које важи ab = ba = e. Такав b се зове *инверзни елемент* за a, и обележава се са b^{-1}

Иако операцију групе често називамо "множењем", она заправо и може а и не мора то да буде:

- Скуп рационалних (или реалних) бројева без 0 чини групу у односу на множење (у уобичајеном смислу)
- Скуп целих (али не и природних!) бројева чини групу у односу на сабирање
- Скуп свих инвертибилних (регуларних, њихова детерминанта је различита од 0) квадратних матрица димензија $n \times n$ чини групу, а операција групе је множење матрица.

Али, чак и у овим примерима нисмо причали о апстрактим групама, него о њиховим конкретним примерима, реализацијама. Структура неке апстрактне групе је задата искључиво дефинисањем операције множења сваког уређеног пара елемената, било набрајањем или на неки други начин, али без позивања на "природу" тих елемената.

Приметимо да операција множења не мора бити комутативна (нпр код множења матрица), али ако јесте, односно ако за свако $a,b \in G$ важи ab = ba, онда је група G комутативна или Aбелова. Број елемената у групи назива се ped групе.

Ако одаберено неки елемент a групе G, можемо га помножити са самим собом и добити производ aa, који ћемо обележавати са a^2 . У општем случају, производ

обележавамо са a^n . Слично, можемо дефинисати и негативне степене a:

$$a^{-n} = (a^{-1})^n = (a^n)^{-1}$$

Ако су сви степени a различити, кажемо да је a бесконачног реда. Иначе, исписивањем степена a, наићи ћемо на два природна броја r и s, r > s, за које важи

$$a^r = a^s$$
.

Множењем обе стране једнакости са a^{-s} , добијамо

$$a^{r-s} = a^0 = e, r - s > 0.$$

Нека је n најмањи број за који је $a^n = e, n > 0$. Тада је n ред елемента a.

Дефиниција 1. Непразан подскуп H групе G је *подгрупа* групе G, ако је H група у односу на рестрикцију операције групе G на скупу H. Свака група G са јединичним елементон e има *тривијалне подгрупе* $\{e\}$ и G.

Нека је A непразан подскуп групе G. Обележимо са [A] пресек свих подгрупа G које садже скуп A. Пошто се може показати да је пресек две подгрупе неке групе и даље подгрупа те групе, и [A] је подгрупа групе G. Јасно је да је [A] најмања подгрупа G која садржи скуп A.

Дефиниција 2. Нека је $\emptyset \neq A \subset G$. Тада подгрупу [A] зовемо *подгрупа генерисана скупом* A. Ако је [A] = G, онда скуп A називамо *генераторни скуп* групе G, а његове елементе *генератори* групе G.

2.2 Групе реда 1, 2, 3, 4

Сада, када смо дефинисали неке основне појмове из теорије група, можемо класификовати све групе реда 1, 2, 3 и 4, као пример.

Група реда 1 садржи само један елемент, и то мора бити јединични елемент e, за који важи ee=e.

Група реда 2 такође садржи јединични елемент , и још један елемент $a \neq e$. Остаје да видимо чему је једнако aa, односно a^2 . Пошто група има само 2 елемента, или је $a^2=a$ или је $a^2=e$. У првом случају долазимо до контрадикције, јер би добили да је a=e. Дакле, остаје $a^2=e$, односно $a=a^{-1}$. Примери ове групе су

- Бројеви 0 и 1, при чему је операција групе сабирање по модулу 2.
- Бројеви 1 и -1, при чему је операција групе множење
- Јединична трансформација (e) и раванска симетрија тродимензионалног еуклидског простора (a). Операција групе је композиција две трансформације
- Слично као претходно, само што је а централна симетрија у односу на координатни почетак
- Слично као претходно, само што је a ротација око неке осе, на пример z, за 180°

Као што се види, све ове групе имају у основи исту структуру, и за њих кажемо да су изоморфне.

Дефиниција 3. У општем случају, кажемо да су две групе G и H изоморфне, ако постоји бијективно пресликавање $\varphi: G \to H$, које има особину да за свако $a,b \in G$ важи

$$\varphi(ab) = \varphi(a)\varphi(b)$$

Приметимо овде да производ ab рачунамо у групи G, а производ $\varphi(a)\varphi(b)$ према правилима групе H

Посматрајмо сада групу реда 3, нека су њени елементи e,a,b. Слично као у случају групе реда 2, производи ab и ba не могу бити ни a ни b, јер би тада било a=e или b=e. Дакле, ab=ba=e. Елемент a^2 не може бити ни a ни e, него само b. Тако добијамо да су елементи ове групе заправо a,a^2 и $a^3=e$. То је пример *цикличне групе* (реда 3 у овом случају), која је генерисана само једним елементом. Таква група постоји за произвољан природан број n, обележава се са C_n (циклична група реда n), и њени елементи су $\{a,a^2,...,a^n=e\}$.

Да бисмо олакшали себи посао око представљања неке групе, уобичајено је њене елементе записати у (Кејлијеву) таблицу групе, својеврсне таблице множења за ту групу. На пример, за C_3 имамо:

Приметимо да је, пошто је e неутрални елемент, сувишно писати први ред и колону ове табеле, па ћемо њих изостављати од сада па на даље. Такође, приметимо да су сви елементи у једној колони и у једној врсти различити, што директно произилази из својства групе (иначе не би имали јединствен инверзни елемент).

Коначно, сличним резоновањем долазимо до закључка да постоје две различите, неизоморфне, групе реда 4:

2. Клајнова 4-група,
$$V: egin{array}{c|cccc} e & a & b & c \\ \hline a & e & c & b \\ b & c & e & a \\ c & b & a & e \\ \hline \end{array}$$

2.3 Симетрична група S_n , пермутације

Познато је да су пермутације скупа 1, 2, ..., n све функције π које пресликавају тај скуп на самог себе. Уобичајено је да се пермутација записује на следећи начин:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

при чему је $\{a_1, a_2, ..., a_n\} = \{1, 2, ..., n\}$. На основу познатих тврђења о пермутацијама, можемо закључити да све ове пермутације једног скупа чине групу (у односу на операцију композиције ових

функција-пермутација), и та група се назива симетрична група скупа од n елемената, и обележава се са S_n .

Са друге стране, посматрајмо неку конкретну пермутацију, на пример:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 5 & 4 & 7 & 6 & 8 \end{pmatrix},$$

видимо да се 1 слика у 2, затим 2 у 3, и 3 опет у 1. Ови бројеви на тај начин формирају $\mu \kappa \kappa \nu \nu \nu$, који записујемо као (123). Слично, 4 и 5 формирају циклус (45), 6 и 7 формирају циклус (67), и број 8 формира циклус од једног елемента, (8). Сада ову пермутацију можемо да запишемо на алтернативан начин, као:

Приметимо да су сви ови циклуси дисјунктни. Даље, записивање ове пермутације као неког "производа" заиста има смисла, ако саме циклусе посматрамо као пермутације, а њихов "производ" као композицију тих пермутација. И заиста, за циклус (123) имамо пермутацију

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 4 & 5 & 6 & 7 & 8 \end{pmatrix},$$

за циклусе (45) и (67) пермутације

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 5 & 4 & 6 & 7 & 8 \end{pmatrix} \text{ M} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 7 & 6 & 8 \end{pmatrix},$$

и за циклус (8) идентичну пермутацију

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}.$$

Приметимо пар чињеница:

- Композиција ових пермутација заиста даје почетну пермутацију, π
- Редослед записивања (дисјунктних) циклуса није битан, односно

$$(123)(45) = (45)(123)$$

• У појединачним циклусима, можемо узети било који елемент као почетни,

$$(123) = (231) = (312)$$

- Циклус (8), односно идентичка пермутација се може изоставити, само треба видити рачуна о броју елемената у тој пермутацији
- Број пермутованих елемената је 7, а број независних циклуса (не рачунајући циклусе од једног елемента) је 4. Разлика ова два броја је декремент пермутације. Дефинишемо парност пермутације као парност декремента.

Једна од основних теорема теорији група је Кејлијева (Cayley) теорема, која гласи овако:

Теорема 1. Свака група G реда n је изоморфна са подгрупом симетричне групе S_n .

Доказ. Нека је $G = \{a_1, a_2, ..., a_n\}$. Посматрајмо произвољни елемент $b \in G$, и његове производе $ba_1, ba_2, ..., ba_n$ са свим осталим елементима G. Као што смо раније приметили, сви ови производи морају бити различити. Зато, производи ba_i су у ствари нека пермутација скупа G:

$$b \to \pi_b = \begin{pmatrix} a_1 & \dots & a_n \\ ba_1 & \dots & ba_n \end{pmatrix}$$

Сличне пермутације можемо придружити и осталим елементима G. Пошто желимо да покажемо да постоји изоморфизам између групе G и групе ових пермутација, треба да покажемо да ће за произвољно $c \in G$ пермутација $\pi_c \pi_b$ заиста одговарати елементу cb. Посматрајмо дакле пермутацију π_c :

$$\pi_c = \begin{pmatrix} a_1 & \dots & a_n \\ ca_1 & \dots & ca_n \end{pmatrix}$$

Она се може написати и на други начин, као

$$\pi_c = \begin{pmatrix} ba_1 & \dots & ba_n \\ c(ba_1) & \dots & c(ba_n) \end{pmatrix}$$

Сада лако можемо добити производ $\pi_c \pi_b$:

$$\pi_c \pi_b = \begin{pmatrix} ba_1 & \dots & ba_n \\ c(ba_1) & \dots & c(ba_n) \end{pmatrix} \begin{pmatrix} a_1 & \dots & a_n \\ ba_1 & \dots & ba_n \end{pmatrix}$$

Множењем ове две пермутације добијамо

$$\pi_c \pi_b = \begin{pmatrix} a_1 & \dots & a_n \\ cba_1 & \dots & cba_n \end{pmatrix} = \pi_{cb}$$

Ова теорема нам показује да постоји коначан број група реда n, и даје нам систематичан начин за налажење сви тих група (све подгрупе S_n).

2.4 Лагранжова теорема

Још једна теорема корисна за одређивање структура свих модућих група датог реда, али и за многе друге проблеме, је Лагранжова (Lagrange) теорема.

Теорема 2. Ако је G нека група реда g, и H њена подгрупа реда h, тада h дели g.

Доказ. Ако је H=G, тврђење је тривијално тачно. Иначе, постоји неки елемент $a\in G$, тако да $a\notin H$. Ако обележимо елементе подгрупе H са $e,b_2,...,b_h$, тада дефинишемо скуп aH као скуп производа a и свих елемената групе H,

$$aH = \{a, ah_2, ..., ah_n\}.$$

Због особина групе имамо да су сви ah_i различити (иначе би постојало $j, j \neq i$, за које је $h_i = h_j$), као и да је $aH \cap H = \emptyset$ (иначе би било и $a \in H$).

Сада имамо два скупа од по h различитих елемената, H и aH, који се садрже у G. Уколико у G још постоје елементи који нису ни у H, ни у aH, понављамо овај поступак за један такав елемент, c, и формирамо cH. Као резултат, поделили смо групу G на m дисјунктних подскупова:

$$G = H \cup a_1 H \cup a_2 H \cup \dots \cup a_{m-1} H.$$

Број m се зове *индекс* подгрупе H у групи G. Скупови a_iH се зову *леве класе* H у G. Приметимо да смо на сличан начин могли да поделимо G и на *десне класе*:

$$G = H \cup Ha'_1 \cup Ha'_2 \cup ... \cup Ha'_{m-1}.$$

Последица. Ред елемента (цикличне подгрупе генерисане тим елементом) дели ред групе.

2.5 Инваријантне подгрупе, фактор група

Konjugacija, unutrasnji automorfizam, invarijantna (normalna) podgrupa, faktor grupa, homomorfizam. Veza homomorfizma i normalnih podgrupa.

Теорија група у физици

3.1 Векторски простор

3.1.1 Основне дефиниције

Дефиниција 4. Нека је (V,+) комутативна група, а $F,+,\cdot$ поље. V је векторски простор над пољем F, ако је дефинисано пресликавање $F\times V\to V$, при шему слику пара (α,a) означавамо са αa , тако да за свако $\alpha,\beta\in F,a,b\in V$ важи:

- 1. $\alpha(a+b) = \alpha a + \alpha b$
- 2. $(\alpha + \beta)a = \alpha a + \beta a$
- 3. $(\alpha\beta)a = \alpha(\beta a)$
- 4. 1a = a

где је са 1 означен неутрални елеменат за множење поља ${\cal F}$

Дефиниција 5. У векторском простору V(F), вектор v је линеарна комбинација вектора $a_1,...,a_n$ ако постоје скалари $\alpha_1,...\alpha_n$ такви да је

$$v = \alpha_1 a_1 + \dots + \alpha_n a_n$$

Дефиниција 6. Неки скуп вектора $S\subset V(F)$ генерише векторски простор L(S), чији су елементи све линеарне комбинације вектора из S.

Дефиниција 7. У векторском простору V(F) скуп вектора $a_1,...,a_n$ је линеарно зависан, ако постоје скалари $\alpha_1,...,\alpha_n$, од који је бар један различит од нуле, такви да је

$$\alpha_1 a_1 + \dots + \alpha_n a_n = 0$$

. Низ вектора који није линеарно зависан је линеарно независан.

Дефиниција 8. *База* векторског простора је низ вектора који је линеарно независан и који генерише векторски простор.

Може се показати да постоји још еквивалентних дефиниција, односно потребних и довољних услова да би неки низ вектора био база. Наводимо их овде, јер ће бити корисне у далјем тексту:

- У векторском простору V(F) низ вектора је база ако и само ако је тај низ максималан линеарно независан низ.
- У векторском простору V(F) низ вектора је база ако и само ако је тај низ минималан низ генератора
- У векторском простору V(F) низ вектора $a_1, ..., a_n$ је база ако и само ако се сваки вектор $x \in V$ може на јединствен нечин написати у облику

$$x = \sum_{1}^{n} \alpha_i a_i, \quad \alpha_1, ..., \alpha_n \in F$$

Одавде се може наслутити да све базе неког одређеног векторског простора V(F) имају исти број елемената, што се може и показати, а тај број се зове димензија векторског простора, и обележава се са $\dim V$.

3.1.2 Унитарни векторски простори

Дефиниција 9. Нека је V векторски простор над пољем F (где је $F = \mathbb{R}$ или $F = \mathbb{C}$). Унутрашњи (скаларни) производ на V је свака функција $(,): V \times V \to F$, при чему слику уређеног пара вектора $(x,y) \in V \times V$ означавамо са (x,y), за коју за свако $x,y,z \in V$ и свако $\alpha \in F$ важи

- 1. $(x,y) = \overline{(y,x)}$
- 2. (x + y, z) = (x, z) + (y, z)
- 3. $(\alpha x, y) = \alpha(x, y)$
- 4. (x,x) > 0
- 5. $(x,x) = 0 \Leftrightarrow x = 0$

Са $\overline{(x,y)}$ означен је комплексан број конјугован са (x,y).

Дефиниција 10. Векторски простор над пољем реалних или комплексних бројева заједно са функцијом која дефинише унутрашњи производ назива се *унитарни векторски простор*.

Дефиниција 11. У унитарном векторском простору V функција $\| \ \| : V \to \mathbb{R}$, дефинисана са

$$||x|| = \sqrt{(x,x)}$$

назива се *норма* на V. Ненегативан реалан број $\|x\|$ назива се *норма вектора* x. Pастојање вектора x и y је дефинисано са

$$d(x,y) = ||x - y||$$

Позната Коши-Шварцова неједнакост је дефинисана у било ком унитарном векторском простору:

Теорема 3. У унитарном векторском простору V за свако $x,y \in V$ важи

$$|(x,y)| \le ||x|| ||y||,$$

при чему једнакост важи ако и само ако су вектори x и y линеарно зависни.

Као последицу, (у реалним унитарним векторским просторима) можемо дефинисати угао између вектора $x \neq 0$ и $y \neq 0$, као реалан број $\alpha \in [0, \pi]$, такав да је

$$\cos \alpha = \frac{(x,y)}{\|x\| \|y\|}$$

Природно, два вектора x и y су *ортогонална* ако је (x, y) = 0.

3.1.3 Линеарне трансформације

Сад кад смо дефинисали неке основне појмове везане за векторске просторе, можемо наставити са дефинисањем линеарних трансформација и њихове везе са матрицама.

Дефиниција 12. Нека су V_1 и V_2 векторски простори над истом пољем F. Пресликавање $A:V_1\to V_2$ такво да је

$$(\forall a, b \in V_1)(\forall \alpha, \beta \in F)A(\alpha a + \beta b) = \alpha A(a) + \beta A(b)$$

назива се линеарна трансформација (линеарни оператор, хомоморфизам) векторског простора V_1 у V_2 . Уколико је $V_1=V_2$, тада је A просто линеарна трансформација векторског простора V.

Значајно је да је свака линеарна трансформација на јединствен начин одређена ако је познато како се пресликавају вектори базе, што нам омогућава да представимо произвољну линеарну трансформацију неког векторског простора помоћу матрице, на следећи начин:

Претпоставимо да је $(a_1, ... a_n)$ база векторског простора V(F). Тада, линеарну трансформацију A можемо задати са

$$A(a_1) = b_1, A(a_2) = b_2, ..., A(a_n) = b_n$$

где су $b_1,...,b_n \in V$. Пошто је $(a_1,...a_n)$ база, сваки од вектора b_i може на јединствен начин написати као линеарна комбинација вектора базе, па имамо:

$$A(a_1) = \alpha_{11}a_1 + \alpha_{21}a_2 + \dots + \alpha_{n1}a_n$$

$$A(a_2) = \alpha_{12}a_1 + \alpha_{22}a_2 + \dots + \alpha_{n2}a_n$$
...

 $A(a_n) = \alpha_{1n}a_1 + \alpha_{2n}a_2 + ... + \alpha_{nn}a_n$ Ове коефицијенте можемо записати и у компактнијем облику, као матрицу:

$$[A] = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{bmatrix},$$

па вредност функције A(x) (као линеарне трансформације произвољног вектора $x \in V$) можемо израчунати простим множењем матрица:

$$[A][x] = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{bmatrix}$$

при чему је $x = \zeta_1 a_1 + \zeta_2 a_2 + ... \zeta_n a_n$. Слично, може се показати да се и композиција линеарних трансформација може представити множењем одговарајућих матрица (које морају да се односе на исту базу).

ОВДЕ ФАЛЕ ДЕФИНИЦИЈЕ ТОГА ШТА ЈЕ ИЗОМЕТРИЈА, А ШТА ЈЕ УНИТАРНА ТРАНС-ФОРМАЦИЈА

3.2 Изометријске трансформације *n*-димензионог простора

Moze biti i nad R GL(N, C) - opsta linearna grupa SL(N, C) - specijalna linearna grupa U(N, C) - unitarna grupa SU(N, C) - specijalna unitarna grupa O(N, C) - ortogonalna grupa SO(N, C) - specijalna ortogonalna

3.3 Дводимензионалне тачкасте кристалографске групе

Дефиниција 13 (Мрежа). Šta је mreža...

Дефиниција 14. Група $G \subseteq O(n, \mathbb{R})$ у односу на коју је мрежа реда n инваријантна се зове *кристалографска тачкаста група*, ако

Теорема 4. Свака кристалографска тачкаста група у две димензије је коначна

Доказ. Једноставном провером добијамо да се свака изометрија која чува неку тачку O може представити као ротација око тачке O, осна симетрија у односу на неку праву која пролази кроз O, или као композиција неке такве ротације и осне симетрије. Јасно је да је довољно показати да имамо коначно много ротација, јер додавањем осних симетрија у (коначну) групу C_n , реда n, добијамо такође коначну групу D_n , реда 2n.

Дакле, претпоставимо супротно, да је група G кристалографска тачкаста група у све димензије, и садржи бесконачно много ротација. Пошто је свака ротација одређена са једним реалним бројем из $[0,2\pi)$, за свако $\epsilon>0$ по Дирихлеовом принципу можемо наћи $f,g\in G$, такве да је $f\neq g$ и $|f-g|\leq \epsilon$. Без умањења општости, претпоставимо да је f>g. Пошто је G група, и f-g припада G, односно G садржи ротацију за произвољно мали угао. То је контрадикција са дискретношћу мреже коју очувава дата група G (јер добијамо да можемо наћи произвољно блиске тачке у тој мрежи).

Последица. У две димензије тачкасте кристалографске групе могу бити само облика C_n и D_n , за $n \in \mathbb{N}$

Теорема 5. За дату кристалографску групу G, која чува решетку у \mathbb{R}^2 или \mathbb{R}^3 , њена подгрупа ротација H може бити искључиво реда I, 2, 3, 4, или 6.

Доказ. Директном конструкцијом добијамо да постоје решетке у две и три димензије, које су инваријантне при свакој од ротација за $2\pi/n$, за $n\in 1,2,3,4,6$. Остаје да се покаже да је $n\neq 5$ и $n\leq 6$.

Уочимо неку тачку A те решетке, и посматрајмо њена растојања од свих осталих тачака те решетке. Пошто је решетка дискретна, постоји тачка B, која је најближа тачки A, на удаљености d=|AB|. У случају да је n>6, посматрамо троугао $\triangle ABC$, при чему је C тачка решетке настала ротирањем тачке B око A, за угао $\varphi=2\pi/n$. По косинусној теореми, $|BC|^2=2d^2-2d^2\cos\varphi$, односно $|BC|=d\sqrt{2(1-\cos\varphi)}$. За n=6 добијамо да је |BC|=d, а за све остале n>6 важи да је $\cos(2\pi/n)>\frac{1}{2}$, односно |BC|< d, што је контрадикција са минималношћу d.

Дакле, остаје случај n=5. Тада уочимо правилни петоугао странице d чија су темена на решетци. Због особина групе G и решетке, ивице тог петоугла можемо пресложити у петокраку звезду, тако да њена темена и даље буду на решетци. Наравно, темена те звезде су и даље темена неког правилног петоугла, али са мањом страницом $d'<\frac{d}{2}$. Овај поступак можемо понављати произвољан број пута, и тако добити тачке те решетке на произвољно малој удаљености, што је контрадикција са дискретношћу решетке.

3.4 Lorentz-ова група

Постоји један интересантан хомоморфизам између $SL(2,\mathbb{C})$ и Lorentz-ове групе L, групе свих линеарних трансформација векторског простора \mathbb{R}^4 које чувају Lorentz-ову метрику

$$|x| := x_0^2 - x_1^2 - x_2^2 - x_3^2$$
.

Сваком вектору $x \in \mathbb{R}^4$ придружимо једну 2×2 матрицу $\psi(x)$, на следећи начин:

$$\psi(x) = \begin{bmatrix} x_0 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{bmatrix},$$

тако да важи $|x|=det(\psi(x))$. Тада, пресликавање $\varphi:SL(2,\mathbb{C})\to L$, дато са $\varphi(A)(x)=\psi^{-1}(A\psi(x)A^*)$ је хомоморфизам, при чему се матрица A* добија транспоновањем матрице A и коњуговањем свих њених елемената. И заиста, ψ је линеарни изоморфизам из \mathbb{R}^4 у

$$\psi(\mathbb{R}^4) = \left\{ \begin{bmatrix} x & y \\ z & u \end{bmatrix} \middle| x, y, z, u \in \mathbb{C} \text{ i } \overline{x} = x, \overline{y} = z, \overline{u} = u \right\}$$

Може се проверити да је овај простор инваријантан под $M \to AMA^*$, за свако $A \in GL(2,\mathbb{C})$. Такође, за $A \in SL(2,\mathbb{C})$, $\varphi(A)$ чува метрику, због мултипликативних својстава детерминанте:

$$|\varphi(A)(x)| = \det(\psi(\varphi(A)(x))) = \det(A\psi(x)A^*) = \det(A)\det(\psi(x))\det(A^*) = \det(\psi(x)) = |x|$$

Закључак