Boosting

Tong Zhang

Rutgers University

Boosting

- Ensemble Learning algorithm.
- Given a learning algorithm A:
 - how to generate the ensemble candidates?
 - how to combine the generated ensemble candidates?

Boosting

- Ensemble Learning algorithm.
- Given a learning algorithm A:
 - how to generate the ensemble candidates?
 - how to combine the generated ensemble candidates?
- Invoke A with multiple samples (similar to Bagging).
 - goal: to find optimal ensemble by minimizing a loss function
 - learning method:
 - greedy, stage-wise optimization
 - invoking a base-learner (weak learner) A.
 - adaptive resampling
- Bias reduction:
 - less stable but more expressive.
 - better than any single classifier.

Why Boosted Trees

- May build shallow trees
 - combine shallow trees (weak learner) to get strong learner.
- Linear model of high order features
 - automatically find high order interactive features $h_i(\cdot)$

$$h(x) = \sum_{j} w_{j} \underbrace{h_{j}(x)}_{\text{nonlinear in } x}$$

- automatically handle heterogeneous features
- high order features are indicator functions.
- Alternatives:
 - discretize each feature into (possibly overlapping) buckets
 - direct construction of feature combination.
 - nonlinear functions like kernels or neural networks.
 - direct greedy learning.

Weak Learning and Adaptive Resampling

- A: a weak learner (e.g. shallow tree)
 - better than chance (0.5 error) on any (reweighted) training data.
- Question: can we combine weak learners to obtain a strong learner?
- Answer: yes, through adaptive resampling (boosting).
 - idea: overweighting difficult examples that are hard to classify.
- Compare with bagging: sampling without overweighting errors.
- Compare with outlier removal: underweighting errors.
 - reduce variance (but may increase bias)

The Idea of Adaptive Resampling

- Reweight the training data to overweight difficult examples.
- Using weak learner A to obtain classifiers f_j on reweighted samples.
- Adding the new classifier into ensemble, and choose weight w_i .
- Iterate.
- Final classifier is $\sum_{i} w_{i} f_{j}$.

AdaBoost (adaptive boosting)

- How to reweight, and how to compute w.
- Assume binary classification $y \in \{\pm 1\}$, and $f \in \{\pm 1\}$.

```
initialize sample weights \{d_i\} = \{1/n\} for \{(X_i, Y_i)\} for j = 1, \cdots, J call Weak Learner to obtain f_j using sample weighted by \{d_i\} let r_j = \sum_i d_i f_j(X_i) Y_i let w_j = 0.5 \ln((1 + r_j)/(1 - r_j)) update d_i: d_i \propto d_i e^{-w_j f_j(X_i) Y_i}. let \bar{f}_J(x) = \sum_{j=1}^J w_j f_j(x)
```

AdaBoost

Some Theoretical Results about AdaBoost

- Convergence: reduces margin error
 - f correctly classifies X_i with margin γ if $f(X_i)Y_i > \gamma > 0$.
 - If each weak learner f_j does better than $0.5 \delta_j$ ($\delta_j > 0$) on reweighted samples with respect to classification error $I(f(X_i)Y_i \le 0)$, then

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} I(\bar{f}_{J}(X_{i}) Y_{i} \leq \gamma)}_{\text{margin error}} \leq \exp(\gamma - 2 \sum_{j=1}^{J} \delta_{j}^{2}).$$

- Generalization:
 - smaller margin error implies good generalization performance
- For linear separable problems, Adaboost does not usually maximize margin: different from SVM

Generalization Analysis for Boosting

• Generalization performance of $\hat{f} = \mathcal{A}(S_n)$: with probability at least $1 - \eta$,

 $test\ error \leq training\ error + model\ complexity.$

• Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC} , $(\phi(f, y) = I(fy \le 0))$:

test error
$$\leq$$
 training error $+ C\sqrt{\frac{1}{n}(d_{VC} - \ln(\eta))}$

test error
$$\leq 2 \times \text{training error} + \frac{C}{n} (d_{VC} - \ln(\eta)).$$

• Traditional analysis without considering margin

Generalization Error using Number of Steps

- \mathcal{H} : VC-dimension d_{VC} .
- Ensemble $\bar{f}_J = \sum_{i=1}^J w_i f_i(x) : f_i \in \mathcal{H}$:

$$\underbrace{R(\overline{f}_J)}_{\text{test error}} \leq 2 \underbrace{\hat{R}(\overline{f}_J)}_{\text{training error}} + \underbrace{\frac{C}{n}(Jd_{VC} - \ln(\eta))}_{\text{complexity linear in }J}.$$

- \bar{f}_J : boosted tree after J round:
 - training error: $O(e^{-2J\delta^2})$ (0.5 δ error reduction)
 - generalization error

$$R(\overline{f}_J) \leq O(e^{-J\gamma}) + \frac{C}{n}(Jd_{VC} - \ln(\eta)).$$

Generalization Error Anomaly

- Empirical observations:
 - AdaBoost is difficult to overfit.
 - even when training error becomes zero, generalization error still decays
- Not explained by the generalization bound using the number of steps.
- require additional analysis: margin

Margin Bound

• Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC} , then training error $\leq 2 \times \text{margin error} + \text{fixed complexity}$

$$\mathbf{E}_{X,Y}I(\bar{f}_J(X)Y \leq 0) \leq \underbrace{\frac{2}{n} \sum_{i=1}^n I(\hat{f}_m(X_i)Y_i \leq \gamma \|\mathbf{w}\|_1)}_{\rightarrow 0 \text{ when } J \rightarrow \infty} + \underbrace{\frac{C}{n} \left(\frac{d_{VC}}{\gamma^2} - \ln(\eta)\right)}_{\text{independent of } J}.$$

- Explains why AdaBoost can keep improving even when classification error becomes zero
 - reason: margin error decreases

Margin Analysis and L_1 Regularization

- Margin analysis is a special case of general L₁ regularization
- Let ϕ be a smooth loss.
- Given L_1 constraint $\sum_i w_i \leq A$:

$$\mathbf{E}_{X,Y}\phi(\overline{f}_J(X),Y)\leq \frac{1}{n}\sum_{i=1}^n\phi(\overline{f}_J(X_i),Y_i)+C_\phi\sqrt{\frac{1}{n}(A^2d_{VC}-\ln(\eta))}.$$

Complexity measured by A, not number of steps J.

Summary of Generalization Analysis

- Estimate generalization of boosting: using the following complexity control
 - L_1 : 1-norm of the weights w_i are bounded.
 - L₀: number of boosting steps (sparse representation).
- Which complexity control is better?
 - sparsity is more fundamental but both views are useful.
 - can be more refined analysis in between.
- In more general boosting methods:
 - complexity can be controlled either by L_1 (1-norm) or L_0 (sparsity).

Issues corresponding to the Weak Learner View

- Weak learner: this is only an assumption, how to prove existence?
 - what is a weak learner?
 - why boosted tree works, and boosted SVM does not.
- Overfitting: driving error to zero can overfit the data (for non-separable problems)
- AdaBoost does not maximize margin.
- Adaptive resampling: why this specific form.
- Can we generalize adaptive resampling idea to regression and complex loss functions?

From Adaptive Resampling to Greedy Boosting

- Weak learner: picks f_j from a hypothesis space \mathcal{H}_j to minimize certain error criterion.
- Goal: find $w_i \ge 0$ and $f_i \in \mathcal{H}_i$ to minimize loss

$$[\{\hat{w}_j, \hat{f}_j\}] = \arg\min_{\{w_j \ge 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^n \phi\left(\sum_j w_j f_j(X_i), Y_i\right). \quad (*)$$

- Idea: greedy optimization.
 - at stage j: fix (w_k, f_k) (k < j), find (w_j, f_j) to minimize the loss (*).

AdaBoost as Greedy Boosting

- Loss $\phi(f, y) = \exp(-fy)$.
- Goal: using greedy boosting to minimize

$$[\{\hat{w}_j, \hat{f}_j\}] = \arg\min_{\{w_j \ge 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^n e^{-\sum_j w_j f_j(X_i) Y_i}.$$

• Greedy optimization: at stage j, let $d_i \propto e^{-\sum_{k=1}^{j-1} \hat{w}_k \hat{f}_k(X_i) Y_i}$, and solve

$$[\hat{w}_j, \hat{f}_j] = \arg\min_{w_j \geq 0, f_j \in \mathcal{H}_j} \sum_{i=1}^n d_i e^{-w_j f_j(X_i) Y_i}.$$

It can be shown solution is exactly the Adaboost update.

General Loss Function

- Learn prediction function h(x).
- By solving learning formulation

$$\hat{h} = \arg\min_{h \in H} \mathcal{L}(h)$$

• $\mathcal{L}(h)$: complex loss function of the form

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(h(x_{i,1}), \cdots, h(x_{i,m_i}), y_i)$$

- Greedy algorithm: generalization of Adaboost
 - $(s_k, g_k) = \operatorname{arg\,min}_{g \in C, s \in R} \mathcal{L}(h_k + sg)$
 - $h_{k+1} \leftarrow h_k + \tilde{s}_k g_k$ (\tilde{s}_k may not equal s_k)

General Loss Function

- Learn prediction function h(x).
- By solving learning formulation

$$\hat{h} = \arg\min_{h \in H} \mathcal{L}(h)$$

• $\mathcal{L}(h)$: complex loss function of the form

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(h(x_{i,1}), \cdots, h(x_{i,m_i}), y_i)$$

- Greedy algorithm: generalization of Adaboost
 - $(s_k, g_k) = \operatorname{arg\,min}_{g \in C, s \in R} \mathcal{L}(h_k + sg)$
 - $h_{k+1} \leftarrow h_k + \tilde{s}_k g_k$ (\tilde{s}_k may not equal s_k)
- However, this greedy weak learner is specialized and hard to implement; can we simplify?

Boosting with Regression base Learner

- Simplified weak learner: nonlinear regression base leaner A.
 - input: $X = [x_1, \dots, x_k]$, residues $R = [r_1, \dots, r_k]$
 - output: a nonlinear function $\hat{g} = \mathcal{A}(X, R) \in \mathcal{C}$ (e.g. decision tree)

$$\sum_{j=1}^{k} (\hat{g}(x_j) - r_j)^2 \approx \min_{g \in \mathcal{C}} \sum_{j=1}^{k} (g(x_j) - r_j)^2.$$

Boosting with Regression base Learner

- Simplified weak learner: nonlinear regression base leaner A.
 - input: $X = [x_1, \dots, x_k]$, residues $R = [r_1, \dots, r_k]$
 - output: a nonlinear function $\hat{g} = A(X, R) \in C$ (e.g. decision tree)

$$\sum_{j=1}^{k} (\hat{g}(x_j) - r_j)^2 \approx \min_{g \in \mathcal{C}} \sum_{j=1}^{k} (g(x_j) - r_j)^2.$$

- Question: can we use A to optimize complex loss functions $\mathcal{L}(\cdot)$?
- Answer: yes:
 - functional gradient boosting (Friedman 01)
 - based on a functional generalization of gradient descent
 - a generalization of Adaboost

Gradient Boosting Algorithm

8: Return $h_T(x)$

```
1: h_0(x) = 0

2: for t = 1 to T do

3: r_t = \partial \mathcal{L}(h, Y)/\partial h|_{h = h_{t-1}(X)}

4: g_t = \mathcal{A}(X, r_t)

// (i.e. call base learner) g_t \approx \arg\min_{g \in \mathcal{C}} \|g(X) - r_t\|_2^2

5: \beta_t = \arg\min_{\beta} \mathcal{L}(h_{t-1}(X) + \beta \cdot g_t(X), Y)

6: h_t(x) = h_{t-1}(x) + s_t \cdot \beta_t g_t(x)

7: end for
```

- $s_t = s$: shrinkage parameter convergence requires $s \approx 0$
- functional generalization of gradient descent $h_t \leftarrow h_{t-1} s_t \partial \mathcal{L}(h_t) / \partial h_t$

Why Boosted Trees

- Linear model of high order features
- Automatically handle heterogeneous features
 - create new (high order) features that are indicator functions.
- Automatically find high order interactive features
 - through tree splitting procedure.
 - a method to solve the problem of huge search space.
 - assume good high order features depend on actively maintained set of (good) features constructed so far.
- Alternatives:
 - discretize each feature into (possibly overlapping) buckets
 - direct construction of feature combination.
 - nonlinear functions like kernels or neural networks.
 - nonlinear feature learning using coding
 - general greedy feature learning by maintaining a set of features and adding new ones.