PLC 综合设计大作业——机器臂运动控制

刘梓越 1120220823

1. 实验装置简介

实验室有一机器臂 ROB 如图所示。

机器臂 ROB 共包括三个步进电机,如图 1 所示,每一个步进电机都需要通过 PLC 产生时钟脉冲信号 PUL 和方向信号 DIR。步进电机 3 控制机器臂底盘旋转;步进电机 2 控制机器臂的小臂运动;步进电机 1 控制机器臂的大臂运动。

图 1 机器臂步进电机分布

图 2 步进电机驱动器

整个控制系统由可编程序控制器、步进电机驱动器以及步进电动机组成,它们之间的关系如图 3 所示。

图 3 系统结构图

图 4 系统结构图

步进电机的最高起动频率一般比最高运行频率低许多,如果直接按最高运行 频率起动,步进电机将产生丢步或根本不运行的情况。而对于正在快速运行的步 进电机,若在到达终点附近时,停发脉冲,令其立即锁定,也难以实现,由于旋 转系统的惯性,会发生冲过终点的现象。因此,在控制过程中,运行速度要有一 个加速—恒速—减速的过程。

2. 实验结果

2.1 PLC 外部接线图

2.2 PLC 输入输出变量表

10.0	启动按钮	M1.4	上升沿变量
10.1	停止按钮	M1.5	下降沿变量
M1.0	自动按钮	M1.6	自动运行上升沿
M1.1	大臂运行	M1.7	底盘正传 3s
M1.2	小臂运行	M2.0	底盘反转 3s
M1.3	底盘运行	M2.1	大小臂正转 5s
MD2	大臂脉冲频率	M2.2	大小臂反转 5s
MD3	小臂脉冲频率	Q0.5	底盘方向
MD4	底盘脉冲频率	Q0.1	大臂方向
M0.0	时钟	Q0.3	小臂方向

2.3 机械臂运动姿态及流程图

运动姿态:

底盘正向旋转 3s, 随后大臂和小臂同时正向旋转 5s, 然后大臂小臂同时反向 旋转 5s, 最后底盘反向旋转 3s。

流程图:

- (1) 底盘正转 3s
- (2) 大臂和小臂一起运动,大小臂同时正传 5s,再反转 3s
- (3) 底盘再正转 3s

2.4 梯形图程序

程序段 3: 加速、匀速、减速 %MD2 ADD Auto (UDInt) %M0.0 "Tag_10" %M1.1 "Tag_6" "Tag_4" < "Tag_4" >= UDInt +EN UDInt 1000 200 "Tag_11" "Tag_4" — IN1 20 — IN2 4 OUT - Tag_4 %M0.0 "Tag_10" %MD2 "Tag_4" MOVE EN ENO UDInt 200 — IN \$ OUT1 —"Tag_4" %MD2 "Tag_4" MOVE >= UDInt EN - ENO 1000 <u>IN</u> %MD2 1000 * OUT1 — "Tag_4" %MD2 SUB Auto (UDInt) %M1.1 "Tag_6" "Tag_4" 1/1 UDInt %MD2 %MD2 "Tag_4" — IN1 OUT -Tag_4" 20 — IN2 %MD2 "Tag_4" MOVE <= UDInt EN - ENO 0 — IN %MD2 ♦ OUT1 — Tag_4 %MD3 "Tag_5" %MD3 "Tag_5" %M1.2 "Tag_7" ADD Auto (UDInt) >= UDInt < UDInt **-** | EN -%MD3 %MD3 "Tag_5" — IN1 OUT — "Tag_5" 20 — IN2 👙 %MD3 "Tag_5" MOVE < UDInt EN — ENO — 6MD3 200 OUT1 — Tag_5 %MD3 "Tag_5" MOVE EN --- ENO UDInt 1000 — IN 1000 OUT1 — Tag_5 %MD3 %M1.2 "Tag_7" SUB Auto (UDInt) "Tag_5" > UDInt -1/1-%MD3 OUT —"Tag_5" %MD3 0 "Tag_5" — IN1 20 — IN2 %MD3 "Tag_5" <= UDInt EN - ENO 0 <u> —</u> IN %MD3 S OUT1 — "Tag_5"


```
程序段4:
自动运行
   %M1.0
"Tag_3"
                                                                            %M1.7
"Tag_14"
  -(5)---
                                                                            %M2.0
"Tag_15"
                                                                             -(R)-----
                                                                            %M2.1
"Tag_16"
                                                                             -(R)-----
                                                                            %M2.2
"Tag_17"
                                                                             _(R )____
   %M1.0
"Tag_3"
                                                                            %M1.7
"Tag_14"
     V⊦
                                                                             %M2.0
"Tag_15"
                                                                             (R)——
                                                                            %M2.1
"Tag_16"
                                                                              (R)——
                                                                            %M2.2
"Tag_17"
                                                                             _(R )__
```


程序段7: 底盘反转3s %MD4 %MD3 %MD2 %M2.0 %M1.3 "Tag_4" "Tag_9" "Tag_5" "Tag_15" "Tag_8" = UDInt (5) UDInt UDInt %Q0.5 "Tag_20" (R) %DB7 TON %M1.3 %Q0.5 "Tag_8" Time "Tag_20" (R) ET -T# 0ms %M1.3 "Tag 8" (R) %M2.0 "Tag_15" (R) %M1.7 "Tag_14" -(s)------

3. 实验总结

在这次实验中,我们通过设计和实现一个基于 PLC 控制的机器臂系统,深入理解了 PLC 在实际自动化系统中的应用。实验过程中,我们使用了三个步进电机,通过 PLC 生成时钟脉冲信号 PUL 和方向信号 DIR,分别控制机器臂底盘旋转、

大臂运动和小臂运动。实验的主要任务包括 PLC 外部接线、输入输出变量的设定以及梯形图程序的编写。

首先,我们了解了步进电机的工作原理及其在自动化控制中的重要性。步进电机的控制需要精确的时钟脉冲和方向控制信号,通过 PLC 可以方便地实现这些控制。在实际操作中,我们发现步进电机的启动频率和运行频率之间存在显著差异,需要一个加速-恒速-减速的过程来避免丢步或超出终点的现象。

在系统实现过程中,我们设计了一个具体的运动姿态流程:底盘正向旋转 3 秒,大臂和小臂同时正向旋转 5 秒,反向旋转 5 秒,最后底盘反向旋转 3 秒。这一流程通过 PLC 程序进行控制,并且通过梯形图的形式实现了逻辑控制。

实验中遇到的挑战主要在于精确控制步进电机的速度和方向,确保各个电机 之间的协调工作。我们通过反复调整程序和硬件连接,最终实现了预期的控制效 果。同时,通过对控制系统的调试和优化,我们对 PLC 编程有了更深刻的认识, 特别是对梯形图程序设计中的细节问题有了更多的体会。

总的来说,这次实验不仅提升了我们的 PLC 编程能力,还增强了我们对自动 化控制系统整体架构和调试方法的理解。通过动手实践,我们更加清晰地认识到 PLC 在工业控制中的强大功能和灵活性,为今后的进一步学习和应用奠定了坚实 的基础。