Import packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Load data from file "cars.csv" and look at the first few rows

```
#CODE HERE

df = pd.read_csv('cars.csv')

df.head()
```

0 1 2 3 4	Unnamed: 0 N 0 1 2 3 4	BMW 1 SBMW 1 BMW 1	Model Series M 1 Series 1 Series 1 Series 1 Series	Year 2011 2011 2011 2011 2011	premium premium premium	unleade unleade unleade unleade	ne Fuel Typ d (required d (required d (required d (required	1) 33 1) 36 1) 36 1) 23
0	Engine Cylir	nders Tra 6.0	ansmissi	on Type MANUAL		ven_Whee heel dri		of Doors
1		6.0		MANUAL	rear w	heel dri	ve	2.0
2			MANUAL	rear w	2.0			
3			MANUAL	rear w	heel dri	ve	2.0	
4		6.0		MANUAL	rear w	2.0		
0	Vehicle Size Compact		Coupe	nighway	MPG ci	19	Popularity 3916	MSRP 46135
1	Compact Convertible		rtible		28	19	3916	40650
2	Compact		Coupe		28	20	3916	36350
3	Compact		Coupe		28	18	3916	29450
/.	Compost	Canvar	a+ih1 a		20	10	7017	7/E00

	Unnamed:	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Numk of Doors
0	0	BMW	1 Series M	2011	premium unleaded (required)	335.0	6.0	MANUAL	rear wheel drive	2.0
1	1	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0
2	2	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0
3	3	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0
4	4	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0

Check what is the shape of the data and what are the types of the variables.

```
#CODE HERE
print(df.shape)
print(df.dtypes)
```

(11092, 16)Unnamed: 0 int64 Make object Model object int64 Year Engine Fuel Type object Engine HP float64 Engine Cylinders float64 Transmission Type object Driven_Wheels object Number of Doors float64 Vehicle Size object Vehicle Style object highway MPG int64 city mpg int64 Popularity int64 **MSRP** int64 dtype: object

What are the 10 most popular makes of cars?

```
#CODE HERE
topCars = df.value_counts('Make')
topCars.nlargest(10)
```

1075
811
713
564
541
528
482
431
396
392

Make a bar plot showing the number of different cars by make. Add labels to both axes and a title.

```
#CODE HERE
plt.rcParams['figure.figsize']=[12,4]
topCars.plot(kind='bar')
plt.xticks(rotation=90)
plt.xlabel('Type of Maker')
plt.ylabel('Popularity')
plt.title('Popularity of Brand')
plt.show()
```

<Figure size 1200x400 with 1 Axes>

Download

How many different models of FIAT are recorded in the dataset?

```
df.loc[df['Make']=='FIAT']['Model'].value_counts().nunique()
```

4

Make a pie chart showing the distribution of different FIAT models in the dataset. Add a title and a legend.

```
#CODE HERE
fiatCars = df.loc[df['Make']=='FIAT']['Model'].value_counts()
plt.rcParams['figure.figsize']=[6,3]
plt.pie(fiatCars)
plt.legend(fiatCars.index,loc='lower left')
plt.legend(fiatCars.index,loc='lower left',bbox_to_anchor=(-1,0.2))
plt.show()
```

<Figure size 600x300 with 1 Axes>

₹ Download

What years are the oldest and newest cars in the dataset?

```
print("oldest car: ")
print(df['Year'].min())
print("Newest car: ")
print(df['Year'].max())
```

oldest car: 1990 Newest car: 2017

Make a line plot of the number of cars by year. Add axis labels and grid lines.

```
years = df['Year'].value_counts().sort_index()
years.plot(kind = 'line',figsize = [12,10],linewidth = 2)
plt.legend(title = "legend")
plt.xticks(years.index,rotation = 90)
plt.xlabel('year')
plt.ylabel('number of cars')
plt.show()
```

<Figure size 1200x1000 with 1 Axes>

₹ Download

There are several numerical variables. Calculate the correlation coefficients between them.

corrcars= df.corr()
corrcars

/var/folders/2y/yvh1znjd4fgb59l_s7m1s_3c0000gn/T/ipykernel_91587/945424575
corrcars= df.corr()

	Unnamed: 0	Year	Engine	HP Engine	Cylinders	\
Unnamed: 0	1.000000	0.058771	0.0112	-	0.068359	
Year	0.058771	1.000000	0.3372	207	-0.026926	
Engine HP	0.011291	0.337207	1.0000	000	0.788325	
Engine Cylinders	0.068359	-0.026926	0.7883	325	1.000000	
Number of Doors	0.149626	0.245804	-0.1287	704	-0.147885	
highway MPG	-0.137294	0.265521	-0.4238	309	-0.614795	
city mpg	-0.072933	0.220037	-0.4748	351	-0.634509	
Popularity	-0.084531	0.086693	0.0413	352	0.042393	
MSRP	-0.024098	0.209315	0.6589	987	0.552042	
	Number of D	oors high	way MPG	city mpg	Popularity	
Unnamed: 0	0.14	9626 -0	.137294	-0.072933	-0.084531	-0.6
Year	0.24	5804 0	.265521	0.220037	0.086693	0.2
Engine HP	-0.12	8704 -0	.423809	-0.474851	0.041352	0.6
Engine Cylinders	-0.14	7885 -0	.614795	-0.634509	0.042393	0.5
Number of Doors	1.00	0000 0	.116846	0.137381	-0.059199	-0.1
highway MPG	0.11	6846 1	.000000	0.842834	-0.024804	-0.2
city mpg	0.13	7381 0	.842834	1.000000	-0.007093	-0.2
Donul onity	ט טב	0100 0	007007	0 007007	1 000000	ט נ

	Unnamed: 0	Year	Engine HP	Engine Cylinders	Number of Doors	highway MPG	city mpg	Popul
Unnamed:	1.000000	0.058771	0.011291	0.068359	0.149626	-0.137294	-0.072933	-0.08
Year	0.058771	1.000000	0.337207	-0.026926	0.245804	0.265521	0.220037	0.086
Engine HP	0.011291	0.337207	1.000000	0.788325	-0.128704	-0.423809	-0.474851	0.041
Engine Cylinders	0.068359	-0.026926	0.788325	1.000000	-0.147885	-0.614795	-0.634509	0.042
Number of Doors	0.149626	0.245804	-0.128704	-0.147885	1.000000	0.116846	0.137381	-0.05
highway MPG	-0.137294	0.265521	-0.423809	-0.614795	0.116846	1.000000	0.842834	-0.02
city mpg	-0.072933	0.220037	-0.474851	-0.634509	0.137381	0.842834	1.000000	-0.00
Popularity	-0.084531	0.086693	0.041352	0.042393	-0.059199	-0.024804	-0.007093	1.000
MSRP	-0.024098	0.209315	0.658987	0.552042	-0.145690	-0.207796	-0.232722	-0.04

The variables 'highway MPG' and 'cty mpg' have a high correlation. Make a plot showing two boxplots side by side for the two varaibles.

```
#CODE HERE
fig,(ax1,ax2)=plt.subplots(1,2)
ax1.boxplot(df['highway MPG'])
ax1.grid(True)
ax2.boxplot(df['city mpg'])
ax2.grid(True)
plt.show()
```

<Figure size 600x300 with 2 Axes>

Download

Both variables have several outliers. Use Tukey's method to remove outliers that are more than 1.5 times the IQR above the third quartile from both variables and then redo the boxplots. Change the xticks from [1,2] to ['highway','city'] and label the y axis.

```
hWq1 , Hway_q3 = np.percentile(df['highway MPG'],[25,75])
hWIqr = (Hway_q3 - hWq1)
hWTuk = Hway_q3 + (1.5 * hWIqr)
city_q1 , city_q3 = np.percentile(df['city mpg'],[25,75])
cityIQR = (city_q3 - city_q1)
cityTUK = city_q3 + (1.5 * cityIQR)
df = df[~(df['highway MPG'] > hWTuk)]
df = df[~(df['city mpg'] > cityTUK)]
plt.subplot(1,3,1)
df['highway MPG'].plot(kind='box', title='Highway MPG')
plt.grid()
plt.ylim(0, 60)
plt.ylabel('Count')
plt.subplot(1,2,2)
df['city mpg'].plot(kind='box', title='City MPG')
plt.ylim(0, 60)
plt.ylabel('Count')
plt.grid()
plt.show()
```

<Figure size 600x300 with 2 Axes>

▶ Download

Your answer here: we can see that in the highway the MGP is higher then the city MGP

Make a scatter plot for the price of a car (MSRP) against the variable with the highest correlation with the price.

```
#CODE HERE
plt.figure(figsize=(14,7))
plt.scatter(df['Engine HP'],df['MSRP'],alpha = 0.3)
plt.grid(True)
plt.title('scatter plot of cars with higher correlation')
plt.xlabel('Manufacturer Retail Price')
plt.ylabel('Engine HP')
plt.show()
```

<Figure size 1400x700 with 1 Axes>

L Download

Regress the price on Engine HP and add the regression line to the plot. Print the MSE and R^2 .

```
#import LinearRegression and instantiate class
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score
#CODE HERE
reg = LinearRegression()
X = df['Engine HP']
y = df['MSRP']
X = np.vstack([X,np.ones(len(X))]).T
reg.fit(X,y)
a,b = (reg.coef_[0], reg.intercept_)
#print mse and r2
plt.rcParams['figure.figsize'] = (12,6)
plt.scatter(x = df['Engine HP'],y=df['MSRP'],alpha = 0.3)
plt.plot(df['Engine HP'],(a*df['Engine HP'])+b,color = 'cyan')
plt.show()
```

<Figure size 1200x600 with 1 Axes>

■ Download


```
mse = mean_squared_error(y,reg.predict(X))
r2 = r2_score(y,reg.predict(X))
print(' mse = '+str(mse)+' r^2 = ' + str(r2))
```

 $mse = 2193334819.0336065 r^2 = 0.4378030893506337$

The variable 'Engine Cylinders' has the next highest correlation with 'MSRP'. Remake the scatter plot adding an argument c=df['Engine Cylinders'] to colour the plot by the number of cylinders.

```
x = df['MSRP']
y = df['Engine HP']
colors_engine = df['Engine Cylinders']
plt.scatter(y,x,c = colors_engine,cmap = 'hsv',alpha = 0.6)
plt.title('scatter plot of car with high correlation')
plt.xlabel('Manufacturer Retail Price')
plt.ylabel('Engine Cylinders')
plt.grid(True)
plt.show()
```

<Figure size 1200x600 with 1 Axes>

◆ Download

It looks like the price is dependent on both Engine HP and Engine Cylinders. Regress MSRP on the two variables. Print the coefficients, intercept, MSE and R^2.

coeffiencs: [333.14771638 3367.99394169]

intercept: -62384.32043466844 MSE: 2179987494.4157624 R^2: 0.4412242836892585