Part 1: Annotate Mcf7-expressed lincRNAs and PCGs

1.A. Build a set of expressed transcripts with libraries

set of transcripts expressed in both replicates

- transcripts: 138524

1.C. Identify lincRNAs and PCGs

Final .gtf

Gencode PCGs: 149592 transcripts

Known lincRNAs: 9832 transcripts

Denovo lincRNAs: 975 transcripts

Scripts

A. Mapping Mcf-7 RNAseq raw data

1. bash_annotations.sh — → pyth	on_annotations.py
---------------------------------	-------------------

Part 2: Annotate elincRNAs and plincRNAs

2.A. Overlap enhancers with DHSI regions to get accessible enhancers

2.C. Exclude blacklist regions from hg38 intergenic region

2.D. Overlap accessible chromHMM with intergenic region to get intergenic chromHMM (promoters and enhancers)

hg19.cage_reads_ EGF1 00h00 rep2 431477

	Overlap ii (eTIRs)	ntergeni	c enhan	cers with	n CAGE T	TRs to g	et enhan	cer-asso	ciated
inter	genic eT	IRs: 595	56	(4453 e	enhancer	s)			
					age_cluste ssociated_		tergenic_e	enhancers.i	bed
inter	genic pT	IRs: 450)4	(3070 p	romoters	s)			
					age_cluste sociated_7		tergenic_p	promoters.b	ped
pTIF	Rs: 29391								
				-a TSS_ca ted_TIRs.k	age_cluste	r.bed -b pi	romoters.b	oed -u >	
N	Determin lethod: dendered and a linch	etermine					_		
	CAGE r TIRs lincRNA								
Co	CAGE r TIRs output 1	eads	for elino	CRNAs. F	Repeted	for plincl	RNAs ar	nd PCGs	
	ols intersect cage_asso			g38_sorted	l.bed -b inte	ergenic_e	nhancer_a	associated_	_TIRs.bed
В	output 1 lincRNA output 2	\s							

 $bed tools\ intersect\ -a\ breast_exp_lincrnas_first_exon.gtf\ -b\ cage_associated_eTIRs.bed\ -u\ -s > elincRNAs.gtf$

breast_exp_lincrnas_first_exon.gtf breast_exp_PCGs_first_exon.gtf	2274 88399	
TIRs	431477	

TIRs intergenic_enhancer_associated_TIRs.bed intergenic_promoter_associated_TIRs.bed promoter_associated_TIRs.bed	431477 5956 4504 29391
cage_associated_eTIRs.bed cage_associated_pTIRs.bed cage_associated_pcg_TIRs.bed	555103 2082626 8537013
elincRNAs.gtf plincRNAs.gtf pPCGs.gtf	104 252 25521

Analysis V3 transcript exon count: 1 exon / 2 exons / more than 2 exons

elincRNAs: 25 / 38 / 41 ratio: 3.16 plincRNAs: 82 / 68 / 102 ratio: 2.07 pPCG: 384 / 2452 / 22685 ratio: 65.46

CAGE clustering

1. extract the 5' end position of each read (read TSSs)

2. cluster reads TSS closer than 20bp

"bedtools merge -i cage_reads_hg38_start_start_sorted.bed -s -d 20 -c 1,6 -o count, distinct > cage_clusters_20bp.bed"

→ keep only clusters that contain 2 reads or more

3. cluster TSS closer than 400bp

[&]quot;bedtools merge -i cage_cluster_20bp_pairs_sorted.bed -s -d 400 -c 1,5,6 -o count, sum, distinct > cage_clusters_400bp.bed"

→ keep only clusters that contain 5 reads or more
→ TSS_cage_cluster.bed

Part 3: Quantify lincRNAs and PCGs expression level in GTEx breast RNAseq

Mapping SRA scripts:

bash_script_empty.sh

python_script_empty.py

Prefetch download SRA
Trimmomatic,
QC,
Hisat2 (mapping),
Stringtie (transcripts
assembly, expression
quantification)

make_scripts.py:

- \rightarrow for each SRA:
 - \rightarrow replace in python_script: SRRxxx by SRA number
 - → replace in bash_script: SRRxxx by SRA number
 - \rightarrow run bash_script \rightarrow run python_script

3.A. Store results to save space

Implemented in the *python_script*, a function modifies the output (gtf format ~260M) to keep only the necessary information (~5.5M).

3.a. Transcripts expression level file for one indiv.

```
transcript_id Fpkm Tpm
ENST00000473358.1 0.000000 0.000000
ENST00000417324.1 0.000000 0.000000
ENST000000461467.1 0.000000 0.000000
ENST00000641515.2 0.000000 0.000000
ENST00000355137.4 0.000000 0.000000
ENST00000477740.5 0.000000 0.000000
ENST000000475756.2 0.000000 0.000000
ENST000000453576.2 0.000000 0.000000
ENST000000496488.1 0.000000 0.000000
MSTRG.78.1 3.591500 7.411879
```

3.B. Verify, debug, re-run scripts

- 1. Implemented in the script make_scripts.py, a function create a file (done.txt)that list all SRR to mapp and quantify.
- 2. Implemented in the script python_script.py, a function modifies done.txt to replace 'not_processed' by the size of the output.
- 3. script: get_not_processed.py Reads the file done.txt and re-run script for SRR number labelled as 'not processed'

3.b.1 Original done.txt file

SRR1068977	not_processed
SRR1068999	not_processed
SRR1070208	not_processed
SRR1070260	not_processed
SRR1070738	not_processed
SRR1071084	not_processed
SRR1071905	not_processed
SRR1074860	not_processed
SRR1075484	not_processed
SRR1076219	not_processed
SRR1076441	not_processed
SRR1077139	not_processed
SRR1077920	not_processed
SRR1078258	not_processed

3.b.2 done.txt file after the first run

Maria National Association	VII. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
SRR1068977	5711028
SRR1068999	5672836
SRR1070208	not_processed
SRR1070260	5710846
SRR1070738	5671154
SRR1071084	5690314
SRR1071905	not_processed
SRR1074860	5682464
SRR1075484	5702848
SRR1076219	5687583
SRR1076441	not_processed
SRR1077139	5709827
SRR1077920	5706540
SRR1078258	not processed

4. script:

get_not_processed_vdb-cache.py
After bug identified for unprocessed
jobs, this script remove bugging
lines considered not important and
re-run scripts.

5. script:

extract_err_file_done_v2.py
Once all jobs are completed, this script reads extract %trimmed and %mapped reads and add them to done txt

3.b.2 done_v2.txt file one all jobs completed

SRA	file_size	e	%mapping		trimming:both	surv/dropped
SRR106897	7 57	711028 9	98.63%	'86.53%/	3.62%']	
SRR106899	9 56	572836 9	98.60%	'86.91%/	5.03%']	
SRR107026	18 56	586865 9	98.56%	'88.71%/	4.62%']	
SRR107026	0 57	710846 9	98.34%	'87.55%/	4.63%']	
SRR107073	8 56	571154 9	98.71%	'87.80%/	4.61%']	
SRR107108	4 56	590314 9	97.99%	'90.26%/	3.10%']	
SRR107196	5 56	581685 9	98.60%	'92.35%/	2.52%']	
SRR107486	0 56	582464 9	98.67%	'89.50%/	4.25%']	
SRR107548	4 57	702848 9	98.08%	'89.65%/	3.42%']	
SRR107621	9 56	587583 9	98.58%	'87.06%/	5.09%']	
SRR107644	1 56	577204 9	98.66%	'89.67%/	2.66%']	
SRR107713	9 57	709827 9	98.38%	'88.72%/	4.23%']	
SRR107792	0 57	706540 9	98.03%	'91.41%/	3.13%']	
SRR107825	8 57	705450 9	98.42%	'88.82%/	4.02%']	

3.C. Build phenotype table to call cis-eQTL

script: make_table_phenotype.py

This script reads the 224 output file and write a phenotype table that contains as rows transcripts and as columns their chr, start, end, and expression level in each of the 224 individuals.

#chr	start	end	transcript_id	GTEX-XBED		GTEX-U8XE		GTEX-XV7Q		GTEX-XOT4		GTEX-RUSQ
chr1	65419	71585	ENST00000641515.	2 6	.000000	0.	000000) Ø	.000000	0	.000000	0.000000
chr1	69055	70108	ENST00000335137.	4 6	.075827	0.	000000	0	.000000	0	.000000	0.000000
chr1	450703	451697	ENST00000426406.	3 6	.040425	0.	028647	0	.055988	0	.021569	0.018998
chr1	685679	686673	ENST00000332831.	4 6	.038286	0.	028647	0	.055988	0	.021569	0.018998
chr1	923928	939291	ENST00000420190.	6 1	.530093	0.	000000	0	.000000	0	.801416	0.000000
chr1	925150	935793	ENST00000437963.	5 6	.063177	0.	000000	0	.000000	0	.000000	0.000000
chr1	925738	944575	ENST00000342066.	7 6	.000000	0.	000000	0	.021964	0	.000000	0.133415
chr1	925741	944581	ENST00000617307.	4 6	.030687	0.	000000	0	.000000	0	.000000	0.000000
chr1	925741	944581	ENST00000618181.	4 6	.000000	0.	000000	0	.000000	0	.000000	0.000000
chr1	925741	944581	ENST00000622503.	4 6	.020048	0.	021790	1	.098797	0	.030740	0.101302

GTEx_phenotype_TPM_table.bed

Part 4: eQTLs analysis

4.1 Preparing genotype and phenotype files

(Script: "Prepare_eQTL_input_files.py")

A. Genotype file

GTEx full genotype table (.vcf, 652 indiv.)

MAF 0.05 remove indels keep common with breast samples add 'chr' tag compress & index

GTEx processed genotype table

genotype Principal Components script R: "genotype_PCs.R"

B. Phenotype file

224 outputs of GTEx samples

build a table with samples as columns and transcripts expression level as rows.

Script: "make_table_phenotype.py"

GTEx_phenotype_TPM_table.bed

quantile normalization of expression level among samples. Script: "normalize_phenotype_table.R"

Pheno_table_normalized.bed

order columns according to the genotype file and remove sample not contained in the genotype file.

Script: "order columns.py"

Pheno_table_normalized.bed

Compute phenotype PEER factors. Script: "phenotype PEER factors.R"

Gtex.combined covariates.txt

4.2 eQTL

4.2.1 Permutation pass : get a nominal pvalue for each phenotype

4.2.1.1 Method

Sample1	Sample2	Sample3
0.1	0.15	0.12
0.15	0.2	0.22
0.17	0.23	0.15
0		Į .
	0.1 0.15	0.15 0.2

Permuted phenoty	ne table	Permu	te phenotype table
r connacca prichoty	oc table	<u>'</u>	
	Sample1	Sample2	Sample3
ENST001	0.15	0.12	0.1
ENST002	0.2	0.22	0.15
ENST003	0.23	0.15	0.17

+ Gtex.combined_covariates.txt + genotype table → eQTL detection 1000x

Distribution of empirical p-values for each phenotype. Compute the nominal p-values for each phenotype.

4.2.1.2 Check the beta approximated permutation p-values

We expect to get all points along the diagonal, that shows that unsignificant p-values are well calibrated given the empirical p-values

4.2.2 Conditional pass : get all eQTLs above the nominal p-value

4.3 Get genotype (SNP) affecting both a lincRNA and a cancer transcript

SNP_id lincRNA(s)_id	PCG(s)_id	
17_41464782_A_C_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
17_41464799_T_G_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
17_41464827_T_C_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
6_29937924_T_C_b37	ENST00000630472.1	ENST00000479320.5
17_41464837_A_T_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
6_29923290_G_T_b37	ENST00000630472.1	ENST00000479320.5
6_29937896_C_T_b37	ENST00000630472.1	ENST00000479320.5
6_29942293_G_C_b37	ENST00000630472.1	ENST00000479320.5
17_41464807_A_G_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
17_41464774_A_C_b37	ENST00000632077.1	ENST00000644379.1,ENST00000487825.5
6_29921100_C_G_b37	ENST00000630472.1	ENST00000479320.5
17_41382556_G_A_b37	ENST00000632077.1	ENST00000644379.1

coding transcripts:

- ENST00000487825.5 : ENSG00000012048.21 associated)
- ENST00000479320.5 : ENSG00000206503.12 HLA-A (major histocompatibility complex, class I, A)

lincRNAs:

- ENST00000632077.1 : ENSG00000267496.4 FAM215A-202 (family with sequence similarity 215 member A)
- ENST00000630472.1 : ENSG00000281831.1 AL645929.2-201

4.4 Trans eQTL

4.4.1 Prepare files

4.4 Trans eQTL

4.4.1 Prepare files

4.4 Trans eQTL

4.4.1 Prepare files

GTEx processed genotype table

Script: "get_eQTL_linc_PCG.py"

genotype table lincRNAs eQTL only

genotype table PCGs eQTL only

Pheno_table_normalized.bed phenotype table cancer transcripts only

Script: "phenotype_cancer_lincrnas_transcripts.py" phenotype table lincRNAs transcripts only

4.4.2 test for trans-eQTL: lincRNA cis-eQTLs versus cancer transcripts

 $phenotype\ file:\ GTEx_phenotype_qtltools_cancer_transcripts.bed\\ genotype\ file:\ GTEx_WGS_HG38_sorted_chrtag_lincrnas_cis_eQTL.vcf$

4.4.3 test for trans-eQTL: cancer transcripts cis-eQTLs versus lincRNAs

phenotype file: GTEx_phenotype_qtltools_lincRNAs_transcripts.bed genotype file: GTEx_WGS_HG38_sorted_chrtag_pcg_cis_eQTL.vcf

Mean GTEx expression level

Mean GTEx expression level

