3.7 Inner Product of functions

 $\alpha: R \rightarrow R$, $v: R \rightarrow R$ $\langle u, v \rangle := \int_a^b u(a) v(a) da$

<u,v>=0型4 手管Fu,v는 arthogonal

3.8 Orthogonal Projections

vector space V, $U \leq V$

 $\pi: V \to U$ is called projection if $\pi^2 = \pi \circ \pi = \pi$

projection motrix Pm, Pa=Pm

* on Lines ab

 $0 \langle a - \pi_{\sigma}(a), b \rangle = 0$

→ < a, b> -><b, b>=0

 $\rightarrow A = \frac{\langle b, a \rangle}{\|b\|^2} = \frac{b^2 a}{\|b\|^2}$

 $\mathfrak{D} \pi_0(A) = b \Lambda = \frac{bb^{\mathsf{T}}}{||b||^2} \Lambda$

 $\Rightarrow P_{\pi} = \frac{bb^{T}}{||b||^{2}}$

* on General Subspace

 $\pi_{\nu}(x) = B \lambda$

 $\begin{bmatrix} b, T \\ \vdots \\ b_m T \end{bmatrix} \begin{bmatrix} a - B \Lambda \end{bmatrix} = 0 \iff B^T (a - B \Lambda) = 0$ $\iff B^T B \Lambda = B^T A$

 $A = (B^T B)^T B^T A$

 $\pi_{\nu}(x) = \mathcal{B}(\mathcal{B}^{\mathsf{T}}\mathcal{B})^{\mathsf{H}}\mathcal{B}^{\mathsf{T}}\mathcal{A}$

 $P_{\pi} = B(B^{T}B)^{T}B^{T}$

* Gram - Schmidt Orthogonalization

on basis $(b_1, \cdots b_n)$ of V,

orthogonal basis (U1, U2. ... Un)

 $a_i := b_i$

 $U_{k} := b_{k} - \pi_{\text{span}} I_{u_{1}, \dots u_{k-1}} (b_{k})$

(k=2...n)

* on Affine Subspace

 $\pi_L(\alpha) = \alpha_0 + \pi_U(\alpha - \alpha_0)$

3.9 Rotations (+7) dimension x commutative anale : linear mapping that rotates a plane by θ

 $R(\theta) = [\Phi(e_i), \Phi(e_2)]$

 $= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

ton a dimensions

 $m{R}_{ij}(heta) := egin{bmatrix} m{I}_{i-1} & m{0} & \cdots & \cdots & m{0} \ 0 & \cos heta & m{0} & -\sin heta & m{0} \ 0 & m{0} & m{I}_{j-i-1} & m{0} & m{0} \ 0 & \sin heta & m{0} & \cos heta & m{0} \ m{0} & \cdots & \cdots & m{0} & m{I}_{n-j} \end{bmatrix} \in \mathbb{R}^{n imes n}$