

CS1113 Proof

Lecturer:

Professor Barry O'Sullivan

Office: 2.65, Western Gateway Building

email: b.osullivan@cs.ucc.ie

http://osullivan.ucc.ie/teaching/cs1113/

Proof

Proof methods:
direct proof
proof by induction
proof by contradiction
proof by cases

Example proofs of statements from Algorithm Analysis

What is a 'Proof'?

- A proof is a valid argument that shows that some statement is true
- Proofs can be formal
 - E.g. Proofs in propositional logic applying inference rules and logical equivalences
- Or informal but even an informal proof must be convincing, and must cover all loopholes
 - no gaps, no handwaving, no wishful thinking
 - must be precise and unambiguous
 - use mathematical and logical notation
 - explain and justify every step

Uses of proof in computing

- Showing that an algorithm (or program) does what it is supposed to do
- Showing that one algorithm has, in the worst case, a lower runtime than another algorithm
- Showing that an operating system is secure
- Showing that a protocol for computing across a network is safe and will not enter deadlock
- Showing that a system specification is consistent
- Checking that a decision is justified in an intelligent program

We have already seen ...

- Direct proof
 - E.g. Proof of the Handshaking Lemma in Lecture 9
 - E.g. Proof that x^2+1 is $O(x^2)$ in Lecture 18
- Proof by contradiction
 - E.g. Proof that x^3+2x^2+2 is not $O(x^2)$ in Lecture 18
- Proof by induction
 - Prove a statement is true for a simple base case
 - Prove that if statement is true for an intermediate case (e.g. of size k) then it must be true for the next case (e.g. of size k+1)
 - E.g. Proof that n^2+n is even in Lecture 20

$$\forall n \ge 4$$
 2ⁿ < $n!$

Proof

n! is not $O(2^n)$

Proof

Proof by contrapositive

Revision: For a statement $p \rightarrow q$, its contrapositive is $\neg q \rightarrow \neg p$ A conditional is true if and only if its contrapositive is true

Sometimes, it is easier to prove the contrapositive.

Example: if n^2 is even, then n is even

Direct proof attempt

Suppose n^2 is even. Then $n^2 = 2k$ for some k. ... but now what?

Proof (by contrapositive)

We will show that if n is not even, then n^2 is not even

Suppose n is not even. Then n=2k+1, for some k.

Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2) + 1$, which must be odd.

Therefore, by the contrapositive, if n^2 is even, n is even

Proof by counter example

Sometimes, we will want to prove that a statement is false.

Example claim: for any integer x, we can find two integers y and z so that $y^2+z^2=x$.

We will prove this false by finding an integer *x* which does not obey this pattern.

Consider x = 3. y^2 and z^2 are both positive.

If $|y| \ge 2$, then $y^2 \ge 4$, and so $y^2 + z^2 \ge 4$.

So |y| must be either 0 or 1. If |y| = 0, then $y^2 = 0$, so z^2 must be 3. But there is no integer z such that $z^2 = 3$. Therefore y cannot be 0.

Suppose y = 1. Then $y^2 = 1$, so $z^2 = 2$. But there is no integer z such that $z^2 = 2$. So y cannot be 1. But those were the only possible values for y.

Therefore, there are no integers y and z such that $y^2+z^2=3$, and so the statement is false.

Proof by cases

Sometimes, we will need to break a statement down into a number of different cases, and show each one is true.

Example: for two integers x and y, if $x=y^2$, then x is of the form 4k or 4k+1, for some other integer k.

Proof

Case(i): y is even. So there is an integer p with y=2p. Then $x = y^2 = (2p)^2 = 4p^2 = 4k$, if we set $k=p^2$.

Case(ii): *y* is odd. So there is an integer *q* with y=2q+1. Then $x = y^2 = (2q+1)^2 = 4q^2 + 4q + 1 = 4(q^2+q)+1$ and so x = 4k+1, if we set $k=q^2+q$

These are all possible cases for *y*, so the statement is true.

What can go wrong?

- showing something works for one or two examples, instead of for all possible values
- assuming the result you want to prove
- not covering all cases
- making jumps in the logic that are not true
- not presenting it as a convincing argument
- leaving large gaps in the argument and assuming it is clear what is happening

THE END

of the new material ...

Next lecture ...

Revision