polynomial commitments

building block for universal SNARKs

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

historical perspective

Zk-SNARK의 종류

매번 셋업을 다시해줘야함

Zk-SNARK의 종류

하나의 큰 셋업을해서 업데이트같이해서 나만에 셋업을해서 사용

Zk-SNARK의 종류

셋업이 필요없다

CRS (Common Reference String)

- SRSStructured Reference String
 - **❖**Trusted setup
 - **❖**Universal (and Updatable)
- ♦URS
 - ❖Uniform Random String (or RRS : Random Reference String)
 - **❖**Transparent

Universal / Transparent SNARK

Sonic, Marlin, Plonk vs. Kate pairing, DARK, FRI 와의 관계

- Sonic, Marlin, Plonk
 - ❖ Circuit (함수)를 Polynomial (다항식)으로 변환시키는 scheme
 - ❖ 일종의 Front-end
- **❖**Kate pairing, DARK, FRI
 - ❖ 긴 길이의 Polynomial을 짧은 값의 interaction을 통해서 증명하는 scheme
 - Polynomial commitment scheme
 - ❖ 일종의 Back-end
- ❖ 조합을 통해서 다양한 증명법 가능

예 : Plonk

곱셈 게이트와 덧셈 게이트의 표현

• 와이어 값 : W_L, W_R, W_O

• 게이트 상수: q_M, q_L, q_R, q_O, q_C

 $q_M \cdot W_L \cdot W_R + q_L \cdot W_L + q_R \cdot W_R + q_Q \cdot W_Q + q_C = 0$

Lagrange-base 형태로의 변환

와이어 값 다항식

•
$$W_L(X) = \sum_{i=1}^n W_{L,i} L_i(X)$$

•
$$W_L(X) = \sum_{\substack{i=1\\n}}^{N} W_{L,i} L_i(X)$$

•
$$W_L(X) = \sum_{i=1}^{n} W_{L,i} L_i(X)$$

회로 다항식

•
$$q_M(X) = \sum_{i=1}^n q_{M,i} L_i(X)$$

•
$$q_L(X) = \sum_{i=1}^n q_{L,i} L_i(X)$$

•
$$W_{L}(X) = \sum_{i=1}^{i=1} W_{L,i} L_{i}(X)$$

• $W_{L}(X) = \sum_{i=1}^{n} W_{L,i} L_{i}(X)$
• $q_{R}(X) = \sum_{i=1}^{n} q_{R,i} L_{i}(X)$
• $q_{O}(X) = \sum_{i=1}^{n} q_{O,i} L_{i}(X)$

•
$$q_o(X) = \sum_{i=1}^n q_{0,i} L_i(X)$$

•
$$q_C(X) = \sum_{i=1}^n q_{C,i} L_i(X)$$

$$q_M(X)W_L(X)W_R(X) + q_L(X)W_L(X) + q_R(X)W_R(X)$$

+ $q_O(X)W_O(X) + q_C(X) = 0 \mod Z_H(X)$

증명 방법

Prover Verifier

Polynomial Commitment

- ❖ Polynomial을 짧은 숫자로 표현하면서도 긴 polynomial을 나타내는 것이 맞다는 것을 보장하는 증명 방법
- ❖ Interactive Proof를 사용
- ❖ Prover가 다항식 f(X)에 대한 Polynomial commitment (Oracle)을 verifier에게 주고, Verifier는 이 Oracle에게 임의의 x (z)값에 대한 값을 질의함
- ❖ Prover는 f(z)를 계산하고, f(z)가 맞다는 proof를 함께 Verifier에게 제공
- ❖ Polynomial IOP (Interactive Oracle Proof)라고 부름

1.prover 가 먼가를 보내고 2.verifier 가 z값을보내면 3.prover가 다시 풀어서 보냄

4.verifier는 1번과 3번을 보고 관계가 있는지 확인

Elliptic Curve Pairings

Elliptic curve pairings are the elliptic point equivalent of multiplication

$$e(p,q)=t \approx p*q=t$$

An elliptic curve pairing is a function that takes a pair of elliptic curve points returns an element of some other group, called the target group

Think of a pairing as a black box that takes elliptic points. Pairings cannot be uses consecutively; the target group points don't match the input points

Elliptic curve pairings are bilinear, holding to the following property:

$$e(p+r,q) = e(p,q) * e(r,q)$$

 $e(p,q+r) = e(p,q) * e(p,r)$

Translation: you can pull additive component out of a pairing by multiplication

KZG Polynomial Commitments

Red: Secret

Green: Public

Blue: Elliptic Curve (Public) Pink: Data (Varies)

UTF-8 Encoding:

Step 0: Preperation

shared between all commitments

Trusted Setup

Secret Number

Elliptic Curve:

Public

Structured

Reference

String (SRS)

 $v^2 = x^3 + ax + b$

 $f(S^0) = [S^0] = S^0G$ $f(S^1) = [S^1] = S^1G$ $f(S^2) = [S^2] = S^2G$ $f(S^3) = [S^3] = S^3G$

 $f(S^n) = [S^n] = S^nG$

Plaintext Data STUART

specific to each commitment

Data

Step 1: Commit

Commitment: [f(S)]

single value that serves as the polynomial commitment

$$[f(S)] = [a_0S^0 + a_1S^1 + a_2S^2 + a_3S^3 + a_4S^4 + a_5S^5]$$

$$[f(S)] = a_0[S^0] + a_1[S^1] + a_2[S^2] + a_3[S^3] + a_4[S^4] + a_5[S^5]$$

single value generated during polynomial creation

single value generated during trusted setup

KZG Commitment Scheme

First, the prover commits to data by creating a point on the elliptic curve. If the data changes, the prover cannot create valid proofs.

Prover

Verifier

KZG Polynomial Commitments

Red: Secret

Green: Public

Blue: Elliptic Curve (Public) Pink: Data (Varies)

Step 2: Open

Prover	Verifier	
Data → Polynomial → Commitment	Step 0 & Step 1	
Step 2a	Given commitment, create proof for z	
With z, calculate [h(S)] and f(z) and return the values < z, [h(S)], f(z)>	Step 2b	

Proof: $\langle z, [h(S)], f(z) \rangle$

Caclulating [h(S)]

h(x) is a polynomial that can be generated by an honest prover with quick and (relatively) simple math

$$f(x) = \frac{f(x) - f(z)}{x^2 - f(z)}$$

elliptic curve

KZG Commitment Scheme

First, the prover commits to data by creating a point on the elliptic curve. If the data changes, the prover cannot create valid proofs.

Next, the verifier gives a data point. The prover builds a new elliptic curve point and a polynomial evaluation around that point.

KZG Polynomial Commitments

Red: Secret Green: Public Blue

Blue: Elliptic Curve (Public) Pink: Data (Varies)

Step 3: Verify

Prover

Verifier

1) Commit to [f(S)] = C

2a) Request proof of z

2b) Calculate f(z), [h(S)] = H

3) Verify e(H, [S - z]) = e(C - f(z), [1])

What is e(C - f(z)) = e(H, [S - z])?

Goal: verify that the prover actually did the polynomial division to create h(x), and that [h(S)] the commitment of h(x) at S.

What is h(x)?

(x) is a polynomial created by the prover through the (relatively) simple process

of polynomial division.

Curve Points

Elliptic Curve Pairings

Pairings are functions that act as the elliptic point-equivalent of multiplication

$$h(x) = \frac{f(x) - f(z)}{x - z} \implies (x - z) \cdot h(x) = f(x) - f(z) \implies e([x - z], [h(x)]) = e([f(x)] - [f(z)], [1])$$

$$e([S - z], H) = e(C - f(z), [1])$$

on an elliptic curve

Provided by prover e([S-z], H) = e(C-f(z), [1])Calculated by verifier

KZG Commitment Scheme

KZG Proof Verification

$$e([S - z], [Z]) \stackrel{?}{=} e([], [1])$$

Calculated by verifier

Proof

Commit

Evaluation

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

setup and commitment

	FRI	KZG	DARK	Bulletproof	
hash functio		pairing group	unknown order group	discrete log group	
setup	H hash function w in F root of unity	 G₁, G₂ groups g₁, g₂ generators e pairing s in F secret 	G unknown order g in G random q large integer	G elliptic curve g _i in G independent	
commitment	root(f(w ⁰),, f(w ^{kd}))	a ₀ s ⁰ g ₄ + + a _n s ^d g ₄	a₀q⁰g + + a₀q⁰g	a ₀ g ₀ + + a _d g _d	

algebraic (with linear homomorphism)

comparing setups

	FRI	KZG	DARK		Bulletproof	
	hash function	pairing group	RSA group	class group	Jacobian group	discrete log group
transparent						
succinct						
unbounded						
updatable						
post-quantum						

asymptotic performance

max(commitment size, opening proof size) **KZG** FRI DARK **Bulletproof** hash pairing unknown order discrete log function group group group $O(\log^2(d))$ size **O**(1) O(log(d))O(log(d))verifier time $O(\log^2(d))$ **O(1)** O(log(d))**O**(d) prover time **O**(d) **O**(d) **O**(d) O(d*log(d))

max(commitment time, opening time)

commitment size (with security parameter λ and $d \ll \lambda$)

	subexponential attacks (sieve based)			polynomial attac	k
		<u> </u>			
FRI	KZG	DARK		Bulletproof	
hash function	pairing group	RSA group	class group	Jacobian group	discrete log group
Ο(1) * Ο(λ)	O(1) * O(λ ³)	O(1) * O(λ ³)	Ο(1) * Ο(λ²)	???	Ο(1) * Ο(λ)

commitment size (with security parameter λ and $d \ll \lambda$)

part 1—context part 2—landscape part 3—mechanics part 4-gadgets

even-odd and left-right decomposition

$$f(X) = even(f)(X^2) + X*odd(f)(X^2)$$

even-odd decomposition

$$f(X) = left(f)(X) + X^{d/2}*right(f)(X)$$

left-right decomposition

decompose-reduce

$$f(X) = even(f)(X^2) + X*odd(f)(X^2)$$

even-odd decomposition

$$f(X) = left(f)(X) + X^{d/2}*right(f)(X)$$

left-right decomposition

	hash function (FRI)	UO group (DARK)	discrete log group (Bulletproof)
coefficients	even(f) + r*odd(f)	even(f) + r*odd(f)	r*left(f) + r ⁻¹ *right(f)
basis N/A		g	r ⁻¹ *left(g) + r*right(g)

consistency checks

FRI (hash function)

$$z(f_i(z) + f_i(-z))$$

+

$$r_i(f_i(z) - f_i(-z))$$

DARK (UO group)

Bulletproof (discrete log)

consistency checks

FRI (hash function)

$$2zf_{i+1}(z^2)$$

$$z(f_i(z) + f_i(-z))$$

+

$$r_i(f_i(z) - f_i(-z))$$

DARK (UO group)

 $commit(f_{i+1})$

?=

 $commit(even(f_i))$

+

 $r_i*q*commit(odd(f_i))$

Bulletproof (discrete log)

consistency checks

FRI (hash function)

DARK (UO group)

Bulletproof (discrete log)

$$2zf_{i+1}(z^{2})$$
?=
$$z(f_{i}(z) + f_{i}(-z))$$
+
$$r_{i}(f_{i}(z) - f_{i}(-z))$$

 $commit(f_{i+1})$?= $commit(even(f_i))$ + $r_i*q*commit(odd(f_i))$

commit(f_{i+1})
?=
commit(f_i)
+ $(r_i)^2 L + (r_i)^{-2} R$

quotient argument openings

$$f(X) - f(z) = q(X)(X - z)$$

FRI (hash function)

(f(X) - f(z))/(X - z) low degree proof

(within unique decoding radius)

KZG10 (pairing group)

quotient argument openings

$$f(X) - f(z) = q(X)(X - z)$$

FRI (hash function)

(f(X) - f(z))/(X - z) low degree proof

(within unique decoding radius)

KZG10 (pairing group)

 $e(commit(f) - f(z), g_2)$

?=

e(commit(q), (s - z)g₂)

other openings

DARK (UO group)

Bulletproof (discrete log)

 $even(f_i)(z), odd(f_i)(z)$

<coeff(f), powers(x)>

recent developments

novel constructions

- lattice-based polynomial commitment
- Jacobian groups with unknown order
- sparse polynomial commitments

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

modularity

information theory cryptography polynomial interactive oracle proof commitment

modularity

modularity

testing polynomial identities

fundamental theorem of algebra

f₁, **f**₂ low-degree polynomials

 $\mathbf{f}_1 = \mathbf{f}_2$ with high probability

 $f_1(z) = f_2(z)$ at random point z

Schwartz-Zippel lemma

 $f_1(X), ..., f_k(X)$ low-degree polynomials **G**(X₁, ..., Xκ, Y) low-degree

 $G(f_1, ..., f_n, Y) = 0$ with high probability \Leftrightarrow $G(f_1, ..., f_n, Y)|_{X=z} \text{ at random point } z$

basic tricks

	trick
range	(f // Z _S)*Z _S

commitments to **f, f // Z_s**

check that $f(z) = (f // Z_s)(z)*Z_s(z)$

basic tricks

	trick	
range	(f // Z _S)*Z _S	
multi-point opening	(f // Z _S)*Z _S + f % Z _S	

check that
$$f(z) = (f // Z_s)(z)*Z_s(z) + (f % Z_s)(z)$$

basic tricks

	trick	
range	(f // Z _S)*Z _S	
multi-point opening	(f // Z _s)*Z _s + f % Z _s	
multi-polynomial opening	Y ⁰ f ₀ + + Y ^k f _k	

multi-point opening

check that
$$(r^0f_0 + ... + r^kf_k)(z) = r^0f_0(z) + ... + r^kf_k(z)$$

basic tricks

	trick
range	(f // Z _S)*Z _S
multi-point opening	$(f // Z_S)*Z_S + f % Z_S$
multi-polynomial opening	Y ⁰ f ₀ + + Y ^k f _k
multi-{point, polynomial}	see <u>here</u>
degree bound	$X^{N-d}f(X)$

side note—Lagrange basis

barycentric formula

a₀ a₁ a₂ a₃ a₄ a₅

/side note—Lagrange basis

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_L(X) + a_i X^i + X^{i+1} f_R(X)$
shift	f(w ⁱ X)	X ⁱ f(X)

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)

sum argument

sum argument

sum argument

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_L(X) + a_i X^i + X^{i+1} f_R(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)

sum check alternative

 $|S|^{-1}(f(X) \% Z_S(X))|_{X=0}$

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)
grand product	g(wX) = f(X)g(X)	see Sonic appendix B

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_L(X) + a_i X^i + X^{i+1} f_R(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)
grand product	g(wX) = f(X)g(X)	see Sonic appendix B
permutation	f(X) + Yσ(X) + Z and f(X) + YX + Z grand products	see Sonic appendix A

 σ : $(a_i) \rightarrow (a_j)$ is a permutation

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation \Leftrightarrow

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation
 \Leftrightarrow

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$a_i + i*X = a_j + \sigma(j)*X \text{ whenever } i = \sigma(j)$$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation \Leftrightarrow

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$a_i + i*X = a_j + \sigma(j)*X \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$\{a_i + i*X\} = \{a_j + \sigma(j)*X\} \text{ as multisets}$$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation

 \Leftrightarrow
 $a_i = a_j$ whenever $i = \sigma(j)$
 \Leftrightarrow
 $a_i + i*X = a_j + \sigma(j)*X$ whenever $i = \sigma(j)$
 \Leftrightarrow
 $\{a_i + i*X\} = \{a_j + \sigma(j)*X\}$ as multisets

 \Leftrightarrow
 $product_i(a_i + i*X + Y) = product_j(a_j + \sigma(j)*X + Y)$ as polynomials in X, Y

$$\sigma: (a_{i}) \rightarrow (a_{j}) \text{ is a permutation} \\ \Leftrightarrow \\ a_{i} = a_{j} \text{ whenever } i = \sigma(j) \\ \Leftrightarrow \\ a_{i} + i*X = a_{j} + \sigma(j)*X \text{ whenever } i = \sigma(j) \\ \Leftrightarrow \\ \{a_{i} + i*X\} = \{a_{j} + \sigma(j)*X\} \text{ as multisets} \\ \Leftrightarrow \\ product_{i}(a_{i} + i*X + Y) = product_{j}(a_{j} + \sigma(j)*X + Y) \text{ as polynomials in } X, Y \\ \Leftrightarrow \\ product_{i}(a_{i} + i*r_{1} + r_{2}) = product_{j}(a_{j} + \sigma(j)*r_{1} + r_{2}) \text{ for random challenges } r_{1}, r_{2}$$

	Lagrange superpo	ower
	Lagrange basis trick	
Hadamard product	$f_1(X)f_2(X)$	
inner product	sum over f ₁ (X)f ₂ (X)	
sparse matrix multiplication	two sum cheks; see <u>here</u>	
range checks	see Aztec research	
RAM read and write	see Aztec research	

thank you:)