9' Esercitazione https://politecnicomilano.webex.com/meet/gianenrico.conti 25 maggio 2022

Gian Enrico Conti Scheduling

Architettura dei Calcolatori e Sistemi Operativi 2021-22

Outline

Scheduling

- FCFS
- RR
- SRR
- SJF
- SPN
- HRRN
- SRT
- Multilevel Queues
- Multilevel Feedback Queues

FCFS -First Come First Served

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$$

Calcolare il rapporto di prestazioni

$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

3

– FCFS	: uno	dopo	altro
--------	-------	------	-------

- Dobbiamo aspettare ogni fine
- durata complessiva: 4+3+6+8

Vengono COMUNQUE accodati.

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

. .

- P1

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

– P2

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

– P3

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

– P4

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

 $_$ nella formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- T fine = DAL GRAFICO TEMPORALE
- T servizio = Dalla Tabella
- T arrivo = Dalla Tabella

_	ES:
	T Arrivo di P3 e' 3 , NON 7!

Ci interessa sapere quando avrebbe dovuto partire!

=	Processo	Tempo di arrivo	Tempo di servizio
	P1	0	4
	P2	1	3
	Р3	3	6
	P4	5	5

$$T_{aP1} = 4 - 4 - 0$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$_{-}$$
 formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

$$T_{aP1} = 4 - 4 - 0$$

$$- T_{a P2} = 7 - 3 - 1$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$T_{aP1} = 4 - 4 - 0 = 0$$

$$- T_{aP2} = 7 - 3 - 1 = 3$$

$$T_{a P3} = 13 - 6 - 3 = 4$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
Р4	5	5

$$T_{aP1} = 4 - 4 - 0 = 0$$

$$T_{a P2} = 7 - 3 - 1 = 3$$

$$T_{a P3} = 13 - 6 - 3 = 4$$

$$T_{a P4} = 18 - 5 - 5 = 8$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

FCFS: tempo medio di attesa: attesa media

$$_{-}$$
 formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

$$T_{aP1} = 4 - 4 - 0 = 0$$

$$- T_{aP2} = 7 - 3 - 1 = 3$$

$$T_{a P3} = 13 - 6 - 3 = 4$$

$$T_{a P4} = 18 - 5 - 5 = 8$$

- → Attesa media = 15/4 = 3.75

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$- \text{ formula: } R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{P1} = 4 / (4-0)

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$- \text{ formula: } R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{P1} = 4 / (4-0) = 1

$$-$$
 R_{P2} = 3 / (7-1) = 0.5

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$- \text{ formula: } R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{P1} = 4 / (4-0) = 1

$$-R_{P2} = 3 / (7-1) = 0.5$$

$$-$$
 R_{P3} = 6/(13-3) = 0.6

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

$$- \text{ formula: } R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{P1} = 4 / (4-0) = 1

$$-$$
 R_{P2} = 3 / (7-1) = 0.5

$$-R_{P3} = 6/(13-3) = 0.6$$

$$-R_{P4} = 5/(18-5) = 0.3846$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR - Round Robin

- Based on FCFS (i.e. FIFO)
- Processes run only for a limited amount of time called a time slice or quantum
- Preemptible

RR - Round Robin

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Quanto di tempo = 3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

RR – grafico P1

- (Quanto di tempo = 3)
- Si noti P1 viene interrotto dopo 3 Q
- Tocchera' a P2 che arriva al T = 1

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – grafico P2

- (Quanto di tempo = 3)
- (P1 e' interrotto)
- P2 ha durata 3 <= QT</p>

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – grafico P1 cont.

- (Quanto di tempo = 3)
- (P1 e' interrotto)
- P3 arriva a T = 3 ma P1 e' in coda e termina:

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – grafico P3

- (Quanto di tempo = 3)
- (P1 e P2 terminati)
- P3 inizia, ma si ferma a 3 su 6 QT

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – grafico P4

- (Quanto di tempo = 3)
- (P3 a 3/6 QT)
- P4 inizia, ma si ferma a 3 su 5 QT

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – grafico P3 riprende

(Quanto di tempo = 3)

P3 segue i 3 QT rimanenti (era attesa)

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin: grafico P4 riprende

(Quanto di tempo = 3)

■ P4 segue i 2 QT rimanenti

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Attesa P1

$$-$$
 T_{a P1} = 7-4-0 = 3

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin - Attesa P2

$$-$$
 T_{a P1} = 7-4-0 = 3

$$T_{a P2} = 6-3-1 = 2$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin - Attesa P3

$$-$$
 T_{a P1} = 7-4-0 = 3

$$T_{a P2} = 6-3-1 = 2$$

$$T_{a P3} = 16-6-3 = 7$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR - Round Robin - Attesa P4

$$-$$
 T_{a P1} = 7-4-0 = 3

$$T_{a P2} = 6-3-1 = 2$$

$$T_{a P3} = 16-6-3 = 7$$

$$-$$
 T_{a P4} = 18-5-5= 8

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR - Round Robin - Attesa media

$$T_{a P1} = 7-4-0 = 3$$

$$T_{a P2} = 6-3-1 = 2$$

$$T_{a P3} = 16-6-3 = 7$$

$$T_{a P4} = 18-5-5= 8$$

_	\rightarrow Attesa media = $(3+2+7+8)4$ =
	= 20/4 = 5

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR - Prestazioni P1

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-R_{aP1} = 4/(7-0) = 0.57$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin - Prestazioni P2

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{a P1} = 4 / (7-0) = 0.57

$$-R_{aP2} = 3/(6-1) = 0.6$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin - Prestazioni P3

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$-$$
 R_{a P1} = 4 / (7-0) = 0.57

$$-R_{aP2} = 3/(6-1) = 0.6$$

$$-R_{a P3} = 6/(16-3) = 0.4615$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

RR – Round Robin - Prestazioni P4

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

$$- R_{aP1} = 4 / (7-0) = 0.57$$

$$-R_{a P2} = 3/(6-1) = 0.6$$

$$- R_{aP3} = 6/(16-3) = 0.4615$$

$$-R_{aP4} = 5/(18-5) = 0.384$$

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

→ Prestazioni medie =
(0,5+0,6+0,46+0,38)/4 ~ 2/4 =
0.50

SRR – Selfish Round Robin

- Increases priority as process ages
- Two queues:
 - Active (coda dei processi attivi)
 - Holding (coda di Attesa)
 - Favours older processes to avoids unreasonable delays (Aumenta la priorità dei P piu vecchi)

SRR – Selfish Round Robin

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
Р4	5	5

Quanto di tempo = 3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

- NOTA:
- Quanto di tempo = 3 uguale a RR
- Stessi Tempi di RR

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Cosa puo' cambiare?

..

Quanto di tempo = 3

■ Come x RR parte P1, si interrompe dopo 3 QT, parte P2...

Quanto di tempo = 3

- Come x RR parte P1, si interrompe dopo 3 QT, parte P2...
- Riparte P1, e parte P3: abbiamo Processi in Aging?

Quanto di tempo = 3

- Riparte P1, e parte P3: abbiamo Processi in Aging?
- A T= 7 No
- A T=10 P3 finisce, quindi N Processi = 0

Quanto di tempo = 3

■ Quando parte P4 ci sarebbe in Aging P3, ma a T = 13 "tocca" gia' a P3 che completa....

SRR - Selfish Round Robin

■ Lo scheduling risultante è == RR!

Attesa

$$-$$
 P1 = 3, P2 = 2, P3 = 7, P4 = 8

→ Attesa media = 5

Prestazioni

→ Prestazioni medie = 0.50

(N)PSJF – (Non) Preemptive Shortest Job First

Def:

Tipi d Burst:

- CPU burst: μp is performing calculations
- I/O burst, μ p is waiting for data transfer in or out of the system.

Ci interessa:

CPU burst: the amount of time the process uses the processor before it is no longer ready

(N)PSJF – (Non) Preemptive Shortest Job First

Funzionamento:

- assumiamo sia NOTO il tempo di Bust x ogni processo

(- la lunghezza del burst e' il tempo x cui continuerebbe ad eseguire se NON "prempted")

L' algoritmo STIMA il tempo

All' Inizio valore di "default"

Negli es. Burst Time verra' dato x ipotesi

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di burst

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

- Pe def. "NonPreemptive":
- Parte P1 NON puo' essere interrotto:

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

- P1 termina:
- Al T = 8 sono GIA arrivatisia P2 che P3 che P4
- (tutti sarebbero schedulabili..)
- Chi ha Burst Minore?

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

– ...

- P2 termina:
- Al T = 8 sono GIA arrivatisia P2 che P3 che P4
- Chi ha Burst Minore? P4 (1T)

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

- P4 termina:
- Al T = 9 sono GIA arrivatisia P2 che P3
- Chi ha Burst Minore? P2 (2T)

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

Ultimo in coda P3

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- (In questo caso : $T_{servizio} = T_{burst}$)

 $- T_{a P1} = 8-8-0 = 0$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- (In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 8-8-0 = 0$$

$$-T_{aP2} = 11-2-1 = 8$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- (In questo caso : $T_{servizio} = T_{burst}$)

$$T_{a P1} = 8-8-0 = 0$$

$$T_{a P2} = 11-2-1 = 8$$

$$-T_{a P3} = 18-7-3 = 8$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- (In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 8-8-0 = 0$$

$$T_{a P2} = 11-2-1 = 8$$

$$T_{a P3} = 18-7-3 = 8$$

$$-T_{aP4} = 9-1-5 = 3$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

formula: $T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$

- (In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 8-8-0 = 0$$

$$T_{a P2} = 11-2-1 = 8$$

$$T_{a P3} = 18-7-3 = 8$$

$$-$$
 T_{a P4} = 9-1-5 = 3

- Attesa media = (0+8+8+3)/4 = 4.75

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

NPSJF – Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

- (In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)
- $R_{aP1} = 8 / (8-0) = 1$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

NPSJF - Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

- (In questo caso :
$$T_{\text{servizio}} = T_{\text{burst}}$$
)

$$-$$
 R_{a P1} = 8 / (8-0) = 1

$$- R_{aP2} = 2 / (11-9) = 0.2$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

NPSJF - Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

- (In questo caso :
$$T_{\text{servizio}} = T_{\text{burst}}$$
)

$$-$$
 R_{a P1} = 8 / (8-0) = 1

$$-$$
 R_{a P2} = 2 / (11-9) = 0.2

$$-R_{aP3} = 7/(18-3) = 0.4666$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

NPSJF – Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

- (In questo caso :
$$T_{\text{servizio}} = T_{\text{burst}}$$
)

$$-$$
 R_{a P1} = 8 / (8-0) = 1

$$-$$
 R_{a P2} = 2 / (11-9) = 0.2

$$-$$
 R_{a P3} = 7 / (18-3) = 0.4666

$$- R_{aP4} = 1 / (9-5) = 0.25$$

	D .		1.	0.40
$- \rightarrow$	Presta	zioni	medie	= 0.48

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

theory:

tn lunghezza dell'n-esimo CPU burst τ_{n+1} valore predetto del prossimo CPU burst α 0<= α <= 1 $\tau_{n+1} = \alpha t_n + (1-\alpha) \tau_n$

- $-\alpha$ = 0: non ho **storia**, τ n+1 = τ n
- $-\alpha$ =1: vale ultimo valore REALE τ n+1 = Tn

■ Def: "Shortest Job First Scheduling, jobs are put into ready queue as they arrive, but as a process with short burst time arrives, the existing process is preempted or removed from execution, and the shorter job is executed first.

Logica: se arriva un P con burst piu piccolo, lo servo con pre-emption.

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di burst

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6 *
P4	5	1

■ Alpha = 0.5

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$$

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

^{*} errore slide OLD era 7

- Parte P1
- Ma al tempo T=1 arriva P2...

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

- Parte P1
- P2 parte, dura 2 T..
- Riparte P1 (non ho altri in coda..)

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

- Parte P1
- P2 parte, dura 2 T..
- Riparte P1 (non ho altri in coda..)
- Arriva P3 a T = 3,
 ma sta runnando P1 (tengo in coda..)
- T =5 arriva P4 che ha burst = 1: "sorpassa" P3... e termina..

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

- P1 riparte, ha solo 5 T da fare,
- P3 ne ha 6...tengo in coda..)

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

- P1 termina
- Parte P3

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Attesa

formula:

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{aP1} = 11-8-0 = 3$$

Processo	Tempo arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Attesa

formula:

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 11-8-0 = 3$$

$$T_{a P2} = 3-2-1 = 0$$

Processo	Tempo arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Attesa

formula:

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIV}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 11-8-0 = 3$$

$$T_{a P2} = 3-2-1 = 0$$

$$T_{a P3} = 17-6-3 = 8$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Attesa

formula:

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIV}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$T_{a P1} = 11-8-0 = 3$$

$$T_{aP2} = 3-2-1 = 0$$

$$T_{a P3} = 17-6-3 = 8$$

$$T_{a P4} = 6 - 1 - 5 = 0$$

 \rightarrow Attesa media = 2.75

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$- R_{aP1} = 8/(11 - 0) = 0.73$$

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
P4	5	1

PSJF – Preemptive Shortest Job First: Prestazioni

formula:
$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

(In questo caso : $T_{\text{servizio}} = T_{\text{burst}}$)

$$-$$
 R_{a P1} = 8/ (11 - 0) = 0.73

Velocizzando:

$$- R_{aP2} = 2/(3-1) = 1$$

$$- R_{a P3} = 6/(17 - 3) = 0.43$$

$$-$$
 R_{a P4} = 1/(6-5) = 1

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	6
Р4	5	1

SPN – Shortest Process Next

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

SPN – Shortest Process Next

■ Lo scheduling risultante è

Attesa

$$-$$
 P1 = 0, P2 = 3, P3 = 9, P4 = 2

→ Attesa media = 3.5

Prestazioni

$$-$$
 P1 = 1, P2 = 0.5, P3 = 0.40, P4 = 0.71

HRRN – High Response Ratio Next

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Priorità del Processo

$$P = \frac{T_{ATTESA} + T_{EXEC}}{T_{EXEC}}$$

- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

HRRN – High Response Ratio Next

■ Lo scheduling risultante è

Attesa

$$-$$
 P1 = 0, P2 = 3, P3 = 4, P4 = 8

→ Attesa media = 3.75

Prestazioni

$$-$$
 P1 = 1, P2 = 0.5, P3 = 0.6, P4 = 0.38

SRT – Shortest Remaining Time

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	3
P2	1	1
Р3	3	5
P4	5	3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

SRT – Shortest Remaining Time

rocesso	Tempo di arrivo	Tempo di servizio

P1	0	3
P2	1	1

■ Lo scheduling risultante è

Attesa

$$-$$
 P1 = 1, P2 = 0, P3 = 3, P4 = 0

Prestazioni

$$-$$
 P1 = 0.75, P2 = 1, P3 = 0.56, P4 = 1

MLQ – Multilevel Queue

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tipo	Tempo di arrivo	Tempo di servizio
P1	Interactive	0	4
P2	Batch	1	3
Р3	Interactive	3	6
Р4	Batch	5	5

Quanto di tempo 3 cicli

Due code

Coda InteractiveFCFS

– Coda Batch FCFS

Politica intercoda RR

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

MLQ – Multilevel Queue

■ Lo scheduling risultante è

Processo

Tipo

Tempo di

Tempo di

Attesa

$$-$$
 P1 = 3, P2 = 2, P3 = 9, P4 = 7

$$\rightarrow$$
 Attesa media = 5.25

Prestazioni

MLFQ - Multilevel Feedback Queue

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Tre code

- Q1 RR Quanto = 3
 Q2 RR Quanto = 5
- Q2RRQuanto =
- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

MLFQ – Multilevel Feedback Queue

■ Lo scheduling risultante è

Attesa

$$-$$
 P1 = 3, P2 = 2, P3 = 9, P4 = 5

 \rightarrow Attesa media = 4.75

Prestazioni