MATH 593 - Categories and Functors

ARessegetes Stery

November 5, 2023

Contents

1	Category; Functor	2
2	Morphism of Categories	3
3	Products and Coproducts	3
4	Kernels and Cokernels	3
5	Natural Transformations of Functors	3

1 Category; Functor

Definition 1.1 (Category). A category C consists of

- A <u>class</u> of objects C (which, for example, could contain all sets), denoted Ob(C).
- For all $A, B \in \mathrm{Ob}(\mathcal{C})$, a <u>set</u> $\mathrm{Hom}_{\mathcal{C}}(A, B)$ the "morphisms in \mathcal{C} from A to B" with map $\mathrm{Hom}_{\mathcal{C}}(A, B) \times \mathrm{Hom}_{\mathcal{C}}(B, C) \to \times \mathrm{Hom}_{\mathcal{C}}(A, C)$ the "morphism composition" denoted $f \times g \leadsto (g \circ f)$, satisfying
 - Existence of an identity. for all $A \in Ob(\mathcal{C})$, there exists $1_A \in Hom_{\mathcal{C}}(A,A)$ s.t.

$$\begin{cases} 1_A \circ f = f & \forall f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \\ g \circ 1_A = g & \forall g \in \operatorname{Hom}_{\mathcal{C}}(B, A) \end{cases}$$

- Associativity. For all $f \in \operatorname{Hom}_{\mathcal{C}}(A,B), g \in \operatorname{Hom}_{\mathcal{C}}(B,C), h \in \operatorname{Hom}_{\mathcal{C}}(C,D)$,

$$(h \circ g) \circ f = h \circ (g \circ f)$$

Remark 1.1. The definition much resembles previous algebraic structures; but the morphisms and composition laws could be defined in a particularly strange way:

- 1. Similar to monoids, the definition implies that the identity is unique. Suppose that there are two identities $1_A, 1_A' \in \operatorname{Hom}_{\mathcal{C}}(A, A)$ for $A \in \operatorname{Ob}(\mathcal{C})$, then $1_A = 1_A \circ 1_A' = 1_A'$.
- 2. The morphism is not necessarily a function; and in such cases composition needs to be re-defined respectively.

Example 1.1. Consider the following categories:

- Category of Sets Sets, where the objects are sets, and morphisms are maps between sets.
- Category of Rings Rings, where the objects are rings, and morphisms are ring homomorphisms.
- Category of (left) R-modules R-modules R-modules, and morphisms R-linear maps.
- Consider the category \mathcal{C} defined on a partially-ordered set (A, \leq) where
 - Ob(C) consists of elements in A.
 - Morphisms are defined as

$$\operatorname{Hom}_{\mathcal{C}}(A,B) = \begin{cases} \{*\} & A \leq B \\ \emptyset & \text{otherwise} \end{cases}$$

where the composition of maps is defined as intersection. This is due to the fact that there can be no maps whose image is the empty set.

Definition 1.2 (Functor). Let C and D be categories. The **functor** $F: C \to D$ consists of mappings for both objects and morphisms:

- For all $A \in Ob(\mathcal{C})$, $F(A) \in \mathcal{D}$.
- For all $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$. $F(f) \in \operatorname{Hom}_{\mathcal{D}}(F(A), F(b))$ s.t.
 - $F(1_A) = 1_{F(A)}$ for all $A \in Ob(\mathcal{C})$.

- For all $f \circ g$ where $f \in \operatorname{Hom}_{\mathcal{C}}(A, B), g \in \operatorname{Hom}_{\mathcal{C}}(B, C), F(f \circ g) = F(f) \circ F(g)$.

The composition of functors is conducted in a natural way, i.e. applying consecutively.

Example 1.2. Functors represent the induced maps w.r.t. a transformation in the structure:

- 1. Let R be a commutative ring and $S \subseteq R$ a multiplicative system. Consider the functor $F: R \underline{\mathsf{Mod}} \to S^{-1}R \underline{\mathsf{Mod}}$ where
 - $F(M) = S^{-1}M$ for all $M \in Ob(_R\underline{Mod})$.
 - For $f:M\to N$, define $F(f):=S^{-1}M\to S^{-1}N$, where $\frac{u}{s}\mapsto \frac{f(u)}{s}$.
- 2. Let R be a ring, with $I \subseteq R$ a two-sided ideal of R; and M a left R-module. Consider the functor $F: {}_R\underline{\mathsf{Mod}} \to {}_{R/I}\underline{\mathsf{Mod}}$ where
 - F(M) = M/IM for all $M \in {}_R Mod$.
 - Let $f:M\to N$ be a morphism of left R-modules. Then it induces a map $\bar f:M/IM\to N/IN$ s.t. $\bar f(\bar lu)=\overline{f(u)}$. Define $F(f)=\bar f$.
- 3. Functors generally can abandon structures. Let M be a left R-module. By definition it is valid to view M as an abelian group. Then functor $F: R \underline{\mathsf{Mod}} \to \underline{\mathsf{Ab}}$ where objects are taken to itself; and morphisms are taken to group homomorphisms. These are called forgetful functors.

2 Morphism of Categories

3 Products and Coproducts

4 Kernels and Cokernels

For the motivation of kernel one could refer to this article.

5 Natural Transformations of Functors