IE643 Deep Learning: Theory and Practice

July-Dec 2025

Quiz 1: Practice Questions

1 Practice Questions

- 1. Consider the training data $(x^t, y^t), t = 1, 2, ...$, where $x^t \in \mathbb{R}^{100}$, $\forall t = 1, 2, ...$ Denote the first 50 components of x^t as u^t and denote the last 50 components as p^t . Suppose $\max_{t=1,2,...} \|u^t\|_1 \leq 1$ and $\max_{t=1,2,...} \|p^t\|_{\infty} \leq 0.4$. Suggest a suitable least possible choice for the value of R in the mistake bound of perceptron.
- 2. Suppose you train a perceptron algorithm on a data set D_1 . Design an algorithm to construct a new data set $D_2 \subseteq D_1$ such that when D_2 is used in training a perceptron afresh, it incurs the same number of mistakes as D_1 . Is it possible that D_2 cannot be a proper subset of D_1 ? Explain. (Hint: Try with 2 dimensional data.)
- 3. Suppose $a_1x_1 + a_2x_2 = b$ is a separating hyperplane for a data set $D = (x^t, y^t)$, t = 1, 2, ..., where $x^t = (x_1^t, x_2^t) \in \mathbb{R}^2$ and $y^t \in \{+1, -1\}$. Suppose b is non-zero, but we wish to make the hyperplane to pass through the origin. Explain what changes are to be made to the data set to achieve this purpose.
- 4. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ and a point x^* where x^* is neither local minimum point nor local maximum point but $f'(x^*) = 0$.
- 5. Consider a data set $D = \{(x^t, y^t)\}$, $t = 1, 2, 3, \ldots$, where $x^t \in \mathbb{R}^d$ and $y^t \in \{+1, -1\}$, $\forall t = 1, 2, 3, \ldots$ Recall that D is linearly separable if there exists a hyperplane $H = (w^*, b^*)$ (with $w^* \neq \mathbf{0}$) and $\gamma > 0$ such that $y^t(\langle w^*, x^t \rangle - b^*) > \gamma$ for every $t = 1, 2, 3, \ldots$ Assume that $\|w^*\|_2 = \beta$. Now consider a point x^p in D with $y^p = +1$. Find a point u on H closest to x^p and derive an expression for the distance between x^p and u. Explain how you constructed u.
- 6. In class, we discussed that the directional derivative of $f: \mathbb{R}^d \to \mathbb{R}$ (assumed to be continuously differentiable function) at a point $z \in \mathbb{R}^d$ along a non-zero direction v is of the form f'(z;v) and this is related to the gradient of the function $\nabla f(z)$ at z as: $f'(z;v) = \langle \nabla f(z), v \rangle$. Prove this relationship.