

LAB 6: ADVANCED RECURRENT NERUAL NETWORKS

University of Washington, Seattle

Fall 2024

OUTLINE

Part 1: Gated RNNs

- Need for Gated RNNs
- LSTM
- GRU

Part 2: Training Gated RNNs

- Mini-batch Gradient in RNNs
- RNN extensions on LSTM/GRU

Part 3: Gated RNN Application with PyTorch

- Signal Denoising

Part 4: Encoder-Decoder RNNs in PyTorch

- Signal Prediction

Part 5: Lab Assignment

- Stock Prediction

GATED RNNs

Need for Gated RNNs

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Recap: Backpropagation in RNNs

- → Forward ← Backward
- output

hidden

input

Recap: Backpropagation in RNNs

→ Forward← Backward

Backpropagation is performed backward in time

Vanishing and Exploding Gradients

- → Forward
- ← Backward

output

hidden

input

input

Vanishing and Exploding Gradients

Longer input sequence → higher risk of Vanishing/Exploding Gradients!

 χ_2

 x_0

Vanishing and Exploding Gradients

Need for better RNN architecture capable of processing longer sequence

Gated RNNs

Vanilla RNN

Vanilla RNN

Tanh function

Vanilla RNN

- new hidden state
- h₁₅₁ previous hidden state
- X_t input
- → concatenation

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

$$h^{(t)} = \tanh(a^{(t)})$$

$$o^{(t)} = c + Vh^{(t)}$$

$$\hat{y}^{(t)} = \operatorname{softmax}(o^{(t)})$$

LSTM (Long Short-Term Memory)

LSTM (Long Short-Term Memory)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Pointwise Operation

Transfer

Concatenate

Copy

Cell state

- Unique to LSTM
- Long term memory of the model

Forget gate

Decides what is relevant to keep from previous steps

Input gate

Decides what information is relevant to add from the current step

Output Gate

Determines what the next hidden state should be

Gated RNNs

GRU: Detailed Architecture

Information Flow in GRU

GRU: Detailed Architecture

Update gate

How much of the past information needs to be retained

Reset gate

How much of the past information to forget

TRAINING GATED RNNs

Mini-batch Gradient in RNNs

RNN Extensions in LSTM/GRU

Mini-batch Gradient in RNNs

RNN input format in PyTorch = (batch size, sequence length, # of features)

Example above = (4, 17, 1)

Gated RNNs

Inputs =
$$x_t$$

Outputs =
$$f(h(t))$$

RNN Extensions in LSTM/GRU

Regular RNN

Deep RNN

Bi-directional RNN

RNN Extensions in LSTM/GRU

```
class example_LSTM(torch.nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size):
            super(example LSTM, self). init ()
            self.lstm = torch.nn.LSTM(input size=input size, hidden_size=hidden_size,
                                    num_layers = num_layers,
 9
                                    batch first = True,
                                    bidirectional = False,
10
                                    dropout = 0.1)
11
12
            self.decoder = torch.nn.Linear(hidden size, output size)
13
14
15
        def forward(self, input seq, hidden state):
16
            pred, hidden = self.lstm(input_seq, hidden_state)
17
18
                                        Set to hidden_size * 2 if bidirectional = True
            pred = self.decoder(pred)
19
20
21
            return pred
```

num_layers:

LSTM layers to be stacked

batch first:

Tells PyTorch we are using (batchsize, seq len, feature #)

bidirectional:

Whether to configure bidirectional LSTM

dropout:

introduces dropout layer on the outputs of each LSTM layer except for last layer (use when num_layers > 1)

RNN Extensions in LSTM/GRU

```
class example_GRU(torch.nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size):
            super(example_GRU, self).__init__()
            self.gru = torch.nn.GRU(input size=input size, hidden_size=hidden_size,
                                    num_layers = num_layers,
                                    batch_first = True,
 9
                                     bidirectional = False,
10
                                     dropout = 0.1)
11
12
            self.decoder = torch.nn.Linear(hidden_size, output_size)
13
14
        def forward(self, input seq, hidden state):
15
16
17
            pred, hidden = self.gru(input seq, hidden state)
18
            pred = self.decoder(pred)
                                         Set to hidden_size * 2 if bidirectional = True
19
20
21
            return pred
```

num_layers:

GRU layers to be stacked

batch first:

Tells PyTorch we are using (batchsize, seq_len, feature #)

bidirectional:

Whether to configure bidirectional GRU

dropout:

introduces dropout layer on the outputs of each GRU layer except for last layer (use when num_layers > 1)

IMPLEMENTATION OF GATED RNNs in PYTORCH

Signal Denoising

Signal Denoising

Output Sequence

GRU → GRU → GRU → GRU → GRU → GRU

Input Sequence

Prepare Data

```
def sinusoidal_generator(X, signal_freq=60.):
        return np.sin(2 * np.pi * (X) / signal_freq)
 3
   def add noise(Y, noise_range=(-0.35, 0.35)):
 6
       noise = np.random.uniform(noise_range[0], noise_range[1], size=Y.shape)
 8
        return Y + noise
 9
10
   def sample seq(sequence length):
12
       random offset = random.randint(0, sequence_length)
13
       X = np.arange(sequence_length)
14
15
16
       denoised_output_seq = sinusoidal_generator(X + random_offset)
        noisy_input_seq = add_noise(denoised_output_seq)
17
18
        return noisy_input_seq, denoised_output_seq
19
```

Sinusoidal wave generator

Add noise function

Generate sample ground truth/noisy sinusoidal waves

Prepare Data

```
noisy_input_seq, denoised_output_seq = sample_seq(sequence_length = 100)

plt.figure(figsize = (10, 5))

plt.plot(noisy_input_seq, label ='Noisy', linewidth = 3)

plt.plot(denoised_output_seq, label ='Denoised', linewidth = 3)

plt.legend()
sns.despine()
```

Example sample ground truth & noisy sinusoidal wave with sequence length = 100

Prepare Data

```
def create_synthetic_dataset(n_samples, sequence_length):
 2
       noisy_seq_inputs = np.zeros((n_samples, sequence_length))
       denoised seq outputs = np.zeros((n samples, sequence length))
 6
       for i in range(n samples):
 7
 8
           noisy inp, denoised out = sample seq(sequence length)
 9
10
           noisy_seq_inputs[i, :] = noisy_inp
           denoised seq outputs[i, :] = denoised out
11
12
13
       return noisy seq inputs, denoised seq outputs
```

Using the sample_seq() function to generate synthetic ground truth/noisy dataset of n-samples

Take first 8000 as training dataset and 4000 as testing dataset

```
train_input_seqs = train_input_seqs.reshape((train_input_seqs.shape[0], -1, 1))
train_output_seqs = train_output_seqs.reshape((train_output_seqs.shape[0], -1, 1))

test_input_seqs = test_input_seqs.reshape((test_input_seqs.shape[0], -1, 1))
test_output_seqs = test_output_seqs.reshape((test_output_seqs.shape[0], -1, 1))
```

Reshape training and testing dataset to conform to (# of samples, seq_len, feature #) format

Define Model

```
class Denoiser_GRU(torch.nn.Module):
 2
       def init (self, input size, hidden size, num layers, output size):
           super(Denoiser_GRU, self).__init__()
           self.gru = torch.nn.GRU(input_size=input_size, hidden_size=hidden_size,
                                    num layers = num layers,
 8
 9
                                    batch_first = True,
                                    bidirectional = False)
10
11
           self.decoder = torch.nn.Linear(hidden_size, output_size)
12
13
           self.output_activation = torch.nn.Tanh()
14
15
       def forward(self, input seq, hidden state):
16
17
18
           pred, hidden = self.gru(input seq, hidden state)
19
           pred = self.output activation(self.decoder(pred))
20
21
22
           return pred
```

Using GRU with batch first = True

Decoder layer to convert hidden states to final output

Using **Tanh** on decoder output layer to squeeze output value between -1 and 1

Input_sequence, hidden_states → GRU → output_sequence, hidden_states → Decoder Layer → Tanh activation

Define Hyperparameters

```
Input dim to GRU = 1
Hidden state size = 30
GRU layers to be stacked = 1
Output dim of decoder layer = 1
```

Define learning rate, epochs and batch size

Using L1Loss (Least Absolute Deviations) and Adam optimizer

Identify Tracked Values

1 train_loss_list = []

Empty Python list to keep track of training loss

Train Model

```
train input seqs = torch.from numpy(train input seqs).float()
   train_output_seqs = torch.from_numpy(train_output_seqs).float()
   test_input_seqs = torch.from_numpy(test_input_seqs).float()
   test_output_seqs = torch.from_numpy(test_output_seqs).float()
   train batches features = torch.split(train input segs, batchsize)
   train batches targets = torch.split(train output seqs, batchsize)
   batch split num = len(train batches features)
11
   for epoch in range(epochs):
13
       for k in range(batch_split_num):
14
15
16
           hidden state = None
17
           pred = denoiser GRU(train batches features[k], hidden state)
18
19
           optimizer.zero grad()
20
21
           loss = loss_func(pred, train_batches_targets[k])
22
           train_loss_list.append(loss.item())
23
24
25
           loss.backward()
26
27
           optimizer.step()
28
29
```

Convert training and testing data to Tensors

Split training data into mini-batches

Training loop with mini-batch gradient

Print averaged loss throughout the epoch

Visualize & Evaluate Model

```
plt.figure(figsize = (10, 5))

plt.plot(train_loss_list, linewidth = 3, label = 'Training Loss')

plt.ylabel("training loss")

plt.xlabel("Iterations")

plt.legend()

sns.despine()
```

```
with torch.no_grad():

test_prediction = denoiser_GRU(test_input_seqs, None)
print("Testing Loss (Least Absolute Deviations): ",
loss_func(test_prediction, test_output_seqs).item())
```

Testing Loss (Least Absolute Deviations): 0.04158925637602806

ENCODER-DECODER APPLICATION IN PYTORCH

Signal Prediction

Example Task Description

Example Task Description


```
1 def generate_noisy_signal(datapoints_num, tf):
      t = np.linspace(0., tf, datapoints num)
      y = np.sin(2. * t) + 0.5 * np.cos(t) + np.random.normal(0., 0.2, datapoints_num)
      return y.reshape(-1, 1)
```

Function for generating a noisy signal $(\sin + \cos + \text{noise})$

```
1 def generate input output seqs(y, encoder inputseq len, decoder outputseq len, stride = 1, num features = 1):
       L = y.shape[0]
       num_samples = (L - encoder_inputseq_len - decoder_outputseq_len) // stride + 1
       train_input_seqs = np.zeros([num_samples, encoder_inputseq_len, num_features])
       train_output_seqs = np.zeros([num_samples, decoder_outputseq_len, num_features])
       for ff in np.arange(num_features):
 9
10
           for ii in np.arange(num_samples):
11
12
               start x = stride * ii
13
               end x = start x + encoder inputseg len
14
               train_input_seqs[ii, :, ff] = y[start_x:end_x, ff]
15
16
               start y = stride * ii + encoder inputseq len
17
18
               end_y = start_y + decoder_outputseq_len
               train_output_seqs[ii, :, ff] = y[start_y:end_y, ff]
19
20
       return train_input_seqs, train_output_seqs
21
```

Function for generating

- input sequences to encoder
- output target sequences for decoder

```
e.g., y = [1,2,3,4,5,6,7,8]
Encoder inputseg len = 3
Decoder outputseg len = 2
```

```
train input seqs =
[[1,2,3],[2,3,4],[3,4,5],[4,5,6]]
train output seqs =
[[4,5],[5,6],[6,7],[7,8]]
```



```
1 encoder_inputseq_len = 5
2 decoder_outputseq_len = 2
3 testing_sequence_len = 50
4
5 y = generate_noisy_signal(datapoints_num = 2000, tf = 80 * np.pi)
6 y_train = y[:-testing_sequence_len]
```

- Encoder input sequence length = 5
- Decoder output sequence length = 2
- Testing sequence length = 50

```
print("Encoder Training Inputs Shape: ", train_input_seqs.shape)
print("Decoder Training Outputs Shape: ", train_output_seqs.shape)
```

```
Encoder Training Inputs Shape: (1944, 5, 1)

Decoder Training Outputs Shape: (1944, 2, 1) (sample size, sequence length, feature/timestep)
```


train_input_seqs[0]
(input to encoder)

train_output_seqs[0]
(output target by decoder)

Define Model

Using LSTM for Encoder

No need for FC layer since encoder only passes hidden states to Decoder

```
class Encoder(torch.nn.Module):
       def __init__(self, input_size, hidden_size, num_layers):
           super(Encoder, self).__init__()
           self.lstm = torch.nn.LSTM(input_size = input_size, hidden_size = hidden_size,
                                      num_layers = num_layers,
                                      batch first = True)
 9
10
       def forward(self, input_seq, hidden_state):
11
12
           lstm_out, hidden = self.lstm(input_seq, hidden_state)
13
14
15
           return 1stm out, hidden
```


Define Model

Using LSTM for Decoder

FC layer for converting hidden states to a single number (prediction)

```
class Decoder(torch.nn.Module):
18
       def __init__(self, input_size, hidden_size, output_size, num_layers):
19
20
           super(Decoder, self). init ()
21
22
            self.lstm = torch.nn.LSTM(input_size = input_size, hidden_size = hidden_size,
23
24
                                      num_layers = num_layers,
25
                                      batch first = True)
26
27
            self.fc_decoder = torch.nn.Linear(hidden_size, output_size)
28
       def forward(self, input_seq, encoder_hidden_states):
29
30
            lstm_out, hidden = self.lstm(input_seq, encoder_hidden_states)
31
32
           output = self.fc_decoder(lstm_out)
33
           return output, hidden
34
```


Define Model

Combine Encoder and Decoder classes into a single class (Encoder Decoder)

```
class Encoder_Decoder(torch.nn.Module):
37
       def __init__(self, input_size, hidden_size, decoder_output_size, num_layers):
38
39
           super(Encoder_Decoder, self).__init__()
40
41
            self.Encoder = Encoder(input_size = input_size, hidden_size = hidden_size,
42
43
                                   num_layers = num_layers)
44
45
           self.Decoder = Decoder(input_size = input_size, hidden_size = hidden_size,
                                   output_size = decoder_output_size, num_layers = num_layers)
46
```


Define Hyperparameters

```
Encoder_Decoder_RNN = Encoder_Decoder(input_size = 1, hidden_size = 15, decoder_output_size = 1, num_layers = 1)

Define Encoder Decoder Specifics decoder_output_size = 1, num_layers = 1)

Learning_rate = 0.01
epochs = 50

Define Learning rate, epochs, batchsize and num_features/timestep

Description Define Learning rate, epochs, batchsize and num_features/timestep

Description Decoder_RNN_parameters(), lr=learning_rate)

Encoder_Decoder_RNN

Description Define Encoder Decoder Specifics

Define Encoder Decoder Specifics

Define Encoder Decoder Specifics
```


Identify Tracked Values

```
1 train_loss_list = []
```

Empty Python list for keeping track of loss values

Train Model

```
train_input_seqs = torch.from_numpy(train_input_seqs).float()
train_output_seqs = torch.from_numpy(train_output_seqs).float()

train_batches_features = torch.split(train_input_seqs, batchsize)[:-1]
train_batches_targets = torch.split(train_output_seqs, batchsize)[:-1]

batch_split_num = len(train_batches_features)
```

Convert numpy arrays to torch tensors

Split training data into mini-batches (skip last mini-batch since it can have smaller batch size)

Compute total number of mini-batches

Train Model

```
1 for epoch in range(epochs): # For each epoch
       for k in range(batch_split_num):
           hidden state = None
           decoder output seq = torch.zeros(batchsize, decoder outputseq len, num features)
           optimizer.zero grad()
           encoder output, encoder hidden = Encoder Decoder RNN.Encoder(train batches features[k], hidden state)
11
           decoder hidden = encoder hidden
12
13
14
           decoder_input = train_batches_features[k][:, -1, :]
           decoder_input = torch.unsqueeze(decoder_input, 2)
15
16
17
           for t in range(decoder_outputseq_len):
               decoder_output, decoder_hidden = Encoder_Decoder_RNN.Decoder(decoder_input, decoder hidden)
19
20
               decoder_output_seq[:, t, :] = torch.squeeze(decoder_output, 2)
               decoder_input = train_batches_targets[k][:, t, :]
               decoder input = torch.unsqueeze(decoder input, 2)
           loss = loss func(torch.squeeze(decoder_output_seq), torch.squeeze(train_batches_targets[k]))
26
28
           train_loss_list.append(loss.item())
29
           loss.backward()
31
           optimizer.step()
32
33
       print("Averaged Training Loss for Epoch ", epoch,": ", np.mean(train loss list[-batch split num:]))
34
```

Define initial hidden states and empty tensor for decoder outputs

Pass training input sequence + hidden states to encoder

Initial input to decoder = last value of the input sequence

Fill in decoder output tensor by using teacher forcing method (provide ground truth inputs)

Compute and append Loss Back-propagation Update network

Visualize & Evaluate Model

Plot moving average training loss

Visualize & Evaluate Model

See example notebook for detailed code implementation

LAB 6 ASSIGNMENT:

Stock Prediction Al with Encoder-Decoder RNN

Stock Dataset

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-06-29	19.000000	25.00	17.540001	23.889999	23.889999	18766300
1	2010-06-30	25.790001	30.42	23.299999	23.830000	23.830000	17187100
2	2010-07-01	25.000000	25.92	20.270000	21.959999	21.959999	8218800
3	2010-07-02	23.000000	23.10	18.709999	19.200001	19.200001	5139800
4	2010-07-06	20.000000	20.00	15.830000	16.110001	16.110001	6866900

- TSLA.csv
- 2227 days
- 7 attributes

	Date	Open	High	Low	Close	Adj Close	Volume
0	2004-08-19	50.050049	52.082081	48.028027	50.220219	50.220219	44659000
1	2004-08-20	50.555557	54.594593	50.300301	54.209209	54.209209	22834300
2	2004-08-23	55.430431	56.796795	54.579578	54.754753	54.754753	18256100
3	2004-08-24	55.675674	55.855854	51.836838	52.487488	52.487488	15247300
4	2004-08-25	52.532532	54.054054	51.991993	53.053055	53.053055	9188600

- GOOGL.csv
- 3702 days
- 7 attributes

- Date
 Open
 High
 Low
 Close
 Adj Close
 Volume

 0
 1985-01-29
 1277.719971
 1295.489990
 1266.890015
 1292.619995
 1292.619995
 13560000

 1
 1985-01-30
 1297.369995
 1305.099976
 1278.930054
 1287.880005
 1287.880005
 16820000

 2
 1985-01-31
 1283.239990
 1293.400024
 1272.640015
 1286.770020
 1286.770020
 1286.770020
 14070000

 3
 1985-02-01
 1276.939941
 1286.109985
 1269.770020
 1277.719971
 1277.719971
 10980000

 4
 1985-02-04
 1272.079956
 1294.939941
 1268.989990
 1290.079956
 1290.079956
 11630000
- DJI.csv
- 8636 days
- 7 attributes

Stock Prediction AI with Encoder-Decoder RNN

In this exercise, you will use Encoder-Decoder RNN architecture to predict the last 100 days' stock values.

You are free to pick **one of the stock datasets (TSLA, GOOGL, DJI)** for training and testing your model. Use **closing stock value (i.e., "Close" column)** for both training and testing data.

Feel free to pick encoder/decoder sequence sizes of your choice, LSTM or GRU for your RNN cell as well as RNN extensions such as Deep RNN or Bi-directional RNN.

Before training, normalize the data and create train_input_seqs and train_output_seqs like the example task.

After training, plot your RNN predicted stock value against the ground truth test values and calculate its MSE error. Use Teacher forcing method for predicting test outputs.