## II ESONERO FISICA II - AA 2018/2019 - 20/12/2018

## **Esercizio 1**

Un solenoide indefinito di sezione quadrata di lato  $l=10\,\mathrm{cm}$  ha una densità di spire  $n=8.5\,\mathrm{cm}^{-1}$  ed è percorso da una corrente  $i=7.8\,\mathrm{A}$ . Una particella carica di massa  $m=1.67\times 10^{-27}\,\mathrm{Kg}$ , che può passare senza urti attraverso il solenoide, entra all'interno del solenoide nel punto  $\vec{O}=(0,l/4)$  con velocità  $v=10^5\,\mathrm{m/s}$  ortogonale alla superficie del solenoide e ne riesce nel punto  $\vec{P}=(l,3l/4)$ . Considerando il sistema di riferimento indicato in figura, si trova l'angolo di uscita  $\theta_p=53^\circ$ .

**Nota Bene:** il campo magnetico generato da un solenoide indefinito non dipende dalla forma della sezione, purché questa sia sempre costante lungo l'asse, come in questo caso.



Nel pannello di sinistra l'asse z è uscente dal foglio. Considerare  $q=\pm 1.602 imes 10^{-19}$  C.

- 1. Determinare il verso della corrente (3 punti).
  - $\circ$  Se q è positiva  $\vec{B}=-\hat{z}$  (la corrente scorre in verso orario), se è negativa  $\vec{B}=\hat{z}$  (la corrente scorre in verso antiorario).
- 2. Determinare direzione, verso e modulo del campo magnetico  $\vec{B}$  all'interno del solenoide (3 punti).
  - o Direzione e verso sono stati trovati nel punto precedente, mentre il modulo vale  $B=\mu_0 ni=8.33 imes 10^{-3}$  T.
- 3. Calcolare il tempo che la particella trascorre all'interno del solenoide (3 punti).
  - $\circ$  II tempo impiegato per "percorrere" un angolo  $\theta$  vale  $t=\theta/\omega$ , dove il modulo della velocità angolare è  $\omega=qB/m=8\times10^5$  rad/s. Si trova quindi  $t=\theta_n/\omega=1.16\times10^{-6}$  s.
- 4. Calcolare la distanza percorsa dalla particella all'interno del solenoide (3 punti).
  - $\circ$  La distanza è semplicemente la lunghezza dell'arco di circonferenza sotteso da  $heta_p$ , quindi vale  $heta_p r = heta_p m v/q B = 0.115$  m.
- 5. Calcolare la distanza percorsa dalla particella lungo l'asse z (3 punti).

 $\circ$  La velocità iniziale non ha componenti lungo z, quindi la particella non si muoverà lungo quest'asse.

Si ha la possibilità di riempire completamente il solenoide con una sostanza di suscettività magnetica  $\chi_m$  ed, eventualmente, di cambiare il verso della corrente.

- 1. Determinare il valore di  $\chi_m$  ed il verso della corrente necessari per far sì che la particella esca dallo spigolo (0,l) (in alto a sinistra nella figura) **(6 punti)**.
  - $\circ$  Con i dati iniziali si trova  $r=\frac{5}{4}l=0.125$  m. Affinché la particella esca dallo spigolo in alto a sinistra si deve avere un campo di intensità B' tale che  $2r'=\frac{3}{4}l$ . Poiché il raggio è inversamente proporzionale all'intensità del campo si trova

$$\frac{B'}{B} = \frac{r}{r'} = \frac{10}{3} = \mu_r$$

e quindi

$$\chi_m = \mu_r - 1 = rac{7}{3} = 2.33$$

Il verso della corrente dipende dal segno di q ed è lo stesso trovato nei punti precedenti.

- 2. Determinare il valore di  $\chi_m$  ed il verso della corrente necessari per far sì che la particella esca dallo spigolo (l,l) (in alto a destra nella figura) **(6 punti)**.
  - $\circ$  In questo caso  $r'^2=l^2+(r-3l/4)^2$ , quindi

$$r'=rac{25}{24}l$$

ragionando come prima si ottiene

$$\chi_m = \mu_r - 1 = \frac{r}{r'} - 1 = \frac{6}{5} - 1 = \frac{1}{5} = 0.20.$$

Per la corrente si ripete il discorso del punto precedente.

- 3. Determinare il valore di  $\chi_m$  ed il verso della corrente necessari per far sì che la particella esca dallo spigolo (l,0) (in basso a destra nella figura) **(6 punti)**.
  - $\circ~$  La stessa costruzione di prima dà  $r'^2=l^2+(r-l/4)^2$ , e cioè

$$r'=rac{17}{8}l$$

che dà

$$\chi_m = \mu_r - 1 = rac{r}{r'} - 1 = rac{10}{17} - 1 = -rac{7}{17} = -0.41.$$

Poiché la particella deve girare nell'altro senso, la corrente deve essere opposta a quella che genera il campo dei punti precedenti.

## **Esercizio 2**

Un filo rettilineo indefinito e fisso è percorso da una corrente i, con il verso indicato in figura. Una spira rettangolare indeformabile di dimensioni  $a=40~{\rm cm}~{\rm e}~b=1~{\rm m}~{\rm e}$  massa m è parallela al filo e posta ad una distanza  $d=1~{\rm cm}$ . La forza peso  $\vec{F}_p$  agisce nella direzione indicata in figura. Quando nella spira scorre una corrente  $i_s$  il sistema è in equilibrio e la spira rimane sospesa.

1. Determinare il verso in cui scorre  $i_s$  (3 punti).

h

- $\circ i_s$  deve essere tale per cui la forza magnetica  $F_m$  che il circuito sente sia contrapposta alla forza peso. In questo caso  $F_m$  ha due contributi dati dalle due porzioni di spira parallele al filo. Il contributo dato dal filo più in alto è più forte, e quindi deve essere quello che determina il verso della corrente. Per far sì che si generi un'attrazione  $i_s$  deve essere parallela ad i in questa parte di spira. Ne consegue che  $i_s$  scorre in senso orario.
- 2. Se i=30 A e m=1 g, calcolare  $i_s$  (9 punti).
  - $\circ$  L'esercizio si risolve mettendo uguali le intensità della forza peso e di quella magnetica. La forza peso vale semplicemente mg. Quella magnetica è dovuta alla presenza del campo magnetico generato dal filo, dato dalla legge di Biot-Savart:

$$B(r) = \frac{\mu_0 i}{2\pi r}.$$

La forza magnetica ha due componenti dovute alle due parti di spira parallele al filo, che si sommano direttamente poiché hanno la stessa direzione:

$$F_m=i_s b B(d)+i_s b B(d+a)=rac{\mu_0 i_s i b}{2\pi}igg(rac{1}{d}-rac{1}{d+a}igg).$$

Uguagliando le due forze si ottiene

$$rac{\mu_0 i_s ib}{2\pi} igg(rac{1}{d} - rac{1}{d+a}igg) = mg$$

e risolvendo per i\_s:

$$i_s=rac{2\pi mg}{\mu_0 i}rac{d(d+a)}{a}=16.8\,\mathrm{A}$$

- 3. Se i=25 A e  $i_s=30$  A, calcolare m (9 punti).
  - Utilizzando la relazione trovata al punto precedente si trova:

$$m=rac{\mu_0 i_s i b}{2\pi g}igg(rac{1}{d}-rac{1}{d+a}igg)=1.5 imes 10^{-3}\,\mathrm{Kg}$$

4. Se  $i_s=25$  A e m=1.5 g, calcolare i (9 punti).

• Utilizzando la stessa relazione si trova:

$$i=rac{2\pi mg}{\mu_0 i_s}rac{d(d+a)}{a}=30\,\mathrm{A}$$

Si aggiunge nella regione di spazio in figura un campo magnetico uniforme ortogonale al foglio.

- 1. Determinare come cambierebbe il risultato al punto precedente se il campo uniforme avesse verso uscente dal foglio e di intensità B=1 T (3 punti).
  - Un campo uniforme genera una forza che agisce con la stessa intensità ma verso opposto su entrambi i fili, e quindi non sortisce nessun effetto.
- 2. Determinare come cambierebbe il risultato al punto precedente se il campo uniforme avesse verso entrante nel foglio e di intensità  $B=0.5\,\mathrm{T}$  (3 punti).
  - Un campo uniforme genera una forza che agisce con la stessa intensità ma verso opposto su entrambi i fili, e quindi non sortisce nessun effetto.