Teoria degli Automi e Calcolabilità a.a. 2021/22 Prova scritta 7 luglio 2022

Esercizio 1 Si consideri il seguente automa a stati finiti non deterministico.

- 1. Si diano tutte le computazioni possibili per la stringa *abab* e si spieghi se la stringa è riconosciuta e perché.
- 2. Si descriva il linguaggio riconosciuto.
- 3. Si scriva l'automa in formato tabellare e lo si trasformi in un automa deterministico.

Soluzione

1. Le computazioni possibili per la stringa *abab* sono:

$$\begin{split} \langle q_0, abab \rangle &\to \langle q_0, bab \rangle \to \langle q_0, ab \rangle \to \langle q_0, b \rangle \to \langle q_0, \epsilon \rangle \\ \langle q_0, abab \rangle &\to \langle q_0, bab \rangle \to \langle q_0, ab \rangle \to \langle q_1, b \rangle \to \langle q_1, \epsilon \rangle \\ \langle q_0, abab \rangle &\to \langle q_1, bab \rangle \to \langle q_1, ab \rangle \to \langle q_1, b \rangle \to \langle q_1, \epsilon \rangle \\ \langle q_0, abab \rangle &\to \langle q_1, bab \rangle \to \langle q_1, ab \rangle \to \langle q_2, b \rangle \to \langle q_2, \epsilon \rangle \end{split}$$

La stringa è accettata perché esiste una computazione che termina in uno stato finale.

2. Il linguaggio riconosciuto è l'insieme delle stringhe che contengono almeno due a.

3.

	a	b
$\rightarrow q_0$	q_0, q_1	q_0
q_1	q_1, q_2	q_1
$\star q_2$	q_2	q_2

	a	b
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$
$\star \{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$

Esercizio 2 Si consideri il linguaggio $\{a^nb^na^mb^m \mid n, m \ge 1\}$.

- 1. Si dica se è possibile riconoscerlo *per pila vuota* con un PDA deterministico (ossia: in caso di risposta positiva si dia un PDA deterministico che riconosca il linguaggio per pila vuota, in caso di risposta negativa lo si giustifichi).
- 2. Cosa cambia se consideriamo il linguaggio $\{a^nb^na^mb^m \mid n \geq 1, m \geq 0\}$?

Soluzione

1. Un PDA deterministico che riconosce il linguaggio per pila vuota è il seguente.

La prima parte dell'automa (da q_0 a q_1) controlla che la prima parte della stringa sia del tipo a^nb^n lasciando Z in fondo alla pila. A questo punto, la seconda parte dell'automa (da q_1 in poi) effettua un analogo controllo sulla seconda parte dela stringa, questa volta svuotando completamente la pila.

2. Se consideriamo il linguaggio $\{a^nb^na^mb^m\mid n\geq 1, m\geq 0\}$, occorre modificare l'automa nel modo seguente:

Questo automa è non deterministico. Non è più possibile dare un automa deterministico perchè il linguaggio contiene due stringhe delle quali una è prefisso dell'altra, per esempio ab e abab.

Esercizio 3 Si consideri la seguente macchina di Turing usata come riconoscitore (q_3 è l'unico stato finale).

	a	b	B
q_0	q_1, a, R	q_0, b, R	
q_1	q_2, a, R	q_1, b, R	q_1, B, R
q_2	q_2, a, R	q_2, b, R	q_3, B, N

- 1. Si descriva la computazione che ha come configurazione iniziale $\langle \epsilon, q_0, baba \rangle$.
- 2. Si descriva la computazione che ha come configurazione iniziale $\langle \epsilon, q_0, babb \rangle$.
- 3. Si descriva il linguaggio accettato dalla macchina.
- 4. Questo linguaggio è ricorsivo?

Soluzione

- 1. $\langle \epsilon, q_0, baba \rangle \rightarrow \langle b, q_0, aba \rangle \rightarrow \langle ba, q_1, ba \rangle \rightarrow \langle bab, q_1, a \rangle \rightarrow \langle baba, q_2, \epsilon \rangle \rightarrow \langle baba, q_3, \epsilon \rangle$
- 2. $\langle \epsilon, q_0, babb \rangle \rightarrow \langle b, q_0, abb \rangle \rightarrow \langle ba, q_1, bb \rangle \rightarrow \langle bab, q_1, b \rangle \rightarrow \langle babb, q_1, \epsilon \rangle \rightarrow \langle babbB, q_1, \epsilon \rangle \rightarrow \langle babbB, q_1, \epsilon \rangle \rightarrow \dots$
- 3. Il linguaggio accettato dalla macchina è l'insieme delle stringhe che contengono almeno due a.
- 4. Sì, è un linguaggio regolare.

Esercizio 4 Dire se le seguenti affermazioni sono vere o false motivando la risposta.

- 1. Sia $\Pi \subseteq \mathbb{N}$ un insieme finito non vuoto, allora la proprietà Π non è estensionale.
- 2. Se un insieme $A \subseteq \mathbb{N}$ è r.e. e non ricorsivo, non può essere $\overline{A} \leq A$.

Soluzione:

- 1. Vero. Infatti, abbiamo visto che per ogni funzione ricorsiva f esistono infiniti indici x nella numerazione degli algoritmi tali che $\phi_x = f$, quindi una proprietà estensionale non vuota è sempre un insieme infinito.
- 2. Vero. Se fosse $\overline{A} \leq A$, anche \overline{A} sarebbe ricorsivamente enumerabile, ma allora sarebbero entrambi ricorsivi.

Esercizio 5 Si provi che $\mathcal{P} = \{x \mid \phi_x(y) = 5 \text{ per qualche } y \leq 5\}$ è riducibile a $\mathcal{Q} = \{x \mid \phi_x(y) = 5 \text{ per ogni } y \leq 5\}$, ossia che il problema di determinare se un algoritmo restituisce 5 su almeno un input ≤ 5 è riducibile al problema di determinare se un algoritmo restituisce 5 su tutti gli input ≤ 5 .

Soluzione Dobbiamo trasformare un input x per il problema \mathcal{P} (un algoritmo) in un input x' = g(x) per il problema \mathcal{Q} in modo tale che $\phi_x(y) = 5$ per qualche $y \leq 5$ se e solo se $\phi_{x'}(y) = 5$ per ogni $y \leq 5$.

Questo si può ottenere costruendo l'algoritmo x' = g(x) nel modo seguente:

input $y \to \text{se } \phi_x(y) = 5$ per qualche $y \le 5$ restituisco 5, altrimenti non terminazione

Allora: se $\phi_x(y) = 5$ per qualche $y \le 5$, l'algoritmo restituisce 5 per qualunque y, quindi in particolare per ogni $y \le 5$, altrimenti l'algoritmo non termina per qualunque y, quindi in particolare per ogni $y \le 5$. Si noti che la condizione $\phi_x(y) = 5$ per qualche $y \le 5$ può essere controllata eseguendo l'algoritmo x in interleaving sugli input da 0 a 5.