Linear Mappings

Jack David Carson - January 22, 2025

01 Algebra

Vector Space Definition 1

A vector space is any collection of objects that can be added together and multiplied by a scalar, and the resulting object is still a vector.

This property can be specified by considering two vector spaces V, W and a mapping $\Phi : V \to W$ that preserves the structure of the vector space if and only if

$$\Phi(x + y) = \Phi(x) + \Phi(y)$$

 $\Phi(\lambda x) = \lambda \Phi(x)$

for all $x, y \in V$ and $\lambda \in \mathbb{R}$. From this we can define a linear mapping

Linear Mapping Definition 2

A linear mapping, also known as a vector space homomorphism or linear transform $\Phi: V \to W$ is defined for

$$\forall x, y \in V \ \forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y)$$

which essentially reads for all vectors x, y in V and all λ, ψ in \mathbb{R} the linear mapping Φ satisfies the scalar multiplication and additivity constraints.

These definitions are useful because we can define certain special mappings.

- Injective if $\forall x, y \in V : \Phi(x) = \Phi(y) \Rightarrow x = y$
- Surjective if $\Phi(V) = W$
- **Bijective** if Φ is both injective and surjective

This specifies that if Φ is surjective, then every element in W can be "reached" from $\Phi(V)$. For a bijective Φ , we can furthermore define an inverse mapping $\Psi:W\to V$ such that $\Psi\circ\Phi(\boldsymbol{x})=\boldsymbol{x}$.

Then, we can also introduce some special cases of linear mappings

• Isomorphism: $\Phi:V\to W$ is linear and bijective

• Endomorphism: $\Phi: V \to V$ is linear

• Automorphism: $\Phi: V \to V$ linear and bijective

02 Matrix Representation

Based on this we can state the theorem that finite-dimensional vector spaces V and W are ismorphic if and only if $\dim(V) = \dim(W)$. From hence we can define a matrix from first principles as representing an n-dimensional vector space isomorphic to \mathbb{R}^n . Specifically, we consider a basis $\{b_1, ..., b_n\}$ of an n-dimensional vector space V isomorphic to \mathbb{R}^n . As we are familiar with in linear algebra, this basis represents a linear transformation on a coordinate system.

Remark: An **ordered** basis is a special form of basis in which the orer of vectors matters. Our canonical linear algebra intuition relies on this constraint, since matrix $[v_1, v_2, v_3] \neq [v_3, v_2, v_1]$. However it is rarely necessary for understanding vector spaces. We specify ordered basis $B = (b_1, ..., b_n)$ and unordered basis $\mathcal{B} = \{b_1, ...b_n\}$

Transformation Matrix

DEFINITION 3

Consider vector spaces V, W with ordered bases $B = (\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ and $C = (\boldsymbol{c}_1, ..., \boldsymbol{c}_n)$, scalars $\boldsymbol{\alpha} \in \mathbb{R}^n$ and a linear mapping $\Phi: V \to W$ such that

$$\Phi(\boldsymbol{b}_j) = \alpha_{1j}\boldsymbol{c}_1 + \dots + \alpha_{mj}\boldsymbol{c}_m = \sum_{i=1}^m \alpha_{ij}\boldsymbol{c}_i$$

The result of this in matrix form will be the *transformation matrix* corresponding to Φ (with respect to the chosen bases B and C) which we call A_{Φ} such that for $\mathbf{y} = \Phi(\mathbf{x}) \in W$,

$$A_{\Phi}\hat{x} = \hat{y}$$

And just like that we've gone from algebra to linear algebra.