Database Management System: Assignment 1

Total Marks: 20

January 15, 2024

Question 1

Marks: 2 MCQ

A relation R has 2 candidate keys with 1 attribute each. There are 6 possible super keys of R. What is the total number of attributes in R?

- a) 2
- b) 3
- c) 4
- d) 5

Answer: (b)

Explanation: A relation R with n attributes and 2 candidate keys having 1 attribute each respectively, has $K = 2^{(n-1)} + 2^{(n-1)} - 2^{(n-2)}$ superkeys. Here, K = 6 So, K = 3. Hence, option (b) is correct.

Marks: 2 MCQ

Consider the following instances of the relation: SEMESTER1(Student, Marks) and SEMESTER2(Student, Marks)

SEMESTER1			
Student Marks			
Akshay	67		
Gunjan	90		
Aman	65		
Arani	98		

SEMESTER2			
Student Marks			
Akshay	89		
Aman	23		
Arani	76		

Which of the following Relational Algebra produces the Name and SEMESTER1 Marks of only those Students who did not appear in SEMESTER2?

- $a) \ (\Pi_{\texttt{Student}}(\texttt{SEMESTER2}) \Pi_{\texttt{Student}}(\texttt{SEMESTER1})) \bowtie \texttt{SEMESTER1}$
- $b) \ (\Pi_{\texttt{Student}}(\texttt{SEMESTER2}) \Pi_{\texttt{Student}}(\texttt{SEMESTER1})) \bowtie \texttt{SEMESTER2}$
- $c) \ (\Pi_{\texttt{Student}}(\texttt{SEMESTER1}) \Pi_{\texttt{Student}}(\texttt{SEMESTER2})) \bowtie \texttt{SEMESTER2}$
- $\mathrm{d}) \ (\Pi_{\texttt{Student}}(\texttt{SEMESTER1}) \Pi_{\texttt{Student}}(\texttt{SEMESTER2})) \bowtie \texttt{SEMESTER1}$

Answer: (d)

Explanation: As per the syntax and semantics of Relational Algebra. Hence, option (d) is correct.

Marks: 2 MCQ

Consider the following instance of the relation Counters (CNo, Item, Price, Category)

Counters			
CNo Item Price		Category	
12	Food	500-1000	LP
2	Clothes	500-1000	LP
12	Makeup	100-20000	AP
2	Clothes	1001-20000	HP
3	Food	1001-50000	HP

Identify the valid primary key for the relation Counters (CNo, Item, Price, Category) from the given instance.

- a) {CNo, Item}
- b) {Item, Price}
- c) {Price, Category}
- d) {CNo, Item, Category}

Answer: (b)

Explanation: A primary key needs to uniquely identify each record in a table. So option b) is the correct option. Option (d) is incorrect as it forms a superkey. Other options are incorrect as these attributes do not identify each tuple uniquely.

Marks: 2 MCQ

Consider the following instance of the relation Seating(SNo, Preference, Coach, Name)

Seating			
SNo	Preference	Coach	Name
1	WS	D1	Harsh S.
2	NP	D1	Anukul K.
3	WS	D1	Harsh S.
4	WS	D2	Raima H.
5	NWS	D2	Raima H.

Identifying the primary key from the given instance, select the tuple that can NOT be inserted to Seating ?

- a) (11, WS, D1, Harsh S.)
- b) (2, NP, D2, Anukul K.)
- c) (6, NWS, D2, Raima H.)
- d) (6, NULL, NULL, NULL)

Answer: b)

Explanation: In Seating(SNo, Preference, Coach, Name), SNo is the primary key and should be unique. Hence, option (b) is correct.

Marks: 2 MCQ

Consider the following RA:

 $\Pi_{track}(\sigma_{category=`Pop'}(Music))$

Which of the following statements is true?

- a) Displays the details of all Music from Pop Category
- b) Displays the details of at least one Music from Pop Category
- c) Displays at most one track from Pop Category
- d) Displays all the tracks from Pop Category

Answer: d)

Explanation: As per the syntax of Relational Algebra.

Marks: 2 MCQ

Let $R_1(\underline{X},Y)$ and $R_2(\underline{A},B,C)$ be two relations in a schema. The primary keys are shown underlined. Let C be a foreign key in R_2 referring to R_1 . Suppose, there is no violation of the above referential integrity constraint in the corresponding relation instances r_1 and r_2 .

Which one of the following relational algebra expressions would necessarily produce an empty relation?

- a) $\prod_{\mathbf{X}}(r_1) \prod_{\mathbf{C}}(r_2)$
- b) $\prod_{\mathbf{C}}(r_2) \prod_{\mathbf{X}}(r_1)$
- c) $\prod_{\mathbf{X}} (r_1 \bowtie r_2)$
- d) $\prod_{\mathbf{C}}(r_1 \bowtie r_2)$

Answer: b)

Explanation: According to Foreign key concept $\prod_X(r_1) \ge \prod_C(r_2)$

So, $\prod_{C}(r_2) - \prod_{X}(r_1) = \phi$.

So, option (b) is correct.

Marks: 2 MCQ

Consider the following relations:
Parts(PartID, Name, Price).

Supplier(SupID, Name, Location).
Order(SupID, PartID, Quantity) .

If SupID and PartID together are used to uniquely identify a row in Order table, which of the following option is correct for describing such key in Order table?

- a) Alternate key
- b) Composite key
- c) Compound key
- d) Surrogate key

Answer: c)

Explanation:

Compound key: two or more attributes jointly can identify a record uniquely. However, each of these attributes, individually, are simple (foreign) keys in their own tables. . Hence, option (c) is correct.

Marks: 2 MCQ

Consider the following table:

StudentDetails			
StudName	Age		
Ayush	CSE	Kolkata	28
Priya	CSE	Hyderabad	24
Ankush	IT	Kolkata	30
Rumki	IT	Hyderabad	25
Sujit	ECE	Bangalore	24
Sayan	IEE	Mumbai	28

Identify the correct operation(s) which produces the following output from the above relation.

${\tt StudentDetails}$				
StudName DeptName Address Age				
Ayush	CSE	Kolkata	28	
Ankush IT Kolkata		30		
Sayan	IEE	Mumbai	28	

- a) $\prod_{\text{(Address='Kolkata')}} (Age>25) (StudentDetails)$
- b) $\prod_{\text{(Address='Kolkata')}} (\text{Age}_{>25}) (\text{StudentDetails})$
- c) σ (Address='Kolkata') \wedge (Age $_{>25}$)(StudentDetails)
- d) σ (Address='Kolkata') $_{\lor}$ (Age $_{>25}$)(StudentDetails)

Answer: d)

Explanation: As per Relational Operators syntax and semantics, option d) is correct.

Marks: 2 MSQ

Consider the following tables:

Student		
StudName	DeptName	
Ayush	CSE	
Raja	IT	
Priya	EE	

Department		
DeptName Fees		
CSE	6000	
IT	7000	
EE	5000	
ECE	5000	

Identify the correct operation(s) which will produce the following output from the above two

relations.

StudName	DeptName	Fees
Ayush	CSE	6000
Raja	IT	7000
Priya	EE	5000

- a) (Student × Department)
- b) Π (StudName,Student.DeptName, Fees) $^{(\sigma)}$ (Student.DeptName=Department.Deptname) $^{(Student \times Department)}$
- c) σ (StudName, Student.DeptName, Fees) (Student \bowtie Department)
- d) (Student \bowtie Department)

Answer: b), d)

Explanation: As per Relational Operators syntax and semantics, options b) and d) are correct.

Marks: 2 MCQ

Which of the following can be a candidate key for the following instance?

StudentDetails			
StudName	StudName DeptName Address		Age
Ayush	CSE	Kolkata	28
Priya	CSE	Hyderabad	25
Ankush	IT	Kolkata	30
Rumki	IT	Hyderabad	25
Sujit	ECE	Bangalore	24
Sujit	IEE	Mumbai	28

- a) {StudName}
- b) {DeptName}
- c) {StudName, DeptName}
- d) {Address, Age}

Answer: c)

Explanation: In the above instance, each row can be uniquely identified by using $\{StudName, DeptName\}$ set of attributes only as per given options.

Hence, (c) is the correct option.