Exercice 1

1.1. Solénoïde long

Il faut calculer le rapport L/R.

On a L/R = 12,5 > 10

On peut donc considérer le solénoïde comme long

1.2. Représentation

1.3. Le champ magnétique

Pour un solénoïde $B_s = \mu_0 I_{\frac{1}{2}}^{\frac{N}{2}} = 1,8 \ 10^{-4} T$

2. Le champ magnétique terrestre

Lors des deux expériences l'aiguille aimanté va prendre la direction du champ magnétique total.

$$\underline{Première\ expérience}: tg\ \alpha_1 = \frac{B_r + B_S}{B_H} \Leftrightarrow B_r = B_H\ tg\alpha_1 \ -B_S$$

$$\underline{Deuxième\ expérience}: tg\ \alpha_2 = \frac{B_S}{B_I+B_H} \Leftrightarrow tg\ \alpha_2\ (\ B_H\ tg\alpha_1\ -B_S\ +B_H) = B_S$$

Ainsi
$$B_H tg\alpha_2 (tg\alpha_1 + 1)) = B_S(1 + tg\alpha_2)$$

Ainsi
$$B_H t g \alpha_2 (t g \alpha_1 + 1)) = B_S (1 + t g \alpha_2)$$

D'où $B_H = \frac{1 + t g \alpha_2}{(1 + t g \alpha_1) t g \alpha_2}$ $B_S = 2 \cdot 10^{-5} \text{ T}$

Expérience 1

Exercice 2

1. Bilan des forces

Il y a : La réaction en O \vec{R} Le poids en G \vec{P} La force de Laplace \vec{F}

2. Le sens du courant

On utilise la règle de la main droite

3. Condition d'équilibre

Référentiel R galiléen Système : la tige Forces : voir 1

<u>Loi</u> condition d'équilibre : $\sum \vec{F} = \vec{0}$ <u>Projection</u> : sur Oz

La force de Laplace : $\vec{F} = I \vec{L} \wedge \vec{B} \Leftrightarrow F = IBL$

D'où IBL = mgsin α Ainsi sin $\alpha = \frac{IBL}{mg} \Leftrightarrow \alpha = 0.92 \text{ rad} = 52.8^{\circ}$