Revised I/O Format

Adjacency Matrix
4
0100
1011
0100
0100
Wait Node Capacities
A: 10
B: 0
C: 12
D: 8
Traffic Controller Nodes
В
Initial traffic allocation
A: 10
C: 4
#Ambulances
A:4
C:1
#firetrucks
A:1
C:2
Destination Nodes
A:D
C:A

Priority Allocation formula

N_i: density at next hop for vehicles from source node i

Ai: Number of ambulances from source node i

Fi: Number of fire trucks from source node i

V_i: Total number of normal vehicles from source node i

C: Total capacity at current node

w_a: Ambulance weight

w_f: Fire truck weight

T: Time in seconds since last token allocation to current node

 w_1 and w_2 are weights to be set on time and density according to your preference.

Priority =
$$w_1 T + \frac{w_2}{C} \sum_{i=A}^{Z} \frac{w_a A_i + w_f F_i + V_i}{N_i}$$

Example of priority allocations

Suppose there are 2 types of traffic at A

- 1. E: 1 fire truck and 2 normal vehicles
- 2. F: 1 Ambulance and 1 normal vehicle

F and F's destination is C and D respectively with C having density of 20% and D having a density of 10%.

Given below is how the priority will be calculated for A (similarly priority will be calculate for all wait nodes adjacent to it)

$$Priority_{A} = 0.5 \times 2 \ seconds + \frac{0.5}{10} \times \sum_{i=A}^{Z} \frac{7A_{i} + 7F_{i} + V_{i}}{N_{i}}$$

$$Priority_{A} = 0.5 \times 2 \ seconds + \frac{0.5}{10} \times \left\{ \frac{7 \times 0 + 7 \times 1 + 2}{0.2} + \frac{7 \times 1 + 7 \times 0 + 1}{0.1} \right\}$$

$$Priority_{A} = 1 + \frac{1}{20} \times \left\{ \frac{90}{2} + 80 \right\}$$

$$Priority_{A} = 1 + 6.25$$

$$Priority_{A} = 7.25$$