Analisi Matematica B

PROF. SILVANO DELLADIO Davide Borra, Filippo Troncana, Filippo Sarzi Puttini

Indice

1	Teo	ria della misura	1
	1.1	Misure esterne, definizione e prime proprietà	
	1.2	Misure esterne metriche, Boreliane, Borel-regolari, di Radón	
		1.2.1 Misura esterna di Lebesgue	
		1.2.2 Misura esterna di Hausdorff	14
2		zioni misurabili e integrale	21
	2.1	Funzioni misurabili.	
	2.2	Integrale: definizione e prime proprietà	
	2.3	Teoremi di convergenza integrale	
	2.4	Il teorema di Fubini	
	2.5	La formula dell'area	
	2.6	Formule di Gauss, Green e Stokes	48
-	- C		
3		$\mathbf{z}_{\mathbf{z}} \stackrel{L^p}{\iota} \mathbf{z}_{\mathbf{z}}$ e serie di Fourier	57
	3.1	Spazi L^p	
	3.2	Serie di Fourier in uno spazio di Hilbert	61
	3.3	Convergenza puntuale della serie di Fourier per una funzione regolare a tratti	65
4	Suc	cessioni e serie di funzioni	67
4		Successioni di funzioni	67
		Serie di funzioni generiche	
	4.2		
	4.3	Serie di potenze	75
5	Cor	nplementi	79
J		Equazioni differenziali ordinarie	79
	0.1	Equazioni dinerenzian ordinare	13
\mathbf{A}	Con	nplementi sulle serie	83
		Serie notevoli	83
		A.1.1 Somme finite	
		A.1.2 Serie	
	A.2	Criteri di convergenza	84
		A.2.1 Criteri di convergenza per serie a segno costante	
		A.2.2 Serie numeriche a segno qualsiasi	
		A.2.3 Serie numeriche a segni alterni	
		A.2.4 Integrali e serie	
	A.3	Sviluppi di Taylor	
	11.0		
\mathbf{B}	Tab	oella dei Teoremi	87

${\bf Sommario}$

Questo documento consiste in un ampliamento delle note del prof. Delladio con le dimostrazioni svolte a lezione e richieste per l'esame. La versione originale delle note è disponibile al moodle del corso.

Ultimo aggiornamento: 5 settembre 2024

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

Capitolo 1

Teoria della misura

1.1 Misure esterne, definizione e prime proprietà

DEF 1.1 (Misura esterna). Una "misura esterna" sull'insieme X è una mappa $\varphi: \mathcal{P}(X) \to [0, +\infty]$ tale che

- $i) \varphi(\varnothing) = 0;$
- ii) $\varphi(E) \leq \varphi(F)$, se $E \subset F \subset X$;
- iii) $\varphi(\cup_j E_j) \leq \sum_i \varphi(E_j)$, se $\{E_j\}$ è una famiglia numerabile di sottoinsiemi di X.

Esempio 1.1.

 $X \neq \emptyset$ e

$$\varphi(E) := \begin{cases} 0 & \text{se } E = \emptyset \\ 1 & \text{altrimenti.} \end{cases}$$

Osserviamo che se X contiene almeno due elementi a, b, allora

$$\varphi(\{a\} \cup \{b\}) = \varphi(\{a\}) = \varphi(\{b\}) = 1$$

In particolare φ non è additiva (vale $\varphi(\{a\} \cup \{b\}) < \varphi(\{a\}) + \varphi(\{b\})$).

Esempio 1.2 (Misura esterna di Dirac).

 $X \neq \emptyset e (x_0 \in X)$

$$\varphi(E) := \begin{cases} 0 & \text{se } x_0 \notin E \\ 1 & \text{se } x_0 \in E \end{cases}$$

Esempio 1.3 (Misura esterna del conteggio).

$$X \neq \emptyset$$
 e $\varphi(E) := \#(E)$.

Osservazione 1.1. La "misura superiore di Peano-Jordan", la "misura inferiore di Peano-Jordan" e la "misura di Peano-Jordan" non sono misure esterne.

Dimostrazione. Prima di procedere avremo bisogno di un po' di notazione: diciamo intervallo in \mathbb{R}^2 un sottoinsieme della forma

$$I = [a_1, b_1] \times [a_2, b_2]$$

che avrà misura elementare $m(I) = (b_1 - a_1)(b_2 - a_2)$. Definiamo inoltre la somma delle misure

$$S(\{I_j\}_{j=1}^n) := \sum_{j=1}^n m(I_j).$$

Consideriamo un sottoinsieme $A \subset \mathbb{R}^2$.

• Misura inferiore di Peano-Jordan: Definiamo innanzitutto l'insieme

$$\mathcal{I}_{-}(A) := \left\{ \{I_j\}_{j=1}^n \, \left| \, \substack{n \in \mathbb{N}^*, \ I_j \text{ intervalli} \\ \bigcup_{j=1}^n I_j \subset A, \ I_i \cap I_j = \varnothing \forall i,j} \right. \right\};$$

allora la misura inferiore di Peano-Jordan di A è data da

$$J_{-}(A) := \begin{cases} 0 & \text{se } \mathcal{I}_{-}(A) = \emptyset \\ \sup_{\mathcal{I}_{-}(A)} S & \text{altrimenti} \end{cases}$$

Osserviamo che la richiesta $I_i \cap I_j = \emptyset \forall i, j$ serve a fare in modo che la misura non esploda sempre a $+\infty$. Verifichiamo ora gli assiomi di misura esterna:

- i) $\mathcal{I}_{-}(\varnothing) = \varnothing \implies \mathcal{J}_{-}(\varnothing) = 0;$
- ii)Siano $E\subset F\subset \mathbb{R}^2,$ allora si hanno due casi:
 - Se $\mathcal{I}_{-}(E) = \emptyset$, la tesi è banale.
 - Se $\mathcal{I}_{-}(E)$ ≠ Ø, allora $\mathcal{I}_{-}(E)$ ⊂ $\mathcal{I}_{-}(F)$, quindi l'estremo superiore calcolato su un insieme più grande è necessariamente maggiore o uguale.
- iii) Controesempio: Consideriamo $E_1 = \mathbb{Q}^2 \cap]0, 1[^2 \text{ e } E_1 =]0, 1[^2 \setminus E_1.$ Allora banalmente $J_-(E_1) = J_-(E_2) = 0$ ma $J_-(E_1 \cup E_2) = J_-(]0, 1[^2) > 0$ in quanto, ad esempio, $[^1/2, 1[^2 \subset]0, 1[$ e $S(\{[^1/2, 1[^2\}) = ^1/4.$
- Misura superiore di Peano-Jordan: Definiamo innanzitutto l'insieme

$$\mathcal{I}_{+}(A) := \left\{ \{I_{j}\}_{j=1}^{n} \mid {\scriptstyle n \in \mathbb{N}^{*}, \ I_{j} \ \text{intervalli}} \atop \bigcup_{j=1}^{n} I_{j} \supset A} \right\};$$

osserviamo che tale insieme è non vuoto per ogni A limitato, infatti per un insieme illimitato non esiste un unione finita di intervalli in grado di contenerlo. Per un insieme **limitato** definiamo quindi

$$J_{+}^{*}(A) := \inf_{\mathcal{I}_{+}(A)} S.$$

Possiamo quindi generalizzare la misura al caso illimitato ponendo

$$J_{+}(A) := \begin{cases} J_{+}^{*}(A) & A \text{ limitato,} \\ \lim_{\rho \to +\infty} J_{+}^{*}(A \cap B_{\rho}(0)) & A \text{ illimitato.} \end{cases}$$

Rimane da verificare l'esistenza del limite: per il teorema di esistenza del limite per funzioni monotone, è sufficiente provare che $\rho \mapsto J_+^*(A \cap B_{\rho}(0))$ è crescente. Siano $0 < \rho_1 < \rho_2$, allora $B_{\rho_1}(0) \subset B_{\rho_2}(0)$, da cui $A \cap B_{\rho_1}(0) \subset A \cap B_{\rho_2}(0)$. Da questo possiamo affermare che $\mathcal{I}_+(A \cap B_{\rho_1}(0)) \supset \mathcal{I}_+(A \cap B_{\rho_2}(0))$ in quanto se un'unione di intervalli ricopre $A \cap B_{\rho_2}(0)$, essa ricoprirà anche $A \cap B_{\rho_1}(0)$. Ora, passando agli estremi inferiori, poiché stiamo calcolando l'estremo su un insieme più grosso, il segno della disuguaglianza si inverte, e otteniamo la tesi.

Occupiamoci infine degli assiomi di misura esterna:

- i) $J_{+}(\varnothing) = 0$ in quanto $\varnothing \in \mathcal{I}_{+}(\varnothing)$.
- ii) Siano $E \subset F \subset \mathbb{R}^2$. Fissato $\rho > 0$, $E \cap B_{\rho}(0) \subset F \cap B_{\rho}(0)$, quindi $\mathcal{I}_{+}(E \cap B_{\rho}(0)) \supset \mathcal{I}_{+}(F \cap B_{\rho}(0))$ e, passando agli estremi inferiori, $\inf_{\mathcal{I}_{+}(E \cap B_{\rho}(0))} S \leq \inf_{\mathcal{I}_{+}(F \cap B_{\rho}(0))} S$. Dall'arbitrarietà di $\rho > 0$, segue la tesi.
- iii) Controesempio: Osserviamo che $J_+(\mathbb{Q}\cap]0,1[)>0$, mentre (identificando $\mathbb{Q}\cap]0,1[=\{q_j\}_{j=0}^{+\infty})$ $\sum_i J_+(\{q_j\})=0$.
- Misura di Peano-Jordan: Definiamo innanzitutto la famiglia $\mathcal{D} \subset \mathcal{P}(\mathbb{R}^2)$:

$$\mathcal{D} := \{ A \in \mathcal{P}(\mathbb{R}^2) \mid J_-(A) = J_+(A) \} \subseteq \mathcal{P}(\mathbb{R}^2);$$

allora si dice misura di Peano-Jordan la mappa

$$J: D \longrightarrow [0, +\infty]$$

 $A \longmapsto J_{-}(A) = J_{+}(A)$.

Anche in questo caso non abbiamo costruito una misura esterna in quanto il dominio di definizione non coincide con le parti: un controesempio è dato dall'insieme $\mathbb{Q} \cap]0,1[^2]$.

DEF 1.2. Un insieme $E \in \mathcal{P}(X)$ è detto "misurabile (rispetto alla misura esterna φ su X)" se

$$\varphi(A) = \varphi(A \cap E) + \varphi(A \cap E^c) \tag{1.1.1}$$

per ogni $A \in \mathcal{P}(X)$. La famiglia degli insiemi misurabili rispetto a φ è indicata con \mathcal{M}_{φ} .

Osservazione 1.2. Grazie a (iii) di Definizione 1.1, la (1.1.1) si può sostituire con

$$\varphi(A) \ge \varphi(A \cap E) + \varphi(A \cap E^c)$$

Esempio 1.4.

Negli esempi 1.1, 1.2, 1.3 si ha rispettivamente

$$\mathcal{M}_{\varphi} = \{\varnothing, X\}, \quad \mathcal{M}_{\varphi} = \mathcal{P}(X), \quad \mathcal{M}_{\varphi} = \mathcal{P}(X)$$

Teorema 1.1 (***| Fondamentale sui Misurabili). Per una misura esterna φ su X valgono i seguenti fatti:

- (1) \mathcal{M}_{φ} è c-chiusa;
- (2) se $E \in \mathcal{P}(X)$ è tale che $\varphi(E) = 0$, allora $E \in \mathcal{M}_{\varphi}$, in particolare $\varnothing \in \mathcal{M}_{\varphi}$ (quindi anche $X \in \mathcal{M}_{\varphi}$);
- (3) se $E_1, \ldots, E_n \in \mathcal{M}_{\varphi}$ allora $\bigcap_{i=1}^n E_i \in \mathcal{M}_{\varphi}$ (quindi anche $\bigcup_{i=1}^n E_i \in \mathcal{M}_{\varphi}$);
- (4) se $\{E_j\}_j^{num}$ è una famiglia numerabile di insiemi misurabili a due a due disgiunti, allora $S := \bigcup_j E_j \in \mathcal{M}_{\varphi}$. Inoltre si ha $\forall A \in \mathcal{P}(X)$

$$\varphi(A) \ge \sum_{j} \varphi(A \cap E_j) + \varphi(A \cap S^c);$$
 (*)

(5) $(\sigma$ -additività) se $\{E_j\}_j^{num}$ è una famiglia numerabile di insiemi misurabili a due a due disgiunti, si ha $\varphi\left(\bigcup_j E_j\right) = \sum_j \varphi(E_j)$.

Dimostrazione. (1) Sia $E \in \mathcal{M}_{\varphi}$, allora $\forall A \in \mathcal{P}(X)$ verifichiamo lo spezzamento rispetto a E^c

$$\varphi(A \cap E^c) + \varphi(A \cap (E^c)^c) = \varphi(A \cap E) + \varphi(A \cap E^c) = \varphi(A)$$

in quanto questo è esattamente lo spezzamento rispetto ad E. Di conseguenza per definizione, $E^c \in \mathcal{M}_{\varphi}$.

- (2) Sia $E \subset X$ tale che $\varphi(E) = 0$, allora $\forall A \in \mathcal{P}(X)$ si ha $\varphi(\underbrace{A \cap E}) + \varphi(A \cap E^c) \leq \varphi(E) + \varphi(A) = \varphi(A)$ di conseguenza per la σ -subadditività segue la tesi.
- (3) Sia $\{E_j\}_{j=1}^n \subset \mathcal{M}_{\varphi} \ (n \geq 2)$, allora $\forall A \in \mathcal{P}(X)$ si ha

$$\varphi(A) \stackrel{(i)}{=} \underline{\varphi(A \cap E_1)} + \varphi(A \cap E_1^c) \stackrel{(ii)}{=} \varphi(A \cap E_1 \cap E_2) + \underbrace{\varphi(A \cap E_1 \cap E_2^c) + \varphi(A \cap E_1^c)}_{(\dagger)}$$

Siccome $E_1, E_2 \in \mathcal{M}_{\varphi}$, spezzo prima su E_1 (i) e poi su E_2 (ii). Ora applichiamo la σ -subadditività a (†) e otteniamo

$$(\dagger) \ge \varphi \left((A \cap E_1 \cap E_2^c) \cup (A \cap E_1^c) \right) = \varphi(A \cap [(E_1 \cap E_2^c) \cup E_1^c]) = \varphi(A \cap [(\underbrace{E_1 \cup E_1^c}_{X}) \cap (E_1^c \cup E_2^c)]) = \varphi(A \cap (E_1 \cap E_2)^c)$$

Di conseguenza otteniamo che $\varphi(A) \ge \varphi(A \cap (E_1 \cap E_2)) + \varphi(A \cap (E_1 \cap E_2)^c)$ e iterando il procedimento si ottiene la tesi.

(4) Iniziamo provando (*). Sia $A \in \mathcal{P}(X)$, allora

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c \cap E_2) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c) + \varphi(A \cap E_1^c) + \varphi(A \cap E_2^c) + \varphi(A \cap E_2^c$$

Siccome $E_1 \cap E_2 = \emptyset$, $E_2 \subset E_1^c \implies E_1^c \cap E_2 = E_2$

$$= \varphi(A \cap E_1) + \varphi(A \cap E_2) + \varphi(A \cap (E_1 \cup E_2)^c).$$

Iterando questo argomento otteniamo quindi

$$\varphi(A) = \sum_{j=1}^{n} \varphi(A \cap E_j) + \varphi\left(A \cap \left[\bigcup_{j=1}^{n} E_j\right]^c\right) \stackrel{(\ddagger)}{\geq} \sum_{j=1}^{n} \varphi(A \cap E_j) + \varphi(A \cap S^c).$$

(‡) in quanto $\bigcup_{j=1}^n E_j \subset S \implies \left[\bigcup_{j=1}^n E_j\right]^c \supset S^c \implies A \cap \left[\bigcup_{j=1}^n E_j\right]^c \supset A \cap S^c$ quindi per la monotonia di φ , si ha $\varphi\left(A \cap \left[\bigcup_{j=1}^n E_j\right]^c\right) \ge \varphi(A \cap S^c)$.

Poiché gli addendi della sommatoria sono non negativi, il limite delle somme parziali esiste. Passando quindi al limite per $n \to +\infty$ si ha

$$\varphi(A) \ge \sum_{j} \varphi(A \cap E_j) + \varphi(A \cap S^c)$$

E questo conclude la dimostrazione di (*). Ora proviamo che $S \in \mathcal{M}_{\varphi}$. Sia $A \in \mathcal{P}(X)$. Inizialmente osserviamo che $A \cap S = A \cap \left(\bigcup_j E_j\right) = \bigcup_j (A \cap E_j)$. Di conseguenza per la σ subadditività di φ

$$\varphi(A \cap S) + \varphi(A \cap S^c) \le \sum_{i} \varphi(A \cap E_i) + \varphi(A \cap S^c) \stackrel{(*)}{\le} \varphi(A)$$

(5) Usando (*) con A = S

$$\varphi\left(\bigcup_{i} E_{i}\right) = \varphi(S) \geq \sum_{j} \varphi(\underbrace{S \cap E_{j}}_{\bigcup_{i} E_{i} \cap E_{j} = E_{j}} + \varphi(\underbrace{S \cap S^{c}}_{\varnothing}) = \sum_{j} \varphi(E_{j}) \stackrel{(\bullet)}{\geq} \varphi\left(\bigcup_{j} E_{j}\right).$$

 (\bullet) per la σ -subadditività. Di conseguenza $\varphi\left(\bigcup_j E_j\right) = \sum_j \varphi(E_j).$

=/=

Osservazione 1.3. Sia data una misura esterna φ su X e sia $\{E_j\}$ una famiglia numerabile di insiemi misurabili. Poniamo $E_1^*:=E_1$ e

$$E_n^* := E_n \setminus \bigcup_{j=1}^{n-1} E_j \quad (n = 2, 3, \ldots).$$

Allora $\{E_j^*\}$ è una famiglia numerabile di insiemi misurabili a-due-a-due disgiunti e si ha

$$\bigcup_{j=1}^{n} E_j^* = \bigcup_{j=1}^{n} E_j \text{ (per ogni } n), \quad \bigcup_{j} E_j^* = \bigcup_{j} E_j.$$

In particolare, ricordando il punto (4) di Teorema 1.1, si ha $\bigcup_j E_j \in \mathcal{M}_{\varphi}$.

DEF 1.3. Una famiglia non vuota $\Sigma \subset \mathcal{P}(X)$ è detta " σ -algebra (in X)" se gode delle seguenti proprietà:

- (i) Se $E \in \Sigma$, allora $E^c \in \Sigma$;
- (ii) $Se\{E_j\}$ è una famiglia numerabile di insiemi di Σ , si ha $\cup_j E_j \in \Sigma$.

Osservazione 1.4. In Definizione 1.3 l'assioma (ii) può venir sostituito da

 (ii^*) Se $\{E_j\}$ è una famiglia numerabile di insiemi di Σ , si ha $\cap_j E_j \in \Sigma$.

Esempio 1.5.

Sia X un qualsiasi insieme. Allora $\mathcal{P}(X)$ e $\{\emptyset, X\}$ sono entrambe σ -algebre in X. Se Σ è una qualsiasi σ -algebra in X, si ha $\{\emptyset, X\} \subset \Sigma \subset \mathcal{P}(X)$.

Esempio 1.6.

 $\Sigma := \{E \in 2^{[0,1]} \mid \#(E) \leq \aleph_0 \text{ oppure } \#(E^c) \leq \aleph_0\}$ è una σ -algebra.

Esempio 1.7.

La famiglia $\Sigma:=\{E\in\mathcal{P}(\mathbb{N})\mid \#(E)<\infty \text{ oppure } \#(E^c)<\infty\}$ è c-chiusa ma non è chiusa rispetto all'unione numerabile. Quindi Σ non è una σ -algebra.

Per Teorema I.1 e Osservazione I.3, vale quindi il seguente risultato.

Proposizione 1.1 (\circ). Se φ è una misura esterna su X, allora \mathcal{M}_{φ} è una σ -algebra.

Dimostrazione. Verifichiamo gli assiomi di σ -algebra:

- Non vuota in quanto per il Teorema [1.1](2), \emptyset , $X \in \mathcal{M}_{\varphi}$;
- i) **c-chiusa** per il Teorema 1.1(1);
- ii) Stabile per unione numerabile. Per il Teorema $\boxed{1.1}(4)$, M_{φ} è chiusa per unione numerabile di insiemi disgiunti. Proviamo che chò vale anche se gli insiemi non sono a due a due disgiunti: Sia $\{E_j\}_j \subset M_{\varphi}$ una famiglia finita. Poniamo $E_1^* = E_1$ e $\forall k \geq 2$ definiamo $E_k^* := E_k \setminus \bigcup_{j=1}^{k-1} E_j = E_k \cap \left(\bigcup_{j=1}^{k-1} E_j\right)^c$, ovvero tutti gli elementi che stanno in E_k ma non nei precedenti componenti della famiglia. Per il Teorema $\boxed{1.1}$ si ha che $\forall k, E_k \in M_{\varphi}$, quindi possiamo affermare la seguente equivalenza, in cui il membro di destra soddisfa le ipotesi del Teorema $\boxed{1.1}(4)$, ovvero è unione di insiemi disgiunti.

$$\bigcup_{k=1}^{N} E_k = \bigcup_{k=1}^{N} E_k^*.$$

Poiché l'uguaglianza rimane verificata anche per $N \to +\infty$ (passando all'unione arbitraria numerabile), si ha che per il Teorema 1.1(4), $\bigcup_j E_j = \bigcup_j E_j^* \in M_{\varphi}$.

=/=

Teorema 1.2 (**). Se φ è una misura esterna si X, valgono le seguenti proprietà:

- (1) (Continuità dal basso) Se $\{E_j\}_j$ è una famiglia numerabile e crescente di insiemi misurabili, si ha $\varphi\left(\bigcup_j E_j\right) = \lim_j \varphi(E_j);$
- (2) (Continuità dall'alto) Se $\{E_j\}_j$ è una famiglia numerabile e decrescente di insiemi misurabili con $\varphi(E_1) < \infty$, si ha $\varphi\left(\bigcap_j E_j\right) = \lim_j \varphi(E_j)$;

Dimostrazione.

(1) (Continuità dal basso) Poniamo $E_1^* = E_1$ e $\forall j \geq 2$ definiamo $E_j^* := E_j \setminus \bigcup_{k=1}^{j-1} E_k = E_j \setminus E_{j-1} \in M_{\varphi}$. Osserviamo che (†) $\bigcup_{j=1}^n E_j^* = \bigcup_{j=1}^n E_j = E_n$ quindi $\bigcup_j E_j^* = \bigcup_j E_j$.

$$\implies \varphi\left(\bigcup_{j} E_{j}\right) = \varphi\left(\bigcup_{j} E_{j}^{*}\right) \stackrel{\sigma\text{-add}}{=} \sum_{j} \varphi(E_{j}) = \lim_{n \to +\infty} \sum_{j=1}^{n} \varphi(E_{j}^{*}) =$$

per definizione di serie. È possibile applicare la σ -additività poiché gli insiemi E_i^* sono disgiunti.

$$= \lim_{n \to +\infty} \varphi \left(\bigcup_{j=1}^{n} E_{j}^{*} \right) \stackrel{(\dagger)}{=} \lim_{n \to +\infty} \varphi(E_{n})$$

(2) (Continuità dall'alto) Poniamo $\forall j, \ F_j = E_1 \backslash E_j = E_1 \cap E_j^c \in \mathcal{M}\varphi$. Osserviamo inoltre che $E_j \supset E_{j+1} \Longrightarrow E_j^c \subset E_{j+1}^c \Longrightarrow E_1 \cap E_j^c \subset E_1 \cap E_{j+1}^c$ da cui $F_j \subset F_j + 1$, ovvero $\{F_j\}_j$ soddisfa le ipotesi di (1), per cui $(\triangle) \ \varphi \left(\bigcup_j F_j\right) = \lim_j \varphi(F_j)$. Osserviamo ora che

$$\varphi(F_j) = \varphi(E_1 \setminus E_j) = \varphi(E_1) - \varphi(E_j) \tag{\bullet}$$

Appendice B

Tabella dei Teoremi

Attenzione: la seguente tabella fa riferimento all'Anno Accademico 2023/2024

	*	**	* * *
Capitolo 1	Proposizione 1.2 Teorema 1.8 Teorema 1.10 Proposizione 1.4 Corollario 1.2	Teorema 1.2 Proposizione 1.3 Teorema 1.7 Teorema 1.9	Teorema 1.1 Teorema 1.3 Teorema 1.6
Capitala	Proposizione 2.3 Corollario 2.1 Proposizione 2.4 Teorema 2.6	Proposizione 2.2 Teorema 2.1 Teorema 2.3 Teorema 2.7	Teorema 2.2 Teorema 2.9
Capitolo 2	Proposizione 2.9 Teorema 2.13	Proposizione 2.5 Proposizione 2.6 Proposizione 2.8 Teorema 2.12 Teorema 2.14	
Capitolo 3	Teorema 3.1 Proposizione 3.2	Teorema 3.2 Teorema 3.3	
	Proposizione 4.1 Proposizione 4.2 Proposizione 4.3 Proposizione 4.4	Teorema 4.1 Teorema 4.2	
Capitolo 4	Proposizione 4.5 Corollario 4.1 Proposizione 4.6 Proposizione 4.7 Proposizione 4.9	Proposizione 4.8 Proposizione 4.10	
Capitolo 5	Corollario 5.1 Corollario 5.2	Teorema 5.1 Teorema 5.2	

Bibliografia

- [1] H. Brezis: Analisi funzionale, teoria e applicazioni. Liguori Editore 1986.
- [2] L. Carleson: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135-157 (1966).
- [3] L.C. Evans, R.F. Gariepy: Lecture Notes on Measure Theory and Fine Properties of Functions. (Studies in Advanced Math.) CRC Press 1992.
- [4] K.J. Falconer: The geometry of fractal sets. (Cambridge Tracts in Math. 85.) Cambridge University Press 1985.
- [5] R.F. Gariepy, W.P. Ziemer: Modern real analysis. PSW Publishing Company 1995.
- [6] M. Giaquinta, G. Modica: Analisi Matematica 3; strutture lineari e metriche, continuità. Pitagora Ed. Bologna 2000.
- [7] M. Giaquinta, G. Modica: Analisi Matematica 4; funzioni di più variabili. Pitagora Ed. Bologna 2005.
- [8] M. Giaquinta, G. Modica: Analisi Matematica 5; funzioni di più variabili (ulteriori sviluppi). Pitagora Ed. Bologna 2005.
- [9] E. Giusti: Analisi matematica 2. Bollati Boringhieri 2003.
- [10] E. Giusti: Esercizi e complementi di analisi matematica, volume secondo. Bollati Boringhieri 2000.
- [11] J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson: Sobolev spaces on metric measure spaces. New Math. Monogr. 27, Cambridge University Press, Cambridge, 2015.
- [12] S.G. Krantz, H.R. Parks: The geometry of domains in space. Birkhäuser Advanced Texts, Birkhäuser 1999.
- [13] P. Mattila: Geometry of sets and measures in Euclidean spaces. Cambridge University Press 1995.
- [14] W. Rudin: Principles of mathematical analysis. McGraw-Hill 1976.
- [15] S.M. Srivastava: A course on Borel sets. Graduate Texts in Mathematics 180, Springer Verlag 1998.
- [16] E.M. Stein, R. Shakarchi: Real analysis (measure theory, integration and Hilbert spaces). Princeton Lectures in Analysis III, Princeton University Press, Princeton and Oxford, 2005.
- [17] http://en.wikipedia.org/wiki/Stone-Weierstrass