RWorksheet_Octaviano#3b

2023-10-10

```
#1. Create a data frame using the table below.
#a. Write the codes.
resp_no <- c(1:20)
sex \leftarrow c(2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,2,1,2)
occ \leftarrow c(1,3,3,3,1,2,3,1,1,1,3,2,1,3,3,1,3,1,2,1)
pers_at_home \leftarrow c(5,7,3,8,5,9,6,7,8,4,7,5,4,7,8,8,3,11,7,6)
sibs \leftarrow c(6,4,4,1,2,1,5,3,1,2,3,2,5,5,2,1,2,5,3,2)
household_data <- data.frame(</pre>
  Respondents = resp_no,
  Sex = sex,
  FatherOccupation = occ,
  PersonAtHome = pers_at_home,
  SiblingsAtSchool = sibs,
  HouseType = h_type
household_data
##
      Respondents Sex FatherOccupation PersonAtHome SiblingsAtSchool HouseType
## 1
                1
                    2
                                                  5
                                                                    6
## 2
                2
                    2
                                     3
                                                  7
                                                                    4
                                                                              2
## 3
                3
                                     3
                                                  3
                                                                    4
                    1
                                                                              3
## 4
                4
                    2
                                     3
                                                  8
                                                                    1
                                                                              1
## 5
                    2
                                     1
                                                  5
                                                                    2
                                                                              1
## 6
                6
                    2
                                     2
                                                  9
                                                                              3
                                                                    1
```

```
## 7
                  7
                      2
                                          3
                                                         6
                                                                            5
                                                                                        3
## 8
                  8
                      2
                                          1
                                                         7
                                                                            3
                                                                                        1
## 9
                      2
                                          1
                                                         8
                                                                            1
                                                                                        2
                      2
                                                                            2
## 10
                 10
                                          1
                                                         4
                                                                                        3
## 11
                 11
                      1
                                          3
                                                         7
                                                                            3
                                                                                        2
                                          2
                                                                            2
## 12
                 12
                      2
                                                         5
                                                                                        3
                      2
                                          1
                                                         4
                                                                            5
                                                                                        2
## 13
                 13
                                          3
                                                         7
                                                                                        2
                 14
                      2
                                                                            5
## 14
                 15
                      2
                                          3
                                                         8
                                                                            2
                                                                                        3
## 15
## 16
                 16
                      2
                                          1
                                                         8
                                                                            1
                                                                                        3
## 17
                 17
                      2
                                          3
                                                         3
                                                                            2
                                                                                        3
## 18
                      2
                                          1
                                                                            5
                                                                                        3
                 18
                                                        11
                                          2
## 19
                 19
                      1
                                                         7
                                                                            3
                                                                                        3
                 20
                                                                                        2
## 20
                                          1
```

```
#b. Describe the data. Get the structure or the summary of the data
str(household_data)
```

```
20 obs. of 6 variables:
## 'data.frame':
## $ Respondents
                    : int 1 2 3 4 5 6 7 8 9 10 ...
                     : num 2 2 1 2 2 2 2 2 2 2 ...
## $ Sex
## $ FatherOccupation: num 1 3 3 3 1 2 3 1 1 1 ...
## $ PersonAtHome
                     : num 5738596784 ...
## $ SiblingsAtSchool: num 6 4 4 1 2 1 5 3 1 2 ...
                    : num 1 2 3 1 1 3 3 1 2 3 ...
## $ HouseType
summary(household data)
##
    Respondents
                        Sex
                                  FatherOccupation PersonAtHome
                                                  Min. : 3.0
## Min. : 1.00
                  Min. :1.00
                                 Min.
                                        :1.00
## 1st Qu.: 5.75
                   1st Qu.:2.00
                                 1st Qu.:1.00
                                                   1st Qu.: 5.0
## Median :10.50
                  Median:2.00 Median:2.00
                                                  Median: 7.0
## Mean :10.50
                   Mean :1.85
                                 Mean :1.95
                                                  Mean : 6.4
## 3rd Qu.:15.25
                   3rd Qu.:2.00
                                 3rd Qu.:3.00
                                                  3rd Qu.: 8.0
## Max.
          :20.00
                   Max.
                          :2.00
                                 Max. :3.00
                                                  Max. :11.0
## SiblingsAtSchool HouseType
## Min.
          :1.00
                    Min.
                          :1.0
## 1st Qu.:2.00
                    1st Qu.:2.0
## Median :2.50
                    Median:2.5
## Mean :2.95
                    Mean :2.3
                    3rd Qu.:3.0
## 3rd Qu.:4.25
## Max.
         :6.00
                    Max.
                          :3.0
# the data frame consists of 20 observations(rows) and 6 variables (columns)
# the variables are:
# respondents - which contains a numeric identifier for each respondent
# sex - represents the gender of the respondent (1 for male, 2 for female)
# father's occupation - indicates the father's occupation (1 for farmer, 2 for driver, 3 for others)
# persons at home - represents the number of people at home
# siblings at school - indicates the number of siblings attending school
# type of house - describes the type of house (1 for wood, 2 for semi-concrete, 3 for concrete)
#c. Is the mean number of siblings attending is 5?
sibs_mean <- mean(household_data$SiblingsAtSchool)</pre>
sibs_mean
## [1] 2.95
# the mean of the number of siblings at school is 2.95, which is not 5
#d. Extract the 1st two rows and then all the columns using the subsetting functions. Write the codes a
firstTwoRows <- household_data[1:2,]</pre>
firstTwoRows
    Respondents Sex FatherOccupation PersonAtHome SiblingsAtSchool HouseType
## 1
              1
                  2
                                   1
                                               5
                                                                6
                                                                          1
## 2
                                   3
                                                7
#e. Extract 3rd and 5th row with 2nd and 4th column. Write the codes and its result.
thirdAndFifthRows <- household_data[c(3,5),c(2,4)]
thirdAndFifthRows
```

Sex PersonAtHome

```
## 3
## 5
                    5
#f. Select the variable types of houses then store the vector that results as types houses. Write the c
types_houses <- household_data$HouseType</pre>
types_houses
## [1] 1 2 3 1 1 3 3 1 2 3 2 3 2 2 3 3 3 3 3 2
#g. Select only all Males respondent that their father occupation was farmer. Write the codes and its o
male_farmer <- household_data[household_data$Sex == 1 & household_data$FatherOccupation == 1,]
male_farmer
## [1] Respondents
                                         FatherOccupation PersonAtHome
## [5] SiblingsAtSchool HouseType
## <0 rows> (or 0-length row.names)
# there are no observations
#h. Select only all females respondent that have greater than or equal to 5 number of siblings attendin
female_resp <- household_data[household_data$SiblingsAtSchool >= 5,]
female_resp
##
     Respondents Sex FatherOccupation PersonAtHome SiblingsAtSchool HouseType
## 1
                                     1
                                                  5
## 7
                7
                    2
                                     3
                                                  6
                                                                   5
                                                                              3
## 13
               13
                    2
                                     1
                                                  4
                                                                   5
                                                                              2
                                                  7
## 14
               14
                    2
                                     3
                                                                   5
                                                                              2
## 18
               18
                                     1
                                                 11
                                                                   5
                                                                              3
# there are five observations
#2. Write a R program to create an empty data frame. Using the following codes:
df = data.frame(Ints=integer(),
                Doubles=double(), Characters=character(),
                Logicals=logical(),
                Factors=factor(),
                stringsAsFactors=FALSE
)
print("Structure of the empty dataframe:")
## [1] "Structure of the empty dataframe:"
print(str(df))
                 0 obs. of 5 variables:
## 'data.frame':
## $ Ints
             : int
## $ Doubles : num
## $ Characters: chr
## $ Logicals : logi
## $ Factors : Factor w/ 0 levels:
## NULL
```

```
\# df is an empty data frame created with 0 rows and 5 columns
# the columns has the following data type:
# ints = integer
# doubles = double
# characters = character
# logicals = logical
# factors = factor (0 levels which means empty)
# serves as a template and can be populated with data
#3.Create a .csv file of this. Save it as HouseholdData.csv
new_resp <- c(1:10)</pre>
new_sex <- c("Male", "Female", "Female", "Male", "Female", "Female", "Female", "Male")</pre>
new_occ \leftarrow c(1,2,3,3,1,2,2,3,1,3)
new_personsAtHome \leftarrow c(5,7,3,8,6,4,4,2,11,6)
new_sibs \leftarrow c(2,3,0,5,2,3,1,2,6,2)
new_type <- c("Wood", "Congrete", "Congrete", "Wood", "Semi-congrete", "Semi-congrete", "Wood", "Semi-c</pre>
HouseholdData <- data.frame(</pre>
 Respondents = new_resp,
  Sex = new_sex,
  FatherOccupation = new_occ,
  PersonAtHome = new_personsAtHome,
  SiblingsAtSchool = new_sibs,
  HouseType = new_type
write.csv(HouseholdData, file = "HouseholdData.csv")
#a. Import the csv file into the R environment. Write the codes.
imported <- read.csv("HouseholdData.csv")</pre>
imported
                        Sex FatherOccupation PersonAtHome SiblingsAtSchool
##
       X Respondents
## 1
                       Male
                                           1
## 2 2
                  2 Female
                                           2
                                                        7
                                                                          3
## 3
      3
                  3 Female
                                           3
                                                        3
                                                                          0
## 4
                  4 Male
                                           3
                                                        8
                                                                          5
      4
## 5 5
                                                                          2
                  5 Male
                                           1
                                                        6
## 6
                  6 Female
                                           2
                                                        4
                                                                          3
      6
## 7
      7
                  7 Female
                                           2
                                                        4
                                                                          1
## 8 8
                                           3
                                                        2
                                                                          2
                  8 Male
## 9
      9
                  9 Female
                                          1
                                                       11
                                                                          6
                                                                          2
## 10 10
                                           3
                                                        6
                 10 Male
##
         HouseType
## 1
               Wood
## 2
          Congrete
## 3
           Congrete
## 4
               Wood
## 5 Semi-congrete
```

```
## 6 Semi-congrete
## 7
               Wood
## 8 Semi-congrete
## 9 Semi-congrete
## 10
           Congrete
#b. Convert the Sex into factor using factor() function and change it into integer. [Legend: Male = 1 an
imported$Sex <- factor(imported$Sex, levels = c("Male", "Female"))</pre>
imported$Sex <- as.integer(imported$Sex)</pre>
imported$Sex
## [1] 1 2 2 1 1 2 2 1 2 1
#c. Convert the Type of Houses into factor and change it into integer. [Legend: Wood = 1; Congrete = 2;
imported$HouseType <- factor(imported$HouseType, levels = c("Wood", "Congrete", "Semi-congrete"))</pre>
imported$HouseType <- as.integer(imported$HouseType)</pre>
imported$HouseType
## [1] 1 2 2 1 3 3 1 3 3 2
#d. On father's occupation, factor it as Farmer = 1; Driver = 2; and Others = 3. What is the R code and
imported $\frac{\text{FatherOccupation}}{\text{cupation}} \left(\text{imported \frac{\text{FatherOccupation}}{\text{patherOccupation}}} \), labels = c(\text{"Farmer"},
imported$FatherOccupation
## [1] Farmer Driver Others Others Farmer Driver Driver Others Farmer Others
## Levels: Farmer Driver Others
#e. Select only all females respondent that has a father whose occupation is driver. Write the codes an
female_driver <- imported[imported$Sex == 2 & imported$FatherOccupation == "Driver",]
female_driver
     X Respondents Sex FatherOccupation PersonAtHome SiblingsAtSchool HouseType
## 2 2
                 2
                                  Driver
                                                     7
                                                                                  2
                      2
                                                                       3
                                                                                  3
## 6 6
                  6
                      2
                                  Driver
                                                      4
                                                                       3
## 7 7
                                  Driver
                                                                        1
                                                                                  1
#f. Select the respondents that have greater than or equal to 5 number of siblings attending school. Wr
greaterFive <- imported[imported$SiblingsAtSchool >= 5,]
greaterFive
     X Respondents Sex FatherOccupation PersonAtHome SiblingsAtSchool HouseType
## 4 4
                                  Others
## 9 9
                                  Farmer
                                                    11
#4. Interpret the graph.
# On July 14, there were more negative sentiments compared to the other sentiments. This could indicate
# On July 15, all sentiments increased, with the negative sentiment as the highest. This could imply tha
# On July 17 and July 18, the negative sentiments stayed high and the neutral and positive sentiments r
# On July 20, all sentiments got to their lowest with but there were still more negative sentiments tha
```

On July 21, experienced an increase in all sentiments, with the negative being the highest. This coul

From this data, we could assume that public sentiment is responsive to external factors and it also v