Cryptography and Network Security

FAT – F1 Key

```
1) RC_{4} = P = [4 5 67] k = [2 3 45]

2) Initialization

State Vector, S = [0 1 2 3 4 5 67]

Temporosy Vector, T = [2 3 4 5 2 3 45]

b) Initial Permutation

i = 0, j = 0, S = [2 6 0 3 4 5 17]

i = 1, j = 2, S = [2 6 0 3 4 5 17]

i = 3, j = 3, S = [2 6 0 3 4 5 17]

i = 3, j = 3, S = [3 6 3 0 4 5 17]

i = 5, j = 0, S = [5 6 3 0 2 1 47]

c) Storan Generation

I togation 1: i = 0, j = 0, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 2: i = 1, j = 7, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1

Heration 4: i = 3, j = 3, S = [5 6 3 0 2 1 47]

k = 4, C = 1
```

2a) Exclanded 174	Euclidean = 1 (mod)	Algorithm +3)	1 1 1 1		
i Piridend	Divisor	Quotient	Remainder	aci	ye'
2 17 3 9 4 8	17 9 8	2 1 1 8	8	=0-1×1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	17×38 =	y=-5 = 1(mod 1	=38		

26)		al	2	3	a4]	25	de	at	as	ag	alo	a"	a12'	a3	a14	10/5	1016	1
1	a=3	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1	1
	log (a	9/16	14	1	12	5	15	1)	10	2	3	7	13	4	9	6	8	


```
4. p = 12, q = 11, e = 7, M = 88

1) p = p \times q = 14 \times 11 = 182

2) p = p \times q = 14 \times 11 = 182

3) Compute d' = 2 \text{ mod 160}

d' = 22

4) Signature generation d' = 2 \text{ mod 18}

d' = 2 \text{ mod 18}
```

6) $ECC - E_{11}(1,6)$, G = (a,7), $h_{B} = a$, $P_{m} = (10,9)$, k = 2a) Public key $P_{0} = h_{B}G = 2(a,7) = (a,7) + (a,7)$ $P_{0} = (5,2)$ b) Encuption $C = [ckG) (M+kP_{0})$ $C_{1} = (5,2)$ $C_{2} = Drfinit$