

domínio.

Cálculo I C

30/01/2024

Exame de Recurso/Melhoria

Duração: 2h45

Comece por escrever o seu número e nome nas quatro folhas do enunciado. Responda a cada questão no espaço a seguir à mesma, justificando de forma clara sucinta a sua resposta. Se o espaço não for suficiente deve usar uma folha de continuação diferente para cada resposta que precise continuar. Pode consultar apenas o seu formulário e não pode utilizar qualquer equipament eletrónico. Boa sorte!					
${\bf N^{\underline{o}}}$ de folhas de continuação desta questão (0 se não usou nenhuma):					
1. (4 val.) Considere a função definida por					
$f(x) = \arcsin(e^x - 1).$					
(a) Determine o domínio e os extremos globais de f .					

(b) Determine a expressão que define a função f^{-1} , inversa de f, e diga qual é o seu

 ${f N^0}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

- 2. (4 val.)
 - (a) Calcule a seguinte primitiva:

$$\int x^2 \, \ln x \, dx.$$

(b) Considere o integral

$$\int_{\frac{2\sqrt{3}}{3}}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx.$$

Efetue uma mudança de variável, x=u(t), de modo a que, no integral em t, a função integranda não tenha expoentes fracionários. Simplifique a função integranda e indique os limites de integração na nova variável, mas não calcule o integral.

 N^{o} mec. _____Nome: _____

 $N^{\underline{o}}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

- 3. (4 val.)
 - (a) Calcule o integral impróprio $\int_0^{+\infty} \frac{1}{1+4x^2} dx$ efetuando a mudança de variável u=2x.

(b) Considere a região não limitada R onde $R = R_1 \cup R_2$ e $R_1 = \{(x,y) \in \mathbb{R}^2 : x \geq 0 \land -\frac{1}{1+4x^2} \leq y \leq \frac{1}{1+4x^2}\}$ e $R_2 = \{(x,y) \in \mathbb{R}^2 : x \leq 0 \land x^2 + y^2 \leq 1\}$. Esboce a região R.

(c)	Determine a área do círculo unitário	desta região R . o?	Qual é a	relação er	ntre a área	desta região	e a área

3 TO	73. T	
N^{o} mec.	Nome:	

 ${\bf N^0}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

4. (4 val.) Considere a equação diferencial linear completa de coeficientes constantes

$$y''' + y'' + 9y' + 9y = 4e^{-x}.$$

(a) Determine a solução geral da equação homogénea associada.

(b) Determine a solução geral da equação completa.

(c) Resolva o seguinte problema de Cauchy:

$$\begin{cases} y''' + y'' + 9y' + 9y = 0 \\ y(0) = 0 \\ y'(0) = 3 \\ y''(0) = 0 \end{cases}$$

Sugestão: Utilize a transformada de Laplace.

No mec.	Nome:	

 $\mathbf{N^0}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

5. (2 val.) Resolva a seguinte equação diferencial:

$$y' - 4x^3y = x^3.$$

 ${\bf N^0}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

6. (2 val.) A função com gráfico representado na figura é solução de uma das seguintes equações diferenciais. Diga, justificando claramente a sua resposta, de qual das equações é solução.

- (A) y' = y + xy (B) y' = -2xy (C) y' = 1 2xy