ℓ_1 -norm Methods for Convex-Cardinality Problems Part II

- total variation
- ullet iterated weighted ℓ_1 heuristic
- matrix rank constraints

Total variation reconstruction

- fit x_{cor} with piecewise constant \hat{x} , no more than k jumps
- convex-cardinality problem: minimize $\|\hat{x} x_{\text{cor}}\|_2$ subject to $\operatorname{card}(Dx) \leq k$ (D is first order difference matrix)
- heuristic: minimize $\|\hat{x} x_{\rm cor}\|_2 + \gamma \|Dx\|_1$; vary γ to adjust number of jumps
- $||Dx||_1$ is total variation of signal \hat{x}
- method is called total variation reconstruction
- unlike ℓ_2 based reconstruction, TVR filters high frequency noise out while preserving sharp jumps

Example ($\S6.3.3$ in BV book)

signal $x \in \mathbf{R}^{2000}$ and corrupted signal $x_{\mathrm{cor}} \in \mathbf{R}^{2000}$

Total variation reconstruction

for three values of γ

ℓ_2 reconstruction

for three values of $\boldsymbol{\gamma}$

Example: 2D total variation reconstruction

- $x \in \mathbb{R}^n$ are values of pixels on $N \times N$ grid (N = 31, so n = 961)
- assumption: x has relatively few big changes in value (i.e., boundaries)
- we have m=120 linear measurements, y=Fx $(F_{ij} \sim \mathcal{N}(0,1))$
- as convex-cardinality problem:

minimize
$$\operatorname{card}(x_{i,j} - x_{i+1,j}) + \operatorname{card}(x_{i,j} - x_{i,j+1})$$

subject to $y = Fx$

• ℓ_1 heuristic (objective is a 2D version of total variation)

minimize
$$\sum |x_{i,j} - x_{i+1,j}| + \sum |x_{i,j} - x_{i,j+1}|$$
 subject to $y = Fx$

TV reconstruction

. . . not bad for $8\times$ more variables than measurements!

ℓ_2 reconstruction

. . . this is what you'd expect with $8\times$ more variables than measurements

Iterated weighted ℓ_1 heuristic

• to minimize $\mathbf{card}(x)$ over $x \in \mathcal{C}$

- ullet first iteration is basic ℓ_1 heuristic
- ullet increases relative weight on small x_i
- typically converges in 5 or fewer steps
- often gives a modest improvement (i.e., reduction in $\mathbf{card}(x)$) over basic ℓ_1 heuristic

Interpretation

- wlog we can take $x \succeq 0$ (by writing $x = x_+ x_-$, $x_+, x_- \succeq 0$, and replacing $\mathbf{card}(x)$ with $\mathbf{card}(x_+) + \mathbf{card}(x_-)$)
- we'll use approximation $\mathbf{card}(z) \approx \log(1+z/\epsilon)$, where $\epsilon > 0$, $z \in \mathbf{R}_+$
- using this approximation, we get (nonconvex) problem

minimize
$$\sum_{i=1}^{n} \log(1 + x_i/\epsilon)$$
 subject to $x \in \mathcal{C}, x \succeq 0$

• we'll find a local solution by linearizing objective at current point,

$$\sum_{i=1}^{n} \log(1 + x_i/\epsilon) \approx \sum_{i=1}^{n} \log(1 + x_i^{(k)}/\epsilon) + \sum_{i=1}^{n} \frac{x_i - x_i^{(k)}}{\epsilon + x_i^{(k)}}$$

and solving resulting convex problem

minimize
$$\sum_{i=1}^{n} w_i x_i$$
 subject to $x \in \mathcal{C}, x \succeq 0$

with $w_i = 1/(\epsilon + x_i)$, to get next iterate

repeat until convergence to get a local solution

Sparse solution of linear inequalities

- minimize $\mathbf{card}(x)$ over polyhedron $\{x \mid Ax \leq b\}$, $A \in \mathbf{R}^{100 \times 50}$
- ℓ_1 heuristic finds $x \in \mathbf{R}^{50}$ with $\mathbf{card}(x) = 44$
- iterated weighted ℓ_1 heuristic finds x with $\mathbf{card}(x) = 36$ (global solution, via branch & bound, is $\mathbf{card}(x) = 32$)

Detecting changes in time series model

• AR(2) scalar time-series model

$$y(t+2) = a(t)y(t+1) + b(t)y(t) + v(t), \quad v(t) \text{ IID } \mathcal{N}(0, 0.5^2)$$

- ullet assumption: a(t) and b(t) are piecewise constant, change infrequently
- given y(t), $t=1,\ldots,T$, estimate a(t), b(t), $t=1,\ldots,T-2$
- heuristic: minimize over variables a(t), b(t), $t=1,\ldots,T-1$

$$\sum_{t=1}^{T-2} (y(t+2) - a(t)y(t+1) - b(t)y(t))^{2} + \gamma \sum_{t=1}^{T-2} (|a(t+1) - a(t)| + |b(t+1) - b(t)|)$$

ullet vary γ to trade off fit versus number of changes in a, b

Time series and true coefficients

TV heuristic and iterated TV heuristic

left: TV with $\gamma = 10$; right: iterated TV, 5 iterations, $\epsilon = 0.005$

Prof. S. Boyd, EE364b, Stanford University

Extension to matrices

- Rank is natural analog of card for matrices
- convex-rank problem: convex, except for Rank in objective or constraints
- rank problem reduces to card problem when matrices are diagonal: $\mathbf{Rank}(\mathbf{diag}(x)) = \mathbf{card}(x)$
- analog of ℓ_1 heuristic: use *nuclear norm*, $||X||_* = \sum_i \sigma_i(X)$ (sum of singular values; dual of spectral norm)
- for $X \succeq 0$, reduces to $\operatorname{Tr} X$ (for $x \succeq 0$, $||x||_1$ reduces to $\mathbf{1}^T x$)

Factor modeling

- given matrix $\Sigma \in \mathbf{S}^n_+$, find approximation of form $\hat{\Sigma} = FF^T + D$, where $F \in \mathbf{R}^{n \times r}$, D is diagonal nonnegative
- ullet gives underlying factor model (with r factors)

$$x = Fz + v, \quad v \sim \mathcal{N}(0, D), \quad z \sim \mathcal{N}(0, I)$$

model with fewest factors:

minimize
$$\begin{array}{ll} \operatorname{\mathbf{Rank}} X \\ \operatorname{subject\ to} & X \succeq 0, \quad D \succeq 0 \text{\ diagonal} \\ & X + D \in \mathcal{C} \end{array}$$

with variables $D,\ X\in \mathbf{S}^n$ $\mathcal C$ is convex set of acceptable approximations to Σ

• e.g., via KL divergence

$$\mathcal{C} = \{\hat{\Sigma} \mid -\log \det(\Sigma^{-1/2}\hat{\Sigma}\Sigma^{-1/2} + \mathbf{Tr}(\Sigma^{-1/2}\hat{\Sigma}\Sigma^{-1/2}) - n \le \epsilon\}$$

trace heuristic:

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr}\,X\\ \text{subject to} & X\succeq 0,\quad D\succeq 0 \text{ diagonal}\\ & X+D\in\mathcal{C} \end{array}$$

with variables $d \in \mathbf{R}^n$, $X \in \mathbf{S}^n$

Example

- x = Fz + v, $z \sim \mathcal{N}(0, I)$, $v \sim \mathcal{N}(0, D)$, D diagonal; $F \in \mathbf{R}^{20 \times 3}$
- ullet Σ is empirical covariance matrix from N=3000 samples
- set of acceptable approximations

$$\mathcal{C} = \{\hat{\Sigma} \mid \|\Sigma^{-1/2}(\hat{\Sigma} - \Sigma)\Sigma^{-1/2}\| \le \beta\}$$

trace heuristic

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr}\,X\\ \text{subject to} & X\succeq 0,\quad d\succeq 0\\ & \|\Sigma^{-1/2}(X+\mathbf{diag}(d)-\Sigma)\Sigma^{-1/2}\|\leq \beta \end{array}$$

Trace approximation results

• for $\beta = 0.1357$ (knee of the tradeoff curve) we find

$$- \angle (\operatorname{range}(X), \operatorname{range}(FF^T)) = 6.8^{\circ}$$

$$- \| \vec{d} - \mathbf{diag}(D) \| / \| \mathbf{diag}(D) \| = 0.07$$

• *i.e.*, we have recovered the factor model from the empirical covariance

MIT OpenCourseWare http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.