Universal Quadratic Forms over Totally Real Number Fields

Krishna Nand Singh

Indian Institute of Technology Roorkee krishna_ns@ma.iitr.ac.in

MAN 612 FINAL PRESENTATION Supervised by: Dr. Mahendra Kumar Verma

Presentation Overview

- Historical Developments
- 2 Universal Quadratic Forms
- 3 Totally Real Number Fields
- Quadratic Fields
 Diagonal Forms
 Classical and Integral forms
- Multiquadratic Fields
- **6** Higher Degree Fields
- References

Historical Developments

Theorem (Fermat's two squares theorem)

An odd prime p can be expressed as $x^2 + y^2$, with $x, y \in \mathbb{Z}$, if and only if $p \equiv 1 \pmod{4}$.

Theorem (Legendre's three squares theorem)

A natural number n can be expressed as $n=x^2+y^2+z^2$, with $x,y,z\in\mathbb{Z}$, if and only if $n\neq 4^a(8b+7)$, $a,b\in\mathbb{Z}^+$.

Theorem (Lagrange's four squares theorem)

Every natural number can be expressed as the sum of four squares.

Quadratic Forms

Definition

A **quadratic form** of rank r over the ring of integers \mathbb{Z} is a polynomial

$$\mathcal{Q}(x_1,x_2,...,x_r) = \sum_{1 \leq i \leq j \leq r} a_{ij} x_i x_j, \ a_{ij} \in \mathbb{Z}.$$

The **Gram matrix** attached to the quadratic form $\mathcal Q$ is the symmetric matrix given by

$$M_{\mathcal{Q}} = \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \dots & \frac{1}{2}a_{1r} \\ \frac{1}{2}a_{12} & a_{22} & \dots & \frac{1}{2}a_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}a_{1r} & \frac{1}{2}a_{2r} & \dots & a_{rr} \end{pmatrix}$$

If $\vec{x} = (x_1, x_2, ..., x_r)^t$, then $Q(\vec{x}) = \vec{x}^t M_Q \vec{x}$.

Quadratic Forms: Universality

Definition

A quadratic form $Q(x_1, x_2, ..., x_r) = \sum_{1 < j < r} a_{ij} x_i x_j$, $a_{ij} \in \mathbb{Z}$ is said to be:

- **1** diagonal, if $a_{ij} = 0$ for all $i \neq j$;
- 2 classical, if $\frac{1}{2}a_{ij} \in \mathbb{Z}$ for all $1 \le i \le j \le r$;
- 3 integral, if $a_{ij} \in \mathbb{Z}$ for all $1 \le i \le j \le r$.

Notation: Diagonal form $\sum_{j=1}^{r} a_j x_j^2$ is denoted by $\langle a_1, a_2, ..., a_r \rangle$.

Sum of Squares

Diagonal Quadratic Forms

Classical Quadratic Forms

Integral Quadratic Forms

Definition

Universality refers to the representation of all positive integers by a given quadratic form.

Universal Quadratic Forms over Z

Universal quadratic forms over \mathbb{Z} were characterized in three big steps:

1 Ramanujan- all universal diagonal quadratic forms of rank 4- 1917:

Theorem

There are exactly 55 universal quaternary diagonal quadratic forms.

2 Conway-Schneeberger- all universal classical quadratic forms-1995:

Theorem (15-theorem)

If Q is classical and represents the integers 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it is universal.

3 Bhargava-Hanke- all universal integral quadratic forms- 2005:

Theorem (290-theorem)

If Q represents the integers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 36, 35, 37, 42, 58, 93, 110, 145, 203, and 290, then it is universal.

Totally Real Number Fields

A number field $\mathbb K$ over $\mathbb Q$ of degree d has d-many embedding into $\mathbb C$. If all the embeddings are real, then $\mathbb K$ is a **Totally Real** number field.

Ring of Integers: $\mathcal{O}_{\mathbb{K}}$

- For a totally real number field \mathbb{K} , the set of all numbers in \mathbb{K} that are algebraic integers forms a ring. It is denoted by $\mathcal{O}_{\mathbb{K}}$.
- An integer $\alpha \in \mathcal{O}_{\mathbb{K}}$ is called **Totally Positive** if its image is positive under all embeddings.
- The set of all totally positive integers forms an additive semigroup $\mathcal{O}_{\mathbb{K}}^+.$
- $\alpha \in \mathcal{O}_{\mathbb{K}}^+$ is Indecomposable if $\alpha \neq \beta + \gamma$ for any $\beta, \gamma \in \mathcal{O}_{\mathbb{K}}^+$.

Illustration

- $\alpha \in \mathcal{O}_{\mathbb{K}}^+ \subset \mathcal{O}_{\mathbb{K}} \subset \mathbb{K}$
- $1 \in \mathbb{Z}^+ \subset \mathbb{Z} \subset \mathbb{Q}$
- $\alpha \in \mathbb{Z}[\sqrt{2}]^+ \subset \mathbb{Z}[\sqrt{2}] \subset \mathbb{Q}[\sqrt{2}]$ $\alpha = 1, (2+\sqrt{2}), (3+2\sqrt{2}), (10+7\sqrt{2}), \dots$

Quadratic Fields: Diagonal Forms

$$Q(x_1, x_2, ..., x_r) = a_1 x_1^2 + a_2 x_2^2 + ... + a_r x_r^2$$

If $\mathcal Q$ is universal, any indecomposable $\alpha\in\mathcal O_{\mathbb K}^+$ can be expressed as

$$\alpha = a_1 v_1^2 + a_2 v_2^2 + ... + a_r v_r^2$$
, for some $v_1, v_2, ..., v_r \in \mathcal{O}_{\mathbb{K}}^+ \implies \alpha = a_i v_i^2$.

Hence the rank of a universal diagonal quadratic form is bounded below by the number of square classes of indecomposables.

The **continued fraction** of quadratic irrationals is periodic.

$$\sqrt{D} = [u_0; \overline{u_1, u_2, ..., u_s}] = [u_0, u_1, ..., u_s, u_1, ..., u_s, u_1, ...] = u_0 + \frac{1}{u_1 + \frac{1}{u_2 + ...}}$$

It is known that $u_0 = \lfloor \sqrt{D} \rfloor$ and $u_s = 2 \lfloor \sqrt{D} \rfloor$.

The convergents, $\frac{p_i}{q_i} = [u_0, ..., u_i]$, provide good approximations to \sqrt{D} .

We call the quadratic integers $\alpha_i = p_i + q_i \sqrt{D}$ convergents too.

Then $\alpha_0 = u_0 + \sqrt{D}$, and we define $\alpha_{-1} := 1$.

Lemma

The convergent α_i is totally positive iff i is odd.

Definition

The totally positive fundamental unit, denoted by ϵ , is the generator of the group of all totally positive units, $\mathcal{O}_{\mathbb{K}}^{\times,+}$. That is, $\mathcal{O}_{\mathbb{K}}^{\times,+}=\{\epsilon^l|l\in\mathbb{Z}\}$.

Then
$$\epsilon = \begin{cases} \alpha_{s-1} & \text{, if s is even} \\ \alpha_{2s-1} & \text{, if s is odd.} \end{cases}$$

Definition

The semiconvergents are defined as $\alpha_{i,t} = \alpha_i + t\alpha_{i+1}$, where $i \ge -1$ is odd and $0 \le t < u_{i+2}$.

Theorem

The indecomposables α are precisely the semiconvergents and their conjugates.

Lemma

Every $\alpha \in \mathcal{O}_{\mathbb{K}}^+$ is a sum of indecomposables.

We consider the set S of representatives of indecomposables up to multiplication by $\mathcal{O}_{\mathbb{K}}^{\times,+}$. Then

$$S = \{\alpha_{i,t_i} | i = -1, 1, ..., k, \ 0 \le t_i < u_{i+2}\}, \text{ where } k = \begin{cases} s-3, & \text{if s is even} \\ 2s-3, & \text{if s is odd.} \end{cases}$$

So,
$$|S| = \begin{cases} u_1 + u_3 + ... + u_{s-3} + u_{s-1}, & \text{if s is even} \\ u_1 + u_2 + u_3 + ... + u_{s-1} + u_s, & \text{if s is odd.} \end{cases}$$

From the lemma, we group the indecomposables according to their class in S to get the following result.

Lemma

Every $\alpha \in \mathcal{O}_{\mathbb{K}}^+$ can be expressed as $\alpha = \sum_{\sigma \in \mathcal{S}} \sigma \mathbf{e}_{\sigma}$, where each \mathbf{e}_{σ} is a linear combination of totally positive units with non-negative integral coefficients.

UQF over TRNF

We express e_{σ} as linear combination of consecutive elements of $\mathcal{O}_{\mathbb{K}}^{\times,+}$.

Lemma

For each e_σ , there exists $j\in\mathbb{Z}$ and integers $c,d\geq 0$ such that $e_\sigma=c\epsilon^j+d\epsilon^{j+1}$

Lagrange's four square theorem with preceding results gives a universal diagonal form.

Theorem

The diagonal quadratic form $\bigoplus_{\sigma \in \mathcal{S}} \langle \sigma, \sigma, \sigma, \sigma, \epsilon \sigma, \epsilon \sigma, \epsilon \sigma, \epsilon \sigma \rangle$ is universal and has rank $r = 8 \cdot |\mathcal{S}|$.

Since, $\sqrt{n^2-1}=[n-1,\overline{1,2(n-1)}]$, so |S|=1, hence the following result.

Corollary

There is a universal diagonal quadratic form of rank 8 on $\mathbb{Q}[\sqrt{D}]$, where $D=n^2-1$, squarefree.

Quadratic Fields: Classical and Integral forms

Theorem

If $\mathbb{Q}[\sqrt{D}]$ has a ternary classical universal form, then D=2,3, or 5.

Kitaoka's Conjecture: There are only finitely many totally real number fields \mathbb{K} having a ternary universal form.

Notation

- $m_{class}(\mathbb{K}) :=$ the minimal rank of a classical universal form over $\mathcal{O}_{\mathbb{K}}$.
- $m(\mathbb{K}) :=$ the minimal rank of integral universal form over $\mathcal{O}_{\mathbb{K}}$.

Theorem

For $\mathbb{K} = \mathbb{Q}[\sqrt{D}]$ with $\sqrt{D} = [u_0; \overline{u_1, u_2, ..., u_s}]$, we have

- if s is even, $\frac{1}{2} \max\{u_1, u_3, ..., u_{s-1}\} \le m_{class}(\mathbb{K}) \le 8 \cdot |S|$ and $\frac{1}{2} \sqrt{\max\{u_1, u_3, ..., u_{s-1}\}} \le m(\mathbb{K}) \le 8 \cdot |S|$.
- if s is odd, $\frac{1}{2}\sqrt{D} \le m_{class}(\mathbb{K}) \le 8 \cdot |S|$ and $\frac{1}{2}\sqrt[4]{D} \le m(\mathbb{K}) \le 8 \cdot |S|$.

Multiquadratic Fields

Universal quadratic forms with small ranks become rare as the degree of the number field increases.

For quadratic fields, we have [1]

Theorem

For any positive integer r, there are infinitely many quadratic fields $\mathbb{Q}[\sqrt{D}]$, such that $m(\mathbb{K}) > r$.

For multiquadratic fields, we have [2]

Theorem

For all pairs of positive integers k, N there are infinitely many totally real multiquadratic fields \mathbb{K} such that $[\mathbb{K}:\mathbb{Q}]=2^k$ and $m(\mathbb{K})\geq N$.

Higher number fields

Solving the problem of universality of quadratic forms over general real fields of higher degree is a formidable task^[3]. For a particular field, a general approach may be followed.

General methods for particular fields

- $oldsymbol{1}$ Find a totally real number field \mathbb{K} .
- **2** Describe the ring of integers $\mathcal{O}_{\mathbb{K}}$.
- 3 Characterize the structure of totally positive integers $\mathcal{O}_{\mathbb{K}}^+$.
- 4 Estimate the norm and trace of indecomposable integers.
- **6** Calculate the lower bound on rank of universal quadratic form.
- **6** Construct a few universal quadratic forms.
- 7 Classify all universal (classical) quadratic forms.

References

V. Blomer, V. Kala (2015)

Number fields without n-ary quadratic forms *Math. Proc. Cambridge Philos. Soc.* **159**, 239 – 252.

V. Kala, J. Svoboda (2019)

Universal quadratic forms over multiquadratic fields *Ramanujan J.* **48**, 151-157.

V. Kala (2023)

Universal quadratic forms and indecomposables in number fields: A survey *Preprint* arXiv, 2301.13222.