Trasformazione var continua: Sia $X:\Omega\to\mathbb{R}$ va continua con densità f_X e Y=g(X), con g monotona e $g^{-1}=h\in\mathcal{C}^1$. Allora X=h(Y) e dunque $f_Y(y) = f_X(h(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} h(y) \right|$ Delta di Dirac: δ_n è to $\mathbb{P}(X=n)=1$ Continua uniforme: $\mathcal{U}(a,b)$ $f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x), F(x) = \frac{x-a}{b-a}$ $\mathbb{E}[X] = \frac{a+b}{2} \quad \operatorname{Var}(X) = \frac{(b-a)^2}{12}$ $1 - \mathcal{U}(0,1) \sim \mathcal{U}(0,1)$ $\begin{array}{ll} \textbf{Bernoulli:} & \text{Be}(p) \\ f(x) = p^x (1-p)^{1-x} \mathbbm{1}_{\{0,1\}}(x) \\ \mathbbm{E}[X] = p & \text{Var}(X) = p(1-p) \end{array}$ $\sum_{i=1}^{n} \operatorname{Be}(p) = \operatorname{Bi}(n, p)$ $1 - \operatorname{Be}(p) \sim \operatorname{Be}(1 - p)$ Binomiale: Bi(n, p) $\mathbb{P}(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$ $\mathbb{E}[X] = np \quad \text{Var}(X) = np(1-p)$ $\operatorname{Bi}(n,p) + \operatorname{Bi}(m,p) \sim \operatorname{Bi}(n+m,p)$ Geometrica: $\mathcal{G}(p)$ è il numero di fallimenti prima di un successo in un processo di Bernoulli. Priva di memoria. $\mathbb{P}(X=k) = p(1-p)^{k-1}$ $F(k) = \mathbb{P}(X \le k) = 1 - \mathbb{P}(X \ge k + 1) = 1 - (1 - p)^k$ $\mathbb{E}[X] = \frac{1}{p} \quad \text{Var}(X) = \frac{1-p}{p^2}$ Geometrica traslata: $\mathbb{P}(W=k) = p(1-p)^k$ **Poisson:** $\mathcal{P}(\lambda)$ legge degli eventi rari. Limite delle distribuzioni binomiali con $\lambda = np$. $\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} \mathbb{1}_{\mathbb{N}} \quad \mathbb{E}[X] = \lambda \quad \text{Var}(X) = \lambda$ $\mathcal{P}(\lambda) + \mathcal{P}(\mu) \sim \mathcal{P}(\lambda + \mu) \text{ (se } \bot\bot)$ Normale: $\mathcal{N}\left(\mu, \sigma^2\right)$ $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ $\mathbb{E}[X] = \mu \quad \text{Var}(X) = \sigma^2$ $\mathbb{E}\left[X^4\right] = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 \quad \mathbb{E}\left[(X-\mu)^4\right] = 3\sigma^4$ $\mathbb{P}(x \leqslant t) = \mathbb{P}\left(\frac{X-\mu}{\sigma} \leqslant \frac{t-\mu}{\sigma}\right) =$ $= \mathbb{P}\left(Z \leqslant \frac{t-\mu}{\sigma}\right) = \phi\left(\frac{t-\mu}{\sigma}\right) \text{ con } Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$ $\phi(-z) = 1 - \phi(z) \quad \mathbb{P}(|Z| > z) = 2(1 - \phi(z)) \quad \phi(k) < 0.1 \implies k < -z_{1-0.1}$ $\mathcal{N}\left(m, s^2\right) + \mathcal{N}\left(n, r^2\right) \sim \mathcal{N}\left(m + n, s^2 + r^2\right) \text{ (se. 11)}$ $\mathcal{N}(\mu, \sigma_{\text{nota}}^2) \Rightarrow X_1 | \sum X_i = t \sim \mathcal{N}\left(\frac{t}{n}, \frac{n-1}{n}\sigma^2\right)$ Lognormale: $\log \mathcal{N}\left(\mu, \sigma^2\right) X = e^{\mathcal{N}}$ $f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\} \mathbb{1}_{(0, +\infty)}$ $F(x) = \Phi_{(\mu, \sigma)}(\ln x)$ $\mathbb{E}[X] = e^{\mu + \sigma^2/2} \quad \text{Var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1\right)$
$$\begin{split} & \textbf{Chi-quadro:} \quad \left(\chi^2(k)\right) \\ & f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2} \mathbbm{1}_{(0,+\infty)} \\ & \mathbb{E}[X] = k \quad \text{Var}(X) = 2k \\ & \chi^2(n) = \Gamma\left(\frac{n}{2},\frac{1}{2}\right) \end{split}$$
$$\begin{split} \sum Z^2 &\sim \chi^2(n) \frac{\sum (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n) \\ Z^2 &\sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right) = \chi^2(1) \end{split}$$
T di student: t(n) costruita come $\frac{Z}{\sqrt{Q/n}}$ con $Z \perp \!\!\! \perp Q$ $f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{\pi n}} \cdot \frac{1}{\left(1+\frac{x^2}{n}\right)^{\frac{n+1}{2}}}$ $\mathbb{E}[T] = 0$ se n > 1 oppure indefinito. Var $(T) = \frac{n}{n-2}$ se n > 2 oppure indefinita. Esponenziale: $\mathcal{E}(\lambda)$ è la durata di vita di un fenomeno. Priva di memoria.
$$\begin{split} f(x) &= \lambda e^{-\lambda x} \mathbb{1}_{(0,+\infty)}(x) \quad F(x) = 1 - e^{-\lambda x} \\ \mathbb{E}[X] &= \frac{1}{\lambda} \quad \mathrm{Var}(X) = \frac{1}{\lambda^2} \end{split}$$
 $a\mathcal{E}(\lambda) \sim \mathcal{E}\left(\frac{\lambda}{a}\right)$ $X_{i} \sim \mathcal{E}(\lambda) \Rightarrow X_{(1)} \sim \mathcal{E}(n\lambda)$ $X_{i} \sim \mathcal{E}(\vartheta) \Rightarrow \sum_{i} X_{i} \sim \Gamma(n, \vartheta) \Rightarrow \overline{X}_{n} \sim \Gamma(n, n\vartheta)$ $Y \sim f_{Y} = e^{\vartheta - y} \mathbb{1}_{(\vartheta, +\infty)} \Rightarrow Y \sim \vartheta + \mathcal{E}(1)$ $\Rightarrow Y_{(1)} \sim \vartheta + \mathcal{E}(n) \Rightarrow f_{Y_{(1)}} = ne^{-n(y - \vartheta)} \mathbb{1}_{(\vartheta, +\infty)}$ $Y \sim f_Y = \frac{1}{\vartheta} e^{-\frac{x-\vartheta}{\vartheta}} \mathbb{1}_{(\vartheta, +\infty)} \Rightarrow Y \sim \vartheta + \mathcal{E}\left(\frac{1}{\vartheta}\right)$ Gamma: $\Gamma(\alpha,\lambda)$ è la somma di α esponenziali $\mathcal{E}(\lambda)$ $f(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} \mathbb{1}_{(0, +\infty)}(x)$
$$\begin{split} F(x) &= \left(1 - \sum_{k=0}^{\alpha-1} e^{-\lambda x} \frac{(\lambda x)^k}{k!} \right) = \frac{\gamma(\alpha, \lambda x)}{\Gamma(\alpha)} \\ \mathbb{E}\left[X^k\right] &= \frac{\alpha(\alpha+1)...(\alpha+k-1)}{\lambda^k} \quad \mathbb{E}[X] = \frac{\alpha}{\lambda} \quad \mathbb{E}[X^2] = \frac{\alpha(\alpha+1)}{\lambda^2} \end{split}$$
 $\mathbb{E}\left[\frac{1}{\Gamma(n,\vartheta)}\right] = \frac{\vartheta}{n-1} \mathbb{E}\left[\frac{1}{\Gamma(n,\vartheta)^2}\right] = \frac{\vartheta^2}{(n-1)(n-2)}$ $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ $\Gamma(n+1) = n! \quad \Gamma(n) = (n-1)!$ $\Gamma(1) = 1 \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ $Y = cX \sim \Gamma\left(\alpha, \frac{\lambda}{c}\right) \cos c > 0$ $\Gamma(\alpha, \vartheta) + \Gamma(\beta, \vartheta) \sim \Gamma(\alpha + \beta)$ (se $\perp \!\!\!\perp$)

Weibull: $W(\lambda, k), \ \lambda > 0, \ k > 0$ $f(x) = \frac{k}{\lambda^k} x^{k-1} e^{-(x/\lambda)^k} \mathbb{1}_{(0,+\infty)}(x)$ $F(x) = 1 - e^{-\left(\frac{x}{\lambda}\right)^k} \quad \mathbb{E}[X] = \frac{\lambda}{k} \Gamma\left(\frac{1}{k}\right),$ $\text{Var}(X) = \frac{\lambda^2}{k^2} \left[2k\Gamma\left(\frac{2}{k}\right) - \Gamma^2\left(\frac{1}{k}\right)\right]$ $Y \sim W(\alpha, \beta) \implies Y^{\alpha} \sim \mathcal{E}(\beta)$

Beta: $\,\mathcal{B}(\alpha,\beta)$ governa la pr
bp,a priori distribuita unif, di un proc di Bernoulli dopo aver osservato $\alpha-1$ successi e $\beta-1$ insuccessi $(\alpha,\beta>0)$ $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \mathbb{1}_{(0,1)}(x)$

$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}, \text{ con } B(x, y) = \int_0^1 t^{x-1} (1 - t)^{y-1} dt$$

$$\text{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

$$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

Fisher: $\frac{\chi^2(n)/n}{\chi^2(m)/m} = \mathcal{F}(n,m)$

Ipergeometrica: $\mathcal{H}(n,h,r)$ descrive l'estrazione senza reimmissione di palline da un'urna con n palline totali, di cui h del tipo X e n-h del tipo Y. La prob di ottenere k palline del tipo X estraendone r dall'urna è

$$p_X(k) = \frac{\binom{h}{k} \binom{n-h}{r-k}}{\binom{n}{k}}$$

$$\begin{array}{l} (k \in [\max\{0, h+r-n\}, \min\{r, h\}]) \\ \mathbb{E}[X] = \frac{rh}{n} \quad \mathrm{Var}(X) = \frac{h(n-h)r(n-r)}{n^2(n-1)} \end{array}$$

Relazione tra le convergenze:

$$L^{p} \xrightarrow{p > q} L^{q} \xleftarrow{\underset{Y \in L^{q}}{|X_{n}| \leq Y}} \mathbb{P}$$

$$\xrightarrow{X = c \text{ q.c}} \mathcal{L}$$

Negli spazi $L^p: X_n \xrightarrow{L^p} X$ se $X_n \in L^p \forall n, \ X \in L^p \in \mathbb{E}\left[|X_n - X|^p\right] \to 0$ Dato $p \geqslant q \geqslant 1$, conv. in $L^p \Longrightarrow$ conv. in L^q . Convergono i momenti:

$$\begin{split} & \mathbb{E}\left[|X_n|^p\right] \xrightarrow{L^p} \mathbb{E}\left[|X|^p\right] \\ & \text{Per } p = 1 \text{ e } p = 2 \text{:} \\ & \mathbb{E}\left[X_n\right] \to \mathbb{E}[X] \text{ e } \text{Var}\left(X_n\right) \to \text{Var}(X) \end{split}$$

Probabilità:
$$X_n \xrightarrow{\mathbb{P}} X$$
 se $\forall \varepsilon > 0 \ \mathbb{P}(|X_n - X| > \varepsilon) \to 0$

Esiste una sottosuccessione di X_n che converge q
c a X. Se X appartiene a L^p ed è possibile trovare una Y tale che $|X_n| \leq Y$ allora questa converge anche in L^p .

Debole: siano \mathbb{P}_n e \mathbb{P} prob su $(\mathbb{R}, \mathcal{B})$. Allora $\mathbb{P}_n \stackrel{\text{deb}}{\longrightarrow} \mathbb{P}$ se $\int_{\mathbb{R}} h \, d\mathbb{P}_n \to \int_{\mathbb{R}} h \, d\mathbb{P} \forall h$ cont. e lim

In legge o distribuzione:

$$\begin{array}{c} X_n \xrightarrow{\widehat{\mathcal{L}}} X \text{ se} \\ P^{X_n} \xrightarrow{\text{deb}} P^X \\ \text{Slutsky: } X_n \xrightarrow{\mathcal{L}} c \Longrightarrow X_n \xrightarrow{\mathbb{P}} c \end{array}$$

Criteri conv. in legge: $X_n \xrightarrow{\mathcal{L}} X$ iff $F_n(t) \to F(t) \forall t$ dove F è cont.

Discreto: $\mathbb{P}(X_n = t) \to \mathbb{P}(X = t) \forall t \in S \text{ iff } n \xrightarrow{\mathcal{L}} X \text{ dove } S = S_X \cup S_{X_n}$ Continuo: $f_n \xrightarrow{qo} f \Longrightarrow X_n \xrightarrow{\mathcal{L}} X$

Continuo.
$$f_n \longrightarrow f \longrightarrow X_n \longrightarrow X$$

TCL: se X_i iid con $\mathbb{E}[X_i] = \mu$ e $\text{Var}(X_i) = \sigma^2$, allora $\frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, 1)$ ovvero $\overline{X}_n \approx \mathcal{N}\left(\mu, \sigma^2/n\right)$

LGN: Dati $X_n \in L^1$ iid e $\mu \in \mathbb{R}$, allora

$$\mathbb{E}[X_n] = \mu \iff \overline{X}_n \stackrel{qc}{\longrightarrow} \mu \text{ (vale anche in } L^1, \mathbb{P})$$

Alcune proprietà: per un campione gaussiano, si ha:

 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$\frac{\sigma^2}{\frac{\overline{X}_n - \mu}{\sqrt{S^2/n}}} \sim t(n-1)$$

Voppio val atteso: $\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X]$ Scomp. varianza: $\text{Var}(X) = \mathbb{E}[\text{Var}(X \mid Y)] + \text{Var}(\mathbb{E}[X \mid Y])$.

Metodi delta:

data
$$Y_n$$
 t.c $\sqrt{n} (Y_n - \vartheta) \xrightarrow{\mathcal{L}} N(0, \sigma^2)$
 $g'(\vartheta) \neq 0 \Longrightarrow \sqrt{n} (g(Y_n) - g(\vartheta)) \xrightarrow{\mathcal{L}} N(0, \sigma^2 g'(\vartheta)^2)$
 $g'(\vartheta) = 0 e g''(\vartheta) \neq 0 \Longrightarrow n(g(Y_n) - g(\vartheta)) \xrightarrow{\mathcal{L}} \sigma^2 \frac{g''(\vartheta)}{2} \chi^2(1)$

Funzione generatrice dei momenti

discreto:
$$g(t) = \mathbb{E}[e^{tX}] = \sum_{i=1}^{n} p_i e^{tX_i}$$

continuo: $g(t) = \mathbb{E}[e^{tX}] = \int_{\mathbb{R}} e^{tx} f_X(x) dx$
gaussiano: $g(t) = \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$

Valuto in t = 1 e ottengo $\mathbb{E}[e^X]$ Derivo r volte, valuto in t = 0 e ottengo $\mathbb{E}[X^r]$