Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc

Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Číslo úlohy Název úlohy MĚŘENÍ OPERAČNÍHO ZESILOVAČE 102-3R

Zadání

- 1. Seznsamte se s důležitými katalogovými údaji měřeného OZ, údaje vypište do přehledné tabulky.
- 2. Změřte a nakreslete závislosti výstupního napětí invertujícího zesilovače s OZ na zpětnovazebném rezistoru $U_{OUT} = f(R_2)$ při stejnosměrném vstupním napětí $U_{IN} = 0.8 V$ a vstupním odporu $R_1 = 5 k\Omega$.
- 3. Pro pědchozí měření vypočítejte teoretické hodnoty výstupního napětí $U_{OUT_{VVP}}$. Naměřené a vypočítané hodnoty srovnejte a vypočítejte jejich odchylku.
- 4. Měřením ověřte činnost OZ pracujícího jako invertující zesilovač harmonického vstupního napětí $U_{IN_{RMS}} = 0 \ V, \ U_{IN_{AVG}}0, 8 \ V, \ f = 5 \ kHz,$ při zětnovazebném rezistoru $R_2 = 10 \ k\Omega$.
- 5. Pro vstupní harmonické napětí (z bodu 4) a napěťový přenos zesolovače $a_u = 20 \ dB$ změřte $U_{OUT_{RMS}},\,U_{OUT_{AVG}},\,f$ a zakreslete časové průběhy vstupního a výstupního napětí zesilovače.

l									
Poř. č.	PŘÍJMENÍ a Jméno				Třída	Skupina	Školní rok		
26	VYKYDAL Jan				3A	3	2013	/2014	
Datum měření Datum		odevzdání	Počet listů		Klasifikace				
						příprava	meření	protokol	obhajoba
24.3.		31.3.		10					
Protokol o měření obsahuje:		Teoretický úvod		Ta	Cabulky naměřených a vypočtených hodnot				
			Schéma		Vz	zor výpočtu	ı		
		Tabulka použitých přístrojů		Gr	rafy				
		Postup měř	ření	Zá	ávěr				

1 Teoretický úvod

Operační zesilovač, někdy označován OZ, je zesilovač, který zesiluje rozdíl dvou napětí. Rozdílovému napětí se také někdy říká diferenciální napětí.

$$U_d = U_+ - U_- \tag{1}$$

kde:

 U_d diferenciální napětí U_+ napětí mezi neinvetujícím vstupem a pracovní zemí U_- napětí mezi invetujícím vstupem a pracovní zemí

Operační zesilovače získali svůj název s původního záměru jejich vytvoření. Byly stvořeny za účelem provádění aritmetických operací nad analogovými signály. První OZ s elektronkamy skunstruoval roku 1938 G. A. Philbrick. Pozdeji byli elektronky nahrazaovány tranzistory. Zdokonalení výrobních postupů nám umožnilo začít vyrábět operační zesilovače integrované do jednoho čipu.

1.1 Ideální operační zesilovač

Zesílení ideální operační zesilovač je nekonečně velké. Má nekonečně velký vstupní odpor a nulový výstupní odpor. Jeho odezva je okamžitá a jeho výstup je závislí pouze na diferenciálním napětí. Dokáže zpracovávat signáli které mají vyšší napětí než je napájecí napětí tohoto OZ. Výstupní napětí Ideálního OZ je dáno vstahem:

$$U_{OUT} = A_u \cdot U_d \tag{2}$$

kde:

1.2 Neinvertující zapojení OZ

Toto zapojení neposouvá fázi výstuního napětí. Výstupní napětí je dáno poměrem rezistorů R_1 a R_2 . Odvození vztahů pro OZ zapojený v neinvertujícím zapojení za předpokladu, že OZ je ideální:

$$U_{d} = 0$$

$$U_{d} = U_{+} - U_{-}$$

$$U_{+} = U_{-} = U_{IN}$$

$$I_{1} = I_{2}$$

$$U_{-} = \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{OUT}$$

$$U_{OUT} = A_{N} \cdot U_{+}$$

$$A_{N} = \frac{U_{OUT}}{U_{IN}} = \frac{U_{OUT}}{\frac{R_{1}}{R_{1} + R_{2}}} \cdot U_{OUT} = \frac{1}{\frac{R_{1}}{R_{1} + R_{2}}} = \frac{R_{1} + R_{2}}{R_{1}}$$

$$A_{N} = 1 + \frac{R_{2}}{R_{1}}$$
(3)

kde:

U_{OUT} výstupní napětí
U_{IN} vstupní napětí
U_d diferenciální napětí
U_+ napětí mezi neinvetujícím vstupem a pracovní zemí
Unapětí mezi invetujícím vstupem a pracovní zemí
A_N napěťové zesílení danné poměrem rezistorů R_1 a R_2
R_1 rezistor
R_2 rezistor
I_1 proud
<i>I</i> ₂ proud

Schéma č. 1: Neinvertující zapojení OZ

1.3 Invertující zapojení OZ

Toto zapojení posouvá fázi o π . Odvození vztahů pro OZ zapojený v invertujícím zapojení za předpokladu, že OZ je ideální:

$$U_{d} = 0$$

$$U_{d} = U_{+} - U_{-}$$

$$U_{+} = U_{-} = U_{IN}$$

$$I_{1} = -I_{2}$$

$$U_{IN} = I_{1} \cdot R_{1}$$

$$U_{OUT} = -I_{1} \cdot R_{2}$$

$$A_{N} = \frac{U_{OUT}}{U_{IN}} = -\frac{I_{1} \cdot R_{2}}{I_{1} \cdot R_{1}}$$

$$A_{N} = -\frac{R_{2}}{R_{1}}$$
(4)

kde:

U_{OUT} výstupní napětí
U_{IN} vstupní napětí
U_d diferenciální napětí
U_+ napětí mezi neinvetujícím vstupem a pracovní zemí
U_{-} napětí mezi invetujícím vstupem a pracovní zemí
A_N napěťové zesílení danné poměrem rezistorů R_1 a R_2
R_1 rezistor
R_2 rezistor
I_1 proud
I_2 proud

Schéma č. 2: Invertující zapojení OZ

1.4 MAA741

MAA741 je obvod, ve kterého je integrován operační zesilovač. Tento obvod se vyrábí v pouzdrech TO-99, CDIP-8, PDIP-8 a CLGA. Jeho klíčové parametry jsou shrnuty v tabulce 1.

veličina	označení veličiny	hodnota
Napájecí napětí	U_{CC}	$\pm 3~V~\dots \pm 22~V$
Napájecí proud	I_{CC}	$1,3~mA~\dots~2,8~mA$
Diferenciální napětí	U_d	±30 V
Vstupní napětí	U_I	$\pm 15 V$
Ztrátový výkon	P_{tot}	$500 \ mW$
Napěťové zesílení OZ	A_u	50000 150000
Rozsah pracovních teplot	ϑ_a	$-55~^{\circ}C~~+125~^{\circ}C$

Tabulka č. 1: Hlavní parametry MAA741

Schéma č. 3: Vnitřní zapojení MAA741

2 Schéma

Schéma č. 4: Zapojení měřícího obvodu pro stejnosměrné buzení

Schéma č. 5: Zapojení měřícího obvodu pro střídavé buzení

3 Tabulka použitých přístrojů

Označení v zapojení	ačení v zapojení Přístroj		Evidenční číslo
M_1	DMM	MASTECH MY-64	0655
M_2	DMM	MASTECH MY-64	0659
M_3	osciloskop	HP 54600A	0162
Z_1	zdroj s.s simetrického napětí	TESLA BK-125	0159
Z_2	zdroj s.s napětí	TESLA BK-127	0138
FG	generátor	Gwinstek GFG-8217A	10 - 1321/01
R_1	odporová dekáda	_	0255
R_2	odporová dekáda	_	0931

Tabulka č. 2: Tabulka použitých přístrojů

4 Postup měření

4.1 Měření zesilovače při stejnosměrném buzení

- Zapojíme měřící obvod dle schémadu č. 4.
- Nastavíme rezistor R_1 na 5 $k\Omega$ a rezistor R_2 na hodnotu 5 $k\Omega$.
- $\bullet\,$ Pomocí voltmetru M_1 nastavíme na zdroji Z_2 napětí 0,8 V.
- \bullet Pomocí voltmetru M_2 změříme výstupní napětí, tuto hodnotu si poznamenáme.
- Proces měření výstupního napětí a poznamenávání naměřených hodnot opakujeme i pro tyto hodnoty rezistoru R_2 : 10 $k\Omega$, 20 $k\Omega$, 40 $k\Omega$, 60 $k\Omega$, 80 $k\Omega$, 100 $k\Omega$.

4.2 Měření zesilovače při střídavém buzení

- Na vstup připojíme místo DC zdroje generátor harmonického napětí, obvod tedy upravíme dle schématu č. 5.
- Nastavíme rezistor R_2 na 10 $k\Omega$ a rezistor R_1 na hodnotu 5 $k\Omega$.
- Pomocí voltmetru M1 nastavíme na zdroji FG napětí $U_{IN_{AVG}}=0,8\ V$ a $U_{IN_{RMS}}=0\ V.$
- \bullet Voltmetr M_2 přepneme na střídavý rozdah.
- Pomocí voltmetru M2 změříme výstupní napětí, tuto hodnotu si poznamenáme.
- Proces měření výstupního napětí a poznamenávání naměřených hodnot opakujeme i pro tyto hodnoty rezistoru R_1 : 10 $k\Omega$, 20 $k\Omega$, 40 $k\Omega$, 60 $k\Omega$, 80 $k\Omega$, 100 $k\Omega$.

4.3 Měření časových průběhů $u_{IN}(t)$ a $u_{OUT}(t)$

- \bullet Nastavíme hodnoty rezistorů R_1 a R_2 na hodnoty hteré jsme spočítali.
- Nastavíme rezistor R_2 na 10 $k\Omega$ a rezistor R_1 na hodnotu 5 $k\Omega$.
- \bullet Pomocí osciloskopu M_3 změříme $U_{IN_{AVG}},\,U_{IN_{RMS}},\,U_{OUT_{AVG}}$ a $U_{OUT_{RMS}}.$
- ullet Z funkčního generátoru odečteme kmitočet f vstupního signálu.
- Napěťové průběhy z osciloskopu překreslíme do grafu.
- Vypneme měřící přístroje a zdroje.
- Ukončíme měření.

5 Tabulky naměřených a vypočítaných hodnot

$R_2 [k\Omega]$	U_{OUT} [V]	$\%_{chyba}$ [%]	$\Delta_{chyba} [mV]$	$U_{OUT_{VYP}}[V]$	$\Delta U_{OUT_{VYP}} - U_{OUT} [V]$
5	-0,81	1,73	14,00	-0, 8	0,01
10	-1,62	1, 11	18, 10	-1, 6	0,02
20	-3,23	0,81	26, 15	-3, 2	0,03
40	-6,46	0,65	42,30	-6, 4	0,06
60	-9,68	0,60	58,40	-9, 6	0,08
80	-12,91	0,58	74,55	-12, 8	0,11
100	-13,30	0,57	76,50	-16, 0	2,70

Tabulka č. 3: Měření $U_{OUT} = f(R_2)$ zapojení dle schématu č. 4

$R_1 [k\Omega]$	U_{OUT} [V]	$\%_{chyba}$ [%]	$\Delta_{chyba} \ [mV]$
5	1,496	0,86	12,866
10	0,750	0,83	6,255
20	0,373	0,82	3,048
40	$199, 2 \cdot 10^{-3}$	0,81	1,609
60	$134, 7 \cdot 10^{-3}$	0,81	1,0843
80	$99,6 \cdot 10^{-3}$	0,80	0,800
100	$79,7 \cdot 10^{-3}$	0,80	0,634

Tabulka č. 4: Měření $U_{OUT} = f(R_1)$ zapojení dle schématu č. 5

6 Vzory výpočtů

Výpočet relativní procentuální chyby digitu:

$$\delta_{digit\%} = \frac{\pm digit}{MH} \cdot 100 = \frac{\pm 0.01}{0.81} \cdot 100 \doteq \underline{\pm 1.234 \%}$$

Celková procentuální chyba:

$$\delta_{\%} = \pm \delta_{MH\%} \pm \delta_{digit\%} = \pm 0, 5 \pm 1, 234 \doteq \underline{\pm 1,734~\%}$$

Celková absolutní chyba:

Výpočet teoretické hodnoty výstupního napětí s využitím vztahu (4)

$$U_{OUT_{VYP}} = A_N \cdot U_{IN} = -\frac{R_2}{R_1} \cdot U_{IN} = -\frac{5}{5} \cdot 0.8 = \underline{-0.8 \ V}$$

Výpočet $\Delta U_{OUT} - U_{OUT_{VYP}}$

$$\Delta U_{OUT} - U_{OUT_{VYP}} = U_{OUT} - U_{OUT_{VYP}} = -0.81 - (-0.8) = \underline{0.01 \ V}$$

Výpočet rezistorů R_1 a R_2 pro zisk 20 dB

$$20 = 20 \cdot \log \frac{U_{OUT}}{U_{IN}}$$

$$1 = \log \frac{U_{OUT}}{U_{IN}}$$

$$\log 10 = \log \frac{U_{OUT}}{U_{IN}}$$

$$10 = \frac{U_{OUT}}{U_{IN}} = -\frac{R_2}{R_1}$$

$$R_1 = \underline{10 \ k\Omega}$$

$$R_2 = 10 \cdot R_1 = 10 \cdot 10 = \underline{100 \ k\Omega}$$
(5)

7 Grafy

Graf č. 1: Závislost U_{OUT} na ${\cal R}_2$

Graf č. 2: Závislost U_{OUT} na ${\cal R}_1$

Graf č. 3: Část napěťových průběhů $u_{IN}(t)$ a $u_{OUT}(t)$

8 Závěr

8.1 Chyby měřících přístrojů

Procnruální chyba použitých měřících přístrojů (M_1 a M_2) nepřekrožila Při měření stejnosměrných napětí 2 % a pri měření srřídavých napětí 1 %, tidíž by se dali považovat použité měřící přístroje za vhodné a naměřené hodnoty za dostatečně přesné. Maximální procentuální chyba byla pri měření stejnosměrných napětí 1,73 %, pri měření střídavých napětí myximální procentuální hyba dosáhla hodnoty 0,85 %.

8.2 Zhodnocení

- 1. Zjistil jsem záhladní parametry OZ MAA741 a jeho klíčové parametr jsem shrnul do tabulky č. 1, dále jsem namaloval schéma vnitřního zapojení tohoto obvodu, které je rovněž obsaženo v úvodu a to pod označením schéma č. 3.
- 2. Změřil jsem závislos výstupního napětí na rezistoru R_2 . Tuto závislost jsem zakreslil do grafu.
- 3. K naměřeným hodnotám jsem vypočítal teoretické hodnoty za pomoci vztahů které jsem odvodil v úvodu. Dále jsem spočítal Abdolutní odchylku naměřené honoty výstupního napětí od hosnoty teoretické, největší odchylka dosáhla $2,7\ V$.
- 4. Změřil jsem zývislost výstupního napětí na rezistoru R_1 při stejnosměrném buzení. Naměřené hodnoty byli opět vyneseni do grafu.
- 5. Vypočítal jsem hodnoty rezistorů tak, aby výstupní napětí bylo desetkráv vyšší než napětí vstupní, tedy zisk o 20 dB. Změřil jsem OZ v invertujícím zapojení s těmito rezistory a výsledné průběhy zakreslil do grafu č. 3.