Method of using one ester of the formula (I) to (V) 11.

1

OR1 OR2

OR3

1.

OR2

OR1

OR2 P 0 =

OR3

(III)

(I)

(II)

OR2

OR1

(IV)

ı

5

10

R¹, R², R3, R4 are identical or different and each, independently of one another, are a liniear or branched-cain C₁- to C₄-alkyl, (-CH₂- CH₂-O)_n-CH₃ with n=1 to 3, a C₃ to C₆-cycloalkyl, an aromatic hydrocarbon group which in turn can be substituted, with the proviso that at least one of the groups R¹, R², R³ or R⁴ is (-CH₂-CH₂-O)_n- CH₃ with n=1 to 3

as a solvent in electrolyte systems for Li-ion storage cells.

Method according to claim 11, wherein the compound is one wherein R¹, R² and, where present, R³ and/or R⁴ are identical and are -CH₂-CH₂-O-CH₃ or (-CH₂-CH₂-O)₂-CH₃

20

25

30

13. Method of using at least one of the compounds of formulae (Ia) to (Va)

$$B \left(--- \text{OCH}_2 --- \text{CH}_2 \text{OCH}_3 \right)_3$$

$$O = C \left(--- \text{OCH}_2 \text{CH}_2 \text{OCH}_3 \right)_2$$

$$--- \text{(Ha)}$$

(IIIa)

10

and

in alastralista austima for Li ion atornos calls

as a solvent in electrolyte systems for Li-ion storage cells.

14. Method according to claim 11, wherein LiPF₆
LiBF₄, LiClO₄, LiAsF₆, LiCF₃SO₃, LiC(CF₃SO₂)₃, LiC(CF₃SO₂)₂,
LiN(SO₂F)₂, LiN(CF₃CF₂SO₂)₂, LiAlCl₄, LiSiF₆, LiSbF₆ or mixtures of two or more thereof are employed as a conducting salt.

15

15. A composition comprising:

(A) at least one compound of formula (I) to (V) as defined in claim 11, and

20 (B) a conducting salt selected among:

LiPF₆, LiBF₄, LiClO₄, LiAsF₆, LiCF₃SO₃, LiC(CF₃SO₂)₂, LiC(CF₃SO₂)₂, LiN(CF₃SO₂)₂, LiN(CF₃CF₂SO₂)₂, LiAlCl₄, LiSiF₆, LiSbF₆ and a mixture of two or more thereof.

25

A composition as claimed in claim 15, wherein the compound (A) is selected among the compounds of formulae (Ia) to (Va), as defined in claim 3 and a mixture of two or more thereof, and the conducting salt (B) is LiBF4.

30

17. An Li ion storage cell comprising at least one ester as defined inclaim 11.

- 19. Method of using a composition as claimed inclaim 15, as an electrolyte system in Li-ion storage cells.
- 20. A process for preparing an ester of formula (I) to (V), as defined in claim 11, characterized in that a chloride is employed as a starting material and a trialkyl amine is used as a scavenger for HCl formed during the preparation of the ester.

10

5