

Is head null?

 $head \neq null$

head points to a non-empty tree with some *v* at the root and two, possibly empty, subtrees.

NonEmptyTree(head, $S = L \cup \{v\} \cup R$)

head = null

value < v

The tree at *head* is empty, and represents the set \emptyset . $\emptyset \setminus \{value\} = \emptyset$. Return *head*.

EmptyTree(head, S)

$\mathsf{compare}(\mathit{value}, \mathit{v})$

value = v

We need to remove *value* at the root. We have a helper function for that: removeRoot.

nhead = removeRoot(head). Return nhead.

remove Root returns tree representing L \cup R, which is S \setminus {value}. Pass up return value.

Tree(nhead, $L \cup R$)

value < v (symmetrical)

 $\{v\}$ and **R** do not contain *value*, and so we have removed from them. We now remove from **L**.

NonEmptyTree(head, $S = L \cup \{v\} \cup R$)

Recursively call remove(*left*, *value*), yielding *nleft*; set *left* field to *nleft*.

Tree represents (L\{value}) \cup {v} \cup R, which = S \ {value}. Return head.

