Fahrzeugmechatronik I Modellbildung

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Einführung Wozu benötige ich Berechnungsmodelle?

Im Allgemeinen werden Berechnungsmodelle insbesondere benötigt, um

- das Systemverhalten vorhersagen und optimieren zu können,
- physikalische Ursachen für störende oder unerwünschte Effekte zu klären

Speziell in der Fahrzeugmechatronik werden Berechnungsmodelle darüber hinaus benötigt, um

- Fahrzeugregler zu entwerfen (Entwurfsmodell) und
- das Fahrzeug- bzw. Fahrzeugreglerverhalten zu bewerten (Bewertungsmodell)

Einführung Wichtige Begriffe

Physikalisches Modell

Ein durch Erfahrung und Kenntnis physikalischer Zusammenhänge erstelltes (meist) symbolisches Ersatzmodell eines realen Systems. Wesentlicher Bestandteil eines physikalischen Modells sind die zur Ermittlung notwenigen vereinfachenden Annahmen.

Mathematisches Modell

Mathematische Gleichungen und Funktionszusammenhänge zur Beschreibung eines Systems bzw. dessen Komponenten. Diese Modelle werden durch Anwendung physikalischer Gesetze oder Experimente gewonnen.

Einführung Wichtige Begriffe

> Freiheitsgrad

Koordinate (Verschiebung oder Verdrehung) mit der Systemzustand beschreiben wird. Freiheitsgrade eines Systems beschreiben den Systemzustand eindeutig und sind unabhängig voneinander.

Zustandsgröße

Physikalische Größe x in einer Zustandsgleichung, die nur vom augenblicklichen Zustand des Systems abhängt.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$
 mit $\mathbf{x}(t) = \mathbf{x}_0$
 $\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u}, t)$

Einführung Wichtige Begriffe

> Parameter

Geometrische oder physikalische Größe in einem Berechnungsmodell, mit einem Buchstaben bezeichnet, meist mit Einheit.

> Parameterwert

Zahlenwert eines Parameters.

Kenngröße (Ähnlichkeitszahl) Aus Parametern gebildete dimensionslose Größe, z.B. das

Dämpfungsmaß.

> Kennwert

Zahlenwert einer Kenngröße.

Einführung Wichtige Begriffe

Reales System

Einführung Wichtige Begriffe

Einführung Modellbildung im Entwicklungsprozess

Einführung Modellbildung im Entwicklungsprozess

(Nach VDI-Richtlinie 2206: "Entwicklungsmethodik für mechatronische Systeme", "V-Modell")

Einführung Modelldetaillierung

Die sinnvolle Modelldetaillierung hängt immer von der Fragestellung und den verfügbaren Informationen ab!

Einführung Modelldetaillierung

Bei jeder Modellbildung sollte man mit einem Minimalmodell beginnen, dieses zeichnet sich durch folgende Eigenschaften aus

- räumlich und zeitlich eng begrenzt
- möglichst kleine Anzahl von FGs
- möglichst wenige und robuste Parameter
- nur die wesentlichen physikalischen Vorgänge werden berücksichtigt
- Ergebnisse sind nur qualitativ und quantitativ tendenziell richtig

Einführung Modelldetaillierung - Modellklassen

1. Zwangläufiges System starrer Körper ((4))

$$\Omega \ll \omega_1 = 2\pi f_1$$
 Periodische Anregung

$$T_1 = \frac{1}{f_1} << t_a$$
 transiente Anregung (41)

2. Lineares Schwingungssystem

 $\Omega > \omega_1$ Schwingungsverhalten ist zumindest um den Arbeitspunkt herum linear (Superpositionsprinzip, harmonisches Übertragungsverhalten...)

4. Selbsterregte Systeme

3. Nichtlineares System

Das Schwingungsverhalten wird durch nichtlineare Effekte bestimmt.

Einführung

Modelldetaillierung

Ausnutzen von Symmetrieeigenschaften

Notwendige Bedingungen

- Es liegt Symmetrie bzgl. Geometrie, physikalischen Eigenschaften und Randbedingungen vor ("Struktursymmetrie").
- Berechnung wird linear durchgeführt
- Belastungen müssen symmetrisch oder antimetrisch bzgl. der Symmetrielinie sein.

Hierbei gilt :

Jede Belastung kann in einen symmetrischen und antimetrischen Lastfall überführt werden.

Einführung Modelldetaillierung

Einführung Modelldetaillierung

Für die Verschiebungen und Schnittkräfte eines Balkens mit Struktursymmetrie gilt:

	Symmetrischer Lastfall	Antimetrischer Lastfall	
u(x)	u(x) = -u(I-x)	u(x) = u(I-x)	
w(x)	w(x) = w(I-x)	w(x) = -w(I-x)	
β(x)	$\beta(x) = -\beta(I-x)$	$\beta(x) = \beta(I-x)$	
N(x)	N(x) = -N(I-x)	N(x) = N(I-x)	
M(x)	M(x) = M(I-x)	M(x) = -M(I-x)	
Q(x)	Q(x) = -Q(I-x)	Q(x) = Q(I-x)	
Auf der Symmetrielinie gilt:	$u(I/2) = 0; \beta(I/2) = 0$	w(1/2) = 0	

Einführung Modelldetaillierung

Im Allgemeinen 3-dim Fall gelten die folgenden Randbedingungen auf der Symmetrielinie:

	Symmetrischer Lastfall	Antimetrischer Lastfall
u _x (x)	u _x =0	
u _y (x)		u _y =0
u _z (x)		u _z =0
$\varphi_{x}(x)$		$\varphi_{x} = 0$
φ _y (x)	φ _y =0	
$\phi_z(x)$	$\varphi_z = 0$	

Einführung Modellbeschreibung - Systemtheorie

Definition System:

Ein System ist eine abgegrenzte Anordnung von aufeinander einwirkenden Gebilden (nach DIN 66201).

Die Wechselwirkung eines Systems mit der Systemumgebung erfolgt über die **Eingangs**- und **Ausgangsgrößen**.

Eingangsgrößen, mit denen man das System gezielt beeinflussen kann, heißen **Stellgrößen**. Eingangsgrößen, die das System nicht gezielt Beeinflussen, sind **Störgrößen**. Ausgangsgrößen, die messtechnisch erfassbar sind, nennt man **Messgrößen**.

Einführung Modellbeschreibung - Systemtheorie

Analogie 1. Art Reihenschaltung

Reihenschaltung -> Parallelschaltung Parallelschaltung -> Reihenschaltung

Kraft	-	Spannung	\vec{F} - U
Geschwindigkeit	-	Strom	$ec{v}$ - I
Masse	-	Induktivität	m - L
Federnachgiebigkeit	-	Kapazität	n - C
Reibungswiderstand	-	ohmscher Widerstand	r - R

Analogie 2. Art

Reihenschaltung -> Reihenschaltung Parallelschaltung -> Parallelschaltung

Kraft-Strom \vec{F} - IGeschwindigkeit-Spannung \vec{v} - UMasse-Kapazitätm - CFedernachgiebigkeit-Induktivitätn - LReibungswiderstand-Leitwertr - G = 1/R

Einführung Modellbeschreibung - Systemtheorie

Analogie 1. Art

Einführung Modellbeschreibung - Systemtheorie

Definition Zustand:

Existieren für ein dynamisches System Größen $x_1, ..., x_n$ mit der Eigenschaft, dass die Ausgangsgrößen $y_1, ..., y_m$ zu einem beliebigen Zeitpunkt t eindeutig durch den Verlauf der Eingangsgrößen $u_1(\tau), ..., u_p(\tau)$ auf dem Intervall $t_0 \le \tau \le t$ und den Werten von $x_1(t_0), ..., x_n(t_0)$ für ein beliebiges t_0 festgelegt sind, dann heißen die Größen $x_1, ..., x_n$ Zustandsgrößen des Systems.

Systeme mit finitem Zustand der Ordnung n (konzentriert-parametrisch):

Dynamische Systeme, die sich durch eine endliche Anzahl von Zustandsgrößen beschreiben lassen.

Beschreibung durch gewöhnliche Differentialgleichungen und algebraische Gleichungen. Bsp.: Einmassenschwinger.

Systeme mit infinit-dimensionalem Zustand (verteilt-parametrisch):

Dynamische Systeme, die sich nur durch eine unendliche Anzahl von Zustandsgrößen beschreiben lassen.

Beschreibung durch partielle Differentialgleichungen. Bsp.: Balken, Platten.

Einführung Modellbeschreibung im Zustandsraum

Mathematische Beschreibung eines konzentriert-parametrischen dynamischen Systems im **Zustandsraum**

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$
 mit $\mathbf{x}(t) = \mathbf{x}_0$
 $\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u}, t)$

Mathematische Beschreibung eines konzentriert-parametrischen dynamischen **linearen Systems** im **Zustandsraum**

$$\dot{\mathbf{x}} = \mathbf{A} \ \mathbf{x} + \mathbf{B} \ \mathbf{u} \quad \text{mit} \quad \mathbf{x}(\mathbf{t}) = \mathbf{x}_0$$

$$\mathbf{y} = \mathbf{C} \ \mathbf{x} + \mathbf{D} \ \mathbf{u}$$

Einführung Modellbesehreibung in

Modellbeschreibung im Zustandsraum

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) + \mathbf{F}\mathbf{d}(t)$$

Seite 23

Einführung Modellbeschreibung als Blockschaltbild

Seite 24

Vielen Dank für Ihre Aufmerksamkeit!