Bias-Variance Decomposition

Song Liu (song.liu@bristol.ac.uk)

Reference

Today's class *roughly* follows Chapter 3.2.

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

Poly. Feature with various b

• $y = g(x) + \epsilon, g(x) = \exp(1.5x - 1), \epsilon \sim N(0, .64)$

19

What Really Happened?

- We mentioned that $f(x; w_{LS})$ is too flexible to generalize well on unobserved dataset, but why?
- What is the mathematical explanation of OF?
- Why testing error is a good measurement of the generalization of a prediction $f(x; w_{LS})$?
- We are introducing a frequentist analysis of explaining this phenomenon, called **Variance and Bias decomposition**.

From Training Error to Expected Loss

- $E(D, \mathbf{w}_{LS})$ is the **training error** of \mathbf{w}_{LS} on a training set D.
- We do not care $E(D, \mathbf{w}_{LS})$ on a specific training dataset, let us take expectation with respect to D:

$$\mathbb{E}_{D}[E(D, w_{\text{LS}})] = \mathbb{E}_{D}\left[\sum_{i \in D} [y_{i} - f(\boldsymbol{x}_{i}; \boldsymbol{w}_{\text{LS}})]^{2}\right]$$

$$= \sum_{i=1..n} \mathbb{E}_{D}[[y - f(\boldsymbol{x}_{i}; \boldsymbol{w}_{\text{LS}})]^{2} | \boldsymbol{x}_{i}]$$

Expected Loss!

To investigate the expected loss further, we need to make some assumptions on the randomness of D.

Additive Noise Assumption

- First, assume an outcome y_i is generated by
- $y_i = g(\mathbf{x}_i) + \epsilon_i$.
 - $g(x): R^d \to R$ is some deterministic function.
 - \forall_i , ϵ_i is independent of x_i and $\mathbb{E}[\epsilon_i] = 0$
 - We call ϵ_i additive noise.

• For example, if we assume ϵ_i comes from normal dist. with mean 0 and variance σ^2 , y_i follows a normal distribution with mean $g(x_i)$ and variance σ^2 .

Decomposition of Expected Loss

•
$$\mathbb{E}_D[[y - f_{LS}(\boldsymbol{x}_i)]^2 | \boldsymbol{x}_i] = \mathbb{E}_{\epsilon}[[y - f_{LS}(\boldsymbol{x}_i)]^2 | \boldsymbol{x}_i]$$

$$= \operatorname{var}_{\epsilon}[\epsilon] + \left[g(\boldsymbol{x}_i) - \mathbb{E}_{\epsilon}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]\right]^2 + \operatorname{var}_{\epsilon}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]$$

Irreducible error

bias

variance

- "Variance and Bias decomposition"
- Prove it, hint, by our data generating assumption:

•
$$\mathbb{E}_{\epsilon}[[y - f_{LS}(\mathbf{x}_i)]^2 | \mathbf{x}_i] = \mathbb{E}_{\epsilon}[[g(\mathbf{x}_i) + \epsilon - f_{LS}(\mathbf{x}_i)]^2 | \mathbf{x}_i]$$

"Variance and Bias decomposition"

- $\operatorname{var}[\epsilon] + \left[g(\boldsymbol{x}_i) \mathbb{E}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]\right]^2 + \operatorname{var}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]$
 - 1st term measures the randomness of our data generating process, which is beyond our control.
 - 2nd term shows the accuracy of our expected prediction.
 - 3rd term shows how easily our fitted prediction function is affected by the randomness of the dataset.

A Visualization of V-B Decomposition

Variance and Bias Tradeoff

•
$$\operatorname{var}[\epsilon] + \left[g(\mathbf{x}_i) - \mathbb{E}[f_{LS}(\mathbf{x}_i)|\mathbf{x}_i]\right]^2 + \operatorname{var}[f_{LS}(\mathbf{x}_i)|\mathbf{x}_i]$$

- As we increase b, $f_{\rm LS}$ becomes more **complex** and can adapt to more complex underlying function, thus $2^{\rm nd}$ term keeps reducing.
- As we increase b, $f_{\rm LS}$ becomes more **sensitive** to the noise in our dataset, thus $3^{\rm rd}$ term keeps increasing.
- A **balance** between 2nd and 3rd term gives the minimum expected error.

Variance and Bias Tradeoff

Variance and Bias Tradeoff

• As the flexibility decreases (λ increase), bias increases and the variance decreases.

In-Sample Error

- $\mathbb{E}_{\epsilon}[(y f_{LS}(x_i))^2 | x_i]$ is conditional on x_i .
- To calculate the collective error, we need to average over all $oldsymbol{x}_i$.
 - $\bullet \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\epsilon} [(y f_{LS}(\mathbf{x}_i))^2 | \mathbf{x}_i]$
 - is called in sample error

• Can we use in sample error to measure the performance of our $f_{\rm LS}$?

Out-Sample Error

- In sample error is not useful in practice.
 - We cannot calculate $\mathbb{E}_{\epsilon}[(y-f_{\mathrm{LS}}(\pmb{x}_i))^2|\pmb{x}_i]$
 - We do not know g(x) and the distribution of ϵ .
- Instead, we use out-sample error:
 - Error over the entire distribution of x:
 - $\mathbb{E}_{\mathbf{x}}\mathbb{E}_{\epsilon}[(y f_{\mathrm{LS}}(\mathbf{x}))^{2}|\mathbf{x}]$
 - $\mathbb{E}_{\mathbf{x}} \mathbb{E}_{\epsilon} [(y f_{\mathrm{LS}}(\mathbf{x}))^{2} | \mathbf{x}] = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{y}} [(y f_{\mathrm{LS}}(\mathbf{x}))^{2} | \mathbf{x}]$ $= \mathbb{E}_{\mathbf{p}(\mathbf{y}, \mathbf{x})} [(y - f_{\mathrm{LS}}(\mathbf{x}))^{2}]$

Can we approximate out-sample error?

Approx. Out-Sample Error

- ullet Train least-squares on dataset D_0 , getting f_0 ,
- Obtain a fresh batch datapoints $D_1 \coloneqq \{(y_i', x_i') \mid_{i=1}^{n'},$
- D_1 and D_0 are independently and identically distributed:
- $\frac{1}{n'} \sum_{(y',x') \in D_1} (y' f_0(x'))^2 \approx \mathbb{E}_{p(y,x)} [(y f_0(x))^2]$
 - due to law of large numbers.
- $\mathbb{E}_{p(y,x)}[(y-f_0(x))^2] \approx \mathbb{E}_{p(y,x)}[(y-f_{LS}(x))^2]$
- $\frac{1}{n'}\sum_{(y',x')\in D_1}(y'-f_0(x'))^2$ is $E(D_1,f_0)!$
- This justifies the usage of $E(D_1, f_0)$ for evaluating the overfitting of our prediction f_0 .

Conclusion

- The phenomenon of OF can be explained by decomposition of expected error.
- Two types of expected errors can be used for measuring the performance of $f_{\rm LS}$:
 - In-sample error, cannot be computed, unless we know g and dist. of ϵ .
 - Out-sample error, can be roughly approximated by $E(D_1, f_0)$, which is the testing error.

Homework

- Prove variance and bias decomposition.
 - Page 23