Module Interface Specification for Lattice Boltzmann Solvers

Peter Michalski

November 16, 2019

1 Revision History

Date	Version	Notes
Nov. 25, 2019	1.0	Initial Document

2 Symbols, Abbreviations and Acronyms

See CA Documentation for Lattice Boltzmann Solvers (Michalski, a).

Contents

1	Rev	rision 1	History	i	
2	Syn	Symbols, Abbreviations and Acronyms			
3	Introduction				
4	Not	ation		1	
5	Mo	dule D	Decomposition	2	
6	MIS	S of M	I1: Hardware Hiding Module	3	
	6.1	Modu	ı <mark>le</mark>	3	
	6.2	Uses		3	
	6.3	Syntax	ux	3	
		6.3.1	Exported Constants	3	
		6.3.2	Exported Access Programs	3	
	6.4	Semar	ntics	3	
		6.4.1	State Variables	3	
		6.4.2	Environment Variables	3	
		6.4.3	Assumptions	3	
		6.4.4	Access Routine Semantics	4	
		6.4.5	Local Functions	4	
7	MIS	of M	I2: System Control Module	5	
	7.1	Modu	ı <mark>le</mark>	5	
	7.2	Uses		5	
	7.3	Syntax	ux	5	
		7.3.1	Exported Constants	5	
		7.3.2	Exported Access Programs	5	
	7.4	Semar	ntics	5	
		7.4.1	State Variables	5	
		7.4.2	Environment Variables	5	
		7.4.3	Assumptions	5	
		7.4.4	Access Routine Semantics		
		7.4.5	Local Functions	6	
8	MIS	S of M	I3: Input Reading Module	7	
	8.1		ıle	7	
	8.2	Uses		7	
	8.3	Syntax	u <mark>x</mark>	7	
		8.3.1	Exported Constants	7	
		8.3.2	Exported Access Programs		

	8.4	Seman	ntics	. 7
		8.4.1	State Variables	. 7
		8.4.2	Environment Variables	. 7
		8.4.3	Assumptions	. 7
		8.4.4	Access Routine Semantics	. 8
		8.4.5	Local Functions	. 8
9	MIS	of M	4: Input Checking Module	9
	9.1	Modul	le	. 9
	9.2			
	9.3	Syntax	x	. 9
		9.3.1	Exported Constants	. 9
		9.3.2	Exported Access Programs	. 9
	9.4	Seman	ntics	. 9
		9.4.1	State Variables	. 9
		9.4.2	Environment Variables	. 10
		9.4.3	Assumptions	. 10
		9.4.4	Access Routine Semantics	
		9.4.5	Local Functions	. 10
10	MIS	of M	5: LBM Control Module	11
			le	. 11
			x	
		•	Exported Constants	
			Exported Access Programs	
	10.4		ntics	
			State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
11	MIS	of M	6: Streaming Module	13
			x	
	11.0		Exported Constants	
			Exported Access Programs	
	11 4		ntics	
	11.4		State Variables	
			Environment Variables	
			Assumptions	. 10

	11.4.4 Access Routine Semantics	13 14
	11.4.5 Local Functions	14
12 MIS	of M7: Collision Module	15
12.1	Module	15
12.2	<u> Jses </u>	15
12.3	Syntax	15
	12.3.1 Exported Constants	15
	12.3.2 Exported Access Programs	15
12.4	Semantics \dots	15
	12.4.1 State Variables	15
	12.4.2 Environment Variables	15
	12.4.3 Assumptions	15
	12.4.4 Access Routine Semantics	15
	12.4.5 Local Functions	16
	12.4.9 Local I differious	10
13 MIS	of M8: Problem Module	17
13.1	Module	17
13.2	Jses	17
	Syntax	17
	3.3.1 Exported Constants	17
	13.3.2 Exported Access Programs	17
13.4	Semantics	17
	13.4.1 State Variables	17
	13.4.2 Environment Variables	17
	13.4.3 Assumptions	17
	13.4.4 Access Routine Semantics	17
	13.4.5 Local Functions	18
	10.1.0 Local Lateriolis	10
14 MIS	of M9: Lattice Module	19
14.1	Module	19
14.2	<u>Jses</u>	19
14.3	Syntax	19
	14.3.1 Exported Constants	19
	14.3.2 Exported Access Programs	19
14.4	Semantics	19
	14.4.1 State Variables	19
	14.4.2 Environment Variables	19
	14.4.3 Assumptions	19
	14.4.4 Access Routine Semantics	19
	14.4.5 Local Functions	20
	11.1.0 Boom I directions	

15 3	MIS	of M	10: Boundary Module	21
	15.1	Modul	<u>e</u>	21
	15.2	Uses		21
	15.3	Syntax	·	21
		15.3.1	Exported Constants	21
		15.3.2	Exported Access Programs	21
	15.4	Seman	tics	21
		15.4.1	State Variables	21
		15.4.2	Environment Variables	21
		15.4.3	Assumptions	21
		15.4.4	Access Routine Semantics	21
		15.4.5	Local Functions	22
			11: Output Module	23
			e	23
				23
	16.3			23
			Exported Constants	23
			Exported Access Programs	23
	16.4		tics	23
			State Variables	23
			Environment Variables	23
			Assumptions	23
			Access Routine Semantics	23
		16.4.5	Local Functions	24
17 .	App	endix		26

3 Introduction

The following document details the Module Interface Specifications for Lattice Boltzmann Solvers, which provides a library of services based on Lattice Boltzmann Methods (LBM). LBM are a family of fluid dynamics algorithms for simulating single-phase and multiphase fluid flows, often incorporating additional physical complexities (Chen and Doolen, 1998).

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found here (Michalski, b).

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1999), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1999). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Lattice Boltzmann Solvers.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Lattice Boltzmann Solvers uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Lattice Boltzmann Solvers uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	M1: Hardware Hiding Module
Behaviour-Hiding Module	M2: System Control Module M3: Input Reading Module M4: Input Checking Module M5: LBM Control Module M6: Streaming Module M7: Collision Module M8: Problem Module M9: Lattice Module M10: Boundary Module
Software Decision Module	M11: Output Module

Table 1: Module Hierarchy

6 MIS of M1: Hardware Hiding Module

The secrets of this module are the data structure and algorithms used to implement the virtual hardware.

6.1 Module

Hardware Hiding

6.2 Uses

N/A

6.3 Syntax

N/A

6.3.1 Exported Constants

N/A

6.3.2 Exported Access Programs

N/A

6.4 Semantics

N/A

6.4.1 State Variables

N/A

6.4.2 Environment Variables

The module has external interaction with the environment when either the Output Module M11 (Section 16) or Input Reading Module M3 (Section 8) require its services for reading inputs or writing outputs.

6.4.3 Assumptions

M11 (Section 16) or M3 (Section 8) have called the modules services.

6.4.4 Access Routine Semantics

N/A

6.4.5 Local Functions

N/A

7 MIS of M2: System Control Module

The secret of this module is the algorithm to control Lattice Boltzmann Solvers.

7.1 Module

System Control

7.2 Uses

- Output (Section 16)
- Input Reading (Section 8)
- LBM Control (Section 10)
- Problem Parameter (Section 13)

7.3 Syntax

7.3.1 Exported Constants

N/A

7.3.2 Exported Access Programs

N/A

7.4 Semantics

7.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

7.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

7.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

7.4.4 Access Routine Semantics

```
[accessProg —SS]():
```

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

7.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

8 MIS of M3: Input Reading Module

The secret of this module is the algorithm that gathers the input data.

8.1 Module

Input Reading

8.2 Uses

- Input Checking
- Hardware Hiding

8.3 Syntax

8.3.1 Exported Constants

 $LIBRARY_IN$: string $DIMENSIONS_IN$: \mathbb{N} VEL_DIR_IN : \mathbb{N}

INPUTS: array of strings, \mathbb{R} , \mathbb{N}

8.3.2 Exported Access Programs

inputArray	string	array of strings, \mathbb{R} , \mathbb{N} -

8.4 Semantics

8.4.1 State Variables

Input_Location: string

8.4.2 Environment Variables

N/A

8.4.3 Assumptions

The System Control Module M2 (Section 7) has called the inputArray function of this module.

8.4.4 Access Routine Semantics

[accessProg -SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

8.4.5 Local Functions

Name	In	Out	Exceptions
open	string	object	NOT_FOUND
			ERR_READ
readline	object	-	NO_LINES

9 MIS of M4: Input Checking Module

This secret of this module is the algorithm that checks if input values fall within allowable parameters.

9.1 Module

Input Checking

9.2 Uses

N/A

9.3 Syntax

9.3.1 Exported Constants

N/A

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
verifyInputs	string array	boolean	OUT_OF_BOUNDS
			UNKN_PARM

9.4 Semantics

9.4.1 State Variables

LIBRARIES: set of strings: {pyLBM}

DIMENSIONS: set of \mathbb{N} : {2} VEL_DIRS: set of \mathbb{N} : {9} REYNOLDS_MIN: \mathbb{R} : {0.001} REYNOLDS_MAX: \mathbb{R} : {5000}

DENSITY_MIN: \mathbb{R} : $\{0.0708\}$

 $DENSITY_MIN: \mathbb{R}: \{13.6\}$

 $BULK_{-}VIS_{-}MIN$: \mathbb{R} : $\{0.0001\}$

 $BULK_{-}VIS_{-}MIN: \mathbb{R}: \{20000\}$

SHEAR_VIS_MIN: \mathbb{R} : {0.001}

 $SHEAR_{-}VIS_{-}MIN$: \mathbb{R} : {20000}

 $TIME_MIN: \mathbb{N}: \{1\}$ $LIBRARY_IN: string$ $DIMENSIONS_IN: \mathbb{N}$ $VEL_DIR_IN: \mathbb{N}$

```
Re: \mathbb{R}
\rho: \mathbb{R}
\eta_b: \mathbb{R}
\eta_s: \mathbb{R}
t: \mathbb{N}
a: \mathbb{R}
c_s: \mathbb{R}
e: \mathbb{R}
F: \mathbb{R}
kg: \mathbb{R}
u: \mathbb{R}
```

9.4.2 Environment Variables

N/A

9.4.3 Assumptions

The Input Reading Module M3 (Section 8) has called the verifyInputs function of this module.

9.4.4 Access Routine Semantics

```
[accessProg —SS]():
```

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

9.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope.—SS]

10 MIS of M5: LBM Control Module

The secret of this module is the algorithm which controls the LBM library.

10.1 Module

LBM Control

10.2 Uses

- Streaming
- Collision

10.3 Syntax

10.3.1 Exported Constants

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
vortVal	array of strings, \mathbb{R} , \mathbb{N}	array of \mathbb{R}	-

10.4 Semantics

10.4.1 State Variables

array of vorticity vector values

10.4.2 Environment Variables

N/A

10.4.3 Assumptions

The System Control Module M2 (Section 7) has called the vortVal function of this module.

10.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

10.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

11 MIS of M6: Streaming Module

The secret of this module is the algorithm to calculate the streaming pf particles.

11.1 Module

Streaming

11.2 Uses

N/A

11.3 Syntax

11.3.1 Exported Constants

N/A

11.3.2 Exported Access Programs

Name In	Out	Exceptions
bgkCollision array of strings, \mathbb{R} , \mathbb{N}	\mathbb{R}	NAN_ERROR

11.4 Semantics

11.4.1 State Variables

N/A

11.4.2 Environment Variables

N/A

11.4.3 Assumptions

The LBM Control Module M5 (Section 10) has called the bgkCollision function of this module.

11.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

11.4.5 Local Functions

Name	In	Out	Exceptions
relatUpdate	array of strings, \mathbb{R} , \mathbb{N}	\mathbb{R}	NAN_ERROR
equilDistrib	array of strings, \mathbb{R} , \mathbb{N}	\mathbb{R}	NAN_ERROR
relaxRate	\mathbb{R},\mathbb{N}	\mathbb{R}	NAN_ERROR

12 MIS of M7: Collision Module

The secret of this module is the algorithm to calculate the collision of particles.

12.1 Module

Collision

12.2 Uses

N/A

12.3 Syntax

12.3.1 Exported Constants

N/A

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
streaming	Fun a rray of	$trings, \mathbb{R}, \mathbb{N} = \mathbb{R}$	NAN_ERROR

12.4 Semantics

12.4.1 State Variables

N/A

12.4.2 Environment Variables

N/A

12.4.3 Assumptions

The LBM Control Module M5 (Section 10) has called the streamingFunc function of this module.

12.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

12.4.5 Local Functions

Name	In	Out	Exceptions
prbDnsFun	c array of \mathbb{R} , \mathbb{N}	\mathbb{R}	NAN_ERROR

13 MIS of M8: Problem Module

The secret of this module is the structure of the LBM input parameters.

13.1 Module

Problem Parameter

13.2 Uses

- Lattice
- Boundary

13.3 Syntax

13.3.1 Exported Constants

N/A

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
formatInpu	t array of \mathbb{R} , \mathbb{N}	array of \mathbb{R} , \mathbb{N}	-

13.4 Semantics

13.4.1 State Variables

N/A

13.4.2 Environment Variables

N/A

13.4.3 Assumptions

The System Control Module M2 (Section 7) has called the formatInput function of this module.

13.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate—SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

13.4.5 Local Functions

N/A

14 MIS of M9: Lattice Module

The secret of this module is the structure of the lattice model.

14.1 Module

Lattice

14.2 Uses

N/A

14.3 Syntax

14.3.1 Exported Constants

N/A

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
setLattice	array of \mathbb{R}	array of N	No_LATTICE

14.4 Semantics

14.4.1 State Variables

Array of tuples $<\mathbb{R}><\mathbb{R}><\mathbb{R},\mathbb{N}_0...\mathbb{R}_n>$

14.4.2 Environment Variables

N/A

14.4.3 Assumptions

The Problem Module M8 (Section 13) has called the setLattice function of this module.

14.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. --SS

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

14.4.5 Local Functions

N/A

15 MIS of M10: Boundary Module

The secret of this module is the structure of the model boundary.

15.1 Module

Boundary

15.2 Uses

N/A

15.3 Syntax

15.3.1 Exported Constants

N/A

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
boundFunc	array of \mathbb{R}	array of \mathbb{R}	-

15.4 Semantics

15.4.1 State Variables

N/A

15.4.2 Environment Variables

N/A

15.4.3 Assumptions

The Problem Module M8 (Section 13) has called the boundFunc function of this module.

15.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- \bullet output: [if appropriate —SS]
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. --SS

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

15.4.5 Local Functions

N/A

16 MIS of M11: Output Module

The algorithm to convert the LBM output into an image.

16.1 Module

Output

16.2 Uses

• System Control Module

16.3 Syntax

16.3.1 Exported Constants

N/A

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
imageFunc	array of \mathbb{R}	image format	-

16.4 Semantics

16.4.1 State Variables

N/A

16.4.2 Environment Variables

N/A

16.4.3 Assumptions

The System Control Module M2 (Section 13) has called the imageFunc function of this module.

16.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. -SS

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

16.4.5 Local Functions

N/A

References

- Shiyi Chen and Gary D Doolen. Lattice Boltzmann method for fluid flows. *Annual review of fluid mechanics*, 30(1):329–364, 1998.
- Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.
- Daniel Hoffman and Paul Strooper. Software Design, Automated Testing, and Maintenance—A Practical Approach. 1999.
- Peter Michalski. Lattice Boltzmann Solvers CA, a. URL https://github.com/peter-michalski/LatticeBoltzmannSolvers/blob/master/docs/SRS/CA.pdf.
- Peter Michalski. Lattice Boltzmann Solvers, b. URL https://github.com/peter-michalski/LatticeBoltzmannSolvers.

17 Appendix

 $[{\bf Extra~information~if~required~-\!SS}]$