Anton Haase, Midrael Goerz

Versuchseide: 67

Aufgabe 1:

Geräte: Spannungs- und Stommessung.

VOLTKRAFT M80:

DC-V: 0,5 % v. M. + 1D

DC-A: 1% VM. + 2D

Transistor: 2N3094

Wollehlorshown Ie, max = 200 mA

Verlustleistung Pmax = 300 mW

Schaltung:

Messing 1: (Is & 30 MA) Washipt as ?

1	UEC/V	I. /mA	UEB/mV	IB/WA
UEC ? 0,01-	-> 2,002, (3,016) (3,0	3.94) 3.98037 3.33,444 4.47 4.47	754) 7533 7553 7550 7550 757 757	29 (29) 30 30 30 30 30 30 30
	12,00	4,21 3,97	748 751	30 30

Mossung 7: (IB = 60 MA)

UFC/V	Ic/mA	UEB/mV	IB/ut
2,070 3,001 4,00 5,00 6,00 8,00 12,08 1,54	8,61 8,71 8,83 9,83 9,29 9,47 8,76	841 840 833 833 833 840 840 840 840 840	600000000000000000000000000000000000000

Massing 3: (IB & 90 MA)

UEC/V	IchnA	UEB/unV	IB/uA
1,434 2,004 3,07 5,03 8,01 10,05	12,94 13,06 13,45 13,45 14,39 14,39 15,47	918 918 912 915 915 913 918	90 90 90 991

Messung 4: (IB 2 120 MA)

UEC/V	Ic/mA	UEB/MV	I3/uA
1 (12)	17 50	000	120
1,424 2,008	17,50 17,63	386	120
3,005	17,94	987	121
\mathcal{L}_{∞}	18,30	987	120 120
5,03 6,01	18,61	987	120
8,08	19,98	182 186	120
10,04 12,05	20,65 21,60	985 985	120 120
20 Cf.Os	21,00		

Aufgabe 2: (Schaltbild siehe Vorbereitung)

1) Asschätzung des Arbeitswiderstandes:

2) Versorgungs granspannung: 12,07 V RA = 464,1 Q (ESCORT ELC - 131D) Lis R: 0,5% v.M. +3D

Rv/a	IB/MA	Ic/m4	UEC/V
180	161	22,99	1,107
680	160	22,80	1,181
1000	158	27,58	1,2287
2200	.155	22,19	1,399
10000	138	20,13	2,373
18000	123	18,39	3,200
100 000	64	9,87	7,21
330000	29	4,04	10,00
33 ∞ 0	105	15,92	4,34

3.) Qualitative Beobadhung am Oszilleshop:

Für eine Freguenz von 1000Hz war eine Verstärkung der Spannungsamplitude vom um den Fahtor 5 zu beobachten. Das verstärkte Signal war zudem um + T/2 Phaser verschoben. Der Webber verwendete Vorwiderstand lag bei 10 HZ.

Die Halbierung der Frequenz auf 500 Hz führte auch zu einer Halbierung der Verstärkungsfahlers. Eine Veränderung der Phasonlage ist nicht zu beobachen gewesen.

Die Veränderung des Vorwiderstandes ergab bei eine Ethähung auch eine Vergrößerung der Verstärhung. Ansgenommen bei dem Wehsel vor 100 M2 zu 330 M2. Dort war Veine Wänderung zu beobachten.

Die Veringerung der Verstärkung. Die Flikkheurz eine Verstärkung. Die Flikkheurz vor Frequenzashängigkeit der Verstärkung veränderte sich nicht.

Quantilative Messung: (VOLTURAFT HC-5050 DB) =1006Hz

ţ					
Rv=10 ×2	UEB/mV	UEC/V	R= 1842	UEB/mV	UEC/V
	46,24	0,290		54,2	0,484
	62,0	0,358	73,	7 264/10	0,655
	\$151, 83,8	0,488		94,1	0,817
	100,5	0,580		1209	1,035
	121,6	0,699			
	142,5	0,816			