Chapter 3

Terminology and knowledge

3.1 <u>Integrated semiconductor companies</u>

Companies that design and fabricate integrated circuits

Fabless

With no fabrication/processing facility

Foundries

Companies that specialize in processing wafers to produce silicon devices

Wafer fab

Fabrication facility where wafers are processed to produce silicon devices

Integrated circuits

System of transistors manufactured on silicon wafers

CPU

Central processor unit that is an active part of computer containing the datapath and control

DRAM

Dynamic random access memory

Flat-panel displays

Display panels with flat screens

MEMS

Micro-electro-mechanical-system

DNA chips

Silicon chips used for DNA screening

Dry oxidation

Growth of SiO₂ using oxygen gas

Wet oxidation

Growth of SiO₂ using water vapor

Horizontal furnace

Horizontally oriented oxidation furnace

Vertical furnace

Vertically oriented oxidation furnace

Photolithography/Optical lithography

Process in which the resist is optically patterned and selectively removed from designated areas on a wafer

Wafer stepper

Equipment used in lithography process

Photoresist

Ultraviolet-light sensitive material

Photomask

Quartz photo-plate containing a copy of pattern to be transferred to Si or SiO₂ surface

Negative resist

Photoresist that becomes polymerized and resistant to a developer when exposed to an UV light

Positive resist

Photoresist whose stabilizer breaks down when exposed to an UV light, leading to the preferential removal of exposed regions in a developer

Strip

Removal of photoresist

<u>Asher</u>

System that removes the resist on a wafer by oxidizing it in oxygen plasma or UV ozone system

Lithography field

Small area exposed to an UV light during the exposure through a photomask and an optical reduction system

Stepper

Another name for lithography equipment

Step-and-repeat action

The process of exposing different parts of a wafer until the whole wafer has been exposed

Phase-shift photomask

Photomask that produces 180 degree phase difference in neighboring clear features so that their diffraction fringes cancel each other

Optical Proximity Correction (OPC)

Printing a slightly different shape on the photomask to correct distortions resulting from an exposure process

Overlay

Alignment between 2 separate lithography steps

Extreme UV lithography (EUVL)

Lithography that uses 13nm wavelength and is expected to result in much higher resolution

Soft-x-ray lithography

Old name of EUVL

Electron-beam lithography (EBL)

Lithography using a focused stream of electrons

Electron projection lithography (EPL)

EBL that exposes a complex pattern simultaneously using a mask and a reduction electron lens system

Wet etching

Removal of SiO₂ using hydrofluoric acid

<u>Isotropic</u>

Without preference in direction

Dry etching (also known as plasma etching or reactive-ion etching (RIE))

Removal of SiO₂ using plasma and reactive ions

<u>Anisotropic</u>

With preference in direction

Selectivity

The extent in which an etching process distinguishes between different materials

End-point detector

Detector that monitors the emission of characteristic light from the etching products so as to signal when etching should end

Plasma process induced damage / Wafer charging damage

Damage to devices on wafers due to the use of plasma

Antenna Effect

Sensitivity of the damage to the size of the conductor

Ion implantation

Method of doping in which ions of impurity are accelerated and shot into the semiconductor surface

Gas-source doping

Method of doping in which a gas reacts with silicon and liberates phosphorus so that phosphorous diffuses into the silicon substrate

Solid-source diffusion

Method of doping in which the dopants from the thin film coated on the silicon surface diffuse into silicon

Anneal

Heating of wafers for dopant activation and damage removal

Dopant activation

Making dopants behave as donors and acceptors by heating the wafers

Implantation dose

Total number of implanted ions/cm²

Depth/Range

The location of peak concentration below the surface of silicon

Straddle

Spread of dopant concentration profile

3.2 Diffusion

The movement of molecules from an area of high concentration to an area of low concentration

Junction depth

Thickness of diffusion layer

Diffusivity

Constant that describes how quickly a given impurity diffuses in silicon for a given furnace temperature

Predeposition

Portion of diffusion process step with the source present

Drive-in

Portion of diffusion process step without the source

Furnace annealing

Heating of wafers in a furnace for dopant activation and damage removal

Rapid thermal annealing (RTA)

Annealing process in which a wafer is rapidly heated to high temperature and cooled quickly down to the room temperature

Rapid thermal oxidation

Oxidation process in which a wafer is heated to the designated temperature quickly, oxidized, and then cooled rapidly down to the room temperature

Rapid thermal chemical vapor deposition (CVD)

Chemical vapor deposition process in which a wafer is heated to the designated temperature quickly, the material is deposited on the wafer, and the wafer is cooled rapidly down to the room temperature

Laser annealing

Annealing process in which a silicon wafer is heated with a pulsed laser

<u>Transient enhanced diffusion (TED)</u>

Diffusion phenomena in which diffusion rate is increased by crystal damage due to ion implantation

Interconnect

Metal connection between devices in integrated circuits

Inter-metal dielectrics

Materials used for electrical isolation between metal layers

Crystalline

Molecular structure with nearly perfect periodicity

Polycrystalline

Molecular structure composed of densely packed crystallites or grains of singlecrystals

Amorphous

Structure with no atomic or molecular ordering

Grain boundary

Interface between crystal grains

Thin-film transistors (TFT)

Transistors made of amorphous or polycrystalline silicon, widely used in flat-panel displays

Sputtering target

The source material for sputtering

Reactive sputtering

Sputtering accompanied by chemical reaction of sputtered ions. For example, Ti sputtered in nitrogen gas forms TiN film on the Si wafer

Physical vapor deposition (PVD)

Another name for sputtering

Step coverage problem

The inability of sputtering to deposit uniform films in small holes or vertical features on wafer

High-temperature oxide (HTO)

Very conformal oxide formed by a CVD process at a high temperature

Low-pressure chemical vapor deposition (LPCVD)

CVD process at low pressure, which yields good thickness uniformity and low gas consumption

Plasma-enhanced chemical vapor deposition (PECVD)

CVD using plasma; low deposition temperatures

In-situ doping

Doping process in which dopant species are introduced during the CVD deposition of polycrystalline silicon

Spin-on

Process in which liquid materials are spun onto the wafer

Epitaxy

Special type of thin-film deposition technology that produces a crystalline layer on silicon surfaces that is an extension of the underlying semiconductor crystal arrangement

Metallization

Interconnection of individual devices by metal lines

Via/ Plug

Electrical connection between adjacent metal layers

Electromigration

Migration of metal along the crystal-grain boundaries in a quasi-random manner, causing voids to occur in metal interconnects

Damascene process

Process used to form copper interconnect lines

Chemical-mechanical polishing (CMP)

Process in which a polishing pad and slurry are used to polish away material and leave a very flat surface

Back-end process

Metallization; last step of IC fabrication

Front-end processes

Oxidation, diffusion

Planarization

Process to obtain a flat surface to improve lithography and etching

Multi-chip modules

Multiple chips put into one package

Solder bumps

Electrical connection between chip and package

Flip-chip bonding

Melting pre-formed solder bumps on IC pads to make all connections simultaneously

Burn-in

Subjecting IC packages to higher than normal voltage and temperatures; identify potential failures

Qualification

Routine used to verify the quality of manufacturing and reliability

Operation life test

Part of qualification process; to find out if the devices last over one thousand operating hours

3.3 (a) Lithography field

A small area having the best optical resolution (The beam intensity is uniform within a lithography field.)

- (b) Misalignment
 - Layer to layer mismatch (Each new mask level should be aligned to one of the previous levels)
- (c) Selectivity

The ratio of etching rate of the film to be etched to that of the substrate film below

(d) End-point detection

Detecting the exposed substrate film after the removal of the desired film.

(e) Step coverage

The ratio of film thickness deposited on the flat surface to that deposited on the non-flat surface.

(f) Electromigration

The movement of atoms in a metal film due to momentum transfer from the electrons carrying the current.

- **3.4** (a) Wet. Otherwise, it would take too long to grow the thick oxide.
 - (b) Dry because it provides better control of the gate (channel) length and vertical wall profile.
 - (c) Arsenic because
 - it is a donor ion (group V),
 - it reduces R_p and ΔR_p , and
 - it reduces diffusivity.
 - (d) PECVD
 - (e) Sputtering, dry etching, plasmas containing chlorine.

 $\begin{picture}(f) \hfill \h$

Oxidation

3.5 Wet oxidation is faster than dry oxidation because the solid solubility of H_2O steam into SiO_2 is higher than that of O_2 gas into SiO_2 . This creates a very sharp concentration profile that causes H_2O to diffuse towards the SiO_2 -Si interface much more effectively than O_2 under the same conditions.

3.6 (a)
$$\tau = \frac{0.2um * 0.2um + 0.165um * 0.2um}{0.0117um^2 / hr} = 6.239hr$$

Solving the given equation for t_{ox} and using quadratic formula,

$$T_{ox} = \frac{-A + \sqrt{A^2 + 4B(t + \tau)}}{2} = 0.256um.$$

(b) Linear approximation: $T_{ox} \approx \frac{B}{A}(t+\tau) => 0.655 \text{um} (156\% \text{ error}).$

Quadratic approximation: $T_{ox}^2 \approx B(t + \tau) => 0.320$ um (25% error).

In this case $A \approx T_{ox}$, neither linear nor quadratic approximations would be valid.

Deposition

3.7 Poly Silicon:

$$SiH_4 \rightarrow Si(s) + 2H_2$$

Silicon Nitride:

$$3SiH_2Cl_2 + 4NH_3 \rightarrow Si_3N_4 + 6HCl + 6H_2$$

LTO:

$$SiH_4 + O_2 \rightarrow SiO_2 + 2HCl + 2H_2$$

HTO:

$$SiH_2Cl_2 + 2H_2O \rightarrow SiO_2 + 2HCl + 2H_2$$

Diffusion

3.8 (a)
$$x_{j} = \sqrt{Dt} \Rightarrow x_{j} + \Delta x_{j} = \sqrt{Dt + \Delta(Dt)}$$

$$x_{j}^{2} + 2x_{j}\Delta x_{j} + (\Delta x_{j}) = Dt + \Delta(Dt) = x_{j}^{2} + \Delta(Dt)$$

$$2x_{j}\Delta x_{j} + (\Delta x_{j}) = \Delta(Dt)$$
Since $x_{j} >> \Delta x_{j}$,
$$2x_{j}\Delta x_{j} \approx \Delta(Dt) \Rightarrow \Delta x_{j} \approx \frac{\Delta(Dt)}{2x_{j}}$$
.

(b) For boron,

$$D(500\text{K}) = 10.5 \times \text{Exp}[-3.69/(8.614 \times 10-5 \times 773)] \text{cm} 2/\text{sec} = 9.0 \times 10^{-24} \text{ cm}^2/\text{sec}$$
, and 500 years = $1.58 \times 10^{10} \text{ sec}$.

Hence.

$$\Delta x_j = 1.42 \times 10^{-13} \, cm = 1.42 \times 10^{-9} \, \mu m$$
.

Our assumption $(x_i >> \Delta x_i)$ in part (a) is correct.

3.9 (a) Junction depth is distance from surface where the dopant concentration equals the substrate concentration.

$$\begin{split} N_{sub} &= N_d = N_{junction} = 10^{15} \, cm^{-3} \quad \text{(Required junction dopant concentration)} \\ \text{From Eq. (3.6.1),} \\ N_{junction} &= \frac{N_0}{\sqrt{\pi Dt}} \, e^{-\frac{x_j^2}{4Dt}} = 10^{15} \, cm^{-3} \end{split}$$

Using

$$D = D_0 e^{-E_a/kT}, \quad D_0 = 10.5 \, cm^2 \, / \, \text{sec}, \quad N_0 = 10^{15} \, cm^{-2}, \quad and \ E_a = 3.7 eV \, ,$$

$$X_j = 1.97 \times 10^{-4} \, cm \, .$$

(b) X_i has the form

$$X_{j} = 2\sqrt{Dt} \left[\ln \left(\frac{k}{\sqrt{Dt}} \right) \right]^{1/2}.$$

Taking the derivative,

$$\frac{dX_{j}}{dDt} = \frac{1}{\sqrt{Dt}} \left\{ \left[\ln \left(\frac{k}{\sqrt{Dt}} \right) \right]^{1/2} - \frac{1}{2 \left[\ln \left(\frac{k}{\sqrt{Dt}} \right) \right]^{1/2}} \right\} = \frac{X_{j}}{2Dt} - \frac{1}{X_{j}}.$$

$$\frac{dX_{j}}{dDt} = \frac{1.98 \times 10^{-4}}{2 \times 10^{-9}} - \frac{1}{1.98 \times 10^{-4}} = 9.39 \times 10^{4} \, cm^{-1}$$

$$\Delta Dt = 10.5 e^{\frac{-3.70}{373}}. \left(10^{6} \right) \left(3600 \right) = 3.996 \times 10^{-40} \, cm^{2}$$
Hence, $\Delta X_{j} = \frac{\partial X_{j}}{\partial Dt}. \Delta Dt = 3.75 \times 10^{-35} \, cm \approx 0.$

Visualization

1.0um oxide
Silicon substrate

Changing the polarity of the contact 1 mask results in the same cross section as problem **3.10** (d). The same cross-section is obtained by using a negative resist and the reversed mask of contact 1, which is opaque in the inside of contact 1 area.