Ratio C	F_e	ext	cla	SS	GC	sp	op	t/C	F_e	xt	car	mb	GC	S	o_opt
$\Omega_{ ext{m, 0}}$	-1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
$\Omega_{ m b,0}$	-0.99	1.00	1.00	0.93		0.97	0.96	0.93	1.48	0.99	0.99	0.99	0.98		1.4
$n_{ m s}$	-1.00	1.00	1.00	1.00	1.23	1.01	1.01	1.03	0.99	1.00	1.00	1.00	1.00		
h	-1.00	0.93	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		-1.3
σ_8	-1.00		1.23	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.5
$\ln(b_g\sigma_8)_1$	-1.00	0.97	1.01	1.00	1.00	1.00	nan	nan	nan	1.00	nan	nan	nan		1 2
$\ln(b_g\sigma_8)_2$	-1.00	0.96	1.01	1.00	1.00	nan	1.00	nan	nan	nan	1.00	nan	nan		1.2
$\ln(b_g\sigma_8)_3$	-1.00	0.93	1.03	1.00	1.00	nan	nan	1.00	nan	nan	nan	1.00	nan		
$\ln(b_g\sigma_8)_4$	-1.00	1.48	0.99	1.00	1.00	nan	nan	nan	1.00	nan	nan	nan	1.00		1.1
P_{S1}	-1.00	0.99	1.00	1.00	1.00	1.00	nan	nan	nan	1.00	nan	nan	nan		
P_{S2}	-1.00	0.99	1.00	1.00	1.00	nan	1.00	nan	nan	nan	1.00	nan	nan		1.0
P_{S3}	-1.00	0.99	1.00	1.00	1.00	nan	nan	1.00	nan	nan	nan	1.00	nan		

1.00

nan

nan

nan

 P_{S2}

1.00

 P_{S4}

nan

 P_{S3}

nan

nan

 $\sigma_8 \ln(b_g \sigma_b) (b_g \sigma_b) (b_g \sigma_b) (b_g \sigma_b) (b_g \sigma_8)_4 P_{S1}$

1.00 0.98 1.00

 $\Omega_{\mathrm{m,0}}$ $\Omega_{\mathrm{b,0}}$

1.00 1.00

h

 $n_{
m s}$