#Load Packages

library(readr)

library(caret)

library(pROC)

library(dplyr)

library(h2o)

h2o.init(nthreads=-1)

library(rattle.data)

#Import Data

c card <- h2o.importFile("E:/creditcard.csv")</pre> dim(c_card)

head(c_card, n=5)

h2o.table(c_card\$Class)

#Convert data to h2o and split them

#convert data to h2o c_card <- as.h2o(c_card)</pre>

#Split data into classes

set.seed(123)

training <- twoClassSim(floor(0.001*nrow(c card)), intercept = -13) testing <- twoClassSim(floor(0.75*nrow(c_card)), intercept = -13)

table(training\$Class)

nmin <- sum(training\$Class == "Class2")</pre> nmin

#Train two random forest models: one using down-sampling and another with the standard sampling procedure

```
ctrl <- trainControl(method = "cv",
           classProbs = TRUE,
           summaryFunction = twoClassSummary)
```

#Down-sampling

set.seed(2)

rfDownsampled <- train(Class ~ ., data = training,

```
method = "rf".
             ntree = 1500,
             tuneLength = 5,
             metric = "ROC",
             trControl = ctrl,
             #sample by class
             strata = training$Class,
             #specify that the number of samples selected within each class
             sampsize = rep(nmin, 2))
#Standard sampling
set.seed(2)
rfUnbalanced <- train(Class ~ ., data = training,
            method = "rf",
            ntree = 1500,
            tuneLength = 5,
            metric = "ROC",
            trControl = ctrl)
#Compute the test set ROC curves for both procedures
#Compute down-sampled ROC test set
downProbs <- predict(rfDownsampled, testing, type = "prob")[,1]</pre>
downsampledROC <- roc(response = testing$Class,</pre>
            predictor = downProbs,
            levels = rev(levels(testing$Class)))
#Compute unbalanced ROC test set
unbalProbs <- predict(rfUnbalanced, testing, type = "prob")[,1]</pre>
unbalROC <- roc(response = testing$Class,
         predictor = unbalProbs,
         levels = rev(levels(testing$Class)))
#Plot the curves and determine the area under each curve
#Plot down-sample ROC curve chart
plot(downsampledROC, col = rgb(1, 0, 0, .5), lwd = 2,
  response = testing$Class,
  predictor = downProbs,
  levels = rev(levels(testing$Class)))
#Plot unbalanced ROC curve chart
plot(unbalROC, col = rgb(0, 0, 1, .5), lwd = 2,
  add= TRUE,
  response = testing$Class,
  predictor = unbalProbs,
  levels = rev(levels(testing$Class)))
```

```
legend(.4, .4,

c("Down-Sampled", "Normal"),

lwd = rep(2, 1),

col = c(rgb(1, 0, 0, .5), rgb(0, 0, 1, .5)))
```

#Training performance

getTrainPerf(rfDownsampled)

#Area under the curve for down-sample

auc(downsampledROC)

TrainROC <dbl></dbl>	TrainSens <dbl></dbl>	TrainSpec method
0.9321667	0.9756667	0.5166667 rf
Area under tl	he curve: 0.9159	

#Splitting the dataframe

the ratios should sum up to to be less than 1.0.

Identify predictors and response

```
y <- "Class"
x <- setdiff(names(train), y)
```

For binary classification, response should be a factor

```
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
valid[,y] <- as.factor(valid[,y])</pre>
```

Number of CV folds (to generate level-one data for stacking)

nfolds <- 5

	Tim a	1/1	V2	N2	M	ME	NC	1/7	1/0	1/0		110	v
	Time <dbl></dbl>	V1 <dbl></dbl>	V2 <dbl></dbl>	V3 <dbl></dbl>	V4 <dbl></dbl>		V6 <dbl></dbl>	V7 <dbl></dbl>	V8 <dbl></dbl>	V9 <dbl></dbl>		10 bl>	\ <d< td=""></d<>
		-1.359807	-0.07278117	2.53634674	1.3781552	-0.3383208	0.46238778	0.23959855	0.0986979	0.3637870	0.090794	17 -0.	0.551599
2		-1.358354	-1.34016307	1.77320934	0.3797796	-0.5031981	1.80049938	0.79146096	0.2476758	-1.5146543	0.207642	87 0.	.62450
3	12	1.103215	-0.04029621	1.26733209	1.2890915	-0.7359972	0.28806916	-0.58605679	0.1893797	0.7823329	-0.267975	07 -0.	.45031
4	18	1.166616	0.50212009	-0.06730031	2.2615692	0.4288042	0.08947352	0.24114658	0.1380817	-0.9891624	0.922174	97 0.	.74478
5	22	-1.946525	-0.04490051	-0.40557007	-1.0130573	2.9419677	2.95505340	-0.06306315	0.8555463	0.0499669	0.573742	51 -0.	0.08125
6	25	1.114009	0.08554609	0.49370249	1.3357600	-0.3001886	-0.01075378	-0.11876002	0.1886167	0.2056868	0.082262	26 1.	.13355
	V12 <dbl></dbl>		/13 V14 lbl> <dbl></dbl>				V18 <dbl></dbl>	V19 <dbl></dbl>	V20 <dbl></dbl>	V21 <dbl></dbl>		V22 <dbl></dbl>	
-0.61	1780086						0.02579058	0.4039930	0.25141210	-0.018306778	0.2778		
1.06	6523531	0.48909	950 -0.1437723	0.6355581	0.4639170	-0.1148047	-0.18336127	-0.1457830	-0.06908314	-0.225775248	-0.6386	71953	
0.06	6608369	0.71729	927 -0.1659459	2.3458649	-2.8900832	1.1099694	-0.12135931	-2.2618571	0.52497973	0.247998153	0.7716	79402	
0.17	7822823	0.50775	69 -0.2879237	-0.6314181	-1.0596472	-0.6840928	1.96577500	-1.2326220	-0.20803778	-0.108300452	0.0052	73597	
0.53	3819555	1.34585	516 -1.1196698	0.1751211	-0.4514492	-0.2370332	-0.03819479	0.8034869	0.40854236	-0.009430697	0.7982	78495	
(/19 bl>	V20 <dbl></dbl>	V21 <dbl></dbl>	V22 <dbl></dbl>	V23 <dbl></dbl>	V24 V2 <dbl> <dbl< td=""><td></td><td>V27 <dbl></dbl></td><td>V28 <dbl></dbl></td><td>Amount <dbl></dbl></td><td>Class <dbl></dbl></td><td></td></dbl<></dbl>		V27 <dbl></dbl>	V28 <dbl></dbl>	Amount <dbl></dbl>	Class <dbl></dbl>	
	0.40399		41210 -0.01830			04739 0.0669			0.133558377	-0.02105305	149.62	0	
	-0.14578	30 -0.069	08314 -0.22577	75248 -0.6386	71953 0.10	12880 -0.3398	84648 0.167170	0.1258945	-0.008983099	0.01472417	2.69	0	
	-2.26185	71 0.524	97973 0.24799	8153 0.7716	79402 0.90	94123 -0.6892	28096 -0.327641	8 -0.1390966	-0.055352794	-0.05975184	378.66	0	
	-1.23262	20 -0.208	03778 -0.10830	0.0052	273597 -0.19	03205 -1.175	57533 0.647376	0.2219288	0.062722849	0.06145763	123.50	0	
		69 0.408	54236 -0.00943	0.7982	78495 -0.13	74581 0.1412	26698 -0.206009	0.5022922	0.219422230	0.21515315	69.99	0	
	0.80348												

#Build RF Model #2000 is recommended #30 is recommended

```
cc_rfmodel <- h2o.randomForest(
    training_frame = train,
    validation_frame = valid,
    x=x,
    y= 'Class',
    model_id = "cc_rfmodel",
    ntrees = 2000,
    max_depth = 20 ,
    stopping_rounds = 2,
    stopping_tolerance = 1e-2,
    score_each_iteration = T,
    seed=1234)</pre>
```

Get the AUC on the validation set

h2o.auc(h2o.performance(cc_rfmodel , newdata = test))

Rf_predictions<-h2o.predict(object = cc_rfmodel, newdata = valid)

#Hyper parameters and h2o grid search

```
hyper_params = list( ntrees = seq(100,1000,200),
           max_depth=seq(5, 12, 8))
cc.grid <- h2o.grid(hyper_params = hyper_params,
         search_criteria = list(strategy = "Cartesian"),
         algorithm="randomForest",
         grid id="rf.grid",
         x = x,
         y = 'Class',
         training_frame = train,
         validation_frame = valid,
         seed = 123456,
         stopping_rounds = 5,
         stopping_tolerance = 1e-8,
         stopping_metric = "AUC",
         score_tree_interval = 10)
cc.grid
summary(cc.grid)
```

	max_depth <chr></chr>	ntrees <chr></chr>	model_ids <chr></chr>	logloss <chr></chr>
1	11	900	rf.grid_model_19	0.003519959285996883
2	- 11	700	rf.grid_model_15	0.003519959285996883
3	- 11	300	rf.grid_model_7	0.003519959285996883
4	- 11	500	rf.grid_model_11	0.003519959285996883
5	- 11	100	rf.grid_model_3	0.0035363662701978233
6	8	300	rf.grid_model_6	0.003710169187427133
7	8	500	rf.grid_model_10	0.003710169187427133
8	8	700	rf.grid_model_14	0.003710169187427133
9	8	900	rf.grid_model_18	0.003710169187427133
10	8	100	rf.grid_model_2	0.0037291343992123006
11		500	rf.grid_model_9	0.003973746740935194
12		700	rf.grid_model_13	0.003973746740935194
13		300	rf.grid_model_5	0.003973746740935194
14		900	rf.grid_model_17	0.003973746740935194
15		100	rf.grid_model_1	0.003999425533640768
16		300	rf.grid_model_4	0.004827279370480342
17	2	500	rf.grid_model_8	0.004827279370480342
18		900	rf.grid_model_16	0.004827279370480342
19	2	700	rf.grid_model_12	0.004827279370480342
20		100	rf.grid_model_0	0.004864453690512188
20 rows				

Grid search top 5 models

```
rf.grid.sorted <- h2o.getGrid("rf.grid", sort_by="auc", decreasing = TRUE) print(rf.grid.sorted)
```

```
f \leftarrow function(i) g(i-1)

g \leftarrow function(i) if(i \leftarrow 0) 0 else g(i-1) + f(i)
```

for (f in 1:5)

{topModels <- h2o.getModel(rf.grid.sorted@model_ids[[f]]) print(h2o.auc(h2o.performance(topModels, valid = TRUE)))}

	max_depth <chr></chr>	ntrees <chr></chr>	model_ids <chr></chr>	auc <chr></chr>
1	5	500	rf.grid_model_2	0.9638341984814208
2		700	rf.grid_model_3	0.9638341984814208
3		300	rf.grid_model_1	0.9638341984814208
4		900	rf.grid_model_4	0.9638341984814208
5		100	rf.grid_model_0	0.9619739752901754

#Best model details

best.rfmodel <- h2o.getModel(rf.grid.sorted@model_ids[[1]]) summary(best.rfmodel) scoring_history <- as.data.frame(best.rfmodel@model\$scoring_history) ntrees <- best.rfmodel@model\$model_summary\$number_of_trees

```
H2OBinomialModel: drf
Model Key: rf.grid_model_2
Model Summary:
H2OBinomialMetrics: drf
** Reported on training data. **
** Metrics reported on Out-Of-Bag training samples **
MSE: 0.000458891

RMSE: 0.02142174

LogLoss: 0.002912689

Mean Per-Class Error: 0.107216

AUC: 0.9586499

Gini: 0.9172998
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
H2OBinomialMetrics: drf

** Reported on validation data. **
MSE: 0.000617044
RMSE: 0.02484037
LogLoss: 0.003973747
Mean Per-Class Error: 0.09648874
AUC: 0.9638342
Gini: 0.9276684
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
Maximum Metrics: Maximum metrics at their respective thresholds
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
Scoring History:
Variable Importances: (Extract with `h2o.varimp`)
Variable Importances:
     number_of_trees
                            number_of_internal_trees
                                                                model_size_in_bytes
                                                                                             min_depth
                                                                                                            max_depth
                                                                                                                           mean_depth
                                                                                                                                           min_leaves
                                                                                                                                                           max_leaves
                                                                                                                                                                           mean_leaves
 1 300
                                                                92138
                                                                                                                           5.00000
                                                                                                                                                                           19.43667
                                                                                                                  Error
                                                                                                                                                                         Rate
                                             170876
                                                                                                                  0.000146
                                                                                                                                                                         =25/170901
                                                                                                                  0.214286
                                                                                                                                                                         =60/280
                                             60
                                                                                        220
  Totals
                                              170936
                                                                                                                  0.000497
                                                                                                                 Error
                                                                                                                                                                           Rate
                                                                                                                 0.000317
                                                                                                                                                                           =18/56795
                                                                                                                 0.192661
 Totals
                                               56798
                                                                                                                 0.000685
                                                                                                                                                                           =39/56904
            metric
                                                                                                              threshold
                                                                                                                                                  value
                                                                                                                                                                                  idx
            max f1
                                                                                                              0.353303
                                                                                                                                                  0.838095
            max f2
                                                                                                              0.196998
                                                                                                                                                  0.822604
                                                                                                                                                                                  204
            max f0point5
            max precision
            max recall
                                                                                                              0.000274
                                                                                                                                                  1.000000
                                                                                                                                                                                   399
                                                                                                              0.988820
            max specificity
                                                                                                                                                  1.000000
            max absolute mcc
                                                                                                                                                  0.839722
            max min_per_class_accuracy
```

Model Details:

	metric <chr></chr>					thresho <chr></chr>	old	value <chr></chr>	idx <chp< td=""><td>></td></chp<>	>
	max f1					0.15375	53	0.818605	103	
2	max f2					0.1537	53	0.811808	103	
3	max f0point5					0.45778	33	0.871965	83	
4	max accuracy					0.45778		0.999350	83	
5	max precision					0.9861		1.000000		
6	max recall					0.00028		1.000000	399	
7	max specificity					0.98613		1.000000	0 103	
8 9	max absolute_mcc max min_per_class_accura	ici.				0.15375 0.00050		0.818341 0.908257	360	
10	max mean_per_class_accura					0.00050		0.916872	360	
10 rows		nucy				0.00030	,,,	0.310072	300	
10 10w.										
	mestamp :hr>	duration num <chr> <chr< td=""><td>ber_of_tr ></td><td>ees</td><td>training_rms <chr></chr></td><td>e traini <chr></chr></td><td>ing_logloss</td><td>training_auc <chr></chr></td><td>training_lift <chr></chr></td><td></td></chr<></chr>	ber_of_tr >	ees	training_rms <chr></chr>	e traini <chr></chr>	ing_logloss	training_auc <chr></chr>	training_lift <chr></chr>	
	018-08-01 20:04:18	33.464 sec 0								
	018-08-01 20:04:18	33.849 sec 10			0.02322	0.003		0.94424	84.99057	
	018-08-01 20:04:19	34.299 sec 20			0.02215	0.003		0.93597	85.70477	
	018-08-01 20:04:19	34.789 sec 30 35.308 sec 40			0.02187	0.003		0.93907	85.70477	
	018-08-01 20:04:20	35.308 sec 40			0.02167	0.002	.90-	0.96158	85.70477	
	1-8 of 13 columns ining_classification_error	validation_rm	ISA	validation_l	oaloss	validation_a	uc validation.	lift validation	ı_classification_er	rror
<ch< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ch<>										
	0063	0.02509		0.00401		0.93116	79.15315	0.00074		
	0054	0.02489		0.00403		0.94458	76.79818	0.00072		
	0054	0.02469		0.00401		0.94289	81.51386	0.00069		
0.00	0050	0.02457		0.00396		0.94366	81.22884	0.00067		
5 rows										
	mestamp :hr>	duration <chr></chr>	numl <chr></chr>	er_of_trees	trai i <chr< td=""><td>ning_rmse ></td><td>training_logloss <chr></chr></td><td>training_auc <chr></chr></td><td>training_lif <chr></chr></td><td>ft</td></chr<>	ning_rmse >	training_logloss <chr></chr>	training_auc <chr></chr>	training_lif <chr></chr>	ft
26 20	018-08-01 20:04:39	54.023 sec	250		0.02	141	0.00291	0.95982	86.06188	
27 20	018-08-01 20:04:40	55.317 sec	260		0.02	142	0.00292	0.95864	86.77608	
	018-08-01 20:04:41	56.618 sec	270		0.02	145	0.00292	0.95930	86.77608	
	018-08-01 20:04:43	57.960 sec	280		0.02		0.00292	0.95807	86.41898	
	018-08-01 20:04:44	59.333 sec	290		0.02		0.00291	0.95825	86.41898	
31 20	018-08-01 20:04:45	1 min 0.741 sec	300		0.02	142	0.00291	0.95865	86.41898	
6 rows 1										
← train ← chr	ing_classification_error	validation_rm: <chr></chr>	se	validation_le	ogloss	validation_a <chr></chr>	uc validation. <chr></chr>	_lift validatio <chr></chr>	n_classification_e	rror
0.00	048	0.02484		0.00397		0.96419	81.85532	0.00069		
0.00		0.02486		0.00397		0.96400	82.42974	0.00069		
0.00		0.02489		0.00398		0.96421	82.42974	0.00069		
0.00		0.02491		0.00398		0.96374	82.42974	0.00069		
0.00		0.02487		0.00398		0.96387	82.42974	0.00069		
0.00		0.02484		0.00397		0.96383	82.42974	0.00069		
6 rows 9										
	variable <chr></chr>	relative_importance <chr></chr>				scaled_in <chr></chr>	nportance		percentage <chr></chr>	
1	V17	10258.659180				1.000000)		0.207514	
2	V17 V12	8509.955078				0.829539			0.172141	
3	V14	7414.674316				0.722772			0.149986	
4	VII	4565.718262				0.445060			0.092356	
5	V10	4333.534668				0.422427			0.087660	
5 rows										
3 TOWS	variable	relative_importance				scal <u>ed_i</u>	mportance		percentage	
25	V19	136.827942				0.01333			0.002768	
26	V25	113.561798				0.01107			0.002297	
27	V28	101.732544				0.00991			0.002058	
28	Amount	80.560020				0.00785			0.001630	
29	V23	74.316055				0.00724			0.001503	
30	V13	61.761089				0.00602	0		0.001249	

6 rows

#Performance measures

rforest.pred <- h2o.predict(best.rfmodel,test)
head(rforest.pred)</pre>

performance<-h2o.performance(best.rfmodel, test)

performance

NESC 0.0005550092 NESC 0.0007555093 NESC 0.00375937 NESC 0.00375993 NESC 0.00375993 NESC 0.00375993 NESC 0.00375993 NESC 0.00375993 NESC 0.00319073 NESC										
RMSE: 0.00376992 Colons: 0.003719752 Mean Per-Class Error: 0.08755526 Mean Metric: Maximum Metric:	======= 100% H2OBinomialMetrics: drf									
Maximum Metrics: Naximum metrics at their respective thresholds Gains/Lift Table: Extract with 'h2o.gainsLift(<model>, <data>)' or 'h2o.gainsLift(<model>, valid=<t f="">, xval=<t f="">) Valid=<t f="">) Valid=<t f="">, xval=<t f="">) Valid=<t f="">) Val</t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></model></data></model>	RMSE: 0.02376992 LogLoss: 0.003419752 Mean Per-Class Error: 0.08755526 AUC: 0.9655486									
Predict Pred	Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:									
Predict Pred	Maximum	Metrics: Maximum met	trics at their respec	tive threshold	s					
Totals										
2 0 0 0.9997177 0.0002822872 3 0 0.9996167 0.000383483 4 0 0.9996165 0.0002822872 5 0 0.9996165 0.0003235141 6 0 0 0.9997186 0.0003235141 6 0 0 0.9997186 0.0003235141 6 0 0 0.9997186 0.0003235141 6 0 0 0.9997186 0.000383868 6 rows										
3 0 0,9996117 0,0003883483 4 0 0,9997177 0,0002822872 5 0,9997177 0,00032821872 5 0,9997136 0,0003235141 6 0 0,9997136 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,0003235141 0,00032351 0,00032351 0,0003251 0,000					0.9996989	0.0	003010813			
4 0 0.9997177 0.0002822872 5 0 0 0.999716 0.0003235141 6 0 0 0.999716 0.0003235141 6 0 0 0.0002863868 6 rows					0.9997177	0.0	002822872			
S 0 0.0003235141 0.0003251 0.00	3				0.9996117	0.0	003883483			
6 0 0.0002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.00002863868 0.000028638 0.00000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.00000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.00000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.0000028638 0.000000288 0.00000288 0.000000288 0.000000288 0.000000288 0.000000288 0.000000288 0.000000000288 0.0000000288 0.0000000028 0.0000000288 0.0000000028 0.0000000028 0.000000000	4				0.9997177	0.0	002822872			
Compage Com	5				0.9996765	0.0	003235141			
Note					0.9997136	0.0	0.0002863868			
1 18 85 0.174757 = 18/103 Totals 56617 105 0.000670 = 38/56722 Totals 56617 105 0.000670 38/56722 Totals Totals 56617 105 0.000670 Totals Totals Totals Totals 56617 105 0.000670 Totals Tot										
18	0		56599	20	0.000353	=2	20/56619			
Totals 56617 105 0.000670 =38/56722 Metric	1									
metric threshold value idx <hc><hc><hc><hc><hc><hc><hc><hc><hc><hc< th=""><th>Totals</th><td></td><td>56617</td><td>105</td><td>0.000670</td><td></td><td></td></hc<></hc></hc></hc></hc></hc></hc></hc></hc></hc>	Totals		56617	105	0.000670					
I max f1 0.166998 0.817308 100 2 max f2 0.166998 0.822050 100 3 max f0point5 0.596819 0.82353 68 4 max accuracy 0.383777 0.999365 78 5 max precision 0.979503 1.000000 0 6 max recall 0.000282 1.000000 399 7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
2 max f2 0.166998 0.822050 100 3 max f0point5 0.596819 0.882353 68 4 max accuracy 0.383777 0.999365 78 5 max precision 0.979503 1.000000 0 6 max recall 0.000282 1.000000 399 7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
3 max fOpoint5 0.596819 0.882353 68 4 max accuracy 0.383777 0.999365 78 5 max precision 0.979503 1.000000 0 6 max recall 0.000282 1.000000 399 7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.00493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
4 max accuracy 0.383777 0.999365 78 5 max precision 0.979503 1.000000 0 6 max recall 0.000282 1.000000 399 7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
5 max precision 0.979503 1.000000 0 6 max recall 0.000282 1.000000 399 7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
7 max specificity 0.979503 1.000000 0 8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
8 max absolute_mcc 0.166998 0.817010 100 9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
9 max min_per_class_accuracy 0.000493 0.902913 364 10 max mean_per_class_accuracy 0.036898 0.926699 137										
10 max mean_per_class_accuracy 0.036898 0.926699 137										
10 rows	10	max mean_per_class_accuracy			0.036898	0.926699	137			
	10 rows									

#Plot ROC

tpr<-as.data.frame(h2o.tpr(performance))
fpr<-as.data.frame(h2o.fpr(performance))</pre>

ROC<-merge(tpr,fpr,by='threshold') head(ROC)

	threshold <dbl></dbl>	tpr <dbl></dbl>	fpr <dbl></dbl>
	0.0002823373	1.0000000	1.0000000
2	0.0002837246	0.9805825	0.6595842
	0.0002861136	0.9805825	0.5299458
4	0.0002895072	0.9805825	0.4537170
5	0.0002932610	0.9708738	0.4052703
6	0.0002974800	0.9708738	0.3584309

#Plot ROC curve and save output file

pdf(file="C:/Users/daveh/Documents/APAN 5420/EDA VIIII/eda9ROCcurve.pdf")

```
ggplot(data = ROC, aes(x = fpr, y = tpr)) +
theme_bw() +
geom_line() +
ggtitle("ROC.visual")
```

while (!is.null(dev.list())) dev.off()

#Plotting Random Forest Model Precision-Threshold Curve

h2o.F1(performance)

```
rf.precision <- as.data.frame(h2o.precision(performance))
rf.recall <- as.data.frame(h2o.recall(performance))
rf.pre.recall <-merge(precision,recall,by='threshold')
```

```
head(rf.pre.recall)
plot(rf.pre.recall)

ggplot(rf.pre.recall, aes(x = precision, y = threshold)) +
  theme_bw() +
  geom_line() +
  ggtitle("thres-hold & precision")
```

	threshold <db ></db >	f1 <dbl></dbl>
1	0.9795034	0.01923077
2	0.9744131	0.03809524
3	0.9711338	0.05660377
4	0.9705332	0.09259259
5	0.9601453	0.11009174
5 rows		

#pdf output file name

pdf(file="C:/Users/daveh/Documents/APAN 5420/EDA VIIII/eda9pre.pdf")

```
ggplot(rf.pre.recall, aes(x = tpr, y = precision)) +
  theme_bw() +
```

geom_line() + ggtitle("precision and recall")

while (!is.null(dev.list()))dev.off()

