الصفحة **1**

الامتحان الوطني الموحد للبكالوريا الدورة 2013

الموضوع

RS31

L'utilisation de la calculatrice programmable ou l'ordinateur n'est pas autorisée

Le sujet est composé d'un exercice de chimie et de trois exercices de physique

CHIMIE (7points)

Première partie: Cinétique de la dissociation du pentaoxyde de diazote(2,75 points) **Deuxième partie**: Dosage d'une solution d'acide benzoïque.......(4,25 points)

Physique (13 points)

Exercice 1 : production de l'énergie nucléaire	(2,25 points)
Exercice 2 première partie : Etude des dipôles RL et RLC	(2,5 points)
deuxième partie: Transmission des signaux sonores	(2,5 points)
Evarcica 3 pramièra partia : Etuda d'un oscillateur harmonique	(35 points)

Chimie (7points) Les deux parties 1 et 2 sont indépendantes

Première partie : Cinétique de la dissociation du pentaoxyde de diazote (2,75 points)

Les oxydes (NO_2 , N_2O_3 , NO , CNO_2 ...) sont considérés parmi les polluants principaux de

l'atmosphère à cause de leur participation dans la formation des pluies acides qui sont nocives pour l'environnement d'une part et l'augmentation de l'effet de serre d'autre part .

L'objectif de cet exercice est d'étudier la cinétique de la dissociation du pentaoxyde de diazote N_2O_5 en NO_2 et O_2 .

Données: On considère que tous les gaz sont parfaits;

La constante des gaz parfaits : R = 8.31(S.I) ; l'équation d'état des gaz parfaits : p.V = n.R.T

On met du pentaoxyde de diazote dans une enceinte initialement vide de volume constant V=0.50L munie d'un baromètre pour mesurer la pression totale p l'intérieur de l'enceinte à une température constante T=318K.

On mesure au début de la dissociation (t = 0) à l'intérieur de l'enceinte la pression totale; on trouve alors $p_0 = 4,638.10^4 \, \text{Pa}$. Le pentaoxyde de diazote se dissocie selon une réaction lente et totale modélisée par

L'équation :
$$2N_2O_{5(g)} \rightarrow 4NO_2(g) + O_{2(g)}$$

1- On mesure la pression **p** à différents instants et on représente la variation de la grandeur

 $\frac{p}{p_0}$ en fonction du temps , obtient le graphe

représenté dans la fig 1. La droite (Δ) représente la tangente à la courbe

$$\frac{p}{p_0} = f(t) \, \grave{a} \, \, l'instant \quad t = 0 \, . \label{eq:potential}$$

0, 5 1- Calculer la quantité de matières n_0 du pentaoxyde de diazote dans le volume V à t = 0.

- 0.5 2- Calculer l'avancement x_{max} de cette réaction.
- 0, 5 | 3- Exprimer \mathbf{n}_{T} la quantité de matière totale des

gaz dans le volumes $\, v \, a \, l$ 'instant $\, t \,$ en fonction de $\, n_0 \,$ et $\, x \,$ l'avancement de la réaction $\, a \,$ cet instant $\, t \,$

- 0, 5 4- En appliquant l'équation d'état des gaz parfaits ,établir la relation $\frac{p}{p_0} = 1 + \frac{3x}{n_0}$
- 0.75 | 5- Trouver l'expression de la vitesse volumique de la réaction en fonction de n_0 , V et la dérivée par rapport au temps de la fonction $\frac{p}{p_0} = f(t)$. Calculer sa valeur à t = 0.

Deuxième partie (4,25 points)

L'acide benzoïque est un composé organique de formule brute C_6H_5COOH . Il est utilisé dans ${\bf la}$ fabrication de plusieurs colorants organiques et aussi utilisé comme matière conservatrice dans l'industrie des produits agroalimentaires.

L'objectif de cet exercice est le dosage d'une solution d'acide benzoïque et la détermination de la valeur du pK_A du couple $C_6H_5COOH/C_6H_5COO^-$.

Données

- Toutes les mesures sont effectuées à 25°C
- Les conductivités molaires ioniques en mS.m².mol⁻¹ Sont :

$$\lambda_1 = \lambda_{Na^+} = 5.0$$
; $\lambda_2 = \lambda_{C_6H_5COO^-} = 3.2$; $\lambda_3 = \lambda_{CH_3COO^-} = 4.1$.

On néglige la conductivité molaire ionique des ions H_3O^+ et OH^- .

On rappelle que la conductivité σ d'une solution aqueuse ionique est : $\sigma = \sum \lambda_i \cdot [X_i]$

1. Dosage d'une solution d'acide benzoïque

On dose une solution (S) d'acide benzoïque de volume $V = 15, 2 \,\mathrm{mL}$ et de concentration c avec une solution d'hydroxyde de sodium de concentration $c_b = 2,0.10^{-1} \, mol.L^{-1}$.

- 0,25
- 1.1- Écrire l'équation de la réaction du dosage.
- 1.2- On obtient au cours de ce dosage l'évolution du pH de la solution en fonction du volume V_b de 0,5

la solution d'hydroxyde de sodium ajouté, fig 2.

- **a** Déterminer la concentration de la solution de l'acide benzoïque.
- **b** Déterminer le pH du mélange à l'équivalence.
- 0.5 1.3 On dispose de deux Indicateurs colorés Indiqués dans le tableau suivant :

L'indicateur	Zone de
coloré	virage
hélianthine	3,2-4,4
Phénol -	8,2-10,0
phtaléine	

Choisir l'indicateur coloré qui convient à ce dosage. Justifier votre choix.

2- Détermination de la constante

$\textbf{D'acidit\'e} \ \ p_{K_A} \ \ \textbf{du couple} \ \ C_6^{}H_5^{}COOH \ / \ \ C_6^{}H_5^{}COO^-$

A l'aide des mesures du pH des solutions aqueuses d'acide benzoïque de concentrations différentes, on détermine le taux d'avancement final t de chaque solution .La courbe de la figure 3

représente la fonction $\frac{\tau^2}{1-\tau}$ en fonction de $\frac{1}{c}$.

10 12 14 16 18 20 22

الامتحان الوطني الموحد للبكالوريا -الدورة 2018 –الموضوع- مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- 2.1- Trouver l'expression de la constante d'acidité K_A du couple $C_6H_5COOH/C_6H_5COO^-$ en fonction de τ et C.
- 0.5 **2.2** En exploitant la courbe de la figure 3, déterminer la valeur du pK_A .

3- Réaction de l'acide benzoïque avec l'ion éthanoate

Dans un flacon contenant de l'eau, on introduit $n_0=3.10^{-3}\,\text{mol}$ d'acide benzoïque et $n_0=3.10^{-3}\,\text{mol}$ d'éthanoate de sodium CH_3COONa . On obtient une solution aqueuse de volume V=100~mL . On modélise la transformation chimique qui s'effectue par l'équation suivante :

$$C_6H_5COOH_{(aq)} + CH_3COO_{(aq)}^- \longleftrightarrow C_6H_5COO_{(aq)}^- + CH_3COOH_{(aq)}^-$$

La mesure de la conductivité du milieu réactionnel à l'équilibre donne la valeur $\sigma = 255 \text{mS.m}^{-1}$

1 | 3.1- Montrer que l'expression de l'avancement finale de la réaction s'écrit : $x_f = \frac{\sigma \cdot V - n_0(\lambda_1 + \lambda_3)}{\lambda_2 - \lambda_3}$

Calculer sa valeur.

3.2-Trouver l'expression de la constante d'équilibre K associé à l'équation de la réaction en fonction de x_f et n_0 Calculer sa valeur.

PHYSIQUE

exercice1(2,25 pts)

Un réacteur nucléaire fonctionne avec l'uranium enrichie qui est constitué de p = 3% de ²³⁵U fissible et p' = 97% de ²³⁸U non fissible.

La production de l'énergie au sein de cette centrale nucléaire est basée sur la fission de l'uranium ^{235}U bombardé par des neutrons.

Donnés:
$$m\binom{140}{\text{Xe}} = 139,8920 \text{ u}$$
; $m\binom{94}{\text{Sr}} = 93,8945 \text{ u}$; $m\binom{235}{\text{U}} = 234,9935 \text{ u}$; $m\binom{1}{0}n = 1,0087 \text{ u}$
 $1MeV = 1,6.10^{-13}J$; $1u = 1,66.10^{-27}kg = 931,5 MeV.c^{-2}$.

Le noyau ²³⁵U subit une fission selon l'équation : ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{z}^{94}Sr + {}_{54}^{140}Xe + x_{0}^{1}n$.

- 0.25 **1-** Determiner x et z.
- 0.5 | 2- Calculer en joule (J) l'énergie $|\Delta E_0|$ libérée par la fission de $m_0 = 1g$ de ²³⁵U.
- 0.75 **3-** Pour produire une quantité d'énergie électrique $W = 3,73.10^{16} J$, un réacteur nucléaire de rendement r = 25% consomme une masse m de l'uranium enrichi.

Exprimer m en fonction de W , $\left|\Delta E_{0}\right|$, m_{0} , r et p Calculer m .

- **4/-** Dans ce réacteur nucléaire se trouve aussi une faible quantité du nucléide ^{234}U qui est radioactif lpha .
- La mesure de l'activité radioactive, à l'instant t = 0, d'un échantillon de l'uranium $\frac{234}{92}U$ a donné la valeur $a_0 = 5, 4.10^8 Bq$.

Calculer la valeur de l'activité nucléaire de cet échantillon à l'instant $t = \frac{t_{1/2}}{4}$

Exercice2 (5 pts) Les deux parties sont indépendantes Première partie(2,5 pts) : Étude des dipôles RL RLC

La bobine est utilisée dans plusieurs circuits électriques et électroniques pour contrôler le retard temporelle lors de l'établissement ou la rupture du courant dans ces circuits.

L'objectif de cet exercice est l'étude de la réponse d'un dipôle RL à un échelon de tension ascendant et l'évolution de la charge électrique lors de la décharge d'un condensateur dans une bobine.

1- Etude du dipôle RL

On réalise le montage représenté dans la figure 1 et qui constitué de :

- un générateur de force électromotrice E = 6V et de résistance négligeable ;
- une bobine de coefficient d'inductance L = 1.5mH et de résistance négligeable ;
- un conducteur ohmique de résistance R réglable ;
- un interrupteur K.

On règle la résistance R sur une valeur R_1 et on ferme l'interrupteur K à un instant t = 0 que l'on considère comme origine du temps.

0, 25 | 1.2- La solution de l'équation différentielle s'écrit sous la forme :

$$i(t) = \frac{E}{R_1} \left(1 - e^{-\frac{t}{\tau_1}} \right)$$
. Déterminer à partir de cette solution l'expression

de la constant $\, au_1\,$ en fonction des paramètres du circuit .

0,5 | 1.3- On règle la résistance $R_{\text{sur la valeur}}$ $R_2 = 2R_1$. Trouver l'expression de la nouvelle constante de temps τ_2 en fonction de τ_1 . En déduire l'effet de la valeur de R sur l'établissement du courant dans le dipôle RL.

2- Etude du dipôle *RLC*

On réalise le montage représenté dans la figure 2.

On bascule l'interrupteur K à la position 1 ; Apres la charge du condensateur , on bascule l'interrupteur à à l'instant t=0 à la position 2 . On visualise à l'aide d'un dispositif approprié l'évolution de la charge du condensateur au cours du temps ; On obtient alors la courbe représentée à la figure 3.

الامتحان الوطني الموحد للبكالوريا -الدورة **2013** –الموضوع- مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- $0.5 \mid 2.1$ Établir l'équation différentielle vérifiée par la charge q(t) du condensateur
- $\boxed{1}$ 2.2- Sachant que la solution de cette équation différentielle s'écrit sous la forme

$$q(t) = q_0.e^{-\frac{t}{2\lambda}}\cos\left(\frac{2\pi t}{T} + \varphi\right)$$

- **a-** Trouver l'expression $\frac{q(t+T)}{a(t)}$ en fonction de la pseudo-période T et la constante λ .
- **b-** Déterminer la valeur de λ

Première partie(2,5 pts) Transmission des signaux sonores

Les ondes sonores audibles ont une faible fréquence, leur transmission à des longues distances nécessite qu'elles soient modulante à une onde électromagnétique de haute fréquence. Cet exercice vise à étudier la modulation et la de demodulation.

1 - Modulation

On considère le montage représenté dans la figure 4;

Le générateur $(GBF)_1$ applique à l'entrée E_1 de la composante

$$S(t) = S_m \cdot cos\left(\frac{2\pi t}{T_s}\right)$$
 la tension correspondante

à l'onde qu'on désire transmettre.

On visualise sur l'écran d'un oscilloscope la tension de sortie $u_s(t) = k.u_1(t).u_2(t)$ avec k constante positive caractérisant la composante X, fig 5

$$u_s(t) = A \left[1 + m \cos \left(\frac{2\pi t}{T_s} \right) \right] \cos \left(\frac{2\pi t}{T_p} \right)$$

et préciser l'expression de A et celle de m.

Fig 4

2 - Démodulation

La figure 6 représente le montage utilisé dans un dispositif de réception constitué de

الامتحان الوطني الموحد للبكالوريا -الدورة 2013 —الموضوع- مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- 0,25 2.1- Préciser le rôle de la partie 3 dans ce montage.
- 0,5 2.2- Déterminer la valeur du produit L.C pour que la sélection de l'onde soient bonne.
- 0, 5 | 2.3- Montrer que l'intervalle auquel doit appartenir la valeur de la résistance R pour une bonne

Détection de l'enveloppe de la tension modulante dans ce montage est : $\frac{4\pi^2 L}{T} \langle \langle R \rangle \langle \frac{4\pi^2 L T_s}{T^2} \rangle$ Calculer les bornes de cet intervalle sachant que L=1,5mH

exercice 3(5,75 pts) Les deux parties sont indépendantes Première partie(3, 5 pts)

L'oscillateur harmonique est un oscillateur idéal, son évolution au cours du temps est décrite par une fonction sinusoïdale de fréquence ne dépendant que des caractéristiques du système mécanique .L'importance de ce model réside dans sa capacité de décrire l'évolution de tous système

Physique oscillant autour de sa position d'équilibre stable.

1- Etude dynamique

On considère un ressort à spires non jointives et constante de raideur K et de masse négligeable suspendu à un support fixe. On suspend à l'extrémité libre de ressort un corps solide (S) de masse m. On représente

l'allongement du ressort à l'équilibre de (S) par $\Delta \ell_0$ et on repère la position du centre d'inertie par un axe Oy orienté vers le haut dont l'origine coı̈ncide avec la position du centre d'inertie de (S) à l'équilibre.

On écarte (S) verticalement de sa position d'équilibre vers le bas d'une distance d=2cm et on le libère sans vitesse initiale à instant t = 0 choisi comme origine du temps

Données : $\Delta \ell_0 = 10,0cm$, l'intensité de pesanteur $g = 9.81N.kg^{-1}$

- **1.1-** Trouver, à l'équilibre, l'expression de K en fonction de M, g et $\Delta \ell_0$.
- 0, 5 | **1.2-** En appliquant la deuxième loi de Newton, établir que l'équation différentielle vérifiée par l'abscisse y s'écrit sous la forme $\frac{d^2y}{dt^2} + \frac{K}{m}y = 0$
- 0,5 **1.3-** La solution de cette équation s'écrit sous la forme $y = y_m \cos\left(\frac{2\pi t}{T_c} + \varphi\right)$;

Déterminer la valeur de φ et de T_0 .

1.4- On note F la tension du ressort . choisir la bonne réponse :Quant l'abscisse y > 0, on a :

a)
$$F \rangle mg$$

$$; \quad \mathbf{b}) \quad F = m g$$

; b)
$$F = mg$$
 ; c) $F \langle mg \rangle$

2. Etude énergétique

On repère la position du centre du solide (S) à l'aide de deux repères :

- Le repère 1 : l'origine O' de l'axe coïncide avec l'extrémité libre du ressort (à vide)et l'axe O'z est verticale et orienté vers le haut. On prend comme état de référence pour l'énergie potentielle de pesanteur $E_{pp} = 0$ au point O'.
- Le repère 2 : l'origine O de l'axe coïncide avec la position du centre d'inertie du solide (S) à l'équilibre et l'axe Oy est verticale et orienté vers le haut . On prend comme état de référence pour l'énergie potentielle de pesanteur $E_{nn} = 0$ au point O.

Pour les deux repères, on prend comme état de référence de l'énergie potentielle élastique $E_{ne} = 0$ quand le ressort est à vide.

الصفحة العلام الموحد للبكالوريا -الدورة 2013 – الموضوع- مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (RS31 الصفحة		
اً) و (ب) (الترجمة الفرنسية) (أ) و (ب) (الترجمة الفرنسية) (أ) و (ب) (1- On écarte le solide (S) verticalement vers le bas d'une distance $d < \Delta \ell_0$ de sa position d'équilibre et		
on le libère sans vitesse initiale à un instant $t = 0$ choisi comme origine du temps.		
Écrire l'expression de l'énergie mécanique de l'oscillateur : a - dans le repère 1 en fonction de $\mathbb{Z}_{,m}^{K}$, $\mathbb{Z}_{,g}$ et $\mathbb{Z}_{,g}$ vitesse du centre d'inertie.		
b - dans le repère 2 en fonction de ${\cal Y}$, m , ${\cal K}$, ${\it \Delta}\ell_0$ et ${\it v}$ vitesse du centre d'inertie .		
c- dans quel repère l'expression de l'énergie mécanique ne dépond pas de l'énergie potentielle 2.2- On écarte verticalement (S) de sa position d'équilibre vers Le bas d'une distance $d = 2cm$ et on		
le lance vers le haut avec une vitesse initiale $\vec{\mathbf{v}}_0$, le solide (S) effectue alors des oscillations Verticales		
autour de sa position d'équilibre d'amplitude $D = 7 cm$.		
Sachant que l'énergie mécanique de l'oscillateur se conserve ;		
Trouver l'expression de \mathbf{v}_0 en fonction de g , $\Delta \ell_0$, d et D . Calculer \mathbf{v}_0 .		
Deuxième partie (2,25 pts) Le savant Planck a supposé que les échanges énergétiques entre la matière et un rayonnement monochromatique de fréquence ν ne peux se faire qu'en quantité déterminé . En 1905 Einstein à introduit la notion de photon en tant que particule		
Le savant Planck a supposé que les échanges énergétiques entre		
la matière et un rayonnement monochromatique de fréquence		
ν ne peux se faire qu'en quantité déterminé . En 1905 Einstein à introduit la notion de photon en tant que particule		
de masse nulle et d'énergie $E = hv$.		
L'énergie de l'atome d'hydrogène est exprimée par la relation		
$E_n = -\frac{13.6}{n^2} (eV)$ avec n le nombre principal indiquant la couche ou		
se trouve l'électron.		
Le diagramme ci-dessous donne les transitions possibles de l'électron de l'atome d'hydrogène		
Données : Constante de Planck $h = 6,63.10^{-34} J.s$; célérité de la lumière dans le vide $c = 3,00.10^8 m.s^{-1}$		
$1eV = 1,602.10^{-19}J$.		
On expose les atomes d'hydrogène dans leurs états fondamentales à des photons d'énergie		
successives $1.51eV$ et $12.09eV$		
1- Décrire à partir de ce diagramme ce qui se produit ?		
2 Calculat la longue di a onde 22 da rayonnement emissors de la transition de l'electron da niveau		
d'énergie $n=2$ au niveau d'énergie $n=1$ 0.75 3- La longueur d'onde λ du rayonnement émis lors de la transition du niveau énergétique m au niveau		
énergétique n est $\lambda = 489 nm$. Déterminer m et n		
0.20 . W		
-0,37 eV n=6		
-0,54 e V		
-0,85 eV n=4		
n=3		
-1,51 eV — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Série Pachen		
$-3,39 \text{ eV}$ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ $n=2$		
Série Palmer		
-13.6 eV + + + + + + + = n=1		

Série Lyman

الصفحة	RS31	الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية على الموضوع- مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)
9 2		الرياضية (أ) و (ب) (الترجمة الفرنسية)