Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aSB211 .P8A3

United States
Department of
Agriculture

Science and Education Administration

Beltsville Agricultural Research Center Beltsville, Maryland

May 1981

National Potato Breeding Report, 1980

Fifty-first Annual Report by Cooperators

Compiled and Edited
by
Raymon E. Webb
Vegetable Laboratory
Horticultural Science Institute
Beltsville Agricultural Research Center
Beltsville, Maryland

This progress report includes tentative results of research not sufficiently complete to justify general release. Such findings, when adequately confirmed, will be released promptly through established channels. Therefore, this report is not intended for publication and should not be referred to in literature citations.

DISCLAIMER

Trade names are used in this publication only to provide specific information. Their use does not constitute a guarantee of the products named and does not signify that they are approved by the U.S. Department of Agriculture to the exclusion of others of suitable composition.

PRECAUTIONS

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

TABLE OF CONTENTS

UNITED STATES DEPARTMENT OF AGRICULTURE	1
INTERREGIONAL POTATO INTRODUCTION PROJECT (IR-1)	10
NORTH CENTRAL REGIONAL POTATO TRIALS	12
WESTERN REGIONAL POTATO VARIETY TRIAL	24
NATIONAL TRIALS OF POTENTIAL ETHANOL LINES	32
ALABAMA	46
ALASKA	51
CALIFORNIA	52
COLORADO	60
FLORIDA	62
IDAHO AND EASTERN OREGON	71
	78 79

UNITED STATES DEPARTMENT OF AGRICULTURE BELTSVILLE AGRICULTURAL RESEARCH CENTER (BARC), BELTSVILLE, MARYLAND AND CHAPMAN AND AROOSTOOK FARMS, PRESQUE ISLE, MAINE

Raymon E. Webb, Philip Baum, George W. L. Walter, and Robert W. Goth, BARC and
David R. Wilson, Presque Isle, Maine

BARC

Breeding and Evaluation: Sixty-seven clones and varieties possessing a diversity of economic characters were included in the breeding block. Four hundred sixty-two parental combinations were obtained, yielding approximately 470,000 true seed. One hundred twenty-nine seed lines were planted for seedling tuber production, and about 64,000 tubers were harvested for distribution in 1981. Approximately 400 clones were evaluated for resistance to viruses A, X, and Y.

PRESQUE ISLE

Planting began May 12 and was completed May 30. Quite dry soil conditions prevailed during planting and again for about 5 weeks during July and early August. Harvest was again plagued with excessive rainfall.

CHAPMAN FARM

Approximately 3,200 seedling tubers from 12 parental combinations were planted for selection purposes. Seven hundred 12-hill lots were grown for further selection and quality evaluations. Sixty, eighty, and one-hundred-hill lots were grown for pest resistance and adaptability evaluations and further quality assessments. A number of clones, including B6969-2, B6987-184, B7583-6, B7805-1, B8833-6, B8934-4, B8943-4, and B8972-1, were on maximum seed increase and are in grower trials.

AROOSTOOK FARM

Varietal collections and older breeding lines were grown for maintenance and distribution to cooperators. Yield and disease-resistance trials were done on Aroostook Farm and nearby Silver's Farm. Experimental design for all yield trials was a randomized block with four replications of 25 seed pieces each. White tuber trials received 150 pounds NPK per acre, and russet types received 180 pounds NPK per acre banded with a two-row planter. Seed spacing for white tuber trials was 9 inches and for russet trials 12 inches. All plantings were done by hand.

Cultural methods and materials for weed, insect, and disease control were according to local recommendations. Rainfall and temperature during the season are given in Table 4. At harvest, all entries were graded and samples hand selected for specific gravity and quality evaluations. Specific gravity

was determined by the air-water method. Following specific gravity determinations, selected samples were divided and placed at 50° F, 45° F, and 40° F storage at 90 percent relative humidity.

Samples stored at 50° F and 45° F were processed into chips after 2 months in storage. Samples stored at 40° F were divided into two groups: one group to be reconditioned at 70° F for 3 weeks prior to frying; and one group to be fried direct from 40° F after 4 months' storage if processing data from the 50° F stored group indicated potential low reducing sugar content buildup at that temperature. Russet samples were also processed into french fries.

Potato chips were made from each sample by cutting the russet tubers in half and taking a 1/16-inch-thick slice from each tuber with a rotary food slicer. Slices were rinsed in water and placed on paper towels to remove excess water. Chips were then fried at 340° F in Primex vegetable shortening until bubbling ceased.

A french fry plug, 3/8 inch in diameter, was cut from each half of the tubers in the sample. After plugs were trimmed, rinsed, and excess water removed, they were fried at 365° F in Primex shortening for 5 minutes.

Each potato chip and french fry was classified after frying into color classes. Chip classes ranged from 1 = very light to 10 = very dark. French classes ranged from 1 = very light to 5 = very dark. Weighted averages were calculated by multiplying the number of chips or fries in each color class by the color class, totaled, and divided by the number of chips or french fries in each sample. Color ratings were made by using the PCII reference color chart 1206-U.

After color classification, each french fry plug was broken open and internal texture classification as 1 = mealy, 2 = intermediate, or 3 = soggy, and a weighted texture index calculated.

SUMMARY

Quite dry soil conditions during and immediately following planting delayed emergence. A long drought period extending into August reduced yields up to about 20 percent on early and midseason entries (Tables 5-7). Specific gravity and processing quality were not significantly impaired by excessive moisture throughout the harvest period. Late season rainfall did contribute to much growth cracking of tubers in susceptible clones similar to that which occurred in 1979.

Clone B7583-6 was named the variety <u>Russette</u> (Ru-set). Lack of disease-free seed has temporarily delayed release of B6969-2 as Oceania. B6987-184, a high solids, golden nematode resistant clone with excellent chipping quality, is in the process of being released as the variety <u>Chipbelle</u>. One round white and four russet clones are in grower trials in several States.

Table 1. Distribution of first-year seedling tubers and true seed from BARC, 1980.

Lacation	Cooperator	Dungany	Number Seedling	True
Location	Cooperator	Progeny	Tubers	Seed
Domestic:				
Arizona	J. Bidja-Mankono A. C. Schwerger	1 1	362	500 2,500
Colorado	J. A. Twomey	42	4,110	-
Maine	D. R. Wilson F. I. Lauer	15 58	3,294 10,089	800
Minnesota Missouri	Tom Wagner	18	1,518	_
Nebraska	R. B. O'Keefe	21	5,326	_
North Carolina	F. L. Haynes, Jr.	28	5,062	_
Pennsylvania	D. R. MacKenzie	18	5,226	_
	Total		34,987	3,800
Foreign:				
Australia	G. D. McLean	1	_	300
Bolivia	R. W. Hoopes	1 2	-	1,000
	Total	-	-	1,300
	Grand total	-	34,987	5,100

Table 2. Distribution of varieties and clones to U.S. cooperators.

State	Cooperator	Varieties	Clones
Alaska	C. H. Dearborn	_	2
Arizona	J. B. Mankono	2	_
California	A. G. Fradkin	2	
04111011114	D. Kenfield	2 2 3	_
Colorado	K. W. Knutson	-	4
Florida	J. R. Shumaker	13	222
Georgia	C. A. Jaworski	119	24
Idaho	D. L. Corsini	2	-
Illinois	S. C. Trees	4	_
Kansas	C. W. Marr		_
Kentucky	C. R. Roberts	1 2 1	3 1
Maryland	J. Houston	ī	ĭ
, iai y i air a	L. L. Sanford	_	76
Minnesota	F. Lobitz	43	-
New Jersey	M. Henninger	8	480
New York	E. Jones	-	3
	J. Sieczka	_	181
North Carolina	F. L. Haynes, Jr.	-	14
Ohio	F. Lower	_	1
Oregon .	R. Peterson	4	$\bar{1}$
Pennsylvania	B. Pell	4 3 3	_
•	P. Grun	3	-
	D. R. Mackenzie	33	_
Texas	R. M. Taylor	_	1
	E. Fowlkes	7	_
Utah	G. D. Griffin	4	16
Virginia	B. Graves	8	287
	Total	229	1,349

Table 3. Distribution of varieties and clones to foreign cooperators.

		Numbe	r
Country	Cooperator	Varieties	Clones
Bulgaria	K. Kostov	1	_
.	H. Stoilov	5	_
Canada	N. S. Wright	-	3
Iceland	E. Siggeirsson	2	4
India	C. L. Khushu	3	-
Japan	S. Nishibe	4	-
Netherlands	H. Dingsta	1	-
	I. Wolf	2	-
New Guinea	K. Newton	2 3	-
Peru	H. A. Mendoza		-
USSR	V. S. Lekhnovitch	26	-
	H. Korsakov	5	-
Zimbabwe	M. J. Joyce	5	-
	Total	59	7

Table 4. Weekly average maximum and minimum temperature and weekly rainfall, Aroostook Farm, Presque Isle, Maine.

Week	Avg. Temperature	F Rainfall
Ending	Min. Max.	Inches
May 10 17 24 31 June 7 14 21	54 35 67 41 71 35 64 38 69 45 69 42 73 47	.94 .43 .11 .03 .15 .21
28 July 5 12 19 26	80 54 74 50 70 49 77 56 80 58	2.22 .99 1.48 .33 1.76
Aug. 2 9 16 23 30	79 59 81 62 73 52 77 49 79 52	.81 1.53 1.06 .00
Sept. 6 13 20 27	73 56 65 40 62 38 59 40	.73 .24 1.22 1.61
Oct. 4 11 18	55 39 50 36 50 33	1.14 .41 .89
	Total	19.41

Yield, tuber size, distribution, and quality characteristics of golden nematode resistant clones harvested 120 days after planting on Aroostook Farm, 1980. Table 5.

										50 ⁰ F	450F direct	400F - 700F
	•	7	26	% Tuber Si	Size Distribution	ibution			(2 mos.	4 mos.	3 weeks
:	Æt.	× .	1	1-//8"-	2-1/4"-	3-1/4"-	;	Tuber	Sp.	olor3	10r3	510r ³
Pedigree	Cwt	₩ Kt	<1-1/8"	2-1/4"	3-1/4"		^ 4 "	Rating¹	6v. ²	Chip FF Tex4	Chip FF Tex4	Chip FF Tex4
0000		7	-	16	ç	ć	٢	c	S	,	6	6
2-08609	333	ά	4	0.7	70	77	\	7	g	Ι.α Ι.	0.2 0	0.8 C.3 1.9
B6987-184	346	86	12	42	22	က	—	2	100	2.4 1.	4 2.5	1.0
B7151-4	367	91	9	27	69	4	က	2	100	2.1 1.	9 1.9	1.7
B7154-10	308	81	15	44	47	6	က	5-	62	2.2 2.	5 3.1	3.1
B7200-33	412	82	15	27	39	ო	ı	ო	26	3.7 2.	9 4.1	4.1
B7592-1	417	90	4	53	63	∞	Ŋ	ო	82	3.0 2.	9 3.3	4.1
B7805-1	428	93	4	20	89	12	က	2+	74	8.7 3.8 2.3	8.0 3.6 2.3	8.3 3.7 2.7
B8491-1	314	86	9	16	64	20	ω	2	82	2.4 2.	3 3.0	3.9
B8514-8	449	93	9	56	65	6		2	82	3.2 2.	5 2.9	3.7
B8710-1	430	93	7	37	59	4	ı	3+	65	2.9 2.	4 3.0	4.1
B8710-16	374	93	2	19	62	19	2	3+	73	3.1 2.	5 3.7	3.8
B8751-6	339	91	6	33	09	7	ı	2	2	2.5 2.	5 2.6	3.4
Atlantic	382	91	9	52	61	14	က	ო	90	2.2 1.	0 2.6	2.5
Belchip	417	95	9	14	92	21	7	2	8	1.6 1.	5 2.2	2.3
Wauseon	379	91	7	19	61	20	2	က	73	3.4 2.	3 4.0	4.7
Hudson	372	79	က	12	51	36	18	2	75	4.0	0 4.5	3.8
LSD 5%	51								3.0			

1 1 = poor; 5 = outstanding.
2 1.0 omitted.
3 Chips: 1-7 = satisfactory; FF: 1-3 = satisfactory.
4 FF & texture: 1-2 = satisfactory.

Yield, tuber size, distribution, and quality characteristics of clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1980. Table 6.

			70			4				500F	450F direct	400F - 700F
	Mkt	%	8	1 uber 1-7/8		3-1/4"-		Tuber	Sp.	z mos. Color³	4 mos. Color³	> 0
Pedigree	Cwt	₩t	<1-7/8"	2-1/		4"	^4"	Rating ¹	Gv. ²	Chip FF Tex ⁴	Chip FF Tex4	Chip FF Tex4
B6969-2	284	89	11	37	58	2		m	63	.0 3.0 2.	.1 3.1 2.	6 2.3 2
B6987-184	324	8	10	35	09	2	ı	2	96	.8 2.3 1.	.2 2.3 1.	4 1.3 1
B8091-8	437	90	6	37	23	10	7	2	85	8.3 3.3 2.0	8.0 3.6 2.0	7.4 3.1 2.0
B8285-3	231	85	14	47	38	15	က	2+	83	.9 4.2 2.	.8 3.8 2	5 4.2 2
B8599-42	382	91	m	6	58	33	9	က	29	.3 2.2 2.	.2 2.8 2.	3 2.3 2
B8615-2	386	95	9	18	64	18	က	ო	97	.8 2.5 2.	.4 2.4 2	3 2.7 2
B8724-2	370	86	14	49	20	П	ı	2	75	.0 2.9 2.	.6 3.3 2.	.9 2.3 2
B8799-13	273	95	∞	43	53	m	ı	3+	82	.2 2.4 1.	.2 2.3 1	4 1.3 1
B8907-4	320	87	ഉ	16	54	29	ω	2-	74	.7 2.6 1.	.8 2.7 2	.6 2.0 2
B9062-9	404	94	4	16	62	22	2	2	72	.0 3.0 2.	.9 2.6 2	.6 1.9 2
B9067-6	396	91	6	33	59	7	ı	က	8	.9 3.7 2.	.0 3.8 2	5 3.6 2
B9071-1	334	88	6	34	55	11	7	2	87	.6 2.6 2.	.1 2.3 2	.3 2.7 2
Atlantic	396	93	വ	21	63	16	2	2+	88	.2 2.8 1.	.8 2.4 1	.6 1.4 1
Belchip	405	95	വ	17	63	20	က	2	88	.4 1.8 1.	.2 2.3 2	.3 1.1 2
Pungo	371	95	4	23	63	14	4	2	8	.6 4.0 2.	.9 3.5 2	.1 2.9 2
Sebago	346	8	6	23	29	11	_	က	78	.6 2.7 2.	.2 3.6 2	.03.62
Superior	364	94	വ	23	62	14	2	က	73	.6 2.8 2.	5 3.3 2	.3 2.9 2
Katahdin	366	9	7	23	63	15	က	3+	74	.1 3.3 2.	.5 3.9 2	.3 3.3 2
LSD 5%	38								4			

1 2 3 4 - See footnotes Table 5.

Yield, tuber size, distribution, and quality characteristics of russet clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1980. Table 7.

										50°F	450F direct	400F - 700F
			⊥ %	Tuber Siz	Size Distribution	ibution				2 mos.	4 mos.	3 weeks
:	¥t	%	10,7	1-7/8"-	2-1/4"-	3-1/4"-	5	Tuber 1	Sp.	Jor3	Jor ³	olor3
Pedigree	Cwt	¥∥	×1-//8"	2-1/4"	3-1/4"	4"	\^ - 	Kating	2.	Chip FF lex 4	Chip FF lex*	Chip FF Tex
R7583 6	270	73	Ľ	13	52	35	23	2+	y Y	0 7 8 9	7 3 2	0 3 0 0
0,000	100	2 6	o C	2.5	7 7	3 5) <	,	3 5		,,,	7
B8214-4	167	ω α	ָת	31	2/	13	4	7	1/	3.0 6	1 3.5	/ 3./ 4.
B8686-8	257	84	11	25	09	14	4	2	8	2 2.3 1	0.70	6 2.2 1.
B8822-30	238	88	11	53	09	10	,	2+	9	8 2.7 2	2 2.8	7 2.9 2.
B8833-6	231	81	19	44	48	ω	ı	ო	77	8 2.4 2	5 2.5	0 2.9 2.
B8847-5	242	81	23	15	22	28	7	m	73	5 3.5 2	3 4.1	9 4.3 2.
B8848-2	388	85	2	13	61	56	14	2+	77	1 3.7 2	9.4.6	2 4.7 2.
B8881-5	310	80	10	90	58	13	7	2+	64	7 2.0 2	5 2.4	6 2.1 2.
B8902-3	224	77	∞	15	63	23	15	2+	29	8 3.1 2	0 3.1	9 3.6 2.
B8922-10	381	87	11	33	52	12	2	2+	71	9 3.7 2	7 3.9	6 4.2 2.
B8934-4	250	85	0	20	65	15	6	2	85	6 2.1 2	1 2.2	4 2.0 1.
B8939-8	256	83	14	31	22	11	က	2	77	9.7 4.8 2.0	9.5 4.1 2.0	8.6 4.5 2.0
B8943-4	276	78	13	53	26	16	0	2+	72	8 3.1 2	3 3.8	8 3.4 2.
B8963-1	303	88	7	27	09	13	9	2	20	5 2.4 2	0 2.3	1 2.5 2.
B8966-3	566	80	10	50	52	56	10	2	65	4 2.8 2	0 3.1	6 2.7 2.
B8972-1(mixed)	216	81	17	34	52	14	2	ო	75	7 2.2 1	6 2.2	5 2.8 2.
BelRus	281	82	13	56	26	18	2	3+	9/	4 2.7 2	8 3.0	9 3.2 2.
Rus. Burbank	382	79	13	33	54	15	4	2	98	3 3.0	1 3.2	5 2.8 2.
LSD 5%	22								4			

1 2 3 4 - See footnotes Table 5.

INTERREGIONAL POTATO INTRODUCTION PROJECT (IR-1)

R. W. Ross and R. E. Hanneman, Jr.

<u>Introduction of New Stocks</u>. Forty-six new stocks were received from four countries. Seventeen were clonal selections of cultivated types, requested from the Netherlands and Scotland. The remainder were true seeds of Argentine and Peruvian non-cultivated species donated by the collectors.

Preservation and Increase of Stocks. Approximately 90 percent of the introductions contained in the collection are maintained as true seed. Satisfactory seed increase of 135 species introductions and intraspecific hybrids were obtained under glass, fiberglass or screen. Recently-harvested seed samples of 111 species introductions were packaged for storage in the National Seed Storage Laboratory. Germination percentages of 814 seed lots of 2-20 years of age were determined.

Sixteen introductions have been placed in meristem culture, 12 of which were heat treated. One hundred and twenty-four species clones were tested serologically for potato viruses X (PVX) and S (PVS) using the latex agglutination technique. Seven meristem derived plantlets have been found to be PVS and PVX free. Seventy-five species introductions, 226 foreign varieties, 20 interspecific and research stocks were tested for potato spindle tuber viroid (PSTV) using polyacrylamide gel electrophoresis. Fifty-three (16.5 percent) were found to be infected and were discarded. Three late blight differentials are now freed of virus through meristem culture procedures and will soon be available for distribution.

<u>Classification</u>. More than 4,000 herbarium mounts representing specific and interspecific variability of 99 species are now available for taxonomic use.

Eighteeen F_1 and 15 F_2 interspecific crosses between Bolivian wild species were made for <u>Solanum</u> taxonomist, Dr. J. G. Hawkes (England). The progeny of the F_1 and F_2 crosses were evaluated in the field for growth, vigor, amount of flowering and amount of fruit set. This study is an example of the ongoing effort by this project to assist <u>Solanum</u> taxonomists in solving taxonomic problems among the tuber-bearing Solanums.

Distribution of Stocks. Seed and tuber shipments were sent to potato workers in 23 states within this country and to those in 19 other countries. Shipments included 2,088 seed and 2,301 tuber samples of species introductions, and four seed and 407 tuber samples of germplasm developed by the cooperative USDA-Wisconsin Genetics and Cytogenetics Project, involving species introductions.

Copies of a listing of 211 species introductions available in the form of tuber families (particularly for the benefit of potato projects without adequate greenhouse facilities) were distributed to 262 potato workers. This mailing elicited 20 responses that depleted most of the tuber families offered.

<u>Evaluation of Stocks</u>. The more recent accessions are being steadily evaluated for characters of economic importance through the cooperative efforts of state, federal, and foreign laboratories.

<u>Usefulness of Findings</u>. The major objective of the Potato Introduction Project is to promote and facilitate the improvement of the commercial potato in the United States by providing a readily available reservoir of useful breeding stocks. Breeders are constantly searching for new sources of superior germplasm and for ways to incorporate desirable new genes into adapted commercial varieties. Accomplishment of the major objective of this program must be measured largely by the succes with which new, improved varieties meet the needs of commercial production.

Two new potato varieties, Allagash Russet and Dakchip, were released for commercial production in 1979-1980. The number of foreign introductions entering into their pedigrees are 12 and nine, respectively. One hundred forty-six of the 150 potato varieties developed and released in the United States since 1932 have two or more foreign introductions in their pedigree. These varieties presently compose about 65 percent of the annual seed potato production in the United States.

Basic research programs conducted in several states and other countries continue to provide information concerning the potential value and diversity of the <u>Solanum</u> species, and consequently the knowledge necessary for more effective utilization of the IR-1 germplasm collection. During 1980, 31 papers, 20 abstracts, and 7 theses reported the use of <u>Solanum</u> introductions.

NORTH CENTRAL REGIONAL POTATO TRIALS - 1980

R. H. Johansen and Cooperators 1/

Potato Cultivar Trials

The year 1980 marked the thirtieth year that the North Central Regional Cultivar Trials have been conducted. There are now 14 States and two Provinces participating in the trial, however, this past season the trial in Missouri was lost due to drought and extremely hot weather during the growing season. Many of the top cultivars grown in the United States and Canada today have been tested as clonal lines in the North Central Regional Trial prior to their introduction.

Recent Potato Cultivars

Progeny Number	Released	Released by	Release Name	Parentage
AK 37-19	1978	Alaska	Denali	B5141-6 X AK1-62-90-64
AK 34-2	1980	Alaska	Highlat Russet	B7196-25 X B7680-6
A68678-1	1980	Idaho & several co-op states	Lemhi	Pioneer X A63126-8
ND8891-3	1980	North Dakota	Crystal	Cascade X ND7196-18

Cooperating States and Provinces.

State or Province	Date Planted	Date Harvested	Total Days to Harvest
Alberta	5/9	9/23,30	155
Manitoba	5/15	9/16	125
Colorado	5/7 , 8	9/9	128
Indiana	5/13	9/24	135
Iowa	5/1	8/21	144
Kansas	4/4	8/5	124
Kentucky	4/3	8/25	155
Louisiana	2/5	6/4	121
Michigan	5/7	9/24	141
Minnesota	4/17	8/26	132
Nebraska	5/21	9/16	119
North Dakota	5/12	9/22	134
Ohio	5/1	9/11	134
South Dakota	4/30	9/22	146
Wisconsin	5/6	9/22	139

^{1/} Indiana, H. Erickson, Kansas, J Greig; Louisiana, J. Fontenot; Michigan R. Chase; Minnesota, F. Lauer; Missouri, V. Lambeth; Nebraska, R.O'Keefe; North Dakota, R. Johansen; Ohio, J. Pisarczyk; South Dakota, P.Prashar, Wisconsin, D. Kichefski, S. Peloquin & J. Schoenemann; USDA-R.Webb; Alaska, C. Dearborn; Alberta, S. Molar; Manitoba, W. Russell; USDA-Idaho, J. Pavek; Iowa, W. Summers; Colorado, C. Urano; Kentucky, J. Snyder.

Environmental Conditions. Soil type ranged from clay loam to sand. The Indiana trial was on organic soil or muck land.

Cultural Practices. Fertilizer, fungicides, insecticides, vine killers, herbicides, etc. were based on local conditions. The following herbicides were used: Eptam, Sencor, DCPA, Lasso, Treflan and Lorox. The most popular fungicides used were Dithane, M-45, Difolitan, Bravo, Maneb, fixed copper, and the insecticides used were Belmark, Sevin, Diazinon, Thiodan, Difolitan, Guthion, Monitor, Temik, Lannate, Kocide 101, Methoxychlor and Defend/Devinal. Fertilizer of different analysis ranged from 100 to 1500 pounds per acre, depending on the State or Province.

Weather and Growing Conditions. For the most part, it was extremely dry in the Midwest and Southern Canada during the early part of the growing season and extremely hot in the Southern United States throughout most of the growing season. For example, in Michigan, North Dakota, Alberta and Manitoba, not much over an inch of precipitation was recorded in May and early June. On the contrary, in Kentucky and Indiana it was wet and cool at planting time but very hot during the rest of the season. The severe heat of July and August stressed the weakened plants, resulting in the lowest yields ever recorded for the North Central Trial in Indiana. Louisiana had excessive rainfall and near normal temperatures. The Midwest and Southern Canada received a fair amount of precipitation during the latter part of the season which resulted in respectable yields. The extreme heat for several days eliminated the Missouri trial and caused very drastic low yields in Kansas. Irrigation water was applied to several of the trials.

Entries. Entries were received from North Dakota, Nebraska, Minnesota, Wisconsin, Louisiana and Alaska. Red Pontiac, Norland, Norchip and Russet Burbank were again the check cultivars with the seed being supplied by North Dakota. With the exception of Wisc. 806R, which was not sent to Louisiana, all entries were sent to all States and Provinces, making a very uniform trial for 1980. No yields were reported for Russet Burbank and Norchip in Indiana.

Total and U.S. No. 1 Yield. Red Pontiac produced both the highest total and U.S. No. 1 yield. Over the past years, Red Pontiac, a drought resistant cultivar, has consistently been one of the highest yielding entries in the North Central Trial and this year with the drought and high temperatures, this cultivar naturally produced high yields. The red skinned entries, Wisc. 806R and La. 42-38 also produced high yields. Line TND 14-1Russ, an attractive russet skin selection produced the lowest total yield, however it was quite comparable to Russet Burbank in U.S. No. 1 yield. Other high yielding entries were Neb.Al29.69-1, Neb.A71.72-1 and Minn. 8757.

Minnesota and Wisconsin produced the highest yields. Because of the drought and high temperatures during the growing season, Indiana and Kansas produced very low yields. Louisiana also reported low yields due to adverse weather conditions. Total and U.S. No. 1 yields are found in North Central Regional Tables 1 and 2.

Percent U.S. No. 1. The drought and high temperatures along with other unfavorable weather conditions caused a low percent U.S. No. 1 for trials in Colorado, Indiana, Iowa, Kansas, Louisiana and Nebraska. Russet Burbank with 54 percent U.S. No. 1 tubers was lowest in the Trial (North Central Regional Table 3).

Maturity. Maturity is reported in North Central Regional Table 4. Line ND146-4R along with Norland were again the earliest maturing entries in trial; Neb. A 129.69-1 was the latest. Several entries that were reported to be in the medium to late maturity classification were actually in the early to medium early class.

Percent Total Solids. Line Wisc. 723, with an overall average of 19.0 percent was the highest in total solids (North Central Regional Table 5). Norchip and Russet Burbank had an overall average of 18.8 and 18.6 percent total solids.

Scab Reaction. Colorado, Indiana, Minnesota and Nebraska had the highest incidence of scab (North Central Regional Table 6). South Dakota, Kentucky, Alberta, Manitoba and Iowa reported a low incidence of scab.

Summary of Grade Defects. Grade defects are found in North Central Regional Table No. 7. Certain advanced breeding selections are starred to point out an external and internal defect. This is done only to make the person responsible for the selection aware of its weakness. Russet Burbank again showed a high amount of second growth.

Chip Quality. The best chipping entries were ND146-4R and Neb.A219.70-3. In most cases they had chip color lighter than Norchip. Line Wisc. 723 also had light chip color. Agtron and color chart readings for chip color are found in North Central Regional Table 8.

Overall Merit Ratings. Merit ratings are presented for 1978, 1979 and 1980. Line ND146-4R received the highest merit rating and was third in 1979. Complete merit ratings are found in North Central Regional Table 9.

		Total Points	
Cultivar or Selection	1978	1979	1980
ND146-4R Neb. A129.69-1 Wisc. 726		24 29	28 25 23
Minn. 8757 Norchip	26	20	20 19

1/ Merit Ratings

Ratings	Points
1	5
2	4
3	3
4	2
5	l

North Central Regional Table 1. Total Yield (Cwt/Acre) - 1980.

Cultivar	Alb.	Alb. Manit.	Colo.	Ind.	Iowa	Kansas	Kent.	La.	Mich.	Minn.	Neb.	N.D.	Ohio	S.D.	Wisc.	Average
Early to Med. Early																
ND146-4R	492	260	335	31	263	121	244	98	307	064	379	176	227	236	418	271
Norland	478	335	326	186	292	192	255	103	328	461	380	181	327	222	439	300
Medium to Late																
Neb. A129.69-1	351	279	384	105	226	116	301	81	444	538	320	155	569	267	623	317
Neb. A71.72-1	526	432	423	70	261	110	354	137	404	595	336	187	844	247	611	343
Neb. A219.70-3	383	231	294	205	231	150	270	173	324	452	350	100	256	215	488	275
Minn. 8742	289	189	367	118	217	207	298	123	333	523	324	106	374	179	507	277
Minn. 8757	542	312	361	218	322	213	296	104	426	491	333	218	314	169	527	323
Minn. 9319	478	196	165	109	231	96	238	141	238	502	260	161	214	134	482	250
Wisc. 723	416	342	315	128	215	145	256	129	356		364	215	301	206	561	296
Wisc. 726	421	385	322	210	266	152	326	148	307	550	391	208	344	240	541	321
Wisc. 806R	597	353	452	141	277	113	452	497	445	635	375	162	459	200	598	354
La. 42-38	490	332	378	213	340	222	380	79	644	531	344	192	994	260	599	352
AK 34-2	346	303	196	78	299	119	301	72	248	425	296	150	404	192	430	257
TND 14-1Russ	257	197	213	65	244	108	162	22	258	356	290	134	314	174	365	211
Red Pontiac	624	423	625	217	356	216	351	193	621	269	455	243	574	260	770	442
Russet Burbank	492	336	379		206	13	332	89	436	603	289	212	341	195	299	326
Norchip	454	336	379		267	203	271	54	307	458	372	239	350	320	994	320
		0		((0	,	0		Ĺ	0	0	5	0	000
Average	644	308	348	L23	265	T#./	300	TOT	367	8Tc	345	6/.T	3/0	57.9	535	308

 Average

Wisc. 386 561 466 484 510 462 520 520 520 582 424 734 593 424 S.D. 207 205 172 197 Ohio 252 345 200 164 Minn. Neb. N.D. 162 80 78 151 289 224 233 196 127 178 461 595 452 523 502 635 425 Mich. U.S. No. 1 Yield (Cwt/Acre) - 1980. 424 314 310 416 229 334 228 605 56 122 63 81 81 68 59 37 15 120 Colo. Ind. Iowa Kansas Kent. La. 236 241 247 133 46 84 93 144 53 77 77 36 162 68 46 116 85 1174 120 120 122 122 123 123 163 163 93 104 181 110 166 59 53 187 97 47 256 310 218 287 108 239 244 345 253 103 103 125 381 42 North Central Regional Table 2. Manit. 311 386 221 176 179 323 365 301 285 280 392 278 297 Alb. 394 375 320 362 335 297 473 377 249 194 194 355 Neb. A129.69-1 Neb. A219.70-3 Russet Burbank Medium to Late Neb. A71.72-1 TND 14-1Russ Medium Early Red Pontiac Minn. 8757 Wisc. 806R Minn. 8742 Wisc. 723 Wisc. 726 La. 42-38 Early to Cultivar ND146-4R AK 34-2 Norland Minn.

Average

227 248

North Central Regional Table 3. Average Percent U.S. No. 1 over 2" Diameter - 1980.

Cultivar	Alb.	Alb. Manit. Colo. Ind	Colo.	Ind.	Iowa	Kansas	Kent.	La.	Mich.	Minn. Neb	Neb.	N.D.	Ohio	S.D.	Wisc.	Average
Early to Medium Early																
ND146-4R	82	8 8 8	78	73	52	69 69	96 95	57	95	100	76 62	0 0 0	75	92	78 88	81 81
The state of the s	1)														
Medium to Late																
Neb. A129.69-1	81	91	72	54	53	48	87	94	96	100	73	92	83	92	96	7.8
Neb. A71.72-1	7.1	06	73	67	52	42	82	41	83	100	74	87	77	63	92	76
Neb. A219.70-3	84	96	74	7.1	20	26	82	7.1	64	100	1 9	80	78	92	95	80
Minn. 8742	81	92	78	82	39	45	99	51	93	100	72	73	71	96	95	75
Minn. 8757	98	97	29	93	54	89	98	78	86	100	59	88	81	96	64	83
Minn. 9319	9/	92	65	85	52	55	79	48	96	100	64	93	77	95	96	77
Wisc. 723	80	94	92	81	04	54	64	94	1 6	100	62	87	79	96	92	73
Wisc. 726	70	92	92	98	₩9	51	83	04	92	100	57	92	82	96	96	79
Wisc. 806R	79	98	77	78	1 11	32	7.1		95	100	77	78	7.1	ή6	1 6	77
La. 42-38	77	98	29	78	52	73	72	33	96	100	49	83	82	91	62	7.7
AK 34-2	72	93	53	92	09	57	92	51	92	100	09	91	83	95	66	78
TND 14-1Russ	75	93	59	82	34	43	99	89	ħ6	100	67	79	98	91	06	7.5
Red Pontiac	98	93	19	98	94	53	73	62	97	100	52	83	82	96	95	78
Russet Burbank	72	83	11		12		35	15	88	100	94	33	41	83	83	54
Norchip	99	88	99		41	9†1	82	39	91	100	1 1	87	86	92	91	73
																i
Average	78	91	67	69	47	51	80	47	η6	100	62	83	78	94	89	76

Maturity Classification— $^{1/}$ - 1980. North Central Regional Table 4.

Cultivar	Alb.	Manit.	Colo.	Ind.	Iowa 1	Kansas	Ken.	La.	Mich. M	$Minn^{2/1}$	Neb.	N.D.	Ohio S	. D.	Wisc.	Average
Early to Medium Early																
ND146-4R	3.0	1.6	1.0	1.3	1.0	•			2.0		0.	2.1	1.0	1.0	2.0	•
Norland	3.0	1.6	1.0	1.5	3.0	1.0	1.0	2.0	2.0		2.7	2.0	1.0		1.0	1.8
Medium to Late																
Neb. A129.69-1	0.4	4.0	2.5	4.5						7	0					
Neb. A71.72-1	4.0	2.8	2.2	4.0		5.0	0.4	0.4	0.4		3.7	3.3	3.0	3.0	0.4	3.5
Neb. A219.70-3	0.4	2.8	2.0	•	1.0			•			0.					
Minn. 8742	4.0	2.4	2.0								0.					
Minn. 8757	0.4	2.9	2.0	3.5							. 7					
Minn. 9319	3.0	2.8	1.3	•							.7					
Wisc. 723	5.0	3.1	1.5								.7					
Wisc. 726	5.0	2.8	2.0	•							0.					
Wisc. 806R	0.4	3.0	2.0								0.					
La. 42-38	0.4	ω°	2.5	5.0						,	ო.					
AK 34-2	3.0	2.0	1.0								.7					
TND 14-1Russ	0.4	1.8	1.5								.7					
Red Pontiac	5.0	3.9	2.0					0.4			.7					
Russet Burbank	4.0	4.0	1.7		0.4						. 7					
Norchip	0.41	2.8	2.7			8.4			•		0.					
Average	0.4	2.8	1.8	3.2	2.1	3.4	3.4	3.5	3.3		3.1	3.3	2.8	2.2	3.2	3.0

1/

Very Early - Norland Maturity
 Early - Irish Cobbler Maturity
 Medium - Red Pontiac Maturity
 Late - Katahdin Maturity
 Very Late - Russet Burbank Maturity

No data reported. 2/

North Central Regional Table 5. Percent Total Solids - 1980.

Cultivar	Alb.	Manit. Colo	Colo	Ind.	Iowa	Kansas	Kent.	La.	Mich.	Minn.	Neb.	N.D.	Ohio	S.D.	Wisc.	Ave.
Early to Medium Early																
ND146-4R	19.3	19.0	16.0		13.0	17.2	15.5	16.0	15.8	16.7	18.8	18.6	16.7	17.2	15.8	16.8
Norland	19.0	17.7	16.9	13.3	•	•	•	15.2	2	5		$\overset{\bullet}{\infty}$	2		T.4.0	2
Medium to Late																
Neb. Al29.69-1	21.8	18.2	18.6	14.2	Ю		ю С	5.	•	œ		œ	9	6	•	17.3
Neb. A 71.72-1	21.4	19.4	18.4	16.4	13.3	16.6	15.5	15.4	17.7	17.7	21.4	19.9	16.7	18.3	17.1	17.6
Neb. A219.70-3	21.8	19.0	18.4	15.9			•	•	•	7		б	7	7	•	17.4
Minn. 8742	21.8	20.2	17.3	17.3			14.9	•	•	•	•	6	5.	6	•	7
Minn. 8757	18.8	18.5	16.9	14.4	2.	14.8	14.4	5.	15.8				15.4	9		9
Minn. 9319	22.3	21.4	17.5	16.2	ю С	•	9	•	•	•		0	5.	φ	•	7
Wisc. 723	22.0	22.1	18.6	16.6	3		18.0	5	б	0	•	2.	φ.	0	•	6
Wisc. 726	19.9	21.7	18.2	16.8			•	•	•	0	•	О	7	φ.	•	φ
Wisc. 806R	19.9	19.6	17.3	•	13.3		14.4		7	б	•	φ.	9	7.	17.5	7
La. 42-38	21.3	20.5	19.4	15.7	3	5.	9	15.2	•	•	•	0	9	ထ	•	ά
AK 34-2	21.3	19.5	16.5	14.6	<u>+</u>		16.7	•	•	7	•	0	9	6	•	7
TND 14-1Russ	19.3	20.6	16.5	14.4		•	_		9	•		0	9	φ.	•	7
Red Pontiac	19.5	18.1	17.1	14.2	2	14.4	•	•	17.1	16.3	•	•	5	9	•	•
Russet Burbank	22.3	21.1	17.5				16.2	15.2	σ	•		6	φ.	6	19.4	
Norchip	22.7	21.1	18.2		<u>+</u>	•	7	•	•	19.0	21.4	0	φ.	о О	•	φ.
Average	20.8	19.8	17.6	15.3	13.3	16.0	15.4	15.4	17.7	18.2	19.9	19.6	16.6	18.2	17.2	17.4

1980
- 1
71
(Area-Type)
e Scab
resentativ
Most Rep
ction Report.
Rea
Scab
Table 6.
Regional
Central
North

Early to Medium Early Nonlad-uk T-1 1-4 3-3 T-1 1-1 T-1 2-3 1-4 T-1 1-6 0-0 4-5 1-4 T-1 1-0 0-0 Modium to Late 1-2 1-3 2-3 T-1 3-2 T-1 3-1 T-1 1-4 5-5 1-4 T-1 0-0 Neb. Al29.69-1 T-1 T-1 1-4 3-2 T-1 3-1 T-1 1-4 5-5 1-3 1-1 0-0 Neb. Al29.69-1 T-1 T-1 1-4 3-2 T-1 1-4 5-5 1-3 1-1 1-1 0-0 0-0 2-3 1-1 1-1 0-0 0-0 0-3 1-1 1-1 0-0 0-0 0-3 1-1	Cultivar	Alb.	Manit.	Colo.	Ind.	Iowa	Kansas	Kent.	La.	Mich.	Minn.	Neb.	N.D.	Ohio	S.D.	Wisc. 2/
mate laste T-1 1-4 3-3 T-1 1-1 T-1 T-1	Early to Medium Early															
mm to Late 1-2 1-3 7-1 7-1 7-1 2-3 1-1 0-1 A129.69-1 T-1 T-1 1-4 3-2 T-1 1-4 5-3 1-4 T-1 1-1 0- A71.72-1 T-1 T-1 1-4 3-2 T-1 T-1 1-4 5-3 1-4 T-1 1-1 0-0 A71.72-1 T-1	ND146-4R		T-1	1-4	.1	T-1	1-1	T-1		0-0	4-5	1-4	T-1	- 1	0-0	
Al29.69-1 T-1 1-4 3-2 T-1 3-1 T-1 1-4 5-3 1-4 T-1 1-1 0- A71.72-1 T-1 1-3 1-1 T-1 3-1 T-1 1-4 5-5 1-3 T-1 T-1 1-9 A71.72-1 T-1 1-3 1-1 T-1 3-1 T-1 1-4 5-5 1-3 T-1 T-1 1-9 A219.70-3 T-1 1-3 1-3 T-1 2-1 T-1 T-1 T-1 T-1 1-4 5-5 1-3 T-1 1-9 . 8757 T-1 1-4 3-3 T-1 2-1 T-1 T-1 T-1 T-3 1-4 T-1 1-9 . 9319 T-2 T-1 1-3 1-3 T-1 2-1 T-1 T-1 T-3 1-4 T-1 1-9 . 728 T-2 T-1 1-3 3-1 T-1 2-1 T-1 T-3 1-4 T-1 1-9 . 806R T-2 T-1 1-3 3-1 T-1 1-1 T-1 T-1 T-3 1-4 T-1 1-1 1-1 . 906R T-2 T-1 1-1 T-1 T-1 T-1 T-1 T-1 T-3 1-4 T-1 1-1 1-1 . 906R T-2 T-1 1-1 T-1 T-1 T-1 T-1 T-1 T-3 1-4 T-1 1-1 1-1 . 906R T-2 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-3 1-4 T-1 1-1 1-1 . 906R T-2 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-3 1-4 T-1 1-1 1-1 . 906R T-2 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-3 1-4 T-1 1-1 T-1 . 906R T-2 T-1	Norland		1-2	1-3	- 1	T-1	3-1	T-1		T-1	2-3	2-3	1-1		0-0	
A129.69-1 T-1 T-1 I-4 3-2 T-1 3-1 T-1 I-4 5-1 I-4 5-5 I-4 T-1 I-1 I-1 O- A71.72-1 A219.70-3 T-1 I-3 I-3 I-1 I-1 3-1 T-1 I-4 5-5 I-3 I-4 I-7 I-4 5-5 I-3 I-7 I-4 I-7 I-4 I-8 I-8 I-8 I-8 I-9	Medium to Late															
A71.72-1 A219.70-3 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T		T-1	T-1	1-4	- 1	T-1	3-1	T-1		1-4	5-3	1-4		1-1	0-0	
A219.70-3 T-1 1-3 1-3 2-4 1-5 3-2 T-1 T-1 0-0 2-3 1-3 1-2 1-4 2-7 8742 8742 8742 1-4 2-5 3-2 T-1 3-1 T-1 T-1 T-4 2-3 1-3 2-2 1-1 0-0 8757 1-1 1-4 3-3 T-1 2-1 T-1 T-1 T-3 2-3 1-4 T-1 1-4 0-0 9319 1-2 1-4 3-3 T-1 2-1 T-1 T-1 T-2 1-4 1-2 2-3 1-4 T-1 1-4 0-0 1-3 1-3 1-3 1-1 T-1 2-1 T-1 T-1 T-3 1-3 1-4 1-2 2-3 1-4 T-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1			T-1	1-3	- 1	 - -	3-1	T-1		1-4	5-5	1-3			T-1	
T-4 2-5 3-2 T-1 3-1 T-1 T-4 2-3 1-3 2-2 1-1 0-1 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1		T-1	1-3	1-3	- 1	1-5	3-2	T-1	T-1	0-0	2-3	1-3		1-4	2-2	
T-1 1-4 3-3 T-1 2-1 T-1 T-3 2-3 1-4 T-1 1-4 0- 1-3 1-3 1-3 T-1 2-1 T-1 0-0 1-1 2-3 T-1 0-0 1-1 1-3 1-3 1-1 T-1 2-1 T-1 T-2 4-4 1-2 2-3 1-4 T- T-2 T-1 1-3 3-1 T-1 2-1 T-1 T-3 4-2 1-5 T-1 1-1 T-1 T-2 3-4 3-2 T-1 1-1 T-1 T-1 T-3 4-3 1-4 T-1 1-2 0-1 T-1 2-5 1-1 T-1 1-1 T-1 1-4 5-5 2-4 1-1 1-1 0-1 T-1 T-1 1-5 2-7 1-1 1-1 T-1 1-4 5-5 2-4 1-1 1-1 0-1 T-1 T-1 1-5 2-2 1-2 4-1 T-1 1-1 T-1 0-0 5-4 1-4 0-0 1-4 0-1 T-1 T-1 1-5 2-2 1-2 4-1 T-1 1-1 T-1 0-0 2-3 0-0 0-0 1-3 1-3 1-1 T-1 1-5 2-7 1-7 1-1 T-1 1-1 T-1 1-1 1-1 1-1 1-1 1-1 1-1			T-4	2-5	- 1	T-1	3-1	T-1	T-1	T-4	2-3	1 3		1-1	0-0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			T-1	1-4	- 1	T-1	2-1	T-1	T-1	T-3	2-3	1-4		1-4	0-0	
1-1				1-3	- 1	T-1	2-1	T-1		0-0	1-1	2-3			0-0	
T-2 T-1 1-3 3-1 T-1 2-1 T-1 T-3 4-2 1-5 T-1 1-1 T-1 T-1 1-1 T-1 T			1-1	1-3	- 1	T-1	2-1	T-1		T- 2	4-4	1-2		1-4	T- 2	
T-2 3-4 7-1 1-1 T-1 1-4 5-5 1-3 T-1 1-1 T-1 1-7 T-2 3-4 3-2 T-1 1-1 T-1 T-3 4-3 1-4 T-1 1-2 0- T-1 2-5 1-1 T-1 1-1 T-1 1-4 5-5 2-4 1-1 1-1 0- T-1 2-4 1-1 T-1 1-1 T-1 0-0 5-4 1-4 0-0 1-4 0- T-1 1-5 2-2 1-2 4-1 T-1 1-1 1-5 5-5 1-2 3-3 1-3 1-3 1-0 0-0 T-1 1-5 2-2 1-2 4-1 T-1 0-0 2-3 0-0 0-0 1-3 1-1 1-1 1-1 1-1 T-1 0-0 2-2 1-5 T-1 1-1 T-1 T		T- 2	T-1	1-3	- 1	T-1	2-1	T-1		T-3	4-2	1-5		1-1	T-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1-5	- 1	T-1	1-1	T-1		1-4	5-5	1-3		1-1	T-1	
T-1 2-5 1-1 T-1 1-1 T-1 1-4 5-5 2-4 1-1 1-1 0- T-1 2-4 1-1 T-1 1-1 T-1 0-0 5-4 1-4 0-0 1-4 0- T-1 1-5 2-2 1-2 4-1 T-1 1-5 5-5 1-2 3-3 1-3 1- 0-0 T-1 1-1 T-1 0-0 2-3 0-0 0-0 1-3 1- 1-5 T-1 2-1 T-1 0-0 2-2 1-5 T-1 1-1 T-	La. 42-38		T-2	3-4	- 1	T-1	1-1	T-1		T-3	4-3	1-4		1-2	0-0	
T-1	AK 34-2		T-1	2-5	- 1	T-1	1-1	T-1		1-4	5-5	2-4		1-1	0-0	
T-1 1-5 2-2 1-2 4-1 T-1 1-5 5-5 1-2 3-3 1-3 1- 0-0 T-1 1-1 T-1 0-0 2-3 0-0 0-0 1-3 1- 1-5 T-1 2-1 T-1 0-0 2-2 1-5 T-1 1-1 T-	TND 14-1Russ	T-1		2-4	- 1	T-1	1-1	T-1		0-0	5-4	1-4		7-4	0-0	
0-0 T-1 1-1 T-1 0-0 2-3 0-0 0-0 1-3 1- 1-5 T-1 2-1 T-1 0-0 2-2 1-5 T-1 1-1 T-	Red Pontiac		T-1	1-5	- 1	1-2	4-1	T-1		1-5	2-2	1-2		1-3	1-2	
1-5 T-1 2-1 T-1 0-0 2-2 1-5 T-1 1-1 T-	Russet Burbank			0-0		T-1	1-1	T-1		0-0	2-3	0-0		1-3	1-2	
	Norchip			1-5		T-1	2-1	T-1		0-0	2-2	1-5		1-1	I-1	

1/	AREA	TYPE
1	T = less than 1%	1. Small,
	1 = 1-20%	2. Larger
	2 = 21 - 40%	3. Larger
		4. Larger
	4 = 61 - 80%	5. Very l
	5 = 81-100%	

1%
1. Small, superficial
2. Larger, superficial
3. Larger, rough pustules
4. Larger pustules, shallow holes
5. Very large pustules, deep holes

 $\frac{2}{}$ No data

Summary of Grade Defects. -1980. North Central Regional Table 7.

			Ext	External				Internal	
Cultivar	Scab	Growth	Second	Sun Green	Total 1/ Free of 1/ Ext. Defects	Hollow Heart	Internal Necrosis	Vascular Discolo- ration	Total Free of 1/ Int. Defects
Early to Medium Early									
ND146-4R	6.5	3.2	4.6	9.0	83.1	0.3	.13	7.5	91.2
Mortand Medium to Late		· t	•		O .	- • - -			·
	(0	-= ((6	0	
Neb. A29.69-1	10. U	7.7	o o) (79./ 7 T	7.0 7.0	L 1	7. 11	700.4
Neb. A219.70-3	10.1%		0.0	3.2	9	. t . 5. %	1.40	8.8	67.4
Minn. 8742	11.9%		12.0%	3.7	2	5.4%	0.47	13.1	77.6
Minn. 8757	11.3%		6.7	2.2	75.0	•	2.40	5.2	84.9
	4.0		7.6	2.5		1.0	0.30	17.2*	75.2
Wisc. 723	8.8	1.6	7.7	2.3	83.6	0.3	2.10	14.7	76.9
	7.1	2.0	4.3	6.0%	82.3	2.2	2.20	15.3	75.3
Wisc. 806R	14.5%	1.4	7.5	1.4	73.4	2.8	5.20*	7.0	71.2
La. 42-38	7.1	4.0	6.3	2.0	80.8	3.1	0.80	7.6	83.1
AK 34-2	7.1	4.0	4.8	3.4	79.5	2.7	1.70	8.1	81.3
TND 14-1Russ	1.3	2.9	11.4	1.1	83.5	0.5	1.10	6.7	86.1
Red Pontiac	11.6%	3.2	10.1	1.9	74.2	2.1	09.0	8.9	\sim
Russet Burbank	2.2	2.6	42.2%	4.0	47.1	3.9	0.05	8.0	75.7
Norchip	0.9	6.7%	10.0	.0.9	67.1	0.8	2.70	10.5	75.1
Average	7.7	3.7	9.6	2.7	76.8	2.3	1.60	o. o	79.3

Percent normal tubers showing no defects (some individuals had more than one type of defect). 1/

^{*} Possible weakness of cultivar or clone.

Chip Quality.-1980. North Central Regional Table 8.

Cultivar	A1b.1/	$Alb_{\bullet}^{1/Manit_{\bullet}^{2/M}}$	Colot Ind.	Iowa	Kansas Kent. I	Lat/	Mich. Min	Minn. $Neb^{1/2}$	1	$N.D^2/Ohio^2/S$	Ü	Wisc.1/
Early to Medium Early												
ND146-4R	5.7	43.3	3.0						94	65		
Norland	6.7	34.8	3.0		9	0.9	3.0	4.0	33	42		7.0
Medium to Late												
Neb. Al29.69-1	7.1	24.3	3.0			•			22	04		
Neb. A71.72-1	8.0	33.5	3.0		7	4.6	3.0	0.4	30	4747		3.4
Neb. A219.70-3	7.0	45.0	3.0		. 4	•			0+1	63		
Minn. 8742	8.5	26.8	0.4		7				19	32		
Minn. 8757	8.3	24.8	3.0)			•	19	26		
Minn. 9319	5.5	40.8	0.4		(-)			•	35	7+7		
Wisc. 723	6.1	40.5	3.0						30	55		
Wisc. 726	7.3	39.5	3.0		(,)				43	58		
Wisc. 806R	.6.	29.3	3.0						21	52		
La. 42-38	8.3	29.5	3.0					•	25	94		
AK 34-2	7.5	32.8	3.0		(-)	3.3			27	50		
TND 14-1Russ	6.3	38.3	3.0						29	57		
Red Pontiac	8.2	20.8	0.4						21	35		
Russet Burbank	6.3	35.3	0.4			3.8		•	27	47		•
Norchip	2.0	46.3	3.0		Г				42	57		•
Average	7.1	34.4	3.2			3.6	2.6	4.6	30	84		5.3
)												

PCII Color Chart (1 lightest; 10 darkest)

Agtron (Highest number lightest) 17/

1980.
-1
Ratings"
Merit
б
Table
Regional
Central
North

Point Parity to Parity t	North Central Regional Table 9.	Region	nal Tabl	Ф	Merit	Merit Ratings	ngs—'-	1980.									
arally 4 1 4 2 2 2 3 5 5 Liste 5 4 1 4 1 2 2 4 25 9.69-1 9.69-1 9.69-1 9 9 9 9 9 1.72-1 2 2 2 2 2 4 25 9.70-3 9 4 4 4 4 4 25 19 1 4 4 4 2 4 4 19 1 4 4 2 1 4 4 10 1 1 4 4 4 4 4 10 1 1 4 4 2 1 4 10 1 1 4 4 4 4 4 1 1 1 1 4 4 4 4 1 1 1 1 1 1 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 4 4 3	Cultivar	Alb.	Manit.	Colo.	Ind.	Iowa	Kansas	Kent.	. La	Mich.	Minn.	Neb.	N.D.	Ohio	9	Wisc.	Total
Late 3	Early to Medium Early																
1	ND146-4R	4	П	7			2	2		2	ဇာ	2	2				28
Late 1 5 4 5 4	Norland	ო			7	2	4	Н									12
19.69-1 2	Medium to Late																
11.72-1 2 2 1				2				Ω				٦		2	2	†	25
19.70-3 742 742 745 757 5 748 757 5 749 757 5 749 757 758 758 759 759 759 759 759 759 759 759 759 759	Neb. A71.72-1	2	2	Н							2	2		\vdash	Н	1	12
742 757 5 4 4 757 5 4 4 757 5 6 758 7 758 7 758 7 759 7 7 7 7 7 7 7 7 7 7 7 7 7							7		2								9
757 5 4 3 4 4 4 2 2 5 1 2 5 1 2 3 3 10 23 23											+						#
2 5 1 23		2			+	က		#	†								20
23 1 4 2 3 10 26 5 5 5 3 3 1 4 2 3 10 26 8 3 4 5 5 3 4 4 5 3 11 21 1 3 3 3 4 5 3 5 3 14 28 9 29 11 20 12 20 15 20 15 21 21 21 21 21 21 21 21 21 21 21 21 21									2	2	Н						Φ
26 5 5 3 3 4 4 5 3 4 4 4 4 4 4 4 5 5 1									7			+	2			က	10
96R 38 1 2 3 4 5 3 4 4 5 15 1 1 1 3 3 4 6 3 5 3 14 4 4 5 1 1 1 3 3 3 4 1 5 3 1 12 1 1 1 3 3 3 4 4 4 4 5 5 19 1 1 1 3 3 3 4 4 4 4 5 5 19 1 1 1 3 3 3 5 19			2	2	S	2		ന					с				23
1				ന						က	Ω	ന					14
lRuss 1 4 4 9 5 5 1 1 3 3 3 4 4 3 3 5 19 $\frac{1}{4}$ 1 1 3 3 5 19	La. 42-38	П			m	4	5									2	15
IRuss	AK 34-2									г				4	#		on .
tiac 1 1 3 3 2 2 Burbank 3 4 3 5	TND 14-1Russ									4			П				<u>.</u>
Burbank 3 4 3 5 1 1	Red Pontiac				Н	Н	ന		က					2	2		12
T 9 8 6 7	Russet Burbank		ന											(o (
	Norchip		4										4	n	ന	വ	5 -

Merit Ratings

Points	2	7	ო	2	_
Rating	1	2	ന	#	LC.

WESTERN REGIONAL POTATO VARIETY TRIAL - 1980

J. J. Pavek, D. L. Corsini, and Cooperators_____

The 1980 Western Regional Potato Variety Trial was uniformly grown at nine locations. A seed distribution problem prevented the tenth location (Malheur Co., Oregon) from growing all of the entries. The trial was also planted at two other locations (Wyoming, Manitoba) but problems there with inadequate moisture precluded the collection of meaningful data. The trial consisted of 12 entries including nine experimental clones. The trial locations, planting and harvest dates, and days from planting to harvest were as follows:

State/	Location	Planting	Harvest	Days to
Province		Date	Date	Harvest
Alberta California Colorado Idaho " Oregon Washington	Brooks Kern Co. Tulelake San Luis Valley Aberdeen Kimberly Hermiston Malheur Co Othello Prosser	5/12 2/25 5/13 5/20 4/30 4/23 4/9 4/24 4/17	9/29 6/16 9/24 9/22 9/30 10/8 9/30 10/13 9/17	140 111 134 125 153 168 174 172 153 152

Cultural practices, use of fertilizer, pesticides, irrigation, and vine killing varied according to local conditions. All locations were irrigated on a regular schedule throughout the entire growing season. Temperatures across the region averaged somewhat below normal for much of the season. Data on tuber yields, vine and tuber characteristics, and merit ratings are presented in Western Tables 1 through 7. Experimental clones to be retained in the 1981 trials are A72545-2, AD7267-1, AD7377-1, WC521-12, and WC672-2. Red-skinned AC67560-1 may be named and released in 1981.

Alberta, D. Lynch; California, R. Voss; Colorado, J. Twomey; Idaho, G. Kleinschmidt, S. Michener; Oregon, A. Mosley, M. Johnson, C. Stanger, G. Carter; Washington, M. Martin, W. Iritani, N. Holsted; Wyoming, K. Bohnenblust.

Western Table 1. Total Yield cwt/acre.

Entry	California Kern Tul	rnia Tul	Colo	Idaho Ab	O Kim	Oregon Herm M	on Ma 1	Washington Oth Pro	ngton Pros	Alb	Overall Mean
A72545-2	1	1	406	420	342	585	411	930	881	260	545 a*
B6987-184	430	490	338	322	91-/	453	1	524	689	248	398 cd
AC67560-1	365	550	428	352	264	440	330	642	753	596	454 bc
WC521-12	380	495	418	357	384	714	ı	669	887	279	513 ab
WC612-13	460	480	442	528	404	613	1	930	1024	360	582 a
WC672-2	365	520	427	404	401	593	669	812	305	303	525 ab
AD7267-1	510	645	413	356	394	623	ı	732	096	378	546 a
AD7377-1	340	909	430	448	495	552	1	912	1065	331	575 a
WD641-10	245	365	292	306	232	228	ı	471	652	283	342 d
Atlantic	465	750	437	388	326	496	1	189	799	349	521 ab
Lemhi Russet	360	645	389	402	426	645	570	822	086	383	561 a
Russet Burbank	455	615	378	379	414	563	09/	854	725	335	524 ab
Location Means	398	561	400	389	348	542		751	860	309	506

*Duncan's Multiple Range Test using locations as reps (P=.05).

1/Severe metribuzin injury reduced yield.

Western Table 2. Yield of U.S. No. 1's cwt/A and percent.

Entry	California Kern Tu	rnia Tul	C010 SLV	Idaho	ho Kim	Oregon	on Ma 1	Washington Oth Pr	gton Pros	Alb	Mean	%
A72545-2	1	ı	328-81	366-87	313-92	533-92	387-94	838-90	801-91	198-76	482 a*	88
B6987-184	375-87	430-88	261-77	253-79	66-73	378-83	ı	392-75	586-85	135-54	320 de	80
AC67560-1	340-93	470-85	326-76	282-80	239-91	392-89	289-88	559-87	06-929	218-74	389 bcd	98
WC521-12	340-89	440-89	345-83	309-87	340-89	613-86		618-88	817-92	204-73	447 abc	87
WC612-13	410-89	410-85	373-84	475-90	339-84	558-91	ı	759-82	922-90	251-70	500 a	98
WC672-2	340-93	440-85	364-85	328-81	349-87	553-93	607-87	78-907	785-87	244-81	457 ab	87
AD7267-1	485-95	555-86	310-75	301-85	345-88	537-86	ı	632-86	864-90	143-51	464 a	85
AD7377-1	330-97	530-88	349-81	358-80	325-66	474-86	1	810-89	948-89	164-50	476 a	83
WD641-10	230-94	300-82	252-86	261-85	214-92	184-81	1	395-84	580-89	179-63	288 е	84
Atlantic	425-91	680-91	346-79	333-86	293-90	463-93		584-86	631-79	212-61	441 abc	85
Lemhi Rus	350-97	260-87	310-80	296-74	374-88	267-88	251-97	702-85	16-168	267-70	480 a	98
Russet B.	350-77	475-77	229-61	241-64	264-64	378-67	587-77	82-699	623-86	186-56	379 cd	72
Location Means	361	481	316	317	288	469		639	760	200	427	

*Duncan's Multiple Range Test using locations as reps (P=.05).

U.S. No. 1's over 10/12 oz percent of total yield.* Western Table 3.

Entry	California Kern Tul	ornia Tul	Colo	Idaho Ab	ho Kim	Oregon Herm M	Jon Ma T	Washington Oth Pro	ngton Pros	Alb	Overall Mean
A72545-2	ı	1	19	59	47	Ξ	65	28	69	30	40
B6987-184	9	8	14	27	7	6	ı	19	62	19	20
AC67560-1	10	16	31	41	54	10	48	46	63	16	35
WC521-12	18	22	31	20	62	16	1	47	72	59	41
WC612-13	2	10	20	26	46	12	1	37	62	13	31
WC672-2	10	56	15	24	29	12	52	35	52	19	27
AD7267-1	17	59	33	22	65	14		54	71	21	43
AD7377-1	10	15	30	49	40	14	ı	40	89	11	33
WD641-10	4	25	35	45	46	80	1	31	63	23	34
Atlantic	က	6	10	40	53	6	1	22	46	15	22
Lemhi Russet	11	21	27	33	54	14	9/	32	22	31	33
Russet Burbank	2	10	20	33	19	10	41	27	53	26	24

*Calif. >12 oz, rest >10 oz except Herm. which is average tuber weight in oz.

U.S. No. 2's and culls, percent of total yield. Western Table 4.

Entry	California Kern Tul	rnia Tul	Colo SLV	Idaho Ab	ho Kim	Oregon Herm M	Jon Ma T	Washington Oth Pro	ngton Pros	Alb	Overall Mean
A72545-2	ı	1	19	13	8	80	9	10	16	22	14
B6987-184	12	12	24	22	27	16	1	25	21	29	21
AC67560-1	7	15	24	20	6	12	13	12	20	25	16
WC521-12	10	11	17	14	1	14	ı	12	12	27	14
WC612-13	11	14	15	10	16	6	1	19	16	27	15
WC672-2	7	16	15	19	12	7	12	13	21	20	15
AD7267-1	2	15	56	15	12	14	1	14	14	41	17
AD7377-1	2	12	28	20	34	14	ı	12	17	41	20
WD641-10	9	18	14	15	8	19	1	19	17	33	17
Atlantic	∞	6	21	14	_	8	1	14	32	32	16
Lemhi Russet	2	13	21	56	12	7	4	15	91	25	14
Russet Burbank	21	22	40	37	36	33	23	22	24	29	29

Western Table 5. Specific gravity.

Entry	California Kern Tu	rnia Tul	C010 SLV	Idaho Ab	ho Kim	Oregon Herm	Washi Oth	Washington)th Pros	Alb	Overall Mean
A72545-2	ı	ι	1.086	1.075	1.080	1.083	1.083	1.070	1.084	1.081 c*
B6987-184	1.097	1.093	103	98	93	66	96	87	86	96 a
AC67560-1	82	81	75	89	69	71	9/	89	77	74 d
WC521-12	97	89	103	95	96	66	101	93	101	97 a
WC612-13	86	88	94	98	89	16	98	88	72	9 68
WC672-2	96	77	91	87	93	98	91	78	95	98 b
AD7267-1	82	70	69	65	89	74	72	70	29	71 d
AD7377-1	78	64	73	89	72	72	79	70	70	72 d
WD641-10	95	79	88	81	81	80	75	74	06	82 c
Atlantic	98	88	105	89	92	95	88	82	66	93 a
Lemhi Russet	91	83	93	84	88	87	06	82	95	98 p
Russet Burbank	86	83	87	77	98	16	89	81	88	87 b
Location Means	91	81	89	81	84	85	98	79	98	85

*Duncan's Multiple Range Test using locations as reps (P=.05).

Summary of vine characteristics. Western Table 6.

Entry	Seed	Emer- gence (2 Loc)	Stand % (8 Loc)	Metribuzin injury (Kim)	Seedborge virus <u>-</u> (Ab)	Vine size (Ab)	Vine maturity (4 Loc)	Vert. wilt	Early blight
A72545-2	(0r)	3.01/	84	1.8 ² /	50% Mos	V. Lrg.	3.94/	$0.9\overline{5}/$	$3.0^{5/}$
B6987-184	(Mn)	3.0	87	4.0	8% Mos	Med.	2.4	3.5	4.1
AC67560-1	(0r)	3.5	86	1.8	10% LR 8% Mos	Med.	3.1	3.5	4.3
WC521-12	(0r)	3.0	80	2.7	0	Lrg.	2.9	3.0	3.5
WC612-13	(0r)	3.0	93	3.0	0	Lrg.	4.0	1.4	3.1
WC672-2	(00)	3.0	85	2.5	0	Lrg.	3.2	2.7	3.6
AD7267-1	(Ca)	3.0	88	2.8	8% LR 23% Mos	Lrg.	2.8	7.8	3.2
AD7377-1	(Ca)	3.0	06	1.2	0	Lrg.	3.4	1.3	5.9
WD641-10	(Ca)	4.0	77	1.3	0	M.Sm.	3.5	2.9	3.8
Atlantic	(0r)	3.0	91	3.5	0	M.Sm.	2.9	4.0	4.0
Lemhi Russet	(PI)	3.2	87	2.0	0	Lrg.	3.1	5.6	4.0
Russet Burbank	(0r)	2.5	94	2.5	10% Mos	Lrg.	3.4	3.3	3.5
1,									

Thergence: I (earliest) to 5 (Latest). $\frac{1}{2} / \text{Emergence: I (earliest) to 5 (Latest).}$ $\frac{2}{3} / \text{Metribuzin injury: I (none), 2 (slight), 3 (moderate), 4 (severe), 5 (wiped out).}$ $\frac{3}{4} / \text{Based on visual symptoms at Aberdeen. Mosaic (symptoms) not identified as due to PVX or PVY.}$ $\frac{4}{4} / \text{Mosaic (symptoms) (mean of Aberdeen & Prosser only).}$ $\frac{5}{4} / \text{Mosaic (maximum) (mean of Aberdeen & Prosser only).}$

Tuber type, scab, hollow heart, and merit rating scores. Western Table 7.

		Tub	Tubers 1/					Merit	t Ratin	Merit Rating Scores 4/				
			Common	Hollow heart	California	nja	0100	Ιđέ	Idaho	Oregon		Washington		Total
Entry	Shape	Skin	(4 Loc)	<u>%3/</u>	Kern	Tul	SLV	Ab	Kim	Herm	0th	Pros	Alb	Score
A72545-2	0	Buff	$1.9^{2/}$	2					2		က	2	4	=
B6987-184	0-R	Buff	2.8	2										0
AC67560-1	R±	Red	5.6	~			2	2	4					12
WC521-12	R-0	Buff	5.6	က	က					2	4	ო		15
WC612-13	R-0	Buff	4.1	_			2			2		2	2	Ξ
WC672-2	R-0	Buff	3.0	4	_		_			_			က	7
AD7267-1	r-0	Rus.	1.4	7	7 9	4		_		3				13
AD7377-1	□- 0	Rus.	1.3	2	2		က	က			_	_		Ξ
WD641-10	0	Rus.	1.6	_				4	က					7
Atlantic	œ	Buff	3.1	7	4	5								6
Lemhi Rus.	r-0	Rus.	1.0	4	.,	23	4	2	2	4	2	4	2	35
Russet B.	_	Rus.	1.1	2	,	2					2			4

1/Shape: O=oblong, R=round, L=long; Skin: Buff=scaly or flaky, not smooth and white; Rus.=russet.

2/Scab: O (none) to 5.0 (most severe).

3/Rollow heart: mean of 9 locations.

4/Merit Rating Rank Score | Rank | Rank | Score | Rank |

NATIONAL TRIALS OF POTENTIAL ETHANOL LINES

Mark W. Martin and Cooperators $\frac{1}{}$

National Trials Organized. In 1980 I was asked to coordinate trials across the U.S. to determine the feasibility of growing potatoes as a biomass crop for ethanol production. These trials were to be funded with a federal alternate fuels grant but the money did not make it through the DOE decision making process. I am grateful to cooperators (listed below) in the states of Maine, North Dakota, Nebraska, Idaho and Washington who consented to grow these trials with this promise of funding and then had to conduct them at their own expense. Gary Kleinschmidt and Art Walz conducted potato biomass trials of their own in Idaho and have consented to let us report their results.

Lines Tested. By telephone consultation with the cooperators involved it was decided to all test a core group of 14 lines and then add others which were good candidates in our own area or for which we had only limited seed. The core group of lines and sources of seed were: Kennebec (local), Red Pontiac (local), Lemhi (local and Idaho), Crystal (North Dakota), Atlantic (local), Russet Burbank (local), A503-43 (local and Idaho), Wn C 612-13 (Colorado), B6987-201 (Washington - but B6987-184 was sent by mistake), Bounty, Neb. S1-3, 210-2, 12.72-2, and A129.69-1 (all from Nebraska).

Growing Season. The growing season in Washington and Idaho was one of the best ever for potatoes, with very little heat stress throughout the summer. Yields in Idaho were lower than expected because the trial at Aberdeen happened to fall in a part of the field with poor soils and the trial at Kimberly was injured early in the season by metribuzen herbicide. In North Dakota, Nebraska and Maine the growing season was very hot and dry and the harvest season unusually wet. This resulted in low yields in North Dakota and Maine, where irrigation is not used, and in lower than expected solids.

Results. Results of these trials indicate that growing potatoes as a biomass for ethanol production could be either very profitable or very expensive, depending on which cultivars were grown and where they were grown (Tables 2-11). Results from Nebraska were not available as this was written. High yields normally obtained in southwest Idaho and up through eastern Oregon and eastern Washington would make potato production for ethanol feasible and potentially very profitable, especially if high-yielding cultivars like White Rose, Kennebec and Red Pontiac are grown over a long season (Table 2). Yields of 50 to 70 T/A were obtained in these small plot trials, which it is estimated would convert to 1000 to 1300 gallons of ethanol/A, far more than corn or other proposed ethanol crops. The vines of some of these high-yielding, early-dying-resistant lines, could also make a significant contribution to the production of ethanol and high protein byproducts. Lines like

^{1/} Idaho, J. Pavek, D. Corsini, G. Kleinschmidt, A. Walz; Maine, R. Webb; Nebraska, R. O'Keefe; North Dakota, R. Johansen.

Wn 708-27 and Wn 705-111 produced from 55 to 75 T/A of tops in these small, single row plots, because they overgrew adjoining plots of commercial cultivars. It is estimated that such lines could produce up to 40 T/A of tops on a large acreage basis, which could convert to 300 gallons of ethanol/A and 5 T/A of 20% protein byproduct, paying the cost of extracting the ethanol from both the tubers and tops.

Whether potatoes can be profitably grown for ethanol depends to a great extent on the extraction costs of the ethanol and how much of this can be recovered by sale of byproducts. This would be particularly true in most areas outside the Columbia Basin area of Oregon and Washington, because the estimated cost of growing the crop in most areas is about the same as the value of the ethanol that might be obtained. Whether potatoes can be economically used for ethanol also depends on many complex supply and demand factors. The high potato prices in 1980, resulting from a short supply, would have made it uneconomical to make ethanol from any potatoes except those not suitable for human consumption. To insure a constant supply of potatoes ethanol factories would have to have them grown under contract. The growing of ethanol potatoes would probably be a separate industry from the growing of potatoes for culinary purposes, and would probably involve high yielding varieties not usable for fresh market or processing.

Nationwide, probably the leading candidate as an ethanol variety is A503-42 (Tables 2, 5, 7, 8, 9, 11). It is consistently high yielding and has good solids. Other lines that show promise and deserve further testing are Denali, A68113-4, A72545-2, A74595-11, A75708-9, A74771-4, Wn C 612-13, Wn 705-111 and Wn 708-27. Several others also showed some promise and probably should be retested. Many new clones were probably selected in 1980 by breeders interested in this new use of potatoes. These will be screened locally and seed increased of the more promising for widescale testing, to determine if they will produce higher yields of fermentable carbohydrates/A than the lines tested in 1980.

Ethanol Yield Estimates. We soon found that there was little information available regarding the production of ethanol from potatoes. It is generally assumed that technology for extracting ethanol from potatoes is available but we were unable to find anyone in the U.S. who had successfully done it on a large scale or over a long period. The literature indicated that from 1 to 1.4 gallons of ethanol could be extracted from a hundredweight of potatoes, with 1.25 gallons being the figure most commonly used. Those who had actually extracted ethanol from potatoes agreed, however, that this estimate was too high. There is only about a 85% conversion efficiency of starch to ethanol with the techniques presently used. I reviewed the literature on the relationships between specific gravity, solids, starch, sugars and talked with many who had conducted studies on these relationships. From the information collected I developed Table 1 which has many "ifs" connected to it but provides a reasonable estimate of the amount of ethanol that might be extracted from a cwt of potatoes at various specific gravity levels. Since every cultivar differs in these relationships and environment plays such an important part, it is impossible to come up with exact figures that would hold under all circumstances. The estimates in Table 1 seem to conform fairly closely to actual yields of ethanol which are being obtained by the few ethanol factories trying to use potatoes. The details of how these estimates were computed and used in converting our trial results into gallons

of ethanol/A and dollar value are shown in the footnotes of Tables 1 and 2. Hopefully, research will soon be initiated at various locations across the U.S. to obtain the data needed to confirm or make adjustments in Table 1.

Washington Table 1. Converting Specific Gravity Readings to % Solids, % Starch, % Sugar, % Fermentable Carbohydrates and Gallons of Ethanol/cwt (all estimates based on review of literature)

Specific	<u>% 1/</u>	<u> 2/</u>	<u> </u>	% Fermentable 4/	Gallons 5/
Gravity	Solids	Starch	Sugar	Carbohydrates	Ethanol/cwt
1.060	16.8	10.7	3.0	13.7	0.88
1.061	17.0	10.9	2.9	13.8	0.89
1.062	17.2	11.1	2.9	14.0	0.90
1.063	17.4	11.3	2.8	14.1	0.91
1.064	17.6	11.5	2.8	14.3	0.92
1.065	17.8	11.7	2.7	14.4	0.93
1.066	18.0	11.9	2.7	14.6	0.94
1.067	18.2	12.1	2.6	14.7	0.95
1.068	18.4	12.3	2.6	14.9	0.96
1.069	18.6	12.5	2.5	15.0	0.97
1.070	18.8	12.7	2.5	15.2	0.98
1.071	19.0	12.9	2.4	15.3	0.99
1.072	19.2	13.1	2.4	15.5	1.00
1.073	19.4	13.3	2.3	15.6	1.01
1.074	19.6	13.5	2.3	15.8	1.02
					1.02
1.075	19.8	13.7	2.2	15.9	1.03
1.076	20.0	13.9	2.2	16.1	1.04
1.077	20.2	14.1	2.1	16.2	1.05
1.078	20.4	14.3	2.1	16.4	1.06
1.079	20.6	14.5	2.0	16.5	1.07
1 000	20. 9	1/. 7	2.0	16. 7	1 00
1.080	20.8	14.7	2.0	16.7	1.08
1.081	21.0	14.9	1.9	16.8	1.09
1.082	21.2	15.1	1.9	17.0	1.10
1.083	21.4	15.3	1.8	17.1	1.11
1.084	21.6	15.5	1.8	17.3	1.12
1.085	21.8	15.7	1.7	17.4	1.13
1.086	22.0	15.9	1.7	17.6	1.14
1.087	22.2	16.1	1.6	17.7	1.15
1.088	22.4	16.3	1.6	17.9	1.16
1.089	22.6	16.5	1.5	18.0	1.17
1.090	22.8	16.7	1.5	18.2	1.18
1.090		16.9	1.4	18.3	1.19
1.091	23.0 23.2	17.1	1.4	18.5	1.20
				18.6	1.21
1.093	23.4 23.6	17.3	1.3 1.3	18.8	1.22
1.094	23.0	17.5	1.3	10.0	1.22
1.095	23.8	17.7	1.2	18.9	1.23
1.096	24.0	17.9	1.2	19.1	1.24
1.097	24.2	18.1	1.1	19.2	1.25
1.098	24.4	18.3	1.1	19.4	1.26
1.099	24.6	18.5	1.0	19.5	1.27
1.100	24.8	18.7	1.0	19.7	1.28

- $^{1/}$ Computed by using formula (201.72 x S.G.) 196.98 = % Solids (Fitzpatrick, et al. 1969, Amer. Pot. J. 46:126).
- Computed by multiplying % Solids by a variable ranging from 64% at S.G. 1.060 to 76% at S.G. 1.100. This percentage variable is based on analytical work of M. Maercker-Landwerth.
- An estimated figure based upon analytical work by Schwimmer et al. 1954.

 Agr. and Food Chem. 2:1284-1289. These estimates are for % reducing sugars only so are low because sucrose and other sugars are also present. The amount and form of sugar present is influenced by storage temperatures and many other factors but in most cases will make a significant contribution to total % fermentable carbohydrates.
- $^{4/}$ Computed by adding estimated % sugar to % starch.
- 5/Computed by multiplying % fermentable carbohydrates times 100 lbs to estimate the carbohydrate/cwt. Theoretically 0.5 lb of ethanol will be obtained from each lb of this carbohydrate but in actual practice only about 85% conversion efficiency or 0.425 lbs of ethanol/lb of carbohydrate is attained. Therefore, lbs carbohydrate/cwt was multiplied by 0.425 to obtain lbs ethanol/cwt and this was divided by 6.6, the weight of a gallon of ethanol to obtain the gallons of ethanol/cwt shown.

Sunheaven Ranch, Prosser - trial of potential ethanol lines - planted Apr. 11, - tops harvested Sept. 5/80. harvested Sept. 10/80 (155 days) 2. Washington Table

	$1\frac{5}{1}$															
Value	Gal Eth/ $A^4/@$ \$1.70/gal	\$ 2603	2587	2489	2402	2293	2292	2219	2025	1962	1743	1743	1656	1515	1505	1102
Total	Gal Eth/A ⁴	1531	1522	1464	1413	1349	1348	1305	1191	1154	1025	1025	974	891	885	648
Tops	Cwt/A Gal Eth/A $\frac{3}{2}$	207	176	100	487	363	168	163	131	158	157	54	81	29	40	19
I	Cwt/A	645	547	311	1514	1128	522	508	406	491	489	166	251	90	123	58
	Gal Eth/A $\frac{2}{}$	1324	1346	1364	926	986	1180	1142	1060	966	898	971	893	862	845	629
Tubers	$\%$ Carbo $\frac{2}{}$	15.5	15.1	15.0	14.4	16.8	17.5	15.9	16.8	16.9	15.0	18.2	15.2	17.5	14.4	14.4
	S.G.	1.073	1.071	1.069	1.066	1.081	1.086	1.075	1.081	1.080	1.069	1.090	1.070	1.086	1.066	1.066
	$Cwt/A \frac{1}{2}$	1311	1360	1406	985	905	1035	1109	991	922	895	823	911	756	899	699
	Line	White Rose	Kennebec	Red Pontiac	Wn 708-27	Wn 705-111	Wn C 612-13	A503-42	Lemhi	Rus Burbank	AD73116-1	B6987-184	A70365-6	Atlantic	Pioneer	Wn D 634-4

 $^{1/}$ Ave. yield of Rus Burbank circle in which this trial was grown was 770 cwt/A which is 16% lower than the Rus Burbank yield we obtained.

 $^{2}/_{
m Used}$ attached table for converting specific gravity readings to % fermentable carbohydrates and Gal Multiplied Gal Eth/cwt times Cwt/A to compute Gal Eth/A. Ethanol/cwt.

fresh weight basis. Therefore, weight of carbohydrate was computed by multiplying cwt/A by 5 and convert-3/ Analysis of tops indicates they are 10% dry matter with 50+% of this being carbohydrate or about 5% on a ing this carbohydrate weight to ethanol weight and gal/A as explained above and on Washington Table 1.

4/Computed by adding ethanol/A from tubers to ethanol/A from tops.

tein byproduct will cover the cost of producing the ethanol after the feedstock is brought into the distillery. ethanol. Some feel the real value is more nearly \$1/gal, the wholesale value of unleaded gasoline. The cost of producing the potato crop would be about \$1000/A. It is assumed that the value of the high pro-5/Estimated value of ethanol/A computed by multiplying Gal Eth/A by \$1.70, the current value of 200 proof

Washington Table 3. Other trials on Sunheaven Ranch, Prosser - lines to be considered for ethanol production - planted Apr. 11, harvested Sept. 10 (155 days)

Line	Cwt/A $\frac{1}{}$	S.G.	% Carbo <u>2</u> /	Gal Eth/A $\frac{3}{}$	Value 4/
A74708-9	1137	1.078	16.4	1205	\$ 2049
Wn C 612-13	1024	1.088	18.0	1188	2020
A74595-11	1051	1.083	17.2	1167	1984
A74771-4	1119	1.075	15.9	1153	1960
Kennebec	977	1.083	17.2	1084	1843
Lemhi	980	1.082	17.0	1078	1833
A68588-16	1023	1.077	16.2	1074	1826
Wn C 521-12	887	1.093	18.7	1073	1824
A74595-15	1004	1.078	16.4	1064	1809
78Ds-50	936	1.084	17.4	1048	1782
AD7377-1	1065	1.070	15.2	1044	1775
A7596-1	855	1.089	18.1	1000	1700
Wn C 672-2	902	1.078	16.4	956	1625
AD7267-1	960	1.070	15.2	941	1600
ADWn 75121-1	996	1.066	14.6	936	1591
78Ds-25	885	1.076	16.1	920	1564
A74117-9	882	1.075	15.9	908	1544
A74389-1	836	1.080	16.7	903	1535
Atlantic	799	1.083	17.2	887	1508
78Ds-181	784	1.084	17.3	878	1493
A67142-1	789	1.082	17.0	868	1476
A72545-2	881	1.070	15.2	863	1467
Rus Burbank	725	1.081	16.8	776	1319

^{1/} - 4/ See footnotes below Washington Table 2.

Washington Table 4. Lines from earliness trial at Prior Land Company,
Paterson, to be considered for early season ethanol
production - planted Mar. 27, harvested Jul. 22
(118 days)

Line	Cwt/A	S.G.	% Carbo <u>1</u> /	Gal Eth/A $\frac{2}{}$	Value 3/
A74365-2	701	1.072	15.5	701	\$ 1192
A7273-3	675	1.072	15.5	675	1148
A7069-7	645	1.076	16.1	671	1141
Wn 775-26	654	1.072	15.5	654	1112
A68588-16	693	1.064	14.3	624	1061
A74117-9	618	1.072	15.5	618	1051
White Rose	689	1.061	13.8	613	1042
Wn C 521-12	535	1.086	17.6	6.0	1037
Kennebec	625	1.069	15.0	606	1030
A67142-1	631	1.067	14.7	599	1018
Lemhi	604	1.070	15.2	592	1006
ADW75121-1	664	1.059	13.5	578	983
ADW75201-12	550	1.075	15.9	567	964
Wn C 672-2	544	1.075	15.9	560	952
Wn C 612-13	516	1.079	16.5	552	938
78Ds-99	494	1.081	16.8	529	899
Rus Burbank	468	1.073	15.6	473	804

^{1/-3/} See footnotes below Washington Table 2.

Cost of production estimated at \$900/A, if grown for ethanol.

Washington Table 5. Research Center, Roza Unit, Prosser, - trial of potential ethanol lines grown under water stress conditions using furrow irrigation - planted May 15, harvested Oct. 8/80 (147 days)

Line	Cwt/A	S.G.	% Carbo $\frac{1}{}$	Gal Eth/A $\frac{2}{}$	Value 3/
A503-42	662	1.079	16.5	708	\$ 1204
Crystal	604	1.080	16.7	651	1108
Kennebec	565	1.080	16.7	6.0	1037
Wn 705-111	491	1.093	18.6	594	1010
White Rose	567	1.076	16.1	590	1003
Neb. S1-3	585	1.072	15.5	585	995
A70365-6	567	1.075	15.9	584	993
Rus Burbank	521	1.083	17.1	578	983
Lemhi	477	1.090	18.2	563	957
Bounty	565	1.071	15.3	559	950
Norchip	501	1.083	17.1	556	945
Wn C 612-13	466	1.089	18.0	545	927
B6987-184	415	1.100	19.7	531	903
Wn D 634-4	477	1.082	17.0	525	893
Rus Burbank 307	443	1.084	17.3	496	843
Atlantic	378	1.096	19.1	469	797
Neb. 12.72-2	461	1.070	15.2	452	768
Red Pontiac	454	1.068	14.9	436	741
Neb. 210-2	383	1.076	16.1	398	677

^{1/} - 3/ See footnotes below Washington Table 2.

Cost of production estimated at \$900/A, if grown for ethanol.

Washington Table 6. Lines from Regional Trial, Othello, to be considered for ethanol production - planted Apr. 17, harvested Sept. 17/80 (154 days)

Line	Cwt/A	S.G.	% Carbo	Gal Eth/A $\frac{2}{}$	Value 3/
Wn C 612-13 A72545-2 Rus Burbank AD7377-1 Lemhi Wn C 672-2	930 930 854 912 822 812	1.095 1.083 1.089 1.079 1.090	18.9 17.1 18.0 16.5 18.2 18.3	1144 1032 999 976 970 966	\$ 1945 1754 1698 1659 1649

 $^{1/-3/}_{\text{See}}$ footnotes below Washington Table 2.

Cost of production estimated at \$900/A, if grown for ethanol.

Idaho Table 7. Trial at Aberdeen of potato lines that might be considered for use as biomass for ethanol production - 1980.

Line	Cwt/A	% Solids	Gal Eth/A $\frac{1}{}$	\$ Value 2/
A503-42	542	21.9	618	\$ 1051
A681113-4	563	21.3	625	1063
Red Pontiac	570	18.5	553	940
Wn C 612-13	464	22.5	543	923
A67142-1	476	21.3	528	898
12-72-2	472	19.3	477	811
Atlantic	348	23.5	468	796
Bounty	421	20.5	450	765
S1-3	450	18.7	441	750
Crystal	407	20.5	435	740
A12769-1	390	20.5	417	709
Kennebec	395	19.9	411	699
Pioneer	376	20.9	410	697
Lemhi	358	21.9	408	694
TXA218-2	408	18.5	396	673
Rus Burbank	358	20.5	383	651
A74708-9	360	20.3	382	649
B6987-184	260	24.1	325	553
210-2	282	19.9	293	498
Rus Burbank 307	278	20.1	292	496
LSD (.05)	57	0.8		

^{1/ - 2/} See footnotes below Washington Table 2.

Cost of production estimated at \$800/A, if grown for ethanol.

Idaho Table 8. Trials in southcentral and southwest Idaho of potato lines that might be considered for use as biomass for ethanol production - 1980.

Line	Cwt/A	% Solids	Gal Eth/A $\frac{1}{}$	\$ Value 2/
		Southwest Idaho		
A503-42	874	22.9	1040	\$ 1768
Lemhi	757	24.0	939	1596
Butte	710	25.4	930	1581
Bintje	945	18.8	926	1574
Wn C 612-13	633	24.9	810	1377
A68113-4	684	22.7	807	1372
A67142-1	626	21.6	701	1192
Atlantic	586	21.6	656	1115
Rus Burbank	481	22.9	572	972
		Kimberly, Ida	aho	
Kennebec	645	22.9	768	1306
B6987-200	624	21.6	699	1188
A68113-4	632	19.7	651	1107
Lemhi	509	21.4	565	961
A67142-1	518	19.2	518	881
A7269-7	488	20.3	517	879
A69327-5	490	19.7	505	859
Atlantic	437	21.6	489	831
A68710-5	463	20.1	486	826
Bintje	490	18.8	480	816
Wn C 612-13	443	20.7	478	813
Rus Burbank	461	19.4	466	792
Crystal	447	18.8	438	745
A503-42	447	18.6	434	738

 $^{1/-2/}_{\text{See}}$ footnotes below Washington Table 2.

Cost of production estimated at \$900/A., if grown for ethanol.

Trial of Potential ethanol lines on Aroostook Farm - 1980 (120 days growing season). Maine Table 9.

			Tubers			Tops	To	Total
Line	Cwt/A	S.G.	$\%$ Carbo $\frac{1}{}$	Gal Eth/A $\frac{2}{}$	Cwt/A	$Gal Eth/A^{\frac{3}{2}}$	Gal Eth/A ⁴ /	Value ⁵ /
A503-42	501	1.087	17.7	576	334	107	683	\$ 1161
Denali	424	1.098	19.4	534	248	80	614	1044
Red Pontiac	533	1.071	15.3	528	236	9/	604	1027
Lemhi	435	1.081	16.8	465	352	113	578	983
Crystal	470	1.073	15.6	475	316	102	577	981
Kennebec	456	1.076	16.1	474	274	88	562	955
Atlantic	426	1.090	18.2	503	134	43	546	928
Wn C 612-13	384	1.090	18.2	453	264	85	538	915
86987-184	351	1.095	18.9	432	224	72	504	857
Norchip	422	1,081	16.8	452	148	48	200	850
Rus Burbank	391	1.080	16.7	422	222	71	493	838
Rideau	371	1.075	15.9	382	274	88	470	799
B7583-6	347	1.082	17.0	382	254	82	494	789
Superior	414	1.072	15.5	414	132	43	457	777
86987-201	327	1.094	18.8	399	158	51	450	765
Trent	300	1.090	18.2	354	196	63	417	709
G6880-1	308	1.084	17.3	345	100	32	377	641
B6987-43	265	1.072	15.5	265	84	26	291	495

Cost of production estimated at \$600/A, if grown for ethanol. See footnotes below Washington Table 2. 1/ - 5/

Lines from a second trial on Aroostook Farm - some potential ethanol lines (120 days growing season). Maine Table 10.

			Tubers			Tops	Total	
Line	Cwt/A	S.G.	$\%$ Carbo $\frac{1}{}$	Gal Eth/A $\frac{2}{}$	Cwt/A	Gal Eth/A $\frac{3}{}$	Gal Eth/A ⁴ /	Value_
Atlantic	438	1.092	18,5	526	168	54	580	986 \$
Bounty	498	1.074	15.8	508	170	54	562	955
NBS1-3	457	1.071	15.3	452	300	97	549	933
210.2	414	1,080	16.7	447	142	94	493	838
12,72-2	405	1,071	15.3	401	220	71	472	802
A129.69-1	364	1.074	15.8	371	236	9/	447	760
Superior	386	1.074	15.8	394	84	27	421	716

1/-5/ See footnotes below Washington Table 2.

Cost of production estimated at \$600/A, if grown for ethanol.

North Dakota Table 11. Trial of potential ethanol lines grown at Grand Forks, planted May 12 and 19/80, harvested Sept. 22 and 23/80 (133 days).

Line	Cwt/A	S.G.	% Carbo <u>1</u> /	Gal Eth/A	2/ \$ Value 3/
Down tree	266	1 070	16 5	285	\$ 485
Bounty A503-42	238	1.079 1.084	16.5 17.3	267	\$ 465 454
Neb. 210-2	222	1.004	15.8	226	384
	189		18.2	223	379
Wn C 612-13		1.090		218	
Neb. 12.72-2	237	1.064	14.3		371
Red Pontiac	216	1.069	15.0	210	357
TND22-2	178	1.088	17.9	206	350
ND9403-16R	190	1.076	16.1	198	337
ND55-7	173	1.085	17.4	195	331
Lemhi	171	1.085	17.4	193	328
Neb. A129.69-1	193	1.072	15.5	193	328
Kennebec	186	1.073	15.6	188	320
Crystal	168	1.083	17.1	186	316
ND329-4R	182	1.081	15.2	178	303
Neb. 51-3	166	1.063	14.1	151	257
ND372-2R	132	1.085	17.4	149	253
ND258-1	109	1.084	17.3	122	207
ND206-1R	118	1.074	15.6	120	204
Rus Burbank 307	106	1.084	17.3	118	201
ND612-9	95	1.082	17.0	105	179
B6987-201	70	1.088	17.9	81	138

^{1/-3/} See footnotes below Washington Table 2.

Cost of production estimated at \$500/A, if grown for ethanol.

ALABAMA

J. L. Turner and Harrison Bryce - Main Station
E. L. Carden, R. N. McDaniel, Frank B. Selman and
Frank E. Garrett (Retired) - Gulf Coast Substation
Marlin H. Hollingsworth - North Alabama Horticulture Substation
John Eason and Marvin E. Ruf - Sand Mountain Substation

Potato Variety Trials, Gulf Coast Substation Fairhope and Sand Mountain Substation Crossville, Alabama

Experimental Procedure. Seed potatoes were obtained from Frito-Lay Company, Baldwin County, Alabama, Minnesota, North Dakota, Starks Farms and the University of Wisconsin for the 1980 trials. Sixteen named varieties and 12 numbered selections were grown this year for yield data and specific gravity. Each entry was replicated four times in a randomized block design. One row plots were 25 feet by 38 inches at Fairhope and 20 feet by 38 inches at Crossville. Seedpieces were cut to approximately one and one-half ounces each and dusted with Orthocide 10 Dust at 3/4 pounds to 100 pounds of cut seed. Seedpieces were stored at 55° F for approximately two weeks and planted February 20 at Fairhope and April 7 at Crossville. Seedpieces were planted at Fairhope with a hand operated planter and at Crossville by hand. Seedpieces were spaced 12 inches in the drill. Plots were harvested June 3 at Fairhope and July 15 at Crossville.

Results. At Fairhope very good stands were recorded for all entries. Frito-Lay 1152 was the highest yielding white entry and one source of Red La Soda was the highest yielding red entry. Red La Soda remains the most productive red skin variety for Alabama. Frito-Lay entries FL 1280, FL 1283, and FL 1221 also produced good yields of size A potatoes. Wisconsin 718 produced the lowest yield of size B potatoes. However, the per cent of size A yield was no better than several of the other entries. Wisconsin 807-R produced the highest yield of size B and the lowest per cent of size A potatoes. Wisconsin 760 produced the highest specific gravity, 1.082. Atlantic produced the next highest specific gravity, 1.078.

At Crossville, an early March planting was delayed due to excessive rain that prevented land preparation. Variety and breeding line yields were very variable. Day temperatures above 105° F were recorded on several occasions during June and July. Severe drought conditions also contributed to the adverse growing conditions. Yields and size distribution for the Crossville trial reflect the adverse weather conditions that prevailed throughout the test. Atlantic produced the highest yield of the white entries and Red La Soda from one source produced the highest yield of the red entries. Wisconsin 807-R was the next highest yielding red entry. Atlantic and Wisconsin 760 produced the highest specific gravity of all the entries.

Alabama Table 1. Potato Variety Trial, Fairhope, $1980\frac{1}{1}$

	Marke Total	Marketable yield/acre otal Size A ² / Size	d/acre Size B	Size A	Specific <u>3</u> /	Stand at
variety	Cwt.	Cwt.	Cwt.	20%	Bravity	% % % % % % % % % % % % % % % % % % %
FL 1152 Frito Lay	251	234	17	93	1.063	100
1280	249	228	21	92	.067	100
FL 1283 Frito Lay	248	234	6	96	.070	95
Wis 728 U. Wisconsin, Rhinelander	248	239	6	96	.065	100
La Soda	248	232	16	94	.062	100
FL 1221 Frito Lay	247	231	16	76	.065	95
Wis 760 U. Wisconsin, Rhinelander	243	227	16	93	.082	100
FL 1291 Frito Lay	238	219	19	94	.071	100
Atlantic Starks Farms	234	221	13	76	.078	100
FL 795 Frito Lay	230	220	10	96	890.	100
Belchip Starks Farms	227	212	15	93	.071	100
:	217	201	16	93	.063	95
Wis 806-R U. Wisconsin, Rhinelander	214	193	21	06	090.	06
	213	199	14	93	090.	100
FL 96 Frito Lay	211	185	26	88	.071	06
Wis 807-R U. Wisconsin, Rhinelander	204	159	45	78	.065	06
Sebago Starks Farms	203	183	20	06	.061	100
Red La Soda Clark Farming Co ND	198	182	16	92	.062	100
La Chipper Starks Farms	192	179	13	93	.065	95
Wis 774-R U. Wisconsin, Rhinelander	192	165	27	98	.058	06
FL 162 Frito Lay	192	173	19	06	. 064	100
U. Wisconsin,	191	∞	œ	96	.062	95
Wis 726 U. Wisconsin, Rhinelander	190	7	15	92	.067	95
723 U. Wisconsin,	168	154	14	92	020.	95
748 U. Wisconsin,	162	4	22	98	.071	06
Wis 795 U. Wisconsin, Rhinelander	161		22	98	.073	95
Superior Starks Farms	153	132	21	86	.067	06
Norchip Wes Holtman Potato Co MN	145	7	21	98	890.	100
- 1						

lSoil test: P = 150 (H); K = 128 (H); PH = 5.6.

 2 Size A = potatoes with 1-7/8 inches diameter and larger; Size B = potatoes with 1-1/2 to 1-7/8 inches diameter.

3Specific gravity was greater than 1.0 each variety.

Potato Variety Trial, Crossville, 19801/ Alabama Table 2.

	Stand at harvest	%	92	66	66	97	96	87	95	93	100	97	66	96	91	93	76	94	91	88	56	92	77	94	84	93	66	82	96	06
<i>,</i> c	Specffic ² / gravity		1.082	.058	.057	.082	090.	.073	.059	.067	.075	.071	.058	.071	.059	.072	.065	.071	.070	.071	.071	690.	.072	.058	.062	.064	.055	.061	.057	.061
	Size A of total	%	92	80	85	78	7.5	71	78	78	79	78	79	9/	99	77	92	65	9/	79	29	83	83	70	72	70	84	78	79	74
(1)	Size B	Cwt.	25	20	14	21	23	27	20	19	18	19	1.7	19	26	18	18	25	17	1.5	23	11	12	18	16	1.7	80	10	16	10
Marketable yie	Size A='	Cwt.	80	82	81	73	70	65	70	69	69	89	63	61	51	59	56	47	54	55	47	52	50	41	42	36	42	35	28	28
Marke	Total	Cwt.	105	102	95	94	93	92	06	88	87	87	80	80	77	77	74	72	7.1	70	70	63	62	59	58	52	20	45	77	38
	Variety		Atlantic Starks Farms	Red La Soda Clark Farming Co ND	•	Wis 760 U. Wisconsin, Rhinelander	FL 96 Frito Lay	La Chipper Starks Farms	Red La Soda Starks Farms	FL 657 Frito Lay	Superior Starks Farms	Norchip Wes Holtman Potato Co MN	Red La Soda Gilleshammer Bros ND	Wis 795 U. Wisconsin, Rhinelander	Wis 806-R U. Wisconsin, Rhinelander	Wis 728 U. Wisconsin, Rhinelander	Wis 726 U. Wisconsin, Rhinelander	FL 1291 Frito Lay	FL 1221 Frito Lay	FL 795 Frito Lay	Wis 723 U. Wisconsin, Rhinelander	FL 1283 Frito Lay	Wis 748 U. Wisconsin, Rhinelander	FL 1152 Frito Lay	Wis 718 U. Wisconsin, Rhinelander	FL 162 Frito Lay	Wis 774-R U. Wisconsin, Rhinelander	Belchip Starks Farms	Sebago Starks Farms	FL 1280 Frito Lay

Lest: P = 145 (VH); K = 128 (H); P = 5.6

 2 Size A = potatoes with 1-7/8 inches diameter and larger; Size B = potatoes with 1-1/2 to 1-7/8 inches diameter.

Specific gravity was greater than 1.0 for each variety.

ALASKA

Curtis H. Dearborn

Potato Research

Our growing season was the third coldest and the second wettest in 30 years. Rhizoctonia girdle of stem, stolon and buds was severe and where plant stands were low Rhizoctonia was the cause. Seedpiece rot seldom occurs in seed that is clean and handled properly, although there are clones that decay rapidly instead of suberizing following cutting unless favorable suberizing conditions are provided.

Clone B8934-2AK recently named Highlat Russet, produced well in the Arctic compared with 24 other potatoes in trial. Dr. Raymon Webb and I have exchanged selected seedlings from this cross to learn if one of the two selected on the East Coast, B8934-4 and B8934-5, might have been originally from the same true seed. I concluded that my selection in Alaska, Highlat, is different from either of his and better at my latitude. Clone B8934-4 from five tuber units produced 64 tubers totaling 15.0 lbs. at 1.079 sp. gr., whereas B8934-5 from five tuber units produced 109 tubers weighing 29.4 lbs. at 1.073 sp. gr. The bud end of the latter failed to russet. Twenty two tubers of B8934-4 weighing 7.4 lbs. were spongy when hand dug from plants whose foliage was lush. Highlat produced 83 tubers weighing 22.6 lbs. at 1.086 sp. gr. and did not show sponginess.

In this very wet season four clones among 36 in the Late Harvest trial produced at the rate of 300 cwt per acre total yield with specific gravity ranging from 1.100 to 1.103. Alcohol from Alaskan potato production might be competitive with alcohol from grain in other regions. Nipigon ranked first in yield of No. 1 tubers in Early Harvest and second in Late Harvest among 36 clones in trial. Its specific gravity was 1.073 and 1.080 respectively compared with the average of each study 1.081 and 1.089. NY 61 was third in yield in the Earlies and 27th in the 'Lates' with low specific gravity in both, 1.077 and 1.081. Allagash was quite acceptable. Pembena Chipper made the lightest chip of any of the 36 clones.

Selecting potato seedlings for deep tuberizing clones that do not require hilling to protect the tubers from greening was continued. Thirty seven of the 97 from 1979 selections were essentially free from greening. Six families were represented. Preliminary data indicate that deep tuberization may be inherited in a one to three ratio although my population may not be large enough to be accurate.

It appears that the stimulus or stimuli causing geotropic growth of a stolon that is growing horizontally is of very short duration and not associated with stolon length. This polarity change is a response to the environment to which the top is exposed and is reversible.

CALIFORNIA

R. E. Voss, P. W. Bosland, E. S. Sarreal

Potato Seedling and Varietal Evaluation - 1980

The 1980 potato project in California was not affected by the drought that damaged much of the potato crop in many areas of the United States - and good yields were obtained. Plantings of first year tubers, five hill, 12 hill, and two replications of 20 hill plots were planted at the USDA Cotton Research Station at Shafter in Kern County and the Tulelake Field Station in Siskiyou-Modoc Counties. At six locations: Riverside, Santa Maria, Shafter, Tulelake, Butte Valley, and Eureka replicated yield trials were conducted. (Tables 1 and 2.)

The first year tubers were obtained from Dr. J. Pavek (Idaho) and Dr. R. Johansen (North Dakota). From Idaho 10,715 seedling tubers representing 58 families and from North Dakota 10,037 seedling tubers representing 53 families were received. The seedling tubers were planted both at Shafter and Tulelake.

Of the 20,752 seedling tubers evaluated, 481 lines were selected for further evaluation and will be planted in five-hill plots at Shafter and Tulelake in 1981. In the five-hill plot tests, 134 of 507 lines and 68 of 342 lines were retained for further evaluation in 12-hill plots at Shafter and Tulelake, respectively. The 12-hill observational plots using the same selection criterion had 32 of 47 lines and 26 of 55 lines saved from Shafter and Tulelake, respectively. These 12 hill observational lines will be planted in the 2 X 20 plots in 1981.

The two replications of 20 hill plots grown at Shafter and Tulelake were evaluated for yield, specific gravity, chip color, and general tuber rating. Twenty-seven clones were tested at both Shafter and Tulelake. The summary of this data appears in Tables 3 and 4.

The replicated yield trials at Shafter and Tulelake had 52 and 54 lines, respectively. They, as the 2 X 20, were evaluated for yield, specific gravity, chip color, and general tuber rating. These entries are listed in Tables 1 and 2.

In 1980 personnel changes both temporary and permanent occurred with the California potato project. A special thanks to Dr. Robert Johansen for his valuable contribution to the project and to the many farm advisors, staff assistants, and secretaries who helped maintain the excellence of the project.

- 53 -

California Table 1. Yield and Quality Measurements of Replicated Yield Trials at Shafter, 1980

	Chip3/	Color		1.0	1.6	1.0		1.0	1.0	0.			0. [0.0	1.0	1.2	0	1.0	•	•	0.1	•	•	•		0.	1.0			1.0	0	0.	1.0	1.0
	Tuber 2/	Rating		•	•	•	•	•	•	•	•	•	•			•					•	•								8.6	•			•
	Spec. $\frac{1}{2}$	1.0		93	87	79	87	87	95	97	82	000	89	95	93	91	83	92	93	86	86	82	06	82	86	- N	91			86	0 0	86	88	79
	%	#1.s		96	95	94	96	92	97	93	86	9 9 7	97	92	94	93	91	98	52	92	95	95	93	84	94	0 0 9	82	nners	5	82	96	94	92	94
		8's	S					15			0 5	2 0	2 5	15	15	20	25	10	75	10	20	20	15	50			25	% Chin	5	010			25	
	2's 8	CULLS	Russet	2	5	10	2	10			2 4	o rc	o C) 0	2	0		45		0	0	0	0	0 1	ر د د	30 75	0	Whites	ر	80 35	00 A	30	20	20
ield, Cwt/A		4-12 oz	PART A.	430	420	400	410	410	390	390	385	330 340	345	325	325	335	330	315	310	255	290	265	265	260	220	081	140	PART R	_	505	1400 013	450	465	465
γį	No. 1's	2 0Z		35	30	50	30	20	40	J0	ر د آ	გ.	S 2	25	15	2	0	10	0	20	2	2	0	0 :	വ വ	0 0	0			50	00	50	30	വ
		Total	,	465	450	450	440	430	430	400	400	400 375	365	350	340	340	330	325	310	305	295	270	265	260	225	200	140			555 555	500	500	495	470
		Source		Delta	Colo	Delta	4" Delta		Butte V.	Delta	Delta Delta	Delta Delta	Delta	Delta	Delta	Delta	Delta	Delta	Butte V.	Delta	Delta	Delta	Delta	Delta	Delta Delta	Delta	Delta			l) Delta	ra Colo	Delta	Delta	0100
		Variety		A74265-2	BC8524-3	AD7267-1	Norgold Russet "M"	AD74135-1	A66122-3	A74595-11	_	AD/4393-3 1 embi	A74133-1	NDD358-9	AD74103-3	AD7267-3	- 1	Russet Burbank	Butte	A70365-27	Centennial	WC567-1	A68599-1	BC8370-4	WD641-10	A/413913 NDD252-8	WD630-4			ND8891-3 (Crystal)	BC0000-7	Belchip	AD74548-5	BC9071-6

California Table 1. Yield and Quality Measurements of Replicated Yield Trials at Shafter, 1980 - Page 2

Chip ^{3/} Color		2.5	1.0	1.0	7.2	1.0	1.0			2.5		1.0	1.2	0.	1.2	1.0	1.0	1.0	1.0		0.0	•		
Tuber ^{2/} Rating			3.3																		3.0	•		
Spec. 1/ Grav. 1.0		06	66	82	93	98	93	84	82	83	26	96	87	88	101	92	92	100	87		79	78		
% % *	Chippers Continued	85	98	97	85	91	06	06	93	93	87	93	06	97	92	85	87	98	85		93	ດກ		
ر. م	Chipper		വ																		0.5		4	
2's & CULLS B	Whites &		70																	Reds	30	o	7	
4-12 oz	PART B.	345	440	405	350	420	385	360	385	370	360	320	270	345	265	345	320	315	215	PART C.	390	780	18	
No. 1's		115	20	45	95	20	25	35	10	20	25	52	100	20	90	10	30	25	40		75	07	6	
Total		460	460	450	445	440	410	395	395	390	385	375	370	365	355	355	350	340	255		465	300	20	
Source		Delta	Delta	Delta	Delta	Delta	Delta	Del ta	Delta	Delta	0re	Delta	Delta	Delta	Delta	Delta	Delta	Del ta	Delta		Delta	De I rd		
Variety		A74124-3	WC672-9	ND277-2	Kennebec	Atlantic	AK28-8	NDD237-4	NDD110-4	White Rose	B6987-201	WC672-2	AD7386-1	A74133-1	WC521-12	NDD245-5	/	B6987-184	NDD47-1		Red La Soda	AC0/300-1	LSD 5%	1/1

 $\frac{1}{2}$ Specific gravity determined by potato hydrometer $\frac{2}{3}$ Tuber rating: 5 = excellent, 4 = good, 3 = acceptable, 2 = unacceptable, 1 = poor $\frac{3}{3}$ Chip color determined by color chart where 1 = lightest and 5 = darkest Chip color determined by color chart where 1 = lightest and 5 = darkest

CALIFORNIA TABLE 2. Yield and Quality Measurements of Replicated Yield Trials at Tulelake, 1980

			γi	ield, Cwt/A	-				,1		
			No. 1's		S		%	%	Spec.	Tuber $\underline{2}/$	$\frac{3}{2}$
Variety	Source	Total	>12 oz	4-12 oz	CULLS	8 s	#1 s	Stand	1.0	Rating	Color
				PART A	- Russet	S					
1-55177	nol+2	570	165	707	25	35	00	0.5	۲۱		
1-121-1	ne i ra	070	00.	400	27		900	0 G	- 0	•	•
Lemhi	Ore	260	135	425	35	20	/8	/8	83	•	•
AD7267-1	0re	555	185	370	20	40	98	91	70	•	•
AD7377-1	Ore	530	06	440	45	30	88	28	64		•
AD7377-1	Delta	525	105	420	30	35	68	. 88	65		
Nor. Rus. "M"	Delta	520	95	435	09	25	98	91	70	•	
99-1	Delta	510	82	435	2	20	95	8	78		•
A74595-11		490	110	380	65	30	84	96	78	•	•
AD7267-3		485	80	405	30	45	87	92	80	•	•
Rus. Bur.	0re	475	09	415	45	92	77	86	83	•	.7
AD74103-3	Delta	470	125	345	09	45	85	95	78	•	.2
A74265-2	Delta	470	115	355	70	40	8	87	9/	•	•
AD74135-1	Delta	460	06	370	75	52	78	92	79	•	∞.
AD7267-1	Delta	450	140	310	35	20	84	88	89	•	•
B6987-201	0re	430	40	390	15	45	88	74	93	•	•
AD74393-3	Delta	420	45	375	25	45	98	91	99	•	•
BC8370-4	Delta	420	30	390	20	22	82	94	83	•	•
A66122-3	Delta	405	9	340	20	35	83	98	78	•	•
Centennial	Delta	400	92	335	25	35	87	87	75	•	•
Lemhi	Delta	395	80	315	45	40	85	94	80	•	•
A74139-3	Delta	390	06	300	70	32	79	94	79	•	•
WD641-10	Delta	385	06	295	40	30	82	93	81	•	•
Butte	Delta	380	20	330	20	09	83	98	79	•	•
BC8524-3	Colo	375	45	330	65	145	64	86	72	•	•
NDD358-9	Delta	370	30	340	20	75	80	83	77	•	•
WC567-1	Delta	345	22	290	110	22	89	93	70	•	•
A70365-27	Delta	335	09	275	30	75	9/	84	74	•	•
NDD252-8	Delta	330	09	270	40	22	78	82	79	•	•
		315	09	255	30	30	84	66	81	•	•
Bu.	Delta	310	40	270	06	55	89	99	85	2.8	2.3
WD641-10	Ore	300	06	210	30	35	85	7.5	6/	•	•

CALIFORNIA TABLE 2 CONTINUED. Yield and Quality Measurements of Replicated Yield Trials at Tulelake, 1980

	Chip ^{3/} Color		•	•	•	2.3	•	•	•	2.5	•	•	•	•	φ.	•	∞.	•	•	•	•	•	•	•		•	2.2	•			2.5	•	
	Tuber 2/ Rating		•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2.5	•			3.5	•	
/	spec. Grav. 1.0		88	80	95	75	84	89	88	88	70	93	9/	73	98	73	81	77	88	9/	94	83	88	8]	72	79	69	99		7.1	74	64	
	% Stand		97	66	94	94	94	87	95	89	93	83	93	93	96	91	93	71	9/	94	83	93	98	96	84	95	92	94		68	8 8 6	84	
	% #1.s		91	98	89	80	95	9/	88	90	88	88	79	89	88	87	87	82	89	82	88	83	82	83	71	82	89	77		23	. 80 c	82	
	8 _s		45	20	40	35	25	20	25	45	30	20	20	45	45	40	15	20	25	65	30	22	40	32	20	20	30	45		30	50 20	70	10
ļ-	CULLS & S	- Whites	25	20	35	105	20	150	40	15	35	20	80	15	20	30	20	09	30	30	30	30	30	45	100	52	130	40	- Reds	110	09	09	_∞
eld, Cwt/A	4-12 oz	PART B	_	∞	က	0	9	\sim	4	∞	2	\sim	0	0	0	2	\sim	0	3	7	7	Ω	9	/	0	\sim	225	2	PART C	405	380	310	23
Yie	No. 1's >12 oz		70	120	70	170	9	320	0	09	80	80	90	92	09	_	120	$^{\circ}$	_	5	145	09	20	30	165	70	115	40		200	96	145	20
1	Total		089	605	009	570	550	540	540	540	530	505	495	495	465	460	440	440	440	425	420	415	410	400	370	345	340	290		605	470	455	28
	Source		0re	Colo	Delta	Delta	Colo	Delta	Delta		Delta	Delta	Delta	Delta	Delta	Delta	Delta	Delta	0re	Delta	Delta	Delta	Delta	Delta	Delta	Delta	_	Delta		Delta	Ore .	De I ta	
	Variety		Atlantic	BC9020-7	WC672-9	ND8891-3 (Crystal)		Kennebec	Belchip	Atlantic	ND9474-6	B6987-184	A74124-3	NDD110-4	AK 28-8	A74104-18	NDD277-2	WC672-2	WC521-12	AD74548-5	WC521-12	A74127-2	WC612-13	NDD245-5	AD7386-1	_	White Rose	NDD47-1		Red LaSoda	AC67560-1	AC6/56U-1	LSD 5%

_/ Specific gravity determined by potato hydrometer

5 = excellent, 4 = good, 3 = acceptable, 2 = unacceptable, 1 = poor Tuber Rating: 2/

3/ Chip color determined by color chart where 1=lightest and 5=darkest

Yield and Quality Measurements of 2 X 20 at Shafter, 1981 CALIFORNIA TABLE 3.

			γ1.	Yield, Cwt/A					1 /		
Variety	Source	Total	No. 1's >12 oz	4-12 oz	2's & CULLS	B's	S.L#	% Stand	Spec. 1/ Grav. 1.0	Tuber ² / Rating	Chip ^{3/} Color
				PART A	- Russet	s;					
A74543-6	e]	445	2	390	20	70	83	98	92		1.0
NDD393-9	ا ا	430	130	300	2	0	98	88	84		0.
NDD392-6	ا ا	405	09	345		30		60 0	8	•	0.0
NDD443-4	Delta Delta	390 365	00 VE	340 320	4 0 1	0 0	ا ا	0 0	0 60		0.0
+	Delta	360	n C	350 360		15	92	9.5 65	6 6 633		0.0
AD74197-1	Delta	355	40	315	20	2	35	89	92		1.0
NDD452-1	Delta	345	52	290	0	ا کا	66	100	85	3.3	1.0
ND274-6	Delta	340	0 6	340	0 (ပ	96	ဗ ဗ	ć	•	(
AD74575-1	Delta	320	25	295	0	30	26	0 1 2 1		•	0.5
Centennia	Delta Delta	295	010	282	O 4	70	94 4	ر د ا	26 0	•	
	Delta Delta	203 255	00 25	230	. C	2 15	9 93 40	200	97 84		
NDD639-6	6 6	245	15	230		വ	96	95	68		
143-	e .	225	0	225	0	25	06	93	88		1.0
WD630-2	Delta	140	0	140	0	25	80	2	82	•	
				PART B	- Whites						
Kennebec	Delta	480	145	335	40	2	16	80	90	•	1.0
ND258-1	Delta	440	55	385	0	10	86	98	06	4.0	1.0
<u> </u>	Delta 2	435	10	425	25	32	& & & &	100	92	•	
White Kose	Delta Delŧa	400	200	3/0	<u>S</u>	ر 1	9 5 1	∞	£ 5		0.0
ND237_A	Delta Delta	390 305	30 16	350	3 2	<u>.</u> เ	ი თ ი	y c o r	76	•	
ND278-2	Delta	370	2 -	360	S C	. בי	96	8 22	06		0.0
NDD588-1	Delta	355	06	265		വ	97	80	82		
ND278-3	Delta	305	വ	300	0	2	93	83	93		
ND362-3	Delta	300	0	300	15	10	94	90	93		1.0
6-68QN	Delta	235	20	215	45	2	83	35	88		1.0
TSD 5%			28	65	11						
1/ Specific gravity	ity determined	by	potato hydrometer	meter							
16				-		144		2002			

Tuber Rating: 5 = excellent, 4 = good, 3 = acceptable, 2 = unacceptable, 1 = poor Chip color determined by color chart where I = lightest, and 5 = darkest

- 59 -

1981
19
•
e e
a
e
٠
at
20
×
ζ.
4
of 2
ts
- La
Ĭ,
Ir.
St
eэ
≥.
ţ
na
0
nd
В
Jd
/iel
>-
4
е
able
-
ij
fo
Ξ
Californ
_

			Yie	eld, Cwt/A	c	1			,1		
			No. 1's		s &		%	20	Spec.∸. Grav	Tuhan 2/	Chin3/
Variety	Source	Total	2 oz	4-12 oz	CULLS	B's	s, L#	Stand	1.0	Rating	Color
				PART A.	Russets	40					
Russet Burbank	Delta	245	40	205	32		82	100	98	•	2.3
Lemhi	Delta	236	72	163	∞		90	100	87.5	•	ω.
ND274-6	Delta	196	24	172	2		91	98		•	
NDD143-1	Delta	192	47	145	12		88	100		•	
AD74574-1	Delta	192	40	152	∞		9	80		•	
AD74197-1	Delta	187	33	154	22		80	95	72.5	•	
WD694-1A	Delta	171	29	104	22		85	100		•	
NDD452-1	Delta	169	72	97	_		89	98		•	
Centennial	Delta	150	2	145	2	19	88	90	75.5	•	
AD74575-1	Delta	143	27	116	=		81	88	73	•	•
AND7422-1	Delta	138	18	120	ω		11	90	82	•	•
A74543-6	Delta	130	62	89			89	90	87	•	•
NDD443-4	Delta	128	34	94	19		83	89	72.5	•	•
ND392-6	Delta	125	43	82	06	18	54	86		•	ω
WD630-2 NDD630-6	Delta Delta	123	35 24	88	9[15	80	95	86.5	3.25	3.0
l		<u>-</u>	†			>	70	9	•	•	:
				PAKI B.	wnites						
ND258-1	Delta	263	100	9	24		82	100	73.0	•	8.
ND362-3	Delta 6 li	251	34	217	31	5 :	82	95	_	4.00	8.0
Kennebec	Delta	239	121	<u> </u>	09		9/	001	78.5	•	2.2
ND2/8-3	Delta Delta	236	64 73	<u> </u>	<u></u>		χ χ	00 5	. 1	•	0.7
ND33/-4	Delta Delta	736	7 / 6	103	∞ -)))	001	٠,	•	<u>'</u> '
	Delta	007	/ + -	23	<u>۔</u> ت آ		202	001	\	•	<u>`-</u>
WILLE KOSE	Delta Delta	9 6	503	0 ° C	000		ر در	ဘ (78 11	•	٠ ا -
2-8/20N	Delta	1,8	67	149	17		င္သ	96	_ (•	7.7
1-1221	Delta	//	30	14/	77		6/	95	80.5	•	2.0
ND229-1	e J	144	Ξ	133			87	92	_:	•	0.1
NDD588-1	Delta	130	62	89	20	0	85	06	73	•	2.3
LSD 5%		N.S.	24	41	9	2					
		74	2000	\$ 6							
2/ z i i i gravity	a D	<u></u> .	o riyar.	ברבו			,				
=/ Tuber rating:	<pre>5 = excellent,</pre>	ent, 4 =	good, 3 =	acceptable,	5 =	unacceptable	ole, l =	poor			
$\frac{3}{2}$ Chip color determined by color chart	ermined by	color cha	art where l	= lightest	and 5 =	darkest	st				

COLORADO

J. A. Twomey, D. G. Holm, and M. Workman

Potato Seedling and Varietal Evaluation

Seedling Program. A breeding program was started in 1979 to supplement the seedling program. Twenty-one parental clones were selected for crossing in 1980 and seeds from 231 crosses were obtained. Seeds produced in 1979 from 29 families were grown in the greenhouse. Approximately 8,000 seedling tubers were produced and the surplus is being distributed to other programs.

Approximately 35,000 first-year seedlings were grown in the field in 1980. Three hundred seventy were selected for increase and evaluation. Twenty-two second-year and 28 advanced seedlings will be tested in 1981.

Two processing types, WC672-2 and WC521-12 have shown promise and are being evaluated in the WRCC-27 variety trials. Both have high dry matter content and good yields. Clone AC67560-1, a red potato, has been tested in the West and will probably be released and named in 1981. A new russet, BC9289-1, has looked extremely promising.

Eighteen clones were tested for chip color and dry matter and the results may be found in Colorado Table 1.

Colorado Table 1. Chip Color $\frac{1}{}$ and Specific Gravity $\frac{2}{}$ of Promising Advanced Seedlings at Harvest and After Storage $\frac{3}{}$.

Seedling No. At Harvest Harvest 65° F Post Storage Harvest Storage Storage Harvest Storage Gravity Color Color Color Color Color AC711026-2 C9.5 26.0 14.0 7.0 17.0 1.087 AC72665-1 33.0 28.5 17.0 10.0 23.5 1.084 BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9560-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3<			seedings at	Har vest	and Aiter Stor	aye	
Seedling No. At Harvest Harvest 65° F Post Harvest Storage Post F Post Post Post Post Post Post Post Post					Warmed 2 W	ks @ 70° F	
No. Harvest Harvest @ 50° F @ 40° F @ 50° F Gravity Color Color Color Color Color Color AC711026-2 29.5 26.0 14.0 7.0 17.0 1.087 AC72665-1 33.0 28.5 17.0 10.0 23.5 1.084 BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.			3 Wks	10 Wks	10 Wks	10 Wks	
No. Harvest Harvest © 50° F © 40° F © 50° F Gravity Color Color Color Color Color Color Color AC711026-2 29.5 26.0 14.0 7.0 17.0 1.087 AC72665-1 33.0 28.5 17.0 10.0 23.5 1.084 BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC99407-3 36.0 2	Seedling	At	65° F Post	Storage	Storage	Storage	Specific
Color Color Color Color Color AC711026-2 29.5 26.0 14.0 7.0 17.0 1.087 AC72665-1 33.0 28.5 17.0 10.0 23.5 1.084 BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0	No.	Harvest	Harvest	0 50° F	0 40° F	0 50° F	Gravity
AC72665-1 33.0 28.5 17.0 10.0 23.5 1.084 BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 </td <td></td> <td>Color</td> <td>Color</td> <td>Color</td> <td>Color</td> <td>Color</td> <td></td>		Color	Color	Color	Color	Color	
BC9384-1 45.0 42.0 25.0 14.0 33.0 1.091 BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC672-2 40.5 41.5 <td>AC711026-</td> <td>2 29.5</td> <td>26.0</td> <td>14.0</td> <td>7.0</td> <td>17.0</td> <td>1.087</td>	AC711026-	2 29.5	26.0	14.0	7.0	17.0	1.087
BC9600-3 35.0 35.5 19.0 6.0 28.0 1.081 BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC672-2 40.5 41.5	AC72665-1	33.0	28.5	17.0	10.0	23.5	1.084
BC9539-3 32.0 23.0 15.0 10.0 13.0 1.091 BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.095 WC672-2 40.5 41.5 <td>BC9384-1</td> <td>45.0</td> <td>42.0</td> <td>25.0</td> <td>14.0</td> <td>33.0</td> <td>1.091</td>	BC9384-1	45.0	42.0	25.0	14.0	33.0	1.091
BC9566-7 36.0 24.0 14.0 10.0 19.0 1.086 BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9600-3	35.0	35.5	19.0	6.0	28.0	1.081
BC9582-3 40.0 30.5 25.0 15.5 21.0 1.092 AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9539-3	32.0	23.0	15.0	10.0	13.0	1.091
AC7508-2 30.0 41.0 30.0 12.0 30.0 1.085 BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9566-7	36.0	24.0	14.0	10.0	19.0	1.086
BC9566-11 30.0 23.0 11.5 7.0 15.5 1.080 BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9582-3	40.0	30.5	25.0	15.5	21.0	1.092
BC9546-1 40.0 32.0 23.0 13.0 23.0 1.092 BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	AC7508-2	30.0	41.0	30.0	12.0	30.0	1.085
BC9407-3 36.0 28.0 27.0 25.0 32.0 1.101 BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9566-11	30.0	23.0	11.5	7.0	15.5	1.080
BC9020-7 40.0 39.0 28.0 9.0 25.0 1.089 BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9546-1	40.0	32.0	23.0	13.0	23.0	1.092
BC9071-6 36.0 40.0 30.0 6.0 32.5 1.085 BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9407-3	36.0	28.0	27.0	25.0	32.0	1.101
BC8524-3 29.5 17.0 9.0 3.0 11.0 1.075 WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9020-7	40.0	39.0	28.0	9.0	25.0	1.089
WC521-12 44.0 41.0 26.0 22.0 33.0 1.109 WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC9071-6	36.0	40.0	30.0	6.0	32.5	1.085
WC612-13 33.0 32.5 21.0 17.5 29.0 1.098 WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	BC8524-3	29.5	17.0	9.0	3.0	11.0	1.075
WC672-2 40.5 41.5 32.0 20.0 38.0 1.095	WC521-12	44.0	41.0	26.0	22.0	33.0	1.109
	WC612-13	33.0	32.5	21.0	17.5	29.0	1.098
	WC672-2	40.5	41.5	32.0	20.0	38.0	1.095
Atlantic 30.0 37.0 30.0 19.0 32.0 1.100	Atlantic	30.0	37.0	30.0	19.0	32.0	1.100

^{1/}Chip color determined with Photovolt reflectance meter. Color readings of 25 and above are acceptable.

 $[\]frac{2}{\text{Specific gravity determined by potato hydrometer and air/water method.}}$

 $[\]frac{3}{\text{Chip}}$ samples from 10 wk storage @ 40° F were not included because all samples were extremely dark.

FLORIDA

J. R. Shumaker, D. P. Weingartner, James Watts, and Raymon E. Webb

Variety and Seedling Trials

Methods. Potato varieties and seedlings were tested for their adaptability and desirable horticultural characteristics at the Agricultural Research Center, Hastings, Florida. Clones were grown in either advanced (four replications) or intermediate (two replications) trials. Soil fumigation and planting and harvest dates are shown in procedures, Florida Tables 1-7. Commercial cultural practices were used on all tests. Yield and tuber appearance were taken at harvest. Tuber samples were shipped to Berwick, Pennsylvania, for specific gravity and chip color evaluation.

Advanced Yield and Quality Tests (Florida Tables 1-3). In three replicated trials grown under near excellent conditions Atlantic (USDA seed) and Belchip were superior to other clones in combining high yields and specific gravity with desirable tuber types and chip color. Varieties and seedlings grown from Maine (USDA) seed produced higher yields (Florida Table 2) than the same clones grown from North Carolina (NC) seed.

Intermediate Yield and Quality Tests (Florida Table 4). Seedlings which compared favorably with either Atlantic (standard processing type) or Superior (standard round white type) will be tested further in 1981.

Advanced and Intermediate Russet Tests (Florida Tables 5 and 6). Seed-ling B7583-6 was the most promising russet clone tested in 1980. Combining high yield, good tuber appearance, and high solids (Florida Table 5). Both B9140-7 and Centennial closely followed the yield response of B7583-6.

Advanced Red Test (Florida Table 7). Two seedlings, Wis 806R and Wis 774R, were superior to Red La Soda (north Florida's standard red cultivar) in tuber yields, appearance, and specific gravity. They will be grower tested in 1981.

Florida Table 1. Results from 24 clones selected for advanced yield and quality testing at Hastings, Florida -- 1980.

	Yield	Tuber		Chip o	color2	/	
	(cwt/acre)	appear-			er ha		Specific
Clone	US1A	$ance \frac{1}{2}$	1	2	3	Mean	gravity
B8433-4	421	2.8	4	5	5	4.7	1.056
PA9II-1	379	7.0	4	2	3	3.0	1.062
Atlantic	378	7.0	3	4	5	4.0	1.070
New Haig	370	7.0	3	3	4	3.3	1.062
Wis 738	365	6.5	2	5	5	4.0	1.060
High Plains	363	3.2	4	3	3	3.3	1.061
La Chipper	361	2.8	2	4	3	3.0	1.063
Wis 718	350	7.0	2	3	4	3.0	1.057
B8352-3	340	5.5	3	5	5	4.3	1.061
New Superior	334	6.8	5	5	4	4.7	1.062
Wis 723	329	4.5	2	2	3	2.3	1.068
Michimac	325	5.2	4	6	5	5.0	1.061
Crystal	324	5.5	5	6	6	5.7	1.063
Wis 710	317	7.8	3	5	5	4.3	1.054
Norchip	310	4.8	2	3	5	3.3	1.064
Michibone	295	5.5	4	5	5	4.7	1.058
Dakcip	295	2.5		3	2	2.3	1.058
B8798-20	289	8.2	2 2 2	2	2	2.0	1.066
Croatan	288	2.8	2	3	3	2.7	1.057
Wis 726	271	4.2	2	4	2	2.7	1.064
B6969-2	263	6.8	4	5	4	4.3	1.057
Superior	242	7.5	3	4	5	4.0	1.066
B8615-2	193	4.8	2	3	2	3.3	1.071
Denali	173	4.2	4	4	5	4.3	1.073
Delia I I	173	7.4	_	7	3	7.0	1.0/3
LSD (0.05)	66	1.6					
(0.01)	88	2.2					

 $[\]frac{1}{2}$ From 9.0 = most desirable to 0.0 = completely undesirable.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row planting. Replications = 4. Plot = 20 hill units (20 ft.). Planted = 2/4-5/80. Harvested 5/27-29/80.

^{2/} Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for
use.

Florida Table 2. Results from 22 clones selected for advance yield and quality testing at Hastings, Florida -- 1980.

- 4	Yield (cut(acro)	Tuber		Chip			Crecific
Clone	(cwt/acre) US1A	appear- ance_/	1	2 2	ver na 3	rvest Mean	Specific gravity
	00271	4.100-			<u> </u>	Hour	3.4
Belchip	414	5.5	2	2	2	2.0	1.067
Atlantic USDA	366	6.0	2	5	3	3.3	1.071
Pungo USDA	353	4.8	5	5	6	5.3	1.065
Sebago USDA	350	6.8	3 2	5	5 3	4.3	1.059
B8091-8	312	7.5	2	3	3	2.6	1.064
Sebago NC	308	7.5	3 3 2	5	4	4.0	1.060
B8907-4	307	6.8	3	3	3 5	3.0	1.062
B8724-2	305	6.5	2	4	5	3.7	1.067
B9067-6	301	6.8	4	6	6	4.7	1.064
New Superior	268	7.8	3	3 3 3	5	3.7	1.064
B6987-184	259	6.2	2	3	2 3 3	2.3	1.073
B9071-1	256	8.0	1		3	2.3	1.066
B6969-2 USDA	252	8.0	5 3	5	3	4.3	1.062
B6969-2 NC	233	9.0	3	5 3 3 2	2 3 3 5	2.7	1.060
B8599-42	229	7.2	3	3	3	3.0	1.058
B8799-13	222	6.5	4	2	3	3.0	1.075
Pungo NC	220	4.8	5	5		5.0	1.059
Atlantic NC	187	5.8	3	3	5	3.7	1.071
B8285-3	173	5.2	6	6	6	6.0	1.069
B9062-9	173	6.8	3	5	2	3.3	1.061
Superior USDA	154	8.5	5	5	2	4.3	1.069
Superior NC	119	7.0	3	4	5	4.0	1.066
LSD (0.05)	96	1.6				*******	
(0.01)	127	2.2		·			

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row planting. Replications = 4. Plot = 20 hill units (20 ft.). Planted = 2/4-5/80. Harvested 5/27-29/80.

^{2/} Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 3. Results from 24 clones selected for advance yield and quality testing at Hastings, Florida -- 1980.

	Yield	Tuber		Chip	olor	27	
	(cwt/acre)	appear-	Wee	ks aft	er ha	rvest	Specific
Clone	US1A	ance1/	1	2	3	Mean	gravity
Atlantic	401	7.8	2	3	3	2.7	1.070
B9224-6	394	7.2	5	5	4	4.7	1.061
B9127-1	390	7.5	6	6		5.0	1.059
B9127-6	381	8.5		5	3	3.7	1.068
Sebago	347	7.2	2	3	3	2.7	1.058
B9130-24	346	7.8	3		4	4.0	1.062
B9140-4	337	8.5	2 2 3 2 2 5	5 2	3	2.3	1.068
B9152-11	334	8.2	2	3	3	2.7	1.067
B9311-13	314	7.2	5	5	6	5.3	1.056
B9127-17	308	8.0	5	6	7	6.0	1.050
B9130-34	272	5.8	4	5	4	4.3	1.060
B9130-34	271	6.2		4		3.7	1.066
B9144-5	270	7.2	2	2	5 3 3	2.0	1.063
B9144-5	262	4.5		2	3	2.3	1.064
B9258-2	259	7.2	2	2	3	2.7	1.063
B9175-7	252	6.0	2	2 3 3	5	3.3	1.069
B9152-44	252 251	7.2	2 2 2 2 3	3	3 5 3	2.3	1.066
	244		2	5	5	2.7	
Superior B9311-7	2 44 241	7.2	5	5 5	6	4.3	1.066
B9286-4	237	4.2	6	6	5	5.3	1.056
		4.0	2	0	3	5.7	1.060
B9140-14	213	5.0	4	3	6	2.7	1.064
B9285-2	203	5.0	4	5 5		4.3	1.072
B9024-27	192	3.5	5	5 5	5	4.7	1.063
B8947-3	160	6.2	5	5	6	5.3	1.064
LSD (0.05)	68	1.9					
(0.01)	91	2.5					

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row planting. Replications = 4. Plot = 20 hill units (20 ft.). Planted = 2/4-5/80. Harvested 5/27-29/80.

^{2/} Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 4. Results from 84 clones selected for intermediate yield and quality testing at Hastings, Florida -- 1980.

•	,						
	Yield	Tuber		Chip	color	7	
	(cwt/acre)	appear-	Wee	ks aft	ter ha	rvest	Specific
Clone	US1A	ance1/	1	2	3	Mean	gravity
00502 12	100	1.0					
B8503-13	189	1.0	2	2	3	2 2	1 062
B8514-8	271	7.0	2	2	3	2.3	1.063
B8618-5	103	5.0					
B8685-4	122	6.0					
B8706-7	218	5.0					
B8710-1	282	3.0					
B8740-1	88	6.5					
B8751-7	190	6.5					
B8966-3	202	3.5					
B9004-8	193	3.5			-		3 050
B9016-16	246	7.0	4	3	5	4.0	1.052
B9016-20	287	4.0	5	6	5	5.3	1.054
B9018-12	348	7.5	2	2	2	2.0	1.066
B9020-10	389	2.5	_		_		
B9048-7	235	7.0	3	4	5	4.0	1.059
B9053-6	145	8.0					
B9071-4	249	6.5					
B9119-5	194	3.5					
B9140-2	. 142	4.0					
B9140-17	, 154	5.5					
B9140-32	198	6.0					
B9142-4	352	6.5	5	4	4	4.3	1.058
B9155-12	166	4.0	3	5	6	4.7	1.059
B9172-11	341	3.5	2	2	2	2.0	1.065
B9192-1	235	5.5	1	2	5	2.7	1.062
B9332-3	190	7.0	4	4	3	3.7	1.070
B9333-21	200	8.5	6	6	7	6.3	1.058
B9333-24	25 3	2.5					
B9335-5	334	7.0	3	4	2	3.0	1.057
B9335-7	240	8.5	3	5	6	4.7	1.063
B9335-16	198	8.5	2.	3	3	2.7	1.064
B9335-17	374	8.5	2	5	5	4.0	1.068
B9335-19	176	6.5					
B9335-20	252	6.5					
B9335-24	203	7.5	4	5	5	4.7	1.061
B9335-30	254	6.0					
B9335-34	209	7.0					
B9335-35	284	7.0	1	3	3	2.3	1.073
B9335-36	403	6.5	2	5	3 6	4.3	1.061
B9335-49	321	8.0	5	5	6	5.3	1.056
B9335-60	177	7.0					
B9336-6	305	7.5	6	6	7	6.7	1.068
B9336-10	235	5.5					
B9336-11	322	5.0	3	5	7	5.0	1.060
B9336-15	251	5.5					

Florida Table 4. Continued.

	Yield	Tuber		Chip o	nlor	7	
	(cwt/acre)	appear-				rvest	Specific
Clone	US 1A	ance1/	1	2	3	Mean	gravity_
							
B9336-22	225	4.5					
B9336-24	301	3.5	3	5	4	4.0	1.068
B9340-7	213	7.5	2	3	3	2.7	1.069
B9341-6	264	7.0	2 5 3	5 2	4	4.7	1.060
B9344-5	327	6.5	3	2	2	2.3	1.071
B 9344-10	206	3.5					
B9344-15	247	5.5	2	2 5	3	2.3	1.074
B9384-6	409	6.0		5	4	3.7	1.064
B9384-13	269	7.5	4	3	4	3.7	1.064
B9409-1	395	6.0	2	5	5	4.0	1.061
B9423-4	468	5.5					
B9439-4	333	5.0	3	3	5	3.7	1.067
B9445-2	175	4.0					
B9445-4	284	3.5					
B9445-6	315	2.5	_	_	_		
B9445-7	248	3.5	5	5 3 3	5 3 3	5.0	1.067
B9473-2	299	8.0	2 3 3	3	3	2.7	1.054
B9473-4	211	5.5	3	3	3	3.0	1.065
B9473-6	301	8.0	3	3	3	3.0	1.058
B9489-2	181	6.5		_	•	4.0	3 067
B9489-5	226	6.5	4	5	3	4.0	1.067
B9489-6	285	7.0	2	A	-	4 0	7 000
B9489-7	198	6.5	3	4	5	4.0	1.066
PA9GPA-1	274	7.0 6.5	3 1	3	3	3.0	1.060
PA9HG-1 PA9HX-1	388 253	5.0	2	2	2	2.3	1.068 1.071
PA9HZ-3	249	8.0	2	2	2	2.0	1.066
PA9JJ-2	225	3.5	2	4	ے ج	4.7	1.064
PA9LE-3	347	7.5	4		3 2 2 2 5 5	4.7	1.062
PA9LV-2	475	8.0	4	5 3	2	3.0	1.068
PA9LY-2	356	2.5	6	3	4	4.3	1.058
PA9MB-1	409	4.0	6	3 4	5	5.0	1.056
PAP0021-3	404	4.5	2	5	3	3.3	1.059
PAP0030-2	238	5.5	4	6	5	5.0	1.063
PAP0035-1	367	4.5	5	6	4	5.0	1.061
Atlantic	328	6.2		5	4	4.3	1.062
Sebago	358	6.6	4	3	4	2.7	1.054
Superior	248	8.1	3	5	3	3.7	1.069
B6969-2	248	7.0	3	5	3	3.7	1.061
							-

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.
2/ Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row planting. Replications = 2. Plot = 20 hill units (20 ft.). Planted = 2/4-5/80. Harvested = 5/27-29/80.

Florida Table 5. Results from 16 russet clones selected for advanced testing at Hastings, Florida -- 1980.

Specific
Gravity
1.071
1.066
1.061
1.056
1.063
1.066
1.070
1.063
1.056
1.060
1.063
1.070
1.058
1.069
1.064
1.065

 $[\]frac{1}{2}$ From 9.0 = most desirable to 0.0 = completely undesirable.

PROCE DURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A
Temik in-the-row planting. Replications = 4. Plot = 20 hill units
(20 ft.). Planted = 2/4-5/80. Harvested 5/27-29/80.

^{2/} Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 6. Results from 28 russet clones selected for intermediate yield and quality testings at Hastings, Florida -- 1980.

	Yield	Tuber		Chip	color	7	
	(cwt/acre)	appear-	Wee	ks af	ter ha	rvest	Specific
Clone	USIA	ance1/	1	2	3	Mean	gravity
B8529-4	151	3.0					1.068
B8833-6	198	7.5					1.067
B8884-5	188	2.0					1.053
B8934-4	349	4.5	3	2	2	2.3	1.059
B8943-4	205	1.5					1.061
B8977-2	366	4.0	5	6	5	5.3	1.046
B9154-10	275	4.5					1.059
B9162-12	185	5.5					1.060
B9164-1	161	6.0					1.067
B9332-2	251	8.0	5	6	6	5.7	1.064
B9395-7	228	4.0					1.063
B9395-16	196	6.0					1.056
B9399-17	217	6.5					1.055
B9399-19	246	5.5					1.059
B9418-1	250	7.0					1.065
B9418-7	175	8.0					1.069
B9419-1	218	1.5					1.064
B9419-4	126	1.0					1.055
B9419-6	271	3.5					1.056
B9420-2	176	5.5					1.066
B9434-11	123	5.5					1.068
B9434-12	41	1.0					1.063
B9434-16	129	4.5					1.065
B9434-18	167	2.5					1.065
Bel Rus	245	9.0					1.069
Centennial	328	7.0					1.058
A68678-1	333	1.5					1.060
Norgold Russet	208	3.0					1.064

 $[\]frac{1}{2}$ From 9.0 = most desirable to 0.0 = completely undesirable.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row planting. Replications = 2. Plot = 20 hill units (20 ft.). Planted 2/4-5/80. Harvested 5/27-29/80.

^{2/} Chip color 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 7. Results from 6 red clones selected for advanced testing at Hastings, Florida -- 1980.

C1 one	Yield (cwt/acre) US1A	Tuber appearance 1/	Specific gravity
Wis 729R Wis 806R Wis HS-17R Wis 774R Red La Soda USDA Red La Soda NC	356 341 276 265 240 227	6.2 8.2 6.5 8.0 3.2 3.2	1.062 1.061 1.056 1.051 1.057 1.058
LSD (0.05) (0.01)	58 80		

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

PROCEDURES: Soil fumigation = 8 gpa preplant Telone + 3 lb ai/A Temik in-the-row at planting. Replications = 4. Plot = 20 hill units (20 ft.). Planted = 2/4-5/80. Harvested = 5/27-29/80.

IDAHO AND EASTERN OREGON

J. J. Pavek, D. Corsini, C. Stanger, and S. Michener

<u>Early testing.</u> About 63,000 single hills representing 444 families were grown at Aberdeen. Of these 2143 were selected on the basis of appearance or biomass potential. 1465 selections were grown in 12-hill plots and 379 were selected on the basis of appearance and yield. Ninety-six clones were grown in preliminary early or late harvest trials at Aberdeen. Selections from this stage are being winter indexed for disease and moved to the Tetonia seed farm. Thirty-six intermediate selections were tested in early and late harvest trials at two locations.

Advanced yield trials. Early harvest advanced trials were conducted at Aberdeen, Idaho and at Malheur County, Oregon. Late harvest advanced trials were conducted at the same two locations and also at Kimberly, Idaho. Fertilizer was applied according to soil tests at each location. Systemic insecticide and preemergence herbicide were used at each location. Metribuzin was applied preemergence to the Kimberly trial followed by two weeks of cool wet weather and serious injury to sensitive clones resulted. Overall yields at Kimberly were low, probably as a result of being set back by the metribuzin. The test plots were irrigated by sprinkler at Aberdeen and Kimberly and by furrow at Malheur County. Vines were beat off just prior to the early harvests and were chemically killed for late harvests. Temperatures throughout the season were cooler than normal at all locations, with higher than average precipitation. This resulted in higher than normal yield and quality for Russet Burbank both in the trials and in commercial fields.

Clones A66102-16 and A72685-2 (Late Harvest ID-OR Tables 1 and 2) have been tested for several years and appear to have good potential for french fry processing. Both have good <u>Verticillium</u> resistance, resulting in consistently high yields, and also have high solids. Russeted A74595-11 (1st year in advanced trials) appears to be the most promising clone in this years tests. It has good disease resistance, high yield and solids, good appearance, and potential as a multipurpose variety. One-fourth of its parentage is from Solanum tuberosum gp andigena. Russeted clone, A74114-4 was the outstanding new clone in the early harvest trials (Tables 3 and 4).

Release of Lemhi Russet. Lemhi Russet (tested as A68678-1) was officially released in 1980. Blackspot bruise was a serious problem in commercial plantings at several locations. Otherwise, performance of this new variety was excellent. Approximately 1000 acres of seed were grown in 1980 and indications are that Lemhi will be grown over a large area in the West and Midwest for more extensive commercial evaluation in 1981.

Disease evaluation. Testing for resistance to <u>Verticillium</u> wilt, Early blight (foliar and tuber phase), common scab, <u>Fusarium</u> dry rot, and leafroll netnecrosis was performed as in the past. A procedure for the evaluation of <u>Erwinia</u> soft rot and blackleg resistance was developed and will be applied to advanced test clones this storage season. Methods of testing blackspot and shatter bruise susceptibility are also being developed. Thirty-three selections have been made on the basis of <u>Fusarium</u> resistance during two years of testing. These were grown in replication and are being evaluated again for

dry rot resistance. Clones which continue to show very high resistance to both Fusarium types will be used as parents.

Other studies. The uniform national biomass trial coordinated by M. Martin was conducted at Aberdeen. The highest yield of solids per acre was produced by A503-42. Further detail is being reported by M. Martin. After the third year of testing protoplast derived Russet Burbank clones, none has shown consistently and significantly higher total yield or yield of U.S. No. 1's than the parent Russet Burbank clone. One clone, SM122, has had significantly higher specific gravity and similar yields to the parent clone for two years. None of the clones with acceptable agronomic performance have shown any improvement in disease resistance.

<u>Distribution</u>. The distribution of breeding selections, varieties, seedling tubers and true seed during 1980 is summarized in ID-OR Table 5.

ID-OR Table 1. 1980 Advanced late harvest yield trials.

					1 1
Fry	0.7	1.4	0.9 0.7 0.8 0.9	0.7 0.7 0.9	0.3
Co., OR Spec. Grav.	1.105	89 102	95 99 99	95 103 103	
Malheur % US #1's Tot	87 65 89	82	81 92 90 84	61 89 84	cwt
More More Total Yield Cwt/A	790 723 793	909	505 598 592 719	683 756 729	127 cv
Fry	0.0 0.0 0.0 0.0 0.0 0.0	1.6 1.1 0.7 1.5	0.8	0.9 0.6 0.5	0.4
Spec.	1.091 81 90 97 85	80 79 90 72	90 87 93 86	87 88 90 95	.004
Kimberly, % # 1's >10 oz	56 26 66 19 37	51 47 28 58 48	60 22 53 53	34 54 45 29	
U.S. Tot	79 47 88 75 58	63 73 81 88 69	88 86 81 87 78	63 88 72 90	cwt
Total Yield cwt/A	444 463 455 385 335	431 363 391 393 187	401 415 263 403 438	414 426 464 326	70 c
Fry	7.1 0.0 7.1 4.1	1.6 0.7 1.3 2.3	1.1 0.0 8.0 4.1	1.1 0.9 2.2 0.6	0.4
Spec.	1.082 74 83 83 78	80 71 80 85 73	80 83 88 82 82	79 84 77 89	.003
Aberdeen, % . # 1's >10 oz	37 35 51 19 44	58 54 29 29 49	34 51 19 49 62	24 33 27 40	
About 10.5.	73 68 82 71 71	85 78 78 83 78	80 82 70 85 79	63 74 71 86	۸t
Total Yield cwt/A	431 488 517 422 442	549 419 373 369 431	365 436 312 479 496	423 402 387 388	70 cwt
Entry	A66102-16 A68710-5 A72685-2 A7353-3 A7474-12	A74104-8 A74104-18 A74123-3 A74127-2 A74135-2	A74265-2 A74389-1 A74393-7 A74595-11 A74595-17	Russet B. Lemhi Butte Atlantic	LSD 5%

Summary advanced late harvest yield trials - 1980. ID-OR Table 2.

	Арре	Appearance		Yield		Qual	Quality	1	Disease	1	Resistance	
Entry	Vine Maturity (1-5)	Tu Descr Rus	Tuber Description Rus Shape	Tot ^{3/} Yield cwt/A	% US #1	Spec. Grav.	Fry <u>4/</u> Color	$\frac{\text{Dry}_{5}}{\text{Rot}^{5}}$ (0-5)	Lear- roll Net N. (0-5)	Common scab (0-5)	Vert. Wilt (0-5)	Early Blight (0-5)
A66102-16 A68710-5 A72685-2 A7353-3 A7474-12	3.3 2.9 3.3	Lt M M+ MtLt	0 0 7-0 0-7	438 475 486 404 389	76 58 85 73 68	1.087 78 87 90 90	1.7 0.9 1.8 1.7	3.0 4.6 1.4 4.3	2.3	1.5 0.8 3.1 0	1.0 2.9 1.1 0.6	2.0 3.1 1.8 2.3
A74104-8 A74104-18 A74123-3 A74127-2 A74135-2	8.22.0.8 8.24.0.5	Lt Lt- WtLt Lt- M+	0 -0 -0 0	490 391 382 381 309	75 74 79 85 76	80 75 85 89 73	1.6 0.7 1.4 2.0	3.1 3.3 4.1 4.1	1.8 1.1 1.3 2.7	0.3.28	0.7 0.9 0.9 0.8	3.7 2.9 1.8 8.1
A74265-2 A74389-1 A74393-7 A74595-11 A74595-17	2.22.8 4.4.20.0	ΣΣΣŽΣ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	383 426 288 441 467	84 75 75 79	85 88 91 84	7.0 0.0 0.8 0.8 3.8	2.7 4.3 3.7 1.7	1.3 2.0 0.7 1.1	1.8 0.1 0.1	2.1 2.2 1.4 0.5	3.6 3.6 1.5 4.5
Russet B. Lemhi Butte Atlantic	2.7 2.5 2.4 2.4	M M+ Buff	L L R	420 414 426 357	63 81 72 88	83 86 84 92	0.0	4.1	2.5 1.5 0.8	0.3	2.1	3.3.3

 $\frac{1}{2}$ /Maturity scale l=very early, 5=very late. $\frac{2}{3}$ /Waturity scale l=very early, 5=very late. $\frac{2}{3}$ /Wt=white; L=light russeting; M=medium russeting; Hv=heavy russeting; L=long; O=oblong; R=round. $\frac{4}{4}$ /Aberdeen+Kimberly data combined. $\frac{4}{4}$ /Aberdeen+Kimberly data combined. $\frac{4}{5}$ /Late harvest fried after about 2 months storage at 45 F. USDA color chart lightest 00 and 0=0.5 to darkest=4. $\frac{5}{5}$ /Maximum score of either F. sambucinum or F. coeruleum (1979-80 storage season).

ID-OR Table 3. 1980 Advanced early harvest yield trials.

			Aberde	Aberdeen, ID				Malheur	Malheur Co., OR	
			% U.S. No. 1	-S		1				
Entry	Yield cwt/A	Total %	>10 02	zo 9<	Spec. Grav.	Fry Color	Yield cwt/A	Total % US #1	Spec. Grav.	Fry Color
A7487-3	291	69	17	48	1.079	9.0	391	89	1.080	9.0
A74114-4	301	84	25	65	77	9.0	483	78	80	9.0
ALR22-2	296	79	21	29	72		585	81	78	9.0
NDA8694-3	289	64	15	45	64	0.5	559	81	73	9.0
Lemhi	323	79	29	19	82	0.8	581	82	91	9.0
Norgold	253	83	23	64	99	1.4	439	78	73	0.8
Pioneer	393	88	39	75	80	0.7	220	85	83	0.5
Russet B.	316	99	12	45	74	1.0	525	64	80	0.5
Atlantic	369	87	31	70	06	9.0	1	1	i	1
BelRus	264	81	10	53	80	0.5	ı	1	1	1
LSD 5%	44 cwt				.003	0.4	99 cwt	L.	.004	0.2

Summary advanced early harvest yield trials - 1980. ID-OR Table 4.

Entry	Vine Maturity (1-5)	Tul Descri Rus	Tuber Description Rus Shape	$Tot^{3/}$ Yield cwt/A	% N	Spec. Grav.	Fry <u>4</u> / Color	Fus. Dry ₅ / Rot <u>5</u> / (0-5)	Leaf- roll Net Nec. (0-5)	Common scab (0-5)	Vert. Wilt (0-5)	Early Blight (0-5)
A7487-3	2.3	Σ	N-7	341	89	1.080	9.0	1.8	0.8	2.6	2.1	3.5
A74114-4	2.2	Σ.	N-0	392	80	79	9.0	0.4	3.1	3.8	2.2	2.8
ALR22-2	2.0	Ļ	0	439	80	75	6.0	3.2	1.3	3.2	3.2	3.5
NDA8694-3	1.8	Ē	0	424	75	69	9.0	ı	1.1	1.5	4.2	3.3
Lemhi	2.5	+ ₩	T-0	457	81	87	0.7	4.4	1.5	0.3	1.7	2.9
Norgold	1.6	± ₩	0-7	346	80	70		ı	1.5	0.5	4.3	4.0
Pioneer	5.6	Red	0	481	87	82	9.0	ı	1.1	2.5	1.7	3.6
Russet Burbank	2.8	Σ		419	65	77	8.0	4.1	2.4	0.4	1.8	2.5
Atlantic	2.4	Buff	æ	(369)	(87)	(06)	(0.0)	1	0.8	2.5	2.4	3.0
(Ab data only) (Ab data only)	1) H	r-0	(569)	(81)	(80)	(0.5)	ı	ı	ı	ı	I

1/Maturity scale 1=very early, 5=very late. 2/Maturity scale 1=very early, 5=very late. 2/Mt=Mite; L=light russeting; M=medium russeting; Hv=heavy russeting; L=long; 0=oblong; R=round. 4/Mt=Mt hear combined. 4/Mt harvest fried within 1 week of harvest. 5/Mt harvest fried within 1 week of harvest. 5/Mt harvest fried wither F. sambucinum or F. coeruleum (1979-80 storage season).

ID-OR Table 5. Distribution of Selections, Varieties, and Seedlings - 1980.

LOCATION	COOPERATOR	NUMBER	LOCATION	COOPERATOR	NUMBER
Clones:					
Argentina	H. Brücher	7	Nevada	B. Schaeffer	1
California	D. Kenfield	2	New York	B. Brodie	67
	E. Shahin H. Timm]]	North Dakota	R. Johansen	1
	R. Voss	55	Ohio	F. Lower	2
	E. Wells, Jr.	1	Oregon	M. Johnson	4
Canada	D. Lynch	216		A. Mosley B. Peterson	1 4
Colorado	D. Holm	12		C. Stanger	51
Idaho	J. Davis R. Dwelle	5 3		G. Vogt	3
	A. Finley D. Gifford	3 2 1	Philippines	C. Baniqued E. Velasco	8 4
	G. Kleinschmidt	19	Texas	D. Smallwood	3
	T. Longley E. Mink	2 2	Utah	G. Booth G. Griffen	1
	J. Peterson A. Walz	7 5	Un chinatan	B. Dean	6 10
Maine	D. Wilson	2	Washington	L. Hiller	10
	R. Webb	2		M. Martin	39
Maryland	R. Chase	11	Wisconsin	M. Cipar	1
Michigan	D. Smith	1		M. Groskopp J. Schoeneman	7 n 12
Minnesota	R. Lobitz	4			
Nebraska	R. O'Keefe	1			
Seedling tube	ers or speds.				
California	R. Voss	58 fam	nilies		
Colorado	J. Twomey	46 "			
North Dakota	R. Johansen	68 "			
Texas	J. Miller, Jr.	102 "	1		
Maryland	R. Webb	16 cro	15585		
nai y rana	N. HCDD	10 010	,3303		

INDIANA

H. T. Erickson

Potato Breeding

Our program continues to emphasize the development of a high yielding, scab resistant variety with good horticultural characters which is early, has better specific gravity than available varieties and is adapted to the high temperatures of the corn belt. Some work on higher protein levels has led to the use of protein-rich clones as parents.

In 1980 approximately 15,000 seedlings from 27 crosses were transplanted to the field in early May. These develop essentially full-size tubers by fall. About 225 selections were made.

Additional advanced lines were planted in 20 hill plots. Thirty-three were retained for further testing. At least two will be included in yield trials. One line, 78-59-1, is very early, has good type and reasonably good dry matter content. All of the more promising clones have been meristemmed. Advanced lines are grown on organic soils. Susceptibility to cracking and hollow heart can be detected rather reliably in this environment.

Regeneration from tuber tissue. Several dozen plantlets produced from tuber discs in vitro were grown for field observation. As many as 10-20% had obvious leaf or growth habit differences when compared with the parent clone, Superior. In view of the current interest in somatic selection this project will be expanded next year to more fully characterize the nature of this variability. Using the tuber disc method it is possible to regenerate large numbers of plants with relative ease.

Potato Variety Trial - Indiana 1980 R.R. Romanowski and R.S. Grenard

The trial was conducted on a muck soil on the Hilger Farms located in north eastern Indiana. 1980 was one of the poorest years for potato yields. The year started out dry, then wet plus excessively high temperatures. Please keep this in mind when going over the data.

Methods

Eight white potato varieties were tested on the Hilger Farm located near Fort Wayne. The varieties were planted on May 19, 1980 in 34 inch rows on 9 inch centers. A randomized complete block design was used with 3 replicates. The soil had a pH 4.5 and an organic matter content of 55%. The field was not irrigated and all cultrual practices were handled by the grower.

Results

The results for this trial are contained in Table 1 and 2. Some general comments based on this and other tests follow:

Superior, Norchip, Katadin - All standard varieties grown for many years on muck soil in Indiana. Norchip is grown for chipping and the two other varieties for table stock.

Michimac - A real interesting potato that outyields Katadin. It should be compared to Katadin and considered as a possible replacement in the future.

Michibonne - Low yielding this year. The possibilities are that it may be discontinued in the future.

Allagash - Very rough on the mucks. A Russet type that probably needs a critical irrigation schedule.

Jemseg - Should be compared to Superior. An excellent potato that will pack out in the shed. The Michigan Crop Improvement Association may increase the potato in the future. Jemseg was bred at New Brunswick Canada and is replacing Superior in many areas of Canada. The variety outyielded Superior in 1979 but did not yield as well in 1980 under adverse conditions (Table 3)

Summary

Of the potatoes tested Jemseg should be looked at in comparison to Superior and Michimac should be compared to Katadin.

ACKNOWLEDGEMENTS: Special thanks are extended to Joe and John Hilger for growing the potatoes and to the following for suppling seed pieces: Floyd Lower - O.A.R.D.C. - Ohio; Dr. Don Young, Agri-Canada, P.O. Box 20280; Fredericton, N.B. E3B, 4X7; Mr. Alvin F. Reeves II, Dept of Plant & Soil Sciences, Aroostock State Farm, Presque Isle, Maine 04769 - supplied allagash seed.

Table 1. Yield, Maturity Ratings and Specific Gravity, Hilger Farm, 1980

	Yield	Cwt/Acre			
Variety	Total	B-Size	Culls#	Maturity Rating**	Specific Gravity
Superior	248.7	4.6	25.4	9.0	1.053
Norchip	273.1	9.3	19.0	7.0	1.062
Katadin	229.5	5.6	23.3	5.7	1.040
Michimac	248.1	2.9	15.7	5.0	1.056
Michibonne	168.5	4.2	19.0	6.3	1.054
Allagash	219.6	4.5	44.6	9.0	1.050
Jemseg	217.9	2.9	25.4	9.0	1.062
Purdue 77-3-4	223.7			7.0	
LSD 5%	106.4	4.6	12.3	2.2	.02

^{*}Culls mostly green potatoes

Table 2. Quality Characteristics of Potatoes, Hilger Farm, 1980

	Ratings ¹				
Variety	Scab	Hollow Heart	Growth Cracks	Roughness	
Superior	0.0	0.7	0.0	0.0	
Norchip	0.0	0.0	0.3	0.7	
Katadin	0.0	0.0	0.0	0.7	
Michimac	1.0	0.0	0.0	0.3	
Michibonne	0.3	0.3	0.3	0.7	
Allagash	0.0	1.0	4.0	3.0	
Jemseg	0.0	0.0	0.0	0.3	
LSD 5%	0.82	0.90	0.5	0.92	

Ratings on scale of 0 to 4: 0 = none; 1 = trace; 2 = slight; 3 = moderate; 4 = severe.

^{**}Ratings on scale 1 = green leaves and turgid stems; 3 = 50% green leaves and turgid stems, 5 = few green leaves and turgid stems, 7 = few green leaves and 50% turgid stems, 9 = dried leaves and stems.

Table 3. Average Yields of Potato Varieties in CWT/Acre for Muck Trials 1973-1980.

1973 Abnaki Katadin	450	1974 Hudson Kennebec	435 328	1976 Superior W-718	493	1977 Norchip Abnaki	481	1978 Michimac Denali	700
Norchip Hudson Kennebec Onaway	408 394 389 377	Katadin Superior Norchip	276 217 152	Wischip	274	Atlantic Katadin W-718 Oneida	431 388 337 302	W-718 Katadin Michibonne Atlantic	582 538 490 428
Superior	305					Superior	134	Norchip Superior Oneida	370 320 302
1979		1	1980						
lipigon	584		hip	273					
Atlantic	568		Superior	249					
1-718			imac	248					
Jenali			ndin	230					
Norchip			gash	220					
lewel			eg	218					
lemseg			Michibonne	169					
lichimac		.+							
li chi bonne		~							
Katadin									
Superior	305								

KANSAS

J. K. Greig

Potato Variety and Seedling Evaluation:

Twelve varieties and 16 seedlings were evaluated for yield and quality determinations.

Climatic Conditions:

The average monthly temperature by months follows: April 54° F, May 65° F, June 78° F, July 88° F, and August 84° F. Therefore, yields and specific gravities were low. The planting was irrigated four times in June and July. Defects were numerous. Early maturing types generally were superior to late maturity selections. Table 1 gives the results of this study.

Table 1. Results of Regional and Commercial Potato Variety Trials, Manhattan, 1980

	Yield c	wt/Acre		D	efects 1,	/	Qua	lity
Variety	Wt.of US#1	Total		Second growth	Cracks	Internal necrosis	Appear- ance	Specific gravity
White or Russet								
Belrus Dakchip Norchip	189 152 94	225 269 203	1 2 2	2 3 3	1 1 1	1 2 1	2 2 2	1.063 1.059 1.053
WC 272 Neb A 219.70-3 Visc. 723	91 84 78	187 150 145	3 3 2	4 2 1	1 1 1	1 1 1	2 2 3	1.070 1.051 1.056
Superior Wisc. 726 AK 34-2	78 77 68	114 152 119	2 2 1	1 2 1	1 1 1	1 1 2	1 2 1	1.058 1.058 1.063
Denali Neb A 129.69-1	5 7 5 6 5 3	115 116 96	2 3 2	2 2 2	1 1 1	3 1 1	1 2 1	1.059 1.046 1.056
Neb A 71.72-1 Tnd 14-1 Belchip	46 46 39	110 108 112	2 2 2	3 3 2	1 1 1	2 1 1	1 1 3	1.056 1.055 1.067
WC 521-12 WC 612-13 Lenhi	39 33 15	100 119 60	1 1 1	2 5 3	1 1 1	1 1 1	2 3 2	1.062 1.065 1.058
Conn Russet	14	89	1	3	1	1	3	1.061
Red								
LA 42-38 MN 5757 ⁻ Viking	162 144 139	222 213 168	1 2 2	2 5 2	1 1 1	1 2 1	2 2 1	1.051 1.046 1.053
Norland Red Pontiac	133 115	192 216	2 4 3	3 3 4	1 1 1	1 1 1	2 3 2	1.042 1.044 1.053
MN 8742 ND 146-4R LaRouge	93 83 77	207 121 166	1 3 1,	2 4 3	1 2 1	1 1 1	1 2 1	1.059 1.048 1.044
Wisc. 806R LSD	36 32	113 48	1,					.002

Planted: April 4

Fertilizer: $N - P_2^0_5 - K_2^0 \frac{1b}{\Lambda}$

45 + 115 + 0 preplant

45 + 115 + 0 preplant 50 + 0 + 0 April 25

50 + 0 + 0 May 9

50 + 0 + 0 June 17

Spacing: Plants 1' apart in 3' rows

Irrigated: June 11, 18, 27 and July 23

Fungicide: Diathane 45

Insecticides: Sevin, Malathion, and Diazinon

Harvested: August 6 and 7

1/1 =superior; 2 = average; and 3 = inferior

Louisiana

J. F. Fontenot, D. W. Newsom, H. M. Brewer, R. J. Constantin, A. J. Adams, A. C. Miller W. W. Etzel, W. A. Poillion, and B. W. Wascom

POTATO BREEDING AND DEVELOPMENT

OBJECTIVES:

The principal objectives of the Louisiana potato breeding project are wide adaptability, high yield, frost, heat and drought resistance, insect and disease resistance (particularly late blight and scab), improved culinary quality (including chipping quality, french frying quality, and baking quality), resistance to after-cooking darkening, improved storage ability, better shape and skin color and resistance to tuber greening. Development of an oblong russet type adapted to Louisiana conditions is highly desirable.

Other objectives are to gain a further insight into the physiological changes during rest and to ascertain the effect of growth regulators, applied as preplant, preharvest and postharvest treatments on the production, storage ability and quality of potatoes. The total alkaloid content must be investigated. Air pollution may be a limiting factor in potato production and cultivar selection is essential to minimize yield losses.

Very few Southern states have seen fit to include potato breeding as a research project for their state. Since none of these states, including Louisiana, produce certified seed potatoes it is of utmost importance that wide adaptability be our primary objective. We are unique in this respect because we realize unless a new clone will produce well in the areas of certified seed production (North) it will not be available for Southern production no matter what its producing potential.

Important potato problems are also susceptibility or resistance to air pollution, insects, diseases, frost, heat, drought, and greening and any scientific knowledge that can be obtained could help explain the physiological basis for these factors. Furthermore, any new information obtained that concerns rest, dormancy, or suberization would certainly be a contribution.

Seventeen cultivars were tested in the regional trial and the overall worth of each entry determined Neb. A219.70-3 was rated first, MN8757 second, Red Pontiac third, MN9319 fourth, and Wisc. 723 fifth (Table 1).

The most outstanding advanced clones grown in Louisiana and increased in Wisconsin were 31-124 and 71-96. Both of these clones will be placed in regional trial in 1981. These lines have a white skin, very good shipping quality, and are resistant to scab.

Other advanced clones that are considered worthy of further research are 51-238, 43-18, 42-38, 71-24 and 71-72.

Regional trial conducted in Baton Rouge in 1980. Louisiana Table 1.

			CWT/A						
		CWT/A	Aver.	Aver.	Aver.	Total	Gen.2/		
	Aver.1/	Aver.	Yield	Percent	Total	_	Merit	Chip.3/	General.4/
Variety	Mat.	Yield	NS #1	U.S. #1	Solids	Per Acre	Rat.	Color	Notes
>									
EAKLT TO MEDIUM EAKLT									
ND146-4R	2	98	49	57	16.0	1376		3.0	4.3
Norland	2	103	63	61	15.2	1566		0.9	4.4
MEDIUM 10 LAIE									
Neb. A129.69-1	7	81	37	94	15.2	1231		3.5	1.8
Neb. A71.72-1	4	137	26	41	15.4	2110		9.4	3.0
Neb. A219.70-3	4	173	122	7.1	15.6	2699	_	2.4	7.7
MN 8742	٣	123	63	51	15.2	1870		0.4	2.0
MN 8757	٣	104	81	78	15.2	1581	2	5.3	1.9
MN 9319	5	141	9	48	15.2	2143	4	3.3	2.6
Wisc. 723	٣	129	59	94	15.2	1961	2	2.9	
Wisc. 726	4	148	59	40	15.2	2250		3.5	6.1
Wisc. 806R	No Stand	1	1 1	1	1 1 1	l l l	!	1 1	! ! !
La. 42-38	5	79	56	33	15.2	1201		3.9	2.1
AK 34-2	κ	72	37	51	15.8	1138		3.3	8.4
TND 14-1Russ	2	22	15	89	1 1 1	! ! !	1	!!!	1 1
Red Pontiac	4	193	120	62	15.2	2934	\sim	3.5	2.5
Russet Burbank	2	68	0	15		1034		3.8	1.5
Norchip	٣	54	21	39		891		1.6	2.3
AVERAGE									

1-Very Early-Norland maturity; 2-Early-Irish Cobbler maturity; 3-medium-Red Pontiac maturity; 4-Late-Katahdin maturity; 5-Very Late-Kennebec or Russet Burbank maturity.

Place top five among all entries including check varieties; disregard maturity classification. (Rate first, second, third, fourth, and fifth (in order) for overall worth as a variety. 2/

3/ Chip Color - PCII Color Chart or Agtron.

4/ After cooking darkening: rated on a scale of 1-10, 1 = white, 10 = gray

With a limited amount of information we consider 14 selections made in 1978 (Table 2) and 22 selections made in 1979 worthy of further research.

Louisiana Table 2. Clones selected in 1978 saved at Rhinelander-1980.

Clones	Parentage	Remarks
81-5	Minn. 1317 X 71-110	Excellent, very nice, good chips.
81-7	Cobbler X 11-199	Good chips.
81-20	01-115 X 21-59	Very smooth, good foliage, very good 1979 and 1980.
81-24	01-115 X 21-59	Good top, very good in 1980.
81-81	11-1 X 11-24	Poor processor.
82-119**	11-94 X 21-71	Seed, very good type.
81-134*	12-34	Russet.
82-137	12-36	Good top, seed.
82-150**	12-36 X 12-34	Good top.
82-154	12-36 X 12-34	Excellent, seed.
82-156	12-36 x 12-34	Seed.
81-167**	21-99	H.Y., very good type.
81-173*	ND 8850-2	Excellent top, seed.
81-178*	ND 8891-3	Seed, excellent top.

We were informed that Campbell Soup Company had terminated its breeding program and honored to be offered their breeding material. After observing hundreds of their progeny were selected 53 individuals that should help us accomplish our objectives (Table 3).

Observations were made in Louisiana in the fall of 1980, and indications were that 42-38 could be cut rather than whole tubers being planted. The best lines in the fall were 31-124, LaChipper, and Red LaSoda, and Minnesota 8757.

The 1980 growing season was not the best for potato production which is reflected in the regional trial presented in Table 1. Numerous examples could be presented in tabular form, but we choose to report on only one other location to show the poor yields that were obtained. Four cultivars and ten seedlings were grown at Chase, Louisiana in a replicated yield test in 1980 (Table 4). Single row plots 40 feet long and 40 inches wide were arranged in a randomized block design.

Five-hundred pounds per acre of 12-24-12 fertilizer was broadcast and the field put up in rows, February 20, 1980. Seedpieces approximately one and one-half oz. each were spaced 12 inches apart in the row on February 22, 1980. A top dressing of 33 lbs. of nitrogen from ammonium nitrate was applied at crop emergence.

No insecticides or fungicides were required during the growing season.

Louisiana Table 3. Campbell soup clones selected in Wisconsin-1980.

	Campbell				
La No.	Soup Co.	Parents	Shape	Maturity	Vigor
01-1	95 158	AS11-4R X BR7108 - 2 F62008 X BR6820 - 16	R R-0	M ML	F F
01-2	168	F62008 X BR6820-16		ML ML	G
01-3			R		G
01-4	213	CC05-17 X B6563-2	R	ML	F
01-5	260	CD106-16 X BR6920-26	R-0	ML	P
02-6	650	G694-3Rd X RARITAN	R-0	ML	G
01-7	708	WN345-15 X Camp 13	0b	ML	F-G
01-8	989	AS201-4* X B5090-11	R-0	ML	F-G
01-9	1021	AS201-4* X NOOKSACK	R	ML	G
01-10	1092	ATLANTIC X RARITAN	0Ь	ML	G
01-11	1262	CA55-24 X MP74-4	R	ML	F-G
01-12	1825	BR6159-8 X BR5967-7	R	ML	F-G
02-13	1984	AS125-3R X CD124-1R	R-0	ML	G
01-14	1988	B6603-6 X BR6317-21	R	ML	F-G
01-15	2065	WAUSEAN X AS10-8	R-0	ML	F
01-16	2077	CA67-2 X B7680-6	0b	M _.	F
01-17	2085	RARITAN X CA29-11	R-0	ML	F
01-18	158	F62008 X BR6820-16	R-0	ML	F
01-19	171	F62008 X BR6820-16	R	ME	F F
01-20	296	WAUSEAN X CD100-9R	R-0	М	
01-21	297	WAUSEAN X CS100-9R	R	ML	F
01-22	390	B6116-18 X NY57	R-0	ML	F-G
01-23	412	B7196-4R X Camp 1⁄3	R-0	ML	G
01-24**	531	CA53-6 X Camp 13	0b	М	F
01-25	546	CA67-2 X ATLANTIC	R-0	ML	F-G
01-26	694	NY57 X CD12-18	R-0	ML	F
01-27	816	RARITAN X Camp 13	R-0	М	F
01-28	1071	ATLANTIC X RARITAN	0b	ML	F-G
01-29	1092	ATLANTIC X RARITAN	0Ь	ML	G
01-30	1336	CD112-4a X BELRUS	0b	ML	F
01-31	1854	WAUSEAN X BR6293-12	R-0	M	F
01-32	2070	B7154-10 X Camp 12	0b	ML	F
01-33*	2172	WAUSEAN X B5647-9	R	L	G
01-34	2176	B6595-12 X B6519-5	R-0	ML	F
01-35	2229	B6987-18 X Cd137-5R	R-0	ML	F
01-36	2233	Camp 13 X B6563-2	0b	ML	F
01-37*	2095	B5643-5 X BR6317-6	R-0	М	P-F
01-38	2094	B5461-4 X B5141-6	R-0	ML	F
01-39	2115	BR7072-5 X Camp 13	R	М	P-F
01-40	2093	B6039-1 X Br5967-7	0b - L	L	G
01-41	2105	BR6316-5 X B6376-6	R-0	L	G
01-42	2133	Call-3 X BR6820-16	R-0	ML	F-G
01-43	2143	B5422-9 X ND5737-3	R-0	ML	F
01-44*	2171	BR5960-9 X B6376-6	R-0	L	G
01-45*	2172	WAUSEAN X B5647-9	R	L	G
01-46	2192	G6546-6p X BR6321-1	0b	M	F
01-47	2218	KATAHAIN X BR7105-14	R-0	ML	F-G
01-48	500	BR7104-10 X B7152-12	R	M	P-F
01-49	933	RARITAN X NY57	R-0	ML	F
01-50	1357	WS68-1-8 X C7294-10	R	M	F
01-51	1464	B6603-6 X BR6317-21	R-0	M	F
01-52	1810	BR5991-25 X B5675-5	R-0	ML	F-G
01-53	1907	BR6261-1 X B6519-5	R	L	F
<u></u>	1,507	510201 1 1 100717 7		_	

Louisiana Table 4. Yield of potato cultivars in hundred weights per acre-

1980. Chase, Louisiana.

	Skin	No. 1	No. 2	Cull
Cultivar	Color	cwt/A	cwt/A	cwt/A
31-128	White	36	29	13
81-167	White	17	24	14
71-49	White	26	43	24
42-38	Red	33	28	20
61~130	White	52	30	17
72-99	Red	63	42	23
Red LaSoda	Red	69	29	18
Bell Chip	White	43	28	18
81-18	White	52	20	18
Atlantic	White	47	27	11
La Chipper	White	45	21	15
31-124	White	33	40	20
81-17	White	32	18	14
51-238	White	33	33	18
LSD .05		6		
.01		8		

Red LaSoda was superior to all entries in yield of No. 1 potatoes. The red seedling 72-99 produced more No. 2 potatoes than Red LaSoda and was equal to it in yield of marketable potatoes. Two white skinned seedlings, 61-130 and 81-18 exceeded LaChipper. The remaining entries, all of which were breeding lines, were inferior to the standard cultivars.

CULINARY STUDIES

Culinary studies were conducted on all clones grown in Louisiana. results obtained from only two locations are reported in this section.

In general the highest specific gravity of potatoes harvested in Louisiana were produced in Hammond (Table 5). The three clones with the highest gravity were Atlantic, 43-18, and 42-38. The best chips were obtained from Atlantic, 43-18. Belchip and 81-169. Clones making good french fries were Belchip, Atlantic, LaChipper, 43-18, and 51-53. Lines showing the least darkening after cooking were 81-169, 71-96, 51-53, 81-8, and 42-38.

Data from culinary studies conducted at Baton Rouge on clones grown at Calhoun are presented in Table 6. Again the highest specific gravity was obtained from Atlantic. Quality chips were made from Atlantic, 71-23, 43-18, and 81-28. Excellent french fries were obtained from Belchip, Atlantic, 71-23, 71-81 and 43-18. LaChipper, Belchip, and 81-28 were classed as the top clones in showing the least after-cooking darkening.

Louisiana Table 5. Culinary studies conducted at Baton Rouge on clones grown at Hammond in 1980

Variety	Chip* Color	Fry** Color	After Cooking*** Darkening	Specific Gravity
L62-183	5.6	2.6	2.1	1.078
L82-70	5.2	2.8	3.8	1.073
Atlantic	2.6	8.0	2.8	1.088
L61-130	4.0	2.2	2.8	1.073
LaChipper	3.8	1.0	2.3	1.078
L71-72	4.0	1.6	2.2	1.068
181-8	4.0	2.0	1.3	1.070
Red LaSoda	5.4	2.4	3.0	1.068
Belchip	3.0	0.2	3.0	1.074
L81-169	3.2	1.6	1.5	1.083
L31-124	4.2	2.0	2.2	1.080
L32-157	5.0	2.3	2.1	1.077
L43-18	2.3	1.2	2.4	1.085
L42-38	6.2	1.8	1.3	080.1
L51-53	4.8	1.2	1.7	1.078
L71-36	5.0	2.0	1.5	1.072

[#] Fried 1½ minutes @ 360°F Rated on a scale of 1-10, 1=best According to Potato Chip Institute Color Chart

^{**} Fried 4 minutes @ 360°F Rated on a scale of 0-4, 0=best According to Potato Chip Institute Color Chart

^{****} Boiled 35 minutes, then peeled
Exposed 2½ hours
Pated on a scale of 1-10, 1=white; 10=gray

Louisiana Table 6. Culinary studies conducted at Baton Rouge

		n clones		1980.
	Chip*	Fry**	After Cooking***	Specific
Variety	Color	Color	Darkening	Gravity
L31-124	3.8	1.9	,3.0	1.068
L31-128	3.5	2.2	2.0	1.070
L42-38	3.5	2.0	3.0	1.077
L43-18	3.3	1.7	3.4	1.078
L61-18	6.5	3.7	2.8	1.067
L62-183	4.7	3.7	1.9	1.071
L71-23	3.2	1.2	2.0	1.060
L71-49	3.5	2.0	2.3	1.074
L71-81	3.5	1.3	2.6	1.070
L81-28	3.3	2.3	1.3	1.070
L82-70	5.7	2.7	2.0	1.063
L82-152	4.8	2.2	2.3	1.073
Atlantic	2.5	1.0	3.4	1.084
Belchip	3.5	0.5	1.3	1.078
Kennebec	3.7	2.5	2.8	1.072
LaChipper	4.3	2.0	1.3	1.077
Red LaSoda	5.5	3.2	1.4	1.066

^{*} Fried 1½ minutes @ 360°F Rated on a scale of 1-10; 1=best According to Potato Chip Institute

^{**} Fried 4 minutes @ 360°F
Rated on a scale of 0-4, 0=best
According to Potato Chip Institute Color Chart

^{***} Boiled 35 minutes, then peeled Exposed 2 hours Rated on a scale of 1-10; l=white, 10=gray

MAINE

S. S. Leach, Raymon E. Webb and David Wilson

Resistance to Fusarium Tuber not (Fusarium roseum 'Sambucinum'and Fusarium solani 'Coeruleum'). Inoculum for this test was grown on potato dextrose agar. Spores were washed from seven day old oultures and adjusted to 50,000 per ml. The tubers of the test clones were inoculated with a hypodermic syringe midway between the bud and stem ends. The inoculum (100 spores) was injected into the tubers 7 mm below the tuber surface. The inoculated tubers were stored in a controlled environment room maintained at 55°F (13°C) and 95 percent relative humidity for 21 days. At the end of the storage period, the tubers were removed and scored for tuber rot development and amount of sprouting. The degree of rot in a tuber was determined by cutting through the incoulation sites and observing the degree of infection. This year \$7200-33 was used as the resistant standard. 38881-5 for the second year showed a high degree of resistance to F. roseum 'Sambucimum' and because of lack of tribers no test was conducted with F. solani 'Coeruleum'. 38943-4 and 38972-1 both showed good resistance. We appoint data was recorded in 1980.

Maine Table 1. Clones tested in Fusarium tuber rot resistancetrials -- 1980-1981.

Clone	Fusarium Rating $\frac{1}{f}$. roseum 'Sambucinum'	F. solani 'Coeruleum'
B7200-33	8	
B7805-1	3	
B8685-4	1	
B8710-16	2	
B8751-6	1	
B8833-6	2	7
B8848-2	1	6
B8881-5	8	
B8934-4	1	7
B8939-8	2	8
B8943-4	7	8
B8972-1	7	7

^{1/} Rating 0-9: 9 = no disease; 0 = severe disease symptoms.

Results of Russet clones grown at Newport, Mafue. Table 1.

Shape & Size	Good	Growth cracks Rhizoctonia?	Many small tubers-Late	Many small tubers-Late	Poor many round	Good shape-some Rhizoctonia	Cor of those we man.
Fry Test FF Chip	6	0	S.	10	œ	-	
V.Y.Y.	47	-7	~7	S	~7	17)	
Sp.gr.	1.080	1.078	1.079	1.078	1.086	1.091	
Yield/Plot	21.3	31.03,	20.0-	31.2	30.3,	127.6	
Seed Planted Per Plot	5	1.5	4) 1)	0.7	20	0	
Clone	BSS33-0-1/	88848-2	BS034-4	BS939-8	88943-4	153072-1	

1/ Planted May 5, 1980 harvested September 21, 1981. 2/ High amount of Rhizoctonia observed in ffeld.

MAINE - 1980

Hugh J. Murphy and Leigh S. Morrow

Cooperative variety trials were conducted during 1980 at Presque Isle, Grand Isle, and Newport, Maine. Soil and weather conditions during mid-May and into June were very dry and cool. Late June and July were very warm with good soil moisture. Most of August was very dry which hurt yields at Newport. September rains in Aroostook sized up the late maturing varieties very well.

Plots at all test locations were single rows, 25 feet long, and replicated six times per variety. Planting, killing, and harvesting dates, seedpiece spacing, and fertilization rates used at each location are presented in Maine Table 4.

Yields and specific gravities for all varieties grown at all locations are presented in Maine Table 1. The ten highest yielding varieties considering the all-location average in descending order were: B6043-WV6, AF92-3, W718, B8086-3, CD106-16, F68036, BR5991-WV16, Kennebec, Buckskin, and G6666-4Y. The 11 highest varieties in specific gravity were: Trent, Denali, Belchip, Atlantic, BR7088-18, AF186-2, BR5991-WV16, Buckskin, AF186-5, G6666-4Y, and G6880-1.

Tuber size distribution determinations of U.S. #1 and U.S. #1 (size A) are presented in Maine Table 2. The early-medium early and medium maturing varieties produced a high percentage of tubers below 2½ inches or 4 ounces. No oversized tubers were found (>4 inches). Growth cracks, misshapen, knobby, and sunburned tubers were very prevalent in most varieties. Many varieties had large numbers of tubers with hollow heart.

Results of the first chipping and french fry color tests with tubers from 50° F storage are presented in Maine Table 3. Seedling C7232-4 was the only entry that had acceptable chip color (<7.0) and at all locations. Of the varieties grown at Presque Isle, 18 had acceptable french fry color (<3.0). Only four varieties, however, had acceptable french fry texture (<1.2).

Complete details of the Maine cooperative variety trials are presented in the 1980 Northeastern Potato Variety Trial report which is made available from cooperators in each State and also from the Public Information and Central Services (PICS), University of Maine; Orono, Maine 04469.

Maine Table 1. Yield and specific gravity of potato varieties grown at Presque Isle, Grand Isle, and Newport, Maine - 1980.

	Presque Is1e		Grand	Isle	Newport	
Variety	Yield Cwt./A.	Specific Gravity	Yield Cwt./A.	Specific Gravity	Yield Cwt./A.	Specific Gravity
Allagash Russe	et				208	1.081
Atlantic					293	1.100
Be1chip					277	1.100
Buckskin	445	1.090	436	1.084	256	1.089
Butte	357	1.086	327	1.083	262	1.091
Centennial Rus		1.076	283	1.073	-0-	1.001
Cobbler	384	1.082	322	1.075	311	1.078
Croatan	385	1.077	302	1.067	283	1.075
Denali	303	1.077	302	1.007	230	1.102
Katahdin	420	1.081	351	1.073	275	1.083
Kennebec	437	1.087	394	1.076	322	1.078
Lemhi	365	1.088	317	1.084	288	1.086
	303	1.000	317	1.004	276	1.087
Norchip Rideau	755	1 002			270	1.007
	355	1.082	306	1 001		
Russet Burbank		1.088		1.081	200	1 001
Shepody	362	1.089	326	1.078	288	1.081
Superior	390	1.084	337	1.073	276	1.072
Trent	351	1.103		4 0 6 0		
AF92-3	459	1.076	393	1.069	400	1 006
AF186-2					189	1.096
AF186-5					250	1.088
AF238-21	425	1.081	427	1.068	253	1.086
AF238-66	434	1.077	372	1.064	265	1.086
AK24-3	362	1.092	260	1.077	286	1.084
B6043-WV6	436	1.081				
B8086-3	423	1.082	404	1.081	314	1.083
BR5991-WV16	410	1.094	435	1.083	367	1.097
BR7088-18					248	1.098
BR7093-23					344	1.083
C7232-4	315	1.080	304	1.074	168	1.082
C7358-14A	352	1.078	359	1.074		
C7358-26A	374	1.076	345	1.066		
CD106-16	393	1.086	420	1.079		
F68036	414	1.084	398	1.073		
F69026	411	1.073	363	1.066	286	1.076
G6666-4Y	364	1.088	3 00			
G6880-1	269	1.088				
G712	291	1.079				
W718	432	1.076	439	1.064	405	1.071
Bayes L.S.D.						
(0.05)	33	0.005	46	0.005	58	0.006

Maine Table 2. Percentage of yield between 1-7/8 and 4 inches in diameter for varieties grown at Presque Isle, Grand Isle, and Newport, Maine - 1980.

	Presque Is1e		Grand	d Isle	New	Newport	
Vaniaty	1-7/8	2-1/2	1-7/8	2-1/2	1-7/8	2-1/2	
Variety	to 4	to 4	to 4	to 4	to 4	to 4	
	inches	inches	inches	inches	inches	inches	
Allagash Russet					94.0	23.6	
Atlantic					95.1	44.3	
Belchip					95.5	48.2	
Buckskin	91.8	47.6	93.7	61.1	93.5	41.8	
Butte	46.5% 4-		51.6% 4		47.0% 4		
Centennial Russet			52.0% 4		47.00 4	-10 02.	
Cobbler	94.8	39.7	95.4	50.8	94.9	50.2	
Croatan	95.1	49.8	94.9	58.3	93.8	42.9	
Denali	93.1	49.0	94.9	30.3	93.8	26.9	
	04 6	F7 0	06.0	64.7			
Katahdin	94.6	57.0	96.8	64.7	95.4	58.4	
Kennebec	96.4	56.6	96.2	67.9	95.1	63.1	
Lemhi	67.2% 4-	-10 oz.	55.0% 4-	-10 oz.	54.1% 4		
Norchip					91.7	31.8	
Rideau	93.5	58.8					
Russet Burbank	58.7% 4-		54.7% 4-				
Shepody	95.1	40.5	91.4	57.8	52.9% 4		
Superior	95.0	33.7	95.2	55.7	94.8	25.1	
Trent	95.9	62.5					
AF92-3	95.5	38.1	94.0	51.1			
AF186-2					78.7	2.8	
AF186-5					93.6	25.5	
AF238-21	95.4	39.3	93.8	57.8	95.2	23.3	
AF238-66	91.5	24.5	94.5	39.1	85.6	17.4	
AK24-3	96.7	53.9	94.2	51.0	95.9	56.0	
B6043-WV6	93.8	43.9					
B8086-3	94.2	52.8	95.4	60.2	95.6	47.4	
BR5991-WV16	95.9	43.3	94.3	50.6	94.7	50.2	
BR7088-18					94.9	46.1	
BR7093-23					95.3	46.2	
C7232-4	95.0	46.0	97.5	66.4	87.9	16.4	
C7358-14A	94.1	40.4	94.4	51.4	0,,0	2001	
C7358-26A	93.8	34.3	91.6	43.9			
CD106-16	93.3	49.6	95.2	56.4			
F68036	96.9	55.2	94.7	66.4			
F69026	96.9	43.4	96.2	61.4	94.9	38.8	
		66.6	90.4	01.4	34.3	30.0	
G6666-4Y	97.0						
G6880-1	97.2	53.5					
G712	93.6	39.8	0.4 2	60 7	04.9	60 1	
W718	94.2	57.6	94.2	68.3	94.8	60.4	

Maine Table 3. Chip color and french fry color and texture indices for potato varieties grown at Presque Isle, Grand Isle, and Newport, Maine - 1980.

Variety		resque Is1e	Grand Isle	Newport	
	Chip	Fren	ich fry	Chip	Chip
	Color	Color ²	Texture ³	Color ¹	Color ¹
Allagash Russet					8.1
Atlantic					9.7
Belchip					9.2
Buckskin	8.8	2.5	1.8	8.7	10.0
Butte	10.0	5.0	1.6	10.0	10.0
Centennial Russet	10.0	5.0	3.0	10.0	10.0
Cobbler	9.0	2.7	1.0	9.0	9.8
Croatan	8.1	2.0	1.7	8.5	9.6
	0.1	2.0	1./	0.3	9.8
Denali	0 5	7 7	1 1	0 0	
Katahdin	9.5	3.3	1.4	8.9	9.8
Kennebec	8.8	2.3	1.0	9.5	9.9
Lemhi	10.0	3.9	1.8	10.0	10.0
Norchip					9.4
Rideau	9.5	3.8	1.9		
Russet Burbank	9.5	3.6	1.3	9.3	
Shepody	8.7	3.6	2.6	10.0	10.0
Superior	7.8	2.3	1.6	8.6	10.0
Trent	8.1	2.3	1.4		
AF92-3	9.8	3.7	2.6	10.0	
AF186-2					8.7
AF186-5					10.0
AF238-21	7.2	1.7	1.7	9.1	9.7
AF238-66	7.1	1.6	1.5	8.9	10.0
AK24-3	9.1	2.8	2.0	9.5	10.0
B6043-WV6	10.0	4.8	1.4		
B8086-3	8.8	3.2	1.7	8.8	10.0
BR5991-WV16	8.7	2.5	1.5	9.3	10.0
BR7088-18					9.1
BR7093-23					9.5
C7232-4	4.9	1.0	1.5	5.1	6.8
C7358-14A	7.5	1.9	2.2	8.7	
C7358-26A	8.7	2.6	1.4	9.2	
CD106-16	9.6	3.2	1.4	9.5	
F68036	10.0	4.7	2.1	10.0	
F69026	6.6	2.0	1.0	7.3	9.6
G6666-4Y				7.5	5.0
G6880-1	9.8 7.3	3.0 1.7	1.8 1.1		
G712	6.9	2.0	1.3	0 1	0. 7
W718	8.1	2.0	2.3	9.1	9.3
Bayes L.S.D.					
(0.05)	0.6	0.5	0.8	0.5	0.4

Maine Table 3 - continued

- ¹Chips with lower indices are lighter in color as read on PCII Reference Chart 1206-U.
- ²French fries with lower indices are lighter in color as read from USDA Color Standards for Frozen French Fries.

³Lower texture indices indicate a mealier texture.

Maine Table 4. Pertinent information about the Maine Cooperative Potato Variety Trials - 1980.

Location and Maturity Season	Date Planted	Date Killed	Date Harvested	Fertilization	Spacing
Presque 181e					
Barly & Med. Barly varieties		August 28	September 10	130-130-150	
Medium Late varieties late resistiation	May 20	September 13 September 13	September 28	130-130-130	ने ने ने
Russet & Long Type varieties		September 19	October 9	130-130-150	77
Grand 1s1e					
Barly & Med. Early varieties Medium varieties	May 23 May 23	August 31 September 10	September 10 September 20	150-225-225	
Medium Late varieties	May 23	September 10	September 20	150-225-225	
Russet & Long Type varieties		September 50	October 10	150-225-225	7 21
Newport					
All varieties	May 29	October 8	October 16	140-140-140	3/

^{&#}x27;Seedpieces of all varieties spaced 8 inches apart.

^{*}Seedpieces of Butte and Russet Burbank spaced 16 inches apart. Seedpieces of Lemhi spaced 14 inches apart. Seedpieces of Centennial Busset spaced 10 inches apart. All other seedpieces spaced 8 inches apart.

³Seedpieces of Butte spaced to inches apart. Seedpieces of Lemhi spaced 14 inches apart. All other seedpieces spaced 8 inches apart.

MAINE -- 1980

Alvin F. Reeves and Robert B. Long

Potato Breeding

Seed and seedling production. Since spindle tuber viroid was detected in two of the parents intended for crossing, none of the seeds were retained this year. From open-pollinated fruits of 12-hill plants, 589,100 seeds were harvested. Seeds from 256 family lines were planted in June. Some of these were grown in the greenhouse; others were moved outdoors, but grown to maturity in plastic trays. From 29,845 seedlings, 24,481 "A" size tubers were harvested (82%), and 17,607 "B" size tubers (59%).

Seedling selection. A total of 294 selections were saved from approximately 55,700 single-hill seedlings. From the 1220 12-hill selections, 133 were selected for further testing. Ten third-year selections were tested in 20-hill, 60-hill, and disease plots. Three were discarded because of excessive growth cracking which was exceptionally bad this year.

Disease tests. Resistance to virus X was found in 13/82 selections tested; to common scab in 13/33; to net necrosis in 28/33; to acid scab in 13/23; to late blight in 6/22; to early blight in 11/55; to hollow heart in 42/82; to frost in 30/66; to leafroll in 1/85; and to greening in 20/82. Tests conducted by Dr. Brodie showed 4/38 resistant to golden nematode.

Yield tests. A total of 117 advanced selections were tested in six separate tests. Thirty-six outyielded check varieties; 47 had higher specific gravities; and twelve of these were better on both counts. Each selection in each test comprised four replications of 20 hills each planted in a randomized complete block design. Fertilizer in the form of 14-14-14 was applied at different rates, depending on the maturity of the selections tested. Early selections received 115 pounds of nitrogen per acre; medium maturity selections received 130 pounds; and medium-late maturing types received 145 pounds. Seedpiece spacing was 10 inches in 34 inch rows.

Selections under consideration for release. The selection AF 41-2 has been dropped since it was found to carry verticillium on the seedpieces. Three other selections will be tested in commercial fields in 1981: AF 186-5, AF 205-9, and CC 26-1a. The first two are golden nematode resistant and multipurpose potatoes. The first one is more adaptable to the fresh market, and the second is very good for chipping. The third selection is similar to Katahdin, but with more bruise resistance, higher yields and dry matter, and better reconditioning from cold storage.

Table 1 lists the most advanced of the Maine selections along with their characteristics.

Resistance to 6/

Pedigree Number

Maturityl

Skin color2/

Type of tuber 3/ 4/

Yielding ability 4/

TGA5 content4

Storage life4/

Bruising4

X suriv

reafroll

Net necrosis

Late blight

Early blight

Acid scab

Verticillium

Ring rot

Golden nematode

Common scab

- 101 -

P4 S

S S

S Z S

S

K K α 24 α K ĸ 8 K æ

S S Σ \mathbf{z}

Ü

S

Ü Σ

SERS

S Σ Σ \mathbf{z} Z 24 S S S S

> Σ Σ

> Σ S

मिमिमिमिमिमिमि

K

 \mathbf{z} r r

E4 C

A

ſΞį

r K G Ø Ø r r

r r \mathbf{z} Ç

Ø r

ſΞı S ĪΨ S

 \mathbf{z} Σ

S ĸ S Σ

0 0 0 0 0 0

ഥ

ø ſΞι 14 \mathcal{O}

Ø

Z U

D G

A D

Ø

S S

S

Σ

Pu В 3 ⋈ ĸ U ⋈ ⋈ ⋈ ⋈ В 첫 첫 Σ Σ 238-21 205 - 9238-66 7358-26 7353- 1 7358-14 7419-236-AF CF CF AF AF H

Texture of french fries $\frac{4}{4}$

Percent dry matter4

Cooked color, French fries4/

Cooked color, table use4/

Flavor

Ø

5 5 5

000040000

G Ü Ü

r r

r

Σ

SSS

मिमिमि

- Maturity: E = early, M = medium, L = late,
- Color: R = russet, W = white, B = buff, Pu = purple, C = cream.
- Type of tuber includes uniformity of shape, overall appearance, and presence of defects.
- मा ता हा का छ। छ।
- Rated as: U = unacceptable, M = marginal, A = acceptable, G = good, or F = further testing needed. R = resistant, M = moderately resistant, S = susceptable, F = further testing needed. TGA = total glycoalkaloids. Resistance:

MINNESOTA POTATO BREEDING PROGRAM

Florian Lauer, David Wildung, John Wiersma, Neil McHale, Richard Veilleux, Ezzaldin Abusteit and Richard Wenkel

Research Studies

Increased yield is a major objective. Experience with $4x ext{ S. }$ tuberosum x $4x ext{ S. }$ tuberosum crosses suggests that this is not a viable approach; hence, we have been doing studies on development and use of $2x ext{ S. }$ phureja parents with meiotic restitution. In our studies we have asked first, do $4x ext{ S. }$ tuberosum $-2x ext{ S. }$ phureja have potential in our production area, and second, are $2x ext{ S. }$ phureja parents better than $2x ext{ S. }$ phureja $-x ext{ S. }$ tuberosum parents?

Breeding value of 2n pollen from Phureja—haploid Group Tuberosum diploid hybrids (DHs) and Phureja was compared in crosses with tetraploid cultivars. Mean total yield for Phureja-derived (PT) hybrids significantly exceeded that for DH-derived (DHT) hybrids, and did not differ from that for cultivar parents. PT hybrids had the largest range for total yield, with 13 percent of the population between 4200 and 5750 gm/plant (0.8 and 4.6 percent for DHT hybrids and cultivars, respectively). Moreover, the tail of the frequency distribution of total yield for PT hybrids extended 920 qm/plant above that for cultivars. Mean marketable yield for PT hybrids significantly exceeded that for DHT hybrids, but was significantly below that for cultivars. However, the tail of the distribution of marketable yields for PT hybrids exceeded that of the cultivars by 820 Significant general combining ability among 2x and 4x parents for total and marketable yield indicates that the potential of specific crosses can be predicted by average performance of parents in test crosses. Predictability of parental breeding value and exceptional yield potential of hybrids make 4x — 2x breeding an attractive alternative to conventional approaches.

Effective development of 2x S. phureja parents with meiotic restitution requires insight into mechanisms associated with these abnormalities. Cytological disturbances resulting in unreduced pollen were examined in four clones of diploid (2n = 2x = 24) Solanum phureja Juz. and Buk.; two (148-17) and (127-14) were variable and two (154-1) and B2-11) were consistently high in unreduced pollen production. Three types of abnormal spindle orientation were observed at the second meiotic division: fused, tripolar and parallel spindles (fs, tps and ps, respectively). All four genotypes had fs. Three had tps, and ps was least frequent, occurring in two genotypes only. Cross-sections of buds revealed that all three abnormalities can occur in adjacent cells of a locule. In all genotypes, fs predominated at high levels of expression of unreduced gametes. At lower levels of expression (i.e., less than 60%, which occurred only in 148-17 and 127-14), however, the frequencies of tps and ps increased. In general, there was little evidence for localization of dyads (resulting from fs or ps) or tetrads (resulting from normal divisions) within cross-sections of locules, but 52.4 percent of all tetrads which occurred in a single locule of genotype 127-14 were found in 25 percent of the locular area. Cross-sections of buds revealed variation in frequency of unreduced gametes among anthers (61.7 vs 5.6 percent in 148-17) and between locules of an anther (73.1 vs 90.0 percent in B2-11).

For some years, we had observed differential responses of diploid and tetraploid potatoes to metribuzin. Tetraploid groups were relatively tolerant while diploid groups were relatively susceptible to metribuzin applied postemergence. Metribuzin uptake through the roots did not have any effect on either ploidy level. Foliar uptake of metribuzin killed diploid plants while tetraploid genotypes were not injured. However, differential retention of metribuzin does not seem to be the determining factor of its foliar uptake selectivity between potato ploidy levels. Tetraploid levels of potato might be producing the necessary biological systems required to inactivate the absorbed amount of metribuzin while the diploid level is incapable of doing likewise. Hence, it seems that the ploidy level in itself might be one of the factors influencing the response of potato plants to postemergence applications of metribuzin. This (i.e., differences in ploidy level) has not been considered as a factor in tolerance to herbicides in herbicide research.

Replicated Yield Trials

Yield trials were conducted at four locations: Grand Forks (Red River Valley), Becker and Big Lake (irrigated sands), and Grand Rapids (sandy loam). Trials at three other locations were severely stressed by drought conditions.

A total of 22 selections and 14 varieties were included in trials at Grand Forks (Table 1) and Becker (Table 2).

	GF ⁵ / ing 65F	3.3 3.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
	1979 (Chippi 43F (26 25 27 27 28 30 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33 33
	Shape	Blocky Round Blocky Round Blocky Round Blocky Round Round Cong Round Cong Round Round Round Round Round Round Round Blocky Round
	Specific Gravity	1.082 1.084 1.084 1.084 1.089 1.069 1.075 1.075 1.086 1.095 1.076 1.077 1.086 1.078 1.078 1.078 1.078 1.086 1.086 1.083 1.083 1.083 1.083
Forks.	Marketable Yield <u>+</u> ∕	42.8 38.1.1 38.1.1 38.1.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38
, Grand	Total ₃ /	26.09 200.33 33.35.00 200.33 33.35.00 200.33
d trial - 1980	Type ^{2/}	0.4.2.1.2.4.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2
Replicated yield	Maturity <u>l</u> /	0.4 w 0. w 0.0 v 0
Table 1. Repl	Color	Lt.Red White Red Red Red Red Red Red White Russet White Russet Red Russet Red Russet White Russet Red Russet Red Russet Rese Russet Rese Russet Russet Russet Russet Russet Russet Russet Russet
Minnesota T	Variety	8743

(continued)

Minnesota Table 2 — continued.

Variety	Color	Maturity $^{1}/$	Type ² /	Total ₃ /	Marketable Yield ⁴ /	Specific Gravity	Shape	19/9 GF-7 Chipping 43F 65F	GF <u>~</u> ing 65F
10267	Russet	5.5	2.5	21.4	20.7	1.074	Blocky	27	37
10049	White	0.9	3.0	21.3	20.5	1.082	Blocky	33	41
9984	White	3.0	2.0	21.1	19.9	1.091	Round	44	90
Alagash	Russet	2.0	3.5	18.8	18.2	1.087	Blocky		ı
Burbank	Russet	0.9	4.5	15.9	15.5	1.078	Long	ı	ı

1/ Scale, 1-6: 1, early; 6, late.

2/ Scale, 1-5: 1, good; 5, poor.

3/ Twenty hill plots, 12" between hills, 38" between rows.

 $^{4}/ LSD_{05} = 10.0.$

5/ Chip color values of 35 or more are acceptable.

Cooperator: Dennis Askim.

Planted: May 15, 1980.

Harvested: September 18, 1980.

Minnesota Table 2. Late harvested replicated yield trial - 1980, Becker.

Variety	Color	Type ^{1/}	Total _{2/} Yield ² /	Marketable Yield ³	Specific Gravity	Shape
8743 Pontiac 8777 Lemhi 10162 Alaska Red 4536 Norgold Crystal 81962 Denali AK114 Kennebec 8742 10049 9885 Rosa 9234 8757 Dakchip Burbank 9648 10267	Lt.Red Red Red Russet White Red Russet White Red White White White Red White White Red White Red White Red White Red White Red White Red Russet Russet Russet	2.0 3.0 1.5 2.5 2.5 2.0 1.5 1.0 3.0 1.0 3.5 3.0 1.5 2.0 2.5 2.0 2.5 2.0 2.5	84.8 79.5 77.0 77.1 71.4 71.8 68.8 70.0 68.3 68.0 65.0 66.4 64.0 62.8 63.0 62.3 63.7 62.5 61.8 61.3 59.8 59.4 58.5	83.5 78.5 76.0 75.3 70.7 70.0 68.5 68.4 67.8 67.3 64.0 63.6 62.5 62.3 62.0 61.8 61.6 61.0 60.5 59.2 58.8 57.5	1.068 1.063 1.067 1.075 1.077 1.067 1.065 1.073 1.076 1.073 1.088 1.069 1.072 1.076 1.070 1.082 1.073 1.071 1.064 1.067 1.077	Blocky Blocky Round Long Blocky Round Blocky Blocky Long Round Long Blocky Blocky Blocky Blocky Blocky Blocky Blocky Blocky Blocky Round Round Long Blocky Round Round
7973 9862 9319 9781 8758 Norland Norchip 9886 9984 9569 8224 8586 Alagash	White- Russet White Russet Red Red White Russet White Russet White Russet White Russet Russet Russet Russet	2.5 2.0 2.5 3.0 1.5 2.0 3.0 2.5 2.0 2.5 3.0 2.5	56.1 56.5 55.5 55.0 54.6 54.5 53.5 52.3 50.8 51.0 50.8 50.0 46.0	55.5 55.0 54.0 54.0 53.8 53.3 53.0 51.8 50.5 50.0 59.8 47.5 45.5	1.067 1.077 1.077 1.075 1.069 1.064 1.071 1.071 1.080 1.067 1.080	Long Blocky Blocky Long Round Long Round Long Round Long Round Long Round

Cooperator: Glenn Titrud. Planted: May 17, 1980 Harvested: August 26, 1980.

^{1/} Scale, 1-5: 1, good; 5, poor. 2/ Twenty hill plots, 12" between hills, 42" between rows. 3/ LSD_{05} = 15.5.

NEBRASKA

R. B. O'Keefe and Eric D. Kerr

Improvement of Potatoes as a Food and Energy Resource

The project was revised to include the development of varieties and production methods for utilizing the potato as an alcohol source. Yields of 500 to 700 cwt/acre and 640 to 811 gal/acre of ethanol were obtained with the varieties Red Pontiac, Kennebec and Progress and the selections A503-42, Neb 408.72-2, Neb 40.57-3 and Neb A42.72-1 (Nebraska Tables 1-4). The study is cooperative with the states of Washington, Idaho, North Dakota and Maine (see report by Dr. Mark Martin).

Variety Screening Trials

The cooperative program to develop white chipping varieties was continued in Nebraska, Wyoming and Colorado. The selections Wisc 726, Minn 7973, Neb A219.70-3, Neb 7.76-1 and WC 612-13 are being increased for commercial evaluation. Selections that have potential for the fresh market include the red skinned cultivars Wisc 729R, Minn 4536 and Neb A143.70-2; the russets are Neb A63.71-1, Neb 12.72-2, Neb A69.72-1. Commercial and replicated trials were continued in cooperation with the University of Arizona at the Mesa Experiment Station. The promising selections and varieties are: Chipping-Atlantic, Denali, Neb S1-3, Wisc 726; reds-Neb A143.70-2, Wisc 729R, russets-Neb A63.71-1, Neb A71.72-1.

The investigation of greenhouse indexing using laboratory methods to detect diseases in seed stocks was initiated with the cooperation of Horticulture and Plant Pathology in Lincoln.

Early Blight Control

Results of studies of the effectiveness of the application of fungicides through center-pivot systems in 1978 and 1979 were indicative of the potential control of early blight on potatoes by this method. The studies were repeated and expanded in 1980 to include Bravo and Difolatan applied through the center-pivot system and with one to six applications at 10 day intervals beginning in late June. Early blight intensity was retarded on vines with four to six applications. No yield increases were obtained with fungicide applications in 1980. However, early blight was not as severe in 1980 as in 1979 when yield increases resulted from fungicide applications. Dr. Eric Kerr, Pathologist at the UNL Panhandle Station is cooperating in the study.

Processing Studies

Samples of four standard potato varieties and 13 advanced selections were obtained from 14 locations in the North Central Region and Canada in 1979. The samples were analyzed for sucrose (SR rating), glucose and chip color within one month of harvest and after three and six months of 50° F storage. Protein contents of tubers were also determined.

The relationship of sucrose content (SR rating) at harvest time to long-time chipability was studied for the third year. The average sucrose content of the cultivars ranged from 1.85 to 3.56 mg/g which was similar to the ranges in 1977 and 1978 (Nebraska Table 5). However the average color of chips after three and six months of storage in 1978 and 1979 was not correlated with average SR rating nor was SR rating correlated with vine maturity. SR ratings were correlated with long-time storage chip colors in 1977. Glucose contents after long-time storage were not correlated with SR ratings nor vine maturity but were highly correlated with chip color after six months storage (r = 0.877).

Protein contents of tubers ranged from 3.33 to 5.03 percent and was not correlated with SR rating or vine maturity.

The average sucrose contents (SR ratings) of samples from various locations ranged from 1.54 to 6.80 mg/g and exceeded the ranges for 1977 and 1978 (Nebraska Table 6). Samples received from Minnesota and Kansas had been produced under stress conditions and were immature with high SR ratings. Average chip color of samples after three and six months 50° F storage were not correlated with average SR ratings at harvest nor with glucose contents (r = 0.234). Sucrose contents at harvest were not correlated with length of growing season. Average protein contents of samples ranged from 3.34 to 5.32 percent and was not correlated with length of growing season.

Seven cultivars were common to eight locations for three years and eight cultivars in two years. The correlation between average SR ratings and average chip color after long-time storage were high among the cultivars in 1977 (r = 0.959) but not in 1978 and 1979. Chip color after long-time storage was highly correlated with glucose content of tubers in all years with r-values of 0.950, 0.907 and 0.964 for 1977, 1978 and 1979 respectively,

Average values for vine maturity, sucrose content, chip color after one, three and six months of storage and glucose and protein contents of tubers were highly correlated for individual cultivars (genotypes) in 1978 and 1979 (Nebraska Table 7 Correlations for locations (environments) were significant only for glucose and protein contents after six months of storage. The data suggest that the repeatability of genotypes over a wide range of environments was high for the two years while environmental variations within specific locations for the two years had a variable effect (interaction) on genotypes. For this reason, six years of similar data have been programmed for analyses to determine SR rating - PCII color relationships for individual genotypes within and among years and locations. The data will also provide estimates of the repeatability of a genotype within an environment (location over years) for all factors studied.

Correlations of yield and quality factors with climatic conditions and cultural practices will be provided. The climatic conditions include maximum, minimum average and departure from normal temperatures and growing degree days. The cultural factors of fertilizer levels and plant spacing will be considered.

Three years of data for glycoalkaloid content of tuber samples from various locations are being summarized.

Nebraska Table 1. Ethanol and stillage from potatoes grown at Scottsbluff, Nebraska 1980.

				2/	3/
			% 1/	Ethano1	Stillage
Variety	Cwt./A	Sp.Gravity	Carbohydrate	Gal./A.	1bs./A.
A503-42	507	1.093	17.0	665	7605
Kennebec	544	1.083	15.7	655	7426
Red Pontiac	564	1.073	14.9	646	6796
Bounty	491	1.085	15.8	597	6874
WC 612-13	429	1.090	16.8	553	6220
В 8977-2	408	1.087	16.0	503	5834
Neb S1-3	340	1.089	16.8	440	4862
Lemhi	313	1.099	18.0	434	4914
Neb 12-72-2	347	1.084	15.9	425	4771
Crystal	355	1.083	15.4	422	4863
Neb A210-2	354	1.071	14.5	395	4195
Neb A129.69-1	313	1.084	16.0	385	4288
B 6987-201	257	1.099	17.6	348	4086
B 8934-4	249	1.098	17.4	334	3934
В 7583-6	273	1.082	15.6	328	3685
RB-307	210	1.085	16.0	258	2919
B 8943-4	187	1.089	16.5	238	2702
В 8972-2	106	1.077	14.6	119	1378

^{1/} Based on starch as a percentage of total solids plus sucrose and reducing sugars as determined by the modified Hassid method.

^{2/} Ethanol as 50 percent of the total fermentable carbohydrates divided by 6.6 (weight/gal.).

^{3/} Stillage wastes (feed) as 50 percent of total carbohydrates plus other solids (protein, cellulose, etc.).

Nebraska Table 2. Acre value and costs of ethanol production from potatoes, Scottsbluff, Nebraska 1980.

		1/	2/
	Value	Cost	Net
<u>Variety</u>	\$1.70/Ga1.	Per Gal.	<u>Value</u>
A-503-42	\$1130	0.92	\$520
Kennebec	1113	0.93	503
Red Pontiac	1098	0.94	488
Bounty	1015	1.02	405
WC 612-13	940	1.10	330
B 8977-2	855	1.21	245
Neb S1-3	748	1.39	138
Lemhi	738	1.41	128
Neb 12-72-2	722	1.44	112
Crystal	717	1.45	107
Neb A210-2	671	1.54	61
Neb A129-69-1	654	1.58	44
В 6987-201	592	1.75	- 18
B 8934-4	568	1.83	- 42
В 7583-6	558	1.86	- 52
RB - 307	434	2.36	-176
, ., .	404	2.56	-206
В 8972-2	202	5.13	- 408

^{1/} Gallons/Acre divided by cost/A. (\$610).

^{2/} Value/Acre minus cost/A.

Nebraska Table 3. Ethanol and stillage from advanced potato selections and varieties, Scottsbluff, Nebraska 1980.

Variety	Cwt/A	Sp Gravity	% <u>l</u> / Carbohydrate	2/ Ethanol Gal./A	<u>3</u> / Stillage lbs./A
				<u> </u>	2001/11
40S.72-2	624	1.093	16.9	811	9391
40.57-3	700	1.078	15.0	805	9100
PI5.72-2	544	1.085	16.1	675	7534
A42.72-1	574	1.080	15.2	672	7634
Progress	520	1.085	16.0	640	7228
Onaway	560	1.075	14.8	638	6944
D17.63-1	512	1.085	16.0	630	7117
Platte	520	1.082	15.4	614	7072
A158.70-2	538	1.074	14.5	603	6698
90S.72-3	472	1.091	16.5	599	7009
17.66-1	580	1.069	13.4	597	6960
Katahdin	486	1.083	15.7	588	6634
A86.72-3	544	1.070	13.9	582	6446
43S.72-2	500	1.076	15.1	580	6275
Triumph	486	1.078	14.9	559	6294
199.57-2	480	1.078	15.0	557	6192
14.72-1	464	1.081	15.2	543	6264
LaRouge	454	1.079	15.1	527	5970
12.72-1	446	1.076	14.9	513	5597
A76.72-2	468	1.074	14.2	510	5897
92S.72-1	406	1.087	16.0	499	5806
Neb 153	402	1.083	16.1	498	5407
Denali	378	1.094	17.0	495	5746
A234-1	402	1.074	15.0	462	4904
16.72-1	402	1.078	14.8	458	5266
A86.72-2	446	1.065	13.2	450	5040
Neb 154	362	1.087	15.9	442	5195
Neb 133	420	1.065	13.5	437	4641
8.72-2	364	1.085	15.6	437	5132
A72-3	388	1.069	13.7	407	4598
9.72-3	330	1.084	15.8	403	4554
Sebago	342	1.078	14.7	386	4463
A210-1	348	1.070	14.1	376	4124
Neb 140	304	1.073	15.0	350	3648
A77.72-1	356	1.059	12.0	328	3774
74B.57-5	302	1.070	13.7	317	3639

¹/ Based on starch as a percentage of total solids plus surcrose and reducing sugars as determined by the modified Hassid method.

^{2/} Ethanol as 50 percent of the total fermentable carbohydrates divided by 6.6 (weight/gal.).

^{3/} Stillage wastes (feed) as 50 percent of total carbohydrates plus other solids (protein, cellulose, etc.).

Nebraska Table 4. Acre value and costs of ethanol production from advanced potato selections and varieties, Scottsbluff, Nebraska 1980.

		<u>1</u> /	<u>2</u> /
	Value	Cost	Net
<u>Variety</u>	\$ <u>1.70/Gal</u> .	Per Gal.	Value
40S.72-2	\$1379	0.75	\$769
40.57-3	1369	0.75	759
PI5.72-2	1148	0.90	538
A42.72-1	1142	0.91	532
Progress	1088	0.95	478
Onaway	1085	0.96	475
D17.63-1	1071	0.97	461
Platte	1044	0.99	434
A158.70-2	1025	1.01	415
90s.72-3	1018	1.02	408
17.66-1	1015	1.02	405
Katahdin	1000	1.04	390
A86.72-3	9 89	1.05	379
43S.72-2	986	1.05	376
Triumph	950	1.09	340
199.57-2	947	1.10	337
14.72-1	923	1.12	313
LaRouge	896	1.16	286
12.72-1	872	1.19	262
A76.72-2	867	1.20	257
92S.72-1	848	1.22	238
Neb 153	847	1.22	237
Denali	842	1.23	232
A234-1	785	1.32	175
16.72-1	779	1.33	169
A86.72-2	765	1.36	155
Neb 154	751	1.38	141
Neb 133	743	1.40	133
8.72-2	743	1.40	133
A72-3	692	1.50	82
9.72-3	685	1.51	75
Sebago	656	1.58	46
A210-1	639	1.62	29
Neb 140	595	1.74	-15
A77.72-1	558	1.86	-52
74B.57-5	539	1.92	-71

^{1/} Gallons/Acre divided by cost/A. (\$610).

^{2/} Value/Acre minus cost/A.

Nebraska Table 5. Chip color sugar and protein contents of potatoes in the NCS trials 1979.

Sele	ction	Vine Maturity	Sucrose (1)** mg/g	PCII* _(1)** Averages	PCII <u>†</u> / <u>(3)</u> for 14 lo	PCII* (6) ocations	Glucose (6) (%)2/	Protein ${(\%)^{\frac{3}{2}}}$
Red	Pontiac	3.6	3.56	5.6	7.4	7.5	.77	4.65
LA 4		4.0	3.39	3.7	5.6	5.3	.41	4.71
	8777	3.9	3.33	4.7	6.2	5.7	.37	3.77
	HS-17	2.7	3.29	3.1	4.2	4.0	.19	4.74
	8224	2.9	3.01	2.3	3.9	4.7	. 29	4.49
	A129.69-1	4.2	2.90	4.8	4.5	7.0	.30	4.73
Neb		4.1	2.84	6.2	7.2	6.9	.53	3.33
	9648	2.6	2.80	2.6	3.8	4.1	. 25	4.61
ND 1	37-2 Rus	2.4	2.76	5.5	6.6	7.3	.49	4.45
Norc	hip	2.7	2.76	2.5	3.2	3.1	.15	4.47
	Burbank	4.2	2.69	3.8	5.7	5.5	.39	3.81
AK 3		4.3	2.64	2.5	3.3	3.3	.15	4.23
Wisc		3.2	2.54	2.8	4.0	4.0	.22	5.03
	46-4R	1.3	2.39	2.0	4.6	4.7	.32	4.36
Wisc	738	3.7	2.33	3.0	4.6	5.6	.39	4.59
Nor1		1.4	2.14	4.0	6.7	6.8	.51	4.47
	A69.72-1	3.8	1.85	5.5	6.2	7.0	.55	4.46
	Mean:	3.2	2.78	3.8	$\frac{6.2}{5.2}$	5.0	.37	4.41
	Correlation with Sucrose:	0.2773		0.1157	0.083	0.031	0.000	0.0100

^{*} PCII Chip Color = 1 to 10 scale.

Correlation with Maturity = 0.287

^{**} Number in parentheses = approximate number months after harvest.

^{1/} Treated with Fusarex.

 $[\]frac{1}{2}$ Correlation with Maturity = 0.282; Correlation with PCII (6) = 0.877**

Nebraska Table 6. Chip color sugar and protein contents from various locations 1979.

Selection	Harvest Date	Sucrose (1)** 	PCII* _(1)** Averages	$\frac{\text{PCII*}}{(3)\frac{1}{2}}$ for 17 s	PCII* _(6)_ elections	Glucose (6) %	Protein %
Minnesota	8/28	6.8	1.0	5.7	4.8	.44	4.92
Kansas	8/7	6.14	3.7	4.4	6.0	.56	4.96
Missouri	8/22	4.26	2.8	5.4	5.4	.61	4.17
Alberta	9/17	2.86	3.9	4.6	4.7	.23	4.80
North Dakota	9/17	2.69	6.0	5.8	6.1	.42	
Wisconsin	9/24	2.5	4.0	5.5	4.2	.36	5.03
Iowa	8/7	2.31	6.2	7.1	6.8	.59	4.62
Colorado	9/15	2.16	2.7	4.4	5.2	.25	3.51
Nebraska	9/18	2.13	4.1	4.7	4.5	.79	3.34
Ohio	9/20	2.03	2.3	4.4	3.8	.29	4.87
South Dakota	9/18	1.85	3.6	4.8	5.4	.28	5.32
Michigan	9/27	1.80	2.6				4.88
Manitoba	9/26	1.54	6.3	5.8	6.2	.36	4.80
Indianna	10/17		2.9	4.5	5.1	.21	4.38
Mean:		3.01	3.7	5.2	5.2	.41	4.58

^{*} PCII Chip color = 1 to 10 scale.

^{**} Numbers in parentheses = approximate number of months after harvest.

^{1/} Treated with Fusarex.

Nebraska Table 7. Correlations between years 1978 and 1979 for 8 selections and 9 locations.

	Selections	Locations	
Vine Maturity	0.9887**		
Sucrose (SR)	0.7805**	0.2092	
Sucrose (SR) PCII $(1)^{\underline{1}}$	0.9387**	0.5405	
PCII (3)	0.8401**	0.4770	
PCII (6)	0.9297**	0.2886	
Glucose (6)	0.8440**	0.8915**	
Protein	0.6950*	0.9369**	

 $[\]underline{1}/$ Numbers in parentheses equal months after harvest.

New Jersey 1980

Melvin R. Henninger

Potato Variety Evaluation

Exp				<u>Dat</u>	e s	Soil
No.	Rows	Size	Reps	<u>Planting</u>	Harvesting	Texture
1	Single	12' long x 3' wide	1	4/17	8/11-12	loamy sand
2	Single	12' long x 3' wide	1	4/22	8/18	loam
3	Single	12' long x 3' wide	4	4/22	8/18	loam
4	Doub1e	12' long x 3' wide	4	5/5	8/28	loam
5	Single	21' long x 3' wide	4	4/22	8/20	loam
6	Single	21' long x 3' wide	6	4/22	8/18	loam
7	Doub1e	12' long x 3' wide	4	4/29	9/29	sandy loam

Commercial cultural practices were used on all experiments, irrigation supplemented natural rainfall. Specific gravities were determined by the air and water method.

Key to Rating System

Air Pollution: 1 = plants are dead; 2,3,4 = increasing plant appearance with varying degrees of defoliation; 5 = most leaves having speckling or bronzing, but general appearance is good; 6,7,8 = good plant conditions with decreasing foliar symptoms; 9 = none.

Maturity: 1 = v. early, 5 = medium, 9 = v. late.

Tuber Color: 1 = purple, 2 = red, 3 = pink, 4 = dk. brown, 5 = brown, 6 = tan, 7 = buff, 8 = white, 9 = bright white.

Tuber Texture: 1 = part rus., 2 = heavy rus., 3 = mod. rus., 4 = light rus., 5 = net, 6 - sl. net, 7 = mod. smooth, 8 = smooth, 9 = v. smooth.

Tuber Shape: 1 = round, 2 = most rd., 3 = rd. to oblong, 4 = most obl., 5 = obl., 6 = most obl., 7 = obl. to long, 8 = most long, 9 = long.

Tuber Depth: 1 = v. flat, 5 = ok depth, 9 = excellent depth.

Tuber Conformation* & Field Rating*: 1 = v. poor, 5 = fair, 9 = excellent.

Eye Depth: 1 = v. deep, 5 = medium, 9 = v. shallow.

Second Growth*, Growth Crack*, Hollow Heart*, Int. Necrosis*, Heat Sprout*:
1 = very severe, 3 = severe, 5 = moderate, 7 = slight, 9 = none.

Chip Color: First value is 3 days after harvest, second value a week later, etc. 1 = v. light, 5 = borderline, 8 = v. dark.

^{*}Seven or above is considered acceptable.

New Jersey Table. A summary of seven variety trials grown at four locations in New Jersey, 1980.

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% ↑ 1-7/8" % ↑ 2-1/2"	Field Rating	Chip Color
45646766463663667633333334454545455555474	B6969- 2 B6969- 2 B6969- 2 B6987-184 B6987-184 B7583- 6 B8091- 8 B8503- 13 B8599- 42 B8615- 2 B8615- 2 B8615- 2 B8706- 7 B8724- 2 B8757- 7 B8798- 20 B8799- 13 B8907- 4 B8972- 1 B9018- 12 B9130- 24 B9140- 4 B9140- 6 B9140- 14 B9148- 5 B9192- 1 B9224- 6 B9311- 7 AF092- 3 AF186- 5 AF205- 9 AF2	645748677576666666567543524548877785874754888	9 9 1 8 8 8 8 7 7 7 6 8 7 8 8 8 8 8 7 7 7 6 8 7 8 6 7 7 7 7	87888887898566889988887689977888779888796987999778887689997997788879698889697777788868799999979977677	979789899999999999999999999999999999999	333 4204 4394 377 3461 4584 3584 4596 4591 4591 4591 4591 4591 4591 4591 4591	49 57 75 89 74 43 60 70 71 75 60 60 71 75 60 76 76 76 76 76 76 76 76 76 76 76 76 76	97 72 95 67 78 95 67 78 96 77 78 96 77 78 97 77 78 98 99 99 99 99 99 99 99 99 99 99 99 99 9	977766868787678878788847756767766468744675	23 55 45 33 56 43 22 12 15 32 45 13 21 44 24 45
4 5 4 5 4 4	BR7088-18 BR7088-18 BR7093-23 BR7093-23 CC026- 1A CF73058-14	7 4 6 4 8 5 7 6 7 4 7 4	8 8 2 6 8 8 7 2 8 8 8 8 2 7 8 9 9 2 7 7 8 8 3 7 7 8 7 3 6 8	6 7 8 8 7 9 8 9 9 7 8 8 7 7 9 8 7 8	9 9 9 9 9 6 9 9 9 7 9 8 8 9 9 9 9 9	397 474 431 458 460 408	59 70 52 64 59 58	97 62 95 66 96 64 95 74 96 70 96 67	7 7 7 8 7 8	

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% † 1-7/8" % † 2-1/2"	Field Rating	Chip Color
545554555555555555555555555555555555555	CF73058-14 CF73058-26 CS72012- 4 CS72018-11 CS72032- 4 CS72032- 4 CS73107- 8 CS73107- 8 CS73132- 2 CS74089- 9 CS74089- 9 CS74090- 2 CS74109- 8 CS75003- 2 CS75003-13 CS75047- 4 CS75098- 1 CS76022- 8 CS76039- 1 CS76085- 6 CS76085- 6 CS76093- 2 F67036 F69016 F69026 NY-61 NY-63 NY-66 Q 54-11 Q155- 3 W564-3A W718 ALLAGASH R ATLANTIC ATLANTIC BELCHIP	77777577686745377874686783858778668865884668866856687	8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 8 8 7 8 8 7 8	687877788888789665699699999999998766999998989999999999	899769899999999999999999999999999999999	532 460 103 388 365 437 315 513 522 488 350 331 522 351 453 394 453 394 453 394 453 395 453 471 471 495 453 453 453 453 453 453 453 453 453 45	68 54 54 57 56 56 57 57 56 56 57 57 57 57 57 57 57 57 57 57	97 75 97 69 80 33 91 38 91 38 91 38 92 70 93 60 94 67 99 95 78 97 75 98 97 75 98 97 75 99 95 71 80 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97 9	775866679987876574874756655565578968768647655878738	14 33

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% † 1–7/8" % † 2–1/2"	Field Rating	Chip Color
5 4 4	CAMPBEL-11 CROATAN DENALI	7 4 7 4 7 5	7 8 2 6 8 8 8 2 8 6 9 9 1 8 8	7 8 8 4 4 8 8 7 9	8 9 9 9 9 7 8 9 8	423 392 400	71 44 66	96 73 90 46 95 60	8 5 8	
5	DENALI	8 7	98277	769	9 9 6	442	77	93 63	6	
4 5	HUDSON HUDSON	8 6 8 7	8 8 2 7 7 8 8 2 6 6	6 8 9 6 7 9	9 8 9 9 9 9	315 459	54 71	95 68 97 79	7 6	
4	JEMSEQ	7 3	7 8 3 6 7	8 9 5	8 9 9	422	58	97 84	6	
4	KATAHDIN	7 8	8 8 2 6 8	999	999	351	39	93 57	8	
5	KATAHDIN	7 7	8 8 2 6 7	8 8 9	989	464	51	91 61	7	
6 7	KATAHDIN KATAHDIN	7 5 7	8 8 2 6 7 8 8 8 6 7	8 8 9 7 9 9	989 99	466 433	60 59	94 67 89 57	7 7	65
7	NOR RUSSET	6	7 6 4 6 5	5 6 8	9 9	332	64	82 34	4	
3	NORCHIP	4 4	8 9 2 6 6	6 7 8	9 7 8	536	64	92 55	6	
4	NORCHIP	7 4	8 8 2 6 6	5 9 9	989	422	62	95 60	6	
5 6	NORCHIP NORCHIP	5 4 5 4	9 8 2 6 6 8 8 2 6 5	5 6 6 6 8 5	9 9 7 9 7 9	468 500	67 69	94 59 96 66	5 6	23
3	ONTARIO	7 6	9 9 2 6 5	4 4 9	9 9 7	494	61	89 58	5	23
5	PENN 71	7 5	9 9 2 3 5	6 9 9	8 9 9	448	67	94 67	5	
7	R BURBANK	8 9	7 6 9 9 2	4 1 7	7 9	414	69	85 40	2	
3 4	SUPERIOR SUPERIOR	5 3 8 4	7 6 3 7 7 7 7 3 6 7	5 6 9 6 7 9	9 9 7 9 9 9	478 437	63 50	97 76 95 57	7 7	
5	SUPERIOR	4 3	7 6 3 6 6	5 7 9	9 9 7	418	65	95 68	6	
6	SUPERIOR	6 5	7 6 3 6 7	4 8 7	9 9 7	427	64	96 68	7	
7	SUPERIOR	7 5	7 7 3 8 9	5 7 7	9 9	434	67	88 58	6	
1 1	B6969- 2 B6987-184	2 0 2 7	8 8 2 8 7 8 7 4 6 7	8 9 7 8 9 7	9 9 7 9	363 302	64 85	93 49 91 50	7 6	32 51
1	B7583- 6	2 8	4 5 6 3 6	999	9 9	260	78	94 60	6	66
2	B7583- 6	6 5	5 3 4 7 6	8 6 9	9 9 7	434	72	93 51	6	57
1	B8091- 8	3 1	8 8 2 7 5	8 9 9	6 9	360		93 71	6	
1	B8503- 13 B8599- 42	2 5	8 9 2 7 7	8 9 9	9 9	526	73	94 68	7	43
1 1	B8599- 42 B8615- 2	3 6 2 2	8 7 2 8 7 8 7 2 6 7	9 9 9 8 9 9	8 9 9 6	450 353	65	97 88 92 74	8 3	32
1	B8706- 7	7 9	8 7 2 8 7	8 8 9	8 8 8	540	65	95 84	8	33
1	B8710- 1	4 6	8 9 4 2 5	8 9 4	99	514		92 64	5	
2	B8710- 1	3 2	8 8 5 5 5	5 9 9	9 9 9	415	68	92 64	5	
1 1	B8724- 2 B8757- 7	2 6 4 8	6 7 3 6 6 9 9 2 6 7	8 9 5 9 9 9	9 9 7 9	578 411	67 73	96 67 96 77	6 8	56 22
1	B8798- 20	6 9	8 8 2 7 7	8 9 9	9 9	430	71	95 56	7	22
1	B8799- 13	5 7	7 8 3 8 6	8 9 8	8 9	415	73	90 33	7	22
1	B8833- 6	2 0	6 8 3 6 7	8 9 7	9 9	249		83 321		
2 1	B8833- 6 B8907- 4	4 2 5 9	5 4 7 7 6 8 6 2 9 7	7 7 6 8 9 9	9 9 7 8 9	361 292	65 65	79 47 97 70	6 7	22
1	B8934- 4	3 4	5 4 6 7 4	8 4 9	8 9	366	0,5	95 74	5	22
2	B8934- 4	7 5	5 4 3 7 6	6 6 9	9 9 6	451		95 57	6	
1	B8943- 4	5 0	5 4 8 6 6	8 8 7	7 9	439		93 44	7	
2 1	B8943- 4	4 3	5 4 8 6 6	7 5 8	9 9 9	510	67 68	94 51	7	2.2
1	B8972- 1 B9018- 12	4 1 3 7	5 4 7 7 6 8 8 2 8 7	8 9 9 7 9 9	9 9 9 9	333 644	68 69	92 54 95 80	6 8	32 22
1	B9127- 1	5 1	8 8 3 7 9	7 9 9	9 9	356	63	97 66	9	56
2	B9127- 1	7 5	7 7 2 7 7	5 7 9	9 9 9	647	61	96 88	8	

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% † 1-7/8" % † 2-1/2"	Field Rating	Chip Color
No. 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B9127- 6 B9127- 6 B9127- 17 B9127- 17 B9130- 24 B9130- 39 B9137- 9 B9140- 4 B9140- 17 B9140- 17 B9140- 32 B9140- 32 B9142- 4 B9144- 5 B9147- 3 B9147- 3 B9147- 3 B9148- 5 B9152- 44 B9192- 1 B9208- 4 B9212- 4 B9217- 7 B9219- 2 B9211- 14 B9224- 6 B9279- 9 B9282- 7 B9282- 12 B9286- 4 B9279- 9 B9282- 7 B9282- 12 B9335- 3 B9335- 13 B9335- 15 B9335- 18 B9335- 18 B9335- 19 B9335- 19 B9335- 20 B9335- 35	$box{3}{8} 3 6 7 3 6 0 3 1 2 2 6 2 5 6 7 7 0 4 0 7 6 0 0 0 5 1 1 0 0 7 4 3 4 5 3 5 5 5 5 5 5 3 3$	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	「「「「「「「「「」」」」」」 「「「」「「」」」」 「「」「」「」」」 「「」「」」」 「「」「」」」 「」「」「」」」 「」「」「」」」 「」「」「」」」 「」「」「」」 「」「」「」」」 「」 「	\mathbb{H} 998999999999974799999999999999999999999	319 671 361 527 326 124 382 398 255 393 360 415 300 411 227 498 317 480 510 326 303 352 361 272 344 47 287 291 387 296 37 354	53 54 73 78 78 63 79 73 75 64 84 74 68 72 59 71 79 67 67 68 68 61 62 72 72 72 76 77	98 57 92 93 57 92 96 97 72 81 17 89 96 97 91 95 96 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 98 99 91 91 91 91 91 91 91 91 91 91 91 91	7988757769868884588887567767777777665677776	55 65 66 66 66 34 14 33 32 45 141 21 33 633 43 34 312 55 43 35 55 43 55 43 55 54 43 55 55 43 56 66 66 57 67 67 67 67 67 67 67 67 67 67 67 67 67
1 1 1 1 1	B9335- 60 B9336- 24 B9336- 27 B9337- 12 B9340- 3 B9340- 4	5 6 2 1 4 3 3 2 2 2 1 1	8 6 2 7 7 8 8 4 7 7 8 8 5 6 7 6 5 5 7 7 9 9 2 5 7 7 7 2 6 7	8 9 8 8 9 7 8 9 9 9 5 8 9 9 8 9 7	9 9 9 9 9 9 9 9 9 8 9 9	297 315 272 296 430 373	50 77 79 68 71 64	82 22 90 45 91 6 92 13 94 51 96 52	7 8 7 7 7	67 13 22 32 623 262

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% † 1-7/8" % † 2-1/2"	Field Rating	Chip Color
1 1	B9340- 7 B9340- 13	4 7 4 6	8 8 2 9 9 8 7 2 8 8	8 9 9 8 9 9	9 9 9 9	310 338	78 70	97 59 93 31	8 8	34 25
1	B9344- 5	3 3	8 7 4 6 7	5 8 9	9 8	271	70	87 10	7	22
1	B9344- 15	2 5	8 7 3 7 7	8 9 5	9 8	448	68	96 52	7	21
1	B9361- 1	3 1	8 6 2 6 6	6 9 9	9 9	349	75	88 20	7	45
1 1	B9383- 6 B9383- 7	2 0 3 1	4 3 4 6 7 6 3 6 6 8	8 9 6 8 9 8	9 9 9 9	262 405	65 73	90 37 97 66	8 9	32 33
1	B9384- 4	2 0	7 7 2 6 7	8 9 9	9 9	373	69	88 23	7	21
1	B9384- 6	1 1	7 6 2 9 8	8 9 4	9 9	407	65	96 65	8	425
1	B9386- 9	2 5	8 8 2	9 7	9 7	405	74	91 45	7	32
1	B9391- 2	2 2	4 3 6 5 7	8 9 9	9 9	355	70	84 17	7	56
1 1	B9395- 7 B9399- 1	2 6 1 1	6 4 4 4 6 4 4 7 6 7	7 9 8 8 9 9	9 9 9 9	256 320	68	90 18 81 6	3 7	44
1	B9399- 19	2 5	5 4 9 7 7	8 8 9	9 9	261	67	77 0	7	56
1	B9399- 23	1 4	8 6 4 6 6	8 9 9	9 9	344	67	91 36	6	44
1	B9416- 3	3 3	7 6 2 7 8	7 9 9	9 9	371	76	94 60	8	31
1	B9418- 7	1 0	4 2 8 7 8	7 9 9	9 9	198	75	75 0	8	12
1 1	B9419- 4 B9419- 6	1 5 4 0	4 3 8 8 5 7 5 5 5 8	6 9 7 8 9 9	9 9 9 9	400 373	77 66	92 47 83 13	7 7	32 23
1	B9423- 2	1 6	8 6 4 8 8	8 9 8	5 9	550	67	94 54	8	45
1	B9423- 4	4 7	7 6 2 6 8	9 9 9	9 9	463	64	88 33	9	13
1	B9434- 17	4 0	5 3 8 7 6	7 9 9	9 9	304	74	83 21	7	35
1	B9434- 19	3 0	5 3 7 7 6	8 9 6	9 9	279	73	94 22	6	87 56
1 1	B9436- 2 B9439- 1	2 3 3 7	6 4 5 3 7 7 8 6 8 6	7 9 9 8 9 9	6 9 9 9	277 349	74 84	95 41 93 64	7 7	533
1	B9439- 4	3 0	8 7 2 8 7	7 9 9	9 9	248	73	93 31	7	34
1	B9445- 2	3 4	98376	6 9 9	9 9	291		96 51	6	
1	B9455- 3	3 5	7 7 2 8 8	8 9 9	9 9	347	71	85 19	8	34
1 1	B9468- 1 B9473- 2	3 5	8 8 3 7 8 7 7 1 8 8	7 9 7	9 7 9 4	453	69	94 46 84 26	7	53
1	B9473- 2 B9481- 2	2 4 2 4	7 7 1 8 8 8 8 2 7 4	8 9 9 6 5 9	9 4 9 9	410 389		91 57	21 5	
1	B9486- 1	2 7	8 8 2 9 9	7 9 9	9 9 9	572	70	94 61	9	24
1	B9486- 2	2 4	8 8 3 3 6	8 9 5	9 9	444		97 79	5	
1	B9489- 2	2 0	8 8 2 7 7	8 9 6	9 9	251	82	93 29	7	22
1	B9489- 4 B9497- 2	2 0 3 0	9 9 3 7 7 8 8 2 7 6	8 9 9 5 9 1	8 9 9 9	243 248	88 73	81 23 97 74	6 5	11 68
1	AF092- 3	3 3	8 8 2 5 5	5 9 9	9 9	267	73	96 59	5	00
2	AF092- 3	6 5	8 7 4 7 6	5 9 9	9 9 9	452	60	91 42	7	
1	AF186- 5	5 8	7 6 3 7 6	8 9 9	9 9	376	76	91 41	7	34
1	AF201-25	8 7	8 7 3 8 6	8 7 9	9 9	525	66	95 73	7	67
2 1	AF201-25 AF205- 9	8 7 5 8	8 8 4 7 6 8 7 4 7 7	8 7 9 9 9 7	9 9 9 9 8	435 422	77 76	90 40 90 40	6 7	43
1	AF221- 1	6 9	8 7 6 5 5	877	7 9 9	453	70	93 49	5	43
2	AF221- 1	5 5	8 8 7 6 5	7 9 9	7 9 9	517	75	91 57	5	
1	AF222- 1	1 1	8 7 2 8 8	9 9 9	8 9	302	72	98 41	8	35
2	AF222- 1	2 1	8 8 2 8 6	6 9 9	9 9 9	319	75	94 52	6	
1	AF236-66	6 8	8 8 4 7 5	8 6 5	9 9	514	62	94 55	5	98
2 1	AF236-66 AF238-21	8 5 4 7	8 8 5 7 7 8 8 2 7 5	7 8 9 7 9 9	999	487 470	69 63	91 48 94 51	7 5	54
1	AF299-12	1 5	7 7 2 8 7	8 9 9	9 9	256	0.5	93 63	6	J4

2 AF299-12 4 3 8 8 3 7 7 7 9 9 9 9 9 423 59 94 62 7 7 1 AF303-5 3 4 8 8 7 2 6 7 7 9 9 9 4 9 423 59 94 62 7 7 1 AF303-5 8 8 8 8 7 2 6 7 7 9 9 9 4 9 423 81 91 50 4 1 AF307-5 3 6 8 9 2 7 7 8 9 9 9 7 493 62 98 69 8 66 1 AF307-5 3 6 8 9 2 7 7 8 9 9 9 7 493 62 98 69 8 66 1 AF307-5 3 6 8 8 9 2 7 7 8 9 9 9 7 493 62 98 69 8 66 1 AF307-5 3 6 8 8 9 2 7 7 8 9 9 9 9 7 60 5 6 7 94 56 6 1 AF324-1 2 4 8 8 2 8 8 8 9 9 9 9 9 9 304 72 97 55 8 8 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% † 1-7/8" % † 2-1/2"	Field Rating	Chip Color
2 AF303-5 8 8 8 7 2 6 7 7 9 9 9 4 9 433 81 91 50 4 66 2 AF307-5 3 6 8 9 2 7 7 8 9 9 9 7 493 62 98 69 8 66 2 AF307-5 5 5 8 8 8 2 7 7 8 9 9 9 9 9 605 67 9 4 66 2 AF324-1 2 4 8 8 2 8 8 8 9 9 9 9 9 304 72 97 55 8 36 3 AF324-1 6 6 8 7 2 7 6 8 9 9 9 9 9 304 72 97 55 8 36 3 AF330-1 6 8 8 7 7 7 4 5 5 4 9 9 9 9 9 9 31 67 98 90 7 312 1 AF330-1 6 8 8 7 7 7 4 5 5 4 9 9 9 9 9 9 429 62 93 74 6 56 1 AK24-3 8 9 9 9 2 8 5 5 7 9 9 9 9 9 135 72 72 96 78 8 55 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 9 312 72 72 96 78 8 55 1 AS201-4 6 9 8 7 3 9 7 9 9 9 9 9 312 72 72 96 78 8 55 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 9 312 72 72 96 78 8 55 1 AS6878-1 6 9 5 4 8 8 6 7 7 9 9 9 9 9 9 14 74 85 15 8 2 BR5991W16 8 8 9 9 2 7 7 6 2 9 9 9 1 36 9 65 9 1 45 5 2 BR5991W16 8 8 8 9 9 2 7 7 6 2 9 9 9 9 1 36 8 8 70 9 3 64 6 33 2 BR5991W16 8 8 8 9 9 2 7 7 7 5 7 9 9 9 9 3 381 62 95 65 7 66 2 CA002-7 8 8 7 7 2 7 5 7 2 8 9 9 9 9 9 3 381 62 95 65 7 66 2 CA002-7 8 8 7 7 2 7 5 7 9 9 9 9 9 9 3 381 62 95 65 7 66 2 CC73058-14 4 4 8 8 8 2 6 7 8 8 9 9 9 9 9 9 141 74 8 5 15 8 3 CCF73058-14 4 5 8 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 14 7 9 8 9 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 9 9 9 9 1 14 7 4 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								59			
2 AF307-5 5 5 8 8 8 3 6 6 7 9 9 9 9 9 605 67 94 56 6 1 AF324-1 2 4 8 8 2 8 8 8 9 9 9 9 9 304 72 97 55 8 36 2 AF324-1 6 6 8 7 2 7 6 8 9 9 9 9 9 371 67 98 90 7 32 1 AF330-1 6 8 8 7 2 7 6 6 9 9 6 9 9 429 62 93 74 6 56 2 AF330-1 8 7 7 7 4 5 5 4 9 9 9 9 9 9 427 62 93 74 6 56 2 AF330-1 8 8 7 7 7 4 5 5 4 9 9 9 9 9 9 427 62 6 6 1 AK24-3 6 9 8 8 3 7 6 7 9 9 9 9 9 235 92 42 5 2 AK24-3 8 9 9 9 2 8 5 5 7 9 9 9 9 9 235 92 42 5 1 AS201-4 6 9 8 7 3 9 7 7 9 9 9 9 9 372 72 96 78 8 55 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 332 68 8 32 7 64 1 A68678-1 6 9 5 4 8 8 6 7 7 9 9 9 9 9 333 65 88 32 7 64 2 A68678-1 6 8 5 4 8 8 7 7 9 9 9 9 9 134 74 85 15 8 2 BR5991WV16 8 8 8 9 9 2 7 7 6 2 9 9 9 1 369 65 91 45 5 1 BR7088-18 8 3 5 7 8 2 6 6 8 9 7 9 9 9 3 381 62 2 56 63 7 44 1 BR7093-23 6 8 8 8 2 6 7 8 9 9 9 9 9 381 62 2 56 65 7 66 2 CA002-7 8 8 7 7 2 7 5 2 8 9 9 9 9 9 381 62 2 56 65 7 66 2 CA002-7 8 8 7 7 2 7 5 9 9 8 8 566 70 96 76 7 44 1 CF73058-14 4 4 8 8 2 6 6 7 8 9 9 9 9 9 381 62 9 65 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	2	AF303- 5	8 8	8 7 2 6 7	799	9 4 9	433		91 50	4	
1 AF324-1 2 4 8 8 2 8 8 8 9 9 9 9 9 304 72 97 55 8 36 2 AF324-1 6 6 8 7 2 7 6 8 9 9 9 9 9 9 371 67 98 90 7 32 4 6 56 4 7330-1 8 7 7 7 4 5 5 4 9 9 9 9 9 429 62 93 74 6 56 2 AF330-1 8 7 7 7 4 5 5 5 4 9 9 9 9 9 429 62 93 74 6 56 2 AF330-1 8 7 7 7 4 5 5 5 4 9 9 9 9 9 9 473 69 92 62 6 1 AF330-1 4 6 9 8 8 3 7 6 7 9 9 9 9 9 9 9 473 69 92 62 6 1 AF330-1 4 6 9 8 7 3 9 7 9 9 9 9 9 9 9 372 72 96 78 8 55 1 AF3201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AF3201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AF3201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AF3201-10 2 7 8 8 1 9 7 7 9 9 9 9 8 454 78 84 31 6 77 2 AF3201-10 8 1 8 1 8 1 9 7 7 9 9 9 9 1 8 1 8 1 8 1 9 1 8 1 8 1 9 1 8 1 8											66
1 AF330-1 8 8 7 7 6 6 9 9 6 9 9 429 62 93 74 6 56 1 AF330-1 8 7 7 7 4 5 5 5 4 9 9 9 9 9 473 69 92 62 6 1 AK24-3 8 9 9 9 2 85 5 7 9 9 9 9 235 92 42 5 2 AK24-3 8 9 9 9 2 85 5 7 9 9 9 9 6 191 55 87 30 4 1 AS201-4 6 9 8 7 3 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 AS201-10 9 9 5 3 9 8 7 4 8 9 9 9 9 5 333 65 88 32 7 64 1 AS201-10 8 8 2 9 7 7 9 9 8 454 78 84 31 6 77 2 A68678-1 6 9 5 4 8 8 7 7 7 9 9 8 457 78 82 16 7 2 A68678-1 9 9 5 3 9 8 7 4 8 9 9 9 9 9 514 74 85 15 8 1 BR7991WV16 8 8 9 9 2 7 7 6 2 9 9 9 1 369 65 91 45 5 1 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 9 350 76 95 63 7 43 1 BR7093-23 6 8 8 8 2 6 7 7 8 9 9 9 9 3 381 62 96 5 91 45 5 1 CC026-1A 6 9 7 6 4 5 6 7 9 9 9 9 8 586 70 96 76 7 44 1 CF73058-14 4 8 8 2 6 7 8 9 9 9 9 9 443 66 97 76 8 34 1 CF73058-14 4 5 8 7 3 7 7 5 9 9 9 9 9 431 64 97 76 7 14 1 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 381 61 96 65 7 43 1 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	AF324- 1	2 4	8 8 2 8 8	8 9 9	9 9	304	72	97 55		
2 AF330-1 8 7 7 7 4 5 5 6 4 9 9 9 9 9 473 69 92 62 6 6 1 AK24-3 6 9 8 8 3 7 6 7 9 9 9 9 9 235 92 42 5 2 AK24-3 8 9 9 9 2 8 5 5 7 9 9 9 9 9 235 92 42 5 1 AS201-4 6 9 8 7 3 9 7 7 9 9 9 9 9 372 72 96 78 8 55 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 A68678-1 6 9 5 4 8 8 6 7 7 7 9 9 9 8 454 78 84 31 6 77 1 A68678-1 6 8 5 4 8 8 6 7 7 7 9 9 9 6 376 82 16 7 2 A68678-1 9 9 5 3 9 8 7 4 8 9 9 9 9 1 369 65 91 45 5 2 A68678-1 9 9 5 3 9 8 7 7 7 7 5 7 9 9 438 70 93 64 6 33 2 BR5991WV16 8 8 9 9 2 7 7 6 2 2 9 9 9 1 369 65 91 45 5 1 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 9 350 76 65 91 45 5 1 BR7088-18 4 6 9 7 6 4 5 6 7 9 9 9 8 586 70 96 76 7 44 1 CF33058-14 4 4 4 8 8 2 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											
1 AK24-3											96
1 AS201-4 6 9 8 7 3 9 7 9 9 9 9 9 372 72 96 78 8 55 1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 1 A68678-1 6 9 5 4 8 8 6 7 7 9 9 9 9 8 454 78 84 31 6 77 2 A68678-1 9 9 5 3 9 8 7 4 8 8 9 9 9 9 514 74 85 15 8 1 BR7991WV16 8 8 8 9 2 7 7 6 2 9 9 9 1 369 65 91 45 5 8 2 BR5991WV16 8 8 9 9 2 7 7 6 2 9 9 9 1 369 65 91 45 5 8 1 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 350 76 95 63 7 43 1 BR7093-23 6 8 8 8 8 2 6 7 8 9 9 9 9 9 381 62 95 65 7 66 2 CA002- 7 8 8 7 7 2 7 5 2 8 9 9 9 9 7 304 68 89 31 5 1 CC026- 1A 6 9 7 6 4 5 6 7 8 9 9 9 9 8 586 70 96 76 7 44 1 CF73058-14 4 8 8 8 2 6 7 8 9 9 9 9 9 8 586 70 96 76 7 44 1 CF73058-14 6 6 8 7 2 6 6 8 7 9 9 9 9 556 63 88 63 7 1 CF73058-26 3 2 6 4 3 5 7 8 9 9 9 9 9 9 9 556 63 88 63 7 2 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 9 9 9 9 18 1 64 97 76 7 7 2 CF74135- 3 1 2 8 7 2 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	AK24- 3	6 9	8 8 3 7 6	7 9 9	9 9	235		92 42		
1 AS201-10 2 7 8 8 1 9 7 7 9 9 9 9 9 333 65 88 32 7 64 1 A68678-1 6 9 5 4 8 8 6 7 7 9 9 9 8 454 78 84 31 6 77 2 A68678-1 9 9 5 3 9 8 7 4 8 9 9 9 9 514 74 85 15 8 2 B68678-1 9 9 5 3 9 8 7 4 8 9 9 9 9 514 74 85 15 8 3 BR5991WV16 6 9 8 8 2 7 7 7 7 5 7 9 9 438 70 93 64 6 33 2 BR5991WV16 8 8 9 9 2 7 7 6 2 2 9 9 9 1 369 65 91 45 5 1 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 1 369 65 91 45 5 1 BR7093-23 6 8 8 8 2 6 7 8 9 9 9 9 350 76 95 63 7 43 1 BR7093-23 6 8 8 8 2 6 7 8 9 9 9 9 381 62 95 65 7 66 2 CA002-7 8 8 7 7 2 7 5 2 8 9 9 9 9 381 62 95 65 7 66 2 CA002-7 8 8 7 7 2 7 5 2 8 9 9 9 9 381 62 95 65 7 66 1 CF73058-14 4 4 8 8 2 6 7 8 9 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 4 4 8 8 2 6 7 8 9 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 4 4 5 8 7 3 7 7 5 9 9 9 9 9 381 61 96 65 7 6 43 1 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 381 61 96 65 7 43 2 CF74135-3 1 2 8 7 2 7 8 9 9 9 9 9 381 61 96 65 7 7 3 4 2 CF75005-5 5 6 8 8 7 5 6 6 8 9 8 9 9 9 9 388 64 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_									
1											
2	1		6 9							-	
BR5991WV16 6 9 8 8 8 2 7 7 7 7 5 7 9 9 9 438 70 93 64 6 33 BR5991WV16 8 8 9 9 2 7 7 6 2 9 9 9 1 369 65 91 45 5 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 9 381 62 95 63 7 43 BR7093-23 6 8 8 8 2 6 7 8 9 9 9 9 381 62 95 65 7 66 CA002- 7 8 8 7 7 2 7 5 2 8 9 9 9 9 381 62 95 65 7 66 CC026- 1A 6 9 7 6 4 5 6 7 9 9 9 8 586 70 96 76 7 44 CC73058-14 4 5 8 7 3 7 7 5 9 9 9 9 445 66 97 76 8 34 CF73058-14 4 5 8 7 3 7 7 5 9 9 9 9 9 445 66 97 76 8 34 CF73058-14 6 6 8 7 2 6 6 8 7 9 9 9 9 556 63 88 63 7 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 9 556 63 88 63 7 CF73058-26 3 2 6 4 3 5 7 9 8 9 9 9 9 427 54 95 49 8 23 CF73058-26 3 2 6 4 3 5 7 9 8 9 9 9 9 427 54 95 49 8 23 CF74135- 3 1 2 8 7 2 7 8 9 9 9 9 9 427 54 95 49 8 23 CF75005- 5 5 6 8 8 7 7 6 6 9 9 9 9 9 9 502 58 92 60 6 CF75005- 5 5 6 8 8 7 7 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9								- ,			
2 BR5991WV16 8 8 8 9 9 2 7 7 6 6 2 9 9 9 1 369 65 91 45 5 1 BR7088-18 3 5 7 8 2 6 6 8 9 7 9 9 350 76 95 63 7 43 1 BR7083-23 6 8 8 8 2 6 7 8 9 9 9 9 381 62 95 65 7 66 2 CA002-7 8 8 7 7 2 7 5 2 8 9 9 9 9 7 304 68 89 31 5 1 CC73058-14 4 4 8 8 2 6 7 8 9 9 9 9 9 8 586 70 96 76 7 44 1 CF73058-14 4 4 5 8 7 3 7 7 5 9 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 4 5 8 7 3 7 7 5 9 9 9 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 6 6 8 7 2 6 6 8 7 9 9 9 9 9 9 556 63 88 63 7 1 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 9 9 556 63 88 63 7 1 CF73058-26 3 2 6 4 3 5 7 9 8 9 9 9 9 9 427 54 95 49 8 23 CF73058-26 3 2 6 4 3 5 7 9 8 9 9 9 9 9 427 54 95 49 8 23 CF74135-3 1 2 8 7 2 7 8 9 9 9 9 9 9 427 54 95 49 8 23 CF75005-5 5 6 8 8 7 7 6 6 9 9 9 9 9 9 427 54 95 49 8 23 CF75005-5 5 6 8 8 7 7 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											33
1 BR7093-23 6 8 8 8 2 6 7 8 9 9 9 9 381 62 95 65 7 66 2 CA002- 7 8 8 7 7 2 7 5 2 8 9 9 9 7 304 68 89 31 5 1 CC026- 1A 6 9 7 6 4 5 6 7 9 9 9 8 586 70 96 76 7 44 1 CF73058-14 4 4 8 8 2 6 7 8 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 4 5 8 7 3 7 7 5 9 9 9 9 9 445 66 97 76 8 34 1 CF73058-14 4 5 8 7 3 7 7 5 9 9 9 9 9 9 9 556 63 88 63 7 1 CF73058-26 5 6 7 7 3 7 7 8 9 9 9 9 9 9 556 63 88 63 7 2 CF73058-26 3 2 6 4 3 5 7 9 8 8 9 9 9 9 427 54 95 49 8 23 2 CF73058-26 3 2 6 4 3 5 7 7 8 9 9 9 9 9 427 54 95 49 8 23 2 CF74135- 3 1 2 8 7 2 7 8 9 9 9 9 9 427 54 95 49 8 23 2 CF74135- 3 4 2 9 9 3 7 8 6 9 9 9 9 4 9 592 62 97 73 4 24 1 CF75005- 5 2 5 8 7 5 6 6 8 9 8 8 9 9 388 70 9 4 59 7 535 2 CF75005- 5 5 6 8 8 7 7 6 6 9 9 9 9 9 9 502 58 92 60 6 1 CF75023- 1 3 7 8 8 2 8 7 5 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											33
2										7	
1											66
1											44
2			4 4	8 8 2 6 7	8 9 9	9 9	445				
1									-	-	55
2											43
2	2	CF73058-26	3 2	6 4 3 5 7	989	9 9 9	431	64	97 76		
1											
2											
2	2										
1 CS72018-11 3 6 8 7 2 6 7 8 9 9 9 9 314 80 90 63 7 623 1 CS72032- 4 4 6 8 8 3 6 5 7 9 9 9 9 9 308 65 96 66 7 33 1 CS72032- 4 5 5 8 8 2 6 7 7 9 9 9 9 9 385 95 61 7 2 CS72032- 4 4 4 4 7 7 3 6 6 7 9 9 9 9 9 347 68 97 81 6 1 CS73107- 8 4 5 8 7 1 9 7 8 9 9 9 9 9 245 88 31 6 1 CS73132- 2 5 6 8 7 2 9 8 8 9 7 9 9 9 9 9 319 76 96 68 8 34 1 CS74089- 9 2 5 7 6 2 6 7 9 9 9 9 9 9 9 9 319 76 96 59 7 54 1 CS74090- 2 3 0 8 8 4 8 7 9 9 9 9 9 9 9 319 66 98 45 7 53 1 CS74109- 8 3 6 8 7 3 7 7 8 9 9 9 9 9 9 9 360 75 95 57 7 22 2 CS75003- 2 4 5 8 7 2 8 7 8 9 9 9 9 9 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 9 9 9 9 9 513 64 97 78 6 2 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 9 9 9 500 66 96 75 8 3 1 CS75003-13 4 6 8 8 2 9 7 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											
1 CS72032-4 4 6 8 8 3 6 5 7 9 9 9 308 65 96 66 7 33 1 CS72032-4 4 4 4 7 7 3 6 6 7 9 9 9 9 347 68 97 81 6 1 CS73107-8 4 5 8 7 1 9 7 8 9 9 9 9 245 88 31 6 1 CS73132-2 5 6 8 7 2 9 9 9 9 9 9 66 8 34 1 CS74089-9 2 5 7 6 2 6 7 9											
2	1	CS72032- 4	4 6	8 8 3 6 5	7 9 9	9 9	308		96 66	7	
1 CS73107-8 4 5 8 7 1 9 7 8 9 9 9 9 245 88 31 6 1 CS73132-2 5 6 8 7 2 9 8 8 9 7 9 9 9 429 67 96 68 8 34 1 CS74089-9 2 5 7 6 2 6 7 9 9 9 9 9 319 76 96 59 7 54 1 CS74090-2 3 0 8 8 4 8 7 9 9 6 9 9 9 319 66 98 45 7 53 1 CS74109-8 3 6 8 7 3 7 7 8 9 9 9 7 493 69 98 78 8 57 1 CS75003-2 4 5 8 7 2 8 7 8 9 9 9 9 9 360 75 95 57 7 22 2 CS75003-2 6 7 8 8 2 5 6 7 6 9 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 9 7 9 256 91 43 6 2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 9 513 64 97 78 6 1 CS75004-7 4 4 8 8 2 5 8 9 9 9 9 9 9 9 500 66 96 75 8 3 2 CS75004-7 6 6 9 9 2 7 8 8 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 9 317 74 11 5											
1 CS73132- 2 5 6 8 7 2 9 8 8 9 7 9 9 429 67 96 68 8 34 1 CS74089- 9 2 5 7 6 2 6 7 9 9 9 9 9 319 76 96 59 7 54 1 CS74090- 2 3 0 8 8 4 8 7 9 9 6 9 9 9 319 66 98 45 7 53 1 CS74109- 8 3 6 8 7 3 7 7 8 9 9 9 7 493 69 98 78 8 57 1 CS75003- 2 4 5 8 7 2 8 7 8 9 9 9 9 9 360 75 95 57 7 22 2 CS75003- 2 6 7 8 8 2 5 6 7 6 9 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 7 9 256 91 43 6 2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 9 513 64 97 78 6 1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5								68			
1 CS74090- 2 3 0 8 8 4 8 7 9 9 6 9 9 9 319 66 98 45 7 53 1 CS74109- 8 3 6 8 7 3 7 7 8 9 9 9 7 493 69 98 78 8 57 1 CS75003- 2 4 5 8 7 2 8 7 8 9 9 9 9 9 360 75 95 57 7 22 2 CS75003- 2 6 7 8 8 2 5 6 7 6 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 7 9 256 91 43 6 2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 513 64 97 78 6 1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 315 72 94 43 7 45 2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 9 317 74 11 5				8 7 2 9 8				67			34
1 CS74109-8 3 6 8 7 3 7 7 8 9 9 9 7 493 69 98 78 8 57 1 CS75003-2 4 5 8 7 2 8 7 8 9 9 9 9 9 9 360 75 95 57 7 22 2 CS75003-2 6 7 8 8 2 5 6 7 6 9 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 9 7 9 256 91 43 6 2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 9 513 64 97 78 6 1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 315 72 94 43 7 45 2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5											
1 CS75003- 2 4 5 8 7 2 8 7 8 9 9 9 9 9 360 75 95 57 7 22 2 CS75003- 2 6 7 8 8 2 5 6 7 6 9 9 9 8 598 51 95 82 7 43 1 CS75003-13 2 2 8 9 2 5 7 9 9 9 9 7 9 256 91 43 6 2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 513 64 97 78 6 1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 315 72 94 43 7 45 2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5											
1 CS75003-13 2 2 8 9 2 5 7 9 9 9 7 9											
2 CS75003-13 6 3 8 8 2 5 6 6 6 6 9 9 9 9 513 64 97 78 6 1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 315 72 94 43 7 45 2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5								51			43
1 CS75004- 7 4 4 8 8 2 5 8 9 9 9 9 9 9 9 315 72 94 43 7 45 2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5				8 9 2 5 7				64			
2 CS75004- 7 6 6 9 9 2 7 8 8 9 9 9 9 9 500 66 96 75 8 3 1 CS75033-13 4 6 8 8 2 9 7 8 6 9 9 9 9 317 74 11 5				8 8 2 5 8							45
	2	CS75004- 7	6 6	9 9 2 7 8	8 9 9	9 9 9	500		96 75	8	
								50			

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Hollow Heart Int. Necrosis Heat Sprout	Total Yield cwt	Sp Gr	% 1 1-7/8" % 7 2-1/2"	Field Rating	Chip Color
1 2 1 2 1 2 1 2 1 2 1 2	CS75033-21 CS75033-25 CS75033-25 CS75033-37 CS75033-37 CS75034-2 CS75034-2 CS75047-4 CS75047-4	5 7 4 5 8 6 5 7 5 5 6 5 7 5 5 7 6 5 7	8 8 2 7 7 7 8 1 8 8 8 7 2 8 7 8 8 2 8 7 8 7 2 8 7 7 8 1 8 8 8 7 2 7 6 8 8 2 6 7 6 6 2 8 5 6 4 3 8 7 8 7 3 7 5	8 4 9 9 8 9 8 9 9 7 9 9 7 5 9 9 9 9 8 6 9 7 9 9 6 9 9 8 9 9	9 9 9 9 9 8 9 9 9 9 9 9 9 9 5 9 9 9 9 9 9	294 487 469 536 381 531 439 536 264 422 208	64 67	79 13 88 43 97 70 98 80 89 45 90 55 95 69 90 63 87 29 89 42 95 47	4 8 8 7 7 6 8 5 7	54
2 1 2 1 2 1 2 1 2	CS75049-11 CS75058- 4 CS75058- 4 CS75067- 5 CS75067- 5 CS75067-13 CS75067-26 CS75067-26	3 5 4 8 5 5 3 5 2 2 4 7 4 4 4 7 3 4	8 8 5 8 7 8 9 2 8 7 8 8 1 9 9 9 9 5 5 7 9 9 7 9 7 8 7 4 5 6 9 9 4 7 8 8 8 8 7 5 9 9 8 8 6	8 7 9 8 6 9 8 9 9 7 9 8 8 9 9 9 9 9 9 9 9 7 3 6 7 8 6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	433 438 450 280 399 246 506 271 353	58 61 75 59	97 74 90 56 93 48 96 79 92 40 90 35 97 80 82 35 77 13	8 7 9 8 7 6 8 5	54 33 21 33
1 2 1 2 1 2 1 2 1 2	CS75089- 8 CS75089- 8 CS75091- 6 CS75091- 7 CS75091- 7 CS75091- 7 CS75093-11 CS75098- 1	4 7 3 5 4 7 5 5 4 8 4 7 2 3 3 2 2 2 3 3	8 9 1 9 8 7 8 2 8 7 6 8 4 7 7 7 7 3 7 6 8 8 1 9 8 7 7 4 6 6 8 8 3 8 7 9 9 1 9 9 6 5 4 7 7	9 8 9 9 9 9 8 9 9 6 9 9 7 9 9 9 8 9 7 9 9	9 9 9 9 6 9 9 9 9 9 9 9 9 9 9 9	381 635 354 473 220 377 278 498 262 399	60 50 74 76	98 66 95 81 93 37 89 45 85 22 93 66 89 54 95 72 90 29 93 78	8 9 7 5 6 2 6 9	64 56
1 2 2 2 1 2 1 2	CS75098- 1 CS75111- 5 CS75111- 5 CS76019- 9 CS76084- 9 F67036 F67036 F69016 F69016 F69026	2 6 4 5 8 9 4 2 5 7 7 8 3 7 3 5	6 4 4 6 6 8 9 4 6 8 8 8 6 8 6 9 9 3 5 6 8 8 2 7 7 7 6 4 5 6 8 8 7 7 5 7 8 4 7 6 9 8 8 6 4 2 8 4 8 7	8 9 7 8 9 9 7 7 9 7 6 9 9 9 9 7 6 9 7 6 9 7 5 9 6 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	262 359 536 124 496 471 306 422 312	60 81 69 66 61 63 71 68	93 78 83 11 92 54 93 63 92 77 95 50 94 61 91 55 95 62 94 32	6 6 7 5 6 4 5 4	65
2 1 2 1 1 1 1 1 1	F69026 NY-59 NY-59 NY-61 NY-62 NY-63 NY-66 NY-66 Q 54-6 Q 54-11	5 4 9 7 4 4 4 6 5 8 5 6 6 0	1 8 5 6 6 8 9 2 7 7 9 9 1 9 8 8 9 2 7 8 9 9 2 8 8 8 9 2 8 9 8 7 2 6 8 8 7 2 9 7 8 9 2 9 8 8 8 4 5 7	5 9 9 7 9 9 7 9 9 5 9 9 8 9 9 9 9 9 8 9 9 6 9 9 8 9 9	9 9 9 9 9 6 9 9 7 9 6 9 9 9 9 9 9 9 9	453 277 440 294 287 453 281 473 367 338	61 69 66 62 74 70 66 71	94 64 91 51 90 59 90 37 97 57 95 63 97 66 95 67 94 75 94 38	6 3 6 7 5 8 8 8 7	45 65 65 54 67 55

Exp No.	Seedling	Air Pollution Maturity	Color Texture Shape Depth Conformation	Eye Depth Second Gr. Growth Gr.	Y gt.	otal ield S p cwt Gr	% † 1-7/8" % † 2-1/2"	Field Rating	Chip Color
1 1 2 1 2	R471-62 R471-62 R471-62 S303-8 S303-8	4 5 4 5 7 5 4 7 8 7	8 8 3 8 6 8 7 3 7 6 7 6 2 7 6 8 7 3 5 5 8 7 2 8 6	8 9 9 8 9 6 5 9 6 7 6 9 8 9 9	9 4 : 9 7 9 : 9 9 :	319 191 552 60 389 659 72	94 54 77 0 91 56 92 55 91 66	6 3 6 5 6	
1 2 1	S374- 4 S374- 4 S376- 1	4 5 8 7 3 5	8 7 2 7 7 7 7 3 6 7 8 8 2 8 7	9 9 8 8 9 9 8 9 7	999	260 447 61 355 69	84 20 89 33 97 51	6 7 7	22
2 1 2	S376- 1 S376- 2 S376- 2	5 2 2 4 3 2	7 7 2 6 6 8 8 3 7 7 7 7 2 7 6	7 9 9 7 9 9 6 9 9	99 3	487 306 59 401 61	95 72 94 57 92 62	7 7 6	66
1 2 1	\$377 - 8 \$377 - 8 \$377 - 41	3 4 4 2 3 8	8 7 1 9 8 7 6 2 8 7 8 7 2 8 8	9 9 9 7 9 9 8 9 9	9 9 9 9 9 9 9 6	290 61 588 60 389	91 54 91 35 93 39	7 8 5	67 56
2 1 2 1	S377-41 S377-59 S377-59 W564-3A	8 7 2 4 5 2 5 6	9 9 2 6 7 7 7 2 8 7 7 7 3 7 8 7 6 8 9 5	7 9 9 9 9 7 8 9 9 6 7 9	9 9 9 4	486 73 242 419 378	92 60 88 38 87 50 95 44	7 7 8 6	
1 2 1 2	W564-3A W718 W718	4 3 4 6 6 3	4 3 8 7 5 8 8 2 6 7 9 9 2 8 7	4 6 6 8 9 9 8 9 9	9 9 9 4	487 58 419 65 438 61	94 55 96 63 95 69	6 7 8	45 22
1 2 1	ALLAGASH R ALLAGASH R BELCHIP	4 0 2 1 4 8	4 4 7 5 6 6 4 4 6 6 8 8 2 2 5	8 9 9 7 8 9 7 9 9	9 9 9 5	206 66 342 479 75	94 41 93 48 97 76	7 6 7	13
1 2 1	BELRUS BELRUS BUTTE	2 4 4 3 4 4	4 2 8 5 8 4 2 8 7 8 6 7 4 6 6	9 8 9 9 7 9 6 9 9	9 9 9 3	264 76 359 174	92 36 89 30 57 0	8 8 5	42
2 1 1	BUTTE CAMPBEL-11 CROATAN	8 9 2 3 3 2	7 5 8 7 3 7 9 3 6 8 8 8 2 7 6	4 5 9 8 9 9 6 9 7	9 9 3	423 74 318 69 347 58	67 4 94 63 94 48	5 7 7	33 43
2 1 2 1	CROATAN DENALI GREEN MTN HUDSON	3 3 3 7 8 9 6 9	7 9 2 7 7 8 8 3 8 7 8 8 6 6 3 8 8 2 7 5	5 9 9 8 9 9 3 3 9 6 7 9	9 9 6	419 56 394 81 415 66 431	92 55 96 52 86 25 97 63	7 8 2 7	33 46
1 2 1	JEMSEQ JEMSEQ KATAHDIN	2 4 3 4 2 8	7 7 2 8 7 7 5 6 7 6 8 8 2 6 7	8 9 6 7 9 9 8 9 9	9 9 9 3	290 62 395 66 417	95 72 97 73 95 72	7 6 7	66
2 1 1	KATAHDIN NOR RUSSET NORCHIP	4 6 4 7 2 5	9 9 2 5 7 5 5 7 7 6 8 8 2 5 5	7 9 9 8 6 6 6 9 6	9 9 9 9 9 9 9	517 66 331 352	93 73 86 43 95 33	8 5 5	
2 1 1	NORCHIP ONTARIO PENN 71	3 4 6 9 3 8	8 8 2 7 6 8 7 2 6 7 8 9 2 1 4	5 9 6 8 9 9 5 9 9	9 9 3	487 71 330 65 446	95 67 94 63 97 72	6 6 5	232
2 1 1 2	PENN 71 R BURBANK SUPERIOR SUPERIOR	4 3 5 9 3 5 3 3	9 9 3 3 6 6 4 9 8 2 8 6 3 6 6 7 7 3 5 7	5 9 9 7 1 9 5 9 9 5 8 9	9 9 4	467 70 481 474 447 66	94 62 92 44 96 73 95 62	5 4 7 7	22

NEW YORK STATE (LONG ISLAND)

R.S. Greider, J.B. Sieczka and J.F. Creighton

Long Island Potato Variety Trials, 1980

Background. Four potato variety trials, a spacing experiment involving four clones and a fertility trial involving five lines were conducted at the Long Island Horticultural Research Laboratory at Riverhead, New York. All trials were conducted on a Haven Loam soil. Precut seed was planted on April 25 (Round White #2, Russet and NE107 trials) and May 5-7 (Round White #1, spacing and fertility). Twelve hundred pounds of 7-21-14 fertilizer was applied in a band at planting and 80 lbs. nitrogen was sidedressed. Thimet 15G at 12 lbs. was placed in the seed furrow at planting. Herbicides Lasso, Lorox and Premerge were applied at ground crack and Eptam was applied at layby.

The growing season was unusually hot and dry during July and August. Favorable conditions during May and June allowed early developing clones to generally outperform late developing lines, which were adversely affected by extreme weather conditions during August. Numbered lines also generally outperformed named standard varieties such as Katahdin in this highly unusual growing season. The three to four irrigations supplied to the plot area were generally insufficient for good crop development.

Fungicide and insecticide sprays were applied at weekly intervals during the season beginning in early June. Plots were vine killed on September 5 or September 17. Dates of harvest were September 29 through October 2.

Tubers were graded within a week after harvest. Potato chip samples were fried on October 23.

Treatments were replicated four times except in a few cases where there was only enough seed for three replications. Plots were 15 feet long by two rows wide (four rows wide for fertilizer trials). Rows were 34 inches apart and spacing within the row was nine inches except where spacing was a variable.

L.I. Round White Trial #1. (Table 1.) Thirteen lines from the U.S.D.A. breeding program and the standards Katahdin and Superior were entered in this trial. The numbered lines are all resistant to golden nematode. Very high yielding clones include B8771-6, B9016-20, B8798-20, B8914-8, B-B9019-14, B9097-5 and B8983-5. Lines B8771-6, B9097-5, B8983-5, Superior, B8751-6 all had appearance scores above 8.0. Lines B9097-5, B8983-5 and B8832-3 had exceptionally good chip color scores. Internal necrosis was a problem in several lines, including B8771-6, B8914-8, B8983-5, B8887-1 and most unusually Katahdin. Low percent marketable yield will eliminate lines B9099-5, B8887-1, B9020-18 and B7151-4.

Promising lines which will be retested include B9016-20, B8798-20, B9019-14 and B9097-5.

L.I. Round Trial #2. (Table 2.) Four named varieties and 11 breeding lines from University of Maine, U.S.D.A. and Cornell University were compared in this trial. All lines except the named varieties and B8491-24 are resistant to golden nematode. Lines yielding above 350 cwt. per acre include AF201-25, AF236-1, B8710-16, B7592-1, NY63, and B8491-1. Lines with appearance scores above 8.0 include AF236-1, B8710-16, NY63, B6987-184 and Norland. Line AF236-1 had a superior chip color score.

Internal necrosis was excessive in lines AF201-25 and Michimac and demonstrated a potential problem in B8710-16, NY63, NY61, Katahdin and B8706-7. Lines with low yield or low percent marketable yield include NY61, Katahdin, B8706-7 and Norland. Line B6987-184 had an exceptionally high specific gravity of 1.093. Lines AF236-1 and B8491-1 had greater than 10 percent of total yield over four inches in diameter (chef's). This is very unusual for 1980.

Especially promising lines from this trial include AF236-1, B8710-16, B7592-1, NY63 and B6987-184.

L.I. NE107 Trial. (Table 3.) Nine named varieties and six numbered lines supplied through the Northeast Regional Project 107 were evaluated in this experiment. Lines C7358-14a, AF186-5, AF205-9, CA02-7, Campbell 11, Campbell 13, Wauseon, Hudson and Peconic are resistant to race A golden nematode. Clones giving yields above 350 cwt. per acre were AF92-3, CF7358-14a, B7802-2 and AF186-5. Lines C7358-14a, AF205-9, Campbell 11 and CA02-7 had appearance scores above 8.0. Lines B7802-2, Wauseon and Campbell 11 had very good chip color scores. Peconic was the only variety to have excessive internal necrosis. Line AF92-3, Superior and Kennebec had poor appearance scores. Jemseg, Peconic and CA02-7 had very low marketable yields.

The medium-early maturing line C7358-14a (University of Maine) performed extremely well under our very severe conditions this past season. Other good performers include B7802-2, AF186-5, AF205-9, Hudson and Campbell 11.

L.I. Russet Trial. (Table 4.) Ten long, russet-skinned potato cultivars were tested in this trial. Line B8934-4 is resistant to race A golden nematode. Marketable yield was generally low for all varieties. Tuber size was mostly very small. Only 18 percent of Butte tubers reached the size of four ounces. Internal necrosis was a problem with lines B8934-4 and A68678-1 (Lemhi). Specific gravities were also disappointingly low for most lines. Those with gravities below 1.070 (unacceptable for baking potatoes) were W564-3A, B8934-4, B8847-8 and Allagash Russet. Russet Burbank had only 25 percent marketable yield due to a high degree of under-four-ounce-size and misshapen tubers.

Lines B8972-1, B7583-6 and BelRus show some promise from the standpoint of tuber conformation, specific gravity, and percent marketable yield. BelRus also produced an extremely good potato chip. Yields of russets in 1980 were not high enough to compete in the marketplace with standard round whites.

Long Island Variety/Spacing Trials. (See Table 5.) Five trials were conducted to determine optimum seed spacing for lines C7358-14a, AF205-9, AF186-5 and NY66. Seed tubers were hand planted at seven, nine, and ll inches apart. Some of the seed was inadvertantly cut too small so an additional nine-inch spacing treatment with less than 1.3-ounce seedpieces was added to determine how small seed would affect tuber yields.

Line C7358-14a produced significantly higher yield with large seed size as compared to small seed. There was also a tendency for increased yield with wider spacing (not significant). This is probably related to the hot, dry growing season putting additional stress on the higher population plots. Percent marketable yield was not significantly affected by spacing although there was a trend for higher percent marketables with the wider spacing. Internal defects such as hollow heart were not a problem with this variety.

Line AF205-9 also showed a tendency for increased yield with lower plant populations and large seed. The means, however, are not significantly different. With this clone, percent marketable yield was increased significantly with the 11-inch spacing. This is due to a reduction in under 1-7/8 inch tubers. Internal necrosis tended to be a moderate problem with this line.

Seed spacing had no effect on yield of line AF186-5. There was a trend indicating lower yield with small-sized seed. Percent marketable yield did not vary among treatments and there were no internal defects recorded.

The two spacing treatments had no effect upon yield or percent marketable yield of NY66. Fourteen percent of the tubers cut had internal necrosis.

Long Island Variety/Nitrogen Rate Experiment. (Table 6.) Tuber yield, size distribution and specific gravity for varieties BelRus, Katahdin, Rosa (NY61), B6987-184 and B7583-6 were determined at two rates of nitrogen fertilization. Plots were four rows wide by 25 feet long. Data was taken from the two center rows. A complete analysis fertilizer was applied to both treatments at planting. Fifty additional pounds of nitrogen was applied to the high-nitrogen treatment as a sidedress.

Treatments had no significant effect upon yields or specific gravity. However, except for Rosa, there was a tendency for increased yield with increased nitrogen rate. Lack of rainfall and high temperatures were probably greater limiting factors than nutrient availability in 1980.

TT/A	/A TOT.	AL AL	N 000	OF TOTAL OVER U	L YIELD UNDER	3/	4/ HOLLOW	4/ BROWN	4/ INTERNAL		5/ APPR.	VINE	
YIELD ¹ / ₂ YIELD 1-7/8" 4" 1-7/8"	1-7/8" 4"	4"	1	1-7/8	=	CULLS	HEART	CENTER	NECROSIS	S.G.	RATING	MATURITY	COLOR
$393a^{2/}$ 419 93 3 4	93 3	ю	3 4	7		2	0/40	2/40	17/40	1.078	8.0	M	7.0
389a 415 93 7 6	93 7	93 7 6	9 2	9		0	0/40	0/40	0/40	1.063	7.5	M	7.0
386a 404 93 0 5	404 93 0 5	93 0 5	0 5	5		1	0/40	0/40	5/40	1.084	7.7	Ц	5.0
360ab 413 87 0 10	87 0 1	0	0 10	10		3	0/30	0/30	17/30	1.076	7.6	ML	6.5
357abc 384 93 0 6	93 0	0	9 0	9		1	0/40	1/40	2/40	1.066	7.0	ы	7.0
353abc 380 93 2 6	93 2	2	2 6	9		0	0/40	0/40	1/40	1.074	8.2	凶	5.5
348abcd 384 90 1 8	90 1	1	1 8	∞		1	0/40	0/40	1/40	1.087	8.2	ML	5.5
340abcd 427 79 0 7		7 0 67	0 7	7		13	0/40	0/40	0/40	1.078	5.5	ML	0.9
324abcde 379 85 2 12	379 85 2	7	2 12	12		2	2/40	0/40	12/40	1.076	7.7	M	0.9
321abcde 362 88 0 10	362 88 0	0	0 10	10		2	0/40	0/40	1/40	1.070	8.0	ME	13
297bcde 333 89 0 10	0 68	0	0 10	10		1	0/40	0/40	1/40	1.069	7.7	Ц	0 -
285cde 311 91 0 7		91 0 7	0 7	7		1	0/40	0/40	0/40	1.071	8.0	ME	7.0
279de 340 82 3 9		82 3 9	3 9	6		6	0/40	1/40	07/9	1.062	7.5	M	7.5
277de 332 83 1 13	83 1	1	1 13	13		13	0/40	1/40	0/40	1.078	5.2	L	7.0
253e 289 87 3 11		87 3 11	3 11	11		1	1/40	0/40	2/40	1.075	7.5	M	5.5

Means followed by the same letter are not significantly different at .05 level, Duncan's New Multiple Range Test. Culls include tubers with sunburn, growth cracks, knobs, enlarged lenticels, etc. 14|3|5|1

Ten tubers between 3 and 4 inches from each replication were cut and inspected for hollow heart, brown center and internal necrosis. Numerator = number of tubers with defect. Denominator = total number of tubers observed.

Based on 1-10 scale, 10 being perfect conformation.

VE = very early; E = early; ME = medium early; M = mid-season; ML = medium late; L = late; VL = very late. Chip colors are based upon a scale of 1 = very light; 10 = very dark. Values of 6.5 and below are considered acceptable. 1/6/

LONG ISLAND ROUND TRIAL NO. 2. TABLE 2.

$\frac{7}{\text{CHIP}}$	2	2	2	2	10	0	0	C		31 -		0	0	0	0
	6.5	5.5	6.5	6.5	7.5	7.0	7.0	7.0	0.9	0.9	0.9	6.0	7.0	7.0	7.0
$\frac{6}{\text{VINE}}$ MATURITY	ı	П	ы	ı	ı	L	M	П	L	П	I	ME	П	ML	VE
5/ APPR. RATING	7.5	8.2	8.5	7.5	8.2	6.5	7.0	7.0	7.5	8.0	7.0	7.0	7.7	6.2	8.0
S.G.	1.076	1.076	1.068	1.079	1.073	1.076	1.075	1.077	1.071	1.093	1.069	1.074	1.069	1.079	1.058
1NTERNAL NECROSIS	8/40	1/40	2/40	1/40	07/9	0/40	0/40	0/40	07/7	3/40	07/6	0/40	4/30	07/9	1/40
4/ BROWN CENTER	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	07/0	0/40	0/30	0/40	0/40
4/ HOLLOW HEART	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/30	0/40	0/40
$\frac{3}{\text{CULLS}}$	٣	2	4	2	3	3	1	2	1	1	1	2	1	15	2
L YIELD UNDER 1-7/8"	9	7	7	10	9	4	9	5	14	6	6	11	14	6	11
OF TOTAL YIELD OVER UNDER 4" 1-7/8"	8	12	2	2	7	18	7	2	П	4	1	-	1	9	1
% MKT. OVER 1-7/8"	06	91	88	87	91	92	92	06	84	06	06	87	84	92	86
A TOTAL YIELD	467	435	439	422	401	394	377	374	393	364	354	317	319	328	284
CWT/A MKT. YIELD ¹ /	423a ² /	396ab	388abc	370abcd	365abcd	364abcd	348bcd	336bcde	331cdef	327cdef	322def	275efg	272fg	256g	245g
LINE	1. AF201-25	2. AF236-1	3. B8710-16	4. B7592-1	5. NY63	6. B8491-1	7. B8491-24	8. NY66	9. NY61	10. B6987-184	11. Michimac	12. Superior	13. Katahdin	14. B8706-7	15. Norland

Means followed by the same letter are not significantly different at .05 level, Duncan's New Multiple Range Test. Culls include tubers with sunburn, growth cracks, knobs, enlarged lenticels, etc. 14/3/5/1

Ten tubers between 3 and 4 inches from each replication were cut and inspected for hollow heart, brown center and internal necrosis. Numerator = number of tubers with defect. Denominator = total number of tubers observed.

Based on 1-10 scale, 10 being perfect conformation.

VE = very early; E = early; ME = medium early; M = mid-season; ML = medium late; L = late; VL = very late. Chip colors are based upon a scale of l = very light; 10 = very dark. Values of 6.5 and below are considered acceptable. 5/2/2/

TABLE 3. LONG ISLAND NE 107 TRIAL

ايم ا									- :	132	-				
CHIP COLOR	0.9	0.9	5.5	0.9	0.9	5.5	6.5	7.5	6.5	0.9	6.5	5.5	7.0	0.9	6.5
6/ VINE MATURITY	W	ME	ы	ML	ME	ML	ML	VL	Ц	ы	ML	M	VE	ME	Г
APPR. RATING	6.2	0.6	7.0	7.5	7.2	7.2	8.5	6.7	7.7	6.5	7.5	8.0	8.7	7.5	8.0
S.G.	1.069	1.068	1.069	1.076	1.072	1.075	1.082	1.075	1.076	1.073	1.069	1.079	1.071	1.084	1.069
4/ INTERNAL NECROSIS	3/40	0/40	0/40	0/40	0/40	07/7	1/40	0/40	0/40	0/40	0/40	1/40	1/40	07/6	0/40
4/ BROWN CENTER	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40
4/ HOLLOW HEART	0/40	0/40	0/40	1/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	1/40	1/40	0/40	0/40
3/ CULLS	2	1	3	1	2	2	2	П	0	2	1	2	3	П	1
L YIELD UNDER 1-7/8"	5	9	4	6	8	6	8	6	4	7	5	5	5	6	12
OF TOTAL YIELD OVER UNDER 4" 1-7/8"	3	2	0	0	2	0	1	П	4	1	2	1	2		0
% MKT. OVER 1-7/8"	92	93	96	06	06	89	06	06	95	91	96	92	91	89	88
A TOTAL YIELD	461	450	400	393	383	378	374	371	349	364	343	344	312	319	315
CWT/A MKT. YIELD1/	426a ² /	421ab	378abc	354abcd	3 346bcd	338cd	337cd	335cd	333cd	332cd	321cd	1 317cd	286d	284d	277d
LINE	1. AF92-3	2. C7358-14a	3. B7802-2	4. AF186-5	5. Campbell 13 346bcd	6. Wauseon	7. AF205-9	8. Kennebec	9. Hudson	10. Superior	11. Chippewa	12. Campbell 11	13. Jemseg	14. Peconic	15. CA02-7

Means followed by the same letter are not significantly different at .05 level, Duncan's New Multiple Range Test. Culls include tubers with sunburn, growth cracks, knobs, enlarged lenticels, etc.

Ten tubers between 3 and 4 inches from each replication were cut and inspected for hollow heart, brown center and internal necrosis. Numerator = number of tubers with defect. Denominator = total number of tubers observed.

5/ Based on 1-10 scale, 10 being perfect conformation. 6/ VE = very early; E = early; ME = medium early; M = mid-season; ML = medium late; L = late; VL = very late. 7/ Chip colors are based upon a scale of l = very light; 10 = very dark. Values of 6.5 and below are considered

ıtable.

TABLE 4. LONG ISLAND RUSSET TRIAL

	CWT/A	./A		% OF TOTAL YIELD	AL YIELD		4/	/7	/ 1/		5/	/9	1/
ENTI	$\frac{\text{MKT.}}{\text{YIELD}^{1}}$	TOTAL	OVER 4 OZ.	OVER 10 OZ.	UNDER 4 OZ.	$\frac{3}{2}$	HOLLOW HEART	BROWN CENTER	INTERNAL	S.G.	APPR. RATING	VINE MATURITY	CHIP
	/ c												
1. W564-3A	265a ² /	422	62	9	35	1	0//0	0/40	2/40	1.067	8.2	M	7.0
2. B8934-4	250a	331	75	23	17	7	2/40	0/40	16/40	1.068	8.0	ML	0.9
3. B8847-8	236a	336	70	111	19	10	0/40	0/40	07/0	1.068	6.5	ы	7.5
4. B8972-1	219a	278	62	21	18	3	2/40	2/40	07/0	1.070	0.6	ME	6.5
5. B7583-6	215a	314	89	6	32	0	0/40	0/40	4/40	1.075	8.0	IJ	8.0
6. Allagash Russet 209a	209a	281	73	111	24	2	0/40	0/40	2/40	1.064	7.5	田	0.9
7. A68678-1	209a	320	99	9	30	7	0/40	0/40	10/40	1.079	7.0	VL	7.0
8. BelRus	126b	195	9	4	29	7	07/0	0/40	1/40	1.072	8.5	ম	5.0
9. Russet Burbank	57c	225	25	0	36	38	0/40	0/40	2/40	1.075	4.5	IJ	7.5
10. Butte	28c	154	18	0	62	3			1	1.082	5.5	VL	7.5

Means followed by the same letter are not significantly different at .05 level, Duncan's New Multiple Range Test. Culls include tubers with sunburn, growth cracks, knobs, enlarged lenticels, etc.

Ten tubers between 3 and 4 inches from each replication were cut and inspected for hollow heart, brown center and internal necrosis. Numerator = number of tubers with defect. Denominator = total number of tubers observed.

Based on 1-10 scale, 10 being perfect conformation.

VE = very early; E = early; ME = medium early; M = mid-season; ML = medium late; L = late; VL = very late. Chip colors are based upon a scale of l = very light; 10 = very dark. Values of 6.5 and below are considered acceptable. 1/6/7

SPACING TRIALS, LONG ISLAND - 1980 TABLE 5.

LINE	SPACING	SEED	MKT. XIELD1/	TOTAL	% MKT. YIELD	% OVER 4"	% UNDER 4"	$\frac{4}{4}$ HOLLOW	$\frac{4/}{\text{BROWN}}$ CENTER	$\frac{4}{\text{INTERNAL}}$ NECROSIS
C7358-14a	111	large	$287a^{2/}$	307	$93a^{2}/$	1		0/40	0/40	0/40
C7358-14a	6	large	284a	307	92a	0	8	0/40	0/40	0/40
C7358-14a	7	large	270ab	297	91a	0	6	0/40	0/40	0/40
C7358-14a	6	smal1	237b	256	92a	2	∞	0/40	07/0	1/40
AF205-9	11	large	264a	298	88a	0	12	0/40	0/40	5/40
AF205-9	6	large	233a	275	84ab	0	15	0/40	0/40	2/40
AF205-9	6	sma11	219a	254	85ab	0	14	0/40	0/40	3/40
AF205-9	7	large	209a	253	82b	0	18	0/40	0/40	3/40
AF186-5	11	large	277a	300	92a	0	∞	0/40	0/40	0/40
AF186-5	6	large	275a	299	91a	1	80	07/0	0/40	0/40
AF186-5	7	large	273a	300	91a	0	6	0//0	0/40	0/40
AF186-5	6	small	257a	282	91a	П	6	0/40	0/40	0/40
99XN	6	large	356a	370	96a	1	3	0/20	0/20	8/50
NY66	7	large	352a	365	96a	0	4	0/20	0/20	05/9

1/ Marketable yield = yield of U.S. No. 1 tubers over 1-7/8" in diameter. 2/ Means followed by the same letter are not significantly different at .

Means followed by the same letter are not significantly different at .05 level, Duncan's New Multiple Range Test.

Ten tubers between 3 and 4 inches from each replication were cut and inspected for hollow Numerator = number of tubers with defect. Denominator = total number of tubers observed. heart, brown center and internal necrosis. /4/

The effect of nitrogen rate on tuber yield, size distribution and specific gravity Specific Gravity 1.082 1.082 (ns) 1.065 1.064 (ns) 1.068 1.069 (ns) 1.076 1.079 (ns) 1.088 1.091 (ns) (>16 oz)00 0 0 .. 74 (10-16 oz)15 of Total Yield BelRus, Katahdin, Rosa, B6987-184, and B7583-6. 1-7/8-4" 4-10 oz) 38 90 83 88 92 **<**1-7/8" zo 4>) 47 17 19 \square 12 ω φ (4-16 oz)1-7/8-4" Yield (cwt/A) 216 228 (ns) 100 124 (ns) 183 174 242 253 252 261 (ns) (ns) (ns) Total 264 286 (ns) 190 193 239 254 220 214 274 289 (ns) (ns) (ns) (ns) TABLE 6. LONG ISLAND. 1bs N/A 100 150 100 150 150 200 100 150 100 150 Treatment B6987-184 Katahdin B7583-6 BelRus Clone Rosa

NEW YORK STATE (LONG ISLAND)

R.S. Greider

Post Harvest Evaluations of 1979 Potato Variety Material, Long Island

Potato varieties and breeding lines from the 1979 Long Island variety trials were evaluated for the following quality attributes: percent shrink during six-month storage period, general appearance after storage, and susceptibility to internal blackspot disorder. Results of these tests are given in the following report.

Internal Blackspot. Blackspot was inflicted by dropping a metal pin of 175 grams onto the stem end and the side of 24 tubers from a height of 30 cm. Tubers had a temperature of 5° C (40° F) at moment of treatment. Blackspot was assessed 24 hours later after slicing potatoes until highest color intensity was reached. The following scale was used: 0 = no blackspot, 1 = very weak, 2 = weak, 3 = moderate, 4 = severe, 5 = very severe discoloration. Individual scores were added up and divided by number of tubers (24), This test was conducted on April 28, 1980.

Blackspot ratings were not particularly severe. Varieties with moderate black-spot ratings include Superior, Batoche, Bison, Alaska Red and B8932-2. Lines which exhibited a high degree of freedom from blackspot are Hudson, CA02-7, B7744-5, 4Q61-12, Onaway, Campbell 11, 8YW-1, B8779-1, NY63, B6986-2, R471-62, CD138-4R, MaineRus and Centennial Russet. Line NY63 showed almost a complete tolerance to blackspot.

Weight loss and appearance after storage data was lost for the NE107 early, red, mid-season, and late round white trials. Weight loss was not particularly high except for two early russeted varieties -- BelRus and Centennial Russet. These varieties were badly shriveled when removed from storage.

TABLE 1. Test results (arranged by order of decreasing marketable yield within each experimental group).

VARIETY	BLACKS END	SPOT SIDE	TUBER CONFORM	1ATION 4/30	% WEIGHT LOSS 189 DAYS 40° F
NE107 Early Trial					
Denali B7802-2 AF186-5 CROATAN AF238-21 CF26-1 CF7358-14 B6969-2 Superior Campbell 11	2.21 2.00 1.21 2.31 1.63 2.36 1.92 2.17 3.08 1.92	1.26 1.68 1.83 1.45 1.68 1.63 1.04 0.88 1.79 1.36	6.0 9.0 8.0 6.0 4.0 7.0 7.0 7.0 7.0	 	
Jemseg NE107 Late Trial	2.38	1.75	9.0		
Hudson AF92-3	1.44	0.48	7.0 7.0	7.0 7.0	6.0 5.5
Kennebec AF205-9 CF7356-13 CA02-7 CF72107-3 BR7088-18 F69016 CD106-16 AF186-2 B6987-184	1.39 1.83 1.79 1.42 2.29 1.63 2.13 1.71 1.67 2.04	1.88 0.71 0.63 0.79 0.48 0.46 0.96 1.08 2.04 1.38	5.0 7.0 7.0 8.0 8.0 7.0 6.0 6.0 7.0	4.0 7.0 8.0 8.0 7.0 8.0 6.0 7.0	5.7 4.4 4.7 4.6 4.2 4.7 3.2 4.6 4.1 3.7
Red Trial					
B7744-5 Batoche Chieftain Bison Alaska Red Norland	1.17 3.21 2.83 3.50 3.46 2.17	0.48 3.63 2.58 2.29 1.56 0.46	5.0 6.0 9.0 9.0 7.0 8.0	 	
Early Round Whites					
4Q61-12 CS73132-2 4Q74-12 Onaway B8884-7 B8907-3 B8711-2 B8710-16 Chippewa	0.96 2.88 2.25 0.79 2.42 2.46 2.92 2.33 2.04	0.30 1.79 1.96 0.48 0.37 1.79 0.60 1.25 0.42	7.0 8.0 8.0 6.0 7.0 8.0 9.0 9.0	3.0 7.0 7.0 3.0 7.0 8.0 7.0 9.0 4.0	3.3 1.7 2.1 2.1 3.9 2.6 2.9 1.9 2.5

VARIETY	BLACKS END	SPOT SIDE	TUBER CONFORM	MATION 4/30	% WEIGHT LOSS 189 DAYS 40° F
Early Round Whites	continued				
B8710-11 Campbell 11 B7200-33 B8932-2 AS201-10 Q94-25	2.65 1.35 1.63 3.04 2.58 2.18	1.63 0.33 0.83 1.75 0.62 0.73	9.0 9.0 9.0 8.0 9.0 7.0	8.0 9.0 8.0 9.0 9.0	1.5 3.4 2.3 0.5 0.8 2.2
Mid-Season Round W	hites				
4Q61-8 Q53-5 Q54-11 B7592-1 8YW-1 B8491-24 NY61 Katahdin NY65 CS7212-4 B7805-1 B8689-6 R471-89 B8779-1	2.21 2.81 2.52 2.32 1.23 1.79 1.68 1.63 2.50 1.71 2.29 2.54 1.76 1.21	1.42 1.58 1.36 1.32 1.24 1.04 0.83 0.92 2.46 0.21 1.65 1.17 0.96 0.58	5.0 5.0 5.0 6.0 7.0 6.0 7.0 6.0 8.0 8.0 8.0 8.0		
Late Round Whites					
NY63 8YY-1 8YY-3 AS201-4 B6986-2 NY66 NY64 R471-62 CS73107-8 B8877-1 8NW-8 Katahdin R471-8 B8690-12 B8491-1	0.29 1.96 1.92 1.88 1.38 1.52 2.71 1.50 1.83 2.21 2.04 1.63 1.96 1.75	0.13 0.41 0.88 0.71 0.25 0.79 1.29 0.40 0.38 1.42 1.00 0.74 0.54 0.38 0.38	6.0 6.0 4.0 7.0 7.0 8.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 8.0		
Russets					
CD138-4R R. Burbank MaineRus Norgold L B7583-6 Centennial Be1Rus	1.25 1.96 1.46 1.57 1.54 1.17 2.42	1.20 0.63 0.46 0.63 0.75 0.54	7.0 6.0 6.0 6.0 6.0 8.0	7.0 5.0 7.0 7.0 7.0 7.0	5.0 3.6 2.7 3.8 2.8 7.1 8.9

NEW YORK (Long Island) B.A. Taborsky

Evaluation of Potato Cultivars and Breeding Lines for Scab Resistance at Riverhead, New York in 1980.

One hundred seventy seven cultivars and breeding lines were evaluated for scab resistance at Cornell University's L.I. Horticultural Research Laboratory in Riverhead, New York. Seed sources included the NE 107 Regional Potato Improvement Project, the University of Maine, Canada Dept. of Agriculture at Fredericton, N.B., USDA Potato Breeding Project, Pennsylvania State University and Cornell University.

The Haven loam soil was naturally infested with <u>Streptomyces scabies</u> and has been maintained at a pH of about 5.6 to 6.8 with applications of lime each spring. The 10-hill single-row plots were hand-planted on May 9. Seedpieces were spaced 12 inches apart. Each test plot was paired with one of the Chippewa cultivar, which was machine-planted with seedpieces spaced about 9 inches apart. All rows were 34 inches apart. 7-14-21 fertilizer was applied at 1200 lb/A as the furrows were opened and Thimet 15G at 13.3 lb/A was applied when furrows were closed. Weeds were controlled with normal cultivation and a broadcast application of Lasso at 2 qt/A and Lorox at 2 lb/A on May 9 and of Eptam at 33 lb/A on June 16. Foliar sprays were applied as needed for insect and disease control. Plots received approximately one inch of water by overhead sprinkler irrigation on June 27 to supplement rainfall. Plants were rotocut on September 8 and tubers harvested on September 9.

Forty tubers, or all if less than 40 were available, from each 10-hill plot were washed and examined for scab lesions. Each tuber was scored 0 (no lesions) to 4 (deep pits) for type of scab present and 0 (no scab) to 5 (61% or more) for surface area covered by scab lesions. These values were converted to individual tuber indices that ranged from 0 (no scab) to 140 (61% or more of surface area covered by deep pitted scab). The scab index for each plot was calculated by dividing the sum of the individual tuber indices by the number of tubers examined. The index for each cultivar and breeding line in the replicated trial was determined by calculating the average of the two plots. A scab index ratio was calculated for each cultivar and breeding line by dividing the index of the cultivar or breeding line by the index of their respectively paired Chippewa plots and multiplying the quotient by 100. The ratio allows one to determine quickly which cultivars or breeding lines were more or less resistant to scab than Chippewa and to compare one with another.

Approximately 5.5 inches of rain fell during the months of May and June, resulting in lower than normal soil moisture during and shortly after tuberset for most cultivars and breeding lines. Environmental conditions were favorable for scab during the early stages of tuber development. Scab severity seemed to vary somewhat throughout the field. The cultivars and breeding lines that appeared highly resistant (having a scab index ratio of 4.0 or less) were Campbell 13, AF92-3, W564-3A, P0008-1, P0011-3, P0014-2, P0024-1 and T6-21.

Results of breeding lines and cultivars of potatoes grown in soils that were infested with Streptomyces scabies at Riverhead, New York in 1980

		Scab index	8	Type of	scab on	affected tubers	Average lesion	% tuber	% tubers with scap
Cultivar or breeding line	line	[ratio <u>1</u> /	line	Chipp- ewa	line	Chipp- ewa	line	Chipp-
	10-hill,	non-replica	plicated, 40 tul	tubers:					
Allagash Russet	0.2	•	8.0	2	2	2.0	2.3	10.0	35.0
Belrus	6.0	2.5	36.0	2	2	2.0	2.2	35,3	50.0
Butte	0.5		10.6	2	2	2.0	2.0	12.5	54.8
Campbell 11	2.0		181.8	2	2	2.2	2.5	0.44	20.5
Campbell 13	0.2		3,8	2	2-3	2.0	2.4	10.0	52.5
Hudson	1.3		56.5	2	2	2.0	2.0	33,3	40.5
Jemseg	0.4		10.5	2	2	2.0	2.1	22.5	62.5
Kennebec	1.2		54.5	2	2	2.0	2.1	42.5	50.0
Michimac	3.4		64.2	2	2	2.1	2.2	67.5	70.0
Peconic	3,5		6.44	2-3	2-3	2.2	2.2	67.5	0.06
Russet Burbank			9.3	2	2-3	2.0	2.2	14.3	87.5
Superior	1.0	7.8	12.8	2	2	1.9	2.1	35.0	82.5
Wauseon	0.8		14.8	2	2	2.0	2.2	25.0	82.5
A68678-1	0.8		7.8	7	2-3	2.0	2.2	30.0	7.46
AF92-3		5.6	3.6	2	2	2.3	2.0	7.7	73.0
AF186-5	1.8		20.9	2-3	2	2.1	2.1	52.5	0.06
AF205-9	2.3	6.9	33,3	7	2	2.0	2.2	69.2	85.2
B7583-6	2.8		32.6	2	2-3	2.0	2.2	59.4	0.06
B7802-2	3.6		35,3	2	2	2.1	2.2	50.0	87.5
C7358-14A	2.4	8,4	œ	7	2-3	2.0	2.1	55.0	87.1
CA02-7	1.5	16.2	9.2	2	2-3	2.2	2.3	21.4	95.0
W564-3A	0.1	11.0	6.0	2	2-3	2.0	2.2	2.5	0.06
AF236-1	5.8	11.0	52.7	2	2	2.0		75.8	100
AF307-5	11.0	13.6	80.9	2-3	2-3	2.2	2.2	100	92.3

Tatio Iine ewa Iine Eughor III 2-3 2-3 2.6 2.0 10.2 2 2.3 2.3 2.3 2.3 2.0 2.0 2.3 3.3 2.2 2 2.3 2.0 2.3 3.3 2.2 2 2.3 2.0 2.3 3.3 2.2 2 2.3 2.0 2.3 2.3 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.2 2.3 2.0 2.0 2.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4			Scab index	×	Type of Majority	f scab on of lesion	affected tubers s Average lesi	tubers e lesion	% tube	tubers with scab
Hine Line Line			Chipp-			Chi				
6.5 9.2 70.6 2-3 2 2.6 2.0 100 19.7 9.8 201.0 2-3 2 2.6 2.0 100 16.3 11.4 77.2 2-3 2-3 2.1 2.3 100 16.3 11.8 186. 24.4 2 2-3 2.1 2.3 100 3.8 15.6 175.0 2 2-3 2.1 2.3 100 17.8 8.8 20.3 3 2-3 2.2		line	ема	a۱	line	ewa	i,	ема	line	ема
19,7 9,8 201.0 2-3 2.6 2.0 100 16,3 11.4 77.2 2-3 2-3 2.1 2.3 100 16,3 11.4 138.1 2-3 2-3 2.0 2.4 75.0 3,8 15.6 175.0 2 -3 2.3 2.0 2.4 75.0 17,8 8.8 202.3 3 2-3 2.0 2.4 75.0 17,8 8.8 202.3 3 2-3 2.0 2.2 95.5 2,0 10.0 20.0 2 2 2 2.0 2.3 37.5 2,0 10.1 10.2 2.0 2 2 2.0 2.3 37.5 4,0 8.2 48.8 2 2 2 2 2 2 2 2 5,1 2.3 3.7 3 2 2 2 2 2 6,2 3.8 10.7 2 2 2 2 2 2 7,0 8.2 11.6 2 2 2 2 2 1.0 9.7 10.3 2 2 2 2 1.0 9.7 10.3 2 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 2 1.0 9.7 10.3 3 1.0 9.7 10.3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.7 10.3 3 1.0 9.8 8.8 9.1 3 1.0 9.8 8.8 9.1 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0 9.7 9.7 3 1.0	8036	6.5	•		- 1	2			79.2	0
8.8 11.4 77.2 2 2-3 2.1 2.3 96.4 3.8 15.6 24,4 2 2-3 2.3 2.0 2.4 75.0 3.8 15.6 24,4 2 2-3 2.0 2.4 75.0 3.8 15.6 24,4 2 2-3 2.0 2.4 75.0 3.8 15.6 202.3 3 2-3 2.0 2.4 75.0 2.0 10.0 20.0 2 2 2.2 2.0 2.3 55.0 2.0 10.1 10.0 20.0 2 2 2.0 2.3 37.5 4 4.0 8.2 48.8 2 2 2-3 2.0 2.3 37.5 5.0 10.2 10.2 19.6 2 2 2.3 2.0 2.3 37.5 5.0 10.2 10.2 19.6 2 2 2.3 2.0 2.3 37.5 5.0 10.3 10.3 2 2 2-3 2.0 2.3 37.5 5.0 10.4 40.2 2 2 2 2.3 2.0 2.3 37.5 5.0 10.0 9.7 10.3 2 2-3 2.0 2.3 10.0 5.0 4,4 13.6 2 2 2 2.3 2.0 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 6 4,4 13.6 2 2 2 2.3 2.0 2.0 5.0 11.1 10.1 2.1 2.3 2.3 2.0 2.0 5.0 6 7.8 8.6 10.7 2 2-3 2.0 2.0 2.0 5.0 6.0 1.8 8.8 15.9 2 2 2 2 2 2 2 2 2 2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.0 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.0 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.0 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.0 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.0 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2-3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.7 3-4 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.4 47.2 5.0 10.0 10.1 10.1 2.3 2-3 2.3 2.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	1076	19.7	•		-	2		•	100	4
16.3 11.8 138.1 2-3 2-3 2.3 2.3 100 9.8 15.6 14.4 2 2-3 2.0 2.4 75.0 9.8 15.6 175.0 2 2 2.1 2.2 3.7 4.3 3.2 3.2 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 3.3 4.4 4.0 8.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 <td>3068</td> <td>8.8</td> <td>•</td> <td></td> <td>2</td> <td>2-3</td> <td>•</td> <td>•</td> <td>96.4</td> <td>5.</td>	3068	8.8	•		2	2-3	•	•	96.4	5.
3.8 15.6 24.4 2 2-3 2.0 2.4 75.0 17.8 8.8 202.3 3 2-3 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 37.5 2.3 37.5 <td< td=""><td>73092</td><td>16.3</td><td>11.8</td><td></td><td>-</td><td>2-3</td><td>•</td><td>•</td><td>100</td><td>87.5</td></td<>	73092	16.3	11.8		-	2-3	•	•	100	87.5
9.8 5.6 175.0 2 2.3 2.2 2.0 2.2 97.5 17.8 8.8 202.3 3 2-3 2.6 2.2 95.0 2.0 10.0 200.3 2 2 2 2.0 2.3 97.5 2.0 11.6 6.9 2 2 2 2.3 37.5 4.0 8.2 48.8 2 2 2 2 3.3 37.5 4.0 8.2 48.8 2 2 2 2 3.3 37.5 4.0 8.2 48.8 2 2 2 2 3.3 37.5 4.0 0.8 10.9 7.3 2 2.3 2.0 2.3 10.0 2 2 2 3.3 10.0 2 2 2 3.3 10.0 2 2.3 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0	7 3 0 9 9	3.8	15.6		2	2-3		•	75.0	0
17.8 8.8 202.3 3 2-3 2.6 2.2 95.0 0.8 11.6 6.9 2 2 2.0 2.3 52.5 0.8 11.6 6.9 2 2 2 2.0 2.3 52.5 2.0 10.1 19.6 2 2 2 2 37.5 43.8 4.0 8.2 48.8 2 2 2 2 43.8 43.8 5.3 10.9 7.3 2 2 2 2 43.8 43.8 6.8 10.9 7.3 2 2 2 10.0 43.8 10.0	74016	9.8	5.6		2	2	•	•	97.5	0
2.0 10.0 20.0 2 2 2.0 2.3 52.5 0.8 11.6 6.9 2 2 2 2.0 2.3 52.5 2.0 10.2 10.2 2 2 2 3.3 37.5 4.0 8.2 48.8 2 2 2 1 43.8 37.5 5.3 10.9 7.3 2 2 2 1 43.8 10.0 6.2 10.9 7.3 2 2 1.8 2.0 2.3 10.0 6.2 3.8 10.9 2 2 1.8 2.0 2.3 10.0 6.2 3.8 163.2 2 2 2.0 2.3 10.0 6.2 3.8 163.2 2 2 2 2 2 2.0 2.3 2.0 2 2 2 2 2 2.3 2.0 2 2 2 2 2	74123	17.8	8.8		e	2-3		•	95.0	2.
0.8 11.6 6.9 2 2 2.0 2.3 37.5 2.0 10.2 19.6 2 2-3 2.1 2.1 43.8 4.0 8.2 48.8 2 2-3 2.1 2.1 6.2 43.8 6.8 10.9 7.3 2 2-3 2.0 2.3 10.0 67.5 6.2 3.8 10.9 7.3 2 2 2.1 2.1 67.5 67.9 6.2 3.8 10.9 7.3 2 2 2 2.3 10.0 62.5 </td <td>7 5009</td> <td>2.0</td> <td>•</td> <td></td> <td>2</td> <td>2</td> <td>•</td> <td>•</td> <td>52.5</td> <td>7</td>	7 5009	2.0	•		2	2	•	•	52.5	7
2.0 10.2 19.6 2 2-3 2.1 2.2 43.8 3.4 4.0 8.2 48.8 2 2-3 2.1 2.1 67.5 6.8 10.9 7.3 2 2-3 2.0 2.3 10.0 7.3 2.2 2.3 2.0 2.3 10.0 58.3 6.2 3.8 10.9 7.3 2 2-3 2.0 2.3 10.0 6.2 3.8 11.1 77.5 2-3 2.2 2.2 2.1 57.9 58.3 1.0 4.4 13.6 2 2 2.3 2.1 57.9<	7 5040	0.8	•		2	2	•	•	37.5	2.
44.0 8.2 48.8 2 2-3 2.0 2.3 10.0 2.3 10.9 7.3 2 2-3 2.0 2.3 10.0 2.3 8.2 28.0 2 2 1.8 2.0 2.3 10.0 3.9 9.7 40.2 2 2 2.3 2.2 2.3 10.0 58.3 6.2 3.8 163.2 2 2 2.3 2.2 57.9	788-1	•	•		2	2-3	•	•	43.8	0
0.8 10.9 7.3 2 2-3 2.0 2.3 10.0 2.3 8.2 28.0 2 2 1.8 2.0 58.3 4, 9.2 3.9 7.40.2 2 2 2.3 2.2 57.9 6, 2 3.8 163.2 2 2 2.1 2.1 2.1 92.5 8.6 11.1 77.5 2-3 2-3 2.3 2.3 62.5 92.5	5987-184	4.0	•	48.8	2	2		•	67.5	2.
2.3 8.2 28.0 2 1.8 2.0 58.3 3.9 9.7 40.2 2 2 2.3 2.2 57.9 6.2 3.8 163.2 2 2 2.3 2.2 57.9 8.6 11.1 77.5 2-3 2-3 2.3 2.0 20.5 1.0 4.4 13.6 2 2 2.3 2.0 20.6 1.0 9.7 10.3 2 2 2.3 2.0 20.6 1.0 9.7 10.3 2 2 2.3 20.0 20.3 31.4 1.0 9.7 10.3 2 2 2.0 2.3 31.4 42.5 1.0 9.7 10.3 2 2.3 2.0 2.1 42.5 2 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	7592-1	8.0		7.3	2	2-3		•	10.0	5.
4 3.9 9.7 40.2 2 2.3 2.2 57.9 6.2 3.8 163.2 2 2 2.1 2.1 92.5 8.6 11.11 77.5 2-3 2-3 2.3 2.0 2.3 62.5 1.0 4.4 13.6 2 2 2.0 2.3 3.0 62.5 1.0 9.7 10.3 2 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.0 2.1 42.5 1.5 6.8 130.2 2 2 2.0 2.4 42.5 1.1 8.6 130.2 2 2.2 2.0 2.2 2.1 100 4.6 6.9 66.7 2 2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	3491-1			28.0	2	2		•	58.3	7
4 6.2 3.8 163.2 2 2.1 2.1 92.5 8.6 11.1 77.5 2-3 2-3 2.8 2.3 62.5 0.6 4.4 13.6 2 2 2.0 2.0 20.6 1.0 9.7 10.3 2 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.0 2.1 75.0 1.6 13.2 12.1 2 2 2.0 2.4 42.5 1.1.2 8.6 130.2 2 2 2 2 2 2.1 10.0 4.6 6.9 66.7 2	3491-24			40.2	2	2		•	57.9	95.0
8.6 11.1 77.5 2-3 2-3 2.8 2.3 62.5 0.6 4.4 13.6 2 2 2 2.3 2.0 20.6 1.0 9.7 10.3 2 2 2.0 2.0 2.4 42.5 1.5 6.0 116.7 2-3 2-3 2.0 2.4 42.5 2.5 6.8 36.8 2 2-3 2.0 2.4 42.5 11.2 8.6 130.2 2 2 2.3 2.0 2.4 42.5 2.8 10.7 54.2 2 2.3 2.0 2.2 77.5 3.8 8.4 45.2 2 2 2.3 2.0 2.2 77.5 14.5 5.7 254.4 2-3 2.3 2.1 2.2 77.5 14.5 5.7 254.4 2-3 2.3 2.3 2.3 2.3 2.3 2.3 10.9 10.1 107.9 3-4 2-3 2.3 2.0 2.4 42.5 3.8 8.8 9.1 2 2-3 2.3 2.3 2.3 2.3 2.3 62.5 3.8 8.8 7.1 18.3 2 2-3 2.0 2.4 87.5 3.8 8.0 10.8 74.1 2-3 2-3 2.0 2.4 87.5 3.2 2.3 7.3 31.5 2 2-3 2.0 2.4 47.2 3.3 2.3 2.3 2.3 2.3 2.4 47.2 3.4 47.2 2.3 2.3 2.3 2.4 47.2 3.5 2.3 7.3 31.5 2 2-3 2.0 2.4 47.2 3.5 2.3 2.3 2.3 2.3 2.4 47.2 3.5 2.3 2.3 2.3 2.4 47.2 3.6 2.5 2.4 47.2 2.3 2.3 2.3 2.4 47.2 3.7 3 31.5 2 2-3 2.0 2.4 47.2 3.8 6.0 10.8 74.1 2-3 2-3 2.0 2.4 47.2 3.9 2.9 2.9 2.0 2.4 47.2 3.0 2.4 47.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2		•	3.8	163.2	2	2		•	92.5	5.
0.6 4.4 13.6 2 2 2.3 2.0 20.6 1.0 9.7 10.3 2 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.0 2.3 31.4 1.6 13.2 12.1 2-3 2.0 2.1 75.0 1.5 6.8 36.8 2 2-3 2.0 2.4 42.5 1.1.2 8.6 130.2 2 2 2 2 2 42.5 2 1.1.2 8.6 130.2 2 2 2 2 2 2 1 42.5 2	3751-6	•	11.1	77.5	2-3	2-3		•	62.5	5.
1.0 9.7 10.3 2 2.0 2.3 31.4 7.0 6.0 116.7 2-3 2 2.6 2.1 75.0 1.6 13.2 12.1 2 2-3 2.0 2.4 42.5 2.5 6.8 36.8 2 2-3 2.0 2.2 2.1 100 4.6 6.9 66.7 2 2-3 2.1 2.2 2.1 100 4.6 6.9 66.7 2 2-3 2.1 2.2 2.1 100 5.8 10.7 54.2 2 2 2.2 2.1 100 6.6 7.8 84.6 2 2 2.2 <td>3832-3</td> <td>9.0</td> <td>4.4</td> <td>13.6</td> <td>2</td> <td>2</td> <td></td> <td>•</td> <td>20.6</td> <td>2.</td>	3832-3	9.0	4.4	13.6	2	2		•	20.6	2.
7.0 6.0 116.7 2-3 2 2.6 2.1 75.0 1.6 13.2 12.1 2 2-3 2.0 2.4 42.5 2.5 6.8 36.8 2 2-3 2.0 2.2 52.5 11.2 8.6 130.2 2 2 2.2 2.1 100 4.6 6.9 66.7 2 2 2 2.1 2.2 31.4 5.8 10.7 54.2 2 2 2 2.2 31.4 42.5 5.8 10.7 54.2 2 2 2 2.2 2.1 2.2 72.5 5.8 10.7 84.6 2 2 2 2.2 2.2 70.0 6.6 7.8 84.6 2 2 2.1 2.2 70.0 14.5 5.7 254.4 2.3 2.3 2.2 2.2 27.5 14.5 5.7 254.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.2 <td>3847-8</td> <td>1.0</td> <td>6.7</td> <td>10.3</td> <td>2</td> <td>2</td> <td></td> <td>•</td> <td>31.4</td> <td>5.</td>	3847-8	1.0	6.7	10.3	2	2		•	31.4	5.
1.6 13.2 12.1 2 - 3 2.0 2.4 42.5 2.5 6.8 36.8 2 2-3 2.0 2.2 52.5 11.2 8.6 130.2 2 2 2 2 2 2 2 2 2 2 2 1100 3	3871-6	7.0	0.9	116.7	2-3	2		•	75.0	5.
2.5 6.8 36.8 2 2-3 2.0 2.2 52.5 11.2 8.6 130.2 2 2 2.2 2.1 100 4.6 6.9 66.7 2 2-3 2.1 2.2 91.4 5.8 10.7 54.2 2 2 2 2.0 2.2 72.5 3.8 8.4 45.2 2 2 2.2 2.2 70.0 4 6.6 7.8 84.6 2 2-3 2.1 2.2 70.0 1.4 8.8 15.9 2 2 2.1 2.2 27.5 14.5 5.7 254.4 2-3 2.2 2.2 2.2 27.5 10.9 10.1 107.9 3-4 2-3 2.2	3887-1	•	13.2	12.1	2	2-3		•	42.5	2.
11.2 8.6 130.2 2 2.2 2.1 100 4.6 6.9 66.7 2 2-3 2.1 2.2 91.4 5.8 10.7 54.2 2 2 2.0 2.2 72.5 3.8 8.4 45.2 2 2 2.2 2.2 70.0 4 6.6 7.8 84.6 2 2-3 2.1 2.2 70.0 4 6.6 7.8 84.6 2 2 2.1 2.2 70.0 5 1.4 8.8 15.9 2 2 2.1 2.2 27.5 14.5 5.7 254.4 2-3 2.3 2.2 2.2 27.5 10.9 10.1 107.9 3-4 2-3 3.3 2.3 2.3 62.5 8 8.8 9.1 2 2-3 2.0 2.4 42.5 9 8.8 9.1 2 2-3 2.0 2.4 47.2 -3 8.0 10.8 74.1 2-3 2-3 2.0 2.4 47.2 -3 2.3 7.3 31.5 2 2-3 2.0 2.4 47.2 <t< td=""><td>3914-8</td><td>•</td><td>6.8</td><td>36.8</td><td>2</td><td>2-3</td><td></td><td>•</td><td>52.5</td><td>5.</td></t<>	3914-8	•	6.8	36.8	2	2-3		•	52.5	5.
4.6 6.9 66.7 2 2-3 2.1 2.2 91.4 5.8 10.7 54.2 2 2 2 2.0 2.2 72.5 3.8 8.4 45.2 2 2 2.2 2.2 70.0 4 6.6 7.8 84.6 2 2-3 2.1 2.2 70.0 1.4 8.8 15.9 2 2 2.1 2.2 77.5 14.5 5.7 254.4 2-3 2.1 2.2 27.5 10.9 10.1 107.9 3-4 2-3 3.3 2.3 62.5 10.9 10.1 18.3 2 2-3 2.0 2.4 42.5 10.8 8.8 9.1 2 2-3 2.0 2.4 42.5 10.8 74.1 2-3 2.3 2.5 2.4 47.2 2.3 2.3 2.3 2.5 2.4 47.2 3 2.3 2.3 2.5 2.4 47.2 2.3 2.3	3934-4	•	8.6	•	2	2		•	100	5.
5.8 10.7 54.2 2 2 2.0 2.2 72.5 3.8 8.4 45.2 2 2 2.2 2.2 70.0 1.4 8.8 15.9 2 2 2.1 2.2 57.1 14.5 5.7 254.4 2-3 2.1 2.2 27.5 10.9 10.1 107.9 3-4 2-3 2.2 2.2 96.6 10.9 10.1 107.9 3-4 2-3 2.2 2.2 2.2 2.5 96.6 10.9 10.1 10.7 3-4 2-3 3.3 2.3 62.5 2.5 10.9 8.8 9.1 2 2-3 2.0 2.4 42.5 8.0 10.8 74.1 2-3 2.3 2.5 2.4 47.2 2.3 2.3 2.3 2.3 2.4 47.2 3 2.3 2.3 2.4 47.2 2 2.3 2.3 2.4 47.2 2 2.3 2.3 2.4 <td>3972-1</td> <td>•</td> <td>6.9</td> <td></td> <td>2</td> <td>2-3</td> <td></td> <td>•</td> <td>91.4</td> <td>4.</td>	3972-1	•	6.9		2	2-3		•	91.4	4.
3.8 8.4 45.2 2 2 2.2 2.2 70.0 6.6 7.8 84.6 2 2-3 2.1 2.2 27.5 1.4 8.8 15.9 2 2 2.1 2.2 27.5 14.5 5.7 254.4 2-3 2.2 2.2 27.5 10.9 10.1 107.9 3-4 2-3 3.3 2.3 62.5 1.3 7.1 18.3 2 2-3 2.0 2.4 42.5 3 8.8 9.1 2 2-3 2.0 2.4 42.5 3 8.0 10.8 74.1 2-3 2.3 2.5 2.4 87.5 2 2.3 2.3 2.0 2.4 47.2 3 3.3 31.5 2 2-3 2.0 2.4 47.2	3983-5	•	10.7	•	2	2		•	72.5	5.
6.6 7.8 84.6 2 2-3 2.1 2.2 57.1 1.4 8.8 15.9 2 2 2 2.1 2.2 27.5 11.4 8.8 15.9 2 2 2 2.1 2.2 27.5 11.4 14.5 5.7 254.4 2-3 2-3 2.2 2.2 2.2 96.6 10.9 10.1 107.9 3-4 2-3 3.3 2.0 2.4 42.5 11.3 7.1 18.3 2 2-3 2.0 2.4 42.5 11.3 8.0 10.8 74.1 2-3 2-3 2.5 2.4 87.5 2.3 2.3 2.3 2.5 2.4 47.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2	016-20	•	8.4	•	2	2		•	70.0	2.
1.4 8.8 15.9 2 2 2.1 2.2 27.5 14.5 5.7 254.4 2-3 2-3 2.2 2.2 2.2 96.6 10.9 10.1 107.9 3-4 2-3 3.3 2.3 62.5 10.9 10.1 18.3 2 2-3 2.0 2.4 42.5 3 8.8 9.1 2 2-3 2.0 2.4 42.5 -3 8.0 10.8 74.1 2-3 2.5 2.4 87.5 -2 2.3 2.3 2.5 2.4 47.2 -2 2.3 2.3 2.5 2.4 47.2	9010-14	9.9	7.8	•	2	2-3		•	57.1	7
14.5 5.7 254.4 2-3 2-3 2.2 2.2 96.6 10.9 10.1 107.9 3-4 2-3 2.2 2.2 96.6 10.9 10.1 107.9 3-4 2-3 2.3 62.5 10.8 7.1 18.3 2 2-3 2.0 2.4 42.5 3 8.0 10.8 74.1 2-3 2.3 2.5 2.4 87.5 2 2.3 7.3 31.5 2 2-3 2.0 2.4 47.2	9097-5	1.4	8.8	•	2	2		•	27.5	5.
10.9 10.1 107.9 3-4 2-3 3.3 2.3 62.5 1.3 7.1 18.3 2 2-3 2.0 2.4 42.5 3 0.8 8.8 9.1 2 2-3 2.0 2.4 22.5 3 8.0 10.8 74.1 2-3 2-3 2.5 2.4 87.5 2.3 7.3 31.5 2 2-3 2.0 2.4 47.2	9069-5	14.5	5.7	54.	2-3	2-3			9.96	7
1.3 7.1 18.3 2 2-3 2.0 2.4 42. 0.8 8.8 9.1 2 2-3 2.0 2.4 22. 8.0 10.8 74.1 2-3 2-3 2.5 2.4 87. 2.3 7.3 31.5 2 2-3 2.0 2.4 47.	326-1		10.1	07.	3-4	2-3		•	62.5	5.
0.8 8.8 9.1 2 2-3 2.0 2.4 22. 8.0 10.8 74.1 2-3 2-3 2.5 2.4 87. 2.3 7.3 31.5 2 2-3 2.0 2.4 47.	77508-1	1.3	7.1	œ	2	- 1	•		2.	Ö
8.0 10.8 74.1 2-3 2.5 2.4 87. $2.3 7.3 31.5 2 2-3 2.0 2.4 47.$	17608-8	0.8	& &	6	2	1	•	•	2.	5.
2 2.3 7.3 31.5 2 $2-3$ 2.0 2.4 $47.$	774135-3	8.0	10.8	4.	2-3	-1	•	•	7	87.5
	F76183-2	2.3	•	_i	2	1	•	•	7	3

.1 2 2 3 2 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.8 8.5 9.8 9.8 9.4
2	53.6 30.3 35.4 27.6 23.5 64.1 81.6 41.1 203.4 40.3 164.3 26.0

				Type of	scab on	fected	pe-		
		scab index		Majority	or resions	Average	16510	% tubers with	with scap
Cultivar or breeding line	line	Cn1pp- ewa	ratio	line	cnipp- ewa	line	cnipp- ewa	line	Chipp- ewa
01.V=0		5.8		6	2	٠ .			ے ا
7-A16		0.00		٥ ر	٥ ر			•	, _
9MB=1	2.6	7.6	34.2	2 2	2-3	2.1	• •		
9MB-3	2.4	4.4		7	2	2.0	2.0	77.5	72.5
T2-2	5.6	7.0	80.0	7	2		2.2	•	
	10.0	0.9		2-3	2		•		
T4-20	5.0	6.8	73.5	2	2	2.2	2.3	87.5	82.5
T4-26	16.4	•		2-3	2	•	•		•
T4-54	•	•	_	2-3	2	•	•		•
T4-74	6.2	•		2-3	2	•	•		•
T4-84		0.6		3	2	•			
T5-8	5.8			2	2	•	•	•	•
T5-10		9.5		2	2	•	•		•
T5-16	1.5	7.8	19.2	2	7	•	•		•
T5-24	2.2	10.4		2	2-3	•	•		
T6-21	0.2	5.7	3.5	2	- 1	•	•		
T7-16	2.6	7.0		2	2	•	•		
T11-29	3.6	3.8		2	2	•	•	•	
T11-53	3.8	7.6	50.0	2	2-3	•	•		
T12-27	8.9	7.1		2		•	•	•	
T12-54	1.4			2	7	•	•		
T12-72		•		2	-	•	•		
T12-76	2.7	11.6		2		•	•		•
T14-20	6.0	4.6		7	2-3	•	•	•	
1	2.3	7.9		7	-	•	•		
	9.9	7.0		2-3		•	•		
	2.9	12.4		2		•	•		•
	1.9	7.6		2-3		•	•		•
T30-21	4. 8	8.9		7	2	•	•		
T30-36	4.4	7.0		2	7	•	•		
30-4	4.2	•		2	1	•	•		•
30-	10.0	•	86.2	2	2-3	•	•		
T30-71	0.8	0.6	$\overset{\bullet}{\infty}$	7	1	•	•		

				Type of	scab on	affected tubers	bers		
		Scab index	×	Majority	of lesions	Average	lesion	% tubers with	s with scab
Cultivar or		Chipp-			Chipp-		Chipp-		Chipp-
breeding line	line	ewa	ratio	line	ема	line	ема	line	ема
T31-38	4.8	7.9	60.8	2	2-3	2.3	2.4	80.0	9, 6
- 1	11.4	10.3	110.7	2	2-3			9.96	
1	•	8.8	63.6	2	2-3	2.3	2.4	6.49	85.0
- 1	3.2	•	39.5	2	2-3	2.2		62.5	86.8
T37-29	•	•		2-3	2		•	85.0	87.5
T39-8	•	4.4		2-3	2	2.5	•	57.5	73.5
T44-11	1.7	8.8	19.3	2	2	2.0	2.2	61.1	87.5
T44-39	•	0.9	•	2	2	2.2		55.0	
T44-40	•	8.0	•	2	2-3	2.1	•	100	67.5
T45-27	•	9.9	25.8	2	2		•	61.5	-
T45-35	•	5.2	19.2	2	2	2.1	•	57.5	65.0
T46-32	•	6.7	62.7	2	2			0.06	94.7
T48-20	•	4.3	107.0	2	2	2.0		85.0	76.7
T53-24	1.2	8.8	13.6	2	2	2.0			
T53-26		7.8	0.6	2	2	2.0		27.5	
T53-47	6.4	10.5	46.7	2	2	2.2		0	91.7
T53-48		0.6	62.2	2	2			85.0	
T53-77	•	14.1	9	က	2			97.5	
T55-49	1.8		•	2	2	2.1	2.2	55.0	85.0
T57-1	•		13.6	2	2-3			2.	
T65-9	•	13.0	40.8	2	2	2.2		72.5	
T66-4	•	13.7		2	2-3			0	
T88-6	•		20.0	2	2			45.0	
T88-22	1.2	•	•	2	2-3			45.0	
T89-5	11.8		173.5	2-3	2	2.5		95.0	87.5
T89-20	3.7	•	36.3	2	2			0.09	
T98-6	2.0	•	9.	2	2			2.	
T272-32	4.0	10.8	•	2	2			82.5	
T275-100	6.4	•	72.0	2	2	2.1	2.3	75.0	88.9

		Scab index	×	Type Majority	of scab on y of lesion	affected s Average	tubers	% tuber	tubers with scab
Cultivar or breeding line	line	Chipp- ewa	ratio	line	Chipp- ewa	1	Chipp- ewa	line	Chipp- ewa
1	1 6	renlications							
	7)	2	•					
NY 59	•		55,3	2	2			•	3
NY 59	1.8		39.1	2	2	2.2	2.2	51.2	
NY 59	6.2	8.3	74.7	2-3	2-3	2.4	2.4	63.8	93.2
NY 61	7.4		9.62	2	2	2.2	2.3	97.5	
NY 61			103.2	2	2			88.8	•
NY 61			75.4	2	2	2.2		93.6	0.06
NY 63			63.8	2-3	2			73.8	•
NY 63			82.9	2	2-3			78.8	86.2
NY 63			9.76	2	2			0.06	86.0
NY 66			26.9	2	2			38.8	80.0
654-6			72.5	2	2-3	2.3		78.4	78.8
054-6			86.8	2	2			71.2	7.68
054-6			41.4	2	2-3			56.2	0.97
054-11			46.4	2	2			71.2	87.3
0155-3			0.96	2	2			82.5	76.2
4Q71-12	•	8.9	70.8	2	2-3	2.2		86.2	82.5
	•		46.2	2	2			55.0	85.0
S303-8	•		32.6	2	2			70.0	85.4
S374-4	•		81.0	2	2			9.97	77.5
S376-1	•		36.2	2	2			65.0	81.0
S376-2	•		27.0	2	2-3			0.09	75.0
S377-8	•			2	2-3	2.1		55.0	82.1
377-	•		36.0	2	2			76.2	82.9
S377-59	•		•	2	2			42.8	6.97

 $\frac{1}{2}$ / Ratio= index for cultivar or breeding line divided by index of paired Chippewa, multiplied by 100

NEW YORK STATE

J. B. Sieczka, C. A. Maatta, J. L. Fendick and D. B. Grad

Results of Potato Variety Trials in Upstate New York 1979-1980

One hundred and four clones were entered in ten replicated experiments in upstate New York by the Vegetable Crops Department in 1980. Six were conducted at the Thompson Vegetable Research Farm at Freeville, New York, on a Howard gravelly loam, two in Wyoming County on mineral soil near Gainesville, New York, and two on muck soil in Orleans County near Elba, New York. One hundred and forty seven clones were entered in two unreplicated observational trials at Freeville, New York.

Field data for 1980 are listed in Tables 1-12. Noteworthy round whites include Denali, Crystal, Michibonne, Michimac, Rosa (NY61), B8715-22, B9016-20, BR7093-23, NY59, S376-2, S377-8, and S377-41. Promising reds are Rideau and ND9403-16R.

Russet clones with high specific gravity and significantly higher marketable yields than the standard Russet Burbank are A68678-1 (Lemhi) and B7583-6 (Russette), however, they both had a high percentage of tubers with hollow heart.

In replicated fertilizer experiments yield of five white skinned and two russeted clones was not affected when nitrogen rates were increased above the base level. In fact, yields of Rosa (NY61), Russette (B7583-6) and B6987-184 were higher at 75 lbs N/A than at 112 or 150 lbs N/A. Belchip and NY59 did not respond to N rates above 100 lbs/A. The standard recommendation of 150 lbs N/A for BelRus, and Monona resulted in yields which were as high as an application of 150 lbs N/A at planting and a sidedress application of 60 lbs N/A when the plants were 4 to 6" tall.

Storage data for 1979 are listed in Tables 13-14. Clones with potato chip market potential are Atlantic. Peconic, Rosa (NY61), B6987-184, B7592-1, B8491-1, B8779-1, B8799-8, B8887-1, BR7093-23, C7232-4, Q94-9, Q94-25, Q155-3, and 4Q61-8.

After-cooking darkening was not a major problem in 1979. However, AF186-5, B6987-184, B8779-1, and BR7093-23 had significantly lower ratings than other clones tested.

Clones that lost more than 10% of total weight due to the combination of sprout weight and general shrinkage are Atlantic, BelRus, Katahdin, Rosa (NY61), AF186-5, B7154-6, B7200-33, B8491-24, B8687-22, B8706-7, B8710-1, B8779-1, B8783-6, B8799-8, B8922-10, B9053-6, Q54-6, and R471-62.

Acknowledgements

Special thanks go to the grower-cooperators who provided time, land and equipment to conduct some of these experiments. Seed was provided by Robert Plaisted, Cornell University; Raymon Webb, USDA; Hugh Murphy, NElO7 in Maine; and Robert Johansen, North Dakota State University; Richard Chase, Michigan State University; and Garry Johnston, University of Guelph.

Bu	Bu	Bu	חלאנת וה אומו אומו א									
Bu SN R-0 MT 88733-5 W RS R-0	Bu	Bu	Clone	Color	Texture	0	Depth	on	Color	Texture	Shape	Depth
## March Mar	## N-HR 0-L SF 88798-20 W S R-0 R R-0 MT 88832-3 BW VS 0-R R-0 MT 88832-3 BW VS 0-R R-0 MT 88832-3 BW VS 0-R R-0 MT 88832-3 BW NS 0-R R-0 MT 88832-3 BW NS 0-R SF 88932-4 BW NS 0-R SF 88932-5 W SS 0-R SF	Name	antic chip	Bu M	SN	R-0 0-R	MT F	1 1	33	RS	R-0 0-R	TM 3
MR RS R-0 MT 88399-8 BW VS O-R R R-0 MT 88891-5 BU SN R R-0 MT 88881-5 BU SN R R-0 MT 88881-5 BU SN R R-0 MT 88881-5 BU SN R R-0 MT 88881-1 BU SN R-0 MT 88934-4 B MR U R S R-0 SF 8993-5 M RS O-R R R R R R R R R R R R R R R R R R R	W	MR S R-0 MT 88799-8 BW VS O-R R-0 MT 88799-8 BW VS N-0 R B8832-3 BU SN R R-0 MT 88881-5 BU SN R R-0 MT 88881-5 BU SN R R-0 MT 88881-1 BU SN R-0 R R-0 MT 88881-1 BU SN R-0 R R-0 MT 88934-4 B MR U R S R-0 SF 89934-4 B MR U R S R-0 SF 89934-5 BU SN O-R R-0 SF 89935-5 W RS O-R R-0 SF 89935-5 W RS N-0 R-0 SF 89935-5 W SN O-R SF 89935-	Rus	: മ	M-HR	1-0	SF		: 3	? S		; <u>~</u>
W S R-0 MT B8832-3 Bu SN R R-0 MT B8832-10 B MR R R-0 SF B8922-10 B LR L L L R R-0 SF B8922-10 B LR L L R R-0 SF B8937-2 B MR R R-0 SF B8937-2 B MR R R R-0 SF B9937-2 B MR R R R-0 SF B9937-2 B MR R R R-0 SF B9937-2 B MR R R-0 R R-0 SF B9937-2 B R R R-0 SF B9937-2 B MR R R-0 R R-0 SF B9937-2 B R R-0 R R-0 SF R R-0	W S R-0 MT B8832-3 Bu SN R R-0 SF B8832-1 B	W S R-0 MT B8833-3 Bu SN R R-0 MT B8837-1 Bu SN R R-0 MT B8887-1 Bu SN R R-0 MT B8887-1 Bu SN R R-0 MT B8922-10 B LR L L Bu SN R-0 MT B8934-4 B MR L R S R-0 MT B9937-2 B MR L R S R-0 MT B9937-2 B MR L R S R-0 SF B9937-2 Bu SN O-R SF B9937-2 Bu SN O-R SF B9937-2 Bu SN O-R SF B9937-3 Bu SN O-R SF B9937-3 Bu SN R-0 SF B9937-3 Bu SN R-0 SF B9937-3 W S R-0 SF B9937-4 Bu SN R-0	eftain	MR	RS	R-0	Ψ		BW	۸S	0-R	SF
We bus so should be should	W S R-0 SF 88881-5 B MR 0 R R 88887-1 B MR 0 R R 88887-1 B B R R R R R R R R R R R R R R R R R	We was a second of the control of th	stal	×	S	R-0	Ψ	1	Bu	SN	~	~
M-Bu RS R-0 MT 88887-1 Bu SN R R B8922-10 B LR L L R R B8932-10 B LR L L L R R B8932-10 B LR L L R R B8932-10 B R R C L B8932-10 B R R C L R R R C R R R C R R R C R R R C R R R C R R R C R R R R C R R R R C R R R C R R R R C R R R R C R R R R C R R R R C R R R R C R R R R C R R R R C R R R R C R R R R R C R R R R C R R R R C R R R R R C R	M-Bu RS R-0 MT 88887-1 Bu SN R R 88922-10 Bu SN R R 89324-4 B MR L L SF 89324-4 B MR L L R 89934-4 B MR L L R 89935-5 M RS O-R SF 89935-5 M RS O-R SF 89935-5 M RS O-R SF 89995-5 Bu SN O-R SF 89909-5 Bu SN O-R R 89909-5 Bu SN O-R R 89909-5 Bu SN O-R R 89909-5 Bu SN R-0 SF 89909-5 Bu SN R-0 R R 89909-5 Bu SN R-0 SF 89909-5 Bu SN R-0 R R 89909-5 Bu SN R-0 SF 89909-6 Bu SN R-0 SP 89909-6	W-Bu RS R-O NT 88887-1 Bu SN R R R Bu R R R R R R R R R R R R R R R	chip	3	S	R-0	SF		В	MR	0	~
Bu SN 0-R SF 88922-10 B LR L R R R R R R R R R R R R R R R R	Bu SN 0-R SF 88922-10 B LR L N S R-0 NF 88934-4 B MR 0 N S R-0 NF 88933-4 B MR 0 N S R-0 NF 88933-5 W RS 0-R N M S R-0 SF 89913-5 W RS 0-R N M S R-0 SF 89019-14 BU SN 0-R N M S R-0 SF 89019-14 BU SN 0-R N M S R-0 SF 89095-5 BU SN 0-R N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 89095-5 BU SN R-0 N M S R-0 SF 8376-1 BU SN R-0 N M S R-0 SF 8376-1 BU SN R-0 N M S R-0 SF 8376-2 BU SN R-0 N M S R-0 SF 8377-41 BU SN R-0 N M S R-0 SF 8377	Bu SN 0-R SF 88922-10 B LR L N S R-0 NF 88934-4 B MR 0 N S R-0 NF 88937-2 B MR 0 N S R-0 SF 88937-2 B MR 0 N S R-0 SF 88937-2 B MR 0 N S R-0 SF 889016-10 BU SN 0-R N MR S R-0 SF 89016-14 BU SN 0-R N MR S R-0 SF 89016-18 B MR 0 N MR S R-0 SF 89019-5 BU SN 0-R N M S R-0 SF 89019-5 BU SN R-0 N M S R-0 SF 89019-5 BU SN R-0 N M S R-0 SF 89019-5 BU SN R-0 N M S R-0 SF 89019-6 BU SN R-0 N M S R-0 SF 89019-6 BU SN R-0 N M S R-0 SF 89019-14 BU SN R-0 N M S R-0 SF 89019-14 BU SN R-0 N M S R-0 SF 8911 M SS R-0 N M M S R-0 SF NV63 M SS R-0 N M S R-0 SF NV63 M SS R-0 N M S R-0 SF NV63 M SS R-0 N M S R-0 SF NV64 M SS R-0 N M S R-0 SF NV65 BU SN R-0 N M S R-0 SF NV65 BU SN R-0 N M S R-0 SF NV65 BU SN R-0 N M S R-0 SF NV65 BU SN R-0 N M S R-0 SF NV65 BU SN R-0 N M S R-0 SF NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M S R-0 ST NV66 BU SN R-0 N M	ali	M-Bu	RS	R-0	MT		Bu	SN	~	E
W S R-0 SF B8934-4 B MR 0 W S R-0 MT B8934-4 B MR 0 W S R-0 SF B8935-5 W RS 0-R W S R-0 SF B8935-5 W RS 0-R W S R-0 SF B9020-18 B MR 0 W RS R-0 SF B9020-18 B MR 0 W RS R-0 SF B9020-18 B MR 0 W RS R-0 SF B9039-5 BU SN 0-R W RS R-0 SF B9039-5 BU SN R-0 W RS R-0 SF B9039-5 BU SN R-0 W RS R-0 SF R032-1 W RS R W RS R-0 SF R032-1 W RS R W RS R-0 SF R032-1 W RS R W RS R-1 R032-1 R0 R W RS R-1 R032-1 R032-1 R W RS R-1 R03	W S R-0 SF B8934-4 B MR 0 W S R-0 SF B8937-2 B MR 0 W S R-0 SF B8935-5 W RS 0-R W S R-0 SF B9935-5 W RS 0-R W RS R-0 SF B9020-18 B MR 0 W RS R-0 SF B9020-18 B MR 0 W RS R-0 SF B9020-18 B RS R-0 W RS R-0 SF B9020-5 W RS R-0 W RS R-0 SF B9039-5 BU SN 0-R W RS R-0 SF B9039-5 BU SN 0-R W RS R-0 SF B9039-5 BU SN R-0 W RS R-0 SF B9039-5 BU SN R-0 W RS R-0 SF R9039-5 BU SN R-0 W RS R-0 SF R9039-1 B RS R-0 W RS R-0 SF R9039-1 B RS R-0 W RS R-0 SF R9039-1 B RS R-0 W RS R-0 SF R903-1 B RS R-0 W RS R-1 R903-1 B RS R-1	W S R-0 SF 88933-4 B MR 0 W S R-0 SF 88943-4 B MR 0 W S R-0 SF 88943-5 W RS 0-R W S R-0 SF 88977-2 B MR 0 W S R-0 SF 88977-2 B MR 0 W S R-0 SF 89019-14 B W RS 0-R W RS R-0 SF 89019-14 B W RS R-0 W RS R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W S R-0 SF 89095-5 B W RS R-0 W RS R-0 SF 89095-5 B W RS R-0 W RS R-0 SF 87093-2 W RS R-0 W W S R-0 SF 87094-1 W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-62 B W RS R-0 W W RS R-0 SF 871-61 B W RS R-0 W W RS R-0 SF 8	seg	Bu	NS.	0-R	SF	B8922-10	മ	LR	_	~
by W RS R-0 MT 88943-4 B MR L W S R-0 SF 88937-2 B MR 0 W S R-0 SF 89016-20 Bu SN 0-R W S R-0 SF 89019-14 Bu SN 0-R WHR RS R-0 SF 89019-14 Bu SN 0-R Bu SN 0-R SF 89099-5 Bu SN R-0 W S R-0 SF 87099-5 Bu SN R-0 W S R-0 SF 8709-16 BR S 0-R W NS 0-R SF 870-11 W RS R-0 W S R R S 0-R MT 8376-1 Bu SN R-0 W S R R S 0-R MT 8376-1 Bu SN R-0 W S S R-0 SF 8377-8 Bu SN R-0 W S S R-0 SF 8377-8 Bu SN R-0 W S S R-0 SF 8377-8 Bu SN R-0 W RS 0-R MT 8377-4 Bu SN R-0 W RS 0-R SF 8377-8 Bu SN R-0 W RS 0-R MT 8377-4 Bu SN R-0 W RS 0-R MT 8477-4 Bu SN R-0 W RS 0-R MT 8477-4	by M RS R-0 MT 88943-4 B MR L W S R-0 SF 8893-5 W RS 0-R W S R-0 SF 89019-14 Bu SN 0-R WR RS R-0 SF 89019-14 Bu SN 0-R WHR RS R-0 SF 89052-18 B MR 0 W S R-0 SF 89052-5 W RS R-0 W S R-0 SF 89052-5 W RS R-0 W RS 0-R SF 89052-5 W RS R-0 W RS 0 SF 89052-1 W RS R-0 W RS 0 W RS 0 W RS 0-R W RS 0-R RF 8F 87-1 W RS 0-R W RS 0-R MT 8374-4 Bu SN R-0 W RS 0-R MT 8377-8 Bu SN R-0 W RS 0-R SF 8377-8 Bu SN R-0 W RS 0-R SF 8377-4 Bu SN R-0 W RS 0	W RS R-0 MT 88943-4 B MR L W S R-0 F F 88937-2 B MR C W S R-0 SF 88937-2 B MR C W S R-0 SF 89030-14 BU SN C W S R-0 SF 89030-18 B SN C W S R-0 SF 89052-18 B MR C W RS R-0 SF 89052-18 B SN C W S R-0 SF 89052-18 B SN C W S R-0 SF 89052-5 BU SN C W S R-0 SF 89099-5 BU SN R-0 W RS C SF 87093-16R BR S C C-R W RS C SF 87093-16R BR S C C-R W RS C C SF 87093-16R BR S C C-R W RS C C SF 87093-16R BR S C C-R W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 W RS R-0 W RS C C SF 8709-11 BU SN R-0 W RS C C SF 8709-11 BU SN R-0 W RS C C SF 8709-11 BU SN R-0 W RS C C SF 8377-41 BU SN R-0 W RS C C SF 8709-11 WHITE, MR=medium red, PK=pink, M=white	ahdin	3	S	R-0	SF	B8934-4	В	ŒΥ	0	~
WW S R-0 SF 88937-2 B MR 0 O-R 8937-2 B MR 0 O-R 8938-5 W SS 0-R N MS S R-0 SF 89019-14 Bu SN 0-R SS R-0 SF 89019-14 Bu SN 0-R SS R-0 SF 89020-18 B MR 0 O-R SF 89039-5 Bu SN 0-R SS R-0 SF 89039-5 Bu SN R-0 SF 890309-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 890309-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 890309-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 89039-5 Bu SN R-0 SF 890309-5 Bu SN R-0 SF 8	W S R-0 SF B8937-2 B MR 0 O-R B9937-2 B MR 0 O-R B9937-2 B M RS 0-R MR S R-0 SF B9019-14 Bu SN 0-R B9019-14 Bu SN 0-R B9019-14 Bu SN 0-R B9019-18 B MR 0 O-R SF B9027-5 Bu RS R-0 SF B9029-5 Bu SN R-0 NW S R-0 SF B9039-5 Bu SN R-0 NW S R-0 SF B9039-5 Bu SN R-0 NW S R-0 SF R723-4 W S R-0 SF R723-4 W S R-0 NW S R-0 SF R723-4 W S R-0 NW S R-0 NW S R-0 SF NW59 W RS R-0	W S R-0 SF B8937-2 B MR 0 O-R MN S R-0 SF B8937-5 W RS 0-R MN S R-0 SF B8937-5 W RS 0-R MN S R-0 SF B8937-5 W RS 0-R MN S R-0 SF B9019-14 BU SN 0-R MN O-R SF B9020-18 B MN 0-R S R-0 SF B9037-5 BU SN 0-R R-0 SF B9037-5 BU SN 0-R R-0 SF B9037-5 BU SN 0-R R-0 SF C7323-4 W RS R-0 SF C7323-4 W S R-0 SF C7323-4 W S R-0 SF C7323-4 W S R R-0 SF N09403-16R BR S O-R R R S R-0 SF N09403-16R BR S O-R R R S R-0 SF N09403-16R BR S O-R R R S R-0 SF N09403-16R BR S O-R R R S R R-0 SF N09403-16R BR S R-0 SF N09403-16R BR S R-0 SF N09403-16R BU SN R S R-0 SF N09403-16R BU S	hibonne	3	RS	R-0	Ψ	B8943-4	В	M R		Æ
W S R-0 SF B8993-5 W RS O-R MT B9016-20 Bu SN O-R B9016-2 Bu SN O-R B9016-2 Bu SN O-R SF B9016-2 Bu SN O-R SF B9016-2 Bu SN SN O-R SF B9016-2 Bu SN SN O-R SF B9016-2 Bu SN	W S R-0 SF B8993-5 W RS O-R R-0 SF B9016-20 Bu SN O-R B9016-20 Bu SN B9	W S R-0 SF 88883-5 W RS 0-R R 89016-20 Bu SN 0-R R S R-0 SF 89019-14 Bu RR 0 0-R RS R-0 SF 89019-14 Bu RR 0-R RS R-0 SF 89020-18 B MR 0-R RS R-0 SF 89020-18 Bu RS R-0 SF 89020-5 Bu SN 0-R RS R-0 SF 89039-5 Bu SN 0-R R-0 SF 89039-5 Bu SN 0-R R-0 SF 89039-5 Bu SN 0-R R-0 SF 89039-5 Bu SN 8-0 SF 89039-5 B	himac	3	S	~	SF	B8977-2	В	Æ	0	SF
MR S R-0 SF B9019-14 BU SN 0-R MR S R-0 SF B9019-14 BU SN 0-R MR S R-0 SF B9019-14 BU SN 0-R BU SN 0-R SF B9062-5 W RS R-0 W S R-0 SF B9092-5 BU SN 0-R W S R-0 SF B9093-5 BU SN R-0 W S R-0 SF B9093-23 W S R-0 W S R-0 SF C7232-4 W S O-R BU SN 0 SF C7232-4 W S O-R BU SN 0 SF C7232-4 W S O-R BU SN 0 SF C7232-4 W S O-R BU SN R-0 SF NY66 B-BU SN R-0 W S R R Q54-11 W RS R-0 W S R R R Q54-11 W RS R-0 W S R R R Q54-11 W RS R-0 W S R R R R Q155-3 BU SN R-0 W S R R R R R R R R R R R R R R R R R R	Mark S	MR S R-0 SF B9016-20 Bu SN 0-R MR RS R-0 SF B9019-14 Bu SN 0-R B9019-14 Bu SN 0-R B9019-14 Bu SN 0-R B9020-5 Bu SN 0-R W S R-0 SF B9029-5 Bu SN R-0 W S R-0 SF B9029-5 Bu SN R-0 W S R-0 SF B9029-5 Bu SN R-0 W S R-0 SF C7232-4 W S R-0 W S R-0 SF C7232-4 M S R-0 W S	ona	3	S	R-0	SF	B8983-5	3	RS	0-R	SF
MR S R-0 SF B9019-14 Bu SN O-R B-0 SF B9020-18 B MR O-R SN	MR	MR S R-O SF B9019-14 Bu SN O-R MR RS R-O SF B9020-18 B MR O Bu SN O-R SF B9095-5 Bu SN O-R W RS O-R SF B9099-5 Bu SN O-R W RS O-R SF B9099-5 Bu SN O-R Bu SN O-R SF B9099-5 Bu SN R-O Bu SN O SF C7232-4 W S R-O Bu SN O MT CAO2-7 W RS R Bu SN O SF NY69 W SS O-R Bu SN R-O SF NY69 W RS R W RS O-R SF R471-62 Bu SN R-O W RS O-R MT S374-4 Bu SN R-O Bu SN R O-R MT S374-4 Bu SN R-O Bu SN R O-R MT S374-4 Bu SN R-O Bu SN R O-R MT S374-4 Bu SN R-O Bu SN R S SF R471-62 Bu SN R-O Bu SN R S S76-1 Bu SN R-O Bu SN R S S76-1 Bu SN R-O Bu SN R S S77-4 Bu SN R-O Bu RS O-R MT S374-4 Bu SN R-O Bu RS O-R MT S374-4 Bu SN R-O Bu RS O-R SF S377-4 Bu RS R-O Bu RS O-R SF SS S377-4 Bu RS R-O Bu RS O-R SF SS S377-4 Bu RS R-O Bu RS C CR SS	chip	3	S	~	MT	B9016-20	Bu	SN	0	SF
Deank RS R-0 SF B9020-18 B MR 0 W-PK S R-0 SF B9062-5 W RS R-0 W RS 0-R B9097-5 Bu SN 0-R W RS 0-R SF B9093-23 W S-0 W S R-0 SF B7093-23 W S-0 W RS 0-R MT CA02-7 W RS R-0 W RS 0-R SF NY69 W SS R-0 W-Bu SN R-0 SF NY69 W SS R-0 W-Bu SN R-0 SF NY69 W SS R-0 W-Bu SN R-0 SF R471-62 Bu RS 0-R W RS 0-R MT S374-4 Bu SN R-0 W RS 0-R MT S376-1 Bu SN R-0 W RS 0-R MT S377-41 Bu SN R-0 W RS 0-R SF SS 0-R SF S377-41 Bu SN R-0 W RS 0-R SF SS 0	MR	MR RS R-O SF B9020-18 B MR O -bank B RR L R B9062-5 W RS R-O -bank B SN O-R SF B9062-5 B B SN O-R W RS R-O SF B9099-5 B B SN O-R W RS R-O SF C7232-4 W SS R-O W S R-O SF C7232-4 W SS R-O B MR L MT ND146-4R BR S R-O NV63 W SS O-R W RS O-R MT S74-1 B B SS O-R W RS O-R MT S374-1 B B SS O-R W RS O-R MT S374-1 B B SN R-O B MR S O-R MT S374-1 B B SN R-O W RS O-R MT S374-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R SF S377-4 B B SN R-O W RS O-R SF S377-4 B B SN R-O W RS O-R SF S377-4 B B SN R-O W RS O-R MT S376-1 B B SN R-O W RS O-R SF S377-4 B SN R-O W RS O-R SF S	Jand	MR	S	R-0	SF	B9019-14	Bu	SN	0-R	Ψ
) W-PK S R-O SF B9062-5 W RS R-O Pank B RR L R B9097-5 Bu SN O-R SF B9099-5 Bu SN O-R SF B9099-5 Bu SN O-R SN C7232-4 W SN R-O SF N09403-16R BR S R R R SN R-O SF N09403-16R BR S R R R SN R-O SF N09403-16R BR S R R R SN R-O SF N09403-16R BR SN R R SN R-O SF N09403-16R BR SN R SN R-O SF N09403-16R BR SN R-O SF N09403-16R BR SN R-O R R SP R-O SF N09403-16R BR SN R-O R R SP R-O SF N09403-16R BN SN R) W-PK S R-O SF B9062-5 W RS R-O -bank B MR L R B9099-5 Bu SN O-R W S R-O SF B7099-5 Bu SN R-O W S R-O SF C7232-4 W S R-O B MR L MT CA02-7 W RS R B MR L SF C7232-4 W RS R B MR L SF C402-7 W RS R B MR C SF C402-7 W RS R B MR C SF C402-7 W RS R C402-7 W RS	Dank BR MR L R B9097-5 Bu RS R-0 Dank B MR L R B9097-5 Bu SN 0-R BU SN 0-R SF B7099-5 Bu SN R-0 W RS 0-R SF C7232-4 W S R-0 BU SN 0 MT CA02-7 W RS R BU SN 0 SF C7232-4 W S R W RS 0-R SF C7232-4 W S R W RS 0-R SF C7232-4 W S R W RS 0-R MT S374-4 Bu SN R W RS 0-R MT S374-4 Bu SN R W RS 0-R MT S376-1 Bu SN R W RS 0-R MT S376-1 Bu SN R W RS 0-R MT S376-1 Bu SN R W RS 0-R MT S377-41 Bu SN R W RS 0-R SF S377-41 Bu SN R	leau	MR	RS	R-0	SF	B9020-18	В	MR	0	SF
bank B MR L R B9097-5 Bu SN 0-R W SN 0-R SF 89099-5 Bu SN R-0 W SN 0-R SF B8099-5 Bu SN R-0 Bu SN 0 MT CAC2-7 W S R-0 Bu SN 0 MT CAC2-7 W RS R Bu SN 0 MT ND9403-16R BR S 0-R Bu SN 0 SF NV63 W S R Bu SN R-0 SF NV66 B-Bu SN R W S R R CAC2-7 W RS R Bu SN R-0 SF NV63 W S R W S R R R A A R W	-bank B MR L R B9097-5 Bu SN O-R W RS O-R SF B87093-23 W S R-O W RS R-O SF B87093-23 W S R-O W S R-O SF B87093-23 W S R-O B MR L MT CAO2-7 W RS R O MT ND146-4R BR S R B MR L SN NO9403-16R BR S O-R B MR C SF NV59 W RS R W RS O-R R R O54-6 W RS R W RS O-R R R O54-11 W RS R-O W RS O-R MT S77-4 Bu SN R-O B M RS O-R MT S77-4 Bu SN R-O B M RS O-R MT S77-4 Bu SN R-O B M RS O-R MT S77-4 Bu SN R W RS O-R SF S77-4 W SN-S1ight net, S=smooth	bank B MR L R B9097-5 Bu SN 0-R W RS 0-R SF B9099-5 Bu SN R-0 W RS R-0 SF R7093-23 W S R-0 Bu RR L RT CA02-7 W RS R-0 Bu RR L SF NV53-4 W RS R Bu RR L SF NV64-4R BR S 0-R Bu RR L SF NV63-3-16R BR R R W RS R NV63-3-16R BR R R R W RS R NV64-6 B-Bu SR R R W RS R R Q54-11 W RS R W RS R R R R R R W	a (NY61)	W-PK	S	R-0	SF	B9062-5	3	RS	R-0	F
Bu SN 0-R SF 89099-5 Bu SN R-0 W RS 0 SF 87093-23 W S R-0 W S R-0 SF 87093-23 W S R-0 Bu SN 0 MT 80403-16R BR S 0-R Bu SN 0 SF 8054-0 W RS R Bu SN 0 SF 8054-0 W RS R W RS 0-R SF 8054-1 W SS R-0 W RS 0-R SF 8054-1 W RS 0-R W RS 0-R MT 8376-1 Bu SN R-0 Bu SN R MT 8376-1 Bu SN R-0 Bu RS 0-R SF 8377-8 Bu SN R-0 W RS 0-R SF 8377-8 Bu SN R-0 W RS 0-R SF 8377-8 Bu SN R-0 Bu RS 0-R	Bu SN 0-R SF 89099-5 Bu SN R-0 W RS 0 SF 87093-23 W S R-0 W RS 0 SF 87093-23 W S R-0 W SN 0 MT 87002-7 W RS R Bu SN 0 MT 8799 W RS R Bu SN R-0 SF NY59 W SS 0-R Bu SN R-0 SF NY69 W SS R W RS 0 MT 054-6 W RS R W RS 0-R SF 8771-62 Bu SN R-0 W RS 0-R SF 8771-62 Bu SN R W RS 0-R NT 8376-1 Bu SN R W RS 0-R NT 8376-1 Bu SN R W RS 0-R NT 8377-41 Bu SN R HR SS 0-R SF 8377-8 Bu SN R HR-heavy russet, MR-medium russet, RS-relatively smooth, SN-silight net, S-smooth	Bu SN 0-R SF 89099-5 Bu SN R-0 W RS 0 SF 8R7093-23 W S R-0 W S R-0 SF 6723-4 W S C C C C C C C C C C C C C C C C C C		В	MR	_	~	B9097-5	Bu	SN	0-R	SF
W RS 0 SF BR7093-23 W S R-0 W S R-0 SF C7232-4 W S 0 B MR L MT CA02-7 W RS R B MR L SF ND9403-16R BR S R B MR L SF NV69 W SS 0-R B MR 0 SF NV69 W SS R W S R R W RS 0 MT Q54-6 W RS R W RS 0-R MT Q54-11 W RS R-0 W RS 0-R SF R471-62 Bu SN R-0 B	Decided Fig. 19	W RS 0 SF CA232-4 W S R-0 W S R-0 SF C7232-4 W S C 0 B MR L MT CA02-7 W RS R B MR L SF NV59 W SS 0-R B MR 0 SF NV69 W SS R B MR 0 SF NV69 W SS R W RS 0-R MT Q54-6 W RS R W RS 0-R MT Q54-6 W RS R W RS 0-R MT S74-4 Bu SN R-0 B W RS 0-R MT S374-4 Bu SN R W S 0 SF S376-1 Bu SN R W S 0 SF S377-8 Bu SN R W S 0 SF S377-8 Bu SN R W S 0-R MT S377-8 Bu SN R W S 0-R MT S377-41 Bu SN R W S S S377-41 Bu S	erior	Bu	SN	0-R	SF	B9099-5	Bu	NS	R-0	Σ
W S R-O SF C7232-4 W S 0 B MR L MT CA02-7 W RS R B MR L SF NV59 W RS R B MR L SF NV69 W RS O-R B MR O SF NV69 W RS O-R B MR O SF NV66 B-Bu SN R W S R R Q54-6 W RS R-O-R W S R R Q54-11 W RS R-O-R W S R R R471-62 Bu RS O-R W S O R RA71-62 Bu SN R-O-R W S O SF S376-1 Bu SN R-O-R W S O </td <td>W S R-O SF C7232-4 W S O O O O O O O O O O O O O O O O O O</td> <td>W S R-0 SF C7232-4 W S O O O O O O O O O O O O O O O O O O</td> <td>int</td> <td>3</td> <td>RS</td> <td>0</td> <td>SF</td> <td>-2</td> <td>3</td> <td>S</td> <td>R-0</td> <td>M</td>	W S R-O SF C7232-4 W S O O O O O O O O O O O O O O O O O O	W S R-0 SF C7232-4 W S O O O O O O O O O O O O O O O O O O	int	3	RS	0	SF	-2	3	S	R-0	M
Bu MR L MT CA02-7 W RS R R ND146-4R BR S N R ND146-4R BR S N O-R NN59 W RS N O-R NN59 W RS N R NN63 W S N R NN63 W S N R NN63 W S N R NN64 W RS N R NN64 W RS N R NN64 N R NN65 N R NN65 N R NN66 N NN R NN66 N NN R NN66 N NN R N	Bu MR L ND146-4R BR S R R ND9403-16R BR S R R ND9403-16R BR S O-R ND9403-16R BR S O-R R R S R R ND9403-16R BR S O-R R R R R NY69 W RS R R R NY69 W RS R R R NY69 W RS R R NY66 B-Bu SN R R R Q54-11 W RS R-O R R R S O-R R R S O-R R R S O-R R S C O-R S C O-R R M S O-R S C O-R	B MR L MT CA02-7 W RS R R R S R R ND4403-16R BR S O-R S R NV59 W RS R R S O-R S R NV59 W RS R R S O-R S R NV63 W RS R R R S O-R S R NV64 BB R S O-R R R S O-R S R R S O-R S R R S O-R S R S O-R S R S O-R S R S R R S O-R S R R R S R R S O-R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R S R R R R S R R R R S R	Iseon	3	S	R-0	SF	C7232-4	3	S	0	SF
Bu SN 0 MT ND146-4R BR S R Bu SN 0 SF NV59 W RS 0-R Bu SN R-0 SF NV66 B-Bu SN R Bu SN R-0 SF NY66 B-Bu SN R W RS 0 MT Q54-6 W RS R W S R R Q54-11 W RS R-0 W S R R Q54-11 W RS R-0 W S R R471-62 Bu RS 0-R W RS O-R MT S374-4 Bu SN R-0 W S O-R MT S376-2 Bu SN R W RS O-R SF S377-8 Bu SN R S O SF	Bu SN 0 MT ND146-4R BR S R R S O-R NY59 W RS R S O-R SF NY59 W RS R S O-R SF NY63 W S R R S O-R SF NY63 W S R R S O-R SF NY66 B-Bu SN R R Q54-11 W RS R-O R R R SF R Q54-11 W RS R-O R R R SF R R R SF R R R R SF R R R R SF R R R R	Bu SN 0 MT ND146-4R BR S R R S R ND9403-16R BB S 0-R S NY59 W RS R R S 0-R SN 0 SF NY69 W RS R R S 0-R SN R SN	3678-1	В	MR	_	MT	CA02-7	3	RS	ĸ	~
B MR L SF ND9403-16R BR S O-R Bu SN R-O SF NY69 W RS R Bu SN R-O SF NY69 W SS R Bu RR O SF NY66 B-Bu SN R W RS O MT Q54-6 W RS R W-Bu RS O-R SF Q155-3 BW S O-R W RS R SF R471-62 Bu RS O-R W RS O-R MT S374-4 Bu SN R-O Bu SN R MT S376-1 Bu SN R Bu SN R S376-1 Bu SN R COR M SS O-R SF S377-8 Bu SN R COR M SS O-R SF S377-8 Bu SN R COR M SS O-R SF S377-8 Bu SN R COR M SS O-R SF S377-8 Bu SN R COR M SS O-R SF S377-8 Bu SN R COR SF S377-8 Bu SN	B MR L SF NV59 W RS 0-R Bu SN R-0 SF NY66 B-Bu SN R Bu SN R-0 SF NY66 B-Bu SN R W RS 0 MT Q54-6 W RS R W S R R Q54-11 W RS R-0 W S R R Q54-11 W RS R-0 W RS O-R SF Q155-3 BW S O-R W RS O-R R R471-62 Bu RS O-R W RS O-R MT S376-1 Bu SN R W S O-R N S377-2 Bu SN R Bu RS O-R SF S377-41 Bu SN R S O-R	Bu RR L SF ND9403-16R BR S 0-R Bu SN R-0 SF NY59 W RS R Bu SN R-0 SF NY63 W SS R W SS R NY66 B-Bu SN R W RS 0 MT Q54-6 W RS R W RS 0-R SF Q54-11 W RS R-0 W RS 0-R SF R471-62 Bu SN R W RS 0-R MT S374-4 Bu SN R Bu SN R MT S376-1 Bu SN R W S 0 SF S376-2 Bu SN R Bu SN R MT S377-41 Bu SN R W RS 0-R MT S377-41 Bu SN R HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=shipt net, S=smooth	86-5	Bu	SN	0	Ψ	4-	BR	S	ĸ	¥
Bu SN R-0 SF NY63 W RS R R NY63 W SS R NY64 SW SN R-0 SF NY66 B-Bu SN R R 054-6 W RS R 054-11 W RS R-0 R R 054-11 W RS R-0 R 054-11 W RS R-0 R R 054-11 W RS R-0 R R SF R471-62 Bu RS 0-R R S77-4 Bu SN R-0 R S77-8 Bu SN R S77-4 Bu SN R S77-8 Bu SN R S77-4	Bu SN R-0 SF NY63 W RS R R NY63 W S R R NY64 Bu SN R-0 SF NY66 B-Bu SN R R Q54-6 W RS R R Q54-11 W RS R-0 R R SF R Q54-11 W RS R-0 R R SF R Q155-3 BW S O-R W RS R-0 R R ST R R SF R R R SF R R R R R R R R R R R R	Bu SN 0 SF NV63 W RS R Bu SN R-0 SF NV66 B-Bu SN R W RS 0 MT Q54-6 W RS R W-Bu RS 0 R R Q54-11 W RS R-0 W S R R Q54-11 W RS R-0 W RS 0-R SF Q155-3 BW S 0-R W RS 0-R SF Q155-3 BW S 0-R W RS 0-R MT S374-4 Bu SN R-0 Bu RS 0-R MT S376-2 Bu SN R Bu RS 0-R SF S377-41 Bu SN R Ebrown, BR=bright red, Bu=buff, BW=bright white, RS=relatively smooth, SN=shink, W=white SN=shink R R	05-9	В	MR	_	SF	03 - 16	BR	S	0-R	MT
Bu SN R-0 SF NY66 B-Bu SN R R	Bu SN R-0 SF NY66 B-Bu SN R R 054-6 W SS R NY66 B-Bu SN R R 054-11 W RS R 054-11 W RS R-0 RS R 0-R SF Q155-3 BW SS 0-R R Q54-11 W RS R-0 RS R Q155-3 BW SS 0-R R R SF R471-62 Bu SN R-0 R S	Bu SN R-0 SF NY66 B-Bu SN R R Q54-6 W RS R R Q54-11 W RS R-0 RS R Q54-11 W RS R-0 R R SF R471-62 Bu RS 0-R R R S74-4 Bu SN R-0 R R S76-1 Bu SN R-0 R R S76-1 Bu SN R R R S77-8 Bu SN R R R S77-41 Bu SN R SN	987-184	Bu	SN	0	SF	NY59	3	RS	~	¥
B MR 0 SF NY66 B-Bu SN R W RS 0 MT Q54-6 W RS R W-Bu RS 0-R SF Q155-3 BW S R-0 W RS 0-R SF R471-62 Bu RS 0-R Bu RS 0-R MT S374-4 Bu SN R-0 W S 0 SF S376-1 Bu SN R Bu RS 0-R SF S376-2 Bu SN R Su 0 SF S377-8 Bu SN R W RS 0 SF S377-41 Bu SN R Su 0 SF S377-41 Bu SN R Shrown, BR=bright white, W=mothre, W=mothre SN R R R	B MR 0 SF NY66 B-Bu SN R W RS 0 MT Q54-6 W RS R W S R R Q54-11 W RS R-0 W RS O-R SF Q155-3 BW S O-R W RS O-R SF R471-62 BW RS O-R W RS O-R MT S374-4 BU SN R-O-R Bu RS O-R SF S376-2 Bu SN R Son S O-R SF S377-8 Bu SN R Son S S S377-4 Bu SN R Son S S377-4 Bu SN R Son S S377-4 Bu SN R Son S S377-4 Bu SN R	B MR 0 SF NY66 B-Bu SN R R Q54-11 W RS R-0 MT Q54-6 W RS R-0 Q54-11 W RS R-0 RS R Q54-11 W RS R-0 RS R-0 Q155-3 BW S O-R RS R-0 RS R RA71-62 Bu RS O-R RS R-0 RS R RS R-0 RS R RS R-0 RS R RS R	51-4	Bu	NS	R-0	SF	NY63	3	S	~	¥
W RS 0 MT Q54-6 W RS R Q54-11 W RS R-0 Q155-3 BW S O-R RY1-62 BU RS O-R RY1-62 BU SN R-0 SF S376-1 BU SN R R S376-1 BU SN R S177-8 BU SN R S177-41 BU SN	W RS 0 MT Q54-6 W RS R W S R R Q54-11 W RS R-0 W-Bu RS 0-R SF Q155-3 BW S 0-R W RS 0-R MT S374-4 Bu SN R-0 Bu SN R MT S376-1 Bu SN R Bu SN R S776-2 Bu SN R Bu RS 0-R SF S377-8 Bu SN R S 0-R SF S377-8 Bu SN R IONS IONS HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	W RS 0 MT Q54-6 W RS R-0 RS R-0 W RS R-0 Q54-11 W RS R-0 Q54-11 W RS R-0 RS R-0 Q54-11 W RS R-0 RS R-0 RS RS R-0 RS RS R-0 RS RS R-1 R471-62 Bu RS 0-R RS R-0 RS R-	583-6	В	MR	0	SF	NY66	B-Bu	SN	ĸ	M
W S R R Q54-11 W RS R-0 W-Bu RS 0-R SF Q155-3 BW S 0-R W RS 0-R R R471-62 Bu RS 0-R Bu SN MT S374-4 Bu SN R-0 Bu SN R S376-1 Bu SN R Bu RS 0-R SF S377-8 Bu SN R Sons N RS 0 SF S377-41 Bu SN R Sons N R S377-41 Bu SN R Sons N R S377-41 Bu SN R Sons N R SA SA N R	W S R R Q54-11 W RS R-0 W-Bu RS 0-R SF Q155-3 BW S 0-R W RS 0-R MT S374-4 Bu RS 0-R Bu SN R MT S376-1 Bu SN R Bu SN R S376-2 Bu SN R Bu RS 0-R SF S377-8 Bu SN R Sons N R S377-41 Bu SN R Shrown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white SN R R HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth SN=smooth	W S R R Q54-11 W RS R-0 W-Bu RS 0-R SF Q155-3 BW S 0-R W RS 0-R R R471-62 Bu RS 0-R Bu RS 0-R MT S374-4 Bu RS 0-R Bu RS 0-R SF S376-2 Bu SN R Su RS 0-R SF S377-8 Bu SN R Sions W RS 0 SF S377-41 Bu SN R Fbrown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, BR=medium russet, RS=relatively smooth, SN=slight net, S=smooth SN=slight net, S=smooth	592-1	3	RS	0	MT	054-6	3	RS	ď	¥
W-Bu RS 0-R SF Q155-3 BW S 0-R W RS R SF R471-62 Bu RS 0-R W RS 0-R MT S374-4 Bu SN R-0 Bu SN R MT S376-1 Bu SN R Bu RS 0-R SF S377-8 Bu SN R S 0-R SF S377-8 Bu SN R ions ions ions W-Bu RS 0-R SF S377-41 Bu SN R S 3377-41 Bu SN R -ibrown, BR=bright white, MR=medium red, PK=pink, W=white	W-Bu RS 0-R SF R471-62 Bu RS 0-R R R471-62 Bu RS 0-R R S374-4 Bu SN R-0 R R-0 SN R-0 R S374-4 Bu SN R-0 R R-0 SN R S376-1 Bu SN R R S376-2 Bu SN R R S377-8 Bu SN R R HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	W-Bu RS 0-R SF R471-62 Bu RS 0-R R71-62 Bu RS 0-R R471-62 Bu RS 0-R R471-62 Bu RS 0-R R21-62 Bu RS 0-R R21-62 Bu RS 0-R R21-62 Bu RS 0-R R21-62 Bu SN R21-62 Bu S	305-1	3	S	œ	~	054-11	Z	RS	R-0	SF
-24 W RS R SF R471-62 Bu RS 0-R -8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R MT S376-1 Bu SN R -22 W S 0 SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R -10 N RS 0 SF S377-41 Bu SN R -10 N RS 0 SF S377-41 Bu SN R -10 N RS 0 SF R377-41 Bu SN R -10 N RS 0 SF R377-41 Bu SN R -10 N R	-24 W RS R SF R471-62 Bu RS 0-R -8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R R-0 -22 W S O-R SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 W RS 0-R SF S377-41 Bu SN R -7 S377-41 Bu SN R -8 S377-41 Bu SN R -9 S4 S377-41 Bu SN R -1 Sebright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white	-24 W RS R SF R471-62 Bu RS 0-R -8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R R-0 -22 W S 0 SF S376-1 Bu SN R -6 W RS 0-R MT S376-1 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 Viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white - 0=oblong R=round	191-1	M-Bu	RS	0-R	SF	0155-3	BM	S	0-R	SF
-8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R MT S376-1 Bu SN R -22 W S 0 SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R -7 iations - B=brown, BR=bright white, MR=medium red, PK=pink, W=white	-8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R-0 -7 SN R MT S376-1 Bu SN R -22 W S 0 SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R -7 S377-41 Bu SN R -8 S377-41 Bu SN R	-8 W RS 0-R MT S374-4 Bu SN R-0 -7 Bu SN R MT S376-1 Bu SN R-0 -22 W S 0 SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 Viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	191-24	3	RS	~	SF	R471-62	Bu	RS	0-R	SF
-7 Bu SN R -22 W S 0 SF S376-2 Bu SN R -6 W RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R -iations - B=brown, BR=bright white, MR=medium red, PK=pink, W=white	-7 Bu SN R AT S376-1 Bu SN R R A A S	-7 Bu SN R R MT S376-1 Bu SN R R R-22	- 1	3	RS	0-R	Ψ		Bu	SN	R-0	Ψ
-22 W S 0 SF S376-2 Bu SN R -6 Bu RS 0-R SF S377-8 Bu SN R R-6 W RS 0 SF S377-41 Bu SN R R-iations - B=brown, BR=bright white, MR=medium red, PK=pink, W=white	-22 W S O SF S376-2 Bu SN R -6 Bu RS O-R SF S377-8 Bu SN R -6 W RS O SF S377-41 Bu SN R -7 iations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white	-22 W S O SF S376-2 Bu SN R -6 Bu RS O-R SF S377-8 Bu SN R -6 Viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white - O=blong R=round - O=blong R=round	2-90	Bu	NS	~	MT	S376-1	Bu	SN	œ	SF
-6 Bu RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R -7iations - B=brown, BR=bright white, MR=medium red, PK=pink, W=white	-6 Bu RS 0-R SF S377-8 Bu SN R -6 W RS 0 SF S377-41 Bu SN R viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white	-6 Bu RS O-R SF S377-8 Bu SN R -6 W RS O SF S377-41 Bu SN R -7 viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	- 1	3	S	0	SF	S376-2	Bu	SN	~	LΨ
-6 W RS 0 SF S377-41 Bu SN R viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white	-6 viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	-6 viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=white - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth	- 1	Bu	RS	0-R	SF	S377-8	Bu	SN	~	~
viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=	viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W= -e - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net,	viations - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W= re - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, - O=oblong =long R=round	1	3	RS	0	SF	1	Bu	SN	~	~
B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W=	- B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W= re - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net,	 B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, PK=pink, W= re - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, - O=oblong =long R=round 	oreviations	ı				1		l		
	re - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net,	re - HR=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, - O=oblong l=long R=round	ä	R=bright	Bu=bu	•	ght white	, MR=medium		₹.	:	

Texture - HR=heavy russet, MR=medium russet, RS=relatively smooth, Shape - O=oblong, L=long, R=round SF=slightly flattened Depth - F=flat, MT=medium thick, R=round,

New York Table 2. Variety Trial 1, Cornell Resistant Clones, Freeville, New York, 1980

/1,550	Yield (cwt/A)	(cwt/A)	% Kat		% of	Total Yield	Yield		MT1.3/	4,		_	1/2007
	Total	1	$1\frac{7}{8}-4$	$1\frac{2}{8} - 2\frac{1}{2}$	2½-3½	3½-4	<u>^</u>	Defects $^{2/}$	(02)	spec Grav	HH ⁵ /	/ App ⁶ / Mat	ne— Mat
Rosa (NY61	554	516	149	17	58	19	0 -	ma	•	77	2 -	7.0	~ ~
5376-2	473	43/	126	- 12	52 25	23	- 2	ე ო		69	- 0		, 9
S377-8	460	430	125	9 6	58	ا ا	00	 (•	99	0 -	•	9 0
0155-3	445 430	398	115	13	58 57	52 23	o –	3 8	5.7	8/ 69	- m	8.3	ωφ
NY59 NY63 NY66	415	390 382 378	113	13 10	49 40 36	32 38 44	0 m d	- ∞ α	5.8	75 69 76	0-0	7.0	<u>-</u> თ დ დ
S376-1 Katahdin	378 391	348 345	101	178	56 46	19 34	-	വന	6.9	78 69	000		140
S374-4	378	321	93	25	51	∞	0	10(S)	4.4	65	_	•	
Waller- Duncan(.05)	(93)	(86)							(1.0)	(4)			-

Fertilizer applied at a rate of 1/Planted May 16, 1980, harvested September 19, 1980, within row spacing 9.8". 1154 lb/A of 13-13-13 in bands at time of planting, between row spacing 34".

 $\frac{2}{2}$ Defects = Total of all defects. Defects >7% in parenthesis with the major defects listed first. Abbreviations: S = sunburn, M = misshapen, G = growth cracks.

 $\frac{3}{4}$ MTW = Mean tuber weight in ounces.

 $\frac{4}{3}$ Spec Grav = Specific gravity determined by hydrometer with 1.0 omitted.

 $\frac{5}{4}$ HH = Number of tubers with hollow heart and/or brown center of 40 tubers cut (10 per replication).

 $^{6}/_{
m App}$ = Appearance rating based on a scale of 1 to 9; 1 = extremely rough unattractive, 9 = smooth attractive. $\frac{7}{4}$ Vine maturity rated on a scale of 1 to 9, 1 = completely dead, 9 = green and vigorous.

Upstate New York Table 3. Variety Trial 2, Freeville, New York, 1980

	Yield (d	cwt/A)	% Kat		% o	f Tota	al Y	ield	MTW ³ /	Spec ⁴ /	,		Vine ^{7/}
Clone ^{1/}	Total	US#1 1 ⁷ / ₈ -4	Yield 1 7 -4	$1\frac{7}{\theta}$ - $2\frac{1}{2}$	$2\frac{1}{2} - 3\frac{1}{4}$	31-4	>4	Defects $\frac{2}{}$	(oz)	Spec- Grav	нн <u></u> 5/	App <u>6</u> /	Mat
Michibonne Denali Michimac Crystal BR7093-23	519 467 460 489 454	468 439 414 414 407	133 124 118 118 115	7 17 10 13 14	40 63 46 59 45	44 14 34 13 31	3 0 2 0 1	5 3 6 13 6	7.7 6.1 7.0 6.2 6.5	76 92 73 82 75	0 6 4 11 2	7.0 8.3 7.5 7.8 7.3	8 8 7 7 8
Dakchip Monona Atlantic Belchip Norchip	488 400 437 407 447	407 383 382 381 355	115 109 108 108 100	10 13 10 10	45 59 45 55 46	29 24 32 28 22	1 1 2 1	12 2 8 3 17(S)	6.3 6.5 6.4 6.1	73 69 89 89	0 8 8 1 6	7.0 6.5 7.8 7.0 8.0	6 6 7 8 6
Katahdin AF205-9 CA02-7 AF186-5	407 398 323 295	354 333 294 273	100 95 83 78	9 36 16 21	43 47 56 62	36 1 18 10	2 0 0 0	7 9(M) 4 3	6.8 5.5 5.4 5.4	75 84 78 77	5 1 12 2	7.3 7.0 6.8 8.0	7 9 8 7
Waller- Duncan	(55)	(53)							(0.6)				

Upstate New York Table 4. Variety Trial 3, Early White, Freeville, New York, 1980

Clone ⁸ /	Yiel		% Sup			tal Yie	eld		MTW ³ /	Spec4/			7/
Clone-	Total	US #1 1 g - 4	Yield 17-4	17-2½	US No. 2 ¹ / ₂ -3 ¹ / ₄	31/4-4	>4	Defects ² /	(oz)	Grav	нн <u>5</u> /	App <u>6</u> /	Vine ⁷ / Mat
B8715-22	462	441	103	15	70	11	0	2	5.4	65	0	9.0	6
Superior	465	428	100	10	58	24	1	5	6.1	72	0	6.8	7
B8887-1	432	395	93	26	60	5	0	3	4.4	81	2	7.3	7
B8771-6	405	373	88	9	53	30	3	3	7.3	75	4	7.8	7
C7232-4	392	368	86	14	64	17	0	4	6.2	71	0	7.5	6
Trent	360	348	82	17	70	10	0	1	5.7	90	2	8.5	9
B8491-24	416	345	81	9	37	37	11	4	7.4	70	1	7.0	8
B9097-5	360	333	78	15	58	20	1	3	5.9	75	2	7.5	4
B9062-5	365	328	76	16	61	13	0	6	5.7	74	0	7.5	4
Jemseg	396	314	73	6	40	33	6	13	8.1	68	7	6.8	5
B8783-6	323	292	68	26	56	8	0	3	4.3	78	0	8.8	4
B8751-6	297	273	64	36	52	5	0	1	4.1	72	0	9.0	3
B8799-8	281	267	63	29	61	6	0	1	4.9	77	1	9.0	3
Waller- Duncan(.05	(54)	(52)							(0.5)	(4)			

 $[\]frac{1}{7}$ Planted May 16, 1980, harvested September 19, 1980, within row spacing 9.7". See footnote 1, Table 2. $\frac{2}{7}$ See appropriate footnotes, Table 2.

 $[\]frac{8}{2}$ Planted May 16, 1980, harvested September 4, 1980, within row spacing 9.9". See footnote 1, Table 2.

Upstate New York Table 5. Variety Trial 4, Freeville, New York, 1980

Clone ¹ /	Yield	(cwt/A) US #1	% Kat Yield		% of US No.	Total	Yield		MTW ³ /	Spec-	/		Vine ^{7/}
CTOILE-	Total	1 = 4	1 7 -4	17-21	2½-3¼	31/4-4	>4	Defects ^{2/}	(oz)	Grav	HH ⁵ /	App <u>6</u> /	Mat
B9016-20 Katahdin B7592-1 B8514-8 B6987-184	474 451 413 420 400	452 389 372 . 370 368	117 100 96 95 95	9 9 19 11 22	56 43 59 49 62	30 35 12 29	0 3 3 1	4 10(S) 5 9 4	7.2 7.2 6.2 7.0 5.8	64 69 78 75 89	1 10 2 2 12	7.0 7.3 7.0 7.0	6 7 8 8
B7805-1 B9019-14 B8983-5 B9099-5 B7151-4	403 404 369 336 353	357 351 300 299 294	92 90 78 78 77	5 18 15 15	35 51 41 49 54	49 17 26 24 20	4 1 1 0 0	6 8 15(G) 7 16(M)	8.1 5.5 6.0 5.7 6.8	67 68 83 73 85	1 4 0 0 28	8.8 8.5 7.7 7.8 5.5	5 5 6 5 8
B8491-1 B8783-1 B8832-3	284 206 187	209 176 169	54 45 43	13 24 31	42 41 47	19 19 12	1 0 0	20(M) 7 2	6.2 4.8 4.0	72 68 79	12 0 1	5.8 7.8 7.5	7 2 3
Waller- Duncan(.05	(51))	(54)							(0.7)	(4)			
0 ther $\frac{8}{}$													
B8706-7 B8798-20	447 330	381 318	98 79	7 12	36 50	42 35	3	11 2	7.4 6.9	7 1 77	4 5	6.0 8.0	6 7

Upstate New York Table 6. Red Variety Trial, Freeville, New York, 1980

Clone ⁹ /	Yield	(cwt/A) US #1		% of	Total	Yield		MTW ^{3/}	Spec-	/		,Vine ^{7/}
	Total	1 7/8 - 4	17-21/2	2½-3¼	31/4-4	>4	Defects ^{2/}	(oz)	Grav	нн <u>5</u> /	App <u>6</u> /	Mat
ND9403-16R	467	440	20	61	13	0	3	5.6	79	0	7.3	5
Chieftain	449	434	15	61	21	1	0	5.6	72	0	7.8	5
Rideau	399	385	11	65	21	1	2	6.4	81	0	8.0	7
ND146-4R	331	308	29	53	10	0	1	4.4	65	0	8.0	3
Norland	312	277	19	61	9	0	6	5.1	64	0	7.8	3
Waller- Duncan(.05)	(86)	(76)						(0.2)	(6)			

 $[\]frac{1}{2}$ /Planted May 19, 1980, harvested September 25, 1980, within row spacing 9.6". See footnote 1, Table 2. $\frac{2}{-7}$ /See appropriate footnotes, Table 2.

 $[\]frac{8}{}$ /Not included in analysis of variance. Hollow heart based on 20 tubers of B8706-7 and 30 tubers of B8798-20. $\frac{9}{}$ /Planted May 19, 1980, harvested September 16, 1980, within row spacing 9.7". See footnote 1, Table 2.

Freeville Russet Variety Trial, Freeville, New York, 1980 Upstate New York Table 7.

Clone ^{1/}		cwt/A) US #1		US ou	f Total No. 1 nces		Defects ² /	, MTW ^{3/}	Spec ⁴ /	/ 5/	App <u>6</u> /	,Vine ⁷ /
	Total	4-16 oz	0-4	4-10	10-16	>16	Defects='	(oz)	Grav	нн <u>5/</u>	App <u>o</u> /	Mat
A68678-1	394	324	11	62	21	2	5	6.4	86	15	7.8	8
B7583-6	398	323	13	64	17	3	3	6.1	84	17	7.5	7
B9020-18	372	300	13	59	21	5	1	6.2	66	0	8.0	5
B8881-5	373	296	16	63	17	1	3	5.9	65	0	8.3	2
B8977-2	392	267	5	39	30	11	15(M)	8.4	71	28	5.8	7
B8922-10	335	265	18	63	17	1	2	5.6	69	1	8.0	4
R. Burbank	385	249	15	50	15	2	18(M)	6.4	83	7	4.8	8
B8943-4	319	240	11	62	14	0	13(M)	6.3	72	3	7.0	2
Be1Rus	280	216	21	67	10	0	3 ′	5.7	79	1	8.8	3
B8934-4	310	208	14	50	17	2	17(M)	6.2	73	12	7.0	5
Waller- Duncan(.05)	(49)	(41)						(0.9)	(4)			

Upstate New York Table 8. Wyoming County Russet Variety Trial, Gainesville, New York, 1980

Clone ^{8/}	Yiel Total	d (cwt/A) US #1 4-16 oz	U	of Tota S No. 1 ounces 4-16	1 Yield >16	Defects ² /	Spec <mark>4/</mark> Grav	нн <u>5</u> /	App ⁶ /
A68678-1 B7583-6 BelRus R. Burbank	388 333 278 338	325 298 238 227	8 4 13 6	83 90 86 67	2 1 1 0	8(M) 5 1 27(M)	85 83 81 79	3 0 1 0	8.3 8.3 8.5 5.0
Waller- Duncan _(.05)	(48)	(76)					(ns)		

Orleans County Russet Variety Trial, Elba, New York, 1980 Upstate New York Table 9.

Clone ⁹ /	Yield Total	(cwt/A) US #1 4-16 oz	0-4	% of US No. I ounces 4-16	Total Yi 	Defects ^{2/}	_{нн} <u>5</u> /	App ⁶ /
A68678-1 B7583-6 R. Burbank BelRus	259 245 229 152	196 188 171 118	17 17 22 20	77 77 77 75 78	0 0 0 0	6 6 3 2	0 0 0 0	8.8 8.5 7.0 9.0
Waller- Duncan(.05)	(54)	(32)						

 $[\]frac{1}{P}$ Planted May 12, 1980, harvested September 15, 1980, within row spacing 9.9" except for Russet Burbank 12". See footnote 1, Table 2. $\frac{2}{-4}$, $\frac{6}{-7}$ See appropriate footnotes, Table 2.

 $[\]frac{5}{N}$ Number of tubers with hollow heart and/or brown center of 40 tubers cut at Freeville, 20 at Gainesville and 10 at Elba.

^{8/}Planted June 2, 1980, harvested October 6, 1980, 1900 lb/A of liquid 8-16-8 applied in bands at time

^{9/}Planted May 28, 1980, harvested September 18, 1980, fertilizer broadcast at a rate of 750 lb/A of 10-20-20, vines sprayed with ametryn on 9/11/80.

Upstate New York Table 10. White Variety Trial, Gainesville, New York, 1980

Clone ¹ /	Yield	(cwt/A) US #1	% Kat Yield		of Tota	l Yie		Spec 4/	,	
Crone	Total	1 7/8-4	1 7/8-4	1 7/8	1 1/8-4	4	Defects ^{2/}	Grav	нн <u>5</u> /	App ⁶ /
BR7093-23	415	361	102	5	87	1	7	79	1	8.5
Katahdin	387	357	100	2	92	2	4	75	0	7.3
R471-62	398	347	98	4	87	1	8(S)	74	1	8.0
Q155-3	399	346	98	4	87	0	9(S)	73	1	8.0
B7592-1	411	339	95	4	83	4	9(S)	79	0	8.3
Rosa	408	333	94	11	82	0	7	78	0	7.3
Denali	374	316	89	8	84	0	8(S)	95	1	8.0
054-11	372	316	89	5	85	0	10(S)	73	2	8.0
B6987-184	367	307	87	8	84	0	8(S)	94	1	7.5
Belchip	346	304	86	5	88	1	6	84	1	6.5
Atlantic	344	302	86	6	88	0	6	92	3	7.8
Monona	353	301	85	12	84	0	4	74	1	6.8
AF186-5	333	283	80	10	85	0	5	84	0	7.5
Norchip	342	268	75	9	78	1	12(S)	84	0	7.5
Jemseg	263	209	59	5	80	0	15(MG)	76	1	8.8
AF205-9	276	182	51	9	64	0	26(M)	83	0	6.8
Waller- Duncan _(.05)	(51)	(53)						(4)		

Upstate New York Table 11. White Variety Trial on Muck Soil, Elba, New York, 1980

Clone ^{7/}	Yield			% of Tot	al Yiel	d		
Clone—	Total	US #1 1 7/8-4	<1 7/8	US No. 1 1 7/8-4	>4	$Defects^{2/}$	нн <u>5/</u>	App <u>6</u> /
NY59	349	292	11	83	3	3	0	9.0
Jemseg	296	246	5	83	4	8	1	9.0
Rosa	324	246	18	76	0	6	0	9.0
R471-62	276	237	10	86	0	4	0	8.0
Atlantic	284	225	16	79	0	5	0	8.3
Q54-11	256	218	11	86	0	3	0	9.0
Wauseon	262	212	12	82	0	6	0	9.0
B6987-184	256	202	17	79	0	4	0	8.0
Q155-3	222	192	10	86	0	4	0	8.8
Waller- Duncan(.05)	(40)	(48)						
0 ther $\frac{8}{}$								
Denali	340	291	12	86	0	2	0	9.0
BR7093-23	347	275	15	79	Õ	6	0	8.5

 $[\]frac{1}{2}$ See footnote 8, Table 8. $\frac{2}{-4}$, $\frac{6}{5}$ See appropriate footnotes, Table 2.

 $[\]frac{5}{}$ See footnote 5, Table 7.

 $[\]frac{7}{\text{See}}$ footnote 9, Table 9.

 $[\]frac{8}{N}$ Not included in analysis of variance.

Upstate New York Table 12. Effect of nitrogen rate on yield and quality of Belchip, BelRus, Monona, Rosa, B6987-184, B7583-6 and NY59, Feeeville, New York, 1980

			987-184, B	7583-6					rk. 1980				
Clone and N1/	Tuber No	Yield	(cwt/A) US #1			% of To US No.	tal Yie	1d		MTW ³ /	Spec <u>4/</u>		Vine <u>6</u> /
rate (1b/A)		Total	4-16 oz	-	0-4	4-10	10-16	>16	Defects $\frac{2}{}$	(oz)	Grav	HH-5/	Mat
BelRus	6.0	204	200								7.6		
150 180	6.0 5.6	304 291	222 222		21 16	60 60	13 16	4 3	3 5	5.3 5.5	76 78	2 6	3
210	5.6	296	233		14	63	16	5	2	5.5	78 78	2	3
Waller-	(ns)	(ns)	(ns)							(ns)	(ns)		
Duncan (.05)		(113)								(113 /	(1137		
Clone and $N^{1/2}$	Tuber No		US #1			US No.	tal Yie	eld		MTW3/	Spec <u>4/</u>		Vine ^{6/}
rate (1b/A)	per ft	Total	$1\frac{7}{8}-4$	$1\frac{1}{2} - 1\frac{7}{8}$	17-21		31-4	>4	Defects $\frac{2}{}$	(oz)	Grav	нн <u>5/</u>	Mat
Belchip													
100	6.7	462	425	2	8	50	34	2 3	4 4	7.2 7.0	84		7
150 Waller-	7.0	473	432	1	8	51	32	3	4		81		8
Duncan (.05)	(ns)	(ns)	(ns)							(ns)	(2)		
Monona													
150 180	3.3 3.1	418 427	391 398	2 2	9 10	51 51	33 32	1 2	3 3	13.1 14.5	69 71 -	6 7	5 6
210	3.0	420	391	3	8	52	33	2	2	14.8	70	4	6
Waller-	(ns)	(ns)	(ns)	_	_					(ns)	(ns)		
Duncan (.05)	(113)	(113)											
Rosa 75	9.7	506	470	3	18	59	17	0	4	5.4	7.8	9	6
112	10.6	519	474	4	19	59	14	ĭ	4	5.1	76	9	7
150	9.6	481	428	5	18	56	15	1	5	5.3	76	5	8
Waller-	(ns)	(ns)	(ns)							(ns)	(ns)		
Duncan (.05)													
B6987-184 75	5.9	334	297	4	17	65	7	1	7	5.9	93	25	6
112	5.8	332	292	4	18	63	7	i	8	6.0	91	21	8
150	5.5	335	310	3	16	67	10	0	5	6.4	93	17	8
Waller-	(ns)	(ns)	(ns)							(ns)	(ns)		
Duncan (.05)							-						
B7583-6 75	6.4	222	217	2	16	65	16	2		E 1	00	22	6
112	6.5	332 309	317 308	2	16 18	65 69	15 10	2 0		5.4 5.1	80 80	22 16	6 7
150	6.6	318	300	4	16	71	10	0		5.0	79	18	8
Waller-	(ns)	(ns)	(ns)							(ns)	(ns)		
Duncan(.05)	(113)	(113)	(113)							(113)	(113)		
NY59 100	7.2	305	276		1.4		20				70		7
150	7.2 7.4	395 422	376 392	2 3	14 13	61 58	20 22	2 2	2 3	5.7 5.9	79 76		7 8
hial lon	/ • T	766	372	3	13	30		_	3	5.5	70		U

^{1/}Planting date for BelRus, Monona and Rosa was 5/12 and for Belchip, B6987-184, B7583-6 and NY59 was 5/15; harvest date for BelRus and Monona was 9/15, for Rosa, B6987-184, and B7583-6 was 9/19, and for Belchip and NY59 was 10/8.

(2)

(ns)

(ns)

(ns)

(ns)

Waller-Duncan(.05)

 $[\]frac{2}{-6}$ See appropriate footnotes, Table 2.

Upstate New York Table 13. 1979 Potato Variety Trials $\frac{1}{2}$, Chip Color Results $\frac{2}{2}$

Clone	Tri	al I	Tri	al II	Tria	1 111	Trial IV	Trial V		euben
OTOTIC	50	45-60	50	45-60	50	45-60	Trial IV 50	Trial V 50 45-6	<u>Wh</u> 50 50	Rus 50
Atlantic	46	47	49	53	1		1	1	30	30
BelChip										
BelRus							42			38
Butte							31			25
ampbell-11	47	<u>44</u>			_		<u></u>			
ampbell-12										
ampbell-13	1								34	
ent.Rus. Catahdin	35	35	38				21	0.5		
lennebec	43	43	30		1			36	-	
laineRus	+ = -		· 		- +		+ - 48	-		
econic	45	49					40			_ _ 44
.Burbank		,,,					34			
uperior							34		34	
F186-5	45_	39							34	
F205-9	1		+		- +		†			
6969-2			i						31	
6987-184	49	46] "	
7154-6			28							
7200-33	ļ		26				1			
7516-9					38					
7583-6							34		31	
7592-1			48	53						
7802-2	33		0.0					41	1	
$\frac{7805-1}{2}$	+		28		-		ļ			
8352-3			40	F.4				30)	
8491-1 8491-24			48	54						
8687-22			33		12	20				
8706-7			45	4.3	43	29				
3710-1 — — —	+		$+\frac{43}{34}$ -	43	- +		+			
3710-1 3710-16			34							
8715-22			38							
8751-6			43	41						
8771-6			46	40						
8779-1	†		$+\frac{1}{47}$	$-\frac{70}{44}$	+		+			
8783-6			49	42	İ					
8799-8			52	50					}	
8887-1			49	51	İ					
8922-10							25			
8932-2*	1		†				†			
9053-6					37					
R7093-23	46	48								
C26-1A					45	37				
7232-4	<u></u>				_		1		$ \frac{52}{42} -$	
7358-14A	0.7							00	42	
(59 (6) (Dans)	27	4.0						28		
(61 (Rosa)	44	40						49 40)	
Y63	26									
Y <u>64</u> Y65	<u>24</u> <u>43</u>	<u>1 -</u>	+		+		+			
165 166	34	46								
53-5	34							38		
54-5								40		
54-6*								26		
54-11*	+		+				+	$-\frac{20}{34}$		
94-9*								52 56	5	
94-25*								53 53		
55-3								54 52		
Q61-8								45 45	5	
<u> </u>			t		+		†	$-\frac{1}{43} \frac{4}{41}$		
74-12								37		
71-8								40		
71-62*								48 39)	
171-89								36		
(.05) ^{Tukey}	(8)	(8)	(9)	(11)	(10)		(8)	(9) (7	7) (10)	(7
1151	' '	. ,	1 ' '	. ,	, ,		, , ,	`	1, ,	,

^{*}Not included in analysis of variance.
1/ See 1978-1979 report for harvest results.
2/ Agtron M30 colorimeter readings. Standards for whole chips were discs 00 and 90 which were calibrated to give readings of 0 and 90 respectively. Minimum value for "generally acceptable color" for whole chips is about 45. Two slices of each of seventeen tubers per replication were fried in vegetable oil at $365^{\circ}F$. $50^{\circ}F$ samples were stored at $50^{\circ}F$ from time of harvest until fried 1/9/80. The $45-60^{\circ}F$ samples were stored at $45^{\circ}F$ from time of harvest until 2/21/80 when the temperature was raised to $60^{\circ}F$. Samples were fried on 3/20/80.

Sprout weight or weight loss other than sprouts expressed as % of total weight Variety Trial Number After-cooking darkening Clone Variety Trial Number Π III III Oth Spr 0th Spr Oth Spr Oth Oth II I۷ Spr Spr Atlantic 4.8 4.7 3.2 6.7 3.0 7.3 7.6 Re1Rus 4.8 3.8 Butte 4.8 1.8 6.4 Campbell 11 5.0 2.5 5.5 3.4 _ 5.5 Cent. Rus. 4.9 $\overline{4}.\overline{2}$ 4.4 $\overline{3},\overline{9}$ $\overline{3}$, $\overline{2} = \overline{6}$, $\overline{8}$ $\overline{4}.\overline{4} - \overline{6}.\overline{6}$ 4.3 2.9 6.7 $\overline{2}, \overline{7} - \overline{8}, \overline{2}$ Katahdin Kennebec 4.7 2.1 7.2 Maine Rus 4.4 3.6 3.4 Peconic 4.2 1.2 4.5 R.Burbank 5.0 0.3 4.6 $\overline{3}$. $\overline{9}$ 5.7 $\overline{9}.\overline{2}$ AF186-5 B6969-2 B6987-184 3.4 3.4 4.1 4.6 6.9 B7154-6 4.3 B7200-33 4.9 4.8 7.6 4.7 $\overline{2}.\overline{3} - \overline{5}.\overline{1}$ B7516-9 4.1 0.1 4.9 B7583-6 1.8 6.0 4.9 B7592-1 B7802-2 5.0 0.6 5.6 B7805-1 4.9 1.8 4.9 B8352-3 2.7 B8491-1 4.3 0.6 4.7 3.4 8.2 B8491-24 4.2 6.8 3.4 B8687-22 $\frac{3.0}{3.8}$ $\frac{8.5}{8.2}$ 4.5 B8706-7 4.7 B8710-1 B8710-16 2.0 6.2 B8715-22 4.3 B8751-6 4.9 1.7 6.8 4.8 7.1 $\frac{2.6}{5.3}$ B8771-6 4.3 B8779-1 $\overline{3}.\overline{9}$ 7.8 10.9 B8783-6 4.4 B8799-8 4.7 4.3 5.4 12.4 B8887-1 4.2 3.3 6.8 B8922-10 B8932-2 9.4 2.7 B9053-6 4.2 0.6 5.6 3.8 BR7093-23 5.9 4.0 CC26-1A 4.1 C7232-4 $\overline{1.0}$ $\overline{3.5}$ 5.0 4.2 5.0 $\overline{0}.\overline{9}$ NY59 2.2 9.1 4.1 NY61 (Rosa) 4.1 2.1 6.8 2.6 7.4 4.6 NY63 4.7 1.1 4.6 NY64 $\frac{3.7}{3.2}$ 0.7 NY65 4.7 5.0 NY 66 0.5 6.7 4.1 053 - 50.5 3.1 4.0 Q54-5 5.4 7.6 4.3 054-6* 1.6 5.3 3.9 054-11* $\frac{7.3}{7.5}$ 1.0 $\frac{4.3}{3.9}$ 094-9* $\overline{1.6}$ 094-25* 2.9 4.5 4.0 0155-3 0.9 7.8 4061-8 4.6 0.7 6.4 4.8 4061-12* 0.4 5.2 4.3 4074-12 $\frac{0.7}{0.7}$ 4.3 4.5R471-8 7.1 6.6 4.5 R471-62* 1.6 4.6 4.3 R471-89 (0.8) (1.0) (8.4) (1.6) (6.0) (1.7) (ns) (ns) (ns) (5.3) (4.4) (0.8) (0.8) (0.7)D(,05) Tukey

^{*}Not included in analysis of variance.

 $[\]frac{1}{2}$ Five tubers per each replication were peeled, on 1/16/80 dipped in 0.5% sodium bisulfite; cooked 7 min. in an autoclave at 15 p.s.i. and rated from 1-5, where 1 = severe after-cooking darkening, 5 = no darkening. $\frac{2}{5}$ Stored at $\frac{50}{5}$ F from time of harvest. Data collected $\frac{3}{7}$ 80.

NEW YORK

R. L. Plaisted and H. D. Thurston

New York Breeding Program

Early Generations. This year 99 crosses were made which are part of the variety development phase of the project. Fifteen are tuberosum x neotuberosum hybrids, the rest are crosses between tuberosum clones. All segregate for resistance to the golden nematode and many of them for scab and Verticillium wilt resistance. Additional crosses were made which mostly involve neotuberosum, sparsipilum, and/or berthaultii for heat tolerance, PVY, PVX, bacterial wilt, root knot, and glandular hairs. Sixty four thousand seedling tubers were saved from about 100,000 transplants. Forty seven thousand tuberosum x neotuberosum seedling hills segregating for resistance to the golden nematode, PVY and PVX, and 10,000 hills of tuberosum crosses from Campbell Soup segregating for golden nematode resistance were grown. From those, 6050 were selected. At the four hill level, 831 selections were made of the 5186 that were grown. At the next stage, 130 selections were made of 523 that were grown. Ninety six of the clones in the latter two stages were from the Campbell Soup Company.

Yield Trials. There were 57 clones in the first stage yield trials. The data for the 14 which have survived to date are presented in Table 1. The performance of clones in the more advanced yield trials at Ithaca, Riverhead, and Cato are presented in Tables 2, 3, and 4, respectively.

Variety Release. The clone NY61 will be released as the variety "Rosa", a name chosen to describe the pink color about the eyes, and to acknowledge its hybrid origin between South and North American varieties. It is resistant to the golden nematode, leaf roll, Verticillium wilt, and moderately resistant to early and late blight. It cooks white and produces light colored chips from 50° storage, comparable to Norchip. It produces a heavy set of small to medium sized tubers. Twenty two acres of Foundation seed were produced in 1980.

In cooperation with Anderson, Brodie, Ewing, Fry, Jones, Sieczka, and Tingey.

Table 1. First Year Yield Trial Selections

	SG	1.071	1.073	1.073	1.059	1.073	1.063	1.062	1.063		1.061	1.063
	Score	3.0	3.4	4.2	3.6	3.8	3.9	3.2	3.6	2.9	3.8	4.0
20	necr.	0.8	0	0,0	00	0,0	0,8	0	0	0	0	1,0
#/20	hht.	0.5	0	0,0	0	0,0	0,0	0	0 0	0	0	0,0
%	>1-7/8	77 54	81 53	63 53	73 60	67 44	64	64	61 34	78 63	63 48	61
	>2-1/2	271 170	243 148	196 187	224 199	230 170	209	231 132	205 111	261 221	188 148	216
Cwt/A	>1-7/8	350 316	298 281	314 351	307 330	345 391	329 282	358 283	338 331	334 350	301 310	355
	Total	362 338	310	354 377	336 343	368	360	397 298	376 372	356 360	324 325	396 348
5	Scab	3.8	9 24	32	6 21	4.5	6.5	4 6	63	9	5	4 41
	GN	S	æ	R	æ	æ	æ	M.	R	R	24	W.
	Loc.	H M	I	IR	I	R	H W	R	I	I	R	I R
	Clone	Kat	T4-20	T5-10	T5-24	T11-29	T12-27	T20-5	T30-36	T30-47	T30-71	T37-29

	SG	1.079	1.063	1.067	1.074
	Score	3.4	3.8	2.9	3.2
	int. necr.	0 0	00	0	0
	hht.	0 0	0	0	0
%	>2-1/2 >1-7/8	79	61 40	70	81 40
	> 2-1/2	300 184	189	220 108	270
Cwt/A	>1-7/8	382 405	309	314 267	332 219
	Total	405 434	350 322	337 285	356 253
	V.W. Scab	7	6 20	6 37	5 72
	GN	×	W.	R	R
	Loc.	I &	I R	I R	I
	Clone	T53-26	T88-6	T272-32	T275-100

I = Ithaca, R = Riverhead Loc

Index of scab relative to Chippew R = resistant

7 is susceptible Scab: VW: Score:

Higher numbers are more attractive

Ithaca 1980, Planted May 4 Vines killed August 28 Harvested September 11 Table 2.

Specific gravity	1.073 1.075 1.076	1.076 1.069 1.078 1.074	1.069 1.063 1.068	1.061 1.075 1.059 1.065 1.062 1.072
Score	6.4 6.7 6.9	7.3 8.0 7.2 7.2	6.1 6.5 7.3	0.0.2.0.4.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.
int. necr.	4/120 0/60 0/60	0/60 4/60 0/60 1/100	2/60 1/60 12/100	0/30 0/30 1/30 0/30 0/30 0/30 2/30
hht.	0/120 0/60 0/60	0/60 0/00 0/60 2/100	0/60 0/60 0/100	1/30 0/30 0/30 0/30 0/30 0/30 0/30
1/2** of >1-7/8	75 88 83	57 78 88 74	72 56 70	73 75 76 39 50 58 60 61
% >2-1/2** of total of >]	71 85 79	51 74 86 70	68 52 66	68 71 72 35 46 52 58 55
defects (cwt)	gc & 2nd gr gc gc) & &) O	၁8	Not recorded
defe wt.	0.3	7.6	0.6	Not recorded
>2-1/2*	247 318 284	183 240 290 241	225 146 236	228 198 250 93 140 185 198 208 188
Cwt/A >1-7/8	329 362 344	321 312 329 325	314 260 335	313 263 327 238 277 318 313 364
Total	347 375 362	359 334 341 345	332 284 359	334 278 347 262 306 355 343 376
	Katahdin Hudson NY59	NY61 NY63 NY66 054-6	Q54-11 Q155-3 R471-62	Katahdin 4Q74-12 S303-8 S374-4 S376-1 S376-2 S377-8 S377-8

* defects not included in yield >2-1/2
** defects included

Table 3. Riverhead 1980, Planted April 23 Vines killed about September 15 Harvested September 30

Specific	1.065	1.063	1.065	1.065	1.065	1.068	1.066	1.064		1.062	1.068	1.058	1.072		1.064	1.063	1.067
0, 01																	
Score	6.7	5. c	7.7	8.9	7.9	7.6	5.6	7.2	3.3	3.8	3.2	3.5	3.2	3.2	4.0	3.4	3.4
int. necr.	15/120	1/50	09/0	7/120	1/60	10/60	09/0	09/2	2/60	2/30	4/30	3/30	0/30	0/30	0/20	1/30	0/30
hht.	0/120	2/50	09/2	2/120	09/0	09/0	2/60	09/0	1/60	0/30	0/30	0/30	0/30	0/30	0/20	0/30	0/30
>2-1/2 >1-7/8	57	38	39	72	89	65	41	59	42	51	51	52	36	25	26	38	20
defects (cwt)		backs.		Sc				misshapen			Sc						
defe wt.		0	:	2.2				9.0			1.0						
>2-1/2*	215	330	112	288	197	204	120	259	127	122	154	137	79	54	89	111	33
Cwt/A >1-7/8	377	293 727	283	399	287	314	291	437	305	238	301	264	216	221	262	291	166
Cwt/A Total >1-7/8								455 437									

 \star defects not included in yield >2-1/2

** defects included

Cato 1980, Planted May 16 Vines killed September 15 Harvested September 24 Table 4.

	Score	6.7	5.4	7.0 7.5 7.2	7.5	6.4	7.5	5.9	6.7	5.5	5.7	7.1	7.7	8.2	7.1	8.2
	int. necr.	0/40	0/40 2/40	0/40 0/40 0/40	07/0	1/40	0/40	0/40	1/40	0/10	0/40	0/40	0/40	0/40	0/40	3/20
	hht.	3/40	0/40	0/40 0/40 0/40	0/40	0/40	2/40	04/4	2/40	0/10	0/40	0/40	0/40	0/40	0/40	0/20
.1/2**	of >1-7/8	83	85 91	72 1.00 93	89	98	80	91	82	83	78	9/	78	9/	84	77
~ × × × × × × × × × × × × × × × × × × ×	of total of >	81	72 89	99 06 89	85	84	77	98	74	73	70	71	74	72	77	72
defects >2-1/4	type	28	gc&K gc	20 20 20 20 20 20	gc	К	၁	gc	gc&K	gc	gc&K	gc&K	gc&Κ	Х	gc&K	
defects	wt.	0.4	25.6	6.3 37.8 13.0	4.5	13.0	0.9	10.4	19.8	18.0	16.7	1.4	4.0	0.9	17.1	0
	>2-1/4*	249	163 382	265 286 316	339	294	276	229	301	250	167	172	250	261	294	273
Cwt/A Yield	>1-7/8	300	223 424	374 317 353	387	355	346	262	390	324	237	227	324	343	370	356
	Total	308	261 433	411 361 368	403	367	362	277	434	365	264	244	344	364	405	381
		Katahdin	Norchip NY59	NY61 NY63 NY66	054-6	054-11	Q155-3	4074-12	R471-62	S303-8	S374-4	S376-1	S376-2	8377-8	S377-41	8377-59

* defects not included in yield >2-1/4
** defects included

Table 5. Ithaca, 1980 Early harvest yield trial

	<u>Total Yield</u>	Wt./Tuber
Katahdin	188 cwt/A	.21 1b.
Hudson	173	.34
Superior	218	.21
NY 59	174	.22
NY61	226	.16
NY63	178	.24
NY66	171	.29
Q54-6	172	.20
Q54-11	221	.23
Q155-3	195	.18
R471-62	204	.22

NORTH CAROLINA

F. L. Haynes

Breeding Program

The primary objectives continue to be early maturity, scab resistance, processing quality and adaptation to the Tidewater area. Chipping quality is essential since more than 80 percent of the crop is processed as chips. About 5 percent is processed as frozen french fries. The remainder is canned or marketed as fresh table stock.

Eastern Trials. Three locations in the early commercial area were planted to performance trials of selected clones. The results are presented in N.C. Tables 1, 2 and 3. The Tyrrell County location (N.C. Table 1) was the only site with a near-normal season. A heavy snowfall on March 3 delayed planting of this plot by two weeks. Otherwise the season was normal. The Weeksville location (N. C. Table 2) planting was delayed by the same snowstorm. In addition, this plot was severely damaged by a hailstorm in mid-May. The results represent in part a measure of the rate of recovery from hail damage. The low percentage of Size A tubers is a result of this damage. An unusually large number of small tubers were harvested for many clones. The Tidewater location (N.C. Table 3) suffered from both midseason drouth and excessively high temperatures in the three weeks preceding harvest. The varieties Atlantic, Croatan and Pungo continued to be the best currently available. Atlantic suffered from internal browning (heat necrosis) at one location and Pungo produced heat sprouts at all locations. Croatan was free of both these problems.

<u>Seedling Production and Clonal Maintenance</u>. Clonal maintenance and increase from tuber-indexed seed tubers was conducted at Waynesville, in the mountains. The summer hybridization program was conducted at the same location.

Adaptation Study

The diploid breeding and adaptation project, previously described, was continued. The interbreeding population of hybrids of the highland tropic cultivated diploids \underline{S} . phureja and \underline{S} . stenotomum is adapted to the North Carolina latitude. As selection for adaptation has advanced, sub-projects have been initiated.

Heat Tolerance. Field evaluations for heat tolerance which were begun in 1977 have been continued. The evaluations are conducted at the Tidewater Research Station, Plymouth, and the Horticultural Crops Research Station, Castle Hayne. During July and August both these coastal locations experience temperatures equal to those of the lowland tropics. In 1979, seed were harvested from 153 clones which had survived at the two coastal locations. These seed resulted from random mating among the 153 clones. In April, 1980 25 seedlings per parent were planted at each location. An identical size planting from remnant (unselected) seed from each family was also planted at each location. These were harvested in mid-August and data recorded for survival, tuberization and yield. Considering the two generations as a whole, survival increased by

3 percent, tuberization increased by 15 percent, and mean yield per plant increased 38 percent. In addition, the variance for yield in the selected generation was larger than the variance for yield in the unselected generation. This sub-population will be subjected to another cycle of selection.

High Dry Matter. The clones previously selected for high specific gravity were again evaluated in 1980. Their superiority in specific gravity was confirmed. In addition, new families were screened for additional sources of high dry matter. Fifteen new clones were selected.

The study of high dry matter stability under high temperatures was continued. In 1980, the 27 stable clones, previously reported, plus seven additional selections were tested in the same locations. Because of extremely high temperatures, a few clones did not survive. Across all locations and years, the only variance consistently significant was that of clones. The clones surviving both years are being selectively intercrossed and out-crossed to tetraploids for further study.

4X - 2X Crosses. A program of hybridization has been initiated among selected commercial tetraploids and diploids from the high dry matter selections. The diploids were chosen for pollen parents by screening for those producing unreduced gametes. A total of 30 crosses produced seeds. The results from six crosses are presented in N.C. Table 4.

The progenies were grown in the greenhouse at Raleigh during the summer of 1980. Plants were grown in 6-inch pots and specific gravity determined from the total tuber production. In most cases 60 to 100 grams of tubers were produced. Average specific gravity for progenies did not equal the mean of the parents, nor, in most cases, did the highest segregate in each cross equal the highest parent. There were two exceptions. Progress was made in increasing dry matter, however, since the highest tetraploid segregates in most crosses exceeded the mean of the parents. A few crosses produced segregates with lower average specific gravity than the parents, indicating wide differences in combining ability for specific gravity.

The hybridization program will be greatly expanded. Crosses between selected tetraploids and selected diploids from the various sub-populations will be attempted.

North Carolina Table 1. Potato performance trial in Tyrrell County. Plots were 1 row, 27 ft. long, 4 replications of 40 entries in RCB, 36 hills/plot. Spacing in row, 9 inches. Width row, 40 inches. Fertilized: 1200 lbs./A. 10-20-20 banded. Total/A. 120 lbs. N., 240 lbs. P205, 240 lbs., K20. Planted 3/20/80, harvested 6/25/80 (97 days).

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip ^{1/} Color	Appear ² / ance	Maturity
B8433-4	352	94.4	1.063	3.5	7.5	Med. early
73026-5	350	94.3	56	3.8	7.2	Midseason
Atlantic B9455-N9	347 338	91.2 91.4	80 73	2.5 2.8	7.7 7.0	Midseason Med. early
Croatan	333	91.4 87.8	73 64	2.5	7.0 7.5	Midseason
73C26-4	331	93.8	67	3.0	8.0	Midseason
B9336-N3	323	85.5	79	2.5	7.7	Midseason
Belchip	319	91.5	71	1.8	7.0	Midseason
Pungo	307	86.5	68	2.0	7.5	Midseason
B9336-N11	305	89.0	70	2.3	7.7	Early
B9476-N2	305	89.1	71	5.0	7.2	Midseason
Superior	301	91.0	72	2.3	8.5	Early
72C75-3	295	80.2	66	3.5	7.0	Midseason
71C15-20	292	90.7	80	1.5	8.0	Midseason
B8686-8	289	87.3	80	2.3	6.7	Midseason
B7151-4	288	93.3	80	2.5	6.2	Midseason
71C4-5	286	91.9	82	1.8	8.0	Midseason
73C25-2	285	68.1	57	5.5	7.2	Midseason
73C26-1	280	84.6	70 76	2.8	8.0 7.7	Med. early
Norchip	280	85.4	76 64	2.0 3.3	7.7 7.7	Med. early Midseason
72C75-2 B8477-4	278 273	79.7 89.3	68	2.3	7.7	Midseason
76C10-3	273	85.8	62	2.3	7.5	Midseason
B8977-2	247	72.5	63	2.0	6.7	Midseason
B9455-N4	246	85.1	79	2.5	8.0	Early
B8599-2	245	78.1	62	1.5	8.0	Med. early
B9484-N1	243	87.3	64	1.8	7.0	Midseason
76C11-3	232	81.4	69	3.8	8.0	Med. early
B8615-2	232	87.1	69	2.8	7.0	Midseason
73C28-1	231	80.0	64	2.8	7.7	Early
B8934-4	224	71.6	70	2.3	8.0	Early
B8972-1	220	75.6	66	2.0	8.7	Early
B9384-N1	200	73.4	64	1.8	7.0	Midseason
B8943-4	195	69.5	73	2.8	7.2	Early

North Carolina Table 1 continued.

B8848-2	194	59.5	71	3.3	6.7	Midseason
B9384-N2	186	73.7	69	2.8	7.5	Early
76C23-1	185	62.7	67	2.8	7.2	Midseason
B8966-3	176	61.5	61	2.8	7.2	Early
B8218-4	151	62.0	67	3.3	8.0	Early
B7583-6	134	47.2	71	4.5	6.5	Med. early

L.S.D. (.05) 47

C.V. (PCT) 12.7

 $\frac{2}{\text{Appearance}}$

1 = Very poor

3 = Poor

5 = Fair

7 = Good

9 = Excellent

 $[\]frac{1}{\text{Chip}}$ color determined by Wise Foods, Borden, Inc., Berwick, Pa. Average of 5 samples, 1 per week for 5 weeks following harvest. 1-4 acceptable with grade 1 = perfect; 5 useable but not desirable; 6-14 unacceptable with 14 = black.

North Carolina Table 2. Potato performance trial at Weeksville. Plots were 1 row, 27 ft. long, 4 replications of 24 entries in RCB, 36 hills/plot. Spacing in row, 9 inches. Width row, 40 inches. Fertilized: 1800 lb./A. 10-10-10. Planted 3/26/80, harvested 6/26/80 (91 days).

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip <u>l</u> / Color	Appear <u>2</u> / ance	Maturity
Croatan Atlantic Pungo Belchip 75C2-5 75C5-4 71C15-20 73C26-4 72C75-3 72C75-2 B9336-N10 73C25-2 71C4-5 Norchip 73C26-1 73C26-5 73C1-3 76C4-5 Superior 73C1-4 B8686-8 B7583-6 B8218-4 B9004-N2	215 206 203 199 198 193 192 192 187 185 172 171 170 163 160 150 143 142 134 125 114 113 96 82	85.2 89.4 88.6 86.9 89.7 89.3 89.1 92.9 81.9 82.7 85.2 87.0 87.8 76.7 84.7 88.1 75.3 82.8 80.5 65.0 69.2 84.9 69.3 73.5	1.060 79 67 63 59 57 81 58 67 60 61 49 75 70 64 49 70 70 65 62 77	2.8 3.3 2.5 2.0 4.8 2.8 4.3 3.8 6.5 2.0 5.5 4.3 3.5 4.3 3.5 5.5 4.3 3.5 5.5 4.3 3.5 5.5 4.3 3.5 5.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5	7.0 7.2 7.2 7.7 8.0 7.2 7.7 8.0 7.2 7.5 8.0 7.0 7.0 7.2 8.0 7.2 6.0	Midseason Midseason Midseason Midseason Med. early Med. early Midseason Midseason Midseason Med. early Med. early Med. early Midseason Med. early Midseason
L.S.D. (.05)	37					
C.V. (PCT)	16.2					

^{1/} and 2/ See footnotes, N.C. Table 1.

North Carolina Table 3. Potato performance trial at Tidewater Research Station, Plymouth. Breeding clone trial. Plots were 1 row, 30 ft. long, 30 replicated entries, 28 augmented entries (7 per rep), 4 replications in RCB W/aug. ent. design. 36 hills per plot. Spacing in row, 10 inches. Width row, 38 inches. Fertilized: Total/A. 100 lbs.

N, 200 lbs. P₂0₅, 200 lbs. K₂0 banded. 30 lbs./A. N. applied midseason. Planted 3/27/80, harvested 6/27/80 (91 days).

Variety	Total cwt/A	Percent US#1-A	Appear- <u>2</u> / ance	Maturity
	F	Replicated entrie	?S	
Pungo Croatan 75C5-4 72C75-3 Belchip B8706-N2 73C26-4 Oceana Atlantic 73C28-4 73C26-5 71C15-20 72C75-2 Superior B9455-N16 B9336-N11 73C1-3 B9004-N3 Superior-L 73C1-4 71C4-5 B8755-N7 B7151-4 B9336-N2 Norchip B9384-N1 B8684-8	280 279 273 259 258 253 249 249 246 241 240 233 230 229 227 224 218 215 213 212 211 191 173 165	76.9 84.9 85.5 73.3 83.6 66.5 90.1 74.6 86.8 73.2 78.7 73.6 68.0 76.2 80.7 80.1 66.4 82.4 81.0 69.0 69.4 74.6 84.8 79.3 70.1 77.9 66.2 64.9	7.0 7.5 7.0 7.2 7.8 8.8 7.0 6.5 7.0 7.5 7.5 7.0 8.0 7.0 9.0 7.7 7.0	Midseason Med. early Med. early Med. early Midseason Med. early Midseason Early Midseason Midseason Midseason Midseason Early Med. early Early Med. early Early Med. early
B7583-6 B9476-N1	152 149	73.6 70.6	7.0 6.2	Med. early Med. early

North Carolina Table 3 continued.

А	ugmented entries	- Rep I - adjust	ed yields	
B9455-N9 B9455-N5 76C2-2 75C2-5 75C2-1 Sebago B9004-N2	284 244 235 230 202 161 123	77.3 74.1 83.4 79.2 79.1 77.8 82.5	7.0 9.0 7.0 7.0 7.0 7.0	Early Early Midseason Early Med. early Late Med. early
А	ugmented entries	- Rep II - adjus	ted yields	
73C25-2 76C4-5 B9455-N7 76C4-2 B9476-N2 B8218-4 Belrus	286 228 221 213 179 174 119	74.7 86.0 59.0 82.3 69.5 74.8	8.0 7.0 7.0 8.0 7.0 8.0 8.0	Early Midseason Med. early Med. early Early Med. early Early
А	ugmented entries	- Rep III -adjus	ted yields	
76C1-1 73C28-1 B9455-N4 B8579-N1 B9384-N11 B8443-N1 B8741-N4	249 234 224 204 199 194 182	78.9 79.3 77.2 74.4 60.7 80.3 58.7	7.0 9.0 8.0 8.0 7.0 7.0	Midseason Early Early Midseason Early Midseason Early
А	ugmented entries	- Rep IV - adjus	ted yields	
B9336-N3 73C26-1 B9336-N10 Norland B9384-N9 B9452-N5 B9384-N2	253 235 231 209 182 138 93	86.0 81.7 81.2 81.9 69.5 79.8 77.1	8.0 8.0 8.0 7.0 8.0 6.0	Midseason Early Midseason Early Early Early Early
L.S.D. (.05) RE	34			
L.S.D. (.05) AE S	ame R. 67			
L.S.D. (.05) AE D	if. R. 68			
L.S.D. (.05) AE v	s RE 54			
C.V. (PCT)	10.5			

 $[\]underline{2}$ / See footnote, N.C. Table 1.

North Carolina Table 4. Behavior of high dry matter diploids in 4X - 2X crosses.

Parentage		Tetrapl	oid Progeny	
4X x 2X	No.	Highest S.G.	Average S.G.	Lowest S.G.
1.078 x 1.116	6	1.094	1.081	1.065
1.080 x 1.099	24	1.099	1.082	1.050
1.080 x 1.109	17	1.098	1.083	1.074
1.080 x 1.142	9	1.106	1.085	1.054
1.080 x 1.116	20	1.101	1.087	1.060
1.072 x 1.099	64	1.143	1.072	1.038

NORTH DAKOTA

R. H. Johansen, B. Farnsworth, D. Hahn, G. Secor and P. Nolte

Potato Breeding Program

Crossing and Seedling Production. A total of 333 crosses were made in the greenhouse during the winter and early spring of 1980. Breeding emphasis involved parents with high yield, russeting, good red skin color, processing qualities, high solids, good horticultural characteristics and disease resistance. Crosses adapted for California potato production were also made, as North Dakota has cooperated with the University of California-Davis for the past six years and is involved with the California potato breeding and varietal development program. Approximately 50,193 seedlings were grown in the greenhouse during the summer of 1980 and these seedlings will be planted in the field at the Langdon Agricultural Experiment Station in 1981.

At the Langdon Agricultural Experiment Station, 51,618 seedlings were growth in the field during 1980 and approximately 1,141 seedlings were saved for further testing and evaluation. The seedling plot at Langdon was planted on May 12th and 13th and harvested on September 15th,16th and 17th.

Advanced Selections. Eight hundred and thirty-four second year, 189 third year and 116 fourth year and older selections were grown in five and 10 hill plots at Grand Forks and Casselton. Two hundred and fifty-eight selections and cultivars from other states were grown in similar plots at Grand Forks. An elite seed increase by the Department of Plant Pathology of second year and older selections was made at Absaraka and Casselton. In addition, a seed increase by the Department of Horticulture of older selections was also made at Casselton. Several second year and advanced selections were also grown for seed increase at Beach, North Dakota. At Grand Forks two replications of all second year selections were planted in separate blocks and tested for disease and general adaptability. The plots at Grand Forks were planted on May 13th and harvested on September 2nd, 3rd and 25th. The plots at Casselton were planted on May 8th and 15th and harvested September 11th, 24th, and 26th.

Promising Selections. Line ND8891-3 was named Crystal in 1980. This cultivar has excellent yield and chips quite comparable to Kennebec. It is oblong oval in shape and should be quite well adapted for the french fry trade.

The Idaho selection, A68678-1 was named Lemhi in 1980 and North Dakota was one of the states cooperating in introducing this cultivar. Lemhi has good shape and type, good yield and total solids and compared to Norgold Russet, is less susceptible to hollow heart. Lemhi should be a good russet cultivar to grow for seed, table or processing in the Red River Valley.

Advanced selections showing promise are ND146-4R, TND 14-1Russ, ND463-1R, ND258-1, ND55-7, ND119-3, ND206-1R, and ND294-1R. Of these, ND146-4R and TND 14-1Russ have the largest increase of foundation seed and probably

will be the first selections to be named. Most of the others have some seed increase at Beach and the Red River Valley. Seed for North Dakota selections are increased by growers at Beach, Voss, Walhalla, and Cando, North Dakota and at Barnesville, Minnesota.

Cultivar Trials. In 1980, replicated trials were planted in the Red River Valley at Park River and Grand Forks and in western North Dakota at Minot and Williston. Wayne Grinde, County Extension Agent, was in charge of the Park River trial while Dennis Askim, Farm Manager of the Potato Research Farm, was in charge of the Grand Forks trial. Superintendents Ernie French and Ben Hoag were in charge of the Williston and Minot trials, respectively.

Twenty-five hills were planted in four replicated blocks. Twenty-five entries were grown in plots at Park River and Grand Forks, while 16 were grown at Minot and Williston. Marketable yield consisted of all U.S. No. 1 tubers over 1 7/8 inches in diameter. Specific gravity was determined by the use of the potato hydrometer. Spacing, fertilizer, soil type, planting date and harvest date are found in North Dakota Table 1.

North Dakota Table 1. Spacing, fertilizer, soil type, planting and harvest dates of the 1980 trial.

	Spac	ing			Plant-	Har-
	Row	Plant	•		ing	vest
Location	(in.)	(in.)	Fertilizer	Soil Type	<u>Date</u>	Date
Grand Forks	s 38	12	22-22-12 200#/A	Bearden Clay Loam	5/12	9/22
Park River	38	12	Fall Broadcast	Glyndon Silt Loam	4/29	9/4
Minot	38	14	105-70-0#/A	Williams Loam	5/7	9/25
Williston	36	16	None	Williams Sandy Loam	5/19	9/29

The growing season for 1980 was very unusual and erratic. The spring was early and very dry. Little or no rain fell in the eastern or western part of North Dakota until late May or mid-June. The plot at Park River was planted on the 29th of April, which was one of the earliest plantings ever made. At Grand Forks, 1.09 inches of rain fell in June, 1.55 inches in July and 4.63 inches in August. In general, most of the precipitation occurred in August and early September in both eastern and western North Dakota. Minot had 4.37 inches of precipitation in August and 2.66 inches in September.

Temperatures were near normal for most of the season and this resulted in fair yields in spite of the early drought. The dry spring and early summer greatly reduced the yields at several locations. The average yield at Grand Forks for the entries in trial was 146 cwt per acre of U.S. No. 1 yield compared to Park River with an average of 239 cwt per acre of U.S. No. 1 yield. The variety trial at Minot and Williston with 16 entries averaged 199 and 159 cwt per acre U.S. No. 1 yield, respectively.

In the eastern or Red River Valley trials at Park River and Grand Forks, Crystal, with an average of 275 cwt per acre was the highest yielding entry. This cultivar was followed in yield by Red Pontiac and Kennebec with 270 and 254 cwt per acre, respectively. Dakchip, ND258-1 and Lemhi were also high yielding entries. Line ND55-7 was comparable to Norchip in yield and looked quite good in the trial. The red selection, ND146-4R, averaged 189 cwt per acre compared to Red Norland with 212 cwt per acre. Line AND 7422-1Russ for the second year was the lowest yielding entry in trial and most likely will be dropped from any further yield testing.

In the western trials at Minot and Williston, Lemhi was the highest yeilding entry followed by Kennebec and Red Pontiac. Crystal was not one of the higher yielding entries in the western trials.

Lines ND383-9, ND55-7, Norchip and ND372-2R produced the highest specific gravity or percent total solids. Lemhi, AND7422-1Russ, ND8850-2, ND258-1, ND193-2, TND 14-1Russ, Dakchip and Crystal all produced solids ranging 20 percent or above. Data for the cultivar trials are found in North Dakota Tables 2 and 3.

<u>Processing Tests</u>. From the 1980 test plots, 134 second year, 91 third year and older and approximately 80 cultivars and selections and material from other states will be tested for chip quality by the Potato Research Lab at East Grand Forks, Minnesota. The second year selections (134) were analyzed for sucrose.

From the 1979 plots, 210 second year selections were tested for chip quality during the winter and spring of 1980. Seventeen of these had an Agtron reading of 40 and above. The second year selections were chipped only once after being stored at 65° F for approximately three months. In a similar test, the third year and older selections (approximately 116) were chipped out of storage at 43° F and 65° F after approximately three to four months storage.

Chip tests were also conducted on all entries grown in the Park River and Grand Forks variety trials during 1979. Lines ND55-7, ND119-3, ND258-1, ND9476-5, and ND194-7 all seemed to have chipping potential. In most cases they were as light in color as Norchip and in some cases, lighter. Crystal seems to be quite similar to Kennebec in chip quality. Chip quality results from entries grown in the 1979 trials are found in North Dakota Tables 4 and 5.

Frozen French Fry and Flake Tests. Frozen french fries and flakes were prepared from several promising advanced selections by the Potato Research Lab at East Grand Forks, Minnesota. Sensory evaluation tests were made by the Food and Nutrition Department of the College of Home Economics on the frozen french fry and flake samples. The sensory scores for ND 119-3 and Crystal exceeded that of both Russet Burbank and Kennebec. Lemhi was slightly below Russet Burbank but higher than Kennebec in its sensory score. Results of the sensory scores are found in North Dakota Table 6.

<u>Culinary Tests</u>. Boiling and baking tests were also done on all entries and material from the 1979 trials grown at Park River and Grand Forks. Some sloughing was observed in selections ND194-7, ND258-1, AND 7422-1Russ, ND372-2R, and ND55-7. This can be expected as all of these selections

are high in total solids. Crystal was shown to be both an excellent boiling and baking potato. Some after-cooking darkening was observed in Dakchip, ND146-4R, ND372-2R, ND194-7 and Red Pontiac. Results are found in North Dakota Tables 7 and 8.

Other Trials. A cultivar trial consisting of only russet skin selections and cultivars was included with the North Central Regional Potato Trial at Grand Forks. A report on russet entries are found in North Dakota Table 9. Lines ND534-4Russ and ND388-1Russ looked the most promising in the russet trial. A summary of the North Central Regional Trial will be found in the 1980 North Central Regional Trial Report.

In addition, a performance trial of potato cultivars with potential for ethanol production was planted at Grand Forks in cooperation with the USDA at Prosser, Washington. Six other states cooperated with this project and North Dakota data from this trial is found in North Dakota Table 10.

Disease Resistance and Control. Approximately 1,000 selections were evaluated for scab and silver scurf resistance at the Potato Research Farm, Grand Forks. Many selections appeared to have excellent resistance to scab and silver scurf. Over 50% of the selections showed some resistance to both of these diseases.

Approximately 800 second year selections were grown in a potato free area (Absaraka) and evaluated for disease and horticultural characters. Diseased selections were removed and superior selections saved for further observation and indexing.

Approximately 400 advanced selections were indexed for spindle tuber using gel electrophoresis and PVX using serology. None were found to be infected with PSTV. The disease-free selections were maintained at the Agronomy Seed Farm, Casselton, as a source of clean seed for breeding and other purposes.

Approximately 30 selections were indexed and released to growers in Beach, North Dakota for increase as part of the basic seed stock program.

Representative tubers of second year and advanced selections were grown in Florida for winter indexing of virus diseases (cooperator, Doug Johansen, State Seed Department).

U.S. No. 1 Yield, Percent U.S. No. 1 and Total Solids of Potato Cultivars and Selections Grown in the Red River Valley Trials - 1980. North Dakota Table 2.

		Grand Forks	ks	ρή	Park River	c,	A	Average	
Cultivar	Cwt/A U.S.No.1 Yield	% U.S. No.1	% Total Solids	Cwt/A U.S.No.1 Yield	% U.S. No.1	% Total Solids	Cwt/A U.S.No.1 Yield	% U.S. No.1	% Total Solids
Crystal	196	95	0	354	96	0	275	96	0
Red Pontiac	219	97	18.2	322	100	17.9	270	66	18.1
Kennebec	156	76	6	352	97	$^{\circ}$	254	92	φ.
Dakchip	198	96	6	260	97	0	229	97	0
ND258-1	167	93	20.3	274	46		220	46	•
Lemhi	148	06	0	288	92	i.	218	93	i.
ND463-1R	163	76	6	271	100		217	97	о О
ND294-1R	168	87	0	262	87	о О	215	87	о О
Red Norland	162	96	6	262	96		212	96	•
ND55-7	174	82	0	249	88		211	82	٠.
Norchip	171	91	i.	247	06		209	91	i.
Norgold Russet	197	92	6	218	92		207	92	9
Viking	163	06	18.8	245	98	19.9	204	94	•
ND372-2R	125	77	i	277	83		201	83	21.2
Bison	176	97	φ.	204	96		190	97	б
Russet Burbank	112	84	19.7	253	82	•	182	82	•
ND146-4R	152	46	6	227	93	•	189	46	б
ND467-3	160	91	6	209	98	19.4	184	83	19.3
ND119-3	124	46	б	206	46	•	165	94	•
ND206-1R	80	77	φ	239	94	19.2	159	98	18.8
TND14-1Russ	113	88	20.5	188	93	0	150	91	0
ND8850-2	131	82	0	149	72	•	140	77	0
ND193-2		84		177	83	20.5	133	87	•
ND383-9	83	82	•	126	75	•	104	79	2
AND7422-1Russ	76	57	0	111	58	21.2	93	28	20.9
Average	148	83	19.9	238	06	20.0	193	83	19.9

U.S. No. 1 Yield, Percent U.S. No. 1 and Total Solids of Potato Cultivars and Selections Grown in Western North Dakota Trials, 1980. North Dakota Table 3.

		Minot		Wi	Williston		A	Average	
	Cwt/A	0/0	0/0	Cwt/A	0/0	0/0	Cwt/A	9/0	0/0
	U.S.No.1	U.S.	% Total	U.S.No.1	U.S.	% Total	U.S.No.1	U.S.	% Total
Cultivar	Yield	No.1	Solids	Yield	No.1	Solids	Yield	No.1	Solids
Lemhi	257	97	21.6	229	95	21.6	243	96	21.6
Kennebec	252	96	19.4	219	96	20.4	236	96	19.9
Red Pontiac	260	96	18.2	212	96	20.7	236	96	19.5
Dakchip	250	93	20.1	183	94	21.8	217	94	21.0
Russet Burbank	209	06	19.9	180	90	20.3	195	90	20.1
Norchip	222	91	20.9	161	88	21.8	192	90	21.4
ND372-2R	219	96	21.2	159	92	22.2	189	96	21.7
Viking	209	86	19.9	142	66	21.4	176	66	20.7
Norgold Russet	182	46	19.7	162	93	22.0	172	94	20.9
ND55-7	191	92	22.4	142	88	22.0	167	90	22.2
Bison	172	87	20.5	149	92	21.4	161	88	20.9
Red Norland	183	97	18.8	131	94	20.3	157	96	19.6
Crystal	175	92	22.2	126	93	22.2	151	94	22.2
ND146-4R	150	92	20.3	121	92	21.6	136	94	21.0
ND119-3	128	92	19.0	121	96	20.7	125	96	19.9
TND 14-1Russ	131	96	20.9	109	96	22.4	120	96	21.7
Average	199	₩6	21.7	159	46	21.4	180	₩6	21.9

North Dakota Table 4. 1980 Chip Tests of Cultivars and Selections Grown at Grand Forks, North Dakota - 1979

	M 0	0 weeks - 38°	<u> </u>	2 WE	weeks - 68	30 F	1	weeks - 68	8º F
	Color 1/	Photo $\frac{2}{}$		Color	Photo-		Color	Photo-	
Cultivar	Chart	volt	Yield~	Chart	volt	Yield	Chart	volt	Yield
Bison	0.6	15.5	i.	•	6	9	•	5.	6
Crystal	8.5	16.8	2	8.5	13.1	31.0	9.5	i	30.3
Dakchip	9.5	11.4	3.	•	5.		•	2	2
Kennebec	8.5	12.5	i,	0	•	٠.	•		0
Lemhi	10.0	10.3	8		i.	ю Э	•	_;	•
Norchip	7.5	22.8	5		•	3	•	i.	ъ.
Norgold Russet	11.0	8.5	2	0	•	i.	•	•	•
Norland	11.0	6.8	6	0	11.8	6	•	3	•
Red Pontiac	11.0	7.4	6		•	0	0	3	
Russet Burbank	10.0	11.8	2	0	•	i	•	0	
Viking	11.0	6.8	6	i.	•	6	$\vec{\vdash}$. 5	
AND 7422-1Russ	11.0	9.8	35.0	9.5	15.4	33.5	0.6	15.3	35.3
ND55-7	8.5	17.5	6	•	•	ij	•	9	
ND119-3	8.0	19.6	i		5.	2.	•	7	
ND137-2Russ	10.0	10.6	2	•	0	i.	•	3	
ND146-4R	0.6	16.6	2	•	ij	2.	•	$\overset{\bullet}{\infty}$	
ND194-7	8.0	19.6	2	•	$\overset{\circ}{\omega}$	9	•	5.	
ND206-1R	10.5	4.6	i,	•	3	ļ.	•	$\ddot{-}$	
ND248-3Russ	10.5	0.6	i	•	•	31.8	•	3	31.0
ND258-1	8.5	15.3	8		0	i.	•	i	
ND294-1R	11.0	8.5	0		•	0	•	7	
ND329-4Russ	10.0	10.9	_i	•	•	0	•	7.	
ND372-2R	10.0	13.3	7	•	14.8	ж Э	•	6	
ND8850-2	8.5	20.3	2	•	•	2	•	φ	
ND9476-5	0.6	17.5	ļ.	•	•	ж Э	•	5.	
Average	9.6	13.1	31.9	9.1	15.5	31.8	8.6	17.8	31.4
1 / CC C C C C C C C C C C C C C C C C C	1: 44+	11 days)							

Color Chart (1 light, 11 dark)
Photovolt - Higher numbers are lighter in color Yield - Percent chip yield 13/17

1980 Chip Tests of Cultivars and Selections Grown at Park River, North Dakota - 1979 North Dakota Table 5.

		0 weeks - 3	38° F	2 W	weeks - 68°	H	4 weeks	ks - 68° F	
Ciltivan	Color-/	Photo- $\frac{2}{\text{volt}}$	$V_{ield} = \frac{3}{4}$	Color	Photo-	۲ield	Color	Photo-	۲۰۶۱ط
1	3 75110			1	1		2 2010	1	1
Bison	•	19.4	2	•	•	2	•	7	2
Crystal	8.5	17.4	5	8.0	•	ю Э		0	9
Dakchip	8.0	20.5	35.5	6.8	31.0	37.0	6.3	33.5	37.5
Kennebec	•	18.3	5	•		5	•	6	<u>+</u>
Lemhi	0.8	19.0	8	´ •	•	9	•	φ.	ю С
Norchip	8.5	21.0	<u>+</u>	6.3	•	<u>+</u>	3.8	į	9
Norgold Russet	10.5	10.9	ю Э	•	•	8	•	б	<u>+</u>
Norland	9.5	12.5	2	•	•	ij	•	0	i,
Red Pontiac	10.5	e*6	2			\dashv	•	9	2
Russet Burbank	9.5	13.8	9	•		5	•	9	5
Viking	11.0	8.1	Ю	•		0	•	6	8
AND 7422-1Russ	•	12.5	φ	•		9	•	2	6
ND55-7	8.0	23.3	5	•		9	•	37.3	9
ND119-3	6.5	25.3	ю С	•		7	•	9	+
ND137-2Russ	10.0	10.6	8	•		<u>+</u>	•	9	ю Э
ND146-4R		14.5	2	•		2	•	7	ю Э
ND194-7	0.9	32.4	9			9	•	2	5.
ND206-1R	0.6	16.0	2			Ю		6	2
ND248-3Russ	7.5	19.4	5	•		ю С		0	
ND258-1	7.0	23.6	5	•		5.		7	
ND294-1R	11.0	7.9	2	•		2	6.5	φ	ю С
ND329-4Russ	9.5	12.0	Ю			8	•	2	<u>+</u>
ND372-2R	10.0	14.0	5			9			35.5
ND8850-2	6.5	32.4	5			е Э	5.8	2	
ND9476-5	7.5	28.0				3		9.	i.
Average	8.7	17.7	34.2	7.5	27.2	34.0	4.9	32.1	34.4
1/ Color Chart (1 light,		11 dark)							

 $\frac{1}{2}/$ Color Chart (1 light, 11 dark) $\frac{2}{3}/$ Photovolt - Higher numbers are lighter in color $\frac{3}{3}/$ Yield - Percent chip yield

North Dakota Table 6. French Fry and Flake Tests of Potato Cultivars and Selections Grown in 1979 Trials 1/2.

Cultivar	Color ^{2/}	Texture	Flavor	Average
		FRENCH FRIES		
ND119-3	7.5	6.3	6.6	6.80
ND612-9	7.05	6.4	6.55	6.66
ND413-4	7.0	5.9	6.2	6.36
TND 14-1Russ	6.1	6.2	6.3	6.20
ND312-3	6.35	6.15	6.0	6.16
ND193-2	6.35	5.75	6.0	6.03
ND412-2	6.35	5.6	5.55	5.83
ND9750-3	6.4	5.2	5.65	5.75
Crystal	5.9	5.25	5.9	5.68
AND7422-1Russ	5.25	6.45	5.3	5.67
ND445-1	6.05	5.2	5.05	5.43
ND383-9	5.3	4.25	5.2	4.92
Russet Burbank	5.05	4.6	4.75	4.80
Lemhi	4.3			
		4.95	4.65	4.63
ND217-4Russ	4.45	4.45	4.8	4.57
ND467-9	4.65	3.75	4.85	4.42
ND450-llRuss	4.55	4.0	4.35	4.30
Kennebec	4.0	4.35	4.45	4.27
ND617-2	4.15	4.1	3.85	4.00
ND549-5Russ	3.65	3.65	3.65	3.65
ND534-4Russ	3.75	3.95	2.9	3.53
Average	5.41	5.02	5.13	5.18
		POTATO FLAKES		
TND 14-1Russ	8.25	7.25	7.75	7.75
ND119-3	8.0	7.0	7.0	7.33
ND193-2	8.0	7.0	6.75	7.25
ND312-3	8.25	6.0	7.5	7.25
ND413-4	7.5	7.25	7.0	7.25
ND9476-5	8.0	7.0	6.75	7.25
ND329-4Russ	7.8	6.4	7.4	7.20
Dakchip	7.75	7.0	6.5	7.08
Lemhi	8.0	6.2	7.0	7.06
ND8850-2	7.4	7.6	6.0	7.00
Crystal	7.25	7.25	6.5	7.00
ND412-2	7.25	7.0	6.5	6.92
ND55-7	7.25	6.75	6.75	6.92
ND292-1	7.75	7.0	5.5	6.75
ND258-1	8.2	5.4	6.4	6.67
TND 22-2	7.0	6.75	5.75	6.50
AND 7422-1Russ	7.0	5.75	6.75	6.50
AND 74569-1Russ	5.5	4.5	6.5	5.50
Average	7.56	6.68	6.68	6.95

^{1/} RATING GUIDE: 7-9 (Good); 5-6 (Fair, but acceptable); 1-4 (Poor, not acceptable)

^{2/} Not treated for color correction on french fry score.

1980 Cooking Tests of Cultivars and Selections Grown at Grand Forks, North Dakota-1979. North Dakota Table 7.

	ç.,																									
	Flavor	7.7	8.7	0.6	7.6	8.7	7.6	8.7	7.7	8.7	8.3	7.6	7.8	8.0	8.0	8.2	7.3	7.6	4.8	8.0	8.2	6.8	8.0	7.6	7.3	7.2
Baking	Color	8.0	10.0	10.0	9.7	9.7	8.7	7.7	9.7	0.6	0.6	8.3	8.3	9.7	8.7	0.6	9.7	8.7	8.7	8.3	6.9	6.3	8.7	8.7	7.3	8.0
	Mealiness	8.7	8.0	0.9	•	7.3	8.0	8.3	7.7	8.7	7.7	8.7	7.7	6.3	7.8	7.5	7.3	7.3	7.5	7.7	7.7	7.2	6.8	6.5	6.3	6.8
	Flavor5/	e. 0	0.6	10.0	8.3	8.0	8.0	0.6	8.9	8.3	8.0	8.3	8.0	8.3	7.4	8.0	8.3	7.3	7.4	8.3	8.2	9.9	7.0	7.6	7.3	5.8
	Color 4 Hours After Cooking4/	9.5	7.0	5.0	7.5	8.0	8.5	8.0	8.0	8.5	8.0	8.0		7.5	•	0.9	0.9	9.5	8.0		6.5	7.5		0.9	8.0	7.0
Boiling	Color After Cooking3/	0.6	6.3	10.0	8.3	6.3	8.7	8.0	9.5	8.7	8.0	7.3	7.7	e.0	0.6	0.6	7.7	0.8	7.5	7.7	8.5	0.6	8.0	6.5	7.3	0.6
	Meali- ness <mark>2</mark> /	8.7	8.7	0.6	6.3	6.7	0.6	0.6	7.8	7.4	8.3	8.7	8.1	e. 6	7.2	7.7	7.3	6.2	6.8	7.3	0.6	6.7	9.9	8.2	7.7	5.5
	Slough- ing1/	8.7	8.7	10.0	8.8	9.7	8.7	8.0	8.5	5.7	7.7	8.0	7.8	6.3	7.5	9.8	10.0	8.4	8.4	6.3	4.1	4.8	8.8	8.8	8.0	8.0
	Cultivar	Crystal	ND119-3	Red Pontiac	ND137-2Russ	Norland	Lemhi	ND8850-2	Dakchip	ND55-7	ND258-1	Kennebec	AND 7422-1Russ	ND372-2R	ND9476-5	Norgold Russet	Viking	Russet Burbank	ND329-4Russ	ND146-4R	ND194-7	ND294-1R	Norchip	ND248-3Russ	ND206-1R	Bison

Severe Sloughing - 1; No Sloughing - 10 Not Mealy - 1; Very Dry and Mealy - 10 Dark - 1; Very White - 10 Dark - 1; Very White - 10 1214131515

Poor Flavor - 1; Excellent Flavor - 10

North Dakota Table 8. 1980 Cooking Tests of Cultivars and Selections Grown at Park River, North Dakota-1979.

	Flavor	8.7	8.1	7.9	7.9	8.1	7.8	7.8	7.7	7.9	7.6	•	•	8.2	•	7.5	7.7	7.9	8.0	•	6.8	7.6	8.0	7.3	8.0	6.9
Baking	Color	e. 6	8.0	9.5	•	6.3	•	0.6	0.6	8.8	8.6		e.0	0.6	•	7.8	e 6	8.0	8.6	•	9.2	8.6		8.8	8.3	8.7
	Mealiness	7.3	7.9	7.3	8.4	7.6	9.9	7.1	7.1	7.5	7.8	6.7	7.3	7.1	7.3	6.4	8.1	7.3	6.5	4.9	6.2	7.6	7.8	7.0	7.8	7.6
	Flavor <u>5</u> /	9.8	8.4	8.1	8.4	7.1	8.3	7.9	8.1	8.0	6.9	8.0	•	8.2	8.0	7.6	•	8.0	8.3	•	7.2	7.2	•	7.0	7.9	7.9
Color	4 Hours After Cooking ⁴ /	0.6	0.6	7.5	0.9	8.5	•	7.5	8.5	0.9	7.5	•	7.0	5.0	10.0	10.0	0.4	•	5.5	8.0	7.5	•		•	7.5	3.5
Boiling	Color After Cooking3/	6.9	8.0	8.7	8.0	0.6	0.6	0.6	8.0	6.3	8.0	8.3	8.7	8.0	7.7	7.0	8.7	8.0	8.0	8.0	8.7	7.0	8.7	8.0	8.0	7.0
	Meali- ness <u>2</u> /	8.8	8.8	8.1	8.6	7.8	7.8	0.9	6.5	8.1	8.2	6.5	7.2	8.0	8.1	7.1	8.2	7.8	7.6	9.9	6.3	8.6	7.8	4.9	7.6	7.0
	Slough- ing <u>1</u> /	9.7	8.7	0.6	0.6	7.7	8.8	9.7	0.6	7.7	8.5	10.0	•	6.3	6.3	0.6	0.6		8.5	6.3	8.8	7.8	7.7	0.6	6.3	7.7
	Cultivar	Viking	ND8850-2	Norgold Russet	Norchip	Lemhi	ND137-2Russ	ND329-4Russ	Red Pontiac	Crystal	Russet Burbank	Bison	ND248-3Russ	Dakchip	AND7422-1Russ	ND206-1R	ND194-7	ND55-7	ND294-1R	ND9476-5	Norland	Kennebec	ND372-2R	ND119-3	ND258-1	ND146-4R

Severe Sloughing - 1; No Sloughing - 10 Not Mealy - 1; Very Dry and Mealy - 10 Dark - 1; Very White - 10 Dark - 1; Very White - 10 1214131517

Poor Flavor - 1; Excellent Flavor - 10

North Dakota Table 9. Russet Trial at Grand Forks, North Dakota - 1980.

Cultivar	Total Yield	No.l Yield	Specific ^{1/} Gravity	% Total Solids
ND534-4Russ	245	235	79	19.4
ND388-1Russ	176	163	83	20.3
ND639-9Russ	133	100	84	20.5
Belrus	125	102	85	20.7
ND534-8Russ	123	103	80	19.7
Allagash Russet	118	112	78	19.2
ND469-7Russ	101	46	84	20.5
AND74569-1Russ	80	39	82	20.1
Russet Burbank	106	70	80	19.7
Average	134	107	81	20.0

^{1/ 1.0} deleted.

Trial of Ethanol Lines Grown at Grand Forks, North Dakota - $1980\frac{1}{}$ North Dakota Table 10.

Cultivar	Total	No. 1 Yield	% U.S.	Specific Gravity	Total	% Carbo.	Gallon Ethanol/A	Value at \$1.70/Gal.
Bounty	266	254	95	79	0	9	210	\$357
A503-42	238	222	66	48	21.6	17.3	312	സ
Neb. 12.72-2	237	201	85	49	•	14.3	257	437
	222	190	86	74	19.6	15.8	266	452
Red Pontiac	216	210	97	69		•	245	417
Neb. Al29.69-1	193	174	06	72	19.2	15.5	227	386
ND9403-16R	190	_	46	76	•	16.1	232	394
WC612-3	189	178	46	06	22.8	•	261	1111
Kennebec	186	174	46	73		•	219	372
ND329-4Russ	182		81	70	•	•	210	357
TND22-2	178	က	76	88	22.4	7.	241	410
ND55-7	173		84	85	•	17.4	228	388
Lemhi	171	\sim	74	85	21.8	17.4	225	484
Crystal	168	9	95	83	21.4	17.1	180	306
Neb. 51-3	166		87	63	17.4	14.1	177	301
ND372-2R	132	103	78	85	21.8	17.4	174	296
ND206-1R	118	\vdash	46	74	•	5.	139	236
ND258-1	109	108	66	84	21.6	17.3	143	243
RB 307	106	84	79	84	21.6	•	139	236
ND612-9	95	85	83	82	•	17.0	122	207
B6987-201	70	09	98	88	22.4	17.9	95	162
Average	172	152	88	79	20.5	16.4	197	\$ 337

Trial planted May 12 and 19th; Harvested September 22 and 23; Fertilizer 22-22-12/200#/A

 $\frac{2}{1.0}$ deleted.

NORTH DAKOTA

B. K. Hoag

POTATO VARIETIES

The potatoes had many growth cracks and cracked easily when dug because of the surplus moisture in August and September. Soft rot was common in Crystal, Dakchip, and Norgold Russet. Kennebec had some sunburned tubers. The potatoes were large, resulting in a very good yield average for 1980. Paraquat was applied to kill the vines.

Data are given in Table 1.

Table 1. Potato Variety Yields in 1980 - Minot, N. D.

			/ield			Days to			%	
					3-Yr.	10%	_	%	U.S.	Total
Variety	1980				Avg.	Bloom	Maturitya	Solids	No. 1	Yield
		:wt/A	of No). 1'	s		0-5		С	wt/A #1
Red Pontiac	260	136	280	198	225	69	4.0	18.2	96.3	270
Dakchip	250	74	257	162	194	62	4.1	20.1	93.2	268
Lemhi	257					65	5.0	21.6	96.5	266
Kennebec	252	105	293	179	217	66	5.0	19.4	96.2	262
Norchip	222	76	226	149	175		5.0	20.9	90.6	245
Russet Burbank	209	45	217	127	141	58	5.0	19.9	90.8	231
372-2R	219					67	4.0	21.2	96.6	227
Viking	209	133	252	171	198	64	4.0	19.9	98.1	214
55-7	191					56	4.5	22.4	91.8	208
Bison	172	99	190	136	154	62	3.8	20.5	87.4	197
Norgold Russet	182	68	200	125	150	51	3.0	19.7	94.2	193
Red Norland	183	98	224	141	168	63	1.5	18.8	96.9	189
Crystal	175	123	280	149	193	50	4.0	22.2	95.3	184
146-4R	150	100		125		57	0.8	20.3	92.0	163
TND 14-1	131					47	2.0	20.9	95.3	137
119-3	128					53	3.0	19.0	95.2	135
Mean	= 199								93.9	212

a 0 = very early; 5 = very late

OHIO

James Pisarczyk, Floyd Lower, E. C. Wittmeyer, Randall Rowe, Donald Simonet, W. A. Gould and David Kelly

Potato Cultivar Trials, 1980

Over 25 potato varieties and advanced selections were evaluated in trials across Ohio in 1980. These trials included: 1) a <u>Statewide Trial</u> of 9 entries located on 6 commercial farms, 2) an <u>Observational Trial</u> of many newer entries located on two of the 6 commercial farms, 3) a trial of 10 entries at the OARDC Muck Crops Branch at Celeryville.

The work was sponsored by the Department of Horticulture of the Ohio Agricultural Research and Development Center and the Ohio State University in cooperation with the Ohio Potato Growers Association and commercial growers.

Nine entries were evaluated at 6 commercial farms located across the state. Seven of the entries (Crystal, Neb. Al29.69-1, W 718, CA02-7, Denali, Michibonne, and Michimac) were included because they have looked promising in previous years, and the other two entries (Norchip and Katahdin) were included as standards. On two of the six farms, 21 other lots were tested in smaller triplicated plots on both farms to find promising new selections. The nine main varieties were also tested on muck soil at Celeryville.

Planting dates for the main study varied from April 26 to May 31, with delays due to the wet part of May. Katahdin and Norchip were used as standard varieties for comparison. Rainfall was adequate throughout the growing season with no usual prolonged dry periods. It was excessive at most times and places. On farms with sandy loam soils, yields were good and little damage resulted. On the other farms with silt and clay loam soils, several very heavy rains followed by lighter rains provided no period to dry the soil after the heavy rains, and much tuber rot was found in slightly lower spots. The rains were practically continuous throughout the growing season.

A Nebraska seedling, Neb. A 129.69-1, gave the highest average yield of U.S. No. 1 potatoes on the six farms with Denali second. W 718 and Michibonne followed. Crystal (ND 8891-3) which led in 1979 was average and was lower than normal for this variety, apparently due to the extremely wet growing season and low grades. It was second in total yield before grading for the six farms average. Norchip was lowest on four farms. Grades were very low, particularly for certain varieties.

Hollow heart was extremely bad this year. All of the varieties in the main trials had some hollow heart at three or more of the six farms, Norchip had the least followed by Neb. A 129.69-1. Denali was highest with 25% of the tubers cut showing hollow heart, CA 02-7 was second high with 22.5% and W 718 was third with 20%. Ten large tubers of each replicate were cut.

The three highest yielding varieties in the observation trials were Atlantic, NY59, and Dakchip. Atlantic had 35% hollow heart and the highest percentage of internal necrosis (5%) in the tuber samples cut at the two farms. NY59 had the largest tuber size of all varieties in the observation trial, 5.1 ounces. However, it had 28% hollow heart in the cut tubers. It had no internal necrosis but led in 1978. Dakchip had 6.5% hollow heart and tubers averaging 4.5 ounces. It has had above-average yields and no major problems in past trials.

In the muck trial, W 718 led in yield of U.S. No. 1 potatoes for the fifth consecutive year. Again, there was a high percentage of hollow heart in cut tubers. Michimac ranked second in yield and has done well in past trials. CA02-7 ranked third in yield and had only 7% hollow heart. Other selections with above-average yields were Jemseg which is an early maturing variety, and Neb. A129.69-1 which led in yield in the statewide trials. Michibonne, Denali, and Oceana did not look promising for production on muck soils.

OHIO TABLE 1. Average U.S. No. 1 yields, grades and stands -- Main Trials, 1980. (Listed in order of average yield of the six farms).

	Avg. Yields	Α,	verage Perc	ent	Tuber wt.	Avg.
Entry	cwt/A	U.S. No.1	B-Size	Culls	(oz)	stand
2100 60 1	200	70.7	5.0	3.4.0	4.0	
Neb. Al29.69-1	320	79.7	5.9	14.0	4.3	92.1
Denali	316	82.5	5.7	11.5	4.9	91.2
W 718	296	81.5	4.4	13.5	4.7	85.8
Michibonne	291	80.4	2.4	17.0	5.9	91.3
Michimac	278	80.9	4.2	14.7	4.9	89.9
Crystal	273	69.3	4.5	26.0	4.8	90.7
Katahdin	26 7	78.8	5.4	15.5	4.8	89.1
CA 02-7	223	76.3	6.9	16.4	4.6	85.7
Norchip	201	68.3	9.9	21.4	3.6	92.3
Average	274	77.5	4.9	16.7	4.7	89.8

OHIO TABLE 2. Percentage of total tubers cut showing hollow heart and internal necrosis. Statewide Trial.

Entry	н.н.	NEC	Entry	H.H.	NEC
Crystal (ND 8891-3)	12.9	2.1	Katahdin	15.3	2.1
W718	20.4	5.4	Denali	25.4	2.1
Norchip	1.7	9.5	CA02-7	22.5	.8
Michimac	18.4	1.7	Neb. Al29.69-1	6.6	.3
Michibonne	11.3	.44			

OHIO TABLE 3. Yield, grade, and tuber size of Observation Entries.

	Yield	% U.S.	Tuber
Entry	(cwt/A)	No. 1	Weight (oz)
Atlantic	247	85.6	4.5
NY 59	234	82.6	5.1
Dakchip	222	76.2	4.5
Superior	197	81.8	3.9
7 738	195	79.2	4.1
ieb. 51-3	195	76.3	4.2
Lemhi Russet	193	69.4	4.8
Kennebec	192	69.8	4.5
is 402-1	192	83.6	4.3
IS 108-5	191	86.9	3.5
37583-6	190	72.0	4.8
leb. 63.71-1	188	75.0	4.9
6987-184	173	79.0	4.0
Croatan	171	76.6	3.9
F 41- 2	166	78.3	4.2
IS 403-2	161	86.9	4.3
llegash	150	74.8	4.2
ceania	150	85.0	4.1
A70758-3	129	43.8	4.4

OHIO TABLE 4. Summary of percent hollow heart and internal nicrvsis of tubers cut - Observation Trial.

Hollow Heart		
Severe (Over 15%)	Moderate (9 to 15%)	Slight (8% and under)
Atlantic Oceania Jemseg Allegash N.Y. 59 Neb. 63.71-1 Lemhi Russet B 6987-184 AK 28 B 7583-6	MS 403-2 W 738 BelRus	AF 41-2 AF 205-9 Kennebec B Dakchip Croatan
Necrosis		
Severe (Over 5%)	Moderate (Over 3.5%)	Slight (1.5%)
Atlantic	в 7583-6	Kennebec B A 70758-3 MS 108-5 MS 402-1 MS 403-2 B 6987-184

OHIO TABLE 5. Yield and grade characteristics of entries in Celeryville Muck Trial.

	C	wt/A		Percen	it	
Entry	Total	US No. 1	US No. 1	B-Size	Culls	н.н.
√ 7 1 8	38 5	346	89.9	7.2	2.9	40
1ichimac	380	342	89.9	5.7	4.4	13
CA02-7	361	311	85.9	9.7	4.4	7
Jemseg	329	302	91.6	3.4	5.0	0
Neb. Al29.69-1	339	295	86.8	8.6	4.6	7
Katahdin	315	268	84.9	9.1	6.0	0
Michibonne	285	255	89.4	6.3	4.3	5
enali	302	247	81.7	10.0	8.3	40
ceana)	274	239	87.3	9.7	3.0	20
Superior	272	224	82.1	10.8	7.1	0

OREGON

A. R. Mosley, D. C. Hane, G. E. Carter, M. J. Johnson, and C. Stanger

Eleven yield trials were conducted in Oregon in 1980. Results of two of these will be reported elsewhere in this progress report under the "Idaho and Eastern Oregon" segment.

Crops were grown using cultural practices common to the areas. The Madras and Klamath Falls sites are characterized by relatively short, cool growing conditions with the possibility of frost occurring any day of the year. Both locations are approximately 4,000 feet in elevation. The Columbia Basin (Hermiston) growing season is relatively long and warm; crops are planted as early as February and are harvested from mid-July through November depending on marketing goals. Growing conditions in Malheur (Ontario) County and the Willamette Valley (Corvallis) are moderate in terms of length of season with Malheur County being relatively warmer and drier. The Willamette Valley is somewhat unique in Oregon in that both planting and harvest can be seriously delayed by wet weather. Late blight occurs frequently in the Valley because of heavy fogs and light rains in August and September, but is almost unknown east of the Cascades.

Oregon growers are interested primarily in long russet potatoes for processing into french fries and other frozen products. However, some 2,500 acres of chipping potatoes are grown annually in the Willamette Valley and the Columbia Basin, and fresh market russet potatoes are still an important consideration in most Oregon producing areas, particularly the Klamath Basin.

Willamette Valley (Corvallis) Trial

Nineteen varieties and selections were evaluated at Corvallis in 1980 (Table 1). Seed was limiting for AK 28-8, B 6987-201, and NDD 47-1; all others were replicated four times. B 6987-201 and TND 14-1 were severely injured by metribuzin. Yields for these two entries, therefore, did not indicate their true potential.

Denali appeared to have considerable promise for chipping with good yields of high gravity tubers which chipped relatively light. Crystal and Monona also yielded well. Crystal chips were slightly darker than average, however, and tubers shrivelled badly in storage. Monona produced white chips as expected but flavor was somewhat bitter and tubers softened in storage. Norchip chips were extremely light-colored but tuber yields and storage life were unacceptable.

Lemhi and Nooksack appeared to have some promise for fresh market. Tubers of these varieties tended to be oblong-to-long and russeted. Both were inferior to R. Burbank in 1980, however, due to the unusually good performance of the latter.

Hermiston (Columbia Basin) Trials

Five trials were conducted at Hermiston in 1980. Two were established in commercial fields under center-pivot irrigation to accurately determine performance under commercial conditions. The remaining three were conducted at the Hermiston Experiment Station using cultural practices common to the Columbia Basin. One of the station trials (Western Regional) will also be reported in summary form elsewhere in this progress report.

Early Western Regional Trial

Ten varieties and selections were compared to Norgold for early fresh market at the Hermiston Station (Table 2). Entries were selected with emphasis on early, long russets.

Lemhi was by far the most promising entry. Both yield and grade-out were excellent and tubers were well matured at harvest (August 7). Skins were sufficiently set that skinning was minimal compared to several other entries. Numbered lines performed poorly except possibly for A 72602-2.

Western Regional Trial

Promising entries in the Hermiston Western Regional Trial included Lemhi, A 72545-2 and WC 521-12 (Table 3). The red entry, AC 67560-1, has performed well in previous tests but not in 1980, possibly due to poor seed. AD 7267-1 produced good yields, but specific gravity was relatively low and tubers were slightly susceptible to hollow heart.

Off-Station Trials

Seven varieties and selections were compared to Russet Burbank on two commercial farms near Hermiston. The plantings were situated in commercial fields and grown using cultural practices applied to the remainder of the field.

A 72545-2 yielded and graded well at both locations (Table 4). Specific gravities of A 72545-2 were slightly below average and some tendency toward scabbiness was noted. Shatter bruise was also mildly evident. Subsequent fry tests of A 72545-2 showed a tendency toward off-colors; this will be thoroughly evaluated in future tests.

B 6987-201 and Atlantic performed poorly. This was somewhat unusual for Atlantic which has yielded well in the Columbia Basin. WC 521-12 and WC 612-13 were moderately promising, but tuber type was generally not the typical long russet preferred by area growers and processors. Both WC selections were susceptible to scab and shatter bruise.

Lemhi performed well at both locations. Tubers were oblong and well russeted. Butte appeared to be promising at Eagle Ranch, but disappointing at Royal Farms. Reasons for this discrepancy were not clear.

Oregon Statewide Trial

The Oregon Statewide Trial--a systematic comparison of 40 entries--was conducted at the Hermiston (H), Klamath Falls (KF), Madras (M), and Ontario (O) stations in 1980 (Table 5). Entries were selected primarily from crosses made by the Aberdeen and Prosser breeding programs. Several named varieties were included for comparison.

Yields varied considerably among locations. In general, the Hermiston site produced highest yields followed by Ontario, Klamath Falls, and Madras, respectively. These yield variations among locations can probably be explained by differences in length of growing season as noted earlier. Entries appearing to have promise included: A 74404-3, 49 I 118, A 66102-12, A 69870-6, A 70270-3, A 72602-2, A 7403-3, A 7474-12, A 74124-3, Butte, Lemhi and Targhee (Table 5).

Table 1. Yield and Quality Characteristics of 19 Potato Varieties and Selections, Corvallis.

_	Yield,			Percer		Specific	Avg. Chip	Comments
Entry	No. 1	Total	No. 1	4 oz.	Culls	Gravity	Color	
AK 28-8*	310	417	74.3	14.3	11.3	1.090	3.0	
Allagash	231	297	77.3	11.4	11.3	1.079	3.0	Oblong, smooth russet
Atlantic	210	316	66.1	14.9	18.9	1.090	2.3	Smooth, round, semi-rus
B 6987-201*	42	82	50.7	26.1	23.1		3.0	Severe Sencor injury
Bintje	299	425	69.6	18.9	11.3	1.085	3.5	Yellow flesh, creamy tar skin, netted
Crystal	363	487	75.0	11.1	13.9	1.083	4.0	Round, white, some en- larged lenticels; GOOD
Dakchip	248	346	70.7	19.1	10.2	1.078	3.5	Round, white, small; skins feathered badly
Delta Gold	302	446	70.5	7.0	22.4	1.090	4.0	Large, white; yellow flesh; green; thick ski
Denali	368	442	83.2	8.3	8.3	1.099	3.2	Large, round; tan-skinn tubers; smooth; GOOD
FL 162	263	378	69.9	10.7	19.4	1.088	3.0	White; large, rough; cracks, greening
FL 1168	294	403	75.2	14.5	10.2	1.078	3.2	Attractive round semi- rus.; resembles Atlantic
Kennebec	346	491	70.6	3.5	25.6	1.090	3.5	Large, rough; green
Lemhi	356	453	76.5	8.1	15.3	1.089	3.0	Attractive long rus.; darker than Burbank
Monona	343	439	78.1	7.7	12.2	1.077	2.7	White; deep eyes; rough large
NDD 47-1*	332	380	87.2	12.8	24.9	1.065	5.0	
Nooksack	357	426	83.4	6.9	9.6	1.099	4.7	Oblong rus.; attractive
Norchip	196	314	62.3	24.0	13.6	1.086	2.2	Small, creamy white; round
R. Burbank	364	588	61.4	16.6	21.9	1.086	3.5	Very smooth for Burbank
TND 14-1	68	105	67.5	23.4	9.2	1.088	3.2	Oblong rus.; severe Sencor injury
Average LSD .05	278 108	381 126	72.9 13.0	13.6 7.9	15.4 13.1	1.086 0.004	3.3	

^{*}unreplicated

Yield and Performance, Early Western Regional Trial¹, Hermiston Table 2.

A 69870-6 334 403 83 9 7.6 1.066 1.4 A 70283-24 260 373 70 16 7.6 1.068 1.6 A 72602-2 454 526 86 8 7.4 1.084 1.2 A 7465-8 203 270 75 11 7.6 1.085 0.4 Chieftain 513 569 90 5 7.6 1.085 0.4 Chieftain 513 569 90 5 7.6 1.085 0.4 Chieftain 513 569 90 5 7.6 1.085 0.4 NDA 8694-3 363 461 79 11 6.4 1.075 1.6 NDA 9249-3 363 469 77 16 7.9 1.077 1.6 Norgold 267 348 77 9 6.4 1.076 0.8 WN 630-5 229 351 65 21	Selection	Yield, cwt/A No. 1 Tota	cwt/A Total	Percent No. 1 No	sent No. 2	Ave. wt.	Specific Gravity	Skin ² Feathering	Comments 3
260 373 70 16 7.6 1.068 454 526 86 8 7.4 1.084 203 270 75 11 7.6 1.085 513 569 90 5 7.6 1.066 506 621 81 10 7.5 1.080 363 461 79 11 6.4 1.075 363 469 77 16 7.9 1.076 267 348 77 9 6.4 1.076 298 375 80 11 6.7 1.074 249 351 65 21 11.3 1.078 344 433 78 11 7.6 1.075 100 101 0.003	A 69870-6	334	403	83	6	7.6	1.066	1.4	Soft. Alligator skin
454 526 86 8 7.4 1.084 203 270 75 11 7.6 1.085 513 569 90 5 7.6 1.066 506 621 81 10 7.5 1.080 3 363 461 79 11 6.4 1.075 3 363 469 77 16 7.9 1.076 2 267 348 77 9 6.4 1.076 2 298 375 80 11 6.7 1.074 2 298 351 65 21 11.3 1.078 8 14 433 78 11 7.6 1.075 8 10 0.003	A 70283-24	260	373	70	16	7.6	1.068	1.6	Rots. Int. necrosis. Rough
-8 203 270 75 11 7.6 1.085 ain 513 569 90 5 7.6 1.066 94-3 506 621 81 10 7.5 1.080 94-3 363 461 79 11 6.4 1.075 d 267 348 77 9 6.4 1.076 e 298 375 80 11 6.7 1.074 -5 229 351 65 21 11.3 1.078 rrage 344 433 78 11 7.6 1.075 r. 05 100 101 0.003	A 72602-2	454	526	98	8	7.4	1.084	1.2	Att. rus. Soft, skinning
ain 513 569 90 5 7.6 1.066 94-3 506 621 81 10 7.5 1.080 94-3 363 461 79 11 6.4 1.075 49-3 363 469 77 16 7.9 1.077 e 298 375 80 11 6.7 1.074 -5 229 351 65 21 11.3 1.078 rage 344 433 78 11 7.6 1.075 r. 05 100 101 0.003	A 7465-8	203	270	75	11	7.6	1.085	0.4	Good. Long rus. Mature
94-3 506 621 81 10 7.5 1.080 94-3 363 461 79 11 6.4 1.075 49-3 363 469 77 16 7.9 1.077 e 298 375 80 11 6.7 1.074 -5 229 351 65 21 11.3 1.078 rage 344 433 78 11 7.6 1.075 r.05 100 101 0.003	Chieftain	513	269	06	2	7.6	1.066	2.5	Red. Soft
363 461 79 11 6.4 1.075 363 469 77 16 7.9 1.077 267 348 77 9 6.4 1.076 298 375 80 11 6.7 1.074 229 351 65 21 11.3 1.078 344 433 78 11 7.6 1.075 100 101 0.003	Lemhi	206	621	81	10	7.5	1.080	0.4	Beautiful; firm; thick skin
363 469 77 16 7.9 1.077 267 348 77 9 6.4 1.076 298 375 80 11 6.7 1.074 229 351 65 21 11.3 1.078 344 433 78 11 7.6 1.075 100 101 0.003	NDA 8694-3	363	461	79	11	6.4	1.075	1.0	Shrivelled. Light rus. Scab
267 348 77 9 6.4 1.076 298 375 80 11 6.7 1.074 ge 351 65 21 11.3 1.078 95 344 433 78 11 7.6 1.075 95 100 101 0.003	NDA 9249-3	363	469	77	16	7.9	1.077	1.6	Severe skinning scab. Light color
298 375 80 11 6.7 1.074 229 351 65 21 11.3 1.078 9e 344 433 78 11 7.6 1.075 05 100 101 0.003	Norgold	267	348	77	6	6.4	1.076	0.4	Thumbnail crack. Firm
229 351 65 21 11.3 1.078 ge 344 433 78 11 7.6 1.075 05 100 101 0.003	Targhee	298	375	80	11	6.7	1.074	0.8	Some skinning
344 433 78 11 7.6 1.075 100 101 0.003	WN 630-5	229	351	65	21	11.3	1.078	1.5	Rots! Long white. Skins!
100 101 0.003	Average	344	433	78	11	7.6	1.075	1.1	
	LSD .05	100	101	!	1	1	0.003	1	

 1 Planted March 27; harvested August 7. 2 0 = none; 3 = severe. 3 Observations made on August 21, 17 days after harvest and storage at $45^{\rm o}{\rm F}.$

Yield and Performance of Western Regional Entries, Hermiston. Table 3.

						•			
Selection	Yield, No. 1	cwt/A Total	Percent No. 1 No	ent No. 2	Ave. wt.	Specific Gravity	Perc ##	Percent ¹ HH BC	Comments
A 72545-2	533	582	92	m	11.2	1.083	0	0	Semi-r
									netted skir. Susc. scab.
AC 67560-1	392	440	88	4	10.4	1.071	0	0	Red, round. Susc. scab. Rough. Dull color
AD 7267-1	537	623	98	6	14.3	1.074	4	0	Oblong-long rus. Good skin. Late. Shatters. Large:
AD 7377-1	474	552	98	7	14.2	1.072	9	0	Large, oblong rus. Smooth. Late?
Atlantic	463	496	93	2	9.3	1.092	2	7	Round, light rus. Shatters
B 6987-201	378	453	83	7	9.1	1.099	_	0	Round wh. to rus. Flat. Late or extremely susc. mech. inj.
Lemhi	292	645	88	80	13.9	1.087	0	0	Oblong, att. rus. Smooth
Norgold	343	407	84	0	7.9	1.071	1	;	
R. Burbank	378	263	29	21	9.6	1.091	2	23	Better than usual
WC 521-12	613	714	98	7	15.5	1.099	က	2	Round, semi-rus. Large. Susc. mech. inj! Chipper?
WC 612-13	228	613	91	IJ	12.3	1.091	0	_	Large, round white. Late? Scab
WC 672-2	553	593	93	7	11.9	1.086	9	20	Round, flat rus. Good skin. Slight scab
WD 641-10	184	228	81	2	8.3	1.080	-	0	Small, round rus. Late? Susc. fusarium rot?
Average	459	531	98	5.9	11.4	1.084	5.6	4.4	
LSD .05	119	135	;	;	;	0.003	;	}	

1 HH = Hollow Heart; BC = Brown Center

Table 4. Performance of Eight Varieties and Selections Under Center-Pivot Irrigation, Hermiston

Entry	No. 1 ER	Cwt/A ¹ RF	Total ER	Cwt/A RF	Specif [*] ER	ic Grav. RF	Comments ²
A 72545-2	810	658	898	744	1.086	1.089	Long, lt. rus. SB
Atlantic		408		489		1.095	Round rus.
B 6987-201	435		526		1.094		Scab., thin skin
Butte	779	365	840	474	1.088	1.087	Oblong rus. scaby SB
Lemhi	785	564	816	749	1.092	1.089	Long rus., mild SC, GC
R. Burbank	687	332	811	506	1.084	1.084	
Targhee	693	465	746	575	1.086	1.087	Oblong rus., EH., SB
WC 521-12	742	496	843	676	1.092	1.104	Round, white, SC, SB
WC 612-13	795	652	841	784	1.092	1.098	Sev. scab. SB
Average LSD, .05	716 113	477 120	790 120	617 147	1.089 0.004	1.091 0.007	

¹ER = Eagle Ranch; RF = Royal Farms

 $^{^{2}}$ lt. = light colored skin; SB = shatter bruise; SC = scab; GC = growth cracks

Table 5. Yield, Quality and Tuber Characteristics, Oregon State-Wide Trial.

		Yield,	cwt/A	1	Spec 5	ific Grav	rity	
Selection	Н	KF	М	0	Н	KF	М	Comments ²
19 I 118	690	459	185	482	1.084	1.090	1.076	Long rus. Late.
66102-12	663	365	327	270	1.091	1.096	1.085	Light rus. Late.
A 66107-51	629	319	216	395	1.082	1.087	1.080	Long, rough. Discard.
A 69327-5	564	324	198	411	1.086	1.093	1.081	Oblong rus. Knobs. Oiscard.
4 69870-3	660	399	329	487	1.083	1.089	1.081	R-O rus. OK. Thick skin.
A 69870-6	666	390	323	540	1.076	1.088	1.081	Round rus. Rough. Deep eyes
A 69870-10	564	429	300	441	1.078	1.091	1.082	Huge! Rots. R-O rus.
A 70270-3	503	392	189	330	1.081	1.090	1.082	Oblong, good rus. Late?
A 70286-2	532	302	225	429	1.078	1.088	1.081	Oblong. Light rus.
A 70383-24	561	251	192	389	1.084	1.076	1.082	Long, rough. rus. Discard.
A 7273-3	660	303	235	483	1.080	1.082	1.080	R-O rus. Deep eyes. OK.
A 72545-2		406	284	387		1.093	1.082	Oblong light rus. OK.
A 72602-2	597	321	298	369	1.088	1.092	1.090	Oblong rus. Early? Good ski
A 7346-11	417	173	135	270	1.076	1.083	1.081	Oblong rus. Smooth.
A 7403-3	692	326	309	458	1.087	1.094	1.083	R-O rus. Large, dark.
A 7465-8	223	125	155	213	1.084	1.086	1.088	AWFUL! Discard.
7474-12	610	342	199	551	1.081	1.087	1.090	Light rus. Cracks. Discard.
7497-3	547	289	145	283	1.083	1.091	1.087	Oblong, heavy rus. Keep.
74104-18	541	323	162	403	1.075	1.077	1.078	R-O. Light rus. Good.
74106-10	420	76	191		1.081	1.076	1.077	Oblong, heavy rus. Smooth.
A 74124-3	450	455		642	1.075	1.086		White, late. Metribuzin inj.
A 74127-2	537	335	295	298	1.084	1.089	1.087	Light rus. Late. Flat. R-C
A 74129-4	595	292	233	451	1.070	1.074	1.077	R-O. Light rus. Good.
A 74195-2	573	347	254	424	1.084	1.086	1.082	Crescent-shaped. Discard.
A 74404-3	844	360	320	429	1.084	1.092	1.084	R-O. Light rus. Good.
AC 67560-1	537	325	145	289	1.071	1.077	1.073	Red. Large, round. Scab.
ALR 4-1	537	300	229	493	1.087	1.103	1.093	R-O. Light rus. Smooth.
Butte	627	342	321	425	1.090	1.091	1.085	Oblong rus. Smooth.
Chieftain	681	282	301	609	1.066	1.078	1.075	Red. Scab. Bright color.
_emhi	653	345	207	551	1.087	1.095	1.090	Oblong rus. Dark. OK.
NDA 8694-3	421	201	146	382	1.072	1.073	1.080	Round, light rus. Rough.
Norgold	343	193	104	288	1.071	1.074	1.079	Small, round rus.
R. Burbank	495	285	197		1.085	1.092	1.089	Long, rough rus.
R. B., Gen. 1	520	318	174	587	1.087	1.092	1.086	
Targhee	732	275	276	250	1.086	1.093	1.082	R-O, heavy rus.
√C 435-3	374	260	238	428	1.082	1.087	1.073	Dark rus. Attached stolons.
√N 541-2	219	328	139	359	1.067	1.068	1.069	Dark, rough. Rots. Oiscard.
N 630-5	597	355	260	455	1.085	1.091	1.087	Large, long white.
WN 641-11	255	229	193	290	1.078	1.039	1.084	R-O, light rus.
WN 701-14	480	263	266	336	1.090	1.098	1.089	R-O. Rough. Oiscard.
WN 720-2	524	250	214	394	1.089	1.030	1.084	R-O, rus. Good. Late?
LSD 0.05 Average	324	230	91 228	3,74	1.003	_	0.005	. 0, 101 00001 20001

 $^{^{1}}$ US No. 1 potatoes. H = Hermiston; KF = Klamath Falls; M = Madras; O = Ontario.

 $^{^2}$ Observations based on Hermiston planting: R-O = round to oblong; rus = russet.

TEXAS

J. Creighton Miller, Jr. and Douglas G. Smallwood

Variety Development and Testing.

Seedling Program. Approximately 32,000 first year seedlings, representing 248 families, were grown for selection near Hereford in 1980, and 119 original selections were made from this material. Approximately one-fourth (8980) of the 1980 first year seedlings resulted from crosses made at the Texas Agricultural Experiment Station near Lubbock, during the winter of 1978-79. The remainder were obtained from Joe Pavek in Idaho (10,206), Bob Johansen in North Dakota (10,533) and Florian Lauer in Minnesota (2100). The Texas program also supplied the North Dakota, Idaho and Colorado programs with second, third and fourth sized seedling tubers for selection.

Adaptation Trials. Some 822 entries were grown in replicated and nonreplicated trials at two locations in West Texas. This provided for testing both on sandy soil with center pivot irrigation (Olton) and on clay or tight soil (Hereford) where the furrow irrigation method is used. Not all entries were included at each locale. Selected trials are included in this report.

The variety and advanced selection trial at Olton (Table 1) was planted April 11 and harvested on August 18, with a similar trial planted at Hereford on March 20 and harvested August 2 (Table 2). The Olton trials were far superior to those at Hereford. Yields at Hereford were extremely low due to the extreme hot and dry conditions experienced during the growing season. The outstanding entries in the Olton trial were: Norgold "35", ND 388-1 Ru and NDA 8694-3. The Norgold Russet strains continue to cause some confusion among the growers, because several of them display a somewhat erratic performance from year to year. There is no question that they differ substantially from regular Norgold Russet in plant vigor, maturity and other characteristics. The performance of Norgold "M" was not as good as in previous years. Lemhi Russet (Dash-1), regardless of source, did not perform especially well. The new Maine Russet, Allagash Russet, performed moderately well. At Hereford, the performance of Lemhi Russet was very poor. In general, regular Norgold Russet performed much better than did the strains.

Advanced selections from various breeding programs were tested under Texas conditions, as can be seen in Table 3. Several of these entries performed well relative to the check varieties. Those deserving mention, based on overall performance, include: ND 146-4R, NDD 277-2W and MnTX 8-57-1 Ru.

A number of advanced selections showed promise based on their performance at Olton (Table 4) and they will be retested in 1981. The primary objective of the Texas Potato Variety Development Program is the development of superior russet varieties specifically adapted to Texas growing conditions.

Total yield, percent of tubers over 4 ounces, average weight per tuber, specific gravity, vigor, maturity, and general rating of 37 potato varieties or selections grown at Olton, Texas - 1980. Texas Table 1.

Variety or Selection	Total Yield CWT/A	Percent of Tubers over 4 oz.	Average Weight/ Tuber in oz.	Specific Gravity	Vigor <u>1</u> /	Maturity <u>2</u> /	General <u>3</u> / Rating <u>3</u> /
					l	[
4 Ru	Ċ	0	•	9	•	•	•
" blog	Ċ	5.	•	05	•	•	•
_		4.	•	9	•	•	•
	φ.	2	•	5	•	•	•
9474	_:	6	•	9	•	•	•
635-2	~i	_:	•	5	•	•	•
ND 506-7 R	_:	0	•	5	•	•	•
10	ж Э	φ.	•	2	•	•	•
=	~i	7	•	5	•	•	•
NDTX 5-177-2 W	0,	4.	•	05	•	•	•
A 63.71-1	360.7	57.1	4.9		3.5	2.7	3.5
1 Rus	50	4.	•	9	•	•	•
Late Dark Red							
Norland	7	6	•	1.054	•	•	•
Norgold "M"	334.5	57.7	5.2	1.056	3.7	3.4	3.5
	φ.	0	•	1.062	•	•	•
A 71.721	ъ.	2	•	1.065	•	•	•
MnTX 8-57-1	4	9	•	1.054	•	•	•
=	0		•	1.056	•	•	•
	5.	5.	•	1.059	•	•	•
WD 641-10	2	ω,		1.064	•	•	•
392-4		6.		1.043	•	•	
294	7	9		1.057	•	•	•
mhi Russe							
(Nebra	66.	2	•	1.069	•	•	•
X 7-294-1	265.4	54.2	4.4	1.063	3.3	3.0	3.0
A 103.72-1	63.	_:	•	.05	•	•	•

33.6 2.5 3.3 3.5 5.5 5.5 5.5 22333 3.5 3.87.83.93.93.9 33.55 3.4 ..059 ..055 ..059 ..064 ..057 .058 .059 .052 .064 1.059 5.8 5.7 5.7 5.0 5.0 88.4 8.1 4.2 6.2 0.9 71.7 77.2 38.6 36.0 63.7 6.6 72.6 43.5 38.7 46.1 52.2 63.1 262.8 255.3 252.7 252.7 252.7 250.9 248.6 245.7 244.2 216.9 214.6 194.6 310.0 65.8 L.S.D. (.05) TX Late Norgold ND 450-11 Ru A 210-2 Norgold "19" ND 467-3 W A 72685-2 Lemhi Russet Norgold "7" (Idaho) Neb 42-1 Neb 498 A 69.721 Average

Continued

Texas Table 1.

32233

= very vigorous 5 = very early = vigorous, 5 early, = medium, 4 ш = medium, 4 က = fair, က late, ~ П poor or weak, \sim very late, П 21

11

⁼ excellent 2 very poor to Ħ જો

Total yield, percent of tubers over 4 ounces, average weight per tuber, specific gravity, vigor, maturity and general rating of 37 potato varieties or selections grown at Hereford, Texas - 1980. Texas Table 2.

Varietv	Total	Percent of Tubers	Average Weight/					
or	Yield	over	Tuber	Specific	r	ò		
Selection	CWT/A	4 oz.	in oz.	Gravity	Vigor 1/	Maturity ^{2/}	Rating 3/	
1	4.0	(0,0	1	ı		
	214.3	04.0	•	090.	•	•	•	
ND 467-3	210.5	42.7	•	1.072	•	•	•	
Norgold Russet	207.1	45.5		1.054	•	•	•	
٠.	195.7	2.09	•	1.055	•			
ND 294-1 R	192.3	59.0	•	1.056	•	•	•	
	184.4	35.0	•	1.061	•	•	•	
rgold "	183.8	45.6	•	1.056	•	•	•	
NDA 8694-3	178.6	49.4	•	1.055		•	•	
Nordold "L"	171.1	48.3	•	1.053	•	•	•	
A 71.721	169.3	49.2	•	1.059	•	•	•	
Norgold "7"	167.6	42.7	•	1.048		•	•	
Norgold "35"	167.3	42.0	•	1.054	•	•	•	
ND 388-1 Ru	165.8	53.1	•	1.060	•		•	
NDTX 5-177-2 W	163.2	65.0	•	1.057	•	•	•	
Allagash Russet	162.3	63.8	•	1.054	•	•	•	
Norgold "M"	159.4	40.8	•	1.056	•	•	•	
_	158.0	50.3	•	1.052	•		•	
A 210-2	151.0	44.3	•	1.065	•	•	•	
Norgold "10"	145.5	40.4	•	1.046	•	•	•	
TX 7-294-1 Ru	145.2	48.2	2.8	1.063	2.7	3.0	3.0	
a)								
(Idaho)		0		1.063	3.0			
Neb 42-1	143.8	19.7	2.1	1.061	3.4	2.5	2.9	
Red LaSoda		6.		1.050	•			
A 69.721		4		1.059	3.0			
Late Dark Red								
Norland	131.0	57.7	3.7	1.050	2.0	2.9	2.9	

Texas Table 2. Continued

		1					
ND 206-1 R	126.3	52.0	•	1.056	•	•	•
TXND 6-14-1 Ru	125.2	36.8		1.052	•	•	•
TX Late Norgold	118.5	55.1	•	1.053	•	•	•
MnTX 8-57-1	116.5	46.2	•	1.058	•	•	•
WD 641-10	115.3	49.6	3.8	1.059	2.8	3.0	3.3
ND 450-11 Ru	107.2	26.1	•	•	•	•	
A 63.71-1	105.2	41.1	•	1.055	•	•	•
ND 392-4 Ru	102.2	27.9	•	1.052	•	•	
Neb 498	102.0	22.5	•	1.065	•	•	•
A 72685-2	6.66	57.2	•	1.059	•	•	
Lemhi Russet							
(Nebraska)	96.4	38.3	2.3	1.057	3.4	2.6	3.3
A 103.72-1	36.6	10.7	1.3	1.055	•	•	•
Average	146.9	45.8	3.2	1.057	2.8	3.1	3.2
)							
L.S.D. (.05)	29.6	11.1	1.0				

 $\frac{1}{2}$] = poor or weak, 2 = fair, 3 = medium 4 = vigorous, 5 = very vigorous

 $\frac{2}{4}$ | = very late, 2 = late, 3 = medium 4 = early, 5 = very early

 $\frac{3}{4}$ 1 = very poor to 5 = excellent

Total yield, percent tubers in 2 size grades, average weight per tuber, vigor, maturity and general rating of 21 advanced selections from breeding programs in California, Idaho, North Dakota, Minnesota and Texas and 2 check varieties of potatoes grown at Olton, Texas - 1980. Texas Table 3.

	General,	Rating 3/										3.7					•									
	ò	Maturity <u></u>										3.5													4.0	
	ř	Vigor \underline{I}'			•		•		•			3.8		•						•	•			•	•	
Average	Weight/ Tuber	in oz.			8.0							9.9					•								•	
Tubers	Over 0	2 in.	42.1	70.0	54.9	30.3	64.5	27.2	46.4	39.4	46.6	56.8	51.6	33.4	57.0	32.9	15.0	38.7	44.8	18.7	0.0	32.0	33.6	0.0	0.0	
Percent Tubers	Under	2 in.		30.0		69.7	•	72.8	•			43.2		•		67.1	85.0	61.3	55.2	81.3	100.0	0.89	66.4	100.0	100.0	
	Total Yield	CMT/A	679.5	665.6	663.9	639.5	578.5	508.8	493.1	487.9	487.9	482.7	481.0	461.8	400.8	395.5	390.3	360.7	346.7	341.5	278.8	250.9	238.7	209.1	174.2	
	Selection or	Check Variety	ND 146-4 R	Red LaSoda	ND 258-1 W	ND 58-3 W	NDD 277-2	Norgold Russet	MnTX 8-57-1 Ru	88			ND 291-3 W	9 TXNR-4		ND 119-3 W	9 TXNR-0	ND 312-3 W	ND 55-7 W	AND 7422-1 Ru	9 TXNR-3		9 TXNR-0 Reg	\circ	9 TXNR-2	

eq
Continued
τ.
on
S
3.
b
Tabl
<u> </u>
3S
Texas
-

		1				
Average	476.1	63.7	36.3	7.2	2.3	3.4
L.S.D.(.05)	05) 133.9	18.3	18.3	1.9		

2.9

$$\frac{1}{2}$$
 1 = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous

$$\frac{2}{2}$$
 | = very late, 2 = late, 3 = medium, 4 = early, 5 = very early

$$\frac{3}{2}$$
] = very poor to 5 = excellent

Total yield, percent tubers in 2 size grades, average weight per tuber, vigor, maturity and general rating of 41 Idaho-Texas, North Dakota-Texas, Minnesota-Texas and Texas advanced selections (Texas seed) and 2 check varieties of potatoes grown at Olton, Texas - 1980. Texas Table 4.

		ئے ہے	Ş	Average			
Selection	Total	2		Weighť/			
or Check Variety	Yield CWT/A	Under 2 in.	Over 2 in.	Tuber in oz.	Vigor $\frac{1}{2}$	Maturity $\frac{2}{}$	General <u>3</u> / Rating <u>3</u> /
Red La Soda	i .	Ι α	72.0			1	[
X 8-731-1		. 0	J C	•	•	•	•
8-531-2			\sim	•	•	•	•
8-666-1		. ~	ı v	• •	•	• •	•
	496.6	56.4	43.6	5.8	3.5	3.6	2.9
ATX 8-71881-2 Ru		_:	∞	•	•	•	•
\succeq		φ.		•	•	•	
w		4.	2	•	•	•	•
w		ė,	က	•	•	•	•
w		ω,	9	•	•	•	•
8-462-3		_:	∞	•	•	•	
		2	/	•	•	•	•
3-711028-	428.	2	\sim	•	•	•	
NDTX 8-304-3 Ru		4.	Ω	•	•	•	
ATX 8-71882-1 Ru	•	/	\sim		•	•	
4		2	/	•	•	•	
NDTX 8-349-4 R		2	\sim	•	•	•	
8-332-1		9		•	•	•	•
3-71881-1 R	413.	9	0	•	•	•	
\sim 1	402.	$\overset{\cdot}{\infty}$	\sim				
8-42-1		ω,	9	•	•	•	•
×		4.	വ		•	•	
8-71878-		2	$\overline{}$		•		
MnTX 8-64-1 Ru		9	\sim	•	•	•	
Norgold Russet		3.	9	•	•	•	

Texas Table 4. Continued

MnTX 8-44-2 Ru 346	346.7	47.2	2	•	•	•	
MnTX 8-57-1 Ru	343.3	8.9/	$^{\circ}$	•	•		
MnTX 8-38-3 Ru	341.5	9.99	3		•		
MnTX 8-547.76-1 Ru	341.5	80.1	9	•	•	•	•
ATX 8-71887-2 Ru	334.5	76.4	$^{\circ}$	•	•	•	•
TX 8-480-1 Ru	331.1	57.3	\sim	•			
ATX 8-71876-1 Ru	331.1	67.8	32.2	4.9	3.3	2.4	2.8
NDTX 8-474-3 R	315.4	61.8	∞	•	•	•	•
TX 8-473-1 Ru	308.4	6.69	0	•		•	
TX 8-458-2 Ru	296.2	9.98	$^{\circ}$	•		•	
909-8 X	292.7	75.7	4	•		•	
ATX 8-711017-1 Ru	282.3	100.0	0		•	•	
	278.8	74.4	2	•	•	•	
MnTX 8-44-5 Ru	271.8	74.9	2				
ATX 8-71882-2 Ru	270.1	70.2	9		•		
TX 8-458-1 Ru	259.6	81.4	∞	•	•		
ATX 8-71995-1 Ru	254.4	68.3		•			
×	228.3	•	_	•	•	•	
Average	392.0	66.2	33.8	5.8	3.2	3.6	2.7
L.S.D.(.05)	143.1	22.7	22.7	2.0			

 $\frac{1}{2}$ | = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous $\frac{2}{1}$ | = very late, 2 = late, 3 = medium, 4 = early, 5 = very early

 $[\]frac{3}{4}$] = very poor to 5 = excellent

VERMONT/NEW HAMPSHIRE

BY: S. C. Wiggans, R. N. Jensen, O. S. Wells, and H. J. Murphy

During 1980, two variety trials were conducted in Vermont by the Plant and Soil Science Department of the University of Vermont, the Plant Science Department of the University of New Hampshire, the Plant Industry Division of the Vermont Department of Agriculture, and the Plant and Soil Sciences Department of the University of Maine. One trial was located in South Burlington, Vermont and one in Guildhall, Vermont. There were six replicates in a randomized block design at each location. Seed pieces of all varieties were planted by hand. Seed piece spacing was 9 inches apart, except Russet Burbank, which was planted 16 inches apart. These trials were part of the Maine-New Hampshire-Vermont cooperative agreement, and were conducted in cooperation with NE-107 (Cooperative Northeast Region Potato Variety Trials) and in cooperation with the National Potato Breeding Program.

The plot at South Burlington was planted May 21, and harvested September 26, 1980 (Table 1). Fertilizer was broadcast at 160-320-320 per acre and disked-in prior to planting. Potatoes were grown in a light, sandy soil. Weed control was good. The season was dry, however, irrigation was applied as needed.

The plot at Guildhall was also planted May 21, killed September 10, and harvested September 30, 1980 (Table 2). Fertilizer was applied in the furrow at a rate of 160-240-240 per acre. Potatoes were grown in medium, loamy soil. Weed control was good. The early season was dry. One supplementary irrigation of $1\frac{1}{2}$ " of water was applied.

Chip color indicies for potato varieties at the two locations given in Table 3.

The five highest yielding varieties at South Burlington were Atlantic, Bake King, BR 7093-23, Kathadin and Denali. The five highest yielding varieties at Guildhall were BR 5991-WVII6, Kathadin, Denali, Belchip, and Campbell 13. Kathadin and Denali were high yielding varieties at both South Burlington and Guildhall.

Yield, percentage of yield in two grade size classes, specific gravity, and percent total solids for 20 potato varieties grown at South Burlington, Vermont - 1980. Table 1

Variety¹	Yield above 1½ inches Cwt./A.	Percentage of yield 1-7/8 to 4 inches	Percentage of yield 2-1/2 to 4 inches	Specific gravity	Percent total solids
Allagash Russet Atlantic Bake King Batoche Bison Campbell 13 Cobbler Denali Green Mountain Jemseg Katahdin Kennebec Norland Peconic Pungo Russet Burbank Superior Tobique BR7093-23 CA02-7 Bayes L.S.D. (0.05)	256	94.2 94.2 94.7 94.7 94.9 96.8 96.8 95.3 95.1	67.3 81.5 70.2 70.2 71.1 72.9 66.6 82.4 82.4 82.1 82.1 82.1 82.1 67.6 77.6 67.8	1.064 1.079 1.079 1.066 1.064 1.065 1.073 1.072 1.067 1.067 1.067 1.067	16.84 20.00 18.95 17.26 15.99 17.26 17.05 16.84 17.09 18.74 18.74 17.47 17.47

¹Planted - May 21; harvested - September 26, 1980.

Russet Burbank spaced 16 inches; all other varieties spaced 9 inches apart. Fertilization: 160-320-320,

Yield, percentage of yield in two grade size classes, specific gravity, and percent total solids for 20 potato varieties grown at Guildhall, Vermont - 1980. Table 2

Variety¹	Yield above 1½ inches Cwt./A.	Percentage of yield 1-7/8 to 4 inches	Percentage of yield 2-1/4 to 4 inches	Specific gravity	Percent total solids
Allagash Russet Belchip Belchip BelRus Buckskin Campbell 13 Delta Gold Denali Jemseg Katahdin Kennebec Pungo Russet Burbank Shepody AF92-3 BR5991-WV16 CA02-7 CD106-16 F67128	356 460 284 386 447 474 406 415 413 413 421 351 324	95.3 97.4 90.8% 4 90.22 90.55 96.0 96.0 96.0 96.3	77.6 88.4 10 oz. size 83.5 79.8 85.6 84.9 83.8 81.6 75.8 10 oz. size 10 oz. size 79.0 79.1 82.9	1.062 1.073 1.067 1.067 1.063 1.069 1.069 1.069 1.069 1.067 1.067	16.42 18.74 18.53 17.47 18.53 20.85 16.63 17.89 17.89 17.89 17.89 17.89 17.89 17.89 17.89 17.89
F69026	341	5.	ည	1.062	
Bayes L.S.D. (0.05)	88			0.004	

¹Planted - May 21; killed - September 10; harvested - September 30, 1980.

Fertilization: 160-240-240.

Seedpiece spacing: Russet Burbank spaced at 16 inches; all other varieties spaced at 9 inches apart.

Table 3 Chip color indices for 31 potato varieties grown at two locations in Vermont - 1980.

Variety	Location and South Burlington	d Chip Color ^l Guildhall
Allagash Russet	6.7	6.7
Atlantic	7.4	
Bake King	7.9	
Batoche	9.0	
BelRus		8.1
Belchip		8.2
Bison	7.7	
Buckskin		8.2
Campbell 13	7. 8	8.8
Cobbler	8.0	
Delta Gold		9.6
Denali	7. 5	9.0
Green Mountain	9.2	
Jemseg	8.1	8.7
Katahdin	7.7	9.2
Kennebec	7.2	9.2
Norland	9.1	
Peconic	6.4	
Pungo	8.3	9.8
Russet Burbank	8.9	9.3
Shepody		9.2
Superior	7.1	
Tobique	6.6	
AF92-3		9. <u>1</u>
BR5991-WV16		9.2
3R7093-23	6.7	
CA02-7	7.6	8.7
CD106-16		9.1
F67128		10.0
68036		9.9
F69026		7.9
Bayes L.S.D. (0.05)	0.8	0.6

¹Chips with lower indices are lighter in color.

VIRGINIA

Boyett Graves and Carroll P. Savage, Jr.

POTATO VARIETY DEVELOPMENT AND TESTING

Plot culture: Potato seedlings and varieties were evaluated at the Virginia Truck and Ornamentals Research Station on Virginia's Eastern Shore. Plots in the Advanced Trials (Tables 1 and 4) were replicated 5 times; those in the Intermediate Trials (Tables 2 and 5) were replicated 4 times; and those in the First Year Observational Trials (Tables 3 and 4) were single 18-hill rows.

Seed were cut, treated with maneb 8 percent seed treater and planted within 4 days. Plots received 120 lbs./A N, P, and K and 30 lbs./A timik 10Gb and placed at planting. One foliage spray for Colorado potato beetles was required. 1980 was a very dry production season after early May. Plots were irrigated three times with approximately 1-1/4 inches of water each time.

Plots were planted in early March and harvested July 9, 10, and 11. Specific gravity determinations were made July 11 and 12.

Samples from three replications of all trials, except the First Year Observational Trial, were taken and mixed into one representataive sample for chip color determinations. Chip color data were taken by J. W. Watts, Wise Foods, Berwick, Pennsylvania.

Virginia Table 1. Potato Varieties and Seedlings - Advanced Trial, Round Whites.

Avg	
Color5 fter t 2 3	ω 4 ω 4 ω 4 ω 0 ω 0 ω 4 ω 0 ω 0 ω 0 ω 0 ω 0 ω 0 ω 0 ω 0 ω 0 ω 0
	4 m m 4 m 4 m 4 4 4 m 4 m m 4 m m 4 m m 6 0 m m m m
G . S	0.00000000000000000000000000000000000
Ch Wks Har	4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sprouts ³	
Confor- mation ²	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shape ¹	001m0m00000000000000000000000000000000
Maturity ⁴	
Specific Gravity ⁶	1.075 1.088 1.088 1.080 1.073 1.073 1.073 1.073 1.073 1.076 1.076 1.076 1.077 1.076 1.076 1.077 1.078 1.076 1.077
Ounces per Tuber	44404 RRRR440404444444 RRA4RA RRA
Yield Cwt/A 1-7/8" +	176 a* 173 ab 173 ab 175 a-d 155 a-d 155 a-d 151 a-e 178 a-e 179 a-e 179 a-e 170 a-e 1
Variety	L 42-38 C 73132-2 Atlantic B 8884-7 Superior B 8710-1 B 9140-14 B 9062-9 B 8091-8 B 8091-8 Norchip B 8618-5 Ontario FL 774 B 8618-5 Ontario FL 162 B 9048-7 B 9048-7 B 8799-13

Virginia Table 1 (cont'd). Potato Varieties and Seedlings - Advanced Trial, Round Whites.

Varietv	Yield Cwt/A 1-7/8" +	Ounces per Tuber	Specific Gravity6	Maturity 4	Shane 1	Confor- mation 2	Sproute 3	를 X 기로 사이	Chip C Nks. af Harvest	hip Color ⁵ s. after rvest	2 2	0
650		5	3	Sal Inanii	2		Sapo Ido		╢	ال	$\ $	
B 9197-7	114 d-g	ı	1.066	9	2	9	6	က	က	4	m	3,3
	113 d-g	4.9	1.085	7	\leftarrow	œ	6	~	2	4	<u>ش</u>	3.3
B 9130-24	113 efg	4.3	1.078	9	2	7	ω	က	က	m	α	2.8
B 7805-1	103 efg	4.4	1.074	വ	က	7	∞	က	2	4	<+	3,3
_	103 efg	4.9	1.075	9	9	2	9	က	4	ص 1	5	3.8
9053-6	103 efg	4.5	1.072	4	2	ω	6	7	2	m	ر.	2.3
B 8285-3	91 fgh	5.3	1.077	4	9	2	2	ı	ı	i		1
	89 gh	4.1	1.065	9	2	7	6	7	2	ر د	st.	2.8
B 8528-2 (Rus.)	59 ĥ	4.0	1.081	4	7	9	ω	i	ı			

¹Shape: 1 = very round, 3 = round to oblong, 5 = oblong, 7 = oblong to long, 8 = long, 9 = very long.

²Conformation or overall appearance: 1 = very poor, 5 = fair, 7 = nice or good, 9 = exceptionally good.

 4 Maturity (vine maturity not size): 1 = extremely early, 3 = fairly early (Superior), 5 = midseason (slighlty later than Pungo), 7 = late, 9 = very, very late. 3Sprouting at harvest: 1-6 = very bad to quite objectionable, 8 = very few sprouts, 9 = none.

 5 Chip Color: 1 = very, very light, 5 = light brown (barely marketable, objectionable, 6-12 = brown to black (unmarketable).

6 Specific gravity determined by weight in air-weight in water method.

*Duncan's Multi Range, 5%.

Virginia Table 2. Potato Seedlings and Varieties, 1980 - Intermediate Trial, Round Whites.

Yield Cwt/A Specific 1-7/8" + Gravitv6
+
a* 1.
ab 1.
ab 1.
abc 1.
abcd 1.
a-e 1.
a-f 1.
a-f 1.
a-f 1.
a-g 1.
a-g 1.
a-g 1.
a-h 1.
b-i 1.
c-j 1.
d-j 1.
d-j 1.
e-j 1.
e-j 1.07
132 f-k 1.073
g-1 1.06
h-1 1.06

Virginia Table 2 (cont'd). Potato Seedlings and Varieties, 1980 Intermediate Trial, Round Whites.

							Chip Color	010r
	Yield	•			(Wks. After	۲
	Cwt/A	Specific			Confor-		Harvest	
Variety	1-7/8" +	Gravity6	Maturity4 Shape1	Shapel	mation ²	Sprouts	0 1 2	3 Avg
B 9285-2	104 i-1	1.079	2	\vdash	9	6	1	į
B 8833-6	99 j-1	1.082	9	9	2	∞	Russet	
B 9165-3	84 k-1	1.062	4	က	S	2	1	
B 8529-4	78 1	1.079	4	4	∞	6	1 3 3	3 2.5

 1 2 3 4 5 6 – See footnotes Virginia Table 1. *Duncan's Multi Range, 5%.

Virginia Table 3. Selected Clones, First-Year Observational Trial.

Variety	Yield Cwt/A 1-7/8" +	Specific Gravity ⁶	Maturity⁴	Shape 1	Confor- mation ²	Sprouts ³	
~	279	1.0754	9	2	7	6	
	197	1.0743	വ	2 (, O	
	268		9	2 ا	7	, O	
	141		L	-		6	
	205	•	9	2	7	, O	
	156	•	7	m	7	, O	
	184	•	9	2	7	6	
	176	•	4	က	7		Heat Nec.
	194	•	7	က	7		
	186	•	2	2	7	∞	
	140	•	6	2	7	0	
	205	•	7	က	۲.	6	
	170	•	9	က	9	6	
	147	•	4	∞	∞	6	
	126	•	7	2	7	6	
	171	•	9	က	7	6	
	215	•	വ	2	7	6	
	192	•	4	က	7	6	
B9340-13	180	1.0811	4	2	9	6	
	290	•	7	2	7		Heat Nec.
B9344-15	275	•	9	2	7	6	
	200	•	9	2	7	6	
B9384-2	210	•	9	2	7	8	
	299	•	9		7	6	
B9423-4	312	•	2	2	9	6	
B9439-4	238	•	4	2	7	6	
B9445-2	341	•	9	2	7	6	
B9455-3	276	•	4	-1	∞	6	
B9467-1	276	•	4	2	7	6	
B9467-3	281	•	9	-	7		Heat Nec.
B9467-4	316	1.0689	9	2	9	6	

Virginia Table 3 (cont'd). Selected Clones, First-Year Observational Trial.

× + 0; × c //	Yield Cwt/A	Specific	† + . M		Confor-	5
variety	+ 0//-1	ar av i cy	Maturity	Snape-	IIIat I OII	sprouts-
B9473-4	193	1.0710	5	\leftarrow	7	6
B9473-7	243	1.0642	9	2	7	6
B9473-9	214	1.0655	2	-	œ	9 Heat Nec.
B9481-2	298	1.0778	4	2	7	6
B9489-2	238	1.0867	7	2	7	6
B9497-2	204	1.0767	4	2	7	6
La Chipper	141	1.0688	4	က	9	8
Atlantic	200	1.0870	9	2	7	6
Atlantic	274	1.0868	7	2	7	6
B6969-2	182	1.0743	4	⊣	7	6
B6969-2	1681		က	2	7	6

 1 2 3 4 6 – See footnotes Virginia Table 1.

Virginia Table 4. Potato Varieties and Seedlings - Advanced Russet Trial.

	rield Cwt/A	Ounces per	Specific			Confor-	
Variety	Size A	Tuber	Gravity6	Maturity4	Shape1	mation2	Sprouts
B9147-3	163 a*	ı	1,071	7	٧	7	σ
B8697-29	161 a	5.9	1.070	. 0	9 4		, α
B8977-2	157 a		1.066	∞	4	. 9	∞
B8972-1	147 a	6.5	1.083	7	7	ω	ω
B7583-6		4.0	1.082	7	4	9	0
Norgold Russet	115 bc	4.7	1.066	2	4	2	7
Centennial		4.1	1.079	9	7	2	0
B9230-6		1	1.077	5	7	9	, O
BelRus	105 c	5.9	1.084	ω	9	2	8

Virginia Table 5. Potato Varieties and Seedlings - Intermediate Russet Trial.

Variety	rield Cwt/A Size A	Ounces per Tuber	Specific Gravity ⁶	Maturity4	Shape ¹	Confor- mation ²	Sprouts ³
B9137-9	ı	5.4	1.073	5	9	9	6
B9219-2	181 ab	•	1.073	9	2	7	8 Bi-color
		6.3	1.065	7	9	7	œ
		•	1.066	∞	4	9	6
		5.2	1.063	∞	9	9	6
Norgold Rus. M		•	1.065	7	4	9	0
		5.2	1.067	∞	4	9	∞
Norgold Rus.		•	1.068	2	2	7	6
B9200-3		•	1.069	2	က	9	6
Norgold Rus. 1		4.8	1.073	6	9	9	9 White eyed
Norgold Rus. 7		5.3	1.065	œ	2	9	
B9281-6		•	1.070	9	7	വ	9 Bi-color
Centennial		•	1.075	2	9	7	6
B9295-2		5.2	1.079	2	9	9	6
B8934-4		•	1.076	7	m	9	∞

 1 2 3 4 6 – See footnotes Virginia Table 1. *Duncan's Multi Range, 5%.

Selected Clones - First Year Observational Trial. Virginia Table 6.

	Size A Cwt/A	Specific Gravity ⁶	Shape ¹	Confor- mation ²	Sprouts ³	Maturity ⁴
89164-1 137.5 89212-4 87.1 89335-24 94.73 89336-24 135.99 89399-17 196.3 89399-27 LW* 186.41 89418-7 111.45 89419-0 117.65 89436-2 131.40 89436-2 221.56 89217-7 213.15	11 173 173 1882 118 118 115 115	1.0804 - 1.0700 1.0753 1.0753 1.0775 1.0776 1.0781 1.0781 1.0781 1.0781	V 9 8 V 9 9 4 V V S V V V V S 9	997777879778777	000000000000000000000000000000000000	∞ ∩ ∩ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

1 2 3 4 6 - See footnotes Virginia Table 1. *LW = Long shape, white skin.

WEST VIRGINIA

R. J. Young, S. I. Pencis, R. E. Adams, and J. A. Hayes

Test for Resistance to Potato Race-0 of Phytophthora infestans

Late Blight Trial 1980. A field test to evaluate resistance to potato race-0 of Phytophthora infestans (Mont.) de Bary was conducted on the West Virginia University Agriculture and Forestry Experiment Station farm located at Reedsville, W. Va. The farm is located at an elevation of 1760 feet on deep Atkins loam soil. Seedlings and varieties from the various potato breeding programs associated with NE107 including Agriculture Canada and the IR-I project were machine-planted on May 8, 1980. Fertilizer and systemic insecticide were incorporated into the furrows at rates determined by soil test and manufacturers recommendations respectively. Clones were evaluated in either 5 or 8 hill non-replicated plots. Katahdin (Ro) was planted to the border rows providing susceptible foliage for the natural recycling of the pathogen. Katahdin leaves were inoculated with race-0 P. infestans during the evening hours of July 19. The minimum temperature was about 15°C and a heavy dew had formed providing good to excellent conditions for inoculation and infection. Good infection was noted on inoculated plants by July 25. Disease development was slow to moderate due to slightly higher than normal temperatures for July and August. However, by August 21, susceptible clones such as Green Mountain and Katahdin were nearly 80% defoliated. Clones were evaluated on 7-30, 8-21, and 8-12, and scored for late blight infection and general plant condition (Table 1).

West Virginia Table . Foliar reaction to infection by Phytophthora infestans, Potato race-0. Reedsville, W. Va. 1980.

1980			7./		Type ² /
Field	Pedigree	Fo	liar Reaction 1/		of
No.		7-30	8-21	9-12	Resistance
	0 1.				
	Canada	1/8+1/	1/61	1 /0	T)
1681	Tarn Al05		1/6+	1/3	R
1685	Tarn A132	1/9	1/7	1/3	R
1689	Tarn A203	1/9	1/9	1/8	R
1683	Tarn A249	1/8+	1/7	1/3	R
1688	Tarn A276	1/8+	1/8+	1/7+	R
1687	Tarn A289	1/9	1/7	1/3+	R
1686	Tarn A421	1/8+	1/8	1/3+	R
1684	Tarn A453	1/9	1/8+	1/7	R
1682	Tarn A505	1/8+	1/8	1/5	R
1690	Tarn A541	1/8+	1/8+	1/7+	R
1476	Green Mtn.	1/8+	8+/3-	Dead	S
1475	Libertas	1/7+	5-6/5+	Dead	M-3
1479	F72090	1/4	Dead	_	NT
1480	F72127	1/7+	1/4	Dead	R
1483	F73008	1/9	1/9	1/7	R
1482	F73092	1/8	8/3+	Dead	S
1486	F73099	1/8	8/4	Dead	S
1488	F73104	1/8	2+-3-/7+	Dead	M-2
1487	F74047	1/8+	8+/2+	Dead	S
1478	F74047	1/7	8+/2+	Dead	S
1484	F74033	1/9	7/4	Dead	S
1468	F74117 F74123	1/9	1/5+	1/2	R
1481	F75040	1/8	8+/2	Dead	S
1485		1/8	7 + /2+	Dead	S
	F75077		8+/3		S
1477	F75079	1/7	7-8/3-	Dead	S
1471	F75081	1/5		Dead	
1472	F75114	1/7+	5-6/6	Dead	M-3
1470	F76021	1/6	7-8/4-	Dead	S
1473	F76054	1/5	8-9/3-	Dead	S S
1474	F76076	1/7+	10/1+	Dead	
1469	F77002	1/7+	4-5/5+	Dead	M-3
	aterial				
1405	Ackersegen	1/8w	1/5	1+-2/3	M -1
1404	Alpha	1/8w	1/6	1+-2/3+	M-1
1430	Atzimba	1/7	1/7	1/7	R
1415	Bertita	1/8	1/8	1/7+	R
1416	Dorita	1/8	1/6+	1/2+	R
1401	Elenita	1/6w	1/4	Dead	R
1414	Greta	1/9	1/8+	1/7+	R
1417	Hindenberg	1/8	1-2/7	4/6	M- 2
1418	Izstades	1/9	1/8+	1/7+	R
1419	Kenya Akabi	1/9	1/8	1/7+	R

West Virginia Table . (Continued)

1980	D 14		1/		Type2/
Field	Pedigree	7–30	oliar Reaction 1/	9-12	of
No.		7-30	8/21	9-12	Resistance
1406	Kufri Jeevan	1/8w	1/5	1/2	R
1407	Kufri Joti	1/7w	1/5	1/2	R
1410	Libertas	1/9	1/8+	Dead	R
1428	Limosa	1/6	1/3+	Dead	R
1409	Loscikij	1/9	1/8	1/2	R
1403	Maritta	1/8+w	1/7	1/6	R
1422	Marries	1/8	2+/6+	1/2	M-1
1421	Ac1-dms-Sto-thr	1, 5	2., 5.	±/ =	11 2
_ ,	(R2244)	1/8	1/5	1/2	R
1402	Adj-tbr (R2243)	1/6w	1/4	1 +- 2/5	M-1
1424	dms-tbr (R2245)	1/8	1/7+	1/6	R
1425	dms-tbr (R2248)	1/8	Trace/6	1/4	R
1423	Sto-tbr (R2241)	1/8	1/7	1/5	R
1423	USW930-1	1/8	1/6+	1/7+	R
1423		1/8	1/7+	1/3	R
	3618 (R2181)	1/0	1//-	1/3	А
1427	203905 (R ₂)	1/8	Dead	_	NT
	(R2211)	1/0	Dead	_	NI
Maine					
1659	AF330-8	1/5w	Dead	_	NT
1655	AF332-9	1/6w	1/4	Dead	R
1658	AF332-11	1/4w	Dead	_	NT
1647	AF339-5	1/6w	1/6	Dead	R
1668	AF339-11	1/7+	10+/2-	Dead	S
1666	AF389-3	1/8	1/7+	1/3+	R
1660	AF424-5	1/6w	1/3+	Dead	R
1675	AF426-1	1/5	Dead	_	NT
1671	AF428-12	1/7+	1/5	Dead	R
1657	AF431-34	1/4w	1/4	Dead	R
1664	CF7416-3	1/6w	1/2	Dead	R
1667	CF7523-1	1/8	1/7	Dead	R
1677	CF7608-19	1/8	1/6	1/3+	R
1656	CF7615-4	1/3w	1/4	Dead	R
1674	CF7710-5	1/4	1/4	Dead	R
1652	CF7719-6	1/3w	Dead	Dead	NT
1651	CF7722-19	1/6w	Dead	_	NT
1649	CF7784-5	1/5w	Dead	_	NT
	CF7793-2	1/7 +	1/7	Dead	R
1665	CF72107-15	1/7 + 1/5w	1/3	Dead	R
1650				Dead -	
1646	CF72111-5	1/4w	Dead		NT
1662	CF77110-5	1/4w	1/3	Dead	R
1669	CF77127-3	1/7+	1/6	Dead	R
1676	CF77139-14	1/5	1/5	Dead	R
1653	CF77143-10	1/2w	Dead	_	NT
1648	CF77146-6	1/6w	Dead	_	NT
1645	CF77154-10	1/4w	Dead	_	NT
1661	CF77159-3	1/7w	1/4+	Dead	R
1663	CF77159-9	1/7W	Dead	-	NT
1673	CF77161-1	1/8	Dead	-	NT

West Virginia Table . (Continued)

1980		1 /			Ty pe <u>2</u> /
Field	Pedigree	F	oliar Reaction 1/		of
No.		7-30	8-21	9-12	Resistance
1670	CF77189-10	1/7+	1/5+	Dead	R
16 5 4	CS7296-5	1/3w	Dead	_	NT
1672	WF530-3	1/8+	1/6+	Dead	R
New Yor	-1-				
1678	NY59	1/9	6+/5	8/3+	M-3
1679	NY61	1/9	1/8	1/3	R
1680	NY63	1/9	8+/3	Dead	S
NE107					
1436	Allagash Russet	1/7	6-7/5	Dead	M-3
1437	Atlantic	1/8+	1/8+	1/3	R
1453	Bake King	1/9	1/5	Dead	R
1439	Belchip	1/9	1/8+	1/6+	R
1438	Bel Rus	1/7	Dead	-	NT
1441	Buckskin	1/8+	1/8+	1/5	R
1442	Butte	1/9	10+/2-	Dead	S
1444	Centennial Russet	1/8	11-/1+	Dead	S
1448	Croatan	1/8+	7-8/4-	Dead	S
1450	Denali	1/9	10+/2-	Dead	S
1446	Jemseg	1/7-	Dead	-	NT
1452	Katahdin (Ro)	1/9	10/3-	Dead	S
1459	Kennebec (R ₁)	1/8+	1/8+	1/2-	R
1457	Monona	1/4+	10+/1+	Dead	S
1434	Norchip	1/7+	10+/2 -	Dead	S
1445	Pungo	1/8+	1/8+	1/2+	R
1443	Russet Burbank	1/8	10-/3-	Dead	S
1455	Sebago	1/8+	6/5+	10+/1+	M-3
1440	Shepody	1/8	1/8	1/4	R
1458	Shurchip	1/5	10+/1+	Dead	S
1460	Superior	1/4-	Dead	Dead	NT
1456	Tobique	1/8	1/7	1/2	R
1449	Wauseon	1/8+	1/4+	Dead	R
1463	AF92-3	1/4+	1/3	Dead	R
1454	AF186-2	1/7+	1/3+	Dead	R
1462	AF238-66	1/6	1/3	Dead	R
1461	AK24-3	1/9	1/8	1/3	R
1467	B7583-6	1/7+	1/5	Dead	R
1466	B7802-2	1/4	1/2	Dead	R
1447	C7358-26A	1/7	1/7	Dead	R
1464	CA02-7	1/8	9+/2+	Dead	S
1465	CD106-16	1/8+	1/5	Dead	R M 2
1435 1451	F67128 F68036	1/8 1/9	6 - 7/5 7/4	Dead Dead	M-3 M-4
IICDA M	toriol				
	aterial P5141_6	1/8+	1/8	1/3	R
1536	B5141-6 B5389-4	1/8+	11-/1+	1/3 Dead	S
1537					

West Virginia Table . (Continued)

1980			1 /		$_{\mathrm{Type}}\underline{2}/$
Field	Pedigree	***************************************	Foliar Reaction $\frac{1}{}$		of
No.		7-30	8-21	9-12	Resistance
1524	B6139-11	1/9	1/8+	1/5	R
1521	B7152-14	1/7+	1/3	Dead	R
1495	B7153-14	1/8+	1/7+	Dead	R
1510	BR6463-2	1/8	1/7+	1/6	R
1541	BR6558-16	1/6+	1/2+	Dead	R
West V	irginia				
1540	Abnaki	1/8+	11-/1+	Dead	S
1500	Alamo (R ₁)	1/8	1/6	Dead	R
1544	Boone	1/8+	1/8	1/3	R
1549	Calrose	1/9	(Trace)1+/7+	1/3	M-1
1543	Cascade	1/8+	9/2+	Dead	S
1526	Cherokee	1/8+	1/8	1/3	R
1494	Chippewa	1/9	10+/2-	Dead	S
1525	Fundy	1/8+	1/2	Dead	R
1512	Green Mtn.	1/8+	10+/2+	Dead	S
1550	Irish Cobbler	1/8+	10+/2	Dead	S
L507	Katahdin	1/8+	8+/3	Dead	S
L548	Kennebec	1/9	1/8+	1/5	R
L491	Merrimac	1/8	1/8	1/4	R
L502	Nampa	1/9	10+/2-	Dead	S
L506	Ona	1/8+	1/8	1/8	R
L496	Penn Chip (R ₂)	1/8	1/6+	1/2	R
L493	Penobscot	1/8+	3-4/7+	Dead	M-2
1499	Pentland Ace (R3)	1/8	1/7	1/2-	R
1489	Plymouth	1/8	1/6+	Dead	R
1532	Pontiac	1/9	8/6	Dead	S
L542	R. Burbank	1/8+	8+/4-	Dead	S
1565	Sebago (Ro)	1/9	6/6	10+/2	M-3
L528	Superior	1/8+	10+/1+	Dead	S
L497	Superior (Late)	1/8+	1/6	1/3+	R
L534	B3682-WV1	1/8+	1/4	Dead	R
L505	B3720-WV1	1/9	1/7	1/7+	R
L492	B5662-WV4	1/8+	1/8	1/5	R
L492 L498	B5662-WV13	1/8	1/7+	1/4+	R
L531	B6026-WV5	1/8+	1/8+	1/8	R
L503	B6028-WV6	1/8+	1/8	1/7	R
L539	B6039-WV2	1/8+	1/7	1/4	R
L504	B6039-WV6	1/8+	1/8	1/7+	R
1304		1/8+		1/2+	M - 1
1520	B6039-WV9 B6043-WV6	1/8 + 1/9	(Trace)1+/7+	1/2+	R R
1538 1511		1/9 1/8+	1/8+ 1/9	1/8+	R R
	B6086-WV21				R R
1518	B6655-WV1	1/8+	1/8+	1/7+	
1517	B6667-WV1	1/8+	4+/6+	Dead	M-2
1515	B6928-WV14	1/8+	2-3-/7+	7+/4 1/6+	M - 2 R
1530	B6935-WV2	1/8+	1/8+	1./6+	
1490	B6949-WV3	1/8+	9+/3	Dead	S

West Virginia Table . (Continued)

1980 Field	Pedigree	Fo	oliar Reaction ¹ /		Type ² / of
No.		7-30	8-21	9-12	Resistance
1522	B6949-WV7	1/7+	1/2	Dead	R
1545	B6960-WV2	1/9	1/7+	1/3	R
1520	B6975-WV1	1/8+	1/8+	2/8	R
1508	B6988-WV10	1/8+	1/8+	1/8	R
1509	B6992A -W V6	1/8	1/8+	1/8	R
1533	B6994-WV2	1/8+	1/7	1/4	R
1516	B7019-WV1	1/8+	Dead	-	NT
1501	BR599 1- WV16	1/9	1/8+	1/8+	R
1527	BR5991-WV21	1/8+	1/8+	1/8	R
1546	L521-5	1/9	9/3	Dead	S
1551	M297-3	1/9	1/7-	1/2	R
1523	NY59	1/9	4+-5/7+	8/5	M-3
1569	3Rc-8	1/8+	1/7+	1/5	R
1570	1563 _c -14	1/8	1/8	1/2+	R
1539	1563 _c -14	1/8	1/6	3+/4	R

^{1/ (1/8+) -} The first of the two numbers is the late blight rating, and is based on the Horsfall-Dimond rating system of 1-11; 1 = no late blight infection, 11 = 100% infection. The second of the two numbers (after the slash-/) is an indication of the general plant condition, and is based on a scale of 1-9: 1 = dead or nearly dead, while 9 = excellent health and vigor. The small "w" following the late blight/pl. cond. value indicates very wet conditions at least twice during the test period. On Aug. 18, 3.5" of ppt. fell in a 24-hour period leaving parts of the test plot standing in water for about 36 hours.

Planted: 5-8-80

Inoculated: 7-19-80. Phytophthora infestans Race-0.

 $\frac{2}{}$ Type of resistance expressed:

S = Susceptible

M-1 = Multigenic, high

M-2 = Multigenic, medium-high

M-3 = Multigenic, medium

M-4 = Multigenic, medium-low

R = R-gene resistance

NT = No Test, plants died from unknown causes.

WISCONSIN

L. E. Towill and R. E. Hanneman, Jr.

Genetics, Cytogenetics and Physiology of the Tuber-bearing Solanum Species

(Cooperative USDA, SEA, AR and Wisconsin Experiment Station)

Discovery of lEBN Diploid Solanum Species. A logical extension of the Endosperm Balance Number (EBN) proposal is that effective ploidy barriers could exist between diploid species. Crosses between 2x Solanum cardiophyllum and 2x(2EBN) S. verrucosum or the colchicine doubled, 4x form of the Mexican diploid S. cardiophyllum resulted in abortive seed. Only the 4x form of S. cardiophyllum could be crossed successfully with 2x(2EBN) S. verrucosum. The offspring of the 2x S. verrucosum x 4x S. cardiophyllum cross were morphologically hybrid and root-tip counts on all nine individuals were triploid. Therefore, 2x S. cardiophyllum must be lEBN. This is further confirmed by the results of the cross between the standard 2x(2EBN) S. chacoense and an accession of 2x S. cardiophyllum (PI. 275215) which produces large amounts of 2x S. cardiophyllum (PI. 275215) which produces large amounts of 2x S. chromosome counts were made on five of the 40 offspring and all were triploid.

The assignment of 1EBN has been made to two other diploid Solanums. \underline{S} . $\underline{fernandezianum}$ is a non-tuber-bearing diploid of Series Etuberosa. Attempts to cross it with tuber-bearing South American diploids outside the Series Etuberosa have not been successful. However, though only one pollination was done, \underline{S} . $\underline{fernandezianum}$ crossed with 2x(1EBN) \underline{S} . $\underline{cardiophyllum}$. The seeds produced were generally less plump and contained smaller embryos than in the parental intraspecific crosses. Only 20% of the seeds germinated. Six out of eight plants grown to maturity were obvious hybrids. Most notable was the formation of stolons, which is unknown in \underline{S} . $\underline{fernandezianum}$, though tubers were not formed even under short days. These six plants were almost completely male-sterile due to lack of normal pairing in meiosis. Though seeds from the \underline{S} . $\underline{fernandezianum}$ as been assigned $\underline{1EBN}$ considering that crosses between $\underline{2x}$ \underline{S} . $\underline{fernandezianum}$ and $\underline{2x(2EBN)}$ species $\underline{(S)}$. $\underline{chacoense}$ and \underline{Gp} . Phureja) gave very poor, $\underline{chacoense}$ and $\underline{chacoense}$ $\underline{chacoense}$ and $\underline{chacoense}$ $\underline{chacoense}$ and $\underline{chacoense}$ $\underline{chacoense}$ and $\underline{chacoense}$ Diploid S. commersonii is in the same Series as the species used as the 2EBN standard, 2x(2EBN) S. chacoense. Yet, the cross between these two diploids yielded only abortive seeds, as did the cross of 2x S. commersonii x 4x(2EBN) S. cardiophyllum. However, the cross 2x S. commersonii x 2x(1EBN) S. cardiophyllum was successful and, unlike the 2x S. fernandezianum x 2x S. cardiophyllum cross, the seeds were as plump and germinable as in the parental intraspecific crosses. Therefore, 2x S. commersonii has been assigned 1EBN.

There are no confirmed hybrids between a Series Etuberosa species and a South American diploid, though there has been considerable interest in using the Etuberosa germplasm. If the Etuberosa diploids are 1EBN, then it should be possible to cross their colchicine-doubled forms with 2x(2EBN) South American species. To test this proposal, colchicine-doubled $4x \le brevidens$ was produced and crossed with $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ where $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ where $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ where $2x(2EBN) \le brevidens$ was produced and $2x(2EBN) \le brevidens$ where $2x(2EBN) \le brevidens$ w

the $2x ext{ S.}$ brevidens $x ext{ 2x S.}$ chacoense cross. Without special treatment one seed gave rise to a hybrid plant that was triploid, apparently the first such hybrid reported.

The data presented support the idea that there is an effective as well as numerical ploidy series in Solanum, with respect to endosperm function. It is the effective ploidies (EBN's) that must be in a 2:1 ratio in the endosperm for this tissue to develop normally. Using this concept it has been possible to break down crossing barriers between tuber-bearing and non-tuber-bearing species and between tuber-bearing species heretofore difficult to cross. Its extension should continue to overcome other "difficult" or "impossible" interspecific crosses. It should be pointed out, however, that the 2:1 EBN ratio is a necessary but not sufficient condition for a cross to succeed. A cross could fail becuase of the inability of the pollen tubes to effect fertilization or because of other unknown causes of a lack or failure of endosperm development.

Identification of an Asynaptic Mutant from Solanum commersonii. A completely asynaptic mutant has been found in a diploid (2n=2x=24) accession of \underline{S} . commersonii (PI 243503). This mutant was first noted while chromosome counts were being made on buds of potentially colchicine doubled seedlings of this accession. One of these seedlings, expressed asynaptic behavior in meiosis. Because of this, additional seed of the original P.I. was planted, and the seedlings were screened for asynaptic behavior through meiotic studies on anther squashes of the developing buds of each seedling. Two asynaptic mutant diploids were discovered having all univalents in microsporogenesis.

Frequency of 2n Pollen in the Cultivated Potato. Haploids of Group Andigena (28 plant introductions) and of Gp. Tuberosum (31 cultivars), and plants of Gp. Phureja (F. Haynes and IR-1) and Gp. Stenotomum (IR-1) were screened cytologically for the frequency and occurrence of 2n pollen in conjunction with investigations on genetic diversity and heterosis in the cultivated potato. Individual pollen samples from each plant were stained with acetocarmine and scored for 2n pollen based on pollen diameter.

Of the 118 Gp. Tuberosum haploids screened, 44 percent had 2n pollen with 19 percent having more than five percent 2n pollen. Sixty-two percent of the 76 Gp. Andigena haploids had some 2n pollen, with 26 percent having more than five percent 2n pollen. In Gp. Phureja, 177 plants were screened for 2n pollen with 29 percent having some 2n pollen, but only two percent had more than five percent 2n pollen. Gp. Stenotomum was a little better with 31 percent of the 74 plants screened having 2n pollen, but only eight percent had more than five percent 2n pollen.

If 2n pollen were involved in the evolution of the tetraploid cultivated potatoes, one would expect to find a higher gene frequency of the genes for 2n pollen in the tetraploids than in their diploid progenitor species. If the cultivated tetraploids arose by somatic doubling the expected gene frequency for 2n pollen genes would be the same at both ploidies. Rough estimates of the gene frequencies in these populations are 0.62 for Gp. Tuberosum haploids, 0.78 for Gp. Andigena haploids, 0.15 for Gp. Phureja and 0.37 for Gp. Stenotomum.

From this data we can conclude that sufficient 2n pollen clones exist in this material, particularly among Gps. Tuberosum and Andigena haploids, to make further breeding and genetic studies possible. Furthermore, the high frequency of 2n pollen genes in the cultivated tetraploids favorably supports the concept that 2n pollen was essential to their evolution.

Low Temperature Germplasm Preservation. Experiments with cryogenic storage of shoot tips and pollen have continued. Methodology developed for the successful cryopreservation of Solanum etuberosum shoot tips was applied to species and cultivars with varying success. In general, the method gave better survival of shoot tips from species, both in percent forming callus and shoots, than in cultivar materials. Results with cultivars are variable, callus was often observed, but few shoots developed. Several modifications of the basic method were examined, but no modification has given consistently high survival. Post-thaw conditions, including growth media supplements, are being examined. Microscopy of fixed sections taken from buds of \underline{S} . etuberosum cooled to -196° C suggested that only a few cells survived the cooling/warming regime, but that these cells can develop the normal plantlet mass on the culture medium.

Experiments with pollen centered on the demonstration that liquid nitrogenstored pollen, previously shown to exhibit a high percent germination in vitro, also caused seed set comparable to unfrozen pollen. This was observed for pollen from both species and cultivars. Experiments with vacuum-drying and survival were initiated.

Concern over abnormal regenerants from cell culture studies prompted field examination of meristem regenerants to ascertain that meristem culture does indeed produce normal plants. Hardened in vitro grown cuttings from cv. Russet Burbank and cv. Superior meristems were planted directly in the field and evaluated. All plants appeared normal over the growing season. Yield was smaller than that from tuber-grown cuttings for each cultivars, however this was probably due to the generally small size of the meristem-derived transplant and the lag in becoming established after transplanting.

Refrigeration and other minimal maintenance storage procedures designed for in vitro disease-free lines were continued. Ancymidol (a commercial gibberellin inhibitor) retarded shoot elongation in culture, prolonging time necessary between subcultures. At room temperature under a 16 hour culture photoperiod, cultivars, but not species, produced 1-3 tubers during dessication of the agar medium; with this protocol transfers using the tubers were only necessary at about 9-12 month intervals.

