استاد درس: دكتر منصور رزقى آهق

دانشجو: بهار مهدوی 40152521337

# Machine Learning Homework-1



### تمرین 1:

از داده های ضمیمه شده به دلخواه سه مورد را انتخاب کنید. داده ها را به ۸۰ درصد داده آموزشی و ۲۰ درصد داده آزمایشی تقسیم کنید و روش های زیر را اعمال کنید.

اطلاعات دیتاست های انتخابی در سایت GEO:

#### GLI-85:

| Accession 4 | Title                                         | Source name                    | Tissue 4                       | Histology | Characteristics                            | ♦ Age | Gender | • Grade | Living   | Survival time | Survival cluster | Hc_74_samples <b>⊅</b> | Hc_85_samples | Array • |
|-------------|-----------------------------------------------|--------------------------------|--------------------------------|-----------|--------------------------------------------|-------|--------|---------|----------|---------------|------------------|------------------------|---------------|---------|
| GSM99588    | brain, Thalamus: Extract51_le1                | brain, Thalamus                | brain, Thalamus                | GBM       | tumor number (as appears in figure 3): 165 | 1 40  | MALE   | 4       | ALIVE    | 927           | SC1              | НС2В                   | HC2B          | 133A    |
| GSM99482    | brain, Right Temporal Parietal: Extract83_le1 | brain, Right Temporal Parietal | brain, Right Temporal Parietal | GBM       | tumor number (as appears in figure 3): 103 | 2 34  | FEMALE | 4       | DECEASED | 90            | SC2              | HC1B                   | HC1B          | 133A    |

### **CLL-SUB-111:**

| Group | ) | Accession | • | Title | Source name                  |
|-------|---|-----------|---|-------|------------------------------|
|       |   | GSM48667  |   | V0455 | Peripheral blood lymphocytes |
|       | - | GSM48668  |   | V0457 | Peripheral blood lymphocytes |

### **SMK-CAN-187:**

| Accession | Title                                       | Source name          | Sample from    | Sample_id | Age | Gender | Race  | Cancer_status | Smoking_status          | Packyears | Bronch_status  | Presence_of_hemopytsis | Presence_of_lymphadenopathy | Mass_size_greater_than_3cm | Biomarker_score | Subjective_assessment | Sample from    | Sample from  |
|-----------|---------------------------------------------|----------------------|----------------|-----------|-----|--------|-------|---------------|-------------------------|-----------|----------------|------------------------|-----------------------------|----------------------------|-----------------|-----------------------|----------------|--------------|
|           |                                             |                      | smoker NOT     |           |     |        |       |               |                         |           |                |                        |                             |                            |                 |                       | smoker         | smoker with  |
|           |                                             |                      | diagnosed with |           |     |        |       |               |                         |           |                | •                      | ·                           | •                          |                 | •                     | diagnosed with | suspect lung |
|           |                                             |                      | cancer         |           |     |        |       |               |                         |           |                |                        |                             |                            |                 |                       | cancer         | cancer       |
| GSM93997  | Smoker NOT diagnosed with cancer Sample 283 | Bronchial Epithelium |                | 283       | 34  | М      | OTHER | No Cancer     | quit less than 10 years | 17        | non-diagnostic | 0                      | 0                           | 0                          | -2.253539513    | Low                   |                |              |
| GSM94019  | Smoker diagnosed with cancer Sample 57      | Bronchial Epithelium |                | 57        | 63  | М      | CAU   | Cancer        | quit less than 10 years | 75        | diagnostic     | 0                      | 1                           | 1                          | 8.900589388     | High                  |                |              |

ابتدا داده ها از فرمت mat. به فرمت csv. تبدیل و پس از فراخوانی به روش train\_test\_split به train\_test\_split و 20 Test و 20 Test تقسیم گردید. (در تقسیم داده ها به Train به ورث و بعد میانگین یا بهترین آن را ها به 80 Train را بدست آورده و بعد میانگین یا بهترین آن را برای ادامه مراحل بعدی انتخاب کنم مرتب خطا گرفته و بنابراین از بکارگیری آن صرفه نظر کرده و در ادامه از روشی دیگر برای تقسیم بندی داده ها استفاده شد)

الف) از روش های کلاس بندی مبتنی بر رگرسیون خطی با تابع های هزینه ی MAE و MSE برای کلاس بندی این داده ها استفاده کنید. دقت آزمایش (Test) و آموزش (Train) را گزارش کنید.

| Dataset     | MAE (Train) | MSE (Train) | Train Accuracy | MAE (Test) | MSE (Test) | Test Accuracy (1-MSE) |
|-------------|-------------|-------------|----------------|------------|------------|-----------------------|
| GLI-85      | 0.0         | 0.0         | 100 %          | 0.28       | 0.13       | 87 %                  |
| CLL-SUB-111 | 0.0         | 0.0         | 100 %          | 0.44       | 0.33       | 69 %                  |
| SMK-CAN-187 | 0.0         | 0.0         | 100 %          | 0.37       | 0.20       | 80 %                  |
| Mean        | 0.0         | 0.0         | 100 %          | 0.36       | 0.22       | ~ 78.5 %              |

در Linear regression میانگین دقت train %100 و دقت test حدود 78.5% بوده و MSE خطای کمتری را نسبت به MAE نشان میدهد.

# ب) همچنین از روش های Lasso و Ridge نیز برای اینکار استفاده نمایید. $\rightarrow$ از چه روشی برای تخمین بهترین پارامتر می توان استفاده کرد؟ دقت این روش ها را برحسب معیار (Accuracy) گزارش کنید.

| Dataset     | Lasso Accuracy (%) | Ridge Accuracy (%) | Linear regression Accuracy (%) |
|-------------|--------------------|--------------------|--------------------------------|
| GLI-85      | 64.70588235294117  | 52.94117647058824  | 87                             |
| CLL-SUB-111 | 60.86956521739131  | 52.17391304347826  | 69                             |
| SMK-CAN-187 | 55.263157894736835 | 55.263157894736835 | 80                             |
| Mean        | 60.15336           | 53.44342           | 78.66666                       |

من آلفا را بین رنج 0.02 تا 2 به طور Random تغییر داده و سسعی کردم بهترین آن را انتخاب کنم ولی متاسسفانه روش غیر Manual آن برای تخمین دقیق بهترین پارامتر را پیدا نکرده و به همین خاطر، متاسسفانه بر خلاف انتظار از روش Linear regression نسسبت به روش های Ridge و Ridge، درصسد Accuracy بالاتر و بهتری را گرفتم که نشان میدهد مدل های بکار برده شده یا دارای خطاست و یا خوب کار نکرده است!

# ج) از روش المتفاده کنید. نتایج را با روشهای قبلی مقایسه کنید Logistic Regression Classifier برای کلاسبندی این داده ها استفاده کنید.

| Dataset     | Classification Acc. (%) | Logistic Acc. (%)  | Lasso Acc. (%)     | Ridge Acc. (%)     | Linear regression Acc. (%) |
|-------------|-------------------------|--------------------|--------------------|--------------------|----------------------------|
| GLI-85      | 82                      | 17.647058823529417 | 64.70588235294117  | 52.94117647058824  | 87                         |
| CLL-SUB-111 | 74                      | 26.086956521739136 | 60.86956521739131  | 52.17391304347826  | 69                         |
| SMK-CAN-187 | 74                      | 26.315789473684216 | 55.263157894736835 | 55.263157894736835 | 80                         |
| Mean        | 76.6666                 | 22.96699           | 60.15336           | 53.44342           | 78.66666                   |

از روش Logistic Regression Classifier برای Classification استفاده شده است و مطمئن نیستم از چه نظر میتوان درصد دقت بدست آمده آن را با روشهای Regression قبلی مقایسه کرد، به همین خاطر به گزارش آن در جدول بسنده شد...

### كدهاى مرتبط با تمرين 1:

- GLI-85\_Mahdavi.ipynb •
- CLL-SUB-111\_Mahdavi.ipynb •
- SMK-CAN-187\_Mahdavi.ipynb •

# تمرین 2:

داده های فوق را در نظر بگیرید. (این مسئله را برای داده های ORL نیز انجام دهید.)

$$X = [X_1, X_2, \dots, X_N] \in \mathbb{R}^{D \times N}$$

| Dataset     | D (feature)        | N (sample) | Train (80%) | Test (20%) | K=30 % N Train | Test Accuracy (%)     |
|-------------|--------------------|------------|-------------|------------|----------------|-----------------------|
| GLI-85      | 22283 (16383 .csv) | 85         | 68          | 17         | 20             | 79.40994234925168     |
| CLL-SUB-111 | 11340              | 111        | 89          | 22         | 27             | 51.68301734818086     |
| SMK-CAN-187 | 19993 (16383 .csv) | 187        | 150         | 37         | 45             | 61.70868623938255     |
| ORL10P      | 10304              | 100        | 80          | 20         | 24             | -754.2800761350527 ?! |

که D تعداد ویژگی ها و N تعداد نمونههای مربوط به داده آموزشی باشد، آنگاه روش فوق را برای کلاس بندی دادهها به کار ببرید. اگر Y داده آزمایشی (تست) باشد در این صورت:

$$\min ||Y - XW||_2^2, ||W||_0 < k \bigoplus$$

که k برابر ٪۳۰ داده های آموزشی است.

مسئله  $\bigoplus$  توسط OMP میتواند حل شود. بعد از حل این مسئله عنصر  $\{i_i\}$  میزان تاثیر داده  $\{i_i\}$  در ساختن  $\{i_i\}$  را نشان میدهد. چگونه می توان از این  $\{i_i\}$  ها برای کلاس بندی استفاده کرد؟ پیاده سازی (کدنویسی) کنید.

OMP یک روش حل sparse regression بوده و معمولا در feature selection داده های با تعداد feature بالا مثل داده های زیستی به کار میرود. در این مسئله قصد بر این است که تعداد زیادی از W ها صفر شده و حداکثر 30% از آنها non-zero باقی بمانند تا از این طریق تعداد زیادی از W ها صفر شده و حداکثر 30% از آنها non-zero باقی بمانند تا از این طریق تعداد زیادی از و حداثم میرود. در این

### كدهاى مرتبط با تمرين 2:

- GLI-85\_OMP\_Mahdavi.ipynb •
- CLL-SUB-111\_OMP\_Mahdavi.ipynb •
- SMK-CAN-187\_OMP\_Mahdavi.ipynb
  - ORL10P\_OMP\_Mahdavi.ipynb