EECS 376: Discussion 3

Dynamic Programming

John Xie

John Xie johnxie@umich.edu

Agenda

- Class Logistics
- Dynamic Programming

Logistics

HW3 due NEXT Wednesday, Sept. 20 at 8:00 PM technically! (10:00 PM without penalty)

Go to office hours if you are having issues with homework

 If you don't want to leave your room, post questions on Piazza or join virtual office hours

Agenda

- Class Logistics
- Dynamic Programming

Dynamic Programming

 Solves problems that are basically recursive problem. It is like the opposite of Divide-And-Conquer algorithms.

- Use memoization to optimize solving problems with
 - Many *overlapping subproblems*. (You need to use the solution to some subproblems multiple times)
 - An optimal substructure. (You can find the optimal solution to a problem using the optimal solution to a subproblem)

 DP is efficient because it trades off memory for time. O(1) lookup for previous solutions

Ex: Fibonacci Numbers

Repeated, overlapping subproblems

Fib(4)
 = Fib(3) + Fib(2)
 = Fib(2) + Fib(1) + Fib(1) + Fib(0)
 = Fib(1) + Fib(0) + Fib(1) + Fib(1) + Fib(0)

Recurrence Relation:

• Fib(n) = Fib(n-1) + Fib(n-2) for $n \ge 2$

Base Cases:

$$F(1) = 1$$

 $F(0) = 0$

Bottom-Up vs Top-Down

Bottom-Up:

- Iterative (Usually done with a for-loop)
- Start with the smallest possible sub-problem and build upwards
- Almost always faster in practice
- Does not run the risk of overflowing the stack
- Easier IMO

Top-Down:

- Recursive (Usually done with recursive calls)
- Start at the main problem and then break down into smaller subproblems
- Only calculate subproblems that are actually used
- Harder IMO

Ex: Fibonacci Numbers

```
// bottom up - iterative
int fib(int n){
   vector<int> memo(n+1); // memo[i] = ith fibonacci number;
   memo[0] = 0;
   memo[1] = 1;
   for(int i = 2; i<=n; i++)
        memo[i] = memo[i-1] + memo[i-2];
   return memo[n];
```

Ex: Fibonacci Numbers

```
// top-down recursive
int fib(int n){
    vector<int> memo(n+1, -1); // memo[i] = ith fibonacci number;
    return topdown(n, memo);
int topdown(int n, vector<int>& memo){
    if(n <= 1) return n;</pre>
    if(memo[n] != -1) return memo[n];
    return memo[n] = topdown(n-1, memo) + topdown(n-2, memo);
```

0-1 Knapsack Problem

Definition 1.1 (0-1 Knapsack problem). You are given two *n*-length arrays containing positive integer weights $W = (w_1, w_2, \dots, w_n)$ and values $V = (v_1, v_2, \dots, v_n)$ of *n* items (where the i^{th} item has weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{Z}^+$), and a knapsack with weight capacity $C \in \mathbb{N}$.

You must pick a subset of items $S \subseteq \{1, 2, ..., n\}$ (there are no copies or fractional items), such that the total weight of the chosen items is less than or equal to the weight capacity: $\sum_{i \in S} w_i \leq C$. What is the maximum total value you can obtain from objects in your knapsack, $\sum_{i \in S} v_i$?

0-1 Knapsack Recurrence Relation

In order to solve this, we define the subproblem K(i, C) to be the maximum value we can obtain by considering only the first i objects and a knapsack with weight capacity equal to C. There are three cases:

- 1. i = 0 or C = 0: In this case, clearly K(i, C) = 0 because there are either no items or no space in the knapsack.
- 2. $w_i > C$: In this case, you cannot fit the i^{th} item in the knapsack, so your set of items in the knapsack must consist only of the first i-1 items. That is, K(i,C) = K(i-1,C)
- 3. If neither of the above cases hold, then you can either have the i^{th} in the knapsack, or not, and the maximum value will be the larger of the two values you get from these two options.

$$K(i,C) = \max\{K(i-1,C-w_i) + v_i, K(i-1,C)\}$$

0-1 Knapsack Bottom-Up

```
Input: Integers n, C, arrays W, V, and memo table DP.
Output: The maximum total value of objects the Knapsack can hold
 1: function KNAPSACK(n, C, W, V)
      DP[n][C] \leftarrow -1
                                                        ▶ Initialize values in lookup-table to -1
    for i = 0 : n \, do
    DP[i][0] = 0
    for j = 0 : C do
    DP[0][j] = 0
      for i = 1 : n \ do
         for j = 1 : C do
             if W[i] > j then
                DP[i][j] = DP[i-1][j]
10:
             else
11:
                DP[i][j] = \max(DP[i-1][j-W[i]] + V[i], DP[i-1][j])
12:
      return DP[n][C]
13:
```

0-1 Knapsack Top-Down

```
Input: Integers n, C, arrays W, V, and lookup-table DP with values initialized to -1. Again, note
   the 1-based indexing.
Output: The maximum total value of objects the Knapsack can hold
 1: function KNAPSACK(n, C, W, V, DP)
      if n=0 or C=0 then
          return 0
 3:
     if DP[n-1][C] = -1 then
 4:
          DP[n-1][C] \leftarrow \operatorname{Knapsack}(n-1,C,W,V,DP)
 5:
      if W[n] > C then
 6:
         return DP[n-1][C]
 7:
      if DP[n-1][C-W[n]] = -1 then
 8:
          DP[n-1][C-W[n]] \leftarrow \operatorname{Knapsack}(n-1,C-W[n],W,V,DP)
 9:
      return \max(DP[n-1][C-W[n]] + V[n], DP[n-1][C])
10:
```

Worksheet Question #2c

2. Let $\#C(\ell)$ denote the number of binary strings with length ℓ that have no consecutive occurrences of a 1. For example #C(3) = 5; we can list all binary strings of length 3 and determine by inspection that only the strings 000, 001, 010, 100, and 101 have no consecutive occurrences of a 1.

(c) Show that
$$\#C(\ell) = \#C(\ell-1) + \#C(\ell-2)$$
 for $\ell \geq 2$.

Worksheet Question #2c

Solution: Observe that there for a string of length $\ell \geq 2$, it must either begin with a 1 or a 0. If it begins with a 1, then the next bit must be a 0, and the remaining string has length $\ell - 2$ and must have no consecutive occurrences of a 1. If it begins with a 0, then the next bit may be any bit, and the remaining string has length $\ell - 1$ and must have no consecutive occurrences of a 1.

As such, we have that $\#C(\ell) = \#C(\ell-1) + \#C(\ell-2)$ for $\ell \geq 2$.

If we want to compute this recursively, we only need to add base cases. Observe that #C is only defined for non-negative integers, so our base cases should be #C(0) = 1 and #C(1) = 2.

Worksheet Question #2c

```
Input: Unsigned integer n

1: function \#C(n)

2: if n = 0 then

3: return 1

4: if n = 1 then

5: return 2

6: return \#C(n-1) + \#C(n-2)
```

Worksheet Question #2d

(d) Use the bottom-up-table approach to improve your recursive algorithm.

Worksheet Question #2d

(d) Use the bottom-up-table approach to improve your recursive algorithm.

```
Input: Nonnegative integer n

1: function \#C(n)

2: DP \leftarrow a table of n integers

3: DP[0] \leftarrow 1

4: DP[1] \leftarrow 2

5: for i = 2 to n do

6: DP[i] \leftarrow DP[i-1] + DP[i-2]

7: return DP[n]
```

Worksheet Question #3a

3. Given an array of $n \ge 1$ positive real numbers (represented as constant size floating points), A[1..n], we are interested in finding the smallest product of any subarray of A, i.e.,

$$\min\{A[i]A[i+1]\cdots A[j]: i \leq j \text{ are indices of } A\}.$$

(a) Give a recurrence relation (including base cases), that is suitable for an O(n) time dynamic programming solution to the smallest product problem. Briefly explain why your recurrence relation is correct.

Hint: The longest increasing subsequence recurrence might give you some inspiration, but this recurrence should be simpler than that.

Worksheet Question #3a

Solution: For each $0 \le i \le n$, let S(i) be the smallest product that *ends* at position i of A (it's convenient to define smallest product of empty array as 1). Then we see that

$$S(i) = \begin{cases} 1 & i = 0 \\ \min\{S(i-1) \cdot A[i], A[i]\} & i > 0 \end{cases}.$$

Indeed, the key observation is that, since the product needs to end at position i, we should only extend the previous product if it doesn't hurt to do so (i.e., when $S(i) \leq 1$; this observation can actually lead to a simpler algorithm that does not require a table). Given this recurrence, we may compute the smallest product as $\min\{S(i) \mid 1 \leq i \leq n\}$.

Worksheet Question #3b

(b) Give pseudocode implementing an O(n) time bottom-up dynamic programming solution to the smallest product problem.

Worksheet Question #3b

(b) Give pseudocode implementing an O(n) time bottom-up dynamic programming solution to the smallest product problem.

```
function MinProd(A[1..n])

allocate S[0..n]

S[0] \leftarrow 1

for i = 1..n do

S[i] \leftarrow \min\{S[i-1] \cdot A[i], A[i]\}

return \min\{S[i] \mid 1 \le i \le n\}
```

Thank you for your time. Any questions?