환경설정-Window 10

2020-12-09 이동환

파이썬 설치

- https://www.python.org/downloads/
- 현재 3.7.4 버전 사용 중
- 명령프롬프트에서 사용하려면 환경변수 지정 해야함
 - 다운로드 할 때 기본값으로 설정 시 따로 환경변수 지정 필요 없음

아나콘다 설치

- https://www.anaconda.com/products/individual
- Python 3.7, 64-bit 설치

Visual Studio 설치

- Visual Studio 2019 다운로드
- https://visualstudio.microsoft.com/ko/downloads/

Table 2. Windows Compiler Support in CUDA 10.1

Compiler*	IDE	Native x86_64	Cross (x86_32 on x86_64)
MSVC Version 192x	Visual Studio 2019 16.x (Preview releases)	YES	NO
MSVC Version 191x	Visual Studio 2017 15.x (RTW and all updates)	YES	NO
MSVC Version 1900	Visual Studio 2015 14.0 (RTW and updates 1, 2, and 3)	YES	NO
	Visual Studio Community 2015	YES	NO
MSVC Version 1800	Visual Studio 2013 12.0	YES	YES
MSVC Version 1700	Visual Studio 2012 11.0	YES	YES

CUDA 설치1

1. Gpu 성능확인

https://developer.nvidia.com/cuda-gpus

GeForce GTX 960

2. CUDA version 확인

- CUDA Version은 아래에서 보이는 바와 같습니다.

GPUs supported [edit]

Supported CUDA level of GPU and card. See also at Nvidia₩:

- CUDA SDK 1.0 support for compute capability 1.0 1.1 (Tesla)^[20]
- CUDA SDK 1.1 support for compute capability 1.0 1.1+x (Tesla)
- CUDA SDK 2.0 support for compute capability 1.0 1.1+x (Tesla)
- CUDA SDK 2.1 2.3.1 support for compute capability 1.0 1.3 (Tesla)^{[21][22][23][24]}
- CUDA SDK 3.0 3.1 support for compute capability 1.0 2.0 (Tesla, Fermi)^{[25][26]}
- CUDA SDK 3.2 support for compute capability 1.0 2.1 (Tesla, Fermi)^[27]
- CUDA SDK 4.0 4.2 support for compute capability 1.0 2.1+x (Tesla, Fermi, more?)
- CUDA SDK 5.0 5.5 support for compute capability 1.0 2.1+x (Tesla, Fermi, more?)
- CUDA SDK 6.0 support for compute capability 1.0 3.5 (Tesla, Fermi, Kepler)
- . CUDA SDK 6.5 support for compute capability 1.1 5.x (Tesla, Fermi, Kepler, Maxwell). Last version with support for compute capability 1.x (Tesla)
- CUDA SDK 7.0 7.5 support for compute capability 2.0 5.x (Fermi, Kepler, Maxwell)
- CUDA SDK 8.0 support for compute capability 2.0 6.x (Fermi, Kepler, Maxwell, Pascal). Last version with support for compute capability 2.x (Fermi)
- CUDA SDK 9.0 9.2 support for compute capability 3.0 7.2 (Kepler, Maxwell, Pascal, Volta)
- CUDA SDK 10.0 10.1 support for compute capability 3.0 7.5 (Kepler, Maxwell, Pascal, Volta, Turing)

참고: https://mickael-k.tistory.com/18

CUDA 설치2

- https://developer.nvidia.com/cuda-toolkit-archive
- Version 10.1 (Feb 2019) 다운로드
- 설치 경로 : C:₩Users₩User₩AppData₩Local₩Temp₩CUDA
- 제거방법 : C:Programfiles,(x86),프로그램 추가제거에서 NVIDIA 이름 다 제거 후 재부팅 후 재설치

참고:

https://m.blog.naver.com/PostView.nhn?blogId=hschoi237&logNo=221655297017&proxyReferer=https:% 2F%2Fwww.google.com%2F

cuDNN 설치

https://developer.nvidia.com/rdp/cudnn-download

Download cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.1

cuDNN Library for Windows 10

압축을 풀은 다음

3) 경로 이동

- 위 쿠다 파일의 bin, include, lib 안에 있는 것들을 아까 4-3에서 설치 한 CUDA의 경로에 알맞게 각각 넣어 줍니다.
- 즉, C:\Users\KMG\Downloads\cudnn-10.1-windows10-x64-v7.6.4.38\cuda 안에 bin, include, lib-x64의 하위에 있는 cudnn64_7.dll, cudnn.h, cudnn.lib 이 세개를 알맞는 C:\Program Files\NVIDIA GPU Computing
 Toolkit\CUDA\v10.1의 bin, include, lib-x64 안으로 넣어야 합니다.

참고: https://mickael-k.tistory.com/18

OpenCV설치(version 3.4.0)

- https://sourceforge.net/projects/opencvlibrary/files/opencvwin/3.4.0/opencv-3.4.0-vc14_vc15.exe/download
- 압축 풀고 C:₩opencv로 옮기기
- 시스템변수 Path 새로만들기
 - C:₩opencv₩build₩x64₩vc14₩bin
- Visual studio 새 프로젝트 만들기 빈프로젝트 cpp파일 생성 (ctrl+shift+A)
- 프로젝트 속성(참고 사이트에서 설정)

참고: https://mickael-k.tistory.com/20?category=798523

가상환경 만들기1 – Tensorflow, Keras

- 아나콘다 prompt 실행
- 경로에 폴더 만들기(test) (base) C:#Users#User>
- 만들어준 test로 들어가기(cd test) (base) C:#Users#User#test>
- 가상화경 만들기 (base) conda create -n test python=3.7
- 가상환경 접속하기 (base) C:\projects\dl\test>activate test
- 라이브러리 설치하기

```
(test) conda install -n test tensorflow-gpu
                                                                                                 (test) conda install -n test keras
                                                            (test) conda install -n test -c conda-forge lightgbm
                                                                                                                   # lightgbm
                                                            (test) conda install -n test -c conda-forge pydotplus
                                                                                                                   # pydotplus
(test) conda install -n test ipython notebook jupyter
                                                            (test) conda install -n test -c conda-forge pydot
                                                                                                                    # pydot
                                                                             (test) conda install -n test -c anaconda py-xgboost
(test) conda install -n test numpy scipy matplotlib spyder pandas seaborn
scikit-learn h5py pillow matplotlib tqdm
                                                                             (test) conda install -n test -c conda-forge catboost
```

가상환경 만들기2 - Tensorflow, Keras

• 가상환경 kernel로 등록하기

python -m ipykernel install --user --name test

- 주피터 노트북 접속
- (test) C:\projects\dl\test>jupyter notebook

• New-test 선택

• 버전 확인

```
In [1]: import tensorflow
                                                                                                       In [5]:
                                                                                                                 import tensorflow
                                                                                                                 from tensorflow import keras
       from tensorflow.python.client import device_lib
                                                                                                                 import pandas
                                                                                                                 import sklearn
In [3]: | print(device_lib.list_local_devices())
                                                                                                                 import scipy
                                                                                                                 import numpy
       [name: "/device:CPU:0"
                                                                                                                 import matplotlib
       device_type: "CPU"
       memory_limit: 268435456
                                                                                                                 import pydotplus
                                                                                                                 import pydot
       locality {
                                                                                                                 import h5py
       incarnation: 3120156475130326648
                                                                                                                 print(tensorflow.__version__)
       , name: "/device:GPU:0"
                                                                                                                 print(keras.__version__)
       device_type: "GPU"
                                                                                                                 print(pandas.__version__)
       memory_limit: 3167161548
                                                                                                                 print(sklearn.__version__)
       locality {
                                                                                                                 print(scipy.__version__)
        bus_id: 1
                                                                                                                 print(numpy.__version_.
        links {
                                                                                                                 print(matplotlib.__version__)
                                                                                                                 print(h5py.__version__)
       incarnation: 17096388714978637142
                                                                                                                 2.1.0
      physical_device_desc: "device: 0, name: GeForce GTX 960, pci bus id: 0000:01:00.0, compute capability: 5.2"
                                                                                                                 2.2.4-t f
                                                                                                                 1.0.5
                                                                                                                 0.23.1
                                                                                                                 1.5.0
                                                                                                                 1.18.5
                                                                                                                 3.2.2
                                                                                                                                                     10
                                                                                                                 2.10.0
```

가상환경 만들기3 - Torch

- 아나콘다 prompt 실행
- 경로에 폴더 만들기(test2)
- 만들어준 test로 들어가기(cd test2)
- 가상화경 마들기 (base) conda create -n test python=3.7
- 가상화경 제거하기 conda remove --name test2 --all
- 가상화경 접속하기 (base) C:\projects\dl\test>activate test
- 가상화경 등록하기 python -m ipykernel install --user --name test

가상환경 만들기4 – Torch

• 라이브러리 설치하기

https://pytorch.org/ 접속 후 옵션 선택 후 anaconda에서 설치

참고 사이트 : https://my-inote.tistory.com/3