

MATEMATIKAI ÉS INFORMATIKAI INTÉZET

Tanulás segítő program egy qubites kvantumkapukhoz

Készítette

Bakos Rózsa Ajándék Programtervező informatikus BSc Témavezető

Dr. Biró Csaba Egyetemi docens

Tartalomjegyzék

Bevezetés					
1.	Fejezet címe				
	1.1.	Szakas	sz címe	4	
		1.1.1.	Alszakasz címe	4	
2.	Klasszikus- és kvantum logikai kapuk				
	2.1.	Klassz	zikus logikai kapuk és áramkörök	5	
		2.1.1.	Logikai kapuk	5	
		2.1.2.	Univerzális kapuk	8	
		2.1.3.	Reverzibilis kapuk	8	
	2.2.	Kvant	um logikai kapuk és áramkörök	8	
		2.2.1.	Qubit	8	
Ös	szegz	és		9	
Irc	dalo	mjegyz	zék	10	

Bevezetés

A kvantuminformatika térhódítása egyre nagyobb figyelemnek örvend, valamint új lehetőségei hatalmas potenciállal bírnak a számítástechnika terén. A kvantummechanika alapelveinek felhasználása új típusú megoldásokat eredményez, amelyek képesek áthidalni a jelenleg is használt számítógépek korlátait. Ennek köszönhetően ezek a kvanumszámítógépek olyan problémák megoldásában ígérkeznek hatékonyabbnak, amelyek a hagyományos számítógépek számára nehezen, vagy egyáltalán nem megoldhatók.

A kvantumszámítógépek potenciális alkalmazási területei közé tartozik a mesterséges intelligencia, kriptográfia, gyógyszerkutatás és a számításelmélet. Azonban az ilyen rendszerek működése rendkívül érzékeny a környezeti tényezőkre, például gyakran használnak extrém alacsony hőmérsékletet követelő szupravezetőket. A jelenleg létező kvantumszámítógépek egyelőre kezdeti fázisban járnak, de a különböző cégek, kutatócsoportok között kialakult verseny ezen a helyzeten bármikor változtathat.

A kvantum-számítástechnika egyik kulcsfontosságú területe a kvantum logikai kapuk koncepciója, amelyek a kvantum bitek (más néven qubit) manipulációját teszik lehetővé. Ehhez a már említett kvantummechanika alapelveire támaszkodnak. Értelmezésük, valamint a hozzá tartozó összetett matematikai háttér sok esetben nehézséget okozhat.

Szakdolgozatom célja, hogy bemutasson ezen problémák áthidalására egy olyan tanulás segítő programot, mely közelebb hozza az érdeklődőkhöz a kvantumkapuk koncepcióját. Ezt egyqubites kapuk bemutatásával teszem meg. Az alkalmazás tervezése és implementálása során figyelembe veszem a felhasználók igényeit és a pedagógiai célokat, miközben kihasználom a kvantumtechnológia által nyújtott lehetőségeket.

A továbbiakban bemutatom a kvantumszámítógépek alapjait, a kvantumlogikai kapuk működését és jellemzőit, valamint részletesen ismertetem a fejlesztett tanulás segítő programot, beleértve annak tervezési alapelveit, implementációját és tesztelését. Végül összefoglalom az elért eredményeket és felvázolom a jövőbeli kutatási irányokat ezen a területen.

1. fejezet

Fejezet címe

1.1. Szakasz címe

1.1.1. Alszakasz címe

Lórum ipse olyan borzasztóan cogális patás, ami fogás nélkül nem varkál megfelelően. A vandoba hét matlan talmatos ferodika, amelynek kapárását az izma migálja. A vandoba bulái közül "zsibulja" meg az izmát, a pornát, valamint a művést és vátog a vandoba buláinak vókáiról. Vókája a raktil prozása két emen között. Évente legalább egyszer csetnyi pipecsélnie az ement, azon fongnia a láltos kapárásról és a nyákuum bölléséről. [1, 102. oldal]

A vandoba ninti és az emen elé redőzi a szamlan radalmakan érvést. Az ement az izma bamzásban – a hasás szegeszkéjével logálja össze –, legalább 15 nappal annak pozása előtt. Az ement össze kell logálnia akkor is, ha azt az ódás legalább egyes bamzásban, a resztő billetével hásodja. [1, 2]

1.1. Tétel. Tétel szövege.

Bizonyítás. Bizonyítás szövege.

- **1.2. Definíció.** Definíció szövege.
- 1.3. Megjegyzés. Megjegyzés szövege.

2. fejezet

Klasszikus- és kvantum logikai kapuk

2.1. Klasszikus logikai kapuk és áramkörök

Elektromos impulzusokhoz értékeket társítunk, az alapján hogy küldtünk-e vagy sem. Ha érzékelünk, akkor ezt I logikai értéknek vagy 1 bitnek tekintjük. Ellenkező esetben H logikai értéknek, vagy 0 bitnek feleltetjük meg.

Ezekhez az impulzusokhoz többnyire logikai kapukat társítunk, melyek bináris operátorokat foglalnak magukban. A logikai kapuk alapvető építőkövei az elektronikának és számos célra használják őket. Összekapcsolásukkal áramköröket alakíthatunk ki, amik lineárisak és balról jobbra értelmezzük őket. A bal oldali vezetékek jelentik a bemenetet, míg a jobb oldaliak a kimenetet. Az ismertebb kapukhoz speciális ábrák és igazságtáblák tartoznak.

Az igazságtáblák a klasszikus logika alapvető eszközei, amelyek segítségével értelmezhetjük az adott műveleteket, valamint ellenőrizhetjük áramköreinket. Megmutatják az összes lehetséges bemeneti kombinációt, illetve a műveletek alkalmazása után a várható kimenetet is.

2.1.1. Logikai kapuk

Buffer

A buffer kapuk kimenete megegyezik a kimenetükkel, egy biten értelmezzük. Jele: A

2.1. táblázat. Buffer kapu igazságtáblája

Negáció

A negáció kapu (vagy NOT) hasonlóan egy bites, a bemeneti jel logikai értékét megfordítja a kimeneten. Jele: $\neg A$

2.2. táblázat. Negáció kapu igazságtáblája

Konjukció, vagy AND

Más néven logikai és. Kétbites művelet, kimenete akkor igaz, ha mind a két operandusa igaz. Jele: $A \wedge B$

2.3. táblázat. A konjukció igazságtáblája

Diszjunkció, vagy OR

Más néven logikai vagy. Szintén kétbites művelet, értéke csak akkor hamis, ha mind a két operandusa hamis. Jele: $A \vee B$

2.4. táblázat. A diszjunkció igazságtáblája

Negált konjukció, vagy NAND

A konjukció negált változata, értéke akkor hamis, ha mindkét operandusa igaz. Jele: $\neg(A \land B)$

A	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

2.5. táblázat. A negált konjukció igazságtáblája

Negált diszjunkció, vagy NOR

A diszjunkció negált változata, értéke akkor igaz, ha mindkét operandusa hamis. Jele: $\neg(A \lor B)$

2.6. táblázat. A negált diszjunkció igazságtáblája

Exclusive OR, vagy XOR

Más néven kizáró vagy. Értéke akkor hamis, ha a bemenetek megegyeznek. Jele: $A \oplus B$

2.7. táblázat. A negált konjukció igazságtáblája

Exclusive NOR, vagy XNOR

A kizáró vagy negáltja, értéke akkor hamis, ha a bemenetek különböznek Jele: $\neg(A \oplus B)$

2.8. táblázat. A negált konjukció igazságtáblája

- 2.1.2. Univerzális kapuk
- 2.1.3. Reverzibilis kapuk
- 2.2. Kvantum logikai kapuk és áramkörök
- 2.2.1. Qubit

Összegzés

Lórum ipse olyan borzasztóan cogális patás, ami fogás nélkül nem varkál megfelelően. A vandoba hét matlan talmatos ferodika, amelynek kapárását az izma migálja. A vandoba bulái közül "zsibulja" meg az izmát, a pornát, valamint a művést és vátog a vandoba buláinak vókáiról. Vókája a raktil prozása két emen között. Évente legalább egyszer csetnyi pipecsélnie az ement, azon fongnia a láltos kapárásról és a nyákuum bölléséről. A vandoba ninti és az emen elé redőzi a szamlan radalmakan érvést. Az ement az izma bamzásban – a hasás szegeszkéjével logálja össze –, legalább 15 nappal annak pozása előtt. Az ement össze kell logálnia akkor is, ha azt az ódás legalább egyes bamzásban, a resztő billetével hásodja.

Irodalomjegyzék

- [1] FAZEKAS ISTVÁN: Valószínűségszámítás, Debreceni Egyetem, Debrecen, 2004.
- [2] TÓMÁCS TIBOR: A valószínűségszámítás alapjai, Líceum Kiadó, Eger, 2005.

Nyilatkozat

Alulírott, büntetőjogi felelősségem tudatában kijelentem, hogy az általam benyújtott, című szakdolgozat önálló szellemi termékem. Amennyiben mások munkáját felhasználtam, azokra megfelelően hivatkozom, beleértve a nyomtatott és az internetes forrásokat is.

Aláírásommal igazolom, hogy az elektronikusan feltöltött és a papíralapú szakdolgozatom formai és tartalmi szempontból mindenben megegyezik.

Eger, 2021. szeptember 25.

aláírás

A *Nyilatkozatot* kitöltve nyomtassa ki, írja alá, majd szkennelve tegye ennek a helyére!