Convolutional Neural Networks

Konwolucyjne sieci neuronowe

- Dane przestrzenne (*spatial data*, obrazy, widzenie maszynowe)
- Bardzo dobrze identfikują wzorce
- Bardzo wymagające obliczeniowo
- Różnica od MLP (multilayer perceptron):
 - Warstwy sieci nazywamy warstwami konwolucyjnymi (convolutional layers)
- Zastosowania¹:
 - o Computer Vision face recognition, image classification, analiza pisma...
 - NLP (Natural Language Processing) rozpoznawanie mowy, klasyfikacja tekstu...
- Stosowane także w Uczeniu ze Wzmocnieniem (jaką akcję podjąć na podstawie aktualnego stanu gry?

Dane wejściowe

https://www.youtube.com/watch?v=iaSUYvmCekI&t

- Sieć musi wiedzieć, co takiego odróżnia poszczególne osoby od siebie
- Problemy z obrazami i MLP:
 - Na wejściu sieci otrzymujemy 1D wektor wartości pixeli. Powoduje to utratę przestrzenności obrazu.
 - MLP posiada warstwy połączone pełnie (fully connected layers) więc przypada pixel per neuron – ogromna liczba parametrów do nauczenia...

¹ Applications of Convolutional Neural Networks http://ijcsit.com/docs/Volume%207/vol7issue5/ijcsit20160705014.pdf

Rozwiązanie CNN – przekazanie na wejście neuronu fragmentu obrazu(filtr) (np.: 3x3)

Filtr 3x3 przechodzący po obrazie

- Zaczynając od góry obrazu zdefiniowany przez nas *filtr* przechodzi po całym obrazie *pixel po pixelu*. Poprzednie warstwy przekazują te fragmenty do kolejnych itd.
- Dzięki temu zachowujemy informacje przestrzenne
- Jak wyglądają teraz obliczenia w neuronie? W dużym skrócie wyliczmy sumę ważoną
 pixeli w filtrze i to przekazujemy do kolejnej warstwy w celu identyfikacji konkretnej
 cechy (feature)

Konwolucja

Przykład filtra 2x2

- Operacja aplikowania wag z filtra w celu ekstrakcji **lokalnych cech** nazywana jest **konwolucją.**
- Aby wyekstrahować wiele cech należy zastosować wiele filtrów.
- Filtr może być przesuwany co jeden pixel lub więcej zależy to od wielkości filtra (np. Filtr 4x4 może przechodzić co dwa pixele ważne, aby objąć cały obraz filtrem)

Przykład ekstrakcji cechy przez konwolucję

• Podsumowanie:

- Celem jest rozpoznanie obrazu bez względu na to czy interesujący nas obiekt jest zdeformowany
- CNN szuka cech fragment po fragmencie (to cechy pozwalają na odróżnienie obiektów)
- Każda cecha jest jak mały obraz, którego szukamy w całości. Cechy powinny odpowiadać powtarzającym się wzorcom w obrazie.

• Filtr odpowiada cesze obrazu, której CNN poszukuje.

- Wyliczenie konwolucji zmniejsza wymiar macierzy. Wyliczenie konwolucji: pixel_pierwotny x pixel_filtra + ... Dzieląc wynik przez liczbę pixeli w filtrze otrzymamy wskaźnik podobieństwa filtra do sprawdzanego fragmentu (jest to operacja opcjonalna, w p.p. interesuje nas wartość maksymalna). W wyliczonej macierzy (feature map) szukamy wartości największych, tam jest aktywacja odpowiadająca danemu filtrowi.
- Różne filtry dają różne mapy cech (feature maps)
- https://brohrer.github.io/how convolutional neural networks work.html

CNN

 Każdy neuron warstwy ukrytej wylicza wartość konwolucji oraz stosuje funkcję aktywacji (ReLU)

- Pooling technika używana w CNN. Zmniejszanie obrazów zachowując ich właściwości. Polega na przechodzeniu danym fragmentem (zazwyczaj 2x2 lub 3x3) i wybieraniu wartości maksymalnej. Najczęstszy krok: 2 pixele.
 - o Odciąża obliczenia
- Ostatnia warstwa jest w pełni połączona: traktuje wejście jako jednowymiarową listę.
 Wagi połączeń pomiędzy neuronami interpretujemy jako "głos", do której klasy przynależy obraz.
 - Neurony specjalizują się w klasach wyższe wartości odpowiednich neuronów określają przynależność do określonej klasy

Zadanie

Implementacja sieci LaNet-5² . Zaprojektowana do klasyfikacji pisma odręcznego. Posiada dwie warstwy konwolucyjne, każda posiada warstwę *subsampling* (*pooling*).

- 1. Opis implementacji modelu LaNet
- 2. Analiza porównawcza modelu MLP z poprzednich zajęć oraz modelu LaNet:
 - a. Jakie są główne różnice, który sprawuje się lepiej dla jakiej ilości danych
 - b. Dla jakiej konfiguracji sieci MLP wyniki są zbliżone do CNN? Ile czasu trwa uczenie jednej oraz drugiej sieci aby osiągnąć podobne wyniki?

•

² http://yann.lecun.com/exdb/lenet/