# Practical Choices in Sequencing Projects



# Frequently Asked Questions in NGS Library Construction

- **Platform**. Which Illumina sequencing platform is best? Or should I be using long-read technologies?
- **Read-Lengths**. How many sequencing cycles should I run?
- **Paired-End.** Should I do paired-end or single-read sequencing?
- Read Number. How many reads should I generate?
- **PCR**. How many PCR cycles should I do and which polymerase should I use?

### **Short-Read vs Long-Read Next-Generation Sequencing Techniques**

Short-Read Sequencing

Long-Read (Single Molecule)
Sequencing







Oxford Nanopore



PacBio

Under what circumstances would you want to use short-read vs. long-read sequencing?

# **Illumina Sequencing Platforms**

|                    | Clusters<br>(millions) | Max Read-<br>Length | Max<br>Output (Gb) | Cost    | Bacterial Genomes | Eukaryotic<br>Transcriptomes |
|--------------------|------------------------|---------------------|--------------------|---------|-------------------|------------------------------|
| MiniSeq            | 25                     | 150 bp              | 7.5                | \$1,500 | 15                | 1.5                          |
| MiSeq              | 25                     | 300 bp              | 15                 | \$1,530 | 30                | 3                            |
| NextSeq 500 (mid)  | 130                    | 150 bp              | 40                 | \$1,650 | 80                | 8                            |
| NextSeq 500 (high) | 400                    | 150 bp              | 120                | \$4,240 | 240               | 24                           |
| HiSeq 4000 Lane    | 300                    | 150 bp              | 90                 | \$1,925 | 180               | 18                           |
| NovaSeq S4 Lane    | 2500                   | 150 bp              | 750                | \$9,100 | 1500              | 150                          |



### **Principles when Choosing Read Lengths**

- Read lengths are defined by the cycle number on an Illumina run (1 bp per cycle).
- Advantages of longer reads
  - Cost per bp declines
    - MiSeq V2 50 cycles -- \$747 (\$996/Gb)
    - MiSeq V2 300 cycles -- \$958 (\$213/Gb)
    - MiSeq V2 500 cycles -- \$1066 (\$142/Gb)
  - Better for distinguishing among repetitive sequences in assembly/mapping
- Disadvantages
  - Worthless if your inserts are short
  - Additional sequence is not "independent" (e.g., for quantifying gene expression)
  - Basecall quality diminishes with read length.

## **Read Quality**

Quality declines with increasing cycle number because amplicons within clusters get out of phase.



### Single-Read vs. Paired-End



### Advantages of paired-end runs

- Cost per bp declines
  - NextSeq V2 1x150 cycles -- \$2650 (\$44/Gb)
  - NextSeq V2 2x150 cycles -- \$4240 (\$35/Gb)
- Better for distinguishing among repetitive sequences in assembly/mapping

### Disadvantages

- Worthless/redundant if your inserts are short
- Additional sequence is not "independent" (e.g., for quantifying gene expression)

### **How Many Reads Do I Need?**

de novo genome assembly

- 100x sequence coverage (e.g., 5 Mb genome →
   500 Mb total sequence data)
- Longest paired-end reads available
- But consider PacBio/Nanopore

Genome re-sequencing (SNP and indel variant calling)

- 20x and 35x for haploid and diploid genomes, respectively
- Longest paired-end reads available
- Low error rate technologies

RNA-seq for measuring gene expression (with ref genome)

- 36 million reads to get reliable quantification for 80% of human genes with FPKM > 10. (ENCODE 2011 PLoS Biol. e1001046)
- Short single-end reads

| Table 2   Representative read counts for location-based approaches |                                                                                 |          |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|--|--|--|
| Techniques                                                         | Read counts in representative studies                                           | Refs     |  |  |  |
| DNasel-seq and FAIRE-seq                                           | 20–50 million                                                                   | 79       |  |  |  |
| CLIP-seq                                                           | 7.5 million; 36 million                                                         | 89,90    |  |  |  |
| iCLIP and PAR-CLIP                                                 | 8 million; 14 million                                                           | 105, 106 |  |  |  |
| CHiRP and CHART                                                    | 26 million                                                                      | 72       |  |  |  |
| 4C                                                                 | 1–2 million                                                                     | 92       |  |  |  |
| ChIA-PET                                                           | 20 million                                                                      | 107      |  |  |  |
| 5C                                                                 | 25 million                                                                      | 108      |  |  |  |
| Hi-C                                                               | >100 million                                                                    | 94       |  |  |  |
| MeDIP-seq                                                          | 60 million                                                                      | 109      |  |  |  |
| CAP-seq                                                            | >20 million                                                                     | 110      |  |  |  |
| ChIP-seq                                                           | >10 million per sample (point source);<br>>20 million per sample (broad source) | 79       |  |  |  |

Sims et al. 2014 (Nature Reviews Genet. 15: 121-132)

### **Minimizing Bias**

Generally try to use a minimal number of PCR cycles during library prep.

Use high-fidelity polymerases that exhibit a low amplification bias (KAPA HiFi or NEB Q5)

Discussion of additional sources of bias: van Dijk et al. 201 https://www.ncbi.nlm.nih.gov/pubmed/24440557



