敵対的生成 ネットワークを利用した 高解像画像生成の研究

神戸市立工業高等専門学校 電子工学科 藤本研究室 5年6番 入江一帆

目次

- 1. 研究背景
- 2. 研究目的
- 3. 敵対的生成の原理
- 4. DCGANの実験
- 5. 多段階GANの実験
- 6. DCGAN+SRCNNの実験
- 7. アンケート調査
- 8. まとめ

深層学習の発展

画像認識

音声認識

自然言語処理

成果を上げている

生成モデルの登場

自己符号化器

敵対的生成ネットワーク

高解像度の画像を生成

学習コスト

出力精度

学習時間増加

ぼやける

使用メモリ増加

歪む

生成が難しい

例 Web用画像素材を生成したい

32 x 32 [pixels]

認識できない

例 Web用画像素材を生成したい

256 x 256 [pixels]

違和感を感じない

目的

解決策を比較検討

学習コスト削減

出力精度向上

高解像度の画像を生成

敵対的生成ネットワーク (GAN)

生成器と判別器を**組み合わせ**て構成 互いに**敵対**しながら学習

生成器 (Generator)

多次元Vectorから画像を生成

判別器 (Discriminator)

生成画像を入力すると偽物と判定

訓練画像を入力すると本物と判定

判別器 (Discriminator)

生成画像を入力すると偽物と判定

訓練画像を入力すると本物と判定

判別器 (Discriminator)

生成画像を入力すると偽物と判定

訓練画像を入力すると本物と判定

敵対的生成 (Generative Adversarial)

生成器は良い画像の生成を目指す

判別器が本物と間違い誤判定

敵対的生成 (Generative Adversarial)

生成器は良い画像の生成を目指す

判別器が本物と間違い誤判定

実験①

DCGAN (Deep Convolutional GAN)

実験①

DCGAN (Deep Convolutional GAN)

実験①

DCGAN (Deep Convolutional GAN)

結果 ①

解像度による変化 (3000[epochs])

32 x 32 [pixels]

64 x 64 [pixels]

128 x 128 [pixels]

精度向上

ボケ・歪み

高解像度化に伴い学習コスト急増

結果 ①

解像度による変化 (3000[epochs])

32 x 32 [pixels]

64 x 64 [pixels]

128 x 128 [pixels]

精度向上

ボケ・歪み

高解像度化に伴い学習コスト急増

実験 ②

多段階GAN

実験 ②

多段階GAN

実験 ②

多段階GAN

結果②

多段階GAN (3000[epochs])

多段階GAN

DCGAN (一段)

DCGANと比べて**良い結果**を得られた 学習コストが急増する問題は**解決せず**

実験③

SRCNN (Super Resolution Neural Network)

実験③

DCGAN+SRCNN

結果③

DCGAN+SRCNN (6000, 2000[epochs])

DCGAN出力

超解像結果

一段のDCGANと比べて良い結果を得られた学習コストの削減に成功

実験 ④

アンケート調査

多段階GANとDCGAN+SRCNNを比較

目視で良いと感じた画像を選択

実験 ④

母集団構成 (全66[人])

■30代■40代

アンケート結果

学習反復数共通としたとき

方法	選択率 [%]	反復数 [epochs]	学習時間 [hrs]
多段階GAN	49.3	6000	113.8
DCGAN+SRCNN	50.8	6000 , 2000	75.2

アンケート結果

学習反復数共通としたとき

方法	選択率 [%]	反復数 [epochs]	学習時間 [hrs]
多段階GAN	49.3	6000	113.8
DCGAN+SRCNN	50.8	6000 , 2000	75.2

アンケート結果

学習反復数共通としたとき

方法	選択率 [%]	反復数 [epochs]	学習時間 [hrs]
多段階GAN	49.3	6000	113.8
DCGAN+SRCNN	50.8	6000 , 2000	75.2

アンケート結果

学習時間共通としたとき

方法	選択率 [%]	反復数 [epochs]	学習時間 [hrs]
多段階GAN	23.1	4000	76.8
DCGAN+SRCNN	76.9	6000, 2000	75.2

アンケート結果

学習時間共通としたとき

方法	選択率 [%]	反復数 [epochs]	学習時間 [hrs]
多段階GAN	23.1	4000	76.8
DCGAN+SRCNN	76.9	6000, 2000	75.2

まとめ

一段のDCGAN

高解像度化

出力精度の限界

多段階GAN

高解像度化

学習コストの問題

DCGAN+SRCNN

学習コスト削減

学習時間短縮

概要

- 1. 研究背景・・・ 生成モデルの登場 高解像度出力の難しさ
- 2. 研究目的・・・ 学習コスト 出力精度 高解像度化
- 3. 敵対的生成の原理 … 生成器 判別器 敵対的生成
- 4. DCGANの実験 · · · 解像度による変化
- 5. 多段階GANの実験 … 学習コストの問題
- 6. DCGAN+SRCNNの実験 … 超解像 コスト削減
- 7. アンケート調査 … 反復数共通 学習時間共通
- 8. まとめ · · · DCGAN 多段階GAN DCGAN+SRCNN **学生からの質問大歓迎**

質疑応答用資料

畳み込み

例 5x5画像に3x3フィルタをかける

1	2	3	1	2			2x1+3 x2+2					
3	1	2	3	1			8x1+		= 12	12 /	9 =	1.33
2	3	1	2	3		0	1	0		1	1	1
1	2	3	1	2	•	1	2	1		1	1	1
3	1	2	3	1		0	1	0		1	1	1
	Ī	画像	Ŕ			フ・	ィル	クタ		<u>1</u>	洁果	1

畳み込み

例 5x5画像に3x3フィルタをかける

1	2	3	1	2		x0+3 x1+2						
3	1	2	3	1				1x0 =	= 12	12 /	9 =	1.33
2	3	1	2	3		0	1	0		1	1	1
1	2	3	1	2	•	1	2	1		1	1	1
3	1	2	3	1		0	1	0		1	1	1
	画像				フ・	ィル	クタ		3	結果	1	

Up Sampling

例

3x3画像を2x2でUp Samplingする

Up Sampling

例

3x3画像を2x2でUp Samplingする

Max Pooling

例

6x6画像を2x2でMax Poolingする

0	0	0	0	0	0
0	1	2	3	1	2
0	3	1	2	3	1
0	2	3	1	2	3
0	1	2	3	1	2
0	3	1	2	3	1

最大值

1	3	2
3	3	3
3	3	3

画像

結果

Max Pooling

例

6x6画像を2x2でMax Poolingする

0	0	0	0	0	0
0	1	2	3	1	2
0	3	1	2	3	1
0	2	3	1	2	3
0	1	2	3	1	2
0	3	1	2	3	1

最大值

1	3	2
3	3	3
3	3	3

画像

結果

高解像度とは

大辞林による定義

一般的なシステムより解像度が高いこと

写真での定義

1200万画像 = 4000x3000 [pixels]

GANでは生成困難

GANでの定義

128x128 ~ 256x256 [pixels]

人間が違和感なく認識

ネットワーク構造 (Generator)

Layer (type)	Output Shape	Parameters
Input	100	
Dense	512	
Reshape	(h/8, h/8, <mark>256</mark>)	
Up Sampling	(h/4, h/4, <mark>256</mark>)	Size: (2,2)
Convolution	(h/4, h/4, <mark>128</mark>)	Kernel: (3, 3)
Up Sampling	(h/2, h/2, <mark>128</mark>)	Size: (2,2)
Convolution	(h/2, h/2, <mark>64</mark>)	Kernel: (3, 3)
Up Sampling	(h, h, <mark>64</mark>)	Size: (2,2)
Convolution	(h, h, <mark>3</mark>)	Kernel: (3, 3)

ネットワーク構造 (Discriminator)

Layer (type)	Output Shape	Parameters
Input	(h, h, <mark>3</mark>)	
Convolution	(h, h, <mark>64</mark>)	Kernel: (3, 3)
Max Pooling	(h/2, h/2, <mark>64</mark>)	Size: (2,2)
Convolution	(h/2, h/2, <mark>128</mark>)	Kernel: (3, 3)
Max Pooling	(h/4, h/4, <mark>128</mark>)	Size: (2,2)
Convolution	(h/4, h/4, <mark>256</mark>)	Kernel: (3, 3)
Max Pooling	(h/8, h/8, <mark>256</mark>)	Size: (2,2)
Flatten	256 x h/8 x h/8	
Dense	512	
Dense	1	

ネットワーク構造 (Up Sampler)

Layer (type)	Output Shape	Parameters
Input	(h, h, <mark>3</mark>)	
Convolution	(h, h, <mark>64</mark>)	Kernel: (3,3)
Max Pooling	(h/2, h/2, <mark>64</mark>)	Size: (2,2)
Convolution	(h/2, h/2, <mark>128</mark>)	Kernel: (3,3)
Max Pooling	(h/4, h/4, <mark>128</mark>)	Size: (2,2)
Flatten	128 x h/4 x h/4	
Dense	256	
Reshape	(h/4, h/4, <mark>256</mark>)	
Up Sampling	(h/2, h/2, <mark>256</mark>)	Size: (2,2)
Convolution	(h, h, <mark>128</mark>)	Kernel: (3,3)
Up Sampling	(h, h, <mark>128</mark>)	Size: (2,2)
Convolution	(h, h, <mark>64</mark>)	Kernel: (3,3)
Up Sampling	(2h, 2h, <mark>64</mark>)	Size: (2,2)
Convolution	(2h, 2h, <mark>3</mark>)	Kernel: (3,3)

ネットワーク構造 (SRCNN)

Layer (type)	Output Shape	Parameters	
Input	(h, h, <mark>3</mark>)		
Up Scaling	(2h, 2h, <mark>3</mark>)	Nearest Neighbor	
Convolution	(2h, 2h, <mark>256</mark>)	Kernel: (9,9)	
Convolution	(2h, 2h, <mark>128</mark>)	Kernel: (3, 3)	
Convolution	(2h, 2h, <mark>3</mark>)	Kernel: (5,5)	

実験環境

種別	種類		
CPU	Intel Core i5 (2.8GHz)		
GPU	GTX 1050 Ti		
OS	Ubuntu 16		
Python	3.6		
Tensorflow	1.2		
Keras	2.0		

付録

ノートPCによる画像生成

富士通 LIFEBOOK で生成

一家に一台のGAN