## Введение в анализ данных и статистику

#### Омелюсик Владимир Степанович

Национальный Исследовательский Университет «Высшая школа экономики»

Факультатив «Введение в анализ данных и машинное обучение на Python»

19 октября 2019 г.

### Направления математики

- Линейная алгебра
- Математический анализ
- Дифференциальные уравнения
- Теория вероятностей
- ...

### Теория вероятностей и математическая статистика

- Теория вероятностей:
  - Знаем модель некоторого явления.
  - ▶ Можем посчитать вероятность наступления какого-то события.
  - ▶ И другие параметры модели.
- Математическая статистика:
  - Модель явления нам неизвестна.
  - ▶ Но есть наблюдения над этим явлением данные.
  - ▶ Идея: оценить параметры модели по данным.

## Пример: подбрасывание монетки

• Пусть мы знаем вероятность выпадения орла при подбрасывании монетки равна  $\frac{1}{2}$ . Запишем это так:

$$\mathbb{P}\{\mathsf{B}$$
ыпадет орёл $\}=rac{1}{2}.$ 

Сумма вероятностей должна равняться 1. Поэтому вероятность выпадения решки тоже равна  $\frac{1}{2}$ .

 Это наша модель, в которой мы знаем, чему равны вероятности выпадения орла и решки. В реальной жизни мы эти вероятности не знаем и никогда не узнаем.

## Пример: подбрасывание монетки

- Что делать, если мы хотим узнать эти вероятности? Попробуем получить их оценки.
- Проведём эксперимент: попросим человека подбрасывать монетку 100 раз. Запишем результаты подбрасывания:

• Оценку вероятности выпадения орла можно рассчитать, например, таким образом:

$$\hat{\mathbb{P}}\{\mathsf{B}\mathsf{ыпадет}\ \mathsf{op"en}\} = \frac{\mathsf{Число}\ \mathsf{paз},\ \mathsf{когдa}\ \mathsf{выпал}\ \mathsf{op"en}}{\mathsf{O}\mathsf{бщee}\ \mathsf{числo}\ \mathsf{пoдбpacывaний}}.$$

• Оценка вероятности равна доле. Можно показать, что при некоторых условиях  $\hat{\mathbb{P}}$  является «хорошей» оценкой  $\mathbb{P}$  (будем понимать «хорошей» пока на интуитивном смысле).

## Пример: среднее число посетителей

- Случайная величина величина, значение которой зависит от результата случайного происшествия (не подчиняющегося какому-либо шаблону).
- Математическое ожидание среднее значение случайной величины при проведении эксперимента много раз. Очень много раз.
- Пусть случайная величина X число посетителей ресторана за один день. Пусть математическое ожидание X:

$$\mathbb{E}(X) = 78.$$

### Пример: среднее число посетителей

• Чтобы оценить математическое ожидание, будем записывать число посетителей в течение 100 дней:

$$X_1, X_2, X_3 \dots X_{100}$$
.

 В качестве оценки математического ожидания рассчитаем среднее арифметическое по всем наблюдениям:

$$\hat{\mathbb{E}}(X) = \frac{X_1 + X_2 + \dots X_{100}}{100}.$$

• Оценка математического ожидания равна среднему. Можно показать, что при некоторых условиях  $\hat{\mathbb{E}}$  является «хорошей» оценкой  $\mathbb{E}$ .

# Зачем пытаться узнать параметры модели?

#### Для решения практических задач:

- Банку, выдающему кредиты, необходимо знать, с какой вероятностью кредит могут не вернуть.
- Владельцу торговой сети необходимо знать, где открыть новый магазин. Среднее число людей, проходящих в конкретном месте за день, может быть полезной характеристикой.
- Рекомендательная система должна определить, с какой вероятностью контент понравится пользователю, и предложить наиболее подходящий вариант.

## Данные

- Для получения оценок нам необходимы наблюдения (данные).
  Качество оценки сильно зависит от качества данных.
- Откуда берутся данные? Вообще говоря, из генеральной совокупности.

#### Генеральная совокупность

Совокупность всех мыслимых наблюдений, которые могли бы быть произведены при данном реализованном комплексе условий.

## Данные

#### Выборка

Часть генеральной совокупности, используемая для проведения эксперимента.

#### Пример:

- Оценить вероятность того, что случайно выбранный ученик Лицея НИУ ВШЭ изучает английский язык.
- Генеральная совокупность: все ученики Лицея НИУ ВШЭ.
- Выборка: 10-е классы Лицея НИУ ВШЭ.

### Репрезентативность выборки

#### Репрезентативность выборки

Способность выборки описывать свойства генеральной совокупности.

- Исследуем выборку, получаем среднее, оценки вероятностей и проч.
- Можем ли сказать, что генеральная совокупность имеет то же среднее, оценки вероятностей и проч.?
- Да, если выборка репрезентативна.

### Репрезентативность выборки

Чтобы быть репрезентативной, выборка должна быть:

- Несмещённой в том смысле, что в ней должны присутствовать те же классы, что и в генеральной совокупности, в тех же пропорциях.
  - **Продолжение примера:** если мы знаем, что в Лицее НИУ ВШЭ большинство изучает английский, но некоторые также изучают французский и немецкий, то в несмещённой выборке большинство лицеистов должны изучать английский, но также должны быть изучающие французский и немецкий.
- Достаточной по числу наблюдений (чем больше, тем лучше). Это позволяет учесть больше информации и получить более точные оценки.

# Случайность выборки

Чтобы быть репрезентативной, выборка должна быть случайной:

- То есть данные должны быть собраны случайным образом.
- Участие экспериментатора должно быть минимальным.

Пример: исследуем зависимость числа людей, посмотревших фильм, от рейтинга фильма на «Кинопоиске».

• Как сформировать случайную выборку?

### Как выглядит выборка?

- А если мы хотим изучить зависимость от нескольких факторов?
- Нужно включить в выборку несколько переменных!

Общий вид выборки — таблица «объекты-признаки» (N — число наблюдений, k — число признаков):

|   | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <br>$X_k$ |
|---|-----------------------|-----------------------|-----------------------|-----------|
| 1 |                       |                       |                       |           |
| 2 |                       |                       |                       |           |
| 3 |                       |                       |                       |           |
| ÷ |                       |                       |                       |           |
| N |                       |                       |                       |           |

## Про терминологию

• Зависимая переменная (target) — переменная, значение которой хотим предсказать (например, прибыль кафе):

Y

 Признаки или Объясняющие переменные (features) – переменные, при помощи которых хотим предсказать значение зависимой переменной (например, расстояние в метрах до станции метро, время года, координаты расположения кафе):

$$X_1, X_2, \ldots X_k$$

• Наблюдения или объекты (observations) – конкретная реализация зависимой и объясняемой переменной. Наблюдений *N* штук.

## Пример: кафе

- Исследуем зависимость прибыли кафе от расстояния в метрах до станции метро, времени года и координат расположения кафе.
   Формализуем:
  - Y прибыль кафе за месяц в тысячах рублей.
  - ▶ X<sub>1</sub> расстояния в метрах до станции метро.
  - ▶ X<sub>2</sub> время года.
  - ▶ X<sub>3</sub> координаты расположения кафе.
- Пусть нам удалось собрать всего три наблюдения. Тогда таблица «объекты-признаки» может выглядеть следующим образом (числа придуманы):

|   | $X_1$ | $X_2$ | <i>X</i> <sub>3</sub> |
|---|-------|-------|-----------------------|
| 1 | 100   | Зима  | (30, 76)              |
| 2 | 40    | Зима  | (21, 12)              |
| 3 | 150   | Лето  | (4, 49)               |

### Типы признаков

- Вещественные признаки (абсолютные или относительные):  $X_k \in \mathbb{R}.$ 
  - Возраст, площадь класса.
- Категориальные номинальные признаки:
  - $X_k \in \{$ неупорядоченное множество $\}$ .
    - ▶ Цвет, название города.
- Категориальные ранговые признаки:
  - $X_k \in \{$ упорядоченное множество $\}$ .
    - ▶ Воинское звание, ступень образования.
- Бинарные признаки:  $X_k \in \{0,1\}$ .
  - Материал, из которого сделан стол, дерево?

## Пример: типы признаков

Определить типы признаков следующей таблицы «объекты-признаки»:

|   | $X_1$ | $X_2$    | <i>X</i> <sub>3</sub> | $X_4$  | $X_5$ | $X_6$ |
|---|-------|----------|-----------------------|--------|-------|-------|
| 1 | 110   | Россия   | 13%                   | Small  | 0     | 13.5  |
| 2 | 90    | Россия   | 10%                   | Medium | 0     | 10    |
| 3 | 105   | Германия | 30%                   | Medium | 1     | 20    |
| 4 | 92    | США      | 11%                   | Small  | 1     | 18.9  |
| 5 | 114   | Россия   | 11%                   | Large  | 0     | 10    |
| 6 | 90    | Франция  | 5%                    | Small  | 1     | 19    |

N = ?, k = ?.

## Визуализация выборки

- Мы можем с лёгкостью визуализировать количественные переменные, чтобы понять примерный вид зависимостей в данных.
- Это важно для дальнейшей интерпретации адекватности моделей:
  - Если на «хороших» данных точно видно, что зависимость положительная, а модель показывает отрицательную модель, то вероятно, что-то не так с моделью.

# Диаграмма рассеяния (scatter plot)

По осям отложены интересующие переменные (данные сгенерированы).





# Гистограмма (histogram)

По нижней оси отложены значения переменных, а по левой оси – частота встречаемости (данные сгенерированы).



#### Типы данных

• Кроссекционные данные: время фиксировано, зависимая переменная изменяется по объектам.

| N | Y   |
|---|-----|
| 1 | 10  |
| 2 | 40  |
| 3 | 100 |

• Временные ряды: объект фиксирован, зависимая переменная изменяется во времени.

| t | Y   |
|---|-----|
| 1 | 100 |
| 2 | 40  |
| 3 | 150 |

### Типы данных

• Панельные данные: зависимая переменная изменяется как по времени, так и по объектам.

| Ν | t | Y   |
|---|---|-----|
| 1 | 1 | 100 |
| 1 | 2 | 120 |
| 2 | 1 | 150 |
| 2 | 2 | 152 |