Convolutional Neural Networks

Radu Ionescu, Prof. PhD. raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph, get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Neural networks are universal function approximators

Universal Approximation Theorem:

A feed-forward neural network with a hidden layer composed of a finite number of neurons can approximate any continuous function defined on a compact subset of \mathbb{R}^n .

- Although 2-layer neural networks (1-hidden layer) are universal function approximators, the hidden layer's width (number of neurons) can be exponentially large.
- In practice, we prefer deeper (with more layers) and thinner architectures

Dropout

Forces the network to have a redundant representation.

Convolutional Neural Networks

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: A ConvNet is a sequence of Convolutional Layers, interposed with activation functions

Filters correspond to features / parts of the objects

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[Slide credit: Yann LeCun]

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1,n_2] \cdot g[x - n_1,y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Maximum activation = highest response

7

7x7 input (spatially, without depth) assume 3x3 filter

7

7x7 input (spatially, without depth) assume 3x3 filter

7

7x7 input (spatially, without depth) assume 3x3 filter

7

7x7 input (spatially, without depth) assume 3x3 filter

7x7 input (spatially, without depth) assume 3x3 filter **=> 5x5 output**

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7x7 input (spatially) assume 3x3 filter applied with stride 3?

It does not fit!
We cannot apply a 3x3 filter on an image of 7x7 pixels using a stride of 3

N

	F		
F			

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3: stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$ stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$ stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33$:

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (preserves the size of the input image / activation map)

```
e.g. F = 3 => zero pad with 1 (value 0)
F = 5 => zero pad with 2 (value 0)
F = 7 => zero pad with 3 (value 0)
```

- 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
 (32 => 28 => 24 ...)
- Shrinking too fast is not good, doesn't work well.

Input volume: **32x32x3**10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so the volume is 32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? Each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

K = (powers of 2, e.g. 32, 64, 128, 512)

$$-$$
 F = 3, S = 1, P = 1

$$-$$
 F = 5, S = 1, P = 2

-
$$F = 5$$
, $S = 2$, $P = ?$ (whatever fits)

$$-$$
 F = 1, S = 1, P = 0

- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Btw, 1x1 convolutional layers make perfect sense

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

5x5 filter => 5x5 receptive field for each neuron

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Two more layers to go: POOL/FC

Pooling layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently:

MAX Pooling

Single depth slice

2 4 5 6 3 3

max pool with 2x2 filters and stride 2

6	8
3	4

У

Common settings:

F = 2, S = 2

F = 3. S = 2

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - \circ their spatial extent F ,
 - the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully-Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, just as in ordinary Neural Networks

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2, applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: What is the output volume size?

Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume **[55x55x96]**

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: What is the output volume size?

Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: What is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After POOL1: 27x27x96

After CONV1: 55x55x96

• • •

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- First use of ReLU
- Used Norm layers (not common anymore)
- Heavy data augmentation
- Dropout 0.5
- Batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when validation accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 16.4%

Case Study: VGGNet

[Simonyan and Zisseman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

Best model

11.2% top 5 error in ILSVRC 2013

=>

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-25 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool	8 6	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
Web Schiller	NAME OF STREET	max	pool	No.	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
- 15		max	pool		-
			4096		
		FC-	4096		
		FC-	1000		
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

```
(not counting biases)
                                                                                         ConvNet Configuration
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
                                                                                         13 weight
                                                                                                   16 weight
                                                                                                             16 weight
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                           lavers
                                                                                                    lavers
                                                                                                              lavers
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                        put (224 \times 224 RGB image
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                         conv3-64
                                                                                                   conv3-64
                                                                                                             conv3-64
                                                                                         conv3-64
                                                                                                   conv3-64
                                                                                                             conv3-64
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                              maxpool
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
                                                                                                   conv3-128
                                                                                         conv3-128
                                                                                                            conv3-128
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
                                                                                                  conv3-128
                                                                                                            conv3-128
                                                                                         conv3-128
                                                                                                                      co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                              maxpool
                                                                                         conv3-256
                                                                                                   conv3-256
                                                                                                            conv3-256
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
                                                                                         conv3-256
                                                                                                   conv3-256
                                                                                                            conv3-256
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
                                                                                                   conv1-256
                                                                                                            conv3-256
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                                                      co
                                                                                              maxpool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
                                                                                         conv3-512
                                                                                                   conv3-512
                                                                                                            conv3-512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                                   conv3-512
                                                                                         conv3-512
                                                                                                            conv3-512
                                                                                                                      CO
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                                   conv1-512
                                                                                                            conv3-512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                                                      co
                                                                                              maxpool
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                         conv3-512
                                                                                                   conv3-512
                                                                                                            conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                         conv3-512
                                                                                                   conv3-512
                                                                                                            conv3-512
                                                                                                                      co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                                   conv1-512
                                                                                                            conv3-512
                                                                                                                      co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                              maxpool
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                              FC-4096
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                              FC-4096
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
                                                                                              FC-1000
                                                                                               soft-max
```

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~x2 for backward)

TOTAL params: 138M parameters

(not counting biases)

```
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
                                                                                         Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                         Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                         early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                         Most params are
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                         in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~x2 for backward)
TOTAL params: 138M parameters
```

Case Study: GoogLeNet

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1						-	2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								1
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0	1							(
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								Ĉ.
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Fun features:

Only 5 million params!
 (Removes FC layers completely)

Compared to AlexNet:

- 12x less params
- 2x more computations
- 6.67% (vs. 16.4%)

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition", arXiv 2015.

CIFAR-10 experiments

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

- Batch Normalization after every CONV layer
- Xavier/2 initialization
- SGD + momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used!

This trick is also used in GoogLeNet

[He et al., 2015]

ayer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer					
conv1	112×112	7×7, 64, stride 2									
conv2_x		3×3 max pool, stride 2									
	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$					
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$					
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$					
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$					
	1×1	average pool, 1000-d fc, softmax									
FLOPs		1.8×10^{9}	3.6×10 ⁹	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹					

7n7 april, 64, /2 post, /2 3x3 conv. 64 3x3 core, 64 3x3 cons, 64 Skill conv., 64 3rd conc. 64 Bull conv. 64 3x3 cons, 136, /2 3x3-esex, 128 Bell open, 128 3x3 epec, 128 Indiana, Litt 3x3 cove, 128 Juli sares, 128 3x3 conv, 256, /2 3x3 care, 256 3x3 com, 256 3x3 sers, 254 3rd conv. 256 hel care, 256 3s3 spec, 256 3x3+spex, 256 3cl com, 256 3x3 spen, 256 3x3-com, 256 3x3 carsc, 256 3x3 com; \$12, /2 3x3 com; \$12 3x3 cons, 512 3x3 cons, 512 3x3-mes, 512

Summary

- ConvNets stack CONV, POOL, FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX

where N is usually up to \sim 5, M is large, 0 <= K <= 2.

• ... but recent advances such as ResNet/GoogLeNet challenge this paradigm