

AIPMT 2012 (PRE)

IMPORTANT INSTRUCTIONS

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 200 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 800.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must havdover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet if B. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.
- 7. The Candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The Candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The Candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in Test Booklet/Answer Sheet in The Attendance Sheet.

Name of the Candidate (in Capitals):		
Roll Number : in figures		
Centre of Examination (in Capitals):		
Candidate's Signature:	Invigilator's Signature:	
Fascimile signature stamp of		
Centre Superintendent :		

PHYSICS

- 1. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelength λ_1 : λ_2 emitted in the two cases is
 - (1) 7/5
- (2) 27/20
- (3)27/5
- (4) 20/7

When a string is divided into three segments of length ℓ_1, ℓ_2 and ℓ_3 the fundamental frequencies of these three segments are v_1, v_2 and v_3 respectively. The original fundamental frequency (v) of the string is

(1)
$$\sqrt{v} = \sqrt{v_1} + \sqrt{v_2} + \sqrt{v_3}$$

(2)
$$v = v_1 + v_2 + v_3$$

(3)
$$\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}$$

(4)
$$\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} + \frac{1}{\sqrt{v_3}}$$

- 3. A 200 W sodium street lamp emits yellow light of wavelength 0.6 μm. Assuming it to be 25% efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is.
 - (1) 1.5×10^{20}

 $(2) 6 \times 10^{18}$

 $(3) 62 \times 10^{20}$

(4) 3×10¹⁹

4. Two ideal diodes are connected to a battery as shown in the circuit. The current supplied by the battery is:

(1) 0.75 A

(2) zero

(3) 0.25 A

(4) 0.5 A

- **5.** When a mass is rotating in a plane about a fixed point, its angular momentum is directed along :
 - (1) a line perpendicular to the plane of rotation
 - (2) the line making an angle of 45° to the plane of rotation.
 - (3) the radius
 - (4) the tangent to the orbit.

- An electric dipole of moment 'p' is placed in an electric field of intensity 'E'. The dipole acquires a position such that the axis of the dipole makes an angle θ with the direction of the field. Assuming that the potential energy of the dipole to be zero when $\theta = 90^{\circ}$, the torque and the potential energy of the dipole will respectively be :
 - (1) p E sin θ , p E cos θ

(2) p E sin θ , – 2 p E cos θ

(3) p E sin θ , 2 p Ecos θ

- (4) p E cos θ , p Ecos θ
- 7. In a CE transistor amplifier, the audio signal voltage across the collector resistance of $2k \Omega$ is 2V. If the base resistance is $1k\Omega$ and the current amplification of the transistor is 100, the input signal voltage is :
 - (1) 0.1 V
- (2) 1.0 V
- (3) 1mV
- (4) 10mV

- 8. A coil of resistance 400Ω is placed in a magnetic field. If the magnetic flux ϕ (wb) linked with the coil varies with time t (sec) as $\phi = 50t^2 + 4$. The current in the coil at t = 2 sec is:
 - (1) 0.5A
- (2) 0.1 A
- (3) 2 A
- (4) 1 A

9. A thermodynamic system is taken through the cycle ABCD as shown in figure. Heat rejected by the gas during the cycle is :

- (1) 2 PV
- (2) 4 PV
- (3) $\frac{1}{2}$ PV
- (4) PV

- **10.** If the nuclear radius of ²⁷ Al is 3.6 Fermi, the approximate nuclear radius of ⁶⁴ Cu in Fermi is:
 - (1) 2.4
- (2) 1.2
- (3)4.8
- (4) 3.6

- 11. Two similar coils of radius R are lying concentrically with their planes at right angles to each other. The currents flowing in them are I an 2 I, respectively. The resultant magnetic field induction at the centre will be:
 - (1) $\frac{\sqrt{5}\mu_{0}I}{2R}$
- (2) $\frac{3\mu_0 I}{2R}$
- (3) $\frac{\mu_0 I}{2R}$
- (4) $\frac{\mu_0 I}{R}$

12. The potential energy of particle in a force field is $U = \frac{A}{r^2} - \frac{B}{r}$,

where A and B are positive constants and r si the distance of particle from the centre of the field. For stable equilibrium, the distance of the particle is:

(1) B / 2A

(2) 2A / B

(3) A / B

(4)B/A

- **13.** When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts as a plane sheet of glass. This implies that the liquid must have refractive index.
 - (1) equal to that of glass

(2) less then one

(3) greater than that of glass

(4) less then that of glass

- **14.** The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectiles is:
 - (1) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$

(2) $\theta = \tan^{-1}(4)$

(3) $\theta = \tan^{-1}(2)$

(4) $\theta = 45^{\circ}$

15.	In an electrical circuit R,L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is $\pi/3$. If instead, C is removed from the circuit, the phase difference is again $\pi/3$. The power factor of the circuit is:			n the circuit is $\pi/3$. If instead, C is removed
	(1) 1/2	ase difference is again π, (2) 1/√2	(3) 1	etor of the circuit is: $ (4) \sqrt{3}/2 $
16.	If the radius of a star is rate of energy product (1) Q /4πR ² σ (σ stands for Stefan's o	ion is Q ? (2) $(Q/4\pi R^2 \sigma)^{-1/2}$		be the temperature of the star, in which the $(4) (Q/ 4\pi R^2\sigma)^{1/4}$

Page # 7

17. The current (I) in the inductance is varying with time according to the plot shown in figure.

Which one of the following is the correct variation of voltage with time in the coil?

- **18.** A milli voltmeter of 25 milli volt range is to be converted into an ammeter of 25 ampere range. The value (in ohm) of necessary shunt will be :
 - (1) 0.001
- (2) 0.01
- (3) 1
- (4) 0.05

(1) 3.0 m	e centre of mass of the sy	(2) 2.3	m	
(3) zero		(4) 0.75		
	sists of two radioactive ma s 40 g of A ₁ and 160 g of A			
(1) 60 s	(2) 80 s	(3) 20 s	(4) 40 s	omo oqual and

21.	as Si is intrinsic set (1) In case of C the (2) In case of C the (3) The four bonding third.	emiconductor. This is be e valence band is not co e conduction band is pa ng electrons in the case	ecause: Impletely filled at absolutely filled even at absolute of C lie in the second or		of Si they lie in the
22.	The height at whic	h the weight of a body b	pecomes 1/16 th , its weig (3) 3R	ght on the surface of ear (4) 4R	th (radius R), is :
					Page # 10

- 23. An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be:
 - (1) $\frac{24 \text{hR}}{25 \text{m}}$
- (2) $\frac{25 \text{hR}}{24 \text{m}}$
- (3) $\frac{25 \text{ m}}{24 \text{ hR}}$
- (4) $\frac{24 \text{ m}}{25 \text{hR}}$

(m is the mass of the electron, R, Rydberg constant and h Planck's constant)

- 24. A compass needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It:
 - (1) will become rigid showing no movement
 - (2) will stay in any position
 - (3) will stay in north-south direction only
 - (4) will stay in east-west direction only

In the circuit shown the cells A and B have negligible resistances. For V_A = 12V, R_1 = 500 Ω and R = 100 Ω the 25. galvanometer (G) shows no deflection. The value of $\boldsymbol{V}_{_{\boldsymbol{B}}}$ is :

- (1) 4V
- (2) 2V
- (3) 12V
- (4) 6V

- Four point charges -Q, -q, 2q and 2Q are placed, one at each corner of the square. The relation between Q 26. and q for which the potential at the centre of the square is zero is :
 - (1) Q = -q
- (2) $Q = -\frac{1}{q}$ (3) Q = q
- (4) $Q = \frac{1}{q}$

27.	A car of mass 1000 kg negotiates a banked curve of radius 90 m on a frictionless road. If the banking angle	
	is 45°, the speed of the car is :	
	(1) 20 ms ⁻¹	$(2) 30 \text{ ms}^{-1}$
	$(3) 5 \text{ ms}^{-1}$	$(4) 10 \text{ ms}^{-1}$
28.		rizontal surface with velocity 4ms ⁻¹ . It collides with a horizontal
		num compression produced in the spring will be:
	(1) 0.5 m	(2) 0.6 m
	(3) 0.7 m	(4) 0.2 m
		Page # 13

29. One mole of an ideal gas goes from an initial state A to final state B via two processes: It first undergoes isothermal expansion from volume V to 3V and then its volume is reduced from 3V to V at constant pressure. The correct P-V diagram representing the two processes is:

30. Two spheres A and B of masses m_1 and m_2 respectively collide. A is at rest initially and B is moving with velocity v along x-axis. After collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction.

The mass A moves after collision in the direction.

(1) same as that of B

- (2) Opposite to that of B
- (3) $\theta = \tan^{-1}(1/2)$ to the x-axis
- (4) $\theta = \tan^{-1}(-1/2)$ to the x-axis

31. Liquid oxygen at 50K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which one of the following graphs represents the variation of temperature with time?

32. An alternating electric field, of frequency v, is applied across the dees (radius = R) of a cyclotron that is being used to accelerate protons (mass = m). The operating magnetic field (B) used in the cyclotron and the kinetic energy (K) of the proton beam, produced by it, are given by:

(1) B =
$$\frac{m\nu}{e}$$
 and K = $2m\pi^2\nu^2R^2$

(2) B =
$$\frac{2\pi m v}{e}$$
 and K = $m^2 \pi v R^2$

(3) B =
$$\frac{2\pi m \nu}{e}$$
 and K = $2m\pi^2 \nu^2 R^2$

(4) B =
$$\frac{mv}{e}$$
 and K = $m^2\pi v R^2$

33.	A spherical planet has a mass M_p and diameter D_p . A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to :			rface of this	
	(1) 4GM /D ²	(2) GM m/D	² (3) GM /D ²	(4) 4GM m	/D ²
24	A vov. of limbtic in side.			of an ala A (a a a uma a al ta la a	المسم (المحسم
34.		=	e, i, on one face of prism one refractive index of the p	- '	
	nearly equal to:	an and opposite racer in a		prioritio μ, and arigid of in	0.00.00
		^			
	(1) μΑ	$(2) \frac{\mu A}{2}$	(3) A/μ	(4) A/2μ	
35.	The damping force or	n an oscillator is directly i	oroportional to the velocity	v. The units of the constar	nt of propor-
	tionality are :	,			
	(1) kgms ⁻¹	(2) kgms ⁻²	(3) kgs ⁻¹	(4) kgs	
20	A		t - distance of lall from a -		. (£) A b a a
36.			t a distance of 'd' from a co convex lens – concave r		
	The distance 'd' mus	· -			io to ii iii iity.
	(1) $f_1 + f_2$	$(2) - f_1 + f_2$	(3) $2f_1 + f_2$	$(4) - 2f_1 + f_2$	
					age # 16

- 37. A geostationary satellite is orbiting the earth at a height of 5R above that surface of the earth, R being the radius of the earth. The time period of another satellite in hours at a height of 2R from the surface of the earth is:
 - (1) 5
- (2) 10
- (3) $6\sqrt{2}$
- (4) $\frac{6}{\sqrt{2}}$

38. Transfer characteristics [output voltage (V_0) vs input voltage (V_i)] for a base biased transistor in CE configuration is as shown in the figure. For using transistor as a switch, it is used :

- (1) in region III
- (2) both in region (I) and (III)
- (3) in region II
- (4) in region I
- **39.** If voltage across a bulb rated 220 Volt 100 Watt drops by 2.5 % of its rated value, the percentage of the rated value by which the power would decrease is :
 - (1) 20 %
- (2) 2.5 %
- (3) 5 %
- (4) 10 %

- A particle has initial velocity $(2\vec{i} + 3\vec{j})$ and acceleration $(0.3\vec{i} + 0.2\vec{j})$. The magnitude of velocity after 10 40. seconds will be:
 - (1) $9\sqrt{2}$ units
- (2) $5\sqrt{2}$ units (3) 5 units
- (4) 9 units

- 41. Monochromatic radiation emitted when electron on hydrogen atom jumps from first excited to the ground state irradiates a photosensitive material. The stopping potential is measured to be 3.57 V. The threshold frequency of the materials is:
 - $(1) 4 \times 10^{15} Hz$
- $(2) 5 \times 10^{15} Hz$
- (3) $1.6 \times 10^{15} \,\text{Hz}$ (4) $2.5 \times 10^{15} \,\text{Hz}$

ABC is an equilateral triangle with O as its centre. \vec{F}_1 , \vec{F}_2 and \vec{F}_3 represent three forces acting along the 42. sides AB, BC and AC respectively. If the total torque about O is zero the magnitude of \vec{F}_3 is :

- $(1) F_1 + F_2$
- (2) $F_1 F_2$
- $(4) 2 (F_1 + F_2)$

43. The figure shows a logic circuit with two inputs A and B and the output C. The voltage wave forms across A, B and C are as given. The logic circuit gate is:

- (1) OR gate
- (2) NOR gate
- (3) AND gate
- (4) NAND gate

- What is the flux through a cube of side 'a' if a point charge of q is at one of its corner: 44.
 - (1) $\frac{2q}{\epsilon_0}$
- (2) $\frac{q}{8\epsilon_0}$
- $(3) \frac{q}{\varepsilon_0} \qquad \qquad (4) \frac{q}{2\varepsilon_0} 6a^2$

45.	An α -particle moves in a circular path of radius 0.83 cm in the presence of a magnetic field of 0.25 Wb/m ²			
	The de Broglie wavele	ength associated with the	particle will be :	
	(1) 1 Å	(2) 0.1 Å	(3) 10 Å	(4) 0.01 Å
46.	The electric field asso	ciated with an e.m. wave	in vacuum is given by 🛱 -	= \hat{i} 40 cos (kz – 6 × 10 ⁸ t), where E,
		neter and seconds respec	•	
	(1) 2 m ⁻¹	(2) 0.5 m ⁻¹	$(3) 6 m^{-1}$	(4) 3 m ⁻¹
47.	The motion of a partic	ele along a straight line is	described by equation :	
	$x = 8 + 12 t - t^3$			
	where x is in metre ar	nd t in second. The retard	ation of the particle wher	its velocity becomes zero, is:
	(1) 24 ms ⁻²	(2) zero	(3) 6 ms ⁻²	(4) 12 ms ⁻²
	. ,	,	. ,	• •
48.	The magnifying power	er of a telescope is 9. Wh	en it is adjusted for para	llel rays the distance between the
		e is 20 cm. The focal leng		•
	(1) 10 cm, 10 cm	(2) 15 cm, 5 cm	(3) 18 cm, 2 cm	(4) 11 cm, 9 cm

Page # 20

- 49. Two sources of sound placed close to each other are emitting progressive waves given by $y_1 = 4 \sin 600 \pi t$ and $y_2 = 5 \sin 608 \pi t$. An observer located near these two sources of sound will hear:
 - (1) 4 beats per second with intensity ratio 25: 16 between waxing and waning.
 - (2) 8 beats per second with intensity ratio 25: 16 between waxing and waning
 - (3) 8 beats per second with intensity ratio 81:1 between waxing and waning
 - (4) 4 beats per second with intensity ratio 81: 1 between waxing and waning

50. A ring is made of a wire having a resistance $R_0 = 12 \Omega$. Find the points A and B as shown in the figure, at which a current carrying conductor should be connected so that the resistance R of the sub circuit between

these points is equal to $\,\frac{8}{3}\Omega\,.$

- $(1) \; \frac{\ell_1}{\ell_2} = \frac{5}{8}$
- (2) $\frac{\ell_1}{\ell_2} = \frac{1}{3}$
- (3) $\frac{\ell_1}{\ell_2} = \frac{3}{8}$
- (4) $\frac{\ell_1}{\ell_2} = \frac{1}{2}$

BIOLOGY

51.	Motile zygote of Plasmodium occurs in :			
	(1) Gut of female Anolpheles	(2) Salivary glands of Anopheles		
	(3) Human RBCs	(4) Human liver		
52.	The human hind brain comprises thre	ee parts, one of which is :		
	(1) Spinal cord	(2) Corpus callosum		
	(3) Cerebellum	(4) Hypothalamus		
53.		o role in hearing as such but is otherwise very much required?		
	(1) Eustachian tube	(2) Organ of corti		
	(3) Vestibular apparatus	(4) Ear ossicles		
54.	The most abundant prokaryotes helpf are the ones categorised as:	ful to humans in making curd from milk and in production of antiboitics		
	(1) Cyanobacteria	(2) Archaebacteria		
	(3) Chemosynthetic autotrophs	(4) Heterotrophic bacteria		
55.	(1) Sperm is viable for only up to 24 h	pH of the medium and is more active in alkaline medium. by its motility.		
56.	Evolution of different species in a give is known as: (1) Adaptive radiation	n area starting from a point and spreading to other geographical areas (2) Natural selection		
	(3) Migration	(4) Divergent evolution		
		() - 3		

57. What is the figure given below showing in particular?

- (1) Ovarian cancer
- (3) Tubectomy

- (2) Uterine cancer
- (4) Vasectomy
- **58.** In an area where DDT had been used extensively, the population of birds declined significantly because:
 - (1) birds stopped laying eggs

- (2) earthyworms in the area got eradicated
- (3) cobras were feeding exclusively on birds
- (4) many of the birds laid, did not hatch
- **59.** The figure below is the diagrammatic representation of the E.Coli vector pBR 322. Which one of the given options correctly identifies its certain component (s) ?

- (1) ori orignal restriction enzyme
- (2) rop-reduced osmotic pressure
- (3) Hind III, EcoRI selectable markers
- (4) amp^R, tet^R antibiotic resistance genes

- **60.** The common bottle cork is a product of :
 - (1) Dermatogen
- (2) Phellogen
- (3) Xylem
- (4) Vascular Cambium

61.	Widal Test is carried out to test:		
	(1) Malaria	(2) Diabetes mellitus	
	(3) HIV/AIDS	(4) Typhoid fever	
62.	Which part would be most suitable for raising viru	e-froe plante for micropropagation 2	
02.	(1) Bark	(2) Vascular tissue	
	(3) Meristem	(4) Node	
	(3) Menstern	(4) Node	
63.	Whic one of the following is a wrong statment?		
03.	(1) Most of the forests have been lost in tropical a	oreas	
	(2) Ozone in upper part of atmosphere is harmful		
		to animais.	
	(3) Greenhouse effect is a natural phenomenon.	abount and a disa	
	(4) Eutrophication is a natural phenomenon in fre	snwater bodies.	
64.	Companion cells are closely associated with:		
	(1) Sieve elements	(2) Vessel elements	
	(3) Trichomes	(4) Guard cells	
65.	Common cold differs from pneumonia in, that :		
	(1) Pneumonia is a communicable disease where	eas the common cold is a nutritional deficiency disease.	
	(2) Pneumonia can be prevented by a live attenue ffective vaccine.	ated bacterial vaccine whereas the common cold has no	
	(3) Pneumonia is caused by a virus while the influenzae.	common cold is caused by the bacterium Haemophilus	
	(4) Pneumonia pathogen infects alveoli whereas to not the lungs.	he common cold affects nose and respiratory passage but	
66.	Pheretima and its close relatives derive nourishm	ent from :	
	(1) sugarcane roots		
	(2) decaying fallen leaves and soil organic matter		
	(3) soil insects		
	(4) small pieces of fresh fallen leaves of maize, e	tc.	

Page # 25

	(1) t RNA
	(2) hn RNA
	(3) m RNA
	(4) r RNA
68.	A process that makes important difference between C_3 and C_4 plants is :
	(1)Transpiration
	(2) Glycolysis
	(3) Photosynthesis
	(4) Photorespiration
	(), · · · · · · · · · · · · · · · · · ·
69.	PCR and Restriction Fragment Length Polymorphism are the methods for :
	(1) Study of enzymes
	(2) Genetic transformation
	(3) DNA sequencing
	(4) Genetic Fingerprinting
	(), =
70.	Best defined function of Manganese in green plants is :
	(1) Photolysis of water
	(2) Calvin cycle
	(3) Nitrogen fixation
	(4) Water absorption
	(1) Water absorption
71.	Measuring Biochemical Oxygen Demand (BOD) is a method used for :
	(1) estimating the amount of organic matter in sewage water.
	(2) working out the efficiency of oil driven automobile engines.
	(3) measuring the activity of Saccharomyces cerevisae in producing curd on a commercial scale.
	(4) working out the efficiency of R.B.Cs. about their capacity to carry oxygen.
	(4) WORKING OUT THE EMICIENCY OF IX.B.Cs. about their capacity to carry oxygen.

Removal of RNA polymerase III from nucleoplasm will affect the synthesis of :

67.

72 .	Which one -of the following is not a part of a transcription unit in DNA?		
	(1) The inducer	(2) A terminator	
	(3) A promoter	(4) The structural gene	
73.	A certain road accident patient with unknown bloc friend at once offers his blood. What was the blo	od group needs immediate blood transfusion. His one doctor	
	(1) Blood group B	(2) Blood group AB	
	(3) Blood group O	(4) Blood group A	
74.	Consumption of which one of the following foods deficiency?	can prevent the kind of blindness associated with vitamin'A'	
	(1) Flaver Savr' tomato	(2) Canolla	
	(3) Golden rice	(4) Bt-Brinjal	
75.	The maximum amount of electrolytes and water (which part of the nephron? (1) Ascending limb of loop of Henle (3) Proximal convoluted tubule	70 - 80 percent) from the glomerular filtrate is reabsorbed in (2) Distal convoluted tubule (4) Descending limb of loop of Henle	
76.	Both, autogamy and geitonogamy are prevented	l in -	
	(1) Papaya	(2) Cucumber	
	(3) Castor	(4) Maize	
77.	Placentation in tomato and lemon is (1) Parietal (3) Marginal	(2) Free central (4) Axile	

- **78.** A person entering an empty room suddenly finds a snake right in front on opening the door. Which one of the following is likely to happen in his neuro-hormonal control system?
 - (1) Sympathetic nervous system is activated releasing epinephrin and norepinephrin from adrenal medulla.
 - (2) Neurotransmitters diffuse rapidly across the cleft and transmit a nerve impulse.
 - (3) Hypothalamus activates the parasympathetic division of brain.
 - (4) Sympathetic nervous system is activated releasing epinephrin and norepinephrin from adrenal cortex.
- **79.** Which one of the following is not a gaseous biogeochemical cycle in ecosystem?

(1) Sulphur cycle

(2) Phosphorus cycle

(3) Nitrogen cycle

(4) Carbon cycle

80. A single strand of nucleic acid tagged with a radioactive molecule is called:

(1) Vector

(2) Selectable marker

(3) Plasmid

(4) Probe

81. Which one of the following options gives one correct example each of convergent evolution and divergent evolution?

	Convergent evolution	Divergent evolution
(1)	Eyes of octopus and mammals	Bones of forelimbs of vertebrates
(2)	Thorns of Bougainvillia and tendrils of Cucurbita	Wings of butterflies and birds
(3)	Bones of forelimbs of vertebrates	Wings of butterfly and birds
(4)	Thorns of Bougainvillia and tendrils of Cucurbita	Eyes of Octopus and mammals

02.	is:			carriot be degraded by any enzyme
	(1) Cuticle		(2) Sporopollenin	
	(3) Lignin		(4) Cellulose	
83.	-	esemble each other in h	_	
	(1) Seeds		(2) Motile Sperms	
	(3) Cambium		(4) Vessels	
84.	What was the most sig	gnificant trend in the evo	olution of modern man (Ho	omo sapiens) from his ancestors ?
	(1) Shortening of jaws		(2) Binocular vision	
	(3) Increasing cranial	capacity	(4) Upright posture	
85.	Cymose inflorescence	e is present in :		
	(1) Solanurn	(2) Sesbania	(3) Trifolium	(4) Brassica
86.	Ribosomal RNA is act	tively synthesized in		
	(1) Lysosomes	(2) Nucleolus	(3) Nucleoplasm	(4) Ribosomes
87.	During gamete format	ion, the enzyme recomb	oinase participates during	
	(1) Metaphase - I		(2) Anaphase - II	
	(3) Prophase - I		(4) Prophase - II	
88.	38. Identify the possible link "A" in the following food chain :			
Plant \rightarrow insect - frog \rightarrow "A" \rightarrow Eagle				
	(1) Rabbit	(2) Wolf	(3) Cobra	(4) Parrot
89.	Phyllode is present in	n:		
-	(1) Asparagus		(2) Euphorbia	
	(3) Australian Acacia		(4) Opuntia	

90. Given below is an imaginary pyramid of numbers. What could be one of the possibilities about certain organisms at some of the different levels?

- (1) Level PC is "insects" and level SC is "small insectivorous birds".
- (2) Level PP is "phytoplanktons" in sea and "Whale" on top level TC
- (3) Level one PP is "pipal trees" and the level SC is "sheep".
- (4) Level PC is "rats" and level SC is "cats".
- **91.** Monascus purpureus is a yeast used commercially in the production of :
 - (1) ethanol
 - (2) streptokinase for removing clots from the blood vessels.
 - (3)Citric acid
 - (4) blood cholesterol lowering statins
- **92.** The correct sequence of cell organelles during photorespiration is :
 - (1) Chloroplast,-Golgibodies,-mitochondria
 - (2) Chloroplast, -Rough Endoplasmic reticulum, Dictyosomes
 - (3) Chloroplast,-mitochondria,-peroxisome
 - (4) Chloroplast,-vacuole,-peroxisome
- **93.** Which one of the following is correctly matched?
 - (1)Passive transport of nutrients ATP
 - (2) Apoplast Plasmodesmata
 - (3) Potassium Readily immobilisation
 - (4) Bakane of rice seedlings F. Skoog

94. A normal– visioned man whose father was colour– blind, marries a woman whose father blind. They have their first child as a daughter, what are the chance that this child would be						
	(1) 100%	g.	(2) zero percent			
	(3) 25%		(4) 50 %			
95.	Signals for parturition (I) Both placenta as w (2) Oxytocin released	ell as fully developed				
	(3) Placenta only					
	(4) Fully developed fo	etus only				
96.	,	hospital with myocard	dial infarction is normally	immediately given :		
	(1) Penicillin		(2) Streptokinase			
	(3) Cyclosporin-A		(4) Statins			
97.	Which one of the following is not a property of cancerous cells whereas the remaining three are? (1) They compete with normal cells for vital nutrients. (2) They do not remain confined in the area of formation. (3) They divide in an uncontrolled manner (4) They show contact inhibition.					
98.	The gynoecium consi			(A) 10 10 10 10 10 10 10 10 10 10 10 10 10		
	(1) Aloe	(2) Tomato	(3) Papaver	(4) Michelia		
99.	,					
	(1) Energy flow		(2) Decomposition			
	(3) Productivity		(4) Stratification			
100.	In a normal pregnant was	a normal pregnant woman, the amount of total gonadotropin activity was assessed. The result expected				
	, , ,	f circulating FSH and LH in the uterus to stimulate implantation of the embyro f circulatting HCG to stimulate endometrial thickening				
	(3) High level of FSH and LH in uterus to stimulate endometrical thickening					
	· / -		e estrogen and progester	•		

101.	Which one of the follow	ving areas in India, is a	s in India, is a hotspot of biodiversity			
	(1) Eastern Ghats		(2) Gangetic Plain			
	(3) Sunderbans		(4) Western Ghats			
102.	Which one of the follwi	ng is a correct stateme	nt			
	(1) Pteridophyte gamet	tophyte has a protonem	al and leafy stage			
	(2) In gymnosperms fer	male gametophyte is fre	e-living			
	(3) Antheridiophores ar	nd archegoniophores ar	e present in pteridophytes	S.		
	(4) Origin of seed habit can be traced in pteridophytes					
103.	Which one of the follow	ving does not differ in E.	coli and Chlamydomonas	8		
	(1) Ribosomes		(2) Chromosomal Org	ganization		
	(3) Cell wall		(4) Cell membrane			
104.	The cycanobacteria are	e also referred to as				
	(1) proists		(2) golden algae			
	(3) Slime moulds		(4) blue green algae			
105.	The test-tube Baby Pro	ogramme employs which	h one of the following tech	nniques		
	(1) Intra cytoplasmic sp	perm injection (ICSI)	(2) Intra uterine insem	nination (IUI)		
	(3) Gamete intra fallopia	an transfer (GIET)	(4) Zygote intra fallopi	an transfer (ZIFT)		
106.	Which one of the follow	-	•			
	(1) Somatic hybridization - Fusion of two diverse cells					
	(2) Vector DNA -Site for t-RNA synthesis.					
	(3) Micropropagation - In vitro production of plants in large numbers.(4) Callus - Unorganised mass of cell produced in tissue culture					
	(4) Callus - Unorganise	ed mass of cell produce	d in tissue culture			
107.	The highest number of	species in the world is	represented by			
	(1) Fungi	(2) Mosses	(3) Algae	(4) Lichens		
	-		· ,	. ,		

108. In which one of the following options the two examples are **correctly** matched with their particular type of immunity

	Examples	Type of immunity
(1)	Polymorphonuclear leukocytes and monocytes	Cellular barriers
(2)	Anti- tetanus and anti-snake bite injection	Active immunity
(3)	Saliva in mouth and Tears in eyes	Physical barriers
(4)	Mucus coating of epithelium lining the urinogenital tract and the HCl in stomach	Pysiological barriers

- **109.** Which one of the following is **wrong** statement
 - (1) Anabaena and Nostoc are capable of fixing nitrogen in free living state also.
 - (2) Root nodule forming nitrogen fixers live as aerobes under free-living conditions.
 - (3) Phosphorus is a constituent of cell membranes, certain nucleic acids and cell proteins.
 - (4) Nitrosomonas ans Nitrobacter are chemoautotrophs.
- 110. Anxiety and eating spicy food together in an otherwise normal human, may lead to
 - (1) Indigestion
- (2) Jaundice
- (3) Diarrhoea
- (4) Vomiting
- 111. The Leydig cells found in the human body are the secretory source of
 - (1) Progesterone
- (2) intestinal mucus
- (3) glucagon
- (4) androgens
- 112. Compared to those of humans, the erythrocytes in frog are
 - (1) Without nucleus but with haemoglobin
 - (2) nucleated and with haemoglobin
 - (3) very much smaller and fewer
 - (4) nucleated and without haemoglobin.

113. In which one of the following the genus name, its two charcters and its phylum are not correctly matched, whereas the remaining three are correct

	Genus name		Two characters	Phylum
(4)	Dile	(a)	Body Segmented	Mallugaa
(1)	Pila	(b)	Mouth with Radual	Mollusca
(2)	Asterias	(a)	Spiny Skinned	Echinodermata
(2)	Astellas	(b)	Water vascular system	Leninodennata
(3)	Sycon	(a)	Pore bearing	Porifera
(3)	Sycon	(b)	Canal system	Politeia
(4)	Davinlanata	(a)	Jointed appendages	Arthropodo
	Periplaneta	(b)	Chitinous exoskeleton	Arthropoda

TITE VITALIS LIGIC ADOULT IDOSOTTIC	114.	What is true about ribosome
-------------------------------------	------	-----------------------------

- (1) The prodkaryotic ribosomes are 80S, where "S" stands for sedimentation coefficient
- (2) These are composed of ribonucleic acid and proteins
- (3) These are found only in eukaryotic cells
- (4) These are self -splicing introns of some RNAs.

115.	Cirrhosis of liver is caused by the chronic intake of
113.	cirriosis of liver is caused by the critoric intake of

- (1) Opium (2) Alcohol
- (3) Tobacco (Chewing) (4) Cocaine
- 116. Which one is a true statement regarding DNA polymerase used in PCR
 - (1) It is used to ligate introduced DNA in recipient cell
 - (2) It serves as a selectable marker
 - (3) It is isolated from a virus
 - (4) It remains active at high temperature
- **117.** Which statement is **wrong** for viruses
 - (1) All are parasites
 - (2) All of them have helical symmetry
 - (3) They have ability ot synthesize nucleic acids and proteins
 - (4) Antibiotics have no effect on them

- 118. Which one of the following is **correctly** matched
 - (1) Onion Bulb

- (2) Ginger Sucker
- (3) Chlamydomonas Conidia
- (4) Yeast Zoospores
- **119.** How many plants in the list given below have composite fruits that develop from an inflorescence Walnut, poppy, radish, fig, pineapple, apple, tomato, mulberry
 - (1) Four
- (2) Five
- (3) Two
- (4) Three
- **120.** Given below is the diagrammatic representation of one of the categories of small molecular weight organic compounds in the living tissues. Identify the **category** shown and the one blank component "X" in it.

	Category	Component
(1)	Cholesterol	Guanin
(2)	Amino acid	$\mathrm{NH}_{\!\scriptscriptstyle 2}$
(3)	Nucleotide	Adenine
(4)	Nucleoside	Uracil

- 121. Which one of the following microbes forms symbiotic association with plants and helps them in their nutrition
 - (1) Azotobacter
- (2) Aspergillus
- (3) Glomus
- (4) Trichoderma
- 122. The extinct human who lived 1,00,000 to 40,000 years ago, in Europe, Asia and parts of Africa, With short stature, heavy eyebrows, retreating fore haeds, large jaws with heavy teeth, stocky bodies, a lumbering gait and stooped posture was
 - (1) Hamo habilis

(2) Neanderthal human

(3) Cro-magnan humans

(4) Ramapithecus

123.	If one strand of DNA has the nitrogenous base sequence at ATCTG, what would be the complementary RNA				
	strand sequence				
	(1) TTAGU	(2) UAGAC	(3) AACTG	(4) ATCGU	
124.		• .	the examples of those the cor inside it (Mostly in the	at can easily pass through the cell nucleus)	
	(1) Insulin, glucagon		(2) Thyroxin, insulin		
	(3) Somatostain, oxytoo	cin	(4) Cortisol, testosteron	e	
125.	Nuclear mebrane is abs	sent in			
	(1) Penicillium	(2) Agaricus	(3) Volvox	(4) Nostoc	
126.	Which one is the most	abundant protein in the a	nimal world		
	(1) Trypsin	(2) Hemoglobin	(3) Collagen	(4) Insulin	
127.	Which one of the follow (1) Diplontic life cycle	ing is common to multice	llular fungi, filamentous al (2) Members of kingdon	gae and protonema of mosses	
	(3) Mode of Nutrition		(4) Multiplication by frag		
128.	group	· · · · · ·	sms is correctly assigned same kingdom as that of	d ot its or their named taxonomic	
	(2) Lichen is a composite organism formed form the symbiotic association of an algae and a pro-				
	(4) Nostoc and Anabaena are examples of protista				
129.	·	linating agents seed settin		(4) Fig.	
	(1) Commellina	(2) Zostera	(3) Salvia	(4) Fig	

- **130.** Yeast is used in the production of
 - (1) Citric acid and lactic acid

(2) Lipase and pecinase

(3) Bread and beer

- (4) Cheese and butter
- 131. Which one out of A-D given below correctly respresents the structural formula of the basic amino acid

Α	В	С	D
NH ₂	NH ₂	CH₂OH I	NH ₂
H-C- COOH	H-C- COOH	CH ₂	н_с_ соон
CH ₂	CH ₂	CH ₂	ĊH ₂
ĊH₂ I	ОН	I NH₂	CH ₂
			ĊH₂
0			CH ₂
			NH ₂

Options

- (1) C
- (2) D
- (3)A
- (4) B

- **132.** The upright pyramid of number is absent in
 - (1) Pond
- (2) Forest
- (3) Lake
- (4) Grassland
- **133.** What is correct to say about the hormone action in humans
 - (1) Glucagon is secreted by β -cells of Islets of Langerhans and stimulates glycogenolysis
 - (2) Secretion of thymosins is stimulated with aging
 - (3) In females FSH first binds with specific receptors on ovarian cell membrane
 - (4) FSH stimulates the secretion of estrogen and progesterone
- 134. Closed vascular bundles lack
 - (1) Ground tissue

(2) conjunctive tissue

(3) Cambium

(4) Pith

- 135. Which one of the following is the correct statement for respiration in human
 - (1) Cigarette smoking may lead of inflammation of bronchi
 - (2) Neural signals from pneumotaxic centre in pons region of brain can increase the duration of inspiration
 - (3) Workers in grinding and stone breaking industries may suffer, from lung fibrosis
 - (4) About 90% of carbon dioxide (CO₂) is carried by haemoglobin as carbamino haemoglobin
- **136.** Removal of introns and joining of exons in a defined order during transcription is called:
 - (1) Looping
- (2) Inducing
- (3) Slicing
- (4) Splicing
- **137.** F₂ generation in a Mendelian cross showed that both genotypic and phenotypic ratios are same as 1 : 2 : 1. It represents a case of :
 - (1) Co-dominance
 - (2) Dihybrid cross
 - (3) Monohybrid cross with complete dominance
 - (4) Monohybrid cross with incomplete dominance
- **138.** Given below is the representation of a certain event at a particular stage of a type of cell division. Which is this stage?

- (1) Prophase I during meiosis
- (3) Prophase of Mitosis

- (2) Prophase II during meiosis
- (4) Both prophase and metaphase of mitosis
- 139. People who have migrated from the planes to an area adjoining Rohatang Pass about six months back:
 - (1) have more RBCs and their haemoglobin has a lower binding affinity to O2.
 - (2) are not physically fit to play games like football.
 - (3) suffer from altitude sickness with symptoms like nausea, fatigue, etc.
 - (4) have the usual RBC count but their haemoglobin has very high binding affinuty to O₂.

140.	For transformation, micro-particles coated with DNA to be bombarded with gene gun are made up of :					
	(1) Silver or Platinum		(2) Platinum or Zinc			
	(3) Silicon or Platinu	ım	(4) Gold or Tungster	n		
141.	A nitrogen-fixing mid	crobe associated with Az	olla in rice fields is :			
	(1) Spirulina	(2) Anabaena	(3) Frankia	(4) Tolypothrix		
142.	Select the correct statement regarding the specific disorder of muscular or skeletal system :- (1) Muscular dystrophy - age related shortening or muscles. (2) Osteoporosis - decrease in bone mass and higher chance of fractures with advancing age. (3) Myasthenia gravis - Auto immune disorder which inhibits sliding of myosin filaments (4) Gout - inflammation of joints due to extra deposition of calcium.					
143.	Water containing ca	vities in vascular bundles (2) Maize	s are found in : (3) Cycas	(4) Pinus		
144.	(1) Na ⁺ and K ⁺ ions (2) Proteins make u (3) Lipids are arrang	move across cell membra p 60 to 70% of the cell maged in a bilayer with polar		part.		
145.	Gymnosperms are a (1) Cambium (3) Thick-walled trac	·	rmatophytes because the (2) Phloem fibres (4) Xylem fibres	ey lack :		
146.	The coconut water a	and the edible part of coco (2) Endocarp	onut are equivalent to : (3) Mesocarp	(4) Embryo		
147.	Vexillary aestivation (1) Fabaceae	is characteristic of the fa	amily (3) Solanaceae	(4) Brassicaceae		
				Page # 39		

Downloaded from ©ToraLabs

- **148.** Which one of the following is an example of carrying out biological control of pests/diseases using microbes?
 - (1) Trichoderma sp. against certain plant pathogens
 - (2) Nucleopolyhedrovirus against white rust in Brassica
 - (3) Bt cotton to increase contton yield
 - (4) Lady bird beetle against aphids in mustard
- **149.** Select the correct statement from the ones given below with respect to Periplaneta americana.
 - (1) Nervous system located dorsally, consists of segmentally arranged ganglia joined by a pair of longitudinal connectives.
 - (2) Males bear a pair of short thread like anal styles.
 - (3) There are 16 very long Malpighian tubules present at the junctions of midgut and hindgut.
 - (4) Grinding of food is carried out only by the mouth parts.
- **150.** Maximum nutritional diversity is found in the group.

(1) Fungi (2) Animalia

(3) Monera (4) Plantae

CHEMISTRY

- 151. Aluminium is extracted from alumina (Al₂O₃) by electrolysis of a molten mixture of :
 - $(1) Al_2O_3 + HF + NaAlF_4$

(2) $AI_2O_3 + CaF_2 + NaAIF_4$

(3) $AI_2O_3 + Na_3AIF_6 + CaF_2$

- (4) $Al_2O_3 + KF + Na_3AlF_6$
- 152. pH of a saturated solution of $Ba(OH)_2$ is 12. The value of solubility product (K_{sp}) of $Ba(OH)_2$ is :
 - (1) 3.3×10^{-7}
- (2) 5.0×10^{-7} (3) 4.0×10^{-6}
- $(4) 5.0 \times 10^{-6}$

- 153. When Cl₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from:
 - (1) Zero to +1 and zero to -5
- (2) Zero to -1 and zero to +5

(3) Zero to -1 and zero to +3

- (4) Zero to +1 and zero to -3
- 154. Maximum number of electrons in a subshell with:

I = 3 and n = 4 is:

- (1) 14
- (2) 16
- (3) 10
- (4) 12

- **155.** Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour?
 - (1) $[Ni(NH_3)_6]^{2+}$
- (2) $[Zn(NH_3)_6]^{2+}$
- (3) $[Cr(NH_3)_6]^{3+}$
- (4) $[CO(NH_3)_6]^{3+}$

- **156.** In a reaction, A + B → Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as :
 - (1) Rate = $k[A][B]^2$
- (2) Rate = $k[A]^2[B]^2$
- (3) Rate = k[A][B]
- (4) Rate = $k[A]^2[B]$

- 157. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb's energy change (ΔG°) decreases sharply with increasing temperature ?
 - (1) C graphite $+\frac{1}{2}O_2(g) \rightarrow CO(g)$

(2) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$

- (3) Mg(s) + $\frac{1}{2}$ O₂(g) \rightarrow MgO(s)
- (4) $\frac{1}{2}$ C graphite + $\frac{1}{2}$ O₂(g) $\rightarrow \frac{1}{2}$ CO₂(g)

- **158.** Which one of the following is a mineral of iron?
 - (1) Malachite
- (2) Cassiterite
- (3) Pyrolusite
- (4) Magnetite

- **159.** In Freundlich Adsorption isotherm, the value of 1/n is:
 - (1) between 0 and 1 in all cases
- (2) between 2 and 4 in all cases
- (3) 1 in case of physical adsorption
- (4) 1 in case of chemisorption

160.	Equimolar solutions of the following substances were prepared separately. Which one of these wil record the highest pH value?			
	(1) BaCl ₂	(2) AICI ₃	(3) LiCl	(4) BeCl ₂
161.				ively for effusing through a pin hole llar mass of gas A will be: (4) 64
162.	The correct set of four (1) 5, 1, + 1/2	quantum numbers for the (2) 6, 0, 0 + 1/2	e valence elecron of rubi (3) 5, 0, 0 + 1/2	dium atom (Z=37) is : (4) 5, 1, 0 + 1/2
100	La distanción como in		19.90.15.10.00.00.11.05.00	
163.	(1) N_2H_4	g compounds, nitrogen e (2) NH ₃	(3) N ₃ H	(4) NH ₂ OH
				Page # 43

164. Predict the product in the given reaction.

165. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:

(4)
$$(CH_3)_2C \underbrace{OC_2H_5}_{OC_2H_5}$$

166.	A metal crystallizes with a face-centered cubic lattice. The edge of the unit cell is 408 pm. The diameter of the metal atom is:			
	(1) 288 pm	(2) 408 pm	(3) 144 pm	(4) 204 pm
467	Mhigh and of the falls			ain 2
167.		_	rect about enzyme cataly	SIS ?
		tly proteinous in nature		
	(2) Enzyme action is s			
	(3) Enzymes are dena	aturated by ultraviolet rays	s and at high temperature	
	(4) Enzymes are least	t reactive at optimum tem	perature	
168.	In a zero- order reaction	on for every 10° rise of te	mperature, the rate is dou	bled. If the temperature is increased
		he rate of the reaction wi		
	(1) 256 times	(2) 512 times	(3) 64 times	(4) 128 times
	(1) 230 times	(2) 512 tilles	(3) 64 times	(4) 120 times
160	Deficiency of vitemin I	D. aquada tha diagaa		
169.	•	B ₁ causes the disease		
	(1) Convulsions	(2) Beri-Beri	(3) Cheilosis	(4) Sterility
170.	Among the following of	compounds the one that i	s most reactive towards e	electrophilic nitration is :
		•) Benzene
	(1) Bolizolo / tola (2	2) 1411 0001120110 (0	(1)	, 201120110

Page # 45

171.	Buffer solutions have constant acidity and alkalinity because: (1) these give unionised acid or base on reaction with added acid or alkali. (2) acids and alkalies in these solution are shielded from attack by other ions. (3) they have large excess of H ⁺ or OH ⁻ ions (4) they have fixed value of pH.			
172.	The correct order of dec	creasing acid strength of t	richloroacetic acid (A), tri	fluoroacetic acid (B), acetic acid (C)
	and formic acid (D) is :			
	(1) B > A > D > C	(2) $B > D > C > A$	(3) $A > B > C > D$	(4) A > C > B > D
173.	(1) α-D-Galactopyrano(2) α-D-Glucopyranose(3) β-D-Glucopyranose	ring sets of monosacchar se and α -D-Glucopyrano and β -D-fructofuranose and α -D-fructofuranose and β -D-fructopyranose	se	
174.	The enthalpy of fusion of (1) 10.52 cal / (mol K) (3) 5.260 cal / (mol K)	of water is 1.435 kcal/mo	I. The molar entropy cha (2) 21.04 cal / (mol K) (4) 0.526 cal / (mol K)	nge for the melting of ice at 0°C is :
175.	Which one of the follow (1) [BCl ₃ and BrCl ₃]	ring pairs is isostructural (2) $[NH_3$ and NO_3]	(i.e. having the same shat (3) [NF $_3$ and BF $_3$]	, ,
176.	Bond order of 1.5 is sho (1) O ₂ ⁺	own by : (2) O ₂ -	(3) O ₂ ²⁻	(4) O ₂

- 177. Which one of the following is not a condensation polymer?
 - (1) Melamine
- (2) Glyptal
- (3) Dacron
- (4) Neoprene

178. In the following sequence of reactions

$$CH_{3}\text{-Br}\xrightarrow{\text{KCN}}A\xrightarrow{H_{3}O^{+}}B\xrightarrow{\text{LiAIH}_{4}}C\text{, the end product (C) is :}$$

- (1) Acetone
- (2) Methane
- (3) Acetaldehyde (4) Ethyl alcohol

- 179. Which nomenclature is not according to IUPAC system?
 - (1) Br-CH₂-CH=CH₂ , 1-Bromo-prop-2-ene

(2)
$$\rm CH_3$$
 – $\rm CH_2$ – $\rm CH_2$ – $\rm CHCH_3$, 4–Bromo, 2, 4–di–methylhexane Br $\rm CH_3$

- (3) CH_3 –CH–CH– CH_2 – CH_3 , 2–Methyl–3–phenylpentane CH_3
- (4) $CH_3 C CH_2 CH_2 CH_2COOH$ 5-oxohexanoic acid \square

- 180. The number of octahedral void(s) per atom present in a cubic close-packed structure is :
 - (1) 1
- (2) 3
- (3)2

(4) 4

181.	In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous with :			ed by the reduction of cuprous oxide
	(1) Copper (I) sulphide	e (Cu ₂ S)	(2) Sulphur dioxide (SC	O ₂)
	(3) Iron sulphide (FeS)		(4) Carbon monoxide ((CO)
182.	Identify the alloy conta	ining a non-metal as a c	constituent in it. (3) Bell metal	(4) Bronze
	(1) IIIvai	(2) 00001	(o) Bell Metal	(4) BIOTIZE
183.	•	n chlorate, oxalic acid ar	•	d. During the reaction which element
	(1) S	(2) H	(3) CI	(4) C
404				
184.	Which one of the alkal (1) Rb	i metals, forms only, the (2) K	normal oxide, M ₂ O on he (3) Li	ating in air ? (4) Na
185.	The ease of adsorption (1) Li ⁺ < K ⁺ < Na ⁺ < Rb		metal ions on an ion-excha (2) Rb ⁺ < K ⁺ < Na ⁺ < Li	ange resins follows the order :
	(3) K ⁺ < Na ⁺ < Rb ⁺ < Li		(4) Na+ < Li+ < K+ < Rb	
186.		•	ng photochemical smog is photochemical smog forr	
	(2) Photochemical smog is an oxidising agent in character(3) Photochemical smog is formed through photochemical reaction involving solar energy.			
	(4) Photochemical smog does not cause irritation in eyes and throat.			
				n // 40
	•			Page # 48

187.	CH ₃ CHO and C ₆ H ₅ CH ₂ C	CHO can be dist	inguished chemically by:			
	(1) Benedict test		(2) lodoform test			
	(3) Tollen's reagent test		(4) Fehling solution test			
400	Which of the otetown out	a ia makkuwa Q				
188.	Which of the statements		Or O calcution a maille calle	unia abaamad		
	-	-	Cr ₂ O ₇ solution, a milky color	ur is observed		
	 (2) Na₂Cr₂O₇ is preferred over K₂Cr₂O₇ in volumetric analysis (3) K₂Cr₂O₇ solution in acidic medium is orange 					
	'			7		
	(4) $K_2 Gr_2 G_7$ solution bed	comes yellow on	increasing the pH beyond 7			
189.	Standard enthalpy of vap	ourisation $\Delta_{\scriptscriptstyle{vap}}^{}$ $H^{\scriptscriptstyle{Q}}$	ofor water at 100°C is 40.66 k	≾J mol⁻¹. The internal energy of vaporisation		
	of water at 100°C (in kJ	mol⁻¹) is :				
	(1) + 37.56	(2) – 43.76	(3) + 43.76	(4) + 40.66		
	(Assume water vapour	` '	, ,	. ,		
	(ricounio maior rapour	io portavo into al	riddai gad).			
190.	Identify the wrong state	ement in the follo	owing :			
			•	ne cation, smaller is the ionic radius.		
		-		the anion, larger is the ionic radius.		
	• •		•	•		
	(3) Atomic radius of the elements increases as one moves down the first group of the periodic table.(4) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the period of the elements decreases.					
	periodic table.					
	•					
191.	Which of the following s	statements is not	t valid for oxoacids of phosp	ohorus?		
	(1) Orthophosphoric aci	id is used in the	manufacture of triple superp	phosphate		
	(2) Hypophosphorous a	cid is a diprotic	acid			
	(3) All oxoacids contain	tetrahedral four	coordinated phosphorus			
	(4) All oxoacids contain	atleast one P=C	unit and one P-OH group			

Page # 49

- **192.** The protecting power of lyophilic colloidal sol is expressed in terms of :
 - (1) Coagulation value

- (2) Gold number
- (3) Critical miscelle concentration
- (4) Oxidation number
- **193.** Sulphur trioxide can be obtained by which of the following reaction:
 - (1) CaSO₄ + C $\xrightarrow{\Delta}$

(2) Fe₂ (SO₄)₃ $\xrightarrow{\Delta}$

(3) S + $H_2SO_4 \xrightarrow{\Delta}$

- (4) $H_2SO_4 + PCI_5 \xrightarrow{\Delta}$
- **194.** P_A and P_B are the vapour pressure of pure liquid components, A and B, respectively of an ideal binary solution.

If X_A represents the mole fraction of component A, the total pressure of the solution will be.

(1) $P_A + X_A (P_B - P_A)$

(2) $P_A + X_A (P_A - P_B)$

 $(3) P_{B} + X_{A} (P_{B} - P_{A})$

(4) $P_B + X_A (P_A - P_B)$

- **195.** Which of the following acids does not exhibit optical isomerism?
 - (1) Maleic acid

(2) α -amino acids

(3) Lactic acid

(4) Tartaric acid

- 196. Which of the following species contains three bond pairs and one lone pair around the central atom?
 - (1) H₂O
- (2) BF₃
- (3) NH₂-
- (4) PCI₃

- Limiting molar conductivity of NH_4OH (i.e. $\Lambda_m(NH_4OH)$) is equal to : 197.

 - 0 0 0 0 0 0 0 (3) Λ_m (NH,OH) + Λ_m (NH,CI) Λ_m (HCI) (4) Λ_m (NH,CI) + Λ_m (NaOH) Λ_m (NaCI)
- 198. The pair of species with the same bond order is :
 - (1) O₂²⁻, B₂
- (2) O₂+, NO+
- (3) NO, CO
- $(4) N_2, O_2$

- 199. Which of the following statements is false?
 - (1) Artificial silk is derived from cellulose.
 - (2) Nylon-66 is an example of elastomer.
 - (3) The repeat unit in natural rubber is isoprene.
 - (4) Both starch and cellulose are polymers of glucose.
- In the following reaction : $H_3C-C-CH=CH_2 \xrightarrow{H_2O/H^+} A$ Major Product + B

 CH₃ 200.

The major product is: