M1F Foundations of Analysis, Problem Sheet 1

- 1. (*)Which of the following statements involving an integer x are true and which are false? Just write T or F, and perhaps also one remark about why you think this is the answer.
 - (a) $x^2 3x + 2 = 0 \Rightarrow x = 1$.
- (d) $x^2 3x + 2 = 0 \iff x = 1 \text{ or } x = 2.$

(b) $x^2 - 3x + 2 = 0 \Leftarrow x = 1$.

- (e) $x^2 3x + 2 = 0 \Rightarrow x = 1 \text{ or } x = 2 \text{ or } x = 3.$
- (c) $x^2 3x + 2 = 0 \iff x = 1$.
- (f) $x^2 3x + 2 = 0 \Leftarrow x = 1$ or x = 2 or x = 3.
- 2. Suppose P, Q and R are mathematical statements (so they are either true or false). Let's say we know that if Q is true then P is true, and that if Q is false then R is false. Does R imply P? Write down either a proof, or a counterexample.
- 3. (*)Say P is true, Q is false, R is false and S is true. Is $(P \Rightarrow Q) \Leftarrow (R \Rightarrow S)$ true or false?
- 4. Say P, Q and R are true/false mathematical statements, and we know the following:
 - (a) $P \Rightarrow (Q \vee R)$,
 - (b) $\neg Q \Rightarrow (R \vee \neg P)$
 - (c) $(Q \wedge R) \Rightarrow \neg P$.

Can we deduce anything about P, Q or R individually? For example, is R definitely false? Is P definitely true?

- 5. Let A be the set $\{1, 2, 3, 4, 5\}$. Which of the following statements are true and which are false? (just write T or F).
 - (a) $1 \in A$.

(e) $\{1, 2, 1\} \subseteq A$.

(b) $\{1\} \in A$.

(f) $\{1,1\} \in A$.

(c) $\{1\} \subseteq A$.

(g) $A \in A$.

(d) $\{1, 2\} \subseteq A$.

- (h) $A \supseteq A$.
- 6. Now let A be the slightly weirder set $\{1, 2, \{1, 2\}\}$ and let B be the even weirder set $\{1, 2, A\}$. Which of the following statements are true and which are false? (again just write T or F).
 - (a) $1 \in A$.

(e) $1 \in B$.

(b) $\{1\} \in A$.

(f) $\{1\} \in B$.

(c) $\{1, 2\} \in A$.

(g) $(\{1,2\} \in B) \Rightarrow (1 \in A)$.

(d) $\{1, 2\} \subseteq A$.

- (h) $(\{1,2\} \subseteq B) \lor (1 \not\in A)$.
- 7. Set $A = \{x \in \mathbf{R} : x^2 < 3\}$, $B = \{x \in \mathbf{Z} : x^2 < 3\}$ and $C = \{x \in \mathbf{R} : x^3 < 3\}$. For each statement below, either prove it or disprove it! Be careful with your logic and your exposition.
 - (a) $\frac{1}{2} \in A \cap B$.

(d) $B \subseteq C$.

(b) $\frac{1}{2} \in A \cup B$.

(e) $C \subseteq A \cup B$.

(c) $A \subseteq C$.

(f) $(A \cap B) \cup C = (A \cup B) \cap C$