Nebenbedingungen in der Personensuche im Internet

Constraints in Web People Search

Johannes Kiesel

Bauhaus-Universität Weimar

23. April 2012

Nebenbedingungen in der Personensuche im Internet

Personensuche im Internet

Einführung Aktuelle Systeme Vorgehensweise

Nebenbedingungen durch Personenattribute

Kardinalität von Personenattributen Generierung von Nebenbedingungen

Experimente & Ergebnisse

Forschungsfragen Methodik Ergebnisse

Ausblick

Aktuelle Systeme

Vorgehensweise

Vorgehensweise

Vorgehensweise

Kardinalität von Personenattributen

Die verwendeten Personenattribute

E-Mail	Beruf
<i>n</i> : 1	n : m
	Geburtstag
1:1	1 : <i>n</i>

Die verwendeten Personenattribute

2. Vorname Schule E-Mail Beruf Zugehörigkeit Nationalität n:1 n : m Geburtstag Geburtsort 1:1 1 : *n*

Die verwendeten Personenattribute

Abgleich von Attributwerten

Methoden:

- Exakter Abgleich
- Weicher Abgleich

Addition der Nebenbedingungen

Wünschenswerte Eigenschaften:

- 1 Verstärkung
- 2 Abschwächung
- 3 Neutrale Bedingungen
- 4 Inverse Bedingungen
- 5 Assoziativität und Kommutativität
- 6 Typ-Gleichheit
- 7 Abgeschlossenheit
- 8 Asymptotische Grenzen
- 9 Widersprüchliche Bedingungen

Addition der Nebenbedingungen (forts.)

▶ Verstärkung: $s_3 \ge \max(s_1, s_2)$

- Abschwächung:
- $s_3 \leq s_1$ wenn $s_1 > s_2$
- ▶ Inverse Bedingungen: $s_3 = 0$ wenn $s_1 = s_2$

Addition der Nebenbedingungen (forts.)

▶ Verstärkung: $s_3 \ge \max(s_1, s_2)$

Abschwächung:

- $s_3 \leq s_1$ wenn $s_1 > s_2$
- ▶ Inverse Bedingungen: $s_3 = 0$ wenn $s_1 = s_2$

Methoden:

- Maximum
- Multiplikation

Zusätzlich:

Gewichtung der Attribute

Transitivität und Konflikte

- 1. Anwendung eines Schwellwertes
- 2. Konfliktbehebung:
 - ▶ Übernahme der Must-links
 - Schwellwerterhöhung

Transitivität und Konflikte

- 1. Anwendung eines Schwellwertes
- 2. Konfliktbehebung:
 - ▶ Übernahme der Must-links
 - Schwellwerterhöhung

Transitivität und Konflikte

- 1. Anwendung eines Schwellwertes
- 2. Konfliktbehebung:
 - ▶ Übernahme der Must-links
 - Schwellwerterhöhung

Zusammenfassung: Generierung und Anwendung von Nebenbedingungen

- 1. Abgleich von Attributwerten
 - Exakter Abgleich
 - Weicher Abgleich
- 2. Addition von Nebenbedingungen
 - Maximum
 - Multiplikation
- Konfliktbehebung
 - Übernahme der Must-links
 - Schwellwerterhöhung
- 4. Gruppierung (Clustering)
 - ► Single Pass Clusterer
 - Hierarchischer Agglomerativer Clusterer (Single Link)

Forschungsfragen

- Wie präzise sind die generierten Nebenbedingungen?
- Wie hilfreich sind Nebenbedingungen durch einzelne Personenattribute bei der Personensuche?
- Ist es vorteilhaft mehrere Personenattribute zur Generierung von Nebenbedingungen zu nutzen?
- Kann die Qualität des Ergebnisses durch eine Gewichtung der Personenattribute erhöht werden?
- Wie verändert sich die Qualität durch die Nutzung von algorithmisch extrahierten Personenattributen?

Verwendeter Korpus: WePS-2

- ▶ 30 Anfragen ("Vorname Nachname") an Yahoo!
- Je 10 Namen von 3 verschiedenen Quellen
- Manuelle Annotation (Referent, Attributewerte) und Verwerfung der erhaltenen Dokumente

	D		R	
Teil des Korpus	TN	$\mu_{\sf tn}$	TN	$\mu_{\sf tn}$
Englische Wikipedia ACL'08 1990 US Zensus	940 816 802	94,0 81,6 80,2		10,7 14,2 30,3
Gesamter Korpus	2558	85,3	552	18,4

- TN: Wert in Bezug auf den Korpus ("Korpusweit")
- μ_{tn}: Durchschnittlicher Wert für die Dokumente einzelner Anfragen ("Problemweit")

Verwendeter Korpus: WePS-2 (Personenattribute)

		Werte per Referent		Referenten per Wert	
Attribut	$\frac{ v }{ D }$	TN	$\mu_{\sf tn}$	TN	$\mu_{\sf tn}$
Beruf	1,07	4,42	9,60	1,44	1,04
Zugehörigkeit	1,04	4,92	8,36	1,03	1,00
Schule	0,17	2,24	2,81	1,10	1,01
Geburtsort	0,10	1,69	2,44	1,05	1,00
Geburtstag	0,10	1,12	1,11	2,22	1,05
2. Vorname	0,09	1,06	1,02	1,87	1,07
Nationalität	0,08	1,30	1,18	1,30	1,00
E-Mail	0,07	1,29	1,03	1,01	1,01

Evaluation des Clusterings: BCubed $F_{\alpha=0,5}$ -Measure

Homogenität

Vollständigkeit

Auswirkungen der Nebenbedingungen

Gewichtung der Personenattribute

Algorithmisch extrahierte Personenattribute

Zusammenfassung

- Anwendung von Constrained Clustering in der Personensuche im Internet
- Verwendung von unsicheren Informationen von verschiedenen Personenattributen
- Vorschlag eines generischen Systems zur Generierung von Nebenbedingungen

Verfahren	$F_{\alpha=0,5}$
PolyUHK	0,82
Thesis UVA ITC-UT	0,81 0,81 0,81
XMEDIA	0,72
UCI	0,71

Ausblick

- Anwendung der gewichteten Nebenbedingungen zur Veränderung der Dokumentähnlichkeit
- Testen verschiedener Methoden zur automatischen Bestimmung von Schwellwerten
- Genauere Analyse der verschiedenen Kombinationen von Personenattributen

Ausblick

- Anwendung der gewichteten Nebenbedingungen zur Veränderung der Dokumentähnlichkeit
- ► Testen verschiedener Methoden zur automatischen Bestimmung von Schwellwerten
- Genauere Analyse der verschiedenen Kombinationen von Personenattributen

Vielen Dank für Ihre Aufmerksamkeit

Referenten per Wert/Werte per Referent

Referenten per Wert/Werte per Referent

Addition von Nebenbedingungen

Addition von Nebenbedingungen

Addition von Nebenbedingungen

BCubed Precision und Recall

Einordnung in den WePS-2 Workshop

Verfahren	$\alpha = 0,5$	$\alpha = 0, 2$	P	R
PolyUHK	0,82	0,80	0,87	0,79
<i>Thesis</i> UVA ITC-UT	0,81 0,81 0,81	0,84 0,80 0,76	0,79 0,85 0,93	0,85 0,80 0,73
XMEDIA	0,72	0,68	0,82	0,66
UCI	0,71	0,77	0,66	0,84