MEC4204 Final Year Project

Design and Construction of an Automated Multipurpose Distiller

Supervised by: Mr. Gerald KISEKKA

Co-Supervised by: Mr. Joseph NDEMERE ARINEITWE

Presented by: KAYEMBA Augustine

Student No: **1800725469**

Introduction

- Steam distillation is the widely used method for the extraction of essential oil
- Currently, only few industries produce bioethanol fuel largely because of the cost of importing a sophisticated distiller

Problem Statement

The seasonal fluctuating markets of both ethanol and essential oil demands

Current small scale steam distillation technologies are very laborious, have very high startup costs

Main Objective

To design and construct a cost-effective multipurpose automated distiller technology of essential oils and ethanol

Specific Objectives

Scope

Design, analysis, validation

Hardware controller software

Optimal automation and *hybridization*

Construction of the *feasibility incremental* prototype

Justification

The inflexibility of the current small scale steam distillation technologies with the nature of the distillation process

Current small scale steam distillation technologies are very energy-inefficient, laborious and have very high startup costs

Methodology

Specific Objective Method **Determining the design specifications** Benchmarking Literature review, and **Analytical machine design** Developing of a conceptual and detailed designs **Axiomatic Design Theory (ADT)** of a less laborious distiller Functional Requirements (FRs), Design Solutions (DSs), and Performance Metrics (PMs) Designing the hardware controller software for flowcharts, **Program** Pseudo -code algorithms and IDEs optimal energy-efficiency distillation Construction and testing of the feasibility **Incremental prototyping, field testing** incremental prototype

Limitations

- Scarcity of open-source technical content
- Scarcity of firsthand experimental data
- ► Theoretical nature of the computeraided Design simulations

Product Specifications

Part	Parameter	Designed Value	Marginal Value	
Still	Threshold still volume	200Ltrs	226Ltrs	
Condenser	Distillate Temperature	30°C	27°C	
Heater primer	Distillate yield loss	1g/s	1.1g/s	
Holistic Device	Cost Price	UGX 3,000,000	UGX 1,500,000	
Process controller	Maximum controller loop overshoot error	10%	5%	
Process vessel	Energy efficiency rate per distillate volume	7.2kJ/Ltr	6kJ/Ltr	

Product Design | Hardware Design

Product Design | Hardware Design Validation

Product Design | Hardware Controller Circuitry Design

Product Design | Hardware Controller Software Design

Product Design | Hardware Controller Software Design Validation

Results

Results | Implementation Timeline

	Week1	Week2	Week3	Week4	Week5	Week6	Week7	Week8
Activity	Jun-22			Jul-22		Aug-22		
Materials Procurement and								
Trade-offs								
Structural Frame Fabrication								
Mounting of Sensors and								
Actuators onto the Machine								
Hardware Control Circuitry								
Redesign and Assembly								
Hardware Control Program								
Design and Testing								
Holistic Hardware Functional								
Tests and Calibrations								
Final Finishing and Touches								
rillai rillisilliig aliu Touches								
Field Tests								

Results Summary

Results Summary

- ▶ 800% reduction from the benchmarked distillate production rate
- ► 118% reduction in the maximum distillate temperature
- ► 1200% reduction in the distillate yield loss
- > 33.3% reduction in the cost price

Thank You

Q&A