Modern Fizika Laboratórium Fizika Bsc. **Molekulamodellezés**

Készítette:

Albert Andrea

2. A MOLEKULÁK VIZSGÁLATA Albert Andrea

1. A mérés rövid leírása

A mérés soran az Avogadro program által nyújtott molekulaszimulációs módszerekkel ismerkedtem meg és segítségével következtettem a vizsgálandó molekulák tulajdonságaira.

2. A molekulák vizsgálata

2.1. Benzol vizsgálata

Első feladatként egy benzolt kellett kirajzoljak a programmal. Ezt úgy tettem meg, hogy a ceruzával a megfelelő mennyiségű C atom beszúrása után beállítottam az egyes szomszédok között lévő kötések mefelelő számát. Majd előoptimálás után a következőt kaptam:

A View menü Properties/Molecule Properties menüpontban megnéztem a molekula tulajdonságait:

Ezek tábálzatba foglalva:

IUPAC Molekula név	Benzol
Molekulatömeg (g/mol)	78.112
Kémiai formula	C_6H_6
Enegia (eV)	0.4588263
Dipólmomentum	0

1. táblázat

Látszik, hogy sikeresen megkonstruáltam a benzolomat ugyanis a program is ezt adja vissza.

Vonalzóval lemértem a különböző szögeket meg kötéshosszakat (geometriai paraméterek), meg a programmal megnéztem, hogy hányad rendő kötésekről van szó:

Kötés	Típusa	Hossza [Å]
С-Н	1.rendű	1.39904
C-C	2.rendű	1.08234

2. táblázat

Továbbá a kötések szöge 120° volt.

2.2. Z-mátrix fogalmának megismerése

Itt a $C_2H_2^{2-}$ molekulaionra kellett meghatározzam a Z-mátrixot. Ehhez először felrajzoltam azt:

٤

Ezután a kért módon, a vonalzóval megszámoztam az atomokat, majd az Extensions/Gaussian menüponra menve megkaptam a Z-mátrixot (Format: Z-matrix (compact)):

$$Z \to \begin{matrix} C \\ C & 1 & 1.32881 \\ H & 2 & 1.08437 & 1 & 120.00755 \\ H & 1 & 1.08437 & 2 & 120.00944 & 3 & 180.00000 \end{matrix}$$

Az Avogadroval kapott mátrix pedig (amikor a számozást rábíztam):

Láthatóan a program is ugyanúgy számozott mint én.

A programmal megkapott jellemzők:

IUPAC Molekula név	Etén
Molekulatömeg (g/mol)	28.053
Kémiai formula	C_2H_4
Enegia (eV)	-0.001606462
Dipólmomentum	0.0

Kötés	Típusa	Hossza [Å]
С-Н	1.rendű	1.08437
C-C	2.rendű	1.32880

A kötések szöge pedig: 120°.

2.3. A CO molekula elektronszerkezetének vizsgálata

A kapott CO molekula a következőképpen nézett ki:

Ki kellett rajzolnom a HOMO-2, HOMO-1, HOMO, LUMO molekulapályákat.

2.4. Izotópeektus vizsgálata szimulált IR spektrumokkal

2.4.1. C6H6 molekula

A molekula jellemzői:

IUPAC Molekula név	-
Molekulatömeg (g/mol)	78.112
Kémiai formula	C_6H_6
Enegia (eV)	-6320.6945265
Dipólmomentum	0.009

Kötés	Típusa	Hossza [Å]
Н-С	1.rendű	1.08973
C-C	1.rendű	1.41890
C-C	2.rendű	1.34321
C-C	3.rendű	1.21771
С-Н	1.rendű	1.08494

A szimulált spektrumok grakonjának elkészítéséhez (Lorentz-görbékkel) az infraaktív rezgési módusokra kellett elvégeznem a következő összegzést:

$$f(\nu) = \sum_{i} \frac{A_i}{(\nu - \nu_i)^2 + \tau^2/4}$$

ahol ν_i a rezgési módusok frekvenciája, A_i pedig az intenzitása. Ezeket a program megadta nekem

A Lorenz-görbéket a spektumok grafikonjához illesztve a következőt kaptam:

Az Avogadroval kapott spektrum pedig:

A két spektrumban a csúcsok nagyjából ugyanott helyezkednek el.

2.4.2. C6H6 deuterizált

A molekula jellemzői:

IUPAC Molekula név	hexa-1,5-dien-3-yne
Molekulatömeg (g/mol)	78.112
Kémiai formula	C_6H_6
Enegia (eV)	-6320.6945265
Dipólmomentum	0.009

Kötés	Típusa	Hossza [Å]
Н-С	1.rendű	1.08973
C-C	1.rendű	1.41890
C-C	2.rendű	1.34321
C-C	3.rendű	1.21771
С-Н	1.rendű	1.08494

Itt Lorenz-görbéket a spektumok grafikonjához illesztve a következőt kaptam:

Az Avogadroval kapott spektrum pedig:

Itt is a két spektrumban a csúcsok szemre ugyanott helyezkednek el.

2.5. Dipólmomentum

Ennek meghatározására először a C6H6 molekulát használtam fel. Az irányának meghatározásához a Dipole opcióban az elektronsűrűség ábrázolását választottam. A követkzőt kaptam:

Mivel ezzel nem kaptam meg a dipolmomentum vektort a CO molekulára is megnéztem ugyanezt:

Itt már megfigyelhető a dipolmomentum és annak iránya.