Зоопарк распределений. Равномерное распределение на отрезке $[\mu - \Gamma, \mu + \Gamma]$ характеризуется функцией плотности вероятности $p(x) = 1/2\Gamma$ при $|x - \mu| \le \Gamma$.

Треугольное распределение на отрезке $[\mu - \Gamma, \mu + \Gamma]$ характеризуется функцией плотности $p(x) = \max(1/\Gamma - |x - \mu|/\Gamma^2, 0)$.

Экспоненциальное распределение с параметром $\mu > 0$ характеризуется функцией плотности вероятности $p(x) = \frac{1}{\mu} \mathrm{e}^{-x/\mu}$ при x > 0.

Pacnpedenehue Komu с параметрами (μ, Γ) характеризуется функцией плотности вероятности

$$p(x) = \frac{\Gamma}{\pi} \frac{1}{\Gamma^2 + (x - \mu)^2}.$$

Hopмальное pacnpeделение с параметрами (μ, σ) характеризуется функцией плотности вероятности

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}.$$

Совместное распределение пары случайных величин. Совместное распределение пары случайных величин X, Y характеризуется совместной плотностью вероятности $p_{X,Y}(x,y)$ на \mathbb{R}^2 . Если случайные величины X, Y независимы, то их совместная плотность распадается в произведение плотностей: $p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$.

При взаимно однозначном преобразовании случайных величин $X,Y\mapsto U,V,$ задаваемом функциями $U=f(X,Y),\ V=g(X,Y),$ плотность вероятности преобразуется по формулам замены переменной

$$d P = p_{U,V}(u,v) du dv = \underbrace{p_{U,V}(f(x,y),g(x,y)) \left| \frac{\partial (f,g)}{\partial (x,y)} \right|}_{p_{X,Y}(x,y)} dx dy = p_{X,Y}(x,y) dx dy.$$

Если преобразование не является взаимно однозначным, может потребоваться суммирование значений плотности по разным прообразам $(x_i, y_u i)$ точки (u, v). Аналогично выполняется замена переменной и в одномерном случае.

- **IV.1.** Найдите математическое ожидание, дисперсию и характеристическую функцию распределения случайной величины, равномерно распределенной на $[\mu \Gamma, \mu + \Gamma]$.
- **IV.2.** (а) Случайная величина X равномерно распределена на [0,1], а $Y=-\ln X$. Найдите функцию плотности вероятности случайной величины Y. (б) Тот же вопрос для случайной величины, распределенной по нормальному закону $p(x)=\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-x^2/2\sigma^2}$, если $Y=X^2$.
- **IV.3.** Найдите плотность совместного распределения компонент вектора (X,Y), где $X=R\cos\Phi$, $Y=R\sin\Phi$, если случайные величины R и Φ независимы, причем R распределена на [0,1] с плотностью p(r)=2r, а Φ равномерно распределена на $[0,2\pi]$.
- **IV.4.** Найдите плотность совместного распределения компонент вектора (X,Y), где $X=R\cos\Phi$, $Y=R\sin\Phi$, если случайные величины R и Φ независимы, причем $R=\sqrt{-2\ln Z},~Z$ равномерно распределена на [0,1], а Φ по-прежнему равномерно распределена на $[0,2\pi]$.
- **IV.5.** Найдите функцию плотности вероятности суммы двух случайных величин X, Y, обладающих заданной совместной плотностью распределения $p_{X,Y}(x,y)$. Рассмотрите частный случай совместного распределения двух случайных величин, распределенных по Коши с параметрами $(0,\Gamma)$.
- **IV.6.** Найдите функцию плотности вероятности, математическое ожидание, дисперсию и характеристическую функцию распределения суммы двух независимых случайных величин, распределеных равномерно на $[\mu \Gamma, \mu + \Gamma]$.
- **IV.7.** По какому закону распределена сумма двух независимых величин X и Y, распределенных экспоненциально c параметрами λ и μ соответственно?
- **IV.8.** Случайные величины X и Y независимы, а их функции плотности вероятности суть $p(\cdot)$ и $q(\cdot)$. Выведите аналоги формулы свертки для функций плотности вероятности (а) произведения XY; (б) частного X/Y.