PHYS 410 - HOMEWORK 2

QUESTION 1

The Lagrange interpolating polynomial of fix) using 7 points is $L(x) = \sum_{m=-3}^{3} f(x_m) l_m(x), \quad x_m = x_0 + mh,$

where $l_m(x) = \prod \frac{x - x_k}{x_m - x_k}$. We want to evaluate $f(x_0) \approx L(x_0)$

The derivatives $l_m(x)$ are a sum of many products, but only the term where $(x-x_0)$ was differentiated survives when evaluated at $x=x_0$. Therefore, we can write

 $f'(x_0) \simeq L'(x_0) = \int_{M=-3}^{3} f(x_m) l_m(x_0), \text{ with}$

$$\lim_{X_{m}-X_{0}} \left(X_{0}\right) = \frac{1}{X_{m}-X_{0}} \frac{X_{0}-X_{K}}{X_{m}-X_{K}} = \frac{1}{mh} \frac{R}{k+o,m} \frac{R}{R-m}$$

which is straightforward to evaluate. The weights are thus

The case m=0 has to be considered separately, but it is easy to show that $l'_{o}(x_{o})=0$ using the h->-h symmetry about x_{o} .

To topproximate the optimal value of h by hand, we need to find an upper bound on the absolute error comprising both truncation and roundoff errors. Now, Taylor expanding the fix+mh) for h small or, alternatively, taking the Lagrange remainder $R'(x_0) = \prod_{m\neq 0} (x_0 - x_m) \frac{1}{7}(\xi) / 7!$, we have

$$f'(x_0) = L'(x_0) - \frac{f^{(7)}(\xi)h^6}{140}$$
, for some ξ .

truncation error of 7-point centered difference Using a line above a variable to denote its floating-point representation as calculated by a computer, we express the absolute error made by using L'(xo) as

=
$$\max_{0 \le x \le 1} |L'(x) - L'(x) - \frac{f^{(1)}(\xi)}{140} |hb|$$

$$\leq \max_{0 \leq x \leq 1} \left[\frac{|L'(x) - L'(x)|}{140} + \frac{|f^{(n)}(\xi)|}{140} \right]$$

roundoff error truncation error.

Roundoff error: Since it is the function evaluations themselves which suffer from roundoff errors, we write $\overline{F}(x) = F(x) + E(x)$, such that $|E(x)| \le E = M.P. \forall x \in [0,1]$.

Thus $\max_{0 \le x \le 1} |L'(x) - \overline{L}'(x)| \le \frac{11\varepsilon}{6h}$.

<u>Iruncation error</u>: For $f(x) = \sin(x^2)$, one can show that $\max |f^{(1)}(x)| \le 2182$.

Therefore, $E(h) \leq \frac{11E}{6h} + \frac{2182}{140}h^6$, and the optimal

value of h is such that $\frac{dE}{dh}(h^*)=0 \Rightarrow h^* = 4.28 \times 10^{-3}$,

which is very close to the value found numerically hour = 3,51x103.