RANGKAIAN LISTRIK II EL1207

Nita Indriani Pertiwi, S.T.,M.T. Thorikul Huda, S.T.,M.T.

PROGRAM STUDI TEKNIK ELEKTRO

SILABUS

Konsep dan Penerapan Fasor pada Rangkaian

Fungsi periodik, bilangan kompleks, karakteristik arus dan tegangan sinusoidal bentuk kompleks , impedansi kompleks, diagram fasor

Analisis Rangkaian AC pada Kondisi Steady State

Hukum ohm, Hukum Kirchhoff I dan II, Analisis Node, Analisis Mesh, Teorema Superposisi, Teorema Thevenin, Teorema Norton

Analisis Daya pada Rangkaian AC

Daya Sesaat, Daya Rata-rata, Daya Kompleks, Segitiga Daya, Resonansi

SILABUS

Konsep dan Penerapan Fasor pada Rangkaian

Fungsi periodik, bilangan kompleks, karakteristik arus dan tegangan sinusoidal bentuk kompleks , impedansi kompleks, diagram fasor

Analisis Rangkaian AC pada Kondisi Steady State

Hukum ohm, Hukum Kirchhoff I dan II, Analisis Node, Analisis Mesh, Teorema Superposisi, Teorema Thevenin, Teorema Norton

Analisis Daya pada Rangkaian AC

Daya Sesaat, Daya Rata-rata, Daya Kompleks, Segitiga Daya, Resonansi

SILABUS

Rangkaian Kopling

Induktansi sendiri, Induktansi bersama, Tanda dot (titik), Aturan tanda dot, Koefisien kopling (K), Analisis rangkaian kopling magnetik, Transformator ideal

Frekuensi Kompleks dan Fungsi Transfer

Sinyal sinusoidal teredam, fasor frekuensi kompleks, impedansi dan admitansi frekuensi kompleks, Fungsi transfer frekuensi kompleks, Pole dan zero, Diagram bode plot

Respon Frekuensi dan Resonansi

Respon frekuensi rangkaian RL,RC dan RLC, Resonansi

ASSESSMENT

 TUGAS 	35 %
---------------------------	-------------

•	KUIS	15%

TOTAL 100%

KONSEP DASAR RANGKAIAN LISTRIK

Salah satu sifat khusus dari gelombang *Alternating Current* (AC) adalah sifat periodik

Syarat fungsi periodik:

$$f(t) = f(t + nT)$$

$$n = \text{integer } 0, 1, 2, \dots$$

$$T = \text{periode} \longrightarrow T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$v(t) = V_m \sin \omega t$$

$$i(t) = I_m \sin \omega t$$

v(t): tegangan sesaat

i(t) : arus sesaat

Vm: tegangan maksimum

Im : arus maksimum

 ω : kecepatan sudut (rad/detik)

t : waktu (detik)

Penjumlahan nilai maksimum positif dan negatif dijumlahkan

Nilai puncak ke puncak (*peak-to-peak*)

<u>Nilai Efektif</u> (<u>root mean square</u>)

Nilai tegangan/arus bolak balik (AC) yang dapat menghasilkan panas sama besar dengan yang dihasilkan tegangan/arus searah (DC)

$$I_{eff} = I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

$$V_{eff} = V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

$$I_{eff} = I_{rms} = \frac{I_m}{\sqrt{2}}$$

$$V_{eff} = V_{rms} = \frac{V_m}{\sqrt{2}}$$

Nilai Sesaat

Nilai yang berubah-ubah terhadap waktu dalam suatu periode tertentu

$$p(t) = v(t) \times i(t)$$

Nilai Rata-rata

Pada sinus murni nilai rata-rata diperoleh dari setengah periode

$$V_{rata-rata} = \frac{2V_{m}}{\pi}$$

KONVERSI SINUS - COSINUS

$$-\sin \omega t = \sin(\omega t \pm 180^{\circ})$$

$$-\cos \omega t = \cos(\omega t \pm 180^{\circ})$$

$$\mp \sin \omega t = \cos(\omega t \pm 90^{\circ})$$

$$\pm \cos \omega t = \sin(\omega t \pm 90^{\circ})$$

Contoh:

$$v_1 = V_{m_1} \cos(5t + 10^\circ)$$

= $V_{m_1} \sin(5t + 90^\circ + 10^\circ)$
= $V_{m_1} \sin(5t + 100^\circ)$

CONTOH SOAL

Sebuah generator ac menghasilkan tegangan sebesar v(t) = 120 sin 60t volt dan arus i(t) = 40 sin 60t A

Tentukan:

- a) Tegangan dan arus maksimum
- b) Sudut frekuensi
- c) Frekuensi
- d) Perioda
- e) Tegangan dan arus rata-rata
- f) Tegangan dan arus efektif
- g) Tegangan peak to peak

CONTOH SOAL

Persamaan tegangan $v(t) = 120 \sin 60t$ volt dan arus $i(t) = 40 \sin 60t$ A

a) Tegangan dan arus maksimum

$$v(t) = V_m \sin \omega t$$
 $i(t) = I_m \sin \omega t$

Dari persamaan diketahui bahwa : Vm = 120 volt dan Im = 40 A.

- b) Sudut frekuensi $\omega = 60 \text{ rad/det}$
- c) Frekuensi $\omega = 2\pi f \rightarrow f = \omega/2\pi$ dimana $\pi = 22/7$ $f = 60/((2)(22/7)) \rightarrow f = 9,55$ Hz
- d) Perioda $T = 1/f \rightarrow T = 1/9,55 = 0,105 \text{ detik}$

CONTOH SOAL

e) Tegangan dan arus rata-rata

$$I_{rata-rata} = \frac{2I_m}{\pi}$$
 $V_{rata-rata} = \frac{2V_m}{\pi}$ $V_{rata-rata} = \frac{2V_m}{\pi}$

f) Tegangan dan arus efektif

$$V_{eff} = V_m/\sqrt{2} \rightarrow V_{eff} = 120/\sqrt{2} = 84,85 \text{ Volt}$$

 $I_{eff} = I_m/\sqrt{2} \rightarrow I_{eff} = 40/\sqrt{2} = 28,28 \text{ A}$

g) Tegangan peak to peak

$$V_{pp} = 2.V_m \rightarrow V_{pp} = 2.120 = 240 \text{ Volt}$$

BILANGAN KOMPLEKS

Bilangan yang terdiri dari harga real (nyata) dan harga imajiner (khayal)

Contoh:
$$z = x + jy$$

dimana
$$j = \sqrt{-1} \ atau \ j^2 = -1$$

Bilangan kompleks bentuk polar

BILANGAN KOMPLEKS

Bentuk-bentuk bilangan kompleks:

- 1. Bentuk Kartesian / Rectanguler z = x + jy
- 2. Bentuk Polar

$$z = r \angle \theta$$

$$\dim ana: x = r\cos\theta \to r = \sqrt{x^2 + y^2}$$

$$y = r\sin\theta \to \theta = \tan^{-1}\frac{y}{x}$$

3. Bentuk Eksponensial

$$z = re^{j\theta}$$

$$\dim ana: x + jy = r\cos\theta + jr\sin\theta = r(\cos\theta + j\sin\theta) = re^{j\theta}$$

4. Bentuk Trigonometri

$$z = r(\cos\theta + j\sin\theta)$$

OPERASI BILANGAN KOMPLEKS

Konjugate bilangan kompleks : $z \rightarrow z^*$

$$z = x + jy \to z^* = x - jy$$

$$z = r\angle\theta \to z^* = r\angle - \theta$$

$$z = re^{j\theta} \to z^* = re^{-j\theta}$$

$$z = r(\cos\theta + j\sin\theta) \to z^* = r(\cos\theta - j\sin\theta)$$

Jumlah dan selisih bilangan kompleks:

$$z_{1} = x_{1} + jy_{1}$$

$$z_{2} = x_{2} + jy_{2}$$

$$z_{1} + z_{2} = x_{1} + jy_{1} + x_{2} + jy_{2} = (x_{1} + x_{2}) + j(y_{1} + y_{2})$$

$$z_{1} - z_{2} = x_{1} + jy_{1} - (x_{2} + jy_{2}) = (x_{1} + x_{2}) + j(y_{1} - y_{2})$$

BILANGAN KOMPLEKS

Penjumlahan dan Pengurangan

Bilangan komplek harus dalam bentuk sudut siku agar supaya dapat dijumlahkan (dikurangkan)

Jumlahkan (Kurangkan) bagian nyata dari setiap beilangan komplek dan jumlahkan (kurangkan) setiap bagian khayal j bilangan komplek .

Misal:

$$A = a + jb$$
 $B = c + jd$

$$A \pm B = (a \pm c) + j (b \pm d)$$

Pengalian dan Pembagian

Pengalian (pembagian) bilangan komplek lebih mudah bila keduanya dalam bentuk polar.

Kalikan (bagilah) besarnya kedua bilangan komplek dan jumlahkan sudut kedua bilangan komplek tersebut.

$$A = A_{m} e^{j\alpha} = A_{m} \angle \alpha$$

$$B = B_{m} e^{j\beta} = B_{m} \angle \beta$$

$$A \times B = (A_{m} \times B_{m}) \angle (\alpha + \beta)$$

$$\frac{A}{B} = (\frac{A_{m}}{B_{m}}) \angle (\alpha - \beta)$$

KONSEP FASOR

Fasor adalah bilangan kompleks yang merepresentasikan besaran dan fasa gelombang sinusoidal. Fasor dinyatakan dengan notasi pada domain frekuensi terdiri besaran dan fasa

Formula Euler:
$$e^{j\omega t} = \cos \omega t + j\sin \omega t = \text{Re}\left[e^{j\omega t}\right] + j\text{Im}\left[e^{j\omega t}\right]$$

 $e^{-j\omega t} = \cos \omega t - j\sin \omega t = \text{Re}\left[e^{-j\omega t}\right] - j\text{Im}\left[e^{-j\omega t}\right]$

Contoh:

 $V(t) = V_m \cos(\omega t + \theta)$ \rightarrow dalam domain waktu

Formula Euler:
$$v = R_e \left[V_m e^{j\theta} e^{j\omega t} \right] = V_m e^{j\theta} Volt$$

Notasi Fasor : $V(\omega) = V_m \angle \theta$ Volt \rightarrow dalam domain frekuensi

CONTOH

1. Ubah fasor tegangan dibawah ini menjadi domain waktu jika diketahui ω = 500 rad/s , $V = 115 \angle -45^{\circ}Volt$

Jawab:

$$v = 115\cos(500t - 45^{\circ})Volt$$

dalam gelombang sinus , $v = 115\sin(500t + 45^{\circ})Volt$

- 2. Jika ω = 2000rad/s dan t = 1 ms. Tentukan nilai sesaat dari tiap arus dibawah ini :
 - a) j10A
 - b) 20 + j10A
 - c) $20 + j(10 < 20^{\circ})A$

DIAGRAM FASOR

Jika terdapat perbedaan fasa antara tegangan dan arus sebesar θ

KARAKTERISTIK ARUS DAN TEGANGAN SIUSIODAL BENTUK KOMPLEKS

Arus Sinusoidal

elemen	i	$i = I_m \sin \omega \mathbf{t}$	$i = I_m \cos \omega \mathbf{t}$
R	$V_R = R.i$	$V_R = R.I_m \sin \omega t$	$V_R = RI_m \cos \omega t$
L	$V_L = L.\frac{di}{dt}$	$V_L = \omega . L . I_m \cos \omega t$	$V_L = \omega . L. I_m (-\sin \omega t)$
C	$V_C = \frac{1}{C} \int i dt$	$V_C = \frac{I_m}{\omega C} (-\cos \omega t)$	$V_C = \frac{I_m}{\omega C} \sin \omega t$

Tegangan Sinusoidal

elemen	V	$V = V_m \sin \omega t$	$V = V_m \cos \omega t$
R	K	R	$i_R = \frac{V_m}{R} \cos \omega t$
L	$i_L = \frac{1}{L} \int v dt$	$i_L = \frac{V_m}{\omega L} \left(-\cos \omega t \right)$	$i_L = \frac{V_m}{\omega L} \sin \omega t$
С	$i_C = C \frac{dV}{dt}$	$i_C = \omega CV_m \cos \omega t$	$i_C = \omega CV_m \left(-\sin \omega t \right)$

IMPEDANSI DAN ADMITANSI

- Impedansi adalah perbandingan fasor tegangan **V** dan fasor arus **I** pada suatu elemen kutub dua dengan adanya sinyal masukan gelombang sinusoidal dalam keadaan setimbang atau mantap atau tunak (steady state).
- Admitansi merupakan kebalikan dari Impedansi.
- Impedansi dapat dihubungkan seri atau paralel seperti halnya pada Resistansi.

IMPEDANSI DAN ADMITANSI

• Impedansi $\mathbf{Z} = \mathbf{V} / \mathbf{I} [\mathbf{Ohm}]$ $\mathbf{Z} = \mathbf{R} \pm \mathbf{j} \mathbf{X} \longrightarrow \mathbf{R}$: resistansi; X: reaktansi

• Admitansi $\mathbf{Y} = \mathbf{I} / \mathbf{V}$ [Mho] $\mathbf{Y} = 1 / \mathbf{Z}$ $\mathbf{Y} = G \pm jB \longrightarrow G$:konduktansi; B:suseptansi

RESPON ELEMEN TERHADAP GELOMBANG SINUS

Gelombang AC pada elemen R

$$i = I_m \sin \omega t$$
 A \longrightarrow $I = I_m \angle 0^\circ$ A $v_R = RI_m \sin \omega t$ Volt \longrightarrow $V_R = RI_m \angle 0^\circ$ Volt

$$Z_R = \frac{V_R}{I} = \frac{RI_m \angle 0^{\circ}}{I_m \angle 0^{\circ}} = R$$

RESPON ELEMEN TERHADAP GELOMBANG SINUS

Gelombang AC pada elemen L

$$i = I_m \sin \omega t$$
 A \longrightarrow $I = I_m \angle 0^\circ$ A

$$v_{L} = \omega L I_{m} \sin(\omega t + 90^{\circ})$$

$$v_{L} = \omega L I_{m} \cos \omega t$$
Volt $\longrightarrow V_{L} = \omega L I_{m} \angle 90^{\circ}$ Volt

$$v_L = \omega L I_m \cos \omega t$$

$$I = I_m \angle 0^\circ$$
 A

$$Z_L = \frac{V_L}{I} = \frac{\omega L I_m \angle 90^{\circ}}{I_m \angle 0^{\circ}}$$

$$Z_L = \omega L \angle 90^\circ = j\omega L$$

RESPON ELEMEN TERHADAP GELOMBANG SINUS

Gelombang AC pada elemen C

$$i = I_{m} \sin \omega t \quad A \longrightarrow I = I_{m} \angle 0^{\circ} \quad A$$

$$v_{C} = \frac{I_{m}}{\omega C} \sin(\omega t - 90^{\circ})$$

$$v_{C} = \frac{I_{m}}{\omega C} - \cos \omega t$$

$$V_{C} = \frac{I_{m}}{\omega C} - \cos \omega t$$

$$Z_{C} = \frac{I_{m}}{\omega C} \angle -90^{\circ} \quad Volt$$

$$Z_{C} = \frac{I_{m}}{\omega C} \angle -90^{\circ} = \frac{1}{j\omega C}$$

$$Z_{C} = \frac{V_{C}}{I} = \frac{\frac{I_{m}}{\omega C} \angle -90^{\circ}}{I_{m} \angle 0^{\circ}}$$

$$Z_{C} = \frac{1}{\omega C} \angle -90^{\circ} = \frac{1}{j\omega C}$$

IMPEDANSI KOMPLEKS

Rangkaian Seri RL dengan sumber AC

$$i = I_m \sin \omega t$$
 A $\longrightarrow I = I_m \angle 0^\circ$ A

Hukum Kirchhoff II:

$$\sum v = 0$$

$$v_{AC} = v_R + v_L$$

$$I_m Z_{tot} = R I_m \angle 0^\circ + \omega L I_m \angle 90^\circ$$

$$I_m Z_{tot} = R I_m + j \omega L I_m$$

$$Z_{tot} = R + j \omega L$$

IMPEDANSI KOMPLEKS

Rangkaian Seri RC dengan sumber AC

$$i = I_m \sin \omega t$$
 A $\longrightarrow I = I_m \angle 0^\circ$ A

Hukum Kirchhoff II:

$$\sum v = 0$$

$$v_{AC} = v_R + v_C$$

$$I_{m}Z_{tot} = RI_{m} \angle 0^{\circ} + \frac{I_{m}}{\omega C} \angle -90^{\circ}$$

$$I_{m}Z_{tot} = RI_{m} - \frac{jI_{m}}{\omega C}$$

$$Z_{tot} = R + \frac{1}{j\omega C}$$

IMPEDANSI KOMPLEKS

Rangkaian Seri RLC dengan sumber AC

$$i = I_m \sin \omega t$$
 A $\longrightarrow I = I_m \angle 0^\circ$ A

Hukum Kirchhoff II:

$$\sum v = 0$$

$$v_{AC} = v_R + v_L + v_C$$

$$I_{m}Z_{tot} = RI_{m}\angle 0^{\circ} + \omega LI_{m}\angle 90^{\circ} + \frac{I_{m}}{\omega C}\angle -90^{\circ}$$

$$I_{m}Z_{tot} = RI_{m} + j\omega LI_{m} - \frac{jI_{m}}{\omega C}$$

$$Z_{tot} = R + j\omega L + \frac{1}{j\omega C} = R + j\omega L - \frac{j}{\omega C}$$

$$Z_{tot} = R + j \left(\omega L - \frac{1}{\omega C} \right)$$

RANGKAIAN SERI DAN PARALEL IMPEDANSI

Rangkaian Seri

$$Z_{tot} = Z_1 + Z_2 + Z_3$$

Rangkaian Paralel

$$\frac{1}{Z_{tot}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$$

CONTOH

- 1. Tentukan nilai $Z_{\rm ek}$ jika diketahui ω = 10 x 10³ rad/s, L = 5mH, dan C = 100uF (L dan C terhubung seri)
- 2. Tentukan nilai $Z_{\rm ek}$ jika diketahui ω = 10000 rad/s, L = 5mH, dan C = 100uF (L dan C terhubung paralel)

LATIHAN SOAL

Tentukan impedansi ekivalen dari rangkaian dibawah ini jika ω = 5 rad/s

TUGAS

- 1. Tentukan beda fasa dimana v_1 leads i_1 jika v_1 = 10 cos (10t 45°) dan i_1 adalah :
 - a) 5 cos 10t

- d) $5 \cos (10t + 40^{\circ})$
- b) $5 \cos (10t 80^{\circ})$
- c) $5 \cos (10t 40^\circ)$
- 2. Hitung impedansi rangkaian di bawah ini jika : a) $\omega = 1$ rad/s; b) $\omega = 10$ rad/s; c) $\omega = 100$ rad/s;

TUGAS

3. Hitung impedansi ekivalen rangkaian di bawah ini jika : a) f = 1 Hz ; b) f = 1kHz ; c) f = 1 MHz;

