Noções básicas de arquitetura de computador Período e frequência revisão da história

1

Um sistema de processador único clássico completo

- O chipset usual é dividido nas pontes norte e sul.
 No entanto, uma separação física em dois blocos de construção não é absolutamente necessário.
- A ponte norte (host) regula os fluxos de dados entre o processador, cache e memória principal.
 Em sistemas

modernos, o AGP também é conectado lá. • A ponte PCIpara-ISA está conectada à ponte do host.

- No meio está o barramento PCI com 3 a 5 slots.
- O South Bridge cuida das interfaces que estão conectadas ao chipset e estão disponíveis no sistema do computador.
- Isso inclui EIDE e USB, bem como as interfaces serial e paralela. Dependendo da versão, o controlador de teclado e o relógio em tempo real são integrados.

5

A arquitetura von Neumann

- Controle central do computador
- Um computador consiste em **várias** unidades funcionais (unidade central de processamento, memória, unidade de entrada/saída, conexão)
- O computador não é adaptado para um único problema, mas para um máquina de propósito. Para resolver um problema, um programa é armazenado na memória ("computador universal controlado por programa") – sim, hoje isso parece tão simples...

11

IMPORTANTE

- As instruções (o programa) e os dados (valores de entrada e saída) são armazenados na mesma memória.
- A memória consiste em células de memória com um comprimento fixo, cada célula pode ser endereçada individualmente.

A arquitetura von Neumann

- Processador, unidade central (CPU: "unidade central de processamento")
 - Controla o fluxo e a execução de todas as instruções
- Unidade de

controle • Interpreta as instruções da

CPU • Gera todos os comandos de controle para outros

componentes • Unidade Lógica Aritmética (ULA)

• Executa todas as instruções (instruções de E/S e memória com a ajuda destes

unidades) • Sistema de entrada/saída

- · Interface com o mundo exterior
- Entrada e saída de programa e dados •

Memória •

Armazenamento de dados e programa como sequência de bits

• Interconexão

13

Princípio de Funcionamento de um Computador

• A qualquer momento, a CPU executa apenas uma única

instrução. • Esta instrução só pode manipular um único operando.

- Tradicionalmente, isso é chamado de **SISD** (Single Instruction Single Data).
- Código e dados são armazenados na mesma memória sem qualquer distinção.
 Não há mecanismos de proteção de memória os programas podem destruir uns aos outros; programas podem acessar dados arbitrários.
- A memória não é estruturada e é endereçada linearmente. A interpretação do conteúdo da memória depende apenas do contexto do programa atual.

Princípio de Funcionamento de um Computador

- Princípio de duas fases do processamento de instruções:
 - Durante a fase de interpretação, o conteúdo de uma célula de memória é buscado com base em um contador de programa. Este conteúdo é então interpretado como uma instrução (nota: esta é uma interpretação pura!).
 - Durante a fase de execução, o conteúdo de uma célula de memória é buscado com base no endereço contido na instrução. Esse conteúdo é então interpretado como dados.
- O fluxo de instrução segue uma ordem sequencial estrita.

15

A arquitetura von Neumann

- Vantagens
 - Princípio dos requisitos mínimos de hardware
 - Princípio dos requisitos mínimos de memória
- Desvantagens
 - A interconexão principal (memória « CPU) é o gargalo central: o "gargalo von Neumann"
 - Os programas devem considerar o fluxo de dados sequencial através do von Neumann gargalo
 - ® Influências em linguagens de programação superiores ("gargalo intelectual")
 - Baixa estruturação de dados (uma longa sequência de bits...)
 - A instrução determina o tipo de operando
 - Sem proteção de memória

Arquitetura de Harvard

- Definição clássica da arquitetura de Harvard
 - Separação de dados e memória de programa
- A maioria dos processadores com microarquitetura
 - von Neumann de fora
 - Harvard por dentro
- Razão
 - Diferentes escalas de tempo e localidade ao armazenar dados e instruções em cache

17

ARQUITETURA VON NEUMANN	ARQUITETURA DE HARVARD	
É uma arquitetura de computador antiga baseada no conceito de computador de programa armazenado.	É uma arquitetura de computador moderna baseada no modelo de revezamento Harvard Mark I.	
O mesmo endereço de memória física é usado para instruções e dados.	Endereço de memória física separado é usado para instruções e dados.	
Existe um barramento comum para dados e instruções transferir.	Barramentos separados são usados para transferir dados e instruções.	
Dois ciclos de clock são necessários para executar uma única instrução.	Uma instrução é executada em um único ciclo.	
É mais barato em custo.	É caro do que Von Neumann Architecture.	
A CPU não pode acessar instruções e ler/ escrever ao mesmo tempo.	A CPU pode acessar instruções e ler/escrever ao mesmo tempo.	
É usado em computadores pessoais e pequenos computadores.	É usado em micro controladores (a maioria deles).	

Definição de um sistema de microcomputador

- Sistema de microprocessador:
 - Sistema digital, usando um microprocessador como controle central e/ou aritmético unidade
- Microcomputador:
 - inclui um microprocessador que se comunica com memória, controladores e interfaces para dispositivos externos usando o barramento do sistema.
- Casos especiais de microcomputadores:
 - Microcomputador de chip único
 - Todos os componentes do microcomputador estão localizados em

um chip. • Microcomputador de circuito único (dt. Ein-Platinen-Mikrocomputer)

- Todos os componentes do microcomputador estão em uma placa de circuito.
- Sistema de microcomputador:
 - Microcomputador com dispositivos externos conectados
 - Pode ser pequeno pense na Internet das Coisas!

21

Internet das Coisas

Conceito básico de um microcomputador

- O IBM PC é uma arquitetura von Neumann modificada e foi introduzido pela IBM no outono de 1981.
- A estrutura de interconexão foi realizada por um barramento.
 - O barramento conecta a CPU com a memória principal, vários controladores e o sistema de entrada/saída.

23

Componentes de um computador

- Hardware: todos os componentes mecânicos e eletrônicos
- Software: todos os programas em execução no computador
- Firmware: microprogramas armazenados em ROM, em algum lugar intermediário SW e HW

Unidades de período e frequência

Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	10^{-3} s	Kilohertz (kHz)	10^3 Hz
Microseconds (µs)	10^{-6} s	Megahertz (MHz)	$10^6 \mathrm{Hz}$
Nanoseconds (ns)	$10^{-9} \mathrm{s}$	Gigahertz (GHz)	10 ⁹ Hz
Picoseconds (ps)	10^{-12} s	Terahertz (THz)	10 ¹² Hz

27

Revisão matemática\digital

```
    Base 10
        combinações = 10!"#$%& '( )*#$'+)
        Exemplo: 2
        símbolos Combinações = 10, = 100 (combinações de 00 a 99)
```

• Base 2

```
Combinações = 2!"#$%& '( )*#$'+) 
 Exemplo: 4 
 símbolos Combinações = 2- = 16 (combinações de 0000 a 1111)
```

revisão da história

Até 16 bits

Data	CPU	Número de Transistores (N	endereço (IHz) espaço	do relógio	Notas
Abr-71	4004 2300		0,108 64	0 B Primeira CPU	em um único chip
Abr-72	3008 3 500		0,108 16	KB Primeira CPU	de 8 bits
Abr-74	3080 6 000		2	64KB Primeira C	CPU de sucesso comercial
Jun-78	3086 29 000		10	1MB Primeira CPU	de 16 bits
Jun-79	3088 29 000		8	1MB Usado no famo	oso IBM PC
Jan-82	30186 100 0	00	12	1 MB	
Jan-82	30188 100 0	00	12	1MB Usado até por	ucos anos atrás como micro controlador
Fev-82	286	134 000	12	16MB Implementaç	ão do primeiro modo protegido

29

revisão da história

A arquitetura de 32 bits

Data

CPU Número de endereço do relógio Transistores (MHz) espaço 4GB Primeira CPU de 32 bits Out-85 386DX 275 000 16 4GB externo é uma CPU de 16 bits Jul-88 386SX 375 000 20 Abr-89 486 1 200 000 25 Coprocessador Join de 4GB e cache de 8K Jun-91 486 1 200 000 50 4GB

Notas

revisão da história

O poder do processamento paralelo

Data CPU Número de Relógio Endereço Notas Transistores (MHz) espaço

Mar-93 Pentium 3 100 000 60 4GB 2 Oleodutos

31

revisão da história

O poder do processamento paralelo

Data CPU Número de Relógio Endereço Notas Transistores (MHz) espaço

 Mar-93 Pentium
 3 100 000
 60
 4GB
 2 Oleodutos

 Mar-95 Pentium Pro 5 500 000
 120 4 GB
 2 níveis de cache

Mai-97 Pentium II 7 500 000 300 64GB Pentium Pro + MMX

Pentium III Ago-99 9 500 000 600 64GB 10 estados para Pipeline; SSE

Mar-00 Pentium III 28 000 000 1000 64 GB

Nov-00 Pentium 4 42 000 000 1500 64 GB 20 estados para Pipeline; SSE2

Jan-02 Pentium 4 42 000 000 2200 64 GB Nov-02 Pentium 4 55 000 000 3000 64GB

revisão da história Finalmente, a CPU de 64 bits Relógio Endereço Notas Data CPU Transistores (MHz) espaço Abr-05 Pentium D 125 000 000 3200 1 TB EM64T; 12 estados de pipeline 2*1M cache L2 SSE3 Jul-06 Core 2 Duo 410 000 000 2930 1 TB Cache L2 de 4M; SSE4, SSE3 Nov-08 Core I7 781.000.000 3300 1TB 02-10 Itanium Tukwila 2.000.000.000 1600 (1 TB) 2012 Xeon Phi de 62 núcleos 5.000.000.000 1200 (1 TB) 2016 Xeon Broadwell-E5 7.200.000.000 2200 (1 TB) AMD Epyc de 32 núcleos 19.200.000.000 2200 4 TB

33

O que é arquitetura de computador? Deve ser arquiteturas de computador _

- Existem opiniões diferentes
 - Estrutura de hardware, componentes, interfaces
 - Princípio básico de operação, aplicações
 - Somente visão externa
 - Visão interna e externa
- A arquitetura do computador NÃO é (apenas) a arquitetura padrão do PC!
 - A grande maioria dos computadores são sistemas embarcados, soluções especializadas
 - Um tamanho NÃO serve para tudo

43

Amdahl, Blaauw e Brooks 1967

- "Arquitetura de computador é definida como os atributos e o comportamento de um computador visto por um programador de linguagem de máquina. Esta definição inclui o conjunto de instruções, formatos de instrução, códigos de operação, modos de endereçamento e todos os registradores e locais de memória que podem ser manipulados diretamente por um programador de linguagem de máquina.
- A implementação é definida como a estrutura de hardware real, lógica design e organização do caminho de dados de uma modalidade específica da arquitetura."

Outra visão: arquitetura do processador

- A arquitetura do processador (Instruction Set Architecture) compreende a descrição dos atributos e funções de um sistema visto do ponto de vista de um programador de linguagem de máquina.
- A especificação da arquitetura do processador compreende:
 - conjunto de instruções
 - formatos de instrução
 - modos de endereçamento
 - tratamento de interrupção
 - espaço de endereço lógico
 - Modelo de registro/memória (desde que um programador possa acessá-lo)
- A arquitetura do processador não descreve detalhes da implementação ou hardware – todas as operações e componentes internos são explicitamente excluídos.

45

Microarquitetura do processador

- Uma implementação (microarquitetura) descreve o hardware estrutura, todos os caminhos de dados, a lógica interna etc. de uma certa realização da arquitetura do processador, portanto, um microprocessador real.
- A microarquitetura define:
 - Número e estágios de pipelines Uso de tecnologia superescalar
 - Número de unidades funcionais internas (ALUs)
 - Organização da memória cache

Microarquitetura do processador

- A definição de uma arquitetura de processador (ISA, arquitetura do conjunto de instruções) possibilita o uso de programas independentes de uma determinada implementação interna de um microprocessador.
- Todos os microprocessadores que seguem a mesma especificação de arquitetura de processador são chamados de "compatíveis com binários" (ou seja, os mesmos binários são executados neles).

47

O modelo de computador em camadas Nível 5 Nível de linguagem orientado a problemas Tradução (Compilador) Nível 4 nível de linguagem de montagem Tradução (Assembler) Nível 3 Nível da máquina do sistema operacional Interpretação parcial (sistema operacional) Nível 2 Nível ISA (arquitetura do conjunto de instruções) Interpretação (microprograma) ou execução direta Nível 1 nível de microarquitetura hardware Nível 0 Nível lógico digital

