NUCL 402 Engineering of Nuclear Power Systems

Lecture 2: PWR and BWR

S. T. Revankar
School of Nuclear Engineering
Purdue University

Power Reactor History

- •1942 December 2 -- Enrico Fermi's team produces the world's first sustained nuclear chain reaction.
- •1943 March 20 -- Chicago Pile 2 achieves criticality.
- •1944 May 15 -- Walter Zinn starts Chicago Pile 3, the world's first heavy-water-moderated nuclear reactor,
- •1946 August 1 -- Pres. Harry Truman signs the Atomic Energy Act.
- •1952 EBR-1 first demonstration of nuclear-generated electricity .

Chicago Pile 1 (CP-1)

Drowing displicting CP-1. (Courtesy of Arganne National Laboratory):

CP-1

CP-1 during construction, showing the pattern of graphite blocks and uranium pollets. (Courtery of Argonne National Laboratory)

Experimental Breeder Reactor -1 (EBR -1)

Located at the National Reactor Testing Station in Idaho, was completed and was operated by Argonne National Laboratory.

In the first demonstration of nuclear-generated electricity in the United States, 4 light bulbs were powered.

During the 1960's, a number of smaller prototype reactors were designed and operated by utilities and/or government agencies.

Year	Unit	MVe	Utility	Reactor Type	Shutdown
1957	<u>Shippingport</u>	60	Duquesne Light	PWR/ LWBR	1982
1960	<u>Dresden</u> 1	200	Commonwealth Edison	BWR	1978
1961	Yankee Rowe	160	Yankee Atomic	PWR	1991
1962	Big Rock Point	60	Consumers Power	BWR	1997
1963	Indian Point 1	250	Consolidated Edison	PWR	1974
1963	<u>Humboldt Bay</u> 3	60	PG&E	BWR	1976
1963	<u>Hallam</u>	75		LMGMR	1964
1964	<u>BONUS</u>	70		BWR	1968
1966	<u>Ferni</u> 1	60	Detroit Edison	LMFBR	1978
1966	<u>Hanford-N</u>	860	AECWPPSS	LGR	1988
1966	<u>Pathfinder</u>	60	Northern States Power	BWR	1967
1967	Peach Bottom 1	40	Philadelphia Electric	HTGR	1974
1969	<u>LaCrosse</u>	50	Dairyland Power	BWR	1987

Pressurized Water Reactor (PWR)

These reactors were originally designed by Westinghouse Bettis Atomic Power Laboratory for military ship applications, then by the Westinghouse Nuclear Power Division for commercial applications. The first commercial PWR plant in the United States was Shippingport, which operated for Duquesne Light until 1982. In addition to Westinghouse, Asea Brown Boveri-Combustion Engineering (ABB-CE), Framatome, Kraftwerk Union, Siemens, and Mitsubishi have typically built this type of reactor throughout the world. Bábcock & Wilcox (B&W) built a PWR design power plant but used vertical oncethrough steam generators, rather than the U-tube design used by the rest of the suppliers. Industry consolidation has occurred so that Framastom-ANP and Westinghouse are two key remaining manufacturers.

- Reactor Coolant System-2, 3, or 4 Cooling "Loops" connected to the Reactor, each containing a Reactor Coolant Pump, and Steam Generator
- Secondary Cooling System-include the Main Steam System and the Condensate-Feedwater Systems
- ✓ Condenser Cooling Water pumped through the condenser by Circulating Water Pumps, cean, sea, lake, river, or Cooling Tower
 S. T. Revankar-2-8

Westinghouse NUCLEAR STEAM SUPPLY SYSTEM

PWR

Manufacturer	MVVt	MWe	Loops	Pressuri zer	Reactor Coolant Pumps per Loop
Westinghouse	450-3000	167-1000	1-4	1	1
Framatome	2700-3600	900-1300	3-4	1	1
Babcock & Wilcox	2400-3000	800-1000	2	1	2
Combustion Engineering	2400-3600	800-1300	2	1	2
ABB	3000	1000	4	1	1
Mitsubishi	3000	1000	4	1	1

Each loop has one steam generator

W Nuclear Steam Supply System
MB 3618A

Pressure Vessel

Function:

- To provide structural support for the fuel
- To maintain a pressure boundary for the reactor coolant
- To transfer heat from the fuel to the water
- To not allow bulk boiling

S. T. Revankar-2-13

Fuel Assembly

✓ Rod control cluster assemblies of 16-20 rods that can be inserted into selected fuel assemblies,

PWR Fuel Assembly

LWR Fuel Rod

Steam Generator

Westinghouse STEAM GENERATOR

Westinghouse STEAM GENERATOR

S. T. Revankar-2-16

Pressurize

Westinghouse PRESSURIZER

Primary Pump

T. Revankar-2-17

PWR containment

BWR

BWR Pressure Vessel

Fig. 2-4. The BWR vessel arrangement for jet pump recirculation system.

S. T. Revankar-2-21

BWR/6 FUEL ASSEMBLIES & CONTROL ROD MODULE

1.TOP FUEL GUIDE 2.CHANNEL FASTENER 3.UPPER TIE PLATE 4.EXPANSION SPRING 5.LOCKING TAB 6.CHANNEL 7.CONTROL ROD 8.FUEL ROD 9.SPACER 10.CORE PLATE **ASSEMBLY** 11.LOWER TIE PLATE 12.FUEL SUPPORT PIECE 13.FUEL PELLETS 14.END PLUG 15.CHANNEL SPACER 16.PLENUM SPRING

GENERAL 🍪 ELECTRIC

✓ Turbine generator with shielding

S. T. Revankar-2-25

BWR Containment

General Electric pressure suppression system designs