problem 1

Theorem. Suppose α is increasing on [a,b] and that $f(x) = \begin{cases} 1 & x = x_0 \\ 0 & x \neq x_0 \end{cases}$ and α is continuous on x_0 . Then $\int f d\alpha = 0$.

Proof. we know that there is some δ such that $|x_0 - y| < \delta \implies |\alpha(x_0) - \alpha(y)| < \epsilon$. take a partition where the interval containing x_0 is $[x_0 - \delta, x_0 + \delta]$, the L on this would be 0 and the $U = \alpha(x_0 + \delta) - \alpha(x_0 + \delta) < 2\epsilon$. Hence $U - L < 2\epsilon$, and hence the this is riemann integrable. Since L is always 0, the integral is also hence 0.

problem 2

Theorem. Suppose $f \geq 0$ and is continuous on [a,b]. Suppose $\int_a^b f \, dx$ is 0, show that so is f.

Proof. Suppose $f(n) = m \neq 0$ for some n, since f is continuous on n, we know for some δ , $|n - x| < \delta \implies |f(n) - f(x)| < \epsilon$, or that in $(n - \delta, n + \delta)$, f(x) has a lower bound of $m - \epsilon$. Hence the integral is at least $2\delta(m - \epsilon)$, and since $m \neq 0$, we can pick ϵ such that this is non 0, contradiction.

problem 4

Theorem. let
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
, then $f \notin \Re$

Proof. Note that since the rationals are dense in \mathbb{R} , in each interval f(x) attains a max of 1 and a min of 0. Hence U = b - a and L = 0 for all partitions. This is hence not Riemann integrable.

problem 5

Theorem. Suppose f is a bounded function on [a,b]. $f^{2n} \in \Re \Rightarrow f \in \Re$ but $f^{2n+1} \in \Re \implies f \in \Re$, with $n \in \mathbb{N}$

Proof. For the even case, let $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$, then this is clearly not integrable on [a,b] while $f(x)^{2n} = 1$ is always integrable on [a,b].

For the odd case, since $\psi(y) = \sqrt[2n+1]{y}$ is continuous on \mathbb{R} , $\psi(f^{2n+1}) = f$ is Riemann integrable.

problem 7

Problem. Let f be defined on [a,b] with f riemann integrable over all [c,1] with c>0. Define

$$\int_0^1 f \, dx = \lim_{c \to 0} \int_c^1 f \, dx$$

Theorem (a). If f is riemann integrable on [0,1], then this defination coincides with the usual defination. Proof. fix $\epsilon > 0$. Then we have for some Partion P:

$$\left| \int_0^1 f \, dx - \int_c^1 f \, dx \right| = \left| \int_0^c f \, dx \right| \le \left| \int_0^c f \, dx - \sum f(x_i) \Delta x_i \right| + \left| \sum f(x_i) \Delta x_i \right| < \epsilon + c \sup_{x \in [0,c]} f(c)$$

As c can be arbitarily small, and as f is bounded, we are done.

problem 8

Theorem. Suppose $f(x) \ge 0$ and is decreasing monotonically on $[1, \infty)$. then $\int_1^\infty f(x) dx$ converges $\iff \sum_{n \ge 1} f(n)$ converges.

Proof. (\leftarrow) Suppose the sum converges, then for all $\epsilon > 0$ there is some N such that $q \geq p > N$ means $\sum_{p}^{q} f(n) < \epsilon$. Notice the LHS is a upper sum for $\int_{p}^{q} f(x) dx$, hence $\int_{p}^{q} f(x) dx < \epsilon$, showing the integral converges as it is cauchy.

 (\rightarrow) Suppose the integral converges, then for all $\epsilon > 0$ there is some N such that $q \geq p > N$ means $\int_p^q f(x) dx < \epsilon$. A Lower sum of this is $\sum_p^q f(n+1)$, meaning $\sum_p^q f(n+1) < \epsilon$. Hence the sum converges as it is cauchy.

problem 9

Theorem. Suppose all the limits exists, and F,G are both differentiable functions whose derivatives are riemann integrable. Then

$$\int_{a}^{\infty} F(x)G'(x) dx = \lim_{b \to \infty} F(b)G(b) - F(a)G(a) - \int_{a}^{\infty} G(x)F'(x) dx$$

Proof. Take the limit of IBP.

problem 10

Suppose $p, q \in \mathbb{R}^+$ with

$$\frac{1}{p} + \frac{1}{q} = 1$$

Theorem (a). Show

$$\frac{u^p}{n} + \frac{v^q}{a} \ge uv$$

And equality holds iff $u^q = v^p$.

Proof. Call f(x) concave if for each $0 < \lambda < 1$, $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$. Replicating problem 14 from chapter 5, this is true iff f'(x) is monotonuously decreasing.

Take $f(x) = \log(x)$. Now $f'(x) = \frac{1}{x} > 0$ and $f''(x) = -\frac{1}{x^2} < 0$, Hence f is concave. Now take $\lambda = \frac{1}{p}$ and hence

$$\log\left(\frac{x}{p} + \frac{y}{q}\right) \ge \frac{\log(x)}{p} + \frac{\log(y)}{q} \implies \frac{x}{p} + \frac{y}{q} \ge x^{1/p}y^{1/q}$$

Where the fact that log is strictly increasing was used. x = y is clearly a equality point.

Proof. (alternate:Bernoulli). Take $g(x) = (1+x)^r$ with r < 1. then $g'(x) = r(1+x)^{r-1}$ and $g''(x) = r(r-1)(1+x)^{r-2} \le 0$. Pick $x \ge -1$. By Taylors theorem we know there is some $a \in [0,x]$ or [x,0] (depending on the sign of x) such that

$$g(x) = 1 + rx + \frac{g''(a)}{2}x^2 \le 1 + rx \implies (1+x)^r \le 1 + rx$$

with the equality case being only when x=0 of course. Pick $r=\frac{1}{q}$ and $x=-1+\frac{v^q}{u^p}$ and this gives our inequality, with equality case $x=0 \implies v^q=u^p$ **Theorem** (Hoelders inequality). let f and g be complex valued function in $\Re(\alpha)$. Then

$$\left| \int_a^b f g \, d\alpha \right| \le \left\{ \int_a^b |f|^p \, d\alpha \right\}^{1/p} \left\{ \int_a^b |g|^q \, d\alpha \right\}^{1/q}$$

Proof. let

$$F = \frac{f}{\left\{\int_a^b |f|^p \, d\alpha\right\}^{1/p}}, G = \frac{g}{\left\{\int_a^b |g|^q \, d\alpha\right\}^{1/q}}$$

Then this means

$$\frac{|F|^p}{p} + \frac{|G|^q}{q} \ge |FG| \implies 1 = \int_a^b \frac{|F|^p}{p} + \frac{|G|^q}{q} \, d\alpha \ge \int_a^b |FG| \, d\alpha \ge \left| \int_b^a FG \, d\alpha \right|.$$

Notice this is precisely the statement of the theorem.

This trivially works for improper integrals, as limits preserve order upto an equal sign.

Corollary. Cauchy schwarz and Triangle inequalities.

problem 13

Problem. Let

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt$$

Theorem (a). $|f(x)| < \frac{1}{x} \text{ for } x > 0.$

Proof. let $u = t^2$, then

$$4f(x) = \int_{x^2}^{(x+1)^2} 2\sin(u)u^{-1/2} du = -2(x+1)^{-1}\cos((x+1)^2) + 2x^{-1}\cos(x^2) + \int_{x^2}^{(x+1)^2}\cos(u)u^{-3/2} du$$

Notice the integral

$$\int_{x^2}^{(x+1)^2} \left| \cos(x) u^{-3/2} \right| \, du \le \int_{x^2}^{(x+1)^2} u^{-3/2} \, du = 2x^{-1} - 2(x+1)^{-1}$$

Hence

$$|4f(x)| \le 2(x+1)^{-1} + 2x^{-1} + (2x^{-1} - 2(x+1)^{-1}) = 4x^{-1}$$

proving the theorem.

Theorem (b).

$$2xf(x) = \cos(x^2) - \cos[(x+1)^2] + \mathcal{O}\left(\frac{1}{x}\right)$$

Proof. By (a), the r(x) that remains to be compared to $\frac{1}{x}$ is

$$r(x) = \cos[(x+1)^2](x+1)^{-1} + 2^{-1}x \int_{x^2}^{(x+1)^2} \cos(u)u^{-3/2} du$$

Hence

$$|xr(x)| \le |\cos[(x+1)^2]x(x+1)^{-1}| + \left|2^{-1}x^2 \int_{x^2}^{(x+1)^2} \cos(u)u^{-3/2} du\right| < 1 + x\left(1 - x(x+1)^{-1}\right) < 2$$

Hence
$$r(x) = \mathcal{O}\left(\frac{1}{x}\right)$$

Theorem (d). $\int_0^\infty \sin(t^2) dt$ converges.

Proof. too lazy. Follows pretty easily from the last bound.

problem 17

Problem. Suppose α increases monotonically on [a,b], g is continuous and g(x) = G'(x). then

$$\int_{a}^{b} \alpha g \, dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G \, d\alpha$$

Proof. For each interval, there is a $t_i \in [x_i, x_{i+1}]$ such that $g(t_i)\Delta x_i = G(x_{i+1}) - G(x_i)$. Hence using Summation by parts,

$$\sum \alpha(x_i)g(t_i)\Delta x_i = \sum \alpha(x_i)\left(G(x_{i+1}) - G(x_i)\right) = G(b)\alpha(b) - G(a)\alpha(a) - \sum G(x_i)\Delta\alpha(x_i)$$

Which is the statement of this theorem.