1. Dla zbioru $\mathbb{Z}_2 = \{0,1\}$ tablice działań są następujące:

Sporządzić tabliczki dodawania i tabliczkę mnożenia w zbiorze \mathbb{Z}_n dla:

- (a) n = 5;
- (b) n = 6; (c) n = 7; (d) n = 8.
- 2. Korzystając z tabliczek z zadania 1 rozwiązać w \mathbb{Z}_n , dla $n \in \{5, 6, 7, 8\}$, równania:

- (a) x + 2 = 0, (b) 2x = 0, (c) 3x = 0, (d) 5x = 0, (e) 3x = 1, (f) 2x + 4 = 0,

- (g) 3x + 2 = 4, (h) 4x + 3 = 1, (i) $x^2 = 1$, (j) $x^2 + 1 = 0$, (k) $x^2 + x = 2$.
- 3. Wyznaczyć wszystkie elementy odwracalne względem mnożenia w \mathbb{Z}_n , dla:
 - (a) n = 6;
- (b) n = 11;
- (c) n = 12;

Ile jest takich elementów w \mathbb{Z}_n , dla:

- (e) n = 96;
- (f) n = 120;
- (g) n = 324;
 - (h) n = 555?
- 4. Znaleźć element odwrotny (względem dodawania oraz mnożenia) do elementu:

- (a) $4 \le \mathbb{Z}_{13}$; (b) $7 \le \mathbb{Z}_{15}$; (c) $16 \le \mathbb{Z}_{35}$; (d) $15 \le \mathbb{Z}_{128}$; (e) $32 \le \mathbb{Z}_{333}$; (f) $111 \le \mathbb{Z}_{512}$.

- 5. Wyznaczyć, jeżeli to możliwe, wszystkie rozwiązania równania:

- (a) $5x = 2 \le \mathbb{Z}_6$; (b) $4x = 6 \le \mathbb{Z}_8$; (c) $6x = 4 \le \mathbb{Z}_8$; (d) $7x = 8 \le \mathbb{Z}_{11}$; (e) $6x = 7 \le \mathbb{Z}_{319}$;

- (f) $9x = 6 \text{ w } \mathbb{Z}_{151}$; (g) $3x + 13 = 20x + 7 \text{ w } \mathbb{Z}_{125}$; (h) $4x + 17 = 32x + 10 \text{ w } \mathbb{Z}_{777}$.
- 6. Rozwiązać układy równań w podanych zbiora
- (a) $\begin{cases} 2x + 3y = 1 \\ 6x + 5y = 5 \end{cases}$ w \mathbb{Z}_{11} ; (b) $\begin{cases} 5x + 8y = 3 \\ 7x + 4y = 2 \end{cases}$ w \mathbb{Z}_{13} ; (c) $\begin{cases} 10x + 7y = 6 \\ 13x + 12y = 7 \end{cases}$ w \mathbb{Z}_{17} .
- 7. Niech $A = \{1, 3, 5, 7\}$, $B = \{2, 4, 6, 8\}$. Sprawdzić prawdziwość zdań:
 - (a) $(\exists x \in A) \ (\forall y \in B) \ (x < y)$; (b) $(\forall x \in A) \ (\exists y \in B) \ (x < y)$; (c) $(\exists ! x \in A) \ (\exists ! y \in B) \ (x | y)$;

- (d) $(\forall n \in B) (\exists x \in \mathbb{Z}_n) (3x = 2 \pmod{n});$ (e) $(\exists n \in B) (\forall a \in A) (\exists ! x \in A) (ax = 1 \pmod{n}).$
- 8. Wykazać, że

 - (a) $\neg p \Rightarrow (p \Rightarrow q)$, (b) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$, (c) $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$, (d) $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$.
- 9. Dowodzac nie wprost, wykazać, że:
 - (a) nie istnieje zbiór, którego elementy nie są swoimi elementami (antynomia Russella),
 - (b) dla każdego (ściśle) rosnącego ciągu liczb naturalnych (a_n) zachodzi $a_n \geqslant n$ dla każdego $n \in \mathbb{N}$.
- 10. Udowodnić, że
 - (a) liczba $\sqrt{2}$ jest niewymierna, (b) istnieją liczby niewymierne a i b takie, że liczba a^b jest wymierna.