APSC 100

M1-W2-V1: Introduction to Design

- Engineering Design Process
 - o Important model through APSC 100 and 101
- Learning goals
 - List the stages in the design process from memory
 - Describe the general flow between stages in the design process, including the role of iteration
 - Explain why a formal design process is preferred to an unstructured approach
- Design
 - Common ideas that come to mind: creativity, invention, problem-solving, innovation
 - Design is a process
 - Engineering design is the process through which engineering knowledge and skills are applied to solve real-world, open-ended problems
 - Meaningful problems for society, planet, and humanity
 - Open-ended means that there is not a single solution
- Novice approach
 - o Implement solution with trial and error
 - o Focuses on one solution at a time
 - Cost inefficient
 - Not a good approach for an engineering team, especially for a larger project
- Engineering approach
 - Systematic process = better chance of success + on time + on budget
 - Stage 0: the problem
 - Stage 1: study and clarify the problem
 - Stage 2: generate potential solutions
 - Stage 3: identify most promising solution
 - Stage 4: Develop and test solution
 - o Iteration: Review and revise solution
 - Stage 5: Implement solution
 - Stages are not rigid checkpoints, and we will often revisit stages
 - The engineering design process is a guiding framework that increases chance of finding a solution
- Support for the Design Process
 - o Costs: time, money, and resources
 - With the design process, fewer cost is spent on the early stages
 - Costs committed: early decisions determine spending for future stages

M1-W2-V2: Stage 1: Study and Clarify the Problem

- Stage 1: who are the stakeholders and what are their needs?
- Learning goals
 - Explain who stakeholders are and why they are important
 - Describe what needs are and where they come from
- Stakeholder
 - Anyone who is influenced by the project or anyone who can influence the project
 - Example: stakeholders of a bridge
 - Designers, builders, users, government, maintainers, neighbors, municipalities, regulators, suppliers, shareholders, manufacturers, society
 - Stakeholders have varying degrees of influence, which may sometimes be unclear
 - To minimize risks and surprises, it is important to know and understand the issues and perspectives from all of the stakeholders, right from the beginning
 - o Unlikely that we will be able to satisfy everybody
- Needs
 - Things that the final design must achieve to satisfy stakeholders
 - Stakeholder's wants or expectations of what the final design should be or do
 - Expressed Needs
 - Threshold needs (needs that might not be stated but would be obvious)
 - latent needs (needs that would not be stated but would be nice to have)
- Example: smartphone
 - Stakeholders: user and government regulators
 - User needs:
 - Is affordable
 - Has front and rear cameras
 - Warns of low battery
 - is waterproof
 - Regulator needs:
 - Complies with applicable wireless communication standrads
 - Complies with applicable safety standards for consumer electronic devices
 - Observations
 - Different stakeholders tend to have different needs
 - We should consider all stakeholders and have a good sense of stakeholder needs
 - Not all stakeholders think alike
 - Stakeholders from the same group may have differing or contradictory needs
 - Some needs might be expected without saying or so "obvious" that nobody thinks to mention them
 - Important not to miss obvious needs

Learning-V3-Neuroscience

• Analogy: Olympic swimmer

- They would not be cramming practice two days before the race
- Thoughtfully arranged challenges going back for a long time
- Learning is the same. Many students try to compress learning into cram sessions, which doesn't work

Learning goals

- Describe what happens in your brain when you learn, using the language of neuroscience
- Explain why it is important to spread learning out over time, and why this is supported by neuroscience
- Explain how neuroscience supports the deliberate practice approach to learning

• How the brain works

- o 100 billion neurons in the brain
- Electrochemical signals are received by dendrites, cell body processes signals, signals travel to axon and are sent to other dendrites through axon terminals
- A single neuron can have thousands of dendrites. The total number of connections is unimaginable
- Neuroplasticity: neural connections can be changed and the brain can be reprogrammed
- Effort and challenge batter: brain grows more connections, connections get stronger and more efficient for deeper and longer lasting learning
- Knowledge is stored through the connections between neurons
- A robust netowrk of neurons is better for recalling information
- Unused neural connections weaken over time
- Analogy: forest path
 - Paths will overgrow and disappear if we don't use it. Then we cannot retrieve information
 - Frequently traveling the path will make it larger
 - Multiple paths create a robust network

Effective learning

- o More review is better
- Quizzing (reviewing correct answers) gives the best results
- Recap: using deep learning techniques that require retrieving and applying information is more effective than rereading and reviewing
- Why cramming doesn't work
 - Myelin: 20 percent of the brain. Coating on parts of the neurons
 - Myelin increases strength and speed of neural signals
 - Myelin makes recall quicker and more automatic
 - Myelin coating is developed over time, due to repeated activity of the neuron. Sleep plays a role in this process too
 - Developing myelin coating cannot be rushed, and learning cannot be rushed
- Effective learning based on understanding of myelin
 - Periods of high intensity learning
 - o Breaks and time to relax
 - Repeated and more challenging practice

- Full nights of sleep
- Effectiveness of deliberate practice
 - Challenge develops strong network
 - Focus: high intensity of learning for short period
 - Feedback corrects neural connections and helps long term retention
 - Refine: reflect over time

M1-W3-V1: Stage 2: Generating Potential Solutions (Conceptualization)

- · Learning goals
 - Describe the goals of the Generate Potential Solutions stage of the design process
 - List the guidelines for effective concept generation and explain why each is important
 - Describe the C-sketch process for concept generation
- Goal of stage 2:
 - o Generate as many potential solutions to our design problem as possible
- Generating ideas
 - When generating ideas, as time goes on, we get more ideas with greater variety. This is the solution space. The more ideas, the better
 - We can't rely on first impressions for evaluating ideas
 - The more variety the better
 - Common mistakes
 - Stopping the solution generation too early
 - When to stop? depends on how good we feel the ideas are, and whether they have a good chance of solving the problem. How much time, how routine the problem is, how quickly we're coming up with new ideas
 - Didn't challenge ourselves with novel ideas. "Fixation" or "Anchoring". Getting stuck on one idea
- Solution generation guidelines
 - Generate as many unique ideas as possible
 - Focus on quantity not quality
 - Welcome creative, unusual, and "wild" ideas
 - Resist the temptation to start developing your first idea or favorite idea
 - Avoid fixation (anchoring)
 - Do not evaluate ideas yet that will come later
 - Focus on what will make ideas work
 - Generate a variety of ideas
 - Work independently and in a team
 - Sketch, discuss, tinker
- C-Sketch
 - Collaborative sketching
 - o The team gathers, each person with their own paper

- Team clarifies the problem
- Each person sketches a solution. No talking, no writing or words, not about creating works of art
- Everyone passes their sketch to the person next to them (after ~3 minutes). And then they modify the sketch (add or erase)
- Process continues until everyone has seen and contributed to every sketch
- Benefit: everyone gets equal time and input to each idea (as opposed to traditional brainstorming)
- The team reviews and discusses the collaborative sketches. Can engage in another round (challenge each other to come up with completely different ideas)

M1-W3-V2: Stage 3: Identifying Most Promising Solution

- Learning goals
 - Describe the goals and steps in Stage 3 of the design process
 - Define screening, ranking, and scoring, and explain how they are used in this stage of the process
 - Describe how requirements and evaluation criteria from the target design specifications in
 Stage 1 are used in Stage 3
- Goal of stage 3:
 - Narrow down all possible solutions to our design problem, and identify the solution to be developed
 - o After solution generation, all ideas could be the winner
 - o Objective and systematic process of identifying best idea
- Requirements: the limits of acceptability for a design (from back in stage 1)
 - Screening: solutions that don't meet requirements should be removed immediately
- Evaluation criteria: measures that distinguish between levels of performance or stakeholder satisfaction (i.e. lower price is better)
 - Ranking: sort remaining potential solutions by approximate highest to lowest performance
 - Quick process
 - o Scoring: for ideas that have potential, analyze
 - Build prototypes, run detailed analyses
 - Too many ideas is too much work, but we can't have too few ideas either
 - Can use tools such as WDM
 - Selection: select the best idea
- Summary
 - Screening
 - Compare to requirements and eliminate ideas that cannot meet requirements
 - o Ranking
 - Roughly rank from strong to weak. Look for consistently strong ideas
 - Scoring
 - Quantify relative performance. Tool coming in Module 2 (WDM)

- Methods for ranking
 - Individual voting
 - Only works if everyone has a good understanding of problem, concepts, and evaluation criteria
 - Each person gets x number of votes for all concepts
 - Team totals vote
 - Borda count
 - Ranking top x out of y
 - Top z advance
 - Pairwise comparison
 - Comparing each concept against each other concept
 - Top x advance
 - Criterion-based ranking
 - Ranking based on performance of each concept in each criterion
 - Top x advance
- Iterative
 - We if we feel that we need to rerank ideas, we can come back to this stage

Learning-V4-Memory

- Recap
 - Learning is based on creating stronger neural connections
 - Analogy of forest path
 - No shortcuts, requires high intensity effort, relax, repeated more challenging practice, and sleep
- Learning Goals
 - Explain how short- and long-term memory work
 - Distinguish between learning tasks appropriate for short- and long-term memory
 - Describe what is meant by the "forgetting curve" and the "distributed practice" approach
 - Apply effective study strategies towards your learning, and explain the neurological basis of why they work
- Memory
 - Information is stored in short-term memory or is forgotten
 - Maintenance (for instance, repeating) is used to keep information in short-term memory
 - o Organizing is used to keep information in long-term memory for retrieval in the future
- Short-term and long-term memory
 - o Limited. 15-30 seconds. 5-9 items.
 - Trying to maintain short-term memory is ineffective
 - Transferring to long-term memory is more successful
- Forgetting curve
 - We forget quickly
- Distributed practice
 - After one day, a short review improves long term retention

- More days later, a shorter review improves long term retention even more
- Study strategies
 - Strategy 1: emphasize organization, not maintenance
 - Strategy 2: connect new information to what you already know
 - For example, concept map
 - Strategy 3: pace your learning. Distributed and deliberate practice
 - Strategy 4: use retrieval

M1-W4-V1-Prototypes

- Learning goals
 - Describe what prototypes are
 - Explain why prototypes are used in design
 - o Describe where in the design process prototypes are used
- Ojex Juicer prototypes. Juice extracter
 - Starting with drawing
 - o 2D plastic for testing mechanical
 - o 3D foam models
 - Functioning 3D prototypes
 - o Strainer models
 - CAD models
- Classifying prototypes
 - Focused <-> Comprehensive
 - Virtual <-> Physical
- Cost curve revisited
 - Can be thought of as cost of an error at stage in project
 - Quick, inexpensive, simple prototypes are used in early stages. Explore, suggest, question, provoke
 - Detailed and accurate prototypes are used later Refine, describe, answer, resolve
- Purpose of prototypes: reduce risk in the design process

M1-W4-V2-Audience Purpose Context

- Learning goals
 - o Describe what are meant by "audience," "purpose," and "context," in communication
 - List some of the factors related to audience, purpose, and context to consider when preparing a presentation
- Audience
 - Who you are presenting to
 - Important to understand your audience. What they already know, what they need to know, and what they do not know?
 - Audiences opinion about your topic?
 - What they hope to get from your presentation?
 - Audiences in APSC 100 & 101: imagined

- Purpose
 - Goal and reason for presentation
 - Helpful for decisions about what information to convey and how to convey it
 - Inform and persuade
- Context
 - What led to developing the presentation?
 - What is the setting?
 - When, what, where?
 - o Contexts in APSC 100 & 101: poster and oral presentations

Learning-V5-Focus

- Recap
 - Learning is based on creating strong neural connections
 - Model of memory. Information -> short term memory -> long-term memory
 - Achievement = talent x effort^2. Deliberate practice and bloom's taxonomy
- Learning Goals
 - Describe the impacts of distraction on your learning
 - Explain why trying to multitask hinders learning for most people
 - Explain what is meant by "interleaving," and why it is effective for learning
 - Apply effective study strategies towards your learning, and explain the neurological bases of why they work
- · The myth about multitasking
 - o Only about 2% of people can multitask
 - Music reduces ability to focus during challenging tasks
 - o 30-60 minute blocks on one topic. Don't jump back and forth
 - Digital devices are very distracting. -1 letter grade on final
 - Other people using devices is even more distracting. "Digital second hand smoke". -2 letter grades on final
- Strategies
 - Strategy 1: Minimize distractions
 - Strategy 2: Focus on one subject at a time in short, high intensity sections. Take a break before the next subject
 - Strategy 3: "Interleave" subjects when studying. Alternating between subjects is more effective. Study each subject for at least 30 minutes
 - Strategy 4: Effort and challenge improve learning

M2-W5-V1: Module 2 Case Study Introduction

- Prepare recommendation about transportation planning in Vancouver
- Learning goals
 - Apply a systematic and defensible approach in the decision-making process, integrating all dimensions of sustainability
 - Describe the importance of the consultation process in engineering projects

- Effectively justify and communicate your decisions through a formal oral presentation
- Other
 - Appreciate the complexity and importance of the stakeholder engagement and decision making processes
 - Develop a tolerance for ambiguity in engineering problems

Context

- Team of engineers working for City of Vancouver
 - Develop recommendation of next protected bicycle lane for the city
- Personal vehicles dominate streets of most large cities.
 - Inefficient form of transportation.
 - /km travel is very high cost. Consume lots of energy. Negative environmental impact. Take up lots of space
 - Part of issue is in vehicles, part of issue is in roads
- o Despite different fuel sources, all vehicles still have large environmental impact
- o Still consume too much space and materials for the function they serve
- Public transit is much more efficient. Still requires lots of money and space
- Adding nature and greenspaces improves wellbeing. Improves trust, desire to return, happiness.
- Walking and transportation also improve wellbeing.
- Transportation 2040
 - manage traffic to improve safety and neighborhood livability
 - Build cycling routes that feel comfortable for people of all ages and abilities
 - upgrade and expand the yccling network to efficiently connect people to destinations

Cycling on streets

- Perceived unsafe.
- Protected cycle lane is best. Safest and most comfortable experience for cycling. AAA designation: all ages and abilities
 - Safety. away from traffic
 - Comfort. room to pass, smooth surfaces, good lighting
 - Convenience: good connections on the network, limited grade
 - Cycle lanes also benefit pedestrians

Economic impacts

- Cyclists tend to have more disposable income. Also more likely to stop at local businesses, which improves economic
- Downtown Vancouver Business improvement Association endorses protected cycling lanes. Active funder and partner for more protected cycling lanes.
 - Attracts more highly skilled workers, higher paying jobs, retail spending
- Burrard Bridge. 1 lane -> cycling. People thought there would be issues, but it was great

Project

• Create a plan. Consider all stakeholders. Convince the city and the public.

M2-W5-V2: Scales

- Learning goals
 - Describe the concept of scale
 - Describe the effect of scale on our view of engineering problems, on the pool of relevant stakeholders, and on potential solutions
 - Recognize that, as engineers, we need to view problems at different scales
- Engineering a car: different systems.
 - o Car and driver. At a large scale, car and driver share the road
 - Larger system: car and city. Involving other vehicles and people. Design of buildings, infrastructure.
 - On region scale: effects on commute time, traffic infrastructure, law enforcement and regional air quality.
 - Larger scale: environmental impact, energy supply, manufacturing
 - Interdependence on other systems: legal, regulatory, political, economic, etc.
- Pothole in the road:
 - Solution? improve materials. Better wheels. Systems to improve comfort suspensions? or maybe it's about construction of roads. Regional policy related to maintenance. Best solution: alternate transportation in the long term?
 - Different solutions appear at different scales. Also important to understand that the best solution might not be at a technical one. We need to understand the problem by viewing it across many scales.

M2-W5-V3: Salience

- Example: Site C Dam
 - Benefits
 - Provides renewable electrical power for over 100 years
 - Enough power for 500,000 homes. Important piece of infrastructure for everyone.
 - Construction will require a huge workforce 13000 person years. Benefits economy of Fort St. John, especially during
 - Funding for social program, and other groups
 - o Drawbacks
 - The reservoir takes away water and land uses. Affects hunting and fishing grounds of various first nations, destroys indigenous burial sites and other sites of cultural significance.
 - Farmers and ranchers are impacted by flooding.
 - Impact to air, water, and land systems. Environmental impacts
 - Opposition
 - Numerous protests and rallies opposing the project. Protests from the river to Vancouver.
 - Conflicting stakeholders
- Learning goals
 - Describe the concept of stakeholder salience in terms of power, urgency, and legitimacy

- o Describe how salience is used in prioritizing stakeholders through a project
- Differentiate a rights holder from a stakeholder, and explain why this distinction is important
- Stakeholder
 - Anyone who is influenced by or can influence a project
- Salience: how prominent and important they are in a project.
 - Power
 - How much a stakeholder can influence the project.
 - Urgency
 - How important or time-sensitive the project is to stakeholder needs
 - Legitimacy
 - Has a right to have a say in the project. Could be legal or moral right
 - o Primary stakeholders: have all three attributes are the and are prioritized
 - Secondary stakeholders: two attributes
 - Tertiary stakeholders: one attribute
- Rights holder: a stakeholder whose legal rights or human rights could be impacted by a project.
 - o For Indigenous groups, rights holder is preferred to stakeholder
- Challenges with the framework
 - There may be different degrees to the amount of power each stakeholder has in each attribute
 - Stakeholder Salience is dynamic important to continuously monitor stakeholders. Will reduce surprises
- · Engagement strategies
 - Inform all stakeholders of project
 - Give primary and secondary stakeholders opportunity to provide input. Sometimes consider tertiary
 - o Primary stakeholders are involved during decision making. Sometimes consider secondary
 - o Sometimes consider collaborating with primary stakeholders

Learning-V6-HealthyBody

- Exercise helps brain
 - Chemicals
 - Brain-derived Neurotrophic Factor (BDNF)
 - Serotonin
 - Dopamine
 - Norepinephrine
 - Aerobic activity is the best
- Diet also helps brain
 - Good foods
 - Omega-3: salmon, tree nuts (especially walnuts)
 - Antioxidants: blueberries, olive oil, beans, dark chocolate

- Balanced diet with abundance of vegetables
- Bad foods (consume in moderation)
 - Heavily processed food
 - Unhealthy snacks
 - Deep-fried foods
 - Sugary snacks and drink
 - Anything in a vending machine
- o Brain requires lots of energy, food fuels the brain
- o Breakfast: a nutritious breakfast is important
- Sleep
 - Consolidate and reinforce learning
 - We dream during REM
 - o Brain consolidates learning in NREM
 - o During REM sleep, signals travel backwards, from axon to dendrites
 - Clearing up junk
 - o Insufficient sleep
 - Makes it harder to pay attention
 - Impedes BDNF
 - Impedes retrieval
 - We should get between 7.5 and 9 hours of sleep
 - 20 minute naps are good during the day

M2-W6-V1: An Introduction to Sustainability

- Learning goals
 - Define sustainability
 - o list the dimensions and principles of sustainability
 - o Describe how the dimensions interact, and what is meant by a sustainable solution
- Common view
 - Sustainability is associated with protecting and preserving the natural environment
- Definition of sustainability
 - Meet the needs of the present, without compromising the future
- Importance in design
 - o Sustainability is an integral part of the entire design process
- Dimensions of sustainability
 - Dimensions
 - Society (People) (Equity)
 - Environment (Planet) (Ecology)
 - Economy (Profit) (Economy)
 - Bearable: environment + society
 - Viable: environment + economy

- Equitable: society + economy
- o Goal: find solutions that work in all three dimensions
- Context is important
- Four principles in a sustainable society:
 - Avoid removing materials from the earth at a rate faster than they naturally replenish
 - Avoid making things and releasing substances at a rate faster than they naturally break down
 - Avoid degrading ecosystems at a rate faster than they can naturally regrow
 - o Move towards happiness, well-being, and meeting the needs of all people
- 17 UN Goals of sustainability

M2-W6-V2: Causal Loop Diagrams

- Learning goals
 - Recognize that we need different (qualitative) tools to analyze complex systems, compared to the traditional (quantitative) tools used with simple systems
 - Describe what a causal loop diagram is and how it is used
 - Interpret a simple causal loop diagram
- Complex vs complicated system. Deterministic vs non-deterministic
- To analyze complex systems, we need to use qualitative methods, such as causal loop diagrgams
- Causal loop diagram
 - Nodes
 - Relations (positive or negative)
 - o Double line on connecting link: delay
 - Reinforcing loop: increases and keeps increasing
 - o Balancing loop: increases then decreases
- Net product positive: positively correlated
- Net product negative: negatively correlated

M2-W6-V3: Engineering Profession

- Learning goals
 - Describe what a profession is
 - Describe how engineering is regulated in Canada, and how an engineering student can go
 on to become an engineer
 - o Describe what "Codes of Ethics" are and why they are important
 - Describe the significance of the Iron Pin and the Iron Ring to engineers in Canada
- What is a profession
 - A group of individuals, widely recognized by the public, who:
 - Possess specialized knowledge or skills,
 - Have received specialized training or education
 - Adhere to ehtical standards and
 - Apply their knowledge and skills in the interest of others
 - Regulation (often self regulated)

- Engineers Canada
- Engineers and geoscientists BC
- Code of ethics
- Engineering titles
 - Engineering student -> engineering graduate -> engineering in training -> professional engineer
- Professional Engineer seal
- Iron ring (little finger of writing hand): symbol of pride for engineers. Received upon graduation
- Iron pin: engineering student
- UBC Engineering Code of Ethics

Learning-V7-Stress

- Learning goals
 - Define "stress," "stressor," and "anxiety"
 - Describe the relationship between stress and performance, and appreciate that some stress is good
 - Describe the biological basis of stress
 - o Identify and employ practical stress management strategies
 - Explain the difference between "mental health problem" and "mental illness," and identify resources when extra help is needed
- Definitions
 - Stressor: an activity, event, or something that causes stress
 - Stress: a reaction to a stressor happening now and triggered by a specific situation
 - Anxiety: fear or worry about something that may or may not happen in the future, out of proportion with the actual likelihood or impact; the stress that continues after a stressor is gone
- Characterizing stress
 - Low stress -> low performance
 - o Optimal stress -> peak performance. Motivated, focused, energized
 - Over stress -> fatigued exhausted
 - Burnout -> low performance. panic, anger, breakdown
- Stress: evolutionary adaptation to save life. Fight-or-flight response
 - Release of stress hormones such as adrenaline (burst of energy) and cortisol (influences emotions)
- Everyday stress
 - Stress response is a good thing, indicates that the brain realizes there is something to take
 on
 - Rapid breathing & heart pounding: more oxygen for brain
 - Body pausing digestion
 - Tension or sweating: body is getting ready to perform
 - Stress responses are helpful to keep us motivated
 - Become problematic if we are always in high stress

- Impaired brain, function, attention and mood
- High blood pressure
- Chest pain, muscle pain, and fatigue
- Upset stomach, hunger, impact on digestion
- Loss in muscle tissue and bone density
- Strategies to Promote mental Health
 - Take occasional mental breaks. Activities such as relaxing, personal time, socialize, hangout, help others, mind-body practices, exercise
 - Exercise: releases serotonin, dopamine, and norepinephrine. Releases endorphins. Reduces cortisol and adrenaline
 - 30 minutes of aerobic exercise 4-5 times a week is ideal
 - Laughter: socialize. Produces serotonin, dopamine, endorphins. Also releases oxytocin.
 Reduces stress hormones
 - Helping others: Releases serotonin, dopamine, oxytocin.
 - Mindfulness: activities like yoga, meditation. Releases serotonin and dopamine, melatonin, reduce cortisol
 - Sleeping: 7.5 to 9 hours a day.
 - Eating right: vitamins B, C, D. Vegetables, fruit, milk and yogurt. Omega 3.
- · When to get help
 - When stress is too high
- Mental health problem vs Mental Illness
 - Mental health problem: a substantial emotional, thought, or behavioral difficulty that causes you significant life challenges. Usually requires help from friends, family, and people you trust
 - Mental illness: when a person is unable to function in their everyday life due to the way
 their brain is controlling their thoughts, emotions, and behaviors. Diagnosed and trained by
 professionals.
- 5 step approach: reframe the stress response -> identify the source f your stress response -> make a plan -> apply your solutions to the problem -> evaluate the success of your solutions

M2-W7-V1: Weighted Decision Matrix

- Learning Goals
 - o Describe what a weighted decision matrix (WDM) is and how to construct one
 - Describe where the values in a WDM come from and what they mean
 - Explain when a WDM might be used in an engineering project
- Weighted Decision Matrix
 - Weights should reflect priorities of stakeholders, not team
 - Not all specific requirements are required? (from quiz)
- Sensitivity of results
 - Desirably, slight changes to weight gives the same rank
 - An option that frequently ranks low can be eliminated

M2-W7-V2: Presentations

- Learning Goals
 - Explain how the organization and structure of a technical presentation impacts presentation effectiveness
 - Describe the key principles of the Assertion-Evidence method for slide construction
 - o Outline the qualities of effective and ineffective visual aids in a technical presentation
- Tips
 - Logical organization
 - o Clear, descriptive, and non-excessive outline
 - Textblocks
 - No grammatical errors, contractions, super long sentences
 - Spell out words
 - Summarized in short bullets, not word for word
 - DO NOT DIRECTLY READ SLIDE TEXT
 - Slide title that reflects content
 - Visual aids that are helpful, not just for decoration
 - Do not have generic graphics
 - Assertion-Evidence
 - More likely to pique audience's interest
 - Alternative to bullet point list
 - Slide background
 - Ideally background that is not distracting, and must not impede reading text (good contrast)
 - Built-in themes should not be used without thought
 - Transitions and animations
 - Just because they can be used doesn't mean you should
 - Not appropriate for technical presentation

Learning-V8-Metacognition

- Higher metacognitive awareness -> higher grades
- Learning goals
 - Define metacognition and describe it in terms of knowledge of cognition and regulation of cognition
 - Relate metacognition to the learning practices introduced in the Transitioning to University Learning screencast series
 - Explain the steps in the Deliberate Practice process in terms of metacognition
 - Define and identify "stretch goals" and the "fluency bias"
- Metacognition
 - Cognition: thinking proecsses
 - o Meta: beyond
 - Awareness, understanding, and control of your thinking and learning processes

- Thinking about thinking
- Knowledge of cognition: What we know about thinking
 - Principles of how learning work: "what"
 - Effective learning strategies: "how"
 - When to apply these strategies: "when"
- Regulation of cognition: How we use our knowledge about thinking
 - Planning for learning -> managing information -> monitoring learning -> correcting for errors -> evaluating learning
- Deliberate practice
 - Challenge: set a stretch goal (detailed, specific goal just out of reach but we can achieve by challenging ourselves)
 - 2. Focus: high intensity, short time
 - 3. Feedback: monitor your learning
 - 4. Refine: reflect and repeat
- Fluency bias
 - Do easy things we are good at

M2-W8-V1: Delivering Technical Presentations

- Learning Goals
 - Describe the role of voice and body language in effective delivery of oral presentations
 - Describe the factors influencing the professionalism of a presentation, and the impact they have
 - Explain how language choices enhance or detract from a presentation
- Delivery: conveying idea through voice and body language
 - Don't be monotonous spend most of the time looking at notes
 - Nervous body language: don't have distracting body movement. Don't focus on ground and ceiling
 - Use gestures, but don't overexaggerate gestures. (depends on scale of audience. Larger gestures for larger audience)
- Professionalism
 - Attentiveness, enthusiasm (technical presentation does not have to be stuffy)
 - Attire (smart casual attire). At least more dressed than audience. For us, smart casual or business.
- Language: speak clearly with compelling language choices that support the presentation and are appropriate for the audience
 - Language choices appropriate for audience.
 - Avoid excessively long, complex sentences.
 - Formal, precise language. Avoid um, ah, you know. If you get stumped, pause, breathe, collect your thoughts.

Learning-V9-Summary

• Basically, just learn effectively. Metacognition

M3-W9-V1: Eric Rea

- Quadriplegic video game designer
- Adaptive device: tool that allows you to bridge the gap between your disability and whatever it is you are trying to physically interface with
 - Ex. strap for fork
- 3D printer: convert idea into design in physical form
 - Suitable for small parts produced in small numbers
- CAD and 3D printing allows Eric to visualize his designs
 - Allows for designs that give allow users to experience the fun in life, as opposed to standard adaptive evices

M3-W9-V2: Ken Fraser

- Ken Fraser
 - Executive director of Vancouver Resource Society
 - o Accident in 1979
 - Broke his neck. Break at C5-6 while diving in a swimming pool
 - Results
 - Paralyzed from armpits down
 - Limited hand function
 - Limited arm movement (Bottom half of arm is also paralyzed)
- Ken's adaptive devices
 - Typing splint. Can be used a a pen, or reversed to use for typing
 - Elastic bands for improved grip with friction when writing
 - Held by position of the hand
 - For faster typing, uses a splint in his right hand and left pinky on his left hand.
- Range of movement
 - Arms barely above shoulder
 - Extended forward but quite curved
 - o Extend outwards a reasonable amount
 - Pinky is curved tightly (muscle tightness). Provides strong grip for pen stability
- Challenging tasks
 - Paperwork
 - Pushing around, sliding around, flipping page. Glove friction
 - Eating
 - Eats by himself. Eats corn on the cob by stabbing it with a fork, and then holding it up to his mouth

M3-W9-V3: Stress and Strength

Learning goals

- o Define stress, strength, elastic deformation, plastic deformation
- o Describe the difference between ultimate tensile strength and yield strength
- Calculate stress for a simple component loaded in tension
- Explain how to avoid yield and breaking failures for simple engineering components
- Stress
 - sigma = stress = Force/Area. Also called pressure in some contexts
 - Unit $N/m^2 = Pa$
- Fracture (breaking) failure
 - Cause
 - Stress > strength
 - sigma > sigma_ut (ultimate tensile strength of material)
 - o To avoid:
 - Ensure sigma <= sigma_ut
 - Smaller force, thicker cable, or material with higher ultimate tensile strength
- Yield failure
 - Elastic deformation
 - Temporary change in shape
 - o Plastic deformation (yield)
 - Permanent change in shape
 - Cause
 - Stress > yield strength
 - sigma > sigma_y (yield strength of material). Note that yield strength is less than ultimate tensile strength
 - To avoid:
 - Ensure sigma <= sigma_y
 - Smaller force, thicker cable, or material with higher yield strength
- Narrower part will have higher stress for same load. Keep this in consideration for Module 3

M3-W10-V1: Ethics

- Ethics: the study of standards of right and wrong
- Dilemma: a difficult decision where no alternative is clearly preferable
- Learning goals
 - o Define the terms ethics and dilemma
 - Explain how the law and the Code of Ethics can assist in resolving dilemmas
 - o Describe how personal, organizational, and societal values confound resolving dilemmas
 - Apply the APSC 100 Ethics Framework for resolving dilemmas
- APSC 100 Ethics Framework
 - Choose a legal alternative. It might be a fuzzy line between legal and illegal
 - Engineering code of ethics: within law. It might be a fuzzy boundary too.
 - Personal values
 - When faced with dilemma, we should look for decision that agrees with Law, Engineering code of ethics, and personal values

Also consider organizational values and societal values

M3-W10-V2: Ethical Dilemmas

- · Learning goals
 - Describe how risk relates to the APSC 100 ethics framework
 - Define the term "conflict of interest"
 - Describe and apply common ethical theories, including Duty Ethics, Rights Ethics, and Utilitarianism
 - Describe and apply a procedure for resolving ethical conflicts
 - Apply the concept of gradual escalation
- Ethical framework
 - o Best to be well within the boundaries of ethics boundary. Actions should be clearly ethical
 - Remove any doubt of unethical behavior
- Conflict of interest
 - Potential to personally receive benefit when carrying out duty (e.g. small gift or expensive trips)
 - Avoid conflict of interest. Disclose it to others
- Addressing ethical problems
 - Can be approached similar to the design process
 - In the case where options are equal, select the option that has the least benefit to oneself.

 That way it is clear there is no conflict of interest
- Ethical theories
 - o Utilitarianism
 - Ethically correct action produces the greatest benefit for the greatest number of people
 - Duty-Based Ethics
 - Ethically correct action follows universal principles that everyone should follow
 - Right-Based Ethics
 - Ethically correct action is one that respects other peoples' rights
- Gradual escalation
 - o Identify small, low risk action first. If this does not work, progressively larger steps are taken

M3-W11-V1: Rapid Prototyping

- Learning Goals
 - Explain how rapid prototyping technologies are used in the design process
 - Describe how each of the following rapid prototyping technologies work, as well as the associated strengths and weaknesses:
 - Waterjet cutter, laser cutter, 3D-printer
- Iterating in design: sketch -> CAD model -> rapid prototype
 - Quickly moving from virtual to physical models
- Rapid prototype vs conventional machining

- Rapid prototyping: less time consuming, does not require manual labor and skill for operating machine
- Waterjet cutter
 - Capable of cutting through almost anything using high pressure water that acts like liquid sandpaper
 - Can cut through metal, glass, ceramics, concrete, plastics, wood, composites
 - Uses either high pressure water or water + abrasive
 - o Downside
 - For most waterjets, the nozzle is vertical, so it can only be used for cutting flat, 2D shapes
 - It is possible to build up complex shapes from a series of 2D parts
 - Some sophisticated waterjets can change angle of nozzle, to cut slanted
 - Impossible to control the depth of cutting (cuts right through)
 - Materials will get wet
- Laser cutter
 - Laser follows cutting path determined by computer
 - o Cut with accuracy. The type of material it can cut depends on the laser cutter
 - Power can be adjusted for moderate control over cutting depth
 - Limitations
 - Most laser cutters can only cut 2D shapes
 - Some materials may release harmful gases when cut
- 3D printer/Additive Manufacturing
 - Fused Deposition Modelling (FDM)
 - Plastic is melted and deposited strip by strip
 - Selective Laser Sintering (SLS)
 - Uses lasers to fuse powered material into solid form
 - Powder moves to work area, and laser adds a thin layer to the existing shape
 - Tends to produce better results than FDM
 - No need of support structures
 - Advantages
 - Make complex, fully 3D models
 - Take CAD files and great models
 - Limitations
 - Slow machines
 - Materials are limited
 - Considerations
 - Structures can't be too thin or have too many unsupported internal features

M3-W11-V2-Occupational Therapist Stakeholder

Learning goals

- Describe the role of an occupational therapist
- Explain the purpose of assistive technology and how it is used
- Identify the parameters that are important for adoption and design of assistive technology
- Explain key elements to consider when collaborating with occupational therapists
- Emma Smith
 - Occupational therapist. Focus on assistive technology and wheelchairs
 - o Occupational therapy: enable participation and independence in society. Help people achieve the people they need, want, or are expected to do
- Assistive technology
 - Commercially available or custom made
 - o items, equipment, or product that increase, maintain, or improve functional capabilities
 - Consider: user's experience (the context of the user and their lifestyle), usefulness of device, ease of use, simplicity, learning and ongoing support required, and social context (look good and look normal)
 - Usefulness might overpower complicated. But it depends
- When assistive technology goes wrong
 - If it doesn't work, people won't use it because it's not useful
- When it works
 - o Benefits people greatly, and is useful. For example, lever on wheelchair

M3-W11-V3-Elevator Pitches

- Learning goals
 - Describe how Clear, Concise, and Complete (from the 7 Cs of Communication) apply to professional communication
 - o Explain what an "elevator pitch" is and how it is used
 - Describe the key elements of an elevator pitch
- Framework: Audience, Purpose, Context -> good presentation
- Framework: 7 Cs
 - Clear, correct, concise, concrete, complete, courteous, considerate
- Clear, concise, complete
 - o Clear
 - Easy to follow, easy to understand, unambiguous in message
 - Concise
 - Brief, to the point, free of unnecessary language
 - Complete
 - Includes all relevant information to the message, clearly conveys what you want from the recipient
- Elevator pitch
 - By luck, you ride the elevator with influential individuals. 30 second elevator ride, chance to communicate great idea
 - A succinct summary of an idea, product, service, or other solution. It is intended to generate interest and start a conversation

- 1. what is the problem you are trying to address?
 - 2. What is your solution to address it?
 - 3. Why is it important to the audience?
- Must be clear, concise, and complete

M3-W12-V1-Technical Memos

- Learning Goals
 - Describe how Correct and Concrete (from the 7 Cs of Communication) apply to professional communication
 - Explain what a "technical memorandum" is and what it is used for
 - Describe the key elements of a technical memorandum
- Correct and Concrete
 - Correct
 - Message is factually and grammatically accurate, adhering to standards of business communication
 - Concrete
 - Precise, specific and detailed instead of vague
 - Precise numbers and information
 - Overlaps with clear and complete
 - Added info that is necessary: better example of complete
 - Added info that is helpful: better example of concrete
- Technical Memorandum
 - For sharing their designs and recommendations. Communication within people in an organization or office
 - Main Memo
 - Header: date, sender, recipient, subject
 - Introduction: purpose and topic of memo
 - Main body: elaborates on problem and solution development process
 - Conclusion: summary of findings and emphasizes recommendation
 - No new info
 - Appendices
 - Detailed info that will be distracting in the body
 - Appendices should be referenced in the main body

M3-W13-V1-7 Cs and Feedback

- Learning Goals
 - Describe how Courteous and Considerate (from the 7Cs of Communication) apply to professional communication
 - Describe three types of feedback in the workplace
 - Apply principles of Concrete, Complete, and Considerate communication in developing effective written feedback

- Courteous and Considerate (strong overlap)
 - Courteous
 - Correct, respectful, and sincere
 - Considerate
 - Keep audience in mind
 - Empathetic, mindful, positive, and with emphasis on what is possible
 - o Difference
 - Courteous: respect for general audience
 - Considerate: taking into account the specific audience
- Giving feedback
 - Types of feedback
 - Appreciation: give credit/thanks
 - Coaching: help someone improve
 - Evaluation: rate someone's performance against standards
 - Sender -> (message) -> Receiver -> (response)
 - APSC 100: focus on message
 - o 3 main Cs for feedback:
 - Concrete: descriptive, specific, and non judgmental message
 - Complete: relevant details, impact and suggestions for improvement
 - Considerate: empathetic, relevant, focus on what is possible

7 Cs Summary

- Clear
 - Easy to follow
 - Easy to understand
- Correct
 - o Factually accurate
 - Correct in grammar and format
- Concise
 - Brief
 - To the point
- Concrete
 - Detailed, vivid, and specific
 - o Clear in its main point
- Complete
 - o Includes information relevant to audience
 - o Conveys what audience should do
- Courteous
 - Sincere and genuine
 - Polite and respectful
- Considerate

- o Empathetic and mindful
- Prepared and delivered with audience in mind

Things to review for final exam

- 7 Cs
- Elevator pitch