Mathematics for Robotics Assignment 5

Generic Algorithm

Per Henrik Hardeberg se23mrob005

Contents

Li	st of Figures	i
1	Task 1	1
	1.1 a),b),c)	1
	1.2 d)	1
	1.3 e)	1
2	Task 2	3
3	Task 3	3
\mathbf{L}^{i}	ist of Figures	
	1 Traveling Salesmann Given Problem	3

$1 \quad \text{Task } 1$

$1.1 \ a),b),c)$

Individual No	X Value	Equivalent Binary	Fitness f(x)	Probability p
1	6	0 0 1 1 0	-66	0.0014
2	8	0 1 0 0 0	-248	0.0053
3	15	0 1 1 1 1	-2460	0.0521
4	19	1 0 0 1 1	-5396	0.1144
5	25	1 1 0 0 1	-13100	0.2776
6	31	11111	-25916	0.5492

Table 1: Probability Table

1.2 d)

Highest probability on individual 5 and 6. Therefore, make two offsprings from them (K=2):

$$p_1 \ 11001$$
 $p_2 \ 11111$
=
 $o_1 \ 11111 = 31$
 $o_2 \ 11001 = 25$

Second-highest probability on individual 3 and 4. Therefore, make two offsprings from them (K=2):

$$p_3$$
 01111
 p_4 10011
=
 o_3 01011 = 11
 o_4 10111 = 23

1.3 e)

Repeat the step with the offsets as parents:

$$p_1 \ 111111$$
 $p_2 \ 11001$
=
 $o_1 \ 11001 = 25$
 $o_2 \ 11111 = 31$

1.3 e) 1 TASK 1

```
p_3 01111

p_4 10011

=

o_3 01011 = 11

o_4 10111 = 23
```

```
clear; close all; clc;
% Given Function
xList = 0:0.1:31;
y = 4.*xList.^2-xList.^3+xList;
plot(xList,y)
% Function to convert binary to decimal
binaryToDecimal = @(binary) sum(binary .* 2.^(numel(binary)-1:-1:0));
% Parameters
num individuals = 4;
num\_bits = 5;
lower_limit = 0;
upper_limit = 31;
% a) Create population
population = [ 6;8;15;19;25;31];
f_x = 4.*population.^2-population.^3+population;
% b) Binary encoding
binary_population = arrayfun(@(x) decimalToBinary(x, num_bits), ...
   population, 'UniformOutput', false);
% Display the results
disp('Original Values:');
disp(population);
disp('Binary Encoding:');
disp(binary_population);
%c), calculate p based on fitness values.
% Formula from lecture: fi/sum(fi)
for i =1 :length(f_x)
p(i) = f_x(i) / sum(f_x)
end
sum(p)
%Task d)
%Offsprings from parent 6,5,4,3:
01 = [1 \ 1 \ 1 \ 1 \ 1];
02 = [1 \ 1 \ 0 \ 0 \ 1];
03 = [0 \ 1 \ 0 \ 1 \ 1];
04 = [1 \ 0 \ 1 \ 1 \ 1];
01 = binaryToDecimal(o1)
O2 = binaryToDecimal(o2)
O3 = binaryToDecimal(o3)
O4 = binaryToDecimal(o4)
%Task e)
01 = [1 \ 1 \ 0 \ 0 \ 1];
02 = [1 \ 1 \ 1 \ 1 \ 1];
```

```
03 = [0 1 0 1 1];
04 = [1 0 1 1 1];
01 = binaryToDecimal(01)
02 = binaryToDecimal(02)
03 = binaryToDecimal(03)
04 = binaryToDecimal(04)
```

2 Task 2

Figure 1: Traveling Salesmann Given Problem

City	Connectivity
A	B, C, E, F
В	A, C
С	A, B, D
D	C, E, G, H
E	A, D, F
F	E, A, G

Table 2: Connectivity Table

Possible routes: A - B - C - D - E - F - G - H and B - C - A - E - F - G - H - D etc.

3 Task 3

```
clear; clc
P_{original} = 11.4;
r = 0.2;
q = 2;
Delta = 1.5;
delta = 1-(2*(1-r))^(1/(q+1))
Pmutated = P_original*delta*Delta % = -2.9003
% r2
%r1
clear;
P_{original} = 11.4;
r = 0.7;
q = 2;
Delta = 1.5;
delta = 1-(2*(1-r))^{(1/(q+1))}
Pmutated = P_original*delta*Delta % = 2.6773
```