

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 3-ALGEBRA BOOLEANĂ ȘI LOGICA DIGITALĂ

Algebra booleană și logica digitală

- Axiomele şi teoremele algebrei booleene;
- Funcții booleene;
- Forma canonică;
- □ Forma standard;
- Aspecte legate de implementarea porţilor logice;

Noțiuni fundamentale de algebră

- □ Set colecție de obiecte care au o anumită proprietate.
 - Dacă S este un set și x al setului S, at. scriem $x \in S$
 - Notația A = {2, 3, 4, 5} denotă setul A, cu elementele 2, 3, 4, 5
- ☐ Un <u>operator binar</u> al setului *S* este o regulă prin care pentru oricare pereche de elemente din *S* prin aplicarea regulii se obține un element tot din *S*
- Axiomă: propoziție care este considerată adevărată fără a fi însă demonstrată..

Noțiuni fundamentale de algebră Exemple de axiome

Comutativitatea

Un operator binar • este comutativ dacă şi numai dacă pentru oricare x, y ∈ S

$$X \bullet y = y \bullet X$$

Elementul invers

Un set S are invers (e) dacă și numai dacă pt. oricare $x \in S$, există un element $y \in S$ astfel încât

$$x \cdot y = e$$

Distributivitate

■ Dacă • și + sunt doi operatori binari asupra setului S, se spune că • e distributiv în raport cu + dacă, oricare ar fi x, y, $z \in S$

$$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$$

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 1 (Proprietatea închiderii):

- (a) B este închisă cu privire la operatorul +;
- (b) B este închisă cu privire la operatorul · ;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 1 (Proprietatea închiderii):

- (a) B este închisă cu privire la operatorul +;
- (b) (b) B este închisă cu privire la operatorul · ;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 2 (Element neutru):

- (a) ∃element neutru faţă de operatorul + notat cu
 0 a.î.: ∀ a∈B, a+0 = a;
- (b) ∃element neutru faţă de operatorul · notat cu 1 a.î.: ∀ a∈B, a·1 = a;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 3 (Comutativitate):

- (a) \forall a,b \in B, a+b = b+a;
- (b) \forall a,b \in B, a·b = b·a;

Axioma 4 (Distributivitate):

- (a) $\forall a,b,c \in B, a+(b\cdot c) = (a+b) \cdot (a+c);$
- (b) \forall a,b,c \in B, a·(b+c) = a·b + a·c;

- Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:
- **Axioma 5 (Complementul):** Pentru fiecare $x \in B$, există $x' \in B$ a.î.
- (a) x + x' = 1;
- (b) $x \cdot x' = 0$; x' se numește complementul lui x
- **Axioma 6:** Mulțimea B conține cel puțin 2 elemente diferite. $x, y \in B, si x \neq y$

Algebra booleană cu 2 valori

- Set B has two elements: 0 and 1
- □ Algebra are 2 opertori: SAU (OR), ŞI (AND)

Х	у	x· y
0	0	0
0	1	0
1	0	0
1	1	1

op.și

Х	у	x+y
0	0	0
0	1	1
1	0	1
1	1	1

op.sau

Algebra booleană: precedența operatorilor

Op. booleeni se aplică în urm. ordine:

- Paranteze ()
- NOT '
- AND・
- OR +

Exemplu: Evaluați expresia: (x + xy)'pt. x = 0 și y = 1: (0+0.1)' = (0+0)' = (0)' = 1

Principiul dualității

- Axiomele algebrei booleene sunt prezentate în perechi fiecare axiomă din pereche fiind duală celeilalte;
- □ O axiomă se poate obţine din duala sa modificând operaţia "+"cu operaţia "."şi elementul 0 cu elementul 1 (şi invers).

Exemplu: existenţa elementului opus

(i)
$$a + a' = 1$$

 \uparrow \uparrow
(ii) $a \cdot a' = 0$

Teoremele algebrei booleene

- □ T1 (Idempotența):
- (a) x + x = x;
- $(b) x \cdot x = x$;
- ☐ T2 (Prop. 0 și 1):
- (a) x + 1 = x;
- $(b)x \cdot 0 = 0;$

Teoremele algebrei booleene

- ☐ T3 (Absorbţie):
- (a) $y \cdot x + x = x$;
- (b) $(y + x) \cdot x = x$;
- □ T4 (Involuţie):((x)') ' = x;

Teoremele algebrei booleene

- □ T5 (Asociativitate):
- (a) (x + y) + z = x + (y + z);
- (b) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;
- □ T6 (De Morgan):
- (a) $(x + y)' = x' \cdot y'$;
- (b) $(x \cdot y)' = x' + y'$;

Demonstrarea teoremelor

☐ Folosind axiome și alte teoreme

Exemplu:

Teorema 1(a) Idempotența: x + x = xDemonstrație:

$$x + x = (x + x) \cdot 1$$

$$= (x + x) (x + x')$$

$$= x + xx' \text{ by}$$

$$= x + 0$$

$$= x$$

Identitatea (Ax. 2b) complement (Ax. 5a) distributivitate (Ax. 4b) complement (Ax. 5b) identitate (Ax. 2a)

Exemplu:

Teorema 1(b) Idempotența: $x \cdot x = x$

Demonstrație:

$$X + X = X$$
$$X \cdot X = X$$

Teorema 1(a)

Dualitatea

Demonstrarea teoremelor

 Prin considerarea tuturor combinațiilor de valori ale variabilelor

Exemplu: De Morgan

Х	у	x ′	y'	х+у	(x+y) '	x'·y'
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Funcții booleene

- \square O funcţie de comutaţie de n variabile $f(X_0, X_1, ..., X_{n-1})$ unde variabilele X_i iau valorile 0 şi 1, pentru i=0÷n-1, se defineşte ca o aplicaţie a mulţimii $\{0,1\}^n$ în mulţimea $\{0,1\}$.
- \square Prin $\{0,1\}^n$ s-a notat produsul cartezian al mulţimii $\{0,1\}$ cu ea î**nsăş**i de n ori.
- □ Domeniul de definiție al funcției f este:

$$X = \{0,1\}^n = \{(X_0,X_1,...,X_{n-1}) | X_0 \in \{0,1\}, X_1 \in \{0,1\},...,X_{n-1} \in \{0,1\}\}$$
 ale cărei elemente sunt n-upluri de 1 și 0 $\{X_0,...,X_{n-1}\}$

Funcție booleană

Expresie algebrică care este formată variabile binare şi din operatorii: şi, or, negare

Exemplu:

$$F = xy + xy'z + x'yz$$
 $F = 1 \operatorname{daca} x = 1 \operatorname{si} y = 1, \operatorname{sau}$
 $\operatorname{daca} x = 1 \operatorname{si} y = 0 \operatorname{si} z = 1, \operatorname{sau}$
 $\operatorname{daca} x = 0 \operatorname{si} y = 1 \operatorname{si} z = 1;$
 $\operatorname{altfel}, F = 0.$

Funcții booleene

☐ Tabel de adevăr prin care este specificată

X	у	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Complementul unei funcții

Funcția F', unde F' poate fi obținută prin interschimbarea lui 0 cu 1 în tabelul de adevăr

×	У	Z	F'
0	0	0	0→1
0	0	1	0→1
0	1	0	0→1
0	1	1	1→0
1	0	0	0→1
1	0	1	1→0
1	1	0	1→0
1	1	1	1→0

Complementul unei funcții

Funcţia F', unde F' poate fi obţinută prin aplicarea repetată a teoremelor lui DeMorgan

Exemplu

$$F' = (xy + xy'z + x'yz)'$$

$$= (xy)' (xy'z)' (x'yz)'$$

$$= (x' + y')(x' + y + z')(x + y' + z')$$

Complementul unei funcții

Funcţia F', unde F' poate fi obţinută folosind principiu dualităţii

Exemplu

Echivalența expresiilor

Poate fi realizată folosind axiomele şi teoremele algebrei booleene.

Exemplu:

$$F = xy + xy'z + x'yz = xy + xz + yz$$

$$xy + xy'z + x'yz = xy + xyz + xy'z + x'yz$$
 absorbţie
 $= xy + x(y + y')z + x'yz$ distributivitate
 $= xy + x1z + x'yz$ complement
 $= xy + xz + x'yz$ identitate
 $= xy + xz + xz + x'yz$ absorbţie
 $= xy + xz + (x + x')yz$ distributivitate
 $= xy + xz + 1yz$ complement
 $= xy + xz + yz$ identitate

Întrebări?

Enough Talking Let's Get To It !!Brace Yourselves!!

