COMP 341 Intro to Al Local Search

Asst. Prof. Barış Akgün Koç University

Today

- Recap
- Local Search
 - "Hill-Climbing"
 - Simulated Annealing
 - Local Beam Search
 - Genetic Algorithms
 - Gradient Ascent/Descent
- Online Search
- Beyond Classical Search: Some Topics

Previously on Intro to Al

Search

- Uninformed
 - DFS, BFS, UCS
 - No domain knowledge

- Informed
 - Greedy, A*
 - Heuristics based on domain/problem knowledge
- Solution is a path to goal

Heuristics

- How promising is a given state?
 - Admissibility/Consistency
 - Dominance

- Design:
 - Solution Costs to Relaxed Problems (e.g., 8 puzzle)
 - Geometric Limits (e.g., Euclidean/Manhattan)
 - Creativity ©

Local Search

Local Search

- Classical Search:
 - Solution is path to a goal state

- Local Search:
 - Solution is the goal state itself
 - Search for a solution when the path doesn't matter
- Optimization: Get to a "better" state (best state if possible!)

Local Search Applications

- Integrated circuit design
- Factory floor layout
- Scheduling
- Routing
- Portfolio Management
- Network optimization

• ...

Local Search

- Formulation:
 - Current State
 - Transition/Successor Function
 - Evaluation Function
- Algorithms: Move towards Better States
 - Complete: Find a solution if one exists
 - Optimal: Find the best state
- New Concept: State Space "Landscape"
- Usually easy to code!

1D State Space Example

Hill-Climbing (in Heavy Fog with Amnesia)

neighbor ←a highest-valued successor of current if neighbor.VALUE ≤ current.VALUE then return current.STATE current ←neighbor

N-Queens

Place N-Queens on a NxN chessboard so that no queen attacks another. (A queen can attack any piece on the same column, row or diagonal.)

- State?
 - Position per column
- Successor Function?
 - Move a piece in a column
- Evaluation Function?
 - Number of attacks

Example: 8-Queens

Current evaluation: 17 (all attacks on the same line are counted)

Hill Climbing Properties

- Complete
 - No
- Optimal
 - No
- Time Complexity
 - O(d) d: longest path to solution (could be infinite!)
- Space Complexity
 - Constant

Drawbacks:

- Plateaus
- Local Minima
- No memory

Hill Climbing – Avoiding Drawbacks?

- Get out of Plateaus:
 - Random walk among equally valued states can escape "shoulders"
 - Infinite Loop, e.g. local flat maxima: Move thresholding
- Avoid Local Minima:
 - Random restart: Start the problem at different states after termination
 - Probabilistically complete but not efficient
- Add Memory:
 - Hill climbing from multiple states in parallel
 - Exchange information

Some Randomized Variants

• Stochastic HC: choose randomly from uphill moves

First choice Stochastic HC: generate successors randomly, pick 1st uphill

Random Restart HC: try and try HC until a goal is found

- What is left?
 - Maybe sometimes move downhill?

Reality Check for HC

- HC is too greedy
 - Never moving downhill is incomplete
 - Real problems have lots of local maxima

• Randomness can bring completeness, but it is inefficient

- So?
 - Combine them!

Simulated Annealing

- Idea:
 - Sometimes move downhill to escape local maxima
 - i.e. Combine random walk with hill climbing
 - Gradually decrease the size and frequency of the random walk
- T:
 - Probability of picking a random neighbor instead of best
 - "Temperature parameter"
- Slowly decrease the temperature hence annealing!

Simulated Annealing

function SIMULATED-ANNEALING(*problem*, *schedule*) **returns** a solution state #schedule, a mapping from time to "temperature" $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$ reduce T over time while true do $T \leftarrow schedule(t)$ **if** T = 0 **then return** *current* Select a random neighbor and *next* ←a randomly selected successor of *current* calculate the change in value $\Delta E \leftarrow next . VALUE - current . VALUE$ if $\Delta E > 0$ then current \leftarrow next If the change is positive, move to else current \leftarrow next only with probability $e^{\Delta E/T}$ the next state else move with some probability

If T is decreased "slow enough", then SA is probabilistically complete and globally optimal!

SA Temperature Scheduling Examples

$$T(t) = \frac{d}{\log(t)}, d > 0, t > 1$$

$$T(t) = \alpha T(t-1), 1 > \alpha > 0$$

$$T(t) = T(t-1) - k, k > 0$$

- Idea: Keep k states instead of 1 and chose top k of all their successors
 - Not the same as k searches run in parallel! Searches that lead to good states recruit other searches to join them

- Idea: Keep k states instead of 1 and chose top k of all of their successors
 - Not the same as k searches run in parallel! Searches that and good states recruit other searches to join them
- Problem: quite often, all k states end up on same local hill

- Idea 2: choose k successors randomly, biased towards good ones
 - Stochastic Beam Search
 - Natural selection anyone?

• Stochastic local beam search + generate successors from pairs of states

- Formulation
 - state: finite alphabet
 - k states: population
 - Evaluation function called *fitness function*
 - Successors from two parents

Brainstorming

- Let's formulate the below problems:
 - State
 - Fitness Function
 - Successor Function (?)
- Evolve a binary string of length n that only contains 1
- Evolve a symmetric binary string

24748552

32752411

24415124

32543213

(a)

Initial Population

states encoded from a finite alphabet k initial states, usually randomly selected

24748552

24

32752411

23

20

32543213

24415124

11

(a)

(b)

Initial Population

Fitness Function

Each state has a "fitness" which is given by the fitness/evaluation function

Select pairs of states for **reproduction**, weighted by their fitness

Reproduction: randomly choose a cross-over point, create two new states by mixing the pair

Mutation: these new states are also subject to random mutations of single digits in the state

Genetic Algorithms – 8 Queens

- 8 Queens Puzzle: placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other
- Formulate:
 - State?
 - Fitness Function?
 - Do we need a transition function?

Genetic Algorithms – 8 Queens

• 8 Queens Puzzle: placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other

Local Search Summary

- Hill Climbing
- Simulated Annealing
- Genetic Algorithms
- There are more (Particle Swarm Optimization is/was very popular)

- These can be applied to continuous state spaces (how?)
- These are all "derivative free algorithms"

Derivative Based: Gradient Descent/Ascent

- State x: multivariate and continuous
- Objective function f(x): Differentiable around x
- Idea: Move x in the direction of decreasing/increasing f
- **How**: Derivatives!
- Need to calculate the gradient:

$$\nabla f(x) = \left(\frac{\partial f}{x_1}, \frac{\partial f}{x_2}, \dots, \frac{\partial f}{x_n}\right)$$

Can be computed *analytically* or *numerically*

Getting into the realm of optimization!

Gradient Descent/Ascent

• Implementation:

While SomeCondition:

$$x(t+1) = x(t) \pm \alpha \nabla f(x)$$

- SomeCondition:
 - Maximum iterations
 - |x(t+1) x(t)| < small
 - •
- More complicated versions exists such as calculating higher order derivatives (e.g. *Newton-Raphson*), adaptive step size (e.g. momentum) etc.

A few Words on Gradient Descent/Ascent

- This family of algorithms is used in a lot of applications!
- Very simple to code the base version
- Works in any number of dimensions
 - Even in infinite-dimensions! Just need to change the derivative
- Inefficient
- Some state-space landscapes wreak havoc
- In any case, a good first tool to tackle an applicable problem!

Online Search

- Offline: simulate the world and reason about a plan to get to a goal
- Online: solve the search problem while executing actions
- Interleaves search and execution

Remaining parts of this slide deck will not be in the exams. Similar topics introduced later will be.

Why Online Search?

- Dynamic environment, things change too quickly to plan
- Nondeterministic environment, deal with what happens rather than planning for all contingencies
- Hard to model, cannot get a reasonable model to do search on

• Problem: a shortsighted view may lead the agent astray

Online Search

- Actions(s) = actions allowed in state s
- c(s,a,s') = cost of action going from state s to state s' with action a
- Goal-test(s)
- No transition model! Do things and see what happens
 - You know s' when you get there!
- Issues:
 - Irreversible actions
 - Dead-ends
 - Is environment safe to explore?

Online Searching with Algos Learned so Far

- Hill-Climbing?
 - Yes!
 - In fact, most local search methods
 - Obviously, no random restarts

- A*?
 - No
 - Cannot jump around the state space!

But I really like A*!

Learning Real-Time A*

Follow f(n) locally but note that initial state does not matter!

 Learning: update h(s) with experience to keep from getting stuck in local minima

If interested read:

Richard E. Korf, Real-time heuristic search, Artificial Intelligence 1990

Beyond Classical Search

- What if actions are non-deterministic?
 - Contingency Plans, plan for multiple outcomes
- What if percepts do not give a whole state? (Partially observable)
 - Reason about belief states
 - Things get more complex
 - The full version is not in the scope of this course