Statistics and Machine Learning 1

Lecture 2B: Summary Statistics

Mark Muldoon
Department of Mathematics, Alan Turing Building
University of Manchester

Week 2

Measures of Central Tendency

Often, we are interested in what a *typical* value of the data; here we are going to start with some definitions you may have seen before, but which are a route into a more systematic treatment of what are called *summary statistics*.

► The *mean* of the data is

$$Mean(x) = \langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i.$$
 (1)

- ► The *median* of the data is the value that sits in the middle when the data are sorted by value. This is a special case of an *order statistic*.
- ▶ A *mode* in data is a value of *x* that is 'more common' than those around it, or a 'local maximum' in the density. For discrete data, this can be uniquely determined as the most common value, but for continuous data modes need to be *estimated*, one aspect of a major strand in data science, *estimating distributions*.

Calculating Means

This goes much as you'd expect!

► In Python:

>>> np.mean(x)

0.9555100148367953

► In R:

> mean(x)

[1] 0.95551

Visualising Measures of Central Tendency

- ► For the earthquake data, we estimate from the kernel density that there is one mode, and its location (more on this later) and calculate the mean and median directly.
- ► The data are *right-skewed*, and as a consequence of this the mode is smallest and the mean is largest we will consider this further; note that for a normal distribution all would be equal.

Variance

Practice manipulating expectations; the data's variance is:

$$\operatorname{Var}(x) = \left\langle (\underline{x} - \langle \underline{x} \rangle)^{2} \right\rangle$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \langle x \rangle)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i} \langle x \rangle + \langle x \rangle^{2})$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \right) - 2 \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \right)}_{\text{This is } \langle x \rangle} \langle x \rangle + \underbrace{\frac{1}{n} \underbrace{\left(\sum_{i=1}^{n} 1 \right)}_{\text{This is } n}}_{\text{This is } n} \langle x \rangle^{2}$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \right)^{2}$$

$$= \langle x^{2} \rangle - \langle x \rangle^{2}.$$

(2)

Unbiased Variance and Computation

► later in the course you will encounter a slightly different formula, the unbiased estimate of the variance:

$$\widehat{\text{Var}}(x) = \frac{n}{n-1} \text{Var}(x) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right).$$
 (3)

- Wikipedia offers a good explanation of the difference.
- Python by default calculates the biased version, and R the unbiased one.
- ► So, as always, you should *check your software's documentation*, but *n* is often so large that the distinction is not important.

Calculating Variances

Biased

```
>>> np.var(x)
0.400257047006528
```

Unbiased

```
>>> np.var(x,ddof=1)
```

0.40033129242426246

- Unbiased
 - > var(x)
 - [1] 0.4003313
- Biased
 - > library(moments)
 - > moment(x, order=2, central = TRUE)
 - [1] 0.400257

'Natural' units

- Generally our results should not depend on the units with which we make measurements, e.g. whether we are working in inches or metres.
- ▶ When we have a relevant physical scale, this can be used to define 'natural units'. For example the mass of the carbon atom is used to define atomic mass.
- For more general data, we do not have such constants but there are two commonly-used quantities that have the same units as the data.
- One is the mean,

$$\mu = \text{Mean}(x), \tag{4}$$

and the other is the standard deviation,

$$\sigma = \sqrt{\operatorname{Var}(x)}. ag{5}$$

Working in 'natural' units

- These two quantities let us define two transformations commonly applied to data.
- ▶ The first is *centring*, with the centred data given by

$$y_i = x_i - \mu, \tag{6}$$

which is defined so that

$$Mean(y) = 0.$$

► The second is *standardisation*, with the standardised data given by

$$z_i = \frac{y_i}{\sigma}. (7)$$

This choice means that

$$Var(z) = 1.$$

Higher moments

▶ In general, the *r*-th *moment* of the data is

$$m_r = \langle x^r \rangle \,. \tag{8}$$

► The r-th central moment of the data is

$$\mu_r = \langle (x - \mu)^r \rangle = \langle y^r \rangle \,, \tag{9}$$

where the y's are the centred versions of the data.

► The r-th standardised moment of the data is

$$\tilde{\mu}_r = \left\langle \left(\frac{x - \mu}{\sigma} \right)^r \right\rangle = \left\langle z^r \right\rangle = \frac{\left\langle (x - \mu)^r \right\rangle}{\sigma^r} = \frac{\mu_r}{\sigma^r}.$$
 (10)

In theory, all higher moments are informative about the data, but in practice those with r=3 and r=4 are most commonly reported.

Skewness

► We define the skewness by

$$Skew(x) = \tilde{\mu}_3. \tag{11}$$

- ▶ A larger (more positive) value of this quantity indicates *right-skewness*, meaning that more of the data's variability arises from values of *x* larger than the mean.
- ► Conversely, a smaller (more negative) value of this quantity indicates *left-skewness*, meaning that more of the data's variability arises from values of *x* smaller than the mean.
- A value close to zero means that the variability of the data is similar either side of the mean (but does not imply an overall symmetric distribution).

Calculating Skewness

As noted before, the earthquake data is right-skewed:

► In Python:

```
>>> ss = np.sqrt(np.var(x))
>>> sp.stats.moment(x,3)/(ss**3)
1.0710553097009332
```


► In R:

```
> ss = sqrt(moment(x, order=2, central = TRUE))
> moment(x, order=3, central = TRUE)/(ss^3)
[1] 1.071055
```

Kurtosis

We define

$$Kurtosis(x) = \tilde{\mu}_4. \tag{12}$$

- A value of this quantity larger than 3 means that more of the variance of the data arises from the tails than would be expected if it were normally distributed.
- A value of this quantity less than 3 means that less of the variance of the data arises from the tails than would be expected if it were normally distributed.
- A value close to 3 is consistent with, though not strong evidence for, a normal distribution.
- ▶ The difference between the kurtosis and 3 is called the excess kurtosis.

Calculating Kurtosis

The earthquake data has a positive value of excess kurtosis and so is *leptokurtic*:

► In Python:

```
>>> (sp.stats.moment(x,4)/(ss**4)) - 3
1.4368380067616835
```


In R:

```
> (moment(x, order=4, central = TRUE)/(ss^4))-3
[1] 1.436838
```

Mathematical aside: indicator functions

► The *indicator function* of a logical proposition *A*

$$\mathbb{1}_{\{A\}} = \begin{cases} 1 \text{ if } A \text{ is true} \\ 0 \text{ if } A \text{ is false} \end{cases} \tag{13}$$

▶ Two examples of indicator functions: at left, an example from last week's quiz, where the blue shaded area shows that part of the unit square where $\mathbb{1}_{\{y \leq x\}} = 1$ and at right, the function $\mathbb{1}_{\{2 \leq x \leq 4\}}$, which is nonzero on the interval $2 \leq x \leq 4$.

The ECDF

The empirical cumulative distribution function (ECDF) is

$$E(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x_i \le t\}} = \langle \mathbb{1}_{\{x \le t\}} \rangle.$$
 (14)

The plot of this function is a lossless visualisation of the data.

Quantiles and Order Statistics

- ▶ The z-th percentile, P_z is the value of x for which z% of the data is $\leq x$.
- So the *median* is $median(x) = P_{50}$.
- ▶ This is related to the ECDF as illustrated below.
- A measure of dispersal of the data is the inter-quartile range, $IQR(x) = P_{75} P_{25}$.

The Tail

- ► The upper tail of the data—*i.e.* the largest values of *x*—are often of most interest, but hardest to visualise.
- ► For example, low-magnitude earthquakes are of much less interest than high-severity ones!
- A commonly used Measure is 1 E(x), which is sometimes called the *survival function*, and which can be plotted using a logarithmic y-axis to make the behaviour of the tail clearer, e.g.:

Multimodality

- ▶ The first definition of the *mode* that most people see is the most frequent value in a dataset. According to this definition, the mode of both (2,3,1,2,2) and (2,3,1,2,12) is 2.
- ► For continuous data, there aren't typically identical observations (and if there are, they aren't typical) so we will need to *estimate* the modes, which we define as local maxima (peaks) of the probability density function.
- ► The location and number of modes is typically the most relevant measure of central tendency and variability for *multimodal* data.
- ▶ We will see that different estimation procedures give different modes, and even for simulated data like the below that is 'obviously' bimodal, they will give different answers about mode locations.

