Tugas 6

Analisis Multivariat

Tujuan:

Pada tugas ini, kalian akan melakukan refleksi terhadap pemahaman atas materi perkuliahan mengenai Multivariate Regression dengan melakukan analisis data dan membuat Laporan.

Due date: Hari Sabtu, 30 April 2022 pukul 23.59 WIB @emas 2

Anggota kelompok:

No	Nama	NPM	Kontribusi	Tingkat
				kontribusi
1	Evan	2006485011	Mencari, mengolah, dan menganalisis data lalu	100%
	Haryowidyatna		membuat laporan.	
2	Muhammad	2006463982	Mencari, mengolah, dan menganalisis data lalu	100%
	Jauhar Hakim		membuat laporan.	
3	Siskawati	2006572970	Mencari, mengolah, dan menganalisis data lalu	100%
	Simandalahi		membuat laporan.	

Laporan Tugas 6

Analisis Regresi Multivariat

Analisis Multivariat Kelas B

Kelompok L

Evan Haryowidyatna 2006485011

Muhammad Jauhar Hakim 2006463982

Siskawati Simandalahi 2006572970

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Indonesia

Depok

April 2022

I. Penjelasan Data

Data yang kami peroleh merupakan data kualitas udara. Kami mendapatkan data dari situs https://archive.ics.uci.edu/ml/datasets/air+quality Data kualitas udara terdiri dari 15 atribut yaitu:

- 1. Date (DD/MM/YYYY)
- 2. Time (HH.MM.SS)
- 3. True hourly averaged concentration CO in mg/m³ (reference analyzer)
- 4. PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted)
- 5. True hourly averaged overall Non Metanic HydroCarbons concentration in microg/m^3 (reference analyzer)
- 6. True hourly averaged Benzene concentration in microg/m³ (reference analyzer)
- 7. PT08.S2 (titania) hourly averaged sensor response (nominally NMHC targeted)
- 8. True hourly averaged NOx concentration in ppb (reference analyzer)
- 9. PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx targeted)
- 10. True hourly averaged NO2 concentration in microg/m³ (reference analyzer)
- 11. PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 targeted)
- 12. PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted)
- 13. Temperature in °C
- 14. Relative Humidity (%)
- 15. AH Absolute Humidity

II. Tujuan

Analisis regresi multivariat merupakan metode statistik yang memungkinkan dalam meneliti hubungan lebih dari dua variabel secara bersamaan (Ghozali, 2005). Dengan menggunakan teknik analisis ini maka dapat menganalisis pengaruh beberapa variabel terhadap variabel-variabel lainnya dalam waktu yang bersamaan.

III. Pemodelan

Pemodelan analisis regresi multivariat akan diuji lebih dari satu variabel dependen terhadap satu atau lebih variabel independen di mana pada kasus ini analisis regresi multivariat memiliki kelebihan yaitu setiap pengujiannya yang mempertimbangkan hubungan antar variabel dependen satu dengan yang lainnya dalam pembentukan suatu model.

Berikut ini adalah langkah kerja untuk analisis regresi multivariat:

- 1. Mengimpor data kualitas udara
- 2. Mendefiniskan data baru
- 3. Mengganti nama variabel
- 4. Analisis regresi secara individual variabel dependen Y
- 5. Analisis regresi full model secara multivariat variabel dependen Y
- 6. Analisis regresi parsial model secara multivariat variabel dependen Y untuk subset variabel independen (x2, x3, x4, x5, x6, x8, x9, x10)
- 7. Uji Hipotesis

IV. Analisis

Proses Komputasi R

Install package dan apply library

```
packages <- c("Hmisc", "matlib",
   "Matrix", "expm", "matrixcalc", "ellipsis", "Hotelling", "dplyr", "psych", "Rc
   mdrMisc", "Rcsdp", "mvnormtest", "factoextra", "cluster", "ggplot2", "tree", "
   class", "car")

if ( length(missing_pkgs <- setdiff(packages,
   rownames(installed.packages()))) > 0) {
    message("Installing missing package(s): ", paste(missing_pkgs,
   collapse = ", "))
   install.packages(missing_pkgs)
}
lapply(packages, library, character.only = TRUE)
```

1. Mengimpor data kualitas udara

```
data <- read.csv("AirQualityUCI.csv", header=TRUE, sep=";")
data <- as.data.frame(data)
head(data)</pre>
```

2. Mendefiniskan data baru

```
databaru=data[-1:-2]
head(databaru)
```

3. Mengganti nama variabel

head(databaru)

4. Analisis regresi secara individual variabel dependen Y

```
mmr <- lm(cbind(T, RH, AH) ~ x1 + x2 + x3 + x4
+ x5 + x6 + x7 + x8 + x9 + x10 , data = databaru)
summary(mmr)
head(resid(mmr))
head(fitted(mmr))
coef(mmr)
sigma(mmr)
vcov(mmr)</pre>
```

5. Analisis regresi full model secara multivariat variabel dependen Y

```
library(car)
Anova(mmr)
```

6. Analisis regresi parsial model secara multivariat variabel dependen Y untuk subset variabel independen (x2, x3, x4, x5, x6, x8, x9, x10)

```
mmr2 <- update(mmr, . ~ . - x1 - x7) anova(mmr, mmr2)  
lh.out <- linearHypothesis(mmr, hypothesis.matrix = c("x1 = 0", "x7 = 0"))  
Lh.out
```

7. Uji Hipotesis

```
E <- lh.out$SSPE
E
H <- lh.out$SSPH
H</pre>
```

Hasil Komputasi R

1. Mengimpor data kualitas udara

	Date	Time	CO.GT.	PT08.S1.CO.	NMHC.GT.	C6H6.GT.	PT08.S2.NMHC.	NOx.GT.	PT08.
	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<db1></db1>	<int></int>	<int></int>	<int></int>
1	10/03/2004	18.00.00	2.6	1360	150	11.9	1046	166	1056
2	10/03/2004	19.00.00	2.0	1292	112	9.4	955	103	1174
3	10/03/2004	20.00.00	2.2	1402	88	9.0	939	131	1140
4	10/03/2004	21.00.00	2.2	1376	80	9.2	948	172	1092
5	10/03/2004	22.00.00	1.6	1272	51	6.5	836	131	1205
6	10/03/2004	23.00.00	1.2	1197	38	4.7	750	89	1337
A data.	frame: 6 × 15								

sum(is.na(data))

0

2. Mendefinisikan data baru

databaru=data[-1:-2] head(databaru)

	CO.GT.	PT08.S1.CO.	NMHC.GT.	C6H6.GT.	PT08.S2.NMHC.	NOx.GT.	PT08.S3.N0x.	NO2.GT.	PT08
	<db1></db1>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<int></int>	<int< th=""></int<>
1	2.6	1360	150	11.9	1046	166	1056	113	1692
2	2.0	1292	112	9.4	955	103	1174	92	1559
3	2.2	1402	88	9.0	939	131	1140	114	1555
4	2.2	1376	80	9.2	948	172	1092	122	1584
5	1.6	1272	51	6.5	836	131	1205	116	1498
6	1.2	1197	38	4.7	750	89	1337	96	1393

A data.frame: 6 × 13

3. Mengganti nama variabel

Untuk kelompok variabel dependen Y tidak diubah karena sudah sederhana yaitu

- 1. T → Temperature (Suhu)
- 2. RH → Relative Humidity (Kelembapan Relatif)
- 3. AH → Absolute Humidity (Kelembapan Mutlak)

Untuk kelompok variabel independen X akan diubah menjadi

- 1. x1 → CO.GT. (True hourly averaged concentration CO in mg/m³ (reference analyzer))
- 2. x2 → PT08.S1.CO. ((tin oxide) hourly averaged sensor response (nominally CO targeted))
- 3. x3 → NMHC.GT. (True hourly averaged overall Non Metanic HydroCarbons concentration in microg/m³ (reference analyzer))
- 4. x4 → C6H6.GT. (True hourly averaged Benzene concentration in microg/m³ (reference analyzer))
- 5. x5 → PT08.S2.NMHC. ((titania) hourly averaged sensor response (nominally NMHC targeted))
- 6. x6 → NOx.GT. (True hourly averaged NOx concentration in ppb (reference analyzer))
- 7. x7 → PT08.S3.NOx. ((tungsten oxide) hourly averaged sensor response (nominally NOx targeted))
- 8. x8 \rightarrow NO2.GT. (True hourly averaged NO2 concentration in microg/m^3 (reference analyzer))
- 9. x9 → PT08.S4.NO2. ((tungsten oxide) hourly averaged sensor response (nominally NO2 targeted))
- 10. x10 → PT08.S5.O3. ((indium oxide) hourly averaged sensor response (nominally O3 targeted))

	x1	x2	x3	x4	x 5	х6	x7	x8	x9	x10	Т	RH
	<db1></db1>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<db1></db1>
1	2.6	1360	150	11.9	1046	166	1056	113	1692	1268	13.6	48.9
2	2.0	1292	112	9.4	955	103	1174	92	1559	972	13.3	47.7
3	2.2	1402	88	9.0	939	131	1140	114	1555	1074	11.9	54.0
4	2.2	1376	80	9.2	948	172	1092	122	1584	1203	11.0	60.0
5	1.6	1272	51	6.5	836	131	1205	116	1490	1110	11.2	59.6
6	1.2	1197	38	4.7	750	89	1337	96	1393	949	11.2	59.2

4. Analisis regresi secara individual variabel dependen Y

```
Response T:
Call:
lm(formula = T \sim x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
   x10, data = databaru)
Residuals:
   Min
           1Q Median
                           3Q
                                  Max
-33.127 -3.497 -0.477 3.377 22.759
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.6444866 1.0765154 33.11 <2e-16 ***
            0.0008322 0.0010666
                                   0.78
                                         0.435
x1
x2
           -0.0170039 0.0008270 -20.56 <2e-16 ***
           -0.0091767 0.0005161 -17.78 <2e-16 ***
x3
           1.2135694 0.0066769 181.76 <2e-16 ***
x4
x5
           -0.0211482  0.0008000  -26.43  <2e-16 ***
хб
           -0.0146951 0.0005621 -26.14 <2e-16 ***
x7
           -0.0107328   0.0004707   -22.80   <2e-16 ***
x8
            0.0228457 0.0009972 22.91 <2e-16 ***
                                 59.64 <2e-16 ***
x9
            0.0202109 0.0003389
           -0.0115345 0.0004278 -26.96
                                         <2e-16 ***
x10
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.817 on 9346 degrees of freedom Multiple R-squared: 0.9819, Adjusted R-squared: 0.9819 F-statistic: 5.067e+04 on 10 and 9346 DF, p-value: < 2.2e-16

Response RH:

Call:

 $lm(formula = RH \sim x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10, data = databaru)$

Residuals:

Min 1Q Median 3Q Max -37.060 -9.281 -0.884 8.288 51.460

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 96.7199442 2.4229507 39.918 <2e-16 *** 0.0052105 0.0024007 2.170 0.0300 * x1 0.0364726 0.0018614 19.594 <2e-16 *** x2 x3 0.0019823 0.0011616 1.707 0.0879 . 1.6032394 0.0150280 106.683 <2e-16 *** x4 x5 -0.1562502 0.0018006 -86.776 <2e-16 *** хб -0.0192171 0.0010595 -18.137 <2e-16 *** x7 -0.0740584 0.0022444 -32.996 <2e-16 *** x8 0.0230033 0.0007627 30.159 <2e-16 *** x9

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 13.09 on 9346 degrees of freedom Multiple R-squared: 0.9347, Adjusted R-squared: 0.9346 F-statistic: 1.338e+04 on 10 and 9346 DF, p-value: < 2.2e-16

Response AH :

Call:

 $lm(formula = AH \sim x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10, data = databaru)$

Residuals:

Min 1Q Median 3Q Max -25.2583 -3.0392 0.2959 3.3746 28.1388

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 39.4871674 0.8570077 46.076 < 2e-16 *** 0.0028581 0.0008491 3.366 0.000766 *** x1 x2 -0.0094867 0.0006584 -14.409 < 2e-16 *** x3 -0.0076665 0.0004108 -18.660 < 2e-16 *** 1.2646904 0.0053155 237.927 < 2e-16 *** x4 x5 -0.0558128 0.0006369 -87.634 < 2e-16 *** 0.0020752 0.0004475 4.638 3.57e-06 *** хб -0.0160390 0.0003748 -42.798 < 2e-16 *** x7

head(resid(mmr))

	Т	RH	AH
1	1.755275	0.5362015	1.963428
2	1.154520	4.8925357	3.380947
3	2.352900	2.9062604	3.614916
4	1.691391	5.2473381	2.348851
5	2.339903	3.3221514	2.023368
6	2.671187	3.8953512	2.604271

A matrix: 6×3 of type dbl

head(fitted(mmr))

	Т	RH	AH
1	11.844725	48.36380	-1.205628
2	12.145480	42.80746	-2.655447
3	9.547100	51.09374	-2.864716
4	9.308609	54.75266	-1.562151
5	8.860097	56.27785	-1.234568
6	8.528813	55.30465	-1.819471

A matrix: 6×3 of type dbl

5. Analisis regresi full model secara multivariat variabel dependen Y

```
library(car)
Anova(mmr)
```

Warning message in cbind(x\$df, tests, pf(tests[ok, 2], tests[ok, 3], tests[ok, 4], : "number of rows of result is not a multiple of vector length (arg 3)"

```
Type II MANOVA Tests: Pillai test statistic
```

```
Df test stat approx F num Df den Df
                                      Pr(>F)
x1
       -0.0001
                     0
                            3
                              9344
                                       0.638
        0.0002
                     1
                            3 9344 < 2.2e-16 ***
x2
       -0.0502
                  -149
                            3 9344 < 2.2e-16 ***
хЗ
x4
    1
        0.9370
                 46286
                            3 9344 1.053e-14 ***
                 7413
                            3 9344 < 2.2e-16 ***
       0.7041
x5
   1
      0.0073
                    23
                           3 9344 < 2.2e-16 ***
хб
x7
   1
      -0.0060
                   -19
                           3 9344
                                      0.638
        0.0412
                            3 9344 < 2.2e-16 ***
x8
                   134
    1 -11.3348
                            3 9344 < 2.2e-16 ***
x9
                 -2862
                               9344 1.053e-14 ***
x10 1
        0.0766
                    258
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

T: 5.81708980572631 RH: 13.0927270358662 AH: 4.63095158598535

vcov(mmr)

	T:(Intercept)	T:x1	T:x2	T:x3	T:x4	T:x5
T:(Intercept)	1.158885e+00	1.591840e-05	-5.390961e-04	3.002965e-04	6.930255e-03	-3.068775
T:x1	1.591840e-05	1.137701e-06	5.034156e-09	-5.191252e-08	-3.034643e-07	6.075872e-
T:x2	-5.390961e-04	5.034156e-09	6.839756e-07	-1.664006e-07	-3.149216e-06	-4.4041096
T:x3	3.002965e-04	-5.191252e-08	-1.664006e-07	2.663391e-07	1.620236e-06	-3.459387
T:x4	6.930255e-03	-3.034643e-07	-3.149216e-06	1.620236e-06	4.458139e-05	-2.203184
T:x5	-3.068775e-04	6.075872e-08	-4.404109e-08	-3.459387e-08	-2.203184e-06	6.400215e
T:x6	1.369892e-04	-4.646136e-08	-7.119228e-08	7.488221e-08	1.084191e-06	-1.108389
T:x7	-4.326129e-04	-3.782561e-09	8.984970e-08	-8.284048e-08	-2.618802e-06	1.657579e
T:x8	-2.011919e-04	-4.299766e-07	7.176172e-08	-1.054699e-07	-1.177694e-06	6.138940e
T:x9	1.690394e-05	-1.389970e-08	-4.775214e-08	-3.914123e-09	2.583364e-07	-1.647844
T:x10	2.990513e-05	1.113432e-08	-1.605684e-07	7.781236e-09	1.195076e-07	-1.088750

6. Analisis regresi parsial model secara multivariat variabel dependen Y untuk subset

```
mmr2 <- update(mmr, . \sim . - x1 - x7) anova(mmr, mmr2)
```

	Res.Df	Df	Gen.var.	Pillai	approx F	num Df	den Df	Pr(>F)
	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	9346	NA	37.55749	NA	NA	NA	NA	NA
2	9348	2	41.36782	0.252164	449.4077	6	18690	0

A anova: 2 × 8

variabel independen (x2, x3, x4, x5, x6, x8, x9, x10)

```
lh.out <- linearHypothesis(mmr, hypothesis.matrix = c("x1 = 0", "x7 = 0")) lh.out
```

```
Sum of squares and products for the hypothesis:
```

```
T RH AH
T 1538.6408 2698.1802 2274.6997
RH -3258.3836 -5751.3974 -4833.3904
AH -310.0926 -560.0352 -465.4882
```

Sum of squares and products for error:

```
T RH AH
T 316254.94 -484284.16 72631.41
RH -484284.16 1602086.66 34952.07
AH 72631.41 34952.07 200431.63
```

Multivariate Tests:

```
Df test stat approx F num Df den Df Pr(>F)
Pillai 2 -0.0008578 -1.3355282 6 18690 0.47029
Wilks 2 1.0008575 -1.3346245 6 18688 0.47029
Hotelling-Lawley 2 -0.0008565 -1.3337210 6 18686 0.47029
Roy 2 0.0002705 0.8426716 3 9345 0.47029
```

7. Uji Hipotesis

Matriks E

E <- lh.out\$SSPE E

	Т	RH	AH
Т	316254.94	-484284.16	72631.41
RH	-484284.16	1602086.66	34952.07
АН	72631.41	34952.07	200431.63

A matrix: 3×3 of type dbl

Matriks H

H <- lh.out\$SSPH H

	Т	RH	АН
Т	1538.6408	2698.1802	2274.6997
RH	-3258.3836	-5751.3974	-4833.3904
АН	-310.0926	-560.0352	-465.4882

A matrix: 3×3 of type dbl

Uji Hipotesis Full Model:

$$H_0: \boldsymbol{B_1} = \boldsymbol{0}$$

Di mana $\boldsymbol{B_1}$ merupakan semua elemen \boldsymbol{B} kecuali elemen pada baris pertama.

Uji Hipotesis untuk Subset X

$$H_0: \boldsymbol{B_d} = \boldsymbol{0}$$

Di mana B_d merupakan subset dari B_1 yang akan dihapus atau tidak dipertahankan variabelnya.

V. Kesimpulan

Kami mengawali analisis dengan memastikan data yang kami miliki tidak memiliki missing value. Lalu kami memutuskan untuk tidak mengikut sertakan dua kolom pertama dari data airquality yang kami miliki karena kolom pertama hanya menunjukkan waktu dan pada proses analisis kali ini kami tidak tertarik untuk melihat pengaruh waktu. Setelah memilih data yang akan digunakan, kami merubah penamaan variabel karena penamaan yang terdapat pada data terlalu panjang terutama untuk variabel yang akan kami jadikan variabel independen atau X. Pada variabel Y atau dependen, kami tidak merubah namanya karena menurut kami sudah cukup singkat.

Kemudian kami melanjutkan proses analisis regresi multivariat dengan menggunakan ANOVA. Sehingga didapatkan response T, RH, dan AH secara individual. Pada response T variabel x1 tidak signifikan, pada response RH variabel x3 tidak signifikan, sedangkan pada response AH semua variabel independen x nya signifikan.

Lalu kami melakukan proses analisis regresi mulivariat dengan full model, yaitu dengan menggunakan semua variabel independen X dan semua variabel dependen Y secara multivariat dan dipatkan hasilnya yaitu, pengaruh x1 dan x7 tidak terlalu signifikan terhadap kelompok variabel dependen Y secara multivariat.

Setelah itu kami melakukan uji hipotesis regresi multivariat dengan parsial model, yaitu dengan membuang variabel x1 dan x7, dan menetapkannya sebagai hipotesis matriks dengan nilai-nya 0. Karena hipotesis dengan menggunakan 4 statistik uji MANOVA pvalue nya melebihi 0.05 semua, maka artinya hipotesis nol tidak ditolak yang artinya benar bahwa variabel x1 dan x7 tidak terlalu berpengaruh terhadap kelompok variabel dependen Y secara multivariat.