Chapitre 16 : R-ev euclidien orienté de dimension 2

Dans tout ce chapitre, E désigne un \mathbb{R} -ev euclidien orienté de dimension 2.

Exemples:

 \mathbb{R}^2 muni de sa structure euclidienne canonique.

 \mathbb{C} , en tant que \mathbb{R} -ev de dimension 2, on peut le munir de sa structure euclidienne orientée naturelle, c'est-à-dire celle pour laquelle la base naturelle (1,i) est une base orthonormée directe.

Alors, pour
$$z = x + iy$$
, $z' = x' + iy'$, on a $||z|| = \sqrt{x^2 + y^2} = ||x||$, $z \cdot z' = xx' + yy' = \text{Re}(z\overline{z'})$

I Rappels : droites du plan E.

Ce sont les hyperplans de E:

Si $\mathfrak{B} = (\vec{i}, \vec{j})$ est une base de E, une droite a pour équation D : ax + by = 0 dans \mathfrak{B} .

Le vecteur \vec{d} de composantes (-b,a) dans \mathfrak{B} dirige D $(D = \operatorname{Vect}(\vec{d}))$, et \vec{n} de composantes (a,b) dans \mathfrak{B} est normal à D. $(D^{\perp} = \operatorname{Vect}(\vec{n}))$

Pour $\vec{u} \in E$, on note $p(\vec{u})$ le projeté orthogonal de \vec{u} sur D.

Alors
$$p(\vec{u}) = \vec{u} - \frac{\vec{u} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n}$$
, $d(\vec{u}, D) = \|\vec{u} - p(\vec{u})\| = \frac{|\vec{u} \cdot \vec{n}|}{\|\vec{n}\|}$

Donc si la droite a pour équation D: ax + by = 0 dans une base orthonormée directe \mathfrak{B} ,

si
$$\vec{u} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 dans \mathfrak{B} , alors $d(\vec{u}, D) = \frac{|ax_0 + by_0|}{\sqrt{a^2 + b^2}}$

II Angle orienté de deux vecteurs non nuls du plan

Proposition, définition:

Soient \vec{u}, \vec{v} deux vecteurs non nuls de E.

Alors il existe un réel θ , unique à 2π près, tel que :

$$\frac{\vec{v}}{\|\vec{v}\|} = \cos\theta \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta \cdot \vec{u}', \text{ où } \vec{u}' \text{ désigne le vecteur de } E \text{ tel que } \left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right) \text{ soit une base}$$

orthonormée directe de *E*.

On dit alors que θ est une mesure de l'angle orienté (\vec{u}, \vec{v}) . On note $(\vec{u}, \vec{v}) = \theta[2\pi]$.

Remarque:

L'angle orienté
$$(\vec{u}, \vec{v}) = 1$$
 l'ensemble de ses mesures $= \left\{ \theta \in \mathbb{R}, \frac{\vec{v}}{\|\vec{v}\|} = \cos \theta \frac{\vec{u}}{\|\vec{u}\|} + \sin \theta . \vec{u}' \right\}$

Cette définition est rarement utilisée : on devrait écrire $\theta \in (\vec{u}, \vec{v})$.

Démonstration de la proposition :

 $\frac{\vec{u}}{\|\vec{u}\|}$ est de norme 1. Il existe donc un unique \vec{u} ' tel que $\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right)$ soit une base orthonormée directe.

$$\frac{\vec{v}}{\|\vec{v}\|} \text{ est de norme 1 ; soit } \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \text{ la colonne de ses composantes dans } \mathfrak{B} = \left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right).$$

Alors
$$\alpha^2 + \beta^2 = 1$$

Et, pour tout
$$\theta \in \mathbb{R}$$
, $\frac{\vec{v}}{\|\vec{v}\|} = \cos\theta \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta \cdot \vec{u}' \Leftrightarrow \begin{cases} \cos\theta = \alpha \\ \sin\theta = \beta \end{cases}$

Propriétés :

$$(\vec{u}, \vec{u}) \equiv 0 \left[2\pi \right] \; ; \quad (\vec{u}, -\vec{u}) \equiv \pi \left[2\pi \right] \; ; \quad (\vec{v}, \vec{u}) \equiv -(\vec{u}, \vec{v}) \left[2\pi \right]$$

$$\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right) \equiv +\frac{\pi}{2} \left[2\pi\right]$$

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \left(\operatorname{car} \frac{\vec{v}}{\|\vec{v}\|} \cdot \frac{\vec{u}}{\|\vec{u}\|} = \cos\theta \frac{\vec{u}}{\|\vec{u}\|} \cdot \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta . \vec{u}' \cdot \frac{\vec{u}}{\|\vec{u}\|} \right)$$

$$\sin \theta = \frac{\det(\vec{u}, \vec{v})}{\|\vec{u}\| \|\vec{v}\|}$$

En effet:

On prend $\mathfrak{B} = \left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right)$, base orthonormée directe. Alors :

$$\det_{\mathfrak{B}}\left(\frac{\vec{u}}{\|\vec{u}\|}, \frac{\vec{v}}{\|\vec{v}\|}\right) = \det_{\mathfrak{B}}\left(\frac{\vec{u}}{\|\vec{u}\|}, \cos\theta \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta . \vec{u}'\right)$$

Soit:
$$\frac{1}{\|\vec{u}\| \|\vec{v}\|} \underbrace{\det_{\mathfrak{B}}(\vec{u}, \vec{v})}_{=\det(\vec{u}, \vec{v})} = \cos\theta \det_{\mathfrak{B}}\left(\frac{\vec{u}}{\|\vec{u}\|}, \frac{\vec{u}}{\|\vec{u}\|}\right) + \sin\theta \det_{\mathfrak{B}}\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right)$$

Ainsi, cette formule montre que :

 $|\det(\vec{u}, \vec{v})| = ||\vec{u}||||\vec{v}|||\sin\theta|$ = aire du parallélogramme correspondant aux deux vecteurs.

hauteur
$$\vec{v}$$

III Etude de O(E) et O_2 .

A) Etude

Soit
$$A \in O_2$$
: $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$, avec $\begin{cases} ac + bd = 0 \\ a^2 + b^2 = c^2 + d^2 = 1 \end{cases}$ (de norme 1) $ac + bd = 0 \Leftrightarrow \begin{vmatrix} a & -d \\ b & c \end{vmatrix} = 0 \Leftrightarrow \exists \lambda \in \mathbb{R}, \begin{pmatrix} -d \\ c \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix}$ (puisque $\begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$) Donc $\begin{cases} d = -\lambda c \\ c = \lambda b \end{cases}$, et $d^2 + c^2 = \lambda^2 (a^2 + b^2) = \lambda^2$. Donc $\lambda = \pm 1$ Donc $\lambda = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, et une matrice de ce type est bien dans SO_2 (det $A = 1$) Ou $A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, et une matrice de ce type est bien dans $O_2 \setminus SO_2$ (det $A = -1$)

(Avec dans les deux cas $a^2 + b^2 = 1$)

Conclusion:

Les éléments de SO_2 sont les $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, avec $a, b \in \mathbb{R}$ et $a^2 + b^2 = 1$.

Les éléments de $O_2 \setminus SO_2$ sont les $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, avec $a, b \in \mathbb{R}$ et $a^2 + b^2 = 1$.

B) Etude de SO(E) et SO_2 .

Les éléments de SO_2 sont exactement les matrices du type $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, $\theta \in \mathbb{R}$ (résulte de l'étude précédente).

On a, pour tout $\theta, \theta' \in \mathbb{R}$

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} = \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix}.$$

Ainsi:

$$SO_2$$
 est l'ensemble des $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, $\theta \in \mathbb{R}$ et (SO_2,\times) est un groupe commutatif.

Théorème et définition:

Soit $f \in SO(E)$. Alors il existe un réel θ , unique à 2π près, tel que la matrice de f dans toute base orthonormée directe soit $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. On dit alors que f est la rotation (vectorielle) d'angle θ .

Démonstration:

Soit \mathfrak{B} une base orthonormée directe, soit $A = \text{mat}(f, \mathfrak{B})$.

Comme $f \in SO(E)$, on sait qu'alors $A \in SO_2$. Il existe donc $\theta \in \mathbb{R}$, unique à 2π près, tel que $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$. Soit \mathfrak{B} ' une autre base orthonormée directe. Soit alors P la matrice de passage de \mathfrak{B} à \mathfrak{B} '. Alors, comme $P \in SO_2$ (et SO_2 est commutatif): $\mathrm{mat}(f,\mathfrak{B}') = P^{-1}AP = P^{-1}PA = A$.

Pour $\theta \in \mathbb{R}$, notons ρ_{θ} la rotation d'angle θ .

Proposition:

L'application $\mathbb{R} \to SO(E)$ est un morphisme surjectif du groupe (\mathbb{R} ,+) vers $\theta \mapsto \rho_{\theta}$

 $(SO(E),\circ)$, et dont le noyau est $2\pi\mathbb{Z}$

En effet:

- $\rho_0 = \mathrm{Id}_E$
- $\forall \theta, \theta' \in \mathbb{R}, \rho_{\theta+\theta'} = \rho_{\theta} \circ \rho_{\theta'}$ (résulte du calcul matriciel précédent).
- Surjectivité : résulte du théorème précédent

• Noyau:
$$\rho_{\theta} = \operatorname{Id}_{E} \Leftrightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \theta \in 2\pi \mathbb{Z}$$

Autres résultats :

- $(\rho_{\theta})^{-1} = \rho_{-\theta}$; $\rho_{\pi} = -\operatorname{Id}_{E}$
- Etant donnés deux vecteurs \vec{u}, \vec{v} non nuls et $\theta \in \mathbb{R}$, on a l'équivalence :

$$\rho_{\theta}(\vec{u}) = \vec{v} \Leftrightarrow \begin{cases} \|\vec{u}\| = \|\vec{v}\| \\ (\vec{u}, \vec{v}) \equiv \theta[2\pi] \end{cases}$$

En effet:

- Si $\rho_{\theta}(\vec{u}) = \vec{v}$, alors $\|\vec{u}\| = \|\vec{v}\|$ car ρ_{θ} est un automorphisme orthogonal.

Notons \vec{u}' le vecteur tel que $\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right)$ soit une base orthonormée directe.

Alors la matrice de ρ_{θ} dans cette base est $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Ainsi,
$$\rho_{\theta} \left(\frac{\vec{u}}{\|\vec{u}\|} \right) = \cos \theta \frac{\vec{u}}{\|\vec{u}\|} + \sin \theta . \vec{u}'.$$

Donc
$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{\|\vec{u}\|}{\|\vec{v}\|} \rho_{\theta} \left(\frac{\vec{u}}{\|\vec{u}\|} \right) = \cos \theta \frac{\vec{u}}{\|\vec{u}\|} + \sin \theta \cdot \vec{u}'$$
. Donc $(\vec{u}, \vec{v}) \equiv \theta [2\pi]$

- Inversement, si $\|\vec{u}\| = \|\vec{v}\|$ et $(\vec{u}, \vec{v}) \equiv \theta[2\pi]$, alors :

$$\frac{\vec{v}}{\|\vec{v}\|} = \cos\theta \frac{\vec{u}}{\|\vec{u}\|} + \sin\theta \vec{u}', \text{ où } \vec{u}' \text{ est tel que } \left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}'\right) \text{ soit une base orthonormée}$$

directe. Donc $\frac{\vec{v}}{\|\vec{v}\|} = \rho_{\theta} \left(\frac{\vec{u}}{\|\vec{u}\|} \right)$ (1^{ère} colonne de la matrice de ρ_{θ} dans $\left(\frac{\vec{u}}{\|\vec{u}\|}, \vec{u}' \right)$,

orthonormée)

Donc
$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\|\vec{u}\|} \rho_{\theta}(\vec{u})$$
, soit $\rho_{\theta}(\vec{u}) = \vec{v}$.

C) Etude de $O(E)\backslash SO(E)$ et $O_2\backslash SO_2$.

• Soit $f \in O(E) \setminus SO(E)$, $A = \max(f, \mathfrak{B})$, où \mathfrak{B} est une base orthonormale de E. Alors $A \in O_2 \setminus SO_2$.

Donc
$$A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$
, où $a^2 + b^2 = 1$.

On remarque déjà que ${}^{t}A = A$.

Or, $A \in O_2$, donc ${}^tAA = I_2$. Donc $A^2 = I_2$, donc $f^2 = \operatorname{Id}_E$. Ainsi, f est une symétrie vectorielle.

Mais $f \in O(E)$, donc f est une symétrie orthogonale (car $\forall x \in E, ||f(x)|| = ||x||$), et cette symétrie est par rapport à une droite :

La symétrie par rapport à E est l'identité, et celle par rapport à $\{0\}$ est $-\operatorname{Id}_E$, et ces deux éléments sont dans SO(E) (en dimension 2).

Ainsi, f est une réflexion.

• Inversement, les réflexions sont bien des éléments de $O(E) \setminus SO(E)$.

Conclusion : $O(E) \setminus SO(E)$ est l'ensemble des réflexions.

Attention : la matrice d'une réflexion dans une base orthonormée directe dépend de cette base.

La matrice d'une réflexion de droite D est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ dans une base orthonormale dont le premier vecteur dirige D.

D) Résumé, tableau : classification des éléments de O(E) lorsque dim E=2

Dimension de l'espace des invariants	Nature	Matrice
0	Rotation d'angle θ non nul (modulo 2π)	$ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} $ dans toute base orthonormée directe
2	Id _E (rotation d'angle nul)	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ dans toute base
1	Réflexion de droite <i>D</i>	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ dans } \underline{\text{une}} \text{ base orthonormée directe.}$ $\text{Du type } \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \text{ dans toute base orthonormée}$ directe.

Remarque:

La matrice de ρ_{θ} dans une base orthonormée indirecte est $\begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$

(les bases orthonormées indirectes d'une orientation sont les bases orthonormées directes de l'autre orientation)

E) Composées de réflexions

Théorème:

Tout élément de SO(E) est composé de deux réflexions, l'une pouvant être choisie quelconque.

Démonstration:

Soit $\rho \in SO(E)$, $s \in O(E) \setminus SO(E)$

Alors $\rho \circ s \in O(E)$, et $\det(\rho \circ s) = \det(\rho) \times \det(s) = -1$.

Donc $\rho \circ s \in O(E) \setminus SO(E)$. Donc $\rho \circ s$ est une réflexion s'.

Donc $\rho = \rho \circ (s \circ s) = (\rho \circ s) \circ s = s' \circ s$

De même, $s \circ \rho = s''$, où $s'' \in O(E) \setminus SO(E)$. Donc $\rho = s \circ s''$

Conclusion : Les réflexions engendrent O(E)

IV Compléments à propos d'angles orientés

• Relation de Chasles : $\vec{u}, \vec{v}, \vec{w} \in E \setminus \{0\}$

$$(\vec{u}, \vec{v}) \equiv (\vec{u}, \vec{w}) + (\vec{w}, \vec{v}) [2\pi]$$

Démonstration :

Conséquence du fait que $\rho_{\theta+\theta'} = \rho_{\theta} \circ \rho_{\theta'}$.

• Angle orienté de deux droites du plan.

Soient D, D' deux droites de vecteurs directeurs \vec{u} , \vec{u} '. Alors (\vec{u},\hat{u}') , modulo π , ne dépend pas du choix de \vec{u} et \vec{u} '. On le note alors (D,\hat{D}')

(Si
$$\lambda > 0$$
, $(\vec{u}, \lambda \vec{u}') \equiv (\vec{u}, \vec{u}') [2\pi]$ et $(\vec{u}, -\vec{u}') \equiv \pi + (\vec{u}, \vec{u}') [2\pi]$)

• α = angle orienté (D, D'):

Alors, en notant s_D , $s_{D'}$ les réflexions de droites D, D', on a $s_{D'} \circ s_D = \rho_{2\alpha}$.