Para que sirven las desigualdades?

- Sirven siempre, para cualquier tipo de variable aleatoria
- Sirven para cuando no sabes la distribucion de la variable

Desigualdad de Markov

X una variable aleatoria, $\forall \varepsilon > 0$ con $P(X \ge 0) = 1$

$$P(X \geq \varepsilon) \leq \frac{E(X)}{\varepsilon}$$

Desigualdad de Chebychev

Xuna va., $\forall \varepsilon > 0$

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$

Cuando usar cada una?

- Si solo nos interesa un lado de las cotas \Rightarrow Markov
- Ambas sos sirven para poner una cota y no necesitamos obtener el valor exacto
- A veces nos da > 1 la cota, lo cual es raro pero tiene sentido porque no deja de ser una cota

 $V.A.I.I.D \rightarrow Variables$ aleatorias independientes e identicamente distribuidas

Suma de VAIID

$$X_1,...,X_n, \text{vaiid}$$

$$\rightarrow \mu = E(X_1) = E(X_i), \forall i$$

$$\rightarrow \sigma = \sigma(X_1) = \sigma(X_i), \forall i$$

•
$$S_n = \sum_{i=1}^n X_i$$

-
$$E(S_n) = E\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n E(X_i) = nm$$

•
$$V(S_n) = V\left(\sum_{i=1}^n X_i\right) \underset{\text{ind}}{=} \sum_{i=1}^n V(X_i) = nm$$

•
$$\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n} = \frac{S_n}{n}$$

•
$$E(\overline{X}_n) = E(\frac{S_n}{n}) = \frac{1}{n}E(S_n) = \mu_x$$

$$P \Big(|\overline{X}_n - E \Big(\overline{X}_n \Big)| \geq \varepsilon \Big) \leq \frac{V \Big(\overline{X}_n \Big)}{\varepsilon}$$

ightarrow A medida de que se promedian mas variables, la probabilidad de que ese promedio, este lejos del valor esperado, se achica

Suma de variables aleatorias con distribucion conocida

Si no sabemos que da, siempre se puede chequear calculando cual deberia ser la media

- Suma de binomiales \rightarrow binomial $X \sim \text{Bi}(n,p); Y \sim \text{Bi}(m,p), \text{ind} \Rightarrow X + Y \sim \text{Bi}(n+m,p)$
- Suma de Poisson $X \sim P_0(\lambda_1); Y \sim P_0(\lambda_2) \text{ ind } \Rightarrow X + Y \sim P_0(\lambda_1 + \lambda_2)$

Ley de los grandes numeros

$$X_i, {\rm v.a.i.i.d.}$$
 con $E(X_i)$

$$P \Big(|\overline{X}_n - \mu| \geq \varepsilon \Big) \to 0$$

$$\left(\overline{X}_n \xrightarrow{P} \mu\right)$$

La probabilidad de que el promedio se aleje del valor esperado tiende a cero a mayor tamaño muestral **Sentido comun**