LS 6 Learning From Data

Data Scales (from https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/)

Nominal variables -"name," or label"
Ordinal scales provide measures about the *order* or preference of choices,
Interval scales give us the preference order + the ability to quantify the difference.

Ratio scales give us the ultimate—order, quantified distance plus a true zero

Provides:				
	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		~	~	V
"Counts," aka "Frequency of Distribution"	~	~	~	~
Mode	~	~	~	~
Median		~	V	~
Mean			V	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				~
Has "true zero"				~

Metric

Where We Are

We are at the point where are starting to learn from data

- How are we doing this?
 - Collect Random Samples (iid samples of random variables)
 - Compute statistics, estimate parameters
 - Make Assertions
 - Evaluate Assertions (hypothesis testing)

Assertion Evaluation And Supporting Results

- Sampling dist'ns are the basis evaluating assertions
 - Sampling dist'n is the prob dist'n of the statistic of interest
 - A function of the underlying RV, the statistic, estimator and the popl'n (probability law)
- Law of Large Numbers: If $E[|X_i|] < \infty$, statistic= $n^{-1} \times \sum X_i$, $\{X_i\}$ is i.i.d. then $|n^{-1} \times \sum X_i E[X]| \rightarrow p$ 0 as $n \uparrow p$
 - LLN connects random samples, sample size and estimation to expected values
- Evaluating and Comparing Estimators
 - Bias: $E[\theta-\theta] \equiv accuracy$
 - Variance: $Var(\theta) \equiv precision$
 - · Unbiased and lower variance estimates are generally preferred
- We can in theory evaluate our assertion under the sampling distribution of the statistic whatever it may be, this may be difficult, so
- The Central Limit Theorem ("The Statistician's Shim")
 - · Number of definitions, we will use the following:
 - If $-\infty < E[X] = \mu < \infty$ and $Var(X) = \sigma^2 < \infty$ and the sample $\{X_i\}$ are iid random variables e.g. independent from the same distributions
 - Then FOR ANY DISTRIBUTION the sums and averages of sample realizations of size n converge in distribution with mean = μ , and variance = σ^2/n , convergence speed and asymptotics in part dependent upon dist'n skewness and size of n

Distribution •

Hypothesis Testing And Confidence Intervals – On being A Kenny

Rodgers - We are going to examine "Know when to hold them and know when to fold them"

- 1. Let $\{X(i)\}\$ be iid, σ^2 known, i=1,...,n > 30
 - Xbar = $n^-1^*\Sigma X(i)$ estim by xbar = $n^-1^*\Sigma X(i)$ (must be metric)
 - $Z^* = (Xbar-\mu)/(\sigma^2/n)^0.5 \sim approx N(0,1)$
- 2. Same as 1., but σ^2 unknown
 - $t^* = (Xbar \mu)/(s^2/n)^0.5 \sim approx t(n-1)$
- If dist'n X unknown, n>30 and skewness "not bad" relay on CLT, otherwise use non-parametrics
- Do this to make inferences about popl'n from sample, the assertion.
- Go on to evaluate an inference in form of test with two alternatives
 - Null hypothesis; H(0): θ=a vs Alternative one of H(a): θ≠a or H(a): θ<a or H(a): θ>a must specific H(a) a priori
- Make decision
 Under unknowable that H(0) correct, using transform above and the realizations of Z* or t* and a predetermined "rule" we find H(0) likely and cannot we reject
 - Otherwise reject H(0)

But Problem!

- Under the assertion H(0) true what can we say about the values of the RVs Z* or t*
 - They can take on a support from ∞ to ∞ .
- So statisticians must be gamblers and any time you are a gambler you can make an error
 - How do we gamble: select level of confidence, say CL=95% \rightarrow a level of risk taking, α = 1-CL =0.05 or 5%
- Let's evaluate the transform $Z^* = (Xbar-\mu)/(\sigma^2/n)^0.5 \sim approx N(0,1)$ to see how these rules lay out

- 1. Use Confidential Interval (CI)
- 2. Use upper and lower critical quantile
- 3 Use P-value

CI & Critical Values (Z Score)

- $P(-1.96 \le Z^* \le 1.96) = 0.95$
- Where Z is defined as above:
- P(-1.96<= (Xbar-mu)/(sigma/n^0.5)<= 1.96) =0.95
- = P(se*-1.96<= Xbar-mu <= se * 1.96)
- = P(-Xbar se*1.96<= -mu <= -Xbar + se*1.96)
- = P((Xbar + se*1.96 => mu => Xbar se*1.96)
- Under frequentist statistics meaning 95 out of 100 such Cl's so construct will include μ , NOT there is a 95% chance that Cl will include μ

If α is set at 0.05 \rightarrow $\alpha/2 = 0.025$ P(Z>1.96) = 0.025 P(Z>|z*(1)|) > P(Z>1.96) \rightarrow Fail to reject P(Z>|z*(2)|) < P(Z>1.96) \rightarrow Reject|

Hypothesis Testing Relationships

We concrete-ize all of this "likely" discussion and relate CL, α , P_values, t*'s, n, H(0) and H(A) as follows:

Let T be a RV \sim t(n-1)

Numbers to Know

• $P(-a \le Z \le a) = p$, where $Z \sim N(0,1)$

р	а	
0.90, 90%	+/- 1.64	
0.95, 95%	+/- 1.96	
0.99, 99%	+/- 2.576	