Problema Dual

Modelo **Primal**, na forma padrão com os coeficientes c_i , a_{ij} e b_i .

Max Z =	c_1x_1	+	c_2x_2	+		+	$c_n x_n$	sujei	to a
	$a_{11}x_{1}$	+	$a_{12}x_{2}$	+		+	$a_{1n}x_n$	$\leq b_1$	(y_1)
	$a_{21}x_1$	+	$a_{22}x_{2}$	+		+	$a_{2n}x_n$	$\leq b_2$	(y_2)
	:		:				:	:	
	$a_{m1}x_1$	+	$a_{m2}x_2$	+		+	$a_{mn}x_n$	$< b_m$	(y_m)

 $x_j \ge 0, \ j = 1...n$

Associando-se a cada restrição i do primal uma variável y_i , o seu **Dual** é dado por:

Min D =	b_1y_1	+	b_2y_2	+	 +	$b_m y_m$	sujeito a
	$a_{11}y_{1}$	+	$a_{21}y_2$	+	 +	$a_{m1}y_m$	$\geq c_1$
	$a_{12}y_{1}$	+	$a_{22}y_2$	+	 +	$a_{m2}y_m$	$\geq c_2$
	:		:			:	:
	$a_{1n}y_1$	+	$a_{2n}y_2$	+	 +	$a_{mn}y_m$	$\geq c_n$

 $y_i \ge 0, \ i = 1...m$

Características do Problema Dual

Relações entre o Primal e o Dual:

- a) Se o primal for um problema de Maximização, então o dual será de Minimização
- b) Os termos independentes das restrições do dual são os coeficientes da FO do primal (c_j)
- c) Os coeficientes da FO do dual são os termos independentes do primal (b_i)
- d) As restrições do dual são do tipo \geq , ao passo que as do primal são do tipo \leq
- e) O número de incógnitas do dual (y_i) é igual ao número de restrições do primal
- f) O número de restrições do dual é igual ao número de incógnitas do primal
- g) A matriz dos coeficientes do dual é a transposta da matriz dos coeficientes do primal

Relação Primal × Dual

Transpondo o sistema anterior

O Problema Dual

Sistema transposto

$$Min D = by$$

$$A^t y \ge c$$
$$y \ge 0$$

Problema Dual

Exemplo

Modelo primal na forma padrão

			•			
Max Z =	$2x_1 + 3x_2$			sujeito a		
	$-x_1$	+	x_2	≤ 4	(y_1)	
	x_1	+	x_2	≤ 6	(y_2)	
	$2x_1$	+	x_2	≤ 8	(y_3)	
	x_1 ,	$x_2 \ge$	≥ 0			

Modelo dual

iviodelo duai						
Min D =	$4y_1$	+	$6y_2$	+	$8y_3$	sujeito a
	$-y_1$	+	y_2	+	$2y_3$	≥ 2
	y_1	+	y_2	+	y_3	≥ 3
	u_1	u_2	. U2	> 0		

Teorema básico da dualidade

Temos a seguinte notação:

- $lackbox{} Z = ext{valor da função objetivo primal e } Z^* ext{ seu valor ótimo}$
- $ightharpoonup x_i^* = ext{ponto {\'otimo de }} x_j$
- $ightharpoonup D = ext{valor da função objetivo dual e } D^* ext{ seu valor ótimo}$
- $ightharpoonup y_i^* = ext{ponto otimo de } y_i$

O <u>Teorema da Dualidade</u> nos garante que se existirem soluções viáveis para o primal e para o dual, então:

- a) $Z \leq D$ para quaisquer solução compatível do primal e do dual
- b) Existe uma solução ótima finita para cada problema, tal que $Z^* = D^*$
- c) Se o primal Z tende para o infinito, então o dual não tem solução viável
- d) Se o primal não tem solução viável, então o dual D tende para menos infinito

Teorema das folgas complementares

Não é apenas o valor ótimo das FOs que estão associadas, mas também as suas soluções x_j e y_i . Resolvido o problema, primal ou dual, o outro estará automaticamente resolvido, sem esforço adicional.

- a) O valor ótimo de y_i do dual é igual ao coeficiente na linha da FO ótima, da variável de folga x_{n+i}
- b) O valor ótimo da variável de folga y_{m+j} é igual ao coeficiente na linha da FO ótima, da variável original x_j do primal

O teorema tem este nome pelo fato das variáveis do primal estarem ligadas às variáveis de folga do dual e das variáveis de folga do primal estarem ligadas às variáveis do dual. Portanto diz-se que as soluções do primal e do dual são complementares.

Interpretação econômica do dual

Temos que:

$$c_j = \frac{\$}{\text{unidade do produto } j}$$
, $a_{ij} = \frac{\text{unidade do recurso } i}{\text{unidade do produto } j}$

Pelas restrições do dual, conclui-se que:

$$y_i = \frac{\$}{\text{unidade do recurso } i}$$

A variável y_i representa um "valor implícito" do recurso i, válido somente para o problema de otimização.

 $y_i^* =$ a taxa de variação de Z^* se a quantidade disponível do recurso i aumentar, dentro de um certo intervalo.

Às variáveis duais y_i também são dadas diferentes denominações, tais como:

- a) shadow price
- b) valor implícito
- c) incremental value
- d) internal price
- e) eficienty price, entre outros

Problema Dual

Exemplo

Considere como primal problema da maximização, na forma padrão:

O modelo primal fica da seguinte forma:

$$\begin{array}{lll} \text{Min } D = 12y_1 + 16y_2 + 10x_3 \text{ sujeito a} \\ y_1 & + & 2y_2 & + & y_3 & \geq & 4 \\ 2y_1 & & + & 4y_3 & \geq & 2 \\ y_1 & + & 2y_2 & & \geq & 3 \\ y_1, & & y_2 & e & y_3 & \geq & 0 \end{array}$$

Modelo compacto do Dual usando a estrutura do Primal

```
#conjuntos de índices
     param m;
     param n;
 4
     set MP:= {1..m}; # conjunto das matérias primas
 6
     set Ligas:= {1..n}; # conjunto das ligas
     #parâmetros do problema
     param PV { Ligas }; # vetor com o preço de venda de cada liga
10
     param disp{ MP }; # vetor com a disponibilidade de cada matéria prima
11
     param matriz ( MP, Ligas ); # matriz de consumo de materia prima por liga
12
     #variáveis de decisão do DUAL
13
     var v ( MP ) . >=0: # integer: # variável de decisão: guantidade de matéria prima utilizada na produção
14
15
     #função objetivo
16
     minimize Custo: sum{i in MP} disp[i] * v[i];
17
18
     #restricões
19
     s.t. Mat Prima{j in Ligas}: sum{i in MP} matriz[i, j] * y[i] >= PV[j];
20
21
     solve:
```

Modelo compacto do Dual usando a estrutura do Primal

```
#entrada de dados
     data:
     param 'm' := 3;
     param 'n':= 2;
34
     param PV :=
36
     . . . . 1 . 30
     ....2.50:
     param disp :=
39
     . . . . 1 . 15
40
     . . . . 2 - 11
     3 14:
     param matriz: 1 2:=
43
44
     end:
```