Smart TASEP

Deep Q-Learning in Intelligent Matter Simulations

Jonas Märtens

February 25, 2024

LMU Munich

Introduction

Smart TASEP: Deep Q-Learning in Intelligent Matter Simulations

- TASEP: Totally Asymmetric Simple Exclusion Process
- Smart TASEP: TASEP with intelligent agents
 - → Intelligent Matter Simulations
- Deep Q-Learning: Reinforcement Learning with Neural Networks

TASEP

TASEP: Totally Asymmetric Simple Exclusion Process

• Stochastic Process on a grid lattice

ASEP with periodic boundary conditions

ASEP with open boundary conditions

TASEP

TASEP: Totally Asymmetric Simple Exclusion Process

- Stochastic Process on a grid lattice
- Exclusion: Only one particle per site

ASEP with periodic boundary conditions

ASEP with open boundary conditions

TASEP: Totally Asymmetric Simple Exclusion Process

- Stochastic Process on a grid lattice
- Exclusion: Only one particle per site
- Simple: Jumps only one cell far

ASEP with periodic boundary conditions

ASEP with open boundary conditions

TASEP: Totally Asymmetric Simple Exclusion Process

- Stochastic Process on a grid lattice
- Exclusion: Only one particle per site
- Simple: Jumps only one cell far
- Totally Asymmetric: p = 1, q = 0

ASEP with periodic boundary conditions

ASEP with open boundary conditions

TASEP: Totally Asymmetric Simple Exclusion Process

- Stochastic Process on a grid lattice
- Exclusion: Only one particle per site
- Simple: Jumps only one cell far
- Totally Asymmetric: p = 1, q = 0

Possible with either

- Periodic boundary conditions
- Open boundary conditions

ASEP with periodic boundary conditions

ASEP with open boundary conditions

Modifications

Two modifications (before smarticles)

2D (T)ASEP

Symmetric in one direction and totally asymmetric in the other

2D ASEP

Modifications

Two modifications (before smarticles)

2D (T)ASEP

- Symmetric in one direction and totally asymmetric in the other
- Directed flow with multiple lanes
- compare traffic flow, kinesin transport
- motivates transport optimization

2D ASEP

Intracellular transport

Modifications

Two modifications (before smarticles)

2D (T)ASEP

- Symmetric in one direction and totally asymmetric in the other
- Directed flow with multiple lanes
- compare traffic flow, kinesin transport
- motivates transport optimization

Speeds

- Each particle has a speed
- Speed is probability to jump
- Drawn from a distribution
- If different, jams

2D ASEP

Intracellular transport

Make it Smart!

Smart TASEP

Smart TASEP: TASEP with intelligent agents

- have a goal (e.g. optimize transport)
- sense the environment
- act according to the goal and the environment
- learn from the environment themselves
- \rightarrow Intelligent Matter Simulation
- \rightarrow Reinforcement Learning reward based

Deep Q-Learning

Deep Q-Learning: Overview

Deep Q-Learning Algorithm

- Reinforcement learning with deep neural networks
- Model-free: No knowledge of the environment
- Q-Learning: Value-based method
- Off-policy: Learns from old experiences

Deep Q-Learning: The policy

Deep Q-Learning: Optimization

How does the network learn?

- ullet Neural Network o backpropagation on loss
- Problem: no target value for Q-Learning
- Solution: Use current best guess as target: $y = r + \gamma \max_{a'} \hat{Q}(s', a')$
- Target network with soft updates to stabilize learning
- Use gradients for AdamW optimizer
- Replay buffer
 - Sample efficiency
 - Break correlation

Implementation

The smarttasep package

Features

- Easy installation with pip
- Fully Customizable
 - Environment size
 - Reward function
 - Network architecture
 - Hyperparameters
 - Training parameters
 - Algorithm choices
- Real-time visualization
- Interactive evaluation
- Management of experiments

smarttasep components

- smarttasep.GridEnv: The 2D (T)ASEP environment
- smarttasep.DQN: The neural network
- torchrl.ReplayBuffer: Efficient, tensor-based replay buffer
- smarttasep.Trainer: Wrapper class for training, simulation and experiment management
- smarttasep.Playground: Real-time interactive evaluation of trained agents
- smarttasep.EnvParams,
 smarttasep.Hyperparams: Configuration classes

Hyperparameter Optimization

For each experiment, the Hyperparameters should be optimized.

Parameters

- Learning rate of the AdamW optimizer.
- Discount factor γ .
- Replay buffer size.
- Batch size for training.
- Target network update rate τ .
- Exploration-exploitation tradeoff via the decay constant η of the exploration rate $\epsilon(t) = \epsilon_{\sf end} + (\epsilon_{\sf start} \epsilon_{\sf end}) e^{-n_{\sf steps}/\eta}$.
- Neural network architecture (number of hidden layers and neurons per layer).
- Activation function of the neural network.

Hyperparameter Optimization: Example

Example of a hyperparameter optimization for the hidden layer sizes.

Experiments

Overview of Experiments

Goals

- Current optimization
- General insights into intelligent matter simulations

Experiments

- 1. Baseline: Classical 2D TASEP with speeds
- 2. **Naive current optimization**: Hard-coded agents
- 3. Smart TASEP: Deep Q-Learning agents with slightly different goals
 - Simple reward: Go forward
 - Complex reward: Go forward while forming lanes

Setup

- Classical 2D TASEP
- Periodic boundary conditions
- Checkerboard configuration

Setup

- Classical 2D TASEP
- Periodic boundary conditions
- Checkerboard configuration
- Normally distributed speeds

Speeds of particles in the baseline experiment.

Setup

- Classical 2D TASEP
- Periodic boundary conditions
- Checkerboard configuration
- Normally distributed speeds
- Waiting for steady state

Reaching the steady state in a 128x32 system. 800 runs and 5000 steps averaged.

Setup

- Classical 2D TASEP
- Periodic boundary conditions
- Checkerboard configuration
- Normally distributed speeds
- Waiting for steady state
- Measuring average current
- Consistent with theoretical value of 0.0625

Steady state current as a function of σ for different system sizes. 800 runs and 150k steps averaged.

Naive Policy

A Naive Policy

Just go forward?

- $p_{\text{fwd}} = 1, p_{\text{up/down}} = 0$
- starting in checkerboard configuration
- no messy mixing
- ullet bad for high σ
- optimum for low σ ?

Naive policy

Smarticles

Smarticles: Uniform speed distribution

Simple reward components, $\sigma = 10$

- Positive reward for going forward
- Negative reward for occupied destination
- Zero reward for going up or down or staying
- Small negative reward for blocking others proportional to speed

Screenshot of the second smarticle training

Smarticles: Uniform speed distribution

Resulting current

- $\langle J \rangle \approx 0.117$
- +125% compared to baseline (0.052)

Steady state current over time for the trained smarticles.

Smarticles: Model Analysis

What did the smarticles learn? (Playground video)

Smarticles: Why Global Structures

Observation

- So far, the system still looks messy
- Only individual behavior
- Compare highway: Fast lane and slow lane
 - ightarrow Could be beneficial also in TASEP

Potential

- Less jamming
- Directed flow without dispersion
- Inhomogeneous density

Screenshot of the simulation with the current policy

Separating fast and slow lanes increases the mean velocity

Smarticles: Hard-coded Lanes

Approach 1: Hard code the lanes, supply smarticles with lane information

$$\Delta y = 1 - a \cdot \left(\frac{1+a}{a}\right)^v + a$$

Learned smarticle behavior with the hard-coded lanes reward function (left), and the speed gradient mapping (right).

Introduction 0000 Make it Smart!

Deep Q-Learnin

mplementatio

Experiments

Naive Polic

Smarticles

Smarticles: Hard-coded Lanes - Results

Resulting current

- $\langle J \rangle \approx 0.134$
- +157% compared to baseline (0.052)
- +15% compared to previous policy (0.117)
- even higher than naive policy for equal speeds
- long time to reach steady state

Current over time for the trained smarticles.

Smarticles: Self-organized Lanes

Absolute positioning for hard-coded lanes is not always possible.

Smarticles: Self-organized Lanes

Absolute positioning for hard-coded lanes is not always possible.

Approach 2: Let the smarticles learn the lanes themselves from local "interactions"

$$\mathsf{V}(r,\Delta v) = \begin{cases} -0.125 \cdot r + 0.625 & \text{if } \Delta v < 0.5 \text{ and } 1.5 < r \le 5 \\ -0.75 \cdot r^{-1.3} - 0.15 & \text{if } \Delta v \ge 0.5 \text{ and } r \le 3.5 \\ 0 & \text{otherwise} \end{cases}$$

Modifications

- 1. Binary speed distribution
- 2. Different neural networks

Visual representation of the lane reward function / "potential"

Smarticles: Self-organized Lanes - Results

Let's see it in action! (lane formation video)

Smarticles: Self-organized Lanes - Results

Resulting current

- $\langle J \rangle \approx 0.112$
- baseline

$$J = 0.4 \cdot (1 - 0.4) \cdot 0.6 \cdot 0.5 = 0.072$$

- +56% compared to baseline
- lower than previous policies
- steady state reached quicker
- fluctuations seem higher than they are
- proof of concept, room for improvement

Current over time for the trained smarticles.

Conclusion and Outlook

Conclusion and Outlook

Achievements and Insights

- Baseline: Theory and simulation match
- Established framework for intelligent matter simulations with interacting agents
- Intelligent matter in form of smarticles dramatically increases the current
- Large-scale structures and collective behavior emerge from local "interactions"

Future Research

- Modular smarttasep package for easy experimentation
- Generalize results:
 - Structure formation with more than two particle types
 - Different cluster densities for different speeds
 - Reduce the gap between the lanes
- Try different strategies other than lane formation
- Generalize results to more complex systems (e.g. higher dimensions, continuous space)

Backup Slides

Smarticles: Equal speeds

Simple reward

- Positive reward for going forward
- Negative reward for occupied destination
- Zero reward for going up or down or staying
- Small negative reward for blocking others

Screenshot of the first smarticle training

Smarticles: Equal speeds

Resulting current

- $\langle J \rangle \approx 0.152$
- +143% compared to baseline (0.0625)
- +22% compared to naive policy (0.125)

Steady state current over time for the trained smarticles.

Let's have a look at some examples! (show usage videos)

Results: Theory

Conditions for a forward move

- 1. randomly picked cell is occupied $(p_{occ} = \rho)$
- 2. speed allows move $(p_{\rm spd} = \bar{v} = \mu)$
- 3. forward direction is picked (p = 0.5)
- 4. next cell is empty $(p_{\sf emp} = 1 \rho)^*$

$$\implies \langle J \rangle = p \cdot \mu \cdot \rho \cdot (1 - \rho)$$
$$= 0.0625$$

Steady state current as a function of σ for different system sizes.

A Naive Policy

Just go forward?

- $p_{\text{fwd}} = 1, p_{\text{up/down}} = 0$
- starting in checkerboard configuration
- no messy mixing
- ullet bad for high σ
- optimum for low σ ?

$$\begin{aligned} \max \left\langle J \right\rangle &= \max \left(p_{\mathsf{occ}} \cdot p_{\mathsf{spd}} \cdot p_{\mathsf{fwd}} \cdot p_{\mathsf{emp}} \right) \\ &\leq \rho \cdot \mu \cdot 1 \cdot \max (p_{\mathsf{emp}}) \end{aligned}$$

and
$$0.5 \leq \max(p_{\text{emp}}) < 1$$

Naive policy