MA 824: ASSIGNMENT 2

SWAYAM CHUBE (200050141)

Throughout this document, \mathbb{K} denotes either \mathbb{R} or \mathbb{C} . Most proofs should work over either of the two fields unless specified otherwise.

1. Problem 1

(a) Recall the following result from complex analysis:

THEOREM 1.1. Let $\sum_{n\geqslant 0} a_n (z-a)^n$ be a power series with $a_n\in\mathbb{C}$. The radius of convergence of the above power series is the unique real number $R\geqslant 0$ such that

- (i) if |z a| < R, the series converges absolutely.
- (ii) if |z-a|>R, the terms of the series become unbounded and so the series diverges.

Proof. See [Con73, Theorem III.1.3]

Returning back to our problem, let $\lambda \in \mathbb{C}$ with $|\lambda| < 1$. Let $x \in \mathcal{H}$ denote the element $(1, |\lambda|, |\lambda|^2, \ldots)$. That this is indeed an element of \mathcal{H} is clear from the fact that the sum

$$\sum_{n \geq 0} |\lambda|^{2n} = \frac{1}{1 - |\lambda|^2}$$

converges. Further, let $y \in \mathcal{H}$ denote the element $(|\alpha_0|, |\alpha_1|, ...)$. That this is an element of \mathcal{H} follows from the fact that the sum

$$\sum_{n\geq 0} |\alpha_n|^2$$

converges, since the element $(\alpha_0, \alpha_1, ...)$ is an element of \mathcal{H} . The Cauchy-Schwarz inequality gives us:

$$\sum_{n\geq 0} |\alpha_n| |\lambda|^n = \langle x, y \rangle \le ||x|| ||y|| < \infty.$$

Thus, the sum $\sum_{n\geq 0} \alpha_n \lambda^n$ converges absolutely for $|\lambda| < 1$. Due to Theorem 1.1, it follows that the radius of convergence of the power series $\sum_{n\geq 0} \alpha_n z^n$ is ≥ 1 .

(b)

2. Problem 4

Clearly the bounded linear functional

$$\Lambda \colon y \longmapsto \left\langle y, \frac{x}{\|x\|} \right\rangle.$$

is such that $\Lambda x = \|x\|$ and $\|\Lambda\| = \left\|\frac{x}{\|x\|}\right\| = 1$. Suppose $\Phi: X \to \mathbb{C}$ is another bounded linear functional such that $\Phi x = \|x\|$ and $\|\Phi\| = 1$. By the Riesz Representation Theorem, there is some $z \in X$ such that $\Phi y = \langle y, z \rangle$ for all $y \in X$. Then, $\|z\| = \|\Phi\| = 1$. It follows that

$$\langle x, z \rangle = \|x\| \Longrightarrow |\langle x, z \rangle| = \|x\| = \|x\| \|z\|.$$

Recall that the equality holds in the Cauchy-Schwarz inequality if and only if the vectors x and z are linearly dependent. Since both x and z are non-zero, this is tantamount to saying that there is some $\alpha \in \mathbb{C}$ such that $x = \alpha z$. In conclusion,

$$\alpha = \langle x, z \rangle = ||x|| \implies z = \frac{x}{||x||},$$

i.e., $\Phi = \Lambda$, as desired.

Date: April 12, 2025.

3. Problem 5

Let $x, y \in \mathcal{H}$ and $\alpha \in \mathbb{C}$. According to our hypothesis, we have

$$0 = \langle A(x + \alpha y), x + \alpha y \rangle$$

= $\langle Ax, x \rangle + \alpha \langle Ay, x \rangle + \overline{\alpha} \langle Ax, y \rangle + |\alpha|^2 \langle Ay, y \rangle$
= $\alpha \langle Ay, x \rangle + \overline{\alpha} \langle Ax, y \rangle$.

Set $\alpha = 1$ to get

$$\langle Ay, x \rangle + \langle Ax, y \rangle = 0$$

and set $\alpha = \iota$ to get

$$\iota(\langle Ay, x \rangle - \langle Ax, y \rangle) = 0 \implies \langle Ay, x \rangle - \langle Ax, y \rangle = 0.$$

Hence, $\langle Ax, y \rangle = 0 = \langle Ay, x \rangle$ for all $x, y \in \mathcal{H}$. In particular, for any $x \in \mathcal{H}$, setting y = Ax, we get

$$\langle Ax, Ax \rangle = \langle Ax, y \rangle = 0,$$

and hence Ax = 0, that is, A = 0.

4. Problem 9

Exercise 12-1 (b) of [Lim14]. Suppose first that \mathbb{K} is either \mathbb{R} or \mathbb{C} . Let $\lambda \in \sigma(A)$, we shall show that $p(\lambda) \in \sigma(p(A))$. The polynomial $p(X) - p(\lambda)$ has a root at λ , and hence, there is a polynomial $q(X) \in \mathbb{C}[X]$ such that $p(X) - p(\lambda) = (X - \lambda)q(X)$. Now, since A commutes with the identity operator I, we get

$$p(A) - p(\lambda)I = (A - \lambda I)q(A).$$

Since $A - \lambda I$ is not invertible, the left hand side, $p(A) - p(\lambda)I$ is not invertible, i.e., $p(\lambda) \in \sigma(p(A))$. This shows that

$$p(\sigma(A)) := \{p(\lambda) : \lambda \in \sigma(A)\} \subseteq \sigma(p(A))$$

Suppose now that $\mathbb{K} = \mathbb{C}$. Further suppose that p(X) is a non-constant polynomial. Let $\lambda \in \sigma(p(A))$. Then, due to the fundamental theorem of algebra, the polynomial $p(X) - \lambda$ factors as

$$p(X) - \lambda = a_n \prod_{i=1}^n (X - \alpha_i),$$

for some $\alpha_i \in \mathbb{C}$. Again, since *A* commutes with the identity operator *I*, we have

$$p(A) - \lambda = \prod_{i=1}^{n} (A - \alpha_i I).$$

Since the left hand side is not invertible, at least one term on the right hand side must not be invertible, that is, there is an index $1 \le j \le n$ with $A - \alpha_j I$ not invertible. Thus $\alpha_j \in \sigma(A)$. It follows that $\sigma(p(A)) \subseteq p(\sigma(A))$. Thus $\sigma(p(A)) = p(\sigma(A))$.

Finally, if p is a constant polynomial, say $p(X) \equiv c \in \mathbb{C}$, then $\sigma(p(A)) = \{c\}$, since $(c - \lambda)I$ is invertible if and only if $c \neq \lambda$. On the other hand, since X is a Banach space over \mathbb{C} , due to Gelfand-Mazur, the spectrum $\sigma(A)$ is non-empty, whence $p(\sigma(A)) = \{c\}$, as desired.

Exercise 17-5 of [Lim14]. Suppose $p(X) \in \mathbb{K}[X]$ is a polynomial such that p(A) is a compact operator. If $p(X) \equiv c$ is a constant polynomial, then p(A) = cI, which is given to be compact. Thus, the closure of the image of the unit ball under p(A) is compact, that is,

$$\overline{cB_X(0,1)} = \overline{B_X(0,c)}$$

is compact. If $c \neq 0$, using the fact that $\overline{B_X(0,c)}$ is homeomorphic to $\overline{B_X(0,1)}$ through the homeomorphism $x \mapsto c^{-1}x$ (as we have seen in class), it follows that the closed unit ball in X is compact, which is absurd, since X is infinite-dimensional. Thus c = 0. Clearly, if c = 0, then the operator $p(A) \equiv 0$ is compact.

Suppose now that $p(X) = a_n X^n + \cdots + a_0 \in \mathbb{K}[X]$ is a non-constant polynomial of degree n > 0, whence $a_n \neq 0$. According to the hypothesis, $p(A) = a_n A^n + \cdots + a_0 I$ is a compact operator. Recall that the compact operators form an ideal in the \mathbb{K} -algebra $\mathcal{B}(X)$ and A is a compact operator, thus the operator

$$a_n A^n + \cdots + a_1 A$$

is a compact operator. It follows that

$$a_0I = p(A) - (a_nA^n + \dots + a_1A)$$

is a compact operator. Because of what we just proved, we must have that $a_0 = 0$, that is, p(0) = 0.

Conversely, suppose $p(X) \in \mathbb{K}[X]$ is a polynomial such that p(0) = 0. If p(X) is a constant polynomial, then it is identically zero, whence is trivially compact. Suppose now that p(X) is non-constant. Then, we can write

$$p(X) = a_n X^n + \dots + a_1 X$$

for n > 0 and $a_i \in \mathbb{K}$ with $a_n \neq 0$ where n is the degree of the polynomial p(X). Thus $p(A) = a_n A^n + \cdots + a_1 A$. As we argued earlier, since the compact operators form an ideal in $\mathscr{B}(X)$ and A is a compact operator, it is clear that p(A) is a compact operator, as desired.

REFERENCES

[Con73] J.B. Conway. Functions of One Complex Variable. Springer New York, 1973.

[Lim14] B.V. Limaye. Functional Analysis. New Age International (P) Limited, Publishers, 2014.