Algorithmics	Student information	Date	Number of session
	UO:300170	03-03-25	3
	Surname: Álvarez Fernández		
	Name: Andrés		

Activity 1. [Divide and Conquer by Subtraction]

SUBSTRACTION1:

This algorithm has one recursive call (a = 1) and in this call n is subtracted one by one (b = 1). The complexity of the algorithm without the recursive call is constant (k = 0), so the final complexity is linear (O(n)).

SUBSTRACTION2:

This algorithm has one recursive call (a = 1) and in this call n is subtracted one by one (b = 1). The complexity of the algorithm without the recursive call is linear (k = 1), so the final complexity is quadratic $(O(n^2))$.

Substraction 1 stops giving times after n = 32768 and Substraction 2 after n = 16384 because it consumes a lot of memory and causes an overflow in the stack.

SUBSTRACTION3:

This algorithm has two different recursive calls (a = 2) and in both calls n is subtracted one by one (b = 1). The complexity of the algorithm without the recursive calls is constant (k = 0), so the final complexity is exponential $(O(2^n))$.

n	Subtraction4		
100	LoR		
200	LoR		
400	LoR		
800	LoR		
1600	LoR		
3200	209		
6400	1461		
12800	10804		
25600	ОоТ		

n	Subtraction5	
30	LoR	
32	59	
34	60	
36	513	
38	514	
40	4633	
42	4567	
44	41965	
46	41584	

Algorithmics	Student information	Date	Number of session
	UO:300170	03-03-25	3
	Surname: Álvarez Fernández		
	Name: Andrés		

Activity 2. [Divide and Conquer by Division]

DIVISION1:

This algorithm has one recursive call (a = 1) and in this call n is divided by 3 (b = 3). The complexity of the algorithm without the recursive call is linear (k = 1), so the final complexity is the same as the algorithm without the recursive call (O(n)).

DIVISION2:

This algorithm has two recursive calls (a = 2) and in both calls n is divided by 2 (b = 2). The complexity of the algorithm without the recursive calls is linear (k = 1), so the final complexity is the same as the algorithm times the logarithm of n (O(n*log(n))).

DIVISION3:

This algorithm has two recursive calls (a = 2) and in both calls n is divided by 2 (b = 2). The complexity of the algorithm without the recursive calls is constant (k = 0), so the final complexity is $O(n^{(\log_2(2))})$, which is equal to O(n), that is linear.

n	Division4	Division5
100	LoR	LoR
200	LoR	LoR
400	LoR	LoR
800	LoR	LoR
1600	LoR	53
3200	LoR	497
6400	82	1202
12800	326	12342
25600	1303	29660
51200	5196	ОоТ
102400	21130	ОоТ

Algorithmics	Student information	Date	Number of session
	UO:300170	03-03-25	3
	Surname: Álvarez Fernández		
	Name: Andrés		

Activity 3. [Two basic examples]

sum1:

The complexity of this algorithm is linear (O(n)) because it has a loop.

sum2:

This algorithm has one recursive call (a = 1) and in this call n is subtracted one by one (b = 1). The complexity of the algorithm without the recursive call is constant (k = 0), so the final complexity is linear (O(n)).

sum3:

This algorithm has two recursive calls (a = 2) and in both calls n is divided by 2 (b = 2). The complexity of the algorithm without the recursive calls is constant (k = 0), so the final complexity is $O(n^{(\log_2(2))})$, which is equal to O(n), that is linear.

N	Sum1	Sum2	Sum3
3	LoR	LoR	LoR
6	LoR	LoR	LoR
12	LoR	LoR	LoR
24	LoR	LoR	LoR
48	LoR	LoR	81
96	LoR	62	139
192	LoR	121	317
384	84	259	566
768	178	846	1263
1536	363	2158	2216
3072	731	4666	4963
6144	1510	9927	8584
12288	2949	20571	19848
24576	5844	40839	34478
49152	11610	OoT	OoT
98304	23892	OoT	ОоТ

Algorithmics	Student information	Date	Number of session
	UO:300170	03-03-25	3
	Surname: Álvarez Fernández		
	Name: Andrés		

Fib1:

The complexity of this algorithm is linear (O(n)) because it has a loop.

Fib2:

The complexity of this algorithm is linear (O(n)) because it has a loop.

Fib3:

This algorithm has one recursive call (a = 1) and in this call n is subtracted one by one (b = 1). The complexity of the algorithm without the recursive call is constant (k = 0), so the final complexity is linear (O(n)).

Fib4:

This algorithm has two different recursive calls (a = 2). In one of the calls n is subtracted one by one (b = 1) and in the other is subtracted two by two (b = 2). The complexity of the algorithm without the recursive calls is constant (k = 0), so the final complexity in exponential $(O(2^n))$.

n	Fib1	Fib2	Fib3	Fib4
10	129	135	217	LoR
20	173	306	528	LoR
30	227	451	688	211
40	320	694	845	25102
50	283	926	1129	OoT

Algorithmics	Student information	Date	Number of session
	UO:300170	03-03-25	3
	Surname: Álvarez Fernández		
	Name: Andrés		

Activity 4. [Petanque championship organization]

The algorithm shows us all the plays for each day (the number of days is thye number of participants minus one because all participants must play against all the rest participants).

The final algorithm calls the method printParticipantsDay(), which shows the plays that will take place in two days and has a linear complexity and later calls the method moveElementsArray(), which moves the elements of the participants list two positions backwards and has a linear complexity too.

As we call this two methods in write(int index) until the index is equal to the number of participants, the complexity of the final algorithm is quadratic $(O(n^2))$.

n	T Calendar	
2	LoR	
4	LoR	
8	LoR	
16	LoR	
32	LoR	
64	LoR	
128	LoR	
256	57	
512	225	
1024	1110	
2048	6237	
4096	45853	
8192	ОоТ	
16384	ОоТ	
32768	ОоТ	

The times obtained in the measurements agree with the teorical complexity, which is $O(n^2)$.