NAVIFLOOR OBSTACLE AVOIDANCE SYSTEM TECHNICAL OVERVIEW

NAVIFLOOR OBSTACLE AVOIDANCE SYST

Document ID: TD-2024-0111-NAV

Version: 3.2

Last Updated: January 11, 2024

Classification: CONFIDENTIAL

1. INTRODUCTION

This Technical Overview document describes the proprietary NaviFloor Obs Avoidance System ("NaviFloor System") developed by NaviFloor Robotics,

("Company"). This document is confidential and contains trade secrets an	nd
intellectual property of the Company.	

2. SYSTEM ARCHITECTURE

2.1 Core Components

The NaviFloor System consists of three primary subsystems:

Multi-Modal Sensor Array (MMSA)

Terrain Analysis Processing Unit (TAPU)

-

2.2 Hardware Specifications

Dynamic Navigation Controller (DNC)

The MMSA incorporates:			
-			
4x Industrial-grade LiDAR sensors (Class 1, eye-safe)			
-			
8x Depth-sensing cameras with 120° field of view			
-			
2x Inertial Measurement Units (IMUs)			
-			
Custom-designed sensor fusion processor			
2.3 Software Architecture			
-			
Real-time Operating System: NaviCore OS v4.2			
-			
Proprietary SLAM algorithms			

- - 3 -

Machine learning models for obstacle classification

_

Path planning optimization engine

3. TECHNICAL CAPABILITIES

3.1 Obstacle Detection

The system achieves:

_

Detection range: 0.1m to 25m

-

Minimum obstacle size: 2.5cm at 5m distance

-

Angular resolution: 0.1°

- 4 -

Scan rate: 40Hz

-

False positive rate: <0.001%

3.2 Navigation Performance

Demonstrated capabilities include:

-

Maximum safe operating speed: 2.5 m/s

-

Turning radius: 0.5m minimum

_

Position accuracy: ±1cm

-

Angular accuracy: ±0.5°

- - 5 -

Maximum incline handling: 15°

4. SAFETY FEATURES

4.1 Redundancy Systems

_

Triple-redundant obstacle detection

-

Dual-redundant emergency stop systems

_

Backup power system with 30-minute runtime

-

Failsafe mode with controlled shutdown

4.2 Compliance

The system meets or exceeds:

_

ISO 13849-1 (PLd)

-

IEC 61508 (SIL 2)

-

ANSI/RIA R15.06

_

CE Marking requirements

5. INTEGRATION SPECIFICATIONS

5.1 Physical Integration

- -7-

Mounting requirements: M8 bolts, 8 points

_

Power requirements: 48V DC, 15A maximum

_

Operating temperature: 0°C to 45°C

-

IP65 rated enclosure

5.2 Software Integration

-

REST API for system control

-

WebSocket interface for real-time data

-

Standardsprotocol support: Modbus TCP, OPC UA
- Cystom mustocal adoptous available
Custom protocol adapters available
6. INTELLECTUAL PROPERTY NOTICE
The NaviFloor System incorporates the following protected intellectual prop
-
U.S. Patent No. 11,123,456 - "Method for Dynamic Terrain Mapping"
-
U.S. Patent No. 11,234,567 - "Multi-Modal Sensor Fusion System"
-
Multiple pending patent applications
-
Proprietary software and algorithms

7. LEGAL DISCLAIMERS

7.1 Confidentiality

This document contains confidential and proprietary information of NaviFlor Robotics, Inc. Unauthorized disclosure, reproduction, or use is strictly prohibited.

7.2 Warranty Disclaimer

THE INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WI KIND, EXPRESS OR IMPLIED. NAVIFLOOR ROBOTICS, INC. DISCLA INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

8. DOCUMENT CONTROL

8.1 Version History
-
v3.2: Current version (January 11, 2024)
-
v3.1: Updated safety specifications (November 15, 2023)
-
v3.0: Major revision incorporating Series C improvements (August 1, 2023)
8.2 Approval
APPROVED BY:
_
Dr. Elena Kovacs
Chief Research Officer

NaviFlopr Robotics, Inc.

Date: January 11, 2024

_

Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

Date: January 11, 2024

