Homework 2

Daniel Hartig

March 1, 2017

Problem 1

For mass function

$$f_{T_n}(t) = (8n - 8n^2t) I_{(1/2n,1/n)}(t)$$

the distribution function over the same domain is obtained by integration

$$F_{T_n}(t) = (8nt - 4n^2t^2 + C)I_{(1/2n 1/n)}(t).$$

To be a valid distribution function, F must equal 0 at the lower bound of the domain, t = 1/2n, and equal 1 at the upper bound t = 1/n. At theses bounds, F evaluates to

$$F_{T_n}(1/2n) = \frac{8n}{2n} - \frac{4n^2}{(2n)^2} + C = 3 + C$$

$$F_{T_n}(1/n) = \frac{8n}{n} - \frac{4n^2}{n^2} + C = 4 + C.$$

Therefore C = -3, F(t) = 0 for t < 1/2n and F(t) = 1 for t > 1/n, and

$$F_{T_n}(t) = (8nt - 4n^2t^2 - 3)I_{(1/2n,1/n)}(t)$$

meets the requirements of a distribution function for all n. As n approaches infinity, the range of $I_{(1/2n,1/n)}(t)$ approaches the point 0. We have already defined the F(t) = 1 for t > 1/n, so we can say that

$$\lim_{n\to\infty} F_{T_n}(t) = 1 \quad \forall t > 0.$$

Thus, the limiting distribution of $F_{T_n}(t)$ approaches F(t), where F(t) is

$$F(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

The probability function of the limiting distribution for the sequence $T_1, T_2, ...$ is the derivative of the distribution function, and is

$$f(t) = \begin{cases} 1, & t = 0 \\ 0, & \text{otherwise} \end{cases}$$

Problem 2

For $f_{X_n}(x)$, the moment-generating function is calculated by

$$M_X(t) = \sum_{x \in A} e^{tx} p(x) = e^{t \cdot 0} \left(\frac{n-1}{n} \right) + e^{tn^2} \left(\frac{1}{n} \right) = \frac{1}{n} \left(e^{tn^2} + n - 1 \right).$$

To calculate the $E(X_n)$ we need the first t derivative of M_X ,

$$M'_X(t) = \frac{d}{dt} \frac{1}{n} \left(e^{tn^2} + n - 1 \right) = ne^{tn^2},$$

so that

 $E(X_n) = M'_{Y}(0) = ne^{0 \cdot n^2} = n.$

Thus,

$$T_n = X_n - E(X_n)$$
$$= X_n - n$$

The probility distribution of T_n can then be defined as

$$f_{T_n}(x) = \begin{cases} \frac{1}{n}, & x = n^2 - n\\ \frac{n-1}{n}, & x = -n\\ 0, & \text{otherwise} \end{cases}$$

The cumulative distribution function is

$$F_{T_n}(x) = \begin{cases} 0, & x < -n \\ \frac{n-1}{n}, & -n \le x < n^2 - n \\ 1, & n \ge n^2 - n. \end{cases}$$

As $n \to \infty$, the term (n-1)/n approaches 1, so

$$\lim_{n\to\infty} F_{T_n} = \begin{cases} 0, & x < -n \\ 1, & x \ge -n. \end{cases}$$

However, -n itself goes to $-\infty$, so F_{T_n} does not converge. Since the distribution function of T_n does not converge, a limiting distribution for the sequence $T_1, T_2, ...$ does not exist.

Problem 3

Part a

For the continuous probability function $f_X(x) = 3(1-x)^2 I_{(0,1)}(x)$, the cumulative distribution function is obtained by integration

$$F_X(x) = \int 3(1-x)^2 I_{(0,1)}(x) \, dx = (x-1)^3 + C.$$

For the bounds of the probability function 0 and 1, the values of F_X are

$$(x-1)^3 + C \Big|_{0} = -1 + C$$

 $(x-1)^3 + C \Big|_{1} = C.$

Set C = 1, $F_X = 0$ for x < 0 and $F_X = 1$ for x > 1, and then

$$F_X(x) \begin{cases} 0, & x < 0 \\ (x-1)^3 + 1, & 0 < x < 1 \\ 1, & x > 1 \end{cases}$$

is a valid distribution function. Since the maximu possible value of the probability function is x = 1, we expect $X_{(n)}$ to converge to 1 as more random variables are added to the sequence. Since we expect the sequence of maxima to converge to 1, we can say that it will converge to a random variable X = 1. To apply this to Definition 5.5.1, we solve for

$$P(|X_{(n)} - 1| \ge \epsilon) = P(X_{(n)} \ge 1 + \epsilon) + P(X_{(n)} \le 1 - \epsilon)$$
$$= P(X_{(n)} \le 1 - \epsilon).$$

Using the distribution function for X_i , and a change of variables from 0 < x < 1 to $0 < (1 - \epsilon) < 1$, we can say that for all X_i with $1 \le i \le n$,

$$P(X_i \le 1 - \epsilon) = ((1 - \epsilon) - 1)^3 + 1 = 1 - \epsilon^3.$$

Since the X_i are independent of each other, the probability that all X_i in the series $X_1, X_2, ..., X_n$ are less than $1 - \epsilon$ is

$$P(X_{(n)} < 1 - \epsilon) = \left(1 - \epsilon^3\right)^n.$$

This goes to zero for all $\epsilon > 0$, therefore the maximum is proven to converge to 1. We can now change variables againt to $\epsilon = t/n^{1/3}$ where since $n \ge 1$, t > 0 to match ranges. We then get

$$P\left(X_{(n)} \le 1 - t/n^{1/3}\right) = \left(1 - \left(\frac{t}{n^{1/3}}\right)^3\right)^n = \left(1 - \frac{t^3}{n}\right)^n \to \left(e^{-t^3}\right) I_{(0,\infty)}(t)$$

$$P\left(n^{1/3} \left(1 - X_{(n)}\right) \le t\right) \to \left(1 - e^{-t^3}\right) I_{(0,\infty)}(t).$$

The left side of this expression is the distribution function for T_n . To find the probability function by Theorem 5.5.12, we must take the t derivative of the distribution function

$$f_{T_n}(t) = \frac{d}{dt} \left[1 - e^{-t^3} \right] = 3 t^2 e^{-t^3} I_{(0,\infty)}(t).$$

Therefore, as n goes to infinity, the sequence T_1, T_2, \dots converges to the above probability function.

Part b

By Theorem 5.5.4, if $X_1, X_2, ...$ converges in probability to X, and h is a continuous function, then $h(X_1), h(X_2), ...$ converges in probability to h(X). Let $h(y) = \sqrt{y}$ and

$$V_n = h(T_n) = \sqrt{T_n}.$$

Since we know that T_n converges to

$$3 t^2 e^{-t^3} I_{(0,\infty)}(t),$$

then V_n converges to

$$\sqrt{3 t^2 e^{-t^3}} I_{(0,\infty)}(t) = \sqrt{3} t \exp\left(\frac{-t^3}{2}\right)$$

Problem 4

The moment generating function of the sum of independent random variables in the sequence $X_1, X_2, ...$ is

$$M_{X_1}(t)M_{X_2}(t)....$$

The moment generating function of a Poisson distribution is $\exp(\lambda(e^t - 1))$. Thus the moment generating function for $T_n = X_1 + ... + X_n$ is

$$M_{T_n}(t) = \prod_{k=1}^{n} \exp(k^{-2}(e^t - 1))$$
$$= \exp((e^t - 1) \sum_{k=1}^{n} \frac{1}{k^2}).$$

This is itself the moment generating function of a Poisson distrubution with

$$\lambda = \sum_{k=1}^{n} \frac{1}{k^2}.$$

As *n* goes to infinity, the sum of this infinite series is $\pi^2/6$. Therefore, as *n* goes to infinity, the sequence $T_1, T_2, ...$ converges to a limiting distribution of Poisson $(\pi^2/6)$, the probability mass function of which is

$$\frac{\left(\frac{\pi^2}{6}\right)^j e^{-\pi^2/6}}{j!} = \frac{\pi^{2j} e^{-\pi^2/6}}{6^j j!}$$

Problem 5

The sum of the distributions of multiple Bernoulli random variables is the binomial distribution. For Bernoulli random variables X_i with mean p = 1/2, as n goes to infinity,

$$\sum_{i=1}^{n} X_i = nE(X_i) = n^2 p = \frac{1}{2}n^2$$

due to the Law of Large Numbers. Since X_i is a Bernoulli variable, the only possible outcomes are 0 and 1. Since $0^2 = 0$ and $1^2 = 1$, $X_i^2 = X_i$, and

$$\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i = \frac{1}{2} n^2.$$

Therefore, as $n \to \infty$,

$$\lim_{n\to\infty}T_n=\lim_{n\to\infty}\sqrt{n}\left(\frac{4\sum_{i=1}^2X_i-2n}{\sum_{i=1}^nX_i^2}\right)=\lim_{n\to\infty}\sqrt{n}\left(\frac{2n^2-2n}{1/2n^2}\right)=\lim_{n\to\infty}4\left(\sqrt{n}-\frac{1}{\sqrt{n}}\right).$$

This limit goes to infinity. Therefore, as n goes to infinity, the sequence $T_1, T_2, ...$ does not converge.

Problem 6

Part a

X is a random variable with $E(X) = \theta$. Let $g(X) = 1/\sqrt{X}$ be an estimator for $1/\sqrt{\theta}$; $g'(X) = -1/2 x^{-3/2}$. The first order Taylor approximation to the mean of $1/\sqrt{X_n}$ is

$$g(X) = g(\theta) + g'(\theta)(X - \theta)$$

$$\frac{1}{\sqrt{X_n}} = \frac{1}{\sqrt{\theta}} - \frac{1}{2}\theta^{-\frac{3}{2}}(X_n - \theta)$$

$$E\left[\frac{1}{\sqrt{X_n}}\right] = \frac{1}{\sqrt{\theta}} + -\frac{1}{2}\theta^{-\frac{3}{2}}E[X_n - \theta]$$

Since θ is the mean of X, $E[X - \theta] = 0$, and so

$$E\left[\frac{1}{\sqrt{X}}\right] = \frac{1}{\sqrt{\theta}}$$

Part b

Since $g''(x) = 3/4x^{-5/2}$; the second order approximation to the mean of $1/\sqrt{X_n}$ is

$$g(X) = g(\theta) + g'(\theta)(X - \theta) + \frac{1}{2}g''(\theta)(X_n - \theta)^2$$

$$E\left[\frac{1}{\sqrt{X}}\right] = \frac{1}{\sqrt{\theta}} + \frac{3}{4}\theta^{-\frac{5}{2}}E\left[(X_n - \theta)^2\right]$$

Now θ is the mean of X, $E\left[(X-\theta)^2\right]$ is the definition of the variance of X, which is θ^3 . Therefore

$$E\left[\frac{1}{\sqrt{X_n}}\right] = \frac{1}{\sqrt{\theta}} + \frac{3}{4}\sqrt{\theta} = \frac{1 + \frac{3}{4}\theta}{\sqrt{\theta}}$$

Part c

The first order approximation to the variance of $1/\sqrt{X_n}$ is

$$\operatorname{Var}\left[\frac{1}{\sqrt{X_n}}\right] = \left(-\frac{1}{2}\theta^{-\frac{3}{2}}\right)^2 \operatorname{Var}\left[X_n\right]$$
$$= \frac{1}{4}\frac{1}{\theta^3}\theta^3 = \frac{1}{4}$$

Problem 7

To generate a sufficient statistic, we must factorize the joint probability density function $f_X(\mathbf{x}|\theta)$ into two terms $g(T(\mathbf{x})|\theta)$ and $h(\mathbf{x})$ as

$$f_X(x) = \prod_{k=1}^n (\theta + 1) x_k^{\theta} I_{(0,1)}(x)$$
$$= (\theta + 1)^n \exp\left(\theta \sum_{k=1}^n \log x_k\right) I_{(0,1)}(x).$$

Therefore

 $h(\mathbf{x}) = I_{(0,1)}(x)$

and

$$g(T(\mathbf{x})|\theta) = (\theta + 1)^n \exp\left(\theta \sum_{k=1}^n \log x_k\right),$$

so

$$T(\mathbf{x}) = \sum_{k=1}^{n} \log x_k$$

is a sufficient statistic for θ for every x in the sample space.