8INF856 Programmation sur architectures parallèles Devoir 1

Adrien Cambillau Corentin Raoult

1. (a) Montrez que ce réseau n'est pas complet.

2 messages arrivent au même moment sur le switch : problème

Comme on peut le voir sur l'image ci-dessus, si le processeur 1111 envoie un message au processeur 1110 et que 1110 envoie un message à 1111, ces messages arriveront au même moment sur le deuxième switch, provoquant une collision.

1. (b) Montrez comment construire un réseau complet pour n = 2k processeurs (k > 1). Justifiez votre réponse.

Il suffit de rendre le réseau bidirectionnel, cela permet aux messages de revenir en arrière, créant de cette manière des chemins alternatifs permettant d'éviter des conflits.

Une autre solution possible serait un hypercube, étant donné que si il y a n bits différents entre l'adresse de départ et celle d'arrivée, alors il y aura n! plus courts chemins, cela rend l'hypercube moins sensible aux collisions.

2. Certains multi-ordinateurs permettent à des processus qui s'exécutent de migrer d'un nœud à l'autre. Est-il suffisant d'arrêter le processus, de figer son image mémoire et de l'expédier vers un nœud différent ? Citez deux problèmes non négligeables qui doivent être résolus pour que cela fonctionne.

Un des problèmes est lié à la migration d'un processus d'un nœud à l'autre est que pendant le temps de la migration les autres processus ne peuvent pas utiliser la mémoire qui est figée par le processus migrant. Cela a pour effet de bloquer tous les processus utilisant cette zone de mémoire.

Un autre problème est lié à l'adresse mémoire du processus qui va changer lors de la migration, ce qui empêchera les autres nœuds de retrouver le processus.

3. Les barrières sont des outils de synchronisation utiles mais on peut les remplacer par des variables conditionnelles. Expliquez comment.

Les barrières sont des outils de synchronisation permettant de bloquer tous les processus tant qu'ils n'ont pas tous atteint la barrière. Avec une variable conditionnelle on peut faire la même chose avec des threads. En effet plusieurs threads se partage une variable P qu'ils incrémentent à tour de rôle. On peut dire aux threads de se bloquer tant que P n'aura pas atteint une certaine valeur qui est égale au nombre de threads. Ce qui veut dire que tant que tous les threads n'ont pas tous incrémenté P ils seront tous bloqués.

4. Dans cet exercice pratique, vous devez écrire un petit programme multithread en C qui s'exécutera sur dim-linuxmpi1. Votre programme contiendra une fonction fib(n) qui retourne le n-ième nombre de Fibonacci.

Id: 8inf856-16, mdp: HvfiLx pour compiler: gcc Fibonacci.c -o Fibonacci -lpthread -lrt -ltr car on utilise pas clock() mais clock_gettime(), les résultats obtenus avec clock() n'étaient pas cohérents.

On observe que le multithreading n'est utile que lorsqu'on a un grand nombre de traitements à réaliser. De plus avoir un nombre de thread trop important n'a que peu d'influence au-dessus de 8 threads. Cela doit être lié au nombre de cœurs disponibles pour exécuter le programme.

Ci-dessous les résultats obtenus pour différentes valeurs de n et k.

n	k	temps d'exécution
10	ta 1024	ille du TAB = 10 0.059020
10	512	0.027283
10	256	0.013671
10	128	0.007159
10	64	0.003864
10	32	0.002054
10	16	0.001479
10	8	0.000489
10	4	0.000169
10	2	0.000053
10	1	0.000047
	ta	ille du TAB = 100
100	1024	0.055156
100	512	0.026845
100	256	0.013251
100	128	0.006835
100	64	0.003751

100	32	0.0018	880
100	16	0.0013	358
100	8	0.0004	450
100	4	0.000	159
100	2	0.0000	059
100	1	0.0000	064
		•11 1 1	T. D. 1000
1000		o.0540	TAB = 1000 086
1000	512	0.026	539
1000	256	0.0129	902
1000	128	0.0066	544
1000	64	0.0034	475
1000	32	0.002	126
1000	16	0.0012	298
1000	8	0.000	457
1000	4	0.000	164
1000	2	0.000	184
1000	1	0.000	180
	4-	:11 - 1 /	TAD 10000
10000			TAB = 10000 0.050700
10000		512	0.023418
10000		256	0.011656
10000		128	0.007124
10000		64	0.004048
10000		32	0.002408
10000		16	0.001460
10000		8	0.000527

10000	4	0.000479
10000	2	0.000751
10000	1	0.001440
100000		TAB = 100000 0.060004
100000	512	0.026716
100000	256	0.013399
100000	128	0.006797
100000	64	0.004266
100000	32	0.002549
100000	16	0.002765
100000	8	0.001984
100000	4	0.003473
100000	2	0.006719
100000	1	0.013325
ta	aille du	TAB = 1000000
1000000		0.052198
1000000	512	0.036943
1000000	256	0.026739
1000000	128	0.022214
1000000	64	0.018900
1000000	32	0.018193
1000000	16	0.017340
1000000	8	0.016915
1000000	4	0.037286
1000000	2	0.069832
1000000	1	0.134606

ta	ille du '	TAB = 10000000
10000000	1024	0.194456
10000000	512	0.175251
10000000	256	0.173761
10000000	128	0.169779
10000000	64	0.168110
10000000	32	0.168096
10000000	16	0.166598
10000000	8	0.171229
10000000	4	0.331495
10000000	2	0.661568
10000000	1	1.321132
to	illa du '	TAP - 10000000
ta		TAB = 1000000000 1.673872
		1.673872
100000000	1024	1.673872 1.663561
100000000	1024512	1.673872 1.663561 1.661759
100000000 100000000 100000000	1024512256	1.673872 1.663561 1.661759
100000000 100000000 100000000 100000000	1024512256128	1.673872 1.663561 1.661759 1.663572
100000000 100000000 100000000 100000000	102451225612864	1.673872 1.663561 1.661759 1.663572 1.658200
100000000 100000000 100000000 100000000	10245122561286432	1.673872 1.663561 1.661759 1.663572 1.658200 1.657812
100000000 100000000 100000000 100000000	 1024 512 256 128 64 32 16 	1.673872 1.663561 1.661759 1.663572 1.658200 1.657812 1.658693
100000000 100000000 100000000 100000000	 1024 512 256 128 64 32 16 8 	1.673872 1.663561 1.661759 1.663572 1.658200 1.657812 1.658693 1.660259