Question: Two probability distributions of the discrete random variable X and Y are given below.

TABLE 0 Table-1

X	0	1	2	3
P(X)	<u>1</u>	$\frac{2}{5}$	<u>1</u> 5	<u>1</u> 5

TABLE 0 Table-2

Y	0	1	2	3
P(X)	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{10}$

Prove that $E(Y^2) = 2E(X)$

Solution:

$$E(Y^2) = \sum_{i=0}^{n} (Y_i)^2 . P(Y_i)$$
 (1)

$$= 0 \times \frac{1}{5} + 1^2 \times \frac{3}{10} + (2)^2 \times \frac{2}{5} + (3)^2 \times \frac{1}{10}$$
 (2)

$$=0+\frac{3}{10}+\frac{8}{5}+\frac{9}{10}\tag{3}$$

$$=\frac{14}{5}\tag{4}$$

$$E(X) = \sum_{i=0}^{n} X_i . P(X_i)$$
(5)

$$= 0 \times \frac{1}{5} + 1 \times \frac{2}{5} + 2 \times \frac{1}{5} + 3 \times \frac{1}{5} \tag{6}$$

$$=0+\frac{2}{5}+\frac{2}{5}+\frac{3}{5}\tag{7}$$

$$=\frac{7}{5}\tag{8}$$

From (4) and (8);

$$\frac{14}{5} = 2 \times \frac{7}{5} \tag{9}$$

$$\therefore E(Y^2) = 2E(X) \tag{10}$$