Régime transitoire des systèmes du second ordre

Objectif:

- Comprendre le comportement d'un système du second ordre dans le domaine temporel en fonction de ses paramètres.
- Être capable d'utiliser les abaques temporels des systèmes du second ordre.

Préparation : Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (5 points)

On étudie le montage suivant :

La fonction de transfert de ce système est la suivante :

$$T(p) = \frac{1}{1 + 2RC_2p + R^2C_1C_2p^2}$$

- 1. Justifier l'ordre du système étudié.
- 2. Rappeler la forme canonique de la fonction de transfert d'un système du second ordre. Donner le nom et l'unité de chacun des paramètres caractéristiques qui la compose.
- 3. Par identification, donner en fonction de R, C_1 et C_2 , les expressions littérales des paramètres caractéristiques de la fonction de transfert T(p).

On souhaite fixer la valeur de ω_0 à $10^4 \ rad.s^{-1}$. Les valeurs des composants mis à disposition sont les suivantes :

Pour R : 1,8 k Ω 2,2 k Ω 22 k Ω

Pour C_1 et C_2 : 1 nF 22 nF 33 nF 47 nF 68 nF

4. Trouver les valeurs de R, C_1 et C_2 qui permettent de régler au plus près les valeurs du tableau suivant, puis compléter celui-ci.

Valeurs souhaitées			Valeurs normalisées			Valeurs exactes		
ω_0 (rad.s ⁻¹)	f_0 (Hz)	m	$R(k\Omega)$	$C_1(nF)$	$C_2(nF)$	ω_0 (rad.s ⁻¹)	f_0 (Hz)	m
		0,2						
10^{4}		0,7						
		1,2						

- 5. Tracer l'allure de la réponse temporelle du système en fonction des valeurs de m.
- 6. Exprimer m à partir de l'expression du dépassement D% en utilisant le formulaire sur les systèmes du second ordre fourni en annexe.
- 7. Exprimer ω_0 en fonction du temps de pic (t_{pic}) en utilisant le formulaire sur les systèmes du second ordre.

2 Manipulations (15 points)

Une maquette de manipulation correspondant au montage étudié est mise à disposition. Sur cette maquette, il est possible, à l'aide de cavaliers, de régler les différentes valeurs de R, C_1 et C_2 . Ainsi, à l'aide des cavaliers et de votre préparation théorique, sélectionner les composants permettant d'obtenir $\mathbf{m} = \mathbf{0}$, $\mathbf{2}$. En complément d'informations, un formulaire sur les systèmes du second ordre est donné en annexe.

- 1. Effectuer les bons réglages pour correctement observer la réponse indicielle du système. Relever l'oscillogramme de la réponse indicielle.
- 2. Détermination de m et ω_0 (méthode 1) :
 - (a) Mesurer l'amplitude du premier dépassement et l'exprimer en % de la valeur finale (régime transitoire). On notera cette valeur D%. En déduire la valeur de m grâce à votre préparation.
 - (b) Comparer la valeur trouvée de m avec celle sélectionnée grâce aux cavaliers.
 - (c) Mesurer le temps t_{pic} correspondant au maximum de ce premier dépassement.
 - (d) En déduire la valeur de ω_0 , la pulsation propre du système.
- 3. Détermination de m et ω_0 (méthode 2) :
 - (a) Mesurer le temps de réponse à 5 % du système ($t_{r5\%}$).
 - (b) En déduire le temps de réponse réduit tel que $t_{reduit} = \omega_0 t_{r5\%}$. Prendre la valeur de ω_0 déterminée précédemment pour le calcul.
 - (c) A l'aide de l'abaque donné en annexe, en déduire la valeur de m.
 - (d) Comparer à la valeur théorique.

Reprendre l'ensemble des questions précédentes pour $\mathbf{m}=\mathbf{0,7}$ et $\mathbf{m}=\mathbf{1,2}$. Les deux méthodes vues précédemment sont-elles applicables? Dans le cas où une seule des méthodes est applicable, proposer une procédure permettant néanmoins de déterminer m et ω_0 .

Annexe : Formulaire sur les systèmes du second ordre

Paramètre	Expression théorique		
Temps de réponse à n % pour $m <$ 0,7 (T_r)	$T_r = \frac{1}{\omega_0 m} ln(\frac{100}{n})$		
Temps de pic (T_{pic})	$T_{pic} = \frac{\pi}{\omega_0 \sqrt{1 - m^2}}$		
Pseudo-période (T_p)	$T_p = \frac{2\pi}{\omega_0 \sqrt{1 - m^2}}$		
Dépassement indiciel en $\%$ ($D\%$)	$D\% = 100e^{\frac{-\pi m}{\sqrt{1-m^2}}}$		
Nombre d'oscillations complètes (nb)	$nb = \frac{1}{2m}$		

Abaque du temps de réponse réduit

