FUNDAMENTALS OF LINEAR ALGEBRA

- Linear transformations
- Basis and coordinates
- Coordinate mapping
- Change of basis
- Dimensions of vectors spaces

Wednesday, 8 May 2019

Revision: Transformations

Definition: Transformation (mapping, function) \mathcal{T} from \mathbb{R}^n into \mathbb{R}^m is a rule assigning a vector $\mathcal{T}(\mathbf{x}) = \mathbf{y} \in \mathbb{R}^m$ to each vector $\mathbf{x} \in \mathbb{R}^n$.

- ullet \mathbb{R}^n is called the **domain**, and \mathbb{R}^m the **codomain** of \mathcal{T} .
- The usual notation is: $\mathcal{T}: \mathbb{R}^n \mapsto \mathbb{R}^m$.
- \bullet Vector $\mathbf{y} = \mathcal{T}(\mathbf{x})$ is called the image of \mathbf{x} .
- \bullet The set of all images $\{\mathcal{T}(\mathbf{x})\}$ is called the range of $\mathcal{T}.$

Revision: Linear transformations

Definition:

Transformation $\mathcal T$ is **linear** if: $\forall \, \mathbf u, \, \mathbf v$ in the domain of $\mathcal T$

(i)
$$\mathcal{T}(\mathbf{u} + \mathbf{v}) = \mathcal{T}(\mathbf{u}) + \mathcal{T}(\mathbf{v})$$

(ii)
$$\mathcal{T}(c\mathbf{u}) = c\mathcal{T}(\mathbf{u}) \quad \forall c \in \mathbb{R}$$

Notes:

If ${\mathcal T}$ is a linear transformation, then

•
$$\mathcal{T}(\mathbf{0}) = \mathbf{0}$$
 (proof: $\mathcal{T}(0) = \mathcal{T}(0 \cdot 0) = 0 \cdot \mathcal{T}(0) = 0$)

•
$$\mathcal{T}(c\mathbf{u} + d\mathbf{v}) = c\mathcal{T}(\mathbf{u}) + d\mathcal{T}(\mathbf{v})$$
 (follows from (i) and (ii))

If T is an $m \times n$ matrix, T(x) = Tx is a linear transformation.

Revision: Linear transformations

- For $\mathbf{x} \in \mathbb{R}^n$, a linear transformation $\mathcal{T}(\mathbf{x})$ into \mathbb{R}^m can be computed as $\mathbf{T}\mathbf{x}$ where \mathbf{T} is an $m \times n$ matrix.
- If the domain of \mathcal{T} is \mathbb{R}^n then \mathbf{T} has n columns, and if the codomain of \mathcal{T} is \mathbb{R}^m then \mathbf{T} has m rows.
- The range of $\mathcal T$ is $\mathrm{Span}\{\mathbf a_1 \dots \mathbf a_n\}$ and image of $\mathbf x$ is $\mathbf T \mathbf x$.

Standard vectors and standard matrix

$$\ln \mathbb{R}^2 \colon \mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} x_1 \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ x_2 \end{array} \right] = x_1 \left[\begin{array}{c} 1 \\ 0 \end{array} \right] + x_2 \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

The vectors

$$\mathbf{e}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{e}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

are called the *standard unit vectors in* \mathbb{R}^2 , and $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$.

Similarly, in \mathbb{R}^3

$$\mathbf{e}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{e}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{e}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right]$$

and $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3$.

Generally in
$$\mathbb{R}^n$$
 $\mathbf{x} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n$ with $\mathbf{e}_n : \begin{cases} e_n^{(i=n)} = 1 \\ e_n^{(i\neq n)} = 0 \end{cases}$

Standard vectors and standard matrix

For any linear transformation $\mathcal{T}: \mathbb{R}^2 \mapsto \mathbb{R}^2$ we can write

$$\mathcal{T}(\mathbf{x}) = \mathcal{T}(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = \mathcal{T}(x_1\mathbf{e}_1) + \mathcal{T}(x_2\mathbf{e}_2) = x_1\mathcal{T}(\mathbf{e}_1) + x_2\mathcal{T}(\mathbf{e}_2)$$

This can be written as
$$\mathcal{T}(\mathbf{x}) = \left[\begin{array}{c|c} \mathcal{T}(\mathbf{e}_1) & \mathcal{T}(\mathbf{e}_2) \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \equiv \mathbf{T}\mathbf{x}$$

$$\mathbf{T} = \left[\begin{array}{c|c} \mathcal{T}(\mathbf{e}_1) & \mathcal{T}(\mathbf{e}_2) \end{array} \right]$$
 is called the *standard matrix* of \mathcal{T} .

Similarly, for any linear transformation $\mathcal{T}:\mathbb{R}^n\mapsto\mathbb{R}^n$ we can write

$$\mathcal{T}(\mathbf{x}) = \mathcal{T}(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = \mathcal{T}(x_1\mathbf{e}_1) + \ldots + \mathcal{T}(x_n\mathbf{e}_n)$$
$$= x_1\mathcal{T}(\mathbf{e}_1) + \ldots + x_n\mathcal{T}(\mathbf{e}_n) = \mathbf{T}\mathbf{x}$$

with the standard matrix $\mathbf{T} = \left[\right. \left. \mathcal{T}(\mathbf{e}_1) \right. \left. \left. \right| \left. \mathcal{T}(\mathbf{e}_n) \right. \left. \right].$

Example in 3D:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{y}_1 = \begin{bmatrix} 3 \\ 5 \\ -7 \end{bmatrix}, \quad \mathbf{y}_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{y}_3 = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}.$$

Let $\mathcal{T}: \mathbb{R}^3 \mapsto \mathbb{R}^3$ be a linear transformation that maps \mathbf{e}_i to \mathbf{y}_i .

Let us obtain the standard matrix ${f T}$ for transformation ${\cal T}$,

and then find the image of $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$.

The transformation is defined so that $\mathcal{T}(\mathbf{e}_i) = \mathbf{y}_i$.

The standard matrix T then has columns directly given by y_k :

$$\mathbf{T} = \begin{bmatrix} \mathcal{T}(\mathbf{e}_1) \ \mathcal{T}(\mathbf{e}_2) \ \mathcal{T}(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \\ 5 & 0 & 3 \\ -7 & 3 & 5 \end{bmatrix}$$

The image of ${\bf u}$ is

$$\mathcal{T}(\mathbf{u}) = \mathbf{T}\mathbf{u} = \begin{bmatrix} 3 & 2 & -1 \\ 5 & 0 & 3 \\ -7 & 3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 14 \\ 12 \\ -20 \end{bmatrix}$$

Example: Find the standard matrix for dilation $T(\mathbf{x}) = 3\mathbf{x}$.

We first check the action of dilation on standard vectors:

$$\mathcal{T}(\mathbf{e}_1) = 3\mathbf{e}_1 = 3\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\mathcal{T}(\mathbf{e}_2) = 3\mathbf{e}_2 = 3\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 0\\3 \end{bmatrix}$$

Then we can form the required standard matrix:

$$\mathbf{D}_3 = \begin{bmatrix} \mathcal{T}(\mathbf{e}_1) \ \mathcal{T}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

Example: Find the standard matrix of a transformation that rotates any vector in \mathbb{R}^2 around the origin by an angle φ radians.

$$\mathcal{T}(\mathbf{e}_1) = \left[\begin{array}{c} \cos \varphi \\ \sin \varphi \end{array} \right] \qquad \text{and} \qquad \mathcal{T}(\mathbf{e}_2) = \left[\begin{array}{c} -\sin \varphi \\ \cos \varphi \end{array} \right]$$

Therefore

$$\mathbf{R}_{\varphi} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

Example: Consider a linear transformation $\mathcal{T}: \mathbb{R}^2 \mapsto \mathbb{R}^2$ by

$$\mathbf{T} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{so} \quad \mathcal{T}(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

Find the images of: $\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$.

$$\mathcal{T}(\mathbf{u}) = \begin{bmatrix} -1\\4 \end{bmatrix}$$
$$\mathcal{T}(\mathbf{v}) = \begin{bmatrix} -3\\2 \end{bmatrix}$$
$$\mathcal{T}(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} -4\\6 \end{bmatrix}$$

 \mathcal{T} rotates vectors by 90^0 counterclockwise about the origin.

Linear transformations, examples

Example:
$$\mathbf{T} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathcal{T}(\mathbf{x}) = \mathbf{T}\mathbf{x}$.

To find \mathbf{x} such that $\mathcal{T}(\mathbf{x}) = \mathbf{b}$ we need to solve the system:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

So
$$x_1=\frac{3}{2}$$
, $x_2=-\frac{1}{2}$ and thus ${\bf b}$ is the image of ${\bf x}=\left[\begin{array}{c} 1.5\\ -0.5 \end{array}\right]$

Any vector producing image $\, {\bf b} \,$ under $\, {\cal T} \,$ must satisfy this system.

A unique solution implies only one ${\bf x}$ with the image ${\bf b}$.

Linear transformations, examples

Example:
$$\mathbf{T} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}, \quad \mathcal{T}(\mathbf{x}) = \mathbf{T}\mathbf{x}.$$

Determine whether or not c is in the range of transformation \mathcal{T} .

Vector c is in the range of $\mathcal{T}(x)$ if c is an image of some $x \in \mathbb{R}^2$.

Solving the system $\mathbf{T}\mathbf{x}=\mathbf{c}$ gives

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 1/2 \\ 0 & 0 & 10 \end{bmatrix}$$

The system is inconsistent and thus c is **not** in the range of \mathcal{T} . There are no vectors in \mathbb{R}^2 with an image c under \mathcal{T} .

Linear transformations

Definition: A mapping $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *one-to-one* mapping if each \mathbf{b} in \mathbb{R}^m is the image of at most one \mathbf{x} in \mathbb{R}^n .

- Equivalently, \mathcal{T} is a one-to-one transformation if $\forall \mathbf{b} \in \mathbb{R}^m$ the equation $\mathcal{T}(\mathbf{x}) = \mathbf{b}$ has either a unique or no solutions.
- A one-to-one transformation is a unique transformation.

Linear transformations

Theorem: A linear transformation $\mathcal{T}: \mathbb{R}^n \mapsto \mathbb{R}^m$ is a one-to-one transformation if and only if the equation $\mathcal{T}(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.

Proof: Since \mathcal{T} is linear then $\mathcal{T}(\mathbf{0}) = \mathbf{0}$. If \mathcal{T} is one-to-one, then the equation $\mathcal{T}(\mathbf{x}) = \mathbf{0}$ has at most one solution, $\mathbf{x} = \mathbf{0}$.

Suppose \mathcal{T} is *not* one-to-one. Then $\exists \mathbf{b} \in \mathbb{R}^m$ which is the image of at least 2 different vectors $\mathbf{u} \neq \mathbf{v}$ in \mathbb{R}^n : $\mathcal{T}(\mathbf{u}) = \mathbf{b}$, $\mathcal{T}(\mathbf{v}) = \mathbf{b}$.

But since \mathcal{T} is linear, $\mathcal{T}(\mathbf{u} - \mathbf{v}) = \mathcal{T}(\mathbf{u}) - \mathcal{T}(\mathbf{v}) = \mathbf{b} - \mathbf{b} = \mathbf{0}$.

However $\mathbf{u}-\mathbf{v}\neq\mathbf{0}$ and then the equation $\mathcal{T}(\mathbf{x})=\mathbf{0}$ is going to have more than one solution: $\mathbf{0}$ and $\mathbf{u}-\mathbf{v}$.

Therefore, the assumption that $\mathcal T$ is not one-to-one must be false, which proves that $\mathcal T$ is one-to-one.

Linear transformations

Theorem: Let $\mathcal{T}: \mathbb{R}^n \mapsto \mathbb{R}^m$ be a linear transformation with the standard matrix \mathbf{T} . Then:

- \mathcal{T} maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of \mathbf{T} span \mathbb{R}^m .
- T is one-to-one if and only if the columns of T are linearly independent.

Proof:

- (a) The columns of \mathbf{T} span \mathbb{R}^m if and only if $\forall \mathbf{b} \in \mathbf{R}^m$ the equation $\mathbf{T}\mathbf{x} = \mathbf{b}$ is consistent, so it has a solution for every \mathbf{b} . This is true only when \mathcal{T} maps \mathbb{R}^n onto \mathbb{R}^m .
- (b) From the previous theorem, if \mathcal{T} is one-to-one, the equation $\mathbf{T}\mathbf{x}=\mathbf{0}$ has only the trivial solution. This can only happen if the columns of \mathbf{T} are linearly independent.

Linear transformations, examples

Example: Consider a linear transformation with standard matrix

$$\mathbf{T} = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Check if this transformation \mathcal{T} is a one-to-one linear transformation, and find the domain, codomain, and range of \mathcal{T} .

- ullet ${\cal T}$ can be presented as ${f T}{f x}$ so it is a linear transformation.
- ullet The domain of $\mathcal T$ is $\mathbb R^4$ and the codomain is $\mathbb R^3$.
- There are three pivots in ${\bf T}$ so the columns of ${\bf T}$ span \mathbb{R}^3 , thus the range of $\mathcal T$ is the entire \mathbb{R}^3 .
- The augmented matrix [T | b] has a solution for any b.
 However there is one free variable so each b is an image for more then one x, therefore this mapping is not one-to-one.

Linear transformations, examples

Example: Check if the transformation
$$\mathcal{T}(x_1, x_2) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix}$$

is a one-to-one linear transformation, and find its range.

$$\mathcal{T}(\mathbf{x}) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{T}\mathbf{x}$$

- The columns of ${\bf T}$ are linearly independent (not multiples of each other), therefore ${\cal T}$ is a one-to-one linear transformation.
- The domain of \mathcal{T} is \mathbb{R}^2 and the codomain is \mathbb{R}^3 .
- There are only two columns in T, so they cannot span \mathbb{R}^3 ; the columns of T span a plane within \mathbb{R}^3 ;
- That plane is the range of \mathcal{T} any image produced by \mathcal{T} is a linear combination of the columns of \mathbf{T} .

Revision: Basis

An indexed set $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_p\}$ is a **basis** in V if: \mathcal{B} is a linearly independent set, and $V = \operatorname{Span}\{\mathbf{b}_1, \dots \mathbf{b}_p\}$

Theorem: (the unique representation theorem)

Let $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ be a basis for a vector space V.

Then $\forall \mathbf{x} \in V$ there exists a *unique* set of scalars $x_1, \dots x_n$ such that

$$\mathbf{x} = x_1 \mathbf{b}_1 + \ldots + x_n \mathbf{b}_n.$$

- A basis is an "efficient" spanning set that contains only "necessary" vectors.
- A basis can be constructed from a spanning set by discarding unnecessary vectors.

Revision: Spanning set theorem

Spanning set theorem:

Let $S = \{\mathbf{v}_1, \dots \mathbf{v}_p\}$ be a set in V, and $H = \operatorname{Span}\{\mathbf{v}_1, \dots \mathbf{v}_p\}$.

- (a) If one of the vectors in S, say \mathbf{v}_i , is a linear combination of the other vectors in S, then the set formed from S by removing \mathbf{v}_i still spans H.
- (b) If $H \neq \{0\}$, some subset of S is a basis for H.
 - A basis is a smallest possible spanning set.
 - A basis is also a largest possible linearly independent set.
 - If S is a basis for V and is enlarged by one vector $\mathbf{w} \in V$ then the enlarged set cannot be linearly independent, because S spans V so \mathbf{w} is a linear combination of the vectors of S.
 - If S is a basis for V and if S is made smaller by one vector $\mathbf{u} \in V$ then the reduced set cannot serve as a basis, because it will not span V anymore.

Revision: Coordinate systems

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ be a basis for V, and $\mathbf{x} \in V$. The *coordinates* of \mathbf{x} relative to basis \mathcal{B} (or \mathcal{B} -coordinates of \mathbf{x}) are the coefficients $x_1, \dots x_n$ such that

$$\mathbf{x} = x_1 \mathbf{b}_1 + \ldots + x_n \mathbf{b}_n.$$

If $x_1, \ldots x_n$ are the $\mathcal B$ -coordinates of $\mathbf x$, then the vector in $\mathbb R^n$

$$\left[\mathbf{x}\right]_{\mathcal{B}} = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

is the *coordinate vector* of \mathbf{x} (relative to \mathcal{B}), or the \mathcal{B} -coordinate vector of \mathbf{x} .

Mapping $x \mapsto [x]_{\mathcal{B}}$ is the coordinate mapping defined by \mathcal{B} .

Revision: Coordinate systems

Example: Standard basis $\{e_1; e_2\}$, and basis $\mathcal{B} = \{b_1; b_2\}$

with
$$\mathbf{b}_1=\mathbf{e}_1$$
 and $\mathbf{b}_2=\begin{bmatrix}1\\2\end{bmatrix}$, for vector $\mathbf{x}=\begin{bmatrix}1\\6\end{bmatrix}$.

Coordinates $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ locate \mathbf{x} relative to the standard basis.

$$\mathcal{B}$$
-coordinates $\left[\mathbf{x}\right]_{\mathcal{B}} = \left(\begin{array}{c} -2 \\ 3 \end{array}\right)$ locate \mathbf{x} relative to \mathcal{B} .

By choosing a basis $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ in a space V we introduce a coordinate system in V.

Coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ maps V to the space \mathbb{R}^n .

Points in V can then be identified by equivalent points in \mathbb{R}^n .

Coordinate change is a one-to-one linear transformation.

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ be a basis for a vector space V. Then coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Proof: Consider two arbitrary vectors in V,

$$\mathbf{u} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n,$$

$$\mathbf{v} = d_1 \mathbf{b}_1 + \ldots + d_n \mathbf{b}_n.$$

Then $\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{b}_1 + \ldots + (c_n + d_n)\mathbf{b}_n$ and

$$\left[\mathbf{u} + \mathbf{v}\right]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \left[\mathbf{u}\right]_{\mathcal{B}} + \left[\mathbf{v}\right]_{\mathcal{B}}.$$

Thus coordinate mapping preserves addition.

Proof (continuation): If r is an arbitrary scalar, then

$$r\mathbf{u} = r(c_1\mathbf{b}_1 + \ldots + c_n\mathbf{b}_n) =$$

= $(rc_1)\mathbf{b}_1 + \ldots + (rc_n)\mathbf{b}_n$,

SO

$$[r\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r [\mathbf{u}]_{\mathcal{B}}.$$

Thus coordinate mapping also preserves scalar multiplication.

Therefore, coordinate mapping $\mathbf{x}\mapsto \left[\mathbf{x}\right]_{\mathcal{B}}$ is a linear mapping.

Since \mathcal{B} is a basis, the columns of $[\mathbf{b}_1 \dots \mathbf{b}_n]$ are linearly independent, therefore the transformation is one-to-one.

• The linearity of the coordinate mapping extends to linear combinations: for $\mathbf{u}_1, \dots \mathbf{u}_n \in V$ and scalars $c_1, \dots c_n$

$$[c_1\mathbf{u}_1 + \ldots + c_n\mathbf{u}_n]_{\mathcal{B}} = c_1[\mathbf{u}_1]_{\mathcal{B}} + \ldots + c_n[\mathbf{u}_n]_{\mathcal{B}}$$

(the \mathcal{B} -coordinates of a linear combination of vectors $\mathbf{u}_1, \dots \mathbf{u}_n$, are the coefficients in the linear combination of their coordinate vectors).

- \bullet A one-to-one linear transformation from vector space V onto vector space W is called an $\emph{isomorphism}$ from V onto W .
 - Notation and terminology may be different in V and W, however as vector spaces they have identical structures.
- ullet Coordinate mapping is an isomorphism between V and \mathbb{R}^n .

Example:

 $\mathcal{P} = \{1, t, t^2, t^3\}$ is the standard basis in the space \mathbb{P}^3 (polynomials of a degree up to 3).

A typical element \mathbf{p} of \mathbb{P}^3 has the form

$$\mathbf{p} = a_0 + a_1 t + a_2 t^2 + a_3 t^3.$$

This is a linear combination of the standard basis vectors, so

$$\left[\mathbf{p}\right]_{\mathcal{P}} = \left(egin{array}{c} a_0 \\ a_1 \\ a_2 \\ a_3 \end{array}
ight).$$

Coordinate mapping $\mathbf{p}\mapsto [\mathbf{p}]_{\mathcal{P}}$ is an isomorphism of \mathbb{P}^3 onto \mathbb{R}^4 .

All vector operations in \mathbb{P}^n correspond to operations in $\mathbb{R}^{(n+1)}$.

Example: Check if these polynomials are linearly dependent:

$$\mathbf{p}_1 = 1 + 2t^2$$
, $\mathbf{p}_2 = 4 + t + 5t^2$, $\mathbf{p}_3 = 3 + 2t$

Solution: These $\mathbf{p}_i \in \mathbb{P}^2$ so their coordinate vectors are in \mathbb{R}^3 :

$$\begin{bmatrix} \mathbf{p}_1 \end{bmatrix}_{\mathcal{P}} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad \begin{bmatrix} \mathbf{p}_2 \end{bmatrix}_{\mathcal{P}} = \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}, \quad \begin{bmatrix} \mathbf{p}_3 \end{bmatrix}_{\mathcal{P}} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}.$$

We then write these vectors as columns of a matrix, and check the linear dependence $x_1\mathbf{p}_1 + x_2\mathbf{p}_2 + x_3\mathbf{p}_3 = \mathbf{0}$ by row reduction:

$$\begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 0 & -3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

No pivot in the third column so the columns are linearly dependent.

So

$$\left[
\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}
\right]$$

Here, x_3 is a free variable, and then $x_2 = -2x_3$ and $x_1 = 5x_3$.

Choosing $x_3 = 1$, we have $x_1 = 5$ and $x_2 = -2$:

$$5\begin{bmatrix}1\\0\\2\end{bmatrix}-2\begin{bmatrix}4\\1\\5\end{bmatrix}+\begin{bmatrix}3\\2\\0\end{bmatrix}=\mathbf{0}.$$

The corresponding relation $5\mathbf{p}_1 - 2\mathbf{p}_2 + \mathbf{p}_3 = \mathbf{0}$ then reads:

$$5(1+2t^2) - 2(4+t+5t^2) + (3+2t) = 0 \quad \forall t$$

Example: Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$

with
$$\mathbf{v}_1 = \left[\begin{array}{c} 3 \\ 6 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right]; \quad \text{and} \quad \mathbf{x} = \left[\begin{array}{c} 3 \\ 12 \\ 7 \end{array} \right]$$

Determine if $\mathbf{x} \in H$ and, if so, find $[\mathbf{x}]_{\mathcal{B}}$.

Solution: If $x \in H$, then the following equation is consistent:

$$c_1 \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}.$$

The scalars c_1 and c_2 , if they exist, are the ${\cal B}$ coordinates of ${\bf x}$. Row reduction yields

$$\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 3 \\ 0 & 2 & 6 \\ 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Thus the system is consistent; a unique solution is $c_1 = 2$, $c_2 = 3$.

The coordinate vector of \mathbf{x} relative to \mathcal{B} is $\left[\mathbf{x}\right]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix};$$

and

$$\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix} = 2\mathbf{v}_1 + 3\mathbf{v}_2$$

Change of basis in \mathbb{R}^2

For a given basis $\mathcal B$ in $\mathbb R^2$, $\mathcal B$ -coordinates are easily found.

Example:
$$\mathbf{b}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \quad \mathbf{b}_2 = \left[\begin{array}{c} -1 \\ 1 \end{array} \right], \quad \mathbf{x} = \left[\begin{array}{c} 4 \\ 5 \end{array} \right].$$

To find the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = (c_1; c_2)$ of \mathbf{x} with respect to basis \mathcal{B} , we need to solve the equation $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 = \mathbf{x}$:

$$c_1 \left[\begin{array}{c} 2\\1 \end{array} \right] + c_2 \left[\begin{array}{c} -1\\1 \end{array} \right] = \left[\begin{array}{c} 4\\5 \end{array} \right]$$

which is

$$\left[\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \end{array}\right] = \left[\begin{array}{c} 4 \\ 5 \end{array}\right].$$

This equation can be solved by row-reducing the augmented matrix; the solution is $c_1 = 3$ and $c_2 = 2$.

Change of basis in \mathbb{R}^2

Thus $\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2$ and we can write

$$\left[\mathbf{x}\right]_{\mathcal{B}} = \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \left(\begin{array}{c} 3 \\ 2 \end{array}\right).$$

Note: The matrix $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ transforms \mathcal{B} -coordinates of vector \mathbf{x} into standard coordinates for \mathbf{x} .

Change of basis in \mathbb{R}^n

Generally, let $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ be a basis in \mathbb{R}^n .

Construct the following matrix: $P_{\mathcal{B}} = [\mathbf{b}_1, \dots \mathbf{b}_n]$.

Then the vector equation $\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$ is equivalent to

$$\mathbf{x} = P_{\mathcal{B}} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} \quad \text{where} \quad \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

 $P_{\mathcal{B}}$ is the *change of coordinates matrix* from \mathcal{B} to the standard basis in \mathbb{R}^n : $\{e_1, \dots e_n\}$.

The columns of $P_{\mathcal{B}}$ form a basis for \mathbb{R}^n , therefore $P_{\mathcal{B}}$ is invertible.

Left-multiplication by $P_{\mathcal{B}}^{-1}$ converts \mathbf{x} into \mathcal{B} -coordinate vector

$$P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$$

Change of basis, a special example

Example: Consider two bases $\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2\}$ and $\mathcal{C}=\{\mathbf{c}_1,\mathbf{c}_2\}$ such that $\mathbf{b}_1=4\mathbf{c}_1+\mathbf{c}_2$ and $\mathbf{b}_2=-6\mathbf{c}_1+\mathbf{c}_2$, and some \mathbf{x} , for which we only know that $\mathbf{x}=3\mathbf{b}_1+\mathbf{b}_2$, that is,

$$\left[\mathbf{x}\right]_{\mathcal{B}} = \left(\begin{array}{c} 3\\1 \end{array}\right).$$

Even though we do not know the vectors \mathbf{b}_i and \mathbf{c}_i , a connection between the two coordinate systems can be established because we know how \mathbf{b}_1 and \mathbf{b}_2 are related to \mathbf{c}_1 and \mathbf{c}_2 .

Apply $\mathcal C$ coordinates to $\mathbf x=3\mathbf b_1+\mathbf b_2$. Since the mapping is linear,

$$[\mathbf{x}]_{\mathcal{C}} = [3\mathbf{b}_1 + \mathbf{b}_2]_{\mathcal{C}} = 3[\mathbf{b}_1]_{\mathcal{C}} + [\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Change of basis, a special example

Given that ${\bf b}_1=4{\bf c}_1+{\bf c}_2$ and ${\bf b}_2=-6{\bf c}_1+{\bf c}_2$, the columns are:

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \quad \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} -6 \\ 1 \end{pmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix}$$

So the coordinates are connected by the above matrix, and

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \left[\begin{array}{cc} 4 & -6 \\ 1 & 1 \end{array}\right] \left(\begin{array}{c} 3 \\ 1 \end{array}\right) = \left(\begin{array}{c} 6 \\ 4 \end{array}\right)$$

On the left, $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$. On the right, the same $\mathbf{x} = 6\mathbf{c}_1 + 4\mathbf{c}_2$.

Let $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots \mathbf{c}_n\}$ be bases of space V. Then there is a unique $n \times n$ matrix $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \left[\mathbf{x}\right]_{\mathcal{B}}.$$

The columns of $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in basis \mathcal{B} . That is, $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} & \dots & \begin{bmatrix} \mathbf{b}_n \end{bmatrix}_{\mathcal{C}} \end{bmatrix}$.

 $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ is called the *change of coordinate matrix* from \mathcal{B} to \mathcal{C} .

The columns of $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B} .

 $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ is a square matrix, and coordinate mapping is one-to-one, therefore $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible. By multiplying both the sides of

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \left[\mathbf{x}\right]_{\mathcal{B}}$$

by $(\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$ we obtain

$$\left(\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\right)^{-1}\ \left[\mathbf{x}\right]_{\mathcal{C}}=\left[\mathbf{x}\right]_{\mathcal{B}}.$$

Therefore the matrix $(\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$ converts \mathcal{C} coordinates into \mathcal{B} coordinates:

$$(\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}=\mathbf{P}_{\mathcal{B}\leftarrow\mathcal{C}}.$$

Note: For the standard basis $\mathcal{E} = \{e_1, \dots e_n\}$ in \mathbb{R}^n , each $[\mathbf{b}_i]_{\mathcal{E}} = \mathbf{b}_i$. Then $\mathbf{P}_{\mathcal{E} \leftarrow \mathcal{B}}$ (sometimes denoted as $\mathbf{P}_{\mathcal{B}}$) is:

$$\mathbf{P}_{\mathcal{E} \leftarrow \mathcal{B}} \equiv \mathbf{P}_{\mathcal{B}} = \left[\mathbf{b}_1, \dots \mathbf{b}_n\right] = \left[\left[\mathbf{b}_1\right]_{\mathcal{E}}, \dots \left[\mathbf{b}_n\right]_{\mathcal{E}}\right].$$

Example: Find $P_{\mathcal{C}\leftarrow\mathcal{B}}$ from $\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2\}$ to $\mathcal{C}=\{\mathbf{c}_1,\mathbf{c}_2\}$, where

$$\mathbf{b}_1 = \left[\begin{array}{c} -9 \\ 1 \end{array} \right], \quad \mathbf{b}_2 = \left[\begin{array}{c} -5 \\ -1 \end{array} \right], \quad \mathbf{c}_1 = \left[\begin{array}{c} 1 \\ -4 \end{array} \right], \quad \mathbf{c}_2 = \left[\begin{array}{c} 3 \\ -5 \end{array} \right].$$

Solution: The columns of $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ are $\mathcal{C}\text{-coordinates}$ of \mathbf{b}_1 and \mathbf{b}_2 .

Let
$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Then $\begin{cases} \mathbf{b}_1 = x_1 \mathbf{c}_1 + x_2 \mathbf{c}_2 \\ \mathbf{b}_2 = y_1 \mathbf{c}_1 + y_2 \mathbf{c}_2 \end{cases}$

or, in matrix-vector form,

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{b}_1, \qquad \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \mathbf{b}_2.$$

To find x_1 , x_2 , y_1 , y_2 at once, we form the doubly augmented matrix: $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & | & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$.

$$\mathbf{b}_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, \quad \mathbf{c}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \ | \ \mathbf{b}_1 \ \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 3 & -9 & -5 \\ 0 & 7 & -35 & -21 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix}$$

Thus

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}, \quad \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

so the change of coordinate matrix is

$$\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}.$$

Note:

 $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ appeared in the right-hand side upon row reduction:

$$\left[\begin{array}{cc|c} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{array}\right]$$

The first column of $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ results from row reducing $\begin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \ | \ \mathbf{b}_1 \end{bmatrix}$ to $\begin{bmatrix} \mathbf{I} \ | \ [\mathbf{b}_1]_{\mathcal{C}} \end{bmatrix}$ and likewise for the second column of $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$, so

$$\left[\begin{array}{ccc|c} \mathbf{c}_1 & \mathbf{c}_2 & | & \mathbf{b}_1 & \mathbf{b}_2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c} \mathbf{I} & | & \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}\end{array}\right]$$

This procedure is used for changing between any two bases in \mathbb{R}^n .

Another way to change coordinates from $\mathcal B$ to $\mathcal C$ is to combine the transitions into standard coordinates, realised by $\mathbf P_{\mathcal B}$ and $\mathbf P_{\mathcal C}$.

$$\forall \mathbf{x} \in \mathbb{R}^n$$
 $\mathbf{P}_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$ $\mathbf{P}_{\mathcal{C}} [\mathbf{x}]_{\mathcal{C}} = \mathbf{x}$

From the last relation we obtain

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C}}^{-1} \mathbf{x}$$

and subsequently using the first relation we obtain

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C}}^{-1} \; \mathbf{x} = \mathbf{P}_{\mathcal{C}}^{-1} \; \mathbf{P}_{\mathcal{B}} \; \left[\mathbf{x}\right]_{\mathcal{B}}$$

Therefore

$$\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \mathbf{P}_{\mathcal{C}}^{-1} \, \mathbf{P}_{\mathcal{B}} \qquad \text{and} \qquad \mathbf{P}_{\mathcal{B} \leftarrow \mathcal{C}} = \mathbf{P}_{\mathcal{B}}^{-1} \, \mathbf{P}_{\mathcal{C}}$$

This approach is however slower than the direct transformation.

Example: Find $P_{\mathcal{C}\leftarrow\mathcal{B}}$ by using $P_{\mathcal{C}}$ and $P_{\mathcal{B}}$ for the two bases:

$$\mathbf{b}_1 = \left[\begin{array}{c} 1 \\ -3 \end{array} \right], \ \mathbf{b}_2 = \left[\begin{array}{c} -2 \\ 4 \end{array} \right]; \quad \mathbf{c}_1 = \left[\begin{array}{c} -7 \\ 9 \end{array} \right], \ \mathbf{c}_2 = \left[\begin{array}{c} -5 \\ 7 \end{array} \right].$$

We first construct $\mathbf{P}_{\mathcal{C}}$ and $\mathbf{P}_{\mathcal{B}}$ and then use $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}=(\mathbf{P}_{\mathcal{C}})^{-1}\mathbf{P}_{\mathcal{B}}$.

$$\mathbf{P}_{\mathcal{B}} = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}, \qquad \mathbf{P}_{\mathcal{C}} = \begin{bmatrix} -7 & -5 \\ 9 & 7 \end{bmatrix}.$$

Then

$$\mathbf{P}_{\mathcal{C}}^{-1} = \left[\begin{array}{cc} -7/4 & -5/4 \\ 9/4 & 7/4 \end{array} \right].$$

and so

$$\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}} = (\mathbf{P}_{\mathcal{C}})^{-1} \, \mathbf{P}_{\mathcal{B}} = \begin{bmatrix} 2 & -3/2 \\ -3 & 5/2 \end{bmatrix}.$$

Dimension of a vector space

We have seen that a vector space V with the basis containing n vectors is isomorphic to \mathbb{R}^n . This number n is an intrinsic property of V (called the *dimension* of V) which does not depend on a particular choice of basis vectors.

Definition: If V is spanned by a finite set, then V is called a *finite-dimensional* space, and the dimension of V, written as $\dim V = n$, is the number n of vectors in a basis for V.

Note: the dimension is a number of vectors in a basis, **not** a number of entries in each vector.

The dimension of the $\{0\}$ vector space is defined to be zero.

If V is not spanned by a finite set then V is infinite-dimensional.

Dimension of a vector space

Example: The basis for \mathbb{R}^n contains n vectors, so $\dim \mathbb{R}^n = n$.

Example: For standard polynomial basis $\{1, t, t^2\}$, $\dim \mathbb{P}^2 = 3$.

In general, $\dim \mathbb{P}^n = n+1$.

The space $\ensuremath{\mathbb{P}}$ of all polynomials is infinite-dimensional.

Example:

Let $H=\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$, with

$$\mathbf{v}_1 = \left[\begin{array}{c} 3 \\ 6 \\ 2 \end{array} \right], \ \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right]$$

Set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for H, since \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. So $\dim H = 2$.

Theorem: Let H be a subspace of a finite-dimensional space V. Then any linearly independent set in H can be expanded to a basis for H, and $\dim H \leqslant \dim V$.

Proof: If $H = \{0\}$, then certainly $\dim H = 0 \leqslant \dim V$. Otherwise let $S = \{\mathbf{u}_1 \dots \mathbf{u}_k\}$ be a linearly independent set in H.

If S spans H then S is a basis for H. Otherwise there is a some \mathbf{u}_{k+1} in H that is not in span of S.

Then the set $S' = \{\mathbf{u}_1, \dots \mathbf{u}_k, \mathbf{u}_{k+1}\}$ is linearly independent.

As long as the new set S does not span subspace H we can continue to add linearly independent vectors to S, expanding it to a larger linearly independent set in H.

But the number of vectors can never exceed $\dim V$, which is a number of linearly independent vectors in the entire space V .

Eventually the expanded set S will span H and $\dim H \leqslant \dim V$.

Example: Various subspaces of \mathbb{R}^3 :

- (a) *0*-dimensional subspace: Only the zero subspace.
- (b) 1-dimensional subspaces: Any subspace spanned by a single nonzero vector. Such subspaces are lines through the origin.
- (c) 2-dimensional subspaces: Any subspace spanned by two linearly independent vectors. Planes through the origin.
- (d) 3-dimensional subspace: Only \mathbb{R}^3 itself. Any three linearly independent vectors in \mathbb{R}^3 span the entire \mathbb{R}^3 .

Example: Find the dimension of a subspace defined as

$$H = \left\{ \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} \right\} \qquad a, b, c, d \in \mathbb{R}.$$

Solution: Decomposing these vectors, we have

$$\begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} = a \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 6 \\ 0 \\ -2 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 4 \\ -1 \\ 5 \end{bmatrix}$$

Therefore H is the set of all linear combination of vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 5 \end{bmatrix}.$$

By analysing these vectors, we notice the following

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 5 \end{bmatrix}.$$

- $\mathbf{v}_1 \neq \mathbf{0}$
- \mathbf{v}_2 is not a multiple of \mathbf{v}_1 .
- ${\bf v}_3$ is a multiple of ${\bf v}_2$ (since ${\bf v}_3=-2{\bf v}_2$). Using the spanning set theorem, we may discard ${\bf v}_3$ and have the remaining set still spanning H.
- \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

So $\{{f v}_1,{f v}_2,{f v}_4\}$ is a linearly independent set and a basis for H .

Thus $\dim H = 3$.

Theorem: If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$

with n vectors, then any set in V containing more than n vectors must be linearly dependent.

Note:

This theorem implies that if the vector space V has a basis with n vectors, then any linearly independent set in V must have no more than n vectors.

Proof strategy:

- Create isomorphism to \mathbb{R}^n .
- Prove in \mathbb{R}^n using matrix techniques.
- Apply a reverse isomorphism.

Proof: Let $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$ be a set in V with p > n vectors. The coordinate vectors $[\mathbf{u}_1]_{\mathcal{B}}, \dots [\mathbf{u}_p]_{\mathcal{B}}$ are linearly dependent in \mathbb{R}^n because there are more vectors (p) than entries (n). Therefore $\exists c_1, \dots c_p$ not all zero such that

$$c_1 \left[\mathbf{u}_1 \right]_{\mathcal{B}} + \ldots + c_p \left[\mathbf{u}_p \right]_{\mathcal{B}} = \mathbf{0}.$$

The coordinate mapping is a linear transformation $V\mapsto \mathbb{R}^n$, so we therefore have

$$[c_1\mathbf{u}_1 + \ldots + c_p\mathbf{u}_p]_{\mathcal{B}} = \mathbf{0} = [\mathbf{0}]_{\mathcal{B}} \quad \text{in} \quad \mathbb{R}^n.$$

Since the transformation is one-to-one, we must have

$$c_1\mathbf{u}_1 + \ldots + c_p\mathbf{u}_p = \mathbf{0}$$
 in V

Since the c_i are not all zero, $\mathbf{u}_1, \dots \mathbf{u}_p$ are linearly dependent.

Theorem: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Proof strategy: Double inequality: $a \le b$ and $a \ge b \implies a = b$ (show that upper and lower bounds coincide)

Proof: Let \mathcal{B}_1 be a basis in V with n vectors, and \mathcal{B}_2 be any other basis in V with m vectors.

Since \mathcal{B}_1 is a basis and \mathcal{B}_2 is a linearly independent set, from the previous theorem \mathcal{B}_2 has no more than n vectors, so $m \leq n$.

Vice versa, since \mathcal{B}_2 is a basis and \mathcal{B}_1 is a linearly independent set, \mathcal{B}_1 has to have no more than m vectors, so $n\leqslant m$.

Thus m = n and \mathcal{B}_2 consists of exactly n vectors.

Note: If a non-zero space V is spanned by a finite set S then there is a subset of S that is a basis in V by spanning set theorem.

"The basis theorem":

Let V be a p-dimensional vector space, $p \ge 1$. Then:

- any linearly independent set of p elements in V is a basis for V;
- any set of p elements that spans V is a basis for V .

Proof:

Any linearly independent set S of p elements can be extended to a basis for V. But this basis should contain exactly p elements since $\dim V = p$. So S is a basis for V.

Suppose S has p elements and spans V. Since V is nonzero, the spanning set theorem implies that there exists a subset S' of S which is a basis of V. Since $\dim V = p$, S' must contain p vectors. Hence S = S'.

Next lecture

See you next Wednesday

15 May 2019

Assignment 5 is due this week (on 8–10 May)

Written assignment (essay) is due next week (on 15–17 May)