Final SY02 Automne 2009

Nom:	Signature:
Prénom :	
d'abord les calculs au brouillon). La copie supplémentaire ne sera accept	reportant que les grandes lignes du raisonnement et les résultats (faire a qualité de la présentation sera prise en compte dans la notation. Aucune tée. Aucun document n'est autorisé, à l'exception du recueil de tables. Les ion qu'elles ne contiennent aucune information relative au cours de sy02.
Exercice 1 (9 points)	
Soit X_1, \ldots, X_n un échantillon i.i.d	l. de variable parente X , de densité
	$f(x) = \frac{x}{\theta^2} \exp\left(-\frac{x}{\theta}\right) 1_{[0,+\infty[}(x),$
θ étant un paramètre positif.	
1. Montrer qu'il existe un estimat	teur efficace de θ . On le notera $\widehat{\theta}$.
2. En déduire les espérances et les	s variances de $\widehat{\theta}$ et de X .

3. Déterminer une fonction asymptotiquement pivotale pour θ que l'on exprimera en fonction de $\widehat{\theta}$.		
4. On considère le problème de test $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$ avec $\theta_1 > \theta_0$. Montrer que la région critique W du test le plus puissant pour ce problème au niveau α^* s'exprime en fonction de $\widehat{\theta}$, puis donner une approximation de W en supposant n grand.		
Expression de W en fonction de $\widehat{\theta}$		
Approximation de W pour n grand		

5. On considère maintenant le problème de test suivant $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$. Existe-t-il un test UPP pour ce problème?
6. Calculer la statistique du rapport de vraisemblance λ , exprimée en fonction de $\widehat{\theta}$, pour le problème de test de la question 5.
7. En utilisant la statistique $-2 \ln \lambda$ et en supposant que n est grand, proposer une région critique pour le test de la question 5. Quelle décision prendra-t-on si $\theta_0 = 2$, $n = 50$, $\sum_i x_i = 115$ et $\alpha^* = 0.05$.
Région critique
Application numérique

Exercice 2 (3 points)

On a examiné 220 giroflées, au point de vue de la morphologie de leurs fleurs et de leurs feuilles. Les 220 giroflées se répartissent suivant le tableau suivant.

	Fleurs simples	Fleurs doubles
Feuilles dentées	74	81
Feuilles non dentées	41	24

Peut-on considérer, au niveau de signification de 5 %, que les deux critères de classification sont indépendants dans la population totale de référence?

Exercice 3 (8 points)

Quinze veaux ont été répartis au hasard en trois lots, alimentés chacun de façon différente. Les gains de poids observés au cours d'une même période et exprimés en kg étant les suivants :

lot 1: 41.2 41.0 40.0 40.1 40.6 lot 2: 39.8 39.9 42.5 41.1 39.8 lot 3: 46.0 44.9 44.7 45.7 47.0

le but de l'étude est de mettre en évidence une relation entre l'alimentation et la croissance des veaux. Les moyennes et les variance de ces 3 distributions sont $\bar{x}_1=40.58, \ \bar{x}_2=40.62, \ \bar{x}_3=45.66, \ s_1^{*\,2}=0.282, \ s_2^{*\,2}=1.407$ et $s_3^{*\,2}=0.853$.

1.	Tester la normalité des données correspondant au premier lot au niveau $\alpha^* = 0.05$.

2. Peut-on considére 0.05?	er que les variances des t	trois échantillons sont éga	les, au niveau de signification $\alpha^* =$
3. Montrer que le ty	pe d'alimentation a un e	effet significatif sur la croi	ssance des veaux. On prendra $\alpha^* =$
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			
0.05.			

On supposera pour la suite que l'hypothèse de normalité peut être acceptée pour les deux autres lots.

4.	Préciser pour quels types d'alimentation il existe des différences significatives.