Homework 9: Types: Rules and Inference

CIS 352: Programming Languages

16 March 2018, Version 1

Administrivia

- Turn in Part I in the CIS 352 submissions box. If you trade ideas with another student, document this in your cover sheet.
- Turn in Part II via Blackboard.
- For the remaining problems, turn them in via Blackboard. Include: (i) the source files, (ii) the transcripts of test runs, and (iii) your cover sheet.

Part I: Written Problems

❖ Problem 1 (8 points) **❖**

Perform the following substitutions, correctly!

(a)
$$((\lambda x. (x z)) x) [(x y)/z]$$

(b)
$$(\lambda y.((\lambda x.(z x)) (\lambda y.((z y) x)))) [(x y)/z]$$

❖ Problem 2 (16 points) **❖**

Give full type derivations for the following using the LFP⁺ typing rules given in class (and page 3).

(a)
$$\vdash$$
 (if ! $\ell > 4$ then 9 else 6) + 11: int

(b)
$$x : \sigma, f : (\sigma \rightarrow \tau) \vdash (f x) : \tau$$

(c)
$$\vdash \lambda x. \lambda y. (y \ x) : \sigma \to (\sigma \to \tau) \to \tau$$

(d)
$$\vdash \lambda f.\lambda x.(f x):(int \rightarrow bool) \rightarrow int \rightarrow bool$$

(e)
$$\vdash \lambda f.\lambda g.\lambda x.(f(gx)): (int \rightarrow bool) \rightarrow (int \rightarrow int) \rightarrow int \rightarrow bool$$

* Problem 3 (32 points) *

(a) Come up with a workable typing rule for the **let** construct.¹ I.e., something along the lines of

$$\frac{??? \vdash e_1 : ???}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : \tau}$$

(b) Give a full type derivation for:

$$x$$
: int \vdash let $p = \lambda y.(x + y)$ in (let $x = 3$ in (px)): int

Grading Criteria

- The homework is out of 100 points.
- Unless otherwise stated, each programming problem is ≈ 70% correctness and ≈ 30% testing.
- Omitting your name(s) in the source code looses you 5 points.

Obvious Hint: (let $x = e_1$ in e_2) $\equiv ((\lambda x.e_2) e_1)$.

(c) Give a full type derivation for:

y: int
$$\vdash$$
 let $p = \lambda x.\lambda y.(x > y)$ in (let $x = y$ in $(p x)$): int \rightarrow bool

(d) Pitts (2002, page 66) defines the letrec construct. Come up with a workable typing rule for the letrec construct.

Part II: Programming Problems

For this part of the homework you should go to Tony Field's

grab a copy of the specification and the template file, and solve the problems in parts I, II, and III of the specification.² Do part IV for extra credit and glory. Here is a schedule of my point assignments for these problems. (These are roughly proportional to Field's marks.)

Part	Problem	Points
I	1	5 points
	2	3 points
	3	5 points
II		16 points
III	1	3 points
	2	12 points
IV	1	4 extra credit points
	2	2 extra credit points
	3	o points (i.e., just glory)

Testing The file tests09.hs has tests I cobbled together for the above. You do not need to invent original tests for this assignment.

References

A. Pitts. Lecture notes on semantics of programming languages: For part IB of the Cambridge CS tripos. Technical report, University of Cambridge, 2002. URL http://www.cl.cam.ac.uk/teaching/2001/Semantics/.

² In working these problems, I found lookup (from Data.List) and maybe (from Data.Maybe) quite handy. Also, do not be afraid of using case expressions!

LFP⁺ typing rules

Notes:

- We use σ and τ as meta-variables
- $\Gamma, x : \tau \equiv \Gamma \cup \{x : \tau\}$
- $iop \in \{+, -, *\}$

:-int:
$$\frac{1}{\Gamma \vdash n : \mathbf{int}} (n \in \mathbb{Z})$$

:-bool:
$$\frac{}{\Gamma \vdash b: \mathbf{bool}} \ (b \in \mathbb{B})$$

:-loc:
$$\frac{}{\Gamma \vdash \ell \text{: loc}} \ (\ell \in \mathbb{L})$$

:-iop:
$$\frac{\Gamma \vdash e_1 \colon \mathbf{int} \quad \Gamma \vdash e_2 \colon \mathbf{int}}{\Gamma \vdash e_1 \ iop \ e_2 \colon \mathbf{int}}$$

:-cop:
$$\frac{\Gamma \vdash e_1 \colon \mathbf{int} \quad \Gamma \vdash e_2 \colon \mathbf{int}}{\Gamma \vdash e_1 \ cop \ e_2 \colon \mathbf{bool}}$$

:-skip:
$$\overline{\Gamma \vdash \mathbf{skip} : \mathbf{cmd}}$$

:-get:
$$\frac{\Gamma \vdash e: \mathbf{loc}}{\Gamma \vdash !e: \mathbf{int}}$$

:-set:
$$\frac{\Gamma \vdash e_1 \colon \mathbf{loc} \quad \Gamma \vdash e_2 \colon \mathbf{int}}{\Gamma \vdash e_1 \leftarrow e_2 \colon \mathbf{cmd}}$$

$$\text{:-if:} \ \frac{\Gamma \vdash e_0 \text{: bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e_0 \text{ then } e_1 \text{ else } e_2 : \tau}$$

:-seq:
$$\frac{\Gamma \vdash e_1 : \mathbf{cmd} \qquad \Gamma \vdash e_2 : \mathbf{cmd}}{\Gamma \vdash e_1; \ e_2 : \mathbf{cmd}}$$

:-whi:
$$\frac{\Gamma \vdash e_1 \text{: bool} \qquad \Gamma \vdash e_2 \text{: cmd}}{\Gamma \vdash \text{while } e_1 \text{ do } e_2 \text{: cmd}}$$

:-var:
$$\frac{}{\Gamma, x : \tau \vdash x : \tau}$$

:-fn:
$$\frac{\Gamma, \ x: \tau \vdash e': \tau'}{\Gamma \vdash \lambda x. e': \tau \rightarrow \tau'}$$

:-app:
$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash (e_1 \; e_2) : \tau'}$$

:-rec:
$$\frac{\Gamma, x:\tau \vdash e:\tau}{\Gamma \vdash \mathbf{rec} x.e:\tau}$$

A sample typing derivation

$$\frac{var:}{x: \text{ int, } y: \text{ int} \vdash x: \text{ int}} = \frac{int:}{x: \text{ int, } y: \text{ int} \vdash 3: \text{ int}} = \frac{var:}{x: \text{ int, } y: \text{ int} \vdash y: \text{ int}} = \frac{x: \text{ int, } y: \text{ int} \vdash x: \text{ int}}{x: \text{ int, } y: \text{ int} \vdash (3*y): \text{ int}} = \frac{fn:}{fn:} = \frac{x: \text{ int, } y: \text{ int} \vdash (x + (3*y)): \text{ int}}{x: \text{ int} \vdash \lambda y.(x + (3*y)): \text{ int} \rightarrow \text{ int}} = \frac{fn:}{h} = \frac{x: \text{ int, } y: \text{ int} \vdash (x + (3*y)): \text{ int}}{h} = \frac{fn:}{h} = \frac{x: \text{ int, } y: \text{ int} \vdash (x + (3*y)): \text{ int}}{h} = \frac{fn:}{h} = \frac{fn:}$$