Gehalte chemischer Elemente in Baumkompartimenten: Literaturstudie und Datensammlung

Berichte des Forschungszentrums Waldökosysteme, Reihe B, Bd. 69 2003

Gehalte chemischer Elemente in Baumkompartimenten Literaturstudie und Datensammlung

von

Carsten Jacobsen, Peter Rademacher, Henning
Meesenburg und Karl Josef Meiwes

Niedersächsische Forstliche Versuchsanstalt

Göttingen 2003

Vorwort

Seit 1994 werden im Rahmen des Intensiven Waldmonitorings der Europäischen Union (EU) und des Internationalen Kooperationsprogramms zur Erfassung und Überwachung der Auswirkungen von Luftverschmutzung auf Wälder der Europäischen Wirtschaftskommission der Vereinten Nationen (ICP Forest der UN/ECE) sogenannte "Level II-Flächen" betrieben. In Deutschland wird das Programm von den Forstverwaltungen der Länder und deren Forschungseinrichtungen durchgeführt und vom Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) koordiniert.

Im Level II-Programm werden wesentliche Parameter des Stoffhaushalts von Waldökosystemen erhoben, um den Einfluss von atmogenen Stoffeinträgen und anderen Umweltveränderungen auf den Zustand der Wälder zu erfassen. Der Nährstoffentzug durch Waldbäume bzw. der Nährstoffexport aus Waldflächen durch die Holzernte stellt eine wesentliche Flussgröße dar. Bisher liegen nur relativ wenige und verstreute Informationen zu dieser Komponente des Stoffhaushalts vor. Daher war es naheliegend, sich diesem wichtigen Stofftransferpfad zu widmen, als sich verschiedene Ad-hoc-Arbeitsgruppen zur Koordination von Auswertungsaktivitäten im Bereich des deutschen Level II-Programms konstituierten. In dem von den Bayerischen Landesantsalt für Wald und Forstwirtschaft veranstalteten Seminar "Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen" vom 15.-16.09.2001 in Freising wurde der Wissensstand zur Methodik von Bioelementinventuren im deutschsprachigen Raum aufbereitet. Im Rahmen der Ad-hoc-Arbeitsgruppe "Critical Loads" wurde vereinbart, zunächst eine Sichtung und Zusammenführung von veröffentlichten und unveröffentlichten Daten zu Elementgehalten in Baumkompartimenten der wichtigsten europäischen Wirtschaftsbaumarten durchzuführen, um auf der Grundlage dieser Daten die Nährstoffentzüge durch forstliche Maßnahmen abschätzen zu können und damit auch die Berechnungen von Critical Loads auf eine sicherere Basis zu stellen. Da gegenwärtig die Entwicklung von Verfahren zur Critical Loads-Berechnung für Schwermetalle vorangetrieben wird, wurden auch Schwermetallgehalte in Baumkompartimenten in die Recherche einbezogen. Die Aufgabe wurde von der Niedersächsischen Forstlichen Versuchsanstalt übernommen. Das BMVEL erkärte sich dankenswerterweise bereit, das Vorhaben finanziell zu unterstützen. Besonderen Dank gebührt Herrn Thomas Haussmann (BMVEL), der das Projekt über die gesamte Laufzeit mit Interesse verfolgte. Die Ad-hoc-Arbeitsgruppe "Critical Loads" steuerte das Projekt in die richtige Bahn, um insbesondere die Verwertbarkeit der Ergebnisse für Critical Loads-Berechnungen sicherzustellen. Insbesondere den Koordinatoren der Arbeitsgruppe, Herrn Dr. Claus-G. Schimming (Ökologiezentrum Kiel) und Herrn Dr. Rolf Becker (ÖKO-Data GmbH), danken wir für die kooperative und kritische Begleitung des Vorhabens.

Dieser Band stellt die leicht überarbeitete Fassung des Abschlussberichts des oben genannten Projektes dar. Wir danken dem Forschungszentrum Waldökosysteme der Universität Göttingen für die Aufnahme des Berichts in seine Publikationsreihe.

Carsten Jacobsen, Peter Rademacher, Henning Meesenburg und Karl Josef Meiwes Niedersächsische Forstliche Versuchsanstalt Göttingen

Inhalt

Vorwort	III
Zusammenfassung	1
1. Einführung und Zielsetzung	3
2. Methoden	
2.1 Spektrum der berücksichtigten Publikationen	4
2.2 Vorgehen bei der Zusammenstellung der Untersuchungen	
3. Makro-Nährelementgehalte	
3.1 Elementgehalte in Biomasse-Kompartimenten	
3.2 Elementgehalte in Abhängigkeit von Standorteigenschaften	
3.3 Elementgehalte in Abhängigkeit von der Altersphase des Bestandes	
3.4 Langfristige Änderungen von Elementgehalten in Kompartimenten der Bäume	
4. Biomasse	
5. Schwermetalle	
5.1 Vorbemerkungen	26
5.11 Einbezogene Publikationen	
5.12 Besondere methodische Ansätze bei Schwermetalluntersuchungen	
5.2 Ergebnisse Schwermetalle	
6. Diskussion	
6.1 Makro-Nährelemente	
6.11 Variabilität der Makro-Nährelemente	32
6.12 Nährstofffestlegung als Funktion des Bestandesalters	33
6.2 Schwermetalle	
7. Verzeichnisse	37
7.1 Verzeichnis der Tabellen	37
7.2 Verzeichnis der Abbildungen	38
7.3 Literatur	39
8. Anlagen	47
8.1 Verteilung der Biomasse auf Baumkompartimente	47
8.2 Regressionsrechnungen zum Einfluss des Bestandesalters auf Elementgehalte	
8.21 Elementgehalte in 'Derbholz', 'Derbrinde', 'Derbholz mit Rinde'	
8.22 Elementgehalte in 'Reisig/Äste', 'Nadel/Blatt', 'oberirdische Biomasse'	
8.3 Regressionsrechnungen zum Einfluss 'Jahr der Untersuchung'	
8.4 Berücksichtigte Untersuchungen zu Makro-Nährelementgehalten	51
8.41 Standortsdaten der Untersuchungen.	51
8.42 Makro-Nährelementgehalte im Derbholz, Derbrinde und im Derbholz mit Rinde.	55
8.5 Schwermetallgehalte	
8.51 Berücksichtigte Untersuchungen zu Schwermetallgehalten in	
Biomassekompartimenten.	67
8.52 Schwermetallgehalte in Derbholz und Derbrinde	70
8.6 Untersuchungsziele und Untersuchungsmethoden	
8.61 Untersuchungsziele und Untersuchungsmethoden der herangezogenen	
Untersuchungen zu Makro-Nährelementgehalten.	73
8.62 Untersuchungsziele und Untersuchungsmethoden zu Schwermetallgehalten in	
Derbholz und Derbrinde	79

Zusammenfassung

Der Entzug von Nährstoffen mit der Biomassenutzung ist eine wichtige Größe der Nährstoffbilanz von Waldökosystemen. Eine ausgeglichene Stoffbilanz ist ein Kriterium für die Nachhaltigkeit der forstlichen Bewirtschaftung. Die Höhe der Nährstoffexporte ist unter anderem von der Baumart, der Wuchsleistung und den Nährstoffgehalten in den einzelnen Baumkompartimenten abhängig. Der Nährstoffentzug mit der Biomasseernte lässt sich durch die Intensität der Nutzung steuern.

Bei der Modellierung von Nährstoffbilanzen zur Ermittlung von Critical Loads ist die Festlegung der Nährstoffe im Baumbestand eine wichtige Eingangsgröße. Die dabei heute zugrunde liegenden Daten der Nährstoffgehalte in Baumkompartimenten basieren auf einer mehr als 10 Jahre alten Literaturübersicht. Mit der hier vorliegenden Literaturstudie soll diese Datenbasis aktualisiert und verbreitert werden. Ferner werden aus der Literatur Schwermetallgehalte in Baumkompartimenten zusammengestellt, weil gegenwärtig ein Konzept zur Ermittlung von Critical Loads für Schwermetalle entwickelt wird.

Entsprechend dem Berechnungsverfahren der Critical Loads stehen die Hauptnährstoffe Stickstoff (N), Kalium (K), Calcium (Ca) und Magnesium (Mg) im Zentrum der Betrachtung. Zusätzlich wird auch Phosphor (P) in die Studie mit einbezogen, da auf vielen schwach versorgten Standorten P-Mangel auftritt. An Schwermetallen finden Zink (Zn) und Kupfer (Cu) als Spurennährstoffe sowie Blei (Pb), Cadmium (Cd), Nickel (Ni) und Chrom (Cr) Berücksichtigung. Die Untersuchung bezieht sich vor allem auf die Hauptwirtschaftsbaumarten Eiche, Buche, Fichte und Kiefer aus dem gemäßigten und borealen Klimabereich in Europa.

Die in dieser Studie vorgenommene Kompartimentierung der Bäume in orientierte sich vor allem an den Anforderungen der Modellierung von Critical Loads. Die in der Literatur vorgefundenen Kompartimentierungen waren entsprechend der jeweiligen Untersuchungsziele vielfältig. Die Kompartimentierung wurde vereinheitlicht und baumartenspezifisch mit statistischen Kennzahlen beschrieben. Die Zielkompartimente waren: `Derbholz' (> 7 cm \varnothing)', `Derbrinde' (die Rinde des Derbholzes), `Derbholz mit Rinde', `Zweig- und Astholz mit Rinde (< 7 cm \varnothing)', `Nadeln/Blätter', `Grobwurzeln' (> 2 mm \varnothing) und `Feinwurzeln' (< 2 mm \varnothing). Ferner wurde der gesamte oberirdische Bestand zu einem Kompartiment zusammengefasst.

Für die Hauptnährelemente wurden Daten aus 115 Beständen berücksichtigt. Die Daten wurden in einem Tabellenwerk zusammengestellt. Ferner wurde geprüft, durch welche Faktoren die Varianz der Elementgehalte in den Baumkompartimenten bestimmt wird. Es konnte gezeigt werden, dass in den Kompartimenten 'Derbholz' und 'Derbrinde', 'Reisig/Äste' und 'oberirdische Biomasse' die Nährelementgehalte mit dem Bestandesalter meist signifikant abnehmen. Zur Nährstoffausstattung der Böden konnte lediglich für die Baumart Buche gezeigt werden, dass auf carbonathaltigen sowie nicht sauren Standorten im Derbholz und in der Derbrinde die Calciumgehalte höher waren als auf sauren Standorten. Ferner wurde gezeigt, dass die Elementgehalte auch von dem Untersuchungszeitpunkt abhängig sind. Dies kann auf die im Laufe der Zeit sich ändernden Umwelt- und Wachstumsbedingungen zurückgeführt werden.

Aus der Wachstumsdynamik der Bäume folgt ein im Laufe der Zeit unterschiedlich hoher Nährstoffbedarf. Am Beispiel von Fichtenbeständen wird gezeigt, dass etwa bis zum Bestandesschluss die Netto-Stickstoffaufnahme bzw. die Festlegung von Stickstoff im oberirdischen Bestand nahezu 10mal so hoch ist wie im 100jährigen Altbestand. Dies verdeutlicht, wie ausgeprägt die zeitliche Dynamik der Netto-Nährstoffaufnahme ist, die bei der dynamischen Modellierung der Critical Loads zugrunde gelegt wird.

Bei der Zusammenstellung der Schwermetalldaten wurden Untersuchungen in ca. 45 Beständen berücksichtigt; dabei entfiel etwa die Hälfte der Bestände auf die Baumart Fichte. Bei den Elementen Blei, Kupfer, Nickel und Chrom gab es keine Unterschiede zwischen den Baumarten. Die mittleren Gehalte von Zink und Cadmium in der Rinde der Nadelbaumarten Fichte und Kiefer waren um das 5 – 8fache höher als in der Rinde der Laubbaumarten Eiche und Buche. Im Derbholz ergab sich eine nicht so klare Trennung zwischen den Laub- und Nadelbaumarten; bei der Eiche waren die mittleren Zinkgehalte um den Faktor 4 – 8 geringer als bei den andern Baumarten. Die Cadmiumgehalte bei der Kiefer waren um den Faktor 4 – 10 höher als bei den andern Baumarten.

Mit den Ergebnissen dieser Untersuchung steht für die Modellierung der Critical Loads für Säure, Stickstoff und für Schwermetalle eine aktuelle und wesentlich erweiterte Datenbasis zur Verfügung. Die gefundenen Beziehungen zwischen Nährstoffgehalten und Bestandesalter verbessern deutlich die Möglichkeiten der dynamischen Modellierung.

1. Einführung und Zielsetzung

Mit jeder Art von Biomassenutzung in Waldökosystemen ist zugleich ein Nährstoffexport verbunden. Der Entzug von Nährstoffen mit der Biomassenutzung ist eine wichtige Größe der Nährstoffbilanz von Waldökosystemen. Die Höhe der Nährstoffexporte ist unter anderem von der Baumart, der Wuchsleistung und von den Nährstoffgehalten in den einzelnen Baumkompartimenten abhängig. Die Nährstoffexporte mit der Holzernte lassen sich durch die Art und Intensität der Nutzung steuern, da nährstoffreichere Teile des Baumes wie Zweige, Äste und Rinde im Wald belassen werden können.

Die Forderung nach einer nachhaltigen Holzerzeugung lenkte im 19. Jahrhundert die Aufmerksamkeit auf den Stoffhaushalt von Waldökosystemen. EBERMEYER (1876) identifizierte die Streunutzung als Ursache von Zuwachsrückgängen in Wäldern. Er untersuchte die Bioelementkreisläufe von der Wurzelaufnahme bis zum Streufall, die Bioelementspeicherung im Holzzuwachs und in Kronenkompartimenten sowie die Bioelemententzüge durch Holznutzung und Streuentnahme.

Burger (1941, 1953) entwickelte Massenschätztafeln mit Nährstoffgehalten verschiedener Baumarten. Rennie (1955, 1957) bilanzierte den Stoffhaushalt, um den längerfristigen Erfolg von Aufforstungen armer Heideböden abzuschätzen. Ulrich (1972, 1975), Kreutzer (1976, 1979), Krapfenbauer (1981) sowie Nebe & Herrmann (1987) bilanzierten Nutzungseingriffe, insbesondere Voll- und Ganzbaumnutzungen, und warnten vor Ertragseinbußen bei zukünftigen Waldgenerationen infolge einer Standortverarmung durch zu hohe Nährstoffexporte. Heinsdorf & Krauß (1990) erstellten Schätztafeln für Trockenmasse und Nährstoffspeicherung von Kiefernbeständen. Augusto et al. (2000) beschrieben Beziehungen zwischen Baumarten, Alter und Elementgehalten bzw. -vorräten. Die historische Entwicklung der Bioelementinventuren und Biomasseerhebungen in Waldbeständen beschreibt Kreutzer (2002).

Die Abschätzung von Nährstoffentzügen durch Holznutzung findet Anwendung in der Berechnung der Critical Loads, der langfristig tragbaren atmosphärischen Belastung für Säure und eutrophierenden Stickstoff (NAGEL & GREGOR, 1999). Grundlage der Critical Loads ist eine Stoffbilanz des betrachteten Rezeptorsystems (Waldökosystem). Bilanzgrößen sind der atmosphärische Eintrag, der Eintrag in das System durch Mineralverwitterung aus dem Boden, der Nährstoffexport mit der Holzentnahme und der Austrag mit dem Sickerwasser.

Bei der Modellierung der Critical Loads werden die Nährstoffexporte mit der Holzernte aus dem Holzvorrat und den Elementgehalten im Baumbestand berechnet (BECKER, 2000; BOLTE & WOLFF, 2001). Dabei wird meist auf Literaturzusammenstellungen von KIMMINS et al. (1985) und DE VRIES et al. (1990) zurückgegriffen. In den letzten Jahren sind eine große Anzahl von Untersuchungen zu Nährelementen in Baumkompartimenten durchgeführt worden. In der hier vorliegenden Studie werden die Publikationen über Nährelementgehalte (N, P, K, Ca, Mg) zu den wichtigsten mitteleuropäischen Wirtschaftsbaumarten zusammengefasst und für den Zweck der Berechnung von Critical Loads bewertet.

Zusätzlich wurden für ein Konzept zu Critical Loads für Schwermetalle (DE VRIES & BAKKER, 1998, DE VRIES et al. 2002) aus der Literatur Schwermetallgehalte (Zn, Pb, Cd, Cu, Ni, Cr) im Derbholz und in der Derbrinde zusammengestellt.

2. Methoden

2.1 Spektrum der berücksichtigten Publikationen

Die in dieser Literaturübersicht berücksichtigten Arbeiten umfassen ein weites Spektrum von Zielsetzungen und Schwerpunkten sowie Aufnahmeverfahren, die sich in der Auswahl der Probebäume, der Gliederung der Baumbiomasse in Kompartimente und der Probenentnahme unterscheiden. Detaillierte Angaben zur Methodik der berücksichtigten Literatur sind in Anlage 8.6 zusammengestellt.

Die Auswahl der Probebäume erfolgte häufig nach Mittelstammverfahren mit Probebäumen im Bereich des Grundflächen-Mittelstammes bzw. der Grundflächen-Mittelstämme in unterschiedlichen Durchmesserklassen. Daneben kommen regressionsanalytische Verfahren unter Berücksichtigung des gesamten Durchmesserspektrums zur Anwendung. In einzelnen Untersuchungen war die soziologische Stellung nach KRAFT (1884, zit. n. AKCA, 1987) ein Auswahlkriterium.

Die Einteilung der Baumbiomasse in unterschiedliche Strukturelemente oder Kompartimente variierte in den berücksichtigten Publikationen mit der Intensität und Zielsetzung der jeweiligen Untersuchungen. Die Bandbreite reicht von Übersichtsuntersuchungen mit geringer Zahl von Kompartimenten (Holz, Rinde) bis zu Arbeiten mit detaillierter Kompartimentierung, die auf die Beschreibung von Stoffallokationen im Baum ausgerichtet waren.

So zeigte die getrennte Untersuchung von Splintholz und Kernholz unterschiedliche Stoffkonzentrationen im physiologisch unterschiedlich aktiven Holz (NEBE & HERRMANN, 1987, FEGER et al., 1991, TRÜBY, 1993, STEINER et al., 1998). Die Untersuchung von Ästen unterschiedlicher Durchmesser im Laubholz bzw. der Zweige unterschiedlicher Jahrgänge im Nadelholz ergab in vielen Fällen systematische Konzentrationsgradienten mit veränderter Aststärke. Andere Autoren weisen Stoffgehalte getrennt für Grünäste und Totäste aus oder trennen Astrinde und Astholz. Die Wurzeln wurden in der Regel nach Stärkeklassen getrennt analysiert, zum Teil auch nach Wurzelrinde und Wurzelholz. Verschiedene Autoren haben Stammscheiben in unterschiedlicher Baumhöhe untersucht und fanden eine radiale und axiale Variabilität von Stoffkonzentrationen im Stammholz oder in der Stammrinde vor.

Auf die Art der Probenvorbereitung und der eingesetzten chemischen Aufschluss- und Analyseverfahren wird in dieser Studie nicht eingegangen. Die Verfahren variieren mit dem jeweiligen Stand der Technik. Es besteht das generelle Problem, dass Nährelementgehalte im Holz im Vergleich zu anderen Pflanzenproben gering sind und sich häufig in einem Messbereich befinden, in dem Analysegeräte nicht immer optimal messen. Dies gilt umso mehr für Schwermetalle, bei denen zudem das Problem einer Kontamination bei der Probenahme und Probenvorbereitung besteht (s. Kapitel 6). In einer IUFRO-Ringanalyse unter nahezu 40 Laboratorien (NRI, 1995) ergab die Untersuchung von Erlenholzproben sehr unterschiedliche Variationskoeffizienten von 11-16 % (K, Mg, P) über 25 % (N) bis 85 % (Al).

Die Richtigkeit und Präzision der publizierten Ergebnisse können an dieser Stelle nicht bewertet werden. Es wurde unterstellt, dass die veröffentlichten Daten einem ausreichenden Qualitätsstandard entsprechen. Die in den herangezogenen Fallstudien angewendeten Probenahmeverfahren, die unterschiedliche Kompartimentierung der Baumbiomasse sowie die Analysemethoden sind mit unterschiedlichen Fehlerwahrscheinlichkeiten belastet. Ein Teil der vorgefundenen Variabilität der Stoffgehalte dürfte methodisch bedingt bzw. auf die Methodenvielfalt zurückzuführen sein.

2.2 Vorgehen bei der Zusammenstellung der Untersuchungen

Das Schwergewicht der Zusammenstellung der Nährelementgehalte in Kompartimenten des Baumbestandes liegt auf den mitteleuropäischen Hauptbaumarten Eiche (*Quercus petraea (Matt.) Liebl.* und *Qu. robur L.*), Buche (*Fagus sylvatica L.*), Fichte (*Picea abies (L.) Karst*) und Kiefer (*Pinus sylvestris L.*). Soweit für weitere Baumarten Publikationen vorlagen, wurden diese einbezogen: Douglasie (*Pseudotsuga menziesii (Mirb.) Franco*), Tanne (*Abies alba Mill.*), Japanische Lärche (*Larix kaempferi (Lamb.) Carr.*) und korsische Schwarzkiefer (*Pinus nigra ssp.laricio*).

Es wurden nur solche Publikationen in dieser Studie berücksichtigt, bei denen die Berechnung der Mittelwerte zumindest für das Kompartiment 'Derbholz mit oder ohne Rinde' vorlag oder die Herleitung über Angaben zu Elementvorräten und Biomassen möglich war. Einzeluntersuchungen zu Blättern bzw. Nadeln, Rinde oder Wurzeln wurden nicht mit einbezogen.

Den Publikationen wurden mengengewogene Mittelwerte der Stoffgehalte (N, P, K, Ca und Mg) in Strukturelementen der Bäume entnommen. Die in den jeweiligen Publikationen vorgefundene Kompartimentierung wurde auf Hauptkompartimente reduziert. Die Gliederung der Strukturelemente des Baumbestandes in Hauptkompartimente orientiert sich an den möglichen Anwendungen dieser Datenzusammenstellung.

Eine Zusammenstellung der Elementgehalte in den Kompartimenten 'Derbholz mit Rinde' bzw. 'Oberirdische Biomasse' erlaubt sowohl die Modellierung der Stoffbilanz forstlicher Ernteentzüge als auch die Berechnung von Critical Loads, in welchen ein Gleichgewichtsansatz zugrunde gelegt wird.

Eine Zusammenstellung für die dynamische Modellierung von Stoffbilanzen berücksichtigt auch die temporäre Festlegung von Stoffen in der Krone und in den Wurzeln im Verlauf eines forstlichen Wirtschaftszyklus. Dazu wurde eine weitere Untergliederung der Strukturelemente vorgenommen, die eine Verschiebung von Biomasseanteilen und Nährelementgehalten mit zunehmendem Bestandesalter berücksichtigt:

- `Derbholz' (> 7 cm ∅)'
- 'Derbrinde' (die Rinde des Derbholzes)
- 'Reisig und Äste' (Reisig- und Astholz mit Rinde, < 7 cm Ø)'
- 'Nadeln/Blätter'
- 'Grobwurzeln' ($\geq 2 \text{ mm } \emptyset$)
- 'Feinwurzeln' (< 2 mm Ø)

Die mittleren Elementgehalte in Hauptkompartimenten (z.B. 'Reisig und Äste', 'Derbholz mit Rinde', 'oberirdische Biomasse') mussten häufig neu berechnet werden. Dazu wurden die Elementvorräte der zugehörigen Strukturelemente summiert und anschließend die mengengewogenen Gehalte für das Hauptkompartiment neu abgeleitet.

Für die Auswertung der Datensätze wurde eine Datenbank aufgebaut, in der Biomassevorräte und Elementkonzentrationen in den Biomassekompartimenten gehalten werden. Die Gehalte sind auf die Trockendichte bezogen. Über die baumartenspezifische Raumdichte für Holz [kg m⁻³] (KNIGGE & SCHULTZ, 1966) können für das Derbholz die Volumengehalte berechnet werden. Die mittleren Elementgehalte in Hauptkompartimenten (z.B. 'Reisig und Äste', 'Derbholz mit Rinde', 'oberirdische Biomasse') wurden mengengewichtet aus diesen Daten berechnet.

Eine Prüfung der Datensätze auf Plausibilität und Ausreißer erfolgte in drei Stufen: (1) Mittels Box-Whisker-Plots wurden Extremwerte identifiziert, (2) die Stoffgehalte wurden gegen das Bestandesalter aufgetragen und (3) es wurden Verhältnisse der Makro-Nährelemente gebildet. Bei einer Koinzidenz von extremen Gehalten und extremen Elementverhältnissen wurde der Datensatz zurückgewiesen. Extremwerte bei Ca und Schwermetallen wurden akzeptiert, weil diese Elemente zu einer Akkumulation in Biomassekompartimenten neigen können. In mehreren Fällen konnten Missverständnisse in einer Rücksprache mit dem jeweiligen Autor bereinigt werden.

Für die verschiedenen Baumarten und ihre Kompartimente hat sich eine unterschiedlich breite Datengrundlage ergeben. Die begleitenden Informationen zu Bestandesalter und Standort wurden benutzt, um statistische Beziehungen der Stoffgehalte zu prüfen.

Zur Beschreibung der altersabhängigen Einflüsse wurde in der Regel ein linearer und ein logarithmischer Ansatz geprüft. Die Ansätze mit der jeweils höheren Anpassung (Bestimmtheitsmaß R^2) wurden aufrecht erhalten und sind im Anhang aufgelistet, wenn sie als hinreichend abgesichert (signifikant, $p \le 0,1$) gelten können. Für die meisten Baumarten konnten signifikante Beziehungen zwischen Bestandesalter und Stoffgehalt in einzelnen Kompartimenten gefunden werden.

3. Makro-Nährelementgehalte

In **Kapitel 3.1** sind die Makro-Nährelementgehalte in Tabellenübersichten als Mittelwerte mit den Streuungsparametern Standardabweichung und Variationskoeffizient zusammengestellt. Den Gehalten liegen eine unterschiedliche Anzahl (n) von Untersuchungen zugrunde. Die Anzahl bezieht sich auf Untersuchungen auf verschiedenen Standorten bzw. in Beständen unterschiedlichen Alters. In einigen Fällen sind Wiederholungsuntersuchungen einbezogen worden. Die Gliederung erfolgt nach Baumkompartimenten und nach Baumarten, wobei ein Schwerpunkt auf die Hauptbaumarten Eiche, Buche, Fichte und Kiefer gelegt wird.

In **Kapitel 3.2** werden Einflüsse der Standorteigenschaften auf die Elementgehalte in Baumkomponenten aufgegriffen. Die individuellen Standortbeschreibungen in den Publikationen und die geringe Anzahl der Untersuchungen je Baumart auf ähnlichen Standortgruppen erlauben jedoch nur in einzelnen Fällen eine Stratifizierung des Datenmaterials. Für die Ca-Gehalte in Baumkompartimenten der Buche können detailliertere Aussagen getroffen werden.

Innerhalb einiger Strukturelemente des Baumbestandes können sich Elementgehalte mit dem Bestandesalter verändern, z.B. durch Stoffanreicherungen im Derbholz oder in der Rinde sowie durch eine Verkernung des Holzes (Kapitel 3.3).

In **Kapitel 3.4** schließlich wird auf längerfristige Entwicklungen und Trends der Stoffgehalte in Baumkomponenten eingegangen, soweit sich aus den zusammengestellten Daten dazu Schlussfolgerungen ziehen lassen.

3.1 Elementgehalte in Biomasse-Kompartimenten

Die Nährelementgehalte in unterschiedlichen Kompartimenten eines Waldbestandes unterscheiden sich deutlich (Tab. 1-8). Im Mittel der vier Hauptbaumarten betragen die mittleren N-Gehalte im Kompartiment 'Derbholz' etwa 1 mg g⁻¹, im Kompartiment 'Reisig und Äste' etwa 4-5 mg g⁻¹, in der 'Derbrinde' über 5 mg g⁻¹ und in den 'Nadeln' 14-15 bzw. in 'Blättern' 26 mg g⁻¹. Bei Phosphor ergibt sich ein Gradient mit vergleichbaren Faktoren.

In der Rangfolge identisch sind im Mittel aller Hauptbaumarten auch die Gehalte der Kationen Kalium, Calcium und Magnesium in den Kompartimenten ('Derbholz' < 'Reisig und Äste' < 'Derbrinde' < 'Blätter/Nadeln'; Tab. 1, 2, 4 und 5).

Bei einzelnen Baumarten finden sich im Kompartiment 'Reisig und Äste' auch höhere mittlere Gehalte als in der 'Derbrinde', z.B. bei den Eichen höhere N-, P- und K-Gehalte und bei Fichten höhere N-Gehalte.

Die Nährelementgehalte in den Baumkompartimenten zeigen baumartentypische Unterschiede. Im Kompartiment '**Derbholz**' (Tab. 1) sind die N-, P-, und K-Gehalte der Laubbaumarten Eiche und Buche deutlich höher als bei den Nadelbaumarten Fichte und Kiefer.

In der '**Derbrinde**' (Tab. 2) weist die Fichte höchste P-, K- und Mg-Gehalte auf, die Buche die höchsten N-Gehalte. P- und K-Gehalte zeigen bei der Fichte und der Kiefer eine hohe Variabilität, die Ca-Gehalte streuen bei Eiche und Buche stark und liegen 3-4fach höher als in Nadelbäumen.

Das Strukturelement **'Derbholz mit Rinde'** (Tab. 3) repräsentiert den Anteil der Bestandesbiomasse, der in der überwiegenden forstlichen Praxis einer Nutzung unterliegt. Es wurde aus den Kompartimenten 'Derbholz' und 'Derbrinde' zusammengefasst. Der mittlere Anteil an der gesamten oberirdischen Biomasse liegt zwischen 75 und 80 % (Tab. 11).

Die mittleren N-Gehalte im 'Derbholz mit Rinde' liegen zwischen 1 und 2 mg g⁻¹. Wie im 'Derbholz', zeigt auch im Kompartiment 'Derbholz mit Rinde' die Eiche die höchsten N-Gehalte. Bei der Fichte ist die Variabilität der N-Gehalte am höchsten. Die mittleren P-Gehalte der Baumarten unterscheiden sich wenig. Eiche und Buche weisen die höchsten K-und Ca-Gehalte auf, Kiefer und Buche die höchsten Mg-Gehalte.

Das Baumkompartiment 'Reisig und Äste' (Tab. 4) ist aus unterschiedlichen Anteilen von Holz und Rinde zusammengesetzt. Die mittleren Elementgehalte sind stark von der Kronenund Verzweigungsstruktur der Baumarten mitbestimmt. Die Fichte enthält aufgrund der hohen Anteile an Feinreisig mit Rinde die höchsten P-, K und Mg-Gehalte.

Elementgehalte in 'Blättern und Nadeln' (Tab. 5) sind in zahlreichen Publikationen abgehandelt und nicht Schwerpunkt der vorliegenden Literaturauswertung. Umfassende Auswertungen und Übersichten wurden u.a. von Wehrmann (1959); Fiedler et al. (1973); Rehfuess, 1983; Van den Burgh (1985, 1990); Hüttl (1991); Riek & Wolff (1998a,b) sowie Riek & Dietrich (2000) vorgenommen. In der vorliegenden Zusammenstellung sind die Nadel- und Blattanalysen zusammengefasst, die im Zusammenhang mit den herangezogenen Untersuchungen zur Biomasse publiziert worden sind.

Die Gehalte der '**oberirdischen Baumbiomasse**' sind in Tab. 6 zusammengefasst. Es zeigen sich überdurchschnittlich hohe N-Gehalte bei Eichen und Fichten.

Die P-Gehalte sind bei Eichen, Buchen und Kiefern recht einheitlich, dagegen hoch in Fichten (sowie in Douglasien, Lärchen und Tannen). Die K- und Mg-Gehalte sind bei allen Hauptbaumarten vergleichbar hoch.

In Eichen finden sich höchste Ca-Gehalte auch auf nicht-carbonathaltigen Standorten; bei der Kiefer kann eine relative Ca-Armut mit den in der Regel auf Kiefernstandorten geringen Bodenvorräten erklärt werden.

Nährelementgehalte in '**Grobwurzeln**' ähneln in Höhe und elementspezifischer Reihung etwa denen in der 'gesamten oberirdischen Biomasse'; die der '**Feinwurzeln**' liegen in der Größenordnung zwischen 'Reisig und Ästen' und 'Blätter/Nadeln (Tab. 7, 8).

Tab. 1: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Derbholz

			Gel	halt [mg		Biomasse	
		N	P	K	Ca*	Mg	[t ha ⁻¹]
Eiche	Mittel	1,56	0,08	0,95	0,46	0,09	132
	S	0,46	0,05	0,38	0,26	0,06	47,6
	Vk%	30	63	40	56	71	36
	n	8	8	8	9	9	6
Buche	Mittel	1,21	0,10	0,93	0,95	0,25	219
	S	0,25	0,05	0,21	0,50	0,11	78,2
	Vk%	21	46	23	52	42	36
	n	12	15	15	15	15	11
Fichte	Mittel	0,83	0,06	0,46	0,70	0,11	165
	S	0,49	0,05	0,30	0,20	0,04	120
	Vk%	59	86	65	29	40	73
	n	29	33	36	36	36	28
Kiefer	Mittel	0,76	0,05	0,42	0,62	0,18	83,2
	S	0,19	0,02	0,16	0,14	0,07	52,2
	Vk%	24	50	38	23	41	63
	n	15	20	20	21	20	15
	Mittel	1,09	0,07	0,69	0,68	0,16	150
	S	0,37	0,02	0,29	0,20	0,07	57,0
Übrige Bauı							
Birke	Mittel						
	S						
	Vk%						
	n	0	0	0	0	0	0
Douglasie	Mittel	0,60	0,06	0,43	0,36	0,06	134
	S	0,10	0,03	0,38	0,06	0,02	97,6
	Vk%	16	56	88	17	40	73
· · · ·	n	7	7	9	9	9	7
Jap. Lärche	Mittel	0,61	0,11	0,39	0,50	0,21	28,0
	S						
	Vk%	1	1	1	1	1	1
D :	n NGW 1	1	1	1	1	1	1
P.nigra	Mittel	0,74	0,06	0,41	0,63	0,14	69,6
v. lar.	S V/1-0/	0,33	0,02	0,12	0,15	0,04	62,3
	Vk%	45 5	31 5	29 5	24 5	27 5	89 5
Tares	n Mittal	<u> </u>		5		5	3
Tanne	Mittel		0,03	1,14	0,48	0,11	
	S 1/1 ₀ 0/		0,01	0,78	0,08	0,02	
	Vk%	0	34 2	68 4	17 1	18 4	Λ
	n	0		4	4	4	0

^{*} In den Ca-Gehalten sind Untersuchungen an carbonathaltigen Standorten enthalten (vgl. Kap. 3.2)

Tab. 2: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Derbrinde

			Gel		Biomasse		
		\mathbf{N}	P	K	Ca*	Mg	[t ha ⁻¹]
Eiche	Mittel	5,16	0,30	2,00	21,49	0,65	17,9
	S	2,17	0,05	0,53	9,40	0,37	4,56
	Vk%	42	15	27	44	57	25
	n	8	8	8	9	9	6
Buche	Mittel	7,35	0,50	2,34	20,52	0,59	12,4
	S	1,57	0,16	0,47	12,36	0,21	4,30
	Vk%	21	33	20	60	35	35
	n	13	16	16	16	16	11
Fichte	Mittel	5,17	0,65	2,83	8,17	0,77	14,3
	S	1,24	0,28	1,23	2,53	0,26	8,21
	Vk%	24	44	43	31	33	57
	n	29	35	36	36	36	28
Kiefer	Mittel	3,85	0,46	2,08	5,03	0,61	8,99
	S	1,24	0,24	1,11	1,92	0,35	4,97
	Vk%	32	51	53	38	58	55
	n	15	20	20	21	19	15
	Mittel	5,38	0,48	2,31	13,80	0,66	13,4
	S	1,45	0,14	0,38	8,42	0,08	3,72
Übrige Bau	marten						
Birke	Mittel						
	S						
	Vk%						
	n	0	0	0	0	0	0
Douglasie	Mittel	3,58	0,66	3,83	2,94	0,46	20,6
	S	1,46	0,21	1,61	0,93	0,08	14,1
	Vk%	41	32	42	32	18	69
	n	7	8	9	9	9	7
Lärche	Mittel	4,32	0,45	1,36	2,50	0,68	4,40
	S 371-07						
	Vk%	1	1	1	1	1	1
D	n M:44-1	1	1 0.22	1 20	1	1 0.49	15.0
P.nigra v. lar	Mittel	2,59	0,32	1,29	2,08	0,48	15,0
lar	C.	1	0,13	0,35	0,79	0,22	10,0
	s Vk%	35	41	27	38	45	67
	v K / o n	5	5	5	5	5	5
Tanne	Mittel	3	0,88	4,78	5,42	0,50	J
1 anne	S		0,88	1,05	0,48	0,30	
	Vk%		30	22	9	11	
		0					0
	n	0	2	3	3	3	0

^{*} In den Ca-Gehalten sind Untersuchungen an carbonathaltigen Standorten enthalten (vgl. Kap. 3.2)

Tab. 3: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Derbholz mit Rinde

			Gel	halt [mg	g ⁻¹]		Biomasse
		N	P	K	Ca*	Mg	t ha ⁻¹
Eiche	Mittel	2,10	0,12	1,05	2,47	0,18	150,1
	S	0,46	0,06	0,51	1,42	0,07	51,0
	Vk%	22	47	49	57	41	34
	n	6	6	6	6	6	6
Buche	Mittel	1,54	0,14	1,04	1,80	0,26	231
	S	0,25	0,06	0,13	1,12	0,09	81,3
	Vk%	16	40	13	62	34	35
	n	11	11	11	11	11	11
Fichte	Mittel	1,22	0,15	0,77	1,41	0,18	172
	S	0,49	0,12	0,43	0,40	0,06	124
	Vk%	40	79	55	28	32	72
	n	29	29	30	30	30	31
Kiefer	Mittel	1,09	0,11	0,65	1,08	0,24	91,2
	S	0,30	0,05	0,28	0,30	0,09	54,5
	Vk%	28	45	43	28	36	60
	n	16	16	16	17	15	17
	Mittel	1,49	0,13	0,88	1,69	0,22	161
	S	0,45	0,02	0,20	0,60	0,05	57,9
Übrige Bau	marten						
Birke	Mittel	1,70	0,17	0,75	1,20	0,20	96,0
	S						
	Vk%						
	n	1	1	1	1	1	1
Douglasie	Mittel	1,01	0,13	0,87	0,75	0,12	154
	S	0,24	0,04	0,46	0,22	0,04	112
	Vk%	24	34	53	29	30	72
	n	7	7	7	7	7	7
Lärche	Mittel	1,21	0,32	0,73	0,74	0,26	102
	S	0,36	0,23	0,24	0,38	0,07	84,4
	Vk%	29	71	33	52	25	83
D :	n M:44-1	3	3	3	3	3	3
P.nigra v.	Mittel	1,15	0,12	0,61	0,96	0,22	84,6
lar.	C	0.49	0.06	0.22	0.27	0.00	72.0
	s Vk%	0,48 42	0,06 48	0,22 36	0,37 38	0,09 41	72,0 85
	v K % n	42 5	48 5	50 5	56 5	5	5
Tanne	Mittel	2,02	0,55	0,70	1,15	0,13	140
1 anne	S	0,78	0,33	0,70	0,24	0,13	82,0
	Vk%	39	10	6	21	0,00	59
	v K 70 n	2	2	2	2	2	2
L	11						<u> </u>

^{*} In den Ca-Gehalten sind Untersuchungen an carbonathaltigen Standorten enthalten (vgl. Kap. 3.2)

Tab. 4: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Reisig und Äste (mit Rinde, < 7 cm Ø)

				Biomasse			
İ		N	P	halt [mg K	Ca	Mg	t ha ⁻¹
Eiche	Mittel	6,19	0,43	2,00	4,41	0,44	37,8
	S	1,02	0,11	0,47	0,65	0,14	28,0
	Vk%	16	26	23	15	32	74
	n	6	6	6	6	7	6
Buche	Mittel	4,27	0,48	1,50	4,02	0,36	54,2
	S	1,36	0,21	0,44	1,91	0,13	26,5
	Vk%	32	43	29	48	37	49
	n	11	11	11	11	11	11
Fichte	Mittel	5,24	0,65	2,39	3,33	0,53	28,4
	S	1,66	0,33	1,35	1,06	0,27	11,4
	Vk%	32	51	57	32	50	40
	n	30	31	31	32	32	31
Kiefer	Mittel	3,61	0,34	1,67	2,07	0,43	17,1
	S	1,28	0,09	0,68	0,65	0,11	7,8
	Vk%	35	26	41	31	26	45
	n	18	17	18	18	17	17
	Mittel	4,83	0,48	1,89	3,46	0,44	34,3
	S	1,13	0,13	0,39	1,02	0,07	15,7
Übrige Bau							
Birke	Mittel	5,40	0,62	2,00	4,60	0,50	15,0
	S						
	Vk%						
	n	1	1	1	1	1	1
Douglasie	Mittel	2,98	0,43	1,65	4,22	0,41	24,3
	S	0,84	0,17	0,53	1,26	0,14	12,7
	Vk%	28	41	32	30	35	52
T 1	n NGW 1	7	7	7	7	7	7
Lärche	Mittel	6,19	0,71	2,71	2,49	0,66	24,4
	s Vk%	1,25 20	$0,00 \\ 0$	0,55 20	0,30 12	0,01	6,51 27
	v K % n	20	2	20	2	2 2	27
D nigna v	Mittel	2,88	0,35	1,85	3,76	0,67	14,8
P.nigra v. lar.				ŕ			ŕ
	S \$71-0/	1,10	0,11	0,67	1,15	0,17	10,6
	Vk%	38	31	36	31	25	72
T	n Mittal	5 7.72	5	5	5	5	5
Tanne	Mittel	7,73	0,62	2,53	3,80	1,04	38,8
	s Vk%	1,47	0,12	0,11	0,15	0,13	4,10
		19 2	20 2	4 2	4 2	13 2	11 2
	n						<u> </u>

Tab. 5: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Nadeln / Blätter

			Ge		Biomasse		
		N	P	K	Ca	Mg	t ha ⁻¹
Eiche	Mittel	26,15	1,74	7,38	11,43	2,27	4,51
	S	3,61	0,43	2,85	12,02	1,65	2,17
	Vk%	14	25	39	105	73	48
	n	5	6	6	6	6	5
Buche	Mittel	26,01	1,46	8,66	8,88	1,25	3,95
	S	3,18	0,33	2,53	5,74	0,58	1,28
	Vk%	12	22	29	65	46	33
	n	11	13	13	13	13	10
Fichte	Mittel	13,36	1,33	5,70	6,03	0,79	14,7
	S	3,44	0,49	1,70	3,87	0,46	4,93
	Vk%	26	37	30	64	59	34
	n	29	36	36	37	37	30
Kiefer	Mittel	14,46	1,32	5,03	4,08	0,87	4,49
	S	2,85	0,17	0,90	1,77	0,14	1,51
	Vk%	20	13	18	43	16	34
	n	17	21	21	21	20	17
	Mittel	19,99	1,46	6,69	7,60	1,30	6,90
	S	7,04	0,20	1,64	3,22	0,68	5,17
Übrige Bau Birke	marten Mittel	25,00	2,90	16,00	9,60	2,70	3,10
DII KC	S	25,00	2,70	10,00	7,00	2,70	3,10
	Vk%						
	n	1	1	1	1	1	1
Douglasie	Mittel	12,44	2,16	5,98	7,41	1,28	12,3
2 0 4 9 1 4 1 5 1 6	S	2,84	1,29	1,15	1,61	0,29	3,43
	Vk%	23	59	19	22	23	28
	n	7	9	9	9	9	7
Lärche	Mittel	27,00	2,40	11,00	3,80	1,60	2,90
	S						
	Vk%						
	n	1	1	1	1	1	1
P.nigra v. lar.	Mittel	9,97	1,34	6,22	4,54	0,99	5,28
	S	2,34	0,34	0,84	1,64	0,33	2,46
	Vk%	23	26	13	36	34	47
	n	5	5	5	5	5	5
Tanne	Mittel		1,75	6,55	11,46	1,49	-
	S		0,64	2,06	4,45	0,33	
	Vk%		36	31	39	22	
	n	0	3	5	5	5	0

Tab. 6: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Gesamte oberírdische Biomasse

N P K Ca Mg	t ha ⁻¹ 185 69,5 38 5 289 96,7 33 11 215 134 63 31 113 58,7 52 17 200
s 1,05 0,08 0,74 1,17 0,07 Vk% 31 34 54 36 25 n 5 5 5 5 5 Buche Mittel 2,48 0,22 1,25 2,30 0,30 s 0,49 0,07 0,17 1,25 0,10 Vk% 20 31 13 54 34 n 11 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17	69,5 38 5 289 96,7 33 11 215 134 63 31 113 58,7 52 17
Vk% 31 34 54 36 25 Buche Mittel 2,48 0,22 1,25 2,30 0,30 s 0,49 0,07 0,17 1,25 0,10 Vk% 20 31 13 54 34 n 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 <td>38 5 289 96,7 33 11 215 134 63 31 113 58,7 52 17</td>	38 5 289 96,7 33 11 215 134 63 31 113 58,7 52 17
Buche Mittel 2,48 0,22 1,25 2,30 0,30 s 0,49 0,07 0,17 1,25 0,10 Vk% 20 31 13 54 34 n 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30	5 289 96,7 33 11 215 134 63 31 113 58,7 52 17
Buche Mittel 2,48 0,22 1,25 2,30 0,30 s 0,49 0,07 0,17 1,25 0,10 Vk% 20 31 13 54 34 n 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 <td< td=""><td>289 96,7 33 11 215 134 63 31 113 58,7 52 17</td></td<>	289 96,7 33 11 215 134 63 31 113 58,7 52 17
s 0,49 0,07 0,17 1,25 0,10 Vk% 20 31 13 54 34 n 11 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	96,7 33 11 215 134 63 31 113 58,7 52 17
Vk% 20 31 13 54 34 n 11 11 11 11 11 11 Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	33 11 215 134 63 31 113 58,7 52 17
n 11 12 0,28 2,21 0,28 2,21 0,28 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 31 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 31 31 31 31 31 31 31 31 31 <	11 215 134 63 31 113 58,7 52 17
Fichte Mittel 3,01 0,34 1,47 2,21 0,28 s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	215 134 63 31 113 58,7 52 17
s 1,22 0,20 0,72 1,00 0,11 Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	134 63 31 113 58,7 52 17
Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	63 31 113 58,7 52 17
Vk% 41 58 49 45 39 n 30 30 31 31 31 Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	31 113 58,7 52 17
Kiefer Mittel 2,10 0,22 1,02 1,36 0,31 s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	113 58,7 52 17
s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	58,7 52 17
s 0,78 0,07 0,44 0,33 0,09 Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	58,7 52 17
Vk% 37 34 43 24 28 n 17 17 17 17 16 Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	52 17
Mittel 2,73 0,25 1,28 2,29 0,30 s 0,55 0,06 0,19 0,79 0,01	
s 0,55 0,06 0,19 0,79 0,01	200
s 0,55 0,06 0,19 0,79 0,01	
	73,0
Birke Mittel 2,82 0,30 1,33 1,88 0,31	114
S S	114
Vk%	
n 1 1 1 1 1	1
Douglasie Mittel 2,33 0,35 1,38 1,95 0,26	191
s 1,10 0,19 0,57 0,81 0,11	125
Vk% 47 53 41 42 42	66
n 7 7 7 7 7	7
Lärche Mittel 2,35 0,50 1,31 1,07 0,33	167
s 1,24 0,13 0,67 0,79 0,14	69,4
Vk% 53 25 51 74 43	42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2
P. nigra Mittel 1,99 0,24 1,18 1,68 0,34	105
v. lar. s 0,74 0,13 0,46 0,74 0,14	84,4
Vk% 37 54 39 44 41	81
n 5 5 5 5 5	5
Tanne Mittel 3,42 0,57 1,14 1,78 0,35	179
s 1.47 0.08 0.18 0.46 0.05	
s 1,47 0,08 0,18 0,46 0,05 Vk% 43 14 16 26 14	86,1 48

Tab. 7: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Grobwurzeln (> 2 mm ∅)

			Gel	halt [mg	σ -1]		Biomasse
		N	P	K	Ca	Mg	t ha ⁻¹
Eiche	Mittel	3,71	0,27	2,16	4,07	0,40	46,7
	S	1,84	0,11	1,52	4,31	0,29	24,3
	Vk%	49	40	70	106	73	52
	n	6	6	6	6	6	6
Buche	Mittel	3,03	0,35	1,34	2,69	0,43	54,5
	S	0,85	0,20	0,30	2,20	0,30	17,8
	Vk%	28	58	23	82	71	33
	n	5	5	5	5	5	5
Fichte	Mittel	4,14	0,37	1,38	1,59	0,30	43,8
	S	4,01	0,26	0,37	0,60	0,11	34,6
	Vk%	97	73	27	38	38	79
	n	8	9	11	10	11	11
Kiefer	Mittel	1,77	0,21	1,08	0,97	0,30	24,9
	S	0,76	0,09	0,44	0,47	0,09	16,0
	Vk%	43	45	41	48	31	64
	n	10	10	10	10	9	10
	Mittel	3,16	0,30	1,49	2,33	0,36	42,5
	S	1,04	0,07	0,47	1,36	0,07	12,6
Birke	Mittel s	3,70	0,39	1,10	1,30	0,28	11,0
	Vk%						
	n	1	1	1	1	1	1
Douglasie	Mittel s Vk%						
	n	0	0	0	0	0	0
Lärche	Mittel	2,80	0,38			0,25	7,80
	s Vk%	=,00	0,20	1,00	_,10	0,20	7,00
	n	1	1	1	1	1	1
P.nigra v. lar	Mittel	1,76	0,25	0,85	0,59	0,27	36,9
	S	0,59	0,23	0,36	0,18	0,21	12,3
	Vk%	34	9 1	43	31	77	33
	n	2	2	2	2	2	2
Tanne	Mittel s						
	Vk%						

Tab. 8: Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und Anzahl der berücksichtigten Studien (n) der Gehalte von Makro-Nährelementen [mg g⁻¹] und der Biomasse (Trockenmasse) [t ha⁻¹]

Feinwurzeln (< 2 mm ∅)

			Ge		Biomasse		
		N	P	halt [m ; K	Ca	Mg	t ha ⁻¹
Eiche	Mittel	8,94	0,74	3,40	6,18	1,06	4,94
	S	0,71	0,25	0,50	2,83	0,54	5,01
	Vk%	8	33	15	46	51	101
	n	5	5	5	5	5	5
Buche	Mittel	7,15	0,60	2,18	5,29	0,74	3,93
	S	0,68	0,28	0,98	5,83	0,19	1,79
	Vk%	10	47	45	110	25	46
	n	3	3	3	3	3	3
Fichte	Mittel	10,77	0,98	2,18	2,61	0,55	2,38
	S	2,48	0,22	0,69	0,94	0,14	0,87
	Vk%	23	22	32	36	25	37
	n	6	7	8	8	8	8
Kiefer	Mittel	7,44	0,62	1,47	2,83	0,45	3,24
	S	2,75	0,04	0,41	3,02	0,21	1,23
	Vk%	37	6	28	107	46	38
	n	5	5	5	5	5	5
	Mittel	8,57	0,73	2,31	4,23	0,70	3,62
	S	1,66	0,17	0,80	1,78	0,27	1,09
Übrige Bau	marten						
Birke	Mittel						
	S						
	Vk%						
	n	0	0	0	0	0	0
Douglasie	Mittel						
	S						
	Vk%						
	n	0	0	0	0	0	0
Lärche	Mittel						
	S						
	Vk%	0	0	0	0	0	0
D 311	n	0	0	0	0	0	0
P.Nigra v. lar.	Mittel						
	s Vk%						
		0	0	0	0	0	0
Tanne	n Mittel	U	U	U	U	U	U
1 anne	S						
	vk%						
		0	0	0	0	0	0
	n	U	U	U	U	U	U

3.2 Elementgehalte in Abhängigkeit von Standorteigenschaften

Die Wuchsleistung der Bäume wird stark von den Standortbedingungen bestimmt. Es wurde geprüft, ob und wie weit die zum Teil hohe Variabilität der Stoffgehalte in den Baumkompartimenten auch auf Standorteinflüsse zurückgeführt werden kann. Geprüft wurden die Parameter Jahresmitteltemperatur, Jahresniederschläge und Höhenlage sowie Geologie, Bodentyp und Humusform.

Die **klimatischen Einflüsse** wurden geprüft, indem Regressionsbeziehungen zwischen den Elementgehalten von Baumkompartimenten und dem mittleren Jahresniederschlag, der Höhenlage bzw. der Jahresmitteltemperatur berechnet wurden.

In den Kompartimenten 'Derbholz' und 'Derbholz mit Rinde' zeigte sich bei der Fichte eine signifikante Abnahme der N-Gehalte mit zunehmender Niederschlagshöhe bzw. zunehmender Höhenlage (Tab. 9). Der Anteil erklärter Varianz ist allerdings gering.

Eine kausale Erklärung kann für den statistischen Zusammenhang zwischen Niederschlag und N-Gehalt nicht gegeben werden. Hohe Niederschläge korrelieren mit der Höhenlage und niedrigeren Temperaturen. Für den Parameter `Jahresmitteltemperatur' konnte kein Effekt auf die Stickstoffgehalte gefunden werden. Für andere Kompartimente oder Baumarten konnten in dem vorhandenen Datensatz keine signifikanten klimatischen Einflüsse auf die Stoffgehalte gefunden werden.

Tab. 9: N-Gehalte im 'Derbholz' bzw. 'Derbholz mit Rinde' der Fichte $[mg\ g^{-1}]$ in Abhängigkeit von der Niederschlagshöhe $[N_{Jahr}]$ bzw. der Höhenlage $[m\ NN]$. Anzahl (n), Bestimmtheitsmaß (R^2) und Signifikanz (p)

Kompartiment	Parameter	Beziehung	n	\mathbb{R}^2	p ≤
Derbholz	N _{Jahr} [mm]	-0,0006 x + 1,52	24	0,21	0,05
	Höhenlage [m]	-0,0006 x + 1,25	24	0,17	0,05
Derbholz mit Rinde	N _{Jahr} [mm]	$-0,6298 \operatorname{Ln}(x) + 5,67$	24	0,20	0,05

Für die Charakterisierung der **Bodeneigenschaften** wurden Standortgruppen ähnlicher Eigenschaften gebildet und Elementgehalte in Baumkompartimenten nach Standortbedingungen stratifiziert. Dazu wurden die Angaben zu Geologie, Bodentyp und Humusform herangezogen.

Die Standortsbeschreibungen in den berücksichtigten Publikationen erlaubten jedoch nicht immer eine Gruppenzuordnung. Sie waren unvollständig (Humusform) oder ihnen war der Grad einer Überlagerung des geologischen Ausgangssubstrates mit Decksedimenten nicht eindeutig zu entnehmen. Ist schon die Datengrundlage je Baumart begrenzt, so ist sie es umso mehr für die Anzahl der Untersuchungen je Baumart und Standortstyp.

Für die Kiefer gilt, dass die Standorte im allgemeinen arm sind und deshalb eine weitere Stratifizierung nicht möglich ist. Die Fichte stockt auf einer großen Bandbreite von Standortstypen. Dort waren die Ergebnisse einer Stratifizierung nach Standortgruppen uneinheitlich. Möglicherweise ist eine standortsbedingte Variabilität der Elementgehalte von anderen Einflüssen überdeckt.

Auf **carbonathaltigen Standorten** waren die Ca-Gehalte in einzelnen Biomassekompartimenten stark erhöht. Das lässt sich am deutlichsten bei der Buche zeigen, da hier eine größere

Anzahl an Untersuchungen vorlag (Tab. 10). Bei Eiche, Kiefer und Fichte wurden nur einzelne Untersuchungen auf carbonathaltigen Standorten vorgefunden.

Die Gliederung der Untersuchungen zur Buche wurde wie folgt vorgenommen:

- 1. Carbonathaltige Standorte: Muschelkalk (MEIWES & BEESE, 1988; TRÜBY, 1994); Flysch (HOCHBICHLER et al., 1994)
- 2. Übrige reiche Standorte: Carbonatische Standorte mit Decksediment und/oder Oberbodenversauerung (BREDEMEIER, 1988; GEHRMANN, 2002); Standorte mit Mull-Humusformen (NIHLGARD, 1977).
- 3. Arme silikatische Standorte: Sandstein (NIHLGARD, 1972; NIHLGARD & LINDGREN, 1977) Sandstein mit Lössüberlagerung (PAVLOV, 1972; ELLENBERG et al., 1986); tertiäre Sedimente mit Lösslehmüberlagerung (WEIS & GÖTTLEIN, 2002), Standorte mit Podsoldynamik und/oder Moder-Humusformen (PAVLOV, 1972; NIHLGARD & LINDGREN, 1977; ELLENBERG et al., 1986; GEHRMANN, 2002)

Tab. 10: Ca-Gehalte [mg g⁻¹] in den Kompartimenten 'Derbholz', 'Derbrinde' und 'Derbholz mit Rinde' der Buche auf unterschiedlichen Standortgruppen (\emptyset = Mittelwert, n = Anzahl Untersuchungen)

		Derbholz			Derbrinde		Derbholz mit Rinde			
Standort	Ø	Rahmen	n	Ø	Rahmen	N	Ø	Rahmen	n	
Carbonathaltige Standorte	1,3	0,5 – 2,4	4	38,9	34,2 – 44,5	4	3,9	3,7 – 4,2	2	
Übrige reiche Standorte	1,0	0,8 – 1,3	3	23,7	22,6 – 25,0	3	2,0	2,0	1	
Arme Standorte	0,8	0,5 – 1,1	8	11,3	6,2 – 14,1	9	1,25	0,8-2,0	8	

Der deutlichste Standortgradient für Ca-Gehalte zeigt sich in der 'Derbrinde' der Buche. Im Kompartiment 'Derbholz' ist der Einfluss des Ca-Angebotes aus dem Boden nicht einheitlich; er kann möglicherweise vom Alter der Bestände überlagert sein.

NIHLGARD & LINDGREN (1977) untersuchten drei Buchenbestände in einem Vegetationsgradienten. Eine neutrale Bodenreaktion (Mercurialis-Typ) spiegelte sich in höchsten K- und Ca-Gehalten in den jüngsten Zweigen wider, im Derbholz nur in erhöhten Ca-Gehalten. Eine saure Bodenreaktion geht einher mit höheren P-Gehalten in den Zweigen.

MEIWES & BEESE (1988) fanden im Göttinger Kalkbuchenwald hohe Ca-Gehalte vor allem in der Rinde; bei STEINER et al. (1998) spiegelte sich eine starke N-Belastung eines Kiefernwaldes in den physiologisch aktiveren Baumkompartimenten (Nadeln, Zweige und Rinde) wider.

Im Göttinger Kalkbuchenwald mit Terra fusca – Rendzinen spiegelt sich ein hohes Ca-Angebot im Boden auch im Derbholz wider. MEIWES & BEESE (1988) fanden gegenüber Tab. 1 mit 1,34 mg g⁻¹ um 140 % höhere Ca-Gehalte im Derbholz. Hauptspeicher von Ca sind jedoch die Rindenkompartimente, in denen sich 60 % der oberirdischen Calcium-Vorräte befinden.

STEINER et al. (1998) verglichen zwei unterschiedlich stark mit Stickstoff belastete Kiefernforsten im östlichen Brandenburg. Die Bestände weisen vergleichbare klimatische, edaphische

und ertragskundliche Merkmale auf, jedoch unterliegt der industrienahe Standort gegenüber einem emittentenfernen Referenzstandort deutlich höheren Stickstoffeinträgen und zeichnet mit einer starken Nitratbelastung im Sickerwasser. Die N-Belastung zeigt sich in einer einseitigen Stickstoffanreicherung in den physiologisch aktiven Baumkompartimenten Nadeln, Baumrinde und Feinwurzeln. Im Bereich des Kernholzes und des Splintholzes sind gegenüber dem emittentenfernen Referenzstandort keine Unterschiede in den Stickstoffgehalten zu erkennen.

In einem Düngeversuch mit N-, P-, K-, und Ca-Gaben in Beständen von Kiefer, Jap. Lärche und Fichte auf Sanderböden in Niedersachsen reagierten Holz und Rinde im Stickstoffgehalt gegenüber der ungedüngten Referenzfläche nicht (SEIBT & WITTICH, 1965). Der vermehrt aufgenommene Stickstoff wurde zur Produktion einer entsprechend größeren Masse von organischer Substanz genutzt.

Der Ca-Gehalt im Holz und in der Rinde stieg dagegen in den Düngungsvarianten bei allen Baumarten an. Im Holz ergab sich ein Anstieg im Mittel der drei Baumarten auf 124 %, in der Rinde auf 143 % gegenüber der ungedüngten Referenzfläche. Hinsichtlich der K- und P-Gehalte reagierte nur die Lärche. Die Gehalte im Holz stiegen auf 136 % (K) bzw. 143 % (P); die Gehalte in der Rinde auf 185 bzw. 146 %. Ein Rückgang der Mg-Gehalte auf 72 % (Holz) bzw. 92 % (Rinde) wird von den Autoren auf eine antagonistische Wirkung der Ca-Aufnahme zurückgeführt, könnte aber auch auf einer 'Verdünnung' der Gehalte durch vermehrtes Wachstum beruhen.

AUGUSTO et al. (2000) erkennen in einer Auswertung von Biomassestudien keinen bedeutenden Einfluss der Bodenfruchtbarkeit auf Nährelementgehalte in der oberirdischen Biomasse. Düngeversuche von Heilman & Geissel (1963) sowie Nilsson & Wiklund (1995) zeigen starke Effekte bei Blattorganen, moderate Wirkungen in der Rinde, nicht aber im Holz. Aus Untersuchungen etwa 50jähriger Fichten- und Douglasienbestände auf jeweils einem "armen" und einem "reichen" Standort (Ovington, 1962; Bigger & Cole, 1983; zit. n. Augusto, 2000) geht hervor, dass sowohl Biomassen als auch Elementvorräte auf reichen Standorten deutlich höher sind. Auf der Ebene der Gehalte dagegen zeigen sich geringe oder keine gerichteten Unterschiede. Eine Ausnahme bildet der Stickstoff. In beiden Untersuchungen wurden jeweils höhere Stickstoffgehalte auf dem reicherem Standort ermittelt.

Für '**Derbholz**' gehen Alban (1979) sowie DE VRIES et al. (1990) von einer stabilen, baumartenspezifischen Elementkonzentration aus, die weitgehend unabhängig von der Wuchsleistung der Bäume ist.

3.3 Elementgehalte in Abhängigkeit von der Altersphase des Bestandes

Die mittleren Elementgehalte in den Biomassekompartimenten (Tab. 1-8) sind aus Fallstudien mit Bäumen unterschiedlichen Alters berechnet. Innerhalb einiger Strukturelemente des Baumbestandes können sich Elementgehalte mit dem Bestandesalter verändern, z.B. durch Verlagerung von Stoffen in das Derbholz oder in die Rinde sowie durch eine Verkernung des Holzes.

Geprüft wurden baumartentypische Änderungen der Elementgehalte mit zunehmendem Alter in den Kompartimenten 'Derbholz', 'Derbrinde', 'Derbholz mit Rinde', 'Reisig und Äste' sowie die Änderungen der Elementgehalte in der 'oberirdischen Biomasse'. Auf der Datengrundlage der ausgewerteten Fallstudien ergaben sich signifikante Beziehungen bei allen Baumarten (Anlage 8.2).

Bei der Eiche zeigt sich auf der vorhandenen Datengrundlage ein signifikanter Rückgang der Mg-Gehalte im 'Derbholz' mit zunehmendem Alter, im Kompartiment 'Reisig und Äste' auch ein Rückgang der K-Gehalte.

Bei der Buche steigen die P-Gehalte in den Kompartimenten 'Derbholz', 'Derbholz mit Rinde' und 'Reisig und Äste' mit zunehmendem Alter. Dagegen sinken die Ca-Gehalte in der 'Derbrinde' mit zunehmendem Alter, möglicherweise infolge einer Auswaschung durch saures Stammablaufwasser.

Bei Fichte und Kiefer (Abb. 1) sinken im Kompartiment 'Derbholz' mit zunehmendem Alter die P-, K und Mg-Gehalte; im Kompartiment 'Derbholz mit Rinde' auch die N-Gehalte, während die Ca-Gehalte in der 'Derbrinde' ansteigen.

Abb. 1: P-, K- und Mg-Gehalte im 'Derbholz' der Kiefer [mg g⁻¹] in Abhängigkeit vom Bestandesalter (R^2 = Bestimmtheitsmaß)

Nach PAVLOV (1972) bestehen bei Buche und Fichte zwischen unterschiedlich alten Beständen statistisch gesicherte Unterschiede in den Elementgehalten von Derbholz und Derbrinde.

HEINSDORF & KRAUß (1990) ermittelten bei der Aufstellung von Massen-Schätztafeln für die Kiefer in Brandenburg an 82 Probebäumen aus sechs unterschiedlich alten Kiefernbeständen signifikant mit dem Alter der Probebäume abnehmende N-, P- und K-Gehalte im Derbholz, im Astholz und in der Derbrinde abnehmende N- und K-Gehalte.

NEBE & HERRMANN (1987) ermittelten in einem 100jährigen Fichtenbestand im Splintholz höhere N-, P- und K- und niedrigere Ca-Gehalte als im Kernholz. Die Gehalte spiegeln die höhere physiologische Aktivität im Splintholz wider. Ca (sowie Mn, Cu und Zn) werden dagegen in das Kernholz eingelagert und erreichen deshalb dort höhere Konzentrationen

In zwei etwa 70jährigen Kiefernbeständen (STEINER et al., 1998) waren die P- und K-Gehalte im Splint erhöht, die Ca-Gehalte im Kernholz. Bei Stickstoff waren die Ergebnisse uneinheitlich und möglicherweise von einer unterschiedlichen anthropogenen N-Belastung überlagert.

Veränderte Stoffgehalte im Derbholz mit zunehmendem Bestandesalter können demnach auf der Verkernung des Holzes und einem steigenden Kernholzanteil im höheren Baumalter beruhen.

In veränderten Elementgehalten mit zunehmender Stammhöhe mit jüngeren Geweben kann ebenfalls ein Hinweis auf Einflüsse des Alters (im Kompartiment 'Derbholz') gesehen werden. Einer axialen Variabilität im 'Derbholz' oder in der 'Derbrinde' wird jedoch nicht in allen Untersuchungen nachgegangen. Wichtig ist dabei, dass die Holzprobe den gesamten Stammquerschnitt repräsentativ erfasst, also äußere jüngere Jahrringe stärker gewichtet werden als das ältere Reifholz/Kernholz.

PAVLOV (1972) folgert aus einer statistischen Auswertung von Analysen in Fichten- und Buchenbeständen im Solling, dass die Proben für die chemische Analyse von Derbholz und Derbrinde aus beliebiger Stammhöhe entnommen werden können, weil keine hohen Varianzen bestehen.

RADEMACHER (1986) untersuchte an 7 Fichtenstämmen unterschiedlicher Schadklassen die Elementgehalte in Jahrringfraktionen von Bäumen an der Stammbasis und im Kronenbereich. In allen Fällen waren die Mg-Gehalte im Holz der Krone höher. Bei K und Ca waren die Ergebnisse uneinheitlich.

MEIWES & BEESE (1988) analysierten im Göttinger Kalkbuchenwald Stammscheiben aus unterschiedlichen Baumhöhen getrennt. Im Derbholz fanden sie im oberen Teil höhere P-, K- und Mg-Gehalte; in der Derbrinde waren keine interpretierbaren Unterschiede zu erkennen. MARKAN (1993) findet im Derbholz und in der Derbrinde eine Zunahme der Mg- (und Cu-) Gehalte mit zunehmender Entnahmehöhe.

In den Untersuchungen von GEHRMANN (2002) sind die Ergebnisse uneinheitlich. In einem Buchenbestand (Hürtgenwald) enthält das Holz am Kronenansatz gegenüber dem Stammfuß deutlich mehr K und Mg und weniger Ca und P. In einem Fichtenbestand waren diese Unterschiede nicht aufzufinden.

Den vorliegenden Publikationen kann entnommen werden, dass Eichen, Buchen und z.T. Fichten im oberen Stammbereich höhere Mg- Gehalte aufweisen, während dieser Zusammenhang bei den übrigen Nährelementen nicht eindeutig gezeigt werden kann.

Die summarische Betrachtung der 'oberirdischen Biomasse' in unterschiedlichen Bestandesaltern lässt erkennen, dass die Variabilität der Nährelementgehalte (Tab. 6) zu hohen Anteilen
mit der Entwicklungsphase des Waldbestandes erklärt werden kann. Die mittleren Nährelementgehalte nehmen mit zunehmendem Alter ab. Aus dem vorliegenden Datensatz ergaben
sich signifikante logarithmische Beziehungen für alle Makro-Nährelemente bei Fichte (Abb.
2) und Kiefer. Bei Eiche, Buche und Douglasie ist aufgrund der geringeren Datengrundlage
nicht für alle Elemente eine statistisch gesicherte Gehaltsabnahme zu ermitteln (Anlage 8.2).
Die Akkumulation von 'Derbholz' im Höhen- und Stärkenzuwachs der Bäume nach dem
Bestandesschluss führt zu einer 'Verdünnung' der Nährelementgehalte in der oberirdischen
Biomasse. Zu diesem Ergebnis kommen auch Augusto et al. (2000) und Rademacher et al.
(2002).

In einer Literaturübersicht von AUGUSTO et al. (2000) zeigen sich für die 'gesamte oberirdische Biomasse' hohe mittlere Nährelementgehalte in den Jungwuchsstadien der Bestände, die im Zeitpunkt der Kulmination des laufenden Zuwachses stark abfallen und die danach nahezu konstant bleiben. In Anlehnung an die französischen Ertragstafeln (VANNIERE, 1984) zeigen AUGUSTO et al., dass die Phase nahezu konstanter Elementgehalte bei der Douglasie im Alter 30, bei der Kiefer im Alter 40, bei der Fichte im Alter 50 und bei der Buche im Alter von 80 Jahren beginnt.

RADEMACHER (2002) vergleicht Elementvorräte und Elementgehalte in Fichten- und Kiefernbeständen in unterschiedlichen Altersklassen. Die mittleren Elementgehalte der oberirdischen Biomasse verringern sich mit zunehmenden Alter infolge der stärkeren Akkumulation des nährstoffarmen Derbholzes gegenüber der übrigen Biomasse.

Abb. 2: Die Elementgehalte $[mg g^{-1}]$ in der 'Oberirdischen Biomasse' von Fichtenbeständen in Abhängigkeit vom Bestandesalter (R^2 = Bestimmtheitsmaß).

3.4 Langfristige Änderungen von Elementgehalten in Kompartimenten der Bäume

An dem vorliegenden Datensatz wurde geprüft, ob sich aufgrund von Veränderungen der Standortseigenschaften, z.B. infolge der hohen Immissionsbelastungen in den letzten Jahrzehnten, auch Änderungen in den Stoffgehalten in Baumkompartimenten ergeben haben. Dazu wurden die Stoffgehalte einzelner Fallstudien zum Jahr der Publikation in Beziehung gesetzt. Allerdings geht aus einigen Publikationen nicht klar hervor, wann die Untersuchungen genau durchgeführt wurden.

Bei der Kiefer (Abb. 3, ab 1958) und Fichte (ab 1965) nehmen die P-, K- und Mg-Gehalte im 'Derbholz' ab (Anlage 8.3). Die Beziehungen sind zurückhaltend zu bewerten, weil die Daten von Standorten mit sehr unterschiedlichen Klima- und Umweltbedingungen stammen. Dennoch sind die gefundenen Tendenzen plausibel.

Die Baumarten Kiefer und Fichte zeigen in der Regel auch auf armen Standorten rezent höheres Derbholzwachstum (PRETZSCH, 1994). Zugleich können jedoch arme Standorte, die häufig mit Kiefern oder Fichten bestockt sind, von Phosphatmangel betroffen sein und stärker einer Nährstoffverarmung durch Säureeinträge unterliegen (K, Mg). Die verringerten Mineralstoffgehalte im Derbholz deuten auf einen 'Verdünnungseffekt'. Aufgrund eines höheren Zuwachses bei gleichzeitig angespanntem Nährstoffangebot können die Mineralstoffe in ein Minimum geraten.

Wie beim 'Derbholz' (Abb. 3) waren auch im Baumkompartiment 'Reisig und Äste' in früheren Untersuchungen die K-Gehalte der Kiefer höher. In den Nadeln der Kiefer finden sich in neuerer Zeit höhere N-Gehalte (Anlage 8.3). MINDRUP et al. (2001) fanden in Fichtennadeln über einen Zeitraum von 30 Jahren ebenfalls zunehmende N-Gehalte .

Abb.3: P-, K- und Mg-Gehalte [mg g^{-1}] im 'Derbholz' der Kiefer in Abhängigkeit vom Jahr der Untersuchung (R^2 = Bestimmtheitsmaß).

4. Biomasse

Die 'oberirdische Biomasse' besteht aus den Strukturelementen 'Derbholz', 'Derbrinde', 'Reisig und Äste' sowie den 'Blättern bzw. Nadeln'. Die unterirdische Biomasse wurde in die Kompartimente 'Grobwurzeln' und 'Feinwurzeln' geteilt. Die mittleren Anteile der Kompartimente werden hier auf die 'oberirdische Biomasse' bezogen (Tab. 11), weil für die Gesamtbiomasse und Wurzeln das Datenmaterial zu gering war.

Die Anteile von 'Derbholz' an der 'oberirdischen Biomasse' betragen je nach Baumart 70-75 %. Die Anteile von 'Reisig und Ästen' liegen vergleichsweise einheitlich zwischen 17 und 19 %. Baumartenunterschiede zeigen sich vor allem im Rindenanteil und im Anteil der Blattorgane. Eiche und Kiefer sind dickrindig; die Fichte hat eine hohe Nadelmasse.

Tab. 11: Die Anteile [%] der Kompartimente an der oberirdischen Biomasse und die Verhältnisse der Wurzeln zur oberirdischen Biomasse (Ø = Mittlerer Anteil [%], s = Standardabweichung [%], n = Anzahl der Untersuchungen).

		Eiche]	Buche)		Fichte)]	Kiefer	•
Kompartiment	Ø	S	n	Ø	S	n	Ø	S	n	Ø	S	n
		Anteil [%] an der oberirdischen Biomasse										
Derbholz	68,9	11,2	6	76,3	5,9	11	67,9	13,5	28	70,9	13,6	15
Derbrinde	9,6	1,4	6	4,7	1,2	11	6,7	1,4	28	8,3	2,1	15
Reisig und Äste	18,8	10,3	6	17,5	5,3	11	16,7	8,3	31	18,0	12,1	15
Nadeln/Blätter	2,6	1,9	6	1,7	1,2	10	9,4	6,5	30	4,9	2,4	17
Derbholz mit Rinde	78,5	10,8	6	81,0	5,8	11	74,2	13,4	31	77,1	13,3	15
Rindenanteil [%] a. Derbholz m. Rinde	12,5	3,2	6	5,8	1,7	11	8,8	3,8	28	10,7	2,8	15
	1	/erhäl	ltnis (ler W	urzelı	n zur	oberii	rdisch	en Bi	omass	se [%]	
Grobwurzeln	25,3	13,2	6	13,5	7,9	5	17,8	13,4	11	20,6	10,3	10
Feinwurzeln	2,2	1,9	6	1,0	0,2	3	1,3	0,6	8	3,2	2,5	5

Mit dem Aufwachsen der Waldbestände kommt es zu Strukturveränderungen in der Bestandesbiomasse. Am Beispiel der Fichte, für die ein umfangreiches Datenmaterial vorliegt, zeigt sich die Veränderung der Anteile einzelner Kompartimente an der oberirdischen Biomasse im Verlauf der Bestandesentwicklung (Abb. 4). Die Beziehungen wurden für alle Baumarten und alle Kompartimente berechnet (Anlage 8.1).

In der frühen Bestandesentwicklung baut sich die Krone mit den Assimilationsorganen und dem Zweig- und Astwerk auf. Nach dem Bestandesschluss akkumuliert sich im Höhen- und Stärkenzuwachs der Bäume die Holzmasse stärker als die Biomasse der Blattorgane und des Astwerkes. Entsprechend verringern sich deren Anteile. Die Anteile der Derbrinde verringern sich nur bei den peridermbildenden (dickrindigen) Baumarten Kiefer und Eiche (Anlage 8.1). Zu ähnlichen Ergebnissen kommen auch NEBE & HERRMANN (1987), RADEMACHER et al. (1999) und HEITZ (2002).

NEBE & HERRMANN (1987) vergleichen Untersuchungen zur relativen Verteilung der oberirdischen Dendromasse von Fichtenbeständen mit unterschiedlichem Alter, Wuchsleistung und Bestockungsdichte. Während in jungen Stangenhölzern der Anteil der Krone (Nadeln, Reisig und Äste) über 50 % ausmacht, reduziert sich bei über 50jährigen Beständen der Kronenanteil auf 15-20 %. Der Anteil des Derbholzes mit Rinde stabilisiert sich bei durchschnittlich 83 %.

RADEMACHER et al. (1999) zeigen am Beispiel von drei unterschiedlich alten Kiefernbeständen (auf vergleichbarem Standort im niedersächsischen Altpleistozän), dass der Anstieg der Biomasse von rd. 65 t ha⁻¹ im Jungbestand auf rd. 170 t ha⁻¹ im Altbestand vor allem auf die Produktion von Derbholz zurückzuführen ist, während die Biomasse der übrigen Baumkompartimente weitgehend konstant bleibt.

Abb. 4: Änderung der Verteilung der Biomasse-Kompartimente [%] auf die `Oberirdische Biomasse' in Abhängigkeit vom Bestandesalter, Beispiel Fichte.

In älteren Beständen erklärt sich die Variabilität der Verteilung der Biomasse auf die einzelnen Kompartimente auch mit einer unterschiedlichen waldbaulichen Behandlung, insbesondere durch eine veränderliche Kronenausbildung infolge gezielter Stammzahlhaltung (Stammabstandsregulierung) bei der Bewirtschaftung.

5. Schwermetalle

5.1 Vorbemerkungen

Die Schwermetalle kommen in Waldökosystemen im Spurenbereich vor. Sie haben ökotoxikologische Wirkungen (Pb, Cd) oder sie fungieren als Mikro-Nährstoffe (Cu, Zn), die lediglich in hohen Konzentrationen toxisch wirken.

Zur Zeit wird an der Entwicklung eines Konzeptes für Critical Loads für Schwermetalle in terrestrischen Ökosystemen gearbeitet (DE VRIES & BAKKER, 1998). Die Schwermetalle in den Holzernte-Kompartimenten (Derbholz, Derbrinde) sind aufgrund der Stoffexporte wichtige Bilanzgrößen zur Ermittlung der Critical Loads.

5.11 Einbezogene Publikationen

Nur wenige Arbeiten befassen sich ausschließlich mit der Bilanzierung von Schwermetallen und mit den Vorräten von Schwermetallen in einzelnen Kompartimenten der Baumbiomasse (MAYER, 1981; SCHULTZ et al., 1987; MEIWES et al., 1988; LAMERSDORF, 1988).

Ein größerer Teil der berücksichtigten Publikationen sind Untersuchungen zum Stoffhaushalt in Waldökosystemen. Schwermetalle wurden dabei mit einbezogen, weil sie eine ernährungsphysiologische Funktion als Mikronährstoff haben (Cu, Zn), oder um im Rahmen von Fallstudien oder Umweltmonitoring-Programmen (Level II) auch Schwermetallanalysen zur Charakterisierung der Umweltbelastung bereitzustellen.

Gegenstand einiger spezieller Untersuchungen zum Schwermetallhaushalt in Waldökosystemen war eine Abgrenzung der atmogen deponierten und oberflächlich adsorbierten Spurenstoffe (SCHMIDT, 1987; LAMERSDORF, 1988; TRÜBY, 1994). Die Trennung der Pflanzenoberflächen von den physiologisch aktiven inneren Pflanzenbestandteilen zeigte, bedingt durch die atmosphärische Belastung, zum Teil stark unterschiedliche Schwermetallgehalte.

In die vorliegende Untersuchung wurden auch Untersuchungen an Einzelbäumen zum Monitoring der Schwermetallbelastung einbezogen. So zielten Untersuchungen aus den 70er und 80er Jahren über die Schwermetall-Verteilung im Jahrringbau von Einzelbäumen auf eine Indikation der historischen Immissionsbelastung (Dendrochronologie). In anderen Untersuchungen sollte anhand von Schwermetall-Gehalten der Baumrinde auf unterschiedliche Belastungssituationen geschlossen werden (HOFMANN, 1999).

Nicht berücksichtigt wurden Datensätze von Untersuchungen auf Haldenaufforstungen, wenn sich dort auffällig hohe Schwermetall-Gehalte zeigten. Eine unterschiedliche atmosphärische Belastungssituation dagegen ist auch für Waldgebiete realistisch und deshalb kein Grund, Datensätze aus solchen Untersuchungen zurückzuweisen.

5.12 Besondere methodische Ansätze bei Schwermetalluntersuchungen

Die Bestimmung der Schwermetalle im Spurenbereich ist störungsanfällig. Erforderlich ist im Gegensatz zu den Makroelementen eine besondere Probenahmetechnik zur Vermeidung einer Kontamination der Proben sowie eine spezielle chemisch-analytische Bearbeitung.

Die Gefahr einer Kontamination von Holzproben besteht bei der Verwendung von Metallwerkzeugen während der Probenahme und der Probenvorbereitung. Dabei ist davon auszugehen, dass die Kontaminationsgefahr besonders groß ist, wenn das Probematerial in dem

betreffenden Arbeitsgang bereits über eine große Oberfläche verfügt und somit die Kontaktfläche zwischen Probematerial und Zerkleinerungswerkzeug sehr groß ist und wenn die Zerkleinerungswerkzeuge sich untereinander berühren und einen erhöhten Abrieb erzeugen (MEIWES et al., 1988). Verschiedene Autoren berücksichtigen dies durch Verwendung besonderer (beschichteter) Werkzeuge (LAMERSDORF, 1988; QUEIROLO et al., 1990; TRÜBY, 1994) oder durch ein nachträgliches Entfernen verunreinigter Probenbereiche (HERRMANN et al., 1978; SCHRIMPF, 1980).

In der vorliegenden Literaturauswertung kann die Probenvorbereitung und Analysenpräzision der herangezogenen Untersuchungen nicht bewertet werden.

In den 80er Jahren sind bedeutende Fortschritte in der chemischen Analytik von Spurenstoffen in Pflanzenproben erreicht worden (HEINRICHS et al., 1985; 1986; QUEIROLO & VALENTA, 1987; LAMERSDORF, 1988). Dennoch können bei Gehalten nahe der Bestimmungs- oder Nachweisgrenze hohe Streuungsbereiche auftreten, besonders in Holzproben (LAMERSDORF, 1988; NRI, 1995).

TRÜBY (1994) ermittelt in einer Untersuchung zur Schwermetallverteilung in Biomassekompartimenten anhand von 50 zufällig ausgewählten Doppelbestimmungen bei Nadelanalysen einen mittleren Fehler von unter 7 %. Bei extrem hohen Gehalten oder Gehalten nahe der Messgrenze kann der Fehler bis zu 45 % betragen. Bei Rindenproben zeigte die Pb-, Mn-, und P-Analyse höhere Fehler.

Bei Holzproben können bedingt durch die oft extrem niedrigen Gehalte im Einzelfall Fehler von nahezu 100 % auftreten, besonders bei Pb. Die Analysenpräzision ist für Astholz schlechter als für Derbholz. Die nicht immer einwandfreie Separation von Holz und Rinde kann zu erhöhten Fehlern führen, weil die Spurenstoff-Gehalte von Holz und Rinde sich um mehrere Größenordnungen unterscheiden können und die Miterfassung kleinster Rindenanteile eine beträchtliche Inhomogenität erzeugen kann.

5.2 Ergebnisse Schwermetalle

Die Darstellung der Schwermetall-Gehalte in Bäumen beschränkt sich auf die Kompartimente `Derbholz' und `Derbrinde'.

Für die Kompartimente im Bereich der Krone und des Wurzelsystems wurden keine Mittelwerte berechnet, weil die Datenbasis sehr schmal war. In Anhang 8.6 sind Publikationen aufgeführt, die neben dem Derbholz und der Derbrinde weitere Strukturelemente des Baumbestandes behandeln. Für die Schwermetallgehalte im Baumkompartiment 'Nadeln/Blätter' wurde eine Auswertung der Daten aus dem europäischen forstlichen Umweltmonitoring (Level I, Level II) durch RADEMACHER (2001) vorgenommen, für Wurzeln von überwiegend deutschen Standorten durch WIEDEMANN (1986).

Für die Hauptbaumarten Eiche, Buche, Fichte und Kiefer ergaben sich Mittelwerte, Mediane und Streuungsparameter für Zn, Pb, Cd und Cu auf einer Grundlage von jeweils mindestens 7 Datensätzen (Tab. 12, 13).

Mehr als die Hälfte der Variationskoeffizienten betragen über 100 %. Fast immer wird eine linksschiefe Verteilung mit einer großen Anzahl von geringen und einzelnen hohen Schwermetall-Gehalten vorgefunden. Die Mediane liegen bei den Pb-, Cd- und Cu-Gehalten stets niedriger als der Mittelwert.

`Derbholz'

Im 'Derbholz' zeigen sich bei den Elementen Cu und Zn, die eine physiologische Ernährungsfunktion haben, baumartentypische Unterschiede. Nadelbäume weisen höhere Zn-Gehalte, die Laubbäume höhere Cu-Gehalte (Median, Tab. 12) auf.

Die Mediane der Pb-Gehalte im 'Derbholz' liegen zwischen 0.95 mg kg⁻¹ (Buche) und 1,4 mg kg⁻¹ (Kiefer). Hohe durchschnittliche Pb-Gehalte und ein hoher Maximalwert bei der Fichte stehen mit einigen Proben aus geogener und atmogener Belastung in der nördlichen Eifel in Verbindung (TRÜBY, 1994). Es zeigt sich damit eine belastungsabhängige Pb-Aufnahme in das Derbholz durch die Fichte.

Überdurchschnittlich hohe Pb- und insbesondere Cd-Gehalte bei der Kiefer (Mediane) zeigen eine höhere Aufnahme dieser Schwermetalle durch diese Baumart. Dies kann auch durch eine höhere Bodenverfügbarkeit der beiden Elemente auf sauren Kiefernstandorten bedingt sein.

Bei Buche wurden auf carbonathaltigen Standorten mittlere Zn-Gehalte von 4,3 mg kg⁻¹ und auf den übrigen Standorten von 15,5 (Wertebereich: 9,8-16,7) mg kg⁻¹ ermittelt. Sowohl MEIWES et al. (1988) als auch TRÜBY (1994) finden im älteren (Kern-)Holz der Buche höhere Zn-Gehalte als im Splintholz.

`Derbrinde'

Die Schwermetallgehalte in der `Derbrinde' sind von der atmosphärischen Deposition, vom Angebot verfügbarer Stoffe im Boden und von internen Verlagerungsprozessen beeinflusst. Im Hinblick auf die Akkumulation deponierter Stoffe spielt das Alter der Rinde eine wesentliche Rolle. Die Schwermetalle unterscheiden sich in ihren adsorptiven Eigenschaften sowie in ihrer Löslichkeit deutlich voneinander (SCHMIDT, 1987; SCHULTZ et al., 1987; TRÜBY, 1994).

In der vorliegenden Auswertung (Tab. 13) wurden Gehalte der 'Bastrinde' (innere Rinde) verwendet, wenn sie gesondert ausgewiesen wurden (RADEMACHER, 1986; LAMERSDORF, 1988; SCHULTZ et al., 1987; TRÜBY, 1994).

Für die **Zn-Gehalte** berechneten sich Mittelwerte und Mediane in ähnlicher Höhe. Die Mediane der Gehalte der Nadelbäume betrugen das 6fache gegenüber den Laubbäumen.

Nach Trüby (1994) werden hohe Zn-Gehalte nicht durch eine dauerhafte äußerliche Adsorption von Zn auf der Rindenoberfläche verursacht. Zn wird vorwiegend in leicht löslicher Form auf Pflanzenoberflächen deponiert und findet sich in der Kronentraufe wieder. Zn-Gehalte in der Rinde sind auch von Auswaschung betroffen. Zum Teil werden in der Bastrinde höhere Zn-Gehalte als in der Borke gefunden (SCHULTZ et al., 1987; Trüby, 1994).

Die Variabilität der Zn-Gehalte in der Rinde dürfte von einer angebotsabhängigen Wurzelaufnahme und anschließender Einlagerung in die Rinde geprägt sein.

Im Vergleich mit den übrigen Schwermetallen fanden sich bei den **Pb-Gehalten** als Folge der linkschiefen Verteilung die höchsten Differenzen zwischen Median und Mittelwert. Bei der Rinde von Eiche und Kiefer war der Mittelwert 6-7fach höher als der Median, bei der Fichte um den Faktor 4 und bei der Buche um den Faktor 1,4. Es liegt die Vermutung nahe, dass Baumarten mit dauerhafter, dicker Rinde Pb stark äußerlich adsorbieren und zu hohen Gehalten akkumulieren. Untersuchungen dazu wurden von FANGMEIER et al. (1986), SCHMIDT (1987) und TRÜBY (1994) durchgeführt.

Die mittleren Pb-Gehalte (Mediane) in der Rinde von Eiche und Buche sind höher als die der Nadelbäume. Bei der Buche tragen die hohen Raten von Stammablaufwasser zur äußerlichen Kontamination der Rinde mit Pb bei. SCHMIDT (1987) und SCHULTZ et al. (1987) fanden an

der Rinde im Buchenbestand des Sollings unterschiedlich mit Pb belastete Rindenbereiche, die mit unterschiedlich häufiger Benetzung durch Stammablaufwasser erklärt werden.

SCHMIDT (1987) und SCHULTZ et al. (1987) unterschieden im Buchenbestand im Solling Rindenbereiche, die schon bei geringen Niederschlägen von Stammabflüssen benetzt werden und andere, die das Stammablaufwasser auch bei größeren Niederschlägen noch nicht erfasst. Die äußere Rinde ist mit Ausnahme von Kobalt deutlich stärker mit Spurenstoffen belastet als die innere Rinde.

Die größten Unterschiede zeigten sich bei Pb in der äußeren Rinde. Die Gehalte der Bastrinde lagen um 4 mg, die Gehalte der seltener mit Stammablaufwasser benetzten äußeren Rindenpartien bei 40 mg kg⁻¹ und die Gehalte der häufig vom Stammablaufwasser benetzten Rindenbereiche bei 165 mg kg⁻¹.

Die Cd-Gehalte betragen im Median etwa die Hälfte des Mittelwertes. Wie das Derbholz, enthält auch die Rinde der Kiefer überdurchschnittlich viel Cadmium. Cd wird wie Zn in vorwiegend leicht löslicher Form eingetragen und liegt in gelöster Form in der Kronentraufe vor. Die Gehalte im Bast sind häufig höher als in der äußeren Borke (TRÜBY, 1994).

Cu-Gehalte zeigen im Vergleich der betrachteten Schwermetalle wie im 'Derbholz' auch in der 'Derbrinde' die geringsten Unterschiede zwischen den Baumarten.

Tab. 12: Mittelwert (Mittel), Median, Standardabweichung (s), Variationskoeffizienten (Vk%), Anzahl der Untersuchungen (n) sowie der Maximalwert (Max) der Gehalte von Schwermetallen [mg kg⁻¹] im Derbholz von Waldbäumen

Derbholz

	mg kg ⁻¹	Zn	Pb	Cd	Cu	Ni	Cr
Eiche	Mittel	4,14	2,03	0,16	1,91	1,14	0,72
	Median	2,36	1,00	0,10	1,59	1,14	
	S	3,81	2,13	0,20	0,81	0,98	
	Vk%	92	105	127	43	87	
	n	10	14	16	10	2	1
	Max	10,8	7,50	0,83	3,87		
Buche	Mittel	9,58	1,34	0,16	7,15	3,16	3,13
	Median	9,82	0,95	0,15	1,40	0,63	0,54
	S	5,57	0,99	0,08	14,9	5,23	5,25
	Vk%	58	74	48	209	165	168
	n	7	7	7	7	4	4
	Max	16,7	3,00	0,31	41,0	11,0	11,0
Fichte	Mittel	17,7	4,70	0,45	4,62	2,04	1,42
	Median	17,7	1,20	0,25	1,20	1,10	0,40
	S	6,27	7,97	0,56	11,3	3,42	2,96
	Vk%	35	170	123	244	167	208
	n	25	23	20	16	9	9
	Max	36,8	36,0	2,30	46,0	11,0	9,30
Kiefer	Mittel	14,6	2,53	1,27	1,73	1,68	0,33
	Median	11,2	1,42	1,10	0,90	1,68	
	S	7,66	2,71	1,14	1,75	1,67	
	Vk%	52	107	90	101	99	
	N	9	11	9	9	2	1
	Max	29,0	9,50	4,00	6,08		
Mittel	Mittel	11,5	2,65	0,51	3,85	2,00	1,40
	Median	10,5	1,10	0,20	1,30	1,12	0,47
	S	5,96	1,45	0,52	2,57	0,86	1,24

Tab. 13: Mittelwert (Mittel), Median, Standardabweichung (s), Variationskoeffizienten (Vk%), Anzahl der Untersuchungen (n) sowie der Maximalwert (Max) der Gehalte von Schwermetallen [mg kg⁻¹] in der Derbrinde von Waldbäumen

Derbrinde

	mg kg ⁻¹	Zn	Pb	Cd	Cu	Ni	Cr
Eiche	Mittel	36,5	111	0,64	10,5	4,68	0,87
	Median	25,6	16,7	0,36	6,43	4,68	
	S	26,5	233	0,66	8,20	5,39	
	Vk%	73	209	104	78	115	
	n	7	8	7	7	2	1
	Max	80,0	683	2,06	25,0		
Buche	Mittel	22,6	14,5	0,21	10,9	6,22	3,43
	Median	22,1	10,8	0,11	7,70	11,8	0,62
	S	10,3	14,1	0,20	10,2	5,98	5,71
	Vk%	46	97	94	93	96	166
	n	7	7	6	7	4	4
	Max	41,0	35,0	0,59	32,0	11,8	12,0
Fichte	Mittel	182	8,65	3,07	12,1	3,62	2,18
	Median	171	2,20	1,45	6,52	2,00	0,65
	S	64,1	12,6	4,12	14,8	4,41	4,44
	Vk%	35	145	134	122	122	204
	n	25	21	17	16	9	9
	Max	350	50,0	14,0	61,0	15,0	14,0
Kiefer	Mittel	105	31,7	4,91	17,4	2,98	0,43
	Median	140	4,27	2,83	4,90	2,98	
	S	87,1	56,5	6,16	37,5	3,61	
	Vk%	83	178	126	215	121	
	n	9	10	10	9	2	1
	Max	270	178	20,0	117		
	Mittel	86,6	41,6	2,21	12,7	4,37	1,73
	Median	82,8	7,54	0,91	6,47	3,83	0,64
	S	73,3	47,6	2,20	3,20	1,41	1,36

6. Diskussion

6.1 Makro-Nährelemente

Die Datengrundlage zu Stoffgehalten in Baumkompartimenten von Waldbeständen in Nord-Mittel- und Westeuropa hat sich seit 1990 stark erweitert. In die vorliegende Auswertung gehen 115 Untersuchungen über Makro-Nährelementgehalte in Baumkompartimenten ein, von denen mehr als die Hälfte nach 1990 publiziert worden sind.

Gegenüber der Literaturzusammenstellung von DE VRIES et al. (1990), die bisher als Grundlage für Critical Loads-Berechnungen verwendet wurde, hat sich bei den Hauptbaumarten Eiche, Buche, Fichte und Kiefer die Zahl der untersuchten Standorte etwa verdoppelt. Die hier vorliegende Studie enthält im Kompartiment 'Derbholz' 8 Standorte mit Eiche, 15 mit Buche, 36 mit Fichte und 20 mit Kiefer.

Abweichungen der Mittelwerte in der vorliegenden Studie im Vergleich zu der von DE VRIES et al. (1990, gemäßigtes Seeklima) von mehr als 30 % haben sich bei Fichte (N, P, K, Ca und Mg), Kiefer (N, P und K), Eiche (Ca und Mg) und Buche (P) ergeben.

Für die Berechnung von Critical Loads für Säure und Stickstoff bedeuten die Ergebnisse dieser Studie eine Konsolidierung der Datenbasis. Sie legt nahe, bei der Fichte und Kiefer die zugrunde gelegten Nährelementgehalte zu aktualisieren.

Von den Level II - Flächen in Deutschland sind Daten von 15 Flächen in die hier vorliegende Studie eingegangen. Das sind nahezu 20 % der insgesamt 89 Level II Flächen, auf denen Messungen zum Stoffein- und –austrag durchgeführt werden. Auf diesen Flächen wird durch die Nährstoffinventur der Bestände eine wichtige Lücke in der Nährstoffbilanz geschlossen.

6.11 Variabilität der Makro-Nährelemente

Die Variabilität der Makro-Nährelementgehalte in Biomassekompartimenten wird durch verschiedene Faktoren verursacht, u.a. durch die Nährstoffausstattung des Bodens, das Klima oder das Bestandesalter. In der vorliegenden Datenzusammenstellung bewegen sich die Variationskoeffizienten der Elementgehalte überwiegend zwischen 20 und 60 % (Tab. 1-8).

Es wurde versucht, einen Teil der Varianz der Elementgehalte in den Baumkompartimenten auf Standortunterschiede, den Zeitpunkt der Untersuchung und das Bestandesalter zurückzuführen (Tab. 14). Dazu wurden einfache Regressionsanalysen durchgeführt. Ein multivariater Ansatz konnte aufgrund der Datenbasis nicht angewendet werden.

Eine **standörtlich bedingte Variabilität** von Nährelementgehalten in Biomassekompartimenten konnte nur in wenigen Fällen ermittelt werden. Für die Buche konnte ein Einfluss der Bodeneigenschaften festgestellt werden, da Untersuchungen zur Buche auf deutlich differenzierten Standorten vorliegen. Dort wurden auf carbonathaltigen Standorten oder Standorten mit der Humusform Mull höhere Ca-Gehalte insbesondere in der Rinde gefunden als auf sauren Standorten.

Bei der Fichte gehen zunehmende Jahresniederschläge einher mit niedrigeren N-Gehalten im 'Derbholz' und im 'Derbholz mit Rinde'. Eine kausale Erklärung für diesen Befund bleibt offen.

Insgesamt erscheint die Bedeutung von Standortunterschieden bei der Modellierung Nährelemententzügen für Critical Loads gering. Standortunterschiede drücken sich in Blattspiegelwerten und in der Rinde aus, kaum aber im Holz, welches den Hauptanteil der Biomasse stellt.

Tab. 14: Einflussfaktoren auf die Variabilität der Nährelementgehalte (Signifikanzniveau p ≤ 0.05 bzw.p ≤ 0.01 , s. Anlage 8.2, 8.3).

Baumart	Kompartiment	Einflussfaktor		
		Standort Element (Einfluss)	Untersuchungs -zeitpunkt	Bestandesalter
Eiche	Derbholz			Mg
Buche	Derbholz			P
	Derbrinde	Ca (Pufferbereich)	P	Ca
	Derbholz m. Rinde	Ca (Pufferbereich)		P Ca
Fichte	Derbholz	N (Jahresniederschlag)	P Mg	Р К Мд
	Derbrinde		P K	N P K Ca
	Derbholz m. Rinde	N (Jahresniederschlag)	Mg	N P K Ca Mg
Kiefer	Derbholz		P K Mg	P K Mg
	Derbrinde		P	Ca
	Derbholz m. Rinde		K	N P K

Die **langfristigen Veränderungen von Waldökosystemen** durch atmogene Belastung oder Standortveränderungen wurden geprüft, indem Stoffgehalte in Baumkompartimenten mit dem Jahr der Publikation in Beziehung gesetzt wurden.

Die sich abzeichnenden Tendenzen deuten auf eine 'Verdünnung' der P-, K-, und Mg-Gehalte im 'Derbholz' bei Fichte und Kiefer durch den rezent erhöhten Holzzuwachs im Wald, der vermutlich durch hohe N-Angebote induziert ist.

Nicht bestätigt werden konnte die Hypothese von KLAP et al. (2000), wonach die N-Gehalte im 'Derbholz mit Rinde' von der N-Deposition beeinflusst sind. Gegen die Hypothese spricht auch, dass N-Düngungen keinen Effekt auf die N-Gehalte im Derbholz zeigen (SEIBT & WITTICH, 1965).

Von den untersuchten Faktoren, die einen Einfluss auf die Elementgehalte haben, war der Einfluss des **Bestandesalters** am deutlichsten ausgeprägt. Im 'Derbholz' nehmen in der Regel aufgrund zunehmender Kernholzanteile die K-, Mg, und P-Gehalte ab. Bei der Buche nehmen die P-Gehalte mit zunehmendem Alter zu.

In der 'Derbrinde' können signifikante Änderungen der Stoffgehalte auf internen Stoffverlagerungen und auf Auswaschung von Stoffen beruhen. So steigen bei Fichte und Kiefer die Ca-Gehalte der Derbrinde mit zunehmendem Alter infolge einer Einlagerung, bei der Buche sinken die Ca-Gehalte der 'Derbrinde' möglicherweise infolge der Auswaschung durch das Stammablaufwasser.

6.12 Nährstofffestlegung als Funktion des Bestandesalters

Die Nährstofffestlegung resultiert aus dem jeweiligen Elementgehalt und den dazugehörigen Biomassen. Für die Elementgehalte im `Derbholz' wurde eine Abhängigkeit vom Bestandesalter gezeigt. Diese beeinflusst die Stoffaufnahme in den unterschiedlichen Altersphasen eines Waldbestandes nur zu einem geringen Teil. Stärker wirkt sich die Entwicklung der Biomasseanteile der einzelnen Baumkompartimente auf die Nährelement-Festlegung aus.

Aus dem vorhandenen Datensatz wurde am Beispiel der Fichte die N-Festlegung in die Kompartimente der oberirdischen Biomasse abgeleitet (Abb. 5). Zugrunde gelegt ist die Entwicklung der Vorräte in den verschiedenen Baumkompartimenten.

Abb. 5: N-Festlegung [kg ha⁻¹ a⁻¹] in oberirdische Baumkompartimente, Beispiel Fichte.

Aus der Wachstumsdynamik der Waldbestände folgt ein unterschiedlicher Nährstoffbedarf von Waldbeständen in unterschiedlichen Altersphasen. In den ersten 10 Jahren erfolgt eine nahezu 10fach so hohe N-Aufnahme wie im Alter 100, die im wesentlichen für den Aufbau von Blattorganen, Reisig und Ästen benötigt wird. Der Schaft hat in dieser frühen Altersstufe noch keine Derbholzdimension erreicht. In der zweiten Dekade wird zusätzlicher Stickstoff für den Aufbau von Derbrinde und Derbholz festgelegt. In den folgenden Dekaden geht die Netto-N-Aufnahme zur Bildung von zusätzlichen Nadel-, Reisig- und Derbrindenvorräten zurück.

Nach der Kulmination des laufenden Derbholzzuwachses, die je nach Baumart und Wuchsleistung zu unterschiedlichen Bestandesaltern eintritt, sinkt auch der zusätzliche Stickstoffbedarf für den Aufbau von Derbholz wieder.

Bei der Fichte beträgt die unterirdische Biomasse etwa 1/5 der oberirdischen Biomasse (Tab.11). Für die Grobwurzeln in der unterirdischen Biomasse wird ein ähnlicher Wachstumsgang wie für das Derbholz und die Derbrinde in der oberirdischen unterstellt (KREUTZER, 1976, LE GOFF & OTTORINI, 2001). Die Feinwurzelmasse unterliegt einem Gleichgewicht zwischen Aufbau und Abbau (LAMERSDORF, 1988).

6.2 Schwermetalle

Ein weiteres Ziel dieser Studie ist es, für die Berechnung der Critical Loads von Schwermetalle eine Datenbasis aufzustellen. Bisher wurden in diesem Zusammenhang von DE VRIES & BAKKER (1998) baumartenunabhängige Rahmenwerte für Schwermetallgehalte im 'Derbholz mit Rinde' (Stammholz) auf relativ unbelasteten Standorten zugrunde gelegt. (Tab. 15). Die vorliegende Studie liefert Gehalte für Schwermetalle im 'Derbholz' und in der 'Derbrinde'. Hierbei wurden je Baumart und Kompartiment bei den Elementen Zn, Pb, Cd, und Cu zwischen 6 und 25 Standorte erfasst. Es ergaben sich bei Zn und Cd beträchtliche Unterschiede zwischen den Baumarten.

Tab. 15: Gewogene mittlere Schwermetallgehalte [mg kg⁻¹] für das Kompartiment 'Derbholz mit Rinde' und ein Vergleich mit den Rahmenwerten von DE VRIES & BAKKER (1998).

	Rindenanteil am Stamm*	Zn	Pb	Cd	Cu	Ni	Cr					
	%		Gehalte [mg kg ⁻¹]									
Eiche	12,5	5,3	3,0	0,13	2,2	1,6	0,7					
Buche	5,8	11	1,5	0,15	1,8	1,3	0,5					
Fichte	8,8	31	1,3	0,36	1,7	1,2	0,4					
Kiefer	10,7 25 1,8 1,31		1,4	1,8	0,4							
	Rahmenwerte aus DE VRIES & BAKKER (1998) [mg kg ⁻¹]											
		5 – 40	1 - 10	0,1 - 0,5	1 – 10	0,2 - 2	0,2 - 1					

^{*} Für einen Vergleich wurden die Schwermetallgehalte für das Kompartiment `Derbholz mit Rinde' hergeleitet. Dazu wurden die gewogenen Gehalte (Mediane) mit Hilfe der durchschnittlichen Rindenanteile (Tab. 11) berechnet (Anlage 8.1).

Die in dieser Studie ermittelten Schwermetallgehalte (Mediane) im Kompartiment 'Derbholz mit Rinde' bewegen sich, mit Ausnahme von Cadmium bei der Kiefer, in dem von DE VRIES & BAKKER (1998) genannten Rahmen.

Die Gehalte von Schwermetallen in der Biomasse eines Waldbestandes unterliegen einer höheren Variabilität als die der Makroelemente. Die Variationskoeffizienten der Schwermetallgehalte im 'Derbholz' und in der 'Derbrinde' bewegen sich zwischen 30 und 240 %. Die Variabilität der Schwermetallgehalte in der Biomasse wird vor allem auf eine unterschiedliche atmogene Belastung und eine unterschiedliche geogene Ausstattung der Standorte zurückgeführt.

BERGKVIST et al. (1989) zeigen, dass die Aufnahme von Schwermetallen in die Biomasse mit der Gesamtdeposition korreliert ist. Die Beziehung der Gesamtdeposition zur Netto-Aufnahme ist besonders eng bei den Schwermetallen Cu, Ni und Cr sowie etwas weniger eng beim Pb. Keine Zusammenhänge bestehen zwischen der Gesamtdeposition und der Netto-Aufnahme bei Cd und Zn.

Insbesondere die Pflanzenverfügbarkeit von Schwermetallen und damit die Wurzelaufnahme wird stark von den Bodenbedingungen bestimmt (TRÜBY, 1994). Eine Übersicht über die Verfügbarkeit von Schwermetallen in Waldböden geben MAYER (1981), HERMS & BRÜMMER (1984), SCHULTZ (1987) sowie DE VRIES & BAKKER (1998). Demnach ist die Pflanzenverfügbarkeit der Schwermetalle besonders vom pH-Wert abhängig, sie steigt mit abnehmenden pH-Werten.

Die hier vorliegende Datenbasis ist jedoch zu schmal, um Schwermetallgehalte in Baumkompartimenten nach Bodeneigenschaften zu stratifizieren. Lediglich bei der Buche konnten auf carbonathaltigen Standorten deutlich niedrigere Zn-Gehalte im 'Derbholz' als auf den übrigen Standorten ermittelt werden.

7. Verzeichnisse

7.1 Verzeichnis der Tabellen

Tab.	1-8:	Mittelwert (Mittel), Standardabweichung (s), Variationskoeffizienten (Vk%) und	
		Anzahl der berücksichtigten Studien der Gehalte von Makro-Nährelementen [mg	
		g ⁻¹] und der Biomasse (Trockenmasse) [t ha ⁻¹]	_
		erbholz	
		erbrinde	
		erbholz mit Rinde	
		eisig und Äste	
		adeln und Blätter	
		berirdische Biomasse	
		robwurzeln	
Tab.	8: F	einwurzeln	16
Tab.	9:	N-Gehalte im `Derbholz´ bzw. `Derbholz mit Rinde´ der Fichte [mg g $^{-1}$] in Abhängigkeit von der Niederschlagshöhe [N_{Jahr}] bzw. der Höhenlage [m NN]	
Tab.	10:	Ca-Gehalte [mg g $^{-1}$] in den Kompartimenten 'Derbholz', 'Derbrinde' und 'Derbholz mit Rinde' der Buche auf unterschiedlichen Standortgruppen (\emptyset = Mittelwert, n = Anzahl Untersuchungen)	
Tab.	11:	Die Anteile [%] der Kompartimente an der oberirdischen Biomasse und die Verhältnisse der Wurzeln zur oberirdischen Biomasse (\emptyset = Mittlerer Anteil [%], s = Standardabweichung [%], n = Anzahl der Untersuchungen)	
Tab.	12:	Mittelwert (Mittel), Median, Standardabweichung (s), Variationskoeffizienten (Vk%), Anzahl der Untersuchungen (n) sowie der Maximalwert (Max) der Gehalte von Schwermetallen [mg kg ⁻¹] im Derbholz von Waldbäumen	
Tab.	13:	Mittelwert (Mittel), Median, Standardabweichung (s), Variationskoeffizienten (Vk%), Anzahl der Untersuchungen (n) sowie der Maximalwert (Max) der Gehalte von Schwermetallen [mg kg ⁻¹] in der Derbrinde von Waldbäumen	
Tab.	14:	Einflussfaktoren auf die Variabilität der Nährelementgehalte (Signifikanzniveau $p \le 0,05$ bzw. $p \le 0,01$, s. Anlage 8.2, 8.3)	
Tab.	15:	Gewogene mittlere Schwermetallgehalte [mg kg ⁻¹] für das Kompartiment 'Derbholz mit Rinde' und ein Vergleich mit den Rahmenwerten von DE VRIES & BAKKER (1998)	

7.2 Verzeichnis der Abbildungen

Abb. 1:	P-, K- und Mg-Gehalte im `Derbholz' der Kiefer [mg g ⁻¹] in Abhängigkeit vom Bestandesalter	
Abb. 2:	Elementgehalte in der oberirdischen Biomasse [mg g ⁻¹] in Abhängigkeit vom Bestandesalter Beispiel Fichte	
Abb. 3:	P-, K- und Mg-Gehalte im `Derbholz' der Kiefer [mg g ⁻¹] in Abhängigkeit vom Jahr der Untersuchung	
Abb. 4:	Änderung der Verteilung der Biomasse-Kompartimente [%] auf die `Oberirdische Biomasse' in Abhängigkeit vom Bestandesalter, Beispiel Fichte	25
Abb. 5:	N-Festlegung [kg ha ⁻¹ a ⁻¹] in oberirdische Baumkompartimente, Beispiel Fichte.	34

7.3 Literatur

- **Akca, A. und Kramer, H.** (1982): Leitfaden für Dendrometrie und Bestandesinventur. J. D. Sauerländer's Verlag Frankfurt am Main, 251 S.
- **Alban, D.H.** (1979): Species influence on nutrients in vegetation and soils. In: Proc. Impact of intensive harvesting on forest nutrient cycling. College of Environmental Science and Forestry, SUNY, Syracuse, N.Y., USA: 152-171.
- **Alriksson, A. und Eriksson, H. M.** (1998): Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. Forest Ecology and Management 108: 261-273.
- Augusto, L., Ranger, J., Ponette, Q. und Rapp, M. (2000): Relationships between forest tree species, stand production and stand nutrient amount. Ann. For. Sci 57: 313-324.
- **Barnes, D., Hamadah, M. A. und Ottaway, J. M.** (1976): The lead, copper and zinc content of tree rings and bark. Science of the Total Environment 5: 63-67.
- Becker, R., Block, J., Schimming, C.-G., Spranger, T. und Wellbrock, N. (2000): Critical Loads für Waldökosysteme Methoden und Ergebnisse für Standorte des Level II Programms. Arbeitskreis A der BL-AG Level II, BML, 71 S.
- **Becker, R.** (2002): Biomassen und deren Stoffgehalte wesentliche Eingangsdaten für die Berechnung von Critical Loads und für die dynamische Modellierung des Stoffhaushaltes. In: Forstl. Forschungsber. München 186: 124-128.
- Belkacem, S., Nys, C. und Gelhaye, D. (1992): Effets d'une fertilisation et d'un amendement sur l'immobilisation d'elements dans la biomasse d'un peuplement adulte d'epicea commun (Picea abies L. Karst). Ann. Sci. For. 49: 235-252.
- **Bergkvist, B., Folkeson, L. und Berggren, D.** (1989): Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. Water, Air, and Soil Pollution 47: 217-286.
- **Bigger, C.M. und Cole, D.W.** (1983): Effects of harvesting intensity on nutrient losses and future productivity in high and low productivity Red alder and Douglas fir stands. In: Ballard, R., Gessel, S. (Eds.) IUFRO Symposium on forest site and continuous productivity. USDA Forest Service Gen. Tech.Rep. PNW-163: 215-227.
- **Block, J.** (1993): Verteilung und Verlagerung von Radiocäsium in zwei Waldökosystemen in Rheinland-Pfalz insbesondere nach Kalk- und Kaliumdüngungen. ISSN 0931-9662.
- **Bolte, A. und Wolff, B.** (2001): Validierung von Critical Load-Überschreitungen mit Indikatoren des aktuellen Wirkungsgeschehens. Abschlussbericht zum UBA-Forschungsprojekt FKZ 298 43 209.
- **Bredemeier, M.** (1987): Stoffbilanzen, interne Protonenproduktion und Gesamtsäurebelastung des Bodens in verschiedenen Waldökosystemen Norddeutschlands. Ber. Forschungszentr. Waldökosysteme/Waldsterben, Reihe A, Bd. 33, 183 S.
- **Bringmark**, L. (1977): A bioelement budget of an old Scots pine forest in Central Sweden. Silva Fennica 11: 201-209.
- **Burger, H.** (1941): Blattmenge und Zuwachs, Fichten und Föhren verschiedener Herkunft. Mitt. D. Schweiz. Forstl. Vers. Anst., Bd. 25.
- **Burger, H.** (1953): Holz, Blattmenge und Zuwachs. Fichten im gleichaltrigen Hochwald. Mitt. D. Schweiz. Forstl. Vers. Anst., Bd. 26 H.1.

- **Burger, H.** (1953): Holz, Blattmenge und Zuwachs. Die Buche. Mitt. D. Schweiz. Forstl. Vers. Anst., Bd. 26 H.2.
- **de Vries, W. und Bakker, D.J.** (1998): Manual for calculating critical loads of heavy metals for terrestrial ecosystems. Guidelines for critical limits, calculation methods and input data. DLO Winand Staring Centre, Wageningen, Report 166: 136 pp.
- **de Vries, W., Hol, A., Tjalma, S. und Voogd, J.C.H.** (1990): Literatuurstudie naar voorraden en verblijftijden van elementen in bosecosytemen. Rapport 94, Winand Staring Centrum Wageningen, 204 S.
- de Vries, W., Schütze, G., Römkens, P. und Hettelingh, J.P. (2002): Guidance for the calculation of critical loads for cadmium and lead in terrestrial and aquatic ecosystems. In: J.P. Hettelingh, J. Slootweg, M. Posch, S. Dutchak & I. Ilyin (eds.), Preliminary modelling and mapping of critical loads for cadmium and lead in Europe. Bilthoven, RIVM, 2002. Report 259101011/2002, 17-35.
- **Dietrich, H.-P., Raspe, S., Schwarzmeier, M. und Ilg, S.** (2002): Biomasse- und Nährstoffinventuren von Ernteentzügen an drei bayerischen Fichtenstandorten. In: Forstl. Forschungsber. München 186: 59-72.
- **Duvigneaud, P. und Denauyer-Dessmet, S.** (1970): Biological cycling of minerals in temperate deciduous forests. In: Reichle, D. (ed.) Analysis of temperate forest ecosystems. Ecol. Stud. 1: 199-225.
- **Ebermayer, E.** (1876): Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaus. Springer Verlag Berlin, 416 S.
- Ellenberg, H., Mayer, R. und Schauermann, J. (Hrsg.) (1986): Ökosystemforschung, Ergebnisse des Sollingprojektes 1966 1986. Verlag E. Ulmer, Stuttgart 507 S.
- Erikson, H. M. und Rosen, K. (1994): Nutrient distribution in a Swedish tree species experiment. Plant and Soil 164: 51-59.
- **Faensen-Thiebes, A., Schenk, B., Markan, K. und Cornelius, R.** (1996): Mineral- und Biomassen in zwei Kiefern-Eichenbeständen und ihre künftige Entwicklung. Verh. Gesellschaft für Ökologie, Bd. 25: 105-114.
- **Fangmeier, A., Steubing, L. und Gnittke, J**. (1986) Analyse der Schadstoffbelastung verschiedener Kompartimente eines Waldökosystems. Verh. Gesellschaft für Ökologie (Hohenheim 1984) Bd. XIV: 269-278.
- Feger, K. H., Raspe, S., Schmid, M. und Zöttl, H. W. (1991): Verteilung der Elementvorräte in einem schlechtwüchsigen 100jährigen Fichtenbestand auf Buntsandstein. Forstw. Cbl. 110: 248-262.
- **Fiedler, H. J., Nebe, W. und Hofmann, W.** (1973): Forstliche Pflanzenernährung und Düngung. VEB Fischer-Verlag, Jena.
- **Fornes, R., Berglund, J. V. und Leaf, A. l.** (1979): A comparison of the growth and nutrition of Picea abies (L.) Karst and Pinus resinosa AIT. on a K-deficient site subjected to K-fertilization. Plant and Soil 33: 345-360.
- **Gehrmann, J.** (2002, unveröffentlicht): Makronährelemente und Schwermetalle in Biomassekompartimenten auf Flächen des Level II Umweltmonitoringprogramms Level II in Nordrhein-Westfalen.
- **Glavac, V., Koenies, H. und Ebben, U.** (1990): Seasonal variation and axial distribution of Cadmium concentrations in trunk xylem sap of Beech trees (Fagus sylvatica L.). Angew. Botanik 64: 357-364.

- **Hagemeyer, J. und Breckle, S.-W.** (1986): Cadmium in Jahrringen von Eichen: Untersuchungen zur Aufstellung einer Chronologie der Immissionen. Angew. Botanik 60: 161-174.
- **Hampp, R. und Höll, W.** (1974): Radial and axial gradients of lead concentration in bark and xylem of hardwoods. Archives of Environmental Contaminations and Toxicology 2: 143-150.
- **Heilman, P.E. und Geissel, S.P.** (1963): The effect of nitrogen fertilization on the concentration and weight of Nitrogen, Phosphorus, and Potassium in Douglas fir trees. Soil Sci. Soc. Am. Proc. 27: 102-105.
- Mayer, R. und Heinrichs, H. (1981): Gehalte von Baumwurzeln an chemischen Elementen einschließlich Schwermetallen aus Lufverunreinigungen. Z. Pflanzenernähr. Bodenk. 144: 637-646.
- Heinrichs, H., N. König und R. Schultz (1985): Atom-Absorptions- und Emissionsspektroskopische Bestimmungsmethoden für Haupt- und Spurenelemente in Probelösungen aus Waldökosystemuntersuchungen. Ber. Forschungszentr. Waldökosysteme/Waldsterben, Bd.8.
- Heinrichs, H., H.-J. Brumsack, N. Loftfield und N. König (1986): Verbessertes Druckaufschlußsystem für biologische und anorganische Materialien. Z. Pflanzenernähr. Bodenk. 149, 350–353.
- Heinsdorf, D. und Krauß, H.-H. (1990): Schätztafeln für Trockenmasse und Nährstoffspeicherung von Kiefernbeständen. IFE-Berichte aus Forschung und Entwicklung 18, 77 S.
- **Heitz, R.** (2002): Baumbiomasse als Bilanzgröße im N-Haushalt: Fallstudie Waldumbau. In: Forstl. Forschungsber. München 186: 102-108.
- **Herms, K. und Brümmer, G.** (1984): Einflußgrößen der Schwermetalllöslichkeit und Bindung. Z. Pflanzenernähr.. Bodenk. 147: 400-424.
- Herrmann, R., Neuland, H. und Buss, G. (1978): Zur Geschichte der Spurenmetallverunreinigung der Luft: eine Zeitreihenanalyse der Metallgehalte in Baumringen. Staub Reinhalt. Luft 38, 9: 366-369.
- **Hochbichler, E., Putzgruber, N. und Krapfenbauer, A.** (1994): Biomassen- und Nährstoffuntersuchungen in einem 40jährigen Buchenbestand (Fagus sylvatica L.). Centralblatt für das Gesamte Forstwesen 1: 1-22.
- **Hochbichler, E.** (2002): Vorläufige Ergebnisse von Biomasseinventuren in Buchen- und Mittelwaldbeständen. In: Forstl. Forschungsber. München 186: 37-46.
- Hofmann, F., Schlechtriemen, U., Wosniok, W., Siemers, U., Bracke, G., Giesemann, A. und Duve, M. (2001): Luftgüte-Rindenmonitoring: Ein neues Probenahmegrät und Verfahren zum Biomonitoring von Luftschadstofen für akkumulierbare Substanzen mit der Möglichkeit des Fingerprintings von Emissionsquellen. Landsberg, Ecomed, 156 S.
- **Hüttl, R.F.** (1991): Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika. Freiburger Bodenkundliche Abhandlungen 28, 440 S.
- **Ingerslev, M. und Hallbäcken, L.** (1999): Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management 119: 21-38

- **Kardell, L. und Larsson, J.** (1978): Lead and cadmium in oak tree rings (Quercus robur L.) Ambio 7: 117-121.
- **Kimmins, J.P., Binkley, L., Chatarpaul und De Catanzaro, J.** (1985): Biogeochemistry of temperate forest ecosystems. Literature on inventories and dynamics of biomass and nutrients. Petawawa National Forestry Institute, Canada. Information Report PI-X-47E/F, 227 S.
- Klap, J. M., Reinds, G. J., Bleeker, A. und DeVreis, W. (2000): Environmental stress in German forests: Assessment of critical deposition levels and their exceedances and meteorological stress for crown monitoring sites in Germany. Alterra-Rapport 134, 74 S.
- **Kreutzer, K.** (1976): Effect on growth in next rotation (regeneration). In ILO Symposium on the Harvesting of a Larger Part of the Forest Biomass: 78-90
- Kreutzer, K. (1979): Ökologische Fragen zur Vollbaumernte. Forstw. Cbl. 98: 298-308.
- **Kreutzer, K.** (2002): Historische Aspekte von Biomasseerhebungen und Elementinventuren. In: Forstl. Forschungsber. München 186: 9-18.
- **Lamersdorf, N.** (1988): Verteilung und Akkumulation von Spurenstoffen in Waldökosystemen. Berichte des Forschungszentrums Waldökosysteme/ Waldsterben, Reihe A, Bd. 36, 205 S.
- Le Goaster, S., Dambrine, E. und Ranger, J. (1991): Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. I Evolution de la biomasse et dynamique d'incorporation d'éléments mineraux. Acta Oecologica 12: 771-789.
- Le Goaster, S., Dambrine, E. und Ranger, J. (1991): Mineral supply of healthy and declining trees of a young spruce stand. Water, Air, and Soil Pollution 54: 269-280
- **Le Goff, N. und Ottorini, J.-M.** (2001): Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann. For. Sci. 58, 1-13.
- **Mälkönen, E.** (1976): The effect of fuller biomass harvesting on soil fertility. In ILO Symposium on the Harvesting of a Larger Part of the Forest Biomass: 67-75
- **Markan, K.** (1993): Biomasse und Elementgehalte von Berliner Eichen auf grundwasserfernen Sandstandorten. In Eichensterben ein Problem in Berlin? Arbeitsmaterialien der Berliner Forsten 2: 61-70.
- **Marklund, L.G.** (1987): Biomass functions for Norway spruce (Picea abies (L.) Karst) in Sweden. Dept. Forest Surrey, Swedish Univ. Agrl. Sci. Umeá, Rep 43, 127 S.
- **Mayer, R.** (1981): Natürliche und anthropogene Komponenten des Schwermetallhaushalts von Waldökosystemen. Göttinger Bodenkundliche Berichte 70, 292 S.
- **Meiwes, K.-J. und Beese, F.** (1988): Ergebnisse der Untersuchung des Stoffhaushaltes eines Buchenwaldökosystems auf Kalkgestein. Ber. Forschungszentr. Waldökosysteme, Reihe B, Bd. 9: 1-141.
- Meiwes, K.-J., Heinrichs, H. und König, N. (1988): Untersuchung zum Haushalt der Schwermetalle und weiterer ausgewählter Elemente in einem Buchenwaldökosystem auf Kalkgestein. Ber. Forschungszentr. Waldökosysteme, Reihe B, Bd. 9: 143-178.
- Miller, H. G., Miller, J. D. und Pauline, O. J. L. (1976): Effect of nitrogen supply on nutrient uptake in Corsican pine. The Macaulay Institute for Soil Research, Aberdeen. S. 955-966.

- Mindrup, M., Meiwes, K.J. und Khanna, P. K. (2001): Long-term nutrient dynamics of a spruce stand fertilised periodically for more than 50 years. In: W. J. Horst et al. (Eds.) Plant nutrition Food security and sustainability of agro-ecosystem. 908-909. Kluwer Academic Publishers, Netherlands.
- Mitchell, A. K., Barclay, H. J., Brix, H., Pollard, D. F. W., Benton, R. und de Jong, R. (1996): Biomass and nutrient element dynamics in Douglas-fir: effects of thinning and nitrogen fertilisation over 18 years. Can. J. For. Res. 26: 376-388.
- Nagel, H.-D. und Gregor, H.-D (1999): (Hrsg.) Ökologische Belastungsgrenzen Critical Loads & Levels. Ein internationales Konzept für die Luftreinhaltepolitik. Springer-Verlag.
- Nebe, W. und Herrmann, U.J. (1987): Das Ökologische Messfeld der Sektion Forstwirtschaft der TU Dresden. VI. Zur Verteilung der Nährelemente in der oberirdischen Drendromasse eines 100jährigen Fichtenbaumholzes. Wiss. Z. Techn. Univers. Dresden 36: 235-241.
- Neirynck, J., Maddelein, D., De Keermaeker, L., Lust, N. und Muys, B. (1997): Biomass and nutrient cycling of a highly productive Corsican pine stand on former heathland in Northern Belgium. Ann. Sci. For. 55: 389-405.
- **Nihlgard, B.** (1972): Plant biomass, primary production and distribution of chemical elements in a Beech and a planted Spruce forest in South Sweden. Copenhagen, Oikos 23: 69-81.
- **Nihlgard, B. und Lindgren, L.** (1977): Plant biomass, primary production and bioelements of three mature beech forest in South Sweden. Oikos 28: 95-104.
- **NRI Natural Resources Institute** (1995): Results of Inter-Laboratory Sample Exchange. IUFRO Working Group Soil and Plant Tissue Analysis. Chatham, Kent, UK
- Nys, C., Ranger, D. und Ranger J. (1983): Etude comparative de deux ecosystemes foretiers feuillus et resineux des Ardennes primaires françaises. III. Mineralmasse et cycle biologique. Ann. Sci. For. 40: 41-66.
- Oren, R., Schulze, E.-D., Werk, K.S. und Meyer, J. (1988): Performance of two Picea abies (L.) Karst. Stands at different stages of decline. VII. Nutrient relations and growth. Oecologia 77: 163-173.
- **Ovington, J.D. und Madgwick, H. A. I.** (1959): Distribution of organic matter and plant nutrients in a plantation of Scots pine. Forest Science 5: 344-355.
- **Ovington, J.D.** (1962): Quantitative ecology and the woodland ecosystem concept. Adv. Ecol. Res 1:103-192.
- **Pavlov, M. B.** (1972): Bioelement-Inventur von Buchen- und Fichtenbeständen im Solling. Gött. Bodenkundl. Ber. 25. 174 S.
- **Pellinen, P.** (1986): Biomasseuntersuchungen im Kalkbuchenwald. Diss. Universität Göttingen.
- **Popovic, B.** (1991): Bioelement content and biomass in Scots pine: Effect of acidification and liming. Water, Air, and Soil Pollution 54: 423-433.
- **Pretzsch, H.** (1996): Growth trends of forests in Southern Germany. In: Spiecker, H., Mielikäinen, K., Köhl, M and Skovsgaard, J. P. (eds.): Growth trends in European Forests. European Forest Institute Report 5. Springer Verlag Berlin Pp. 107-131.

- **Queirolo, F. und Valenta, P.** (1987): Trace determination of Cd, Cu, Pb, and Zn in annual growth rings by differential pulse anodic stripping voltametry. Fresenius Z. Anal. Chem. 328: 93-98.
- Queirolo, F., Valenta, P., Stegen, S. und Breckle, S.-W. (1990): Heavy metal concentrations in Oak wood growth rings from the Taunus (Federal Republik of Germany) and the Valdivia (Chile) regions. Trees 4: 81-87.
- **Rademacher, P.** (1986): Morphologische und physiologische Eigenschaften von Fichten (Picea abies (L.) Karst.), Tannen (Abies alba Mill.), Kiefern (Pinus sylvestris L.) und Buchen (Fagus sylvatica L.) gesunder und erkrankter Waldstandorte. GKSS-Forschungszentrum Geesthacht 86/E/10, 274 S.
- **Rademacher, P.** (1994): Qualitative und quantitative Erfassung der Stoffflüsse und der Elementvorräte in Waldbäumen und deren Umwelt. Ber. Forschungszentr. Waldökosysteme, Reihe B, Bd. 37: 161-171.
- **Rademacher, P.** (2001): Atmospheric heavy metals and forest ecosystems. UN-ECE; BFH, 75 S.
- Rademacher, P. (2002): Ermittlung der Ernährungssituation, der Biomasseproduktion und der Nährelementakkumulation mit Hilfe von Inventurverfahren sowie Quantifizierung der Entzugsgrößen auf Umtriebsebene in forstlich genutzten Beständen. Habilitationsschrift am Forstlichen Fachbereich der Universität Göttingen, 271 S.
- Rademacher, P., Buß, B. und Müller-Using, B. (1999): Waldbau und Nährstoffmanagement als integrierte Aufgabe in der Kiefern-Waldwirtschaft auf ärmeren pleistozänen Sanden. Forst und Holz 54: 330-335.
- Rademacher, P., Meesenburg, H. und Müller-Using, B. (2001): Nährstoffkreisläufe in einem Eichenwald-Ökosystem des Norddeutschen Pleistozäns. Forstarchiv 71: 43-54.
- Rademacher, P., Meesenburg, H. und Meiwes, K.J. (2002): Ermittlung der Ernährungssituation, der Biomasseproduktion und der Nährelementakkumulation mit Hilfe von Inventurverfahren sowie Quantifizierung der Entzugsgrößen auf Umtriebsebene in forstlich genutzten Beständen. In: Forstl. Forschungsber. München 186: 21-36.
- **Rademacher, P. und Müller-Using, B.** (1998): Bioelemententzug bei der Holznutzung in Rein- und Mischbeständen aus Buche und Fichte. Genehmigter Antrag im BMB+F-Vorhaben ÖK-2.3.3: Indikatoren und Strategien für eine nachhaltige, multifunktionelleWaldnutzung. Fallstudie Waldlandschaft Solling, 112-129.
- Rademacher, P., Ulrich, B. und Michaelis, W. (1992): Bilanzierung der Elementvorräte und Elementflüsse innerhalb der Ökosystemkompartimente Krone, Stamm, Wurzel und Boden eines belasteten Fichtenbestandes am Standort Postturm. In: GKSS, Luftverunreinigungen und Waldschäden am Standort Postturm, Fostamt Farchau/Ratzeburg. Forschungszentrum Geesthacht GMBH.
- **Raisch, W.** (1983): Bioelementverteilung in Fichtenökosystemen der Bärhalde (Südschwarzwald). Freiburger Bodenkundliche Abhandlungen 11, 239 S.
- Ranger, J., Cuirin, G., Bouchon, J., Colin, M., Gelhaye, D. und Ahamed, M. D. (1992): Biomasse et mineralomasse d'une plantation d'epicea commun (Picea abies Karst) de forte production dans les Vosges (France). Ann. Sci. For. 49: 651-668.
- Ranger, J., Marques, R., Colin-Belgrand, M., Flammang, N. und Gelhaye, D. (1995): The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga

- menziesii Franco) stand studied using a chronosequence approach. Forest Ecology and Management 72: 167-183.
- **Rehfuess, K. E.** (1983): Ernährungsstörungen als Ursache der Walderkrankungen? Kali-Briefe 16: 549-563.
- **Rennie, P.J.** (1955): The uptake of nutrients by mature forest growth. Plant and Soil VII: 49-95.
- **Riek, W. und Wolff, B.** (1998a): Verbreitung von Nährstoffmangel bei Waldbäumen in Deutschland. AFZ/Der Wald 10: 507-510.
- **Riek, W. und Wolff, B.** (1998b): Magnesiumversorgung von Fichtenbeständen im Ursachenkomplex "neuartiger Waldschäden" Forst und Holz 15: 471-476.
- **Riek, W. und Dietrich, H.-P.** (2000): Ernährungszustand der Hauptbaumarten an den deutschen Level II Standorten. Forstarchiv 71: 65-69.
- **Schimpff, E.** (1980): Zur zeitlichen und räumlichen Belastung des Fichtelgebirges mit Spurenmetallen: Analysen von Baumringabschnitten und von Schnee. Natur und Landschaft, Heft 12: 460-462
- **Schmidt, M.** (1987): Atmosphärischer Eintrag und interner Umsatz von Schwermetallen in Waldökosystemen. Ber. Forschungszentr. Waldökosysteme/Waldsterben A, Bd.34, 174 S.
- **Schultz, R.** (1988): Vergleichende Betrachtung des Schwermetallhaushalts verschiedener Waldökosysteme Norddeutschlands. Ber. Forschungszentr. Waldökosysteme/Waldsterben, Reihe A, Bd. 32, 217 S.
- Schultz, R., Lamersdorf, N., Heinrichs, H., Mayer, R. und Ulrich, B. (1987): Raten der Deposition, der Vorratsänderungen und des Austrages einiger Spurenstoffe in Waldökosystemen. Ber. Forschungszentr. Waldökosysteme/Waldsterben, Reihe B, Bd. 7, 129 S.
- **Seibt, G. und Wittich, W.** (1965): Ergebnisse langfristiger Düngungsversuche im Gebiet des nordwestdeutschen Dilluviums und ihre Folgerungen für die Praxis. Schriftenreihe der Forstlichen Fakultät der Universität Göttingen / Mitteilungen der Niedersächsischen Forstlichen Versuchsanstalt 27/28: 156 S.
- Steiner, A., Bolte, A., Schneider, B.U. und Hüttl, R.F. (1998): Phytomasse- und Nährelementvorräte unterschiedlich stickstoffbeeinflußter Kiefernbestände (Pinus sylvestris L.) des nordostdeutschen Tieflandes. Verh. Gesellschaft für Ökologie 28: 421-427.
- **Symeonides, C.** (1979): Tree-ring analysis for tracing the history of pollution: Application to a study in Northern Sweden. J. Environ. Qual. 8: 482-486.
- **Trüby, P.** (1988): Bleiverteilungen in Waldbäumen unterschiedlich belasteter Standorte. Angew. Botanik 62: 93-104.
- **Trüby, P.** (1994): Zum Schwermetallhaushalt von Waldbäumen. Freiburger Bodenkundliche Abhandlungen 33, 286 S.
- **Trüby, P. und Zöttl, H.W.** (1987): Atmogene und geogene Komponenten im Schwermetallhaushalt von Waldbäumen. KfK, PEF-Berichte, Karlsruhe, Bd. 2: 333-345.
- **Ulrich, B.** (1972): Betriebswirtschaftliche Konsequenzen von Eingriffen in den Nährstoffhaushalt von Wald-Ökosystemen. Forstarchiv 43: 129-132.
- **Ulrich, B., Mayer, R. und Sommer, U.** (1975): Rückwirkungen der Wirtschaftsführung über den Nährstoffhaushalt auf die Leistungsfähigkeit der Standorte. Forstarchiv 46: 5-8.

- **Ulrich, B., Mayer, R. und Matzner, E.** (1986): Vorräte und Flüsse der chemischen Elemente. In: Ökosystemforschung, Ergebnisse des Sollingprojektes 1966-1986. Hrsg. Ellenberg, H., Mayer, R. und Schauermann, J. Verlag Eugen Ulmer 505 S.
- Van den Burgh, J. (1985): Foliar analysis for determination of tree nutrient status a compilation of literature data. Rijksinstitut voor Onderzoek in de Bos en Landshapsbouw, Wageningen, Rapp. 414, 615 S.
- Van den Burgh, J. (1990): Foliar analysis for determination of tree nutrient status a compilation of literature data 2, Literature 1985-1990. Institute of Forestry and Ecology, Wageningen, Rapp. 591, 220 S.
- **Webber, B. D.** (1977): Biomass and nutrient distribution patterns in a young Pseudotsuga menziesii ecosystem. Can. J. For. Res. 7: 326-334.
- **Wehrmann, J.** (1959): Methodische Untersuchungen zur Durchführung von Nadelanalysen in Kiefernbeständen. Forstw. Cbl. 17: 77-92.
- Weiner, J. und Grodzinski, W. (1984): Energy, nutrient, and pollutant budgets of the forest ecosystem. In: Grodzinski, W., Weiner, J. und Maycock, P.F. (eds.): Forests ecosystems in industrial regions. Springer Verlag, 229 S.
- Weis, W. und Göttlein, A. (2002): Vergleich von Biomasse, Elementgehalten und Elementvorräten von Fichte (Picea abies (L.) Karst.) und Buche (Fagus sylvatica L.) am Standort Höglwald zu Zeiten der Vegetationsruhe. In: Fostliche Forschungsberichte München 186: 163-167.
- Wickern, M. und Breckle, S.-W. (1983): Blei im Eichenholz vom Autobahnrand. Ber. Deutsch. Bot. Ges. Bd. 96: 343-350.
- **Wiedemann, H.** (1986): Untersuchungen von Schwermetallgehalten in Feinwurzeln von Waldbäumen. Dipl.-Arb. Geobot. Inst. Universität Göttingen.
- Wright, T.W. und Will, G.M. (1958): The nutrient content of Scotch and Corsican pines growing on sand dunes. J. For. 31: 13-25.

8. Anlagen

8.1 Verteilung der Biomasse auf Baumkompartimente

Anteil der Baumkompartimente an der oberirdischen Biomasse (\varnothing Anteil [%]), Standardabweichung (s), Anzahl (n), Ausgleichsfunktionen zum Bestandesalter (Δ (Alter), x = Jahre), Bestimmtheitsmaß (R^2) und Signifikanz (p).

Baumart	Ø Anteil [%]	s	n	Δ (Alter)	R ²	p
			Derbho	lz ohne Rinde	П	1
Eiche	68,9	11,2	6	Nicht signifikant		
Buche	76,3	5,9	11	0,131 x + 62,60	0,381	≤0,05
Fichte	67,9	13,5	28	18,121 Ln(x) – 5,96	0,583	≤0,001
Kiefer	70,9	13,6	15	13,219 Ln(x) + 17,78	0,387	≤0,05
			D	erbrinde	•	•
Eiche	9,6	1,4	6	Nicht signifikant		
Buche	4,7	1,2	11	Nicht signifikant		
Fichte	6,7	1,4	28	Nicht signifikant		
Kiefer	8,3	2,1	15	$-1,8429 \ln(x) + 15,65$	0,215	≤0,1
			Reis	ig und Äste		
Eiche	18,8	10,3	6	Nicht signifikant		
Buche	17,5	5,3	11	-0.1132 x + 29.677	0,291	≤0,1
Fichte	16,7	8,3	31	$-10,162 \ln(x) + 57,71$	0,481	≤0,001
Kiefer	18,0	12,1	15	$-9,6486 \ln(x) + 55,26$	0,260	≤0,05
			Na	del / Blatt	•	•
Eiche	2,9	1,9	6	$-3,237 \ln(x) + 17,52$	0,768	≤0,05
Buche	1,7	1,2	10	-0.0188 x + 3.51	0,29	≤0,1
Fichte	9,4	6,5	30	$-8,5431 \ln(x) + 44,03$	0,549	≤0,001
Kiefer	4,9	2,4	17	$-2,2016 \ln(x) + 13,32$	0,323	≤0,05
			Derbh	olz mit Rinde		
Eiche	78,7	11,0	6	Nicht signifikant		
Buche	79,8	6,7	11	0,1317 + 67,01	0,36	≤0,05
Fichte	74,2	13,4	31	18,013 Ln(x) + 1,49	0,576	≤0,001
Kiefer	78,0	12,8	17	$11,848 \operatorname{Ln}(x) + 31,43$	0,315	≤0,05
	Anteil von I	Derbrin	de am K	ompartiment Derbholz mit	Rinde	•
Eiche	12,5	3,2	6	Nicht signifikant		
Buche	5,8	1,7	11	Nicht signifikant		
Fichte	8,8	3,1	28	- 3,2362 Ln(x) + 22,57	0,355	≤0,01
Kiefer	10,7	2,8	15	Nicht signifikant		

8.2 Regressionsrechnungen zum Einfluss des Bestandesalters auf Elementgehalte

8.21 Elementgehalte in 'Derbholz', 'Derbrinde', 'Derbholz mit Rinde'

Baumart	Kompartiment	Element	n	Beziehung	R ²	p
Eiche	Derbholz	Ca	9	$-0.397 \operatorname{Ln}(x) + 2.29$	0,386	≤0,1
		Mg	9	$-0.1199 \operatorname{Ln}(x) + 0.64$	0,563	≤0,05
Buche	Derbholz	P	15	+0.0625 Ln(x) - 0.18	0,303	≤0,05
	Derbrinde	Ca	16	- 0,4482 Ln(x) + 99,12	0,308	≤0,05
		Mg	16	+0,003 x + 0,31	0,203	≤0,1
	Derbholz mit	P	11	+ 0,0012 x + 0,02	0,453	≤0,05
	Rinde	Ca	11	- 1,8076 Ln(x) + 9,97	0,361	≤0,05
Fichte	Derbholz	P	33	$-0.0336 \operatorname{Ln}(x) + 0.19$	0,149	≤0,05
		K	36	- 0,2266 Ln(x) + 1,38	0,172	≤0,05
		Mg	36	$-0.0358 \operatorname{Ln}(x) + 0.26$	0,189	≤0,01
	Derbrinde	N	29	-0.02 x + 6.47	0,252	≤0,01
		P	35	- 0,2276 Ln(x) + 1,56	0,201	≤0,01
		K	36	-0.0149 x + 3.80	0,137	≤0,05
		Ca	36	+1,7822 Ln(x) + 0,97	0,153	≤0,05
	Derbholz mit	N	29	-0.4622 Ln(x) + 3.09	0,290	≤0,01
	Rinde	P	29	$-0.1165 \operatorname{Ln}(x) + 0.62$	0,317	≤0,01
		K	30	-0.3811 Ln(x) + 2.32	0,253	≤0,01
		Ca	30	$-0.2847 \operatorname{Ln}(x) + 2.56$	0,161	≤0,05
		Mg	30	-0.0492 Ln(x) + 0.38	0,233	≤0,01
Kiefer	Derbholz	P	20	$-0.0259 \operatorname{Ln}(x) + 0.16$	0,370	≤0,01
		K	20	-0.2035 Ln(x) + 1.24	0,5192	≤0,001
		Mg	20	$-0.0586 \operatorname{Ln}(x) + 0.42$	0,206	≤0,05
	Derbrinde	Ca	21	+ 1,5052 Ln(x) - 1,17	0,196	≤0,05
	Derbholz mit	N	16	-0.2723 Ln(x) + 2.16	0,314	≤0,05
	Rinde	P	16	$-0.046 \operatorname{Ln}(x) + 0.29$	0,345	≤0,05
		K	16	- 0,2918 Ln(x) + 1,79	0,425	≤0,01
		Mg	15	-0.0613 Ln(x) + 0.48	0,205	≤0,1
Douglasie	Derbholz	Mg	9	$-0.0496 \operatorname{Ln}(x) + 0.23$	0,580	≤0,05

8.22 Elementgehalte in `Reisig/Äste', `Nadel/Blatt', `oberirdische Biomasse'

Baumart	Kompartiment	Element	n	Beziehung	R ²	p
Eiche	Reisig/Äste	K	6	-0.8505 Ln(x) + 5.96	0,795	≤0,05
Buche	Reisig/Äste	P	11	+0,0042 x + 0,07	0,393	≤0,05
		Mg	11	- 0,0023 x + 0,58	0,273	≤0,1
	Blätter	K	13	-3,6372 Ln(x) + 24,73	0,366	≤0,05
		Ca	13	- 7,9898 Ln(x) + 44,19	0,342	≤0,05
	Oberirdische	K	11	- 0,0032 x + 1,55	0,347	≤0,1
	Biomasse	Ca	11	- 1,9978 Ln(x) + 11,33	0,356	≤0,1
Fichte	Reisig/Äste	P	31	-0.0032 x + 0.86	0,094	≤0,1
		Ca	32	$-0.6146 \operatorname{Ln}(x) + 5.80$	0,109	≤0,1
	Nadeln	P	36	-0.4134 Ln(x) + 2.98	0,228	≤0,01
		K	36	-0.9583 Ln(x) + 9.55 0.10		≤0,1
		Ca	37	- 0,0408 x + 8,60	0,109	≤0,1
	Oberirdische	N	30	$-1,7418 \operatorname{Ln}(x) + 10,01$	0,657	≤0,001
	Biomasse	P	30	$-0.2849 \operatorname{Ln}(x) + 1.49$	0,664	≤0,001
		K	31	-0.9601 Ln(x) + 5.35	0,575	≤0,001
		Ca	31	$-1,1999 \operatorname{Ln}(x) + 7,06$	0,459	≤0,001
		Mg	31	-0.1311 Ln(x) + 0.81	0,451	≤0,001
Kiefer	Oberirdische	N	17	- 0,6994 Ln(x) + 4,85	0,295	≤0,05
	Biomasse	P	17	$-0.0837 \operatorname{Ln}(x) + 0.54$	0,466	≤0,01
		K	17	$-0.5127 \operatorname{Ln}(x) + 3.03$	0,494	≤0,01
		Mg	16	-0.0955 Ln(x) + 0.68	0,470	≤0,01
Douglasie	Oberirdische	N	7	$-1,9139 \ln(x) + 8,92$	0,578	≤0,05
	Biomasse	P	7	- 0,0091 x + 0,66	0,525	≤0,1
		K	7	$-1,1143 \ln(x) + 5,21$	0,737	≤0,05
		Ca	7	$-1,7193 \ln(x) + 7,86$	0,862	≤0,01
		Mg	7	$-0.2355 \ln(x) + 1.07$	0,873	≤0,01

8.3 Regressionsrechnungen zum Einfluss 'Jahr der Untersuchung'

Baumart	Kompartiment	Element	n	Beziehung	\mathbb{R}^2	p
Fichte	Derbholz	P	33	- 0,0022 x + 4,37	0,237	≤0,01
		Mg	36	- 0,0016 x + 3,28	0,142	≤0,05
	Derbrinde	P	35	- 0,0094 x + 19,25	0,145	≤0,05
		K	36	- 0,0473 x + 96,87	0,176	≤0,05
	Derbholz m. R.	K	30	- 0,0118 x + 24,31	0,095	≤0,1
		Mg	30	- 0,0027 x + 5,63	0,272	≤0,01
Kiefer	Derbholz	P	20	- 0,0007 x + 1,45	0,186	≤0,05
		K	20	- 0,0067 x + 13,79	0,411	≤0,01
		Mg	20	- 0,0026 x + 5,28	0,269	≤0,05
	Derbrinde	P	20	- 0,0072 x + 14,75	0,213	≤0,05
	Derbholz m. R.	K	16	- 0,0084 x + 17,37	0,267	≤0,05
	Reisig/Äste	P	17	- 0,0027 x + 5,60	0,252	≤0,05
		K	18	- 0,0197 x + 40,60	0,394	≤0,01
	Oberirdisch	K	17	- 0,0102 x + 21,35	0,175	≤0,1
	Nadeln	N	17	+ 0,0831 x - 150,2	0,244	≤0,05
		P	21	+ 0,0044 x - 7,45	0,171	≤0,05
Buche	Derbholz	N	12	+ 0,0117 x - 21,93	0,284	≤0,1
		P	15	- 0,0018 x + 3,74	0,229	≤0,1
	Derbrinde	P	16	- 0,0071 x + 14,61	0,271	≤0,05
	Derbholz m. R.	Mg	11	+ 0,0057 x - 10,96	0,420	≤0,05

8.4 Berücksichtigte Untersuchungen zu Makro-Nährelementgehalten

8.41 Standortsdaten der Untersuchungen

Autor	Jahr	Ort	Region	Bodentyp	Bemerkung	Geologie	N_{Jahr}	Höhe	T_{Jahr}	Baumart	Alter
			,		Humusform	(Substrat)	mm	m NN	°C		
Alriksson & Eriksson	1998	Umea	NO-Schweden	Acker-Aufforstung		k.A.	662	k.A.	2,9	Birke	27
Alriksson & Eriksson	1998	Umea	NO-Schweden	Acker-Aufforstung		k.A.	662	k.A.	2,9	Fichte	27
Alriksson & Eriksson	1998	Umea	NO-Schweden	Acker-Aufforstung		k.A.	662	k.A.	2,9	Kiefer	27
Alriksson & Eriksson	1998	Umea	NO-Schweden	Acker-Aufforstung		k.A.	662	k.A.	2,9	Lärche	27
Belkacem et al.	1992	Ardennen	Frankreich	Saure arme Böden		k.A.	1300	480	k.A.	Fichte	60
Block	1993	Merzalben	Pfälzerwald	Podsolige Braunerde	Mull-Moder	Buntsandstein	950	525	7,5	Eiche	185
Bredemeier	1987	Harste	S.Niedersachsen	Parabraunerde	F-Mull	Ob.Muschelkalk.Löß	750	200	8,0	Buche	96
Bredemeier	1987	Ehrhorn	Lüneb. Heide	Podsolige Braunerde	Moder	Pleistozän	730	80	8,0	Eiche	105
Bredemeier	1987	Spanbeck	S.Niedersachsen		Moder	Buntsandstein.Löß	680	250	7,8	Fichte	86
Bredemeier	1987	Ehrhorn	Lüneb. Heide	Podsolige Braunerde	Moder	Pleistozän	730	80	8,0	Kiefer	100
Bringmark	1977	Jädraas	Mittelschweden	Podsol		k.A.	607	185	< 6°C	Kiefer	135
Dietrich et al.	2002	Ebersberg	Bayern	Parabraunerde	Moder	Carb.halt.Lockersed.	950	500	7,5	Fichte	85
Dietrich et al.	2002	Zusmarshausen	Bayern	Braunerde-Pseudogley	Moder	Lockersedimente	700	500	7,5	Fichte	80
Dietrich et al.	2002	Flossenbürg	Oberpfalz (By)	Braunerde-Podsol	Moder	Gneis	900	800	6,0	Fichte	85
Duvigneaud & Denaey.	1970	Belgien		k.A		k.A.	k.A	k.A	k.A	Eiche	150
Erikson & Rosen	1994		Südschweden	Dystrochrept		Pleistozän	1040	80	6,4	Fichte	35
Erikson & Rosen	1994		Südschweden	Dystrochrept		Pleistozän	1040	80	6,4	Lärche	35
Erikson & Rosen	1994		Südschweden	Dystrochrept		Pleistozän	1040	80	6,4	Tanne	35
Erikson & Rosen	1994		Südschweden	Dystrochrept		Pleistozän	1040	80	6,4	Tanne	35
Feger et al.	1991	Arinus, Schw.w.	BW.Schwzwald.	Pods.Pseudogley-Br.erde		Ob.Buntsandstein	1250	900	6,0	Fichte	100
Fornes et al.	1970	Schwarzwald	Bad.Württembg.	k.A.		k.A.	k.A	k.A	k.A	Fichte	33
Gehrmann	2002	Hürtgenwald	NRW	podsoliger Pseudogley	R-Moder	Phyllit/Quarzit.Löß	1000	445	8,0	Buche	130
Gehrmann	2002	Paderborn	NRW	Braunerde, (Pseudogley)	L-Mull	U. Muschelkalk.Löß	1100	380	8,0	Buche	113
Gehrmann	2002	Haard	NRW		R-Moder	Pleistozän	775	70	9,0	Buche	116
Gehrmann	2002	M. Gladbach	NRW	Pseudogley-Parabraunerde	k.A.	Terrassenschotter	750	82	9,0	Eiche	102
Gehrmann	2002	Hilchenbach	NRW	podsolige Braunerde	R-Moder	Tonschiefer	1350	675	5,5	Fichte	75
Gehrmann	2002	Paderborn	NRW	Podsol	R-Moder	Flammenmergel	1200	415	7,5	Fichte	66
Gehrmann	2002	Kleve	NRW	Podsol-Braunerde	Pflugstreifen	Sandlöß	775	45	9,0	Kiefer	65
Heinsdorf & Krauß	1990	k.A.	Brandenburg	Podsolige Braunerde	Rohhumus	Pleistozän	550	38	k.A	Kiefer	80
Hochbichler et al.	1994	Wienerwald	Österreich	Braunerde	Mull	Flysch	800	540	7,6	Buche	40

8.41 (Forts.) Standortsdaten der Untersuchungen

Autor	Jahr	Ort	Region	Bodentyp	Bemerkung	Geologie	N_{Jahr}	Höhe	T_{Jahr}	Baumart	Alter
					Humusform	(Substrat)	mm	m NN	°C		
Ingerslev & Hallbäcken	1999	Klösterhelden	Dänemark	Podsol	Rohhumus	Dünensand	k.A	k.A	k.A	Fichte	59
Kreutzer	1976	k.A.	k.A.	k.A.	1.Ek	k.A.	k.A	k.A	k.A	Fichte	80
Kreutzer	1976	k.A.	k.A.	k.A.	1.Ek	k.A.	k.A	k.A	k.A	Kiefer	130
Kreutzer	1979	k.A.	k.A.	k.A.	1.Ek	k.A.	k.A	k.A	k.A	Buche	140
Lamersdorf	1988	Westerberg	Niedersachsen	Podsol	Rohhumus	Flugsand	800	38	k.A.	Fichte	88
Lamersdorf	1988	Solling	S.Niedersachsen	Podsolige Braunderde	Moder	Sandstein	1050	500	6,5	Fichte	104
Le Goaster	1991	Vogesen	Frankreich	Dystrochrept		Granit	1770	1060	6,0	Fichte	30
Mälkönen	1976	k.A.	Süd-Finnland	k.A.	3.Ek	k.A.	k.A	k.A	k.A	Kiefer	45
Markan	1993	Grunewald	Berlin	podsolige Braunerde	Moder	Pleistozän	550	k.A.	k.A.	Eiche	45
Markan	1993	Grunewald	Berlin	podsolige Braunerde	Moder	Pleistozän	550	k.A.	k.A.	Eiche	90
Meiwes & Beese	1988	Göttinger Wald	Nds. Bergland	Terra Fusca-Rendzina	Mull	Unterer Muschelkalk	650	420	8,5	Buche	115
Miller et al.	1976	Culbin	Schottland	k.A		Flugsand	k.A	k.A	k.A	S.Kiefer*	39
Mitchell et al.	1996	Vancover Island	Canada	Dystric Brunisol		k.A.	k.A	k.A	k.A	Douglasie	24
Mitchell et al.	1996	Vancover Island	Canada	Dystric Brunisol		k.A.	k.A	k.A	k.A	Douglasie	33
Mitchell et al.	1996	Vancover Island	Canada	Dystric Brunisol		k.A.	k.A	k.A	k.A	Douglasie	42
Nebe & Herrmann	1987	Tharandt. Wald	Östl. Erzgebirge	Podsol-Braunerde	Rohhumus	Rhyolith	850	k.A	7,5	Fichte	100
Neirynck et al.	1997	Hechtel	Nordost-Belgien	Podsol		Pleistozän ü. Tertiär	800	55	9,0	S.Kiefer*	62
Nihlgard	1972	Lund	Schweden	Saure Braunerde		Sandstein	800	120	7,0	Buche	90
Nihlgard	1972	Skane	Schweden	Braunerde		Sandstein	800	120	6,5	Fichte	55
Nihlgard & Lindgren	1977	Lund	Südschweden	pseudogley-Braunerde		Tonschiefer	650	60	7,0	Buche	90
Nihlgard & Lindgren	1977	Lund	Südschweden	Podsol		Sandstein	850	150	6,0	Buche	100
Nykvist	1971		Mittelschweden	k.A		k.A.	k.A.	k.A.	k.A.	Fichte	100
Nys et al.	1983	Ardennen	Frankreich	k.A		k.A.	k.A	k.A	k.A	Fichte	50
Oren et al.	1988		Fichtelgebirge	Podsol	SK 3	Phyllit	1100	755	5,8	Fichte	30
Oren et al.	1988	Wülfersreuth	Fichtelgebirge	Podsolige Braunerde	SK 0-1	Phyllit	900	675	k.A	Fichte	30
Ovington & Madwick	1959	Jedburgh	Süd-Schottland	k.A		Tertiärer Ton	760	180	8,7	Kiefer	32
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	B4, Moder	Buntsandstein.Löß	1050	500	6,5	Buche	58
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	B3, Moder	Buntsandstein.Löß	1050	500	6,5	Buche	83
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	B1, Moder	Buntsandstein.Löß	1050	500	6,5	Buche	123
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	F4, Moder	Buntsandstein.Löß	1050	500	6,5	Fichte	23
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	F3, Moder	Buntsandstein.Löß	1050	500	6,5	Fichte	43
Pavlov	1972	Solling	S.Niedersachsen	Podsolige Braunerde	F1, Moder	Buntsandstein.Löß	1050	500	6,5	Fichte	88

8.41 (Forts.) Standortsdaten der Untersuchungen

Autor	Jahr	Ort	Region	Bodentyp	Bemerkung	Geologie	N_{Jahr}	Höhe	T_{Jahr}	Baumart	Alter
					Humusform	(Substrat)	mm	m NN	°C		
Popovic	1990	Umea	Nord-Schweden	Podsolige Braunerde		k.A.	k.A.	260	k.A.	Kiefer	50
Rademacher et al.	1992	Postturm	Schleswig-Holstein				690	70	8,1	Fichte	115
Rademacher	1994	Lange Bramke	Harz	Podsolige Braunerde	Roh.Moder	Sandstein	1266	660	6,3	Fichte	46
Rademacher et al.	1999	Fuhrberg	Lüneb. Heide	Braunerde-Podsol	Roh.Moder	Pleistozän	630	38	9,3	Kiefer	25
Rademacher et al.	1999	Fuhrberg	Lüneb. Heide	Braunerde-Podsol	Roh.Moder	Pleistozän	630	38	9,3	Kiefer	46
Rademacher et al.	1999	Fuhrberg	Lüneb. Heide	Braunerde-Podsol	Roh.Moder	Pleistozän	630	38	9,3	Kiefer	115
Rademacher et al.	2001	Ehrhorn	Lüneb. Heide	Podsolige Braunerde	Moder	Geschiebesand	730	110	8,0	Eiche	115
Raisch	1983	Bärhalde	Südschwarzwald	Podsolige Braunerde	Feuchtmoder	Granit	1900	1260	5,3	Fichte	130
Raisch	1983	Bärhalde	Südschwarzwald	Braunerde	Moder	Granit	1900	1180	5,3	Fichte	75
Raisch	1983	Bärhalde	Südschwarzwald	Pseudogley	Mullmoder	Granit	1900	1170	5,3	Fichte	50
Raisch	1983	Bärhalde	Südschwarzwald	Stagnogley	Feuchtmoder	Granit	1900	1160	5,3	Fichte	25
Raisch	1983	Bärhalde	Südschwarzwald	Braunerde	Mullmoder	Granit	1900	1160	5,3	Fichte	15
Ranger et al.	1992	Gemaingoutte	Westvogesen (F)	Braunerde		Granit/Gneis	1200	650	8,5	Fichte	85
Ranger et al.	1995	Rhone	Frankreich	Dystrochrept	1.Ek	Dev.Dinantian	1000	650	7,0	Douglasie	20
Ranger et al.	1995	Rhone	Frankreich	Dystrochrept	1.Ek	Dev.Dinantian	1000	650	7,0	Douglasie	40
Ranger et al.	1995	Rhone	Frankreich	Dystrochrept	1.Ek	Dev.Dinantian	1000	650	7,0	Douglasie	
Seibt & Wittig	1965	Oerrel	Lüneb. Heide	Podsol	Sander	Pleistozän	750	90	8,3	Fichte	30
Seibt & Wittig	1965	Oerrel	Lüneb. Heide	Podsol	Sander	Pleistozän	750	90	8,3	Kiefer	30
Seibt & Wittig	1965	Oerrel	Lüneb. Heide	Podsol	Sander	Pleistozän	750	90	8,3	Lärche	30
Steiner et al.	1998	Bayerswald	Brandenburg	Podsolige Braunerde	Moder	Pleistozän	530	70	8,3	Kiefer	73
Steiner et al.	1998	Huberturstock	Brandenburg	Podsolige Braunerde	Rohh.Moder	Pleistozän	570	70	8,3	Kiefer	70
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Buche 18	Carbonatisch	670	270	9,5	Buche	47
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Buche 19	Carbonatisch	670	270	9,5	Buche	48
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Douglasie 3	Silikatisch/Halde	1750	930	6,8	Douglasie	
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Douglasie 4	Silikatisch	1750	930	6,8	Douglasie	28
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Eiche 15	Carbonatisch	670	250	9,5	Eiche	98
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Fichte 1	Silikatisch/Halde	1750	930	6,5	Fichte	29
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Fichte 2	Silikatisch	1750	930	6,5	Fichte	29
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Fichte 10	Carbonatisch	670	260	9,5	Fichte	39
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Fichte 11	Carbonatisch	670	240	9,5	Fichte	98
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Fichte 12	Silikatisch	670	230	9,5	Fichte	95
Trüby		Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Fichte 20	Silikatisch	670	270	9,5	Fichte	42
Trüby		Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Kiefer 13	Carbonatisch	670	240	9,5	Kiefer	98

8.41 (Forts.) Standortsdaten der Untersuchungen

Autor	Jahr	Ort	Region	Bodentyp	Bemerkung	Geologie	N_{Jahr}	Höhe	T_{Jahr}	Baumart	Alter
				• •	Humusform	(Substrat)	mm	m NN	°C		
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Kiefer 14	Silikatisch	670	230	9,5	Kiefer	103
Trüby		Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Kiefer 16	Silikatisch	670	275	9,5	Kiefer	46
Trüby	1994	Stolberg	Nördl.Eifel	k. A. (Profilbeschreibung)	Kiefer 17	Silikatisch	670	275	9,5	Kiefer	95
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Tanne 5	Silikatisch/Halde	1650	800	7,0	Tanne	150
Trüby	1994	Münstertal	Südschwarzwald	k. A. (Profilbeschreibung)	Tanne 6	Silikatisch	1650	800	7,0	Tanne	86
Trüby	1994	Holderpfad	Südschwarzwald	k. A. (Profilbeschreibung)	Tanne 7	Silikatisch/Halde	1400	490	7,5	Tanne	83
Trüby	1994	Holderpfad	Südschwarzwald	k. A. (Profilbeschreibung)	Tanne 8	Halde	1400	490	7,5	Tanne	83
Trüby	1994	Holderpfad	Südschwarzwald	k. A. (Profilbeschreibung)	Tanne 9	Silikatisch	1400	490	7,5	Tanne	83
Webber	1977	Victoria	Canada	k.A		k.A	k.A.	k.A.	k.A.	Douglasie	18
Weiner & Grodzinski	1984	Niepolomice	Südpolen	Pseudogley Braunerde		k.A.	700	k.A.	8,0	Eiche	72
Weiner & Grodzinski	1984	Niepolomice	Südpolen	Podsolige Braunerde		k.A	700	k.A.	8,0	Kiefer	59
Weis & Göttlein	2002	Höglwald	Bayern	Pseudogley-Parabraunerde		Tertiär, Löß	850	540	7,6	Buche	95
Weis & Göttlein	2002	Höglwald	Bayern	Pseudogley-Parabraunerde		Tertiär, Löß	850	540	7,6	Fichte	90
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	Kiefer	18
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	Kiefer	28
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	Kiefer	64
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	S.Kiefer*	18
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	S.Kiefer*	28
Wright & Will	1958	Culbin	Schottland	k.A		Dünensand	k.A	k.A	k.A	S.Kiefer*	48

S.Kiefer = Kors. Schwarzkiefer (Pinus Nigra Ssp. Lar); k.A. = keine Angabe

8.42 Makro-Nährelementgehalte im Derbholz, Derbrinde und im Derbholz mit Rinde (TRM = Biomasse in t ha⁻¹; Gehalte (N, P, K, Ca, Mg) in mg g⁻¹).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg
				Derbho	olz					Derbrir	nde					Derbho	olz mit	Rinde			
Alriksson& Eriksson	1998	Birke	27	n.b.												96,00	1,700	0,170	0,750	1,200	0,200
Alriksson& Eriksson	1998	Fichte		n.b.												50,00	1,800	0,210	1,100	1,800	0,170
Alriksson& Eriksson	1998	Kiefer	27	n.b.												48,00	1,500	0,180	1,000	1,100	0,250
Alriksson& Eriksson	1998	Lärche		n.b.												78,00	1,600	0,230	1,000	1,100	0,320
Belkacem et al.	1992	Fichte	60	n.b.												130,16	1,060	0,130	1,660	1,260	0,130
Block	1993	Eiche	185	182,65	2,249	0,071	1,053	0,367	0,046	21,66	6,696	0,258	1,457	13,325	0,225	204,31	2,720	0,091	1,095	1,740	0,065
Bredemeier	1987	Buche	96	n.b.	1,020	0,180	0,380	0,780	0,250		3,970	0,630	1,080	23,600	0,480						
Bredemeier	1987	Eiche	105	n.b.	1,150	0,050	0,870	0,430	0,050		6,690	0,270	1,510	21,100	0,730						
Bredemeier	1987	Fichte	86	n.b.	1,030	0,090	0,090	0,710	0,060		3,370	0,890	1,000	8,320	0,420						
Bredemeier	1987	Kiefer	100	n.b.	1,120	0,030	0,300	0,680	0,090		2,580	0,110	0,450	2,500	0,090						
Bringmark	1977	Kiefer	135	45,19	0,540	0,040	0,310	0,540	0,140	3,04	3,130	0,330	0,940	3,510	0,410	48,23	0,700	0,060	0,350	0,730	0,160
Dietrich et al.	2002	Fichte	85	343,30	0,580	0,030	0,330	0,700	0,100	25,30	4,320	0,430	1,960	9,830	0,810	368,60	0,840	0,060	0,440	1,330	0,150
Dietrich et al.	2002	Fichte	80	420,20	0,490	0,030	0,300	0,650	0,070	31,00	5,470	0,510	2,100	7,710	0,800	451,20	0,830	0,060	0,420	1,130	0,120
Dietrich et al.	2002	Fichte	85	174,00	0,630	0,040	0,350	0,610	0,100	13,20	5,170	0,560	0,610	7,810	0,980	187,20	0,950	0,080	0,510	1,110	0,160
Duvigneaud et al.	1970	Eiche	150	188,00	1,480	0,060	0,940	0,420	0,090	22,00	5,000	0,300	1,900	32,000	1,500	210,00	1,850	0,080	1,040	3,730	0,240
Ellenberg et al.	1986	Buche	135	222,90						15,50						238,40	1,543	0,230	0,862	0,903	0,238
Ellenberg&Lamersd.	1988	Fichte	100	182,50						15,87						198,37	1,301	0,188	0,499	1,351	0,155
Erikson & Rosen	1994	Fichte	35	n.b.												148,00	1,760	0,530	0,610	1,320	0,160
Erikson & Rosen	1994	Lärche	35	n.b.												196,00	0,910	0,580	0,680	0,340	0,190
Erikson & Rosen	1994	Tanne	35	n.b.												82,00	2,570	0,590	0,730	1,320	0,130
Erikson & Rosen	1994	Tanne	35	n.b.												198,00	1,470	0,510	0,670	0,980	0,130
Feger et al.	1991	Fichte	100	183,50	0,280	0,030	0,320	0,560	0,080	19,50	3,080	0,320	1,990	7,430	0,620	202,50	0,550	0,050	0,480	1,220	0,130
Fornes et al.	1970	Fichte	33	17,36	0,710	0,080	0,100	1,030	0,070	4,39	3,300	0,990	1,080	9,170	0,440	21,75	1,230	0,270	0,290	2,670	0,140
Gehrmann	2002	Buche	130	n.b.	1,640	0,062	1,010	1,346	0,308		9,325	0,313	1,778	14,073	0,900						
Gehrmann	2002	Buche	113	n.b.	n.b.	n.B.					7,100	0,461	2,761	22,556	0,707						
Gehrmann	2002	Buche	116	n.b.	n.b.	0,093	0,934	0,804	0,072			0,483	2,348	13,861	0,651						
Gehrmann	2002	Eiche	102	n.b.	1,460		0,415	0,359	0,013		8,320	0,276	2,861	18,816	0,687						
Gehrmann	2002	Fichte	75	n.b.	1,150	0,045	0,390	0,798	0,096		6,000	0,458	1,928	9,332	0,664						
Gehrmann	2002	Fichte	66	n.b.	n.b.		0,368	0,759	0,045			0,535	2,348	11,214	0,607						
Gehrmann	2002	Kiefer	65	n.b.	n.b.	0,079	0,462	0,563	0,041			0,175	0,744	3,845	0,054						
Heinsdorf & Krauß		Kiefer	80	191,38	0,498				0,144	13,85	2,466					205,23	0,630	0,060	0,370	1,030	0,160
Hochbichler et al.	1994	Buche	40	227,24	1,069	0,055	0,931	2,460	0,450		5,300		2,496					0,060	1,010	4,150	0,460
Ingerslev & Hallbäc.		Fichte	59	70,00	1,070			0,700			5,620		2,740				1,500		0,750	1,410	0,230
Kreutzer		Fichte	80	240,24	0,800	0,050	0,550	0,900	0,200	19,20	6,500	0,850	4,000	9,000	0,700	259,44	1,220	0,110	0,810	1,500	0,240
Kreutzer	1976	Kiefer	130	170,95	0,850	0,050	0,550	0,800	0,200	21,45	6,500	0,900	3,500	8,000	0,700	192,40	1,480	0,140	0,880	1,600	0,260

8.42 (Forts.) Makro-Nährelementgehalte im Derbholz, Derbrinde und im Derbholz mit Rinde (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Са	Mg
				Derbho	olz	•	•	•		Derbrir	nde	•				Derbh	olz mit	Rinde	•		
Kreutzer	1979	Buche	140	343,14	1,200	0,150	0,900	0,800	0,200	22,40	7,500	0,800	2,300	9,000	0,400	365,54	1,590	0,190	0,990	1,300	0,210
Lamersdorf	1988	Fichte	88	136,00	n.b.	n.b.	0,920	0,450	0,090	10,00			6,200	3,600	1,000	146,00)		1,280	0,670	0,150
Le Goaster	1991	Fichte	30	n.b.	0,800	0,100	0,600	0,600	0,100	n.b.	5,200	0,770	4,100	6,700	0,700						
Mälkönen	1976	Kiefer	45	56,63	0,669	0,040	0,331	0,621	n.b.	5,29	3,714	0,543	2,314	4,914	n.b.	61,91	0,930	0,080	0,500	0,990	n.b.
Markan	1993	Eiche	45	75,68	2,220	0,170	1,610	1,130	0,220	11,42	5,250	0,300	1,580	12,540	0,570	87,10	2,620	0,190	1,610	2,630	0,270
Markan	1993	Eiche	90	86,68	1,630	0,110	1,290	0,290	0,110	19,80	3,180	0,260	2,020	22,780	0,430	106,50	1,920	0,140	1,430	4,470	0,170
Meiwes & Beese		Buche	115	256,00	1,789	0,090	1,102	1,340	0,290	16,00	6,375	0,360	2,581	40,875	0,469	272,00	2,059	0,106	1,189	3,665	0,300
Miller et al	1976	S.Kiefer	39	78,44	0,350	0,050	0,300	0,540	0,130	13,32	1,780	0,340	0,990	2,440	0,530	91,76	0,560	0,090	0,400	0,820	0,190
Mitchell et al.	1996	Douglasie	24	59,06	0,650	0,090	0,450	0,450	0,080	8,63	2,920	0,760	3,050	3,740	0,490	67,69	0,940	0,180	0,780	0,870	0,130
Mitchell et al.	1996	Douglasie	33	107,57	0,580	0,080	0,400	0,410	-,	18,18			2,720	2,320	0,430	125,75	0,880	0,170	0,740	0,830	0,130
Mitchell et al.	1996	Douglasie	42	174,37	0,400	0,070	0,260	0,410	0,010	28,28	2,220	0,430	2,620	2,390	0,460	202,65	0,660	0,120	0,590	0,690	0,080
Nebe & Herrmann	1987	Fichte	100	198,03	0,530	0,030	0,200	0,840	0,090	15,99	3,380	0,390	2,200	11,200	0,540	214,02	0,740	0,050	0,340	1,610	0,120
Neirynck et al.	1997	S.Kiefer	62	170,46	- ,	0,070	0,290	0,520		30,76	3,520	0,150	0,870		0,200			0,080	0,380		0,130
Nihlgard	1972	Buche	90	212,00	0,991	0,082	0,858	0,524	0,243	9,00	8,889	0,522	2,111	10,000	0,611	221,00	1,310	0,100	0,910	0,910	0,260
Nihlgard	1972	Fichte	55	240,00	0,708	0,062	-, -	-, -	0,073	22,00		-,	-,	,	- ,	262,00	,	0,110	0,660	,	0,150
Nihlgard & Lindgren	_	Buche	90	234,00	1,150	0,070	1,090	0,880	0,290	11,00	-,	,	2,460	25,000	0,550	245,00	1,390	-,	1,160	1,960	0,300
Nihlgard & Lindgren	1977	Buche	100	158,00	1,010	0,110	1,210	,	,	8,00	,	-,	,	14,000	0,650	166,00	1,330		1,250	1,200	0,320
Nykvist		Fichte	100	127,30	-,	0,041	0,291	0,731	0,080	11,10	,	0,423	1,874	- ,	- ,	138,40	-,	-,		,	-, -
Nys et al.	1983	Fichte	50	114,96		0,030	0,380	0,630	0,110	11,33	4,870	0,090	,	,		126,28	1,060	0,030	0,540	1,150	0,160
Oren et al.		Fichte	30	72,88	2,099					6,93	6,061	0,978	3,025		0,716	79,81					
Oren et al.	1988	Fichte	30		2,106		1,219	1,256	0,164	11,35	6,079	0,639	3,021	7,833	0,715	143,86	, -	,		, -	-, -
Ovington & Madwick	1959	Kiefer	32	n.b.												118,80	-,	0,100	0,710	0,970	0,200
Pavlov		Buche	58	98,50	1,121	0,115	0,899	1,082	0,114	11,00	8,964	0,573		10,100	0,486	109,50	1,910	0,160	1,100	1,990	0,150
Pavlov		Buche	83	127,70	1,121	0,115	0,899	1,082	0,114	8,10	8,964	0,573	2,932	10,100	0,486	,	,	0,140	1,020	1,620	0,140
Pavlov	1972	Buche	123	182,50	1,107	0,186	0,786	0,533	0,180	9,50	7,830	0,855	1,955	6,212	1,069	192,00	1,439	0,219	0,844		
Pavlov	_	Fichte	23	39,40	1,555	0,220	1,525	1,082	0,207	6,60	,	0,898	-,	6,332	0,535	46,00	2,355		2,159		
Pavlov		Fichte	43	91,20	0,476	0,046	0,743	1,002	0,165	13,20	6,681	0,214	3,949	11,703	0,778	104,40	1,260	0,070	1,150	2,350	0,240
Pavlov	1972	Fichte	88	175,20	0,840	0,081	0,274	0,709	0,107	21,90	-,	1,425	3,112	-,	0,705	197,10	1,483	0,230	0,589	1,597	0,173
Popovic	1990	Kiefer	50	58,30	0,621	0,077	0,381	0,635	0,163	5,83	3,911	0,617	2,144	2,676	0,549	64,13	0,920	0,130	0,540	0,820	0,200
Rademacher et al.	1992	Fichte	115	241,20	1,610	0,080	0,600	0,640	0,100	15,56	5,400	0,370	1,820	7,200	0,400	256,77	1,840	0,090	0,680	1,040	0,120
Rademacher	1994	Fichte	46	105,89	0,680	0,060	0,610	0,650	0,100	11,31	4,950	0,570	2,650	5,600	0,580	117,20	1,090	0,100	0,810	1,130	0,140
Rademacher et al.	1999	Kiefer	25	18,27	1,050	0,060	0,400	0,620	0,150	3,51	3,080	0,490	1,700	5,020	0,610	21,78	1,380	0,130	0,610	1,330	0,220
Rademacher et al.	1999	Kiefer	46	86,06	0,900	0,030	0,300	0,760	0,190	8,94	2,660	0,260	1,150	5,480	0,440	95,00	1,060	0,050	0,380	1,200	0,210
Rademacher et al.	1999	Kiefer	115	114,99	0,480	0,030	0,270	0,730	0,160	9,07	3,580	0,280	1,210	7,450	0,440	124,06	0,710	0,050	0,340	1,220	0,180
Rademacher et al.	2001	Eiche	115	143,85	1,240	0,150	0,860	0,500	0,090	19,60	6,900	0,390	1,920	18,810	0,570	163,44	1,920	0,180	0,980	0,690	0,140

8.42 (Forts.) Makro-Nährelementgehalte im Derbholz, Derbrinde und im Derbholz mit Rinde (TRM = Biomasse in t ha⁻¹; Gehalte (N, P, K, Ca, Mg) in mg g⁻¹).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg
				Derbho	olz					Derbrii	nde					Derbho	lz mit	Rinde			
Raisch		Fichte	130	151,46	0,250	0,030	0,450	0,500	0,120					8,700	0,670	167,77	0,610	0,080	0,620	1,300	0,170
Raisch	1983	Fichte	75	161,31	0,300	0,030	0,400	0,500	0,140	19,19	3,900	0,530	2,400	7,000	0,910	180,50	0,680	0,080	0,610	1,190	0,220
Raisch	1983	Fichte	50	110,82	0,300	0,030	0,400	0,600	0,110	11,16	5,200	0,650	3,200	6,100	0,720	121,98	0,750	0,090	0,660	1,100	0,170
Raisch	1983	Fichte	25		0,450	0,050	0,500	0,600	0,130	3,15	6,000	0,780	2,400			26,24	1,120	0,140	0,730	1,500	0,190
Raisch	1983	Fichte	15		0,600						5,800	0,730	2,400	5,700	0,620	11,57	1,220	0,160	0,900	1,210	0,220
Ranger et al.	1992	Fichte	85	343,07	0,650	0,050	0,320	0,670	0,130		4,830				0,960	359,41	0,840	0,080	0,410	1,030	0,170
Ranger et al.	1995	Douglasie	20	56,90	0,650	0,020	1,290	0,300	0,090	8,60	6,660	0,720	5,360	2,060	0,590	65,50	1,440	0,110	1,830	0,530	0,160
Ranger et al.	1995	Douglasie	40	194,80	0,620	0,020	0,750	0,310	0,050	28,70	3,900	0,480	2,830	2,060	0,360	223,50	1,040	0,080	1,020	0,530	0,090
Ranger et al.	1995	Douglasie	60	307,00	0,630	0,030	0,210	0,310	0,050	45,00	3,420	0,440	2,190	3,000	0,320	352,00	0,990	0,080	0,470	0,650	0,080
Seibt & Wittig	1965	Fichte	30	24,00	1,000	0,210	0,790	0,710	0,210	3,30	7,880	1,210	4,240	8,180	1,820	27,30	1,830	0,330	1,210	1,610	0,400
Seibt & Wittig	1965	Kiefer	30	39,00	0,790	0,100	0,790	0,900	0,410	5,60	6,070	1,070	3,210	6,070	1,250	44,60	1,460	0,220	1,100	1,550	0,520
Seibt & Wittig	1965	Lärche	30	28,00	0,610	0,110	0,390	0,500	0,210	4,40	4,320	0,450	1,360	2,500	0,680	32,40	1,110	0,150	0,520	0,770	0,280
Steiner et al		Kiefer	73	100,59	0,700	0,050	0,440	0,650	0,200	9,90	4,970	0,250	1,060	4,990	0,370	110,49	1,080	0,070	0,500	1,040	0,210
Steiner et al		Kiefer		143,27					0,240		3,880					158,95		0,090	0,450	1,210	0,250
Trüby	1994	Buche	47	n.b.	n.b.	0,038	1,180	0,520	0,410		n.B.			44,530	0,320						
Trüby		Buche		n.b.	n.b.	0,047	0,650	0,790	0,220	n.B.	n.B.	0,400	2,600	36,150	0,270						
Trüby	1994	Douglasie	28	n.b.	n.b.	n.B.	0,160	0,320	0,061	n.B.		1,060	6,390	3,340	0,530						
Trüby	1994	Douglasie	28	n.b.	n.b.	n.B.	0,180	0,320	0,059	n.B.			5,970	2,670	0,430						
Trüby		Eiche	98	n.b.	n.b.	0,025	0,580	0,410	0,044	n.B.	n.B.	0,340	2,720	40,650	0,770						
Trüby	1994	Fichte	29	n.b.	n.b.	0,022	0,333	0,680	0,130	n.B.		0,920	3,640	4,030	1,010						
Trüby	1994	Fichte	29	n.b.	n.b.	0,005	0,190	0,660	0,200	n.B.		1,130	3,890	5,030	1,040						
Trüby	1994	Fichte		n.b.	n.b.	0,019	0,430	0,910	0,082	n.B.	n.B.		4,420		1,000						
Trüby	1994	Fichte	98	n.b.	n.b.	0,018	0,200	0,770	0,092	n.B.	n.B.	0,460	2,580	17,920	0,890						
Trüby	1994	Fichte	95	n.b.	n.b.	0,005	0,350	0,780	0,088	n.B.	n.B.	0,540	3,900	7,240	0,690						
Trüby	1994	Fichte	42	n.b.	n.b.	0,016	0,071	0,098	0,022	n.B.	n.B.	n.B.	n.B.	n.B.	n.B.						
Trüby	1994	Kiefer	98	n.b.	n.b.	0,013	0,310	0,380	0,110	n.B.	n.B.	0,460	3,110	9,270	1,360						
Trüby	1994	Kiefer	103	n.b.	n.b.	0,016	0,430	0,600	0,150		n.B.	0,500	3,850	6,260	0,940						
Trüby	1994	Kiefer	46	n.b.	n.b.	0,036	0,340	0,500	0,180	n.B.	n.B.	0,670	3,880								
Trüby	1994	Kiefer	95	n.b.	n.b.	0,013	0,210	0,540	0,140	n.B.	n.B.	0,490	2,970	6,280	0,960						
Trüby		Tanne	150		n.b.				0,081			-	4,340								
Trüby		Tanne		n.b.		n.B.			0,120			1,060	4,020								
Trüby	1994			n.b.		n.B.			0,120		n.B.				n.B.						
Trüby	1994			n.b.	n.b.		,	,		n.B.											
Trüby		Tanne		n.b.	n.b.	0,019	0,800	0,420	0,100		n.B.	0,690	5,980	4,870	0,510						
Webber		Douglasie		35,96										4,880			1,110	0,180	0,650	1,140	0,160

8.42 (Forts.) Makro-Nährelementgehalte im Derbholz, Derbrinde und im Derbholz mit Rinde (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg
				Derbho	olz					Derbrii	nde					Derbho	olz mit	Rinde			
Weiner & Grodzinski	1984	Eiche	72	116,50	1,020	0,040		0,270	0,160	12,96	6,740			13,360	0,340	129,46	1,590	0,050	0,130	1,580	0,180
Weiner & Grodzinski	1984	Kiefer	59	82,10				0,380	0,230	8,95				2,740		91,05				0,610	
Weis & Göttlein	2002	Buche	95	346,00	1,270	0,090	1,050	0,810	0,300	13,00	7,470	0,430	2,500	14,060	0,670	359,00	1,490	0,100	1,100	1,290	0,310
Weis & Göttlein	2002	Fichte	90	487,00	1,000	0,050	0,290	0,680	0,110	36,00	5,030	0,440	1,620	10,650	0,900	523,00	1,280	0,080	0,380	1,370	0,160
Wright & Will	1958	Kiefer	18	22,44	0,790	0,070	0,770	0,470	0,210	5,77	4,150	0,460	2,850	2,310	0,600	28,21	1,480	0,150	1,190	0,850	0,290
Wright & Will	1958	Kiefer	28	53,04	0,870	0,080	0,640	0,400	0,240	6,65	4,530	0,600	2,730	2,400	0,770	59,69	1,280	0,130	0,870	0,620	0,300
Wright & Will	1958	Kiefer	64	65,81	0,770	0,060	0,390	0,730	0,200	11,26	2,600	0,400	1,340	5,830	0,440	77,08	1,040	0,110	0,530	1,470	0,240
Wright & Will	1958	S.Kiefer	18	8,96	0,840	0,090	0,540	0,890	0,190	3,90	3,640	0,520	1,700	3,180	0,800	12,86	1,690	0,220	0,900	1,590	0,370
Wright & Will	1958	S.Kiefer	28	31,49	0,560	0,040	0,390	0,560	0,100	10,20	1,830	0,290	1,430	2,090	0,420	41,69	0,870	0,100	0,650	0,940	0,180
Wright & Will	1958	S.Kiefer	48	58,54	0,700	0,060	0,510	0,650	0,160	16,85	2,180	0,310	1,450	1,470	0,470	75,39	1,030	0,110	0,720	0,840	0,230

8.42 (Forts.) Makro-Nährelementgehalte in 'Reisig und Ästen' und in der 'Oberirdischen Biomasse (TRM = Biomasse in t ha⁻¹; Gehalte (N, P, K, Ca, Mg) in mg g⁻¹).

Autor	Jahr	Baumart	Alter	TRM	N	P	K	Са	Mg	TRM	N	Р	K	Са	Mg	Bemerkungen
				Reisig u	nd Äste	9				Oberirdi	sche B	iomass	se			
Alriksson& Eriksson	1998	Birke	27				3,100	2,700	0,650	117,70	3,220	0,410	1,780	1,630	0,430	
Alriksson& Eriksson	1998	Fichte	27	15,00	5,400	0,620	2,000	4,600	0,500	114,10						
Alriksson& Eriksson	1998	Kiefer	27					5,800			4,800	0,680	2,750	5,220	0,460	
Alriksson& Eriksson	1998	Lärche	27	24,00	4,300	0,440	1,700	2,600	0,400	77,60	3,340	0,350	1,560	1,730	0,330	
Belkacem et al.	1992	Fichte	60	16,55	4,970	0,560	2,590	3,200	0,290	157,04	2,280	0,240	2,030	1,540	0,160	
Block	1993	Eiche	185	22,22	6,473	0,394	1,524	3,115	0,223							
Bredemeier	1987	Buche	96													
Bredemeier	1987	Eiche	105		7,580	0,520	1,830	4,440	0,600							
Bredemeier	1987	Fichte	86													
Bredemeier	1987	Kiefer	100		2,480	0,180	1,100	1,930	0,320							
Bringmark	1977	Kiefer	135					2,010			1,840	0,170	0,820	1,030	0,230	Mittleres Alter (Rahmen 120-150)
Dietrich et al.	2002	Fichte	85	49,60	3,330	0,310	1,370	3,030	0,490	434,60	1,610	0,130	0,690	1,680	0,210	,
Dietrich et al.	2002	Fichte	80	36,90	3,540	0,310	1,460	2,510	0,380	501,80	1,390	0,110	0,590	1,350	0,150	
Dietrich et al.	2002	Fichte	85	26,40	3,980	0,340	1,560	2,380	0,430							
Duvigneaud et al.	1970	Eiche	150	84,15	4,880	0,490	2,020	4,580	0,480	296,85	2,920	0,220	1,420	4,020	0,320	
Ellenberg et al.	1986	Buche	135	28,21	8,614	0,610	6,487	2,623	0,698	274,63	2,118	0,312	0,992	1,105	0,245	Feinwurzelmasse geschätzt
Ellenberg & Lamers.	1988	Fichte	100	33,15	3,904	0,790	1,276	2,326	0,250	244,46	2,982	0,300	1,640	1,685	0,229	-
Erikson & Rosen	1994	Fichte	35	44,20	6,400	0,770	2,830	3,940	0,950	192,20	2,830	0,580	1,120	1,920	0,340	Reisig, Äste und Nadeln zusammen
Erikson & Rosen	1994	Lärche	35	19,80	7,070	0,710	2,320	2,270	0,670	215,80	1,470	0,590	0,830	0,510	0,230	-
Erikson & Rosen	1994	Tanne	35		8,770	0,700	2,450	3,900	0,940	117,90	4,460	0,620	1,260	2,100	0,380	Reisig, Äste und Nadeln zusammen
Erikson & Rosen	1994	Tanne	35	41,70	6,690	0,530	2,610	3,690	1,130	239,70	2,380	0,510	1,010	1,450	0,310	Reisig, Äste und Nadeln zusammen
Feger et al.	1991	Fichte	100	28,00	3,330	0,290	1,550	2,560	0,320	249,50	1,480	0,130	0,770	1,540	0,170	Biomassen aus Text / Graphik rekonstruiert
Fornes et al.	1970	Fichte	33	14,43	5,780	0,930	0,660	5,220	0,270	43,12	4,730	0,790	0,630	4,810	0,230	
Gehrmann	2002	Buche	130													
Gehrmann	2002	Buche	113													
Gehrmann	2002	Buche	116													
Gehrmann	2002	Eiche	102													
Gehrmann	2002	Fichte	75													
Gehrmann	2002	Fichte	66													
Gehrmann	2002	Kiefer	65													
Heinsdorf & Krauß	1990	Kiefer	80	22,48	2,452	0,215	0,927	2,066	0,257	233,12	1,122	0,102	0,531	1,205	0,181	
Hochbichler et al.	1994	Buche	40					6,913								
Ingerslev & Hallbäc.		Fichte	59							112,80						
Kreutzer	1976	Fichte	80	25,28	7,000	0,850	3,000	2,500	0,700	301,12						1. Ertragsklasse
Kreutzer	1976	Kiefer	130	26,91	6,500	0,650	3,500	2,000	0,650	225,29	2,385	0,236	1,301	1,701	0,323	1. Ertragsklasse

8.42 (Forts.) Makro-Nährelementgehalte in 'Reisig und Ästen' und in der 'Oberirdischen Biomasse (TRM = Biomasse in t ha⁻¹; Gehalte (N, P, K, Ca, Mg) in mg g⁻¹).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Са	Mg	Bemerkungen
				Reisig u	nd Äst	е				Oberirdi	sche B	iomass	se			_
Kreutzer	1979	Buche	140	51,10	3,000	0,500	1,200	1,900	0,200	419,86	1,953	0,239				Ertragsklasse
Lamersdorf	1988	Fichte	88						0,163				1,502	0,949	0,178	
Le Goaster		Fichte	30						0,600							
Mälkönen	1976	Kiefer	45	11,63	3,571	0,377	1,571	2,169				0,202				Mg nicht bestimmt
Markan	1993	Eiche	45					4,660	0,570	110,95	4,690	0,330	2,150	3,180	0,380	Fläche gekalkt, Biomassen berechnet
Markan	1993	Eiche	90		5,150			4,790	0,390	174,46	4,190	0,250	1,840	4,660	0,310	Alter geschätzt, Biomassen berechnet
Meiwes & Beese	1988	Buche	115		3,382			7,143	0,365	329,50	2,474	0,139	1,319	4,360	0,322	-
Miller et al	1976	S.Kiefer	39	20,72	1,430	0,260	1,140	3,330	0,560	119,88	1,340	0,220	0,970	1,520	0,320	
Mitchell et al.	1996	Douglasie	24	18,05	3,190	0,570	1,840	5,340	0,500	154,21	1,790	0,450	1,250	1,870	0,270	
Mitchell et al.	1996	Douglasie	33						0,230		1,060	0,270	0,840	1,220	0,150	
Mitchell et al.	1996	Douglasie	42	17,46	3,630	0,670	2,180	5,840	0,570	94,89	2,480	0,650	1,660	2,630	0,380	
Nebe & Herrmann	1987	Fichte	100	20,17	5,940	0,600	2,880	3,970	0,390	246,00	1,840	0,140	0,820	2,010	0,160	
Neirynck et al.	1997	S.Kiefer	62	30,57	4,250	0,270	1,250	1,920	0,460	240,06	2,330	0,130	0,670	0,830	0,180	
Nihlgard	1972	Buche	90	99,00	6,667	0,558	2,303	3,848	0,413	323,90	3,242	0,258	1,395	1,859	0,323	Blätter inkl. 1-jähriges Reisig
Nihlgard	1972	Fichte	55	28,30	9,894	1,297	5,053	3,251	0,731	308,30						
Nihlgard & Lindgren	1977	Buche	90	64,00	5,160	0,420	2,160	6,020	0,530	313,80	2,550	0,170	1,460	2,890	0,380	Blätter inkl. 1-jähriges Reisig
Nihlgard & Lindgren	1977	Buche	100	56,00	6,250	0,640	1,680	4,610	0,480	225,00	2,840	0,270	1,410	2,120	0,380	Blätter inkl. 1-jähriges Reisig
Nykvist	1971	Fichte	100	27,50	3,498	0,360	1,211	4,484	0,553	181,30	2,031	0,193	0,880	2,517	0,263	, ,
Nys et al.	1983	Fichte	50	35,21	3,580	0,370	1,270	1,980	0,270	180,47	2,760	0,200	1,110	1,700	0,240	
Oren et al.	1988	Fichte	30			1,286		3,063	1,228	105,61	5,946	0,676	2,836	3,051	0,432	Schadklasse 3
Oren et al.	1988	Fichte	30				4,170		0,724							Schadklasse 0-1
Ovington & Madwick	1959	Kiefer	32						0,380							
Pavlov	1972	Buche	58	36,50	2,228	0,316	0,702	2,350	0,236	153,20	3,342	0,286	1,357	2,194	0,195	
Pavlov	1972	Buche	83	24,80	4,269	0,457	1,465	3,300	0,238	163,90	2,546	0,222	1,259	1,948	0,164	
Pavlov	1972	Buche	123	19,70	4,920	0,805	1,334	3,580	0,273	215,40	2,204	0,294	1,008	1,115	0,237	
Pavlov	1972	Fichte	23						0,335		4,182	0,428	2,679	2,803	0,284	Astgehalte nach Rademacher, unveröff.
Pavlov	1972	Fichte	43	27,00	4,521	0,201	0,836	3,413	0,274							Astgehalte nach Rademacher, unveröff.
Pavlov	1972	Fichte	88						0,333		2,608	0,276	0,916	2,180	0,204	Astgehalte nach Rademacher, unveröff.
Popovic	1990	Kiefer	50	12,90	2,491	0,264	1,271	1,240	0,341			0,213				
Rademacher et al.		Fichte	115						0,450							
Rademacher		Fichte	46						0,470			0,300				
Rademacher et al.		Kiefer	25						0,520							
Rademacher et al.		Kiefer	46						0,330							
Rademacher et al.		Kiefer	115							190,56						
Rademacher et al.		Eiche	115							157,50						

8.42 (Forts.) Makro-Nährelementgehalte in 'Reisig und Ästen' und in der 'Oberirdischen Biomasse (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg	Bemerkungen
				Reisig u						Oberirdi				•		_
Raisch	1983	Fichte	130	33,11	6,530	0,670	2,260	1,960	0,300	219,06	2,470	0,260	1,310	1,430	0,210	
Raisch	1983	Fichte	75					2,630		249,04	2,510	0,310	1,560	1,760	0,340	
Raisch		Fichte	50							168,65						
Raisch		Fichte	25					3,780				0,590				
Raisch		Fichte	15					3,000				0,660				
Ranger et al.		Fichte	85					3,710								
Ranger et al.		Douglasie						3,880				0,320				
Ranger et al.		Douglasie						2,800								
Ranger et al.		Douglasie						3,270								
Seibt & Wittig		Fichte	30					4,200				0,520				
Seibt & Wittig		Kiefer	30		2,220	0,370	1,480	3,330	0,370	48,20	1,850	0,250	1,180	1,800	0,520	
Seibt & Wittig		Lärche	30													
Steiner et al		Kiefer	73		5,260	0,330	1,250	2,110	0,400	128,59						
Steiner et al		Kiefer	70		4,450	0,330	1,320	2,230	0,450	183,80	1,840	0,150	0,700	1,380		
Trüby	1994	Buche	47													Rinde: Nur Bastrinde, nicht äüßeres
Trüby	1994	Buche	48													Periderm
Trüby	1994	Douglasie	28													
Trüby	1994	Douglasie	28													Nadeln: Mittel aus 1jährigen und
Trüby	1994	Eiche	98													4jährigen Nadeln
Trüby	1994	Fichte	29													
Trüby	1994	Fichte	29													
Trüby		Fichte	39													
Trüby	1994	Fichte	98													
Trüby		Fichte	95													
Trüby		Fichte	42													
Trüby		Kiefer	98													
Trüby		Kiefer	103													
Trüby		Kiefer	46													
Trüby		Kiefer	95													
Trüby		Tanne	150													
Trüby		Tanne	86													
Trüby	1994	Tanne	83													
Trüby	1994	Tanne	83													
Trüby	1994	Tanne	83													

8.42 (Forts.) Makro-Nährelementgehalte in 'Reisig und Ästen' und in der 'Oberirdischen Biomasse (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg	Bemerkungen
				Reisig u						Oberirdi	sche B	iomas	se			
Webber	1977	Douglasie	18	12,57	2,950	0,550	1,830	5,350	0,560	64,84	2,860	0,480	1,580	3,020	0,360	
Weiner & Grodzinski	1984	Eiche	72	17,14					0,310	150,60	2,150	0,110	0,230	1,560	0,220	
Weiner & Grodzinski	1984	Kiefer	59	15,25	1,190	0,360	0,930	0,680	0,300	109,88	0,790	0,310	0,340	0,670	0,250	
Weis & Göttlein	2002	Buche	95	100,00	3,490	0,320	1,380	2,190	0,420							
Weis & Göttlein	2002	Fichte	90						0,560							
Wright & Will	1958	Kiefer	18						0,520			0,300				
Wright & Will	1958	Kiefer	28						0,640		2,380	0,270	1,370	0,920	0,380	
Wright & Will	1958	Kiefer	64						0,480			0,190				
Wright & Will	1958	S.Kiefer	18	5,06	3,420	0,510	2,460	4,390	0,820	20,40	3,130	0,470	1,910	2,830	0,570	
Wright & Will	1958	S.Kiefer	28	8,60	2,160	0,290	1,800	4,640	0,660	54,11	1,490	0,200	1,160	1,800	0,300	
Wright & Will	1958	S.Kiefer	48	8,87	3,150	0,400	2,600	4,500	0,850	88,70	1,650	0,200	1,190	1,400	0,340	

8.42 (Forts.) Makro-Nährelementgehalte in Nadeln und Blättern, Grobwurzeln und Feinwurzeln (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Са	Mg
				Nadelr	n und B	lätter				Grobw	urzeln					Feinw	urzeln				
Alriksson& Eriksson	1998	Lärche	27	2,90	27,000	2,400	11,000	3,800	1,600	7,80	2,800	0,380	1,300	2,100	0,250						
Alriksson&Eriksson	1998	Birke	27	3,10	25,000	2,900	16,000	9,600	2,700	11,00	3,700	0,390	1,100	1,300	0,280						
Alriksson&Eriksson	1998	Fichte	27	23,00	11,000	1,500	5,600	12,000	0,840	8,90	1,500	0,230	1,200	2,000	0,150						
Alriksson&Eriksson	1998	Kiefer	27	5,60	15,000	1,400	5,800	3,400	0,730	6,30	2,700	0,380	2,100	1,200	0,410						
Belcacem et al.	1992	Fichte	60	10,33	13,440	1,110	5,720	2,500	0,320												
Block	1993	Eiche	185							39,34	5,870	0,346	2,062	1,991	0,181	13,80	8,250	0,350	4,000	5,475	0,595
Bredemeier	1987	Buche	96																		
Bredemeier	1987	Eiche	105																		
Bredemeier	1987	Fichte	86																		
Bredemeier	1987	Kiefer	100																		
Bringmark	1977	Kiefer	135	3,94	12,880	1,230	4,810	2,570	0,660	20,09	0,960	0,150	0,870	0,530	0,190						
Dietrich et al.	2002	Fichte	85	16,40	13,580	1,220	4,050	5,510	0,830												
Dietrich et al.	2002	Fichte	80	13,70	13,940	1,070	3,660	5,430	0,630												
Dietrich et al.	2002	Fichte	85	14,70	13,800	1,220	5,370	2,620	0,610												
Duvigneaud et al.	1970	Eiche	150	2,70	25,000	1,900	12,000	9,100	1,900	65,20	5,810	0,400	3,430	12,190	0,900	3,00	8,700	0,700	3,500	9,700	2,000
Ellenberg & Lamers.	1988	Fichte	100	17,88	12,752	1,051	6,655	3,915					1,812	0,653	0,322	2,00		1,200	2,600	3,700	0,590
Ellenberg et al.	1986	Buche	135	3,08	27,420	1,494	7,992	3,606	0,715	37,07	3,998	0,588	1,548	1,743	0,410	3,00	6,850	0,740	2,150	2,360	0,950
Erikson & Rosen	1994	Fichte	35																		
Erikson & Rosen	1994	Lärche	35																		
Erikson & Rosen	1994	Tanne	35																		
Erikson & Rosen	1994	Tanne	35,1																		
Feger	1991	Fichte	100	18,50	8,900	0,710	2,720	3,580	0,320												
Formes et al.	1990	Fichte	33	6,94	13,480	2,120	1,620	10,630	0,430												
Gehrmann	2002	Buche	130																		
Gehrmann	2002	Buche	113																		
Gehrmann	2002	Buche	116																		
Gehrmann	2002	Eiche	102																		
Gehrmann	2002	Fichte	75																		
Gehrmann	2002	Fichte	66																		
Gehrmann	2002	Kiefer	65																		
Heinsdorf & Krauß	1990	Kiefer	80	5,41	14,240	1,316	5,033	4,277	0,817												
Hochbichler et al.	1994	Buche	40	4,17	25,660	1,473	12,776	13,670	2,378	53,74	2,922	0,540	1,600	5,043	0,949						
Ingerslev & Hallbäc.	1999	Fichte	59	11,70	12,650		5,900				•										
Kreutzer	1976	Fichte	80	16,40	12,500	1,200	4,500	4,000	1,000	75,84	1,055	0,105	1,450	1,978	0,198						
Kreutzer	1976	Kiefer	130	5,98	13,000	1,300	5,000	3,500	1,000	38,48	1,299	0,130	1,299	2,079	0,208						

8.42 (Forts.) Makro-Nährelementgehalte in Nadeln und Blättern, Grobwurzeln und Feinwurzeln (TRM = Biomasse in t ha⁻¹; Gehalte (N, P, K, Ca, Mg) in mg g⁻¹).

Autor	Jahr E	Baumart	Alter	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Са	Mg
				Nadeli	n und B	lätter				Grobwi	ırzeln					Feinw	urzeln				
Kreutzer	1979 E	Buche	140	3,22	27,000	1,700	8,500	5,500	0,800	84,00	2,024	0,202	0,833	0,833	0,214						
Lamersdorf	1988 F	ichte	88	10,00			5,100	5,500	0,590	63,00			1,717	1,120	0,282	3,00			2,900	2,000	0,450
Le Goaster et al.	1991 F	ichte	30		12,500	1,500	5,500	3,770	0,430												
Mälkönen	1976 k	Kiefer	45	4,83	12,500	1,313	5,750	3,625		21,14	1,857	0,321	1,207	1,200	n.b.						
Markan	1993 E	Eiche	45	6,24	27,540	2,080	7,620	6,720	1,500	32,71	3,800	0,350	4,350	5,280	0,590	2,32	8,800	0,950	3,440	6,900	0,890
Markan	1993 E	Eiche	90	7,26	29,400	1,960	7,360	6,340	1,750	87,12	1,380	0,120	1,630	1,800	0,200	1,76	8,800	0,950	3,440	6,900	0,890
Meiwes & Beese	1988 E	Buche	115	2,80	25,107	1,339	10,607	17,500	1,521	52,90	3,786	0,161	1,374	5,079	0,335	2,80	7,929	0,271	1,214	12,000	0,661
Miller et al	1975 N	Nigra v.	39	7,40	10,700	1,750	7,550	5,210	1,350	28,12	1,340	0,410	1,100	0,720	0,410						
Mitchell et al.	1996	Douglasie	33	10,41	10,340	3,610	6,360	8,430	1,550												
Mitchell et al.	1996	Douglasie	42	9,16	9,030	3,910	6,130	6,820	1,470												
Mitchell et al.	1996	Douglasie	24	9,75	11,090	3,880	6,880	9,130	1,730												
Nebe & Herrmann	1987 F	ichte	100	11,81	14,900	1,050	6,000	6,000	0,500												
Neirynck et al.	1997	S.Kiefer	62	8,27	13,190	0,970	5,740	1,750	0,510	45,57	2,180	0,090	0,590	0,460	0,120						
Nihlgard	1972 E	Buche	90	3,90	25,641	1,590	5,897	5,128	1,744	45,00	2,444	0,242	1,333	0,733	0,220	6,00	6,667	0,783	3,167	1,500	0,600
Nihlgard	1972 F	ichte	55	18,00	12,222	1,211	6,778	4,667	0,533	56,50	1,239	0,073	1,044	0,655	0,158	2,00	10,000	0,800	3,000	4,000	0,800
Nihlgard & Lindgren	1977 E	Buche	90	4,80	27,080	1,080	7,710	8,750	2,020												
Nihlgard & Lindgren	1977 E	Buche	100	3,30	21,210	1,850	4,850	6,060	1,420												
Nykvist	1971 F	ichte	100	15,40	10,390	0,987	4,442	7,857	1,013	30,00	1,610	0,158	0,927	1,773	0,228	1,30	7,692	0,692	2,077	2,308	0,615
Nys et al.	1983 F	ichte	50	18,98	12,480	1,010	4,590	4,800	0,730												
Oren et al.	1989 F	ichte	30			1,701		11,724	0,965	1,80		0,533	1,283		0,350	1,80	8,561	0,911	1,694	2,833	0,406
Oren et al.	1989 F	ichte	30	11,25	28,978	3,153	11,472	19,911	2,169	1,80	9,444	0,828	1,806	2,383	0,528	1,80	13,333	0,928	2,606	3,006	0,650
Ovington & Madwick	1959 k	Kiefer	32	7,30	12,190	1,230	5,890	4,930	0,820												
Pavlov	1972 E	Buche	58	7,20	30,787	2,044	8,523	4,529	0,656												
Pavlov	1972 E	Buche	83	3,30	28,994	1,735	9,540	5,290	0,753												
Pavlov	1972 E	Buche	123	3,70	27,426	1,487	7,820	3,607	0,705												
Pavlov	1972 F	ichte	23	9,90	10,891	1,213	7,959	4,309	0,342												
Pavlov	1972 F	ichte	43	13,70	12,126	1,455	6,909	2,758	0,981												
Pavlov	1972 F	ichte	88	12,70	12,492	1,030	5,895	4,314	0,303												
Popovic	1990 k	Kiefer	50	4,30	12,767	1,349	5,256	4,093	0,953												
Rademacher et al.	1992 F	ichte	115	15,34	17,900	1,110	4,360	4,690	0,630	51,48	5,560	0,420	1,870	1,870	0,310	3,40	13,750	1,320	1,380	1,670	0,420
Rademacher	1994 F	ichte	46	14,90	12,950	1,100	4,970	2,530	0,320	19,40	10,920	0,670	0,840	1,490	0,330	3,70	11,300	1,000	1,220	1,380	0,460
Rademacher et al.	1999 k	Kiefer	25	3,16	14,140	1,390	4,680	2,300	0,730	4,90	1,450	0,180	1,110	0,760	0,270	4,11	5,850	0,640	1,740	0,830	0,310
Rademacher et al.	1999 k	Kiefer	46	6,50	15,260	1,370	5,470	3,070	0,840	18,86	1,730	0,190	1,160	0,760	0,250	4,11	5,850	0,640	1,740	0,830	0,310
Rademacher et al.	1999 k	Kiefer	115	2,92	17,110	1,130	4,310	3,150	0,710	22,17	1,790	0,110	0,860	0,850	0,240	4,10	5,878	0,659	1,756	0,829	0,317
Rademacher et al.	2001 E	Eiche	115	2,34	28,410	1,890	7,970	5,120	1,710	25,00	2,330	0,220	1,410	2,900	0,200	3,83	10,140	0,750	2,620	1,930	0,930

8.42 (Forts.) Makro-Nährelementgehalte in Nadeln und Blättern, Grobwurzeln und Feinwurzeln (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr Ba	umart	Alter	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Са	Mg
			Nadeln und Blätter							Grobwurzeln						Feinwurzeln					
Raisch	1983 Fig	hte	130	18,18	12,200	1,180	5,900	1,700	0,340												
Raisch	1983 Fig	hte	75	27,36	12,400	1,320	6,450	4,200	0,910												
Raisch	1983 Fig	hte	50	18,56	12,500	1,090	6,850	6,200	0,570												
Raisch	1983 Fig	hte	25	13,67	11,700	1,330	5,150	8,100	0,640												
Raisch	1983 Fig	hte	15	9,53	12,500	1,220	5,350	4,100	0,680												
Ranger et al.	1992 Fig	hte	85	20,82	12,060	1,710	4,060	3,090	1,010	61,58	1,830	0,270	1,260	2,000	0,420						
Ranger et al.	1995 Do	uglasie	20	17,40	16,490	0,980	4,770	9,310	1,110												
Ranger et al.	1995 Do	uglasie	40	13,60	15,430	0,990	4,480	5,930	1,070												
Ranger et al.	1995 Do	uglasie	60	16,10	13,950	1,010	4,930	8,010	0,990												
Seibt & Wittig	1965 Fig	chte	30	2,50	16,000	2,800	8,400	13,200	2,000												
Seibt & Wittig	1965 Kie	efer	30	0,90	20,000	1,110	4,440	10,000	1,110												
Seibt & Wittig	1965 Läi	rche	30																		
Steiner et al	1998 Kie	efer	73	4,32	20,310	1,300	5,020	3,840	0,710	50,21	2,850	0,130	0,920	1,040	0,330	1,50	12,200	0,600	0,830	7,640	0,780
Steiner et al	1998 Kie	efer	70	5,32	16,390	1,420	5,740	3,050	0,780	49,09	2,560	0,190	0,900	0,910	0,330	2,37	7,400	0,560	1,260	4,020	0,520
Trüby	1993 Bu	che	47			1,000	1,100	17,100	12,900												
Trüby	1993 Bu	che	48			1,000	0,800	18,900	10,100												
Trüby	1993 Do	uglasie	28			2,100	7,900		1,550												
Trüby	1993 Do	uglasie	28			1,250	6,900	5,050	1,050												
Trüby	1993 Eic	che	98			0,900	6,100	35,800	5,600												
Trüby	1993 Fig	hte	29			1,650	6,600	1,800	0,600												
Trüby	1993 Fig	hte	29			1,500	6,550	3,300	0,600												
Trüby	1993 Fig	hte	39			1,000	6,200	12,850	0,950												
Trüby	1993 Fig	hte	98			0,950	6,850	8,850	1,750												
Trüby	1993 Fig	hte	95			0,900	6,500	7,350	0,650												
Trüby	1993 Fig	hte	42			1,000	6,300	4,800	1,000												
Trüby	1993 Kie	efer	98			1,300	4,600	5,400	1,000												
Trüby	1993 Kie	efer	103			1,800	6,700	4,900	0,800												
Trüby	1993 Kie	efer	46			1,500	4,950	6,800	1,150												
Trüby	1993 Kie	efer	95			1,400	4,300	4,100	1,000												
Trüby	1993 Ta	nne	150			1,200	3,900	17,000	1,750												
Trüby	1993 Ta	nne	86			1,600	5,850		1,900												
Trüby	1993 Ta		83				6,850	14,450	1,300												
Trüby	1993 Ta		83					11,500	1,400												
Trüby	1993 Ta		83			2,450	•														
Webber	1977 Do		18	9,38	10,740	1,740															

8.42 (Forts.) Makro-Nährelementgehalte in Nadeln und Blättern, Grobwurzeln und Feinwurzeln (TRM = Biomasse in t ha $^{-1}$; Gehalte (N, P, K, Ca, Mg) in mg g $^{-1}$).

Autor	Jahr	Baumart	Alter	TRM	N	Р	K	Са	Mg	TRM	N	Р	K	Ca	Mg	TRM	N	Р	K	Ca	Mg
				Nadel	n und B	lätter				Grobw	urzeln					Feinw	urzeln				
Weiner & Grodzinski	1984	Eiche	72	4,00	20,400	1,730	3,220	5,470	1,180	30,55	3,060	0,200	0,100	0,270	0,320						
Weiner & Grodzinski	1984	Kiefer	59	3,58	15,200	1,210	2,420	2,190	0,930	17,72	0,510	0,300	0,380	0,400	0,460						
Weis & Göttlein	2002	Buche	95		19,770	1,220	5,350	5,790	1,690												
Weis & Göttlein	2002	Fichte	90	16,00	14,070	1,180	4,100	4,890	0,890												
Wright & Will	1958	Kiefer	18	4,88	9,640	1,020	6,000	2,550	0,930												
Wright & Will	1958	Kiefer	28	3,73	14,290	1,520	5,480	3,100	0,900												
Wright & Will	1958	Kiefer	64	3,73	10,830	1,170	4,050	4,760	0,810												
Wright & Will	1958	S.Kiefer	18	2,48	10,000	1,640	6,070	6,070	1,040												
Wright & Will	1958	S.Kiefer	28	3,81	6,740	1,070	5,350	4,880	0,810						•						
Wright & Will	1958	S.Kiefer	48	4,43	9,200	1,260	6,400	4,800	1,220						•						

8.5 Schwermetallgehalte

8.51 Berücksichtigte Untersuchungen zu Schwermetallgehalten in Biomassekompartimenten.

Autor	Jahr	Ort	Region	Be-	Humus-	Bodentyp	Geologie		Höhe	T _{Jahr}	Baumart	Alter	-
				lastung	form			mm					merkung
				*			(Substrat)	mm	m	ç			
Barnes et al.		Autobahn	Schottland			k.A.	k.A.				Eiche		
Barnes et al.		Loch Ard Forest	Schottland			k.A.	k.A.				Fichte		
Barnes et al.		Green Park Glasgow	Schottland			k.A.	k.A.				Hainbuche		
Barnes et al.		Autobahn	Schottland			k.A.	k.A.				S.Kiefer		
Barnes et al.		Autobahn	Schottland			k.A.	k.A.				S.Kiefer		
Barnes et al.		Autobahn	Schottland			k.A.	k.A.				S.Kiefer		
Barnes et al.	1976	Autobahn	Schottland			k.A.	k.A.				S.Kiefer		
Barnes et al.	1976	Autobahn	Schottland			k.A.	k.A.				S.Kiefer		
Barnes et al.	1976	Green Park Glasgow	Schottland			k.A.	k.A.				Pappel		
Block	1993	Merzalben	Pfälzerwald		Mull.Moder	Pods. Braunerde	Sandstein	950	525	7,5	Eiche	185	Level II 705
Fangmeier et al	1986	Frankfurter Stadtwald	Rhein-Main			k.A.	Schotterebene				Eiche		
Fangmeier et al	1986	Frankfurter Stadtwald	Rhein-Main			k.A.	Schotterebene				Kiefer		
Gehrmann	2002	Haard	NRW		Roh.Moder	Pods. Braunerde	Flugdecksand	775	70	9,0	Buche		Level II 503
Gehrmann	2002	Paderborn	NRW		Roh.Moder	Pods. Braunerde	Flammenmergel	1200	415	7,5	Fichte		
Gehrmann	2002	Kleve	NRW		Flugstreifen	Pods.Braunerde	Pleistozän	775	45	9,0	Kiefer		Level II 501
Glavac et al.	1990	Kassel	Nordhessen		Moder	Pods.Braunerde	Lößlehm ü.Basalt				Buche	42	
Hagemeyer&Breckle	1986	Bielefeld	Teutob.Wald			k.A.	k.A.				Eiche	32	
Hagemeyer&Breckle	1986	Bielefeld	Teutob.Wald			k.A.	k.A.				Eiche	32	
Hagemeyer&Breckle	1986	Bielefeld	Teutob.Wald			k.A.	k.A.				Eiche	32	
Hagemeyer&Breckle	1986	Bielefeld	Teutob.Wald			k.A.	k.A.				Eiche	36	
Hagemeyer&Breckle	1986	Bielefeld	Teutob.Wald			k.A.	k.A.				Eiche	37	
Hagemeyer&Breckle	1986	Osnabrück	Teutob.Wald			k.A.	k.A.				Eiche	49	
Hagemeyer&Breckle	1986	Osnabrück	Teutob.Wald			k.A.	k.A.				Eiche	55	
Hagemeyer&Breckle	1986	Osnabrück	Teutob.Wald			k.A.	k.A.				Eiche	60	
Hampp&Höll	1974	Müchen Stadt				k.A.	k.A.				Robinie		
Herrmann et al	1978	Eschweiler Wald	Eifel			Parabraunerde	k.A.				Eiche	116	
Herrmann et al	1978	Wenauer Forst	Eifel			Pseudogley	k.A.				Eiche	124	
Herrmann et al	1978	Frankenforst	Eifel			Pods.Braunerde	Flugsand				Eiche		
Kardell&Larsson	1978	Stockholm	Schweden			k.A.	Ton				Eiche	250	
Kardell&Larsson	1978	Stockholm	Schweden			k.A.	k.A.				Eiche	250	
Kardell&Larsson	1978	Stockholm	Schweden			k.A.	k.A.				Eiche	250	
Kardell&Larsson		Stockholm	Schweden			k.A.	k.A.				Eiche	250	

^{(*}Belastung: nach Angabe des Autors)

8.51 (Forts.) Berücksichtigte Untersuchungen zu Schwermetallgehalten in Biomassekompartimenten.

Autor	Jahr	Ort	Region	Be-	Humus-	Bodentyp	Geologie	N_{jahr}	Höhe	T _{Jahr}	Baumart	Alter	Be-
				lastung	form			mm					merkung
				*			(Substrat)	mm	m	°C			
Lamersdorf		Solling	S.Niedersachsen			Pods.Braunerde	Sandstein	1066	500	6,5	Fichte	100	
Lamersdorf	1988	Wingst	Cuxhafen		Rohhumus	Pods.Braunerde	Pleistozän	860	70		Fichte	118	1
Markan	1993	Grunewald	Berlin			Pods.Braunerde	Pleistozän				Eiche	45	
Markan	1993	Grunewald	Berlin			Pods.Braunerde	Pleistozän				Eiche	90	
Mayer	1981	Solling	S.Niedersachsen		Moder	Pods.Braunerde	Sandstein	1066	500		Buche	129	
Mayer	1981	Solling	S.Niedersachsen		Moder	Pods.Braunerde	Sandstein	1066	500	6,5	Fichte	93	
Meiwes et al.	1988	Göttinger Wald	S.Niedersachsen		Mull	Terra fusca	unt. Muschelkalk	650	420	8,5	Buche	115	
Nebe&Herrmann	1987	Dresden	Östl. Erzgebirge		Rohhumus	Pods.Braunerde	Rhyolith				Fichte	100	
Queirolo et al	1990	Königstein	Taunus			k.A.	k.A.				Eiche		
Rademacher		Postturm	Ratzeburg			k.A.	k.A.	690	70	8,1	Fichte	75	
Rademacher	1986	Bodenmais				k.A.	k.A.				Fichte	80	
Rademacher	1986	Bodenmais				k.A.	k.A.				Fichte	85	
Rademacher	1986	Eichstädt				k.A.	k.A.				Fichte	85	
Rademacher	1986	Bodenmais				k.A.	k.A.				Fichte	90	
Rademacher	1986	Bodenmais				k.A.	k.A.				Fichte	94	
Rademacher	1986	Wörth				k.A.	k.A.				Fichte	98	
Raisch	1983	Bärhalde	Südschwarzwald		MullModer	Braunerde	Granit	1900	1160	5,3	Fichte	15	
Raisch	1983	Bärhalde	Südschwarzwald		MullModer	Braunerde	Granit	1900	1160	5,3	Fichte	25	
Raisch	1983	Bärhalde	Südschwarzwald		Moder	Pseudogley	Granit	1900	1170	5,3	Fichte	50	
Raisch	1983	Bärhalde	Südschwarzwald		Moder	Braunerde	Granit	1900	1180	5,3	Fichte	75	
Raisch	1983	Bärhalde	Südschwarzwald		Moder	Pods. Braunerde	Granit	1900	1260	5,3	Fichte	130	
Schrimpf	1980	Warmensteinach	Fichtelgebirge			k.A.	k.A.				Tanne	180	
Schultz	1987	Harste	S.Niedersachsen		Mull	Parabraunerde	ob. Muschelkalk	750	250	8,0	Buche	98	
Schultz	1987	Solling	S.Niedersachsen		Moder	Pods. Braunerde	Sandstein	1066	500	6,5	Buche	135	
Schultz	1987	Sellhorn	Lüneb.Heide		Moder	Pods. Braunerde	Pleistozän	710	80	8,0	Eiche	103	
Schultz	1988	Spanbeck	S.Niedersachsen		Moder	Pods. Braunerde		680	250	7,8	Fichte	86	
Schultz	1987	Westerberg	Cuxhafen		Rohhumus	Podsol	Pleistozän	800	38	k.A.	Fichte	88	
Schultz	1987	Sellhorn	Lüneb.Heide		Rohhumus	Pods. Braunerde	Pleistozän	710	80	8,0	Kiefer	98	
Symeonides	1979	Nordschweden	Västerbotten			k.A.	Sandmoräne				Kiefer	95	
Symeonides	1979	Nordschweden	Västerbotten			k.A.	Schottermoräne				Kiefer		

^{(*}Belastung: nach Angabe des Autors)

8.51 (Forts.) Berücksichtigte Untersuchungen zu Schwermetallgehalten in Biomassekompartimenten.

Autor	Jahr	Ort	Region	Be-	Humus-	Bodentyp	Geologie	N _{jahr}	Höhe 1	Jahr	Baumart	Alter	Be-
				lastung	form			mm					merkung
				*			(Substrat)	mm	m	°C			
Trüby	1993	Breinigerberg	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	270	9,5	Buche	47	Buche 18
Trüby	1993	Breinigerberg	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	270		Buche	48	Buche 19
Trüby		Herrenwald	S.Schwarzwald	Belastet		Halde	Silikatisch	1750	930		Douglasie	28	Douglasie 3
Trüby		Herrenwald	S.Schwarzwald			k.A.	Silikatisch	1750	930	6,8	Douglasie	28	Douglasie 4
Trüby	1993	Bernhardshammer	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	250	9,5	Eiche	98	Eiche 15
Trüby	1993	Herrenwald	S.Schwarzwald	Belastet		Halde	Silikatisch	1750	930	6,5	Fichte	29	Fichte 1
Trüby	1993	Herrenwald	S.Schwarzwald			k.A.	Silikatisch	1750	930	6,5	Fichte	29	Fichte 2
Trüby		Binsfeldhammer	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	260		Fichte	39	Fichte 10
Trüby	1993	Breinigerberg	Nordl.Eifel	Belastet		k.A.	Silikatisch	670	270		Fichte		Fichte 20
Trüby		Bernhardshammer	Nordl.Eifel	Belastet		k.A.	Silikatisch	670	230	9,5	Fichte		Fichte 12
Trüby		Bernhardshammer	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	240	9,5	Fichte	98	Fichte 11
Trüby		Breinigerberg	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	275		Kiefer		Kiefer 16
Trüby	1993	Breinigerberg	Nordl.Eifel	Belastet		k.A.	Silikatisch	670	275		Kiefer		Kiefer 17
Trüby	1993	Bernhardshammer	Nordl.Eifel	Belastet		k.A.	Carbonatisch	670	240		Kiefer	98	Kiefer 13
Trüby	1993	Bernhardshammer	Nordl.Eifel	Belastet		k.A.	Silikatisch	670	230		Kiefer	103	Kiefer 14
Trüby		Holderpfad	S.Schwarzwald	Belastet		Halde	Silikatisch	1400	490		Tanne	83	Tanne 7
Trüby		Holderpfad	S.Schwarzwald			k.A.	Silikatisch	1400	490	7,5	Tanne	83	Tanne 9
Trüby		Teufelsgrund	S.Schwarzwald			k.A.	Silikatisch	1650	800	7	Tanne	86	Tanne 6
Trüby		Teufelsgrund	S.Schwarzwald	Belastet			Silikatisch	1650	800	7	Tanne	150	Tanne 5
Trüby & Zöttl	1988	BAB Müllheim	Baden-Württemb.				Carbonat				Birke		
Weiner&Grodzinski		Niepolomice	Südpolen			Pseudogley		700			Eiche	72	
Weiner&Grodzinski		Niepolomice	Südpolen			Pods. Braunerde		700			Kiefer	59	
Wichern & Breckle	1983	BAB Gütersloh	NRW			k.A.					Birke		
Wichern & Breckle	1983	BAB Gütersloh	NRW			k.A.					Eiche		
Wichern & Breckle	1983	BAB Gütersloh	NRW			k.A.					Kiefer		

^{(*}Belastung: nach Angabe des Autors)

8.52 Schwermetallgehalte in Derbholz und Derbrinde

Autor	Jahr	Baumart	Alter	ZN	РВ	CD	CU	NI	CR	ZN	РВ	CD	CU	NI	CR	Bemerkung
				Derbh	olz [mo	kg ⁻¹]				Derbrir	nde [mg	kg ⁻¹]				
Barnes et al.	1976	Eiche								80,00	683,00		25,00)		
Barnes et al.	1976	Fichte		15,00	5,25		0,60			15,00	4,00		5,00)		
Barnes et al.	1976	H.Buche			3,00											
Barnes et al.	1976	S.Kiefer								16,00	64,00		8,00)		
Barnes et al.	1976	S.Kiefer								17,00	77,00		10,00)		
Barnes et al.	1976	S.Kiefer								15,00	52,00		7,00)		
Barnes et al.	1976	S.Kiefer								12,00	23,00		5,00)		
Barnes et al.	1976	S.Kiefer								12,00	17,00		3,00)		
Barnes et al.	1976	Pappel		26,00	2,50		1,50				300,00		24,00			
Block		Eiche	185	1,72	0,16	0,04	1,41			21,66	16,06	0,38	5,72	2		
Fangmeier et al	1986	Eiche		,	,						73,30					
Fangmeier et al		Kiefer									63,60					
Gehrmann	2002	Buche		9,82	1,32		1,40			22,06	33,28		4,62	2		
Gehrmann		Fichte		17,74		0,30				170,66	8,46		4,02			
Gehrmann	2002	Kiefer		11,24		0,54	1,18			21,22	4,18	0,76	2,66	;		
Glavac et al.		Buche	42	,	,	0,31					,					
Hagemeyer&Breckle	1986	Eiche	32			0,14										
Hagemeyer&Breckle	1986	Eiche	32			0,12										
Hagemeyer&Breckle		Eiche	32			0,15										
Hagemeyer&Breckle	1986	Eiche	36			0,07										
Hagemeyer&Breckle	1986	Eiche	37			0,08										
Hagemeyer&Breckle	1986	Eiche	49			0,11										
Hagemeyer&Breckle	1986	Eiche	55			0,09										
Hagemeyer&Breckle		Eiche	60			0,10										
Hampp&Höll		Robinie									6,01					
Herrmann et al		Eiche	116	3,00	2,00		1,67			1	, , ,				1	
Herrmann et al		Eiche	124				1,50									
Herrmann et al		Eiche		0,50			1,50								1	
Kardell&Larsson		Eiche	250	,	7,50		,,,,								1	
Kardell&Larsson		Eiche	250		0,26	0,00										
Kardell&Larsson		Eiche	250		3,33	-,									1	
Kardell&Larsson		Eiche	250		4,11											

8.52 (Forts.) Schwermetallgehalte in Derbholz und Derbrinde

Autor	Jahr	Baumart	Alter	ZN	РВ	CD	cu	NI	CR	ZN	РВ	CD	CU	NI	CR	Bemerkung
				Derbh	olz [m	g kg ¹]				Derbrir	nde [mg	kg ⁻¹]				
Lamersdorf	1988	Fichte	100	17,21	2,50	0,43	0,84	0,22	0,71	153,85	30,77	3,08	7,38	1,62	0,71	
Lamersdorf	1988	Fichte	118	36,76	1,20	0,43	0,85	0,22	0,36	170,00	12,20	0,50	4,50	2,00	0,50	
Markan	1993	Eiche	45	4,91	0,73	0,10	2,47			25,62	8,55	0,26	6,43			
Markan	1993	Eiche	90	10,80	0,90	0,06	2,41			25,62	8,55	0,26	6,43			Alter geschätzt
Mayer	1981	Buche	129	11,00	3,00	0,19	41,00	11,00	11,00	41,00	35,00	0,06	32,00	11,00	12,00	
Mayer	1981	Fichte	93	21,00	7,00	0,36	46,00	11,00	9,30	178,00	19,00	1,45	32,00	15,00	14,00	
Meiwes et al.	1988	Buche	115		0,48	0,06		0,37	0,63	6,83	9,03	0,12	2,38	0,62	0,65	
Nebe&Herrmann	1987	Fichte	100	19,70			1,30			202,00			5,20			
Queirolo et al	1990	Eiche		10,00	0,60	0,10	1,25									
Rademacher	1986	Fichte	75	11,97	0,79	0,49				264,75	1,50	3,13				Funktionstüchtiges Phloem
Rademacher	1986	Fichte	80	13,49	0,16	0,09				133,25						Funktionstüchtiges Phloem
Rademacher	1986	Fichte	85	17,77	0,19					196,00	1,10					Funktionstüchtiges Phloem
Rademacher	1986	Fichte	85	6,60	0,76	0,08				155,50						Funktionstüchtiges Phloem
Rademacher	1986	Fichte	90	15,35	0,50	0,06				189,50						Funktionstüchtiges Phloem
Rademacher	1986	Fichte	94	14,68	0,34					157,50	1,08					Funktionstüchtiges Phloem
Rademacher	1986	Fichte	98	9,40	0,37	0,10				145,50	0,56					Funktionstüchtiges Phloem
Raisch	1983	Fichte	15	19,50	0,60	0,27	2,88	2,30	0,44	118,00	2,65	0,90	9,26	2,05	0,58	
Raisch	1983	Fichte	25	17,00	0,53	0,23	1,80	1,25	0,40	140,00	1,45	1,60	5,65	5,00	0,92	
Raisch	1983	Fichte	50	19,00	1,24	0,23	1,50	1,15	0,54	135,00	2,40	0,83	5,20	1,70	1,15	
Raisch	1983	Fichte	75	22,00	1,20	0,15	1,80	1,10	0,37	151,00	1,80	0,54	5,30	1,65	0,52	
Raisch	1983	Fichte	130	18,00	0,60	0,18	1,42	0,80		222,00	1,90	0,30	4,46	1,20	0,65	
Schrimpf	1980	Tanne	180	8,70	0,98	0,29										Jahrringe ab 1950
Schultz	1987	Buche	98	16,71	0,58	0,12	1,73	0,63	0,43	17,65	11,76	0,59	11,76	11,76	0,59	
Schultz	1987	Buche	135	16,62	0,58	0,12	2,92	0,64	0,44		9,86		13,81	1,48		
Schultz	1987	Eiche	103	6,63	1,10	0,44	3,87	0,44	0,72		17,39	0,87	4,35	0,87	0,87	
Schultz		Fichte	86	19,30	2,63	0,47	9,94	0,35	0,32		11,76	2,94	17,65	2,35	0,59	
Schultz	1987	Kiefer	98	5,52	0,55			0,50					4,35	0,43		
Symeonides		Kiefer	95		0,46	0,16				29,00	1,80	0,31	2,00			
Symeonides	1979	Kiefer		21,86	2,93		2,73			150,00	178.00		117,00			

8.52 (Forts.) Schwermetallgehalte in Derbholz und Derbrinde

Autor	Jahr	Baumart	Alter	ZN	РВ	CD	CU	NI	CR	ZN	РВ	CD	CU	NI	CR	Bemerkung
				Derbh	olz [mo	g kg ⁻¹]				Derbrir	nde [mg	kg ⁻¹]			I	
Trüby		Buche	47	4,40	1,00	0,20	1,10			24,00	1,00		7,70			Bastrinde
Trüby	1993	Buche	48	4,20			1,00			27,00	1,30		4,20			Bastrinde
Trüby		Douglasie	28	8,30	26*	0,50				69,00	4,50	3,60				Bastrinde, *Pb nicht berücksichtigt
Trüby	1993	Douglasie		6,80		0,20				92,00	0,67	1,40				Bastrinde
Trüby	1993	Eiche	98	0,90	0,50		1,30			12,00	2,90		6,00			Bastrinde
Trüby		Fichte	29	20,00		0,20				200,00	1,00	0,64				Bastrinde, *Pb nicht berücksichtigt
Trüby	1993	Fichte	29	12,00	8,90	0,20				170,00	0,40	0,48				Bastrinde
Trüby	1993	Fichte	39	12,00	15,00	0,90	1,10			220,00	50,00	4,20	10,00			Bastrinde
Trüby	1993	Fichte	42	22,00	9,00		1,10			300,00	2,00	3,60	61,00			Bastrinde
Trüby	1993	Fichte	95	31,00	36,00	2,30	1,10			350,00	22,00	13,00	10,00			Bastrinde
Trüby	1993	Fichte	98	15,00	11,00	1,60	0,60			230,00	5,70	14,00	7,40			Bastrinde
Trüby	1993	Kiefer	46	29,00	1,00	1,10	0,90			270,00	0,85	5,80	4,90			Bastrinde
Trüby	1993	Kiefer	95	19,00	5,00	1,50	0,80			140,00	4,40	9,00	2,80			Bastrinde
Trüby	1993	Kiefer	98	9,40	0,70	1,10	0,70			150,00	3,60	6,80	6,60			Bastrinde
Trüby	1993	Kiefer	103	17,00	9,50	4,00	0,90			140,00	1,60	20,00	5,00			Bastrinde
Trüby	1993	Tanne	83	11,00	13*	0,80										Bastrinde, *Pb nicht berücksichtigt
Trüby	1993	Tanne	83	8,50	5,70	0,30				43,00	0,14	0,61				Bastrinde
Trüby	1993	Tanne	86	5,30	4,60	0,20				33,00	0,33	0,87				Bastrinde
Trüby	1993	Tanne	150	18,00	64*	0,50				140,00	9,30	1,10				Bastrinde, *Pb nicht berücksichtigt
Trüby & Zöttl	1988	Birke			1,84						1,20					Bastrinde
Weiner&Grodzinski	1984	Eiche	72	1,38	4,42	0,83	1,68	1,83		68,78	81,62	2,06	19,38	8,49		
Weiner&Grodzinski	1984	Kiefer	59	7,38	2,60	1,19	1,37	2,86		35,40	54,74	1,26	11,50	5,53		
Wichern & Breckle	1983	Birke			4,20											
Wichern & Breckle	1983	Eiche			0,50											
Wichern & Breckle	1983	Kiefer			0,70						_		•			

8.6 Untersuchungsziele und Untersuchungsmethoden

8.61 Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k. A. = keine Angabe).

Autor	Jahr	Baum- art	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Wright & Will	1958	Kiefer, Schwarz kiefer	Baumartenvergleich Altersklassenvergleich	Culbin Schottland	4 Probebäume je Baumart und Alter	Derbholz, Rinde, Äste, Nadeln	Äste der Oberkrone, Äste der Kronenbasis inkl. Totäste, 3 Nadelklassen (1j., 2j., älter) 2-4 Stammscheiben 80°C
Ovington & Madwick	1959	Kiefer	Stoffinventur	Jedburgh, Süd- Schottland	Je 4 Probebäume aus 5 Durchmesserklassen	Derbholz mit Rinde, Lebende Äste, Totäste, Zapfen, Triebe, Nadeln, Grobwurzeln > 5 mm, Feinwurzeln	80 °C
Seibt & Wittig	1965	Fichte, Kiefer, Jap.Lärc he	Düngeversuche mit NPKCa und ungedüngter Referenzfläche	Oerrel, Nordwestdeuts chland	Je Behandlung 6 Massenmittelstämme	Derbholz, Derbrinde, Reisig und Äste, Nadeln	Stammscheiben in 2 m Abständen
Fomes et al.	1970	Fichte	Düngeversuch, Baumartenvergleich mit P. Resinosa/N.Y.State	Schwarzwald	3 Probebäume je Behandlung, aus 3 Durchmesserklassen	Derbholz, Derbrinde, lebende Äste, Totäste, Nadeln	70 °C
Pavlov	1972	Buche Fichte	IBP Inventur der Stoffgehalte in jeweils 3 Altersklasse von Buche und Fichte	Solling Südnieder- sächsisches Bergland	3 Probebäume im Bereich der am stärksten besetzten Durchmesserklasse z.T. 6 Probebäume aus der Durchmesserverteilung	Derbholz, Derbrinde, Astholz und Astrinde bis 7 cm, Blätter/Nadeln, Grobwurzeln > 5 mm: Trennung von Wurzelholz und Wurzelrinde Feinere Wurzeln, Blätter/Nadeln	Stammscheiben in 1 m Abständen Einteilung der Äste bei Buche in 1 cm Klassen, bei Fichte in Jahrgänge Nadeln nach 3-5 Jahrgängen
Nihlgard	1972	Buche, Fichte	Baumartenvergleich	Lund, Südschweden	8 Probebäume je Bestand	Derbholz, Derbrinde, Astholz mit Rinde, ältere Nadeln, Stubben und Hauptwurzeln, Mittel- und Feinwurzeln Regressionsanalyse	Einjährige Zweige mit Blättern/Nadeln Mittlere Wurzeln 5-50 mm Feinwurzeln < 5 mm
Mälkönen	1976	Kiefer	Simmulation von Nährstoffexporten	Süd-Finnland	k.A.	Derbholz, Derbrinde, Äste, Nadeln Stubben und Wurzeln	

8.61 (Forts.) Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k.A. = keine Angabe).

Autor	Jahr	Baum- art	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Miller et al.	1976	Schwarz -kiefer	Düngeversuch Jährliche Aufnahmeraten für Makronährelemente	Culbin, Schottland	2 Probebäume je Behandlung	Stubben, Derbholz, Derbrinde, Äste, Nadeln, Grobwurzeln	Totäste 7 Nadelklassen und 5 Aststärken nach Alter und Kronenposition
Kreutzer	1976 1979	Fichte, Kiefer, Buche	Nährstoffentzüge bei unterschiedlicher Nutzungsintensität	Bayern	k.A.	k.A.	
Nihlgard & Lindgren	1977	Buche	Vergleich von 3 Beständen in einem Vegetationsgradienten	Lund, Südschweden	Je 10 Probebäume aus dem Durchmesserbereich Regressionsanalyse	Derbholz, Derbrinde, Zweige und Äste, Wurzelstock	Jüngste Zweige
Webber	1977	Doug- lasie	Inventur des Stoffhaushalts	Victoria, Canada	Je 3 Probebäume aus 3 Höhenklassen und 7 Durchmesserklassen	Derbholz, Derbrinde, lebende Äste, tote Äste, einjährige Nadeln, mehrjährige Nadeln Regressionsanalyse BHD und Höhe	70°C
Bringmark	1977	Kiefer	Stoffbilanz im Altbestand	Jädraas, Mittel- Schweden	k.A.	Derbholz, Derbrinde, Äste, einjährige Triebe, ältere Zweige, Einjährige Nadeln, ältere Nadeln Grobwurzeln	Stubben und Hauptwurzeln Wurzeln 10-50 mm Wurzeln < 10 mm
Nys et al.	1983	Fichte		Ardennen	5 Probebäume	Derbholz, Derbrinde, Reisig und Äste, Nadeln	
Raisch	1983	Fichte	Elementinventur in 5 Fichtenökosystemen im Alter von 15-130 Auch Schwermetalle	Bärhalde	2 (1) Probebäume im Bereich des Grundflächenmittelstamm es	Kernholz, Splintholz, Schaftrinde in 5 Sektionen, Reisig, Trockenäste, Zapfen	Trennung von Nadeljährgängen Zweige des ersten Jahrganges, Zweige < 1 cm, Äste > 1 cm
Weiner & Grodzinski	1984	Eiche Kiefer	Stoffhaushalt	Niepolomice Südpolen	k.A. (Volumentafeln)	Derbholz, Rinde, Zweige, Blätter/Nadeln	Zweig/Laub-Verhältnisse
Pellinen	1986	Buche	Bioelementinventur Verteilung in Baumkompartimente	Göttinger Wald, Buche	20 gefällte Buchen im gesamten Durchmesserbereich	Derbholz, Derbrinde, Reisig, Reisigrinde, Feinreisig < 2 cm, Stockholz	Raumdichten für Derbholz, Schaftderbholz, Asrderbholz Stockholz, Rinde, Holz mit Rinde

8.61 (Forts.) Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k.A. = keine Angabe).

Autor	Jahr	Baum- art	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Nebe & Herrmann	1987	Fichte	Biomasse und ihre Verteilung in Baumkompartimente	Meßfeld Tharandt (Dresden)	7 Probestämme (3 des Kreisflächenmittelstamms , je 2 aus Kraft 2 und Kraft 3	Kernholz und Splintholz des Schaftes, Grünäste mit Rinde, Grünreisig, Trockenäste mit Rinde, Trockenreisig Nadeln, Rinde des Schaftholzes	Holz und Rinde aus ¼, ½, ¾ der Baumlänge
Bredemeier	1987	Eiche Buche Fichte Kiefer	Stoffaufnahmeraten, Stofffestlegung in oberirdische Biomasse	Harste, Spanbeck, Lüneb. Heide Niedersachsen	Spanbeck: 3 Probebäume; übrige: Stichproben	Derbholz, Derbrinde, z.T. Astholz mit Rinde	
Lamersdorf	1988	Fichte		Westerberg Solling	3 Probebäume (Solling)	Stammscheiben 3,3 m HöheFeinwurzeln	
Meiwes & Beese	1988	Buche		Göttinger Wald	Proben von Pellinen (1986): ges. Durchmesserbereich, Regressionsanalyse	Derbholz, Derbrinde, Reisig, Reisigrinde, Feinreisig < 2 cm, Stockholz	Weitere Aufgliederung von Astholz, Astrinde sowie Wurzelholz und Wurzelrinde in 2 cm- Durchmesserklassen
Oren et al.	1989	Fichte	Vergleich zweier Schadklssen	Fichtelgebirge	Je ein Co-dominater Baum (Kraft 2)	Derbholz, Derbrinde, Grobwurzeln, Feinwurzeln, Zweige und Äste	Abgestorbene Wurzeln. Zweige in 5 Jahrgängen, Zweigrinde
Popovic	1990	Kiefer	Versauerungsexperiment	Umea, Nord- Schweden	1 Grundflächenmittelstamm	Derbholz, Rinde, lebende Äste, Totäste, Nadeln	Stamm- und Kronen sektionsweise
Heinsdorf & Krauß	1990	Kiefer	Schätztafeln für oberirdische TRM und Nährstoffspeicherung	Brandenburg	82 Probestämme in 6 Untersuchungsbeständen	Stamm ohne Rinde, Derbrinde, lebende Zweige, tote Zweige, Feinreisig, Nadeln	Vergleich Mittelstammverfahren und durchmesserklassenweise Berechnung
Feger et al.	1991	Fichte	Inventur der Elementvorräte ARINUS	Villingen Schwarzwald	2 Probebäume im Bereich des Grundflächen- Mittelstamms, Kraft 2	Kernholz, Splintholz Derbrinde, Äste > 1 cm, Trockenäste, Zapfen, einjährige Nadeln, mehrjährige Nadeln, einjährige Zweige, mehrjährige Zweige < 1 cm, Flechten; 50-100 mm, Wurzelstock	Splintholz, Kernholz und Rinde aus zwei Schafthöhen; Nadeln u. Zweige aus Licht- und Schattenkrone

8.61 (Forts.) Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k.A. = keine Angabe).

Autor	Jahr	Baum- art	Untersuchungsziel	Fallstudie, Baumart	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Le Goaster	1991	Fichte	Vergleich Verfärbt-geschädigte/ ungeschädigte Bäume	Vogesen	2 * 5 Probebäume aus einer Durchmesserklasse	Holz, Rinde, lebende Äste, Zweige, einjährige Nadeln, mehrjährige Nadeln Gesamtes Wurzelsystem Regressionsanalysen	Letztjährige Jahrringe Äste am 3. Quirl
Rade- macher et al	1992		Bilanzierung der Elementvorräte im geschädigten Fichten- bestand	Postturm, Ratzeburg	30 Probebäume nach Durchmesserklassen	Kernholz, Splintholz, Wurzelstock, Derbrinde, Astholz, Astrinde, Zweigholz, Zweigrinde, Nadeln, Hauptwurzeln, Feinwurzeln	Insgesamt 29 Kompartimente
Ranger et al.	1992	Fichte		Gemaingouette Westvogesen	15 Probebäume	Derbholz, Derbrinde, Reisig und Äste mit Rinde, Nadeln, Grobwurzeln	
Belkacem et al.	1992	Fichte	Stickstoffdüngung, Kalkung	Ardennen, Frankreich	8 Bäume je Behandlung	Stamm mit Rinde, Reisig und Äste mit Rinde, Nadeln	
Block	1993	Eiche Fichte	Verteilung/Verlagerung von Radionukleiden	Merzalben, Pfälzerwald	Je 2 Probebäume (Hohenadl'sche Mittelstämme)	Schaftholz, Schaftrinde, Astholz 1-7 cm, Astrinde, Reisig <1 cm, Grobwurzeln, Feinwurzeln < 5 mm	Trennung von äüßerer und innerer Rinde
Rade- macher	1994	Fichte	Elemntvörräte und Elementflüsse	Lange Bramke, Harz	60 Probebäume nach Durchmesserklassen	Kernholz, Splintholz, Rinde, Nadeln, Hauptwurzeln, Feinwurzeln	37 Kompartimente 6 Nadeljahrgänge, Wurzeln nach Tiefenstufen
Trüby	1994	Eiche Buche Fichte Kiefer Douglas ie	Paarweise Gegenüberstellung von Bäumen (1) unterschiedlicher geogener /atmogener Belastung (2) carbonatischen und silikatischen Standorten	Eifel Südschw.wald	Jeweils 1 vitaler Baum (Kraft 1,2)	Derbholz, Derbrinde, Äste, Zweige < 1 cm, Nadeln/Blätter	Baumkrone in 3-4 Segmenten. Bis zu 3 Aststärken Trennung von Bast und Rindenperiderm
Markan; Faensen- Thiebes et al.	1993 1996	Eiche	Elementinventur in 2 Kiefern-Eichen- Mischbeständen	Grunewald Berlin	2 bzw. 5 Probestämme nach Kraft, modifiziert	Derbholz, Derbrinde, Äste, Blätter, Stockholz	Feinstwurzeln < 2 mm, Feinwurzeln 2-5 mm, Schwachwurzeln 5-30 mm, Grobwurzeln; Derbholz und Derbrinde in zwei Schafthöhen

8.61 (Forts.) Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k.A. = keine Angabe).

Autor	Jahr	Baum- art	Untersuchungsziel	Fallstudie, Baumart	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Hochbichler et al.	1994	Buche	Stoffhaushaltssimulation in junger Buche	Wienerwald, Österreich	12 Probestämme in 4 cm – Durchmesserstufen. Berücksichtigung der soziologischen Stellung Regressionsanalyse	Derbholz, Derbrinde, Astholz 7-4 cm, Astrinde, Grobreisig 4-2 cm, Grobreisigrinde, Feinreisig 2-1 cm, Feinreisigrinde, Zweige mit Rinde Dürräste der Krone, Blätter	Stammscheiben in 2 m Abständen, Zuordnung in 5 Sektoren
Eriksson & Rosen	1994	Tanne Fichte J.Lärche	Baumartenvergleich	Halmstad Südschweden	2 Probebäume im Grundflächen(Volumen-) Mittelstamm	Derbholz mit Rinde, Reisig und Äste Nadeln mit einjährigen Zweigen	Stammproben aus 6 Höhen Je einen Ast aus 4 Kronensektionen Einjährige Nadeln und Zweige, Totäste, Zapfen
Ranger et al	1995	Doug- lasie	Vergleiche an 3 Altersklassen	Rhone, Frankreich	12 Probebäume je Bestand	Derbholz, Derbrinde, Äste, Nadeln	Raumdichte des Holzes
Mitchell et al.	1996	Doug- lasie	Versuche zur Durchforstung und Stickstoffdüngung	Vancouver Island Canada	Bäume aus Durchforstungsanfall	Derbholz, Derbrinde, lebende Äste, Nadeln	Totäste Äste aus jedem 3 Quirl
Neirynck et al.	1997	Schwarz kiefer	Stoffhaushalt	Hechtel, Belgien	3 Probebäume im Bereich Grundflächenmittelstamm , zusätzlich je aus Quartilen	Derbholz, DerbrindeZweige und Äste, Nadeln, Grobwurzeln (> 5 mm)	3 Nadeljahrgänge, 4 Ast- und Wurzelstärken (< 1 cm, 1-2 cm, 2-5 cm, > 5 cm)
Steiner et al.	1998	Kiefer	Gegenüberstellung von Beständen mit unterschiedlicher Stickstoffbelastung	Hubertusstock, Bayerswald /Brandenburg	Jeweils 5 Probebäume im Streuungsbereich (d+, d-) des Grundflächenmittelstamm es	Derbholz mit Trennung von Kernholz und Splintholz, Rinde Grobwurzeln > 2 mm, Feinwurzeln	3 Nadeljahrgänge, 3 Aststärken
Alriksson & Eriksson	1998	Fichte Kiefer Birke J.Lärche	Baumartenvergleich	Umea Nordost- Schweden	Je 2 Probebäume im Bereich des Grundflächenzentralstam mes	Derbholz mit Rinde, Reisig und Äste mit Rinde, Totäste, Nadeln/Blätter, Grobwurzeln	Stammscheiben aus 6 Baumhöhen Baumkrone in 3 Sektionen, 2 Äste aus jeder Kronensektion

8.61 (Forts.) Untersuchungsziele und Untersuchungsmethoden der herangezogenen Untersuchungen zu Makro-Nährelementgehalten (k.A. = keine Angabe).

Rade-	1999	Kiefer	Vergleiche an 3	Altpleistozän	Je 15 Probebäume in zwei	Schaftholz, Derbholz, Schaftrinde,	Zopfholz und Derbastholz
macher et			Altersklassen	Niedersachsen	jüngeren Beständen,	Derbrinde, Zweige/Äste < 7 cm,	Zopfrinde und Derbastrinde
al.			Bilanzierung von		5 Probebäum im	Nadeln	Stockholz
			Nutzungseingriffe		Altbestand	Feinwurzeln, Grob- und	
						Mittelwurzeln,	
Ingerslev &	1999	Fichte	Kalkungs- und	Klosterhede,	5 Probebäume aus	Derbholz, Derbrinde, lebende Äste,	
Hallbäcken			Düngungsversuch	Dänemark	unterschiedlichen	Totäste, einjährige Nadeln, übrige	
					Stärkeklassen.	Nadeln, Zapfen	
					Regressionsanalyse		
					(BHD/Höhe)		
Rade-	2001	Eiche	Nährstoffbilanzierung	Sellhorn	6 Probebäume	Stockholz, Derbholz, Astholz,	Grob-, Mittel- und Feinäste
macher et			über eine Umtriebszeit	Hohe Heide	Kraft 1-3	Derbrinde, Rinde der	Insgesamt 42 Kompartimente
al.				Pleistozän		Astkompartimente, Feinwurzeln	
Weis &	2002	Buche,	Inventur der oberirdischen	Höglwald	5 Probebäume im Bereich	Derbholz, Derbrinde Äste > 1 cm,	
Göttlein		Fichte	Nährelementvorräte	Bayern	des Mitteldurchmessers	Zweige < 1 cm, Ein und mehrjährige Nadeln	
Dietrich et	2002	Fichte	Nährstoffinventuren bzw.	Ebersberg,	5 – 7 Probebäume (Stammsplintholz, Stammkernholz,	Rinden-, Splint- und
al.			Ernteentzüge in 3 gleich-	Zusmarshausen	Grund-flächenspektrum, -	Derbrinde, Astholz, Astrinde,	Kernholzanteile an 8
			alten Fichtenbeständen	Flossenbürg	Percentile) Soziologische	Zweige, Nadeln, Totäste	Stammscheiben.
					Stellung		Benadelte, unbenadelte, tote
							Astteile in cm-Klassen
Gehrmann	2002	Eiche	Bioelementinventur auf	Nordrhein-	5 Bäume aus	Derbholz, Derbrinde, Zweige mit	
et al.		Buche	Level II – Flächen	Westfalen	Durchforstung	Rinde, Äste mit Rinde	
		Fichte	Auch Schwermetalle			z.T. Feinwurzeln	
		Kiefer					

8.62 Untersuchungsziele und Untersuchungsmethoden zu Schwermetallgehalten in Derbholz und Derbrinde (k.A. = keine Angabe).

Autor	Jahr	Baumart	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Hampp & Höll	1974	Robinie	Dendrochronologie an Straßenbäumen, Pb	München-Stadt	Nach unterschiedlicher Verkehrsdichte	Bohrkerne in 1,50 m Stammhöhe, Derbrinde (Phloem; Robinie), Junge Zweige (Phloem; Ahorn)	
Barnes et al.	1976	Eiche Fichte Pappel Schwarz -kiefer	Gegenüberstellung von Bäumen unter verschiedener atmogener Belastung	Schottland	Forststandort Autobahn, Glasgow Green Park	Stammscheiben, Rindenproben	
Kardell & Larsson	1978	Eiche	Dendrochronologie an Stadtbäumen	Stockholm	10 Probebäume in unterschiedlichem Abstand zu Strassen	Bohrkernentnahme in Brusthöhe Jahrringanalyse an 5 Jahresabschnitten	
Herrmann et al.	1978	Eiche	Dendrochronologie an Waldbäumen	Rheinland, NW	Je ein Probebaum auf drei Standorten	Stammscheiben Holz wurde mit Glas abgezogen	
Symeonides	1979	Kiefer	Gegenüberstellung unterschiedlicher atmogener Belastung	Västerbotten, Nordschweden	10 Kiefern aus unbelasteter Region; 22 Kiefern aus belasteter Region;	Bohrkernentnahme in Brusthöhe; 2 Bohrungen in unterschiedlicher Orientierung	Einteilung der Bohrspäne in 10jahrige Segmente Rindenproben aus unterschiedlicher Höhe
Schrimpf	1980	Tanne	Dendrochronologie an Waldbaum	Fichtelgebirge	180jähriger Probebaum	Stammscheibe aus Brusthöhe, mit Flingrün-Papier gereinigt	Weiterverarbeitung mit Glasplatte Zusätzlich Schneeproben
Mayer	1981	Buche Fichte	Stoffhaushalt der Schwermetalle	Solling	Bestandesinventur; 1 Probebaum aus der am stärksten besetzten Durchmesserklasse	Derbholz, Derbrinde, Astholz, Astrinde, Grüne Blätter	Fichte: 6 Astklassen (Jahrgang 1-5, älter); 6 Nadelklasse (Jahrgang 1-5, älter)
Raisch	1983	Fichte	Elementinventur in 5 Fichtenökosystemen im Alter von 15-130 Inkl. Schwermetalle	Bärhalde	2 (1) Probebäume im Bereich des Grundflächenmittelstamm es	Kernholz, Splintholz, Schaftrinde in 5 Sektionen, Reisig, Trockenäste, Zapfen	Trennung von Nadeljährgängen Zweige des ersten Jahrganges, Zweige < 1 cm, Äste > 1 cm
Wickern & Breckle	1983	Eiche Birke Kiefer	Dendrochronogie der Pb- Belastung an Strassenbäumen	BAB 2 Gütersloh	Standorte nahe der Autobahn	Bohrkerne in 1,0 m Stammhöhe	
Weiner & Grodzinski	1984	Eiche Kiefer	Stoffhaushalt inkl. Schwermetalle	Niepolomice Südpolen	k.A. (Volumentafeln)	Derbholz, Rinde, Zweige, Blätter/Nadeln	Zweig/Laub-Verhältnisse

8.62 (Forts.) Untersuchungsziele und Untersuchungsmethoden zu Schwermetallgehalten in Derbholz und Derbrinde (k.A. = keine Angabe).

Autor	Jahr	Baumart	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Hagemeyer & Breckle	1986	Eiche	Dendrochronologie der Cd-Belastung an Waldbäumen	Osnabrück Bielefeld	5 bzw. 6 Probebäume	Bohrkerne	
Fangmeier et al.	1986	Eiche Kiefer	Schadstoffbelastung von Ökosystem- Kompartimenten	Rhein-Main	7 Probenahmetermine	Borke, Blätter/Nadeln	Keimlinge der Eiche
Rade- macher	1986	Fichte	Elementgehalte an Bäumen unterschiedlicher Schädigung und Herkunft	Bodenmais Eichstädt Postturm Wörth	Einzelne Probestämme unterschiedlicher Schadklassen	Derbholz, Bastrinde Jeweils 2 Baumhöhen (Stammbasis und Krone)	Funktionstüchtiger und funktionsuntüchtiger Bast Holz nach Jahrringfraktionen
Nebe & Herrmann	1987	Fichte	Bioelementinventuren Verteilung in Baumkompartimente Inkl. Cu, Zn	Messfeld Tharandt (Dresden)	7 Probestämme (3 des Kreisflächenmittelstamms , je 2 aus Kraft 2 und Kraft 3	Kernholz und Splintholz des Schaftes, Grünäste mit Rinde, Grünreisig, Trockenäste mit Rinde, Trockenreisig Nadeln, Rinde des Schaftholzes	Holz und Rinde aus ¼ , ½, ¾ der Baumlänge
Schultz et al.	1988	Eiche Buche Fichte Kiefer	Stoffhaushalt und Stofflüsse der Schwermetalle	Solling, Harste Spanbeck Westerberg Lüneb. Heide	Solling, Spanbeck. 3 Probebäume Übrige: Stichproben	Holz und Rinde, z.T. Äste Blatt-/Nadelproben Feinwurzeln	Stammscheiben aus 3,3 m Höhe, unterteilt in 10jährige Abschnitte
Meiwes et al.	1988	Buche	Haushalt der Schwermetalle	Göttinger Wald	Proben von Pellinen (1986) (ges. Durchmesserbereich)	Derbholz, Derbrinde, Astholz, Astrinde, Wurzelholz, Wurzelrinde, Blattproben	Derbrinde und Stammscheiben aus 2 Baumhöhen, Holzproben aus Stammzentrum und peripherem Holz
Lamersdorf	1988	Fichte	Stoffhaushalt der Spurenstoffe	Solling Westerberg	3 Probebäume	Astrinde aus verschiedenen Kronenbereichen, Derbrinde aus 4 Höhen Derbholz aus 3,3 m Höhe. Feinwurzeln (2 mm), Schwachwurzeln 2-5 mm; Grobwurzeln > 5 mm,	Stammscheiben in 10j. Abschnitten Trennung von Ast- und Derbrinde nach abgestorbener Rinde und lebendem Bast, Trennung lebender und abgestorbener Feinwurzeln, Wurzelrinde und Wurzelholz

8.62 (Forts.) Untersuchungsziele und Untersuchungsmethoden zu Schwermetallgehalten in Derbholz und Derbrinde (k.A. = keine Angabe).

81

Autor	Jahr	Baumart	Untersuchungsziel	Fallstudie	Auswahl Probestämme	Hauptkompartimente	Sonderuntersuchungen
Queirolo et al.	1990	Eiche	Dendrochronologie an Waldbäumen	Königstein, Taunus Valdivia, Chile	5 Probebäume	Bohrkernentnahme mit Teflon- beschichteten Zuwachsbohrer	Test eines Analysenverfahrens für Spurenstoffe Vergleich mit unbelasteten Eichen in Valdivia, Südchile
Glavac et al.	1990	Buche	Jahresgang der Cd- Konzentration im Xylemsaft	Kassel	55 Probebäume	Unterer Stammteil	Cd-Gehalt im Saftholz nur ergänzend untersucht.
Markan; Faensen- Thiebes et al.	1993 1996	Eiche	Elementinventur in 2 Kiefern-Eichen- Mischbeständen inkl. Schwermetalle	Grunewald Berlin	2 bzw. 5 Probestämme nach Kraft, modifiziert	Derbholz, Derbrinde, Äste, Blätter, Stockholz	Feinstwurzeln < 2 mm, Feinwurzeln 2-5 mm, Schwachwurzeln 5-30 mm, Grobwurzeln; Derbholz und Derbrinde in zwei Schafthöhen
Block	1993	Eiche Fichte	Verteilung/Verlagerung von Radionukleiden	Merzalben, Pfälzerwald	Je 2 Probebäume (Hohenadl'sche Mittelstämme)	Schaftholz, Schaftrinde, Astholz 1-7 cm, Astrinde, Reisig <1 cm, Grobwurzeln, Feinwurzeln < 5 mm	Trennung von äüsserer und innerer Rinde
Trüby	1994	Eiche Buche Fichte Kiefer Doug- lasie Tanne	Paarweise Gegenüberstellung von Bäumen (1) unterschiedlicher geogener /atmogener Belastung (2) carbonatischen und silikatischen Standorten	Eifel Südschw.wald	Jeweils 1 vitaler Baum (Kraft 1,2)	Derbholz, Derbrinde, Äste, Zweige < 1 cm, Nadeln/Blätter	Baumkrone in 3-4 Segmenten. Bis zu 3 Aststärken Trennung von Bast und Rindenperiderm
Gehrmann	2002	Buche Fichte Kiefer	Level II – Inventur Stoffgehalte in der Biomasse inkl. Schwermetalle	Haard, Kleve, Paderborn NW	5 Bäume aus Durchforstung	Derbholz, Derbrinde, Reisig mit Rinde, Astholz mit Rinde	