Machine Learning Foundations

1 Week 1

- 1. Supervised Learning: Regression
 - Find model f such that $f(x^i) \approx g^i$
 - Training Data: $(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)$
 - Loss = $\frac{\sum (f(x^i) y^i)^2}{n}$
 - $f(x) = w^T \cdot x + b$
- 2. Supervised Learning: Classification
 - $y^i \epsilon 1, +1$
 - Loss = $\frac{\sum 1(f(x^i) \neq y^i)}{n}$
 - $f(x) = sign(w^T \cdot x + b)$
- 3. Validation Data: Choosing the right collection of models is done using validation data.
- 4. Unsupervised Learning: Dimensionality Reduction
 - Data = $x^1, x^2, ..., x^n$
 - Compress, Explain and Group Data.
 - Encoder $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ Decoder: $f: \mathbb{R}^{d'} \to \mathbb{R}^d$
 - Goal: $g(f(x^i)) \approx x^i$
 - Loss: $\frac{\|g(f(x^i)) x^i\|^2}{n}$
- 5. Unsupervised Learning: Density Estimation
 - Probabilistic Model
 - $P: \mathbb{R}^d \to \mathbb{R}_+$ that sums to 1
 - P(x) is large is $x\epsilon$ Data and low otherwise
 - Loss: $\frac{\Sigma log(P(x^i))}{n}$

2 Week 2

- 1. Continuity & Differentiability
 - $f: R \to R$ is continuous if $\lim_{x \to x^*} f(x) = f(x^*)$
 - Differentiable if $\lim_{x\to x^*} \frac{f(x)-f(x^*)}{x-x^*} = f(x')$ exists.
 - if f is NOT continuous \implies NOT differentiable
- 2. Linear Approximation
 - If f is differentiable
 - $f(x) \approx f(x^*) + f'(x^*)(x x^*)$
 - $f(x) \approx L_{x^*}[f](x)$
- 3. Higher order Approximation
 - $f(x) \approx f(x^*) + f'(x^*)(x x^*) + \frac{f''(x^*)}{2!}(x x^*)^2 + \dots$
- 4. Lines
 - Line through point u along vector $v = x, x = u + \alpha v$, where $u, v, x \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$
 - Line through points u and $u' = x, x = u + \alpha(u u')$

- 5. Hyper Planes
 - Hyper Plane normal to vector w with value $b = x, w^T \cdot x = b$, where $x, w \in \mathbb{R}^d$ and $b \in \mathbb{R}$
- 6. Partial Derivatives & Gradients
 - $f: \mathbb{R}^d \to \mathbb{R}$
 - $\frac{\delta f}{\delta x}(v) = \left[\frac{\delta f}{\delta x_1}(v), \frac{\delta f}{\delta x_2}(v), ..., \frac{\delta f}{\delta x_d}(v)\right]$
 - $\Delta f(v) = \left[\frac{\delta f}{\delta x}\right]^T$
- 7. Multivariate Linear Approximation
 - $f(x) \approx f(v) + \Delta f(v)^T (x v) = L_v[f](x)$
- 8. Directional Derivative
 - $D_u[f](v) = \frac{\delta f}{\delta x}(v)^T \cdot u$, at point v along u
- 9. Direction of steepest ascent
 - Find $u \in \mathbb{R}^d$, ||u|| = 1 & maximize $D_u[f](v)$
 - $u = \alpha \cdot \Delta f(v)$

3 Week 3

- 1. Four Fundamental Sub Spaces
 - Column Space C(A)
 - span $(u_1, u_2, ..., u_n)$ = Linear Combination of vectors
 - If Ax = b has a solution, then $b \in C(A)$
 - Rank = number of pivot columns = $\dim(C(A))$
 - Null Space N(A)
 - -x|Ax=0
 - If A is invertible then N(A) only contains zero, and Ax = b has a unique solution.
 - Nullity = number of free variables = $\dim(N(A))$
 - If A has n columns, then rank + nullity = n
 - Can use Gaussian Elimination to solve for N(A)
 - Row Space R(A)
 - Column Space of A^T
 - Column Rank dim(C(A)) = Row Rank dim(R(A))
 - $-R(A) \perp N(A)$
 - Left Null Space $N(A^T)$
 - $-C(A) \perp N(A^T)$
- 2. Orthogonal and Vector Sub Spaces
 - Orthogonal Vectors, $x \perp y$ if $x \cdot y = x^T y = 0$
 - Orthonormal Vectors, $u \perp v$ and ||u|| = ||v|| = 1
- 3. Projections
 - Projection onto a line
 - $-p = \hat{x}a$
 - $-e = b p = b \hat{x}a$
 - $-e \perp a \implies \hat{x} = \frac{a^T b}{a^T a}$
 - Projection matrix $P = \frac{aa^T}{a^Ta}$
 - -p = Pb
 - -P is symmetric, $P^2 = P$, Rank P = 1
 - Projection onto a subspace
 - Projection of b onto C(A), Ax = b

- $-p = A\hat{x}, e = b A\hat{x}$
- $-e \perp$ every vector in C(A) and $N(A^T) \perp C(A) \implies e \in N(A^T)$
- Projection Matrix $P = A(A^T A)^{-1}A^T$, p = Pb
- 4. Least Squares
 - Suppose we have a vector b which leads to an inconsistent system $Ax \neq b$
 - Next best thing we do is minimize average error, $E^2 = (Ax b)^2$
 - $\frac{\delta E^2}{\delta x} = 0 \implies (A^T A)x = A^T b$

4 Week 4

- 1. Linear and Polynomial Regression
 - Minimize Loss $L(\theta) = \frac{\sum (x_i^T y_i)^2}{2}$
 - Use least squares method $(A^T A)\theta = A^T Y$
 - Polynomial Regression
 - Transformed Features: $\hat{y}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_m x^m = \Sigma \theta_j \phi_j(x), \phi_j(x) = x^j$
 - $-\hat{y}(x) = \theta^T \phi(x), (A^T A)\theta = A^T Y$
 - Then Proceed as Linear Regression
 - Regularized Loss
 - $-\ \bar{L}(\theta) = \frac{(x_i^T\theta y_i)^2}{2} + \lambda \left\|\theta\right\|^2, \ \text{Regularized Term} = \lambda \left\|\theta\right\|^2$
 - $(A^T A + \lambda I) \hat{\theta}_{reg} = A^T Y$
 - Overfitting \rightarrow Too small λ
 - Underfitting \rightarrow Too large λ
- 2. Eigenvalues and Eigenvectors
 - Eigenvalue equation $Ax = \lambda x$
 - $\frac{\delta u}{\delta t} = Au$ can be solved with solutions of the form $u(t) = e^{\lambda t}x$ if $Ax = \lambda x$
 - $\bullet \ (A \lambda I)x = 0$

Characteristic polynomial $|A - \lambda I| = 0$

Trace of $A = \Sigma \lambda = \text{Sum of diagonal elements of } A$

$$|A| = \text{Determinant of } A = \Pi \lambda$$

- 3. Diagonalization of a Matrix
 - A matrix A is diagonalizable if there exists an invertible matrix S such that $S^{-1}AS = \lambda$, $\lambda = \text{Diagonal}$ Matrix
 - $S = [x_1 \ x_2 \ ... \ x_n], x_1, x_2, ..., x_n =$ eigenvectors
 - $\bullet \ S^{-1}A^kS = \lambda^k, \ k \ge 1$
 - $Q\lambda Q^T = A$

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}$$

$$q_1 = \frac{x_1}{\|x_1\|}, q_2 = \frac{x_2}{\|x_2\|}, \dots, q_n = \frac{x_n}{\|x_n\|}$$

4. Fibonacci Sequence $F_k \approx \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^k$

5 Week 5

- 1. Complex Matrices
 - C^n : Complex counter part of R^n
 - inner product $x \cdot y = \bar{x}^T y$ $\bar{x}^T y \neq \bar{y}^T x$
 - $||x||^2 = \bar{x}^T x$
 - A^* =Conjugate Transpose of $A = \bar{A}^T$

2. Hermitian Matrix

- $A^* = A$, equivalent of symmetric matrices in complex
- All Eigenvectors are real and orthogonal

3. Unitary Matrix

- $\bullet \ U^*U=I$
- ||Ux|| = ||x||
- $U^{-1} = U^*$
- $|\lambda| = 1$, where λ is any eigenvalue

4. Diagonalization of Hermitian Matrices

- A is unitary diagonalizable if $A = U\lambda U^*$
- Any $n \times n$ matrix A is similar to an $n \times n$ upper triangular matrix, $A = UTU^*$
- If $U_1 = \begin{bmatrix} w_1 & w_2 & ... \end{bmatrix}$ is the matrix then take $w_1 = X_1$, first eigenvector then $w_2 = X_2 \frac{w_1 \cdot X_2}{\|w_1\|^2} w_1$

6 Week 6

1. Singular Value Decomposition

- Let A be a real symmetric matrix Then all eigenvalues of A are real and A is orthogonally diagonalizable $A=Q\lambda Q^T,\,Q^TQ=I$
- Any real $m \times n$ matrix A can be decomposed to SVD form $A(m \times n) = Q_1(m \times m) \Sigma(m \times n) Q_2(n \times n), \ Q_1^T Q_1 = I, \ Q_2^T Q_2 = I$ $Q_1 \& Q_2$ are orthogonal

•
$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$
, where $D = \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & \sigma_r \end{bmatrix}$

- σ_i are called singular values and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are eigenvalues of A^TA and x_i are eigenvectors
- Let $y_i = \frac{A_i x_i}{\sigma_i}$
- $Q_1 = \begin{bmatrix} y_1 & y_2 & \dots & ym \end{bmatrix}$, where y_i are eigenvectors of $AA^T = Q_1\Sigma\Sigma^TQ_1^T$ and $Q_2 = \begin{bmatrix} x_1 & x_2 & \dots & xm \end{bmatrix}$, where x_i are eigenvectors of $A^TA = Q_2\Sigma^T\Sigma Q_2^T$

2. Positive Definite

- A function f that vanishes at (0,0) and is strictly positive at other points
- For $f(x,y) = ax^2 + bxy + cy^2$ to be positive definite a,c>0 and $ac>b^2$
- If $ac = b^2$ then f(x, y) is positive semi-definite (a > 0) or negative semi-definite (a < 0)

4

- If $ac < b^2$ then (0,0) is saddle point
- $f(x,y) = v^T A v$, where $v = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ $|A| < 0 \implies$ saddle point, eigenvalues of A are positive if f(x,y) is positive definite

 $|A| = 0 \implies \text{semi definite}$