

CS4277 / CS5477 3D Computer Vision

Lecture 3: Absolute Conic and Robust Homography Estimation

Asst. Prof. Lee Gim Hee
AY 2019/20
Semester 2

Course Schedule

Week	Date	Торіс	Assignments
1	15 Jan	2D and 1D projective geometry	
2	22 Jan	Circular points and 3D projective geometry	
3	29 Jan	No Lecture	
4	05 Feb	Absolute conic and robust homography estimation (Video Lecture)	Assignment 1: Panoramic stitching (15%)
5	12 Feb	Camera models and calibration	
6	19 Feb	The fundamental and essential matrices	Due: Assignment 1 Assignment 2: Camera calibration (15%)
-	26 Feb	Semester Break	No lecture
7	04 Mar	Multiple-view geometry from points and/or lines	Due: Assignment 2 Assignment 3 : Relative and absolute pose estimation (20%)
8	11 Mar	Absolute pose estimation from points and/or lines	
9	18 Mar	Structure-from-Motion (SfM) and Visual Simultaneous Localization and Mapping (vSLAM)	Due: Assignment 3
10	25 Mar	Two-view and multi-view stereo	Assignment 4: Dense 3D model from multi-view stereo (20%)
11	01 Apr	Generalized cameras	
12	08 Apr	Factorization and non-rigid structure-from-motion	Due: Assignment 4
13	15 Apr	Auto-Calibration	

^{*}Make-up lecture (15 Feb, Sat 9.30am – 12.30pm): **Single view metrology** (Webcast will be provided)

Learning Outcomes

- Students should be able to:
- Describe the plane at infinity and its invariance under affine transformation.
- 2. Describe the absolute conic (and its absolute dual quadrics) and its invariance under similarity transformation.
- 3. Explain the difference between the algebraic, geometric and Sampson errors, and apply them on homography estimation.
- 4. Use the RANSAC algorithm for robust estimation.

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. R. Hartley, and Andrew Zisserman: "Multiple view geometry in computer vision", Chapter 3 and 4.
- 2. Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, "An invitation to 3-D vision", Chapter 5.3.

- The plane at infinity has the canonical position $\pi_{\infty} = (0, 0, 0, 1)^T$ in affine 3-space.
- It contains the directions $\mathbf{D} = (X_1, X_2, X_3, 0)^T$, and enables the identification of affine properties such as parallelism, particularly:
- i. Two planes are parallel if, and only if, their line of intersection is on π_∞ .
- ii. A line is parallel to another line, or to a plane, if the point of intersection is on $oldsymbol{\pi}_{\infty}$.

• The plane at infinity, π_{∞} , is a fixed plane under the projective transformation H if, and only if, H is an affinity, i.e.

$$\boldsymbol{\pi}_{\infty}' = H_{A}^{-T} \boldsymbol{\pi}_{\infty} = \begin{bmatrix} A^{-T} & \mathbf{0} \\ 0 \\ 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \boldsymbol{\pi}_{\infty}$$
• Remarks:

- 1. The plane π_{∞} is, in general, only fixed as a set under an affinity; it is not fixed pointwise.
- 2. Under a particular affinity (for example a Euclidean motion) there may be planes in addition to π_{∞} which are fixed. However, only π_{∞} is fixed under any affinity.

Example: Consider the Euclidean transformation represented

by the matrix

$$\mathbf{H}_{\mathbf{E}} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The planes are fixed as sets, but not pointwise as any (finite) point (not on the axis) is rotated in horizontal circles by this Euclidean action.

Example:

• Algebraically, the fixed planes of H are the eigenvectors of H^T , i.e.

$$H^{-T}\mathbf{v} = \lambda \mathbf{v} \iff H^{-T}\boldsymbol{\pi} = \lambda \boldsymbol{\pi},$$

- λ , \mathbf{v} are the eigenvalues and eigenvectors of H^T and H^{-T} .
- In this case, the eigenvalues and eigenvectors of $H_{\rm E}^{\rm T}$ are $\{e^{i\theta},e^{-i\theta},1,1\}$ and

$$\mathbf{E}_1 = \begin{pmatrix} 1 \\ i \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{E}_2 = \begin{pmatrix} 1 \\ -i \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{E}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{E}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

• The eigenvectors \mathbf{E}_1 and \mathbf{E}_2 are imaginary planes, and will not be discussed further.

Example:

$$\mathbf{E}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{E}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

In addition to \mathbf{E}_4 (i.e. the plane at infinity), we can see that there is a pencil of fixed planes spanned by \mathbf{E}_3 and \mathbf{E}_4 under \mathbf{H}_E , i.e.

$$\boldsymbol{\pi} = \mu \mathbf{E}_3 + \lambda \mathbf{E}_4.$$

- We will see in Lecture 6 that uncalibrated two-view reconstructions lead to projective ambiguity.
- The identified π_{∞} can be used to remove the projective ambiguity, where affine properties can be measured.

- The absolute conic, Ω_{∞} , is a (point) conic on π_{∞} .
- In a metric frame $m{\pi}_{\infty}=(0,0,0,1)^T$, and points on Ω_{∞} satisfy

$$X_1^2 + X_2^2 + X_3^2$$
 = 0.

• Note that two equations are required to define Ω_{∞} .

• For directions on π_{∞} (i.e. points with $X_4=0$) the defining equation can be written

$$\neg (X_1, X_2, X_3) I(X_1, X_2, X_3)^T = 0$$

- So that Ω_{∞} corresponds to a conic C with matrix C = I; it is thus a conic of purely imaginary points on π_{∞} .
- The conic Ω_{∞} is a geometric representation of the 5 additional degrees of freedom required to specify metric properties in an affine coordinate frame.

• The absolute conic, Ω_{∞} , is a fixed conic under the projective transformation H if, and only if, H is a similarity transformation.

Proof:

Since the absolute conic lies in π_{∞} , a transformation fixing it must fix π_{∞} , and hence must be affine, i.e.

$$\begin{array}{c}
H_{A} = \begin{bmatrix} A & t \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix}. \\
 \begin{array}{c}
H = \mathbf{0}^{\mathsf{T}} & \mathbf{1}
\end{bmatrix}.$$

At π_{∞} , $\Omega_{\infty} = I_{3\times 3}$, and since it is fixed by H_A , one has $A^{-T}IA^{-1} = I$ (up to scale), and taking inverses gives $AA^T = I$.

This means that A is orthogonal, hence a scaled rotation, or scaled rotation with reflection, i.e. similarity transform.

П

- Even though Ω_{∞} does not have any real points, it shares the properties of any conic:
- 1. The conic Ω_{∞} is only fixed as a set by a general similarity; it is not fixed pointwise.

Remark: This means that under a similarity a point on Ω_{∞} may travel to another point on Ω_{∞} , but it is not mapped to

Remarks: Suppose the support plane of the circle is π . Then π intersects π_{∞} in a line, and this line intersects Ω_{∞} in two points. These two points are the circular points of π .

3. All spheres intersect $oldsymbol{\pi}_{\infty}$ in Ω_{∞} .

TI 00

• The angle between two lines with directions (3-vectors) \mathbf{d}_1 and \mathbf{d}_2 is given by:

$$\cos \theta = \frac{(\mathbf{d}_1^\mathsf{T} \Omega_\infty \mathbf{d}_2)}{\sqrt{(\mathbf{d}_1^\mathsf{T} \Omega_\infty \mathbf{d}_1)(\mathbf{d}_2^\mathsf{T} \Omega_\infty \mathbf{d}_2)}} \int_{\mathbf{d}_2}^{\mathbf{d}_2} \int_{\mathbf{d}_2}^{\mathbf{d}_$$

- where \mathbf{d}_1 and \mathbf{d}_2 are the points of intersection of the lines with the plane $\boldsymbol{\pi}_{\infty}$ containing the conic Ω_{∞} .
- And Ω_{∞} is the matrix representation of the absolute conic in that plane.

The Absolute Conic: Orthogonality and Polarity

• Two directions \mathbf{d}_1 and \mathbf{d}_2 are orthogonal if

• Thus orthogonality is encoded by conjugacy with respect to Ω_{∞} .

On π_{∞} orthogonal directions \mathbf{d}_1 , \mathbf{d}_2 are conjugate with respect to the conic Ω_{∞} .

Image source: "Multiple View Geometry in Computer Vision", Richard Hartley and Andrew Zisserman

The Absolute Conic: Orthogonality and Polarity

A plane normal direction \mathbf{d} and the intersection line \mathbf{l} of the plane with $\mathbf{\pi}_{\infty}$ are in pole–polar relation with respect to Ω_{∞} .

19

CS4277-CS5477 :: G.H. Lee

The Absolute Conic: Orthogonality and Polarity

- We will see in Lecture 5 that the imaged absolute conic can be used to recover the camera intrinsics, i.e. calibration.
- Furthermore, we will see in Lecture 6 that both the absolute conic and plane at infinity can be used to remove affine distortion, hence the metric properties can be measured.

Image source: "Multiple View Geometry in Computer Vision", Richard Hartley and Andrew Zisserman

- The dual of the absolute conic Ω_{∞} is a degenerate dual quadric in 3-space called the absolute dual quadric, and denoted Q_{∞}^* .
- Geometrically Q_{∞}^* consists of the planes tangent to Ω_{∞} , so that Ω_{∞} is the "rim" of Q_{∞}^* , hence called a rim quadric.
- Algebraically Q_{∞}^* is represented by a 4 × 4 homogeneous matrix of rank 3, with the canonical form:

$$\mathbf{Q}_{\infty}^* = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix}.$$
 vante defficient.

- The dual quadric Q_{∞}^* is a degenerate quadric.
- There are 8 degrees of freedom (a symmetric matrix has 10 independent elements, but the irrelevant scale and zero determinant).

• The absolute dual quadric, Q_{∞}^* , is fixed under the projective transformation H if, and only if, H is a similarity.

Proof:

Since Q_{∞}^* is a dual quadric, it is fixed under H if and only if $Q_{\infty}^* = HQ_{\infty}^*H^T$. Applying this with an arbitrary transform

$$\mathbf{H} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & k \end{bmatrix}, \text{ we get } \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & k \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{A}^{\mathsf{T}} & \mathbf{v} \\ \mathbf{t}^{\mathsf{T}} & k \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{A}^{\mathsf{T}} & \mathbf{A}\mathbf{v} \\ \mathbf{v}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} & \mathbf{v}^{\mathsf{T}}\mathbf{v} \end{bmatrix}$$

Proof:

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{A}^\mathsf{T} & \mathbf{A}\mathbf{v} \\ \mathbf{v}^\mathsf{T}\mathbf{A}^\mathsf{T} & \mathbf{v}^\mathsf{T}\mathbf{v} \end{bmatrix}$$

which must be true up to scale.

By inspection, this equation holds if and only if $\mathbf{v} = \mathbf{0}$ and A is a scaled orthogonal matrix (scaling, rotation and possible reflection).

In other words, H is a similarity transform.

П

• The plane at infinity π_{∞} is the null-vector of Q_{∞}^* .

Remarks:

This is easily verified when Q_{∞}^* has its canonical form in a metric frame since then, with $\pi_{\infty} = (0,0,0,1)^T$, $Q_{\infty}^* \pi_{\infty} = 0$.

This property holds in any frame as may be readily seen algebraically from the transformation properties of planes and dual quadrics: if $\mathbf{X}' = H\mathbf{X}$, then $\mathbf{Q}_{\infty}^{*}{}' = H\mathbf{Q}_{\infty}^{*} H^{T}$, $\boldsymbol{\pi}_{\infty}{}' = H^{-T}\boldsymbol{\pi}_{\infty}$, and

$$oxed{\mathbb{Q}_{\infty}^*'\pi_{\infty}'} = (\mathtt{H}\, \mathtt{Q}_{\infty}^*\, \mathtt{H})\mathtt{H}^- oxed{\pi_{\infty}} = \mathtt{H}oxed{\mathbb{Q}_{\infty}^*\pi_{\infty}} = \mathbf{0}.$$

• The angle between two planes π_1 and π_2 is given by

$$\cos \theta = \frac{\boldsymbol{\pi}_1^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_2}{\sqrt{(\boldsymbol{\pi}_1^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_1) (\boldsymbol{\pi}_2^\mathsf{T} \boldsymbol{\mathsf{Q}}_\infty^* \boldsymbol{\pi}_2)}}. \qquad \begin{pmatrix} \mathbf{I}_{3,\zeta_3} \mathbf{0} \\ \mathbf{D} \end{pmatrix}$$

Proof:

Consider two planes with Euclidean coordinates $\pi_1 = (n_1^T, d_1)^T$, $\pi_2 = (n_2^T, d_2)^T$. In a Euclidean frame, Q_{∞}^* has the form

$$\mathbf{Q}_{\infty}^* = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{bmatrix} \text{, and we get} \quad \cos \theta = \frac{\mathbf{n}_1^\mathsf{T} \mathbf{n}_2}{\sqrt{(\mathbf{n}_1^\mathsf{T} \mathbf{n}_1) (\mathbf{n}_2^\mathsf{T} \mathbf{n}_2)}}$$

which is the angle between the planes expressed in terms of a scalar product of their normals.

Remarks:

1-14

If the planes and
$$\mathbb{Q}_{\infty}^*$$
 are projectively transformed,
$$\cos\theta = \frac{\pi_1^\mathsf{T}\mathbb{Q}_{\infty}^*\pi_2}{\sqrt{(\pi_1^\mathsf{T}\mathbb{Q}_{\infty}^*\pi_1)\,(\pi_2^\mathsf{T}\mathbb{Q}_{\infty}^*\pi_2)}}.$$

will still determine the angle between planes due to the (covariant) transformation properties of planes and dual quadrics.

Exercise: Prove it!

Planar Projective Transformations

We have seen in Lecture 1:

- Central projection maps points on one plane to points on another plane.
- And represented by a linear mapping of homogeneous coordinates $\mathbf{x}' = H\mathbf{x}$.

Existence of Projective Homography

1. Planar scene:

X₁ and X₂ is the 3D point X expressed in C₁ and C₂ respectively:

$$\Rightarrow \mathbf{X}_2 = R\mathbf{X}_1 + \mathbf{t}.$$

• $\mathbf{N} = [n_1, n_2, n_3]^T$ is the unit normal vector representing the plane $\boldsymbol{\pi}$ w.r.t \mathbf{C}_1 , and \underline{d} is the perpendicular distance from plane to \mathbf{C}_1 :

$$\mathbf{N}^{T}\mathbf{X}_{1} = n_{1}X + n_{2}Y + n_{3}Z = d,$$

$$\Rightarrow \frac{\mathbf{N}^{T}\mathbf{X}_{1}}{d} = \mathbf{1}, \ \forall \ \mathbf{X}_{1} \in \boldsymbol{\pi}.$$

Existence of Projective Homography

1. Planar scene:

Combining the two equations, we get

$$\mathbf{X}_2 = \left(R + \frac{\mathbf{t}\mathbf{N}^T}{d}\right)\mathbf{X}_1,$$

• Since $\lambda_1 \mathbf{x}_1 = \mathbf{X}_1$ and $\lambda_2 \mathbf{x}_2 = \mathbf{X}_2$, we get

$$\lambda \mathbf{x}_2 = \left(R + \frac{\mathbf{t} \mathbf{N}^T}{d}\right) \mathbf{x}_1$$

$$H$$

Existence of Projective Homography

Plane at infinity: Scene is very far away from the camera, e.g. aerial images, i.e.

$$H = \left(R + \frac{\mathbf{t}\mathbf{N}^T}{d}\right) \Rightarrow H_{\infty} = \lim_{d \to \infty} \left(R + \frac{\mathbf{t}\mathbf{N}^T}{d}\right) = R.$$

This is the same as pure rotation, i.e. $\mathbf{t} = (0,0,0)^T$:

$$H = \left(R + \frac{\mathbf{t}\mathbf{N}^T}{d}\right) \quad \Rightarrow H = R.$$

2D Homography

• **Given**: A set of points correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ between two images.

• Compute: The 2D Homography, H such that $H\mathbf{x}_i = \mathbf{x}_i'$ for each i.

Number of Measurements Required?

Question:

How many corresponding points $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ are required to compute H?

Number of Measurements Required?

Answer:

- The number of degrees of freedom and number of constraints give a lower bound:
- 1. 8 degrees of freedom for H, i.e. 9 entries less 1 for up to scale.
- 2. We will see that each point correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ gives 2 constraints.
- As a consequence, it is necessary to specify four point correspondences in order to constrain *H* fully.

Approximate Solutions

- It will be seen that if exactly four correspondences are given, then an exact solution for the matrix \underline{H} is possible.
- This is the minimal solution, which is important for the number of RANSAC loops for robust estimation (details later).
- Since points are measured inexactly ("noise"), more than four correspondences are usually used to obtain a least-squares solution (details later).

Direct Linear Transformation (DLT) Algorithm

• We begin with a simple linear algorithm for determining H given a set of four point correspondences, $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$.

• Let us denote $H\mathbf{x}_i = \mathbf{x}_i'$ in terms of vector cross product:

$$\mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = \mathbf{0}$$
, where $\mathbf{H} \mathbf{x}_i = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}} \mathbf{x}_i \\ \mathbf{h}^{2\mathsf{T}} \mathbf{x}_i \\ \mathbf{h}^{3\mathsf{T}} \mathbf{x}_i \end{pmatrix}$ and $\mathbf{x}_i' = (x_i', y_i', w_i')^{\mathsf{T}}$.

The cross product may then be given explicitly as:

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = \begin{pmatrix} y_{i}' \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} - w_{i}' \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \\ w_{i}' \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} - x_{i}' \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} \\ x_{i}' \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} \end{pmatrix}.$$

Direct Linear Transformation (DLT) Algorithm

• Since $\mathbf{h}^{j\mathsf{T}}\mathbf{x}_i = \mathbf{x}_i^{\mathsf{T}}\mathbf{h}^j$ for $j = 1, \dots, 3$, the cross product can be written in a linear form:

Only first 2 rows are independent!
$$\left\{ \begin{bmatrix} \mathbf{0}^\mathsf{T} & -w_i'\mathbf{x}_i^\mathsf{T} & y_i'\mathbf{x}_i^\mathsf{T} \\ w_i'\mathbf{x}_i^\mathsf{T} & \mathbf{0}^\mathsf{T} & -x_i'\mathbf{x}_i^\mathsf{T} \\ -y_i'\mathbf{x}_i^\mathsf{T} & x_i'\mathbf{x}_i^\mathsf{T} & \mathbf{0}^\mathsf{T} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix}
\mathbf{0}^{\mathsf{T}} & -w_i'\mathbf{x}_i^{\mathsf{T}} & y_i'\mathbf{x}_i^{\mathsf{T}} \\
w_i'\mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_i'\mathbf{x}_i^{\mathsf{T}}
\end{bmatrix}
\begin{pmatrix}
\mathbf{h}^1 \\
\mathbf{h}^2 \\
\mathbf{h}^3
\end{pmatrix} = \mathbf{0}, \text{ or }$$

$$\mathbf{A}_i\mathbf{h} = \mathbf{0}.$$

• The third row is obtained, up to scale, from the sum of x_i' times the first row and y_i times the second.

Direct Linear Transformation (DLT) Algorithm

$$\mathbf{A}_i\mathbf{h}=\mathbf{0}$$

• A_i is a 2 x 9 matrix, and h is a 9-vector made up of all elements in H, i.e.

$$\mathbf{h} = \left(egin{array}{c} \mathbf{h}^1 \ \mathbf{h}^2 \ \mathbf{h}^3 \end{array}
ight), \qquad \mathbb{H} = \left[egin{array}{ccc} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{array}
ight]$$

- With h_i the *i*-th element of **h**.
- Note that w_i is normally chosen as 1.

Direct Linear Transformation (DLT) Algorithm

- h has 8 degrees of freedom and each point correspondence gives two constraints.
- A minimum of 4-point correspondences is needed to solve for h, i.e. $x_i \leftrightarrow x_i'$, for $i \ge 4$.
- Stacking all equations together, we get:

$$Ah = 0$$

• A is now a $2i \times 9$ matrix.

Least -Squares Solution

- In real image measurements, the point correspondences are corrupted with noise.
- An exact solution for Ah = 0 does not exist!
- Instead, we seek to minimize $||A\mathbf{h}||$ over \mathbf{h} , subjected to the constraint of $||\mathbf{h}||=1$.
- This is the least-squares solution of **h** and can obtained by taking the 9-vector right null-space of A.

• **Right null-space:** right singular vector that correspondences to the smallest singular value, i.e. σ_9 in the Singular Value Decomposition (SVD) of A, i.e. v_9 ,

$$\operatorname{svd}(A) = \begin{bmatrix} u_1, u_2, \dots u_9 \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_9 \end{bmatrix} \begin{bmatrix} v_1, v_2, \dots v_9 \end{bmatrix}^T$$
Left singular vectors (2i x 9)

Singular values (9 x 9)

Right singular vectors (9 x 9)

• In general, for a given $m \times n$ matrix A, where m > n and rank(A) = r, its Singular Value Decomposition is given by:

• σ_{n-r} , ..., $\sigma_n = 0$, i.e. rank(A) = r if A is NOT corrupted by noise and an exact solution for $A\mathbf{h} = 0$ exists!

• If A is corrupted by noisy measurements,

$$\sigma_{n-r}, \ldots, \sigma_n \neq 0$$
.

• Since U and V are orthogonal matrices, and Σ is a diagonal matrix, we have:

$$A = \underbrace{\mathsf{U}\Sigma V}^T \Rightarrow AV = U\Sigma$$

$$Av_i = u_i \widehat{\sigma}_i$$

• $||Av_i||$ is minimized when $u_i\sigma_i$ is at its minimum, i.e. smallest singular value, i.e. σ_n .

• The solution of the problem:

$$\underset{\mathbf{h}}{\operatorname{argmin}}\|\mathbf{A}\mathbf{h}\|, \quad \text{s. t. } \|\mathbf{h}\| = 1$$
 is given by setting $\mathbf{h} = v_n = \sigma_n$

• We note that the constraint of $\|\mathbf{h}\| = 1$ is satisfied since $[v_1 \dots v_n]^T$ an orthogonal matrix where the rows and columns are unit norm, respectively.

Direct Linear Transformation (DLT) Algorithm

Objective

Given $n \geq 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix H such that $\mathbf{x}_i' = H\mathbf{x}_i$ orithm

Algorithm

- (i) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i$ compute \mathbf{A}_i . Usually only two first rows needed.
- (ii) Assemble $n \ 2 \times 9$ matrices A_i into a single $2n \times 9$ matrix A.
- (iii) Obtain SVD of A. Solution for h is last column of V.
- (iv) Determine H from \mathbf{h} .

5K3.

Slide credit: Marc Pollefeys

Homography: Degeneracy

- Rank of matrix A drops below 8 if three of the minimum four points correspondences are collinear.
- In this case, we cannot solve for h, i.e. critical configuration or degeneracy. $(R) \angle 8$
- It is important to check that selected points are NOT in the critical configuration, i.e. collinear.

Importance of Normalization

Problem:

For a point $(x,y,w)^T = (100,100,1)^T$,

This causes bad behavior in the SVD solution!

Solution: Data normalization

Importance of Normalization

Monte Carlo simulation:

- 5 points subjected to 0.1 pixel Gaussian noise are used to compute an identity homography matrix in 100 trials.
- Computed homography is used to transfer a further point into the second image in each trial.

 Results show that homographies computed from unnormalized data is less accurate.

Data Normalization

- Data normalization is carried out by a transformation of the points is as follows:
 - i. Points are translated so that their centroid is at the origin. $(9)^{0}$
 - ii. Points are then scaled so that the average distance from the origin is equal to sqrt(2).
 - iii. Transformation is applied to each of the two images independently.
- This means that the average point is equal to $(1,1,1)^T$ after normalization
- \Rightarrow no magnitude difference in linear equation $\triangle h=0$.

Normalized DLT Algorithm

Data normalization is an essential step in the DLT algorithm. It must not be considered optional!

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

(i) Normalize points
$$\widetilde{X}_i = T_{norm} X_i, \widetilde{X}_i' = T'_{norm} X_i'$$

(ii) Apply DLT algorithm to
$$\widetilde{X}_i \leftrightarrow \widetilde{X}_i'$$
,

(iii) Denormalize solution
$$H = T_{nom}^{\prime-1} \widetilde{H} T_{nom}$$

$$\begin{array}{c}
\text{Sim} & \text{Transfama} \\
\text{Tnorm} = \begin{bmatrix} \underline{s} & 0 & -sc_x \\ 0 & \underline{s} & -sc_y \\ 0 & 0 & 1 \end{bmatrix}
\end{array}$$

c: centroid of all data points

$$s = \left(\frac{\sqrt{2}}{\bar{d}}\right)$$

where d: mean distance of all points from centroid.

Different Cost Functions: Algebraic Distance

- The DLT algorithm minimizes the norm $\|A\mathbf{h}\|$, where $\epsilon = A\mathbf{h}$ is called the residual vector.
- Each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ contributes a partial error vector $\boldsymbol{\epsilon}_i$ (2 × 1), where the norm is called the algebraic distance:

$$d_{\text{alg}}(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2 = (\mathbf{e}_i \|^2) + \left\| \begin{bmatrix} \mathbf{0}^\mathsf{T} & -w_i' \mathbf{x}_i^\mathsf{T} & y_i' \mathbf{x}_i^\mathsf{T} \\ w_i' \mathbf{x}_i^\mathsf{T} & \mathbf{0}^\mathsf{T} & -x_i' \mathbf{x}_i^\mathsf{T} \end{bmatrix} \mathbf{h} \right\|^2.$$

• Given a set of correspondences, the total algebraic error for the complete set is:

$$\sum_i d_{\mathrm{alg}}(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2 = \sum_i \|\boldsymbol{\epsilon}_i\|^2 = \|\mathbf{A}\mathbf{h}\|^2 = \|\boldsymbol{\epsilon}\|^2.$$

Different Cost Functions: Algebraic Distance

- The disadvantage is that the quantity that is minimized is not meaningful geometrically nor statistically.
- Nevertheless, it is a linear solution (and thus a unique), and is computationally inexpensive.
- Often solutions based on algebraic distance are used as a starting point for a non-linear minimization of a geometric cost function (details later).
- The non-linear minimization gives the solution a final "polish".

Different Cost Functions: Geometric Distance

- The geometric distance in the image refers to the difference between the measured and estimated image coordinates.
- Let's first consider the transfer error in one image:

$$\sum_{i} d(\mathbf{x}'_{i}, \mathbf{H}\mathbf{x}_{i})^{2}.$$

• The error is minimized over the estimated homography *H*.

Different Cost Functions: Geometric Distance

Symmetric Transfer Error

- More preferable that errors be minimized in both images, and not solely in the one.
- Symmetric transfer error considers the forward (H) and backward (H^{-1}) transformation:

$$\sum_{i} d(\mathbf{x}_i, \mathbf{H}^{-1}\mathbf{x}_i')^2 + d(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2.$$

- The first term is the transfer error in the first image, and the second term is the transfer error in the second image.
- Again the error is minimized over the estimated homography H.

Different Cost Functions: Geometric Distance

Reprojection Error

• We are seeking a homography \widehat{H} and pairs of perfectly matched points $\widehat{\mathbf{x}}_i$ and $\widehat{\mathbf{x}}_i'$ that minimize the total error function:

Thum
$$\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2 \text{ subject to } \hat{\mathbf{x}}_i'$$

• Minimizing this cost function involves determining both \widehat{H} and a set of subsidiary correspondences $\{\widehat{\mathbf{x}}_i\}$ and $\{\widehat{\mathbf{x}}_i'\}$.

Symmetric Transfer Error (upper) Vs Reprojection Error

Different Cost Functions: Sampson Error

- The minimization of both homography H and points $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ makes the reprojection error accurate but also computationally complex.
- Its complexity contrasts with the simplicity of minimizing the algebraic error.
- The Sampson error lies between the algebraic and geometric cost functions in terms of complexity, but gives a close approximation to reprojection error.

Different Cost Functions: Sampson Error

- Let $C_H(X) = 0$ denote the cost function Ah = 0 that is satisfied by the point $X = (x, y, x', y')^T$ for a given homography H.
- We further denote $\widehat{\mathbf{X}}$ as the desired point so that $C_H(\widehat{\mathbf{X}}) = \mathbf{0}$ where $\delta_{\mathbf{X}} = \widehat{\mathbf{X}} \mathbf{X}$, and now the cost function may be approximated by a Taylor expansion:

$$\mathcal{C}_{H}(\mathbf{X} + \boldsymbol{\delta}_{\mathbf{X}}) = \mathcal{C}_{H}(\mathbf{X}) + (\partial \mathcal{C}_{H}/\partial \mathbf{X})\boldsymbol{\delta}_{\mathbf{X}} = \mathbf{0}$$

Different Cost Functions: Sampson Error

The approximated cost function can be rewritten as:

$$J\delta_{x} = -\epsilon$$
 λ_{x-b}

where J is the partial-derivative matrix, and ϵ is the cost $C_H(X)$ associated with X.

• The minimization problem now becomes: Find the vector $\delta_{\mathbf{X}}$ that minimizes $\|\delta_{\mathbf{X}}\|^2$ subject to $\mathrm{J}\delta_{\mathbf{X}}=-\epsilon$.

Different Cost Functions: Sampson Error

• Now J $\delta_{\mathbf{X}} = -\epsilon$ can be solved using the right pseudo inverse as:

$$\delta_{\mathbf{X}} = \underbrace{\mathbf{J}^{\mathsf{T}}(\mathbf{J}\mathbf{J}^{\mathsf{T}})^{-1}\boldsymbol{\epsilon}}_{\text{rendonstance}}$$

• And the Sampson error is defined by the norm:

$$\|\boldsymbol{\delta}_{\mathbf{X}}\|^{2} = \boldsymbol{\delta}_{\mathbf{X}}^{\mathsf{T}}\boldsymbol{\delta}_{\mathbf{X}} = \boldsymbol{\epsilon}^{\mathsf{T}}(\mathsf{J}\mathsf{J}^{\mathsf{T}})^{-1}\boldsymbol{\epsilon}.$$

Different Cost Functions: Sampson Error

- For the 2D homography estimation problem, $\mathbf{X} = (x, y, x', y')^T$ where the measurements are $\mathbf{x} = (x, y, 1)^T$ and $\mathbf{x}' = (x', y', 1)^T$.
- And $\underline{\epsilon} = C_H(X)$ is the algebraic error vector $A_i \mathbf{h}$ (a 2-vector).
- $J = \partial C_H(\mathbf{X})/\partial \mathbf{X}$ is a 2 x 4 matrix, where

$$J_{11} = \partial(-w_i'\mathbf{x}_i^\mathsf{T}\mathbf{h}^2 + y_i'\mathbf{x}_i^\mathsf{T}\mathbf{h}^3)/\partial x = -w_i'h_{21} + y_i'h_{31}.$$

Exercise: Derive the full expression of $\|\delta_{\mathbf{X}}\|^2$!

 The Geometric and Sampson errors are usually minimized as the squared Mahalanobis distance :

$$\|\mathbf{X} - f(\mathbf{P})\|_{\Sigma}^{2} = (\mathbf{X} - f(\mathbf{P}))^{\mathsf{T}} \Sigma^{-1} (\mathbf{X} - f(\mathbf{P})),$$

$$\text{argmin } \|\mathbf{X} - f(\mathbf{P})\|_{\Sigma}^{2},$$

$$\text{Continuous.}$$

- $\succ X \in \mathbb{R}^N$ is the measurement vector with covariance matrix Σ .
- \triangleright $\mathbf{P} \in \mathbb{R}^{M}$ is the set of parameters to be optimized.
- \succ A mapping function $f: \mathbb{R}^M \to \mathbb{R}^N$.
- This is an unconstrained continuous optimization that can be solved with solvers such as Gauss-Newton or Levenberg-Marquardt (details in Lecture 9).

where

Error in one image:

- Measurement vector \mathbf{X} is made up of the 2n inhomogeneous points \mathbf{x}_i' .
- Set of parameters to be optimized P is set as h.
- Mapping function f is defined by:

$$f: \mathbf{h} \mapsto (\mathtt{H}\mathbf{x}_1, \mathtt{H}\mathbf{x}_2, \dots, \mathtt{H}\mathbf{x}_n)$$

where the coordinates of points \mathbf{x}_i in the first image is taken as a fixed input.

• We now find that $\|\mathbf{X} - f(\mathbf{h})\|^2$ becomes $\sum_i d(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2$.

Symmetric Transfer Error:

- Measurement vector \mathbf{X} is a 4-vector made up of the inhomogeneous coordinates of the points \mathbf{x}_i and \mathbf{x}_i' .
- Set of parameters to be optimized **P** is set as **h**.
- Mapping function f is defined by:

$$f: \mathbf{h} \mapsto (\mathbf{H}^{-1}\mathbf{x}_1', \dots, \mathbf{H}^{-1}\mathbf{x}_n', \mathbf{H}\mathbf{x}_1, \dots, \mathbf{H}\mathbf{x}_n).$$

• We now find that $\|\mathbf{X} - f(\mathbf{h})\|^2$ becomes $\sum_i d(\mathbf{x}_i, \mathbf{H}^{-1}\mathbf{x}_i')^2 + d(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2$

Reprojection Error:

- Measurement vector contains the inhomogeneous coordinates of all the points \mathbf{x}_i and \mathbf{x}_i' .
- Set of parameters to be optimized is $P = (h, \hat{x}_1, \dots, \hat{x}_n)$.
- Mapping function f is defined by:

$$f:(\mathbf{h},\hat{\mathbf{x}}_1)\dots\hat{\mathbf{x}}_n)\mapsto (\hat{\mathbf{x}}_1)\hat{\mathbf{x}}_1',\dots,\hat{\mathbf{x}}_n,\hat{\mathbf{x}}_n')$$
 , where $\hat{\mathbf{x}}_i'=\hat{\mathbf{H}}\hat{\mathbf{x}}_i$.

• We can verify that $\|\mathbf{X} - f(\mathbf{h})\|^2$ becomes:

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2} \quad \text{subject to } \hat{\mathbf{x}}'_{i} = \hat{\mathbf{H}} \hat{\mathbf{x}}_{i} \quad \forall i$$

with X as a 4n-vector.

Sampson Approximation:

- Measurement vector $\underline{\mathbf{X}} = (x, y, x', y')^T$.
- Set of parameters to be optimized **P** is set as **h**.
- Here, we directly set $\mathbf{X} f(\mathbf{h}) = \delta_{\mathbf{X}}$, and $\|\mathbf{X} f(\mathbf{h})\|^2$ gives us the Sampson error:

$$\|\boldsymbol{\delta}_{\mathbf{X}}\|^2 = \boldsymbol{\delta}_{\mathbf{X}}^\mathsf{T} \boldsymbol{\delta}_{\mathbf{X}} = \boldsymbol{\epsilon}^\mathsf{T} (\mathsf{J}\mathsf{J}^\mathsf{T})^{-1} \boldsymbol{\epsilon}.$$

Random Sample Consensus: RANSAC

• Up to this point, we have assumed a set of correspondences with only measurement noise.

Random Sample Consensus: RANSAC

- In reality, keypoint matching gives us many outliers.
- Outliers can severely disturb the least-squares estimation, and should be removed.

- Given: n data points (x_i, y_i) , for i = 1, ..., n
- Find: Best fit line, i.e. two parameters (m,c) from the line equation $y_i = mx_i + c$, for i = 1, ..., n

- Given: n data points (x_i, y_i) , for i = 1, ..., n
- **Find**: Best fit line, i.e. two parameters (m,c) from the line equation $y_i = mx_i + c$, for i = 1, ..., n

Least-squares solution:

$$\underset{\underline{m,c}}{\operatorname{argmin}} \sum_{i=1}^{n} ||y_i - (mx_i + c)||^2$$

- Given: n data points (x_i, y_i) , for i = 1, ..., n
- **Find**: Best fit line, i.e. two parameters (m,c) from the line equation $y_i = mx_i + c$, for i = 1, ..., n

Least-squares solution:

$$\underset{m,c}{\operatorname{argmin}} \sum_{i=1}^{n} \|y_{\underline{i}} - (mx_i + c)\|^2$$

Least-squares fails when there's outliers!!!

RANSAC Steps:

1. Randomly select minimal subset of points, i.e. 2 points

RANSAC Steps:

2. Hypothesize a model

RANSAC Steps:

3. Compute error function, i.e. shortest point to line distance

RANSAC Steps:

4. Select points consistent with model

RANSAC Steps:

5. Repeat hypothesize-and-verify loop

RANSAC Steps:

6. Select the hypothesis with the highest number of

RANSAC Algorithm

Objective

y=MAKC

Robust fit of a model to a data set S which contains outliers.

Algorithm

2-pt

- i. Randomly select a sample of <u>s</u> data points from <u>S</u> and instantiate the <u>model from</u> this subset.
- Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S.
- After N trials, select the largest consensus set S_i . The model is re-estimated using all the points in the subset S_i .

Three parameters:

Number of points	s
Distance threshold	t
Number of Samples	(N)

M. Fischler, R. Bolles, "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography", Communications ACM, 1981.

Choosing the Parameters

- Number of points, s: minimum Solution

 - Typically minimum number needed to fit the model.
 - e.g. 2 for line and 4 for homography.
- Distance threshold, t:
 - Usually chosen empirically.
 - But can be set as $t^2=3.84\sigma^2$ if the measurement error, i.e. zero-mean Gaussian noise with std_dev_Z is known.
- Number of samples, N:
- Exhaustive search of all sample is often unnecessary and infeasible.

Choosing the Parameters

Number of samples, N

Probability that algorithm never selects a set of *s* points which all are inliers:

N Sets of

Probability that all s points are inliers
$$1 - p = (1 - w^s)^{\frac{p}{N}}$$

probability that at least one of the *s* points is an outlier

$$\Rightarrow N = \frac{\log(1-p)}{\log(1-w^s)}$$

p: probability that at least one of the random samples of s points is free from outliers. (GG°)

w: probability that any selected point is an inlier.

Choosing the Parameters

Number of samples, N:

$$N = \frac{\log(1 - p)}{\log(1 - w^s)}$$

Sample size	Proportion of outliers $\epsilon = 1 - w$						
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	[17]
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
₩ 6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	(1177

Table gives examples of N for p=0.99 for a given s and ϵ .

Choosing N Adaptively

• Often w is unknown, we can choose the worst case, i.e. 50%.

w can also be decided adaptively:

Adaptive RANSAC Algorithm

N=∞ , sample_count =0
while N > sample_count Repeat

3.
$$N = \frac{\log(1-p)}{\log(1-w^s)}$$
 with $p=0.99$

4. Increment sample_count by 1 Terminate

Robust 2D Homography Computation

Objective

Compute the 2D homography between two images. $\stackrel{\lower.}{\sim}$

Algorithm

- i. Interest points: Compute keypoints in each image.
- ii. Putative correspondences: Match keypoints using descriptors.
- iii. RANSAC robust estimation: Repeat for N samples, where N is determined adaptively:

SIFT ORB -

- a. Select a random sample of 4 correspondences and compute the homography H. My pollusize wood to the
- b. Calculate the distance d for each putative correspondence.
 - Compute the number of inliers consistent with H by the number of correspondences for which d < t
- Choose the H with the largest number of inliers.
- iv. Optimal estimation: re-estimate H from all correspondences classified as inliers.

presence of outliers.

Summary

- We have looked at how to:
- 1. Describe the plane at infinity and its invariance under affine transformation.
- Describe the absolute conic (and its absolute dual quadrics)
 and its invariance under similarity transformation.
- 3. Explain the difference between the algebraic, geometric and Sampson errors, and apply them on homography estimation.
- 4. Use the RANSAC algorithm for robust estimation.

