Topologie notevoli su \mathbb{R}

Topologia Euclidea su \mathbb{R} . $\mathcal{B} = \{]a, b[\mid a < b \}$ è base per una topologia su \mathbb{R} . Infatti

- (1) l'unione di tutti gli intervalli aperti limitati è ℝ
- (2) l'intersezione di due intervalli aperti limitati è vuota oppure un intervallo aperto limitato $(\in \mathcal{B})$.

Si ha: $U \subset \mathbb{R}$ aperto $\Leftrightarrow \forall x \in U \exists a < b \text{ t.c. } x \in]a, b[\subset U.$

$$]a, +\infty[=\bigcup_{b>a}]a, b[,]-\infty, b[$$
 aperti.

 $\{a\}$, [a, b], $[a, +\infty[$, $]-\infty$, b] chiusi (ma esistono molti altri chiusi).

[a, b[e]a, b] non sono né aperti né chiusi in \mathbb{R} , $\forall a < b$.

Retta di Sorgenfrey. $\mathcal{B}_{\ell} = \{[a, b[\mid a < b \} \text{ è base per una topologia su } \mathbb{R} \text{ detta topologia di Sorgenfrey o topologia degli intervalli aperti a destra. Denotiamo con <math>\mathbb{R}_{\ell}$ questo spazio topologico (retta di Sorgenfrey).

Oss. $]a,b[=\bigcup_{c\in]a,b[}[c,b[$ aperto in $\mathbb{R}_\ell\Rightarrow$ aperti Euclidei sono aperti in \mathbb{R}_ℓ (ma non viceversa). I chiusi Euclidei di \mathbb{R} sono chiusi in \mathbb{R}_ℓ .

$$[a,+\infty[$$
 $=$ \bigcup $[a,c[$ aperto in $\mathbb{R}_{\ell}.$

[a, b] chiuso in \mathbb{R}_{ℓ} (perché chiuso in \mathbb{R}).

 $[a, b] = \mathbb{R}_{\ell} - (]-\infty, a[\cup [b, +\infty[) \Rightarrow [a, b]]$ chiuso (e aperto) in \mathbb{R}_{ℓ} .

Intorni e basi di intorni

Def. X spazio topologico, $J \subset X$ è *intorno* di $x \in X$ se $\exists U \subset X$ aperto t.c. $x \in U \subset J$.

Esempio. $U \subset X$ aperto non vuoto è intorno di ogni suo punto (*intorno aperto*).

 $[-1,1] \subset \mathbb{R}$ è intorno di 0, e di ogni $x \in]-1,1[$, ma non di -1 e di 1. Infatti $-1 \in]a,b[\subset [-1,1]$ è impossibile.

Oss. $U \subset X$ aperto $\Leftrightarrow \forall x \in U$, $\exists J \subset X$ intorno di x in X t.c. $J \subset U$.

Def. X spazio topologico, $\mathcal J$ famiglia di intorni di $x \in X$ è base di intorni (o sistema fondamentale di intorni) di x se $\forall L \subset X$ intorno di x, $\exists J \in \mathcal J$ t.c. $x \in J \subset L$.

Oss. Nella definizione possiamo limitarci a $\it L$ intorno aperto di $\it x$.

Esempio.
$$x \in \mathbb{R} \leadsto \mathcal{J}_x = \left\{ \left] x - \frac{1}{n}, x + \frac{1}{n} \right[\mid n \in \mathbb{N} \right\}$$
 base d'intorni di x .

Def. $J \subset X$ è *intorno* di $A \subset X$ se $\exists U \subset X$ aperto t.c. $A \subset U \subset J$.

Def. $\mathcal J$ famiglia di intorni di $A\subset X$ è base di intorni (o sistema fondamentale di intorni) di A se $\forall L\subset X$ intorno (aperto) di A, $\exists J\in \mathcal J$ t.c. $A\subset J\subset L$.

Operatori topologici

X spazio topologico, $A \subset X$ sottoinsieme di X.

Def (Interno). Si chiama interno di A in X il sottoinsieme

$$\operatorname{Int}_X A \stackrel{\operatorname{def}}{=} \bigcup_{\substack{U \subset A \\ U \text{ aperto}}} U$$

unione di tutti gli aperti di X contenuti in A.

Oss. Int $_X A$ è il più grande aperto di X contenuto in A.

 $\operatorname{Int}_X A \subset A$ e vale $= \Leftrightarrow A$ aperto in X.

 $U \subset A \in U$ aperto in $X \Rightarrow U \subset \operatorname{Int}_X A$.

 $x \in \operatorname{Int}_X A \Leftrightarrow \exists U \subset X \text{ intorno di } x \text{ in } X \text{ t.c. } U \subset A.$

Esempio. $Int_{\mathbb{R}}[0, 1] =]0, 1[, Int_{\mathbb{R}}\{0\} = \emptyset, Int_{\mathbb{R}_{\ell}}[0, 1] = [0, 1[$

Def (Chiusura). Si chiama chiusura di A in X il sottoinsieme

$$Cl_X A \stackrel{\text{def}}{=} \bigcap_{\substack{C \supset A \\ C \text{ chiuso}}} C$$

intersezione di tutti i chiusi di X che contengono A.

Oss. $Cl_X A$ è il più piccolo chiuso di X che contiene A.

 $A \subset \operatorname{Cl}_X A$ e vale $= \Leftrightarrow A$ chiuso in X.

 $A \subset C$ e C chiuso in $X \Rightarrow Cl_X A \subset C$.

Prop. $x \in Cl_X A \Leftrightarrow \forall U \subset X$ intorno (aperto) di x in X si ha $U \cap A \neq \emptyset$.

Dim. Senza perdita di generalità basta considerare U intorno aperto di x.

 \Rightarrow Per assurdo, supponiamo $U \cap A = \emptyset \Rightarrow A \subset X - U$ chiuso \Rightarrow Cl_X $A \subset X - U \Rightarrow x \in X - U$ assurdo perché $x \in U$.

 \Leftarrow Per assurdo, supponiamo $x \notin \operatorname{Cl}_X A \Rightarrow x \in U := X - \operatorname{Cl}_X A$ aperto $\Rightarrow U \cap A \subset U \cap \operatorname{Cl}_X A = \emptyset \Rightarrow U \cap A = \emptyset$ assurdo.

Def (Frontiera). Si chiama frontiera (o bordo) di A in X il sottoinsieme

$$\operatorname{Fr}_X A \stackrel{\operatorname{def}}{=} \operatorname{Cl}_X A \cap \operatorname{Cl}_X (X - A)$$

intersezione delle chiusure di A e del complementare.

Si usa anche la notazione $\operatorname{Fr}_X A = \partial_X A = \partial A$.

Oss. $\operatorname{Fr}_X A$ è chiuso in X e $\operatorname{Fr}_X A \subset \operatorname{Cl}_X A$.

 $x \in \operatorname{Fr}_X A \Leftrightarrow \forall U \subset X$ intorno di x in X, si ha $U \cap A \neq \emptyset$ e $U \cap (X - A) \neq \emptyset$.

Teor. $\operatorname{Fr}_X A = \operatorname{Cl}_X A - \operatorname{Int}_X A$.

Dim. Mostriamo le due inclusioni.

 \subseteq Sappiamo $\operatorname{Fr}_X A \subset \operatorname{Cl}_X A$. Resta da dimostrare $\operatorname{Fr}_X A \cap \operatorname{Int}_X A = \emptyset$. Per assurdo se $\exists x \in \operatorname{Fr}_X A \cap \operatorname{Int}_X A \Rightarrow \operatorname{Int}_X A \cap (X - A) \neq \emptyset$ assurdo.