# Préservation de l'invariance par rotation sur maillage cartésien

### ou Vous avez dit trèfle à 4 feuilles?

ONSIDÉRONS le modèle que nous avons construit au chapitre précédent avec pour donnée initiale des densités invariantes par rotation. Le champ de vitesse (donnée par ces mêmes densités) est donc invariante par rotation. Ainsi pour tout temps nos densités devraient être invariante par rotation. Sauf qu'avec les schémas numériques classiques, cette propriété n'est pas du tout conservée au fil du temps... Comme nous allons le présenter au début de ce chapitre, les lignes de niveaux, au départ circulaires, vont peu à peu se déformer devenant progressivement carrées puis prenant plus tard la forme d'un trèfle à 4 feuilles!... Deux pistes seront alors étudiées :

- défaut du schéma de diffusion
- défaut du schéma de transport

Une fois le défaut identifié, un correctif sera finalement proposé.

## 1.1 Présentation du problème

Sans plus tardez, présentons le problème en image. Sur la Figure 1.1, est présenté une simulation numérique du modèle EDP construit au chapitre précédent avec :

- un schéma à 5 points classique pour la diffusion,
- un WENO5 (avec splitting directionnel) pour le transport.

La forme en forme de trèfle apparaît ici clairement.

#### HEP FIGURE

FIGURE 1.1 – Simulations numériques réalisées avec un WENO5 pour le transport et un Laplacien classique à 5 points pour la diffusion. Numerical simulations with the standard WENO5 stencil for the specific set of parameters. Partant d'une donnée initiale circulaire, une structure en forme de trèfle apparaît.



FIGURE 1.2 – Résolution de la pression donnée par un laplacien. La forme du domaine de calcul carré impacte sur le résultat.

#### 1.2 Le schéma de diffusion

#### 1.2.1 Influence de la condition limite

Le schéma associé à la diffusion a été le premier à être incriminé. En effet dans l'équation REFF??, la condition limite (CL) est imposée au bord du equef domaine de calcul  $\Omega$ , domaine qui est carré. La CL ne vérifie donc pas, dès le départ, l'invariance par rotation. Ceci est illustré sur la Figure 1.2 qui présente la solution de l'équation

$$\begin{cases}
-\Delta\Pi(\mathbf{x}) = P(t=0,x) & \text{dans } \Omega, \\
\Pi(\mathbf{x}) = 0 & \text{sur } \partial\Omega,
\end{cases}$$
(1.1)

qui n'est autre que l'équation résolue à la première itération (M étant initialisé au dessus du seuil d'hypoxie, on a alors au départ  $\gamma_{pp} = 1$  dans l'équation REF. De plus, comme N=0 au départ, on obtiens alors  $\nabla \cdot \mathbf{v} = P$ , car  $k \equiv 1$ ). Dans les itérations suivantes certes le second membres de l'équation va varier, mais cela ne va pas changer le fait que la forme du bord impacte sur les lignes de niveaux.

L'effet carré sur les lignes de niveaux de la pression, apparait surtout près du bord du domaine de calcul. Ainsi, pour tenter de palier à ce défaut, la première idée fut de considérer un domaine plus grand, laissant une sorte de couche limite pour absorber les déformations. Des simulations numériques de notre modèle ont été réalisées en doublant la longueur dans chaque direction (la taille d'une maille restant inchangée, on double aussi le nombre de maille).

Malheureusement, une forme de trèfle est toujours visible. On a même du mal à distinguer visuellement si il y a eu une amélioration. Visiblement cette couche limite ne suffit pas. Imposons donc la CL sur un cercle, de sorte à ce que celle-ci soit invariante par rotation. Considérons alors un disque  $\mathcal{D}$  inclus dans notre domaine de calcul initial  $\Omega$  et imposons la CL de dirichlet sur son bord. L'équation REFF devient alors :

egref

$$\begin{cases}
-\Delta\Pi(t,\mathbf{x}) = F(t,\mathbf{x}) & \text{dans } \Omega, \\
\Pi(t,\mathbf{x}) = 0 & \text{sur } \partial\mathcal{D},
\end{cases} \quad \forall t > 0$$
(1.2)

Pour résoudre cela on procède par pénalisation de tout ce qui est à l'extérieur du disque :

$$-\Delta\Pi(t, \mathbf{x}) = F(t, \mathbf{x}) + \frac{1}{\epsilon}\Pi \mathbb{1}_{\mathcal{D}^c}(\mathbf{x}), \tag{1.3}$$

où  $\mathcal{D}^c$  désigne le complémentaire de  $\mathcal{D}$ . Cette technique nous garantit ainsi l'invariance par rotation de  $\Pi$  si F l'est, comme on peut le voir sur la Figure REF. Les simulations numériques réalisées avec ce masque circulaire ne montre qu'une très légère amélioration de la forme : le trèfle persiste. Explorons alors une autre piste.

Montrer graphique?

### 1.2.2 Schéma à 9 points

La forme du trèfle fait très clairement apparaître les directions du maillage. Il est alors légitime de se demander si un schéma avec un stencil à 9 points ferait aussi apparaître ce genre de forme. Le premier schéma à 9 points essayer est le schéma classique, présenté notamment???, ayant des poids comme indiqué sur la Figure 1.3a. Aucune amélioration n'a malheureusement été constatée ... Un second schéma à 9 points a été imaginé à partir d'une méthode mixte éléments finis/volumes finis. Sur chaque maille  $\mathcal{M}$ , une approximation par un polynôme  $\mathbb{Q}_1$  est réalisée à partir des valeurs aux quatre coins de la maille. Le flux au travers du volume de contrôle est alors calculé comme l'intégrale sur le bord de ce volume, de la dérivée du polynôme. Les détails concernant cette méthode sont présenté en annexe ??. Il y est notamment montré que ce schéma mixte se ramène en réalité à un schéma à 9 points avec des poids un peu différents, comme présenté dans la Figure 1.3b. Ici encore le trèfle persiste. Explorons alors une autre piste.

bib ref

## 1.3 Le schéma de transport

## 1.3.1 Reproduction du problème sur un modèle (très) réduit

Afin de démontrer que le responsable du trèfle est le schéma de transport, travaillons sur un modèle plus simple, le plus simple possible. Il sera



FIGURE 1.3 – Poids associés à chacun des points du stencil à 9 points de schémas discrétisant le laplacien (h étant le pas d'espace, égal dans chaque direction).

à priori incapable de reproduire la biologie que l'on souhaite décrire mais il aura l'avantage de toujours présenter cette forme en trèfle. Ce nouveau modèle est construit à partir du modèle complet présenté au chapitre précédent, en faisant les simplifications suivantes :

- On enlève les parties modélisant les traitements cliniques. On peut donc ainsi considérer une seule et unique population proliférante.
- On supprime la partie vascularisation. Les taux de croissance  $\gamma_{pp}$  et  $\gamma_{pd}$  sont alors considéré constant, égaux à 1.
- On supprime le compartiment nécrosé, quitte à considérer que celle-ci est instantanément éliminée.

Le modèle complet en est alors réduit à :

$$\begin{cases}
\partial_t P + \nabla \cdot (\mathbf{v}P) = 0 \\
\nabla \cdot \mathbf{v} = P \\
\mathbf{v} = \nabla \Pi
\end{cases}$$
(1.4)

Notez qu'en injectant la seconde égalité dans la première équation, on obtient :

$$\partial_t P + \mathbf{v} \nabla P = -P^2 \tag{1.5}$$

Pour pouvoir incriminer le schéma de transport, réalisons une dernière simplification : donnons nous une vitesse. Ainsi seule l'équation 1.5 ci-dessus. La vitesse est choisie de sorte à reproduire au mieux la vitesse du système complet. Le champ est d'abord dilatant (pour reproduire la croissance lors de la



FIGURE 1.4 – Vitesses imposées dans l'équation de transport (1.5)

#### FIGURE

FIGURE 1.5 – Evolution de la densité P, solution numérique du modèle réduit (1.5).

rechute au premier traitement) puis contractant (lorsque le second traitement agit). La transition entre les deux comportements est une phase dans laquelle on a un mélange des deux comportements :

- dilatant sur le pourtour de la tumeur,
- contractant à l'intérieur de la tumeur.

La vitesse est alors choisie comme suit en fonction du rayon  $r(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_c\|$  uniquement ( $\mathbf{x}_c$  étant le centre du domaine de calcul de taille  $L \times L$ ):

$$\mathbf{v}(t, \mathbf{x}) = v(t, r(\mathbf{x})) \frac{\mathbf{x}}{\|\mathbf{x}\|} \quad \text{avec} \quad v(t, r) = e^{-t} v_{+}(r) - v_{-}(r), \tag{1.6}$$

où  $v_{-}$  et  $v_{+}$  sont respectivement les vitesses contractantes et dilatantes

$$v_{+}(r) = \exp\left(\frac{-1}{10} \left(\frac{r - L/4}{L/16}\right)^{2}\right),$$
 (1.7)

$$v_{-}(r) = \frac{1}{550} \exp\left(\frac{-1}{10} \left(\frac{r - L/8}{L/8}\right)^{2}\right).$$
 (1.8)

graphique 1.4 a refaire

Le profil de ces 2 vitesses est présenté à titre indicatif sur la Figure 1.4. Avec ce modèle extrêmement minimaliste, le trèfle à 4 feuilles apparaît une fois de plus, comme on peut le constater sur la Figure 1.5.

## 1.3.2 Méthode pour améliorer la préservation de l'invariance par rotation : le twin-WENO5

De la même manière que nous avons procédé pour l'équation de Poisson, proposons un schéma dont le stencil n'est pas uniquement réparti selon 2 directions. Le nouveau schéma baptisé twin-WENO5

Pour garder l'ordre de convergence du WENO5, n'inventons pas de nouveau schéma : combinons-le à lui même