1

APPENDIX FOR ANALOGOUS SYSTEMS

EE23BTECH11011- Batchu Ishitha*

ELECTRICAL ANALOGIES OF MECHANICAL SYSTEMS:

Two systems are said to be analogous if:

- 1) The two systems are physically different.
- 2) Differential equation modelling of these two systems are same.

There are two types of electrical analogies of translational mechanical systems:

- 1) Force-Voltage analogy
- 2) Force-Current analogy

FORCE-VOLTAGE ANALOGY:

In this, the mathematical equations of translational mechanical system are compared with mesh equations of the electrical system.

Translational Mechanical System	Electrical System
Force(F)	Voltage(V)
Mass(M)	Inductance (L)
Frictional coefficient(B)	Resistance(R)
Spring constant(K)	Reciprocal of Capacitance(1/C)
Displacement(x)	Charge(q)
Velocity(v)	Current(i)

TABLÉ 2 Input Parameters

Example:

Fig. 2.

Equations of translational mechanical system:

$$m_1\ddot{x}_1(t) - k_2\left(x_2(t) - x_1(t)\right) + k_1x_1(t) = 0 \tag{1}$$

$$m_2\ddot{x}_2(t) + k_2\left(x_2(t) - x_1(t)\right) = 0 \tag{2}$$

Mesh equations of electrical system:

Fig. 2.

$$k_{1} \int i_{1} dt + L_{1} \frac{di_{1}}{dt} + k_{2} \int (i_{1} - i_{2}) dt = 0$$

$$L_{2} \frac{di_{2}}{dt} - k_{2} \int (i_{1} - i_{2}) dt = 0$$
(3)

$$L_2 \frac{di_2}{dt} - k_2 \int (i_1 - i_2) \ dt = 0 \tag{4}$$

but we know, $i = \frac{dq}{dt}$

$$\implies L_1 \ddot{q}_1 - k_2 (q_2 - q_1) + k_1 q_1 = 0 \tag{5}$$

$$\implies L_2 \ddot{q}_2 + k_2 (q_2 - q_1) \ dt = 0 \tag{6}$$

FORCE-CURRENT ANALOGY:

In this, the mathematical equations of the translational mechanical system are compared with the nodal equations of the electrical system.

Translational Mechanical System	Electrical System
Force(F)	Current(i)
Mass(M)	Capacitance(C)
Frictional coefficient(B)	Reciprocal of Resistance(1/R)
Spring constant(K)	Reciprocal of Inductance(1/L)
Displacement(x)	Magnetic Flux(ψ)
Velocity(v)	Voltage(V)

TABLE 2 INPUT PARAMETERS