Машинное обучение

Лекция 9 Градиентный бустинг

Ковалев Евгений

ekovalev@hse.ru

НИУ ВШЭ, 2020

Исправление ошибок моделей и идея бустинга

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:
- $\frac{1}{N}$ (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$
- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: деревья

Смещение и разброс: бэггинг

Проблемы бэггинга

- Если базовая модель окажется смещённой, то и композиция не справится с задачей
- Базовые модели долго обучать и применять, дорого хранить

- Бустинг (англ. boosting усиление)
- Возьмём простые базовые модели
- Будем строить композицию последовательно и жадно
- Каждая следующая модель будет строиться так, чтобы максимально корректировать ошибки построенных моделей

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели (b_1):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели (b_1):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

• Пытаемся подобрать модель b_1 , минимизирующую ошибку

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$
 фиксировано учится

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Пытаемся подобрать модель b_N , минимизирующую ошибку итоговой композиции $a_N = a_{N-1} + b_N$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Нет такого алгоритма машинного обучения, который учил бы «добавку»
- Попробуем понять, как можно сформулировать задачу с точки зрения ML

Резюме

- В бустинге базовые модели обучаются последовательно
- Каждая следующая корректирует ошибки уже построенных
- В общем случае получается функционал, на который может быть сложно обучать деревья

Бустинг для среднеквадратичной ошибки

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• MSE:

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a_{N-1}(x_i) + b_N(x_i) - y_i)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$S_i^{(N)}$$

$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$
 — остатки

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$
 — остатки

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

- $s_i^{(N)} = y_i a_{N-1}(x_i)$ остатки
- Если b_N научится выдавать остатки $s_i^{(N)}$, то задача будет решена идеально

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

- $s_i^{(N)} = y_i a_{N-1}(x_i)$ остатки
- Если b_N научится выдавать остатки $s_i^{(N)}$, то задача будет решена идеально

$$y_i = a_{N-1}(x_i) + s_i^{(N)} = a_{N-1}(x_i) + b_N(x_i)$$

Пример

- $y_i = 12$
- $a_{N-1}(x_i) = 10$
- $s_i^{(N)} = ?$
- $b_N(x_i) = ?$
- $a_N(x_i) = ?$

Пример

•
$$y_i = 12$$

•
$$a_{N-1}(x_i) = 10$$

•
$$s_i^{(N)} = 2$$

•
$$b_N(x_i) = 2$$

•
$$a_N(x_i) = 12$$

Первая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (b_1(x_i) - y_i)^2 \to \min_{b_1(x)}$$

Вторая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_2(x_i) - \left(y_i - b_1(x_i) \right) \right)^2 \to \min_{b_2(x)}$$

Третья итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_3(x_i) - \left(y_i - b_1(x_i) - b_2(x_i) \right) \right)^2 \to \min_{b_3(x)}$$

Визуализация

Визуализация

Визуализация

Random Forest

Ошибка бустинга на обучении и тесте

Резюме

- В случае с MSE обучение базовых моделей сводится к обычной процедуре обучения с заменой целевой переменной
- Бустинг может переобучаться, поэтому надо следить за ошибкой на тестовой выборке

Сложности с произвольной функцией потерь

Задача обучения базовой модели

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

• Хотим, чтобы модель b_N выдавала $y_i - a_{N-1}(x_i)$

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Тогда модель $b_N(x_i)$ может выдавать что угодно и испортить композицию

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

• Иначе $y_i - a_{N-1}(x_i) = \pm 2$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Если $y_i \neq a_{N-1}(x_i)$, то базовая модель учится выдавать корректный класс

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $\sum_{n=1}^{N-1} b_n(x_i) = -0.5 o$ надо $b_N(x_i) > 0.5$

•
$$y_i = +1$$
, $\sum_{n=1}^{N-1} b_n(x_i) = -100 o$ надо $b_N(x_i) > 100$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- $y_i = +1$, $\sum_{n=1}^{N-1} b_n(x_i) = -0.5 o$ надо $b_N(x_i) > 0.5$
- $y_i = +1$, $\sum_{n=1}^{N-1} b_n(x_i) = -100 \rightarrow$ надо $b_N(x_i) > 100$
- Но на обоих объектах будет одинаково максимизироваться отступ
- На объектах с корректными ответами никак не контролируется выход $b_N(x)$

• Mean Squared Logarithmic Error (среднеквадратичная логарифмическая ошибка)

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

• Аргумент второго логарифма может оказаться отрицательным

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

y_i	$a_{N-1}(x_i)$	$b_N(x_i)$	Улучшение MSLE композиции	Улучшение функционала базовой модели
1000	100	2	0.09	13.7
2	0	2	1.2	1.2

Резюме

- Нельзя заменить обучение добавки к композиции на обучение базовой модели на отклонение от ответов
- Не учитываются особенности функции потерь

Градиентный бустинг в общем виде

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?
- Посчитать производную

Производная

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем антипроизводную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем антипроизводную:

$$s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)$$
 прогноз и прогноз модели

в качестве z подставляем в результат предсказание композиции

• Посчитаем антипроизводную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

- Знак показывает, в какую сторону сдвигать прогноз на x_i , чтобы уменьшить ошибку композиции на нём
- Величина показывает, как сильно можно уменьшить ошибку, если сдвинуть прогноз
- Если ошибка почти не сдвинется, то нет смысла что-то менять

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

• Таким образом, мы обучаем базовую модель b_N так, чтобы на x_i она выдавала $s_i^{(N)}$

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = -rac{\partial}{\partial z}L(y_i,z)\Big|_{z=a_{N-1}(x_i)}$$
— сдвиги

- Как бы градиентный спуск в пространстве алгоритмов
- Базовая модель будет делать корректировки на объектах так, чтобы как можно сильнее уменьшить ошибку композиции
- Сдвиги учитывают особенности функции потерь

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

Градиентный бустинг для асимметричной функции

$$L(y,z) = \frac{1}{2}([z < y](z - y)^2 + 5[z \ge y](z - y)^2)$$

$$s_i^{(N)} = -\frac{\partial}{\partial z}L(y_i, z)\Big|_{z=a_{N-1}(x_i)} =$$

$$= [z < y](y - z) + 5[z \ge y](y - z)$$

Градиентный бустинг для асимметричной функции

$$s_i^{(N)} = [z < y](y - z) + 5[z \ge y](y - z)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -25$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

• Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$

• Отступ большой отрицательный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

- Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$
- Отступ большой отрицательный: $\frac{y_i}{1+\exp(y_i a_{N-1}(x_i))} pprox \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = -0.7$: $s_i = 0.67$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = 2$: $s_i = 0.12$

Резюме

- Чтобы учесть особенности функции потерь, можно посчитать её производные в точке текущего прогноза композиции
- Базовую модель будем обучать на эти производные (со знаком минус)

Гиперпараметры и регуляризация в бустинге

Градиентный бустинг

$$a_N(x) = a_{N-1}(x_i) + b_N(x_i)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = -rac{\partial}{\partial z}L(y_i,z)\Big|_{z=a_{N-1}(x_i)}$$
— сдвиги

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться
- Поэтому в качестве базовых моделей стоит брать...

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться
- Поэтому в качестве базовых моделей стоит брать **неглубокие** деревья

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев N

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления
- Выход: добавлять деревья в композицию с небольшим весом

Длина шага

$$a_N(x) = a_{N-1}(x_i) + \eta b_N(x_i)$$

- η ∈ (0, 1] длина шага
- Можно сказать, что это регуляризация композиции
- Снижает вклад каждой модели в композицию
- Чем меньше η , тем больше надо деревьев

Длина шага

Рандомизация

- Можно обучать деревья на случайных подмножествах признаков
- Бустинг уменьшает смещение, поэтому итоговая композиция всё равно получится качественной
- Может снизить переобучение

Можно обучать деревья на подмножествах объектов — способ борьбы с шумом в данных

Рандомизация

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев N
- Длина шага
- Размер подвыборки для обучения
- и т.д.

Резюме

- Чтобы снизить переобучение, можно добавлять модели в композицию с небольшими весами
- Также может помочь обучение моделей на подвыборках