Meeting 08/20/2020

Shuo Zhang

LQR Ext5: Trajectory Following for Non-Linear Systems

A state sequence x_0^* , x_1^* , ..., x_H^* is a feasible target trajectory if and only if

$$\exists u_0^*, u_1^*, \dots, u_{H-1}^* : \forall t \in \{0, 1, \dots, H-1\} : x_{t+1}^* = f(x_t^*, u_t^*)$$

Problem statement:

$$\min_{u_0, u_1, \dots, u_{H-1}} \sum_{t=0}^{H-1} (x_t - x_t^*)^\top Q(x_t - x_t^*) + (u_t - u_t^*)^\top R(u_t - u_t^*)$$
s.t. $x_{t+1} = f(x_t, u_t)$

Transform into linear time varying case (LTV):

$$x_{t+1} \approx f(x_t^*, u_t^*) + \underbrace{\frac{\partial f}{\partial x}(x_t^*, u_t^*)(x_t - x_t^*)}_{\mathbf{A_t}} + \underbrace{\frac{\partial f}{\partial u}(x_t^*, u_t^*)(u_t - u_t^*)}_{\mathbf{B_t}}$$

$$x_{t+1} - x_{t+1}^* \approx A_t(x_t - x_t^*) + B_t(u_t - u_t^*)$$

Got Matrix A_t and B_t for all 4 tasks.

Is Q t and R t always Identity Matrix in our case?

LQR Ext5: Trajectory Following for Non-Linear Systems

Transformed into linear time varying case (LTV):

$$\min_{u_0, u_1, \dots, u_{H-1}} \sum_{t=0}^{H-1} (x_t - x_t^*)^\top Q(x_t - x_t^*) + (u_t - u_t^*)^\top R(u_t - u_t^*)$$
s.t. $x_{t+1} - x_{t+1}^* = A_t(x_t - x_t^*) + B_t(u_t - u_t^*)$

- Now we can run the standard LQR back-up iterations.
- Resulting policy at i time-steps from the end:

$$u_{H-i} - u_{H-i}^* = K_i(x_{H-i} - x_{H-i}^*)$$

 The target trajectory need not be feasible to apply this technique, however, if it is infeasible then the linearizations are not around the (state,input) pairs that will be visited

LQR Ext4: Linear Time Varying (LTV) Systems

$$x_{t+1} = A_t x_t + B_t u_t$$

$$g(x_t, u_t) = x_t^{\top} Q_t x_t + u_t^{\top} R_t u_t$$

LQR Ext4: Linear Time Varying (LTV) Systems

Set
$$P_0 = 0$$
.
for $i = 1, 2, 3, ...$

$$K_{i} = -(R_{H-i} + B_{H-i}^{\top} P_{i-1} B_{H-i})^{-1} B_{H-i}^{\top} P_{i-1} A_{H-i}$$

$$P_{i} = Q_{H-i} + K_{i}^{\top} R_{H-i} K_{i} + (A_{H-i} + B_{H-i} K_{i})^{\top} P_{i-1} (A_{H-i} + B_{H-i} K_{i})$$

The optimal policy for a *i*-step horizon is given by:

$$\pi(x) = K_i x$$

The cost-to-go function for a i-step horizon is given by:

$$J_i(x) = x^{\top} P_i x.$$

Next plans

After we get LQR solutions(Matrix K_i):

- 1) Try closed loop control using LQR(Matrix K_i) on real environments?
- 2) I can also try closed loop control using PPO (trained from model) on real environment?
- 3) Derive new equations, objective function and lambda-eta optimization procedures for our AIP?
- 4) Implement AIP

AIP Implementation (against TRPO, PPO)

Difference 1 Policy Network:

TRPO/PPO: u_final=pi_theta([x])

AIP: u_final=pi_theta([x, u_controller])

Difference 2 Constraint:

TRPO:

KL(pi_theta_new || pi_theta_old)<epsilon

PPO:

No constraint

Constraint (KL(pi_theta_new || pi_theta_old)<epsilon) combined into objective function

AIP:

KL(pi_theta_new || pi_theta_old)<epsilon

??KL(pi_theta || controller)<omega??

(Need to derive new equations and objective for optimization?)

Task	Open Loop A* +Rollout	Open Loop PPO + Rollout	Closed Loop PPO	Cloes Loop LQR based on A*	AIP (3 options)
Reacher (0.1% model)	Done + Done	Done + Done	Not yet	Not yet	Not yet
Gazebo Hand (0.1% model)	Done + Done	Done + Not yet	Not yet	Not yet	Not yet
Acrobot (100% model)	Done + Done	Done + Done	Not yet	Not yet	Not yet
Real Hand (100% model)	Done + Not yet	Done + Not yet	Not yet	Not yet	Not yet