

分光计的调节和用衍射光栅 测定光的波长

钟瑞

2021年2月

目录

01 实验概述

02 实验原理

03 实验步骤

- 分光计调节
- 调整光栅
- 观察衍射,测衍射角
- 数据处理
- 注意事项

实验概述

实验目的

- 1.掌握分光计的调节与使用。
- 2.了解光栅的分光作用及原理,加深对衍射、干涉的理解。

实验内容

- 1.了解分光计的结构和原理,掌握其调节方法。
- 2.观察光栅对汞灯的衍射现象。
- 3.用光栅衍射法测量光的波长。

实验器材

分光计,透射光栅, 汞灯。

实验原理

Reflection Diffraction Grating Transmission Diffraction Grating

衍射光栅

衍射光栅 (Diffraction Grating) 是光栅的一种。它通过周期性结构,使入射光的振幅或相位(或两者同时) 受到周期性空间调制。

光栅方程: d-sin(ψ)=k- λ (k = 0, ±1, ±2,)

应用:

衍射角与波长 A 及光栅常数 d 有关, 因此可作为分光/合光器件, 即将不同波长的复合光分离/合成。常被用于单色仪和光谱仪, 在光通信领域可用于处理波分复用 (WDM) 信号。

哈爾濱之業大學(深圳) HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

衍射光栅在光通信中的应用

高速光模块:以AWG作为Mux/Demux,实现

长途骨干网:用于密集波分复用(DWDM),节 省光纤资源;用于光交叉连接(OXC),实现故 障保护、动态光路管理、网络服务的灵活性。 **城域网:**用于光插分复用(OADM),上载/下载特定波长的信号光。

波分复用型无源光网络(WDM-PON): 作为波分复用/解复用器,能在更长的传输距离上提供更高的带宽。

可作为波分复用/解复用器 (Mux/ Demux) , 处理波 分复用信号。

常用的是**阵列波导光栅** (Arrayed Waveguide Grating, AWG) 和**阶梯光栅** (Echelle Grating)。

应用场景包括高速光模块、 城域网、长途骨干网、无源 光网络、5G前传。

哈爾濱之業大學(深圳) HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

衍射光栅在硅光子中的应用

阶梯光栅(Echelle Grating)

作为波分复用/解复用器

光栅耦合器 (Grating Coupler)

作为模斑转换器 (Spot Size Convertor, SSC) 提高硅波导与激光器、单模光纤的模场尺寸的匹配度,从而提高耦合效率。接收端为了解决偏振损耗问题,还会做成二维偏振分离耦合光栅。

光波长测量原理

入射光经光栅衍射和透镜汇聚,在透镜焦平面上形成一系列明条纹,其角度位置 ψ_k 由光栅方程决定:

$$d \cdot \sin(\psi_k) = k \cdot \lambda$$
 $(k = 0, \pm 1, \pm 1, \ldots)$

d: 光栅常数, d=1/N(mm)

N: 每毫米长度光栅面上的狭缝数。

已知光栅常数 d,只需测量第 k 级明纹对应的衍射角 ψ_k ,即可计算光波长 λ :

$$\lambda = d \cdot \sin(\psi_k)/k$$

 ψ_k 使用分光计进行精确测量

分光计结构

测量光路

要求

- 1. 望远镜聚焦于无穷远(能接收平行光);
- 2. 望远镜与载物台均水平(经过粗调和细调);
- 3. 平行光管能发射出平行光, 并与望远镜光轴同轴。

实验步骤

望远镜目镜调节

目镜调焦旋钮

打开绿光灯,转动望远镜目镜调焦旋钮,调整目镜的前后位置,并从目镜观察,直至能看到分划板上清晰的基准线。表明分划板已经位于望远镜目镜的焦面上。

使望远镜聚焦于无穷远

平面镜

将平面镜放置于物镜前方,调整目镜到物镜的 距离,使十字像清晰,表明分划板已经位于物 镜的焦面上,望远镜已经聚焦于无穷远。

望远镜和载物台的水平 (粗调)

用眼睛观察这条缝是否大致等宽

望远镜俯仰角调节

技巧1: 载物台边转边看, 人眼对于动态变化更敏感

用眼睛观察这条缝是否大致等宽

旋转这3颗螺丝调整载物台高度

技巧2: 载物台螺丝钉尽量低一些, 间距

较小时更容易判断是否相等

哈爾濱乙葉大學(深圳) HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

望远镜和载物台的水平 (细调)

调节原理

当望远镜的光轴与分光计的中心轴垂直时,绿 色十字像位于上基准线,与十字孔位置对称

细调步骤一: 双面反射镜放置

使反射镜的镜面与载物台上其中一 条刻线重合,镜面正对望远镜

细调步骤二: "各半调节"

1. 十字像与上基准线未对齐时

4.调至十字像与上基准线对齐

2.调节望远镜俯仰角,使十字像与上基准线 高度差减小一半

3.调节载物台下方靠近望远镜的螺丝A

细调步骤三:"翻转调节,逐次逼近"

平面镜翻转180°

望远镜再调一半

再调载物台下方靠近望远镜 的螺丝B, 直至十字像与上 基准线对齐

哈爾濱ユ業大學(深圳) 细调步骤四: 调整载物台下方第三颗螺丝C

HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

1. 载物台转90°

2.平面镜转90°,对着望远镜

"各半法"只调 了螺丝A和B,没 调C, 平面镜可能 是这种状态。

3. 调整载物台下方 靠近望远镜的螺丝 C, 直至十字像与 上基准线对齐。

哈爾濱工業大學(深圳)

平行光管调节 (发出平行光)

HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

1. 松开螺丝

5. 直至狭缝光线调到中间基准线位置, 其光轴与望远镜光轴处于同一水平面

4.调节平行光管高度调节螺丝

3.锁紧螺丝

7.将狭缝调整到竖直状态

8.调整狭缝宽度

9.调整狭缝宽度至1mm左右

观察狭缝成的 像是否清晰时, 要先把狭缝调 宽,以利于人 眼观察,成像 清晰后再将狭 缝调细。

调整平行光管与望远镜光轴同轴

转动望远镜位置, 使狭缝像与分划板叉丝的竖线重合, 表明平行 光管与望远镜光轴已同轴, 然后固定望远镜

调整光栅:步骤一

注意:这个过程中不要再调节望远镜。

- 1. 光栅放置到载物台上, 光栅面与螺丝C对应 的载物台上的刻线重 合,并正对望远镜。 以光栅面作为反射面。
- 2. 调节螺丝A和B,直至光栅面反射回来的绿十字像水平线与分划板的上基准线对齐。

调整光栅:步骤二

左右转动望远镜,从目镜中观察 衍射光谱线。若同一颜色的光 (例如绿光)+1级和-1级谱线不 等高,调节螺丝C,直至两侧谱 线等高。

注意:这个过程中不要再调节螺丝A、B。

哈爾濱工業大學(深圳)

找到 K = -1、-2、-3 级亮纹

HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

原理与游标卡尺类似 图中的读数为22.5°+9'=22°39'

逆时针转动望远镜,分别找到 K = -1、-2、-3 级亮纹,调至<mark>待测光的谱线(绿线、黄线1、黄线2)与</mark> 分划板叉丝的竖线重合,记录两游标读数 θ_1 和 θ_2

找到 K=+1、+2、+3 级亮纹

 $2\psi_k = [(\theta_1 - \theta_1') + (\theta_2 - \theta_2')]/2$

 $\lambda = d \cdot \sin(\psi_k)/k$

顺时针转动望远镜,分别找到 K = +1、+2、+3 级亮

纹,调至待测光的谱线(绿线、黄线1、黄线2)与

分划板叉丝的竖线重合,记录两游标读数 θ'_1 和 θ'_2

数据处理

颜色	k	θ_1	$ heta_2$	θ'_1	θ ' ₂	$\psi_k = [(\theta_1 - \theta'_1) + (\theta_2 - \theta'_2)]/4$	$\lambda_k = d \cdot \sin (\psi_k)/k$ (nm)	$\bar{\lambda}$ (nm)	标准波长 (nm)
绿	1								546.1
	2								
	3								
黄1	1								
	2								577.0
	3								
黄2	1								
	2								579.1
	3								

光栅常数 d=1/300 mm

计算衍射光栅对黄光1和黄光2的角色散率

 $D_k = \frac{d\theta}{d\lambda} = \frac{k}{d\cos\theta}$

注意事项

1. 注意安全:

- (1) 汞灯的紫外光很强(占90%以上),不可肉眼直视。
- (2) 汞灯关闭后不能立即开启,需等待其冷却

2. 爱护实验设备:

- (1) 不能在制动螺丝锁紧时强行转动望远镜,不可随意拧动狭缝,不可直接拿着望远镜或载物台转动,而应当从支架或游标圆盘处转动。
- (2) 光栅应轻拿轻放,以防打碎,严禁用手触摸其刻痕。
- 3. 读数注意事项:视线垂直地观察刻度盘,否则读数误差较大。

谢谢

