『多変量解析入門』 演習問題

Taro Masuda @ml_taro

2022年2月6日

1 はじめに

このPDFでは、小西貞則著『多変量解析入門 線形から非線形へ』(岩波書店,2010)の解答を記していきます。公式なものではなくあくまで個人として公開しているため、誤りがある可能性があります。正確性についての保証はできない旨、予めご了承ください。

なお, 著作権へ配慮し, 問題文については割愛させていただきます.

2 第2章

2.1 問2.1

証明.

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = \sum_{i=1}^n 2\{y_i - (\beta_0 + \beta_1 x_i)\}\dot{(} - 1). \tag{1}$$

これを0とおくと

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i.$$
 (2)

同様に β_1 でも微分して0とおくと

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_1} = \sum_{i=1}^n 2\{y_i - (\beta_0 + \beta_1 x_i)\}\dot{(-x_i)} = 0 \iff \sum_{i=1}^n x_i y_i = \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2.$$
 (3)

2.2 問2.2

誤差の2乗和を最小化したいので,

$$S(\boldsymbol{\beta}) = \boldsymbol{\varepsilon}^{\mathsf{T}} \boldsymbol{\varepsilon} = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta}) \tag{4}$$

を $oldsymbol{eta}$ について微分して

$$-2X^{\mathsf{T}}\boldsymbol{y} + 2X^{\mathsf{T}}X\boldsymbol{\beta} = \mathbf{0}. (5)$$