Lecture 3

- More on neural networks
- Loss functions and fitting
- Overfitting and underfitting

September 19, 2024

Single Layer Neural Network

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k h_k(X)$$

= $\beta_0 + \sum_{k=1}^K \beta_k g(w_{k0} + \sum_{j=1}^p w_{kj} X_j).$

Activation Functions

Multilayer Neural Network

Multilayer Neural Network

Number of Parameters

- Suppose we have
 - 784 inputs
 - 256 activations in the first hidden layer
 - 128 activations in the second hidden layer
- The first matrix of weights $\mathbf{W_1}$ contains $785 \cdot 256 \approx 201{,}000$ entries.
- The second matrix of weights $\mathbf{W_2}$ contains $257 \cdot 128 \approx 33{,}000$ entries.

Fitting Neural Networks

Non-Convex Functions and Gradient Descent

Let
$$R(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$
 with $\theta = (\{w_k\}_1^K, \beta)$.

- 1. Start with a guess θ^0 for all the parameters in θ , and set t=0.
- 2. Iterate until the objective $R(\theta)$ fails to decrease:
 - (a) Find a vector δ that reflects a small change in θ , such that $\theta^{t+1} = \theta^t + \delta$ reduces the objective; i.e. $R(\theta^{t+1}) < R(\theta^t)$.
 - (b) Set $t \leftarrow t + 1$.

Gradient Descent

- In this simple example we reached the *global minimum*.
- If we had started a little to the left of θ^0 we would have gone in the other direction, and ended up in a local minimum.
- Although θ is multi-dimensional, we have depicted the process as one-dimensional. It is much harder to identify whether one is in a local minimum in high dimensions.

How to find a direction δ that points downhill? We compute the *gradient vector*

$$\nabla R(\theta^t) = \frac{\partial R(\theta)}{\partial \theta} \Big|_{\theta = \theta^t}$$

i.e. the vector of partial derivatives at the current guess θ^t . The gradient points uphill, so our update is $\delta = -\rho \nabla R(\theta^t)$ or

$$\theta^{t+1} \leftarrow \theta^t - \rho \nabla R(\theta^t),$$

where ρ is the *learning rate* (typically small, e.g. $\rho = 0.001$.

Gradients and Backprobagation

 $R(\theta) = \sum_{i=1}^{n} R_i(\theta)$ is a sum, so gradient is sum of gradients.

$$R_i(\theta) = \frac{1}{2}(y_i - f_{\theta}(x_i))^2 = \frac{1}{2}\left(y_i - \beta_0 - \sum_{k=1}^K \beta_k g\left(w_{k0} + \sum_{j=1}^p w_{kj}x_{ij}\right)\right)^2$$

For ease of notation, let $z_{ik} = w_{k0} + \sum_{j=1}^{p} w_{kj} x_{ij}$.

Backpropagation uses the *chain rule for differentiation*:

$$\frac{\partial R_{i}(\theta)}{\partial \beta_{k}} = \frac{\partial R_{i}(\theta)}{\partial f_{\theta}(x_{i})} \cdot \frac{\partial f_{\theta}(x_{i})}{\partial \beta_{k}}
= -(y_{i} - f_{\theta}(x_{i})) \cdot g(z_{ik}).
\frac{\partial R_{i}(\theta)}{\partial w_{kj}} = \frac{\partial R_{i}(\theta)}{\partial f_{\theta}(x_{i})} \cdot \frac{\partial f_{\theta}(x_{i})}{\partial g(z_{ik})} \cdot \frac{\partial g(z_{ik})}{\partial z_{ik}} \cdot \frac{\partial z_{ik}}{\partial w_{kj}}
= -(y_{i} - f_{\theta}(x_{i})) \cdot \beta_{k} \cdot g'(z_{ik}) \cdot x_{ij}.$$

A neural network is parameterized by its weights

Loss function measures quality of the network's output

Loss score is used as a feedback signal to adjust the weights

