## IAML Past Paper 2014-2015

1. Naive Bayes classification

Gaussian Distribution 
$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{-\frac{(x-4)^2}{2\sigma^2}\right\}$$
Dataset

| user session             |                    | 2    | 3    | 4   | 5              | 6 |  |
|--------------------------|--------------------|------|------|-----|----------------|---|--|
| rate of ls<br>rate of cd | 4                  | 1    |      | -V3 | <b>√</b> 3     | 0 |  |
| rate of co               | 0                  | 1 V3 | 1-13 | 3   | 3              | 0 |  |
|                          |                    | 1    |      |     | $\overline{}$  |   |  |
| 1                        | from genuine users |      |      |     | from intruders |   |  |

a. use Naive Bayes classifier. Demonstrate that the following is true.

$$P = 0.5 \text{ M}_{-}, ls = 2 \text{ M}_{-}, cd = 0$$
  $\sigma^{2}, ls = 2 \sigma^{2}, cd = 2$   
 $P = 0.5 \text{ M}_{+}, ls = 0 \text{ M}_{+}, cd = 2 \sigma^{2}, ls = 2 \sigma^{2}, cd = 2$ 

$$P = \frac{1}{12} = 0.5$$

$$P + \frac{1}{12} = 0.5$$

$$M - \frac{1}{12} = \frac{1}{12} = 0.5$$

$$M - \frac{1}{12} = \frac{1}{12}$$

$$\sqrt{-2}$$
  $\cot = (\sqrt{3})^2 + (\sqrt{3})^2 = 2$ 

$$t^{2}_{+, ls} = (\sqrt{3})^{2} + (\sqrt{3})^{2} = 2$$

$$T_{+}, cd = (3-2)^2 + (3-2)^2 + (2)^2 = \frac{1+1+y}{3} = 2$$

Checks out.

b. classify [2, 13] using the classifier.

$$\rho(21+) = \frac{1}{\sqrt{2 \pi z^2}} \exp g - \frac{(2-0)^2}{2127^2} \mathcal{J}$$

$$= \frac{1}{\sqrt{2 \pi z^2}} e^{-\frac{1}{2}} = 0.12$$

$$P(\sqrt{3}1+) = \frac{1}{\sqrt{2} \Gamma(2)^2} \exp \left(-\frac{(\sqrt{3}-2)^2}{2(2)^2}\right)^2$$

$$P(21-) = \frac{1}{\sqrt{2\pi(2)^2}} \exp \{0\} = 0.199$$

$$P(\sqrt{3}) - \frac{1}{\sqrt{2\pi(2)^2}} \exp \left\{-\frac{(\sqrt{3}-0)^2}{2(2)}\right\}$$

- c. Yes. Probabilities multiplied by 1. Ignore that is.
- d. Will the classifier in (a) correctly classify all sessions?

  Plug in all the values

e ob

The place where you can't deude where an inst belonge

$$P(K=+1\times)=0.5$$
  
 $P(K=-1\times)=0.5$ 

f. Hacker wants to remove session

Remove the most important

not 6 because (0,0)

Femove 1 because it changes mean

moves the Gaussian

ll -> 2 H'= 3/3

q. Relax independence Assumption

P(k=-1 xv xz)= P(xv Xz | k=-)
P(AB|C)= P(B|AC) P(A|C)= P(B|C)
L> Bayesian Rule V

2. Clustering and PCA

consider a dataset with 2-real valued attributes and B instances:

6.32 
$$a \begin{bmatrix} -2 \\ 1 \end{bmatrix} b \begin{bmatrix} -1 \\ 1 \end{bmatrix} c \begin{bmatrix} -2 \\ 3 \end{bmatrix} d \begin{bmatrix} -1 \\ 3 \end{bmatrix} c \begin{bmatrix} 3 \\ 3 \end{bmatrix} f \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

a. Run K-means clustering algorithm to convergence. Initial centroids:

$$m_1 = [0,7]$$
  $m_2 = [2,-2]$ 



cz -> A, B, 6, H