

NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370

Technical Report TR-6014-OCN

MOORING DESIGN PHYSICAL AND EMPIRICAL DATA

by

NFESC Staff

March 1999

Prepared for:

Naval Facilities Engineering Command Criteria Office

19990429 076

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to: Washington Headquarters Services, Directorate for Information Agenoris, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

ZZZOZ 400Z, and to the Office of Manager	ment and budget, I aperwork Nedu	Cilon 1 Toject (0704-0100), 1	washington, L	JO 20003.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. RE	PORT TYPE	AND DATES COVERED
	March 199	9 1	Final	
4. TITLE AND CUIDITIE			INIDINIO NILIN	IDEDO
4. TITLE AND SUBTITLE		5. FL	JNDING NUN	IREK2
Mooring Design Physical and	Empirical Data			
6. AUTHOR(S)				
NFESC Staff				
Z DEDECOMING ODCANIZATION NAME	AT(C) AND ADDDTCC(TC)		EDEODMING	ODGANIZATION
7. PERFORMING ORGANIZATION NAM	IE(5) AND ADDRESS(ES)		ERFORMING REPORT NUM	GORGANIZATION IBER
Naval Facilities Engineering S	Service Center			
1100 23rd Ave		Γ	ΓR-6014-C	OCN
Port Hueneme CA 93043-437	0			
9. SPONSORING/MONITORING AGENC	CY NAME(S) AND ADDRESS(ES)	10. S	PONSORING	6/MONITORING AGENCY
Naval Facilities Engineering (Command Code 15C			
1510 Gilbert St				
Norfolk VA 23511-2699	•			
11. SUPPLEMENTARY NOTES	Western or the contract of the			TO PENEDO CONTROL O
TI. SOLI ELIMENTARI NOTES				
12a. DISTRIBUTION/AVAILABILITY STA	ATEMENT			12b. DISTRIBUTION CODE
Approved for public release; di	istribution is unlimited			
ripproved for public release, as	ionionion is minimos.			
13. ABSTRACT (Maximum 200 words)	· ·			lent 4
·				
The Naval Facilities Engineering Center (NFESC) to compile a 'Mooring Design', which is in	database of mooring hardw	are information to su	pport MIL	-HDBK-1026/4
mooring design.				
		•		
14. SUBJECT TERMS	a transfer and a second			15. NUMBER OF PAGES
Mooring				123
•				16. PRICE CODE
	3. SECURITY CLASSIFICATION	19. SECURITY CLASSIF	ICATION	20. LIMITATION OF ABSTRACT
OF REPORT ${ m U}$	OF THIS PAGE U	OF ABSTRACT	U	U

EXECUTIVE SUMMARY

The Naval Facilities Engineering Command Criteria Office tasked the Naval Facilities Engineering Service Center (NFESC) to compile a database of mooring hardware information to support MIL-HDBK-1026/4 'Mooring Design', which is in preparation. This report provides selected physical and empirical data useful for mooring design.

This report consists of a directory that lists the type of information provided, its subdirectory, the name and type of the file. In some cases the same information is provided in various forms (for example, as both a spread sheet and a picture of the spread sheet in image form), because engineers may wish to use the files in various ways.

DIRECTORY

This table lists the types of information provided, its directory, file name and file type.

Table. Listing of Empirical Information

ITEM	FILENAME	DESCRIPTION
A1	a1.xls	Capacity of Standard Navy Fleet Moorings
A2	a2.dxf	Types of Drag - Embedment Anchors
A2	a2.pcx	Types of Drag - Embedment Anchors
A3	a3.dxf	Types of Pile Anchors
A3	a3.pcx	Types of Pile Anchors
A4	a4.dxf	Types of Deadweight Anchors
A4	a4.pcx	Types of Deadweight Anchors
A5	a5.dxf	Concrete Sinker Used in Standard Navy Moorings
A5	a5.pcx	Concrete Sinker Used in Standard Navy Moorings
A6	a6.dxf	Riser-Type Buoys
A6	a6.pcx	Riser-Type Buoys
A7	a7.dxf	Marker Buoy
A7	a7.pox	Marker Buoy
B1	b1.dxf	Large Double Bitt With Lip
B1	bl.pcx	Large Double Bitt With Lip
B2	b2.dxf	Low Double Bitt w/ Lip
B2	b2.pcx	Low Double Bitt w/ Lip
В3	b3.dxf	Special Mooring Bollard "A"
В3	b3.pcx	Special Mooring Bollard "A"
B4	b4.dxf	Special Mooring Bollard "B"
B4	b4.pcx	Special Mooring Bollard "B"
B5	b5.dxf	Large Bollard With Horn
В5	b5.pcx	Large Bollard With Horn
В6	b6.dxf	42" Cleat
В6	b6.pcx	42" Cleat
В7	b7.dxf	30" Cleat
В7	b7.pcx	30" Cleat
C1	cl.dxf	Common Stud Link Chain
C1	cl.pcx	Common Stud Link Chain
C2	c2.dxf	Chain Joining Link
C2	c2.pcx	Chain Joining Link
C3 ·	c3.dxf	Anchor Joining Link
C3	с3.рсх	Anchor Joining Link
C4	c4.dxf	Ground Ring
C4	c4.pcx	Ground Ring

NFESC TR-6014-OCN MOORING DATA 3

C5	c5a.dxf	Swivel Shackle (Page 1 of 2)
C5	c5a.pcx	Swivel Shackle (Page 1 of 2)
C5	c5b.dxf	Swivel Shackle (Page 2 of 2)
C5	c5b.cx	Swivel Shackle (Page 2 of 2)
C6	c6.dxf	Spider Plate
C6	c6.pcx	Spider Plate Spider Plate
C7	c7.dxf	Plate Sinker Shackle
C7	c7.pcx	Plate Sinker Shackle
C7	c8.dxf	Pear Link
C8 C9	c8.pcx c9.dxf	Pear Link End Link
C9	 	
	c9.pcx	End Link
C10	c10.dxf	Joining Shackle
C10	c10.pcx	Joining Shackle
C11	cll.dxf	Anchor Shackle
C11	cll.pcx	Anchor Shackle
C12	c12.dxf	Buoy Shackle
C12	c12.pcx	Buoy Shackle
C13	c13.xls	Mechanical Properties
C14	c14.xls	Physical Properties of Finished Chain and Accessories
C15	c15a.dxf	Buoy, Mooring, Foam Filled, Polyurethane, 8 Ft Dia, Class
215	1 -	AA, General Arrangement & Parts List
C15	c15a.pcx	Buoy, Mooring, Foam Filled, Polyurethane, 8 Ft Dia, Class
015	-1511	AA, General Arrangement & Parts List
C15	c15b.dxf	Buoy, Mooring, Foam Filled, Polyurethane, 11.5 Ft Dia,
C15	c15b.pcx	Class AA, General Arrangement & Parts List
C15	Clab.bex	Buoy, Mooring, Foam Filled, Polyurethane, 11.5 Ft Dia, Class AA, General Arrangement & Parts List
D1	dle6.xls	Predicted Single Anchor Drag Distances - Stockless Anchor,
DI	died.xis	Stabilizers & Flukes at 45 degrees, Seafloor Type = Mud
D1	dle7.xls	Predicted Single Anchor Drag Distances - Stockless Anchor,
<i>D</i>	die, .xis	Stabilizers & Flukes at 36 degrees, Seafloor Type = Sand
D1	dle8.xls	Predicted Single Anchor Drag Distances - Stato Anchor,
		Stabilizers & Flukes at 50 degrees, Seafloor Type = Mud
D1	dle9.xls	Predicted Single Anchor Drag Distances - Stato Anchor,
		Stabilizers & Flukes at 30 degrees, Seafloor Type = Sand
D2	d2e10.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
		Anchor, Stabilizers & Flukes at 45 degrees, Seafloor Type
		= Mud
D2	d2e11.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
		Anchor, Stabilizers & Flukes at 36 degrees, Seafloor Type
		= Sand
D2	d2e12.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
		Anchor, Stabilizers & Flukes at 50 degrees, Seafloor Type
	d0.121	= Mud
D2	d2e13.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
		Anchor, Stabilizers & Flukes at 30 degrees, Seafloor Type = Sand
E1	e154.dxf	
E1		Spherical Marker or Mooring Buoy
E1	e154.pcx	Spherical Marker or Mooring Buoy
E1	e155.dxf	Spherical Marker or Mooring Buoy
E1	e155.pcx e156.dxf	Spherical Marker or Mooring Buoy
E1		Spherical Marker or Mooring Buoy
<u></u>	e156.pcx	Spherical Marker or Mooring Buoy

E1	e157.dxf	Tension Bar Mooring Buoys
E1	e157.pcx	Tension Bar Mooring Buoys
E1	e158.dxf	Tension Bar Mooring Buoys
E1	e158.pcx	Tension Bar Mooring Buoys
E1	e159.dxf	Hawsepipe and Tension Bar Buoys
E1	e159.pcx	Hawsepipe and Tension Bar Buoys
E1	e160.dxf	Hawsepipe and Tension Bar Mooring Buoys
E1	e160.pcx	Hawsepipe and Tension Bar Mooring Buoys
E1	e162.dxf	Concrete Sinkers
E1	e162.pcx	Concrete Sinkers
E1	e165.xls	Holding Power to Weight Ratio of Various Anchors
E1	e169a.xls	Moorings Without Sinkers Bills of Materials
E1	e170.xls	Moorings Without Sinkers Chain Set Assembly for Basic Depth
E1	e171.xls	Moorings Without Sinkers Lengths of Ground Chain Required for Various Water Depths
E1	e172.dxf	Moorings Without Sinkers Chain Set Assemblies for Various Water Depths
E1	e172.pcx	Moorings Without Sinkers Chain Set Assemblies for Various Water Depths
E1	e174.xls	Moorings Without Sinkers Bills of Materials
E1	e175.xls	Moorings Without Sinkers Chain Set Assembly for Basic Depth
E1	e176.xls	Moorings Without Sinkers Maximum Mooring Depths With Various Buoys
E1	e178.dxf	Moorings Without Sinkers Chain Set Assemblies for Various Water Depths
E1	e178.pcx	Moorings Without Sinkers Chain Set Assemblies for Various Water Depths
E1	e177.xls	Moorings Without Sinkers Lengths of Ground Chain Required for Various Water Depths
E1	e181.xls	Moorings With Sinkers - Bills of Materials
E1	e182.xls	Moorings With Sinkers - Chain Set Assembly for Basic Depth
E1	e183.xls	Moorings With Sinkers - Maximum Mooring Depths With
]		Various Buoys
E1	e184.xls	Moorings With Sinkers - Lengths of Ground Chain Required for Various Water Depths
E1	e185.xls	Moorings With Sinkers - Chain Set Assemblies for Various Depths
E2	e2_1.dxf	Free-Swinging, Riser-Type Mooring Without Sinkers - Classes AAA and BBB (Proposed)
E2	e2_1.pcx	Free-Swinging, Riser-Type Mooring Without Sinkers - Classes AAA and BBB (Proposed)
E2	e2_2.dxf	Free-Swinging, Riser Type Mooring Without Sinkers - Class AA, BB, and CC
E2	e2_2.pcx	Free-Swinging, Riser Type Mooring Without Sinkers - Class AA, BB, and CC
E2	e2_3.dxf	Free-Swinging, Riser-Type Mooring Without Sinkers - Class
E2	e2_3.pcx	Free-Swinging, Riser-Type Mooring Without Sinkers - Class DD
E2	e2_4.dxf	Free-Swinging, Riser-Type Mooring Without Sinkers - Class A, B, C, D, E, F, and G
E2	e2_4.pcx	Free-Swinging, Riser-Type Mooring Without Sinkers - Class

NFESC TR-6014-OCN MOORING DATA 5

	<u> </u>	D. C. D. E. B. and C.
	- O F -1	A, B, C, D, E, F, and G
E2	e2_5.dxf	Free-Swinging, Riser-Type Mooring With Sinkers - Classes
		A, B, C, D, and E
E2	e2_5.pcx	Free-Swinging, Riser-Type Mooring With Sinkers - Classes
		A, B, C, D, and E
E3	e3 10.dxf	Tension Bar Mooring Buoy
E3		Tension Bar Mooring Buoy
E3		Hawsepipe Mooring Buoy
E3		Hawsepipe Mooring Buoy
E3		Tension Bar Mooring Buoy
E3	e3_12.pcx	Tension Bar Mooring Buoy
E3	e3_9.dxf	Standard Marker or Mooring Buoy
E3	e3_9.pcx	Standard Marker or Mooring Buoy
F1	fl.dxf	Recommended NAVMOOR Anchor Size for Navy Fleet Moorings
F1	fl.pcx	Recommended NAVMOOR Anchor Size for Navy Fleet Moorings
F	f10000.dxf	Plan View - 10K navmoor Anchor
F		Plan View - 10K navmoor Anchor
F		Anchor Assembly, Mooring NAVMOOR-10, 12000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-10, 12000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-15, 18000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-15, 18000 Pounds
F		NAVMOOR-2 Mooring Anchor 2,400 lbs. (wt.) General Assembly
F	f2400.pcx	NAVMOOR-2 Mooring Anchor 2,400 lbs. (wt.) General Assembly
F	f2700.dxf	NAVMOOR-6 Salvage Anchor 7,200 lbs. (wt.) General Assembly
F	f2700.pcx	NAVMOOR-6 Salvage Anchor 7,200 lbs. (wt.) General Assembly
G1	g1.dxf	Common Wire Rope Construction Examples
G1	g1.pcx	Common Wire Rope Construction Examples
G2	g2.xls	Fiber Rope Specification
G3	g3.xls	Plain-Laid Rope Construction
G4	g4a.xls	Braided Rope Construction
G4	g4b.xls	Braided Rope Construction - Continued
H1	hlb.dxf	Driven Plate Anchor Configuration
H1	h1b.pcx	Driven Plate Anchor Configuration
H2	h2.dxf	Anchor-Follower Assembly
H2	h2.pcx	Anchor-Follower Assembly Anchor-Follower Assembly
I1	il.dxf	Variation of Bollard Pull with Shaft Speed for ARS-38
1 +	11.uxi	Class Ships
	il.pcx	Variation of Bollard Pull with Shaft Speed for ARS-38
	11.00	Class Ships
12	i2.dxf	Variation of Bollard Pull with Shaft Speed and Propeller
'-	12.441	Pitch for ARS-50 Class Ships
I2	i2.pcx	Variation of Bollard Pull with Shaft Speed and Propeller
		Pitch for ARS-50 Class Ships
13	i3.dxf	Bollard Pull vs. Shaft Speed and Propeller Pitch For T-
	13.41	ATF-169 Class Ship Without Kort Nozzle
13	i3.pcx	Bollard Pull vs. Shaft Speed and Propeller Pitch For T-
		ATF-169 Class Ship Without Kort Nozzle
J1	j1.dxf	Chocks for Nylon Rope
J1	j1.pcx	Chocks for Nylon Rope
J2	j2.dxf	Bitts for Nylon Rope
J2	j2.pcx	Bitts for Nylon Rope
J3	j3.dxf	Vertical Howser Reels
J3	j3.pcx	Vertical Howser Reels
J4	j4.dxf	Horizontal Hawser Reels
	1 Jaraxi	Inotifoundi udwaet weets

J4	j4.pcx	Horizontal Hawser Reels
J5	j5.dxf	Capstan Head Sizes for Nylon Ropes
J5	j5.pcx	Capstan Head Sizes for Nylon Ropes
J6	j6_54.xls	Three-Strand Nylon Rope
J6	j6_55.xls	Plaited Nylon
J6	j6_56.xls	Double Braided Nylon Rope
J6	j6_57.xls	Plaited Continuous Polyester Filament with Staple Wrap & Three-Strand Polyester
J6	j6_58.xls	Three-Strand Polypropylene & Double Braided Polyester Filament With Staple Wrap
J6	j6_59.xls	Three-Strand Dual Fiber & Plaited Dual Fiber
J7	j7.xls	Minimum Number of Lines Used in Preliminary Mooring Analysis
K1	kl.dxf	U.S. Navy Stockless Anchor
K1	k1.pcx	U.S. Navy Stockless Anchor
L1	L1.WK1	NAVSEASYSCOM allhulls listing of ship information
L2	L2.xls	NAVSEASYSCOM ship chain specification data
L3	L3.xls	NAVSEASYSCOM fiber rope specification data
L4	L4.xls	NAVSEASYSCOM shackle specification data
L5	L5.xls	NAVSEASYSCOM wire rope specification data

APPENDIX A

MOORING DESIGN PHYSICAL AND EMPIRICAL DATA

APPENDIX A MOORING DESIGN PHYSICAL AND EMPIRICAL DATA

This appendix includes various supporting figures, tables and drawings in digital form that support the handbook. Table A-1 lists the file names and gives a description of each data file.

Table A-1. Listing of Empirical Information

ITEM	FILENAME	DESCRIPTION
A1	al.xls	Capacity of Standard Navy Fleet Moorings
A2	a2.dxf	Types of Drag - Embedment Anchors
A2	a2.pcx	Types of Drag - Embedment Anchors
A3	a3.dxf	Types of Pile Anchors
A3	a3.pcx	Types of Pile Anchors
A4	a4.dxf	Types of Deadweight Anchors
A4	a4.pcx	Types of Deadweight Anchors
A5	a5.dxf	Concrete Sinker Used in Standard Navy Moorings
A5	a5.pcx	Concrete Sinker Used in Standard Navy Moorings
A6	a6.dxf	Riser-Type Buoys
A6	a6.pcx	Riser-Type Buoys
A7	a7.dxf	Marker Buoy
A7	a7.pcx	Marker Buoy
B1	b1.dxf	Large Double Bitt With Lip
B1	b1.pcx	Large Double Bitt With Lip
B2	b2.dxf	Low Double Bitt w/ Lip
B2	b2.pcx	Low Double Bitt w/ Lip
В3	b3.dxf	Special Mooring Bollard "A"
B3	b3.pcx	Special Mooring Bollard "A"
B4	b4.dxf	Special Mooring Bollard "B"
B4	b4.pcx	Special Mooring Bollard "B"
B 5	b5.dxf	Large Bollard With Horn
B5	b5.pcx	Large Bollard With Horn
В6	b6.dxf	42" Cleat
В6	b6.pcx	42" Cleat
B7	b7.dxf	30" Cleat
B7	b7.pcx	30" Cleat
C1	cl.dxf	Common Stud Link Chain
C1	cl.pcx	Common Stud Link Chain
C2	c2.dxf	Chain Joining Link
C2	c2.pcx	Chain Joining Link
C3	c3.dxf	Anchor Joining Link

		1111 110011 1020/1
C3	c3.pcx	Anchor Joining Link
C4	c4.dxf	Ground Ring
C4	c4.pcx	Ground Ring
C5	c5a.dxf	Swivel Shackle (Page 1 of 2)
C5	c5a.pcx	Swivel Shackle (Page 1 of 2)
C5	c5b.dxf	Swivel Shackle (Page 2 of 2)
C5	c5b.pcx	Swivel Shackle (Page 2 of 2)
C6	c6.dxf	Spider Plate
C6	c6.pcx	Spider Plate
C7	c7.dxf	Plate Sinker Shackle
C7	c7.pcx	Plate Sinker Shackle
C8	c8.dxf	Pear Link
C8	c8.pcx	Pear Link
C9	c9.dxf	End Link
C9	с9.рсх	End Link
C10	c10.dxf	Joining Shackle
C10	c10.pcx	Joining Shackle
C11	cl1.dxf	Anchor Shackle
C11	cll.pcx	Anchor Shackle
C12	c12.dxf	Buoy Shackle
C12	c12.pcx	Buoy Shackle
C13	c13.xls	Mechanical Properties
C14	cl4.xls	Physical Properties of Finished Chain and Accessories
C15	c15a.dxf	Buoy, Mooring, Foam Filled, Polyurethane, 8 Ft Dia, Class
		AA, General Arrangement & Parts List
C15	c15a.pcx	Buoy, Mooring, Foam Filled, Polyurethane, 8 Ft Dia, Class
	_	AA, General Arrangement & Parts List
C15	c15b.dxf	Buoy, Mooring, Foam Filled, Polyurethane, 11.5 Ft Dia,
		Class AA, General Arrangement & Parts List
C15	c15b.pcx	Buoy, Mooring, Foam Filled, Polyurethane, 11.5 Ft Dia,
·		Class AA, General Arrangement & Parts List
D1 .	dle6.xls	Predicted Single Anchor Drag Distances - Stockless Anchor,
	•	Stabilizers & Flukes at 45 degrees, Seafloor Type = Mud
D1	dle7.xls	Predicted Single Anchor Drag Distances - Stockless Anchor,
		Stabilizers & Flukes at 36 degrees, Seafloor Type = Sand
D1	dle8.xls	Predicted Single Anchor Drag Distances - Stato Anchor,
		Stabilizers & Flukes at 50 degrees, Seafloor Type = Mud
D1	dle9.xls	Predicted Single Anchor Drag Distances - Stato Anchor,
		Stabilizers & Flukes at 30 degrees, Seafloor Type = Sand
D2	d2e10.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
		Anchor, Stabilizers & Flukes at 45 degrees, Seafloor Type
D2	d2ell.xls	= Mud
"2	uzerr.xrs	Predicted Single Anchor Drag Distances - Tandem Stockless Anchor, Stabilizers & Flukes at 36 degrees, Seafloor Type
1		= Sand
D2	d2e12.xls	
		Anchor, Stabilizers & Flukes at 50 degrees, Seafloor Type
		= Mud
D2	d2e13.xls	Predicted Single Anchor Drag Distances - Tandem Stockless
	<u> </u>	

		MILI-NDBR-1020/4
		Anchor, Stabilizers & Flukes at 30 degrees, Seafloor Type = Sand
E1	e154.dxf	Spherical Marker or Mooring Buoy
E1	e154.pcx	Spherical Marker or Mooring Buoy
E1	e155.dxf	Spherical Marker or Mooring Buoy
E1	e155.pcx	Spherical Marker or Mooring Buoy
E1	e156.dxf	Spherical Marker or Mooring Buoy
E1		Spherical Marker or Mooring Buoy
E1	e157.dxf	Tension Bar Mooring Buoys
	e157.pcx	Tension Bar Mooring Buoys
E1	e158.dxf	Tension Bar Mooring Buoys
E1		Tension Bar Mooring Buoys
E1	e158.pcx	Hawsepipe and Tension Bar Buoys
E1	e159.dxf	Hawsepipe and Tension Bar Buoys
E1	e159.pcx	Hawsepipe and Tension Bar Buoys
E1	e160.dxf	Hawsepipe and Tension Bar Mooring Buoys
E1	e160.pcx	Hawsepipe and Tension Bar Mooring Buoys
E1	e162.dxf	Concrete Sinkers
E1	e162.pcx	Concrete Sinkers
E1	e165.xls	Holding Power to Weight Ratio of Various Anchors
E1	e169a.xls	Moorings Without Sinkers Bills of Materials
E1	e170.xls	Moorings Without Sinkers Chain Set Assembly for Basic
		Denth
E1	e171.xls	Moorings Without Sinkers Lengths of Ground Chain Required
11.1	02.2	for Various Water Depths
E1	e172.dxf	Moorings Without Sinkers Chain Set Assemblies for Various
ביב	01/2:000	Water Depths
E1	e172.pcx	Moorings Without Sinkers Chain Set Assemblies for Various
E.T.	C172.pon	Water Depths
E1	e174.xls	Moorings Without Sinkers Bills of Materials
E1	e175.xls	Moorings Without Sinkers Chain Set Assembly for Basic
EI	E1/3.X13	Depth
	e176.xls	Moorings Without Sinkers Maximum Mooring Depths With
E1	e1/6.XIS	Various Buoys
		Moorings Without Sinkers Chain Set Assemblies for Variou
E1	e178.dxf	Water Depths
	<u> </u>	Moorings Without Sinkers Chain Set Assemblies for Variou
E1	e178.pcx	
		Water Depths Moorings Without Sinkers Lengths of Ground Chain Require
E1	e177.xls	Moorings without Sinkers Lengths of Ground ending the
		for Various Water Depths
E1 ·	e181.xls	Moorings With Sinkers - Bills of Materials
El	e182.xls	Moorings With Sinkers - Chain Set Assembly for Basic Dep
E1	e183.xls	Moorings With Sinkers - Maximum Mooring Depths With
		Various Buoys
E1	e184.xls	Moorings With Sinkers - Lengths of Ground Chain Required
_ -		for Various Water Depths
E1	e185.xls	Moorings With Sinkers - Chain Set Assemblies for Various
		Depths
	1	Tithout Cinkors
E2	e2 1.dxf	Free-Swinging, Riser-Type Mooring Without Sinkers -

E2	e2_1.pcx	Free-Swinging, Riser-Type Mooring Without Sinkers -
	6 6 3	Classes AAA and BBB (Proposed) Free-Swinging, Riser Type Mooring Without Sinkers - Class
E2	e2_2.dxf	AA, BB, and CC
	-0.0	Free-Swinging, Riser Type Mooring Without Sinkers - Class
E2		
		AA, BB, and CC Free-Swinging, Riser-Type Mooring Without Sinkers - Class
E2	e2_3.dxf	
		DD Free-Swinging, Riser-Type Mooring Without Sinkers - Class
E2	e2_3.pcx	
		DD Free-Swinging, Riser-Type Mooring Without Sinkers - Class
E2		
		A, B, C, D, E, F, and G
E2	e2_4.pcx	Free-Swinging, Riser-Type Mooring Without Sinkers - Class
		A, B, C, D, E, F, and G
E2	e2_5.dxf	Free-Swinging, Riser-Type Mooring With Sinkers - Classes
		A, B, C, D, and E
E2	e2_5.pcx	Free-Swinging, Riser-Type Mooring With Sinkers - Classes
		A, B, C, D, and E
E3		Tension Bar Mooring Buoy
E3		Tension Bar Mooring Buoy
E3		Hawsepipe Mooring Buoy
E3		Hawsepipe Mooring Buoy
E3		Tension Bar Mooring Buoy
E3		Tension Bar Mooring Buoy
E3	e3_9.dxf	Standard Marker or Mooring Buoy
E3	e3_9.pcx	Standard Marker or Mooring Buoy
F1	f1.dxf	Recommended NAVMOOR Anchor Size for Navy Fleet Moorings
F1		Recommended NAVMOOR Anchor Size for Navy Fleet Moorings
F		Plan View - 10K navmoor Anchor
F		Plan View - 10K navmoor Anchor
F		Anchor Assembly, Mooring NAVMOOR-10, 12000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-10, 12000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-15, 18000 Pounds
F		Anchor Assembly, Mooring NAVMOOR-15, 18000 Pounds
F	1	NAVMOOR-2 Mooring Anchor 2,400 lbs. (wt.) General Assembly
F	f2400.pcx	NAVMOOR-2 Mooring Anchor 2,400 lbs. (wt.) General Assembly
F		NAVMOOR-6 Salvage Anchor 7,200 lbs. (wt.) General Assembly
F	f2700.pcx	NAVMOOR-6 Salvage Anchor 7,200 lbs. (wt.) General Assembly
G1	g1.dxf	Common Wire Rope Construction Examples
G1	gl.pcx	Common Wire Rope Construction Examples
G2	g2.xls	Fiber Rope Specification
G3	g3.xls	Plain-Laid Rope Construction
G4	g4a.xls	Braided Rope Construction
G4	g4b.xls	Braided Rope Construction - Continued
H1	h1b.dxf	Driven Plate Anchor Configuration
H1	hlb.pcx	Driven Plate Anchor Configuration
H2	h2.dxf	Anchor-Follower Assembly
H2	h2.pcx	Anchor-Follower Assembly
I1	il.dxf	Variation of Bollard Pull with Shaft Speed for ARS-38

		Class Ships
I1	il.pcx	Variation of Bollard Pull with Shaft Speed for ARS-38
		Class Ships
12	i2.dxf	Variation of Bollard Pull with Shaft Speed and Propeller
	·	Pitch for ARS-50 Class Ships
12	i2.pcx	Variation of Bollard Pull with Shaft Speed and Propeller
		Pitch for ARS-50 Class Ships
13	i3.dxf	Bollard Pull vs. Shaft Speed and Propeller Pitch For T-
		ATF-169 Class Ship Without Kort Nozzle
13	i3.pcx	Bollard Pull vs. Shaft Speed and Propeller Pitch For T-
		ATF-169 Class Ship Without Kort Nozzle
J1	j1.dxf	Chocks for Nylon Rope
J1	jl.pcx	Chocks for Nylon Rope
J2	j2.dxf	Bitts for Nylon Rope
J2	j2.pcx	Bitts for Nylon Rope
J3	j3.dxf	Vertical Howser Reels
J3	j3.pcx	Vertical Howser Reels
J4	j4.dxf	Horizontal Hawser Reels
J4	j4.pcx	Horizontal Hawser Reels
J5	j5.dxf	Capstan Head Sizes for Nylon Ropes
J5	j5.pcx	Capstan Head Sizes for Nylon Ropes
J 6	j6_54.xls	Three-Strand Nylon Rope
J6	j6_55.xls	Plaited Nylon
J6	j6_56.xls	Double Braided Nylon Rope .
J6	j6_57.xls	Plaited Continuous Polyester Filament with Staple Wrap &
		Three-Strand Polyester
J6	j6_58.xls	Three-Strand Polypropylene & Double Braided Polyester
		Filament With Staple Wrap
J6	j6_59.xls	Three-Strand Dual Fiber & Plaited Dual Fiber
J7	j7.xls	Minimum Number of Lines Used in Preliminary Mooring
		Analysis .
K1	k1.dxf	U.S. Navy Stockless Anchor
K1	k1.pcx	U.S. Navy Stockless Anchor

TABLE 2 Capacity of Standard Navy Fleet Moorings (Riser-Type)

Class	Previous Class	Mooring Capacity (pounds)	Numb	Number of Ground Legs	Riser Chain Diameter (inches)		Type of Chain Throughout	
AA	A-A	300,000	3 (Twin chain)	hain)	4	U.S.	U.S. Navy Common A-Link	۲4
BB	B-B	250,000	3 (Twin chain)	hain)	3-1/2	u.s.	U.S. Navy Common A-Link	ید
ပ္ပ	υ - υ	200,000	3 (Twin chain)	:hain)	3-1/2	u.s.	U.S. Navy Common A-Link	بد
סם	D-D	175,000	3 (Single	(Single chain)	က	u.s.	Navy Common A-Link	×
æ	A	150,000	3 (Single	(Single chain)	2-3/4	u.s.	Navy Common A-Link	צ
B	В	125,000	3 (Single	(Single chain)	2-1/2	u.s.	U.S. Navy Common A-Link	×
υ	υ	100,000	3 (Single	(Single chain)	2-1/4	U.S.	Navy Common A-Link	×
Ω	D	75,000	3 (Single	(Single chain)	2	u.s.	Navy Common A-Link	×
ы	ы	20,000	3 (Single	(Single chain)	1-3/4	u.s.	Navy Common A-Link	×
[E4	ក	25,000	3 (Single	(Single chain)	1-1/4	u.s.	Navy Common A-Link	×
ប	ტ	2,000	3 (Single	(Single chain)	3/4	u.s.	Navy Common A-Link	א

FIGURE 14 Types of Drag-Embedment Anchors

FIGURE 16 Types of Pile Anchors

FIGURE 16
Types of Deadweight Anchors

FIGURE 24
Concrete Sinker Used in Standard Navy Moorings

FIGURE 36 Riser-Type Buoys

FIGURE 37 Telephone-Type Buoy

FIGURE 38 Marker Buoy

Large Double Bitt With Lip C.AMCITY 200,000L3 (MM) WEIGHT 2552 LB

Low Double Bitt With Lip

CAPACITY GOOD LB (NOM) WEIGHT 1425 LB

Special Mooring Bollard "A"

CAPACITY 450000 LB (NOM) WEIGHT 5620 LB

Special Mooring Bollard "B"

CAPACITY 200000 LB (WM) WEIGHT 3570 LB

Large Bollard With Horn

CAPACITY 70000 LB (NOM)
WEIGHT 2200 LB

42" Cleat

的一个人,我们就是这种人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的。

30" Cleat

		(All Dir	mensions in	inches)				
Nominal A Diameter (mi 1-3/4 10. 2 12. 2-1/4 13. 2-1/2 15. 2-3/4 16. 3 18. 3-1/2 21. 4 24.	n) (max) 50 10.76 00 12.30 50 13.84 00 15.38 50 16.91 00 18.45 00 21.53	B C (min) (min) 2.62 1.75 3.00 2.00 3.42 2.25 3.76 2.50 4.12 2.55 4.49 3.00 5.25 3.50 6.20 4.00	1.81 1.6 2.06 1.94 2.34 2.1 2.59 2.4 2.84 2.7 3.09 2.94 3.59 3.3	6.21 7.10 8.04 8.88 9.76 10.65 3 12.43	E (max) 6.50 7.37 8.35 9.20 10.18 11.05 12.81 14.78	F (min) 1.50 1.65 1.80 1.95 2.10 2.25 2.40 2.70	G (min) 1.41 1.59 1.59 1.64 1.80 1.94 2.38 2.58	H (max) 1.58 1.77 2.09 2.23 2.48 2.62 3.12 3.58
D' dim	ension is i	olerance rang minimum bar s not include	diameter at	crown		1/2 A		-
SECTION A-	FLASH WELD		A	/2 F —		В	OG	E

FIGURE 1A Common Stud Link Chain

FIGURE 2 Chain Joining Link

(All Dimensions in inches)

Nominal	∢	4	æ	8	ပ	ပ	۵	۔ م	Ξ,	Ŧ,	٦,	٦.
Diameter	(min)	(max)	(min)	(wax)	(min)	(xow)	(mIn)	(xow)	(min)	(Max)	(TE)	(XOE)
1-7/4	1 97	203	14 84	14.90	10.22	10.28	3.00	3.18	3.91	3.97	2.05	2.08
1	 45.	2.41	17.84	17.90	12.28	12.34	3.62	3.86	4.72	4.78	2.51	2.54
2 4 74	100	7.7	22.00	22.15	14.78	14.84	4.75	5.03	5.84	5.91	2.98	3.01
t / 1	000	 	22.03	22.15	14.78	14.84	4.75	5.03	5.84	5.91	2.98	3.01
7/1-7	0,0		22.03	22.15	14.78	14.84	4.75	5.03	5.84	5.91	2.98	3.01
+/6-7	2.5	 	25.73	25.78	16.47	16.53	5.25	5.57	90'9	6.17	3.11	3.14
2 - 1	 		25.72	25.78	16.47	16.53	5.25	5.57	90.9	6.17	3.11	3.14
4/2	4.87	5.12	36.77	37.23	23.75	24.25	7.87	8.12	7.87	8.12	4.25	4.50

Nominal	Z	2	~	œ	-	-	>	>
		\\	(-1,)	(2007)	(min)	(2004)	(min)	(max)
Diameter	ב <u>ו</u> צ	(XOE)	E)	(xpu)	(11111)	(4511)) (1) (1)	(30.0)
1-3/4	2.47	2.53	1.23	1.26	2.22 × 2.34	2.38 X 2.41	2.8/	2.94
,	2 97	3.03	1.45	1.48	2.41 X 2.84	2.47 X 2.91	3.44	3.50
2-1/4	17.5	3 7 X	1 89	1 92	3.09 X 3.34	3.15 X 3.41	4.34	4.41
2-1/7	17.5	3,78 87,8	20.0	1.92	3.09 X 3.34	3.15 X 3.41	4.34	4.41
7/1-7	, , ,	7.78	80	1 92	3.09 X 3.34	3.15 X 3.41	4.34	4.41
+/6-7	4.67		2.5	2.14	3.97 X 4.34	4,03 X 4,41	5.09 X 5.22	5.16 X 5.28
2-17	4 64	20.5	2.11	2.14	3.97 X 4.34	4.03 X 4.41	5.09 X 5.22	5.16 X 5.28
) - 4	6.68	7.06	2.95	3.06	00.9	6.16	7.68	8.06

Stud Link and the Ground Ring of the Same Stud Link and the Ground Ring of the Same Nominal Size. 2-1/4 to 2-3/4 Inch Anchor Joining Links Shall be Tested to the 2-3/4 Inch Range of 2-1/4 to 2-3/4 Inches. Same Requirement for 3 and 3-1/2 Inch Sizes.

FIGURE 3 Anchor Joining Link

(All Dimensions in Inches)

Nominal	A	A	В	8
Diameter	(min)	(max)	(min)	(max)
1-3/4	3.41	3.59	8.78	9.23
. 2/ .	3.66	3.84	10.24	10.76
2-1/4	5.25	5.50	11.70	12.30
2-1/2	5.25	5.50	11.70	12.30
2-3/4	5.25	5.50	11.70	12.30
2 3/ .	5.50	5.75	13.16	13.84
3-1/2	5.75	6.00	13.16	13.84
4	7.31	7.69	19.00	19.95

NOTE:

- 1. 2-1/4 to 2-3/4 inch Ground Rings shall be tested to the 2-3/4 inch requirements and marked with the range of 2-1/4 to 2-3/4.
- 2. Markings shall be as specified in Section 3.8.

FIGURE 5
Swivel Shackle (Page 1 of 2)

(All Dimensions in Inches)

Nominal	A	A	8	В	С	С	D	Ε	E	F	F
Diameter	(min)	(max)	(min)	(max)	(min)	(max)	(min)	(min)	(max)	(min)	(max)
1-3/4	20.91	22.44	9.07	9.53	6.83	7.18	5.62	2.22	2.34	2.80	2.94
2	25.36	26.66	11.21	11.79	7.99	8.39	5.62	2.57	2.71	3.29	3.45
2-1/4	27.44	30.50	12.29	12.92	8.76	9.20	8.00	2.84	2.98	3.61	3.79
2-1/2	31.89	33.53	13.74	14.44	9.83	10.32	8.00	3.23	3.39	4.07	4.27
2-3/4	34.09	35.83	15.04	15.82	10.74	11.30	8.00	3.23	3.39	4.42	4.64
3	38.74	40.72	16.43	17.27	12.05	12.67	9.00	3.76	3.96	4.99	5.25
3-1/2	45.90	48.26	19.34	20.34	13.82	14.52	9.00	4.45	4.67	5.53	5.81
4	52.11	54.79	21.96	23.08	15.74	16.54	9.00	4.62	4.87	6.44	6.78

Nominal Diameter	G (min)	G (max)	H (min)	H (max)	J (min)	J (max)	K (min)	K (max)	P (min)	P (max)
1-3/4	2.99	3.15	2.38	2.50	3.75	4.87	6.83	7.18	12.90	14.75
2	3.69	3.87	2.76	2.90	3.75	4.87	7.99	8.39	15.81	16.63
2-1/4	4.03	4.23	3.07	3.23	3.75	4.87	8.76	9.20	16.97	19.56
2-1/2	4.56	4.80	3.45	3.63	3.75	4.87	9.83	10.33	20.04	21.06
2-3/4	4.95	5.21	3.76	3.96	3.75	4.87	10.74	11.30	21.22	22.31
3	6.03	6.33	4.07	4.27	3.75	4.87	12.05	12.67	23.96	25.18
3-1/2	6.30	6.62	4.84	5.08	3.75	4.87	13.82	14.52	29.63	31.15
4	7.22	7.59	5.53	5.81	3.75	4.87	15.74	16.54	33.39	35.11

Note: Pin diameter to hole diameter looseness shall be $\pm .090$ max. for sizes 2-1/2, 2-3/4, 3, 3-1/2, 4, and $\pm .072$ max. for sizes 2 1/4, 2, 1 3/4.

- 1. HOLE 1 SHALL FIT THE SMALL END OF 3.50 AND 4.00 INCH NOMINAL SIZE ANCHOR JOINING LINKS.
- 2. HOLES 2 AND 3 SHALL FIT THE LARGE END OF 2.25, 2.50 AND 2.75 INCH NOMINAL SIZE ANCHOR JOINING LINKS.
- 3. ALL HOLES SHALL MEET THE PROOF AND BREAK LOAD REQUIREMENTS OF 4.00 CHAIN.
- 4. MARKINGS SHALL BE AS SPECIFIED IN SECTION 3.7.
- 5. ALLOWABLE DIMENSIONAL TOLERANCES SHALL BE -. 06 +.12 UNLESS NOTED.
- 6. ALL DIMENSIONS ARE IN INCHES AND (CENTIMETERS).

-2	-1		L	PARTS LIST		
QTY REQD	QTY REQD	FIND NO.	PART OR IDENTIFYING NO.	PART OR IDENTIFYING NO.	SPEC	MATERIAL
-	2	1		PLATE, 1.00 STK	ASTM A36	STEEL
2	_	2		PLATE, 1.25 STK	ASTM A36	STEEL
-	2	3	GRADE BD	BOLT, HEX HD, 1.750-8UN-2A X 6.25L	ASTM A354	STEEL
2	-	4	GRADE BD	BOLT, HEX HD. 2.250-8UN-2A X 9.25L	ASTM A354	STEEL
_	2	5	GRADE DH	NUT, HEAVY, HEX, 1.750-8UN-2B	ASTM A563	STEEL
2	-	6	GRADE DH	NUT. HEAVY. HEX. 2.250-8UN-2B	ASTM A563	STEEL

NOTES:

1. PLATE SINKER SHACKLE MARKINGS SHALL BE AS SPECIFIED IN SECTION 3.7.

Nominal	A	A	В	В	С	C	0	D
Diameter	(min)	(max)	(min)	(max)	(min)	(max)	(min)	(max)
1-3/4	2.25	`2.38	11.50	11.67	4.19	4.32	1.38	1.44
2′	2.50	2.63	13.73	14.03	4.91	5.21	1.64	1.74
2-1/4	2.75	2.87	14.50	14.69	5.37	5.50	1.73	1.83
2-1/2	3.00	3.13	16.16	16.34	5.92	6.05	1.92	2.02
2-3/4	3.50	3.63	17.17	17.88	6.47	6.60	2.11	2.21
3	3.75	3.83	19.21	19.33	6.82	7.28	2.28	2.40
3-1/2	4.25	4.33	23.90	24.68	8.77	8.90	2.85	2.79
4′	4.75	4.87	26.22	25.40	9.61	9.74	3.13	3.25

NOTES:

1. MARKINGS SHALL BE AS SPECIFIED IN SECTION 3.7.

(All Dimensions in Inches)

Nominal	Α	A	В	В	С	C
Diameter	(min)	(max)	(min)	(max)	(min)	(max)
1-3/4	11.81	12.08	6.91	7.09	2.10	2.16
2	13.50	13.80	7.90	8.10	2.40	2.49
2-1/4	15.19	15.53	8.89	9.13	2.70	2.79
2-1/2	16.88	17.25	9.88	10.13	3.00	3.10
2-3/4	18.56	18.98	10.86	11.14	3.30	3.40
3	20.25	20.70	11.85	12.15	3.60	3.69
3-1/2	23.65	24.15	13.83	14.18	4.20	4.29
4	27.00	27.60	15.80	16.20	4.80	4.89

NOTE:

Markings shall be as specified in Section 3.8.

(All Dimensions in Inches) Κ Nominal G G Н Н (min) (min) (max) (max) (max) Diameter (min) (max) (min) 4.90 5.80 7.18 2.73 2.87 2.33 6.10 6.83 1-3/4 2.22 3.12 3.28 5.60 6.63 6.97 7.80 8.20 2 2.54 2.67 2-1/4 2-1/2 7.84 8.78 9.23 3.51 3.69 6.30 2.85 3.00 7.49 3.17 3.33 8.29 8.71 9.75 10.25 3.90 4.10 7.00 4.29 4.51 7.70 2-3/4 3.49 3.66 9.12 9.58 10.73 11.28 4.68 4.92 8.40 9.95 10.46 11.70 12.30 3.80 4.00 5.74 9.80 12.20 3-1/2 11.60 13.65 14.35 5.46 4.44 4.66 15.60 16.40 6.24 6.56 11.20 5.33 13.26 13.94 4 5.07 Dovetail

FIGURE 10 Joining Shackle

(All Dimensions in Inches) Nominal G G Н Н Diameter (min) (min) (max) (min) (max) (min) (max) (max) 3.07 5.43 1 - 3/42.39 2.51 7.85 8.25 8.87 9.33 3.23 2 2.73 2.87 8.97 9.43 10.14 10.66 3.51 3.69 6.20 3.07 10.09 2-1/4 3.23 10.61 11.41 11.99 3.95 4.15 6.98 2-1/2 11.21 11.79 12.68 13.33 4.39 4.61 7.75 3.14 3.59 2-3/4 12.97 13.94 14.66 4.38 5.07 8.53 3.75 3.95 12.33 14.15 15.21 15.99 5.40 5.54 9.30 3 4.10 4.31 13.46 3-1/25.02 16.50 17.75 18.66 6.14 6.46 10.85 4.78 15.70 4 5.46 5.74 17.94 18.86 20.28 21.32 7.02 7.38 12.40 Dovetail

FIGURE 11 Anchor Shackle

	Breaking Load (min pounds) 162,600 204,100 300,000 420,000 1,020,000 1,440,500 1,800,000	Nominal Sizes Are The Manufacturer's Nomenclature And Do Not Correspond To The Nominal Chain Size; Specific Shackles Will Not Necessarily Have The Same Material And Strength Characteristics As Chain Of The Same Nominal Size. Buoy Shackles Shall Include Bolt, Nut, And Cotter Pin.
	B 3.75 4.00 5.13 5.89 7.44 8.08 9.23	Are The And Do I thoin Size Issarily Ha Size. E Size. E Cotter F
	8 3.51 3.51 3.76 4.88 5.61 7.06 8.78 9.75	Nominal Sizes Are The Nomenclature And Do The Nominal Chain Si Will Not Necessarily H And Strength Charact Same Nominal Size. Bolt, Nut, And Cotter
	D (max) 1.44 1.56 1.81 2.06 3.08 3.59 4.10	
	0 (min) 1.32 1.44 1.69 1.94 2.55 2.93 3.41 3.90	Note:
(All Dimensions in Inches)	(max) 5.50 6.00 7.25 8.00 11.25 13.75 15.38	
nslons Ir	(min) 5.00 5.00 5.50 6.75 7.50 9.75 12.25 13.88 13.75	
All Dim	(3 ax) 3.40 3.72 4.43 5.13 6.15 6.66 8.25	· — —
	(mln) 3.22 3.24 4.21 4.88 5.85 6.34 7.75 8.75	
	(max) 1.54 1.67 2.05 2.31 2.31 2.82 3.33 3.84 4.36	
	P (min) (min) (1.46 4.59 1.95 2.19 2.68 3.17 3.66 4.14	
	W (mox) 2.37 2.37 3.00 3.37 4.38 5.25 5.25 5.50	
	W (min) 2.13 2.13 2.76 3.13 3.88 4.75 5.00 5.25	
	Nominal Diameter 1-3/8 1-1/2 1-3/4 2 2-1/2 3 3-1/2	

FIGURE 12 Buoy Shackle

TABLE 1
Mechanical Properties

Property	Chain and Accessories	Swivel Shackle Pins	Pear Links
Ultimate strength (tensile) minimum maximum	93,000 psi 115,000 psi	145,000 psi 170,000 psi	150,000 psi
Elongation minimum (gage length = 5X specimen diameter)	17 percent	12 percent	9 percent
Reduction in area minimum	40 percent	40 percent	22 percent
Brinell Hardness (standard ball: 10mm ball and 3000 Kg load) chain accessories	192-229 192-235	321 - 365	300 - 370
Impact; average of three specimens at 32F (minimum) base metal across weld cast components	43 ft 1b 36 ft 1b 30 ft 1b	43 ft lb	30 ft lb 26 ft lb 15 ft lb

TABLE 2
Physical Properties of Finished Chain and Accessories

Chain Diameter (inches)	Proof Load (lbs)	Minimum Breaking Load (lbs)	Minimum Chain Weight per Shot (lbs)
1-3/4	247,000	352,000	2252
2	318,000	454,000	3276
2-1/4	396,000	570,000	4143
2-1/2	484,000	692,000	5138
2-3/4	578,000	826,000	6250
3	679,000	970,000	7459
3-1/2	900,000	1,285,000	10258
4	1,143,000	1,632,000	13358

Foam Filled Mooring Buoy Polyurethane, 8 Ft. Diameter, Class AA

Foam Filled Mooring Buoy Polyurethane, 11.5 Ft. Diameter, Class AA

TABLE E-1 Predicted Single Anchor Drag Distances

Anchor: Stockless Anchor with Stabilizers and Flukes Fixed at approximately 45°

Seafloor Type: Mud

Horizontal Design Load (kips)

	25.	50.	75.	100.	125.	150.	175.	200.	225.	250.	275.	300.
Anchor Weight (Kips)												
_												
6.	54.	*	*	*	*	*	*	*	*	*	*	*
7.	32.	*	*	*	*	*	*	*	*	*	*	*
8.	21.	*	. *	*	*	*	*	*	*	*	*	*
9.	13.	*	*	*	*	*	*	*	*	*	*	*
10.	9.	*	*	*	*	*	*	*	*	*	*	* .
11.	6.	183.	*	*	*	*	*	*	*	*	*	*
12.	6.	99.	*	*	*	*	*	*	*	*	*	*
13.	6.	64.	*	*	*	*	*	*	*	*	. *	*
14.	5.	47.	*	*	*	*	*	*	*	*	*	*
15.	5.	40.	*	*	*	*	*	*	*	*	*	*
16.	5.	33.	*	*	*	*	*	*	*	*	*	*
17.	4.	27.	*	*	*	*	*	*	*	*	*	*
18.	4.	22.	154.	*	*	*	*	*	*	*	*	*
19.	4.	17.	95.	*	*	*	*	*	*	*	*	*
20.	3.	14.	77.	*	*	*	*	*	*	*	*	*
21.	3.	12.	64.	*	*	*	*	*	*	*	*	*
22.	2.	10.	53.	*	*	*	*	*	*	*	*	*
23.	2.	8.	48.	*	*	*	*	*	*	*	*	*
24.	2.	8.	42.	202.	*	*	*	*	*	*	* .	* .
25.	1.	8.	37.	152.	*	*	*	*	*	*	*	*
26.	1.	8.	33.	104.	*	*	*	*	*	*	*	*
27.	1.	7.	29.	89.	*	*	*	*	*	*	*	*
28.	1.	7.	25.	78.	*	*	*	*	*	*	*	*
29.	1.	7.	21.	68.	*	*	*	*	*	*	*	*
30.	0.	7.	19.	59.	245.	*	*	*	*	*	*	*

^{*}Exceeds anchor ultimate holding capacity

TABLE E-1 (Continued) Predicted Single Anchor Drag Distances

Anchor: Stockless Anchor with Stabilizers and Flukes Fixed at approximately 36°

Seafloor Type: Sand

Horizontal Design Load (kips)

	25.	50.	75.	100.	125.	150.	175.	200.	225.	250.	275.	300.
Anchor												
Weight												
(Kips)												
5.	20.	*	*	*	*	*	*	*	*	*	*	*
6.	19.	*	*	*	*	*	*	*	*	*	*	*
7.	18.	37.	*	*	*	*	*	*	*	*	*	*
8.	17.	33.	*	*	*	*	*	*	*	*	*	*
9.	17.	29.	*	*	*	*	*	*	*	*	*	*
10.	17.	28.	*	*	*	*	*	*	*	*	*	*
11.	17.	27.	46.	*	*	*	*	*	*	*	*	
12.	17.	26.	43.	*	*	*	*	*	*	*	*	*
13.	17.	26.	39.	*	*	*	*	*	*	*	*	*
14.	17.	25.	37.	*	*	*	*	*	*	*	*	*
15.	17.	24.	35.	*	*	*	*	*	*	*	*	*
16.	17.	24.	34.	52.	*	*	*	*	*	*	*	*
17.	17.	23.	33.	49.	*	*	*	*	*	*	*	*
18.	17.	23.	32.	46.	*	*	*	*	*	*	*	*
19.	18.	23.	32.	44.	*	*	*	*	*	*	*	*
20.	18.	23.	31.	41.	*	*	*	*	* -	*	*	*
21.	18.	22.	31.	40.	57.	*	*	*	*	*	*	*
22.	18.	22.	30.	39.	54.	*	*	*	*	*	*	*
23.	18.	22.	30.	38.	52.	*	*	*	*	*	*	*
24.	18.	22.	29.	37.	50.	*	*	*	*	*	*	. *
25.	18.	22.	29.	36.	48.	*	*	*	*	*	*	*
26.	17.	22.	28.	36.	46.	62.	*	*	*	*	*	*
27.	17.	23.	28.	36.	45.	60.	*	*	*	*	*	*
28.	17.	23.	28.	35.	43.	58.	*	*	*	*	*	*
29.	17.	23.	28.	35.	43.	56.	*	*	*	*	*	*
30.	17.	23.	27.	35.	42.	54.	*	*	*	*	*	*

^{*}Exceeds anchor ultimate holding capacity

TABLE E-1 (Continued) Predicted Single Anchor Drag Distances

Anchor: Stato Anchor with Stabilizers and Flukes Fixed at apporoximately 50°

Seafloor Type: Mud

Horizontal Design Load (kips)

50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. Anchor Weight (Kips) 64. 158. 5. 4. 23. * 45. 96. 236. 15. 6. 3. 68. 127. 322. * 7. 2. 10. 34. 93. 168. 398. 8. 2. 7. 25. 52. 9. 6. 18. 43. 72. 120. 205. 1. 57. 94. 148. 280. 14. 35. 10. 6. 11. 5. 11. 27. 50. 76. 118. 183. 352. 96. 140. 216. 418. 12. 9. 21. 43. 63. 0. 4. 18. 36. 56. 81. 118. 169. 266. 13. 4. 8. 0. 14. 3. 7. 15. 29. 50. 68. 99. 138. 200. 333. 0. 85. 118. 158. 229. 395. 7. 13. 24. 43. 61. 15. 0. 3. 37. 73. 102. 138. 188. 265. 6. 10. 21. 55. 16. 0. 3. 17. 2. 6. 10. 18. 32. 50. 66. 90. 120. 156. 216. 0. 61. 78. 106. 138. 179. 18. 0. 2. 5. 9. 16. 27. 44. 8. 14. 24. 39. 56. 71. 94. 122. 156. 5. 19. 0. 2. 20. 5. 8. 12. 21. 34. 51. 66. 83. 109. 139. 0. 1. 21. 0. 1. 4. 7. 11. 19. 30. 46. 61. 75. 98. 124. 7. 10. 17. 26. 56. 70. 88. 112. 22. 4. 41. 0. 1. 36. 23. 4. 7. 10. 15. 24. 52. 66. 79. 102. 0. 1. 74. .92. 24. 9. 13. 22. 32. 47. 61. 0. 1. 3. 6. 25. 3. 6. 9. 12. 20. 28. 43. 57. 70. 83. 0. 1. 26. 0. 3. 5. 8. 11. 18. 26. 39. 53. 66. 78. 0. 8. 11. 16. 24. 35. 49. 62. 74. 27. 0. 0. 2. 8. 28. 0. 0. 2. 8. 8. 10. 15. 22. 31. 44. 58. 70. 7. 7. 10. 13. 21. 28. 41. 54. 29. 0. 2. 66. 0. 30. 0. 0. 2. 7. 7. 10. 12. 19. 26. 37. 50. 63.

^{*}Exceeds anchor ultimate holding capacity

TABLE E-1 (Continued Predicted Single Anchor Drag Distances

Anchor: Stato Anchor with Stabilizers and Flukes Fixed at approximately 30°

Seafloor Type: Sand

Horizontal Design Load (Kips)

| | 25. | 50. | 75. | 100. | 125. | 150. | 175. | 200. | 225. | 250. | 275. | 300. |
|------------------|-----|-----|-----|------|------|------|------|------|------|------|------|-------|
| Anchor
Weight | | | | | | | | | | | | |
| (Kips) | | | | | | | | | | | | |
| 5. | 15. | 21. | 28. | 39. | 55. | * | * | * | * | * | * | • |
| 6. | 15. | 20. | 27. | 36. | 45. | 63. | * | * | * | * | * | • |
| 7. | 15. | 20. | 27. | 32. | 42. | 51. | 77. | * | * | * | * | • |
| 8. | 15. | 20. | 26. | 30. | 39. | 47. | 59. | 91. | * | * | * | • |
| 9. | 15. | 20. | 25. | 30. | 36. | 45. | 53. | 67. | 103. | * | * | • |
| 10. | 15. | 21. | 24. | 30. | 33. | 42. | 50. | 58. | 74. | 116. | * | * |
| 11. | 16. | 20. | 24. | 29. | 33. | 40. | 47. | 55. | 65. | 88. | * | * |
| 12. | 16. | 20. | 24. | 28. | 33. | 37. | 45. | 52. | 59. | 72. | 101. | * |
| 13. | 16. | 20. | 24. | 28. | 33. | 36. | 43. | 50. | 57. | 65. | 79. | 114. |
| 14. | 17. | 20. | 24. | 27. | 32. | 36. | 41. | 48. | 55. | 61. | 72. | 91. |
| 15. | 17. | 20. | 24. | 27. | 32. | 36. | 39. | 46. | 53. | 59. | 65. | 78. |
| 16. | 17. | 20. | 24. | 27. | 31. | 36. | 38. | 44. | 51. | 57. | 63. | 72. |
| 17. | 17. | 20. | 24. | 27. | 31. | 35. | 38. | 52. | 49. | 55. | 61. | 67. |
| 18. | 18. | 20. | 24. | 27. | 30. | 35. | 38. | 41. | 47. | 54. | 59. | 65. |
| 19. | 18. | 20. | 24. | 27. | 30. | 34. | 38. | 41. | 46. | 52. | 58. | 63. |
| 20. | 18. | 20. | 24. | 27. | 30. | 34. | 38. | 40. | 44. | 50. | 56. | 62. |
| 21. | 18. | 20. | 24. | 27. | 30. | 33. | 37. | 40. | 43. | 49. | 55. | 60. |
| 22. | 19. | 21. | 24. | 27. | 30. | 33. | 37. | 40. | 43. | 47. | 53. | 59. |
| 23. | 19. | 23. | 24. | 27. | 30. | 32. | 36. | 40. | 43. | 46. | 52. | 57. |
| 24. | 19. | 21. | 24. | 27. | 30. | 32. | 36. | 40. | 42. | 45. | 50. | . 56. |
| 25. | 19. | 21. | 24. | 27. | 30. | 32. | 36. | 40. | 42. | 45. | 49. | 54. |
| 26. | 19. | 21. | 24. | 27. | 30. | 32. | 35. | 39. | 42. | 44. | 47. | 53. |
| 27. | 20. | 21. | 24. | 27. | 30. | 32. | 35. | 39. | 42. | 44. | 46. | 52. |
| 28. | 20. | 21. | 24. | 27. | 30. | 32. | 35. | 38. | 42. | 44. | 46. | 50. |
| 29. | 20. | 22. | 24. | 27. | 30. | 32. | 34. | 38. | 41. | 44. | 46. | 49. |
| 30. | 20. | 22. | 24. | 27. | 30. | 32. | 34. | 37. | 41. | 44. | 46. | 48. |

^{*}Exceeds anchor ultimate holding capacity

TABLE E-2
Predicted Tandem Anchor Drag Distances

Anchor: Tandem Stockless Anchors with Stabilizers and Flukes Fixed at approximately 45°

Seafloor Type: Mud

Horizontal Design Load (Kips)

| | 25. | 50. | 75. | 100. | 125. | 150. | 175. | 200. | 225. | 250. | 275. | 300. |
|----------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Anchor
Weight
(Kips) | | | | | | | | | | | | |
| (KIPS) | | | | | | | | | | | | |
| 5. | 6. | * | * | * | * | * | * | * | * | * | * | * |
| 6. | 4. | 54. | * | * | * | * | , ★ | * | * | * | * | * |
| 7. | 4. | 32. | * | * | * | * | * | * | * | * | * | * |
| 8. | 3. | 21. | * | * | * | * | * | * | * | ★, | * | * |
| 9. | 3. | 13. | 70. | * | * | * | * | * | * | * | * | * |
| 10. | 2. | 9. | 47. | * | * | * | * | * | * | * | * | *. |
| 11. | 2. | 6. | 35. | 183. | * | * | * | * | * | * | * | * |
| 12. | 1. | 6. | 27. | 99. | * | * | * | * | * | * | * | * |
| 13. | 1. | 6. | 21. | 64. | * | * | * | * | * | * | * | * |
| 14. | Ο. | 5. | 15. | 47. | 200. | * | * | * | * | * | * | * |
| 15. | 0. | 5. | 12. | 40. | 128. | * | * | * | * | * | * | * |
| 16. | 0. | 5. | 10. | 33. | 79. | . * | * | * | * | * | * | * |
| 17. | 0. | 4. | 7. | 27. | 63. | * | * | * | * | * | * | * |
| 18. | 0. | 4. | 7. | 22. | 50. | 154. | * | * | * | * | * | * |
| 19. | 0. | 4. | 7. | 17. | 44. | 95. | * | * | * | * | * | * |
| 20. | 0. | 3. | 7. | 14. | 38. | 77. | * | * | * | * | * | * - |
| 21. | 0. | 3. | 6. | 12. | 33. | 64. | 179. | * | * | * | * | * |
| 22. | 0. | 2. | 6. | 10. | 28. | 53. | 124. | * | * | * | * | * |
| 23. | Ο. | 2. | 6. | 8. | 23. | 48. | 90. | * | * | * | * | * |
| 24. | 0. | 2. | 6. | 8. | 19. | 42. | 77. | 202. | * | * | * . | * ' |
| 25. | 0. | 1. | 5. | 8. | 17. | 37. | 65. | 152. | * | * | * | * |
| 26. | 0. | 1. | 5. | 8. | 15. | 33. | 56. | 104. | * | * | * | * |
| 27. | 0. | 1. | 5. | 7. | 13. | 29. | 51. | 89. | 224. | * | * | * |
| 28. | 0. | 1. | 5. | 7. | 11. | 25, | 46. | 78. | 177. | * | * | * |
| 29. | 0. | 0. | 4. | 7. | 10. | 21. | 42. | 68. | 132. | * | * | * |
| 30. | 0. | 0. | 4. | 7. | 9. | 19. | 38. | 59. | 101. | 245. | * | * |

^{*}Exceeds anchor system ultimate holding capacity

TABLE E-2 (Continued) Predicted Tandem Anchor Drag Distances

Anchor: Tandem Stockless Anchors with Stabilizers and Flukes Fixed at approximately 36°

Seafloor Type: Sand

Horizontal Design Load (Kips)

| | 25. | 50. | 75. | 100. | 125. | 150. | 175. | 200. | 225. | 250. | 275. | 300. |
|------------------|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Anchor
Weight | | | | | | | | | | | | |
| (Kips) | | | | | | | | | | | | |
| , | | | | | | | | | | | | |
| 5. | 13. | 20. | 32. | * | * | * | * | * | * | * | * | * |
| 6. | 13. | 19. | 27. | * | * | * | * | * | * | * | * | * |
| 7. | 13. | 18. | 25. | 37. | * | * | * | * | * | * | * | * |
| 8. | 13. | 17. | 24. | 33. | * | * | * | * | * . | * | * | * |
| 9. | 13. | 17. | 23. | 29. | 42. | * | * | * | * | * | * | * |
| 10. | 13. | 17. | 22. | 28. | 38. | * | * | * | * | * | * | * - |
| 11. | 13. | 17. | 21. | 27. | 34. | 46. | * | * | * | * | * | * |
| 12. | 13. | 17. | 21. | 26. | 32. | 43. | * | * | * | * | * | * |
| 13. | 13. | 17. | 20. | 26. | 31. | 39. | * | * | * | * | * | * |
| 14. | 13. | 17. | 20. | 25. | 30. | 37. | 47. | * | * | * | * | * |
| 15. | 13. | 17. | 20. | 24. | 29. | 35. | 44. | * | * | * | * | * |
| 16. | 13. | 17. | 20. | 24. | 29. | 34. | 41. | 52. | * | * | * | * |
| 17. | 13. | 17. | 20. | 23. | 28. | 33. | 39. | 49. | * | * | * | * |
| 18. | 13. | 17. | 20. | 23. | 28. | 32. | 37. | 46. | * | * | * | * |
| 19. | 13. | 18. | 20. | 23. | 27. | 32. | 36. | 44. | 53. | * | * | * |
| 20. | 13. | 18. | 20. | 23. | 27. | 31. | 35. | 41. | 50. | * | * | * |
| 21. | 13. | 18. | 20. | 22. | 26. | 31. | 35. | 40. | 48. | 57. | * | * |
| 22. | 13. | 18. | 20. | 22. | 26. | 30. | 34. | 39. | 46. | 54. | * | * |
| 23. | 13. | 18. | 20. | 22. | 26. | 30. | 34. | 38. | 44. | 52. | * | * |
| 24. | 14. | 18. | 20. | 22. | 25. | 29. | 33. | 37. | 42. | 50. | 58. | * . |
| 25. | 14. | 18. | 20. | 22. | 25. | 29. | 33. | 36. | 41. | 48. | 56. | * |
| 26. | 14. | 17. | 20. | 22. | 25. | 28. | 32. | 36. | 40. | 46. | 54. | 62. |
| 27. | 14. | 17. | 20. | 23. | 25. | 28. | 32. | 36. | 40. | 45. | 52. | 60. |
| 28. | 14. | 17. | 21. | 23. | 25. | 28. | 32. | 35. | 39. | 43. | 50. | 58. |
| 29. | 14. | 17. | 21. | 23. | 25. | 28. | 31. | 35. | 38. | 43. | 49. | 56. |
| 30. | 14. | 17. | 21. | 23. | 25. | 27. | 31. | 35. | 38. | 42. | 47. | 54. |

^{*}Exceeds anchor system ultimate holding capacity

TABLE E-2 (Continued) Predicted Tandem Anchor Drag Distances

Anchor: Tandem Stato Anchors with Stabilizers and Flukes Fixed at approximately 50°

Seafloor Type: Mud

Horizontal Design Load (Kips)

75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 50. Anchor Weight (Kips) 99. 158. 324. 64. 5. 10. 23. 41. 96. 140. 236. 15. 29. 45. 66. 6. 0. 3. 6. 94. 127. 182. 322. 10. 19. 34. 48. 68. 7. 2. 5. 0. 52. 70. 93. 122. 168. 8. 2. 5. 7. 14. 25. 39. 0. 93. 120. 55. 72. 30. 43. 9. 0. 1. 4. 6. 11. 18. 35. 46. 57. 74. 94. 8. 14. 22. 10. 0. 1. 3. 6. 1. 3. 5. 7. 11. 18. 27. 39. 50. 60. 76. 11. 0. 53. 63. 7. 9. 15. 21. 32. 43. 12. 2. 4. 0. 0. 18. 25. 36. 46. 56. Ź. 6. 8. 12. 13. 0. 0. 4. 50. 15. 21. 29. 40. 14. 0. 0. 1. 3. 5. 7. 10. 24. 34. 43. 7. 9. 13. 18. 15. 1. 3. 5. 0. 0. 4. 6. 10. 16. 21. 28. 37. 16. 0. 1. 3. 8. 0. 17. 4. 6. 8. 10. 13. 18. 24. 32. 0. 0. 0. 2. 4. 5. 7. 9. 11. 16. 21. 27. 18. 0. 0. 0. 2. 19. 24. 5. 7. 8. 10. 14. 19. 0. 0. 0. 2. 3. 5. 6. 8. 10. 12. 17. 21. 20. 0. 1. 3. 0. 0. 1. 6. 7. 9. 11. 15. 19. 21. 0. 0. 0. 3. 4. 10. 13. 17. 4. 5. 7. 9. 22. 0. 0. 0. 2. 7. 11. 15. 23. 0. 0. 0. 1. 2. 4. 5. 8. 10. 5. 6. 9. 11. 13. 24. 0. 0. 0. 1. 2. 3. 8. 7. 9. 10. 12. 25. 0. 0. 0. 0. 1. 3. 4. 6. 5. 7. 8. 10. 3. 4. 11. 26. 0. 0. 0. 0. 1. 27. 0. 0. 0. 0. 1. 2. 4. 5. 7. 8. 9. 11. 9. 10. 1. 2. 4. 5. 6. 8. 28. 0. 0. 0. 0. 2. 5. 6. 7. 9. 10. 29. 0. 0. 1. 3. 0. 0. 6. 7. 8. 10. 30. 0. 0. 1. 2. 3. 4. 0. 0.

^{*}Exceeds anchor system ultimate holding capacity

TABLE E-2 (Continued) Predicted Tandem Anchor Drag Distances

Anchor: Tandem Stato Anchor with Stabilizers and Flukes Fixed at approximately 30°

Seafloor Type: Sand

Horizontal Design Load (Kips)

75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 25. Anchor Weight (Kips) 78. 21. 25. 28. 34. 39. 45. 55. 12. 15. 18. 52. 30. 36. 41. 45. 63. 20. 24. 27. 6. 13. 15. 18. 32. 37. 42. 46. 51. 23. 27. 29. 7. 13. 15. 18. 20. 22. 26. 28. 30. 34. 39. 43. 47. 8. 13. 15. 20. 18. 32. 36. 40. 45. 22. 25. 28. 30. 9. 14. 15. 18. 20. 38. 42. 30. 32. 33. 22. 24. 27. 10. 14. 15. 18. 21. 26. 29. 32. 33. 35. 40. 16. 20. 22. 24. 11. 15. 18. 35. 37. 12. 15. 16. 18. 20. 22. 24. 26. 28. 31. 33. 30. 33. 35. 36. 24. 26. 28. 16. 20. 23. 13. 15. 18. 27. 30. 32. 34. 36. 23. 24. 26. 14. 16. 17. 18. 20. 27. 29. 32. 34. 36. 15. 16. 17. 18. 20. 22. 24. 26. 31. 34. 36. 24. 26. 27. 29. 17. 18. 20. 22. 16. 16. 22. 24. 26. 27. 28. 31. 33. 35. 17. 16. 17. 18. 20. 32. 35. 20. 22. 24. 26. 27. 28. 30. 18. 17. 18. 19. 32. 26. 27. 28. 30. 34. 19. 17. 19. 20. 22. 24. 18. 29. 30. 32. 34. 20. 17. 18. 19. 20. 22. 24. 26. 27. 24. 26. 27. 29. 30. 31. 33. 21. 20. 22. 17. 18. 19. 30. 27. 29. 31. 33. 22. 18. 19. 19. 21. 22. 24. 26. 32. 24. 26. 27. 29. 30. 31. 23. 19. 20. 21. 22. 18. 32. 24. 20. 21. 22. 24. 26. 27. 29. 30. 31. 18. 19. 27. 29. 30. 31. 32. 25. 18. 19. 20. 21. 22. 24. 26. 26. 27. 29. 30. 31. 32. 26. 19. 19. 20. 21. 22. 24. 30. 32. 22. 24. 26. 27. 29. 31. 27. 19. 20. 20. 21. 28. 19. 20. 21. 21. 22. 24. 26. 27. 29. 30. 31. 32. 26. 27. 29. 30. 31. 32. 23. 24. 29. 19. 20. 21. 22. 30. 23. 24. 26. 27. 29. 31. 32. 30. 19. 20. 21. 22.

^{*}Exceeds anchor system ultimate holding capacity

TABLE 70
Spherical Marker or Mooring Buoy¹

| Weitht | 270 lbs |
|--------------------|----------------------|
| Dimensions | 40 inches Diameter |
| Net Buoyancy | 1240 lbs |
| Surface Visibility | 23 sa ft. |
| Hull Construction | |
| Foam Filling | polyester resin |
| Foam Filling | 4 lbs/ft Closed cell |
| Color | polyurethane |
| Color | International orange |

 $^{^{1}\}mathrm{Data}$ provided by Tideland Signal Corp.

TABLE 71
Spherical Marker or Mooring Buoyl

HAWSEPIPE TYPE

| DIAMETER
(FEET) | WEIGHT
IN AIR
LBS.) | RESERVE
BUGYANCY
(LBS.) |
|--------------------|---------------------------|-------------------------------|
| 6.0 | 1,500 | 5,500 |
| 7.0 | 2,200 | 9,000 |
| 8.0 | 2,900 | 14,000 |
| 9.0 | 3,900 | 20,000 |
| 10.0 | 5,900 | 28,000 |

¹Data provided by Seward International Co.

TABLE 72
Spherical Marker or Mooring Buoy1

NOW, ELS IN THE PROPERTY OF TH

| DIAMETER
(FEET) | OVERALL
LENGTH
(FEET) | WEIGHT
IN A:R
(LBS.) | RESERVE
BUOYANCY
(LBS) | MANUF
PART
NO. |
|--------------------|-----------------------------|----------------------------|------------------------------|----------------------|
| 2.50 | 4.50 | 75 | 500 | \$B5 |
| 3.25 | 5.25 | 150 | 1,000 | \$B10 |
| 3.75 | 5.75 | 205 | 1,500 | \$B15 |
| 4.20 | 6.20 | 290 | 2,000 | \$B20 |
| 4.40 | 6.40 | 350 | 2,500 | \$B25 |
| 4.75 | 6.75 | 395 | 3,000 | \$E30 |
| 5.20 | 7.20 | 470 | 4,000 | \$E40 |
| 5.60 | 7.60 | 605 | 5,000 | \$B50 |
| 5.90 | 7.90 | 750 | 6,000 | \$B50 |

¹Data provided by Samson Ocean Systems, Inc.

TABLE 73
Tension Bar Mooring Buoys¹

| DIAMETER
(FEET) | HEIGHT OR
LENGTH
(FEET) | WEIGHT
IN AIR
(LBS.) | RESERVE
BUOYANCY
(LBS.) | MANUF.
PART
NO. |
|--|--|--|--|--|
| 2.00
2.50
3.00
3.50
4.00
4.00
4.50
5.50
5.75
6.00 | 4.00
4.00
4.00
6.00
6.50
6.50 | 200
250
310
460
600
825
1000
1150
1350
1625
2475 | 500
1,000
1,500
2,000
3,000
4,000
5,000
6,000
10,000
12,000 | CB5
CB10
CB15
CB20
CB30
CB40
CB50
CB50
CB50
CB50
CB50
CB50
CB50
CB5 |

¹Data provided by Samson Ocean Systems, Inc.

TABLE 74
Tension Bar Mooring Buoys¹

| DIAMETER
(INCHES) | HEIGHT
OR
LENGTH
(INCHES) | OVERALL
LENGTH
(INCHES) | WEIGHT
IN AIR
(LBS.) | RESERVE
BUDYANCY
(LBS.) | PICK - UP
LOAD
RATING
(LBS.) | PICK-UP
EYE
I.D.
(INCHES) |
|----------------------------|------------------------------------|--------------------------------------|-------------------------------|---------------------------------------|--|------------------------------------|
| 20
24
29
37
50 | 30
36
45
59
8: | 40-3/8
47-7/8
61-7/8
79-3/8 | 40
70
140
180
730 | 300
500
1,600
2,000
5,600 | 5,000
7,500
10,000
20,000
40,000 | 2-1/4
2-1/2
3-1/8
4 |

¹Data provided by Seaward International Co.

TABLE 75
Hawsepipe and Tension Bar Buoys¹

TENSION BAR TYPE

| DIAMETER
(FEET) | LENGTH
(FEET) | WEIGHT
IN AIR
(LBS.) | RESERVE
BOUYANCY
(LBS.) | MANF.
PART
NO. |
|--------------------|------------------|----------------------------|-------------------------------|----------------------|
| 5.75 | 8.0 | 1,900 | 11,400 | PB11 |
| 6.50 | 9.0 | 2,700 | 16,400 | PB16 |
| 7.25 | 10.0 | 3,400 | 23,000 | PB23 |
| 8.00 | 11.0 | 3,800 | 30,000 | PB30 |
| 8.75 | 13.0 | 5,000 | 40,000 | PB40 |

HAWSEPIPE TYPE

| DIAMETER
(FEET) | HEIGHT
OR
LENGTH
(FEET) | WEIGHT
IN AIR
(LBS.) | RESERVE
BOUYANCY
(LBS.) | HAWSEPIPE
INSIDE DIA
(INCHES) | MANE.
PART
100. |
|--|--|--|--|-------------------------------------|---|
| 3.60
4.25
4.50
4.85
5.00
6.00
6.00 | 5.5
5.5
6.2
7.5
8.0
8.5
10.0
12.0 | 305
360
500
1,400
1,575
1,700
3,350
3,800 | 2,000
3,000
4,000
5,000
6,000
8,000
10,000
12,000 | 14
14
16
16
19
25 | HB10
HB30
HB50
HB50
HB100
HB120
HB120 |
| | | | | | |

¹Data provided by Samson Ocean Systems, Inc.

TABLE 76
Hawsepipe and Tension Bar Mooring Buoys¹

| C AMETER
(FEET) | HEIGHT
OR
LENGTH
(FEET) | WEIGHT
IN AIR
(LBS.) | RESERVE
BOUYANCY
(LBS.) | PICK-UP LOAD
RATING (LBS.)
TENSION BAR TYPE |
|--------------------|----------------------------------|----------------------------|-------------------------------|---|
| 5.4
6.2 | 8.0
9.2 | 1,500 | 10,000 | 10.000
15.000 |
| ຈ.∠
ຈີ.8 | 9.2
10.1 | 2,000
2,500 | 15.000
20.000 | 20.000 |
| 7.7 | 11.5 | 3,300 | 30,500 | 30,000 |
| €.4 | 12.6 | 4,000 | 40.000 | 40.000 |
| 9.1 | 13.5 | 5,000 | 50,230 | 50.000 |

Data provided by Seaward International Co.

TABLE 77 Concrete Sinkers!

| WEIGHT
(LBS.) | <u>A</u> | <u>e</u> | <u>c</u> | D | Ε | F | <u> </u> |
|-------------------------|----------------|----------------|-------------|-------------------|----------------|----------------|----------------|
| 1,000
2,000
5,000 | 35
45
57 | 10
12
18 | 4
4
5 | 3/4
1
1-5/8 | 10
11
16 | 12
14
18 | 3-1/2
3-1/2 |

 $^{1}\mathrm{Data}$ provided by Automatic Power, Inc.

TABLE 78
Holding Power to Weight Ratios of Various Anchors1

| | Holding Power and | d Type of Bottom | |
|--------------------------------------|-------------------|------------------|-----------------|
| ANCHOR ² | SAND | MUD/SILT | HARD/DENSE SOIL |
| U.S. Navy Stockless | 4.53 | 3³ | |
| U.S. Navy Lightweight | 10 | 3 | - |
| U.S. Navy State | 20 ⁵ | 15 ⁵ | 15 ⁵ |
| Danforth | 10 | 3 | |
| Stock Anchor Type 1
(offdrill II) | 13.5 | 9 | |
| Moorfast | 10 | 7 | |
| Boss | 20 | 15 | 15 ⁵ |
| Flipper Delta | 15 | 15 | 15 |
| Stevin | 17 | 126 | 15 |
| Stevfix | 20 | | 20 |
| Stevmud | | 19 | |
| Hook | | 18 | 10 |
| Mark-2 | 20 | | |

The anchor holding power ratios given are intended for use with conventional anchor weights up to 30,000 lt. only; heavier conventional anchors may possess lower holding power to weight ratios. The holding power ratios represent values established by field tests performed by the Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California and are based on efficiencies achieved during maximum permissible drag of 50 feet. Higher holding power ratios may be achieved by some anchors during longer drags. The holding power ratios do not apply where anomalous sealer conditions exist; erratic or unsatisfactory anchor performance is experienced under conditions such as layered sealers (soft sediment over stiff/dense sediment or vice versa), gravely (placated) sealers, thin sediment layer above rock, and unconsolidated clays with cohesion to pressure ratios less than 0.15.

²For weight ranges and dimensional characteristics of anchors and appurtenances, see Tables in Sections 4 and 6.

The fluxes should be restricted to a 35° angle opening in sand and fixed fully open in mud.

 4 Values indicated are for fabricated (welded) anchors only. They should not be applied to cast anthors.

⁵Chly with fluke angle reduced to 32° and with stabilizers lengthened by 35%.

*In very soft bottoms this anchor should be installed without the retrieving wire rope pendant attached to the corner eye opening in one of the flukes. This pendant may cause a dissymmetric strain leading to anchor instability and overturning resulting in a major loss of holding power.

TABLE 79 Moorings Without Sinkers Bills of Materials

| Class
Holding Power (lbs)
Basic Depth (ft)
Assembly No. | | | | AAA (Proposed)
500,000
50
5381 | | BBB (Proposed)
50,000
50
50
5382 | | |
|--|------|------------------------------|------------|---|------|--|------|-----------------------------|
| Description of Item
Tension bar Mooring Buoy | | | Reg. | Size
dia. hgt.
15'0"x9'6" | Req. | Size
dia. hgt.
15'0"x9'6" | | |
| Anchors
Chain Set Assembly No. | | | 1 9 | 5788 | 1 9 | 5789 | | |
| Class
Holding Power (lbs)
Basic Depth (ft)
Assembly No. | | AA
300,000
50
5377. | | BB
250,000
50
5378 | | CC
200,000
50
5379 | | DD
175,000
50
5380 |
| Description of Item | Red. | Size | Req. | Size | Reg. | Size | Req. | Size |
| Hawsepipe Mooring Buoy | - | dia. hgt.
12'0"x6'0" | - | dia. hgt.
12'0"x6'0" | ٦ | dia. hgt.
12'0"x6'0" | 1 | dia. hgt.
12'0"x6'0" |
| Anchors
Chain Set Assembly No. | 9 | 1
5784 | 1 6 | 1
5785 | 11 6 | 1
5786 | 3 | 5787 |

¹ For anchor selection procedure, see introduction to this part.

TABLE 80
Moorings Without Sinkers Chain Set Assembly for Basic Depth

| Mooring Class
Basic Depth (ft.)
Chain Set Assembly No. | | AAA (P:
50
5788 | roposed) | | BBB (Pt
50
5789 | (beaoqo | | | 1.04 - 510 | | | |
|--|-------|-----------------------|---------------|-------|-----------------------|---------------|-------|----------|---------------|-------|------------------|-------|
| Description of Item | Reqd. | | Chain
Size | Reqd. | Spare1 | Chain
Size | | | | | | |
| Riser chain (45 ft.) | 1 | - | 4-1/2 | 1 | - | 4-1/2 | | | | | | |
| Ground chain (90 ft.)2 | 42 | - | 3 | 36 | - | 3 | | | | | | 1 |
| Ground chain (45 ft.) | 0 | - | 3 | 0 | - | 3 | | | | | | |
| Ground ring | 1 | - | 4-1/2 | 1 | - | 4-1/2 | | | | | | |
| Spider | 3 | - | - | 3 | - | - | | | | | | i |
| End link ass. #: | 1 | - | 4-1/2 | 1 | - | 4-1/2 | | | | | | |
| End link ass. #1 | 12 | - | 3 | 12 | - | 3 | | | | | | i |
| End link ass. #2 | 3 | - | 4-1/2 | 3 | - | 4-1/2 | | | | | | |
| Anchor link (pear shaped) | 4 | - | 4-1/2 | 4 | 1 | 4-1/2 | | | | | | |
| Detachable Link | 3 | 1 | 4-1/2 | 3 | 1 | 4-1/2 | | | | | | |
| Joining Link | 48 | 16 | | 42 | 14 | 3 | | | | | | |
| End shackle | 3 | 1 | 4-1/2 | 3 | 1 | 4-1/2 | | | | | | |
| End sharkle | 6 | 1 | 3 | 6 | 1 | 3 | | | | | | |
| Swivel assembly | 1 | - | 4-1/2 | 1 | - | 4-1/2 | | | | | | |
| Swivel shackle | 6 | - | 3 | 6 | - | 3 | | | | | | |
| Mooring Class
Basic Depth (ft.) | | AA
50 | | | BB
50 | | | CC
50 | | | DD
50
5787 | |
| Chain Set Assembly No. | | 5784 | | | 5785 | | | 5796 | | | 3/8/ | Chain |
| Description of Item | Regd. | Spare1 | Chain
Size | Pegd. | Spare1 | Chain
Size | Read. | Spare1 | Chain
Size | Pagd. | Soare1 | |
| Riser chain (45 ft.) ² | 1 | - | 4 | 1 | - | 3-1/2 | . 1 | - | 3-1/2 | 1 | - | 3 |
| Ground chain (9) ft.)3 | 24 | - | 2-3/4 | 24 | - | 2-1/2 | 24 | - | 2-1/4 | 12 | - | 3 |
| Ground chain (45 ft.) | 6 | - | 2-3/4 | 6 | - | 2-1/2 | 6 | - | 2-1/4 | 3 | - | 3 |
| Ground ring | 1 | - | 3-1/2 | 1 | - | 3-1/2 | 1 | - | 3-1/2 | 1 | - | 3 |
| Spider | 3 | _ | - | 3 | - | • | 3 | - | • | - | - | - |
| End link | 1 | - | 4 | 1 | - | 3-1/2 | 1 | - | 3-1/2 | 1 | - | 3 |
| f-shackle with ligs | 1 | 1 | 4 | 1 | 1 | 3-1/2 | 1 | 1 | 3-1/2 | 1 | 1 | 3 |
| Anchor Joining link | 8 | 1 | 4 | 8 | 1 | 3-1/2 | 8 | 1 | 3-1/2 | - | - | - |
| Anchor Joining link | 12 | 3 | 2-3/4 | 12 | 3 | 2-1/2 | 12 | 3 | 2-1/4 | 8 | 2 | 3 |
| Chain Spining link3 | 1 | 2 | 4 | 1 | 1 | 3-1/2 | 1 | 1 | 3-1/2 | - | - | - |
| Thain Joining line | 30 | 10 | 2-3/4 | 30 | 10 | 2-1/2 | 30 | 10 | 2-1/4 | 16 | 6 | 3 |
| Their swivel | 1 | - | | 1 | - | 3-1/2 | 1 | - | 3-1/2 | - | - | - |
| | | | | | | | | | | | | |
| Chain swivel' | 6 | | 2-3/4 | 6 | - | 2-1/2 | 6 | - | 2-1/4 | 4 | - | 3 |

'Ship to advances bases for each Assembly regardless of water depth.

Elength of each ground leg includes one more shot of chain than that required by catenary configuration at rated load. This extra shot serves to accommodate any temporary load increases due to dynamic forces.

If still in stick, a swivel chain shot of the same size may be substituted in the riser or ground chain for the listed swivel end chain shot. Each swivel chain shot will replace 1 chain shot, 1 swivel, and 1 chain joining link in the Bill of Materials

TABLE 81

Moorings Without Sinkers Lengths of Ground Chain Required for Various Water Depths¹

| | | | (Prop | oosed) | С | lass | | |
|------------------------|-----|-------------|------------------|------------------|----------------|-------|-------|-------|
| Depth of
Water (ft) | | | AAA ² | BBB ² | AA | BB | cc | DD |
| Basic | - | | 7 | 6 | 4-1/2 | 4-1/2 | 4-1/2 | 4-1/2 |
| Basic | CJ. | 50 | 7 | 6 | 4-1/2 | 4-1/2 | 4-1/2 | 4-1/2 |
| 50 | to | 60 | 7-1/2 | 6-1/2 | 5 | 5 | 5 | 5 |
| 60 | to | 70 | 8 | 7 | 5 | 5-1/2 | 5-1/2 | 5 |
| 70 | to | 80 | 8-1/2 | 7 | 5-1/2 | 5-1/2 | 5-1/2 | 5-1/2 |
| 80 | to | 90 | 9 | 7-1/2 | 6 | 6 | 6 | 6 |
| 90 | to | 100 | 9-1/2 | 8 | 6 ³ | 6-1/2 | 6-1/2 | 6 |
| | | 115 | 10 | 8 | - | 6-1/2 | 6-1/2 | 6-1/2 |
| 115 | to | 130 | 10 | 8-1/2 | - | 73 | 73 | 7 |
| | | 145 | 10-1/23 | 93 | - | - | | 7 |
| | | 160 | - | _ | - | - | - | 7-1/2 |
| | | 175 | - | _ | _ | - | - | 8 |
| _ | | 190 | _ | - | - | - | - | 83 |

¹Lengths are 90 ft. shots. Depth of water is taken at mean high water from a firm bottom at anchor location.

^{*}Includes an extra shot of chain to accommodate any temporary load increases due to dynamic forces.

Freeboard limit of 2 ft. reached at this water depth for buoy size indicated in Table 79.

| Depth
of
Water | choin (90° shot) | chain (45' shot) | Joining Link | 4-1/2 chain (90' shot) | 4-1/2 chain (45' shot) | 4-1/2" Detochoble Link | . chain (90' shot) | · chain (45° shot) | Joining Link | 4-1/2 chain (90' shot) | 4-1/7 chain (45' shot) | _oooooo 4-1/2" Detochable Link | | | | | | | | |
|---|------------------------|-------------------------|--|---|------------------------|------------------------|-----------------------|-------------------------|---|---|-------------------------|--|-------------------------|-------------------------|---|--|-------------------------|---------------------|---|--|
| Water
(feet) asic to 50 50 to 50 60 to 70 70 to 80 80 to 90 90 to 100 100 to 115 115 to 130 130 to 145 145 to 160 150 to 175 175 to 190 | 00662218 | 3 060606006111 | 0
6
12
12
13
18
15
24 | 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000777700111 | 000000011 | 006665212213 | 5 0 5 0 0 5 0 0 7 1 1 | 6
6
6
12
12
13
13
15 | 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000111100111 | 0000000 | | | | | | | | |
| | | | | <u>~</u> | | | | | | 2 | C as | <u>. </u> | | | 5 | <u>. </u> | | | | co |
| Cepth
of
Water
(feat) | ?-3/4" chain (90'shot) | 2-3/4" choin (45' shot) | 2-5/4" Joining Link | 4" chain (90' shot) | 4" chain (45' shot) | 4" Joining Link | 1/2" chain (90" shot) | 2-1/2" chain (45' shot) | 2-1/2" Joining Link | 3-1/2" chain (90' shat) | 3-1/2" chain (45: shut) | 3-1/2" Joining Link | 2-1/4" chain (90' shot) | 2-1/4" choin (45' shot) | 2-1/4" Joining Link | 3-1/2" chain (90' shot) | 3-1/2" chain (45' shot) | 3-1/2" Joining Link | 3° choin (90' shot) | 3" chain (45' shot) |
| Basic to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100
100 to 115
115 to 130
130 to 145
145 to 160 | 0006662227 | 066066066111 | 111111111111111111111111111111111111111 | 0000011111 | 0111110001111 | 0 1 1 1 1 1 1 2 | 07656.555650004 | 060060060060 | 0.0001111111111111111111111111111111111 | 0 0 0 0 0 1 1 1 1 1 2 | 3000 | HANDA LA | 006662222123123123 | 060060060060 | 06666111121188118811881188118811881188118 | 000011111111111111111111111111111111111 | 0000110 | 0 1 1 1 2 2 2 2 2 | 0
0
0
3
3
4
7
7
7
10
10 | 0
4
1
3
0
3
4
1
4
3 |

TABLE 83 Moorings Without Sinkers Bills of Materials

| molding point (lbs) | æ | B | | S | | Δ | _ | ы | | ш | | U | |
|--------------------------|-----------|------|-------|------|-------|-------|-------|------|------|-------|-----------|-----|-----------|
| | 150,000 | 125, | 000 | 100, | 000 | 75, (| 000 | 20,1 | 000 | 25, (| 000 | 2,0 | 00 |
| | 50 | 4. | 7٠ | 4 | 0 | ñ | 2 | ĕ | S | ĕ | 0 | 2 | 2 |
| | 5370 | 5371 | 17 | 53 | 5372 | 53, | 5373 | 53 | 5374 | 23. | 5375 | 53 | 5376 |
| Description of Item Redo | Redd Size | Redd | Size | | Size | Regd | Size | Regd | Size | | Redd Size | | Redd Size |
| • | dia | 1 | dia | | dia | 1 | dia . | п | dia | | dia | | dia |
| 7 | 12'0" | | 12'0" | | 10'6" | | 10'6" | | 9,6 | | .9,6 | | 3'6" |
| | hqt | | hgt | | hgt | | hgt | | hgt | | hgt | | hgt |
| | .0.9 | | 6.0" | | .9.9 | | 9,9 | | 5.0" | | 5 10" | | |
| Anchors | | က | -; | | 3 | ო | 31 | ო | -! | က | - | ო | |
| Chain Set Assembly No. 1 | 5777 | - | 5778 | 1 | 5779 | 1 | 5780 | 1 | 5781 | - | 5782 | 1 | 5783 |

^{&#}x27;For anchor selection procedure, see introduction to this part.

TABLE 84 Moorings Without Sinkors Chain Sot Assembly for Basic Depth

| | | | | | = | | | - | | | = | | | ¥ | | | <u>.</u> | | | 9 | |
|------------------------|------------|---------|-------|-----|------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|----------|-------|------|-------|-------|
| | | | | | : : | | | ; | | | | | | • | | | ۶ | | | 2 | |
| Basic Donth (ft.) | • | 50 | | | ÷ | | | 9 | | | ŝ | | | כ | | | 3 | | | 1 | |
| Chain Ser Assembly No. | 5.5 | 5777 | | | 5778 | | | 5779 | | | 5700 | | | 5781 | | | 5782 | | | 5783 | |
| | | Ĉ | Chain | | 1 | Chain | | | Chain | | | Chain | | | Chain | | | Chain | | | Chain |
| Peace intion of Item | Beers 5200 | rul Siz | , K | e E | | Sire | Rockt | Spare | | Reupl | Spare | Size | Regd | Spare | 1 | Redd | Spare | - 1 | Regd | Spare | Size |
| ~ | 1 - 2-3/4 | | 3/4 | _ | ! | 2-1/2 | _ | , | 2-1/4 | _ | | 7 | - | | 1-3/4 | - | ٠ | 1-1/4 | - | • | 3/4 |
| - | 27 | -2- | 3/4 | 12 | | 2-1/5 | 12 | • | 2-1/4 | 12 | | 7 | 6 | • | 1-3/4 | 6 | • | 1-1/4 | • | ٠ | 3/4 |
| | | | 3/4 | | , | 2-1/2 | 0 | | 2-1/4 | 0 | , | 7 | e | • | 1-3/4 | • | ٠ | 1-1/4 | • | ٠ | 3/4 |
| | - | | 3/4 | - | • | 2-1/5 | _ | | 2-1/4 | - | | ~ | - | • | 1-3/4 | - | • | 1-1/4 | - | ٠ | 3/4 |
| | | -2 | 3/4 | _ | | 2-1/5 | | • | 2-1/4 | ~ | | ~ | - | • | 1-3/4 | - | 3 | 1-1/4 | - | • | 3/4 |
| without lugs | • • | | | 1 | | | ٠ | | | ١ | | | - | _ | 1-3/4 | - | - | 1-1/4 | • | • | • |
| Frankrik Cirk luga | - | 1 2- | 3/4 | - | | 2-1/5 | - | - | 2-1/4 | - | - | ~ | • | • | • | • | 1 | • | • | • | • |
| Anchor toining 11nk | . 60 | 2 -2 | 2-3/4 | • | ~ | 2-1/5 | 8 | ~ | 2-1/4 | 89 | 7 | 7 | • | ~ | 1-3/4 | • | 8 | 1-1/4 | • | 8 | 3/4 |
| Joining link | 16 | 6 2- | 3/4 | 16 | 9 | 2-1/5 | 13 | 9 | 2-1/4 | 13 | - | 7 | 13 | 9 | 1-3/4 | 13 | 9 | 1-1/4 | 2 | 9 | 3/4 |
| Swive12 | 4 | -2 | 2-3/4 | 4 | , | 2-1/2 | • | • | 2-1/4 | 4 | | 7 | 4 | ١ | 1-3/4 | • | • | 1-1/4 | • | ٠ | 3/4 |
| Joining 11nk | • | 1 | | • | • | • | • | • | • | • | 1 | • | • | • | ٠ | 1 | ٠ | • | - | | - |
| Rubber casting | | - 2- | 2-3/4 | - | | 2-1/5 | ٠ | | • | • | • | • | • | • | • | • | 1 | | | ٠ | |

Ship to advanced bases for each assembly regardless of water depth.

²If still in stock, a swivel chain shot of the same size may be substituted in the riser or ground chain for the listed swivel and chain shot. Each swivel chain shot will replace I chain shot, I swivel, and I chain joining link in the Bill of Materials.

TABLE 85

Moorings Without Sinkers Maximum Mooring Depths With Various Buoys

| Buoy
Details | NAVFAC Dwg
620,662 | | /g 620,659
type | NAVFAC Dwg
620,605 | NAVEAC Dwg
620,659 |
|-----------------|-----------------------|------------------------|-------------------------|-------------------------|-------------------------|
| Size | 3'6" spherical | Dia. Hgt.
9'6"x5'0" | Dia. Hgt.
10'6"x6'6" | Dia. Hgt.
12'0"x6'0" | Dia. Hgt.
10'6"x7'6" |
| Class | | Depth (ft)1 | | | |
| A | - | - | - | 225 | - |
| 9 | - | - | - | 280 | - |
| C | - | 75 | 305 | - | 425 |
| D | _ | 105 | 395 | - | 545 |
| 2 | _ | 155 | 525 | - | - |
| £ | - | - | - | - | - |
| G | 140² | - | - | - | - |

¹Buoys have a 2-ft. freeboard at depths tabulated, except as noted.

²¹⁻ft. freeboard.

TABLE 86

Moorings Without Sinkers Lengths of Ground Chain Required for Various Water Depths¹

| Depth of | | | | Class | | | |
|---------------|-----------------|-----------------|-----------------|---------|-----------------|-------|-------|
| Water
(ft) | A | В | С | D | E | F | G |
| Basic | 4-1/2 | 4-1/2 | | 4 | 3-1/2 | 3-1/2 | 3 |
| Basic to 50 | 4-1/2 | 4-1/2 | 4-1/2 | 4-1/2 | 4-1/2 | 4-1/2 | 3-1/2 |
| 50 to 60 | 5 | 5 | 5 | 5 | 4-1/2 | 4-1/2 | 4 |
| 60 to 70 | 5 | 5-1/2 | 5-1/2 | 5-1/2 | 5 | 5 | 4 |
| 70 to 80 | 5-1/2 | 5-1/2 | 5-1/2 | 5-1/2 | 5-1/2 | 5-1/2 | 4-1/2 |
| 80 to 90 | 6 | 6 | 6 | 6 | 5-1/2 | 5-1/2 | 4-1/2 |
| 90 to 100 | 6-1/2 | 6-1/2 | 6-1/2 | 6-1/2 | 6 | 6 | 4-1/2 |
| 100 to 120 | 7 | 7 | 7 | 7 | 6 | 6-1/2 | 5 |
| 120 to 140 | 7-1/2 | 7-1/2 | 7-1/2 | 7-1/2 | 6-1/2 | 6-1/2 | 5 |
| 140 to 160 | 7-1/2 | 7-1/2 | 7-1/2 | 7-1/2 | 7 | 7 | - |
| 160 to 180 | 8 | 8 | 8 | 8 | 7 ² | 7 | - |
| 180 to 200 | 8-1/2 | 8-1/2 | 8-1/2 | 8-1/2 | 7-1/22 | 7-1/2 | - |
| 200 to 240 | 9 | 9 | 9 | 8-1/2 | 8² | 8 | - |
| 240 to 280 | 8-1/12 | 9-1/2 | 9-1/2 | 9 | 8-1/22 | 8-1/2 | - |
| 280 to 320 | 10 ² | 10 ² | 10 | 9-1/2 | 8-1/22 | 9 | - |
| 320 to 360 | 10-1/22 | 10-1/22 | 10-1/22 | 10 | 9² | 9 | - |
| 360 to 400 | 10-1/22 | 11 ² | 11 ² | 10-1/2 | 9-1/22 | 9-1/2 | - |
| 400 to 440 | 112 | 11 ² | - | 112 | 10 ² | 9-1/2 | - |
| 440 to 480 | - | 11-1/22 | _ | 112 | 10 ² | _ | - |
| 480 to 520 | _ | _ | - | 11-1/22 | 10-1/22 | - | - |
| 520 to 560 | _ | _ | _ | - | 10-1/22 | _ | - |

*Lengths are 90-ft. shots. Depth of water is taken at mean high water from a firm bottom at anchor location. Maximum water depth determined on the basis of not exceeding the allowable stress in the chain.

The freeboard limit of the mooring's standard buoy (see Table 83) will be exceeded at this depth. An optional buoy (see Table 85) must be used.

| | | A | | | В | | | c | | | Class | | | Ε | | | F | | | G | |
|--|-----------------------------|--|--|---|--|--|---|---------------------------|---|--|-------------------------------|--|--|--------------------------|---|---|--------------------|---|-----------------|---------------------|--|
| • | chain (90'shat) | chain (45' shot) | Joining Link | choin (90'shot) | chain (45' shot) | Joining Link | chain (90'shat) | chain (45' shot) | Joining Link | chain (90'shot) | chain (45° shol) | Joining Link | chain (90'shot) | chain (45' shot) | Joining Link | chain (90'shat) | " chain (45' shot) | Johning Link | chain (90'shot) | chain (45° shot) | |
| Death
of
Water
(feet) | 2-3/4 | 2-3/4 | 2-3/4 | 2-1/2 | 2-1/2 | 2-1/2 | 2-1/6 | 2-1/4 | 2-1/4 | ١. | ۲, | ħ. | 1-3/4 | 1-3/4 | 1-3/4 | 1-1/4 | 1-1/6 | 1-1/4 | ** | 3/4 | |
| Basic to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100
100 to 120
120 to 140
140 to 160
160 to 200
200 to 240
240 to 280
250 to 320
360 to 440
440 to 450
450 to 550 | 000337771001101141181212222 | 0
4
4
1
4
0
3
0
1
4
0
3
0
4
0
3
1
0
4
0
4
0
1
0
4
0
1
0
1
0
1
0
1
0
1
0 | 0
4
4
4
7
7
10
11
14
14
15
18
21
22
22
26 | 0
0
3
3
7
7
7
10
10
10
14
18
18
21
22
22
25 | 1
4
1
1
4
0
3
1
1
4
0
4
0
4
0
4
0
1
3
4
0
7
1
7 | 1 4 4 4 7 7 10 11 11 14 18 12 22 5 6 2 5 7 7 | 0
3
3
7
7
7
10
10
10
14
14
17
18
22
25
- | 4 0 3 0 4 4 0 3 1 3 1 3 0 | 4
4
7
7
7
10
10
14
14
17
18
21
22
25
25 | 0
3
3
7
7
7
10
10
14
14
18
18
22
22
25
26 | 4 0 3 0 4 4 0 3 4 0 4 1 0 4 - | 4
4
7
7
7
7
10
10
14
14
17
18
18
22
26
26
26
30 | 3
3
6
7
7
7
10
10
11
14
18
19
22
22
22
23
26
27 | 114103331433044013143310 | 4
4
7
7
7
10
10
11
14
14
18
13
22
23
25
27
27 | 3
3
7
7
7
7
7
10
10
10
11
14
14
18
18
19
22
23 | 11400301430404310 | 4
4
7
7
7
10
10
11
14
14
18
18
18
22
23
23 | 03334444777 | 4 1 1 3 3 3 3 1 1 1 | |

Add to Bosic Depth Assembly to obtain Assembly for a particular depth

TABLE 88 Moorings With Sinkers - Bills of Materials

| Class
Holding Power (lbs.)
Basic Depth (ft.)
Assembly No. | A
150,000
50
<u>5015</u> | B
125,000
45
<u>5254</u> | C
100,000
40
<u>5220</u> | D
75,000
35
<u>5231</u> | E
50,000
35
<u>5224</u> |
|--|---|---|-----------------------------------|---|-----------------------------------|
| Description of Item
Riser buoy | Regd. Size
1 dia.
12'0"
hgt. | Regd. Size
1 dia.
12'0"
hgt. | Regd. | Redd. Size 1 dia. 10'6" hgt. | Regd. 1 d |
| Anchors
Chain Set Assembly No.
Sinkers | 6'0"
31
1 5766
3 8,200
(1bs.) | 6'0"
31
1 5764
3 8,200
(1bs.) | 7'6" 31 1 5763 3 8,200 (1bs.) | 6'6"
31
1 5741
3 8,200
(lbs.) | 31
1 5758
3 8,200
(1bs.) |

 $^{
m l}_{
m For}$ anchor selection procedure, see introduction to this part.

TABLE 89 Moorings With Sinkers - Chain Set Assembly for Basic Depth

| | < | | | 2 | | | J : | | | ֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | | 6750 | |
|-------|-------------|--------|----------|-----------|--------|-------|-------|--------|-------|--|--------|----------|-------|-------|
| | 5766 | | | 5764 | | | 5/63 | | | 3/41 | | | 9 | |
| | | | | | | | | | | i | | | ý | |
| | 20 | | | 45 | | | 40 | | | 35 | | | ç | |
| | | | | | | | | | | | | | | 1.5 |
| | | Chain | | | Chain | | | | | • | Chain | | - | Chain |
| Redd. | Regd. Spare | Size | Regid. | Spare | Size | Regd. | Spare | Size | Redd. | Spare | Size | Redd. | Spare | Size |
| - | , | 2-3/4 | | ı | 2-1/5 | | • | | - | ı | 7 | -1 | • | 1-3/4 |
| | | | | | | | | | | | • | , | | |
| 12 | ı | 2-3/4 | 12 | • | 2-1/5 | 6 | , | 2-1/4 | 6 | • | 2 | 6 | | 1-3/4 |
| | | | | | | | | | | | | • | | |
| 0 | ı | 2-3/4 | 0 | ı | 2-1/5 | ٣ | | 2-1/4 | 0 | ı | 7 | 0 | | 1-3/4 |
| | | | | | | | | | | | 4 | , | | |
| - | 1 | 2-3/4 | - | • | 2-1/5 | _ | • | 2-1/4 | - | ı | 2 | , | | 1-3/4 |
| 1 | • | 2-3/4 | ~ | | 2-1/5 | - | | 2-1/4 | - | • | 63 | , i | | 1-3/4 |
| • | • | • | 1 | , | ı | ı | 1 | | 1 | | ı · | - | - | 1-3/4 |
| | | | | | | | | | | | | | | |
| - | - | 2-3/4 | - | . | 2-1/2 | - | - | 2-1/4 | ~ | - | 7 | ŧ | ı | • |
| | | | | | | | | | , | | • | • | • | |
| 8 | 2 | 2-3/4 | 11 | C1 | 2-1/5 | 11 | 7 | 2-1/4 | 11 | 7 | 7 | 11 | 7 | 1-3/4 |
| | | | | | | | | | | | | ; | • | |
| 16 | g | 2-3/4 | <u>-</u> | c | 2-1/5 | ~ | c | 2-1/4 | 0 | 9 | 2 | 10 | ٥ | 1-3/4 |
| 4 | 1 | 2-3/4 | 47 | • | 5-1/5 | 4 | ı | 2-1/4 | 4 | ı | 7 | ₹ | • | 1-3/4 |
| 1 | 1 | 2-3/4 | _ | 1 | 2-1/5 | • | ı | | | • | 1 | 1 | | |
| | • | | | | | | • | | | ı | 1 | | | į |
| ~ | 1 | 2"to3" | 3 | , | 2"to3" | - | | 2"to3" | ~ | ا، | 2"to3" | ~ | • | |

¹Ship to advanced bases for each Assembly regardless of water depth.

²If still in stock, a swivel chain shot of the sume size may be substituted in the riser or ground chain for the listed swivel and chain shot. Each swivel chain shot, the bill of Materials.

Moorings With Sinkers - Maximum Mooring Depths With Various Buoys TABLE 90

| Buoy Details | NAVFAC Dwg. 620659 | NAVFAC Dwg. 620659 | NAVFAC Dwg. 620605 | NAVFAC Dwg. 620659 |
|--------------|--------------------|--------------------|--------------------|--------------------|
| | bar type | bar type | hawsepipe type | bar type |
| Size | Dia. Hgt. | Dia. Hgt. | Dia. Hgt. | Dia. Hgt. |
| | 9'6" x 5'0" | 10'6" x 6'6" | 12'0" x 6'0" | 10.6" x 7'6" |
| | | | | |
| Class | | Depth | Depth (ft.)¹ | |
| A | 1 | 1 | 225 | ſ |
| æ | 1 | ı | 280 | ı |
| υ | 80 | 305 | ı | 425 |
| Ω | 105 | 395 | ı | 545 |
| Œ | 150 | 525 | 1 | 1 |

¹Buoys have a 2-ft. freeboard at depth tabulated.

TABLE 91

Moorings With Sinkers - Lengths of Ground Chain Required for Various Water Depths¹

| Depth of | | Cla | ss | | |
|-------------|-----------------|--------------------|--------|-----------------|--------------------|
| Water | | | | | |
| (ft.) | A | B | C | D | E |
| Basic | 4 | 4 | 3-1/2 | 3 | 3 |
| Basic to 50 | 4 | 4 | 4 | 3-1/2 | 3-1/2 |
| 50 to 60 | 4-1/2 | 4-1/2 | 4-1/2 | 4 | 3-1/2 |
| 60 to 70 | 4-1/2 | 4-1/2 | 4-1/2 | 4 | 4 |
| 70 to 80 | 5 | 5 | 5 | 4-1/2 | 4 |
| 80 to 90 | 5-1/2 | 5-1/2 | 5-1/2 | 5 | 4-1/2 |
| 90 to 100 | 5-1/2 | 5-1/2 | 5-1/2 | 5 | 5 |
| 100 to 120 | 6 | 6 | 6 | 5-1/2 | 5-1/2 |
| 120 to 140 | 6-1/2 | 6-1/2 | 6-1/2 | 6 | 5-1/2 |
| 140 to 160 | 7 | 7 | 7 | 6-1/2 | 6 |
| 160 to 180 | 7-1/2 | 7-1/2 | 7-1/2 | 7 | 6-1/2 ² |
| 180 to 200 | 7-1/2 | 7-1/2 | 7-1/2 | 7 | 6-1/2 ² |
| 200 to 240 | 8 | 8 | 8 | 7-1/2 | 7² |
| 240 to 280 | 9² | 9 | 8-1/2 | 8 | 7² |
| 280 to 320 | 9-1/22 | 9-1/2 ² | 9 | 8-1/2 | 7-1/22 |
| 320 to 360 | 10 ² | 10 ² | 9-1/2 | 9 | 8² |
| 360 to 400 | - | 10-1/22 | 10 | 9-1/2 | 8 ² |
| 400 to 440 | - | 112 | 10-1/2 | 10 ² | 8-1/2 ² |
| 440 to 480 | - | - | - | $10-1/2^2$ | 9² |

¹Lengths are 90-ft, shots. Depth of water is taken at mean high water from a firm bottom at another location. Maximum water depth determined on the basis of not exceeding the allowable stress in the chain.

 $^{^2{\}rm The}$ freeboard limit of the mooring's standard buoy will be exceeded at this depth. An optional buoy must be used.

TABLE 92
Moorings With Sinkers - Chain Set Assemblies for Various Depths1

| | | | | | <u> </u> | | | Class | · | | D | | | E | |
|--|--|--|---|--|---------------------------------|---|---|---|--|---|--------------------|--|--|---|--|
| | | <u> </u> | | | В | | | | | | | | | - | |
| • | chain (90'shot) | chain (45' shot) | Joining Link | chain (90'shot) | chain (45° shat) | Joining Link | chain (90'shot) | chain (45' shot) | Joining Link | chain (90'shot) | chain (45° shot) | Joining Link | chain (90'shot) | choin (45° shot) | Joining Link |
| Depth
of
Water
(feet) | 2-3/4" | 2-3/4" | 2-3/4" | 2-1/2" | 2-1/2" | 2-1/2" | 2-1/4" | 2-1/4" | 2-1/4" | 2. | .2 | .% | 1-3/4" | 1-3/4" | 1-3/4" |
| Bosic to 50 50 to 60 60 to 50 80 to 50 80 to 50 100 to 100 120 to 140 140 to 160 150 to 200 200 to 200 240 to 250 320 to 240 240 to 400 440 to 450 | 0
0
0
3
3
4
7
7
10
10
11
14
18
18
21 | 0
4
4
3
0
3
1
4
3
1
0
3 | 0
4
4
4
7
7
7
10
11
14
15
18
21
22 | 0
0
0
3
3
4
7
7
10
10
11
14
18
21
22
25 | 1 4 4 3 0 4 1 4 3 1 0 4 1 3 1 - | 1
4
4
4
7
7
7
11
11
14
15
19
22
22
25
25 | 0
3
3
3
7
7
7
10
10
14
14
18
22
22
25 | 4
1
1
4
0
0
3
1
4
0
0
4
0
4
0
3
1 | 4
4
4
7
7
7
10
11
14
14
18
18
22
22
25
26 | 0
3
3
7
7
7
7
10
14
14
18
22
22
25
26 | 411400314004040475 | 4
4
4
7
7
7
10
11
14
14
18
19
22
22
25
29 | 0
0
3
3
4
7
7
7
10
11
14
15
19
19
19 | 4
1
1
3
0
3
4
1
3
3
1
0
4
0
1
4
0
1
4
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44
44
44
77
70
11
14
15
15
15
19
20
23
23 |

¹Add to Eddic Depth Assembly to obtain Assembly for a particular depth.

Free-Swinging, Riser-Type Mooring Without Sinkers - Classes AAA and BBB (Proposed) FIGURE

Classes AA, BB, and CC t Free-Swinging, Riser-Type Mooring Without Sinkers

FIGURE 3
Free-Swinging, Riser-Type Mooring Without Sinkers - Class DD

In special situations, other fittings (than throse shown) may be required to connect the anchor and ground chain if the anahor connecting for is the wrong size for the anchor's shackle

Peferences

| Title | Reference |
|--|--|
| Eills of Materials Chain Set Assembly for Basic Depth Sinker Details Maximum Mooring Depths with Various Buoys Lengths of Ground Chain between Anchor and Ground Ring for Various Water Depths | Table 88
Table 89
Table 119
Table 90
Table 91 |
| Chain Set Assemblies for Depths greater than Basic Euby Details — Classes A and B — Classes C, D, and E Chain and Fitting Details Anchor Cetails | Table 92
NAVFAC dwg 620,605
NAVFAC dwg 620,659
Sections 4 and 6
Sections 4, 5, and 6 |

FIGURE 9 Standard Marker or Mooring Buoy

| DIAMETER | HEIGHT | WEIGHT IN AIR | NAVFAC DWG NO. |
|------------|---------------|---------------|----------------|
| ē.−6, 0 D | 5'-0" | 7,700 lbs | 620,659 |
| 13'-6" O D | 6'-6 " | 9,600 lbs | 620,659 |
| 126. 0 D | 7'-6" | 10,100 lbs | 620,659 |

| NAVFAC DWG NO. | | |
|-----------------|--------|--------|
| WEIGHT IN AIR | | HEICHT |
| HEIGHT
6'-0" | | |
| DIAMETER | DIAMET | |

FIGURE 11 Hawsepipe Mooring Buoy

FIGURE 12 Tension Bar Mooring Buoy

TABLE 2
Recommended NAVMOOR Anchor Size^a for Navy Fleet Moorings

| | | | An ha Weigh | nt (Norminal) for Gro | An har Weight (Nominal) for Ground Leg Options (Ib) | | |
|---------|-------------------------------|--------------------|----------------------|------------------------------|---|------------------------------|---------------------------------------|
| | | 1. Single Chain, S | Chain, Single Anchor | 2. Single Chain, | Single Chain, Tandem Anchor | 4. Twin Chain, Tandem Anchor | idem Anchor |
| Mooring | Mooring
Copacity
(kips) |]
 | -
 -
 | 3. Twin Chain, Single Anchor | Single Anchor | 1782 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| | 4 | Mud ^c | Sand | Mud | Sand | Mud | Sand |
| AAA | 200 | | | | | 10.000 | 10,000 |
| 888 | 400 | | | | 15,000 | 10,000 | :
: |
| * | 300 | | | 000'51 | 10,000 | | |
| 88 | 250 | | | 000'01 | 10,000 | | |
| ၁၁ | 200 | | 15,000 | 10,000 | | | |
| QQ | 175 | 15,000 | 15,000 | | | | |
| 4 | 150 | 15,000 | 10,000 | | | | |
| В | 125 | 10,000 | 10,000 | | | | |
| C | 100 | 10,000 | | | | | |

Recommended anchor sizes provide system fortor of safety of 1,75 to 2,25

 $^{\mathsf{b}}$ Minimum anchor separations related to fluke length (L).

^Cincludes very soft to soft silt and clay seafloors

dincludes sands and medium to stiff clay seafloors.

NAVMOOR-2 Mooring Anchor 2,400 lbs. (wt.)
General Assembly

NAVMOOR-6 Salvage Anchor 7,200 lbs. (wt.) General Assembly

10K Navmoor Anvhor Plan View

NAVMOOR-10, 12000 Pounds Anchor Assembly, Mooring

NAVMOOR-15, 18000 Pounds Anchor Assembly, Mooring

FIGURE 613-6 Common Wire Rope Construction Examples

TABLE 613-6
Fiber Rope Specification

| Type of Rope | Circumference
Inches | Specifications |
|--------------------------------------|-------------------------|------------------|
| Untreated Manila | Up to 12 | FED Spec T-R6-5 |
| Mildew Resistant Manila | Up to 12 | FED Spec T-T-616 |
| Jute | 5/8 to 6 | FED Spec T-R-650 |
| Polypropylene | Up to 10 | MIL-R-24049 |
| Nylon Three Strand | Up to 12 | MIL-R-17343 |
| Nylon Plaited | up to 16 | MIL-R-24337 |
| Nylon Double Braid | Up to 21 | MIL-R-204050 |
| Polyester Three Strand | Up to 12 | MIL-R-30500 |
| Polyester Plaited (Staple Wrap) | 3/4 to 4-1/2 | MIL-R-24537 |
| Polyester Double-Braid | Up to 21 | MIL-R-24677 |
| Polyester Double-Braid (Staple Wrap) | 3/4 to 5 | MIL-R-24536 |

TABLE 613-8
Plain-Laid Rope Construction

| Size | | Minimum | Breaking Strengt | h (Lbs)1 | |
|-------------------------|-------|---------|------------------|--------------------|-----------|
| Circumference
Inches | Sisal | Manila | Polypropylene | Nylon ² | Polyester |
| 5/8 | 360 | 405 | 700 | 950 | 800 |
| 3/4 | 480 | 540 | 1,000 | 1,500 | 1,200 |
| 1 | 800 | 900 | 1,700 | 2,600 | 2,000 |
| 1-1/8 | 1,080 | 1,215 | 2,150 | 3,300 | 2,800 |
| 1-1/4 | 1,400 | 1,525 | 2,500 | 4,800 | 3,800 |
| 1-1/2 | 2,120 | 2,385 | 3,700 | 5,800 | 5,000 |
| 1-3/4 | 2,760 | 3,105 | 4,800 | 7,600 | 6,500 |
| 2 | 3,520 | 3,960 | 6,000 | 9,800 | 8,000 |
| 2-1/4 | 4,320 | 4,860 | 7,000 | 13,200 | 10,000 |
| 2-1/2 | 5,200 | 5,850 | 9,000 | 15,300 | 13,000 |
| 2-3/4 | | 6,930 | 11,000 | 19,000 | 15,000 |
| 3 | - | 8,100 | 13,000 | 23,200 | 18,500 |
| 3-1/2 | | 10,800 | 16,500 | 32,000 | 25,000 |
| 3-3/4 | | 12,150 | 19,500 | 36,500 | ļ |
| 4 | | 13,500 | 21,500 | 41,300 | 31,000 |
| 4-1/2 | i | 16,650 | 26,000 | 50,000 | |
| 5 | | 20,250 | 32,000 | 60,000 | 48,000 |
| 4-1/2 | | 23,850 | 38,000 | 72,000 | |
| 6 | | 27,900 | 44,000 | 90,000 | 68,000 |
| 6-1/2 | • | | 50,000 | 100,000 | |
| 7 | | 36,900 | . 60,000 | 127,000 | 88,000 |
| 8 | | 46,800 | 75,000 | 164,000 | 110,000 |
| 9 | | 57,600 | 94,000 | 209,000 | 140,000 |
| 10 | | 69,300 | 115,000 | 265,000 | 165,000 |
| 11 | | 81,900 | Į | 316,000 | 240,000 |
| 12 | | 94,500 | | 375,000 | 285,000 |

NOTE:

¹Comparative strengths of various fiber ropes.

²The minimum breaking strength of nylon when wet is reduced approximately 15 percent.

TABLE 613-9
Braided Rope Construction

| Size | Minimum Br | reaking Streng | rth (lbs.) |
|---------------|------------|----------------|------------|
| Circumference | Double | Braided | Plaited |
| Inches | Nylon | Polyester | Nylon |
| 3/4 | 1,700 | 1,730 | 1,500 |
| 1 | 2,700 | 2,670 | 2,500 |
| 1-1/8 | 3.9 | 3,860 | 3,700 |
| 1-1/4 | 5,100 | 5,210 | 5,000 |
| 1-1/2 | 6,900 | 6,820 | 6,400 |
| 1-3/4 | 9,000 | 8,590 | 8,000 |
| 2 | 12,000 | 10,600 | 11,000 |
| 2-1/4 | 15,000 | 15,100 | 17,000 |
| 2-1/2 | 18,400 | 17,800 | 20,000 |
| 2-3/4 | 22,500 | 20,600 | 24,000 |
| 3 . | 26,500 | 26,800 | 31,000 |
| 3-1/2 | 36,000 | 33,900 | 38,000 |
| 3-3/4 | 42,000 | 41,700 | 46,000 |
| 4 | 48,000 | 46,000 | 53,000 |
| 4-1/2 | 60,000 | 59,900 | 63,000 |
| 5 | 73,000 | 69,900 | 73,000 |
| 5-1/2 | 90,000 | 81,200 | 78,000 |
| 6 | 102,000 | 106,000 | 95,000 |
| 6-1/2 | 123,000 | 119,000 | 106,000 |
| 7 | 140,000 | 133,000 | 125,000 |
| 7-1/2 | 160,000 | 164,000 | 137,000 |
| 8 | 180,000 | 181,000 | 165,000 |
| 9 | 225,000 | 236,000 | 200,000 |
| 10 | 273,000 | 277,000 | 250,000 |
| 11 | 325,000 | 343,000 | 300,000 |
| 12 | 385,000 | 417,000 | 360,000 |

TABLE 613-9
Braided Rope Construction - Continued

| Size | Minimum | Breaking Strengt | h (Lbs) ¹ |
|---------------|--------------------|------------------|----------------------|
| Circumference | Double | Braided | Plaited |
| Inches | Nylon ² | Polyester | Nylon ² |
| 13 | 440,000 | 470,000 | 380,000 |
| 14 | 508,000 | 527,000 | 441,000 |
| 15 | 576,000 | 649,000 | 507,000 |
| 16 | 650,000 | 715,000 | 572,000 |
| 17 | 726,000 | 784,000 | |
| 18 | 808,000 | 931,000 | |
| 19 | 893,000 | 1,012,000 | |
| 20 | 980,000 | 1,091,000 | |
| 21 | 1,070,000 | 1,263,000 | |

NOTE:

¹Comparative strengths of various fiber ropes for current minimum breaking strength of each type, consult the MIl-Spec.

²The minimum breaking of nylon when wet is reduced approximately 15 percent.

FIGURE 3 Driven Plate Anchor Configuration

Anchor-Follower Assembly

FIGURE J-1
Variation of Bollard Pull with Shaft Speed for ARS-38 Class Ships

 $\label{eq:FIGURE J-2} FIGURE \ J-2 \\ Variation of Bollard Pull with Shaft Speed and Propeller Pitch for ARS-50 Class Ships$

TABLE 1 Chocks for Nylon Rope (4)

| Chock
weight | kg | 23 | 36 | 54 | 82 | 104 | 163 | 213 | 249 |
|------------------------------|----------|-------|--------|-------|--------|---------|---------|---------|---------|
| K Ch | ql | 20 | 80 | 120 | 180 | 230 | 360 | 470 | 550 |
| | mm | 165 | 203 | 241 | 279 | 305 | 356 | 381 | 406 |
| L | in. | 6-1/2 | ·
∞ | 9-1/2 | = | 12 | 14 | 15 | 16 |
| | mm | 92 | 114 | 133 | 152 | 171 | 197 | 216 | 235 |
| L | ï. | 3-5/8 | 4-1/2 | 5-1/4 | ص | 6-3/4 | 7-3/4 | 8-1/2 | 9-1/4 |
| | mm | | | | 178 | 203 | 229 | 254 | 267 |
| . ◀ | 'n. | 4-1/2 | 5-1/2 | . 9 | 7 | ∞ | 6 | 10 | 10-1/2 |
| trength
pe | N
N | 98 | 167 | 242 | 329 | 489 | 609 | 756 | 890 |
| Breaking strength
of rope | q] | ٦ | 37,500 | 4 | 74,000 | 110,000 | 137,000 | 170,000 | 200,000 |
| å å | mm | 152 | 203 | 254 | 305 | 356 | 406 | 475 | 508 |
| Chock
size | <u>:</u> | 9 | ∞ | 10 | 12 | 14 | 16 | 18 | 20 |

Notes

- Chock shall be set parallel to baseline athwarthships and shall follow sheer in force and aft direction.
- 2. Chock is designed for use with nylon rupe as shown in table. Chock shall withstand a horizontal endwise pull equal to double the minimum breaking strength of 2 parts of the specified size of nylon rope applied one inch above the centerline of the chock. The chock shall also withstand an upward load of 50,000 pounds applied at its midpoint.

(4) NAVSHIPS Drawing 805-1843363, Chocks for nylon rope.

TABLE 2 Ditts for Nylon Rope (5)

| E s | Nominal
bit size | Maximum size
nylon rope | size of
ope | Maximum allowable
moment | lowable
1t | ပ | | W | | L | | Approxim
weight | Approximate
weight |
|-----|---------------------|----------------------------|----------------|-----------------------------|---------------|------|-----|------------|-------|-------------|--------|--------------------|-----------------------|
| ءِ. | E E | | æ | in1b (000) | kNa | ï. | mm | in. | æ | i. | E
E | q | kg |
| ī | 501 | 7-1/2 | 80 | 142 5 | : | 10 | 254 | 16-1/2 | 419 | 419 7-1/2 | 191 | 80 | 36 |
| t 4 | 15.7 | 7 4 | 15.5 | 481.0 | 54.35 | , M. | 330 | 330 24-1/8 | 613 | 11 - 1/8 | • | 210 | 95 |
| 0 0 | 102 |) r | 700 | 220.0 | 20.78 | | 155 | 3/5-05 | 778 1 | 13-5/8 | | 320 | 145 |
| χ | 702 | _ | 0/1 | 0.077 | 20.00 | 1 1 | 100 | 2 | |) +
) + | | l a | 756 |
| 0 | 254 | ഗ | 228 | 1490.0 | 168.35 | - | 432 | 174 | | * // | 0 7 | 200 | 200 |
| 7 | 305 | 10 | 254 | 2110.0 | 238.40 | 21 | 533 | 45-1/4 | 1150 | 150 20-1/4 | 514 | 870 | 395 |

Notes

- 1. The maximum moment is the product of the breaking strength of the rope times half the height of the barrel above the base plate.
- 2. Bitts are designed for a yield stress of 24,000 lb/in² based on the maximum moment.

(5) NAVSHIPS Drawing 804-1843362, Aitts for nylon rope.

TABLE 3 Vertical Howser Reels (6)

| | | | | | | | | | | | | 1 |
|-----------------------|---------|------|------|------|------|------|------|------|------|------|------|---|
| rope
ht | kg | 294 | 353 | 397 | 476 | 424 | 512 | 613 | 653 | 816 | 977 | |
| Approx rope
weight | q | 648 | 778 | 876 | 1050 | 935 | 1128 | 1352 | 1440 | 1798 | 2154 | |
| assy | kg | 129 | 129 | 129 | 147 | 147 | 181 | 181 | 181 | 509 | 231 | |
| Approx assy
weight | ٩ | 285 | 285 | 285 | 325 | 325 | 400 | 400 | 400 | 460 | 510 | |
| | unu | 1829 | 1829 | 1829 | 1676 | 1676 | 1676 | 1676 | 1676 | 1676 | 1676 | |
| 8 | ١ | 72 | 72 | 72 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | |
| < | mm | 762 | 762 | 762 | 364 | 864 | 965 | 965 | 965 | 1143 | 1270 | |
| | Ξ | 200 | 2 | 30 | 34 | 34 | 38 | 38 | 38 | 45 | 20 | |
| Capacity | fathoms | 100 | 120 | 100 | 120 | 80 | 100 | 120 | 80 | 100 | 120 | |
| pe
Ze | unu) | 152 | 152 | 178 | 178 | 203 | 203 | 203 | 254 | 254 | 254 | |
| Rope
size | Ē | 9 | 9 | 7 | 7 | · 00 | œ | 00 | 01 | 01 | 10 | |
| Reel
type | | | _ | | = | | | = | | 2 | > | |

(6) NAVSHIPS Drawings S2604-921842, Vertical hawser reels for manila rope.

TABLE 4 Horizontal Hawser Reels (7)

| | | _ | | | 1 | | 7 |
|-----------------------|------------|-----|-----|-----|-----|-------------|---|
| rope | kд | 220 | 220 | 220 | 397 | 397
522 | |
| Approx rope
weight | lb | 485 | 485 | 485 | 875 | 875
1150 | |
| otsiay
ght | kg | 150 | 150 | 150 | 172 | 172
200 | |
| Approx cerv
weight | ٩ | 330 | 330 | 330 | 380 | 380 | |
| | E | 533 | 533 | 533 | 610 | 610 | |
| ပ | Ē | 21 | : | 2 | 24 | 24 | |
| | mm | 596 | 965 | 965 | 166 | 991 | |
| 83 | ĕ | 38 | 38 | 38 | 39 | 39 | |
| < | um | 813 | 513 | 813 | 965 | 965 | 1 |
| | . <u>c</u> | 33 | £ | 32 | 38 | 38 |) |
| Capacity | fathoms | 300 | 167 | 100 | 100 | 001 |) |
| Ropr:
Size | mm | 76 | 103 | 127 | 152 | 178 |) |
| Ika
Si. | Ē | ~ |) 4 | ري. | 9 | 7 8 |) |
| Real | | | 4 | | В | ر |) |

(7) NAVSHIPS Drowing S2604-921841, Horizontal howser reels for monila rope.

TABLE 5 Capstan Head Sizes for Nylon Ropes (8)

| | | _ | _ | _ | _ | - | _ | | |
|-----------------------------|------|-----|------------|---------|-----------|--|-------|------|------|
| rope
height | шш | 127 | 165 | 190 | 206 | 254 | 284 | 333 | 381 |
| <u>_</u> | in. | 5.0 | 6.5 | 7.5 | ω
1. | 10.0 | 11.2 | 13.1 | 15.0 |
| rel
Iht | mm - | 137 | 170 | 206 | 239 | 274 | 310 | 343 | 411 |
| Barrel
height | in. | 5.4 | 6.7 | ∞
1. | 9.4 | 10.8 | 12.2 | 13.5 | 16.2 |
| . 9 | mm | 64 | 79 | 94 | 112 | 127 | 142 | 157 | 190 |
| | Ë. | 2.5 | 3.1 | 3.7 | 4.4 | 5.0 | 5.6 | 6.2 | 7.5 |
| 1, | mm | 244 | 305 | 366 | 427 | 488 | 549 | 610 | 732 |
| | .u | 9.6 | 12.0 | 14.4 | 16.8 | 19.2 | 21.6 | 24.0 | 28.8 |
| (Borrel
imeter) | mm | 305 | 381 | 457 | 533 | 019 | 989 | 762 | 914 |
|) \ dian | .⊑ | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 36 |
| rope
erence | mm | 76 | 89-102 | 114 | 127-140 | 152-164 | 178 | 203 | 229 |
| Nylon rope
circumference | 'n. | 3 | 3-1/2 - 4 | 4-1/2 | 5 - 5-1/2 | $\begin{vmatrix} 6 & -6 & -1/2 \\ -6 & -1/2 \end{vmatrix}$ | 7 / 2 | 00 | ത |

(8) NAVSHIPS Drawings S2601-860303, Capstan & gypsy heads.

Three-Strand Nylon Rope MIL-R-17343

| Circumfe | rence | Breaking s | trength | Standard lend | gth | NSN |
|----------------|----------|------------|---------|---------------|------|------------|
| inches | mm | lb | kN | feet | m | (4020-00-) |
| 5/8 | 16 | 950 | 4.20 | 700 | 213 | 541-7075* |
| 5/8 | 16 | 950 | 4.20 | 1200 | 365 | 263-3483* |
| 5/8 | 16 | 950 | 4.20 | 2250 | 685 | 701-3044 |
| 5/8 | 16 | 950 | 4.20 | 2250 | 685 | 242-4083* |
| 5/8 | 16 | 950 | 4.20 | 100 | 30 | 270-8245* |
| 3/4 | 19 | 1500 | 6.65 | 2250 | 685 | 618-0261 |
| 3/4 | 19 | 1500 | 6.65 | 900 | 274 | 523-9461 |
| 3/4 | 19 | 1500 | 6.65 | 600 | 182 | 542-2523* |
| 3/4 | 19 | 1500 | 6.65 | 200 | 61 | 929-0058* |
| 1 | 25 | 2600 | 11.55 | 2250 | 685 | 641-8898 |
| | 25 | 2600 | 11.55 | 42 | 12 | 593-9584 |
| 1
1-1/ε | 25
29 | 3300 | 14.65 | 1620 | 493 | 842-2431+ |
| | 29 | 3300 | 14.65 | 1620 | 493 | 641-8899 |
| 1-1/8
1-1/4 | 32 | 4800 | 21.35 | 1200 | 365 | 753-2886 |
| 1-1/4 | 32 | 4800 | 21.35 | 50 | 15 | 530-2701 |
| | 20 | 5800 | 25.80 | 1200 | 365 | 641-8900 |
| 1-1/2 | 38
39 | 5800 | 25.80 | 300 | 91 | 741-3154 |
| 1-1/2 | 35
44 | 7600 | 33.80 | 1200 | 365 | 560-7732 |
| 1-3/4 | 51 | 9800 | 43.80 | 1200 | 365 | 753-2887 |
| 2
2-1/4 | 51
57 | 13200 | 58.70 | 125 | 33 | 585-2530 |
| | | | | | | |
| 2-1/2 | 64 | 15300 | 68.05 | 1200 | 365 | 573-2886 |
| 2-3/; | 70 | 19000 | 84.50 | 1200 | 365 | 174-1231 |
| 3 | 76 | 23200 | 103.20 | 1200 | 365 | 752-8876 |
| 3-1/2 | 89 | 3200 | 142.30 | 1200 | 365 | 174-1232 |
| 4 | 102 | 41300 | 183.70 | 600 | 182 | 752-8879 |
| 4-1/2 | 114 | 50000 | 222.40 | 600 | .152 | 542-3306 |
| 5 | 127 | 60000 | 266.90 | 600 | :82 | 752-8880 |
| 5-1/1 | 140 | 72000 | 320.25 | 600 | 192 | 542-3307 |
| € | 152 | 90000 | 400.35 | 600 | 192 | 542-3308 |
| 6-1/2 | 165 | 100000 | 444.82 | 600 | 162 | 843-6306 |
| 7 | 178 | 127300 | 564.90 | 600 | 182 | 752-8831 |
| 8 | 203 | 164000 | 729.50 | 720 | 219 | 752-8892 |
| 8 | 203 | 164000 | 729.50 | 600 | 182 | 892-4028 |
| 9 | 229 | 209000 | 929.65 | 600 | 182 | 842-7468 |
| 10 | 254 | 265000 | 1178.75 | 600 | 182 | 843-6307 |

^{*} An asterisk indicates an NSN for which an alternative (nonasterisked) NSN pertaining to the same rope size may be substituted when the order is filled.

Plaited Nylon MIL-R-24337

| Circumfe | ference Breaking strength | | strength | Standard leng | gth | NSN |
|----------|---------------------------|---------|----------|---------------|-------------|-------------|
| inches | mm | lb | kN | feet | m | m(4020-00-) |
| 3/4 | 19 | 1,500 | 6.70 | 2250 | 685 | 106-9384 |
| 1 | 25 | 2,400 | 10.70 | 2250 | 685 | 106-9388 |
| 1-1/8 | 29 | 3,300 | 14.70 | 1620 | 494 | 106-9389 |
| 1-1/4 | 32 | 4,800 | 21.40 | 1200 | 365 | 106-9390 |
| 1-1/2 | 38 | 6,200 | 27.60 | 1200 | 365 | 106-9391 |
| 1-3/4 | 44 | 7,700 | 34.30 | 1200 | 365 | 106-9392 |
| 2 | 51 | 10,000 | 44.50 | 1200 | 365 | 106-9393 |
| 2-1/4 | 57 | 13,800 | 61.40 | 1200 | 365 | 106-9394 |
| 2-1/2 | 64 | 16,000 | 71.20 | 1200 | 365 | 106-9395 |
| 2-3/4 | 70 | 19,000 | 84.50 | 1200 | 365 | 106-9396 |
| 3 | 76 | 25,000 | 111.20 | 1200 | 3 65 | 106-9397 |
| 3-1/2 | 89 | 33,000 | 146.80 | 1200 | 365 | 106-9398 |
| 3-3/4 | 92 | 38,000 | 169.00 | 600 | 182 | 106-9399 |
| 4 | 102 | 43,000 | 191.30 | 600 | 182 | 106-9464 |
| 4-1/2 | 114 | 50,000 | 222.40 | 600 | 182 | 106-9400 |
| 5 | 127 | 60,000 | 266.90 | 600 | 182 | 106-9401 |
| 5-1/2 | 140 | 75,000 | 333.60 | 600 | 182 | 106-9261 |
| 6 | 152 | 86,000 | 382.50 | 600 | 182 | 106-9298- |
| 6-1/2 | 165 | 98,000 | 435.90 | 600 | 182 | 106-9333 |
| 7 | 178 | 117,000 | 520.40 | 600 | 192 | 106-9334 |
| 7-1/2 | 191 | 134,000 | 596.10 | 600 | 182 | 106-9335 |
| 5 | 203 | 153,000 | 630.60 | 600 | 182 | 106-9336 |
| 9 | 229 | 192,000 | 854.10 | 600 | 182 | 106-9337 |
| 10 | 254 | 237,000 | 1054.20 | 600 | 182 | 106-9338 |
| 11 | 279 | 280,000 | 1245.50 | - 500 | 152 | 106-9339 |
| 12 | 305 | 345,000 | 1534.60 | 400 | 122 | 106-9340 |

Double Braided Nylon Rope MIL-R-24050

Carlo Branch Carlo Balling and Carlo Branch Carlo Branch

| Circumfe | rence | Breaking s | trength | Standard leng | th | <u> NSN</u> |
|----------|-------|------------|---------|---------------|------------|-------------|
| inches | mm | lb | kN | feet | m | (4020-) |
| | | | | | | |
| 3/4 | 19 | 1,700 | 7.55 | 600 | 182 | 00-106-9342 |
| 1 | 25 | 2,700 | 12.00 | 600 | 182 | 00-106-9341 |
| 1-1/8 | 29 | 3,900 | 17.30 | 600 | 182 | 00-946-0436 |
| 1-1/4 | 32 | 5,100 | 22.70 | 600 | 182 | 00-926-4529 |
| 1-1/2 | 38 | 6,900 | 30.70 | 600 | 182 | 00-106-9361 |
| | | | | | | |
| 1-3/4 | 44 | 9,000 | 40.00 | 600 | 182 | 00-106-9364 |
| 2 | 51 | 12,000 | 53.40 | 600 | 182 | 00-106-9402 |
| 2 | 51 | 12,000 | 53.40 | 480 | 146 | 01-025-5175 |
| 2 | 51 | 12,000 | 53.40 | 300 | 91 | 01-025-5176 |
| 2 | 51 | 12,000 | 53.40 | 180 | 54 | 10-025-5177 |
| | | | | | • • • • | 00 100 0403 |
| 2-1/4 | 57 | 15,000 | 66.70 | 600 | 182 | 00-106-9403 |
| 1-1/2 | 64 | 18,400 | 81.80 | 600 | 182 | 00-106-9404 |
| 2-3/4 | 70 | 22,500 | 100.10 | 600 | 182 | 00-106-9405 |
| 2-3/4 | 70 | 22,500 | 100.10 | 900 | 274 | 01-025-5172 |
| 2-3/4 | 70 | 22,500 | 100.10 | 300 | 91 | 01-025-5173 |
| | | | | 200 | 61 | 01-025-5174 |
| 2-3/4 | 70 | 22,500 | 102.10 | 200 | 182 | 00-471-9336 |
| 3 | 76 | 26,500 | 117.90 | 600 | 182 | 00-519-7916 |
| 3-1/2 | 89 | 36,000 | 160.10 | 600 | | 00-319-7516 |
| 3-3/4 | 92 | 42,000 | 156.80 | 600 | 182
182 | 00-106-9407 |
| 4 | 102 | 48,000 | 213.50 | 600 | 162 | 00-100 3407 |
| 4 | 102 | 49,000 | 213.50 | 900 | 274 | 01-025-5170 |
| 4 | 102 | 45,000 | 213.50 | 300 | 91 | 01-025-5171 |
| 4-1/2 | 114 | 60,000 | 266.90 | 600 | 182 | 00-106-9408 |
| 5 | 127 | 73,000 | 324.70 | 600 | 182 | 00-106-9409 |
| 5-1/2 | 140 | 90,000 | 400.30 | 600 | 182 | 00-106-9410 |
| 5-1/2 | 140 | 33,000 | 433.30 | | | |
| 5-1/2 | 140 | 90,000 | 400.30 | 900 | 274 | 01-025-5178 |
| 5-1/2 | 140 | 90,000 | 400.30 | 300 | 9: | 01-025-5180 |
| 6 | 152 | 102,500 | 455.90 | 600 | 162 | 00-106-9411 |
| 6-1/2 | 165 | 123,000 | 547.10 | 600 | 182 | 00-106-9412 |
| 7 | 178 | 140,000 | 622.80 | 600 | 182 | 00-519-7946 |
| | | | | | | |
| 7-1/2 | 191 | 160,000 | 711.90 | 600 | 182 | 00-486-6009 |
| 8 | 203 | 180,000 | S33.70 | 600 | 182 | 00-003-6293 |
| 8 | 203 | 180,000 | E33.70 | 1200 | 365 | 01-025-5179 |
| 9 | 229 | 225,000 | 1000.80 | 600 | 182 | 00-519-7951 |
| 10 | 254 | 273,000 | 1214.40 | 600 | 182 | 00-519-7960 |
| 11 | 279 | 325,000 | 1445.70 | 600 | 182 | 00-519-7980 |
| 12 | 305 | 385,000 | 1712.60 | 600 | 182 | 00-519-7992 |

Plaited Continuous Polyester Filament with Staple Wrap MIL-R-24537

THE STATE OF THE PARTY OF THE P

| Circumference | | Breaking s | trength | Standard leng | th | NSN |
|---------------|-----|------------|---------|---------------|-----|------------|
| inches | mm | 1b | kN | feet | m | (4020-01-) |
| 3/4 | 19 | 2,080 | 9.30 | 2250 | 685 | 029-2778 |
| 1 | 25 | 2,980 | 13.30 | 2250 | 685 | 028-3842 |
| 1-1/8 | 29 | 3,970 | 17.70 | 1620 | 493 | 028-3825 |
| 1-1/4 | 32 | 5,050 | 22.50 | 1200 | 365 | 028-3828 |
| 1-1/2 | 38 | 6,400 | 28.50 | 400 | 122 | 028-3826 |
| 1-1/2 | 38 | 6,400 | 28.50 | 800 | 244 | 028-3829 |
| 1-1/2 | 38 | 6,400 | 28.50 | 1200 | 365 | 028-3830 |
| 1-1/2 | 38 | 6,400 | 28.50 | 200 | 61 | 028-3843 |
| 1-3/4 | 44 | 8,100 | 36.00 | 1200 | 365 | 028-3839 |
| 2 | 51 | 9,900 | 44.00 | 1200 | 365 | 028-3831 |
| 2-1/4 | 57 | 12,200 | 54.30 | 1200 | 365 | 029-8664 |
| 1-1/2 | 64 | 14,500 | 64.60 | 1200 | 365 | 028-3832 |
| 2-3/4 | 70 | 16,700 | 74.30 | 1200 | 365 | 028-3833 |
| 3 | 76 | 19,000 | 84.50 | 400 | 122 | 028-3834 |
| 3 | 76 | 19,000 | 84.50 | 600 | 182 | 028-3835 |
| 3 | 76 | 19,000 | £4.50 | 1200 | 365 | 028-3841 |
| 3-1/4 | 83 | 22,000 | 97.90 | 200 | 61 | 028-3836 |
| 3-1/2 | 89 | 25,000 | 111.20 | 1200 | 365 | 028-3837 |
| 3-3/4 | 92 | 27,500 | 122.30 | 600 | 182 | 028-3840 |
| 4 | 102 | 30,700 | 136.60 | 600 | 162 | 028-3838 |
| 4-1/2 | 114 | 37,000 | 164.60 | €00 | 192 | 028-3827 |

Three-Strand Polyester

MIL-R-30500

| Circumference | | Breaking s | Breaking strength | | Standard length | | |
|---------------|-----|------------|-------------------|------|-----------------|--------------|--|
| inches | n.m | lb | kN | feet | m. | (4020-) | |
| E/E | 16 | 800 | 3.60 | 2700 | 623 | 00-202-1345; | |
| 5/8 | 16 | 800 | 3.60 | 50 | 15 | 00-659-8923 | |
| 3/4 | 19 | 1,200 | 5.30 | 2250 | 695 | 00-536-3476+ | |
| i | 25 | 2,500 | 11.10 | 24 | 7 | 00-180-6548 | |
| 1 | 25 | 2,500 | 11.10 | 2250 | 685 | 01-041-0789 | |
| 1-1/4 | 32 | 3.800 | 16.90 | 1200 | 365 | 00-085-4424 | |
| 1-1/2 | 33 | 5,000 | 22.20 | 1200 | 365 | 00-630-4873 | |
| 3 | 76 | 18,500 | 62.30 | 1200 | 365 | 00-142-6115 | |
| 4 | 102 | 31,000 | 137.90 | 600 | 182 | 00-630-4875 | |

^{*} An asterisk indicates an NSN for which an alternative (nonasterisked) NSN pertaining to the same rope size may be substituted when the order is filled.

Three-Strand Polypropylene MIL-R-24049

| Circumference | | Breaking strength | | Standard leng | NSN | |
|---------------|----|-------------------|-------|---------------|-----|------------|
| inches | mm | 1b | kN | feet | m | (4020-00-) |
| 3/4 | 19 | 1,000 | 4.45 | 2250 | 685 | 999-3894 |
| 3/4 | 25 | 1,700 | 7.55 | 900 | 274 | 530-0698 |
| 1 | 25 | 1,700 | 7.55 | 210 | 64 | 499-7529 |
| 1-1/2 | 38 | 3,700 | 16.45 | 50 | 15 | 874-7920 |
| 1-1/2 | 38 | 3,700 | 16.45 | 600 | 182 | 968-1352 |
| 2-1/4 | 57 | 7,000 | 31.15 | 200 | 61 | 874-7921 |
| 2-1/4 | 57 | 7,000 | 31.15 | 600 | 182 | 968-1354 |
| 3 | 76 | 13,000 | 57.80 | 600 | 182 | 968-1355 |

Double Braided Polyester Filament With Staple Wrap

MIL-R-24536

| Circumference | | Breaking s | trength | Standard leng | Standard length | | |
|---------------|-----|------------|---------|---------------|-----------------|------------|--|
| inches | mm | lb | k.: | feet | m | (4020-01-) | |
| 3/4 | 19 | 1,760 | 7.55 | 600 | 182 | 028-3923 | |
| 1 | 25 | 2,600 | 11.55 | 600 | 182 | 028-3924 | |
| 1-1/8 | 29 | 3,600 | 16.10 | 600 ° | 182 | 329-2775 | |
| 1-1/4 | 32 | 4,700 | 20.90 | 600 | 182 | 028-3844 | |
| 1-1/2 | 38 | 6,000 | 26.70 | 600 | 182 | 028-4526 | |
| 1-3/4 | 44 | 7,900 | 35.15 | 600 | 182 | 028-4527 | |
| 2 | 51 | 10,000 | 44.50 | 600 | 182 | 028-4525 | |
| | 57 | 12,200 | 54.25 | 600 | 182 | 028-6770 | |
| 2-1/4 2-1/2 | 64 | 14,700 | 65.40 | 600 | 182 | 029-2776 | |
| 2-3/4 | 70 | 17,400 | 77.40 | 600 | 192 | 028-4531 | |
| 3 | 76 | 20,000 \ | 89.00 | 350 | 106 | 029-8665 | |
| 3
3 | 76 | 20,000 | 89.10 | 700 | 213 | 028-3845 | |
| 3-1/4 | 83 | 23,400 | 104.30 | 600 | 182 | 029-2777 | |
| 3-1/2 | 29 | 26,790 | 118.75 | 600 | 182 | 029-3546 | |
| 3-3/4 | 92 | 30,000 | 133.45 | 600 | 182 | 028-3322 | |
| 4 | 102 | 33,700 | 150.00 | 350 | 106 | 029-3663 | |
| 4 | 102 | 33,700 | 150.00 | 1200 | 365 | 028-4528 | |
| 4-1/2 | 114 | 45,600 | 201.15 | 600 | 182 | 028-4529 | |
| 5 | 127 | 50,000 | 222.40 | 600 | 182 | 028-4530 | |

Three-Strand Dual Fiber MIL-R-43942

| Circumference | | Breaking strength | | Standard leng | Standard length | | |
|---------------|----|-------------------|-------|---------------|-----------------|------------|--|
| inches | mm | lb | kN | feet | m | (4020-01-) | |
| 2/4 | 10 | 1,130 | 5.00 | 2250 | 685 | 036-6819 | |
| 3/4 | 19 | 1,710 | 7.60 | 2250 | 685 | 036-6820 | |
| 1 | 25 | 2,430 | 10.80 | 1600 | 487 | 037-6290 | |
| 1-1/8 | 29 | . • | | 1200 | 365 | 036-6291 | |
| 1-1/2 | 38 | 3,960 | 17.60 | | 365 | 037-6292 | |
| 2 | 51 | 5,760 | 25.60 | 1200 | | 037-6293 | |
| 2-1/4 | 57 | 7,560 | 33.60 | 1200 | 365 | 037-6293 | |

Plaited Dual Fiber

MIL-R-43952

| Circumference | | Breaking s | strength | Standard length | | NSN |
|---------------|----|------------|----------|-----------------|-----|------------|
| inches | mm | 1b | kN | feet | m | (4020-01-) |
| 1-1/8 | 29 | 2,430 | 10.80 | 1600 | 467 | 038-4897 |
| 1-1/3 | 33 | 3,960 | 17.60 | 1200 | 365 | 038-4898 |
| 2-1/2 | 64 | 9,190 | 40.85 | 1200 | 365 | 038-4999 |

APPENDIX C

Minimum Number of Lines Used in Preliminary Mooring Analysis

In the preliminary design stage the following table may be used to prepare a mooring line arrangement for analysis purposes. All lines are presumed to be doubled up, with three parts per line.

| Ship type | Displacement (long tons) | Number and size of mooring lines (heavy weather condition) | Camel
width
(feet) |
|--------------|----------------------------|--|--------------------------|
| Destroyers | 2000 - 4000
4000 - 6000 | Eight 5-inch
Eight 6-inch | 4 |
| 5000107010 | 6000 - 8000 | Nine 6-inch | 4 |
| | 8000 - 12000 | Two 8-inch, eight
6-1/2-inch | 6 |
| Cruisers | 12000 - 16000 | Four 8-inch, eight
6-1/2-inch | 6 |
| | 15000 - 20000 | Four 8-inch, eight
6-1/2-inch | |
| Auxiliaries | 20000 - 25000 | Four 9-inch, eight
6-1/2-inch | 6 |
| | 25000 - 30000 | Four 9-inch, eight
7-inch | 6 |
| Minesweepers | | Six 5-inch | _ |
| Tugs | | Six 5-inch | - |

U.S. Navy Stockless Anchor

CHAIN - 8-6-93 (C-40) *******

4-3/4 2,550,000 20,300

* FLASH BUTT-WELDED * * NON-MAGNETIC FBW * MIL-C-24633A

MIL-C-24774

| | ========== | ======= | ========= | ======== |
|----------|-------------|----------|-------------|----------|
| WIRE DIA | BRK STR (#) | MX WT/SH | BRK STR (#) | MX WT/SH |
| ======= | ======= | ======= | ======== | ======= |
| 3/4 | 75,000 | 525 | 64,800 | 563 |
| 7/8 | 98,000 | 713 | 88,200 | 765 |
| 1 | 129,000 | 925 | 115,200 | 1,000 |
| 1-1/8 | 161,000 | 1,150 | 145,800 | 1,270 |
| 1-1/4 | 198,000 | 1,430 | 180,000 | 1,565 |
| 1-3/8 | 235,000 | 1,760 | | |
| 1-1/2 | 280,000 | 2,080 | | |
| 1-5/8 | 325,000 | 2,390 | | |
| 1-3/4 | 380,000 | 2,750 | | |
| 1-7/8 | 432,000 | 3,150 | | |
| 2 | 454,000 | 3,540 | | |
| 2-1/8 | 510,000 | 3,980 | | |
| 2-1/4 | 570,000 | 4,450 | | |
| 2-3/8 | 628,000 | 4,960 | | |
| 2-1/2 | 692,000 | 5,490 | | |
| 2-5/8 | 758,000 | 6,280 | | |
| 2-3/4 | 826,000 | 6,890 | | |
| 2-7/8 | 897,000 | 7,520 | | |
| 3 | 970,000 | 8,180 | | |
| 3-1/8 | 1,046,000 | 8,890 | | |
| 3-1/4 | 1,124,000 | 9,600 | | |
| 3-3/8 | 1,204,000 | 10,350 | | |
| 3-1/2 | 1,285,000 | 11,140 | | |
| 3-5/8 | 1,369,000 | 12,190 | | |
| 3-3/4 | 1,455,000 | 12,920 | | |
| 3-7/8 | 1,543,000 | 13,850 | | |
| 4 | 1,632,000 | 14,680 | | |
| 4-1/8 | 1,724,000 | 15,520 | | |
| 4-1/4 | 1,817,000 | 16,360 | | |
| 4-3/8 | 1,911,000 | 17,200 | | |
| 4-1/2 | 2,008,000 | 18,030 | | |
| 4-5/8 | 2,105,000 | 18,840 | | |

| • | | * ARAMID 4-S | TR * | * POLYESTER | DB * |
|---|--------------|---|-----------|---------------|----------|
| <% STRETCH | I @BRK STR>> | CID A-A-504 | :35B <6%> | MIL-R-24677A | . <30%> |
| | | ======================================= | ======== | | ======= |
| NOM DIA | NOM CIRC | ACCPT B/S (#) | WT (#/F) | ACCPT B/S (#) | WT (#/F) |
| ======================================= | ======= | ======================================= | ======= | ========= | ======= |
| 3/16 D | 5/8 C | | | | |
| 1/4 D | 3/4 C | | | 1,900 | 0.020 |
| 5/16 D | 1 C | | | 2,935 | 0.031 |
| 3/8 D | 1-1/8 C | | | 4,245 | 0.045 |
| 7/16 D | 1-1/4 C | | | *5,730* | 0.061 |
| 1/2 D | 1-1/2 C | | | 7,500 | 0.080 |
| 9/16 D | 1-3/4 C | | | 9,450 | 0.101 |
| 5/8 D | 2 C | | | 11,660 | 0.125 |
| 3/4 D | 2-1/4 C | | | 16,610 | 0.179 |
| 13/16 D | 2-1/2 C | | | 19,580 | 0.211 |
| 7/8 D | 2-3/4 C | | | 22,660 | 0.244 |
| 1 D | 3 C | | | 29,480 | 0.319 |
| 1-1/16 D | 3-1/4 C | | | | |
| | 3-3/8 C | 50,000 | 0.329 | | |
| 1-1/8 D | 3-1/2 C | 60,000 | 0.369 | 37,290 | 0.404 |
| 1-1/4 D | 3-3/4 C | 70,000 | 0.416 | 45,870 | 0.498 |
| 1-5/16 D | 4 C | | | 50,600 | 0.550 |
| | 4-1/8 C | 96,000 | 0.503 | | |
| 1-1/2 D | 4-1/2 C | | | 61,000 | 0.718 |
| | 4-3/4 C | 135,000 | 0.657 | | |
| 1-5/8 D | 5 C | | | 74,000 | 0.840 |
| | 5-3/8 C | 180,000 | 0.859 | | |
| 1-3/4 D | 5-1/2 C | | | 84,000 | 0.977 |
| | 5-7/8 C | 225,000 | 1.13 | | |
| 2 D | 6 C | | | 105,000 | 1.28 |
| | 6-1/4 C | 280,000 | 1.42 | | |
| 2-1/8 D | 6-1/2 C | | | 118,000 | 1.44 |
| 2-1/4 D | 7 C | | | 133,600 | 1.61 |
| 2-1/2 D | 7-1/2 C | | | 162,000 | 1.99 |
| | 7-5/8 C | 350,000 | 1.74 | | |
| 2-5/8 D | 8 C | | | 180,000 | 2.20 |
| | 8-3/16 C | 420,000 | 2.09 | | |
| 3 D | 9 C | | | 232,000 | 2.87 |
| 3-1/4 D | 10 C | | | 277,000 | 3.37 |
| 3-5/8 D | 11 C | | | 335,000 | 4.19 |
| 4 D | 12 °C | | | 396,150 | 5.10 |
| 4-1/4 D | 13 C | | | 446,500 | 5.76 |
| 4-1/2 D | 14 C | | | 500,650 | 6.46 |
| 5 D | 15 C | | | 616,550 | 7.98 |
| 5-1/4 D | 16 C | | | 679,250 | 8.79 |
| | | | | | |

| <% STR | ETCH | @BRK S | TR>> | | 0 <30%> | * POLYESTER 8
MIL-R-24730 | <45%> |
|--------|----------|------------|------|---|--------------|------------------------------|----------|
| NOM D | IA | NOM CI | RC | ACCPT B/S (#) | | ACCPT B/S (#) | |
| ====== | | ====== | | ======================================= | ======= | πeerr <i>B</i> /6 (π/ | WI (#/F/ |
| 3/16 | | 5/8 | С | | | | |
| 1/4 | D | 3/4 | | | | 2,000 | 0.020 |
| 5/16 | D | 1 | С | | | 3,100 | 0.020 |
| 3/8 | D | 1-1/8 | С | 4,240 | 0.042 | 4,500 | 0.045 |
| 7/16 | D | 1-1/4 | | *5,680* | 0.057 | *6,000* | 0.062 |
| 1/2 | D | 1-1/2 | | 7,440 | 0.077 | 7,700 | 0.080 |
| 9/16 | D | 1-3/4 | С | 9,280 | 0.098 | 9,700 | 0.102 |
| 5/8 | D | 2 | C | 11,520 | 0.115 | 12,100 | 0.130 |
| 3/4 | D | 2-1/4 | С | 16,640 | 0.166 | 15,200 | 0.175 |
| 13/16 | D | 2-1/2 | С | | | 18,800 | 0.206 |
| 7/8 | D | 2-3/4 | C | 19,440 | 0.226 | 21,800 | 0.250 |
| 1 | D | 3 | С | 25,600 | 0.300 | 26,700 | 0.304 |
| 1-1/16 | Ď | 3-1/4 | C | | ٠ | | |
| | | 3-3/8 | C | | | | |
| • | D | 3-1/2 | | 32,800 | 0.380 | 35,900 | 0.400 |
| 1-1/4 | D | 3-3/4 | C | 37,600 | 0.440 | 40,200 | 0.464 |
| 1-5/16 | D | 4 | C | 43,200 | 0.500 | 45,600 | 0.525 |
| | | 4-1/8 | | | | | |
| 1-1/2 | D | 4-1/2 | | 54,400 | 0.630 | 56,900 | 0.670 |
| 1- | _ | 4-3/4 | | | | · | |
| 1-5/8 | D | 5 | C | 67,200 | 0.780 | 69,500 | 0.820 |
| 7 2/4 | _ | 5-3/8 | | | | | |
| 1-3/4 | D | 5-1/2 | | 80,800 | 0.940 | 82,000 | 0.980 |
| 2 | D | 5-7/8 | | 06.000 | | | |
| 2 | D | 6
6-1/4 | C | 96,000 | 1.12 | 97,200 | 1.18 |
| 2-1/8 | D | 6-1/4 | | 113,600 | 1 20 | 112 000 | |
| 2-1/4 | D | 7 | C | 131,200 | 1.32
1.53 | 112,000
129,000 | 1.35 |
| 2-1/2 | D | 7-1/2 | | 151,200 | 1.76 | | 1.57 |
| /- | _ | 7-5/8 | | 131,200 | 1.70 | 149,000 | 1.81 |
| 2-5/8 | D | 8 | C | 172,000 | 2.00 | 167,000 | 2.04 |
| • | | 8-3/1 | | | 2.00 | 107,000 | 2.04 |
| 3 | D | 9 | С | 215,200 | 2.53 | 208,000 | 2.58 |
| 3-1/4 | D | 10 | С | 264,800 | 3.12 | 255,000 | 3.18 |
| 3-5/8 | D | 11 | C | 319,200 | 3.78 | 306,000 | 3.84 |
| 4 | D | 12 | С | 376,800 | 4.49 | 365,000 | 4.54 |
| 4-1/4 | D | 13 | С | 440,800 | 5.27 | 429,000 | 5.40 |
| 4-1/2 | D | 14 | C | 508,800 | 6.12 | 496,000 | 6.30 |
| 5 | D | 15 | С | 581,600 | 7.02 | 570,000 | 7.20 |
| 5-1/4 | D | 16 | С | | • | 638,000 | 8.20 |
| | | | | | | | |

FIBEROPE - 1-19-94 (O-49)

| <% STRETCH | @BRK STR>> | * POLYESTER
MIL-R-30500E | 3/2 <35%> | * POLYESTER
MIL-R-2453 | 6 <25%> |
|------------|--------------------|-----------------------------|-----------|---------------------------|---------|
| NOM DIA | NOM CIRC | ACCPT B/S (#) | | ACCPT B/S (#) | |
| | | ========= | ====== | ============ | ====== |
| 3/16 D | 5/8 C | . 800 | 0.012 | | |
| 1/4 D | 3/4 C | 1,200 | 0.021 | 1,700 | 0.017 |
| 5/16 D | 1 C | 2,000 | 0.032 | 2,600 | 0.026 |
| 3/8 D | 1-1/8 C | 2,800 | 0.046 | 3,600 | 0.038 |
| 7/16 D | 1-1/4 C | 3,800 | 0.062 | 4,700 | 0.053 |
| 1/2 D | 1-1/2 C | 5,000 | 0.081 | 6,000 | 0.067 |
| 9/16 D | 1-3/4 C | 6,500 | 0.105 | 7,900 | 0.091 |
| 5/8 D | 2 C | 8,000 | 0.132 | 10,000 | 0.118 |
| 3/4 D | 2-1/4 C | 10,000 | 0.175 | 12,200 | 0.149 |
| 13/16 D | 2-1/2 C | 13,000 | 0.198 | 14,700 | 0.185 |
| 7/8 D | 2-3/4 C | 15,000 | 0.250 | 17,400 | 0.222 |
| 1 D | 3 C | 18,500 | 0.300 | 20,000 | 0.267 |
| 1-1/16 D | 3-1/4 C | • | | 23,400 | 0.313 |
| | 3-3/8 C | | | | |
| 1-1/8 D | 3-1/2 C | 25,000 | 0.420 | 26,700 | 0.364 |
| 1-1/4 D | 3-3/4 C | | | 30,000 | 0.417 |
| 1-5/16 D | 4 C | 31,000 | 0.525 | 33,700 | 0.476 |
| , | 4-1/8 C | | | | |
| 1-1/2 D | 4-1/2 C | | | 45,000 | 0.599 |
| / | 4-3/4 C | | | | |
| 1-5/8 D | 5 C | 48,000 | 0.808 | 50,000 | 0.741 |
| 1 2/4 D | 5-3/8 C | | | | |
| 1-3/4 D | 5-1/2 C | | | | |
| 2 D | 5-7/8 C
6 C | 60.000 | 1 04 | | |
| 2 D | 6-1/4 C | 68,000 | 1.24 | | |
| 2-1/8 D | 6-1/4 C
6-1/2 C | | | | |
| 2-1/4 D | 7 C | 88,000 | 1.59 | | |
| 2-1/2 D | 7-1/2 C | 00,000 | 1.55 | | |
| | 7-5/8 C | | | | |
| 2-5/8 D | 8 C | 110,000 | 2.10 | | |
| • | 8-3/16 C | , | | | |
| 3 D | 9 C | 140,000 | 2.63 | | |
| 3-1/4 D | 10 C | 165,000 | 3.18 | | |
| 3-5/8 D | 11 C | 240,000 | 4.00 | | |
| 4 D | 12 C | 285,000 | 4.67 | | |
| 4-1/4 D | 13 C | | | | |
| 4-1/2 D | 14 C | | | | |
| 5 D | 15 C | | | | |
| 5-1/4 D | 16 C | | | | |

FIBEROPE - 1-19-94 (0-49)

5-1/4 D

16

С

| | | * POLYESTER | | * NYLON D | |
|-----------|------------|---------------|-------|--|------------------|
| * STRETCH | @BRK STR>> | | | MIL-R-24050 | |
| NOM DIA | NOM CIRC | ACCPT B/S (#) | | ====================================== | |
| | | | · • | | ' - ' |
| 3/16 D | 5/8 C | | | | |
| 1/4 D | 3/4 C | 2,080 | 0.021 | 1,785 | 0.03 |
| 5/16 D | 1 C | 2,980 | 0.032 | 2,835 | 0.02 |
| 3/8 D | 1-1/8 C | 3,970 | 0.044 | 4,095 | 0.03 |
| 7/16 D | 1-1/4 C | 5,050 | 0.057 | *5,355* | 0.04 |
| 1/2 D | 1-1/2 C | 6,400 | 0.074 | 7,245 | 0.06 |
| 9/16 D | 1-3/4 C | 8,100 | 0.096 | 9,450 | 0.08 |
| 5/8 D | 2 C | 9,900 | 0.122 | 12,600 | 0.10 |
| 3/4 D | 2-1/4 C | 12,200 | 0.152 | 15,750 | 0.13 |
| 13/16 D | 2-1/2 C | 14,500 | 0.184 | 19,320 | 0.16 |
| 7/8 D | 2-3/4 C | 16,700 | 0.215 | 23,625 | 0.20 |
| L D | 3 C | 19,000 | 0.252 | 27,825 | 0.24 |
| l-1/16 D | 3-1/4 C | 22,000 | 0.296 | | |
| | 3-3/8 C | 4 | | | |
| l-1/8 D | 3-1/2 C | 25,000 | 0.336 | 37,800 | 0.33 |
| L-1/4 D | 3-3/4 C | 27,500 | 0.378 | 44,100 | 0.38 |
| 1-5/16 D | 4 C | 30,700 | 0.425 | 50,400 | 0.43 |
| | 4-1/8 C | | | | |
| l-1/2 D | 4-1/2 C | 37,000 | 0.630 | 64,200 | 0.54 |
| | 4-3/4 C | | | | |
| 1-5/8 D | 5 C | | | 78,110 | 0.67 |
| | 5-3/8 C | | | | |
| 1-3/4 D | 5-1/2 C | | | 96,300 | 0.82 |
| | 5-7/8 C | | | · | |
| 2 D | 6 C | | | 109,675 | 0.9 |
| | 6-1/4 C | | | | |
| 2-1/8 D | 6-1/2 C | | | 131,610 | 1.14 |
| 2-1/4 D | 7 C | | | 149,800 | 1.32 |
| 2-1/2 D | 7-1/2 C | | | 171,200 | 1.52 |
| | 7-5/8 C | | | | |
| 2-5/8 D | 8 C | | | 192,600 | 1.73 |
| | 8-3/16 C | | | | |
| 3 D | 9 C | | | 243,000 | 2.1 |
| 3-1/4 D | 10 C | | | 284,840 | 2.7 |
| 3-5/8 D | 11 C | | | 351,000 | 3.2 |
| 4 D | 12 C | | | 415,800 | 3.8 |
| 4-1/4 D | 13 C | | | 475,200 | 4.5 |
| 4-1/2 D | 14 C | | | 548,640 | 5.2 |
| 5 D | 15 C | | | 622,080 | 6.0 |
| / | | | | | |

702,000

6.85

FIBEROPE - 1-19-94 (O-49)

| <% STRI | ETCH | @BRK S | ΓR>> | | A <65%> | * NYLON 3-
MIL-R-17343 | D <55%> |
|---------|------|--------|------|----------------|----------|---|----------|
| NOW D | T 3 | NOW GT | | ACCRE D/C /U) | | ======================================= | |
| NOM D | | NOM CI | | ACCPT B/S (#) | WT (#/F) | ACCPT B/S (#) | WT (#/F) |
| 2/16 | | ====== | | ============== | ====== | | ======= |
| 3/16 | | 5/8 | | | | 950 | 0.010 |
| 1/4 | D | 3/4 | | 1,500 | 0.014 | 1,500 | 0.016 |
| 5/16 | | 1 | C | 2,500 | 0.023 | 2,600 | 0.028 |
| 3/8 | D | 1-1/8 | | 3,700 | 0.035 | 3,300 | 0.036 |
| 7/16 | | 1-1/4 | | 5,000 | 0.049 | 4,800 | 0.051 |
| 1/2 | D | 1-1/2 | | 6,400 | 0.062 | 5,800 | 0.063 |
| 9/16 | | 1-3/4 | | 8,000 | 0.075 | 7,600 | 0.083 |
| 5/8 | D | 2 | С | 11,000 | 0.102 | 9,800 | 0.106 |
| 3/4 | D | 2-1/4 | | 17,000 | 0.141 | 13,200 | 0.143 |
| 13/16 | | 2-1/2 | | 20,000 | 0.162 | 15,300 | 0.169 |
| 7/8 | D | 2-3/4 | C | 24,000 | 0.195 | 19,000 | 0.207 |
| 1 | D | 3 | C | 31,000 | 0.250 | 23,200 | 0.253 |
| 1-1/16 | D | 3-1/4 | | | | | |
| | | 3-3/8 | | | | | |
| 1-1/8 | D | 3-1/2 | | 38,000 | 0.339 | 32,000 | 0.347 |
| 1-1/4 | D | 3-3/4 | С | 46,000 | 0.400 | 36,500 | 0.400 |
| 1-5/16 | D | 4 | C | 53,000 | 0.430 | 41,300 | 0.453 |
| | | 4-1/8 | | | | | |
| 1-1/2 | D | 4-1/2 | С | 63,000 | 0.500 | 50,000 | 0.582 |
| | | 4-3/4 | С | | | | |
| 1-5/8 | D | 5 | С | 73,000 | 0.680 | 60,000 | 0.702 |
| | | 5-3/8 | | | | | |
| 1-3/4 | D | 5-1/2 | | 78,000 | 0.820 | 72,000 | 0.843 |
| | | 5-7/8 | С | | | | |
| 2 | D | 6 | С | 95,000 | 0.950 | 90,000 | 1.06 |
| | | 6-1/4 | | | | | |
| 2-1/8 | D | 6-1/2 | | 106,000 | 1.09 | 100,000 | 1.18 |
| 2-1/4 | D | 7 | С | 125,000 | 1.25 | 127,000 | 1.50 |
| 2-1/2 | D | 7-1/2 | | 137,000 | 1.41 | | |
| | | 7-5/8 | | | | | |
| 2-5/8 | D | 8 | C | 165,000 | 1.67 | 164,000 | 1.95 |
| | | 8-3/10 | | | | | |
| 3 | D | 9 | С | 200,000 | 2.14 | 209,000 | 2.51 |
| 3-1/4 | D | 10 | C | 250,000 | 2.62 | 265,000 | 3.20 |
| 3-5/8 | D | 11 | С | 300,000 | 3.19 | 316,000 | 3.85 |
| 4 | D | 12 | C | 360,000 | 3.84 | 375,000 | 4.58 |
| 4-1/4 | D | 13 | C | 380,000 | 4.46 | | |
| 4-1/2 | D | 14 | С | 441,000 | 5.17 | | |
| 5 | D | 15 | С | 507,000 | 5.95 | | |
| 5-1/4 | D | 16 | С | 572,000 | 6.76 | | • |

FIBEROPE - 1-19-94 (0-49)

| <% STRETCH | @BRK STR>> | | <45%> | * MANILA 3
T-R-605B/3 | |
|------------|------------|---|---------|---|----------|
| NOW DIA | NOW GIRG | | | | |
| NOM DIA | NOM CIRC | ACCPT B/S (#) | | ACCPT B/S (#) | WT (#/F) |
| 2/16 D | | ======================================= | ======= | ======================================= | ====== |
| 3/16 D | 5/8 C | 720 | 0.008 | 405 | 0.015 |
| 1/4 D | 3/4 C | 1,130 | 0.012 | 540 | 0.020 |
| 5/16 D | 1 C | 1,710 | 0.021 | 900 | 0.029 |
| 3/8 D | 1-1/8 C | 2,440 | 0.028 | 1,215 | 0.041 |
| 7/16 D | 1-1/4 C | 3,160 | 0.033 | 1,575 | 0.053 |
| 1/2 D | 1-1/2 C | 3,780 | 0.048 | 2,385 | 0.075 |
| 9/16 D | 1-3/4 C | 4,600 | 0.063 | 3,105 | 0.104 |
| 5/8 D | 2 C | 5,600 | 0.083 | 3,960 | 0.13 |
| 3/4 D | 2-1/4 C | 7,650 | 0.110 | 4,860 | 0.17 |
| 13/16 D | 2-1/2 C | 8,900 | 0.132 | 5,850 | 0.19 |
| 7/8 D | 2-3/4 C | 10,400 | 0.157 | 6,930 | 0.22 |
| 1 D | 3 C | 12,600 | 0.192 | 8,100 | 0.27 |
| 1-1/16 D | 3-1/4 C | | | 9,450 | 0.31 |
| | 3-3/8 C | | | | |
| 1-1/8 D | 3-1/2 C | 16,500 | 0.263 | 10,800 | 0.36 |
| 1-1/4 D | 3-3/4 C | 18,900 | 0.303 | 12,150 | 0.42 |
| 1-5/16 D | 4 C | 21,200 | 0.342 | 13,500 | 0.48 |
| | 4-1/8 C | | | | |
| 1-1/2 D | 4-1/2 C | 26,800 | 0.439 | 16,650 | 0.60 |
| | 4-3/4 C | | | | |
| 1-5/8 D | 5 C | 32,400 | 0.526 | 20,250 | 0.75 |
| 4 | 5-3/8 C | | | | |
| 1-3/4 D | 5-1/2 C | 38,800 | 0.633 | 23,850 | 0.89 |
| | 5-7/8 C | | | | |
| 2 D | 6 C | 46,800 | 0.794 | 27,900 | 1.08 |
| | 6-1/4 C | | | | |
| 2-1/8 D | 6-1/2 C | 55,000 | 0.909 | • | |
| 2-1/4 D | 7 C | 62,000 | 1.11 | 36,900 | 1.46 |
| 2-1/2 D | 7-1/2 C | | | | |
| 2 F/2 B | 7-5/8 C | | | | |
| 2-5/8 D | 8 C | 81,000 | 1.43 | 46,800 | 1.91 |
| 2 5 | 8-3/16 C | | | | |
| 3 D | 9 C | 103,000 | 1.83 | 57,600 | 2.42 |
| 3-1/4 D | 10 C | 123,000 | 2.33 | 69,300 | 2.99 |
| 3-5/8 D | 11 C | | | 81,900 | 3.66 |
| 4 D | 12 C | | | 94,500 | 4.35 |
| 4-1/4 D | 13 C | | | | |
| 4-1/2 D | 14 C | | | | |
| 5 D | 15 C | | | • | |
| 5-1/4 D | 16 C | | | | |

FIBEROPE - 1-19-94 (O-49)

* SISAL 3-STR *
<% STRETCH @BRK STR>> T-R-605B <*20%*>

| WDKK SIK>> | 1-K-605B < | ^205^> |
|------------|--|---|
| | | ======= |
| NOM CIRC | ACCPT B/S (#) | WT (#/F) |
| ======= | | ======= |
| 5/8 C | 360 | 0.015 |
| 3/4 C | 480 | 0.020 |
| 1 C | 800 | 0.029 |
| 1-1/8 C | 1,080 | 0.041 |
| 1-1/4 C | 1,400 | 0.053 |
| 1-1/2 C | 2,120 | 0.075 |
| 1-3/4 C | 2,760 | 0.104 |
| 2 C | 3,520 | 0.13 |
| 2-1/4 C | 4,320 | 0.17 |
| 2-1/2 C | 5,200 | 0.19 |
| 2-3/4 C | 6,160 | 0.22 |
| 3 C | 7,200 | 0.27 |
| 3-1/4 C | 8,400 | 0.31 |
| 3-3/8 C | | |
| 3-1/2 C | 9,600 | 0.36 |
| 3-3/4 C | 10,800 | 0.42 |
| 4 C | 12,000 | 0.48 |
| 4-1/8 C | | |
| 4-1/2 C | 14,800 | 0.60 |
| 4-3/4 C | | |
| 5 C | 18,000 | 0.75 |
| 5-3/8 C | | |
| 5-1/2 C | 21,200 | 0.89 |
| 5-7/8 C | | |
| 6 C | 24,800 | 1.08 |
| 6-1/4 C | | |
| 6-1/2 C | | |
| 7 C | 32,800 | 1.46 |
| 7-1/2 C | | |
| 7-5/8 C | | |
| 8 C | 41,600 | 1.91 |
| 8-3/16 C | | |
| 9 C | 51,200 | 2.42 |
| 10 C | 61,600 | 2.99 |
| 11 C | 72,800 | 3.66 |
| 12 C | 84,000 | 4.35 |
| 13 C | | |
| 14 C | | |
| 15 C | | |
| 16 C | | |
| | NOM CIRC ================================== | NOM CIRC ACCPT B/S (#) =================================== |

| _ | ž
B | 4,500 | 10,000 | 15,600 | 20,000 | 26,000 | 33,000 | 41,000 | 20,000 | 70,000 | 95,000 | 125,000 | 150,000 | 180,000 | 210,000 | 300,000 | 350,000 | 400,000 | 200,000 | 640,000 | 800,000 | 940,000 | 1,100,000 | 1,400,000 | 1,750,000 |
|--------------------------|-----------|-------|------------|--------|---------|--------|--------|--------|---------------|--------------|---------------|---------|----------|------------|----------|----------|----------|------------|------------|---------|-------------|---------|--------------|-----------|--------------|
| Amd 1 | Break B | 0 | | ` | | | | | | | | ` | | | | | | _ | | | | | | ļ` | |
| Amd 1 | Break A | 3,250 | 2,000 | 7,500 | 10,000 | 15,000 | 20,000 | 25,900 | 32,500 | 47,500 | 65,000 | 85,000 | 95,000 | 120,000 | 135,000 | 170,000 | 200,000 | 250,000 | 350,000 | 400,000 | 550,000 | 000'009 | 850,000 | 1,200,000 | 1,500,000 |
| Amd 1 | Proof B | 1,980 | 4,400 | 6,864 | 8,800 | 11,440 | 14,520 | 18,040 | 22,000 | 30,800 | 41,800 | 55,000 | 000'99 | 79,200 | 92,400 | 132,000 | 154,000 | 176,000 | 220,000 | 281,600 | 352,000 | 413,600 | 484,000 | 616,000 | 770,000 |
| Amd 1 | Proof A | 1,430 | 2,200 | 3,300 | 4,400 | 009'9 | 8,800 | 11,396 | 14,300 | 20,900 | 28,600 | 37,400 | 41,800 | 52,800 | 59,400 | 74,800 | 88,000 | 110,000 | 154,000 | 176,000 | 242,000 | 264,000 | 374,000 | 528,000 | 000'099 |
| Amd 1 | Grade B | 006 | 2,000 | 3,120 | 4,000 | 5,200 | 009'9 | 8,200 | 10,000 | 14,000 | 19,000 | 25,000 | 30,000 | 36,000 | 42,000 | 000'09 | 70,000 | 80,000 | 100,000 | 128,000 | 160,000 | 188,000 | 220,000 | 280,000 | 350,000 |
| Amd 1 | Grade A | 029 | 1,000 | 1,500 | 2,000 | 3,000 | 4,000 | 5,180 | 6,500 | 9,500 | 13,000 | 17,000 | 19,000 | 24,000 | 27,000 | 34,000 | 40,000 | 50,000 | 20,000 | 80,000 | 110,000 | 120,000 | 170,000 | 240,000 | 300,000 |
| CooperT | Grade B | | | | 2T | | 3-1/3T | | | 77 | | 12-1/2T | | 18T | - | 30T | - | 40T | 50T | | - | | | - | ***** |
| CooperT | Grade A | 1/3T | 1/2T | 3/4T | <u></u> | 1-1/2T | 2T | | 3-1/4T | 4-3/4T | 6-1/2T | 8-1/2T | 9-1/2T | 12T | 13-1/2T | 17T | 20T | 25T | 35T | 40T | 55T | F07 | 75T | 100T | |
| Midland F Midland F | Grade B | | - | - | 2T | 2-5/8T | 3-1/4T | | 51 | 7 | 9-1/2T | 12-1/2T | s15T;b17 | s18T;b21 | s21T;b24 | s25T;b30 | s29T;b35 | s34T;b40 | s43T;b50 | - | | | | | |
| Midland F | Grade A | 1/2T | 3/4T | 1 | 1-1/2T | 2T | 3T | | 4-1/2T | 6-1/2T | 8-1/2T | 10T | 12T | 14T | 17T | 20T | 24T | 30T | 35T | | | | 1 | 1 | - |
| Crosby | Grade B | | | | 2T | 2.6T | 3.3T | · | 51 | 77 | 9.5T | 12.5T | 15T | 18T | 21T | 30T | - | 40T | 50T | | 80T | | 110T | 140T | 175T |
| Crosby | Grade A | 1/3T | 2,000 1/2T | 3/4T | + | 1-1/2T |) 2T | | 10,000 3-1/4T | 3,800 4-3/4T | 18,700 6-1/2T | 8-1/2T | 9-1/2T | 36,000 12T | 13-1/2T | 171 | 1 | 125T | 35T | 1 | 55T | | 185T | 120T | 150T |
| RR-C-271 | Grade B | 906 | 2,000 | 3,120 | 3,800 | 5,180 | 6,500 | | 10,000 | 13,800 | 18,700 | 24,400 | 28,600 | 36,000 | 41,400 | 48,800 | 57,400 | 65,000 251 | 85,040 35T | 1 | 121,400 55T | 1 | 150,000 85T | 200,000 | 260,000 150T |
| RR-C-271 RR-C-271 Crosby | Grade A (| 520 | 710 | 1,060 | 1,590 | 2,170 | 2,830 | 3,580 | 4,420 | 6,360 | 8,650 | 11,310 | 13,360 | 16,500 | 19,800 | 23,740 | 27,900 | 32,320 | 42,220 | 54,000 | 67,600 | 81,000 | 96,200 | 131,100 | 171,140 |
| SHACKL | Size D | 3/16 | 1/4 | 5/16 | 3/8 | 2/16 | 1/2 | 9/16 | 5/8 | 3/4 | 2/8 | + | 1-1/8 | 1-1/4 | 1-3/8 | 1-1/2 | 1-5/8 | 1-3/4 | 2- | 2-1/4 | 2-1/2 | 2-3/4 | ا | 3-1/2 | 4 |

WIREROPE - 8-6-93 (E-33)

| ******* | ******* | **
}
* | | | | | |
|--|----------|--|--------------------------------------|--|----------------|--|------------------------------------|
| | | IRE/6X37
R-W-410D | H
Ei | IRE/6X37
R-W-410D | S IWR
BLE X | IRE/6X
R-W-41 | S F
BLE |
| NOM DIA | NOM CIRC | ACCPT B/S (#) | .=======
WT (#/F) | ACCPT B/S (#) | WT (#/F) | ====================================== | WT (#/F) |
| ====================================== | === |))
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1) | H
H
H
H
H
H
H
H | !!
!!
!!
!!
!!
!!
!! | | ## ## ## ## ## ## ## ## ## ## ## ## ## |

 |
| /4 | 3/4 C | 6,640 | 0.116 | 5,740 | 0.116 | 5,340 | 0.105 |
| 9 | | 10,280 | 0.180 | 8,940 | 0.180 | 8,300 | 0.164 |
| 8/ | -1/8 | 14,720 | 0.260 | 12,800 | 0.260 | 11,900 | 0.236 |
| 7/16 D | 1-3/8 C | 19,900 | 0.350 | 17,340 | 0.350 | 16,120 | 0.320 |
| /2 | -5/8 | 26,000 | 0.460 | 22,400 | 0.460 | 20,800 | 0.420 |
| 9/16 D | -3/4 | 32,800 | 0.590 | 28,200 | 0.590 | 26,400 | 0.530 |
| 8/ | | 40,200 | 0.720 | 35,000 | 0.720 | 32,600 | 0.660 |
| /4 | 2-3/8 C | 57,400 | 1.04 | 20,000 | 1.04 | 46,400 | 0.950 |
| 7/8 D | -3/4 | 77,600 | 1.42 | 67,400 | 1.42 | 62,800 | 1.29 |
| 1 D | -1/8 | 100,800 | 1.85 | 87,600 | 1.85 | 81,600 | 1.68 |
| 1-1/8 D | -1/2 | 126,800 | 2.34 | 110,200 | 2.34 | 102,600 | 2.13 |
| 1-1/4 D | -7/8 | | 2.89 | 135,400 | 2.89 | 126,000 | 2.63 |
| 1-3/8 D | -3/8 | 187,200 | 3.50 | 162,800 | 3.50 | 151,600 | 3.18 |
| 1-1/2 D | 4-3/4 C | 222,000 | 4.16 | 192,800 | 4.16 | 179,400 | 3.78 |
| 1-5/8 D | -1/8 | 258,000 | 4.88 | 224,000 | 4.88 | 208,000 | 4.44 |
| 1-3/4 D | -1/2 | | 5.67 | 260,000 | 5.67 | 242,000 | 5.15 |
| -7/8 | 5-7/8 C | 340,000 | 6.50 | 296,000 | 6.50 | 274,000 | 5.91 |
| | -1/4 | 386,000 | 7.39 | 336,000 | 7.39 | 312,000 | 6.72 |
| 2-1/8 D | 6-5/8 C | 431,000 | 8.35 | 374,000 | 8.35 | 350,000 | 7.59 |
| -1/4 | -1/8 | 482,000 | 9.36 | 420,000 | 9.36 | 390,000 | 8.51 |
| -1/2 | 8/ | 289,000 | 11.6 | 511,000 | 11.6 | 476,000 | 10.5 |
| -3/4 | 8-5/8 C | 704,000 | 14.0 | 612,000 | 14.0 | 570,000 | 12.7 |
| 3 D | 9-3/8 C | 828,000 | 16.6 | 722,000 | 16.6 | 000'899 | 15.1 |
| -1/4 | -1/4 | 000'096 | 19.5 | 836,000 | 19.5 | 798,000 | 17.7 |
| 3-1/2 D | 11 C | 1,100,000 | 22.7 | 958,000 | 22.7 | 892,000 | 20.6 |
| | | • | | | | | |