

Computational Physics (PHYS6350)

Lecture 1: Introduction, Syllabus, Technical Details

Instructor: Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics

Online textbook: https://vovchenko.net/computational-physics/

Course description

Description: Simulation of classical and quantum mechanical problems on digital computers using numerical and modern programming techniques.

Topics:

- General introduction to scientific programming and visualization.
- Function interpolation.
- Linear algebra and matrices.
- Numerical solutions to (systems of) non-linear equations.
- Numerical integration and differentiation.
- Numerical solutions to ordinary and partial differential equations.
- Molecular dynamics and Monte Carlo simulations.
- Problems from classical, statistical, and quantum mechanics.
- Data analysis, processing, and parameter estimation. Bayesian analysis.
- Introduction to parallel computing and machine learning. (tentative)

Textbook: No mandatory textbook but recommend *Computational Physics* by Mark Newman (Some parts of this text are available on the author's website: http://www-personal.umich.edu/~mejn/cp/index.html)

Requirements

- A laptop to run where you can write, compile, and run code.
- Plotting of the obtained results.

Preferred languages:

- Python within Jupyter Notebook (most of the examples will be given in this format)
- Pure Python (.py code)
- C/C++
- Other languages possible with prior approval (e.g. for assignments)

The operating system is up to you, I will use Mac.

Useful links:

- Python/Jupyter Notebook: one may use Anaconda distribution https://www.anaconda.com/
- C/C++/Python: **Visual Studio Code** https://code.visualstudio.com/
- Plotting: matplotlib (part of Python), gnuplot (http://www.gnuplot.info/)

Class schedule

Lecture: TuTh 10 AM - 11:30 AM

+

Lab: Th 9:00 AM – 10 AM

Instructor: Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

Office Hours: Wednesday 12-1 PM or by appointment (office SR1 629C)

Lecture notes and the solution to sample problems will be posted after each lecture

Course materials:

- Teams
- https://github.com/vlvovch/PHYS6350-ComputationalPhysics

Grading

- Homework (40%)
 - Every 1-2 weeks, due on Friday of the following week
 - Should include code and where applicable plot/tabulated output
 - The instructor may ask to explain how the submitted code works
- Final project (20%)
 - A numerical solution to a problem on a pre-approved topic
 - Or exploration of some of the advanced methods that we did not cover
 - Should include both the code and a report
 - Due on last day of class
- Mid-term (15%) and Final (25%)
 - Multiple choice, short and long answer questions
 - May include a quick programming exercise

Grading scale

Total Points	Grade
91-100	Α
86-90	A-
81-85	B+
71-80	В
61-70	B-
56-60	C+
51-55	С
46-50	C-
41-45	D+
36-40	D
31-35	D-
0-30	F