MA150 Algebra 2, Assignment 4

Dyson Dyson

Question 4

Let V be a Euclidean space with inner product $\langle \cdot, \cdot \rangle$. Suppose w_1, \ldots, w_n is an orthonormal basis of V. Of course $\forall v \in V, \exists \lambda_i \in \mathbb{R}$ such that $v = \sum \lambda_i w_i$. Show that in fact $\lambda_i = \langle v, w_i \rangle$.

For any fixed $i \leq n$

$$v = \sum_{j=1}^{n} \lambda_{j} w_{j}$$

$$\langle v, w_{i} \rangle = \left\langle \sum_{j=1}^{n} \lambda_{j} w_{j}, w_{i} \right\rangle$$

$$= \sum_{j=1}^{n} \lambda_{j} \langle w_{j}, w_{i} \rangle$$

$$= \lambda_{1} \langle w_{1}, w_{i} \rangle + \dots + \lambda_{i} \langle w_{i}, w_{i} \rangle + \dots + \lambda_{n} \langle w_{n}, w_{i} \rangle$$

$$= \lambda_{i}$$

Since all w_1, \ldots, w_n are orthonormal, so all but one of the inner products are zero.

Therefore $\langle v, w_i \rangle = \lambda_i$ for all $i = 1, \ldots, n$, as required.

Question 5

Let $V = \mathbb{R}^3$ equipped with the usual inner (dot) product. Let

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Q5 (a)

Apply the Gram-Schmidt orthogonalisation process to v_1, v_2, v_3 to construct an orthonormal basis w_1, w_2, w_3 .

$$w_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$u_{2} = v_{2} - (v_{2} \cdot w_{1})w_{1}$$

$$= \begin{pmatrix} 2\\0\\1 \end{pmatrix} - \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$$

$$w_{2} = \frac{u_{2}}{\|u_{2}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$$

$$u_{3} = v_{3} - (v_{3} \cdot w_{1})w_{1} - (v_{3} \cdot w_{2})w_{2}$$

$$= \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} - 0 \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$$

$$w_{3} = \frac{u_{3}}{\|u_{3}\|} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Therefore our orthonormal basis
$$w_1, w_2, w_3$$
 is $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Q5 (b)

Consider
$$v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
. Find $\lambda_1, \lambda_2, \lambda_3$ such that $v = \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3$.

Clearly $v=w_3$ so if $v=\lambda_1w_1+\lambda_2w_2+\lambda_3w_3$ then, since w_1,w_2,w_3 are linearly independent, $\lambda_1=\lambda_2=0$ and $\lambda_3=1$.

Question 6

Consider the symmetric matrix

$$A = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$$

and define a function

$$\varphi: \mathbb{R}^2 \to \mathbb{R}$$

$$v = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto v^T A v = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Notice that $\varphi(\underline{0}) = 0$. This question determines precise conditions for which $\varphi(v) = 0$ for all $v \neq \underline{0}$.

Notice that $\varphi(\lambda v) = \lambda^2 \varphi(v)$ so we only need to consider $v \in \mathbb{R}^2$ of the form

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $v_x = \begin{pmatrix} x \\ 1 \end{pmatrix} \ \forall \ x \in \mathbb{R}$

Q6 (a)

If $a \leq 0$ find a vector $v \neq \underline{0}$ with $\varphi(v) \leq \underline{0}$.

$$\varphi(e_1) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ \frac{b}{2} \end{pmatrix} = a \text{ so if } a \leq 0 \text{ then } \varphi(e_1) \leq 0.$$

Q6 (b)

Express $\varphi(v_x)$ as a polynomial in x.

$$\varphi(v_x) = \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} ax + \frac{b}{2} \\ \frac{b}{2}x + c \end{pmatrix}$$
$$= \begin{pmatrix} ax + \frac{b}{2} \end{pmatrix} x + \frac{b}{2}x + c$$
$$= ax^2 + bx + c$$

Q6 (c)

Suppose a>0. Prove that $\varphi(v_x)>0$ for all $x\in\mathbb{R}$ if and only if $b^4-4ac<0$. Recall that $\det A=ac-\frac{b^2}{4}$, so that this condition is exactly the same as $\det A>0$.

Suppose a>0 and $b^2-4ac<0$. That means $ax^2+bx+c=0$ has no roots and since a>0, $ax^2+bx+c>0$, so $\varphi(v_x)>0$ \forall $x\in\mathbb{R}$.

Conversely, suppose $\varphi(v_x) > 0$. Therefore $ax^2 + bx + c > 0 \ \forall \ x \in \mathbb{R}$, which means this quadratic has no roots and therefore has a negative discriminant, so $b^2 - 4ac < 0$.

Question 7

Continue with the notation and matrix A from the previous question. For any vectors $v,w\in\mathbb{R}^2$ define $\langle v,w\rangle=v^TAw.$

Q7 (a)

Show that $\langle v, w \rangle = \langle w, v \rangle$ for any $v, w \in \mathbb{R}^2$.

The transpose of a scalar is the same scalar, so

$$\begin{split} \langle v, w \rangle &= \langle v, w \rangle^T \\ &= \left(v^T A w \right)^T \\ &= w^T A^T \left(v^T \right)^T \\ &= w^T A^T v \\ &= w^T A v \quad \text{since } A^T = A \\ &= \langle w, v \rangle \end{split}$$

Q7 (b)

Show that for any $v_1, v_2, w \in \mathbb{R}^2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$,

$$\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = \lambda_1 \langle v_1, w \rangle + \lambda_2 \langle v_2, w \rangle$$

$$\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = (\lambda_1 v_1 + \lambda_2 v_2)^T A w$$

$$= (\lambda_1 v_1^T + \lambda_2 v_2^T) A w$$

$$= \lambda_1 v_1^T A w + \lambda_2 v_2^T A w$$

$$= \lambda_1 \langle v_1, w \rangle + \lambda_2 \langle v_2, w \rangle$$

Q7 (c)

Suppose a > 0 and $\det A > 0$. Show that $\langle v, v \rangle \geq 0$ for any $v \in V$, and that $\langle v, v \rangle = 0$ if and only if $v = \underline{0}$.

Since a > 0 and $\det A > 0$, $b^4 - 4ac < 0$. We know that $\langle v, v \rangle = v^T A v$ so $\langle v, v \rangle$ is equivalent to $\varphi(v)$ from Question 6, and we know that $\varphi(v) \geq 0 \ \forall \ v \in \mathbb{R}^2$ when a > 0 and $\det A > 0$, with equality only when v = 0.

Essentially, the desired result follows immediately from Question 6 and the observation that $\langle v, v \rangle = \varphi(v)$.

Q7 (d)

Which of the following matrices A determine an inner product on $V=\mathbb{R}^2$ by the formula v^TAw above?

$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \quad \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \quad \begin{pmatrix} 5 & 3 \\ 3 & -2 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

For a matrix A to determine an inner product as above, we need a>0 and $\det A>0$, so only $\begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ determine inner products