

All Readings: Computer Vision Fundamentals on Google Cloud

Here are the assembled readings provided in this course.

Module 1: Introduction to Computer Vision and Pre-built ML Models with Vision API

- Lesson 1: What Is Computer Vision?
 - Internet growth statistics from Statista
 - The amount of visual data on Google Photos
- Lesson 3: Computer Vision Use Cases
 - The New York Times digitizes millions of historical photos using Google Cloud Technology
 - Box: Bringing image recognition and OCR to cloud content management
 - <u>Coastal classifiers: using AutoML Vision to assess and track environmental change</u>
- Lesson 4: Vision API Pre-built ML Models
 - DocumentAl API documentation
 - <u>Vision AI documentation</u>
 - Image: Purdue university
 - Demo instructions:
 - Instructions
 - Demo Images:
 - Image cc0 (owl): https://pixabay.com/en/owl-camouflage-wildlife-1576572/
 - Image cc0 (clipboard) https://pixabay.com/en/clipboards-papers-text-quotes-924044/
 - Images cc0 (Coit Tower): https://pixabay.com/en/coit-tower-san-francisco-skyline-1499662/
 - Video Intelligence API document
 - Google's human labeling program
- Lab intro:
 - Google Cloud Storage documentation
 - Google Cloud Vision API documentation
 - o Google Cloud Translation API documentation
 - Google Cloud Pub/Sub documentation
 - Cloud Functions documentation
- Additional Resources:
 - Machine Learning on Google Cloud
 - Google Cloud Big Data and Machine Learning Fundamentals
 - Machine Learning Crash Course Image Classification

Module 2: Vertex AI and AutoML Vision on Vertex AI

- Lesson 1: What is Vertex AI and why does a unified platform matter?
 - o Vertex Al documentation
 - o Giving Vertex AI, the New Unified ML Platform on Google Cloud, a Spin
 - o cloud.google.com/training
- Lesson 2: Introduction to AutoML Vision on Vertex AI
 - AutoML documentation.
- Lesson 3: How does Vertex AI help with the ML workflow, part 1?
 - Vertex Al Labeling Services
- Lesson 4: How does Vertex AI help with the ML workflow, part 2?
 - o Getting evaluation metrics
 - o Best Practices Guide
 - o About model deployment
 - How Google does Machine Learning
- Lesson 5: Which vision product is right for you?
 - Image of a Cloud
 - Which vision product is right for you?
- Additional Resource:
 - Machine Learning Operations (MLOps) Fundamentals course
 - Launching into Machine Learning
 - Machine Learning on Google Cloud

Module 3: Custom Training with Linear, Neural Network and Deep Neural Network models

- Lesson 1: Introduction
 - o TensorFlow dataset
- Lesson 3: Reading the Data
 - o tf.io
 - o tf.image
 - o tf.data.Dataset
 - o tf.data.TextLineDataset
 - tf.data.Dataset.list files
 - tf.data.FixedLengthRecordDataset
 - TensorFlow documentation
- Lesson 4: Implementing Linear Models for Image Classification
 - tf.keras.Model
 - The Functional API
 - o <u>Compile</u>
 - o Optimizer

- Loss function
- Metrics
- Lesson 5: Neural Networks and Deep Neural Networks for Image Classification
 - o Commonly Used Activation Functions
 - o Model.compile
- Lesson 6: Deep Neural Networks with Dropout and Batch Normalization
 - o universal approximation theorem
 - o The Geometric Occam's Razor Implicit in Deep Learning
 - Dropout: A Simple Way to Prevent Neural Networks from Overfitting
- Additional Resources
 - o Machine Learning on Google Cloud

Module 4: Convolutional Neural Networks

- Lesson 2: Convolutional Neural Networks
 - Neocognitron
 - Visual nervous system
 - Deep Learning
 - o Initial CNN architecture
 - AlexNet
 - The concept of hierarchy
 - Google's Own Inception network
- Lesson 4: CNN Model Parameters
 - o 2-dimensional convolution layer in Keras
- Lesson 5: Working with Pooling Layers
 - Pooling layers in Keras
- Lesson 6: Implementing CNNs on Vertex AI with pre-built TF container using Vertex Workbench
 - National Institute of Standards and Technology
 - Softmax Function
- Lab intro:
 - MNIST
 - o tf.keras API

Module 5: Dealing with Image Data

- Lesson 2: Reading and Preprocessing the Image Data
 - tf.data
 - o <u>tf.image.ResizeMethod</u>
 - Learning to Resize Images for Computer Vision Tasks
 - tf.image
 - o <u>tf.keras.layers.Resizing</u>
 - o tf.keras.lavers.Rescaling
- Lesson 4: Data Augmentation
 - o Dataset.map

- o <u>tf.image</u>
- o <u>tf.data</u>
- o tf.image.flip left right
- o tf.image.rgb to grayscale
- o <u>tf.image.stateless_random_brightness</u>
- o <u>tf.image.stateless_random_contrast</u>
- o tf.image.stateless random crop
- o tf.image modules for data augmentation
- o tf.py function
- https://keras.io/api/layers/preprocessing_layers/image_preprocessing/
- Lesson 5: Transfer Learning
 - o <u>MobileNet</u>