Lecture 21

GRAPHS

Outline?

- Define a Graph
- Graph terminology
- Example uses of graphs
- Graph representations

Definition

A graph is a collection of vertices (nodes), V, and a set of pairs of vertices, E.
 G = {V, E}

Example: $V = \{a, b, c, d\}, E = \{(a, c) (c, b) (b, d)\}$

Edges

- The edge can be directed or undirected
- An undirected edge has its order of vertex pairs neglected.
- A directed edge has its order of vertex pairs to determine direction

Graphs versus multi-graphs

- Graphs have at most one edge between two vertices
- Multi-graphs allow duplicate edges

Subgraph

• A subgraph is a graph formed from a subset of the vertices of the graph

Paths

• A path is a sequence of vertices connected by edges

Example:

• A path can be directed or undirected

Cycle

• A cycle is a path that starts and stops at the same vertex

Cycle

• A cycle is a path that starts and stops at the same vertex

Connected/Disconnected

- A graph is connected if every pair of vertices are connected by at least one path
- Otherwise it is disconnected.

Additional Information

- Vertices and Edges can have properties or attributes attached to them.
- Weighted graphs have edges whose property is a cost

Small-World Graphs

- Small world graphs often appear in the real world and have very interesting properties.
 - Six degrees of Kevin Bacon
 - Large Scale Computer Networks
 - Brains

Brains

Example uses of graphs

- Path planning
- Layout routing
- Games and puzzles
- Many kinds of circuits
- Networked systems
- Optimization
- Constraint Satisfaction
- Logical Inference
- Probabilistic Inference
- on and on

Implementing Graphs

- There is no graph data structure in the current standard C++ library.
- It is easy to roll your own using existing standard library containers
- There is also the boost graph library (www.boost.org)

Graphs Representation

- Adjacency matrix
- Adjacency List
- Pointer based

Adjacency Matrix

- Given N vertices, the edges are indicated by an NxN matrix
- Undirected graphs have a symmetric matrix
- Weighted graphs have integer or real entries

	a	b	С	d
a	0	1	0	1
b	1	0	1	0
С	0	1	0	0
d	0	0	0	0

Adjacency List

- Given N vertices, the edges are indicated by a list of connected vertices for each vertex.
- The lists could be vectors, linked, or trees

Pointer based

- Given a pointer to a vertex, which contains pointers to its adjacent vertices.
- Graph must have a root and be connected.

Advantages/Disadvantages

	Advantages	Disadvantage
Adjacency Matrix	-Simple -Fast access to all edges -space efficient for dense graphs	-Space inefficient for sparse graphs
Adjacency List	-Space efficient for sparse graphs	-Space inefficient for dense graphs -Access to arbitrary edges slower
Pointer based	-Space efficient for sparse graphs	-Space inefficient for dense graphs -Access to arbitrary edges slower -Cannot represent disconnected graphs (easily)

Depth First Search

Breadth First Search

- BFS traversal
 - Visits all vertices adjacent to a vertex before going forward
- BFS is a first visited, first explored strategy
 - Contrast DFS as last visited, first explored

Visited Queue

Spanning Trees

- A tree is an undirected connected graph without cycles
- How to detect a cycle in an undirected graph
 - Connected undirected graph with n vertices must have at least n-1 edges
 - If it has exactly n-1 edges, it cannot contain a cycle
 - With more than n-1 edges, must contain at least one cycle

Spanning Tree (DFS)

Minimum Spanning Tree

Minimum Spanning Tree

Shortest path

$$Cost = 4 + 1 + 2$$

$$Cost = 4 + 1 + 2$$

Travel $0 \rightarrow 1$

- Cheaper $0 \rightarrow 4$ than directly $0 \rightarrow 1$
- $4 \rightarrow 2$ is my only option
- $2 \rightarrow 1$ is the cheapest option
 - And where I happen to want to go
 - Cost is 7 < 8, make a note of it?

Travel from $0 \rightarrow 3$

- Cheaper $0 \rightarrow 4$ than directly $0 \rightarrow 3$
- \bullet 4 \rightarrow 2
- 2\rightarrow1
 - No path to 3
- 23

What's next?

- Graphs are the natural starting point for a class on algorithms....
 - Euler's bridge problem (aka Euler circuit)
 - Can you be a vertex v, pass through every edge exactly once and end at v?

What's Next?

- Hamilton circuit
 - Begins at vertex v
 - Passes through every vertex exactly once
 - Terminates at v
- Variation is "traveling salesperson problem"
 - Visit every city on his route exactly once
 - Edge (road) has associated cost (mileage)
 - Goal is determine least expensive cycle
- This is NP Complete

What's next?

- Can I draw a graph that connects every utility to every house without crossing?
 - Try it! I bet you can't!
- A graph that does not cross is a planar graph

What's Next? Graph Coloring

Can I color a planar graph such that every adjacency doesn't have the same

- Let's say I want to partition my graph for parallel processing, now I can!
- Is this a good partitioning? Minimum number of colors? Best balance?

Exercise (no submission required)

- Carrano Chapter 20: Exs. 1, 4, 11, 14
- HW 8 due today
- HW 9, ICE 10, and P5 due on Tuesday
- Final Exam on Tuesday