Karanjot Singh

In [82]:

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv("haberman.csv")
df = pd.DataFrame(data)
print(df)
sns.pairplot(df,hue="Surv_status")
print(df.dtypes)
plt.show()
```

	Age	Op_Year	axil_nodes	Surv_status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
• •				• • •
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

```
[306 rows x 4 columns]
Age int64
Op_Year int64
axil_nodes int64
Surv_status int64
dtype: object
```


In [100]:

```
sns.FacetGrid(df,hue = 'Surv_status',size=5).map(sns.distplot,'Age').add_legend()
plt.title('Histogram of Age')
```


In [86]:

```
1 sns.FacetGrid(df,aspect=5)
2 sns.boxplot('Age','axil_nodes',data = df)
3 plt.show()
```


In [91]:

```
1 sns.FacetGrid(df,aspect=5)
2 sns.violinplot('Op_Year','axil_nodes',data = df)
3 #plt.show()
```

Out[91]:

<matplotlib.axes._subplots.AxesSubplot at 0x233b58abd08>

In [101]:

1 df.describe()

Out[101]:

	Age	Op_Year	axil_nodes	Surv_status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

In [102]:

```
1 df.median()
```

Out[102]:

Age 52.0 Op_Year 63.0 axil_nodes 1.0 Surv_status dtype: float64

In [103]:

```
1 df.var()
```

Out[103]:

Age 116.714583 Op_Year 10.558631 axil_nodes 51.691118 Surv_status 0.195275

dtype: float64

In [107]:

```
print('Percentile')
df.quantile(0.1,axis = 0)
```

Percentile

Out[107]:

Age 38.0 Op_Year 58.0 axil_nodes 0.0 Surv_status 1.0

Name: 0.1, dtype: float64

In [105]:

```
1 df.quantile([.1,.25,.5,.75],axis=0)
```

Out[105]:

	Age	Op_Year	axil_nodes	Surv_status
0.10	38.00	58.00	0.0	1.0
0.25	44.00	60.00	0.0	1.0
0.50	52.00	63.00	1.0	1.0
0.75	60.75	65.75	4.0	2.0