Functional Latent Block Model

for functional data co-clustering

François-Xavier JOLLOIS Université Paris Descartes, France

joint work with C. Bouveyron (Univ. Nice), L. Bozzi (EDF) & J. Jacques (Univ. Lyon)

The data

- electricity consumption measured by Linky meters for EDF
- 27 millions of customers / 730 daily consumption over 2 years

Figure: Sample of 20 consumptions for 20 days

The data

- ▶ large data matrix $\mathbf{x} = (x_{ij}(t))_{1 \le i \le n, 1 \le j \le p}$
- there is a need to summarize this data flow
- ▶ both n and p are (very) large
- ⇒ need for clustering of row (customers) and column (days of consumption):

need for co-clustering of functional data

Co-clustering?

Simultaneous clustering of rows (individuals) and column (features)

legend: color level = $\frac{1}{T} \int_T x_{ij}(t)$

Electricity consumption = functional data

- $x_{ij}(t)$ are not totally known but only observed at a finite number of times points $x_{ij}(t_1), x_{ij}(t_2), \dots$
- need to reconstruct the functional nature of data
- ⇒ basis expansion assumption:

$$x_{ij}(t) = \sum_{h=1}^{m} a_{ijh}\phi_h(t), \quad t \in [0, T].$$

where $(\phi_h(t))_h$: spline, Fourier, wavelets...

a_{ijh} estimated by least square smoothing

Overview

The fLBM model

Inference with SEM-Gibbs algorithm

Numerical experiments

Application on EDF consumption curves

Plan

The fLBM model

Inference with SEM-Gibbs algorithm

Numerical experiments

Application on EDF consumption curves

Latent Block Model (LBM)

Assumptions

- ▶ row $\mathbf{z} = (z_{ik})_{i,k}$ and column $\mathbf{w} = (w_{h\ell})_{h,\ell}$ partitions are independent
- ▶ conditionally on (\mathbf{z}, \mathbf{w}) , x_{ij} are independent and generated by a block-specific distribution:

Latent Block Model

Latent Block Model (LBM)

 $n \times d$ random variables **x** are assumed to be independent once the row **z** = $(z_{ik})_{i,k}$ and column **w** = $(w_{h\ell})_{h,\ell}$ partitions are fixed:

$$p(\mathbf{x}; \theta) = \sum_{\mathbf{z} \in V} \sum_{\mathbf{w} \in W} p(\mathbf{z}; \theta) p(\mathbf{w}; \theta) p(\mathbf{x}|\mathbf{z}, \mathbf{w}; \theta)$$

with

- V (W) set of possible partitions of rows (column) into K (L) groups,
- $p(\mathbf{z}; \theta) = \prod_{ik} \alpha_k^{z_{ik}}$ and $p(\mathbf{w}; \theta) = \prod_{h\ell} \beta_\ell^{w_{h\ell}}$
- $ightharpoonup p(\mathbf{x}|\mathbf{z},\mathbf{w};\theta) = \prod_{iik\ell} p(\mathbf{a}_{ij};\theta_{k\ell})^{v_{ik}w_{h\ell}}$
- $\theta = (\alpha_k, \beta_\ell, \theta_{k\ell})$

The functional Latent Block Model (fLBM)

 $p(\mathbf{a}_{ij}; \theta_{k\ell})$ is the funHDDC distribution (Bouveyron & Jacques, ADAC, 2011):

$$\boldsymbol{a}_{ij}|(z_{ik}=1,w_{j\ell}=1) \sim \mathcal{N}(U_{k\ell}\mu_{k\ell},U_{k\ell}\Sigma_{k\ell}U_{k\ell}^t + \Xi_{k\ell})$$

where

- ▶ $U_{k\ell}$ projects the \mathbf{a}_{ij} into a low dimensional subspace for block $k\ell$
- $(\mu_{k\ell}, \Sigma_{k\ell})$: (mean, variance) into the low-dimensional subspace,

$$Q_{k\ell}^t(U_{k\ell}\Sigma_{k\ell}U_{k\ell}^t+\Xi_{k\ell})Q_{k\ell}=\left(egin{array}{c|cccc} s_{k\ell 1} & 0 & & & & & \\ & \ddots & & & & & & \\ 0 & & s_{k\ell d} & & & & & \\ & & & & & b_{k\ell} & 0 & & \\ & & & & & \ddots & & \\ & & & & & 0 & b_{k\ell} & \end{array}
ight)
ight\} \quad (m-d)$$

with $s_{k\ell j} > b_{k\ell}$ for all j = 1, ..., d.

Plan

The fLBM mode

Inference with SEM-Gibbs algorithm

Numerical experiments

Application on EDF consumption curves

LBM inference

LBM inference

▶ The aim is to estimate θ by maximizing the observed log-likelihood

$$\ell(\boldsymbol{\theta}; \boldsymbol{x}) = \sum_{\boldsymbol{v}, \boldsymbol{w}} \ln p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{w}; \boldsymbol{\theta}).$$

where functional data **x** are represented by their coefficient **a**, and **v** and **w** are missing row and column partitions

- ▶ EM is not computationally tractable
- > variational or stochastic version should be used

SEM-Gibbs algorithm for LBM inference

- init : $\theta^{(0)}$, $\mathbf{w}^{(0)}$
- ▶ SE step
 - generate the row and column parititon $(\mathbf{v}^{(q+1)}, \mathbf{w}^{(q+1)})$ using a Gibbs sampling
- M step
 - ▶ Estimate θ , conditionally on $\mathbf{v}^{(q+1)}$, $\mathbf{w}^{(q+1)}$ obtained at the SE step.

SEM-Gibbs: SE step

1. generate the row partition $z_i^{(q+1)} = (z_{i1}^{(q+1)}, \dots, z_{iK}^{(q+1)}) | \mathbf{a}, \mathbf{w}^{(q)}$ for all $1 \le i \le n$ according to $z_i^{(q+1)} \sim \mathcal{M}(1, \tilde{z}_{i1}, \dots, \tilde{z}_{iK})$ with for $1 \le k \le K$

$$\tilde{z}_{ik} = p(z_{ik} = 1 | \mathbf{a}, \mathbf{w}^{(q)}; \theta^{(q)}) = \frac{\alpha_k^{(q)} f_k(\mathbf{a}_i | \mathbf{w}^{(q)}; \theta^{(q)})}{\sum_{k'} \alpha_{k'}^{(q)} f_{k'}(\mathbf{a}_i | \mathbf{w}^{(q)}; \theta^{(q)})}$$

where $\mathbf{a}_i = (\mathbf{a}_{ij})_j$ and $f_k(\mathbf{a}_i|\mathbf{w}^{(q)};\theta^{(q)}) = \prod_{j\ell} p(\mathbf{a}_{ij};\theta^{(q)}_{k\ell})^{\mathbf{w}^{(q)}_{j\ell}}$,

2. generate the column partition $w_j^{(q+1)} = (w_{j1}^{(q+1)}, \ldots, w_{jL}^{(q+1)}) | \mathbf{a}, \mathbf{z}^{(q+1)}$ for all $1 \leq j \leq p$ according to $w_j^{(q+1)} \sim \mathcal{M}(1, \tilde{w}_{j1}, \ldots, \tilde{z}_{jL})$ with for $1 \leq \ell \leq L$

$$\tilde{w}_{j\ell} = p(w_{j\ell} = 1 | \mathbf{a}, \mathbf{z}^{(q+1)}; \theta^{(q)}) = \frac{\beta_{\ell}^{(q)} f_{\ell}(\mathbf{a}_{j} | \mathbf{z}^{(q+1)}; \theta^{(q)})}{\sum_{\ell'} \beta_{\ell'}^{(q)} f_{\ell'}(\mathbf{a}_{j} | \mathbf{z}^{(q+1)}; \theta^{(q)})}$$

where
$$f_{\ell}(\mathbf{x}_{j}|\mathbf{z}^{(q+1)};\theta^{(q)}) = \prod_{ik} p(\mathbf{a}_{ij};\theta_{k\ell}^{(q)})^{z_{ik}^{(q+1)}}$$
.

SEM-Gibbs: M step

same M step than for FunHDDC (Bouveyron & Jacques, ADAC, 2011):

$$\qquad \qquad \quad \ \ \, \boldsymbol{\alpha}_{k}^{(q+1)} = \tfrac{1}{n} \sum_{i} \boldsymbol{z}_{ik}^{(q+1)} \text{ and } \boldsymbol{\beta}_{\ell}^{(q+1)} = \tfrac{1}{p} \sum_{j} \boldsymbol{w}_{j\ell}^{(q+1)},$$

$$\mu_{k\ell}^{(q+1)} = \frac{1}{n_{k\ell}^{(q+1)}} \sum_{i} \sum_{j} \mathbf{a}_{ij}^{z_{ik}^{(q+1)} w_{j\ell}^{(q+1)}} \text{ with } n_{k\ell}^{(q+1)} = \sum_{i} \sum_{j} z_{ik}^{(q+1)} w_{j\ell}^{(q+1)},$$

- ▶ for the model parameters $s_{k\ell j}$, $b_{k\ell}$ and $Q_{k\ell j}$:
 - d first columns of Q_k : first eigenvectors of $\Omega^{\frac{1}{2}} C_{k\ell}^{(q)} \Omega^{\frac{1}{2}}$,
 - $s_{k\ell j}, j=1,...,d$: largest eigenvalues of $\Omega^{\frac{1}{2}}C_{k\ell}^{(q)}\Omega^{\frac{1}{2}},$
 - b_k : trace $(\Omega^{\frac{1}{2}}C_{k\ell}^{(q)}\Omega^{\frac{1}{2}}) \sum_{j=1}^d s_{k\ell j}^{(q)},$

where $C_{k\ell}^{(q)}$ is the sample covariance matrix of block $k\ell$:

$$C_{k\ell}^{(q)} = \frac{1}{n_{k\ell}^{(q)}} \sum_{i=1}^{n} \sum_{i=1}^{p} z_{ik}^{(q+1)} \omega_{j\ell}^{(q+1)} (\mathbf{a}_{ij} - \mu_{k\ell}^{(q)})^{t} (\mathbf{a}_{ij} - \mu_{k\ell}^{(q)}),$$

and
$$\Omega = (\omega_{jk})_{1 \le j,k \le m}$$
 with $\omega_{jk} = \int_0^T \phi_j(t)\phi_k(t)dt$.

LBM inference

SEM-Gibbs algorithm for LBM inference

- $ightharpoonup \hat{ heta}$ is obtained by mean of the sample distribution (after a burn in period)
- final bipartition $(\hat{\mathbf{v}}, \hat{\mathbf{w}})$ estimated by MAP conditionally on $\hat{\theta}$

LBM inference

Choosing *K* and *L*

We use the ICL-BIC criterion developed in (Lomet 2012) for continuous data co-clustering.

Thus, K and L can be chosen by maximizing

$$ICL-BIC(K, L) = \log p(\mathbf{x}, \hat{\mathbf{v}}, \hat{\mathbf{w}}; \hat{\theta}) - \frac{K-1}{2} \log n - \frac{L-1}{2} \log p - \frac{KL\nu}{2} \log(np)$$

where $\nu = md + d + 1$ is the number of continuous parameters per block and

$$\log p(\mathbf{x}, \hat{\mathbf{v}}, \hat{\mathbf{w}}; \hat{\theta}) = \prod_{ik} \hat{z}_{ik} \log \alpha_k + \prod_{j\ell} \hat{\mathbf{w}}_{j\ell} \log \beta_\ell + \sum_{ijk\ell} \hat{z}_{ik} \hat{\mathbf{w}}_{j\ell} \log p(\mathbf{a}_{ij}; \hat{\theta}_{k\ell}).$$

Plan

The fLBM model

Inference with SEM-Gibbs algorithm

Numerical experiments

Application on EDF consumption curves

Simulation setting

• $f_1(t), ..., f_4(t)$ are defined as block means

all curves are sampled as follows:

$$X_{ij}(t)|Z_{ik}W_{jl}=1\sim \mathcal{N}(\mu_{kl}(t),\sigma^2),$$

where
$$\sigma=0.3$$
, $\mu_{11}=\mu_{21}=\mu_{33}=\mu_{42}=f_1$, $\mu_{12}=\mu_{22}=\mu_{31}=f_2$, $\mu_{13}=\mu_{32}=f_3$ and $\mu_{23}=\mu_{41}=\mu_{43}=f_4$.

▶ noise is added by adding τ % of curves from other blocks.

3 scenarios of simulation

Table: Parameter values for the three simulation scenarios.

Scenario	Α	В	С				
n (nb. of rows)	100						
p (nb. of columns)	100						
T (length of curves)	30						
K (row groups nb.)	3	4	4				
L (col. groups nb.)	3	3	3				
α (row group prop.)	(0.333,, 0.333)	(0.2, 0.4, 0.1, 0.3)	(0.2, 0.4, 0.1, 0.3)				
β (col. group prop.)	(0.333,, 0.333)	(0.4, 0.3, 0.3)	(0.4, 0.3, 0.3)				
au (simulation noise)	0	0.1	0.3				

ICL performance for choosing (K, L)

Scenario A ($K = 3, L = 3$)					Scenario B ($K = 4, L = 3$)								
$K \setminus L$	1	2	3	4	5	6	$K \setminus L$	1	2	3	4	5	6
1	0	0	0	0	0	0	1	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0
3	0	0	100	0	0	0	3	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	70	0	1	0
5	0	0	0	0	0	0	5	0	0	26	1	0	0
6	0	0	0	0	0	0	6	0	0	2	0	0	0

Scenario C ($K = 4, L = 3$)							
$K \setminus Q$	1	2	3	4	5	6	
1	0	0	0	0	0	0	
2	0	0	17	0	0	0	
3	0	0	77	0	0	0	
4	0	0	5	0	0	0	
5	0	0	1	0	0	0	
6	0	0	0	0	0	0	

Co-clustering results for scenario B

Co-clustering results

Figure: Adjusted Rand index values for the different initialization procedures on the three simulation scenarios.

Plan

The fLBM mode

Inference with SEM-Gibbs algorithm

Numerical experiments

Application on EDF consumption curves

The data

- electricity consumption measured by Linky meters for EDF
- 27 millions of customers / 730 daily consumption over 2 years

Figure: Sample of 20 consumptions for 20 days

ICL values (choice of (K, L))

Clustering of columns (dates)

Average consumption curves of each block

Geographical clusters distributions

Figure: Proportions on households per French departments in each of the 10 clusters found by FunLBM.

Conclusions

Results

- real data application needs development of a co-clustering algorithm for functional data
- co-clustering algorithm has been developed based on a functional Latent Block model
- numerical experiments show the efficiency of SEM-Gibbs for model estimation as well as ICL-BIC for selecting of the number of blocks
- Results on EDF data are significant

References

- Bouveyron, C. and Jacques, J. (2011), Model-based Clustering of Time Series in Group-specific Functional Subspaces, Advances in Data Analysis and Classification, 5[4], 281-300.
- ▶ Govaert, G. and Nadif, M. (2013). Co-Clustering. Wiley-ISTE.

