

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian
Prof. Sven Bossuyt
Zinan Li (Course assistant)

Learning objectives for this Lecture

Knowledge and Understanding

Knowledge on graphical trade-off methods and penalty functions

Skills and Abilities

Ability to select systematically when **design objectives conflict**

Values and Attitudes

Appreciation of the value of compromise in engineering design

Resources

- Text: "Materials: engineering, science, processing and design" 4th edition by M.F. Ashby, H.R. Shercliff and D. Cebon, Butterworth Heinemann, Oxford, 2011, Chapters 7-8.
- Text: "Materials and the Environment", 2nd Edition by M.F. Ashby, Butterworth-Heinemann, Oxford 2012, UK. Chapters 9-10

Outline

- The selection strategy when 2+ objectives they conflict
- Trade-off methods
- Penalty functions and exchange constants
- Examples

The selection strategy: materials

Design requirements:

expressed as

Constraints and

Objectives

Able to be molded

Water and UV resistant

Stiff enough

Strong enough

As cheap as possible

As light as possible

Comparison engine

- Screening
- Ranking
- Documentation

Final selection

Data:

Material attributes

Process attributes

Documentation

Density

Price

Modulus

Strength

Durability

Process compatibility

More.....

Multiple constraints and objectives

Design requirements set **constraints** – criteria for screening

objectives – criteria for optimising

Typical constraints

The material must be

- Electrically conducting
- Optically transparent.....

And meet target values of

- Stiffness
- Strength.....

And be able to be

- Die cast
- Welded

Dealing with multiple constraints is straightforward

```
Typical objectives

Minimize

Mass m (satellite components)

Volume (mobile phones)

Energy consumption (fridges)

Carbon footprint (cars)

Embodied energy (materials)

Cost C (everything)
```

Dealing with multiple objectives needs **trade-off methods**

Take, as example, simultaneously minimizing mass m and cost C

Example: Conflicts between multiple objectives

Multi-objective optimization: Trade-off

- "Solution": a candidate that meets the constraints, but not necessarily optimum by either objective
- Plot solutions.
 (Convention: express objectives to be minimized)
- "Dominated solution": one that is definitely non-optimal
- "Non-dominated solution": one that is optimal by one metric (but not usually by both)

• "Trade-off surface": the surface on which the non-dominated solutions lie (Pareto Front). In our case a 2-dimensional curve

Finding a compromise: Penalty function

Define locally-linear **Penalty function Z**

$$Z = C + \alpha m$$

Seek solution with smallest Z

Make trade-off plot

Plot on it contours of Z

$$\mathsf{m} = -\frac{1}{\alpha}\mathsf{C} + \frac{1}{\alpha}\mathsf{Z}$$

Lines of Z have slope -1/ α (needs linear scales)

Read off solution with lowest Z

Example of graphical solution

α determines a location on the trade-off curve and reflects priorities (price per kilo)

Example: materials for transport systems

Choice of material depends on system

Mass, in transport systems, means fuel
 Life cost = Initial cost, C + Fuel cost over life, scaling with mass m
 E/kg
 Penalty function Z = C + α m

Must establish exchange constant, α

α

Example: materials for auto bumpers

Function

Absorb impact, transmit load to energy-absorbing units or supports

Objectives

Minimize mass and material cost

Criteria

Mass m per unit bending strength

Cost C per unit bending strength

Beam in bending Index to minimize:

$$m = \frac{\rho}{\sigma_{\mathsf{V}}^{2/3}}$$

$$C = \frac{C_m \rho}{\sigma_{\mathsf{v}}^{2/3}}$$

 $C_m = Material cost / kg$

 ρ = Density, kg/m³

 σ_y = Yield strength, MPa

α = exchange constant , €/kg

Penalty function

$$Z = C + \alpha m = \frac{\rho}{\sigma_{v}^{2/3}} (C_{m} + \alpha)$$

Bar chart selection using the penalty function

Bubble chart selection using penalty function

Strong bumper, minimum weight and cost

Minimize weight \implies $M_2 = \frac{\rho}{\sigma_y^{2/3}}$

Minimize cost \Rightarrow $M_1 = \frac{C_m \rho}{\sigma_y^{2/3}}$

Penalty function $Z = M_1 + \alpha M_2$

$$\alpha = 1 \in /kg$$

Low alloy steels, Carbon steels,

$$\alpha = 10 \in /kg$$

Aluminum alloys, Magnesium alloys

Carbon-fiber reinforced composites

