

DESCRIPTION OF COURSE CSE 472

PART A: GENERAL INFORMATION

1 Course Title: MACHINE LEARNING SESSIONAL

2 Type of Course: SESSIONAL

3 Offered to: DEPARTMENT OF CSE

4 **Pre-requisite Course(s)**: NONE

PART B: Course Details

1. Course Content (As approved by the Academic Council)

Sessional based on CSE 471 (Machine learning)

2. Course Objectives

The students are expected to:

- i. Understand the basic concepts of machine learning
- ii. Apply different machine learning algorithms and models to different tasks
- iii. Develop machine learning models for different applications

3. Knowledge required

Technical

• Introductory knowledge of probability, statistics, and linear algebra is recommended. Knowledge of any high-level programming language, such as Python, may be an added advantage for the learners

Analytical

• None

4. Course Outcomes (COs)

CO No.	CO Statement After undergoing this course, students should be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
CO1	Understand the basic concepts of machine learning.	- (C2	Lecture and Demonstration	Take-home and in-class assignments, Projects, Presentation, Viva-voce
CO2	Apply different machine learning algorithms and models to different tasks	PO1, PO5	C3	Lecture, Demonstration and hands-on	Take-home and in-class assignments, Projects, Presentation, Viva-voce
CO3	Develop machine learning models for different applications	P03, P04, P06, P07, P08	C6	Lecture and Demonstration	Take-home and in-class assignments, Projects, Presentation, Viva-voce

*Program Outcomes (POs)

PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e): Modern tool usage; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): Life-long learning.

**Domains

C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

5. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

									U					-	U		<u> </u>			
COs	K1	K2	К3	K4	K5	К6	K7	K8	P1	P2	Р3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO1													11							
CO2												C								$\sqrt{}$
CO3											$\sqrt{}$									$\sqrt{}$
CO4											V									

K-Knowledge Profile:

K1: A systematic, theory-based understanding of the natural sciences applicable to the discipline; **K2:** Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline; **K3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline; **K4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline; **K5:** Knowledge that supports engineering design in a practice area; **K6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline; **K7:**Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability; **K8:** Engagement with selected knowledge in the research literature of the discipline

P-Range of Complex Engineering Problem Solving:

P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6, or K8, which allows a fundamentals-based, first principles analytical approach; P2: Involve wide-ranging or conflicting technical, engineering, and other issues; P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models; P4: Involve infrequently encountered issues; P5: Are outside problems encompassed by standards and codes of practice for professional engineering; P6: Involve diverse groups of stakeholders with widely varying needs; P7: Are high-level problems including many component parts or sub-problems

A-Range of Complex Engineering Activities:

A1: Involve the use of diverse resources (and for this purpose, resources include people, money, equipment, materials, information and technologies); A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues; A3: Involve creative use of engineering principles and research-based knowledge in novel ways; A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation; A5: Can extend beyond previous experiences by applying principles-based approaches

6. Lecture/ Activity Plan

Week	Sessional Topics	Corresponding CO(s)		
Week 1	Assignment 1 Declaration [Monday]: Data Preprocessing	CO1		
	Assignment 1 Submission [by Sunday before 10:00 PM]			
Week 2	Assignment 1 Evaluation	CO1		
	Assignment 2 Declaration: Classification with Ensemble [Feature Matrix Data]			
Week 3	Assignment 1 Evaluation	CO2		
week 5	Assignment 2 Submission [by Friday before 10:00 PM]	GUZ		
	Assignment 2 Evaluation			
Week 4	Assignment 3 Declaration: Function Approximation with Neural Network and	CO2		
	Backpropagation [Image Data]			
	Term Break			
Week 5	Assignment 2 Evaluation	CO2, CO3		
Week 6	Project Group Formation and Proposal Finalization	CO3		
	Project Proposal Presentation			
Week 7	Assignment 3 Submission [by Friday before 10:00 PM]	CO2		
vveek /	Assignment 4 Declaration: Clustering with EM Algorithm and Dimensionality Reduction with	C02		
	PCA [Text Data]			
Week 8	Assignment 3 Evaluation	CO2		
Week 9	Assignment 3 Evaluation	CO2		
week 9	Assignment 4 Submission [by Friday before 10:00 PM]			
Week 10	Assignment 4 Evaluation	CO2, CO3		
Week 11	Assignment 4 Evaluation	CO2		
Wool, 12	Project Checkpoint (with respective supervisors)	CO3		
Week 12	Project Submission [by Friday before 10:00 PM]			
Week 13	Final Project Presentation	CO3		

7. Assessment Strategy

- Class Attendance: Class attendance will be recorded in every class.
- · Assignments and Projects: There will be four assignments and one project.

8. Distribution of Marks (Tentative)

Attendance: 10 % Assignments: 60% Projects: 30% Total: 100%

9. Textbook/Reference

- a. Artificial Intelligence: A Modern Approach (4th Edition) by Stuart Russel and Peter Norvig
- b. Dive into Deep Learning (https://d2l.ai/)