2计算机网络第二章物理层

• 2.2奈式准则与香农定理

- 影响失真程度的因素
 - 码元传输速率
 - 信号传输距离
 - 噪声干扰
 - 传输媒体质量
- 码间串批: 加手段收到的信号波形失去了码元之间清晰界限的现象
- 奈式准则:
 - 在理想的低通 (无噪声、带宽受限)条件下,为了避免码间串扰,
 - 极限码元传输速率是 2W Baud, W是信道带宽,单位是Hz;
 - 极限数据传输率: 2Wlog2V(b/s)
 - 在任何信道中,码元传输的速率是有上限的,传输速率超过此上限,就会出现严重的码间串扰的问题,使接收端对码元的识别成为不可能
 - 信道的频道带宽越多, (即能通过的信号高频分量越多), 就可以用更高的速率 进行码元的有效传输。
 - 奈式准则给出了码元传输速率的限制,但没有对信息传输给出限制
 - 由于码元的传输速率受奈式准则的制约,所以要提高数据传输速率,就必须设法 使每个码元能够携带更多个比特的信息量,这就需要采取多元制的调制方法

•

例. 在无噪声的情况下,若某通信链路的带宽为3kHz,采用4个相位,每个相位具有4种振幅的QAM调制技术,则该通信链路的最大数据传输率是多少?

信号有4 x 4=16种变化 最大数据传输率=2 x 3k x4=24kb/s

香农定理:

- 噪声:
 - 噪声存在于所有的电子设备和通信信道中。由于噪声随机产生,他的瞬间值有时会很大,因此噪声会使接收端对马原的判决产生错误。
 - 但是噪声的影响是相对的, 若信号较强, 那么噪声影响相对较小;
 - 因此, 信噪比就很重要
- 信噪比
 - 信噪比=信号的平均功率/噪声的平均功率, 常记为S/N, 单位dB分贝
 - 信噪比(dB) =10log10(S/N)
- 香农定理:在带宽受限且有噪声的信道中,为了不产生误差,信息的传输速率有上限

• 信道的极限信息传输速率C=W log 2(1+S/N)

- 香农公式表明:
 - 信道的带宽或信道中的信噪比越大,则信息的极限传输速率就越高
 - 对一定的传输带宽和一定的信噪比,信息传输速率的上限就确定了
 - 只要信息的传输速率低于信道的极限传输速率。就一定能找到某种方法来实现无差错的传输

•

"Nice"和"香浓"

奈氏准则 内忧

带宽受限无噪声条件下,为了避免码间串扰,码元传输速率的上限 2W Baud。

理想低通信道下的极限数据传输率=2Wlog₂V

要想提高数据率,就要提高带宽/采用更好的编码技术。

香农定理 外患

带宽受限有噪声条件下的信息传输速率。

信道的极限数据传输速率=Wlog₂(1+S/N)

要想提高数据率,就要提高带宽/信噪比。

题目:二进制信号在信噪比为127:1的4kHz信道上传输,最大的数据速率可达到多少?

Nice: 2×4000× log₂2=8000b/s

香浓: 4000×log₂(1+127)=28000b/s

2.3编码与调制

- 信道:
 - 一般用来表示某一个方向传送信息的媒体,因此一条通信电路往往包含一条发送 信道和一条接收信道
 - 分类
 - 按传输的信号分

• 模拟信道: 传送模拟信号

• 数字信道: 传送数字信号

- 按传输介质分
 - 无线信道
 - 有线信道
- 信道上传送的信号:
 - 基带信号:

- 将数字0,1用两种不同的电压表示,再送到数字信道上去传输(基带传输)。
- 宽带信号:
 - 把基带信号进行调制后形成的频分复用模拟信号,再传送到模拟信道上去传输(宽带传输)
- 传输距离较近:使用基带传输方式(近距离衰减小,从而信号内容不易发生变化)
- 传输距离较远:使用宽带传输方式(远距离衰减大,即使信号变化大也能最后过滤出来基带信号)

• 编码与调制:

- 数字信号
 - 也叫离散信号, 取值是离散的
 - 代表不同离散数值的基本波形就称为码元,一小横杠
- 模拟信号
 - 也叫连续信号

• 常用编码方式: 数字数据->数字信号

模拟数据编码为数字信号

计算机内部处理的是二进制数据,处理的都是**数字音频**,所以需要将模拟音频通过采样、量化转换成有限个数字表 示的离散序列 (即实现音频数字化)

最典型的例子就是对音频信号进行编码的脉码调制 (PCM) 在计算机应用中,能够达到最高保真水平的就是 PCM编码、被广泛用于素材保存及音乐欣赏、CD、DVD以及我们常见的WAV文件中均有应用。它主要包括三步: 抽样、量化、编码。

1.抽样:对模拟信号周期性扫描,把时间上连续的信号变成时间上离散的信号。 为了使所得的离散信号能无失真地代表被抽样的模拟数据。要使用采样

定理进行采样: $f_{\mathbb{R}}$ $f_{\mathbb{R}}$ f整数,这就把连续的电平幅值转换为离散的数字量。

3.编码:把量化的结果转换为与之对应的二进制编码。

- 不归零: 正电平代表1, 负电平代表0; 没有自同步能力-不能从信号波形本身 中提取信号时钟的频率
- 归零:正脉冲代表1,负脉冲代表0
- 曼彻斯特: 位周期中心向上跳变代表0, 位周期向下跳变代表为1, 也可以反 过来定义;每一个码元都被调成两个电平,所以数据传输速率只有调制速率 的1/2
- 差分曼彻斯特:在每一位的中心处始终都有跳变,为开始边界跳变代表0, 位开始边界没有跳变代表1;
- 调制:数字数据->模拟信号
 - 数字数据调制技术在发送端将数字信号转换为模拟信号。而在接收端将模拟 信号还原为数字信号;分别对应调制解调器的调制和解调过程

调幅+调相(QAM) 某通信链路的波特率是1200Baud, 采用4个相 位,每个相位有4种振幅的QAM调制技术,则 该链路的信息传输速率是多少?

2.4 电路交换、报文交换、分组交换

- 电路交换
 - 整个报文的比特流连续的从源点直达终点,好像再一个管道中传送

- 必须经过建立连接(占用通信资源)-->通话(一直占用通信资源)-->释放连接 (归还通信资源)这三个步骤的交换方式称为电路交换
- 面向连接 两两连接 n(n-1)/2 后来用交换机
- 从通信资源分配来讲,交换就是按照某种方式动态地分配传输线路的资源。
- 其重要特点是,在通话的全部时间内,通话的两个用户始终占用端到端的通信资源。
- 线路的传输效率往往很低。

•

电路交换的优缺点

电路交换优点	电路交换缺点
传输时延小	建立连接时间长
数据顺序传送,无失序问题	线路独占,即使通信线路空闲,也不能供其他用户使 用,信道使用效率低。
实时性强,双方一旦建立物理通路,便可以实时通信,适用于交互式会话类通信。	灵活性差,双方连接通路中的任何一点出了故障,必 须重新拨号建立新连接,不适应突发性通信。
全双工通信, 没有冲突, 通信双方有不同的信道, 不会争用物理信道	无数据存储能力,难以平滑通信量。
适用于模拟信号和数字信号	电路交换时,数据直达,不同类型、不同规格、不同 速率的终端很难相互进行通信
控制简单,电路的交换设备及控制较简单	无法发现与纠正传输差错,难以在通信过程中进行差 错控制。

• 报文交换

- 整个报文先传送到相邻节点,全部存储下来后查找转发表,转发到下一个结点。
- 原理:无需再两个站点之间建立一条专用通路,其数据传输的单位是报文,传送过程采用存储转发方式

报文交换的优缺点

报文交换优点	报文交换缺点	
无需建立连接, 无建立连接时延, 用户可随时发送报 文。	实时性差,不适合传送实时或交互式业务的数据。数据进入交换结点后要经历存储转发过程,从而引起转发时延。	
动态分配线路, 动态选择报文通过的最佳路径, 可以平滑通信量。	只适用于数字信号。	
提高线路可靠性,某条传输路径发生故障,可重新选 择另一条路径传输。	由于报文长度没有限制,而每个中间结点都要完整地接收传来的整个报文,当输出线路不空闲时,还可能	
提高线路利用率,通信双方在不同的时间一段一段地部分占有这条物理通道,多个报文可共享信道。	要存储几个完整报文等待转发,要求网络中每个结点有较大的缓冲区。为了降低成本,减少结点的缓冲存储器的容量。有时要把等待转发的报文存在磁盘上。	
提供多目标服务:一个报文可同时发往多个目的地址。	进一步增加了传送时延。	
在存储转发中容易实现代码转换和速率匹配,甚至收 发双方可以不同时处于可用状态。这样就便于类型、 规格和速度不同的计算机之间进行通信。		

分组交换

- 存储转发
- 单个分组传送到相邻结点,存储下来后查找转发表,转发到下一个结点

分组交换的优缺点

分组交换优点	分组交换缺点
无建立时延,无需为通信双方预先建立一条专用通信 线路,用户可随时发送分组。	尽管分组交换比报文交换的传输时延少,但仍存在存储转发时延,而且其结点交换机必须具有更强的处理 能力。
线路利用率高,通信双方在不同的时间一段一段地部分占有这条物理通道,多个分组可共享信道。	每个分组都要加控制信息,一定程度上降低了通信效率,增加了处理的时间。
简化了存储管理。因为分组的长度固定,相应的缓冲 区的大小也固定,在交换结点中存储器的管理通常被 简化为对缓冲区的管理,相对比较容易。	当分组交换采用数据报服务时,可能出现失序、丢失或重复分组,分组到达目的结点时,要对分组按编号进行排序等工作,增加了麻烦。若采用虚电路服务,虽无失序问题,但有呼叫建立、数据传输和虚电路释放三个过程。
加速传输,后一个分组的存储可以和前一个分组的转发并行操作;传输一个分组比一份报文所需缓冲区小,减少等待发送时间。	
减少出错几率和重发数据量,提高可靠性,减少传输时延。	
分组短小,适用于计算机之间突发式数据通信。	

干道老研/CSKΔOVΔN COM

- 分为两类:
 - 数据报方式
 - 虚电路方式
- 若要连续的传送大量数据,且重传时事件远大于连接建立事件,则电路交换的传输 速率较快。
- 报文交换和分组交换不需要预先分配传输带宽,在传送突发数据时可提高整个网络的信道利用率,由于一个分组的长度往往远远小于整个报文的长度,因此分组交换比报文交换的时延小,同时也具有良好的灵活性。

数据交换方式的选择

- 1.传送数据量大,且传送时间远大于呼叫时,选择电路交换。电路交换传输时延最小。
- 2.当端到端的通路有很多段的链路组成时, 采用分组交换传送数据较为合适。
- 3.从信道利用率上看,报文交换和分组交换优于电路交换,其中分组交换比报文交换的时延小,尤其适合于计算机之间的突发式的数据通信。

• 2.5 数据报与虚电路

- 分组交换
 - 虚电路
 - 数据报
- 数据报:

数据报方式

- 1.源主机(A) 将报文分成多个分组,依次发送到直接相连的结点(A)。
- 2.结点A收到分组后,对每个分组**差错检测和路由选择**,不同分组的下一跳结点可能不同。
- 3.结点C收到分组P1后,对分组P1进行**差错检测**,若正确则向A发送确认信息,A收到C确认后则丢弃分组P1副本。
- 4.所有分组到家辽(主机B)!

数据报方式的特点

- 1.**数据报方式**为网络层提供<mark>无连接服务</mark>。发送方可随时发送分组,网络中的结点可随时接收分组。
- 2.同一报文的不同分组达到目的结点时可能发生乱序、重复与丢失。

无连接服务:不事先为分组 的传输确定传输路径,每个 分组独立确定传输路径,不 同分组传输路径可能不同。

- 3.每个分组在传输过程中都必须携带源地址和目的地址,以及分组号。
- 4.分组在交换结点存储转发时,需要排队等候处理,这会带来一定的时延。当通过交换结点的通信量较大或网络发生拥塞时,这种时延会大大增加,交换结点还可根据情况丢弃部分分组。
- 5.网络具有冗余路径,当某一交换结点或一段链路出现故障时,可相应地更新转发表,寻找另一条路径转发分组,对故障的适应能力强,适用于突发性通信,不适于长报文、会话式通信。

• 虚电路:

虚电路方式

虚电路将数据报方式和电路交换方式结合,以发挥两者优点。

虚电路:一条源主机到目的主机类似于电路的路径(**逻辑连接**),路径上所有结点都要维持这条虚电路的建立,都维持一张虚电路表,每一项记录了一个打开的虚电路的信息。

源主机发送"呼叫请求"分组并收到"呼叫应答"分组后才算建立连接。

每个分组携带**虚电** 路号,分组号、检 验和等控制信息。 源主机发送"释放请求" 分组以拆除虚电路。

虚电路方式的特点

1.**虚电路方式**为网络层提供<mark>连接服务</mark>。源节点与目的结点之间建立一条逻辑连接,而非实际物理连接。

2.一次通信的所有分组都通过虚电路顺序传送,分组不需携带源地址、目的 地址等信息,包含**虚电路号**,相对数据报方式开销小,同一报文的不同分 组到达目的结点时不会乱序、重复或丢失。

3.分组通过虚电路上的每个节点时 4.每个节点可能与多个节点之间建 两个数据端点的流量进行控制,两

连接服务:首先为分组的传输 确定传输路径(建立连接), 然后沿该路径(连接)传输系 列分组,系列分组传输路径相 同,传输结束后拆除连接。

自选择。

勺两个端系统之间的数据传输,可以对 不同的进程服务。

5.致命弱点:当网络中的某个结点或某条链路出故障而彻底失效时,则所有经过该结点或该链路的虚电路将遭到破坏

数据报&虚电路

	数据报服务	虚电路服务
连接的建立	不要	必须有
目的地址	每个分组都有完整的目的地址	仅在建立连接阶段使用, 之后每个分组使用
		长度较短的虚电路号
10 da 14 da	每个分组独立地进行	属于同一条虚电路的分组按照同一路由转发
路由选择	路由选择和转发	
分组顺序	不保证分组的有序到达	保证分组的有序到达
可靠性	不保证可靠通信, 可靠性由用户主机来保证	可靠性由网络保证
对网络故障的适应性	出故障的结点丢失分组, 其他分组路径选择发生变	所有经过故障结点的虚电路均不能正常工作
	化,可正常传输	
差错处理和流量控制	由用户主机进行流量控制,不保证数据报的可靠性	可由分组交换网负责, 也可由用户主机负责

2.6传输介质

- 也称传输媒体/传输媒介,是数据传输系统在发送设备和接收设备之间的物理通路。
- 传输媒体不是物理层,在物理层下面
- 分为两类:
 - 导向型传输介质:
 - 电磁波被引导沿着固体媒介(铜线/光纤)传播
 - 双绞线:
 - 古老常用
 - 两根相互绝缘的铜导线并排放到一起,然后使用规则的方法绞合到一起;绞合可减少对相邻导线的电磁干扰
 - 对于模拟传输: 距离太长要用放大器将衰减的信号放大到合适的数值
 - 对于数字传输: 要用中继器对是真的数字信号进行整形
 - 为进一步提高抗电磁干扰能力,可以在双绞线的外面再加上一个由金属 丝编织成的屏蔽层,这就是屏蔽双绞线

同轴电缆

- 由导体铜质芯线,绝缘层、网状编织的外导体屏蔽层以及保护塑料外层 所组成。
- 由于外导体屏蔽层的作用,同轴电缆具有良好的抗干扰性,被广泛用于 传输速率较高的数据

光纤

特点

光纤通信就是利用光导纤维(简称光纤)传递<mark>光脉冲</mark>来进行通信。有光脉冲表示1,无光脉冲表示0。而可见光的频率大约是10⁸MHz,因此光纤通信系统的**带宽远远大于**目前其他各种传输媒体的带宽。

光纤在发送端有光源,可以采用发光二极管或半导体激光器,它们在电脉冲作用下能产生出光脉冲;在接收端用光电二极管做成光检测器,在检测到光脉冲时可还原出电脉冲。

光纤主要由<mark>纤芯(实心的!)和包层</mark>构成,光波通过纤芯进行传导,包层较纤芯有较低的折射率。当光线从高折射率的介质射向低折射率的介质时,其折射角将大于入射角。因此,如果入射角足够大,就会出现**全反射**,即光线碰到包层时候就会折射回纤芯、这个过程不断重复,光也就沿着光纤传输下去。

- 1传输损耗小,中继距离长,对远距离传输特别经济
- 2抗雷电和电磁干扰性能好
- 无串音干扰,保密性好,也不易被窃听或截取数据
- 体积小,重量轻

• 非导向型传输介质:

- 自由空间、介质可以是空气,真空,海水
- 无线电波、微波、红外通信、激光通信

• 2.7 物理层接口的特性

- 物理层解决如何在连接各种计算机的传输媒体上传输数据比特率,而不是指具体的 传输媒体
- 物理层的主要任务,确定与传输媒体接口相关的一些特性,即定义标准
- 机械特性:
 - 规定物理连接时所采用的规格、接口形状、引线数目、引脚数量和排列情况
- 电气特性:
 - 线路上信号的电压范围、抗阻匹配、传输速率和距离限制等
- 功能特性:
 - 指明某条线上穿线的某一电平表示何种意义
- 过程特性
 - 指明对于不同功能的各种可能事件的出现顺序

• 2.8中继器再生数字信号

功能:对信号进行再生和还原,对衰减的信号进行放大,保持与原数据相同,以增加信号传输的距离,延长网络的长度

诞生原因:由于存在损耗,在线路上传输的信号功率会逐渐衰减,衰减到一定程度时将造成信号失真,因此会导致接收错误。

中继器的功能: 对信号进行<mark>再生和还原</mark>,对衰减的信号进行放大,保持与原数据相同,以增加信号传输的距离,延长 网络的长度。

中继器的两端:两端的网络部分是网段,而不是子网,适用于完全相同的两类网络的互连,且两个网段速率要相同。 中继器只将任何电缆段上的数据发送到另一段电缆上,它仅作用于信号的电气部分,并不管数据中是 否有错误数据或不适于网段的数据。

两端可连相同媒体,也可连不同媒体。

中继器两端的网段一定要是同一个协议。(中继器不会存储转发, 傻)

5-4-3规则:网络标准中都对信号的延迟范围作了具体的规定,因而中继器只能在规定的范围内进行,否则会网络故障。

• 2.9集线器 再生放大信号

功能:对信号进行再生放大转发,对衰减的信号进行放大,接着转发到其他所有处于工作状态的端口上,以增加信号传输的距离,延长网络的长度。不具备信号的定向传送能力,是一个共享式设备

以上内容整理于 幕布文档