Clasificación y determinación de Redshift de espectros astrofísicos mediante Redes Neronales Convolucionales

Jairo Andres Saavedra Alfonso Física Astroandes CoCo 2019: Cosmología en Colombia Universidad de los Andes 2019

Introducción

- La exploración activa de espectros astrofisicos require de presición para determinar clasificación espectral y determianción de Redshift del objeto observado.
- REDMOSTER Software (eBOSS).
- Clasificación a ojo por expertos.

Motivación

 Automatización del proceso de clasificación espectral para futuros Surveys.

Motivación

- Automatización del proceso de clasificación espectral para futuros Surveys.
- Caracterización de espectros de cuasares para estudios cosmologicos.

Motivación

- Automatización del proceso de clasificación espectral para futuros Surveys.
- Caracterización de espectros de cuasares para estudios cosmologicos.
- Predicción de Redshit a partir de espectros.

Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

Clasificación espectral.

Objetivo

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

- Clasificación espectral.
- Determinar Redshift de los objetos observados.

Datos

- SDSS Data Release 12
- Baryon Oscillations Spectroscopic Survey (BOSS)
- Estrellas → 207905 espectros
- Galaxias → 20699 espectros
- Cuásares → 270534 espectros
- Cuásares BAL → 29652 espectros

Datos

Fig 1: Espetro de (A) Estrellas, (B) Galaxias, (C) QSO y (D) QSO-BAL

RNC 1.0 Clasificación Espectral

Fig 5: Primera estructura tentativa de RNC para 80/20 de Entreno/Test

RNC 2.0 Clasificación Espectral

Fig 6: Segunda estructura tentativa de RNC para 80/20 de Entreno/Test

Matriz de confusión

Fig 4: Matriz de confusión para Entrenamiento

Matriz de confusión Clasificación Espectral

Fig 7: Matriz de confución RNC 1.0

Fig 8: Matriz de confución RNC 2.0

Conclusiones

- Es posible realizar una clasificación espectral mediante la implementacion de Redes Neuronales Convolucionales.
- Las capas convolucionales mejoran los resultados para clasificación multi-clase de imagenes 1-dimensión (Espectros).