Analyt. geom. v rovině 1 – cvičení 2:

1. Jsou dány vektory \vec{a} , \vec{b} , \vec{c} , \vec{d} , \vec{u} a velikost vektoru \vec{v} .

$$\vec{a} = \big(3\,;-4\big), \vec{b} = \big(-2\,;3\big), \vec{c} = \big(-10\,;15\big), \vec{d} = \big(-12\,;16\big), \vec{u} = \big(-2\,;u_2\big), |\vec{v}| = 3\sqrt{13} \; .$$

- a) Mezi \vec{a} , \vec{b} , \vec{c} , \vec{d} najděte dvojice rovnoběžných vektorů.
- b) Určete chybějící souřadnice \vec{u} tak, aby $\vec{u} \parallel \vec{a}$.
- c) Určete \vec{v} tak, aby měl danou velikost a $\vec{v} \parallel \vec{b}$.
- 2. Na souřadnicové ose y určete bod A tak, aby měl od bodu B = [-6; -5] vzdálenost 10.
- 3. Vypočítejte skalární součin daných vektorů a rozhodněte, zda jsou na sebe kolmé: $\vec{u} = (2; -1), \vec{v} = (3; 6)$
- 4. Určete vektor \vec{u} tak, aby měl velikost 10 a přítom byl kolmý k vektoru $\vec{v} = (-1, 2)$.
- 5. Určete velikosti vnitřních úhlů a stran trojúhelníka ABC: A = [-2; 2], B = [-1; -3], C = [4; 0]
- 6. V trojúhelníku ABC jsou dány vrcholy A = [7;4], B = [-3;3] a jeho těžiště T = [1; -2]. Určete souřadnice vrcholu C.
- 7. Určete vektor \vec{v} , který je kolmý k vektoru $\vec{u} = (5;12)$ a má velikost $|\vec{v}| = 32,5$.
- 8. Určete délku těžnice t_b v trojúhelníku ABC, je-li: A = [-3;1], B = [2;-1], C = [1;3].
- 9. Jsou dány body $A = [7;1], B = [-3;5], C = [4;-6], D = [2;d_2]$. Určete druhou souřadnici bodu D tak, aby vektory \overrightarrow{AB} \overrightarrow{aCD} byly na sebe kolmé.
- 10. Určete souřadnice vrcholů C a D rovnoběžníku ABCD, jestliže S je průsečík jeho úhlopříček a platí: A = [7; -21], B = [15; -30], S = [20; -10].
- 11. Určete souřadnice vrcholu C lichoběžníku ABCD, když velikosti základen jsou ve vztahu $|AB| = \frac{5}{2} |CD|$ a souřadnice daných vrcholů jsou $A = \begin{bmatrix} 4; -12 \end{bmatrix}, B = \begin{bmatrix} 24; -7 \end{bmatrix}$ a $D = \begin{bmatrix} 8; 10 \end{bmatrix}$.
- 12. Je dán trojúhelník KLM, K[3; 2], L[-1; 4], M[0; -3]. Určete velikost těžnice t_M . Určete souřadnice těžiště trojúhelníku. Rozhodněte, zda je tupoúhlý/pravoúhlý.