Algebra Assignment 02

KOUAGOU N'Dah Jean

November 25, 2018

Section A

In each of the following questions, let's write the answer in the block.

1. The order of ab is:

$$|ab| = 2$$

2

Let $G = \langle a \rangle$ and |a| = 24.

Then the list of all the generators for a subgroup of order 8 is :

$$a^3, a^9, a^{15}, a^{21}$$

3

In the group $\mathbb{Z}_{12} \times \mathbb{Z}_8$, the order of (4,2) is:

$$|(4,2)| = 12$$

4

The elements of $\mathbb{Z}_2 \times \mathbb{Z}_4$ are :

$$(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)$$

Let's verify if the group is cyclic.

Since 2 and 4 are not relatively prime, we conclude that $\mathbb{Z}_2 \times \mathbb{Z}_4$ is **not cyclic.**

Section B 1.

In $\mathbb{R} \oplus \mathbb{R}$ under componentwise, addition, let $H = \{(x, 3x) | x \in \mathbb{R}\}$

i) Let's prove that H is a subgroup of $\mathbb{R} \oplus \mathbb{R}$ and describe it geometrically. First of all, H is a subset of $\mathbb{R} \oplus \mathbb{R}$.

• We show that $\mathbf{H} \neq \phi$

We have for x = 0,

$$(0, 3 \times 0) = (0, 0 + 0 + 0)$$

= $(0, 0)$ because $(\mathbb{R}, +)$ is a group and $0 \in \mathbb{R}$
 $\Rightarrow (0, 0) \in H$
 $\Rightarrow H \neq \phi$

• Let $a, b \in H$

We need to show that $a \oplus b^{-1} \in H$.

There exists $(x,y) \in \mathbb{R} \times \mathbb{R}$ such that $a = (x,3x), \ b = (y,3y)$

The inverse of b is (-y, -3y).

Thus we have:

$$a \oplus b^{-1} = (x, 3x) \oplus (-y, -3y)$$

$$= (x + (-y), 3x + (-3y))$$

$$= (x - y, x + x + x + ((-y) + (-y) + (-y))$$

$$= (x - y, (x + (-y)) + (x + (-y)) + (x + (-y))) \text{ using}$$
the commutativity and the associativity of $(\mathbb{R}, +)$

$$= (x - y, (x - y) + (x - y) + (x - y))$$

$$= (x - y, 3(x - y)) \in H \text{ because } x - y \in \mathbb{R}$$

$$\Rightarrow a \oplus b^{-1} \in H$$

Therefore H is a subgroup of $\mathbb{R} \oplus \mathbb{R}$

• Geometric description

H is the straight line defined by : y = 3x. We can also say it is the graph of the function :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 3x$$

ii

Let's show that (2,5) + H is a straight line passing through the point (2,5) and parallel to the line y = 3x. We have :

$$\begin{split} (2,5) + H &= \{(2,5) + (x,3x) | x \in \mathbb{R}\} \\ &= \{(x+2,3x+5) | x \in \mathbb{R}\} \\ &= \{(t,3(t-2)+5) | t \in \mathbb{R}\} \text{ using the change of variables } t = x-2 \\ &= \{(t,3t-1) | t \in \mathbb{R}\} \text{ : this is a line which rate of change is 3, then parallel to the line } y = 3x. \end{split}$$

Moreover, t = 2 gives the point (2, 5).

We deduce that the set (2,5) + H is a straight line passing through the point (2,5) and parallel to the line y = 3x

2. H and K are subgroups of a group G and |H| and |K| are relatively prime. Let's show that $H \cap K = \{e\}$ where e is the identity of the group G.

(First method) Let's show first that $H \cap K$ is a common subgroup of H and K.

- We have $e \in H$ and $e \in K$, thus $e \in H \cap K$ and we can write $H \cap K \neq \phi$.
- Now, let $x, y \in H \cap K$. y has an inverse y^{-1} and we have $y^{-1} \in K$ and $y^{-1} \in H$ because H and K are groups. Then, :

$$xy^{-1} \in H$$
 and $xy^{-1} \in K$ since H and K are groups $\Longrightarrow xy^{-1} \in H \cap K$

As a result, $H \cap K$ is both a subgroup of H and a subgroup of K. It follows that the order of $H \cap K$ divides both |H| and |K|. And using the fact that |H| and |K| are relatively prime we get $|H \cap K| = 1$ and **conclude that** $H \cap K = \{e\}$.

(Second method) H and K are subgroups of the group G, then $e \in H$ and $e \in K$, that is, $e \in H \cap K$, implying that $\{e\} \subseteq H \cap K$. Let $x \in H \cap K$. Then, $x \in H$ and $x \in K$. Thus |x| divides both |H| and |K| and using the fact that |H| and |K| are relatively prime, we get $|x| = 1 \Rightarrow x = e$. As a result, $H \cap K \subseteq \{e\}$ and we conclude that $H \cap K = \{e\}$

3. Let p, q be prime numbers and G a group of order pq.

Let's show that any proper subgroup of G is cyclic.

Let H be a proper subgroup of G. Then $H \neq G$.

If $H = \{e\}$, then |H| is cyclic.

If $H \neq \{e\}$, provided that the order |H| of H divides the order |G| of G and since $|H| \neq pq$, then we have |H| = p or |H| = q. p and q are prime numbers, thus H is cyclic.

Conclusion: Every proper subgroup of G is cyclic.

4.

Let's find all the left cosets of the subgroup $\{\rho_0, \mu_2\}$ of D_4 . The index of $\{\rho_0, \mu_2\}$ in D_4 is $\frac{|D_4|}{|H|} = \frac{8}{2} = 4$. Then $\{\rho_0, \mu_2\}$ has 4 cosets. These cosets are the following:

$$\{\rho_0, \mu_2\}, \{\rho_1, \delta_2\}, \{\rho_2, \mu_1\}, \{\rho_3, \delta_1\}.$$