Лабораторная работа 1.1.6 Изучение электронного осциллографа

Михаил Колтаков

19 октября 2020 г.

Цель работы

Ознакомление с устройством и работой осциллографа и изучение его основных характеристик

Оборудование

Осциллограф, генераторы электрических сигналов, соединительные кабели

Теория к работе

Осциллограф - регистрирующий прибор, в котором исследуемое напряжение преобразуется в видимый на экране график изменения напряжения во времени. С его помощью можно исследовать изменение во времени любых величин, которые могут быть преобразованы в электрические сигналы.

Главной частью осциллографа является электронно-лучевая трубка

Трубка представляет собой откачанную до высокого вакуума колбу, в которой расположены: подогреватель катода 1, катод 2, модулятор 3(электрод, управляющий яркостью изображения), первый (фокусирующий) анод 4, второй (ускоряющий) анод 5, горизонтально и вертикально отклоняющие пластины 6 и 7, третий (ускоряющий) анод 8 и экран 9.

Электронный пучок формируется системой электродов, называемой "электронной пушкой": катод с нагревателем, модулятор, фокусирующий и ускоряющий аноды. Форма, размеры и расположение электродов подобраны таким образом, чтобы разгонять электроны и фокусировать пучок на

экране. Экраном осциллографа является покрытая флюоресцирующим веществом стенка трубки, на которую падает электронный пучок. Между пластинами в отклоняющей паре создаётся поле, которое изменяет траекторию полёта электрона в нужном направлении.

Из-за того, что пластины имеют длину и поле между ними имеет конечную величину, осциллограф может корректно "рисовать" только сигналы ограниченной частоты, в нашем случае эта частота примерно равна 10^8 Γ ц.

На практике, однако, максимальная частота ограничена характеристиками усилителя сигнала внутри осциллографа, например, диапазоном значений, в которых коэффициент усиления примерно постоянен(вне этого диапазона коэффициент резко падает). Для учебного осциллографа диапазон частот, в котором он корректно работает примерно $1-10^6$ Гц Осциллограф также имеет две характеристики: АЧХ (амплитудно-частотная характеристика) и ФЧХ (фазо-частотная характеристика). Для их определения нудно ввести величину $\Delta \Phi_y(f)$ - разность между фазой входного сигнала U_0 и фазой колебаний перемещения луча у. Если на вход осциллографа подаётся синусоидальное напряжение амплитудой U_0 и частотой f, то для перемещения луча на экране можно записать уравнение $y = y_0(f) \sin(2\pi f t + \Delta \Phi_y(f))$, где $y_0(f)$ - амплитуда перемещения луча на частоте f. Зная всё это, для канала вертикального отклонения АЧХ можно выразить как $K_y(f) = \frac{y_0(f)}{U_0}$, а ФЧХ как $\Delta \Phi_y(f)$. Как правило, АЧХ остаётся постоянной в диапазоне частот от f_{min} до f_{max} , которые определяют

Как правило, АЧХ остаётся постоянной в диапазоне частот от f_{min} до f_{max} , которые определяют из условий

$$\frac{K_y(f_{min})}{K_{y,max}} = \frac{K_y(f_{max})}{K_{y,max}} = \frac{1}{\sqrt{2}}$$

Непостоянство AЧX и ФЧX во всём диапазоне приводят, например, к искажению формы импульсного сигнала высокой частоты при его преобразовании в канале вертикального отклонения осциллографа.

При сложении двух взаимно перпендикулярных колебаний с равными или кратными частотами, поданных на входы осциллографа, луч описывает неподвижные замкнутые кривые, которы называются фигурами Лиссажу. При небольшом нарушении кратности частот фигура начинает двигаться, а при большом картинка становится размытой. Отношение частот на входах равно отношению числа точек касания фигурой горизонтальной прямой к числу точек касания вертикальной прямой.

Ход работы

- 1. Подготовим осциллограф к работе.
- 2. Получим на экране стабильную картину синусоидального сигнала, подаваемого со звукового генератора
- а) Подключим звуковой генератор ко входу $\mathrm{CH2}(\mathrm{Y})$ и установим на частоту $f \approx 1 \,\mathrm{k\Gamma u}$
- б) Отрегулируем масштаб по вертикали так, чтобы синусоида занимала большую часть экрана. Если это необходимо для установления стационарной картины, переключим режим синхронизации.
- в) Измерим длину периода в делениях по шкале X и соотнесём их с положением ручки TIME/DIV, тем самым найдём период колебаний на экране осциллографа. Оценим погрешность измерения частоты таким образом δf и сравним полученное значение со значением на экране 3Γ .
- г)Проделаем это же ещё несколько раз и результаты занесём в таблицу.

$f_{3\Gamma}$, Гц	Т, дел	TIME/DIV, дел ⁻¹	Т, с	f, Гц	δf , Гц	$f - f_{3\Gamma}$, Гц
1000	10,0	0,1 мс	10^{-3}	1000	22	0
2000	10,2	$0.05 { m mc}$	$0,51 \cdot 10^{-3}$	1960	41	-40
4999	10,0	0,02 мс	$0, 2 \cdot 10^{-3}$	5000	89	1
9953	10,0	0,01 мс	$0, 1 \cdot 10^{-3}$	10000	196	47
20096	9,8	5 мкс	$49 \cdot 10^{-6}$	20408	350	312

- 3. Найдём отношение максимальной амплитуды, которую может выдавать наш генератор к минимальной. Измерения будем проводить на частоте f=1к Γ ц
- а) Измерим минимальное и максимальное напряжения: $U_{min} = 30 \text{мB}, U_{max} = 55 \text{B}, \text{ относительная}$

- погрешность при этом $\frac{\delta U}{U}\approx 0,01$. б) По формуле $\beta_{21}=20lg(\frac{U_{max}}{U_{min}})$ найдём отношение предельных напряжений в децибеллах. $\beta\approx 65$ дБ. 4.Измерим АЧХ осциллографа при разных частотах входного сигнала.
- а) На частоте входного сигнала в 1 кГц настроем осциллограф так, чтобы размах синусоиды был равен 4 делениям.
- б) Изменяя частоту звукового генератора во всё доступном диапазоне будет фиксировать K(f) при открытом и закрытом режимах входа. Результаты занесём в таблицу.
- в) Построим графики $K_{AC}(f)$ и $K_{DC}(f)$ Как видно, пр малых частотах они различаются, а в остальном - совпадают.

f, Гц	$5 \cdot 10^{-2}$	10^{-1}	0, 5	1	5	7	10	10^{2}	10^{3}	10^{6}	$1,6\cdot 10^7$	$2 \cdot 10^7$	$2,6\cdot 10^7$
lg f	-1,3	-1,0	-0,3	0,0	0,7	0,8	1,0	2,0	3,0	6,0	7,2	7,3	7,4
$2U_{AC}$, дел	0,00	0,08	0,20	1,20	2,40	3,40	4,00	4,00	4,00	4,00	3,62	2,30	0,036
$K_{AC} = \frac{U_{AC}}{U_0}$	0,00	0,02	0.05	0,3	0,6	0,85	1,0	1,0	1,0	1,0	0,91	0,58	0,144
$2U_{DC}$, дел	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	3,62	2,30	0,36
$K_{DC} = \frac{U_{DC}}{U_0}$	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,91	0,58	0,144

- 5. Изучим влияние АЧХ на искажение сигнала. а) Установим звуковой генератор в режим меандров и на частоту 1 кГц.
- б) Будем менять частоту во всём диапазоне частот и зарисуем получившиеся на экране осциллографа картинки.

20-100 Гц

1 - 10 кГц

0,1 - 1 МГц

в) Так как меандр создаётся комбинацией большого числа синусоид разных амплитуд, синхронизированных не менее, чем до десятой гармоники, которые можно разложить в ряд Фурье таким образом:

$$y(x) = c_1 \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)ft)}{2k-1}$$

Как видно, коэффициенты при гармониках более высоких частот меньше, чем при более низких, поэтому гармоники низких частот задают общую форму волны ("начала" и "концы" каждого "прямоугольника"), а гармоники высоких частот "выравнивают" горизонтальные участки прямой и т. к. АЧХ у осциллографа меняется в зависимости от частоты входящего сигнала, то на высоких частотах гармоники с высокими частотами обращаются в 0 и волна начинает больше напоминать гармонику. Особенно хорошо это заметно в начале каждого "прямоугольника т. к. тогда все гармоники имеют одинаковую фазу. А на низких частотах гармоники низких частот начинают влиять меньше, т. к для них АЧХ падает и поэтому концы "прямоугольников" начинают быть не на той же высоте, что и их начала.

- 6. Измерим ФЧХ осциллографа
- а) Подадим с помощью разветвителя одну и ту же синусоиду на оба входа осциллографа. С помощью ручек VOLTS/DIV добьёмся того, чтобы на экране была видна линия, наклонённая к горизонтали на угол 45 градусов.
- б) Изменяя частоту во всём доступном диапазоне генератора, найдём те места, где прямая будет превращаться в эллипс. Измерим отношение длины отрезка, соединяющего точки пересечения эллипса с осью ординат к амплитуде эллипса(разности ординат самой высокой и самой низкой его точек). Занесём результаты в таблицу

f, Гц	10	10^{2}	10^{3}	10^{4}	10^{5}	$5 \cdot 10^5$	10^{6}
lg f	1,0	2	3,0	4,0	5,0	5,7	6,0
$ 2y_0 $, дел	0	0	0	0	0,3	1,0	2,1
$ 2A_y $, дел	4,0	4,0	4,0	4,0	4,0	4,0	4,0
$arcsin \frac{y_0}{A_y} $, градусы	0	0	0	0	4,47	14,48	31,67
$ \Delta\phi $, градусы	0	0	0	0	4,47	14,48	31,67

в) Построим график $\Delta\phi(lgf)$ в логарифмическом масштабе.

7. Пронаблюдаем фигуры Лиссажу, подавая на сходы осциллографа синусоиды с разными частотами.

Вывод

Мы ознакомились с устройством и принципами работы осциллографа, изучили, как он ведёт себя в разных критических случаях и исследовали фигуры Лиссажу с помощью него.

а) Пронаблюдаем кривые при отношениях поданных частот 1:1, 2:1, 3:1 и 3:2. В них наблюдаются предполагаемые количества(как отношение частот сигналов) точек касания воображаемых вертикальной и горизонтальной прямых. Вот так выглядят эти фигуры(картинка после вывода)

