Evan T. R. Rosenman[†], Guillaume Basse, Mike Baiocchi, Art B. Owen, Francesca Dominici, and Luke Miratrix

† Assistant Professor, Claremont McKenna College

September 16, 2023

Randomized Controlled Trials (RCT)

- Researcher controls assignment to treatment
 - Relatively few assumptions for unbiasedness
 - Often costly, small
- "Unbiased but imprecise"

Observational Databases

- Treatment assignments observed, but not controlled

 - Large, often inexpensive.
- "Precise, but biased"

We consider how to...

- design shrinkage estimators to merge observational and **RCT data** \rightarrow two paradigms!
- improve experimental design using shrinkers?

Outline

- Assumptions and Loss Function
- - Positing Shrinkage Structure
 - Using a Hierarchical Model
- Application to the WHI

trai Noie or Stratification

- Work in a stratified setting, with K strata.
 - Characterize heterogeneity in treatment effect
 - Arise from subject matter expertise, modern ML method, etc.
- Each unit i in RCT + ODB has associated stratum indicator $S_i \in \{1, ..., K\}$
- (Unobserved) Conditional avg. stratum treatment effects:

$$\tau_{rk} = \mathbb{E}_R \left(Y_i(1) - Y_i(0) \mid S_i = k \right)$$

$$\tau_{ok} = \mathbb{E}_O\left(Y_i(1) - Y_i(0) \mid S_i = k\right)$$

Central Role of Stratification

- Work in a stratified setting, with K strata.
 - Characterize heterogeneity in treatment effect
 - Arise from subject matter expertise, modern ML method, etc.
- Each unit i in RCT + ODB has associated stratum indicator $S_i \in \{1, ..., K\}$
- (Unobserved) Conditional avg. stratum treatment effects:

$$au_{rk} = \mathbb{E}_R (Y_i(1) - Y_i(0) \mid S_i = k)$$

 $au_{ok} = \mathbb{E}_O (Y_i(1) - Y_i(0) \mid S_i = k)$

Transportability of CATEs: For k = 1, ..., K, treatment effects $\tau_{ok} = \tau_{rk}$, and we call their common value τ_k . Define $\boldsymbol{\tau} = (\tau_1, \dots, \tau_{\kappa})^{\mathsf{T}}$.

0000

Collect our estimators into vectors:

$$\hat{\boldsymbol{\tau}}_{\boldsymbol{r}} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\boldsymbol{\tau}}_{\boldsymbol{o}} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Application to the WHI

Assumptions and Loss Function

Collect our estimators into vectors:

$$\hat{\tau}_{r} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\tau}_{o} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Application to the WHI

Under mild conditions, we have

$$\hat{ au}_{ extbf{r}} \sim extbf{N}\left(au, \Sigma_{ extbf{r}}
ight), ~~ \hat{ au}_{ extbf{o}} \sim \left(au + oldsymbol{\xi}, \Sigma_{ extbf{o}}
ight)$$

for bias ξ and covariance matrices Σ_r and Σ_o

• ξ cannot be estimated from obsidata alone

Assumptions and Loss Function

Setup

Collect our estimators into vectors:

$$\hat{\boldsymbol{\tau}}_{\boldsymbol{r}} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\boldsymbol{\tau}}_{\boldsymbol{o}} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Under mild conditions, we have

$$\hat{ au}_{m{r}} \sim \mathcal{N}\left(m{ au}, m{\Sigma}_{m{r}}
ight), ~~\hat{ au}_{m{o}} \sim \left(m{ au} + m{\xi}, m{\Sigma}_{m{o}}
ight)$$

for bias ξ and covariance matrices Σ_r and Σ_o

- ξ cannot be estimated from obsidata alone
- Seek to design shrinkage estimator $\hat{\tau} = f(\hat{\tau}_r, \hat{\tau}_o)$ to minimize expected squared error loss,

$$\mathcal{L}(\hat{m{ au}},m{ au}) = \sum_k (\hat{ au}_k - au_k)^2$$
.

Experimental Design

Useful Prior Work

- Shrinkage estimation: a rich literature stretching back to multivariate normal mean estimation work of Stein (1956)
- Green and Strawderman (1991) and Green et al. (2005) propose estimators for shrinkage between ...
 - a normal, unbiased estimator (like $\hat{\tau}_r$), and
 - a biased estimator (like $\hat{\tau}_{o}$)

Outline

- Assumptions and Loss Function
- 2 Inference
 - Positing Shrinkage Structure
 - Using a Hierarchical Model
- Application to the WHI
- 4 Experimental Design

Outline

- Assumptions and Loss Functio
- 2 Inference
 - Positing Shrinkage Structure
 - Using a Hierarchical Model
- Application to the WHI
- 4 Experimental Design

A Recipe for Estimators

Posit a structure for the shrinkage estimator

$$f(\hat{ au}_r, \hat{ au}_o) = \hat{ au}_r - g(\hat{ au}_r, \hat{ au}_o)$$

Application to the WHI

for any differentiable g satisfying $E(||\boldsymbol{g}||^2) < \infty$.

A Recipe for Estimators

Assumptions and Loss Function

Posit a structure for the shrinkage estimator

$$f(\hat{ au}_{m{r}},\hat{ au}_{m{o}}) = \hat{ au}_{m{r}} - m{g}(\hat{ au}_{m{r}},\hat{ au}_{m{o}})$$

for any differentiable g satisfying $E(||\boldsymbol{g}||^2) < \infty$.

Pollowing common precedent (Li et al., 1985; Xie et al., 2012), minimize unbiased risk estimate,

$$\mathsf{URE} = \frac{1}{K} \left(\mathsf{Tr} \left(\boldsymbol{\Sigma_r} \right) + \sum_{k=1}^K g_k^2(\hat{\boldsymbol{\tau_r}}, \hat{\boldsymbol{\tau_o}}) - 2\sigma_{rk}^2 \frac{\partial g_k(\hat{\boldsymbol{\tau_r}}, \hat{\boldsymbol{\tau_o}})}{\hat{\boldsymbol{\tau}_{rk}}} \right)$$

over hyperparameters to obtain the estimator.

Experimental Design

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

Application to the WHI

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Then, URE evaluates to

$$\mathsf{URE}(\lambda) = \mathsf{Tr}\left(\Sigma_r\right) + \lambda^2 \left(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}}\right)^\mathsf{T} \left(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}}\right) - 2\lambda \mathsf{Tr}(\Sigma_r)$$

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

Application to the WHI

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Then, URE evaluates to

$$\mathsf{URE}(\lambda) = \mathsf{Tr}\left(\Sigma_r\right) + \lambda^2 \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^\mathsf{T} \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right) - 2\lambda \mathsf{Tr}(\Sigma_r)$$

which has minimizer in λ ,

$$\lambda_1^{\mathsf{URE}} = \frac{\mathsf{Tr}(\Sigma_r)}{(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})^\mathsf{T} (\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})} \,.$$

Useful Properties of λ_1^{URE} (I)

Define

$$oldsymbol{\kappa}_1 = \hat{oldsymbol{ au_r}} - \lambda_1^{\mathsf{URE}} \left(\hat{oldsymbol{ au_r}} - \hat{oldsymbol{ au_o}}
ight)$$

Lemma (κ_1 Risk Guarantee)

Suppose $4 \max_k \sigma_{rk}^2 < \sum_k \sigma_{rk}^2$. Then κ_1 has risk strictly less than that of $\hat{\tau}_r$.

- Requires a dimension of at least K = 5.
- May require substantially larger K if high heteroscedasticity

Useful Properties of λ_1^{URE} (II)

Its positive part analogue,

$$oldsymbol{\kappa}_{1+} = \hat{oldsymbol{ au}_{oldsymbol{r}}} - \left\{ \lambda_1^{\mathsf{URE}}
ight\}_{[0,1]} \left(\hat{oldsymbol{ au}_{oldsymbol{r}}} - \hat{oldsymbol{ au_o}}
ight) \, ,$$

Application to the WHI

where

$${u}_{[0,1]} = \min(\max(u,0),1),$$

satisfies the following notion of optimality:

Useful Properties of λ_1^{URE} (III)

Theorem $(\kappa_{1+}$ Asymptotic Risk)

Suppose

$$\begin{split} &\limsup_{K \to \infty} \frac{1}{K} \sum_k \sigma_{rk}^2 \xi_k^2 < \infty \,, \quad \limsup_{K \to \infty} \frac{1}{K} \sum_k \sigma_{rk}^2 \sigma_{ok}^2 < \infty \,, \\ &\text{and} \quad \limsup_{K \to \infty} \frac{1}{K} \sum_k \sigma_{rk}^4 < \infty \,. \end{split}$$

Then, in the limit $K \to \infty$, κ_{1+} has the lowest risk among all estimators with a shared shrinkage factor across components.

Case 2: Variance-Weighted Shrinkage Factor

This procedure is general purpose. For example, may instead want an estimator that shrinks each component proportionally to σ_{rl}^2 .

Easy to solve for

$$\kappa_2 = \kappa(\lambda_2^{\mathsf{URE}}, \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}, \hat{\boldsymbol{\tau}}_{\boldsymbol{o}}) = \hat{\boldsymbol{\tau}}_{\boldsymbol{r}} - \frac{\mathsf{Tr}(\Sigma_r^2)\Sigma_r}{(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}})^\mathsf{T}\Sigma_r^2(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}})} (\hat{\boldsymbol{\tau}}_{\boldsymbol{r}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{o}})$$

and its positive-part improvement,

$$\kappa_{2+} = \hat{\tau}_{\textit{r}} - \left\{ \frac{\text{Tr}(\Sigma_{\textit{r}}^2) \Sigma_{\textit{r}}}{(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})^{\mathsf{T}} \Sigma_{\textit{r}}^2 (\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})} \right\}_{[0,1]} (\hat{\tau}_{\textit{r}} - \hat{\tau}_{\textit{o}}) \; .$$

- Assumptions and Loss Function
- 2 Inference
 - Positing Shrinkage Structure
 - Using a Hierarchical Model
- Application to the WHI
- 4 Experimental Design

Alternative Approach: Hierarchical Model

- In prior section, functional form was imposed by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Alternative Approach: Hierarchical Model

- In prior section, functional form was **imposed** by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Simple model generalizing one introduced in Green and Strawderman (1991):

$$\begin{split} \boldsymbol{\tau} &\sim \mathcal{N}\left(\mathbf{0}, \eta^2 \boldsymbol{I}_K\right), \\ \boldsymbol{\xi} &\sim \mathcal{N}\left(\mathbf{0}, \gamma^2 \boldsymbol{I}_K\right), \end{split}$$

Alternative Approach: Hierarchical Model

- In prior section, functional form was **imposed** by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Simple model generalizing one introduced in Green and Strawderman (1991):

$$oldsymbol{ au} \sim \mathcal{N}\left(0, \eta^{2} oldsymbol{I}_{K}
ight), \ oldsymbol{ au} \sim \mathcal{N}\left(0, \gamma^{2} oldsymbol{I}_{K}
ight), \ \hat{oldsymbol{ au}}_{oldsymbol{r}} \mid oldsymbol{ au} \sim \mathcal{N}\left(oldsymbol{ au}, oldsymbol{\Sigma}_{r}\right), ext{ and} \ oldsymbol{\hat{ au}}_{oldsymbol{o}} \mid oldsymbol{ au}, oldsymbol{\xi} \sim \mathcal{N}\left(oldsymbol{ au} + oldsymbol{\xi}, oldsymbol{\Sigma}_{o}\right). \end{cases}$$

for **unknown** hyperparameters η^2 and γ^2 , but **known** covariance matrices Σ_r, Σ_o .

Estimator Form

Estimator can be constructed as the **posterior mean** of au under this model, which evaluates to

$$\psi_{k}(\eta^{2}, \gamma^{2}) = \underbrace{\left(\frac{\eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}{\sigma_{rk}^{2} \left(\gamma^{2} + \sigma_{ok}^{2}\right) + \eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}\right)}_{\mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \text{ aggregate shrinkage toward zero}} \times \underbrace{\left(\frac{\left(\gamma^{2} + \sigma_{ok}^{2}\right)}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}}}_{\mathbf{b}_{k}(\eta^{2}, \gamma^{2}): \atop \mathbf{data-driven weight}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}}}_{\mathbf{1} - \lambda_{k}(\eta^{2}, \gamma^{2})} \hat{\tau}_{ok}\right)}.$$

$$(2)$$

Estimator Form

Estimator can be constructed as the **posterior mean** of au under this model, which evaluates to

$$\psi_{k}(\eta^{2}, \gamma^{2}) = \underbrace{\left(\frac{\eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}{\sigma_{rk}^{2} \left(\gamma^{2} + \sigma_{ok}^{2}\right) + \eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}\right)}_{\mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \text{ aggregate shrinkage toward zero}} \times \underbrace{\left(\frac{\left(\gamma^{2} + \sigma_{ok}^{2}\right)}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{ok}}_{\mathbf{1} - \lambda_{k}(\eta^{2}, \gamma^{2})} \hat{\tau}_{ok}\right)}.$$

$$(2)$$

$$\underbrace{\left(\frac{\left(\gamma^{2} + \sigma_{ok}^{2}\right)}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{ok}}_{\mathbf{1} - \lambda_{k}(\eta^{2}, \gamma^{2})} \hat{\tau}_{ok}\right)}_{\mathbf{1} - \lambda_{k}(\eta^{2}, \gamma^{2})}$$

This is the **double-shrinkage** property: take a data-driven convex combo of $\hat{\tau}_r$ and $\hat{\tau}_r$ and then a Stein-like shrinakge toward zero.

Versions of the Estimator (I)

To construct a usable estimator, need estimates of η^2, γ^2 . Use three approaches from Xie et al. (2012)

Moment-Matching: Observing that

$$\begin{split} \mathbb{E}\left(||\hat{\tau}_{\boldsymbol{r}}||_2^2\right) &= \mathsf{Tr}(\Sigma_r) + K\eta^2, \quad \text{and} \\ \mathbb{E}\left(||\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}}||_2^2\right) &= \mathsf{Tr}(\Sigma_o) + \mathsf{Tr}(\Sigma_r) + K\gamma^2, \end{split}$$

use the estimates:

$$\begin{split} \hat{\eta}_{\mathsf{mm}}^2 &= \frac{1}{K} \left(||\hat{\tau}_{\boldsymbol{r}}||_2^2 - \mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{r}}) \right)_+ \\ \hat{\gamma}_{\mathsf{mm}}^2 &= \frac{1}{K} \left(||\hat{\tau}_{\boldsymbol{r}} - \hat{\tau}_{\boldsymbol{o}}||_2^2 - \mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{r}}) - \mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{o}}) \right)_+ . \end{split}$$

Versions of the Estimator (II)

Assumptions and Loss Function

Maximum Likelihood: Observing that

$$\mathcal{L}(\eta^{2}, \gamma^{2}) \propto \prod_{k} (\eta^{2} + \sigma_{rk}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{rk}^{2}}{2(\eta^{2} + \sigma_{rk}^{2})}} \times \prod_{k} (\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{ok}^{2}}{2(\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})}}.$$

We can numerically optimize to obtain the estimates

$$\left(\hat{\eta}_{\mathsf{mle}}^2, \hat{\gamma}_{\mathsf{mle}}^2\right) = \max_{\eta^2, \gamma^2 \geq 0} \log \left(\mathcal{L}(\eta^2, \gamma^2)\right).$$

Versions of the Estimator (III)

URE Minimization: We can use the same URE-minimization approach as in the prior section! Here,

$$\begin{split} \mathsf{URE}(\eta^2,\gamma^2) = &\mathsf{Tr}(\Sigma_r) + \sum_k \left(\psi_k(\eta^2,\gamma^2) - \hat{\tau}_{\mathit{rk}} \right)^2 - \\ & 2 \sum_k \sigma_{\mathit{rk}}^2 \cdot \left(1 - \mathsf{a}_k \left(\eta^2,\gamma^2 \right) \cdot \lambda_k \left(\eta^2,\gamma^2 \right) \right). \end{split}$$

We can numerically optimize to obtain the estimates

$$(\hat{\eta}_{\mathrm{ure}}^2, \hat{\gamma}_{\mathrm{ure}}^2) = \max_{\eta^2, \gamma^2 > 0} \mathsf{URE}(\eta^2, \gamma^2) \,.$$

• Valid confidence interval construction for shrinkage estimators is an open area of research (Hoff and Yu, 2019)

Application to the WHI

• Valid confidence interval construction for shrinkage estimators is an open area of research (Hoff and Yu, 2019)

• Frequentist intervals shorter than standard CIs about $\hat{\tau}_r$ are impossible order-wise and difficult to obtain in practice (Chen et al., 2021).

Assumptions and Loss Function

- Valid confidence interval construction for shrinkage estimators is an open area of research (Hoff and Yu, 2019)
- Frequentist intervals shorter than standard CIs about $\hat{\tau}_r$ are impossible order-wise and difficult to obtain in practice (Chen et al., 2021).
- **EB** coverage is a frequently-used weaker condition
 - Implies average coverage: under fixed τ , a $1-\alpha$ fraction of effects are covered with high probability in large samples
 - However, some outlying effects may not be covered with $1-\alpha$ probability across repeated samples of the data

Inference

- Advantage of hierarchical model: straightforward to extend the results of Armstrong et al. (2020) (for Stein-like shrinkers)
- Intervals have Empirical Bayes coverage guarantee without enforcing parametric assumptions on distribution of au and ξ

Experimental Design

Inference

- Advantage of hierarchical model: straightforward to extend the results of Armstrong et al. (2020) (for Stein-like shrinkers)
- Intervals have Empirical Bayes coverage guarantee without enforcing parametric assumptions on distribution of au and ξ

Definition (Robust EB Confidence Intervals (EBCIs))

The robust EBCI for ψ_k , the causal effect estimate obtained from any version of double-shrinkage estimators, is

$$\psi_k \pm cva(c_k)\hat{a}_k\sqrt{\left(\hat{\lambda}_k^2\sigma_{rk}^2 + (1-\hat{\lambda}_k)^2\sigma_{ok}^2\right)},$$

where \hat{a}_k and $\hat{\lambda}_k$ are the shrinkage factors, and $cva(c_k)$ is an inflation factor whose form is given in Armstrong et al. (2020).

- Assumptions and Loss Function
- 2 Inference
 - Positing Shrinkage Structure
 - Using a Hierarchical Model
- 3 Application to the WHI
- Experimental Design

WHI Overview

Dataset Overview

- Study of postmenopausal women initiated in 1991
- RCT of hormone therapy (HT) w/ 16k enrollees
- ODB w/ 50k comparable enrollees

Consider the effect of HT on coronary heart disease (CHD)

Results

Subgroup	# of	Loss as a $\%$ of $\hat{ au}_r$ Loss						
Variable(s)	Strata	κ_{1+}	κ_{2+}	$\hat{\psi}_{mm}$	$\hat{\psi}_{\sf mle}$	$\hat{\psi}_{ure}$		
CVD	2	36%	36%	21%	<u>16%</u>	32%		
Age	3	37%	30%	21%	<u>16%</u>	34%		
Sun	5	28%	22%	11%	<u>9%</u>	15%		
CVD, Age	6	39%	42%	21%	<u>21%</u>	27%		
CVD, Sun	10	34%	36%	17%	<u>17%</u>	19%		
Age, Sun	15	22%	21%	8%	<u>8%</u>	10%		
CVD, Age, Sun	30	51%	51%	20%	20%	20%		

Table 1: Simulation results for each stratification scheme, with an RCT sample size of 1,000. Best-performing estimator is underlined. ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ ・ ● 1 年 ・ り へ ○ ○

Outline

- Assumptions and Loss Function
- 2 Inference
 - Positing Shrinkage Structure
 - Using a Hierarchical Model
- Application to the WHI
- 4 Experimental Design

A New Setting: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{ au}_{m{o}}$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

A New Setting: Design

Can these insights inform the design of a prospective RCT?

- Observational study already completed, $\hat{ au}_{o}$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Goal: choose an RCT allocation of treated and control counts per stratum, $\mathbf{d} = \{(n_{rkt}, n_{rkc})\}_{k=1}^{K}$, s.t. $\sum_{k} n_{rkt} + n_{rkc} = n_r$:

- implies how to recruit ...
- and assign treatment

Estimator and Risk

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\boldsymbol{r}} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2}\boldsymbol{W})\boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})^{\mathsf{T}}\boldsymbol{\Sigma}_{r}^{2}(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})} \right\}_{[0,1]} (\hat{\tau}_{\boldsymbol{r}} - \hat{\tau}_{\boldsymbol{o}})$$

Estimator and Risk

Assumptions and Loss Function

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\boldsymbol{r}} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2}\boldsymbol{W})\boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})^{\mathsf{T}}\boldsymbol{\Sigma}_{r}^{2}(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})} \right\}_{[0,1]} (\hat{\tau}_{\boldsymbol{r}} - \hat{\tau}_{\boldsymbol{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

Assumptions and Loss Function

We proceed with our estimator κ_{2+} from the prior section:

$$oldsymbol{\kappa}_{2+} = \hat{oldsymbol{ au}}_{oldsymbol{r}} - \left\{ rac{\mathsf{Tr}(\Sigma_{r}^{2}oldsymbol{W})\Sigma_{r}}{(\hat{oldsymbol{ au}}_{oldsymbol{o}} - \hat{oldsymbol{ au}}_{oldsymbol{r}})^{\mathsf{T}}\Sigma_{r}^{2}(\hat{oldsymbol{ au}}_{oldsymbol{o}} - \hat{oldsymbol{ au}}_{oldsymbol{r}})
ight\}_{[0,1]} (\hat{oldsymbol{ au}}_{oldsymbol{r}} - \hat{oldsymbol{ au}}_{oldsymbol{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

• design **d**

Estimator and Risk

Assumptions and Loss Function

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\textit{r}} - \left\{ \frac{\mathsf{Tr}(\Sigma_{\textit{r}}^2 \textit{W}) \Sigma_{\textit{r}}}{(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})^\mathsf{T} \Sigma_{\textit{r}}^2 (\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})} \right\}_{[0,1]} (\hat{\tau}_{\textit{r}} - \hat{\tau}_{\textit{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$

Experimental Design

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\textit{r}} - \left\{ \frac{\mathsf{Tr}(\Sigma_{\textit{r}}^2 \textit{W}) \Sigma_{\textit{r}}}{(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})^\mathsf{T} \Sigma_{\textit{r}}^2 (\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})} \right\}_{[0,1]} (\hat{\tau}_{\textit{r}} - \hat{\tau}_{\textit{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector $\boldsymbol{\xi}$.

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\boldsymbol{r}} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2}\boldsymbol{W})\boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})^{\mathsf{T}}\boldsymbol{\Sigma}_{r}^{2}(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})} \right\}_{[0,1]} (\hat{\tau}_{\boldsymbol{r}} - \hat{\tau}_{\boldsymbol{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector $\boldsymbol{\xi}$.

Can compute this efficiently via numerical integration (Bao and Kan, 2013), as long as \boldsymbol{V} and $\boldsymbol{\xi}$ are known.

Design Heuristics

Can estimate $\hat{\mathbf{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right)$.

Can estimate $\hat{\mathbf{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}(Y(1) \mid S = k)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}(Y(0) \mid S = k)$.

Design heuristics:

- **1** Naïve Optimization: Assume $\xi = 0$ and minimize $\mathcal{R}_2(\mathbf{d}, \hat{\mathbf{V}}, \xi = 0)$ over \mathbf{d} , via greedy swap algorithm.
- **Q** Robust Optimization: Under model of Tan (2006) and a user-chosen value of sensitivity $\Gamma \geq 1$, optimize the design **d** under worst-case bias

Thank you to my collaborators on this work:

- Guillaume Basse
- Mike Baiocchi
- Art Owen

- Francesca Dominici
- Luke Miratrix

Posited shrinkage structure paper available in Biometrics Hierarchical model paper (as of Wednesday!) at arXiv:2204.06687 Design paper available at arXiv:2204.06687

Thanks!

References (I)

- Armstrong, T. B., Kolesár, M., and Plagborg-Moller, M. (2020). Robust empirical bayes confidence intervals. arXiv preprint arXiv:2004.03448.
- Bao, Y. and Kan, R. (2013). On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117:229–245.
- Chen, S., Zhang, B., and Ye, T. (2021). Minimax rates and adaptivity in combining experimental and observational data. arXiv preprint arXiv:2109.10522.
- Green, E. J. and Strawderman, W. E. (1991). A James-Stein type estimator for combining unbiased and possibly biased estimators. *Journal of the American Statistical Association*, 86(416):1001–1006.
- Green, E. J., Strawderman, W. E., Amateis, R. L., and Reams, G. A. (2005). Improved estimation for multiple means with heterogeneous variances. *Forest Science*, 51(1):1–6.
- Hoff, P. and Yu, C. (2019). Exact adaptive confidence intervals for linear regression coefficients. *Electronic Journal of Statistics*, 13:94–119.
- Li, K.-C. et al. (1985). From Stein's unbiased risk estimates to the method of generalized cross validation. The Annals of Statistics, 13(4):1352–1377.
- Roehm, E. (2015). A reappraisal of Women's Health Initiative estrogen-alone trial: long-term outcomes in women 50–59 years of age. Obstetrics and Gynecology International, 2015.
- Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched observational studies. Biometrika, 74(1):13–26.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Technical report, Stanford University Stanford United States.
- Tan, Z. (2006). A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637.
- Xie, X., Kou, S., and Brown, L. D. (2012). Sure estimates for a heteroscedastic hierarchical model. Journal of the American Statistical Association, 107(500):1465–1479.
- Zhao, Q., Small, D. S., and Bhattacharya, B. B. (2019). Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*.

Appendices

Practical Considerations

• Variance estimation: In practice, Σ_r not known. Must be estimated from data.

Propensity score adjustment

- No unconfoundedness ⇒
 propensity score adjustment can't remove all bias
- If ODB is large, adjusting will typically be good practice. We suggest stabilized IPTW adjustments.

Sensitivity analysis

- Marginal sensitivity model of Tan (2006) summarizes degree of unmeasured confounding by a single value, $\Gamma \geq 1$
- Can "reverse engineer" implied confounding value Γ_{imp} when using a shrinker, via work of Zhao et al. (2019)
- Evaluate Γ_{imp} to obtain a $\sqrt{}$ or X for using shrinker

A Note on λ_1^{URE}

The true risk-minimizing shrinkage weight is given by

$$\lambda_{\mathsf{opt}} = \frac{\mathsf{Tr}(\Sigma_r \boldsymbol{W})}{\mathsf{Tr}(\Sigma_r \boldsymbol{W}) + \mathsf{Tr}(\Sigma_o \boldsymbol{W}) + \underbrace{\boldsymbol{\xi}^\mathsf{T} \boldsymbol{W}^2 \boldsymbol{\xi}}_{\mathsf{Not estimable from data}},$$

but observe that

$$E\left(\left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}}-\hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^{\mathsf{T}}\boldsymbol{W}\left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}}-\hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)\right)=\mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{r}}\boldsymbol{W})+\mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{o}}\boldsymbol{W})+\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{W}^{2}\boldsymbol{\xi}\,.$$

 λ_1^{URE} substitutes the quadratic form for its expectation,

$$\lambda_1^{\mathsf{URE}} = \frac{\mathsf{Tr}(\Sigma_r \mathbf{W})}{(\hat{\tau}_o - \hat{\tau}_r)^\mathsf{T} \mathbf{W} (\hat{\tau}_o - \hat{\tau}_r)}.$$

Guardrails

Simplicity of Algorithm 4 makes it easy to impose guardrails \Longrightarrow for any invalid design, just set objective value to ∞ .

Recommend simple guardrails for designs:

Sample size: to retain CLT, enforce

$$\min_{k} n_{rkt} \ge SS_{\min}, \quad \min_{k} n_{rkc} \ge SS_{\min}$$

2 Detachability: for default design $\tilde{\boldsymbol{d}} = \{\tilde{n}_{rkt}, \tilde{n}_{rkc}\}_k$ and tolerance parameter $\delta_d \geq 1$, enforce

$$\sum_{k} \frac{\hat{\sigma}_{kt}^2}{n'_{rkt}} + \frac{\hat{\sigma}_{kc}^2}{n'_{rkc}} \ge \delta_d \sum_{k} \frac{\hat{\sigma}_{kt}^2}{\tilde{n}_{rkt}} + \frac{\hat{\sigma}_{kc}^2}{\tilde{n}_{rkc}},$$

for any proposed design $\mathbf{d'} = \{n'_{rkt}, n'_{rkc}\}_k$.

3 Risk reduction: for proposed $d' = \{n'_{rkt}, n'_{rkc}\}_k$, enforce

$$4\max_{k}\left(\frac{\hat{\sigma}_{kt}^{2}}{n'_{rkt}}+\frac{\hat{\sigma}_{kc}^{2}}{n'_{rkc}}\right)^{2}>\sum_{k}\left(\frac{\hat{\sigma}_{kt}^{2}}{n'_{rkt}}+\frac{\hat{\sigma}_{kc}^{2}}{n'_{rkc}}\right)^{2}.$$

Application to the WHI

- Split RCT data into "gold" and "silver" subsets
- Gold dataset: used to obtain "gold standard" estimates of stratum treatment effects
- Repeat 1,000 times:
 - Draw bootstrap samples:
 - 1,000 RCT units (from silver data)
 - Observational sample (50K units)
 - Compute L_2 loss for $\hat{\tau}_{\mathbf{r}}, \kappa_{1+}, \kappa_{2+}, \delta_1, \delta_2$.
- Average loss over draws

Stratification Variables

Stratify on two variables from WHI protocol (Roehm, 2015): **Age** + **CVD** (history of cardiovascular disease)

Also include a variable unassociated with potential outcomes: **Langley** (solar irradiance)

Results

Subgroup	# of	Avg. $\hat{ au}_r$	Loss as % of RCT-Only Loss					
Variable(s)	Strata	Loss	$oldsymbol{\kappa}_{1+}$	κ_{2+}	δ_1	$\boldsymbol{\delta}_2$		
Age	3	0.00064	40.1%	34.3%	63.3%	74.8%		
Cardiovascular disease (CVD)	2	0.00149	40.6%	39.6%	100%	100%		
Solar	5	0.00094	29.1%	18.2%	43.1%	52.9%		
Age, CVD	6	0.00574	25.0%	14.0%	30.6%	85.6%		
CVD, Solar	10	0.00803	20.9%	21.2%	21.0%	88.4%		
Age, Solar	15	0.00398	31.2%	30.4%	28.4%	58.4%		
Age, CVD, Solar	30	0.02901	15.8%	16.1%	15.7%	88.3%		

Table 2: Empirical risk using bootstrap samples of size 1,000 from RCT data.

Simulations Set-Up (I)

- ODB has 20K units $(j \in \mathcal{O})$. RCT has 1,000 $(i \in \mathcal{E})$
- Untreated potential outcomes $Y_\ell \in \{0,1\}$ for $\ell \in \mathcal{O} \cup \mathcal{E}$ sampled as indep. Bernoullis with

$$\Pr(Y_{\ell}(0) = 1 \mid \mathbf{x}_{\ell}) = \frac{1}{1 + e^{-\alpha - \beta^{\mathsf{T}} \mathbf{x}_{\ell} + \varepsilon_{\ell}}}, \quad \text{for } \beta = (1, 1, 1, 1, 1)^{\mathsf{T}}$$

for covariates $X_{\ell} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, I_5)$, α chosen s.t. mean is 10%.

• Treatment variables W_j for $j \in \mathcal{O}$ sampled via

$$\Pr(W_j = 1 \mid \mathbf{x}_j) = \frac{1}{1 + e^{-\gamma^T \mathbf{x}_j}}, \text{ for } \gamma = (\sqrt{2}, \sqrt{2}, \sqrt{2}, 0, 0)^T.$$

Simulations Set-Up (II)

- Treatment effects
 - Define k = 1, ..., 12 strata based on first + second covariate
 - Assign τ_k , stratum CATEs, via 3 treatment effect models:

$$au_k = T, \quad au_k = -T imes rac{k}{K}, \quad ext{and} \quad au_k = T imes \left(rac{k}{K}
ight)^2$$

- T chosen so that Cohen's D in ODB equals 0.5
- Simulation structure
 - Sample ODB data a single time. Correct via SIPW.
 - Compute RCT designs under different heuristics
 - Resample RCT units 5,000 times. For each sample, compute L_2 error in estimating τ using $\hat{\tau}_r, \kappa_2$, and κ_{2+}

Idealized Case: All Covariates Measured

					Max Bias, Γ Value				
Est	Trt	Eq.	Ney.	Naïve	1.0	1.1	1.2	1.5	Oracle
$\hat{ au}_{r}$		100%	87%	91%	100%	96%	94%	94%	96%
κ_2	С	82%	48%	44%	52%	48%	47%	50%	42%
κ_{2+}		38%	28%	26%	26%	26%	26%	28%	23%
$\hat{ au}_{ extsf{r}}$		100%	89%	92%	95%	94%	95%	97%	104%
κ_2	ℓ	93%	66%	58%	58%	57%	60%	64%	50%
κ_{2+}		59%	51%	45%	43%	45%	47%	49%	33%
$\hat{ au}_{r}$		100%	86%	91%	95%	98%	94%	92%	91%
κ_2	q	81%	47%	45%	52%	52%	50%	48%	41%
κ_{2+}		37%	29%	27%	28%	28%	30%	29%	25%

Table 3: Risk over 5,000 iterations of $\hat{\tau}_r$, κ_2 , and κ_{2+} in the case of no unmeasured confounding in the observational study. Risks are expressed as a percentage of the risk of $\hat{\tau}_r$ using an equally allocated experiment, for each of the three treatment effect models.

Realistic Case: Third Covariate Missing

					Max Bias, Г Value				
Est	Trt	Eq.	Ney.	Naïve	1.0	1.1	1.2	1.5	Oracle
$\hat{ au}_{ extbf{r}}$		100%	90%	90%	90%	92%	93%	95%	102%
κ_2	С	102%	81%	74%	72%	72%	72%	77%	69%
κ_{2+}		96%	80%	74%	71%	72%	72%	76%	67%
$\hat{ au}_{ extbf{r}}$		100%	93%	93%	94%	95%	96%	96%	104%
κ_2	ℓ	102%	85%	77%	75%	76%	77%	79%	73%
κ_{2+}		98%	84%	77%	75%	76%	76%	79%	71%
$\hat{ au}_{r}$		100%	89%	90%	93%	92%	91%	96%	96%
κ_2	q	101%	74%	69%	68%	68%	67%	73%	66%
κ_{2+}		88%	72%	67%	66%	66%	65%	71%	63%

Table 4: Risk over 5,000 iterations of $\hat{\tau}_r$, κ_2 , and κ_{2+} under various experimental designs, in the case of unmeasured confounding in the observational study via failure to measure the third covariate.

1. Neyman Allocation

Using stronger form of Assumption 3 (shared variances), we can estimate from the ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right)$.

Simplest design heuristic: use a Neyman allocation without a cost constraint, e.g.

$$n_{rkt} = \frac{n_r \cdot \hat{\sigma}_{kt}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2} \quad \text{and} \quad n_{rkc} = \frac{n_r \cdot \hat{\sigma}_{kc}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2}.$$

Optimizes over only the non-shrinkage portion of the risk, but reasonable in many practical settings.

Improving Interpretability of κ_{1+}

• Recall: λ_1^{URE} can be interpreted as an estimate of

$$\lambda_{\text{opt}} = \frac{\text{Tr}(\Sigma_r \boldsymbol{W})}{\text{Tr}(\Sigma_r \boldsymbol{W}) + \text{Tr}(\Sigma_o \boldsymbol{W}) + \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{W}^2 \boldsymbol{\xi}},$$

true MSE-minimizing weight on $\hat{ au}_{m{o}}$ in a convex combination

- ullet We can use this idea to improve interpretability of $\kappa_{1+}!$
- Key idea: frame in context of sensitivity model of Tan (2006)

Prior Work

- Marginal sensitivity model of Tan (2006) summarizes degree of unmeasured confounding by a single value, $\Gamma \ge 1$
 - Γ bounds odds ratio of treatment prob. conditional on potential outcomes + covariates vs. covariates only
 - Related to the famous model of Rosenbaum (1987), but extends to the setting of inverse probability weighting
- Zhao et al. (2019) derive valid confidence intervals for causal estimates under the set of models indexed by any choice of Γ
 - Implicitly maps Γ to a worst-case bias $\xi(\Gamma)$ and variance $\Sigma_O(\Gamma)$
 - Under some assumptions, allows us to obtain worst-case estimate of $\lambda_{\rm opt}$ as a function of Γ , which we call $\lambda(\Gamma)$

Relating the Models

- Intuition: larger Γ (confounding parameter) \Longrightarrow optimal weight λ_{opt} is smaller
- Let $\Gamma_{\text{imp}} = \sup\{\Gamma : \lambda(\Gamma) > \lambda_1^{\text{URE}}\}$
 - Largest value Γ for which the optimal shrinkage factor $\lambda(\Gamma)$ is greater than our shrinkage parameter λ_1^{URE} .
- \bullet Γ_{imp} can be used to evaluate level of shrinkage
 - If we believe true confounding level $\Gamma < \Gamma_{imp},$ then

$$\lambda_1^{\mathsf{URE}} pprox \lambda(\Gamma_{\mathsf{imp}}) \leq \lambda_{\mathsf{opt}} = \lambda(\Gamma)$$

Hence the shrinkage level is conservative. \checkmark

• If we believe $\Gamma > \Gamma_{imp}$, then estimator is overshrinking, relies too much on the observational estimate. X

1. Naïve Optimization Assuming $\xi = 0$ (I)

Using stronger Assumption 3 (shared var), can estimate from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right) \quad \text{and} \quad \hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right).$$

Define $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi}) = \mathcal{R}(\kappa_2)$ analyzed under design \boldsymbol{d} , potential outcome variances $\boldsymbol{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kt}^2)\}_{k=1}^K$, and error $\boldsymbol{\xi}$.

Simple heuristic: assume $\xi = 0$. Then solve:

minimize
$$\mathcal{R}_{2}(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$$

subject to $\boldsymbol{\xi} = 0, \boldsymbol{V} = \{(\hat{\sigma}_{kt}^{2}, \hat{\sigma}_{kc}^{2})\}_{k=1}^{K},$
 $0 < n_{rkt}, n_{rkc}, , k = 1, ..., K,$
 $n_{r} = \sum_{k} n_{rkt} + n_{rkc}.$ (3)

But $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$ is not convex in the design \boldsymbol{d} ...

1. Naïve Optimization Assuming $\xi = 0$ (II)

A practical approach: **greedy algorithm**. Define d_j as design on j^{th} iteration, and define

 $\mathcal{D}_j = \{ \boldsymbol{d}' \mid \ \boldsymbol{d}' \text{ changes one unit across strata/treatment level from } \boldsymbol{d}_j \} \,.$

Run Algorithm 4 from several values of d_0 and take minimum:

Start with design
$$\mathbf{d}_0 = \{(n_{rkt}^{(0)}, n_{rkc}^{(0)})\}_k$$
.
For iteration $j = 1, 2, \dots$:

For each design \mathbf{d}' in \mathcal{D}_{j-1} :

Compute $\mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0)$.

Set $\mathbf{d}_j = \underset{\mathbf{d}' \in \mathcal{D}_{j-1}}{\operatorname{argmin}} \mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0)$

If $\mathcal{R}_2(\mathbf{d}_j, \mathbf{V}, 0) >= \mathcal{R}_2(\mathbf{d}_{j-1}, \mathbf{V}, 0)$

Return \mathbf{d}_{j-1} .

Designs

Figure 1: Allocations of $n_r = 1,000$ units in WHI with strata defined by history of CVD and age, under different design heuristics, which is a second of the second of

Simulated Data Visualization

Figure 2: Simulated shrinkage between $\hat{\tau}_r$ and $\hat{\tau}_o$ with ten strata. 90% conf. sets for $\hat{\tau}_r$ in red, with κ_{1+} and κ_{2+} shown in circles.

1. Naïve Optimization Assuming $\boldsymbol{\xi}=0$

Under enhanced transportability assumption, can estimate $\hat{\pmb{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\mathrm{var}}\left(Y(1) \mid S = k\right) \quad \text{ and } \quad \hat{\sigma}_{kc}^2 = \widehat{\mathrm{var}}\left(Y(0) \mid S = k\right).$$

1. Naïve Optimization Assuming $oldsymbol{\xi}=0$

Under enhanced transportability assumption, can estimate $\hat{\boldsymbol{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right) \quad \text{and} \quad \hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right).$$

Use a simple heuristic: assume $\xi = 0$.

Minimize $\mathcal{R}_2(\mathbf{d}, \hat{\mathbf{V}}, \boldsymbol{\xi} = 0)$ over \mathbf{d} , via greedy swap algorithm.

- Swap units across strata, treatment statuses until no improvement in $\mathcal{R}_2(\boldsymbol{d}, \hat{\boldsymbol{V}}, 0)$
- Non-convexity: run from several starting points.

2. Heuristic Optimization Assuming Worst-Case Error Under Γ-Level Unmeasured Confounding

- Can take a more pessimistic approach using marginal sensitivity model of Tan (2006)
- For a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - can obtain associated $\hat{\sigma}_{kt}^2$ and $\hat{\sigma}_{kc}^2$.

2. Heuristic Optimization Assuming Worst-Case Error Under Γ-Level Unmeasured Confounding

- Can take a more pessimistic approach using marginal sensitivity model of Tan (2006)
- For a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - can obtain associated $\hat{\sigma}_{kt}^2$ and $\hat{\sigma}_{kc}^2$.

```
posit a value of \Gamma \Longrightarrow collect results into \boldsymbol{V}_{\Gamma} and \boldsymbol{\xi}_{\Gamma} \Longrightarrow run greedy algorithm on \mathcal{R}_2(\boldsymbol{d},\boldsymbol{V}_{\Gamma},\boldsymbol{\xi}_{\Gamma}) instead of \mathcal{R}_2(\boldsymbol{d},\hat{\boldsymbol{V}},0)
```