Ljetni rok iz Fizike (14. srpnja 2021.)

1. Pitanja višestrukog izbora

Upute: Na pitanja višestrukog izbora 1.1 do 1.15 odgovorite zaokruživanjem jednog točnog odgovora na obrascu za odgovore. Točan odgovor nosi 1 bod, netočan odgovor nosi -0.25 bodova, a neodgovoreno pitanje nosi nula bodova.

- 1.1 Kamen mase m vrtimo u vertikalnoj ravnini pomoću niti duljine ℓ . Kad se kamen nalazi točno na dnu putanje sila napetosti niti 3 puta je veća od težine kamena. Brzina kamena u toj točki je:
 - (a) $\sqrt{2g\ell}$ točno
 - (b) $\sqrt{3g\ell}$
 - (c) $2\sqrt{g\ell}$
 - (d) $2g\ell$
 - (e) $4g\ell$
- 1.2 Osoba gura ormar niz kosinu stalnom brzinom. Koja od sila obavlja po iznosu najveći rad?
 - (a) Sila trenja točno
 - (b) Gravitacijska sila
 - (c) Okomita sila podloge
 - (d) Sila kojom osoba gura ormar
 - (e) Ukupna sila
- 1.3 Čestica mase m giba se duž osi x brzinom v kada se sudara sa česticom mase 2m u mirovanju. Nakon sudara, prva čestica miruje, dok se druga čestica raspala na dva dijela jednake mase, koji se gibaju pod istim kutom $\theta>0$ u odnosu na os x, kao što je prikazano na slici.

Koja od slijedećih izjava točno opisuje brzinu dva dijela jednake mase:

- (a) Oba dijela jednake mase gibaju se brzinom v.
- (b) Jedan dio se giba brzinom v, a drugi se giba brzinom manjom od v.
- (c) Oba dijela jednake mase gibaju se brzinom v/2.
- (d) Jedan dio giba se brzinom v/2, a drugi se giba brzinom većom od v/2.
- (e) Oba dijela se gibaju sa brzinom većom od v/2. **točno**

- 1.4 Čestica mase m harmonijski titra s periodom T_0 . U jednom trenutku na česticu počne djelovati sila F proporcionalna brzini, F=-bv. Ako čestica nastavlja oscilirati, period postaje
 - (a) veći od T_0 . točno
 - (b) manji od T_0 .
 - (c) neovisan od b.
 - (d) ovisi linearno o b.
 - (e) promjenjiv u vremenu.
- 1.5 Ako je električno polje neke raspodjele naboja dano izrazom

$$\mathbf{E}(x) = 2x^2 \,\hat{\mathbf{x}} + 3 \,\hat{\mathbf{y}},$$

potencijal U(x,y,z) je dan izrazom

- (a) $-4x^3$.
- (b) -3y.
- (c) $4x^3/3 + 3y$.
- (d) $4x^3/3 3y$.
- (e) $-2x^3/3 3y$. **točno**
- 1.6 Stabilna interferencijska slika je posljedica
 - (a) razlike u fazi dvaju valova istih frekvencija. **točno**
 - (b) razlike u frekvenciji dvaju valova istih amplituda.
 - (c) razlike u amplitudi dvaju valova različitih valnih duljina.
 - (d) razlike u optičkim putevima dvaju valova različitih frekvencija.
 - (e) razlike u valnoj duljini dvaju valova istih optičkih puteva.
- 1.7 Svemirski brod se udaljava od Zemlje brzinom iznosa $v=\beta c$, gdje je $0<\beta<1$. Putnici u tom brodu, prema svom vlastitu vremenu, u pravilnim vremenskim razmacima trajanja $\Delta \tau$, prema Zemlji šalju bljeskove (vrlo kratke svjetlosne signale). Zemljani, prema svom vlastitom vremenu, te bljeskove primaju u pravilnim vremenskim razmacima trajanja Δt . Pri tome vrijedi:
 - (a) $\Delta t < \Delta \tau$
 - (b) $\Delta t = \Delta \tau$
 - (c) $\Delta \tau < \Delta t < \Delta \tau / \sqrt{1 \beta^2}$
 - (d) $\Delta t = \Delta \tau / \sqrt{1 \beta^2}$
 - (e) $\Delta t > \Delta \tau / \sqrt{1 \beta^2}$ točno

- 1.8 Svemirski brodovi A i B se u odnosu na Zemlju gibaju u suprotnim smjerovima brzinama iznosa v=2c/3 (c je brzina svjetlosti). Ako je v' iznos brzine broda B u odnosu na putnike u brodu A, koja od navedenih tvrdnji je istinita?
 - (a) v' = 2c/3
 - (b) 2c/3 < v' < c **točno**
 - (c) v' = c
 - (d) c < v' < 4c/3
 - (e) v' = 4c/3
- $1.9\,$ Na slici je prikazan dio prostora ispunjen uniformnim magnetskim poljem ${f B}$ čiji smjer pokazuje u stranicu.

Iznos magnetskog polja u početku raste linearno prema izrazu $B(t)=B_1+bt$, a nakon $t=t_1$, iznos polja se mijenja prema izrazu $B(t)=B_2e^{-t/\tau}$, pri čemu su konstante B_1 , B_2 , b i τ pozitivne. U prostoru se nalazi zatvorena kvadratna metalna petlja s ukupnim otporom R. Koji je smjer inducirane struje u dijelu petlje označenom s a prije i nakon trenutka $t=t_1$?

- (a) Lijevo, lijevo.
- (b) Lijevo, desno. točno
- (c) Desno, lijevo.
- (d) Desno, desno.
- (e) Nema inducirane struje jer u petlji nema izvora elektromotorne sile.
- 1.10 Srednja energija (prosjek kroz jedan ili više perioda) koju transportira elektromagnetski val:
 - (a) Ovisi o amplitudi električnog polja, amplitudi magnetskog polja, frekvenciji vala i brzini propagacije.
 - (b) Ovisi o amplitudi električnog polja, frekvenciji vala i brzini propagacije.
 - (c) Ovisi samo o amplitudi električnog polja i brzini propagacije. točno
 - (d) Ovisi samo o amplitudi električnog polja i frekvenciji vala.
 - (e) Ovisi samo o frekvenciji vala i brzini propagacije.

 $1.11~{
m Sustav}$ na slici nalazi se u magnetskom polju, čija se veličina smanjuje sa $150\,{
m T/s}.$

Struja u krugu iznosi

- (a) $0.15 \,\mathrm{A}$
- (b) 0.35 A **točno**
- (c) 0.50 A
- (d) 0.65 A
- (e) $0.80 \, \text{A}$

1.12 Koje od sljedećih vektorskih polja može opisivati električno polje u prostoru bez naboja?

- (a) $\mathbf{F} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}$
- (b) $\mathbf{F} = yz\,\hat{\mathbf{x}} + xz\,\hat{\mathbf{y}} + xy\,\hat{\mathbf{z}}$ točno
- (c) $\mathbf{F} = xy\,\hat{\mathbf{x}} + yz\,\hat{\mathbf{y}} + xz\,\hat{\mathbf{z}}$
- (d) $\mathbf{F} = (x+y)\hat{\mathbf{x}} + (y+z)\hat{\mathbf{y}} + (z+x)\hat{\mathbf{z}}$
- (e) $\mathbf{F} = (x y) \hat{\mathbf{x}} + (y z) \hat{\mathbf{y}} + (z x) \hat{\mathbf{z}}$

1.13 Gustoća energije magnetskog polja pored beskonačnog ravnog vodiča kojime teče stalna struja

- (a) razmjerna je kvadratu udaljenosti od vodiča.
- (b) razmjerna je udaljenosti od vodiča.
- (c) ne ovisi o udaljenosti od vodiča.
- (d) obrnuto je razmjerna udaljenosti od vodiča.
- (e) obrnuto je razmjerna kvadratu udaljenosti od vodiča. **točno**

1.14	Elektromagnetski val frekvencije ω i valne duljine $\lambda=2\pi c/\omega$ iz vakuuma ulazi u optičko sredstvo
	indeksa loma $n=2$ u kojem mu je valna duljina $\lambda'=\lambda/n$ upola kraća od valne duljine u vakuumu.
	Frekvencija ω' vala u tom sredstvu jednaka je

- (a) $\omega/4$
- (b) $\omega/2$
- (c) ω (ostaje nepromijenjena) točno
- (d) 2ω
- (e) 4ω
- 1.15 U Youngovom eksperimentu se dobiju interferencijske pruge na udaljenom zastoru. U eksperimentu se mogu mijenjati razmak između pukotina i valna duljina svjetlosti. Razmak između susjednih pruga na zastoru je najveći ako se koristi:
 - (a) crvena svjetlost i veći razmak između pukotina.
 - (b) zelena svjetlost i veći razmak između pukotina.
 - (c) plava svjetlost i veći razmak između pukotina.
 - (d) crvena svjetlost i manji razmak između pukotina. točno
 - (e) plava svjetlost i manji razmak između pukotina.

2. Pitanja iz teorije

Uputa: Odgovore na pitanja iz teorije 2.1 do 2.3 napišite na papire na kojima su sama pitanja zadana. Odgovore je potrebno popratiti detaljnim komentarima i crtežima. U slučaju nedostatka prostora za pisanje obratite se dežurnom nastavniku koji će vam dati dodatne prazne papire.

Pitanje iz teorije 2.1: [8 bodova] Skicirajte kružnu putanju čestice, označite vektore položaja i brzine u trenutku t i u kasnijem trenutku $t+\Delta t$. Označite kut koji je za to vrijeme "prebrisao" vektor položaja. Pomoću tih veličina izvedite vezu između obodne i kutne brzine čestice. Napišite taj izraz u vektorskom obliku. Derivirajte izraz za obodnu brzinu i identificirajte tangencijalnu i centripetalnu akceleraciju.

Odgovor:

Pitanje iz teorije 2.2: [8 bodova] Napišite jednadžbu gibanja za masu na opruzi i izvedite njezino opće rješenje. Napišite izraze za brzinu i akceleraciju mase.

Odgovor:

Pitanje iz teorije 2.3: [9 bodova] Krenuvši od Maxwellovih jednadžbi u vakuumu izvedite valnu jednadžbu za magnetsko polje \mathbf{B} .

Odgovor:

3. Računski zadaci

Uputa: Postupke rješavanja računskih zadataka 3.1 do 3.5 napišite na papire na kojima su sami zadaci zadani. U slučaju nedostatka prostora za pisanje obratite se dežurnom nastavniku koji će vam dati dodatne prazne papire. Računski zadaci nose 8 bodova.

Računski zadatak 3.1:

Trajektorija čestice u x-y ravnivni opisana je jednadžbom

$$y(x) = cx^2$$
,

gdje je c konstanta. x-komponenta brzine je:

$$v_r(t) = bt$$
,

gdje je b konstanta. Izračunajte iznos brzine čestice u trenutku $t=\tau$ ako se čestica u početnom trenutku nalazila u ishodištu.

Rješenje: Najprije tražimo y(t), tako što računamo x(t):

$$v_x = bt \Rightarrow x(t) = \frac{bt^2}{2} + x_0,\tag{1}$$

gdje je $x_0=0$ jer je čestica u ishodištu u početku. Komponenta y(t) je:

$$y(t) = c\frac{b^2t^4}{4},\tag{2}$$

pa slijedi

$$v_y(t) = \frac{dy}{dt} = cb^2t^3,\tag{3}$$

konačno iznos brzine je:

$$v(\tau) = \sqrt{v_x^2 + v_y^2} = b\tau \sqrt{1 + c^2 b^2 \tau^4}.$$
 (4)

Računski zadatak 3.2:

Jane misli da se Tarzan udebljao, no on joj ne želi reći koja mu je trenutna masa. Jednog dana Tarzan se njiše lijanom obješenom na granu stabla. U početnom trenutku lijana sa vertikalom zatvara kut od $\theta_1=53^\circ$. U najnižoj točki svoje putanje Tarzan hvata Jane u svoje naručje te nastavljaju njihanje u istom smjeru do visine kada lijana zatvara kut od $\theta_2=37^\circ$ sa vertikalom kao što je prikazano na slici. Jane zna da je njena masa 50 kg. Kolika je Tarzanova masa?

Rješenje: Zadatak je najjednostavnije rješiti primijenom zakona sačuvanja impulsa (ZOI) i zakona sačuvanja energije (ZOE).

Neposredno prije nego Tarzan uhvati Jane njegova brzina je v_T dok Jane miruj ($v_J=0$). Nakon što uzme Jane u naručje oni nastavljaju gibanje zajedno brzinom v_f . Ss obzirom da se radi o savršeno neelastičnom sudaru iz ZOI slijedi:

$$m_T v_T = (m_T + m_J) v_f \tag{5}$$

gdje je m_T masa od Tarzana, a m_J masa od Jane.

U početnom trenutku Tarzan se nalazi na visini $l - lcos(\theta)$ te iz ZOI slijedi $(E_p = E_k)$:

$$m_T g(l - l\cos(\theta_1)) = \frac{1}{2} m_T v_T^2 \tag{6}$$

Tako se za brzinu Taryana neposredno prije nego dohvati Jane dobiva:

$$v_T = \sqrt{2gl(1 - \cos(\theta_1))} = 2\sin(\frac{\theta_1}{2})\sqrt{gl}$$
(7)

pri čemu je iskorištena jednakost $\sin^2 \frac{x}{2} = \frac{1-\cos x}{2}$.

Slično se za brzinu Tarzana i Jane nakon što ju on uzme u naručje dobiva:

$$(m_T + m_J)g(l - l\cos(\theta_2)) = \frac{1}{2}(m_T + m_J)v_f^2$$
(8)

$$v_f = \sqrt{2gl(1 - \cos(\theta_2))} = 2\sin(\frac{\theta_2}{2})\sqrt{gl}$$
(9)

Uvrštavanjem brzina V_T i v_f u ZOI dobiva se:

$$m_T 2 \sin(\frac{\theta_1}{2}) \sqrt{gl} = (m_T + m_J) 2 \sin(\frac{\theta_2}{2}) \sqrt{gl}$$
(10)

Nakon dijeljenja sa \sqrt{gl} :

$$m_T \sin(\frac{\theta_1}{2}) = (m_T + m_J) \sin(\frac{\theta_2}{2}) \tag{11}$$

$$m_T = m_J \frac{\sin(\frac{\theta_2}{2})}{\sin(\frac{\theta_1}{2}) - \sin(\frac{\theta_1}{2})} \approx 123kg \tag{12}$$

Računski zadatak 3.3:

Izvor zvučnih oscilacija frekvencije $\nu_0=1000\,\mathrm{Hz}$ kreće se prema zidu pod pravim kutem brzinom iznosa $u=0.17\,\mathrm{m/s}$. Stacionarni detektori D_1 i D_2 nalaze se na putanji izvora; D_1 iza, a D_2 ispred izvora (vidi sliku).

Koji od ta dva detektora registrira udare i kolika je frekvencija tih udara? (Iznos brzine zvuka je $v=340\,\mathrm{m/s.}$)

Rješenje: Najprije razmatramo detektor D_1 . Frekvencija vala iz izvora je

$$f_1 = \frac{v}{v + u} \, \nu_0$$

dok je frekvencija vala odbijenog od zida jednaka frekvenciji koju "čuje zid",

$$f_1' = \frac{v}{v - u} \nu_0. \tag{13}$$

Frekvencija udara u detektoru D_1 je prema tome:

$$\delta f = |f_1 - f_1'| = \left| \frac{v}{v+u} - \frac{v}{v-u} \right| \ \nu_0 = \dots = \frac{2vu}{v^2 - u^2} \ \nu_0 \simeq 1.0 \,\mathrm{Hz}.$$

Za detektor D_2 frekvencije vala iz izvora i reflektiranog vala su jednake te zaključujemo da taj detektor ne registrira udare.

Računski zadatak 3.4:

Izračunajte električno polje uniformno nabijenog tankog diska površinske gustoće naboja σ i polumjera R u točki $(0,\ 0,\ L)$ te pronađite iznos električnog polja za granični slučaj $L\to 0$. (Koristiti integral $\int x(x^2+a^2)^{-3/2}\,\mathrm{d}x=-(x^2+a^2)^{-1/2}$ i razvoj u red $(1+x)^{-m}\simeq 1-mx$.)

Rješenje: Element naboja $\mathrm{d}q$ jednak je $\sigma\mathrm{d}A$ te doprinosi električnom polju elementom polja

$$d\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{dq}{|\mathbf{r}|^3} \mathbf{r}.$$

Zapišemo li dani element polja u cilindričnom koordinatnom sustavu, dobivamo

$$d\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{\sigma \rho d\rho d\phi}{(L^2 + \rho^2)^{3/2}} (L\hat{z} + \rho\hat{\rho}).$$

Doprinosi gustoće naboja električnom polju u \hat{x} i \hat{y} , to jest $\hat{\rho}$ smjeru, sa suprotnih strana diska se poništavaju. Stoga je ukupno polje ${\bf E}$ usmjereno duž z osi, ${\bf E}=E_z\hat{z}$.

Integracijom preko čitavog diska dobivamo električno polje

$$\mathbf{E} = E_z \hat{z} = \frac{\sigma L}{4\pi\epsilon_0} \hat{z} \int_0^R \int_0^{2\pi} \frac{\rho \,\mathrm{d}\rho \,\mathrm{d}\phi}{(L^2 + \rho^2)^{3/2}}$$
$$= \frac{\sigma L}{2\epsilon_0} \left(-\frac{1}{\sqrt{L^2 + \rho^2}} \right) \Big|_0^R \hat{z}$$
$$= \frac{\sigma}{2\epsilon_0} \left(1 - \frac{L}{\sqrt{L^2 + R^2}} \right) \hat{z}.$$

Naposljetku, za $L \to 0$

$$\frac{L}{\sqrt{L^2 + R^2}} = \frac{L}{R} \left(1 + \left(\frac{L}{R} \right)^2 \right)^{-1/2}$$

$$\simeq \frac{L}{R} \left(1 - \frac{1}{2} \left(\frac{L}{R} \right)^2 \right) \to 0.$$

Stoga je polje uniformno nabijenog diska za $L \to 0$ jednako električnom polju beskonačne nabijene plohe gustoće naboja σ ,

 $\mathbf{E} = \frac{\sigma}{2\epsilon_0}\hat{z}.$

Računski zadatak 3.5:

Na vodi pluta sloj ulja debljine d i indeksa loma n koji je veći od indeksa loma vode. Odredi razliku u fazi između svjetlosti valne duljine λ reflektirane na graničnoj plohi zrak-ulje i one reflektirane na graničnoj plohi ulje-voda, ako svjetlost upada iz zraka pod kutom α . (Indeks loma zraka jednak je jedinici. $\tan \alpha = \frac{\sin \alpha}{\sqrt{1-\sin^2 \alpha}}$)

Rješenje: Opisanu situaciju prikazujemo skicom:

Upadna svjetlost reflektira se od granične plohe zrak - ulje (na skici zraka 1) i od granične plohe ulje - voda (zraka 20). Razlika u fazi posljedica je razlike u duljini optičkih putova dviju zraka, $\Delta s = s_2 - s_1$ te pomaka u fazi π koji nastupa pri refleksiji svjetlosti na granici s optički gušćim sredstvom. To je ovdje samo granica zrak - ulje pa se takav pomak pojavljuje samo za zraku 1. Razliku u duljini optičkih putova razmatramo između točke A u kojoj se upadna zraka razdvaja na zrake 1 i 2, te točke C i D u kojima zrake 1 i 2 presijecaju ravninu okomitu na njih (desna iscrtkana linija na skici). Možemo pisati:

$$\Delta \phi = 2\pi \frac{\Delta s}{\lambda} + \pi = 2\pi \frac{s_2 - s_1}{\lambda} + \pi,\tag{14}$$

$$s_1 = |AD|, (15)$$

$$s_2 = n(|AB| + |BC|). (16)$$

Uvodimo duljinu 2a = |AC| te iz geometrije prepoznajemo

$$\frac{a}{d} = \tan \alpha' = \frac{\sin \alpha'}{\sqrt{1 - \sin^2 \alpha'}}.$$

Koristeći Snellov zakon prema kojemu je $n \sin \alpha' = \sin \alpha$ gornji omjer pišemo u obliku:

$$\frac{a}{d} = \frac{\sin \alpha}{\sqrt{n^2 - \sin^2 \alpha}}.$$

Optički put zrake 1 sada možemo napisati kao

$$s_1 = |AD| = |AC| \sin \alpha = 2a \sin \alpha = \frac{2d \sin^2 \alpha}{\sqrt{n^2 - \sin^2 \alpha}},$$

dok je optički put zrake 2

$$s_2 = n(|AB| + |BC|) = 2n|AB| = 2n\sqrt{d^2 + a^2} = 2nd\sqrt{1 + \left(\frac{a}{d}\right)^2} = \frac{2n^2d}{\sqrt{n^2 - \sin^2\alpha}}.$$

Konačno, razlika optičkih putova je

$$\Delta s = s_2 - s_1 = 2d\sqrt{n^2 - \sin^2 \alpha},$$

a razlika u fazi uključujući i pomak π zbog refleksije zrake 1 na optički gušćem sredstvu je

$$\Delta \phi = 2\pi \frac{\Delta s}{\lambda} + \pi = \frac{4\pi d}{\lambda} \sqrt{n^2 - \sin^2 \alpha} + \pi.$$