Merci à nos sponsors

Et en partenariat avec le meetup Azure Nantes

Global AI Nights Nantes

XAI: eXplainable Artificial Intelligence

Explainability and AI - Definitions

Artificial Intelligence :

"[Artificial Intelligence] refers to a programme whose ambitious objective is to understand and reproduce human cognition; creating cognitive processes comparable to those found in human beings" for a meaningful artificial intelligence towards a french and european strategy, Villani report, 2018

Explainability:

Make the algorithms inner state understable by humans

Linear regression

Two correlated axes

Artificial neural network

Many fields of low value, very entangled

Bre, Facundo & Gimenez, Juan & D. Fachinotti, Víctor. (2017). Prediction of wind pressure coefficients on building surfaces using Artificial Neural Networks. Energy and Buildings.

Why is understanding the black box important?

Black box algorithm

General Data Protection Regulation (GDPR)

"the data subject should have the right [...] to obtain an explanation of the decision reached" - GDPR, Recital 71

Ethics

Awad, Edmond & Dsouza, Sohan & Kim, Richard & Schulz, Jonathan & Henrich, Joseph & Shariff, Azim & Bonnefon, Jean-François & Rahwan, Iyad. (2018). The Moral Machine Experiment. Nature. http://moralmachine.mit.edu/

GDPR

What should the self-driving car do?

• GDPR • Ethics

Users confidence

GDPR

Ethics

Users confidence

Colleagues confidence

GDPR

Ethics

Users confidence

Colleagues confidence

Self confidence

Ethics

GDPR

Users confidence

Colleagues confidence

Self confidence

CONFIDENCE

GDPR

- Ethics
- Users confidence
- Colleagues confidence
- Self confidence

CONFIDENCE

By cross validation !!!

Tulio Ribeiro, Marco & Singh, Sameer & Guestrin, Carlos. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier

Tulio Ribeiro, Marco & Singh, Sameer & Guestrin, Carlos. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier

(b) Explanation

Ethics

XAI : eXplainable Artificial Intelligence

Self confidence

Colleagues confidence

Users confidence

Improve algoritms

GDPR

clever cloud

Victor Ballu

Current approaches

- Local interpretability
- Global interpretability

Local interpretability:

Explain one specific result

➤ LIME - Local Interpretable Model-Agnostic Explanations

> LIME - Local Interpretable Model-Agnostic Explanations

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

> RISE: Randomized Input Sampling for Explanation of Black-box Models⁽¹⁾

• Global interpretability:

Explain the whole model

- > LIME suggest a kind of integration of the local interpretability
- > SHAP A global model approximation based on linear combination of local approximations from different models⁽¹⁾

- Hybrid approach
- Others methods
 - > Autoencoder

Promising approaches to explainability

СР	Performer	Explainable Model
Both	UC Berkeley	Deep Learning
	Charles River	Causal Modeling
	UCLA	Stochastic And-Or-Graphs
Autonomy	Oregon State	Deep Adaptive Programs
	PARC	Cognitive Modeling
	CMU	Explainable RL (XRL)
Analytics	SRI International	Deep Learning
	Raytheon BBN	Deep Learning
	UT Dallas	Probabilistic Logic
	Texas A&M	OLLOQUIUM Mimic Learning
	Rutgers	Explanation by Example

Bibliography

ARTICLES:

- Tulio Ribeiro, Marco & Singh, Sameer & Guestrin, Carlos. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier
- Petsiuk, Vitali & Das, Abir & Saenko, Kate. (2018). RISE: Randomized Input Sampling for Explanation of Black-box Models
- GDPR Recital 71
- For a meaningful artificial intelligence towards a french and european strategy, Villani report, 2018
- Awad, Edmond & Dsouza, Sohan & Kim, Richard & Schulz, Jonathan & Henrich, Joseph & Shariff, Azim & Bonnefon, Jean-François & Rahwan, Iyad. (2018). The Moral Machine Experiment. Nature
- Lundberg, Scott & Lee, Su-In. (2017). A Unified Approach to Interpreting Model Predictions
- Zhou, Bolei & Sun, Yiyou & Bau, David & Torralba, Antonio. (2018). Interpretable Basis

 Decomposition for Visual Explanation

Other resources:

- DARPA XAI Literature Review
- Fairness, Accountability, and Transparency in Machine Learning (FAT) https://www.fatml.org/

Clever Cloud Paris

137 rue vieille du temple 75003 Paris

Clever Cloud Nantes

3 rue de l'allier 44000 Nantes 02 85 52 07 69

https://www.clever-cloud.com

CONTACT

victor.ballu@clever-cloud.com

