MATH 7752 Homework 11

James Harbour

April 27, 2022

Problem 1

In this problem you will need the following two definitions.

Definition 1: Let L/F be a finite separable extension and let \overline{F} be an algebraic closure of F containing L. A subfield L' of \overline{F} is called **conjugate to** L **over** F if $L' = \sigma(L)$ for some F-embedding $\sigma: L \to \overline{F}$. (Note: L/F is Galois if and only if the only conjugate to L over F is itself.)

Definition 2: A finite extension K/F is called a *p*-extension if K/F is Galois and Gal(K/F) is a *p*-group.

- 1. Let L/F be a separable extension of degree n and let K be the Galois closure of L over F. Prove that K can be written as a compositum $L_1L_2\cdots L_n$, where L_1,\ldots,L_n are (not necessarily distinct) conjugates of L over F.
- 2. Let K/F and L/F be finite p-extensions. Prove that KL/F is also a p-extension.
- 3. Suppose that K/L and L/F are both p-extensions, and let M be the Galois closure of K over F (note: we do not know whether K/F is Galois or not). Prove that M/F is also a p-extension.
- 4. Now assume only that L/F is a separable extension with $[L:F]=p^r$, for some $r \geq 1$. Let M be the Galois closure of L over F. Prove that [M:F] need not be a power of p.

Problem 2

Let f(x) and g(x) be irreducible polynomials in $\mathbb{F}_p[x]$ of the same degree. Let $F = \mathbb{F}_p[x]/(f(x))$. Prove that g(x) splits completely over F.

Proof. By a vector space counting argument, $|F| = p^n$. By uniqueness of splitting fields, F is \mathbb{F}_p -isomorphic to \mathbb{F}_{p^n} which is \mathbb{F}_p -isomorphic to $\mathbb{F}_p[x]/(q(x))$ which contains a root of q(x). Thus, F contains a root of q(x) whence by normality of the extensions F/\mathbb{F}_p , q(x) splits over F.

Problem 3

Consider the polynomial $f(x) = x^4 - 2x^2 - 5 \in \mathbb{Q}[x]$.

(a): Determine the Galois group G of the splitting field K of f(x) over \mathbb{Q} .

Proof. Let $\alpha = \sqrt{1 + \sqrt{6}}$ and $\beta = \sqrt{1 - \sqrt{6}}$. Then $f(x) = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$ and $K = \mathbb{Q}(\alpha, \beta)$. Noting that $\alpha^2 + \beta^2 = 2$, it follows that $\mu_{\beta,\mathbb{Q}(\alpha)} = x^2 + (\alpha^2 - 2)$ and thus $[K : \mathbb{Q}(\alpha)] = 2$. Note that f(x) is irreducible as none of the choices of pairs of linear factors provide a polynomial in $\mathbb{Q}[x]$ by appealing to Vieta's formulae and the fact that $\alpha^2, \beta^2, \alpha \pm \beta \notin \mathbb{Q}$.

Thus \mathbb{G} is an order 8 subgroup of S_4 , whence its isomorphism class is D_8 .

(b): Find all subgroups of G and their corresponding fixed fields. Which of those are normal extensions of \mathbb{Q} ?

Problem 4

Let p and q be distinct primes with q > p, and let K/F be a Galois extension of degree pq. Prove the following:

(a): There exists a field L with $F \subset L \subset K$ and [L:F] = q.

Proof. Let $G = \operatorname{Gal}(K/F)$. Then |G| = pq, whence by Sylow's existence theorem there is some subgroup $H \subseteq G$ such that |H| = p. Setting $L = K^H$, by the fundamental theorem of Galois theory, $p = |H| = [K : K^H]$ whence $[K^H : F] = q$ as desired.

(b): There exists a **unique** field M with $F \subset M \subset K$ and [M : F] = p.

Proof. Let $G = \operatorname{Gal}(K/F)$. Let n_q denote the number of Sylow q-subgroups of G. Then as $n_q \mid p$ and $n_q \equiv 1 \mod q$, the restriction that q > p forces $n_q = 1$. Thus there is a unique subgroup of Q of G of order q, whence by the fundamental theorem of Galois theory there is a unique intermediate subfield $M = K^Q$ of K/F with [K:M] = q or equivalently [M:F] = p.

Problem 5

Prove the following analogue of Kummer's theorem for abelian extensions: Let $n \in \mathbb{N}$ and let F be a field containing a primitive n^{th} root of unity.

- (a): Let K/F be a finite Galois extension such that $G = \operatorname{Gal}(K/F)$ is abelian of exponent n. Then there exists $a_1, \ldots, a_t \in F$ such that $K = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_t})$. More precisely, there exists $\alpha_1, \ldots, \alpha_t \in K$ such that $K = F(\alpha_1, \ldots, \alpha_t)$ and $\alpha_i^n \in F$ for all i.
- (b): Conversely, suppose that $K = F(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_t})$ for some $a_1, \dots, a_t \in F$. Prove that K/F is Galois and $G = \operatorname{Gal}(K/F)$ is abelian of exponent n. **Hint:** For part (b) use one of the problems from the previous homework.

Problem 6

Let F be a field containing a primitive n^{th} root of unity. Let $a, b \in F$ be such that the polynomials $f(x) = x^n - a$, and $g(x) = x^n - b$ are both irreducible over F. Consider the Kummer extensions $F(\alpha)$, $F(\beta)$, where α is a root of f(x) and β is a root of g(x). Prove that $F(\alpha) = F(\beta)$ if and only if $\beta = c\alpha^r$, for some $c \in F$ and some integer r which is coprime to n (equivalently, if and only if $b = c^n a^r$, for some $c \in F$ and some (r, n) = 1).