

CANDIDATE: CAROLINA DA SILVA CORREA ORIENTOR: PROF MARCOS M. ALEXANDRINO

Sumário

Parte 1. Resultados esperados e obtidos	1
1. Plano Inicial	1
1.1. Resumo	1
Parte 2. Coletânia de Resultados	1
2. Motivação	2
2.1. Campos Vetoriais e Fluxos	2
2.2. Sistemas de Controle	2
3. Cálculo Cronológico	3
3.1. Estruturas em uma variedade em termos da álgebra $C^{\infty}(M)$	4
3.2. Topologia em $C^{\infty}(M)$	4
3.3. Familias à 1 parâmetro de funcionais e operadores	5
3.4. Campos não-autônomos e a exponencial cronológica	6
3.5. O colchete de Lie e a Adjunta	7
4. O Teorema da Órbita	8
4.1. Demonstração do Teorema de Sussmann	8
4.2. Folheações	10
4.3. Uma melhor descrição de $T_p\mathcal{O}_p$	12
4.4. Integração de Distribuições	13
Referências	15

Parte 1. Resultados esperados e obtidos

1. Plano Inicial

1.1. Resumo.

Parte 2. Coletânia de Resultados

Aqui, segue uma coletânia e um resumo do que foi estudado no período.

2.1. Campos Vetoriais e Fluxos. Dado um campo vetorial $X \in \mathfrak{X}(M)$, podemos considerar o sistema dinâmico dado pela seguinte equação diferencial:

$$\begin{cases} \gamma'(t) = X_{\gamma(t)} \\ \gamma(0) = p \end{cases}$$

onde $p \in M$ e $\gamma : I \subseteq \mathbb{R} \to M$ é uma curva (suave) em M.

Pelo teorema de existência e unicidade das soluções de EDOs, cada $p \in M$ dá origem à uma única solução maximal $\gamma_p : I_p \to M$ do sistema dinâmico.

Mais ainda, dado $t \in \mathbb{R}$, sendo $M_t = \{p \in M : t \in I_p\}$, cada M_t é um aberto de M, e o mapa

$$P^t: M_t \to M_{-t}$$
$$p \mapsto \gamma_p(t)$$

é um difeomorfismo.

A família à 1 parâmetro de difeomorfismos $t\mapsto P^t$ é dita o fluxo de X, e vamos denotá-la por $P^t=e^{tX}$.

O campo vetorial X é dito completo se $M_t = M$ para cada $t \in \mathbb{R}$, ou equivalentemente se $I_p = \mathbb{R}$ para cada $p \in M$. É notável que todo campo vetorial com suporte compacto é completo.

2.2. Sistemas de Controle. No sistema dinâmico gerado por um único campo vetorial $X \in \mathfrak{X}(M)$, os estados futuros são completamente determinados pelo estado presente. Mais especificamente, se o estado do sistema no tempo t é dado por p(t), então $p(t) = e^{(t-t_0)X}(p(t_0))$ para qualquer t_0 , e em particular $p(t) = e^{tX}p(0)$.

Um sistema de controle geométrico nada mais é que uma família de campos vetoriais $\mathcal{F} \subseteq \mathfrak{X}(M)$, onde interpretamos que podemos escolher, controlar, qual dos campos em \mathcal{F} será utilizado para determinar o futuro do sistema, e que podemos trocar a escolha de campo a qualquer momento.

É usual parametrizarmos a família \mathcal{F} utilizando algum conjunto U (que a princípio não supomos possuir nenhuma estrutura adicional), escrevendo $\mathcal{F} = \{X_u\}_{u \in U}$. A variável u é dita o parâmetro de controle, e o conjunto U o espaço de parâmetros de controle.

Uma função $u: \mathbb{R} \to U$ (chamada função controle) e um ponto $p \in M$ determinam o seguinte sistema dinâmico:

$$\begin{cases} \gamma'(t) = (X_{u(t)})_{\gamma(t)} \\ \gamma(0) = p \end{cases}$$

A família à um parâmetro de campos $t\mapsto X_{u(t)}$ é dita um campo vetorial não-autônomo. Se essa família for regular o suficiente (condições específicas são dadas na parte 4), sempre existirá uma solução maximal $\gamma:I_p\to M$ absolutamente contínua e que satisfaz a equação diferencial em quase todo ponto (no sentido de medidas).

Um caso particular relevante é quando a função u é constante por partes. Nesse caso, dado um tempo $t \in \mathbb{R}$, existem $0 = T_0 < T_1 < \cdots < T_k = t$ tal que u é constante (T_i, T_{i+1}) para cada $0 \le i < k$. Sendo:

$$u((T_i, T_{i+1})) = \{u_{i+1}\}\$$
$$t_{i+1} = T_{i+1} - T_i$$

A solução da equação diferencial é dada por:

$$\gamma(t) = e^{t_k X_{u_k}} \circ \dots \circ e^{t_1 X_{u_1}}(p)$$

É bem comum (e é o que faremos pelo restante desse texto) tratarmos apenas de funções controle constantes por partes.

Algo interessante a ser estudado são quais pontos de M podem ser alcançados por um sistema de controle partindo de algum ponto inicial. A propriedade de podermos chegar em qualquer ponto final partindo de qualquer ponto inicial é chamada controlabilidade.

Dado um sistema de controle $\mathcal{F} \subseteq \mathfrak{X}(M)$ e um ponto $p \in M$ o conjunto

$$\mathcal{A}_{p} = \{ e^{t_{k}X_{k}} \circ \dots \circ e^{t_{1}X_{1}}(p) : t_{1}, \dots, t_{k} > 0; X_{1}, \dots X_{k} \in \mathcal{F} \}$$

é chamado de conjunto alcançável do sistema de controle \mathcal{F} .

Relacionadas aos conjuntos alcançáveis, e usualmente possuindo uma estrutura mais simples, são as órbitas do sistema de controle. Elas são os conjuntos da forma

$$\mathcal{O}_p = \{ e^{t_k X_k} \circ \dots \circ e^{t_1 X_1}(p) : t_1, \dots, t_k \in \mathbb{R}; X_1, \dots X_k \in \mathcal{F} \}$$

As órbitas de um sistema de controle podem ser vistas como as órbitas da ação do menor pseudogrupo gerado pelos fluxos dos campos em \mathcal{F} .

É notável que os conjuntos alcançáveis sempre são subconjuntos das órbitas. Como as órbitas possuem uma estrutura bem simples (de variedades imersas, como discutido na seção 5), estudá-las nos permite construir uma boa base para o estudo dos conjuntos alcançáveis.

3. Cálculo Cronológico

Nesta sessão, desenvolveremos o chamado Cálculo Cronológico, que nos providenciará uma notação muito útil para trabalharmos com familias de campos de vetores (ou seja, sistemas de controle) e em particular será útilizada na prova do Teorema da Órbita.

O que faremos é criar um formalismo que nos permita tratar o grupo de difeomorfismos $\operatorname{Diff}(M)$ como um grupo de Lie (de dimensão infinita) com álgebra de Lie $\mathfrak{X}(M)$. Não faremos efetivamente isso, ou seja, não providenciaremos $\operatorname{Diff}(M)$ com uma estrutura de variedade, simplesmente desenvolveremos um formalismo que nos permita utilizar notações análogas às de grupos de Lie.

Enunciaremos vários resultados sem demonstrá-los. As demonstrações podem ser encontradas no capítulo 2 de [1].

3.1. Estruturas em uma variedade em termos da álgebra $C^{\infty}(M)$. Seja M uma variedade, e denote por $C^{\infty}(M)$ a \mathbb{R} -álgebra das funções suaves $M \to \mathbb{R}$, com soma e multiplicação definidas pontualmente:

$$(a+b)(p) = a(p) + b(p)$$
$$(a \cdot b)(p) = a(p)b(p)$$
$$(\lambda \cdot a)(p) = \lambda a(p)$$

para $a, b \in C^{\infty}(M)$.

Vamos mostrar como podemos expressar algumas estruturas de uma variedade (em particular, pontos, difeomorfismos e campos vetoriais) em termos de $C^{\infty}(M)$.

Um ponto $p \in M$ define um homomorfismo de álgebras $\hat{p}: C^{\infty}(M) \to \mathbb{R}$ dado pela avaliação $\hat{p}: f \mapsto f(p)$. Reciprocamente, temos que:

Proposição 3.1. Dado um homomorfismo não-trivial de álgebras $\varphi : C^{\infty}(M) \to \mathbb{R}$, existe um ponto $p \in M$ tal que $\varphi = \hat{p}$

Podemos também reconstruir a topologia e a estrutura suave de M à partir de $C^{\infty}(M)$, pois uma sequência de pontos p_i converge para p se e somente se, para todo $a \in C^{\infty}(M)$, $\hat{p}_i(a)$ converge para $\hat{p}(a)$, e uma função $f: M \to \mathbb{R}$ é suave se e somente se f é da forma $p \mapsto \hat{p}(a)$ para algum $a \in C^{\infty}(M)$.

Similarmente, um difeomorfismo $P: M \to M$ define um isomorfismo de álgebras $\hat{P}: C^{\infty}(M) \to C^{\infty}(M)$, dado pela composição $\hat{P}: a \mapsto a \circ P$. Reciprocamente:

Proposição 3.2. Dado um isomorfismo de álgebras $A: C^{\infty}(M) \to C^{\infty}(M)$, existe um difeomorfismo $P \in Diff(M)$ tal que $A = \hat{P}$

Além disso, um vetor $X_p \in TM$ pode ser definido como uma derivação pontual em p, $X_p : C^{\infty}(M) \to \mathbb{R}$ (ou seja, um mapa linear tal que $X_p(ab) = a(p)X_p(b) + X_p(a)b(p)$), e dessa forma um campo de vetores $X \in \mathfrak{X}(M)$ define uma derivação $\hat{X} : C^{\infty}(M) \to C^{\infty}(M)$ (ou seja, um mapa linear tal que $\hat{X}(ab) = a\hat{X}(b) + \hat{X}(a)b$), dado por $\hat{X}(a)(p) = X_pa$. Reciprocamente, dada uma derivação $D : C^{\infty}(M) \to C^{\infty}(M)$, temos um campo de vetores X tal que $D = \hat{X}$, dado por $X_pa = D(a)(p)$.

Portanto, a partir de agora, vamos identificar pontos de M com homomorfismos nãotriviais de álgebras $C^{\infty}(M) \to \mathbb{R}$, difeomorfismos de M com isomorfismos de álgebras $C^{\infty}(M) \to C^{\infty}(M)$, e campos vetoriais de M com derivações $C^{\infty}(M) \to C^{\infty}(M)$.

Note que avaliar um campo X num ponto p é o mesmo que compor p com X, isto é, $X_p = p \circ X$. O mesmo vale para difeomorfismos P, ou seja, $P(p) = p \circ P$.

- 3.2. **Topologia em** $C^{\infty}(M)$. Vamos definir uma topologia em $C^{\infty}(M)$ da seguinte maneira:
 - Escolha alguma imersão $M \to \mathbb{R}^N$, e sejam $h_i \in \mathfrak{X}(M)$ a projeção ortogonal de $\frac{\partial}{\partial x^i} \in \mathfrak{X}(\mathbb{R}^N)$ no espaço tangente à M, ponto à ponto.

• Dado $s \geq 0$, e $K \subseteq M$ um compacto, defina a seguinte seminorma:

$$||a||_{s,K} = \sup\{|h_{i_1} \cdot \dots \circ h_{i_l}a(p)| : a \in C^{\infty}(M), p \in K, 0 \le l \le s\}$$

• Coloque em $C^{\infty}(M)$ a topologia gerada pelas seminormas $\| \|_{s,K}$

A topologia descrita acima não depende da escolha de imersão $M \to \mathbb{R}^N$, e da à $C^{\infty}(M)$ a estrutura de um espaço de Frechét. É possível demonstrar que todo campo $V \in \mathfrak{X}(M)$ e todo difeomorfismo $P \in \text{Diff}(M)$, quando considerados como funcionais lineares em $C^{\infty}(M)$, são contínuos.

- 3.3. Familias à 1 parâmetro de funcionais e operadores. Como $C^{\infty}(M)$ é um espaço de Frechét, dada uma familia à 1 parâmetro $t \mapsto a_t \in C^{\infty}(M)$, podemos falar de continuidade, diferenciabilidade e integrabilidade dessas familias. Considere uma família $t \mapsto a_t$. Definimos as seguinte propriedades:
 - Continuidade e diferenciabilidade da maneira usual em espaços de Frechét.
 - a_t é mensurável se, para cada $p \in M$, $t \mapsto a_t(p)$ é mensurável.
 - a_t é localmente integrável se ela é mensurável, e, para cada seminorma $\|\|_{s,K}$, $t_0, t_1 \in \mathbb{R}$, temos que:

$$\int_{t_0}^{t_1} \|a_t\|_{s,K} dt < \infty$$

Dada uma família a_t localmente integrável e $t_0, t_1 \in \mathbb{R}$, podemos definir a integral

$$\int_{t_0}^{t_1} a_t dt \in C^{\infty}(M)$$

que obedece as propriedades usuais de integrais

• a_t é absolutamente contínua se existe uma família b_t integrável tal que

$$a_t = b_{t_0} + \int_{t_0}^t b_{t_0} dt$$

• a_t é localmente limitada se para cada seminorma $\|\|_{s,K}$ e cada intervalo compacto $I \subseteq \mathbb{R}$, existe uma constante $C_{s,K,I}$ tal que, para $t \in I$, $\|a_t\|_{s,K} \leq C_{s,K,I}$.

Dada uma família $t \mapsto A_t$ de funcionais (mapas $C^{\infty}(M) \to \mathbb{R}$) ou operadores (mapas $C^{\infty}(M) \to C^{\infty}(M)$) lineares em $C^{\infty}(M)$, dizemos que A_t tem alguma propriedade (continuidade, diferenciabilidade, integrabilidade, etc.) se para cada $a \in C^{\infty}(M)$, $t \mapsto A_t a$ tem essa propriedade.

Mais ainda, definimos fracamente integrais e derivadas dessas famílias, ou seja, sendo A_t uma família de funcionais ou operadores lineares em $C^{\infty}(M)$, definimos:

 \bullet Se A_t é diferenciável, definimos

$$\frac{\mathrm{d}}{\mathrm{d}t}A_t: a \mapsto \frac{\mathrm{d}}{\mathrm{d}t}(A_t a)$$

• Se A_t é localmente integrável, definimos

$$\int_{t_0}^{t_1} A_t dt : a \mapsto \int_{t_0}^{t_1} (A_t a) dt$$

Integrais e derivadas de funcionais e operadores lineares também são funcionais ou operadores lineares, pela linearidade de integrais e derivadas.

Além disso, derivadas de familias de operadores obedecem a regra de Leibniz, isto é:

$$\frac{\mathrm{d}}{\mathrm{d}t}A_t \circ B_t = \frac{\mathrm{d}}{\mathrm{d}t}A_t \circ B_t + A_t \circ \frac{\mathrm{d}}{\mathrm{d}t}B_t$$

3.4. Campos não-autônomos e a exponencial cronológica. Um campo vetorial não autônomo é uma família à 1 parâmetro $t \mapsto X_t$ de campos vetoriais (ou seja, $X_t \in \mathfrak{X}(M)$) que seja localmente limitada. Dado um campo vetorial não autônomo, podemos considerar a EDO:

$$\begin{cases} \gamma'(t) = \gamma(t) \circ X_t \\ \gamma(0) = p_0 \end{cases}$$

Utilizando o teorema de Caratheodory para soluções de EDOs e o fato de X_t ser localmente limitado, podemos demonstrar que existe uma solução maximal $\gamma_{p_0}:I_{p_0}\to M$ Lipchitz contínua e diferenciável para quase todo $t\in I_{p_0}$ que satisfaz a EDO para quase todo $t\in I_{p_0}$.

Mais ainda, podemos demonstrar que $p \mapsto \gamma_p(t)$ é suave para cada $t \in \mathbb{R}$ fixo, e portanto, a família $P^t : p \mapsto \gamma_p(t)$ é uma família a um parâmetro de difeomorfismo de M. Denotamos

$$P^t = \overrightarrow{\exp} \int_0^t X_\tau d\tau$$

a exponecial cronológica pela direita.

Ela é a solução única da seguinte equação diferencial:

$$\begin{cases} \dot{P}^t = P^t \circ X_t \\ P^0 = \operatorname{Id} \end{cases}$$

Considere o inverso $Q^t = (P^t)^{-1}$. Ele satisfaz $P^t \circ Q^t = \text{Id}$, e portanto:

$$\dot{P}^t \circ Q^t + P^t \circ \dot{Q}^t = 0 \implies P^t \circ X_t \circ Q^t + P^t \circ \dot{Q}^t \implies \dot{Q}^t = (-X_t) \circ Q^t$$

Dessa forma denotamos:

$$Q^t = \overleftarrow{\exp} \int_0^t (-X_\tau) d\tau$$

a exponecial cronológica pela esquerda.

O fluxo e^{tX} de um campo vetorial é um caso específico da exponecial cronológica, mais especificamente quando X_t é a constante X. Ele satisfaz:

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{tX} = X \circ e^{tX} = e^{tX} \circ X$$

3.5. O colchete de Lie e a Adjunta. Considere dois campos $X, Y \in \mathfrak{X}(M)$. A composição $X \circ Y$ não é um campo (ou seja, uma derivação de $C^{\infty}(M)$):

$$(X \circ Y)(ab) = X(Y(a)b + aY(b)) = (X \circ Y)(a)b + Y(a)X(b) + X(a)Y(b) + a(X \circ Y)(b)$$

No entando, é facil verificar que $X \circ Y - Y \circ X$ é um campo:

$$(X \circ Y - Y \circ X)(ab) = (X \circ Y - Y \circ X)(a)b + a(X \circ Y - Y \circ X)(b)$$

Denotamos esse campo por:

$$[X,Y] = X \circ Y - Y \circ X$$

o colchete de Lie de X e Y. Ele possui as seguintes propriedades:

- (Anti-comutatividade) [X, Y] = -[Y, X]
- (Identidade de Jacobi/Regra de Leibniz) [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

E portanto $\mathfrak{X}(M)$ com o colchete de Lie forma uma álgebra de Lie.

O significado geométrico do colchete de Lie pode ser melhor entendido utilizando pullbacksde campos vetoriais por difeomorfismos. Para fazermos isso, vamos primeiro expressálos usando a linguagem do cálculo cronológico.

Dessa forma, seja $X_p \in T_pM$, $P \in \text{Diff}(M)$, e $\gamma : I \to M$ uma curva com $\gamma'(0) = X_p$. Seja ainda $a \in C^{\infty}(M)$. Note que:

$$(dP_pX_p)a = \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\gamma(t)\circ P\right)a = \left(\left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\gamma(t)\right)\circ P\right)a = (X_p\circ P)a$$

E portanto $dP_pX_p = X_p \circ P$.

O pullback de um campo vetorial $X \in \mathfrak{X}(M)$ por $P \in \text{Diff}(M)$ é dado por:

$$p\circ (P^*X)=d(P^{-1})_{P(p)}X_{P(p)}=p\circ P\circ X\circ P^{-1}$$

E portanto $(P^*X) = P \circ X \circ P^{-1}$. Denotamos:

$$(\mathrm{Ad}P)X = P \circ X \circ P^{-1}$$

É facilmente verificável que $AdP : \mathfrak{X}(M) \to \mathfrak{X}(M)$ é um automorfismo de álgebras de Lie.

Chamamos Ad : $Diff(M) \to Aut(\mathfrak{X}(M))$) de representação adjunta, pois possui propriedades bastante similares à representação adjunta de grupos de Lie. Da mesma maneira que em grupos de Lie, denotamos:

$$(\operatorname{ad}X)Y = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (\operatorname{Ad}e^{tX})Y$$

.

Verificarmos que:

$$(\operatorname{ad} X)Y = \frac{\operatorname{d}}{\operatorname{d} t} \bigg|_{t=0} (e^{tX} \circ Y \circ e^{-tX}) = X \circ Y - Y \circ X = [X, Y]$$

ad : $\mathfrak{X}(M) \to \operatorname{Der}(\mathfrak{X}(M))$ é a representação adjunta da álgebra de Lie $\mathfrak{X}(M)$ (onde $Der(\mathfrak{X}(M))$ denota as derivações de $\mathfrak{X}(M)$.

4. O Teorema da Órbita

Nessa seção discutiremos as órbitas de um sistema de controle e alguns conceitos relacionados (sistemas de controle localmente finitamente gerados, integração de distribuições singulares e não-singulares). Para simplificarmos a notação, consideraremos que todos os campos são completos, mas a discussão a seguir pode ser facilmente traduzida para campos não completos utilizando formalismos de pseudogrupos e feixes.

O teorema que descreve a estrutura das órbitas é o seguinte:

Teorema 4.1 (Teorema da Órbita/Teorema de Sussmann). Seja $\mathcal{F} \subseteq \mathfrak{X}(M)$ e $p_0 \in M$. Então:

- \mathcal{O}_{p_0} é uma subvariedade imersa e conexa de M• $T_p\mathcal{O}_{p_0} = span\{p \circ (Ad\ P)X : P \in \mathcal{P}, X \in \mathcal{F}\}$

Onde \mathcal{P} é o grupo gerado pelos fluxos dos campos em \mathcal{F} . Explicitamente:

$$\mathcal{P} = \{ e^{t_1 X_1} \circ \cdots \circ e^{t_k X_k} : t_1, \dots, t_k \in \mathbb{R}; X_1, \dots X_k \in \mathcal{F} \}$$

4.1. **Demonstração do Teorema de Sussmann.** Primeiramente, imagine que \mathcal{O}_{p_0} é, de fato, uma variedade imersa, e seja $p \in \mathcal{O}_{p_0}$. Para cada $P \in \mathcal{P}, X \in \mathcal{F}, t \mapsto p \circ P \circ e^{tX} \circ P^{-1}$ é uma curva em \mathcal{O}_{p_0} , e portanto $p \circ (AdP)X \in T_p\mathcal{O}_{p_0}$ (como no esquema abaixo).

Dessa forma, vamos definir:

$$\Pi_p = \operatorname{span}\{p \circ (\operatorname{Ad} P)X : P \in \mathcal{P}, X \in \mathcal{F}\}\$$

Esse será nosso candidato à espaço tangente $T_p \mathcal{O}_{p_0}$.

Lema 4.1. Para cada $p \in \mathcal{O}_{p_0}$, dim $\Pi_p = \dim \Pi_{p_0}$

Demonstração: Necessariamente existe $Q \in \mathcal{P}$ tal que $p = p_0 \circ Q$. Considere o isomorfismo $dQ_{p_0}: T_{p_0}M \to T_pM$. Dado um elemento arbitrário $p_0 \circ (\mathrm{Ad}P)X \in \Pi_{p_0}$, temos que:

$$dQ_{p_0}(p_0 \circ (\operatorname{Ad}P)X \in \Pi_{p_0}) = p_0 \circ P \circ X \circ P^{-1} \circ Q =$$

$$= p_0 \circ Q \circ Q^{-1} \circ P \circ X \circ P^{-1} \circ Q = (p_0 \circ Q) \circ (\operatorname{Ad}(Q^{-1} \circ P)X) \in \Pi_p$$

E dessa forma, $dQ_{p_0}(\Pi_{p_0}) \subseteq \Pi_p$. Similarmente, $d(Q^{-1})_p(\Pi_p) \subseteq \Pi_{p_0}$. Portanto, $\Pi_p \in \Pi_{p_0}$ tem a mesma dimensão.

Introduzimos a notação:

$$(Ad\mathcal{P})\mathcal{F} = \{(Ad\ P)X : P \in \mathcal{P}, X \in \mathcal{F}\}\$$

Vamos agora colocar uma topologia e estrutura suave em \mathcal{O}_{p_0} .

Seja $m = \dim \Pi_{p_0}$. Para um ponto arbitrário $p \in \mathcal{O}_{p_0}$, sejam $V_1, \ldots, V_m \in (\mathrm{Ad}\mathcal{P})\mathcal{F}$ tais que $\{p \circ V_1, \ldots, p \circ V_m\}$ seja uma base de Π_p . Introdizimos o mapa:

$$\psi_p: (t_1, \dots, t_m) \mapsto p \circ e^{t_1 V_1} \circ \dots \circ e^{t_m V_m}$$

Primeiramente, demonstramos que a imagem de ψ_p está contida em \mathcal{O}_{p_0} . De fato, cada V_i pode ser escrito como $V_i = (\mathrm{Ad}P_i)X_i$ para $P_i \in \mathcal{P}$ e $X_i \in \mathcal{F}$. Dessa forma:

$$e^{tV_i} = e^{t(\operatorname{Ad}P_i)X_i} = P_i \circ e^{tX_i} \circ P_i^{-1} \in \mathcal{P}$$

e portanto $\psi_p(t_1,\ldots,t_m) \in \mathcal{O}_{p_0}$.

Como

$$\left. \frac{\partial \psi_p}{\partial t_i} \right|_0 = q \circ V_i$$

 $\psi_p|_O$ é uma imersão para uma vizinhaça $O\subseteq\mathbb{R}^m$ suficiente pequena da origem.

Os conjuntos da forma $\psi_p(O)$, onde O é uma vizinhaça da origem tal que $\psi_p|_O$ é uma imersão, são candidatos à base de uma topologia em \mathcal{O}_{p_0} . Vamos demonstrar algumas propriedades desses conjuntos:

• Para $t \in O$, $(d\psi_p)_t(T_t\mathbb{R}^m) = \Pi_{\psi_p(t)}$. Como o posto de $\psi_p|_O$ é m e dim $\Pi_{\psi_p(t)} = m$, basta demonstrarmos que $\frac{\partial \psi_p}{\partial t_i}\Big|_t \in \Pi_{\psi_p(t)}$. Temos que:

$$\left.\frac{\partial \psi_p}{\partial t_i}\right|_t = \left.\frac{\partial}{\partial t_i}\right|_t p \circ e^{t_1 V_1} \circ \cdots \circ e^{t_m V_m} = p \circ e^{t_1 V_1} \circ \cdots \circ e^{t_i V_i} \circ V_i \circ e^{t_{i+1} V_{i+1}} \circ \cdots \circ e^{t_m V_m} = 0$$

 $= p \circ e^{t_1 V_1} \circ \cdots \circ e^{t_m V_m} \circ e^{-t_m V_m} \circ \cdots \circ e^{-t_{i+1} V_{i+1}} \circ V_i \circ e^{t_{i+1} V_{i+1}} \circ \cdots \circ e^{t_m V_m}$ Sendo $Q = e^{t_{i+1} V_{i+1}} \circ \cdots \circ e^{t_m V_m}$, temos:

$$\left. \frac{\partial \psi_p}{\partial t_i} \right|_t = \psi_p(t) \circ (\operatorname{Ad}Q^{-1}) V_i \in \Pi_{\psi_p(t)}$$

• Os conjuntos da forma $\psi_p(O)$ formam uma base para uma topologia em \mathcal{O}_{p_0} . O espaço topológico gerado por essa base será denotado por $\mathcal{O}_{p_0}^{\mathcal{F}}$

É sufiente demonstrarmos que dado $\psi_p(O)$ e $p' \in \psi_p(O)$, para O' pequeno o suficiente, $\psi_{p'}(O') \subseteq \psi_p(O)$

Sejam $V'_1, \ldots, V'_m \in \mathcal{F}$ os campos tais que

$$\psi_{p'}(t_1,\ldots,t_m) = p' \circ e^{t_1 V_1'} \circ \cdots \circ e^{t_m V_m'}$$

Considere primeiramente a curva $t_1 \mapsto p' \circ e^{t_1 V_1'}$. Como para t_1 pequeno o suficiente sua velocidade $(p' \circ e^{t_1 V_1'}) \circ V_1'$ pertence à $T_{p' \circ e^{t_1 V_1'}} \psi_{p'}(O') = \Pi_{p' \circ e^{t_1 V_1'}} = T_{p' \circ e^{t_1 V_1'}} \psi_p(O)$, para t_1 pequeno o sufiente $(p' \circ e^{t_1 V_1'}) \in \psi_p(O)$.

Aplicando o mesmo argumento à curva $t_2 \mapsto p' \circ e^{t_1 V_1'} \circ e^{t_2 V_2'}$, obtemos que $p' \circ e^{t_1 V_1'} \circ e^{t_2 V_2'} \in \psi_p(O)$ para t_1 e t_2 pequenos o suficiente, e prosseguindo indutivamente, obtemos que $\psi_{p'}(t) \in \psi_p(O)$ para t pequeno o suficiente.

• A espaço $\mathcal{O}_{p_0}^{\mathcal{F}}$ é conexo.

Basta notarmos que os mapas $t \mapsto p \circ e^{tX}$ são contínuos em $\mathcal{O}_{p_0}^{\mathcal{F}}$ para $X \in \mathcal{F}$, e portanto quaisquer dois pontos de $\mathcal{O}_{p_0}^{\mathcal{F}}$ podem ser conectados por curvas contínuas e portanto $\mathcal{O}_{p_0}^{\mathcal{F}}$ é conexo.

Induzimos agora uma estrutura suave em $\mathcal{O}_{p_0}^{\mathcal{F}}$ declarando os mapas $\psi_p|_O$ como cartas. Note que $T_p\mathcal{O}_{p_0}^{\mathcal{F}}=\Pi_p$.

Isso conclui a demonstração do Teorema de Órbita.

- 4.2. Folheações. Considere uma partição $L = \{L_{\alpha}\}$ de M em variedades conexas imersas. As variedades imersas L_{α} são chamadas de folhas da partição, e a folha que contém um ponto $p \in M$ é escrita como L_p .
- **Definição 4.1.** Uma partição $\{L_{\alpha}\}$ de M em variedades conexas imersas é dita uma folheção singular se para cada $p \in M$ e cada vetor $v \in T_pL_p$, existe um campo $X \in \mathfrak{X}(M)$ tangente as folhas da partição tal que $X_p = v$.

Definição 4.2. Uma folheação singular $\{L_{\alpha}\}$ é dita regular se todas as suas folhas possuem a mesma dimensão.

Teorema 4.2. As órbitas $\{\mathcal{O}_p\}$ de um sistema de controle \mathcal{F} formam uma folheação singular.

Demonstração: Sejam $V_1, \ldots, V_m \in (Ad\mathcal{P})\mathcal{F}$ tais que $\{p \circ V_1, \ldots, p \circ V_m\}$ seja uma base de $T_p\mathcal{O}_p$. Então, qualquer $v \in T_p\mathcal{O}_p$ pode ser escrito como $v = \sum t_i(p \circ V_i)$.

Simplesmente defina o campo $X = \sum t_i V_i$. Como cada $V_i \in (Ad\mathcal{P})\mathcal{F}$, para cada $q \in M$, $X_q = \sum t_i (q \circ V_i) \in T_q \mathcal{O}_q$.

Dada uma folheação singular L, indicamos por $\mathfrak{X}(L)$ o conjunto dos campos em M tangentes à folheação, ou seja:

$$\mathfrak{X}(L) = \{ X \in \mathfrak{X}(M) : \forall p \in M, X_p \in T_p L_p \}$$

Podemos facilmente verificar, pontualmente, que $\mathfrak{X}(L)$ é um $C^{\infty}(M)$ -submódulo de $\mathfrak{X}(M)$:

Proposição 4.1. $\mathfrak{X}(L)$ é um $C^{\infty}(M)$ -submódulo de $\mathfrak{X}(M)$

Demonstração: Sejam $X, Y \in \mathfrak{X}(L), f \in C^{\infty}(M)$. Temos que:

- $\bullet \ (X+Y)_p = X_p + Y_p \in T_p L_p$
- $(fX)_p = f(p)X_p \in T_pL_p$

Além disso, podemos demonstrar:

Proposição 4.2. $\mathfrak{X}(L)$ é uma subálgebra de Lie de $\mathfrak{X}(M)$

Demonstração: Tendo em vista a proposição anterior, basta demonstrarmos que dados $X, Y \in \mathfrak{X}(L), [X, Y] \in \mathfrak{X}(L).$

Considere a família à 1 parâmetro $t \mapsto (\mathrm{Ad}e^{tX})Y$. Como e^{tX} preserva a folha onde estão os pontos (isto é, $p \in L_{\alpha} \iff p \circ e^{tX} \in L_{\alpha}$), para cada $p \in M$, $p \circ (\mathrm{Ad}e^{tX})Y \in T_{p}L_{p}$, e portanto:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} p \circ (\mathrm{Ad}e^{tX})Y = p \circ (\mathrm{ad}X)Y = p \circ [X,Y] \in T_p L_p$$

Ou seja, $[X,Y] \in \mathfrak{X}(L)$

Com isso, podemos fazer uma estimativa inferior do espaço tangente às órbitas de um sistema de controle:

Definição 4.3. Seja $\mathcal{F} \subseteq \mathfrak{X}(M)$. Definimos Lie \mathcal{F} como sendo a menor subálgebra de Lie de $\mathfrak{X}(M)$ que contenha \mathcal{F} e também seja um $C^{\infty}(M)$ -submódulo de $\mathfrak{X}(M)$.

Note que a definição acima está bem definida pois a intersecção de uma família de subálgebras de Lie que também são $C^{\infty}(M)$ -submódulos de $\mathfrak{X}(M)$ também é uma subálgebra de Lie e um $C^{\infty}(M)$ -submódulo.

Definição 4.4. $Lie_p\mathcal{F} = \{X_p : X \in Lie\mathcal{F}\}$

Indicando por \mathcal{O} a folheção de M nas órbitas de \mathcal{F} , é claro que Lie $\mathcal{F} \subseteq \mathfrak{X}(\mathcal{O})$. Dessa forma, temos:

Proposição 4.3. $Lie_p\mathcal{F} \subseteq T_p\mathcal{O}_p$

4.3. Uma melhor descrição de $T_p\mathcal{O}_p$. Existe um caso específico, no qual famílias da campos analíticos são inclusas, onde podemos melhor descrever o espaço tangente à uma órbita $T_p\mathcal{O}_p$. É o caso das famílias localmente finitamente geradas. Vamos agora explorar este caso.

Definição 4.5. Um $C^{\infty}(M)$ -submódulo $\mathcal{V} \subseteq \mathfrak{X}(M)$ é dito finitamente gerado se exitem campos V_1, \ldots, V_k tal que:

$$\mathcal{V} = \{ \sum a_i V_i : a_i \in C^{\infty}(M) \}$$

O conjunto V_1, \ldots, V_k é dito um gerador de \mathcal{V} .

Proposição 4.4. Seja $\mathcal{V} \subseteq \mathfrak{X}(M)$ um $C^{\infty}(M)$ -submódulo finitamente gerado, e $X \in \mathfrak{X}(M)$. Então, se para todo $V \in \mathcal{V}$, temos que:

$$(adX)V \in \mathcal{V}$$

Segue que:

$$(Ade^{tX})V \in \mathcal{V}$$

Para todo $V \in \mathcal{V}$, $t \in \mathbb{R}$.

Demonstração: Seja V_1, \ldots, V_k um conjunto gerador de \mathcal{V} . Por hipótese, temos:

$$[X, V_i] = \sum a_{ij} V_j$$

É suficiente mostrarmos que para cada $1 \le i \le k$ e cada $t \in \mathbb{R}$, temos que:

$$V_i(t) = (\mathrm{Ad}e^{tX})V_i \in \mathcal{V}$$

Diferenciando $V_i(t)$, obtemos a seguinte equação diferencial:

$$\dot{V}_i(t) = (\mathrm{Ad}e^{tX})[X, V_i] = \sum (\mathrm{Ad}e^{tX})(a_{ij}V_j) = \sum (e^{tX}a_{ij})V_j(t)$$

Definindo $a_{ij}(t) = e^{tX}a_{ij}$, e avaliando num ponto $p \in M$:

$$(p \circ V_i)(t) = \sum p(a_{ij}(t))(p \circ V_j(t))$$

Defina a matriz $A_p(t) = [p(a_{ij}(t))]$. Se $\Gamma_p(t) = [\gamma_{p,ij}(t)]$ é a solução da EDO:

$$\dot{\Gamma}_p = A_p(t)\Gamma_p$$
 $\Gamma_p(0) = \mathrm{Id}$

Então, como $p\mapsto A_p(t)$ é suave, $p\mapsto \Gamma_p(t)$ também é suave. Ou seja, as funções $\gamma_{ij}: p\mapsto \gamma_{p,ij}$ são suaves.

Dessa forma, $V_i(t)$ pode ser escrito como:

$$V_i(t) = \sum \gamma_{ij}(t)V_i(0) = \sum \gamma_{ij}V_i \in \mathcal{V}$$

Vamos introduzir agora submódulos localmente finitamente gerados.

Definição 4.6. Dada uma família $\mathcal{F} \subseteq \mathfrak{X}(M)$, e $U \subseteq M$ um aberto, definimos:

$$\mathcal{F}|_U = \{X|_U : X \in \mathcal{F}\} \subseteq \mathfrak{X}(U)$$

Definição 4.7. Um $C^{\infty}(M)$ -submódulo $\mathcal{V} \subseteq \mathfrak{X}(M)$ é dito localmente finitamente gerado se para cada $p \in M$, existe uma vizinhaça aberta U de p tal que $\mathcal{V}|_{U}$ é finitamente gerado.

E demonstramos um análogo à proposição 4.3 para submódulos localmente finitamente gerados:

Proposição 4.5. Seja $\mathcal{V} \subseteq \mathfrak{X}(M)$ um $C^{\infty}(M)$ -submódulo localmente finitamente gerado, $e \ X \in \mathfrak{X}(M)$. Então, se para todo $V \in \mathcal{V}$, temos que:

$$(adX)V \in \mathcal{V}$$

Seque que:

$$(Ade^{tX})V \in \mathcal{V}$$

Para todo $V \in \mathcal{V}$, $t \in \mathbb{R}$.

Demonstração: Seja $p \in M$, e U uma vizinhaça de p tal que $\mathcal{V}|_U$ é finitamente gerado. Temos que, para cada $V \in \mathcal{V}$, $(\operatorname{ad} X|_U)V_U \in \mathcal{V}|_U$, e portanto $(\operatorname{Ad} e^{tX|_U})V|_U \in \mathcal{V}|_U$. Como p é arbitrário, temos que $(\operatorname{Ad} e^{tX})V \in \mathcal{V}$

Por fim, estamos prontos para demonstrar:

Teorema 4.3. Seja $\mathcal{F} \subseteq \mathfrak{X}(M)$ uma família tal que Lie \mathcal{F} seja localmente finitamente gerada. Então:

$$T_p \mathcal{O}_p = Lie_p \mathcal{F}$$

Demonstração: Note que por definição, para todo $X \in \mathcal{F}, Y \in \text{Lie}\mathcal{F}, (\text{ad}X)Y \in \text{Lie}\mathcal{F}.$ Dessa forma, $(\text{Ad}e^{tX})Y \in \text{Lie}\mathcal{F}.$ Como

$$T_p \mathcal{O}_p = \operatorname{span}\{(\operatorname{Ad} e^{t_1 X_1} \circ \cdots \circ e^{t_k X_k}) Y : X_1, \dots, X_k, Y \in \mathcal{F}; t_1, \dots, t_k \in \mathbb{R}\}$$

temos que $T_p\mathcal{O}_p\subseteq \mathrm{Lie}_p\mathcal{F}$. Como $\mathrm{Lie}_p\mathcal{F}\subseteq T_p\mathcal{O}_p$, temos que $\mathrm{Lie}_p\mathcal{F}=T_p\mathcal{O}_p$.

4.4. **Integração de Distribuições.** Como aplicação do Teorema da Órbita, derivamos alguns teoremas para integração de distribuições: o Teorema de Frobenius (para distribuições regulares) e o Teorema de Stefan-Sussmann (para distribuições singulares).

Definição 4.8. Uma distribuição singular Δ consiste da escolha de um subespaço $\Delta_p \subseteq T_pM$ para cada $p \in M$, de forma que para cada $p \in M$, exista uma vizinhaça U_p de p e uma coleção de campos X_1, \ldots, X_k tal que, para $q \in U_p$, $\Delta_q = span\{q \circ X_1, \ldots, q \circ X_k\}$.

Definição 4.9. Uma distribuição singular Δ é dita regular de posto k se cada Δ_p tem dimensão k.

Dizemos que uma distribuição (singular) Δ é integrável se existe uma folheação (singular) L tal que, para todo $p \in M$, $T_pL_p = \Delta_p$. Cada L_p é dita uma variedade integral de Δ , e L é dita uma folheação integral de Δ .

Note que uma distribuição regular integrável sempre será integrada em uma folheação regular. Existem exemplos bem simples de distribuições não integráveis em dimensão baixa.

De maneira similar à folheações, indicamos por $\mathfrak{X}(\Delta)$ os campos tangentes à uma distribuição Δ :

$$\mathfrak{X}(\Delta) = \{ X \in \mathfrak{X}(M) : \forall p \in M, X_p \in \Delta_p \}$$

Ainda similarmente às folheações, podemos facilmente verificar, pontualmente, que $\mathfrak{X}(\Delta)$ é um $C^{\infty}(M)$ -submódulo de $\mathfrak{X}(M)$:

Proposição 4.6. $\mathfrak{X}(\Delta)$ é um $C^{\infty}(M)$ -submódulo de $\mathfrak{X}(M)$

Demonstração: Dados, $X, Y \in \mathfrak{X}(\Delta)$ e $f \in C^{\infty}(M)$, basta verificarmos pontualmente:

- $\bullet \ (X+Y)_p = X_p + Y_p \in \Delta_p$
- $(fX)_p = f(p)X_p \in \Delta_p$

No entanto, diferentemente das folheações, $\mathfrak{X}(\Delta)$ pode não ser uma sub-álgebra de Lie de $\mathfrak{X}(M)$.

Definição 4.10. Uma distribuição Δ satisfaz a condição de Frobenius se $\mathfrak{X}(\Delta)$ é uma sub-álgebra de Lie de $\mathfrak{X}(M)$.

Note que, se Δ é integrável, e L é a folheação integral de Δ , então $\mathfrak{X}(\Delta) = \mathfrak{X}(L)$. Dessa forma, a condição de Frobenius é uma condição necessária para a integrabilidade de uma distribuição.

O clássico Teorema de Frobenius diz que ela também é suficiente no caso regular:

Teorema 4.4 (Teorema de Frobenius). Seja Δ uma distribuição regular. Então, Δ é integrável se e somente se Δ satisfaz a condição de Frobenius.

Demonstração: Já vimos que se Δ é integrável então Δ satisfaz a condição de Frobenius. Suponha que Δ satisfaz a condição de Frobenius. Considere a família $\mathfrak{X}(\Delta) \subseteq \mathfrak{X}(M)$ como um sistema de controle geométrico. Então, Lie $\mathfrak{X}(\Delta) = \mathfrak{X}(\Delta)$, e dessa forma para cada $p \in M$, Lie $\mathfrak{X}(\Delta) = \Delta_p$.

Além disso, podemos demonstrar que $\mathfrak{X}(\Delta)$ é localmente finitamente gerada: dado $p \in M$ e $V \in \mathfrak{X}(\Delta)$, seja U uma vizinhaça de p tal que existam campos X_1, \ldots, X_k onde, para $q \in U$, $\Delta_q = \operatorname{span}\{q \circ X_1, \ldots, q \circ X_k\}$. Para cada $q \in U$, existe únicos (são únicos pois cada Δ_q tem dimensão k, e temos que k vetores que geram Δ_q , ou seja, eles formam uma base de Δ_q) $f_i(q) \in \mathbb{R}$, $1 \leq i \leq k$, tais que $q \circ V = \sum f_i(q)(q \circ X_i)$.

Como V é suave e cada X_i é suave, as funções $f_i: q \mapsto f_i(q)$ também são suaves. Dessa forma $V|_U = \sum f_i X_i|_U$. Além disso, dadas quaisquer k funções suaves g_1, \ldots, g_k , temos que $\sum g_i X_i|_U \in \mathfrak{X}(\Delta)|_U$. Dessa forma, X_1, \ldots, X_k são um conjunto gerador de $\mathfrak{X}(\Delta)|_U$.

Como $\text{Lie}\mathfrak{X}(\Delta) = \mathfrak{X}(\Delta)$ é localmente finitamente gerada, temos que $T_p\mathcal{O}_p = \text{Lie}_p\mathfrak{X}(\Delta) = \Delta_p$, e portanto \mathcal{O} é uma folheação integral de Δ .

O Teorema de Frobenius não se sustenta quando Δ é uma distribuição singular: a falha na demonstração acontece ao tentarmos achar as funções f_i (é possível garantir a existencia de tais funções mas não sua suavidade). Existem exemplos de distribuições singulares satisfazendo a condição de Frobenius mas que não são integráveis.

Dessa forma, para distribuições singulares, invocamos a descrição de $T_p\mathcal{O}_p$ do Teorema da Órbita para fornecemos uma condição necessária e suficiente para integrabilidade de distribuições.

Dado $P \in \text{Diff}(M)$, denote por $\Delta_p \circ P = \{X_p \circ P : X_p \in \Delta_p\}$.

Definição 4.11. Seja $X \in \mathfrak{X}(M)$ e Δ uma distribuição singular. Então, dizemos que Δ é invariante com respeito a X se, para todo $t \in \mathbb{R}$, $\Delta_p \circ e^{tX} \subseteq \Delta_{noe^{tX}}$.

Teorema 4.5 (Teorema de Stefan-Sussmann). Seja Δ uma distribuição singular. Então, são equivalentes:

- Δ é invariante com respeito à todo $X \in \mathfrak{X}(\Delta)$.
- Δ é integrável.

Demonstração: Primeiramente suponha que Δ é integrável, seja L uma folheação integral de Δ e $X \in \mathfrak{X}(\Delta) = \mathfrak{X}(L)$. Seja ainda $p \in M$. Como e^{tX} mapeia L_p em L_p (isto é, $e^{tX}(L_p) \subseteq L_p$), temos que $d(e^{tX})_p(T_pL_p) \subseteq T_{e^{tX}(p)}L_p$, e portanto $\Delta_p \circ e^{tX} \subseteq \Delta_{p \circ e^{tX}}$, ou seja, Δ é invariante com respeito à X.

Agora suponha que Δ é invariante com respeito à todo $X \in \mathfrak{X}(\Delta)$. Sejam $X, Y \in \mathfrak{X}(\Delta)$. Como $p \circ (\mathrm{Ad}e^{tX})Y = ((p \circ e^{tX}) \circ Y) \circ e^{-tX}$, e $(p \circ e^{tX}) \circ Y \in \Delta_{p \circ e^{tX}}$, temos que $p \circ (\mathrm{Ad}e^{tX})Y \in \Delta_{p \circ e^{tX} \circ e^{-tX}} = \Delta_p$.

Considere a folheação \mathcal{O} dada pelas órbitas de $\mathfrak{X}(\Delta)$. Como, para cada $p \in M$,

$$T_p \mathcal{O}_p = \{ p \circ (\operatorname{Ad} e^{t_1 X_1} \circ \cdots \circ e^{t_k X_k}) Y : X_1, \dots, X_k, Y \in \mathfrak{X}(\Delta) \}$$

temos que $T_p\mathcal{O}_p\subseteq \Delta_p$. Como é claro que $\Delta_p\subseteq T_p\mathcal{O}_p$, temos que \mathcal{O} é uma folheação integral de Δ .

Referências

- [1] A. Agrachev Y. Sachkov Control theory from the Geometric viewpoint Encyclopedia of Mathematical Science, Control Theory and Optimization.
- [2] M. M. Alexandrino, R. G. Bettiol, Lie Groups and Geometric Aspects of Isometric Actions. Springer Verlag (2015)
- [3] D.D. Holm, T. Schamah, C. Stoica Geometric Mechanics and Symmetry, Oxford Texts in Applied and Engineering Mathematics.
- [4] J. M. Lee, Introduction to smooth manifolds, Springer
- [5] M. Spivak, A comprehensive introduction to differential geometry, Perish or publish.