NSR Search Results Page 1 of 4

Visit the <u>Isotope Explorer</u> home page!

18 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ-Ray Data Evaluation of Thermal-Neutron Capture for $A = 1 \vartheta 25$

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n,γ),E=thermal; compiled, evaluated prompt γ-ray data.

Keynumber: 1992WA06

Reference: Phys.Rev. C45, 1597 (1992)

Authors: T.A. Walkiewicz, S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Title: Thermal-Neutron Capture by Magnesium Isotopes

Keyword abstract: NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg(n,γ),E=thermal; measured Εγ,Ιγ; deduced capture σ. ²⁶, ²⁷, ²⁵Mg deduced levels,neutron separation energies,γ-multipolarity. Direct capture

theory.

Keynumber: 1991KI04

Reference: Nucl.Phys. A529, 39 (1991)

Authors: S.W.Kikstra, Z.Guo, C.van der Leun, P.M.Endt, S.Raman, T.A.Walkiewicz, J.W.Starner,

E.T.Jurney, I.S.Towner

Title: Superallowed 26m Al(β^+ +EC) 26 Mg Decay

Keyword abstract: NUCLEAR REACTIONS 25 Mg(n, γ),E=thermal; measured E γ ,I γ . 26 Mg deduced neutron separation energy. 25 Mg(p, γ),E=0.7-1.2 MeV; measured Ep,E γ . 26 Al deduced resonances,proton separation energy, isomer (β^+ +EC) decay Q, log ft. Enriched targets.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1988HO06

Reference: J.Phys.(London) G14, Supplement S207 (1988)

Authors: Y.K.Ho, C.Coceva

Title: Nucleon Effective Charge in E1 and E2 Radiative Transitions

Keyword abstract: NUCLEAR REACTIONS ²⁵Mg, ²⁷Al, ²⁹Si(n, γ), E not given; calculated E1 transition inhibition factors. ⁸⁹ Y, ⁹⁰, ⁹¹ Zr, ⁹³Nb, ⁹², ⁹⁴, ⁹⁶, ⁹⁸Mo, ¹³⁶Ba, ¹³⁹La, ¹⁴¹Pr, ¹⁴², ¹⁴³, ¹⁴⁵, ¹⁴⁶, 148 Nd, 154 Sm, 181 Ta, 184 W(n, γ),E not given; analyzed nonstatistical $\Gamma\gamma$ data; deduced neutron effective charge enhancement factor.

Keynumber: <u>1986CA15</u>

Reference: Phys.Rev. C34, 408 (1986)

Authors: B.Castel, Y.K.Ho

Title: Direct E2 Neutron Capture in Light Nuclei

NSR Search Results Page 2 of 4

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁵Mg(n,γ),E=thermal; calculated E1,E2 capture σ (E); deduced effective neutron charge multipolarity dependence, particle-core coupling differences role.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1982HU02

Reference: Nucl.Instrum.Methods 192, 609 (1982)

Authors: P.Hungerford, H.H.Schmidt

Title: Neutron Binding and Excitation Energies of Some Magnesium Isotopes

Keyword abstract: NUCLEAR REACTIONS 24 , 25 , 26 Mg(n, γ),E=thermal; measured E γ . 25 , 26 , 27 Mg

deduced levels, neutron binding energy.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko
Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, 32, 33, 34S,Cl, 35, 36, 37Cl,Ar, 36, 38, 40Ar,K, 39, 40, 41K,Ca, 40, 42, 43, 44, 46, 48Ca, 45, 46Sc,Ti, 46, 47, 48, 49, 50Ti,V, 50, 51V,Cr, 50, 52, 53, 54Cr,Fe, 54, 56, 57, 58Fe, 59Co,Ni, 58, 59, 60, 61, 62, 64Ni,Cu, 63, 65Cu,Zn, 64, 66, 67, 68, 70Zn,Ga, 69, 71Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰ ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q, neutron binding energy.

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1972VAYX

Coden: CONF Teddington(Atomic Masses, Fund Constants),P131

Keyword abstract: NUCLEAR REACTIONS 25 Mg(n, γ), (p, γ); 26 Mg, 26 Al measured E γ .

NSR Search Results Page 3 of 4

Keynumber: 1969SE08

Reference: Nucl. Phys. A139, 375 (1969)

Authors: E.Selin, R.Hardell

Title: Energy Levels of 26 Mg Studied with the (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS 25 Mg(n, γ), E= thermal; measured E γ , I γ ; deduced Q.

²⁶Mg deduced levels, γ -branching, J, π . Enriched target.

T7 1 10.60D:

Keynumber: 1969DE27

Reference: Phys.Letters 30B, 639 (1969) **Authors:** P.De Wit, C.van der Leun

Title: The ²⁶Al-m Problem

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 25 Mg(n, γ), E = thermal; measured E γ . 25 Mg(p, γ), E

= 435 keV; measured E γ . ^{26m}Al deduced E β , ft, vector coupling constant.

Keynumber: 1968CA21

Reference: Proc.Conf.Slow-Neutron-Capture Gamma-Ray Spectr., Argonne, Ill, (1966), F.E.Throw,

Ed., ANL-7282, p.375 (1968)

Authors: R.T.Carpenter, D.E.Blatchley **Title:** Electromagnetic Transitions in Mg²⁶

Keyword abstract: NUCLEAR REACTIONS 25 Mg(n, γ), E = thermal; measured E γ , I γ . 26 Mg deduced

levels, J, π , γ -branching.

Keynumber: 1968BAZZ

Reference: Program and Theses, Proc.18th Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei, Riga,

p.32 (1968)

Authors: I.F.Barchuk, D.A.Bazavov, G.V.Belykh, V.I.Golyshkin, A.V.Murzin, A.F.Ogorodnik

Title: Spectra of γ-Rays Caused by Capture of Slow Neutrons by ²⁵Mg, ⁴⁷Ti and ⁴⁹Ti

Keyword abstract: NUCLEAR REACTIONS ²⁵Mg, ⁴⁷, ⁴⁹Ti(n,γ), E=slow; measured Eγ, Iγ. ²⁶Mg, ⁴⁸,

⁵⁰Ti deduced transitions.

Keynumber: 1967SP05

Reference: Nucl.Phys. A102, 209 (1967)

Authors: P.Spilling, H.Gruppelaar, A.M.F.Op Den Kamp

Title: Thermal -Neutron Capture Gamma Rays from Natural Magnesium and Enriched ²⁵Mg

Keyword abstract: NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg, ⁵⁶Fe, ⁶³Cu, ²⁰⁷Pb(n,γ), E=thermal; measured σ(Εγ); deduced Q. ²⁵, ²⁶, ²⁷Mg deduced levels, branching. Enriched ²⁵Mg target, Ge(Li)

detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu,

NSR Search Results Page 4 of 4

 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n, γ), E = thermal; measured E γ ; deduced Q. Natural targets.
