

Study of $B \rightarrow D^{(*)} D_{s(J)}^{(*)}$ Decays and Measurement of D_s^- and $D_{sJ}(2460)^-$ Branching Fractions

B. Aubert,¹ R. Barate,¹ M. Bona,¹ D. Boutigny,¹ F. Couderc,¹ Y. Karyotakis,¹ J. P. Lees,¹ V. Poireau,¹ V. Tisserand,¹ A. Zghiche,¹ E. Grauges,² A. Palano,³ M. Pappagallo,³ J. C. Chen,⁴ N. D. Qi,⁴ G. Rong,⁴ P. Wang,⁴ Y. S. Zhu,⁴ G. Eigen,⁵ I. Ofte,⁵ B. Stugu,⁵ G. S. Abrams,⁶ M. Battaglia,⁶ D. N. Brown,⁶ J. Button-Shafer,⁶ R. N. Cahn,⁶ E. Charles,⁶ C. T. Day,⁶ M. S. Gill,⁶ Y. Groysman,⁶ R. G. Jacobsen,⁶ J. A. Kadyk,⁶ L. T. Kerth,⁶ Yu. G. Kolomensky,⁶ G. Kukartsev,⁶ G. Lynch,⁶ L. M. Mir,⁶ P. J. Oddone,⁶ T. J. Orimoto,⁶ M. Pripstein,⁶ N. A. Roe,⁶ M. T. Ronan,⁶ W. A. Wenzel,⁶ M. Barrett,⁷ K. E. Ford,⁷ T. J. Harrison,⁷ A. J. Hart,⁷ C. M. Hawkes,⁷ S. E. Morgan,⁷ A. T. Watson,⁷ K. Goetzen,⁸ T. Held,⁸ H. Koch,⁸ B. Lewandowski,⁸ M. Pelizaeus,⁸ K. Peters,⁸ T. Schroeder,⁸ M. Steinke,⁸ J. T. Boyd,⁹ J. P. Burke,⁹ W. N. Cottingham,⁹ D. Walker,⁹ T. Cuhadar-Donszelmann,¹⁰ B. G. Fulsom,¹⁰ C. Hearty,¹⁰ N. S. Knecht,¹⁰ T. S. Mattison,¹⁰ J. A. McKenna,¹⁰ A. Khan,¹¹ P. Kyberd,¹¹ M. Saleem,¹¹ L. Teodorescu,¹¹ V. E. Blinov,¹² A. D. Bukin,¹² V. P. Druzhinin,¹² V. B. Golubev,¹² A. P. Onuchin,¹² S. I. Serednyakov,¹² Yu. I. Skovpen,¹² E. P. Solodov,¹² K. Yu Todyshev,¹² D. S. Best,¹³ M. Bondioli,¹³ M. Bruinsma,¹³ M. Chao,¹³ S. Curry,¹³ I. Eschrich,¹³ D. Kirkby,¹³ A. J. Lankford,¹³ P. Lund,¹³ M. Mandelkern,¹³ R. K. Mommesen,¹³ W. Roethel,¹³ D. P. Stoker,¹³ S. Abachi,¹⁴ C. Buchanan,¹⁴ S. D. Foulkes,¹⁵ J. W. Gary,¹⁵ O. Long,¹⁵ B. C. Shen,¹⁵ K. Wang,¹⁵ L. Zhang,¹⁵ H. K. Hadavand,¹⁶ E. J. Hill,¹⁶ H. P. Paar,¹⁶ S. Rahatlou,¹⁶ V. Sharma,¹⁶ J. W. Berryhill,¹⁷ C. Campagnari,¹⁷ A. Cunha,¹⁷ B. Dahmes,¹⁷ T. M. Hong,¹⁷ D. Kovalskyi,¹⁷ J. D. Richman,¹⁷ T. W. Beck,¹⁸ A. M. Eisner,¹⁸ C. J. Flacco,¹⁸ C. A. Heusch,¹⁸ J. Kroeseberg,¹⁸ W. S. Lockman,¹⁸ G. Nesom,¹⁸ T. Schalk,¹⁸ B. A. Schumm,¹⁸ A. Seiden,¹⁸ P. Spradlin,¹⁸ D. C. Williams,¹⁸ M. G. Wilson,¹⁸ J. Albert,¹⁹ E. Chen,¹⁹ A. Dvoretskii,¹⁹ D. G. Hitlin,¹⁹ I. Narsky,¹⁹ T. Piatenko,¹⁹ F. C. Porter,¹⁹ A. Ryd,¹⁹ A. Samuel,¹⁹ R. Andreassen,²⁰ G. Mancinelli,²⁰ B. T. Meadows,²⁰ M. D. Sokoloff,²⁰ F. Blanc,²¹ P. C. Bloom,²¹ S. Chen,²¹ W. T. Ford,²¹ J. F. Hirschauer,²¹ A. Kreisel,²¹ U. Nauenberg,²¹ A. Olivas,²¹ W. O. Ruddick,²¹ J. G. Smith,²¹ K. A. Ulmer,²¹ S. R. Wagner,²¹ J. Zhang,²¹ A. Chen,²² E. A. Eckhart,²² A. Soffer,²² W. H. Toki,²² R. J. Wilson,²² F. Winkelmeier,²² Q. Zeng,²² D. D. Altenburg,²³ E. Feltresi,²³ A. Hauke,²³ H. Jasper,²³ B. Spaan,²³ T. Brandt,²⁴ V. Klose,²⁴ H. M. Lacker,²⁴ W. F. Mader,²⁴ R. Nogowski,²⁴ A. Petzold,²⁴ J. Schubert,²⁴ K. R. Schubert,²⁴ R. Schwierz,²⁴ J. E. Sundermann,²⁴ A. Volk,²⁴ D. Bernard,²⁵ G. R. Bonneau,²⁵ P. Grenier,²⁵, * E. Latour,²⁵ Ch. Thiebaux,²⁵ M. Verderi,²⁵ D. J. Bard,²⁶ P. J. Clark,²⁶ W. Gradl,²⁶ F. Muheim,²⁶ S. Playfer,²⁶ A. I. Robertson,²⁶ Y. Xie,²⁶ M. Andreotti,²⁷ D. Bettoni,²⁷ C. Bozzi,²⁷ R. Calabrese,²⁷ G. Cibinetto,²⁷ E. Luppi,²⁷ M. Negrini,²⁷ A. Petrella,²⁷ L. Piemontese,²⁷ E. Prencipe,²⁷ F. Anulli,²⁸ R. Baldini-Ferroli,²⁸ A. Calcaterra,²⁸ R. de Sangro,²⁸ G. Finocchiaro,²⁸ S. Pacetti,²⁸ P. Patteri,²⁸ I. M. Peruzzi,²⁸, † M. Piccolo,²⁸ M. Rama,²⁸ A. Zallo,²⁹ A. Buzzo,²⁹ R. Capra,²⁹ R. Contri,²⁹ M. Lo Vetere,²⁹ M. M. Macri,²⁹ M. R. Monge,²⁹ S. Passaggio,²⁹ C. Patrignani,²⁹ E. Robutti,²⁹ A. Santroni,²⁹ S. Tosi,²⁹ G. Brandenburg,³⁰ K. S. Chaisanguanthum,³⁰ M. Morii,³⁰ J. Wu,³⁰ R. S. Dubitzky,³¹ J. Marks,³¹ S. Schenk,³¹ U. Uwer,³¹ W. Bhimji,³² D. A. Bowerman,³² P. D. Dauncey,³² U. Egede,³² R. L. Flack,³² J. R. Gaillard,³² J. A. Nash,³² M. B. Nikolich,³² W. Panduro Vazquez,³² X. Chai,³³ M. J. Charles,³³ U. Mallik,³³ N. T. Meyer,³³ V. Ziegler,³³ J. Cochran,³⁴ H. B. Crawley,³⁴ L. Dong,³⁴ V. Eyges,³⁴ W. T. Meyer,³⁴ S. Prell,³⁴ E. I. Rosenberg,³⁴ A. E. Rubin,³⁴ A. V. Gritsan,³⁵ M. Fritsch,³⁶ G. Schott,³⁶ N. Arnaud,³⁷ M. Davier,³⁷ G. Grosdidier,³⁷ A. Höcker,³⁷ F. Le Diberder,³⁷ V. Lepeltier,³⁷ A. M. Lutz,³⁷ A. Oyanguren,³⁷ S. Pruvot,³⁷ S. Rodier,³⁷ P. Roudeau,³⁷ M. H. Schune,³⁷ A. Stocchi,³⁷ W. F. Wang,³⁷ G. Wormser,³⁷ C. H. Cheng,³⁸ D. J. Lange,³⁸ D. M. Wright,³⁸ C. A. Chavez,³⁹ I. J. Forster,³⁹ J. R. Fry,³⁹ E. Gabathuler,³⁹ R. Gamet,³⁹ K. A. George,³⁹ D. E. Hutchcroft,³⁹ D. J. Payne,³⁹ K. C. Schofield,³⁹ C. Touramanis,³⁹ A. J. Bevan,⁴⁰ F. Di Lodovico,⁴⁰ W. Menges,⁴⁰ R. Sacco,⁴⁰ C. L. Brown,⁴¹ G. Cowan,⁴¹ H. U. Flaecher,⁴¹ D. A. Hopkins,⁴¹ P. S. Jackson,⁴¹ T. R. McMahon,⁴¹ S. Ricciardi,⁴¹ F. Salvato,⁴¹ D. N. Brown,⁴² C. L. Davis,⁴² J. Allison,⁴³ N. R. Barlow,⁴³ R. J. Barlow,⁴³ Y. M. Chia,⁴³ C. L. Edgar,⁴³ M. P. Kelly,⁴³ G. D. Lafferty,⁴³ M. T. Naisbit,⁴³ J. C. Williams,⁴³ J. I. Yi,⁴³ C. Chen,⁴⁴ W. D. Hulsbergen,⁴⁴ A. Jawahery,⁴⁴ C. K. Lae,⁴⁴ D. A. Roberts,⁴⁴ G. Simi,⁴⁴ G. Blaylock,⁴⁵ C. Dallapiccola,⁴⁵ S. S. Hertzbach,⁴⁵ X. Li,⁴⁵ T. B. Moore,⁴⁵ S. Saremi,⁴⁵ H. Staengle,⁴⁵ S. Y. Willocq,⁴⁵ R. Cowan,⁴⁶ K. Koeneke,⁴⁶ G. Sciolla,⁴⁶ S. J. Sekula,⁴⁶ M. Spitznagel,⁴⁶ F. Taylor,⁴⁶ R. K. Yamamoto,⁴⁶ H. Kim,⁴⁷ P. M. Patel,⁴⁷ C. T. Potter,⁴⁷ S. H. Robertson,⁴⁷

A. Lazzaro,⁴⁸ V. Lombardo,⁴⁸ F. Palombo,⁴⁸ J. M. Bauer,⁴⁹ L. Cremaldi,⁴⁹ V. Eschenburg,⁴⁹ R. Godang,⁴⁹ R. Kroeger,⁴⁹ J. Reidy,⁴⁹ D. A. Sanders,⁴⁹ D. J. Summers,⁴⁹ H. W. Zhao,⁴⁹ S. Brunet,⁵⁰ D. Côté,⁵⁰ M. Simard,⁵⁰ P. Taras,⁵⁰ F. B. Viaud,⁵⁰ H. Nicholson,⁵¹ N. Cavallo,^{52,†} G. De Nardo,⁵² D. del Re,⁵² F. Fabozzi,^{52,†} C. Gatto,⁵² L. Lista,⁵² D. Monorchio,⁵² P. Paolucci,⁵² D. Piccolo,⁵² C. Sciacca,⁵² M. Baak,⁵³ H. Bulten,⁵³ G. Raven,⁵³ H. L. Snoek,⁵³ C. P. Jessop,⁵⁴ J. M. LoSecco,⁵⁴ T. Allmendinger,⁵⁵ G. Benelli,⁵⁵ K. K. Gan,⁵⁵ K. Honscheid,⁵⁵ D. Hufnagel,⁵⁵ P. D. Jackson,⁵⁵ H. Kagan,⁵⁵ R. Kass,⁵⁵ T. Pulliam,⁵⁵ A. M. Rahimi,⁵⁵ R. Ter-Antonyan,⁵⁵ Q. K. Wong,⁵⁵ N. L. Blount,⁵⁶ J. Brau,⁵⁶ R. Frey,⁵⁶ O. Igonkina,⁵⁶ M. Lu,⁵⁶ R. Rahmat,⁵⁶ N. B. Sinev,⁵⁶ D. Strom,⁵⁶ J. Strube,⁵⁶ E. Torrence,⁵⁶ F. Galeazzi,⁵⁷ A. Gaz,⁵⁷ M. Margoni,⁵⁷ M. Morandin,⁵⁷ A. Pompili,⁵⁷ M. Posocco,⁵⁷ M. Rotondo,⁵⁷ F. Simonetto,⁵⁷ R. Stroili,⁵⁷ C. Voci,⁵⁷ M. Benayoun,⁵⁸ J. Chauveau,⁵⁸ P. David,⁵⁸ L. Del Buono,⁵⁸ Ch. de la Vaissière,⁵⁸ O. Hamon,⁵⁸ B. L. Hartfiel,⁵⁸ M. J. J. John,⁵⁸ Ph. Leruste,⁵⁸ J. Malclès,⁵⁸ J. Ocariz,⁵⁸ L. Roos,⁵⁸ G. Therin,⁵⁸ P. K. Behera,⁵⁹ L. Gladney,⁵⁹ J. Panetta,⁵⁹ M. Biasini,⁶⁰ R. Covarelli,⁶⁰ M. Pioppi,⁶⁰ C. Angelini,⁶¹ G. Batignani,⁶¹ S. Bettarini,⁶¹ F. Bucci,⁶¹ G. Calderini,⁶¹ M. Carpinelli,⁶¹ R. Cenci,⁶¹ F. Forti,⁶¹ M. A. Giorgi,⁶¹ A. Lusiani,⁶¹ G. Marchiori,⁶¹ M. A. Mazur,⁶¹ M. Morganti,⁶¹ N. Neri,⁶¹ E. Paoloni,⁶¹ G. Rizzo,⁶¹ J. Walsh,⁶¹ M. Haire,⁶² D. Judd,⁶² D. E. Wagoner,⁶² J. Biesiada,⁶³ N. Danielson,⁶³ P. Elmer,⁶³ Y. P. Lau,⁶³ C. Lu,⁶³ J. Olsen,⁶³ A. J. S. Smith,⁶³ A. V. Telnov,⁶³ F. Bellini,⁶⁴ G. Cavoto,⁶⁴ A. D'Orazio,⁶⁴ E. Di Marco,⁶⁴ R. Faccini,⁶⁴ F. Ferrarotto,⁶⁴ F. Ferroni,⁶⁴ M. Gaspero,⁶⁴ L. Li Gioi,⁶⁴ M. A. Mazzoni,⁶⁴ S. Morganti,⁶⁴ G. Piredda,⁶⁴ F. Polci,⁶⁴ F. Safai Tehrani,⁶⁴ C. Voena,⁶⁴ M. Ebert,⁶⁵ H. Schröder,⁶⁵ R. Waldi,⁶⁵ T. Adye,⁶⁶ N. De Groot,⁶⁶ B. Franek,⁶⁶ E. O. Olaiya,⁶⁶ F. F. Wilson,⁶⁶ R. Aleksan,⁶⁷ S. Emery,⁶⁷ A. Gaidot,⁶⁷ S. F. Ganzhur,⁶⁷ G. Hamel de Monchenault,⁶⁷ W. Kozanecki,⁶⁷ M. Legendre,⁶⁷ B. Mayer,⁶⁷ G. Vasseur,⁶⁷ Ch. Yèche,⁶⁷ M. Zito,⁶⁷ W. Park,⁶⁸ M. V. Purohit,⁶⁸ A. W. Weidemann,⁶⁸ J. R. Wilson,⁶⁸ M. T. Allen,⁶⁹ D. Aston,⁶⁹ R. Bartoldus,⁶⁹ P. Bechtle,⁶⁹ N. Berger,⁶⁹ A. M. Boyarski,⁶⁹ R. Claus,⁶⁹ J. P. Coleman,⁶⁹ M. R. Convery,⁶⁹ M. Cristinziani,⁶⁹ J. C. Dingfelder,⁶⁹ D. Dong,⁶⁹ J. Dorfan,⁶⁹ G. P. Dubois-Felsmann,⁶⁹ D. Dujmic,⁶⁹ W. Dunwoodie,⁶⁹ R. C. Field,⁶⁹ T. Glanzman,⁶⁹ S. J. Gowdy,⁶⁹ M. T. Graham,⁶⁹ V. Halyo,⁶⁹ C. Hast,⁶⁹ T. Hrynačka,⁶⁹ W. R. Innes,⁶⁹ M. H. Kelsey,⁶⁹ P. Kim,⁶⁹ M. L. Kocian,⁶⁹ D. W. G. S. Leith,⁶⁹ S. Li,⁶⁹ J. Libby,⁶⁹ S. Luitz,⁶⁹ V. Luth,⁶⁹ H. L. Lynch,⁶⁹ D. B. MacFarlane,⁶⁹ H. Marsiske,⁶⁹ R. Messner,⁶⁹ D. R. Muller,⁶⁹ C. P. O'Grady,⁶⁹ V. E. Ozcan,⁶⁹ A. Perazzo,⁶⁹ M. Perl,⁶⁹ B. N. Ratcliff,⁶⁹ A. Roodman,⁶⁹ A. A. Salnikov,⁶⁹ R. H. Schindler,⁶⁹ J. Schwiening,⁶⁹ A. Snyder,⁶⁹ J. Stelzer,⁶⁹ D. Su,⁶⁹ M. K. Sullivan,⁶⁹ K. Suzuki,⁶⁹ S. K. Swain,⁶⁹ J. M. Thompson,⁶⁹ J. Va'vra,⁶⁹ N. van Bakel,⁶⁹ M. Weaver,⁶⁹ A. J. R. Weinstein,⁶⁹ W. J. Wisniewski,⁶⁹ M. Wittgen,⁶⁹ D. H. Wright,⁶⁹ A. K. Yarritu,⁶⁹ K. Yi,⁶⁹ C. C. Young,⁶⁹ P. R. Burchat,⁷⁰ A. J. Edwards,⁷⁰ S. A. Majewski,⁷⁰ B. A. Petersen,⁷⁰ C. Roat,⁷⁰ L. Wilden,⁷⁰ S. Ahmed,⁷¹ M. S. Alam,⁷¹ R. Bula,⁷¹ J. A. Ernst,⁷¹ V. Jain,⁷¹ B. Pan,⁷¹ M. A. Saeed,⁷¹ F. R. Wappeler,⁷¹ S. B. Zain,⁷¹ W. Bugg,⁷² M. Krishnamurthy,⁷² S. M. Spanier,⁷² R. Eckmann,⁷³ J. L. Ritchie,⁷³ A. Satpathy,⁷³ C. J. Schilling,⁷³ R. F. Schwitters,⁷³ J. M. Izen,⁷⁴ I. Kitayama,⁷⁴ X. C. Lou,⁷⁴ S. Ye,⁷⁴ F. Bianchi,⁷⁵ F. Gallo,⁷⁵ D. Gamba,⁷⁵ M. Bomben,⁷⁶ L. Bosisio,⁷⁶ C. Cartaro,⁷⁶ F. Cossutti,⁷⁶ G. Della Ricca,⁷⁶ S. Dittongo,⁷⁶ S. Grancagnolo,⁷⁶ L. Lanceri,⁷⁶ L. Vitale,⁷⁶ V. Azzolini,⁷⁷ F. Martinez-Vidal,⁷⁷ Sw. Banerjee,⁷⁸ B. Bhuyan,⁷⁸ C. M. Brown,⁷⁸ D. Fortin,⁷⁸ K. Hamano,⁷⁸ R. Kowalewski,⁷⁸ I. M. Nugent,⁷⁸ J. M. Roney,⁷⁸ R. J. Sobie,⁷⁸ J. J. Back,⁷⁹ P. F. Harrison,⁷⁹ T. E. Latham,⁷⁹ G. B. Mohanty,⁷⁹ H. R. Band,⁸⁰ X. Chen,⁸⁰ B. Cheng,⁸⁰ S. Dasu,⁸⁰ M. Datta,⁸⁰ A. M. Eichenbaum,⁸⁰ K. T. Flood,⁸⁰ J. J. Hollar,⁸⁰ J. R. Johnson,⁸⁰ P. E. Kutter,⁸⁰ H. Li,⁸⁰ R. Liu,⁸⁰ B. Mellado,⁸⁰ A. Mihalyi,⁸⁰ A. K. Mohapatra,⁸⁰ Y. Pan,⁸⁰ M. Pierini,⁸⁰ R. Prepost,⁸⁰ P. Tan,⁸⁰ S. L. Wu,⁸⁰ Z. Yu,⁸⁰ and H. Neal⁸¹

(The BABAR Collaboration)

¹Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

²Universitat de Barcelona, Facultat de Fisica Dept. ECM, E-08028 Barcelona, Spain

³Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

⁴Institute of High Energy Physics, Beijing 100039, China

⁵University of Bergen, Institute of Physics, N-5007 Bergen, Norway

⁶Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

⁷University of Birmingham, Birmingham, B15 2TT, United Kingdom

⁸Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

⁹University of Bristol, Bristol BS8 1TL, United Kingdom

¹⁰University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

¹¹Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

¹²Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

¹³University of California at Irvine, Irvine, California 92697, USA

¹⁴University of California at Los Angeles, Los Angeles, California 90024, USA

¹⁵University of California at Riverside, Riverside, California 92521, USA
¹⁶University of California at San Diego, La Jolla, California 92093, USA
¹⁷University of California at Santa Barbara, Santa Barbara, California 93106, USA
¹⁸University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
¹⁹California Institute of Technology, Pasadena, California 91125, USA
²⁰University of Cincinnati, Cincinnati, Ohio 45221, USA
²¹University of Colorado, Boulder, Colorado 80309, USA
²²Colorado State University, Fort Collins, Colorado 80523, USA
²³Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
²⁴Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
²⁵Ecole Polytechnique, LLR, F-91128 Palaiseau, France
²⁶University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
²⁷Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
²⁸Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
²⁹Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
³⁰Harvard University, Cambridge, Massachusetts 02138, USA
³¹Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
³²Imperial College London, London, SW7 2AZ, United Kingdom
³³University of Iowa, Iowa City, Iowa 52242, USA
³⁴Iowa State University, Ames, Iowa 50011-3160, USA
³⁵Johns Hopkins University, Baltimore, Maryland 21218, USA
³⁶Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
³⁷Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B.P. 34, F-91898 ORSAY Cedex, France
³⁸Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³⁹University of Liverpool, Liverpool L69 7ZE, United Kingdom
⁴⁰Queen Mary, University of London, E1 4NS, United Kingdom
⁴¹University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
⁴²University of Louisville, Louisville, Kentucky 40292, USA
⁴³University of Manchester, Manchester M13 9PL, United Kingdom
⁴⁴University of Maryland, College Park, Maryland 20742, USA
⁴⁵University of Massachusetts, Amherst, Massachusetts 01003, USA
⁴⁶Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
⁴⁷McGill University, Montréal, Québec, Canada H3A 2T8
⁴⁸Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
⁴⁹University of Mississippi, University, Mississippi 38677, USA
⁵⁰Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
⁵¹Mount Holyoke College, South Hadley, Massachusetts 01075, USA
⁵²Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
⁵³NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
⁵⁴University of Notre Dame, Notre Dame, Indiana 46556, USA
⁵⁵Ohio State University, Columbus, Ohio 43210, USA
⁵⁶University of Oregon, Eugene, Oregon 97403, USA
⁵⁷Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
⁵⁸Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
⁵⁹University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
⁶⁰Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
⁶¹Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
⁶²Prairie View A&M University, Prairie View, Texas 77446, USA
⁶³Princeton University, Princeton, New Jersey 08544, USA
⁶⁴Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
⁶⁵Universität Rostock, D-18051 Rostock, Germany
⁶⁶Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
⁶⁷DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
⁶⁸University of South Carolina, Columbia, South Carolina 29208, USA
⁶⁹Stanford Linear Accelerator Center, Stanford, California 94309, USA
⁷⁰Stanford University, Stanford, California 94305-4060, USA
⁷¹State University of New York, Albany, New York 12222, USA
⁷²University of Tennessee, Knoxville, Tennessee 37996, USA
⁷³University of Texas at Austin, Austin, Texas 78712, USA
⁷⁴University of Texas at Dallas, Richardson, Texas 75083, USA
⁷⁵Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
⁷⁶Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
⁷⁷IFIC, Universitat de València-CSIC, E-46071 Valencia, Spain

⁷⁸*University of Victoria, Victoria, British Columbia, Canada V8W 3P6*

⁷⁹*Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom*

⁸⁰*University of Wisconsin, Madison, Wisconsin 53706, USA*

⁸¹*Yale University, New Haven, Connecticut 06511, USA*

(Dated: February 6, 2008)

We present branching fraction measurements of twelve B meson decays of the form $B \rightarrow D^{(*)} D_{s(J)}^{(*)}$. The results are based on $\Upsilon(4S)$ decays in $B\bar{B}$ pairs. One of the B mesons is fully reconstructed and the other decays to two charm mesons, of which one is reconstructed, and the mass and momentum of the other is inferred by kinematics. Combining these results with previous exclusive branching fraction measurements, we determine $\mathcal{B}(D_s^- \rightarrow \phi\pi^-) = (4.62 \pm 0.36_{\text{stat.}} \pm 0.51_{\text{syst.}})\%$, $\mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^*\pi^0) = (56 \pm 13_{\text{stat.}} \pm 9_{\text{syst.}})\%$ and $\mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^-\gamma) = (16 \pm 4_{\text{stat.}} \pm 3_{\text{syst.}})\%$.

PACS numbers: 13.25.Hw, 13.25.Ft

In this paper we present the study of charged and neutral B mesons decaying to two charm mesons, i.e. $\bar{B} \rightarrow D_{\text{meas}} D_X$ [1]. D_{meas} represents a fully reconstructed $D^{(*)+0}$ or $D_s^{(*)-}$ meson, and the mass and momentum of the D_X are inferred from the kinematics of the two-body B decay. This study allows measurements of B branching fractions without any assumption on the decays of the D_X . Measurements of these two-body branching fractions can provide tests of the factorization of the decay amplitudes [2] in the high momentum transfer regime [3]. From two separate classes of events with $D_{\text{meas}} = D_s^{(*)-}$ and with $D_X = D_s^{(*)-}$ we measure the branching fraction of $D_s^- \rightarrow \phi\pi^-$, which has important implications for a wide range of D_s and B physics. Furthermore, we select final states with $D_X = D_{sJ}(2460)^-$ and combine with the *BABAR* measurements of $\mathcal{B}(\bar{B} \rightarrow D^{(*)+0} D_{sJ}(2460)^-) \times \mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^*\pi^0)$ and $\mathcal{B}(B \rightarrow D^{(*)+0} D_{sJ}(2460)^-) \times \mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^-\gamma)$ [4], thus extracting for the first time the absolute branching fractions of this recently observed state [5].

This analysis uses $\Upsilon(4S) \rightarrow B\bar{B}$ events in which either a B^+ or a B^0 meson decays into a fully reconstructed hadronic final state (B_{reco}). The measurements are based on an integrated luminosity of 210.5 fb^{-1} recorded at the $\Upsilon(4S)$ resonance with the *BABAR* detector at the PEP-II asymmetric-energy e^+e^- collider operating near the $\Upsilon(4S)$ resonance. An additional 21.7 fb^{-1} recorded 40 MeV below the resonance (*off-resonance*) are used to evaluate backgrounds. The *BABAR* detector is described in detail elsewhere [6]. Charged-particle trajectories are measured by a vertex tracker with 5 double-sided layers and a 40-layer drift chamber, both operating in a 1.5-T magnetic field of a superconducting solenoid. Charged-particle identification is provided by the specific energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter. We use Monte Carlo simulations (MC) of the *BABAR* detector based on GEANT4 [7] to optimize selection criteria and determine selection efficiencies.

To reconstruct a large sample of B mesons, the

hadronic decays $B_{\text{reco}} \rightarrow \bar{D}Y^+, \bar{D}^*Y^+$ are selected. Here, the system Y^+ consists of hadrons with a total charge of +1, composed of $n_1\pi^\pm n_2K^\pm n_3K_S^0 n_4\pi^0$, where $n_1 + n_2 \leq 5$, $n_3 \leq 2$, and $n_4 \leq 2$. We reconstruct $D^{*-} \rightarrow \bar{D}^0\pi^-$; $\bar{D}^{*0} \rightarrow \bar{D}^0\pi^0, \bar{D}^0\gamma$; $D^- \rightarrow K^+\pi^-\pi^-$, $K^+\pi^-\pi^-\pi^0$, $K_S^0\pi^-$, $K_S^0\pi^-\pi^0$, $K_S^0\pi^-\pi^-\pi^+$; $\bar{D}^0 \rightarrow K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^-\pi^+$, $K_S^0\pi^+\pi^-$; and $K_S^0 \rightarrow \pi^+\pi^-$. The kinematic consistency of B_{reco} candidates is checked with two variables, the beam energy-substituted mass $m_{\text{ES}} = \sqrt{s/4 - \vec{p}_B^2}$ and the energy difference $\Delta E = E_B - \sqrt{s}/2$. Here \sqrt{s} is the total energy in the $\Upsilon(4S)$ center-of-mass (CM) frame, and \vec{p}_B and E_B denote the momentum and energy of the B_{reco} candidate in the same frame. The resolution on ΔE is measured to be $\sigma_{\Delta E} = 10 - 35 \text{ MeV}$, depending on the decay mode, and we require $|\Delta E| < 3\sigma_{\Delta E}$.

For each reconstructed B decay mode, the purity \mathcal{P} is estimated as the ratio of the number of signal events with $m_{\text{ES}} > 5.27 \text{ GeV}/c$ to the total number of events in the same range, and is evaluated on data. We only use modes for which \mathcal{P} exceeds a decay-mode dependent threshold in the range of 9% to 24%. In events with more than one B_{reco} we select the decay mode with the highest purity. On average, we reconstruct one signal B_{reco} candidate in 0.3% (0.5%) of the $B^0\bar{B}^0$ ($B^+\bar{B}^-$) events.

The selected sample of B_{reco} is used as normalization for the determination of the branching fractions. It is contaminated by $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events and by other $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ or $B^+\bar{B}^-$ decays, in which the B_{reco} is mistakenly reconstructed from particles coming from both B mesons in the event. To significantly reduce the $e^+e^- \rightarrow q\bar{q}$ background we require the angle θ_{TB}^* , defined in the CM frame, between the thrust axis [8] of the B_{reco} and the thrust axis of all charged and neutral particles in the event excluding the ones that form the B_{reco} , to satisfy the requirement $|\cos \theta_{TB}^*| < 0.7$.

On this signal-enriched sample (Fig. 1), the contributions from the background are estimated as the sum of three components: the $e^+e^- \rightarrow q\bar{q}$, the $B^0\bar{B}^0$, and the $B^+\bar{B}^-$ events. The shapes of these background distributions are taken from MC simulation. The normalization

FIG. 1: Distributions in m_{ES} for the B_{reco} sample. The background contributions, determined as described in the text, are overlaid.

of the $e^+e^- \rightarrow q\bar{q}$ background is taken from *off-resonance* data, scaled by the luminosity. The normalization of the $B^0\bar{B}^0$, $B^+\bar{B}^-$ components are instead obtained by means of a χ^2 fit to the m_{ES} distribution in the sideband region ($5.21 \text{ GeV}/c^2 < m_{ES} < 5.26 \text{ GeV}/c^2$). The background contamination in the signal region ($m_{ES} > 5.27 \text{ GeV}/c^2$) is extrapolated and subtracted from the data to estimate the signal yield. After correcting for the $|\cos\theta_{TB}^*|$ cut efficiency estimated in the MC, the size of the total sample of fully reconstructed B decays is $N_{B^0_{\text{reco}}} = (2.90 \pm 0.01_{\text{stat.}}) \times 10^5$ and $N_{B^+_{\text{reco}}} = (4.63 \pm 0.01_{\text{stat.}}) \times 10^5$.

From the charged tracks and the neutral clusters that do not belong to the B_{reco} we reconstruct the charmed mesons (D_{meas}) in the modes $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$; $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+ \rightarrow K_s^0\pi^+$; and $D_s^- \rightarrow \phi\pi^-$ ($\phi \rightarrow K^+K^-$), $K_s^0K^-$ ($K_s^0 \rightarrow \pi^+\pi^-$), and $K^{*0}K^-$ ($K^{*0} \rightarrow K^+\pi^-$). We select ϕ and K^{*0} candidates with a reconstructed mass within $15 \text{ MeV}/c^2$ and $70 \text{ MeV}/c^2$ from their nominal values [9], respectively. The D^* candidates are reconstructed in the decay modes $D^{*+} \rightarrow D^0\pi^+$, $D^+\pi^0$, $D^{*0} \rightarrow D^0\pi^0$, $D^0\gamma$, and $D_s^{*-} \rightarrow D_s^-\gamma$. We require the reconstructed masses of the D^0 , D^+ , and D_s^- candidates and the differences Δm between the masses of the D^* and D candidates to be within $1.5 - 3$ times its measured resolution from their nominal values [9], depending on the background level.

We apply further selection criteria to enhance the signal contributions in the sample. For $D^{(*)+}D_X^-$ and $D_s^{(*)-}D_X^+$ we consider neutral B_{reco} candidates while for $D^{(*)0}D_X^-$ and $D_s^{(*)-}D_X^0$ we require positive charged B_{reco} candidates. We suppress background from $B \rightarrow D^{(*)}l\nu$, while keeping events with a semileptonic D_X decay, by rejecting any event with a remaining identified lepton with the appropriate charge and a momentum in the B rest frame (p^*) greater than $1 \text{ GeV}/c$. In order to minimize the contamination of the modes with a D^* to the modes with a D meson, we assign the events consistent with both the hypotheses ($B \rightarrow DD_X$ and $B \rightarrow D^*D_X$) to the D^* sample.

The invariant mass of D_X (m_X) is derived from the missing four-momentum $p_X = p_{Y(4S)} - p_{B_{\text{reco}}} - p_{D_{\text{meas}}}$, where all momenta are measured in the laboratory frame. The m_X resolution is improved by a global $Y(4S)$ kinematic fit [10] that includes beam position and energy information and constrains the masses and decay vertices of the D_{meas} . The χ^2 of this fit is used to reduce the combinatorial background. We remove reconstructed D mesons with χ^2 probability smaller than 0.1%.

Of the selected events, 3–6% (9–30%) contain multiple $D_{(s)}$ ($D_{(s)}^*$) candidates. We retain those in the D_{meas} decay mode with the lowest combinatorial background. If there are multiple candidates with the same decay mode, we select the one with the lowest value of $|m_D - m_{PDG}|$ and $(m_{D_{\text{meas}}} - m_{PDG})^2/\sigma_{m_{D_{\text{meas}}}}^2 + (\Delta m - \Delta m_{PDG})^2/\sigma_{\Delta m}^2$ for $D_{(s)}$ and $D_{(s)}^*$ respectively, where m is the reconstructed mass of the D_{meas} candidate and the subscript PDG indicates nominal values [9].

Finally, we consider only candidates in the range $1.65 \text{ GeV}/c^2 < m_X < 2.71 \text{ GeV}/c^2$ for the $D^{(*)+0}D_X$ modes and $1.68 \text{ GeV}/c^2 < m_X < 2.31 \text{ GeV}/c^2$ for $D_s^{(*)-}D_X$. These ranges were chosen to minimize the total uncertainty introduced by the background shape and normalization.

The yield of each decay mode is extracted from the m_X distribution by a binned χ^2 fit of a sum of n_{sig} signal contributions (N^{sig}) and the total background contribution (N^{bkg}), which is a sum of the combinatorial background, other $B \rightarrow D_{(s)}^{(*)}D_X$ decays, and $D_{(s)}^{(*)}-D_{(s)}$ crossfeed, to the experimental data. The signal and background distributions are histograms taken from MC simulation. For D^0D_X we also weight the background shape with a second order polynomial function whose parameters are fitted on data. In the case of $D^{(*)+0}D_X$ modes we consider three signal components: $D^{(*)+0}D_s^-$, $D^{(*)+0}D_s^{*-}$, and $D^{(*)+0}D_{sJ}(2460)^-$, while in the case of $D_s^{(*)-}D_X$ modes we consider two signal components: $D_s^{(*)-}D^{+/0}$ and $D_s^{(*)-}D^{*+0}$. The χ^2 is defined as:

$$\chi^2(C_j, C_{\text{bkg}}) = \sum_i \left(\frac{N_i^{\text{meas}} - \mu_i(C_j, C_{\text{bkg}})}{\sqrt{\delta N_i^{\text{meas}} + \delta N_i^{\text{MC}}}} \right)^2$$

where N_i^{meas} is the number of observed events in bin i , μ_i corresponds to $\mu_i = \sum_{j=1, n_{\text{sig}}} C_j N_{ij}^{\text{sig}} + C_{\text{bkg}} N_i^{\text{bkg}}$, the index j denotes the signal component, and δN_i^{meas} and δN_i^{MC} are the statistical uncertainties for data and MC samples, respectively. The relative normalizations of each component (C_j and C_{bkg}) are allowed to vary in the fit. The measured m_X distributions and the results of the fits are shown in Fig. 2.

The branching fractions are extracted as $\mathcal{B}(f) = N_{\text{fit}}/(\varepsilon N_{B_{\text{reco}}})$, where N_{fit} is the number of signal events obtained from the fit to the m_X distribution for a given mode and ε , which includes the intermediate branching

FIG. 2: Distributions of m_X . Fitted $\bar{B} \rightarrow D^{(\ast)+,0} D_s^{(\ast)-}$ and $\bar{B} \rightarrow D^{(\ast)+,0} D_{sJ}(2460)^-$ signal contributions and background components, determined as described in the text, are overlaid to the data points.

fractions of D_{meas} and its decay products, is the selection efficiency estimated using MC simulation.

The dominant systematic uncertainties originate from the lack of knowledge of the correct shapes used in the m_X fit, and from the determination of efficiencies (because of the limited MC statistics). These uncertainties range from 5.6% to 25%, depending on the mode. The systematic uncertainties due to the determination of $N_{B_{\text{reco}}}$ and to the differences between data and MC in the composition of the reconstructed B_{reco} modes range between 3.7% and 6.7% for B^0 , and between 3.5% and 9.0% for B^+ depending on the mode under study. Other uncertainties come from track reconstruction efficiency (1.4% per track and 2.2% per soft pion), γ and π^0 efficiencies (3.0% per π^0 and 1.8% per γ), and kaon identification (2% per kaon). The uncertainties due to branching fraction measurements for exclusive $D_{(s)}^{(\ast)}$ decays [9] contribute between 3.0% and 7.4%, depending on the mode. We check the uncertainties introduced by the χ^2 cut of the kinematic fit by comparing data and MC control samples for $B \rightarrow D^{(\ast)} l \nu$ obtained with all previously mentioned cuts except for the $p^* > 1 \text{ GeV}/c$ criterion applied. The statistical uncertainty of this comparison is used as the systematic uncertainty (between 0.5% and 2.3%).

We combine the sixteen measurements of $B \rightarrow D^{(\ast)} D_{s(J)}^{(\ast)}$ to obtain the eight branching fractions for these modes and $\mathcal{B}(D_s^- \rightarrow \phi \pi^-)$ in a χ^2 fit. In this com-

bination the ratios $\mathcal{B}(D_s^- \rightarrow K^{*0} K^-)/\mathcal{B}(D_s^- \rightarrow \phi \pi^-)$ and $\mathcal{B}(D_s^- \rightarrow K_s^0 K^-)/\mathcal{B}(D_s^- \rightarrow \phi \pi^-)$, included in the efficiency calculation when $D_{\text{meas}} = D_s^{(\ast)-}$, are fixed [9], while $\mathcal{B}(D_s^- \rightarrow \phi \pi^-)$ is a free parameter. The MC model used to generate the $D_s^- \rightarrow K^+ K^- \pi^-$ decays does not include any interference among the different final states ($\phi \pi^-$, $K^{*0} K^-$, $f_0(980) \pi^-$, ...). Correlated and uncorrelated uncertainties are properly taken into account in the covariance matrix. The results of this fit are given in the last column of Table I.

We further combine the results of this analysis with $\bar{B} \rightarrow D^{(\ast)+/0} D_s^{(\ast)-}$ exclusive branching fractions from [11, 12, 13, 14] and the BABAR results for $\mathcal{B}(\bar{B} \rightarrow D_{sJ}(2460)^- D^{(\ast)})$ [4], obtaining the following branching fractions:

$$\begin{aligned}\mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^{*-} \pi^0) &= (56 \pm 13_{\text{stat.}} \pm 9_{\text{syst.}})\%, \\ \mathcal{B}(D_{sJ}(2460)^- \rightarrow D_s^- \gamma) &= (16 \pm 4_{\text{stat.}} \pm 3_{\text{syst.}})\%, \\ \mathcal{B}(D_s^- \rightarrow \phi \pi^-) &= (4.62 \pm 0.36_{\text{stat.}} \pm 0.50_{\text{syst.}})\%.\end{aligned}$$

In conclusion, we have measured the branching fractions for the decays $\bar{B} \rightarrow D^{(\ast)+,0} D_s^{(\ast)-}$. These are consistent with the existing measurements [9] and, in several cases, have a significantly smaller uncertainty. The combination of these results with the existing measurements provide the branching fraction for $D_s^- \rightarrow \phi \pi^-$, which is also consistent with the most recent measurement

TABLE I: Event yields (N_{fit}), efficiencies (ε), and branching fractions (\mathcal{B}) for pairs of detected decay modes, separately and combined. In this combination we use only the results in this paper. $\mathcal{B}(D_s^- \rightarrow \phi\pi^-)$ is a free parameter and is also reported in the table. The first uncertainty on \mathcal{B} is statistical, the second is systematic. The parameter k corresponds to $k = 3.6\% / (\mathcal{B}(D_s^- \rightarrow \phi\pi^-))$.

Decay mode	D_{meas}	N_{fit}	$\varepsilon(\%)$	$\mathcal{B}(\%)$	Combined $\mathcal{B}(\%)$
$\bar{B}^0 \rightarrow D_s^- D^+$	D^+	86 ± 17	3.29 ± 0.16	$0.90 \pm 0.18 \pm 0.14$	$0.64 \pm 0.13 \pm 0.10$
	D_s^-	39 ± 9	1.79 ± 0.12	$(0.74 \pm 0.17 \pm 0.13) \cdot k$	
$\bar{B}^0 \rightarrow D_s^{*-} D^+$	D^+	63 ± 19	3.24 ± 0.16	$0.67 \pm 0.20 \pm 0.11$	$0.69 \pm 0.16 \pm 0.09$
	D_s^{*-}	30 ± 9	0.91 ± 0.08	$(1.15 \pm 0.33 \pm 0.26) \cdot k$	
$\bar{B}^0 \rightarrow D_s^- D^{*+}$	D^{*+}	48 ± 13	2.86 ± 0.13	$0.57 \pm 0.16 \pm 0.09$	$0.71 \pm 0.13 \pm 0.09$
	D_s^-	68 ± 12	1.63 ± 0.10	$(1.42 \pm 0.26 \pm 0.20) \cdot k$	
$\bar{B}^0 \rightarrow D_s^{*-} D^{*+}$	D^{*+}	129 ± 18	2.68 ± 0.09	$1.65 \pm 0.23 \pm 0.19$	$1.68 \pm 0.21 \pm 0.19$
	D_s^{*-}	84 ± 14	0.86 ± 0.05	$(3.38 \pm 0.60 \pm 0.61) \cdot k$	
$B^- \rightarrow D_s^- D^0$	D^0	214 ± 28	3.46 ± 0.11	$1.33 \pm 0.18 \pm 0.32$	$0.92 \pm 0.14 \pm 0.18$
	D_s^-	66 ± 10	1.28 ± 0.07	$(1.11 \pm 0.17 \pm 0.17) \cdot k$	
$B^- \rightarrow D_s^{*-} D^0$	D^0	160 ± 31	3.71 ± 0.12	$0.93 \pm 0.18 \pm 0.19$	$0.77 \pm 0.15 \pm 0.13$
	D_s^{*-}	26 ± 10	0.64 ± 0.05	$(0.87 \pm 0.33 \pm 0.16) \cdot k$	
$B^- \rightarrow D_s^- D^{*0}$	D^{*0}	152 ± 29	2.69 ± 0.10	$1.21 \pm 0.23 \pm 0.20$	$0.76 \pm 0.15 \pm 0.13$
	D_s^-	52 ± 11	1.33 ± 0.07	$(0.82 \pm 0.18 \pm 0.10) \cdot k$	
$B^- \rightarrow D_s^{*-} D^{*0}$	D^{*0}	216 ± 33	2.73 ± 0.07	$1.70 \pm 0.26 \pm 0.24$	$1.62 \pm 0.22 \pm 0.18$
	D_s^{*-}	90 ± 15	0.82 ± 0.04	$(2.38 \pm 0.41 \pm 0.31) \cdot k$	
$D_s^- \rightarrow \phi\pi^-$	-	-	-	-	$4.58 \pm 0.48 \pm 0.68$
$\bar{B}^0 \rightarrow D_{sJ}(2460)^- D^+$	D^+	27 ± 16	3.61 ± 0.27	$0.26 \pm 0.15 \pm 0.07$	
$\bar{B}^0 \rightarrow D_{sJ}(2460)^- D^{*+}$	D^{*+}	64 ± 15	2.51 ± 0.15	$0.88 \pm 0.20 \pm 0.14$	
$B^- \rightarrow D_{sJ}(2460)^- D^0$	D^0	75 ± 28	3.78 ± 0.24	$0.43 \pm 0.16 \pm 0.13$	
$B^- \rightarrow D_{sJ}(2460)^- D^{*0}$	D^{*0}	147 ± 34	2.81 ± 0.14	$1.12 \pm 0.26 \pm 0.20$	

[15] and confirms a larger value compared to the previous world average [9]. We have extracted the absolute branching fractions for $\bar{B} \rightarrow D^{(*)+0} D_{sJ}(2460)^-$, thus allowing the first measurement of the $D_{sJ}(2460)^-$ decay rates. Our results show that the $D_{sJ}(2460)^-$ meson decays via photon or π^0 emission to $D_s^{(*)-}$ in $(72 \pm 19)\%$ of the cases.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support *BABAR*. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[†] Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy

[‡] Also with Università della Basilicata, Potenza, Italy

- [1] Charge conjugate reactions are implied throughout this paper.
- [2] M. Beneke, J. Phys. **G27**, 1069 (2001), and references therein.
- [3] Z. Luo and J. L. Rosner, Phys. Rev. D **64**, 094001 (2001).
- [4] B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. Lett. **93**, 181801 (2004).
- [5] D. Besson *et al.* (CLEO Collaboration), Phys. Rev. D **68**, 032002 (2003) and B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. D **69**, 031101 (2004).
- [6] B. Aubert *et al.* (*BABAR* Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A **479**, 1 (2002).
- [7] S. Agostinelli *et al.* (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A **506**, 250 (2003).
- [8] E. Farhi, Phys. Rev. Lett. **39**, 1587 (1977).
- [9] S. Eidelman *et al.* (Particle Data Group), Phys. Lett. B **592**, 1 (2004).
- [10] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A **552**, 566 (2005).
- [11] D. Gibaut *et al.* (CLEO Collaboration), Phys. Rev. D **53**, 4734 (1996).
- [12] S. Ahmed *et al.* (CLEO Collaboration), Phys. Rev. D **62**, 112003 (2000).
- [13] B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. D **67**, 092003 (2003).

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France

- [14] In order to avoid any possible correlation between this analysis and the other $D_s^- \rightarrow \phi\pi^-$ branching fraction results, we don't include the $\mathcal{B}(\bar{B}^0 \rightarrow D_s^{*-}D^+)$ from B. Aubert *et al.* (*BABAR* Collaboration) Phys. Rev. D **71**, 091104 (2005) in the average.
- [15] B. Aubert *et al.* (*BaBar* Collaboration), Phys. Rev. D **71**, 091104 (2005).