Solid Mechanics 2 Tutorial Sheets

Tutorial Sheets and Answers for DE2's Enjoyment

Tutorial Sheet 3: Moving Systems

Topics covered are

- Body fixed and moving reference frames
- The concept of sliding contacts
- Cross product in 3D

Tips

- Really try to visualise these mechanisms, physically drawing on where each reference frame can help to prevent errors.
- You don't need to include all terms in your expressions if you know they are zero, however in the early questions I have included all terms for completeness.
- Remember unit vectors...

Question 1

Sleeve C slides at 1 m/s relative to bar BD. Use the body-fixed coordinate system shown to determine the velocity of C.

Question 2

Using the same system as Question 1, the angular accelerations of the two bars are zero and the sleeve C slides at a constant velocity of 1 m/s relative to bar BD. What is the acceleration of C?

Question 3

Bar AB has an angular velocity of 4 rad/s in the clockwise direction. What is the velocity of pin B relative to the slot?

Question 4

The coordinate system is fixed relative to the ship B. At the instant shown, the ship is sailing north at 5 m/s relative to the earth, and its angular velocity is 0.26 rad/s counterclockwise. Using radar, it is determined that the position of the aeroplane is 1080i+1220j+6300k m and its velocity relative to the ship's coordinate system is 870i-45j-21k m/s. What is the aeroplane's velocity relative to the earth?

Question 5

The space shuttle is attempting to recover a satellite for repair. At the current time, the satellite's position relative to a coordinate system fixed to the shuttle is 50i m. The gyroscopes on the shuttle indicate that its current angular velocity is 0.05j+0.03k rad/s. The shuttle pilot measures the velocity of the satellite relative to the head; find coordinate system and determine it has been sent to be a few forms of the satellite relative to the head; find coordinate system and determine it has been sent to be a few forms of the satellite relative to the head; find coordinate system and determine it has been sent to be a few forms of the satellite relative to the head; for some sent to be a few forms of the satellite for the satellite

of the sateline relative to the body-fixed coordinate system and determines it to be (21, 1.3) and (21, 3) and (21, 3) and (21, 3) are rad/s. What are the x, y, and z components of the satellite's velocity relative to a nonrotating coordinate system with its origin fixed to the shuttle's center of mass?

Question 6

The train on the circular track is traveling at a constant speed of 50 m/s in the direction shown. The train on the straight track is traveling at 20 m/s in the direction shown and is increasing its speed at 2 m/s 2 . Determine the velocity of passenger A that passenger B observes relative to the given coordinate system, which is fixed to the car in which B is riding.

Question 7

Suppose that the merry-go-round has counterclockwise angular velocity ω and counterclockwise angular acceleration α . The person A is standing still on the ground. Determine A's acceleration relative to B's reference frame at the instant shown.

Question 8

The angular velocity ω AC=5° per second. Determine the angular velocity of the hydraulic actuator BC and the rate at which the actuator is extending.

Question 9

The sleeve at A slides upward at a constant velocity of 10 m/s. Bar AC slides through the sleeve at B. Determine the angular velocity of bar AC and the velocity at which the bar slides relative to the sleeve at B.

Question 10

The satellite A is in a circular polar orbit (that intersects the earth's axis of rotation). The radius of the orbit is R, and the magnitude of the satellite's velocity relative to a non-rotating reference frame with its origin at the center of the earth is v_A . At the instant shown, the satellite is above the equator. An observer B on the earth directly below the satellite measures its motion using the earth-fixed coordinate system shown. What are the velocity and acceleration of the satellite relative to B's earth-fixed coordinate system? The radius of the earth is R_E and the angular velocity of the earth is ω_E .

Dyson School of Design Engineering 2024