

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Алгоритм расчета доменного, коксового и природного газов

СОГЛАСОВАНО:		СОГЛАСОВАН	HO:
Начальник)	/ВСИТЦУ	Начальник ГЦ	ļ
	К.С.Теличко		С.А.Салдаев
« »	2017 г.	« »	2017 г.

лист согласования

к Математическому обеспечению алгоритма расчета доменного, коксового и природного газов №125-10 от 19.04.2017 г.

СОГЛАСОВАНО:	
УВСИТЦУ:	
Начальник отдела автоматизации	И.Н.Резепин
Начальник бюро программирования	А.А.Загиров
Начальник бюро ДПиУЭ	А.В.Суковицин
ГЦ:	
Заместитель начальника цеха	Д.В.Первухин
РАЗРАБОТАЛ:	
Математик	Н.А.Иванов

Оглавление

1	Введение	6
2	Алгоритм расчета расхода среды	6
2.1	Исходные данные	6
2.2	Порядок расчета расхода среды	6
2.2.1	Расчет характеристик расходомерного узла	6
2.2.2	Расчет коэффициента поправки на закругление входной кромки СУ $\pmb{K_n}$	8
2.2.3	Расчет коэффициента скорости входа <i>Е</i>	9
2.2.4	Расчет абсолютного давления среды Р	9
2.2.5	Расчет абсолютной температуры среды <i>Т</i>	10
2.2.6	Расчет молярной доли компонентов х _i	10
2.2.7	Расчет вязкости μ	11
2.2.8	Расчет псевдо-критической температуры ДГ и КГ $\emph{\textbf{T}}_{\emph{n}\emph{\kappa}}$	12
2.2.9	Расчет псевдо-критического давления ДГ и КГ Р _{пк}	12
2.2.10	Расчет фактора сжимаемости в рабочих условиях Z	13
2.2.11	Расчет фактора сжимаемости при стандартных условиях $\mathbf{Z}_{\mathbf{c}}$	15
2.2.12	Расчет коэффициента сжимаемости <i>К</i>	15
2.2.13	Расчет плотности при стандартных условиях $oldsymbol{ ho}_c$	15
2.2.14	Расчет плотности в рабочих условиях р	16
2.2.15	Расчет показателя адиабаты к	17
2.2.16	Расчет коэффициента расширения <i>є</i>	17
2.2.17	Расчет перепада давления на СУ ДР	17
2.2.18	Расчет коэффициента истечения С	18
2.2.19	Расчет коэффициента истечения С'	18
2.2.20	Расчет коэффициента шероховатости K_{ω}	18
2.2.21	Расчет коэффициента шероховатости <i>К'</i> _ш	21
2.2.22	Расчет критерия Рейнольдса <i>Re</i>	21
2.2.23	Расчет объёмного расхода среды приведённого к стандартным условиям $oldsymbol{Q_c}$	22
3	Граничные условия применения расчётных методик	22
3.1	Для диафрагм с угловым и трёх радиусным способом отбора давления	22
3.2	Для диафрагм с фланцевым способом отбора давления	22
3.3	Для расчета физических свойств ПГ	22
4	Константы	23
5	Список используемой литературы	24

Аннотация

В математическом обеспечении приводятся алгоритмы расчета объёмных расходов доменного, коксового и природного газов, а также связанных с ними величин.

Обозначения:

С – при стандартных условиях

К – критический параметр

Пк – псевдо-критический параметр

Пр – приведённый параметр

ПГ – природный газ

ДГ- доменный газ

КГ – коксовый газ

СУ – сужающее устройство

ИТ – измерительный трубопровод

1 Введение

Приведённые ниже алгоритмы по доменному и коксовому газам позволяют с большей точностью проводить вычисления объёмного расхода приведённого к стандартным условиям, в сравнении с алгоритмами, приведёнными в РД-50-213-80, которые использовались ранее. Алгоритм по расчету теплофизических свойств природного газа приведён из ГОСТ 30319.2-2015 который вступает в силу с 2017-01-01.

2 Алгоритм расчета расхода среды

2.1 Исходные данные

Входные данные, приходящие с датчиков:

- давление среды избыточное P_{∂ат}
- барометрическое давление P_{бар}
- температура t (в градусах С),
- перепад давления в СУ ΔР.

Входные данные, вводимые с клавиатуры:

- объёмная доля каждого компонента ДГ (кроме азота N_2 , для него объем рассчитывается как: 100 сумма остальных) r_i (%),
- объёмная доля каждого компонента КГ (кроме азота N_2 и кислорода O_2 для них объем рассчитывается как: (100 сумма остальных)/2) r_i (%),
- диаметр ИТ при 20 град. С *D*₂₀.
- материал ИТ (марка стали),
- шероховатость ИТ Ra (мм),
- диаметр СУ при 20 град. С d_{20.}
- материал СУ (марка стали),
- начальный радиус закругления входной кромки r_H (мм),
- время эксплуатации расходомерного узла \mathcal{T}_T (лет),
- метод отбора перепада давления на СУ (угловой, трех радиусный или фланцевый),
- тип газа (ДГ, КГ, ПГ).

Необходимо выполнить проверку исходных данных (см. 3.1,3.2,3.3).

Выходные данные:

- объемный расход приведённый к стандартным условиям Q_c (м³/ч).
- 2.2 Порядок расчета расхода среды
- 2.2.1 Расчет характеристик расходомерного узла

Исходные данные для расчета:

- температура t,
- диаметр ИТ при 20 град. С *D*₂₀.
- материал ИТ (марка стали),
- диаметр СУ при 20 град. С d₂₀.
- материал СУ (марка стали).

Порядок расчета:

• рассчитываем действительный диаметр ИТ *D*,

- рассчитываем действительный диаметр СУ d (при расчетах использовать t в градусах Цельсия!),
- рассчитываем действительный относительный диаметр СУ β .

Диаметры ИТ D (мм), СУ d (мм) при рабочей температуре определяются по формуле [1]:

$$\begin{split} d &= d_{20} K_{cy} \\ D &= D_{20} K_T \\ K_{cy} &= 1 + \alpha_t \ t - 20 \\ K_T &= 1 + \alpha_t (t - 20) \\ \alpha_t &= 10^{-6} * (a_0 + a_1 * \frac{t}{1000} + a_2 * (\frac{t}{1000})^2) \end{split}$$

Где α_t - температурный коэффициент расширения материала измерительного трубопровода (1/град),

 a_{0} , a_{1} , a_{2} – коэффициенты из таблицы №1 для материала ИТ и СУ соответственно.

Таблица №1 Значения коэффициентов а₀, а₁, а₂ [1]

Марка стали	Значения постоянных коэффициентов				
	a ₀	a ₁	a ₂		
8	10,9	7,7	2,4		
10	10,8	9	4,2		
15	11,1	7,9	3,9		
15M	10,7	13	13		
16M	11,1	8,4	3,7		
20	11,1	7,7	3,4		
20M	10,7	13	13		
25	12,2	0	0		
30	10,2	10,4	5,6		
35	10,2	10,4	5,6		
X6CM	10,1	2,7	0		
X7CM	10,1	2,7	0		
12MX	11,3	3,8	0		
12Х1МФ	10	9,6	6		
12X17	9,4	7,4	6		
12X18H9T	15,6	8,3	6,5		

Марка стали	Значения постоянных коэффициентов			
	a ₀	a ₁	a ₂	
12X18H10T	15,6	8,3	6,5	
14X17H2	9,4	7,5	7,8	
15XMA	11,1	8,5	5,2	
15Х1М1Ф	10,4	8,1	4,4	
15X5M	10,1	2,7	0	
15Х12ЕНМФ	9,8	3	0	
15X18H9	15,7	5,7	0	
20X23H13	15,5	1,7	0	
36X18H25C2	12	10	5,4	

Относительный диаметр отверстия СУ.

Относительный диаметр отверстия СУ β при рабочей температуре определяется по формуле:

$$\beta = d/D$$

Необходимо выполнить проверку исходных данных (см. 3.1, 3.2).

- 2.2.2 Расчет коэффициента поправки на закругление входной кромки СУ \mathbf{K}_n Исходные данные для расчета:
 - начальный радиус закругления входной кромки $r_{\!\scriptscriptstyle H}$ (для расчета переводим в метры),
 - диаметр СУ при рабочей температуре d (для расчета переводим в метры),
 - время эксплуатации расходомерного узла \mathcal{T}_T (лет).

Порядок расчета:

- рассчитываем радиус закругления входной кромки диафрагмы $r_{k,}$
- рассчитываем коэффициент поправки на входную кромку K_{n} .

Коэффициента поправки на закругление входной кромки определяется по формуле [2]:

$$\begin{split} &K_n=0{,}9826+(\frac{r_k}{d}+0{,}0007773)^{0,6}\text{, если }r_k>4*10^{-4}\text{d}\\ &r_k=a-a-r_{_H}e^{-\tau_t}_3\text{, где}a=0{,}000195. \end{split}$$

Иначе: $K_n = 1$

2.2.3 Расчет коэффициента скорости входа Е

Исходные данные для расчета:

ullet действительный относительный диаметр СУ eta .

Коэффициент скорости входа определяется по формуле [1]:

$$E = \frac{1}{\sqrt{(1 - \beta^4)}}$$

2.2.4 Расчет абсолютного давления среды Р

Исходные данные для ДГ и КГ:

• давление среды избыточное $P_{\partial am}$, барометрическое $P_{\delta ap}$

Расчет [9]:

Давление в трубопроводе измеряется датчиками избыточного или абсолютного давления в различных единицах измерения.

В расчетах по ДГ и КГ используют абсолютное давление в паскалях (Па)!!!.

В связи с этим производят ряд вычислений для выполнения этих требований. Измерение датчиком избыточного давления:

$$p_{uso} = p_{\partial am} \cdot k$$

$$p = p_{uso} + p_{oap} \cdot k$$

где P - абсолютное давление,

 P_{us6} - избыточное давление,

 $P_{∂am}$ – показания датчика,

 $P_{\textit{бар}}$ - показания датчика атмосферного давления,

k = 1000000, если датчик $P_{\partial am}$ проградуирован в МПа,

k = 98066,5 если датчик проградуирован в кгс/см²,

k = 9,80665 если датчик проградуирован в кгс/м²,

k = 1 если датчик проградуирован в Па,

k = 100000 если датчик проградуирован в бар,

k = 101048 если датчик проградуирован в атмосферах.

Измерение датчиком абсолютного давления.

$$p = p_{\partial am} \cdot k$$

Таким же образом осуществляется перевод перепада давления в Па.

Исходные данные для ПГ:

• давление среды избыточное $P_{\partial am}$, барометрическое $P_{\delta ap}$

Расчет:

В расчетах по ПГ используют абсолютное давление в мегапаскалях(МПа)!!!.

В связи с этим производят ряд вычислений для выполнения этих требований.

$$p_{uso} = p_{\partial am} \cdot k$$

$$p = p_{uso} + p_{oap} \cdot k$$

где

k = 1, если датчик $P_{\partial am}$ проградуирован в МПа,

 $k = 9,80665 \cdot 10^{-2}$, если датчик проградуирован в кгс/см²,

 $k = 1,33322 \cdot 10^{-4}$ если датчик проградуирован в мм ртутного столба,

 $k = 9.80665 \cdot 10^{-6}$ если датчик проградуирован в мм водяного столба,

 $k = 1 \cdot 10^{-6}$ если датчик проградуирован в Па,

 $k = 1.10^{-1}$ если датчик проградуирован в бар,

 $k = 1,01048 \cdot 10^{-1}$ если датчик проградуирован в атмосферах.

Измерение датчиком абсолютного давления.

$$p = p_{\partial am} \cdot k$$

Необходимо выполнить проверку исходных данных (см. 3.3).

2.2.5 Расчет абсолютной температуры среды T

Исходные данные для расчета:

• температура *t* (градусов С).

Абсолютная температура T, градусов Кельвина, рассчитывается по формуле:

$$T = t + 273,15 \{1\} [3]$$

Необходимо выполнить проверку исходных данных (см. 3.3).

Расчет приведенной температуры T_{np} для ДГ, КГ. [6].

Исходные данные для расчета:

- критическая температура каждого компонента газовой смеси T_{ki}(K) (см. таблицу №4.1),
- температура среды абсолютная *T*(K) (см. {1}),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Приведённая температура каждого компонента газовой смеси рассчитывается по формуле:

$$T_{\pi pi} = \frac{T}{T_{ki}}$$

2.2.6 Расчет молярной доли компонентов хі

Исходные данные для расчета:

- объёмная доля і-ого компонента r_i (%) (см. таблицу №1),
- фактор сжимаемости при стандартных условиях і-ого компонента Z_{ci}
 (см. таблицу №4.1),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет x_i ДГ и КГ [4]:

$$x_i = (\frac{r_i \ z_{ci}}{\int r_j \ z_{cj}})$$

2.2.7 Расчет вязкости µ

Исходные данные для КГ, ДГ:

- критическое давление Р_{кі}(МПа) (см. 2.2.4),
- критическая температура *Ткі*(К) (см. таблицу №4.1),
- молярная масса і-ого компонента М_і(кг/моль) (см. таблицу №4.1),
- приведённая температура Т_{прі} (см. 2.2.5),
- тип газовой смеси (ДГ, КГ, ПГ) (см. 2.1),

Порядок расчета вязкости μ ДГ и КГ [7]:

- рассчитываем критическую динамическую вязкость і-ого компонента среды µкі.
- рассчитываем динамическую вязкость і-ого компонента среды μ_i ,
- рассчитываем динамическую вязкость газовой смеси *µ*.

Критическая динамическая вязкость і-ого компонента среды μ_{ki} рассчитывается по формуле:

$$\mu_{\kappa i} = \frac{1.61 M_i^{0.5} P_{\kappa i}^{2~3}}{T_{\kappa i}^{\frac{1}{6}}}$$

Динамическая вязкость і-ого компонента среды μ_i рассчитывается по формуле:

$$\mu_i = egin{array}{c} \mu_{\kappa i} T_{\pi p i}^{ 0,965} & \text{при } T_{\pi p i} < 1 \ \mu_{\kappa i} T_{\pi p i}^{ (0,71 + rac{0,29}{T_{\pi p i}})} & \text{при } T_{\pi p i} > 1 \end{array}$$

Динамическая вязкость газовой смеси μ рассчитывается по формуле:

$$\mu = i \frac{x_i \mu_i}{j x_j \Phi_{ij}}$$

$$\Phi_{ij} = \frac{1 + (\frac{\mu_i}{\mu_j})^{1/2} * (\frac{M_j}{M_i})^{1/4}}{8 * (1 + \frac{M_i}{M_j})}^{1/2}$$

Исходные данные для ПГ:

- абсолютное давление *P*(МПа) (см. 2.2.4),
- абсолютная температура *T*(К) (см. 2.2.5),
- плотность при стандартных условиях ρ_c (кг/м³) (см. таблицу №4.2),
- молярные доли углекислого газа и азота x_v, x_a соответственно (см. таблицу №4.2).

Расчет μ ПГ [5]:

Псевдо-критические температура и давление природного газа $T_{n\kappa}$, $P_{n\kappa}$ рассчитываются по формулам:

$$T_{nk} = 88,25(0,9915 + 1,759\rho_c - x_y - 1,681x_a)$$

$$P_{nk} = 2,9585(1,608 - 0,05994\rho_c + x_y - 0,392x_a)$$

Приведённые температура и давление Т_п, Р_п рассчитываются по формулам:

$$T_{n} = \frac{T}{T_{nk}}$$

$$P_{n} = \frac{P}{P_{nk}}$$

Коэффициенты С_и, µ_Т рассчитываются по формулам:

$$C_{\mu} = 1 + \frac{P_{n}^{2}}{30*(T_{n}-1)}$$

$$\mu_{T} = 3.24 * \frac{\overline{T} + 1.37 - 9.09\rho_{c}^{0.125}}{\overline{\rho_{c}} + 2.08 - 1.5(x_{a} + x_{v})}$$

Динамическая вязкость µ рассчитывается по формуле:

$$\mu = \mu_T * C_{\mu}$$

2.2.8 Расчет псевдо-критической температуры ДГ и КГ $T_{n\kappa}$

Исходные данные для расчета:

- молярная доля і-ого компонента х_і (см. таблицу №4.1),
- критическая температура і-ого компонента Т_{кі} (К) (см. таблицу №4.1),
- критическое давление і-ого компонента P_{кі}(Па) (см. таблицу №4.1),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет $T_{\pi \kappa}$ ДГ и КГ [6]:

$$T_{nk} = \left(\frac{\left[\frac{1}{i} x_i \left(\frac{T_{ki}^{2,5}}{P_{ki}}\right)^{0,5}\right]^2}{\frac{1}{i} x_i \left(\frac{T_{ki}}{P_{ki}}\right)}\right)^{\frac{2}{3}}$$

2.2.9 Расчет псевдо-критического давления ДГ и КГ Рпк

Исходные данные для расчета:

- молярная доля і-ого компонента х_і (см. таблицу №4.1),
- критическая температура і-ого компонента Т_{кі} (К) (см. таблицу №4.1),
- критическое давление і-ого компонента P_{кі}(Па) (см. таблицу №4.1),
- псевдо-критическая температура $T_{\pi K}(K)$ (см. 2.2.8),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет $P_{п \kappa}$ ДГ и КГ [6]:

$$P_{nk} = (\frac{T_{nk}}{i x_i (\frac{T_{ki}}{P_{ki}})})$$

2.2.10 Расчет фактора сжимаемости в рабочих условиях Z

Исходные данные для расчета ZДГ и КГ :

- псевдо-критическая температура T_{пк} (К) (см. 2.2.8),
- давление абсолютное P(Па) (см. 2.2.4),
- псевдо-критическое давление среды $P_{\pi\kappa}$ (Па) (см. 2.2.9),
- температура абсолютная *T*(К) (см. 2.2.5),
- константы R, Ω_b , Ω_a (см. 4),
- тип газовой смеси (ДГ, КГ, ПГ) (см. 2.1).

Расчет ZД Γ и К Γ [6]:

$$a = \frac{\Omega_{a}R^{2}T_{nk}^{2,5}}{P_{nk}}$$

$$b = \frac{\Omega_{b}RT_{nk}}{P_{nk}}$$

$$A = \frac{aP}{R^{2}T^{2,5}}$$

$$B = \frac{bP}{RT}$$

$$q = \frac{A - B - 3AB - B^{2}}{3} - \frac{2}{27}$$

$$z = \frac{1}{3} + 2 * \sqrt[3]{-\frac{q}{2}}$$

Исходные данные для расчета Z ПГ:

- плотность природного газа при стандартных условиях ρ_c (кг/м³) (см. 2.2.13),
- молярные доли CO₂, N₂, CH₄ (x_V, x_a, x_э) (см. таблицу №4.2),
- фактор сжимаемости природного газа при стандартных условиях Z_c (см. 2.2.11),
- температура абсолютная Т (К) (см. 2.2.5),
- абсолютное давление P (МПа) (см. 2.2.4).

Расчет ZПГ [5]:

$$\begin{split} M_9 &= (24,05525z_c\rho_c - 28,0135x_a - 44,01x_y) \ x_9, \\ H_9 &= 128,64 + 47,479M_9 \ , \\ C^* &= 0,92 + 0,0013(T - 270), \\ B^* &= 0,72 + 1,875 * 10^{-5}(320 - T)^2 \\ C_{233} &= 3,58783 * 10^{-3} + 8,06674 * 10^{-6}T - 3,25798 * 10^{-8}T^2, \end{split}$$

$$\begin{split} C_{223} &= 5,52066*10^{-3} - 1,68609*10^{-5}T + 1,57169*10^{-8}T^2 \\ C_3 &= 2,0513*10^{-3} + 3,4888*10^{-5}T - 8,3703*10^{-8}T^2, \\ C_2 &= 7,8498*10^{-3} - 3,9895*10^{-5}T + 6,1187*10^{-8}T^2, \\ C_1 &= -0,302488 + 1,95861*10^{-3}T - 3,16302*10^{-6}T^2 + \\ &+ 6,46422*10^{-4} - 4,22876*10^{-6}T + 6,88157*10^{-9}T^2 + H_3 + \\ &+ -3,32805*10^{-7} + 2,2316*10^{-9}T - 3,67713*10^{-12}T^2 + H_3^2, \\ B_3 &= -0,86834 + 4,0376*10^{-3}T - 5,1657*10^{-6}T^2, \\ B_{23} &= -0,339693 + 1,61176*10^{-3}T - 2,04429*10^{-6}T^2, \\ B_2 &= -0,1446 + 7,4091*10^{-4}T - 9,1195*10^{-7}T^2, \\ B_1 &= -0,425468 + 2,865*10^{-3}T - 4,62073*10^{-6}T^2 + \\ &+ 8,77118*10^{-4} - 5,56281*10^{-6}T + 8,81514*10^{-9}T^2 + H_3 + \\ &+ (-8,24747*10^{-7} + 4,31436*10^{-9}T - 6,08319*10^{-12}T^2)H_3^2, \\ C_m &= x_3^3C_1 + 3x_3^2x_aC^* C_1^2C_2^{-1}^3 + 2,76x_3^2x_y C_1^2C_3^{-1}^3 + \\ &+ 3x_a^2x_3C^*(C_2^2C_1)^{-1}^3 + 6,6x_3x_ax_y(C_1C_2C_3)^{-1}^3 + 2,76x_y^2x_3(C_3^2C_1)^{-1}^3 + \\ &+ x_3^3C_2 + 3x_2^2x_yC_{223} + 3x_y^2x_aC_{233} + x_y^3C_3, \\ B_m &= x_3^2B_1 + x_3x_aB^* B_1 + B_2 - 1,73x_3x_y B_1B_3^{-0.5} + x_a^2B_2 + \\ &+ 2x_ax_yB_{23} + x_y^2B_3, \\ b &= \frac{10^{3}P}{2,7715T} \\ C_0 &= b^2C_m \\ B_0 &= bB_m \\ A_0 &= 1+1,5(B_0+C_0) \\ A_2 &= [A_0 - (A_0^2 - A_1^3)^{0.5}]^{-1} 3 \\ A_1 &= 1+B_0 \\ z &= (1+A_2 + \frac{A_1}{A_2}) \ 3 \\ \end{split}$$

2.2.11 Расчет фактора сжимаемости при стандартных условиях \mathbf{Z}_{c} Исходные данные для расчета \mathbf{Z}_{c} ДГ и КГ:

- псевдо-критическая температура $T_{\pi\kappa}$ (К) (см. 2.2.8),
- давление абсолютное при стандартных условиях P_c (Па) (см. 4),
- псевдо-критическое давление среды $P_{\pi \kappa}(\Pi a)$ (см. 2.2.9),
- температура абсолютная при стандартных условиях $T_c(K)$ (см. 4),
- константы *R*, Ω_b, Ω_a (см. 4),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет Z_c ДГ и КГ [6]:

$$a = \frac{\Omega_{a}R^{2}T_{nk}^{2,5}}{P_{nk}}$$

$$b = \frac{\Omega_{b}RT_{nk}}{P_{nk}}$$

$$A_{c} = \frac{aP_{c}}{R^{2}T_{c}^{2,5}}$$

$$B_{c} = \frac{bP_{c}}{RT_{c}}$$

$$q_{c} = \frac{A_{c}-B_{c}-3A_{c}B_{c}-B_{c}^{2}}{3} - \frac{2}{27}$$

$$z_{c} = \frac{1}{3} + 2 * \frac{1}{3} - \frac{q_{c}}{2}$$

Исходные данные для расчета $Z_c \Pi \Gamma$:

- плотность природного газа при стандартных условиях ρ_c (кг/м³) (см. 2.2.13),
- молярные доли CO₂,N₂ (x_y, x_a) (см. таблицу №4.2).

Расчет Z_с ПГ [5]:

$$z_c = 1 - (0.0741\rho_c - 0.006 - 0.063x_a - 0.0575x_v)^2$$

2.2.12 Расчет коэффициента сжимаемости К

- фактора сжимаемости в рабочих условиях Z (см. 2.2.10),
- фактора сжимаемости при стандартных условиях Z_c (см. 2.2.11),
- тип газовой смеси (ДГ, КГ, ПГ) (см. 2.1).

Расчет K для ДГ, ПГ, КГ [5]:

$$K = \frac{z}{z_c}$$

2.2.13 Расчет плотности при стандартных условиях ho_c

Исходные данные для расчета ρ_c ДГ и КГ:

- фактор сжимаемости при стандартных условиях Z_c (см. 2.2.11),
- плотность і-ого компонента при стандартных условиях *p_{ci}* (кг/м³), (см. таблицу №4.1),

- молярная доля і-ого компонента х_і (см. таблицу №4.1),
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет ρ_c ДГ и КГ [4]:

$$\rho_c = \frac{-i \, x_i \rho_{ci}}{z_c}$$

Исходные данные для расчета ρ_c ПГ:

- коэффициенты $\overline{b_i}$ (см. таблицу №4.2),
- молярная масса і-ого компонента природного газа М_і(кг/кмоль) (см. таблицу №4.2),
- молярная доля і-ого компонента природного газа (*x_a, x_v, x_э, x_i*) (см. таблицу №4.2),
- универсальная газовая постоянная R (Дж/моль) (см. 4),
- абсолютная температура при стандартных условиях T_c (K) (см. 4),
- абсолютное давление при стандартных условиях P_c (МПа) (см. 4).

Расчет ρ_c ПГ [8]:

$$\begin{aligned} z_{\text{cmecu}} &= 1 - (& x_i & \overline{b_i})^2 \\ \rho_c &= \frac{10^3 P_c & _i x_i M_i}{RT_c z_{\text{cmecu}}} \end{aligned}$$

Необходимо выполнить проверку исходных данных (см. 3.3).

2.2.14 Расчет плотности в рабочих условиях ho

Исходные данные для расчета ρ ДГ и КГ:

- абсолютное давление P (Па) (см. 2.2.4),
- абсолютная температура Т (К) (см. 2.2.5),
- абсолютная температура при стандартных условиях T_c (K) (см. 4),
- абсолютное давление при стандартных условиях P_c (Па) (см. 4),
- Плотность при стандартных условиях ρ_c (кг/м³) (см. 2.2.13),
- Коэффициент сжимаемости К (см. 2.2.12).
- тип газовой смеси (ДГ, КГ) (см. 2.1).

Расчет ρ ДГ и КГ [4]:

$$\rho = \frac{\rho_{\rm c} P T_{\rm c}}{P_{\rm c} T K}$$

Исходные данные для расчета ρ ПГ:

- абсолютное давление *P* (МПа) (см. 2.2.4),
- абсолютная температура *T* (К) (см. 2.2.5),
- плотность при стандартных условиях ρ_c (кг/м³) (см. 2.2.13),
- фактора сжимаемости в рабочих условиях Z (см. 2.2.10),
- фактора сжимаемости при стандартных условиях Z_c (см. 2.2.11),

• универсальная газовая постоянная R (Дж/моль) (см. 4).

Расчет ρ ПГ [5]:

$$M_{\rm m} = 24,05525z_{\rm c}\rho_{\rm c}$$
$$\rho = \frac{10^3 M_{\rm m}P}{RTz}$$

2.2.15 Расчет показателя адиабаты к

Исходные данные для расчета $k \, \text{Д} \Gamma$ и $\text{K} \Gamma$:

- показателя адиабаты і-ого компонента k_i (см. таблицу №4.1),
- молярная доля і-ого компонента х_і (см. таблицу №4.1).

Расчет $k \, \text{Д} \Gamma$ и $\text{K} \Gamma$ [4]:

$$k = i x_i k_i$$

Исходные данные для расчета $k \Pi \Gamma$:

- абсолютное давление P (МПа) (см. 2.2.4),
- абсолютная температура *T* (К) (см. 2.2.5),
- плотность при стандартных условиях ρ_c (кг/м³) (см. 2.2.13),
- молярная доля N₂ x₂ (см. таблицу №4.2).

Расчет *k* ПГ [5]:

$$k = 1,\!556\ 1 + 0,\!074x_a\ - 3,\!9*10^{-4}T\ 1 - 0,\!68x_a\ - 0,\!208\rho_c + \\ + (P\ T)^{1,\!43}[384\ 1 - x_a\ P\ T\ ^{0,\!8} + 26,\!4x_a]$$

2.2.16 Расчет коэффициента расширения *ε*

Исходные данные для расчета:

- показатель адиабаты k (см. 2.2.15),
- относительный диаметр отверстия СУ β (см. 2.2.1),
- перепад давления на СУ ΔР (для расчета используем в Па) (см. 2.2.17).

Коэффициент расширения ε рассчитывается по формуле [2]:

$$\varepsilon = 1 - (0.351 + 0.256\beta^4 + 0.93\beta^8)(1 - (1 - \frac{\Delta P}{P})^{\frac{1}{K}})$$

2.2.17 Расчет перепада давления на СУ ДР

Если в систему приходит рабочий расход, то необходимо произвести расчет перепада давления на СУ.

Исходные данные для расчета:

- текущий расход Q (см. 2.1),
- максимальный и минимальный перепад давления на диафрагме ΔP_{max} , ΔP_{min} , максимальный расход Q_{min} (см. паспорт расходомерного узла).

Расчет *∆Р* :

$$\Delta p = \left(\frac{Q}{Q_{\text{max}} - Q_{\text{min}}}\right)^2 \cdot \Delta p_{\text{max}} + \Delta p_{\text{min}}$$

2.2.18 Расчет коэффициента истечения С

Исходные данные для расчета:

- критерий Рейнольдса Re (см. 2.2.22),
- относительный диаметр отверстия СУ β (см. 2.2.1),
- действительный диаметр ИТ *D* (см. 2.2.1),
- метод отбора перепада давления на СУ (угловой, трех радиусный или фланцевый) (см. 2.1).

Расчет С [2]:

C Re = 0,5961 + 0,0261
$$\beta^2$$
 -0,216 β^8 +0,000521 $\left(\frac{10^6 \beta}{Re}\right)^{0,7}$ + 0,0188 + 0,0063A $\beta^{3,5}$ $\frac{10^6}{Re}^{0,3}$ + (0,043+0,08 e^{-10L_1} - 0,123 e^{-7L_1})(1-0,11A) $\frac{\beta^4}{1-\beta^4}$ - 0,031(M₁ - 0,8M₁^{1,1}) $\beta^{1,3}$ + M₂

$$A = (\frac{19000\beta}{Re})^{0.8}$$

$$M_1 = \frac{2L_2}{1-\beta}$$

$$L_1=1;\; L_2=0,47\;-\;$$
 для трёхрадиусного способа отбора давления $L_1=L_2=\frac{0,0254}{D}\;-\;$ для фланцевого способа отбора давления $L_1=L_2=0\;-\;$ для углового метода отбора давления

$$M_2 = 0.011 \ 0.75 - \beta \quad 2.8 \ - \ \frac{D}{0.0254} \quad \text{при D} \ < \ 0.07112 \text{м}$$

$$M_2 = 0 \ \text{при D} \ge 0.07112 \text{м}$$

2.2.19 Расчет коэффициента истечения С'

Исходные данные для расчета:

• коэффициент истечения C (рассчитывается при $Re = 1 \cdot 10^6$) (см. 2.2.18).

Расчет С' [1]:

$$C' = C$$
 (при $Re = 1.10^6$)

2.2.20 Расчет коэффициента шероховатости Кш

Исходные данные для расчета:

- диаметр ИТ D(в метрах) (см. 2.2.1),
- диаметр СУ *d*(в метрах) (см. 2.2.1),
- шероховатость ИТ Ra(в метрах) (см. 2.1),
- критерий Рейнольдса Re (см. 2.2.22),

относительный диаметр отверстия СУ β (см. 2.2.1).

Порядок расчета коэффициента шероховатости K_{u} [2]:

- рассчитываем Ra_{max}
- рассчитываем Ra_{min},
- рассчитываем Кш.

 Ra_{max} рассчитывается по формуле:

$$\frac{\frac{(0,718866\beta^{-3,887}+0,364)}{10^4}\,\mathrm{D}\;\mathrm{при}\;\mathrm{Re} \leq 10^4}{\mathrm{Ra}_{\mathrm{max}}} = \frac{\frac{(A_0\beta^{A_1}+A_2)}{10^4}\,\mathrm{D}\;\mathrm{при}\;\mathrm{Re} > 10^4\;\mathrm{и}\;\beta < 0,65}{\frac{A_00,65^{A_1}+A_2}{10^4}}\,\mathrm{D}\;\mathrm{при}\;\mathrm{Re} > 10^4\;\mathrm{и}\;\beta \geq 0,65}$$
 Если $\mathrm{Ra}_{\mathrm{max}} \geq \frac{15\mathrm{D}}{10^4}$, то принимаем $\mathrm{Ra}_{\mathrm{max}} = \frac{15\mathrm{D}}{10^4}$ $\mathrm{A}_{\mathrm{i}} = \frac{3}{\mathrm{k}=0}\,\mathrm{B}_{\mathrm{k}}\;\mathrm{lg}(\mathrm{Re})^{-\mathrm{k}}\;$ (см. таблицу №2).

Таблица №2. Значение коэффициентов Вк.

	A_0	A ₁	A ₂
	Re ∈	$(10^4; 10^5]$	
B ₀	8,87	6,7307	-10,244
B ₁	-3,7114	-5,5844	5,7094
B ₂	0,41841	0,732485	0,76477
B ₃	0	0	0
	Re ∈	$(10^5; 3*10^6]$	
B ₀	27,23	-25,928	1,7622
B ₁	-11,458	12,426	-3,8765
B ₂	1,6117	-2,09397	1,05567
B ₃	-0,07567	0,106143	-0,076764
	Re ∈	$(3*10^6;10^8]$	
B ₀	16,5416	322,594	-92,029
B ₁	-6,60709	-132,2	37,935
B ₂	0,88147	17,795	-5,1885
B ₃	-0,039226	-0,799765	0,23583

Ra_{min} рассчитывается по формуле:

$$(7,1592-12,387\beta-2,0118-3,469\beta \text{ lg Re })\frac{D}{10^4}+\\ +\frac{D}{10^4} 0,1382-0,23762\beta \text{ lg Re }^2\\ \text{при }\beta<0,65\\ -0,892353+0,24308 \text{ lg Re }-0,0162562 \text{ lg Re }^2\frac{D}{10^4}\text{ ,}\\ \text{при }\beta\geq0,65$$

 K_{u} рассчитывается по формуле:

$$\begin{split} & \text{К}_{\text{ш}} = 1 \text{, если Ra} \in & \text{Ra}_{\text{min}}; \text{Ra}_{\text{max}} \\ & \text{Иначе, } \text{K}_{\text{ш}}(\text{Re}) = 1 + 5\text{,}22\beta^{3,5}(\gamma - \gamma^*) \\ & \gamma = (1,74 - 2\text{lg}(\frac{2\text{A}_{\text{ш}}}{D} - \frac{37,36\text{lg}(\text{K}_{\text{d}} + 3,33333\text{K}_{\text{r}})}{\text{Re}}))^{-2} \\ & \gamma^* = (1,74 - 2\text{lg}(\frac{2\text{A}_{\text{ш}}}{D} - \frac{37,36\text{lg}(\text{K}_{\text{d}} + 3,333333\text{K}_{\text{r}})}{\text{Re}}))^{-2} \end{split}$$

где коэффициенты А_ш,К_d,К_r для Y и Y* определяются из таблицы №3.

Таблица №3. Значения величин Аш, Ка, Кг.

	γ	$oldsymbol{\gamma}^*$
Аш	π Ra	πRa_{max} при Ra $> Ra_{max}$ πRa_{min} при $Ra < Ra_{min}$
K _d	0,26954πRa D	$rac{0,26954\pi Ra_{max}}{D}$ при $\mathrm{Ra} > Ra_{max}$ $rac{0,26954\pi Ra_{min}}{D}$ при $Ra < Ra_{min}$
K _r	5,035 Re	5,035 Re

2.2.21 Расчет коэффициента шероховатости К'ш

Исходные данные для расчета:

• коэффициент шероховатости K_{ω} (рассчитывается при $\mathrm{Re} = 1 \cdot 10^6$) (см. 2.2.20).

Расчет К'ш [1]:

$$K'_{\mu} = K_{\mu}$$
 (при $Re = 1.10^6$)

2.2.22 Расчет критерия Рейнольдса Re

Исходные данные для расчета:

- диаметр ИТ *D* (в метрах) (см. 2.2.1),
- диаметр СУ d (в метрах) (см. 2.2.1),
- динамическая вязкость среды µ (Па*с) (см. 2.2.7),
- коэффициент поправки на шероховатость ИТ K'_{u} (при числе Рейнольдса $\mathrm{Re} = 1 \cdot 10^6$) (см. 2.2.21),
- коэффициент на притупление входной кромки СУ K_n (см. 2.2.2),
- коэффициент истечения \emph{C} (при числе Рейнольдса $\mathop{\mathrm{Re}}=1\cdot 10^6$),
- коэффициент скорости входа Е (см. 2.2.3),
- коэффициент расширения ε (см. 2.2.16),
- плотность среды ρ (кг/м³) (см. 2.2.14),
- перепад давления ∆Р (см. 2.2.17),
- тип газовой смеси (ДГ, КГ, ПГ) (см. 2.1).

Порядок расчета [1]:

$$\mathrm{Re} = rac{\mathrm{Re}^*}{\mathrm{C}'\mathrm{K}_{\mathrm{III}}'}\mathrm{C}\mathrm{K}_{\mathrm{III}}$$
 - общая итерационная формула

$${
m Re}^*=rac{1}{D\mu}d^2C'EK'_{\!\!\!\!\perp\!\!\!\!\perp}K_{\!\!\!\!\parallel}\epsilon(2\Delta P
ho)^{0,5}$$
 - модифицированное число Рейнольдса

1.) рассчитываем Re^* .

2.) вычисляем
$$C = C$$
(при $\mathrm{Re} = \mathrm{Re}^*$), $\mathrm{K}_{\mathrm{III}} = \mathrm{K}_{\mathrm{III}}$ (при $\mathrm{Re} = \mathrm{Re}^*$) и подставив в

$${
m Re}_1 = rac{{
m Re}^*}{{
m C}'{
m K}''_{
m III}}{
m C}{
m C}{
m K}_{
m III}$$
 – получаем приближение для числа ${
m Re}$

3.)
$$\delta_1 = \frac{\mathrm{Re_1} - \mathrm{Re}^*}{\mathrm{Re_1}}$$
, если $\delta_1 \leq 10^{-4}$, то $\mathrm{Re} = \mathrm{Re_1}$.

Иначе
$$\mathrm{Re}_2 = \frac{\mathrm{Re}^*}{\mathrm{C}'\mathrm{K}_{\mathrm{III}}'}\mathrm{C}\mathrm{K}_{\mathrm{III}}$$
 , где $\mathit{C} = \mathit{C}$ (при $\mathrm{Re} = \mathrm{Re}_1$), $\mathrm{K}_{\mathrm{III}} = \mathrm{K}_{\mathrm{III}}$ (при $\mathrm{Re} = \mathrm{Re}_1$).

4.)
$$\delta_2=\frac{\mathrm{Re}_2-\mathrm{Re}_1}{\mathrm{Re}_2}$$
 , если $\delta_2~\leq 10^{-4}~$, то $\mathrm{Re}=\mathrm{Re}_2.$

Иначе
$$\mathit{C} = \mathit{C}$$
(при $\mathrm{Re} = \mathrm{Re}_{\mathrm{n}}$), $\mathrm{K}_{\mathrm{III}} = \mathrm{K}_{\mathrm{III}}$ (при $\mathrm{Re} = \mathrm{Re}_{\mathrm{n}}$).

5.)
$$\mathrm{Re}_{n+1} = \frac{\mathrm{Re}^*}{\mathrm{C'}\mathrm{K'_{III}}} \mathrm{CK_{III}}$$
 , при $\frac{\mathrm{Re}_{n+1} - \mathrm{Re}_n}{\mathrm{Re}_{n+1}} \leq 10^{-4}$ принимаем $\mathrm{Re} = \mathrm{Re}_{n+1}.$

Далее определяем истинные значения C и $K_{\rm III}$, подставляя в них найденное ${\rm Re.}$

Необходимо выполнить проверку исходных данных (см. 3).

- 2.2.23 Расчет объёмного расхода среды приведённого к стандартным условиям $\mathbf{Q}_{\mathbf{c}}$ Исходные данные для расчета:
 - диаметр СУ *d* (в метрах) (см. 2.2.1),
 - коэффициент скорости входа *E* (см. 2.2.3),
 - коэффициент расширения ε (см. 2.2.16),
 - плотность среды ρ (кг/м³) (см. 2.2.14),
 - лотность среды при стандартных условиях $\rho_c(\kappa r/m^3)$ (см. 2.2.13),
 - перепад давления ∆Р (Па) (см. 2.2.17),
 - коэффициент поправки на шероховатость ИТ K_{ω} (см. 2.2.20),
 - коэффициент поправки на притупление входной кромки СУ K_{π} (см. 2.2.2),
 - коэффициент истечения *C* (см. 2.2.18),
 - тип газовой смеси (ДГ, КГ, ПГ) (см. 2.1).

Объёмный расход среды приведённый к стандартным условиям Q_c рассчитывается по формуле [1]:

$$Q_{c} = \frac{3600\pi d^{2}}{4\rho_{c}} K_{III} K_{II} EC\epsilon (2\rho\Delta P)^{0.5}$$

3 Граничные условия применения расчётных методик

3.1 Для диафрагм с угловым и трёх радиусным способом отбора давления [2]

$$d_{20} \ge 12,5$$
 мм 50 мм $\le D20 \le 1000$ мм $0,1 \le \beta \le 0,75$ $\text{Re} \ge 5000$ при $\beta \le 0,56$ $\text{Re} \ge 16000\beta^2$ при $\beta > 0,56$ $\Delta P/P \le 0,25$

3.2 Для диафрагм с фланцевым способом отбора давления [2]

$$d_{20} \ge 12,5$$
 мм 50 мм $\le D20 \le 1000$ мм $0,1 \le \beta \le 0,75$ $\text{Re} \ge 5000$ при $\beta \le 0,56$ $\text{Re} \ge 1,7*10^5\beta^2D$ при $\beta > 0,56$ $\Delta P/P \le 0,25$

3.3 Для расчета физических свойств ПГ [5]

$$0.66 \le \rho_c$$
, $\kappa r/m3 \le 1.05$
 $0 \le x_a \le 0.20$
 $0 \le x_y \le 0.20$
 $250 \le T$, $K \le 350$
 $0.1 \le P$, $M\Pi a \le 7.5$

В случае нарушения границ, выдать сообщение об ошибке в файл report!

4 Константы

Таблица №4.1. Физические характеристики компонент ДГ и КГ [4,6].

доменный газ	М _і (кг/моль)	Z _{ci}	ρ _{сі} (кг/м³)	T _{ki} (K)	P _{ki} (Πa)	k i
CH₄	0,016043	0,9981	0,66692	190,6	4587579,2	1,295
N ₂	0,028135	0,9997	1,16455	126,2	3385108	1,4
CO ₂	0,04401	0,9947	1,82954	304,2	7356294,4	1,285
H ₂	0,0020159	1,0006	0,083803	33,2	1293414,4	1,405
СО	0,02801	0,9996	1,1644	132,9	3486156	1,4
коксовый газ						
CH₄	0,016043	0,9981	0,66692	190,6	4587579,2	1,295
N ₂	0,028135	0,9997	1,16455	126,2	3385108	1,4
CO ₂	0,04401	0,9947	1,82954	304,2	7356294,4	1,285
H ₂	0,0020159	1,0006	0,083803	33,2	1293414,4	1,405
СО	0,02801	0,9996	1,1644	132,9	3486156	1,4
O ₂	0,0319988	0,9993	1,33022	154,6	5032190,4	1,395
C ₂ H ₆	0,0650923	0,9537	2,435467	493,1	4984192,6	1,225

Таблица №4.2. Физические характеристики компонент ПГ [4,8].

Состав ПГ	r _i (%)	Xi	Mi	Z _{ci}	$\overline{b_i}$
CH₄	96,29275	0,96273(x₃)	16,043	0,9981	0,0436
C ₂ H ₆	1,65	0,0165982	30,07	0,992	0,0894
C ₃ H ₈	0,362	0,0036733	44,097	0,9834	0,1288
C ₄ H ₁₀	0,118	0,0012145	58,123	0,9695	0,1743
C ₅ H ₁₂	0,02685	0,0002823	72,15	0,949	0,225
C ₆ H ₁₄	0,0059	0,0000640	86,177	0,919	0,2846
CO ₂	0,232	$0,00232(x_y)$	44,01	0,9947	0,0728
N ₂	1,28	0,01277(x _a)	28,135	0,9997	0,0173
O ₂	0,0131	0,0001308	31,9988	0,9993	0,0265
H ₂	0,0011	0,0000109	2,0159	1,0006	-0,0051
He	0,0183	0,0001825	4,0026	1,0005	0

Где: \mathbf{M}_{i} , \mathbf{z}_{ci} , $\mathbf{\rho}_{ci}$, \mathbf{T}_{ki} , \mathbf{P}_{ki} , \mathbf{k}_{i} , $\overline{b_{i}}$ – молярная масса, фактор сжимаемости, плотность при стандартных условиях, критическая температура, критическое давление, показатель адиабаты и коэффициент суммирования каждого отдельного компонента смеси, соответственно.

 $T_c = 293,15 \text{ K}$ (температура среды при стандартных условиях).

 P_c = 101325 Па = 0,101325 МПа (давление среды при стандартных условиях).

 $R = 8,31451 \, \text{Дж/моль*K}$ (универсальная газовая постоянная).

 $\Omega_{\rm a}$ = 0,427480232(константа необходимая для расчета фактора сжимаемости).

 $\Omega_{\rm b} = 0.08664035$ (константа необходимая для расчета фактора сжимаемости).

5 Список используемой литературы

- 1. ГОСТ 8.586.1-2005(ИСО 5167-1:2003) Измерение расхода и количества жидкости газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования.
- 2. ГОСТ 8.586.2-2005(ИСО 5167-2:2003) Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования.
- 3. ГОСТ 30319.0-2015 Газ природный. Методы расчета физических свойств. Общие положения.
- 4. ГОСТ 30319.1-2015 Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки.
- 5. ГОСТ 30319.2-2015 Газ природный. Методы расчета физических свойств. Определение коэффициента сжимаемости.
- 6. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие/ Перевод с английского под редакцией Б. И. Соколова. 3-е издание, переработано и дополнено Ленинград: Химия, 1982. 592с., иллюстрация Нью-Йорк, 1977.
- 7. Голубев И. Ф., Гнездилов Н.Е. Вязкость газовых смесей. Издательство государственного комитета стандартов совета министров СССР. Москва, 1971. 326с.
- 8. ГОСТ 31369-2008. Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
- 9. П.П. Кремлёвский. Расходомеры и счетчики количества: Справочник 4-е издание, переработанное и дополненное Ленинград: Машиностроение, 1989 701с.