SS 2018

Marc Kegel

Kirby-Kalkül

Übungsblatt 3

Aufgabe 1.

Für teilerfremde natürliche Zahlen p und q definieren wir den Linsenraum L(p,q), für $p \neq 0$, als den Quotienten S^3/\sim unter der Äquivalenzrelation

$$(z_1, z_2) \sim (e^{2\pi i/p} z_1, e^{2\pi i q/p} z_2),$$

wobei wir S^3 als Einheitssphäre in \mathbb{C}^2 auffassen. Für p=0 setzen wir $L(0,q):=L(0,1):=S^1\times S^2$.

- (a) Zeigen Sie, dass L(p,q) eine geschlossene, orientierbare, glatte 3-Mannigfaltigkeit ist.
- (b) Beschreiben Sie ein (möglichst einfaches) planares Heegaard-Diagramm von L(p,q).
- (c) Eine 3-Mannigfaltigkeit M besitzt eine Heegaard-Zerlegung von Geschlecht 1 genau dann, wenn M diffeomorph zu einem Linsenraum ist.

Aufgabe 2.

Seien M und N zwei orientierbare, glatte, zusammenhängende n-Mannigfaltigkeiten. Die **verbundene Summe** M#N ist die orientierbare, glatte n-Mannigfaltigkeit definiert wie folgt. Man entfernt eine n-Scheibe D_1 aus M und eine n-Scheibe D_2 aus N und identifiziert die Ränder mittels eines orientierungsumkehrenden Diffeomorphismus.

- (a) Man kann zeigen, dass dies eine wohldefinierte Operation definiert. (Dies ist hier nicht erforderlich.) Was müsste man dafür zeigen?
- (b) Seien M und N zwei zusammenhängende, glatte, kompakte n-Mannigfaltigkeiten mit nichtleerem zusammenhängendem Rand. Die **randverbundene Summe** M
 mid N entsteht aus M und N, indem man einen 1-Henkel an den Rand von M und N so anheftet, dass die resultierende Mannigfaltigkeit orientierbar und zusammenhängend ist. Zeigen Sie, dass dies wohldefiniert ist und dass $\partial(M
 mid N) = \partial M \# \partial N$ gilt.
- (c) Zeigen Sie, dass das Heegaard-Geschlecht subadditiv unter der verbundenen Summe ist, d.h. zeigen Sie, dass

$$q(M \# N) < q(M) + q(N)$$

gilt. Überlegen Sie sich dazu wie man ein Heegaard-Diagramm von M#N aus Heegaard-Diagrammen von M und N erhalten kann.

(d) Wie ändern sich die Homologiegruppen von geschlossenen orientierbaren 3-Mannigfaltigkeiten unter verbundener Summe? **Bonusaufgabe:** Was gilt in allgemeinen Dimensionen?

Bemerkung: Aus dem Satz von Haken folgt sogar, dass g(M#N) = g(M) + g(N) gilt. Eine andere Folgerung aus dem Satz von Haken ist die Existenz der Primfaktorzerlegung von 3-Mannigfaltigkeiten, d.h. jede geschlossene orientierbare 3-Mannigfaltigkeit kann (eindeutig, bis auf Umordnung und Addition von S^3) als

$$M = M_1 \# \cdots \# M_k$$

geschrieben werden, wobei man die M_i nicht weiter in nicht-triviale verbundene Summen zerlegen kann.

Aufgabe 3.

- (a) Das Heegaard-Geschlecht von T^3 ist 3. *Hinweis:* Betrachten Sie die erste Homologiegruppe oder die Fundamentalgruppe von T^3 .
- (b) Finden Sie allgemeiner für jede natürliche Zahl g eine 3-Mannigfaltigkeit mit Heegaard-Geschlecht g.
- (c) Zeigen Sie, dass das Heegaard-Geschlecht von $\Sigma_q \times S^1$ gleich 2g+1 ist.
- (d) **Bonusaufgabe:** Zeigen Sie allgemeiner, dass das Heegaard-Geschlecht eines Flächenbündels einer Fläche Σ_g von Geschlecht g über S^1 gleich 2g+1 ist. Dabei ist ein Flächenbündel über S^1 wie folgt definiert. Man startet mit einer Fläche Σ_g von Geschlecht g und einem Diffeomorphismus $\phi \colon \Sigma_g \to \Sigma_g$. Dann ist das **Flächenbündel** über S^1 mit **Monodromie** ϕ definiert als der Quotientenraum $\Sigma \times I/\sim$ wobei $(p,1)\sim (\phi(p),0)$.

Aufgabe 4. Welche 3-Mannigfaltigkeit wird durch das folgende planare Heegaard-Diagramm beschrieben?

Abbildung 1: Die Anklebescheiben der 1-Henkel werden paarweise mittels einer Spiegelung an der horizontalen Mittelline dieses planaren Heegaard-Diagramms identifiziert.