

Diagnostic Ultrasound

(Physics and Electronics)

Physics: Application of ultrasound

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound Electronic Engineering Brucher

echoes

Physics: Pulsed ultrasound waves

Physics: Pulsed insonation ↔ depth limit

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Physics: Echoes (static ↔ dynamic)

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound

Electronic Engineering

<u>Dynamic echoes at 2MHz</u>: \rightarrow Doppler shift frequencies Δf :

blood flow velocity v \approx 40 cm/s \iff $\Delta f \approx$ 1kHz

Diagnostics: Vessel insonation

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostics: TCD (transcranial Doppler)

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Transducer: Single elements

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Instrumentations: Single element TCD-Doppler

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Stroke monitoring by Emboli detection

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Ultrasound signal processing

Ultrasound transmitter/receiver

pulsed Doppler instrumentation

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Ultrasound signal processing

Ultrasound Doppler frontend

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Ultrasound signal processing

Electronic circuit: Piezo-preamplifier matching

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Electronic Enginering

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound

Electronic Engineering

Brucher

Electronic circuit design in frequency:

Problem "matching"

Electronic design tools

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound

Electronic Engineering

Electronic circuit design in frequency:

Modelling and frequency dependancy

Nyquist Plot (Input impedance LP 1st order)

$$\underline{Z}\{j\omega\}\Big|_{\omega=2\pi f} = \operatorname{Re}\{\underline{Z}\} + j\operatorname{Im}\{\underline{Z}\} = Z\{j\omega\} \cdot e^{j\omega t + \varphi}$$

$$\underline{Z} = R_{S} + \frac{1}{j\omega C_{s}} = R_{S} - j\frac{1}{\omega C_{s}}$$

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound

Bode Diagram (Low pass filter 1st order)

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

$$\underline{F}\{j\omega\}\Big|_{dB} = \left|\frac{1}{j\omega C_M R_M + 1}\right|_{dB} = 0dB - 20 \cdot \lg\left|1 + j\frac{\omega}{\omega_1}\right|_{\omega_1 = 1/C_M R_M}$$

 $lg\{2\pi f/Hz\}$

PSpice: Low-pass filter 1st order

$\underline{F} = \underline{U}_1 / \underline{U}_0 = ? = Bode Diagram$

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

$$\underline{F}\{j\omega\}\Big|_{\omega=2\pi f} = \frac{1}{j\omega C_M R_M + 1}$$

$$\underline{Z}_{a} = \frac{1}{\frac{1}{R_{M}} + j\omega C_{M}} = \frac{R_{M}}{1 + j\omega C_{M}R_{M}}$$

Continuation in Laboratory

Matching between Ultrasound sensor and preamp

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Continuation in Laboratory

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

matching conditions {f=2MHz}: $R_C = R_{in}$

any questions?

Content:

- Ultrasound
- Transducer
- Doppler
- Emboli
- Doppler processing
- Electronics
- Nyquist Plot
- Bode Diagram
- PSpiece demo
- Laboratory

Diagnostic Ultrasound Electronic Engineering

discussion?

