DS-GA 1008 HW 2

Long Chen Center for Data Science, New York University lc3424@nyu.edu

Fall 2021

Question 1

We have:

$$||X||^2 = \sum_{i=1}^d x_i^2.$$

Since $X \sim \mathcal{N}\left(0, \frac{I}{d}\right)$, x_i is *i.i.d* for $\forall i = \{1, \dots, d\}$. Therefore,

$$\mu_{\parallel X\parallel^2} = \mathbb{E}\left[\sum_{i=1}^d x_i^2\right]$$
$$= \sum_{i=1}^d \mathbb{E}\left[x_i^2\right]$$
$$= \sum_{i=1}^d \frac{1}{d}$$
$$= 1$$

Consider also $\mathrm{Var}[x_i^2]=\mathbb{E}\ x_i^4-(\mathbb{E}\ x_i^2)^2=\frac{2}{d^2}\ ^1$ for $\forall i.$ Thus,

$$Var[||X||^2] = \sum_{i=1}^d \frac{2}{d^2} = \frac{2}{d}.$$

By Central Limit Theorem, for any distribution \mathcal{D} , $\sum_{i=1}^{n} x \xrightarrow{d} \mathcal{N}(\mu, \sigma^2)$ as $n \to \infty$ for $x \in \mathcal{D}$. Therefore,

$$\sup \|X\|^2 = 1 + \sup \left(\sqrt{\frac{2}{d}}\right).$$

¹Could be easily proven with statistics.

That is:

$$||X||^2 = 1 + \mathcal{O}\left(\frac{1}{\sqrt{d}}\right).$$

Question 2

$\operatorname{\mathbf{dim}}$	mean	$\operatorname{\mathbf{std}}$
10	0.9868	0.4227
100	1.0005	0.1458
1000	0.9972	0.0459
10000	0.9998	0.0143

Table 1: Simulation results for Q2. n=1000.

The results shown do verify our finding in the previous question.

Question 3

Since $\tilde{X} = RX$, $\mu_{\tilde{X}} = R \times \mu_{X} = 0 = \mu_{X}$. Also that R is an unitary matrix, the covariance matrix of \tilde{X} is:

$$\Sigma_{\tilde{X}} = RR^T \Sigma = \Sigma_X.$$

Since all linear combination of normal distributed variables are normally distributed, we could conclude that the pdf of X and \tilde{X} are the same.

Question 4

We have:

$$\mathbb{E}\langle X, X' \rangle = \mathbb{E}\left[\sum_{i=1}^{d} X_i X_i'\right]$$
$$= \sum_{i=1}^{d} \mathbb{E}\left[X_i X_i'\right]$$
$$= \sum_{i=1}^{d} \mathbb{E}\left[X_i\right] \mathbb{E}\left[X_i'\right]$$
$$= 0$$

Also:

$$\operatorname{Var}[\langle X, X' \rangle] = \operatorname{Var}\left[\sum_{i=1}^{d} X_{i} X'_{i}\right]$$

$$= \sum_{i=1}^{d} \operatorname{Var}[X_{i} X'_{i}]$$

$$= \sum_{i=1}^{d} \operatorname{Var}[X_{i}] \operatorname{Var}[X'_{i}] + \operatorname{Cov}(X_{i}, X'_{i})$$

$$= \sum_{i=1}^{d} \frac{1}{d} \frac{1}{d}$$

$$= \sum_{i=1}^{d} \frac{1}{d^{2}}$$

$$= \frac{1}{d}$$

Similarly as in Q1, by Central Limit Theorem:

$$|\langle X, X' \rangle| = \mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$$

Consider further:

$$||X - X'||^2 = (X - X')^T (X - X')$$

$$= X^T X - 2\langle X, X' \rangle + X'^T X'$$

$$= ||X||^2 - 2\langle X, X' \rangle + ||X'||^2$$

Combining results from previous, we have:

$$\sup \|X - X'\|^2 = 1 + \mathcal{O}\left(\frac{\sqrt{2}}{\sqrt{d}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{d}}\right) + 1 + \mathcal{O}\left(\frac{\sqrt{2}}{\sqrt{d}}\right)$$
$$= 2 + (2\sqrt{2} + 1)\mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$$

Therefore, $\sup \|X - X'\| = \sqrt{2} + \frac{\sqrt{2\sqrt{2}+1}}{\sqrt{d}}$. Similarly, $\inf \|X - X'\| = \sqrt{2} - \frac{\sqrt{2\sqrt{2}+1}}{\sqrt{d}}$. Thus we conclude that:

$$||X - X'|| \in \left(\sqrt{2} \pm \frac{C}{\sqrt{d}}\right),$$

where $X = \sqrt{2\sqrt{2} + 1}$.

Question 5

By definition:

$$\hat{f}_{NN}(x) := f^*(x_j),$$

where $j = \underset{i=1,...,n}{\arg\min} ||x - x_i||$. Since f^* is β -Lipschitz:

$$|\hat{f}_{NN}(x) - f^*(x)| = |f^*(x_j) - f^*(x)|$$

 $\leq \beta ||x - x_j||$
 $= \beta \min_{i} ||x - x_i||$

Therefore (either by Central Limit Theorem or intuition):

$$\mathbb{E}|\hat{f}_{NN}(x) - f^*(x)| \le \beta \ \mathbb{E}\min_{i} ||x - x_i||.$$

Question 6

Consider the two distribution. Since both of them are gaussian distribution, there exists a bijection from the distribution of Y to the distribution of X. Let's assume X_i the bijection of Y_i . By nature of gaussian distribution, we could well define that:

$$X_i = \mu + \sigma Y_i$$

for $\forall i$. We could verify this:

$$\mathbb{E}[X_i] = \mathbb{E}[\mu + \sigma Y_i]$$

$$= \mathbb{E}[\mu] + \sigma \mathbb{E}[Y_i]$$

$$= \mathbb{E}[\mu] + \sigma \times 0$$

$$= \mu$$

$$Var[X_i] = Var[\mu + \sigma Y_i]$$

$$= Var[\mu] + \sigma^2 Var[Y_i]$$

$$= 0 + \sigma^2 \times 1$$

$$= \sigma^2$$

Therefore,

$$\begin{split} \mathbb{E} \min_{i} X_{i} &= \mathbb{E}[\mu + \sigma \min_{i} Y_{i}] \\ &= \mu + \sigma E_{n}. \end{split}$$

Question 7

Using the fact that $||x - x_i|| \perp ||x - x_i|| \mid x$, just like in the previous question, we can construct a bijection $Y_i \mapsto X_i$. Also that we assume asymptotic Gaussianity of $||x - x_i||$. Therefore similarly (the \sim symbol is from the asymptotic Gaussianity):

$$\mathbb{E}\min_{i}||x-x_{i}|| \sim \sqrt{2} + \frac{\sqrt{C}}{\sqrt{d}}E_{n}.$$

Question 8

Recall from previous question that:

$$\mathbb{E}|\hat{f}_{NN}(x) - f^*(x)| \le \beta \, \mathbb{E}\min_{i} ||x - x_i||$$

$$\sim \beta \left(\sqrt{2} + \frac{\sqrt{C}}{\sqrt{d}} E_n\right)$$

$$\approx \beta \left(\sqrt{2} - \frac{\sqrt{C}}{\sqrt{d}} \sqrt{2\log n}\right)$$

$$= \beta \left(\sqrt{2} - \sqrt{2C} \frac{\sqrt{\log n}}{\sqrt{d}}\right)$$

$$\approx \sqrt{2}\beta$$

$$\approx \beta \mathbb{E}||x - x_i||$$

since $\log n \ll d$. This constraint is natually from the β -Lipschitz property of f^* . Therefore, there is no further learning guarantee as of how much deviation of expected predicted value there is.

Question 9

Let $y = \underset{y \in \partial \Omega}{\arg \min} \|x - y\|$, $y' = \underset{y' \in \partial \Omega}{\arg \min} \|x' - y'\|$. That is, y and y' is the nearest projection of x and x', respectively, to the set Ω . We further have, using triangle inequalities:

$$||x - y'||_{\infty} \le ||x - x'||_{\infty} + ||x' - y'||_{\infty}$$

$$||x' - y||_{\infty} \le ||x - x'||_{\infty} + ||x - y||_{\infty}$$

Since y is the nearest projection of x onto Ω , $||x-y'||_{\infty} \ge ||x-y||_{\infty}$. Similarly, $||x'-y||_{\infty} \ge ||x'-y'||_{\infty}$.

If
$$||x - y||_{\infty} \ge ||x' - y'||_{\infty}$$
,

$$|\Psi(x) - \Psi(x')| = |||x - y||_{\infty} - ||x' - y'||_{\infty}|$$

$$= ||x - y||_{\infty} - ||x' - y'||_{\infty}$$

$$\le ||x - x'||_{\infty} - (||x - y'||_{\infty} - ||x - y||_{\infty})$$

$$\le ||x - x'||_{\infty}.$$
If $||x - y||_{\infty} \le ||x' - y'||_{\infty}$,

$$|\Psi(x) - \Psi(x')| = |||x - y||_{\infty} - ||x' - y'||_{\infty}|$$

$$= ||x' - y'||_{\infty} - ||x - y||_{\infty}$$

$$\le ||x - x'||_{\infty} - (||x' - y||_{\infty} - ||x' - y'||_{\infty})$$

$$< ||x - x'||_{\infty}.$$

Therefore, we conclude that:

$$|\Psi(x) - \Psi(x')| \le ||x - x'||_{\infty},$$

which is equivalent to say that $\Psi(x)$ is 1-Lipschitz.

Question 10

Since Ω and \mathcal{B} are separable respectively in the standard basis, we first consider for each dimension $i=1,\ldots,d$. Let Ω_i be the projection of Ω onto ith dimension. With separability in standard basis, Ω_i is essentially $\left[-\frac{1}{2},\frac{1}{2}\right]$. Easily can we construct $\Omega_i' = \Omega_i + \frac{1}{2} = [0,1]$ and $\Omega_i'' = \Omega_i - \frac{1}{2} = [-1,0]$. The two set is disjoint in ith dimension. Using again the fact that Ω is separable in standard basis, we will have resemble transformation that are orthogonal to transformed cubes in other dimension. Therefore we have 2^d disjoint copies of Ω constructed.

Since for each dimension i = 1, ..., d, the two set composes the full range of \mathcal{B}_i , we verify that:

$$\cup_{i=1}^d \left[\Omega_i' \cup \Omega_i'' \right] = \mathcal{B}.$$

Therefore we conclude that we can fit 2^d copies of Ω into \mathcal{B} .

Question 11

Assume that for z_i s.t $x - \frac{z_i}{2} \in \left[-\frac{1}{2}, \frac{1}{2} \right]^d$. If we consider such that $\Psi(x) = 0$ for any $x \notin \Omega$, for an arbitrary x, there will only be one $\Psi\left(x - \frac{z_i}{2}\right) > 0$. Assume that $\Psi\left(x - \frac{z_i}{2}\right) > 0$ and $\Psi\left(x' - \frac{z_i}{2}\right) > 0$. Let y_j , $j = 1, 2, \ldots, k$ be the intersection of the line segment joining x, x' with boundaries of Ω . Therefore we have:

$$||x - x'|| = ||x - y_1 + y_1 - \dots + y_k - x'||$$

$$\geq ||x - y_1|| + ||y_1 - y_2|| + \dots + ||y_k - x'||$$

$$\geq ||x - y_1|| + ||y_k - x'||$$

$$\geq ||\Psi\left(x - \frac{z_1}{2}\right)|| + ||\Psi\left(x' - \frac{z_k}{2}\right)||$$

For an arbitrary $k \in \mathbf{Z}$, if $z_1 = z_k$, with the fact that $\Psi(x)$ is 1-Lipschitz:

$$|f^*(x) - f^*(x')| = |(-1)^k \|\Psi\left(x - \frac{z_1}{2}\right)\| - (-1)^k \|\Psi\left(x' - \frac{z_k}{2}\right)\| |$$

$$= |\|\Psi\left(x - \frac{z_1}{2}\right)\| - \|\Psi\left(x' - \frac{z_k}{2}\right)\| |$$

$$\leq \|x - x'\|.$$

If $z_1 \neq z_k$,

$$|f^*(x) - f^*(x')| = |(-1)^k \|\Psi\left(x - \frac{z_1}{2}\right)\| - (-1)^{k+1} \|\Psi\left(x' - \frac{z_k}{2}\right)\| |$$

$$= |\|\Psi\left(x - \frac{z_1}{2}\right)\| + \|\Psi\left(x' - \frac{z_k}{2}\right)\| |$$

$$\leq \|x - x'\|.$$

Therefore, we conclude that f^* is 1-Lipschitz.

Question 12

Figure 2: Graph for Q12. Since x is in the first quadrant, g(z) = (-1, -1).

Question 13

For an arbitrary d, we have $n \leq 2^{d-1}$. Consider a point observed $x \in \Omega_i$ s.t. $\{x_i\} \cup \omega_i = \emptyset$. That is, the point x is in a tile without any training point observed. Consider the best that we can do is to return $\hat{f}(x) = 0^d$, that is the center of the tile. Since $x \sim Unif([-1,1]^d)$, this setting will return minimum value for $\mathbb{E}_x|f^*(x) - \hat{f}(x)|$. Intuitively, this also equals to $\mathbb{E}_x|f^*(x)|$, since that x is uniformly distributed. Therefore,

$$\frac{\mathbb{E}_x|f^*(x) - \hat{f}(x)|}{\mathbb{E}_x|f^*(x)|} = 1,$$

for x not in a tile with training samples in.

Consider $x \in \Omega_i$ s.t. $\{x_i\} \cup \omega_i \neq \emptyset$, that is, in a tile with training sample(s). Assume that the learning algorithm returns a perfect prediction, i.e. $\mathbb{E}_x|f^*(x) - \hat{f}(x)| = 0$.

Consider that we have $n \leq d^{d-1}$. The probability that x is in a tile with training sample is $\frac{1}{2}$. Assume that x_i the datapoint in tiles with training sample and x_j the datapoint in tiles without. Thus,

$$\frac{\mathbb{E}_{x}|f^{*}(x) - \hat{f}(x)|}{\mathbb{E}_{x}|f^{*}(x)|} = \frac{1}{2} \frac{\mathbb{E}_{x_{i}}|f^{*}(x_{i}) - \hat{f}(x_{i})|}{\mathbb{E}_{x}|f^{*}(x_{i})|} + \left(1 - \frac{1}{2}\right) \frac{\mathbb{E}_{x_{j}}|f^{*}(x_{j}) - \hat{f}(x_{j})|}{\mathbb{E}_{x}|f^{*}(x_{j})|}$$

$$\geq \frac{1}{2} \times 0 + \frac{1}{2} \times 1$$

$$= \frac{1}{2},$$

for $x \sim Unif([-1,1]^d)$. Therefore:

$$\frac{\mathbb{E}_{x \sim Unif([-1,1]^d)} |f^*(x) - \hat{f}(x)|}{\mathbb{E}_{x \sim Unif([-1,1]^d)} |f^*(x)|} \ge \frac{1}{2}.$$