3. Одномерные массивы

Обработка одномерного массива

Заданы один или два одномерных массива из n элементов. Разработать программу для вычисления требуемой величины.

- 1. Для заданного одномерного массива B из n элементов найти сумму $C = \sum_{i=1}^n \frac{i}{\left(B_i + 1\right)} \, .$
- 2. Для заданных одномерных массивов A, B и C одинаковой длины n определить периметр P_i и площадь D_i каждого из n треугольников со сторонами A_i , B_i , C_i . Указание: площадь D_i вычислять по формуле Герона: $D_i = \sqrt{P_i \cdot (P_i A_i)(P_i B_i)(P_i C_i)}$, где P_i полупериметр. Считаем, что исходные данные корректны: треугольник с заданными сторонами существует.
- 3. Найти скалярное произведение двух заданных массивов $A_1, A_2, ..., A_n$ и $B_1, B_2, ..., B_n$, вычисляемое по формуле: $P = A_1B_1 + A_2B_2 + ... + A_nB_n$.
- 4. При заданных координатах $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ для n точек плоскости XOY найти расстояние R_i от начала координат до каждой из них (координатами i-й точки являются X_i, Y_i).
- 5. Для одномерного массива X из n элементов определить отношение A / B, где $A = \prod_{i=1}^n X_i$, $B = \sum_{i=1}^n X_i$.
- 6. Найти сумму 1-го, 4-го, 9-го, 16-го, ..., *i*-го элементов одномерного массива X из n элементов (i наибольшее целое число, не превышающее \sqrt{n}).
- 7. Найти отношение CX/CY, где CX среднее арифметическое массива $X_1, X_2, ..., X_n$, а CY среднее арифметическое массива $Y_1, Y_2, ..., Y_n$.
- 8. При заданных элементах $X_1, X_2, ..., X_n$ и чётном n найти значение суммы $D = \sum_{i=n/2+1}^n X_i \ .$
- 9. Найти произведение, сомножители которого представлены каждым третьим членом $(X_1, X_4, X_7 \text{ и т. д.})$ заданного массива $X_1, X_2, ..., X_n$.
- 10. При заданных $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ найти значение суммы $\sum_{i=1}^n \frac{2}{\left(X_i + Y_i\right)}.$ Считаем, что исходные данные корректны: знаменатель никогда не равен нулю.
- 11. Найти по формуле $S_i = \pi \cdot R_i^2$ площадь каждого из n кругов, радиусы $R_1, R_2, ..., R_n$ которых заданы.
- 12. При заданных элементах $X_1, X_2, ..., X_n$ и чётном n найти разность сумм $C_1 = \sum_{i=1}^{n/2} X_{(2i-1)}$ и $C_2 = \sum_{i=1}^{n/2} X_{2i}$.

- 13. При заданных координатах C_1 , C_2 , ..., C_n одной точки и координатах B_1 , B_2 , ..., B_n другой точки n-мерного пространства найти расстояние между ними по формуле $R = \sqrt{(C_1 B_1)^2 + ... + (Cn Bn)^2}$.
- 14. Найти объем V_i каждого из n цилиндров, при заданных радиусах оснований $R_1, R_2, ..., R_n$ и высотах $H_1, H_2, ..., H_n$.
- 15. При заданных коэффициентах $A_1, A_2, ..., A_n$ и заданном значении X вычислить значение многочлена $A_1 \cdot X + A_2 \cdot X^2 + ... + A_n \cdot X^n$. Указание: использовать в цикле переменную, последовательные значения которой равны $X, X^2, X^3, ..., X^n$.
- 16. Для одномерных массивов X и Z одинаковой длины n и значений A, B, C, D сформировать массив Y по правилу $Y_i = \frac{AX_i + B}{CZ_i + D}$. Считаем, что исходные данные корректны и знаменатель никогда не равен нулю.
- 17. При заданных коэффициентах $A_1, A_2, ..., A_n$ многочлена $A_1 \cdot X + A_2 \cdot X^2 + ... + A_n \cdot X^n$ найти последовательность $C_1, C_2, ..., C_n$ значений коэффициентов производной, являющейся тоже многочленом.
- 18. Сформировать одномерный массив Y из элементов одномерного массива X путём деления каждого элемента массива X на свой индекс.
- 19. При заданных одномерных массивах X и Y одинаковой длины n вычислить элементы массива T, первый элемент которого равен единице, а все последующие элементы вычисляются по формуле $\sqrt{\left(X_i-Y_i\right)^2}\left/T_{i-1}\right.$ Считаем, что исходные данные корректны и никогда не возникает деление на нуль.
- 20. При заданных элементах массива X из n+1 элементов найти по формуле $Y_i = X_i \cdot X_{i+1}$ элементы массива Y из n элементов.
- 21. Из одномерного массива X из n элементов сформировать массив T по правилу $T_1 = X_1$, $T_2 = X_1 + X_2$, $T_3 = X_1 + X_2 + X_3$, ..., $T_n = X_1 + X_2 + ... + X_n$.
- 22. При заданных массивах $R_1, R_2, ..., R_n$ и $H_1, H_2, ..., H_n$ найти суммарный объем горючего, хранящегося в n шарообразных резервуарах, если R_i внутренний радиус i-го резервуара, а H_i определяет уровень наполнения по отношению к низшей точке дна. Указание: объем соответствующего шарового сегмента равен: $\pi \cdot H_i^2 \cdot (R_i H_i / 3)$.
- 23. При заданных элементах массива $X_1, X_2, ..., X_n$ найти по формуле $Y_i = \sqrt{1,5-\cos X_i}$ значения элементов массива Y.
- 24. Найти значения квадратного трёхчлена $A \cdot X_i^2 + B \cdot X_i + C$ для n заданных значений аргумента $X_1, X_2, ..., X_n$.
- 25. Вычислить и представить в виде массива последовательность $M_1, M_2, ..., M_n$ первых n элементов числового ряда Фибоначчи, если $M_1 = M_2 = 1$, а последующие элементы $M_i = M_{i-1} + M_{i-2}$.
- 26. При заданных величинах B и C и $X_1 = B$ найти последовательность элементов $X_2, X_3, ..., X_n$, используя формулу $X_i = X_{i-1} + i \cdot C$.

- 27. На основе двух одномерных массивов A и B одинаковой длины с положительными элементами (массив B не содержит нулевых элементов) сформировать массив T по правилу: $T_1 = A_1 / B_1$, $T_2 = \sqrt{A_2/B_2}$, $T_3 = \sqrt[3]{A_3/B_3}$, ..., $T_n = \sqrt[n]{A_n/B_n}$.
- 28. При заданных коэффициентах $A_1, A_2, ..., A_n$ и $B_1, B_2, ..., B_n$ многочленов $A_1X + A_2X^2 + ... + A_nX^n$ и $B_1X + B_2X^2 + ... + B_nX^n$ получить массив $C_1, C_2, ..., C_n$ коэффициентов многочлена суммы исходных многочленов, полагая, что в нем степень члена возрастает с увеличением номера коэффициента C_i .
- 29. При заданных коэффициентах $A_1, A_2, ..., A_n$ многочлена $A_1 \cdot X^n + A_2 \cdot X^{n-1} + ... + A_n \cdot X$ найти коэффициенты многочлена $C_1, C_2, ..., C_n 2$ -й производной исходного многочлена.
- 30. На основе одномерного массива A из n элементов получить массив B по правилу $B_1 = A_2$, $B_2 = A_1$, $B_3 = A_4$, ..., $B_{2i-1} = A_{2i}$, $B_{2i} = A_{2i-1}$, ...
- 31. Задан одномерный массив из n элементов, где n чётное. Определить, какая сумма больше: элементов с чётными индексами или элементов с нечётными индексами.
- 32. Задан целочисленный массив из *п* элементов. Каких элементов в массиве больше чётных или нечётных?
- 33. Даны два одномерных массива X и Y из n элементов каждый. Найти количество пар, для которых выполняется условие $X_i \leq Y_i$.
- 34. Даны два одномерных массива X и Y из n элементов каждый. Найти количество пар элементов X_i , Y_i , имеющих одинаковые знаки.
- 35. На основе заданного одномерного массива A из n элементов получить массив B по правилу $B_1 = A_n$, $B_2 = A_{n-1}$, ..., $B_n = A_1$.