Model Monitoring

Robert Clements

MSDS Program

University of San Francisco

What to Expect

• Goal: to understand the importance of monitoring model data and performance, and what to do when model degradation happens.

 How: we will explore the different ways of tracking model performance and practice with a dataset.

Operational and Model Performance

Operational:

- Scalability
- Latency
- Failures

Performance:

- Degradation
- Data/Concept Drift
- Metrics

Operational and Model Performance

- Degradation
- Data/Concept Drift
- Metrics

Model Performance

Metrics, metrics!!

- Metrics should be context-specific, something the business owner cares about
 - Model performance requires labels, which may not be available quickly enough
 - Drift detection can give you a signal that performance is about to drop

Two Important Decisions

How often should we measure our model's performance?

- Do we have labels?
- Is our model **online** or **offline**?

Two Important Decisions

How much historical data should we use for our metrics?

Delayed Labels

- In many situations we may need to wait a long time for labels
- We cannot rely on model performance metrics alone
- Identifying degradation too late means we're already losing value

More predictions

happening here

- Might be able to "approximate" performance
- Better to simply use a more robust monitoring system and identify cause of degradation before it happens

Delayed Labels

- In many situations we may need to wait a long time for labels
- We cannot rely on model performance metrics alone
- Identifying deg Degradation ID'd here
- Might be able t happened back
- Better to simply use a more robust monitoring system and identify ca degradation beinere appens

Predictions made for Batch A of data

More predictions happening here

Label available for Batch A

TIME

Model Decay

Over time, model performance will decay – sometimes quickly, sometimes slowly (over years). Models decay for two main reasons:

- Data Drift
 - Changes in input data erroneous or real

- Concept Drift
 - Changes in the relationship between inputs and outputs (the target)

First: Data Integrity and Quality

- Rule-based
- Think Great Expectations
- What do we expect our data to look like?
 - Missing values = pipeline problem
 - Values outside prespecified range = out of scope, pipeline problem
 - Column of wrong type = change in schema
 - Entire rows or entire columns missing = pipeline problem
 - Duplicate rows = data loading issue

Data Drift

Univariate distribution change

Target Drift

Univariate distribution change

Target drift happens if:

- Distribution changes
- Categories are added or removed

Concept Drift

Example:

Recommender systems - people's buying patterns change over time due to lifestyle changes. COVID-19 was a major cause of a lot of changes that models needed to adjust to.

- Step 1: choose a reference period (e.g. features and scores data from 2 weeks ago; subset of training data)
- Step 2: define a testing period (e.g. most recent 2 weeks of features and scores data; most recent 1 day)
- Step 3: compare difference between testing and reference data distributions

- Step 1: choose a reference period (e.g. features and scores data from 2 weeks ago; subset of training data)
 - Should it be from the training set?
 - Should it be static, or should it be a sliding window?
 - How big should the window be?
 - Big enough such that the distribution is "stable"

- Step 2: define a testing period (e.g. most recent 2 weeks of features and scores data; most recent 1 day)
 - How big should the window be?
 - Small enough to detect drift quickly.
 - Big enough that we aren't measuring random variation.
 - We should probably use several window sizes.
 - How often should we be looking for drift?
 - Every N new points?
 - Regular intervals?

 Step 3: compare difference between testing and reference data distributions

Detecting Data Drift - Specifics

Are the distributions different?

Kolmogorov-Smirnov test

Wasserstein distance

Jensen-Shannon divergence

Kullback-Leibler divergence

Population Stability Index

Chi-squared test (categorical only)

Many others...

TIME

Kolmogorov-Smirnov Test (2 Sample)

Wasserstein Distance

Kullback-Leibler Divergence

Chi-Squared Test

Detecting Multidimensional Data Drift

How to detect drift that happens multidimensionally, rather than univariately?

Adversarial Validation

Adversarial Validation

Text Data

- Use summary statistics of each string
 - Length
 - % of non-letter characters
 - % of out-of-vocab words
- Compare distributions of summary stats as normal

Embeddings

- Track the raw categorical features if possible
 - Use chi-squared

•	Track	the	emb	edd	ings	them	selves
---	-------	-----	-----	-----	------	------	--------

• Use adversarial validation

Animal	Pig	Dog	Cat	Cow	
Pig	1	0	0	0	0
Dog	0	1	0	0	0
Cat	0	0	1	0	0
Dog	0	1	0	0	0

	1	2	3	4	5	
	0.2	0.15	0.21	0.29	0.35	
	0.1	0.08	0.12	0.19	0.20	
\	0.25	0.02	0.21	0.20	0.17	
		•••				/

Scenario 1: Input data drifts, output data does not

- Model is robust to slight drift, or
- Only unimportant features are drifting, or
- There was significant drift, and model couldn't extrapolate properly.

Scenario 2: Input data drifts, output data drifts

Model performance will likely suffer and

retraining may be necessary.

Scenario 3: Output data drifts, input data does not

- There's a bug in the drift detection, or
- There's a bug in the model scoring code, or
- The data pipeline broke (e.g. not all scores being loaded into DB).

Outlier Detection

 Statistical tests may not be enough

Outlier Detection

- Statistical tests may not be enough
- Can use hard-coded thresholds:
 - If metric > t2 or metric < t1 => drift!
 - Might miss collective anomalies
 - How do you choose thresholds?

Statistical or ML-Based Outlier Detection

 Use detection methods for finding global and collective anomalies

Statistical or ML-Based Outlier Detection

 Use detection methods for finding global and collective anomalies

 Lots of metrics = lots of potential false positives

Statistical or ML-Based Outlier Detection

- Flag only most significant outliers
- Send alert only if > N flags
- Label alerts: 0 = False alarm; 1 = good alarm
- After enough labels are collected, train a classifier using original metrics as features
- Don't overcomplicate things!!!

Plan of Action

- Alerting
 - Trigger alert via email, Slack/Teams message
 - Avoid alerting fatigue using significance thresholds
 - Provide all relevant info in the alert: feature that drifted; datetime of testing
 - data; metric that detected drift

Plan of Action

- Investigation
 - Perform a root cause analysis
 - Check data schemas
 - Check for messages about broken data pipelines or data schema changes (these happen more often than you might think)
 - Get data scientists involved to look at the data distributions directly
 - Consider looking at different groupings or slices of data using the categorical variables

Plan of Action

- Action Items
 - Fix schemas
 - Rollback unnecessary changes to pipelines
 - Yell at the data team
 - Or, if nothing is broken upstream, this means your model may now be broken. Go to next section.

Tools

- Evidently AI: creates drift, performance, and integrity metrics
- Seldon Alibi Detect: includes outlier detection
- <u>Prometheus</u> + <u>Grafana</u>: you probably will need to code your own metrics
- MLRun: tries to do a lot of things
- Scikit-Multiflow: for streaming data
- And others...

Model Monitoring with Evidently

- Free, open source python library
- Computes metrics for
 - Drift
 - Integrity
 - Model Performance
- Computes tests for alerts
- Creates exploratory and customizable reports and visualizations
- Integrates with Airflow, Metaflow, MLFlow, Grafana

Feed Reference and Current sets to Evidently

Evidently will not do the data processing for you!

Evidently Visualizations

- Save as html open in browser or use within other tools (Streamlit)
- Save as json, python dictionary – build your own visualizations
- View inline in a notebook

Source: https://docs.evidentlyai.com/readme/core-concepts

Evidently Data

- id: ID column
- datetime: treated as a datatime column
- prediction: predictions column
- target: labels column
- None numeric or datetime columns: treated as categorical
- Can map numeric, categorical, text, and embeddings using ColumnMapping()

Evidently Batch Workflow

Evidently Near Real-time Workflow

When Models Fail

Model Retraining

- When performance degrades
 - Manually retrain model with fresh data
 - Consider continual retraining?

Retrain based on:

- Time (e.g. every two weeks)
- Performance (e.g. AUC degrades by 10%)
- Drift detection

• In some cases, a completely new model built from scratch is

necessary (new features, new metrics, fresh perspective)

Model Retraining

• Consider con

When performance degrades

Manually retrain model with fresh data

NOT COMMON AS FAR AS I CAN TELL

Retrain based on:

- Time (e.g. every two weeks)
- Performance (e.g. AUC degrades by 10%)
- Drift detection

• In some cases, a completely new model built from scratch is

necessary (new features, new metrics, fresh perspective)

Shadow Deployments

Canary Deployments

A/B Testing

When New Models Fail

Model Monitoring Demo

Model Monitoring Lab

Model Explainability

Why Do We Need Explainability (XAI)?

- Regulators may ask you to explain how your model works or how it made a specific prediction
 - Healthcare
 - Finance/Credit
- Customers may ask you to explain the same
 - People don't trust what they don't understand
- Identifying bias

Approaches

- Global importance
 - Coefficients
 - Permutation importance
 - Partial dependency plots

- Local importance
 - Local Interpretable Model-agnostic Explanations (LIME)
 - SHapley Additive exPlanations (SHAP)

Considerations

- Neither of these methods explains causality
- Neither of these methods is fool-proof
- They can be computationally expensive, so how should we implement them as part of our monitoring system?
 - Create explanations on-the-fly when needed?
 - Create and store explanations for all predictions made?

LIME

- Read the original paper <u>here</u>
- Can use the <u>lime python library</u>
- Pros:
 - Easy to use
 - Can explain any black-box model, including models for images and text
 - How well the surrogate model fits can tell you how useful explanations are

• Cons:

- Choice of kernel affects explanations, sometimes dramatically
- Choice of sample affects explanations, sometimes dramatically

SHAP

- Read the original paper <u>here</u>
- Can use the <u>shap python library</u>
- Pros:
 - Foundations in game theory
 - Specific "fast" implementations for tree-based models and DL
 - Can be local and global
- Cons:
 - Very computationally slow, specifically for kernel SHAP
 - Can still yield misleading results