Lens 1

SurfType	Radius	Thickness	Semi-Dia	meter	Conic X	Radius	X Conic 1	Norm Radius							
Biconic Zernike	9.5485e+02	1.0206e+01	1.0000	e+02 -1.24	43e+00 8.37	774e+02 -4.	4373e+01	1.0000e+02	-						
X^1 0.0000e+00 4.7	X^2 124e-06 0.000	X^3 00e+00 9.48	X^4 51e-11 0.0	X^5 000e+00 -4	X^6 1.2154e-15 0	X^7	X^8 1.4746e-18	X^9 0.0000e+00			X^12 -6.5879e-28				
Y^1	Y^2	Y^3	Y^4	Y^5	Y^6	Y^7	Y^8	Y^9	Y^10	Y^11	Y^12	Y^13	Y^14	Y^15	Y^16

Biconic Zernike polynomial

$$z_{zernike} = \frac{c_x x^2 + c_y y^2}{1 + \sqrt{1 - (1 - k_x)c_x^2 x^2 - (1 + k_y)c_y^2 y^2}} + \sum_{i=1}^{16} \alpha_i x^i + \sum_{j=1}^{16} \beta_j y^j \quad \text{with } c_x = \frac{1}{R_x} \quad \text{and } c_y = \frac{1}{R_y}$$
(1)

Lens 2

SurfType	Radiu	s Thicknes	ss Semi-Dia	meter	Conic X	Radius	X Conic	Norm Radius							
Biconic Zernike	e -4.2193e+0	2 0.0000e+0	0 8.5113	3e+01 -6.27	60e+00 -4.32	29e+02 -5.	3555e+00	1.0000e+02							
X^1	X^2	X^3	X^4	X^5	X^6	X^7	X^8	X^9	X^10	X^11	X^12	X^13	X^14	X^15	X^16
0.0000e+00 -7.	0079e-08 0.0	000e+00 3.8			.6131e-13 0.0				621e-25 0.0		9332e-26 0.0	000e+00 0.0	000e+00 0.0		000e+00
Y^1	Y^2	Y^3	Y^4	Y^5	Y^6	Y^7	Y^8	Y^9	Y^10	Y^11	Y^12	Y^13	Y^14	Y^15	Y^16

Biconic Zernike polynomial

$$z_{zernike} = \frac{c_x x^2 + c_y y^2}{1 + \sqrt{1 - (1 - k_x)c_x^2 x^2 - (1 + k_y)c_y^2 y^2}} + \sum_{i=1}^{16} \alpha_i x^i + \sum_{j=1}^{16} \beta_j y^j \quad \text{with } c_x = \frac{1}{R_x} \quad \text{and } c_y = \frac{1}{R_y}$$
 (2)

Lens 3

SurfType	Radius	Thickness	s Semi-Diam	eter	Conic X F	Radius X	Conic Norn	n Radius							
Biconic Zernike	e 3.1833e+02	1.4152e+03	1 8.2013e	+01 -1.6820	0e+01 3.710°	7e+02 -7.305	54e+00 1.0	0000e+02							
X^1 0.0000e+00 -9.	X^2 8282e-07 0.00	X^3	X^4	X^5	X^6 709e-15 0.00	X^7	X^8 5975e-18 0.0	X^9 000e+00 -1.	X^10 5933e-21 0.0	X^11 000e+00 -4.	X^12 9065e-25 0.0	X^13	X^14	X^15 000e+00 0.0	X^16 000e+00
	Y^2	Y^3	Y^4	Y^5	Y^6	Y^7	Y^8	Y^9	Y^10	Y^11	Y^12	Y^13	Y^14	Y^15	Y^16

Biconic Zernike polynomial

$$z_{zernike} = \frac{c_x x^2 + c_y y^2}{1 + \sqrt{1 - (1 - k_x)c_x^2 x^2 - (1 + k_y)c_y^2 y^2}} + \sum_{i=1}^{16} \alpha_i x^i + \sum_{j=1}^{16} \beta_j y^j \quad \text{with } c_x = \frac{1}{R_x} \quad \text{and } c_y = \frac{1}{R_y}$$
(3)