_m_s

ps

I. EXAMPLE: SIMPLE GENE EXPRESSION

mRNA is pumped into the system at a constant rate, k_0 . mRNA is converted into protein at a constant rate, k_1 , following the law of mass action. mRNA and protein decay proportionally to the amount of each species at rates δ_m and δ_p respectively. The equation governing the dynamics is

$$\frac{d}{dt} \begin{pmatrix} m(t) \\ p(t) \end{pmatrix} = \begin{pmatrix} -\delta_m & 0 \\ k_1 & -\delta_p \end{pmatrix} \begin{pmatrix} m(t) \\ p(t) \end{pmatrix} + \begin{pmatrix} k_0 \\ 0 \end{pmatrix}$$

With exact solution

$$m(t) = m(0)e^{-\delta_m t} + \left(1 - e^{-\delta_m t}\right) \frac{k_0}{\delta_m}$$

$$p(t) = \left[p(0) + k_1 \left(\frac{k_0}{\delta_m} - m(0)\right) \frac{e^{-\delta_m t} - e^{-\delta_p t}}{\delta_m - \delta_p} + \frac{k_1 k_0}{\delta_p \delta_m} \left(e^{\delta_p t} - 1\right)\right] e^{-\delta_p t}$$

If $\delta_m = \delta_p = 1$, then

$$m(t) = k_0 + (m(0) - k_0)e^{-t}$$

$$p(t) = k_1k_0 + (p(0) + k_1(m(0) - k_0)t - k_1k_0)e^{-t}$$

If the input, u, is k_0 , and the intrinsic parameter set is just k_1 . The logarithmic sensitivities are

$$k_1 \frac{d}{dk_1} \binom{m(t; k_1)}{p(t; k_1)} = \binom{0}{k_1 k_0 + (k_1(m(0) - k_0)t - k_1 k_0)} e^{-t}$$

Then the Fisher information matrix is

$$I(\boldsymbol{\theta}, t) = \int_0^t \left(k_1 \frac{d}{dk_1} \begin{pmatrix} m(t'; k_1) \\ p(t'; k_1) \end{pmatrix} \right)^T \mathbf{\Omega} \mathbf{\Sigma}^{-1} \left(k_1 \frac{d}{dk_1} \begin{pmatrix} m(t'; k_1) \\ p(t'; k_1) \end{pmatrix} \right) dt'$$

Taking $\Omega = \Sigma^{-1} = 1$, the fisher information matrix is

$$I = \int_0^t \left(k_1 k_0 + \left(k_1 (m(0) - k_0) t' - k_1 k_0 \right) e^{-t'} \right)^2 dt'$$

$$= I(0) + \frac{1}{4} e^{-2t} \left[A^2 (4e^{2t}t + 8e^t - 2) - 2AB(-2t + 4e^t(t+1) - 1) - B^2 (2t^2 + 2t + 1) \right]$$

$$- \frac{3}{2} \left[A^2 - AB - \frac{1}{6} B^2 \right]$$

where

$$A = k_1 k_0$$

$$B = k_1 (m(0) - k_0)$$

The Fisher information matrix is only one entry and is plotted in FIG.1 along with the protein (logarithmic) sensitivity.

The Fisher information is maximized when k_0 is maximized since

$$\mathbf{I} = k_1^2 k_0^2 \int_0^t C_1(t') dt' + 2k_1^2 k_0 m(0) \int_0^t C_2(t') dt' + k_1^2 m(0)^2 \int_0^t C_3(t') dt'$$

where,

$$C_1(t) = \left(1 - (1+t)e^{-t}\right)^2 \ge 0 \quad \forall \ t > 0$$

$$C_2(t) = (1 - (1+t)e^{-t})te^{-t} \ge 0 \quad \forall \ t > 0$$

$$C_3(t) = (te^{-t})^2$$

So increasing k_0 only increases **I**.

FIG. 1. The state variables, m(t) and p(t), with the optimal input, u(t) (left) and the (logarithmic) sensitivities wrt k_1 with the log of the Fisher information (right). u(t) was computed using multiple shooting, the code used to create the plots is the file SGE.m in the Code folder. Here $u(t) \le 10$ so that u(t) is the max value in the optimal solution. The curves agree with the exact solutions.

2

p 2

10