2023 年秋概率论与数理统计期末考试(A)回忆版试题

编者: 夏提雅 参与回忆者: 夏提雅、白云点上半清天、开润、Luweiyan、Rambler *Version: 2.0* (2023 年 12 月 10 日)

免责声明:本试题是在离开考场后,回忆出来的,不存在任何作弊行为;本试题题干部分不保证题干、选项与原题一致,但考察的中心思想一致。(考试时间:2023年12月9日) 本次考试为闭卷考试,禁止使用计算器,考试时间为120分钟,满分70分。

一、填空题(共10小题,每小题2分,共20分)

- 1. 设事件 A , B , C 满足 A 与 C 互不相容,且 $P(AB) = \frac{1}{2}$, $P(C) = \frac{1}{3}$,则 $P(AB|\bar{C}) = \underline{\hspace{1cm}}$
- 2. 设事件 A , B 相互独立,P(A) = 0.5 , P(B) = 0.2 , 随机变量 $X = \begin{cases} 1, & AB$ 发生 0, & AB不发生 , $(1, A \cup B)$ 发生

$$Y =$$
 $\begin{cases} 1, \ A \cup B$ 发生 $\\ 0, \ A \cup B$ 不发生 \end{cases} ,则 X , Y 的相关系数 $\rho_{XY} =$ ______

- 3. 在 5000 件产品中抽取 150 件样品进行检测,发现其中有 3 件次品,则这批产品中的次品数的估计值为
- 4. 己知随机变量 X 的分布列如下

X	0	1	2
P	$1-\theta$	$\theta - \theta^2$	$ heta^2$

设 $X_1, X_2, \cdots X_n$ 为X的简单随机样本,设Y为 $X_1, X_2, \cdots X_n$ 中取值为2的个数,

- 5. 已知随机变量 X 服从参数为 1 的泊松分布 P(1) , X_1, X_2, X_3, X_4 为取自 X 的简单随机样本,则 $P(\bar{X} > \frac{1}{4}) =$ ______
- 6. 在 [0,1] 内任取两点 X,Y,记 $U = \max\{X,Y\}$, $V = \min\{X,Y\}$,则 $E[(1-U)(1-V)] = ______$
- 7. 已知随机变量 X 的方差为 DX = 0.004 ,根据切比雪夫不等式, $P(|X-EX|<0.2) \geq \qquad _$

- 8. 已知正态总体 $X \sim N(\mu, 0.9^2)$, 从中取容量为 9 的样本, 样本均值 $\bar{X} = 5$, 则 μ 的置信水平为 0.95 的置信区间为_____ ($z_{\scriptscriptstyle 0.05}$ = 1.64 , $z_{\scriptscriptstyle 0.025}$ = 1.96)
- 9. 已知随机变量 X,Y 的联合概率密度为 $f(x,y) = \begin{cases} e^{-x}, 0 < y < x \\ 0 & \text{其他} \end{cases}$,则

P(Y > 1 | X = 2) = _____

10.设 $X_1, X_2, \dots X_n$ 为总体 $X \sim P(\lambda)$ 的简单随机样本,若 $\frac{1}{n}\sum_{i=1}^n a^{X_i}$ 为 e^{λ} 的无偏估计 量,则常数*a* = _____

- 二、选择题(共5小题,每小题2分,共10分)
- 1. 设A, B, C为三个事件,则 $\overline{A \cup B A \cup C} =$

- A. $\overline{B} \cup C$ B. $\overline{A}(\overline{B} \cup C)$ C. $\overline{AB} \cup C$ D. $A \cup \overline{B} \cup C$
- 2. 下列说法正确的是
 - A. 若事件 A, B 满足 P(AB) = 0 ,则事件 A, B 不相容
 - B. 若事件 A, B 满足 $P(A\overline{B}) = P(A)(1-P(B))$, 则事件 A, B 相互独立
 - C. 若随机变量X = Y同分布,则X = Y
 - D. 设F(x) 为随机变量X 的分布函数,若 $F(x_1) = F(x_2)$,则 $x_1 = x_2$
- 3. 设 X_1, X_2, X_3, X_4 是总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知, σ^2 未知,则下列选项 不是统计量的是
 - A. $X_1 + 5X_4$ B. $\sum_{i=1}^{4} X_i \mu$ C. $X_1 + \sigma$ D. $\sum_{i=1}^{4} X_i^2$

- 4. 设 A, B 事件满足 P(AB) > P(A)P(B), 若存在事件 $C \subset AB$, 使得 $A C \subseteq B$ 独 立, 那么P(C)=
 - A. $P(A) P(A | \overline{B})$
- B. $P(A) P(A \mid B)$
- B. $P(B) P(B \mid \overline{A})$
- D. $P(B) P(B \mid A)$

5. 设 $X_1, X_2, \cdots X_6$ 为取自 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,样本方差为 S^2 ,则

$$D(S^2) =$$

$$A.\frac{1}{5}\sigma^2$$

$$B.\frac{1}{5}\sigma^4$$

A.
$$\frac{1}{5}\sigma^2$$
 B. $\frac{1}{5}\sigma^4$ C. $\frac{2}{5}\sigma^2$ D. $\frac{2}{5}\sigma^4$

$$D.\frac{2}{5}\sigma^{\prime}$$

本题得分_____

三、解答题(7分)

已知随机变量 X 的分布函数为 $F(x) = \begin{cases} 0 & ,x < -1 \\ 0.2 & ,-1 \le x < 0 \\ 0.6 & ,0 \le x < 1 \\ 1 & ,x \ge 1 \end{cases}$, $\diamondsuit Y = X^2$, 求 Y 的

分布函数 $F_{Y}(y)$ 。

四、解答题(7分)

已知随机变量 X,Y 的联合概率密度为 $f(x,y) = \begin{cases} 1,0 < x < 1,0 < y < 2x \\ 0,其他 \end{cases}$, 求

Z = 2X - Y的概率密度函数 $f_z(z)$ 。

五、解答题(7分)

设随机变量 X,Y 相互独立,且 X 服从标准正态分布 N(0,1), Y 的概率分布为 $P(Y=1)=P(Y=2)=\frac{1}{2},\ \ \hbox{求}\ Z=X^Y$ 的概率密度函数 $f_Z(z)$ 。

六、解答题(7分)

已知随机变量 $X\sim P(\lambda)$, $Y\sim E(\lambda)$, X与Y相互独立, 若X与Y的数学期望相等, 求 λ 及 $E(X^22^Y)$ 。

七、解答题(8分)

设总体 X 的分布函数为

$$F(x;\theta) = \begin{cases} 1 - e^{-\frac{x^2}{\theta}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

其中 θ 为未知的大于零的参数, $X_1,X_2,\cdots X_n$ 是来自总体的简单随机样本,求 θ 的矩估计量 $\hat{\theta}_M$ 和最大似然估计量 $\hat{\theta}_L$ 。

八、解答题(4分)

设 $X_1, X_2, \cdots X_n$ 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本。

- (1) 求c使得 $c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 是 σ^2 的无偏估计量;
- (2) 求k使得 $\hat{\sigma} = k \sum_{i=1}^{n} |X_i \bar{X}|$ 为 σ 的无偏估计量。