Amal Educational Institutions Final Exam Year: 2020 / 2021 Grade: 12 GS Date: 16/6 / 2021 Name: _____ Subject: Math Time: 240 minutes

I- (3 points)

In the given table, for every question there is only one correct answer. Write the number of each question then choose **with justification** its corresponding answer.

		Answers		
Nº	Questions	A	В	C
1)	$z = \sqrt{2} - 2e^{i\frac{\pi}{4}}.$ An argument of z is:	0	π	$-\frac{\pi}{2}$
2)	The equation: $e^x - 1 - 2e^{-x} = 0$ has	No roots	1 root	2 roots
3)	Let f be a function defined by: $f(x) = e^{2x}$. $f^{(n)}$ is the n th derivative of the function f. (n is a non-zero natural number) $f^{(n)}(0) =$	2 ⁿ⁻¹ /.	2 ⁿ	2 ²ⁿ⁻¹
4)	Let $F(x) = \int_0^{2x} \frac{t}{e^t + e^{-t}} dt$ where $x > 0$ then $F'(x) =$	$\frac{4xe^{2x}}{e^{4x}+1}$	$\frac{4x}{e^{4x}+1}$	$\frac{2xe^{2x}}{e^{4x}+1}$
5)	Let (C) be a circle of center $O(0;0)$ and of radius $R=2$ and (C') be the circle of center $A(5;0)$ and $R'=3$ then the affix of the center I of the positive dilation that transforms (C) onto (C') is $m=$	2	-10	2 + 10 <i>i</i>
6)	ABC ,ACD and CDE are equilaterals, let R_A , R_C and R_D be rotations of centers A ,C and D and of same angle $\frac{\pi}{3}$, then the composite $R_D \circ R_C \circ R_A$ is a	Translation of vector \overrightarrow{BE}	Central symmetry of center C	Identity mapping

II- (3.5 points)

In the complex plane referred to a direct orthonormal system $\left(O; \overrightarrow{u}, \overrightarrow{v}\right)$, consider the points A and B of respective affixes -2i and 1-2i. Let M and M' be the points of affixes z and z' such that $z' = \frac{-2iz + 4 + 2i}{z + 2i}$ $(z \neq -2i)$.

- 1) Determine the coordinates of the point M when $z' = -2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$.
- 2)
- a- Show that $z' = -2i \frac{(z+2i-1)}{z+2i}$.
- b- Show that $OM' = 2 \frac{BM}{AM}$.
- c- Find the set of points M' when the point M moves on a line (d) of equation $x = \frac{1}{2}$.
- 3)
- a- Show that (z'+2i)(z+2i) = 2i.
- b- Show that $AM' \times AM = 2$ and $(\vec{u}, \vec{AM'}) = \frac{\pi}{2} (\vec{u}, \vec{AM}) + 2k\pi, k \in \mathbb{Z}$.
- c- Deduce that, if M describes the circle of center A and radius 1, M' moves on a circle whose radius and center are to be determined.
- 4) Let z = x + iy and z' = x' + iy', where x, y, x', and y' are real numbers.
 - a- Express x' and y' in terms of x and y.
 - b- Deduce that if M belongs to the line of equation y = x 2, deprived from A, then y' = x' 2.

III- (3 points)

Consider an urn U containing 7 coins:

- **Five** red coins of two faces numbered 0 and 1.
- Two black coins of two faces numbered 1.

A player selects randomly and simultaneously three coins from the urn, then he throws them only once. Consider the following events:

- T: « The chosen coins are three red » W: « Two of the chosen coins are red »
- O: « Only one of the chosen coins is red » Z: « The product of the numbers obtained is zero »
 - 1) Show that $P(T) = \frac{2}{7}$.
 - 2) Calculate P(W) and P(O).
 - 3)
- a- Show that $P(\overline{Z}/W) = 0.25$.
- b- Deduce P(Z/W) and show that $P(Z \cap W) = \frac{3}{7}$.
- 4) Calculate P ($Z \cap T$) and show that P (Z)= 0.75.
- 5) The product of the three numbers obtained is zero. Calculate the probability that at least one of the thrown coins is black.

IV- (3.5 points)

In the adjacent figure:

- ABCD is a direct rectangle of center O such that AB = 3.
- $(\overrightarrow{OB}, \overrightarrow{OC}) = \frac{\pi}{3} [2\pi]$
- E is the symmetric of A with respect to D.
- DCFE is a direct rectangle.

- 2) Show that there exists a rotation r that transform C onto E and A onto C, and determine its angle.
- **3**) Consider the similitude S that transform A onto E, and D into F.

b- Show that the image by S of (AC) is (OE), and that of (DB) is (OF).

c- Deduce that O is the center of S.

d- Determine the nature of the triangle OFE.

4) Let E' = S(E)

a- Determine the nature and the characteristics of h = SoS.

b- Show that $\overrightarrow{OE}' = 3\overrightarrow{AO}$.

5) The plane is referred to a direct orthonormal system of center A such that $Z_C = 3 + i\sqrt{3}$.

a- Find the complex form of r.

b- Determine the affix of G the center of r.

V- (3.5 points)

f and g are two functions defined, on]0; $+\infty$ [, by: $f(x) = \frac{x^2 - 1 + \ln x}{x}$ and $g(x) = x^2 + 2 - \ln x$.

Designate by (C) the representative curve of f in an orthonormal system $(0; \vec{1}, \vec{j})$.

Part A

- 1) Set up the table of variations of g.
- 2) Deduce the sign of g(x).

Part B

1) Calculate f(1), and solve the equation f(x) = x.

2)

- a- Calculate $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to +\infty} f(x)$.
- b- Show that the line (L) of equation y = x is an asymptote to (C).
- c- Study the relative positions of (C) and (L).

3)

a- Show that $f'(x) = \frac{g(x)}{x^2}$.

b- Set up the table of variations of f.

4) Prove that the equation f(x) = 3 has a unique solution α such that $2 < \alpha < 3$.

5) Draw (C).

6) Calculate, in terms α , of the area of the region bounded by (C), (x'Ox), (y'Oy) and the line of equation y = 3.

VI- (3.5 points)

Consider the function f defined on \mathbb{R} by $f(x) = (3x + 3)e^{-x}$, and designate by (C) its representative curve in an orthonormal system $(0;\vec{1},\vec{j})$.

- 1) Calculate $\lim_{x\to -\infty} f(x)$.
- 2) Calculate $\lim_{x \to +\infty} f(x)$. Deduce the equation of an asymptote to (C).
- 3) Calculate f'(x) and set up the table of variations of f.
- 4) Show that (C) admits an inflection point I to be determined.
- 5) Calculate f(-1) and f(-1.5) then Draw (C).
- **6**)
- a- Verify that $f(x) = 3e^{-x} f'(x)$.
- b- Deduce the area of the domain limited by (C), (x'Ox) and the line x = 1.
- 7) Let F be the function that is defined over \mathbb{R} by $F(x) = \int_0^x f(t)dt$. Determine the sense of variations of F.
- 8) Consider the function g defined by $g(x) = \ln[f(x)]$.
 - a- Determine the domain of definition of g.
 - b- Study the variations of g and draw its table of variations.