Accelerated Stochastic Greedy Coordinate Descent

Chaobing Song, Shaobo Cui, Yong Jiang and Shu-Tao Xia
Tsinghua University

Objectives

- In this paper, we propose two algorithms called SOTOPO and ASGCD to solve the well-known ℓ_1 -regularized problem, which has the following properties.
- The first attempt to accelerate greedy coordinate descent (GCD) by Nesterov's acceleration mechanism
- Reducing the greedy selection complexity of GCD by a factor of sample size
- The iterative solution is sparse from the beginning of the iteration
- The optimal convergence rate $O(1/\sqrt{\epsilon})$
- Better performance for dense problems with sparse solutions

Introduction

Given the dataset $\{(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)\}$ with $a_i \in \mathbb{R}^d, b_i \in \mathbb{R}$. We solve the ℓ_1 -regularized problem

$$\frac{1}{n} \sum_{i=1}^{n} f_i(a_i^T x, b_i) + \lambda ||x||_1.$$
 (1)

- One iteration level: The Motivation of SOTOPO
- Assume $x_0 = 0$.
- Proximal Gradient Descent

$$x_k = \underset{x \in \mathbb{R}^d}{\arg\min} \{ \langle \nabla f(x_{k-1}), x - x_{k-1} \rangle + \frac{1}{2\eta} ||x - x_{k-1}||_2^2 + \lambda ||x||_1 \}$$
 (2)

Pros: Combined with Nesterov's acceleration, the optimal convergence rate can be obtained

Cons: x_k will be not sparse until performing enough iterations

• Greedy coordinate descent such as GS-q rule

$$i_{\max} = \arg\min_{i} \left\{ \min_{d} \{ f(x_k) + \nabla_i f(x_k) d + \frac{1}{2\eta} d^2 + g_i(x_{k,i} + d) - g_i(x_{k,i}) \} \right\}$$

$$x_{k+1} = x_k - \eta d\mathbf{e}_{i_{\max}}$$

Pros: x_k will be sparse at the beginning of the iterations

Cons: Nonconvex, therefore cannot use Nesterov's acceleration to obtain $O(1/\sqrt{\epsilon})$.

- SOTOPO
- Pros:
- x_k will be sparse in all the iterations
- Convex and therefore use Nesterov's acceleration to obtain $O(1/\sqrt{\epsilon})$
- Cons: Nontrivial to solve
- Optimization framework level: The Motivation of ASGCD

Variance reduction and Nesterov's acceleration have been applied to

- gradient descent
- gandomized coordinate descent
- but not been applied to
- greedy coordinate descent
- yet, which is important to sparse optimization.

The problem to solve: ℓ_1 -regularized ℓ_1 -norm square approximation

Set $x_0 = 0$. In each iteration, we need to solve

$$x_k = \arg\min_{x \in \mathcal{R}^d} \left\{ \langle \nabla f(x_{k-1}), x - x_{k-1} \rangle + \frac{1}{2\eta} ||x - x_{k-1}||_1^2 + \lambda ||x||_1 \right\}$$
Properties:

- By $||x x_{k-1}||_1^2$, x_k will be updated on only one or several coordinates;
- By $\lambda ||x||_1$, x_k will be sparse even after enough iterations
- If $\lambda = 0$, it is equivalent to greedy coordinate descent
- It is a non-separable and double non-smooth problem
- However it is convex!

Solving the problem: SOft ThreshOlding PrOjection (SOTOPO)

- Unconstrained, non-separable and non-smooth \Longrightarrow Simplex constrained, separable and smooth
 - A key variational equality: $||x||_1^2 = \inf_{\theta:\sum_{i=1}^d \theta_i = 1, \theta_i \ge 0} \sum_{i=1}^d \frac{x_i^2}{\theta_i}$
- Optimize θ first, x later \Longrightarrow Optimize x first, θ later.

 A key observation: A coft thresholding form can be obtain
- A key observation: A soft thresholding form can be obtained for x with respect to θ
- Unconstrained nonsmooth optimization of $x \Longrightarrow \text{Projecting } \theta$ to a simplex to optimize a smooth loss function $J(\theta)$
- Using the property of $J(\theta)$ to perform complexity reduction (A novel contribution)

Main Result for SOTOPO

The SOTOPO algorithm can get the exact minimizer in each iteration of the ℓ_1 -regularized ℓ_1 -norm square approximation problem.

Main Result for ASGCD

ASGCD achieves an ϵ -additive error $(i.e., \mathbb{E}[F(\tilde{x}^S)] - F(x^*) \le \epsilon$) using at most $O\left(\frac{\sqrt{L_1}\|x^*\|_1 \log d}{\sqrt{\epsilon}}\right)$ iterations.

The problem to solve: the ℓ_1 -regularized problem

- Assumption: for each $f_i(a_i^T x, b_i)$, instead of assume

$$\|\nabla f_i(a_i^T x, b_i) - \nabla f_i(a_i^T y, b_i)\|_2 \le L_2 \|x - y\|_1, \tag{3}$$

we assume

$$\|\nabla f_i(a_i^T x, b_i) - \nabla f_i(a_i^T y, b_i)\|_{\infty} \le L_1 \|x - y\|_1 \tag{4}$$

- Observation: for dense samples, it is possible that $L_1 \ll L_2$.
- Goal:
- The iterative solutions are sparse for all the iterations
- Obtaining the optimal convergence rate $O(1/\sqrt{\epsilon})$
- Reducing the iterative complexity by stochastic optimization

Solving the problem: accelerated stochastic greedy coordinate descent (ASGCD)

- Method 1: linear coupling of
- SOTOPO
- ℓ_q -norm based Composite Mirror Descent [1] to obtain the $O(1/\sqrt{\epsilon})$ rate and sparse iterative solution
- Method 2: Katyusha framework to reduce the complexity of greedy selection

Table 1: Convergence rate on ℓ_1 -regularized empirical risk minimization problems. (For GCD, the convergence rate is applied for $\lambda=0$.)

Algorithm Type	Paper	Rate
Non-Acc, Primal, ℓ_2 -norm	SAGA [2]	$O\left(rac{L_2\ x^*\ _2^2}{\epsilon} ight)$
ACC, PRIMAL, ℓ_2 -NORM	Katyusha [3]	$O\left(rac{\sqrt{L_2}\ x^*\ _2}{\sqrt{\epsilon}} ight)$
ACC, DUAL, ℓ_2 -NORM	Acc-SDCA [4]	$O\left(rac{\sqrt{L_2}\ x^*\ _2}{\sqrt{\epsilon}}\log(rac{1}{\epsilon}) ight)$
Non-Acc, Primal, ℓ_1 -norm	GCD[5]	$O\left(\frac{L_1\ x^*\ _1^2}{\epsilon}\right)$
ACC, PRIMAL, ℓ_1 -NORM	ASGCD	$O\left(\frac{\sqrt{L_1}\ x^*\ _1\log d}{\sqrt{\epsilon}}\right)$

Experiment

Figure 1: Comparing AGCD (b = 1) and ASGCD (b = n) with CGD, SVRG, AFG and Katyusha on Lasso.

References

- [1] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror descent.
- In *COLT*, pages 14–26, 2010.
- [2] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
- Saga: A fast incremental gradient method with support for non-strongly convex composite objectives.
- In Advances in Neural Information Processing Systems, pages 1646–1654, 2014.
- [3] Zeyuan Allen-Zhu.
- Katyusha: The first direct acceleration of stochastic gradient methods. $ArXiv\ e$ -prints, abs/1603.05953, 2016.
- [4] Shai Shalev-Shwartz and Tong Zhang.
- Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization.
- In *ICML*, pages 64–72, 2014.
- [5] Zeyuan Allen-Zhu and Lorenzo Orecchia.
- Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent.
- $ArXiv\ e\text{-}prints$, abs/1407.1537, July 2014.

Acknowledgements

The authors thank for Yuchen Zhang from Stanford and the anonymous reviewers.

Contact Information

- Email: songcb16@mails.tsinghua.edu.cn
- Wechat: word sword