This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(9)

(11)Publication number:

06-168262

(43)Date of publication of application: 14.06.1994

(51)Int.CI.

G06F 15/324

(21)Application number: 04-319756

(71)Applicant:

HITACHI LTD

(22)Date of filing:

30.11.1992

(72)Inventor:

USHIRO YASUNORI

(54) CALCULATING DEVICE FOR SIMULTANEOUS LINEAR EQUATIONS

(57)Abstract:

PURPOSE: To provide the device effective for analyzing simultaneous linear equations of large scale on a parallel vector computer, especially, effective for the triangulation of a skyline matrix obtained by structural analysis using the finite element method.

CONSTITUTION: This calculating device for simultaneous linear equations calculates the solution of the simultaneous linear equations with the skyline matrix provided by the structural analysis using the finite element method provided by the structural stores the coefficient matrix A given by onedimensional arrangement the leading address table NP of the respective columns and the right side vector B of A, and performs processing separately for the case where the heads of skylines are equal for (1) pieces (1=2, 3, ..., 6) and the other case corresponding to the value of the NP. Therefore, the parallel vector computer enables high-speed calculation 7-20 times as fast compared to the conventional system.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-168262

(43)公開日 平成6年(1994)6月14日

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

G06F 15/324

7343-5L

審査請求 未請求 請求項の数1 (全5頁)

(21)出願番号

特願平4-319756

(22)出願日

平成4年(1992)11月30日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 後 保範

神奈川県横浜市戸塚区戸塚町5030番地株式会社日立製作所ソフトウェア開発本

部内

(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】連立一次方程式に関する計算装置

(57)【要約】

【目的】本発明は、並列ベクトル計算機上で、大規模な 連立一次方程式の解析をするのに有効な、特に有限要素 法を使用した構造解析で得られるスカイライン行列の三 角分解に有効な装置を提供することにある。

【構成】有限要素法を使用した構造解析で得られるスカイライン行列を係数とする連立一次方程式の解を計算する装置であり、一次元配列で与えられる係数行列A、Aの各列の先頭アドレステーブルNP及び右辺ベクトルBを記憶し、NPの値により、スカイラインの先端が1個(1=2、3、…、6)ずつ揃ったケースとそれ以外のケースに分けて処理する連立一次方程式に関する計算装置。

【効果】並列ベクトル計算機で、従来方式に比較し7~20倍の高速計算を可能にする。

1

【特許請求の範囲】

【請求項1】有限要素法を使用した構造解析で得られるスカイライン行列を係数とする連立一次方程式の解を計算する装置であり、一次元配列で与えられる係数行列A、Aの各列の先頭アドレステーブルNP及び右辺ベクトルBを記憶し、NPの値により、スカイラインの先頭が1個(1=2, 3, \cdots , 6)ずつ揃ったケースとそれ以外のケースに分けて処理することを特徴とする連立一次方程式に関する計算装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、連立一次方程式の数値解を計算する装置に係わり、特に有限要素法を使用した構造解析で得られるスカイライン行列を係数とする行列の三角分解をする装置であり、大規模な数値シミュレーションを行うベクトル計算機、並列処理方式の計算機などに関する。

[0002]

【従来の技術】従来の技術としては、小国 カ編著「行列計算ソフトウェア、-WS、スーパーコン、並列計算 20 機」(丸善)論じられているスカイライン行列の改訂コレスキー分解を用いた方法がある。この方式は一行一列の内積計算処理を基本としている。

[0003]

【発明が解決しようとする課題】前記、一行一列の内積 計算を使用した改訂コレスキー分割では、並列ベクトル 計算機に適用する場合に下記3つの問題点がある。

【0004】(1)内積演算はその結果を次に使用するため、ベクトル演算とスカラ演算が並列実行できない。

【0005】(2)この方式の内積演算では、一つ前に計 30 算した結果を次の内積計算に使用するため、内積計算の 並列実行は困難。

【0006】(3)一行一列の内積計算のため、乗算と加算を一回行うのに、2回のベクトル・ロードが必要であり、乗加算とベクトル・ロードが同一回数できるベクトル計算機では、乗加算器が半分使用されない。

【0007】上記(1)及び(2)を解決する方法として、ガウス消去法を採用した。ガウス消去法では、ベクトル演算とスカラ演算の並列実行及び各列の消去計算の並列実行が可能である。上記(3)を解決する方法として、ブロック・スカイライン行列か、一般スカイライン行列かの判定処理を追加し、ブロック・スカイライン行列の場合は1行1列のガウス消去法を、一般スカイライン行列の場合は1行1列のガウス消去法を適用し、ベクトル演算回数に対して、ベクトル・ロード及びストアの回数の減少をさせる。

[0008]

【課題を解決するための手段】有限要素法を使用した構 【0016】(3)乗加算後 造解析で得られるスカイライン行列を係数とする行列の ード及びストアの回数を施 三角分解を、並列・ベクトル計算機で効率的に行う目的 50 スカイラインより大きい)

のため下記のような技術的手段を採用した。

【0009】まず、スカイライン行列の形を次の二つに 分類し、その形に合った処理方式を採用した。分類はス カイライン行列の先端が1個(1=2,3,…,6)ず つ揃ったケースとそれ以外のケースとにした。前者のケ ースをブロック・スカイライン行列、後者のケースを一 般スカイライン行列と名付ける。一次元配列で与えられ る係数行列Aの各列の先頭アドレステーブルをNPと し、次元数をnとするとき、l×lのブロック・スカイ 10 ライン行列とは次の条件が成立する場合で、他の場合は 一般スカイライン行列と判定する。プロック・スカイラ イン行列の条件は次元数nがlで割り切れ、NP(k×1 $+1)+1-1=NP(k\times l+2)+1-2=\cdots=NP(k\times l+1)+1-2=\cdots=NP(k\times l+1)+1-1=NP(k\times l+1)+1-2=\cdots=NP(k\times l+1)+1-2=$ +1)なる等式がk=0, 1, ..., n/1-1のすべてで成立 することである。各列の演算の並列実行、ベクトル演算 とスカラ演算の並列実行及びベクトル・ロードとストア を演算回数に比較して減少させるために上記で分類した 各ケースごとに次のような技術的手段を採用する。

【0010】 I×Iブロック・スカイライン行列の場合は、行列Aの各行の先頭アドレステーブルNPから1行単位にガウス消去する範囲テーブルKLを作成し、このKLテーブルに従って、1行1列単位にガウス消去法を適用して三角分解を行う。

【0011】一般スカイライン行列の場合は、行列Aの各行の先頭アドレステーブルNPから一行単位にガウス消去する範囲テーブルKLを作成し、次に1行(3.4,5,6)単位にガウス消去法を適用したとき、無駄計算となる要素数Pを算出し、P/Iが最小となる行数1を求め、このKLテーブルに従って1行1列単位にガウス消去法を適用して三角分解を行う。

[0012]

【作用】スカイライン行列を自動的に二つに分類するのは、プロック・スカイライン行列は特に、並列ベクトル計算機で効率良く三角分解できるためであり、一般スカイライン行列はその特性に合わせて、並列ベクトル計算機で効率良く三角分解できるためである。

【0013】 I×Iのブロック・スカイライン行列において、行列Aの各行の先頭アドレステーブルNPから I 行単位にガウス消去する範囲テーブルを作成するのは、これにより毎回ガウス消去する範囲の検索を不要とし効率を上げるためである。 I 行 I 列単位にガウスの消去法を適用するのは、並列ベクトル計算機において下記3つの効果がある。

【0014】(1) | 列単位のガウス消去が並列演算可能となる。

【0015】(2)ベクトル演算とスカラ演算が並列に実行される。

【0016】(3)乗加算演算に比較して、ベクトル・ロード及びストアの回数を減少できる。 (この効果は一般スカイライントルナきい)

一般スカイライン行列において、行列Aの各行の先頭ア ドレステーブルNPから一行単位にガウス消去する範囲 テーブルを作成するのは、これにより毎回ガウス消去す る範囲の検索を不要とし効率を上げるためである。次に 1行(3,4,5,6)単位にガウス消去法を適用した とき無駄計算となる要素数Pを算出し、P/Iが最小とな る 1 を求めるのは、下記に示す(3)の効果(1が大きい ほど大)と、無駄計算の数パランスを考慮して、効率を できるだけ良くするためである。1行単位にガウスの消 去法を適用するのは、並列ベクトル計算機において下記 10 3つの効果がある。

【0017】(1)1列単位のガウス消去が並列演算可能 となる。

【0018】(2)ベクトル演算とスカラ演算が並列に実

【0019】(3)乗加算演算に比較して、ベクトル・ロ ード及びストアの回数を減少できる。(この効果は1の 値が大きいほど大である。)

[0020]

【実施例】以下、本発明について図面を参照して説明す 20 る。

【0021】図1は本発明の基本と処理フローチャー ト、図2は1×1のプロック・スカイライン行列の処理 フローチャート、図3は一般スカイライン行列の処理フ ローチャート、図4は3×3のブロック・スカイライン 行列の構成図、図5は1×1のブロック・スカイライン 行列で範囲テーブルKLを求める処理フローチャート、 図6は一般スカイライン行列で無駄計算となる要素数P の算出例である。

【0022】図1の1は、構造解析の一節点の最大自由 30 度数6を1にセットし、2はプロック・スカイライン行 列の検索か一般スカイライン行列かを判定するプロック であり、3は1×1プロック・スカイラインの可能性が あるかどうかを判定するプロックであり、可能性がない 場合は4で1の値を1減少して2の判定処理にもどる。 5, 7, 8 dk = 0, $1 \dots$, $n / l - l \pm \sigma 6$ 0 Juy 0・スカイライン行列の判定処理をくり返すループであ る。6は1×1のプロック・スカイライン行列の判定部 で、上記くり返し中一回でも条件が成立しないと可能性 なしてして4に行く。上記くり返し中で6の条件が毎回 40 列である。41は3行単位に処理する場合に発生する無 成立した場合は9のIXIのブロック・スカイライン行 列処理を実行する。2の判定プロックで条件が成立しな いと10の一般スカイライン行列の処理を実行する。

【0023】図2の11は1行単位のガウス消去範囲テ ープルKLの作成で、この詳細は図5で示す。このとき セットされたKLの値を16に示す。12は1行単位の 処理ループを示す。13は1行1列のガウス消去の準備 で、17で示すような消去必要プロックは1を、不要プ ロックは0を IWにセットする。次に18で示すワーク Wに行列Aの1行の値をセットする。18は!=3とし 50

た例である。次にWの一行目で2, …, 1行を消去、二 行目で3, …, 1行を消去と続けてWの消去をする。こ のとき対角に対応するWの値の逆数を対角行列Oに1個 セットする。次で、18のWの値にマイナス符号をつけ て19のTに移す。そしてWの!行に作成したDの値を 乗算する。続いてWの1行の値を対応する行列Aに移 す。14は主消去で1行のTと1行のWを乗算し、対応 する行列Aの値に加えるこのときⅠ列単位の処理をす る。このときIWの値が0になる位置の処理はスキップ する。本処理20の範囲に対して行う。(3行3列の 例) 15は残消去で21の範囲に対して、主消去と同様 の処理をする。またここで、16のKLは12の2回目 の処理では、ガウス消去する範囲が18列目までである ことを示している。

【0024】図3の22は1行単位のガウス消去範囲テ ーブルKLの作成をする。23は同時処理する行数1の 決定で、図6に示すPの値で算出し、n1はnより小さ い最大の1の倍数とする。24は1行単位の処理ループ を示す。25は1行1列のガウス消去の準備で、図2の 13と同様な処理をする。26は主消去で1行のTと1 行のWを乗算し、対応するAの値に加える。このとき1 列単位に処理をするのが図2の14と異なる。27は最 後に残った1-1行以下の処理ループを示す。28はこ の部分の処理は少ないため、一般に用いられている1行 1列のガウス消去を適用する。

【0025】図4の29は3行3列プロック・スカイラ イン行列の一例である。30はk列の対角の位置がNP (k) であることを示す。 A(NP(k)) が k 列の対角値を 示す。31はk列のスカイラインの先端の位置がNP(k +1)-1であることを示す。32は行列Aの各列の先頭 アドレステーブルNPの例である。NPの配列は次元数 nより1大きい。

【0026】図5の33は1×1のブロック・スカイラ イン行列のKLテーブルの作成の準備である。34は次 元数nから1まで-1ずつ逆に探索するためのループで ある。35はi行におけるKLテーブルの開始位置の計 算である。36,37,38,39でKLテープルをセ ットする。

【0027】図6の40は一般スカイライン行列にの一 駄計算となる要素を示したものである。42は本例(1 =3)で無駄計算の要素数Pが15となり、P/Iが5と なることを示す。43は4行単位に処理する場合に発生 する無駄計算となる要素を示したものである。44はこ のとき無駄計算の要素数Pは21となり、P/lが5.25と なることを示す。一般スカイライン行列において、1行 単位(1=3,4,5,6)とする1の値の決定はP/1 の値が最も小さい!を選定する。

[0028]

【発明の効果】HITAC S-3800/180のようなべ

6

クトル計算機では、従来の計算方式に比較して、ブロック・スカイライン行列の場合の本発明の効果はCPU時間 $M1/4\sim1/7$ に短縮し、一般スカイライン行列の場合は $1/3\sim1/5$ に短縮するという性能上の効果がある。

【0029】HITAC S-3800/480のように並列ベクトル計算機では、従来の計算方式に比較して、ブロック・スカイライン行列の場合の本発明の効果はCPU時間が1/10~1/20に短縮し、一般スカイライン行列の場合は1/7~1/15に短縮するという性能上の効果がある。

【図面の簡単な説明】

【図1】処理フローチャートで、ブロック・スカイライ

ン行列か、一般スカイライン行列の判定方式を示す図で ある。

【図2】 処理フローチャートで、ブロック・スカイライン行列の三角分解方式を示す図である。

【図3】処理フローチャートで、一般スカイイライン行列の三角分解方式を示す図である。

【図4】 ブロック・スカイライン行列の構成で、行列Aの先頭アドレステーブルNPの例を示す図である。

【図5】処理フローチャートで、ブロック・スカイライ 10 ン行列のKLテーブルの作成方式を示す図である。

【図6】一般スカイライン行列の構成で、無駄計算となる要素数Pの算出例を示す図である。

【図1】

[図2]

