

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY DEPARTMENT TECHNOLOGY AND COMMUNICATION NETWORK SEMESTER 2 2023/2024

CSC4202-5: DESIGN AND ANALYSIS OF ALGORITHMS

LECTURER NAME:

DR. NUR ARZILAWATI BINTI MD YUNUS

GROUP PROJECT

STUDENT NAME	MATRIC NUMBER
HASRINAH BINTI KURONG	213110
ANIS NADIRA BINTI NOOR MAISAM	210423
MOONNA BINTI ZULKAFLY	212137

Link to your online portfolio

https://sites.google.com/student.upm.edu.my/portfolio-project-csc4202/home

Initial Project Plan (week 10, submission date: 31 May 2024)

Group Name	HaNiMoon		
Members			
	Name	Email	Phone number
	HASRINAH	213110@student.upm.edu.my	013-6258438
	KURONG		
	ANIS NADIRA	210423@student.upm.edu.my	010-7140570
	MOONNA	212137@student.upm.edu.my	012-9779927
	ZULKAFLY		
Problem	Geographical Settin		
scenario	The scenario is set in a region characterized by steep slopes, hilly terrain,		
description	and unstable geological formations, making it prone to landslides. The		
	region is home to several communities, with infrastructure such as roads,		
	homes, and agricultural lands scattered throughout the area.		
	Type of Disaster:		
		e constant threat of landslides, w	which can be triggered
		, seismic activity, or human	
		-	
		construction. Landslides in this	
		of rock, soil, and debris down slop	
	damage to infrastru	cture, homes, and natural habitats	.
	Damage Impact:		
		e potential to cause significant of	lamage, including the
		ement of communities, and disrup	
		n also lead to the destruction o	-

	lands, and natural ecosystems, further exacerbating the impact on local	
	communities and the environment.	
Why it is	Managing landslide risk in hilly terrains is crucial for:	
important	ivianaging landshae risk in mily terrains is crucial for.	
	1. Protecting Lives and Infrastructure: Hilly regions are prone to	
	landslides that can threaten human lives and disrupt essential	
	infrastructure such as roads and utilities.	
	2. Preserving the Environment: Effective risk management helps	
	mitigate environmental damage caused by landslides, preserving	
	natural habitats and biodiversity.	
	3. Enhancing Community Resilience: Implementing preventive	
	measures like slope stabilisation and early warning systems	
	improves community preparedness and resilience against natural	
	disasters.	
D., 1.1		
Problem	The problem involves reducing landslide risk in hilly terrains by assessing	
specification	terrain characteristics, implementing mitigation strategies like slope	
	stabilisation and early warning systems, and enhancing community	
	resilience through education and emergency preparedness. These efforts	
	aim to protect lives, infrastructure, and the environment from the impacts	
Detential	of landslides while promoting sustainable development practices.	
Potential	A potential solution to manage landslide risk in hilly terrains involves	
solutions	leveraging algorithms for effective risk assessment and mitigation	
	strategies. Algorithms such as dynamic programming can be utilised to	
	analyse terrain data and compute the minimum risk path through a grid	
	representation of the terrain. This helps in identifying vulnerable areas	
	prone to landslides and optimising the placement of mitigation measures like slope stabilisation or early warning systems. Additionally, graph	
	algorithms are useful for modelling connectivity and flow of information,	
	aiding in infrastructure planning and emergency response strategies. By	
	integrating these algorithmic approaches, stakeholders can develop	
	C C	

	comprehensive solutions to reduce landslide risks, protect communities,	
	and sustainably manage hilly terrains prone to natural hazards.	
Sketch (framework, flow,	framework for managing landslide risk in hilly terrains involves several key components:	
interface)	 Risk Assessment: Utilize algorithms and data analysis techniques to assess terrain characteristics such as slope steepness, soil stability, vegetation cover, and historical landslide data. Algorithms like machine learning models or statistical analysis can help identify high-risk areas prone to landslides. Mitigation Strategies: Implement effective mitigation measures based on the risk assessment findings. This includes engineering solutions like slope stabilization, drainage improvement, and vegetation management. Algorithms such as dynamic programming can optimize the placement of these measures to maximize effectiveness and minimize costs. Early Warning Systems: Develop and deploy algorithms for early warning systems that monitor key indicators such as rainfall intensity, soil moisture levels, and ground movement. These systems can provide timely alerts to communities and authorities, enabling proactive evacuation and emergency response planning. Community Engagement and Education: Use algorithms for data-driven decision-making in community engagement and education initiatives. Algorithms can help analyze demographic data, communication patterns, and behavioral insights to tailor educational campaigns and enhance community awareness about landslide risks and safety measures. Environmental Monitoring: Algorithms can be employed for continuous environmental monitoring post-mitigation to assess the effectiveness of implemented measures. This includes monitoring changes in terrain stability, vegetation growth, and erosion rates to ensure long-term resilience and sustainability. 	

Project Proposal Refinement (week 11, submission date: 7 June 2023)

Group Name	HaNiMoon	
Members		
	Name	Role
	HASRINAH KURONG	Find the problem statement that
		is related with the scenario.
	ANIS NADIRA	Find the expected output and
		potential solution by using
		algorithms.
	MOONNA ZULKAFLY	Find problem specification and
		make a framework.
Problem	The region is characterized by	y steep slopes and unstable geological
statement	formations, making it prone	to frequent landslides. This poses a
	significant threat to communities, infrastructure, and natural habitats.	
	Triggered by heavy rainfall, seismic activity, or human activities like	
	deforestation, landslides involve sudden movements of rock, soil, and	
	debris down slopes, causing extensive damage and endangering lives.	
	They disrupt transportation networks, destroy homes and agricultural	
	lands, and threaten local ecosy	stems, highlighting the urgent need for
	effective risk mitigation strategie	s in this vulnerable area.
Objectives	1. The objective of the so	cenario is to develop a comprehensive
	landslide risk reduction	plan that minimizes the occurrence and
	impact of landslides, pro-	tects vulnerable populations, and ensures
	the sustainable developm	ent of the region. The plan should aim to
	enhance the resilience of the region to landslides and promote safe	
	and sustainable developm	nent practices in hilly terrains.

Expected	Reduce the complexity of finding the minimum risk path in a grid	
output	by breaking it down into simpler subproblems and combining their	
	solutions.	
Problem	Geographical Setting:	
scenario	The scenario is set in a region characterized by steep slopes, hilly terrain,	
description	and unstable geological formations, making it prone to landslides. The	
	region is home to several communities, with infrastructure such as roads,	
	homes, and agricultural lands scattered throughout the area.	
	Type of Disaster:	
	The region faces the constant threat of landslides, which can be triggered	
	by heavy rainfall, seismic activity, or human activities such as	
	deforestation and construction. Landslides in this area can result in the	
	sudden movement of rock, soil, and debris down slopes, causing extensive	
	damage to infrastructure, homes, and natural habitats.	
	Damage Impact:	
	Landslides have the potential to cause significant damage, including the	
	loss of life, displacement of communities, and disruption of transportation	
	networks. They can also lead to the destruction of homes, agricultural	
	lands, and natural ecosystems, further exacerbating the impact on local	
	communities and the environment.	
Why it is		
important	Managing landslide risk in hilly terrains is crucial for:	
	1. Protecting Lives and Infrastructure: Hilly regions are	
	prone to landslides that can threaten human lives and	
	disrupt essential infrastructure such as roads and utilities.	
	2. Preserving the Environment: Effective risk management	
	helps mitigate environmental damage caused by landslides,	
	preserving natural habitats and biodiversity.	
	3. Enhancing Community Resilience: Implementing	
	preventive measures like slope stabilisation and early	
	F interested into stope smontantian und curry	

	warning systems improves community preparedness and	
	resilience against natural disasters.	
Problem	The problem involves reducing landslide risk in hilly terrains by assessing	
specification	terrain characteristics, implementing mitigation strategies like slope	
	stabilisation and early warning systems, and enhancing community	
	resilience through education and emergency preparedness. These efforts	
	aim to protect lives, infrastructure, and the environment from the impacts	
	of landslides while promoting sustainable development practices.	
Potential	A potential solution to manage landslide risk in hilly terrains involves	
solutions	leveraging algorithms for effective risk assessment and mitigation	
	strategies. Algorithms such as dynamic programming can be utilised to	
	analyse terrain data and compute the minimum risk path through a grid	
	representation of the terrain. This helps in identifying vulnerable areas	
	prone to landslides and optimising the placement of mitigation measures	
	like slope stabilisation or early warning systems. Additionally, graph	
	algorithms are useful for modelling connectivity and flow of information,	
	aiding in infrastructure planning and emergency response strategies. By	
	integrating these algorithmic approaches, stakeholders can develop	
	comprehensive solutions to reduce landslide risks, protect communities,	
	and sustainably manage hilly terrains prone to natural hazards.	

<eg: and<="" chosen="" coding="" edit="" of="" problem="" th="" the=""><th>Week 12</th></eg:>	Week 12
complete the coding. Debug>	
<eg: analysis="" and="" conduct="" correctness="" of="" td="" time<=""><td>Week 13</td></eg:>	Week 13
complexity >	
<pre><pre><pre><pre><pre><pre>prepare online portfolio and presentation></pre></pre></pre></pre></pre></pre>	Week 14
	•

Project Progress (Week 10 – Week 14)

Milestone 1	Scenario refinement		
Date (wk)	Week-11 (3/6/2024)		
Description	Refine the scenarion	o for landslide risk redu	action in hilly terrains.
1	• Ensure the scenari	o is relevant to algorith	mic approaches.
sketch	Define the probler	n clearly, identifying th	e types of data involved and
	the expected outpu	ıts.	
	Determine the obj	ectives of the project, for	ocusing on the practical
	applications of the	algorithms.	
Role			
	Hasrinah kurong	Anis Nadira	Moonna zulkafly
	Research and identify	Evaluate the	Outline the primary
	real-world scenarios	strengths and	objectives, including
	related to landslide risk	weaknesses of each	improving safety,
	reduction and ensure	algorithm in the	minimizing damage,
	the scenario is detailed	context of landslide	and enhancing
	and applicable to	risk reduction.	emergency response
	algorithmic solutions.		strategies. Besides,
			define the expected
			outputs from the
			scenario, such as
			minimum risk paths,

	risk assessment	
	reports, or evacuation	
	routes.	

Milestone 2	find example solutions a	and suitable algorithm. D	iscuss in group why that
	solution and the example problems relate to the problem in the project		
Date (Wk)	Week-11 (6/6/2024)		
Description	Outline the dynamic pro	ogramming algorithm sp	pecification, which involves
/	several key components	that ensure efficient an	d optimal problem-solving
sketch	The first step is to break	down a complex proble	em into smaller, manageable
	subproblems. This decor	mposition is crucial beca	ause it allows the algorithm
	to focus on solving eac	h subproblem independe	ently, which is essential for
	efficient computation. Also, define input, output and constraints.		
Role			
	Hasrinah kurong	Anis Nadira	Moonna zulkafly
	Evaluate together the	Evaluate together the	Evaluate together the
	strength and weakness	strength and weakness	strength and weakness
	of each algo, and	of each algo, and	of each algo, and
	come up with own	come up with own	come up with own
	opinions. Outline the	opinions. Find	opinions. Implement
	algorithm.	example solutions.	the algo in Java.
		•	

Milestone 3	Edit the coding of the chosen problem and complete the coding. Debug
Date (Wk)	Week-12 (14/6/2024)
Description	The LandslideRiskReduction Java program calculates the minimum risk path
/	through a grid representing hilly terrain. The findMinRisk function initializes
sketch	a 2D dp array with maximum values, setting the top-left cell to the terrain's
	starting risk. It then iterates through each grid cell, updating dp values based

	on adjacent cells above or to the left, ensuring dp reflects the minimum risk						
	path. The function returns the minimum risk to reach the bottom-right corner, demonstrated in the main method with a sample grid.						
Role	Hasrinah kurong Implement the coding related to the scenario and write and refine the Java code to solve the landslide risk problem.	Anis Nadira Develop the pseudocode based on Hasrinah's coding and ensure the pseudocode is clear, comprehensive, and accurately reflects the logic of the Java code.	Moonna zulkafly Analyse the output of the code and identify any errors and debug and test the code to ensure it works correctly and efficiently.				

Milestone	conduct analysis of correctness and time complexity		
4			
Date (Wk)	Week-13 (17/62024)		
Descriptio	The algorithm correctly computes the minimum risk path by ensuring that at		
n/	each step, the minimum cumulative risk is propagated through the grid. The		
sketch	correctness is maintained by the principle of dynamic programming, where		
	the optimal solution to the problem is built from the optimal solutions to its		
	subproblems. The algorithm ensures that the minimum risk path is found		
	which is crucial for safe evacuation during a landslide. Also, determine the		
	best case, average case and worst case scenario time complexity as well as		
	space complexity.		

Role			
	Hasrinah kurong	Anis Nadira	Moonna zulkafly
	Analyse the algo	Analyse the time	Analyse space
	correctness based on	complexity of best	complexity and relate
	the Java code and	case, average case and	with the problem
	output shown.	worst case scenario,	scenario.
		and come up with	
		possibilities of each	
		case.	
		1	

Milestone	prepare online portfolio and presentation					
5						
Date (Wk)	Week 14 (25/6/2024)					
Descriptio	Utilized online tools (Google sites) to develop an online platform. Listed					
n/	information in the Project docs proposed by lecturer is inserted in the online					
sketch	platform, such as problem illustration, algo paradigm,pseudocode, code and					
	output as well as the algo analysis. Drafted version has been published,					
	however, any changes may be needed.					
Role						
	Hasrinah kurong	Anis Nadira	Moonna zulkafly			
	Prepare the slide	Prepare the slide	Make an online			
	and do the	and fix the code,	portfolio using			
	respective parts.	also make the	google sites and			
		analysis the output	transfer all			
			information from			
			google doc to the			
			google sites.			
		ı				