MATE 5150: Asignacion #1

Due on Septiembre 5, 2024

Dr. Pedro Vasquez

Alejandro Ouslan

Problem 1

Solve the following systems of linear equations by the method introduced introduces in this section.

$$x_1 + 2x_2 + 2x_3 = 2$$

 $x_1 + 8x_3 + 5x_4 = -6$
 $x_1 + x_2 + 5x_3 + 5x_4 = 3$

Problem 2

In each part, determine whether the given vector is in the span of S.

$$(2,-1,1,-3)$$
 where $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$

Problem 3

Show that the vectors (1,1,0), (1,0,1), and (0,1,1) generate \mathbb{F}^3

Problem 4

Let S_1 and S_2 be subsets of a vector space V. Prove that $span(S_1 \cap S_2) \subseteq span(S_1) \cap span(S_2)$. Give an example in which $span(S_1 \cap S_2)$ and $span(S_1) \cap span(S_2)$ are equal and one in which they are not equal.

Problem 5

Determine whether the following sets are linearly dependent or linearly independent.

$${x^3 - x, 2x^2 + 4, -2x^3 + 3x^2 + 2x + 6}$$

Problem 6

In $M_{m \times n}(\mathbb{F})$, let E_{ij} denote the matrix whose only nonzero entry is a 1 in the *i*th row and *j*th column. Prove that $\{E_{ij}: 1 \le i \le m, 1 \le j \le n\}$ is linearly independent.

Problem 7

Let $f, g \in \mathcal{F}(R, R)$ be the function defined by $f(x) = e^{rt}$ and $g(x) = e^{st}$, where $r \neq s$. Prove that f and g are linearly independent in $\mathcal{F}(R, R)$.

Problem 8

Determine which of the following sets are bases for \mathbb{R}^3 .

$$\{(1, -3, 1), (-3, 1, 3), (-2, -10, 2)\}$$

Problem 9

The vectors $u_1 = (2, -3, 1)$, $u_2 = (1, 4, -2)$, $u_3 = (-8, 12, -4)$, $u_4 = (1, 37, -17)$ and $u_5 = (-3, -5, 8)$ generate \mathbb{R}^3 . Find a subset of the set $\{u_1, u_2, u_3, u_4, u_5\}$ that is a basis for \mathbb{R}^3 .

Problem 10

The vectors $u_1=(1,1,1,1)$, $u_2=(0,1,1,1)$, $u_3=(0,0,1,1)$, and $u_4=(0,0,0,1)$ form a basis for \mathbb{R}^4 . Find the unique representation of an arbitrary vector $v=(a_1,a_2,a_3,a_4)$ \mathbb{R}^4 as a linear combination of u_1,u_2,u_3,u_4 .

Problem 11

In each part, use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points. (-2,3), (-1,-6), (1,0), (3,-2).

Problem 12

The set of all upper triangular $n \times n$ matrices is a subspace of W of $M_{n \times n}(\mathbb{F})$. Find a basis for W. What is the dimension of W?