Matched filtering

Dr. Jess McIver
LSSTC DSFP
June 13, 2019
LIGO DCC G1901110

Gravitational wave propagation

Spacetime strain h(t) measured as $\frac{\Delta L}{L}$

Observing GWs with interferometry

The global network of current gen interferometers

Gravitational wave searches

A binary black hole coalescence

Compact binary sources

Massive objects orbit

Spacetime response above orbital plane

$$E_{orbit} = \frac{M_1 M_2}{M_{\odot}^2} \frac{3R_{S,\odot}}{2a} 10^{53} \text{ erg}$$

$$f = \left(\frac{M_1 + M_2}{M_{\odot}}\right)^{1/2} \left(\frac{3R_{S,\odot}}{a}\right)^{3/2} 3 \text{ kHz}$$

$$L_{GW} = \frac{M_1^2 M_2^2 (M_1 + M_2)}{M_{\odot}^5} \left(\frac{3R_{S,\odot}}{a}\right)^5 10^{56} \text{erg/s}$$

$$h = \frac{M_1 M_2}{M_{\odot}^2} \frac{3R_{S,\odot}}{a} \frac{100 \text{ Mpc}}{d_L} 10^{-22}$$

Inferring mass and distance

A Bayesian inference

How do we identify signals? How significant are they?

Goal: understand this plot!

Searching for signals with matched filtering

Slide adapted from S. Caudill

$$\rho^{2}(t) = \left[\langle s | h_{c} \rangle^{2}(t) + \langle s | h_{s} \rangle^{2}(t) \right]$$

Searching for signals with matched filtering

Slide adapted from S. Caudill

$$\rho^{2}(t) = \left[\langle s | h_{c} \rangle^{2}(t) + \langle s | h_{s} \rangle^{2}(t) \right]$$

B. P. Abbott et al. Phys. Rev. X (2016)

Searching for signals with matched filtering

Slide adapted from S. Caudill

$$\rho^{2}(t) = \left[\langle s | h_{c} \rangle^{2}(t) + \langle s | h_{s} \rangle^{2}(t) \right]$$

$$\langle s|h\rangle = 4\text{Re}\int_0^\infty \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_n(f)}e^{2\pi ift}df$$

Constructing templates

Post-Newtonian point approximations
Valid for v << c

Numerical Relativity

Valid everywhere - very very expensive to generate

Constructing templates: spin

15

Constructing templates: spin

Breakout question

If the component objects have spin aligned with the orbital angular momentum, will that make the signal template:

- 1. Longer
- 2. Shorter
- 3. The same

16

Constructing templates: spin

17

Building a template bank

$$\chi_{1,2} \propto \vec{S_{1,2}} \cdot \hat{L}$$

Building a template bank

Breakout question

What defines the separation between each template?

Building a template bank

What defines the separation between each template?

Maximum allowed mismatch between one template and the next

Challenge: LIGO data is non-stationary/non-Gaussian!

The Chi-squared test

Chi-squared re-weighting

Redefine SNR to downweight the SNR of triggers with high Chi-squared

$$\hat{\rho} = \begin{cases} \rho / [(1 + (\chi_r^2)^3)/2]^{\frac{1}{6}}, & \text{if } \chi_r^2 > 1, \\ \rho, & \text{if } \chi_r^2 \leq 1. \end{cases}$$

GW150914: an example

Calculating event significance

Calculating the foreground

Look for trigger coincidence within gravitational wave travel time between triggers

Network SNR is quadrature sum of single detector SNRs

$$\rho_c = \sqrt{\rho_H^2 + \rho_L^2}$$

Calculating the noise background

Calculating the noise background

Breakout question

Which of these signals has a higher (single detector) matched filter SNR?

Breakout question

Which of these signals has a higher (single detector) matched filter SNR?

"Un-modelled" burst searches

cWB - an all-sky coherent burst search

- Projects the data onto a Meyer wavelet basis.
- Extracts significant events using a coherent likelihood statistic maximized over all potential sky positions.

GWTC-1: confident detections

#UpToEleven
Four new binary black hole mergers!
GW151012 designated a GW event!

Event		UTC Time		FAR [y-1]	5, 545,00		Network SNR	2000000000
			PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914		09:50:45.4	< 1.53 × 10 ⁻⁵	$< 1.00 \times 10^{-7}$	< 1.63 × 10 ⁻⁴	23.6	24.4	25.2
GW151012		09:54:43.4	0.17	7.92×10^{-3}	742	9.5	10.0	-
GW151226		03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104		10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608		02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	V	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	V	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$		12.2	12.4	-
GW170814	V	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	/(G)	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	-	30.9	33.0	-
GW170818	V	02:25:09.1	. cere 7th constra	4.20 × 10 ⁻⁵	and the	(-)	11.3	-
GW170823		13:13:58.5	< 3.29 × 10 ⁻⁵	< 1.00 × 10 ⁻⁷	2.14×10^{-3}	11.1	11.5	10.8

GWTC-1: template bank additions

Masses in the Stellar Graveyard

GW candidates in O3 thus far

16 alerts issued since April 1st. 14 un-retracted events in 8.5 weeks!

UID 🜩	Labels	FAR
S190602aq	PE_READY ADVOK SKYMAP_READY	1.90052750535e-09
S190521r	PE_READY ADVOK SKYMAP_READY	3.16754584224e-10
S190521g	PE_READY ADVOK SKYMAP_READY	3.80105501069e-09
S190519bj	PE_READY ADVOK SKYMAP_READY	5.70158251604e-09
S190517h	PE_READY ADVOK SKYMAP_READY	2.37290998502e-09
S190513bm	ADVOK SKYMAP_READY EMBRIGHT_F	3.73400311637e-13
S190512at	PE_READY ADVOK SKYMAP_READY	1.90052750535e-09
S190510g	ADVOK SKYMAP_READY EMBRIGHT_F	8.8335691573e-09
S190503bf	ADVOK SKYMAP_READY EMBRIGHT_F	1.63611159504e-09
S190426c	PE_READY ADVOK SKYMAP_READY	1.94694181763e-08
S190425z	ADVOK SKYMAP_READY EMBRIGHT_F	4.53764787126e-13
S190421ar	PE_READY ADVOK SKYMAP_READY	1.48874654585e-08
S190412m	PE_READY ADVOK SKYMAP_READY	1.68289586112e-27
S190408an	PE_READY ADVOK SKYMAP_READY	2.81096164616e-18

- 11 likely BBHs
- 2 BNSs (one likely, one 58% terrestrial)
- 1 potential NSBH candidate
- (BNS (49%),
 MassGap (24%),
 NSBH (13%),
 Terrestrial (14%))

Challenge: S190518bb case study

Automatic Preliminary Notice sent ~6 minutes after the event:

FAR: 1.004e-08 [Hz] (one per ~3 years)

PROB_NS: 1.00 [range is 0.0-1.0]

PROB_REMNANT: 1.00 [range is 0.0-1.0]

PROB_BNS: 0.75 [range is 0.0-1.0]

PROB_TERRES: 0.24 [range is 0.0-1.0]

Challenge: S190518bb case study

Light scattering

Challenge: S190518bb case study

Roadmap to LIGO design sensitivity

Expectation for the third LIGO observing run (O3)

1 signal/week!

Up to 1 signal/day at design sensitivity!

A+ by the mid 2020s

- Frequency-dependent light squeezing
- 300m filter cavity

- Improved coatings
- Bigger beam splitter, improved suspensions

The global network of current gen interferometers

Next generation detectors

Cosmic reach of next generation detectors

