Resumen de R

Tratamiento de Datos. Grado en Ciencia de Datos - UV

Carlos Santiago Martinez Torres

2025-04-22

Índice

Antes de empezar	3
Cleaning Data in R	3
CAPITULO 1	3
Chequeando el tipo de dato	4
Por que es importante?	4
Conversion de texto a numero	4
Conversion de factor a numero	5
Ejercicios	5
Hacer recortes de una cadena de texto	5
Rango de los valores - limitaciones de los rangos	5
Encontrando valores fuera de rango	6
Manipulado out of range values	6
Tratando valores como NA	6
Limitaciones con tipo de dato FECHA	7
Ejercicios	7
Convertir a tipo fechay filtrar por fechas anteriores a la fecha actual	7
Duplicados	8
Eliminando duplicados	8
Encontrado valores parcialmente duplicados	8
Eliminando los duplicados parciales	8
Operar con los valores duplicados	9
Ejercicios	9
Full duplicados	9
Duplicados parciales	9
Agregacion para parciales	9

\mathbf{C}	APITULO 2	10
	Datos categoricos	10
	Filtrando con joins	10
	Ejercicios	10
	Variables categoricas	10
	Problemas con datos categoricos	11
	Ejercicios	12
	Identificando inconsistencias	12
	Corrigiendo las inconsistencias	12
	Colapsando las categorias	12
	Cleaning text data	12
	Expresiones regulares	13
	Ejercicios	14
	Remover caracteres de una expresion	14
	Reemplazar valores que no cumplen con una condicion	14
C.	APITULO 3	14
	Uniformidad	14
	Encontrando valores	15
	Uniformidad con fechas	15
	Ejercicios	15
	Uniformidad con fechas	15
	Corrigiendo valor con codicional	16
	Cross field validation	16
	Ejercicios	16
	Validando totales	16
	Validando fechas	17
	Datos incompletos	17
	Analizando los valores faltanes	18
	Tipos de datos faltantes	19
	Missing Completely at Random (MCAR)	19
	Missing at Random (MAR)	19
	Missing Not at Random (MNAR)	20
	Tratando con valores faltantes	20
	Eliminando valores faltantes	20
	Reemplazado valores faltantes	20
	Eiercicios	20

Comparando strings	21
Metodos para editar distancias	21
Comparando valores para no hacer el map de la unidad 2 \dots	22
Ejercicios	22
Generando y comparando	22

Antes de empezar

Siempre usar pacman para cargar las librerias

```
# Asegurarse de que el paquete "pacman" está instalado
if (!require("pacman")) install.packages("pacman")
```

Listado de librerias que se han implementado a lo largo del curso

```
pacman::p_load(tidyverse, readxl, lubridate, visdat, stringdist, fuzzyjoin)

# Con tidyverse: ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats
# readxl, libreria que requiere una carga aparte explícita
# lubridate, se utiliza con frecuencia con paquetes de tidyverse, pero requiere una carga aparte
# visdat, exploracion visual de los datos
# stringdist: Approximate String Matching, Fuzzy Text Search, and String Distance Functions
# Fuzzyjoin, para unir df's por medio de string distances
```

Cleaning Data in R

CAPITULO 1

```
# library(dplyr)
# library(stringr)
```

Problemas comunes que se pueden tener con los datos cuando no están limpios. Por que limpiarlos? Porque el error aparece al inicio de los datos. Es decir:

Error humano, acceso a datos, exploración de los datos, extracción de datos y reporte.

Si no se soluciona, todo el código ira con el error humano.

Limitaciones de tipo de dato:

- Texto, que es el 'character'
- Entero, 'integer'
- Decimal, 'numeric'
- Binario, 'logical'
- Categórico, 'factor'
- Fecha, 'date'

Chequeando el tipo de dato

- sales <- read.csv('sales.csv')
- head(sales)

Para saber el tipo de dato que estamos usando:

- Columna <- sales\$revenue
- Is.numeric(columna)

Si no, con la librería assertive:

- Library(assertive)
- Assert is numeric(columna)

Cuando usamos expresiones como:

• Is.numeric(), is.character(), is.logical(), etc...

Estamos evaluando expresiones que nos devuelven un return TRUE/FALSE.

Cuando usamos la expresión:

• Assert_is_character(), assert_is_numeric(), etc...

Devuelve error cuando es FALSE.

Por que es importante?

Podemos revisar el tipo de dato con la función:

- Class(columna)
- Tambien usando glimpse(dataframe), de la libreria dplyr.

Es importante para evaluar la expresion. No podemos hacer la media de una columna que sea de tipo character...

Conversion de texto a numero

- Library(stringr)
- str_remove(columna, ',')

El primer argumento es la variable a la que queremos quitarle el string. el segundo, es lo que queremos quitar. Si lo queremos dejar en el dataframe original, podemos:

• sales %>% mutate (revenue = as.numeri(str_remove(revenue, ',')))

Conversion de factor a numero

• as.numeric(as.character(columna_factor))

Ejercicios

```
# # Glimpse at bike_share_rides
# glimpse(bike_share_rides)
#
# # Summary of user_birth_year
# summary(bike_share_rides$user_birth_year)
#
# # Convert user_birth_year to factor: user_birth_year_fct
# bike_share_rides <- bike_share_rides %>%
# mutate(user_birth_year_fct = as.factor(user_birth_year))
#
# # Assert user_birth_year_fct is a factor
# assert_is_factor(bike_share_rides$user_birth_year_fct)
#
# # Summary of user_birth_year_fct
# summary(bike_share_rides$user_birth_year_fct)
```

Hacer recortes de una cadena de texto

Sirve para eliminar un patro de una cadena de texto.

```
# bike_share_rides <- bike_share_rides %>%

# # Remove 'minutes' from duration: duration_trimmed
# mutate(duration_trimmed = str_remove(string= duration, pattern='minutes'),
# Convert duration_trimmed to numeric: duration_mins
# duration_mins = as.numeric(duration_trimmed))

# # Glimpse at bike_share_rides
# glimpse(bike_share_rides)
# # Assert duration_mins is numeric
# assert_is_numeric(bike_share_rides$duration_mins)
# # Calculate mean duration
# mean(bike_share_rides$duration_mins)
```

Para saber en que libreria se encuentra un dataset, podemos usar la funcion

```
# ??iris
```

Rango de los valores - limitaciones de los rangos -.

```
# library(ggplot2)
# library(ggplot2movies)
# install.packages('ggplot2movies')
```

Para ver todos los datasets disponibles podemos emplear:

```
# data()
```

Encontrando valores fuera de rango

Podemos crear un histograma

```
# # Creacion de un factor llamado breaks
# breaks <- c(min(movies$avg), 0, 5, max(movies$avg))
# # Contiene el rating minimo, luego cero como la parte inicial (de abajo), 5 que es el top de lo esper
#
# ggplot(data = movies, aes(avg)) +
# geom_histogram(breaks = breaks)</pre>
```

Con la libreria assertive, podemos ver los valores que estan fuera del rango

```
# library(assertive)
# assert_all_are_in_closed_range(movies$avg, lower=0, upper=5)
```

Manipulado out of range values

- Remove rows
- Treat as missing NA
- Replace with range limit
- Replace with other value based on domaing knowlegde and/or knowledge of dataset

```
# # Si queremos eliminar
# movies %>%
# filter(avg>=0, avg<=5) %>%
#
# ggplot(data = movies, aes(avg)) +
# geom_histogram(breaks = c(min(movies$avg), 0, 5, max(movies$avg)))
#
# Va a tener un total de 3 intervalos.
# # 1 - Del minimo al 0
# # 2 - Del 0 al 5
# # 3 - Del 5 al maximo
#
# Este tipo de agrupaciones sirve para cuando se quiere agrupar los datos por categorias específicas
```

Tratando valores como NA

Usando la funcion replace

```
# replace(col, condicion, replacement)
#
# movies %>%
# mutate(rating_miss = replace(avg, avg>5, NA))
```

Limitaciones con tipo de dato FECHA

```
# library(lubridate)

# assert_all_are_in_past(movies$date_recorded) # Nos dara error si hay algun valor que no este antes de

# movies %>%

# filter(date_recorded > today())
```

Ejercicios

• Create a three-bin histogram of the duration_min column of bike_share_rides using ggplot2 to identify if there is out-of-range data.

```
# # Create breaks
# breaks <- c(min(bike_share_rides$duration_min), 0, 1440, max(bike_share_rides$duration_min))
#
# # Create a histogram of duration_min
# ggplot(data = bike_share_rides, aes(duration_min)) +
# geom_histogram(breaks = breaks)</pre>
```

- Replace the values of duration_min that are greater than 1440 minutes (24 hours) with 1440. Add this to bike_share_rides as a new column called duration_min_const.
- Assert that all values of duration_min_const are between 0 and 1440.

```
# duration_min_const: replace vals of duration_min > 1440 with 1440
# bike_share_rides <- bike_share_rides %>%
# mutate(duration_min_const = replace(duration_min, duration_min>1440, 1440))
# # Make sure all values of duration_min_const are between 0 and 1440
# assert_all_are_in_closed_range(bike_share_rides$duration_min_const, lower = 0, upper = 1440)
```

Convertir a tipo fechay filtrar por fechas anteriores a la fecha actual

```
# library(lubridate)
#
# # Convert date to Date type
# bike_share_rides <- bike_share_rides %>%
# mutate(date = as.Date(date, format= '%Y-%m-%d'))
# # as.Date si solo necesitamos la fecha.
#
# # Make sure all dates are in the past
# assert_all_are_in_past(bike_share_rides$date)
#
# Filter for rides that occurred before or on today's date
# bike_share_rides_past <- bike_share_rides %>%
# filter(date <= today())</pre>
```

```
#
# # Make sure all dates from bike_share_rides_past are in the past
# assert_all_are_in_past(bike_share_rides_past$date)
```

Duplicados

- Error humano
- Uniones
- Bugs

En este caso, el dataframe es 'credit_scores', que tambien contiene una columna de tipo numerica llamanda 'credit_scores'.

```
# duplicated(x = dataframe)
# # Nos devuelve valores logicos
#
# sum(duplicated(x = dataframe))
# # El total de valores duplicados
#
# filter(dataframe, duplicated(dataframe))
```

Eliminando duplicados

```
# credit_scores_unique <- distinct(dataframe)
# sum(duplicated(x = credit_scores_unique))
# Esta suma deberia dar 0</pre>
```

Encontrado valores parcialmente duplicados

```
# # Ver los valores que estan repetidos por al menos dos de sus variables
# duplicados_ids <- credit_scores %>%
# count(first_name, last_name) %>% # contamos las veces que aparece este par de elementos por registr
# filter(n > 1) # Filtra por los valores que estan duplicados. Es decir, donde aparecen mas de una ve
#
# credi_scores %>% # Lista de los registros parcialmente duplicados
# filter(first_name %in% duplicados_ids$firs_name, last_name %in% duplicados_ids$last_name)
```

Eliminando los duplicados parciales

```
# credit_scores %>%
# distinct(first_name, last_name, .keep_all = TRUE)
```

Operar con los valores duplicados

Podemos usar la media de los valores, agrupando por nombre o apellido, por ejemplo.

```
# credit_scores %>%
# group_by(first_name, last_name) %>%
# mutate(mean_credit_score = mean(credit_score))
```

Ejercicios

Full duplicados

Cuando son full duplicados, debemos usar el distinct sobre todo el dataframe

```
# # Count the number of full duplicates
# sum(duplicated(bike_share_rides))
#
# # Remove duplicates
# bike_share_rides_unique <- distinct(bike_share_rides)
#
# Count the full duplicates in bike_share_rides_unique
# sum(duplicated(bike_share_rides_unique))</pre>
```

Duplicados parciales

Para cuando queremos evaluar duplicados parciales

```
# # Find duplicated ride_ids
# bike_share_rides %>%
# count(ride_id) %>%
# filter(n > 1)
#
# # Remove full and partial duplicates
# bike_share_rides_unique <- bike_share_rides %>%
# # Only based on ride_id instead of all cols
# distinct(ride_id, .keep_all = TRUE)
#
# # Find duplicated ride_ids in bike_share_rides_unique
# bike_share_rides_unique %>%
# # Count the number of occurrences of each ride_id
# count(ride_id) %>%
# # Filter for rows with a count > 1
# filter(n>1)
```

Agregacion para parciales

Agregaciones para duplicados parciales

```
# bike_share_rides %>%

# # Group by ride_id and date
# group_by(ride_id, date) %>%

# # Add duration_min_avg column

# mutate(duration_min_avg = mean(duration_min)) %>%

# # Remove duplicates based on ride_id and date, keep all cols
# distinct(ride_id, date, .keep_all=TRUE) %>%

# # Remove duration_min column
# select(-duration_min)
```

CAPITULO 2

Datos categoricos

- Los datos categoricos tienen valores conocidos
- Los factores, son un tipo de numero que representa cada categoria
- Factores, tiene los valores que puede recibir la columna y los niveles, que representa

Filtrando con joins

- Semi-join, las observaciones de x que estan en y
- Anti-join, las observaciones de x que NO estan en y

```
# dataset <- study_data
# dataset2 <- blodd_types

# # sera el valor diferente
# study_data %>%
# anti_join(blood_types, by='blood_type')

# # Para ver los valores 'correctos'
# study_data %>%
# semi_join(blood_types, by='blood_type')
```

Ejercicios

Variables categoricas

Para contar las veces en que aparece una variable categórica

```
# # Count the number of occurrences of dest_size
# sfo_survey %>%
# count(dest_size)
```

Para ver los valores incorrectos, usamod el anti join

```
# # Find bad dest_size rows
# sfo_survey %>%
# # Join with dest_sizes data frame to get bad dest_size rows
# anti_join(dest_sizes, by='dest_size') %>%
# # Select id, airline, destination, and dest_size cols
# select(id, airline, destination, dest_size)
```

Para filtrar por los valores correctos

```
# # Remove bad dest_size rows
# sfo_survey %>%
# # Join with dest_sizes
# inner_join(dest_sizes, by='dest_size') %>%
# # Count the number of each dest_size
# count(dest_size)
```

Problemas con datos categoricos

- Letras mayusculas o minusculas
- Demasiadas categorias para la misma 'especie'
- Espacios por cada texto

El primer filtro, puede ser convertir todo a minuscula o minuscula

```
# # Usando la libreria
# library(stringr)
#
# animals %>%
# mutate(type_lower = str_to_lower(type))
```

Segundo, para eliminar espacios al inicio y al final de la cadena, podemos usar la funcion

```
# animals %>%
# mutate(type_trimmed = str_trim(type_lower))
```

Para ver el 'resultado' final, podemos contar el tipo de dato y ordenarlo

```
# animals %>%
# count(type_trimmed, sort=TRUE)
```

Si quiero evaluar todas las categorias de un df, y cambiar su valor

```
# # Crear una lista con las categorias que quiero cambiar, o las que quiero asignar un nuevo valor
#
# other_cats = c('a', 'b', 'c', etc...)
#
# # Importar la libreria para colapsar todo
# library(forcats)
#
# # Crea una nueva columa, que evalua la columna con las categorias actuales. Si la categoria actual, c
# animals %>%
# mutate(type_collapsed = fct_collapse(type_trimmed, other = other_cats))
```

Ejercicios

Identificando inconsistencias

Podemos analizar si el tipo de inconsistencia es por espacios, mayusculas, minusculas, etc

```
# # Count dest_size
# sfo_survey %>%
# count(dest_size)
```

Corrigiendo las inconsistencias

Colapsando las categorias

Colapsar categorias no es mas que decirle que analice una columna, y si tiene ese valor, que lo cambie por uno normalizado u otro cualquiera.

```
# # Count categories of dest_region
# sfo_survey %>%
# count(dest_region)
#
# # Categories to map to Europe
# europe_categories <- c('EU', 'Europ', 'eur')
#
# # Add a new col dest_region_collapsed
# sfo_survey %>%
# # Map all categories in europe_categories to Europe
# mutate(dest_region_collapsed = fct_collapse(dest_region,
# Europe = europe_categories)) %>%
# # Count categories of dest_region_collapsed
# count(dest_region_collapsed)
```

Cleaning text data

Son todos los datos de tipo character

- Problemas con formaro y estandarización
- Espacios entre numeros

Para detectar un patron, podemos usar

```
# # Devuelve valores logicos
# str_detect(columna, 'valor a detectar')
```

Podemos ver en el dataframe, los valores que siguen ese patron, de la forma

```
# # Detectar patron de la forma 0000-0000-0000
# customer %>% # DF
# filter(str_detect(credit_card, '-'))
```

Se pueden reemplazar los valores que sigan ese patron por otro. Por ejemplo, cambiar el '-' por un espacio ' '

```
# # crea una col, al que se le pasa la funcion str_replace all, que cambia todos los '-' por un espacio
# customer %>%
# mutate(credit_card_spaces = str_replace_all(credit_card, '-', ' '))
```

Si se quisiera normalizar, para no tener espacios ni barras, se puede usar

```
# # A la columna, a cada valor de esa columna, quita los caracteres - y ' '.
# credit_card_clean <- customer$credit_card %>%
# str_remove_all('-') %>%
# str_remove_all(' ')
#
# # Una vez los quitas de la columna, esa columna limpia, se reemplaza en el df original
#
# customers %>%
# mutate(credit_card = credit_card_clean)
```

Si queremos ver valores que no son correctos, sabiendo que tienen cierta longitud determinada

```
# # De cada valor de la columna, obtiene su longitud
# str_length(customer$credit_card)
#
# Luego muestra cuales no cumplen con la condicion
# customer %>%
# filter(str_length(credit_card != 16))
```

Para dejar limpio el dataframe, con los valores que si cumplen la condicion, se puede emplear

```
# customer %>%
# filter(str_length(credit_card == 16))
```

Expresiones regulares

So utiles para encontrar patrones dentro de cada texto. Disponible en otro curso:)

Ejercicios

```
# # Filter for rows with "-" in the phone column
# sfo_survey %>%
# filter(str_detect(phone, '-'))
```

IMPORTANTE: Remember to use fixed() when searching for parentheses.

```
# # Filter for rows with "(" or ")" in the phone column
# sfo_survey %>%
# filter(str_detect(phone, fixed('(')) | str_detect(phone, fixed(')')))
```

Remover caracteres de una expresion

```
# # Remove parentheses from phone column
# phone_no_parens <- sfo_survey$phone %>%
# # Remove "("s
# str_remove_all(fixed("(")) %>%
# # Remove ")"s
# str_remove_all(fixed(")"))
#
# # Add phone_no_parens as column
# sfo_survey %>%
# mutate(phone_no_parens = phone_no_parens,
# # Replace all hyphens in phone_no_parens with spaces
# phone_clean = str_replace_all(phone_no_parens, '-', ''))
```

Reemplazar valores que no cumplen con una condicion

```
# # Check out the invalid numbers. It must have 12
# sfo_survey %>%
# filter(str_length(phone) != 12)
#
# # Remove rows with invalid numbers
# sfo_survey %>%
# filter(str_length(phone) == 12)
```

CAPITULO 3

Uniformidad

- Para diferentes unidades o formatos
- Temperatura, pesos, tasas de cambio

Encontrando valores

Para convertir los valores, podemos usar una formula de conversion, cuando el ejercicio lo permita. Implementando la codicion ifelse, tenemos:

```
# ifelse(condition, value_if_true, value_if_false)
#
# # Si la temperatura es mayor a 50
# # Aplica la formula para pasar de F a Celsius
# # si no, deja la temperatura igual
#
# nyc_temps %>%
# mutate(temp_c = ifelse(temp>50, (temp-32)*5/9, temp))
```

Uniformidad con fechas

Para ver los formatos de las fechas

```
# ?strptime
```

Para analizar los multiples formatos

```
# # Orders contiene los formatos diferentes
#
# library(lubridate)
# parse_date_time(nyc_temps$date,
# orders = c('%Y-%m-%d', '%m/%d/%y', '%B %d %Y'))
#
# Esto lo devolvera en un formato yyy-mm-dd
```

Ejercicios

Para considerar, By default, as.Date() can't convert "Month DD, YYYY" formats.

Uniformidad con fechas

```
# # Check out the accounts data frame
# head(accounts)
#
# # Formato yyyy-mm-dd
# # Formato Mes dd, yyyy
#
# # Define the date formats
# formats <- c("%Y-%m-%d", "%B %d, %Y")
#
# # Convert dates to the same format
# accounts %>%
# mutate(date_opened_clean = parse_date_time(date_opened, orders = formats))
```

Corrigiendo valor con codicional

```
# # Scatter plot of opening date and total amount
# accounts %>%
# ggplot(aes(x = date_opened, y = total)) +
# geom_point()
#
# Left join accounts to account_offices by id
# accounts %>%
# left_join(account_offices, by = "id") %>%
# # Convert totals from the Tokyo office to USD
# mutate(total_usd = ifelse(office == "Tokyo", total / 104, total)) %>%
# # Scatter plot of opening date vs total_usd
# ggplot(aes(x = date_opened, y = total_usd)) +
# geom_point()
```

Cross field validation

• Validacion con numeros

Sumar todos los numeros y comprobar con la columna total

• Validacion con fechas

Podemos obtener la diferencia de fechas con

```
# library(lubridate)
#
# date_difference <- as.Date('2015-09-04') %--% today()
# date_difference
#
# Para obtener un valor adecuado
#
# as.numeric(date_difference, 'years')
#
# floor(as.numeric(date_difference, 'years'))
#
# Podemos hacer la validacion en el dataframe con
#
# credit_cards %>%
# mutate(theor_age = floor(as.numeric(date_opened %--% today(), 'years'))) %>%
# filter(theor_age != acct_age)
```

- Se puede eliminar
- Input datos

Ejercicios

Validando totales

```
# # Find invalid totals
# accounts %>%
# # theoretical_total: sum of the three funds
# mutate (theoretical_total = rowSums(.[, 4:6])) %>%
# # Find accounts where total doesn't match theoretical_total
# filter (theoretical_total != total)
# # accounts %>%
# # select(starts_with('fund')) %>%
# # mutate(theoretical_total = rowSums(.))
```

Validando fechas

```
# # Find invalid acct_age
# accounts %>%
# # theoretical_age: age of acct based on date_opened
# mutate(theoretical_age = floor(as.numeric(date_opened %--% today(), 'years'))) %>%
# # Filter for rows where acct_age is different from theoretical_age
# filter (theoretical_age != acct_age)
```

Datos incompletos

• NA, nan, 0, 99

Para encontrar valores faltantes, podemos usar

```
# # Devuelve valores logicos
# is.na(airquality)
#
# # Para obtener el total de valores se puede hacer la suma
# sum(is.na(airquality))
```

Para visualizar los valores faltantes, existe la libreria siguiente

```
# library(dplyr)
# library(visdat)
vis_miss(airquality)
```


Analizando los valores faltanes

```
airquality %>%
  # Crear una columna que indica si otra columa tiene valor nulo o no
  mutate(miss_ozone = is.na(Ozone)) %>%
  \# Agrupa los datos por la columna creada, entre TRUE y FALSE
  group_by(miss_ozone) %>%
  # Por cada valor, TRUE o FALSE, halla la media de cada columna
  summarise(across(everything(), median, na.rm=TRUE))
## Warning: There was 1 warning in 'summarise()'.
## i In argument: 'across(everything(), median, na.rm = TRUE)'.
## i In group 1: 'miss_ozone = FALSE'.
## Caused by warning:
##! The '...' argument of 'across()' is deprecated as of dplyr 1.1.0.
## Supply arguments directly to '.fns' through an anonymous function instead.
##
     # Previously
##
     across(a:b, mean, na.rm = TRUE)
##
##
```

```
## # Now
## across(a:b, \(x) mean(x, na.rm = TRUE))
```

Para interpretar mejor los valores faltantes, los podemos organizar por una variable

```
airquality %>%
  arrange(Ozone) %>%
  vis_miss()
```


Tipos de datos faltantes

Missing Completely at Random (MCAR)

No hay una relacion entre los datos perdidos y los otros valores.

• Errores en la entrada de datos

Missing at Random (MAR)

Relacion sistematica entre los valores faltantes y otros valores observados

• Los datos perdidos de 'ozone' para temperaturas altas en el ejercicio anterior

Missing Not at Random (MNAR)

Relacion directa entre los valores faltantes y los otros valores no observados

• Datos perdidos para temperaturas muy altas

Tratando con valores faltantes

- Eliminar
- Imputar valores estadisticos

Eliminando valores faltantes

```
airquality %>%
  filter(!is.na(Ozone), !is.na(Solar.R)) %>%
  head(5)
```

Reemplazado valores faltantes

```
airquality %>%
  # Crea una columna para calcular valores faltantes
  # ifelse(condition, value_if_true, value_if_false)
  mutate(ozone_filled = ifelse(is.na(Ozone), mean(Ozone, na.rm=TRUE), Ozone)) %>%
  mutate(ozone_filled = round(x=ozone_filled, digits = 2)) %>%
  head(5)
```

Ejercicios

- Visualizar los valores faltantes de un conjunto
- Crear una columna con valores logicos para saber si una columna tiene valores falsos o no
- Agrupar por una columna para aplicar una funcion de agregacion

```
# # Visualize the missing values by column
# vis_miss(accounts)
#
# accounts %>%
# # missing_inv: Is inv_amount missing?
# mutate(missing_inv = is.na(inv_amount)) %>%
# # Group by missing_inv
# group_by(missing_inv) %>%
# # Calculate mean age for each missing_inv group
# summarize(avg_age = mean(age))
#
# # Sort by age and visualize missing vals
# accounts %>%
# arrange(age) %>%
# vis_miss()
```

- Dejar un set de datos limpios, con valores NA reemplazados con valores estadísticos
- Verificar/Assert que los valores de una columna contienen nulos

```
# # Create accounts_clean
# accounts_clean <- accounts %>%
# # Filter to remove rows with missing cust_id
# filter(!is.na(cust_id)) %>%
# # Add new col acct_amount_filled with replaced NAs
# mutate(acct_amount_filled = ifelse(is.na(acct_amount), inv_amount * 5, acct_amount))
# # Assert that cust_id has no missing vals
# assert_all_are_not_na(accounts_clean$cust_id)
# # Assert that acct_amount_filled has no missing vals
# assert_all_are_not_na(accounts_clean$acct_amount_filled)
```

Comparando strings

• Cambiar los valores de una palabra. Eliminar, insertar, cambiar o intercambiar.

Metodos para editar distancias

- Damerau-Levenshtein: insertar, eliminar, sustituir, trasponer (cambiar posicion) ORDEN CORRECTO
- Levenshtein: solo sustituir, insertar y eliminar
- LCS(Logest common Subsequence): solo inserta y elimina . Others

Ejemplos con otros metodos

```
# LCS
stringdist(a='baboon', b='typhoon', method='lcs')
## [1] 7
# Jaccard # Escala de 0 a 1
stringdist(a='baboon', b='typhoon', method='jaccard')
```

[1] 0.75

Comparando valores para no hacer el map de la unidad 2

```
# df survey
# city, move_score
# df cities
# city
```

Usando la libreria fuzzyjoin, se podra hacer la union de los dos dataframe, por medio de la distancia de los strings

```
# # library(fuzzyjoin)
# stringdist_left_join(survey, cities, by='city', method='dl')
#
# Se puede pasar el argumento max_dist para ser mas precisos con el match
# stringdist_left_join(survey, cities, by='city', method='dl', max_dist=1)
```

Ejercicios

```
# f1 <- 'CleaningData/zagat.rds'
# zagat <- readRDS(file = f1)</pre>
```

- Contar los valores de cada ciudad. Variaciones de los nombres
- Hacer un join con string distance

```
# # Count the number of each city variation
# zagat %>%
# count(city)
#
# # Join zagat and cities and look at results
# zagat %>%
# # Left join based on stringdist using city and city_actual cols
# stringdist_left_join(cities, by = c('city' = 'city_actual')) %>%
# # Select the name, city, and city_actual cols
# select(name, city, city_actual)
```

Generando y comparando