SESSION DE 1989

COMPOSITION D'ANALYSE

Durée: 6 heures

Calculatrice électronique de poche — y compris calculatrice programmable et alphanumérique — à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire nº 86-228 du 28 juillet 1986.

Il sera tenu compte du soin apporté à la rédaction et de la clarté des solutions.

PRÉAMBULE

On rappelle les deux propriétés suivantes, qui pourront être utilisées sans démonstration :

- 1. Si Ω est un ouvert de l'ensemble $\mathbb C$ des nombres complexes et (f_n) une suite d'applications holomorphes de Ω dans \mathbb{C} , convergeant vers une application f de Ω dans \mathbb{C} , uniformément sur tout compact inclus dans Ω , alors l'application f est holomorphe dans Ω .
- 2. Si $(u_{p,q})$, $((p,q) \in \mathbb{N}^2)$, est une suite double de nombres complexes telle que $\sum_{p=0}^{\infty} \left(\sum_{q=0}^{\infty} |u_{p,q}|\right)$ est fini, alors les deux sommes $\sum_{p=0}^{\infty} \left(\sum_{q=0}^{\infty} |u_{p,q}|\right)$ et $\sum_{q=0}^{\infty} \left(\sum_{p=0}^{\infty} |u_{p,q}|\right)$ sont définies et égales.

On rappelle aussi la définition de la limite supérieure d'une suite (u_n) de nombres réels :

$$\lim \sup (u_n) = \lim (\sup \{u_k | k \ge n\}) \qquad (\text{\'el\'ement de } \overline{\mathbb{R}}).$$

 $\limsup_{n\to\infty} \ (u_n) = \lim_{n\to\infty} \left(\sup \left\{ \left. u_k \right| \, k \geqslant n \right\} \right)$ On signale que $\ln(x)$ désigne le logarithme népérien de x.

- Avertissement. Les informations placées entre concernent la totalité du problème ou tout un groupe de questions.
 - On appelle série de Dirichlet, toute série de fonctions de la variable complexe z de la forme $\sum_{n\geq 1} a_n e^{-\lambda_n z}, \text{ où } (a_n)_{n\geq 1} \text{ est une suite complexe quelconque, et } (\lambda_n)_{n\geq 1} \text{ une suite de nombres réels}$ positifs strictement croissante et non majorée.
 - I. ABSCISSE DE CONVERGENCE

Cette première partie est consacrée à l'étude de quelques propriétés générales de convergence, illustrées par divers exemples et contre-exemples.

 $\sum_{n\geq 1}\frac{1}{n^x},\qquad \sum_{n\geq 1}\frac{(-1)^n}{n^x}$ I.1.a. Déterminer pour chacune des deux séries :

d'une part la borne inférieure σ_c de l'ensemble des réels x pour lesquels la série converge, d'autre part la borne inférieure σ_a de l'ensemble des réels x pour lesquels elle converge absolument.

• De façon générale, pour une série de Dirichlet $\sum_{n\geq 1} a_n e^{-\lambda_n z}$ on définit l'abscisse de convergence σ_c et l'abscisse de convergence absolue σ_u :

$$\sigma_c = \inf \{ x \in \mathbb{R} \mid \sum_{n \ge 1} a_n e^{-\lambda_n x} \text{ converge} \}, \ \sigma_a = \inf \{ x \in \mathbb{R} \mid \sum_{n \ge 1} |a_n| e^{-\lambda_n x} \text{ converge} \}$$

 σ_e et σ_a étant définis dans $\overline{\mathbb{R}}$ avec les conventions habituelles.

b. Dans cette question I.1.b. seulement, on envisage le cas particulier $\lambda_n = \ln(n)$, c'est-à-dire $a_n \cdot e^{-\lambda_n z} = \frac{a_n}{a_n z}$.

Montrer dans ce cas l'inégalité $\sigma_c \le \sigma_a \le \sigma_c + 1$, et donner un exemple pour chacun des deux cas extrêmes $\sigma_a = \sigma_c$ et $\sigma_a = \sigma_c + 1$.

■ Pour φ dans $\left[0, \frac{\pi}{2}\right]$ et x_0 réel, on désignera par $Sx_0(\varphi)$ l'ensemble des nombres complexes z de la forme $x_0 + r \cdot e^{i\theta}$ avec $r \ge 0$ et $|\theta| \le \varphi$.

Tournez la page S. V. P.

- I.2. Soit f une application continue de $[0, +\infty[$ dans \mathbb{C} . On suppose que pour un x_0 réel donné, l'intégrale impropre $\int_0^\infty f(t) \cdot e^{-tx_0} dt$ est convergente. On fixe φ dans $\left[0, \frac{\pi}{2}\right]$. Montrer, en introduisant une fonction $F_A(t) = \int_A^t f(u) \cdot e^{-ux_0} du$, et en utilisant une intégration par parties, que lorsque B tend vers l'infini, $\int_0^B f(t) \cdot e^{-tz} dt$ converge uniformément par rapport à z dans l'ensemble $Sx_0(\varphi)$.
 - Pour les questions I.3. et I.4., on définit une application μ de variable réelle t par :

$$\mu(t) = t \quad \text{pour } t \text{ dans } [0,1];$$

$$\mu(t) = 2 - t \text{ pour } t \text{ dans } [1,2];$$

$$\mu(t) = 0 \quad \text{pour } t \text{ dans }] - \infty, 0 [\cup]2, + \infty[. \blacksquare$$

1.3. On fixe x_0 réel et φ dans $\left]0, \frac{\pi}{2}\right[$. On suppose donné λ dans $\left]0, +\infty\right[$.

Montrer qu'à tout réel $\varepsilon > 0$, on peut associer un réel $\alpha > 0$ tel que l'inégalité $|e^{-\lambda z} - e^{-tz}| \le \varepsilon$ soit vérifiée pour tous z dans $Sx_0(\varphi)$ et t dans $[\lambda, \lambda + 2\alpha]$.

En déduire :
$$\left| e^{-\lambda z} - \int_{-\infty}^{+\infty} \frac{1}{\alpha} \cdot \mu \left(\frac{t - \lambda}{\alpha} \right) \cdot e^{-tz} dt \right| \le \varepsilon$$
 pour z dans $Sx_0(\varphi)$.

I.4. On conserve x_0 et φ comme au I.3. Soit $\sum_{n\geq 1} a_n e^{-\lambda_n z}$ une série de Dirichlet.

Construire une fonction f continue sur $[0, + \infty]$ de la forme :

$$f(t) = \sum_{n=1}^{\infty} \frac{a_n}{\alpha_n} \cdot \mu\left(\frac{t - \lambda_n}{\alpha_n}\right) \quad \text{avec} \quad 0 < \alpha_n \le \frac{\lambda_{n+1} - \lambda_n}{2}$$

de façon que la série de fonctions de terme général :

$$u_n(z) = \int_{\lambda_n}^{\lambda_{n+1}} f(t) \cdot e^{-tz} dt - u_n e^{-\lambda_n z}$$

soit normalement convergente dans $Sx_0(\varphi)$.

En déduire que si la série de Dirichlet converge en x_0 , elle converge uniformément dans $Sx_0(\varphi)$. Montrer qu'elle converge alors dans le demi-plan : $Re(z) > \sigma_z$.

- La question I.5. généralise l'étude du I.1.b. Elle n'est pas utilisée dans la suite du problème. ■
- I.5. Soit $\sum_{n\geq 1} a_n e^{-\lambda_n z}$ une série de Dirichlet d'abscisse de convergence σ_c finie.
 - a. Dans cette question I.5.a., on suppose qu'il existe un réel k > 0 et un entier n_0 tels que $\lambda_n \ge k \cdot \ln(n)$ pour tout entier $n \ge n_0$.

Démontrer que si la série $\sum_{n\geq 1} a_n e^{-\lambda_n x}$ converge pour un x réel, alors la série $\sum_{n\geq 1} a_n e^{-\lambda_n x'}$ converge absolument pour tout x' de la forme $x' = x + \frac{1+\alpha}{k}$, où α est un réel donné strictement positif.

- b. Démontrer que si b désigne $\limsup_{n\to\infty} \left(\frac{\ln(n)}{\lambda_n}\right)$, alors $\sigma_c \le \sigma_u \le \sigma_c + b$.
- c. En déterminant l'abscisse de convergence σ_c et l'abscisse de convergence absolue σ_a pour chacune des deux séries :

$$\sum_{n\geq 3} \frac{(-1)^n}{n} e^{-z\sqrt{\ln(\ln(n))}} \qquad \text{et} \qquad \sum_{n\geq 3} \frac{(-1)^n}{\sqrt{n} + (-1)^n} e^{-z\ln(n)},$$

démontrer qu'est possible chacune des deux situations suivantes :

i.
$$\sigma_c = -\infty$$
 et $\sigma_a = +\infty$,
ii. $-\infty < \sigma_c < \sigma_u < \sigma_c + b < +\infty$.

II. THÉORÈME DE CRAMER

Le but de cette deuxième partie est d'établir quelques résultats utilisés dans la suite.

- Dans toute la partie II, (c_n) , $n \in \mathbb{N}$, est une suite complexe et k un réel strictement positif. On suppose
 - i. La série entière $\sum_{n\geq 0} c_n z^n$ a un rayon de convergence infini;
 - ii. Sa somme Φ(z) vérifie: pour tout $k_1 > k$, il existe A tel que |z| > A implique $|\Phi(z)| < e^{k_1 z}$
- II.1. Lemme de Lindelöf:
 - a. On pose $m(r) = \sup (|\Phi(z)|)$, pour tout $r \ge 0$. Montrer, en utilisant au besoin la fonction périodique $\iota \mapsto \Phi(r \cdot e^{i\iota})$, que $|c_n| r^n \le m(r)$ pour tout n.
 - b. Pour $\alpha > 0$ et *n* entier > 0, trouver le minimum de la fonction $r \mapsto r^{-n} \cdot e^{\alpha r}$, quand *r* décrit

Soit $k_2 > k$; démontrer, en posant par exemple $\alpha = \frac{k_2 + k}{2}$, que $|c_n| \le \frac{k_2^n}{n!}$ dès que l'entier n

(On pourra utiliser la formule de Stirling: $n! \sim \sqrt{2\pi n} \cdot n^n \cdot e^{-n}$, quand $n \to \infty$.)

- Dans la suite du II, on considère une série de Dirichlet $\sum_{n\geq 1} a_n e^{-\lambda_n z}$ d'abscisse de convergence $\sigma_c < + \infty$ et, pour Re(z) > σ_c , on désigne par f(z) sa somme. ■
- II.2. Dans cette question II.2. seulement, on suppose de plus que cette série de Dirichlet a une abscisse de convergence absolue oa finie. Montrer qu'alors la série de Dirichlet $\sum_{n\geq 1} \Phi(\lambda_n) \cdot a_n \cdot e^{-\lambda_n z}$ a une abscisse de convergence absolue σ'_a
- II.3. Montrer que la série $\sum_{m \ge 0} \frac{m! c_m}{z^{m+1}}$ définit pour |z| > k une fonction holomorphe H et que pour |z| > k et s complexe on a : R > k et s complexe, on a: $\Phi(s) = \frac{1}{2\pi i} \int_{|z|=R} e^{sz} \cdot H(z) dz,$

le cercle |z| = R étant parcouru une fois dans le sens positif.

telle que $\sigma'_a \leq \sigma_a + k$ (théorème de Cramer, 1918).

En déduire que l'abscisse de convergence σ'_c de la série de Dirichlet $\sum_{n} \Phi(\lambda_n) \cdot a_n \cdot e^{-\lambda_n z}$ vérifie $\sigma'_c \leq \sigma_c + k$, et que sa somme F est donnée pour R > k et Re(s) > $\sigma_c + R$, par la relation:

$$F(s) = \frac{1}{2\pi i} \int_{|z|=R} f(s-z) \cdot H(z) dz.$$

III. ORDRE D'UNE SÉRIE DANS LE PLAN ET DANS UNE BANDE

- Pour une série de Dirichlet $\sum a_n e^{-\lambda_n z}$ dont la somme est notée f(z) et qui converge absolument quand z prend la valeur réelle σ , on pose: $M(\sigma) = \sup_{t \in \mathbb{R}} |f(\sigma + it)| =$
- $a_n e^{-\lambda_n \sigma} = \lim_{T \to +\infty} \left(\frac{1}{T} \int_0^T f(\sigma + it) \cdot e^{i\lambda_n t} dt \right)$ III.1. a. Montrer que sous les hypothèses ci-dessus,

et en déduire, pour $n \ge 1$, les inégalités $|a_n| e^{-\lambda_n \sigma} \le M(\sigma)$.

■ À partir de ce point, $f(z) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n}$ est la somme d'une série de Dirichlet d'abscisse de convergence absolue $\sigma_u = -\infty$.

Notant \ln^+ l'application de \mathbb{R} dans \mathbb{R} telle que $\ln^+(x)$ vaut $\ln(x)$ pour $x \ge 1$ et vaut 0 pour les autres valeurs de x, on pose pour $\sigma < 0$:

$$\theta(\sigma) = \sup_{\sigma_1 \leqslant \sigma} \left(\frac{\ln^+ (\ln^+(M(\sigma_1))}{-\sigma_1} \right)$$
 et on définit l'ordre Γ de f par $\Gamma = \lim_{\sigma \to -\infty} \theta(\sigma)$ (limite qui peut valoir $+\infty$).

- b. Montrer que sous l'hypothèse présente $(\sigma_u = -\infty)$ cette définition de l'ordre a toujours un sens dans $\overline{\mathbb{R}}$ et, à titre d'exemple, calculer Γ pour $f(z) = \sum_{n=1}^{\infty} \frac{e^{-nz}}{n!}$.
- III.2. Dans cette question, on suppose de plus qu'il existe $G_0 > 0$ tel que $\lambda_n \ge nG_0$ pour tout $n \ge 1$.
 - a. Pour $\delta > 0$ fixé, montrer qu'il existe B > 0 tel que $\sigma < -B$ implique : $\ln(|a_n|) \leq e^{-(\Gamma + \delta)\sigma} + \lambda_n \sigma.$

De l'étude du minimum sur \mathbb{R} de $x \mapsto e^{-(\Gamma + \delta)x} + \lambda_n x$, déduire que :

$$\limsup_{n\to\infty} \left(\frac{\ln(|a_n|)}{\lambda_n \ln(\lambda_n)} \right) \leq -\frac{1}{\Gamma}.$$

b. Soit $\Gamma_1 > 0$ tell que pour n assez grand on ait $\frac{\ln |a_n|}{\lambda_n \ln (\lambda_n)} < -\frac{1}{\Gamma_1}$, et $\delta_1 > 0$. On pose $a = \frac{\delta_1}{\Gamma_1 (\Gamma_1 + \delta_1)}$.

Démontrer que la série $\sum_{n \geq 2} e^{-nuG_0 \ln(nG_0)}$ est convergente et en déduire qu'on peut trouver C > 0 tel que pour tout $\sigma < 0$:

$$M(\sigma) \leq C \cdot \sup_{n \geq 1} \left(\exp \left(-\frac{\lambda_n \ln (\lambda_n)}{\Gamma_1 + \delta_1} - \lambda_n \sigma \right) \right).$$

c. Démontrer que : $-\frac{1}{\Gamma} = \limsup_{n \to \infty} \left(\frac{\ln(|a_n|)}{\lambda_n \ln(\lambda_n)} \right)$

avec les conventions évidentes $-\frac{1}{0} = -\omega$, $-\frac{1}{\infty} = 0$.

(On pour pour cela majorer la fonction
$$x \mapsto -\frac{x \ln(x)}{\Gamma_1 + \delta_1} - \sigma x$$
.)

Dans toute la question III.3., on pourra utiliser sans les redémontrer les relations :

$$\prod_{n=1}^{\infty} \left(1 + \frac{r^2}{n^2} \right) = \frac{\sinh(\pi r)}{\pi r} \qquad \qquad \prod_{n=1}^{\infty} \left(1 - \frac{r^2}{n^2} \right) = \frac{\sin(\pi r)}{\pi r}. \quad \blacksquare$$

III.3. Soit un réel $G_1 > 0$ et $(\mu_n)_{n>1}$ une suite strictement croissante de réels telle que $\mu_n \ge nG_1$ pour tout n.

On pose, pour tout
$$j \ge 1$$
, $g_j(z) = z \cdot \prod_{\substack{n \ge 1 \\ n \ne j}} \left(1 - \frac{z^2}{\mu_n^2}\right)$.

a. Montrer que les fonctions g_i sont analytiques dans $\mathbb C$.

Écrivant alors $g_j(z) = \sum_{m=0}^{\infty} C_{2m+1}^{(j)} z^{2m+1}$ (puisque g_j est impaire), montrer qu'à tout $\delta > 0$ on peut associer A tel que l'on ait, pour j > 0 et $m \ge 0$, les inégalités :

$$|C_{2m+1}^{(j)}| \le A \cdot \left(\frac{\pi(1+\delta)}{G_1}\right)^{2m+1} \cdot \frac{1}{(2m+1)!}$$

(On pourra utiliser le II.1.)

b. On suppose que, de plus, la suite (μ_n) vérifie les conditions :

pour tout
$$n \ge 1$$
, $nG_1 \le \mu_n \le (n+1) G_1$, $\mu_{n+1} - \mu_n \ge \frac{G_1}{2}$.

Déterminer un minorant
$$m > 0$$
 de $\frac{\sin (\pi \theta)}{\theta (1 - \theta)}$ quand θ décrit] 0, 1 [...

Déterminer un minorant k > 0 de $\mu_i^2 |g_i(\mu_i)|$, valable pour tout entier $j \ge 2$.

(On pourra commencer par le cas $\mu_i = (j + \theta) G_i$, avec θ dans l'intervalle]0, 1[et dépendant de j.)

III.4. On suppose qu'il existe G > 0 tel que la série de Dirichlet introduite au début de cette partie III vérisse :

$$\liminf_{n\to\infty} (\lambda_{n+1} - \lambda_n) \ge G.$$

a. Soit $\delta > 0$ et $G_1 = \frac{G}{1+\delta}$; montrer qu'il existe une suite $(\mu_n)_{n>1}$, ayant les propriétés requises à la question III.3.b. (1er alinéa), telle qu'à partir d'un certain rang n_0 la suite (λ_n) soit extraite de la suite (μ_n) .

b. On pose alors
$$h(z) = \sum_{n=-n_0}^{\infty} a_n e^{-\lambda_n z}$$
 et $R = \frac{\pi (1 + 2\delta)^2}{G}$.

Montrer, en introduisant les fonctions $F_j(z) = \sum_{n=-n_0}^{\infty} a_n g_j(\lambda_n) e^{-\lambda_n z}$, et en utilisant, par exemple, une expression sous forme d'intégrale analogue à celle du II.3., qu'il existe B > 0 tel que pour tout $n \ge n_0$, et tout nombre complexe s on ait $\sup_{z \ge -R} (|h(s+z)|) \ge B \cdot \frac{|a_n|}{\lambda_n^2} \cdot e^{-\lambda_n Re(s)}$.

III.5. En déduire que, si on définit un ordre Γ_T en limitant $\sigma + it$ à la bande horizontale $T = \{\sigma + it \mid |t - t_0| < R\}$, $(t_0 \text{ et R fixés})$, sous les hypothèses de la question III.4., on a $\Gamma_T = \Gamma$ dès que $R > \frac{\pi}{G}$.

Ainsi l'ordre dans une bande horizontale de largeur suffisante est égal à l'ordre dans le plan tout entier : c'est un résultat dû à S. Mandelbroit (1944).

À titre d'exemple, pour $f(z) = \sum_{n=1}^{\infty} \frac{e^{-nz}}{n!}$, déjà étudié au III.1.b., déterminer une bande horizontale de largeur $\frac{\pi}{G}$ (c'est-à-dire la moitié de la valeur spécifiée dans l'énoncé ci-dessus) où l'ordre est strictement inférieur à l'ordre dans tout le plan.