Trabalho Prático: Introdução à Ciência dos Dados

Entrega 4 - Análise Preditiva

Integrantes: Aryel Penido - 3500 Claudio Barbosa - 3492 Isabela Ramos - 3474

Tema: Análise da população em situação de rua em BH

Dados: https://dados.pbh.gov.br/dataset/populacao-de-rua

Perguntas a serem respondidas:

```
⊾ 1 cell hidden
```

Importantando as bibliotecas:

```
[ ] 4 3 cells hidden
```

Agrupando todos os dados em um único Dataframe

df=pd.concat([data9_20,data10_20, data11_20, data12_20, data1_21, data2_21, data3

Agrupando os dados por ano

```
[ ] 4 1 cell hidden
```

Tratamento dos dados

```
[ ] 4 cells hidden
```

Tratamento dos dados - Previsão

```
[ ] 4 21 cells hidden
```

Análise Preditiva

X

```
'IDADE', 'SEXO', 'BOLSA_FAMILIA', 'POP_RUA', 'GRAU_INSTRUCAO', 'COR_RACA', 'Faixa da renda familiar per capita', 'CRAS', 'REGIONAL' 'FAIXA_DESATUALICACAO_CADASTRAL', 'MES_ANO_REFERENCIA', 'TEMPO_DE_RU'CONTATO_PARENTE', 'SEXO_MF', 'BOLSA', 'G_INSTRUCAO', 'COR_R'], dtype='object')
```

sns.heatmap(df.corr(),annot = True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5717f04c90>

df_pred = df[{'IDADE','G_INSTRUCAO','BOLSA','SEXO_MF','CONTATO_PARENTE','COR_R',
df_pred.keys()

sns.heatmap(df_pred.corr(),annot = True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f570fda9590>


```
corr = at_pred.corr('spearman')
corr = corr[['IDADE']].sort_values(by = ['IDADE'],ascending = False)
corr
```

	IDADE
IDADE	1.000000
TEMPO_DE_RUA	0.217237
COR_R	-0.019675
CONTATO_PARENTE	-0.057731
SEXO_MF	-0.059367
BOLSA	-0.065517
G_INSTRUCAO	-0.174055

```
corr = df_pred.corr('spearman')
corr = corr[['SEXO_MF']].sort_values(by = ['SEXO_MF'],ascending = False)
corr
```

	SEXO_MF
SEXO_MF	1.000000
CONTATO_PARENTE	0.029739
BOLSA	0.008719
G_INSTRUCAO	0.007300
COR_R	-0.025996
TEMPO_DE_RUA	-0.037482
IDADE	-0.059367

```
corr = df_pred.corr('spearman')
corr = corr[['TEMPO_DE_RUA']].sort_values(by = ['TEMPO_DE_RUA'],ascending = False
corr
```

	COR_R		
COR_R	1.000000		
G_INSTRUCAO	0.001240		
CONTATO_PARENTE	-0.005328		
BOLSA	-0.006119		
TEMPO_DE_RUA	-0.012315		
IDADE	-0.019675		
SEXO_MF	-0.025996		

TEMPO DE RUA		
Ate seis meses	0	
Entre seis meses e um ano	1	
Entre um e dois anos	2	
Entre dois e cinco anos	3	
Entre cinco e dez anos	4	
Mais de dez anos	5	
CONTATO PARENTE		
Nunca	0	
Quase nunca	1	
Todo ano	2	
Todo mes	3	
Toda semana	4	
Todo dia	5	
SEXO		
masculino	0	
feminino	1	
BOLSA FAMILIA		
sim	1	
não	0	
GRAU DE INSTRUÇÃO		
Nao Informado	0	
Sem instrucao	1	
Fundamental incompleto	2	
Fundamental completo	3	
Medio incompleto	4	
Medio completo	5	
Superior incompleto ou mais	6	
COR RAÇA	0	
Nao Informado Preta		
ricia	1	

PREDIÇÃO:

#IMPORTS

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

df_pred.head()

	CONTATO_PARENTE	G_INSTRUCAO	BOLSA	COR_R	IDADE	SEXO_MF	TEMPO_DE_RUA
0	3	2	1	1	63	1	2
1	1	4	0	4	35	0	0
2	0	2	1	4	58	1	4
3	5	2	0	4	63	1	0
4	2	2	1	4	61	0	4

Double-click (or enter) to edit

```
X = df_pred.drop(columns=['TEMPO_DE_RUA'])
```

y = df_pred['TEMPO_DE_RUA']

```
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
    DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                            max_depth=None, max_features=None, max_leaf_nodes=No
                            min_impurity_decrease=0.0, min_impurity_split=None,
                            min_samples_leaf=1, min_samples_split=2,
                            min_weight_fraction_leaf=0.0, presort='deprecated',
                            random_state=None, splitter='best')
p = model.predict(X_test)
accuracy_score(y_test, p)
    0.7787991805431528
#Criar subconjunto para IDADE
X = df_pred.drop(columns=["IDADE"])
y = df_pred["IDADE"]
X_treino, X_teste,y_treino, y_teste = train_test_split(X,y, test_size = 0.1)
#Criar modelo
```

prever esse valor mesmo que nao seja o caso (e quase sempre ele na acertar)

https://colab.research.google.com/drive/1-1d4ncdP0obUX9...

10/25/21, 22:56

9 of 9