

SEMANTIC SEGMENTATION OF ACTIVATED MUSCLES DURING EXERCISE USING CUSTOM UNH GYM DATASET

By:-

Gururaj Somanna and Harsha Keladi Ganapathi

DATASET

Task

• Semantic segmentation of activated muscles: Bicep, Tricep, Calf

Link to Dataset:

https://unhnewhavenmy.sharepoint.com/:f:/g/personal/hkela1_unh_newhaven_edu/EsW8gl8TIhpHs1p9sV2zj1YB c6Cx5SAxWU1_mtmdUxLf_Q?e=3btCIb

Number of Samples & Image Size

• Total: 200 images

• Image size: **256** × **256** pixels

• Annotated using **Roboflow** (semantic segmentation masks)

Label Classes:

- 0: Background
- 1: Activated Biceps
- 2: Activated Triceps
- 3: Activated Calf

Partitioning

Training set: 80% i.e 480 images

Validation set: 10% i.e 20 images

Test set: 10% i.e 20 images

Data Normalization

Mean: [0.485, 0.456, 0.406]Std: [0.229, 0.224, 0.225]

Data Augmentation Techniques

Applied using **Roboflow Export**:

- Horizontal and Vertical Flips
- Shearing (±15°)
- Grayscale (25% of samples)
- Gaussian Blur (up to 1.2px)
- Random Pixel Noise (up to 0.22%)

U-NET WITH RESNET34 ENCODER

Encoder: ResNet34 pretrained on ImageNet

- Conv → BatchNorm → ReLU → MaxPool
- Residual Blocks from ResNet34

Decoder:
Symmetric
upsampling path
with skip
connections

- Transposed Convolutions for upsampling
- Concatenation with encoder features
- Conv → ReLU layers

Final Layer:

• 1×1 Convolution to output logits for 4 classes

CrossEntropyLoss (PyTorch)

- Used for multi-class segmentation
- Compares predicted class probabilities
- with ground truth labels
- •Ignores background class if needed.

OPTIMIZATION AND HYPERPARAMETER TUNINGS

Hyperparameter	Range Tested	Best Value Found
Learning Rate	0.01,0.0005,0.001, 0.0001	0.0001
Batch Size	4, 8, 16	16
Optimizer	Adam, SGD	Adam
Epochs	10, 20, 30	30
Pretrained Backbone	ResNet34	Used with the encoder

• Mini-batch Size

• Tried: 4, 8, 16

• Final selected: 16

• Optimization Algorithm

• Adam Optimizer

- Adaptive learning rate
- Final LR: **0.0001**
- Default beta values: (β_1 =0.9, β_2 =0.999)
- Also experimented with **SGD** (Stochastic Gradient Descent)

HYPERPARAMETER TUNING RESULTS

Learning Rate	Batch Size	Optimizer	Val Loss	Val mIoU	Epochs
0.001	4	Adam	0.0874	0.3006	2
0.0005	4	Adam	0.0761	0.2451	2
0.001	4	SGD	0.1065	0.2451	2
0.0005	16	Adam	0.1628	0.3000	2
0.0001	16	Adam	0.0411	0.5165	30

Validation Loss Across Epochs

Training vs Validation Loss Training Loss Validation Loss 0.8 0.6 0.2 0.0 20 25 30 15 Epochs

Validation loss steadily declined across 30 epochs, reaching a minimum of **0.0411** under the best hyperparameter combination.

Accuracy vs Epochs

Accuracy on validation set improved significantly until saturation near 57.2% at epoch 30.

Metric	Training	Validation	Test
Loss	↓ 0.0147	↓ 0.0411	~0.045 (est)
Pixel Accuracy	↑ 94.61%	↑ 57.23%	~55.8% (est)
mIoU	~0.58 (est)	0.5165	~0.49 (est)

TRAINING VS VALIDATION VS TEST – PERFORMANCE COMPARISON

PREDICTIONS – BEFORE VS AFTER TRAINING

