第七次习题课题目 三重积分及重积分的应用

- 1. 计算下列各题:
- (1) 设V 是锥面 $z = \sqrt{x^2 + y^2}$ 和球面 $x^2 + y^2 + z^2 = R^2$ 所围成的区域,求三重积分 $\iiint (x^2 + y^2 + z^2) dx dy dz$.
- (2) 求∭ $(1+x^2+y^2)zdxdydz$, 其中 $\Omega = \{(x,y,z) | \sqrt{x^2+y^2} \le z \le H\}$.
- (3) 设f(t)在 $[0,+\infty)$ 上连续,令 $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dx dy dz$,其中
- (4) 求三重积分: $I = \iiint_{\Omega} (x+y+z) dx dy dz$,其中 $\Omega = \left\{ (x,y,z) \mid \sqrt{x^2+y^2} \le z \le \sqrt{1-x^2-y^2} \right\}.$

- (5) 设 $f(x) \in C^1(\mathbb{R})$ 满足 $\int_{-1}^1 x f(x) dx = 1$ 且 $V = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}.$ 计算 $\iiint_V (5x^3 + f'(z) + 3) dx dy dz$.
- 2. 计算下列立体的体积:
- (1) 求由曲面 $S: (x^2 + y^2)^2 + z^4 = z$ 所围立体 Ω 的体积。
- (2) 求由六个平面 $3x y z = \pm 1$, $-x + 3y z = \pm 1$, $-x y + 3z = \pm 1$ 所围立体 Ω 的体积。
- (3) 求曲面 $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ 所围空间几何体 Ω 的体积。
- (4) 设a > 0, b > 0, c > 0. 计算曲面 $\left(\frac{x}{a} + \frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$ 与三个坐标面在第一卦限所围立本的体积。
- 3. 计算下列三重积分的值:
- (1) $\iiint_{\Omega} (x^2 + z^2) dx dy dz$, 其中 Ω 是球面 $x^2 + y^2 + (z a)^2 = a^2$ 所包围的空间区域。

(2)
$$\iiint_{\Omega} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} dx dy dz, \quad \Omega = \{(x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}.$$

(3) $\iint_{\Omega} x^2 dx dy dz$, 其中 Ω 由曲面 $z = y^2$, $z = 4y^2$ 及平面 z = x, z = 2x, z = 0, z = 3 围成。

(4)
$$\iiint_{\Omega} (x+|y|+|z|) dx dy dz, \ \, \sharp + \Omega = \{(x,y,z) \, | \, |x|+|y|+|z| \le 1\}.$$

(4)
$$\iint_{\Omega} (x+|y|+|z|) dx dy dz, \quad \not \exists + \Omega = \{(x,y,z) \mid |x|+|y|+|z| \le 1\}.$$
(5)
$$\iint_{\Omega} xyz dx dy dz, \quad \Omega = \{(x,y,z) \mid x^2 + y^2 + z^2 \le 4, x^2 + y^2 + (z-2)^2 \le 4, x \ge 0, y \ge 0\}.$$

4. 解答下列各题:

- (1) 计算螺旋面 $S: x = r\cos\varphi$, $y = r\sin\varphi$, $z = a\varphi$ ($0 \le r \le R$, $0 \le \varphi \le 2\pi$, a 为常数)的面
- (2) 求由球面 $x^2 + y^2 + z^2 = a^2$ 和柱面 $x^2 + y^2 = ax$ (这里 a > 0) 所围有界立体 Ω 的体积 和表面积。(立体 Ω 称作 Viviani 立体)。
- (3) 求两个圆柱 $v^2 + z^2 = a^2$ 和 $x^2 + z^2 = a^2$ 相交部分的体积和表面积,这里 a > 0.
- (4) 设环面 S 的参数方程:

$$x = (b + a\cos\theta)\cos\varphi$$
, $y = (b + a\cos\theta)\sin\varphi$, $z = a\sin\theta$, (*)

 $0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$, 0 < a < b.

求环面S的面积,以及由环面S所包围的立体 Ω (实心轮胎)的体积。

(5) 求由曲面 $x^2 + y^2 = az$ 与 $z = 2a - \sqrt{x^2 + y^2}$ 所包围的空间几何体的表面积.

- 5. 设 $A = (a_{ij})$ 为 3×3 实对称正定矩阵, $H(x) = \sum_{i=1}^{3} a_{ij} x_i x_j$,则 H(x) = 1 表示三维空间的 一个椭球面。
- (i) 证明: 椭球面 H(x) = 1 所包围立体 Ω 的体积为 $V(\Omega) = \frac{4\pi}{3\sqrt{\det A}}$.
- (ii) 计算积分 $I = \iint_{H(x) \le 1} e^{\sqrt{H(x)}} dx_1 dx_2 dx_3$.

6. 计算广义三重积分
$$I=\iint_\Omega \frac{dxdydz}{(1+x^2z^2)(1+y^2z^2)}$$
 ,其中 Ω 为无穷长的方体 Ω : $0\leq x,y\leq 1$, $z\geq 0$.