Directed Graphs

Outline and Reading

- Reachability
 - Directed DFS
 - Strong connectivity
- Transitive closure
 - The Floyd-Warshall Algorithm
- Directed Acyclic Graphs (DAG's)
 - Topological Sorting

Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

Digraph Properties

- ◆ A graph G=(V,E) such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a.
- If G is simple, $m \le n^*(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of inedges and out-edges in time proportional to their size.

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting a a vertex s determines the vertices reachable from s

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G.
- Perform a DFS from v in G.
 - If there's a w not visited, print "no".
- Let G' be G with edges reversed.
- Perform a DFS from v in G'.
 - If there's a w not visited, print "no".
 - Else, print "yes".

Running time: O(n+m).

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same verticesas G
 - if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

• We can perform DFS starting at each vertex

O(n(n+m))

 Actually O(n³) for dense graphs

Complex

If there's a way to get from A to B and from B to C, then there's a way to get from A to C

 $0 (n^3)$

OSimple

WWW.GENIUS. COM

Floyd-Warshall Transitive Closure

- ◆ Idea #1: Number the vertices 1, 2, ..., n.
- ◆ Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

Uses only vertices numbered 1,...,k-1

Uses only vertices numbered 1,...,k-1

Floyd-Warshall's Algorithm

- Floyd-Warshall's algorithm numbers the vertices of G as $v_1, ..., v_n$ and computes a series of digraphs $G_0, ..., G_n$
 - lacksquare $G_0 = G$
 - G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, ..., v_k\}$
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
- Running time: O(n³),
 assuming areAdjacent is O(1)
 (e.g., adjacency matrix)

```
Algorithm FloydWarshall(G)
   Input digraph G
   Output transitive closure G^* of G
   i \leftarrow 1
   for all v \in G.vertices()
      denote v as v_i
      i \leftarrow i + 1
   G_0 \leftarrow G
   for k \leftarrow 1 to n do
      G_k \leftarrow G_{k-1}
       for i \leftarrow 1 to n \ (i \neq k) do
         for j \leftarrow 1 to n (j \neq i, k) do
            if G_{k-1}.areAdjacent(v_i, v_k) \land
                    G_{k-1}.areAdjacent(v_k, v_i)
                if \neg G_k.areAdjacent(v_i, v_j)
                    G_k.insertDirectedEdge(v_i, v_i, k)
      return G_n
```


DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

of the vertices such that for every edge (v_i, v_j) , we have i < j

 Example: in a task scheduling digraph, a topological ordering of a task sequence satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

◆ Number vertices, so that (u,v) in E implies u < v</p>

Algorithm for Topological Sorting

Note: This algorithm is different (more compact) than the one in Goodrich-Tamassia (yet of the same big-Oh)

```
Method TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

Running time: O(n + m). Why...?

Topological Sorting Algorithm using DFS

 Simulate the algorithm by using depth-first search

```
Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G
n \leftarrow G.numVertices()
for all u \in G.vertices()
setLabel(u, UNEXPLORED)
for all e \in G.edges()
setLabel(e, UNEXPLORED)
for all v \in G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
```

O(n+m) time.

```
Algorithm topologicalDFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the vertices of G
    in the connected component of v
  setLabel(v, VISITED)
  for all e \in G.outgoingEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
       if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         topologicalDFS(G, w)
       else
         {e is a forward or cross edge}
  Label v with topological number n
   n \leftarrow n - 1
```


