

30/05/2018

GARCIA Florian TS3

30/05/2018

GARCIA Florian TS3

30/05/2018

68 GARCIA Florian TS3

Théorie

$$\alpha_1; \alpha_2 = f(x; y)$$

$$x; y=f(\alpha_1;\alpha_2)$$

$$\begin{cases} x = l_1 \cos \alpha_1 + l_2 \cos (\alpha_1 + \alpha_2) \\ y = l_1 \sin \alpha_1 + l_2 \sin (\alpha_1 + \alpha_2) \end{cases}$$

$$\begin{cases} x = l_1 \cos \alpha_1 + l_2 \cos (\alpha_1 + \alpha_2) \\ y = l_1 \sin \alpha_1 + l_2 \sin (\alpha_1 + \alpha_2) \end{cases}$$

$$\begin{cases} x = a \cos \alpha + b \cos(\beta) \\ y = a \sin \alpha + b \sin(\beta) \end{cases}$$

30/05/2018

18 GARCIA Florian TS3

Théorie

$$\begin{cases} a^2 \cos^2 \alpha = (x - b \cos \beta)^2 \\ a^2 \sin^2 \alpha = (y - b \sin \beta)^2 \end{cases}$$

$$\left[a^{2}\sin^{2}\alpha = (y - b\sin\beta)^{2}\right]$$

$$a^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = x^{2} + y^{2} + b^{2}(\cos^{2}\beta + \sin^{2}\beta) - 2b(x\cos\beta + y\sin\beta)$$

$$a^{2} = x^{2} + y^{2} + b^{2} - 2b(x \cos \beta + y \sin \beta)$$

$$2b(x\cos\beta + y\sin\beta) = x^2 + y^2 + b^2 - a^2$$

$$x\cos\beta + y\sin\beta = \frac{x^2 + y^2 + b^2 - a^2}{2b} = K$$

30/05/2018

$$t = \tan\frac{\beta}{2} \qquad \cos\beta = \frac{1-t^2}{1+t^2} \qquad \sin\beta = \frac{2t}{1+t^2}$$

$$\cos \beta x + \sin \beta x = \frac{x(1-t^2)}{1+t^2} + \frac{y2t}{1+t^2} = \frac{x(1-t^2) + y2t}{1+t^2} = K$$

$$1+t^2$$

$$(K+x)t^2-2yt+K-x=0$$

GARCIA Florian TS3

30/05/2018

Théorie

$$\Delta = b^{2} - 4ac$$

$$= (-2y)^{2} - 4(K+x)(K-x)$$

$$= (-2y)^{2} - 4(K+x)(K-x)$$

$$= 4y^{2} - 4(K^{2}-x^{2}) = 4(x^{2}+y^{2}-K^{2})$$

$$t_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-2y) - \sqrt{4(x^2 + y^2 - K^2)}}{2(K+x)} = \frac{2y - \sqrt{4}\sqrt{x^2 + y^2 - K^2}}{2(K+x)} = \frac{y - \sqrt{x^2 + y^2 - K^2}}{(K+x)}$$

$$(2+y^2-K^2)$$

$$-2y) - \sqrt{4(x^2 + y^2 - K^2)} = \frac{2y - \sqrt{4}\sqrt{x^2 + y^2} - \sqrt{4}\sqrt{x^2 + y^2}}{2y - \sqrt{4}\sqrt{x^2 + y^2}}$$

$$\frac{\sqrt{x+y-K}}{K+x} = \frac{y-\sqrt{x}}{(x+x)}$$

Théorie

$$+v^2-I$$

$$2(K+x) 2(K+x) t_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{y+\sqrt{x^2+y^2-K^2}}{(K+x)}$$

$$\frac{-\sqrt{4(x^2+y^2-K^2)}}{2(K+x)} = \frac{2y-\sqrt{4}\sqrt{x^2+y^2-x^2}}{2(K+x)}$$

30/05/2018

$$\frac{2y) - \sqrt{4(x^2 + y^2 - K^2)}}{2(K+x)} = \frac{2y - \sqrt{4}\sqrt{x^2 + y^2 - K^2}}{2(K+x)}$$

GARCIA Florian TS3

$(K+x)t^2-2yt+K-x=0$

Jean Moulin

$$\begin{cases} x = a\cos\alpha + b\cos(\beta) \\ y = a\sin\alpha + b\sin(\beta) \end{cases} \begin{cases} a\cos\alpha = x - b\cos(\beta) \\ a\sin\alpha = y - b\sin(\beta) \end{cases}$$

$$\begin{cases} \alpha = \arccos\left(\frac{x - b\cos(\beta)}{a}\right) \\ \alpha = \arcsin\left(\frac{y - b\sin(\beta)}{a}\right) \end{cases}$$
 Rappel: $t = \tan\frac{\beta}{2}$ $\cos\beta = \frac{1 - t^2}{1 + t^2}$

Rappel:
$$t = \tan \frac{\beta}{2}$$
 $\cos \beta = \frac{1-t^2}{1+t^2}$

$$\alpha = \arccos\left(\frac{x - b\frac{1 - t^2}{1 + t^2}}{a}\right) \qquad \alpha = \arcsin\left(\frac{y - b\frac{2t}{1 + t^2}}{a}\right)$$

30/05/2018

GARCIA Florian TS3

Théorie

$$x_{gauche} = x + l_{demi-support}$$

$$x_{droite} = x - l_{demi-support}$$

30/05/2018

018 GARCIA Florian TS3

Simulation

x:	85	Gauche				Droite				
y:	-200	x=	210			x=	-40			
		K=	245,572193	•		K=	131.935829	2		
demi-support=	125	t1	-0,7776023			t1/=	-3,8672713	•	7	
bras 1=	165	t2=	-0,1004144		*180-angle	t2-	-0,4835896			*180-angle
bras 2=	187	angle arccos() (t1)=	0,11396724	6,52984209	173,470158	angle arccos() (t1)=	0,72447137	41,5091519		138,490848
		angle arccos() (t2)=	1,40805826	80,6757959	99,3242041	angle arccos() (t2)=	2,8119124	161,110713		18,889287
		angle arcsin() (t1)=	-0,1139672	-6,5298421	186,529842	angle arcsin() (t1)=	-0,7244714	-41,509152		221,509152
		angle arcsin() (t2)=	-1,4080583	-80,675796	260,675796	angle arcsin() (t2)=	-0,3296803	-18,889287		198,889287

30/05/2018

GARCIA Florian TS3

Théorie

30/05/2018

GARCIA Florian TS3

Simulation

30/05/2018

18 GARCIA Florian TS3

Simulation

	x:	85	Gauche				
	y:	-200	x=	210			173,470158
			K=	245,572193			173,470130
demi	i-support=	125	t1=	-0,7776023			
	bras 1=	165	t2=	-0,1004144		*180-angle	
	bras 2=	187	angle arccos() (t1)=	0,11396724	6,52984209	173,47015	8
			angle arccos() (t2)=	1,40805826	80,6757959	99,324204	1
			angle arcsin() (t1)=	-0,1139672	-6,5298421	186,52984	2
			angle arcsin() (t2)=	-1,4080583	-80,675796	260,67579	6

30/05/2018

GARCIA Florian TS3

Simulation

SI

Robot DELTA 2D

-41,509152

-18,889287

30/05/2018

GARCIA Florian TS3

angle arcsin() (t1)= -0,7244714

angle arcsin() (t2)= -0,3296803

Simulation

221,509152

198,889287

30/05/2018

GARCIA Florian TS3

Simulation

$$x_{droite} = x - l_{demi-support}$$

$$K_{droite} = \frac{x_{droite}^2 + y^2 + b^2 - a^2}{2b}$$

$$t_{droite} = \frac{y - \sqrt{x_{droite}^2 + y^2 - K_{droite}^2}}{(K_{droite} + x_{droite})}$$

$$\alpha_{droite} = \arccos \left(\frac{x_{droite} - b \frac{1 - t_{droite}^2}{1 + t_{droite}^2}}{a} \right)$$

GARCIA Florian TS3

Théorie

$$\begin{split} x_{gauche} &= x + l_{demi-support} \\ K_{gauche} &= \frac{x_{gauche}^2 + y^2 + b^2 - a^2}{2b} \\ t_{gauche} &= \frac{y + \sqrt{x_{gauche}^2 + y^2 - K_{gauche}^2}}{(K_{gauche} + x_{gauche})} \\ \alpha_{gauche} &= 180 - \arccos\left(\frac{x_{gauche} - b\frac{1 - t_{gauche}^2}{1 + t_{gauche}^2}}{a}\right) \end{split}$$

30/05/2018

GARCIA Florian TS3

Théorie

30/05/2018

GARCIA Florian TS3

Réel


```
//***** Bibliothéques, *****//
#include <#ire.b>
#include "rgb lcd.h"
#include "Math.h"
//***** Variables globales do 1cd. *****//
                          // Création du composant LCD
const int colors - 255;
                          // Configuration de la couleur
const int colorG - 255;
                            // A modifier éventuellement
const int colors - 255;
//***** Variables globales de gestion_pages(). *****//
                        // Variable de verrouillage fenêtre.
                        // Variable counter utilisée avec le joystick et gestion page
                        // Variable de recuperation de la valeur en X
                        // Variable de recuperation de la valeur en Y
float Angle G: // Variable de recuperation de l'angle moteurl ou gauche
float Angle D; // Variable de recuperation de l'angle moteur2 ou droit
int position on cours - 0;
int position initiale - 0;
int rac - 0;
int rac2 - 0;
//***** Variable globale de gestion_BP(). *****//
int valide = 0;
//***** Variable globale de recup joystick(). *****//
int sents a 0:
int squax = 0;
//***** Variable globale de calcul angle(). *****//
float Agl D:
float Ag1_G;
int dirl;
int dir2:
#include <AccelStepper.h>
#include <MultiStepper.h>
Aderine STEPPERI DIR PIN 9
#define STEPPER1 PUL PIN 10
#define STEPPER2 DIR PIN 12
#define STEPPER2 PUL PIN 13
AccelStepper stepper1 (AccelStepper::DRIVER, STEPPER1_PUL_PIN, STEPPER1_DIR_PIN);
AccelStepper stepper2 (AccelStepper::DRIVER, STEPPER2 PUL PIN, STEPPER2 DIR PIN);
MultiStepper steppers;
void setup() (
 Serial.begin(9600);
                            // initialisation du LCD en 16 sur 2 lignes
  lod.begin(16, 2);
  lcd.setRGR(colorR, colorG, colorR);
  lcd.setCursor(4,0);
                                   // Positionnement du curseur à remplir
  led.print("Ronjour,");
                                       // Ecriture d'un message sur le LCD.
  lcd.setCursor(1,1);
                                   // Positionnement du curseur à remplir
  led.print("tout le monde!");
   stepper1.setMaxSpeed(400);
   stepper2.setMaxSpeed(400);
   steppers.addStepper(stepper1);
   steppers.addStepper(stepper2);
```


30/05/2018

GARCIA Florian TS3

Réel


```
int x = map(val, 525, 800, 300, 10)
int y = map(val, 240, 505, 10, 300)
                                                                          ystick() {
                                                                          e == 1) \{scmin = -100; scmax = 100; \}
         counter++;
                                                                          re == 2) \{scmin = -270; scmax = -180; \}
                                                                          re == 2 && rsc == 0) {counter = -225; rsc = 1;}
                                                                  int val. analogRead(A3); // lecture valeur analogique du potentiometre axe X
          delay(x);
                                                                  int x = map(val, 525, 800, 300, 10);
                                                                                                 // mappage pour gérer le temps de comptage
                                                                  int y = map(val, 240, 505, 10, 300);
                                                                  if (val > 525 && val <=800) { // plage de positionnement maxi
                                                                     counter++;
                                                                      delay(x);
                                                                  if (counter >= scmax) {
                                                                                                     // si dépassement de l'incrémentation
                                                                      counter = scmax;} }
         counter--;
                                                                  if (val >240 && val <=505) { // plage de positionnement mini
                                                                      counter--;
                                                                      delay(y);
         delay(y);
                                                                  if (counter <= scmin) {
                                                                                                   // si dépassement de la décrémentation
                                                                      counter = scmin; } }
                                                                  if (val >505 && val <=525) { // plage de positionnement repos
                                                                     delay(100);}
```



```
int a = 165;
                                                                                                   int a = 165;
                                    int b = 187;
                                                                                                   int b = 187;
                                                                                                   int aa = 27225;
                                                                                                   int bb = 34969;
                                   x_{droite} = x - I_{demi-support}
                                                                                                   float \times d = (float) (x - 125);
                       float x_d = (float) (x - 125);
                                                                                                   float y_d = (float) (y);
                                                                                                   float xx_d = (float) (x_d) * (x_d);
                                                                                                   float yy_d = (float) (y_d) * (y_d);
                           \alpha_{droite} = \arccos \left( \frac{x_{droite} - b \frac{1 - t_{droite}^2}{1 + t_{droite}^2}}{1 + t_{droite}^2} \right)
                                                                                                   float K_D = (float) ((xx_d) + (yy_d) + (34969) - (aa))/(2*b);
                                                                                                   float a_Delta_D = (float) (K_D) + (x_d);
                                                                                                   float b_Delta_D = (float) (-2) * (y_d);
                                                                                                   float c Delta D = (float) (K D) - (x d);
                                                                                                   float bb_Delta_D = (float) (b_Delta_D) * (b_Delta_D);
float Alpha D = (float) acos((x d - (b*cos(Betta D))) / a);
                                                                                                   float Delta_D = (float) (bb_Delta_D) - (4*(a_Delta_D)) * (c_Delta_D);
float Angle D = (float) (abs((Alpha D * 180) / PI));
                                                                                                   float T_D = (float) ((-b_Delta_D - sqrt(Delta_D))/ (2* a_Delta_D));
                                                                                                   float Betta_D = (float) (2 * atan(T_D));
                                                                                                   float Alpha D = (float) acos((x d - (b*cos(Betta D))) / a);
                                                                                                   float Angle D = (float) (abs((Alpha D * 180) / PI));
                                   x_{gauche} = x + l_{demi-support}
                       float x g = (float) (x + 125);
                                                                                                   float x_g = (float) (x + 125);
                                                                                                   float y_g = (float) (y);
                                                                                                   float xx_g = (float) (x_g) * (x_g);
                         \alpha_{gauche} = 180 - \arccos \left[ \frac{x_{gauche} - b \frac{1 - t_{gauche}^2}{1 + t_{gauche}^2}}{1 + t_{gauche}^2} \right]
                                                                                                   float yy g = (float) (y g) * (y g);
                                                                                                   float K_G = (float) ((xx_g) + (yy_g) + (34969) - (aa))/(2*b);
                                                                                                   float a Delta G = (float) (K G) + (x g);
                                                                                                   float b_Delta_G = (float) (-2) * (y_g);
                                                                                                   float c_Delta_G = (float) (K_G) - (x_g);
float Alpha G = (float) acos((x g - (b*cos(Betta G))) / a);
                                                                                                   float bb_Delta_G = (float) (b_Delta_G) * (b_Delta_G);
float Angle G = (float) (180-(abs((Alpha G * 180) / PI)));
                                                                                                   float Delta_G = (float) (bb_Delta_G) - (4*(a_Delta_G)) * (c_Delta_G);
                                                                                                   float T_G = (float) ((-b_Delta_G + sqrt(Delta_G))/ (2* a_Delta_G));
                                                                                                   float Betta G = (float) (2 * atan(T G));
                                                                                                   float Alpha G = (float) acos((x g - (b*cos(Betta G))) / a);
                                                                                                   float Angle_G = (float) (180-(abs((Alpha_G * 180) / PI)));
```


30/05/2018

GARCIA Florian TS3

Réel

SI

Robot DELTA 2D

Ce que j'ai appris

Manipulation des outils mathématiques et informatiques

Mise en équation des problèmes identifiés

Apport de solutions

Résolution des problèmes expérimentaux

Travail de groupe