

Content Preserving Text Generation with Attribute Controls

NIPS 2018

Lee et al.

발표자: 박정수

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Introduction

How can we generate text in a controlled way?

Disentanglement

Cross Alignment (Shen et al.)

Motivation

- Existing methods do not generalize to generation with multiple attribute controls
- Previous works have mostly focused on assessing the attribute compatibility of generated sentences

Formulation

Attribute: Difference between given two corpora (i.e. tense, sentiment)

Content: Information in the corpora that is not captured by the attribute

$$D = \{(x^n, l^n)\}_{n=1}^N$$

$$l'=(l_1,...,l_K)$$

$$\uparrow \qquad \uparrow$$
Tense Sentiment

Sentence with labeled attributes

Define K attributes of interest

General Pipeline

- Generator consists of Encoder and Decoder which are RNN
- Reconstruction Loss for content compatibility and adversarial loss for attribute compatibility

Content Compatibility

- Reconstruction Loss is an interpolation of auto-encoding loss and back-translation loss
- Auto-encoding loss has pitfall of incurring simple copying given an input sentence
- Back-translation loss can misguide the early stage learning since the contents of y and x would not match

Content Compatibility

$$y \sim p_G(\cdot|z_x,l')$$

$$\mathcal{L}^{ae}(x,l) = -\log p_G(x|z_x,l)$$

$$\mathcal{L}^{bt}(x,l) = -\log p_G(x|z_y,l)$$

y is l' attributed sentence, Encoder yields z

reconstructing x back to it's original

reconstructing y(different attribute) to x

$$\mathcal{L}^{int} = \mathbb{E}_{(x,l) \sim p_{\text{data}}, y \sim p_G(\cdot | z_x, l')} [-\log p_G(x | \underline{z_{xy}}, l)] \quad \text{\# proposed loss}$$

$$\underline{z_{xy}} = g \odot z_x + (1 - g) \odot z_y$$

Implicitly enforce the z to be attribute-independent

Attribute Compatibility

 Adversarial loss encourages generating realistic and attribute compatible sentences

$$\mathcal{L}^{\text{adv}} = \min_{G} \max_{D} \mathbb{E}_{(x,l) \sim p_{\text{data}}, y \sim p_{G}(\cdot|z_{x}, l')} [\log D(h_{x}, l) + \log(1 - D(h_{y}, l'))]$$

$$\mathcal{L}^{\text{adv}} = \min_{G} \max_{D} \mathbb{E}_{(x,l) \sim p_{\text{data}} \atop y \sim p_G(\cdot|z_x, l')} \left[2 \log D(h_x, l) + \log (1 - D(h_y, l')) + \log (1 - D(h_x, l')) \right]$$

$$D(s,l) = \sigma(l_v^T W \phi(s) + v^T \phi(s))$$

Soft-Sampling vs Hard-Sampling

- Soft sampling(i.e. gumbel-softmax) is used to back-propagate gradients through sampling process
- Inference performs hard sampling, thus when soft sampling is used at training, gap exists between the dynamics of sequences at training time and sequences hard-sampled at test time

Experiment

Evaluation

	,		IMDB Reviews					
Model	Attribute ↑	Content ↑		Fluency ↓	Attribute ↑	Content ↑		Fluency ↓
	Accuracy	B-1	B-4	Perp.	Accuracy	B-1	B-4	Perp.
Ctrl-gen [18]	76.36%	11.5	0.0	156	76.99%	15.4	0.1	94
Cross-align [22]	90.09%	41.9	3.9	180	88.68%	31.1	1.1	63
Ours	90.50%	53.0	7.5	133	94.46%	40.3	2.2	52

$$f_{\mathrm{content}}(M, M') = 0.5 \big[\mathbb{E}_{x \sim D_{\mathrm{src}}} \mathrm{BLEU}(x, M' \circ M(x)) + \mathbb{E}_{x \sim D_{\mathrm{tgt}}} \mathrm{BLEU}(x, M \circ M'(x)) \big]$$

Restaurant reviews						
negative → positive						
Query	the people behind the counter were not friendly whatsoever.					
Ctrl gen [I8]	the food did n't taste as fresh as it could have been either.					
Cross-align [22]	the owners are the staff is so friendly.					
Ours	the people at the counter were very friendly and helpful.					
positive → negative						
Query	they do an exceptional job here, the entire staff is professional and accommo-					
	dating!					
Ctrl gen [18]	very little water just boring ruined!					
Cross-align [22]	they do not be back here, the service is so rude and do n't care!					
Ours	they do not care about customer service, the staff is rude and unprofessional!					

Experiment

Evaluation

Mood	Tense	Voice	Neg.	john was born in the camp
Indicative	Past	Passive	No	john was born in the camp.
Indicative	Past	Passive	Yes	john wasn't born in the camp.
Indicative	Past	Active	No	john had lived in the camp.
Indicative	Past	Active	Yes	john didn't live in the camp.
Indicative	Present	Passive	No	john is born in the camp.
Indicative	Present	Passive	Yes	john isn't born in the camp.
Indicative	Present	Active	No	john has lived in the camp.
Indicative	Present	Active	Yes	john doesn't live in the camp.
Indicative	Future	Passive	No	john will be born in the camp.
Indicative	Future	Passive	Yes	john will not be born in the camp.
Indicative	Future	Active	No	john will live in the camp.
Indicative	Future	Active	Yes	john will not survive in the camp.
Subjunctive	Cond	Passive	No	john could be born in the camp.
Subjunctive	Cond	Passive	Yes	john couldn't live in the camp.
Subjunctive	Cond	Active	No	john could live in the camp.
Subjunctive	Cond	Active	Yes	john couldn't live in the camp.

Table 5: Simultaneous control of multiple attributes. Generated sentences for all valid combinations of the input attribute values.