Gaussian laser beams

Collimated beam is an idealized concept

Real beams loose collimation as they propagate

Rayleigh length:
$$Z_R = \frac{\pi w_0^2}{\lambda}$$

 w_0 - beam waist radius, λ - laser wavelength

Think of light-sheet

Demo: How large is the beam waist, i.e. w_0 radius?

$$Z_R = \frac{\pi w_0^2}{\lambda}, \quad \tan(\theta) = \frac{w_0}{Z_R}$$

$$w_0 = \frac{\lambda}{\pi \tan(\theta)}$$

$$w_0 = \frac{0.633 \, microns}{3.14 * (\frac{12.5}{125})} = 2 \, microns$$

$$w_0 = \frac{0.633 \, microns}{3.14 * (\frac{12.5}{200})} = 3.2 \, microns$$

Gao et al, Nature Protocols, 2014

Gaussian

Bessel

Figure 1. Bessel beam intensity profiles: (a) for a zeroth-order beam and (b) a first-order beam (J_1 beam). Both beams have the same k_r values.