图论第八次作业参考答案

8.2

设 D 是没有有向圈的有向图.

(1)证明: $\delta^- = 0$.

(2)试证:存在 D 的一个顶点序列 v_1,v_2,\cdots,v_v ,使得对于任给 $i(1\leq i\leq v)$,D 的每条以 v_i 为终点的有向边在 $\{v_1,v_2,\cdots,v_{i-1}\}$ 中都有它的起点.

- 1. 考虑 D 的最长有向轨道 P(u,v),有 $deg_D^-(u)=0$ 。假设不成立,则 $\exists u'\in V(D)$,有边 (u',u),若 $u'\in P(u,v)$,则形成有向圈,矛盾;若 $u'\not\in P(u,v)$,则有 P(u',v)=P(u,v)+1,与最长轨矛盾。所以 $deg_D^-(u)=0$,则 $\delta^-=0$.
- 2. (拓扑排序) 类似1.的证明,图 D 中 $\delta^+=0$,取 $v_1\in V(D)$,使得 $deg_D^+(v_1)=0$ 。 记 $D_1=D-\{v_1\}$,则 D_1 中也没有有向圈,则可选择 $v_2\in D_1$,使得 $deg_{D_1}^+(v_2)=0$ 。 以此类推可以得到满足要求的序列。

8.3

证明:任给无向图 G,G 都有一个定向图 D,使得对于所有的 $v \in V$, $|deg^+(v) - \deg^-(v)| \leq 1$ 成立.

若G中存在奇度顶点 v_1, v_2, \dots, v_{2k} (奇度顶点必为偶数),

则 $G'=G+\{v_iv_{i+k}|1\leq i\leq k\}$ 为欧拉图,图中存在一条欧拉回路,沿着回路给每条边定向得到图 D',对于 $\forall v\in D'$,都有 $deg^+(v)=\deg^-(v)$ 。

再将 $\{v_iv_{i+k}|1\leq i\leq k\}$ 从 D' 中删去,得到 G 的一个定向图 D,从 D' 到 D,每个顶点关联的边最多减1,故在 D 中,对于所有的 $v\in V$, $|deg^+(v)-\deg^-(v)|\leq 1$ 成立。

8.7

证明:无向图 G 有一种定向方法,使得其最长有向轨道的长度不超过 Δ .

由定理7.1知, $\chi(G) \leq \Delta + 1$, 故 G 中存在正常 $(\Delta + 1)$ -顶点着色。

设对 G 已经进行了该着色,对 G 中的任意边 uv,当且仅当 u 的着色 i 小于 v 的着色 j 时,边定向取 (u,v)。

显然在这种定向下,G 的有向轨道的长度 $\leq (\Delta + 1) - 1 = \Delta$.

9.1

假设 f 是网络 N=(D, s, t, c) 上的流函数。证明:

$$\sum_{e \in lpha(t)} f(e) - \sum_{e \in eta(t)} f(e) = \sum_{e \in eta(s)} f(e) - \sum_{e \in lpha(s)} f(e)$$

设 $V'=V(G)-\{s,t\}$,由流函数的定义可知, $\forall v\in V'$,有 $\sum_{e\in\alpha(v)}f(e)=\sum_{e\in\beta(v)}f(e)$,定义 $G'=G\cdot V'$,即将V收缩为一个点,记为u.(如下图所示)

因为对 $\forall v \in V'$,有 $\sum_{e \in \alpha(v)} f(e) = \sum_{e \in \beta(v)} f(e)$,所以对 u,有 $\sum_{e \in \alpha(u)} f(e) = \sum_{e \in \beta(u)} f(e)$ 又因为

$$\sum_{e \in lpha(u)} f(e) = \sum_{e \in eta(s)} f(e) + \sum_{e \in eta(t)} f(e) \ \sum_{e \in eta(u)} f(e) = \sum_{e \in lpha(s)} f(e) + \sum_{e \in lpha(t)} f(e)$$

故

$$\sum_{e \in \alpha(t)} f(e) - \sum_{e \in \beta(t)} f(e) = \sum_{e \in \beta(s)} f(e) - \sum_{e \in \alpha(s)} f(e)$$

9.2

证明:在 Ford-Fulkerson 算法的第二步,通过可增载轨道得到的函数 \bar{f} 是流函数.

同引理9.1的证明。

首先证明任给 $e \in E(D)$, 都有 $c(e) \geq \bar{f}(e) \geq 0$.

因为 $f \in N$ 的流函数, 所以任给 $e \in E(D)$, 都有 $c(e) \geq f(e) \geq 0$.

取 $e' \in E(D)$,

- 若e'不是P(s,t)上的边,则 $c(e')\geq f(e')=ar{f}(e')\geq 0$;
- 若 e' 是 P(s,t) 上的正向边,则 $l(e')\geq l(P)\geq 0,\quad c(e')=f(e')+l(e')\geq f(e')+l(P)=\bar{f}(e')\geq 0\,;$
- 若e'是P(s,t)上的反向边,则 $ar{f}(e')=f(e')-l(P)\geq f(e')-l(e')=0$;

其次证明任给 $v\in V(D)-\{s,t\}$,都有 $\sum_{e\in lpha(v)}ar{f}(e)-\sum_{e\in eta(v)}ar{f}(e)=0$.

- 若v不是P(s,t)上的顶点,则任给 $e\in lpha(v)$ 或 $e\in eta(v)$,都有 $ar{f}(e)=f(e)$,可得上式;
- 若 $v \in P(s,t)$ 上的顶点,设 $P(s,t) = s \cdots e_1 v e_2 \cdots t$
 - $egin{aligned} &\circ \ e_1,e_2 \$ 都是正向边, $e_1\in lpha(v),e_2\in eta(v)$,且 $ar{f}(e_1)=f(e_1)+l(P),ar{f}(e_2)=f(e_2)+l(P), \quad ar{f}(e_1)-ar{f}(e_2)=f(e_1)-f(e_2)$,可得上式;

- \circ e_1 是正向边, e_2 是反向边, $e_1\in\alpha(v), e_2\in\alpha(v)$,且 $\bar{f}(e_1)=f(e_1)+l(P), \bar{f}(e_2)=f(e_2)-l(P), \quad \bar{f}(e_1)+\bar{f}(e_2)=f(e_1)+f(e_2),$ 可得上式;
- $egin{aligned} &\circ \ e_1$ 是反向边, e_2 是正向边, $e_1\in eta(v), e_2\in eta(v)$,且 $ar{f}(e_1)=f(e_1)-l(P), ar{f}(e_2)=f(e_2)+l(P), \quad ar{f}(e_1)+ar{f}(e_2)=f(e_1)+f(e_2), \ &\exists f\in \mathcal{F}(e_1)=f(e_1)+f(e_2), \ \exists f\in \mathcal{F}(e_1)=f(e_1)+f(e_2)=f(e_1)+f(e_2), \ \exists f\in \mathcal{F}(e_1)=f(e_1)=f(e_1)+f(e_2)=f(e_1)+f(e_2), \ \exists f\in \mathcal{F}(e_1)=f(e_1)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_1)+f(e_2)=f(e_2)+f(e_2)+f(e_2)=f(e_2)+f(e_2)+f(e_2)=f(e_2)+f($

综上, \bar{f} 是流函数.

9.3

证明:若网络中不存在从源s到汇t的有向轨道,则此网络的最大流量与最小截量都是0.

令 $S=\{v|v\in V(D)$, 存在从 s 到 v 的有向轨道 $\}$,由题意得 $t\not\in S$,则 $t\in \bar{S}$,(S,\bar{S})是网络的一个截。

若 $(S, \bar{S}) \neq \emptyset$,则存在 $e = uv \in E(D), u \in S, v \in \bar{S}$.

而由 S 的定义, $v\in S$,矛盾。故 $(S,\bar{S})=\emptyset$,即 $C(S,\bar{S})=0$,最小截为0.

由最大流最小截定理知,最大流也为0.

9.4

求图9.14中网络的最大流.

图 9.14 求最大流

• 取初始流, $\forall e \in E(G), f(e) = 0$

• 可增载轨道 $uv_1v_3v_4t$

• 可增载轨道 uv_3v_4t

• 无可增载轨道,最大流为6.