Tema di Statistica Matematica

Sessione autunnale

7 settembre 2018

- 1) Nella produzione di una motrice di autotreno siano X_1 e X_2 le variabili casuali, indipendenti, che descrivono, rispettivamente, i giorni di lavorazione e il ricavo dalla vendita della motrice. Siano inoltre definite le costanti $a_1 = -0.11$ e $a_3 = -4.4$, rispettivamente associate al costo per giorno di lavorazione e all'ammontare dei costi fissi per ciascuna motrice prodotta. Si assuma che $X_1 \sim N(\mu_1, 9.5)$ e che $X_2 \sim N(\mu_2, 21)$. Definito l'utile $Y = a_1 X_1 + X_2 + a_3$, calcolare
- a) la distribuzione e la varianza di Y;
- b) l'intervallo di confidenza di livello 0,99 per il valore atteso di Y impiegando i dati relativi al seguente campione casuale (x_{1i}, x_{2i}) , i = 1, 2, 3, 4:

$$(93.3, 321.8), (105.3, 321.3), (96, 311.7), (95.6, 316.4)$$

c) Indicata con μ_Y la media di Y, fissato $\alpha=0.05$, verificare sulla base dei dati a disposizione il seguente sistema di ipotesi:

$$H_0: \mu_Y = 300 \text{ vs. } H_1: \mu_Y > 300$$

2) Sia X_1, \ldots, X_n un campione casuale proveniente dalla distribuzione avente la seguente funzione di densitá

$$f(x; \alpha) = (\alpha + 1) x^{\alpha} \mathcal{I}_{[0,1]}(x), \ \alpha > 0.$$

- a) Dire se il modello appartiene alla famiglia esponenziale.
- b) Individuare, se esiste, la statistica sufficiente minimale per α ; essa é anche completa per α ?
- c) Determinare lo stimatore di massima verosimiglianza di α e verificare se esso é stimatore non distorto per il parametro α .
- d) Lo stimatore di massima verosimiglianza di α coincide con lo stimatore UMVU del parametro in questione?
- 3) Siano X_i , i=1,...,n, variabili aleatorie indipendenti con legge uniforme nell'intervallo $(0,\theta)$. Sia $V_n = \max(X_1,...,X_n)$ uno stimatore di θ . Determinare
- a) la distorsione, l'errore standard e l'errore quadratico medio dello stimatore V_n ;
- b) lo stimatore UMVU di θ .

4) Sia X_n una variabile casuale continua avente supporto (0, n] per n > 0, e funzione di distribuzione

$$F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n, \ 0 < x \le n.$$

Dimostrare che la successione di variabili casuali $\{X_n\}_{n=1}^{\infty}$ converge in distribuzione a una distribuzione esponenziale di parametro $\lambda = 1$.

5) Siano (X_1, X_2, \ldots, X_n) variabili casuali indipendenti con media μ e varianza σ_i^2 , $i = 1, 2, \ldots, n$, entrambe finite. Considerate le costanti a_i , $i = 1, 2, \ldots, n$, sia

$$T_n(X_1,\ldots,X_n) = \sum_{i=1}^n a_i X_i$$

uno stimatore lineare della media μ .

- a) Sotto quali condizioni e per quali valori dei pesi (a_1, a_2, \ldots, a_n) lo stimatore T_n é uno stimatore non distorto e a minima varianza di μ ?
- b) Considerati i due stimatori V_n e W_n ottenuti da T_n ponendo

i)
$$a_i = \frac{1}{n}, i = 1, 2, ..., n \text{ per } V_n$$

ii)
$$a_1 = \frac{n-2}{n}$$
, $a_2 = a_3 = \frac{1}{n}$ e $a_4 = a_5 = \cdots = a_n = 0$ per W_n

calcolare i corrispondenti errori quadratici medi e stabilire quale tra i due stimatori é il piú efficiente.

c) Stabilire, infine, se i due stimatori V_n e W_n sono consistenti per il parametro μ .