Chapters 1: Probability Basics

Set Theory (1.1)

•	<u>De</u>	finition: a set is a collection of things/elements
	<u>Exc</u>	<u>ample</u> : discrete sets
	<u>Exc</u>	a <u>mple</u> : continuous sets
	0	Set inclusion is denoted by ∈
	0	<u>Subset</u> : a set with all its elements also being elements of another set
	0	<u>Null set</u> : empty set
	0	<u>Universal set</u> : set of all things that are considered in a given context
		Note: 1) every set is a subset of the universal set, and 2) the null set is a subset of every set
•	Vei	nn Diagrams are used to graphically display relationships among sets

0	<u>Union</u> : the union of two sets <i>A</i> and <i>B</i> is the set of all elements in <u>A or B</u>
0	<u>Intersection</u> : the intersection of two sets <i>A</i> and <i>B</i> is the set of all elements in both <i>A and B</i>
0	<u>Complement</u> : the complement of a set <i>A</i> is the set of all elements in the universal set <i>S</i> that ar not in <i>A</i>
Set o	algebra properties: <u>Commutative</u> :
0	Associative:
0	Associative: Distributive:

 $\underline{\mathbf{Definition}}:$ a collection of sets A_1 , A_2 , ... , A_n is a $\mathbf{partition}$ if

Set Theory in Probability (1.2, 1.3)

A probability is based upon a repeatable experiment that consists of a procedure and observations (outcomes). Example: roll a die

- Outcome: any possible observation of the experiment (set elements)
- Sample space: set of all possible outcomes (universal set)
- Event: a set of outcomes of an experiment (a subset of the sample space)

<u>Probability axiom</u>: a probability measure $P[\cdot]$ is a function that maps events to a real number such that

- Axiom 1 (non-negative):
- Axiom 2 (normalized):
- Axiom 3 (additive):
- Properties of probability measure (*Thm 1.4*): $P[A^C] =$

 - \circ P[\emptyset] =
 - \circ P[$A \cup B$] =

<u>Discrete Probability Law (Thm 1.5):</u> the probability of an event $B = \{s_1, s_2, ..., s_n\}$ equals

•	Example: reliability analysis of a circuit with two switches
	At least one switch needs to be closed for the circuit to operate
	o Sample space
•	Conditional Probability (1.4) Definition: the conditional probability of an event A given the occurrence of an event B is given as
•	<u>Deminion</u> . the conditional probability of all events a given the occurrence of all events as given as
	Note: P[A] and P[B] must be nonzero
•	Properties of conditional probability o Axiom 1:

- o Axiom 2:
- o Axiom 3:
- Example: roll two fair four-sided dice
 - o Sample space

 $\circ \quad \text{Let events } A = \{X_1 \geq 2\} \text{ and } B = \{X_2 \geq X_1\}$

Partitions and the Law of Total Probability

A partition divides the sample space of an experiment into mutually exclusive sets

- o Facilitates the calculation of probability functions.
- o Enabled by the Law of Total Probability
- Consider the sample space S with partition $\{A_1,A_2,A_3,A_4\}$, and event B
 - \circ Suppose we want to calculate P[B]

•	<u>Law of Total Probability (Thm 1.10):</u> For a partition $\{A_1,A_2,A_3,A_4\}$ with $\mathrm{P}[A_i]>0$ for all i
	\circ Note: for a set A , $\{A, A^c\}$ is a partition and
•	Example: a manufacturer makes resistors from 3 machine $\{B_1, B_2, B_3\}$. Resistors within 50Ω of nominal are considered acceptable. The following data is known: \circ 80% of resistors from B_1 are acceptable \circ 90% of resistors from B_2 are acceptable \circ 60% of resistors from B_3 are acceptable
	Each hour, B_1 produces 3000 resistors, B_2 produces 4000 resistors, and B_3 produces 3000 resistors. All resistors are mixed and shipped together. What is the probability that the manufacturer's resistor in a shipment is acceptable.
•	Example: internet packets are sent from Durham to Los Angeles, with a probability of 75% that they are routed through New York. Of routed through New York, 33% of the packets are dropped, otherwise the probability of dropped packets is 25%. What is the total probability of a dropped packet?
•	Bayes' Theorem (Thm 1.11):
•	Example: a patient is tested for a disease that affects 1% of the population, and the is 95% accurate. What is the probability that a patient has the disease after a positive test?

Statistical Independence (1.6)

Definition: events A and B are **independent** if and only if

- Example: experiment is to draw a random card from a deck
 - o Event A={"red card"} and B={"spade card"}

○ Event A={"red card"} and B={"ace card"}