MAT-INF3600 Assignment

Thobias Høivik

Solution for (a). Let $A = \{0, 1\}$, $c^{\mathfrak{A}}$ be any element in A and $R^{\mathfrak{A}}(x, y)$ if x = y. Let $f^{\mathfrak{A}}(x) = x$ be the identity function on A.

Then (i) is satisfied and (ii), $(\forall x)[R(x, f(x))]$ is satisfied.

Solution for (b). Let $A = \{0,1\}$, $c^{\mathfrak{A}}$ be any element in A and $R^{\mathfrak{A}}(x,y)$ if x < y with $f^{\mathfrak{A}}(x) = x$ as before. Then, we get a 2 element universe, but R(x,f(x)) is not satisfied for any x since 0 is not less than itself and 1 is not less than itself.

Solution for (c). Now we must construct a 5 element universe with an injective function.

Let $A = \{1, ..., 5\}$ with $c^{\mathfrak{A}} = 1$ (or any other choice), $R = \emptyset$ (again, arbitrary) and f(5) = 1, f(x) = x + 1 otherwise.

Solution and proof of (d). Let $A = \mathbb{N}$ (0 included) with $c^{\mathfrak{A}} = 0$, $R = \emptyset$ (choice is arbitrary) and $f^{\mathfrak{A}}(n) = n+1$ be the successor function.

Then $\forall x [f(x) \neq c]$ since 0 is not the successor of any natural number. Furthermore the second condition of f being injective is satisfied since

$$f(x) = f(y)$$

$$\rightarrow x + 1 = y + 1$$

$$\rightarrow x = y$$

Hence $\mathfrak{A} \models \Gamma$.

Now to prove that any model of Γ has an infinite universe.

Suppose we have some model of Γ with a finite universe $A = \{c^{\mathfrak{A}}, x_1, x_2, ..., x_n\}$. We require $f : A \to A \setminus \{c^{\mathfrak{A}}\}$ and for it to be injective. Since A is finite we have an injective map from a set of size n + 1 to a set of size n which is not possible by the pigeonhole principle, thus we arrive at a contradiction.

To vizualize this more clearly we can attempt to construct an injection $f: A \to A$.

$$f^{\mathfrak{A}}(c^{\mathfrak{A}}) = x_{i_1} \text{ where } x_{i_1} \neq c^{\mathfrak{A}}$$

$$f^{\mathfrak{A}}(x_1) = x_{i_2} \text{ where } x_{i_2} \neq x_{i_1}, \text{ and } x_{i_2} \neq c$$

$$\vdots$$

$$f^{\mathfrak{A}}(x_{n-1}) = x_{i_n} \text{ where } x_{i_n} \neq x_{i_{n-1}}, \dots, x_{i_1}, \text{ and } x_{i_n} \neq c^{\mathfrak{A}}$$

But now we arrive at $f^{\mathfrak{A}}(x_n)$ which cannot go to $c^{\mathfrak{A}}$ as that violates $f(x) \neq c$ and $f^{\mathfrak{A}}(x_n)$ cannot go to any x_i as that would violate injectivity. So we cannot construct a well-defined injection that satisfies $f(x) \neq c$ for all x given a finite universe.

Hence any model of Γ necessarily has an infinite universe.

Proof. Let $n \ge 1$ and let $\theta_1, \dots, \theta_n$ be sentences. Let Σ be a set of formulas. We will prove, by induction, that $\Sigma \cup \{\theta_1, \dots, \theta_n\} \vdash \phi$ if and only if $\Sigma \vdash \theta_1 \land \dots \land \theta_n \to \phi$.

Base case n = 1.

 $\Sigma \cup \theta \vdash \phi$ if any only if $\Sigma \vdash \theta \rightarrow \phi$, by **Theorem 2.7.4 (The Deduction Theorem)**.

Assume that for n = k. Now look at n = k + 1,

$$\begin{split} \Sigma \cup \{\theta_1, \dots, \theta_k, \theta_{k+1}\} &\vdash \phi \\ \Sigma \cup \{\theta_1, \dots, \theta_n\} &\vdash \theta_{k+1} \to \phi \text{ by the regular Deduction Theorem} \\ \Sigma \vdash \left[\bigwedge_{i=1}^k \theta_i\right] \to (\theta_{k+1} \to \phi) \text{ by assumption} \\ \alpha \to (\beta \to \gamma) \text{ equivalent to } (\alpha \land \beta) \to \gamma \\ \text{Hence } \Sigma \vdash \left[\bigwedge_{i=1}^{k+1=n} \theta_i\right] \to \phi \end{split}$$

Now to show the implication in the other direction:

$$\Sigma \vdash \left[\bigwedge_{i=1}^{k+1=n} \theta_i \right] \to \phi$$

$$\Sigma \vdash \left[\bigwedge_{i=1}^{k} \theta_i \right] \to (\theta_{k+1} \to \phi)$$

 $\Sigma \cup \{\overline{\theta_1, \dots, \theta_k}\} \vdash \overline{\theta_{k+1} \to \phi}$ by assumption

 $\Sigma \cup \{\theta_1, \dots, \theta_{k+1}\} \vdash \phi$ by the regular Deduction Theorem

This completes the proof.

Proof of (a).

$$\begin{aligned} 1.\forall x[Rx \to Sx] \\ 2.\forall x[Rx \to Sx] \to (Rt \to St) & (Q1) \\ 3.(Rt \to St) \to (\neg St \to \neg Rt) & (PC) \\ 4.\forall x[Rx \to Sx] \to (\neg St \to \neg Rt) & 2,3 & (PC) \\ 5.\forall x[Rx \to Sx] \to \forall y[\neg Sy \to \neg Ry] & 4, & (QR) \\ 6.\forall y[\neg Sy \to \neg Ry] & 1,5 & (PC) \end{aligned}$$

Thus we have a deduction of $\forall y [\neg Sy \rightarrow \neg Ry]$ from $\forall x [Rx \rightarrow Sx]$.

Proof of (b). First we recognize that $\phi \not\vdash \psi$ if and only if $\{\phi, \neg \psi\}$ is satisfiable.

Let \mathfrak{A} be a structure with universe $A = \{a, b\}$, $R^{\mathfrak{A}} = \{a\}$, $S^{\mathfrak{A}} = \{a, b\}$.

Then if t = a, Ra is true and Sa is true so $Rx \to Sx$ is true. If t = b, Rb is false so the implication is true regardless. Therefore $\mathfrak{A} \models \forall x [Rx \to Sx]$.

Now to check the other formula. If t = b we have Sb, but we do not have Rb. Hence the implication does not hold for all terms and $\mathfrak{A} \not\models \forall y [Sy \rightarrow Ry]$.

Proof of (a). We will appeal to Lemma 1 by showing that the negation leads to the given contradiction

$1.\exists x (R(x)) \land \forall x (\neg R(x) \land \neg S(x))$		
$2.\exists x(R(x))$	1	(<i>PC</i>)
$3. \forall x (\neg R(x) \land \neg S(x))$	1	(PC)
$4.\forall x(\neg R(x) \land \neg S(x)) \to (\neg R(x) \land \neg S(x))$		(Q1)
$5. \neg R(x) \land \neg S(x)$	3,4	(<i>PC</i>)
$6. \neg R(x)$	5	(PC)
$7. \neg R(x) \to (R(x) \to \neg (\forall x [x = x])$		(PC)
$8.R(x) \to \neg(\forall x[x=x])$	6,7	(<i>PC</i>)
$9.\exists x (R(x)) \to \neg(\forall x [x=x])$	8	(QR)
$10.\neg(\forall x[x=x])$	2,9	(<i>PC</i>)
$11.\forall x(x=x)$		(E1)
12.⊥	10,11	(PC)

Therefore

$$\vdash \exists x (R(x)) \to [\exists x (R(x) \vee S(x))]$$

Proof of (b). Once again, we will appeal to Lemma 1 by showing that

$$\forall x (R(x) \land \exists x \neg R(x)) \vdash \bot$$

$1.\forall x (R(x) \land \exists x \neg R(x))$		
$2.\forall x (R(x) \land \exists x \neg R(x)) \rightarrow R(x) \land \exists x \neg (R(x))$		(Q1)
$3.R(x) \land \exists x \neg (R(x))$	1,2	(PC)
4.R(x)	3	(PC)
$5.\exists \neg (R(x))$	3	(PC)
$6.R(x) \to (\neg R(x) \to \neg [\forall x (x = x)])$		(PC)
$7. \neg R(x) \to \neg [\forall x (x = x)]$	4,6	(PC)
$8.\exists x(\neg R(x)) \to \neg[\forall x(x=x)]$	7	(QR)
$9. \neg [\forall x(x=x)]$	5,8	(PC)
$10.\forall x(x=x)$		(E1)
11.⊥	9,10	(PC)

Proof. We proceed by structural induction on t.

Base case (t = 0).

Then there is p = 0, $T \vdash 0 = 0$.

Assume that for any variable-free \mathfrak{L} -term t of height n, we can find some prime term p such that

$$T \vdash t = p$$

Inductive step.

Now we look at variable-free terms of height n + 1.

Case 1 (f). Suppose $t = f(t_1, t_2)$ is variable-free. Then t_1, t_2 are variable free \mathfrak{L} -terms. By our hypothesis there exist prime terms p_1, p_2 such that

$$T \vdash p_1 = t_1$$
, $T \vdash p_2 = t_2$

By E2 we have

$$p_1 = t_1 \land p_2 = t_2 \rightarrow f(t_1, t_2) = f(p_1, p_2)$$

By the inductive definition of prime terms, $f(p_1, p_2)$ is a prime term and we have

$$T \vdash t = p$$

where $t = f(t_1, t_2)$ and $p = f(p_1, p_2)$.

Case 2 (v). Suppose t = v(t') is variable-free. Then t' is variable-free. By our hypothesis there exists a prime term p' such that

$$T \vdash p' = t'$$

p' is prime so it is the constant 0 or of the form $f(p'_1, p'_2)$ where p'_1, p'_2 are prime. If p' is 0 we have (by E2)

$$\nu(t') = \nu(0) = 0$$

which is a prime term. Otherwise if $p' = f(p'_1, p'_2)$ then

$$v(t') = v(f(p'_1, p'_2)) = p'_1$$

by T_3 , which is prime.

In other words there exists, in both cases, prime p such that

$$T \vdash t = p$$

Case 3 (h). Suppose t = h(t') is variable-free. Then t' is variable-free. By our hypothesis there exists a prime term p' such that

$$T \vdash p' = t'$$

p' is prime so it is the constant 0 or of the form $f(p'_1, p'_2)$ where p'_1, p'_2 are prime. If p' is 0 we have (by E2)

$$h(t') = h(0) = 0$$

which is a prime term. Otherwise if $p' = f(p'_1, p'_2)$ then

$$h(t') = h(f(p'_1, p'_2)) = p'_2$$

by T_4 , which is prime.

In other words there exists, in both cases, prime p such that

$$T \vdash t = p$$