Решения на задачите по геометрия

Този материал е изготвен със съдействието на школа Sicademy

G1. Даден е равнобедрен $\triangle ABC$ (AC = BC), вписан в окръжност k. Нека X е произволна точка от страната AB. Разглеждаме окръжностите k_1 и k_2 , които се допират до страната AB, до отсечката CX и вътрешно до k. Ако означим техните радиуси с r_1 и r_2 , да се докаже, че

$$r_1 + r_2 \le 2r,$$

където r е радиусът на вписаната в $\triangle ABC$ окръжност.

Peшение. Нека окръжността k_1 е с център I_1 и се допира до AX и CX в точките P_1 и Q_1 съответно, окръжността k_2 е с център I_2 и се допира до BX и CX в точките P_2 и Q_2 съответно, а вписаната в $\triangle ABC$ окръжност е с център I и се допира до AB в точка P. От теоремата на Виктор-Тебо следва, че I лежи на отсечката I_1I_2 и нещо повече, I е пресечната точка на правите P_1Q_1 и P_2Q_2 (Защо?).

Без ограничение на общността нека $\angle AXC \le 90^{\circ}$. Тогава

$$\frac{I_1I}{II_2} = \frac{P_1P}{PP_2} = \operatorname{tg}\frac{\angle AXC}{2} \le 1$$

и следователно средата M на I_1I_2 е между I и I_2 . От друга страна, AC=BC, т.е. $r_1\geq r_2$ и следователно разстоянието от M до AB не надминава разстоянието от I до AB, т.е. $\frac{r_1+r_2}{2}\leq r$, с което доказателството е завършено.

Забележска. В случай на произволен триъгълник, максималната стойност на r_1+r_2 се достига, когато X съвпада със средата на отсечката, свързваща петата на височината от върха C и допирната точка на външновписаната окръжност към страната AB с AB.

G2. Даден е $\triangle ABC$. Нека M и N са точки върху страните AC и BC съответно, такива че при симетрия относно правата MN образът ω' на описаната около $\triangle MNC$ окръжност ω се допира до страната AB. Да се докаже, че при всеки такъв избор на точките M и N, окръжността ω се допира до фиксирана окръжност.

Peшение. Нека T е допирната точка на окръжността ω' с AB, а P е втората пресечна точка на описаните окръжности около $\triangle AMT$ и $\triangle BNT$. Без ограничение на общността нека P е вътрешна точка за $\triangle ABC$. Тогава

$$\angle MPN = 360^{\circ} - \angle MPT - \angle NPT = \alpha + \beta = 180^{\circ} - \gamma,$$

т.е. $P \in \omega$ (P е точката на Микел). От друга страна,

$$\angle APB = \angle AMT + \angle BNT = \gamma + \angle MTN = 2\gamma$$

и остава да докажем, че описаната около $\triangle ABP$ окръжност се допира до ω в точка P. Но

$$\angle MPA + \angle NPB = \angle MTA + \angle NTB = 180^{\circ} - \gamma =$$

= $(\angle MNP + \angle NMP) + (\angle ABP + \angle BAP),$

с което достигаме до извода, че търсената окръжност е описаната около $\triangle ABP$.

G3. Даден е $\triangle ABC$ и точка T върху страната AB. Да означим с N и M допирните точки на външновписаната за $\triangle ATC$ окръжност към страната AC със страната AC и продължението на AT. Съответно с L и K означаваме допирните точки на външновписаната за $\triangle BTC$ окръжност към страната BC със страната BC и продължението на BT. Да се докаже, че пресечната точка на правите MN и KL, средата X на CT и центърът I на вписаната в $\triangle ABC$ окръжност k лежат на една права тогава и само тогава, когато T съвпада с допирната точка на k с AB.

Peшение. Нека O_1 и O_2 са центровете на разглежданите външновписани окръжности за $\triangle ATC$ и $\triangle BTC$ съответно, P е пресечната точка на MN и O_1T , а Q е пресечната точка на KL и O_2T . Точките O_1, C, N и P лежат на една окръжност, както и точките O_2, C, L и Q лежат на една окръжност и следователно $\angle O_1PC = \angle O_1NC = 90^\circ$ и $\angle O_2QC = \angle O_2LC = 90^\circ$. Но $\angle O_1TO_2 = 90^\circ$, т.е. PTQC е правоъгълник, средата X на CT е среда и на PQ, и нещо повече, $PQ \parallel AB$ (Защо?).

Нека точките D и E от правата PQ са такива, че MADP и BKQE са успоредници. От теоремата на Шайнер за трапеца MKQP следва, че пресечната точка на правите MN и KL, X и I лежат на една права тогава и само тогава, когато X,I и средата Y на MK лежат на една права, но отново от теоремата на Шайнер за трапеца ABDE последното е изпълнено тогава и само тогава, когато Y е среда на AB, т.е. MA = BK. Остава да съобразим, че MA = BK е еквивалентно с факта, че T съвпада с допирната точка на вписаната в ΔABC окръжност с AB.