ES3011 – Control Engineering 21C Homework #2		Assigno Due: 2/11/21 @	ed: 2/4/21 11:59 pm
Name:	ID:		
2.) (10 pts) Please find the differential equation Fig. 3-40 in Ogata (page 99).	on(s) that model the	electrical circuit	shown in

ES3011 – Control Engineering 21C Homework #2		Assigned: 2/4/21 Due: 2/11/21 @ 11:59 pm
Name:	ID:	
3.) (10 pts) Please find the differential equation in Fig. 3-42 in Ogata (page 99), which depicts ratio of n .		

Name:	_ ID:
-------	-------

- **4.**) Consider a standard mass-spring-dashpot system (Lecture 5) with the following parameters: m = 1 kg, c = 6 Ns/m, k = 9 N/m.
 - a) (10 pts) Please design a Simulink model that represents this system and simulate this model for 10 sec for a constant force input of F = 1 N, with initial conditions of y(0) = 0 and $\dot{y}(0) = 0$.
 - **b)** (20 pts) Please repeat the same simulation for the cases: (i) when c = 1 Ns/m, and (ii) when c = 10 Ns/m keeping all other parameters constant. What observations do you make?