

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Institut für Informatik, Arbeitsgruppe Theorie der Parallelität Prof. Dr. K. Jansen, K.-M. Klein

29. Oktober 2012

Übungen zur Vorlesung »Theoretische Grundlagen der Informatik«

Übungsblatt 1

Präsenzaufgabe 1.1 (Modellierung)

Wir betrachten folgenden Kaffeeautomaten \Re :

- A hat einen Münzschlitz, eine Geldrückgabetaste, eine Taste, die zwischen zwei Sorten umschaltet und einen Schalter, der durch das Einstellen eines Bechers ausgelöst wird.
- Der Automat soll zwei Endzustände haben, in denen jeweils eine der Sorten ausgegeben wird.

Geben Sie einen DEA zum Alphabet $\Sigma = \{M, G, S, B\}$ (Münze, Geldrückgabe, Sortenwechsel, Becher) an, der sich wie ein sinnvoller Kaffeeautomat verhält.

Können wir den Automaten so verallgemeinern, dass man mehrere Münzen hintereinander einwerfen und entsprechend oft Kaffee erhalten kann?

Hausaufgabe 1.2 (Sprachen und Automaten (3 Punkte))

Geben Sie einen NEA für die Sprache $L := \{w \in \{a,b\}^* | |w|_a \ge 2\}$ an.

Hausaufgabe 1.3 (Sprachen und Automaten (3 Punkte))

Bestimmen Sie die Menge der Wörter, die durch den folgenden Automaten erkannt werden.

Hausaufgabe 1.4 (Produktautomat (4 Punkte)) 1. Zeigen Sie: gegeben zwei NEAs $\mathfrak{A}_1, \mathfrak{A}_2$ ist der Produktautomat $\mathfrak{A}_1 \times \mathfrak{A}_2$ genau dann deterministisch, wenn \mathfrak{A}_1 und \mathfrak{A}_2 beide deterministisch sind.

2. Sei $\Sigma = \{a, b\}$. Geben Sie einen DEA an, der die Sprache $L = \{w : |w|_a$ gerade und $|w|_b$ Vielfaches von $3\}$ erkennt.