Valence Shell Electron Pair Repulsion Theory

Linear

Bent or Angular

Trigonal Planar

Trigonal Pyramidal

Tetrahedral

Trigonal Bipyramidal

Seesaw

T-shape

Octahedral

Square Pyramidal

Square Planar

Pentagonal Bipyramidal

- Used to predict the shapes of molecules
- Arrangement of atoms around a central atom in a molecule depends on the repulsion between all electron pairs in the valence shell of the central atom
- -Electron pairs around the central nucleus repel each other
- -Atoms have electrons in orbitals that are as far apart as possible
- Shape is determined by the number of bonding and lone pairs of electrons

Legend:

A = Central atom

X = Bonding pair

E = Lone pair

Bonding pairs and lone pairs repel each other, resulting in 3-D shapes that keep the pairs as far apart as possible.

6 CORE GEOMETRIES

Valence shell electron pairs repel each other until repulsions are minimized, forming 6 core geometries*

^{*}one is not shown in the animation above

6 CORE GEOMETRIES

There are 6 shapes based on orbital hybridization sp^2 sp sp^3d $sp^3d^2\\$ sp^3d^3

6 CORE GEOMETRIES

Examples of VSEPR diagrams:

DIATOMIC MOLECULES

Any diatomic molecule forms a linear shape

Examples:

HF, O₂

Lewis structure

3-D geometry

sp HYBRIDIZATION

Shape: Linear

sp: LINEAR

Linear shape

Examples:

BeCl₂, HgCl₂, CO₂

Lewis structure

: CI-Be-CI:

3-D geometry

VSEPR diagram

CI — Be — Cl

sp² HYBRIDIZATION

Shape: Triangle

sp²: TRIGONAL PLANAR

Trigonal planar shape

Examples:

BF₃, CO₃

Lewis structure

:F: .. | .. :F — B — F: 3-D geometry

sp²: ANGULAR/BENT/V-SHAPE

Bent shape

Examples:

 NO_2^- , SO_2 , O_3

A lone pair is less confined in space and exerts greater repulsions on nearby bonding pairs.

Lewis structure

3-D geometry

sp³ HYBRIDIZATION

Shape: **Tetrahedral**

sp³: TETRAHEDRAL

Tetrahedral shape

Examples:

CH₄, PO₄³⁻, SO₄²⁻, ClO₄⁻

Lewis structure

H H:C:H H

3-D geometry

sp³: TRIGONAL PYRAMIDAL

Trigonal pyramidal shape

Examples: NH₃, PCl₃ <109.50 3-D geometry **VSEPR** diagram

Lewis structure

H:N:H

sp3: ANGULAR/BENT/V-SHAPE

Bent shape

Examples: OF₂, H₂O

Lewis structure 3-D geometry VSEPR diagram

sp³d HYBRIDIZATION

Shape: Trigonal bypyramid

sp3d: TRIGONAL BIPYRAMIDAL

Lewis structure

3-D geometry

sp³d: SEESAW

Seesaw shape

Example:

SF₄

Lewis structure

3-D geometry

sp³d: T-SHAPE

T-shape

Example:

CIF₃, BrF₃

Lewis structure

3-D geometry

sp³d: LINEAR

Linear shape

Example:

 XeF_2 , I_3

Lewis structure

F

3-D geometry

VSEPR diagram

sp³d² HYBRIDIZATION

Shape: Octahedron

sp³d²: OCTAHEDRAL

Octahedral shape

Example:

SF₆, WCl₆

Lewis structure

F

3-D geometry

VSEPR diagram

sp³d²: SQUARE PYRAMIDAL

Square pyramidal shape

Example:

XeOF₄, CIF₅, BrF₅

Lewis structure

3-D geometry

VSEPR diagram

sp³d²: SQUARE PLANAR

Square planar shape

Example:

XeF₄

Lewis structure

3-D geometry

sp³d³ HYBRIDIZATION

sp³d³: PENTAGONAL BIPYRAMID

Pentagonal bipyramid shape

Example:

IF₇

Lewis structure

3-D geometry

HOT TO DRAW VSEPR

- Draw the Lewis structure
- Count the electron pairs surrounding the central atom and maximize their distance from each other
- Determine the name of the structure from the number of bonding and lone pairs of electrons

Example: OF₂

2 lone pairs, 2 bonding pairs

Angular/bent

MOLECULAR VSEPR DIAGRAMS

Predict the arrangement around each central atom individually

Example: CH₃OH

Lewis structure:

MULTIPLE BONDS & VSEPR

Multiple Bonds & VSEPR

- Treat multiple bonds as single bonds (one bonding pair) to determine the shape of molecules with multiple bonds
- Example: CO₂

Lewis structure:

io=c=o:

3D diagram:

two groups or electron clouds

Homework

• Page 216 # 2 − 10