Sunday, October 23

Flow

Data Analytics, PES University

PEER REVIEW

TEAM

Helios

Bilateral Trade

STUDENTS

Pooshpal Baheti PESIUG20CS283

Prateek Rao PESIUG20CS303

Rahul Ramesh PESIUG20CS319

Table of Contents

		Page
I	Problem Statement	3
II	EDA Results	4
III	Data Preprocessing	5
IV	Feature Engineering	6
V	Model Performances	7
VI	Future Work	8

PROBLEM STATEMENT

 Estimation of Bilateral Trade Flow between pairs of countries.

Bilateral Trade Flow is the difference between total imports and total exports between two countries that is calculated over a fiscal year.

Accurate predictions are important as they can significantly influence international trade sanctions, policies and relationships between countries.

II EXPLORATORY DATA ANALYSIS

Null Value Analysis

The yellow shaded areas show the missing data that needs to be treated.

Correaltion Analysis

Depicts the relations between the target FLOW and the other attributes.

III DATA PREPROCESSING

- The dataset consists of 2.5 million instances, ranging from 1827 - 2014.
- First step of data cleaning included dropping null values from selected features which could impact results.
- Further, we dropped FLOW values of less than £100 due to insignificance.
- Categorical Variables were suitably encoded.

FEATURE ENGINEERING

IV

- Shortlisted 12 features, which are the features used in the Gravity Model for prediction.
- Distribution of flow is uneven, so we transformed the dataset using a logarithmic function, to make the features normally distributed.
- Dropped instances for years before 2009, as we intend to learn recent trends.

V MODEL PERFORMANCES AND TESTING

Simple Linear Regression

Linear Regression with Log Linear Values

R-squared = 0.134

R-squared = 0.654

Support Vector Regression with Log Linear Values

R-squared = 0.671

VI FUTURE WORK

- Explore further time-agnostic models, with ensemble learning and deep neural networks.
- Transform the dataset to time-series, and use time-series analysis.
- Deep Learning based time-series networks can be applied to work with a larger feature space.

Thank you!