تمرین سری چهارم

مساله ١

به یک نمونه Si با $10^{16}cm^{-3}$ اتم دانر نور لیزر تابانیده ایم به طوری که $10^{19}cm^{-3}$ زوج الکترون_حفره به طور یک نمونه Si به یک نمونه Si به فرمی و یکنواخت در هر ثانیه در آن تولید می شود. نور لیزر باعث گرم شدن Si تا دمای 450K شده است. سطوح شبه فرمی و میزان تغییرات در رسانایی Si در اثر تابش نور لیزر را محاسبه کنید. طول عمر الکترون و حفره $n_i = 10^{14}cm^{-3}$ و $D_p = 12cm^2/s$

مساله ۲

. ست. است. انمونه Si داتی با تعداد $N_d = N_0 exp(-a\,x)$ اتم دانر از یک طرف آن آلایش شده است

آ) با فرض آن که $n_i \gg n_i$ باشد تابع میدان الکتریکی داخلی را محاسبه کنید.

ب) اگر $a = 1 \mu m^{-1}$ باشد متوسط میدان الکتریکی داخلی چقدر است؟

پ) ساختار نوار انرژی را رسم کنید و بر روی آن جهت میدان را مشخص کنید.

مساله ۳

به یک نمونه Si با $10^{15}cm^{-3}$ اتم دانر به صورت یکنواخت نور لیزر تابانیده ایم به طوری که $10^{19}cm^{-3}$ زوج الکترون حفره در هر ثانیه در آن تولید می شود. فاصله بین سطوح شبه فرمی و میزان تغییرات در رسانایی Si در اثر تابش نور لیزر را محاسبه کنید. طول عمر الکترون و حفره $10\mu s$ و $10\mu s$ است.

مساله ۴

به یک نمونه Si با $10^{15}cm^{-3}$ اتم دانر به صورت یکنواخت نور لیزر تابانیده ایم به طوری که $10^{21}cm^{-3}$ زوج الکترون حفره در هر ثانیه در آن تولید می شود. اگر طول عمر الکترون و حفره $au_p = 10 \mu s$ باشد فاصله بین سطوح شبه فرمی را محاسبه کنید و ساختار نوار انرژی را ترسیم کنید.

مساله ۵

یک میله از جنس Si به طول 2cm و سطح مقطع $0.05cm^2$ با $N_d=10^{16}cm^{-3}$ اتم ناخالصی آلایش شده است. اگر ولتاژ $10^{20}cm^{-3}$ به دو سر این میله اعمال شود جریان را محاسبه کنید. اگر توسط نور لیزر $10^{20}cm^{-3}$ زوج الکترون و حفره در این میله در ثانیه به طور یکنواخت تولید کنیم و $100^{20}cm^{-3}$ مقدار جریان چقدر خواهد شد؟ فرض کنید

مقدار α_r در تزریق کم و زیاد ثابت باشد. اکنون اگر ولتاژ اعمالی 100KV شود مقدار جریان چقدر خواهد شد؟ فرض کنید $\mu_p = 500c\,m^2/Vs$

مساله ۶

یک پرتو لیزر با توان 100m و طول موج 0.63μ موج $\lambda=0.63\mu$ را بر روی یک نمونه GaAs به ضخامت 100m تابانیده ایم. ضریب جذب در این طول موج 3×10^4 0.63μ است. تعداد فوتونهای تابیده در هر ثانیه بر GaAs را محاسبه کنید. فرض کنید بازده کوانتومی واحد است. چه توانی به صورت گرما در GaAs تلف می شود؟