NOTE DI FISICA 3

MANUEL DEODATO

INDICE

1	Elet	ttromagnetismo avanzato	4			
	1.1	-	4			
		1.1.1 Tensore dei campi	4			
		1.1.2 Invarianza di Gauge	5			
		1.1.3 Trasformazioni dei campi	6			
	1.2	Carica in moto rettilineo uniforme	6			
		1.2.1 Campi per calcolo diretto	6			
		1.2.2 Campi tramite 4-potenziale	7			
		1.2.3 Impulso trasferito	7			
		1.2.4 Equazioni del moto per carica in campo em	8			
	1.3	Tensore energia-impulso	8			
		1.3.1 Tensore densità di forza	8			
		1.3.2 Il tensore energia-impulso	9			
		1.3.3 Equazioni di conservazione	9			
		1.3.4 Caso dell'onda piana monocromatica	10			
	1.4	Potenziali ritardati e irraggiamento	10			
		1.4.1 I potenziali ritardati	10			
		1.4.2 Dipolo elettrico	12			
		1.4.3 Quadrupolo elettrico e dipolo magnetico	13			
		1.4.4 Campi di Liendard-Wiechert	13			
		1.4.5 Potenza irraggiata da una singola particella	15			
	1.5	Reazione di radiazione	15			
		1.5.1 Un primo approccio	15			
		1.5.2 Problemi e limiti della trattazione	16			
		1.5.3 Forza di Abraham-Lorentz	16			
2	Inda	Indagine della materia con onde elettromagnetiche				
	2.1	Introduzione	18			
		2.1.1 Grandezze di interesse	18			
		2.1.2 Teoria sul dipolo elettrico	18			
		2.1.3 Onda incidente su schermo dielettrico e schermo opaco	18			
		2.1.4 Principio di Babinet	19			
	2.2	Teoria della diffrazione	19			
		2.2.1 Diffrazione da un ostacolo	19			
		2.2.2 Ampiezza di scattering per dipolo elettrico	20			
		2.2.3 Fattore di forma 2D	20			
		2.2.4 Fattore di forma 3D	21			
	2.3	Sezioni d'urto	22			
		2.3.1 Sezione d'urto totale	22			
		2.3.2 Il teorema ottico	22			
		2.3.3 Sezioni d'urto di assorbimento, elastica e inelastica	22			
	2.4	9	23			
		2.4.1 Modello dell'elettrone legato elasticamente	23			
		2.4.2 Sezione d'urto elastica	24			
		2.4.3 Limiti di σ_{el}	25			
		2.4.4 Sezione d'urto totale e d'assorbimento	25			
		2.4.5 Tempo di vita dello stato risonante	26			
		2.4.6 Caso della radiazione non polarizzata	26			
		2.4.7 Scattering Rayleigh	27			
		2.4.8 Sezione d'urto fotoelettrica	28			
		2.4.9 Sezione d'urto Compton 2.4.10 Sezioni d'urto di produzione di coppie	29			

		2.4.11	Esempio di sezioni d'urto per carbonio e piombo	29
3	Inda	igine d	ella materia con particelle	31
	3.1	Introd	uzione	31
		3.1.1	Categorie di urti	31
		3.1.2	Notazione chimica	31
		3.1.3	Neutrone libero	31
		3.1.4	Urti elettrone-protone	32
		3.1.5	Classificazione delle particelle	32
		3.1.6	Grandezze conservate negli urti	32
	3.2	Sezio	ni d'urto per processi corpuscolari	33
		3.2.1	Parametro di impatto e sezione d'urto per singolo proiettile	33
		3.2.2	Sezione d'urto per densità di particelle su singolo bersaglio	33
		3.2.3	Sezione d'urto per flussi di particelle che si scontrano	33
		3.2.4	Sezione d'urto per flusso di particelle su lamina bersaglio	34
		3.2.5	Sezione d'urto per interazione forte	35
		3.2.6	Sezione d'urto per interazione elettrodebole	35
			Sezione d'urto per interazione debole	36
			Sezione d'urto Rutherford	36
	3.3		ei atomici	37
		3.3.1	Caratterizzazione	37
			Modello a goccia del nucleo	38
			Forze nucleari	38
		3.3.4	Masse dei nuclei	38
			Energia di legame dei nucleoni	39
			Energia di separazione	40
	3.4		dimenti nucleari	41
			Introduzione	41
			Tipi di decadimento	41
			Decadimento β e termine di pairing	42
		3.4.4	Effetto Mössbauer	42
4	Ese	rcizi		44
	4.1	Indagi	ine della materia con onde elettromagnetiche	44
		4.1.1	Fattore di forma fenditura 1D	44
		4.1.2	Fattore di forma guscio sferico	44
			Scattering su circuito resistivo	44
	4.2		ine della materia con particelle	46
			Rilascio di dose in acqua	46
			Neutrini in impatto su superficie terrestre	46
		4.2.3	Interazione forte	47
		4.2.4	Q-valore per alcune reazioni di decadimento nucleare	47

1 ELETTROMAGNETISMO AVANZATO

1.1 Introduzione

Si usano

$$\begin{split} J^{\mu} &= (\rho c, \vec{j}); \ J_{\mu} = (\rho c, -\vec{j}) \\ A^{\mu}(\phi, \vec{A}); \ A_{\mu} &= (\phi, -\vec{A}) \\ \vartheta_{\mu} &= \frac{d}{dx^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right); \ \vartheta^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla}\right) \end{split} \tag{1.1.1}$$

Eq. di continuità per la corrente è:

$$\partial_{\mu}J^{\mu}=0 \tag{1.1.2}$$

Le eq. per i potenziali si compattano in:

$$\partial_{\mu} \left[\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right] = \frac{4\pi}{c} J^{\nu} \tag{1.1.3}$$

Infatti, per esempio, se $\nu = 0$:

$$\partial_{\mu}\partial^{\mu}A^{0} - \partial_{\mu}\partial^{0}A^{\mu} = 4\pi\rho \Rightarrow -\Delta\phi - \frac{1}{c}\frac{\partial}{\partial t}(\vec{\nabla}\cdot\vec{A}) = 4\pi\rho$$

1.1.1 Tensore dei campi

Definito come:

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \tag{1.1.4}$$

Si può scrivere $\vartheta_{\mu}F^{\mu\nu}=\frac{4\pi}{c}J^{\nu}.$ Le sue componenti sono¹:

$$\begin{split} F^{0i} &= \vartheta^0 A^i - \vartheta^i A^0 = \frac{1}{c} \frac{\partial A^i}{\partial t} + (\vec{\nabla} \phi)^i = -E_i \\ F^{ij} &= \vartheta^i A^j - \vartheta^j A^i = (\delta^i_m \delta^j_n - \delta^j_m \delta^i_n) \vartheta^m A^n = \varepsilon^{ijk} \varepsilon_{mnk} \vartheta^m A^n = -\varepsilon^{ijk} (\vec{\nabla} \times \vec{A})_k = -\varepsilon^{ijk} B_k \end{split}$$

Essendo antisimmetrico:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$
(1.1.5)

Osservazione 1.1. A tensore di rango 2, si può associare un vettore polare e un vettore assiale; in questo caso, rispettivamente campo elettrico e campo magnetico, quindi $F^{\mu\nu}=(-\vec{E},\vec{B})$ e $F_{\mu\nu}=(\vec{E},\vec{B})$.

Il tensore duale è:

$$\widetilde{F}^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \longrightarrow \widetilde{F}^{\mu\nu} = (-\vec{B}, -\vec{E}) \ e \ \widetilde{F}_{\mu\nu} = (\vec{B}, -\vec{E}) \ \ (1.1.6)$$

Le equazioni omogenee di Maxwell si riscrivono, quindi, come:

 $^{^1\}text{Per }F^{ij}\text{ si \`e usato } \vartheta^{\mathfrak{m}}=(-\vec{\nabla})_{\mathfrak{m}}\text{, essendo } \vartheta^{\mu}=(c^{-1}\vartheta_{\mathfrak{t}},-\vec{\nabla}).$

$$\partial_{\mu}\widetilde{F}^{\mu\nu}=0 \tag{1.1.7}$$

OSSERVAZIONE 1.2. Come le eq. di Maxwell omogenee in 3D permettono di introdurre i potenziali vettore e scalare, l'espressione $\partial_{\mu}\widetilde{F}^{\mu\nu}=0$ (per spazio sempl. connesso) permette che $F^{\mu\nu}$ si possa scrivere in termini di A^{μ} . Infatti¹:

$$\frac{1}{2} \partial_{\mu} \varepsilon^{\mu\nu\rho\sigma} (\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho}) = \varepsilon^{\mu\nu\rho\sigma} \partial_{\mu} \partial_{\rho} A_{\sigma} = 0 \tag{1.1.8}$$

La validità delle eq. omogenee di Maxwell si può riscrivere come:

$$0 = \partial_{\mu}\widetilde{F}^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} \partial_{\mu} F_{\rho\sigma} = -\frac{1}{6} \varepsilon^{\nu\mu\rho\sigma} (\partial_{\mu} F_{\rho\sigma} + \partial_{\rho} F_{\sigma\mu} + \partial_{\sigma} F_{\mu\rho})$$
 (1.1.9)

riscrivendo somma sugli indici muti e usando anti-simmetria di ϵ . Essendo antisimmetrica la combinazione nelle parentesi, perché l'espressione sia nulla, deve valere:

$$\partial_{\mu}F_{\rho\sigma} + \partial_{\rho}F_{\sigma\mu} + \partial_{\sigma}F_{\mu\rho} = 0 \tag{1.1.10}$$

1.1.2 Invarianza di Gauge

Per $A^{\mu} \to A'^{\mu} = A^{\mu} - \partial^{\mu}f \Rightarrow F'^{\mu\nu} \equiv F^{\mu\nu^2}$. La **Gauge di Lorenz** è data da $\partial_{\mu}A'^{\mu} = 0$; si ottiene per $\partial_{\mu}\partial^{\mu}f = \partial_{\nu}A^{\nu}$ e $A'^{\mu} = A^{\mu} - \partial^{\mu}f$. A^{μ} ancora non è univoco \to la condizione è invariante per $\partial_{\mu}\partial^{\mu}f = 0$.

In questa Gauge, le equazioni non omogenee sono eq. d'onda:

$$\partial_{\mu}\partial^{\mu}A^{\nu} = \frac{4\pi}{c}J^{\nu} \tag{1.1.11}$$

Nel vuoto (assenza di sorgenti) $\to \partial_{\mu}\partial^{\mu}A^{\nu}=0$, quindi si può usare libertà di Gauge rimasta e porre $A^{0}=0 \Rightarrow \vec{\nabla} \cdot \vec{A}=0$. Si dimostra che è possibile:

Dimostrazione. Sia $A^{\mu}:\partial_{\mu}A^{\mu}=0$ e $\partial_{\nu}\partial^{\nu}A^{\mu}=0$. Si prende $A'^{\mu}=A^{\mu}-\partial^{\mu}g$, con

$$g(t, \vec{r}) = c \int_0^t A^0(t', \vec{r}) dt' + h(\vec{r})$$

Così si ha $A'^{0}(t, \vec{r}) = 0$ e

$$\begin{split} \partial_{\mu}\partial^{\mu}g &= \frac{1}{c}\frac{\partial A^{0}}{\partial t} - c\int_{0}^{t}\nabla^{2}A^{0}\ dt' - \nabla^{2}h = \frac{1}{c}\frac{\partial A^{0}}{\partial t} - \int_{0}^{t}\frac{d^{2}}{dt'^{2}}A^{0}(t',\vec{r})\ dt' - \nabla^{2}h \\ &= \frac{1}{c}\frac{\partial}{\partial t}A^{0}(0,\vec{r}) - \nabla^{2}h \end{split}$$

con h t.c. $\partial_{\mu}\partial^{\mu}g = 0$, per cui $\partial_{\mu}A'^{\mu} = 0$ e $\partial^{\nu}\partial_{\nu}A'^{\mu} = 0$.

La condizione $\vec{\nabla} \cdot \vec{A}$ è la **Gauge di Coulomb** e si ottiene combinando A^{μ} generico e $f : \nabla^2 f = -\vec{\nabla} \cdot \vec{A}$. Anche qui c'è libertà di Gauge residua, modificando f aggiungendo funzione solo del tempo.

¹L'ultima uguaglianza è perché, per $\mu\leftrightarrow\rho$, $\partial_{\mu}\partial_{\rho}$ è simmetrica mentre $\varepsilon^{\mu\nu\rho\sigma}$ è antisimmetrico.

²Questo è facile da vedere se si scompone la trasformazione in parte temporale e spaziale, visto che coincide con la trasformazione di Gauge nel caso 3D.

1.1.3 Trasformazioni dei campi

Si ottengono da $F'^{\mu\nu} = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}F^{\rho\sigma}$. Si considera boost lungo $\hat{\chi}$. Per esempio:

$$F'^{01} = \Lambda^{0}_{\ o}\Lambda^{1}_{\ \sigma}F^{\rho\sigma} = \Lambda^{0}_{\ o}\Lambda^{1}_{\ 1}F^{01} + \Lambda^{0}_{\ 1}\Lambda^{1}_{\ o}F^{10} = (\gamma^{2} - \gamma^{2}\beta^{2})F^{01} \equiv F^{01}$$

Si ricava, in generale, che:

$$\begin{cases} \vec{\mathsf{E}}_{||}' = \vec{\mathsf{E}}_{||} \\ \vec{\mathsf{E}}_{\perp}' = \gamma(\vec{\mathsf{E}}_{\perp} + \vec{\beta} \times \vec{\mathsf{B}}) \end{cases} \begin{cases} \vec{\mathsf{B}}_{||}' = \vec{\mathsf{B}}_{||} \\ \vec{\mathsf{B}}_{\perp}' = \gamma(\vec{\mathsf{B}}_{\perp} - \vec{\beta} \times \vec{\mathsf{E}}) \end{cases}$$
(1.1.12)

Usando $\vec{E}_{||}=\vec{\beta}(\vec{\beta}\cdot\vec{E})/\beta^2,\, \vec{E}_{\perp}=\vec{E}-\vec{E}_{||}$ e $\beta^2=(\gamma^2-1)/\gamma^2,\, (1-\gamma)/\beta^2=-\gamma^2(\gamma+1)$:

$$\vec{E}' = \gamma(\vec{E} + \beta \times \vec{B}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{E})$$

$$\vec{B}' = \gamma(\vec{B} - \vec{\beta} \times \vec{E}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B})$$
(1.1.13)

Quelle inverse sono per $\vec{\beta} \to -\vec{\beta}$.

Si possono trovare espressioni invarianti, di cui due sono indipendenti: $I_1=F^{\mu\nu}F_{\mu\nu},\ I_2=\widetilde{F}^{\mu\nu}F_{\mu\nu}.$ In generale, dati due tensori antisimmetrici $A^{\mu\nu}=(\vec{p},\vec{\alpha})$ e $B^{\mu\nu}=(\vec{q},\vec{b})$, si trova¹:

$$A^{\mu\nu}B_{\mu\nu} = A^{0i}B_{0i} + A^{i0}B_{i0} + A^{ij}B_{ij} = -2\vec{p}\cdot\vec{q} + \varepsilon^{ijm}\alpha_m\varepsilon_{ijk}b^k = 2(\vec{\alpha}\cdot\vec{b} - \vec{p}\cdot\vec{q})$$

Allora:

$$I_1 = 2(\vec{B}^2 - \vec{E}^2), I_2 = -4\vec{B} \cdot \vec{E}$$
 (1.1.14)

Da questi, si ricava una forma canonica dipendente da I₁, I₂ per i campi:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E & 0 & 0 \\ E & 0 & 0 & E \\ 0 & 0 & 0 & 0 \\ 0 & -E & 0 & 0 \end{pmatrix}; F^{\mu\nu} = \begin{pmatrix} 0 & -E & 0 & 0 \\ E & 0 & 0 & 0 \\ 0 & 0 & 0 & -B \\ 0 & 0 & B & 0 \end{pmatrix}$$
 (1.1.15)

Prima valida se $\vec{E} \cdot \vec{B} = 0$, $\vec{E}^2 - \vec{B}^2 = 0$ e l'altra in tutti gli altri casi.

1.2 Carica in moto rettilineo uniforme

In S, carica e in moto rettilineo uniforme con $x = \beta ct$, y = 0, z = 0; S' SR solidale con e.

1.2.1 Campi per calcolo diretto

In S', i campi nel punto \vec{R}' sono:

$$\vec{E}' = e \frac{\vec{R}'}{|\vec{R}'|^3}; \ \vec{B}' = 0$$
 (1.2.1)

Trasformando in S, dove e ha velocità \vec{v} (quindi S ha velocità $\vec{V}=-\vec{v}$ rispetto a S'): $\vec{E}_{||}=\vec{E}_{||}', \ \vec{E}_{\perp}=\gamma\vec{E}_{\perp}'$ e

$$\vec{\mathbf{B}} = \frac{\vec{\mathbf{v}}}{\mathbf{c}} \times (\gamma \vec{\mathbf{E}}') = \frac{\vec{\mathbf{v}}}{\mathbf{c}} \times \vec{\mathbf{E}}$$
 (1.2.2)

 $^{^{1} \}text{Visto che } \varepsilon^{ij\mathfrak{m}} \varepsilon_{ijk} a_{\mathfrak{m}} b^{k} = (3 \delta^{\mathfrak{m}}_{k} - \delta^{j}_{k} \delta^{\mathfrak{m}}_{j}) a_{\mathfrak{m}} b^{k} = 2 \delta^{\mathfrak{m}}_{k} a_{\mathfrak{m}} b^{k}.$

Per le coordinate, si ha $x' = \gamma(x - vt)$, y' = y, z' = z, quindi:

$$R' = \sqrt{x'^2 + y'^2 + z'^2} = \sqrt{\gamma^2 (x - \nu t)^2 + y^2 + z^2} = \gamma \sqrt{(x - \nu t)^2 + (1 - \beta^2)(y^2 + z^2)}$$

Da qui, per $R' = \gamma R_*$:

$$E_{x} = \frac{e(x - vt)}{\gamma^{2}R_{*}^{3}}, \ E_{y} \frac{ey}{\gamma^{2}R_{*}^{3}}, \ E_{z} = \frac{ez}{\gamma^{2}R_{*}^{3}} \Longrightarrow \vec{E} = \frac{1}{\gamma^{2}} \frac{e\vec{R}}{R_{*}^{3}}$$
(1.2.3)

con $\vec{R} = (x - vt, y, z)$ posizione del punto di osservazione rispetto alla particella. Per osservatore in $x = 0, y = b, z = 0 \Rightarrow \vec{R} = (-vt, b, 0)$:

$$\mathsf{E}_{\mathsf{x}} = -\frac{e\gamma v\mathsf{t}}{(b^2 + \gamma^2 v^2 \mathsf{t}^2)^{3/2}}; \; \mathsf{E}_{\mathsf{y}} = \frac{e\gamma b}{(b^2 + \gamma^2 v^2 \mathsf{t}^2)^{3/2}}; \; \mathsf{E}_{\mathsf{z}} = \mathsf{0} \tag{1.2.4}$$

Per $\vec{B}=\frac{\vec{\nu}}{c}\times\vec{E}$, essendo $\vec{\nu}=(\nu,0,0)$, si ha:

$$B_x = B_y = 0; \ B_z = \frac{v}{c} E_y = \frac{\gamma \beta e b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}$$
 (1.2.5)

1.2.2 Campi tramite 4-potenziale

In S', si sceglie:

$$A'^{\mu} = \left(\frac{e}{\sqrt{x'^2 + y'^2 + z'^2}}, 0, 0, 0\right)$$
 (1.2.6)

In S, quindi:

$$A^{\mu} = \Lambda^{\mu}{}_{\nu}A^{\prime\nu} = \left(\frac{\gamma e}{\sqrt{\gamma^2 (x - \nu t)^2 + y^2 + z^2}}, \frac{\beta \gamma e}{\sqrt{\gamma^2 (x - \nu t)^2 + y^2 + z^2}}, 0, 0\right)$$
(1.2.7)

Da questi si ottengono i campi

$$\begin{cases} E_x = \frac{e(x-\nu t)}{\gamma^2 \left[(x-\nu t)^2 + (1-\beta^2)(y^2+z^2)\right]^{3/2}} \\ E_y = \frac{ey}{\gamma^2 \left[(x-\nu t)^2 + (1-\beta^2)(y^2+z^2)\right]^{3/2}} \\ E_z = \frac{ez}{\gamma^2 \left[(x-\nu t)^2 + (1-\beta^2)(y^2+z^2)\right]^{3/2}} \end{cases} \begin{cases} B_x = 0 \\ B_y = \frac{-e\beta z}{\gamma^2 \left[(x-\nu t)^2 + (1-\beta^2)(y^2+z^2)\right]^{3/2}} \\ B_z = \frac{e\beta y}{\gamma^2 \left[(x-\nu t)^2 + (1-\beta^2)(y^2+z^2)\right]^{3/2}} \end{cases}$$

1.2.3 Impulso trasferito

Per $\tau=\frac{1}{\gamma}\frac{b}{\nu},$ le espressioni per \vec{E},\vec{B} in P=(0,b,0) diventano:

$$\begin{cases} E_x = -\frac{e}{b^2} \frac{t/\tau}{(1+t^2/\tau^2)^{3/2}} \\ E_y = \frac{e}{b^2} \frac{\gamma}{(1+t^2/\tau^2)^{3/2}} \\ E_z = 0 \end{cases} \begin{cases} B_x = 0 \\ B_y = 0 \\ B_z = \frac{e}{b^2} \frac{\beta \gamma}{(1+t^2/\tau^2)^{3/2}} \end{cases}$$

Se carica -e posta in P, assumendo che contribuisca solo il campo elettrico alla variazione di quantità di moto e che durante il passaggio della carica, -e subisca uno spostamento trascurabile, la variazione è solo lungo y perché $E_z = 0$ e E_x è dispari in t, quindi:

$$\begin{split} \Delta p_y &= -e \int_{-\infty}^{+\infty} E_y \ dt = -\frac{e^2 \gamma}{b^2} \int_{-\infty}^{+\infty} \frac{1}{(1+t^2/\tau^2)^{3/2}} dt = -\frac{e^2 \gamma \tau}{b^2} \int_{-\infty}^{+\infty} \frac{d\xi}{(1+\xi^2)^{3/2}} \\ &= -\frac{2e^2 \gamma \tau}{b^2} = -\frac{2e^2}{by} = -\frac{2m_e c r_e}{b\beta} \end{split} \tag{1.2.8}$$

dove la primitiva dell'integrando è $\xi/\sqrt{1+\xi^2}$ e $r_e=e^2/(m_ec^2)$ è il raggio classico dell'elettrone. Per $b\gg 2r_e/\beta \Rightarrow |\Delta p_y|/(m_ec)\ll 1 \Rightarrow$ elettrone non relativistico, per cui è giustificata l'ipotesi di trascurare il campo magnetico. Lo spostamento dell'elettrone è:

$$|\Delta y| \approx \frac{|\Delta p_y|}{m_e} \tau = \frac{2r_e}{\gamma \beta^2}$$
 (1.2.9)

essendo τ tempo caratteristico dell'"urto". L'ipotesi di spostamento trascurabile è $|\Delta y| \ll b$ se $b \gg 2r_e/(\gamma \beta^2)$, più debole di quella per trascurare il campo magnetico.

1.2.4 Equazioni del moto per carica in campo em

Per carica e di massa m: $\frac{d\vec{p}}{dt} = e\vec{E} + \frac{e}{c}\vec{v} \times \vec{B}$, $\vec{p} = m\gamma\vec{v}$. Si cerca forma covariante, sapendo che il tensore $F^{\mu\nu}$ è lineare nei campi, quindi la **quadriforza** f^{μ} dovrà essere lineare nella 4-velocità e nel tensore di campo. Visto che $u^{\mu} = \gamma(c, \vec{v})$, il tensore $F^{\mu\nu}u_{\nu}$ ha componenti:

$$\begin{cases} F^{0\nu}u_{\nu} = F^{0i}u_{i} = \gamma \vec{E} \cdot \vec{v} \\ \\ F^{i\nu}u_{\nu} = F^{i0}u_{0} + F^{ij}u_{j} = \gamma c E_{i} + \gamma \varepsilon^{ijk} B_{k} \nu_{j} = c \gamma \left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B} \right)_{i} \end{cases}$$
 (1.2.10)

Avendo $p^{\mu}=(E/c,\vec{p})$ e $dt=\gamma d\tau,$ allora:

$$\frac{dp^{\mu}}{d\tau} = \frac{e}{c} F^{\mu\nu} u_{\nu} \tag{1.2.11}$$

1.3 Tensore energia-impulso

1.3.1 Tensore densità di forza

Forza di Lorentz per unità di volume è:

$$\frac{d\vec{p}}{dtdV} = \rho\vec{E} + \frac{1}{c}\vec{j} \times \vec{B}$$

Si introduce il 4-vettore

$$G^{\mu} = \frac{dp^{\mu}}{dtdV} = \left(\frac{1}{c}\frac{dE}{dtdV}, \frac{d\vec{p}}{dtdV}\right)$$
 (1.3.1)

che è un 4-vettore perché dtdV è uno scalare di Lorentz. A parte fattore c^{-1} , la componente temporale è lavoro svolto dal campo per unità di tempo e volume. Visto che $dE = \vec{v} \cdot d\vec{p}$, si ha:

$$\frac{1}{c}\frac{dE}{dtdV} = \frac{\vec{v}}{c} \cdot \frac{d\vec{p}}{dtdV} = \frac{1}{c}\rho\vec{E} \cdot \vec{v} = \frac{1}{c}\vec{E} \cdot \vec{j}$$

Allora, essendo $J^{\mu}=(c\rho,\vec{j})$:

$$G^{\mu} = \left(\frac{1}{c}\vec{E}\cdot\vec{j},\ \rho\vec{E} + \frac{1}{c}\vec{j}\times\vec{B}\right) = \frac{1}{c}F^{\mu\nu}J_{\nu} \tag{1.3.2}$$

1.3.2 Il tensore energia-impulso

A partire da G^{μ} , usando $\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}J^{\nu}$:

$$\frac{1}{c}\mathsf{F}^{\mu\nu}\mathsf{J}_{\nu}=\frac{1}{4\pi}\mathsf{F}^{\mu\nu}\vartheta^{\rho}\mathsf{F}_{\rho\nu}=\frac{1}{4\pi}\left[\vartheta^{\rho}(\mathsf{F}^{\mu\nu}\mathsf{F}_{\rho\nu})-(\vartheta^{\rho}\mathsf{F}^{\mu\nu})\mathsf{F}_{\rho\nu}\right]$$

Indici contratti sono muti, quindi il secondo termine diventa:

$$(\vartheta^{\rho}F^{\mu\nu})F_{\rho\nu}=\frac{1}{2}(\vartheta^{\rho}F^{\mu\nu})F_{\rho\nu}+\frac{1}{2}(\vartheta^{\nu}F^{\mu\rho})F_{\nu\rho}=\frac{1}{2}(\vartheta^{\rho}F^{\mu\nu}+\vartheta^{\nu}F^{\rho\mu})F_{\rho\nu}=-\frac{1}{2}(\vartheta^{\mu}F^{\nu\rho})F_{\rho\nu}$$

visto che $F^{\mu\nu}$ è antisimmetrico e $\vartheta_\mu F_{\rho\sigma} + \vartheta_\rho F_{\sigma\mu} + \vartheta_\sigma F_{\mu\rho} = 0.$ Allora:

$$\begin{split} G^{\mu} &= \frac{1}{4\pi} \left[\vartheta^{\rho} (F^{\mu\nu} F_{\rho\nu}) + \frac{1}{2} (\vartheta^{\mu} F^{\nu\rho}) F_{\rho\nu} \right] = \frac{1}{4\pi} \left[\vartheta^{\rho} (F^{\mu\nu} F_{\rho\nu}) - \frac{1}{2} (\vartheta^{\mu} F^{\nu\rho}) F_{\nu\rho} \right] \\ &= \frac{1}{4\pi} \left[\vartheta^{\rho} (F^{\mu\nu} F_{\rho\nu}) - \frac{1}{4} \vartheta^{\mu} (F^{\nu\rho} F_{\nu\rho}) \right] = \frac{1}{4\pi} \vartheta^{\rho} \left[F^{\mu\nu} F_{\rho\nu} - \frac{1}{4} \vartheta^{\mu}_{\rho} F^{\nu\alpha} F_{\nu\alpha} \right] \end{split} \tag{1.3.3}$$

Si definisce il tensore energia-impulso come:

$$T^{\mu\rho} = \frac{1}{4\pi} \left[-F^{\mu\nu}F^{\rho}_{\ \nu} + \frac{1}{4}\eta^{\mu\rho}F^{\nu\alpha}F_{\nu\alpha} \right] = \frac{1}{4\pi} \left[-F^{\mu\nu}\eta_{\nu\alpha}F^{\rho\alpha} + \frac{1}{4}\eta^{\mu\rho}F^{\nu\alpha}F_{\nu\alpha} \right] \tag{1.3.4}$$

Allora $\frac{1}{c}F^{\mu\nu}J_{\nu}=-\partial^{\rho}T^{\mu}_{\ \rho}=-\partial_{\rho}T^{\mu\rho},$ quindi:

$$G^{\mu} = -\partial_{\rho} T^{\mu\rho} \tag{1.3.5}$$

Il tensore $T^{\mu\nu}$ è simmetrico e a traccia nulla, quindi $T^{\mu}_{\ \mu}=$ 0, con componenti date da:

$$\begin{split} T^{00} &= \frac{1}{8\pi} (\vec{E}^2 + \vec{B}^2) \equiv W \\ T^{0i} &= \frac{1}{4\pi} (\vec{E} \times \vec{B})_i = \frac{S_i}{c} \\ T^{ij} &= \frac{1}{4\pi} \left[-E_i E_j - B_i B_j + \frac{1}{2} \delta_{ij} (\vec{E}^2 + \vec{B}^2) \right] = \sigma_{ij} \end{split} \tag{1.3.6}$$

con W densità di energia em, $\vec{S} = \frac{c}{4\pi} \vec{E} \times \vec{B}$ vettore di Poynting e σ_{ij} tensore degli sforzi di Maxwell¹. Quindi:

$$T^{\mu\rho} = \begin{pmatrix} W & \vec{S/c} \\ \vec{S/c} & \sigma_{ij} \end{pmatrix}; \quad T_{\mu\rho} = \begin{pmatrix} W & -\vec{S}/c \\ -\vec{S}/c & \sigma_{ij} \end{pmatrix}$$

$$T^{\mu}_{\rho} = \begin{pmatrix} W & -\vec{S}/c \\ \vec{S/c} & -\sigma_{ij} \end{pmatrix}; \quad T_{\mu}^{\rho} \begin{pmatrix} W & \vec{S}/c \\ -\vec{S}/c & -\sigma_{ij} \end{pmatrix}$$

$$(1.3.7)$$

1.3.3 Equazioni di conservazione

L'equazione $G^{\mu}=-\partial_{\rho}T^{\mu\rho}$ contiene equazioni per la conservazione dell'energia e dell'impulso:

$$\begin{split} G^0 &= \frac{1}{c}\frac{dE}{dtdV} = -\partial_\rho T^{0\rho} = -\partial_0 T^{00} - \partial_i T^{0i} = -\frac{1}{c}\frac{\partial W}{\partial t} - \frac{1}{c}\vec{\nabla}\cdot\vec{S} \Rightarrow \frac{dW}{dt} + \vec{\nabla}\cdot\vec{S} + \frac{dE}{dtdV} = 0 \\ \frac{1}{c^2}\frac{\partial S_i}{\partial t} + \partial_j \sigma_{ij} + \frac{dp_i}{dtdV} = 0 \end{split}$$

¹Gli indici sono in basso perché è tridimensionale.

Nella prima, dE/(dtdV) lavoro svolto da campo em (energia trasferita alle cariche) e \vec{S} vettore flusso di energia \rightarrow equazione di conservazione dell'energia; nella seconda, $d\vec{p}/(dtdV)$ forza per unità di volume (impulso trasferito da campo em alle cariche per unità di tempo e di volume) e σ_{ij} flusso di impulso \rightarrow equazione di conservazione dell'impulso, con \vec{S}/c^2 densità di impulso.

Per calcolo dell'energia trasferita alle cariche o forza esercitata sulle cariche da campo em, si integrano le equazioni su volume occupato dalle cariche e integrali di volume delle divergenze si riscrivono come flussi (le normali sono uscenti).

1.3.4 Caso dell'onda piana monocromatica

Ci si mette in Gauge di Lorenz, quindi $\partial_{\mu}A^{\mu}=0$. Valgono le equazioni di Maxwell $\partial_{\mu}\partial^{\mu}A_{\nu}=0$, alle quali si cerca soluzione del tipo $A_{\mu}(x)=\overline{A}_{\mu}e^{-ik_{\alpha}x^{\alpha}}$, dove \overline{A}_{μ} 4-vettore costante complesso e $k_{\mu} = (\omega/c, \vec{k})$ 4-vettore costante reale.

Da $\partial_{\mu}\partial^{\mu}A_{\nu}=0$, si ottiene $k_{\mu}k^{\mu}=0$ \Rightarrow $\vec{k}^2=\omega^2/c^2$, mentre $\partial_{\mu}A^{\mu}=0$ \Rightarrow $k_{\mu}\overline{A}^{\mu}=0$ \Rightarrow $k_{\mu}A^{\mu}(x) = k_{\mu}A^{*\mu}(x) = 0.$

Il tensore del campo è:

$$F_{\mu\nu}(x)=\Re\{\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}\}=\Re\{-ik_{\mu}A_{\nu}+ik_{\nu}A_{\mu}\}=\Im\{k_{\mu}A_{\nu}-k_{\nu}A_{\mu}\}$$

Ora si calcola il tensore energia-impulso, più precisamente la sua media temporale. Usando $k_{\mu}A^{\mu}(x)=k_{\mu}A^{*\mu}(x)=0$, si ha $F^{\alpha\beta}F_{\alpha\beta}=0^1$, corrispondente a $|\vec{E}|=|\vec{B}|$, quindi si calcola

$$\langle \mathsf{F}^{\mu\nu} \mathsf{F}^{\rho}_{\nu} \rangle = \mathsf{k}^{\mu} \mathsf{k}^{\rho} \left\langle \widetilde{\mathsf{A}}^{\nu} \widetilde{\mathsf{A}}_{\nu} \right\rangle = \mathsf{k}^{\mu} \mathsf{k}^{\rho} \left\langle \frac{\mathsf{A}^{\nu} - \mathsf{A}^{\nu*}}{2i} \frac{\mathsf{A}_{\nu} - \mathsf{A}^{*}_{\nu}}{2i} \right\rangle$$

$$= -\frac{\mathsf{k}^{\mu} \mathsf{k}^{\rho}}{4} \left(-2 \left\langle \mathsf{A}^{\nu} \mathsf{A}^{*}_{\nu} \right\rangle \right) = \frac{\mathsf{k}^{\mu} \mathsf{k}^{\rho}}{2} \left\langle \mathsf{A}^{\nu} \mathsf{A}^{*}_{\nu} \right\rangle$$
(1.3.8)

 $\text{con }\widetilde{A}^{\mu}=\mathfrak{I}\!\{A^{\mu}\}\text{ e l'ultima uguaglianza è giustificata da }\langle A_{\nu}A^{\nu}\rangle=\langle A_{\nu}^{*}A^{\nu*}\rangle=0\text{, a sua volta}$ dato da $\int_0^T e^{-4\pi i t/T} \ dt = 0^2$, che è quello che deve essere mediato sul periodo T.

Da questo: $\langle \mathsf{T}^{\mu\rho} \rangle = -\frac{\mathsf{k}^{\mu}\mathsf{k}^{\rho}}{8\pi} \langle \mathsf{A}^{\nu}\mathsf{A}_{\nu}^{*} \rangle$. Si nota che da $\mathsf{T}^{00} = W$, si ha $\langle W \rangle = -\frac{\omega^{2}}{8\pi c^{2}} \langle \mathsf{A}^{\nu}\mathsf{A}_{\nu}^{*} \rangle$, quindi

$$\langle \mathsf{T}^{\mu\rho} \rangle = \frac{\langle W \rangle \, c^2}{\omega^2} \mathsf{k}^{\mu} \mathsf{k}^{\rho} \tag{1.3.9}$$

Se $\hat{\pi}=c\vec{k}/\omega$ versore della direzione di propagazione dell'onda e $\pi^{\mu}=(1,\hat{\pi})$, si può scrivere:

$$\langle \mathsf{T}^{\mu\rho} \rangle = \langle W \rangle \, \mathsf{n}^{\mu} \mathsf{n}^{\rho} \tag{1.3.10}$$

1.4 Potenziali ritardati e irraggiamento

1.4.1 I potenziali ritardati

Distribuzione J^{μ} nel vuoto. In Guage di Lorenz $\partial_{\mu}A^{\mu}=0$, quindi si risolve $\partial_{\mu}\partial^{\mu}A^{\nu}=\frac{4\pi}{6}J^{\nu}$. Si usa la funzione di Green $G_R(\vec{r}, t)$ che soddisfa:

$$\left(\frac{1}{c^2}\partial_t^2 - \nabla^2\right)G_R(\vec{r},t) = \delta(\vec{r})\delta(t) \tag{1.4.1}$$

corrispondente ad un impulso di carica in un punto e tale che $G_R=0, \ \forall t<0, \ \forall \vec{r}.$ Trasformata solo rispetto a r3:

$$\left(\frac{1}{c^2}\partial_t^2 + k^2\right)\widetilde{G}_R(\vec{k}, t) = \frac{1}{(2\pi)^3}\delta(t) \tag{1.4.2}$$

Per farlo, si può usare che $F^{\mu\nu}=k^{\mu}\Im\{A^{\nu}\}-k^{\nu}\Im\{A^{\mu}\}.$

²Questo si ottiene dal prodotto degli esponenziali dei due 4-vettori, considerando solo l'esponente prodotto da $k_0 x^0 = \omega t$, con $\omega = 2\pi/T$. ³Questo consente di imporre più facilmente le condizioni al contorno più in avanti.

Soluzione generale della forma $A(k)\cos(\omega_k t)+B(k)\sin(\omega_k t)$, con $\omega_k=ck$. Usando le condizioni al contorno ($G_R=0,\ t<0$), si integra l'equazione:

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \left(\frac{1}{c^2} \vartheta_t^2 + k^2 \right) \widetilde{G}_R(\vec{k},t) \ dt = \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \frac{1}{(2\pi)^3} \delta(t) \ dt \implies \frac{1}{c^2} \vartheta_t \widetilde{G}_R(\vec{k},0^+) = \frac{1}{(2\pi)^3} \delta(t) + \frac{1}{c^2} \vartheta_t \widetilde{G}_R(\vec{k},0^+) = \frac{1}{c^2} \vartheta_t \widetilde{G}_R($$

dove $\int_{-\epsilon}^{+\epsilon} k^2 \widetilde{G}_R dt \to 0$. Integrando nuovamente: $\widetilde{G}_R(\vec{k}, 0^+) = 0$. Allora, da $\frac{1}{c^2} \partial_t \widetilde{G}_R(\vec{k}, 0^+) = \frac{1}{(2\pi)^3}$ e imponendo la causalità:

$$\widetilde{G}_{R}(\vec{k},t) = \frac{c}{(2\pi)^{3}} \frac{\sin(\omega_{k}t)}{k} \Theta(t)$$
(1.4.3)

Si anti-trasforma per trovare G_R , usando $\int_{-\infty}^{+\infty} e^{ikx} dk = 2\pi \delta(x)$:

$$\begin{split} G_R(\vec{r},t) &= \frac{c\Theta(t)}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\sin(ctk)}{k} e^{i\vec{k}\cdot\vec{r}} \; d^3k = \frac{c\Theta(t)}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\sin(ctk)}{k} e^{ikr\cos\theta} \; d^3k \\ &= 2\pi \frac{c\Theta(t)}{(2\pi)^3} \int_0^{+\infty} dk \; k \sin(ctk) \int_0^{\pi} d\theta \; e^{ikr\cos\theta} \sin\theta \\ &= \frac{c\Theta(t)}{(2\pi)^2} \int_0^{+\infty} dk \; k \sin(ckt) \int_{-1}^{+1} e^{ikr\alpha} \; d\alpha \\ &= \frac{c\Theta(t)}{(2\pi)^2} \frac{i}{kr} \int_0^{+\infty} k \frac{e^{ickt} - e^{-ickt}}{2i} (e^{-ikr} - e^{ikr}) \; dk \\ &= \frac{c\Theta(t)}{2(2\pi)^2 r} \int_0^{+\infty} (e^{ickt} - e^{-ickt}) (e^{-ikr} - e^{ikr}) \; dk \\ &= \frac{c\Theta(t)}{2(2\pi)^2 r} \int_0^{+\infty} \left(e^{i(ct-r)k} + e^{-i(ct-r)k} - e^{i(ct+r)k} - e^{-i(ct+r)k} \right) \; dk \\ &= \frac{c\Theta(t)}{2(2\pi)^2 r} \int_{-\infty}^{+\infty} \left(e^{i(ct-r)k} - e^{i(ct+r)k} \right) \; dk = \frac{c\Theta(t)}{4\pi r} \left[\delta(ct-r) - \delta(ct+r) \right] \\ &= \frac{c}{4\pi r} \delta(ct-r) = \frac{1}{4\pi r} \delta(t-r/c) \end{split}$$

dove:

- nella terza uguaglianza si passa in coordinate sferiche $(|k|, \theta, \phi)$, dove θ angolo fra \vec{k}, \vec{r} , quindi det $J = k^2 \sin \theta \ dk d\theta d\phi$;
- nell'ottava disuguaglianza, si includono i termini per $k \to -k$ nell'integrale, estendendolo da $-\infty$ a $+\infty$;
- nell'ultima disuguaglianza, si è portato nella delta la c al numeratore del coefficiente, usando $\delta(\alpha x) = \delta(x)/\alpha$ (cambio di variabile della $\delta(x)$).

Allora la soluzione generale è ottenuta tramite convoluzione con G_R:

$$\begin{split} A^{\mu}(\vec{r},t) &= \frac{4\pi}{c} \int_{\mathbb{R}^{3}} d^{3}r' \int_{-\infty}^{+\infty} dt' \ J^{\mu}(\vec{r}',t') G_{R}(\vec{r}-\vec{r}',t-t') \\ &= \frac{1}{c} \int_{\mathbb{R}^{3}} \int_{-\infty}^{+\infty} \frac{J^{\mu}(\vec{r}',t')}{|\vec{r}-\vec{r}'|} \delta(t-t'-|\vec{r}-\vec{r}'|/c) \ d^{3}r'dt' \\ &= \frac{1}{c} \int_{\mathbb{R}^{3}} \frac{J^{\mu}(\vec{r}',t-|\vec{r}-\vec{r}'|/c)}{|\vec{r}-\vec{r}'|} \ d^{3}r' \end{split} \tag{1.4.5}$$

OSSERVAZIONE 1.3. Dalla prima uguaglianza, visto che A^{μ} , J^{μ} sono quadrivettori e l'elemento $d^3r'dt'$ è invariante, allora G_R deve essere un invariante di Lorentz almeno per trasformazioni di Lorentz proprie.

Usando $t'=t-|\vec{r}-\vec{r}'|/c$, si mostra che $\partial_{\mu}A^{\mu}=0 \Rightarrow \partial_{t}\varphi/c+\vec{\nabla}\cdot\vec{A}=0$. Si vuole usare l'equazione di continuità, quindi a partire dalla soluzione A^{μ} appena trovata:

$$\begin{split} &\frac{1}{c} \vartheta_t \varphi(\vec{r},t) = \frac{1}{c} \int_{\mathbb{R}^3} \frac{\vartheta_t \rho(\vec{r}',t')}{|\vec{r}-\vec{r}'|} d^3r' \\ &\vec{\nabla} \cdot \vec{A}(\vec{r},t) = \frac{1}{c} \int_{\mathbb{R}^3} \vec{j}(\vec{r}',t') \cdot \vec{\nabla} \frac{1}{|\vec{r}-\vec{r}'|} d^3r' + \frac{1}{c} \int_{\mathbb{R}^3} \frac{1}{|\vec{r}-\vec{r}'|} \vec{\nabla} \cdot \vec{j}(\vec{r}',t') \ d^3r' \end{split}$$

Visto che

$$\vec{\nabla} \cdot \vec{j}(\vec{r}',t') = \frac{\partial \vec{j}(\vec{r}',t')}{\partial t'} \cdot \vec{\nabla} t' = -\frac{1}{c} \frac{\partial \vec{j}(\vec{r}',t')}{\partial t'} \cdot \vec{\nabla} \, |\vec{r} - \vec{r}'| = \frac{1}{c} \frac{\partial \vec{j}(\vec{r}',t')}{\partial t'} \cdot \vec{\nabla}' \, |\vec{r} - \vec{r}'|$$

e che $\vec{\nabla}' \cdot \vec{j}(\vec{r}',t') = \left[\vec{\nabla}' \cdot \vec{j}(\vec{r}',t')\right]_{t'} - \frac{1}{c} \vartheta_{t'} \vec{j}(\vec{r}',t') \cdot \vec{\nabla}' | \vec{r} - \vec{r}' |$, allora $\vec{\nabla} \cdot \vec{j} = \left[\vec{\nabla}' \cdot \vec{j}\right]_{t'} - \vec{\nabla}' \cdot \vec{j}$, quindi

$$\vec{\nabla} \cdot \vec{A}(\vec{r},t) = -\frac{1}{c} \int_{\mathbb{R}^3} \vec{\nabla}' \cdot \frac{\vec{j}(\vec{r}',t')}{|\vec{r}-\vec{r}'|} d^3r' + \frac{1}{c} \int_{\mathbb{R}^3} \frac{1}{|\vec{r}-\vec{r}'|} \left[\vec{\nabla}' \cdot \vec{j}(\vec{r}',t') \right]_{t'} d^3r'$$

Il primo termine si trasforma in un integrale di superficie in \vec{j} , quindi si annulla, pertanto:

$$\frac{1}{c}\frac{\partial \varphi(\vec{r},t)}{\partial t} + \vec{\nabla} \cdot \vec{A}(\vec{r},t) = \frac{1}{c}\int_{\mathbb{R}^3} \frac{1}{|\vec{r} - \vec{r}'|} \left(\partial_{t'} \rho(r',t') + \left[\vec{\nabla}' \cdot \vec{j}(\vec{r'},t') \right]_{t'} \right) d^3r' = 0 \qquad (1.4.6)$$

per l'equazione di continuità.

1.4.2 Dipolo elettrico

A partire da $\vec{A}(\vec{r},t)=\frac{1}{c}\int\frac{\vec{j}(\vec{r}',t-|\vec{r}-\vec{r}'|/c)}{|\vec{r}-\vec{r}'|}^{\prime}d^{3}r^{\prime}$, si assume $1/|\vec{r}-\vec{r}'|\simeq 1/r$: $\vec{A}(\vec{r},t)=\frac{1}{cr}\int\vec{j}(\vec{r}',t-r/c)\,d^{3}r^{\prime}$. Visto che:

$$\begin{split} \int j_{\mathfrak{i}}(\vec{r},t-r/c) \ d^3r' &= \int j_{k}(\vec{r}',t-r/c)(\vartheta_{k}'r_{\mathfrak{i}}') \ d^3r' \\ &= \underbrace{\int \vartheta_{k}' \big(r_{\mathfrak{i}}' j_{k}(\vec{r}',t-r/c) \big) \ d^3r'}_{} - \int r_{\mathfrak{i}}' \vartheta_{k}' j_{k}(\vec{r}',t-r/c) \ d^3r' \\ &= \int r_{\mathfrak{i}}' \vartheta_{\mathfrak{t}} \rho(\vec{r}',t-r/c) \ d^3r' = \frac{d}{dt} \int r_{\mathfrak{i}}' \rho(\vec{r}',t-r/c) \ d^3r' \equiv \dot{p}_{\mathfrak{i}}(t-r/c) \end{split}$$

Si ha:

$$\vec{A}(\vec{r},t) = \frac{1}{rc}\dot{\vec{p}}(t - r/c)$$
 (1.4.7)

Facendo uso di $\vec{\nabla} \times \vec{f}(\vec{r}',t-r/c) = -\frac{1}{c}\hat{n} \times \dot{\vec{f}}(\vec{r}',t-r/c)$, con $\hat{n} = \vec{r}/r$, il campo magnetico in zona di radiazione ($kr \gg 1$) è:

$$\vec{B}_{\text{rad}}(\vec{r},t) \simeq \frac{1}{rc} \vec{\nabla} \times \dot{\vec{p}}(t-r/c) = -\frac{1}{rc^2} \hat{n} \times \ddot{\vec{p}}(t-r/c) \tag{1.4.8} \label{eq:Brad}$$

dove si sono trascurati termini $O(r^{-2})$. Invece, usando $\vec{\nabla} \times \vec{B} = \frac{1}{c} \partial_t \vec{E}$ (trascurando ancora $O(r^{-2})$), si ha $(rc^3)^{-1} \hat{n} \left[\hat{n} \times \vec{p} \left(t - r/c \right) \right] = c^{-1} \partial_t \vec{E}$, quindi:

$$\vec{E}_{\text{rad}}(\vec{r},t) = \frac{1}{rc^2} \hat{n} \times \left[\hat{n} \times \ddot{\vec{p}}(t-r/c) \right] = -\frac{1}{rc^2} \ddot{\vec{p}}_{\perp}(t-r/c) \equiv -\hat{n} \times \vec{B}_{\text{rad}}(\vec{r},t) \tag{1.4.9} \label{eq:eq:energy_equation}$$

 $\text{con } \vec{p}_{\perp} = -\hat{n} \times (\hat{n} \times \vec{p}). \text{ Si calcola } \vec{S}_{\text{rad}} = \frac{c}{4\pi} \vec{E} \times \vec{B} = \frac{c}{4\pi} |\vec{E}|^2 \hat{n}; \text{in coordinate polari con } \ddot{\vec{p}} \parallel \hat{z} \text{ e } \theta$ angolo tra $\hat{n}, \ddot{\vec{p}} \in |\hat{n} \times (\hat{n} \times \ddot{\vec{p}})| = |\ddot{\vec{p}}| \sin \theta$:

$$P_{\text{rad}} = \int \vec{S} \cdot d\vec{A} = \int \vec{S} \cdot \hat{n} r^2 \ d\cos\theta d\varphi = \frac{1}{2c^3} |\ddot{\vec{p}}|^2 \int_{-1}^{+1} \sin^2\theta \ d\cos\theta = \frac{2}{3c^3} |\ddot{\vec{p}}|^2 \ \ (\text{1.4.10})$$

Sia $\vec{p}(t) = \vec{p}_0 e^{-i\omega t}$. Per \vec{S} , si usa $\vec{E} \to (\vec{E} + \vec{E}^*)/2$ con $\langle \vec{S} \rangle = \frac{c}{4\pi} \frac{1}{4} \langle \vec{E} \times \vec{B}^* + \vec{E}^* \times \vec{B} \rangle^1$; sostituendo $\vec{B} = \hat{n} \times \vec{E}$, si ha² $\langle \vec{S} \rangle = \frac{c}{8\pi} |\vec{E}|^2 \hat{n}$, quindi:

$$\langle P \rangle = \int \langle \vec{S} \rangle \cdot \hat{n} \, r^2 d\cos\theta d\phi = \frac{c}{4} k^4 \left| \vec{p}_0 \right|^2 \int_{-1}^{+1} \sin^2\theta \, d\cos\theta = \frac{c}{3} k^4 \left| \vec{p}_0 \right|^2 \tag{1.4.11}$$

1.4.3 Quadrupolo elettrico e dipolo magnetico

In $\vec{A}(\vec{r},t)=\frac{1}{c}\int \frac{j(\vec{r}',t-|\vec{r}-\vec{r}'|/c)}{|\vec{r}-\vec{r}'|}d^3r'$ si usa $|\vec{r}-\vec{r}'|\simeq r-\hat{n}\cdot\vec{r}'$, con $\hat{n}=\vec{r}/r$. Quindi $\vec{j}(\vec{r}',t-|\vec{r}-\vec{r}'|)/c\simeq \vec{j}(\vec{r}',t-r/c)+\frac{\hat{n}\cdot\vec{r}'}{c}\partial_{t'}\vec{j}(\vec{r}',t')|_{t'=t-r/c}$. Se \vec{j} ha frequenza ω , il secondo termine è attenuato di $(\alpha\omega)/c\simeq \alpha/\lambda\simeq \nu/c$, con α dimensione caratteristica della distribuzione.

Dai calcoli col secondo termine si ottiene:

$$\vec{A}^{(2)}(\vec{r},t) = \frac{1}{cr} \vec{\mu}(t-r/c) \times \hat{n} + \frac{1}{6c^2r} \ddot{\vec{Q}}(t-r/c) + \frac{1}{6cr^2} \hat{n} \vartheta_t^2 \int \left|\vec{r}'\right|^2 \rho(\vec{r}',t-r/c) d^3r' \ \ \mbox{(1.4.12)} \label{eq:A2}$$

dove $Q_{ik}(t') = \int \left(3r_i'r_k' - \delta_{in} |\vec{r}'|^2\right) \rho(\vec{r}',t') d^3r'$ è il momento di quadrupolo elettrico, mentre $\vec{\mu}(t) = \frac{1}{2c} \int \vec{r}' \times \vec{j}(\vec{r}',t) \ d^3r'$ è il momento di dipolo magnetico. In zona di radiazione $(r \gg \lambda)$, trascurando le derivate di 1/r e \hat{n} perché si trascurano termini

 $O(r^{-2})$:

$$\vec{B}^{(2)}(\vec{r},t) = \frac{1}{c^2 r} \hat{n} \times \left(\hat{n} \times \ddot{\vec{\mu}}(t-r/c) \right) + \frac{1}{6c^3 r} \dddot{\vec{Q}}(t-r/c) \times \hat{n} \tag{1.4.13} \label{eq:B2}$$

La potenza irraggiata è ottenuta tramite $\vec{S} = \frac{c}{4\pi} |\vec{B}|^2 \hat{n}$ e si ha:

$$P = \frac{2}{3c^3} |\ddot{d}|^2 + \frac{1}{180c^5} \sum_{ij} \dddot{Q}_{ij}^2 + \frac{2}{3c^3} \left| \ddot{\vec{\mu}} \right|^2 \tag{1.4.14} \label{eq:power_power}$$

con di momento di dipolo elettrico ottenuto prima. Nel caso di campi oscillanti, come prima, la potenza media $\langle P \rangle = \frac{1}{2}P$.

1.4.4 Campi di Liendard-Wiechert

Carica e con legge oraria $\vec{s}(t)$; vale:

$$\rho(\vec{r},t) = e\delta(\vec{r} - \vec{s}(t))$$
; $\vec{j}(\vec{r},t) = e\dot{\vec{s}}(t)\delta(\vec{r} - \vec{s}(t))$

¹Quelli con stessa frequenza sono a media nulla.

²Si è usato $\vec{E} \times (\hat{n} \times \vec{E}^*) = (\vec{E} \cdot \vec{E}^*)\hat{n} - (\vec{E} \cdot \hat{n})\vec{E}^*$, insieme al fatto che in campo di radiazione $\vec{E} \cdot \hat{n} = 0$. Si nota che \vec{E} è ancora quello complesso: la media della parte reale è inclusa nell'espressione.

I campi si ottengono usando l'espressione dei potenziali in termini della convoluzione delle sorgenti con funzione di Green G_R :

$$\begin{split} \varphi(\vec{r},t) &= \int \frac{\rho(\vec{r}',t')}{|\vec{r}-\vec{r}'|} \delta(t-t'-|\vec{r}-\vec{r}'|/c) \ d^3r' dt' = \int \frac{e\delta\left(\vec{r}'-\vec{s}(t')\right)}{|\vec{r}-\vec{r}'|} \delta(t-t'-|\vec{r}-\vec{r}'|/c) \ d^3r' dt' \\ &= \int \frac{e}{|\vec{r}-\vec{s}(t')|} \delta(t-t'-|\vec{r}-\vec{s}(t')|/c) dt' \end{split}$$

Usando $\delta(f(t')) = \sum_{t'_i} \frac{\delta(t'-t'_i)}{|f'(t'_i)|}^{\dagger}$ e che $t_r = t' + |\vec{r} - \vec{s}(t')|/c$:

$$\begin{split} \varphi(\vec{r},t) &= \int \frac{e\delta(t'-t_{\rm r})}{|\vec{r}-\vec{s}(t')| - \frac{1}{c}(\vec{r}-\vec{s}(t')) \cdot \dot{\vec{s}}(t')} dt' = \frac{e}{|\vec{r}-\vec{s}(t_{\rm r})| - \frac{1}{c}(\vec{r}-\vec{s}(t_{\rm r})) \cdot \dot{\vec{s}}(t_{\rm r})} \\ &= \frac{e}{R(1-\hat{n}\cdot\vec{\beta})} \bigg|_{t_{\rm r}} \end{split} \tag{1.4.15}$$

con $\vec{R} = \vec{r} - \vec{s}(t)$ e $\hat{n} = \vec{R}/R$. Per il potenziale vettore:

$$\vec{A}(\vec{r},t) = \frac{e\vec{\beta}}{R(1-\hat{n}\cdot\vec{\beta})}\bigg|_{t_r}$$
 (1.4.16)

In notazione quadridimensionale:

$$A^{\mu}(x) = e \frac{u^{\mu}(\tau_r)}{(x - s(\tau_r))_{\nu} u^{\nu}(\tau_r)} \tag{1.4.17}$$

con $(x-s(\tau_r))^2=0^2$. Per i campi si calcola il tensore di campo, nel quale si trascurano i termini in cui compare l'accelerazione:

$$F^{\mu\nu} = ec^2 \frac{(x-s)^{\mu} u^{\nu} - (x-s)^{\nu} u^{\mu}}{(u_{\alpha}(x-s)^{\alpha})^3} \bigg|_{t_{\tau}}$$
(1.4.18)

Visto che $x^0 - s^0(\tau_r) = |\vec{r} - \vec{s}(\tau_r)|, \ u^\mu = \gamma(c, \vec{v}) \ e \ \vec{R} = \vec{r} - \vec{s}(t), \ \hat{n} = \vec{R}/R$:

$$\vec{E} = \frac{e}{\gamma^2 R^2} \left. \frac{\hat{n} - \vec{\beta}}{(1 - \hat{n} \cdot \vec{\beta})^3} \right|_{t_r}; \ \vec{B} = \hat{n} \times \vec{E} = -\frac{e}{\gamma^2 R^2} \left. \frac{\hat{n} \times \vec{\beta}}{(1 - \hat{n} \cdot \vec{\beta})^3} \right|_{t_r}$$
(1.4.19)

NOTA: questi sono validi per a = 0, quindi **NON** validi in zona di radiazione.

Il tensore di campo completo è:

$$F_{\text{rad}}^{\mu\nu} = e^{\frac{(x-s)^{\mu}\alpha^{\nu} - (x-s)^{\nu}\alpha^{\mu}}{((x-s)_{\alpha}u^{\alpha})^{2}}} - e^{\frac{(x-s)^{\mu}u^{\nu} - (x-s)^{\nu}u^{\mu}}{(u_{\alpha}(x-s)^{\alpha})^{3}}} (x-s)_{\rho}\alpha^{\rho}$$
(1.4.20)

con

$$\alpha^{\mu} = \frac{du^{\mu}}{d\tau} = \left(\gamma^4 \frac{\vec{v} \cdot \vec{\alpha}}{c}, \gamma^4 \frac{\vec{v} \cdot \vec{\alpha}}{c^2} \vec{v} + \gamma^2 \vec{\alpha}\right)$$
(1.4.21)

I campi sono:

 $^{^1\}text{Qui, i}$ t $_i'$ sono soluzioni di f(t')=0. In questo caso, se $\dot{s}< c,$ f'(t')>0, quindi f(t')=0 ha un'unica soluzione $t_r.$

²Condizione di causalità tra coordinate e legge oraria $s^{\mu}(\tau)$. Visto che $u^{\mu}=(\gamma c,\gamma \vec{v})$, si ha $(x-s(\tau_r))_{\nu}u^{\nu}(\tau_r)=\gamma c\,R(1-\hat{n}\cdot\vec{\beta})|_{t_r}$.

$$\vec{E}(\vec{r},t) = \frac{e}{\gamma^2 R^2} \left. \frac{\hat{n} - \vec{\beta}}{(1 - \hat{n} \cdot \vec{\beta})^3} \right|_{t_{\tau}} + \frac{e}{cR} \left. \frac{\hat{n} \times ((\hat{n} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \hat{n} \cdot \vec{\beta})^3} \right|_{t_{\tau}} \; ; \; \; \vec{B}(\vec{r},t) = \hat{n} \times \vec{E}|_{t_{\tau}} \; \; (1.4.22)$$

1.4.5 Potenza irraggiata da una singola particella

Si considera il sistema di quiete della particella, in cui $\vec{E}_{\text{rad}} = \frac{e}{cR} \hat{n} \times (\hat{n} \times \dot{\vec{\beta}})$. Se θ angolo tra $\hat{n}, \vec{\beta}$: $|\vec{E}_{\text{rad}}| = \frac{e \, \alpha \, \sin \theta}{c^2 \, R}$. Visto che $\vec{S} = \frac{c}{4\pi} \vec{E}_{\text{rad}} \times (\hat{n} \times \vec{E}_{\text{rad}}) = \frac{c}{4\pi} E_{\text{rad}}^2 \hat{n}$ l'energia è il flusso del vettore di Poynting attraverso una sfera di raggio R:

$$\frac{d\mathcal{E}}{dt} = \frac{e^2\alpha^2}{4\pi c^3} 2\pi \int_0^\pi \sin^3\theta \ d\theta = \frac{e^2\alpha^2}{2c^3} \int_{-1}^{+1} (1-\cos^2\theta) \ d\cos\theta = \frac{2}{3} \frac{e^2\alpha^2}{c^3} \tag{1.4.23}$$

Questa è la **formula di Larmor**. Generalizzazione 4D della formula si ha con $d\mathcal{E} = \frac{2}{3} \frac{e^2 a^2}{c^3} dt$ e $d\vec{\mathcal{P}} = 0$, che sono energia e impulso irraggiati in tempo dt. Questa si può scrivere come:

$$d\mathcal{P}^{\mu} = -\frac{2e^2}{3c^5} \frac{du^{\nu}}{d\tau} \frac{du_{\nu}}{d\tau} u^{\mu} d\tau \tag{1.4.24}$$

In notazione 3D: $d\mathcal{P}^{\mu} = (d\mathcal{E}/c, d\vec{\mathcal{P}})$. In generico SR, allora:

$$\frac{d\mathcal{E}}{dt} = -\frac{2e^2}{3c^3} \frac{du^{\nu}}{d\tau} \frac{du_{\nu}}{d\tau}$$
 (1.4.25)

Calcolando $\alpha^\mu\alpha_\mu$ e usando $(\vec{\nu}\times\vec{\alpha})^2=\nu^2\alpha^2-(\vec{\nu}\cdot\vec{\alpha})^2$, si ottiene:

$$\frac{d\mathcal{E}}{dt} = \frac{2e^2}{3c^3}\gamma^6 \left(\alpha^2 - \frac{1}{c^2}(\vec{v} \times \vec{\alpha})^2\right) \tag{1.4.26}$$

1.5 Reazione di radiazione

Carica soggetta a \vec{F}_{ext} conservativa accelera e irraggia, perdendo energia. Si corregge l'equazione del moto $\vec{p}=\vec{F}_{ext}$ con termine \vec{F}_{rad} dovuto dalla radiazione emessa.

1.5.1 Un primo approccio

Essendo legata a perdita di energia per irraggiamento, \vec{F}_{rad} deve essere una forza dissipativa; si impone che il lavoro da essa compiuto sia dato dalla formula di Larmor per la perdita di energia:

$$\int_{t_1}^{t_2} \vec{F}_{\text{rad}} \cdot \vec{v} \ dt = -\frac{2}{3} \frac{e^2}{c^3} \int_{t_1}^{t_2} \dot{\vec{v}}^2 \ dt$$

Visto che $\dot{\vec{v}}^2 = \frac{d}{dt}(\vec{v}\cdot\dot{\vec{v}}) - \vec{v}\cdot\ddot{\vec{v}}$:

$$\int_{t_1}^{t_2} \vec{F}_{\text{rad}} \cdot \vec{v} \ dt = -\frac{2}{3} \frac{e^2}{c^3} \vec{v} \cdot \dot{\vec{v}} \bigg|_{t_2}^{t_1} + \frac{2}{3} \frac{e^2}{c^3} \int_{t_1}^{t_2} \vec{v} \cdot \ddot{\vec{v}} \ dt$$

Per un moto periodico, vale:

$$\int_{t_1}^{t_2} \left(\vec{F}_{\text{rad}} - \frac{2}{3} \frac{e^2}{c^3} \ddot{\vec{v}} \right) \cdot \vec{v} \ dt = 0$$

Possibile soluzione:

$$\vec{F}_{\text{rad}} = \frac{2}{3} \frac{e^2}{c^3} \ddot{\vec{v}} \tag{1.5.1}$$

1.5.2 Problemi e limiti della trattazione

Con $\tau=\frac{2}{3}\frac{e^2}{mc^3}$, l'equazione del moto è $m(\dot{\vec{v}}-\tau\ddot{\vec{v}})=\vec{F}_{\text{ext}}$. La presenza di $\ddot{\vec{v}}$ implica il dover specificare un'ulteriore condizione iniziale.

Un problema si presenta prendendo $\lim_{t\to -\infty}\dot{\vec{v}}(t)=0$, come la "soluzione di fuga" per $\vec{F}_{ext}=0$:

$$\dot{\vec{v}} - \tau \ddot{\vec{v}} = 0 \implies \dot{\vec{v}}_{ra} = \vec{\alpha}_0 e^{t/\tau} \tag{1.5.2}$$

Si può provare $\lim_{t\to +\infty} \dot{\vec{v}}(t)=0$, valida quando \vec{F}_{ext} agisce per un tempo limitato, ma sorgono dei problemi di causalità. Per evidenziarli, si cerca un modo per imporre tale condizione, che si ottiene riscrivendo l'equazione differenziale come:

$$-\frac{d}{dt}\left(e^{-t/\tau}m\dot{\vec{v}}(t)\right) = \frac{1}{\tau}e^{-t/\tau}\vec{F}_{\text{ext}}(t)$$

$$\Rightarrow m\dot{\vec{v}}(t) = \frac{e^{t/\tau}}{\tau}\int_{t}^{+\infty}e^{-t'/\tau}\vec{F}_{\text{ext}}(t') dt' = \int_{0}^{+\infty}e^{-s}\vec{F}_{\text{ext}}(t+\tau s) ds$$
(1.5.3)

con $\vec{F}_{\text{ext}}(t) = \vec{F}_{\text{ext}}\big(\vec{x}(t)\big)$ e $s = (t'-t)/\tau$. Considerando $\vec{F}_{\text{ext}} = \vec{F}_0\Theta(t)$, con \vec{F}_0 costante, si ha:

$$m\dot{\vec{v}}(t) = \vec{F}_0 \int_0^{+\infty} e^{-s} \Theta(t + \tau s) \ ds = \vec{F}_0 \int_{\max(0, -t/\tau)}^{+\infty} e^{-s} \ ds = \begin{cases} \vec{F}_0 &, \ t > 0 \\ \vec{F}_0 e^{t/\tau} &, \ t < 0 \end{cases}$$
 (1.5.4)

cioè la carica accelera prima di sentire la forza.

Sia $\vec{F}_{\text{ext}} = e \vec{E} + \frac{e}{c} \vec{v} \times \vec{B}$, con $v \ll c$; si determina limite di applicabilità calcolando accelerazione da eq. del moto senza \vec{F}_{rad} e la si usa per stimare $|\vec{F}_{\text{rad}}|$. Si ha:

$$m\dot{\vec{v}} = e\vec{E} + \frac{e}{c}\vec{v} \times \vec{B} \implies \ddot{\vec{v}} = \frac{e}{m}\dot{\vec{E}} + \frac{e}{mc}\dot{\vec{v}} \times \vec{B} + \frac{e}{mc}\vec{v} \times \dot{\vec{B}} \simeq \frac{e}{m}\dot{\vec{E}} + \frac{e^2}{m^2c}\vec{E} \times \vec{B}$$
(1.5.5)

Nell'ultimo, si è sostituito $\dot{\vec{v}}$ dall'equazione del moto e si sono trascurati termini lineari in \vec{v} (assunta piccola).

Sostituendo $\ddot{\vec{v}}$ in \vec{F}_{rad} , si ha espressione indipendente da $\ddot{\vec{v}}$ e affinché $|\vec{F}_{rad}| \ll |\vec{F}_{ext}|$, deve valere:

$$|\tau\dot{\vec{\mathsf{E}}}| \ll |\vec{\mathsf{E}}| \quad e \quad \frac{e^2\tau}{mc} |\vec{\mathsf{E}} \times \vec{\mathsf{B}}| \ll \varepsilon |\vec{\mathsf{E}}|$$

Usando $\dot{E} \sim \omega E$:

$$\lambda \gg r_e = \frac{e^2}{mc^2} \quad e \quad B \ll \frac{m^2c^4}{e^3}$$
 (1.5.6)

OSSERVAZIONE 1.4. Trattazione non quantistica fallisce prima dei limiti trovati sopra; per trascurare effetti quantistici, si deve avere $\lambda\gg\lambda_C=\frac{\hbar}{mc}\simeq 137r_e.$ Al contempo, l'energia associata alla frequenza di ciclotrone $\omega_c=\frac{eB}{mc}$ deve essere molto minore di mc^2 , cioè $B\ll\frac{m^2c^3}{e\hbar}$, che ancora è $\simeq 137$ volte maggiore di quello ottenuto in equazione 1.5.6.

1.5.3 Forza di Abraham-Lorentz

Si parte da particella carica di massa m, carica e e inizialmente non puntiforme, con raggio tipico a. Si assume la validità di $m\dot{u}^{\mu}=F^{\mu}_{\text{ext}}+F^{\mu}_{\text{rad}}$ e si cerca espressione per F^{μ}_{rad} .

Si assume che F^{μ}_{rad} dipenda da u^{μ} e tutte le derivate di ordine superiore¹. Per assicurare trasversalità delle forze², si definisce:

$$P^{\mu\nu} = \eta^{\mu\nu} - \frac{u^{\mu}u^{\nu}}{c^2} \tag{1.5.7}$$

Questa soddisfa $P^{\mu\nu}u_{\nu}=0$ e $P^{\mu\nu}\eta_{\nu\rho}P^{\rho\sigma}=P^{\mu\sigma}$; si vede come proiettore sull'iperpiano ortogonale alla 4-velocità, quindi si scrive:

$$F_{\text{rad}}^{\mu} = P^{\mu\nu}G_{\nu} \tag{1.5.8}$$

dove G^{μ} non deve soddisfare trasversalità. Assumendo che G^{μ} dipenda da u^{μ} e derivate di ordine superiore e che sia analitica, si può sviluppare come³:

$$G_{\mu} = A\dot{u}_{\mu} + B\ddot{u}_{\mu} + C\ddot{u}_{\mu} + \dots + D\dot{u}_{\mu}(\dot{u}_{\nu}\dot{u}^{\nu}) + \dots$$
 (1.5.9)

dove si sono omessi termini $\propto u^{\mu}$ perché eliminati da $P^{\mu\nu}$. I coefficienti A,B,\ldots dipendono solo da proprietà della particella (m,e,a) o costanti fondamentali (c) e si ricava tramite analisi dimensionale:

- [A] = massa \Rightarrow si scrive tramite m e $e^2/(\alpha c^2)$;
- [B] = massa × tempo \Rightarrow si scrive tramite ma/c e e^2/c^3 ;
- [C] = massa × tempo² \Rightarrow si scrive tramite ma^2/c^2 e e^2a/c^4 ;
- [D] = massa × tempo³/ velocità² \Rightarrow si scrive tramite ma²/c⁴ e $e^2 a/c^6$.

Per $a\to 0$, sopravvivono solo A,B, ma $e^2/(\alpha c^2)$ diverge. Si assume α finito e piccolo; usando $G_{\mu}=A\dot{u_{\mu}}+B\ddot{u}_{\mu}$:

$$\begin{split} F^{\mu}_{\text{rad}} &= P^{m\nu} G_{\nu} = A \dot{u}^{\mu} + B \left(\ddot{u}^{\mu} - \frac{1}{c^2} u^{\mu} \ddot{u}_{\nu} u^{\nu} \right) = A \dot{u}^{\mu} + B \left(\ddot{u}^{\mu} + \frac{1}{c^2} u^{\mu} \dot{u}_{\nu} \dot{u}^{\nu} \right) \\ &\Rightarrow (m-A) \dot{u}^{\mu} \equiv m_R \dot{u}^{\mu} = F^{\mu}_{\text{ext}} + B \left(\ddot{u}^{\mu} + \frac{1}{c^2} u^{\mu} \dot{u}_{\nu} \dot{u}^{\nu} \right) \end{split} \tag{1.5.10}$$

con $m_R = m - A$ massa rinormalizzata data da termine non-elettromagnetico m e termine elettromagnetico A^4 . Mantenendo costante m_R per $a \to 0$:

$$m_R \dot{u}^\mu = F^\mu_{\text{ext}} + b \frac{e^2}{c^3} \left(\ddot{u}^\mu + \frac{1}{c^2} u^\mu \dot{u}_\nu \dot{u}^\nu \right) \eqno(1.5.11)$$

con b costante adimensionale assunta indipendente dalla forma della particella⁵. Per trovare b, si impone che il lavoro compiuto da F^{μ}_{rad} sia tale da bilanciare energia irraggiata⁶:

$$L_{\text{rad}} = b \frac{e^2}{c^3} \int_{-\infty}^{+\infty} \ddot{\vec{v}} \cdot \vec{v} \, dt = -b \frac{e^2}{c^3} \int_{-\infty}^{+\infty} \dot{\vec{v}}^2 \, dt \implies b = \frac{2}{3}$$
 (1.5.12)

valido sotto l'assunzione di \vec{F}_{ext} nulla a grandi distanze ($\Rightarrow \dot{\vec{v}} = 0$ per $t \to \pm \infty$).

 $^{^1\}text{Questo}$ perché sono le uniche variabili che caratterizzano la particella nel limite $\alpha \to 0.$

²Perché si continua a lavorare nel caso di moto periodico.

 $^{^3}$ La prima serie di punti sottintende la presenza di termini lineari di ordine di derivazione maggiore; la seconda termini contenenti potenze di grado più elevato di u^{μ} e delle sue derivate.

⁴Significa che una carica massiva possiede due tipi di masse, ma risulta importante solo m_R perché è quello che si misura sperimentalmente sempre, visto che il campo generato dalla carica non si elimina durante il suo moto (cioè A non si può rimuovere).

 $^{^5}$ Ci potrebbe dipendere perché per $a \to 0$ si è tenuta la forma costante, ma in tale limite è ragionevole aspettarsi che sia indipendente

⁶Qui si usa che la componente spaziale della reazione di radiazione è $b \frac{e^2}{c^3} \ddot{\vec{v}}$ nel limite non-relativistico.

2 INDAGINE DELLA MATERIA CON ONDE ELETTROMAGNETICHE

2.1 Introduzione

2.1.1 Grandezze di interesse

Si investigano strutture atomiche (~ 10^{-10} m \equiv 1 Å) o subatomiche (~ 10^{-15} m \equiv 1 fm). Si usano fotoni, che hanno quantità di moto $|\vec{p}|=\hbar k=\hbar\omega/c$, dove $\hbar\simeq 1.0\cdot 10^{-34}$ J·s. Una grandezza comune è $\hbar c=197$ MeV · fm.

Si invia onda piana contro oggetto da investigare e si vede come diffonde la radiazione a grandi distanze. Se l'oggetto ha grandezza caratteristica α , si osservano i campi per $R\gg \alpha$.

2.1.2 Teoria sul dipolo elettrico

In zona di radiazione:

$$\vec{\mathsf{E}}_{\text{rad}} = \left. \frac{\hat{n} \times (\hat{n} \times \ddot{\vec{\mathsf{p}}})}{rc^2} \right|_{t-r/c}$$

Dato un dipolo oscillante $\vec{p}(t) = \vec{p}_0 e^{-i\omega t}$, usando $\hat{n} \times (\hat{n} \times \ddot{\vec{p}}) = (\hat{n} \cdot \ddot{\vec{p}}) \hat{n} - \ddot{\vec{p}}$ (visto che $\hat{n} \cdot \hat{n} = 1$), definendo $\vec{p}_{\perp} = \vec{p} - (\hat{n} \cdot \vec{p}) \hat{n}$, si ha:

$$\vec{E}_{\text{rad}} = \frac{\vec{p}_{0\perp}\omega^2}{rc^2}e^{-i(\omega t - \omega r/c)} = \frac{k_0^2}{r}\vec{p}_{0\perp}e^{-i(\omega t - k_0 r)} \tag{2.1.1}$$

Poi si ha $\vec{B}_{\text{rad}} = \hat{n} \times \vec{E}_{\text{rad}}.$ Il vettore di Poynting è¹:

$$\begin{split} \vec{S} &= \frac{c}{4\pi} \Re{\{\vec{E}\}} \times \Re{\{\vec{B}\}} = \frac{c}{4\pi} \frac{k_0^4}{r^2} (\vec{p}_{0\perp} \times (\hat{n} \times \vec{p}_{0\perp})) \cos^2(\omega t - k_0 r) \\ &= \frac{c}{4\pi} \frac{k_0^4}{r^2} |\vec{p}_{0\perp}|^2 \, \hat{n} \cos^2(\omega t - k_0 r) \end{split} \tag{2.1.2}$$

L'intensità è $I=\langle |\vec{S}| \rangle=\frac{1}{2}\frac{c}{4\pi}\frac{k_0^4}{r^2}|\vec{p}_{0\perp}|^2=\frac{c}{8\pi}\frac{k_0^4}{r^2}|\vec{p}_{0\perp}|^2,$ quindi, integrando su sfera di raggio r:

$$\begin{split} \langle P \rangle &= \int_{-1}^{+1} \int_{0}^{2\pi} \langle |\vec{S}| \rangle r^2 \ d\cos\theta d\phi = \frac{c k_0^4}{8\pi r^2} r^2 \int_{-1}^{+1} \int_{0}^{2\pi} |\vec{p}_{0\perp}|^2 d\cos\theta d\phi \\ &= \frac{c k_0^4}{8\pi} |\vec{p}_0|^2 \int_{-1}^{+1} \int_{0}^{2\pi} \sin^2\theta \ d\cos\theta d\phi = \frac{c}{3} k_0^4 |\vec{p}_0|^2 \end{split} \tag{2.1.3}$$

dove $|\vec{p}_{0\perp}| = |\vec{p}_0| \sin \theta$.

2.1.3 Onda incidente su schermo dielettrico e schermo opaco

Piano z=0 è uno schermo dielettrico; su di esso incide onda em con $\vec{E}_{inc}=\vec{E}_0e^{-i(\omega t-k_0z)}\parallel\hat{y}$. Il dielettrico si polarizza con polarizzazione $\vec{\mathcal{P}}=\vec{\mathcal{P}}_0e^{-i\omega t}$. Polarizzazione variabile nel tempo \Rightarrow moto di cariche sulla superficie dello schermo, quindi corrente superficiale $\vec{K}_{sup}=\frac{d\vec{\mathcal{P}}}{dt}$. Questa genera campo magnetico variabile nel tempo, che genera campo elettrico, quindi il piano emette onda em.

Usando che $\vec{p}_{0\perp} \times (\hat{n} \times \vec{p}_{0\perp}) = p_{0\perp}^2 \hat{n} - (\vec{p}_{0\perp} - \hat{n})\hat{n}$.

Per distanze piccole dal piano ($z \ll \lambda$), si trova \vec{B} con legge di Ampère, considerando rettangolo di lato ℓ sulla direzione \hat{x} , per cui $2B_{x0}\ell = \mu_0 K_{\text{sup}}\ell$. Sostituendo K_{sup} :

$$B_{x0} = -\frac{i\omega\mu_0}{2} \mathcal{P}_0 e^{-i\omega t}$$
 (2.1.4)

subito vicino lo schermo¹. Allora i campi che si generano in z > 0 sono, in generale:

$$\vec{B} = -\frac{i\omega\mu_0}{2}\mathcal{P}_0\hat{x}e^{-i(\omega t - k_0z)}\;;\quad \vec{E} = \frac{i\omega\mu_0c}{2}\mathcal{P}_0\hat{y}e^{-i(\omega t - k_0z)} \tag{2.1.5}$$

dove si è utilizzata la relazione per onde piane $|\vec{E}|=|\vec{B}|c$. Si usa $\frac{1}{\epsilon_0c^2}=\mu_0$ e $k=\omega/c$, quindi si esprime campo elettrico in CGS:

$$E_{y} = 2\pi i k \mathcal{P}_{0} e^{-i(\omega t - kz)} \Rightarrow B_{x} = 2\pi i k \mathcal{P}_{0} e^{-i(\omega t - kz)}$$
(2.1.6)

perché in CGS $|\vec{E}| = |\vec{B}|$. In z < 0, invece:

$$E_{y} = 2\pi i k \mathcal{P}_{0} e^{-i(\omega t + kz)}; B_{x} = 2\pi i k \mathcal{P}_{0} e^{-i(\omega t + kz)}$$
(2.1.7)

Hanno stessa espressione perché direzione di propagazione è opposta. In notazione vettoriale:

$$\vec{\mathsf{E}} = 2\pi \mathrm{i} k \vec{\mathcal{P}}_0 e^{-\mathrm{i}(\omega \, \mathsf{t} - k|z|)}, \ \vec{\mathcal{P}}_0 \parallel \hat{\mathsf{y}} \tag{2.1.8}$$

Nel semi-spazio z>0 sono presenti, in generale, campo generato dallo schermo e campo incidente, quindi il campo trasmesso è:

$$\vec{E}_{tot} = \vec{E}_{inc} + \vec{E}_{gen} = (\vec{E}_0 + 2\pi i k \vec{P}_0) e^{-i(\omega t - kz)}$$
 (2.1.9)

Per **schermo opaco**, deve valere $\vec{E}_{tot} = 0$, quindi:

$$\vec{P}_0 = -\frac{\vec{E}_0}{2\pi i k} \tag{2.1.10}$$

In condizione di schermo opaco, in z < 0 vale $\vec{\mathsf{E}}_{\mathsf{tot}} = \vec{\mathsf{E}}_{\mathsf{0}} e^{-\mathrm{i}\omega t} \left[e^{\mathrm{i}kz} - e^{-\mathrm{i}kz} \right]$.

2.1.4 Principio di Babinet

Piano opaco Σ in z=0 con apertura Σ' . Il campo incidente è $\vec{\mathsf{E}}_{\mathsf{in}}=\vec{\mathsf{E}}_{\mathsf{0}}e^{-\mathrm{i}(\omega t-k_{\mathsf{0}}z)}$. In generico punto P per z>0:

$$\vec{E}_{tot} = \vec{E}_{inc} + \vec{E}_s = \underbrace{\vec{E}_{inc} + \vec{E}_s + \vec{E}_{\alpha}}_{=0} - \vec{E}_{\alpha}$$
 (2.1.11)

dove \vec{E}_s è generato dallo schermo e \vec{E}_α dall'apertura², e si sommano a zero perché $\vec{E}_s + \vec{E}_\alpha$ formano schermo opaco pieno. Allora $\vec{E}_{tot} = -\vec{E}_\alpha \Rightarrow$ campo trasmesso è l'opposto di quello generato dall'apertura.

2.2 Teoria della diffrazione

2.2.1 Diffrazione da un ostacolo

Su piano z=0 è presente ostacolo Σ' ; si cerca $\vec{\mathsf{E}}$ nel punto P a distanza $\vec{\mathsf{r}}$ dall'origine. Si considera campo generato da $\mathrm{d}\Sigma'$ in posizione $\vec{\mathsf{r}}'$ rispetto a cui P è in posizione $\vec{\mathsf{r}}-\vec{\mathsf{r}}'$. Da equazione 2.1.1:

$$d\vec{E} = \frac{k_0^2}{|\vec{r} - \vec{r}'|} d\vec{p}_{0\perp} e^{-i(\omega \mathbf{t} - k_0 |\vec{r} - \vec{r}'|)}$$

¹Motivo per cui non si usa il tempo ritardato nell'espressione.

 $^{^2}$ Cioè sarebbe il campo elettrico generato dalla sola Σ' se l'apertura fosse piena per effetto di \vec{E}_{inc} .

Assumendo $|\vec{r}| \gg |\vec{r}'|$:

$$\begin{split} \frac{1}{|\vec{r}-\vec{r}'|} &\simeq \frac{1}{r} \; ; \; \; \hat{n} \equiv \frac{\vec{r}}{r} \simeq \frac{\vec{r}-\vec{r}'}{|\vec{r}-\vec{r}'|} \\ |\vec{r}-\vec{r}'| &= \sqrt{r^2 + r'^2 - 2\vec{r} \cdot \vec{r}'} \simeq \sqrt{r^2 - 2\vec{r} \cdot \vec{r}'} \simeq r - \hat{n} \cdot \vec{r}' \end{split}$$

 $\text{per } \sqrt{a-b} \simeq \sqrt{a} - \tfrac{b}{2\sqrt{a}}. \text{ Definendo } \vec{E}_{0\perp} = -\hat{\pi} \times (\hat{\pi} \times \vec{E}_0) = \vec{E}_0 - \hat{\pi} (\hat{\pi} \cdot \vec{E}_0) \text{ e } \vec{k} = \hat{\pi} k_0 \Rightarrow |\vec{k}| = k_0 :$

$$\begin{split} d\vec{\mathsf{E}} &\simeq \frac{k_0^2}{r} \vec{\mathcal{P}}_{0\perp} d\Sigma' e^{-\mathrm{i}(\omega t - k_0 r)} e^{-\mathrm{i}k_0 \, \hat{\mathbf{n}} \cdot \vec{r}'} = \frac{k_0^2}{r} \left(-\frac{\vec{\mathsf{E}}_{0\perp}}{2\pi \mathrm{i}k_0} \right) d\Sigma' e^{-\mathrm{i}(\omega t - k_0 r)} e^{-\mathrm{i}\vec{k} \cdot \vec{r}'} \\ &\Rightarrow \vec{\mathsf{E}} = -\int_{\Sigma'} \frac{k_0}{2\pi \mathrm{i}r} \vec{\mathsf{E}}_{0\perp} e^{-\mathrm{i}(\omega t - k_0 r)} e^{-\mathrm{i}\vec{k} \cdot \vec{r}'} \, d\Sigma' = \frac{\mathrm{i}k_0}{2\pi r} \vec{\mathsf{E}}_{0\perp} e^{-\mathrm{i}(\omega t - k_0 r)} \int_{\Sigma'} e^{-\mathrm{i}\vec{k} \cdot \vec{r}'} \, d\Sigma' \end{split} \tag{2.2.1}$$

2.2.2 Ampiezza di scattering per dipolo elettrico

Per irraggiamento da dipolo elettrico, è definita da:

$$\vec{f}(\vec{k}) = \frac{ik_0 \vec{E}_{0\perp}}{2\pi} \int_{\Sigma'} e^{-i\vec{k}\cdot\vec{r}'} d\Sigma'$$
 (2.2.2)

Questa contiene tutta la dipendenza angolare e permette di scrivere:

$$\vec{E} = \frac{e^{-i(\omega t - k_0 r)}}{r} \vec{f}(\vec{k})$$
 (2.2.3)

Quest'ultima forma, invece, è valida più in generale.

2.2.3 Fattore di forma 2D

Fattore di forma di una fenditura Σ' in 2D è definito da:

$$F(\vec{k}) = \int_{\Sigma'} e^{-i\vec{k}\cdot\vec{r}'} d\Sigma'$$
 (2.2.4)

Per:

$$\mathbb{L}(x',y') = \begin{cases} 1 & \text{, su } \Sigma' \\ 0 & \text{, altrove} \end{cases} \Rightarrow F(\vec{k}) = \iint_{\mathbb{R}^2} \mathbb{L}(x',y') e^{-ik_x x'} e^{-ik_y y'} \ dx' dy' \qquad \text{(2.2.5)}$$

La funzione $\mathbb{L}(x',y')$ è forma della fenditura; il suo fattore di forma è la trasformata di Fourier. Questo significa che, ottenuto $F(\vec{k})$, si ricava \mathbb{L} da trasformata inversa.

Trasformata inversa non sempre possibile: fissato $k_0, -k_0 < k = k_0 \sin \theta < k_0$ e non si può svolgere integrale su tutto $\mathbb R$. Questo si approssima bene quando $k_0 \sin \theta \gg 2\pi/a \Rightarrow \frac{2\pi}{\lambda} \sin \theta \gg \frac{2\pi}{\alpha} \Rightarrow \lambda \ll \alpha \sin \theta$ con α ampiezza fenditura. Investigazione con "particelle ondulatorie" che hanno impulso $|\vec{p}| = k_0 \hbar$:

$$\hbar k_0 \sin \theta \gg \frac{2\pi \hbar}{a} \Rightarrow c|\vec{p}| \sin \theta \gg \frac{\hbar c}{a}$$

Se $\alpha \sim 1$ fm, servono onde em con energia ~ 1 GeV \Rightarrow raggi γ .

Sperimentalmente, si misura $I = \langle |\vec{S}| \rangle \propto |F(\vec{k})|^2$, quindi non si ottiene fase associata a $F(\vec{k}) \Rightarrow$ è necessario indovinarla.

2.2.4 Fattore di forma 3D

Onda Einc su oggetto puntiforme in 3D. La direzione seguita dal campo irraggiato da oggetto nel punto P si esprime in termini di angoli θ, φ in coordinate sferiche. Campo in P è¹:

$$\vec{E}_{punt} = \frac{\vec{f}_{punt}(\vec{k})}{r} e^{-i(\omega t - k_0 r)}$$
 (2.2.6)

Ora si considera oggetto composto da N punti. Il punto i-esimo ha coordinata \vec{r}_i' , il punto P rispetto all'origine ha coordinata \vec{r} , rispetto al punto i-esimo ha coordinata $\vec{r} - \vec{r}'$. Campo incidente è $\vec{E}_{\text{inc}} = \vec{E}_0 e^{-i(\omega t - k_0 z_i')}$; quello che incide sul punto i-esimo è: $\vec{E}_{\text{inc},i} = \vec{E}_0 e^{-i(\omega t - k_0 z_i')}$. Contributo di i in P è2:

$$\vec{E}_{i}(\vec{r}) = \frac{\vec{f}_{punt}(\vec{k}')}{|\vec{r} - \vec{r}'|} e^{-i(\omega t - k_0 z'_i - k_0 |\vec{r} - \vec{r}'|)}$$
(2.2.7)

con $\vec{k}'=k_0\hat{n}'$ e $\hat{n}'=\frac{\vec{r}-\vec{r}'}{|\vec{r}-\vec{r}'|}$. Si usano le seguenti approssimazioni per $|\vec{r}|\gg|\vec{r}'|$:

$$\hat{\boldsymbol{n}} \simeq \hat{\boldsymbol{n}}' \; ; \quad \frac{1}{|\vec{r} - \vec{r}'|} \simeq \frac{1}{r} \; ; \quad |\vec{r} - \vec{r}'| \simeq r - \hat{\boldsymbol{n}} \cdot \vec{r}'$$

quindi:

$$\vec{E}_{i} \simeq \frac{\vec{f}_{\text{punt}}(\vec{k})}{r} e^{-i(\omega t - k_0 r)} e^{-i(k_0 \hat{\pi} \cdot \vec{r}' - k_0 z_i')} \tag{2.2.8}$$

 $\text{Se } \vec{k}_0 \, = \, (0,0,k_0), \ \, \vec{r}_i' \, = \, (x_i',y_i',z_i') \, \Rightarrow \, \text{exp} \, (-i(k_0 \hat{n} \cdot \vec{r}_i' - k_0 z_i')) \, = \, \text{exp} \, \Big(i(\vec{k} \cdot \vec{r}_i' - \vec{k}_0 \cdot \vec{r}_i') \Big). \ \, \text{Since } \vec{k}_0 = (0,0,k_0), \ \, \vec{r}_i' = (x_i',y_i',z_i') \, \Rightarrow \, \text{exp} \, (-i(k_0 \hat{n} \cdot \vec{r}_i' - k_0 z_i')) \, = \, \text{exp} \, \Big(i(\vec{k} \cdot \vec{r}_i' - \vec{k}_0 \cdot \vec{r}_i') \Big). \ \, \text{Since } \vec{k}_0 = (0,0,k_0), \ \, \vec{r}_i' = (x_i',y_i',z_i') \, \Rightarrow \, \vec{k}_0 = (0,0,k_0), \ \, \vec{k}_0 = (0,0,k_0$ definisce impulso trasferito

$$\vec{q} = \vec{k} - \vec{k}_0 \tag{2.2.9}$$

OSSERVAZIONE 2.1. $|\vec{q}|$ ha dimensioni di inverso di una lunghezza, ma $\hbar \vec{q} = \hbar \vec{k} - \hbar \vec{k}_0$ sono impulsi. Inoltre vale:

$$|\vec{q}| = \sqrt{(\vec{k} - \vec{k}_0)^2} = \sqrt{k^2 + k_0^2 - 2k_0^2 \cos \theta} = \sqrt{2k_0^2 - 2k_0^2 \cos \theta} \simeq 2k_0 \sin(\theta/2) \tag{2.2.10}$$

Allora:

$$\begin{split} \vec{E}_{i} &= \frac{\vec{f}_{\text{punt}}(\vec{k})}{r} e^{-i(\omega t - k_{0}r)} e^{-i\vec{q} \cdot \vec{r}'_{i}} \equiv \vec{E}_{\text{punt}} e^{-i\vec{q} \cdot \vec{r}'_{i}} \\ \Rightarrow \vec{E}_{\text{tot}} &= \sum_{i} \vec{E}_{i} = \vec{E}_{\text{punt}} \sum_{i} e^{-i\vec{q} \cdot \vec{r}'_{i}} \equiv \vec{E}_{\text{punt}} F(\vec{q}) \end{split} \tag{2.2.11}$$

con $F(\vec{q})$ fattore di forma discreto tridimensionale.

Per ostacolo continuo con $\rho(\vec{r}') = \frac{dN}{dV'}$:

$$F(\vec{q}) = \int_{V'} \rho(\vec{r}') e^{-i\vec{q}\cdot\vec{r}'} dV' \qquad (2.2.12)$$

 $^{^1\}text{II}$ campo puntiforme è $\vec{E}=\frac{k_0^2}{r}\vec{P}_{0\perp}e^{-i(\omega t-k_0 r)},$ con ampiezza di scattering puntiforme $\vec{f}(\vec{k})=k_0^2\vec{P}_{0\perp}.$ ^2Si deve considerare il tempo impiegato dall'onda ad andare da ciascun punto dell'ostacolo al punto P.

2.3 Sezioni d'urto

2.3.1 Sezione d'urto totale

Potenza assorbita dall'ostacolo è $P_{abs} = \frac{c}{4\pi} |\vec{E}_{inc}|^2 A = |\vec{S}_{inc}| A$, mentre quella diffusa è¹ $P_{diff} = |\vec{S}_{inc}| A$. Ne segue che la potenza totale rimossa dal fascio iniziale è: $P_{tot} = 2A |\vec{S}_{inc}|$.

Si definisce, allora, sezione d'urto totale:

$$\sigma_{tot} \stackrel{\text{def}}{=} \frac{\langle P_{tot} \rangle}{\langle |\vec{S}_{inc}| \rangle} \tag{2.3.1}$$

Nel caso di ostacolo opaco (per cui vale Babinet): $\sigma_{tot} = 2A$.

2.3.2 II teorema ottico

Da sezione precedente, si calcola ampiezza di scattering per $\vec{k} = \vec{k}_0 \Rightarrow \theta = 0^2$:

$$\vec{f}(\vec{k}_0) = \frac{ik_0}{2\pi} \vec{E}_0 \int_{\Sigma'} e^{-i\vec{k}_0 \cdot \vec{r}'} \ d\Sigma' = \frac{ik_0 \vec{E}_0}{2\pi} \int_{\Sigma'} d\Sigma' = \frac{ik_0 \vec{E}_0 A}{2\pi} \equiv \vec{f}(\vec{0}) \tag{2.3.2}$$

Da questa si verifica facilmente la validità del teorema ottico in questo caso. Vale il seguente:

TEOREMA 2.1 — **TEOREMA OTTICO.** Nel caso di onde elettromagnetiche, in cui la funzione d'onda è il campo elettrico:

$$\sigma_{tot} = \frac{4\pi}{k_0} \frac{\Im\left\{\vec{E}_0^* \cdot \vec{f}(\vec{0})\right\}}{|\vec{E}_0|^2}$$
 (2.3.3)

2.3.3 Sezioni d'urto di assorbimento, elastica e inelastica

Onda si propaga lungo z con $\vec{B} \parallel \hat{y}, \vec{E} \parallel \hat{x}$, quindi $\vec{S}_{in} \parallel \hat{z}$. L'onda è assunta monocromatica con ω , piana, linearmente polarizzata e con \vec{S}_{in} noto.

Questa incide su bersaglio ignoto e si misurano radiazioni da esso scatterate ad una distanza \vec{R} tramite rivelatore.

Una parte dell'onda incidente è **assorbita**, un'altra parte è **scatterata elasticamente** (stessa frequenza onda incidente) e la rimanente è **scatterata inelasticamente** (frequenze diverse).

Osservazione 2.2. Per onda monocromatica si deve avere lunghezza di coerenza L infinita; verosimilmente, si assume $L \gg \lambda$.

In MKSA, si ha $\vec{E}_{in} = E_0 \hat{x} \cos(\omega t - kz)$, $\vec{B}_{in} = (E_0/c)\hat{y} \cos(\omega t - kz)$ e

$$\vec{S}_{in} = \frac{1}{\mu_0} (\vec{E}_{in} \times \vec{B}_{in}) = \frac{E_0^2}{\mu_0 c} \cos^2(\omega t - kz) \hat{z} = \frac{E_0^2}{Z_0} \cos^2(\omega t - kz) \hat{z}$$
 (2.3.4)

con $Z_0 = \sqrt{\mu_0/\epsilon_0} \simeq 377~\Omega$ impedenza del vuoto.

Si definisce sezione d'urto di assorbimento:

¹Visto che l'ampiezza di scattering in z > 0, per Babinet, è quella dell'apertura, allora la potenza diffusa è quella che attraversa l'apertura (schermo con apertura Σ'), quindi si trova il risultato corrispondente.

 $^{^2}$ Si nota che in questo caso sparisce il trasverso \perp come pedice perché per $\theta=0$, il campo è completamente trasverso.

$$\sigma_{abs} = \frac{\langle P_{abs} \rangle}{\langle |\vec{S}_{in}| \rangle} \tag{2.3.5}$$

Si definisce sezione d'urto elastica:

$$\sigma_{\mathsf{el}} = \frac{\langle \mathsf{P}_{\mathsf{el}} \rangle}{\langle |\vec{\mathsf{S}}_{\mathsf{in}}| \rangle} \tag{2.3.6}$$

Se \vec{S}_{el} attraverso superficie dA individuata da $d\Omega$ con raggio vettore \vec{R} , la potenza trasmessa per diffusione elastica è $dP_{\text{el}} = \langle |\vec{S}_{\text{el}}(\theta,\phi)| \rangle R^2 d\Omega$; allora si definisce **sezione d'urto differenziale elastica**:

$$\frac{d\sigma_{\text{el}}}{d\Omega} = R^2 \frac{\langle |\vec{S}_{\text{el}}(\theta, \phi)| \rangle}{\langle |\vec{S}_{\text{in}}| \rangle}$$
(2.3.7)

Per verifica:

$$\sigma_{\text{el}} = \int_{\Omega} \left(\frac{d\sigma_{\text{el}}}{d\Omega} \right) d\Omega = \frac{1}{\langle |\vec{S}_{\text{in}}| \rangle} \int_{\Omega} \langle |\vec{S}_{\text{el}}(\theta,\phi)| \rangle R^2 d\Omega \equiv \frac{1}{\langle |\vec{S}_{\text{in}}| \rangle} \left\langle P_{\text{el}} \right\rangle$$

Analogamente, si definisce sezione d'urto inelastica:

$$\sigma_{\omega_{\mathfrak{i}}} = \frac{\langle P_{\omega_{\mathfrak{i}}} \rangle}{\langle |\vec{S}_{\text{in}}| \rangle} \; ; \quad \frac{d\sigma_{\omega_{\mathfrak{i}}}}{d\Omega} = \frac{R^2 \langle |\vec{S}_{\omega_{\mathfrak{i}}}(\theta, \phi)| \rangle}{\langle |\vec{S}_{\text{in}}| \rangle} \tag{2.3.8}$$

OSSERVAZIONE 2.3. Un sistema che non presenta non-linearità non irraggia inelasticamente; ad esempio, un circuito RLC irraggia solo elasticamente. Per avere scattering inelastico, si può usare un diodo.

Infine la sezione d'urto totale è:

$$\sigma_{\text{tot}} = \sigma_{\text{abs}} + \sigma_{\text{el}} + \sum_{i} \sigma_{\omega_{i}}$$
 (2.3.9)

Per processo di diffusione d, onda emessa è1:

$$\vec{E}_{d} = \frac{\vec{f}(\theta, \phi)}{R} e^{-i(\omega_{d}t + k_{d}R + \phi_{d})}$$
 (2.3.10)

da cui:

$$\frac{d\sigma_{\omega_d}}{d\Omega} = \frac{\langle |\vec{f}(\theta, \phi)|^2 \rangle}{\langle |\vec{E}_{in}| \rangle}$$
 (2.3.11)

2.4 Scattering e risonanza

2.4.1 Modello dell'elettrone legato elasticamente

Elettrone con carica q legato elasticamente a origine O vincolato nel piano (x,y). Onda em ci incide sopra e si studia il suo irraggiamento nel punto P in posizione \vec{R} da O. \vec{R} forma angolo θ con \hat{y} (angolo di scattering) e angolo α con \hat{x} .

L'onda incidente si propaga lungo \hat{z} , con $\vec{E}_{inc} = E_0 e^{-i\omega t} \hat{\chi}^2$. Forze agenti su elettrone:

¹Si aggiunge fase generica ϕ_d perché non è detto che l'irraggiamento avvenga in fase con onda incidente.

 $^{^2}$ Non c'è termine kz perché l'onda incide il piano z=0 su cui è vincolato l'elettrone.

- $\vec{F}_C = q\vec{E}_0e^{-i\omega t}$ forza di Coulomb¹;
- $\vec{F}_{el} = -m\omega_0^2 \vec{x}$, con $\omega_0 = \sqrt{k_{el}/m} \sim 10^{-14}$ Hz;
- $\vec{F}_{\text{visc}} = -m\Gamma'\dot{\vec{x}}$, con $\Gamma' \sim 10^9 10^{11}$ Hz, forza viscosa \rightarrow somma forze dissipative tranne reazione di radiazione;
- $\vec{F}_{\text{rad}} = m \tau \, \vec{x}$ reazione di radiazione, con $\tau = 2 r_e/(3c) \simeq 6 \cdot 10^{-24}$ s.

Allora:

$$\frac{q\vec{E}_0}{m}e^{-i\omega t} = -\tau \ddot{\vec{x}} + \ddot{\vec{x}} + \Gamma' \dot{\vec{x}} + \omega_0^2 \vec{x}$$
 (2.4.1)

Cercando soluzione $\vec{x} = \vec{x}_0 e^{-i\omega t}$

$$\vec{x}_0 = \frac{e\vec{E}_0/m}{\omega_0^2 - \omega^2 - i\omega \left[\Gamma' + \tau \frac{\omega^2}{\omega_0^2} \omega_0^2\right]} = \frac{q\vec{E}_0/m}{\omega_0^2 - \omega^2 - i\omega\Gamma_{tot}(\omega)}$$
(2.4.2)

dove $\Gamma_{tot}(\omega) = \Gamma' + \tau \omega_0^2 \frac{\omega^2}{\omega_0^2} \equiv \Gamma' + \Gamma \frac{\omega^2}{\omega_0^2}$. Γ e Γ' sono definite **larghezze parziali** mentre Γ_{tot} **larghezza totale**; le prime sono legate alla dissipazione di energia per diffusione elastica, mentre la seconda alla dissipazione di energia per assorbimento. Il valore $\Gamma + \Gamma'$ definisce la larghezza della campana di σ_{el} attorno alla risonanza.

OSSERVAZIONE 2.4. Da questa, si possono ricavare $\vec{P}=nq\vec{x}=\chi\epsilon_0\vec{E}$ e $\epsilon_r=1+\chi$ vettore di polarizzazione e permittività elettrica relativa.

2.4.2 Sezione d'urto elastica

Quindi, è nota:

$$\ddot{\vec{x}} = -\frac{q\vec{E}}{m} \frac{\omega^2}{(\omega_0^2 - \omega^2) - i\omega\Gamma_{tot}}$$

In MKS, si ricava $\langle P \rangle = \frac{\langle |\ddot{\bar{p}}|^2 \rangle}{6\pi\epsilon_0 c^3}$, perciò:

$$\begin{split} \langle P_{\text{el}} \rangle &= \frac{q^2 \langle |\vec{a}|^2 \rangle}{6\pi \epsilon_0 c^3} = \frac{q^4}{6\pi \epsilon_0 c^3 m^2} \langle |\vec{E}|^2 \rangle \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2} \\ \sigma_{\text{el}} &= \frac{\langle P_{\text{el}} \rangle}{\epsilon_0 c \langle |\vec{E}|^2 \rangle} = \frac{q^4}{6\pi \epsilon_0^2 c^4 m^2} \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2} \\ &= \frac{8}{3} \pi \frac{q^4}{16\pi^2 \epsilon_0^2 c^4 m^2} \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2} \end{split} \tag{2.4.3}$$

Quindi si ottiene la formula di Breit-Wigner

$$\sigma_{\text{el}} = \frac{8}{3}\pi r_{\text{e}}^2 \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2}$$
 (2.4.4)

dove si definisce sezione d'urto Thomson:

$$\sigma_{th} = \frac{8}{3} \pi r_e^2 \simeq 0.66 \cdot 10^{-24} \text{ cm}^2 \equiv 0.66 \text{ barn} \tag{2.4.5} \label{eq:sigmatrix}$$

¹Si trascura contributo della forza magnetica.

OSSERVAZIONE 2.5 — TERMINE DI RADIAZIONE. Tutti i termini a parte reazione di radiazione sono validi per qualunque sistema che presenti tali caratteristiche. Quello di radiazione è approssimato a dipolo elettrico, quindi non sarà valido per irraggiamento d'altro tipo.

Inoltre, visto che questo rientra direttamente in Γ_{tot} , si ottengono informazioni riguardo la natura dell'oggetto scatterante a partire dalla larghezza di σ_{el} .

2.4.3 Limiti di σ_{el}

• Per $\omega \ll \omega_0$:

$$\sigma_{\text{el}} = \sigma_{\text{th}} \frac{\omega^4}{(\omega^2 - \omega_0^2)^2 + \omega^2 \Gamma_{\text{tot}}^2(\omega)} \simeq \sigma_{\text{th}} \left(\frac{\omega}{\omega_0}\right)^4$$
 (2.4.6)

• Per $\omega \sim \omega_0$:

$$\begin{split} \sigma_{\text{el}} &= \sigma_{\text{th}} \frac{\omega^4}{(\omega_0 - \omega)^2 (\omega_0 + \omega)^2 + \omega^2 \left(\Gamma' + \Gamma \frac{\omega^2}{\omega_0^2}\right)^2} \\ &\simeq \sigma_{\text{th}} \frac{\omega_0^4}{4\omega_0^2 (\omega_0 - \omega)^2 + \omega_0^2 (\Gamma + \Gamma')^2} = \sigma_{\text{th}} \frac{\omega_0^2 / 4}{(\omega - \omega_0)^2 + \left(\frac{\Gamma + \Gamma'}{2}\right)^2} \end{split} \tag{2.4.7}$$

Funzione **Iorentziana** (curva a campana). La larghezza FWHM¹ è $\Delta\omega=\pm\frac{\Gamma+\Gamma'}{2}$. Si nota che:

$$\Gamma = \tau \omega_0^2 \approx 6.2 \cdot 10^{-24} \text{ s } (10^{15})^2 \text{ s}^{-2} = 6.2 \cdot 10^6 \text{ s}^{-1}$$
$$\Gamma' \approx 10^{10} \text{ s}^{-1} \qquad \Rightarrow \Gamma' \gg \Gamma$$
 (2.4.8)

• Per $\omega \gg \omega_0^2$:

$$\begin{split} \sigma_{\text{el}} &= \sigma_{\text{th}} \frac{\omega^4}{(\omega^2 - \omega_0^2)^2 + \omega^2 \Gamma_{\text{tot}}^2(\omega)} \\ &\simeq \sigma_{\text{th}} \frac{\omega^4}{\omega^4 + \omega^2 \Gamma^2 + \omega^6 \tau^2 + 2 \tau \Gamma^2 \omega^4} = \sigma_{\text{th}} \frac{1}{1 + \tau^2 \omega^2} \end{split} \tag{2.4.9}$$

Per $\omega \sim 1/\tau$ c'è una zona non esplorabile: $\tau \approx 6 \cdot 10^{-24}$ s $\Rightarrow 1/\tau \approx 1.7 \cdot 10^{23}$ Hz. Energia necessaria per fotoni è $\hbar \omega \approx 10^{-34} \cdot 1.2 \cdot 10^{23}$ J s ≈ 100 MeV.

2.4.4 Sezione d'urto totale e d'assorbimento

Forza esercitata da onda incidente su elettrone è $\vec{F} = -e\vec{E}$; allora, per $\vec{v} = \dot{\vec{x}} = -i\omega\vec{x}_0e^{-i\omega t}$:

$$\begin{split} \langle P_{tot} \rangle &= q \left\langle \left(\frac{\dot{\vec{x}} + \dot{\vec{x}}^*}{2} \right) \left(\frac{\vec{E} + \vec{E}^*}{2} \right) \right\rangle = \frac{q}{2} \mathfrak{R} \left\{ \dot{\vec{x}} \cdot \vec{E}^* \right\} \\ &= \frac{q^2 |\vec{E}_0|^2 \omega}{2m} \mathfrak{R} \left\{ \frac{-i \left[(\omega_0^2 - \omega^2) + i \omega \Gamma_{tot} \right]}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{tot}^2} \right\} = \frac{q^2 \omega^2 |\vec{E}_0|^2 \Gamma_{tot}}{2m \left[(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{tot} \right]} \end{split} \tag{2.4.10}$$

Quindi:

¹Si trova ponendo $\sigma_{\text{max}}/2 = \sigma_{\text{th}} \frac{\omega_0^4/4}{\Delta \omega^2 + (\Gamma + \Gamma')^2/4}$, con $\sigma_{\text{max}} = \sigma_{\text{el}}(\omega \sim \omega_0)|_{\omega = \omega_0}$, e risolvendo per $\Delta \omega = |\omega - \omega_0|$.

 $^{^2}$ III termine $2\tau\Gamma'\omega^4$ si trascura perché $\tau\Gamma'\approx 10^{-24}\cdot 10^{11}\ll 1$. II termine $\omega^2\Gamma'^2$ si approssima perché $\sim\omega^2$.

$$\sigma_{tot} = \frac{\langle P_{tot} \rangle}{\langle |\vec{S}_{in}| \rangle} = \frac{q^2 \omega^2 |\vec{E}_{o}|^2 \Gamma_{tot}}{2mD} \frac{1}{\frac{\epsilon_{o}c}{2}|\vec{E}_{o}|^2} = \frac{4\pi c}{4\pi c} \frac{1}{D} \frac{q^2 \omega^2 \Gamma_{tot}^2}{\epsilon_{o} mc} = \frac{4\pi c r_e \omega^2 \Gamma_{tot}}{D} \tag{2.4.11}$$

Si ricava $\sigma_{\text{abs}} = \sigma_{\text{tot}} - \sigma_{\text{el}}.$ Per $\omega = \omega_0$ si trova:

$$\sigma_{\text{el}}(\omega=\omega_0) = \frac{3\lambda_0^2}{2\pi} \left(\frac{\Gamma}{\Gamma+\Gamma'}\right)^2 \; ; \quad \sigma_{\text{abs}}(\omega=\omega_0) = \frac{3\lambda_0^2}{2\pi} \frac{\Gamma\Gamma'}{(\Gamma+\Gamma')^2} \; ; \quad \sigma_{\text{abs}}(\omega=\omega_0) = \frac{3\lambda_0^2}{2\pi} \frac{\Gamma}{\Gamma+\Gamma'} \; ; \quad \sigma_{\text{abs}}(\omega=\omega_0) = \frac{3\lambda_0^2}{2\pi} \frac{\Gamma}{\Gamma+\Gamma'}$$

Si definiscono:

$$\frac{\sigma_{el}}{\sigma_{tot}} = \frac{\Gamma}{\Gamma + \Gamma'} \equiv B_{el} \; ; \quad \frac{\sigma_{abs}}{\sigma_{tot}} = \frac{\Gamma'}{\Gamma + \Gamma'} \equiv B_{abs} \tag{2.4.12} \label{eq:2.4.12}$$

Queste sono **branching functions elastica** e **di assorbimento**; indicano probabilità di decadimento elastico o non-elastico dello stato risonante per $\omega \sim \omega_0$. Valori numerici: $B_{el} \approx 10^{-4}, B_{abs} \approx 1-10^{-4}=0.9999$.

2.4.5 Tempo di vita dello stato risonante

Da eq. 2.4.1, si toglie forzante (onda em) e si risolve

$$\begin{cases} -\tau \, \ddot{\vec{x}} + \ddot{\vec{x}} + \Gamma' \dot{\vec{x}} + \omega_0^2 \vec{x} = 0 \\ \vec{x}(0) = \vec{x}_0 \end{cases}$$
 (2.4.13)

con le assunzioni $\Gamma'\ll \omega_0\ll 1/\tau\Rightarrow \Gamma=\tau\omega_0^2\ll \omega_0$. Si cercano soluzioni smorzate del tipo $\vec x=\vec x_0e^{-i(\omega_0t-i\gamma t/2)}$:

$$-\tau(-i)^3\left(\omega_0-i\frac{\gamma}{2}\right)^3\vec{x}+(-i)^2\left(\omega_0-i\frac{\gamma}{2}\right)^2\vec{x}-i\Gamma'\left(\omega_0-i\frac{\gamma}{2}\right)\vec{x}+\omega_0^2\vec{x}=0$$

Si cerca soluzione per $\gamma\ll\omega_0$, quindi si rimuovono tutti i termini che contengono il prodotto di γ,Γ,Γ' (essendo tutti $\ll\omega_0$); si rimane con $\gamma=\Gamma+\Gamma'$, da cui:

$$\vec{x} = \vec{x}_0 e^{-i\omega_0 t} e^{-(\Gamma + \Gamma')t/2} \tag{2.4.14}$$

Spostamento da equilibrio è smorzato con tempo caratteristico $2/(\Gamma + \Gamma')$, mentre energia totale $E = \frac{1}{2}k\vec{x}^2 + \frac{1}{2}m\dot{\vec{x}}^2$ smorzata con tempo $1/(\Gamma + \Gamma')$.

Osservazione 2.6. Si determina larghezza di $\sigma_{\rm el}$ dal tempo di decadimento dell'energia e viceversa.

2.4.6 Caso della radiazione non polarizzata

Onda che si propaga lungo $\hat{k}=(0,0,1)$; per θ angolo di scattering tra \hat{k},\hat{k}' e φ angolo azimutale: $\hat{k}'=(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$. Visto che il vettore di polarizzazione dell'onda deve sempre essere ortogonale alla direzione di propagazione, si parametrizza come: $\hat{\chi}_0=(\cos\psi,\sin\psi,0)$, quindi:

$$\cos \alpha \equiv \hat{x}_0 \cdot \hat{k}' = \sin \theta \cos \varphi \cos \psi + \sin \theta \sin \varphi \sin \psi = \sin \theta \cos (\psi - \varphi)$$

$$\Rightarrow \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \sin^2 \theta \cos^2 (\psi - \varphi)$$

Essendo $\langle \vec{S}_{\text{in}} \rangle = \frac{c}{8\pi} |\vec{E}_0|^2 \hat{k}$, usando espressione di \vec{E} in campo di radiazione:

$$\begin{split} \vec{\mathsf{E}}_{\text{out}} &= \frac{-e}{c^2 r} \hat{k}' \times (\hat{k}' \times \vec{\alpha}) = \frac{e \omega^2}{c^2 r} \hat{k}' \times (\hat{k}' \times \vec{x}_0) e^{-i \omega t_r} \\ &\Rightarrow \langle \vec{\mathsf{S}}_{\text{out}} \rangle = \frac{c}{8 \pi} |\vec{\mathsf{E}}_{\text{out}}|^2 \hat{k}' = \frac{c}{8 \pi} \frac{e^2 \omega^4}{c^4 r^2} |\vec{x}_0|^2 \langle \sin^2 \alpha \rangle_\psi \hat{k}' \end{split}$$

dove $\langle \sin^2 \alpha \rangle_{\psi}$ indica media su ψ perché onda ha polarizzazione generica. Da questi si ha:

$$\frac{d\sigma_{\text{el}}}{d\Omega} = \frac{r^2 \langle |\vec{S}_{\text{out}}| \rangle}{\langle |\vec{S}_{\text{in}}| \rangle} = \frac{e^2 \omega^4}{c^4} \frac{|\vec{x}_0|}{|\vec{E}_0|^2} \langle \text{sin}^2 \, \alpha \rangle_{\psi} = \frac{r_e^2 \omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2} \langle \text{sin}^2 \, \alpha \rangle_{\psi}, \ r_e = \frac{e^2}{mc^2}$$

Visto che

$$\langle \sin^2\alpha\rangle_{\psi} \equiv \frac{1}{2\pi} \int_0^{2\pi} \sin^2\alpha \ d\psi = \frac{1}{2\pi} \int_0^{2\pi} \left[1 - \sin^2\theta \cos^2(\psi - \varphi)\right] \ d\psi = 1 - \frac{1}{2} \sin^2\theta = \frac{1 + \cos^2\theta}{2}$$

si ha:

$$\frac{d\sigma_{\text{el}}}{d\Omega} = \frac{r_{\text{e}}^2 \omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{\text{tot}}^2} \frac{1 + \cos^2 \theta}{2}$$
 (2.4.15)

Dove la sezione d'urto elastica è indipendente dalla polarizzazione perché si ritrova ancora:

$$\int_{-1}^{+1} d\cos\theta \int_{0}^{2\pi} d\phi \, \frac{1 + \cos^2\phi}{2} = \frac{8}{3}\pi$$

2.4.7 Scattering Rayleigh

Onda incidente su intero atomo \rightarrow interferenza onde prodotte da centri diffusori precedenti con successivi. Si considera dapprima caso di 2 centri diffusori, con scattering elastico $\Rightarrow |\vec{k}| = |\vec{k}'| \equiv k$; per P_1, P_2 centri diffusori, la differenza di cammino ottico è:

$$\Delta \ell = \vec{r} \cdot \frac{\vec{k}'}{k} - \vec{r} \cdot \frac{\vec{k}}{k} = \frac{\vec{r} \cdot (\vec{k}' - \vec{k})}{k} \equiv \frac{\vec{r} \cdot \vec{q}}{k}$$

con \vec{r} che unisce P_1 con P_2 . A grandi distanze, lo sfasamento tra P_1 e P_2 è $\Delta \ell k$. Per Z centri diffusori uguali¹, lo sfasamento relativo è $\varphi_i - \varphi_j = (\vec{r}_i - \vec{r}_j)\vec{q}$, quindi in zona di radiazione vale, a meno di una fase globale, *:

$$\vec{\mathsf{E}}_{\text{tot}} = \vec{\mathsf{E}}_1 e^{-\mathfrak{i} \varphi_1} + \vec{\mathsf{E}}_2 e^{-\mathfrak{i} \varphi_2} + \ldots \stackrel{*}{=} \vec{\mathsf{E}}_1 \sum_{:} e^{-\mathfrak{i} \vec{\mathsf{r}}_{\mathfrak{i}} \cdot \vec{\mathsf{q}}} \equiv \vec{\mathsf{E}}_1 \mathsf{F}(\vec{\mathsf{q}})$$

con $F(\vec{q})$ fattore di forma discreto. La fase globale è $e^{-i\varphi_1}$ che viene moltiplicata per la differenza di fase rispetto agli altri centri diffusori $\sum_{i=1}^N e^{-i\vec{r}_i\cdot\vec{q}}$; questo prodotto restituisce la somma $\sum_{i=1}^N e^{-i\varphi_i}$, portando alla seconda uguaglianza, dove si è compiuta l'approssimazione di trascurare tale fase globale. Il vettore \vec{r}_i rappresenta il raggio vettore che va dal centro diffusore 1 al centro diffusore i-esimo.

Per passaggio al continuo si usa la definizione:

$$F(\vec{q}) = \frac{\int \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \; d^3r}{\int \rho(\vec{r}) \; d^3r} \stackrel{\square}{=} \frac{1}{Q} \int \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \; d^3r$$

con Q carica totale, \square a indicare che vale in caso di particelle cariche e $\rho(\vec{r})$ distribuzione di carica. Allora campo diffuso dal sistema è quello diffuso da carica Q puntiforme. Usando eq. 2.2.11:

$$\frac{d\sigma_{\text{el}}}{d\Omega} = \left. \frac{d\sigma_{\text{el}}}{d\Omega} \right|_{e} \left| ZF(\vec{q}) \right|^{2} \tag{2.4.16}$$

dove $|_e$ indica che è relativa alla singola carica. Si risale a fattore di forma e distribuzione di carica tramite misura di sezione d'urto.

¹Cioè che si comportano allo stesso modo.

OSSERVAZIONE 2.7. Si ha F(0) = 1. La motivazione è che quando $q \to 0$ (o meglio $q\alpha \ll 1$, con α grandezza caratteristica del sistema), l'onda em non ha energia sufficiente per risolvere il sistema da indagare e lo vede come puntiforme.

Nel caso specifico di $\rho(\vec{r}) = \begin{cases} Q/(\frac{4}{3}\pi\alpha^3) &, |\vec{r}| \leqslant \alpha \\ 0 &, |\vec{r}| > \alpha \end{cases}$, in coordinate polari r, θ', φ' :

$$\begin{split} F(\vec{q}) &= \frac{1}{Q} \int \rho(r) r^2 e^{-irq\cos\theta'} \sin\theta' \; d\theta' d\varphi' dr = \frac{2\pi}{Q} \int \rho(r) r^2 e^{-irq\cos\theta'} d\cos\theta' dr \\ &= \frac{4\pi}{Q} \int \rho(r) r^2 \frac{\sin(rq)}{rq} \; dr = \frac{3}{\alpha^3 q} \int_0^\alpha r \sin(rq) \; dr = \frac{3}{\alpha^3 q} \left[-\frac{r}{q} \cos(rq) + \frac{1}{q^2} \sin(rq) \right]_0^\alpha \\ &= 3 \left(\frac{\sin(\alpha q)}{(\alpha q)^3} - \frac{\cos(\alpha q)}{(\alpha q)^2} \right) \end{split}$$

Assumendo aq $\ll 1$, per cui $\sin x \simeq x - x^3/6$ e $\cos x \simeq 1 - x^2/2$:

$$F(q) \simeq 1 - \frac{(\alpha q)^2}{10}$$

Si studia caso opposto, per $\alpha q \gg 1$, per cui $F(q) \rightarrow 0$; ricordando che per scattering elastico

$$|\vec{q}|^2 = (\vec{k}' - \vec{k})^2 = 2k^2(1 - \cos\theta) = 4k^2\sin^2\left(\frac{\theta}{2}\right) \Rightarrow q = 2k\sin\left(\frac{\theta}{2}\right)$$

e, quindi, sotto l'assunzione di fotoni energetici ($k\alpha\gg 1$), volendo esprimere F in termini di θ , si può approssimare come:

$$F(\theta) = \begin{cases} 1 & \text{, se } 0 \leqslant \theta \leqslant 1/(\alpha k) \\ 0 & \text{, se } 1/(\alpha k) \leqslant \theta \leqslant \pi \end{cases}$$
 (2.4.17)

visto che tende a decrescere velocemente. Da questo:

$$\begin{split} \sigma_{\text{el}}(\alpha k \gg 1) &= \int \left. \frac{d\sigma_{\text{el}}}{d\Omega} \right|_e |ZF(\theta)|^2 \; d\varphi \sin \theta \\ &= 2\pi Z^2 r_e^2 \int_0^\pi \frac{1 + \cos^2 \theta}{2} |F(\theta)|^2 \sin^2 \theta \; d\theta \\ &= \pi Z^2 r_e^2 \int_0^{1/\alpha k} (1 + \cos^2 \theta) \sin \theta \; d\theta = \frac{\pi Z^2 r_e^2}{(\alpha k)^2} \end{split} \tag{2.4.18}$$

2.4.8 Sezione d'urto fotoelettrica

Legata all'effetto fotoelettrico e si indica con σ_{pe} . L'effetto si basa sul fatto che un atomo emette elettroni quando incide onda em con fotoni a energia sufficiente. In particolare, quando fotone incidente ha energia esatta per liberare un elettrone di un certo orbitale, σ_{pe} ha dei picchi, dove gli ultimi picchi sono relativi a orbitali più interni.

Si hanno picchi perché il fotone riesce a trasferire tutta la sua energia all'elettrone per liberarlo, ma sono più bassi degli altri perché:

- · fotone potrebbe essere schermato da elettroni in orbitali più esterni;
- gli elettroni più interni sono più vicini al nucleo e localizzati ⇒ più difficili da colpire;
- · gli orbitali più interni sono meno popolati.

2.4.9 Sezione d'urto Compton

Fotone incidente su elettrone libero e in quiete che viene diffuso con cambio di frequenza: $\gamma+e^-\to\gamma+e^-.$ In unità naturali ($\hbar=1,\ c=1$), $P_\gamma=\omega(1,\hat{n}).$ Conservazione quadrimpulso $\Rightarrow P_\gamma-P_\gamma'=P_\varepsilon'-P_\varepsilon,$ con γ riemesso con frequenza $\omega'<\omega$ per conservazione dell'energia. Essendo $P_\varepsilon=(\mathfrak{m},0)$ e θ angolo di scattering, quadrato dell'equazione precedente è:

$$-2\omega\omega'(1-\cos\theta) = 2m^2 - 2mE' = 2m^2 - 2m(\omega + m - \omega') = -2m(\omega - \omega')$$
 (2.4.19)

In unità fisiche:

$$\omega - \omega' = \frac{\hbar \omega \omega'}{mc^2} (1 - \cos \theta)$$
 (2.4.20)

La relazione dell'effetto Compton si scrive in termini di $\lambda = 2\pi c/\omega$:

$$\lambda' - \lambda = \lambda_{c} (1 - \cos \theta) \tag{2.4.21}$$

con $\lambda_c = h/mc \approx 2.4 \cdot 10^{-12}$ m è la lunghezza d'onda Compton dell'elettrone.

OSSERVAZIONE 2.8. Tra sezione d'urto Rayleigh e Compton c'è un fattore Z di differenza: $\sigma_R \sim Z^2$ e $\sigma_c \sim Z$.

2.4.10 Sezioni d'urto di produzione di coppie

Per produzione di coppie su nuclei κ_{nuc} , si considera processo $\gamma + Z \to Z + e^+ + e^-$, con Z nucleo generico. Per nucleo a riposo: $P_{\gamma} = (E_{\gamma}, E_{\gamma}, 0, 0)$ e $P_{\text{nuc}} = (M, 0, 0, 0)$; usando l'invariante¹

$$\begin{split} s &= (P_{\gamma} + P_{\text{nuc}})^2 = (E_{\gamma} + M)^2 - E_{\gamma}^2 = (P_{Z}' + P_{e^-}' + P_{e^+}')^2 = (E_{Z}' + E_{e^-}' + E_{e^+}')^2 \stackrel{!}{\geqslant} (M + 2m_{\varepsilon})^2 \\ &\Rightarrow E_{\gamma}^2 + M^2 + 2ME_{\gamma} - E_{\gamma}^2 \geqslant M^2 + 4m_{e}^2 + 4Mm_{e} \Rightarrow E_{\gamma} \geqslant 2m_{e} + \frac{2m_{e}}{M} \approx 1.02 \text{ MeV} \end{split}$$

dove $2m_e \approx (0.5 \text{ MeV})^2$, $M \sim \text{GeV}$, quindi è trascurabile.

OSSERVAZIONE 2.9. Il nucleo non rimane immobile, ma la quantità di moto che acquisisce è minima perché GeV $\leqslant M \gg E_{\gamma} \approx 10 \text{ MeV} \Rightarrow K_{Z} = \frac{P_{Z}^{2}}{2M} \leqslant \frac{E_{\gamma}^{2}}{2M} \ll 1.$

Analogamente per κ_e si ha $\gamma + e^- = e^- + e^+ + e^-$; usando invariante s come sopra, si arriva a:

$$E_{\nu} \geqslant 4m_e \approx 2.04 \text{ MeV}$$

2.4.11 Esempio di sezioni d'urto per carbonio e piombo

¹Dove i 4-vettori energia-impulso finali sono relativi al CM, quindi $\sum \vec{p} = 0$.

Figura 6.1: Sezione d'urto totale di un fotone incidente su un atomo di carbonio (alto) e piombo (basso) per diversi valori dell'energia del fotone.

Sono in particolare mostrati i contributi specifici dei vari processi: $\sigma_{\rm p.e.}$ effetto fotoelettrico, $\sigma_{\rm Rayleigh}$ scattering Rayleigh sull'atomo, $\sigma_{\rm Comption}$ scattering Compton su elettrone, $\kappa_{\rm nuc}$ produzione di coppie su nucleo, $\kappa_{\rm e}$ produzione di coppie su elettrone, $\sigma_{\rm g.d.r.}$ interazioni fotonucleari ed in particolare Giant Dipole Resonance.

Da [22] §33 "Passage of particles through matter".

3 INDAGINE DELLA MATERIA CON PARTICELLE

3.1 Introduzione

3.1.1 Categorie di urti

Si classificano:

- urto elastico: $a + b \rightarrow a + b \rightarrow$ non modifica natura delle particelle;
- urto inelastico (o anelastico): $\alpha+b=\sum_{i=1}^N p_i \to \text{cambia natura e/o numero delle particelle.}$

Si definisce Q-valore

$$Q = \sum m_{in} c^2 - \sum m_{fin} c^2$$
 (3.1.1)

Gli urti possono essere:

- esotermici: Q > 0 ⇒ viene liberata energia;
- endotermici: Q < 0 ⇒ è richiesta energia per il processo;
- inclusivi: si misurano solo alcune caratteristiche delle particelle coinvolte nell'urto (per motivi di interesse o impossibilità sperimentali);
- esclusivi: si misurano tutti i valori che caratterizzano l'urto.

3.1.2 Notazione chimica

La notazione per le **specie atomiche** è ^A₇X_N dove:

- Z è il numero di protoni;
- N è il numero di neutroni;
- A = Z + N è il numero di nucleoni;
- X elemento chimico che dipende solo da Z.

Ad esempio:

- ${}_{1}^{1}H_{0}$ atomo di idrogeno $\rightarrow {}_{1}^{1}H_{0}^{+} \equiv p$ protone;
- ${}_{1}^{2}H_{1}$ atomo di deuterio $\rightarrow {}_{1}^{2}H_{2}^{+} \equiv d$ deutone;
- 4_2 He $_2$ atomo di elio $ightarrow ^4_2$ He $^{++}_2 \equiv lpha$ particella alfa.

3.1.3 Neutrone libero

Alla massa del neutrone si può togliere quella del protone e dell'elettrone, da cui avanzano 0.78 MeV \Rightarrow Q > 0 e quindi di base il neutrone dovrebbe decadere secondo $n \rightarrow p + e^-$.

Questo non è possibile perché non si conserva il **numero leptonico**, quindi serve particella neutrona con massa < 0.78 MeV. Si trova essere l'anti-neutrino elettronico $\overline{\nu}_e$, per cui un neutrone libero:

$$n \to p + e^- + \overline{\nu}_e \tag{3.1.2}$$

3.1.4 Urti elettrone-protone

Un urto elastico $e^- + p \rightarrow e^- + p$ permette misura del fattore di forma del protone $F(\vec{q})$. Si può avere un urto inelastico con produzione di fotone: $e^- + p \rightarrow e^- + p + \gamma$ se e^- non urta p, ma viene deflesso dal suo campo, quindi soggetto ad accelerazione e irraggia γ .

Un altro è: $e^- + p \to e^- + p + \pi_0$, con π_0 **pione neutro**. In questo urto, si misura sezione d'urto, da cui si ricava Γ_{π_0} e suo tempo di vita medio a partire da $1/\Gamma_{\pi_0}$. Il π_0 decade in due fotoni: $\pi_0 \to \gamma + \gamma$.

3.1.5 Classificazione delle particelle

Sono raggruppate a seconda di come interagiscono. Le interazioni fondamentali sono **gravitazione**, **elettromagnetismo**, **forza debole** e **forza forte**. Elettromagnetismo e forza debole sono collegate e unificate con **forza elettrodebole**. I tre gruppi di particelle sono:

Classificazione	Simbolo	Nome	Carica (e)	Massa	Spin
	e ⁻	Elettrone	-1	0.511 MeV/c ²	1/2
	e^+	Positrone	+1	0.511 MeV/c ²	1/2
Leptoni	μ^-	Muone	<u>-1</u>	105.7 MeV/c ²	1/2
Leptonii	$ au^-$	Tauone	<u>-1</u>	1776.86 MeV/c ²	1/2
	ν_e	Neutrino elettronico	0	$< 2 \text{ eV/c}^2$	1/2
	$ u_{\mu}$	Neutrino muonico	0	$< 2 \text{ eV/c}^2$	1/2
	$ u_{ au}$	Neutrino tauonico	0	$< 2 \text{ eV/c}^2$	1/2
	γ	Fotone	0	0	1
	W^+, W^-	Bosone W	±1	80.379 GeV/c ²	1
Bosoni	Z ⁰	Bosone Z	0	91.1876 GeV/c ²	1
	g	Gluone	0	0	1
	Н	Bosone di Higgs	0	125.1 GeV/c ²	0
	р	Protone	+1	938.27 MeV/c ²	1/2
	$\overline{\mathfrak{p}}$	Anti-protone	<u>-1</u>	938.27 MeV/c ²	1/2
	n	Neutrone	0	939.57 MeV/c ²	1/2
Adroni (Barioni)	Λ	Lambda	0	1115.68 MeV/c ²	1/2
	Σ^+	Sigma positivo	+1	1189.37 MeV/c ²	1/2
	Σ^{0}	Sigma neutro	0	1192.64 MeV/c ²	1/2
	Σ^-	Sigma negativo	<u>-1</u>	1197.45 MeV/c ²	1/2
	Δ^{++}	Delta doppio positivo	+2	1232 MeV/c ²	3/2
	π^+, π^-	Pioni	±1	139.57 MeV/c ²	0
Adroni (Mesoni)	π^0	Pione neutro	0	135 MeV/c ²	0
	K ⁺ , K ⁻	Kaoni	±1	493.68 MeV/c ²	0

3.1.6 Grandezze conservate negli urti

A parte le energia, quantità di moto, momento angolare, carica elettrica, si conservano delle grandezze additive:

- Numero barionico: ad ogni particella barionica si assegna un numero barionico +1, mentre per le rispettive antiparticelle il numero barionico è −1.
- **Numero leptonico:** è sempre conservato il numero leptonico totale¹, dato da numeri leptonici per ciascuna famiglia di leptoni:
 - numero leptonico elettronico: vale +1 per e^- e v_e , -1 per le anti-particelle;

¹Per il fenomeno di **oscillazione dei neutrini**, si conserva solo il numero leptonico totale.

- numero leptonico muonico: vale +1 per μ^- e ν_μ , -1 per le rispettive anti-particelle;
- numero leptonico tauonico: vale +1 per τ^- e ν_{τ} , -1 per le rispettive anti-particelle,

3.2 Sezioni d'urto per processi corpuscolari

Corpi incidenti saranno punti materiali, mentre i bersagli sono generici. Si definisce una regione che circonda i bersagli come **regione di interazione**: al di fuori di questa le particelle vanno di moto rettilineo uniforme. Al di fuori di tale regione, si individua un piano π ortogonale alla velocità dei proiettili.

3.2.1 Parametro di impatto e sezione d'urto per singolo proiettile

Si distingue per bersaglio puntiforme e non. Nel primo caso, si ha A incidente su B e il parametro di impatto b è la distanza che separa la direzione parallela a \vec{v}_A e la retta parallela a \vec{v}_A e passante per B.

Quando B ha dimensioni, proietta il bersaglio su π e si individua la congiungente tra la direzione su cui giace \vec{v}_A e la retta che passa per il CM di B e rimane parallela a \vec{v}_A . La congiungente si individua, allora, dandone la lunghezza b e l'angolo rispetto alla verticale ϕ .

Se b, φ parametri per cui si realizza lo stato finale f, si definisce

$$d^2\sigma_f = b \ dbd\varphi \Rightarrow \sigma_f = \int_f b \ dbd\varphi \tag{3.2.1}$$

che è l'elemento di superficie su π individuato variando b, ϕ tali che si realizza ancora f.

3.2.2 Sezione d'urto per densità di particelle su singolo bersaglio

Per densità di particelle n_A uniforme in un certo volume ΔV , con velocità \vec{v}_A . Si definisce densità di particelle $\vec{j}_A = n_A \vec{v}_A$.

Per un certo numero di urti, si verifica stato finale f per $\frac{dN_f}{dt}$ volte per unità di tempo; si definisce, allora:

$$\sigma_{\rm f} = \frac{\frac{dN_{\rm f}}{dt}}{|\vec{j}_{a}|} \tag{3.2.2}$$

3.2.3 Sezione d'urto per flussi di particelle che si scontrano

Ci si mette in S.R. in densità \vec{j}_B in quiete, per cui si considera velocità relativa $\vec{v}_{\text{rel}} = \vec{v}_A - \vec{v}_B$. Se in un volume ΔV , n_A , n_B sono uniformi e si verifica $\frac{dN_f}{dt}$ volte per unità di tempo lo stato f, si deve avere:

$$\frac{dN_f}{dt} = |\vec{j}_A|\sigma_f \cdot n_B \Delta V = n_A|\vec{v}_{\text{rel}}|\sigma_f \cdot n_B \Delta V \Rightarrow \frac{dn_f}{dt} \equiv \frac{d}{dt} \frac{N_f}{\Delta V} = n_A n_B|\vec{v}_{\text{rel}}|\sigma_f \tag{3.2.3}$$

quindi:

$$\sigma_{\rm f}(\nu_{\rm rel}) = \frac{1}{n_{\rm A} n_{\rm B} \nu_{\rm rel}} \frac{dn_{\rm f}}{dt} \tag{3.2.4} \label{eq:sigma-fit}$$

OSSERVAZIONE 3.1 — DISTRIBUZIONE DI VELOCITÀ. Se la velocità \vec{v}_{rel} non è distribuita uniformemente ma secondo $f(\nu_{\text{rel}})$ (tipicamente distribuzione di Boltzmann), con $\int_0^{+\infty} f(\nu_{\text{rel}}) \ d\nu_{\text{rel}} = 1$, si ha:

 $\frac{dn_f}{dt} = n_A n_B \int_0^{+\infty} \nu_{\text{rel}} \sigma_f(\nu_{\text{rel}}) f(\nu_{\text{rel}}) \ d\nu_{\text{rel}} \tag{3.2.5}$

3.2.4 Sezione d'urto per flusso di particelle su lamina bersaglio

Si considera densità di particelle n_A incidente su una lamina di spessore Δx e sezione ΔS che contiene bersagli puntiformi con densità n_B .

Fascio di proiettili con $\vec{j}_A = n_A \vec{v}_A$ (con flusso $\Phi_A = |\vec{j}_A|\Delta S$) realizza stato f un numero di volte per unità di tempo dato da eq. 3.2.3:

$$\frac{dN_f}{dt} = n_B \Delta V j_\alpha \sigma_f = n_B \Delta S \Delta x j_\alpha \sigma_f = \Phi_A n_s \sigma_f = \Phi_A P_f \tag{3.2.6}$$

con $n_s = n_b \Delta x$ densità superficiale di bersagli e $P_f = n_s \sigma_f$ probabilità di riprodurre f per singolo proiettile.

Per certi valori, si ottiene $P_f > 1$, non contando che la probabilità complessiva di interazione è $P_{tot} = \sum_f P_f = \sum_f n_s \sigma_f = n_s \sigma_{tot}$.

Allora eq. 3.2.6 è valida solo nel limite di "lamina sottile" 1 per cui $P_{tot} = n_b \Delta x \sigma_{tot} \ll 1$, ossia $\Delta_x \ll \ell = 1/(n_b \sigma_{tot})$. Questa è detta **lunghezza di estinzione** del fascio di proiettili.

Nel caso di lamina <u>non-sottile</u>, per tenere in considerazione la variazione di $\Phi_A(x)$, la si divide in spessori di lunghezza dx e per ciascuno di questi la probabilità di interazione è $dP_{int} = \frac{dx}{\ell}$. Se P(x) probabilità di non-interazione dopo aver attraversato spessore x (con P(0) = 1), si ha:

$$P(x + dx) = P(x)(1 - dP_{int}) = P(x)\left(1 - \frac{dx}{\ell}\right) \Rightarrow \frac{dP}{dx} = -\frac{P}{\ell}$$
(3.2.7)

quindi $P(x) = e^{-x/\ell}$. Da questa, numero medio di proiettili che, per unità di tempo, escono da Δx senza aver interagito è:

$$\frac{dN_0}{dt} = \Phi_A(0)e^{-\Delta x/\ell} \tag{3.2.8}$$

Numero di eventi per unità di tempo nello stato f in Δx è:

$$\frac{dN_f}{dt} = \Phi_A(0) \frac{\sigma_f}{\sigma_{tot}} (1 - e^{-\Delta x/\ell}) \tag{3.2.9} \label{eq:dNf}$$

Si distinguono $\sigma_{\text{el,in}}$ da $\sigma_{\text{el,out}}$ perché potrebbero esserci urti elastici che, rispettivamente, non modificano o modificano la traiettoria delle particelle, facendole uscire dal flusso; in questo senso:

$$\sigma_{\text{tot}} \equiv \sigma_{\text{ext}} = \sigma_{\text{el,out}} + \sum_{\text{inelastici}} \sigma_{\text{f}}$$
 (3.2.10)

con σ_{ext} sezione d'urto d'estinzione (si rinomina quella totale).

OSSERVAZIONE 3.2 — CONCENTRAZIONE SOSTANZA MONOMOLECOLARE. Per sostanza monomolecolare di massa M, in volume V, di densità di massa ρ , densità di molecole n, con molecole di peso atomico A vale:

$$n = \frac{1}{V} \frac{M}{M_{\text{mole}}} N_{\text{av}} = N_{\text{av}} \frac{\rho}{M_{\text{mole}}} \tag{3.2.11}$$

con $N_{av}\approx 6\cdot 10^{23}$ numero di Avogadro e M_{mole} massa di una mole di sostanza, dato da A espresso in grammi.

 $^{^1}$ Questo perché a circa ogni interazione, le particelle vengono deviate via dal flusso, diminuendo Φ_A man mano che le particelle avanzano nell'interno della lamina.

3.2.5 Sezione d'urto per interazione forte

Protoni (come altri adroni) interagiscono tramite interazione forte, il cui raggio di azione, o **raggio di interazione** è \sim 1 fm. In figura, si osserva σ_{tot} per processo p + p:

Inizialmente, per energie $\lesssim 2$ GeV, $\sigma_{tot} \simeq \sigma_{el}$; ad energie più alte, si iniziano a sviluppare processi inelastici come produzione di particelle come pioni, ad esempio in $p+p \to p+p+\pi^0$. σ_{el} non va mai a zero per teorema ottico.

3.2.6 Sezione d'urto per interazione elettrodebole

Si studia sezione d'urto di $e^+ + e^- \to$ adroni, in funzione di energia \sqrt{s} nel CM. In figura, si osservano diversi picchi, relativi a stati risonanti:

Queste risonanze sono sintomo della proprietà ondulatoria delle particelle; in corrispondenza di queste, si può approssimare la sezione d'urto con una Breit-Wigner.

In questa figura, la componente elettromagnetica è responsabile di decrescita $\sim 1/s$, mentre la componente debole che contribuisce alle risonanze, come alla Z.

3.2.7 Sezione d'urto per interazione debole

Si considera la sezione d'urto per i processi $\nu_{\mu} + N \to \mu^{-} + X$ o $\overline{\nu}_{\mu} + N \to \mu^{+} + X$, dove N è un nucleone (protone o neutrone) mentre X è una serie di particelle che non interessa specificare.

Questo processo è detto di corrente debole carica perché numero leptonico è invariato, ma cambia la carica del leptone.

Sezioni d'urto per entrambi i processi, sopra un valore di soglia E_{thr} , hanno andamento lineare; per $\sigma_{\nu_{\mu}} \simeq (7 \text{ fb}) \; E_{\nu_{\mu}} \; (\text{GeV})^{1}$, mentre $\sigma_{\overline{\nu}_{\mu}} \simeq (3.5 \text{ fb}) \; E_{\overline{\nu}_{\mu}} \; (\text{GeV})$. Incertezze su sezione d'urto diminuiscono con aumento energia perché aumenta la sezione d'urto e ci sono più interazioni possibili.

3.2.8 Sezione d'urto Rutherford

Urto fra particelle $\alpha \equiv {}^4_2 \text{He}_2^{++}$ a vel. \vec{v}_0 su nucleo atomico assunto puntiforme e con massa tale da renderlo bersaglio fisso.

Figura 1: Da ∞ arriva particella α (ze); nel punto nero, è presente nucleone Ze.

Si assume $|\vec{v}_{\infty}| = |\vec{v}_{\rm f}|$, con $\vec{v}_{\rm f}$ velocità finale, e il processo è non-relativistico perché $m_{\alpha} \approx 4$ GeV e si inviano con $K_{\alpha} \approx 10$ MeV. Se m_{α} massa part. α , la variazione di quantità di moto è:

$$\Delta p = |\Delta \vec{p}| = \sqrt{(m\vec{\nu}_f - m\vec{\nu}_i)^2} = m\sqrt{2\nu_0^2 - 2\vec{\nu}_0 \cdot \vec{\nu}_f} = \sqrt{2\nu_0^2 - 2\nu_0^2\cos\chi} = 2m\nu_0\sin\frac{\chi}{2}$$

Sezione d'urto in funzione del parametro d'impatto \mathfrak{b} , per eq. 3.2.1, è:

$$d^2\sigma = bdbd\phi \Rightarrow \frac{d\sigma}{d\Omega} = \frac{d^2\sigma}{d\cos\chi d\phi} = \frac{bdbd\phi}{d\cos\chi d\phi} = b\frac{db}{d\cos\chi} = -\frac{b}{\sin\chi}\frac{db}{d\chi}$$

Si cerca relazione tra $b \in \chi$. Su α agisce forza di Coulomb \vec{F} generata da Ze, scomponibile in $\vec{F} = \vec{F}_{\perp} + \vec{F}_{||}$, ma solo \vec{F}_{\perp} , con $F_{\perp} = F\cos\beta$, contribuisce a Δp^2 . Allora:

$$\Delta p = \int_{-\infty}^{+\infty} |\vec{F}_{\perp}| \ dt = \int_{-\infty}^{+\infty} F \cos \beta \ dt = \int_{-\infty}^{+\infty} \frac{z Z e^2}{4\pi \epsilon_0 r^2} \cos \beta \ dt$$

 $\mbox{Conservazione momento angolare: } L_{z,i} = m\nu_0 b, \; L_{z,f} = m(\vec{r} \times \vec{\nu}_f)_z = mr^2 \frac{d\beta}{dt} \Rightarrow \nu_0 b dt = r^2 d\beta : \label{eq:conservation}$

$$\Delta p = \int_{\beta_{\text{min}}}^{\beta_{\text{max}}} \frac{zZe^2}{4\pi\epsilon_0 r^2} \cos\beta \frac{r^2}{\nu_0 b} \ d\beta = \frac{zZe^2}{4\pi\epsilon_0 b\nu_0} \left[\sin\beta\right]_{\beta_{\text{min}}}^{\beta_{\text{max}}}$$

Dalla figura, si vede che $\beta_{\text{max}}-(-\beta_{\text{max}})+\chi=\pi \Rightarrow \beta_{\text{max}}=\frac{\pi-\chi}{2},$ quindi

$$\Delta p = \frac{zZe^2}{4\pi\epsilon_0 b\nu_0} \left(\cos\frac{\chi}{2} - \left(-\cos\frac{\chi}{2}\right)\right) = \frac{zZe^2}{2\pi\epsilon_0 b\nu_0} \cos\frac{\chi}{2}$$

All'inizio si è trovato $\Delta p = 2mv_0 \sin(\chi/2)$; eguagliando le due:

¹L'unità fb sta per femtobarn.

 $^{^2}$ Si è assunto che la velocità non cambi in modulo, quindi non ci possono essere forze parallele alla traiettoria di α .

$$b(\chi) = \frac{d}{2}\cot\frac{\chi}{2} \tag{3.2.12}$$

con

$$d = \frac{\hbar c}{\hbar c} \frac{zZe^2}{4\pi\epsilon_0 (mv_0^2/2)} \equiv zZ\frac{\alpha\hbar c}{T}, \ T = \frac{1}{2}mv_0^2$$

dove $\alpha=\frac{e^2}{4\pi\epsilon_0\hbar c}\approx 1/137$ è la **costante di struttura fine**. La sezione d'urto, allora, è:

$$\frac{d\sigma_{\text{ruth}}}{d\Omega}(\chi,T) = -\frac{b}{\sin\chi}\frac{db}{d\chi} = \frac{(zZ\alpha\hbar c)^2}{16}\frac{1}{T^2}\frac{1}{\sin^4\frac{\chi}{2}} \tag{3.2.13}$$

Approssimazione valida per corpi puntiformi e interazione Coulombiana. Aumentando χ , T, non è più valida perché prevale la forza nucleare forte; ad esempio per $^4\text{He}^{++}+^{206}\,\text{Pb}^1$ non vale per T $\simeq 26\,\text{MeV},~\chi \simeq 60^\circ$.

L'interazione forte è agisce su scala del fm, quindi si può dire che se il parametro di impatto di α e N è maggiore di $R_{\alpha}+R_{N}$ (raggi atomici), si può trascurare. La distanza minima di avvicinamento $x=R_{\alpha}+R_{N}$ è ottenibile dalle conservazioni:

$$\begin{cases} m\nu_0 b = mx\nu \Rightarrow \nu = \nu_0 \cdot b/x \\ T + 0 = \frac{1}{2}m\nu^2 + \frac{zZe^2}{4\pi\epsilon_0 x} \end{cases} \Rightarrow T = \frac{1}{2}m\nu_0^2 \frac{b^2}{x^2} + \frac{zZe^2}{4\pi\epsilon_0 x}$$
$$\Rightarrow x^2 - xd - b^2 = 0 \Rightarrow x = \frac{d}{2}\left(1 + \frac{1}{\sin\frac{x}{2}}\right)$$
(3.2.14)

Sezione d'urto Rutherford σ_{ruth} va a infinito; integrando in $d\Omega$ sez. d'urto differenziale, per $\chi \ll 1$ si approssima come d^2/χ^4 , quindi diverge. Per risolverlo, si deve limitare χ con χ_{min} .

Questo si può fare individuando χ_{min} come l'angolo minore misurabile sperimentalmente per questioni di precisione sulla strumentazione, oppure teoricamente imponendo $\exists b_{\text{max}}: b < b_{\text{max}} \equiv r_{\text{atomico}} \Rightarrow \exists \chi_{\text{min}} \text{ da } b = \frac{d}{2} \cot \frac{\chi}{2}.$

3.3 I nuclei atomici

3.3.1 Caratterizzazione

Caratterizzati da:

- · massa;
- · carica elettrica;
- spin;
- · momento magnetico;
- · momento di quadrupolo elettrico.

Formato da A = N + Z, dove N numero neutroni e Z numero protoni. Diversi tipi di nuclei:

- isobari: hanno stesso A, ma diverso N, Z diversi, come ³₁H₂ isobaro di ³₂He₁;
- isotopi hanno stesso Z, con A, N diversi, ad esempio ³₁H₂ isotopo di ²₁H₁;
- isotoni hanno stesso N, ma A, Z diversi, ad esempio ³H₂ isotono di ⁴He₂.

¹Qua si intende un nucleo di piombo, che ha 82 protoni, quindi è difficile indicare che è ionizzato :).

3.3.2 Modello a goccia del nucleo

Per nucleo $A \geqslant 4$, il raggio è dato da:

$$R_{A} = r_{0}A^{1/3} + r_{\text{skin}}, \ r_{0} \approx 1.25 \ \text{fm}, \ r_{\text{skin}} \approx 2 \ \text{fm} \eqno(3.3.1)$$

Si basa su modello a goccia del nucleo, secondo cui i suoi costituenti si distribuiscono cercando di ottenere una forma sferica approssimativamente piena, cioè volume occupato è $\frac{4}{3}\pi r^3 = V_{\text{nucl}} \equiv AV_1^{\ 1}$. Da questo, si ha $r \propto A^{1/3}$ con r_0 coeff. di proporzionalità. Quanto a r_{skin} , si ottiene da correzione dovuta a impossibilità, per principio di esclusione,

Quanto a r_{skin} , si ottiene da correzione dovuta a impossibilità, per principio di esclusione, di distribuire costituenti in volume sferico e solitamente è tenuta in considerazione in nuclei "pesanti".

3.3.3 Forze nucleari

I nuclei non possono essere tenuti insieme da interazione Coulombiana e per forza nucleare si attende una componente attrattiva. Se esistesse solo componente attrattiva, i nuclei collasserebbero, quindi necessaria parte repulsiva. Si può creare modello approssimato a buca di potenziale come:

$$V(r) = \begin{cases} \infty & , r = 0 \\ -30 & , 0 < r \lesssim 2.5 \\ 0 & , r \gtrsim 2,5 \end{cases}$$
 (3.3.2)

Altrimenti un modello più realistico è:

$$V(r) = \frac{A}{r^{12}} - B \frac{e^{-\mu r}}{r}, \ \mu \approx 0.7 \text{ fm}^{-1}$$
 (3.3.3)

dove µ parametro di Yukawa.

3.3.4 Masse dei nuclei

Misurazione tramite spettrometro di massa. Si basa sull'accelerazione di ioni prodotti da una certa sorgente tramite differenza di potenziale ΔV ; questi passano attraverso una fenditura per collimare il raggio con velocità data da $\frac{1}{2}m\nu^2=q\Delta V$ per entrare in regione in cui sono presenti campo elettrico e magnetico. Questi si posso prendere tali che $\vec{F}_L=q\vec{E}_\nu+q\vec{\nu}\times\vec{B}_\nu=0 \Rightarrow \nu=E/B$ (selettore di velocità). Dopo un'altra collimazione, si entra in regione con solo campo

 $^{^{1}}V_{1}$ è il volume del singolo costituente del nucleo.

magnetico dove le cariche sono in moto circolare uniforme $m\frac{v^2}{R}=qvB \Rightarrow R=\frac{mv}{qB}$, da cui si misura massa noto R (con rivelatore che individua dove arrivano le particelle).

Per massa dei nuclei si riporta spesso massa atomica; per esprimerla, si definiscono:

- B_i^e energia di legame dell'i-esimo e^- in un atomo, con i = 1, ..., Z;
- B_{A,Z} energia di legame dei nucleoni nel nucleo;
- m_u unità di massa atomica $\equiv \frac{1}{12} M_{12} C$.

Massa atomica è¹:

$$\begin{split} M_{A,Z}^{\text{at}} &= M_{A,Z}^{\text{nuc}} + Zm_e - \sum_{i=1}^{Z} B_i^e \approx M_{A,Z}^{\text{nuc}} + Zm_e = Zm_p + Nm_n - B_{A,Z} + Zm_e \\ &\approx ZM_H^{\text{at}} + Nm_n - B_{A,Z} \end{split} \tag{3.3.4}$$

perché spesso energie elettroni risultano trascurabili. Alcuni valori numerici:

- trascurando energia di legame: $M_{\text{at}}^{\text{H}} \approx m_{e} + m_{p} = 938.783 \; \text{MeV}/c^{2};$
- $m_p = 938.272 \text{ MeV/c}^2$;
- $m_n = 939.565 \text{ MeV/}c^2$;
- $m_n m_p = 1.293 \text{ MeV/}c^2$;
- $m_e = 0.511 \text{ MeV/}c^2$.

3.3.5 Energia di legame dei nucleoni

Si cerca andamento $B_{A,Z}/A$ in funzione di A (energia media per nucleone in funzione del numero di nucleoni). Questa curva ha massimo per A=56, che corrisponde al ferro, quindi è l'elemento più stabile.

Per la maggior parte degli elementi, $B_{A,Z}/A$ vale $\simeq 8$ MeV, quindi proporzionale a costante $\Rightarrow B_{A,Z} \propto A$, quindi più nucleoni, maggiore è energia, quindi la forza nucleare è una forza a **corto raggio**. Contrariamente, forza elettromagnetica è a lungo raggio $B \sim Z^2$.

OSSERVAZIONE 3.3. Dall'andamento di $B_{A,Z}$ è possibile produrre energia da destra verso sinistra (fissione nucleare) o da sinistra verso destra (fusione nucleare).

¹L'energia di legame è energia per separare il legame, data da massa totale del sistema (quindi energia totale del sistema) a cui si toglie la massa dei singoli costituenti, motivo per cui è presente. All'ultimo passaggio, si trascurano 13.6 eV dell'energia di legame dell'atomo di idrogeno.

$$\Delta_{A,Z} = M_{A,Z} - Am_u \tag{3.3.5}$$

Rappresenta differenza tra massa del nucleo e massa del nucleo come calcolata se energia media per nucleone fosse quella del carbonio-12.

Da questa definizione, visto che $M_{A,Z} \approx ZM_H^{at} + Nm_n - B_{A,Z} = Am_u + \Delta_{A,Z}$, allora:

$$\begin{split} B_{A,Z} &\approx Z M_H^{at} + N m_n - A m_u - \Delta_{A,Z} = Z (m_p + m_e - m_u) + N (m_n - m_u) \\ &\approx (7.29 \text{ MeV}) \cdot Z + (8.07 \text{ MeV}) \cdot N - \Delta_{A,Z} \end{split} \tag{3.3.6}$$

Dal modello a goccia si ricava **formula semi-empirica di massa**, composta da diversi termini. Il primo si ottiene per il contributo della forza forte sviluppata tra ogni nucleone che viene a contatto, ciascuno dei quali contribuisce per 2 MeV; si trova $B_{A,Z} \simeq \alpha_V A$, con $\alpha_V \approx 12 \text{ MeV}^1$ perché in configurazione di massimo impacchettamento, un nucleone viene in contatto con altri 12. Risulta in accordo con valore sperimentale di $\alpha_V \approx 15.5 \text{ MeV}$.

La prima correzione è dovuta al fatto che nucleoni al bordo non toccano altri nucleoni su ogni lato, quindi si toglie termine proporzionale alla superficie: $B_{A,Z} \simeq \alpha_V A - \alpha_S A^{2/3}$; sperimentalmente $\alpha_S \approx 16.8$ MeV.

Si considera repulsione Coulombiana che porta termine proporzionale a Z^2 (carica del nucleo) e inversamente proporzionale al raggio (a sua volta proporzionale a $A^{1/3}$: $B_{A,Z} \simeq a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}}$. Costante ottenuta da energia di sfera uniformemente carica con carica totale Ze e raggio $R_A \approx r_0 A^{1/3}$:

$$\frac{3}{5} \frac{(Ze)^2}{4\pi\epsilon_0 R_A} = \frac{3}{5} \frac{Z^2}{A^{1/3}} \frac{\alpha \hbar c}{r_0} \approx -(0.69 \text{ MeV}) \frac{Z^2}{A^{1/3}}$$

in accordo con $a_C \approx 0.72$ MeV. Ci sono altre correzioni dovute a effetti quantistici: un termine di simmetria $\propto a_{\text{sym}}$ dovuto al fatto che i nucleoni sono fermioni e per questi vale principio di esclusione di Puali, quindi più pesanti sono nuclei più stati a maggiore energia sono riempiti \Rightarrow aumento energia del sistema; allora il termine penalizza stati con grandi differenze di numero tra neutroni e protoni perché quelli più presenti non avrebbero sufficiente controparte con cui interagire tramite interazione forte, cosa che aumenta energia cinetica. Infine è presente un termine di pairing che aggiunge stabilità al sistema quando Z, N^2 sono entrambi pari e la rimuove quando sono entrambi dispari, mentre vale 0 quando A = Z + N è dispari (uno pari, l'altro dispari). Questo è motivato dal fatto che coppie di nucleoni possono riempire stesso stato energetico (dovendo obbedire al principio di esclusione) e rende configurazione finale più stabile. Complessivamente:

$$B_{A,Z} = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{\text{sym}} \frac{(Z - N)^2}{A} + \delta_{\text{pair}}$$
 (3.3.7)

con³

$$\delta_{\text{pair}} = \begin{cases} \pm \alpha_{\delta} A^{-3/4} & \text{, N,Z pari/dispari} \\ 0 & \text{, A dispari} \end{cases}, \ \alpha_{\delta} \approx 34 \text{ MeV}$$
 (3.3.8)

3.3.6 Energia di separazione

Energia necessaria per separare nucleone dal nucleo; definita, rispettivamente per protone e neutrone, come:

¹Il risultato va diviso per 2 per non contare la stessa coppia due volte.

²Numero di protoni e neutroni rispettivamente.

 $^{^3 \}text{II}$ valore di α_δ dipende dalla parametrizzazione, non è univoco.

$$\begin{split} S_{\mathfrak{p}}({}_{Z}^{A}X) &= \left[\mathfrak{m}\left({}_{Z-1}^{A-1}X\right) + \mathfrak{m}({}^{1}H) - \mathfrak{m}\left({}_{Z}^{A}X\right)\right]c^{2} \\ S_{\mathfrak{n}}({}_{Z}^{A}X) &= \left[\mathfrak{m}\left({}_{Z}^{A-1}X\right) + \mathfrak{m}_{\mathfrak{n}} - \mathfrak{m}\left({}_{Z}^{A}X\right)\right]c^{2} \end{split} \tag{3.3.9}$$

OSSERVAZIONE 3.4. Non esistono nuclei stabili con A=5, A=8: per A=5 si ha 5 Li e 5 He che, rispettivamente, hanno $S_p<0, \ S_n<0$; per A=8 si ha 8 Be con $\mathfrak{m}(^8\text{Be})>2\mathfrak{m}(^4\text{He})$, quindi decade rapidamente in 2α .

3.4 Decadimenti nucleari

3.4.1 Introduzione

Ogni nucleo che decade rispetta la legge di decadimento radioattivo:

$$-\frac{dN}{dt} = \lambda N \tag{3.4.1}$$

con N numero di atomi/nuclei del campione e λ costante di decadimento. Si definisce larghezza totale di decadimento $\Lambda=\hbar\lambda$.

L'attività di una sorgente è il numero di decadimenti per unità di tempo; si misura in Bequerel (1 Bq = 1 decadimento/s).

La legge di decadimento radioattivo restituisce numero di atomi/nuclei nel tempo:

$$N(t) = N_0 e^{-t\lambda} \equiv N_0 e^{-t/\tau}, \ \tau = \frac{1}{\lambda}$$
 (3.4.2)

con τ vita media. Si definisce tempo di dimezzamento:

$$\tau_{1/2}: N(\tau 1/2) = \frac{N_0}{2} \Rightarrow T_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2 \approx 0.693\tau$$
 (3.4.3)

3.4.2 Tipi di decadimento

Si distinguono:

- decadimento $\beta^-:$ nel nucleo $\mathfrak{n}\to\mathfrak{p}+e^-+\overline{\nu}_e,$ quindi ${}^A_ZX\to {}^A_{Z+1}Y^+_{N-1}+e^-+\overline{\nu}_e;$
- decadimento β^+ : nel nucleo $p\to n+e^++\nu_e^{\ 1},$ quindi ${}^A_Z X\to {}^A_{Z-1} Y^-_{N+1}+e^++\nu_e;$
- cattura elettronica: nel nucleo $e^- + p \rightarrow n + \nu_e$, quindi $e^- + {^A_Z}X \rightarrow {^A_{Z-1}}Y_{N+1} + \nu_e$;
- transizione isomerica: nucleo in stato eccitato² decade a energia più bassa ${}_{Z}^{A}X^{*} \rightarrow {}_{Z}^{A}X + \gamma$;
- n-decay: ${}_Z^AX_N \rightarrow {}_Z^AY_{N-1} + n;$
- p-decay: ${}_Z^AX_N \rightarrow {}_{Z-1}^AY_N + p;$
- decadimento $\alpha \colon {}_Z^A X_N \to {}_{Z-2}^{A-4} Y_{N-2} + \alpha.$
- fissione nucleare: ${}_Z^{A}X_N \to {}_{Z_1}^{A_1}X_{1N_1} + {}_{Z_2}^{A_2}X_{2N_2} + N_3$, con $A = A_1 + A_2$, $Z = Z_1 + Z_2$, $N = N_1 + N_2 + N_3$;

¹Questa reazione può avvenire solo nel nucleo e non nel vuoto.

²Indicato con *.

- doppio decadimento $\beta\colon {}^A_Z X_N \to {}^A_{Z+2} Y^{++}_{N-2} + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e;$
- triplo decadimento α;
- decadimenti β seguiti da decadimento p, n o α .

3.4.3 Decadimento β e termine di pairing

Si considera nucleo $M_{A,Z}^{\text{at}}=ZM_{\text{H}}^{\text{at}}+N\mathfrak{m}_{\mathfrak{n}}-B_{A,Z}$; sostituendo espressione $B_{A,Z}$ formula semi-empirica di massa ad A costante (si studiano nuclei isobari):

$$M_{A,Z} = \text{cost}(A) + Z(M_H^{\text{at}} - \mathfrak{m}_{\mathfrak{n}}) + \alpha_C \frac{Z^2}{A^{1/3}} + \alpha_{\text{sym}} \frac{(N-Z)^2}{A} - \delta_{\text{pair}}$$

Se A dispari si ha una sola parabola; se A pari, invece, si possono avere N, Z pari $\Rightarrow \delta > 0$, oppure N, Z dispari $\Rightarrow \delta < 0$.

Nel primo caso, gli elementi più in alto nella parabola tenderanno a decadere, tramite decadimenti β (β^- da sinistra e β^+ da destra) all'elemento più vicino al minimo della parabola.

Nel secondo caso, cosa simile ma si possono verificare doppi decadimenti β e, sotto alcune condizioni¹, si possono verificare decadimenti da una parabola all'altra. In questo caso, si verificano doppi decadimenti β perché elementi si dispongono alternativamente sulle due parabole e due elementi sulla stessa distano di un 2 per il termine di pairing.

Figura B.5: Dipendenza da Z delle masse atomiche per A=125 (dispari) e A=128 pari. Nel caso A=128 sono anche indicate con frecce rosse i possibili decadimenti β^- (freccia verso destra) e β^+ (freccia verso sinistra), mentre la freccia tratteggiata corrisponde ad decadimento doppio β .

3.4.4 Effetto Mössbauer

Consiste nell'emissione di raggi γ da un nucleo e dal conseguente assorbimento di questi da parte di un altro nucleo. L'emissione di γ da nucleo può avvenire come ${}_Z^AX_N^* \to {}_Z^AX_N + \gamma$ oppure con

$${}_{Z}^{A}X_{N}^{**}\rightarrow\left\{ \begin{matrix} {}_{Z}^{A}X_{N}^{*}+\gamma\\ {}_{Z}^{A}X_{N}+\gamma\end{matrix}\right.$$

i fotoni emessi in un caso e in un altro hanno energie diverse. La produzione di nuclei eccitati avviene in vari modi, come per decadimento β o cattura elettronica:

$$^{57}_{27}\text{Co}_{30} \rightarrow ^{57}_{26}\text{Fe}^{**}_{31} + \nu_{e} \qquad \quad (e^{-} + \text{p} \rightarrow \text{n} + \nu_{e})$$

 $^{^{1}}$ La reazione deve risultare conveniente dal punto di vista energetico e possibile dal punto di vista quantistico per il momento angolare del nucleo in cui decadrebbero (visto che questo si deve conservare). Quando salti da una parabola all'altra non sono consentiti, si verificano dei doppi decadimenti β .

Un altra possibilità è tramite risonanza con γ a energia pari a ΔM ; nel caso del $^{57} {\rm Fe}$:

$$\begin{split} \gamma + {}^{57}\text{Fe} &\to {}^{57}\text{Fe}^* \to {}^{57}\text{Fe} + \gamma \\ \Delta M &= M({}^{57}\text{Fe}^*) - M({}^{57}\text{Fe}) = 14.4 \text{ keV} \end{split}$$

Si considera in particolare il caso in cui ...

4 ESERCIZI

4.1 Indagine della materia con onde elettromagnetiche

4.1.1 Fattore di forma fenditura 1D

In z=0 schermo con un certo spessore e apertura che si estendono in tutto y. Nel piano (x,z), fenditura ha semi-apertura di $\alpha/2$ e $\vec{E}_{inc} \parallel \hat{y}$. Per definizione:

$$F(\vec{k}) = \int_{\Sigma'} e^{-i\vec{k}\cdot\vec{r}'} d\Sigma' = \int_{-\alpha/2}^{+\alpha/2} \int_{-\infty}^{+\infty} e^{-ik_{x}x'} e^{-ik_{y}y'} dx' dy'$$

$$= \left(\int_{-\alpha/2}^{+\alpha/2} e^{-ik_{x}x'} dx'\right) \left(\int_{-\infty}^{+\infty} e^{-ik_{y}y'} dy'\right) = 2\pi\delta(k_{y})F(k_{x})$$
(4.1.1)

La $\delta(k_y) \Rightarrow k_y = 0$, quindi non c'è diffrazione lungo y. Infine:

$$F(k_x) = \left[\frac{q^{-ik_xx'}}{-ik_x}\right]_{-\alpha/2}^{+\alpha/2} = -\frac{2i\sin(k_x\alpha/2)}{-ik_x} = a\frac{\sin\left(\frac{k_x\alpha}{2}\right)}{\frac{k_x\alpha}{2}}$$
(4.1.2)

Anti-trasformando questa, si ottiene:

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} F(k_x) e^{ik_x x'} dk_x = \Theta(x' + \alpha/2) - \Theta(x' - \alpha/2)$$
(4.1.3)

che è proprio la forma della fenditura lungo x.

4.1.2 Fattore di forma guscio sferico

In coordinate sferiche, con $\rho(\vec{r}') = N/(4\pi\alpha'^2)\delta(r'-\alpha)$ e misura $r'^2dr'd\cos\beta d\alpha$:

$$F(\vec{q}) = \int_0^{+\infty} \int_{-1}^{+1} \int_0^{2\pi} \frac{N}{4\pi a^2} \delta(r'-a) e^{-i\vec{q}\cdot\vec{r}'} \ r'^2 dr' d\cos\beta d\alpha = N \frac{\sin(qa)}{qa}, \\ q = 2k_0 \sin\theta/2 \sin\theta/2 \sin\theta + 2k_0 \sin\theta + 2k_0$$

IMPORTANTE: usare angoli diversi da θ , ϕ per coordinate sferiche perché si potrebbero confondere con quelli della diffrazione.

4.1.3 Scattering su circuito resistivo

Spira quadrata con resistenza R, lato ℓ e normale \hat{n} ; si assume onda incidente con $\lambda \gg \ell$ per considerare campi uniformi su tutta la spira. L'onda incidente è definita da:

$$\vec{E}_{in} = E_0 \cos(\omega - kz)\hat{x}; \ \vec{B}_{in} = \frac{E_0}{c} \cos(\omega t - kz)\hat{y}; \ \vec{S}_{in} = \frac{E_0^2}{Z_0} \cos^2(\omega t - kz)$$

Visto che¹ $\Phi(\vec{B})=(E_0\ell^2/c)\cos(\omega t)\Rightarrow \varepsilon=(E_0\ell^2\omega/c)\sin(\omega t)\equiv \varepsilon_0\sin(\omega t)$. Questa genera I(t) variabile nel tempo che genera dipolo magnetico variabile nel tempo $\vec{\mu}(t)=\ell^2I(t)\hat{\pi}\Rightarrow$ irraggiamento di dipolo magnetico:

$$P_{irr} = \frac{|\ddot{\vec{\mu}}|^2}{6\pi\epsilon_0 c^5} = \frac{\ddot{I}(t)^2 \ell^4}{6\pi\epsilon_0 c^5} = \frac{\left[-\omega^2 I(t)\right]^2 \ell^4}{6\pi\epsilon_0 c^5} = \frac{\omega^4 I^2(t) \ell^4}{6\pi\epsilon_0 c^5}$$
(4.1.4)

¹Non si inserisce kz perché onda uniforme sulla spira.

Per trovare I(t):

$$RI^{2} + \frac{\omega^{4}\ell^{4}}{6\pi\varepsilon_{0}c^{5}}I^{2} = \varepsilon I$$
 (4.1.5)

dove la prima è potenza dissipata da R, la seconda potenza irraggiata e terza potenza trasmessa al circuito. Si può definire **resistenza di irraggiamento**:

$$R_{irr} \equiv \frac{\omega^4 \ell^4}{6\pi\epsilon_0 c^5} \tag{4.1.6}$$

Quindi:

$$I(t) = \frac{\epsilon_0 \sin(\omega t)}{R + R_{irr}}$$
 (4.1.7)

Potenza assorbita e diffusa elasticamente sono:

$$P_{abs} = RI^{2} = \frac{R}{(R + R_{irr})^{2}} \varepsilon^{2}; \ R_{el} = \frac{R_{irr}}{(R + R_{irr})^{2}} \varepsilon^{2} \tag{4.1.8}$$

Osservazione 4.1. $R_{irr} \neq 0$ sempre a parte per $\omega = 0$, quindi non ci può essere assorbimento senza diffusione elastica.

Si ottengono le sezioni d'urto¹:

$$\begin{split} \sigma_{abs} &= \frac{\frac{R}{(R+R_{irr})^2} \frac{\varepsilon_0^2}{2}}{\frac{E_0^2}{2Z_0}} = \frac{Z_0 \omega^2 \ell^2 B_0^2}{c^2 B_0^2} \frac{R}{(R+R_{irr})^2} = \frac{4\pi^2 Z_0 \ell^4}{\lambda^2} \frac{R}{(R+R_{irr})^2} \\ \sigma_{el} &= \frac{4\pi^2 Z_0 \ell^4}{\lambda^2} \frac{R_{irr}}{(R+R_{irr})^2} \\ &\Rightarrow \sigma_{tot} = \frac{4\pi^2 \ell^4}{\lambda^2} \frac{Z_0}{(R+R_{irr})^2} \end{split} \tag{4.1.9}$$

 $^{^{1}}$ In quella di assrbimento, $\varepsilon_{0}/2$ e $E_{0}^{2}/2$ si trovano da media temporale.

4.2 Indagine della materia con particelle

4.2.1 Rilascio di dose in acqua

Fascio di fotoni da $E_{\gamma}=10$ keV penetrano in acqua; ad una distanza x dalla superficie, si individua un parallelepipedo di lato Δx e superficie ΔS . Il flusso di fotoni è $\Phi_0=10^9$ fotoni/cm².

Si cerca la dose rilasciata nel volume $\Delta V = \Delta x \Delta S$, indicata con D(x) e data da energia/massa, le cui unità di misura sono $[D] = J/kg \stackrel{\text{def}}{=} Gy = Gray$.

Svolgimento. Si indica con ρ la densità dell'acqua e con M la sua massa molare.

Per quanto visto su flusso di particelle incidenti su lamina di spessore Δx , si ha $\Phi(x) = \Phi_0 e^{-n\sigma_{tot}x} \equiv \Phi_0 e^{-x/\ell}$. Usando sito sulle sezioni d'urto, per l'acqua:

$$\frac{1}{\ell} = n\sigma_{tot} = \frac{\rho N_{AV}}{M} \sigma_{tot} \equiv \rho \lambda(E_{\gamma}) \approx 1 \frac{g}{cm^3} \cdot 5.3 \frac{cm^2}{g} \Rightarrow \ell \approx 1.9 \text{ mm}$$

dove $\lambda(E_{\gamma})$ è **coefficiente di attenuazione di massa** e dipende da E_{γ} per σ_{tot} . Si cerca $\Delta N/\Delta M$ rapporto tra densità di fotoni e massa in ΔV .

La seconda è $\rho\Delta V$, mentre per la prima si sa che $\Phi(x)$ è il flusso non assorbito per interazione, pertanto $-\frac{d\Phi}{dx}$ aumenta quando Φ diminuisce, cioè quando si verificano interazioni dei fotoni con l'acqua. Allora, il numero di fotoni interagenti che producono elettroni liberi in ΔV è $(-\frac{d\Phi}{dx}\Delta x)\Delta S$, dove la parentesi è il numero di fotoni che hanno interagito in Δx e, quindi, moltiplicato per ΔS rappresenta il numero di fotoni interagenti in ΔV . Sotto l'assunzione che gli elettroni liberati in ΔV tendano a rimanerci:

$$\begin{split} \frac{\Delta N}{\Delta V} &= \frac{-\frac{d\Phi}{dx}\Delta x \Delta S}{\rho \Delta V} = \frac{1}{\rho} = \lambda \Phi_0 e^{-x/\ell} \\ \Rightarrow D(x) &= (E_{\gamma} - |E_{\text{leg}}|)\lambda \Phi_0 e^{-x/\ell} = E_{\gamma}\lambda \Phi_0 e^{-x/\ell} \approx (8.5 \text{ mGy})e^{-x/\ell} \end{split}$$

dove non tutta l'energia del fotone va in energia dell'elettrone, ma in parte viene utilizzata per rompere il legame. In questo caso, la differenza è circa uguale a E_{γ} .

4.2.2 Neutrini in impatto su superficie terrestre

Diametro Terra $D \approx 1.3 \cdot 10^9$ km. Incidono 1 GeV su superficie terrestre e si vuole sapere se riescono ad attraversare la Terra.

Svolgimento. La probabilità di interazione, in assunzione di lamina sottile¹, è $P_{int} = nD\sigma_{tot}^2$; sapendo che

$$n = \frac{\langle \rho \rangle N_{\text{AV}} \langle A \rangle}{\langle M \rangle}$$

con $\langle \rho \rangle$ densità media, $\langle A \rangle$ valore medio di nucleoni per atomo e $\langle M \rangle$ valore medio di massa molare (vale per definizione $\langle M \rangle / \langle A \rangle = 1$ g), si ha:

$$P_{int} \approx \frac{5.5 \frac{g}{cm^3} \; 6 \cdot 10^{23}}{1 \; g} (1.3 \cdot 10^9 \; cm^2) (7 \cdot 10^{-39} \; cm^2) \approx 3 \cdot 10^{-5}$$

Quindi un neutrino vede la Terra come fosse trasparente, cioè probabilità di interazione trascurabile.

¹Si sa in anticipo che è valida, quindi la si usa direttamente, altrimenti si può verificare a posteriori osservando se il numero di interazioni è talmente alto da invalidarla.

²Si sta considerando flusso di neutrini collimato lungo il diametro.

4.2.3 Interazione forte

Calcolare T_{min} per far toccare un protone con ^{12}C (si intende nucleo di carbonio) nei casi $\theta = \pi$, $\theta = \pi/3$, $\theta = 100$ mrad.

Svolgimento. Si ha $x \approx 6$ fm e, al contempo:

$$6 \text{ fm} \approx x = \frac{1}{2} (1.44 \text{ MeV}) \left(1 + \frac{1}{\sin \frac{\theta}{2}} \right)$$

Allora per $\theta = \pi \Rightarrow 1.44$ MeV; $\theta = \pi/3 \Rightarrow 2.1$ MeV; $\theta = 0.1$ rad $\Rightarrow 14.7$ MeV.

4.2.4 Q-valore per alcune reazioni di decadimento nucleare

Per $n \to p + e^- + \overline{\nu}_e$ con $\tau_n \approx 15$ min e $\tau_{n,1/2} \approx 10$ min. Per il Q-valore¹:

$$m_n = m_p + m_e + Q \approx m(^1H) + Q \Rightarrow \Delta_n + Am_n = \Delta_{^1H} + Am_n$$

con A = 1; allora

$$Q = \Delta_n - \Delta_{^1\text{H}} pprox 0.782~\text{MeV} > 0$$

quindi la reazione avviene spontaneamente.

OSSERVAZIONE 4.2. Processo nel nucleo può essere inibito da forza nucleare forte.

Si considera decadimento β del trizio ${}^3_1\text{H}_2 \rightarrow {}^3_2\text{He}^+_1 + e^- + \overline{\nu}_e$, da cui

$$Q = \Delta_{3.1} - \Delta_{3.2} \approx 19 \text{ keV} > 0$$

Un altro decadimento è ${}_1^2H_1 \rightarrow {}_1^1H_0 + \mathfrak{p} + \mathfrak{e}^- + \overline{\nu}_{\mathfrak{e}},$ per cui si ha:

$$Q \approx -1.442 \text{ MeV} < 0$$

che non avviene spontaneamente.

¹Si può utilizzare il difetto di massa per calcolare il Q-valore in modo più esplicito, ma si può fare anche direttamente tramite le masse degli elementi.