Real Analysis

Sebastian Müksch, v2, 2018/19

Convergence

Remark [Wade 7.2].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions f_n converges pointwise if $\forall \varepsilon > 0, x \in S \exists N \in \mathbb{N} \text{ s.t.}$:

$$n \geqslant N \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

Theorem [Wade 7.9].

Let $S \subseteq \mathbb{R}$, non-empty, and suppose $f_n \to f$ uniformly on S as $n \to \infty$. Then each f_n continuous at $x_0 \in S \Rightarrow f$ continuous at $x_0 \in S$.

Theorem [Wade 7.10].

Suppose $f_n \to f$ uniformly on closed interval [a,b]. Then **each** f_n integrable on $[a,b] \Rightarrow f$ integrable on [a, b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) dx$$

Lemma [Wade 7.11] (Uniform Cauchy Criterion).

Let $S \subseteq \mathbb{R}$, non-empty, and $f_n : S \to \mathbb{R}$ a sequence of functions. Then f_n converges *uniformly* on $S \Leftrightarrow \forall \varepsilon > 0 \,\exists N \in \mathbb{N} \text{ s.t.}$:

$$n, m \geqslant N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \quad \forall x \in S.$$

Theorem [Wade 7.12].

Let (a,b) be a bounded interval and f_n converging at some $x_0 \in (a, b)$. Each f_n is differentiable on (a, b) and f'_n converges **uniformly** on $(a,b) \Rightarrow f_n$ converges uniformly

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'.$$

Exercise 7.1.3.

Let the sequence of $f_n: S \to \mathbb{R}$ be bounded and let $f_n \to f$ uniformly. Then f is bounded and moreover, sequence f_n is **uniformly** bounded.

Exercise 7.1.5.

Let $f_n \to f$ and $g_n \to g$ uniformly as $n \to \infty$ on $S \subseteq \mathbb{R}$. Then

- $f_n + g_n \to f + g$, $\alpha f_n \to \alpha f$ uniformly on S as $n \to \infty$, for all $\alpha \in \mathbb{R}$;
- b) $f_n g_n \to fg \ pointwise \ on \ S;$
- c) if f, g bounded, then $f_n g_n \to fg$ uniformly on S;
- d) if g unbounded, c) is false.

Exercise 7.1.9.

Let f, g be **continuous** on **closed** \mathcal{E} **bounded** interval [a, b] with |g(x)| > 0 for all $x \in [a, b]$. Let $f_n \to f$ and $g_n \to g$ uniformly on [a, b].

- a) $1/g_n$ is defined for large n and $f_n/g_n \to f/g$ uniformly on [a,b];
- b) a) is false if [a, b] is replaced with (a, b).

Exercise 7.1.10.

Let $S \subseteq \mathbb{R}$, non-empty, f_n sequence of **bounded** functions on S s.t. $f_n \to f$ uniformly. Then

$$\frac{f_1(x) + \ldots + f_n(x)}{n} \to f(x)$$

 $uniformly ext{ on } S.$

Theorem [Wade 7.14].

Let $S \subseteq \mathbb{R}$, non-empty, $f_n : S \to \mathbb{R}$.

- i) Let each f_n is continuous at $x_0 \in E \Rightarrow$. Then $f = \sum_{n=1}^{\infty} f_n$ converging *uniformly* $\Rightarrow f$ continuous at x_0 .
- ii) Suppose S = [a, b] and each f_n be integrable on [a, b]. Then $f = \sum_{n=1}^{\infty} f_n$ converging *uniformly* on $[a,b] \xrightarrow{n} f$ integrable on [a, b] and

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

iii) Suppose S is **bounded**, open interval and each f_n differentiable on S. $\sum_{n=1}^{\infty} f_n$ convergent at some $x_0 \in S$ and $\sum_{n=1}^{\infty} f'_n$ uniformly convergent on $S \Rightarrow$ $f := \sum_{n=1}^{\infty} f_n$ uniformly convergent on S, f differentiable on S and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x)$$

for $x \in S$

Theorem [Wade 7.15] (Weierstrass M-Test). Let $S \subseteq \mathbb{R}$, non-empty, and $f_n : S \to \mathbb{R}$. Suppose $M_n \geqslant 0$ satisfies $\sum_{n=1}^{\infty} M_n < \infty$. If $\forall n \in \mathbb{N}, x \in S : |f_n(x)| \leqslant M_n$, then $\sum_{n=1}^{\infty} f_n$ converges absolutely and uniformly on S

Workshop 2, Question 7.

Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of *continuous* functions converging *uniformly* to f. Let (x_n) be a sequence in \mathbb{R} s.t. $x_n \to x \in \mathbb{R}$. Then $f_n(x_n) \to f(x)$.

Power Series

Theorem [Power Series, Thrm. 1]. Let R be radius of convergence of $\sum_{n=0}^{\infty} a_n (x-c)^n.$

- (i) $|x c| < R \Rightarrow \text{series } converges$ absolutely;
- (ii) $|x-c| > R \Rightarrow \text{ series } diverges.$

Exercise (Radius of Convergence).

- (i) If $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$ exists, then it is radius of convergence;
- (ii) If $\lim_{n\to\infty} |a_n|^{-\frac{1}{n}}$ exists, then it is radius of convergence.

Theorem [Power Series, Thrm. 2].

Let R > 0, then $\sum_{n=0}^{\infty} a_n (x-c)^n$ converges uniformly $\mathscr C$ absolutely on |x-c| < R to a continuous function f, i.e.:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

defines a continuous function $f:(c-R,c+R)\to\mathbb{R}.$

Lemma [Power Series].

 $\sum_{n=0}^{\infty} a_n (x-c)^n \text{ and } \sum_{n=0}^{\infty} n a_n (x-c)^{n-1}$ have the same radius of convergence.

Theorem [Power Series, Thrm. 3]. Suppose $\sum_{n=0}^{\infty} a_n (x-c)^n$ has radius of convergence R. Then

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

is *infinitely differentiable* on |x-c| < R and for such x:

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

and the series converges uniformly & **absolutely** on [c-r, c+r] for any r < R. Additionally

$$a_n = \frac{f^{(n)}(c)}{n!}.$$

Remark [Power Series]

Analytic functions are infinitely differentiable on $\{x \in \mathbb{R} : |x - c| < r\}$ and the coefficients of the power series are uniquely determined by $a_n = f^{(n)}(c)/n!$.

Exercise 7.2.2.

The geometric series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges *uniformly* on any $[a,b] \subset (-1,1)$.

Exercise 7.3.3.

Let $\sum_{k=0} \infty a_k x^k$ have radius of convergence R.

- a) $\sum_{k=0} \infty a_k x^{2k}$ has radius of convergence
- b) $\sum_{k=0}^{\infty} \infty a_k^2 x^k$ has radius of convergence \mathbb{R}^2

Exercise 7.3.4.

Let $|a_k| \leq |b_k|$ for large k and $\sum_{k=0}^{\infty} \infty b_k x^k$ converges on *open* interval I. Then $\sum_{k=0}^{\infty} \infty a_k x^k$ converges on I. Hint: Supremum Definition.

Exercise 7.3.5.

Let (a_k) be **bounded** sequence of real numbers. Then $\sum_{k=0} \infty a_k x^k$ has **positive** radius of convergence.

Riemann Integration

Workshop 3, Question 5.

Let $I \subseteq \mathbb{R}$ be an open interval, $f: I \to \mathbb{R}$ differentiable with f' bounded on I. Then f is uniformly continuous.

Workshop 3, Question 7.

Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ continuous. Then f uniformly continuous \Leftrightarrow whenever sequences (s_n) , (t_n) in I are s.t. $|s_n - t_n| \to 0$, then $|f(s_n) - f(t_n)| \to 0$.

Workshop 3, Question 8.

Let $f:[a,b]\to\mathbb{R}$ continuous. Then f is ${\it uniformly}$ continuous.

Exercise (Step Function Vector Space). The class of step functions is a vector space. Moreover, if ϕ and ψ are step functions, then $\max\{\phi,\psi\}, \min\{\phi,\psi\}, |\phi| \text{ and } \phi\psi \text{ are also step}$

 $\textbf{Exercise} \hspace{0.2cm} \text{(Characterising Step Functions)}.$ Function ϕ is a **step function** $\Leftrightarrow \phi$ is of form:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{I_j}(x)$$

where each I_j is a **bounded interval**.

Lemma (Set Independence). Let ϕ be a step function. Then $\int \phi$ is independent of the particular set $\{x_0, x_1, \ldots, x_n\}$ with respect to which ϕ is a step function.

Proposition [Integration, Prop. 1]. Let ϕ, ψ be step functions, $\alpha, \beta \in \mathbb{R}$. Then

$$\int (\alpha \phi + \beta \psi) = \alpha \int \phi + \beta \int \psi.$$

Exercise (Integral Ordering). Let ϕ, ψ be step functions. Then $\phi \leqslant \psi \Rightarrow$ $\int \phi \leqslant \int \psi$.

Theorem [Integration, Thrm. 1]. Let $f: \mathbb{R} \to \mathbb{R}$. Then f Riemann-integrable \Leftrightarrow

$$\begin{split} \sup \left\{ \int \phi : \phi \text{ step function,} \phi \leqslant f \right\} = \\ \inf \left\{ \int \psi : \psi \text{ step function,} \psi \geqslant f \right\}. \end{split}$$

Theorem [Integration, Thrm. 2].

Let $f: \mathbb{R} \to \mathbb{R}$. Then f is Riemann-integrable \Leftrightarrow there exist sequences of step functions ϕ_n and ψ_n s.t. $\forall n \in \mathbb{N} : \phi_n \leqslant f \leqslant \phi_n$ and

$$\int \psi_n - \int \phi_n \to 0.$$

If ϕ_n and ψ_n are any sequences of step functions satisfying the above, then

$$\int \phi_n \to \int f \quad \text{and} \int \psi_n \to \int f$$

as $n \to \infty$.

Exercise (Sum of Powers Estimate). Let $n \in \mathbb{N}$, then for any integer $m \ge 1$:

$$\frac{n^{m+1}}{m+1}\leqslant \sum_{j=1}^n j^m\leqslant \frac{(n+1)^{m+1}}{m+1}$$

Lemma [Integration, Lem. 1].

Let $f: \mathbb{R} \to \mathbb{R}$ be **bounded** with **bounded** support [a, b]. Then the following is equivalent:

- (i) f is Riemann-integrable;
- (ii) $\forall \varepsilon > 0 \ \exists \ a = x_0 < \ldots < x_n = b \ \text{s.t.}$ if

$$M_j = \sup_{x \in I_j} f(x), \quad m_j = \inf_{x \in I_j} f(x)$$

where $I_j = [x_{j-1}, x_j]$, then

$$\sum_{j=1}^{n} (M_j - m_j)(x_j - x_{j-1}) < \varepsilon;$$

(iii) $\forall \varepsilon > 0 \ \exists \ a = x_0 < \ldots < x_n = b \ \text{s.t.}, \text{ with } I_j = (x_{j-1}, x_j) \text{ for } j \geqslant 1$:

$$\sum_{j=1}^{n} \sup_{x,y \in I_j} |f(x) - f(y)||I_j| < \varepsilon.$$

Theorem [Integration, Thrm. 3]. Let f,g be $Riemann-integrable,\ \alpha,\beta\in\mathbb{R}.$ Then

(a) $\alpha f + \beta g$ is **Riemann-integrable** and

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g;$$

- (b) $f \geqslant 0 \Rightarrow \int f \geqslant 0$ and $f \geqslant g \Rightarrow \int f \geqslant \int g$;
- (c) |f| is Riemann-integrable and

$$\left| \int f \right| \leqslant \int |f|;$$

- (d) $\max\{f,g\}$ and $\min\{f,g\}$ are Riemann-integrable;
- (e) fg is Riemann-integrable

Theorem [Integration, Thrm. 4].

Let $g:[a,b]\to\mathbb{R}$ be **continuous**, f(x)=g(x) if $x\in[a,b]$, f(x)=0 if $x\not\in[a,b]$. Then f is **Riemann-integrable**.

Theorem [Integration, Thrm. 5].

Let $g:[a,b] \to \mathbb{R}$ be Riemann-integrable. For $x \in [a,b]$ let

$$G(x) = \int_{a}^{x} g.$$

Then g continuous at some $x \in [a, b] \Rightarrow G$ differentiable at x and G'(x) = g(x).

Theorem [Integration, Thrm. 6]. Let $f: [a, b] \to \mathbb{R}$ s.t. f has continuous derivative f' on [a, b]. Then

$$\int_{a}^{b} f' = f(b) - f(a).$$

Exercise (Integral Test).

Let (a_n) be a **non-negative** sequence of numbers and $f:[1,\infty)\to(0,\infty)$ s.t.

- (i) $\int_1^n f \leqslant K$ for some K and all n and
- (ii) $a_n \leqslant f(x)$ for $n \leqslant x < n+1$.

Then $sum_n a_n$ converges to a real number which is at most K.

For p > 1, $\sum_{i=1}^{\infty} 1/n^p$ converges.

Workshop 5, Question 1.

Let $f: \mathbb{R} \to \mathbb{R}$ be *Riemann-integrable*. Then f is *bounded* with *bounded support*.

Workshop 5, Question 7.

Let $g:[a,b] \to \mathbb{R}$, a < b, be **continuous** and **non-negative**. Then $\int_a^b g = \Rightarrow g = 0$ on [a,b].

Exercise 5.2.0 (b).

Let f be Riemann-integrable, P any polynomial, then $P \circ f$ is Riemann-integrable. Hint: f R-integrable $\Rightarrow f^n$ is R-integrable by Thrm. 3 linearity.

Exercise 5.2.6.

(a) Let $g_n \geqslant 0$ sequence of Riemann-integrable functions on [a,b] s.t.

$$\lim_{n \to \infty} \int_{a}^{b} g_n = 0$$

Then f Riemann-integrable on $[a, b] \Rightarrow$

$$\lim_{n \to \infty} \int_{a}^{b} f g_n = 0$$

Hint: f is bounded $\Rightarrow fg_n$ is bounded & Squeeze Thrm.

Metric Spaces

Example [Wade 10.2].

Every Euclidean space \mathbb{R}^n is a metric space with the *usual metric* $\rho(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$.

Definition [Wade 10.3].

 \mathbb{R} is a metric space with the *discrete metric*:

$$\sigma(x,y) = \begin{cases} 0 & x = y, \\ 1 & x \neq y \end{cases}$$

Example [Wade 10.4].

Let (X, ρ) be a metric space and $E \subseteq X$. Then E is a metric space with metric ρ , called a subspace of X.

Exercise 10.4.10a.

 $E \subset X$ compact $\Rightarrow E$ sequentially compact. Hint: Arbitrary $x \in$,

 $S = \{n \in \mathbb{N} : x_n \in B_{r(x)}(x)\}$ must be finite for (x_n) not to have convergent subsequence. E has open cover $\{B_r(x_i) : 1 \leqslant i \leqslant k\} \Rightarrow \exists i \text{ s.t.}$ $B_r(x_i)$ infinite \Rightarrow contradicts S finite.

Example [Wade 10.6].

Let $\mathcal{C}[a,b]$ be the set of continuous functions $f:[a,b]\to\mathbb{R}$ and

$$\|f\|\coloneqq \sup_{x\in[a,b]}|f(x)|$$

Then $\rho(f,g) := ||f-g||$ is a metric on $\mathcal{C}[a,b]$. N.B.: Convergence in this metric spaces means uniform convergence.

Remark [Wade 10.9].

Every open ball is *open*, every closed ball is *closed*.

Remark [Wade 10.10].

Let $a \in X$. Then $X \setminus \{a\}$ is *open* and $\{a\}$ is *closed*.

Remark [Wade 10.11].

Let (X, ρ) be an arbitrary metric space. Then \emptyset and X are both open $\mathscr C$ closed.

Example [Wade 10.12].

Every subset of discrete space \mathbb{R} is both open by closed.

Theorem [Wade 10.14].

Let X be a metric space.

- i) A sequence in X can have at most one limit.
- ii) If $\{x_n\}$ in X converges to a and $\{x_{n_k}\}$ is $any \ subsequence$ of $\{x_n\}$, then $\{x_{n_k}\}$ converges to a as well.
- iii) $\{x_n\}$ in X is **convergent** $\Rightarrow \{x_n\}$ is **bounded**
- iv) $\{x_n\}$ in X is **convergent** $\Rightarrow \{x_n\}$ is **Cauchy**

Remark [Wade 10.15].

Let $\{x_n\}$ in X. Then $x_n \to a$ as $n \to \infty \Leftrightarrow$ for every open set V s.t. $a \in V \exists N \in \mathbb{N}$ s.t. $n \geqslant N \Rightarrow x_n \in V$.

Theorem [Wade 10.16].

Let $E \subseteq X$. Then E is **closed** \Leftrightarrow the limit of **every convergent** sequence $\{x_k\}$ in E **lies in** E, i.e.:

$$\lim_{k \to \infty} x_k \in E$$

Remark [Wade 10.17].

The discrete space contains **bounded** sequences with have **no convergent subsequences**, e.g. $\{k\}$ with $k \in \mathbb{N}$.

Remark [Wade 10.18].

The metric space \mathbb{Q} with usual metric contains *Cauchy sequences* which do *not converge*, e.g. $\{q_k\}$ in \mathbb{Q} s.t. $q_k \to \sqrt{2}$.

Exercise 10.1.4.

In *discrete* metric space, $x_n \to a$ as $n \to \infty \Leftrightarrow x_n = a$ for n large.

Exercise 10.1.5.

Let x_n, y_n sequences in (X, ρ) converge to same limit $a \in X$. Then $\rho(x_n, y_n) \to 0$ as $n \to \infty$. The *converse* is *false*, e.g. $x_n = y_n = n$.

Exercise 10.1.6.

Let (x_n) be Cauchy in X. Then (x_n) converges $\Leftrightarrow (x_n)$ has a convergent subsequence.

Remark [Wade 10.20].

If X is a complete metric space, then

- 1) every Cauchy sequence in X converges;
- 2) the limit of *every Cauchy* sequence in X stays in X.

Theorem [Wade 10.21].

Let X be a *complete* metric space and $E \subseteq X$. Then E is *complete* \Leftrightarrow E is *closed*.

Remark (Cluster Point in Subspace). Let $E\subseteq X$ be a *subspace* of X. The $a\in E$ is a *cluster point* in $E\Leftrightarrow \forall \delta>0$, the *relative ball* $B_\delta(a)\cap E$ contains *infinitely* many points.

Theorem [Wade 10.26].

Let $a \in X$ be a *cluster point* and $f, g: X \setminus \{a\} \to Y$.

i) $\forall x \in X \setminus \{a\} : f(x) = g(x)$ and f(x) has a limit as $x \to a \Rightarrow g(x)$ has a limit as $x \to a$ and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x).$$

ii) Sequential Characterization of Limits:

$$L := \lim_{x \to a} f(x)$$

exists $\Leftrightarrow f(x_n) \to L$ as $n \to \infty$ for every sequence $\{x_n\}$ in $X \setminus \{a\}$ s.t. $x_n \to a$ as $n \to \infty$.

- iii) Let $Y = \mathbb{R}^n$. f(x) and g(x) have a limit as $x \to a \Rightarrow (f+g)(x), (fg)(x), (\alpha f)(x)$ and if $Y = \mathbb{R}$ and limit of $g(x) \neq 0$ also (f/g)(x) have limits. In this case, the usual algebra of limits applies.
- iv) Squeeze Theorem: Let $Y = \mathbb{R}$. Let $h: X \setminus \{a\} \to \mathbb{R}$ s.t. $\forall x \in X \setminus \{a\} : g(x) \leqslant h(x) \leqslant f(x)$ and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = L$$

 \Rightarrow limit of h as $x \to a$ exists and

$$\lim_{x \to a} h(x) = L.$$

v) Comparison Theorem: Let $Y = \mathbb{R}$. $\forall x \in X \setminus \{a\} : f(x) \leq g(x)$ and f, g have a limit as $x \to a$, then

$$\lim_{x \to a} f(x) \leqslant \lim_{x \to a} g(x).$$

Theorem [Wade 10.28].

Let $E \subseteq X$, non-empty, and $f, g : E \to Y$.

- i) f continuous at $a \in E \Leftrightarrow f(x_n) \to f(a)$ as $n \to \infty$ for every sequence $\{x_n\}$ in E s.t. $x_n \to a$.
- ii) Let $Y=\mathbb{R}^n$. f,g continuous at $a\in E\Rightarrow f+g,\,fg,\,\alpha f,$ for $\alpha\in\mathbb{R}$ are continuous at $a\in E.$ Also, if $Y=\mathbb{R}$ and $g(a)\neq 0$, then f/g continuous at $a\in E.$

Theorem [Wade 10.29].

Let X, Y, Z be metric spaces and $a \in X$ a cluster point. Let $f: X \to Y, g: f(X) \to Z$. $f(x) \to L$ as $x \to a$ and g continuous at $L \Rightarrow$

$$\lim_{x \to a} (g \circ f)(x) = g \left(\lim_{x \to a} f(x) \right).$$

Exercise 10.2.2.

Let (X, d) be a metric space.

- a) $a \in X$ isolated $\Leftrightarrow a$ not cluster point in X.
- b) Discrete metric space has no cluster points.

Hint: a) (\Leftarrow) not cluster $\Rightarrow B_r(a)$ finitely many elements, take ρ minimum of distance of those to a, then $X \cap B_{\rho}(a) = \{a\}$.

Exercise 10.2.3.

Let $E \subseteq X$. Then a is a *cluster point* \Leftrightarrow there *exists* sequence (x_n) in $E \setminus \{a\}$ s.t. $x_n \to a$ as $n \to n$.

Hint: (\Rightarrow) $x_n \in E \cap B_{\frac{1}{n}}(a)$, (\Leftarrow) $E \cap B_r(a)$ infinite as $a \neq x_n$.

Exercise 10.2.4.

- a) Let $E \subseteq X$, non-empty. Then a is a *cluster* point for of $E \Leftrightarrow \forall r > 0$: $(E \cap B_r(a)) \setminus \{a\} \neq \emptyset$.
- b) Every bound infinite subset of $\mathbb R$ has at least one cluster point.

Hint: a) (\Leftarrow) $x_n \in (E \cap B_{\frac{1}{n}}(a)) \setminus \{a\}$ and Ex. 10.2.3. b) (x_n) sequence in E and Bolzano-Weierstrass.

Workshop 7, Question 5.

Metrics d, ρ strongly equivalent $\Rightarrow d$, ρ equivalent.

Workshop 7, Question 7.

Let d, ρ be metrics on X. Then d, ρ equivalent \Leftrightarrow every subset of X open with respect to d is also open with respect to ρ and vice-versa.

Workshop 8, Question 11.

X compact $\Rightarrow \forall r > 0$, X can be covered by **finitely** many open balls of radius r.

 Hint : Consider open cover of open balls of radius r.

Workshop 8, Question 12.

Let X be compact. Then X is complete. Additionally, X $compact \Leftrightarrow X$ is complete and can be covered by finitely many open balls of radius r for any r > 0.

Hint: X compact \Rightarrow sequentially compact, so (x_n) Cauchy sequence has convergent subsequence (x_n) converges.

Workshop 8, Question 13.

X compact $\Leftrightarrow X$ sequentially compact.

Hint: Take (x_n) Cauchy, has convergent subsequence by assumption \Rightarrow converges $\Rightarrow X$ complete. Only need show that \exists cover with finite number open balls. Assume none exists for r>0. Pick $x_1\in X$. Pick $x_2\in X$ s.t. $d(x_1,x_2)>r$, repeat to get (x_n) s.t. $d(x_m,x_n)>r$ $\forall m,n$ \Rightarrow not convergent \Rightarrow contradiction.

Topology

Theorem [Wade 10.31].

Let X be a metric space.

- i) The union of any collection of open sets in X is open;
- ii) The intersection of a finite collection of open sets in X is open;
- iii) The intersection of any collection of closed sets in X is closed;
- iv) The union of a finite collection of closed sets in X is closed;
- v) Let $V \subseteq X$ be **open**, $E \subseteq X$ be **closed**. Then $V \setminus E$ is **open**, $E \setminus V$ is **closed**.

Remark 10.32.

The *intersection* of *any collection* of *open* sets is *not* necessarily *open*, e.g.

$$\bigcap_{k \in \mathbb{N}} \left(-\frac{1}{k}, \frac{1}{k} \right) = \{0\}.$$

The union of any collection of closed sets is not necessarily closed, e.g.

$$\bigcup_{k\in\mathbb{N}} \left[\frac{1}{k+1}, \frac{k}{k+1} \right] = (0,1).$$

Theorem [Wade 10.34].

Let $E \subseteq X$. Then

- i) $E^o \subseteq E \subseteq \overline{E}$;
- ii) V open and $V \subseteq E \Rightarrow V \subseteq E^o$.
- iii) C closed and $C \supseteq E \Rightarrow C \supseteq E$.

Theorem [Wade 10.39].

Let $E \subseteq X$. Then $\partial E = \overline{E} \setminus E^o$.

Theorem [Wade 10.40].

Let $A, B \subseteq X$. Then

- i) $(A \cup B)^o \supseteq A^o \cup B^o$, $(A \cap B)^o = A^o \cap B^o$;
- ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}, \overline{A \cap B} \subseteq \overline{A} \cap \overline{B};$
- iii) $\partial(A \cup B) \subseteq \partial A \cup \partial B$, $\partial(A \cap B) \subseteq (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B)$.

Exercise 10.3.4.

Let $A \subseteq B \subseteq X$. Then $\overline{A} \subseteq \overline{B} \ \& \ A^o \subseteq B^o$.

Remark [Wade 10.43].

The empty set and *all finite* subsets of a metric space are *compact*.

Remark 10.44.

Every compact set is closed.

 $\begin{array}{ll} \textit{Hint:} \ \, \text{Assume} \ \, H \ \, \text{compact} \ \, \& \ \, \text{not closed} \Rightarrow \exists \\ \text{sequence with limit} \ \, x \ \, \text{not in} \ \, H. \ \, y \in H \ \, \text{and} \\ r(y) \coloneqq \rho(x,y)/2, \, x \neq H \Rightarrow r(y) > 0. \ \, \text{Open} \\ \text{cover of} \ \, B_{r(y)}(y) \ \, \text{w/ finite subcover} \\ \{B_{r(y_j)}(y_j)\}. \ \, r = \min\{r(y_j)\}. \ \, x_k \rightarrow x \Rightarrow \\ x_k \in B_r(x) \ \, \text{for} \ \, k \ \, \text{large.} \ \, x_k \in B_r(x) \cap H \Rightarrow \\ x_k \in B_{r(y_j)}(y_j) \ \, \text{for some} \ \, j. \ \, \text{Then with} \ \, r_j \geqslant \\ \rho(x_k,y_j) \geqslant \rho(x,y_j) - \rho(x_k,x) = \\ 2r_j - \rho(x_k,x) > 2r_j - r \geqslant 2r_j - r_j \Rightarrow \\ \text{contradiction.} \end{array}$

Remark [Wade 10.46].

Every *closed subset* of a *compact* set is *compact*.

Hint: $E \subseteq H$ closed w/ H compact s.t. \mathcal{V} is open cover of E. $E^c = X \setminus E$ open $\Rightarrow \mathcal{V} \cup E^c$ cover H. H compact \Rightarrow finite subcover \mathcal{V}_0 and $H \subseteq E^c \cup \mathcal{V}_0$, but $E \cap E^c = \emptyset \Rightarrow \mathcal{V}_0$ finite subcover of E.

Theorem [Wade 10.46].

Let $H \subseteq X$, X being a metric space. H compact \Rightarrow H closed & bounded.

Remark 10.47.

Given an arbitrary metric space, closed \mathcal{E} bounded \neq compact in general.

Exercise 10.4.2.

Let $A, B \subseteq X$ be *compact*. Then $A \cup B$ and $A \cap B$ are *compact*.

Hint: Combine subcovers for $A \cup B$; note $A \cap B \subset A$ closed & Thrm. 10.46.

Exercise 10.4.3.

Let $E \subseteq \mathbb{R}$ be **compact** and non-empty. Then $\sup E$ and $\inf E$ belong to E.

Hint: Existence by boundedness. Approximation Property gives $\sup E \leqslant x_n \leqslant \sup E + 1/n$ and Squeeze Theorem.

Exercise 10.4.8.

(a) Cantor Intersection Theorem: Let $H_{k+1} \subseteq H_k$ be nested sequence of compact, non-empty sets in metric space X. Then $\bigcap_{k=1}^{\infty} H_k \neq \emptyset$.

Hint: Assume $\bigcap_{k=1}^{\infty} H_k = \emptyset$. $\{H_k^c\}$ open cover of $H_1 \Rightarrow$ finite subcover H_{k_i} , $1 \leqslant i \leqslant n$. H_k nested $\Rightarrow H_k^c$ nested $\Rightarrow s = \max\{k_i\}$ then $H_1 \subset H_s^c \Rightarrow \emptyset = H_s \cap H_1 = H_s$, contradiction.

Remark [Wade 10.55].

Let $E \subseteq X$. If $\exists A, B \subseteq X$, both **open** s.t.

$$E \subseteq A \cup B, \quad A \cap B = \emptyset$$

 $A \cap E \neq \emptyset, \quad B \cap E \neq \emptyset$

i.e. A, B separate E, then E is not connected.

Theorem [Wade 10.56].

 $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is an interval.

Remark (Preimage of Open Balls). Let X, Y be metric spaces and $f: X \to Y$. Then f is $continuous \Leftrightarrow$

$$B_{\delta}(a) \subseteq f^{-1}(B_{\varepsilon}(f(a))).$$

Theorem [Wade 10.58].

Let $f: X \to Y$. Then f continuous $\Leftrightarrow f^{-1}(V)$ is open in X for every open V in Y.

Hint: $(\Rightarrow) f^{-1}(V)$ non-empty, let $a \in f^{-1}(V)$, i.e. $f(a) \in V \Rightarrow$ choose ε s.t. $B_{\varepsilon}(f(a)) \subseteq V$. f continuous \Rightarrow choose δ s.t.

 $B_{\delta}(a) \subseteq f^{-1}(B_{\varepsilon}(f(a))). \ (\Leftarrow) \ \varepsilon > 0, \ a \in X.$ $V = B_{\varepsilon}(f(a))$ open and by assumption $f^{-1}(V)$ open. $a \in f^{-1}(V) \Rightarrow \exists \delta > 0$ s.t. $B_{\delta}(a) \subseteq f^{-1}(V) \Rightarrow f$ continuous.

Corollary [Wade 10.59]. Let $E \subseteq X$ and $f: E \to Y$. Then f continuous on $E \Leftrightarrow f^{-1}(V) \cap E$ is **relatively open** in E for every open V in Y.

Remark (Continuous Inverse Invariance). Open & Closed sets are invariant under inverse images by continuous functions.

Exercise 10.5.5.

Let $E \subseteq X$ and $E \subseteq A \subseteq \overline{E}$ and E connected. Then A is **connected**.

Hint: Assume A disconnected then Remark 10.55 for A. $U \cap E \neq \emptyset$ by contradiction \Rightarrow $\exists x \in U \text{ s.t. } x \in A \setminus E. \ A \subset \overline{E} \Rightarrow x \text{ cluster point}$ of $E \Rightarrow \exists r > 0$ s.t. $B_r(x) \subset U$ with infinitely many points from E so $E \cap U \neq \emptyset$. Similarly $E \cap V \neq \emptyset \Rightarrow \text{contradicts } E \text{ connected.}$

Exercise 10.5.11.

Let $\{E_{\alpha}\}_{{\alpha}\in A}$ collection of **connected** sets s.t. $\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset$. Then $\bigcup_{\alpha \in A} E_{\alpha}$ is *connected*. Hint: Contradiction and Remark 10.55.

Theorem [Wade 10.61].

 $H \subseteq X$ compact and $f: H \to Y$ continuous \Rightarrow f(H) compact in Y.

Theorem [Wade 10.62].

 $E \subseteq X$ connected and $f: E \to Y$ continuous $\Rightarrow f(E)$ connected in Y.

Theorem [Wade 10.63] (Extreme Value Theorem).

Let $H \subseteq X$, non-empty & compact and $f: H \to \mathbb{R}$ continuous. Then

$$M := \sup\{f(x) : x \in H\},$$

 $m := \inf\{f(x) : x \in H\}$

are *finite real* numbers and $\exists x_M, x_m \in H$ s.t. $M = f(x_M)$ and $m = f(x_m)$.

Theorem [Wade 10.64].

Let $H \subseteq X$ be **compact** and $f: H \to Y$ injective (1-1) & continuous. Then f^{-1} is **continuous** on f(H).

Workshop 11, Question 2-5.

Every open, connected set in \mathbb{R}^n is path-connected.

Hint: U set of $x, y \in E$ s.t. path exists, V s.t. does not. Show $E \subset U \cup V$, $U \cap V = \emptyset$, $U \cap E \neq \emptyset$. U is path-connected. Show U, V are open, $y \in U$ and as E open $B_r(y) \subseteq E$, let $z \in B_r(y)$ then x, z path-connected as x, y are. Similar reasoning for V open.

Exercise 10.6.5 (Intermediate Value Theorem).

Let $E \subseteq X$ be **connected**, $f: E \to \mathbb{R}$ **continuous** and $a, b \in E$ with f(a) < f(b). Then $\forall y \text{ s.t. } f(a) < y < f(b) \exists x \in E \text{ s.t.}$

Hint: E connected, f continuous \Rightarrow f(E)connected and as subset of \mathbb{R} is interval, so $[f(a), f(b)] \subset f(E)$. So $f(a) < y < f(b) \Rightarrow$ $y \in f(E)$.

Exercise 10.6.9.

Let X be connected. Then $f: X \to \mathbb{R}$ $non\text{-}constant, continuous <math>\Rightarrow X \ uncountably$

Hint: Connected subsets in \mathbb{R} are intervals (a,b) and $g:(a,b)\to X$ is injective, so $g((a,b)) \subset X$ same size as (a,b).

Contraction Mappings

Exercise [Contraction Mapping]. Let f be a **contraction**. Then f is **continuous**.

Theorem (Banach's Contraction Mapping Theorem).

Let (X, d) be a **complete** metric space, $f: X \to X$ a contraction. Then there exists unique $x \in X$ s.t. f(x) = x.

N.B.: It is important that $f(X) \subseteq X$.

Hint: Pick $x_0 \in X$ and $f(x_n) = x_{n+1}$ as contraction $\Rightarrow d(x_n, x_{n+1}) \leqslant \alpha^n d(x_0, x_1)$. Use triangle inequality & finite geometric series to show $d(x_m, x_n) \leq \frac{\alpha^n}{1 - \alpha} d(x_0, x_1) \Rightarrow (x_n)$ Cauchy, as X complete $\Rightarrow (x_n)$ converges to

 $x \in X$. f continuous $\Rightarrow f(x) = f(\lim x_n) =$ $\lim f(x_n) = \lim x_{n+1} = x$. Uniqueness: $x,y\in X,\, f(x)=x\,\,\&\,\, f(y)=y \Rightarrow d(x,y)=$ $d(f(x), f(y)) \le \alpha d(x, y) \Rightarrow d(x, y) = 0.$

Exercise [Contraction Mapping]. Let (X, d) be a **complete** metric space and $f: X \to X$ s.t. $f^{(n)} = f \circ f \circ \dots \circ f$ a contraction. Then f has a unique fixed point. N.B.: f itself may not be a contraction.

Workshop 10, Question 8.

Let (X, d) be **compact** and $f: X \to X$ s.t. $d(f(x),f(y))\leqslant d(x,y)$ for all $x\neq y\in X.$ Then f has a *unique* fixed point.

 $Hint: \phi(x) = d(x, f(x)), \text{ continuous, so image is}$ closed & bounded subset of \mathbb{R} as X compact. f without fixed point $\Rightarrow \phi > 0$ and $\inf \phi = k > 0$ and $\exists x \in X \text{ s.t. } d(x, f(x)) = k.$ d(f(x), f(f(x))) < d(x, f(x)) = k, contradicts k

Miscellaneous

Remark (Geometric Sum)

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

Remark Product to Sum (

). $fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$ N.B.: Used in proof of Cauchy-Schwarz for

Definitions

Convergence

Definition [Wade 7.1].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions $f_n: S \to \mathbb{R}$ converges pointwise on $S \Leftrightarrow$ $f(x) = \lim_{n \to \infty} f_n(x)$ exists for each $x \in S$. N.B.: N may depend on x.

Definition [Wade 7.7].

Let $S \subseteq \mathbb{R}$, non-empty. A sequence of functions $f_n: S \to \mathbb{R}$ converges uniformly on S to function $f \Leftrightarrow \forall \varepsilon > 0 \,\exists N \in \mathbb{N} \text{ s.t.}$:

 $n \geqslant N \Rightarrow |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in S.$

N.B.: N independent of x.

Definition (Ex. 7.1.3).

Let $f_n: S \to \mathbb{R}$ be a sequence of functions. If $\exists M > 0 \, \forall x \in S, n \in \mathbb{N} \text{ s.t. } |f_n(x)| \leqslant M, \text{ then }$ the sequence of functions is uniformly bounded.

Definition [Wade 7.13].

Let $S \subseteq \mathbb{R}$, $f_k : S \to \mathbb{R}$ and $s_n(x) := \sum_{k=1}^n f_k(x)$, for $x \in S$, $n \in \mathbb{N}$.

i) $\sum_{k=1}^{\infty} f_k$ converges **pointwise** on $S \Leftrightarrow$ sequence $s_n(x)$ converges pointwise on S;

- ii) $\sum_{k=1}^{\infty} f_k$ converges *uniformly* on $S \Leftrightarrow$ sequence $s_n(x)$ converges uniformly on S;
- iii) $\sum_{k=1}^{\infty} f_k$ converges absolutely (pointwise) on $S \Leftrightarrow$ sequence $\sum_{k=1}^{\infty} |f_k|$ converges for

Power Series

Definition (Power Series).

Let (a_n) be sequence of real numbers, $c \in \mathbb{R}$. A **power series** is a series of the form:

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

where a_n are the *coefficients*, c is the *centre*.

Definition (Radius of Convergence). The radius of convergence R of power series $\sum_{n=0}^{\infty} a_n (x-c)^n \text{ is }$

 $R = \sup\{r \ge 0 : (a_n r^n) \text{ is bounded}\}$

unless $(a_n r^n)$ is bounded for all $r \ge 0$, then $R = \infty$. I.e. R is **unique** number s.t. for r < R, $(a_n r^n)$ is bound, for r > R, $(a_n r^n)$ is unbound.

Definition (Analytic Function). A function f is analytic on $S = \{x \in \mathbb{R} : |x - c| < r\}$ if there is a power series centred at c that converges to f on S.

Riemann Integration

Definition (Uniform Continuity). Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$. We say f is *uniformly continuous* on I if $\forall \varepsilon > 0 \,\exists \, \delta > 0$ s.t. for $x, y \in I$:

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Definition (Characteristic Function). Let $E \subseteq \mathbb{R}$, then $\chi_E : \mathbb{R} \to \mathbb{R}$ is the characteristic function if $\chi_E(x) = 1$ if $x \in E$, $\chi_E(x) = 0 \text{ if } x \notin E.$

Definition (Area Under the Curve). Let $I \subset \mathbb{R}$ be a **bounded interval**. Then

$$\int \chi_I = \operatorname{length}(I).$$

Definition [Integration, Def. 1].

We say $\phi : \mathbb{R} \to \mathbb{R}$ is a *step function* if there exist real numbers $x_0 < x_1 < \ldots < x_n$, for some

- (i) $\phi(x) = 0$ for $x < x_0$ and $x > x_n$;
- (ii) ϕ constant on (x_{j-1}, x_j) , $1 \leq j \leq n$.

Definition (Bounded Support). A function f has **bounded support** if f(x) = 0for $x \notin [c, d]$, where [c, d] is some bounded interval.

Definition [Integration, Def. 2].

Let ϕ be a step function with respect to $\{x_0, x_1, \ldots, x_n\}$, where $\phi(x) = c_j$ for $x \in (x_{j-1}, x_j)$, then

$$\int \phi := \sum_{j=1}^{n} c_j (x_j - x_{j-1}).$$

Definition [Integration, Def. 3].

Let $f: \mathbb{R} \to \mathbb{R}$. Then f is **Riemann-integrable** if $\forall \varepsilon > 0 \,\exists \, \phi, \psi$ step functions s.t. $\phi \leqslant f \leqslant \psi$

$$\int \psi - \int \phi < \varepsilon.$$

Definition [Integration, Def. 4].

If f is Riemann-integrable, then we define:

$$\begin{split} \int f := \sup \left\{ \int \phi : \phi \text{ step function}, \phi \leqslant f \right\} = \\ &\inf \left\{ \int \psi : \psi \text{ step function}, \psi \geqslant f \right\}. \end{split}$$

Definition (Definite Integral).

Let $f: I \to \mathbb{R}$, where I is bounded interval open/closed at end points $a \leq b$. Let $\tilde{f}(x) = f(x)$ for $x \in I$ and f(x) = 0 for $x \notin I$. \tilde{f} Riemann-integrable $\Rightarrow f$ Riemann-integrable on I and

$$\int_{I} f = \int_{a}^{b} f = \int_{a}^{b} f(x) dx := \int \tilde{f}$$

is the definite integral of f on I.

 $\begin{array}{ll} \textbf{Definition} & (\text{Improper Integral}). \\ \text{Let } f: \mathbb{R} \to \mathbb{R} \text{ be } \textit{possibly unbounded}, \text{ let} \end{array}$

$$f_n(x) = \min\{-n, f(x), n\}\chi_{\lceil -n, n \rceil}(x)$$

and

$$F_n(x) = \min\{|f(x)|, n\}\chi_{\lceil -n, n\rceil}(x)$$

If $\sup_n \int F_n < \infty$, then the *improper integral* of f over interval I is

$$\int_I f \coloneqq \lim_{n \to \infty} \int_I f_n.$$

Metric Spaces

Definition [Wade 10.1].

A *metric space* is a set X together with a function $\rho: X \times X \to \mathbb{R}$ (the *metric* of X) which satisfies the following properties for $x, y, z \in X$:

- (i) **Positive definite:** $\rho(x,y) \ge 0$ with $\rho(x,y) = 0 \Leftrightarrow x = y$;
- (ii) Symmetric: $\rho(x,y) = \rho(y,x)$;
- (iii) Triangle Inequality: $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$

N.B.: $\rho(x,y)$ is finite valued by definition.

Definition [Wade 10.7].

Let $a \in X$ and r > 0. The *open ball* (in X) with *centre* a and *radius* r is the set

$$B_r(a) := \{ x \in X : \rho(x, a) < r \}$$

and the $closed\ ball\ (in\ X)$ with $centre\ a$ and $radius\ r$ is the set

$$\{x \in X : \rho(x, a) \leqslant r\}$$

Definition [Wade 10.8].

- i) A set $V \subseteq X$ is $open \Leftrightarrow \forall x \in V \exists \epsilon > 0$ s.t. open ball $B_{\epsilon}(x) \subseteq V$.
- ii) A set $E \subseteq X$ is $closed \Leftrightarrow$ complement $E^c := X \setminus E$ is open.

Definition [Wade 10.13].

Let $\{x_n\}$ be a sequence in X.

i) $\{x_n\}$ converges (in X) if $\exists a \in X$ (the limit of x_n) s.t. $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t.:

$$n \geqslant N \Rightarrow \rho(x_n, a) < \varepsilon.$$

ii) $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \text{ s.t.}$:

$$n, m \geqslant N \Rightarrow \rho(x_n, x_m) < \varepsilon$$
.

iii) $\{x_n\}$ is **bounded** if $\exists M > 0, b \in X$ s.t.

$$\rho(x_n, b) \leqslant M, \quad \forall n \in \mathbb{N}.$$

Definition [Wade 10.19].

A metric space X is complete \Leftrightarrow every Cauchy sequence $\{x_n\}$ in X converges to some point in X.

Definition [Wade 10.22].

A point $a \in X$ is a *cluster point* $\Leftrightarrow \forall \delta > 0$, $B_{\delta}(a)$ contains *infinitely* many points.

Definition (Relative Ball).

Let $E \subseteq X$ be a *subspace* of X. An *open ball* in E centred at a is defined as

$$B_r^E(a) := \{ x \in E : \rho(x, a) < r \}$$

and as metric on X and E are the same, is of the form

$$B_r^E(a) = B_r(a) \cap E$$

where $B_r(a)$ is an open ball in X. $B_r^E(a)$ is called **relative ball** (in E). The case with closed balls is analogous.

Definition [Wade 10.25].

Let $a \in X$ be a *cluster point* and $f: X \setminus \{a\} \to Y$. Then $f(x) \to L$ as $x \to a \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0$ s.t.:

$$0 < \rho(x, a) < \delta \Rightarrow \tau(f(x), L) < \varepsilon$$
.

Definition [Wade 10.27].

Let $E \subseteq X$, non-empty, and $f: E \to Y$.

i) f is continuous at point $a \in E \Leftrightarrow \forall \varepsilon > 0 \,\exists \, \delta > 0 \, \text{ s.t.}$

$$\rho(x,a) < \delta \text{ and } x \in E \Rightarrow \tau(f(x),f(a)) < \varepsilon.$$

ii) f is continuous on $E \Leftrightarrow f$ continuous for every $x \in E$.

N.B.: This is valid whether a is cluster point or not.

Definition (Isolated Points).

Let (X, d) be a metric space, $a \in X$. Then a is **isolated** if $\exists r > 0$ s.t. $B_r(a) = \{a\}$.

Definition (Strong Equivalence).

Two metrics d and ρ on X are strongly equivalent if $\exists A, B$ s.t.

$$d(x, y) \leq A\rho(x, y)$$

 $\rho(x, y) \leq Bd(x, y), \quad \forall x, y \in X.$

Two metrics d and ρ on X are *equivalent* if $\forall x \in X, \varepsilon > 0 \exists \delta > 0$ s.t.

$$d(x,y) < \delta \Rightarrow \rho(x,y) < \varepsilon$$
 and

$$\rho(x,y) < \delta \Rightarrow d(x,y) < \varepsilon$$

Topology

Definition [Wade 10.33].

Let X be a metric space and $E \subseteq X$.

i) The interior of E is the set

$$E^o := \bigcup \{V : V \subseteq E \text{ and } V \text{ open in } X\}.$$

ii) The closure of E is the set

$$\overline{E} := \bigcap \{B : B \supseteq E \text{ and } B \text{ } closed \text{ in } X\}.$$

Definition [Wade 10.37].

Let $E \subset X$. The **boundary** of E is the set

$$\partial E := \{ x \in X : \forall r > 0, B_r(x) \cap E \neq \emptyset \text{ and } B_r(x) \cap E^c \neq \emptyset \}.$$

Definition [Wade 10.41].

Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ be a *collection of subsets* of metric space X and let $E \subseteq X$.

i) V covers E (V is a covering of E) \Leftrightarrow

$$E \subseteq \bigcup_{\alpha \in A} V_{\alpha}$$

- ii) V is an *open covering* of $E \Leftrightarrow V$ covers E and each V_{α} is *open*.
- iii) Let V be a covering of E. V has a finite/countable subcovering \Leftrightarrow there is a finite/countable subset $A_0 \subseteq A$ s.t. $\{V_{\alpha}\}_{{\alpha} \in A_0}$ covers E.

Definition [Wade 10.42].

Let $H \subseteq X$ with X being a metric space. H is $compact \Leftrightarrow every\ open\ covering$ of H has $finite\ subcover$.

Definition 10.4.10a.

 $E \subseteq X$ is sequentially compact \Leftrightarrow every sequence (x_n) in E has a convergent subsequence with limit in E.

Definition [Wade 10.53].

Let X be a metric space.

- i) A pair of non-empty open sets U, V in X separates $X \Leftrightarrow X = U \cup V$ and $U \cap V = \emptyset$.
- ii) X is connected $\Leftrightarrow X$ cannot be separated by any pair of open sets U, V.

Definition [Wade 10.54].

Let X be a metric space and $E \subseteq X$.

- i) $U \subseteq E$ is relatively open in $E \Leftrightarrow \exists V \subseteq X$, s.t. V open and $U = E \cap V$.
- ii) $A\subseteq E$ is **relatively closed** in $E\Leftrightarrow \exists C\subseteq X, \text{ s.t. } C \textbf{ closed} \text{ and } A=E\cap C.$

Contraction Mappings

Definition (Contraction).

Let (X, d) be a metric space. A function $f: X \to X$ is a *contraction* if $\exists \alpha$ with $0 < \alpha < 1$ s.t.:

$$d(f(x), f(y)) \le \alpha d(x, y), \quad \forall x, y \in X.$$

Constant α is called the *contraction constant* of f.

Definition (Fixed Point).

Let $f: X \to X$. If $x \in X$ is s.t. f(x) = x, then x is a *fixed point* of f.