Efficiently Exploring Multilevel Data with Recursive Partitioning

Daniel P. Martin University of Virginia

May 26, 2015

Outline

- Exploratory data analysis discussion
- Intro to recursive partitioning
- Multilevel extensions
- Multilevel issues (and "best practices")

The term "exploratory" is considered by many as less than an approach to data analysis and more a confession of guilt.

-Jack McArdle, 2014

The term "exploratory" is considered by many as less than an approach to data analysis and more a confession of guilt.

-Jack McArdle, 2014

Why is exploratory research seen in this way? How do you use exploratory research (if at all)?

What Typically Comes After Confirmatory Tests?

Data-driven exploration with NHST

4 of 33

Daniel P. Martin

If Not NHST, What Else Is There?

Breiman (2001)

Data modeling:

VS.

Algorithmic modeling:

An Introduction to Decision Trees

Daniel P. Martin 6 of 33

An Introduction to Decision Trees

Out of State Tuition

$$RSS_{total} \stackrel{?}{<} RSS_{part1} + RSS_{part2}$$

An Introduction to Decision Trees

$$229 \stackrel{?}{<} 19 + 195 = 215$$

niel P. Martin 7 of 3

An Introduction to Decision Trees

$$229 \stackrel{?}{<} 104 + 63 = 168$$

An Introduction to Decision Trees

Daniel P. Martin 9 of 33

Detour: The Bias-Variance Tradeoff

training, testing, and cross-validation

Source: An Introduction to Statistical Learning

niel P. Martin 10 of 33

Detour: The Bias-Variance Tradeoff

training, testing, and cross-validation

Efficiently Evolution Multilevel Data with Recursive Part

Decision Tree Pseudocode

CART: Breiman et al. (1984)

1. Search all variables for splits in a greedy, top-down manner

Decision Tree Pseudocode

CART: Breiman et al. (1984)

- 1. Search all variables for splits in a greedy, top-down manner
- 2. Identify the best split by some criterion

Decision Tree Pseudocode

CART: Breiman et al. (1984)

- 1. Search all variables for splits in a greedy, top-down manner
- 2. Identify the best split by some criterion
- 3. Split the sample on this threshold, resulting in two child nodes

Decision Tree Pseudocode

CART: Breiman et al. (1984)

- 1. Search all variables for splits in a greedy, top-down manner
- 2. Identify the best split by some criterion
- 3. Split the sample on this threshold, resulting in two child nodes
- 4. Repeat steps 1-3 on the resulting nodes until some stopping criterion is reached

Daniel P. Martin 12 of 33
Efficiently Exploring Multilevel Data with Recursive Partitioning

Decision Tree Pseudocode

CART: Breiman et al. (1984)

- 1. Search all variables for splits in a greedy, top-down manner
- 2. Identify the best split by some criterion
- 3. Split the sample on this threshold, resulting in two child nodes
- 4. Repeat steps 1-3 on the resulting nodes until some stopping criterion is reached
- 5. Prune tree using cross-validation

Efficiently Exploring Multilevel Data with Recursive Partitioning

Handling Missingness - Decision Trees

surrogate splits

Source: Hapfelmeier (2012)

Recap: Pros and Cons of Decision Trees

Pros:

- intuitive, easy to explain and visualize
- can handle continuous or categorical outcomes
- non-parametric, robust to outliers
- no model specification required

Recap: Pros and Cons of Decision Trees

Pros:

- intuitive, easy to explain and visualize
- can handle continuous or categorical outcomes
- non-parametric, robust to outliers
- no model specification required

Cons:

- biased toward variables with many possible splits
- typically outperformed by regression techniques
- prone to overfitting

niel P. Martin 14 of 33

Random Forest Pseudocode

CART forests: Breiman (2001)

1. Take a bootstrap sample

Random Forest Pseudocode

CART forests: Breiman (2001)

- 1. Take a bootstrap sample
- 2. Select a random subset of predictors

Random Forest Pseudocode

CART forests: Breiman (2001)

- 1. Take a bootstrap sample
- 2. Select a random subset of predictors
- 3. Fit a decision tree to full depth

15 of 33

Daniel P. Martin

Random Forest Pseudocode

CART forests: Breiman (2001)

- 1. Take a bootstrap sample
- 2. Select a random subset of predictors
- 3. Fit a decision tree to full depth
- 4. Repeat 500ish times

Creating Ensembles of Trees

Daniel P. Martin

Creating Ensembles of Trees

why it works - theoretical

Source: Scott Fortmann-Roe

Efficiently Exploring Multilevel Data with Recursive Partiti

Creating Ensembles of Trees

why it works - applied

Source: Zachary Jones

aniel P. Martin 18 of 33

Creating Ensembles of Trees

why it works - applied

Source: Zachary Jones

aniel P. Martin 19 of 33

Handling Missingness - Forests

imputation by proximity

For missing data:

- 1. Calculate proximity matrix (number of times observations show up in the same node)
- Impute missing values using medians and levels of the highest frequency
- 3. Run a random forest model
- 4. Update missing values to a weighted mean of the observations or category with the largest average proximity
- 5. Repeat 5-10 times

Oaniel P. Martin 20 of 33

Recap: Pros and Cons of Decision Trees

Pros:

- All the CART pros!
- Can now approximate smooth, nonlinear relationships instead of piecewise constant fits
- Unlikely to overfit
- Not much tuning required compared to other algorithmic methods

Recap: Pros and Cons of Decision Trees

Pros:

- All the CART pros!
- Can now approximate smooth, nonlinear relationships instead of piecewise constant fits
- Unlikely to overfit
- Not much tuning required compared to other algorithmic methods

Cons:

- still biased toward variables with many possible splits
- Harder to interpret
- Longer computation time (still manageable for large datasets)

Interpreting the Black Box

- 1. Variable Importance
- 2. Partial Dependence Plots

Interpreting the Black Box

- 1. Variable Importance
- 2. Partial Dependence Plots

more on this in a sec...

Not a "Magic" Solution

Daniel P. I

Not a "Magic" Solution

Random forests make no general assumptions regarding independence, and thus have the potential to be used for multilevel EDA with little added complexity

Recursive Partitioning Multilevel Extensions Multilevel Issues

Not a "Magic" Solution

Random forests make no general assumptions regarding independence, and thus have the potential to be used for multilevel EDA with little added complexity

However, not much is known about what happens when forests are used in this way

Proof of Concept

niel P. Martin 24 of 3

Proof of Concept

Daniel P. Martin 25 of 33

Proof of Concept

Daniel P. Martin 26 of 33

Issue 1: CART biased variable selection

single level (N = 1000)

Increase in Node Purity

aniel P. Martin 27 of 33

Issue 1: CART biased variable selection

multilevel (N = 1000, L2/L1 = 100/10)

Variable Importance

Issue 2: Underestimation of OOB error

$$P_{notselected} = (1 - \frac{1}{n})^n$$

$$\lim_{n\to\infty} P = \frac{1}{e} \approx 0.368$$

Issue 2: Underestimation of OOB error

$$MSE_{test} = 48.32$$

$$MSE_{OOB} = 23.95$$

Reminder: Issues to Keep in Mind

- OOB errer estimates will be unreliable
- Additional bias for level-2 variables occurs
- ► DO NOT use this method and then perform confirmatory tests on the same data

31 of 33

Analysis Steps

- 1. Initial pre-processing ("feature engineering", handle missingness)
- Estimate ICC and consider what level the variables were measured at
- Estimate predictive performance using a hold out test set or cross-validation (at level-2)
- 4. Examine variable importance and partial dependence plots

Helpful (and Accessible) Citations

Breiman, L. (2001). Statistical modeling: The two cultures Shmueli, G. (2010). To explain or predict? Strobl, C. et al. (2009). An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests

