Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

TU Dortmund

Inhalt

- 1. Einleitung
- 2. Taskl

XGboost

ARIMA

Validierung

3. TaskII

DatentransformationTaskII

XGboostTaskII

Einleitung

Einleitung

Hier stehen ein paar Dinge über die Einleitung:

- Dies
- und
- das

Taskl

Aufgabenstellung Task I: Vorhersage der Datenrate

- weitere Ansätze zur Vorhersage der Zielgröße "throughput"
- Aussagekraft der Einflussvariablen

Lösungsansätze

- XGboost
- ARMA Modell mit Regressionsfehlern

ARMA Modell mit Regressionsfehlern

Lineares Modell: $y = \beta \cdot X + \epsilon$, wobei ϵ Störfaktor und ϵ_i i.i.d.

- Problem: Autokorrelation
- Lösung: Anwendung des ARMA Modells auf die Regressionsfehler

ARMA Modell mit Regressionsfehlern

ARMA(p,q): zusammengesetzes Modell aus

- AR(p) (Auto Regressive): basiert auf vergangenen Werten ϵ_i des Response
- MA(q) (Moving Average): basiert auf Fehlern e_i zwischen vergangenen Vorhersagen und wahrem Wert des Response
- Modellgleichung des ARMA Modells:

$$\epsilon_{i} = \underbrace{\phi_{1}\epsilon_{i-1} + \ldots + \phi_{p}\epsilon_{i-p}}_{AR(p)} \underbrace{-\theta_{1}e_{i-1} - \ldots - \theta_{q}e_{i-q}}_{MA(q)} + \eta_{i},$$

mit η_i als Störfaktor

Wahl der Parameter p, q

- ACF (Autocorrelationfunktion) und PACF (partial Autocorrelationfunction) beschreiben die Korrelation der Lags mit dem aktuellen Zeitpunkt
- PACF beinhaltet nur direkte Einflüsse
- ACF dagegen betrachtet auch solche Einflüsse die indirekt sind
- die Funktionen legen damit die Wahl der Parameter p und q der Modell fest

hier könnte ein Bild sein

Modellgleichung ARMA mit Regressionsfehlern

Insgesamt ist die Modellgleichung gegeben durch

$$y_{i} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p} + \phi_{1}\epsilon_{i-1} + \dots + \phi_{p}\epsilon_{i-p} \\ -\theta_{1}e_{i-1} - \dots - \theta_{q}e_{i-q} + \eta_{i}$$

TaskII

Literatur i

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN). *TUGBoat*, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

Literatur ii

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.