Suzune Nisiyama

August 2, 2018

MIT License

Copyright (c) 2018 Nisiyama-Suzune

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C	ontents		8	Tips 1	.2
1	Environment	2			12 13
	1.1 Vimrc	2			13
_	D	_			13
2	Data Structure	2			13
	2.1 KD tree	$\frac{2}{2}$			13
	2.3 Link-cut tree	2			13
	Zio Zinn out troc	_		-	l3 l3
3	Formula	2		. 0	13
	3.1 Zeller's congruence	2		o contract of the contract of	13
	3.2 Lattice points below segment	2		8.12 2-SAT	14
	3.3 Adaptive Simpson's method	3		, 1 0 0	14
	3.4 Simplex	3 3		8.14 Interesting numbers	L4
	5.5 Neural network	9	9	Appendix 1	.5
4	Number theory	3	J		. 5
	4.1 Fast power module	3			16
	4.2 Euclidean algorithm	3			17
	4.3 Discrete Fourier transform	4			
	4.4 Fast Walsh-Hadamard transform	4			
	4.5 Number theoretic transform	4			
	4.7 Chinese remainder theorem	4			
	4.8 Linear Recurrence	$\overline{4}$			
	4.9 Berlekamp Massey algorithm	5			
	4.10 Baby step giant step algorithm	5			
	4.11 Pell equation	5			
	4.12 Quadric residue	5			
	4.13 Miller Rabin primality test	5 5			
	4.14 Tollard S Tello algorithm	9			
5	Geometry	5			
	5.1 Point	6			
	5.2 Line	6			
	5.3 Circle	6			
	5.4 Centers of a triangle	6 6			
	5.6 Convex hull	6			
	5.7 Half plane intersection	7			
	5.8 Nearest pair of points	7			
	5.9 Minimum circle	7			
	5.10 Intersection of a polygon and a circle	7			
	5.11 Union of circles	7			
	5.12 3D point	7 8			
	5.14 3D convex hull	8			
		_			
6	Graph	8			
	6.1 Hopcoft-Karp algorithm	8			
	6.2 Kuhn-Munkres algorithm	8			
	6.3 Blossom algorithm	8 9			
	6.5 Maximum flow	10			
	6.6 Minimum cost flow	10			
	6.7 Stoer Wagner algorithm	10			
	6.8 DN maximum clique	11			
	6.9 Dominator tree	11			
	6.10 Tarjan	11			
7	String	11			
•	7.1 Manacher	11			
	7.2 Suffix Array	11			
	7.3 Suffix Automaton	12			
	7.4 Palindromic tree	12			
	7.5 Regular expression	12			

Environment

1.1 Vimrc

```
set ru nu ts=4 sts=4 sw=4 si sm hls is ar bs=2 mouse=a syntax on nm <F3> :vsplit %<.in <CR>
nm <F4> :!gedit % <CR>
s au BufEnter *.cpp set cin
au BufEnter *.cpp nm <F5> :!time ./%< <CR>|nm <F7> :!
    gdb ./%< <CR>|nm <F8> :!time ./%< < %<.in <CR>|nm <F9> :!g++ % -o %< -g -std=gnu++14 -O2 -DLOCAL && size %< <CR>
```

Data Structure

2.1 KD tree

```
/* kd_tree : finds the k-th closest point in O(kn^{1-\frac{1}{k}}). Usage : Stores the data in p[]. Call function init (n, k). Call min_kth (d, k). (or max_kth) (k is 1-based)
  2 Usage
3 Note
                      Switch to the commented code for Manhattan
                distance
23 //
28
               idata[i], std::abs (dmax.data[i] ins.data[i]
]));
ret += 111 * tmp * tmp; }
  ret += std::max (std::abs (rhs.data[i] - dmax.data[i]) + std::abs (rhs.data[i] - dmin.data[i]));
       return ret; } tree[MAXN * 4];
struct result {
long long dist; point d; result() {}
result (const long long &dist, const point &d) :
    dist (dist), d (d) {}
bool operator > (const result &rhs) const { return
      35
38
           if ("tree[rt].r) tree[rt].merge (tree[tree[rt].r], k
      if ("tree[rt].r) tree[rt].merge (tree[tree[tree]...,
); }
std::priority_queue<result, std::vector<result>, std
::less <result>> heap_1;
std::priority_queue<result, std::vector<result>, std
::greater <result>> heap_r;
void _min_kth (const int &depth, const int &rt, const
    int &m, const point &d) {
  result tmp = result (sqrdist (tree[rt].p, d), tree[
    rt].p);
if ((int)heap_l.size() < m) heap_l.push (tmp);
else if (tmp < heap_l.top()) {
  heap_l.pop();
  heap_l.push (tmp); }</pre>
55
```

```
62
74
75
80
```

2.2Splay

```
void push_down (int x) {
  if (~n[x].c[0]) push (n[x].c[0], n[x].t);
  if (~n[x].c[1]) push (n[x].c[1], n[x].t);
  if (~n[x].t = tag (); )
  void update (int x) {
        \dot{m} = gen (x);
\dot{n}[x].c[0]) n[x].m = merge (n[n[x].c[0]].m, n[x].
  if ("n[x].c[1]) n[x].m = merge (n[x].m, n[n[x].c[1]].
m); }
```

2.3Link-cut tree

```
= u;
n[u].c[1] = v;
if (~v) n[v].f = u, n[v].p = -1;
update (u); u = n[v = u].p; }
splay (x); }
```

3 Formula

Zeller's congruence 3.1

```
/* Zeller's congruence: converts between a calendar date and its Gregorian calendar day. (y >= 1) (0 = Monday, 1 = Tuesday, ..., 6 = Sunday) */
int get_id (int y, int m, int d) {
  if (m < 3) { --y; m += 12; }
  return 365 * y + y / 4 - y / 100 + y / 400 + (153 * ( m - 3) + 2) / 5 + d - 307; }
  std::tuple <int, int, int> date (int id) {
    int x = id + 1789995, n, i, j, y, m, d;
    n = 4 * x / 146097; x -= (146097 * n + 3) / 4;
    i = (4000 * (x + 1)) / 1461001; x -= 1461 * i / 4 - 31;
    j = 80 * x / 2447; d = x - 2447 * j / 80;
    x = j / 11;
    m = j + 2 - 12 * x; y = 100 * (n - 49) + i + x;
    return std::make_tuple (y, m, d); }
```

3.2 Lattice points below segment

```
/* Euclidean-like algorithm : computes the sum of
         \sum_{i=0}^{n-1} \left[ \frac{a+bi}{m} \right] \cdot \star /
long long solve(long long n, long long a, long long b,
long long m) {
   if (b == 0) return n * (a / m);
```

```
if (a >= m) return n * (a / m) + solve (n, a % m, b,
if (b >= m) return (n - 1) * n / 2 * (b / m) + solve
    (n, a, b % m, m);
return solve ((a + b * n) / m, (a + b * n) % m, m, b)
```

3.3Adaptive Simpson's method

```
1 /* Adaptive Simpson's method : integrates f in [1, r].
            simpson {
  struct
   double area (double (*f) (double), double 1, double r
) {
   double m = 1 + (r - 1) / 2;
return (f (1) + 4 * f (m) + f (r)) * (r - 1) / 6; }
double solve (double (*f) (double), double 1, double
    r, double eps, double a) {
    double m = 1 + (r - 1) / 2;
    double left = area (f, 1, m), right = area (f, m, r)
```

3.4 Simplex

```
/* Simplex : n varibles, m constraints, maximize \sum c_j x_j with constraint \sum a_{ij} x_j \leq b_i. 2 The solution is in an[]. */ 3 template <int MAXN = 100, int MAXM = 100> 4 struct simplex { int n, m; double a [MAXM] [MAXN], b [MAXM], c [MAXN]; b bool infeasible, unbounded:
             int n, m; double a[MAXM] [MAXN], b[MAXM], c[MAXN];
bool infeasible, unbounded;
double v, an[MAXN + MAXM]; int q[MAXN + MAXM];
void pivot (int 1, int e) {
   std::swap (q[e], q[1 + n]);
   double t = a[1][e]; a[1][e] = 1; b[1] /= t;
   for (int i = 0; i < n; ++i) a[1][i] /= t;
   for (int i = 0; i < m; ++i) if (i != 1 && std::abs (
        a[i][e]) > EPS) {
        t = a[i][e]; a[i][e] = 0; b[i] -= t * b[1];
        for (int j = 0; j < n; ++j) a[i][j] -= t * a[1][j];
}</pre>
   12
                   if (std::abs (c[e]) > EPS) {
  t = c[e]; c[e] = 0; v += t * b[l];
  for (int j = 0; j < n; ++j) c[j] -= t * a[l][j]; }</pre>
```

```
1 /* Neural network : ft features, n layers, m neurons
     per layer. */
template <int ft = 3, int n = 2, int m = 3, int
MAXDATA = 100000>
     struct network {
  double wp[n][m][ft/* or m, if larger */], bp[n][m], w
    [m], b, val[n][m], del[n][m], avg[ft + 1], sig[ft
         louble wp[n][m][ft/* or m, if larger */], Dp[n][m], w
       [m], b, val[n][m], del[n][m], avg[ft + 1], sig[ft + 1];
network () {
    std: mt19937_64 mt (time (0));
    std::uniform real_distribution <double> urdn (0, 2 * sqrt (m));
    for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) for (int k = 0; k < (i ? m : ft); ++k)
    wp[i][j][k] = urdn (mt);
    for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) bp[i][j] = urdn (mt);
    for (int i = 0; i < m; ++i) w[i] = urdn (mt); b = urdn (mt);</pre>
       network
       15
```

```
for (int i = 1; i < n; ++i) for (int j = 0; j < m;
     ++j) {
val[i][j] = bp[i][j]; for (int k = 0; k < m; ++k)
val[i][j] += wp[i][j][k] * val[i - 1][k];
val[i][j] = 1 / (1 + exp (-val[i][j]));</pre>
    double res = b; for (int i = 0; i < m; ++i) res +=
    val[n - 1][i] * w[i];
/ return 1 / (1 + exp (-res));
return res; }
return res; }</pre>
   30
  32
33
35
38 //
39
40
  45
    for (int i = 0; i < ft + 1; ++i) os << avg[i] << "_"
    for (int i = 0; i < ft + 1; ++i) os << sig[i] << "_"
   is >> wp[i][j][k];

for (int i = 0; i < n; ++i) for (int j = 0; j < m;

++j) is >> bp[i][j];

for (int i = 0; i < m; ++i) is >> w[i]; is >> b;

for (int i = 0; i < ft + 1; ++i) is >> avg[i];

for (int i = 0; i < ft + 1; ++i) is >> sig[i]; };
66
```

Number theory 4

4.1 Fast power module

```
/* Fast power module : x^n */
2 int fpm (int x, int n, int mod) {
3 int ans = 1, mul = x; while (n) {
4 if (n & 1) ans = int (111 * ans * mul * mod);
5 mul = int (111 * mul * mul * mod); n >>= 1; }
6 return ans; }
6 | long long rul mod (long long ruleng rule
                     return ans; }
long long mul_mod (long long x, long long y, long long
  mod) {
  long long t = (x * y - (long long) ((long double) x /
        mod * y + 1E-3) * mod) % mod;
  return t < 0 ? t + mod : t; }
long long llfpm (long long x, long long n, long long
  mod) {
  long long are = 1 mul = x = x = 1 / (x) / (x)</pre>
                             mod) {
  long long ans = 1, mul = x; while (n) {
   if (n & 1) ans = mul_mod (ans, mul, mod);
   mul = mul_mod (mul, mul, mod); n >>= 1; }
  return ans; }
```

4.2 Euclidean algorithm

```
1 /* Euclidean algorithm : solves for ax + by = gcd (a,
  b) .
```

```
long long inverse (long long x, long long m) {
  long long a, b; euclid (x, m, a, b); return (a % m +
    m) % m; }
```

Discrete Fourier transform

```
/* Discrete Fourier transform : the nafarious you-know
        -what thing.

ye : call init for the suggested array size, and solve for the transform. (use f!=0 for the inverse
template <int MAXN = 1000000>
      a[j + k] = A + B;
a[j + k + (i >> 1)] = A - B; }
if (f == 1) {
  for (int i = 0; i < n; ++i) a[i] = complex (a[i].
     real () / n, a[i].imag ()); } };
```

Fast Walsh-Hadamard transform

```
1 /* Fast Walsh-Hadamard transform : binary operation
if (w) {
/* xor : a[j + k] = (x + y) / 2, a[i + j + k] = (x - y) / 2, and : a[j + k] = x - y, or : a[i + j + k] = y - x; */
                               / 2, a[i + j + k] = (x)
     }else{
```

Number theoretic transform 4.5

```
/* Number theoretic transform: NTT for any module.

Usage: Perform NTT on 3 modules and call crt () to merge the result. */

template <int MAXN = 1000000>

struct ntt {

int MOD[3] = {1045430273, 1051721729, 1053818881}, PRT[3] = {3, 6, 7};

void solve (int *a, int n, int f = 0, int mod = 998244353, int prt = 3) {

for (int i = 0, j = 0; i < n; ++i) {

if (i > j) std::swap (a[i], a[j]);

for (int t = n >> 1; (j ^ = t) < t; t >>= 1); }

for (int i = 2; i <= n; i <<= 1) {

static int exp[MAXN]; exp[0] = 1;

exp[1] = fpm (prt, (mod - 1) / i, mod);

if (f == 1) exp[1] = fpm (exp[1], mod - 2, mod);

for (int k = 2; k < (i >> 1); ++k) {

exp[k] = int (111 * exp[k - 1] * exp[1] * mod); }

for (int j = 0; j < n; j += i) {

for (int k = 0; k < (i >> 1); ++k) {

int &pA = a[j + k], &pB = a[j + k + (i >> 1)];

int &PA = pA, B = int (111 * pB * exp[k] * mod);

pA = (A + B) * mod;

pB = (A - B + mod) * mod; } }

if (f == 1) {

int rev = fpm (n, mod - 2, mod);

for (int i = 0; i < n; ++i) a[i] = int (111 * a[i] * rev * mod); }

int crt (int *a, int mod) {

static int inv[3][3];

for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j)

inv[i] int = (int inverse (MOD[i], MOD[j]);
                                                       inv[i][j] = (int) inverse (MOD[i], MOD[j]);
static int x[3];
for (int i = 0; i < 3; ++i) { x[i] = a[i];
  for (int j = 0; j < i; ++j) {
    int t = (x[i] - x[j] + MOD[i]) % MOD[i];
    if (t < 0) t += MOD[i];
    x[i] = int (1LL * t * inv[j][i] % MOD[i]); }
int sum = 1, ret = x[0] % mod;
for (int i = 1; i < 3; ++i) {
    sum = int (1LL * x[i] * sum % mod);
    ret += int (1LL * x[i] * sum % mod);
    if (ret >= mod) ret -= mod; }
return ret; };
```

4.6 Polynomial operation

```
| template <int MAXN = 1000000>
   2 struct polynomial {
3    ntt <MAXN> tr;
4    /* inverse : finds a polynomial b so that
a(x)b(x) \equiv 1 \mod x^n \mod mod.
5    Note : n must be a power of 2. 2x max length. */
6    void inverse (int *a, int *b, int n, int mod, int prt
          Note: n must be a power of 2. 2x max length. */
void inverse (int *a, int *b, int n, int mod, int prt
) {
    static int c[MAXN]; b[0] = ::inverse (a[0], mod); b
        [1] = 0;
    for (int m = 2, i; m <= n; m <<= 1) {
        std::copy (a, a + m, c);
        std::fill (b + m, b + m + m, 0); std::fill (c + m, c + m + m, 0);
        tr.solve (c, m + m, 0, mod, prt); tr.solve (b, m + m, 0, mod, prt);
    for (int i = 0; i < m + m; ++i) b[i] = 1LL * b[i] *
        (2 - 1LL * b[i] * c[i] % mod + mod) % mod;
        tr.solve (b, m + m, 1, mod, prt); std::fill (b + m, b + m + m, 0); }

/* sqrt : finds a polynomial b so that
        b^2(x) \equiv a(x) mod x^n mod mod.

Note : n \geq 2 must be a power of 2. 2x max length. */
void sqrt (int *a, int *b, int n, int mod, int prt) {
        static int d[MAXN], ib[MAXN]; b[0] = 1; b[1] = 0;
        int i2 = ::inverse (2, mod), m, i;
        for (int m = 2; m <= n; m <<= 1) {
            std::copy (a, a + m, d);
            std::copy (a, a + m, d);
            std::fill (d + m, d + m + m, 0); std::fill (b + m, b + m + m, 0);
            tr.solve (ib, m + m, 0, mod, prt); inverse (b, ib, m, mod, prt);
            tr.solve (ib, m + m, 0, mod, prt); tr.solve (b, m + m, 0, mod, prt);
            for (int i = 0; i < m + m; ++i) b[i] = (1LL * b[i] * i2 + 1LL * i2 * d[i] % mod * ib[i]) % mod;
            tr.solve (b, m + m, 1, mod, prt); std::fill (b + m, b + m + m, 0); }

/* divide : given polynomial a(x) and b(x) with degree n and m respectively, finds a(x) = d(x)b(x) + r(x) with deg(d) < n - m and deg(r) < m. 4x max length
11
12
23
24
                                 with deg(d) \le n - m and deg(r) < m. 4x max length required */
              with aeg(a) \ge n-m and aeg(r) < m. 4x max length required. */
void divide (int *a, int n, int *b, int m, int *d, int *r, int mod, int prt) {
static int u[MAXN], v[MAXN]; while (!b[m - 1]) --m; int p = 1, t = n - m + 1; while (p < t << 1) p <<= 1;
29
                  30
31
33
                                             % mod;
                  tr.solve (u, p, 1, mod, prt); std::reverse (u, u + t
   ); std::copy (u, u + t, d);
for (p = 1; p < n; p <<= 1); std::fill (u + t, u + p
   , 0);
tr.solve (u, p, 0, mod, prt); std::copy (b, b + m, v
   ):</pre>
                   );
std::fill (v + m, v + p, 0); tr.solve (v, p, 0, mod,
37
                   40
```

Chinese remainder theorem

```
/* Chinese remainder theroem : finds positive integers
    x = out.first + k * out.second that satisfies x %
    in[i].second = in[i].first. */

struct crt {

long long fix (const long long &a, const long long &b) { return (a % b + b) % b; }

bool solve (const std::vector <std::pair <long long, long long> &out) {

out = std::make pair (lLL, lLL);

for (int i = 0; i < (int) in.size (); ++i) {

long long n, u;

euclid (out.second, in[i].second, n, u);

long long divisor = std::__gcd (out.second, in[i].
    second);

if ((in[i].first - out.first) % divisor) return
    false;

n *= (in[i].first - out.first) / divisor;
                            false;
n *= (in[i].first - out.first) / divisor;
n = fix (n, in[i].second);
out.first += out.second * n;
out.second *= in[i].second / divisor;
out.first = fix (out.first, out.second); }
return true; } };
```

4.8 Linear Recurrence

```
_{1} /* Linear recurrence : finds the n-th element of a
linear recurrence.

2 Usage : vector <int> - first n terms, vector <int> - transition function, calc (k) : the kth term mod
transition function, calc (k) : the kth term mod MOD. 

3 Example : In : {2, 1}, {2, 1} : a_1 = 2, a_2 = 1, a_n = 2a_{n-1} + a_{n-2}, \text{ Out : calc (3) = 5,} \\ \text{calc (10007) = 959155122 (MOD 1E9+7) */} \\ \text{4 struct linear_rec } \\ \text{5 const int LOG = 30, MOD = 1E9 + 7; int n;} \\ \text{6 std::vector <int> first, trans;}
```

4.9 Berlekamp Massey algorithm

4.10 Baby step giant step algorithm

```
| /* Baby step giant step algorithm : Solves a^x = b \mod c | in O(\sqrt{c}). */
| struct bsgs {
| int solve (int a, int b, int c) {
| std::unordered_map <int, int> bs; |
| int m = (int) sqrt ((double) c) + 1, res = 1; |
| for (int i = 0; i < m; ++i) {
| if (bs.find (res) == bs.end ()) bs[res] = i; |
| res = int (1LL * res * a % c); |
| int mul = 1, inv = (int) inverse (a, c); |
| for (int i = 0; i < m; ++i) mul = int (1LL * mul * inv % c); |
| res = b % c; |
| for (int i = 0; i < m; ++i) {
| if (bs.find (res) != bs.end ()) return i * m + bs[ res]; |
| res = int (1LL * res * mul % c); |
| return -1; | };
```

4.11 Pell equation

```
/* Pell equation : finds the smallest integer root of x^2-ny^2=1 when n is not a square number, with the solution set x_{k+1}=x_0x_k+ny_0y_k, y_{k+1}=x_0y_k+y_0x_k.
```

```
2 template <int MAXN = 100000>
3 struct pell {
4  std::pair <long long, long long> solve (long long n)
5  static long long p[MAXN], q[MAXN], g[MAXN], h[MAXN],
6  a[MAXN];
7  a[2] = (long long) (floor (sqrt1 (n) + 1e-7L));
8  for (int i = 2; ; ++i) {
9    g[i] = -g[i - 1] + a[i] * h[i - 1];
10    h[i] = (n - g[i] * g[i]) / h[i - 1];
11    a[i + 1] = (g[i] + a[2]) / h[i];
12    p[i] = a[i] * p[i - 1] + p[i - 2];
13    q[i] = a[i] * x[i - n * x[i] * x[i] = 1)
14    return { p[i], q[i] }; } };
```

4.12 Quadric residue

4.13 Miller Rabin primality test

4.14 Pollard's Rho algorithm

5 Geometry

```
#define cd const double &
const double EPS = 1E-8, PI = acos (-1);
int sgn (cd x) { return x < -EPS ? -1 : x > EPS; }
int cmp (cd x, cd y) { return sgn (x - y); }
sdouble sgr (cd x) { return x * x; }
double msqrt (cd x) { return sgn (x) <= 0 ? 0 : sqrt (x); }</pre>
```

Point 5.1

```
#define cp const point &
z struct point {
double x, y;
 a.y / b); }
22 double dot (cp a, cp b) { return a.x * b.x + a.y * b.y
double det (cp a, cp b) { return a.x * b.y - a.y * b.x
```

5.2 Line

```
bool intersect_judgment (cl a, cl b) {
  if (point_on_segment (b.s, a) || point_on_segment (b.t, a)) return true;
     7 bool
    8
| t, a) return true;
| if (point_on_segment (a.s, b) || point_on_segment (a.t, b)) return true;
| return two_side (a.s, a.t, b) && two_side (b.s, b.t, a); }
| in point line_intersect (cl a, cl b) {
| double s1 = det (a.t - a.s, b.s - a.s), s2 = det (a.t - a.s, b.t - a.s); }
| return (b.s * s2 - b.t * s1) / (s2 - s1); }
| double point_to_line (cp a, cl b) { return fabs (det (b.t - b.s, a - b.s)) / dis (b.s, b.t); }
| is point project_to_line (cp a, cl b) { return b.s + (b.t - b.s) * (dot (a - b.s, b.t - b.s) / dis2 (b.t, b.s)); }
| double point_to_segment (cp a, cl b) {
| counter = 0; |
| return std::min (dis (a, b.s), dis (a, b.t)); }
| return std::min (dis (a, b.s), dis (a, b.t)); }
| spool in_polygon (cp p, const std::vector <point> & po) |
| int_n = (int) po_size (), counter = 0;
```

5.3 Circle

```
a)); }

10 //In the order of the line vector.
```

```
11 std::vector <point> line_circle_intersect (cl a, cc b)
           comp (point_to_line (b.c, a), b.r) > 0) return std
    ::vector <point> ();
double x = msqrt (sqr (b.r) - sqr (point_to_line (b.c
    , a)));
point s = project_to line (b.c. -)
           if (cmp (point_to_line (b.c, a), b.r) > 0) return std
            point s = project_to_line (b.c, a), u = (a.t - a.s).
    unit ();
if (sgn (x) == 0) return std::vector <point> ({s});
return std::vector <point> ({s - u * x, s + u * x});
                                                             _intersect_area (cc a, cc b) {
            double circle_intersect_area (cc a, cc b) {
    double d = dis (a.c, b.c);
    if (sgn (d - (a.r + b.r)) >= 0) return 0;
    if (sgn (d - abs(a.r - b.r)) <= 0) {
        double r = std::min (a.r, b.r); return r * r * PI; }
    double x = (d * d + a.r * a.r - b.r * b.r) / (2 * d),
        t1 = acos (min (1., max (-1., x / a.r))), t2 =
        acos (min (1., max (-1., (d - x) / b.r)));
    return a.r * a.r * t1 + b.r * b.r * t2 - d * a.r *
        sin (t1); }
//Counter-clockwise with respect of vector (a.c.)</pre>
  23
 sin (t1); } 
24 //Counter-clockwise with respect of vector O_aO_b. 25 std::vector <point> circle_intersect (cc a, cc b) {
26 if (a.c == b.c || cmp (dis (a.c, b.c), a.r + b.r) > 0 | || cmp (dis (a.c, b.c), std::abs (a.r - b.r)) < 0 |
27 point r = (b.c - a.c).unit (); double d = dis (a.c, b.c); double x = ((scr (a.r) - scr (b.r)) / d.t.d. (2.7)
 co;
double x = ((sqr (a.r) - sqr (b.r)) / d + d) / 2, h =
msqrt (sqr (a.r) - sqr (x));

if (sgn (h) == 0) return std::vector <point> ({a.c +
r * x});
return std::vector <point> ({a.c + r * x - r.rot90 ()
* h, a.c + r * x + r.rot90 () * h}); }

//Counter-clockwise with respect of point a.
std::vector <point> tangent (cp a, cc b) { circle p =
make_circle (a, b.c); return circle_intersect (p,
b); }
```

5.4 Centers of a triangle

```
point incenter (cp a, cp b, cp c) {
   double p = dis (a, b) + dis (b, c) + dis (c, a);
   return (a * dis (b, c) + b * dis (c, a) + c * dis (a, b)) / p; }

point circumcenter (cp a, cp b, cp c) {
   point p = b - a, q = c - a, s (dot (p, p) / 2, dot (q, q) / 2);
   return a + point (det (s, point (p.y, q.y)), det (
        point (p.x, q.x), s)) / det (p, q); }

point orthocenter (cp a, cp b, cp c) { return a + b + c - circumcenter (a, b, c) * 2; }
```

5.5 Fermat point

```
/* Fermat point : finds a point P that minimizes |PA| + |PB| + |PC|. */
2 point fermat point (cp a, cp b, cp c) {
3 if (a == b) return a; if (b == c) return b; if (c == a) return c;
4 double ab = dis (a, b), bc = dis (b, c), ca = dis (c, a):
                 double ab = dis (a, b), bc = dis (b, c), ca = dis (c, a);
double cosa = dot (b - a, c - a) / ab / ca;
double cosb = dot (a - b, c - b) / ab / bc;
double cosc = dot (b - c, a - c) / ca / bc;
double cosc = dot (b - c, a - c) / ca / bc;
double sq3 = PI / 3.0; point mid;
if (sgn (cosa + 0.5) < 0) mid = a;
else if (sgn (cosb + 0.5) < 0) mid = b;
else if (sgn (cosc + 0.5) < 0) mid = c;
else if (sgn (det (b - a, c - a)) < 0) mid =
    line_intersect (line (a, b + (c - b).rot (sq3)),
    line (b, c + (a - c).rot (sq3)));
else mid = line_intersect (line (a, c + (b - c).rot
    sq3)), line (c, b + (a - b).rot (sq3)));
return mid; }</pre>
```

Convex hull 5.6

```
//Counter-clockwise, with minimum number of points.
| bool turn_left (cp a, cp b, cp c) { return sgn (det (b - a, c - a)) >= 0; }
```

11

21 22

30

31

```
3| std::vector <point> convex_hull (std::vector <point> a
```

Half plane intersection

```
\mathbf{1} \mid /* Online half plane intersection : complexity O(n)
   each operation. */
std::vector <point> cut (const std::vector<point> &c,
    line p) {
    std::vector <point> ret;
}
            ine p) {
std::vector <point> ret;
if (c.empty ()) return ret;
for (int i = 0; i < (int) c.size (); ++i) {
  int j = (i + 1) % (int) c.size ();
  if (turn_left (p.s, p.t, c[i])) ret.push_back (c[i])</pre>
if (two_side (c[i], c[j], p)) ret.push_back (
    line_intersect (p, line (c[i], c[j]))); }
return ret; }
/* Offline half plane intersection : complexity
10 /* Offilme half product in the control of the co
                           ,
:vector <point> half_plane_intersect (std::vector
<line> h) {
            < 0:
            else return cmp (a.first, b.first) < 0; });
h.resize (std::unique (g.begin (), g.end (), [] (
    const polar &a, const polar &b) { return cmp (a.
    first, b.first) == 0 }) - g.begin ());
for (int i = 0; i < (int) h.size (); ++i) h[i] = g[i] | second:</pre>
20
            24
                  while (fore < rear && !turn_left (h[i],
    line_intersect (ret[fore], ret[fore + 1]))) ++
    fore;</pre>
                    31
```

5.8 Nearest pair of points

```
1 /* Nearest pair of points : [1, r), need to sort p
1 /* Nearest par of points.
| first. */
2 double solve (std::vector <point> &p, int 1, int r) {
3 if (1 + 1 >= r) return INF;
4 int m = (1 + r) / 2; double mx = p[m].x; std::vector
      );
for (int i = 1; i < r; ++i)
    if (sqr (p[i].x - mx) < ret) v.push_back (p[i]);
sort (v.begin (), v.end (), [&] (cp a, cp b) { return
        a.y < b.y; });
for (int i = 0; i < v.size (); ++i)
for (int j = i + 1; j < v.size (); ++j) {
        if (sqr (v[i].y - v[j].y) > ret) break;
        ret = min (ret, dis2 (v[i] - v[j])); }
return ret; }
```

5.9Minimum circle

```
circle minimum_circle (std::vector <point> p) {
  circle ret; std::random_shuffle (p.begin (), p.end ()
 for (int i = 0; i < (int) p.size (); ++i) if (!
```

5.10 Intersection of a polygon and a circle

```
struct polygon_circle_intersect {
  double sector_area (cp a, cp b, const double &r) {
  double c = (2.0 * r * r - dis2 (a, b)) / (2.0 * r *
       r);
return r * r * acos (c) / 2.0; }
double area (cp a, cp b, const double &r) {
    double dA = dot (a, a), dB = dot (b, b), dC =
        point_to_segment (point (), line (a, b));
    if (sgn (dA - r * r) <= 0 && sgn (dB - r * r) <= 0)
        return det (a, b) / 2.0;
    point tA = a.unit () * r, tB = b.unit () * r;
    if (sgn (dC - r) > 0) return sector_area (tA, tB, r)
    ;
          10
12
13
           size ()] - c.c, c.r);
else ret -= area (p[(i + 1) % p.size ()] - c.c, p[i
        ] - c.c, c.r);
return std::abs (ret); } };
```

5.11Union of circles

```
template <int MAXN = 500> struct union_circle {
  int C; circle c[MAXN]; double area[MAXN];
  struct event {
  point p; double ang; int delta;
  event (cp p = point (), double ang = 0, int delta =
      0) : p(p), ang(ang), delta(delta) {}
  bool operator < (const event &a) { return ang < a.
      ang; }
};</pre>
void addevent(cc a, cc b, std::vector <event> &evt,
```

5.123D point

```
#define cp3 const point3 &
struct point3 {
  double x, y, z;
```

```
In point3 det (cp3 a, cp3 b) { return point3 (a.y * b.z - a.z * b.y, -a.x * b.z + a.z * b.x, a.x * b.y - a. y * b.x); }

| double dis2 (cp3 a, cp3 b = point3 ()) { return sqr (a .x - b.x) + sqr (a.y - b.y) + sqr (a.z - b.z); }

| double dis2 (cp3 a, cp3 b = point3 ()) { return sqr (a .x - b.x) + sqr (a.y - b.y) + sqr (a.z - b.z); }

| double dis (cp3 a, cp3 b = point3 ()) { return msqrt ( dis2 (a, b)); }

| double dis (cp3 a, cp3 b = point3 ()) { return msqrt ( double x = x * x + y * y + z * z, sz = msqrt(s), cosw | z = cos(w), sinw = sin(w); | z = cos(w), sinw = sinw, ss; | z = cos(w), sinw = sinw, ss; | z = cos(w), sinw = sinw, ss; | z = cos(w), sinw, 
                                                   1};
for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++
                                                 ans[i] += a[j][i] * c[j];
return point3 (ans[0], ans[1], ans[2]);
```

5.133D line

```
| a.s, p), s = line_plane_intersection (line3 (a.s , a.s + q), b); | return line3 (s, s + p); | s point3 project_to_plane (cp3 a, cl3 b) { return a + (b .t - b.s) * dot (b.t - b.s, b.s - a) / dis2 (b.t -
```

3D convex hull 5.14

```
_{1} /* 3D convex hull : initializes n and p / outputs face
template <int MAXN = 500>
struct convex hull3 {
    double mix (cp3 a, cp3 b, cp3 c) { return dot (det (a , b), c); }
    double volume (cp3 a, cp3 b, cp3 c, cp3 d) { return
        mix (b - a, c - a, d - a); }
    struct tri {
        int a b c.
          int a, b, c;
tri() {}
     if (mark[b][c] == time) face.emplace_back (v, c, b)
              if (mark[c][a] == time) face.emplace_back (v, a, c)
      if (mark[c][a] == time) face.emplace_back (v, a
    ; }
void reorder () {
    for (int i = 2; i < n; ++i) {
        point3 tmp = det (p[i] - p[0], p[i] - p[1]);
        if (sgn (dis (tmp))) {
            std::swap (p[i], p[2]);
            for (int j = 3; j < n; ++ j)
                 if (sgn (volume (p[0], p[1], p[2], p[j]))) {
                 std::swap (p[j], p[3]); return; } } }
void build_convex () {
            reorder (); face.clear ();
            face.emplace_back (0, 1, 2);
            face.emplace_back (0, 2, 1);
            for (int i = 3; i < n; ++i) add(i); };</pre>
```

Graph

```
template <int MAXN = 100000, int MAXM = 100000>
struct edge_list {
  int size, begin[MAXN], dest[MAXM], next[MAXM];
  void clear (int n) { size = 0; std::fill (begin, begin + n, -1); }
```

```
edge_list (int n = MAXN) { clear (n); }
void add_edge (int u, int v) { dest[size] = v; next[
    size] = begin[u]; begin[u] = size++; } };
template <int MAXN = 100000, int MAXM = 100000>
struct cost_edge_list {
  int size, begin[MAXN], dest[MAXM], next[MAXM], cost[
    MAXM];
void clear (int n) { size = 0; std::fill (begin,
    begin + n, -1); }
cost_edge_list (int n = MAXN) { clear (n); }
void add_edge (int u, int v, int c) { dest[size] = v;
    next[size] = begin[u]; cost[size] = c; begin[u]
    = size++; } };
```

6.1 Hopcoft-Karp algorithm

```
/* Hopcoft-Karp algorithm : unweighted maximum matching for bipartition graphs with complexity
      O(m\sqrt{n}). */
template <int MAXN = 100000, int MAXM = 100000>
      template <int MAXN = 100000, int MAXM = 100000>
struct hopcoft_karp {
  int mx[MAXN], my[MAXM], lv[MAXN];
bool dfs (edge_list <MAXN, MAXM> &e, int x) {
  for (int i = e.begin[x]; ~i; i = e.next[i]) {
    int y = e.dest[i], w = my[y];
    if (!~w || (lv[x] + 1 == lv[w] && dfs (e, w))) {
      mx[x] = y; my[y] = x; return true; }
    lv[x] = -1; return false; }
int solve (edge_list <MAXN, MAXM> &e, int n, int m) {
    st:fill (mx, mx + n, -1); std::fill (my, my + m, -1);
12
```

Kuhn-Munkres algorithm

```
/* Kuhn Munkres algorithm : weighted maximum matching on bipartition graphs.

Note: the graph is 1-based. */

template <int MAXN = 500>

struct kuhn munkres {
   int n, w[MAXN] [MAXN], lx[MAXN], ly[MAXN], m[MAXN],
   way[MAXN], sl[MAXN];

bool u[MAXN];

void hungary(int x) {
   m[0] = x; int j0 = 0;
   std::fill (sl, sl + n + 1, INF); std::fill (u, u + n + 1, false);

do {
                                                   for (int j = 1; f = 0; f 
                              way[i] = 0;
for (int i = 1; i <= n; ++i) hungary (i);
int sum = 0; for (int i = 1; i <= n; ++i) sum += w[m
[ii][i];
return sum; } };</pre>
```

6.3 Blossom algorithm

```
1 /* Blossom algorithm : maximum match for general graph
 2 template <int MAXN = 500, int MAXM = 250000>
    struct
      | = 1; }
int find (int x) { if (fa[x] != x) fa[x] = find (fa[x]); return fa[x]; }
void merge (int x, int y) { x = find (x); y = find (y); fa[x] = y; } ufs;
void solve (int x, int y) {
10
     void solve (int x, int y) {
   if (x == y) return;
   if (d[y] == 0) {
      solve (x, fa[fa[y]]); match[fa[y]] = fa[fa[y]];
   match[fa[fa[y]]] = fa[y];
} else if (d[y] == 1) {
      solve (match[y], c1[y]); solve (x, c2[y]);
   match[c1[y]] = c2[y]; match[c2[y]] = c1[y]; } }
int lca (int x, int y, int root) {
   x = ufs.find (x); y = ufs.find (y);
   while (x != y && v[x] != 1 && v[y] != 0) {
```

```
v[x] = 0; v[y] = 1;
if (x != root) x = ufs.find (fa[x]);
if (y != root) y = ufs.find (fa[y]); }
if (v[y] == 0) std::swap (x, y);
for (int i = x; i != y; i = ufs.find (fa[i])) v[i] =
    ufs.merge (i, b);
if (d[i] == 1) { c1[i] = x; c2[i] = y; *qtail++ = i
      35
38
           match[dest] = 100, 1000
} else {
fa[dest] = loc; fa[match[dest]] = dest;
d[dest] = 1; d[match[dest]] = 0;
*qtail++ = match[dest];
} else if (d[ufs.find (dest)] == 0) {
int b = loa (loc, dest, root);
contract (loc, dest, b); contract (dest, loc, b)
; } }

turn 0: }

    return 0; }
return 0; }
int solve (int n, const edge_list <MAXN, MAXM> &e) {
  std::fill (fa, fa + n, 0); std::fill (c1, c1 + n, 0)
```

50

63

80

99

6.4 Weighted blossom algorithm

```
1 /* Weighted blossom algorithm (vfleaking ver.) : maximum matching for general weighted graphs with
                                        complexity O(n^3).
                                                     : Set n to the size of the vertices. Run init () Set g[][].w to the weight of the edge. Run solve
     2 Usage :
     The first result is the answer, the second one is the number of matching pairs. Obtain the matching with
                                                                                                                                                                                                                                                                                                                                                                                         87
                                              match[].
    int n, n_x;
edge g[MAXN * 2 + 1][MAXN * 2 + 1];
int lab[MAXN * 2 + 1], match[MAXN * 2 + 1], slack[
MAXN * 2 + 1], st[MAXN * 2 + 1], pa[MAXN * 2 +
               MAXN * 2 + 1], st[MAXN * 2 + 1], pa[MAXN * 2 +
1];
int flower_from[MAXN * 2 + 1] [MAXN + 1], S[MAXN * 2 +
1], vis[MAXN * 2 + 1];
std::vector <int> flower[MAXN * 2 + 1]; std::queue <
int> q;
int e_delta (const edge &e) { return lab[e.u] + lab[e
.v] - g[e.u] [e.v]. w * 2;
void update_slack (int u, int x) { if (!slack[x] ||
e_delta (g[u][x]) < e_delta (g[slack[x]][x]))
slack[x] = u;
void set_slack (int x) { slack[x] = 0; for (int u =
1; u <= n; ++u) if (g[u][x]. w > 0 && st[u] != x &&
S[st[u]] == 0
update_slack(u, x);
void q_push (int x) {
if (x <= n) q.push (x);
else for (size_t i = 0; i < flower[x].size (); i++)
q_push (flower[x][i]); }
void set_st (int x, int b) {
st[x] = b; if (x > n) for (size_t i = 0; i < flower[x].size (); ++i)
int get_pr (int b, int xr) {
int get_pr (int b, int xr) {
int pr = std::find (flower[b].begin (), flower[b].
end (), xr) - flower[b].begin ();
if (pr % 2 == 1) { std::reverse (flower[b].begin ()
+ 1, flower[b].end ()); return (int) flower[b].
size () - pr;
} else return pr;
} void set match (int u. int v) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                      112
 22
                                                                                                                                                                                                                                                                                                                                                                                      115
                  28
                                                                                                                                                                                        ++i) set_match (flower[u][i
29
 30
                                                                                                                                                                                                                                                                                                                                                                                      123
                    void augment (int u, int v) {
                  for (; ;) {
  int xnv = st[match[u]]; set_match (u, v);
  if (!xnv) return; set_match (xnv, st[pa[xnv]]);
  u = st[pa[xnv]], v = xnv; }
int get_lca (int u, int v) {
  static int t = 0;
  for (this u) | v = std | static | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = v | v = 
                           for (++t; u || v; std::swap (u, v)) {
  if (u == 0) continue; if (vis[u] == t) return u;
```

```
vis[u] = t; u = st[match[u]]; if (u) u = st[pa[u]];
  return 0; }
void add_blossom (int u, int lca, int v) {
  int b = n + 1; while (b <= n_x && st[b]) ++b;
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0;
  match[b] = match[lca]; flower[b].clear ();
  flower[b].push_back (lca);
  for (int x = u, y; x != lca; x = st[pa[y]]) {
    flower[b].push_back (x), flower[b].push_back (y =
        st[match[x]]), q_push (y); }
std::reverse (flower[b].begin () + 1, flower[b].end
  ():
      return
                            0:
      ());
for (int
      for (int i = 0; i < pr; i += 2) {
   int xs = flower[b][i], xns = flower[b][i + 1];
   pa[xs] = g[xns][xs].u; S[xs] = 1, S[xns] = 0;
   slack[xs] = 0, set_slack(xns); q_push(xns); }
S[xr] = 1, pa[xr] = pa[b];
for (size_t i = pr + 1; i < flower[b].size (); ++i)
     {
   int xs = flower[b][i]; S[xs] = -1, set_slack(xs); }
   st[b] = 0; }
   sool on_found_edge (const edge &e) {
    int u = st[e.u], v = st[e.v];
   if (S[v] == -1) {
      pa[v] = e.u, S[v] = 1; int nu = st[match[v]];
      slack[v] = slack[nu] = 0; S[nu] = 0, q_push(nu);
   } else if(S[v] == 0) {
   int lca = get_lca(u, v);
   if (!lca) return augment(u, v), augment(v, u), true
if(lab[u] <= d) return 0;
lab[u] -= d;
} else if (S[st[u]] == 1) lab[u] += d; }
for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b) {
   if (S[st[b]] == 0) lab[b] += d * 2;
   else if (S[st[b]] == 1) lab[b] -= d * 2; }
q = std::queue <int> ();
for (int x = 1; x <= n_x; ++x)
if (st[x] == x && slack[x] && st[slack[x]] != x && e_delta(g[slack[x]][x]) == 0)
   if(on_found_edge (g[slack[x]][x]))return true;
for (int b = n + 1; b <= n_x; ++b) if (st[b] == b
   && S[b] == 1 && lab[b] == 0) expand_blossom(b);
}</pre>
```

6.5 Maximum flow

```
1 /* Sparse graph maximum flow : isap.*/
2 template <int MAXN = 1000, int MAXM = 100000>
 11
13
      34
      dflow; e.flow[cur[p] 1] += dflow; }
} else {
  int mindist = n + 1;
  for (int i = e.begin[u]; ~i; i = e.next[i])
    if (e.flow[i] && mindist > d[e.dest[i]]) {
      mindist = d[e.dest[i]]; cur[u] = i; }
    if (!--gap[d[u]]) return maxflow;
    gap[d[u] = mindist + 1]++; u = pre[u]; } }
return maxflow; };
43 /* Dense graph maximum flow : dinic. */
44 template <int MAXN = 1000, int MAXM = 100000>
int ans = 0; n = n_; s = s_; dinic::t = t_;
while (bfs (e)) {
  for (int i = 0; i < n; ++i) w[i] = e.begin[i];
  ans += dfs (e, s, INF); }
return ans; };</pre>
```

6.6 Minimum cost flow

```
12
 14
           int head = 0; head < (int)queue.size(); ++head)
{
  int x = queue[head];
  for (int i = e.begin[x]; ~i; i = e.next[i]) {
    int y = e.dest[i];
    if (e.flow[i] && dist[y] > dist[x] + e.cost[i]) {
      dist[y] = dist[x] + e.cost[i]; prev[y] = i;
      if (!occur[y]) {
        occur[y] = true; queue.push_back (y); } }
    occur[x] = false; }
  return dist[t] < INF; }
  std::pair <int, int> solve (cost_flow_edge_list &e,
      int n_, int s_, int t_) {
      n = n_; s = s_, t = t_; std::pair <int, int> ans =
            std::make_pair (0, 0);
  while (augment (e)) {
      int num = INF;
      for (int i = t; i != s; i = e.dest[prev[i] ^ 1]) {
            num = std::min (num, e.flow[prev[i]]); }
      ans.first += num;
      for (int i = t; i != s; i = e.dest[prev[i] ^ 1]) {
            e.flow[prev[i]] -= num; e.flow[prev[i] ^ 1] += num
            second += num; e.cost[prev[i]]; }
}
 26
ans.second += num * e.cost[prev[i]]; } }
return ans; } ;
return ans; } ;

/* Dense graph minimum cost flow : zkw. */
sktemplate <int MAXN = 1000, int MAXM = 100000>
struct zkw_flow {
    struct cost_flow_edge_list {
    int size, begin[MAXN], dest[MAXM], next[MAXM], cost[MAXM], flow[MAXM];

    void clear (int n) { size = 0; std::fill (begin, begin + n, -1); }
cost_flow_edge_list (int n = MAXN) { clear (n); }
void add_edge (int u, int v, int c, int f) {
    dest[size] = v; next[size] = begin[u]; cost[size] = c; flow[size] = f; begin[u] = size++;
    dest[size] = u; next[size] = begin[v]; cost[size] = -c; flow[size] = 0; begin[v] = size++; };
int n, s, t, tf, tc, dis[MAXN], slack[MAXN], visit[MAXN];
                         ans.second += num * e.cost[prev[i]]; } }
            int n, s, MAXN];
            maxn;
int modlable() {
  int delta = INF;
  for (int i = 0; i < n; i++) {
    if (!visit[i] && slack[i] < delta) delta = slack[i]</pre>
 51
           54
                             e.flow[i] -= delta; e.flow[i ^ 1] += delta; left
-= delta;
            if (!left) { visit[x] = false; return flow; }
                 std::III (dis + 1, dis + t + 1, 0);
do { do {
   std::fill (visit + 1, visit + t + 1, 0);
} while (dfs (e, s, INF)); } while (!modlable ());
return std::make_pair (tf, tc);
```

6.7 Stoer Wagner algorithm

```
/* Stoer Wagner algorithm : Finds the minimum cut of an undirected graph. (1-based) */

template <int MAXN = 500>
struct stoer_wagner {
   int n, edge [MAXN] [MAXN];
   int dist [MAXN];
   bool vis [MAXN], bin [MAXN];
   stoer_wagner () {
        memset (edge, 0, sizeof (edge));
        memset (bin, false, sizeof (bin)); }
   int contract (int &s, int &t) {
        memset (dist, 0, sizeof (dist));
        memset (vis, false, sizeof (vis));
        int i, j, k, mincut, maxc;
        if for (i = 1; i <= n; i++) {
            k = -1; maxc = -1;
            for (j = 1; j <= n; j++)
            if (!bin[j] && !vis[j] && dist[j] > maxc) {
            k = j; maxc = dist[j]; }
            if (k == -1) return mincut;
            s = t; t = k; mincut = maxc; vis[k] = true;
            for (j = 1; j <= n; j++) if (!bin[j] && !vis[j])
            dist[j] += edge[k][j]; }
            return mincut; }
            int solve () {
                  int mincut, i, j, s, t, ans;
                  for (mincut = INF, i = 1; i < n; i++) {
                  ans = contract (s, t); bin[t] = true;
```

```
if (mincut > ans) mincut = ans;
if (mincut == 0) return 0;
for (j = 1; j <= n; j++) if (!bin[j])
edge[s][j] = (edge[j][s] += edge[j][t]); }
return mincut; } ;</pre>
```

6.8 DN maximum clique

```
g;
std::vector <ColorClass> C;
static bool desc_degree (const Vertex &vi,const Vertex &vj) { return vi.d > vj.d; }
y void init_colors (Vertices &v) {
| J.i2;
| S[level].i2 = S[level - 1].i1;
| while ((int) R.size ()) {
| if ((int) Q.size () + R.back ().d > (int) QMAX.size ()) {
39
      Q.push_back (R.back ().i); Vertices Rp; cut2 (R, Rp
BB e[N]; int ans, sol[N]; for (...) e[x][y] = e[y][x] = true;
| Maxclique mc (e, n); mc.mcqdyn (sol, ans); //0-based.
| for (int i = 0; i < ans; ++i) std::cout << sol[i] << std::endl;
```

6.9 Dominator tree

6.10 Tarjan

\mathbf{String}

7.1 Manacher

```
/* Manacher : Odd parlindromes only. */
2 for (int i = 1, j = 0; i != (n << 1) - 1; ++i) {
3  int p = i >> 1, q = i - p, r = ((j + 1) >> 1) + 1[j] - 1;
4  l[i] = r < q ? 0 : std::min (r - q + 1, l[(j << 1) - i]);
5  while (p - 1[i] != -1 && q + 1[i] != n
6  && s[p - 1[i]] == s[q + 1[i]]) 1[i]++;
7  if (q + 1[i] - 1 > r) j = i;
8  a += 1[i]; }
```

7.2 Suffix Array

```
/* Suffix Array : sa[i] - the beginning position of the ith smallest suffix, rk[i] - the rank of the suffix beginning at position i. height[i] - the longest common prefix of sa[i] and sa[i - 1]. */

template <int MAXN = 1000000, int MAXC = 26>

struct suffix array {

int rk[MAXN], height[MAXN], sa[MAXN];

int cmp (int *x, int a, int b, int d) {

return x[a] == x[b] && x[a + d] == x[b + d]; }

void doubling (int *a, int n) {

static int sRank[MAXN], tmpA[MAXN], tmpB[MAXN];

int m = MAXC, *x = tmpA, *y = tmpB;

for (int i = 0; i < m; ++i) sRank[i] = 0;

for (int i = 0; i < m; ++i) sRank[i] = a[i]];

for (int i = 1; i < m; ++i) sRank[i] += sRank[i - 1];

for (int d = 1, p = 0; p < n; m = p, d <<= 1) {

p = 0; for (int i = n - d; i < n; ++i) y[p++] = i;

for (int i = 0; i < n; ++i) if (sa[i] >= d) y[p++]

= sa[i] - d;

for (int i = 0; i < n; ++i) sRank[i] = 0;

for (int i = 0; i < n; ++i) sRank[i] = 0;

for (int i = 0; i < n; ++i) sRank[i] += sRank[i - 1];

for (int i = 0; i < n; ++i) sRank[i] += sRank[i - 1];

for (int i = 1; i < m; ++i) sRank[i] += sRank[i - 1];

for (int i = 1; i < n; ++i) sRank[i] += sRank[i - 1];

for (int i = 1; i < n; ++i) sRank[i] += sRank[i - 1];

void solve (int *a, int n) {

sa[n] = -1; doubling (a, n);

for (int i = 0; i < n; ++i) rk[sa[i]] = i;
```

```
int cur = 0;
for (int i = 0; i < n; ++i)
if (rk[i]) {
   if (cur) cur--;
   for (; a[i + cur] == a[sa[rk[i] - 1] + cur]; ++cur
   );
height[rk[i]] = cur; } };</pre>
```

7.3 Suffix Automaton

7.4 Palindromic tree

```
/* Palindromic tree: extend () - returns whether the tree has generated a new node. odd, even - the root of two trees. last - the node representing the last char. node::len - the palindromic string length of the node. */

template <int MAXN = 1000000, int MAXC = 26>

struct palindromic_tree {

struct node {

node *child[MAXC], *fail; int len;

node *child[NAXN];

node *child[NULL, sizeof (child)); }

} node pool[MAXN * 2], *tot_node;

int size, text[MAXN];

node *match (node *now) {

for (; text[size - now -> len - 1] != text[size];

now = now -> fail);

return now; }

bool extend (int token) {

text[++size] = token; node *now = match (last);

if (now -> child[token])

return last = now -> child[token], false;

last = now -> child[token] = new (tot_node++) node (

now -> len + 2);

if (now == odd) last -> fail = even;

else {

now = match (now -> fail);

last -> fail = now -> child[token]; }

return true; }

void init() {

text[size = 0] = -1; tot_node = node_pool;

last = even = new (tot_node++) node (0); odd = new (

tot_node++) node (-1);

even -> fail = odd; }

palindromic_tree () { init (); } };
```

7.5 Regular expression

```
match.prefix () and match.suffix () give the prefix and the suffix.

match.length () gives length and match.position () gives position of the match. */ }

sis std::regex_replace (str, pattern, "sh$1");

sif //$n is the backreference, $& is the entire match, $` is the prefix, $' is the suffix, $$ is the $ sign.
```

8 Tips8.1 Java

```
1 /* Java reference : References on Java IO, structures,
  etc. */
2 import java.io.*;
3 import java.lang.*;
4 import java.util.*;
5 import java.util.*;
   | Slimbore java.ucii.*,
| 6| /* Common usage:
| Scanner in = new Scanner (System.in);
| Scanner in = new Scanner (new BufferedInputStream (
nextProbablePrime ()

BigDecimal : consists of a BigInteger value and a scale. The scale is the number of digits to the right of the decimal point.

divide (BigDecimal) : exact divide.

divide (BigDecimal), int scale, RoundingMode roundingMode) : divide with roundingMode, which may be: CEILING / DOWN / FLOOR / HALF_DOWN / HALF_EVEN / HALF_UP / UNNECESSARY / UP.

BigDecimal setScale (int newScale, RoundingMode roundingMode) : returns a BigDecimal with newScale
 doubleValue () / toPlainString () : converts to other
 types.

20 Arrays: Arrays.sort (T [] a); Arrays.sort (T [] a, int fromIndex, int toIndex); Arrays.sort (T [] a int fromIndex, int toIndex, Comperator <? super
comperator);

21 LinkedList <E> : addFirst / addLast (E) / getFirst /
getLast / removeFirst / removeLast () / clear () /
add (int, E) / remove (int) / size () / contains
/ removeFirstOccurrence / removeLastOccurrence (E)

22 ListIterator <E> listIterator (int index) : returns an
iterator :
    iterator :
    E next / previous () : accesses and iterates.
hasNext / hasPrevious () : checks availablity.
nextIndex / previousIndex () : returns the index of a
    subsequent call.
add / set (E) / remove () : changes element.
PriorityQueue <E> (int initcap, Comparator <? super E>
    comparator) : add (E) / clear () / iterator () /
    peek () / poll () / size ()

TreeMap <K, V> (Comparator <? super K> comparator) :
    Map.Entry <K, V> ceilingEntry / floorEntry /
    higherEntry / lowerEntry (K): getKey / getValue ()
    / setValue (V) : entries.

clear () / put (K, V) / get (K) / remove (K) / size ()

StringBuilder : StringBuilder (string) / append (interior)
                          iterator
()

30 StringBuilder: StringBuilder (string) / append (int, string, ...) / insert (int offset, ...) charAt ( int) / setCharAt (int, char) / delete (int, int) / reverse () / length () / toString ()

31 String: String.format (String, ...) / toLowerCase / toUpperCase () */

32 /* Examples on Comparator:

33 public class Main {

4 public static class Point {

55 public int x; public int y;

66 public Point () {

37 x = 0;
               public Point (int xx, int yy) {
x = xx;
y = yy; };;
           public static class Cmp implements Comparator <Point>
               public int compare (Point a, Point b) {
          45
 53 */
54 /* or
        /* or :
public static class Point implements Comparable <
    Point> {
    public int x; public int y;
    public Point () {
        x = 0;
        y = 0; }
    public Point (int xx, int yy) {
        x = xx;
    }
}
```

```
y = yy; }
public int compareTo (Point p) {
  if (x < p.x) return -1;
  if (x == p.x) {
   if (y < p.y) return -1;
   if (y == p.y) return 0; }
  return 1; }
public boolean equalTo (Point p) {
  return (x == p.x && y == p.y); }
public int hashCode () {
  return x + y; } };</pre>
       65
66
       69
70
71
73 */
73 */
74 //Faster IO :
75 public class Main {
76 static class InputReader {
77 public BufferedReader reader;
78 public StringTokenizer tokenizer;
79 public InputReader (InputStream stream) {
80 reader = new BufferedReader (new InputStreamReader (stream), 32768);
81 tokenizer = null; }
82 public String next() {
83 while (tokenizer == null || !tokenizer.
84 hasMoreTokens()) {
                         hasMoreTokens()) {

try {

String line = reader.readLine();

tokenizer = new StringTokenizer (line);
} catch (IOException e) {

throw new RuntimeException (e); }

return tokenizer.nextToken(); }

public BigInteger nextBigInteger() {

return new BigInteger (next (), 10); /* radix */ }

public int nextInt() {

return Integer.parseInt (next()); }

public double nextDouble() {

return Double.parseDouble (next()); }

public static void main (String[] args) {

InputReader in = new InputReader (System.in);
} }
```

8.2Random numbers

```
std::mt19937_64 mt (time (0));
std::uniform_int_distribution <int> uid (1, 100);
std::uniform_real_distribution <double> urd (1, 100);
std::cout << uid (mt) << "_" << urd (mt) << "\n";
                                                                                                                                                    100);
'1. 100);
```

8.3 Formatting

```
8.3 Formatting

| //getline : gets a line.
| std::string str;
| std::getline (std::cin, str, '#');
| char ch[100];
| std::cin.getline (ch, 100, '#');
| //fgets : gets a line with '\n' at the end.
| fgets (ch, 100, stdin);
| //peek : gets the next character.
| int c = std::cin.peek ();
| //ignore : ignores characters.
| std::cin.ignore (100, EOF);
| std::cin.ignore (100, EOF);
| //read : reads all characters.
| std::cin.seekg (0, std::cin.end);
| std::cin.seekg (0, std::cin.beg);
| char *buf = new char[length];
| std::cin.read (buf, length);
| //width : specifies output minimal width.
| std::cout.width (10); // std::cout << std::setfill
| ('#');
| std::cout << std::left << x << "\n";
| std::cout << std::internal << x << "\n";
| std::cout.yrecision (10); // std::cout << std:: setfill
```

8.4 Read hack

8.5 Stack hack

```
"/stack:36777216")
//G++
int __size__ = 256 << 20;</pre>
int __size__ = 256 << 20;
char *_p_ = (char*) malloc(__size__) + __size__;
__asm__ ("movl_%0,_%*esp\n" :: "r"(_p__));</pre>
```

8.6 Time hack

```
clock_t t = clock ();
std::cout << 1. * t / CLOCKS_PER_SEC << "\n";</pre>
```

8.7Builtin functions

_builtin_clz: Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is

undefined.
_builtin_ctz: Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is

undefined.
_builtin_clrsb: Returns the number of leading redundant sign bits in x, i.e. the number of bits following the most significant bit that are identical to it. There are no special cases for 0 or

other values. __builtin_popcount: Returns the number of 1-bits in x.

_builtin_parity: Returns the parity of x, i.e. the number of 1-bits in x modulo 2. _builtin_bswap16, _builtin_bswap32, _builtin_bswap64:

Returns x with the order of the bytes (8 bits as a group) reversed.

bitset::Find_first(), bitset::Find_next(idx): bitset built in functions.

Prufer sequence

In combinatorial mathematics, the Prufer sequence of a labeled tree is a unique sequence associated with the tree. The sequence for a tree on n vertices has length n-2

One can generate a labeled tree's Prufer sequence by iteratively removing vertices from the tree until only two vertices remain. Specifically, consider a labeled tree T with vertices 1, 2, ..., n. At step i, remove the leaf with the smallest label and set the *i*th element of the Prufer sequence to be the label of this leaf's neighbour.

One can generate a labeled tree from a sequence in three steps. The tree will have n+2 nodes, numbered from 1 to n+2. For each node set its degree to the number of times it appears in the sequence plus 1. Next, for each number in the sequence a[i], find the first (lowestnumbered) node, j, with degree equal to 1, add the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u, v) to the tree.

The Prufer sequence of a labeled tree on n vertices is a unique sequence of length n-2 on the labels 1 to n- this much is clear. Somewhat less obvious is the fact that for a given sequence S of length n-2 on the labels 1 to n, there is a unique labeled tree whose Prufer sequence

Spanning tree counting

Kirchhoff's Theorem: the number of spanning trees in a graph G is equal to any cofactor of the Laplacian matrix of G, which is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).

The number of edges with a certain weight in a minimum spanning tree is fixed given a graph. Moreover, the number of its arrangements can be obtained by finding a minimum spanning tree, compressing connected components of other edges in that tree into a point, and then applying Kirrchoff's theorem with only edges of the certain weight in the graph. Therefore, the number of minimum spanning trees in a graph can be solved by multiplying all numbers of arrangements of edges of different weights together.

8.10 Matching8.10.1 Tutte-Berge formula

The theorem states that the size of a maximum matching of a graph G = (V, E) equals

$$\frac{1}{2} \min_{U \subseteq V} \left(|U| - \operatorname{odd}(G - U) + |V| \right) \,,$$

where odd(H) counts how many of the connected components of the graph H have an odd number of vertices.

8.10.2Tutte theorem

A graph, G = (V, E), has a perfect matching if and only if for every subset U of V, the subgraph induced by V-U has at most |U| connected components with an odd number of vertices.

8.10.3 Hall's marriage theorem

A family S of finite sets has a transversal if and only if S satisfies the marriage condition.

8.11Mobius inversion

8.11.1 Mobius inversion formula

$$[x=1] = \sum_{d \mid x} \mu(d)$$

8.11.2 Gcd inversion

$$\begin{split} \sum_{a=1}^n \sum_{b=1}^n gcd^2(a,b) &= \sum_{d=1}^n d^2 \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [gcd(i,j) = 1] \\ &= \sum_{d=1}^n d^2 \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{t \mid gcd(i,j)} \mu(t) \\ &= \sum_{d=1}^n d^2 \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \lfloor t \mid i \rfloor \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [t \mid j] \\ &= \sum_{d=1}^n d^2 \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \lfloor \frac{n}{dt} \rfloor^2 \end{split}$$

The formula can be computed in O(nlogn) complexity. Moreover, let l=dt, then

$$\sum_{d=1}^n d^2 \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \big\lfloor \frac{n}{dt} \big\rfloor^2 = \sum_{l=1}^n \big\lfloor \frac{n}{l} \big\rfloor^2 \sum_{d|l} d^2 \mu(\frac{l}{d})$$

Let $f(l)=\sum_{d|l}d^2\mu(\frac{l}{d})$. It can be proven that f(l) is multiplicative. Besides, $f(p^k)=p^{2k}-p^{2k-2}$.

Therefore, with linear sieve the formula can be computed in O(n) complexity.

8.12 2-SAT

In terms of the implication graph, two literals belong to the same strongly connected component whenever there exist chains of implications from one literal to the other and vice versa. Therefore, the two literals must have the same value in any satisfying assignment to the given 2-satisfiability instance. In particular, if a variable and its negation both belong to the same strongly connected component, the instance cannot be satisfied, because it is impossible to assign both of these literals the same value. As Aspvall et al. showed, this is a necessary and sufficient condition: a 2-CNF formula is satisfiable if and only if there is no variable that belongs to the same strongly connected component as its negation.

This immediately leads to a linear time algorithm for testing satisfiability of 2-CNF formulae: simply perform a strong connectivity analysis on the implication graph and check that each variable and its negation belong to different components. However, as Aspvall et al. also showed, it also leads to a linear time algorithm for finding a satisfying assignment, when one exists. Their algorithm performs the following steps:

Construct the implication graph of the instance, and find its strongly connected components using any of the known linear-time algorithms for strong connectivity analysis.

Check whether any strongly connected component contains both a variable and its negation. If so, report that the instance is not satisfiable

and halt.

Construct the condensation of the implication graph, a smaller graph that has one vertex for each strongly connected component, and an edge from component i to component j whenever the implication graph contains an edge uv such that u belongs to component i and v belongs to component j. The condensation is automatically a directed acyclic graph and, like the implication graph from which it was formed, it is skew-symmetric.

Topologically order the vertices of the condensation. In practice this may be efficiently achieved as a side effect of the previous step, as components are generated by Kosaraju's algorithm in topological order and by Tarjan's algorithm in reverse topological order.

For each component in the reverse topological order, if its variables do not already have truth assignments, set all the literals in the component to be true. This also causes all of the literals in the complementary component to be set to false.

8.13 Dynamic programming 8.13.1 Divide & conquer optimization

For recurrence

$$f(i) = \min_{k < i} \{b(k) + c[k][i]\}$$

 $k(i) \le k(i+1)$ holds true if c[a][c] + c[b][d] < c[a][d] + c[b][c].

8.13.2 Knuth optimization

For recurrence

$$f(i,j) = \min_{i < k < j} \{ f(i,k) + f(k,j) \} + c[i][j]$$

 $k(i,j-1) \leq k(i,j) \leq k(i+1,j)$ holds true if c[a][c] + c[b][d] < c[a][d] + c[b][c].

8.14 Interesting numbers

8.14.1 Binomial Coefficients

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \quad \sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\sum_{k=0}^n \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sqrt{1+z} = 1 + \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k \times 2^{2k-1}} \binom{2k-2}{k-1} z^k$$

$$\sum_{k=0}^r \binom{r-k}{m} \binom{s+k}{n} = \binom{r+s+1}{m+n+1}$$

$$C_{n,m} = \binom{n+m}{m} - \binom{n+m}{m-1}, n \ge m$$

$$\binom{n}{k} \equiv [n\&k = k] \pmod{2}$$

$$\binom{n_1 + \dots + n_p}{m} = \sum_{k_1 + \dots + k_p = m} \binom{n_1}{k_1} \dots \binom{n_p}{k_p}$$

8.14.2 Fibonacci Numbers

$$F(z) = \frac{z}{1 - z - z^2}$$

$$f_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

$$\sum_{k=1}^{n} f_k = f_{n+2} - 1, \quad \sum_{k=1}^{n} f_k^2 = f_n f_{n+1}$$

$$\sum_{k=0}^{n} f_k f_{n-k} = \frac{1}{5} (n-1) f_n + \frac{2}{5} n f_{n-1}$$

$$\frac{f_{2n}}{f_n} = f_{n-1} + f_{n+1}$$

$$f_1 + 2f_2 + 3f_3 + \dots + nf_n = nf_{n+2} - f_{n+3} + 2]$$

$$\gcd(f_m, f_n) = f_{\gcd(m, n)}$$

$$f_n^2 + (-1)^n = f_{n+1} f_{n-1}$$

$$f_{n+k} = f_n f_{k+1} + f_{n-1} f_k$$

$$f_{2n+1} = f_n^2 + f_{n+1}^2$$

$$(-1)^k f_{n-k} = f_n f_{k-1} - f_{n-1} f_k$$

$$f_n = f_$$

Period modulo a prime p is a factor of 2p + 2 or p - 1. Only exception: G(5) = 20.

Period modulo the power of a prime $p^k\colon G(p^k)=G(p)p^{k-1}$. Period modulo $n=p_1^{k_1}...p_m^{k_m}\colon G(n)=lcm(G(p_1^{k_1}),...,G(p_m^{k_m}))$

8.14.3 Lucas Numbers

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1-\sqrt{5}}{2}\right)^n$$
$$L(x) = \frac{2-x}{1-x-x^2}$$

8.14.4 Catlan Numbers

$$c_1 = 1, c_n = \sum_{i=0}^{n-1} c_i c_{n-1-i} = c_{n-1} \frac{4n-2}{n+1} = \frac{\binom{2n}{n}}{n+1}$$
$$= \binom{2n}{n} - \binom{2n}{n-1}, c(x) = \frac{1-\sqrt{1-4x}}{2x}$$

8.14.5 Stirling Cycle Numbers

Divide n elements into k non-empty cycles.

$$\begin{split} s(n,0) &= 0, s(n,n) = 1, s(n+1,k) = s(n,k-1) - ns(n,k) \\ & s(n,k) = (-1)^{n-k} {n \brack k} \\ & {n+1 \brack k} = n {n \brack k} + {n \brack k-1}, {n+1 \brack 2} = n! H_n \\ & x^{\underline{n}} = x(x-1)...(x-n+1) = \sum_{k=0}^n {n \brack k} (-1)^{n-k} x^k \\ & x^{\overline{n}} = x(x+1)...(x+n-1) = \sum_{k=0}^n {n \brack k} x^k \end{split}$$

8.14.6 Stirling Subset Numbers

Divide n elements into k non-empty subsets.

$${n+1 \choose k} = k {n \choose k} + {n \choose k-1}$$

$$x^n = \sum_{k=0}^n {n \choose k} x^{\underline{k}} = \sum_{k=0}^n {n \choose k} (-1)^{n-k} x^{\overline{k}}$$

$$m! {n \choose m} = \sum_{k=0}^m {m \choose k} k^n (-1)^{m-k}$$

$$\sum_{k=1}^n k^p = \sum_{k=0}^p {p \choose k} (n+1)^{\underline{k}}$$

For a fixed k, generating functions

$$\sum_{n=0}^{\infty} {n \brace k} x^{n-k} = \prod_{r=1}^{k} \frac{1}{1-rx}$$

8.14.7 Motzkin Numbers

Draw non-intersecting chords between n points on a circle. Pick n numbers $k_1,k_2,...,k_n \in \{-1,0,1\}$ so that $\sum_i^a k_i (1 \le a \le n)$ is non-negative and the sum of all numbers is 0.

$$M_{n+1} = M_n + \sum_{i=0}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} Catlan(k)$$

$$M(X) = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

Eulerian Numbers

Permutations of the numbers 1 to n in which exactly k elements are

8.14.9 Harmonic Numbers

Sum of the reciprocals of the first n natural numbers.

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

$$\sum_{k=1}^{n} kH_k = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$$

$$\sum_{k=1}^{n} {k \choose m} H_k = {n+1 \choose m+1} (H_{n+1} - \frac{1}{m+1})$$

8.14.10 Pentagonal Number Theorem

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{n=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

$$f(n,k) = p(n) - p(n-k) - p(n-2k) + p(n-5k) + p(n-7k) - \cdots$$

8.14.11 Bell Numbers

Divide a set that has exactly n elements.

$$B_n = \sum_{k=1}^n {n \brace k}, \quad B_{n+1} = \sum_{k=0}^n {n \brack k} B_k$$

$$B_{p^m+n} \equiv mB_n + B_{n+1} \pmod{p}$$

$$B(x) = \sum_{n=0}^\infty \frac{B_n}{n!} x^n = e^{e^x - 1}$$

8.14.12 Bernoulli Numbers

$$B_n = 1 - \sum_{k=0}^{n-1} {n \choose k} \frac{B_k}{n-k+1}$$

$$G(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k = \frac{1}{\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m-k+1}$$

8.14.13 Sum of Powers

$$\begin{split} \sum_{i=1}^{n} i^2 &= \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = (\frac{n(n+1)}{2})^2 \\ \sum_{i=1}^{n} i^4 &= \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} \\ \sum_{i=1}^{n} i^5 &= \frac{n^2(n+1)^2(2n^2+2n-1)}{12} \end{split}$$

8.14.14 Sum of Squares

Denote $r_k(n)$ the ways to form n with k squares. If:

$$n = 2^{a_0} p_1^{2a_1} \cdots p_r^{2a_r} q_1 b_1 \cdots q_s b_s$$

where $p_i \equiv 3 \mod 4$, $q_i \equiv 1 \mod 4$, then

$$r_2(n) = \begin{cases} 0 & \text{if any } a_i \text{ is a half-integer} \\ 4\prod_{i=1}^{r} (b_i + 1) & \text{if all } a_i \text{ are integers} \end{cases}$$

 $r_3(n) > 0$ when and only when n is not $4^a(8b+7)$.

8.14.15 Derangement

$$D_1 = 0, D_2 = 1, D_n = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$
$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

8.14.16 Tetrahedron Volume

If U, V, W, u, v, w are lengths of edges of the tetrahedron (first three form a triangle; u opposite to U and so on)

$$V = \frac{\sqrt{4u^2v^2w^2 - \sum_{cyc} u^2(v^2 + w^2 - U^2)^2 + \prod_{cyc} (v^2 + w^2 - U^2)}}{12}$$

Appendix 9 9.1Calculus table

9.1.1
$$ax + b \ (a \neq 0)$$

1. $\int \frac{x}{ax+b} dx = \frac{1}{a^2} (ax+b-b \ln |ax+b|) + C$
2. $\int \frac{x^2}{ax+b} dx = \frac{1}{a^3} \left(\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln |ax+b| \right) + C$

3.
$$\int \frac{\mathrm{d}x}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax+b}{x} \right| + C$$

4.
$$\int \frac{\mathrm{d}x}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

$$\int \frac{x}{(ax+b)^2} dx = \frac{1}{a^2} \left(\ln|ax+b| + \frac{b}{ax+b} \right) + C$$

3.
$$\int \frac{a(ax+b)}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax-b}{x} \right| + C$$
4.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$
5.
$$\int \frac{x}{(ax+b)^2} dx = \frac{1}{a^2} \left(\ln |ax+b| + \frac{b}{ax+b} \right) + C$$
6.
$$\int \frac{x^2}{(ax+b)^2} dx = \frac{1}{a^3} \left(ax + b - 2b \ln |ax+b| - \frac{b^2}{ax+b} \right) + C$$
7.
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

7.
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

9.1.2
$$\sqrt{ax+b}$$

1.
$$\int \sqrt{ax + b} dx = \frac{2}{3a} \sqrt{(ax + b)^3 + C}$$

2.
$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3} + C$$

3.
$$\int x^2 \sqrt{ax+b} dx = \frac{2}{105a^3} (15a^2x^2 - 12abx + 8b^2) \sqrt{(ax+b)^3} + C$$

4.
$$\int \frac{x}{\sqrt{ax+b}} dx = \frac{2}{3a^2} (ax-2b) \sqrt{ax+b} + 6$$

1.2
$$\sqrt{ax+b}$$

1. $\int \sqrt{ax+b} dx = \frac{2}{3a} \sqrt{(ax+b)^3} + C$

2. $\int x \sqrt{ax+b} dx = \frac{2}{15a^2} (3ax-2b) \sqrt{(ax+b)^3} + C$

3. $\int x^2 \sqrt{ax+b} dx = \frac{2}{15a^3} (15a^2x^2 - 12abx + 8b^2) \sqrt{(ax+b)^3} + C$

4. $\int \frac{x}{\sqrt{ax+b}} dx = \frac{2}{3a^2} (ax-2b) \sqrt{ax+b} + C$

5. $\int \frac{x^2}{\sqrt{ax+b}} dx = \frac{2}{15a^3} (3a^2x^2 - 4abx + 8b^2) \sqrt{ax+b} + C$

6. $\int \frac{dx}{x\sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right| + C \quad (b > 0) \\ \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{ax+b}{-b}} + C \quad (b < 0) \end{cases}$

7. $\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}}$

8. $\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$

9. $\int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}}$

1.3 $x^2 \pm a^2$

7.
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{\mathrm{d}x}{x\sqrt{ax+b}}$$

3.
$$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$$

9.
$$\int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}}$$

9.1.3 $x^2 \pm a^2$

1.
$$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$2. \int \frac{dx}{(x^{2}+a^{2})^{n}} = \frac{x}{2(n-1)a^{2}(x^{2}+a^{2})^{n-1}} + \frac{2n-3}{2(n-1)a^{2}} \int \frac{dx}{(x^{2}+a^{2})^{n-1}}$$

$$3. \int \frac{dx}{x^{2}-a^{2}} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$

$$9.1.4 \quad ax^{2} + b \quad (a > 0)$$

3.
$$\int \frac{\mathrm{d}x}{x^2 a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$

1.4
$$ax^{2} + b \ (a > 0)$$

1. $\int \frac{dx}{ax^{2} + b} = \begin{cases} \frac{1}{\sqrt{ab}} \arctan \sqrt{\frac{a}{b}}x + C & (b > 0) \\ \frac{1}{2\sqrt{-ab}} \ln \left| \frac{\sqrt{ax} - \sqrt{-b}}{\sqrt{ax} + \sqrt{-b}} \right| + C & (b < 0) \end{cases}$
2. $\int \frac{x}{ax^{2} + b} dx = \frac{1}{2a} \ln \left| ax^{2} + b \right| + C$
3. $\int \frac{x^{2}}{ax^{2} + b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^{2} + b}$
4. $\int \frac{dx}{x(ax^{2} + b)} = \frac{1}{2b} \ln \frac{x^{2}}{\left| ax^{2} + b \right|} + C$
5. $\int \frac{dx}{x^{2}(ax^{2} + b)} = -\frac{1}{bx} - \frac{a}{b} \int \frac{dx}{ax^{2} + b}$

2.
$$\int \frac{x}{a^2+b} dx = \frac{1}{2a} \ln |ax^2+b| + C$$

3.
$$\int \frac{x^2}{ax^2+b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2+b}$$

4.
$$\int \frac{dx}{x(ax^2+b)} = \frac{1}{2b} \ln \frac{x^2}{|ax^2+b|} + C$$

5.
$$\int \frac{\mathrm{d}x}{2(-2+1)} = -\frac{1}{hx} - \frac{a}{h} \int \frac{\mathrm{d}x}{2+1}$$

6.
$$\int \frac{dx}{3a+3a+4} = \frac{a}{3a} \ln \frac{|ax^2+b|}{3a-3a+4} - \frac{1}{3a+2a+4} + C$$

7.
$$\int \frac{dx}{(-2+b)^2} = \frac{x}{2b(-2+b)} + \frac{1}{2b} \int \frac{dx}{-2+b}$$

9.1.5
$$ax^2 + bx + c$$
 $(a > 0)$

3.
$$\int \frac{1}{x^{2}(ax^{2}+b)} - \frac{1}{bx} - \frac{1}{b} \int \frac{1}{ax^{2}+b}$$
6.
$$\int \frac{1}{x^{3}(ax^{2}+b)} = \frac{1}{ab^{2}} \ln \frac{|ax^{2}+b|}{x^{2}} - \frac{1}{2bx^{2}} + C$$
7.
$$\int \frac{1}{(ax^{2}+b)^{2}} = \frac{1}{2b(ax^{2}+b)} + \frac{1}{2b} \int \frac{1}{ax^{2}+b}$$
9.1.5
$$ax^{2} + bx + c \quad (a > 0)$$
1.
$$\frac{1}{ax^{2}+bx+c} = \begin{cases} \frac{1}{\sqrt{4ac-b^{2}}} \arctan \frac{2ax+b}{\sqrt{4ac-b^{2}}} + C \quad (b^{2} < 4ac) \\ \frac{1}{\sqrt{b^{2}-4ac}} \ln \frac{1}{2ax^{2}+bx^{2}+c} + C \quad (b^{2} > 4ac) \end{cases}$$
2.
$$\int \frac{1}{ax^{2}+bx+c} dx = \frac{1}{2a} \ln |ax^{2}+bx+c| - \frac{b}{2a} \int \frac{1}{ax^{2}+bx+c}$$
9.1.6
$$\int \frac{1}{ax^{2}+bx+c} dx = \frac{1}{2a} \ln |ax^{2}+bx+c| - \frac{b}{2a} \int \frac{1}{ax^{2}+bx+c}$$

2.
$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$$

9.1.6
$$\sqrt{x^2 + a^2}$$
 $(a > 0)$

1. $\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{arsh} \frac{x}{a} + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C$

3.
$$\int \frac{x}{\sqrt{2+2}} dx = \sqrt{x^2 + a^2} + C$$

4.
$$\int \frac{x}{\sqrt{(x^2+a^2)^3}} dx = -\frac{1}{\sqrt{x^2+a^2}} + C$$

6.
$$\int \frac{x^2}{\sqrt{(x^2+a^2)^3}} dx = -\frac{x}{\sqrt{x^2+a^2}} + \ln(x+\sqrt{x^2+a^2}) + C$$

8.
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x} + C$$

10.
$$\int \sqrt{(x^2 + a^2)^3} dx = \frac{x}{8} (2x^2 + 5a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2 + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2})} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} + \frac{1}{8} (2x^2 + a^2) \sqrt{x^2 +$$

- 11. $\int x\sqrt{x^2+a^2} dx = \frac{1}{3}\sqrt{(x^2+a^2)^3} + C$ 12. $\int x^2 \sqrt{x^2 + a^2} dx = \frac{x}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} - \frac{a^4}{8} \ln(x + \sqrt{x^2 + a^2}) + C$ 13. $\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C$ 14. $\int \frac{\sqrt{x^2 + a^2}}{2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2}) + C$ **9.1.7** $\sqrt{x^2-a^2}$ (a>0)1. $\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \frac{x}{|x|} \operatorname{arch} \frac{|x|}{a} + C_1 = \ln \left| x + \sqrt{x^2 - a^2} \right| + C$ 6. $\int \frac{x^2}{\sqrt{(x^2 - a^2)^3}} dx = -\frac{x}{\sqrt{x^2 - a^2}} + \ln|x + \sqrt{x^2 - a^2}| + C$ 7. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|} + C$ 8. $\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2 x} + C$ $x^{2}\sqrt{x^{2}-a^{2}}$ 9. $\int \sqrt{x^{2}-a^{2}} dx = \frac{x}{2}\sqrt{x^{2}-a^{2}} - \frac{a^{2}}{2} \ln|x+\sqrt{x^{2}-a^{2}}| + C$ 10. $\int \sqrt{(x^{2}-a^{2})^{3}} dx = \frac{x}{8}(2x^{2}-5a^{2})\sqrt{x^{2}-a^{2}} + \frac{3}{8}a^{4} \ln|x+\sqrt{x^{2}-a^{2}}| + C$ 11. $\int x\sqrt{x^{2}-a^{2}} dx = \frac{x}{3}\sqrt{(x^{2}-a^{2})^{3}} + C$ 12. $\int x^{2}\sqrt{x^{2}-a^{2}} dx = \frac{x}{8}(2x^{2}-a^{2})\sqrt{x^{2}-a^{2}} - \frac{a^{4}}{8} \ln|x+\sqrt{x^{2}-a^{2}}| + C$ 13. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|} + C$ 14. $\int \frac{\sqrt{x^2 - a^2}}{x^2} dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln|x + \sqrt{x^2 - a^2}| + C$ 9.1.8 $\sqrt{a^2 - x^2}$ (a > 0)1. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$ 2. $\frac{\sqrt{a^2 - x^2}}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C$ 3. $\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$ 4. $\int \frac{x}{\sqrt{(a^2 - x^2)^3}} dx = \frac{1}{\sqrt{a^2 - x^2}} + C$ 5. $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ 6. $\int \frac{x^2}{\sqrt{(a^2-x^2)^3}} dx = \frac{x}{\sqrt{a^2-x^2}} - \arcsin \frac{x}{a} + C$ 7. $\int \frac{\mathrm{d}x}{x\sqrt{a^2 - x^2}} = \frac{1}{a} \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C$ 8. $\int \frac{\mathrm{d}x}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C$ 9. $\int \sqrt{a^2-x^2} \mathrm{d}x = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ 10. $\int \sqrt{(a^2 - x^2)^3} \, \mathrm{d}x = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3}{8} a^4 \arcsin \frac{x}{a} + C$ 11. $\int \sqrt{x^2 - x^2} dx = -\frac{1}{3}\sqrt{(a^2 - x^2)^3 + C}$ 12. $\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8}(2x^2 - a^2)\sqrt{a^2 - x^2} + \frac{a^4}{8}\arcsin\frac{x}{a} + C$ 13. $\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} + a\ln\frac{a - \sqrt{a^2 - x^2}}{|x|} + C$ 14. $\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C$ **9.1.9** $\sqrt{\pm ax^2 + bx + c}$ (a > 0)1. $\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$ $\sqrt{ax^2 + vx + c}$ 2. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8\sqrt{a^3}} \ln |2ax + b| + \frac{4ac - b^2}{8\sqrt{a^3}}$ $\frac{b^{2}+4ac}{8\sqrt{a^{3}}} \arcsin \frac{2ax-b}{\sqrt{b^{2}+4ac}} + C$ 6. $\int \frac{x}{\sqrt{c+bx-ax^{2}}} dx = -\frac{1}{a}\sqrt{c+bx-ax^{2}} + \frac{b}{2\sqrt{a^{3}}} \arcsin \frac{2ax-b}{\sqrt{b^{2}+4ac}} + C$ **9.1.10** $\sqrt{\pm \frac{x-a}{x-b}}$ & $\sqrt{(x-a)(x-b)}$ 1. $\int \sqrt{\frac{x-a}{x-b}} \, \mathrm{d}x = (x-b) \sqrt{\frac{x-a}{x-b}} + (b-a) \ln(\sqrt{|x-a|} + \sqrt{|x-b|}) + C$ 2. $\int \sqrt{\frac{x-a}{b-x}} \, \mathrm{d}x = (x-b) \sqrt{\frac{x-a}{b-x}} + (b-a) \arcsin \sqrt{\frac{x-a}{b-x}} + C$ 3. $\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C \ (a < b)$ 4. $\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C$ 9.1.11 Triangular function
 - 1. $\int \tan x dx = -\ln|\cos x| + C$ 2. $\int \cot x dx = \ln|\sin x| + C$

 - 3. $\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$
 - 4. $\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x \cot x \right| + C$
 - 5. $\int \sec^2 x \, \mathrm{d}x = \tan x + C$

 - 5. $\int \sec^{x} x dx = \tan x + C$ 6. $\int \csc^{2} x dx = -\cot x + C$ 7. $\int \sec x \tan x dx = \sec x + C$ 8. $\int \csc x \cot x dx = -\csc x + C$ 9. $\int \sin^{2} x dx = \frac{x}{2} \frac{1}{4} \sin 2x + C$ 10. $\int \cos^{2} x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$

- 11. $\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$
- 11. $\int \sin^{-x} x \, dx = -\frac{1}{n} \sin^{-x} \frac{x \cos x + \frac{1}{n-1} \int \cos^{n-2} x \, dx}{12. \int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n-1} \int \cos^{n-2} x \, dx}$ 13. $\frac{dx}{\sin^{n} x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n} 1 x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n} 2 x}$ 14. $\frac{dx}{\cos^{n} x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n} 1 x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n} 2 x}$

$$\begin{split} & \int \cos^m x \sin^n x dx \\ & = \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx \\ & = -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^m x \sin^{n-2} x dx \end{split}$$

- 16. $\int \sin ax \cos bx dx = -\frac{1}{2(a+b)} \cos(a+b)x \frac{1}{2(a-b)} \cos(a-b)x + C$ 17. $\int \sin ax \sin bx dx = -\frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$
- 18. $\int \cos ax \cos bx dx = \frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$

- 21. $\int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$
- 22. $\int \frac{dx}{a^2 \cos^2 x b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x a} \right| + C$
- 23. $\int x \sin ax dx = \frac{1}{a^2} \sin ax \frac{1}{a} x \cos ax + C$ 24. $\int x^2 \sin ax dx = -\frac{1}{a} x^2 \cos ax + \frac{2}{a^2} x \sin ax + \frac{2}{a^3} \cos ax + C$
- 25. $\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C$ 26. $\int x^2 \cos ax dx = \frac{1}{a} x^2 \sin ax + \frac{2}{a^2} x \cos ax \frac{2}{a^3} \sin ax + C$

9.1.12 Inverse triangular function (a > 0)

- 1. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 x^2} + C$ 2. $\int x \arcsin \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 x^2} + C$ 3. $\int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 x^2} + C$ 4. $\int \arccos \frac{x}{a} dx = x \arccos \frac{x}{a} \sqrt{a^2 x^2} + C$ 5. $\int x \arccos \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arccos \frac{x}{a} \frac{x}{4} \sqrt{a^2 x^2} + C$ 6. $\int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 x^2} + C$ 7. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} \frac{a}{2} \ln(a^2 + x^2) + C$ 8. $\int x \arctan \frac{x}{a} dx = \frac{1}{2} (a^2 + x^2) \arctan \frac{x}{a} \frac{a}{2} x + C$ 9. $\int \int_0^2 \arctan \frac{x}{a} dx = \frac{x^3}{2} \arctan \frac{x}{a} \frac{x^3}{2} \ln(a^2 + x^2) + C$

- 9. $\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} \frac{a}{6}x^2 + \frac{a^3}{6}\ln(a^2 + x^2) + C$

9.1.13 Exponential function

- 1. $\int a^x dx = \frac{1}{\ln a} a^x + C$ 2. $\int e^{ax} dx = \frac{1}{a} a^{ax} + C$

- 5. $\int x a^x dx = \frac{a}{\ln a} a^x \frac{1}{(\ln a)^2} a^x + C$

- 8. $\int e^{ax} \cos bx dx = \frac{a^2 + b^2}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$ 9. $\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a^n + b^n)$ $\frac{1}{a^2+b^2n^2}e^{ax}\sin^{n-1}bx(a\sin bx - nb\cos bx) +$ $\frac{a^2}{a^2+b^2n^2} \int e^{ax} \sin^{n-2} bx dx$
- $\frac{1}{a^2+b^2n^2}e^{ax}\cos^{n-1}bx(a\cos bx + nb\sin bx) +$ 10. $\int e^{ax} \cos^n bx dx =$ $\frac{n(n-1)b^2}{a^2+b^2n^2}\int e^{ax}\cos^{n-2}bxdx$

9.1.14 Logarithmic function

- 1. $\int \ln x dx = x \ln x x + C$

- 1. $\int \frac{\ln \tan x}{x \ln x} = \ln |\ln x| + C$ 2. $\int \frac{dx}{x \ln x} = \ln |\ln x| + C$ 3. $\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x \frac{1}{n+1}) + C$ 4. $\int (\ln x)^n dx = x(\ln x)^n n \int (\ln x)^{n-1} dx$ 5. $\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$

9.2Regular expression

Special pattern characters

Characters	Description	
•	Not newline	
\t	Tab (HT)	
\n	Newline (LF)	
\v	Vertical tab (VT)	
\f	Form feed (FF)	
\r	Carriage return (CR)	
\cletter	Control code	
\xhh	ASCII character	
\uhhhh	Unicode character	
\0	Null	
\int	Backreference	
\d	Digit	
\D	Not digit	
\s	Whitespace	
\S	Not whitespace	
\w	Word (letters, numbers and the underscore)	
\W	Not word	
\character Character		
[class] Character class		
[^class] Negated character class		

9.2.2Quantifiers

Characters	Times		
*	0 or more		
+	1 or more 0 or 1		
?			
{int}	int		
{int,}	int or more		
{min,max}	Between min and max		

By default, all these quantifiers are greedy (i.e., they take as many characters that meet the condition as possible). This behavior can be overridden to ungreedy (i.e., take as few characters that meet the condition as possible) by adding a question mark (?) after the quantifier.

9.2.3Groups

Characters	Description	
(subpattern)	Group with backreference	
(?:subpattern)	Group without backreference	

9.2.4Assertions

Characters	Description
^	Beginning of line
\$	End of line
\b	Word boundary
\B	Not a word boundary
(?=subpattern)	Positive lookahead
(?!subpattern)	Negative lookahead

9.2.5 Alternative

A regular expression can contain multiple alternative patterns simply by separating them with the separator operator (|): The regular expression will match if any of the alternatives match, and as soon as one does. 9.2.6 Character classes

o Characte	Classes	
Class	Description	
[:alnum:]	Alpha-numerical character	
[:alpha:]	Alphabetic character	
[:blank:]	Blank character	
[:cntrl:]	Control character	
[:digit:]	Decimal digit character	
[:graph:]	Character with graphical representation	
[:lower:]	Lowercase letter	
[:print:]	Printable character	
[:punct:]	Punctuation mark character	
[:space:]	Whitespace character	
[:upper:]	Uppercase letter	
[:xdigit:]	Hexadecimal digit character	
[:d:]	Decimal digit character	
[:W:]	Word character	
[:s:]	Whitespace character	

Please note that the brackets in the class names are additional to those opening and closing the class definition. For example:

[[:alpha:]] is a character class that matches any alphabetic character.

acter.
[abc[:digit:]] is a character class that matches a, b, c, or a

digit.

[^[:space:]] is a character class that matches any character except a whitespace.

- I	precedence	
Precedence	Operator	Associativity
1	a++ a	
2	type() type{} a() a[]>	Left-to-right
3	++aa +a -a ! (type) *a &a sizeof new new[] delete delete[]	Right-to-left
4	.* ->*	
5	a*b a/b a%b	
6	a+b a-b	
7	<< >>	
8	> >=	Left-to-right
9	== !=	
10	a&b	
11	a^b	
12	a b	
13	& &	
14		
15	a?b:c throw = += -= *= /= %= <<= >>= &= ^= =	Right-to-left
16	,	Left-to-right