Grafos – Caminhos Mínimos

Técnicas de Programação Avançada

Mateus Conrad B. da Costa

Ifes - Campus Serra

December 17, 2024

Caminho Mínimo e Otimização

- O problema do caminho mínimo está associado à otimização.
- Representa a menor solução possível ou melhor maneira de atingir um objetivo.
- Seleciona a solução mínima com relação a alguma variável.

Caminho Mínimo

- Em um grafo, o caminho mínimo é a menor relação entre dois vértices.
- Dado um vértice origem u e destino v, $C_{\min}(u, v)$ representa o menor peso entre os caminhos.
- Exemplo: Problema dos Odres de Vinho.

Caminho Mínimo - Origem Única

- Em um grafo ponderado G = (V, A), dado um vértice de origem $s \in V$:
- Deseja-se obter os caminhos mínimos $\delta(s, v)$ para todos os vértices $v \in V$.

Problemas Mapeáveis no Problema Origem Única

- Destino único: Encontrar caminhos mínimos para um destino t pode ser transformado no problema origem única ao inverter a direção das arestas.
- Par de vértices: Pode ser resolvido pelo algoritmo de origem única.
- Todos os pares: Aplicar o algoritmo origem única para cada v ∈ V.

Representando Caminhos Mínimos

- Utiliza-se um vetor chamado predecessor.
- Para cada vértice v, predecessor[v] indica o vértice anterior no caminho.
- Ao final do algoritmo, o vetor predecessor contém os caminhos mínimos.

Explicação do Relaxamento

- O processo de relaxamento testa se um caminho alternativo melhora a distância atual calculada.
- O vetor de distâncias d[v] representa o menor custo conhecido até v. Se encontrarmos um caminho mais curto, atualizamos d[v].
- Importância: O relaxamento é a base de algoritmos como Bellman-Ford e Dijkstra.

Relaxamento

Algorithm 1 Relaxamento de uma aresta (u, v)

Require: Aresta (u, v) com peso w(u, v), vetor de distâncias d, vetor de predecessores pred.

- 1: **if** d[v] > d[u] + w(u, v) **then**
- 2: $d[v] \leftarrow d[u] + w(u, v)$
- 3: $\operatorname{pred}[v] \leftarrow u$
- 4: end if

Explicação do Algoritmo Bellman-Ford

- O algoritmo Bellman-Ford encontra caminhos mínimos a partir de um vértice de origem s em grafos com pesos negativos.
- Ele relaxa todas as arestas |V|-1 vezes, garantindo a convergência para os menores pesos possíveis.
- Ao final, ele verifica se existe ciclo negativo no grafo.
- Complexidade: $O(V \cdot E)$.

Algoritmo de Bellman-Ford

Algorithm 2 Bellman-Ford

12: return TRUE

```
Require: Grafo G = (V, E), pesos w, vértice origem s
 1: inicializaOrigemUnica(G, pred, d)
 2: for i = 1 até |V| - 1 do
 3: for cada aresta (u, v) em E do
   relax(u, v, w)
   end for
 6: end for
 7: for cada aresta (u, v) em E do
     if d[v] > d[u] + w(u, v) then
        return FALSE
10:
   end if
11: end for
```

Exemplo de Grafo e Vetor Predecessor

Vetor Predecessores:

- pred[A] = null
- pred[B] = A
- pred[*C*] = *B*
- pred[D] = C
- pred[E] = D

Explicação da Ordenação Topológica

- A ordenação topológica organiza os vértices de um grafo acíclico direcionado (DAG) de forma linear.
- Se existe uma aresta (u, v), então u aparece antes de v na ordenação.
- É frequentemente usada como passo inicial para encontrar caminhos mínimos em DAGs.

Ordenação Topológica com DFS

Algorithm 3 ObtemOrdenaçãoTopológica(Grafo G)

Require: Grafo G = (V, E) acíclico direcionado

- 1: Inicializa pilha S
- 2: Marca todos os vértices como não visitados
- 3: **for** cada vértice $v \in V$ **do**
- 4: **if** *v* não visitado **then**
- 5: DFS-Visit(v)
- 6: end if
- 7: end for

Ordenação Topológica com DFS

Algorithm 4 DFS-Visit(v)

- 1: **Saída:** Lista *S* com vértices ordenados
- 2: **Procedimento** DFS-Visit(*v*):
- 3: Marca v como visitado
- 4: **for** cada $u \in Adj(v)$ **do**
- 5: **if** *u* não visitado **then**
- 6: DFS-Visit(u)
- 7: end if
- 8: end for
- 9: Empilha v em S

Caminho Mínimo em GAOs

Algorithm 5 Caminho Mínimo em GAOs

```
Require: Grafo G = (V, E) acíclico, pesos w, vértice origem s
```

- 1: LOT \leftarrow ObtemOrdenaçãoTopologica(G)
- 2: inicializaOrigemUnica(*G*, pred, *d*)
- 3: **for** cada vértice $u \in LOT$ **do**
- 4: **for** cada vértice $v \in Adj(u)$ **do**
- 5: relax(u, v, w)
- 6: end for
- 7: end for

Exemplo de Ordenação Topológica

Explicação do Algoritmo Dijkstra

- O algoritmo de Dijkstra encontra os caminhos mínimos em grafos com pesos não negativos.
- Ele utiliza uma fila de prioridade para escolher o vértice com menor distância conhecida e relaxa suas arestas.
- Complexidade: $O((V + E) \log V)$ com heap binário.

Algoritmo de Dijkstra

Algorithm 6 Dijkstra

```
Require: Grafo G = (V, E), pesos não negativos w, origem s
```

- 1: inicializaOrigemUnica(G, pred, d)
- 2: Fila de prioridade $Q \leftarrow V$
- 3: **while** Q não está vazia **do**
- 4: $u \leftarrow \text{retiraM}(\text{nimo}(Q))$
- 5: **for** cada $v \in Adj(u)$ **do**
- 6: relax(u, v, w)
- 7: end for
- 8: end while

Exemplo de Dijkstra (sem ciclos negativos)

Vetor Predecessores (Final):

- pred[A] = null
- pred[B] = A
- pred[C] = B
- pred[D] = C
- pred[*E*] = *D*

Exemplo de Dijkstra (com ciclos negativos)

Vetor Predecessores (Final):

- pred[A] = null
- pred[B] = D (loop detectado)
- pred[C] = B
- pred[*D*] = *C*
- pred[*E*] = *D*