

Mathematik 1 Infotronik (20)

Gerald Kupris

Weiterer Plan für dieses Semester

- 16. (13.12.2012): Lineare Abbildung, 2D Abbildungen, 2D Grafik
- 17. (19.12.2012): Projektion, Verschiebung, homogene Koordinaten
- 18. (20.12.2012): Drehung um einen beliebigen Punkt, Scherung

Feiertage

- 19. (09.01.2013): Definition von Eigenvektoren und Eigenwerten
- 20. (10.01.2013): Berechnung von Eigenvektoren und Eigenwerten
- 21. (16.01.2013): Eigenschaften von Eigenvektoren und Eigenwerten
- 22. (17.01.2013): Anwendung von Eigenvektoren und Eigenwerten
- 23. (23.01.2013): Anwendung von Eigenvektoren und Eigenwerten
- 24. (24.01.2013): Wiederholung, Prüfungsvorbereitung

Wiederholung: Eigenvektor und Eigenwert

Ein **Eigenvektor** einer Abbildung ist in der linearen Algebra ein vom Nullvektor verschiedener Vektor, dessen **Richtung** durch die Abbildung nicht verändert wird.

Ein Eigenvektor wird also nur gestreckt, und man bezeichnet den Streckungsfaktor als **Eigenwert** der Abbildung.

Eigenwerte charakterisieren wesentliche Eigenschaften linearer Abbildungen, etwa ob ein entsprechendes lineares Gleichungssystem eindeutig lösbar ist oder nicht.

In vielen Anwendungen beschreiben Eigenwerte auch physikalische Eigenschaften eines mathematischen Modells.

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren

Zur Bestimmung der Eigenwerte λ und der Eigenvektoren v einer quadratischen Matrix A kann man folgendermaßen vorgehen:

(1) Bestimme alle Eigenwerte λ aus der charakteristischen Gleichung

$$|\mathbf{A} - \lambda \mathbf{E}| = 0.$$

(2) Bestimme zu jedem Eigenwert λ einen Eigenvektor $v \neq 0$ aus der Gleichung

$$(A - \lambda E) v = 0.$$

Zusammenfassung: Bestimmung der Eigenwerte

Es sei $A \in K^{n \times n}$. Aus der Bedingung $A v = \lambda v$ folgt $(A - \lambda I)v = 0$.

Der Nullvektor ist in der Eigenvektordefinition ausgeschlossen, da A0 = 0 stets gilt. Wir suchen also nichttriviale Lösungen von

$$(A - \lambda I)v = 0.$$

Dies ist ein homogenes lineares Gleichungssystem, es besitzt also nichttriviale Lösungen genau dann, wenn $\operatorname{rang}(A - \lambda I) < n$ ist, also genau dann, wenn

$$\det(A - \lambda I) = 0.$$

Dies ist ein Polynom n-ten Grades in λ (das charakteristische Polynom von A). Seine Nullstellen sind die gesuchten Eigenwerte.

Anleitung zur Bestimmung von Eigenvektor und Eigenwert

"Schritt-für-Schritt":

- 1. Die Eigenwerte werden über die charakteristische Gleichung bestimmt (Nullstellen des charakteristischen Polynoms).
- 2. Die gefundenen Eigenwerte werden in die Gleichung $(A \lambda E) \cdot x = 0$ eingesetzt.
- 3. Das Gleichungssystem wird gelöst, dadurch wird ein Eigenvektor (von vielen möglichen) zu dem jeweiligen Eigenwert gefunden.
- 4. Probe: der gefundene Vektor wird mit der Matrix multipliziert, um zu überprüfen, ob es sich tatsächlich um einen Eigenvektor handelt.

Wiederholung: Berechnung der Eigenwerte

Die Gleichung

$$(A - \lambda E) \cdot x = 0$$

die Eigenwerte definiert, stellt ein homogenes lineares Gleichungssystem dar.

Da $x \neq 0$ vorausgesetzt wird, ist dieses genau dann lösbar wenn gilt:

$$\det(A - \lambda E) = 0$$

Expandiert man die Determinante auf der linken Seite, so erhält man ein Polynom n-ten Grades in λ. Dieses wird charakteristisches Polynom genannt, und dessen Nullstellen sind die Eigenwerte, also die Lösungen der Gleichung

$$\alpha_n \cdot \lambda^n + \alpha_{n-1} \cdot \lambda^{n-1} + \ldots + \alpha_1 \cdot \lambda + \alpha_0 = 0$$

Berechnung der Eigenvektoren

Für einen Eigenwert λ lassen sich die Eigenvektoren aus der Gleichung

$$(A - \lambda E) \cdot x = 0$$

bestimmen.

Die Eigenvektoren spannen einen Raum auf, dessen Dimension als geometrische Vielfachheit des Eigenwertes bezeichnet wird. Für einen Eigenwert λ der geometrischen Vielfachheit μ lassen sich also linear unabhängige Eigenvektoren

$$x_1, \ldots, x_{\mu}$$

finden, so dass die Menge aller Eigenvektoren zu λ gleich der Menge der Linearkombinationen von x_1,\ldots,x_μ ist.

 x_1, \ldots, x_μ heißt dann Basis aus Eigenvektoren zum Eigenwert λ .

Charakteristisches Polynom

Das charakteristische Polynom wird als Determinante derjenigen Matrix berechnet, die entsteht, wenn in A von den Hauptdiagonalelementen jeweils λ abgezogen wird.

Die Spur einer Matrix A (spur A) ist die Summe der Elemente auf der Hauptdiagonalen.

Für n = 2 und n = 3 ist das ausgeschrieben:

$$p(\lambda) = \lambda^{2} - \operatorname{spur} A \lambda + \det A \qquad (n = 2)$$

$$p(\lambda) = -\lambda^{3} + \operatorname{spur} A \lambda^{2} - c_{2}\lambda + \det A \qquad (n = 3)$$

$$c_{2} \text{ ist für } A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \text{ definiert als } c_{2} = \begin{vmatrix} a & b \\ d & e \end{vmatrix} + \begin{vmatrix} a & c \\ g & j \end{vmatrix} + \begin{vmatrix} e & f \\ h & j \end{vmatrix}.$$

Zur Erinnerung: Quadratische Gleichung

allgemeine Form

Normalform

$$ax^{2} + bx + c = 0$$
 $(a, b, c \in \mathbb{R}, a \neq 0)$ $x^{2} + px + q = 0$ $(p, q \in \mathbb{R})$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
 $x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$

wenn die Diskriminante D negativ ist:

$$\sqrt{D}=i\sqrt{|D|}=i\sqrt{-D}$$

Eigenwerte Beispiel

Gegeben sei die quadratische Matrix

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$

Subtraktion der mit λ multiplizierten Einheitsmatrix von A:

$$A - \lambda E = \begin{pmatrix} 0 - \lambda & 2 & -1 \\ 2 & -1 - \lambda & 1 \\ 2 & -1 & 3 - \lambda \end{pmatrix}$$

Ausrechnen der Determinante dieser Matrix (mit Hilfe der Regel von Sarrus):

$$\det(A - \lambda E) = (0 - \lambda)(-1 - \lambda)(3 - \lambda) + 4 + 2 - (2\lambda + 2 + \lambda + 12 - 4\lambda)$$

$$= -\lambda^3 + 2\lambda^2 + 4\lambda - 8$$

$$= -(\lambda - 2)(\lambda - 2)(\lambda + 2)$$

Die Eigenwerte entsprechen den Nullstellen des Polynoms, d. h. die rechte Seite der obigen Gleichung gleich Null setzen und man erhält: $\lambda_{1,2}=2,\ \lambda_3=-2.$

Gegeben ist wie im vorigen Beispiel die quadratische Matrix A:

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$

Die Eigenwerte $\lambda_1,_2=2,\ \lambda_3=-2$ wurden schon berechnet. Zunächst werden hier die Eigenvektoren (und der durch die Eigenvektoren aufgespannte Eigenraum) zum Eigenwert $\lambda_1=2$ berechnet.

$$A - 2 \cdot E = \begin{pmatrix} -2 & 2 & -1 \\ 2 & -3 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$

Man muss also das folgende lineare Gleichungssystem lösen:

$$\begin{pmatrix} -2 & 2 & -1 \\ 2 & -3 & 1 \\ 2 & -1 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Bringt man die Matrix auf das obere Dreiecksform erhält man:

$$\begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Die Lösung (und damit die gesuchten Eigenvektoren) ist der Vektor $\begin{pmatrix} 1 & 0 & -2 \end{pmatrix}^{\mathsf{T}}$ und alle seine Vielfachen (nicht jedoch das Nullfache des Vektors, da Nullvektoren niemals Eigenvektoren sind).

Für den Eigenwert $\lambda_2 = -2$ geht man genauso vor:

$$\begin{pmatrix} 2 & 2 & -1 \\ 2 & 1 & 1 \\ 2 & -1 & 5 \end{pmatrix} \cdot x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

wieder bringt man die Matrix auf Dreiecksform:

$$\begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Hier ist die Lösung der Vektor $\begin{pmatrix} -3 & 4 & 2 \end{pmatrix}^{\top}$ wieder mit allen seinen Vielfachen.

Probe 1 Beispiel

$$A \cdot \vec{x} = \lambda \cdot \vec{x}$$

$$\lambda_1 = 2$$

$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$$

Probe 2 Beispiel

$$A \cdot \vec{x} = \lambda \cdot \vec{x}$$

$$\lambda_3 = -2$$

$$\vec{x} = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} = -2 \cdot \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ -8 \\ -4 \end{pmatrix} = \begin{pmatrix} 6 \\ -8 \\ -4 \end{pmatrix}$$

Eigenwerte Beispiel 1

Für
$$A = \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
 erhalten wir

$$0 = \det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 6 & 1 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(1 - \lambda) - 6 = \lambda^2 - 3\lambda - 4$$

und damit

$$\lambda_{1,2} = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2}$$
 $\lambda_1 = 4$, $\lambda_2 = -1$.

 $x_1 = 0$ $y_1 = 0$

Eigenvektoren Beispiel 1 (1)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_1 = 4$$

$$\begin{pmatrix} 2 - 4 & 1 \\ 6 & 1 - 4 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

$$\begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 1 \\ 0 & -2.5 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Eigenvektoren Beispiel 1 (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_2 = -1$$

$$\begin{pmatrix} 2+1 & 1 \\ 6 & 1+1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_2 = 1$$
$$y_2 = -3$$

Die Lösung (und damit der gesuchte Eigenvektoren) ist der Vektor $(1, -3)^T$ und alle seine Vielfachen (nicht jedoch das Nullfache des Vektors, da Nullvektoren niemals Eigenvektoren sind).

Probe Beispiel 1

$$A \cdot \vec{x} = \lambda \cdot \vec{x}$$

$$\lambda = -1$$

$$\vec{x} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Eigenwerte Beispiel 2

Für
$$A = \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
 ergibt sich

$$0 = \det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 4 \\ -4 & 3 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)^2 - 4 \cdot (-4) = \lambda^2 - 6\lambda + 25.$$

Da die Diskriminante $\frac{(-6)^2}{4} - 25 < 0$ ist, hat diese quadratische Gleichung für λ keine reellen Lösungen. Es gibt also keine Eigenwerte.

Das ist plausibel: A ist gleich dem Fünffachen einer Rotationsmatrix (zum Winkel $\alpha = -\arcsin\frac{4}{5} \approx 0.927 = 53.1^{\circ}$). Da alle Vektoren gedreht werden, gibt es keine Eigenvektoren, daher auch keine Eigenwerte.

Beispiel 3

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$A - tE = \begin{pmatrix} -t & -1 & 0 \\ -2 & 1 - t & 0 \\ 1 & 0 & 1 - t \end{pmatrix}$$

Dann ist: $det(A - tE) = -t(t-1)^2 + 2(t-1) = -t^3 + 2t^2 + t-1$

Dieses heißt das charakteristische Polynom.

Die Nullstellen des Polynoms sind die gesuchten Eigenwerte.

Eigenvektoren und Eigenwerte von bekannten Matrizen

Spiegelung: Eigenvektoren senkrecht zur Spiegelachse, λ =-1

Streckung: Eigenvektoren parallel zur Streckachse, λ=a

Skalierung: alle Vektoren sind Eigenvektoren, λ =a

Rotation: keine Eigenvektoren (außer $\phi=0^{\circ}$, $\phi=k\cdot\pi$, $\lambda=-1$)

Projektion: Eigenvektoren parallel zur Projektionsgerade, $\lambda=1$

Verschiebung: Eigenvektoren parallel zur Verschiebungsrichtung

Permutation: Eigenvektoren senkrecht zur 45° Geraden, λ=-1

Scherung: Eigenvektoren längs der Scherachse, λ=1

Beispiel: Spiegelung an der y-Achse (1)

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\det \begin{pmatrix} -1 - \lambda & 0 \\ 0 & 1 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda_{1,2} = 0 \pm \sqrt{1}$$

$$\lambda_1 = 1$$

$$\lambda_2 = -1$$

Beispiel: Spiegelung an der y-Achse (2)

$$(A - \lambda E) \cdot \vec{x} = 0 \qquad (A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_{1} = 1 \qquad \lambda_{2} = -1$$

$$\begin{pmatrix} -1 - 1 & 0 \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = 0 \qquad \begin{pmatrix} -1 + 1 & 0 \\ 0 & 1 + 1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = 0$$

$$\begin{pmatrix} -1 - 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 0 & 1 + 1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_{1} = 0 \qquad x_{2} \in \Re$$

$$y_{1} \in \Re \qquad y_{2} = 0$$

Beispiel: Streckung entlang der x-Achse (1)

$$A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$

$$\det \begin{pmatrix} a - \lambda & 0 \\ 0 & 1 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - (a+1)\lambda + a = 0$$

$$\lambda_{1,2} = \frac{a+1}{2} \pm \frac{a-1}{2}$$

$$\lambda_1 = a$$

$$\lambda_2 = 1$$

Beispiel: Streckung entlang der x-Achse (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_1 = a$$

$$\begin{pmatrix} a - a & 0 \\ 0 & 1 - a \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

$$\begin{pmatrix} a - 1 & 0 \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 - a \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a - 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 \in \Re$$

$$x_2 = 0$$

$$y_1 = 0$$

$$y_2 \in \Re$$

Beispiel: Vergrößerung um den Faktor a (1)

$$A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

$$\det \begin{pmatrix} a - \lambda & 0 \\ 0 & a - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 2a\lambda + a^2 = 0$$

$$\lambda_{1,2} = \frac{2a}{2} \pm \sqrt{a^2 - a^2}$$

$$\lambda_1 = a$$

Beispiel: Vergrößerung um den Faktor a (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_1 = a$$

$$\begin{pmatrix} a - a & 0 \\ 0 & a - a \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 \in \Re$$

$$y_1 \in \Re$$

Beispiel: Rotation um den Winkel φ (1)

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

$$\det \begin{pmatrix} \cos \varphi - \lambda & -\sin \varphi \\ \sin \varphi & \cos \varphi - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 2\cos \varphi \cdot \lambda + \cos^2 \varphi + \sin^2 \varphi = 0$$

$$\lambda_{1,2} = \cos \varphi \pm \sqrt{-\sin^2 \varphi}$$

$$\lambda_1 = 1$$

$$\lambda_2 = -1$$

$$\text{für } \varphi = (2k) \cdot \pi$$

$$\text{für } \varphi = (2k+1) \cdot \pi$$

Beispiel: Rotation um den Winkel φ (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_1 = 1$$

$$\varphi = 2k \cdot \pi$$

$$\begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 \in \Re$$

$$y_1 \in \Re$$

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_2 = -1$$

$$\varphi = (2k+1) \cdot \pi$$

$$\begin{pmatrix} -1 + 1 & 0 \\ 0 & -1 + 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_2 \in \Re$$

$$y_2 \in \Re$$

Beispiel: Projektion auf einen Vektor mit dem Winkel β (1)

$$A = \begin{pmatrix} \cos^2 \beta & \sin \beta \cos \beta \\ \sin \beta \cos \beta & \sin^2 \beta \end{pmatrix}$$

$$\det \begin{pmatrix} \cos^2 \beta - \lambda & \sin \beta \cos \beta \\ \sin \beta \cos \beta & \sin^2 \beta - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - (\sin^2 \beta + \cos^2 \beta) \cdot \lambda = 0$$

$$\lambda_{1,2} = \frac{\sin^2 \beta + \cos^2 \beta}{2} \pm \frac{\sin^2 \beta + \cos^2 \beta}{2}$$

$$\lambda_1 = 1$$

Beispiel: Projektion auf einen Vektor mit dem Winkel β (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$
$$\lambda_1 = 1$$

$$\begin{pmatrix} \cos^2 \beta - 1 & \sin \beta \cos \beta \\ \sin \beta \cos \beta & \sin^2 \beta - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 = r \cdot \cos \beta$$

$$y_1 = r \cdot \sin \beta$$

Beispiel: Permutation (1)

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda_{1,2} = 0 \pm \sqrt{1}$$

$$\lambda_1 = 1$$

$$\lambda_2 = -1$$

Beispiel: Permutation (2)

$$(A - \lambda E) \cdot \vec{x} = 0 \qquad (A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_{1} = 1 \qquad \lambda_{2} = -1$$

$$\begin{pmatrix} 0 - 1 & 1 \\ 1 & 0 - 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = 0 \qquad \begin{pmatrix} 0 + 1 & 1 \\ 1 & 0 + 1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = 0$$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_{1} \in \Re \qquad x_{2} \in \Re$$

$$y_{1} = x_{1} \qquad y_{2} = -x_{1}$$

Beispiel: Scherung (1)

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

$$\det \begin{pmatrix} 1 - \lambda & a \\ 0 & 1 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 2\lambda + 1 = 0$$

$$\lambda_{1,2} = 1 \pm \sqrt{1 - 1}$$

$$\lambda_1 = 1$$

Beispiel: Scherung (2)

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_1 = 1$$

$$\begin{pmatrix} 1 - 1 & a \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 \in \Re$$

$$y_1 = 0$$

Noch einmal: Berechnung der Eigenvektoren

Für einen Eigenwert λ lassen sich die Eigenvektoren aus der Gleichung

$$(A - \lambda E) \cdot x = 0$$

bestimmen.

Die Eigenvektoren **spannen einen Raum auf**, dessen Dimension als geometrische Vielfachheit des Eigenwertes bezeichnet wird. Für einen Eigenwert λ der geometrischen Vielfachheit μ lassen sich also linear unabhängige Eigenvektoren

$$x_1, \ldots, x_{\mu}$$

finden, so dass die Menge aller Eigenvektoren zu λ gleich der Menge der Linearkombinationen von x_1, \ldots, x_{μ} ist.

 x_1, \ldots, x_μ heißt dann Basis aus Eigenvektoren zum Eigenwert λ .

Aufgabe

1. Berechnen Sie die Eigenwerte und die Eigenvektoren für die Matrix:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

2. Überprüfen Sie die gefundenen Ergebnisse durch Proberechnung.

Beispiel

$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$

Vektor v:

$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$A \cdot v = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3 \cdot v$$

Eigenwert:

$$\lambda = 3$$

Eigenwerte Beispiel 1

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\det \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 5\lambda - 2 = 0$$

$$\lambda_{1,2} = \frac{5}{2} \pm \frac{\sqrt{33}}{2}$$

$$\lambda_1 = 5,37$$

$$\lambda_2 = -0,37$$

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_{1} = 5,37$$

$$\begin{pmatrix} 1 - 5,37 & 2 \\ 3 & 4 - 5,37 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = 0$$

$$\begin{pmatrix} 2+1 & 1 \\ 6 & 1+1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = 0$$

$$\begin{pmatrix} -4,37 & 2 \\ 3 & -1,37 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_{1} = x_{2} = y_{1} = y_{2} = 0$$

Quellen

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München, 2010

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Peter Hartmann: Mathematik für Informatiker, Vieweg Verlag, Wiesbaden 2006

Manfred Brill: Mathematik für Informatiker, Hanser Verlag, München 2005

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer Verlag, Springer Verlag, Berlin 2003

http://de.wikipedia.org

Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf