西安电子科技大学

考试时间__120__分钟

《数据仓库与数据挖掘》试题 B卷

题号	_	 三	总分
分数			

- 1. 考试形式: 闭卷 √ 开卷口: 2. 本试卷共三大题, 满分 100 分;
- 3. 考试日期: 年 月 日;(答题内容请写在装订线外)

一、填空题(每小题 2 分, 共 20 分)

- 3、解决分类问题时,当决策树节点的规模过大后,模型的训练误差在降低,但 检验误差却随之升高,这种现象称为:_____。
- 4、频繁项集发现中, FP 增长算法将每个事务数据映射到 FP 树的一条____。
- 5、一个无向网络中包含 10 个节点和 30 条边,则该网络中边的密度为:____。
- 6、假设属性 income 的最大最小值分别是 12000 元和 98000 元。利用最大最小规范化的方法将属性的值映射到 0 至 1 的范围内。对属性 income 的 73600 元将被转化为: _____。
- 7、设 X={1, 2, 3}是频繁项集,则可由 X 产生_______个关联规则。
- 8、在基本 K 均值算法里,当邻近度函数采用欧氏距离的时候,合适的中心点 是簇中各点的 _____。

10、数据挖掘的主要任务包括:	,	,	c
-----------------	---	---	---

二、问答题(共30分)

1、(10 分) 考虑一个文档-词矩阵,其中 f_{ij} 是第 i 个词出现在第 j 个文档中的频率,m 是文档总数目。考虑如下逆文档频率变换:

$$f'_{ij} = f_{ij} \times \log \frac{m}{d_i}$$

其中, di 是出现第 i 个词的文档数目。

- (a) 如果一个词仅仅出现在一个文档中,该变化的结果是什么? 如果出现在所有文档中结果又是什么?
- (b) 该变换的目的是什么?

2、(5分)在采用抽样来减少需要可视化的数据对象时,简单随机抽样(无放回)是一种有效的方法吗?为什么是?为什么不是?

- 3、(15分)领导者算法基本思想:用一个数据点(称作领导者)代表一个簇,并将每个点指派到最近的领导者对应的簇,除非距离大于用户指定的阈值。如果一个点到最近的领导者的距离大于阈值时,该点成为一个新簇的领导者。
- (a) 与 K 均值算法比较, 领导者算法的优点和缺点是什么? 如何改进?
- (b) 对 M 维空间中的 N 个数据点进行聚类,分析领导者算法的时间复杂度。

三、计算题(每题10分,共50分)

1、(10分)考虑如下二元分类问题的数据集:

A	В	类
T	F	-
T	T	+
T	T	_
T	F	_
T	T	+
F	F	-
F	F	+
F	F	-
T	T	+
T	F	-

(a)计算按照属性 A 和 B 划分时的信息增益。决策树归纳算法会选择哪个属性? (b)计算按照属性 A 和 B 划分时的 Gini 系数。决策树归纳算法将会选择哪个属性?

订

线

2、(10 分) Apriori 算法使用 Hash 树数据结构有效地计算候选项集的支持度,下图为一个候选 3-项集的 Hash 树。

- (a) 给定一个包含项{1,4,5,8,9}的事务,在寻找该事物支持的候选项 集时,访问了该 Hash 树的哪些叶子节点?
- (b) 使用(a)中访问过的叶子节点确定事务{1,4,5,8,9}包含的候选项集。

3、(10 分)给定如下事务数据,最小支持度 30%,在格结构图中用字母 M、C、I分别标记:极大频繁项集、闭频繁项集、非频繁项集。

事务 ID	购买项
1	$\{a, b, d, e\}$
2	$\{a, b, c, d\}$
3	{ b, d, e}
4	{a, c, d, e}
5	$\{b, c, d\}$
6	{a, d, e}
7	{c, d}
8	$\{a, b, c\}$
9	{a, d, e}
10	{b, d, e}

4、(10分)计算如下混淆矩阵的熵和纯度。

簇	娱乐	财经	国外	都市	国内	体育	合计	熵	纯度
#1	1	1	0	22	4	3	31		
#2	3	5	4	5	4	5	26		
#3	0	10	1	1	12	2	26		
合计	4	16	5	28	20	10	83		

5、(10分)给定如下簇标号集和相似度矩阵:

簇标号集

数据点	簇标号
P1	1
P2	2
Р3	2
P4	2

相似度矩阵

数据点	P1	P2	Р3	P4
P1	1	0.1	0.2	0.1
P2	0.1	1	0.9	0.8
Р3	0.2	0.9	1	0.7
P4	0.1	0.8	0.7	1

- (a) 计算该相似度矩阵与理想的相似度矩阵之间的相关度。如果两个对象 i, j属于同一个簇,则理想的相似度矩阵的第 ij 项为 1,否则为 0。
 - (b) 计算每个点、每个簇的轮廓系数。

装

订

线