48/E1

MIJA

WPCP

STOPPING WATER POLLUTION AT ITS SOURCE

THIRTY SEVEN MUNICIPAL WATER POLLUTION CONTROL PLANTS

PILOT MONITORING STUDY

VOLUME I

INTERIM REPORT

DECEMBER 1988

Jim Bradley Minister

THIRTY SEVEN MUNCIPAL WATER POLLUTION CONTROL PLANTS

Pilot Monitoring Study

Volume 1 Interim Report

Report prepared for: Ontario Ministry of the Environment Water Resources Branch

Report prepared by: Canviro Consultants

DECEMBER 1988
Reprinted: November 1989

EXECUTIVE SUMMARY

The Ontario Ministry of the Environment's Municipal Industrial Strategy for Abatement (MISA) Program is aimed at reducing contaminant loadings from direct industrial discharges and from municipal water pollution control plants (WPCPs). The MOE will address the municipal sector by the implementation of a Monitoring Regulation, requiring all Ontario WPCPs to monitor hazardous contaminants (HCs) in effluents and sludges. Subsequently, maximum concentration requirements of HCs in effluents and sludges will be established and a Compliance Regulation will be implemented.

The MOE, Environment Canada and the Municipal Engineers Association (MEA) sponsored this study to provide the information needed to support the development of a cost-effective and practical Monitoring Regulation.

This report is an interim report, summarizing study methodologies and presenting preliminary study findings. A more detailed analysis of the study data to determine factors affecting removal of HCs, and to allow prioritization of effluents and sludges and estimation of HC Loadings from study WPCPs will be presented in the final report.

Thirty-seven Ontario WPCPs were selected for the Pilot Monitoring Study, including 28 secondary treatment plants, 7 primary treatment plants and 2 lagoons. The field monitoring program involved sampling of influent, final effluent and raw and treated sludges for one to two 5 consecutive day periods at each of the study plants. In addition, plant performance parameters were monitored for the 2 weeks prior to sampling and during the sampling period.

Each sample was analyzed for all of the contaminants on a list established by MOE for this study. The monitoring list included 144 organic contaminants, 15 metals and conventional contaminants. Three laboratories contracted by the MOE, and the MOE Laboratory Services Branch (LSB), performed all of the analytical work.

A thorough field QA/QC program involved appropriate cleanliness and sample preservation procedures, duplicate sample collection of all field samples and field blank collection and analyses. Also, a comprehensive laboratory QA/QC program was carried out so that the applicability of each analytical result could be defined. This program involved analysis of method blanks, duplicate samples, field samples spiked with surrogate compounds and distilled water samples spiked with native compounds.

The individual plant data, including background information and analytical results from the sampling program were compiled and are presented in Appendix A (Volume II) of this report.

The analytical results from the sampling program were summarized for all of the plants for each type of sample. Metals were the most prevalently (most WPCPs) and most frequently detected contaminants in all sample types. Only 5 base neutral and acid extractable compounds were ever detected at more than 20 percent of plants for any sample type. Dioxin/furan compounds were detected at a maximum of 27 percent of plants in samples of raw sewage or final effluents (primary, secondary or lagoon) compared to 65 percent of plants for sludges. Approximately the same number (27 to 30) of pesticide/herbicide compounds were detected in raw sewage, secondary effluent and raw and treated sludge samples. The maximum frequency of detection and plant prevalency of pesticide/herbicide compounds was quite large and reasonably uniform for all sample types. The largest number of volatile organic compounds were detected in raw sewage and secondary effluent streams. The maximum frequency of detection of volatile organics compounds ranged from 15 to 55 percent, and the maximum plant prevalency ranged from 32 to 85 percent.

CONTENTS

			<u> </u>	age
1.0	1.1	OUCTION A Backgrou Study Ob Scope	ND PROJECT OBJECTIVES nd jectives	1 1 2 3
2.0	2.1	Selectio Selectio Monitori 2.3.1 2.3.2 2.3.3 2.3.4	METHODOLOGY n of WPCPs n of Target Compounds ng Program General Pre-Monitoring Site Inspections Background Monitoring Sampling Methodologies 2.3.4.1 Sampling Locations 2.3.4.2 Sample Collection Procedures 2.3.4.3 Sampling Handling Protocol Documentation of Field Program QA/QC Field Program	4 4 7 7 11 15 15 15 15 20 22 23
3.0	3.1 3.2	Laborato Organic	HODOLOGY ry Analysis ry QA/QC Procedures for Trace Compounds agement and Review	24 24 24 29
4.0		4.1.3		30 30 30 31
	4.2	Characte 4.2.1 4.2.2	ristics of 37 WPCPs in Study Summary of Communities Summary of WPCP Design Character- istics Historical WPCP Performance Summary	33 33 36 40
5.0	RESUL'	5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	ALYSIS alytical Results Detection Limits (DLs) Method Blank Results Field Blank Results Results of Duplicate Analyses Surrogate Spike Recoveries Recovery of Native Spikes from Distilled Water MOE LSB Spiking	44 44 49 49 51 51 54 58

CONTENTS (cont'd)

				Page
	5.2	Individu	ual WPCP Reports	58
		5.2.1	Background Data	58
			Sampling Program Data	59
	5.3	Summary	of Sampling Program Results	60
			Data Presentation	60
		5.3.2	Contaminants Not Detected in Any	
			Sample Type	61
		5.3.3	Summary of Contaminants in Raw	
			Wastewater	61
		5.3.4	Summary of Contaminants in Primary	
			Effluents	64
		5.3.5	Summary of Contaminants in Lagoon	= 0
			Effluents	72
		5.3.6	Summary of Contaminants in	
			Secondary Effluents	72
		5.3.7	Summary of Contaminants in Tertiary	
			Effluents	80
		5.3.8	Summary of Contaminants in Sludges	80
		5.3.9	Summary of Contaminants in Treated	89
		5 2 10	Sludges	0 2
		5.3.10	Summary of Contaminants Detected	89
			in Any Sample Type	0)
5.0	SUMMA	ρV		96
,.0	DOLLEN			
7.0	REFER	ENCES		97

Appendix A Individual Plant Data

TABLES

		Page
2-1	Ontario WPCPs Selected for the Monitoring Program	5
2-2(a)	Organic Contaminants Monitored in the Study	8
2-2 (b)	List of Metals Monitored in the Study	9
2-2(c)	Conventional Contaminants Monitored in the Study	9
2-3	EMPPL Organic Contaminants Not Monitored in the Present Study	10
2-4	WPCP Sampling Programs	12
2-5	Winter Sampling Schedule	13
2-6	Summer Sampling Schedule	14
2-7	Summary of Sampling Locations at Study WPCPs	17
2-8	Influent, Effluent and Recycle Sample Collection Information	21
2-9	Sludge Sample Collection and Preparation	21
2-10	Field Record Information	22
3-1	List of Contaminants Analyzed by Analytical Laboratories	25
3-2	Summary of Analytical Methods for Trace Organics and Metals Used in the Study	26
3-3	Analytical Methods for Conventional Contaminants Used in the Study	27
4-1	Summary of Communities of 37 WPCPs	35
4-2	Summary of WPCP Design and Flow Data	37
4-3	Summary of Historical Performance of 37 WPCPs (1981-1986)	41
4-4	MOE 1987 Effluent Discharge Requirements for Ontario Wastewater Treatment Facilities	43

TABLES (cont'd)

	Page
5-1(a)Detection Limits for Base Neutral and Acid Extractable Compounds	45
5-1(b)Detection Limits of Volatile Organic Compounds	46
5-1(c)Detection Limits for Pesticides and Herbicides	47
5-1(d)Detection Limits for Dioxin/FuranCompounds	48
5-1(e)Detection Limits for Metals and Cyanide	48
5-2(a)Contaminants Detected in Method Blank Samples	50
5-2(b)Contaminants with Invalid Analytical Results Due to Method Blank Results	50
5-3 Contaminants Detected in Field Blanks	51
5-4(a)Base/Neutral Compound Surrogate Recovery Summary by Stream Type	52
5-4(b)Dioxin/Furan Compound Surrogate Recovery by Sample Type	53
5-4(c)Volatile Organic Compound Surrogate Recovery by Sample Type	53
5-5(a)Summary of Recovery of Native Base/Neutral and Acid Extractable Compound Spikes from Distilled Water Samples	55
5-5(b)Summary of Recovery of Native Dioxin/Furan Compound Spikes from Distilled Water Samples	56
5-5(c)Summary of Recovery of Native Pesticide/Herbicide Compound Spikes from Distilled Water Samples	56
5-5(d)Summary of Recovery of Native Volatile Organic Compound Spikes from Distilled Water Samples	57
5-6 Global Summary of Contaminants Not Detected in Any Stream	62
5-7(a)Global Summary of Contaminants Not Detected in Raw Sewage	63
5-7(b)Global Summary of Contaminants in Raw Sewage	65

TABLES (cont'd)

	Page
5-8(a)Global Summary of Contaminants Not Detected in Primary Effluents	68
5-8(b)Global Summary of Contaminants in Primary Effluents	70
5-9(a)Global Summary of Contaminants Not Detected in Lagoon Effluents	73
5-9(b)Global Summary of Contaminants in Lagoon Effluents	75
5-10(a)Global Summary of Contaminants Not Detected in Secondary Effluents	76
5-10(b)Global Summary of Contaminants in Secondary Effluents	77
5-11(a)Global Summary of Contaminants Not Detected in Tertiary Effluents	81
5-11(b)Global Summary of Contaminants in Tertiary Effluents	83
5-12(a)Global Summary of Contaminants Not Detected in Raw Sludges	85
5-12(b)Global Summary of Contaminants in Raw Sludges	87
5-13(a)Global Summary of Contaminants Not Detected in Treated Sludges	90
5-13(b)Global Summary of Contaminants in Treated Sludges	92
5-14 Summary of Contaminants Detected in Any Sample Type	94

FIGURES

		Page
2-1	Geographic Locations of Plants Included in the 40 WPCP Study	6
2-2	Example Operational Evaluation Spreadsheet	16
4-1	Histogram Showing Design Flow Capacities for Ontario WPCPs (1987)	31
4-2	Histogram Showing Treatment Types for Ontario WPCPs (1987)	32
4-3	Histogram Comparing Ontario WPCPs to WPCPs Selected for the Study	34

1.0 INTRODUCTION AND PROJECT OBJECTIVES

1.1 Background

The Ontario Government's White Paper entitled, "Municipal-Industrial Strategy for Abatement (MISA)", released in June of 1986 by the Ontario Ministry of the Environment (MOE), outlined a new program to reduce the flow of toxic chemicals to the Province's receiving waters. MISA is aimed at reducing contaminant loadings from direct industrial discharges and from municipal water pollution control plants (WPCPs).

The program for municipal WPCPs will involve two stages. In the first stage, a Monitoring Regulation will be promulgated, requiring all WPCPs in Ontario to monitor HCs in effluents and sludges. In the second stage, maximum concentration requirements of HCs in effluents and sludges will be established and Compliance Regulations will be implemented.

In order that MOE can proceed with the establishment of the Monitoring Regulations, there is a need to determine the nature and incidence of HCs in WPCP effluents and sludges, to examine factors affecting the removal of HCs in wastewater treatment facilities and to evaluate the impact of upstream sanitary sewer users upon the HCs observed in WPCP effluents and sludges.

This study was jointly sponsored by the MOE, Environment Canada and the Municipal Engineers Association (MEA) with a goal of providing the information needed to support the development of a cost-effective and practical Monitoring Regulation.

The following is an interim report summarizing the study methodology used in the 37 WPCP study and presenting preliminary study findings. A more detailed analysis of the study data to determine factors affecting removal of HCs, and to allow prioritization of HCs in effluents and sludges and estimation of HC loadings from the study WPCPs will be presented in the final report.

The report has been organized into two volumes. Volume I has the following contents:

Section 2.0 - Field Program Methodology

This section presents a detailed description of the field program methodology.

Section 3.0 - Analytical Methodology

This section presents details of analytical methods as well as indicating the laboratories participating in the study.

Section 4.0 - WPCP Characteristics

This section outlines the characteristics of all WPCPs in Ontario and compares their characteristics with the 37 WPCPs studied.

Section 5.0 - Results and Analysis

This section presents in summary the preliminary results of the monitoring program.

Volume II of the preliminary report is comprised of individual appendices presenting design, operating and other background data for each WPCP as well as a complete summary of the preliminary results of monitoring.

1.2 Study Objectives

The goal of the Municipal WPCP Pilot Program was to obtain the information necessary to support the development of cost-effective and practical Monitoring Regulation for the municipal sector.

Specific project objectives included:

- To carry out a well designed and rigorously controlled program of hazardous contaminant sampling of sludge and sewage streams at 37 Ontario WPCPs.
- To summarize all study findings into a comprehensive project report and to provide a well organized database of HC and other results as well as process and flow measurements in a suitable electronic format.
- To develop a prioritized list of contaminants observed in the study.
- 4. To assess the effectiveness of WPCPs in removing HCs and to identify (insofar as possible) the factors influencing removal efficiencies including any 'key' variables that may be employed as indicators of HC removal effectiveness.
- To estimate the loadings discharged in the sludge and liquid effluents of the study WPCPs.

- To assess the impact of industrial, residential and commercial sanitary sewer inputs upon the nature and loadings of HCs observed in the raw wastewaters, and sludges.
- 7. To identify and review major concerns affecting the implementation of the monitoring regulation and to make recommendations as needed to address any anticipated implementation problem areas.

1.3 Scope

The field monitoring program involved sampling of influent, final effluent and raw and treated sludges for one to two 5 consecutive day periods at each of the 37 study plants. Each sample was analyzed for all of the contaminants on a list established by MOE for this study. The monitoring list included 144 organic contaminants, 15 metals and conventional contaminants. A comprehensive QA/QC program was carried out in order to be able to define the applicability of the analytical results.

Three laboratories contracted by MOE (Zenon Environmental Ltd., Mann Testing Ltd. and Enviroclean Ltd.) and MOE Laboratory Services Branch (LSB) carried out all of the analytical work, under the direction of MOE.

The Project Liaison Committee directed the field program and defined the requirements for subsequent analytical data summarization, analysis and report writing.

2.0

2.1 Selection of WPCPs

The WPCPs for the study were selected by MOE on the basis of the following criteria:

No. Criteria

- All WPCPs which discharged more than 45,000 m³/day effluent in 1986, regardless of treatment type. There were 16 secondary treatment plants and 7 primary treatment plants that fit this criterion. These WPCPs contributed 69.1 percent of the total flows discharged by the 406 plants in Ontario in 1986.
- Secondary WPCPs that were previously monitored by the Upper Great Lakes Connecting Channels (UGLCC) study in the summer of 1986.

Eleven plants were monitored by UGLCC(Ref.1). Three of the 11 plants were already selected under Criterion 1. Consequently, only 5 additional secondary plants with an average daily flow in 1986 of less than 45,000 m³/day were selected under Criterion 2 alone. Three plants (Chatham secondary WPCP, Amhurstburg and Point Edward, primary WPCPs) were not remonitored in this study.

3. Small secondary treatment plants with flows less than 20,000 m³/d which produced effluent quality typical of the effluent quality achieved in Ontario by well-operated secondary WPCPs were also selected. "Typical" effluent quality was defined as effluent BOD and TSS concentrations between 8 and 15 mg/L, and total phosphorus (TP) concentrations between 0.7 and 1.0 mg/L.

Plant location was also considered in plant selection. It was more desirable in terms of economics and logistics, to sample at WPCPs that were in proximity to those selected in Criteria 1 and 2. Seven plants were selected under Criterion 3.

4. Two lagoons were also selected for monitoring. Lindsay is served by the largest lagoon in Ontario. Niagara-on-the-Lake has a medium sized lagoon treatment facility.

In total, 37 WPCPs were selected by the above criteria. Table 2-1 presents a list of these plants indicating the criteria under which they were selected. Figure 2-1 presents a map showing the location of each WPCP.

Table 2-1 ONTARIO WPCPs SELECTED FOR THE MONITORING PROGRAM

	Criteria	WPCP	Treatment Type
		Brantford	Secondary
		Burlington (Skyway)	Secondary
1.	1986 Average	Cornwall	Primary
	3	Guelph	Secondary - Tertiary
	Daily Flow	Hamilton	Secondary
	2	Kingston City	Primary
	>45,000 m ³ /d	Kitchener	Secondary
		London (Greenway)	Secondary
		Mississauga (Clarkson)	Secondary
		Mississauga (Lakeview)	Secondary
		Niagara Falls (Stamford)	Secondary
		Ottawa (Green Cr.)	Primary
		Pickering (Duffin Cr.)	Secondary
		Peterborough	Secondary
		Sarnia	Primary
		Sault Ste.Marie (East)	Primary
		Sudbury	Secondary
		Thunder Bay	Primary
		Toronto (Highland Cr.)	Secondary
		Toronto (Humber)	Secondary
		Toronto (Main)	Secondary
		Waterloo	Secondary
		Windsor (Westerly)	Primary
		Belle River (Maidstone)	Secondary
2.	UGLCC and	Moore (Corunna)	Secondary
	1986 Average	Sault Ste.Marie (West)	Secondary
	Daily Flow	Wallaceburg	Secondary
	<45,000 m ³ /d	Windsor (Little River)	Secondary
		Grimsby (Baker Road)	Secondary
3.	Small Secondary	Kingston Township	Secondary
•	WPCPs	London (Pottersburg)	Secondary
	1986 Average	Oakville (South East)	Secondary
	Daily Flow	Paris	Secondary
	<20,000 m ³ /d	Toronto (North)	Secondary
	,,	Whitby (Pringle Creek 1)	Secondary
_		Lindsay	Lagoon

2.2 Selection of Target Compounds

The listing of target monitoring parameters for the entirety of the MISA program is presently embodied in the Environmental Monitoring Priority Pollutant List (EMPPL) (Ref. 2). At the time the 37 WPCP study was initiated the EMPPL listing was not as yet formulated and consequently an alternative but nonetheless comprehensive listing of contaminants was identified.

The organic contaminant list used in the present study includes all of the 126 organic contaminants monitored in the U.S. Environmental Protection Agency's (USEPA) Priority Pollutant List (PPL), established in 1972 (Ref. 3). The list also includes additional chlorinated pesticides, nitrogen phosphorus herbicides and phenoxy acid herbicides.

The organic contaminants that were monitored are presented in Table 2-2(a). The list includes 42 volatile organic compounds, 57 base neutral and acid extractable compounds, 35 pesticides and herbicides, and 10 dioxin furans (PCDD/PCDF) compounds. In total there were 144 organic contaminants monitored.

Fifteen metals were also monitored during the study, which are listed in Table 2-2(b). This list includes all of the metals presently regulated in Ontario in sludges utilized on agricultural land. A number of conventional contaminants, cyanide and total phenolics were monitored during the study. These contaminants were selected as general plant performance indicators. The list of conventional contaminants is presented in Table 2-2(c).

Table 2-3 presents those HCs included on the EMPPL but not monitored in this study. This list consists of 80 contaminants.

The organic contaminant list selected for this study is the same as the one used for monitoring by the City of Metropolitan Toronto at their 4 WPCPs in 1984, 1985 and 1986. This list was chosen because the MOE were confident that these contaminants can be satisfactorily monitored and that a long-term data base would be available for the 4 Toronto plants.

2.3 Monitoring Program

The sampling program at the 37 selected plants began in January 1987 and was completed in July 1987. In general, each monitoring period involved 2 weeks of pre-monitoring of plant performance and 5 days of sampling. Seventeen plants were monitored for two periods and 20 were monitored for one period only.

Table 2-2(a) ORGANIC CONTAMINANTS MONITORED IN THE STUDY

Acid Extractable Compounds	Dioxins/Furans	Pesticides and Herbicides	Volatile Organic Compounds
2,4,5-Trichlorophenol	Tetrachlorodibenzodioxins		1,1,1-Trichloroethane*
2,4,6-Trichlorophenol	Tetrachlorodibenzofurans		1,1,2,2-Tetrachloroethane
2,4-Dichlorophenol	Pentachlorodibenzodioxins		1,1,2-Trichloroethane
2,4-Dimethyl phenol	Pentachlorodibenzofurans	Silvex*	1,1-Dichloroethene
2,4-Dinitrotoluene	Hexachlorodibenzodioxins		1,2-Dichlorobenzene
2,4-Dinitro-o-cresol	Hexachlorodibenzafurans	PP-DDE*	1,2-Dichloroethane
2,6-Dinitrotoluene	Heptachlorodibenzodioxins	PP-DDD*	1,2-Dichloropropane
2 Hydroxy-toluene (O-Cresol)	Heptachlorodibenzofurans	Photomirex*	1,3-Dichlorobenzene
2-Chloronaphthalene	Octachlorodibenzodioxin	PCNB*	1,4-Dichlorobenzene
2-Chlorophenol	Octachlorodibenzofuran	Oxychlordane*	1-Octene*
2-Nitrophenol*		Mirex*	2-Chloroethylvinyl ether*
3 Hydroxy-toluene (m-Cresol)		Methoxychlor*	3-Chloro-1-propene*
4 Hydroxy-toluene (P-Cresol)		Hexacloroethane	3-Chloro-toluene*
4-Bromophenyl phenyl ether		Hexachlorocyclopentadiene	Acrolein
4-Chlorophenyl phenyl ether		Hexachlorobutadiene	Acrylonitrile
9H Fluorene		Heptachlor Epoxide*	Benzene
Acenauthene		Heptachlor*	Bromodichlorobenzene*
Acenapthylene		HCB	Bromodichloromethane
Alpha-naphthylamine*		Gamma-Chlordane*	Bromoethane
Ametryn* (PH)		Gamma-BHC8	Bromoform
Anthracene		Eldrin Aldehyde*	Carbon tetrachloride
Atrazine* (PH)		Eldrin*	Chlorobenzene
Benzo (A) anthracene		Endosulfan Sulphate*	Chloroethane*
Benzo (A) pyrene		Dieldrin*	Chloroform
Benzo (B) fluoranthene		Delta-BHC*	Chloromethane
Benzo (K) fluoranthene		Captan*	cis-1,3-Dichloropropene
Beta-napthylamine*		Beta-Endosulfan*	cis-1,2-Dichloroethylene*
Biphenyl		Beta-BHC*	Dibromochloromethane
bis(2-Chloro ethoxy) methane		Alpha-Endosulfan*	Dichlorodifluoromethane*
bis(2-Chloro ethyl) ether		Alpha-Chlordane*	Diethyl ether*
bis(2-Chloroispropyl) ether		Alpha-BHC*	Ethylbenzene
bis(2-ethyl hexyl) phthalate		Aldrin*	Hexane*
Butyl benzyl phthalate		2,4-Dichlorophenoxyacetic	Hexanol*
Chrysene		acid (2,4-D)*	Methylene chloride
Diazinon* (PH)		2,4-5Trichlorophenoxy-	Styrene
Dibenzo (AH) anthracene		acetic acid	Tetrachloroethene
Dicloran* (PH)		(2,4,5-T)*	Toluene
Diethyl phthalate*		1,2,4-Trichlorobenzene	Trans-1,3-Dichloropropene
Dimethyl phthalate*			Trichloroethene
Diphenyl ether			Trichloroflouromethane
Di-n-butyl phthalate			Vinyl bromide*
Di-n-octyl phthalate			Vinyl chloride
Fluoranthene			
Indeno (123-CD) pyrene			
Malathion* (PH)			
Naphthalene			
Nitrobenzene*			
N-Nitroso Diphenylamine			
N-Nitroso-di-n-propyl-amine			
Parathion ethyl* (PH)			
Parathion methyl* (PH)			
Pentachlorophenol			

Pentachlorophenol Phenanthrene Phenol Pyrene

P-chloro-M-cresol* Tri-n-tolyl phosphate

^{*} Contaminants not included in EMPPL (Ref. 2) (PH) Pesticide/Herbicide compound grouped with Base neutral and acid extractable compounds for analyses

Table 2-2(b) LIST OF METALS MONITORED IN THE STUDY

Priority Metals: (Regulated by MOE in sludge applied to agricultural land)	Arsenic Cadmium Chromium Cobalt Copper Mercury Molybdenum Nickel Lead Selenium Zinc	As Cd Cr Co Cu Mg Mo Ni Pb Se Zn
Other Metals:	Aluminum Beryllium Silver Strontium	Al Be Si St

Table 2-2(c)
CONVENTIONAL CONTAMINANTS MONITORED IN THE STUDY

Raw Wastewater & Effluent Streams	Sludges				
рН	рН				
Biochemical Oxygen Demand (BOD ₅)	Chemical Oxygen Demand (COD)				
Chemical Oxygen Demand (COD)	Nitrites (NO ₂)				
Dissolved Organic Carbon (DOC)	Nitrates (NO ₃)				
Total Suspended Solids (TSS)	Ammonia (NH ₃)				
Total Volatile Suspended Solids (VSS)					
Filtered Nitrite (NO ₂)	Total Kjeldhal Nitrogen (TKN)				
Filtered Nitrates (NO ₃)	Total Phosphorus (TP)				
Filtered Ammonia (NH ₃)	Total Solids (TS)				
Total Kjeldhal Nitrogen (TKN)	Total Volatile Solids (VS)				
Total Phosphorus (TP)	Total Phenolics (4AAP)				
Turbidity	Cyanide				
Total Phenolics (4AAP)					
Cyanide (Total)					

Table 2-3 EMPPL (Ref. 2) ORGANIC CONTAMINANTS NOT MONITORED IN THE PRESENT STUDY

1,1,3,3-Tetrachloroacetone 1,1,3-Trichloroacetone 1,2,3,4-Tetrachlorobenzene 1,2,3,5-Tetrachlorobenzene 1,2,3-Trichlorobenzene 1,2,4,5-Tetrachlorobenzene 1,3-Butadiene 1,4-Dioxane 1-Chloronaphthalene 1-Methylnaphthalene 1-Nitronaphthalene 2,3,4,5-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol 2,3,4-Trichlorophenol 2,3,5,6-Tetrachlorophenol 2,3,5-Trichlorophenol 2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,4,5-Trichlorotoluene 2,6-Di-t-butyl-4-methylphenol 2-Hydroxybiphenyl 2-Methylnaphthalene 2-Nitroapththalene 3,3 Dichlorobenzidene 4,6-Dinitro-o-cresol 4-Aminoazobenzene 4-Chloro3-methylphenol 4-Hydroxybiphenyl Abietic Acid Acenaphthene, 5-nitro Acridine Aniline Benzaldehyde Benzeneacetonitrile Benzidine Benzyl alcohol Bis (2-chloroethyl) ether Bromomethane Butanal Camphene Chlorodehydroabietic acid Chromium (hexavalent) Dehydroabietic acid Dimethyl disulphide Diphenylamine Ethylene dibromide Ethylene thiourea Eugenol Formaldehyde Hydrazine Hydroxycyclohexane (Cyclohexanol)

Indole Isopimaric Levopimaric acid Limonene Mercapto benzothiazole Methyl ethyl ketone Methyl styrene Neoabietic acid N-Methylformamide N-Nitrosodimethylamine Octachlorostyrene Oil and grease Oleic Acid Pentachlorobenzene Perylene Pimaric acid Specific conductance Sulphide Tetrachloroacetone Tetrachlorogualocal Tetraethyl lead Tetra-alkyl lead (Total) Thiourea Total organic carbon (TOC) Trichlorogualacol Triethyl lead Trimethylbenzenes (1,2,3 isomers)Trimethylnaphthalene Tri-alkyl lead (Total) Tri-n-Butylphosphate

During the 5 day sampling period, 24-hour composite samples of raw sewage and final effluent (primary, secondary or lagoon) were collected daily. Also, 5-day composite samples of raw sludge and treated sludge were collected.

2.3.1 WPCP Sampling Schedule

The sampling schedule was organized into two separate survey programs. The "winter" program began on 19 January 1987 and continued until 30 March 1987, involving sampling at 25 WPCPs. The "summer" program occurred between 20 April 1987 and 26 July 1987 and included 29 WPCPs. Seventeen of the WPCPs were sampled in both programs, and the remaining 20 were sampled in only one program. Table 2-4 presents the plants sampled in each program.

It should be noted that the labels "winter" and "summer" were used throughout the study to describe the sampling schedules, however, did not necessarily imply a significant difference in weather temperature or operating conditions between the winter and summer programs.

The study requirements outlined that the monitoring of WPCPs take place during periods of "typical" operation. Operation was considered "typical" if the operating conditions were within a normal range expected for the particular plant. This encompassed a wide range of operational conditions, including minor process upsets and equipment malfunction.

Due to limited time and resources, it was not feasible to monitor plants during periods of exceptional circumstances. Therefore, plant monitoring during periods of process shut downs, process changeovers, large industrial spills and major upsets was avoided, where possible.

In general treatment plants were sampled for 5 consecutive days. Four plants were sampled for an extended 7 day period during the summer program. Specifically, they were: Kitchener WPCP, Ottawa (Green Creek) WPCP, Mississauga (Clarkson) WPCP and Toronto (Highland Creek) WPCP. Tables 2-5 and 2-6 respectively present the winter and summer sampling program schedules.

2.3.2 Pre-Monitoring Site Inspections

Prior to the monitoring at each of the 37 WPCPs in the present study, a senior CANVIRO engineer accompanied by a MOE staff member visited the site. The purposes of this initial visit were to define the sampling sites and to arrange for collection of design information, plant operating records and photographs of the site.

Table 2-4
WPCP SAMPLING PROGRAMS

Plant	Code	Winter	Summer
Belle River (Maidstone)	MA	Х	
Brantford	BR	X	X
Burlington (Skyway)	BU	X	X
Cornwall	CO	X	X
Grimsby (Baker Rd.)	GR		X
Guelph	GU	X	X
Hamilton (Woodward)	HA	X	X
Kingston City	KC		X
Kingston Township	KT		X
Kitchener	KI	X	X
Lindsay	LI	••	X
London (Greenway)	LG	X	X
London (Pottersburg)	LP	X	X
Mississauga (Clarkson)	MC	X	X
Mississauga (Lakeview)	ML	X	X
Moore (Corunna)	CR	X	••
Niagara Falls (Stamford)	NF	X	х
Niagara-on-the-Lake	NL	••	X
Oakville (SE)	OA		X
Paris	PA		X
Peterborough	PT	X	X
Pickering (Duffin Creek)	PD	X	X
Sarnia	SA	X	Λ
	SU	Λ	Х
Sudbury Sault Ste. Marie (East/Old)	SE	Х	Λ
Sault Ste. Marie (East/Old) Sault Ste. Marie (West/New)	SW	X	
	TB	Λ	х
Thunder Bay	TS	Х	X
Toronto (Highland Creek)	TH	X	X
Toronto (Humber)		X	X
Toronto (Main)	TM	A	X
Toronto (North)	TN	v	X
Wallaceburg	WA	X X	37
Waterloo	WT	A	X
Whitby (Pringle Creek #1)	WP	v	Х
Windsor (Little River)	WL	X	
Windsor (Westerly)	WW	X	37
Ottawa (Green Creek)	OT		X

Table 2-5 WINTER SAMPLING SCHEDULE

Plant	Sam	pli:	ng	Date	es_
Kitchener	Jan	19	-	Jan	23
Waterloo	Jan	19	-	Jan	23
Burlington	Jan	19	-	Jan	23
Toronto (Main)	Jan	26	-	Jan	30
Mississauga (Clarkson)	Mar	2	-	Mar	6
Mississauga (Lakeview)	Mar	2	-	Mar	6
Toronto (Humber)	Feb	9	-	Feb	13
London (Greenway)	Feb	16	-	Feb	20
London (Pottersburg)	Feb	16	-	Feb	20
Windsor (Little River)	Feb	16	-	Feb	20
Windsor (Westerly)	Feb	16	-	Feb	20
Hamilton (Woodward)	Feb	23	-	Feb	27
Toronto (Highland Creek)	Mar	16	-	Mar	20
Sault Ste. Marie (West)	Mar	16	-	Mar	20
Sault Ste. Marie (East)	Mar	16	-	Mar	20
Peterborough	Mar	9	-	Mar	13
Sarnia	Feb	2	-	Feb	6
Moore (Corunna)	Feb	2	-	Feb	6
Wallaceburg	Feb	2	-	Feb	6
Belle River (Maidstone)	Feb	2	-	Feb	6
Brantford	Mar	9	-	Mar	13
Pickering (Duffin Creek)	Mar	30	-	Feb	3
Cornwall	Mar	30	-	Feb	3
Guelph	Mar	27	-	Mar	27
Niagara Falls (Stamford)	Mar	23	-	Mar	27

Table 2-6 SUMMER SAMPLING SCHEDULE

Plant	Sampling Dates
Peterborough	Apr 20 - Apr 24
Lindsay	Apr 20 - Apr 24
Grimsby (Baker Rd.)	Apr 20 - Apr 24
Cornwall	May 4 - May 8
Guelph	May 4 - May 8
Paris	May 11 - May 15
Sudbury	May 11 - May 15
Pickering (Duffin Creek)	May 18 - May 22
Kingston City	May 18 - May 22
Kingston Township	May 18 - May 22
Whitby (Pringle Creek #1)	May 18 - May 22
Niagara Falls (Stamford)	May 25 - May 29
Niagara-on-the-Lake	May 25 - May 29
Thunder Bay	Jun 1 - Jun 5
Toronto (North)	Jun 8 - Jun 12
Oakville (SE)	Jun 8 - Jun 12
Toronto (Main)	Jun 15 - Jun 19
Mississauga (Clarkson)*	Jun 22 - Jun 26
Burlington (Skyway)	Jun 22 - Jun 26
Toronto (Highland Creek)*	Jun 29 - Jul 5
Hamilton (Woodward)	Jun 29 - Jul 3
London (Greenway)	Jul 6 - Jul 10
London (Pottersburg)	Jul 6 - Jul 10
Brantford	Jul 6 - Jul 10
Mississauga (Lakeview)	Jul 13 - Jul 17
Waterloo	Jul 20 - Jul 24
Ottawa (Green Creek)*	Jul 20 - Jul 26
Toronto (Humber)	Jul 20 - Jul 24
Kitchener*	Jul 20 - Jul 26

^{*} Plants sampled for 7 days

The evaluation of the sampling site involved the selection of suitable locations for the sampling equipment and identification and resolution of sampling difficulties. The plant flow monitoring equipment (sewage and sludge meters) were reviewed to assess the equipment accuracy and the ability to flow proportion samples. In addition, the monitoring program was discussed with the plant staff for the purpose of locating field team equipment (refrigerators, monitoring equipment, etc.) and to ensure a full understanding of project requirements.

During the initial visit, arrangements were made to obtain historical performance data for each plant, plant operating record sheets, and plant design reports.

2.3.3 Background Monitoring

In order to ensure that the HC data obtained at the plants would be collected under conditions that were representative of typical plant operation, a two-week presampling process monitoring period was established. After the initial site visit, any limitations in the routine monitoring program were identified. Supplemental monitoring requirements were then determined for any additional process information for the two weeks prior to the sampling period.

In order to define plant performance during the premonitoring period, data was collected for influent and effluent conventional contaminants (BOD $_5$, TSS, TP, TKN, NH $_3$ -N). At some plants, these parameters were not routinely monitored. It was therefore arranged that a sample be collected by WPCP staff at least once per week and submitted to MOE for analysis.

All of the available performance monitoring information was summarized on a spreadsheet. Figure 2-2 presents an example spreadsheet and shows monitored and derived data.

In certain instances, additional data not routinely collected was obtained by plant staff during the pre-monitoring and sampling period. This information included waste sludge rates, phosphorus removal chemical dosage, raw sludge volumes, digested sludge volumes, etc. The operation of the plant was evaluated for the study period based on discussions with plant operating staff, the background data and all pre-monitoring data.

2.3.4 Sampling Methodologies

2.3.4.1 <u>Sampling Locations</u>

Table 2--7 presents a summary of the sampling locations at each plant.

Figure 2-2 EXAMPLE OPERATIONAL EVALUATION SPREADSHEET

OPERATIONAL EVALUATION FOR: * E 1

*EIAMPLE" WPCP

TREATMENT FACILITY: Secondary
PERIOD ENDING: Feb. 20, 1987
SAMPLING SEASON; Ninter (Cold Mather)
DESIGN AVG FLOW: 36,320 e3/4

			PRE-SA	PRE-SAMPLING PERIOO	00					PRE-S	PRE-SAMPLING PERIOD	R100					SAMP	SAMPLING PERIOD		
PARAMETER	: 0AY 1	CONTICONY 2 CONTS CONTACTOR STONE CONTS CONTOCON CONTICON TO CONTICON TO CONTICON TO CONTOCON	0AY 3 I	OAY 4 1 DAY 5	DAY 5	DAY B :	DAY 7	DAY B	1 DAY 9	1 GAY 10 1 GAY	1 0AY 11	1 DAY 12	0AY 13	1 DAY 14	0AY 15	: 0AY 16 :	: 0AY 17 ;	: DAY 18 1	DAY 19 1 D	DAY 20 1 DAY 21
	43,500 ;	40,800 1	36,300 ;	35,400	35,800 ;	39,000 ;	1,700 1	34,000	34,900	35,400 35,800 39,000 41,700 3 ,000 34,900 34,000 3 ,000 1 ,	34,000	41,700	31,300	27,600	77,600	28,100	28,100	28,100 : 29,506 : 29,000 :	24,000 :	
l of Design Flox	119.77	112.331	99.941	97.471	98.571	107.381:	114.817::	93.611:	1 96.092	93.611	93.611:	114.811	86.181	75. 491 ::	75.991	17.371	17.371:	81.721	79.851:	
Influent 80D tog/LI	171.0	210.0 1	164.0 1	10.041	113.0	124.0	1	140.0 11 145.0 1	148.0	107.0	172.0 1	1 226.0	230.0	145.0	173.0 1	159.0	175.0	219.0	107.0	
Secondary BOD (mg/L)	9.0	5.0	3.0	11.0	0.4	3.0	3.0	7.0	9.0	0.7	3.0	2.0	0.	24.0 :::	77.0 1	77.0	27.0 :	3.0	28.0 :	
SECONDARY REMOVAL	95.3		97.0		96.5	97.6	•	95.2 :	0-	46.3	0-	97.8				83.0 1		98.6	73.8	
Influent SS teg/L1	744.0	290.0	192.0	197.0	131.0	130.0	187.0 13	171.0	174.0	178.0	172.0 :	278.0	216.0 1	214.0 ::	135.0	140.0	174.0	217.0	100.0	
Secondary SS tag/Li		7.0 1	9.0	13.0	11.0	7.0	9.0	16.0	1 17.0	0.11	80.0	1.0	7.0	1,0.41	9.0	8.0	9.0	16.0	9.0	
SECONDARY RENOVAL	95.5	97.6	95.8	93.2 1	92.7 1	95.3	- 52	9.06	•	41.4	95.3	93.9	96.8	97.5	0-	•	97.7	92.6	41.5	
Influent WH4 (mg/L)	14.2	12.8					5.4	- do	9.9						15.7	18.5				
Secondary NH4 (ag/L)	0:	0.6					1.3	9.0							2.7	2.0 :				
I PRIMANT MEMOVAL I SECONDARY MEMOVAL	93.7						75.9	98.4	_					:: :	87.8	_				
influent TFM (mg/L)	75.3	23.7					14.0 11	1.1	12.7						77.6	32.6				
Secondary TVM (mg/L)	2.4	7.4					1111	2.6	2						9.0	14.3				
SECONDARY REMOVAL	90.5	1 89.7					90.1	18.11	8						67.4	56.1				
Influent Total P (mg/L)	9.90	-	4.60	5.10	99.7	₹.00	3.70	4.60	5.00	4.30	5,50	0.00	8.50	3.10	7.40	6.70	5.20 1	7.20	07.40	
Secondary lotal P (mg/L)	0.50	61.0	0,34	0.47	9.6	0.30	0.37	1.50	0.38	9.6	0.34	0.64	0.51	0	0.80	0.99	0.37	0.35	0.45	
CECOMPANY ACMOUNT	0																- :		- :	

Table 2-7 SUMMARY OF SAMPLING LOCATIONS AT THE STUDY WPCP'S

				Number	Number of Sampling Locations	tions	
Plant	Raw Sewage	Primary Effluent	Secondary	Tertiary Effluent	Raw Sludge	Waste (Treated)	Recycle to Raw Sewage Stream
Tertiary							
Guelph	1	1	1	1	1	AND/DW-1	ı
Secondary							
Belle River (Maidstone)	7	1	1	ı	1	AD-1	1
Brantford	1	ı	1	ı	2	AND-1	1
Burlington (Skyway)	1	ı	1	ı	1	AND-1	1
Grimsby (Baker Road)	1	1	1	ı	1	AND-1	1
Hamilton	7	ı	1	1	1	AND/DW-1	1
Kingston TWP	7	ı	1	ı	1	AND-1	-1
Kitchener	ı	ı	1	1	1	AND-1	1
London (Greenway)	1	1	1	ı	WAS-1/PRIM-1	DW-1	1
London (Pottersburg)	1	1	1	1	7	1	1
Mississauga (Clarkson)	7	1	1	1	2	COTH/AND-1	1
Mississauga (Lakeview)	7	ı	3	i	1	DW/BL/TC-1	i
							ı
Moore (Corunna)	1	1	1	1	1 (RAS)	HT-1	1
Niagara Falls (Stamford)	1	ı	. 7	ı	1 (PRIM) 1 (RBC)	AND-1	ı
Oakville (SE)	1	ı	1	ı	1	AND-1	1
Paris	1	1	1	ı	1	AD/TH/HT-1	ı
Peterborough	1	ì	1	ı	1	AND-1	1
Pickering (Duffin Creek)	7	i	1	ı	1	AND/DW-1	1
Sault Ste. Marie (West)	1	ı	1	ı	1	HT/DW-1	1
Notes: AND - Anaero	Anaerobically Digested	Digested				Thermally Conditioned	
1 1	red	ואפפרעת			1 1	Inickened Holding Tank - Supernatant Decanted	ant Decanted
i	rated				ı	nd	
1	ckened i	Co-thickened in Primary Clarifiers	Clarifiers		1	Return Activated Sludge	
1	Heat Treated	7			1	Primary Sludge	
ı	Thermally Oxidated	ated			ı	Rotating Biological Contacter Sludge	tacter Sludge
wAS - waste	Activate	d Sludge -	Waste Activated Sludge - no treatment	nt	HEAT - Heat	Heat Treatment	

				Number	Number of Sampling Locations	ations	
					í		Recycle to
Plant	Raw Sewage	Primary Effluent	Secondary Effluent	Tertiary	Raw Sludge	Waste (Treated) Sludge	Raw Sewage Stream
Andbus	-	ı	1	ι	ı	HT-1	ı
Toronto (Highland Creek)	ek) 1	1	1	1	1	COTH/AND/GR/HEAT/DW-1	1
		ı	1	ı	PRIM-1/TH-1	TH/AND-1	2
	3	ı	1	ı	PRIM-1/TH-1	TH/AND/THO/DW-1	
	J	ı	1	ı	1	AND/DW-1	1
Waterloo	1	ı	2	ı	2	AND-2	ı
Wallaceburg	1	ı	1	ı	1	AND/DW-1	ı
Whitby (Pringle Cr #1)) 2	ı	1	ı	7	AND-1	ז
Windsor (Little River)) 1	1	IJ	1	1	DW-1	ı
Primary							
Cornwall	1	П	1	ı	1	AND/DW-1	ı
Kingston (City)	1	1	ι	ı	ı	AND-1	1
Ottawa (Green Ck)	J	1	1,	1	1	AND-1	2
Sarnia	1	1	ı	ı	1	AND-1	1
Sault Ste. Marie (East)	t) 2	1	ı	ı	1	1	ı
Thunder Bay	1	٦	1	1	2	AND-1	i
Windsor (Westerly)	7	1	1	1	1	DW-1	1
Lagoon							
Lindsay	1	2	ı	ı	1	ı	1
Niagara-on-the-Lake	7	7	ı	ı	ſ	1	ı
Notes: AND - Ar AD - Ae DW - De INC - Ir COTH - CC HT - HE THO - TH WAS - Wa	- Anaerobically Digested - Aerobically Digested - Dewatered - Incinerated - Co-thickened in Primary Clarifiers - Heat Treated - Thermally Oxidated - Waste Activated Sludge - no treatment	Digested gested In Primary lated	Clarifiers no treatme	ent	TC - Th TH - Th HT - HO GR - Gr GR - Gr RAS - Re PRIM - Pr RBC - RO HEAT - Hea	Thermally Conditioned Thickened Holding Tank - Supernatant Decanted Ground Return Activated Sludge Primary Sludge Rotating Biological Contacter Sludge Heat Treatment	nt Decanted

(KIR18/282W)

In general, raw sewage was sampled at a point at, or past, the grit removal area which provided good mixing characteristics. If there was aeration at the grit removal area, samples for volatile organic compounds only were collected upstream of this point.

At nine plants it was not possible to obtain a raw sewage sample at a point in the plant before an internal recycle (eg. digester supernatant, waste activated sludge etc.) entered the stream. In these cases, it was also necessary to collect a recycle stream sample so that the recycle contribution to the combined stream in terms of flows and contaminants, could be subtracted to obtain the actual raw wastewater characteristics.

Final effluent streams at all WPCPs except Mississauga (Lakeview) were sampled at a point beyond the point of chlorine addition. Due to logistics, at Lakeview, the effluent sample was taken prior to chlorination and manually chlorinated by the sampling team (subsection 2.3.4.3).

Sampling of raw sludges took place at one or more locations at each plant, depending on the configuration. Samples were only taken during operation of the sludge pumps. Typically, the treatment plants had multiple sumps from where raw sludge could be drawn. In the more complex cases, it was not practical to sample all of the locations each day. In these cases, a sample routine was determined which would allow all locations to be sampled on a regular basis over the 5 day study period. If waste activated sludge was sampled as a separate component of the raw sludge sample it was aliquoted on a flow weighted basis.

Treated sludges were either digested or digested and dewatered. For digested sludges, samples were taken from each digester in service and composited into one treated sludge sample. In plants with dewatering operations, the sludge cake was sampled.

2.3.4.2 <u>Sample Collection Procedures</u>

Raw sewage, final effluent (primary, secondary, lagoon and tertiary) and recycle streams were collected using the following methods:

Sampling Method	Analyses
24-hour flow proportioned composites	Conventionals, metals, cyanide, base-neutral and acid extractable compounds and pesticides and herbicides
5-day composite samples	Dioxin-furan compounds
Grab samples (3 per 24 hours)	Volatile organic compounds

The 24-hour flow proportioned composite samples were collected using one of three techniques, depending on the logistics of the sampling point. These included:

- o Automatic samplers withdrew one individual aliquot each hour. All of the aliquots were manually composited on a flow-proportioned basis at the end of each 24-hour period.
- o Automatic samplers were interfaced with the plant flow recorders so that flow weighted hourly aliquot volumes were added directly into one composite container.
- o Hourly aliquots were grab sampled and composited manually on a flow proportioned basis at the end of each 24-hour period.

For dioxin/furan analyses, flow proportioned aliquots were collected 3 times each day at least 2 hours apart and combined to form 5 day composite samples. Each aliquot was poured directly into the 5-day composite container.

Grab samples for volatile organic compound analyses were collected 3 times per day at least 2 hours apart. The equal volume samples were combined into daily composite samples at the analytical laboratory.

Raw and treated sludge samples collected for all analyses were 5-day flow proportioned composite samples. A minimum of three grab aliquots were collected each day, at least 2 hours apart. There were two methods of making up sludge samples as follows:

- o Individual aliquots were stored separately and combined flow proportionally at the end of the 5-day period to form one 5-day composite sample.
- o Individual flow proportioned aliquots were added directly to the 5-day composite container. This method was only used if the sludge flow was reasonably constant from day to day.

2.3.4.3 Sampling Handling Procotol

In order to ensure the integrity of sample results, a number of cleanliness, security and preservation procedures were carried out in the field.

All of the field equipment coming into contact with the sample was washed with methanol and rinsed with organic free distilled water prior to sampling. When sampling liquid streams, the equipment was also pre-rinsed with the stream

before the sample was taken. Equipment material was either glass, stainless steel, teflon or surgical graded silicon rubber. All equipment was site specific.

For security against breakages in transport or at the laboratory, all samples were collected in duplicate.

Tables 2-8 and 2-9 present the preservation methods used for liquid and sludge samples respectively. In addition to bottle specific preservation methods dependent on the nature of the analyses, all bottles were stored at 4°C in the field and during transport.

Table 2-8
INFLUENT, EFFLUENT AND RECYCLE SAMPLE PRESERVATION

Sample Group	Analysis	# of Samples	Bottle(2)	Preservation(1)
24 hr composite (Automatic or	Base Neutral and Acid Extractable	2/day	1L (3P)	4°C
manual)	Pesticides/Herbicides	2/day	1L (3P)	4°C
	ICAP	2/day	500 mL (20)	HNO ₃ + 4°C
	Mercury	2/day	250 mL (8c)	$HNO_3 + K_2CrO_7 + 4°C$
	Conventionals	2/day	1 L (3)	4°C
	Phenolics	2/day	250 mL (8p)	$Cuso_4 + H_2PO_4 + 4$ °C
	Cyanide	2/day	500 mL (20)	NaOH + 4°C
5 day composite	Dioxins/Furans	2/wk	1L (3p)	4°C
Grabs -	Volatile Organics	6/day	50 mL vials	4°C

Notes: (1) Sodium Thiosulphate was added to all effluent samples

(2) MOE bottle description code

Table 2-9
SLUDGE SAMPLE COLLECTION AND PREPARATION

Sample Type	Analysis	# of Samples	Bottle*	Preservation
Sludges (Raw &	Volatile Organics	2/wk	250 mL (5p)	Methanol 4°C
Treated)	Base Neutral & Acid Extractable	2/wk	250 mL (5p)	4°C
	Pesticides & Herbicides	2/wk	250 mL (5p)	4°C
	Dioxins/Furans	2/wk	250 mL (20)	4°C
	ICAP, Mercury, Cyanide	2/wk	500 mL (20)	4°C
	Conventionals	2/wk	250 mL (5)	4°C
	Phenolics	2/wk	250 mL (5)	4°C

^{* -} MOE Bottle Description Code

In addition to the above procedures, sodium thiosulphate $(Na_2S_2O_3)$ was added to all final effluent samples to neutralize the chlorine residual. The sodium thiosulphate was added to final effluent sample containers prior to sampling each day.

At one plant (Mississauga (Lakeview)), it was not possible to obtain a chlorinated effluent sample, and non-chlorinated effluent was sampled. In this particular case, the sample was dosed with a concentrated sodium hypochlorite solution to provide a chlorine concentration in the sample equal to the concentration in the chlorinated plant effluent, and mixed slowly for a time equal to the contact time at the plant. The sample was subsequently neutralized with sodium thiosulphate.

2.3.5 Documentation of Field Program

Field sampling personnel were responsible for maintaining two types of records:

- o Process information
- o Sample submissions

Any process information that related to sampled streams was recorded daily. Also, a wide range of sample submission information was recorded in field logs. Records maintained at each treatment plant depended on the type of processes being sampled. A list of typical field record information documented for each sample stream is listed in Table 2-10.

Table 2-10 FIELD RECORD INFORMATION

Information			Stream		
	Influent	Effluent	Recycle	Raw Sludge	Treated Sludge
Hourly Flows	х	х	Х		
Daily Flows	Х	Х	Х	X	Х
Pump Times			Х	Х	X
Pump Volumes				Х	Χ
Cl, Contact Times		Х			
Sample Volume	X	Х	X		
Sample Time	Х	X	Х	Х	X
Sample Location	X	Х	Х	Х	Х
Sample Weight				Х	Х
Preservation	Х	Х	Х	Х	Х
Sample Loss	X	Х	Х	Х	Х
Process Irregularity	Х	Х	Х	Х	Х
Sampler Configuration	Х	Х	Х		
QA/QC Samples	Х	X	Х	Х	Х
Samples Submitted	Х	Х	Х	Х	Х

2.3.6 Field QA/QC Program

The field QA/QC program involved the collection of field blanks. A field blank was an organic free distilled water sample that underwent the same handling in the field and the laboratory as the samples. The purpose of the field blank collection and subsequent analysis was to establish if contamination was being introduced into the samples from the sampling equipment or preservation methods, transportation and/or laboratory handling. In order to determine the sources of contamination, if any, it was necessary to compare field blank results with the laboratory method blank results.

A "grab" sample field blank was prepared by rinsing organic free water in the grab sampling container prior to sampling. The rinse water was placed in the sample bottle and preserved using methods appropriate for the compounds to be analyzed (see Table 2-8).

An automatic sampler field blank was prepared from organic free water which was pumped through the sampler tubing prior to sampling. As above, the water was bottled and preserved according to prescribed methods (Table 2-8).

During the entire program, a total of 19 field blank samples were collected.

In addition to the field QA/QC program, a number of laboratory QA/QC measures were taken; some requiring duplicate sample collection in the field. The laboratory QA/QC procedures are described in Section 3.0.

3.1 Laboratory Analyses

Three laboratories were contracted by MOE to carry out the organics analyses on the samples from the 37 WPCPs. Zenon Environmental Incorporated in Burlington, Ontario did all of the analyses for the volatile organic compounds, dioxin/furan compounds and total phenols. The base neutral and acid extractable compounds were analyzed by Mann Testing Laboratories Ltd., in Mississauga, Ontario and the pesticides and herbicides analyses were carried out in the laboratories of Enviroclean Ltd., in London, Ontario.

In addition, the MOE Laboratory Services Branch (LSB) in Rexdale carried out the analyses for metals, conventional contaminants and cyanide. Table 3-1 presents a complete list of parameters analyzed by each analytical laboratory.

Table 3-2 presents the methods used by the laboratories for analysis of organic compounds and metals. A detailed description of these methods can be found in the individual laboratory reports, summarized by Zenon (Ref. 4). Table 3-3 presents the methods used to analyze the conventional contaminants.

3.2 <u>Laboratory QA/QC Procedures For Trace Organic Compounds</u>

A number of different techniques were regularly used in the laboratory for quality assurance of the analytical results. In addition to these methods, MOE Laboratory Services conducted an external quality assurance program. The quality assurance/quality control methods are presented in the following discussion.

Method Blanks

A method blank was analyzed routinely along with each batch of samples to identify possible contamination contributed by glassware, reagents, other samples, etc. A method blank consisted of an uncontaminated distilled water sample that underwent identical preparation methods (eg. extraction, purge and trap) and was analyzed with the field samples. A method blank was analyzed each time the instrumentation was set up for a new batch of samples.

The method blank analyses were used for two main purposes. Each day of analyses, method blank concentrations of each contaminant were averaged for all of the blanks analyzed that day. The average value was used to correct the concentrations of the particular contaminant in the samples on

ANAI	
BY	
ANALYZED BY A	al
LIST OF CONTAMINANTS ANALYZED BY ANAL	Zenon Environmental
OF	nou
LIST	92
	MOE Laboratory
	MOE

		Bas
Zenon Environmental	Incorporated	Volatile Organic Compounds
MOE Laboratory	Services Branch	Metals and Cyanide

Base Neutral and Acid

, 2, 2-Tetrachloroethane

(Unfiltered, Total)

Beryllium

Chromium Cadmium Calcium

Cobalt Copper

Aluminum

.2-Trichloroethane .l-Trichloroethane

1,2-Dichlorobenzene .,2-Dichloropropane ,3-Dichlorobenzene ,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethene

Extractable Compounds 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol

Laboratories Ltd Mann Testing

Enviroclean Ltd.

Pestcidies and Herbicides

1,2,4-Trichlorobenzene 2,4,5-Trichlorophenoxyacetic 2,4-Dichlorophenoxyacetic acid

Alpha-BHC Alpha-chlordane Alpha-endosulphan acid Beta-BHC Aldrin

2,4-Dimethyl Phenol 2,4-Dinitrotoluene 2,4-Dinitro-o-cresol 2,6-Dinitrotoluene

2-Chloronaphthalene

2-Chlorophenol

-Chloroethylvinyl ether

-Octene

-Chloro-1-propene

-Chloro-toluene

Mercury

Strontium Selenium

Silver Nickel

Cyanide

Magnesium

Lead ron

Acrylontrile

Benzene

Acrolein

2-Nitrophenol

Beta-endosulphan Delta-BHC Dieldrin Captan Hydroxy-toluene (0-Cresol)

Endosulphan sulphate Endrin aldehyde Gamma-chlordane Gamma-BHC Endrin 3 Hydroxy-toluene (M-Cresol) 4 Hydroxy-toluene (P-Cresol) 4-Bromophenyl phenyl ether 4-Chlorophenyl phenyl ether

Hexachlorocyclopentadiene Hexachlorobutadiene Heptachlor epoxide Hexachloroethane Heptachlor

Alpha-naphthylamine

Anthracene

Chlorobenzene

Chloroethane Chloroethane

Chloroform

Ametryn

Atrazine

Acenaphthylene

Acenaphthene

9H Fluorene

Bromodichlorobenzene Bromodichloromethane Carbon tetrachloride

Bromethane

Bromoform

Conventional Contaminants

Alkalinity

Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Beta-naphthylamine Benzo (a) anthracene Bipheny

cis-1,3-Dichloropropene cis-1,2-Dichloroethane Dibromochloromethane

Dichlorodifluoromethane

Diethyl ether

Ethylbenzene

Oxychlordane Methoxychlor

Mirex PCNB Photomirex

PP-DDD PP-DDE

bis (2-chloro ethoxy) methane bis (2-chloro ethyl) ether bis (2-chloroispropyl) ether bis (2-ethyl) hexyl) phthalate Butyl benzyl phthalate

Chrysene Diazinon

> Methylene chloride retrachloroethene

Hexanol lexane

Styrene Toluene

Turbidity Volatile Solids
Volatile Suspended Solids

Total Phosphorus Total Solids Total Suspended Solids

Nitrite Nitrogen Total Kjedhal Nitrogen

Total Phenols

Nitrate Nitrogen

rotal PCB Toxaphene

Strobane

PP-DDT Silvex

> Dibenzo (ah) anthracene Diethyl phthalate Dimethyl phthalate Diphenyl ether Dichloran

> > rans-1,3-Dichloropropene

Prichlorofluoromethane

Vinyl chloride

Vinyl bromide Dioxin/Furans

richloroethene

Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene

Indeno(123-CD) pyrene Nitrobenzene Naphthalene Malathion

> Tetrachlorodibenzodioxins Pentachlorodibenzodioxins

Tetrachlorodibenzofurans Pentachlorodibenzofurans

N-Nitroso diphenylamine N-Nitroso-di-n-propyl-amine Parathion ethyl Pentachlorophenol Parathion methyl henanthrene

Heptachlorodibenzodloxins

Hexachlorodibenzodioxins lexachlorodibenzofurans Heptachlorodibenzofurans

Octachlorodibenzodioxin

Octachlorodibenzofurans

Total Phenolics

Phenol

Tri-n-tolyl phosphate Pyrene P-chloro-M-cresol

25

Armonia Nitrogen Biochemical Oxygen Demand Chemical Oxygen Demand

Table 3-2 SUMMARY OF ANALYTICAL METHODS FOR TRACE ORGANICS AND METALS USED IN THE STUDY

Acid Extractable Compounds and cleanup and organochlorine Liquid/liquid extraction GC/MS Capillary column Compounds FEBs and Organochlorine Liquid/liquid extraction GC/MS Dual Capillary Column and cleanup and cleanup Liquid/liquid extraction GC/MS Dual Capillary Column and cleanup Liquid/liquid extraction GC/MS Dual Capillary Column and cleanup Liquid/liquid extraction GC/MS Dual Capillary Column Eneals As Cd, Cr, Co, Cu, help, Mo, MI, Pb, Se, Zn, Al, blasma Spectrometry (DCP) Direct Coupled Plasma Spectrometry (DCP) Inductively Coupled Plasma Se, Cd, Cr, Co, Cu, help, Mo, MI, Pb, Se, Zn, Al, help, Mo, MI, Pb, Se, Ca, Mg)

Table 3-3
SUMMARY OF ANALYTICAL METHODS FOR CONVENTIONAL CONTAMINANTS
USED IN THE STUDY

Contaminant	Method	Reference*
рН	pH Electrode	Code 001 AI1 page 249
Chemical Oxygen Demand (COD)	Colourimetric measurement of trivalent chromium	Code 525 1C2 page 237
Biochemical Oxygen Demand (BOD)	Five day incubation	Code 001 A12 page 234
Dissolved Organic Carbon (DOC)	Filtration glass fibre filter \leq 2 µm, combustion at <1000°C, colourometric detection	Code 102 AC@ page 89
Ammonia plus Ammonium (NH ₃)	Distillation, colour-imetry	Code 103 DC2 page 191
Nitrate (NO ₃)	Colourimetry	Code 102 DC2 page 210
Nitrite (NO ₂)	Colourimetry	Code 102 DC2 page 222
Total Kjeldhal Nitrogen (TKN)	Digestion, distillation and colourimetry	Code 004 AC2 page 228
Total Solids (TS)	Drying at 103 °C ± 3°C and gravimetry	Code 202 Al6 page 342
Total Suspended Solids (TSS)	Filtration glass fibre filter ≤ 2 µm, drying at 103 °C ± 3°C and gravimetry	Code 506 AD4 Page 348
Volatile Suspended Solids (VSS)	As above, ignite filter for 4 hours at 550°C	Code 506 AD4 page 348
Total Phosphorus (TP)	Digestion, colourimetry	Code 504 AC2 page 279

^{* &}quot;1986 Performance Report", Water Quality Section, Ministry of the Environment

that day. Secondly, the method blank results for all of the analyses were used to determine if the background "noise" level was too high to use the data for a particular contaminant with confidence.

Duplicates

Duplicate samples were defined as two aliquots taken from a single sample and carried through the same analytical process. The purpose of duplicate analyses was to provide a measure of analytical precision. This was carried out by comparing the differences of each set of duplicates, and determining if the differences were statistically significant.

Native Spikes in Distilled Water Samples

A known amount of standard mixture containing selected native compounds on the monitoring list (Table 2-2) was spiked into a reagent water sample, which subsequently underwent the same preparation and analysis as the field samples.

With each batch of samples analyzed, a blank was spiked with each of the compounds to be analyzed in the sample, and the percentage recovery was documented. The following 2 results were then used to evaluate the applicability of the data for each batch of samples:

- o The recovery of the native compound from the distilled water blank analyzed for each batch of samples.
- o The recovery of the spiked compound from all of the distilled water blanks for the entire study.

Surrogate Spikes in Field Samples

A known amount of mixture containing deuterated target compounds was spiked into the field sample, which was subsequently processed and analyzed. The amount of recovery of the deuterated spike was used to indicate the recovery of the target compound from the sample and the variability of compound recovery.

MOE Laboratory Spiking

Duplicate field samples were sent to the MOE LSB. Some liquid samples and all sludge samples were labelled at the MOE LSB, to indicate they were replicate samples, and were then taken to the contract laboratory for analyses. Other

samples were spiked at the MOE LSB with known concentrations of target compounds of volatiles, organics and pesticides. The spiked samples were relabelled for identification as a spiked replicate of the field sample and then submitted for analyses to the appropriate laboratory. The results of the spiked samples were compared to the replicate unspiked sample. The purpose of the MOE laboratory spiking was to ensure the integrity of the results if the concentrations of native compounds in spiked samples were greater than in non-spiked samples, and to establish parameter stability in transport, storage and analysis.

3.3 Data Management and Review

Analytical and QA/QC results from each of the contract laboratories and from MOE LSB were input into MOE Laboratory Information System (LIS). The results were reviewed and approved by the pertinent MOE laboratory supervisors. The approved results were then transferred from the mainframe LIS to a microcomputer database at MOE using dBase III Plus software (Ashton-Tate) for ease in data analysis and reporting.

The finalized database was sent to CANVIRO for formatting, analysis, interpretation and summarizing.

4.1 Background

Ideally, to effectively characterize wastewater treatment plant influents, effluents, sludges, removal abilities and drainage basin loadings in terms of HCs for Ontario WPCPs, all plants in Ontario would undergo the monitoring program. Since economic and time constraints would not allow for this, it was necessary to select a smaller group of plants that would be representative of all of the Ontario plants.

4.1.1 Ontario WPCPs

In 1987 in Ontario, there were 412 municipal treatment facilities, treating wastewater at a rate of 5.0 million cubic metres per day for a population of over 7 million people.

The 412 treatment facilities had a total hydraulic design capacity of over 6.0 million cubic metres per day. Figure 4-1 shows that in 1987, 82 percent of the facilities in Ontario had design capacities of less than 10,000 m³/day and 36 percent of the 412 facilities were less than 1,000 m³/day. Only 6.8 percent of the plants (27 plants) had capacities greater than 45,000 m³/day but they contributed greater than 70 percent of the total flow in 1987.

Figure 4-2 shows that in 1987, 52 percent of the facilities in Ontario provided secondary treatment, 7.5 percent provided primary treatment, 39 percent were lagoons and 1.7 percent were facilities with no discharge to surface waters (ie. septic tanks, exfiltration plants). Secondary facilities in Ontario generated the largest portion (76.8 percent) of flow in 1987; 70 percent of which was contributed by conventional activated sludge plants. Lagoons and septic tanks typically serve smaller communities. Consequently, total flow contribution from these types of facilities was less than 2 percent.

The 412 facilities in Ontario are located throughout the Province. Larger facilities are primarily located in the Lake Ontario drainage basin, accounting for 58.4 percent of the total flow (based on 1987 flow) from Ontario plants. Lake Erie and Lake Huron received 17.2 and 7.3 percent respectively. The Ottawa River and St. Lawrence River drainage basins received a total of 13.6 percent and flow into Lake Superior, James Bay and Lake Winnipeg was 3.5 percent.

4.1.2 37 WPCPs in the Study

The total flows in 1987 at the 37 WPCPs was 3.7 million cubic metres per day, or 73.6 of the total Ontario flow for that year. Of the study plants, secondary treatment facil-

Figure 4-1
HISTOGRAM SHOWING DESIGN FLOW CAPACITIES
FOR ONTARIO WPCPs (1987)

ities contributed to 77.9 percent of flows, primary facilities contributed to 21.6 percent and lagoons to 0.5 percent of these flows.

There were 28 secondary treatment plants involved in the study, comprising 76 percent of the 37 plants. Of these, 23 were conventional activated sludge plants (1 with tertiary treatment), 3 were extended aeration, one was high rate and one used rotating biological contactors.

The largest portion of flows from the selected WPCPs were to the Lake Ontario drainage basin, comprising 64.5 percent. Flows to the Lake Erie drainage basin comprised 16.5 percent, to Lake Huron comprised 2.4 percent and to Lake Superior, 2.2 percent. The Ottawa River and St. Lawrence drainage basins received 14.4 percent of the total flow from the 37 WPCPs.

4.1.3 Comparison Between Ontario WPCPs and 37 WPCPs Selected For Study

The histograms in Figure 4-3 present a comparison of the 37 plants selected for the study to Ontario WPCPs. As noted previously, the study WPCPs represented more than 70 percent of flows from all plants in Ontario in 1987 (Figure 4-3a). The quantities of flows from each type of treatment process (ie. secondary, primary and lagoons) for the study WPCPs are of similar proportions to those for all Ontario WPCPs (Figure 4-3b). In addition, the division of the total Ontario flows to each drainage basin is also represented fairly accurately by the study WPCPs (Figure 4-3d).

Figure 4-3c shows that a larger percentage of secondary treatment facilities were represented in the study than those existing in Ontario. Since one objective of the present study was to estimate the concentrations and/or removals of HCs in secondary WPCPs, a larger proportion of secondary plants was selected.

In summary, it can be observed that the study group of treatment facilities are a representative portion of all Ontario plants.

4.2 Characteristics of 37 WPCPS in Study

4.2.1 Summary of Communities

Table 4-1 presents a summary of the characteristics of the communities served by each of the study WPCPs.

CANVIRO

Table 4-1 SUMMARY OF COMMUNITIES OF 37 WPCPs

Plant	Population Served	Receiving Watercourse	Drainage Basin	% Industrial Flow
Guelph	82,000	Grand River	Lake Erie	25%
Belle River (Maidstone)	7,581	Lake St. Clair	Lake Erie	8%
Brantford	73,000	Grand River	Lake Erie	40%
Burlington (Skyway)	120,000	Hamilton Harbour	Lake Ontario	17%
Grimsby (Baker Rd.)	19,850	Lake Ontario	Lake Ontario	0%
Hamilton (Woodward)	300,000	Redhill Creek	Lake Ontario	10%
Kingston TWP	18,700	Lake Ontario	Lake Ontario	4%
Kitchener	138,271	Grand River	Lake Erie	39%
London (Greenway)	164,614	Thames River	Lake Erie	8%
London (Pottersburg)	25,979	Thames River	Lake Erie	9%
Mississauga (Clarkson)	120,000	Lake Ontario	Lake Ontario	25%
Mississauga (Lakeview)	370,000	Lake Ontario	Lake Ontario	12%
Moore (Corunna)	3,405	St. Clair River	Lake Erie	<1%
Oakville (S.E.)	21,900	Lake Ontario	Lake Ontario	<1%
Niagara Falls (Stamford)	67,835	Chippawa Power Canal	Lake Ontario	18%
Paris	4,359	Grand River	Lake Erie	32%
Peterborough	61,063	Otonabee River	Lake Ontario	22%
Pickering (Duffin Creek)	64,386	Lake Ontario	Lake Ontario	25%
Sault Ste. Marie (West)		St. Mary's River	Lake Huron	-
Sudbury	95,000	Junction Creek	Lake Huron	1%
Toronto (Highland Creek)	290,000	Lake Ontario	Lake Ontario	22%
Toronto (Humber)	660,000	Lake Ontario	Lake Ontario	19%
Toronto (Main)	1,200,000	Lake Ontario	Lake Ontario	8%
Toronto (North)	55,000	Don River	Lake Ontario	8%
Waterloo	66,627	Grand River	Lake Erie	13%
Wallaceburg	9,200	Sydenham River	Lake Erie	37%
Whitby (Pringle Ck #1)	10,925	Pringle Creek	Lake Ontario	22%
Windsor (Little River)	64,000	Little River	Lake Erie	24%
Cornwall	46,800	St. Lawrence River	St. Lawrence River	10%
Kingston (City)	67,000	St. Lawrence River	St. Lawrence River	2%
Ottawa (Green Creek)	450,000	Ottawa River	Ottawa River	3%
Sarnia	64,475	St. Clair River	Lake Erie	7%
Sault Ste. Marie (East)	75,000	St. Mary's River	Lake Huron	26%
Thunder Bay	101,529	Kaministikwia River	Lake Superior	9%
Windsor (Westerly)	123,000	Detroit River	Lake Erie	28%
Lindsay	14,636	Scugog River	Lake Ontario	19%
Niagara-on-the-Lake	5,210	Lake Ontario	Lake Ontario	25%

The population of the communities (based on 1987 MOE data) served by the WPCPs range from under 5,000 for Moore (Corunna) and Paris to cities of greater than 100,000 (Burlington, Hamilton, London, Mississauga, Toronto, Thunder Bay, and Windsor).

The receiving water courses for the plants depend on the geographic location of the communities being served. Typically, the receiving water course is a creek or river that is a tributary of one of the Great Lakes. Only 10 plants discharge directly into the major drainage basin of Lake Ontario (3 Toronto plants, 2 Mississauga plants, Pickering, Grimsby, Kingston, Niagara-on-the-Lake and Oakville), and one plant into the St. Lawrence River (Cornwall).

The industrial flow contributions to the study WPCPs range from less than 1 percent for Grimsby (Baker Road) WPCP, Oakville S.E. WPCP and Moore (Corunna) WPCP to about 40 percent for a number of WPCPs. The industrial flow data was taken from a separate MOE study. Municipalities were requested to provide MOE with annual water use data for the industries that discharged to the 37 WPCPs. Industrial flow into each WPCP was then estimated as 85 percent of the total annual water use for 250 days per year. Since annual water use data were not available for many industries, the industrial flow data percentages in Table 4-1 should be considered very approximate (Ref. 4).

4.2.2 Summary of WPCP Design Characteristics

A summary of the WPCP design characteristics, including flows, process type and sludge treatment and disposal methods is presented in Table 4-2.

Ten of the study plants have design flow capacities of greater than $100,000 \text{ m}^3/\text{d}$, $12 \text{ have capacities in the range of } 45,000-100,000 \text{ m}^3/\text{d}$, $9 \text{ are in the range of } 10,000-45,000 \text{ m}^3/\text{d}$, and $6 \text{ have design capacities of less than } 10,000 \text{ m}^3/\text{d}$.

The percentage utilization of the plant design capacity (based on 1987 average daily flows) ranged from 36% for the new Sault Ste. Marie (West) plant to plants operating at or beyond their hydraulic design capacities (Waterloo, Wallaceburg, Cornwall, Toronto (Humber) and Niagara-on-the-Lake).

All of the secondary plants with the exception of Hamilton (Woodward) and Sudbury practice continuous chemical addition for phosphorus removal. Woodward WPCP used the industrially contributed iron in the raw wastewater for phosphorus removal. Sudbury was not practicing phosphorus removal at the time of the study. However, phosphorus removal equipment is presently being installed. All of the primary plants, with the exception of the Sault Ste. Marie (East) plant, also had continuous addition of chemicals for phosphorus removal. Only Lindsay lagoon uses chemicals for phosphorus removal. The Niagara-onthe-Lake lagoon has no phosphorus removal facilities.

Table 4-2 SUMMARY OF WPCP DESIGN AND FLOW DATA

1987 1987 1987 1987 1987 1987 1987 1987 1987 1987 1987 1988 1987 1988	Lagoon
Average Flow as \$ Process Process Phosphorus Removal Flow as \$ Plow as	Anaerobic digestion
Average Flow as \$\frac{1987}{\text{Flow}}\$ Flow as \$\frac{1}{\text{Flow}}\$ (10^2\text{m}^3/\text{day}) \text{ of Design} - \text{Gesign} - \	Continuous
Average Flow (10 ² m ² /day) 43.42 5.60 52.10 67.03 13.05 306.47 18.03 70.58 110.8 16.33 74.7 256.9	Rotating biological contactors Continuous
1987 Avera Fronce (10 ³ m ³), (11) (11) (11) (11) (12)	, , , , , , , , , , , , , , , , , , ,
6.82 81.83 93.19 18.18 409.14 409.14 25.00 122.70 122.70 122.70 122.70 122.70 4.46	1 1
Cal (103)	58.20
Tertiary Plants Guelph Secondary Plants Belle River (Maidstone) Brantford Burlington (Skyway) Grimsby (Baker Road) Kingston TWP Kitchener London (Pottersburg) Mississauga (Lakeview) Moore (Corunna)	Moore (Corunna) Niagara Falls (Stamford)

Table 4-2 Continued

Sludge Disposal	Agricultural land	Agricultural land	Agricultural land	Incineration ng	Landfill	Hauled	Incineration	Landfill	Incineration 11 19	Landfill	Agricultural land		Hauled to Whitby (Corbett Ck.) WPCP	Landf111
Sludge Treatment	Co-thickening/anaerobic digestion	Aerobic digestion/ thickening/storage	Co-thickening anaerobic digestion	Co-thickening anaerobic digestion/filter dewatering	Co-thickening/filter dewatering	Anaerobic digestion	Dissolved air flotation/ anaerobic digestion/ grinding/heat treatment/ centrifuge dewatering	Dissolved air flotation/ anaerobic digestion/ elutriation/vacuum filtration	Dissolved air flotation/ anaerobic digestion/thermal oxidation/filter dewatering	Anaerobic digestion/ centrifuge dewatering	Co-thickening/anaerobic digestion	Anaerobic digestion/filter dewatering	Co-thickening/anaerobic digestion	Co-thickening/centrifuge dewatering
Phosphorus Removal	Continuous	Continuous	Continuous	Continuous	Continuous	No removal	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Process	Conventional activated sludge	Extended aeration	Conventional activated sludge	Conventional activated sludgde Continuous	Conventional activated sludge	High rate	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge	Conventional activated sludge
1987 Flow as & of Design	59.5	35.7	74.5	93.0	36.6	71.8	77.9	98.4	93.8	80.6	102.0	99.1	63.6	90.2
1987 Average Flow (10 ³ m ³ /day)	13.52	2.52	50.79	176.0	6.65	48.97	170.0	402.7	767.2	36.65	46.38	92.9	3.61	32.76
Design Flow Capacity (10 ³ m ³ /day)	22.73	7.05	68.19	189.25	18.18	68,19	218.21	409.19	818.3	45.46	45.46	6.82	5.68	36.32
Plant	Oakville (S.E.)	Paris	Peterborough	Pickering (Duffin Creek)	Sault Ste. Marie (West)	Sudbury	Toronto (Highland Creek)	Toronto (Humber)	Toronto (Main)	Toronto (North)	Waterloo	Wallaceburg	Whitby (Pringle Cr. #1)	Windsor (Little River)

38

Sludge Disposal		11	Agricultural land				11	Agricultural land		1	1
Sludg		Landfill	Agricu	Lagoon	Lagoon		Landf111	Agricu			
Sludge Treatment		Continuous Anaerobic digestion/ centrifuge dewatering	Anaerobic digestion (centrifuge dewatering)/ storage	Anaerobic digestion	Continuous Anaerobic digestion	No removal Vacuum filtration	Anaerobic digestion	Centrifuge dewatering/ composting		No removal No sludge production	No sludge production
Phosphorus Removal		Continuous	Continuous	Continuous	Continuous	No removal	Continuous	Continuous		No removal	No removal
Process								Primary with polymer addition Continuous		Aerated cells plus lagoon	Conventional lagoon
		Primary	Primary	Primary	Primary	Primary	Primary	Primary		Aerated	Conventi
1987 Flow as & of Design		116.5	103.4	73.4	9.97	58.7	74.3	75.6		82.5	168.4
1987 Average Flow (10 ³ m ³ /day)		43.68	63.48	400,25	54.00	32.02	81.11	123.64		14.18	6.40
Design Flow Capacity (10³m³/day)		37.50	61.37	545.0	70.47	54.55	109.11	163.65		17.18	3.80
Plant	Primary Plants	Cornwall	Kingston (City)	Ottawa (Green Creek)	Sarnia	Sault Ste. Marie (East)	Thunder Bay	Windsor (Westerly)	Lagoons	Lindsay	Niagara-on-the-Lake

39

A wide range of sludge treatment methods were used at the 37 WPCPs to reduce the sludge volume before ultimate disposal. Processes for pre-thickening (not including co-thickening in the primary clarifiers) are used at 5 facilities. Anaerobic digestion of sludges is used at the majority (26) of the facilities. Two of the plants (Belle River, Clarkson) use aerobic digestion and 7 plants do not have sludge digestion processes before disposal, but do utilize dewatering processes. Additional treatment of digested sludges included dewatering (13 plants), elutriation (Humber WPCP) and heat treatment (Highland Creek WPCP, Main WPCP and Lakeview WPCP).

Three main methods of sludge disposal are utilized, including incineration application to agricultural land and landfilling. In some cases, sludge is transferred to another WPCP for treatment and/or disposal.

4.2.3 Historical WPCP Performance Summary

Table 4-3 presents the annual average effluent concentrations of BOD, suspended solids (TSS) and phosphorus for the 37 plants of this study, for 1986 and 1987. Also indicated is whether the plant complied with the MOE minimum effluent requirements for municipal treatment facilities presented in Table 4-4. It should be noted that plant specific effluent requirements, as required by some WPCPs, were not considered in the evaluation of compliance.

Table 4-3 shows that the secondary plants selected have generally complied in the past with the BOD₅ and TSS requirements. Out of the 7 primary plants, Cornwall WPCP did not comply with TSS requirements in both years, and Ottawa (Green Ck) WPCP did not comply with BOD₅ removal requirements in both years. Both Lindsay and Niagara-on-the-Lake lagoons were in compliance with respect to BOD₅ in both years. However, Lindsay did not comply with TSS limits in 1987.

In 1986 and 1987, only 24 of the study plants were in compliance with the phosphorus requirement of ≤1.0 mg/L, assessed on a monthly average basis. Seven plants were out of compliance in one year, and 3 plants (Peterborough, Cornwall and Green Creek) did not comply in either year. Three plants (Sudbury, Sault Ste. Marie East, and Niagara-on-the-Lake) did not have phosphorus removal in 1986 and 1987 and therefore were not subjected to a phosphorus requirement.

Table 4-3 SUMMARY OF HISTORICAL PERFORMANCE OF 37 WPCPs (1981-1986)

	Comments								Phosphorus removal without chemicals								Primary plant before 1987						No phosphorus removal at present.	1988 installation.		
	ance*					z			z											z			NR			
Average nt TP /L)	Compliance*		z							z										z	z	z	NR		;	z
Annual Average Effluent TP (mg/L)	1987		9.0		0.7	1.0	0.7	0.5	1.0	0.8	0.8	0.7	9.0	6.0	0.7	0.4	0.7	0.5	0.5	1.0	9.0	6.0	2.3	c	0 0	6.0
ec.	1986		1.0		0.8	0.8	0.7	0.5	0.7	1.0	0.7	0.7	9.0	0.8	9.0	9.0	9.0	9.0	9.0	3.6	1.0	1.0	2.2	α ο		1.0
rage TSS	Compliance 1986 1987																									
Annual Average Effluent TSS (mg/L)	1987		12.8		11.1	11.2	7.3	11.0	12.3	8.1	5.2	12.3	5.3	10.0	14.3	7.5	15.8	6.5	5.4	6.2	13.4	8.6	8.3	19.0		70.1
An	1986		8.9		14.8	10.4	9.5	9.4	19.1	9.5	5.2	10.1	4.3	9.2	14.0	8.6	16.5	8.4	9.9	5.5	20.6	6.6	12.6	23.8		7.12
	ance 1987																									
verage BOD ₅	Compliance 1986 198								z																	
Annual Average Effluent BOD ₅ (mg/L)	1987		14.1		4.9	13.4	9,3	20.6	27.5	7.5	15.5	4.8	3,3	14.2	17.8	7.0	11.9	2.9	5.0	6.6	19.8	11.5	12.2	8.6		0.
	1986		10.7		16.7	12.2	10.8	13.8	15.7	8,3	12.1	4.0	2.6	12.7	16.4	7.0	20.9	5.0	8.7	14.3	22.3	12.2	12.9	18.7	11 3	0 -1 -1
	Plant	Tertlary	Guelph	Secondary	Belle River (Maldstone)	Brantford	Burlington (Skyway)	Grimsby (Baker Road)	Hamilton	Kingston TWP	Kitchener	London (Greenway)	London (Pottersburg)	Mississauga (Clarkson)	Mississauga (Lakeview)	Moore (Corunna)	Niagara Falls (Stamford)	Oakville (S.E.)	Paris	Peterborough	Pickering (Duffin Creek)	Sault Ste. Marie (West)	Sudbury	Toronto (Highland Creek)	Toronto (Humber)	TOTOTICO (TIMINOET)

Compliance is assessed on a monthly average. For compliance, all months TP average <1.0 mg/L. NR = No effluent requirements for plants without phosphorus removal. 40 Notes:

		Comments												No phosphorous removal		
	ance*	1987								z		z		NR		
werage it TP [L]	Compliance*	1986								z		z		NR		
Annual Average Effluent TP (mg/L)		1987	9.0	0.8	0.8	0.7	9.0	0.5		1.0	9.0	2.2	6.0	2.4	1.0	0.7
A		1986	6.0	0.7	6.0	0.5	9.0	0.7		2.5	9.0	1.9	0.7	3.4	6.0	0.7
	ance	987										z				
erage TSS	Compliance	1986	z									z				
Annual Average Effluent TSS (mg/L)		1987	23.0	9,3	14.3	9.6	12.3	8.8		28.6	16.5	32.5	24.1	38.8	70.7	23.3
Anı		1986	29.6	9.9	9.3	14.2	10.4	9.1		25.5	16.5	72.9	20.2	41.5	51.4	20.6
	lance	1987								z						
/erage BOD ₅	Compliance	1986								z						
Annual Average Effluent BOD ₅ (mq/L)		1987	11.4	18.1	7.5	11.1	6.3	5.1		38.6	18.1	38.6	39,1	66.1	57.7	24.2
		1986	17.1	17.9	8.9	16.9	10.2	5.4		41.1	23.7	34.5	33.1	6.69	53.2	25.9
		Plant	Toronto (Main)	Toronto (North)	Waterloo	Wallaceburg	Whitby (Pringle Cr. #1)	Windsor (Little River)	Primary	Cornwall	Kingston (City)	Ottawa (Green Cr.)	Sarnia	Sault Ste. Marie (East)	Thunder Bay	Windsor (Westerly)

Compliance is assessed on a monthly average. For compliance, all months TP average <1.0 mg/L. NR = No effluent requirements for plants without phosphorus removal. * Notes:

No phosphorous removal

NR

0.7 3.3 NR

3.1

z

11.0

81.1

10.5

10.5

Niagara-on-the-Lake

Lagoons

(UTD10/20AU)

Table 4-4
MOE 1987 Effluent Discharge Requirements for
Ontario Wastewater Treatment Facilities

Treatment Type	Requirements	Basis
Secondary with phosphorus removal	$\begin{array}{ll} BOD_5 & \leq 25 \text{ mg/L} \\ TSS & \leq 25 \text{ mg/L} \\ TP & \leq 1.0 \text{ mg/L} \end{array}$	Annual Average Annual Average Monthly Average
Secondary without phosphorus removal	BOD ₅ ≦25 mg/L TSS ⁵ ≦25 mg/L	Annual Average Annual Average
Primary with phosphorus removal	BOD ₅ Removal ≥50% TSS Removal ≥70% TP ≤1.0 mg/L	Annual Average Annual Average Monthly Average
Primary without phosphorus removal	BOD ₅ Removal >30% TSS Removal >50%	Annual Average Annual Average
Lagoon with phosphorus removal	BOD ₅ ≤30 mg/L TSS ≤40 mg/L TP ≤1.0 mg/L	Annual Average Annual Average Monthly Average
Lagoon without phosphorus removal	BOD ₅ ≤30 mg/L TSS ⁵ ≤40 mg/L	Annual Average Annual Average Monthly Average

5.1 QA/QC Analytical Results

Detailed descriptions of the QA/QC program results from each contract laboratory are presented in individual laboratory reports, which in turn have been summarized in a report by Zenon Environmental Inc. (Ref. 4).

5.1.1 Detection Limits (DLs)

For the purposes of the present study, each target pollutant in each sample type was assigned a detection limit (DL). It was not intended that the DLs represent the lowest detection capability achievable, but rather, that they reflect a routinely available capability that would serve the needs of the study. In this regard, the statistical significance of a true method detection limit (MDL) (Ref. 5) cannot be used for the DLs. The resulting DLs for the present study for samples of raw wastewater, effluent water and sludges are presented in Tables 5-1(a) to 5-1(c).

For base neutral and acid extractable compounds (Table 5-1(a)) compound DLs were in the range of 10 to 75 $\mu g/L$ for raw sewage, 2 to 15 $\mu g/L$ for final effluents and 0.2 to 2 mg/L for sludges.

For volatile organic compounds, (Table 5-1(b)), compound DLs were in the range of 40 - 400 $\mu g/L$ (with one exception of 5 mg/L for hexanol) for raw sewage, 2 to 100 $\mu g/L$ (with the exception of 400 $\mu g/L$ for hexanol) for final effluents, and from 40 to 400 $\mu g/L$ (5 mg/L for hexanol) for sludges.

For pesticides and herbicides, compound DLs were in the range of 0.02 to 10 $\mu g/L$ for raw sewage, 0.01 to 2 $\mu g/L$ for final effluents and 0.2 to 100 $\mu g/L$ for sludges.

For dioxin/furan analyses, due to the complexity of the samples, the DLs were highly variable depending on the cleanliness, homogeneity and interference associated with an individual sample. Therefore, a DL was established for each individual sample. The DLs for more than 95 percent of the samples ranged from 0.1 to 5 ng/L for raw sewage and final effluents, and from 0.05 to 4 $\mu g/L$ for sludges. Table 5-1(d) presents the minimum DLs found for each of the compounds.

For metals analyses (Table 5-1(e)) DLs ranged from 0.01 to 0.05 mg/L for raw sewages and final effluents. The DL for mercury was the exception with a value of 0.01 μ g/L. The range of metals DLs for sludges was 0.01 to 3 mg/L, with a DL for mercury of 0.01 μ g/L. The method detection limit for cyanide was 1 μ g/L for all three sample types.

Table 5-1(a)
DETECTION LIMITS BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS

Compound Name	Compound Code	DL Raw Sewage (µg/L)	DL Effluents (ug/L)	DL Sludges (liquid) (µg/L)
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dimethyl phenol 2,4-Dimethyl phenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2.Hydroxy-toluene (O-Cresol) 2-Chloronaphthalene 2-Chlorophenol 3-Nitrophenol 3-Nitrophenol 3-Hydroxy-toluene (M-Cresol) 4-Bromophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether Acenaphthylene Acenaphthylene Alpha-naphthylamine Ametryn Anthracene Atrazine Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Beta-naphthylamine Biphenyl bis(2-Chloro ethoxy)methane bis(2-Chloro ethyl) ether bis(2-Chloro intyl) phthalate Butyl benzyl phthalate Chrysene Diazinon Dibenzo(ah) anthracene Diethyl phthalate Dimethyl phthalate Diphenyl ether Di-n-butyl phthalate Diphenyl ether Di-n-butyl phthalate Fluoranthene Indeno(123-CD) pyrene Malathion Naphthalene Nitroso-di-n-propyl-amine Parathion ethyl Parathion methyl Parathion methyl Pentachlorophenol Phenol Pyrene P-chloro-M-cresol Tri-n-tolyl phosphate	X3245 X3246 PM24DP PM24DP PM24DT PM24DT PM24DT PM24DT PM24DT PM24DT PM24DT PM2000 PM2000 PM2000 PM2000 PM2000 PM4000 PM6000 PM60000 PM60000 PM60000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	55553332553332233305222222225532322222255523255222205552335	500 500 500 300 300 300 300 300

Table 5-1(b)
DETECTION LIMITS FOR VOLATILE ORGANIC COMPOUNDS

Compound Name	Compound Code	DL Raw Sewage (µg/L)	DL Effluents (µg/L)	DL Sludges (liquid) (µg/L)
1,1,1-Trichloroethane	X1111T	40	2	40
1,1,2,2-Tetrachloroethane	X11122	40	2	40
1,1,2-Trichloroethane	X1112T	40	5	40
1,1-Dichloroethene	X111CE	40	2	40
1,1-Dichloroethene	XlDCLE	40	2	40
1,2-Dichlorobenzene	X212CB	40	2	40
1,2-Dichloroethane	X112CE	40	2	40
1,2-Dichloropropane	X112CP	40	2	40
1,3-Dichlorobenzene	X213CB	40	2	40
1,4-Dichlorobenzene	X214CB	40	2	40
1-Octene	Blocte	60	3	60
2-Chloroethylvinyl ether	PM2CEE	40	10	40
3-Chloro-1-propene	X2CPPE	40	2	40
3-Chloro-toluene	X23CTD	40	2	40
Acrolein	X2ACRO	400	100	400
Acrylonitrile	XlaCRY	400	100	400
Benzene	B2BENZ	40	2	40
Bromodichlorobenzene	B2BDCL	40	10	40
Bromodichloromethane	X1BDCM	60	3	60
Bromoethane	XlBETH	40	2	40
Bromoform	XIBROM	60	10	60
Carbon tetrachloride	XICTET	40	2	40
Chlorobenzene	X2CBEN	40	2	
Chloroethane	XICHLE	40	2	40
Chloroform	XICHLO	40	2	40
Chloromethane	X1CHLM	40	20	40
cis-1,3-Dichloropropene	X113DP	60	3	60
cis-1,2-Dichloroethylene	X1CDCE	40	2	
Dibromochloromethane	XlCDBM	40	2	
Dichlorodifluoromethane	XIDCFM	40	20	40
Diethyl ether	ElDIEE	40	2	40
Ethylbenzene	B2BENZ	40	2	40
Hexane	BlHEXA	60	3	60
Hexanol	LlHEX	5000	400	5000
Methylene chloride	XlDCLM	60	3	60
Styrene	B2STYR	40	3	40
Tetrachloroethylene	XITETR	40	2	
Toluene	B2TOLU	40	2	40
trans-1,3-dichloropropene	X113DR	40	2	40
Trichloroethylene	XlTRIC	40	2	
Trichlorofluoromethane	XlTCFM	40	2	40
Vinyl bromide	BlVBR	60	3	60
Vinyl chloride	XlVCL	100	50	100

Table 5-1(c)
DETECTION LIMITS FOR PESTICIDES AND HERBICIDES

Compound Name	Compound Code	DL Raw Sewage (µg/L)	DL Effluents (µg/L)	DL Sludges (liquid) (µg/L)
1,2,4-Trichlorobenzene	X2124	0.02	0.01	0.2
2,4,5-T	P3245T	0.1	0.05	1
2,4-D	P324D	0.04	0.02	0.4
Aldrin	Plaldr	0.04	0.02	0.2
Alpha-BHC	PlBHCA	0.02	0.01	0.2
Alpha-chlordane	PlCHLA	0.02	0.01	0.2
Alpha-endosulphan	PIENDl	0.02	0.01	0.2
Beta-BHC	PlBHCB	0.02	0.01	0.2
Beta-endosulphan	PlEND2	0.02	0.01	0.2
Captan	POCAPN	0.4	0.2	4
Delta-BHC	PlBCHD	0.02	0.01	0.2
Dieldrin	PlDIEL	0.02	0.01	0.2
Endosulphan sulphate	Plends	0.08	0.04	0.8
Eldrin	PlENDR	0.02	0.01	0.2
Eldrin aldehyde	PlENDA	0.4	0.2	4.0
Gamma-BHC	PlBHCG	0.02	0.01	0.2
Gamma-chlordane	PlCHLG	0.02	0.01	0.2
Heptachlor	PlHEPT	0.02	0.01	0.2
Heptachlor epoxide	PlHEPE	0.02	0.01	0.2
Hexachlorobenzene	X2HCB	0.02	0.01	0.2
Hexachlorobutadiene	XIHCB	0.2	0.1	2
Hexachlorocyclopentadiene	X1HCCP	0.2	0.1	2
Hexachloroethane	XlDCLE	10	2	40
Methoxychlor	PIDMDT	0.01	0.05	1.1
Mirex	PlMIRX	0.02	0.01	0.2
Oxychlordane	PlDCHL	0.02	0.01	0.2
PCNB	POPCNB	0.1	0.05	1
Photomirex	PlPMIR	0.02	0.01	0.2
PP-DDD	PlPPDD	0.02	0.01	0.2
PP-DDE	PlppDE	0.02	0.01	0.2
PP-DDT	PlppDT	0.02	0.04	0.8
Silvex	P3SILV	0.1	0.05	1
Strobane	PlsTRO	10	5	100
Total PCB	PlPCPT	0.08	0.04	0.8
Toxaphene	PlTOX	0.08	0.04	0.8

Table 5-1(d)
DETECTION LIMITS FOR DIOXIN/FURAN COMPOUNDS

Compound Name	Compound Code	DL Raw Sewage (ng/L)	DL Effluents (ng/L)	DL Sludges (liquid) (µg/L)
Tetrachlorodibenzodioxins Tetrachlorodibenzofurans Pentachlorodibenzodioxins Pentachlorodibenzofurans Hexachlorodibenzodioxins Hexachlorodibenzofurans Heptachlorodibenzodioxins Heptachlorodibenzofurans Octachlorodibenzodioxin	P94CDD P94CDF P95CDD P95CDF P96CDD P96CDF P97CDD P97CDF P98CDD	0.5 0.2 1.0 0.4 1.0 0.7 1.0	0.1 0.1 0.5 0.1 0.3 0.1 0.1	0.15 1.50 0.6 0.5 0.4 1.0 2.0 1.0
Octachlorodibenzofuran	P98CDF	1.0	0.2	0.5

Table 5-1(e)
DETECTION LIMITS FOR METALS AND CYANIDE

Compound Name	Compound Code	DL Raw Sewage (mg/L)	DL Effluents (mg/L)	DL Sludges (liquid) (mg/L)
Aluminum	ALUT	0.02	0.02	0.5
Beryllium	BEUT	0.01	0.01	0.5
Cadmium	CDUT	0.003	0.003	0.5
Calcium	CAUT	0.002	0.002	0.5
Chromium	CRUT	0.01	0.01	0.5
Cobalt	COUT	0.01	0.01	1
Copper	CUUT	0.01	0.01	0.5
Cyanide	CCNFUR	0.001	0.001	0.001
Lead	PBUT	0.03	0.03	0.5
Magnesium	MGUT	0.01	0.01	0.5
Mercury (µg/L)	HGUT	0.01	0.01	0.01
Molybdenum	MOUT	0.01	0.01	0.25
Nickel	NIUT	0.01	0.01	3
Selenium	SEUT	0.03	0.03	1
Silver	AGUT	0.01	0.01	0.5
Strontium	SRUT	0.01	0.01	0.5
Zinc	ZNUT	0.02	0.02	0.5

5.1.2 Method Blank Results

As previously noted in Section 3, one method blank with each batch of samples was routinely analyzed at each contract laboratory performing organics analyses. The results were used to establish the background contamination or "noise level" of each contaminant.

At the end of each day, the arithmetic mean of the compound concentration for each compound was calculated, and subtracted for the compound concentration measured in each sample for that day. This calculation was made to correct samples for the background "noise level".

When the analyses had been completed for all samples for a specific stream type, the arithmetic mean and standard deviation for the concentrations of each contaminant in the method blanks were calculated.

Since the "noise level" varied from day to day, MOE LSB staff felt that the "noise level" averaged over the duration of the study would be representative of the contamination problem with the compound in question, while the "noise level" established for each analytical run may not have been representative of that particular run. For this purpose, MOE established a criterion to determine if the "noise" level was too high to use the sample analytical data with confidence. If twice the standard deviation of the method blank results was greater than the analytical result for a compound averaged for a particular stream type, then the background concentration was considered too high, the entire analytical results for that compound were not considered valid and the compound was excluded from the data presentation for that stream types. Table 5-2(a) presents the compounds detected in 5 percent or more of the laboratory blank samples analyzed. Table 5-2(b) presents a list of the contaminants that did not meet the blank criterion, and are subsequently excluded from further result presentation.

5.1.3 Field Blank Results

There were a total of 19 field blank samples analyzed, including 8 for volatile organic compounds, 9 for base-neutral and acid extractable compounds and pesticide/herbicide compounds and 2 for dioxin/furan compounds. The field blanks were analyzed for all of the target compounds in each group.

Table 5-3 presents the contaminants identified in field blanks.

Table 5-2(a)
CONTAMINANTS DETECTED IN METHOD BLANK SAMPLES

Compound	Average Concentration (µg/L)	Standard Deviation (µg/L)	No. of Samples Analyzed	No of Times Times Compound was Detected
Di-n-butyl phthalate	1.5	2.8	75	49
Bis-2-Ethylhexyl phthalate	47.7	84.8	75	70
Di-n-octyl phthalate	0.2	0.9	75	6
Di-ethyl phthalate	0.3	1.7	75	7
Methylene chloride	9	6	73	66
Chloroform	3	3	73	29
Toluene	3	5	73	43
Benzene	4	3	73	42
Hexane	7	11	73	40
Bromodichloromethane	3	1	73	9
Methoxychlor	0.08	0.03	34	3

Table 5-2(b)
CONTAMINANTS WITH INVALID ANALYTICAL RESULTS DUE TO METHOD BLANK RESULTS

	Contaminant			San	ple Types			
		Raw	Primary	Lagoon	Secondary	Tertiary	Raw	Treated
Code	Name	Sewage	Effluent	Effluent	Effluent	Effluent	Sludge	Sludge
X1CHLO	Chloroform		Х		Х	х		
B1HEXA	Hexane		Х	X	X		X	X
B2BENZ	Benzene		X	X	X		X	X
X1BDCM	Bromodichloromethane		Х		X			
B2TOLU	Toluene		X	X	X		X	X
PMPEHP	Bis-2-Ethylhexyl phthalate	X	Х	Х	Х		Х	Х
PMDNBP	Di-n-butyl phthalate		X	X	X		X	X
PMDNOP	Di-n-octyl phthalate		X	X			X	
PMDEP	Diethyl phthalate			X	X		X	
X1DCLM	Dichloromethane		X	X	X		X	X
PlPMDT	Methoxychlor		Х		X			

Notes: X - indicates that the data for the contaminant in the indicated sample type did not meet study QA/QC criteria and was therefore deleted from subsequent evaluation.

Table 5-3 CONTAMINANTS DETECTED IN FIELD BLANKS

Compound Group	Parameter	Concentrations	Frequency
Base-neutral and acid extractables	Di-n-butyl phthalate	3.2 µg/L	1/9 samples
Pesticides/ Herbicides	Methoxychlor	0.1 µg/L, 0.1 µg/L	2/9 samples
herbicides	Endosulphan Sulphate	0.09 µg/L	1/9 samples
	2,4-Dichlorophenoxy- acetic acid	0.04 µg/L	1/9 samples
Volatiles	Hexane	13.0 µg/L	1/8 samples

Only 5 organic compounds were detected in the field blanks at concentrations greater than the DLs and in a maximum of 22 percent of tested samples. No dioxin compounds were detected in field blanks.

It was concluded from the field blank results that the level of contamination introduced from the field equipment field sample handling methods and sample transport was not significant.

5.1.4 Results of Duplicate Analyses

Duplicate analyses were carried out in each analytical laboratories in order to determine the variability of the sample results. These results are presented in detail in the individual laboratory reports (Ref. 4).

In a large percentage of the duplicate analyses carried out, one or both of the aliquots results were below the DL and comparisons could not be made. Since there were so few usable duplicate results, the analytical variability as evaluated using these results was inconclusive.

5.1.5 Surrogate Spike Recoveries

Deuterated compounds were added as surrogate spikes to each sample analyzed for volatile and base/neutral acid extractable compounds. Bromofluorobenzene was also added in the spike mixture for volatiles analysis. For dioxin and furan analyses C labelled tetra and octa dioxin congenors were spiked into the samples. No surrogate spikes were added to samples for pesticide/herbicide analysis since mass spectrometry was not employed for the analysis of these compounds.

Table 5-4(a) - Table 5-4(c) summarize the recoveries of the surrogates by sample type. The summary results show that recoveries of the same surrogate compound in each sample type are very similar (no statistically significant difference at 95% confidence level). Consequently, it was concluded that there was no significant effects of the stream type during this study and the compound recoveries obtained in the blank water spike samples could be used as an indication of average recoveries for all sample types.

Table 5-4(a)
BASE/NEUTRAL COMPOUND SURROGATE RECOVERY SUMMARY BY STREAM TYPE

			Surrogate Co	mpound	
	d ₅ - phenol	d ₄ - nitrophenol	d ₈ - naphthalene	d ₁₀ - anthracene	d ₁₂ - benzo-a-pyrene
Raw Sewage					
Average Std. dev. No. of data averaged*	38% 5.4% 280	71% 15.6% 280	72.7% 14.8% 280	110.3 19.7% 280	89.2 14.3% 280
Primary Effl	uent				
Average Std. dev. No. of data averaged*	38.6% 6.3 37	71.0% 13.5% 37	70% 16.8% 37	107% 15.5% 37	90.5% 16.7% 37
Secondary Ef	fluent				
Average Std. dev. No. of data averaged*	37% 5.2% 280	71% 15.6% 280	67.9% 12.4% 280	102.5% 19.2% 280	90.5% 15.9% 280
Sludges					
Average Std. dev. No. of data averaged*	52% 10.9% 117	70% 18.2% 117	72.6% 17.8% 117	112.7% 29.2% 117	80.5% 17.8% 117
Method Blank					
Average Std. dev. No. of data averaged*	36% 22% 72	68% 29% 72	73% 30% 72	89% 30% 72	89% 30% 72

Notes: * - No surrogate data were rejected in any case

Table 5-4(b) DIOXIN/FURAN COMPOUND SURROGATE RECOVERY BY SAMPLE TYPE

	Average Std.	Sample Type % Rec. Dev		it 51.8	59.1		78.3	Method Blank 56.4 28.4	36.7
13C12-T4CDD	1. No. of data No. of Data	averaged averaged	8 6.	.4 49	4 8	.3 54	.8 74	.4 24	
	No. of Data	rejected	0	3	2	3	12	0	0
		* Rec.	64.3	6.99	64.7	63.6	72.3	9.59	48.6
1.	Std.	Dev.	14.7	28.3	20.5	24.8	27.9	24.3	22.2
13C12-08CDD	No. of data	averaged	7	52	6	57	85	23	12
	No. of data No. of data	rejected	1	0	1	0	1	1	0

Table 5-4(c) VOLATILE ORGANIC COMPOUND SURROGATE RECOVERY BY SAMPLE TYPE

		d4-D1c	d4-Dichloroethane	dı		Bromof1	Bromofluorobenzene	ne		-8p	d8-Toluene			d5-Cr	d5-Chlorobenzene	je.
	Avg. 8 Std.	Std.	No.	No.	Avg.8	Std.	No.	No.	Avg.% Std.	Std.	No.	No.	Avg. & Std.	Std.	No.	No.
Sample Type	Rec.	Dev. &	Averaged	Rejected	Rec.	Dev.%	Dev.% Averaged Rejected	Rejected	Rec.	Dev. %	Rec. Dev. & Averaged Rejected	Rejected	Rec.	Dev. %	Rec. Dev. & Averaged Rejected	Rejected
Primary Effluent	97	12	35	1	93	15	33	ю	95	13	36	0	93	16	36	0
Secondary Effluent	96	16	225	8	97	16	205	28	94	12	222	11	96	16	225	ω
ecycle 103	18	43	1	66	17	37	7	100	11	42	2	102	11	41	33	
Raw Sewage	100	14	212	2	66	16	194	23	100	10	213	₽	66	14	208	6
Sludge	104	12	87	7	100	18	83	11	103	11	93	1	103	13	88	9
Native Spike	66	10	26	2	101	13	25	٣	86	11	24	4	100	13	28	0
Method Blank	102	14	65	80	96	31	64	6	98	16	99	7	95	20	69	4

(KIR18/285W)

5.1.6 Recovery of Native Spikes from Distilled Water

Tables 5-5(a) to 5-5(d) present summaries of the native spike recoveries from distilled water samples for each compound group. Where no data is presented, spiking of the compound in question was not done.

A system was established by the MOE to use the analytical QA/QC results to identify the qualitative and quantitative applicability of the analytical results. Each contaminant was given a code, which was used to label the value of the result in qualitative and quantitative terms. The codes describe recovery criteria, based on spiking of a native compound into a distilled water sample. If spiking of this native compound was not done, the code used was based on historical recovery data from MOE LSB.

The QA/QC codes and associated recovery criteria, as established by the MOE, are:

QA/QC Code	Recovery Criteria
1	The average recovery of the native compound in distilled water samples was within 50 and 150 percent inclusive, and 70 percent or more of individual recovery data were within 50 and 150 percent.
2	The average recovery of the native compound in distilled water samples and individual percent recovery data do not fit the criteria for 1, 3, 4 and 5.
3	The average recovery of the native compound in distilled water samples is either less than 30 percent, or, more than 30 percent of individual recovery data are less than 30 percent.
4	The average recovery in distilled water samples is greater than 150 percent, or, more than 30 percent of individual percent recovery data are greater than 150 percent.
5	More than 30 percent of individual recovery data are less than 30 percent, and, more than 30 percent of individual recovery data are greater than 150 percent.
0	Analyzed by MOE LSD using internal QA/QC procedures

TABLE 5-5a)
SUMMARY OF RECOVERY OF NATIVE BASE/NEUTRAL AND ACID EXTRACTABLE COMPOUND SPIKES FROM FROM DISTILLED WATER SAMPLES

			Sample							!	ì
Compound Code	Compound Name	AVG.	STD. DEV OF R	DATA		USED DATA					Qi Cox
X3245	2,4,5-TRICHLOROPHENOL	68.7	22.5	71	52	73.2	1	1.4	0	0.0	1
X3246	2, 4, 6-TRICHLOROPHENOL	83.0	16.0	68	66	97.1	0	0.0	0	0.0 [
PM24DP	2,4-DICHLOROPHENOL	75.6	21.6	68	64	94.1	2	2.9	0	0.0	
PM24MP	2, 4-DIMETHYLPHENOL	57.0	25.0	68 0	43	63.2	10	14.7	U	,	1
PH24NP	2,4-DINITROPHENOL	06.0	16.0	68	c 0	100.0	0	0.0	0	0.0 1	
PM24DT	2, 4-OINITROTOLUENE	96.0 89.0	16.0	68	67	98.5	0	0.0	0	0.0 1	•
PM26DT	2, 6-DINITROTOLUENE	67.0	22.0	68	50	73.5	3	4.4	0	0.0	
x30010	2-CHLOROPHENOL	98.0	66.0		33	48.5	15	22.1	16	23.5	
PM46DP PM2NP	2-METHYL4, 6-DINITROPHENOL 2-NITROPHENOL	76.0	21.0		61	89.7	0	0.0	0	0.0 1	*
	4-8ROMOP HENY LPHENY LETHER	86.0	17.0		66	97.1	0	0.0	0	0.0 1	Ĺ
PM4BPE PM4CPE	4-CHLOROPHENYLPHENYLETHER	83.0			64	94.1	0	0.0	0	0.0	
PMANE	4-NITROPHENOL	47.0		68	32	47.1	11	16.2	0	0.0	i .
PNACNE	ACENAPHTHENE	81.0				97.1	0	0.0	0	0.0	i
PNACNY	AC EN AP HT HY LENE	84.0				95.6	0	0.0	0	0.0	İ
PMANAA	ALPHA-NAPHTHYLAMINE	74.0		68		69.1	7	10.3	3	4.4	i
PZAMET	AMETRYNE	B9.0		68	66	97.1	0	0.0	0	0.0	1
PHANTE	ANTHRACENE	89.0	15.0	68	67	98.5	0	0.0	0	0.0 [1
PZATRA	ATRAZINE	104.0	42.0	68	55	80.9	3	4.4	9		1
PNBAA	BENZO (a) ANTHRACENE	86.0	21.0	68	65	95.6	0	0.0	0	0.0	1
PNBAP	BENZO(a) PYRENE	83.5	16.8	71	68	95.8	1	1.4	1	1.4	11
PNBBFA	BENZO (b) FLUORANTHENE	86.0	22.0			95.6	0	0.0	1	1.5	
PHGHIP	BENZO(g, h, i) PERYLENE	81.0				88.2	0	0.0	1	1.5	
PNBKE	BENZO (k) FLUORANTHENE	84.0				94.1	0	0.0			П
PMBNAA	Beta-NAPHTHYLAMINE	72.0				72.1	3	4.4	0		Н
PNBIPH	BIPHENYL	79.0				97.1	0	0.0			П
PMB2EM	Bis(2-CHLOROETHOXY) METHANE	73.0				91.2	0	0.0			Ш
PMB2IE	Bis(2-CHLOROIPROPYL) ETHER	71.0				77.9	1	1.5			11
PMBEHP	Bis-2-ETHYLHEXYLPHTHALATE	192.0	133.0			52.9	0	0.0	31		11
PMB2NE	Bis-(2-CHLOROMETHYL) ETHER					42.1	0	0.0	1		
PMBBP	BUTYLBENZYLPHTHALATE	91.0				97.1	-	4.4			11
PH2CHA	CHLORONAPHTHALENE	76.0 87.0				94.1		0.0			11
PNCHRY	CHRYSENE					92.6		0.0			ii
PADIAZ	DIAZINON	90.0				94.1		0.0			11
PNDAHA	DIBENZO (a, h) ANTHRACENE	91.0				98.5		0.0			11
PODICH	DICHLORAN DIETHYL PHTHALATE	96.0				95.6		0.0			i i
PHDMP	DIMETHYL PHTHALATE	90.0		-		97.1	-	0.0		0.0	H
PMDPE	DIPHENYL ETHER	79.0				95.6		0.0	0	0.0	П
PMDNBP	DI-N-BUTYLPHTHALATE	91.0				97.1	0	0.0] [
PMDNOP	DI-N-OCTYLPHTHALATE	93.0	23.0			97.1		0.0			11
PHELAN	FLUORANTHENE	87.0	16.0			98.5		0.0			11
PHFLUO	FLUORENE	85.1				98.5		0.0			11
PNINP	IDENO(1,2,3-cd)PYRENE	81.				92.6		0.0			H
PAMALA	HALATHION	92.				100.0		0.0			H
PAMPAR	METHYLPARATHION	91.				98.5		0.0			1† 11
PHINCRE	M-CRESOL	77.				80.3		4.2			11
PNNAPH	NAPHTHALENE	76.				95.8		4.7		0.0	
PMNITB	NITROBENZENE	74.				83.1 97.1		0.0			11
PMNND	N-HITROSODIPHENYLAMINE	90. 79.				81.		8.5			Н
PMNNP	N-HITROSODI-NPROPYLAMINE	41.				27.5		29.			11
PMOCRE	O-CRESOL PARATHION ETHYL	91.				97.1		0.1			ii
PAEPAR	***************************************	65.				71.8		26.			ii
X3PCPH DVDVCN	PENTACHLOROPHENOL	88.			8 65	95.		0.			ii
PNPHEN	PHENANTHRENE PHENOL	40.			B 17			27.			
PNPYR	PYRENE	B7.			8 67			0.			
PMPCHC	P-CHLORO-M-CREOSOL	B6.			8 66			0.			ii
PMPCRE	P-CRESOL	1.			8 1						ii
POTOC	TRI-O-CRESYL PHOSPHATE	92.			B 66			0.		0.0	11

TABLE 5-5b]
SUMMARY OF RECOVERY OF NATIVE DIOXIN/FURAN COMPOUND SPIKES FROM DISTILLED WATER SAMPLES

		Recovery Data Obtained in Distilled Water Samples Spiked With Native Compounds										II.		
	Compound Name	AVG. % R	STD. DEV. OF	DATA	USED DATA	USED DATA	DATA <30%	DATA <30% REC	DATA >150% REC	DATA >150 REC	110	QA Code		
P97CDD	HEPTACHLORODI BENZODIOXIN	79.0	26.7	12	10	83.3	0	0.0	0	0	- - -	1		
P97CDE	HEP TACHLORODI BENZOFURAN	101.0	39.7	12	11		Ö	0.0		8.33	ii	i		
P96CDD	HEXACHLORODIBENZODIOXIN	62.0	21.5	12	8	66.7	0	0.0	1	8.33	H	2		
P96CDF	HEXACHLOROD I BENZOFURAN	80.0	28.9	12	11	91.7	0	0.0	0	0	П	1		
298CDD	OCTACHLORODIBENZODIOXIN	83.0	36.8	12	10	83.3	0	0.0	0	0	11	1		
P98CDF	OCTACHLOROD I BENZOFURAN	78.0	26.4	12	11	91.7	0	0.0	0	0	Π	1		
P9SCDD	PENTACHLORODI BENZODIOXIN	62.0	21.5	12	8	66.7	0	0.0	0	0	11	2		
P95CDF	PENTACHLORODI BENZOFURAN	71.0	24.7	12	11	91.7	0	0.0	0	0	11	1		
P94CDD	TETRACHLORODIBENZODIOXIN	66.0	21.9	12	10	83.3	1	8.3	0	0	П	1		
P94CDF	TETRACHLORODI BENZOFURAN	54.0	31.4	12	7	58.3	2	16.7	0	0	11	2		

TABLE S-Sc| SUMMARY OF RECOVERY OF NATIVE PESTICIDE/HERBICIDE COMPOUND SPIKES FROM DISTILLED WATER SAMPLES

											11
		AVG.	CED		•	1	-	-		-	11
Compound	Compound Name	AVG. ♣ R		DATA	BCED			DATA	DATA	DATA	110
Code		* K	OF	DATA		DATA		<30%			II
			₹ R		DATA	DATA	REC	REC	REC	REC	ii
X2124	1, 2, 4-TRICHLOROBENZENE	27.8	18.4	63	31	49.2	13	20.6	0		.II. II
P3245T	2,4,5-TRICHLOROPHENOXYACETIC ACID	13.0	45.8	46	1	2.2	45	97.8	0	0.00	11
P324D	2,4-DICHLOROPHENOXYACETIC ACID	2.4	4.9	46	1	2.2	45	97.8	0	0.00	
Plaldr	ALDRIN	80.6	87.4	63	54	85.7	8	12.7	0	0.00	
P18HCA	Alpha-BHC	77.8	32.1	63	50	79.4	4	6.3	1		
P1CHLA	Alpha-CHLORDANE	85.8	39.2	61	50	82.0	4	6.6			
PIBHCB	Beta-BHC	76.3	30.0	63	52		4	6.3		1.59	
POCAPN	CAPTAN	57.0	59.1	48	21	43.8	18	37.5		2.08	11
PIBHCD	Delta-8HC	72.9	40.6	62	43		11	17.7	1	1.61	
PIDIEL	DIELDRIN		39.1	55	32		14	25.5	1		П
Plenda	ELDRIN ALDEHYDE	48.6	29.8	21	8		6		0		П
Plendi	ENDOSULFAN I	66.4	44.1	55	34	61.8	17	30.9	4	7.27	11
P1END2	ENDOSULFAN II	52.2	37.2	62	41		21	33.9	0		П
PLENDS	ENDOSULFAN SULPHATE	55.8	40.7	65	37		20		0		Н
PIENDR	ENDRIN	55.3	40.8	62	31		23		1		П
P1BHCG	Gamma-BHC	65.8	33.0	62	41	66.1	10	16.1			П
PICHLG	Gamma-CHLORDANE	84.6	41.7	62	48		10	16.1			П
PIHEPT	HEPTACHLOR	20.3	19.5	63	5		50		0		
PIHEPE	HEPTACHLOREPOXIDE	63.8	38.2	57	35		16			1.75	11
X2HC8	HEXACHLOROBEHZENE	64.8	27.1	63	40			9.5			П
X1 HCBD	HEXACHLOROBUTADIENE	29.7	14.5	62	3	4.8	29		0	0.00	H
X1 HCCP	HEXACHLOROCYCLOPENTADIENE	42.3	44.4	43	10	23.3	23		3		11
X2HCE	HEXACHLOROETHANE	28.3	13.2	63	2						11
PIDMDT	METHOXYCHLOR	57.8	35.7	60	46	76.7	17				
PIMIRX	MIREX	63.0	51.0	63	51	81.0	4	6.3	0		11
PIPMIR	MIREX PHOTO	64.0	41.1	61			17				11
P10CHL	OXYCHLORDANE	84.7	50.8	62	37	59.7	8	12.9	8	12.90	11
PIPCBT	PCB, TOTAL			0							11
POPCNB	PCNB		27.1	58							
PIPPDD	PP-DDD		47.2	62						11.29	
PIPPDE	PP-DDE		37.9	59							11
PIPPDT	PP-DDT		65.1	62						11.29	11
P3SILV	SILVEX	4.9	9.7	46		0.0	44	95.7	0	0.00	11
PISTRO	STROBANE			0							11
PITOX	TOXAPHENE			0							

TABLE 5-5d)
SUMMARY OF RECOVERY OF NATIVE VOLATILE ORGANIC COMPOUND SPIKES FROM DISTILLED
WATER SAMPLES

		<pre>% Recovery Data Obtained in Distilled Water Samples Spiked With Native Compounds</pre>								
**************************************	Compound Name	AVG.	STD.			- 1	-		-	
Code	comboning value	₹ R		DATA			-	DATA		DATA
2040		• 1.	OF		DATA			<30%		>150%
			% R				REC	REC	REC	REC
11117	1,1,1-TRICHLOROETHANE		24.0	28		89.28	1	3.6	0	0.0
(11122	1,1,2,2-TETRACHLOROETHANE		19.0	27		96.29		0.0	0	0.0
(1112T	1,1,2-TRICHLOROETHANE		27.0	28		85.71	1	3.6	1	3.6
111CE	1,1-DICHLOROETHANE		25.0	27		85.18	0	0.0	2	7.4
IDCLE	1,1-DICHLOROETHENE		23.0	26		92.30	0	0.0	0	0.0
212CB	1,2-DICHLOROBENZENE		44.0	27		88.88	0	0.0	1	3.7
112CE	1,2-DICHLOROETHANE		22.0	27		92.59		3.7	0	0.0
112CP	1,2-DICHLOROPROPANE		22.0	27		96.29	0	0.0	0	0.0
213CB	1,3-DICHLOROBENZENE		23.0	27		96.29	0	0.0	0	0.0
214CB	1,4-DICHLOROBENZENE		22.0	27		96.29	0	0.0	0	0.0
10CTE	1-OCTENE		32.0	25	23	92	0	0.0	2	8.0 1
M2CEE	2-CHLOROETHYLVINYLETHER		28.0	17		94.11	0	0.0	1	5.9 1
2CPPE	3-CHLOROPROPENE		49.0	26		73.07	1	3.8		11.5
23CT0	3-CHLOROTOLUENE	89.0	11.0	19	18	94.73	0	0.0	0	0.0 1
1ACRO	ACROLEIN									- 11
1ACRY	ACRYLONITRILE									
1ACTO	Alpha-CHLOROTOLUENE	82.0		18		88.88	2	11.1	0	0.0
2BENZ	BENZENE	101.0		27		85.18	1	3.7		11.1 []
2BDCL	BROMODICHLOROBENZENE	83.0		12		91.66	0	0.0	0	0.0 11
1 BDCM	BROMODICHLOROMETHANE	86.0		28		89.28	0	0.0	0	0.0
1BETH	BROMOETHANE	79.0	18.0	25	24	96	0	0.0	0	0.0 [[
RFLB	BROMOFLUOROBENZENE									11
1BROM	BROMOFORM		19.0	28	28	100	0	0.0	0	0.0 11
1CTET	CARBON TETRACHLORIDE	79.0		27		85.18	0	0.0	1	3.7 []
2CBEN	CHLOROBENZ ENE	88.0		28		96.42	0	0.0	0	0.0
1 CD BM	CHLORODIBROMOMETHANE	93.0		28		92.85	0	0.0	0	0.0
1 CHLE	CHLOROETHANE	89.0		14		78.57	0	0.0	1	7.1
1CHLO	CHLOROFORM	99.0		28	25	89.28	0	0.0		10.7
1CHLM	CHLOROMETHANE	86.0		17	25	0	2	11.8		17.6
1CDCE	Cis-1, 2-DICHLOROETHYLENE	88.0		26		96.15	0	0.0	0	0.0 11
113DP	Cis-1,3-DICHLOROPROPENE	87.0		26		96.15	0	0.0	0	0.0 11
1DCFM	DICHLORODIFLUOROMETHANE	79.0		21		61.90	1	4.8	1	4.8
1DCLM	DICHLOROMETHANE	100.0		28		82.14	1	3.6	0	10.7 11
1DIEE	DIETHYL ETHER	97.0		24	24	100	0	0.0	0	0.0 11
2EBNZ	ETHYLBENZENE	93.0		28	_	96.42	0	0.0		0.0 [[
1 HEXA	HEXANE	103.0		28	21	75	0	0.0	0	0.0 11
1 HEX 2MPXY	HEXANOL M-, and P-XYLENES	66.0 94.0		3 26	26	66,66	0	0.0	0	0.0 11
20XYL	O-XYLENE	95.0		20	20	100	0	0.0	0	0.0 11
2STYR	STYRENE	91.0		19	19	100	0	0.0	0	0.0 11
1 TETR	TETRACHLOROETHYLENE	91.0		27		96.29	0	0.0	0	0.0 11
2TOLU	TOLUENE	96.0		28		92.85	0	0.0	1	3.6 11
113DR	Trans-1, 3-DICHLOROPROPENE	100.0		24		95.83	0	0.0	2	8.3 11
(ITRIC	TRICHLOROETHYLENE	87.0		27	_	96.29	1	3.7	0	0.0
ITCFM	TRICHLOROFLUOROMETHANE	85.0		21	21	100	0	0.0	0	0.0
(1T12D	TR-1, 2-DICHLOROETHYLENE	82.0		20	18	90	0	0.0	0	0.0 11
SIVBR	VINYL BROMIDE	77.0		21		95.23	0	0.0	0	0.0 11
1VCL	VINYL CHLORIDE	64.0		11		45.45	1	9.1	1	9.1

The above QA/QC codes were used by the MOE to evaluate the applicability of the data, as follows:

QA/QC Code	Data Application							
0, 1	Result can be used quantitatively.							
2	The result can be used to confirm either the presence or absence of the contaminant, but may not be used quantitatively.							
3	If the compound was detected in a sample stream, its presence can be confirmed and the reported concentration is a minimum. However, if it was not detected, its absence cannot be confirmed.							
4	If the compound was not detected in a sample stream its absence can be confirmed. However, if it was detected, its presence cannot be confirmed.							
5	Neither the absence nor presence of the com- pound detected or not detected in a sample stream can be confirmed, ie. no conclusions may be made.							

The above criteria were applied to all of the contaminants analyzed. The majority of contaminants fell into criteria 1, 2 and 3. Only one contaminant (bis-2-ethylhexyl phthalate) fell into criteria 4 and the results for this compound were previously invalidated using the method blank criterion. There were no contaminants which fell into criteria 5.

5.1.7 MOE LSB Spiking

Duplicate samples were sent from the field to MOE LSB for native compound spiking before being sent to the contract laboratory for analysis, as described in Section 3.2.

The results from these tests were used for observation purposes and were not used for quality control or quality assurance purposes in this study. These results are presented in a separate report by the MOE LSB (Ref. 6).

5.2 <u>Individual WPCP Reports</u>

5.2.1 Background Data

Individual plant background data that was collected for the study included plant historical (1981 - 1985) performance summaries, raw water sources and estimated quantities, premonitoring operational data and design information.

Appendix A contains a sub-appendix for each plant in the study, containing (where available) the above background data.

5.2.2 Sampling Program Data

The results of the sampling program contaminant analyses were summarized in individual reports prepared for each plant. Each individual plant report consists of a number of tables, one for each stream sampled at the plant, including raw sewage, final effluent (primary, secondary or lagoon), raw sludge and treated sludge. If there was a recycle stream, an additional table presents this analytical data. Also, the raw sewage results presented are after the recycle contribution in terms of flows and contaminant concentrations has been subtracted.

The individual plant tables for each stream summarize the analytical data for each compound using the following parameters:

- o Compound name
- o Compound code
- o QA/QC code (Section 5.1.2)
- o Number of samples analyzed
- o Number of samples where compound was detected
- o The frequency of detection of the compound in all samples analyzed
- o The maximum concentrations analyzed

In addition, two statistical parameters describe the results; the geometric mean and spread factor. For the purpose of calculating the geometric mean and spread factor in cases where the analytical result was below the associated DL, the value below the DL was assumed to be one half of the DL.

For purposes of comparison, individual plant analytical summary tables include results for all of the plants (global) for a specific stream type.

The individual plant reports containing summary analytical data table for each stream are presented in Appendix A.

5.3 Summary of Sampling Program Results

5.3.1 Data Presentation

In order to satisfy the objectives of this study, it was necessary to summarize the analytical data on a combined WPCP or global level.

The global data base for a particular sample type was made up of all the data obtained from the analysis of all relevant samples at all WPCPs. For the purposes of these summaries, each sample (24 hour composite or 5 day composite) was considered independent of the number of samples taken at the plant or the number of sampling periods at the plant.

A global summary table was prepared for each of the following sample types:

- o Raw sewage (corrected for the effects of included recycle streams)
- o Primary effluent
- o Secondary effluent
- o Lagoon effluent
- o Tertiary effluent
- o Raw sludges
- o Treated sludges

Each table includes the following:

- o Compound code
- o Compound name
- o OA/OC Code (Section 5.1.2)
- o Number of samples analyzed for the compound
- Number of samples in which the compound was detected
- o The frequency of detection of the compound in all samples
- o The maximum concentration analyzed
- o The minimum concentration above the DL

- o The number of plants at which the compound was analyzed
- o The plant prevalence ie. the percentage of the total number of plants where the compound was detected in at least one sample

In addition, global geometric means and spread factors were calculated, based on the assumptions described in subsection 5.2.2 for values less than the DL.

Also included in the summary tables for liquid streams (ie. raw sewage and effluents) is the compound DL. As previously discussed, this value occasionally varied during the laboratory analyses within the stream type depending on a number of factors. The DL values presented in the summary tables are the limits for over 90 percent of the samples in a stream type. For approximately 10 percent of the samples the analytical laboratory was able to achieve reliable results below those DLs. This will explain the reason that in some cases the minimum reported concentrations presented are lower than the "typical" DL.

For sludges, the DLs used in analyses were based on the liquid sludge sample analyses. Since the contaminant concentrations presented for sludges are on a dry weight basis, the DLs cannot be used for comparative purposes, and are therefore not presented.

5.3.2 Contaminants Not Detected in Any Sample Type

Table 5-6 lists those compounds that were never detected at concentrations above the DLs in any liquid or sludge sample at any of the 37 WPCPs sampled. The list has been partitioned into compounds that are confirmed as not detected and compounds which on the basis of QA/QC results cannot be confirmed as not detected.

In total, 34 compounds were never detected in any sample type, 4 of these were not confirmed. Of the total number, 17 were base neutral and acid extractable compounds, 13 were volatile organic compounds, 3 were pesticide and herbicide compounds and 1 was Tetrachlorodibenzodioxin. There are no metals on this list.

5.3.3 Summary of Contaminants in Raw Wastewater

Table 5-7(a) presents the compounds that were not detected above the DL in any raw wastewater sample. A total of 59 compounds were not detected, including 4 that were not confirmed. Also indicated in this Table are all compounds that were not detected in any stream type (Table 5-6).

TABLE 5-6 - GLOBAL SUMMARY OF CONTAMINANTS NOT DETECTED IN ANY STREAM

	CONFIRMED		NOT CONFIRMED
CONTAMINANT	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
P2ATRA	ATRAZINE	PMPCRE	P-CRESOL
PADIAZ	DIAZINON		
MEPAR MMALA	PARATHION ETHYL MALATHION		
P4MPAR	METHYLPARATHION		
PM24NP	2,4-DINITROPHENOL		
PMANAA	ALPHA-NAPHTHYLAMENE		
PMBNAA PN2CNA	Ben-NAPHTHYLAMINE CHLORONAPHTHALENE		
PNACNE	ACENAPHITHENE		
PNDAHA	DIBENZO(4,b)ANTHRACENE		
PNGHIP PNINP	BENZO(g,b,i)PERYLENE IDENO(1,2,3-cd)PYRENE		
PODICH	DICHLORAN		
POTOC X3245	TRI-O-CRESYL PHOSPHATE 2,4,5-TRICHLOROPHENOL		
P94CDD	DIOXINS AND FURANS TETRACHLORODIBENZODIOXIN		
7400	PESTICIDES, HERBICIDES, PCBS		
PISTRO	STROBANE	POCAPN X1HCBD	CAPTAN HEXACHLOROBUTADIENE
BlVBR	VOLATILES VINYL BROMIDE	X1ACRY	ACRYLONITRILE
PM2CEE XII12T XXIIETH XXIBETH XXIBROM XXIGALM XXIGALM XXIT12D XXIT12D XXITCPM XXIVCL XXCCPPE	2-CHLOROETHYLVINYLETHER 1,1,2TERACHLOROETHANE 1,1,2TERACHLOROETHANE BROMOETHANE BROMOFORM CHLOROETHANE CHLOROETHANE TR.1,2-DICHLOROETHYLENE TR.1,2-DICHLOROETHYLENE TRICHLOROFILVOROMETHANE VNYL CHLORIDE 3-CHLOROPROPENE		
	-		

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	METALS AND CYANIDE		
BEUT	BERYLLIUM,UNFILT.TOTAL		
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
P2ATRA	ATRAZINE*		
P4DIAZ	DIAZINON* PARATHION ETHYL*		
P4EPAR P4MALA	MALATHION®		
P4MPAR	METHYLPARATHION*		
PM24DT	24-DINTTROTOLUENE		
PM24NP	24-DINTTROPHENOL*		
PMANAA	ALPHA-NAPHTHYLAMINE*		
PMBNAA	BETA-NAPHTHYLAMINE*		
PMDPE	DIPHENYL ETHER		
PN2CNA	CHLORONAPHTHALENE* ACENAPHTHENE*		i
PNACNE PNACNY	ACENAPHTHYLENE		
PNANTH	ANTHRACENE		
PNBAP	BENZO(A)PYRENE		
PNBIPH	BIPHENYL		
PNCHRY	CHRYSENE		
PNDAHA	DIBENZO(A,H)ANTHRACENE®		
PNGHIP PNINP	BENZO(G,H,I)PERYLENE* IDENO(1,23-CD)PYRENE*	- 1	
PODICH	DICHLORAN*		
POTOC	TRI-O-CRESYL PHOSPHATE*		
X3245	2,4,5-TRICHLOROPHENOL®		
	DIOXINS AND FURANS		
P94CDD	TETRACHLORODIBENZODIOXIN*		
P95CDD	PENTACHLORODIBENZODIOXIN		
P95CDF	PENTACHLORODIBENZOFURAN		
P96CDD	HEXACHLORODIBENZODIOXIN		
P96CDF	HEXACHLORODIBENZOFURAN		
P97CDD	HEPTACHLORODIBENZODIOXIN		
P97CDF	HEPTACHLORODIBENZOFURAN		
	PESTICIDES, HERBICIDES, PCBS		
POPCNB	PCNB	POCAPN	CAPTAN?
PIENDA PLETRO	ELDRIN ALDEHYDE	XIHCBD	HEXACHLOROBUTADIENE*
PISTRO PITOX	STROBANE* TOXAPHENE		
FIIOX	VOLATILES		
BIOCTE	1-OCTENE	XIACRY	ACRYLONITRILE*
BIVBR	VINYL BROMIDE*		
EIDIEE	DIETHYL ETHER		
PM2CEE X11122	2-CHLOROETHYLVINYLETHER* 1,1,22-TETRACHLOROETHANE*		
X1112T	1,1,2-TETRACHLOROETHANE* 1,1,2-TRICHLOROETHANE*		
X113DR	TRANS-1,3-DICHLOROPROPENE		
XIACTO	ALPHA-CHLOROTOLUENE		
XIBETH	BROMOETHANE*	1	
X18ROM	BROMOFORM*	1	
XICHLE XICHLM	CHLOROETHANE*		
XICHLM XIDCFM	CHLOROMETHANE* DICHLORODIFLUOROMETHANE		
X1T12D	TRI-1,2-DICHLOROETHYLENE*		
X1TCFM	TRICHLOROFLUOROMETHANE*		
X1VCL	VINYL CHLORIDE*		
X213CB	1,3-DICHLOROBENZENE		
X214CB X2CBEN	1,4-DICHLOROBENZENE CHLOROBENZENE		
X2CPPE	3-CHLOROBENZENE 3-CHLOROPROPENE*		

[.] NOT DETECTED IN ANY STREAM TYPE AT ANY PLANT

A summary of the compounds that were detected in any raw sewage sample (all WPCPs) is presented in Table 5-7(b). A total of 85 organic contaminants, 14 metals and cyanide were detected at least once in raw sewage samples. However, only 7 metals (Al, Sr, Zn, Hg, Cu, Ni and Cr), 2 base neutral and acid extractable compounds (M-cresol and phenol) and two pesticides and herbicides (2,4-Dichlorophenoxyacetic acid and gamma-BHC) were found in the raw sewage streams at more than 50 percent of WPCPs. The most prevalent volatile organic compounds were detected in raw sewage at fewer than 40 percent of the 37 plants, and the most prevalent dioxin/furans at fewer than 11 percent of plants.

All detected volatile compounds, dioxin/furans compounds and all but the 2 pesticides and herbicides and 2 base neutral and acid extractable compounds (mentioned above) were detected in less than 20 percent of the samples. Metals were most frequently detected contaminant group.

5.3.4 Summary of Contaminants in Primary Effluents

Table 5-8(a) presents the contaminants that were not detected in any primary effluent samples from any of the 7 primary treatment plants. There were a total of 109 compounds not detected, including 7 that were not confirmed. Also indicated in the Table are the 34 compounds that were not detected in any sample at any plant.

A summary of the parameters detected in any primary effluent is presented in Table 5-8(b). A total of 33 organic contaminants, 13 metals and cyanide were detected at least once in the primary effluents.

Four of the 6 base neutral and acid extractable compounds, 4 of the 15 pesticides and herbicides, and 4 of 10 volatile organic compounds were detected in at least 3 of the 7 primary WPCPs. Metals were the most prevalent contaminant with 12 metals detected at at least 3 plants. Dioxin/furan compounds were only detected at 2 plants.

As noted, metals were the most frequently detected contaminants. Six metals (Zn, Sr, Hg, Al, Cr, Cu) were detected in greater than 60 percent of all primary effluent samples. Only one base neutral and acid extractable compound (M-cresol) two pesticides and herbicides (gamma-BHC and 2,4-Dichlorophenoxyacetic acid) and 1 volatile organic compound (Tetrachloroethylene) were present at least 40 percent of samples. The most frequently detected dioxin compound (Octachlorodibenzodioxin) was detected in only 25 percent of the samples.

HI CLOCKH-CONCALL HI HI HI HI HI HI HI	STRONTIUMUJNETITTOTAL, ug/L 0 318 319 997 37 37 37 37 37 37	MACRESOL
0 273 273 1000 37 0 244 1000 37 0 256 277 996 37 0 256 267 996 37 0 258 267 996 37 0 258 267 996 37 0 258 270 997 11 0 258 270 997 18 0 37 273 114 114	0 318 319 997 37 0 44 49 980 34 0 115 322 978 34 0 274 252 950 34 0 277 322 950 35 0 103 322 970 37 0 277 322 970 37 0 277 322 970 37 0 82 271 250 21 0 82 271 250 31 0 82 271 250 31 0 82 321 250 31 0 76 322 216 216 0 76 322 117 19 1 0 41 321 118 118 1 0 5 5 906 116 2	167 275 607 312 118 275
248 275 1000 37 248 274 275 1000 0 37 250 257 257 99 6 37 250 257 99 6 37 258 250 99 6 37 258 250 99 6 37 258 250 99 6 37 258 271 21.4 18 258 271 12.4 18 258 277 10.2 11	318 319 99,7 37 48 45 97 97 37 314 312 99,7 37 315 312 312 312 317 312 312 310 318 312 312 310 318 312 310 318 312 310 318 312 310 318 311 310 31 312 310 31 312 310 31 312 310 31 311 311 31 311 311 31 311 311 31 311 31	275 607 32 22 22 23 22 23 23 23 23 23 23 23 23
248 1000 37 248 1000 37 267 99 6 37 260 99 6 37 260 99 1 37 271 21 4 18 273 10 2 4 18 273 10 2 4 18	319 99,7 37 322 97 8 34 323 95,8 34 323 95,8 37 323 95,8 37 322 73 6 33 321 23 6 33 321 23 6 33 321 23 6 33 321 23 6 33 322 17,7 19 321 17,8 19 322 17,7 19 308 1,6 2	275 607 32 22 22 23 22 23 23 23 23 23 23 23 23
10000 10000 99.6 99.6 99.6 11.2 11.2 10.2 10.2 10.2 10.2 10.2 10.2	99.7 99.8 99.8 99.8 99.8 99.8 99.8 99.8	60.7 42.9 42.9 5.8 5.8 5.8 5.8 5.8 6.2 6.4 6.2 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4
30 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26648848484222222
37 30 37 37 37 37 18 37 37	37 37 37 37 37 37 37 37 37 37 37	*****************
100.0 100.0 100.0 100.0 100.0 100.0 31.4 37.8	100.0 99.1 100.0 100.0 89.2 89.2 89.2 13.4 13.4 13.4 13.4 13.4 13.8 10.3 54.8 27.3 27.3	86 5 2 3 3 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0.90 5.18 15.37 140.23 120.88 287.75 100.84 0.01 0.03	370.70 211.060 211.00 0.23 1000.10 38 80 1 93 1 10 9 10 40 9 33 6 50 17.30 17.30	25.59 14.52 5.37 5.37 7.72 12.59 12.65 12.
1.03 1.69 1.69 1.93 1.78 1.78 2.08 2.09 2.03	2.14 2.94 2.94 2.01 2.01 2.01 2.03 1.86 1.86 1.86	1 44 5 2 46 5 2 2 46 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 27 17 90 43.10 802.00 667.00 1620.00 259.00 0.97 16.01 13.40	2250.00 5500 00 5500 00 5300 00 22957.80 820 00 19000 0 590 00 80 00 590 00 60 00	783.95 276 20 82 90 46 90 39 30 216 50 11 20 80 11 20 80 10 50 10
0.09 0.51 11.00 11.00 0.10 0.01 0.03 0.05	65.00 19.50 10.00	0.18 9.97 10.10 10.30 2.20 2.20 2.20 2.20 2.40 3.30 3.30 3.30 3.30 3.30 3.30 3.30 3

TABLE 5-7b - GLOBAL SUMMARY OF CONTAMINANTS IN RAW SEWAGE

	CONTANT	UNITS QA/Q	UNITS QA/QC GLOBAL. CODE # SAMPS. DET.	GLOBAL # SAMPS. TESTED	GLOBAL % FREQ. DET.	GLOBAL # PLANTS DET.	GLOBAL # PLANTS	GLOBAL % PLANT PREV.	GLOBAL GEO. MEAN	GLOBAL SPREAD FACTOR	GLOBAL MAX. CONC.	GLOBAL MIN, CONC, > DL	DET, LIMIT (DL)
VOLATILES													
	M., AND P.X YI ENES	u.g.A. 1	43	274	15.7	14	37	37.8	26 00	202	1700.00	3.80	40 00
82EBNZ B	ETHY BENZENE	ug/l. 1	30	274	11.0	=	37	29.7	23 50	1.75	1200 00	3.50	40.00
^	CIBOROFORM	ug/l 1	58	274	10 2	12	37	32.4	23 90	1.75	340.00	41 00	40.00
,	O-XYLENE	ug/l. 1	25	274	9.1	6	37	24.3	22 47	1 56	\$70.00	440	40 00
KIIIIT 1	1,1,1-TRICHLOROETHANE	ug/l. 1	21	274	7.7	7	37	189	23 18	1.74	440,00	43.42	40.00
X1TRIC 1	TRICHLOROETHYLENE	ug/l. 1	15	274	5.5	9	37	16.2	22.59	1 82	0000086	12.00	40.00
_	TETRACHLOROETHYLENE	ug∕l. 1	12	274	4.4	7	37	18 9	21.51	1.53	3000 00	29 00	40.00
٠.	STYRENE	ug/1 1	6	274	33	4	37	8 01	21 40	1.39	1 20H.08	43 33	40.00
	1,1-DICHEOROFITHENE	ug/l. 1	7	274	2.6	8	37	13.5	20.55	1 28	220.00	10 00	40.00
_	BROMODICHI ORORENZI: NE	ugA. 1	2	274	0.7	2	37	5.4	20.55	1.12	55 00	40.00	40.00
	1,2-DICTB.OROETHANE	ug/l. 1	2	274	0.7	2	37	5.4	20 26	1.17	1 20 00	120 00	40 00
X1BDCM E	BROMODICHI OROMETHANE	ugЛ. 1	2	274	0.7	2	37	5.4	30.10	1 10	130 00	18 00	90.00
_	CHLORODIBROMOMETHANE	ug/4. 1	2	274	0.7	2	37	5.4	20 16	1.10	67 00	56 00	40.00
_	CARRON TETRACHLORIDE	ue∕l. 1	2	274	0.7	7	37	5.4	20 19	1.12	00 66	57 00	40.00
_	H-XANOI,	ug/t. 2	_	274	0.4	-	37	2.7	1368 56	7 OH	5000 00	5000 00	10.27
_	1,1-DICHLOROFTIANE	ug/l. 1	-	274	0.4	-	37	2.7	20 19	116	250 00	250 00	40 00
_	1,2-DICHILOROPROPANI:	ug/l. 1	-	274	0.4	-	37	2.7	20 05	1.05	42 00	42.00	40.00
_	CIS-1,3-DICHLOROPROPENE	ug∕l. 1	-	274	0.4	-	37	2.7	29 24	111	40 00	40.00	00 09
`	ACROLEIN	ug/l. 3	-	274	0.4	-	37	2.7	202 81	1.26	9200 00	9200.00	400 00
CICDCE	CIS-1,2-DICHLOROFTHYLLENE	ugЛ. 1	-	274	0.4	-	3.7	2.7	20 14	1.12	130.00	130 00	40 00
_	1,2 DICH OROBENZENE	ug/l. 1	-	274	0.4	-	37	2.7	20.05	1 05	42 00	42.00	40 00
(23CTO 3	CAR ODO'TO! HENE												

		1	
	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	METALS AND CYANIDE		
ASUT BEUT	ARSENIC,UNFILT.TOTAL BERYLLIUM,UNFILT.TOTAL		
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
P2ATRA P4DIAZ	ATRAZINE* DIAZINON*		
P4EPAR	PARATHION ETHYL®		
P4MALA			
P4MPAR	MALATHION* METHYLPARATHION*		
PM24DP	2,4-DICHLOROPHENOL		
PM24DT	24-DINTIROTOLUENE	1	
PM24MP	24-DIMETHYLPHENOL		
PM24NP	24-DINITROPHENOL®		
PM26DT	26-DINITROTOLUENE	ĺ	
PM2NP	2-NTTROPHENOL	1	
PM46DP	2-METHYL4,6-DINTTROPHENOL		
PM4BPE	4-BROMOPHENYLPHENYLETHER		
PM4CPE PM4NP	4-CHLOROPHENYLPHENYLETHER 4-NITROPHENOL	1	
PM4NP PMANAA	ALPHA-NAPHTHYLAMINE*	ì	
PMB2EM	BIS(2-CHLORETHOXY)METHANE		
PMB2IE	BIS(2-CHLOROISOPROPYL)ETHER		
PMB2NE	BIS-(2-CHLOROMETHYL)ETHER	1	
PMBNAA	BETA-NAPHTHYLAMINE*		
PMDMP	DIMETHYL PHTHALATE	1	
PMDPE	DIPHENYL ETHER	1	
PMNITB	NITROBENZENE	1	
PMNND PMNNP	N-NTTROSO-DI-PHENYLAMINE	1	
PMPCMC	N-NTTROSO-DI-NPROPYLAMINE P-CHLORO-M-CRESOL	1	
PN2CNA	CHLORONAPHTHALENE*	1	
PNACNE	ACENAPHTHENE®	1	
PNACNY	ACENAPHTHYLENE	1	
PNANTH	ANTHRACENE		
PNBAA	BENZO(A)ANTHRACENE		
PNBAP	BENZO(A)PYRENE		
PNBBFA	BENZO(B)FLUORANTHENE	ł	
PNBIPH	BPHENYL		
PNBKF PNCHRY	BENZO(K)FLUORANTHENE CHRYSENE		
PNDAHA	DIBENZO(A-H)ANTHRACENE®		
PNFLAN	FLUORANTHENE		
PNGHIP	BENZO(GH,DPERYLENE*		
PNINP	IDENO(1,2,3-CD)PYRENE®	1	
PNPHEN	PHENANTHRENE		
PNPYR	PYRENE		
PODICH POTOC	DICHLORAN* TRI-O-CRESYL PHOSPHATE*		
X30010	2-CHLOROPHENOL		
X3245	24.5-TRICHLOROPHENOL®		
X3246	2,4,6 TRICHLOROPHENOL		
X3PCPH	PENTACHLOROPHENOL		
	DIOXINS AND FURANS		
P94CDD	TETRACHLORODIBENZODIOXIN*		
P95CDD	PENTACHLORODIBENZODIOX IN	1	
P95CDF	PENTACHLORODIBENZOFURAN		
P96CDD	HEXACHLORODIBENZODIOXIN		
P96CDF P97CDD	HEXACHLORODIBENZOFURAN HEPTACHLORODIBENZODIOXIN		
P97CDF	HEPTACHLORODIBENZODIOXIN HEPTACHLORODIBENZOFURAN		
P98CDP	OCTACHLORODIBENZOFURAN		
	PESTICIDES, HERBICIDES, PCBS		
P0PCNB	PCNB	POCAPN	CAPTAN*
P1ALDR	ALDRIN	P1END1	ENDOSULFAN I
P1BHCD	DELTA-BHC(HEXACHLORCYCLHEXANE)	PIENDR	ENDRIN
P1CHLA	ALPHA-CHLORDANE	XIHCBD	HEXACHLOROBUTADIENE*
PICHLG	GAMMA-CHLORDANE		
PIDIEL	DIELDRIN ELDRIN ALDEHYDE		
	I BLUDEN ALDEHVOE		
PIENDA			
PIENDA PIHEPE PIOCHI.	HEPTACHLOREPOXIDE OXYCHLORDANE		

[.] NOT DETECTED IN ANY STREAM TYPE AT ANY PLANT

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT	CONTAMINANT NAME
	PESTICIDES, HERBICIDES, PCBS		
PIPPDD	PP-DDD		
IPPDE	PP-DOE		
PISTRO PITOX	STROBANE* TOXAPHENE		
(2HCB	HEXACHLOROBENZENE		
	VOLATILES ORGANIC		
BIVBR	VINYL BROMIDE®	X1ACRO X1ACRY	ACROLEIN ACRYLONTRILE*
32BDCL	BROMODICHLOROBENZENE	ATACKT	ACKIEGATIKEE
IDIEE .1HEX	DIETHYL ETHER HEXANOL		
M2CEE	2-CHLOROETHYLVINYLETHER*		
(11122	1.1.2.2-TETRACHLOROETHANE®		
(1112T	1,1,2-TRICHLOROETHANE*		
CITICE	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	1	
(112CE (112CP	1,2-DICHLOROPETHANE 1,2-DICHLOROPROPANE		
(113DP	CIS-1,3-DICHLOROPROPENE		
(113DR	TRANS-1.3-DICHLOROPROPENE		
CIACTO CIBETH	ALPHA-CHLOROTOLUENE BROMOETHANE		
(IBROM	BROMOFORM®		
(1CDBM	CHLORODIBROMOMETHANE	1	
(ICDCE	CIS-1,2-OICHLOROETHYLENE		
(ICHLE (ICHLM	CHLOROETHANE® CHLOROMETHANE®		
(1DCFM	DICHLORODIFLUOROMETHANE		
(1T12D	TRI-1.2-DICHLOROETHYLENE®	1	
CITCEM	TRICHLOROFLUOROMETHANE®	1	
K1VCL K212CB	1,2-DICHLOROBENZENE	1	
K213CB	1,3-DICHLOROBENZENE		
(214CB	1,4-DICHLOROBENZENE		
K23CTO K2CBEN	3-CHLOROTOLUENE CHLOROBENZENE		i e
(2CPPE	3-CHLOROPROPENE®		
130110		1	
		1	
	1		
			i

^{* -} NOT DETECTED IN ANY STREAM TYPE AT ANY PLANT

TABLE 5-8 b - GLOBAL SUMMARY OF CONTAMINANTS IN PRIMARY EFFLUENTS

Comparison Com	CONTAM- INANT	CONTAMINANT NAME	UNITS Q	UNITS QA/QC GLOBAL CODE # SAMPS, DET,	GLOBAL # SANIPS. TESTED	GLOBAL % FREQ. DET.	GLOBAL # PLANTS DET.	GLOBAL # PLANTS	GLOBAL % PLANT PREV.	GEOBAL GEO. MEAN	SPREAD	MAX. CONC.	MIN. CONC.	(JB)
December Comparison December Decembe	CONVENTI	IONAL												
PRINCIPAL STANDARD PRINCIP								,	9	9	100	130.00	5	8
Discriming Dis	BODS	BOD, 5 DAY -TOTAL DEMAND CHEMICAL OXYGEN DI-MAND	ng/L		0 4	100.0	- 1		100.0	108 54	1.56	376.00	2000	2 00
AMONOMENSIATIONAL PITTACK, mid. 0 40 1000 7 7 1000 104 104 10 2 10 2 10 100 104 104 104 104 104 104 104 104	DOC	DISSOLVED ORGANIC CARBON	me/L		40	100.0	7	7	100.0	12.80	1 40	44 80	8 00	1.00
NUMBER N	NNITHR	AMMONIUM, TOTAL, FILT REAC.	meA		40	100.0	7	7	100.0	10 46	9 5	21.60	2.20	0.20
RESIDE_RAKIONSTORM	NNTKUR	NURSOGEN FOT KIELUNPTOT	mg/L		0 4	000		- 1	0001	6.88	1 03	744	6.16	100
RESIDIE, MATCH ATT. RESIDIES, MATCH ATT.	FIER	PHOSPHORIS UNFILTIOTAL	meA.		34	100.0	*	. \$1	100.0	1.34	1.96	4 02	0 33	0 01
TREADILY MATERIAL MAT	RSP	RESIDUE, PARTICULATE	med		3.9	100.0	7	7	100.0	29 57	1.73	111.00	7.30	1.00
AND CYANIDE AND C	RSILOI	RESIDUE, PARLOSS ON IGNI.	med		10	0.001	7	. 2	0.001	28 16	195	7680	12.80	000
MINATELE PROCESS	TURB	TURBIDITY	mg/L		n ç	1000	- <	1	100.0	9071	2 01	2 60 00	011	0.0
NIRATIS_TOTAL FILT REAC	NNOZER	NITRITE ETT. REACT	me/L		40	10.0	-	7	14.3	000	4 03	0.53	015	0 01
AND CYANIDE STOCKHART TOTAL STOCKHART	NNOTER	NITRATES, TOTAL FILT REAC.	mg/L		40	10.0	-	7	14.3	0.05	3.16	1.55	060	0 0 0
AND CYANIDE TYCLIANI TOTAL Well Of State Control of Sta														
STATE TOTAL	METALS A	AND CYANIDE												
TROCHINATI TOTAL Ugh. 0 48 48 100 7 7 100 90 80 194 1900 90 90 194 1900 90 90 90 90 90 90										1		0.000		000
MINION MOLTANIAL STATES AND ACID EXTRACTABLE COMPOUNDS MINION MOLTANIAL STATES AND ACID EXTRACTABLE COMPOUNDS MOLTANIAL STATES AND ACID EXTRACTABLE AND ACID STATES AND ACID STAT	TUNZ	ZINCUINI-II.T TOTAL	ugA.		8 4 8	0 00 0	7	7	1000	304 40	3.04	1030 00	00.00	00.00
ALIMENTIALITY TOTAL. 10	HGUT	MERCURY UNFILT TOTAL	J.Su		39	97.4	7	7	1000	0.00	242	0.36	000	0 01
CHONGHISHATITOTAL ug/L 0 7 8 873 1 1000 185 0 193 000 000 000 000 000 000 000 000 000 0	ALUT	ALUMINUM, UNTIL TOTAL	ug.A.		44 80	958	7	7	1000	550 00	345	4800 00	00 001	00 00
COMMUNICATIONAL SIGNAL STATES OF THE SIGNAL STATES	CUUT	COPPER, UNFILT TOTAL	Les.		ac a	87.5	- «		85.7	10.80	1 83	8 9	800	10.00
Colon Colo	96	CADMIUM UNFILT TOTAL	Lan.		3 4 0 80	37.5	0	7	85.7	2.50	1 96	7 00	3 00	3 00
MOCH SIREMETOTAL. WELL ON TREPERINDENT TOTAL. WELL ON THE WINDENT TOTAL. WELL ON TOTAL	COUT	COBALT, UNFB.T TOTAL.	Lie A.		46	22.9	9	7	85.7	0.50	1.58	20.00	00 01	10.00
INCRESSIVE TOTAL	MOUT	MOLYRDENUM, UNFILT TOTAL	ug/L		at 4 ac a	5 2 6	0 4		47.1	9 000	2 86	140.00	800	00.01
CHARLAND ACID EXTRACTABLE COMPOLENDS 44 167 4 7 57.1 6+0 161 200 100 <th< td=""><td>PRIT</td><td>LEAD INSECT TOTAL</td><td>us/L</td><td></td><td>0 90</td><td>9 32</td><td>* *0</td><td>. L</td><td>71.4</td><td>20 80</td><td>1 94</td><td>140 00</td><td>30 00</td><td>30.00</td></th<>	PRIT	LEAD INSECT TOTAL	us/L		0 90	9 32	* *0	. L	71.4	20 80	1 94	140 00	30 00	30.00
CYANDIN-SHREQUERT REAC. Up.T. 0 3 40 75 3 7 429 000 700 3 SELENTIMENTIATION. Up.L. 0 1 45 22 1 7 143 1050 170 500 900 9700 TRALAND ACID EXTRACTABLE COMPOUNDS M-CRESOL. HIGH STATEMENT U. Up.L. 1 18 39 462 5 7 7114 390 297 3240 430 BUTYLIBENZYLAFITHALATE: U. Up.L. 1 8 39 128 4 7 7114 390 297 3240 430 NAPITHALENCY LINE U. Up.L. 1 5 39 128 3 7 429 113 142 460 210 PRICE U. Up.L. 1 5 39 128 3 7 429 113 142 460 210 PRICE U. Up.L. 1 1 39 2.0 1 1 143 160 133 7.0 180 AND FURANS CCTACH LORODHIESTODICKIN N. Up.L. 2 1 8 250 2 7 28 0 000 DESTREMENTING U. Up.D. 2 1 8 125 1 7 143 160 008 230 140 008 TETRACTULORODHIESTOPICANEN N. Up.L. 2 1 8 125 1 7 143 009 220 010 010 DESTREMENTING U. Up.D. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AGUT	SILVER UNITIT TOTAL	ug/L		84	16.7	4	7	57.1	640	168	20 00	10 00	10 00
SHERRIMONDIALIZATION. STEEPCHIMONDIALIZATION. STATE AND ACID EXTRACTABLE COMPOUNDS TRALAND ACID EXTRACTABLE COMPOUNDS BUTCHESON. BUTC	CCNFUR	CYANIDE-FREE, UNFILL REAC.	Les.		40	7.5	е.	7	42.9	060	261	39 00	2,00	00 00
TRALAND ACID EXTRACTABLE COMPOUNDS MCRESOL BUTYLERS/CHAILATE Ug/L 1 8 39 462 5 7 71,4 390 297 3240 430 BUTYLERS/CHAILATE Ug/L 1 8 39 462 5 7 71,4 390 297 3240 430 BUTYLERS/CHAILATE Ug/L 1 8 39 462 5 7 71,4 390 297 3240 430 210 920 210 PROFITE STANDARD	SECI	SELENIUM, UNFILL LOTAL	ug/L		C T	7.7	-			00 01	2	3	3	8.8
M-CRESOL.	BASENEU	TRALAND ACID EXTRACTABLE CO	MPOUNDS											
### ### ### ### ### ### ### ### ### ##	DAMACED	33200	Von		30	46.2	•	7	71.4	190	2.67	32.40	4 30	3.00
NETRICIAL SECTION NOT NOT NOT NOT NOT NOT NOT NOT NOT N	PMBBP	BUTYLBENZYLPI ITHALATE	ug/L		36	20 5	4	7	57.1	142	210	9 20	210	2 00
NARITHALENE 1 1 2 3 39 128 3 7 44.9 113 144 4 60 210 NARITHALENE 1 1 1 2 3 39 128 3 7 44.9 113 144 4 60 210 FALORENE 1 1 1 39 2.0 1 7 14.3 160 133 7 20 AND FURANS OCTACII ORODHENZODIONIN 112 8 25 2 7 28 6 025 333 140 008 TETRACIII ORODHENZODIONIN 112 8 125 1 7 143 009 2.20 010 010 GAMMA RICCHENOLOGY	PMPIEN	PRENOI.	Les I		36	12.8	6	7	42.9	1.78	99:1	8 70	3.40	300
OCCIONAL INTERNACIONAL STATES IN THE STATES	PNNAPH	NAPITITALENE	ug/L		30	12.8	r -		42.9	25	1 4 2	7 20	3.80	807
AND FURANS OCTACILORODINESZOPURAN ng/L 1 2 8 250 2 7 286 025 333 140 008 TETRACILORODINESZOPURAN ng/L 2 1 8 125 1 7 143 009 2.20 010 010 DESTREMENDINES, WEBS GAMMAR BICHENANCHEN, MARCHENANCH 1947 2 29 40 725 6 7 857 002 2.28 009 001	PNFLUO	PLUORINE	2		36	2.6		7	14.3	1.05	1.38	7 8	7 80	2.00
AND FURANS OCTACILLORODIBI-ZZODIOXIS Right. 2 1 8 25.0 2 7 28.6 0.25 333 14.0 0.08 TETRACILLORODIBI-SZOPINKAN Right. 2 1 8 12.5 1 7 14.3 0.09 2.20 0.10 0.10 DESTREMENTINES, PURSA GAMMAR RICHEMENTINES, PURSA GAMMAR														
AND FUNANS OCTACII ORODHE-SZODIOXIN ng/L 1 2 8 250 2 7 286 025 333 140 008 TETRACII ORODHE-SZOPURAN ng/L 2 1 8 125 1 7 143 009 2.20 010 010 DESHERRICIDES, WEBS GAMMAR RICCHEMACHI ORCYCLIENAND ng/L 2 29 40 725 6 7 857 002 2.28 009 001														
OCTACILORODIBLAZODIOXIN ng/L 1 2 8 25.0 2 7 28.6 0.25 333 14.0 0.08 TETRACILORODIBLAZOPHRAN ng/L 2 1 7 14.3 0.09 2.20 0.10 0.10 DESTREMACIDES, W.B.S. 0 0 2 2 0<	DIOXINS	ANDFURANS												
THTRACILIONODIRENZOPURAN ng/L 2 1 7 14.3 0.09 2,20 0.10 0.10 DES,IREMENCIDES,IVERS 0.05 0.12 12.5 1 7 85.7 0.02 2.28 0.09 0.01	P98CDD	OCTACH LORODIBL: NZODIOXIN	ng/l.		œ	25.0	2	7	28 6	0.25	333	1 40	800	0 30
DES,IFR RICHES,IV.BS GAMMAR RICHEXACHI DRCYCLIEXANED w.A. 2 29 40 72.5 6 7 85.7 002 2.28 0.09 001	P94CDP	TETRACTII OKODIBLENZOPURAN	ngA		sc.	12.5	-	7	14 3	80	2.20	010	010	0.10
DES, HERBICTIDES, IYEBS GAMMAR RICCHEXACHI DRCYCLILIXANED w.A. 2 29 40 72.5 6 7 85.7 002 2.28 0.09 001														
GAMMA-RICCHEAGCH ORCYCLHEXACH O	PESTICID.	ES,HERBICIDES,PCBS												
	PIBLICG	GAMMA, BLICOTHY ACHT ORCYCT III	Lon VANA X		40	77.5	٠	7	857	0.02	2.28	000	0.01	0.01

IICIDI G			CODE	CODE # SAMPS. DET.	# SAMPS. TESTED	S FREQ.	# PLANTS DET.	FLANTS	% PLANT PREV.	GEO. GEO. MEAN	GLOBAL SPREAD FACTOR	GLOBAL MAX. CONC.	CONC.	DET. LIMIT (DL)
93MD	PESTICIDES, HERBICIDES, PCBS													
	2,4-DICHLOROPHENOXYACETIC ACID	J.	3	23	40	67.5	٥	7	85.7	90.0	4 96	1.70	0.02	0.03
35II.V	SB.VEX	L.	3	6	40	22.5	4	7	57.1	0.03	219	1.40	0 0 0	0.03
PIPCBT	PCB, TOTAL.	ľa.	2	7	40	17.5	8	7	28.6	0.03	3 06	0.45	0.03	0.0
P324ST	24.5-TRICLORPHENOXYACETIC ACID	ug/	•	7	40	17.5	3	7	42.9	0.04	261	2.80	900	0.03
PLBHCB	BETA-BIIC (HEXCHLORCYCLIU:XANE)	"N	-	۰	40	150	3	7	9 87	0.01	1.36	0.02	0.01	001
KZHCE	HEXACID OROETITANE	ug/L	3	s	40	12.5	-	7	14.3	0.01	2	0.03	0.02	0.01
PI BHCA	ALPHA-BITCHEXCHLORCYCLHEXANE)	7gn	-	2	40	20	1	7	14.3	0.01	1.58	0.05	0.03	0.01
PILND2	ENDOSUL/AN II	ux/I.	3	-	40	2.5	-	7	14.3	0.01	1.12	0.01	0.01	0.01
PILINDS	HNDOSULIZAN SULIMIATI	ng/	3	-	40	2.5	-	7	143	0.02	1 36	0.14	0.14	0
PILLEPT	HEPTACHLOR	ug/J.	3	-	40	2.5		7	14.3	0 0 1	1 25	0.02	0.02	0 0
PIMIRX	MIREX	us/l,	_	1	40	2.5	_	7	14.3	0.01	1 39	000	000	0.01
TOPIOT	PP-DDT	Lg.	3 %	_	40	2.5	-	7	14.3	0 0 5	1 31	0 11	0.11	0
CHCCP	HEXACHI OROCYCI OPENTADIENE	ug/L	3	1	40	2.5	-	7	14.3	0.05	1 03	90.0	90.0	0.10
12124	1,24-TRICHLOROBENZENE	Ž,	3	-	40	2.5	-	7	14.3	100	1.33	0 03	0.03	10.0
ATILA	OLATILES ORGANIC COMPOUNDS													
CITETR	TETRACHI OROETHYLLINE	υg/	_	21	38	55 3	9	7	85.7	4 39	5.84	380 00	220	2 00
B 20 X Y.L.	O-XYLENE	Z,	_	13	38	34.2	9	7	85.7	1.94	305	39 00	270	2 00
32MPXY	M, AND P-XYLENES	υg/	-	10	38	263	9	7	857	183	3 42	83 00	220	2.00
CHILL	1,1,1-TRICHLOROEFHANE	ug/l.	_	10	38	26 3	2	7	28 6	2.34	5.17	160 00	3.70	2.00
XICIET	CARBON TETRACIO ORIDE	URJ.	_	6	38	23.7	-	7	14.3	2.05	3.84	\$3.00	4 60	2.00
KITRIC	TRICIDOROFTHYLENE	 1/8″	-	7	38	18 4	3	7	42.9	1.71	3 60	4 20.00	640	2 00
32ERNZ	HATTAT BENZENE	ug/l	-	s,	38	13.2	2	7	28.6	1 29	203	17.00	2.20	2 00
CIDCLE	1,1-DICHLOROETHENE	LKA.	_	3	38	7.9	1	7	14.3	143	3 44	110 00	70 00	2 00
HOCTE	1-OCTENE	u.K.	-	-	38	2.6	-	7	14.3	1.58	1 36	10.00	10.00	3.00
12STYR	STYRENE											200		

5.3.5 Summary of Contaminants in Lagoon Effluents

Table 5-9(a) presents the contaminants that were not detected in any effluent sample from either of the two lagoons sampled. In total, 133 contaminants were not detected, including 12 that were not confirmed. Also indicated in the Table are these 34 contaminants not detected in any sample at any WPCP.

Table 5-9(b) shows that in the lagoon effluents, only 7 organic compounds were detected, all from the pesticide/herbicide group. Only one herbicide (2,4-Dichlorophenoxy-acetic acid) was detected at both lagoons. Of the 10 metals detected, 9 were detected at both lagoons.

Only 3 organic compounds (2,4-Dichlorophenoxy-acetic acid, Methoxyclor and 1,2,4-Trichlorobenzene) were detected in more than 1 or 10 percent of the samples. Four metals (Al, Hg, Sr and Zn) were detected in more than 90 percent of the samples, while the other metals (Cd, Co, Mo, Ni, Cr, Cu) were detected in at least 17 percent of the samples.

5.3.6 Summary of Contaminants in Secondary Effluents

Table 5-10(a) presents the contaminants that were not detected in any effluent sample from any of the 28 secondary WPCPs. A total of 74 contaminants were never detected including 5 that were not confirmed. Also indicated in the Table are the 34 compounds never detected in any type of sample at any WPCP.

Data regarding contaminants detected in secondary WPCP effluents is presented in Table 5-10(b). Sixty-eight organic compounds, 14 metals and cyanide were detected in at least one secondary effluent sample. However, none of the base-neutral and acid extractable compounds or dioxins and furans were detected at more than 15 percent of the WPCP (4 plants).

Only 8 of the 23 compounds in the pesticide/herbicide group and 3 of the 17 volatile organic compounds were detected at more than 15 percent of the WPCPs. Metals were the most prevalent contaminants, with 11 metals detected at more than 50 percent of the WPCPs.

As noted, the most frequently detected contaminant group was metals, with 7 metals detected in greater than 50 percent of the secondary effluent samples. The most frequently detected base neutral and acid extractable compounds were found in less than 4 percent of samples; dioxin/furan compounds were found in less than 9 percent of samples, and volatile organic compounds were found in less than 10 percent of samples. Two pesticide/herbicide compounds (2,4-Dichlorophenoxyacetic and gamma-BHC) were detected in at least 70 percent of all the final effluent samples.

	CONFIRMED		NOT CONFIRMED
CONTAMINANT	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	METALS AND CYANIDE		
	CELEDIDEE TOTAL		
AGUT ASUT	SILVER, UNFILT. TOTAL ARSENIC, UNFILT. TOTAL		
BEUT	BERYLLIUM, UNFILT. TOTAL		
CCNFUR	CYANIDE-FREE,UNFILT.REAC.		
BUT	LEAD,UNFILT.TOTAL SELENIUM,UNFILT.TOTAL		
SEUT	SELENICM, CAPICI. TOTAL		i
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
	AL STEPLOT	DAOCDE	P-CRESOL*
P2AMET	AMETRYNE ATRAZINE*	PMPCRE	T-CICLODE
PZATRA PADIAZ	DIAZINON*		
P4EPAR	PARATHION ETHYL®		
P4MALA	MALATHION*		
P4MPAR PM24DP	METHYLPARATHION* 2,4-DICHLOROPHENOL		
PM24DT	24-DINTIROTOLLENE		
PM24MP	2,4-DIMETHYLPHENOL		
PM24NP	2.4-DINTIROPHENOL*		
PM26DT PM2NP	2,6-DINTROTOLUENE 2-NITROPHENOL		
PM46DP	2-METHYLA,6-DINITROPHENOL		
PM4BPE	4-BROMOPHENYLPHENYLETHER		
PM4CPE	4-CHLOROPHENYLPHENYLETHER		
PM4NP PMANAA	4-NTTROPHENOL ALPHA-NAPHTHYLAMINE*		
PMANAA PMB2EM	BIS(2-CHLORETHOXY)METHANE		
PMB2IE	BIS(2-CHLOROISOPROPYL)ETHER		
PMB2NE	BIS-(2-CHLOROMETHYL)ETHER		
PMBBP	BUTYLBENZYLPHTHALATE		
PMBNAA PMDMP	BETA-NAPHTHYLAMINE* DIMETHYL PHTHALATE		
PMDPE	DIPHENYL ETHER		
PMMCRE	M-CRESOL		
PMNTTB	NTTROBENZENE		
PMNND PMNNP	N-NITROSO-DI-PHENYLAMINE N-NITROSO-DI-NPROPYLAMINE		
PMNNP PMOCRE	N-NITROSO-DI-NPROPYLAMINE O-CRESOL		
PMPCMC	P-CHLORO-M-CRESOL		
PMPHEN	PHENOL		
PN2CNA DNACNE	CHLORONAPHTHALENE® ACENAPHTHENE®		
PNACNE PNACNY	ACENAPHTHENE*		
PNANTH	ANTHRACENE		
PNBAA	BENZO(A)ANTHRACENE		
PNBAP	BENZO(A)PYRENE		
PNBBFA PNBIPH	BENZO(B)FLUORANTHENE BIPHENYL		
PNBKF	BENZO(K)FLUORANTHENE		
PNCHRY	CHRYSENE		
PNDAHA	DIBENZO(A,H)ANTHRACENE®		
PNFLLIO	FLUORANTHENE FLUORENE		
PNGHIP	BENZO(G,H,I)PERYLENE*		
PNINP	IDENO(1,2,3-CD)PYRENE®		
PNNAPH	NAPHTHALENE		
PNPHEN PNPYR	PHENANTHRENE PYRENE		
PODICH	DICHLORAN*		
POTOC	TRI-O-CRESYL PHOSPHATE®		
X3001O	2-CHLOROPHENOL		
X3245 X3246	2,4,5-TRICHLOROPHENOL* 2,4,6-TRICHLOROPHENOL		
X3PCPH	PENTACHLOROPHENOL		
	DIOXINS AND FURANS		
P94CDD	TETRACHLORODIBENZODIOXIN*		
P94CDF	TETRACHLORODIBENZOFURAN		
P95CDD	PENTACHLORODIBENZODIOXIN		
P95CDF P06CDD	PENTACHLORODIBENZOFURAN		
P96CDD P96CDF	HEXACHLORODIBENZODIOXIN HEXACHLORODIBENZOFURAN		
P97CDD	HEPTACHLORODIBENZODIOXIN		
P97CDF	HEPTACHLORODIBENZOFURAN		
P98CDD	OCTACHLORODIBENZODIOXIN		
P98CDF	OCTACHLORODIBENZOFURAN		

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	PESTICIDES, HERBICIDES, PCBS		
POPCNB PI ALDR PI BHCA PI BHCB PI BHCB PI GHLA PI GHLA PI GHLG PI GHLA PI GHLG PI GHLA PI GHLG PI GHLA PI GHLG PI GHLB	PCNB ALDRN ALPHA-BHCHEXCHLORCYCLHEXANE) BETA-BHCHEXCHLORCYCLHEXANE) DELTA-BHCHEXCHLORCYCLHEXANE) DLITA-BHCHEXCHLORCANE GAMMA-CHLORDANE GAMMA-CHLORDANE DIELDRN ELDRN ALDEHYDE HEPTA-CHLOREPOXID MIREX OXYCHLORDANE PCB, TOTAL MIREX PHOTO PP-DDD PP-DDD STROBANE* TOXAPHENE	POCAPN PIENDI PIENDI PIENDE PIENDE PIPDI PISAST PISALV XIHCBO	CAPTAN* ENDOSLIFAN I ENDOSLIFAN II ENDOSLIFAN II ENDRN PP-DDT 24.5-TRICLORPHENOXYACETIC ACID SILVEX HEXACHLOROBUTADIENE* HEXACHLOROETHANE
X2HCB	HEXACHLOROBENZENE		1
BIOCTE BIVBR B2BDCL B2EBNZ B2MPXY	VOLATILES 1-OCTENE VNYL BROMIDE* BROMODICHLOROBENZENE ETHYLBENZENE M. AND P. XYLEVES	XIACRO XIACRY	ACROLEIN ACRYLONITRILE*
BOOXYL BASTYR EIDIEE LIHEX PM20EE XIIIIT XIII12 XIII12 XIII16 XIII20 XIII30P XIII30P XIII30P XIII30P XIII30P XIII30P XIIA0P XIIA	O.YMENE STYRENE DETHYL ETHER HEXANOL 2-CHOROETHYLVNYLETHER* 1.1.1-TRICHOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.1-DICHLOROETHANE 1.2-DICHLOROETHANE 1.2-DICHLOROETHANE 1.2-DICHLOROFROPENE TRANS-1.3-DICHLOROPROPENE TRANS-1.3-DICHLOROPROPENE ALPHA-CHLOROTOLLENE BROMODICHLOROETHANE BROMODICHLOROETHANE BROMODETHANE* CHLOROETHANE* CHLOROETHANE* CHLOROETHANE* CHLOROETHANE* CHLOROETHANE* TRICHLOROETHANE TRICHLOROE		
X2CBEN	CHLOROBENZENE		

## PALY GLOBAL G				
## PALY GLOBAL GLOBAL GLOBAL GLOBAL ## PALY GRO. SPREAD MAX. PREV. MEAN PACTOR CONC. SPREAD MAX. PACTOR	DET. LIMIT (DL)	1.00 5.00 1.00 0.01 0.01 0.01 0.00 0.00	20.00 0.01 10.00 20.00 10.00 10.00 10.00 10.00 10.00	0.02 0.05 0.01 0.04 0.01
GLOBAL GLOBAL GLOBAL SPREAD PREV. MEAN PACTOR PREV. MEAN PACTOR P	GLOBAL MIN. CONC. > DI.	14 40 44 00 830 0 11 0 40 1 7 57 0 20 17 30 19 40 0 065	100.00 0.01 160.00 10.00 10.00 10.00 10.00 10.00 10.00	0.03 0.10 0.02 0.01 0.15 0.01
## PIEV. MEAN PIEV. ME	GLOBAL MAX. CONC.	48.20 110.00 11.60 11.60 6.15 6.15 43.00 8.38 8.38 8.38 8.38 0.31 51.40 42.20 6.35	240.00 0.02 330.00 20.00 10.00 4.00 10.00 10.00 10.00	0 10 0 70 0 04 0 01 0 01 0 013
GIOBAL * PLANT PREV. 100.0 1	GLOBAL SPREAD FACTOR	1 06 1 14 1 14 4 77 4 77 4 77 1 16 1 18 1 18 1 19 1 19 1 19 1 19 1 19	1.31 1.25 1.36 1.37 0.00 1.49 1.41 1.74	2.08 3.77 2.11 1.25 1.89 1.25 1.35
	GEO. GEO. MEAN	25.95 70 64 10.09 0.42 0.26 0.26 29.12 40.98 0.60 0.60	171.20 001 230.70 11.90 10.00 10.00 1.80 6.30 6.30 6.90 6.90	0.03 0.07 0.01 0.01 0.01 0.00
	GLOBAL % PLANT PREV.	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.0 100.0 100.0 100.0 50 0 100.0 100.0 50.0	100 0 50.0 50.0 50.0 50.0 50.0
GLOBAL # TATTS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GLOBAL # PLANTS	0000000000000000	~~~~~~~~~	222222
GLOBAL. # PLANTS DET. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GLOBAL # PLANTS DET.	00000000000	~~~~~~~~~	2
6 FPEQ. PET. PET. 1000 100	GLOBAL % FREQ. DET.	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.0 100.0 100.0 91.7 50.0 25.0 25.0 25.0 25.0 25.0	70.0 40.0 20.0 10.0 10.0 10.0
# SAMPS. TESTED # SAMPS. TESTED 10 10 10 10 10 10 10 10 10 10 10 10 10 1	GLOBAL # SAMPS. TESTED	000000000000000000000000000000000000000	222222222222222222222222222222222222222	0 0 0 0 0 0
CODE # SAMPS. CODE # SAMPS. DJ.T. REAL 0 10 10 10 10 10 10 10 10 10 10 10 10 1	GLOBAL # SAMPS. DET.	7 6 5 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1122	7 4 7
WAGG	38/0C	00000000000	00000000	m == m ≈ m m m
	CITS (
TAMINANT NAME SDAY TOTAL DIMAND WICH, ONYCHO DESAMD WICH, ONYCHO DESAMD WILL ONYCHO DESAMD WILL DEST ON WILL WILL ONYCHO DESAMD WILL DEST ON WILL WILL ONE, WILL WILL ON WILL WILL WILL ON WILL WI	CONTAMINANT NAME	HONAL BOD, SDAY -TOTAL DEMAND GENEVAL, OXYGEN DEMAND DISGOLVED DIGGANC CARBON NITRINE, JET REACT. NITROGEN-TOTAL INT. REAC. NITROGEN-TOTAL INT. PETAC. RESDDLE, PARTICULATI RESDDLE, PARTICULATI RESDDLE, PARTICULATI TURBIDIT AMMONUM,TOTAL, PIL REAC. PIENOLICS (AAAP)	NRICTIOTAL HRICTIOTAL NRICTIOTAL OTTAL LCTOTAL HETTOTAL HETTOTAL HETTOTAL HETTOTAL HETTOTAL HETTOTAL	OXYACETIC ACID NZENB GB ORCYCLJIEXANE) IATE OPENTADIENE
CONTAM. CONTAM. CONTAM. CONTAM. CONTAM. CONTAM. CONTAM. NITH NITH NITH NITH NITH NITH NITH NITH	CONTAM	CONVEN BODS COD DOC NNOTH NNOTH PHU PHU RSP RSP RSP OF TURB NNOTH RSP OF TURB	METALS ALJT HIGHT SRUT SRUT COUT COUT COUT COUT COUT COUT COUT CO	PESTICIE P324D P1DMDT X2124 P1BHCO P1BHCO P1BHCT X11ICCP

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	METALS AND CYANIDE		
BELT	BERYLLIUM, INFILT. TOTAL		
	BASE NEUTRAL & ACID EXTRACTABLE COMPOUNDS		
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
P2ATRA	ATRAZINE*	1	
P4DIAZ	DIAZINON*		1
P4EPAR P4MALA	PARATHION ETHYL*		
P4MPAR	METHYLPARATHION*		
PM24MP	24-DIMETHYLPHENOL		
PM24NP	24-DINTTROPHENOL®		
PM4BPE	4-BROMOPHENYLPHENYLETHER		
PM4CPE	4-CHLOROPHENYLPHENYLETHER	1	
PMANAA	ALPHA-NAPHTHYLAMINE*		
PMB2IE PMBNAA	BIS(2-CHLOROISOPROPYL)ETHER	1	
PMDPE	BETA-NAPHTHYLAMINE* DIPHENYL ETHER	 	
PMNND	N-NTTROSO-DI-PHENYLAMINE		
PN2CNA	CHLORONAPHTHALENE*		
PNACNE	ACENAPHTHENE*		
PNACNY	ACENAPHTHYLENE		
PNANTH PNBAP	ANTHRACENE		
PNBBFA	BENZO(A)PYRENE BENZO(B)FLU'ORANTHENE		
PNBIPH	BPHENYL		
PNCHRY	CHRYSENE		1
PNDAHA	DIBENZO(A,H)ANTHRACENE®	Į	
PNFLAN	FLUORANTHENE		
PNFLUO PNGHIP	FLUORENE		
PNINP	BENZO(G,H,I)PERYLENE • IDENO(1,2,3-CD)PYRENE •		
PODICH	DICHLORAN*		
POTOC	TRI-O-CRES YL PHOSPHATE*		į
X3245	2,4,5-TRICHLOROPHENOL®	Į.	
	DIOXINS AND FURANS		
P94CDD P95CDD	TETRACHLORODIBENZODIOXIN* PENTACHLORODIBENZODIOXIN		
P95CDF	PENTACHLORODIBENZOFURAN		
P96CDD	HEXACHLORODIBENZODIOXIN		
P96CDF	HEXACHLORODIBENZOFURAN		
P97CDF	HEPTACHLORODIBENZOFURAN		
	PESTICIDES, HERBICIDES, PCBS		
POPCNB	PCNB	POCAPN	CAPTAN*
PIALDR	ALDRIN	X1HCBD	HEXACHLOROBLTADIENE*
PI BHCD PI ENDA	DELTA-BHC(HEXCHLORCYCLHEXANE)		
PIHEPE	ELDRIN ALDEHYDE HEPTACHLOREPOXIDE		
PIOCHL	OXYCHLORDANE		
P1PMIR	MIREX PHOTO		
P1STRO	STROBANE*		i
X2HCB	HEXACHLOROBENZENE		
	VOLATILES		
BIOCTE	1-OCTENE	X1ACRO	ACROLEN
BIVBR	VINYL BROMIDE*	X1ACRY	ACRYLONTRILE*
EIDIEE LIHEX	DIETHYL ETHER		
PM2CEE	HEXANOL		
X11122	2-CHLOROETHYLVINYLETHER* 1,1,22-TETRACHLOROETHANE*		
X1112T	1,1,2-TRICHLOROETHANE*		
X112CP	1,2-DICHLOROPROPANE		
X113DP	CIS-1,3-DICHLOROPROPENE		
X1BETH X1BROM	BROMOETHANE*		
X1BROM X1CHLE	BROMOFORM* CHLOROETHANE*		
XICHLM	CHLOROMETHANE*		
XICTET	CARBON TETRACHILORIDE		
X1T12D	TRI-1,2 DICHLOROETHYLENE*		
X1TCFM	TRICHLOROFLUOROMETHANE*		
XIVCL	VINYL CHLORIDE*		
X212CB X213CB	1,2-DICHLOROBENZENE		
	1,3-DICHLOROBENZENE		
X214CB X23CTO	1,4-DICHLOROBENZENE 3-CHLOROTOLUENE		

[.] NOT DETECTED IN ANY STREAM TYPE AT ANY PLANT

DET. LIMIT (DL)	1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.01	10.00 20.00 20.00 10.00 10.00 10.00 10.00 10.00 30.00 30.00	3 00 3 00
GLOBAL MIN. CONC.	2.70 0.80 6.38 6.38 1.35 1.20 1.20 0.03 0.03 5.20 0.10	80 00 00 00 00 00 00 00 00 00 00 00 00 0	4 3 0 7 5 0 3 8 0 5 3 8 0 5 3 9 0 2 2 8 8 0 3 0 6 0 4 3 6 0 5 2 6 0 5 2 6 0 5 2 8 0 5 0 8 0 7 2 8 0 7 3 0 6 0 7 3 6 0 7 4 0 7 5 0 7 6 0 7 6 0 7 6 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
GLOBAL MAX. CONC.	297.00 32.10 8 18 200.00 242.00 110.00 256.00 245 77.70 345 77.70 345 77.70 345 77.70 162.00	4500 00 1400 00 5800 00 5800 00 1500 00 1150 00 14 10 14 10 150 00 120 0	30.50 17.30 23.00 23.00 23.00 13.20 23.80
GLOBAL SPREAD FACTOR	1.60 2.71 1.03 2.90 2.00 2.00 2.00 1.97 1.57 7.75 5.98	2 14 2 2 4 3 2 4 3 2 4 3 2 4 3 4 3 4 3 4 3	1.30 1.54 1.55 1.55 1.55 1.55 1.55 1.55 1.55
GLOBAL GEO. MEAN	8.09 7.97 7.10 7.41 10.12 21.22 52.86 0.68 3.90 0.22 2.33 7.47	340 90 33.30 0.03 1.01.70 22.10 9.00 9.00 9.00 9.00 9.00 13.0 16.50 16.50 17.10	1.70 1.63 1.09 1.09 1.09 1.09 1.01 1.01 1.01 1.00
GLOBAL % PLANT PREV.	100.0 100.0	100.0 100.0 100.0 100.0 100.0 89.1 89.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87	11. 10. 10. 10. 10. 10. 10. 10. 10. 10.
GLOBAL # PLANTS	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22
GLOBAL # PLANTS DET.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	4642221111111111
GLOBAL % FREQ. DET.	100.0 100.0 100.0 100.0 100.0 99.1 99.1	100.0 98.1 98.4 74.2 64.0 64.0 64.0 64.0 64.0 64.0 64.0 64.0	1
GLOBAL # SAMPS. TESTED	220 222 223 153 153 213 213 211 223 224 77	267 267 267 264 264 267 266 267 267 267 267 267 267 267 267	227 228 228 227 227 227 228 228 228 228
UNITS QA/QC GLOBAL CODE # SAMPS. DET.	220 222 224 153 153 211 211 211 211 206 206 194 194 33	267 282 220 220 196 117 177 137 42 42 42 42 42 43 13	C 4 4 6 6 C 2
QA/QC CODE	00000000000	0000000000000	121-2122-1-22
UNITS	70,00 70		MITOUNDS ### ### ### ### ### ### ###
CONTAMINANT NAME	DISSOLVED ORGANIC CARBON MINGGENTORICE, LINE TOT (JOCGHICONCY)) FREBIDIT RESIDUE, PARTICILATE RESIDUE, PARTICILATE RESIDUE, PARTICILATE RESIDUE, PARTICILATE AMMONINICITATE REACT MINTERILET TREACT MINTERILET REACT MINTERILET REA	METALS AND CYANIDE RUT STRONTHING INPELITOTAL GOUT ALLOMINON CONTAL ALLOMINON CONTAL CON	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS ANAICRE MICRESOL. BANKITS ANAINTS
CONTAM- INANT	CONVEXTIONAL DOC DISS NYTKUR NITR NYTKUR TUR RSP RESI COD CHEB NNITR AMA NNITR AMA NNITR AMA NNITR NNITR RSP. 01 HESI RSSP. 01 HESI	METALS . SRUT ZRUT ZRUT ZRUT ZRUT ILIGUT ALLUT ALLUT COUT COUT COUT COUT COUT ARUT ARUT SEUT SEUT SEUT SEUT SEUT SEUT SEUT SE	BASE NEU PRANCER PRANTER PRANTER PRANCE PRAN

TABLE 5-10 b - GLOBAL SUMMARY OF CONTAMINANTS IN SECONDARY EFFLUENTS

CONTAM	CONTAMINANT NAME		3000	GLOBAL # SAMPS, DET,	GLOBAL # SAMPS. TESTED	GLOBAL % FREQ. DET.	GLOBAL. # PLANTS DET.	GLOBAL # PLANTS	GLOBAL % PLANT PREY.	GEO. GEO. MEAN	GLOBAL. SPREAD FACTOR	GLOBAL MAX. CONC.	GLOBAL MIN. CONC. > DL	DET. 1.1MIT (DL.)
-	BASE NEUTRAL AND ACID EXTRACTA BLE COMPOUNDS WHERE BENZOKKHLIORANI USBE " "B"L" WHICH MAINTING BE " "B". WHICH MAINTING BE " "B". WHICH PRENCH BE " "B". WHICH PRENCH BE " "B". WHICH PRENCH " "B". WHICH PRENCH " "B". WHICH BE " "B". WHICH	CNDS ugh. ugh. ugh. ugh.			228 228 228 228 228 227	000000		28 28 28 28 28 28	00000 888888	1.00 1.00 1.00 1.01 2.00 2.00	153 148 154 147 148	14 60 240 17 80 29 40 5 10 9 20	14 60 240 17 80 29 40 5 10 9 20	2 00 2 00 2 00 2 00 3 00 5 00 5 00
Z	DIOXINS AND FURANS													
	OCTACH GRODIBENZODIOXIN HEPTACH GRODIBENZODIOXIN OCTACH ORODIBENZOPINAN TETRACH ORODIBENZOPINAN	2222		4 2 2 2	1111	9 1 4 6 2 3	4 7 7 7	87 87 87	14.3 7.1 7.1 3.6	031 038 028 015	3.43 3.74 2.90 3.90	11 00 4 30 0 50 0 33	010 140 0.50 033	0.30 0.10 0.20 0.10
3	PESTICIDES, HERBICIDES, PCBS													
PRADOR PRINCO TO PRINCO PROPERTO PROPER	24 DIOJU OROPHENOXYACETIC ACID GAMMA, RETICIENCE TO RECCEITE ACID GAMMA, RETICIENCE TO RECCEITE ACID ALS-TRUCTORPIENOXYACETIC ACID BETA, RETUCENCE TO RECCEITE ACID BETA, RETUCENCE OROCYCLIBETANE) APPLODE APPLODE APPLODE PRODE PROD PROD PROD PROD PROD PROD PROD PROD	\$		1177 128 128 128 128 128 128 128 128 128 128		87 90 10 10 10 10 10 10 10 10 10 1	28 6 9 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0	000000000000000000000000000000000000000	2 2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 00 00 00 00 00 00 00 00 00 00 00 00 00	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1,1,1 TRICIU OROFITIANE TETRACIO OROFITIA ENE M. AND P. YYLENE O. YYLENE 1,2 DOTOLI OROFITIANE CIU ORODIBROMOMETHANE	3333333		x x 7 x x x 4 4	*****	222 222 178 178	***************************************	*****	28 6 32.1 21 4 10.7 14.3 10.7 7.1	118 118 112 105 105 103	186 193 145 138 130	27 00 84 00 14 00 27 00 17.00 10 00 260	210 200 200 240 270 200 230	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

TABLE 5:10 b - GLOBAL SUMMARY OF CONTAMINANTS IN SECONDARY EFFLUENTS

NOTATILES Hairet Bromadden Green (1997) Hairet Hairet Hairet Green (1997) Hairet Hairet Green (1997) Hairet Hairet Hairet Green (1997) H	CONTAM: INANT	CONTAMINANT NAME	UNITS	UNITS QA/QC GLOBAL CODE # SAMPS DET.	SAMPS. DET.	GLOBAL. # SAMPS. TESTED	GLOBAL % FREQ. DET.	GLOBAL # PLANTS DET.	GLOBAL # PLANTS	GLOBAL % PLANT PREV.	GEO. GEO. MEAN	GLOBAL. SPREAD FACTOR	GLOBAL MAX. CONC.	GLOBAL MIN, CONC, > DL	DET. 1 PMT (DL)	
HEROMODICH GROBIENZENE. ug/l. 1 3 224 1 3 2 2 2 2 2 7 1 49) 121 1000 1000 1100 1101 1101 1101 1101	VOLATILE	83														
ETHY BIACADA. CS-1, ADDITIONOCHIANE: u.g. 1 224 13 28 17 1 102 12 120 270 CS-1, ADDITIONOCHIANE: u.g. 1 224 13 28 107 101 110 230 CS-1, ADDITIONOCHIANE: u.g. 1 224 09 2 28 71 101 111 410 220 STYREN: u.g. 1 224 09 2 28 71 10 110 110 210 TRANSI-1 DICTIONOCHIANE: u.g. 1 224 09 1 28 36 100 106 240 ALPIACTIONOCHIANE: u.g. 1 224 05 1 28 36 100 106 240 ALPIACTIONOCHIANE: u.g. 1 224 05 1 28 36 100 105 300 310 DICTIONOCHIANE: u.g. 1 224 05 1 28 36 100 118 230 310 CTIONOCHIANE: u.g. 1 224 05 1 28 36 100 118 20 210	HUNING	AN-EXIMONO IL DICHOMORA	.Van	-	•	224	1.3	2	28	7.1	4 9 3	1 21	10 00	10 00	10 00	
	H 21-18 N.Z	FORM BENZENE	us.A.	_	_	224	1.3	2	28	7.1	1 02	1 21	12 00	2.70	2 00	
CIS.1.2.DICHIOLOGENITYLENE wg/n 2 224 09 2 28 71 101 111 410 220	XIIICE	LEDICH OROETHANE	us.A.		•	224	13	8	28	10.7	101	110	2.30	2.20	2 00	
SATYRENE UNCORPORATE UN UNCORPORATE UN UNCORPORATE UN UNCORPORATE UN UNCORPORATE UN UNCORPORATE UN UN UN UNCORPORATE UN UN UN UN UNITARIOR UN	XICDCE	CIS-1,2-DICHLOROETHYLENE	L. N.	_	2	224	60	2	238	7.1	101	11.11	4.10	2.20	2 00	
TRANS.13 DICTUGROPHOTENE wight. 1 224 0.5 1 28 36 100 106 240 240 THAIR CHI DOCTUGLIENE wight. 1 224 0.5 1 28 36 100 105 240 240 DICTUGROPHI LORONITHENE TOWN WITH 2 224 0.5 1 28 36 100 112 5300 5300 5300 CTUGROPHICKEE. CHI ORDER FYARE WIGHT. 224 0.5 1 28 36 100 118 2.5 2.0 2.20 CHI ORDER FYARE WIGHT. 1 224 0.5 1 28 36 100 105 120 210	HZSTYR	STYRENIE	LIKA.	-	-	224	0.5	_	28	36	1.51	1 10	13 00	13 00	3 00	
ACH PARA CHI OKONDI CHANE. DICH PARA CHI OKONDI CHANEL TANNE. UGAT. 1 224 0.5 1 28 36 1007 112 3500 3500 3500 3100 310 310 310 310 310 310 310 310	X113DR	TRANS-1.3 DICHLOROPROPENE	uk/l.	-	-	224	0.5	_	28	3.6	1 00	1 06	2.40	2.40	2 00	
DICHIORODITIOROMETIANE wgf. 2 1 224 05 1 28 36 1007 112 5500 5500 5500 5101 120130 00011EN-E wgf. 1 224 05 1 28 36 101 118 220 220 (TLADRICHIESE wgf. 1 1 224 05 1 28 36 100 105 210 210	XIACTO	ALPHA-CHI OROTOLUENE	uk/I.	-	_	224	0.5	-	28	3.6	1 50	1 05	3 00	3 00	3.00	
1,1-0)(4)(1) (NO)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	XIDGEM	DICHLORODIT LOROMEDIANE	. Lan	2	-	224	0.5	_	28	3.6	10 07	1.12	53 00	53 00	20 00	
CHLOROBE/NYENE UM. 1 1 224 05 1 28 36 100 105 2.10 2.10	XIDGE	1 1-DICH OROETIB:NE	usA.	_	_	224	0.5	-	28	3.6	101	118	2 20	2.20	2 00	
	X2CBEN	CHLOROBENZENE	L.W.	_	_	224	0.5	-	28	3.6	1 00	1 05	2.10	210	2 00	

5.3.7 Summary of Contaminants in Tertiary Effluents

Only the Guelph WPCP of all the study plants provided tertiary treatment. The 128 contaminants that were not detected in the Guelph tertiary effluent including 12 that were not confirmed, are presented in Table 5-11(a). Also indicated are the 34 contaminants that were not detected in any sample type at any WPCP.

Thirty-one organic contaminants, 12 metals and cyanide were detected in at least one sample. Table 5-11(b) presents the listing of contaminants fround in the Guelph tertiary effluent. Metals were the most frequently detected contaminant, with 6 metals (Al, Cr, Cu, Hg, Sr and Zn) detected in more than 75 percent of samples. Only 2 pesticide and herbicide compounds (2,4-Dichlorophenoxyacetic acid and gamma-BHC) were present in more than 50 percent of the samples. The most frequently detected volatile organic compound was detected in only 50 percent of the samples. The most frequently detected base neutral and acid extractable compound was detected in only 30 percent of samples, and there were no dioxin/furan compounds detected in the Guelph tertiary effluent.

5.3.8 Summary of Contaminants in Raw Sludges

Table 5-12(a) presents a list of the 85 contaminants that were not detected in any of the raw sludge from any WPCP, including 6 compounds that were not confirmed. Also indicated are the 34 compounds that were not detected in any sample type at any WPCP.

Table 5-12(b) presents the summary of detected contaminants for all raw sludges. A total of 59 organic compounds, 15 metals and cyanide were detected in any sample. The most prevalent organic compounds were the pesticides and herbicides, with 11 compounds detected in at least 40 percent of the plants. Only 2 of the base neutral and acid extractable compounds, 4 of the volatile compounds and 1 dioxin compound were detected at more than 20 percent of the plants. All of the metals except beryllium were detected at greater than 64 percent of the plants. Cyanide was detected at 10 percent of the plants.

The most frequently detected contaminants were metals, with 12 metals detected in at least 80 percent of the samples, including 5 (Al, Hg, Sr, Zn, Cu) that were detected in all of the samples. Only 1 of the base neutral and acid extractable compounds and 1 volatile compound were detected in more than 30 percent of the samples, and only one dioxin (Octachlorodibenzodioxin) was detected in greater than 12

	CONFIRMED		NOT CONFIRMED
CONTAMINANT	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	METALS AND CYANIDE		
BEUT	BERYLLIUM, UNFILT. TOTAL		
CCNFUR	CYANIDE-FREE, UNFILT REAC.		
COUT	COBALT,UNFILT.TOTAL		
TJON	MOLYBDENUM, UNFILT. TOTAL		
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
2ATRA	ATRAZINE*		
4DIAZ	DIAZINON*	i	
P4EPAR	PARATHION ETHYL® MALATHION®		
P4MALA P4MPAR	METHYLPARATHION*	i	
PM24DP	2.4-DICHLOROPHENOL		
PM24DT	2,4-DINITROTOLUENE		
PM24MP	2.4-DIMETHYLPHENOL		
PM24NP PM26DT	2,4-DINTTROPHENOL® 2,6-DINTTROTOLÜENE		
PM2NP	2-NTTROPHENOL		
PM46DP	2-METHYL4,6-DINTTROPHENOL		
PM4BPE	4-BROMOPHENYLPHENYLETHER		
PM4CPE PM4NP	4-CHLOROPHENYLPHENYLETHER 4-NITROPHENOL		
PMANAA	ALPHA-NAPHTHYLAMINE®		
PMB2EM	BIS(2-CHLORETHOXY)METHANE		
PMB2IE	BIS(2-CHLOROISOPROPYL)ETHER		
PMB2NE	BIS-(2-CHLOROMETHYL)ETHER		
PMBBP PMBNAA	BUTYLBENZYLPHTHALATE BETA-NAPHTHYLAMINE	1	
PMDMP	DIMETHYL PHTHALATE		
PMNTTB	NITROBENZENE		
PMNND	N-NTTROSO-DI-PHENYLAMINE		
PMNNP PMOCRE	N-NTTROSO-DI-NPROPYLAMINE O-CRESOL		
PMPCMC	P-CHLORO-M-CRESOL		
PMPHEN	PHENOL		
PN2CNA	CHLORONAPHTHALENE*		
PNACNE PNACNY	ACENAPHTHENE* ACENAPHTHYLENE		
PNANTH	ANTHRACENE		
PNBAA	BENZO(A)ANTHRACENE	1	
PNBAP	BENZO(A)PYRENE	1	
PNBBFA PNBIPH	BENZO(B)FLUORANTHENE BIPHENYL	1	
PNBKF	BENZO(K)FLUORANTHENE	1	
PNCHRY	CHRYSENE		
PNDAHA	DIBENZO(A,H)ANTHRACENE®		
PNFLAN	FLUORANTHENE		
PNFLUO PNGHIP	FLUORENE BENZO(G,H,I)PERYLENE*		
PNINP	IDENO(1,23-CD)PYRENE®		
PNNAPH	NAPHTHALENE		
PNPHEN	PHENANTHRENE		
PNPYR PODICH	PYRENE DICHLORAN*		
POTOC	TRI-O-CRESYL PHOSPHATE®		
X3001O	2-CHLOROPHENOL		
X3245	2,4,5-TRICHLOROPHENOL®		
X3246 X3PCPH	2,4,6-TRICHLOROPHENOL PENTACHLOROPHENOL		
	DIOXINS AND FURANS		
P94CDD	TETRACHLORODIBENZODIOXIN*		
P94CDF	TETRACHLORODIBENZODIOXIN*		
P95CDD	PENTACHLORODIBENZODIOXIN		
P95CDF	PENTACHLORODIBENZOFURAN		
P96CDD P96CDF	HEXACHLORODIBENZODIOXIN HEXACHLORODIBENZOFURAN		
P97CDP	HEPTACHLORODIBENZOFURAN		
P98CDF	OCTACHLORODIBENZOFURAN		
	PESTICIDES, HERBICIDES, PCBS		
POPCNB P1BHCA	PCNB	POCAPN	CAPTAN*
PIBHCA PIBHCG	ALPHA-BHC(HEXCHLORCYCLHEXANE) GAMMA-BHC(HEXCHLORCYCLHEXANE)	P1END2 P1ENDR	ENDOSULFAN II ENDRIN
PIDMDT	METHOXYCHLOR	PIENDS	ENDOSULFAN SULPHATE
PI MIRX	MIREX	PIHEPT	HEPTACHLOR

[.] NOT DECTECTED IN ANY STREAM TYPE AT ANY PLANT

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT	CONTAMINANT NAME
	PESTICIDES, HERBICIDES, PCBS		
PIOCHL PIPMIR PISTRO PITOX X2HCB	OXYCHLORDANE MIREX PHOTO STROBANE* TOXAPHE HEXACHLOROBENZENE	P324D X1HCB D X1HCCP X2124	2.4-DICHLOROPHENOXYACETIC ACID HEXACHLOROBUTADIENE* HEXACHLOROCYCLOPENTADIENE 1,2.4-TRICHLOROBENZENE
BIOCTE BIVBR BZBOLL BZENZ BZMPYY BZOXYIL BZSTYR EIDIEE LIHEX PPAGCEE XIIIIT XIIIT XIIT X	JOLATILES 1-OCTENE VIN'L BROMDE* BROMODICHLOROBENZENE ETHYLBENZENE M. AND P. XYLENES O-XYLENE DETHYL ETHER HEXANOL -COLLOROFTHANE 1,1,2-TETRACHLOROFTHANE 1,1,2-TETRACHLOROFTHANE 1,1,2-TETRACHLOROFTHANE 1,1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE 1,2-DICHLOROFTHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM* CLIANOMETHANE BROMOFORM* CLIANOMETHANE CLIANOMETHANE CLIANOMETHANE CLIANOMETHANE THICHLOROFTHENE TRICHLOROFTHENE TRI	XIACRO XIACRY	ACRYLONITRIE*

DET. LIMIT (DL)		8 8 8 8 8 8	000 000 000 000 000		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	25 20 00 00 00 00 00 00 00 00 00 00 00 00
GLOBAL MIN, CONC, > DL		16.00 46.00 7.00 16.60 19.80	6.82 0.78 17.10 8.20 0.03		\$60.00 \$50.00 \$50.00 \$50.00 \$70.00 \$70.00 \$6	3.40 9.90 7.70 6.00 27.60 12.70 19.20 19.20 4.60
GLOBAL MAX. CONC.		282.00 10.90 20.80 34.00	7.49 2.93 71.80 18.30 0.15 0.50		2900.00 270.00 120.00 120.00 1400.00 1600.00 170.00	4.40 9.90 5.30 7.70 6.00 27.60 14.80 12.70 13.30 19.20 12.60 4.60
GLOBAL SPREAD FACTOR		1.48 1.19 1.19 1.17	1.04 1.74 1.39 3.45 4.23		1 88 1 84 1 184 1 173 1 173 1 174 1 174 1 174 1 174 1 174 1 175 1	15.9 1.08 1.08 1.08 1.03 1.03 1.03 1.03 1.03
GLOBAL GEO. MEAN		24 64 99.25 8 74 18.24 23.22	7.10 1.56 32.21 10.99 0.05 0.14		1252.00 98.80 58.80 59.80 1117.07 959.00 14.60 9.00 9.00 9.00 9.00 11.30 11.30 25.80 25.80 25.80 34.0	1.99 2.70 1.70 2.73 2.18 3.18 1.13 1.13 1.13
GLOBAL % PLANT PREV.		100.0	100.0 100.0 100.0 100.0		0.0000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GLOBAL # PLANTS						
GLOBAL # PLANTS BET.			on and one con and and			************
SET,		0.0000000000000000000000000000000000000	100.0 100.0 100.0 100.0 155 6		100.0 100.0 100.0 100.0 100.0 100.0 100.0 27.3 27.3 27.3 9 1 9 1 9 1	00000000000000000000000000000000000000
GLOBAL # SAMPS. TESTED			y Ö = n o o		2200222222	2000000000000
CODE # SAMPS.		00000	v Ö = v = v		== 2 0 0 = 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
ODE		00000			000000000000000000000000000000000000000	·
SINO			ng. ng. ng. ng. ng.		ugh. ugh. ugh. ugh. ugh. ugh. ugh. ugh.	
CONTAMINANT NAME	ONAL	BOD, 5 DAY -TOTAL DEMAND CHEMICAL OXYOEN DEMAND DISSOLVED OROANIC CARBON AMMONIUM, TOTAL PIL, TRAC, NITROCIAL, TOTAL PIL, TRAC,	CHARMACHACH, BROWN BY TOTAL PROSNOR, DAVING PARTICULATE TUNBOUTY WIRELFULL REACT. NITRATES, TOTAL FILT REAC.	METALS AND CYANIDE	MALTI ALIMENINHI TOTAL CHAIN CONTRA UNDER TOTAL CHAIN CONTRA UNDER TOTAL WHIT STRONTINH ONE I TOTAL WHIT STRONTINH ONE I TOTAL WHIT STRONTINH ONE I TOTAL CHAIN ONE I TOTAL CHAIN ONE I TOTAL CHAIN ONE I TOTAL CHAIN ONE I TOTAL WHIT STRONTINH ONE I STRONTINH ONE WHIT STRONTINH WHIT STRONT WHIT S	2.4 DINTO TO THE STATE OF THE S
CONTAM	CONVENTIONAL	BODS COID DOC NNITTER NNTKUR	PPUT RSP TURB NNO2PR NNOTPR	METALS AT	ALUT CUUT CUUT BIGUT BIGUT SAUT ZAUT ZAUT AGUT COUT COUT MOUT NIUT BASE NEUTI	PMADDP PMADDT PMASDT PMASDP PMAGDP PMASJ:M PMIBP PMIBP PMIBP PMIBP PMIBP

TABLE 5-8 b - GLOBAL SUMMARY OF CONTAMINANTS IN TERTIARY EFFLUENTS

ı																	
DET, LIMIT (DL)		0.40	0 20	00 1	1 00	0 20	0.80	0 20		40.00	40 00	40.00	40.00	40 00	40.00	40 00	40.00
GLOBAL MIN. CONC. >DL		0.05	005	0.20	0.10	000	0.16	0.05		5 80	2.70	019	12 00	7 80	270	9.00	9.70
GLOBAL MAX. CONG.		0.67	0.75	0.26	010	0.05	010	0.05		90 00	75 00	14 00	12 00	7.80	2.70	200	9.70
GLOBAL SPREAD FACTOR		2.56	337	1 90	1 34	99 -	1.55	1 66		4.30	4 02	2.61	2.19	161	1 37	99 -	2.05
GLOBAL GEO, MEAN		0.12	8 8	0.00	0.00	0 01	0.05	0.01		3.50	2.30	1 56	1 28	1 23	1.10	1.17	1.26
GLOBAL % PLANT PREV.		100 0	0.001	0.001	100 0	100 0	1000	100.0		100.0	100 0	1000	100.0	100.0	1000	100.0	100 0
GLOBAL # PLANTS		-			-	-	-	-		-	~	-	-	-	-	-	-
GLOBAL # PLANTS DET,		-			-	-	_	_		-		-	-	-			7
GLOBAL % FREQ. DET.		0 06	000	20.00	20 0	10.0	10.0	10 0		900	40 0	0 07	10.0	100	10.0	100	10.0
GLOBAL # SAMPS. TESTED		10	0 0	20	10	10	10	01		10	10	10	10	10	10	10	10
GLOBAL # SAMPS. DET.		6	30 °	n 73	2	-	-	-		\$	4	2	-	-	_	-	
CODE		3	7 -		9	3	7	3		-	-	-	-	-	-	-	-
UNITS		ull.	E) 166/	2	Lau.	L.B.	Zan.	2		URA.	ug/	ug/J	u.	Š	Ž,	Š	Ng.
INONTAM. CONTAMINANT NAME.	PESTICIDES, HER BICIDES, MYBS	2,4-DICHOOROPHENOXYACETIC ACID	GAMMA-BHC(HEXCHLORCYCLHEXANE) ugA.	METHOXYCHOOR	SU.VEX	I:NDRIN	PCB, FOTAL.	1,2,4-TRICIO OROBENZENE	\$73	TETRACH OROHITM: ENE	1,1,1-TRICHI OROETHANE	1,1-DICHLOROETHENE	DETRIYL ETHER	I, I-DICHLOROBTHANE	1,2-DICHLOROETHANE	CIS-1, 2 DICTU-OROEDIYI ENE	TRICHLOROETHYLENE
CONTAM- INANT	PESTICIDI	P324D	PIBHCO	PIDMOT	P3SII.V	PLHNDR	PIPCBT	X 21 24	VOLATILES	XITER	XIIIIIX	XIDG.E	HIDHE	XIIICE	X112CE	XICIXE	XIIRIC

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT CODE	CONTAMINANT NAME
	BASE NEUTRAL AND ACID EXTRACTABLE		
	COMPOUNDS		P-CRESOL*
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
PZATRA	ATRAZINE*		
PADIAZ	DIAZINON*		
P4EPAR	PARATHION ETHYL*		
P4MALA	MALATHION*	1	
P4MPAR	METHYLPARATHION*	1	
PM24DP	24-DICHLOROPHENOL		
PM24DT PM24MP	2.4-DINTTROTOLUENE 2.4-DIMETHYLPHENOL	- 1	
PM24NP	24-DINITROPHENOL®	1	
PM26DT	26-DINTTROTOLUENE	1	
PM2NP	2 NTTROPHENOL	1	
PM46DP	2-METHYL4,6-DINTTROPHENOL	1	
PM4BPE PM4CPE	4-BROMOPHENYLPHENYLETHER 4-CHLOROPHENYLPHENYLETHER	1	
PM4NP	4-NTTROPHENOL		
PMANAA	ALPHA-NAPHTHYLAMINE*		
PMB2EM	BIS(2-CHLORETHOXY)METHANE		
PMB2NE	BIS-(2-CHLOROMETHYL)ETHER		
PMBNAA	BETA-NAPHTHYLAMINE*	1	
PMDMP PMNNP	DIMETHYL PHTHALATE N-NTIROSO-DI-NPROPYLAMINE		
PMOCRE	O-CRESOL		
PMPCMC	P-CHLORO-M-CRESOL	1	
PN2CNA	CHLORONAPHTHALENE*	1	
PNACNE	ACENAPHTHENE®	1	
PNBAA	BENZO(A)ANTHRACENE	i	
PNBAP PNBIPH	BENZO(A)PYRENE BIPHENYL	1	
PNBKF	BENZO(K)FLUORANTHENE		
PNDAHA	DIBENZO(A,H)ANTHRACENE*		
PNFLUO	FLUORENE	1	
PNGHIP	BENZO(G,H,I)PERYLENE®		
PNINP PODICH	IDENO(1,23-CD)PYRENE®	1	
POTOC	DICHLORAN* TRI-O-CRESYL PHOSPHATE*	1	
X3001O	2-CHLOROPHENOL	ı	
X3245	2,4,5-TRICHLOROPHENOL*	1	
X3246	2,4,6-TRICHLOROPHENOL		
	PENTACHLOROPHENOL		
	DIOXINS AND FURAN	1	
хэрсрн	TETRACHLORODIBENZODIOXIN®	1	
P94CDD	PENTACHLORODIBENZODIOXIN		
P95CDD P96CDD	HEXACHLORODIBENZODIOXIN	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PESTICIDES, HERBICIDES, PCBS		
	PCNB		
POPCNB	ELDRIN ALDEHYDE	POCAPN	CAPTAN*
PIENDA PIPMIR	MIREX PHOTO STROBANE®	X1HCBD X2HCE	HEXACHLOROBUTADIENE* HEXACHLOROETHANE
PISTRO	TOXAPHENE.	AZMCE	NEAACHLORUE ITIANE
PITOX	- Orac I May to		
	VOLATILES		
	1-OCTENE		
B1OCTE	VINYL BROMIDE*	X1ACRO	ACROLE IN
B1VBR	BROMODICHLOROBENZENE	XIACRY	ACRYLONTIRILE*
B2BDCL	DIETHYL ETHER		
E1DIEE L1HEX	HEXANOL		
LIHEX PM2CEE	2-CHLOROETHYLVINYLETHER* 1,1,1-TRICHLOROETHANE		
XIIIIT	1,1,2,2-TETRACHLOROETHANE*		
X11122	1,1,2 TRICHLOROETHANE*		
X1112T	1,1-DICHLOROETHANE		
X111CE	1,2-DICHLOROETHANE		
X112CE	1,2-DICHLOROPROPANE		
X112CP X113DP	CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		
X113DF X113DR	ALPHA-CHLOROTOLUENE		
XIACTO	BROMOETHANE*		
X1BETH	BROMOFORM*		
XIBROM	CIS-1,2-DICHLOROETHYLENE		
X1CDCE	CHLOROETHANE*		
X1CHLE X1CHLM	CHLOROMETHANE® CARBON TETRACHLORIDE		

TABLE 5-12 a - GLOBAL SUMMARY OF CONTAMINANTS NOT DETECTED IN RAW SLUDGES

	CONFIRMED	NOT	CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT	CONTAMINANT NAME
GIDCEM GIDCE GIT12D GIT12D GIT12D GIT18C GIVEL G212CB C23CTO C2CBEN C2CPEN	VOLATILES DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHENE TRI-1,2-DICHLOROETHYLENE TRICHLOROFTHYLENE TRICHLOROFTHYLENE VDNYL CHLORDE* 1,2-DICHLOROBENZENE 3-CHLOROBENZENE 3-CHLOROBENZENE 3-CHLOROBENZENE 3-CHLOROPROPENE*		

MININGENERAL DATACH DEMAND			(DRY CODE # SAMPS, WEIGHT) DET.	(DRY CODE # SAMPS, (EIGHT) DET.	GLOBAL # SAMPS. TESTED	S. FREQ. DET.	# PLANTS DET.	PLANTS	% PLANT PREV.	GEO. MEAN	SPREAD	MAX. CONC.	MIN. CONC.
Compact of the control of the cont	NVENT	IONAL.S											
DISACRA CARRON CARRON CARRON MAN	Q	CHEMICAL OXYGEN DEMAND		45	4.5	100.0	31	31	100.0	892221 45	3.19	2619047.62	4161 85
NINGADEN TO PLALEN TOTAL MARKED NEW TOTAL STATES 1 100.0 34 14 100.0 369° 50 50 50 50 50 50 50 50	0	DISSOLVED ORGANIC CARBON				100.0			1000	90 90909	000	90.90909	90 90909
CHORMINGNING CHORD	TENT IN	NICHTEFELI REACT.		- 5	- ;	100.0	34	14	100.0	34807 84	000	74820.03	0.90
PRIGNING NEW ATTOTAL Number 1		CLOCKII+(CONCN)		. 04	40	0000	34	34	1000	603	1.10	7.32	473
HESIDUE, TOTON, HESIDUE,	П	PHOSIMORUS UNPBLITOTAL		42	42	100 0	78	87	100 0	20347 70	4 43	68202.08	2.23
AMANONINATION OF CONTINUENCY TOTAL	_	RESIDUE, TOTAL.		51	51	1000	34	34	100.0	32783 51	181	85800.00	6730 00
AMMONINALIZIONAL might 0 47 48 97.9 33 100.0 991.32 4.9 100.0 991.32 4.9 100.0 991.32 4.9 100.0 991.32 4.9 100.0 991.32 4.9 100.0 100.0 991.34 4.9 100.0 100.0 991.34 4.9 100.0 100.0 100.0 201.34 100.0 981.34 4.9 100.0 100.0 201.34 100.0 981.34 2.9 100.0 100.0 201.34 100.0 981.34 2.9 100.0 100.0 201.34 100.0 981.34 2.9 100.0 100.0 201.34 100.0 981.34 2.9 100.0 100.0 201.34 100.0 981.34 100.0 981.34 100.0 981.34 100.0 981.34 100.0 981.34 100.0 201.34 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10	10.1	RESIDUE, TOT LOSS ON IGNE		15	5	100.0	34	34	100.0	20803 05	1.77	51591.00	4370.00
MITAATIS, TOTAL, FILT PEAC. mg/kg 0 41 50 82.0 29 34 85.3 82.4 2.21 74.77 74	ITIFR	AMMONIUM, TOTAL FILT REAC.		47	48	67.6	33	33	100.0	5911 32	4 59	18006 23	1097.42
HIENOLICS (AAAP)	OIFR	NITRATES, TOTAL FILT REAC.	_	43	48	9 68	31	33	93.9	25.44	2.21	74.77	965
MARCORY JORGAL TOTAL mg/ks 0 51 100 54 54 100 523 103 51 103 51 51 51 51 51 51 51 5	Į.	PIENOLICS (4AAP)	_	7	20	82.0	59	Z.	85.3	82.34	3.54	585.11	16 32
MARCINALIMALITY TOTAL	4												
MAILMANINTITTOTAL	e v												
MENTALE MENTALE MAY MA	.1.	ALUMINUM UNPLETIOLAL.		15	\$1	100.0	34	34	0.001	9835.74	2.51	103040 82	2704 77
COMPANIALY TOTAL 10,000 1	1	MERCURY UNEB T TOTAL		\$. 05	0.001		33	100	2.23	1 67	8 16	150
STRONCINGLINGTER TOTAL. Marked 1	-	COPPER UNEG T TOTAL		46	4.0	100 0	33	33	1000	60x 31	1 22	4045 88	243 54
Decimination of the property		STRONG IN TOTAL		2 =	; ;	0.001	3 3	7	000	231 70	1 07	00 900	36.13
ARSENCIONNELLY TOTAL.		ZINC UNPIL T TOTAL				1000	34	34	1000	905 30	2 30	16334 66	280.44
CHROMICHER IT TOTAL Image 0	71	ARSENICTINFILT TOTAL		20		0.86	33	34	1 20	613	2.01	41.50	2 2 4
HEADIMA UNFILTTOTAL marks 0 48 10 990 31 32 940 1739 319	T	CHROMITM UNFILL TOTAL		20		0 86	33	34	1 20	301 43	3.68	8235 30	44 29
SIE-EMINICALLIAND LINEARY Colone	=	11-AD.UNPLT.TOTAL		**************************************	64	0.86	31	32	6 96	173 99	2.24	\$179.28	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
NICKAL, AND ACTOR & XTANGTH NILES NICKAL, AND ACTOR & XTANGTH NILES NILES NICKAL, AND ACTOR & XTANGTH NILES NI	Ξ	SELENBUM-UNFILT TOTAL		48	20	0.08	31	33	93.9	20,5	1.93	22 90	0.63
COMPATIBLE COM	Ţ	NICKEL, UNITL'T. TOTAL.		44	46	95.7	28	30	93.3	59 17	2.90	2558 82	10.54
SILVERINGET TOTAL. SILVER	П	CADMIUM,UNPILT FOTAL		40	43	93.0	27	30	0.06	974	4 35	183 67	1.37
COMATURE MAINTITIONAL Maging 0 30 41 732 22 30 733 929 929 289 2364 COMATURE MAINTITIONAL Maging 0 30 41 732 22 30 62 2 30 62 2 89 62 3 89 60 3	7	SILVER, UNPILT TO FAL.		40	45	6 88	27	32	84 4	30 17	2.61	154.14	069
MOLYMORPHITTOTAL mugks 0 23 37 622 18 28 6643 580 22 264	<u></u>	COBALT, UNITED TOTAL		30	41	73.2	22	30	733	9 29	4 69	1838 01	3.58
UTRAL AND ACTO EXTRACTABLE COMPOUNDS WARTINGLESSED. WARTINGL	10	MOLYBINEMUM, UNFB. T. TOTAL		23	37	62 2	9	28	83	5 80	2.88	256 41	2.32
UTRALAND ACID EXTRACTABLE COMPOUNDS	A CE	BERYG I RIM TINED IT TOTAL		۰ -	240	5.5	n -	30	001	000	274	0.48	0 23
TITRALAND ACID EXTRACTABLE COMPOUNDS					ì	,		2	7	200	re r	10.1	5
MCRISOL	N. N. L.	TRAL AND ACTORXTRACTARDE CO	MPOUNDS										
PHINATION PARTINIA	ACDE	M.CBLSOI		Ş	,		Š	į					
MANTIMALEN:	ABEN	PHENOL.	18/4 E 2	7.6	i v	20.4	67	2.4	83.3	7312 80	12.16	9649056 60	232 80
PHEANTHERIES	IVAN	NAPITITALIENE	ne Are	2 40		× ×	1	34	7 97	3823 30	_	20491 20	13/02.00
BIGTOTHERYNAMTHING	N:III	PIB-NANTIKENE	ne Are 1		; =	30	. «		17.7	3543 60	_	07 1005 500	3409 20
BING-CRIGACONON-OPYLJETINE## 1	чнр	SELECT NEW YORK AND A 112	0 000	-	; ;	3 7		, ,		330330	617	24310.30	9259 70
CTRYSTRIN	4218	RISC: CHEOROISOPROPYLMER	200	, ,			, ,	9 0	0 1	3443.00	577	48/0180	1708740
H. LORANGITHENH U. M. 1 2 5 5 5 5 5 5 5 5 5	HRY	CITRYSPAH	1 1/2	4 (3.0	4 (9 7 6		3404 00	205	938199.40	97130.20
PYRHİNE LIGAR II. 2 51 39 2 34 53 378300 197 12818 BD DIPHENYLLEHIRK LIÇAR II. 51 2.0 1 34 2.9 4522.60 187 1788 BD 187 2074.03 187 187 2074.03 187 2074.03 187 2074.03 187 2074.03 187 2074.03 187 2075.01 187 2074.03 2074.03 2074.03	AN	FLUOR ANTHENR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	7 5	10	7 (34	n v	3026 90	561	21249 80	6384 00
DIPPLESTYLETHER U.P. 1 1 20 4 34 35 32 32 32 32 32 32 32	YR	PYRINE	4 5 5 5	۰, د	1 5		4 (, ,	200	000000	161	08 8/8/7	8350 60
NTROBENZINE	Meli	STREET, LYANGING	4 4 7 1	٠.	1 1	h (۷.	9 .	9.9	4377.00	181	20/40.70	8039 80
N. N.TIROGEO DI PILLENTA MINE	- FIR	NEGOTIVE	20 1			0.7		34	6.7	7296.10			14788 70
ANTHRACENIE UMA 1 51 20 1 34 29 440570 181 8350,30 ANTHRACENIE UMA 1 51 20 1 34 29 201980 180 181 181 181 181 181 181 181 181 1	CIND	N NEITHOGO DI MINNI ANAMA	U KAR		7	0.7		34	5.9	3405 40	_		0204081 60
ACTIVITY UPA 1 51 20 1 34 29 240870 183 ACTIVITY UPA 1 1 51 20 1 34 29 291980 180	AN.	ACHNAGRESTY TAKE	18/88			0.7		34	5.9	2972 50	181		8530.30
UDAR 1 2.9 291980 180	TI.N	ANCHIRACIANI	18,48		i ç	7.0		34	2.9	4406 70	183	13187 30	13187 30
DOLLAR PROPERTY AND THE PARTY	JAN DELLEY A	SUNTENDED OF TOTAL ACTION AND	20 10 10 10 10 10 10 10 10 10 10 10 10 10	-	7	0.7	_	P	2.0	2010 80	4 60	6444 70	4 4

TABLE 5-12 b - GLOBAL SUMMARY OF CONTAMINANTS IN RAW SLUDGES

NA	*	(DRY CODE # SAMPS. WEIGHT) DET.	DDK =		R SAMPS.	% FREQ.	# PLANTS DET.	PLANTS	% PLANT PREV.	MEAN	FACTOR	CONC.	CONC.	
	DIOXINS AND FURANS													
				96	4	9	ć	3.4	3 3	× 40	340	309.10	1.30	
	OCTACH ORODIBENZOBIOATN	30 T		3 4	2 5	12.0	3 <	ξ ,2	17.7	7 20	4 12	14 30	1.40	
	OCTACH ORODINENZOBOAM	100		4	20	8.0	*	34	11.8	5 40	3.48	31.20	1 80	
	TETRACTIL OR ODIBLENZOPURAN	ug/kg	2	3	20	09	3	34	8.8	2.40	2 94	25 40	\$.20	
	PENTACH JORODIBENZOFURAN	10 A B	_	-	20	2.0	-	34	2.9	3.90	3.57	2.50	2.50	
	HEXACTIL ORODIBLENZOPURAN	18/18 18/18		- .	30	20		34	2.9	2 20	4 4 5	35.30	25.30	
30CDF	HEPLACI ILORODIBENZOPUKAN	28 A/28 L	_	-	00	0.7	-	Ť	6.7	3	2	2	ŝ	
ESTICIDES	PESTICIDES, HERBICIDES, PCBS													
					;			;		00.00	910	0 0 0000	0 0	
PIPCHT	PCB, 10TAL	S A V	7 5	40	ñ.	78.4	77	34	19.4	03.20	5,18	3747 70	15 30	
240	24-DICALOROPTIENDA YACELLIC ACID	20 1	n c	90	7	0 0	3 2	34	67.7	00 ×	2 69	101 00	4 70	
VIBILA	SII VEX	0 4/8 n	3 6	23.22		43.1	61	34	33.9	47.30	340	1169 60	37 00	
PPEDE	PP DDE	118/A 8	_	22	31	43.1	81	34	52.9	7.30	2.31	07.70	4.00	
23245T	2,4,5 TRICLORPHENOXYACELIC ACID	ug/kg	3	21	15	41.2	91	¥	47 1	48 90	3 49	744.00	31.00	
PIDIEL	DIELDRIN	1.g/kg	2	8	31	39.2	17	34	90.0	7 20	3.10	259.70	3 40	
PICHLO	DAMMA CHLORDANE	11.6/kg	_	19	SI	37.3	17	34	90.0	90.9	2.44	36 10	2.90	
TUMOL	METHOXYCHLOR	8 x/8π	_	19	31	37.3	15	34	4	43 80	5.13	3179.70	17.80	
PLULICB	BETA-BHC (HEXCHLORCYCLUEXANE)	10g/k.g	_	91	14	353	13	34	38.2	7.40	3.29	11130	230	
HOHA	ALPI LA CHILORIDANE	10 g/kg	_	30 1	10	35.3	9	34	47.1	290	7.38	00 \$4 55	057	
X2124	1,2,4-TRICHLOROBENZENE	18/kg	.	7	15	33.3	4 :	4 5	41.2	06.4	4 00	322.00	000	
XZHCB	HEXACLEOROBENZENE	20 V	7 -	2 2	1 7	25.5	5 2	7, 7	7 95	00.0	2.48	00 00	230	
PIBLICA	ALPHA-BHCGEXCLGORCYCLJGXANE)	20 00 20 00		12	5 5	23.5	17	35	33.3	3.50	274	53.60	230	
PHH-PE	HEPTACHLORI-POXIDIL		. 7	12	51	23 5	=	34	32.4	200	2 62	183 50	3.50	
PLENDI	I:NDOSULPAN I	11 g/k g	3	6	51	17.7	7	34	900	4 60	2 56	129 90	4 80	
PLENDR	FINDRIN	ug/kg	3	30	51	15.7	30	34	23.5	4 20	2.21	37 40	3.20	
PIOCHI.	OX YCHB ORDANE	10 N/8 11	~	30 (51	15.7	7	34	9 0	4 50	227	21.70	4 60	
HEPT	HEPTACHLOR	10 N	· .		2	13.7		34	900	4 50	2.83	101 00	8 5	
PLALDIK	ALDRIN	20 K	- -	۰ ،	7.		0 4	4 2	17.7	8 6	007	49.80	000	
ZONII I	CANDOOLIFAN II	100 to 10	٠.	0 4	7.7	0 0	0 4	* 7	17.7	000	96.7	20 91 9	00 %	
DA DOUNE	DOLLARS SOLITION DESCRIPTION OF THE PARTY OF		٦.		3 2	0 0	٥ ٧	* *	12.2	16.40	233	106 30	00 81	
PINICID	DELTA BRICHRYCH ORCYCLURXAND		٠.	۰ -		0 0	۰.	£ 2	8	4 00	2.22	23.50	05.9	
MIRX	MIREX		_	2	31	3.0	7	34	3.0	4 00	2.37	101.00	23 90	
KIHCCP	HEXACHI.OROCYCI.OPHNIADIENE	3	3	7	2.5	3.9	5	34	8 8	33.30	218	90.30	44 20	
VOLATILES														
в 2мех У	M-, AND P-XYLENES	ug/kg	_	16	31	31.4	7	34	41.2	1345 90	3.86	4714640	1776 00	
XICHIO	CHI.OROFORM	ug/kg	_	12	53	23.3	12	34	35.3	1225 10	4 24	95238 10	1688 30	
BZEBNZ	FTHYL BENZENE	ng/kg		10	23	9 61	6	34	26.3	890.70	200	24813 90	738 40	
ZOX YI.	O.XYI F.NF	18/N	_	30 ·	15	13.7	20	34	23.5	841.60	2.51	14172.00	1096.90	
ALTEIK	HELKACHLOROETHYLENE	10 N/8		n .	5	9.0	ę.	34	30 (661.30	06 1	3162.80	346.80	
82317K	STYKENE	8 V 8			2	20		34	5.0	639 40	96	06 0 109	06 0 109	
XIBIX.M	BROMUDICAL OROME HANE	1 kg	.	- -	7.	20		34	5.0	934.60	1.82	1749 50	1749 50	
X213Cu	CHICAROLIBROMOME HIAND	20 X VI			7	70	- -	3.5	67	041 20	56.	017167	7312.10	
V 314CH	LA DICH OPONENCINE	M .			100	0.7		3.4	67.	635.30	16.1	3970.20	3970.20	

percent of the samples. The most frequently detected pesticide and herbicide compound was detected in 78 percent of the samples and 16 of the pesticide/herbicide compounds were detected in more than 20 percent of samples.

5.3.9 Summary of Contaminants in Treated Sludges

Table 5-13(a) presents a list of the 81 contaminants that were not detected in any treated sludge samples from any WPCP, including 5 contaminants that were not confirmed. Also indicated are the 34 contaminants not detected in any sample type at any WPCP.

Fifteen metals and 64 organic compounds were detected in at least one treated sludge sample. Table 5-13(b) summarizes the contaminants detected in treated sludges. The most prevalent organic compounds were the pesticides and herbicides, with 10 compounds detected at more than 40 percent of the plants. The most prevalent base neutral and acid extractable and volatile compounds were detected at fewer than 35 percent of plants. One dioxin compound (Octachlorodibenzodioxin) was detected at 65 percent of the plants. There were 13 metals detected at more than 86 percent of the plants and 6 (Ag, Al, Cr, Cu, Sr and Zn) detected at all of the plants.

The most frequently detected contaminants were metals, with 13 metals detected in at least 82 percent of samples, and 6 detected in all the samples. None of the base neutral and acid extractable, or volatile compounds were detected in more than 30 percent of samples. One dioxin compound was detected in 53 percent of samples, and the remaining dioxins were detected in less than 20 percent. The most frequently detected pesticide and herbicide compound was detected in 68 percent of samples, and 16 of the pesticide/herbicide compounds were detected in more than 20 percent of the samples.

5.3.10 Summary of Contaminants Detected in Any Sample Type

Table 5-14 presents a summary of contaminants detected in any sample type. The Table provides for each of the five contaminant groups, the number of compounds detected, the maximum percentage prevalency (ie. the maximum percentage of all WPCPs in which the contaminant was identified) for any contaminant in the group and the maximum percentage frequency (ie. the maximum percentage of all samples of a given type in which the contaminant was identified) for any contaminant in the group.

As noted throughout Section 5.3 metals were the most prevalently (most WPCPs) and most frequently detected contaminants in all sample types.

	CONFIRMED		NOT CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT	CONTAMINANT NAME
	METALS AND CYANIDE		
CCNFUR	CYANIDE-FREE, UNFILT REAC.		
	BASE NEUTRAL AND ACID EXTRACTABLE COMPOUNDS		
P2AMET	AMETRYNE	PMPCRE	P-CRESOL*
P2ATRA	ATRAZINE*		
P4DIAZ	DIAZINON*		
P4EPAR	PARATHION ETHYL*		
P4MALA P4MPAR	MALATHION* METHYLPARATHION*		
PM24DP	24-DICHLOROPHENOL		
PM24DT	2,4-DINTTROTOLL'ENE	1	
PM24MP	2,4-DIMETHYLPHENOL	1	
PM24NP PM26DT	2.4-DINITROPHENOL® 2.6-DINITROTOLUENE		
PM2NP	2-NTTROPHENOL		
PM46DP	2-METHYLA,6-DINTTROPHENOL		
PM4BPE PM4CPE	4-BROMOPHENYLPHENYLETHER 4-CHLOROPHENYLPHENYLETHER		
PM4CPE PM4NP	4-NTROPHENOL		
PMANAA	ALPHA-NAPHTHYLAMINE®	1	
PMB2EM	BIS(2-CHLORETHOXY)METHANE		
PMB2IE PMB2NE	BIS(2-CHLOROISOPROPYL)ETHER BIS-(2-CHLOROMETHYL)ETHER	1	
PMBNAA	BETA-NAPHTHYLAMINE*	1	
PMDMP	DIMETHYL PHTHALATE	i i	
PMOCRE	O-CRESOL		
PMPCMC PN2CNA	P-CHLORO-M-CRESOL CHLORONAPHTHALENE®	i	
PNACNE	ACENAPHTHENE*		
PNBBFA	BENZO(B)FLUORANTHENE		
PNDAHA PNGHIP	DIBENZO(A,H)ANTHRACENE* BENZO(G,H,I)PERYLENE*		
PNINP	DENO(1,23-CD)PYRENE*	1	
PODICH	DICHLORAN*	1	
POTOC	TRI-O-CRESYL PHOSPHATE*		
X3001O X3245	2-CHLOROPHENOL 2,4,5-TRICHLOROPHENOL®		
X3246	2,4,6-TRICHLOROPHENOL		
ХЗРСРН	PENTACHLOROPHENOL		
	DIOXINS AND FURANS		
P94CDD	TETRACHLORODIBENZODIOXIN*		
P94CDF P96CDF	TETRACHLORODIBENZOFURAN HEXACHLORODIBENZOFURAN	1	
P97CDF	HEPTACHLORODIBENZOFURAN		
P98CDF	OCTACHLORODIBENZOFURAN		
	PESTICIDES, HERBICIDES, PCBS		
PIENDA PISTRO	ELDRIN ALDEHYDE STROBANE®	POCAPN X1HCBD	CAPTAN° HEXACHLOROBUTADIENE°
PITOX	TOXAPHENE	,	
	VOLATILES		
BIOCTE	1-OCTENE	X1ACRO	ACROLEIN ACRYLONTRILE*
B1VBR B2BDCL	VINYL BROMIDE * BROMODICHLOROBENZENE	XIACRY	ACRICONTRILE
B2STYR	STYRENE		
E1DIEE	DIETHYL ETHER	1	
PM2CEE X11122	2-CHLOROETHYLVINYLETHER* 1,1,2,2-TETRACHLOROETHANE*	1	
X1112T	1,1,2-TRICHLOROETHANE*		
XIIIŒ	1,1-DICHLOROETHANE		
X112CE	1,2-DICHLOROETHANE		
X112CP X113DP	1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE		
X113DR	TRANS-1,3-DICHLOROPROPENE		
XIACTO	ALPHA-CHLOROTOLUENE		
X1BDCM	BROMODICHLOROMETHANE		
X1BETH X1BROM	BROMOETHANE®		
XICDCE	CIS-1,2-DICHLOROETHYLENE		
XICHLE	CHLOROETHANE*		
X1CHLM VICTET	CHLOROMETHANE®		
X1CTET X1DCFM	CARBON TETRACHLORIDE DICHLORODIFLUOROMETHANE		

TABLE 5-13 a - GLOBAL SUMMARY OF CONTAMINANTS NOT DETECTED IN TREATED SLUDGES

	CONFIRMED	NOT	CONFIRMED
CONTAMINANT CODE	CONTAMINANT NAME	CONTAMINANT	CONTAMINANT NAME
K1T12D	YOLATILES TRI-1.2-DICHLOROETHYLENE* TRICHLOROFLUOROMETHANE*		
KITCPM KIVCL K212CB K213CB K23CTO K2CBEN K2CPPE	TRICHLOROPHUOROMETHANE* VDYL-CHLORIDE* 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 3-GLLOROTOLL'ENE CHLOROPENZENE 3-CHLOROPROPENE*		
		-	

[.] NOT DETECTED IN ANY STREAM TYPE AT ANY PLANT

TABLE 5-13b - GLOBAL SUMMARY OF CONTAMINANTS IN TREATED SLUDGES

STATION CHARGE CONTRIBED DIAGNED STATION			WEIGHT)		EIGHT) DET.	TESTED	DET.	# PLANTS DET.	PLANES	% FLANT PREV.	GEO.	SPREAD	MAX. CONC.	MIN. CONC.	
Comparison Com	DNVENT	IONALS													
CHARLIAN ON VIGENERAL ON VIGE								6	6				200 200 000	0340.00	
R. MINCAGEN CONTINUED R. M.	619	CHEMICAL OX YORN DEMAND		_	36	98 3	100.0	56	53	0.001	208097.94	4 60	360683 26	1419 58	
INTERPRESSION CONTRIBUTE TOTAL CONTRIBUTE CO	HITT-K	AMMONIUM,TOTAL, FILL REAC.			១ ៖	3 \$	0001	13	34	0.001	38494 12	177	29411765	14400 02	
HEISHINE, IOTAL INCAL IN	KUK	NI KOGEN-TOT-KDEL, ONI' TOT			47	47	100.0	34	3, 7	100.0	7.17	1.09	984	5.70	
HEINDIE, DOTAL. PARTICIONAL PARTICIONA	Ξ	PHOSPHORUS UNPILL TOTAL			43	43	100.0	29	53	1000	76638 67		6094159 99	19410 00	
14 STREADILE TOTAL FOR DAYS. 15 STREADILE TOTAL. 16 STREADILE TOTAL. 17 STREADILE TOTAL. 18 STREADILE TOTAL.		RESUME TOTAL			50	50	100.0	34	34	1000	80434 04	3 23	479900.00	2210 00	
NINTARES OTAL-PH TAMAC.	1011	RESUME TOTELOSS ON ION).		_	20	50	100 0	34	34	100.0	43379,33	318	240560.00	1180.00	
STEPLY S	OITR	NITRA IES, TOTAL FILT REAC.			23	92 9	888 5	19	50	95.0	42.68	2 29	565 61	9 24	
STATE Color Colo	JON DE	MENDLIUS (4AAP)			ř	÷	c c	G	3			*	2		
INTERPRETATORAL															
SILVER UNFILL TOTAL AL UNRINGENT TOTAL GRAPH (1907) AL UNRINGENT TOTAL	TALS														
AUTHOLING TOTAL															
A DIMINIARIATI TOTAL	101	SILVER, UNFILT TOTAL		_	4 :	44	100 0	30	30	0000	37.78	2,33	240.73	2.30	
CHROMINIANI TOTAL WELLY IN CHROMINIANI WELLY IN CHROMINIANI ELLY IN CHROMINIANI WELLY IN CHROMI	5	ALUMINUM,UNHILL TOTAL.		0	20	20	0 001	4.5	34	0.001	333.04	2.82	2404.15	391 42	
STROMENTIME, FOLKEL TOTAL. MagA 0	5 !	CHROMIUM, UNCILL TOTAL			2 :	30	0001	8	33	0.007	333.00	2.5	4043.00	0 40	
AMERICAL TOTAL May 1 1 1 1 1 1 1 1 1	10.5	COPPER,UNFILL TOTAL			Ç 9	2 6	0.001	3.4	24	0.001	240.03	2 \$4	1366.46	2 8	
MACHINICHIET TOTAL		STRUMING TOTAL			2 5	2 5	0001	2 25	. 2	100.0	988 40	2.57	15126 05	\$2.05	
HANDINGT TOTAL Walt	5 5	ADSENIC HARRISTOTAL			46	2 5	0 86	3 2	2 2	97.1	540	2.06	23 56	0.43	
SHEADURING LINEART TOTAL	- 1-1	MERCURY UNFILT TOTAL			46	20	0.86	33	34	97.1	3.24	2.04	33.74	077	
NICKELUNITITIONAL Numaria 14	15	LEAD, UNPRITTOTAL		0	49	20	0.86	33	34	1.76	19662	2.40	4537.82	10 23	
COMPATINICAL TOTAL mg/kg 0 42	5	SELLINIUM, UNPIL3 TOTAL			88	20	0.96	33	34	97 1	2.67	2.98	22 49	0.10	
COMMINALIZINGET FORM. mg/kg 0 22 34 59.1 22 25 25 50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 51 5	1	NICKEL, UNPILT TOTAL		0	42	45	93.3	27	30	0 06	7295	2.95	2393 36	6.26	
CORALIANTELLIOLATION PROPERTY CORPOLIUM PROPERTY CORPOLIUM CORPOLI	5!	CADMIUM,UNFILT FOTAL		0	41	8.5	3.16	22 :	31	90.3	1047	398	175.64	1,73	
BIRYLLIMACING, BIRY	5 5	MOI VERNING A PRINT TRATAL			3.2	34	1.79	3 =	2 %	000	9 14	2 84	83.33	1.34	
ELITARIA AND ACID EXTRACTABLE COMPOUNDS ELITARIA AND ACID EXTRACTABLE COMPOUNDS ELITARIA AND ACID EXTRACTABLE COMPOUNDS ELITARIA AND ACID EXTRACTABLE COMPOUNDS ELITARIA AND ACID EXTRACTABLE COMPOUNDS ELITARIA AND ACID EXTRACTABLE UNIT 15 00 20 0 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 1	HURYLL HOM ENVEY TOTAL			c7 -	2 2	5	0 -	3 42	4 2	047	3.32	063	0.63	
E. M. CHESOL. BITTY BENEXITA BILE COMPULINDS E. M. CHESOL. BITTY BENEXITA FILLA. THE UMA 1 15 50 50 0 12 34 513 5281 80 82 2211895 90 BITTY BENEXITA FILLA. THE UMA 1 6 50 120 6 34 177 1916 90 352 344981 0 BITTY BENEXITA FILLA. THE UMA 1 6 50 120 6 34 147 1456 0 37 244981 0 BITTY BENEXITA FILLA. THE UMA 1 6 50 120 6 34 147 1456 0 37 244981 0 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 1916 90 352 344981 0 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 1916 90 352 344981 0 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 7 7 2843 80 BITTY BENEXITA FILLA. THE UMA 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						ì	•		:	:			3		
M. CHESON Wurker	SENE	JIRAL AND ACID EXTRACTABLE CO	MPOUNDS												
BITTATEMENT Bughs 12 50 240 9 34 265 2500 9 34 20 3200 9 34 3200 9 34 3200 9 34 3200 9 34 3200 9 34 3200 9 34 3200 9 34 3409810 9 320 34	MCRE	M-CRESOL.	L MAN I	-	15	80	30 0	1.2	34	35.3	5281 80	8 20	2211895 90	7750 00	
CHRYSHINE WW.	NEN	PUENANTIBRENE	a Nau		12	50	240	σ,	7.	26.5	2220 50	4 27	28235 30	2868 50	
Comparison Com	1881	BUTYLBENZYLMINALARE	10 K/10 B	_	×0	00	16.0	٥	34	17.7	1916 90	5 23	914498.10	16/3.60	
FUNDANTHENER UMA	NAM	NAPITIALINE	18 A/30		۰.	20	12.0	wn ·	7	14.7	1545 60	377	25585 80	2389.10	
INTRODENCIALITY ULTA 1	CERT	CHRISTNE	2 m			00	0 0	•	# ;		14/330	3.59	13832.20	971.00	
HUNDON,	NITE	NETHORNACION	31 - C			9 9	0 4	n e	* **	0 3	1338 90	77.0	17400 00	07.906.7	
HIJORIENE UNA 1 1 1 1 1 1 1 1 1	N-II-K	DIENO!	8 2	. ^		2 5	000	۰.	3.4	0 36	2108 80	346	31126.40	1 4448 70	
PURINE	OILE	FILIORENH			. ~	2 9	0 0	, ~	3.4	o oc	134210	3 2 5	4047.30	07 1072	
DICHIENT-LETTER	PYR	PYRENE	1001		. ~	20	0 0	, «	3.6) x	2124 30	3.44	18799 \$0	9243.70	
NEWZYOA, ANTER ACTIVATE War 2 50 40 2 34 1819 34 18119 NEWZYO, ANTER ACTIVATE War 1 50 20 1 34 29 17850 34 18119 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 17850 39 17815 ACCIVATIVE War 1 50 20 1 34 29 18940 32 18950 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 18950 31 89530 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 18950 31 89530 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE War 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 1 50 20 1 34 29 18950 NEWZYO, ANTER ACTIVATIVE WAR 2 2 2 2 2 2 2 2 NEWZYO, ANTER ACTIVATIVE WAR 2 2 2 2 2 2 2 2 2	HOLE	DIPURNYLETIGER	ug/kg I	_	5	50	4 0	5	34	8.9	3222 10	3.37	30000.00	15083 70	
NTROSCOLDIPHENYTAMINE	BAA	HENZOXA)ANTHIRACUME	184/80	_	2	20	4 0	2	34	5.9	1379.50	3.41	1451190	6666.70	
NUMINOSO DI NINOPYLAMINE \(\alpha_{\mathbf{k}} \) 1	CINNI	N-NEROSO/DEPHENYLAMINE	ug/kg 1	_		90	2.0	-	34	2.9	1276 20	3 3 5	12471 40	1247140	
ACHAMPITINE U.A. 1 1 50 20 1 34 29 190940 326 614290 ACHAMPITINE U.A. 1 1 50 20 1 34 29 190640 326 614290 BINZOLAPIYENE U.A. 1 1 50 20 1 34 29 19366 32 1 95780 BINZOLAPIYENE U.A. 1 1 50 20 1 34 29 193690 326 625520 BINZOLAPIXENE U.A. 1 1 50 20 1 34 29 199900 326 625520	NN	N-NTROSO-DI NPROPYLAMINE	ua/kg 1	_	_	80	2.0	_	34	2.9	1335 60	3 39	17475.70	17475 70	
MINICACHNE UMAN 1 30 20 1 34 29 13060 32 1395 80 80 80 80 80 80 80 80 80 80 80 80 80	ACNY	ACENAMITHYLENE	1 MA/NU	_		90	2.0	-	34	2.9	1909.40	3 26	6142 90	6142 90	
HENZAAPPRENE UWAR 1 50 20 1 34 29 133330 330 1088390 HENZAAPPRENE UWAR 1 50 20 1 34 29 18900 32 62520 HENZAAPPRENE	ANIM	ANTIGRACIONE	1 MAN	_		20	2.0	-	34	2.9	1306 60	3.21	3957 80	3957.80	
HINTON MAINTAIN WARE 1 50 20 1 34 29 1800 80 326 625520	HAP	BENZAAJPYRENE	10 M/N 10			20	2.0	_	34	2.9	1333 30	3 30	1088390	10883 90	
The same of the sa	HILL	BIRINAL	18 4/8n	_		20	2.0	_	34	20	CHOOMS	3 34	OC 33C 1	A 36.6 30	

TABLE 5-13b - GLOBAL SUMMARY OF CONTAMINANTS IN TREATED SLUDGES

CONFAM- INANT	CONTAMINANT NAME	UNITS QA/QC GLOBAL (DRY CODE # SAMPS, WEIGHT) DET,	A/QC CODE	UNITS QA/QC GLOBAL (DRY CODE # SAMPS. EIGHT)	GLOBAL # SAMPS. TESTED	GLOBAL % FREQ. DET.	GLOBAL 8 PLANTS DEF,	GLOBAL # PLANTS	GLOBAL % PLANT PREV.	GEO. GEO. MEAN	GLOBAL SPREAD FACTOR	GLOBAL MAX. CONC.	GLOBAL MIN. CONC. > DL
OXINS	DIOXINS AND FURANS												
P98CDD	OCTACLB.ORODIBENZODIOXIN	ug/kg	_	92	49	53.1	22	34	64.7	7.10	384	303.60	0.60
MJCDD	I GEPTACTO, ORODIBLENZODIOXIN	ug/kg		10	49	20.4	so r	34	23.5	2,00	321	72 60	1.40
P96CDD	HEXACHLORODIBENZODIOXIN	ag al Agu	7	7 -	6 4	200	7 -	34	2.9	3 20	6.14	1.30	1.30
PSCDP	PENTACIBORODIBENZOPURAN	100			64	2.0		34	2.9	2.50	512	1 60	1 60
STICID	PESTICIDES, HERBICIDES, PCBS												
PLPPDE	PP-DDE	u8/k8		34	9 9	0.89	22 22	34	73.5	11.10	272	164 80	360
PIPCBI	PCB, TOTAL	ug/k g	7	3.2	2 2	25	57	3.4	64.7	25.00	4.38	07 6 6 6 6	2 2
PICHEA	ALPHA CHI ORDANE	10 A A	n –	2 22	2 2	0.44	61	34	55.9	6.50	2.41	36 50	4.20
X 21 24	1,2,4-TRICHLOROBENZENE	ug/kg	3	22	20	44 0	18	34	52.9	14 80	502	784.70	12.90
PICHLG	GAMMA-CHEORDANE	ug/kg	-	21	20	42.0	18	34	52.9	6.80	2.58	38.00	4 90
X2HCB	HEXACIBOROBENZENE	ug/kg	7	21	20	42.0	61	34	55.9	7.00	2.96	123.70	1.10
PIBLICE	BETA-BIIC (IEXCHLORCYCLIEXANE)	ug/kg	- ·	16	000	34.0	9 4	4 5	47.1	8.80	4 39	1264 80	3.20
P35II.V	SILVEX 3.4.5 TRICA ORDANINONYA CASATC ACID	10 kg/kg	9 6	9 9	9 9	37.0	13	* 7E	1 7	84.40	313	1443 30	28 10
PIDIE.	DISTURNIN	ug/kg	7	2 2	20 %	30.0	13	34	38.2	6 50	3.51	384 20	5.80
PIDMDF	MISHOXYCHOR	U.K.A.	-	13	20	30.0	13	34	38 2	34 10	4,42	7633 60	21.20
PHRICO	CIAMMA BITC() BEXCHOLORCYCLLIEXANE)		2	1.2	20	24 0	1.2	34	35.3	5 70	313	107 40	200
PLALDR	ALDRIN			= :	20	22 0	6 :	34	\$ 50.5	\$ 30	2.67	77 60	096
PUBLICA	ALMA-BHC(HEXCHLORCYCT HEXANE)	08/kg	٠ ,	= =	200	0 7 7	- 7	34	32.4	200	3.00	243.70	97 4
PILIFFE	HEPTACHE CARDE	20 A 00 11	4 10	0	2 2	0 11	0 00	34	23.5	4 70	2.20	2x 10	680
PIMIRX	MIREX	ug/kg	-	. 00	20	16.0	۰	34	17.7	4 90	2.52	80 80	7 90
XHICCP	HEXACITEOROCYCLOPENTADIENE	ug/kg	3	300	50	16.0	30	34	23 5	34 20	2.76	639.70	27 60
PILND2	ENDOSULPANII	ug/kg	е,	7	50	14.0	7	34	20 6	4 70	2.67	81.30	12.30
PIPPO	PP-DDD	8 4/8n		. ,	0,0	140		54	000	00 4	7.00	07 90	018
PIENDS PIENDS	FUNDOSCII PAN SCII DAIATH	10 A 20 C	n 100	0 0	9 9	120	, 0	34	17.7	17 50	2.53	36.260	35 20
PLOCIAL	OXYCHLORDANH	0 0		9	9	12.0		34	17.7	4 20	2.24	26.70	8 10
PLENDR	ENDRIN	U.R./h.	3	10	20	10.0	\$	34	147	4 20	236	\$6.80	4 70
PIPPDF	PP-DDT	UB/kg	3	\$	20	10.0	S	34	14.7	16.70	2.14	181 80	24 30
POPCNB	PCNB	ug/kg	2	2	22	9.1	2	14	14.3	22 60	1 21	62.70	00 09
PIRHED	DELTA BEICOBXC10 ORCYCLUBXANE)			4 (20	0.8	4	34	80.	3.90	193	11.50	2.50
XZHCE	HEXACTO OROHITANE	20 2 20 2 20 2 20 2 20 2	3 6	7 -	200	2.0	7 -	3.4	2.9	3 20	1 94	83 40	16.00
		3											
VOLATILES	ES .												
B2MPXY	M., AND P XYLENES	ug/kg		15	20	30.0	=:	34	32.4	816.00	711	1416961 90	626 00
ZNA	ESHYLBENZINE	UR/Kg	.	5 7	00	0 97	= :	. 54	32.4	000 30		500104 20	181 40
BAJATI.	O A TLENE	16/18 20 20 20 20 20 20 20 20 20 20 20 20 20		4 .	20	0 87	= :	34	32.4	523.30		37037.00	208 40
ATCABLO VITITIO	TIVE A CHE OR DEPENDENCE	26/kg		1.2	0,0	240	12	34	35.3	441.70	4 33	12937 10	760
V 21 4C II	14 OKST OBOBENSEN	N 4/20		7 (2 9	0 4	7	4.0	200	282 40	3.51	3339.40	2839 50
1111.X	LA LOKA III. OROBERAZENE	18 M / 18 H		7 1	2 \$	200	7	3 7	9.6	272 70	3 28	2643.70	220.00
XIIIIX	1.1TRICHLOROETHANE	at a Van	, -		2 5	200		34	67	254 60	3 34	3323 20	14 56 / 8 20
VICTORIA	And the control of th	0			2 5	9 6		5 3	6.0	0.00	100	CO C 7 C 7	C 5757
Cham	CHI CHECOMONIC III AND	7 11 7 11			9	2.0		4.4	3.0	16.110	2 % 2	A624 20	6434 TA

Table 5-14 SUMMARY OF CONTAMINANTS DETECTED IN ANY SAMPLE TYPE

			Metal	Metals and Cyanide	nide	Base	Base Neutral and Acid Extractable	and	Dioxi	Dioxin/Furan (2)	(2)	Pest	Pesticides and Herbicides	nnd		Volatiles	
Sample Type	No. Plants	No. Samples	No. Det.	Max % Plant Prev.	Max % Freq. Det.	No. Det.	Max % Plant Prev.	Max % Freq. Det.	No. Det.	Max % Plant Prev.	Max % Freq. Det.	No. Det.	Max % Plant Prev.	Max % Freq. Det.	No. Det.	Max % Plant Prev.	Max % Freq. Det.
Raw Sewage	37	275	15	100	7.66	31	86.5	60.7	e	10.8	7.4	29	100	77.5	22	37.8	15.7
Primary Effluent	7	39	14	100	100	9	71.4	46.2	2	26.8	25.0	16	85.7	72.5	12	85.7	55.3
Lagoon Effluent (4)	2	12	10	100	100	0	ı	1	0	ı	1	7	100	100	0	ı	ı
Secondary Effluent	28	224	15	100	100	24	14.3	3.1	4	14.3	9.1	24	100	78.0	19	64.3	16.5
Tertiary Effluent (4)	1	10	13	100	100	15	100	30.0	0	ı	ı	00	100	0.06	6	100	90.09
Raw Sludge (2)	34	51	16	100	100	15	85.3	82.3	7	58.5	0.08	27	79.4	78.4	10	41.2	31.4
Treated Sludge (2)	34	20	15	100	100	19	35.3	30.0	2	64.7	53.1	30	73.5	68.0	10	32.4	30.0

Notes:

- (1) The number of samples may vary depending on compound group. The number given is representative of most compound groups. Refer to Table 5-4(a) - 5-10(a) for exact numbers.
- (2) Samples are 5-day composites.
- (3) The number of contaminants detected in the sample type.
- (4) Summary data for lagoon and tertiary effluents is included for the sake of completeness. Due to the small number of facilities sampled, this data should be interpreted with caution.

Only 5 base neutral and acid extractable compounds (M-cresol, Phenol, Phenanthrene, Butylbenzl phthalate and Naphthalene) were detected at more than 20% of the plants studied for any sample type. With the exception of the 5 compounds, base neutral and acid extractable compounds were detected at a maximum of 14 percent of plants and in a maximum of 8 percent of samples, for all sample types. Interestingly, the maximum prevalency and frequency of detection of base/neutral acid extractable compounds in all secondary effluent samples was substantially smaller than in the raw sewage, primary effluent or sludge sample types.

The maximum frequency of detection and prevalency of dioxins and furans was relatively low in raw sewage and in primary and secondary effluent streams. In contrast, the number of dioxin/furan compounds detected, and the maximum frequency of detection and prevalency were markedly greater in sludge streams.

Approximately the same number of compounds in the pesticide/herbicide group were detected in raw sewage, secondary effluent and raw treated sludge streams. About 50 percent fewer compounds were detected in primary effluents. This may be attributable to a lower number of primary plants monitored. The maximum frequency of detection and prevalency is quite large and reasonably uniform for all sample types.

The largest number of volatile compounds were detected in the raw sewage and secondary effleunt streams. Maximum frequency of detection and prevalency were quite variable among the sample types ranging from 32 percent to 85 percent prevalency and 15 percent to 55 percent frequency of detection.

This interim report on the WPCP Pilot Monitoring Study was prepared to present the study program methodology and the analytical data in conjunction with the QA/QC results. Also included are the individual plant information summaries (Appendix A).

The final report will present a more detailed review and analysis of the study results. More specifically, the report will include the following:

- o An assessment of the impact of industrial, residential and sanitary sewer inputs on the nature and loadings of HCs observed in the raw wastewaters and sludges.
- o An estimate of HC loadings discharged in the sludges and liquid effluents of the 37 WPCPs.
- o An assessment of the ability of WPCPs to remove HCs and identification of the factors affecting HC removal efficiency.
- o A prioritized list of contaminants observed at the 37 WPCPs.
- o The major concerns affecting the implementation of the monitoring regulation and recommendations to address problem areas.

7.0 REFERENCES

- Ontario Ministry of the Environment (1988). "The Effluent Monitoring Priority Pollutants List (1987)", Ontario MOE, Hazardous Contaminants Coordination Branch, Toronto, Ontario. (ISBN 0-7729-0784-7).
- 2. U.S. EPA (1984). "Development Document for Effluent Limitations Guidelines and Standards for the Plastics Moulding and Forming Point Sauce Category". U.S. EPA, Office of Water Regulations and Standards, Industrial Technology Division, Washington, D.C. (EPA-440-/1-84-069).
- Zenon Environmental Inc. "Joint MOE/Environment Canada/MEA Municipal Sewage Treatment Plants Pilot Monitoring Project Volume 1 - Final Report" January 1988. Prepared for Ontario Ministry of the Environment.
- Survey of Industrial Discharges to 37 WPCPs (1987), Ministry of the Environment Internal Report.
- Ontario Ministry of the Environment (1988). "Estimation of Analytical Detection Limits", MISA Report.
 Ontario MOE, Toronto, Canada. (ISBN 0-7729, 0784-7).
- 6. Ontario Ministry of the Environment, LCS-QA/QC Section, Laboratory Services Branch (1988). "QA/QC Report on the Spiked Effluent and Sewage Samples from the 40 Sewage Treatment Plants Toxic Survey Project".

