Industrial Control Unit

The MC14500B Industrial Control Unit (ICU) is a single—bit CMOS processor. The ICU is designed for use in systems requiring decisions based on successive single—bit information. An external ROM stores the control program. With a program counter (and output latches and input multiplexers, if required) the ICU in a system forms a stored—program controller that replaces combinatorial logic. Applications include relay logic processing, serial data manipulation and control. The ICU also may control an MPU or be controlled by an MPU.

- 16 Instructions
- DC to 1.0 MHz Operation at VDD = 5 V
- On-Chip Clock (Oscillator)
- Executes One Instruction per Clock Cycle
- 3 to 18 V Operation
- Low Quiescent Current Characteristic of CMOS Devices
- Capable of Driving One Low–Power Schottky Load or Two Low–Power TTL Loads over Full Temperature Range

BLOCK DIAGRAM

X1 — OSCILLATOR OUTPUT X2 — OSCILLATOR INPUT

MC14500B

L SUFFIX CERAMIC CASE 620

P SUFFIX PLASTIC CASE 648

DW SUFFIX SOIC CASE 751G

ORDERING INFORMATION

MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBDW SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
l _{in} , lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15	_ _ _	0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95		Vdc
Input Voltage RST, D, X2 (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)		VIL	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	VIH	5.0 10 15	3.5 7.0 11	 - - -	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
Input Voltage # I0, I1, I2, I3 (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	_ _ _	0.8 1.6 2.4	_ _ _	1.1 2.2 3.4	0.8 1.6 2.4		0.8 1.6 2.4	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	2.0 6.0 10	_ _ _	2.0 6.0 10	1.9 3.1 4.3	_ _ _	2.0 6.0 10	_ _ _	Vdc
Output Drive Current Data, Write (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	lOH	5.0 10 15	- 1.2 - 3.6 - 7.2	_ _ _	- 1.0 - 3.0 - 6.0	- 2.0 - 6.0 - 12	_ _ _	- 0.7 - 2.1 - 4.2	 - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	lOL	5.0 10 15	1.9 3.6 7.2	_ _ _	1.6 3.0 6.0	3.2 6.0 12	_ _ _	1.1 2.1 4.2	_ _ _	mAdc
Output Drive Current Other Outputs (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	 - - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4		mAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

ELECTRICAL CHARACTERISTICS — **continued** (Voltages Referenced to V_{SS})

		V _{DD}	-55	5°C		25°C		125	5°C	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Input Current, RST	l _{in}	15	25	_	_	150	_	_	250	μAdc
Input Current	l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (Data)	C _{in}	_	_	_	_	15	_	_	_	pF
Input Capacitance (All Other Inputs)	C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package) $I_{out} = 0 \mu A$, $V_{in} = 0 \text{ or } V_{DD}$	I _{DD}	5.0 10 15		5.0 10 20	1 1 1	0.005 0.010 0.015	5.0 10 20	_ 	150 300 600	μAdc
**Total Supply Current at an External Load Capacitance (C _L) on All Outputs	lΤ		$I_{T} = (1.5 \mu\text{A/kHz}) f + I_{DD}$ $I_{T} = (3.0 \mu\text{A/kHz}) f + I_{DD}$ $I_{T} = (4.5 \mu\text{A/kHz}) f + I_{DD}$			μAdc				

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* ($T_A = 25^{\circ}C$; $t_r = t_f = 20$ ns for X and I inputs; $C_L = 50$ pF for JMP, X1, RR, Flag O, Flag F; $C_L = 130$ pF + 1 TTL load for Data and Write.)

		V _{DD}	All Types			
Characteristic	Symbol	Vdc	Min	Typ #	Max	Unit
Propagation Delay Time, X1 to RR	^t PLH [,] ^t PHL	5.0 10 15	_ _ _	250 125 100	500 250 200	ns
X1 to Flag F, Flag O, RTN, JMP		5.0 10 15	=	200 100 85	400 200 170	
X1 to Write		5.0 10 15	_ _ _	225 125 100	450 250 200	
X1 to Data		5.0 10 15	_ _ _	250 120 100	500 240 200	
RST to RR		5.0 10 15		250 125 100	500 250 200	
RST to X1		5.0 10 15	_ _ _	450 200 150	Note 1	
RST to Flag F, Flag O, RTN, JMP		5.0 10 15		400 200 150	800 400 300	
RST to Write, Data		5.0 10 15		450 225 175	900 450 350	
Clock Pulse Width, X1	^t W(cl)	5.0 10 15	400 200 180	200 100 90	=	ns
Rent Pulse Width, RST	^t W(R)	5.0 10 15	500 250 200	250 125 100		ns
Setup Time — Instruction	t _{su(I)}	5.0 10 15	400 250 180	200 125 90	_	ns
Data	t _{su(D)}	5.0 10 15	200 100 80	100 50 40	_ _ _	
Hold Time — Instruction	t _{h(I)}	5.0 10 15	100 50 50	0 0 0	_ _ _	ns
Data	^t h(D)	5.0 10 15	200 100 100	100 50 50	_ _ _	

NOTE 1. Maximum Reset Delay may extend to one-half clock period.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Typical Clock Frequency
versus Resistor (Rc)

Pin No.	Function	Symbols
1	Chip Reset	RST
2	Write Pulse	Write
3	Data In/Out	Data
4	MSB Instruction Word	l ₃
5	Bit 2 Instruction Word	l ₂
6	Bit 1 Instruction Word	I ₁
7	LSB Instruction Word	l ₀
8	Negative Supply (Ground)	Vss
9	Flag on NOP F	Flag F
10	Flag on NOP O	Flag O
11	Subroutine Return Flag	RTN
12	Jump Instruction Flag	JMP
13	Oscillator Input	X2
14	Oscillator Output	X1
15	Result Register	RR
16	Positive Supply	V_{DD}

Table 1. MC14500B Instruction Set

Instruct	Instruction Code Mner		Action
0	0000	NOPO	No change in registers. RR → RR, Flag O → ¬¬¬¬
1	0001	LD	Load result register. Data → RR
2	0010	LDC	Load complement. Data → RR
3	0011	AND	Logical AND. RR • Data → RR
4	0100	ANDC	Logical AND complement. RR • Data → RR
5	0101	OR	Logical OR. RR + Data → RR
6	0110	ORC	Logical OR complement. RR + Data → RR
7	0111	XNOR	Exclusive NOR. If RR = Data, RR → 1
8	1000	STO	Store. RR → Data Pin, Write → \(\square\)
9	1001	STOC	Store complement. RR → Data Pin, Write → □
Α	1010	IEN	Input enable. Data → IEN Register
В	1011	OEN	Output enable. Data → OEN Register
С	1100	JMP	Jump. JMP Flag → □
D	1101	RTN	Return. RTN Flag →
E	1110	SKZ	Skip next instruction if RR = 0
F	1111	NOPF	No change in registers. RR \rightarrow RR, Flag F \rightarrow \square

Figure 2. Outline of a Typical Organization for a MC14500B-Based System

TIMING WAVEFORMS

Instructions NOPO, NOPF RR, IEN, OEN remain unaffected

Instructions SKZ, JMP, RTN RR, IEN, OEN remain unaffected

^{*} Instructions Ignored.

TIMING WAVEFORMS

Instructions STO, STOC, OEN

Instructions LD, LDC, AND, ANDC OR, ORC, XNOR, IEN

OUTLINE DIMENSIONS

L SUFFIX CERAMIC DIP PACKAGE CASE 620-10 ISSUE V

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62 BSC		
М	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

P SUFFIX

PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MIN MAX		MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	10.15	10.45	0.400	0.411	
В	7.40	7.60	0.292	0.299	
С	2.35	2.65	0.093	0.104	
D	0.35	0.49	0.014	0.019	
F	0.50	0.90	0.020	0.035	
G	1.27	BSC	0.050 BSC		
J	0.25	0.32	0.010	0.012	
K	0.10	0.25	0.004	0.009	
M	0 °	7 °	0 °	7 °	
Р	10.05	10.55	0.395	0.415	
R	0.25	0.75	0.010	0.029	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marae registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

