ETH zürich

Introduction to Scientific Computation Lecture 4 Fall 2021

Data related problems, Supervised learning Perceptron

Basic definitions

We have a set of objects: X

And the set of possible answers: *Y*

Basic definitions

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

Basic definitions

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

Supervised

Unsupervised

 $Y \in \emptyset$

Supervised

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

And we know values of y^* only on a finite subset $\{x_1, \dots, x_l\} \subset X$

Training sample:

$$X^{l} = \left(x_{i}, y_{i}\right)_{i=1}^{l}$$

Precedent

Let's look into this guy

Let's look into this guy

	N_Rooms	Floor	Smokers?
Hous1	1	1	Yes
	•••	•	
Hous N	3	_	No

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

If Y is discrete $\{1,...,N\}$

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

If Y is discrete $\{1,...,N\}$

Classification

We have a set of objects: X

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

If Y is discrete $\{1,...,N\}$

Classification

If Y is continuous [-25,100]

We have a set of objects: \boldsymbol{X}

And the set of possible answers: *Y*

We define the target function: $y^*: X \to Y$

is continuous [-25,100]

is discrete $\{1,...,N\}$

lf

Y

Regression

Classification

How to say if one target function is better?

$$y_1^* = 5x + 6$$
 or $y_2^* = 4x^3 - 2x + 1$

How to say if one target function is better?

$$y_1^* = 5x + 6$$
 or $y_2^* = 4x^3 - 2x + 1$

We need to compare them.

How to say if one target function is better?

$$y_1^* = 5x + 6$$
 or $y_2^* = 4x^3 - 2x + 1$

We need to compare them.

$$L(\theta, x_i, y_i)$$
Loss Function

Popular loss functions:

ETH zürich

Perceptron:

(c) https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

(c) https://appliedgo.net/perceptron/

ETH zürich

Perceptron:

(c) https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

Perceptron:

(c) http://www.vias.org/tmdatanaleng/cc_data_structure.html