Digital Design & Computer Arch.

Lecture 5a: Sequential Logic Design II Finite State Machines

Prof. Onur Mutlu

ETH Zürich
Spring 2023
9 March 2023

First, We Will Complete Sequential Logic Design

We Covered A Lot of Sequential Logic

Circuits that can store information

- Cross-coupled inverter
- R-S Latch
- Gated D Latch
- D Flip-Flop
- Register
- Memory

Sequential logic circuits

- State & Clock
- Asynchronous vs. Synchronous

Finite State Machines (FSM)

How to design FSMs

Recall: Sequential Circuits

 Circuits that produce output depending on current and past input values – circuits with memory

Recall: Sequential Logic Circuits

CombinationalOnly depends on current inputs

SequentialOpens depending on past inputs

Recall: State Diagram of Our Sequential Lock

Completely describes the operation of the sequential lock

Recall: Finite State Machines (FSMs) Consist of:

Five elements:

- 1. A **finite** number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A **finite** number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
 - How to get from one state to another
- 5. An explicit specification of what determines each external output value

Recall: Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register

Recall: Finite State Machines (FSMs) Consist of:

Sequential Circuits

- State register(s)
 - Store the current state and
 - Provide the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

Recall: State Register Implementation

- How can we implement a state register? Two properties:
 - 1. We need to store data at the **beginning** of every clock cycle

2. The data must be **available** during the **entire clock cycle**

Recall: The Problem with Latches: Transparency

How can we change the latch, so that

- 1) D (input) is observable at Q (output) only at the beginning of next clock cycle?
- 2) Q is available for the full clock cycle

Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- When the clock is low, 1st latch propagates **D** to the input of the 2nd (Q unchanged)
- Only when the clock is high, 2nd latch latches D (Q stores D)
 - At the rising edge of clock (clock going from 0->1), Q gets assigned D

Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Recall: The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

We can use **D** Flip-Flops to implement the state register

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Recall: Rising-Clock-Edge Triggered Flip-Flop

Two inputs: CLK, D

Function

- The flip-flop "samples" D on the rising edge of CLK (positive edge)
- When CLK rises from 0 to 1, **D** passes
 through to **Q**
- Otherwise, Q holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
 - A latch is a level-triggered state element

D Flip-Flop Based Register

Multiple parallel D flip-flops, each of which storing 1 bit

A 4-Bit D-Flip-Flop-Based Register (Internally)

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state

inputs $\stackrel{N}{\leftarrow}$ $\stackrel{\text{next}}{\leftarrow}$ $\stackrel{\text{next}}{\leftarrow$

Moore FSM

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

 Moore FSM

Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - 2 outputs:
 - Lights: L_A , L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

From H&H Section 3.4.1

Finite State Machine Black Box

Inputs: CLK, Reset, T_A, T_B

Outputs: L_A, L_B

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Finite State Machine: State Transition Table

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

Current State	Inputs		Next State
S	T_A	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Current State	Inputs		Next State
S	$T_{ m A}$ $T_{ m B}$		S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Currer	Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀	
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	X	X	1	0	
1	0	X	0	1	1	
1	0	X	1	1	0	
1	1	X	X	0	0	

State	Encoding
S0	00
S1	01
S2	10
S3	11

Currer	it State	Inputs		Next	State
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

S'	1	=	?
_	- 1		_

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	Current State In		uts	Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inp	Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀	
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	X	X	1	0	
1	0	X	0	1	1	
1	0	X	1	1	0	
1	1	X	X	0	0	

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = ?$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

 $S'_1 = S_1 \times S_0$ (Simplified)

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Finite State Machine: Output Table

Current State		Out	puts
S_1	S_0	L_{A}	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow

Current State		Out	puts
S_1	S_0	L_{A}	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow

Output	Encoding
green	00
yellow	01
red	10

Current State			Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1
----------	---	-------

Output	Encoding
green	00
yellow	01
red	10

Current State			Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1		
L_{A0}	=	$\overline{S_1}$	•	S_0

Output	Encoding
green	00
yellow	01
red	10

Current State			Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$	S_0
$L_{B1} =$	$\overline{S_1}$	

Output	Encoding
green	00
yellow	01
red	10

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$	S_0
$L_{B1} =$	$\overline{S_1}$	
$L_{B0} =$	S_1	S_0

Output	Encoding		
green	00		
yellow	01		
red	10		

Finite State Machine: Schematic

FSM Schematic: State Register

FSM Schematic: State Register

FSM Schematic: Next State Logic

$$S'_1 = S_1 \times S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

FSM Schematic: Output Logic

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \overline{S_1} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 \cdot S_0$$

CLK_

Reset_

 T_A_-

 T_B _

 $S^{\prime}_{1:0} \stackrel{-}{_-}$

 $S_{1:0} \stackrel{-}{_-}$

L_{B1:0} _

This is from H&H Section 3.4.1

See H&H Chapter 3.4

Finite State Machine: State Encoding

FSM State Encoding

- How do we encode the state bits?
 - Three common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 2. 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - Green, Yellow, Red, Yellow+Red

FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum possible number of bits
 - Use log₂(num_states) bits to represent the states
- Example state encodings: 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- Example state encodings: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes green light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes **red** light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output depends only on state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of FSMs differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

Moore FSM

Design Moore and Mealy FSMs of the snail's brain.

CLK inputs + state state output state - outputs logic logic Mealy FSM CLK next k state next output inputs state state outputs logic logic

State Transition Diagrams

What are the tradeoffs?

Mealy FSM

FSM Design Procedure

Determine all possible states of your machine

Develop a state transition diagram

- Generally this is done from a textual description
- You need to 1) determine the inputs and outputs for each state and
 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is **like** programming (but it is not programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath

Digital Design & Computer Arch.

Lecture 5a: Sequential Logic Design II Finite State Machines

Prof. Onur Mutlu

ETH Zürich
Spring 2023
9 March 2023

Backup Slides: Different Flip-Flop Types

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function:
 - \blacksquare **EN** = **1**: D passes through to Q on the clock edge
 - □ **EN** = **0**: the flip-flop retains its previous state

Resettable Flip-Flop

- **Inputs:** CLK, D, Reset
 - The Reset is used to set the output to 0.
- Function:
 - \blacksquare **Reset** = 1: Q is forced to 0
 - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
 - □ **Set** = **1**: Q is set to 1
 - Set = 0: the flip-flop behaves like an ordinary D flip-flop

