Basi di Dati

Il modello Entity Relationship (ER)

Basi di Dati – Dove ci troviamo?

Modello Entity-Relationship (Entità-Relazione)

- Ideato da Peter Chen (MIT) nel 1976
- Il più diffuso modello concettuale
 - Ne esistono molte versioni,
 - (più o meno) diverse l'una dall'altra

I costrutti del modello E-R

- Entità
- Relationship
- Attributo
- Identificatore
- Generalizzazione
-

Uno schema E-R, graficamente

Entità

Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"

- Esempi:
 - impiegato, città, conto corrente, ordine, fattura
- Ogni entità ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare

Entità: schema e istanza

- Entità:
 - classe di oggetti, persone, ... "omogenei"
- Occorrenza (o istanza) di entità:
 - elemento della classe (l'oggetto, la persona, ..., non i dati)
- nello schema concettuale rappresentiamo le entità, non le singole istanze ("astrazione")

Rappresentazione grafica di entità

Impiegato Dipartimento

Città Vendita

Relationship

Legame logico fra due o più entità, rilevante nell'applicazione di interesse

- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)
- Chiamata anche:
 - relazione, correlazione, associazione
- Ogni relationship ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare
 - sostantivi invece che verbi (se possibile)

Rappresentazione grafica di relationship

Esempi di occorrenze

Relationship n-aria

Esempi di occorrenze

Relationship, occorrenze

- Una occorrenza di una relationship binaria è coppia di occorrenze di entità, una per ciascuna entità coinvolta
- Una occorrenza di una relationship n-aria è una n-upla di occorrenze di entità, una per ciascuna entità coinvolta
- Nell'ambito di una relationship non ci possono essere occorrenze (coppie, ennuple) ripetute

Relationship corrette?

Attenzione

Attenzione

"Promuoviamo" la relationship

Con l'entità Esame

Due relationship sulle stesse entità

Relationship ricorsiva: coinvolge "due volte" la stessa entità

Relationship ricorsiva con "ruoli"

Esempi di occorrenze

Relationship ternaria ricorsiva

Esempi di occorrenze

T1 è migliore di T2 su S2

T2 è migliore di T1 su S1

T3 è migliore di T2 su S1

Attributo

Proprietà elementare di un'entità o di una relationship, di interesse ai fini dell'applicazione

 Associa ad ogni occorrenza di entità o relationship un valore appartenente a un insieme detto dominio dell'attributo

Attributi, rappresentazione grafica

Esempi di occorrenze

Attributi composti

- Raggruppano attributi di una medesima entità o relationship che presentano affinità nel loro significato o uso
- Esempio:
 - ▶ Via, Numero civico e CAP formano un Indirizzo

Rappresentazione grafica

Esempio di schema E-R

Altri costrutti del modello E-R

- Cardinalità
 - di relationship
 - di attributo
- Identificatore
 - interno
 - esterno
- Generalizzazione

Cardinalità di relationship

- Coppia di valori associati a ogni entità che partecipa a una relationship
- specificano il numero minimo e massimo di occorrenze delle relationship cui ciascuna occorrenza di una entità può partecipare

Esempio di cardinalità

Cardinalità di relationship

Per semplicità usiamo solo tre simboli:

- 0 e 1 per la cardinalità minima:
 - 0 = "partecipazione opzionale"
 - ▶ 1 = "partecipazione obbligatoria"
- ▶ 1 e "N" per la massima:
 - "N" non pone alcun limite

Occorrenze di Residenza

Cardinalità di Residenza

Tipi di relationship

- Con riferimento alle cardinalità massime, abbiamo relationship:
 - uno a uno
 - uno a molti
 - molti a molti

Relationship "molti a molti"

Relationship "uno a molti"

Due avvertenze

- Attenzione al "verso" nelle relationship uno a molti
- le relationship obbligatorie-obbligatorie sono molto rare

Relationship "uno a uno"

Cardinalità di attributi

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare opzionalità ("informazione incompleta")
 - indicare attributi multivalore

Rappresentazione grafica

Identificatore di una entità

- "strumento" per l'identificazione univoca delle occorrenze di un'entità
- costituito da:
 - attributi dell'entità
 - □ identificatore interno
 - (attributi +) entità esterne attraverso relationship
 - □ identificatore esterno

Identificatori interni

Identificatore esterno

Alcune osservazioni

- ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno
- una identificazione esterna è possibile solo attraverso una relationship a cui l'entità da identificare partecipa con cardinalità (1,1)
- perché non parliamo degli identificatori delle relationship?

Attenzione

 Differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

Esempio completo di schema E-R

Generalizzazione

Mette in relazione una o più entità E1, E2, ..., En con una entità E, che le comprende come casi particolari

- ▶ E è generalizzazione di E1, E2, ..., En
- ▶ E1, E2, ..., En sono specializzazioni (o sottotipi) di E
- Proprietà di una generalizzazione
 - ▶ Se E (genitore) è generalizzazione di E1, E2, ..., En (figlie):
 - ▶ ogni proprietà di E è ereditata da E1, E2, ..., En
 - ▶ ogni occorrenza di E1, E2, ..., En è occorrenza anche di E

Rappresentazione grafica

Ereditarietà

 tutte le proprietà (attributi, relationship, altre generalizzazioni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente

Tipi di generalizzazioni

- totale se ogni occorrenza dell'entità genitore è occorrenza di almeno una delle entità figlie, altrimenti è parziale
- esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta

Rappresentazione grafica

Altre proprietà

- possono esistere gerarchie a più livelli e multiple generalizzazioni allo stesso livello
- un'entità può essere inclusa in più gerarchie, come genitore e/o come figlia
- se una generalizzazione ha solo un'entità figlia si parla di sottoinsieme
 - Questo tipo di generalizzazioni è sempre parziale e esclusiva
- alcune configurazioni non hanno senso
- Il genitore di una generalizzazione totale può non avere identificatore, purché ...

Esercizio

Le persone hanno CF, cognome ed età; gli uomini anche la posizione militare; gli impiegati hanno lo stipendio e possono essere segretari, direttori o progettisti (un progettista può essere anche responsabile di progetto); gli studenti (che non possono essere impiegati) un numero di matricola; esistono persone che non sono né impiegati né studenti (ma i dettagli non ci interessano)

Documentazione associata agli schemi concettuali

- dizionario dei dati
 - ▶ entità
 - relationship
- vincoli non esprimibili

Dizionario dei dati (entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, Cognome, Stipendio	Codice
Progetto	Progetti aziendali	Nome, Budget	Nome
Dipartimento	Struttura aziendale	Nome, Telefono	Nome, Sede
Sede	Sede dell'azienda	Città, Indirizzo	Città

Dizionario dei dati (relationship)

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un dipartimento	Impiegato, Dipartimento	
Afferenza	Afferenza a un dipartimento	Impiegato, Dipartimento	Data
Partecipazione	Partecipazione a un progetto	Impiegato, Progetto	
Composizione	Composizione dell'azienda	Dipartimento, Sede	

Vincoli non esprimibili

Vincoli di integrità sui dati

- (1) Il direttore di un dipartimento deve afferire a tale dipartimento
- (2) Un impiegato non deve avere uno stipendio maggiore del direttore del dipartimento al quale afferisce
- (3) Un dipartimento con sede a Roma deve essere diretto da un impiegato con più di dieci anni di anzianità
- (4) Un impiegato che non afferisce a nessun dipartimento non deve partecipare a nessun progetto