### A brief introduction to machine learning

David Makowski Université Paris-Saclay INRAE

https://www6.inrae.fr/mia-paris/Equipes/Membres/David-Makowski

### Outline

- Definition & main principles
- Several extensions of linear regression
- Trees and forests
- Deep learning

### Outline

- Definition & main principles
- Several extensions of linear regression
- Trees and forests
- Deep learning

# Artificial intelligence Machine learning

# Artificial intelligence Machine learning Supervised learning

Objective: « Learning a function that maps an input to an output based on examples of input-output pairs »

Statistical Modeling: The Two Cultures (Breiman, 2001)

$$y = f(x) + e$$

Modelling approach 1: Try to find the true f(x)

Modelling approach 2: Predict y from x as accurately as possible

Statistical Modeling: The Two Cultures (Breiman, 2001)

$$y = f(x) + e$$

Modelling approach 1: Try to find the true f(x)

Modelling approach 2: Predict y from x as accurately as possible

### Two important steps

- Training
- Test

**Training:** Train an algorithm predicting Y as a function of  $X_1$ , ...,  $X_p$  using a **training dataset** 



**Training dataset** 

**Testing:** Assess the predictive capability of the trained algorithm using a **test dataset** 



### **Training dataset**











More

« The objective of this competition is to build an algorithm that helps predict the occurrence, peak and severity of influenza in a given season ».





Q Search

- Home
- ♀ Compete
- 📊 Data
- Notebooks



Data (5 MB)

#### **Data Sources**

- TestDataSet\_Ma... 57 columns
- TestDataSet\_W... 92 columns
- TrainingDataSet... 58 columns
- TrainingDataSet... 93 columns

### French maize yield prediction (départements)

**Training dataset** 

55 inputs 3394 yield data Algorithms

developed by the

participants

**Test dataset** 

55 inputs 1708 yield data

Evaluation of the accuracy of the algorithms by the

organizer

| Method                 | RMSEP (maize yield) |
|------------------------|---------------------|
| Random Forest (RF)     | 0.71 t/ha           |
| Gradient boosting (GB) | 0.70 t/ha           |





# Model testing should be taken seriously to avoid risk of overfitting



# Model testing should be taken seriously to avoid risk of overfitting























# Why machine learning is powerful?

Very flexible methods

+

Computational power —— obtain accurate

+

Large datasets

Increased chance to obtain accurate predictions

## Why machine learning is powerful?

Prediction error = g(Bias, Variance)

### Why machine learning is powerful?

Prediction error = g(Bias, Variance)

ML is able to fing a good balance between bias and variance

| Several « ML tricks » | Principle                                                                                                                      | Effect                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Regularization        | Add information to prevent overfitting and simplify the model                                                                  | Reduce variance at the cost of a small increase of bias |
| Bagging               | Bootstrap aggregation: average together multiple models fitted to resampled dataset                                            | Reduce variance                                         |
| Boosting              | Fit a sequence of weak models to weighted versions of the data (more weight given to poorly predicted data at earlier rounds). | Reduce bias                                             |

#### Numerous methods available

- Regressions (standard, PLS, LASSO, Elastic net...)
- SVM
- Tree and random forest
- Gradient boosting
- Neural network
- Deep neural network
- Deep learning
- Bayesian classification

#### Numerous methods available

- Regressions (standard, PLS, LASSO, Elastic net...)
- SVM
- Tree and random forest
- Gradient boosting
- Neural network
- Deep neural network
- Deep learning
- Bayesian classification

Relatively easy to run these methods with specialized packages (with R or Python)

# Are machine learning models « black boxes »?

This is less true than before.

#### Vizualisation tools:

- Importance ranking
- Partial dependence plots (PDP)
- Accumulated Local Effects (ALE) Plot

# Example of machine learning project: N, P, K fertilization models for potato crops in Eastern Canada

https://doi.org/10.1371/journal.pone.0230888

#### **PLOS ONE**

RESEARCH ARTICLE

Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada

Zonlehoua Coulibali<sup>1</sup>, Athyna Nancy Cambouris<sup>2</sup>, Serge-Étienne Parent<sub>0</sub><sup>1</sup>\*

1 Department of Soils and Agrifood Engineering, Université Laval, Québec City, Quebec, Canada, 2 Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec City, Quebec, Canada

Potato yield — Model

N, P, K doses

Planting density

**Preceding crops** 

Growing season length

Temperature

Precipitations

Shannon diversity index

Number of growing degree days

Soil texture (0-20 cm) and carbon

Soil types

Soil pH

Soil chemical composition

Potato yield — Model

N, P, K doses

Planting density

**Preceding crops** 

Growing season length

Temperature

Precipitations

Shannon diversity index

Number of growing degree days

Soil texture (0–20 cm) and carbon

Soil types

Soil pH

Soil chemical composition

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 

**Step 1: Definition of the objective** 

Develop models to predict yields and calculate optimal N, P, K fertilizer doses for potato crops in Eastern Canada

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 



https://doi.org/10.1371/journal.pone.0230888



https://doi.org/10.1371/journal.pone.0230888



(kg ha<sup>-1</sup>)

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

Step 4: Model training with data (parameter 3. Random forest

Step 5: Model testing with data (model evalu

**Step 6: Model application** 

- 1. Mitscherlich
- 2. KNN
- 4. Neural network
- 5. Gaussian process

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

Step 4: Model training with data (parameter 3. Random forest

Step 5: Model testing with data (model evalu

**Step 6: Model application** 

- 1. Mitscherlich
- 2. KNN
- 4. Neural network
- 5. Gaussian process

$$Y = A x(1 - e^{-R_N x(E_N + dose_N)}) x(1 - e^{-R_P x(E_P + dose_P)}) x(1 - e^{-R_K x(E_K + dose_K)})$$

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

Step 4: Model training with data (parameter 3.

Step 5: Model testing with data (model evalu 4. Neural network

**Step 6: Model application** 

### Five models

- 1. Mitscherlich
- 2. KNN
- Random forest
- 5. Gaussian process

Standard machine learning models

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 



Training dataset 60% of the trials

Parameter estimation for the five models

https://doi.org/10.1371/journal.pone.0230888

**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 



Testing dataset 40% of the trials

Evaluation of the model performances

https://doi.org/10.1371/journal.pone.0230888



- 1. Mitscherlich
- 2. KNN
- 3. Random forest
- 4. Neural network
- 5. Gaussian process



- 1. Mitscherlich
- 2. KNN
- 3. Random forest
- 4. Neural network
- 5. Gaussian process



- 1. Mitscherlich
- 2. KNN
- 3. Random forest
- 4. Neural network
- 5. Gaussian process

# R<sup>2</sup> is a popular evaluation criterion







Model performances are too optimistic according to the training dataset.

## Important to use an independent test dataset!



**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 



**Step 1: Definition of the objective** 

**Step 2: Data collection** 

**Step 3: Definition of candidate models** 

**Step 4: Model training with data (parameter estimation)** 

**Step 5: Model testing with data (model evaluation)** 



## Examples of optimal economic fertilizer doses at one site in Canada



## Examples of optimal economic fertilizer doses at one site in Canada



# Main challenges in machine learning projects

- Choose a relevant question (Which Y? Which X?)
- Find reliable data
- Calibrate the hyper-parameters
- Assess prediction accuracy without bias
- Optimize computation time
- Vizualisation of output responses

# Start simple

Start with two simple methods:

- Penalized linear regression (ex: LASSO)
- Random forest

# Some trends

- Visualization tools (to open « the black boxes »)
- Image and text analyses (text mining, deep learning)
- Packages to streamline the development of predictive models (keras, caret, H2O...)
- Including expert knowledge in machine learning