I) Give a formal definition with any notations for each of the following: Alphabet, String, Language, Concatenation of strings, Reverse of a string, Substring, Length of a string, Star-Closure of an alphabet, Positive Closure of an alphabet, Sentence of a language

Alphabet - An alphabet Σ is a finite, nonempty set of symbols

String - a finite sequence of symbols from an alphabet

Language - a set of strings

Concatenation of strings - The concatenation of strings u and v means appending the symbols of v to the right end of the symbols of u, denoted as uv

Reverse of a string - The reverse of a string (denoted as w) is denoted as w^R . w^R is the string with the same symbols in reverse order

Substring - A substring is a sequence of consecutive characters taken from the original string to make a new string

Star-Closure of an alphabet - Σ^* for an alphabet Σ , is the set of all strings obtained by concatenating zero or more symbols from the alphabet

Positive-Closure of an alphabet - Σ^+ , for an alphabet Σ , is the set of all strings from the alphabet Σ except (Lambda)

Sentence of a language - A string from a language is referred to as a sentence. For Language L: {a, aa, ab}, "a", "ab" are sentences

II) For a language L, describe the Complementation, and Star-Closure

```
Complementation - LC = \Sigma^* - L
Star-Closure - L* = L0 U L1 U L2 U ...
```

III) Describe the relationship of Language, Grammar and Automata (over a given alphabet)

A language is a set of strings; a grammar is a set of rules used to define which symbols of an alphabet can be sequenced into strings of a language; and an automata is a mathematical model of a computer which can determine if a string is a part of a Language.

IV) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar G.

```
V = {S, A, B}

T = {a, b},

P = {

S \rightarrow A,

S \rightarrow B,

B \rightarrow bB,

A \rightarrow aA,

A \rightarrow \lambda,
```

```
B \to \lambda } S is the start nonterminal
```

V) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar

$$S \rightarrow aSaa \mid B$$

 $B \rightarrow bB \mid \lambda$

VI) Write derivations for four strings of various lengths and describe what is the language generated, L(G) by the following grammar S \to aSaa B B \to bB
VII) Describe the operation of Automaton as an Acceptor
An automaton as an acceptor operates by taking an input then giving either a yes or no output.
VIII) Let Σ = {a.b} L ₁ = {a,ab,abb} L ₂ = { λ , b, bb} Describe all the following languages as a set of strings. (i) L ₃ = L ₁ \cap L ₂
(ii) L ₁ L ₃
(iii) L ₃ L ₁
(iv) L_1L_2
(v) L₁Ø
(vi) L ₁ L ₃

(vii) $|L_1||L_2|$

(viii) $|L_1L_2|$

(ix) L_1^R

(x) $L_{\mathbf{2}}^{R}$

(xi) ∑*

(xii) $L_2^{\ c}$

(xiii) L_1^0

(xiv) L_1^1

(xv) L_1^2