Ранжирующие модели для систем информационного поиска. Прогнозирование структуры локально-оптимальных моделей.

Поповкин Андрей Алексеевич Романенко Илья Игоревич

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 594, весна 2018

Цель исследования

Цель исследования

Исследовать возможность порождения ранжирующий функции при помощи генетического алгоритма и при помощи нейронный сети, сравнить полученные результаты с результатами сообщества.

Проблема

Сложно исследовать пространство существенно нелинейных функций.

Список литературы

- Kulunchakov A. S., Strijov V. V. Generation of simple structured IR functions by genetic algorithm without stagnation // http://strijov.com/papers/Kulunchakov2014RankingBySimpleFun.pd
- Salton, Gerard and McGill, Michael J. Introduction to Modern Information Retrieval // McGraw-Hill, Inc., New York, NY, USA, 1986
- Gordon, M. Probabilistic and Genetic Algorithms in Document Retrieval // Commun. ACM 31, 10 (October 1988), 1208-1218.

Постановка задачи

Пусть $\mathbf{C}=\{d_i\}$ - коллекция документов, \mathbf{Q} - пользовательских запросов, $q=\{w_j\}$. Определена функция релевантности $r(d,q) \to \{0,1\}.$

Рассматриваются характеристики пары документ-слово: $(d, w, \mathbf{C}) \to (\mathsf{tf}, \mathsf{idf}).$

$$idf(w, C) = \frac{count(w, C)}{|C|}$$

$$\mathsf{tf}(w,d,\mathsf{C}) = \mathsf{freq}(w,d) \cdot \mathsf{log}\left(1 + \frac{\mathsf{size}_{\mathsf{avg}}}{\mathsf{size}(d)}\right)$$

 $\mathcal T$ - множество суперпозиций функций от tf, idf. Будем аппроксимировать функцию r(d,q), как функцию $f(d,q)=\sum_{w\in d}f'(\mathsf{tf},\mathsf{idf})$,где $f'\in \mathcal T$.

$$f^* = argmax_{f \in \mathcal{T}} \left(\mathsf{MAP}(f, \mathbf{C}, \mathbf{Q}) - \mid\mid f \mid\mid^2 \right)$$

Функционал качества

Качеством аппроксимационной функции будем считать МАР.

$$\mathsf{MAP}(f, \mathbf{C}, \mathbf{Q}) = \frac{1}{|\mathbf{Q}|} \cdot \sum_{q \in \mathbf{Q}} \mathsf{AvgP}(f, q, \mathbf{C})$$

$$\mathsf{AvgP}(f,q,\mathbf{C}) = \frac{\sum_{i=0}^{|\mathcal{C}_q|} \mathsf{PrefSum}(r(d_i,q),k) \cdot r(d_i,q)}{\sum_{d \in \mathcal{C}_q} r(d)}$$

Цели эксперимента

Цель эксперимента

Получение результатов, сравнимых с предыдущими работами в этой сфере. Улучшение этих результатов.

Используемые данные

Коллекция TREC (датасеты 5-8).

https://trec.nist.gov/data.html

Используется генетический алгоритм с регуляризацией по числу узлов в дереве.

Со следующими процедурами:

- мутация замена произвольной вершины на заново сгенерированную.
- crossover обмен местами двух произвольных вершин деревьев.

Используется генетический алгоритм с регуляризацией по числу узлов в дереве.

Со следующими процедурами:

- мутация замена произвольной вершины на заново сгенерированную.
- crossover обмен местами двух произвольных вершин деревьев.

Сложность моделей в зависимости от целевой метрики.

Сложность моделей в зависимости от целевой метрики, начиная с 20-ого поколения

Метрика максимального общего поддерева для определения стагнации.

Результаты эксперимента

Экспертные функции:

$$f_1 = e^{\sqrt{\log(1 + rac{\mathrm{tf}}{\mathrm{idf}})}}$$
 $f_2 = \sqrt[4]{rac{\mathrm{tf}}{\mathrm{idf}}}$ $f_3 = \sqrt{\mathrm{idf} + \sqrt{rac{\mathrm{tf}}{\mathrm{idf}}}}$

Найденные наилучшие функции:

$$egin{aligned} h_5^* &= \logig(1 + rac{\log(1+\log(1+\log(1+\sqrt{\log(1+\mathrm{tf})}-\sqrt{\mathrm{idf}})))}{2\cdot\mathrm{idf}}ig) \ h_6^* &= \sqrt{rac{\sqrt[4]{\mathrm{tf}}}{2\cdot\mathrm{idf}}} \ h_7^* &= rac{\sqrt[8]{\log(1+\mathrm{tf})}}{\mathrm{idf}} \end{aligned}$$

Результаты эксперимента

Результаты при сравнении на корпусах TREC-5, TREC-6, TREC-7.

Superposition	TREC-5	TREC-6	TREC-7
Функции сообщества			
f_1	8.785	13.715	10.038
f_2	8.908	13.615	9.905
f ₃	8.908	13.615	9.905
Найденные наилучшие функции			
h ₅ *	9.537	13.762	10.584
h ₆ *	8.903	13.967	10.771
h ₇ *	8.526	13.424	11.060

Заключение

- Для каждого корпуса получили функцию наилучшим образом ранжирующую документы для данного запроса.
- 2 Улучшили существующие результаты сообщества.
- 3 Весь код доступен в репозитории на GitHub