Problem Setup

We have a target state $x_k \in \mathbb{R}^n$, we want to estimate it during each timestamp $k \in \mathbb{N} \cup \{0\}$. We create some measurement method to help us guess each x_k . The Kalman Filter's objective is trying to guess a theoretically perfect x_k from each measurement z_k .

TL;DR, the Kalman Filter is the process doing: get z_1 , guess x_1 ; get z_2 , guess x_2 ; get z_3 , guess x_3 , and so on.

1 Assumptions

By means of theoretically, we need some assumptions.

1.1 Pre-Defined Transition

Let $F_k \in \mathbb{R}^{n \times n}$ be a matrix. We assume that the next state x_{k+1} can be obtained from the current state x_k by

$$x_{k+1} = F_k x_k + u_k \tag{1}$$

where $u_k \sim \mathcal{N}(0, Q_k)$ is a white noise.

This is also called the linear model of Kalman Filter.

1.2 Measurement to Real State

Let $H_k \in \mathbb{R}^{m \times n}$ be a matrix. We assume that the current measurement $z_k \in \mathbb{R}^m$ is obtained from the current state x_k by

$$z_k = H_k x_k + w_k \tag{2}$$

where $w_k \sim \mathcal{N}(0, R_k)$ is a white noise.

2 Initial Setup

We never know x_k , we can only guess it, so denote the guessed value by \hat{x}_k . Formally, we call \hat{x}_k the *estimate*.

The zero-th step of the Kalman Filter is randomly guess \hat{x}_0 since there's no z_{-1} . We further concern the correctness of each \hat{x}_k , we use the error covariance matrix $P_k = \mathbb{E}[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T]$ to formally compute it. So when we start with x_0 , we'll also have another randomly guess matrix P_0 .

TL;DR, the initial setup is one vector \hat{x}_0 and one matrix P_0 .

3 Preliminary Theorems

3.1 Minimum Variance Unbiased Estimate

Consider the measurement equation (2), we wanna seek a matrix $K_k \in \mathbb{R}^{n \times m}$ that can do the guessing $\hat{x}_k = K_k z_k$. Since w_k is a random vector, z_k is also a random vector, then so does \hat{x}_k . As a result, the error term $\hat{x}_k - x_k$ is a random vector as well.

We can define an inner product of two random vectors be

$$(x|y) = \mathrm{E}(x^T y) = \mathrm{E}\left(\sum_{i=1}^n x_i y_i\right),$$

and then induces a norm by

$$||x|| = \sqrt{\mathbf{E}(x^T x)} = \sqrt{\mathbf{E}(x_1^2 + \dots + x_n^2)} = \left\{ \text{Tr}\left(\mathbf{E}(x x^T)\right) \right\}^{1/2}.$$

Now, consider the l2-norm

$$\begin{aligned} &\|\hat{x}_{k} - x_{k}\|^{2} = \mathbf{E}\left[(\hat{x}_{k} - x_{k})^{T}(\hat{x}_{k} - x_{k})\right] \\ &= \mathbf{E}\left[(K_{k}z_{k} - x_{k})^{T}(K_{k}z_{k} - x_{k})\right] \\ &= \mathbf{E}\left[(K_{k}(H_{k}x_{k} + w_{k}) - x_{k})^{T}(K_{k}(H_{k}x_{k} + w_{k}) - x_{k})\right] \\ &= \mathbf{E}\left[((K_{k}H_{k}x_{k})^{T} + (K_{k}w_{k})^{T} - x_{k}^{T})(K_{k}(H_{k}x_{k} + w_{k}) - x_{k})\right] \\ &= \mathbf{E}\left[(K_{k}H_{k}x_{k} - x_{k})^{T}(K_{k}H_{k}x_{k} - x_{k})\right] + \mathbf{E}\left[(K_{k}w_{k})^{T}(K_{k}w_{k})\right] \\ &= \|K_{k}H_{k}x_{k} - x_{k}\|^{2} + \mathrm{Tr}\left(\mathbf{E}\left[K_{k}w_{k}(K_{k}w_{k})^{T}\right]\right) \\ &= \|K_{k}H_{k}x_{k} - x_{k}\|^{2} + \mathrm{Tr}\left(K_{k}\mathbf{E}[w_{k}w_{k}^{T}]K_{k}^{T}\right) \\ &= \|K_{k}H_{k}x_{k} - x_{k}\|^{2} + \mathrm{Tr}\left(K_{k}R_{k}K_{k}^{T}\right). \end{aligned}$$

The final term still depends on the actual state x_k , but we never know its value. To solve this, we add one more assumption $K_k H_k = I$. Observe that if $K_k H_k = 1$, we have

$$\mathbf{E}[\hat{x}_k] = \mathbf{E}\left[K_k z_k\right] = \mathbf{E}\left[K_k H_k x_k + K_k w_k\right] = \mathbf{E}\left[K_k H_k x_k\right] + \mathbf{E}\left[K_k w_k\right] = x_k,$$

this implies that \hat{x}_k is an unbiased estimate of x_k .

Then the error term becomes quite simple when we assume $K_k H_k = 1$

$$\|\hat{x}_k - x_k\|^2 = \mathbb{E}\left[(\hat{x}_k - x_k)^T (\hat{x}_k - x_k)\right] = \operatorname{Tr}\left(K_k R_k K_k^T\right)$$

Our mission now becomes

$$\underset{K_k}{\operatorname{arg min}} \operatorname{Tr} \left(K_k R_k K_k^T \right)$$
s. t. $K_k H_k = I$

The equivalent form is

$$\underset{k_i}{\operatorname{arg min}} k_i R_k k_i^T$$

s. t. $k_i h_j = \delta_{ij}$

where h_j is the jth column of H_k and k_i is the ith row of K_k .

4 Main Theorem

Theorem 4.1. The optimal estimate \hat{x}_{k+1} and P_{k+1} can be generated recursively as

$$\hat{x}_{k+1} = F_k \hat{x}_k + F_k P_k H_k^T \left[H_k P_k H_k^T + R_k \right]^{-1} (z_k - H_k \hat{x}_k)$$

$$P_{k+1} = F_k P_k \left\{ I - H_k^T \left[H_k P_k H_k^T + R_k \right]^{-1} H_k P_k \right\} F_k^T + Q_k$$

Proof. Suppose we have \hat{x}_{k-1} and P_{k-1} . At k, we obtain a new measurement

$$z_k = H_k x_k + w_k$$

which gives us additional information about x_k .