Programowanie Współbieżne

Algorytmy

Sortowanie przez scalanie (mergesort)

Algorytm:

1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania

JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Sortowanie przez scalanie (mergesort)

- 2. JEŚLI ilość elementów tablicy > 2 i (ilość procesów < max procesów) [tu można dodać czy tablica nie jest już posortowana lub inny warunek zatrzymania dzielenia] TO
 - twórz 2 procesy i wyślij im po jednej części tablicy (najlepiej w miarę równe).
 - czekaj na posortowane 2 tablice
 - scal w jedną posortowaną

JEŚLI_NIE to posortuj to co masz. (w szczególnym przypadku będzie to 1 liczba do oddania lub dwie do porównania).

Sortowanie przez scalanie (mergesort)

3. JEŚLI jesteś rootem TO wyświetl/zapisz wynik JEŚLI_NIE to odeślij rodzicowi posortowaną tablicę.

Sortowanie przez scalanie

Sortowanie przez scalanie

Dla ciągu długości n tworzymy dwa zestawy procesów.

$$A_1,A_2,...A_n$$

$$B_0, B_1, ... B_n$$

Zadania typu Aidziałają następująco:

- otrzymują 2 liczby
- mniejszą przesyłają do B_{i-1}
- większą do B_i.

Zadania typu B_i działają następująco:

- otrzymują 2 liczby
- mniejszą przesyłają do Ai
- większa do A_{i+1}

Elementy skrajne nic nie robią tylko oddają liczbę Po **2n** cyklach mamy gotowy wynik

Zastosowanie:

- w matematyce, rozwiązywanie układów równań liniowych Metodą Gaussa
- Zapisanie obiektów geometrycznych w przestrzeni liniowej w fizyce tzw. Tensory
- Grafika trójwymiarowa, transformacje

Definicja

Iloczynem macierzy **A**=[a_{ij}]_{nxp} przez macierz **B**=[b_{ij}]_{pxm} nazywamy taką macierz **C**=[c_{ij}]_{nxm} piszemy **C=A•B**, że

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$
 dla i=1,2,...,n;j=1,2,...,m

Kilka przydatnych właściwości:

Jeżeli A,B oraz C są macierzami o odpowiednich wymiarach to:

1.
$$A(BC)=(AB)C$$

$$2. \quad (AB) = (A)B$$

3.
$$(A+B)C=AC+BC$$

4.
$$C(A+B)=CA+CB$$

5.
$$IA=A$$
, $gdy A_{nxn} i I_{nxn}$

Algorytm "dziel i rządź"

Uzyskanie macierzy C jest wynikiem niezależnych operacji arytmetycznych na wierszach macierzy A i kolumnach B. Stąd intuicyjny sposób podziału zadania na wiele wątków, tak by każdy obliczył niezależnie element macierzy C. Takich podziałów w tym wypadku musi być m*n (liczba wątków). Koszt operacji wynosi $O(n^3)$.

Każdy element $A_{ij} B_{jk} C_{ik}$ to mała podmacierz na której wykonujemy takie same operacje jak na pojedynczych elementach.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

Przykład:

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 4 & 1 & 2 \\ 0 & 2 & 2 & 1 \\ 1 & 2 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 2 & 0 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 5 & 9 \\ 9 & 16 & 8 & 13 \\ 6 & 9 & 6 & 11 \\ 5 & 10 & 6 & 9 \end{bmatrix}$$

Takie mnożenie można rozbić na 4 działania analogiczne do poniższego

$$\begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 8 & 13 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 9 & 16 \end{bmatrix}$$

Metoda "Strassena"

- Z tak podzielonej macierzy wylicz 7 pomocniczych macierzy **m**_i o rozmiarze **n**/2

$$m_{1} = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$m_{2} = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$m_{3} = (A_{11} - A_{21}) * (B_{11} + B_{12})$$

$$m_{4} = (A_{11} + A_{12}) * B_{22}$$

$$m_{5} = A_{11} * (B_{12} - B_{22})$$

$$m_{6} = A_{22} * (B_{21} - B_{11})$$

$$m_{7} = (A_{21} + A_{22}) * B_{11}$$

Oblicz składowe Cij macierzy wynikowej C

$$C_{11}=m_1+m_2-m_4+m_6$$
 $C_{12}=m_4+m_5$
 $C_{21}=m_6+m_7$
 $C_{22}=m_2-m_3+m_5-m_7$

Koszt powyższego algorytmu szacuje się na $O(n\log_27)$

Algorytm "canona"

- Zakładamy że mamy sieć zadań m x m.
- Każdy proces (t_{ij} gdzie 0<i,j<m) wewnątrz zawiera bloki C_{ij},
 A_{ij} i B_{ij}.
- Na wstępie algorytmu proces na przekątnej diagonalnej (t_{ij}
 gdzie i=j) przesyła swój blok A_{ij} do wszystkich innych
 procesów w rzędzie i.
- Po transmisji A_{ii} , wszystkie zadania obliczają $A_{ii}xB_{ij}$ i dodają wynik do C_{ii} .
- W kolejnym kroku kolumna bloków macierzy B jest obracana.
 Tzn. t_{ij} przesyła swój blok t_{(i-1)j}. Proces t_{0j} przesyła swój blok B do t_{(m-1)j}.

- Teraz procesy powracają do kroku pierwszego.
- A_{i(i+1)} jest podstawową informacją dla wszystkich innych procesów w rzędzie i.
- Algorytm jest dalej kontynuowany. Po m iteracjach macierz C zawiera wynik mnożenia AxB, a obracana macierz B przyjmuje swoją początkową postać.

A B C
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 7 & 2 \\ 7 & 10 & 3 \\ 4 & 7 & 10 \end{bmatrix}$$

Z macierzy A bierzemy wartości leżące na diagonalnej Przysyłamy do sąsiadów w tym samym wierszu. Mnożymy wartości przesyłane z wartościami macierzy B i dodajemy do wyniku w C

Kolumny macierzy B "rolujemy" w dół.

Obniżamy diagonalną o jeden w dół.

Przysyłamy do sąsiadów w tym samym wierszu.

Mnożymy wartości przesyłane z wartościami macierzy B i dodajemy do wyniku w C

Kolumny macierzy B "rolujemy" w dół.

Obniżamy diagonalną o jeden w dół.

Przysyłamy do sąsiadów w tym samym wierszu.

Mnożymy wartości przesyłane z wartościami macierzy B i dodajemy do wyniku w C

Mnożenie macierzy w 3D

