28 de agosto de 2022

Lista Espaços com Produto Interno

Exercício 1 Prove os exercícios dados em sala de aula.

Exercício 2 Prove o Teorema de Cauchy-Schwarz. Seja X um espaço com produto interno. Então, para todo $x, y \in X$,

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Além do mais a igualdade vale se, e somente se, x e y são linearmente dependentes.

Exercício 3 Sejam X um espaço com produto interno e $A: X \to X$ uma transformação linear. Mostre que se ||Ax|| = ||x|| para todo $x \in X$, então $\langle Ax, Ay \rangle = \langle x, y \rangle$ para todo $x, y \in X$. Além do mais, se $\langle Ax, Ay \rangle = \langle x, y \rangle$ para todo $x, y \in X$ e A é sobrejetiva, então

$$A(U^{\perp}) = A(U)^{\perp}, \forall U \subset X.$$

Exercício 4 Mostre que todo espaço vetorial possui uma base. Com esse resultado, conclua que um produto interno pode ser introduzido em qualquer espaço vetorial real ou complexo. *Dica: Use o Lema de Zorn.*

Exercício 5 Considere o espaço C(-1,1) das funções contínuas com imagem real definidas no intervalo [-1,1] e defina o produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Determine o complemento ortogonal do subespaço das funções ímpares, isto é, das funções $f(x) = -f(-x), \forall x \in [-1, 1].$

Exercício 6 (Completamento de espaços com produto interno) Seja X um espaço com produto interno. Mostre que X pode ser completado, formando um espaço de Hilbert. Para isso, use os resultados já demonstrados para espaços normados, introduzindo o produto interno

$$\langle x^*, y^* \rangle = \lim_n \langle x_n, y_n \rangle,$$

em que $x^*, y^* \in X^*$ e X^* é o espaço das classes de equivalência de sequências de Cauchy. Prove que esse é de fato um produto interno e que

$$||x^*|| = \lim_n ||x_n|| = \sqrt{\langle x^*, x^* \rangle}.$$

Exercício 7 Considere $L^1[0,1]$ o espaço das funções integráveis entre [0,1] (iguais exceto em um conjunto de medida nula) com a norma

$$||f|| = \int_0^1 |f(x)| dx.$$

Mostre que não é possível introduzir um produto interno nesse espaço que concorde com essa norma, isto é,

$$\langle f, f \rangle = ||f||^2, \quad \forall f \in L_1[0, 1].$$

Exercício 8 Vamos terminar a prova do seguinte Teorema discutido em sala. **Teorema.** Seja X um espaço de Hilbert com campo escalar F e considere um conjunto ortonormal $(x_n)_{n\in\mathbb{N}}$. Então se $\alpha_n\in F$, temos os seguintes resultados.

- 1. $\sum_{n\in\mathbb{N}} \alpha_n x_n$ converge se e somente se $\sum_{n\in\mathbb{N}} |\alpha_n|^2$ converge.
- 2. Se a série $\sum_{n\in\mathbb{N}} \alpha_n x_n$ converge para x, então $\alpha_n = \langle x, x_n \rangle$.

O item (a) foi discutido em sala. Prove o item (b).

Exercício 9 Seja M um subespaço de um espaço de Hilbert X. Prove que M é denso em S se, e somente se, $M^{\perp} = \{0\}$.

Exercício 10 Seja f um funcional linear definido em X espaço de Hilbert. Mostre que se f não é contínua, então $\bar{N}=X$.