Graphentheoretische Konzepte und Algorithmen WiSe 2014

Probeklausur vom 12. 1. 2015 Deckblatt

J. Padberg

Bitte prüfen Sie zuerst, dass Ihr Klausurexemplar 12 Seiten hat.

Bitte heften Sie die Lösungen an das ausgefüllte Deckblatt.

Bitte schreiben Sie auf **jedes** Blatt, dass Sie abgeben, Ihren Namen und Matrikelnummer und vermerken Sie bitte an der Aufgabe, falls Sie zusätzliche Blätter zur Lösung benutzt haben.

Name	
Matrikelnummer	

DAUER: Für die Bearbeitung sind 90 Minuten vorgesehen.

Bewertung:

II III IV

VI VIII VIII

Klausurpunkte	Leistungspunkte
> 100	15
≥ 96	14
≥ 91	13
≥ 86	12
≥ 81	11
≥ 76	10
≥ 71	9
≥ 66	8
≥ 61	7
≥ 56	6
≥ 50	5
< 50	0-4

Erreichte Leistungspunkte:

Erlaubte Hilfsmittel:

- 3 doppelseitig beschriftete Seiten mit Notizen
- Papier und Schreibgerät
- und sonst nichts:
 - keine Folienkopien
 - kein Skript
 - keine elektronischen Geräte (kein Taschenrechner, kein Laptop, kein PDA, kein Handy, etc.)

Name	
Matrikelnummer	

Gegeben dieser AVL-Baum geordnet durch Reihenfolge des Alphabets. Fügen Sie bitte diese Knoten in dieser Reihenfolge X,S,Z,N,V,P ein und geben Sie an welche Operationen Sie benötigen, um eine AVL-Baum zu erhalten.

Name	
Matrikelnummer	

Gegeben sei dieser gewichtete Graph. Bitte berechnen Sie mit Hilfe des Dijkstra-Algorithmus

Name	
Matrikelnummer	

Gegeben seien diese Teilmengen der schlichten, ungerichteten, zusammenhängenden Graphen:

- $\mathbf{G} = \{G \mid \text{ ist Graph mit } n \text{ Knoten}, n \in \mathbb{N}^+\}$
- $\mathbf{T} = \{T \mid \text{ ist Baum mit } n > 1 \text{ Knoten, } n \in \mathbb{N}^+\}$
- $\mathbf{B} = \{B \mid \text{ ist ein bipartiter Graph mit } n > 1 \text{ Knoten}, n \in \mathbb{N}^+ \}$
- $\mathbf{C} = \{C_n \mid \text{ ist Kreis mit } n > 3 \text{ Knoten}, n \in \mathbb{N}^+\}$
- $\mathbf{W} = \{W_n \mid \text{ ist Rad mit } n > 4 \text{ Knoten}, n \in \mathbb{N}^+\},$

wobei W_n diese Form hat

• $\mathbf{S} = \{S_n \mid \text{ ist Stern mit } n > 4 \text{ Knoten, } n \in \mathbb{N}^+\},$ wobei S_n diese Form hat

	$G \in \mathbf{G}$	$G \in \mathbf{T}$	$G \in \mathbf{B}$	$G \in \mathbf{C}$	$G \in \mathbf{W}$	$G \in \mathbf{S}$
$\delta(G)$	≥ 0					
$\Delta(G)$	$\leq n-1$					
$\chi(G)$	$\geq 1; \leq n$					

2. Welche Mengen sind Teilmengen von einander? 5 Punkte

Name	
Matrikelnummer	

	gibt ei														unkte	
	$_{ m mi}$	t un	igera	aden					1000	11		wa	hr c	der	falsch	1
ред	gründ	ung	ς:													

Name	
Matrikelnummer	

Fortsetzung der Aufgabe IV:

2. Gegeben sei ein Graphmorphismmus $f:G\to H.$

Dann gilt: $\chi(G) \leq \chi(H)$

wahr oder falsch

3. Das Prüfer-Tupel (3,3,4,4) beschreibt einen Baum mit 6 Knoten.

wahr oder falsch

Begründung:

Name	
Matrikelnummer	

Erläutern Sie bitte den Floyd-Warshall-Algorithmus zur Berechnung der kürzesten Wege.

Name	
Matrikelnummer	

1. Bei der Anwendung des Dijkstra-Algorithmus auf einen ungerichteten, zusammenhängenden Graphen mit nichtnegativen Kantenlängen ist das entstehende System kürzester Wege ein Baum.

Name	
Matrikelnummer	

Fortsetzung der Aufgabe VI:

2. Sei G = (V, E) ein zusammenhängender Graph. G ist genau dann ein Baum, wenn gilt $\sum_{v \in V} d(v) = 2 \cdot |V| - 2$. Begründung:

3. Es sei ein ungerichteter Graph G und ein Untergraph $H \sqsubseteq G$ gegeben. Wenn für alle Knoten in ${\cal H}$ der Knotengrad gleich dem Knotengrad des jeweiligen Knotens im Graph G ist, dann ist G nicht zusammenhängend oder G=H.

Begründung:

Name	
Matrikelnummer	

Gegeben sei die folgende Entfernungstabelle.

		A	В	С	D
	Е	5	8	5	9
	D	8	6	10	
(\overline{C}	8	7		
	В	9			

1.Lösen Sie bitte das dazugehörige metrische TSP mit der Minimum-Spanning-Tree-Heuristik.

Name	
Matrikelnummer	

Fortsetzung der Aufgabe VII:

2. Wie lang ist die optimale Tour mindestens?

Name	
Matrikelnummer	

Bitte beweisen Sie diesen Satz:

Ein vollständiger, bipartiter Graph K_{nm} ist hamiltonsch genau dann, wenn n=m.

