

第五章 非参数统计基础

§ 5.1 <u>非参数检验</u>

§ 5.2 秩和检验

§ 5.3 核密度估计

§ 5.1 非参数检验

在许多实际问题中,常常事先并不知道总体的分布类型,这就要根据抽样的样本所提供的信息,对总体分布的各种假设进行检验。称总体分布未知时所进行的假设检验为非参数假设检验。本届主要介绍检验分布类型和列联表独立性的常用非参数方法——检验法,通常也称为 χ^2 拟合检验法。

1. 总体分布的拟合检验:

Pearson检验法亦称为 χ^2 拟合检验法,用于检验假设总体服从某个预先给定的分布 $F_0(x)$ 。

考虑总体分布的检验问题

$$H_0: F(x) = F_0(x)$$

假设分布函数 $F_0(x)$ 形式已知,但包含 γ 个未知参数,用参数估计法给出未知参数估计。

基于频率稳定于概率,可直观理解 χ^2 拟合检验思想:

把随机试验结果的全体 Ω 分成k个互不相容的事件:

$$A_1, A_2, \cdots, A_k$$

在假设 H_0 下,记 $p_i = P\{A_i\}$, A_i 发生的频率为 f_i/n ,其中 f_i 表示事件 A_i 在n次试验中发生的次数。 对于给定的分法 A_1, A_2, \cdots, A_k ,根据大数定律, 当样本容量n越来越大时,频率 f_i/n 稳定于概率 p_i 。

频率 f_i/n 和 p_i 之间的差异程度可以反映出 $F_0(x)$ 是否为总体的真实分布。

Pearson统计量:
$$\chi^2 = \sum_{i=1}^k \frac{(f_i - np_i)^2}{np_i}$$

 H_0 成立时, χ^2 有取偏小值的趋势,所以可以将 χ^2 的大小作为检验的标准。

为了进行检验,还需要知道 χ^2 的概率分布, Pearson定理就是给出了它的渐近分布。

定理5.1.1 (Pearson定理): 若样本容量n充分大 $(n \geq 50)$,则无论总体服从何种分布 $F_0(x)$,统计量

$$\chi^2 = \sum_{i=1}^k \frac{(f_i - np_i)^2}{np_i}$$

总是近似地服从自由度为k-1的 χ^2 分布,其中 $F_0(x)$ 完全确定,不含任何未知参数。

具体检验过程如下:

- (1) 将($-\infty$, $+\infty$)分成k个互不相交的区间 $A_i = (a_i, a_{i+1}]$, i = 1, ..., k,其中 a_1, a_{k+1} 可分别取 $-\infty$, $+\infty$ 。区间的划分方法应视具体情况而定。
- (2) 计算概率 $p_i = P\{X \in A_i\} = P\{a_i < X \le a_{i+1}\} =$ $F_0(a_{i+1}) - F_0(a_i)$ 并计算 np_i ,称为理论频数。

- (3) 计算样本 $x_1, x_2, ..., x_n$ 落在(a_i, a_{i+1}]中个数 f_i , 称为实际频数。
 - (4) 计算检验统计量的值

$$\chi^2 = \sum_{i=1}^k \frac{(f_i - np_i)^2}{np_i} \cong \chi^2(k-1)$$

- (5) 对给定的 α , 查临界值 $\chi^2_{1-\alpha}(k-1)$

在许多实际问题中,假设 H_0 只指定了分布 $F_0(x;\theta_1,...,\theta_\gamma)$ 的具体函数形式,而它包含 γ 个独立的未知参数。

处理此情形的一种自然做法是:在假设 H_0 成立的条件下,先求出 γ 个参数 θ_1 ,…, θ_γ 的极大似然估计 $\widehat{\theta_1}$,…, $\widehat{\theta_\gamma}$,然后代入原式,有 $\widehat{p_i}=\widehat{p}\{X\in A_i\}=F_0(a_{i+1};\widehat{\theta_1},…,\widehat{\theta_\gamma})-F_0(a_i;\widehat{\theta_1},…,\widehat{\theta_\gamma})$, i=1,…,k

用 $\hat{p_i}$ 替换原式中 p_i ,有检验统计量

$$\chi^2 = \sum_{i=1}^k \frac{(f_i - n\widehat{p}_i)^2}{n\widehat{p}_i}$$

可以证明当样本量n充分大时,上述 χ^2 近似地服从 $\chi^2(k-\gamma-1)$ 。

对给定的 α ,若 $\chi^2 \geq \chi^2_{1-\alpha}(k-\gamma-1)$,则拒绝 H_0 ;否则接受 H_0 。

注5.1.2:

 χ^2 拟合检验是在极限意义下获得,所以在使用时样本容量n必须足够大,同时还要求 np_i 不能太小。由实际应用的经验知,通常要求 $n \geq 50$, $np_i > 5$,且最好 $np_i > 10$ 。否则,应适当合并当初所划分区间,使 np_i 满足上述要求。

例题5.1.3: 在某种铀的实验中,每隔一定时间观察一次由某种铀放射的到达计数器上的a粒子数X,共观察了100次,其结果如下:

i	0	1	2	3	4	5	6	7	8	9	10	11	\sum
f_i	1	5	16	17	26	11	9	9	2	1	2	1	100

其中 f_i 是观察到有i个a粒子数的次数。从理论上知道 X应服从Poisson分布:

$$P\{X=i\} = \frac{\lambda^i}{i!}e^{-\lambda}, i = 0, 1, 2, ...$$

试问在显著性水平a = 0.05下,理论上的结果是否符合实际?

解: 考虑假设检验问题

$$H_0: P\{X=i\} = \frac{\lambda^i}{i!}e^{-\lambda}$$

当 H_0 成立时,由极大似然法可得 λ 的估计为 $\hat{\lambda} = \overline{x} = 4.2$ 。由于总体X是离散型的,所以

$$\widehat{p}_i = P\{X = i; \widehat{\lambda}\} = \frac{\widehat{\lambda}^i}{i!} e^{-\widehat{\lambda}}, i = 0, 1, 2...$$

所以理论频数为 $n\hat{p}_i = 100 \frac{4.2^i}{i!} e^{-4.2}$,将其计算结果列于下表中。

f_i	$n \hat{p}_i$	$f_i - n \hat{p}_i$	$(f_i - n\hat{p}_i)^2$	$(f_i - n\hat{p}_i)^2/n\hat{p}_i$
1	1, 5)	-1.8	3. 24	0.415
5	6.3			
16	13. 2	2.8	7.84	0.594
17	18. 5	— 1. 5	2. 25	0.122
26	19. 4	6.6	43. 56	2. 245
11	16. 3	-5.3	28. 09	1.723
9	11. 4	-2.4	5. 7	0.505
9	6.9	2. 1	4. 41	0.609
2	3.6)			
1	1. 7			0.014
2	0.7	-0.3	0.09	
1	0.3			
Σ				6. 257

把理论频数小于5的组合并,新的一组内理论频数 $n\hat{p}_i \geq 5$,其并组情况在下表中第二列用大括号表示

f_i	$n \hat{p}_i$	$f_i - n \hat{p}_i$	$(f_i - n\hat{p}_i)^2$	$(f_i - n\hat{p}_i)^2/n\hat{p}_i$
1	1, 5)	-1.8	3. 24	0.415
5	6.3			
16	13. 2	2.8	7.84	0.594
17	18. 5	— 1. 5	2. 25	0.122
26	19. 4	6.6	43. 56	2. 245
11	16. 3	-5.3	28. 09	1.723
9	11. 4	-2.4	5. 7	0.505
9	6.9	2. 1	4. 41	0.609
2	3.6)			
1	1. 7			0.014
2	0.7	-0.3	0.09	
1	0.3			
Σ				6. 257

并组后得到k = 8,并且在计算概率时,估计了一个参数,从而统计量 χ^2 的自由度为8 - 1 - 1 = 6:

$$\chi^2_{1-\alpha}(k-\gamma-1) = \chi^2_{0.95}(6) = 12.592$$

因此,拒绝域为 $W = \{\chi^2 \ge 12.592\}$ 。而 $\chi^2 = 6.257 \notin W$,所以在显著性水平 $\alpha = 0.05$ 下可以接受 H_0 ,认为简单样本是来自Poisson分布的总体,且 $\hat{\lambda} = 4.2$

1.2. 二维列联表的独立性检验:

在实际问题中,常常要考察二维总体,或一维总体中个体的两个指标X与Y。

需要检验指标X与Y之间是否相互独立,这可由 χ^2 拟合检验来完成,这种检验也称列联表独立性检验

本节下面的内容仅限于讨论二维列联表独立性检验,类似的可以推广到三维或三维以上的列联表独立性检验。

例题5.1.4:为了调查慢性气管炎与吸烟习惯的关系在50岁以上的人群中抽查了339名,得到二维列联表习惯上称为2×2列联表,如下所示:

	患慢性气管炎	未患慢性气管炎	合 计
吸 烟	43	162	205
不吸烟	13	121	134
合 计	56	283	339

若用*X*和*Y*分别表示调查对象的两个指标:是否 吸烟和是否患慢性气管炎,则它们分别有两种状态:

"吸烟"和"不吸烟", "患慢性气管炎"和" 未患慢性气管炎"。

通常也称指标所取的状态为水平。这样,判断患慢性气管炎与吸烟习惯的关系,实际上就是要判断两个指标*X*和*Y*是否独立。

一般地,设有两个指标X与Y,需要检验的假设为 $H_0: X$ 与Y相互独立。

为此,将两个指标X与Y的取值范围分别分成r, s个互不相交的类 A_1 , A_2 , ..., A_r 和 B_1 , B_2 , ..., B_s 。

从总体中抽取容量为n的简单样本,用 n_{ij} 表示样本中既属于 A_i 类,又属于 B_i 类的个体数,称其为频数

令
$$n_{i\cdot} = \sum_{j=1}^s n_{ij}$$
 , $n_{\cdot j} = \sum_{i=1}^r n_{ij}$,显然 $n=$

 $\sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij}$ 。将rs个数 n_{ij} 列成二维列表,如下表所

列,称为 $r \times s$ 列联表。

Y	B_1		B_{j}	•••	B_s	Σ
A_1	n_{11}	***	n_{1j}	•••	n_{1s}	n_1 .
:	•		:		:	i
A_i	n_{i1}	•••	n_{ij}	***	n_{is}	n_i .
:	9				•	i
A_r	n_{r1}	***	n_{rj}	•••	n_{rs}	n_r .
Σ	n_{-1}	•••	n_{*j}		n_{*s}	n

如果记

$$p_{ij} = P\{X \in A_i, Y \in B_j\}, i = 1, 2, \dots, r; j = 1, 2, \dots, s$$
 $p_{i\cdot} = P\{X \in A_i\}, i = 1, 2, \dots, r$
 $p_{\cdot j} = P\{Y \in B_j\}, j = 1, 2, \dots, s$

则显然有

$$p_{i\cdot} = \sum_{j=1}^{s} p_{ij}, \ p_{\cdot j} = \sum_{i=1}^{r} p_{ij}, \ \sum_{i=1}^{r} p_{i\cdot} = 1, \ \sum_{j=1}^{s} p_{\cdot j} = 1$$

当假设 H_0 成立时,有 $p_{ij} = p_{i\cdot}p_{\cdot j}$,所以列联表中独立性检验实际上是检验假设

 H_0 : $p_{ij} = p_{i\cdot}p_{\cdot j}$, $i = 1, 2, \dots, r$; $j = 1, 2, \dots, s$ 此时可以用 χ^2 拟合检验法来进行检验。

在 H_0 中,r+s个数 p_1 ., p_2 ., ..., p_r .和 $p_{\cdot 1}$, $p_{\cdot 2}$, ..., $p_{\cdot s}$ 属于未知参数。

这r + s个参数中仅有r + s - 2个独立。

不妨设
$$p_{r.}=1-\sum_{i=1}^{r-1}p_{i.}$$
及 $p_{.s}=1-\sum_{j=1}^{s-1}p_{.j}$,

即 r + s - 2 个 独 立 参 数 是 p_{i} (i = 1, 2, ..., r - 1) 及

$$p_{\cdot j}(j=1,2,\ldots,s-1)$$

要建立检验式 H_0 的检验统计量,需要求出这些未知参数的极大似然估计,分别为:

$$\widehat{p}_{i\cdot} = \frac{n_{i\cdot}}{n}, \ i = 1, 2, ..., r.$$
 $\widehat{p}_{\cdot j} = \frac{n_{\cdot j}}{n}, \ j = 1, 2, ..., s$

检验统计量可以取为

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - n\widehat{p}_{ij})^2}{n\widehat{p}_{ij}} = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - n\widehat{p}_{i\cdot}\widehat{p}_{\cdot j})^2}{n\widehat{p}_{i\cdot}\widehat{p}_{\cdot j}}$$

把 \hat{p}_i 和 \hat{p}_{ij} 代入,可得检验式中假设 H_0 的检验统计量为

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n})^{2}}{\frac{n_{i} \cdot n_{\cdot j}}{n}}.$$

由于假设 H_0 中的独立参数个数是r+s-2,所以当假设 H_0 成立时,我们给出的检验统计量 χ^2 近似地服从自由度为rs-(r+s-2)-1=(r-1)(s-1)的 χ^2 分布。

对给定的α,检验的拒绝域为:

 $W = \{(x_1, x_2, ..., x_n): \chi^2 \geq \chi^2_{1-\alpha}((r-1)(s-1))\}.$ 即当 $\chi^2 \geq \chi^2_{1-\alpha}((r-1)(s-1))$ 时,拒绝假设 H_0 ,认为X与Y不相互独立,否则认为X与Y相互独立。

对上述例题,给定显著性水平 $\alpha=0.01$,由于r=

$$2, s = 2$$
,查表知

$$\chi_{1-\alpha}^2((r-1)(s-1)) = \chi_{0.99}^2(1) = 6.635$$

所以拒绝域为 $W = \{\chi^2 \ge 6.635\}$

而检验统计量值 $\chi^2 = 7.4688 \in W$

因而拒绝原假设 H_0 ,即认为慢性气管炎与吸烟有密切关系。

§ 5.2 秩和检验

1. 无结点数据的秩及性质:

定义5. 2. 1: 设样本 X_1, X_2, \cdots, X_n 是取自总体X的简单随机样本, X_1, X_2, \cdots, X_n 中不超过 X_i 的数据个数 $R_i = \sum_{j=1}^n \mathbb{I}(X_j \leq X_i)$,称 R_i 为 X_i 的秩, X_i 是第 R_i 个顺序统计量, $X_{(R_i)} = X_i$ 。令 $R = (R_1, R_2, \cdots, R_n)$,R是由样本产生的统计量,称为秩统计量。

定理5.2.2: 对于简单随机样本, $R = (R_1, R_2, \dots, R_n)$ 等可能取 $(1, 2, \dots, n)$ 的任意n!个排列之一,R在由 $(1, 2, \dots, n)$ 的所有可能的排列组成的空间上是均匀分布,即对于 $(1, 2, \dots, n)$ 的任意排列 (i_1, i_2, \dots, i_n) 有

$$P(R = (i_1, i_2, \dots, i_n)) = \frac{1}{n!}$$

上述定理5.2.2给出的是 R_1, R_2, \cdots, R_n 联合分布。 类似地,每一个 R_i 在空间 $\{1,2,\cdots,n\}$ 上有均匀分布; 每一对 (R_i, R_i) 在空间 $\{(r, s) | r, s = 1, 2, \dots, n; r \neq s\}$ 上 有均匀分布。以推论的形式表示如下: 推论5.2.3:对于简单随机样本,对任意r,s= $1, 2, \dots, n, r \neq s$ 及 $i \neq j,$ 有 $P(R_i = r) = \frac{1}{n}, \ P(R_i = r, R_j = s) = \frac{1}{n(n-1)}$

推论5.2.4: 对于简单随机样本,

$$E(R_i) = \frac{n+1}{2}$$
 $Var(R_i) = \frac{(n+1)(n-1)}{12}$
 $Cov(R_i, R_j) = -\frac{n+1}{12}$

证明:

$$E(R_i) = \sum_{i=1}^n i \cdot \frac{1}{n} = \frac{n+1}{2}$$

$$Var(R_i) = \frac{\sum_{i=1}^{n} i^2 \cdot \frac{1}{n} - [E(R_i)]^2}{= \frac{n(n+1)(2n+1)}{6} \cdot \frac{1}{n} - \frac{(n+1)^2}{4}$$
$$= \frac{(n+1)(n-1)}{12}$$

$$Cov(R_i, R_j) = E(R_i - E(R_i))E(R_j - E(R_j))$$

$$= \sum_{i, j, i \neq j} ((i - \frac{n+1}{2})(j - \frac{n+1}{2}) \cdot \frac{1}{n(n-1)})$$

$$\begin{aligned} & Cov(R_i, R_j) \\ &= \left[\sum_{i=1}^n \sum_{j=1}^n (i - \frac{n+1}{2}) (j - \frac{n+1}{2}) - \sum_{j=1}^n (j - \frac{n+1}{2})^2 \right] \cdot \frac{1}{n(n-1)} \\ &= -\frac{n+1}{12} \end{aligned}$$

这些结果说明,对于独立同分布样本来说,秩的分 布和总体分布无关。

2. 有结数据的秩:

在许多情况下,数据有重复数据,称数据中存在结(tie)。结的定义如下

定义5. 2. 5: 设样本 $X_1, X_2, ..., X_n$ 取自总体X的简单随机抽样,将数据排序后,相同的数据点组成一个"结",称重复数据的个数为结长。

假设有样本量为7的数据:

3.8 3.2 1.2 1.2 3.4 3.2 3.2

其中有4个结, $x_2 = x_6 = x_7 = 3.2$, 结长3;

 $x_3 = x_4 = 1.2$, 结长2; $x_1 = 3.8$ 和 $x_5 = 3.4$ 的结长

都为1。如有重复数据,则将数据从小到大排序后,

 $(R_1, R_2) = (1, 2)$,也可以等于(2, 1),则秩不唯一。

一般采用秩平均法处理有结数据的秩。

定义5.2.6: 将样本 $X_1, X_2, ..., X_n$ 从小到大排序后,若

$$X_{(1)} = \cdots = X_{(\tau_1)} < X_{(\tau_1 + 1)} = \cdots = X_{(\tau_1 + \tau_2)} < \cdots <$$

$$X_{(\tau_1+\tau_2+\cdots+\tau_{g-1}+1)}=\cdots=X_{(\tau_1+\tau_2+\cdots+\tau_g)}$$
, g 是样本中

结的个数, τ_i 是第i个结的长度, $(\tau_1, \tau_2, ..., \tau_g)$ 是g个

正整数, $\sum_{i=1}^g \tau_i = n$,称 $(\tau_1, \tau_2, \dots, \tau_g)$ 为结统计量。

第i组样本的秩都相同,是第i组样本原秩的平均:

$$r_i = \frac{1}{\tau_i} \sum\nolimits_{k=1}^{\tau_i} \left(\tau_1 + \dots + \tau_{i-1} + k \right) = \tau_1 + \dots + \tau_{i-1} + \frac{1 + \tau_i}{2}$$

例5.2.7: 样本数据为12个数,其值、秩和结统计量 (用 τ_i 表示,为第i个结中的观测值数量)如下表所示

观测值	2	2	4	7	7	7	8	9	9	9	9	10
秩	1.5	1.5	3	5	5	5	7	9.5	9.5	9.5	9.5	12

其中有6个结,每个结长分别为2,1,3,1,4,1。

3. 秩和检验法:

设从总体F(x)与G(x)中分别抽取了容量为 n_1, n_2 的样本, $X_1, X_2, ..., X_{n_1}$ 和 $Y_1, Y_2, ..., Y_{n_2}$,欲检验假设 H_0 : F(x) = G(x)。

把两个样本的观测数据合在一起按照大小次序排列并统一编号,规定每个数据在排列中所对应的序数称为该数的秩,对于相同的数值则用它们序数的平均值(必要时四舍五入)来作秩。

将容量较小样本的各观测值秩之和记为T,以T作为统计量。如果 H_0 成立,即F(x)与G(x)差异不显著,则统计量T就不应该太大或太小。威尔科克逊给出了统计量T的临界值 T_1 和 T_2 ,使

$$P(T_1 < T < T_2) = 1 - \alpha$$

若 $T_1 < T < T_2$,则接受 H_0 ,认为F(x)与G(x)差异不显著。否则拒绝 H_0 ,认为F(x)与G(x)差异显著。

例5.2.8: 由F(x)与G(x)获得两组样本:

x_i	2.36	3.14	7.52	3.48	2.76	5.43	6.54	7.41
y_i	4.38	4.25	6.54	3.28	7.21	6.54		

试检验假设 H_0 : F(x) = G(x), (取 $\alpha = 0.05$)。

将两组样本合在一起由小到大排列,统一编号, 并计算出相应的秩,列于下表:

编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x_i	2.36	2.76	3.14		3.48			5.43	6.54				7.41	7.52
y_i				3.28		4.25	4.38			6.54	6.54	7.21		
秩	1	2	3	4	5	6	7	8	10	10	10	12	13	14

表中第9、10、11号数值相同,其秩取其和之平均值10,其中 y_i 一组容量较小,于是统计量T=4+6+7+10+12=49,对于检验水平 $\alpha=0.05$, $n_1=8$, $n_2=6$,查表得到 $T_1=32$, $T_2=58$,由于 $T_1 < T < T_2$,故接受 H_0 ,即认为F(x)与G(x)无显著差异。

秩和检验表只列到 $n_1, n_2 \leq 10$ 的情形,当其大于

10时,统计量T近似服从正态分布:

$$T \sim N(\frac{n_1(n_1+n_2+1)}{2}, \frac{n_1n_2(n_1+n_2+1)}{12})$$

于是可用U检验法,这时选统计量为:

$$U = \frac{T - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}} \sim N(0, 1)$$

则在检验水平 α 下拒绝域为 $W = \{|u| > u_{1-\frac{\alpha}{2}}\}$

4.符号检验法:

为比较甲乙两种酒的优劣,让N个品酒人分别品尝 评分,形成配对样本的成对比较模型。设 X_i 、 Y_i 分别为 第i个品酒人对甲乙酒的评分。记 $Z_i = X_i - Y_i$, i = $1, \dots, N$,如果假定 $Z_i \sim N(\mu, \sigma^2)$,则甲、乙两酒是否有优 劣的问题将转化为原假设 H_0 : $\mu = 0 \leftrightarrow H_1$: $\mu \neq 0$ 的检 验问题,这就是样本t检验问题,但是在一些情况下 ,不一定有根据假定 Z_i 服从正态分布。所以提出一个 替代的方法:对每个评酒人的评分给出一个符号

$$S_i = \begin{cases} +, Z_i > 0 \\ -, Z_i < 0 \\ 0, Z_i = 0 \end{cases}$$

即品酒人给以"+"号表示他认为"甲酒优于乙酒",另 两个符号的意义类推。如此,得到N个符号 S_1, \dots, S_N .检 验问题: H_0 :甲乙两种酒一样好 $\leftrightarrow H_1$:甲乙两种酒不一样 的检验就建立在试验结果的这N个符号的基础上,故称为 符号检验(sign test)。从统计模型而言,符号检验其实是 二项分布参数检验的一个特例。

符号检验的具体方法:

1)小样本方法:记N个试验结果 S_1 ,…, S_N 中"+"号有 n_+ 个,"-"号有 n_- 个,其余为0, $n=n_++n_-$ 。若 H_0 成立(两种酒一样好),则n个非0结果中出现"+"的概率 $\theta=1/2$, n_+ 服从b(n,1/2)。若两种酒确有优劣,则每个结果出现"+"号的概率 $0\neq1/2$ 。若记 $X=n_+$,则问题转化为检验问

题 $X \sim b(n,\theta), 0 \le \theta \le 1$,要检验 $H_0: \theta = \frac{1}{2} \longleftrightarrow H_1: \theta \ne \frac{1}{2}$. 一个水平为 α 的检验的否定域为 $\{X = n_+ \ge c$ 或 $X \le d\}$,其中c和d

的值由下式确定: $\sum_{i=c}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^n \leq \frac{\alpha}{2}$, $d = n - \diamond c$, c值通过 查表获得,d由公式计算。

一个更恰当的方法是计算检验的p值,在此,令由符号

 S_1, \dots, S_N 算得的 $X=n_+$ 的具体值为 x_0 ,记 $x_0^{'}=min\{x_0, n-1\}$

 x_0 },则检验的p值为 $p = \sum_{i=0}^{x_0} \binom{n}{i} \left(\frac{1}{2}\right)^n + \sum_{i=n-x_0}^n \binom{n}{i} \left(\frac{1}{2}\right)^n$.若n为偶数,而 x_0 =n/2,则取 p值为 p=1。p值越接近 1,则 H_0 越可信。例如,给定检验水平 α ,则当p< α 时否定 H_0 ,当p $\geq \alpha$ 时接受 H_0 。

本表列出了满足 $P(n_+ \ge c) \le \alpha$ 的临界值 c

n α	0.01	0.05	0.10	n	0.01	0.05	0.10
5				18	15	13	13
6			6	19 .	15	14	13
7		7	6	20	16	15	14
8	8	7	7	21	17	15	14
9	9	8	7	22	17	16	15
10	10	9	8	23	18	16	16
11	10	9	9	24	19	17	16
12	11	10	9	25	19	18	17
13	12	10	10	26	20	18	17
14	12	11	10	27	20	19	18
15	13	12	11	28	21	19	18
16	14	12	12	29	22	20	19
17	14	13	12	30	22	20	20
n α	0.01	0.05	0.10	n α	0.01	0.05	0.10
31	23	21	20	41	29	27	26
32	24	22	21	42	29	27	26
33	24	22	21	43	30	28	27
34	25	23	22	44	31	28	27
35	25	23	22	45	31	29	28
36	26	24	23	46	32	30	28
37	26	24	23	47	32	30	29
38	27	25	24	48	33	31	29
39	28	26	24	49	34	31	30
40	28	26	25	50	34	32	31

2) 大样本方法: 若n很大时,根据中心极限定理,若 H_0 成

立且
$$\mathbf{n} o \infty$$
时,有: $U = \frac{X - \diamond E(X)}{\sqrt{D(X)}} = \frac{X - \diamond n/2}{\sqrt{n/4}} =$

 $\frac{2 + X - + n}{\sqrt{n}} \stackrel{\mathcal{L}}{\to} N(0, 1)$, 因此前面的检验问题水平近似为 α 的检验

否定域是 $\{X: |U| > u_{\alpha/2}\}$,其中 $u_{\alpha/2}$ 为标准正态分布的上侧 $\alpha/2$ 分位数。有时检验目的是从"甲不优于乙"和"甲优于乙"中选择一个,以前者为原假设,则检验问题可表示为

 $X \sim b(n, \theta)$, $0 \le \theta \le 1$, 而 H_0 ': $\theta \le \frac{1}{2} \longleftrightarrow H_1$ ': $\theta > \frac{1}{2}$ 。 当n充分大

时,可用大梯本方法,其检验水平近似为a的检验的否定域是

5.符号秩和检验法:

设有两个总体F(x)与G(y),检验问题为 H_0 : F(x) = G(x), H_1 : $F(x) \neq G(x)$ 。如今获得成对数据 (x_i, y_i) , $i = 1, 2, \dots, n$,令 $z_i = x_i - y_i$,记 R_i 为 $|z_i|$ 在

 $|z_1|, |z_2|, \dots, |z_n|$ 中的秩, V_i 定义为 $V_i = \begin{cases} 1, z_i > 0 \\ 0, z_i \leq 0 \end{cases}$ i =

 $1, 2, \dots, n$,符号秩和检验用的统计量是 $W^+ =$

 $\sum_{i=1}^{n} V_i R_i$,这一统计量实质上是 $x_i > y_i$ 的观测值的差的绝对值 $|z_i|$ 的秩和。

在 H_0 为真时, $x_i > y_i$ 与 $x_i < y_i$ 出现的可能性应该是相同的,

因而在 H_0 为真时 W^+ 不应过大,也不应过小,从而拒绝域

的合理形式为: $\{W^+ \leq d \oplus W^+ \geq c\}$

在小样本场合 $(n \le 20)$,后面附表给出了 $P(W^+ \ge c) \le \alpha$

的临界值c,
$$d = \frac{n(n+1)}{2} - c$$

在大样本场合,可以证明 $(W^+)^* = \frac{W^+ - E(W^+)}{\sqrt{Var(W^+)}}$ 近似N(0,1),其中

$$E(W^{+}) = \frac{n(n+1)}{4}$$
, $Var(W^{+}) = \frac{n(n+1)(2n+1)}{24}$, 从而水平为 α 的拒绝域

为
$$\left\{ |(W^+)^*| \geq u_{1-\frac{\alpha}{2}} \right\}$$

附表 11		号 秩和检验临界 ? (W ⁺ ≥C) ≤			
		a			
n .	0.01	0.025	0.05	. 0.10	
-					
4	.11	11	11	10	
. 5	16	16	15	13	
6	22	21	19	18	
7	28	26	25	23	
. 8	35	33	31	28	
9	42	40	37	35	
10	50	47	45	41	
11	59	56	53	· 49	
12	68	65	61	57	
13	79	74	70	65	
14	90	85	80	74	
15	101	95	90	84	
16	113	107	101	94	
17	126	119 '	112	105	
18	139	131	124	116	
19	153	144	137	128	
20	167	158	150 .	141	

判其优劣,现

例5.2.9:某一产品有两种牌号,请用户进行评判其优劣,现 选了13个用户,对这两种牌号的产品分别评分,结果如下:

i (用户)	1	2	3	4	5	6	7	8	9	10	11	12	13
x; (甲)	55	32	41	50	60	48	39	45	48	46	52	45	44
$y_i(Z)$	45	37	43	55	44	50	43	46	51	47	55	46	41

试在 α =0.10水平上能否认为用户对两种产品评价一致?解: 可以认为用户对甲产品的评分为总体X,有分布F(x),对乙产品的评分为总体Y,有分布G(y),对两者评价一致即表示F(x) = G(x)。现要检验假设 $H_0: F(x) = G(x)$

用符号秩和检验,在n=13, $\alpha=0.10$ 时,由附表查得c=74,

从而 $d = \frac{13 \times 14}{2} - 74 = 17$,则拒绝域为 $\{W^+ \le 17$ 或 $W^+ \ge 74\}$

为求出样本对应的 W^+ 的统计量的值,将其计算列成下表。

表 7.16		W	†的计算			
i	x_i	yı	V_i	$ W_i = x_i - y_i $	R_i	
1	55	45	1	10	12	
2	32	37	0	5	10	
3	41	43	0	2	4.5	
4	50	55	0	5	10	
5	60	44	1	16	13	
6	48	50	0	2	4.5	
7	39	43	0	4	8	
8	45	46	0	1	2	
9	48	51	0	3	6.9	
10	46	47	0	1	2	
11	50	55	0	5	10	
12	45	46	0	1	2	
13	44	41	1	3	6.5	

从而W⁺=12+13+6.5=31.5,由于样本落在接受域内,因而可以认为用户对两种产品评价无明显差异。

若对本例用大样本检验,则在 α =0.10时, $u_{0.95}=1.96$,则拒绝域为 $\{|(W^+)^*| \geq 1.96\}$

现由样本求得
$$E(W^+) = \frac{13 \times 14}{4} = 45.5$$
, $Var(W^+) =$

$$\frac{13\times14\times27}{24}=204.75$$
,从而 $(W^+)^*=\frac{31.5-45.5}{\sqrt{204.75}}=-0.98$,由于

 $|(W^+)^*| < 1.96$,故样本仍落在接受域内,结论同上。

§ 5.3 核密度估计

1. 目标

统计问题: 给定一组独立同分布样本 X_1, X_2, \dots, X_n ,

如何估计其密度函数f(x)?

2. 动机

直方图对于所有发生在(t_{k-1} , t_k]中所有样本都同等地对待。简单起见我们考虑[0, 1]区间,如果有两个样本取值 0^+ , 1^- ,那么我们应该认为前者表达的信息是分布在0周围有密度,而后者应该是1周围有密度,而不能把两个完全同等的看待。

因此,对于直方图,给定宽度 δ ,我们认为样本

 X_i 应该反映区间 $[X_i - \delta/2, X_i + \delta/2]$ 的信息,例如我

们定义:
$$K_{\Delta}(x) = \mathbb{I}(-\delta/2 \le x \le \delta/2)/\delta$$

那么对应的估计为:

$$f_n(x) = \frac{1}{n} \sum_{i=1}^n K_{\delta}(X_i - x)$$

进一步我们把宽度 δ 看成参数,直接定义 $K(x) = \mathbb{I}(|x| \le 1)/2$,得到了一般的核密度估计形式:

定义5.3.1:

$$\widehat{f}_h(x) = \frac{1}{n} \sum_{t=1}^n \frac{1}{h} K(\frac{X_t - x}{h}) = \int K_h(\mu - x) d\widehat{F}(\mu)$$

其中 $K_h(\cdot) = K(\cdot/h)$ 称为核函数,h是窗口参数。

3. 核函数

核函数应该满足的条件为:

- 对于任意 $x, K(x) \geq 0$;
- $\int K(x)dx = 1$

因此,核函数是一个密度函数。反之,密度函数可以成为核函数。

实际中,考虑到使用核函数的目的,一般的核函数应该是单峰的、对称的。

常用的核函数如下:

$$K(\mu) = \frac{1}{2} \mathbb{I}(|\mu| \le 1)$$

$$K(\mu) = (1 - \mu) \mathbb{I}(|\mu| \le 1)$$

$$K(\mu) = \frac{3}{4} (1 - \mu^2) \mathbb{I}(|\mu| \le 1)$$

$$K(\mu) = \frac{1}{\sqrt{2\pi}} e^{-\mu^2/2}$$

$$K(\mu) = \frac{\pi}{4} cos(\frac{\pi}{2}\mu) \mathbb{I}(|\mu| \le 1)$$

$$K(\mu) = 1/(e^{\mu} + 2 + e^{-\mu})$$

例5.3.1 为了在密度估计中应用核函数,假设每个数据点都将生成一个与自己相关的密度函数。举个例子来说,我们可以采用在每个维度上标准差均为w的球形高斯核。那么对于查询点x,我们给出的密度估计值为数据核函数的均值:

$$P(\mathbf{x}) = \frac{1}{N} \sum_{j=1}^{N} \mathcal{K}(\mathbf{x}, \mathbf{x}_j) .$$

$$\mathcal{K}(x, x_j) = \frac{1}{(w^2 \sqrt{2\pi})^d} e^{-\frac{D(x, x_j)^2}{2w^2}}$$

使用核函数进行密度估计,所用数据为图2b中的数据,分别采用了w = 0.02、0.07和0.20的高斯核。其中w = 0.07的结果最接近真实情况

例5.3.2: 在美国黄石国家公园有一个间歇式喷泉,由于它的喷发保持较明显的规律性,人们称之为老忠实(01d Faithful)。下图为其喷发持续时间和间隔时

间的散点图:

下图为对老忠实喷泉的间隔时间所作的核估计。

其中h取了四个不同的值: h = 0.3, 0.5, 1, 2。从图上

反映带宽对图形的影响。此处的核函数为标准正态密

度函数。

例5.3.3: 高斯核函数 $f_1 = exp\left(-\frac{\|x-l^{(1)}\|^2}{2\sigma^2}\right)$,假设有两个特征值 x_1 和 x_2 ,

第一个标记点是 $l^{(1)}$ 其位于(3,5),即 $l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$,当改变参数 σ^2 ,当 $\sigma^2 = 0.5$,发现核函数看起来还是相似的,只是这个突起的宽度变窄了,等值线图也收缩了一些。相反地如果增大了 σ^2 的值,例如假设 $\sigma^2 = 3$,突起的宽度变宽,等值线图也变得更加平坦。

4. 窗宽的经验选取

对于
$$K(\mu) = \frac{1}{\sqrt{2\pi}} e^{-\mu^2/2}, h_{opt} \approx 1.06 \hat{\sigma} n^{-\frac{1}{5}}$$

对于
$$K(\mu) = \frac{3}{4}(1-\mu^2)\mathbb{I}(|\mu| \le 1)$$
, $h_{opt} \approx 2.34 \hat{\sigma} n^{-\frac{1}{5}}$

5. 多元密度估计

多元密度估计是一元的推广,对于多元数据,同样可以有多元的核估计。假定 $x \in \mathbb{R}^d$,则多元密度估

计可以为:
$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h^d} K(\frac{x-x_i}{h})$$

此处的h不一定对所有维度都一样,每一个维度

可以选择独立的h,核函数应满足:

$$\int_{\mathbb{R}^d} K(x) dx = 1$$

