Example 0.1.14 (Reim's). 令 A_1 , A_2 , B_1 , B_2 為共圓四點, C_1 為 A_1B_1 上一點。證明: $\odot(B_1B_2C_1)$, A_2B_2 ,跟過 C_1 平行於 A_1A_2 的直線共點。

Solution. 設 A_2B_2 與過 C_1 平行於 A_1A_2 的直線交於 C_2 。由於 A_1 , A_2 , B_1 , B_2 共圓, (A_1A_2,B_1B_2) 關於 (A_1B_1,A_2B_2) 逆平行。所以由 $A_1A_2 \parallel C_1C_2$ 我們可以得到 (C_1C_2,B_1B_2) 關於 (B_1C_1,B_2C_2) 逆平行,故 B_1 , B_2 , C_1 , C_2 共圓,證畢。

Example 40: It is known that A_1 , A_2 , B_1 , and B_2 share a circle, and C_1 is a point on A_1B_1 . Prove: The circumscribed circle of $B_1B_2C_1$, A_2B_2 , and C_1 is parallel to the line A_1A_2 .

$$\text{Proof: Suppose} \quad \frac{B_{1}-C_{1}}{A_{1}-B_{1}} = t_{1}, \\ \frac{B_{2}-C_{2}}{A_{2}-B_{2}} = t_{2}, \\ \frac{\frac{A_{2}-B_{1}}{A_{2}-B_{2}}}{\frac{A_{1}-B_{1}}{A_{1}-B_{2}}} = t_{3}, \\ \frac{\frac{B_{1}-C_{1}}{B_{1}-C_{2}}}{\frac{B_{2}-C_{1}}{B_{2}-C_{2}}} = t_{4} \quad , \quad \frac{A_{1}-A_{2}}{C_{1}-C_{2}} = t_{5} \quad , \\ \frac{A_{1}-A_{2}}{C_{1}-C_{2}} = t_{5} \quad , \\ \frac{A_{1}-A_{2}}{A_{1}-B_{2}} = t_{5} \quad , \\ \frac{A_{1}-A_{2}}{A_{1}-B_{2}} = t_{5} \quad , \\ \frac{A_{2}-A_{2}}{A_{2}-C_{2}} = t_{5} \quad , \\ \frac{A_{1}-A_{2}}{A_{2}-C_{2}} = t_{5} \quad , \\ \frac{A_{2}-A_{2}}{A_{2}-C_{2}} = t_{5}$$

$$-t_4 + t_3 t_4 - t_1 t_2 t_5 + t_1 t_2 t_4 t_5 = 0$$
,