Kontinuital

Sahung: a) Dersom for hombinelig i et peutet a, så il f(xn) > f(a) for alle folger {xn} slik al xn > q. < Beriet

en folge {xn} slik xn a, men f(xn) + sf(a) < Star h

long (xn) slik xn a, men f(xn) + sf(a) < Star h

long.

Much angan:

Definisjon: En funkjan for hontmerlig dersom den er hontinverlig i alle pender

 $\int (x) = \begin{cases} 0 & \text{for } x = 0 \end{cases}$

i sit definesjonsaniade

Småskummelt: $f(x) = \frac{1}{x}$ or harbinuliq!

a haulinulig! . f(x) = han x

or hours and

Distribojan. - f(x) = \(\frac{1}{2} \) en hanlimmelig, men den er ikke hanlimmelig p\(\frac{1}{2} \) R (riden del finns pendler.

den den ikke er defined).

Shyoningrahingen: Qula of J: [a,t] → R

er en harbinerly furtyan slit al f(0) og f(b) har mobelle folign. De fines all el pure ce (a,b) slit et f(c)=0.

A= fx ([a, 1]: 1(x) < 0}

Deme mengder har en minde ove shanke < E (0,1), Why win of f(c) = 0. (Give able: It him: View find of $f(c) \ge 0$; allow a $f(c) \le 0$; and a $f(c) \le 0$; allow a $f(c) \le 0$; allow a $f(c) \le 0$; allow a $f(c) \le 0$; and a $f(c) \le 0$; allow a $f(c) \le 0$; allow a $f(c) \le 0$; allow a $f(c) \le 0$; and a $f(c) \le 0$; allow a $f(c) \le 0$; and a $f(c) \le 0$; allow a $f(c) \le 0$; and a $f(c) \le$

Bohall folyon X = c+n. De on flan >0 of xn > C. Sider of a laborating, f(c) = ling (m) 30.

Siden c= sup {xc[a,b]: f(x) < 0}, no fine and for you tall NEN at Lumb 2n this 20ch og 2, > c-\frac{1}{2} (hus, it will c-\frac{1}{2} hud en ove devante

Jan A).
Dermed a f(2n) ≤0 og 2n→ C. Siden for

{(c) = lm {(2n) ≤ 0

Vi har demed int at flet 20 of flet play on f(c) = 0.

Shjoringsshuingen på vege evenlegt!

Korollar: Ruhe at $f(q: [a,b] \rightarrow \mathbb{R}$ pr de handmunlige funlisjoner slik at f(a) < g(a) og f(b) > g(b). De finns old en $c \in (a,b)$ slik at f(c) = g(c).

Bais: La h(x)= f(x/-g(x). Do a h harling og h(a)= f(a)-g(a) < 0 og h(b)- f(b)-g(b)>0.

Hølge skjeringsslungen finns at et punkt $C \in (a, b)$ skik at h(c) = 0. Hen de en $f(c) - g(c) = h(c) = 0 \Rightarrow f(c) = g(c)$.

Ebrempel: Vis al All fines el pende c plik el e^{-1} des al liquique e^{-1} e^{-1} has en e^{-1} l'osurige e^{-1} $e^{$

- P_{a} inhumbed [0,3) how in $P(0) = \hat{x} = 1 < 2 = 96$ $P(3) = \hat{x} > 8 > 3 = 9(3)$

Vi han allèe al $f(0) \ge g(0)$, $f(3) \ge g(3)$ og derned neur hardland vant al ald firms en $c \in (0,3)$ which al f(c) = g(c), dus al e = c + 2.

