Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples

Saurabh Gajbhiye Harshit Shakya Harsh Sharma Rahul Kumar Sachin Pal

Contents

- 1. Introduction
- 2. Key terms
- 3. White box attack
- 4. Crafting Adversarial Attacks
- 5. Blackbox Attack and Transferability
- 6. Results
- 7. Conclusion

Introduction

Many machine learning models are vulnerable to Adversarial Examples attack

We will briefly discuss how these black box attacks are crafted

We will see how the result of these attack on real world machine learning models

Key Term

Adversarial Example

Inputs that are specially crafted to cause a machine learning model to produce an incorrect output

=

"panda" 57.7% confidence

Noise

"gibbon" 99.3 % confidence

ML application and consequence

Autonomous Driving

Fraud Detection in Finance

Malware Detection

Machine Learning as a Service Platform

White Box Attack

Crafting Adversarial Attacks

DNN, LR and kNN use the fast gradient sign method

This is a white box attack

Attacker is aware about the:

Model Architecture

Training Data

Model Parameters

Fast gradient sign method

During training, the classifier uses a loss function to minimize model prediction errors

After training, attacker uses loss function to maximize model prediction error

1. Compute its gradient with respect to the input of the model

Take the sign of the gradient and multiply it by a threshold

Black box attack

In this attack the attacker is not aware about:

Model Architecture

Training Data

Model Parameters

He has access to model via API, when a input is passed to a model, a label (output) is returned.

Threat Model of Black box attack

Adversarial capabilities

(limited) oracle access: labels

Adversarial goal

Force a ML model remotely accessible through an API to misclassify

Example

Challenges in Black Box attack

Alleviate lack of knowledge about model

Alleviate lack of training data

Challenge 1: Use Adversarial example transferability

Adversarial examples have a **transferability** property:

samples crafted to mislead a model A are likely to mislead a model B

Intra-technique Transferability

samples crafted to mislead a model A are likely to mislead a model B

Strong

Weak

Intermediate

Cross-technique Transferability

samples crafted to mislead a model A are likely to mislead a model B

Alleviate lack of knowledge about model

training data

Alleviate lack of

Adversarial example transferability from a substitute model to target model

Challenge 2: Training Model using Synthetic data generation

Alleviate lack of knowledge about model

+

Adversarial example transferability from a substitute model to target model

Alleviate lack of training data

Synthetic data generation

Results

Remote Platform	ML technique	Number of queries	Adversarial examples misclassified (after querying)
Meta Mind	Deep Learning	6,400	84.24%
amazon webservices	Logistic Regression	800	96.19%
Google Cloud Platform	Unknown	2,000	97.72%

Conclusion

We saw phenomenon of adversarial sample transferability across the machine learning models.

We demonstrated how to create black box attack that could be used to target online ML models trained and hosted by Amazon and Google, without any knowledge of the model design or parameters Thank you!