Ciencias de la Computación I

Máquinas de Turing Autómatas Linealmente Acotados

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Motivación

-¿Es posible diseñar un AP que reconozca el lenguaje L₁? abc aabbcc $L_1 = \{ a^n b^n c^n / n > 0 \}$ aaabbbccc

Posible estrategia

Apilamos una A con cada a

Desapilamos una A con cada b

No se pueden comparar las c's, ya que la pila quedo vacía

No existe estrategia para reconocer este tipo de lenguajes con un AP

Máquinas de Turing

Es necesario agregar algo a los AP para incrementar su poder computacional

- 1) Leer y reemplazar símbolos en la cinta de entrada
- 2) Agregar movimientos a la cabeza lectora (Izq., Der., o No moverse)

Máquina de Turing

Formalmente, una MT reconocedora determinística se define como una 7-upla

- ✓ E es un conjunto finito de estados; E ≠ Ø
- Auxiliares $\cap A = \emptyset$

✓ A es el alfabeto de entrada

- $A \subset C$
- ✓ C es el alfabeto de la cinta $C = A \cup \{B\} \cup Auxiliares$
- $\checkmark \delta$ es la función de transición de estados

$$\delta: E \times C \rightarrow E \times C \times \{I, D, N\}$$
 1-cinta

$$\delta: E \times C^k \to E \times (C \times \{I, D, N\})^k$$
 k-cintas

- \checkmark e_0 es el estado inicial; $e_0 \in E$
- √ B es el símbolo blanco

$$B \in C$$

✓ F es el conjunto de estados finales o de aceptación; F \subseteq E

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Transiciones de MT (1 cinta)

✓ δ es la función de transición de estados δ : E x C \rightarrow E x C x {I,D,N}

$$e_{i} \xrightarrow{a \ a \ b \ b \ c \ c} \xrightarrow{1) \delta(e_{i}, a) = (e_{i}, Y, D)} e_{i}$$

donde a, b, c, $Y \in C$; e_i , $e_i \in E$

Relación de Transición formal

 \checkmark δ es la función de transición de estados

$$\delta: E \times C \rightarrow E \times C \times \{I,D,N\}$$
 (1 cinta)

Formalmente se define una relación de transición |---

$$X_1 X_2 \ldots X_{k-1} \textcolor{red}{e_i} \hspace{0.1cm} X_k \hspace{0.1cm} X_{k+1} \ldots \hspace{0.1cm} X_n \hspace{0.1cm} | - \hspace{0.1cm} X_1 X_2 \ldots \hspace{0.1cm} \textcolor{red}{e_j} \hspace{0.1cm} X_{k-1} \textcolor{blue}{Y} \hspace{0.1cm} X_{k+1} \hspace{0.1cm} \ldots \hspace{0.1cm} X_n \hspace{0.1cm} \hspace{0.1cm} \text{si } \delta(\textcolor{blue}{e_i}, \hspace{0.1cm} x_k) = (\textcolor{blue}{e_j}, \hspace{0.1cm} Y, \hspace{0.1cm} I)$$

$$X_1X_2...X_{k-1}e_i X_k X_{k+1}...X_n - X_1X_2...X_{k-1}e_i Y X_{k+1}...X_n$$
 si $\delta(e_i, x_k) = (e_j, Y, N)$

donde
$$x_1, ..., x_n, Y \in C$$
; $e_i, e_i \in E$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Transiciones de MT (k-cintas)

✓ δ es la función de transición de estados δ : E x C^k → E x (C x {I,D,N})^k

En cada cinta: se lee la celda apuntada por la cabeza lectora, se reemplaza el símbolo leído y se hace un movimiento

Ejemplo 2-cintas

donde a, b, c, $A \in C$; e_i , $e_j \in E$

Máquinas de Turing Reconocedoras

Cadena aceptada por MT

Una cadena $\omega \in A^*$ es aceptada por MT = <E, A, C, δ , e₀, B, F> sí y sólo sí

$$\mathbf{e}_0 \omega \vdash^{\mathbf{*}} \alpha_1 \mathbf{e}_{\mathbf{f}} \alpha_2$$

apuntando al primer símbolo de ω, luego de varias transiciones termina de leer toda la cadena ω , y <u>llega a un estado e, ∈ F</u>; en la cinta pueden quedar las cadenas $\alpha_1, \alpha_2 \in C^*$ con la cabeza lectora apuntando al primer símbolo de α2

Luego, el lenguaje aceptado por MT es:

$$L(MT) = \{ \omega \mid e_0 \omega \mid \alpha_1 e_1 \alpha_2 \mid \omega \in A^* \mid e_1 \in F \mid \alpha_1, \alpha_2 \in C^* \}$$

Los lenguajes aceptados por las Máquinas de Turing se denominan Lenguajes Estructurados por frases o Recursivos enumerables o de Tipo 0.

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Linealmente Acotados (ALA)

Dado un lenguaje L, sensible al contexto, definido sobre un alfabeto A y una cadena x arbitraria, determinar si $x \in L$ o $x \notin L$.

- Dos puntos de vista:
- Como dispositivo reconocedor de la pertenencia de una cadena a un lenguaje sensible al contexto.
- Como traductor de una cadena en otra (Ej. Cálculo de funciones)

Autómata Linealmente Acotado

Formalmente, un ALA reconocedor determinístico se define como una 9-upla

ALA= $\langle E, A, C, \delta, e_0, B, F, \#, \$ \rangle$ donde #, \$ inicio y fin de espacio

- ✓ E es un conjunto finito de estados; E $\neq \emptyset$ Auxiliares \cap A= \emptyset
- ✓ A es el alfabeto de entrada
- ✓ C es el alfabeto de cinta. C=A ∪ {B, \$, #} ∪ Auxiliares
- \checkmark δ es la función de transición de estados

$$\delta: E \times C \rightarrow E \times C \times \{I,D,N\}$$
 1-cinta (*)

$$δ$$
: E x C^k → E x (C x {I,D,N})^k k-cintas (*)

- (*) En ninguna de las cintas, se permiten movimientos a la izquierda de # ni a la derecha de \$. Tampoco se permite reescribir los símbolos # y \$.
- ✓ e_0 es el estado inicial; $e_0 \in E$
- √ B es el blanco

 $B \in C$

 $A \subset C$

√ F es el conjunto de estados finales o de aceptación; F ⊂ E

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

ALA y Máquina de Turing

- En la práctica vamos a usar MT para reconocer lenguajes Sensibles al Contexto (tipo 1). Sin embargo, se debe aclarar que lo correcto es diseñar un ALA para este tipo de lenguajes.
- La razón es que si modelaran con ALA se tendría que calcular el espacio de cinta necesario entre # y \$ y no es un tema que se estudia en esta materia.

Máquinas de Turing

MT multi-cinta y MT 1-cinta

Son modelos equivalentes. Todo lo que se puede hacer con un modelo de k-cintas también se puede diseñar con un modelo de 1-cinta.

 En el modelo multi-cinta resulta más fácil el diseño del autómata

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Reconocimiento de lenguajes

$$L = \{ a^n b^n c^{2n} / n > 0 \}$$

Estado actual	C1	C2	C1		C2		Nuevo estado
e0	a	В	a	N	X	D	e1
e1	a	В	a	D	A	D	e1
	b	В	b	N	В	I	e2
e2	b	A	b	D	A	I	e2
	с	X	с	N	X	D	e3
e3	с	Α	с	D	Α	N	e4
	В	В	В	N	В	N	e5
e4	с	A	с	D	A	D	e3
e5	-	-	-	-	-	-	-

 $\mathsf{MT}{=}{<}\{e_0,\!e_1,\!e_2,\!e_3,\!e_4,\!e_5\},\!\{\mathsf{a},\,\mathsf{b},\,\mathsf{c}\},\!\{\mathsf{X},\,\mathsf{A},\,\mathsf{B},\,\mathsf{a},\,\mathsf{b},\,\mathsf{c}\},\!\delta,\,e_0,\,\mathsf{B},\,\{e_5\}{>}$

Máquina de Turing (determinística y no det.)

Formalmente, una MT se define como una 7-upla MT= <E, A, C, δ , e₀, B, F>

$$\checkmark$$
 δ: E x C^k → E x (C x {I,D,N})^K k-cintas (determinística)

$$\checkmark \ \delta \colon E \times C^k \ \to P_f(E \times (C \times \{I,D,N\})^k) \ \ k\text{-cintas (no deterministica)}$$

P_f: subconjuntos finitos

Ejemplo no det
$$\delta(e_1, a, X, X) = \begin{cases} e_1 (a, D) (X, D) (X, D) \\ e_2 (A, N) (Y, D) (Y, D) \\ \dots & a A X Y \in C, y \in E \in E \end{cases}$$

Existe equivalencia entre el modelo MT determinístico y MT no determinístico → aceptan los mismos lenguajes.

Máquinas de Turing: Cálculo de Funciones

Ejemplo:

Diseñar una MT que calcule el producto de dos números naturales n, m mayores que 0, codificados en unario.

Inicialmente n y m se encuentran en la cinta de entrada C1, separados por un símbolo 0, en este orden. El resultado n*m queda en C2.

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Cálculo de n∗m siendo n, m >0 y números unarios.

Estado actual	C1	C2	C1		C2		Nuevo estado
e0	1	В	1	N	X	D	e1
e1	1	В	Z	D	В	N	e2
	0	В	0	N	В	N	e6
e2	1	В	1	D	В	N	e2
	0	В	0	D	В	N	e3
e3	1	В	1	D	1	D	e4
e4	1	В	1	D	1	D	e4
	В	В	В	I	В	N	e5
e5	1	В	1	I	В	N	e5
	0	В	0	I	В	N	e5
	Z	В	Z	D	В	N	e1
е6	-	-	-	-	-	-	-

C1 empieza con 1 y marca C2

Marca un 1 de n con Z
Si marcó todo n con Z, termina

Avanza hasta fin de n

C2 empieza con 1 empieza a copiar m en C2

Copia resto de m en C2

Retrocede C1 hasta Z

$$\begin{split} \text{MT=<} &\{e_0, e_1, e_2, e_3, e_4, e_5, \, e_6\}, \{0, \, 1\}, \{B, \, X, \, Z, \, 0, \, 1\}, \delta, \, e_0, \, B, \, \{e_6\}> \\ &\text{Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012} \end{split}$$