Reinforcement Learning (RL)

Symbols

a action

A advantage

 α learning rate, step size

b bandit, baseline estimate

d difference error

 Δ difference

D replay buffer

E eligibility trace

 ϵ exploration rate $(0 \sim 1)$

Φ state transition function

g gain

 γ discount factor

 ∇ gradient

H horizon

J expected return

L loss / regret

 λ trace decay $(0 \sim 1)$ O conditional observation

probabilities

 Ω observations

Pr transition distribution

 π policy (state \rightarrow action)

q quality

r reward

R return s state

t time

T conditional transition probabilities between

states

 τ trajectory

 θ parameter weight

v value

w weight

y target / prediction

* optimal

' next / derivative

^ estimation

|| vector norm

Agent-Environment Interface

General model

- 1. the agent at each time step t receives a representation of the environment's $state\ S_t \in S$
- 2. it selects an action $A_t \in A(s)$
- 3. from its action the agent receives a reward $R_{t+1} \in R \in \mathbb{R}$

General challenges

- $\bullet\,$ choosing the right Representation of the problem / state
- Generalization beyond the cases trained on
- Temporal Credit Assignment: what caused this outcome?
- balance Exploitation vs Exploration (short vs long term)

Concepts (no state)

Bandit algorithms

- multi-armed bandit problem: which slot arm gives most?
- no notion of state!
- this leaves just exploration vs exploitation

Bandits = heuristics. Image from research.microsoft.com

$$\underbrace{\hat{r}_a}_{\text{action's use count}} = \underbrace{\sum_{t=0}^{T} \begin{cases} 1 & a_t = a \\ 0 & \text{otherwise} \end{cases}}_{\text{tries for action so far}} = \underbrace{\sum_{t=0}^{a} \frac{r_t}{n_a}}_{\text{average action reward so far}} (t)$$

Greedy

- 100% exploitation
- wants to pick best arm but won't know enough
- if 1st arm ok won't try others (stuck in local optimum)

1) Optimistic-Greedy

- like greedy but large initial \hat{r}_a
- + tries all
- no 2nd chance for arms unlucky on first try

ϵ -Greedy

- at probability ϵ pick randomly
- + not fooled by unlucky first try
- linear regret from constant exploration

Upper Confidence Bound (UCB)

try all for k rounds, then

$$a_{t} = \underset{a \in A}{\operatorname{argmax}} \left[\underbrace{\hat{r}_{a}}_{\text{reward}} + \underbrace{\sqrt{\frac{2 \log t}{n_{a}}}}_{\text{under-explored bonus}} \right]$$
(4)

- explore then gradually exploit
- + logarithmic regret

Contextual Bandit

Linear UCB (LinUCB)

$$\begin{aligned}
x_{t,a} &= \Phi(s_{t,a}) \\
\mathbb{E}[r_{t,a}|x_{t,a}] &= \theta_a \cdot x_{t,a} \\
\hat{\theta} &= -\Delta^{-1}b
\end{aligned} (5)$$

Posterior / Thompson sampling

Pick actions by probability they maximize expected reward

Greedy in the Limit with Infinite Exploration (GLIE)

- infinitely explores
- converges on greedy

Markov Decision Process (MDP)

a 5-tuple (S, A, P, R, γ)

partially observable Markov decision process (POMDP)

a 7-tuple $(S, A, T, R, \Omega, O, \gamma)$

$$\begin{array}{lll} s & \in & S \\ \hline state \\ \hline \pi_t(a|s) & : \text{a mapping from a state to an action} \\ \hline policy \\ p(s'|s,a) & = Pr\{S_{t+1} = s'|S_t = s, A_t = a\} \\ \hline r(s',s,a) & = \mathbb{E}[R_{t+1}|S_{t+1} = s',S_t = s,A_t = a] \\ \hline v_\pi(s) & = \mathbb{E}_\pi[G_t|S_t = s] \\ \hline value function & = \sum_a \pi(a|s) \sum_{s'} \sum_r p(s',r|s,a)[r+\gamma v_\pi(s')] \\ \hline q_\pi(s,a) & = \sum_a \pi(a|s) \sum_{s'} \sum_r p(s',r|s,a)[r+\gamma v_\pi(s')] \\ \hline q_\pi(s,a) & = \sum_{s',r} p(s',r|s,a)[r+\gamma V_\pi(s')] \\ \hline expected return for state-action-nexstate \\ \hline = \sum_a [G_t|S_t = s] \\ \hline expected gain for policy π in state s
$$\hline = \sum_a \pi(a|s) \sum_{s'} \sum_r p(s',r|s,a)[r+\gamma v_\pi(s')] \\ \hline expected return for policy π for a state-action pair
$$\hline = \sum_{s',r} p(s',r|s,a)[r+\gamma V_\pi(s')] \\ \hline recursive definition (Bellman equation) \\ \hline q_*(s,a) & = \max_{\pi} q_\pi(s,a) \\ \hline optimal Q function \\ \hline v_*(s) & = \max_{\pi} q_\pi(s,a) \\ \hline expected return from its best action \\ \hline \end{array}$$$$$$

Contraction Mapping

For metric space (X,d) and $f: X \to X$, f is a contraction given a Lipschitz coefficient $k \in [0,1)$ where for all $x \not y$ in X:

$$d(f(x), f(y)) \le kd(x, y) \tag{7}$$

Contraction Mapping theorem

For complete metric space (X,d) and contraction $f: X \to X$, there is only 1 fixed point x^* where $f(x^*) = x^*$. For point x in X, and $f^n(x)$ inductively defined by $f^n(x) = f(f^{n1}(x)), f^n(x) \to x^*$ as $n \to \infty$, yielding a unique optimal solution for DP.

Model-based Methods (known MDP)

Unlike bandit algorithms, exploitation here thinks beyond the first next step.

Exhaustive Search

brute force, usually computationally unviable.

Dynamic Programming (DP)

+ bootstrap (learn mid-episode)

Find π_* for V / Q:

Policy Iteration

```
Initialize V(s) \in \mathbb{R}e.g. 0, \Delta \leftarrow 0, \pi(s) \in A for all s \in S
1. Policy Evaluation
while \Delta < \theta (e.g. 0.001) do
     for
each s \in S do
         V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
     end
end
2. Policy Improvement
policy-stable \leftarrow true
while not policy-stable do
     foreach s \in S do
           old\text{-}action \leftarrow \pi(s)
            \pi(s) \leftarrow \operatorname*{argmax} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]
           policy-stable \leftarrow old-action \neq \pi(s)
     end
end
```

Policy iteration methods:

- gradient-based (policy gradient methods): gradient ascent
- gradient-free: simulated annealing, cross-entropy search or methods of evolutionary computation
- value search/iteration: stop after 1 state sweep
- async DP: update iteratively, no full sweeps
- generated policy iteration (GPI)

Value Iteration

(6)

ditch V(s) convergence for policy improvement and truncated policy eval step in 1 operation:

```
 \begin{split} & \text{Initialize } V(s) \in \mathbb{R}\text{e.g. } 0, \, \Delta \leftarrow 0 \\ & \textbf{while } \Delta < \theta \, \left( e.g. \, 0.001 \right) \textbf{do} \\ & & \textbf{foreach } s \in S \textbf{ do} \\ & & v \leftarrow V(s) \\ & & V(s) \leftarrow \max_{a} \sum\limits_{s',r} p(s',r|s,a)[r+\gamma V(s')] \\ & & \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \textbf{end} \\ & \textbf{end} \\ & \textbf{output: } \text{deterministic policy } \pi \approx \pi_* \text{ where } \\ & \pi(s) = \underset{a}{\operatorname{argmax}} \sum\limits_{t'} p(s',r|s,a)[r+\gamma V(s')] \end{aligned}
```

Model-free methods

Monte Carlo (MC) Methods

- uses averaging sample returns per state-action pair
- episodic
- + sampling

```
Initialize for all s \in S, a \in A(s):
   Q(s, a) \leftarrow \text{arbitrary}
  \pi(s) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow \text{empty list}
while forever do
     Pick S_0 \in S and A_0 \in A(S_0), all p(s,a) > 0
     Generate an episode starting at S_0, A_0 following \pi
      foreach pair s, a in the episode do
          G \leftarrow return for first occurrence of s, a
          Append G to Returns(s, a))
          Q(s, a) \leftarrow average(Returns(s, a))
     end
     foreach s in the episode do
          \pi(s) \leftarrow \operatorname{argmax} Q(s, a)
    end
end
```

estimate for non-stationary problems:

$$V(S_t) + = \alpha [G_t - V(S_t)] \tag{8}$$

for learning rate α , how much we want to forget about past experiences.

Temporal Difference (TD)

- + DP's bootstrap
- + MC's sampling
- substitutes expected discounted reward G_t from the episode with an estimation:

$$V(S_t) + = \alpha [R_{t+1} + \gamma V(S_{t+1} - V(S_t))]$$
 (9)

State-action-reward-state-action (SARSA)

- ullet on-policy TD control
- can use priors

Initialize Q(s, a) arbitrarily and Q(terminal - state,) = 0

n-step Sarsa (*n*-step TD) for *n*-step Q-Return:

$$q_t^{(n)} = \gamma^n Q(S_{t+n}) + \sum_{i=1}^n \gamma^{i-1} R_{t+i} Q(s_t, a_t) + \alpha \left[\frac{\mathbf{q}_t^{(n)}}{\mathbf{q}_t^{(n)}} - Q(s_t, a_t) \right]$$
 (10)

Forward View Sarsa(λ) (/ TD(λ))

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

$$Q(s_t, a_t) + \alpha \left[q_t^{\lambda} - Q(s_t, a_t) \right]$$
(11)

Backward View Sarsa(λ) (/ TD(λ))

- + more efficient
- + can update at every time-step
- eligibility traces : find cause in frequency vs recency

$$E_{0}(s, a) = 0 E_{t}(s, a) = \gamma \lambda E_{t-1}(s, a) + \mathbf{1}(S_{t} = t, A_{t} = a) \delta_{t} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t}) Q(s, a) + \alpha \delta_{t} E_{t}(s, a)$$
(12)

Linear Function Approximation

- + efficient
- + generalize

update temporal difference error, minimize squared loss:

$$\delta \leftarrow r_t + \gamma \boldsymbol{\theta}^T \Phi(s_{t+1}) - \boldsymbol{\theta}^T \Phi(s_t)
\theta + \alpha \delta \Phi(s_t)
J(\theta) = ||\delta||^2$$
(13)

Q Learning

$$\delta \leftarrow r_{t} + \gamma \underset{a \in A}{\operatorname{argmax}} Q(\Phi(s_{t+1}, a); \theta_{i}^{-}) - Q(\Phi(s_{t}, a); \theta_{i})$$

$$Q(s, a) + \alpha [r + \gamma \underset{a'}{\operatorname{max}} Q(s', a') - Q(s, a)]$$

$$(14)$$

Replay Memory

update θ by SGD

$$\nabla_{\theta_i} J(\theta_i) = \mathbb{E}_{(s_t, a_t, r_t, s_{t+1}) \sim D} \delta \nabla_{\theta_i} Q(\Phi(s_t, a_t); \theta)$$
 (15)

Deep Q Learning (DQL)

Made by DeepMind, uses a deep neural net (Q-network) for the Q function. Keeps N observations in a memory to train on.

$$y = r_t + \gamma \max_{\substack{a \in A}} Q(\Phi(s_{t+1}, a); \theta_i^-)$$

$$\sum_{\text{loss function}} \mathbb{E}_{(s, a, r, s')} \sim \underbrace{U(D)}_{\text{memory}} [\underbrace{y}_{\text{target}} - \underbrace{Q(s, a; \theta_i)}_{\text{prediction}})^2] \quad (16)$$

for network weights θ and experience replay history U(D).

Initialize replay memory
$$D$$
 with capacity N
Initialize $Q(s,a)$ arbitrarily

foreach $episode \in episodes$ do

Pick a from s by policy from Q (e.g. ϵ -greedy)

while s is not terminal do

Take action a , observer r,s'

Store transition (s,a,r,s') in D

Sample random transitions from D
 $y_i \leftarrow \begin{cases} r_j & \text{for terminal } s'_j \\ r_j + \gamma \max_a Q(s',a';\theta) & \text{otherwise} \end{cases}$

Perform gradient descent step on $(y_j - Q(s_j,a_j;\Theta))^2$
 $s \leftarrow s'$
end

end

Prioritized Replay Memory / Prioritized Experience Replay learn esp. from high loss (traumas)

$$p(s_t, a_t, r_t, s_{t+1}) \propto r_t + \gamma \max_{a \in A} Q(\Phi(s_{t+1}, a); \theta_i^-)$$
 (17)

Double DQN

solve bias from reused θ , faster

$$y = r_t + \gamma Q(\Phi(s_{t+1}, \underset{a \in A}{\operatorname{argmax}} Q(\Phi(s_{t+1}, a); \theta_i)); \theta_i^-)$$
 (18)

Direct Policy Search

learn π .

Policy Gradient

- + simpler than Q or V
- + allows stochastic policy (rock-paper-scissors)
- local optimum
- less sample efficient

$$L = \mu(loap(a|s) \cdot R(s))$$

Likelihood Ratio

return state-action trajectory: $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ expected return: $J(\theta) = \mathbb{E}[\sum_{t=0}^{T} R(s_t, a_t); \pi_{\theta}]$ $= \sum_{\tau}^{T} R(s_t, a_t); \pi_{\theta}$ find θ to max: $= \sum_{\tau} P(\tau; \theta) R(\tau)$ yielding: $\max_{\theta} J(\theta) = \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$ gradient chasing reward: $\nabla_{\theta} J(\theta) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau)$ sampled over m trajectories: $= \frac{1}{m} \sum_{i=1}^{m} P(\tau; \theta) \nabla_{\theta} \log P(\tau_i; \theta) R(\tau_i)$ combined: $= \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau_i)$

REINFORCE

- check policy/episode's states/actions/rewards
- calc episode return for collected rewards
- update model params toward policy gradient

$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) R$$

desired loss function:

$$\frac{1}{m} \sum_{t=1}^{m} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R$$

Baselined REINFORCE

$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \underbrace{(R - V_{\Phi(s_{t})})}_{\text{baselined reward}}$$

Actor-critic

- + less variance than Baselined REINFORCE
- actor (makes policy): policy gradient
- critic: policy iteration

$$\underbrace{A_{\pi}(s,a)}_{\text{advantage}} = Q(s,a) - V(s) \tag{24}$$

Asynchronous Advantage Actor Critic (A3C)

- 5-step Q-Value estimation
- shares params between actor/critic
- + run parallel, one policy
- + no more need for DQN's replay policy

Actor-Critic with Experience Replay (ACER)

- Retrace rewritten from truncated importance sampling with bias correction
- stochastic dueling network architectures
- new TRPO method

Advantage Actor Critic (A2C)

(19) synchronous, deterministic variant of A3C.

Actor Critic using Kronecker-Factored Trust Region (ACKTR)

more sample-efficient than TRPO/A2C.

Deterministic Policy Gradient (DPG)

based on actor-critic

Deep Deterministic Policy Gradient (DDPG)

(20) DPG variant that can operate over continuous action spaces

NoisyNet

A3C/DQN/dueling, but add parametric noise to weights to aid exploration

Trust Region Policy Optimization (TRPO)

natural policy gradient method, iterative procedure for optimizing policies, with guaranteed monotonic improvement.

Proximal Policy Optimization (PPO)

policy gradient method, new objective function enabling multiple epochs of minibatch updates. beats TRPO.

Categorical Distributional RL (CDRL)

value-based, model distribution of returns i/o expected values.

(21) C51

(22)

51-tuple returns.

Rainbow

combines:

- DQN (Deep Q-Network)
 - 2. DDQN (Double Deep Q-Network)
 - 3. N-Step Q-Learning
 - 4. Prioritized Experience Replay (PER)
 - 5. Dueling Q-Network
 - 6. Distributional RL: C51
 - 7. Noisy Network