San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Languages

Lecture 12 Day 13/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 12

- Summary of Lecture 11
- Quiz 4
- Lecture 12: Teaching ...
 - Regular Languages

Summary of Lecture 11: We learned ...

Machines and Languages Association

- Every machine has an associated language.
- BUT we do NOT know yet whether for every language, we can construct a machine!

DFAs vs NFAs

- What is power?
- Automata class A is more powerful than class B if ...
 - ... the set of languages recognized by class B is a proper subset of the set of the languages recognized by class A.

Theorem

- The set of languages recognized by NFAs are equal to the set of languages recognized by DFAs.
- NFAs and DFAs have the same power.

Any question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	4
DATE	10/03/2019	PERIOD	1/2/3

Quiz 4 Use Scantron

Introduction

Example 1

Design a DFA/NFA to recognize our famous language:

$$L = \{a^nb^n : n \ge 0\}$$
 over $\Sigma = \{a, b\}$

over
$$\Sigma = \{a, b\}$$

Struggling?!

- After some struggling, we realized that we could NOT construct such machines.
- But why?

Why We Could NOT Construct Such Machines

Reason

- Because number of a's and b's must be equal.
- And to count them, we'd need a counter and a storage!
- But DFAs/NFAs don't have storage.
- And we cannot implement a counter by them!
- We just realized that there are different kinds of formal languages.
 - Some languages are more complex than the others.
 - DFAs/NFAs have limited power to be able to recognize more complex languages.

Categorizing Formal Languages

- One way to study formal languages, is to categorize them.
- Up to this point, we've realized that ...
 - We can construct a DFA/NFA for some languages while we CANNOT for the others.

 Let's give a name to these two categories!

Regular Languages

Definition

- A language is called regular if there exists a DFA/NFA to recognize it.
- Therefore, the rest of languages are called non-regular.

Machines and Languages Association

- We've already learned the association between machines and languages.
- Now we have a name for the languages that DFAs/NFAs recognize.

Categorizing Formal Languages

- Recall that before, we categorized formal languages as "finite" and "infinite".
- And this is our second categorization:
 - "Regular Languages", and
 - 2. "Non-Regular Languages"
- Note that the correct English word is "IRREGULAR" but in computer science we use "NON-REGULAR".

- How can we prove that a language is regular?
- We need to construct a DFA/NFA for it.

Regular Languages Examples

Example 2

• Which of the following languages is regular over $\Sigma = \{a, b\}$?

```
1. L = { }
```

2.
$$L = \{\lambda\}$$

3.
$$L = \{abbaa\}$$

4.
$$L = \{\lambda, a, abb\}$$

5.
$$L = \{a, b\}^*$$

6. L =
$$\{a^nb : n \ge 0\}$$

- We've already constructed DFAs for (almost) all of the above languages.
- So, all of them are regular.

Homework

- 1. Prove that $L = \{awa : w \in \Sigma^*\}$ is regular over $\Sigma = \{a, b\}$.
- 2. Write a set-builder for L².
- 3. Prove that L² is regular.

(1)

Heuristically Recognizing Regular Languages

- Sometimes we can heuristically find out whether a language is regular or not. How?
- Let's explain it through some examples.

Example 3

Which of the following languages are regular?

```
1. L = \{ab \ w : w \in \{a, b\}^*\}
```

2.
$$L = \{w \ w^R : w \in \{a, b\}^*\}$$

3.
$$L = \{w \ w : w \in \{a, b\}^*\}$$

4.
$$L = \{w \text{ abb } w : w \in \{a, b\}^*\}$$

5.
$$L = \{1^{2k} : k \ge 0\}$$
 over $\Sigma = \{1\}$

6.
$$L = \{1^n + 1^m = 1^{n+m} : n, m \ge 1\}$$
 over $\Sigma = \{1, +, =\}$ (Unary addition)

Finite Languages

Finite Languages

Theorem

All finite languages are regular.

Proof

- To prove this theorem, we need to construct an NFA for an arbitrary finite language $L = \{s_1, s_2, ..., s_n\}$
 - Where s_j ∈ Σ* for j = 1, 2, ..., n and n ∈ \mathbb{N}
- We know that strings are finite sequence of symbols.
- So, we can construct an NFA for every string.
- For example if s₂ = abb, then the following NFA can recognize it.

Finite Languages Are Regular

Proof (cont'd)

- Let $s_k = a_1 a_2 ... a_m$ be a general string where $a_i \in \Sigma$ for i = 1, 2, ..., m and $m \in \mathbb{N}$
- We can construct the following NFA to recognize s_k.

For simplicity, let's show this NFA as:

Finite Languages Are Regular

Proof (cont'd)

 In the similar way, we can construct an NFA for every s_i in the language.

Now, we need to combine these simple
 NFAs and construct an NFA that recognizes
 L = {s₁, s₂, ..., s_n}.

Finite Languages Are Regular

Proof (cont'd)

 We combine them by using λ-transitions.

This new NFA recognizes L.

$$-L = \{s_1, s_2, ..., s_n\}$$

Explain why?

 Since L is an arbitrary finite language, so, we proved all finite languages are regular.

(1)

Non-Regular Languages Are Infinite

The contrapositive of every theorem is true too.

Recap: Contrapositive

$$p \to q \equiv \sim q \to \sim p$$

The theorem we just proved:

If L is finite, then L is regular.

Translation:

If L is non-regular (= not regular), then L is infinite (= not finite).

The plain English version:

All non-regular languages are infinite.

Formal Languages Categorization

1st Categorization: Finite and Infinite

U = All Formal Languages

Where would you locate "regular" and "non-regular" languages?

Formal Languages Categorization

2nd Categorization: Regular and Non-Regular

U = All Formal Languages

Closure Property of Regular Languages

Theorem

If L, L₁ and L₂ are all regular languages, then the result of:

Union	$L_1 \cup L_2$
Concatenation	L ₁ L ₂
Reversal	LR
Complement	L
Intersection	$L_1 \cap L_2$
Minus	L ₁ - L ₂

are regular languages too.

 It means: The family of regular languages is closed under the above operations.

Closure Property of Regular Languages: Notes

- 1. To prove these theorems, we'd use NFA's because they are simpler and more flexible.
- 2. Since, there is always an equivalent DFA for any NFA, we won't lose the generality of the theorem.
- Before proving the theorem, we need to be familiar with an useful transformation.

A Useful Transformation

Converting an NFA to Single-Accept-State

- Consider the following NFA (left side) that has multiple-accept-state.
- We can easily convert it to a single-accept-state by using the following technique.

Representing an NFA in General Form

So, the resulting NFA is a single-accept-state.

 Using this technique, we can convert any NFA with two or more accept-states to a single-accept-state.

Closure Under Union

If L₁ and L₂ are regular languages, then prove that
 L₁ U L₂ is regular language.

Proof

 L₁ and L₂ are regular languages, so, there are an NFA for each of them. Let's call them M₁ and M₂.

- To prove L₁U L₂ is regular, . . .
- . . . we need to construct an NFA for L₁U L₂.

Closure Under Union

Proof (cont'd)

We construct the following NFA for L₁U L₂.

Now if we input a string from (L₁ U L₂), M₁ or M₂ will accept it!

What is the Next Step?

Conclusion

- NFAs and DFAs recognize "regular languages".
- The next step is to define a new class of machines that recognizes "non-regular languages".

Reading Assignment

Concatenation

 If L₁ and L₂ are regular languages, then prove that L₁ L₂ is regular language.

Proof

To prove L₁ L₂ is regular, we need to construct an NFA for it.

Reversal

If L is regular language, then prove that L^R is regular language.

Proof

- Make the following transformations in the original machine M:
 - 1. Reverse all transitions
 - 2. Change the initial state to accept state.
 - 3. Change the accept state to initial state.
- The resulting machine will accept L^R.

Complement

• If L is regular language, then prove that \overline{L} is regular language.

Proof

- Make the following transformations in the original DFA M:
 - Change the accept states to regular states.
 - Change the regular states to accept states.
- The resulting machine will accept \overline{L} .

Complement

- Note that the transformations for "complement" does not work for NFA's.
- The following example shows why?

Example 4

Construct an NFA for L = { }.

• Now, by using the rules in the previous slide, transform the NFA to accept $\overline{L} = \Sigma^* = \{a, b\}^*$

But this new machine accepts just {λ}, not Σ*.

Complement

The same example works fine when we use DFA's.

Example 5

Construct a DFA for L = { }.

• Now transform the DFA to accept $\overline{L} = \Sigma^* = \{a, b\}^*$

Intersection

• If L_1 and L_2 are regular languages, then prove that $L_1 \cap L_2$ is regular language.

Proof

• We can use set theory identities to prove this theorem:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$
 DeMorgan's law

- L₁ and L₂ are regular languages.
- $\overline{L_1}$ and $\overline{L_2}$ are regular languages.
- $\overline{L_1} \cup \overline{L_2}$ is regular language.
- $\overline{\overline{L_1} \cup \overline{L_2}}$ is regular language.
- Therefore, $L_1 \cap L_2$ is regular.

Minus

If L₁ and L₂ are regular languages, then prove that
 L₁ - L₂ is regular language.

Proof

- We can use set theory identities to prove this theorem:
- $L_1 L_2 = L_1 \cap \overline{L_2}$
- L₁ and L₂ are regular languages.
- L

 ₂ is regular language.
- $L_1 \cap \overline{L_2}$ is regular language.
- Therefore, L₁ L₂ is regular

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790