МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ)

Институт ракетно-космической техники Кафедра космического машиностроения

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к расчётной работе на тему «Основы конструкции, системного проектирования и моделирования ракетно-космической техники»

Выполнил студент группы 1408

Хайруллин И.И.

Преподаватель

Доцент кафедры КМ

Волоцуев В.В.

ЗАДАНИЕ

Для расчетной работы группы 1408 по курсу "Основы конструкции, системного проектирования и моделирования ракетно-космической техники" (семестр 8).

Цель: требуется разработать программу определения показателей периодичности наблюдения и оперативности передачи информации путем моделирования орбитального движения КА (построения трассы полета).

Основные этапы и оценка

№ этапа	Задачи этапа	Оценка за выполнение
1	Построение трассы полета КА	удовлетворительно
2	2.1. Построение зоны обзора аппаратуры наблюдения КА; 2.2. Построение зоны радиовидимости наземного пункта приема информации	хорошо
3	3.1. Расчет показателя периодичности наблюдения одного объекта наблюдения; 3.2. Расчет показателя оперативности доставки информации наблюдения на НППИ	отлично

РЕФЕРАТ

Пояснительная записка: 18 стр., 8 рисунков, 2 источника.

КОСМИЧЕСКИЙ АППАРАТ ДАЛЬНЕГО ЗОНДИРОВАНИЯ ЗЕМЛИ, ПЕРИОДИЧНОСТЬ НАБЛЮДЕНИЯ, ОПЕРАТИВНОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ, ТРАССА КОСМИЧЕСКОГО АППАРАТА, МОДЕЛИРОВАНИЕ.

Целью работы является создание программы, выполняющей расчёт и построение трассы космического аппарата дальнего зондирования Земли, расчёт таких целевых показателей, как периодичность наблюдения и оперативность передачи информации.

ОГЛАВЛЕНИЕ

5		•••••	•••••	ЕНИЕ	ВВЕД
,	ОДЕЛИРОВАНИЕ ДЛЯ ОЦЕНКИ	, ,		,	
		••••••	μ οο	JILKI KA Z	OKAJATE
еских систем	евые показатели космическ	целевые	И	Задачи	1.1
6	[вания	дирог	онного зон	дистанцио
8	обитального полёта КА	ние орбитал	рован	Модели	1.2
11	еделения периодичности	я определе	гм для	Алгорит	1.3
13	еделения оперативности	я определе	гм для	Алгорит	1.4
АССЫ КА ДЗЗ	ИМЫ ДЛЯ ПОСТРОЕНИЯ ТРАС	ГРАММЫ	ПРОІ	ІИСАНИЕ	2 ОП
16	ОСТИ И ПЕРИОДИЧНОСТИ	ИВНОСТИ	PATI	ЭПО КИН	ПРЕДЕЛЕ
19			•••••	ЮЧЕНИЕ	ЗАКЛ
20	ІНЫХ ИСТОЧНИКОВ	ЭВАННЫХ)ПЬЗС	сок испо	СПИС

ВВЕДЕНИЕ

Дистанционное зондирование Земли является одним из основных инструментов для мониторинга и изучения планеты из космического пространства, без непосредственного контакта с поверхностью изучения. Аппарат дистанционного зондирования представляет собой комплекс систем, таких как: система управления питанием, система приема и передачи информации, системы обработки получаемы данных и системы управления.

Начальный выбор параметров орбиты производится из условия обеспечения заданных показателей периодичности и оперативности КСН, а также из условия обеспечения заданных значений ширины полосы обзора и ширины полосы захвата КА ДЗЗ.

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ДЛЯ ОЦЕНКИ ЦЕЛЕВЫХ ПОКАЗАТЕЛЕЙ КА ДЗЗ

1.1 Задачи и целевые показатели космических систем дистанционного зондирования

Космические системы наблюдения, включающие аппараты (КА) дистанционного зондирования Земли (ДЗЗ), используются для решения следующих основных задач:

- 1. Контроль чрезвычайных ситуаций (наблюдение районов чрезвычайных ситуаций с целью оценки последствий стихийных бедствий, аварий, катастроф и планирования мероприятий по их ликвидации, контроль возникновения и последствий лесных пожаров).
- 2. Экологический контроль, охрана окружающей среды (экологический контроль в районах геологоразведочных работ добычи полезных ископаемых, выявление загрязнений вокруг промышленных предприятий и на других объектах) и определение погоды.
- 3. Информационное обеспечение рационального природопользования и хозяйственной деятельности (создание и обновление топографических и тематических карт, контроль хода различных производственных процессов в сельском, лесном хозяйствах, картографирование земельных угодий, оценка состояния землепользования).
- 4. Создание цифровых моделей поверхности Земли (включая горную местность) с помощью стереосъёмки или на основании композиции нескольких снимков объекта наблюдения с различных направлений с целью обеспечения навигации аэродинамических летательных аппаратов и др.

Наиболее высокие требования по линейному разрешению на местности (0,3...1,0 м), периодичности наблюдения (от 15 мин до 3...6 часов) и оперативности доставки информации (не более 0,5...6 часов) выдвигаются со стороны задач контроля чрезвычайных ситуаций.

Наиболее обширную группу составляют задачи по информационному обеспечению рационального природопользования и хозяйственной деятельности. При решении таких задач требуется получать детальную информацию на уровне 0,5...10 м. Период повторения обзора для большинства задач этой группы изменяется от нескольких лет до нескольких суток.

В качестве показателей периодичности рассматриваются следующие показатели:

- время между двумя последовательными по времени полёта КА попаданиями объекта наблюдения с заданными координатами в зону обзора летящего КА;
- время между двумя последовательными по времени полёта КА попаданиями объекта наблюдения со случайными координатами в зону обзора летящего КА;
- время между двумя последовательными по времени полёта КА попаданиями объекта наблюдения с заданными координатами в зону обзора летящего КА и с учётом вероятностных характеристик погодных условий над снимаемой территорией.

Показатели периодичности орбитальной группировки КА ДЗЗ существенно зависят от баллистических характеристик и количества спутников орбитальной группировки, от организации схемы обзора земной поверхности, высоты полета, от характеристик оптических систем и др.

Показатель оперативности измеряется в единицах времени и включает в себя следующие частные показатели оперативности:

время, необходимое для представления задания на проведение съёмки
 в виде, пригодном для использования информационных технологий
 (формализация задания);

- время, необходимое для передачи заявки на съёмку заданной цели на борт КА (с учётом входа КА в зону радиовидимости пункта управления или с учётом использования спутника-ретранслятора);
- время, необходимое для планирования порядка съёмки целей и постановки заявки в очередь с учётом заданных приоритетов и прогнозируемых условий съёмки (облачности, высоты Солнца над горизонтом, отклонения оптической оси КА от надира);
- время, необходимое для подлёта к цели и проведения съёмки; время,
 необходимое для обработки видеоинформации на борту КА и подготовки ее к
 передаче на Землю;
- время, необходимое для входа КА в зону радиовидимости НППИ (или задействования СР) для передачи информации;
 - время для передачи (перекачки) видеоинформации на Землю;
- время для обработки видеоинформации на Земле и получения снимка,
 пригодного для передачи заказчику;
 - время, необходимое для передачи готового снимка заказчику.

Перечисленные частные показатели оперативности получения снимка оказывают различное (существенное или несущественное) влияние на общее время оперативности получения снимка, причем это влияние имеет вероятностную природу.

1.2 Моделирование орбитального полёта КА

Приведём укрупненный алгоритм расчёта параметров орбит, подспутниковых точек трассы и расчётные зависимости.

1. Рассчитываются радиусы-векторы перигея и апогея орбиты:

$$r_{\pi} = R_3 + H_{\pi}; \ r_{\alpha} = R_3 + H_{\alpha}.$$

2. Рассчитывается эксцентриситет орбиты:

$$e = \frac{r_{\alpha} - r_{\pi}}{r_{\alpha} + r_{\pi}}.$$

3. Рассчитывается большая полуось орбиты:

$$a = \frac{r_{\alpha} + r_{\pi}}{2}$$

4. Рассчитывается величина звездного (сидерического) периода обращения:

$$T_{3B} = 2\pi \sqrt{\frac{a^3}{\mu}}.$$

5. Рассчитывается фокальный параметр орбиты:

$$p = a(1 - e^2).$$

6. Рассчитывается вековое возмущение первого порядка долготы восходящего узла орбиты:

$$\delta\Omega = \frac{-35,062}{60} \left(\frac{R_3}{p}\right)^2.$$

7. Рассчитывается текущее значение долготы восходящего узла орбиты с учётом векового возмущения первого порядка:

$$\Omega = \Omega_0 + \frac{t}{T_{3B}} \delta \Omega.$$

8. Рассчитывается вековое возмущение первого порядка аргумента перигея орбиты:

$$\delta\omega = \frac{-17,525}{60} \left(\frac{R_3}{p}\right)^2 (1 - 5\cos^2 i).$$

9. Рассчитывается текущее значение аргумента перигея орбиты с учётом векового возмущения первого порядка:

$$\omega = \omega_0 + \frac{t}{T_{3B}} \delta \omega.$$

10. Рассчитывается среднее движение:

$$M=t_{3B}n=\sqrt{\frac{\mu}{a^3}}.$$

11. Рассчитывается промежуток среднего времени с момента *т* прохождения перигея до момента наблюдения, то есть:

$$\Delta t_{\rm cp} = t - \tau$$
.

12. Рассчитывается звездное время:

$$t_{3B} = 1,00273791 \cdot \Delta t_{cp}$$

13. Рассчитывается средняя аномалия:

$$M=t_{3_{\rm B}}n$$
.

14. Рассчитывается эксцентрическая аномалия из решения уравнения Кеплера (методом последовательных приближений):

$$E - esinE = M$$
.

15. Рассчитывается синус или косинус истинной аномалии:

$$sin\theta = \frac{sinE}{1 - ecosE} \sqrt{1 - e^2}; cos\theta = \frac{cosE - e}{1 - ecosE},$$

а затем находится сам угол истинной аномалии

16. Рассчитывается радиус-вектор КА в системе координат оскулирующей орбиты по одной из следующих формул:

$$r = a(1 - e\cos E); \ r = \frac{p}{(1 - e\cos \theta)}.$$

17. Рассчитываются географические координаты подспутниковой точки KA.

Для круговых орбит:

$$\varphi = \arcsin\left(\sin\sin\frac{2\pi t}{T_{3B}}\right);$$

$$\lambda = \Omega + arctg\left(cosi\ tg\frac{2\pi t}{T_{3B}}\right) - \omega_3 t + \delta\Omega\frac{1}{T_{3B}},$$

где t — текущее время полёта.

Для эллиптических орбит расчёт осуществляется по зависимостям (которые приемлемы и для круговых орбит):

$$sin \varphi_{\Gamma A} = sini \ sinu$$
, где $u = \omega + \vartheta$;

$$sin\lambda_{\Gamma \mathrm{A}} = \frac{sin\Omega\;cosu + cos\Omega\;cosi\;sinu}{cos\varphi_{\Gamma \mathrm{A}}};$$

$$cos\lambda_{\Gamma A} = rac{cos\Omega\; cosu - sin\Omega\; cosi\; sinu}{cos arphi_{\Gamma A}}.$$

Затем производится пересчёт в гринвичскую систему координат:

$$\varphi_{\Gamma} = \varphi_{\Gamma A}; \ \lambda_{\Gamma} = \lambda_{\Gamma A} - \omega_3 t - \delta \Omega \frac{t}{T_{3B}}.$$

1.3 Алгоритм для определения периодичности

В качестве показателя периодичности рассматривается время между двумя соседними (по времени полёта КА) попаданиями объекта наблюдения с заданными координатами в зону обзора КА, движущегося по орбите.

Зона обзора аппаратуры зондирования КА в фиксированный момент времени представляет собой круг на поверхности Земли, точнее — сегмент сферической поверхности, ограниченный окружностью с радиусом, равным радиусу зоны обзора КА. Причём форма границы этой зоны (окружность) не зависит от широты подспутниковой точки и от сгущения линий долготы при перемещении по поверхности Земли от экватора к полюсам.

Условие попадания объекта наблюдения в зону обзора КА можно получить из следующих рассуждений (рисунок 1). Если объект попадает в зону обзора КА ДЗЗ, то ОН лежит на поверхности сегмента в пределах конуса с углом полураствора α .

Рисунок 1 — Схема для определения условия попадания объекта наблюдения в зону обзора KA

Рассматривая сферический треугольник PNC, можно получить следующие соотношения:

$$\bigcirc NP = \bigcirc NL - \bigcirc PL = \frac{\pi}{2} - \varphi_{\text{KA}};$$

$$\cup NC = \cup NM - \cup CM = \frac{\pi}{2} - \varphi_{OH};$$

$$\angle PNC = \bigcup LM = \bigcup KM - \bigcup KL = \lambda_{OH} - \lambda_{KA}.$$

Используя теорему косинусов для сферических треугольников

$$cos(PC) = cos(NP) \cdot cos(NC) + sin(NP) \cdot sin(NC) \cdot cos(\angle PNC),$$

получим:

$$\begin{split} cos(PC) &= cos\left(\frac{\pi}{2} - \varphi_{\rm KA}\right)cos\left(\frac{\pi}{2} - \varphi_{\rm OH}\right) \\ &+ sin\left(\frac{\pi}{2} - \varphi_{\rm KA}\right)sin\left(\frac{\pi}{2} - \varphi_{\rm OH}\right)cos(\lambda_{\rm OH} - \lambda_{\rm KA}), \end{split}$$

или
$$cos(PC) = sin(\varphi_{\text{KA}})sin(\varphi_{\text{OH}}) + cos(\varphi_{\text{KA}})cos(\varphi_{\text{OH}})cos(\lambda_{\text{OH}} - \lambda_{\text{KA}}).$$

Откуда
$$\bigcirc PC = arccos (sin(\varphi_{KA})sin(\varphi_{OH}) + +cos(\varphi_{KA})cos(\varphi_{OH})cos(\lambda_{OH} - \lambda_{KA})).$$

Окончательно получаем:

$$\left| arccos(sin(\varphi_{KA})sin(\varphi_{OH}) + cos(\varphi_{KA})cos(\varphi_{OH})cos(\lambda_{OH} - \lambda_{KA})) \right| < \alpha.$$

Полученная зависимость выражает условие "захвата" объекта наблюдения аппаратурой зондирования Земли.

На каждом шаге имитационного моделирования орбитального движения КА производятся следующие действия.

- 1. Рассчитываются координаты широты и долготы КА по трассе полёта.
- 3. Если ОН оказался в зоне обзора КА, то выдается признак «Попадание». В противном случае признак «Нет попадания».
 - 4. Если выдан признак первого «попадания», то:
 - включаются счётчики времени $t_{\text{Пер}}$ (оценивается время между последними попаданиями ОН в зону обзора КА;
 - включается счётчик количества попаданий N_z ОН в зону обзора КА (количество статистических испытаний).
- 5. Рассчитываются: среднее значение и дисперсия показателя периодичности, осуществляется построение функции распределения и плотности распределения показателя оперативности.
- 6. Осуществляется приращение времени на шаг расчёта, и расчёты по пунктам 2 5 повторяются циклически.

1.4 Алгоритм для определения оперативности

В качестве показателя оперативности рассматривается время, прошедшее с момента съёмки до передачи её на Землю.

Зона радиовидимости представляет собой круг на поверхности Земли. В идеальном случае граница этой зоны соответствует случаю, когда КА находится на горизонте.

Рассмотрим схему, представленную на рисунке 2, где изображено сечение Земли в плоскости орбиты, трасса которой проходит через НППИ (точка P). Точка E орбиты КА лежит на линии горизонта для наблюдателя, находящегося в точке P, в которой находится НППИ; L_{PB} и R_{PB} — соответственно линейный радиус зоны радиовидимости и радиус зоны радиовидимости по поверхности Земли.

Условие попадания КА в зону радиовидимости соответствует условию нахождения спутника внутри конуса, вершина которого находится в центре Земли, а образующие этого конуса проходят через границу зоны радиовидимости.

Угол полураствора этого конуса α_{3P} — центральный угол Земли, соответствующий границе зоны радиовидимости спутника с НППИ- назовем центральным углом радиовидимости.

Рисунок 2 — Схема для определения зоны радиовидимости спутника с наземного пункта приёма информации по линии горизонта

Для оценки факта попадания КА в зону радиовидимости НППИ формально воспользуемся. Разница будет лишь в том, что вместо географических координат подспутниковой точки КА надо подставить

координаты НППИ, а вместо географических координат объекта наблюдения надо подставить координаты подспутниковой точки КА, центральный же угол зоны обзора α необходимо заменить на центральный угол зоны радиовидимости α_{3P} :

$$\left| arccos \left(sin(\varphi_{\rm H\Pi\Pi II}) sin(\varphi_{\rm KA}) + cos(\varphi_{\rm H\Pi\Pi II}) cos(\varphi_{\rm KA}) cos(\lambda_{\rm KA} - \lambda_{\rm H\Pi\Pi II}) \right) \right| < \alpha_{\rm 3P}.$$

Центральный угол радиовидимости КА с НППИ α_{3P} зависит от высоты полёта КА. Его можно найти из геометрических соотношений. Для возможности радиосвязи по линии горизонта этот угол Земли составляет

$$\alpha_{3P} = arccos\left(\frac{R_3}{R_3 + H}\right).$$

Алгоритм для определения оперативности следующий:

- 1. После первого попадания ОН в зону обзора КА включается счётчик времени оперативности $t_{0\pi}$.
- 2. Оценивается факт попадания КА в зону радиовидимости НППИ. Для этого подключается соответствующая подпрограмма.
- 3. Если КА попал в зону радиовидимости, то выдаётся логический признак «Есть попадание».
- 4. Фиксируется время (оперативности) первого вхождения КА в зону радиовидимости НППИ. Результаты запоминаются.
- 5. Рассчитываются: среднее значение и дисперсия показателя оперативности, осуществляется построение функции распределения и плотности распределения показателя оперативности.
- 6. Осуществляется приращение времени на шаг расчёта, и расчёты по пунктам 1 5 повторяются циклически.

2 ОПИСАНИЕ ПРОГРАММЫ ДЛЯ ПОСТРОЕНИЯ ТРАССЫ КА ДЗЗ ОПРЕДЕЛЕНИЯ ОПЕРАТИВНОСТИ И ПЕРИОДИЧНОСТИ

Программа написана на языке программирования Python 3.9. Основная форма программы показана на рисунке 3.

Рисунок 3 – Основная форма

Основную форму можно условно разделить на несколько блоков. На рисунке 4 показан блок ввода исходных данных для расчёта трассы КА ДЗЗ. Исходные данные: угол наклонения, высота апогея, высота перигея, долгота восходящего узла и аргумент перигея.

Параметры орбиты						
Угол наклонения (і), град	67					
Высота апогея (На), км	6000					
Высота перигея (Нр), км	5000					
Долгота восходящего узла (Ω), град	15					
Аргумент перигея (ω), град	-24					

Рисунок 4 – Блок ввода исходных данных

На рисунке 5 показан блок ввода координат ОН и НППИ.

Рисунок 5 – Блок ввода координат ОН и НППИ

На рисунке 6 показан блок настройки отрисовки трассы КА ДЗЗ. Здесь можно указать количество витков, шаг и скорость отрисовки.

Рисунок 6 – Блок настроек

На рисунке 7 показан блок с графическим виджетом, на который выводится карта Земли, трасса КА ДЗЗ, зоны обзора, ОН, НППИ и зона радиовидимости. Под графическим виджетом расположена кнопка для расчёта и построения трассы.

Рисунок 7 – Блок отрисовки трассы КА ДЗЗ

На рисунке 8 показан блок вывода значений показателя периодичности, количества попаданий на ОН, показателя оперативности и количество операций передачи информации.

Рисунок 8 – Блок вывода целевых показателей

ЗАКЛЮЧЕНИЕ

Рассмотрены теоретические вопросы моделирования для получения значений целевых показателей. Были выведены решения и алгоритмы для определения оперативности и периодичности.

Разработано программное обеспечение, позволяющее выполнить расчёт и моделирование трассы КА ДЗЗ с заданными начальными условиями. Данное программное обеспечение помогает построить трассу КА ДЗЗ с определённым количеством витков, а также рассчитать оперативность и периодичность для определённых точек ОН и НППИ.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Основы проектирования космических аппаратов оптикоэлектронного наблюдения поверхности Земли. Расчёт основных характеристик и формирование проектного облика: учебное пособие / В. И. Куренков. – Самара: Издательство Самарского университета, 2020. – 461 с.: ил.
- 2. Конспект лекций