Cvičení 6 - Vybraná rozdělení spojité náhodné veličiny

Rozdělení NV	Popis	Hustota pravděpodobnosti Distribuční funkce Intenzita poruch	E(X)	D(X)
Rovnoměrné $Ro(a,b)$	f(x) je na $(a;b)$ konstantní, jinde nulová	$f(x) = \begin{cases} \frac{1}{b-a} & x \in \langle a; b \rangle \\ 0 & \text{jinde} \end{cases}$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
Exponenciální $Exp(\lambda)$	doba do 1. události, doba mezi událostmi (pouze v období stabilního života)	$f(t) = \lambda \cdot e^{-\lambda t}; t > 0; \lambda > 0$ $F(t) = 1 - e^{-\lambda t}; t > 0; \lambda > 0$ $\lambda(t) = \lambda = \text{konst.}; t > 0; \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Weibullovo $W(\Theta, \beta)$	doba do 1. události (poruchy)(vhodná volba β umožuje použití v libovolném období intenzity poruch)	$f(t) = \frac{\beta}{\Theta} \left(\frac{t}{\Theta}\right)^{\beta - 1} e^{-\left(\frac{t}{\Theta}\right)^{\beta}}$ $F(t) = 1 - e^{-\left(\frac{t}{\Theta}\right)^{\beta}}$ $\lambda(t) = \frac{\beta}{\Theta} \left(\frac{t}{\Theta}\right)^{\beta - 1} t > 0; \Theta > 0; \beta > 0$		
Normované normální $N(0,1)$	hodnoty distribuční funkce jsou tabelovány, hustota pravděpodobnosti je sudá funkce - Gaussův klobouk	$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}; -\infty < x < \infty$ $\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$	0	1
Normální $N(\mu;\sigma^2)$	distribučí funkci určjeme pomocí standardizace normální náhodné veličiny	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2}$ $F(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\left(\frac{t-\mu}{\sqrt{2}\sigma}\right)^2} dt$	μ	σ^{1}

hustota Pravděpod: fr(x) Distrib. fce: Fcx) Rovnoměrné punif (x,a,b) dunit (x, a,b) Ro(a,b)Exponenciální $pexp(X,\lambda)$ $dexp(x, \lambda)$ $Exp(\lambda)$ Weibullovo pweibull (x,B, A) dweibull (x,B, B) $W(\Theta, \beta)$ phorm (x, M, o) Normální dhorm (x, m, s) $N(\mu; \sigma^2)$

Příklady:

Příklad 1.

Výška v populaci chlapců ve věku 3,5-4 roky má normální rozdělení se střední hodnotou 102 cm a směrodatnou odchylkou 4,5 cm. Určete, jaké procento chlapců v uvedeném věku má výšku menší nebo rovnou 93 cm.

X... vjsh nihodné vyhoného dlapce

$$X \sim N(M=102; S=4, S)$$

 $P(X \leq 93) = P(X \leq 93) = F(93)$
= Phorm(93,102,4,5)=0,0218

= Phorm(93,102,4,5)=0,0228 2,28%

2,281. Alapaima rýsku men rebr roma <u>13 cm</u>.

Příklad 2.

Průměrná životnost strojní součástky je 30 000 hodin. Předpokládejme, že součástka je v období stabilního života. Určete:

a)

pravděpodobnost, že součástka nevydrží více než 2 000 hodin,

X.... doba de poruly someinsthy

X ~ Exp (
$$\chi = 7/30000$$
)

P($\chi < 2000$) = $f(2000)$ | $30000 = f(\chi) = \frac{1}{\chi}$

Prov., re someinsthan regularity with mex 2000 l.

pravdépodobnost, že součástka vydrží více než 35 000 hodin,

P($\chi > 35000$) = 1-P($\chi < 35000$) = 1-F(35000)

P($\chi > 35000$) = 1-P($\chi < 35000$) = 1-F(35000)

dobu, do níž se porouchá 95 % součástek.

$$P(X < W) = 0.45$$

 $F(W) = 0.45 =) W = F^{-1}(0.45)$
 $w = 8.9872$
doba du mis de presenda 9(1.0. je 89872)
bod.

Příklad 3.

Výrobní zařízení má poruchu v průměru jednou za 2000 hodin. Veličina Y představující dobu čekání na poruchu má exponenciální rozdělení. Určete dobu T0 tak, aby pravděpodobnost, že přístroj bude pracovat delší dobu než T0, byla 0,99.

En poblerem bude v provon (19%. Atroju je 20,1 kd.

Příklad 4.

Výsledky měření jsou zatíženy jen normálně rozdělenou chybou s nulovou střední hodnotou a se směrodatnou odchylkou 3 mm. Jaká je pravděpodobnost, že při 3 měřeních bude alespoň jednou chyba v intervalu (0 mm; 2,4mm)?

$$X \sim N \left(\mu = 0 \right) = 3$$

$$P(0 < \chi < 2.4) = F(2.4) - F(0) = 0.288$$

$$P(Y \ge 1) = 1 - P(Y \angle 1) = 0_1 639$$

Provd. De alespor jedrer meiené bude o dybour v TM. je 63, 9%

Příklad 5.

Ve velké počítačové síti se průměrně přihlašuje 25 uživatelů za hodinu. Určete pravděpodobnost, že:

a)

se nikdo nepřihlásí během 14:30 - 14:36,

$$P(X=0) = 0.082$$
 $h = 25/60$
 $Evol ie 8.2%$

do dalšího přihlášení uběhnou 2-3 minuty.

Y...doba do delsibr priblism
Y ~ Exp(
$$\lambda = 25/60$$
)
P($2 < Y < 3$) = F(3) - F(2) = 0,148
Provd. je 14,8%.

Určete maximální délku časového intervalu tak, aby pravděpodobnost, že se nikdo nepřihlásí byla alespoň 0,90.

$$P(Y > w) = 0.40$$

 $1 - P(Y \le w) = 0.40$ \ $1 - 1 i \cdot (-1)$
 $P(Y \le w) = 0.1$

 $w = F^{-1}(0_{1})$ $w = 0_{1}253$ min $\rightarrow w = 15,20$

worinishe dilber tak aly provdered. 1200 nibder reptiblase lyla 90%. Je 15,2 selved.

Příklad 6.

Náhodná veličina X má normální rozdělení N(
$$\mu$$
; σ). Určete:

a)
$$P(\mu - 2\sigma < X < \mu + 2\sigma), =$$

$$= P(X < \mu + 2\sigma) - P(X < \mu - 2\sigma) - F_{\chi}(t) = P(\chi < \mu - 2\sigma) - P$$

b)

nejmenší k \in Z, tak, aby P(μ – k σ < X < μ + k σ) > 0,99.

$$F(\mu+h.3) - F(\mu-l.3) = 0.499$$

 $1 - F(\mu+h.3)$

$$2.F(m+h3)-1=0,99$$

 $F(m+h3)=0,995$

$$F_{x}^{-1}(0,495) = M + l.3$$
 $F_{x}^{-1}(0,495) - M = l_{x}^{2} = 2,5 + 6$
 $l_{x} \in \mathcal{T} - l_{x}^{2} = 3$

Příklad 7.

Na prohlídce výstavy je promítán doprovodný film o životě autora vystavovaných děl. Jeho projekce začíná každých 20 minut. Určete pravděpodobnost, že pokud náhodně přijdete do promítacího sálu,

a)

nebudete na začátek filmu čekat víc než 5 minut,

X.... deba de racielhe dulsiho prom. X~ Ro (a = 0; b= 20)

P(X < S) = 0.25

b) Frorder. je 25%

budete čekat mezi 5 a 10 minutami,

P(54X210) = F(10)-F(5)=0,25

Provd. je 25%.

c)

střední hodnotu a směrodatnou odchylku doby čekání na začátek filmu.

E(x)= (10)

 $D(x) = \frac{(h-a)}{12} = \frac{400}{12} = \frac{100}{3}$

 $3 = \sqrt{000} = 5 177$

Příklad 8.

Při kontrole jakosti přebíráme součástku pouze tehdy, jestliže se její rozměr pohybuje v mezích 26-27 mm. Rozměry součástek mají normální rozdělení se střední hodnotou 26,4 mm a směrodatnou odchylkou 0,2 mm. Jaká je pravděpodobnost, že rozměr součástky náhodně vybrané ke kontrole bude v požadovaných mezích?

 $X \sim \text{rosmer sovieusly}$ $X \sim N (M=26,4; J=0,2)$

 $P(26 \le X \le 27) = F(27) - F(26)$

2 FP, O=

Provdip. De souicille bude v

705. mesinh je 97,6%

Příklad 9.

Délka skoků sportovce Jakuba měřená v cm má normální rozdělení $N(\mu 1; \sigma 1)$, kde $\mu 1$ = 690 a $\sigma 1$ = 10. Délka skoků sportovce Aleše měřená v cm má také normální rozdělení $N(\mu 2; \sigma 2)$, kde $\mu 2$ = 705 a $\sigma 2$ = 15. Na závody se kvalifikuje ten, kdo ze dvou skoků alespoň jednou skočí více než 700 cm.

A. della slatin alese [7...delh. 2lah.]dl.A. $N(\mu = 7e5; J = 15)$ [7...delh. 2lah.]dl. P(A > 7e5; J = 15) [7...delh. 2lah.]dl. P(A > 7e5; J = 15) [7...delh. 2lah.]dl. P(A > 7e5; J = 15) [7...delh. 2lah.]dl. P(A > 7e5; J = 15) [7...delh. 2lah.]dl. P(A > 7e5; J = 15) [7...delh. 2lah.]dl. P(A > 7e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh. 2lah.]dl. P(A > 1e5; J = 16) [7...delh.]dl. P(A > 1e5; J = 16) [

S jakou pravděpodobností se oba dva kvalifikují na závody?

S jakou pravděpodobností se kvalifikuje Aleš, ale Jakub ne?