Minimierung eines DEA

am Beispiel

Gegeben sei folgender DEA:

Minimierung:

Schritt 1

Der 1. Schritt besteht zunächst darin, alle Zustände zu entfernen, die **nicht erreichbar** sind (falls existent - ist hier nicht der Fall).

Folgend wird eine Tabelle - in etwa wie links dargestellt - aufgebaut. Die **diagonalen** Einträge werden geschlängelt markiert, weil diese nur einen einzigen Zustand darstellen und deshalb im weiteren Verlauf (des Minimierungs-Algorithmus) keine Rolle spielen.

Im Anschluss werden alle Paare markiert (mit einem "*"), die **genau einen Endzustand** enthalten - hier also alle Paare von Zuständen, die den Zustand S4 enthalten.

Schritt 2

Nun wird für jedes noch unmarkierte Paar überprüft, ob ein (beliebiger - d.h. einer reicht!) Übergang in einen markierten Zustand führt. Wenn dies der Fall ist, wird das Paar ebenfalls markiert. Dies kann genauer anhand der rechts aufgeführten Tabellen verdeutlicht werden:

δ	0	1
$S_0 S_3$ $S_1 S_3$ $S_2 S_3$ $S_0 S_2$ $S_1 S_2$	$S_1 S_4$ $S_4 S_4$ $S_1 S_4$ $S_1 S_3$ $S_4 S_3$	$S_2 S_0$ $S_2 S_0$ $S_2 S_2$ $S_2 S_2$ $S_2 S_3$
$S_0 S_1$	$S_1 S_4$	$S_2 S_2$

- S₀S₃ wird z.B. mit einer 0 nach S₁S₄ überführt (weil S₀ mit einer 0 in S₁ landet und S₃ mit einer 0 in S₄ siehe obiger Graph). Da S₁S₄ aber bereits markiert ist (mit einem "*"), wird S₀S₃ ebenfalls markiert (hier in rot, um zu verdeutlichen, dass die Markierung im 2. Schritt passiert ist).
- genau so wird auch mit den anderen Paaren verfahren (wie oben erkennbar)

Schritt 2 wird daraufhin **solange wiederholt, bis keine Änderung mehr** eintritt - im vorliegenden Beispiel verbleiben die Paare S_0S_2 und S_1S_3 aber weiterhin unmarkiert. Das bedeutet, dass die jeweiligen Zustände **äquivalent** sind $(S_0=S_2$ und $S_1=S_3)$ und damit jeweils zu einem Zustand **verschmolzen** werden können.

Damit ergibt sich folgender DEA:

