COMP4650 / COMP6490 Document Analysis 2018

Assignment Project Exam Help

https://eduassistpro.github.io/

Overview of IE lectures

- Introduction to Information Extraction (IE)
- Sequence labeling methods

Markov Process

Assignment Project Exam Help

The HMM algohttps://eduassistpro.github.io/

The CRF algorithm WeChat edu_assist_pro

Automatic summarization

* Acknowledgement: Some of the content originates from the Stanford NLP course at Coursera.org

Sequence labeling

Sequential data

- Speech, text, video analysis, time-series, stock market, genes...

Assignment Project Exam Help Sequential la

- Is a type of patt
- Is a type of patt
- Is a type of patt
- assignment of a patential edu_assist pro.github.io/
volves the algorithmic assignment of a patential edu_assist pro.github.io/
volves the algorithmic observed values

Sequential methods

- Probabilistic methods; usually make a Markov assumption
- Algorithms: HMM, Maximum Entropy, Conditional Random Fields

Sequence labeling in NLP

```
speech recognition
part-of-speech tagging
sentence Seg Assignment Project Exam Help
              https://eduassistpro.github.io/
grapheme to
chunking (shallow synta inn)
named entity recognition
information extraction
```

Markov Process

Deterministic patterns

- Each state is dependent solely on the previous state
- Easy to understand and determine once the transitions are fully known, e.g., semaphore Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Andrei Andreyevich Markov 1856-1922

Non deterministic patterns

It is possible for any state to follow another, e.g., weather

Markov Chajignment Project Exam Help

e of possible events Stochastic m in which the https://eduassistpro.githerbusonly on the state attained in the previous

Add WeChat edu_assist_pro

Particular state

dependes only on the previous state

Markov assumption

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

A **Markov chain**: compute a prob. for a sequence of events that we can be observe in the world. Assignment Project Exam Help

https://eduassistpro.github.io/
But some events are not observable in the world... Add WeChat edu_assist_pro

Hidden Markov model

Hidden Markov Model

Markov assumption

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

Assignment Project Exam Help

Output indepe https://eduassistpro.github.io/prob of an output observation o_i depends entropy assist produce the observation q_i and not on any rany other observations

$$P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$$

Weather and Ice Cream

Jason Eisner, 2002

You are a climatologist in the year 2799 studying global warming

Assignment Project Exam Help

- You can't find an in Baltimore for summer of 2018 https://eduassistpro.github.io/
- But you find JE's diary WeChat edu_assist_pro
- Which lists how many ice-creams Jason ate every day that summer
- Use the observations (ice-cream ate) to estimate the temperature every day

10/12/18

Hidden Markov Model

Various examples exist where the process states are not directly observable, but are indirectly observable,

then we have a **Hidden Markov Model** Assignment Project Exam Help

DT NN https://eduassistpro.github.io/
Hidden states

The housedisections

Hidden states

Observations

What is a Hidden Mark Model?

- HMM is a graphical model
- Circles represent states
- Arrows represent probabilistical pendencips between states

https://eduassistpro.github.io/

HMM Notation

- Light blue nodes are hidden states
 - Dependent only on the previous state
- Purple nodes are observations states Assignment Project Exam Help
 - Dependent only

https://eduassistpro.github.io/

The future is independent of the past, given the present

HMM notation

Assignment Project Exam Help

https://eduassistpro.github.io/

HMM model $\mu = (A, B, \pi)$

Assignment Project Exam Help

https://eduassistpro.github.io/

HMM Problems

There are three fundamental problems that can be solved using HMM

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

```
Given # i Assignment Project Exam Helpather?
```

https://eduassistpro.github.io/

2. **DECODING:** Given an o del $\mu = (A, B, \pi)$, discover the Add WeChat edu_assist_pro best hidden state sequence Q.

```
Given a sequence of ice-creams, what was the most likely weather on those days?
```

3. LEARNING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Likelihood: Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood Project Exam Help

https://eduassistpro.github.io/

- -E.g. what is the probabiliedu_assiste pream sequence 3 1 3?
- -But we don't know what the hidden state sequence is...

10/12/18 20

Let's make it simpler.

What is the likelihood of an ice-cream observed sequence 3-1-2, given the high tenstate sequence HOT HOT COLD?

https://eduassistpro.github.io/

$$P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$$

Join prob. Of been in a particular weather sequence Q and generate a particular sequence of ice-creams events Assignment Project Exam Help

https://eduassistpro.github.io/

$$P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$

Compute the prob. of ice-cream events 3-1-3 by summing over all possible weather sequences, weighted by their probability

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

For N hidden states and observation sequence of T observations, there are N^T possible hidden state sequences.

When *N* and *T* are large \rightarrow intractable

Likelihood → Forward algorithm

Dynamic Programming algorithm, stores table of intermediate values so it need not recompute them.

Computes P(O) by summing over probabilities of all hidden state paths that could generate the observation sequence 3-1-3:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The previous forward path probability

The transition probability from the previous state to the current state

The state observation likelihood of the observation o_t given the current state j $h_i(o_t)$

Assignment Project Exam Help

https://eduassistpro.github.io/

HMM Problems

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

Given # i Assignment Project Exam Helpather?

https://eduassistpro.github.io/

 $\det \mu = (A, B, \pi),$

2. DECODING: Given an o discover the Add WeChat edu_assist_pro best hidden state sequence *Q*.

Given a sequence of ice-creams, what was the most likely weather on those days?

3. LEARNING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Decoding: Viterbi algorithm

(Andrew Viterbi, 1967)

Decoding: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the **best** hidden state sequence of weather states in Q

Assignment Project Exam Help

Given the observatio M, what is the **best** (most probable) hidd https://eduassistpro.git/hubjio/

Add WeChat edu_assist_pro

Viterbi algorithm

- Dynamic programming algorithm
- Uses a dynamic programming trellis to store probabilities that the HMM is in state j after seeing the first t observations, for all states j

Decoding: Viterbi algorithm

Decoding: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the **best** hidden state sequence of weather states in Q

Assignment Project Exam Help

Given the observatio M, what is the **best** (most probable) hidd https://eduassistpro.git/hubjio/

Add WeChat edu_assist_pro

Viterbi algorithm

- Dynamic programming algorithm
- Uses a dynamic programming trellis to store probabilities that the HMM is in state j after seeing the first t observations, for all states j

- Value in each cell computed by taking MAX over all paths leading to this cell – i.e. best path
- Extension of a path from state i at time t-1 is computed by multiplying:

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 Most probable path is the max over all possible previous state sequences

Like Forward Algorithm, but it takes the max over previous path probabilities rather than sum

Viterbi example

Assignment Project Exam Help

https://eduassistpro.github.io/

HMM model was develop by Baum and collegues in Princeton (Baym and Petrie, 1966; Baum and Eagon, 1967)

Viterbi

Multiple independent discovery and publications
Assignment Project Exam Help

https://eduassistpro.github.io/

HMM Problems

There are three fundamental problems that can be solved using HMM

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

Given # i Assignment Project Exam Helpather?

https://eduassistpro.github.io/

2. DECODING: Given an o

 $del \mu = (A, B, \pi)$

discover the

Add WeChat edu_assist_pro

best hidden state sequence Q.

Given a sequence of ice-creams, what was the most likely weather on those days?

3. LEARNING/TRAINING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Training: The Forward-Backward (Baum-Welch) Algorithm

- Learning: Given an observation sequence O and the set of states in the HMM Hearn the HMM param nd B (emission) https://eduassistpro.github.io/
- Input: unlabeled sector ded assistance and vocabulary of possible hidden states Q
 - E.g. for ice-cream weather:
 - Observations = {1,3,2,1,3,3,...}
 - Hidden states = {H,C,C,C,H,C,....}

Intuitions

 Iteratively re-estimate counts, starting from an initialization for A and B probabilities, e.g. all equi-probable

Assignment Project Exam Help

- Estimate nhttps://eduassistpro.github.ld/ing forward pr rvation, dividing prob. mass and omputing the backward probability from the same state

Details: https://web.stanford.edu/~jurafsky/slp3/A.pdf

POS-tagging with HMM

Assignment Project Exam Help

https://eduassistpro.github.io/

Summary

 HMMs are a major tool for relating observed sequences to hidden information that explains or predicts the observation ignment Project Exam Help

https://eduassistpro.github.io/

 Forward, Viterbi, and F Backward Algorithms
 computing likelihoods, decoding, and training HMMs

The power of HMMs

We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable!!

NLP applications

- → Speech Recognition
- → POS-Tagging Assignment Project Exam Help
- → Information Extraction
- * Word/clause segment https://eduassistpro.github.io/

Other applications

- → Gene finding
- → Robot localization
- → User modeling

Add WeChat edu_assist_pro

Limitations

- → Local features
- → Simple HMM models do not work well with large data
- → Difficult to incorporate a diverse set features
- → No suited to work with long distance dependencies (up to ~3/5 grams)

Conditional Random Fields (CRF)

- CRF is a graphical model (Lafferty, McCallum, and Pereira, 2001)
- Relax the strong independence assumptions made in models such as HMM
- The biggest advantage of CREs ever HMMs is that they can handle overlapping features

HMM vs. CRF

HMM

CRF

- Trained by maximizing Trained by maximizing likelihood of class p(x, y) Trained by maximizing of the trained by maximizing
- Features are a independent Add WeChat edu_assistometric https://eduassistpro.github.io/dency on features
- Feature weights set independently
- Normalization is per state
- Feature weights are set mutually
- Normalization over the whole sequence

Take away Sequential data

- Speech, text, video analysis, time-series, stock market, genes...

Sequential labeling problem

- Is a type of pattern recognition task that involves the algorithmic assignment of a categorical label to each member of a sequence of observed values

https://eduassistpro.github.io/

Sequential methods Add WeChat edu_assist_pro

- Probabilistic methods; usually make a Markov assumption, i.e. that the choice of label directly dependent only on the immediately adjacent labels;
- Algorithms: HMM, Maximum Entropy, Conditional Random Field

Markov Process are the basics for:

Reinforcement learning; Planing; RNN; Sequence2Sequence models, etc.

Anecdotal References

Markov Chains

https://www.youtube.com/watch?v=o-jdJxXL W4

HMM 3D Simulator

Assignment Project Exam Help https://www.youtube.com/watch?v=Fy6tLBzXT4M

HMM @ Numb3rs: Find a m https://eduassistpro.github.io/

https://www.youtube.com/watch?v=NdOm8NE0qD4

They always say practice makes perfect

HMM in Python, with scikit-learn

https://github.com/hmmlearn/hmmlearn

UMDHMM

http://www.kan Arssi.gom/kenttvPredjetotvEx am l#Helphmm

https://eduassistpro.github.io/

CRFsuite Python

Add WeChat edu_assist_pro

http://www.chokkan.org/software/crfsuite/

CRF++ C++

http://crfpp.googlecode.com/svn/trunk/doc/index.html

GRMM Java

http://mallet.cs.umass.edu/grmm/index.php

Further References

Stamp, 2012. A Revealing Introduction to Hidden Markov Models.

Assignment Project Exam Help
Lafferty, McCallum and Pereira, 2001. Conditional Random Fields:

Probabilistic Models for S

https://eduassistpro.github.io/

Sutton and McCallum, 2006 and Mc

Bikel, 1999. An Algorithm that Learns What's in a Name.

Bach and Badaskar, 2007. A survey on Relation Extraction.