Archimedean Property and Sup/Inf

Cliff Sun

April 12, 2024

Recall, suppose that $A \subseteq \mathbb{R}$ (A cannot be \emptyset), then

$$\sup(A) = \text{ least upper bound of A} \tag{1}$$

$$\inf(A) = \text{greatest upper bound of A}$$
 (2)

Claim, $\inf(\mathbb{R}^+) = 0$

Proof. We must prove that

- 1. $\forall x \in \mathbb{R}^+, 0 \le x$
- 2. $\forall b \in \mathbb{R}$ such that b is a lower bound of \mathbb{R} , $b \leq 0$

To prove (2), suppose that $b \in \mathbb{R}^+$, we must prove that b is not a lower bound of \mathbb{R}^+ . To prove this, note that $\frac{b}{2}$ is less than b, thus b cannot be a lower bound of \mathbb{R}^+ . This is because b > 0.

Claim: Let $A \subseteq \mathbb{R}$, then

- 1. If A has a smallest element x, then $x = \inf(A)$
- 2. If A has a largest element y, then $y = \sup(A)$

Proof. To prove (1), suppose that x is the smallest element of A. Then x is a lower bound of A since $x \le a \forall a \in A$. Moreover, if b is a lower bound of A, then $b \le a \forall a \in A$. Then in particular, $b \le x$. Thus x is the greatest lower bound of A, that is $x = \inf(A)$.

Theorem 0.1. \mathbb{N} is not bounded above.

Proof. Suppose for the sake of contradiction that \mathbb{N} is bounded above. In particular, by the least upper bound property, \mathbb{N} must have a least upper bound. Then, we define n is a least upper bound of \mathbb{N} . Then we define x > n-1 such that $x \in \mathbb{N}$, but it follows that $x+1 \in \mathbb{N}$ by definition of the natural numbers. Thus, it follows that \mathbb{N} doesn't have a upper bound.

Corollary 0.2. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, then $\inf(A) = 0$.

Proof. We first must prove that 0 is a lower bound, and that 0 is also the greatest lower bound. To prove the first claim, we have that trivially that $0 \le \frac{1}{n} \forall n \in \mathbb{N}$. Secondly, suppose that 0 is not the greatest lower bound for the sake of contradiction. Then there exists some $b \in \mathbb{N}$ such that $b \le \frac{1}{n}$. Flipping both sides yields $\frac{1}{b} \ge n$, but this implies that the natural numbers is bounded. This is a contradiction.

Theorem 0.3. The Archimedean property states that for any $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$, there exists some $n \in \mathbb{N}$ such that

$$nx > y$$
 (3)

Theorem 0.4. \mathbb{Q} is dense in \mathbb{R} for all real numbers x < y, there exists some rational number r such that

$$x < r < y \tag{4}$$

Proof. To prove the Archimedean property, given $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$, we want to find $n \in \mathbb{N}$ such that nx > y. Equivalently, $n > \frac{y}{x}$. We can find such a number since the natural numbers is not bounded.

Proof. To prove the theorem that follows from the Archimedean Property, we first assume that $0 \le x < y$. Since x < y, we have that y - x > 0, in particular, $y - x > \frac{1}{n}$. Fix n, we claim that for some $m \in \mathbb{N}$, $x < \frac{m}{n} < y$. Let

$$A = \{k \in \mathbb{N} : \frac{k}{n} > x\} \tag{5}$$

Claim that A is nonempty, if it were empty, then that means that $\frac{k}{n} \le x$ for all $k \in \mathbb{N}$, but that means that the natural numbers is bounded, thus this set must be nonempty. Since \mathbb{N} is well-ordered, it follows that A contains a least element. We must now prove that $x < \frac{m}{n} < y$. By definition, $\frac{m}{n} > x$. But since $m-1 \notin x$, thus $\frac{m-1}{n} < x$, or $\frac{m}{n} \le x + \frac{1}{n} < y$. Thus, this proves the inequality. \square

Definition 0.5. If $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$, then let

$$xA = \{xa : a \in A\} \tag{6}$$

$$x + A = \{x + a : a \in A\} \tag{7}$$

Then

Theorem 0.6. Suppose that $A \subseteq \mathbb{R}$ and that x is a real number. Assuming that $\sup(A)$ exists, then

- 1. $\sup(x+A) = \sup(A) + x$
- 2. $\inf(x + A) = \inf(A) + x$
- 3. $\sup(xA) = x \sup(A)$ if x > 0
- 4. etc.

Proof. To prove (1), for any b in the real numbers, we have that b is a upper bound of A means that

$$b \ge a \forall a \in A \tag{8}$$

$$b + x \ge a + x \tag{9}$$

Thus b + x is a upper bound of A.