第一章 计算机网络与互联网络

- 1.1 什么是互联网络
- 从构成的角度来看:
 - 互联网络
 - ◆ 点:端系统,网络应用 + 路由器
 - ◆ 边: 链路
 - ◆ 互联网络 是网络的网络
- 从服务的角度来看:互联网络=能够为应用提供通信服务的通信架构(有连接可靠的服务和无连接的不可靠服务)+使用通信服务相互配合工作的应用
- 协议: 对等层实体在通信过程中所遵循的规则的集合 理解
 - ◆ 语法+语义+时序
- 1.2 网络边缘
- 网络的结构= 网络边缘(应用, 主机)+网络核心(路由器)+接入网络与通信链路
- 网络边缘:运行应用的端系统(端系统中的应用交互方式)理解
 - C/S 模式,特点
 - P2P 模式,特点
- 利用网络的服务:
 - 面向连接的服务
 - 无连接的服务
- 1.3 网络核心
- 网络核心
 - 组成:路由器+链路
 - 功能:数据交换
- 数据交换方式 及比较
 - 分组交换: 存储转发方式, 统计复用 理解
 - ♦ VC
 - **♦** Datagram
 - 线路交换
 - **♦** FDM
 - lack TDM
 - ♦ WDM
- 1.4 网络接入与物理媒介
- 将端系统连接到边缘路由器的链路或网络
- 住宅接入: 点到点接入
 - ADSL
 - HFC
 - **■** Cable Modem
 - **■** Home Networks

- 机构接入: LAN
 - 以太网络
 - **■** WLAN
- 物理链路
 - 导向型介质
 - 非导向型介质
- 常用介质
 - TP 双绞线
 - 同轴电缆
 - 光纤
 - Radio

1.5 互联网络结构与 ISP

- 近似层次型结构
 - **■** T-1 ISP
 - **■** T-2 ISP(Regional ISP)
 - Local ISP
- ISP 之间的连接
 - 对等连接
 - IXP
- 内容提供商网络
 - 在全球部署 DC
 - 内容提供商网络在多处与各个 ISP 相联
 - 内容提供商自己部署网络将全球的 DC 相联
 - ◆ 内容提供商 DC 自己之间的访问,通过自己部署的专网
 - ◆ 用户接入后通过离用户最近的 DC 为之服务

1.6 分组交换网络中的延迟与丢失

- 延迟的 4 个原因 (计算)-掌握
 - 处理延迟
 - 排队延迟
 - 传输延迟
 - 传播延迟
 - 例如: n 段, 分组 L, R, 传播延迟 d 每段如何计算总体延迟;
- 流量强度: La/R -掌握
 - 排队延迟 依赖流量强度的公式;
- 丢失原因
- 吞吐量: 了解
 - 瞬间吞吐量
 - 平均吞吐量
 - 瓶颈链路决定了主机之间的吞吐量(从每段链路获得的大致带宽是 1/N, 瓶颈链路是所有链路段中获得带宽最小的)

1.7 协议层次与服务模型

- 为什么要分层: 网络比较复杂, 分层实现比较容易设计, 调试, 实现;
- 分层: 将复杂的网络功能划分成功能明确的层次,上层利用下层提供的服务来实现本层的协议,从而为上层提供更复杂的功能;
- 一些术语和概念:理解
 - 服务、服务访问原语、服务访问点
 - 面向连接的服务,无连接的服务
 - 协议,协议数据单元 PDU
 - 服务和协议之间的关系(区别与联系)
- 互联网络分层模型及每一层的功能 理解
 - 应用层
 - 传输层
 - 网络层
 - 链路层
 - 物理层
- 封装和解封装

1.8 历史 了解

- ARPANET: 美国军方资助的分组交换实验网,由于 TCP/IP 架构的包容性、免费使用、架构便于应用创新吸引更多的用户等原因,用户数量、节点数量和应用数量越来越多。
- NSF 建立 ARPANET 的访问网
- 民用网络从军用网络脱开,成为现在的互联网。

术语: IETF (ITU, IEEE)、RFC

第二章 应用层

原理+应用实例+SOCKET 编程

应用的开发只集中在端系统上,对路由器没有任何改变=》互联网架构鼓励应 用创新

- 2.1 网络应用原理
- 应用架构
 - \blacksquare C/S
 - **■** P2P
 - 混合
- 进程间通信
 - 同主机:操作系统定义的通信方法
 - 不同主机:利用网络提供的架构交换报文
- SOCKET
 - 一个整数, OS 用于标示应用通信关系所采用的本地标示
 - TCP: 连接的本地标示
 - UDP: 端节点的本地标示
- 进程编址: IP+PORT (本质上在传输层上应用了端口号,用于区分应用, TCP 和 UDP 使用端口号的方式不同)
- 应用所需要的服务需要考虑的因素(网络所提供服务的主要指标
 - 丢失率可靠性
 - 延迟、延迟差(抖动)
 - 帯宽
 - 安全性
- 传输层协议
 - TCP: 提供的服务特性,可靠字节流服务,面向连接,流量控制,拥塞 控制
 - UDP: 提供的服务特性,无连接,不可靠的服务
 - 都能够提供进程的标示,区分不同的进程

2.2 WEB 和 HTTP

- WEB 应用包括:
 - HTTP 协议
 - HTML
 - CLIENT, SERVER
- 术语:网页, 对象, 引用 URL
- HTTP 协议
 - 定义了 C 和 S 之间通信的报文格式, 解释和时序
 - HTTP 连接
 - ◆ 持续性连接
 - ◆ 非持续性连接
 - 往返延迟 RTT 和对象的抓取时间

- 报文格式
 - ◆ 请求报文
 - 方法
 - ◆ 响应报文
 - 状态码
- COOKIES
- WEB 缓存
 - 作用:通过本地命中,减少这些对象的访问延迟;进一步减少接入链路的流量强度,从而降低派对延迟带来总体平均延迟的减少;减轻服务器的负担。
 - 优点:通过一个实例,计算不要求;

2.3 FTP (不要求)

- 作用: 在 CS 之间传输文件
- 构成
 - **■** C
 - \blacksquare S
 - **■** FTP
- FTP 的连接
 - 控制连接(带外传输)
 - 数据连接
- 命令和响应

2.4 EMAIL

- 电子邮件应用的构成
 - 用户代理
 - 邮件服务器
 - SMTP
- 邮件报文格式解析
 - 报文头
 - 报文体
 - MIME: 邮件多媒体扩展,可以在邮件中编解码多媒体内容
- 邮件存取协议
 - 作用
 - 常用
 - **♦** IMAP
 - ◆ POP3

2.5 DNS

● DNS 作用:完成域名到 IP 地址的转换(还包括,别名->正规名字;邮件服务器名字->正规名字转换等),应用层面的互联网基础设施。其他应用使用的应用。

- DNS 的概念: 分布式、层次数据库
 - 命名是分层的:
 - 域名信息存储和服务是分布的,每个域名服务器担任一个区域 ZONE 的 名字到 IP 地址的权威转换,也缓存名字-ip 信息的转换。
- DNS 的构成
 - 解析器:本地应用
 - 域名服务器
 - DNS 协议
 - ◆ 报文:请求和应答格式相同
 - ◆ RR: 资源记录
- 域名解析的过程(解析器->本地 DNS 服务器->上层域名服务器->..->权威名字 服务器, 返回)
 - 递归解析
 - 叠代解析
- DNS 缓存
 - 作用
 - 本地缓存+服务器缓存
- 2.6 P2P(了解: P2P 的概念和优势即可)
- P2P 概念:每个对等体即是客户端又是服务器;
 - P2P 网络是这些 peer 构成的应用层面的逻辑网络
 - P2P 网络比 C/S 方式分发内容快的原因: 这些 peer 节点参与到内容的上载,流量和服务都是分布的,可扩展性;
- 典型 P2P 应用及其原理(不要求)
 - Napster: 知道名词
 - Gnutella: 知道名词
 - KaZaA: 知道名词
 - BT: 知道名字
 - DHT:
- 2.7 视频流化服务和 CDN 了解
- 服务器向客户端进行视频流化的方式: UDP 流化, http 流化, DASH (Dynamic, Adaptive Streaming over HTTP)
- DASH 流化的过程
 - 客户端获取告示文件
 - 客户端按照情况,向(可能是不同的)服务器请求不同视频质量的内容 块,客户端智能;
- CDN:
 - 单个服务器,或者服务器群向客户端提供海量内容并发服务的问题:扩 展性差
 - CDN: 原理
 - ◆ 应用层面的协作服务网络
 - ◆ 在全网部署缓存节点,内容预先部署到 CDN 缓存节点上;

- ◆ 用户请求通过域名解析重定向向离自己"最近的节点"请求内容
- 缓存节点放置的方式
 - **♦** Enter Deep
 - **♦** Bring Home

2.9 TCP 的 SOCKET 编程 理解

- SOCKET 概念: TCP 连接的本地标示,向这个 SOCKET 写就是发送给对方的进程;从 SOCKET 中读,就是读取对方发送过来的数据;
- SOCKET API: 创建,使用(读和写),关闭;
- TCP SOCKET 数据传输的特点:面向连接,可靠字节流服务
- TCP SOCKET 编程
 - 建立 SOCKET
 - ◆ 客户端 TCP 实体动作: 和服务器端的 TCP 实体握手沟通
 - ◆ 服务器端的动作
 - ◆ 三次握手
 - 使用 SOCKET
 - 关闭 SOCKET

2.10 UDP 的 SOCKET 编程 理解

- UDP SOCKET 数据传输的特点
- 编程 不要求
 - 建立 SOCKET(之前客户端 UDP 实体和服务器不用握手,不为之后的通信做准备)
 - 使用
 - 关闭

第三章 传输层

3.1 传输层服务

- 传输服务: 能够使端系统应用之间进行逻辑通信
- 传输协议:运行于端系统的 2 个对等传输层实体相互通信应该遵守的规则集合
- 传输服务和网络服务的区别
 - 网络服务: 主机到主机的通信
 - 传输服务: 进程到进程的通信
- 互联网络传输层协议
 - TCP: 有连接,可靠保序数传服务
 - UDP: 无连接,不可靠,不保序的数传服务

3.2 复用与解复用

- 复用: 源端多个上层应用收集数据:应用报文,封装报文
- 解复用: 接收端将数据按照端口号(结合 IP 地址)给相应的 SOCKET 对 应的应用
- 复用和解复用的工作原理: IP PORT
 - TCP 有连接情况: SOCKETS 为 4 元组
 - UDP 无连接情况: SOCKETS 为 2 元组

3.3 无连接传输层协议 UDP

- UDP 的必要性: 有些应用对实时性比较在乎,对可靠性要求不高
- UDP报文(无连接的,因此叫做 UDP 数据报)格式
 - UDP报文校验和的计算 理解

3.4 可靠数据传输原理

- 协议演进的方式讲解如何进行 RDT
 - 加入一些假设,简单的协议可以提供 RDT 服务
 - 去掉一些假设,需要协议实体做相应的变化从而能够进行 RDT
- 技术机制 理解
 - 校验和,正向确认,反向确认
 - 序号: 检查重复
 - 只有正向确认的机制
 - 检错重发和超时重发:处理丢失
 - ◆ 滑动窗口
- 利用率计算 了解
 - 停止等待技术:链路带宽延迟积(容量)效率低
 - 管道技术:在未经对方确认的情况下,可以连续发送多个 PDU
 - ◆ GBN: 发送窗口大于 1,接收窗口=1(只能顺序接收;发送方只设置一个超时定时器,一旦出错,返回到出错的那一个 PDU 重发)
 - ◆ SR: 发送窗口大于 1,接收窗口大于 1 (能够乱序接收;发送方为

每个发送出去的 PDU 设置超时定时器,哪个超时重发哪个)

3.5 有连接传输层协议: TCP

- TCP 服务特性
 - 点-点;可靠保序 字节流;管道(在未加确认情况下一次次传多个未经确认的段);缓冲;全双工;面向连接;流控制;
- TCP 段结构
 - 各个字段的作用
 - 连接建立时协商好双方的起始序号;
 - 序号是首字节在字节流的偏移量;
 - 确认: 是对顺序收到的最后一个字节+1
- RTT 时间估计和重发超时时间估计
 - 移动平均计算:平均往返延迟
 - 移动平均计算: 当前往返延迟采样值 与 平均值的 偏差
 - 平均值+4 偏差
- TCP 的可靠数据传输原理
 - 快速重传:在没有超时情况下,收到对方对于某一个段的重复三次(一共4个)ACK
- 流量控制
 - 流控目的: 防止淹没接收方
 - 流控手段:将接收窗口大小捎带方式传递给发送端
- TCP 连接管理 理解
 - 连接建立: 3 次握手技术 对双方选择的初始序号给予确认,准备好缓冲区
 - ◆ 第一次握手: SYN=1, ACK=0: 发起端的序号
 - ◆ 第二次: syn=1, ack=1; 被呼叫方的序号
 - ◆ 第三次: (syn=0) ack=1
 - 连接拆除:对称,存在2军问题不完美(也不存在完美释放连接的方案, 用定时器凑合解决)
 - 连接状态及其变迁

3.6 拥塞控制原理

- 拥塞的概念,什么是拥塞,为什么会发生拥塞
- 拥塞控制目的
- 拥塞控制手段 理解
 - 端到端的拥塞控制: TCP 采用这种方式
 - 网络辅助的拥塞控制: ATM 网络标志和携带拥塞信息, 反馈给主机(不要求)

3.7 TCP 的拥塞控制原理

- TCP 拥塞控制原理 -掌握

- 拥塞控制机制: AIMD 慢启动 超时之后的保守策略
- TCP 拥塞控制的 2 种算法:
 - ◆ Tahoe: 超时事件和 3 个冗余 ACK 处理一样的 不要求
 - ◆ reno 算法(超时事件发生和 3 个冗余 ACK 处理不一样 掌握)
- 平均延迟和超时定时器时间的设置
 - JACSON 算法(具体初始化和迭代算法 不要求):
 - ◆ 平均往返延迟公式
 - ◆ Dev 算法: 第一个 超时时间=延迟的 1/2, 初值设置; 后面按公式
 - ◆ 超时时间设置: es+4dev
- TCP 公平性: 了解
- TCP 的吞吐量计算:不要求

第四章 网络层之数据平面

4.1 简介

- 网络层的主要服务和功能
 - 服务: 向传输层提供主机到主机的段传输服务
 - 功能 1--转发,数据平面功能: 从路由器的一个端口流入, 从另外一个端口流出
 - 功能 2--路由,控制平面的功能:决定从源到目的的路径
 - ◆ 2 个功能相互配合将数据报从源传送到目标主机;关联是转发表、 流表
- 实现网络层功能的两种方式
 - 传统方式:
 - ◆ 控制平面和数据平面功能垂直集成在每个设备上(路由器);
 - ◆ 控制平面功能:路由协议实体分布式地计算路由表:
 - ◆ 数据平面的功能: IP 协议按照路由表进行分组的转发;
 - SDN 通用转发方式
 - ◆ 控制平面和数据平面分离,在不同设备上实现:
 - ◆ sdn 控制器集中式计算、下发流表实现控制平面功能;
 - ◆ sdn 分组交换机按照流表对到来的分组进行转发,实现数据平面的 功能
- 网络层提供服务的一些重要指标
 - ■帯策
 - 延迟,延迟差
 - 丢包与否,丢包率
- 4.2 路由器结构和工作原理
- 路由器的 2 大功能 理解
 - 路由协议:结果形成路由表(转发表)
 - 转发分组:使用转发表转发分组,交换
- 构成
 - 输入端口:线路终端实现物理层功能、链路协议实体实现链路层功能, 网络层功能实现分布式分组转发;
 - ◆ 最长前缀匹配
 - 交换结构:基于内存的,基于 bus 的,基于 CROSSBAR 的
 - 输出端口三个层面的功能
 - ◆ 网络层可以实现分组的调度: FIFO, RR, WFO
 - ◆ 调度支持对多媒体分组等优先级分组的传输支持
 - 路由处理器:控制各部分协调工作
- 4.3 互联网网络层协议
- IP 网络提供的服务模型: 尽力而为
 - 包括含义: 丢包、乱序、不可靠、(可能包括重复)
- 网络层构成

- IP协议 路由选择协议 ICMP协议
- 转发表
- IP 数据报格式
 - 各个字段的作用
 - 分片和重组 -掌握
 - ◆ 一个分组的总体大小超过了转发链路的 MTU, 因此要切片
 - ◆ 到目标主机重组
- IP 编址
 - IP 地址: 主机或路由器和网络接口的标识
 - 子网
 - ◆ 在一个子网内的设备之间的通信有 2 个特点: 1) 通信无需借助路由器; 2) 子网前缀一样;
 - IP 地址分类: ABCDE
 - 特殊 IP 地址
 - 子网掩码和 CIDR
- NAT 不要求
- DHCP 协议: 上网主机获得 IP、掩码、默认网关和 local name server
- 路由聚集:连续的子网前缀的子网可达信息可以做聚集,减少向外部传输路由的数量,减少路由计算的负担。支持大概的路由聚集,与此对应的是最长前缀匹配的措施
- IPV6
 - IPV6 格式 (固定头部长度 40B), 地址: 128bits
 - IPV6 的变化
 - IPV4 到 IPV6 的迁移
 - ◆ 隧道 理解

4.4 通用转发和 SDN

- SDN 方式控制平面和数据平面分离的优点 理解
 - 集中在控制器上实现控制逻辑,网络可编程,可以实现各种复杂的网络功能、新功能(一次部署,持续升级)、方便管理
 - 形成开发生态(控制器,分组交换机,网络应用,在一个开放的框架下 协作)
 - SDN 分组交换机按照计算出的流表进行分组转发、通用、便于升级
- 分组交换机工作原理 理解
 - 模式匹配+行动(不仅仅是转发,还可以组播,泛洪,修改字段和阻塞 等)
 - 进来分组,按照各级字段匹配流表,按照相应的行动动作分组
 - 按照优先权进行判断;之后,统计计数

第五章 网络层之控制平面

5.1 概述

- 两种方式实现控制平面功能: 传统方式和 SDN 方式
- 传统方式: 在每个路由器上分布式实现路由功能
- SDN 方式: 在 SDN 控制器上由网络应用集中式计算、生成流表

5.2 路由选择算法

- 路由目标:根据收集到的路由信息(拓扑,链路代价等)计算出源到目标较好的路径,代价比较低的路径
 - 主机-主机的路径 == 路由器到路由器的路径;
 - 路由目标实际上是计算出节点的汇集树:
 - 路由原则: 完整正确,简单,健壮,稳定公平,最优(次优)
- 路由分类
 - 静态和动态(自适应)
 - 局部和全局的
- LS 算法: 全局的路由选择算法,工作原理 -掌握
 - 每个节点收集邻居信息,生成 LS: LS 全网泛洪
 - 节点收集 LS 状态分组,形成网络拓扑
 - 按照最短路径算法算出到其他节点的最优路径
- DV 算法: 局部的路由选择算法,工作原理 -掌握
 - 每个节点维护到所有其他节点的下一跳和代价值
 - 邻居节点之间定期交换 DV
 - 按照 Bellman-Ford 不断迭代生成到所有目标的代价和相应的下一跳
- 层次路由 理解
 - 一个平面解决路由的问题: 计算、传输和存储路由信息的量太大,不具备可扩展性,也不满足不同网络运营方不同的管理需求
 - 分成 AS, AS 内部之间的节点路由有内部网关协议解决; AS 之间的路由, 分层解决(路由到网关,由网关路由到目标网关,到了目标 AS 内部,采用 AS 内部的路由解决)
 - 优势:分层路由,解决了规模性问题,管理性问题

5.3 互联网络的路由协议

- 路由协议分类
 - 内部网关协议 IGP
 - RIP
 - OSPF: AS 内部支持分层路由,同时支持多种代价
 - IGRP
 - 外部网关协议 EGP
 - **♦** BGP
 - 网关路由器参与 AS 内部路由计算, 收集 AS 内部子网可达信息
 - 网关路由器通过 AS 间路由向其他 AS 网关通告子网可达信息
 - 网管路由器还转发"过手"子网可达信息,但是 AS 路径要加上

- 它自己AS编号(防止形成环路)
- 网关路由器通过 i-BGP 向 AS 内部所有路由节点通告收集到的子 网可达信息
- 内部路由器,通过 AS 内路由和 AS 间路由共同决定向 AS 外部子网的下一跳(内部网关协议决定如何往网关,外部网关协议决定通过那个网关可到达 AS 外部子网)
- 内部网关协议和外部网关协议的对比 了解
 - ◆ 内部网关协议重视效率,性能
 - ◆ 外部网关协议重视策略: 经济策略和政治策略

5.4 SDN 控制平面

- 在控制器上集中实现控制功能
- 控制器和 SDN 交换机按照 openflow 等南向接口协议等下发流表,上报 设备状态
- SDN 控制器按照北向接口和网络应用打交道

5.5 ICMP 协议 了解

- 作用:包括错误,echo请求和应答
- 报文类型

第六章 数据链路层与局域网

6.1 引论

- 链路层提供的服务
 - 成帧、链路存取控制(链路访问控制)
 - 在相邻节点间进行可靠数据传递
 - 流量控制
 - 检错
 - 纠错
 - 全双工和半双工服务
- 链路层网络节点的连接方式
 - 点到点方式:比较适合广域
 - 多点连接的方式: 比较适合局域、联网方便, 但是需要解决 MAC 问题

6.2 检错与纠错

- 检错原理
 - 奇偶校验
 - CRC-掌握
 - ◆ 原理
 - ◆ 生成多项式
 - ◆ 冗余位计算方法以及验证方法

6.3 多路访问协议

- MAC 的必要性
- MAP
 - 信道划分
 - **♦** TDMA
 - **♦** FDMA
 - ◆ CDMA: 删掉
 - RAP: 随机访问协议
 - **♦** slotted ALOHA
 - **♦** ALOHA
 - ◆ CSMA, CSMA/CD(至少 2t 长度帧) , CSMA/CA
 - 轮转协议:不要求
 - ◆ 令牌协议

6.4 链路层编地址

- MAC 地址
 - 格式
 - 分配
- MAC 地址和网络层 IP 地址的区别
 - 层次不同
 - MAC 地址平面的,用于标示一个物理网络的不同站点; IP 是可以聚集

的,便于计算路由;

- ARP 协议
 - 目的:物理网络范围内 IP 地址到 MAC 地址的转换
 - 工作原理:广播查询,单播应答

6.5 以太网络

- IEEE802.3 标准,链路层和相应的物理层
- 以太网络的帧结构
- 向上提供服务的特点
 - 无连接
 - 不可靠
- 访问控制技术:
 - CSMA/CD -掌握
 - 指数后退
- CSMA/CA 理解
- 编码
 - Manchester 编码

6.6 HUB 和交换机

- HUB 连接方式的问题:无法隔离冲突,在一个冲突域之中
- 交换机的工作原理
 - 选择性转发
 - 自学习
 - 流量隔离
 - 专用接入
- 路由器和交换机的区别 理解

第八章 网络安全

- 8.1 网络安全含义
- 网络安全含义 理解
 - 机密性
 - 可认证性
 - 报文完整性
 - 接入控制与服务可用性
- 网络安全威胁
 - 截获
 - 插入
 - 欺骗
 - 劫持
 - DOS
- 8.2 加密原理
- 加密技术
 - 对称加密
 - ◆ 替换
 - **♦** DES
 - **♦** AES
 - 公开密钥加密 理解
 - ◆ RSA(公钥, 私钥, 加密和解密, 特点)
- 8.3 认证原理
- 目的
- 使用对称加密技术进行认证的工作原理 了解
- 使用公开密钥加密体系进行认证 工作原理 理解
- 8.4 报文完整性
- 目的:可鉴别性、不可伪造性、不可抵赖性
- 手段:数字签名 理解
- 问题
- 报文摘要
 - **■** MD5
 - **■** SHA-1
- 改进:加密报文摘要
- 8.5 KDC 和 CA
- KDC 工作原理
- CA工作原理
 - 数字证书 理解
- 8.6 防火墙和 IDS(IPS) 理解

- 作用
- 组成
 - 包过滤器
 - 应用网关
- 工作原理
- 8.7 攻击与策略 不要求
- 8.8 多层次的安全
- 安全电子邮件 -掌握
 - 提供机密性的电子邮件
 - 发送者认证和报文完整性
 - 提供机密性, 发送者认证和报文完整性的电子邮件
- 安全 SOCKETS 不要求
- IPSEC 不要求
- 802.11 的安全性 不要求