3 Exercises – Extension of global alignment

1. DP with score matrix

Use the score matrix below with gap penalty g = 1 and answer the following questions.

	С	G	Α	Т
С	1	0	0	0
G		1	1	0
Α			1	0
Т				1

- (a) Calculate the alignment score.
 - Alignment 1

q: ATGCT d: CA--T

• Alignment 2

q: CAGCT d: C-A-T

- (b) Calculate the score of $H_{i,j}$.
 - Table A

• Table B

	С	A	
A	0	2	
G	-1	H _{i,j}	

(c) Fill the empty cells with appropriate scores in the DP table. What is the optimal alignment score?

q\d		С	A	Т
	0	-1	-2	-3
С	-1		0	-1
A	-2	0	2	1
G	-3	-1		2
С	-4	-2		1
Т	-5	-3	-1	

(d) There are two different alignments that give the same optimal score in the solution above. Specify both of them.

2. Affine gap penalty

Affine gap penalties are often preferable ways to calculate gap scores than linear penalties. A gap with length l can be calculated as: $g_l = g_{open} + (l-1) * g_{extend}$.

Use the following scoring scheme and gap penalties to answer the questions.

Scoring scheme:

$$R_{ab} = 1 \text{ for a = b}$$

 $R_{ab} = 0 \text{ for a } \neq \text{ b}$

$$g_{open} = 1, g_{extend} = 0.1$$

- (a) What is the gap penalty when l=2.
- (b) Calculate the scores of the alignments.
 - 1. q: CAGCT
 - d: CT--T
 - 2. q: CAGCT
 - d: C-T-T
 - 3. q: CCT-
 - d: ---CT

3. Affine gap with single DP table

You need to check extra cells in addition to the adjacent cells of H when finding an optimal alignment with affine gap penalties.

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$

$$R_{ab} = 0$$
 for $a \neq b$
 $g_{open} = 1$, $g_{extend} = 0.1$

		С	G
	0	-1	-1.1
С	-1	1	0
A	-1.1	0	

Assume we want to update $H_{2,2}$ and answer the following questions.

- (a) Calculate $H_{1,1} + R_{q_2,d_2}$.
- (b) Calculate $\max_{1 \leq l \leq 2} (H_{2,2-l} g_l)$.
- (c) Calculate $\max_{1 \leq l \leq 2} (H_{2-l,2} g_l)$.
- (d) What is the score of $H_{2,2}$.

4. Initialization for affine gap penalty

Initialize the following tables when $g_{open}=10$ and $g_{extend}=1$.

	I	Ξ.	
	Т	G	С
A			
A			

	F.				
	Т	G	С		
A					
A					

		3	
	Т	G	С
A			
A			

5. Affine gap with three DP tables

Use the following scoring scheme and gap penalties to find the optimal alignment score of two sequences q = AG and d = GGGC.

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$

$$R_{ab} = 0$$
 for $a \neq b$

$$g_{open} = 1, g_{extend} = 0.1$$

(a) Fill all blank cells in the DP tables E, F, and G.

			E		
		G	G	G	С
	0	-1			
A	-1		-2.1	-2.2	-2.3
G		-1	-2		-2.2

		G	G	G	С
	0	-1			
A	-1	-2	-1		-1.2
G			-1	0	-0.1

F

G					
		G	G	G	С
	0	-1			
A	-1	0	-1	-1.1	-1.2
G		0	1	0	

(b) What is the optimal score?

6. Backtrack with affine gap penalty

Perform backtracking on E, F, and G tables to find the optimal alignment. The cells with double border should be visited during backtracking.

(a) Write the optimal alignment.

7. Sequence distance with DP

DP can be used to calculate the edit distance (Levenshtein distance) between two sequences.

Scoring scheme:

$$R_{ab} = 0$$
 for $a = b$
 $R_{ab} = -1$ for $a \neq b$
 $g = 1$

With the scoring scheme above, the edit distance d is calculated as 1 * T where T is the optimal score of the DP.

Find the edit distance between two sequences q = AG and d = ACG.

(a) Fill the DP table.

q/d	A	С	T
A			
G			

(b) What is the edit distance between q and d?