Angular Momentum

- Angular velocity: $\vec{\omega} = \frac{d\theta}{dt}\hat{n}$. Direction is defined along the perpendicular to the plane of rotation. By convention anti-clock wise motion correspond to the "positive" direction.
- Relation to linear velocity: $\vec{v} = \vec{\omega} \times \vec{r}$.
- By observation: "Difficulty" in rotating or to stop rotating a particle depends on its mass, linear velocity and its perpendicular distance from the axis of rotation.
- Mathematically, Angular Momentum $\vec{L} = \vec{r} \times m\vec{v} = \vec{r} \times \vec{p}$

Angular Momentum: Ex-1

Example 7.1 Angular Momentum of a Sliding Block 1

A block of mass m and negligible dimensions slides freely in the x direction with velocity $\mathbf{v} = v\hat{\mathbf{i}}$, as shown in the sketch. What is its angular momentum \mathbf{L}_A around origin A and its angular momentum \mathbf{L}_B around origin B?

As shown in the drawing the vector from origin A to the block is $\mathbf{r}_A = x\hat{\mathbf{i}}$. Since \mathbf{r}_A is parallel to \mathbf{v} , their cross product is zero:

$$\mathbf{L}_{A} = m\mathbf{r}_{A} \times \mathbf{v}$$

$$= 0.$$

Taking origin B, we can resolve \mathbf{r}_B into a component \mathbf{r}_{\parallel} parallel to \mathbf{v} and a component \mathbf{r}_{\perp} perpendicular to \mathbf{v} . Then

$$\mathbf{L}_{B} = m\mathbf{r}_{B} \times \mathbf{v} = m(\mathbf{r}_{\parallel} + \mathbf{r}_{\perp}) \times \mathbf{v}.$$
With $\mathbf{r}_{\parallel} \times \mathbf{v} = 0$ and $|\mathbf{r}_{\perp} \times \mathbf{v}| = lv\hat{\mathbf{k}}$ we have
$$\mathbf{L}_{B} = mlv\hat{\mathbf{k}}.$$

Moment of Inertia

- Note that Angular Momentum $\vec{L} = \vec{r} \times m\vec{v} = \vec{r} \times \vec{p}$ is a Moment of Liner Momentum!
- Now $\vec{L} = \vec{r} \times m\vec{v} = -m(\vec{r} \times \vec{r} \times \vec{\omega}) = mr^2\vec{\omega} = I\vec{\omega}$ for a point particle.
- Here $m \Rightarrow$ Inertia and $I = mr^2$ is Moment of Inertia.
- I depends on the choice of the axis of rotation and defines inertia for rotational motion.

Torque

- Given I and $\vec{\omega}$, we can determine \vec{L} .
- Now consider time variation of \vec{L} : $\frac{d\vec{L}}{dt} = \frac{d(\vec{r} \times \vec{p})}{dt} = \vec{r} \times \frac{d\vec{p}}{dt} = \vec{r} \times \vec{F}$
- Rate of change of Angular Momentum depends on the moment of applied Force which is called Torque: $\vec{\tau} = \vec{r} \times \vec{F}$
- Note that it has a dimension of energy!

Conservation of Angular Momentum

- "Newton's Law" for angular motion: $\vec{\tau} = \frac{d\vec{L}}{dt}$, $\vec{\tau} = \vec{r} \times \vec{F}$
- If $\tau = 0$, \vec{L} is conserved.
- $\vec{F} = 0$, NO motion, \vec{L} is trivially conserved.
- However, $\tau = 0$ does not imply F = 0. It becomes zero if $\vec{r} | \vec{F}$ also.
- Example: Central force, Keppler's law., to be discussed in the next class.

- Torque $\vec{\tau} = \vec{r} \times \vec{F}$ is responsible for changing rotational state of motion.
- Apart from the applied Force, it depends on the choice of origin and axis of rotation.
- If $\vec{\tau} = 0$ the angular momentum is conserved.