Exercise 11: Hierarchies of stocks

Previously, you used k-means clustering to cluster companies according to their stock price movements. This time, perform *hierarchical* clustering of the companies. You are given a NumPy array of price movements movements, where the rows correspond to companies, and a list of the company names companies.

SciPy hierarchical clustering doesn't fit into a sklearn pipeline, so you'll need to use the normalize() function from sklearn.preprocessing instead of Normalizer.

From the course *Transition to Data Science*. Buy the entire course for just \$10 for many more exercises and helpful video lectures.

Step 1: Load the data (written for you)

```
In [1]: import pandas as pd

fn = '../datasets/company-stock-movements-2010-2015-incl.csv'
    stocks_df = pd.read_csv(fn, index_col=0)

companies = list(stocks_df.index)
    movements = stocks_df.values
```

Step 2: Make the necessary imports:

- \bullet normalize from sklearn.preprocessing.
- linkage and dendrogram from scipy.cluster.hierarchy.
- matplotlib.pyplot as plt.

Step 3: Rescale the price movements for each stock by using the normalize () function on movements.

```
In [3]: normalized_movements = normalize(movements)
```

Step 4: Apply the linkage() function to normalized_movements, using 'complete' linkage, to calculate the hierarchical clustering. Assign the result to mergings.

```
In [4]: mergings = linkage(normalized_movements, method='complete')
```

Step 5: Plot a dendrogram of the hierarchical clustering, using the list companies of company names as the labels. In addition, specify the leaf_rotation=90, and leaf_font_size=10 keyword arguments as you did in the previous exercise.

```
In [5]: # the first line is written for you - it sets the size of your plot
    plt.figure(figsize=(10, 5))

dendrogram(
    mergings,
    labels=companies,
    leaf_rotation=90.,
```

)
plt.show()

leaf_font_size=10

In []: