Learning-based frequency estimation algorithms

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, Ali Vakilian

ICLR'19

Extremely long sequence of N elements from set U

5 3 4 2 5 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 3 • • •

Goal: for each $i \in U$, estimate fraction of times it appeared, f_i

Challenge: U is huge, so you don't want to just count elements $|U| \log N$ bits

Standard tool: Hashing

Extremely long sequence of N elements from set U

 $B \ll |U|$ buckets, uniformly random hash function $h: U \to [B]$

For all
$$i \in U$$
 and $j \in [B]$, $\mathbb{P}[h(i) = j] = \frac{1}{B}$

Extremely long sequence of N elements from set U

5

 $counter_1 = 0$

Bucket 1

 $counter_2 = 0$

Bucket 2

 $counter_3 = 0$

Bucket 3

 $counter_4 = 0$

Bucket 4

 $counter_5 = 0$

Bucket 5

Extremely long sequence of N elements from set U

5

Bucket 4 Bucket 5

 $counter_5 = 0$

Extremely long sequence of N elements from set U

$$counter_1 = 3$$

Bucket 1

$$counter_2 = 11$$

Bucket 2

$$counter_3 = 1$$

Bucket 3

$$counter_4 = 8$$

Bucket 4

$$counter_5 = 2$$

Bucket 5

$$\tilde{f}_i = \frac{1}{25} \cdot \text{count}_{h(i)} = \sum_{j:h(j)=h(i)} f_j \qquad (\Rightarrow \tilde{f}_i \ge f_i)$$

$$counter_1 = 3$$
Bucket 1

$$counter_2 = 11$$

$$counter_3 = 1$$

$$counter_4 = 8$$

$$counter_5 = 2$$

$$\tilde{f}_i = \frac{1}{25} \cdot \text{count}_{h(i)} = \sum_{j:h(j)=h(i)} f_j \qquad (\Rightarrow \tilde{f}_i \ge f_i)$$

$$counter_1 = 3$$
Bucket 1

$$counter_2 = 11$$

$$counter_3 = 1$$

$$counter_4 = 8$$

$$counter_5 = 2$$

$$\tilde{f}_{i} = \frac{1}{25} \cdot \operatorname{count}_{h(i)} = \sum_{j:h(j)=h(i)} f_{j} \qquad (\Rightarrow \tilde{f}_{i} \ge f_{i})$$

$$f_{3} = \frac{3}{25}$$

$$\tilde{f}_{3} = \frac{1}{25} \cdot \operatorname{count}_{h(3)} = \frac{1}{25} \cdot \operatorname{count}_{1} = \frac{3}{25}$$

Overview

- 1. Frequency estimation
 - i. Analysis of a single hash function
- 2. Improving estimation with domain knowledge

Model

Elements drawn from distribution D over U = [n]

$$f_i = \mathbb{P}_{j \sim D}[j = i]$$

Error:
$$\mathbb{E}_{i \sim D}[|\tilde{f}_i - f_i|] = \sum_{i=1}^n f_i \mathbb{E}[|\tilde{f}_i - f_i|]$$

Theorem: For a single hash, error $=\sum_{i=1}^n f_i \mathbb{E}[|\tilde{f}_i - f_i|] \leq \frac{1}{p}$

Proof:

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] = \sum_{i=1}^{n} f_i \mathbb{E}\left[\sum_{j:h(j)=h(i)} f_j - f_i\right]$$

- Randomness is only over the hash function h:
 for all i ∈ U and j ∈ [B], P[h(i) = j] = 1/B
 Ignoring randomness of the sequence (assume it's really long)

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] = \sum_{i=1}^{n} f_i \mathbb{E}\left[\sum_{j:h(j)=h(i)} f_j - f_i\right]$$

$$= \sum_{i=1}^{n} f_i \mathbb{E}\left[\sum_{j\neq i:h(j)=h(i)} f_j\right]$$

$$= \sum_{i=1}^{n} f_i \sum_{j\neq i} f_j \mathbb{P}[h(j) = h(i)]$$

$$\sum_{i=1}^{n} f_{i} \mathbb{E}[|\tilde{f}_{i} - f_{i}|] = \sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j) = h(i)]$$

$$\mathbb{P}[h(j) = h(i)] = \sum_{k=1}^{B} \mathbb{P}[h(j) = h(i) = k]$$

$$= \sum_{k=1}^{B} \mathbb{P}[h(j) = k] \cdot \mathbb{P}[h(i) = k] = \sum_{k=1}^{B} \left(\frac{1}{B} \cdot \frac{1}{B}\right) = \frac{1}{B}$$

$$\sum_{i=1}^{n} f_{i} \mathbb{E}[|\tilde{f}_{i} - f_{i}|] = \sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j) = h(i)] \leq \left(\sum_{i=1}^{n} f_{i}\right)^{2} \cdot \frac{1}{B} = \frac{1}{B}$$

$$\mathbb{P}[h(j) = h(i)] = \sum_{k=1}^{B} \mathbb{P}[h(j) = h(i) = k]$$

$$= \sum_{k=1}^{B} \mathbb{P}[h(j) = k] \cdot \mathbb{P}[h(i) = k] = \sum_{k=1}^{B} \left(\frac{1}{B} \cdot \frac{1}{B}\right) = \frac{1}{B}$$

Count-min

Overview

- 1. Frequency estimation
- 2. Improving estimation with domain knowledge

Heavy hitters

Extremely long sequence of N elements from set U

Key insight:

Heavy hitters increase error of elements they collide with

Heavy hitters

Key insight:

Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:

- Suppose you know the top- B_r most frequent elements
- Reserve B_r buckets to count individual frequencies
- Use hash function to estimate other elements' frequencies

Range is $[B - B_r]$

Algorithm IDEAL COUNT-MIN

Extremely long sequence of N elements from set U

5 3 4 2 5 8 1 1 5 2 2 7 1 1 8 1 1 3 1 7 6 2 9 2 3 • • •

Heavy hitters: 1 and 2

$$counter_1 = 7$$

Bucket for HH 1

$$counter_2 = 5$$

Bucket for HH 2

$$counter_3 = 1$$

Bucket 1

$$counter_4 = 7$$

Bucket 2

$$counter_5 = 5$$

Bucket 3

Overview

- 1. Frequency estimation
- 2. Improving estimation with domain knowledge
 - i. Analysis of IDEAL COUNT-MIN

Model

D is a Zipfian distribution

Means elements can be sorted:

$$f_{i_1} \ge f_{i_2} \ge \dots \ge f_{i_n}$$
 with $f_{i_j} \propto \frac{1}{i_j}$

For ease of notation, assume $f_i \propto \frac{1}{i}$

Disclaimer: the paper has $f_i = \frac{1}{i'}$ but I think it's clearer if $f_i \propto \frac{1}{i}$ As a result, the results in these slides are slightly different, but equivalent, to those in the paper

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] = O\left(\frac{\log^2 \frac{n}{B_r}}{(B - B_r) \log^2 n}\right)$$

Example: if $B_r = \Theta(B) = \Theta(n)$

- Error of IDEAL COUNT-MIN = $O\left(\frac{1}{n \log^2 n}\right)$
- In contrast, error of single hash function = $O\left(\frac{1}{n}\right)$

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] = O\left(\frac{\log^2 \frac{n}{B_r}}{(B - B_r) \log^2 n}\right)$$

Proof idea: For $i \leq B_r$, $\tilde{f}_i = f_i$, so

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] = \sum_{i>B_r} f_i \mathbb{E}[|\tilde{f}_i - f_i|] \le \left(\sum_{i>B_r} f_i\right)^2 \cdot \frac{1}{B - B_r}$$

By same exact argument as before, except hash function maps to $[B - B_r]$, not [B]

IDEAL COUNT-MIN error

$$\sum_{i=1}^{n} f_i \mathbb{E}[|\tilde{f}_i - f_i|] \le \left(\sum_{i > B_r} f_i\right)^2 \cdot \frac{1}{B - B_r} = O\left(\left(\frac{\log \frac{n}{B_r}}{\log n}\right)^2 \cdot \frac{1}{B - B_r}\right)$$

Follows from harmonic number inequalities $H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$

Heavy hitters

Key insight:

Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:

• Suppose you know the top- B_r most frequent elements

Also study setting with only a noisy predictor of heavy elements

- E.g., a machine-learned model
- Similar analysis

Overview

Improve error of **frequency estimation** algorithms

- Use a priori knowledge of heaviest elements,
- Or **predict** which are heaviest

Paper mostly focuses on **experiments**Hopefully these slides help you understand the **theory** too!