Atomic Orbital Basis Set in Quantum Chemistry

Said Jalife
Duarte Group Seminar
Oxford University

The Schrödinger Equation

$$H\psi = E\psi$$

DFT methods

$$\left(-\frac{1}{2}\nabla^2 + V_{ks}(r)\right)\psi_j(\mathbf{r}) = \mathcal{E}_j\psi_j(\mathbf{r})$$

Ab initio methods

$$F_j \psi_j(\mathbf{r}) = \mathcal{E}_j \psi_j(\mathbf{r})$$

We need a basis set expansion to express the unkonwn molecular orbitals (or electron density) in terms of known functions

Linear Combination of Atomic Orbitals (LCAO)

Express MO's in terms of basis function conventionally called atomic orbitals.

$$\psi(\mathbf{r}) = \sum_{i=1}^{M} C_i \chi_i(\mathbf{r})$$
 $\psi(\mathbf{r}) = \text{Molecular}$

$$C_i = \text{Coefficients}$$

$$\chi_i(\mathbf{r}) = \text{atomic or}$$

$$\psi(\mathbf{r}) = \text{Molecular Orbital}$$

 $\chi_i(\mathbf{r}) = \text{atomic orbitals}$

Example:

$$\psi(\mathbf{r}) = c_1 \chi_1(r) + c_2 \chi_2(r) + c_3 \chi_3(r) + c_4 \chi_4(r) + c_5 \chi_5(r) + c_6 \chi_6(r) + c_7 \chi_7(r)$$

$$(H_3) \qquad (H_2) \qquad (O_3)$$

Basis functions: Slater-type and Gaussian-type orbitals

Spherical Slater-type Orbital

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = NY_{l,m}(\theta,\varphi)r^{n-1}e^{-\zeta r}$$

Spherical Gaussian-type Orbital

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = NY_{l,m}(\theta,\varphi)r^{2n-2-l}e^{-\zeta r^2}$$

Cartesian Gaussian-type Orbital $\chi_{\zeta,l_x,l_y,l_z}(x,y,z) = Nx^{l_x}y^{l_y}z^{l_z}e^{-\zeta r^2}$

Primitive Gaussian-type orbitals

Spherical Gaussian-type Orbital

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = NY_{l,m}(\theta,\varphi)r^{2n-2-l}e^{-\zeta r^2}$$

Cartesian Gaussian-type Orbital

$$\chi_{\zeta,l_x,l_y,l_z}(x,y,z) = Nx^{l_x}y^{l_y}z^{l_z}e^{-\zeta r^2}$$

The center is typically in the nuclear position, the sum of l_x , l_y and l_z defines the angular momentum (e.g., lx + ly + lz = 1 is a p-function), ζ is the exponent providing the radial extent of the function, and N is a normalization constant.

Each individual GTO is called a **primitive function**

s-funtions
$$e^{-\zeta r^2}$$
 $e^{-\zeta r^2}$ $e^{-\zeta r^2}$

p-funtions $ye^{-\zeta r^2}$ $Y_{1,-1}(\theta,\emptyset)e^{-\zeta r^2}$ $Y_{1,0}(\theta,\emptyset)e^{-\zeta r^2}$ $Y_{1,1}(\theta,\emptyset)e^{-\zeta r^2}$ $Y_{1,1}(\theta,\emptyset)e^{-\zeta r^2}$ $Y_{1,1}(\theta,\emptyset)e^{-\zeta r^2}$ $Y_{2,-2}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,-1}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,0}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,0}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,1}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,1}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,2}(\theta,\emptyset)r^2e^{-\zeta r^2}$ $Y_{2,2}(\theta,\emptyset)r^2e^{-\zeta r^2}$

Contraction of Gaussian-type Basis Sets

A fixed linear combination of GTOs is called a contracted function

The fact that many basis functions focus on describing the energetically important, but chemically unimportant, core electrons is the foundation for *contracted* basis sets. Avoid the computational effort on describing the chemically uninteresting.

$$\chi(\text{CGTO}) = \sum_{i}^{k} a_i \chi_i(\text{PGTO})$$

Notation to indicate contraction of basis set

 $(9s4p) \rightarrow [3s2p]$. Nine primitive s-functions, and four primitive p-functions are contracted to three s-functions, and two p-functions). $(10s4p1d/4s1p) \rightarrow [3s2p1d/2s1p]$. Second row elements before the slash and hydrogen after.

Explicit contraction are represented in brackets {621/31}. The first, second, and third contracted s-functions are constructed of six, two and one primitive functions, respectively, whereas two contracted p-functions contain three and one primitive functions.

Segmented vs General Contraction of Basis Sets

Segmented contraction

$$\chi_1(\text{CGTO}) = \sum_{i=1}^6 a_i \chi_i(\text{PGTO})$$

$$\chi_2(\text{CGTO}) = \sum_{i=7}^9 a_i \chi_i(\text{PGTO})$$

$$\chi_3(CGTO) = \chi_{10}(PGTO)$$

Each primitive function is used only in one contracted function

General contraction

$$\chi_1(\text{CGTO}) = \sum_{i=1}^{10} a_i \chi_i(\text{PGTO})$$

$$\chi_2(\text{CGTO}) = \sum_{i=1}^{10} b_i \chi_i(\text{PGTO})$$

$$\chi_3(\text{CGTO}) = \sum_{i=1}^{10} c_i \chi_i(\text{PGTO})$$

All primitive functions are used in all the contracted functions

Classification of Basis Sets

n-Zeta (nZ) notation

Single Zeta (SZ)

A minimum or single zeta (SZ) basis set employs only enough functions for a minimum description of the occupied orbitals of the isolated atom.

- H has a single s-function
- Second row atoms have two *s-functions* (1s and 2s) and one set of *p*-functions $(2p_x, 2p_y)$ and $2p_z$.

Double Zeta (DZ)

Doubling of all basis functions

- H has two s-function (1s and 1s')
- Second row atoms have four s-functions (1s, 1s', 2s and 2s') and two set of p-functions (2p and 2p').

Split valence basis

Double Zeta Valance (DZV)

Doubling only the valance basis functions

 Second row atoms have three s-functions (1s, 2s and 2s') and two set of p-functions (2p and 2p').

Triple Zeta (TZ), (TZV), Quaduple Zeta (QZ), (QZV) Quintuple Zeta (5Z),

Polarization and augmentation with diffuse functions

Double Zeta (DZP)

Adding a single set of polarization function (higher angular momentum functions). For instance, a set of p-functions on hydrogens and a set of d-functions on non-hydrogen p-block atoms.

If anions are considered or a property of interest dependes on the most loosely bound electrons, diffuse functions are needed, i.e, basis functions with small exponents.

Pople Basis Set

Example 6-31G Basis set. Split double valence basis set. For C atom, 6-31G basis set is a contraction of $(10s4p) \rightarrow [3s2p]$. It means, 6 PGTOs for the core orbitals. The valance orbitals split into two orbitals (2s and 2s', and 2p and 2p'), represented by 3 PGTOs and 1 PGTO, respectively.

The exponents and contraction coefficients for the s- and p-functions have been optimized by variational procedures at the HF level for atoms. $e^{-\zeta r^2}$

	Hydro	gen	Second row	elements	Third row elements				
Basis	Contracted	Primitive	Contracted	Primitive	Contracted	Primitive			
STO-3G	1s	3s	2s1p	6s3p	3s2p	9s6p			
3-21G	2s	3s	3s2p	6s3p	4s3p	9s6p			
6-31G(d,p)	2s1p	4s	3s2p1d	10s4p	4s3p1d	16s10p			
6-311G(2df,2pd)	3s2p1d	5s	4s3p2d1f	11s5p	6s4p2d1f ^a	$13s9p^a$			

Some basis sets in QM

Basis set composition for second row s- and p-block atoms

				s-Block Elements									p-Block Elements													
					Primi						Contr	acted					Primi						Contra	cted		
Quality	Label																									
SZ DZ	Pople Pople Jensen	STO-3G 3-21G pc-0	9 9 8	6 6 5					3 4 4	2 3 2					9 9 8	6 6 6					3 4 4	2 3 3				
DZP	Pople Ahlrichs Jorge	6-31G* Def2-SVP DZP	16 10 12	10 7 9	1 1 1				4 4 7	3 3 4	1 1 1				16 10 12	10 7 9	1 1 1				4 4 7	3 3 4	1 1 1			
	Sapporo Roos Dunning	DZP ANO-DZP cc-pVDZ	11 17 12	7 12 8	2 6 1				5 5 4	4 2 3	1 2 1				12 17 12	9 12 8	3 5 2				4 4 4	3 3 3	1 1 2			
TZP	Petersson Jensen Pople	2ZaP pc-1 6-311G(2df)	15 11 13	9 7 9	1	1			6 4 6	4 2 5	1	1			14 11 12	10 8 9	2 1 2	1			5 4 6	4 3 5	2 1 2	1		
121	Ahlrichs Jorge	Def2-TZVP TZP	14 13	8 10	3	1			5	4 5	3	1			14 13	9	3	1			5 8	5	3	1		
	Sapporo Roos Dunning	TZP ANO-TZP cc-pVTZ	15 17 15	9 12 10	4 6 2	1			7 6 5	6 3 4	3 2 2	1			13 17 15	9 12 9	4 5 3	2 4 1			5 5 5	4 4 4	2 2 3	1		
	Petersson Jensen	3Zap pc-2	17 13	12	2	1			6 5	5	2	1			17 13	13 10	3	1			6 5	5	3	1		
QZP	Ahlrichs Jorge	Def2-QZVP QZP	20 14	12 11 10	4 3 5	1 2	1		9 9 8	5 6 7	4 3 5	1 2 3	1		20 14 16	14 11 11	3	2 2 2	1		9	6 6 5	4 3 3	2	1 1 1	
	Sapporo Roos Dunning	QZP ANO-QZP cc-pVQZ	16 17 16	12 12	6	3 2 2	1		8 7 6	7 4 5	3 3	2	1		17 16	12 11	5 5 4	4	2 2 1		6 6 6	5 5	3 4	2 2 2	1	
570	Petersson Jensen	4ZaP pc-3	17	12	2	1			6	4	2	1			20 17	16 13	4	2	1		7 6	6 5	4	2	1	
5ZP	Jorge Dunning Petersson	5ZP cc-pV5Z 5ZaP	18 20	12 14	4	3	2	1	10 7	7 6	4	3	2	1	18 20 23	12 12 19	4 5 5	3 3 3	2 2 2	1 1 1	10 7 8	7 6 7	4 5 5	3 3 3	2 2 2	1 1 1
	Jensen	pc-4	21	15	3	2	1		7	5	3	2	1		21	16	6	3	2	1	7	6	6	3	2	1

Optimization Criteria for some basis set

		Atomic sp(d) Expone	nts	Polarization Exp	onents	Contraction			
Label	Name	Method	Target	Method	Target	Method ^a	Coefficients		
Pople	STO-3G	Fitted	Atoms	None		Segmented	Fitted		
	6-31G	HF optimized	Atoms	HF optimized	Molecules	Segmented	HF optimized		
		Identical s- and p-valence exponents		Averaged					
	6-311G	MP2 optimized	Atoms	MP2 optimized	Atoms	Segmented	MP2 optimized		
		Identical s- and p-valence exponents							
Karlsruhe	Def2-(S,TZ,QZ)VP	HF optimized	Atoms	From cc-pVXZ		Segmented	HF optimized		
Jorge	XZP	HF optimized for core	Atoms	MP2 optimized	Atoms	Segmented	HF optimized		
		MP2 optimized for valence							
Sapporo	XZP	HF optimized	Atoms	ANO fitted	Atom	Segmented	HF optimized		
Roos	ANO-XZP	HF optimized	Atoms	CISD optimized Even-tempered	Atoms	General	ANO coefficients		
Dunning	cc-pVXZ	HF optimized	Atoms	CISD optimized	Atoms	General	HF coefficients		
				Even-tempered					
Peterson	cc-pVXZ-F12	HF optimized	Atoms	MP2-F12 optimized	Molecules	General	HF coefficients		
				Even-tempered					
Petersson	nZaP	HF L6 optimized for core ^b	Atoms	MP2 optimized	Atoms	General	HF coefficients		
		MP2 even-tempered optimized for valence		Even-tempered					
Jensen	pc-n	BLYP optimized	Atoms	BLYP optimized	Molecules	General	BLYP coefficients		
	_	•		Averaged					
	pcseg-n	BLYP optimized	Atoms	BLYP optimized Averaged	Molecules	Segmented	BLYP optimized		

Basis set superposition error

The basis superposition error (BSSE) in polyatomic systems arises due to the localised nature of the LCAO basis set. In the dimer, basis functions from one molecule can help compensate for the basis set incompleteness on the other molecule

$$\Delta E_{complex} = E(AB)_{ab}^* - E(A)_a - E(A)_b$$

$$\Delta E_{CP} = E(A)_{ab}^* - E(A)_a^* - E(B)_{ab}^* - E(B)_b^*$$

References

Frank Jensen. Introduction to Computational Chemistry, 3rd Editon. 2017 by John Wiley & Sons, Ltd

Christopher J. Cramer. Essentials of Computational Chemistry, 3rd Editon. 2002 by John Wiley & Sons, Ltd

Frank Jensen. Atomic orbitals basis set. WIRES. 2013, 3, 273-295.

AlexandreL.Magalhaes. Gaussian-Type Orbitals versus Slater-Type Orbitals: A Comparison. *J. Chem. Educ.* 2014, 91, 12, 2124-2127.

Abby L. Parrill, and Kenny B. Lipkowitz. Reviews of Computational Chemistry. Chapter 3. 2017 by John Wiley & Sons, Ltd