Teoria da Computação Linguagens Regulares (Parte 2) Linguagens não Regulares - *Pumping Lemma*

Prof. Jefferson Magalhães de Morais

Linguagens que não são regulares

• Um resultado teórico importante advém da existência de linguagens que não são regulares, resultando em

Linguagens Regulares ⊂ Linguagens Livre de Contexto

- O Pumping Lemma (Lema do Bombeamento) é uma das formas mais usuais para se provar que determinadas linguagens não são regulares
 - Estabelece uma **propriedade** para linguagens regulares
 - A propriedade é sempre verdadeira para linguagens regulares
 - Caso contrário, a linguagem não é regular

- Teorema ("Pumping Lemma" para linguagens regulares): "Seja L um conjunto regular infinito. Existe uma constante n, dependente apenas de L, tal que, para quaisquer sentenças $w \in L$, com $|w| \geq n, w$ pode ser subdividida em três subcadeias x, y, z, de tal forma que w = xyz satisfazendo as seguintes condições
 - $|y| \ge 1$
 - $|xy| \le n$, ou seja, $1 \le |y| \le n$
 - $xy^iz \in L, \forall i \geq 0$ "

- O reconhecimento de qualquer cadeia $w \in L$, com $|w| \geq n$, sendo L aceita por um autômato finito M com n estados, ocorre percorrendo-se pelo menos dois estados idênticos entre n+1 configurações assumidas por M durante o reconhecimento dos primeiros n símbolos de w
- Exemplo: considere o autômato M que reconhece a

$$L(M) = b^* a^+ b((a|b)(ab^* a^+ b|ba^* b))^*$$

- Considere n=4 e a cadeia $w=abbbab, |w|\geq n, :: 6\geq 4$
- $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_3$ n+1 estados

- Considerando-se os n+1 estados inicialmente percorridos por $M(q_0,q_1,\ldots,q_n)$, é fato que pelo menos dois desses estados devem ser idênticos. Existem então duas possibilidades extremas a considerar
 - **1** A distância entre eles é a menor possível: $(q_i, a_k \dots a_m) \vdash (q_i, a_{k+1} \dots a_m), q_i = q_i, j \leq n$
 - **2** A distância entre eles é a maior possível: $(q_0, a_1 \dots a_m) \vdash^* (q_n, a_{n+1} \dots a_m), q_0 = q_n$
- Exemplo anterior: w = abbbab e $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_3$
 - Reescrevendo \hat{w} como xyz
 - x é a parte da cadeia que leva M à primeira ocorrência de um estado repetido
 - y é a parte da cadeia que leva M à sua segunda ocorrência, obedecendo:

$$\begin{aligned} |y| &\geq 1 \\ |xy| &\leq n \\ xy^i z &\in L, \forall i \geq 0 \end{aligned}$$

• Temos que x = a, y = bbb, e z = ab

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_3$$

- y leva o autômato de um estado q_i (anterior ao seu reconhecimento) para o mesmo estado $q_j=q_i$ (posterior ao seu reconhecimento)
- Esse fato caracteriza como um **ciclo** o caminho percorrido pelos estados de M, com os símbolos de y
- Por ser um ciclo, repetições arbitrárias do mesmo conduzem ao reconhecimento de sentenças também pertencentes à linguagem definida pelo autômato

A constante n

- Admitindo que exista um autômato finito mínimo que reconhece uma linguagem regular L, é natural que se considere o **número de estados** do correspondente autômato finito como o valor n inerente à linguagem L
- Note que, embora o teorema prove a existência da constante n, a sua aplicação em casos práticos não exige que se determine o valor dessa constante

Principal aplicação do Pumping Lemma

- Geralmente prova-se que uma linguagem n\u00e3o \u00e9 regular por contradi\u00e7\u00e3o
 - Admite-se inicialmente, por hipótese, que a linguagem seja regular
 - Através de manipulações, demonstra-se que a linguagem não exibe as propriedades descritas pelo Pumping Lemma
 - Conclui-se que a hipótese não é verdadeira e a linguagem não é regular
- Em termos práticos
 - Admite-se n como um parâmetro do problema, caso não seja conhecido
 - $oldsymbol{2}$ Escolhe-se uma $w \in L$ com o comprimento mínimo exigido
 - $oldsymbol{3}$ Manipula-se w buscando identificar outras cadeias conforme o Pumping Lemma, mas que violem a definição da linguagem
 - Havendo sucesso, conclui-se que a linguagem considerada n\u00e3o é regular

Exemplo 1 de linguagem que não é regular

• Seja $L=\{a^kb^k\mid k\geq 0\}$. Supondo que L seja uma linguagem regular, tome-se a sentença a^nb^n , onde n é a constante definida no $Pumping\ Lemma$ e $|a^nb^n|=2n, \dots 2n\geq n$ Segundo o $Pumping\ Lemma$, $a^nb^n=xyz$, tais que $|xy|\leq n, |y|\geq 1$

Logo,
$$y=a^i, 1\leq i\leq n$$
 e xyz pode ser reescrita como $a^{n-i}a^ib^n$

No entanto, nenhuma das seguintes cadeias pertencem a $\it L$

- $2 xyyz = a^{n-i}a^ia^ib^n = a^{n+i}b^n$

uma vez que as ocorrências do símbolo a estão desbalanceadas em relação às ocorrências dos símbolos b. Logo, L não é regular

Exemplo 2 de linguagem que não é regular

• Seja $L=\{0^k10^k\mid k\geq 1\}$ e uma sentença w de comprimento suficientemente longo pertencente a esta linguagem, $w=0\dots010\dots0$

Admite-se w=xyz, tem-se que $1\leq y\leq n$, onde n é a constante de L, e y pode assumir uma das cinco formas seguintes

- **1** y = 1
- **2** $y \in 0^+$
- $y \in 0^+1$
- $y \in 10^+$
- $y \in 0^+10^+$

Percebe-se que, se y=1, então $xy^0z\notin L$, pois faltará o "1"

Se $y \in 0^+$, então $xyyz \notin L$, pois haverá quantidades diferentes de "0"

Se $y \in 0^+1, y \in 10^+$, ou $y \in 0^+10^+$, então $xyyz \notin L$, uma vez que xyyz terá mais que um único "1"