KOSHA GUIDE E - 128 - 2012

광섬유 비상조명 시스템의 설치, 유지 및 사용에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 충북대학교 김두현 교수

o 제·개정 경과

- 2012년 10월 전기안전분야 제정위원회 심의

o 관련규격 및 자료

- BS 5266, Emergency lighting. Code of practice for design, installation, maintenance and use of optical fibre systems

o 관련법령·고시 등

- 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지) 제1절 (전기기계·기구 등으로 인한 위험방지), 제3절(전기작업에 대한 위험방지)

o 기술지침 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 11월 29일

제 정 자 : 한국산업안전보건공단 이사장

KOSHA GUIDE E - 128 - 2012

광섬유 비상조명 시스템의 설치, 유지 및 사용에 관한 기술지침

1. 목적

이 기술지침은 광섬유 비상조명 시스템에 대하여 필요한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지술지침은 광섬유 비상조명 시스템의 설치, 유지 및 사용에 대하여 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "금속외피(Cladding)"라 함은 광섬유의 코어를 둘러싼 유전체 소재를 말한다.
 - (나) "코어(Core)"라 함은 금속외피보다 높은 굴절률을 가지며, 대부분의 광전력이 전송되는 광섬유 중앙부를 말한다.
 - (다) "광 가이드(Light guide)"라 함은 커넥터로 마감되는 케이블 타입으로 피복된 광섬유를 말한다.
 - (라) "광원(Light source)"이라 함은 가시광선을 생성하고 이를 광가이드에 결합하는 방법을 말한다.
 - (마) "광섬유(Optical fiber)"라 함은 유전체 물질로 만들어진 필라멘트 모양의

E - 128 - 2012

광 도파관을 말한다.

- (바) "광섬유 시스템(Optical fiber system)"이라 함은 광원, 방출단 부착 배치 및 상호 결합된 커넥터 완비 광섬유 광가이드의 직렬조합을 말한다.
- (사) "굴절률(Refractive index)"이라 함은 어떤 매질의 한 지점에서, 주어진 한 방향으로, 그 방향으로 전파되는 정현파의 위상속도에 대한 진공상태 에서의 광의 속도간의 비를 말한다.
- (아) "균조도(Uniformity ratio of illuminance)"라 함은 어떤 면위에 존재하는 조도값 중 한정된 범위에서 평균 조도값에 대한 최소 조도값을 말한다.
- (2) 그 밖에 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 조명시설의 설계

- (1) 환경조건에 대한 일반사항
 - (가) 구성부품들이 다른 환경에서 사용할 수 있는 즉, 폭발성 분위기에서와 같은 특정 환경에서의 사용에 대한 적합성은 제조자에 의하여 점검되어 야 한다.
 - (나) 광섬유 비상조명 시스템은 특별한 경우를 제외하고 다음과 같은 조건에 서 사용될 수 있도록 설계되어야 한다. 다음의 조건을 벗어나서 사용될 경우에는 제조자와 협의하여야 한다.
 - ① 실내에서의 적용 : 온도 5 ℃ ~ 60 ℃ 및 상대습도 40 %
 - ② 실외에서의 적용 : 온도 -10 ℃ ~ 70 ℃ 및 상대습도 80 %
- (2) 광섬유 비상조명시스템
 - (가) 부분설계

E - 128 - 2012

- ① 제조자가 제공한 조명 넓이·높이에 관한 데이터의 계산이나 사용에 따른 최종 조도 설계만을 필요로 하는 한정된 광성능을 제공하기 위하여 제조자에 의해 선정된 설계 및 제조 장비에 대한 항목을 포함한다.
- ② 광섬유 비상조명 시스템은 최소한의 설계 입력을 필요로 하고, 기존의 독립형 조명 시스템과 유사하며 일반적으로 간단한 적용에 적합하다.

(나) 주문설계

- ① 특별 적용의 요건에 적합하도록 설계되고 장비항목들도 주문요건에 부합되게 선정되거나 제조된다.
- ② 이 시스템을 구현하기 위해 상세한 설계 입력을 필요로 하고, 일반적으로 복잡하거나 어려운 적용에 적합하다.
- ③ 시스템 제조자는 설치자에게 설계와 설치에 관한 조언을 제공해야 한다.

(3) 조도

- (가) 사용지점에서 요구되는 조도는 부분설계 시스템 또는 주문설계 시스템을 위하여 계산된다.
 - ① 부분설계 시스템은 시스템의 제조자가 제공한 조명 넓이·높이에 데이터 및 기타 정보를 사용한다.
 - ② 주문설계 시스템은 <그림 1>에서와 같이 광가이드 제조자에 의해 제공된 데이터를 보완하고, 조도 축점 계산법에 의한 분광분포와 연계하여점광원으로써 광가이드로부터의 출력을 고려한다.

<그림 1> 광가이드 출력

E - 128 - 2012

(나) 각각의 적용은 가장 적합한 시스템을 결정하기 위해 개별적으로 평가되어야 한다.

(4) 균조도

- (가) 광가이드 말단부에서 방출되는 광은 광가이드 축에 수직이며 원추 형태로서 그 축에 대해 명확하고 일정한 각도를 유지한다. 이것은 수광각 (acceptance angle)(θ)이라 하고 <그림 1>에 제시하고 있다.
- (나) 수광각의 크기는 섬유 크기 및 조성에 따라 다르다.
- (다) 원추형태의 출력은 작업면에 원형모양의 분포를 만들며, 인접한 광가이 드로부터의 출력은 요구되는 균조도가 이루어지도록 배치한다.

(5) 눈부심

수직하방을 향해 설치된 광섬유 광가이드 말단부로부터 광이 방출되는 각도에서 발생되며, 광가이드가 다른 방향으로 설치되거나 반사면이 존재하는 곳에서는 주의를 해야 한다.

(6) 색상

- (가) 조도는 적절한 연색성 평가지수(Colour rendering index, Ra)를 갖는 램 프에 의해 제공되어야 한다.
- (나) 광섬유 광가이드의 활성코어를 형성하기 위해 사용되는 물질은 일반적으로 투사광의 구성 파장을 다르게 감쇠시키는 데, 예를 들어 백색광의입력은 녹색광의 출력으로 변화시키는 경향이 있다. 이러한 색변화는비상조명의 효율성에 손상을 줄 가능성은 낮은 데 반하여, 지나치게 뚜렷하다면 싸늘한 분위기를 주는 심리적인 효과를 가질 수 있다.
- (다) 인접한 출력부 말단간의 색차는 시각적으로 받아들일 수 없다.
- (마) 일반적으로 특정크기의 광가이드 길이에 대한 실질적인 한계는 색변화

E - 128 - 2012

효과에 의해 정해진다. 수용가능한 색 변화량을 결정하기 위한 평가는 각각 적용한다.

- 주 1. 광가이드의 방출단의 색상현시는 유지보수된 시스템에서 신중하게 고려되어야 한다.
- 주 2. 일반조명의 전체 또는 일부를 제공하기 위해 사용되는 광섬유 비상조명 시스템이 사용되는 장소에서는 작업면에서의 연색성(조명이 물체의 색상에 영향을 미치는 현상)이 광가이드의 색변화에 의해 영향을 받을 수 있다.
- (7) 광가이드 방출단의 공간 및 설치 높이
 - (가) 대피시설에는 신뢰할 수 있는 조도의 공급이 필요하다.
 - (나) 고전력 광출력을 공급하도록 광섬유 광가이드가 사용될 수 있지만, 조도를 고르게 분포시키기 위해서는 다수의 저전력 광출력의 광가이드를 사용하는 것이 더 낫다.
 - (다) 방출단의 설치높이는 중요하지 않으며 필요한 조도의 적용, 사용면에 따른 물리적인 특성, 광섬유 시스템으로 구성된 기타 사용(예를 들면, 길 안내)에 따라 결정된다.
 - (라) 용도에 적합하게 선택되어야 한다.
 - (마) 광섬유 기술은 동일한 필수조명조건이 만족된다면, 임의의 방향으로 적 용가능한 시스템을 만들 수 있다.
 - (마) 서로 다른 광원의 방출단은 광원의 고장 또는 광가이드 고장에 의한 손 실이 비상조명 시스템의 설계 목적을 충족하기 위한 시스템 성능에 영 향을 주지 않도록 배치해야 한다.

5. 운용 평가

광섬유 시스템을 사용한 비상조명 시스템의 설계 시에는 다음 사항을 고려해야

E - 128 - 2012

한다.

(1) 시스템 목적

시스템이 제한된 장소의 대피시설 조명인지, 한정되지 않은 개방장소의 대 피시설 조명인지 등의 설치 목적을 설정한다.

(2) 시스템 종류

유지보수 또는 비유지보수 시스템이 필요한지 여부를 결정한다.

(3) 비상전원공급의 종류

중앙 전원이 사용될지 독립형 축전지 전원이 사용될지 여부를 결정한다.

(4) 램프 배치

단일램프, 듀얼램프 또는 유도등 및 대기표시등이 사용될 수 있는지를 결정한다.

(5) 구조

대피장소에서의 모든 위험요소와 신호의 위치 등을 설정한다.

(6) 건물 구조

대피장소의 넓이, 설치 높이, 설치면의 구조와 재료, 방화구획 등의 세부 사항을 설정한다.

(7) 경로

기존의 경로나 제안된 경로에 광가이드를 위한 경로를 설정한다.

(8) 광조명 예산

필요한 조도, 시스템 손실 등을 설정한다.

(9) 물리적 위험요소

설치 중이나 설치 후에 광가이드의 손상이 발생될 잠재요인을 확인한다.

(10) 화재 위험성

장비의 위치 및 광가이드 경로에 대하여 화재위험성이 낮은 장소를 설정한

E - 128 - 2012

다(9.4의(2) 참조). 또한 시스템의 부품에 화재로 인한 손상을 방지하기 위해 추가적인 주의가 필요한 장소인지를 확인한다.

(11) 환경

광원, 광가이드 말단부에 대한 잠재적인 환경적 위험요소들을 확인하고, 보호를 위한 평가가 필요하다.

(12) 유지보수

접근이 용이한 건물구조, 필요한 마감재, 향후 시스템 구성부품의 유지보수 계획을 수립한다.

(13) 가용수명

과잉 설계를 피하기 위해 시스템이 요구하는 가용수명을 설정한다.

(14) 진동

작동 중인 구성부품의 진동 수준이 손상으로부터 충분한 예방책이 취해질 수 있도록 설정한다. 이것은 화재상태에 있는 광가이드의 필요한 성능을 설 정할 때 중요하다.

(15) 안전

건물 구내 또는 건축설비에 내재한 특정 위험요소와 장비의 차후 보전을 확인하다.

7. 기술 명세서

시스템을 위한 기술 명세서는 시스템의 구성부품들을 적정하게 선택할 수 있도록 다음 사항을 명시해야 한다.

- (1) 물리적 매개 변수(광원램프의 종류와 전력, 각 콘센트에서의 광가이드 크기 등)
- (2) 건설 요구사항(광가이드를 위한 외장 또는 날씨/화학적 영향에 견디는 커버, 방출단 부착 재료 등)

E - 128 - 2012

- (3) 광학적 요구사항(광가이드의 광출력, 방출단 초점부의 성능 등)
- (4) 화재 성능 요구 사항

8. 작업계획서의 범위

일단 운용평가의 수행, 설비 설계의 완성 그리고 기술 명세서와 시스템 부품이 선정되면, 설계자는 다음 사항을 명확하게 하기 위해 작업계획서를 준비한다.

- (1) 필요한 모든 장비와 특별한 재료의 위치를 확인한다.
- (2) 광가이드 경로 접근 및 화재방벽과 같은 필요한 건물/건축설비 공사를 확인한다.
- (3) 경로에 요구되는 전선관, 덕트 배관, 케이블 트레이작업 등 기계적 보호방법을 명시한다.
- (4) 시스템 부품이 어떻게 설치되고, 굴곡 반경, 절단 방법 등을 설정하는지에 대한 설명을 제공한다. 광가이드를 설치하는 동안 취해지고, 운영평가 동안 확인된 특별한 예방조치를 자세히 열거해야 한다.
- (5) 현재 지침의 권고가 충족되도록 하기 위하여 시험과 검사절차의 세부사항을 제공한다.

9. 부품선택

9.1 광섬유 시스템의 요소

광섬유 비상 조명 시스템은 전력원, 광원, 하나 이상의 광섬유 광가이드 및 방출단 부착 배치 등 4 가지 기본 요소로 구성되어 있다.

E - 128 - 2012

9.2 전력원

(1) 일반사항

- (가) 비상조명 시스템의 광원은 잘 작동하는 확실한 전력원을 필요로 하며, 다음과 같이 분류한다.
 - ① 독립형 축전지
 - ② 하나 이상의 중앙 축전지
 - ③ 다른 적절한 전력원
- (나) 축전지 전원을 선택할 경우 구내를 운영하는 사용자의 방법과 비상조명 시스템의 시험 및 유지보수를 위해 그 운용방법이 가능한 배치를 고려 한다.
- (다) 가능하다면 항상 축전지 선택은 사용자와 협의하여야 하며, 사용자가 적 용함에 가장 적절한 선택이 되도록 옵션을 평가한다.
- (라) 축전지 배치를 평가할 경우 9.2(2) ~ 9.2(4)의 주어진 세부사항을 고려 한다.

(2) 독립형 축전지

- (가) 항상 구내에 많은 사람들로 점유되어 있는 경우, 화학공장 및 병원과 같이 높은 위험성이 있는 경우, 또는 축전지 고장으로 인한 비상조명설비의 총체적 고장이 위험을 초래하는 경우에는 독립형 축전지 광원의 사용이 중앙 축전지 시스템에 비하여 유용하다.
- (나) 시험 및 유지보수를 원활히 하기 위해 독립형 축전지 광원을 사용하는 설비를 재분할할 수 있다.
- (다) 임시 배치는 시험과 유지보수, 후속 축전지 재충전 기간 동안에 설비의 작은 구획에서 더 쉽게 이루어진다.
- (라) 독립형 축전지 광원의 손실은 비상조명의 최소 손실만을 발생시킨다.

E - 128 - 2012

(마) 시험 및 유지보수를 위한 독립형 축전지 광원은 중앙 축전지 시스템과 비교하여 시험 및 유지보수 프로그램 수행에 요구되는 시간이 길고, 축 전지 수명이 상대적으로 짧다는 것을 고려하여야 한다.

(3) 단일 중앙 축전지

- (가) 휴일과 같이 건축물내 사람이 없거나 시험·유지보수기간 또는 축전지 교체에 따른 재충전기간 등 비상조명에 대한 사용이 최소화 되는 장소에는 중앙 축전지 시스템을 배치하는 것이 바람직하다.
- (나) 배전계통을 통해 조명설비를 구성하는 모든 광원에 전원을 공급하기 위한 중앙 축전지를 배치한다.
- (다) 중앙 축전지는 시험 및 유지 보수를 단순화 할 수 있지만, 축전지의 고 장은 비상 조명의 완전한 손실을 초래하며, 이 사실은 시험 및 유지 보 수의 혜택을 상쇄시킨다.

(4) 다중 중앙 축전지

- (가) 중앙 축전지 시스템의 이점 뿐 아니라 그 시스템을 재분할하는 능력을 갖고 있다. 이것은 각 층으로 나눌 수 있는 구내에서 유용하다.
- (나) 중앙 축전지 중 하나의 고장은 단일 중앙 축전지 시스템의 고장에 따른 손실보다 작지만, 이 손실은 독립형 축전지 광원 시스템에서의 축전지 고장으로 인한 손실보다 더 크다.

9.3 광원

(1) 일반사항

- (가) 광원은 광섬유 비상조명시스템에서 유일한 능동소자이며, 다른 모든 부품은 수동소자이다.
- (나) 광원은 방화구획 내에 위치하거나 또는 다른 장소. 예를 들어 몇몇 방화

E - 128 - 2012

구획의 중심부에 위치한다. 광원이 방화구획에 존재하지 않을 경우 화재 발생으로 인한 광원의 손실을 막기 위한 추가적인 대책이 가능하다.

- (다) 광원의 위치는 유지보수를 위하여 접근이 용이하고 장비수명을 단축하는 것을 방지하기 위해 폐열이 제거될 수 있도록 환기가 잘되는 곳이어야 한다. 그리고 광원은 화재위험이 낮은 곳에 위치해야 한다.
- (라) 각각의 방화구획에는 하나 이상의 광원을 갖추어야 한다.
- (마) 전기회로 고장 시에도 어느 하나의 광원에는 전원이 공급될 수 있도록 하기 위해 전기회로를 복수로 갖추도록 한다.
- (바) 광원에서 가능한 전등배치 형태는 단일램프, 듀얼램프, 유도등 및 대기 표시등이 있다.
- (사) 광원은 최상의 유지보수를 필요로 하는 부품이다.
- (아) 모든 조명배치에 있어서 사용된 램프의 종류는 효과적인 비상조명시스 템의 제공에 있어 매우 중요하며, 필요한 유지보수의 수준을 결정한다.
- (자) 광가이드 수만큼 광원이 위치할 때 주의를 기울여야 한다.
- (차) 광원 손실에 의한 비상조명의 손실 가능성은 전기계통에서 단일램프의 손실에 의한 비상조명의 손실보다 많음을 고려하여야 한다.

(2) 램프와 광원 선택

- (가) 램프의 보수와 교체를 고려한다면, 여러 종류의 램프를 사용하는 것보다. 단일형태의 램프를 사용하는 것이 더 바람직하다.
- (나) 유지보수 시스템에서 광원의 계획된 유지보수와 주기적인 램프교체를 통해 비상조명시스템은 최적의 성능을 유지해야 한다.
- (다) 단일램프 광원을 사용하는 곳, 특히 유지보수가 이루어지지 않는 시스템

E - 128 - 2012

에서, 램프의 무작위 고장은 다른 시스템에 비해 강화된 유지보수 요구조건을 필요로 한다.

- (라) 광원을 선정하는 경우, 설계자는 시스템의 유지보수를 고려하여야 한다.
- (마) 램프 교체 등 유지보수를 하기 위해 요구되는 기술수준은 사용자가 이 해할수 있는 수준인지를 검토한다.
- (바) 능동적인 램프교체 또는 광원수리를 위하여 필요한 설비를 주의깊게 고려한다.
- (사) 광원을 선택할 경우 물리적 제약은 광원의 선택에 영향을 미친다. 예를 들어, 방화구획이나 화재위험성이 낮은 장소에 장비를 위치하는 경우에는 다른 램프보다 선호하는 하나의 특정램프의 광원사용이 가능하다.

(3) 단일램프 배치

- (가) 단일램프와 제어장치만을 포함하는 단순한 배치이다
- (나) 단일램프를 배치하는 경우, 필요한 광원의 수는 램프 고장이 발생될 경우를 대비하여 시스템의 건전성을 보장하기 위해 다른 램프 배치보다 더 많아야 한다.
- (다) 램프의 손실은 관련 광원에 의해 공급되는 광가이드가 제공하는 모든 비상조명 시스템의 손실을 초래한다.

(4) 듀얼램프 배치

- (가) 듀얼램프 배치는 램프출력을 광학적으로 결합시킨다.
- (나) 두 개의 램프가 동시에 고장이 발생할 가능성이 낮기 때문에 시스템의 신뢰성은 단일램프를 설치하는 경우보다 높다. 그러나 다른 램프에 영 향을 미치는 램프의 고장 가능성은 존재하며 장비를 선택함에 있어 고 려되어야 한다.

E - 128 - 2012

- (다) 두 개의 램프를 포함하여 제어장치 및 광학반사시스템을 포함하고 있으므로 듀얼램프 배치의 광원은 단일램프광원에 비하여 더 크다.
- (라) 듀얼램프를 배치하는 경우에는 단일램프의 고장에 따른 영향을 적게 받는다.
- (마) 광가이드의 분기에 의한 광결합을 사용하는 경우 두 개의 단일램프 광원을 듀얼램프 광원과 동등하게 고려할 수 있다. 이러한 배치는 부품이 격리된 공간에 있고 서로 고장을 발생시키는 데 영향을 줄 가능성이 낮기 때문에 시스템 신뢰성을 향상시킨다.

(5) 유도등 및 대기표시등 배치

- (가) 단일과 듀얼램프 방식의 혼합으로 두 개의 램프를 설치할 수 있지만, 사용 시에는 하나만 작동이 되도록 하여야 한다.
- (나) 램프의 출력은 반사시스템 또는 광가이드 분기에 의해 광학적으로 결합 된다.
- (다) 센서는 자동적으로 유도등의 이상 유무를 감시하고 유도등의 고장 시 대기표시등을 자동적으로 동작하게 하여야 한다.
- (라) 광원은 램프의 열화현상을 예방할 수 있도록 유도등과 대기표시등 중에 서 하나에만 전원이 공급하도록 전기회로를 구성하여야 한다.
- (마) 램프 유형에 대해 배치는 최소한의 광원을 요구하지만, 감지 및 절환 회 로에 대한 주의깊은 고려가 필요하다.
- (바) 비상조명의 공급은 싱글램프의 손상에 영향을 받으면 안 된다.
- (사) 두 개의 램프를 포함하여 제어장치 및 광학반사시스템을 포함하고 있으므로 듀얼램프 배치의 광원은 단일램프광원에 비하여 더 크다.
- (아) 광가이드의 분기에 의한 광결합을 사용하는 경우에, 적절한 감지 및 절

E - 128 - 2012

환회로에 의해 제어되는 두 개의 단일램프 광원을 유도등과 대기표시등을 구성하기 위해 사용할 수 있다.

9.4 광가이드

(1) 광학적 성능

- (가) 광가이드는 광원에서 생성된 빛을 이용지점으로 전달한다. 광가이드를 구성하는 섬유의 소재에 따라 전송에서 계속적인 광손실과 색변화가 정 해지는 데 일반적으로 소재가 순수할수록 광손실과 색변화는 낮아진다.
- (나) 주문설계 시스템의 경우에는 최적선택이 이루어지도록 설계자가 이용가 능한 섬유소재의 명세서를 조사하는 것이 바람직하다.
- (다) 빛은 원추형태로 광섬유 광가이드에 의해 포집되고 방출된다.
- (라) 개개 섬유의 크기, 개개 섬유의 굴절률, 그리고 활동 코어와 금속외피의 굴절률은 광가이드로 들어오고 나가는 광의 양과 그것이 포집되고 방출되는 각도(수광각)를 결정한다. 가시광선을 전송하는 광가이드에 사용되는 광섬유는 통상적으로 60° ~ 80°의 수광각을 갖고 있으며, 일반적으로 수광각은 섬유지름이 증가함에 따라 증가한다.
- (마) 수광각은 광성능과 연성을 포함한 소재의 특성 사이에서 결정된다.
 - ① 섬유가 너무 크면 섬유는 뻣뻣해지고 광가이드를 만드는 동안이나 설치하는 과정에 부러지기 쉽다.
 - ② 짧은 직선의 광가이드를 적용할 경우 뻣뻣한 섬유가 유리하며, 설치할 때마다 가장 적합한 섬유의 크기를 결정하기 위해 평가되어야 한다.
- (바) 일반적으로 수광각이 클수록 광가이드에 의해 포집되는 빛의 양이 많아 지며, 방출되는 빛의 원추도 더 커진다. 큰 출력의 원추는 비록 얻고자 하는 조도가 감소하여도 최소 수량의 방출단으로 밝힐 수 있는 지역을 크게 한다.
- (사) 주어진 설치 높이와 발광출력에 대하여 수광각이 10° 증가할 때마다 조

E - 128 - 2012

도는 30 %씩 감소한다. 반대로 수광각이 10° 감소할 때마다 조도는 30 %씩 증가한다. 넓은 각의 출력은 요구되는 방출단의 수를 줄일 수 있으므로, 넓은 지역을 밝히는데 유용하다. 좁은 각의 출력은 화재경보기 발신부 및 화재경보신호 등과 같이 고밀도 빔이 요구되는 장소에서 그 특징을 강조하는데 유용하게 쓰인다.

- (아) 부분설계 시스템은 동일한 수광각을 갖는 광가이드를 사용하고, 주문설계 시스템은 적용에 적합한 수광각을 갖는 광가이드를 사용한다. 즉, 하나 이상의 수광각은 요구되는 조명효과를 얻기 위해 설비에 사용된다.
- (자) 광가이드 수광각 만으로 요구되는 조명효과를 얻을 수 없는 경우 또는 설비 전체를 통해 단일 수광각을 사용하는 것이 바람직한 경우에는 빔 조정기를 고려하여야 한다. 이것은 렌즈나 거울의 분산 또는 초점을 맞추는 시스템의 형태를 취한다.
- (차) 빔 조정기의 사용을 고려하는 경우, 고정된 광학적 특성을 갖춘 장치는 설계된 성능이 비상조명시스템을 시운전한 다음에 변경되지 않아야 한다. 조절 가능한 빔 조정기를 사용하는 경우 시운전 이후에 조정치를 고정하는 수단을 갖추어야 한다. 또한 설치면에 진동이 발생하는 경우 조정치의 변경을 방지할 수 있는 추가적인 대책이 필요하다.

(2) 화재성능

- (가) 전기 비상조명 시스템에서 모든 조명기구의 손실과 단락을 방지하기 위하여 케이블은 화재 손상에 대한 내저항성을 갖추어야 한다.
- (나) 내화성은 하나의 광가이드 파괴가 광원에 부착된 다른 광가이드의 작동에 영향을 미치지 않는 것처럼 모든 광섬유 시스템에 필수적인 것은 아니다.
- (다) 하나의 광원과 그 광원이 공급하는 모든 광가이드가 동일 방화구획에 위치한 경우에는 내저항성을 필요로 하지 않는다. 그러나 광원과 광가이드는 구획 내에서 가장 낮은 화재위험장소에 위치하고 경로를 정한다.

E - 128 - 2012

- (라) 광원이 하나 이상의 화재구획에 사용되는 경우 또는 광원이 중심부에 위치하고 광가이드가 광원이 공급하는 경로 상에 있는 하나 이상의 화재구획을 통과하는 경우, 화재 위험성이 낮은 광가이드 경로를 이용할 수 없는 장소에는 내화성이 필요하다. 이러한 내화성은 광가이드에 내재시키거나 동등한 보호수단을 외부에 적용해야 한다.
- (마) 화재 시 발생되는 열로 인해 섬유가 녹는 것을 막기 위해 광가이드에 내화성이 요구된다.
- (바) 광섬유에 사용되는 유리소재는 약 400 ℃에서 물성이 약해지고, 약 450℃에서 빛의 전달이 중단되므로 사용되는 광가이드와 관련된 온도는 모든 경우에 점검해야 한다.

(3) 습기저항

수분은 광섬유에 장기적 손상을 끼치는 잠재적인 원인이 되므로 설비의 수명주 기 동안에 심각한 손상이 발생될 가능성이 있는 장소에 설치할 경우 수분을 방 지할 수 있는 격벽을 갖춘 광가이드를 사용하여야 한다.

주 : 물이 흐르거나 고일 것이 예상되는 장소에 광가이드를 설치할 경우 습기의 침입 에 대해 추가적인 보호수단을 제공한다.

9.5 방출단 부착 배치

- (1) 방출단 부착 배치의 목적
 - (가) 설치면에 광가이드 말단부를 단단히 고정
 - (나) 최초 설계의도에 따라 광을 지속적으로 분배
 - (다) 물리적 위험요소로부터 광가이드 말단부에 보호장치를 제공
 - (라) 환경오염으로부터 광가이드 말단부를 보호

E - 128 - 2012

(마) 위의 기능을 달성함과 동시에 미적으로 수용가능한 방법을 제공

(2) 부착면

- (가) 설비는 다양한 부착면에 적합하도록 부착 배치의 형태를 적절하게 조정 할 필요가 있다.
- (나) 부착면 아래의 설비 또는 부착면과 직접 접촉하는 설비를 고려하여 부 착 배치를 적절하게 설계한다.

(3) 고정

- (가) 부착 배치를 고정하는 방법은 여러 가지이며 부착면의 다양한 형태에 따라 달라진다. 천정타일과 같은 통상의 부착면에 선택할 수 있는 우수 한 방법은 다양하며 가장 적절한 방법을 정하기 위해서는 운용평가를 세밀하게 하는 것이 필요하다.
- (나) 선택된 고정방식은 부착면에서 종종 발생하는 진동이나 가벼운 진동에 악영향을 받아서는 안 된다. 주기적인 진동이나 지속적인 진동이 심한 장소에는 추가적인 고정 방호조치를 고려한다.
- (다) 운용평가를 통해 부착 배치가 시운전 이후에 손상을 받을 수 있는 경우 에는 추가적인 고정방호조치를 고려하여야 한다.
- (라) 광가이드 방출단 또는 부착 배치가 작업장에서와 같이 예기치 않은 충격을 받을 수 있거나, 고의적인 파손 및 파괴가 예상되는 상황에서는 충격을 피할 수 있는 방법과 더불어 추가적인 고정방법이나 강화된 고정방법을 고려하여야 한다.