

Machine Learning with Python-From Linear Models to Deep Learning

Discussion Course <u>Progress</u> **Dates Resources**

* Course / Unit 1. Linear Classifiers and Gene... / Lecture 3 Hinge loss, Margin b

3. Margin Boundary

 \square Bookmark this page

Exercises due Feb 15, 2023 08:59 -03 Completed

Margin Boundary

Video

♣ Download video file

Transcripts

- ♣ Download SubRip (.srt) file
- **▲** Download Text (.txt) file

The **decision boundary** is the set of points $oldsymbol{x}$ which satisfy

$$\theta \cdot x + \theta_0 = 0.$$

The **Margin Boundary** is the set of points $oldsymbol{x}$ which satisfy

$$heta \cdot x + heta_0 = \pm 1.$$

So, the distance from the decision boundary to the margin boundary is $\frac{1}{||\theta||}$.

Margin Boundary 1

The m	argin boundaries move	closer to the decision boundary
The m	nargin boundaries move	further away from the decision boundary
The m	nargin boundaries conve	erge to a certain location no matter what
×	Previous	Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

Do Not Sell My Personal Information

Connect

Blog

Contact Us

Help Center

Security

Media Kit