Nome:_____ RA:____

A lista deve ser entregue até o dia 29/08/2018

1 - Considere o amplificador *nMOS* da Figura 1 com as seguintes características:

 $Vt = 0.5 \text{ V}, \text{ k'}_n(W/L) = 80 \text{ } \mu\text{A/V}^2, V_{GS} = 4 \text{ V}, V_{DD} = 12 \text{ V e } R_D = 8 \text{ k}Ω.$ Calcule:

- a) i_D , v_D (cc)
- b) Valor de g_m no ponto de polarização;
- c) Ganho de tensão (A_v) ;
- d) Se o ganho de tensão (item c) diminuir em 10% devido ao efeito de modulação de canal, quais os valores de r_0 e $|V_A|$ que provocaria essa diminuição?

Figura 1 – Amplificador nMOS

2 - Usando o teorema de Miller, estime a capacitância de entrada e a capacitância de saída do circuito da figura 2. Use $\lambda > 0$ (inclusive para a fonte de corrente) e desconsidere qualquer outra capacitância.

Figura 2 – Amplificador Fonte Comum.

- 3 Explique e demonstre matematicamente porque o amplificador porta comum e o dreno comum são conhecidos como seguidor de corrente e seguidor de tensão, respectivamente.
- 4 Apresente o modelo de pequenos sinais e determine a função de transferência e as constantes de tempo do amplificador porta comum da figura 4. Faça um rascunho do módulo da resposta em frequência do amplificador (gráfico) indicando as frequências de corte aproximadas.

Considere:

Figura 3 – Amplificador porta comum