Thin and Fat Full Rank Matrices

Answer the following questions without using the SVD. Instead, exploit the orthogonality relation between the four fundamental subspaces and the dimension formula.

- 1. What is the orthogonal complement of $\{0\}$ and \mathbb{R}^n in \mathbb{R}^n , respectively?
- 2. Give an example for a matrix $C \in \mathbb{R}^{m \times n}$ with nullity(C) = 0 (injective).
 - a) What do we know about the order relation between m and n? (which one is greater or equal than the other?)
 - b) What do we know about the columns of C?
 - c) Let $b \in \text{Im}(C)$. Can we find two distinct $x_1 \neq x_2 \in \mathbb{R}^n$ such that $Cx_1 = b = Cx_2$? Explain your answer.
 - d) What do we know about the matrix $C^{\top}C \in \mathbb{R}^{n \times n}$?
- 3. Give an example for a matrix $A \in \mathbb{R}^{m \times n}$ with n > m and $\operatorname{rank}(A) < m$.
- 4. Give an example for a matrix $R \in \mathbb{R}^{m \times n}$ with rank(R) = m (surjective).
 - a) What do we know about the order relation between m and n?
 - b) What do we know about the rows of R?
 - c) What do we know about the matrix $RR^{\top} \in \mathbb{R}^{m \times m}$?
 - d) Let $b \in \mathbb{R}^m$. Can we find an $x \in \mathbb{R}^n$ such that Rx = b? Explain your answer and give an example for your matrix.
- 5. Give an an example for a matrix $A \in \mathbb{R}^{n \times n}$ with rank(A) = n (invertible).
 - a) What do we know about the dimensions of $\ker(A)$, $\ker(A^{\top})$ and $\operatorname{Im}(A^{\top})$?
 - b) What do we know about the columns and rows of A?
 - c) Let $b \in \mathbb{R}^n$. Can we find an *unique* $x \in \mathbb{R}^n$ such that Ax = b? Explain your answer and give an example for your matrix.
- 6. **Bonus*:** Give an an example for a matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$ and $\operatorname{nullity}(A) \neq \operatorname{nullity}(A^{\top})$.

Solution:

Let us recall the dimension formula here

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A),$$

$$m = \operatorname{rank}(A^{\top}) + \operatorname{nullity}(A^{\top}).$$

1. We have

$$\{0\}^{\perp} = \{x \in \mathbb{R}^n : x^{\top}v = 0 \ \forall v \in \{0\}\} = \{x \in \mathbb{R}^n : x^{\top}0 = 0\} = \mathbb{R}^n$$

and

$$(\mathbb{R}^n)^{\perp} = \{ x \in \mathbb{R}^n : x^{\top} y = 0 \ \forall y \in \mathbb{R}^n \} = \{ x \in \mathbb{R}^n : \ker(x^{\top}) = \{0\} \} = \{0\}.$$

[Not part of the exercise:]

Together with $(U^{\perp})^{\perp} = U$ this gives in general

$$\mathbb{R}^m = \operatorname{Im}(A) = \ker(A^\top)^\perp \iff \ker(A^\top) = \{0\}, \text{ or } \operatorname{rank}(A) = m \iff \operatorname{nullity}(A^\top) = 0, \text{ or } A \text{ surjective} \iff A^\top \text{ injective}.$$

Analogously for the transpose

$$\begin{split} \mathbb{R}^n &= \operatorname{Im}(A^\top) = \ker(A)^\perp \iff \ker(A) = \{0\}, \quad \text{or} \\ &\operatorname{rank}(A^\top) = n \iff \operatorname{nullity}(A) = 0, \quad \text{or} \\ &A^\top \quad \text{surjective} \iff A \quad \text{injective}. \end{split}$$

2. Example:

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

a) By dimension formula we know

$$m \ge \dim(\operatorname{Im}(C)) = \operatorname{rank}(C) = n - \operatorname{nullity}(C) = n.$$

Only square or thin matrices can be injective!

- b) Since $\operatorname{nullity}(C) = 0$ we know $\ker(C) = \{0\}$ and thus the n columns of C are independent (in fact, only the zero combination gives the zero vector).
- c) No (because f_C injective). Recall the proof: Assume yes, then $Cx_1 = b = Cx_2 \iff C(x_1 x_2) = 0$, where $x_1 x_2 \neq 0$ due to $x_1 \neq x_2$. This contradicts the fact that $\ker(C) = \{0\}$.

Independent columns assure that a solution to Cx = b is unique (if it exists).

- d) Since $\ker(C^{\top}C) = \ker(C) = \{0\}$, we have that the $(n \times n)$ -matrix $C^{\top}C$ is invertible.
- 3. Example: Take for two nonzero vectors $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ with n > m > 1 the outer product

$$A := uv^{\top}$$
,

so that each column is a scaling of u and thus rank(A) = 1 < m.

Simply many columns are not enough for surjectivity! We need independence to get a "larger" subspace.

- 4. Example: $R := C^{\top}$.
 - a) From above recall: $\operatorname{rank}(R) = m \iff \operatorname{nullity}(R^{\top}) = 0$. Now by dimension formula we get

$$n \geq \dim(\operatorname{Im}(R^\top)) = \operatorname{rank}(R^\top) = m - \operatorname{nullity}(R^\top) = m.$$

Only square or fat matrices can be surjective!

- b) Again, by nullity(R^{\top}) = 0, they are independent.
- c) Since $\ker(RR^{\top}) = \ker(R^{\top}) = \{0\}$, it's invertible.
- d) Yes, since $\operatorname{Im}(R) = \mathbb{R}^m$, any $b \in \mathbb{R}^m$ is of the form Rx = b for some $x \in \mathbb{R}^n$.

Independent rows assure that a solution to Rx = b exists.

5. a) By dimension formula

$$\operatorname{nullity}(A) = n - \operatorname{rank}(A) = 0,$$

Then using from above $\operatorname{rank}(A^{\top}) = n \iff \operatorname{nullity}(A) = 0$, we find $\operatorname{rank}(A^{\top}) = n$, and therefore also

$$\operatorname{nullity}(A^{\top}) = n - \operatorname{rank}(A^{\top}) = 0.$$

- b) Since $\ker(A) = \{0\} = \ker(A^{\top})$ the *n* rows and the *n* columns are independent.
- c) Yes, because from above we know: Independent rows give existence and independent columns uniqueness.
- 6. Take A = C with C from above. Then

$$\mathsf{rank}(A) = 2 = \mathsf{rank}(A^\top).$$

However

$$\operatorname{nullity}(C) = 0 \neq 1 = \operatorname{nullity}(C^{\top}).$$

We will learn below:

Always
$$rank(A) = rank(A^{\top}),$$

but a similar result is not true in general for nullity(A).