Задача 2. Матрица проекции

Из письменного экзамена в ШАД 2019 года

Условие. Заполните третий столбец матрицы

$$\frac{1}{6} \begin{pmatrix} 5 & -2 & ? \\ -2 & 2 & ? \\ -1 & -2 & ? \end{pmatrix}$$

если известно, что это матрица ортогональной проекции на некоторую плоскость.

Ответ.

$$\frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

Решение. Решать можно по-разному. Например, вспомнить, что матрица ортогонального проектора удовлетворяет условиям $A^T=A$ (это сразу позволяет заполнить элементы с номерами (1,3) и (2,3)) и $A^2=A$ (откуда мы найдём последний элемент, например, приравняв элементы с номером (3,1) матриц A и A^2 : $\frac{1}{36}(-5+4-x)=-\frac{1}{6}$, откуда -1-x=-6, то есть x=5).

С другой стороны, можно воспользоваться тем, что столбцы матрицы линейного оператора — это образы базисных векторов. При этом плоскость, на которую мы проецируем, является линейной оболочкой Ae_1 и Ae_2 (они, к счастью, не пропорциональны), то есть первых двух столбцов матрицы. Тогда третий столбец матрицы — это проекция вектора e_3 на эту плоскость.

Чтобы найти проекцию, вспомним, что проекция вектора v на плоскость $\langle w_1, w_2 \rangle$, являющуюся линейной оболочкой ортогональных векторов w_1 и w_2 , находится по формуле

$$\frac{(w_1,v)}{(w_1,w_1)}w_1+\frac{(w_2,v)}{(w_2,w_2)}w_2$$

Таким образом, нам достаточно построить ортогональный базис плоскости $\langle Ae_1, Ae_2 \rangle$ (линейной оболочки первых двух столбцов матрицы A). Сделать это можно с помощью процесса ортогонализации Грама-Шмидта.

$$w_1 = u_1,$$

 $w_2 = u_2 - \frac{(w_1, u_2)}{(w_2, w_2)} w_2$

Подставив числа, получаем тот же ответ.