# UNIVERSIDADE ESTADUAL DE MARINGÁ INFORMÁTICA

# FRASE EM DISPLAY DE 7 SEGMENTOS

Olga Maria dos Santos R.A. 130002

Curso: Informática,

Disciplina Circuitos Digitais (9889-2022-T32)

Professor: Maurilio Martins Campano Junior

MARINGÁ

2022

# SUMÁRIO

| Introdução                                                        | 3  |
|-------------------------------------------------------------------|----|
| Desenvolvimento                                                   | 6  |
| Justificativa                                                     | 6  |
| Decisões de projeto para a simulação                              | 8  |
| <ul> <li>Tabela verdade completa</li> </ul>                       |    |
| <ul> <li>Simplificação das saídas por Mapa de Karnaugh</li> </ul> |    |
| <ul> <li>Representação do Circuito lógico</li> </ul>              |    |
| Conclusão                                                         | 11 |
| Referências                                                       | 12 |

# Introdução

Este projeto tem como objetivo colocar em prática os conhecimentos de circuitos combinacionais em conjunto com circuitos sequencias, devemos criar uma frase, que parte de 4 entradas binárias, ou seja, 2bits, e devemos mostrar em um display de 7 segmentos, tanto em ordem crescente e decresceste da frase, utilizando nesta uma ideia de circuito sequencial, o contador.

A frase escolhida para ser mostrado foi "- - SUBI NO ONIBUS - -", tendo 2 traços no inicio e fim para que chegasse no limite de opções que 4 entradas binárias tem de possibilidades, que são no caso 16 possibilidades, e utilizamos os 16 caracteres, a frase está com espaços, mas no display como é mostrado somente um caractere por vez, não utilizaremos espaços, logo não contam como caractere.

# Descrição

Vamos conceituar quais elementos utilizaremos neste projeto:

Utilizaremos o programa logisim, que é um simulador lógico que permite o desenho e a simulação de circuitos através de uma interface gráfica, nele utilizaremos elementos:

**Pinos de entrada**: recebem os valores 0 ou 1, que vão compor as entradas em binário, serão importantes para a criação do display.



Display de 7 segmentos: Display que mostrará os valores de binários, em letras.



**Clock**: Responsável por enviar um pulso ao contador, que irá assim alterar seu valor de 0 para 1 ou de 1 para 0.



**Distribuidores**: Eles recebem os valores e distribuem na quantidade de bits que precisamos, servirão para deixar os circuitos mais limpo e uma distribuição mais eficiente:



**Chips**: São "caixinhas" que compõe toda a lógica do que foi programado dentro delas, são maneiras resumidas, iremos utilizar estas nos contadores, e nos displays, vai ficar visualmente mais eficiente e de melhor entendimento, pois nomearemos os chips com qual sua função, e seu visual pode mudar dependendo do número de entradas e saídas:



**Porta AND**: A porta lógica AND, "e" na língua portuguesa, faz referência a uma operação lógica que aceita dois ou mais operandos, que sempre resultem em um valor lógico verdadeiro, se somente se todos os valores passados terem seu valor sendo verdadeiro, caso o contrário se existir um valor ou mais que sejam falsos a saída resultante é falsa.

Representação no Logisim



Tabela verdade da Porta AND

| Р | Q | PΛQ |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

**Porta Lógica OR**: na tradução para o português fica "ou", faz referência a uma operação lógica que permite a entrada de um ou mais valores e que sempre retorna um valor verdadeiro se um desses valores forem verdadeiros.

#### Representação no Logisim



Tabela verdade Porta OR

| Р | Q | PVQ |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

**Porta NOT**: A porta not, em português "não", tem a função de trocar o valor passado por ela, por exemplo, se um valor verdadeiro é passado por uma porta not a saída será falsa, se a entrada é falsa, a saída será verdadeira. A ideia em si é sempre trocar os valores.

Representação no Logisim



Tabela verdade NOT

| Α | A' |
|---|----|
| 0 | 1  |
| 1 | 0  |

# Desenvolvimento

#### **Justificativa**

O projeto consiste em criar uma tabela, com as quatro entradas binárias possíveis, sendo 16 possibilidades, e na possibilidade 0, ou chamaremos de 1° posição (0000), o segmentos do display que acenderam devem coincidir com a 1° posição da nossa frase, que é um (-), é a mesma lógica para as demais posições, seguindo a tabela:

| S4 | S3 | S2 | S1 |   | POSIÇÃO |
|----|----|----|----|---|---------|
| 0  | 0  | 0  | 0  | - | 1       |
| 0  | 0  | 0  | 1  | - | 2       |
| 0  | 0  | 1  | 0  | S | 3       |
| 0  | 0  | 1  | 1  | U | 4       |
| 0  | 1  | 0  | 0  | В | 5       |
| 0  | 1  | 0  | 1  | 1 | 6       |
| 0  | 1  | 1  | 0  | N | 7       |
| 0  | 1  | 1  | 1  | О | 8       |
| 1  | 0  | 0  | 0  | О | 9       |
| 1  | 0  | 0  | 1  | N | 10      |
| 1  | 0  | 1  | 0  | 1 | 11      |
| 1  | 0  | 1  | 1  | В | 12      |
| 1  | 1  | 0  | 0  | U | 13      |
| 1  | 1  | 0  | 1  | S | 14      |
| 1  | 1  | 1  | 0  | - | 15      |
| 1  | 1  | 1  | 1  | - | 16      |

Logo depois definimos quais segmentos acenderiam e determinadas posições, baseado no display:



Chegamos na tabela:



Foi necessário montarmos o contador, este que iria controlar a ordem de aparecimento dos caracteres, para montar o **contador crescente** utilizamos o flip-flop D:



O contador decrescente utilizamos o flip-flop D também:



Sendo a lógica interna de cada flip-flop D, a seguinte:



O clock, foi conectado somente no primeiro flip flop, o restante sempre recebia a saída do outro, isso que nos garante que irão seguir a ordem binária.

# Decisões de projeto para a simulação

Depois de já termos montado os contadores, e testado principalmente, a tabela estava definida, era necessário retirar da tabela e transformar em circuito, foi retirado pelo método de mapa de karnaugh, e chegamos nas seguintes expressões:

| A = | $= \overline{\mathbf{A}} \mathbf{C} \overline{\mathbf{D}} + \mathbf{A} \overline{\mathbf{C}} \mathbf{D} + \mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} + \overline{\mathbf{A}} \mathbf{B} \mathbf{C}$                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B = | $: \overline{\mathbf{A}} \mathbf{C} \mathbf{D} + \mathbf{A} \overline{\mathbf{C}} \overline{\mathbf{D}}$                                                                                                                                                                                                                                                           |
| C = | $\overline{\mathbf{A}} \mathbf{C} + \mathbf{A} \overline{\mathbf{C}} + \mathbf{B} \overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{B}} \mathbf{C} \mathbf{D}$                                                                                                                                                                                       |
| D = | $= \overline{\mathbf{A}} \mathbf{C} \mathbf{D} + \overline{\mathbf{B}} \overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{A}} \overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} + \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} + \overline{\mathbf{B}} \mathbf{C} \mathbf{D}$ |
| E = | $=\overline{\mathbf{A}}\mathbf{B}+\mathbf{A}\overline{\mathbf{B}}+\overline{\mathbf{A}}\mathbf{C}\mathbf{D}+\mathbf{B}\overline{\mathbf{C}}\overline{\mathbf{D}}$                                                                                                                                                                                                  |
| F = | $\mathbf{B}  \overline{\mathbf{C}} + \overline{\mathbf{B}}  \mathbf{C} + \overline{\mathbf{A}}  \mathbf{C}  \mathbf{D} + \mathbf{A}  \overline{\mathbf{C}}  \overline{\mathbf{D}}$                                                                                                                                                                                 |
| G = | $\overline{A}\overline{D} + AD + BC\overline{D} + \overline{B}\overline{C}D$                                                                                                                                                                                                                                                                                       |

Uma expressão para cada segmento do display, logo após foi feito uma biblioteca com todos os 7 circuitos de cada letra, e com o objetivo de filtrarmos e deixarmos mais limpo, foi utilizado cada circuito de cada letra, em outro circuito denominado "Display", ficando:



Agora tínhamos um arquivo que tem 4 entradas, e 7 saídas, cada uma responsável por um segmento do display, logo colocamos ele como chip no display principal "Frase":



Conectamos a saída do circuito "Display" as entradas do display de 7 segmentos, e as entradas do "Display", são as saídas do contador, assim seria acesso os segmentos, em ordem binária, ou também na ordem decrescente binária.

#### **Circuito Final**



# Resultados

Os resultados, como a frase de trás para frente e em ordem de frente para trás, é a mesma "- - SUBI NO ONIBUS - -", mostraremos a tabela, da ordem binária crescente e decrescente que os contadores partiram, e quais os resultados nos displays:

| CRESCENTE |    |    | TE |                      | DECRESCENTE |    |    |    |
|-----------|----|----|----|----------------------|-------------|----|----|----|
| S4        | S3 | S2 | S1 | Resultado<br>Display | S4          | S3 | S2 | S1 |
| 0         | 0  | 0  | 0  | -                    | 1           | 1  | 1  | 1  |
| 0         | 0  | 0  | 1  | -                    | 1           | 1  | 1  | 0  |
| 0         | 0  | 1  | 0  | S                    | 1           | 1  | 0  | 1  |
| 0         | 0  | 1  | 1  | U                    | 1           | 1  | 0  | 0  |
| 0         | 1  | 0  | 0  | В                    | 1           | 0  | 1  | 1  |
| 0         | 1  | 0  | 1  | 1                    | 1           | 0  | 1  | 0  |
| 0         | 1  | 1  | 0  | N                    | 1           | 0  | 0  | 1  |
| 0         | 1  | 1  | 1  | 0                    | 1           | 0  | 0  | 0  |
| 1         | 0  | 0  | 0  | 0                    | 0           | 1  | 1  | 1  |
| 1         | 0  | 0  | 1  | N                    | 0           | 1  | 1  | 0  |
| 1         | 0  | 1  | 0  | 1                    | 0           | 1  | 0  | 1  |
| 1         | 0  | 1  | 1  | В                    | 0           | 1  | 0  | 0  |
| 1         | 1  | 0  | 0  | U                    | 0           | 0  | 1  | 1  |
| 1         | 1  | 0  | 1  | S                    | 0           | 0  | 1  | 0  |
| 1         | 1  | 1  | 0  | -                    | 0           | 0  | 0  | 1  |
| 1         | 1  | 1  | 1  | -                    | 0           | 0  | 0  | 0  |

Resultados das letras no display foi:

"- - SUBI NO ONIBUS - -"



#### Conclusão

Este projeto nos levou a entender a conexão entre circuitos combinacionais e sequencias, de certa forma, desenvolvemos conceitos estudados em sala de aula, na prática, definirmos as entradas de dados, e por ela onde deveríamos chegar, que seria os segmentos a acender, logo após é necessário entender os conceitos de flip flops, RS, JK, D e T, para entender qual o melhor para o projeto, chegamos na conclusão que o D seria mais simples, e unir a saída dele, a entrada do display utilizando distribuidores, foi o que conectou os dois tipos de circuitos combinacionais e sequenciais e o que uniu o nosso projeto, e tudo, levou a um extensão do nosso conhecimento sobre os circuitos digitais.

#### Referências

Cefuve, Flip flop contador binário, 2015, disponível:

https://www.youtube.com/watch?v=SXCXcZuqDjU

GV Ensino, Eletrônica digital, entendendo contado assíncrono, 2020 disponível:

https://www.youtube.com/watch?v=c1o46eJ\_ocA

Galdino, Jean, Organização de computadores, 2016, disponível: https://docente.ifrn.edu.br/jeangaldino/disciplinas/2016.1/organizacao-de-computadores/aula-14-logisim-interligando-as-partes

Cantu, Evandro, simulador de circuitos lógicos, sistemas digitais 2016, disponível em:wiki.foz.ifpr.edu.br/wiki/index.php/Simulador\_de\_Circuitos\_L%C3%B3gicos\_-\_Logisim

Thiago Lima, Portas lógicas, 2015, disponível:

https://embarcados.com.br/portas-logicas/