UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2025/1 Prova da área I

1-2	3	4	Total

Nome:	Cartão:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas (dissertativas)

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado. Respostas corretas mas sem justificativa receberão apenas 33% da pontuação.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares;

 $\vec{F} = \vec{F}(x,y,z)$ e $\vec{G} = \vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$ec{ abla}\left(fg ight)=fec{ abla}g+gec{ abla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	$\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \text{ \'e o operador laplaciano}$
8.	$\vec{\nabla} imes \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:

Curvatura, torção	e aceleração:
Nome	Fórmula
Vetor normal	$\vec{N} = \frac{\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \times \frac{d\vec{r}}{dt}}{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \times \frac{d\vec{r}}{dt} \right\ }$
Vetor binormal	$\vec{B} = \frac{\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}}{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\ }$
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ ^3}$
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{\left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right) \cdot \frac{d^3\vec{r}}{dt^3}}{\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\ ^2}$
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$

Equações de Frenet-Serret:

$$\frac{d\vec{T}}{ds} = \kappa \vec{N}$$

$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$$

$$\frac{d\vec{B}}{ds} = -\tau \vec{N}$$

• Questão 1 (0.6 ponto cada item) Considerando a trajetória parametrizada pela seguinte função vetorial:

$$\vec{r}(t) = t^2 \vec{i} - \sin(t^2) \vec{j} + \cos(t^2) \vec{k}, \quad t \ge 0,$$

está correto:

(A) tangente unitário $\vec{T}(t) =:$

()
$$\frac{2t\vec{i} - \cos(t^2)\vec{j} - \sin(t^2)\vec{k}}{\sqrt{1 + 4t^2}}$$

$$(\)\ \frac{\vec{i} - \cos(t^2) \vec{j} + \sin(t^2) \vec{k}}{\sqrt{2}}$$

$$(\quad)\ \frac{\vec{i}-\cos(t^2)\vec{j}-\sin(t^2)\vec{k}}{\sqrt{2}}$$

$$(\)\ \frac{2t\vec{i}+\cos(t^2)\vec{j}-\sin(t^2)\vec{k}}{\sqrt{1+4t^2}}$$

() nenhuma das anteriores

(B) aceleração
$$\vec{a}(t) = \frac{d^2 \vec{r}}{dt^2} =$$
:

(B) aceleração
$$\vec{a}(t) = \frac{d^2\vec{r}}{dt^2} =:$$

() $2\vec{i} - (2\sin(t^2) + 4t^2\cos(t^2))\vec{j} + (4t^2\sin(t^2) - 2\cos(t^2))\vec{k}$

() $2\vec{i} + (4\sin(t^2) + 2t\cos(t^2))\vec{j} + (2t\sin(t^2) - 2\cos(t^2))\vec{k}$

() $2\vec{i} + \sin(t^2)\vec{j} - \cos(t^2)\vec{k}$

() $2\vec{i} + (4t^2\sin(t^2) - 2\cos(t^2))\vec{j} - (4t^2\cos(t^2) + 2\sin(t^2))\vec{k}$

() nenhuma das anteriores

()
$$2\vec{i} + (4\operatorname{sen}(t^2) + 2t\cos(t^2))\vec{j} + (2t\operatorname{sen}(t^2) - 2\cos(t^2))\vec{k}$$

()
$$2\vec{i} + \sin(t^2)\vec{j} - \cos(t^2)\vec{k}$$

()
$$2\vec{i} + (4t^2 \operatorname{sen}(t^2) - 2 \cos(t^2))\vec{j} - (4t^2 \cos(t^2) + 2 \operatorname{sen}(t^2))\vec{k}$$

(C) vetor normal unitário
$$\vec{N}(t) =:$$

$$(\)\ \frac{\vec{i} + \operatorname{sen}(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{2}}$$

$$() \sin(t^2)\vec{j} - \cos(t^2)\vec{k}$$

$$() - \cos(t^2)\vec{j} + \sin(t^2)\vec{k}$$

$$()\frac{\vec{i}-\cos(t^2)\vec{j}+\sin(t^2)\vec{k}}{\sqrt{2}}$$

() nenhuma das anteriores

(D) vetor binormal
$$\vec{B}(t) =$$
:

$$(\) \frac{t\vec{i} + \sin(t^2)\vec{j} + \cos(t^2)\vec{k}}{\sqrt{1 + t^2}}$$
$$(\) \frac{\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{2}}$$

$$(\)\ \frac{\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{2}}$$

$$() \frac{-\vec{i} - \operatorname{sen}(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{2}}$$

$$\sqrt{2}$$
() $\frac{-\vec{i} - \sin(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{2}}$
() $\frac{-t\vec{i} - \cos(t^2)\vec{j} - \sin(t^2)\vec{k}}{\sqrt{1 + t^2}}$

(E) curvatura em $t = \sqrt{\pi}$:

- $(\) \frac{1}{2}$
- $(\)\ \sqrt{2}$
- () $2\sqrt{2}$
- $(\)\ 2$

() nenhuma das anteriores

(F) torção em
$$t = \sqrt{\pi}$$
:

() 2

() $\frac{1}{\sqrt{2}}$

() $2\sqrt{2}$

() $\sqrt{2}$

) nenhuma das anteriores

(G) aceleração tangencial em $t = \sqrt{\pi}$:

- $(\)\ 0$
- () $2\sqrt{2}$
- () $\sqrt{\pi}$
- $(\) \frac{2}{\sqrt{\pi}}$

() nenhuma das anteriores

(H) aceleração normal em $t = \sqrt{\pi}$:

() 4π () 0() $2\sqrt{\pi}$ () $4\sqrt{\pi}$ () nenhuma das anteriores

• Questão 2 (0.6 ponto cada item) Considerando a superfície parametrizada (corneta de Gabriel)

$$\vec{r} = 2v\cos(u)\vec{i} + 2v\sin(u)\vec{j} + \frac{2}{v}\vec{k}, \quad 0 \le u \le 2\pi; \quad v > 0$$

no ponto em que $u = \frac{\pi}{6}$, $v = \sqrt{2}$, é correto:

(A) vetor normal unitário \vec{N} :

- () $\frac{-\sqrt{3} \vec{i} \vec{j} 4\vec{k}}{2\sqrt{5}}$
- () $\frac{-\sqrt{3} \vec{i} + \vec{j} 4\vec{k}}{2\sqrt{5}}$
- $(\)\ \frac{-\sqrt{3}\ \vec{i} + \vec{j} + 4\vec{k}}{2\sqrt{5}}$
- () $\frac{-\sqrt{3} \ \vec{i} \vec{j} + 4\vec{k}}{2\sqrt{\epsilon}}$

() nenhuma das anteriores

- (B) equação cartesiana do plano tangente $(\)\ \sqrt{3}(x-\sqrt{6})-(y-\sqrt{2})+4(z-\sqrt{2})=0$ $(\)\ \sqrt{3}(x-\sqrt{6})+(y-\sqrt{2})+4(z-\sqrt{2})=0$ $(\)\ \sqrt{6}(x-\sqrt{3})+\sqrt{2}(y-1)+\sqrt{2}(z-4)=0$ $(\)\ \sqrt{3}(x-\sqrt{3})+(y-\sqrt{2})+4(z-\sqrt{2})=0$ $(\)\ \text{nenhuma das anteriores}$

$\vec{r} = \cos(\pi t)\vec{i} + \sin(\pi t)$	sidere o campo vetorial dado por $\vec{F} = 2x\vec{i} + z\vec{j} + (2z + y)\vec{k}$ e a curva C dada por $\pi t)\vec{j} + \pi t\vec{k}$, $0 \le t \le 1$.
g(x, y, z), (nulo na	etermine se \vec{F} é um campo conservativo. Obtenha, se existir, o respectivo potencial origem).
• (b) (1.0pt) O	btenha $\int_C \vec{F} \cdot d\vec{r}$.

leja S a porção inferior (meridional) da superfície esférica de centro $C(0,0,3)$ e raio 3; seja o disco $D=\{(x,y,3):x^2+y^2\leq 3^2\}$, rientado no sentido z positivo (como superfície). A união de S om D limita um sólido (volume) que denotaremos por G . (a) (1.0pt) Obtenha $\iint_D \vec{F} \cdot \vec{n} dS$. Se for usar (ρ,θ) na integração, observe que nesse disco D temos $dS=dA=\rho d\rho d\theta$.
rientado no sentido z positivo (como superfície). A união de S om D limita um sólido (volume) que denotaremos por G . (a) (1.0pt) Obtenha $\iint_D \vec{F} \cdot \vec{n} dS$. Se for usar (ρ, θ) na integração,
(a) (1.0pt) Obtenha $\iint_{D} \vec{F} \cdot \vec{n} dS$. Se for usar (ρ, θ) na integração,
bserve que nesse disco D temos $dS = dA = \rho d\rho d\theta$.
(b) (1.0pt) Obtenha $\iint_S \vec{F} \cdot \vec{n} dS$ depois de aplicar o Teorema do
Divergente em G .