# Personal notes: DLCZ cheat sheet

Félix Hoffet<sup>1</sup>

<sup>1</sup>ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Spain

### THE BASICS

Initially, we model our atomic ensemble as N atoms all prepared in the ground state  $|\bar{g}\rangle = |g_1, g_2, ..., g_N\rangle$ , and we consider a three level system with two ground states  $|g\rangle$  and  $|s\rangle$ , and one excited state  $|e\rangle$ . A weak write pulse, with detuning  $\Delta$  relative to the  $|g\rangle \to |e\rangle$  transition is sent to the atomic cloud. This produces one or more Raman transitions to the state  $|s\rangle$ , accompanied by the emission of a write-out photon for each transferred atom. The probability to create one or more scattered photon is  $\mathcal{P}$ . After this first stage of the DLCZ protocol, the atom-light state can be described by a two-mode squeezed state:

$$|\psi_{\mathbf{w},at}\rangle = \sqrt{1-\mathcal{P}} \sum_{n=1}^{\infty} \mathcal{P}^{n/2} \frac{\left(a_{\mathbf{w}}^{\dagger} s_{n}^{\dagger}\right)^{n}}{n!} |0_{1}, \bar{g}\rangle \tag{1}$$

where  $a_{\mathbf{w}}^{\dagger} = \int a_{\mathbf{k}_{\mathbf{w}}}^{\dagger} d\mathbf{k}_{\mathbf{w}}$  is the creation operator for the write-out photon and  $s_{i}^{\dagger}$  is the operator that transfers the i-th atom in state  $|s\rangle$ . The next step of the DLCZ protocol consists in detecting one of this emitted write-out photon. Already, we see that if we have a perfect and number resolving detector, the detection of one write-out photon in mode  $\mathbf{k}_{\mathbf{w}}$  projects the atomic ensemble into the collective spin excitation state:

$$|\bar{s}\rangle = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} |g_1, ..., s_n, ..., g_N\rangle = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \hat{s_n}^{\dagger} |g_1, ..., g_N\rangle.$$
 (2)

In practice, detectors are not perfect, not number resolving, and photons can be lost before they reach out the detectors. This can lead to the generation of a mixed state in the atomic cloud as it is later discussed in this document.

The next stage consists in the read out. After a detection of a write-out photon in a specific  $\mathbf{k}$  mode, a strong read pulse, resonant with the  $|e\rangle \to |s\rangle$  transition, is sent after a short delay to the atomic ensemble. This pulse reads out the collective excitation by transferring back the atomic ensemble to state  $|\bar{g}\rangle$  with the emission of a read-out photon. Its wavevector  $\mathbf{k}_{\rm r}$  is defined by the phase matching condition  $\mathbf{k}_{\rm r} = \mathbf{k}_W + \mathbf{k}_R - \mathbf{k}_{\rm w}$  where  $\mathbf{k}_W(\mathbf{k}_R)$  are the write (read) laser pulse wavevectors.

If we don't herald the write-out photon, the joint field-field state can be written as a two-mode squeezed state:

$$|\psi_{\mathbf{w},\mathbf{r}}\rangle = \sqrt{1-\mathcal{P}} \sum_{n=1}^{\infty} \mathcal{P}^{n/2} \frac{\left(a_{\mathbf{k}_{\mathbf{w}}}^{\dagger} a_{\mathbf{k}_{\mathbf{r}}}^{\dagger}\right)^{n}}{n!} |0_{\mathbf{k}_{\mathbf{w}}}, 0_{\mathbf{k}_{\mathbf{r}}}\rangle. \tag{3}$$



**FIG. 1.** DLCZ scheme in cold atoms. (a) An off-resonant write pulse scatters on the atoms, generating a spin wave. (b) The spin wave is read-out by a resonant read pulse. (c) Counterpropagating control pulses are linked to counterpropagating photons.

Note that this is true only in the ideal case of unitary read-out, meaning that each atom in state  $|s\rangle$  is mapped to a read-out photon without any loss. If we set  $\mathcal{P} \ll 1$ , we can discard high-order terms and write the state as

$$|\psi_{\mathbf{w},\mathbf{r}}\rangle = \sqrt{1 - \mathcal{P}} \left( |0_{\mathbf{k}_{\mathbf{w}}}, 0_{\mathbf{k}_{\mathbf{r}}}\rangle + \mathcal{P}^{1/2} |1_{\mathbf{k}_{\mathbf{w}}}, 1_{\mathbf{k}_{\mathbf{r}}}\rangle + \mathcal{P} |2_{\mathbf{k}_{\mathbf{w}}}, 2_{\mathbf{k}_{\mathbf{r}}}\rangle \right). \tag{4}$$

To satisfy  $\mathcal{P} \ll 1$ , it is necessary to excite the cloud with low intensity during the writing process. In this case, we see that if a write-out photon is detected, it mostly projects read-out into a single-photon Fock state with a small multiphoton component. If the write and read laser beams are counter-propagating, the read-out photon will be emitted in the opposite direction to that of write-out photon such that  $\mathbf{k}_{\rm w} = -\mathbf{k}_{\rm r}$ . Experimentally, this makes the read-out photon easy to collect in a fiber for later use.

## CORRELATIONS

From the joint field-field state of eq. 3, a few observations can be made through calculation.

#### Cross correlation

The second order cross correlation function between the two photonic modes is defined as (in the following, all notations imply that correlators are evaluated at zero delay):

$$g_{\mathbf{w},\mathbf{r}}^{(2)} = \frac{\langle a_{\mathbf{r}}^{\dagger} a_{\mathbf{w}}^{\dagger} a_{\mathbf{w}} a_{\mathbf{r}} \rangle}{\langle a_{\mathbf{r}}^{\dagger} a_{\mathbf{r}} \rangle \langle a_{\mathbf{w}}^{\dagger} a_{\mathbf{w}} \rangle}.$$
 (5)

From a simple calculation, it follows that

$$\langle a_{\rm r}^{\dagger} a_{\rm r} \rangle = \frac{\mathcal{P}}{1 - \mathcal{P}} \quad \text{and} \quad \langle a_{\rm w}^{\dagger} a_{\rm w} \rangle = \frac{\mathcal{P}}{1 - \mathcal{P}}.$$
 (6)

Then, we calculate the mean number of coincidences and we find that

$$\langle a_{\mathbf{r}}^{\dagger} a_{\mathbf{w}}^{\dagger} a_{\mathbf{w}} a_{\mathbf{r}} \rangle = \frac{\mathcal{P}(\mathcal{P} + 1)}{(1 - \mathcal{P})^2}. \tag{7}$$

Finally, we get the following expression for the cross correlation

$$g_{\mathbf{w},\mathbf{r}}^{(2)} = 1 + \frac{1}{\mathcal{P}},$$
 (8)

where we see that high values of cross correlation are obtained for low probabilities of excitation.

# Autocorrelation

Then, we study the second-order autocorrelation function of the write-out photon. To measure this quantity, we need to send the write-out photon to a 50/50 beam splitter, in such a way the photon mode is divided in two modes (we will use the notation  $\mathbf{k}_{w_1}$  and  $\mathbf{k}_{w_2}$  for them). To write the state after the Stokes photons have passed through the beam splitter, we first rewrite the two mode squeezed state of eq. 3 as a function of photons creation operators. The new state can be written as

$$|\psi_{\mathbf{w},\mathbf{r}}\rangle = \sqrt{1-\mathcal{P}} \sum_{n=1}^{\infty} \mathcal{P}^{n/2} \frac{\left(a_{\mathbf{k}_{\mathbf{w}_{1}}}^{\dagger} + ia_{\mathbf{k}_{\mathbf{w}_{2}}}^{\dagger}\right)^{n}}{\sqrt{2}} \frac{\left(a_{\mathbf{k}_{\mathbf{r}}}^{\dagger}\right)^{n}}{n!} \left|0_{\mathbf{k}_{\mathbf{w}_{1}}}, 0_{\mathbf{k}_{\mathbf{w}_{2}}}, 0_{\mathbf{k}_{\mathbf{r}}}\right\rangle. \tag{9}$$

After a long calculation, we find the second-order autocorrelation function of the write-out photon:

$$g_{\mathbf{w},\mathbf{w}}^{(2)} = \frac{\langle a_{\mathbf{w}_1}^{\dagger} a_{\mathbf{w}_2}^{\dagger} a_{\mathbf{w}_2} a_{\mathbf{w}_1} \rangle}{\langle a_{\mathbf{w}_1}^{\dagger} a_{\mathbf{w}_1} \rangle \langle a_{\mathbf{w}_2}^{\dagger} a_{\mathbf{w}_2} \rangle} = 2. \tag{10}$$

We perform a similar calculation for the autocorrelation of the read-out photon and find that  $g_{w,w}^{(2)} = g_{r,r}^{(2)} = 2$ .

### Antibunching

Finally, we want to compute the antibunching parameter  $g^{(2)}$ . This quantity measures the suppression of multiphoton components in the read-out mode, conditionned on a detection in the write-out mode. To measure this quantity we need to send the read-out photon mode to a 50/50 beam splitter. To write the two mode squeezed state after the read-out photons have passed through the beam splitter we proceed in a similar way as for the case of the write-out photon passing though the beam splitter. The antibunching parameter is defined by

$$h^{(2)} = \frac{\langle a_{\mathbf{w}}^{\dagger} a_{\mathbf{w}} \rangle \langle a_{\mathbf{w}}^{\dagger} a_{\mathbf{r}_{1}}^{\dagger} a_{\mathbf{r}_{2}}^{\dagger} a_{\mathbf{r}_{2}} a_{\mathbf{r}_{1}} a_{\mathbf{w}} \rangle}{\langle a_{\mathbf{w}}^{\dagger} a_{\mathbf{r}_{1}}^{\dagger} a_{\mathbf{r}_{1}} a_{\mathbf{w}} \rangle \langle a_{\mathbf{w}}^{\dagger} a_{\mathbf{r}_{2}}^{\dagger} a_{\mathbf{r}_{2}} a_{\mathbf{w}} \rangle}, \tag{11}$$

and we find after tedious calculation that

$$h^{(2)} = \frac{2\mathcal{P}(\mathcal{P} + 2)}{(1 + \mathcal{P})^2}.$$
 (12)

Interestingly, we see that in the limit of low excitation probability ( $\mathcal{P} \ll 1$ ), we get

$$\lim_{\mathcal{P}\to 0} \left(h^{(2)}\right) = 4\mathcal{P} = \lim_{\mathcal{P}\to 0} \left(\frac{g_{w,w}^{(2)}g_{w,r}^{(2)}}{g_{r,r}^{(2)}}\right)$$
(13)

So finally we can say that for two mode squeezed states and in the low photon pair creation probability regime, the following equation is satisfied.

$$h^{(2)} = \frac{g_{\mathbf{w},\mathbf{w}}^{(2)}g_{\mathbf{w},\mathbf{r}}^{(2)}}{g_{\mathbf{r},\mathbf{r}}^{(2)}} \tag{14}$$