Fraud Detection System for Financial Transactions - Final Report

Problem Statement:

Financial institutions lose billions due to fraudulent transactions. The goal of this project is to detect fraud in real-time using historical transaction data and machine learning classification models. The solution should be able to predict potential fraud accurately and efficiently.

Tech Stack:

- Python
- Pandas, NumPy
- Matplotlib, Seaborn
- Scikit-learn, XGBoost
- Jupyter Notebook
- Streamlit
- Joblib (for model saving)

Data Overview:

- Source: Kaggle Credit Card Fraud Detection dataset
- Total Rows: ~284,807 transactions
- Features: Time, Amount, V1–V28 (PCA components)
- Target: Class (0 = Non-Fraud, 1 = Fraud)
- Data Imbalance: Extremely skewed (fraud < 0.2%)

Data Handling:

- Dropped columns irrelevant for modeling
- Scaled numerical columns ('Time' and 'Amount') using StandardScaler
- Created a balanced dataset using undersampling (Fraud : Non-Fraud = 1:5)

Exploratory Data Analysis:

1. Target Distribution: Severe class imbalance observed.

- 2. Amount & Time: Log-scaled plots showed different patterns for fraud vs. non-fraud.
- **3. Heatmap**: Showed that features V10, V14, and V17 had strongest correlations with fraud.

4. Amount per Transaction by Class:

Amount per transaction by class

• Logarithmic scale was used to highlight frequency differences.

5. Fraud vs Non-Fraud Distribution: Clear difference in transaction patterns.

Feature Engineering:

- Applied StandardScaler to 'Time' and 'Amount'
- Retained V1–V28 as they were already PCA-transformed

Model Training and Evaluation:

Three models were trained:

1. Logistic Regression

- O Baseline linear model
- O Performance limited by complex data structure

=== Logistic Regression ===							
	precision	recall	f1-score	support			
0	0.99	1.00	0.99	223			
1	0.98	0.93	0.95	45			
accuracy			0.99	268			
macro avg	0.98	0.96	0.97	268			
weighted avg	0.99	0.99	0.98	268			
AUC-ROC Score: 0.964424514200299							
=== Decision Tree ===							
	precision	recall	f1-score	support			

2. Decision Tree Classifier

- O Captures non-linear patterns
- O Tuned with max depth and minimum samples per split

AUC-ROC Score: 0.964424514200299								
=== Decision Tree ===								
	precision	recall	f1-score	support				
0	0.99	0.96	0.98	223				
1	0.84	0.93	0.88	45				
accuracy			0.96	268				
macro avg	0.91	0.95	0.93	268				
weighted avg	0.96	0.96	0.96	268				
AUC-ROC Score: 0.9487294469357249								

3. XGBoost Classifier

- O Best performance
- O Tuned with GridSearchCV (n_estimators, max_depth, learning_rate)

```
=== XGBoost ===
...
weighted avg 0.99 0.99 0.99 268
AUC-ROC Score: 0.9777777777779
```

Metrics Used:

- F1 Score
- Precision
- Recall
- ROC-AUC Score

Best Model: XGBoost (ROC-AUC > 0.98, High F1 Score)

Deployment – Streamlit App:

- Created a lightweight frontend using Streamlit
- Model loaded with joblib (fraud model.pkl)
- User inputs transaction data
- App displays real-time prediction (Fraud/Not Fraud)

Risks & Limitations:

- Class Imbalance: Even after balancing, risk of model bias remains.
- False Negatives: Undetected frauds are critical risks in finance.
- **PCA Components** (V1–V28): No interpretability of features.
- **Real-Time Data**: Streamlit app uses static features, lacks user behavior history.

Conclusion:

This project successfully demonstrates the use of machine learning for fraud detection. The XGBoost model provided highly accurate results. With a lightweight frontend built in Streamlit, the system is capable of performing real-time fraud classification on user-input data.

The system can be extended with real-world transactional attributes, richer user profiling, and continuous learning pipelines in future iterations.