	1	I	1		ı		
0 REV.	13/04/2019 DATA	EMISSÃO INICIAL NATUREZA DA		AMA EL	AURI A B	AMAURI VERIF.	AMAURI APROV.
	AMENTO:	TAT UKLZA DA	ASSINATURA RESF				AI KOV.
		departments de reportats eletrica UNB					
Faculdade de '		tário Darcy Ribeiro, Gleba A, Avenida L3 Norte, CEP 70.910-900, Brasília — DF i S 61 3107 5510, fax +55 61 3107 5590, secene@ene.unb.br, www.ene.unb.br					
DISCIPL	INA/PERÍODO						
TIDO DE	DOCUMENT	LABORATÓRIO DE E	LETRICIDADE BÁSI	CA -	· 1°/2019		
I TIPO DE	DOCUMENTO		TÓRIO TÉCNICO				
TÍTULO:							
		PROJETO DE ATER	RAMENTO RESIDÊN				
ALUNO(T/nt-n	MATRÍCULA:		JRMA:	PERÍODO	
PROFESS	elício dos Santos	Junior	13/0132039 DATA DE EMISSÃO:	2A	FOLHA:		N/A DE
Amauri G			10/03/202		1 OLIIA.		11

N° DO DOCUMENTO:	N° DO DOCUMENTO (CLIENTE):	REVISÃO:
-	-	0

INDICE

1. OBJETIVO	4		
2. EXEMPLO DE TÍTULO (NÍVEL 1)	4		
2.1 EXEMPLO DE SUBTÍTULO (NÍVEL 2)2.1.1 Exemplo de terceiro nível de subtítulo (nível	3) 4		
2.2 EXEMPLOS DE TABELAS E QUADROS	4		
2.3 EXEMPLO DE FIGURA	5		
3. DICA IMPORTANTE	6		
4. DOCUMENTOS DE REFERÊNCIA	6		
5. LISTA DE DOCUMENTOS	7		
ANEXOS			
ANEXO 1 – TÍTULO DO ANEXO	9		

Revisão 0 - abril, 19

2/11

OBJETIVO

Este documento tem como finalidade apresentar e justificar todos os cálculos e escolhas realizados durante o referido projeto e simulação de malhas de aterramento. A planta foi devidamente modificada a fim de atender os requisitos normativos e critérios de projeto designados pelo proprietário que primam pela segurança, a despeito de eventuais gastos mais onerosos.

As ferramentas computacionais utilizadas foram os softwares AutoCAD© e MatLab©, das empresas Autodesk© e MathWorks©, respectivamente.

Todos os estudos e posteriores desenvolvimentos basearam-se nas seguintes normas técnicas: ABNT NBR 7117, 5419, 15749, seção 4.2.2 da NBR 5410, e IEEE Std. 80.

DADOS DA RESIDÊNCIA

A residência, própria, situa-se na QNL 08 conjunto H casa 08, Taguatinga-Norte, Brasília-DF. Proprietário: Renato Felício dos Santos Júnior. A figura abaixo ilustra a planta arquitetônica com localização do sistema de aterramento projetado.

Figura 1 - Planta baixa da residência, com localização do sistema de aterramento.

3/11 Revisão 0 - abril, 19

METODOLOGIA DE CALCULO

Baseados no software disponibilizado pelo professor no seguinte <u>link</u>. #TODO: Descrever metodologia, voltando ao texto de apoio, em caso de sobrar tempo.

PREMISSAS DE PROJETO

- RESISTIVIDADE DA CAMADA DE COBERTURA: Adotou-se o valor de 3000
 Ω.m. Quantitativo típico para o um solo em concreto, com espessura a ser informada nos próximos passos. Optou-se por um concreto nesta região da residência pois a mesma recebe pavimentação em alvenaria/piso;
- TEMPO DE ATUAÇÃO DA PROTEÇÃO: O valor determinado baseou-se em um disjuntor comercial com excelente tempo de resposta de 4ms. Primou-se pela segurança casa a despeito dos gastos. O datasheet do disjuntor encontra-se ao fim deste documento;
- ESPESSURA DA CAMADA DE COBERTURA: Por tratar-se de um piso sob concreto, tomou-se a espessura de aproximadamente 10cm, metragem padrão para pisos.

ESPECIFICAÇÕES

Malha de aterramento, com as seguintes medidas, com 4 hastes de 6 metros em cada um dos quatro cantos da malha. Vista de cima.

Condutores de cobre com bitola de 50mm.mm.

RESULTADOS DAS SIMULAÇÕES

COMPUTATION SUMMARY:

Top layer resistivity: rho top = 130 ohm.m rho bottom = 132 ohm.m Bottom layer resistivity: h = 0.39 mTop layer thickness: k = -0.00763359Reflection coefficient: Energization current: I = 3000 + j0 = 3000 A | 0°V = 27396.9 + j0 = 27396.9 V | 0° Ground grid GPR: $Rg = 9.13231 + j0 = 9.13231 \text{ ohms } | 0^{\circ}$ Ground impedance: Maximum surface GPR: Us, max = 27139.4 VFault time: t = 0.004 sCover material resistivity: rho cov = 3000 ohm.m Cover layer thickness: h cov = 0.1 mMaximum allowable touch voltage: Et, lim = 7352.49 VMaximum touch voltage: Et, max = 21944 VMaximum allowable step voltage: Ep, lim = 23907.6 VMaximum step voltage: Ep, max = 5490.01 VNumber of source subdivisions: Nf = 72Number of surface observation points: Ns = 625*** ELAPSED TIME: 5 minutes, 30.6 second(s)

Conclui-se que o projeto correu de maneira aceitável, provendo um aterramento relativamente seguro e ainda, atentando-se a norma no que se refere a impedância de aterramento.

7/11 Revisão 0 - abril, 19

ANEXO 1 – DISJUNTOR ESCOLHIDO

Dados Técnicos					
			5SL1		
Norma			NBR NM 60898-1		
Tensão de operação					
Mín.Máx.Máx.		VCA/CC VCA VCC	24 250/440 60 (mono) / 125 (bi)		
Capacidade de interrupção	NBR NM 60898-1 Icn	127/220 VCA	5,0 kA		
		220/380 VCA	3,0 kA		
	NBR IEC 60947-2 Icu	127/220 VCA	5,0 kA		
		220/380 VCA	4,5 kA		
Capacidade de interrupção de curto-circuito em corrente contínua Icu		Relação L / R = 4ms	24 VCC - 20 kA (mono) 60 VCC - 10 kA (mono) 125 VCC - 10 kA (bi)		
Seção máxima dos condutores Fios e cabos Cabos flexíveis com terminal		mm² mm²	0,75 35 0,75 25		
Terminais Torque de aperto		Nm	2,5 3		
Vida útil com cargas			20.000 atuações		
Temperatura ambiente		°C	-25 +45, ocasionalmente +55, com 95% de umidad Temperatura de armazenamento: -40 +75		

Tabelas de Seleção

Corrente Nominal	Curva B (disparo em curto	-circuito 3 a 5 x ln)	Curva C (disparo em curto-circuito 5 a 10 x ln)			
	Monopolar (1P)	Bipolar (2P)	Monopolar (1P)	Bipolar (2P)	Tripolar (3P)	
2,0 A	-	-	5SL1 102-7MB	5SL1 202-7MB	5SL1 302-7MB	
4,0 A		2	5SL1 104-7MB	5SL1 204-7MB	5SL1 304-7MB	
6,0 A	5SL1 106-6MB	5SL1 206-6MB	5SL1 106-7MB	5SL1 206-7MB	5SL1 306-7MB	
10 A	5SL1 110-6MB	5SL1 210-6MB	5SL1 110-7MB	5SL1 210-7MB	5SL1 310-7MB	
13 A	5SL1 113-6MB	5SL1 213-6MB	5SL1 113-7MB	5SL1 213-7MB	5SL1 313-7MB	
16 A	5SL1 116-6MB	5SL1 216-6MB	5SL1 116-7MB	5SL1 216-7MB	5SL1 316-7MB	
20 A	5SL1 120-6MB	5SL1 220-6MB	5SL1 120-7MB	5SL1 220-7MB	5SL1 320-7MB	
25 A	5SL1 125-6MB	5SL1 225-6MB	5SL1 125-7MB	5SL1 225-7MB	5SL1 325-7MB	
32 A	5SL1 132-6MB	5SL1 232-6MB	5SL1 132-7MB	5SL1 232-7MB	5SL1 332-7MB	
40 A	5SL1 140-6MB	5SL1 240-6MB	5SL1 140-7MB	5SL1 240-7MB	5SL1 340-7MB	
50 A	*		5SL1 150-7MB	5SL1 250-7MB	5SL1 350-7MB	
63 A	*	*	5SL1 163-7MB	5SL1 263-7MB	5SL1 363-7MB	
70 A	*		5SL1 170-7MB	5SL1 270-7MB	5SL1 370-7MB	
80 A	*		5SL1 180-7MB	5SL1 280-7MB	5SL1 380-7MB	

9/11

