

Attorney Docket No. 1095.1298

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Yoichi OIKAWA et al.

Application No.: 10/786,082

Group Art Unit: Unassigned

Filed: February 26, 2004

Examiner: Unassigned

For:

OPTICAL CROSS-CONNECT APPARATUS

SUBMISSION OF CERTIFIED COPY OF PRIOR FOREIGN APPLICATION IN ACCORDANCE WITH THE REQUIREMENTS OF 37 C.F.R. § 1.55

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 37 C.F.R. § 1.55, the applicant(s) submit(s) herewith a certified copy of the following foreign application:

Japanese Patent Application No(s). 2003-49485

Filed: February 26, 2003

It is respectfully requested that the applicant(s) be given the benefit of the foreign filing date(s) as evidenced by the certified papers attached hereto, in accordance with the requirements of 35 U.S.C. § 119.

Respectfully submitted,

STAAS & HALSEY LLP

Date: April 6, 2004

William F. Herbert

Registration No. 31,024

1201 New York Ave, N.W., Suite 700

Washington, D.C. 20005 Telephone: (202) 434-1500 Facsimile: (202) 434-1501

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月26日

出願番号 Application Number:

特願2003-049485

[ST. 10/C]:

[J P 2 0 0 3 - 0 4 9 4 8 5]

出 願 人
Applicant(s):

富士通株式会社

特許庁長官 Commissioner, Japan Patent Office 2004年 2月23日

【書類名】 特許願

【整理番号】 0251894

【提出日】 平成15年 2月26日

【あて先】 特許庁長官殿

【国際特許分類】 H04Q 3/52

【発明の名称】 光クロスコネクト装置

【請求項の数】 5

【発明者】

【住所又は居所】 北海道札幌市北区北七条西四丁目3番地1 富士通東日

本ディジタル・テクノロジ株式会社内

【氏名】 及川 陽一

【発明者】

【住所又は居所】 北海道札幌市北区北七条西四丁目3番地1 富士通東日

本ディジタル・テクノロジ株式会社内

【氏名】 村上 誠

【発明者】

【住所又は居所】 北海道札幌市北区北七条西四丁目3番地1 富士通東日

本ディジタル・テクノロジ株式会社内

【氏名】 石川 雄久

【特許出願人】

【識別番号】 000005223

【氏名又は名称】 富士通株式会社

【代理人】

【識別番号】 100092152

【弁理士】

【氏名又は名称】 服部 毅巖

【電話番号】 0426-45-6644

【手数料の表示】

【予納台帳番号】 009874

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9705176

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光クロスコネクト装置

【特許請求の範囲】

【請求項1】 光信号の光クロスコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換し、かつWDM信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う入力光信号処理部と、

パッシブな光デバイスで構成して、前記入力光信号処理部で処理された光信号 を、同じ波長毎に振り分ける波長スイッチ部と、

前記波長スイッチ部で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する出力光信号処理部と、

を有することを特徴とする光クロスコネクト装置。

【請求項2】 入力光信号のWDM数nを装置内部波長数とし、WDM波長数mをパルス幅圧縮による時間分割数とした際、スイッチサイズn×mを、光ファイバ帯域×入力光信号パルス幅×0.5以下に制限することを特徴とする付記1記載の光クロスコネクト装置。

【請求項3】 光信号の光クロスコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換する波長変換部と、

波長変換後の光信号を波長毎に分波する分波器と、分波後の光信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行うパルス幅・位相変換部と、位相変換後の光信号を合波する合波器と、から構成される波長スイッチ部と、

前記波長スイッチ部で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力

2/

する出力光信号処理部と、

を有することを特徴とする光クロスコネクト装置。

【請求項4】 入力光信号のWDM数をn、入力光信号の多重されている波長が λ $1\sim\lambda$ mでWDM波長数がmであって、m>n の場合に、非閉塞の光クロスコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、波長変換を行って、 λ 1 \sim λ 2 mの波長を生成する n 個の波長変換部と、

波長変換後の光信号を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(2m×n)個の第1の光信号処理部と、前記第1の光信号処理部の.出力ファイバに対し、2m/n本ごとの出力ファイバと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第1の波長スイッチ部と、

前記第1の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ m の波長を生成し、パルス幅を拡大するn個の第1の波長変換・パルス幅拡大部と

前記第1の波長変換・パルス幅拡大部からの出力を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(2m×n)個の第2の光信号処理部と、前記第2の光信号処理部の出力ファイバに対し、2m/n本ごとの出力ファイバと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第2の波長スイッチ部と、

前記第2の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ m の波長を生成し、パルス幅を拡大するn個の第2の波長変換・パルス幅拡大部と

を有することを特徴とする光クロスコネクト装置。

【請求項 5 】 入力光信号のWDM数を n、入力光信号の多重されている波長が λ 1 ~ λ mでWDM波長数がmであって、 $m \le n$ の場合に、非閉塞の光クロ

3/

スコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、波長変換を行って、 λ 1 \sim λ nの波長を生成する n個の波長変換部と、

波長変換後の光信号を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、 $\lambda 1 \sim \lambda n$ の中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う($n \times n$)個の第1の光信号処理部と、前記第1の光信号処理部の出力ファイバ1本ごとと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第1の波長スイッチ部と、

前記第1の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1~ λ mの波長を生成し、パルス幅を拡大するn個の第1の波長変換・パルス幅拡大部と

前記第1の波長変換・パルス幅拡大部からの出力を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、 λ 1~ λ nの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(n×n)個の第2の光信号処理部と、前記第2の光信号処理部の出力ファイバ1本ごとと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第2の波長スイッチ部と、

前記第2の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ m の波長を生成し、パルス幅を拡大するn個の第2の波長変換・パルス幅拡大部と

を有することを特徴とする光クロスコネクト装置。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は光クロスコネクト装置に関し、特にWDM (Wavelength Division Multiplex) 信号の光クロスコネクトを行う光クロスコネクト装置に関する。

$[0\ 0\ 0\ 2]$

【従来の技術】

光通信ネットワークは、情報通信ネットワークの基盤形成の核となるもので、 一層のサービスの高度化、広域化が望まれており、中でもWDMは光伝送システムの中心技術として、急速に開発が進んでいる。WDMは、波長の異なる光を多重して、1本の光ファイバで複数の信号を同時に伝送する方式である。

[0003]

一方、広大なフォトニックネットワークを構築するためには、WDMシステム同士を接続して、各ノード間をループ状に接続したリング型ネットワークや、メッシュ状に接続したメッシュ型ネットワークなどが適用される。このようなネットワークを構築する際のキーテクノロジーとなるものに光クロスコネクト(OX C:optical cross-connect)装置がある。

[0004]

OXC装置は、ネットワークのノード内に設置されて、入力ポートに入力された光信号を目的の出力ポートへ出力するようスイッチングを行ったり、光信号の挿入・分岐(Add・Drop)を行う装置である。また、OXC装置のスイッチング部には、通常、MEMS(Micro Electro Mechanical Systems)を用いた大規模な空間光マトリクス・スイッチが適用されており、1000チャネル程度のスイッチングができるものを目指して実用開発が進められている。

[0005]

従来のOXC装置の構成では、WDM伝送された光信号に対し、光信号を分波器で分離してから、光信号を一旦電気変換した後に光信号に再度変換するOEO (Optical-Electrical-Optical) で構成された波長変換部(トランスポンダ)で終端する。そして、光レベルで光マトリクス・スイッチに入力してスイッチングを行った後に、再びトランスポンダで波長変換してから合波器で合波し、WDM 信号として次段へ伝送する(例えば、特許文献1)。

[0006]

【特許文献1】

特開2000-134649号公報(段落番号〔0020〕~〔00 37〕, 第1図)

[0007]

【発明が解決しようとする課題】

しかし、従来のOXC装置では、MEMSのような微小電気機械部品を用いたスイッチセルによる光マトリクス・スイッチによって、光スイッチングを実現しているため、高集積光スイッチ素子の高度な製造性や複雑な制御性などの理由により、1000チャネル程度が上限であり、1000×1000のスイッチサイズ(スイッチ規模)でスループットは高々10Tb/sであった。

[0008]

このため、従来のOXC装置では、1000チャネルを越えた、大容量のスイッチングを行うことができず、次世代のマルチメディアネットワーク構築に対する発展性が期待できないといった問題があった。

[0009]

本発明はこのような点に鑑みてなされたものであり、大規模のスイッチングを 行って高スループットな光クロスコネクトを実現した光クロスコネクト装置を提 供することを目的とする。

[0010]

【課題を解決するための手段】

本発明では上記課題を解決するために、図1に示すような、光信号の光クロスコネクトを行う光クロスコネクト装置1において、入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換し、かつWDM信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う入力光信号処理部11-1~11-5と、パッシブな光デバイスで構成して、入力光信号処理部11-1~11-5で処理された光信号を、同じ波長毎に振り分ける波長スイッチ部12-1~12-5と、波長スイッチ部12-1~12-5で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する出力光信号処理部13-1~13-5と、を有することを特徴とする光クロスコネクト装置1が提供される。

$[0\ 0\ 1\ 1]$

ここで、入力光信号処理部11-1~11-5は、入力するWDM信号に対し

、WDM信号のWDM数に等しい数の波長に波長変換し、かつWDM信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。波長スイッチ部12-1~12-5は、パッシブな光デバイスで構成して、入力光信号処理部11-1~11-5で処理された光信号を、同じ波長毎に振り分ける。出力光信号処理部13-1~13-5は、波長スイッチ部12-1~12-5で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する。

[0012]

【発明の実施の形態】

以下、本発明の実施の形態を図面を参照して説明する。図1は本発明の光クロスコネクト装置の原理図である。光クロスコネクト装置1は、光信号の光クロスコネクトを行う装置であり、入力光信号処理部11-1~11-5、波長スイッチ部12-1~12-5、出力光信号処理部13-1~13-5から構成される。なお、以降の説明で各構成要素を総称する場合は、ハイフン以下の数字は略す(例えば、入力光信号処理部11-1~11-5は、入力光信号処理部11と記す)。

$[0\ 0\ 1\ 3]$

入力光信号処理部 11-1~11-5は、幹線網を通じて入力するWDM信号に対し、波長変換、パルス幅圧縮、位相変換を行って終端する。波長スイッチ部 12-1~12-5はそれぞれ、分波器(AWG:Arrayed Waveguide Grating) 12a-1~12a-5及び合波器(光カプラ) 12b-1~12b-5といったパッシブな光デバイスで構成され、入力光信号処理部 11-1~11-5で処理された光信号を、同じ波長毎に振り分ける。出力光信号処理部 13-1~13-5は、波長スイッチ部 12-1~12-5で振り分けられた光信号に対し、波長変換及びパルス幅拡大を行ってWDM信号を生成し幹線網へ出力する。

$[0\ 0\ 1\ 4]$

図2は入力光信号処理部11及び出力光信号処理部13での処理概要を示す図である。パルス波形で光信号を示す。入力光信号処理部11では、入力する光信

号に対し、波長変換、パルス幅圧縮、位相変換を行う。例えば、入力光信号の波 長がλ1である場合、波長変換を行ってλ5の光信号を生成する。そして、λ5 の光信号を情報圧縮してパルス幅を図に示すように縮小化し、位相変換を行って 圧縮信号の時間位置をずらす。

$[0\ 0\ 1\ 5]$

また、出力光信号処理部13では、波長スイッチ部12でスイッチングされた 光信号に対し、波長変換、パルス幅拡大を行う。例えば、圧縮されている衤5の 光信号に波長変換を行って A 1 の光信号を生成し、その後、パルス幅を図に示す ように拡大する。

$[0\ 0\ 1\ 6]$

一方、本発明の光クロスコネクト装置1では、装置内部波長数(波長変換後の 波長数のこと)を入力光信号のWDM数nと等しくし、パルス幅圧縮による時間 分割数をWDM波長数mと等しくして、スイッチサイズn×mを、光ファイバ帯 域×入力光信号パルス幅×0.5と等しいか、小さく設定することにより、周波 数帯域制限を受けずに(クロストークを発生せずに)、大容量の光クロスコネク トを実現する。なお、詳細については後述する。

$[0\ 0\ 1\ 7]$

次に光クロスコネクト装置1(以降、本発明の光クロスコネクト装置を λ – X C装置とも呼ぶ)の動作について説明する。図3は信号の流れを示す図である。 なお、図中のA~Dは、図1で示したA~Dの地点を表す。まず、A地点におい ては、図1のWDM1は、10Gb/s(100ps)でλ1~λ10の10波 (10チャネル)が波長多重されている。同様にWDM2~WDM5は、10G b/s (100ps) で λ 1 ~ λ 10の10波 (10チャネル) がそれぞれ波長 多重されている。

[0018]

B地点では、入力光信号処理部11−1~11−5によって、各WDM信号に 波長変換、パルス幅圧縮、位相変換が施された信号となる。ここで、装置内部波 長数は、WDM数n(入力光ファイバ本数)と等しくするので、図1の場合、W DM1~WDM5により、n=5である。また、パルス幅圧縮による時間分割数 をWDM波長数mと等しくするので、図1の場合、1つのWDM信号中に λ $1\sim$ λ 10の10波あるので、m=10である。

[0019]

したがって、装置内部波長数は5波であるので、 λ - \times C装置1 内では、例えば、 λ 1 - λ 5 を割り当てて、 λ 1 - λ 1 0 の波長を持つWDM信号に対し、 λ 1 - λ 5 のいずれかの波長に変換する。また、時間分割数は1 0 であるので、入力時に1 0 0 p s であったWDM信号を1 0 分割して、1 0 p s に情報圧縮する。

[0020]

ここで、B地点のWDM1について見ると、波長変換としては、 $\lambda 1 \rightarrow \lambda 1$ (波長変換なし)、 $\lambda 2 \rightarrow \lambda 5$ 、… $\lambda 10 \rightarrow \lambda 1$ というように、 $\lambda 1 \sim \lambda 10$ の波長を $\lambda 1 \sim \lambda 5$ の波長のいずれかに変換している。また、パルス幅圧縮としては、パルス幅100psの10分割として、10Gb/sの信号を10psまで圧縮している(情報量は10Gb/sのままである)。そして、これらの圧縮信号が同じ時間位置の位相にこないように位相変換を施している。

[0021]

したがって、A地点における λ $1 \sim \lambda$ 1 0 まで波長多重されているWDM信号は、B地点では、 λ $1 \sim \lambda$ 5 のいずれかの波長に波長変換されて、1 0 p s までパルス幅圧縮され、かつそれぞれ 1 0 波の圧縮信号は、時間軸上同じ位置にこないように(各波長の信号の中心周波数の位置が時間軸上同じ位置にこないように)位相がずらされる。WDM 2 \sim WDM 5 についても同様な処理が行われる。

$[0\ 0\ 2\ 2\]$

C地点では、波長スイッチ部 $12-1\sim12-5$ によってスイッチングされて、同じ波長の信号が集められた信号となる。すなわち、分波器 $12a-1\sim12$ a-5によって、B地点における信号が $\lambda1\sim\lambda5$ の波長毎に分波され、合波器 $12b-1\sim12b-5$ によって、 $\lambda1\sim\lambda5$ の波長毎に合波される。例えば、合波器 12b-1では $\lambda1$ の信号を10波合波する。

[0023]

D地点では、出力光信号処理部13-1~13-5によって、波長変換、パル

9/

ス幅拡大が施されたWDM信号となる。出力光信号処理部13-1~13-5は、波長変換処理を行う際には、入力信号の位相からあらかじめ変換すべき波長を認識しており(あらかじめ設定されている、または上位からの通知による)、また、パルス幅拡大としては、元のパルス幅に戻す操作を行う。

[0024]

例えば、出力光信号処理部13-1は、C地点におけるWDM1に対し、10波の $\lambda 1$ のそれぞれの位相から、どの波長に変換するかをあらかじめ認識しており、各波長の位相にもとづき、10波の $\lambda 1$ を $\lambda 1$ $\sim \lambda 10$ に波長変換する。また、10psを元の100psのパルス幅に拡大する。このようにして、光クロスコネクト後のWDM信号として出力する。

[0025]

[0026]

図4は局間の光ファイバ伝送を示す図である。局B1、B2は光ファイバ(SMF:Single Mode Fiber)Fで接続されて(中継距離が約100km)、光伝送を行う。このようなシステムにおける光ファイバ伝送のスループットについて考える。

[0027]

図5は光ファイバの特性を示す図である。SMFの損失特性を示しており、縦軸は損失(dB/km)、横軸は波長(μm)である。光伝送を行う場合、光損失の小さい波長領域で光信号を伝送する必要がある。したがって、SMFでは、図に示すように、損失の比較的小さい1200nm付近~1600nm付近の波長領域が光伝送に用いられる。実際には、ITU-T勧告によって、OバンドからUバンドの波長領域が決められている。

[0028]

図6はSMFの光伝送における波長領域を示す図である。図は、ITU-T勧告によって定められている、〇バンド(1260nm~1360nm)からUバンド(1625nm~1675nm)の波長領域を示すテーブルである。図6により、光伝送で使用できる波長帯域は、〇バンドの1260nmからUバンドの1675nmまでの約400nmであることがわかる。これを周波数に換算すると約50THzとなる。したがって、光伝送に使用する光ファイバの帯域は50THzである。なお、以降の説明においては、光ファイバの帯域を50THz、またビットレートが10Gb/sの入力光信号を扱った場合の例を中心にして説明する。

[0029]

図7は局間光ファイバ伝送のスループット算出を説明するための図である。光ファイバ帯域にN波(Nチャネル)の光信号が立てられる(多重している)様子を示しており、図中のBWは変調帯域、 Δ f は各チャネルの周波数間隔(チャネル間隔)である。なお、変調帯域BWはビットレートとほぼ等しい。例えば、10 G b \angle s のビットレートの光信号は、ほぼ10 G H z の周波数成分を持っているとしてよい。

[0030]

ここで、図4で示したシステムにおける光ファイバ伝送のスループットを求めると、光ファイバ帯域が $50\,\mathrm{THz}$ のときのチャネル数は、($50\,\mathrm{THz}/2\times$ BW)であり、ビットレートはBWとしてよいので、スループットは、チャネル数×ビットレート=($50\,\mathrm{THz}/(2\times\mathrm{BW})$)×BW= $25\,\mathrm{Tb}/\mathrm{s}$ となる。また、 $10\,\mathrm{Gb}/\mathrm{s}$ の場合、チャネル間隔 $\Delta\,\mathrm{f}$ が $20\,\mathrm{GHz}$ で、 $25\,00$ (= $50\,\mathrm{THz}/2\times10\,\mathrm{GHz}$)チャネルの波長を多重化できる。

$[0\ 0\ 3\ 1]$

このように求めたスループット25Tb/sは、光ファイバ帯域50THzのときの理論限界値であるが、光ファイバによって長距離伝送を行うと、波長分散その他の非線形効果が生じるため、実際のスループットは25Tb/sよりもかなり低い値になると考えられる。

[0032]

次に $\lambda-X$ C装置 1内の光ファイバ伝送(装置内光ファイバ伝送)のスループットについて説明する。図 8 は装置内光ファイバ伝送のスループット算出を説明するための図である。 $\lambda-X$ C装置 1内の入力光信号処理部 1 1を通過したパルスは、ビットレートは 1 0 G b / s と変わらないが、d u t y は短いパルスとなっている。パルス幅圧縮されたパルスの幅を Δ τ とすると、圧縮パルスの信号帯域は $1/\Delta$ τ である。

[0033]

ここで、装置内光ファイバ伝送のスループットを求めると、光ファイバ帯域が $50\,\mathrm{THz}$ のときの圧縮パルスの数(チャネル数)は、($50\,\mathrm{THz}/2\times$ ($1/\Delta\tau$))であり、1圧縮パルスのビットレートは、(($100\,\mathrm{ps}/\Delta\tau$)× $10\,\mathrm{Gb}/\mathrm{s}$)となるので、スループット=圧縮パルスの数×1圧縮パルスのビットレート= $25\,\mathrm{Tb}/\mathrm{s}$ となる。ここで、 $\lambda-\mathrm{XC}$ 装置1内で用いる光ファイバの帯域をBWfiberとおくと、装置内スループットはBWfiber/2という簡略式で算出できる。

[0034]

このように求めた25Tb/sは、光ファイバ帯域50THzのときの理論限 界値であるが、装置内における光ファイバ伝送は短距離伝送なので、非線形効果 の大きな影響を受けることはない。したがって、λ-XC装置1の装置内スルー プットは、理論限界値である25Tb/sそのものを実現可能とみなしてよい。

[0035]

次に従来の光クロスコネクト装置(以降、従来の装置をOXC装置と呼ぶ)の 光マトリクス・スイッチにおけるスループットと、 λーXC装置1の光クロスコ ネクトにおけるスループットについて説明する。まず、従来のOXC装置の構成 について説明する。

[0036]

図9はOXC装置の概略構成を示す図である。従来のOXC装置200は、分波器201-1~201-n、OEO202-1~202-m、203-1~203-m、光マトリクス・スイッチ204、OEO205-1~205-m、206-1~206-m、合波器207-1~207-nから構成される。

[0037]

分波器 201-1-201-n は、WDM信号を波長毎に分波し、OEO 202-1-202-m、203-1-203-mは、光/電気/光変換を行って波長変換する。光マトリクス・スイッチ 204 は、光レベルでスイッチングを行う。OEO 205-1-205-m、206-1-206-mは、スイッチング後の光信号を光/電気/光変換を行って、再び波長変換し、合波器 207-1-207-m07-nは光信号を合波してWDM信号を出力する。また、図ではWDM数はn、WDM波長数はmであるから、光マトリクス・スイッチ 204 はスイッチサイズが 20007-

[0038]

ここで、3次元のMEMSスイッチで光マトリクス・スイッチ204を構成する場合を考える。現状のMEMSのスイッチサイズでは1000×1000が開発されている。例えば、WDM数nが10、WDM波長数mが100波の信号を扱う場合には、1000×1000のスイッチが必要となる。

[0039]

この場合、ビットレートを10 G b / s とすると、 1000×1000 の光マトリクス・スイッチ 204 のスループットは、100 (WDM波長数) $\times 10$ (WDM数) $\times 10$ G b / s = 10 T b / s となる。

$[0\ 0\ 4\ 0]$

一方、さらなる大容量のスイッチングとして、100 Tb/sのスループットを実現しようとすると、光マトリクス・スイッチ204のスイッチサイズが 10000×1000 0となる。例えば、ビットレートが10 Gb/sで、WDM数が100、波長数が100波のとき、 10000×1000 0のスイッチが必要となる。

$[0\ 0\ 4\ 1]$

しかし、このような10000×10000のスイッチを、MEMSのような 光学素子で構成するには、現状の製造性を考慮すると非常に困難である。また、 スイッチング制御も非常に複雑なものになる。したがって、上述のアクティブ型 の光マトリクス・スイッチ204を用いた構成によって、光クロスコネクトを行 う従来のOXC装置200では、今後の大容量ネットワークに対する発展性が期待できないといえる。

$[0\ 0\ 4\ 2]$

[0043]

また、装置内部波長数を入力光信号のWDM数 n とすると、光ファイバ帯域が $50\,\mathrm{TH}\,z$ のとき、装置内でクロストークが発生しないようにするには、 $2\cdot\mathrm{B}$ W× $n \leq 50\,\mathrm{TH}\,z$ ($n \leq 50\,\mathrm{TH}\,z$ / $2\cdot\mathrm{BW}$) となることが必要である。

[0044]

図10はクロストークを説明するための図である。 (A) はクロストークが発生している状態、 (B) はクロストークが発生しない状態を示している。 (A) のように、隣接チャネルの信号同士が重なり合うと (図の斜線部)、互いの周波数成分が漏れこんでしまいクロストークが発生することになる。

[0045]

一方、(B)のように隣接チャネル同士が離れていればクロストークは発生しない。すなわち、各チャネルの中心周波数間隔が少なくとも2・BWあれば、クロストークが発生しない(帯域制限を受けない)ことがわかる。このため、少なくとも2・BWの波長間隔を確保すれば、50THzの光ファイバ帯域でクロストークの発生を回避することができる。

[0046]

ここで、スイッチサイズである $n \times m$ を計算すると、 $n \times m = (50 \text{ THz}/2 \cdot \text{BW}) \times (\text{BW} \cdot 100 \text{ ps}) = 2500 \text{ となる}$ 。したがって、光ファイバ

帯域が $50\,\mathrm{THz}$ で、 $10\,\mathrm{Gb/s}$ の入力のとき、 $\mathrm{n}\times\mathrm{m} \leq 2\,5\,0\,0$ となるように、 n とmを設定すれば、隣接チャネル同士が重なる現象は起きないので、 λ - X C 装置 1 ではクロストークが発生せずに光クロスコネクトを行うことができる。なお、クロストークが発生しない条件の一般式は、 $\mathrm{n}\times\mathrm{m} \leq \mathrm{BWfiber}\times\Delta\mathrm{T}$ × 1/2 と書くことができる($\Delta\mathrm{T}$ は入力光信号のパルス幅、ここでは $10\,\mathrm{0p}$ s)。

[0047]

ここまで、 $\lambda-X$ C装置 1 において、クロストークが発生しないスイッチサイズの条件を求めた。次に $\lambda-X$ C装置 1 による光クロスコネクトのスループットを求めると、スループットは、スイッチサイズ×ビットレート($n\times m\times bitrat$ e)であるから、 2500×10 G b / s であり、25 T b / s となる。すなわち、 $\lambda-X$ C装置 1 でクロストークが発生せずに、光クロスコネクトを行った際の最大のスループットは、ビットレートが 10 G b / s の場合、25 T b / s となり、図8 で上述した装置内光ファイバ伝送時のスループットと同じ値を実現することができる。

[0048]

以上説明したように、本発明の λ - X C 装置 1 は、入力光信号処理部 1 1 と、パッシブな光デバイスで構成した波長スイッチ部 1 2 と、出力光信号処理部 1 3 とから構成することにより、光クロスコネクトのスループットを装置内光ファイバ伝送時のスループットと同じ値を実現することができ、従来の O X C 装置 2 0 0 よりも、はるかに大容量で高スループットな動作を行うことが可能になる。

[0049]

次に波長スイッチ部12の構成の変形例について説明する。図11は変形例の 波長スイッチ部を含む $\lambda - X$ C装置の構成を示す図であり、図12は図11に示 したA地点からE地点の信号を示す図である。

[0050]

λ-XC装置1aは、入力光信号処理部11-1~11-n、波長スイッチ部120、出力光信号処理部13-1~13-nから構成される。なお、入力光信号処理部11-1~11-nと、出力光信号処理部13-1~13-nは図1と

同じ構成要素なので、波長スイッチ部120を中心に説明する。

$[0\ 0\ 5\ 1]$

波長スイッチ部 120 は、1 つの n:1 W D M カプラ 121 と、1 つの分波器 122 から構成される。n:1 W D M カプラ 121 は、入力光信号処理部 11-1 1-1 のの出力 1 本を 1 本に集線して、入力光信号処理部 11-1 1-1 で圧縮された信号を合波する。分波器 121 は、合波された信号を波長毎 に分波する。

[0052]

信号の流れとしては、A地点の信号は、パルス幅が $100psm\lambda1\sim\lambda$ mの 波長が多重されたWDM信号である。B地点の信号は、波長変換、パルス幅圧縮、位相変換された信号である。C地点の信号は、入力光信号処理部 $11-1\sim11-1$ 1-n から出力された圧縮パルスが波長多重された信号である。D地点の信号は、複数の $\lambda1$ の波長の圧縮パルスが多重されている信号である。E地点の信号は、パルス幅が $100psm\lambda1\sim\lambda$ mの波長が多重されたWDM信号である。波長スイッチ部120m0のような構成にすることにより、図1m0次長スイッチ部12m1の も構成部品の数を削減することができる。

[0053]

次に入力光信号処理部 11 の構成及び動作について説明する。図 13 は第 1 の実施の形態の入力光信号処理部の構成を示す図である。第 1 の実施の形態の入力光信号処理部 110 a は、分波器 111 a 、波長変換部 112 a -1 -112 a -1 -113 a -1 -113 a -1 -114 a -114

$[0\ 0\ 5\ 4]$

また、入力光変換制御部116aは、分岐部116a-1、O/E116a-2、指定信号設定部116a-3を含む。このような構成の入力光信号処理部110aは、WDM数がnならば、λ-XC装置1の入力部にn段構成されることになる。

[0055]

[0056]

パルス幅圧縮部 $113a-1\sim113a-m$ は、波長変換後の信号のパルス幅圧縮を行う。可変ディレイ $114a-1\sim114a-m$ は、位相指定信号にもとづき、圧縮パルスの位相を変換(遅延)する。合波器115aは、位相変換された圧縮パルスを合波し、後段の波長スイッチ部12へ送出する。

[0057]

一方、O/E116a-2は、分岐部116a-1によって分岐された、合波器115aの出力光パルスを電気信号に変換する。指定信号設定部116a-3は、電気信号にもとづいて、可変ディレイ $114a-1\sim114a-m$ それぞれで遅延させるべき値(位相設定信号)を生成し、可変ディレイ $114a-1\sim1$ 14a-mに送出する。また、波長変換部 $112a-1\sim112a-m$ それぞれが、どの波長に変換すべきかを指示するための波長指定信号を生成し、波長変換部 $112a-1\sim112-m$ へ出力する。

[0058]

[0059]

また、入力光変換制御部115bは、分岐部115b-1、O/E115b-2、指定信号設定部115b-3を含む(なお、入力光変換制御部115bは、図13で上述した入力光変換制御部116aと同じ機能を持つので、動作説明は省略する)。このような構成の入力光信号処理部110bは、WDM数がnなら

ば、 $\lambda - X C 装置 1 の入力部に n 段構成されることになる。$

[0060]

$[0\ 0\ 6\ 1]$

一方、NOLM113b-1~113b-mには、分波器111bで分波された光信号及び制御パルスが入射し、NOLM113b-1~113b-mは、制御パルスの重なった部分の光信号を出力する(図15で後述)。WDMカプラ114bは、NOLM113b-1~113b-mからの出力を合波し、後段の波長スイッチ部12へ送出する。

[0062]

図15はNOLM113b及び制御パルス生成部112bの動作を説明するための図である。制御パルス生成部112bは、Tunable LD(Laser Diode)112b-1、変調器112b-2、可変ディレイ112b-3から構成され、NOLM113bは、3dBカプラC1、合波カプラ(WDMカプラと同じ波長多重を行うカプラ)C2、非線形ループLから構成される。

[0063]

なお、可変ディレイ 1 1 2 b - 3 の出力端子は、合波カプラ C 2 の一端と接続する。分波器 1 1 1 b 0 1 つの出力端子は、3 d B カプラ C 1 のポート p 2 d 、W D M カプラ 1 1 4 b 0 1 つの入力端子と接続する。

$[0\ 0\ 6\ 4]$

[0065]

次にNOLM113bの動作について詳しく説明する。結合率1:1の3dB カプラC1は、ポートp1から入力する、分波器111bで分波された光信号 λ 1を50:50に分離する。また、合波カプラC2は、3dBカプラC1によって分離された一方の光信号 λ 1と制御パルス λ aとを合波する。

[0066]

ここで、制御パルス λ a の入力がない場合、3 d B カプラC 1 のポート p 1 から入射した光信号 λ 1 は、3 d B カプラC 1 のポート p 3 及びポート p 4 に分けられ非線形ループ (光ファイバループ) L を反時計回り及び時計回りに伝搬し、両者同時に再び 3 d B カプラC 1 に入射する。

[0067]

この際、3 d B カプラC 1からは、非線形ループLを反時計回り及び時計回りに伝搬した光信号の干渉により、ポートp 1にのみに光信号 $\lambda 1$ が出力され、ポートp 2には出力されない。すなわち、光信号 $\lambda 1$ の入力側から見ると、光信号 $\lambda 1$ は3 d BカプラC 1と非線形ループLからなるループミラーにより反射される(これにより、非線形光ループミラーと呼ばれる)。

[0068]

一方、制御パルス λ aの入力がある場合には、3dBカプラC1のポートp1から反時計回りに伝搬する光信号 λ 1のうち、制御パルス λ aに重なった部分は、非線形ループLを伝搬中に、非線形光学効果の一つである相互位相変調効果により制御パルス λ aの強度に比例した位相の変化が生じる。

$[0\ 0\ 6\ 9\]$

そして、再び3dBカプラC1に入射した際に、位相の変化が生じた部分のみが3dBカプラC1における干渉によりポートp2から出力されることになる。すなわち、制御パルス λ aと重なった光信号 λ 1の部分のみ(λ 1a)をポートp2から出力する光ゲート機能が実現されることになる。このようにして、制御パルス生成部112bとNOLM113bにより、分波された光信号に対して、波長変換、パルス幅圧縮、位相変換を行うことが可能になる。

[0070]

次に出力光信号処理部13の構成及び動作について説明する。図16は第1の実施の形態の出力光信号処理部の構成を示す図である。第1の実施の形態の出力光信号処理部130aは、チャープパルス光源131a、NOLM132a、波長分散スロープ制御部133aープ制御部133aープ、最長波長分散検出部133aープ、最長波長分散検出部133aープ、最長波長分散検出部133aープを構成され、NOLM132aは、3dBカプラC1、合波カプラC2、非線形ループLから構成される。このような構成の出力光信号処理部130aは、WDM数がnならば、λーXC装置1の出力部にn段構成されることになる

[0071]

なお、波長スイッチ部 12 の出力端子は、合波カプラ C2 の一端と接続する。 チャープパルス光源 131a の出力端子は、3dB カプラ C1 のポート p1 に接続し、3dB カプラ C1 のポート p2 は、波長分散スロープ平坦化処理部 133 a-5 の入力端子と接続する。

[0072]

$[0\ 0\ 7\ 3]$

NOLM132aに対し、波長スイッチ部12からの出力光信号(以降の説明のためスイッチパルスと呼ぶ)は合波カプラC2から入射し、チャープパルスは、3dBカプラC1から入射する。3dBカプラC1は、ポートp1から入力する、チャープパルスを50:50に分離する。また、合波カプラC2は、3dBカプラC1によって分離された一方のチャープパルスとスイッチパルスとを合波する。

[0074]

3 d BカプラC 1 のポート p 1 から時計回りに伝搬するチャープパルスのうち、スイッチパルスに重なった部分は、非線形ループLを伝搬中に、非線形光学効果の一つである相互位相変調効果によりスイッチパルスの強度に比例した位相の変化が生じる。

[0075]

そして、再び3dBカプラC1に入射した際に、位相の変化が生じた部分のみが3dBカプラC1における干渉によりポートp2から出力されることになる。すなわち、スイッチパルスと重なったチャープパルスの部分のみをポートp2から出力する光ゲート機能が実現する。NOLM132aによるこのような制御によって、波長スイッチ部12出力後のそれぞれ位相が異なる複数のλ1の信号を、λ1~λmの波長に変換している。

[0076]

[0077]

そして、波長分散スロープ平坦化処理部133a-5(高分散で、波長分散値及びスロープを可変できるデバイスを使用する)は、検出された波長分散値にもとづき、 $\lambda 1 と \lambda m$ とのスロープを平坦化させて、 $\lambda 1 \sim \lambda m$ すべての各パルスの幅を均等に拡大化する。

[0078]

図17は波長分散スロープの平坦化制御を説明するための図である。グラフG 1、G2は、縦軸は波長分散 D(p s / n m / k m)、横軸は波長(n m)であり、グラフG1はスロープ平坦前、グラフG2はスロープ平坦後を示している。

[0079]

グラフG 1 に対し、最短波長分散検出部 1 3 3 a - 3 は、 λ 1 の波長分散値 D 1 を検出し、最長波長分散検出部 1 3 3 a - 4 は、 λ m の波長分散値 D m を検出 する。このとき、 λ 1 \sim λ m の分散スロープは S L 1 である。

[0080]

グラフG 2 に対し、波長分散スロープ平坦化処理部 1 3 3 a - 5 では、分散スロープS L 1 をフラットな分散スロープS L 2 となるように、各波長の波長分散値を制御する。

[0081]

すなわち、波長分散スロープ平坦化処理部133a-5は、最短波長の λ 1に対する波長分散値がD1、最長波長の λ mに対する波長分散値がDmであることを認識すると、波長分散値D1、Dmの平均値を求め、 λ 1~ λ mのすべての波長の波長分散値がこの平均値に等しくなるように制御する。このような制御を行うことで、分散スロープはフラットになり、 λ 1~ λ mそれぞれのパルス幅を等しく拡大することができる。

[0082]

図18は第2の実施の形態の出力光信号処理部の構成を示す図である。第2の実施の形態の出力光信号処理部130bは、高速シーケンシャルスイッチ131b、波長変換部132b-1~132b-m、パルス幅拡大部133b-1~133b-m、合波器134bから構成される。このような構成の出力光信号処理部130bは、WDM数がnならば、 λ -XC装置1の出力部にn段構成されることになる。

[0083]

高速シーケンシャルスイッチ131bは、波長スイッチ部12でスイッチングされた圧縮パルスを、時間単位にシーケンシャルにスイッチング出力する。波長変換部132b-1~132b-mは、入力パルスをあらかじめ決められている波長(上位からこの波長を通知してもよい)に変換し、変換後のパルスは同一時間(位相)に出力する。図の場合、波長変換部132b-1は、 λ 1を λ 1に変換し、波長変換部132b-2は、 λ 1を λ 2に変換し、波長変換部132b-

[0084]

パルス幅拡大部 $133b-1\sim133b-m$ は、波長変換後の信号のパルス幅拡大を行う。合波器134bは、パルス幅拡大後の信号を合波して、WDM信号として出力する。

[0085]

図19は第3の実施の形態の出力光信号処理部の構成を示す図である。第3の実施の形態の出力光信号処理部130cは、高速シーケンシャルスイッチ131c、波長変換部132c-1~132c-m、合波器133c、波長分散スロープ制御部134cから構成される。このような構成の出力光信号処理部130cは、WDM数がnならば、λ-XC装置の出力部にn段構成されることになる。

[0086]

高速シーケンシャルスイッチ131cは、波長スイッチ部12でスイッチング された圧縮パルスを、時間単位にシーケンシャルにスイッチング出力する。波長 変換部 $132c-1\sim132c-m$ は、入力パルスをあらかじめ決められている 波長に変換し、変換後のパルスは同一時間(位相)に出力する。

[0087]

合波器133cは、波長変換後のパルスを合波する。また、波長分散スロープ制御部134cは、図16で上述した波長分散スロープ制御部133aと同じ構成要素のものであり、合波信号の各波長の波長分散スロープを制御して、パルス幅を拡大してWDM信号として出力する。図19の出力光信号処理部130cの方が、図18の出力光信号処理部130bよりも回路構成を縮小化できる。

-[0088]

次にペタビット級のスループットが実現可能な本発明の光クロスコネクト装置について説明する。図20は本発明の光クロスコネクト装置の原理図である。光クロスコネクト装置2(λ -XC装置2)は、ペタビット級のスループットを実現する光クロスコネクトを行う装置であり、波長変換部21-1~21-5、波長スイッチ部20-1~20-5、出力光信号処理部25-1~25-5から構成される。

[0089]

また、波長スイッチ部 $20-1\sim 20-5$ はそれぞれパッシブな光デバイスで構成され、分波器 (AWG) $22-1\sim 22-5$ 、パルス幅・位相変換部 $23a-1\sim 23a-10$ 、 $23e-1\sim 23e-10$ 、合波器 (光カプラ) $24-1\sim 24-5$ から構成される。

[0090]

波長変換部21-1~21-5は、入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換する。分波器22-1~22-5は、波長変換後の光信号を波長毎に分波する。パルス幅・位相変換部23a-1~23a-10、23e-1~23e-10は、分波後の光信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。合波器24-1~24-5は、位相変換後の光信号を含波して合波信号を生成する。

[0091]

出力光信号処理部 $25-1\sim25-5$ は、波長スイッチ部 $20-1\sim20-5$ で振り分けられた光信号に対し、位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する。

[0092]

次に動作について説明する。図21は信号の流れを示す図である。なお、図中のA~Eは、図20で示したA~Eの地点を表す。まず、A地点においては、図20のWDM1は、10Gb/s(100ps)で波長 λ 1~ λ 10の10波(10チャネル)が波長多重されている。同様にWDM2~WDM5は、10Gb/s(100ps)で波長 λ 1~ λ 10の10波(10チャネル)がそれぞれ波長多重されている。

[0093]

B地点では、波長変換部 $21-1\sim 21-5$ によって、各WDM信号に波長変換が施された信号となる。ここで、装置内部波長数 n は、WDM数と等しくするので、図 20 の場合、WDM $1\sim$ WDM 5 により、n=5 である。したがって、装置内部波長数は 5 波とするので、 $\lambda-X$ C装置 2 では例えば、 λ $1\sim\lambda$ 5 を割り当てて、 λ $1\sim\lambda$ 1 の入力信号に対し、 λ $1\sim\lambda$ 5 のいずれかの波長に変換

する。

[0094]

例えば、B地点のWDM1について見ると、波長変換としては、 $\lambda 1 \rightarrow \lambda 1$ (波長変換なし)、 $\lambda 2 \rightarrow \lambda 5$ 、… $\lambda 1 0 \rightarrow \lambda 4$ というように、 $\lambda 1 \sim \lambda 1 0$ の波 長を $\lambda 1 \sim \lambda 5$ の波長のいずれかに変換している。

[0095]

[0096]

D地点では、合波器 $24-1\sim24-5$ によって合波されて、同じ波長の信号が集められた信号となる。例えば、合波器 24-1 によって、WDM 1 では λ 1 の信号が 1 0 波合波する。同様に、WDM $2\sim$ WDM 5 では、 λ $2\sim\lambda$ 5 の信号 それぞれが 1 0 波合波する。

[0097]

E地点では、出力光信号処理部 $25-1\sim25-5$ によって、波長変換、パルス幅拡大が施されたWDM信号となる。出力光信号処理部 $25-1\sim25-5$ は、波長変換処理としては、入力信号の位相からあらかじめ変換すべき波長を認識しており、また、パルス幅拡大としては、元のパルス幅に戻す操作を行う。

[0098]

例えば、出力光信号処理部 25-1は、D地点におけるWDM 1に対し、10波の λ 1 のそれぞれの位相から、どの波長に変換するかをあらかじめ認識しており、各波長の位相にもとづき、10 波の λ 1 を λ 1 \sim λ 1 0 に波長変換する。また、10 p s を元の 100 p s のパルス幅に拡大する。これにより、光クロスコネクト後のWDM信号として出力する。

[0099]

ここで、図20の λ -XC装置2と、図1で示した λ -XC装置1との違いについて説明する。図1の λ -XC装置1では、クロストークが発生するおそれがあった。このため、光ファイバ帯域が50THz、入力光信号のパルス幅が100psのとき、装置内部波長数を入力光信号のWDM数n、パルス幅圧縮による時間分割数をWDM波長数mとして、クロストークが発生しない条件 $n \times m \le 2$ 500 (一般式としては、 $n \times m \le BW$ fiber $\times \Delta T \times 1/2$) を満たすように、 $n \ge m$ を設定する必要があった。

[0100]

[0101]

クロストークが発生する原因について説明する。λ-XC装置1でクロストークが発生する理由は、波長スイッチ部12の分波器12a(AWG)で光信号を分波する前に、入力光信号処理部11でWDM信号をパルス幅圧縮して時間分割を行っているからである。すなわち、圧縮信号をAWGに通して分波していることが起因である。

[0102]

したがって、λ-XC装置2では、AWGの入力段ではパルス幅圧縮をせずに、AWGの出力段でパルス幅圧縮の処理を行うようにする。すなわち、AWGで分波された信号をパルス幅圧縮して時間分割を行う構成とすれば、クロストークが発生することはない。

[0103]

[0104]

ここで $n \times m \le 2500$ を満たさないときは、入力光信号処理部 110出力は 隣接チャネル同士に重なりが生じている(位相変換は中心周波数の位置がぶつからないように位相を変換しているが、 $n \times m \le 2500$ を満たさない場合では、 各圧縮信号の側波帯の領域が隣接の圧縮信号と重なってしまう)。

[0105]

このような信号を分波器 1 2 a に入力して、波長単位に分波すると、例えば、 λ 1 を分波したとしても、λ 2 の側波帯領域が重なっているため、λ 2 の信号情 報も切り出されてしまうので、クロストーク(漏話)が生じることとなる。

[0106]

[0107]

このような構成にすれば、隣接チャネルに重なりのないWDM信号を分波して、その後に時間分割しているので、クロストークが発生する要因がなくなる。したがって、 $\lambda-X$ C装置 2 の構成にすれば、クロストークに関しては考慮する必要がなくなるので、WDM波長数 n と時間分割数mをそれぞれ独立して設定することができる。

[0108]

n、mの値を独立に設定することにより、スループットの上限値もなくなり、ペタビット級のスループットを実現することが可能になる(スループットの特性上の限界はなくなり、技術的、コスト的な上限で決まるようになる)。

[0109]

[0110]

[0111]

なお、 $\lambda-X$ C装置 2 では、分波した波長毎にパルス幅・位相変換部 2 3 を設けることになるので、 $\lambda-X$ C装置 1 と比較すると、装置規模は大きくなる。したがって、2 5 T b / s 以下のスループットで運用する環境では、 $\lambda-X$ C装置 1 を適用し、ペタビット級のスループットで運用する環境では $\lambda-X$ C装置 2 を適用するのが望ましい。

[0112]

次に光クロスコネクト時に輻輳が生じない本発明の λ - X C 装置について説明する。図20で上述した λ - X C 装置2では、スループットはペタビット級になって超大容量のスイッチングが可能であるが、波長スイッチ部20-1~20-5のような構成でスイッチングを行うと、パス(スイッチングパス)が同時に設定できないおそれがある。すなわち、波長スイッチ部20-1~20-5は、スイッチング時に目的ポートにパスを張ろうとすると、輻輳が生じる可能性のある閉塞(ブロッキング:blocking)タイプのスイッチである。このため、図20の λ - X C 装置2は、ある程度、運用対象が限定できる場合に適用することについては有効である。

$[0\ 1\ 1\ 3]$

以降では、スイッチング時に輻輳が生じることのない非閉塞(ノンブロッキング:non-blocking)タイプのスイッチ制御を用いた本発明のλ-XC装置について説明する。まず最初に、閉塞タイプ、非閉塞タイプのスイッチの違いと、非閉塞タイプの空間スイッチの構成例について説明する。

[0114]

図24は閉塞タイプのスイッチの一例を示す図である。入線が2本、出線が2本の2×2のスイッチSW51~SW54を、1段目にスイッチSW51、SW52を配置し、2段目にスイッチSW53、SW54を配置して、全体で4×4のスイッチを構成する。

[0115]

また、スイッチSW51は、入線側にポートpla、p2a、出線側にポートp3a、p4aを有し、スイッチSW52は、入線側にポートp1b、p2b、出線側にポートp3b、p4bを有し、スイッチSW53は、入線側にポートp1c、p2c、出線側にポートp3c、p4cを有し、スイッチSW54は、入線側にポートp1d、p2d、出線側にポートp3d、p4dを有している。

[0116]

そして、ポートp3aとポートp1cがラインL1と接続し、ポートp4aと ポートp1dがラインL2と接続し、ポートp3bとポートp2cがラインL3 と接続し、ポートp4bとポートp2dがラインL4と接続する。

[0117]

このような構成に対し、図に示すパス(スイッチングパス)の向きについて記すと、パスP1(ポートp1a→ポートp3a)、パスP2(ポートp2a→ポートp4a)、パスP3(ポートp1b→ポートp3b)、パスP4(ポートp2b→ポートp4b)、パスP5(ポートp1c→ポートp3c)、パスP6(ポートp2c→ポートp4c)、パスP7(ポートp1d→ポートp3d)、パスP8(ポートp2d→ポートp4d)である。

[0118]

このようなパスによって、入信号(s1、s2、s3、s4)は、1段目のスイッチSW51、SW52の入線側から入力してスイッチングされると、2段目のスイッチSW53、SW54の出線側から出信号(s1、s3、s2、s4)の並びで出力されることになる。

[0119]

ここで、この状態から、信号 s 3 と信号 s 2 はそのままで、信号 s 1 と信号 s 4 の順番を入れ替えて、入信号(s 1 、 s 2 、 s 3 、 s 4)を出信号(s 4 、 s

3、s2、s1)の並びにスイッチングする場合を考える。

[0120]

信号s1の経路について見ると、スイッチSW51のパスP1は、ポートp1 $a \to \mathcal{R}$ ートp4aへ向け、ラインL2を通った後に、スイッチSW54のパスP7の向きをポートp1d $\to \mathcal{R}$ ートp4dへ向けることになる。また、信号s4の経路について見ると、スイッチSW52のパスP4は、ポートp2b $\to \mathcal{R}$ ートp3bへ向け、ラインL3を通った後に、スイッチSW53のパスP6の向きをポートp2c $\to \mathcal{R}$ ートp3cへ向けることになる。

[0121]

ところが、このようなスイッチング操作を行ってしまうと、それぞれのスイッチ内のパスが輻輳してしまうことがわかる(例えば、スイッチSW51では、パスP1とパスP2がポートp4aでぶつかってしまう)。このため、上記の場合、信号s1、s4のみの順番を入れ替えることはできず、信号s1、s4の順番を入れ替えるためには、信号s2、s3の順番まで入れ替えなければならないことになる(結局、出信号(s4、s2、s3、s1)とするしかない)。

[0122]

ここで、m×mの閉塞スイッチでは、入線m-1本に対応する出線が確立してしまうと、スイッチ内の残りの1本のパスの行き先が決まってしまう。例えば、図24のスイッチSW51では、ラインL2を通すパスP2が確立してしまうと、もう一方のパスP1はラインL1に向かうしかない(最も本数の少ない例である)。このような構成の閉塞タイプのスイッチでは、ある箇所のスイッチングを行おうとすると、上述のように他の箇所まで影響を与えてしまうことになる。

[0123]

図25は非閉塞タイプのスイッチの一例を示す図である。入線が2本、出線が4本の 2×4 のスイッチ $SW61 \sim SW64$ を、1段目にスイッチSW61、SW62を配置し、2段目にスイッチSW63、SW64を配置して、全体で 4×4 のスイッチを構成する。

[0124]

また、スイッチSW61は、入線側にポートp1a、p2a、出線側にポート

 $p3a \sim p6a$ を有し、スイッチSW62は、入線側にポートp1b、p2b、出線側にポート $p3b \sim p6b$ を有し、スイッチSW63は、入線側にポート $p1c \sim p4c$ 、出線側にポートp5c、p6cを有し、スイッチSW64は、入線側にポート $p1d \sim p4d$ 、出線側にポートp5d、p6dを有している。

[0125]

そして、ポートp3aとポートp1cがラインL1と接続し、ポートp4aと ポートp2cがラインL2と接続し、ポートp5aとポートp1dがラインL3 と接続し、ポートp6aとポートp2dがラインL4と接続する。

[0126]

さらに、ポートp3bとポートp3cがラインL5と接続し、ポートp4bとポートp4cがラインL6と接続し、ポートp5bとポートp3dがラインL7と接続し、ポートp6bとポートp4dがラインL8と接続する。

[0127]

このような構成に対し、図に示すパス(スイッチングパス)の向きについて記すと、パスP1(ポートp1a→ポートp3a)、パスP2(ポートp2a→ポートp6a)、パスP3(ポートp1b→ポートp3b)、パスP4(ポートp2b→ポートp6b)、パスP5(ポートp1c→ポートp5c)、パスP7(ポートp3c→ポートp6c)、パスP10(ポートp2d→ポートp5d)、パスP12(ポートp4d→ポートp6d)である。

[0128]

このようなパスによって、入信号(s1、s2、s3、s4)は、1段目のスイッチSW61、SW62の入線側から入力してスイッチングされると、2段目のスイッチSW63、SW64の出線側から出信号(s1、s3、s2、s4)の並びで出力されることになる。

[0 1 2 9]

ここで、この状態から、信号 s 3 と信号 s 2 はそのままで、信号 s 1 と信号 s 4 の順番を入れ替えて、入信号(s 1 、 s 2 、 s 3 、 s 4)を出信号(s 4 、 s 3 、 s 2 、 s 1)の並びにスイッチングする場合を考える。

[0130]

[0131]

図からわかるように、このようなスイッチング操作を行っても、それぞれのスイッチ内のパスが輻輳することはない(信号s3、s2の経路はそのまま)。したがって、信号s1、s4のみの順番を入れ替えることができ、信号(s4、s3、s2、s1)とすることができる。

[0132]

このように、入線の本数に対して、およそ2倍近くの本数の出線を持つスイッチを多段に組み合わせれば、入線m-1本に対応する出線が確立しても、スイッチ内の残り1本のパスの行き先が固定的に決まってしまうことはなくなる。例えば、図26のスイッチSW61では、ラインL4を通すパスP2が確立しても、もう一方のパスP1は残り3通り(ポートp3a~p5a)のラインL1~L3の選択性がある。このような構成の非閉塞タイプのスイッチでは、他の箇所に影響を与えることなく、ある箇所のスイッチングを自由に行うことができる。

[0133]

次に非閉塞タイプの空間スイッチの例について図27~図30を用いて説明する。図27は非閉塞タイプの空間スイッチの構成を示す図である。空間スイッチ SW10は、2段構成からなり、1段目に入線がm本、出線がm・n本のm×m・nのスイッチ $SW11-1\sim SW11-n$ と、2段目に入線がm・n本、出線がm本のm・n×mのスイッチ $SW12-1\sim SW12-n$ とから構成され、全体でm・n×m・nのスイッチである。また、1段目のm×m・nスイッチは n 個、2段目のm・n×mスイッチは n 個ある(1段目と2段目は同じスイッチ)。

[0134]

さらに、1段目のスイッチSW11-1の出線は、m本のラインの束がnあり、m本の各ライン束は、2段目のスイッチSW12-1~SW12-nとそれぞれ接続する。スイッチSW11-2~SW11-nからの出線も同様にして、2段目のスイッチSW12-1~SW12-nとそれぞれ接続する。

[0135]

ここで、1段目の単位スイッチ(スイッチSW11-1~SW11-nのいずれかのスイッチのこと)の入線m-1本に対応する出線が確立した場合、残り1本が張れるパスの本数は、出線本数から(m-1)を引いて、 $m\cdot n-(m-1)=m(n-1)+1$ である。したがって、m(n-1)+1通りに自由にパスが張れるので、空間スイッチSW10は非閉塞タイプである。

[0136]

図28は非閉塞タイプの空間スイッチの構成を示す図である。空間スイッチSW20は、3段構成からなり、1段目に入線がm本、出線が (2m-1) 本のm×(2m-1) のスイッチSW21-1~SW21-nと、2段目に入線がn本、出線がn本のn×nのスイッチSW22-1~SW22-(2m-1)と、3段目に入線が (2m-1) 本、出線がm本の (2m-1) ×mのスイッチSW23-1~SW23-nとから構成され、全体でm・n×m・nのスイッチである。

[0137]

また、1段目の $m \times (2m-1)$ スイッチがn個、2段目の $n \times n$ スイッチが (2m-1) 個、3段目の $(2m-1) \times m$ スイッチがn 個なので、全体で $m \times (2m-1)$ スイッチが2n 個(1段目と3段目は同じスイッチ)、 $n \times n$ スイッチが (2m-1) 個ある。

[0138]

さらに、1段目のスイッチSW21-1の出線は、2m-1本なので、1本づつ2段目のスイッチSW22-1~SW22-(2m-1)とそれぞれ接続する。スイッチSW21-2~SW21-nからの出線も同様にして、2段目のスイッチSW22-1~SW22-(2m-1)とそれぞれ接続する。

[0139]

また、2段目のスイッチSW22-1の出線は、n本なので、1本づつ3段目のスイッチSW23-1~SW23-nとそれぞれ接続する。スイッチSW22-2~SW22-(2m-1)からの出線も同様にして、3段目のスイッチSW23-1~SW23-nとそれぞれ接続する。

[0140]

ここで、1段目の単位スイッチの出線は(2m-1)本であるから、1段目の単位スイッチから2段目の(2m-1)個のスイッチSW22 $-1\sim22-$ (2m-1)へ向かうパスの本数は(2m-1)本である。また、3段目の単位スイッチの入線は(2m-1)本であるから、2段目の(2m-1)個のスイッチSW22 $-1\sim22-$ (2m-1)それぞれから3段目の単位スイッチへ向かうパスの本数は(2m-1)本である。

$[0 \ 1 \ 4 \ 1]$

したがって、1段目スイッチの入線m-1本に対応する出線が確立し、3段目 . スイッチの入線m-1本に対応する出線が確立した場合でも、(2m-1)-(m-1)=m本のパスが1段目 $\rightarrow 3$ 段目に張ることができるので、空間スイッチ SW20は非閉塞タイプである。なお、多段構成の非閉塞スイッチは、C1os)型スイッチとも呼ばれる(Charles Closによって提案されたことによる)。

[0142]

図29は非閉塞タイプの空間スイッチの構成を示す図である。図28の変形例である空間スイッチSW30は、3段構成からなり、1段目に入線がm本、出線が2m本のm×2mのスイッチSW31-1~SW31-nと、2段目に入線がm本、出線がm本のm×mのスイッチSW32-1~SW32-2nと、3段目に入線が2m本、出線がm本の2m×mのスイッチSW33-1~SW33-nとから構成され、全体でm・n×m・nのスイッチである(m>nでm、nは偶数)。

[0143]

また、1段目の $m \times 2 m$ スイッチがn個、2段目の $m \times m$ スイッチが2 n個、3段目の $2 m \times m$ スイッチがn個なので、全体で $m \times 2 m$ スイッチが2 n個(1

段目と3段目は同じスイッチ)、m×mスイッチが2n個ある。

$[.0 \ 1 \ 4 \ 4]$

さらに、1段目のスイッチSW31-1の出線は2m本であり、この2m本がm/n(m/nは整数)本のライン東ごとに2段目のスイッチSW32-1~SW32-2nとそれぞれ接続する。スイッチSW31-2~SW32-nからの出線も同様にして、2段目のスイッチSW32-1~SW32-2nとそれぞれ接続する。

[0145]

また、2段目のスイッチSW32-1の出線はm本であり、このm本がm/n本のライン東ごとに3段目のスイッチSW33-1~SW33-nとそれぞれ接続する。スイッチSW32-2~SW32-nからの出線も同様にして、3段目のスイッチSW33-1~SW33-nとそれぞれ接続する。

[0146]

ここで、1段目の単位スイッチの出線は2 m本であるから、1段目の単位スイッチから2段目の2 n個のスイッチ $SW32-1\sim32-2 \text{ n}$ へ向かうパスの本数は2 m本である。また、3段目の単位スイッチの入線は2 m本であるから、2段目の2 n個のスイッチ $SW32-1\sim32-2 \text{ n}$ それぞれから3段目の単位スイッチへ向かうパスの本数は2 m本である。

[0147]

したがって、1段目スイッチの入線m-1本に対応する出線が確立し、3段目スイッチの入線m-1本に対応する出線が確立した場合でも、2m-(m-1) = (m+1) 本のパスが1段目→3段目に張ることができるので、空間スイッチSW30は非閉塞タイプである。

[0148]

図30は非閉塞タイプの空間スイッチの構成を示す図である。図28の変形例である空間スイッチSW40は、3段構成からなり、1段目に入線がm本、出線が2m本のm×2mのスイッチSW41-nと、2段目に入線が2m本、出線が2m本の2m×2mのスイッチSW42-1~SW42-nと、3段目に入線が2m本、出線がm本の2m×mのスイッチSW43-1~SW4

3-nとから構成され、全体で $m\cdot n\times m\cdot n$ のスイッチである(m、nは偶数)。

[0149]

また、1段目の $m \times 2 m$ スイッチがn個、2段目の $2 m \times 2 m$ スイッチがn個、3段目の $2 m \times m$ スイッチがn個なので、全体で $m \times 2 m$ スイッチが2 n個(1段目と3段目は同じスイッチ)、 $2 m \times 2 m$ スイッチがn個ある(図29で示した空間スイッチSW30よりもスイッチ構成数は少なくなる)。

[0150]

さらに、1段目のスイッチSW41-1の出線は2m本であり、この2m本が 2m/n (2m/nは整数)本のライン束ごとに2段目のスイッチSW42-1~SW42-nとそれぞれ接続する。スイッチSW41-2~SW42-nから の出線も同様にして、2段目のスイッチSW42-1~SW42-nとそれぞれ 接続する。

[0151]

また、2段目のスイッチSW42-1の出線は2m本であり、この2m本が2m/n本のライン東ごとに3段目のスイッチSW43-1~SW43-nとそれぞれ接続する。スイッチSW42-2~SW42-nからの出線も同様にして、3段目のスイッチSW43-1~SW43-nとそれぞれ接続する。

[0152]

[0153]

したがって、1段目スイッチの入線m-1本に対応する出線が確立し、3段目スイッチの入線m-1本に対応する出線が確立した場合でも、2m-(m-1) = (m+1) 本のパスが1段目 \rightarrow 3段目に張ることができるので、空間スイッチSW40は非閉塞タイプである。

[0154]

次に非閉塞タイプのスイッチを用いた本発明の $\lambda-X$ C装置の構成及び動作について説明する。図31は非閉塞タイプの $\lambda-X$ C装置の構成を示す図である。 $\lambda-X$ C装置3は、入力光信号のWDM数を n、入力光信号の多重されている波長が λ 1 \sim λ mでWDM波長数をmとしたとき、m>n の場合に、完全非閉塞の光クロスコネクトを行う装置である。 $\lambda-X$ C装置3は、非閉塞タイプとして、図30の空間スイッチ SW40を応用した装置(空間スイッチの非閉塞タイプとなるスイッチング理論を適用した装置)である。

[0155]

 $\lambda - X C 装置 3$ は、波長変換部 $3 1 - 1 \sim 3 1 - n$ 、波長スイッチ部 4 0、波長変換・パルス幅拡大部 $3 2 - 1 \sim 3 2 - n$ 、波長スイッチ部 5 0、波長変換・パルス幅拡大部 $3 3 - 1 \sim 3 3 - n$ から構成される。

[0156]

波長スイッチ部 4 0 は、分波器 4 $1-1\sim 4$ 1-n と、WDM 1 の光信号を処理する光信号処理部 4 $2-1-1\sim 4$ 2-1-2 mからWDM n の光信号を処理する光信号処理部 4 $2-n-1\sim 4$ 2-n-2 m(WDM 2 以降の光信号処理部は図示せず)と、合波器 4 $3-1\sim 4$ 3-n とから構成される。

[0157]

波長スイッチ部 50 は、分波器 $51-1\sim51-n$ と、WDM 1 の光信号を処理する光信号処理部 $52-1-1\sim52-1-2$ mからWDM n の光信号を処理する光信号処理部 $52-n-1\sim52-n-2$ m(WDM 2 以降の光信号処理部は図示せず)と、合波器 $53-1\sim53-n$ とから構成される。

[0158]

構成要素の個数を示すと、入力光信号のWDM数がnなので、波長変換部31、分波器41、51、波長変換・パルス幅拡大部32、33、合波器43、53はそれぞれn個ある。また、 λ -XC装置3内の波長変換部31、波長変換・パルス幅拡大部32では、 λ 1~ λ mの波長数の入力WDM信号に対して、波長変換を行って、 λ 1~ λ 2 mの波長数まで増加するため(装置内部波長数は入力信号の波長の倍に設定する)、WDM1用の光信号処理部42-1は2m個、WD

M2用の光信号処理部 42-2 は 2 m個、さらにWDM n 用の光信号処理部 42 - n は 2 m個ある。したがって、光信号処理部 42 は(2 m× n)個ある。

[0159]

同様に、光信号処理部 52-1 は 2 m個、光信号処理部 52-2 は 2 m個、さらに光信号処理部 52-n は 2 m個なので、光信号処理部 52 は $(2m\times n)$ 個ある。

[0160]

次に光信号処理部42と合波器43との接続関係及び光信号処理部52と合波器53との接続関係について説明する。合波器43は、光信号処理部42の出力ファイバに対し、WDM1~WDMnごとに、2m/n(2m/nは整数)本単位の出力ファイバと接続する。また、同様にして合波器53は、光信号処理部52の出力ファイバに対し、WDM1~WDMnごとに、2m/n本単位の出力ファイバと接続する(なお、図を簡略化するために、図31中に示す太実線は、2m/n本単位のファイバ及びその本数分の光信号処理部が配置してあることを示す)。

$[0\ 1\ 6\ 1]$

例えば、合波器 43-1 について見ると、合波器 43-1 には、WDM 1 の信号を処理する光信号処理部 $42-1-1\sim 42-1-(2\,\mathrm{m/n})$ からの出力ファイバと、2 段目のWDM 2 の信号を処理する、図示しない光信号処理部 $42-2-1\sim 42-2-(2\,\mathrm{m/n})$ からの出力ファイバと、最終段のWDM n の信号を処理する、図示しない光信号処理部 $42-n-1\sim 42-n-(2\,\mathrm{m/n})$ からの出力ファイバとが接続する。

$[0\ 1\ 6\ 2\]$

図32は光信号処理部と合波器の接続関係を示す図である。この図は、光信号処理部と合波器の接続関係をわかりやすく説明するための図で、n=2、m=2の簡単な例を示している。

[0163]

このような構成では、2 m/n = 2 であるので、合波器 4 3 - 1 、4 3 - 2 は、光信号処理部 $4 \text{ 2} - 1 - 1 \sim 4 \text{ 2} - 1 - 4$ 、 $4 \text{ 2} - 2 - 1 \sim 4 \text{ 2} - 2 - 4$ の出

カファイバに対し、WDM1、WDM2ごとに、2($=2\,\mathrm{m/n}$)本単位の出力ファイバと接続する。

$[0 \ 1 \ 6 \ 4]$

すなわち、光信号処理部42-1-1、42-1-2からの2本の出力ファイバは合波器43-1と接続し、光信号処理部42-1-3、42-1-4からの2本の出力ファイバは合波器43-2と接続する。同様に光信号処理部42-2-1、42-2-2からの2本の出力ファイバは合波器43-1と接続し、光信号処理部42-2-3、42-2-4からの2本の出力ファイバは合波器43-2と接続する。光信号処理部52と合波器53との接続関係についても上記と同様な接続形式である。

[0165]

次に動作について説明する。波長変換部 31-1-31-n それぞれは、入力するWDM信号に対し、波長変換を行って、 $\lambda1-\lambda2$ mの波長を生成する。分波器 41-1-41-n は、波長変換後の光信号を波長毎に分波する。光信号処理部 42 は、入力する単位波長の光信号に対し、波長変換、パルス幅圧縮、位相変換の処理を行う。ここでは、分波後の光信号に対し、波長変換を行って、 $\lambda1-\lambda$ の中のいずれかの波長を生成する。そして、時間分割数 2 m($\lambda-X$ C装置 1 、2 では時間分割数はmであったが、 $\lambda-X$ C装置 3 及び後述の $\lambda-X$ C装置 4 では 2 mとする)でパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。

$[0\ 1\ 6\ 6]$

合波器 $43-1\sim43-n$ は、位相変換後の光信号を合波する。例えば、合波器 43-1 は λ 1 のパルスのみ集線して合波し、合波器 43-n は λ n のパルスのみ集線して合波する。波長変換・パルス幅拡大部 $32-1\sim32-n$ は、波長スイッチ部 40 からの出力に対し、波長変換を行って、 λ $1\sim\lambda$ m の波長を生成し、パルス幅を拡大する。

[0167]

分波器 $5 1-1\sim 51-n$ は、波長変換・パルス幅拡大部 $32-1\sim 32-n$ からの出力を波長毎に分波する。光信号処理部 52 は、入力する単位波長の光信

号に対し、波長変換、パルス幅圧縮、位相変換の処理を行う。上記と同様に、分波後の光信号に対し、波長変換を行って、 λ $1 \sim \lambda$ n の中のいずれかの波長を生成し、時間分割数 2 mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。

$[0\ 1\ 6\ 8\]$

合波器 $53-1\sim53-n$ は、位相変換後の光信号を合波する。例えば、合波器 53-1 は λ 1 のパルスのみ集線して合波し、合波器 53-n は λ n のパルスのみ集線して合波する。波長変換・パルス幅拡大部 $33-1\sim33-n$ は、波長スイッチ部 50 からの出力に対し、波長変換を行って、 λ $1\sim\lambda$ mの波長を生成し、パルス幅を拡大して、光クロスコネクト処理後のWDM信号を送出する。

[0169]

このように、本発明の $\lambda-X$ C装置 3 は、波長スイッチ部を 2 段構成とし、波長スイッチ部 4 0、 5 0 内では、前段の分波器で 2 m波分の波長分波を行った後に、時間分割数を 2 mとしてパルス幅を圧縮し、 2 m/n本を λ 1 \sim λ n に割り付けて、後段の分波器に接続する構成とした。

[0170]

このような構成にすることで、図30で示した空間スイッチSW40と等価的に同じスイッチ構成となるので、 $\lambda - X$ C装置3は、非閉塞タイプのスイッチング(光クロスコネクト)を行うことが可能になる。

[0171]

図33、図34は λ -XC装置3と空間スイッチSW40との対応関係を示す図である。 λ -XC装置3の波長変換部31の入力から光信号処理部42の出力までの区間Aは、空間スイッチSW40の1段目のm×2mスイッチに対応し、合波器43の入力から光信号処理部52の出力までの区間Bは、空間スイッチSW40の2段目の2m×2mスイッチに対応し、光信号処理部52の入力から波長変換・パルス幅拡大部33の出力までの区間Cは、空間スイッチSW40の3段目の2m×mスイッチに対応する。

[0172]

一方、空間スイッチSW40の区間aに対し、λ-XC装置3のWDM1~W

DMnの物理的な入力線は1本であるが、波長がλ1~λmであるため、波長レベルでみると、m本の信号入力としてよく、m×2mスイッチの入線数と等しい

[0173]

区間 b に対し、光信号処理部 4 2 の出力ファイバは 2 m/n 本東ねて、n 個の合波器 4 3 それぞれに接続するので、m×2 mスイッチの出線と 2 m×2 mスイッチの入線との関係と等しい。

[0174]

区間 c に対し、光信号処理部 5 2 の出力ファイバは 2 m/n 本東ねて、n 個の合波器 5 3 それぞれに接続するので、2 m×2 mスイッチの出線と 2 m×mスイッチの入線との関係と等しい。

[0175]

区間 d に対し、 $\lambda-X$ C装置 3 のWDM 1 ~WDM n の物理的な出力線は 1 本であるが、波長が λ 1 ~ λ mであるため、波長レベルでみると、m本の信号出力としてよく、2 m×mスイッチの出線数と等しい。したがって、 $\lambda-X$ C装置 3 は、空間スイッチ 3 SW 4 O と等価的に等しい構成を持つので、非閉塞スイッチとなる。

[0176]

次に $m \le n$ のときの非閉塞タイプの $\lambda - X$ C装置について説明する。図35は非閉塞タイプの $\lambda - X$ C装置の構成を示す図である。 $\lambda - X$ C装置 4 は、入力光信号のWDM数を n、入力光信号の多重されている波長が λ 1 $\sim \lambda$ mでWDM波長数をmとしたとき、 $m \le n$ の場合に、完全非閉塞の光クロスコネクトを行う装置である。 $\lambda - X$ C装置 4 は、非閉塞タイプとして、図30の空間スイッチ S W 4 0 を応用した装置である。

[0177]

 $\lambda - X$ C 装置 4 は、波長変換部 4 $1 - 1 \sim 4$ 1 - n、波長スイッチ部 6 0、波長変換・パルス幅拡大部 4 $2 - 1 \sim 4$ 2 - n、波長スイッチ部 7 0、波長変換・パルス幅拡大部 4 $3 - 1 \sim 4$ 3 - n から構成される。

[0178]

波長スイッチ部60は、分波器6 $1-1\sim6$ 1-nと、WDM1の光信号を処理する光信号処理部6 $2-1-1\sim6$ 2-1-nからWDMnの光信号を処理する光信号処理部6 $2-n-1\sim6$ 2-n-nと、合波器6 $3-1\sim6$ 3-nとから構成される。

[0179]

波長スイッチ部 70 は、分波器 $71-1\sim71-n$ と、WDM 1 の光信号を処理する光信号処理部 $72-1-1\sim72-1-n$ からWDM n の光信号を処理する光信号処理部 $72-n-1\sim72-n-n$ と、合波器 $73-1\sim73-n$ とから構成される。

[0180]

構成要素の個数を示すと、入力光信号のWDM数が n なので、波長変換部 4 1、分波器 6 1、7 1、波長変換・パルス幅拡大部 4 2、4 3、合波器 6 3、7 3 はそれぞれ n 個ある。また、 λ - X C 装置 4 内の波長変換部 4 1、波長変換・パルス幅拡大部 4 2 では、 λ 1 \sim λ n の波長数の入力WDM信号に対して、波長変換を行って、 λ 1 \sim λ n の波長数とするため(m \leq n)、WDM 1 用の光信号処理部 6 2 - 1 は n 個、WDM 2 用の光信号処理部 6 2 - 2 は n 個 の光信号処理部 6 2 - 1 は n 個 の光信号処理部 7 2 - 1 は n 個 の表。同様に、光信号処理部 7 2 - 1 は n 個、光信号処理部 7 2 - 2 は n の個 の表。

[0181]

次に光信号処理部62と合波器63との接続関係及び光信号処理部72と合波器73との接続関係について説明する。合波器63は、光信号処理部62の出力ファイバ1本ごとと接続する。同様に合波器73は、光信号処理部72の出力ファイバ1本ごとと接続する。

[0182]

例えば、合波器 6 3 - 1 について見ると、合波器 6 3 - 1 には、WDM 1 の信号を処理する光信号処理部 6 2 - 1 - 1 の出力ファイバと、 2 段目のWDM 2 の信号を処理する、図示しない光信号処理部 6 2 - 2 - 1 の出力ファイバと、最終

段のWDMnの信号を処理する、図示しない光信号処理部62-n-1の出力ファイバとが接続する。

[0183]

次に動作について説明する。波長変換部 $4 \ 1 - 1 \sim 4 \ 1 - n$ は、入力するWD M信号に対し、波長変換を行って、 $\lambda \ 1 \sim \lambda \ n$ の波長を生成する。分波器 $6 \ 1 - 1 \sim 6 \ 1 - n$ は、波長変換後の光信号を波長毎に分波する。

[0184]

光信号処理部62は、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。合波器63-1~63-nは、位相変換後の光信号を合波する。

[0185]

波長変換・パルス幅拡大部42-1~42-nは、波長スイッチ部60からの出力に対し、波長変換を行って、 λ 1~ λ mの波長を生成し、パルス幅を拡大する。分波器 $71-1\sim71-$ nは、波長変換・パルス幅拡大部42-1~42-nからの出力を波長毎に分波する。光信号処理部 72は、分波後の光信号に対し、波長変換を行って、 λ 1~ λ nの中のいずれかの波長を生成し、かつ時間分割数 2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。

[0186]

合波器 $73-1\sim73-n$ は、位相変換後の光信号を合波する。波長変換・パルス幅拡大部 $43-1\sim43-n$ は、波長スイッチ部 70 からの出力に対し、波長変換を行って、 $\lambda 1\sim\lambda$ mの波長を生成し、パルス幅を拡大する。

[0187]

このように、本発明の $\lambda-X$ C 装置 4 は、波長スイッチ部を 2 段構成とし、波長スイッチ部 6 0、 7 0 内では、前段の分波器で n 波分の波長分波を行った後、時間分割数を 2 mとしてパルス幅圧縮して、各圧縮信号を λ 1 \sim λ n に割り付けて、後段の分波器に接続する構成とした。

[0188]

このような構成にすることで、図30で示した空間スイッチSW40と等価的に同じスイッチ構成となるので、 $\lambda - X$ C装置4は、非閉塞タイプのスイッチング(光クロスコネクト)を行うことが可能になる。

[0189]

図36、図37は λ -XC装置4と空間スイッチSW40との対応関係を示す 図である。 λ -XC装置4の波長変換部41の入力から光信号処理部62の出力 までの区間Aは、空間スイッチSW40の1段目のm×2mスイッチに対応し、 合波器63の入力から光信号処理部72の出力までの区間Bは、空間スイッチS W40の2段目の2m×2mスイッチに対応し、光信号処理部72の入力から波 長変換・パルス幅拡大部43の出力までの区間Cは、空間スイッチSW40の3 段目の2m×mスイッチに対応する。

[0190]

一方、空間スイッチ S W 4 0 の区間 a に対し、 λ - X C 装置 4 のW D M 1 \sim W D M n の物理的な入力線は 1 本であるが、波長が λ 1 \sim λ m であるため、波長 レベルでみると、m 本の信号入力としてよく、m \times 2 m スイッチの入線数と等しい

[0191]

区間 b に対し、光信号処理部 6 2 の出力ファイバは 1 本ごと、n 個の合波器 6 3 それぞれに接続するので、光信号処理部 6 2 -1 -1 -6 2 -1 -n からの物理的な出力線は n 本、合波器 6 3 -1 の物理的な入力線は n 本であるが(他の光信号処理部、合波器についても同様)、時間分割数を 2 mとしているため、m × 2 mスイッチの出線と 2 m× 2 mスイッチの入線の関係と等しい。

[0192]

[0193]

光信号処理部 $62-1-1\sim62-1-10$ は、分波された10波の信号の波

長変換、パルス幅圧縮、位相変換を行うが、時間分割数が2m (= 20) なので、1つの圧縮パルス幅は5psとなる。すると、位相変換では、100psの間隔内に5psの位相の配置の仕方が20通りあることになるので、 $m\times 2m$ スイッチの出線2m (= 20) の本数と等価的に等しいことになる。

[0194]

すなわち、光信号処理部62-1-1~62-1-10それぞれの10本の出力線から、100ps間隔内に時間分割数10のときの10psパルスを、位相をそれぞれずらして出力することは、出力線は10本そのままであるが、100ps間隔内に時間分割数20のときの5psパルスを、位相をそれぞれずらして出力することは、出力線は等価的に20本あるものとしてよい。

[0195]

また、光信号処理部62 $-1-1\sim$ 62-1-10それぞれの1本当たりの出力を見た場合、10psの時間を割り当てることができるので、5psのパルスの配置の仕方は2通りあることになり、光信号処理部62 $-1-1\sim$ 62-1-10から2本($=2m/n=2\cdot10/10$)の出力線が出ているものと等価的にみなしてよい。なお、区間 c は区間 b と、区間 d は区間 a と同様な考え方で等価であることがいえるので説明は省略する。

[0196]

[0197]

また、 $\lambda-X$ C 装置 3 の装置内の光ファイバで、圧縮パルスが最も多重される 光ファイバでは 1 0 0 0 波立つことになる。図 3 8 は圧縮パルスの変調帯域の広 がりを示す図である。 1 0 0 0 波の立て方を 1 0 G H z 間隔とすると、 λ $1\sim\lambda$ 1 0 0 0 の圧縮パルスが占める帯域は 1 0 T H z (= 1 0 G H z × 1 0 0 0) と なる。

[0198]

一方、1つの波長信号を50 f s まで情報圧縮した場合、この50 f s の圧縮パルスの実際の変調帯域は20 T H z である(入力時は100 p s の変調帯域10 G H z のものが50 f s まで圧縮されて変調帯域が20 T H z まで広がっている)。

[0199]

[0200]

光ファイバ帯域は $50\,\mathrm{THz}$ であるので、光ファイバ帯域内に $10\,\mathrm{00}$ 彼の圧縮パルスの帯域が収まることがわかる。すなわち、完全非閉塞タイプで最も装置内部波長数が多くなる $\lambda-\mathrm{XC}$ 装置 3 に対し、光ファイバ帯域内で、入力光信号が $1\,\mathrm{000}$ 波、時間分割数を $2\,\mathrm{000}$ 分割とした光クロスコネクトを実行可能であることがわかる。

[0201]

一方、入力光信号のWDM数が n でWDM波長数がmのとき、 $m \le n$ の $\lambda - X$ C装置 4 に関しては、m = 1000波、n = 1000本とすれば、 $\lambda - X$ C装置 4 のスループットは、1000×1000×10G b/s = 10P b/s となる。このように、ペタビット級のスループットで、かつ完全非閉塞な光クロスコネクトを実現することが可能になる。

[0202]

(付記1) 光信号の光クロスコネクトを行う光クロスコネクト装置において

入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換し、かつWDM信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う入力

光信号処理部と、

パッシブな光デバイスで構成して、前記入力光信号処理部で処理された光信号 を、同じ波長毎に振り分ける波長スイッチ部と、

前記波長スイッチ部で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する出力光信号処理部と、

を有することを特徴とする光クロスコネクト装置。

[0203]

(付記2) 入力光信号のWDM数nを装置内部波長数とし、WDM波長数mをパルス幅圧縮による時間分割数とした際、スイッチサイズn×mを、光ファイバ帯域×入力光信号パルス幅×0.5以下に制限することを特徴とする付記1記載の光クロスコネクト装置。

[0204]

(付記3) 前記波長スイッチ部は、波長毎に分波する分波器と、分波後の光信号に対して同じ波長の光信号を合波する合波器と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0205]

(付記4) 前記波長スイッチ部は、入力光信号のWDM数がnの場合に、n本の光信号を1本に集線するWDMカプラと、集線された光信号を波長毎に分波する分波器と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0206]

(付記5) 前記入力光信号処理部は、入力WDM信号を波長毎に分波する分波器と、波長指定信号にもとづき、分波後の信号の波長変換を行う波長変換部と、波長変換後の信号のパルス幅圧縮を行うパルス幅圧縮部と、位相指定信号にもとづき、圧縮信号の位相を変換する可変ディレイと、位相変換された圧縮信号を合波する合波器と、前記波長指定信号及びスイッチング出力後の信号にもとづき前記位相指定信号を設定する入力光変換制御部と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0207]

(付記6) 前記入力光信号処理部は、入力WDM信号を波長毎に分波する分波器と、波長指定信号にもとづき、波長可変の制御パルスを生成し、かつ位相指定信号にもとづく位相で、前記制御パルスを出力する制御パルス生成部と、入射された分波後の信号と前記制御パルスとに対して、前記制御パルスと重なった部分の光信号を出力する非線形光ループミラーと、前記非線形光ループミラーからの出力を合波するWDMカプラと、前記波長指定信号及び合波出力後の信号にもとづき前記位相指定信号を設定する入力光変換制御部と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0208]

(付記7) 前記出力光信号処理部は、波長が時間的に連続して変化するチャープパルスを発光するチャープパルス光源と、前記波長スイッチ部の出力光信号と前記チャープパルスとに対して、前記出力光信号と重なった前記チャープパルスの部分の波長の光信号を出力する非線形光ループミラーと、前記非線形光ループミラーからの出力に対して、最短波長パルスの最短波長分散と、最長波長パルスの最長波長分散とを検出し、前記最短波長分散と前記最長波長分散間の波長分散スロープを平坦化する波長分散スロープ制御部と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0209]

(付記8) 前記出力光信号処理部は、前記波長スイッチ部の出力光信号を、時間単位にシーケンシャルにスイッチング出力するシーケンシャルスイッチと、スイッチング後の信号の波長変換を行う波長変換部と、波長変換後の信号のパルス幅拡大を行うパルス幅拡大部と、パルス幅拡大後の信号を合波する合波器と、から構成されることを特徴とする付記1記載の光クロスコネクト装置。

[0210]

(付記9) 前記出力光信号処理部は、前記波長スイッチ部の出力光信号を、時間単位にシーケンシャルにスイッチング出力するシーケンシャルスイッチと、スイッチング後の信号の波長変換を行う波長変換部と、波長変換後の信号を合波する合波器と、合波後の信号に対して、最短波長パルスの最短波長分散と、最長

波長パルスの最長波長分散とを検出し、前記最短波長分散と前記最長波長分散間 の波長分散スロープを平坦化する波長分散スロープ制御部と、から構成されるこ とを特徴とする付記1記載の光クロスコネクト装置。

[0211]

(付記10) 光信号の光クロスコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換する波長変換部と、

波長変換後の光信号を波長毎に分波する分波器と、分波後の光信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行うパルス幅・位相変換部と、位相変換後の光信号を合波する合波器と、から構成される波長スイッチ部と、

前記波長スイッチ部で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する出力光信号処理部と、

を有することを特徴とする光クロスコネクト装置。

[0212]

(付記11) 入力光信号のWDM数nを装置内部波長数とし、WDM波長数mをパルス幅圧縮による時間分割数とした際、nとmを独立に設定することを特徴とする付記10記載の光クロスコネクト装置。

$[0\ 2\ 1\ 3\]$

(付記 1 2) 入力光信号のWDM数を n 、入力光信号の多重されている波長 が λ $1 \sim \lambda$ mでWDM波長数がmであって、m > n の場合に、非閉塞の光クロスコネクトを行う光クロスコネクト装置において、

入力するWDM信号に対し、波長変換を行って、 λ 1 \sim λ 2 mの波長を生成する n 個の波長変換部と、

波長変換後の光信号を波長毎に分波する n 個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λ n の中のいずれかの波長を生成し、かつ時間分割数 2 mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相

変換を行う(2m×n)個の第1の光信号処理部と、前記第1の光信号処理部の 出力ファイバに対し、2m/n本ごとの出力ファイバと接続して、位相変換後の 光信号を合波するn個の合波器と、から構成される第1の波長スイッチ部と、

前記第1の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ m の波長を生成し、パルス幅を拡大するn個の第1の波長変換・パルス幅拡大部と

前記第1の波長変換・パルス幅拡大部からの出力を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(2m×n)個の第2の光信号処理部と、前記第2の光信号処理部の出力ファイバに対し、2m/n本ごとの出力ファイバと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第2の波長スイッチ部と、

前記第2の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ m の波長を生成し、パルス幅を拡大するn個の第2の波長変換・パルス幅拡大部と

を有することを特徴とする光クロスコネクト装置。

[0214]

(付記13) 入力光信号のWDM数を n、入力光信号の多重されている波長 $\delta \lambda$ $\delta \lambda$

入力するWDM信号に対し、波長変換を行って、 λ 1 \sim λ nの波長を生成する n個の波長変換部と、

波長変換後の光信号を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(n×n)個の第1の光信号処理部と、前記第1の光信号処理部の出力ファイバ1本ごとと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第1の波長スイッチ部と、

前記第1の波長スイッチ部からの出力に対し、波長変換を行って、 λ 1 \sim λ mの波長を生成し、パルス幅を拡大するn個の第1の波長変換・パルス幅拡大部と

前記第1の波長変換・パルス幅拡大部からの出力を波長毎に分波するn個の分波器と、分波後の光信号に対し、波長変換を行って、λ1~λnの中のいずれかの波長を生成し、かつ時間分割数2mでパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う(n×n)個の第2の光信号処理部と、前記第2の光信号処理部の出力ファイバ1本ごとと接続して、位相変換後の光信号を合波するn個の合波器と、から構成される第2の波長スイッチ部と、

前記第2の波長スイッチ部からの出力に対し、波長変換を行って、 λ $1 \sim \lambda$ m の波長を生成し、パルス幅を拡大する n 個の第2の波長変換・パルス幅拡大部と

を有することを特徴とする光クロスコネクト装置。

[0215]

【発明の効果】

以上説明したように、本発明の光クロスコネクト装置は、入力するWDM信号に対し、波長変換、パルス幅圧縮、位相変換を行った後に、パッシブな光デバイスで構成した波長スイッチ部で同じ波長毎に振り分け、振り分けられた光信号に対し、波長変換及びパルス幅拡大を行ってWDM信号を出力する構成とした。これにより、大規模のスイッチングを行って高スループットな光クロスコネクトを実現することが可能になる。

【図面の簡単な説明】

図1

本発明の光クロスコネクト装置の原理図である。

【図2】

入力光信号処理部及び出力光信号処理部での処理概要を示す図である。

【図3】

信号の流れを示す図である。

【図4】

局間の光ファイバ伝送を示す図である。

【図5】

光ファイバの特性を示す図である。

【図6】

SMFの光伝送における波長領域を示す図である。

【図7】

局間光ファイバ伝送のスループット算出を説明するための図である。

【図8】

装置内光ファイバ伝送のスループット算出を説明するための図である。

【図9】

OXC装置の概略構成を示す図である。

【図10】

クロストークを説明するための図である。(A) はクロストークが発生している状態、(B) はクロストークが発生しない状態を示す図である。

【図11】

変形例の波長スイッチ部を含む λ - X C装置の構成を示す図である。

【図12】

A地点からE地点の信号を示す図である。

【図13】

第1の実施の形態の入力光信号処理部の構成を示す図である。

【図14】

第2の実施の形態の入力光信号処理部の構成を示す図である。

【図15】

NOLM及び制御パルス生成部の動作を説明するための図である。

【図16】

第1の実施の形態の出力光信号処理部の構成を示す図である。

【図17】

波長分散スロープの平坦化制御を説明するための図である。

【図18】

第2の実施の形態の出力光信号処理部の構成を示す図である。

【図19】

第3の実施の形態の出力光信号処理部の構成を示す図である。

【図20】

本発明の光クロスコネクト装置の原理図である。

【図21】

信号の流れを示す図である。

【図22】

クロストークが発生する要因を持つ構成を示す図である。

【図23】

クロストークが発生しない構成を示す図である。

【図24】

閉塞タイプのスイッチの一例を示す図である。

【図25】

非閉塞タイプのスイッチの一例を示す図である。

図26

スイッチング後のパス状態を示す図である。

【図27】

非閉塞タイプの空間スイッチの構成を示す図である。

【図28】

非閉塞タイプの空間スイッチの構成示す図である。

【図29】

非閉塞タイプの空間スイッチの構成を示す図である。

【図30】

非閉塞タイプの空間スイッチの構成を示す図である。

【図31】

非閉塞タイプのλ-XC装置の構成を示す図である。

【図32】

光信号処理部と合波器の接続関係を示す図である。

ページ: 53/E.

【図33】

λ-XC装置と空間スイッチとの対応関係を示す図である。

【図34】

λ-XC装置と空間スイッチとの対応関係を示す図である。

【図35】

非閉塞タイプのλ-XC装置の構成を示す図である。

【図36】

λ-XC装置と空間スイッチとの対応関係を示す図である。

【図37】

λ-XC装置と空間スイッチとの対応関係を示す図である。

【図38】

圧縮パルスの変調帯域の広がりを示す図である。

【符号の説明】

- 10 光クロスコネクト装置
- 11-1~11-5 入力光信号処理部
- 12-1~12-5 波長スイッチ部
- 12a-1~12a-5 分波器
- 12b-1~12b-5 光カプラ
- 13-1~13-5 出力光信号処理部

【書類名】

図面

【図1】

【図2】

【図3】

[図5]

ross (qB∕km)

【図6】

バンド呼称	意味	波長範囲
Oバンド	Original	1260nm~1360nm
Eバンド	Extended	1360nm~1460nm
Sバンド	Short wavelength	1460nm~1530nm
Cバンド	Conventional	1530nm~1565nm
Lバンド	Long wavelength	1565nm~1625nm
Uバンド	Uitralong wavelength	1625nm~1675nm

【図7】

(局間光ファイバ伝送のスループット)

ビットレートとみなしたBw

 \times BW = 25Tb/ 変調帯域のBW 50THz $2 \times B W$ スループット=チャネル数×ビットレート

25Tb/sは、光ファイバ帯域が50THzのときの理論限界値であるが、実際は、長距離伝送を行うと、光ファイバの非線形効果により、25Tb/sよりかなり低い値になる。

【図8】

(装置内光ファイバ伝送のスループット)

スループット=圧縮パルスの数×1圧縮パルスのビットレート

$$= \frac{50 \text{ THz}}{2 \times \left(\frac{1}{\Delta \tau}\right)} \times \frac{100 \text{ ps}}{\Delta \tau} \cdot 10 \text{ Gb/s} = 25 \text{ Tb/s}$$

$$= \frac{2 \times \left(\frac{1}{\Delta \tau}\right)}{\Delta \tau} = \frac{\text{BWfiber}}{\tau}$$

時間分割数

B Wfiber

【図9】

【図10】

【図11】

[図12]

$$A \begin{cases} \lambda & 1 \\ \lambda & m \end{cases}$$

$$B \begin{cases} \lambda & 1 \\ \lambda & m \end{cases}$$

$$C \begin{cases} \lambda & 1 \\ \lambda & m \end{cases}$$

$$D \begin{cases} \lambda & 1 \\ \lambda & m \end{cases}$$

$$E \begin{cases} \lambda & 1 \\ \lambda & m \end{cases}$$

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図20】

【図21】

【図23】

【図24】

【図25】

【図26】

非閉塞タイプ

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】

【図34】

【図35】

【図36】

【図37】

【図38】

【書類名】

要約書

【要約】

【課題】 大規模のスイッチングを行って高スループットな光クロスコネクトを 実現する。

【解決手段】 入力光信号処理部 11-1~11-5は、入力するWDM信号に対し、WDM信号のWDM数に等しい数の波長に波長変換し、かつWDM信号のパルス幅を、WDM信号のWDM波長数で分割してパルス幅圧縮を行い、複数の圧縮信号が同位相にならないように位相変換を行う。波長スイッチ部 12-1~12-5は、パッシブな光デバイスで構成して、入力光信号処理部 11-1~11-5で処理された光信号を、同じ波長毎に振り分ける。出力光信号処理部 13-1~13-5は、波長スイッチ部 12-1~12-5で振り分けられた光信号に対し、光信号の位相から変換すべき波長を認識して波長変換を行い、パルス幅拡大を行って、WDM信号を出力する。

【選択図】

図 1

出願人履歴情報

識別番号

[000005223]

1. 変更年月日

1996年 3月26日

[変更理由]

住所変更

住所

神奈川県川崎市中原区上小田中4丁目1番1号

氏 名

富士通株式会社