Introduction to Data Mining

What is data mining?

Probability – reminder!

Based on Data Mining – Concept and Techniques, Jiawei Han, Micheline Kamber & Jian Pei

Motivation by examples

In this toy example: 4,294,967,296 potential patterns!!!

Sample pattern:
"On rainy
Tuesdays
the customer will
buy service A if
he is located
close to
downtown"

The challenge: identifies the significant patterns and maps them into business opportunities.

Motivation by examples

Why data mining?

The **Explosive Growth** of Data: from terabytes to petabytes

Data collection and data availability

Major sources of abundant data

We are drowning in data, but starving for knowledge!

What is data mining?

Extraction of interesting knowledge from huge amount of data

non-trivial

implicit

previously unknown

potentially useful

Example

if income < *t* then person defaulted on loan

X= bad situation

O= good situation

The graph represent historical data.

How to decide when to give a loan?

Definition of terms

- Data is the set of facts (F)
 In the example- collection of 23 cases, each containing three fields: debt income status
- Pattern is an expression E describing facts in the subset E_F of F.
- **Process** multi-step process to discover validity, useful and non-trivial but understandable results

Example – definitions of terms

- **Validity** The discovered patterns should be valid with some certainty, *C* (E, F).
- Potentially Useful The discovered patterns should do some useful actions that can be measured by some utility function U(E, F).
- Understandable The goal of KDD is to create patterns understandable in order to understand better the data. If this can be measured, it will be measured by s=S(E, F).
- Interestingness The overall measure of pattern value combining all the individual measures: i = I(E, F, C, U, S)
- Knowledge A pattern E∈L is called a knowledge if for some threshold I(E, F, C, U, S)>v.

Data mining - tasks

- Classification is the learning of a function that maps a data into one of several predefined classes.
- Prediction is the learning of a function that maps data item into A prediction variable.
- Clustering Identify a set of items with common characteristics
- And more: reinforcement learning; associating; sequencing

CRISP-DM

The Cross Industry Process for Data Mining –

(www.crisp dm.org) (CRISP DM; Shearer, 2000)

Probability -reminder

"Introduction to Probability Models", Sheldon Ross

• "Introduction to Probability and Statistics for Engineers and Scientists", Sheldon Ross

• "Introduction To Probability", Dimitri P. Bertsekas, John N. Tsitsiklis

Probability – basics

- Random experiment E, outcome $\omega \in \Omega$, events F, sample space (Ω, F)
- Probability measure $P: F \to R$
- Axioms of probability, basic laws of probability
- Discrete sample space, discrete probability measure
- Continuous sample space, continuous probability measure
- Conditional probability, multiplicative rule, theorem of total probability,
 Bayes theorem
- Independence, pair-wise, mutual, conditional independence

Random variables

- $X: \Omega \to R$
- Example:
 - Experiment: Tossing of two coins
 - Random variable: sum of two outcomes
 - $\{X = 2\} \equiv \{\omega : sum \ of \ scores = 2\} = \{\{1,1\}\}$

Some discrete distributions

Bernoulli: $X \sim Ber(p), P_X(k) = p^k(1-p)^{1-k}; k = 0,1$

• Binomial:
$$X \sim Bin(n, p)$$
, $P_X(k) = P\{X = k\} = \binom{n}{k} p^k q^{n-k}$; $k = 0, 1, ..., n$

Poisson: $X \sim Poisson(\lambda)$,

$$P_X(k) = P\{X = k\} = e^{-\lambda} \frac{\lambda^k}{k!}$$
; $k = 0,1,2,...$

Geometric:
$$X \sim Geo(p)$$
, $P_X(k) = P\{X = k\} = p \cdot (1-p)^{k-1}$; $k = 1,2,...$

Some density functions

Uniform: $x \sim U(a,b) \equiv f(x) = \frac{1}{b-a}$

Exponential: $x \sim Exp(\lambda) \equiv f(x) = \lambda e^{-\lambda x}$

Standard Normal: $x \sim N(0,1) \equiv f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

Gaussian: $x \sim N(\mu, \sigma) \equiv f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$

Much more, Gamma, Beta et. al.

Moments

The *r*-th moment

$$m_r = \sum_i x_i^r \cdot p(x_i)$$

Mean (the first raw moment)

$$(\mu =) m_1 = E(x) = \sum_i x_i p(x_i) \left(= \int x p(x) dx \right)$$

$$a. E(aX + bY) = aE(X) + bE(y)$$

Variance (the second central moment)

$$Var[X] = E[(X - E[X])^2] = E(x^2) - \mu^2$$

a.
$$Var(a) = 0$$

b.
$$Var(ax) = a^2 Var(x)$$

c.
$$Var(a + x) = Var(x)$$

Covariance

Covariance:

$$Cov(x, y) = E\{(x - \mu_x)(y - \mu_y)\} = E(x \cdot y) - \mu_x \mu_y$$

a. if x and y are independent then : $E(x \cdot y) = E(x)E(y) = \mu_x \mu_y \rightarrow Cov(x,y) = 0$

Correlation co-efficient

$$\rho(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

a. if *x* and *y* are independent then : $\rho(x, y) = 0$

b.
$$|\rho(x, y)| \le 1$$

c.
$$|\rho(x,y)| = 1 \Leftrightarrow y = ax + b$$

Central Limit Theorem

- N i.i.d. random variables X_i with mean μ , variance σ^2
- $S_N = \sum_i X_i$

•
$$Z_N = \frac{S_N - N\mu}{\sigma\sqrt{N}}$$

• As N increases the distribution of Z_N approaches the standard normal distribution $f(Z_N) \sim \mathcal{N}(0,1)$

Conditional probability & Bayes

$$P(A | B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0$$

$$P(A \cap B) = P(A) \cdot P(B \mid A)$$

$$P(A \cap B) = P(B) \cdot P(A \mid B)$$

$$P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)}$$

נוסחת הכפל:

נוסחת בייז:

Total probability Theorem

(Bi) divide Ω where $B_i \cap B_j = \phi$, $\forall i, j$

$$A = \bigcup (A \cap B_i)$$

$$\Rightarrow P\{A\} = \sum_{i} P\{A \cap B_i\} \Rightarrow$$

$$\Rightarrow P\{A\} = \sum_{i} P\{A/B_{i}\} \cdot P\{B_{i}\}$$

Bayes' Theorem: Basics

Total probability Theorem:

- Bayes' Theorem: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
 - P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Thank you!

