

A Motivating Example – Parametrized MDP

5G Small Cell Network.

- Determine the locations of the small cells
- Design the communication path

State value function of the Parametrized MDP

$$J_{\zeta\eta}^{\mu}(s) = \mathbb{E}_{p_{\mu}} \left[\sum_{t=0}^{\infty} \gamma^{t} c(x_{t}(\zeta), u_{t}(\eta), x_{t+1}(\zeta)) | x_{0} = s \right]$$
 (22)

is minimized $\forall s \in \mathcal{S}$, where $x_t(\zeta)$ denotes the state $x_t \in \mathcal{S}$ with the associated parameter ζ_{x_t} and $u_t(\eta)$ denotes the action $u_t \in \mathcal{A}$ with the associated action parameter value η_{u_t} .

The optimization decision variables:

- μ action policy \leftarrow traditional MDP
- ζ state transition parameter, e.g., location of small cell in cellular network.
- η action parameter.

Intro. Maximum Entropy Principle

Related Works in RL:

• Entropy regularization: maximize entropy for exploration, i.e., $-\sum_a \mu(a|s) \log \mu(a|s)$

Maximum Entropy Principle (MEP):

- The MEP states that for a random variable X with a given prior information, the most <u>unbiased</u> probability distribution given prior data is the one that <u>maximizes</u> the Shannon <u>entropy</u>.
- Suppose we have an equation to solve, i.e., E[f(X)] = F. Then the MEP can be used as follows:

$$\max_{\{p_{\mathcal{X}}(x_i)\}} H(\mathcal{X}) = -\sum_{i=1}^{n} p_{\mathcal{X}}(x_i) \ln p_{\mathcal{X}}(x_i)$$

subject to
$$\sum_{i=1}^{n} p_{\mathcal{X}}(x_i) f_k(x_i) = F_k \quad \forall \ 1 \le k \le m$$
 (1)

where F_k , $1 \le k \le m$, are known expected values of the functions f_k . The above optimization problem results into Gibbs' distribution [39] $p_{\mathcal{X}}(x_i) = ([\exp\{-\sum_k \lambda_k f_k(x_i)\}]/[\sum_{j=1}^n \exp\{-\sum_k \lambda_k f_k(x_j)\}])$, where λ_k , $1 \le k \le m$, are the Lagrange multipliers corresponding to the inequality constraints in (1).

We can apply the MEP to solve Bellman's equation (that can be written as E[f(X)] = F) for RL problems.

$$\omega = (u_0, x_1, u_1, x_2, u_2, \dots, x_T, u_T, x_{T+1}, \dots)$$

$$J^{\mu}(s) = \mathbb{E}_{p_{\mu}} \left[\sum_{t=0}^{\infty} \gamma^t c(x_t, u_t, x_{t+1}) \middle| x_0 = s \right] \quad \forall \ s \in \mathcal{S}$$

We want to minimize the discounted sum of the MDP costs.

We will try to get most unbiased solution (hopefully better than local optima) using MEP.

$$\max_{\substack{\{p_{\mu}(\cdot|s)\}: \mu \in \Gamma}} H^{\mu}(s) = -\sum_{\omega \in \Omega} p_{\mu}(\omega|s) \log p_{\mu}(\omega|s)$$

subject to $J^{\mu}(s) = J_0$.

And the Lagrangian corresponding to the constrained optimization

$$V_{\beta}^{\mu}(s) = J^{\mu}(s) - 1/\beta H^{\mu}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} c_{x_{t} x_{t+1}}^{u_{t}} + \frac{1}{\beta} \left(\log \mu_{u_{t} \mid x_{t}} + \log p_{x_{t} x_{t+1}}^{u_{t}}\right) \middle| x_{0} = s\right]$$

$$V_{\beta}^{\mu}(s) = J^{\mu}(s) - 1/\beta H^{\mu}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} c_{x_{t}x_{t+1}}^{u_{t}} + \frac{1}{\beta} \left(\log \mu_{u_{t}|x_{t}} + \log p_{x_{t}x_{t+1}}^{u_{t}}\right) \middle| x_{0} = s\right]$$

Theorem 1: The free-energy function $V^{\mu}_{\beta}(s)$ in (7) satisfies the following recursive Bellman equation:

$$V^{\mu}_{\beta}(s) = \sum_{a,s' \in \mathcal{A},\mathcal{S}} \mu_{a|s} p^{a}_{ss'} \left(\bar{c}^{a}_{ss'} + \frac{\gamma}{\beta} \log \mu_{a|s} + \gamma V^{\mu}_{\beta}(s') \right) \tag{8}$$

where $\mu_{a|s} = \mu(a|s)$, $p_{ss'}^a = p(s'|s, a)$, and $\bar{c}_{ss'}^a = c(s, a, s') + \gamma/\beta \log p(s'|s, a)$ for simplicity in notation.

Theorem 1: The free-energy function $V^{\mu}_{\beta}(s)$ in (7) satisfies the following recursive Bellman equation:

$$V_{\beta}^{\mu}(s) = \sum_{a,s' \in \mathcal{A},\mathcal{S}} \mu_{a|s} p_{ss'}^{a} \left(\bar{c}_{ss'}^{a} + \frac{\gamma}{\beta} \log \mu_{a|s} + \gamma V_{\beta}^{\mu}(s') \right)$$
(8)

where $\mu_{a|s} = \mu(a|s)$, $p_{ss'}^a = p(s'|s, a)$, and $\bar{c}_{ss'}^a = c(s, a, s') + \gamma/\beta \log p(s'|s, a)$ for simplicity in notation.

Now, the optimal policy satisfies $\left[\partial V_{\beta}^{\mu}(s)/\partial \mu(a|s)\right] = 0$, which results into Gibb's distribution

$$\mu_{\beta}^{*}(a|s) = \frac{\exp\{-(\beta/\gamma)\Lambda_{\beta}(s,a)\}}{\sum_{a'\in\mathcal{A}} \exp\{-(\beta/\gamma)\Lambda_{\beta}(s,a')\}}, \text{ where} \quad (9)$$

$$\Lambda_{\beta}(s, a) = \sum_{s' \in \mathcal{S}} p_{ss'}^{a} \left(\bar{c}_{ss'}^{a} + \gamma V_{\beta}^{*}(s') \right)$$
 (10)

Fixed point iteration

$$[T\Lambda_{\beta}](s, a) = \sum_{s' \in \mathcal{S}} p_{ss'}^{a} \left(c_{ss'}^{a} + \frac{\gamma}{\beta} \log p_{ss'}^{a} \right)$$
$$- \frac{\gamma^{2}}{\beta} \sum_{s' \in \mathcal{S}} p_{ss'}^{a} \log \sum_{a' \in \mathcal{A}} \exp \left\{ -\frac{\beta}{\gamma} \Lambda_{\beta}(s', a') \right\}.$$

Theorem 2 states that the map is contraction

Algorithm 1: Model-Free Reinforcement Learning

```
Input: N, v_t(\cdot, \cdot), \sigma; Output: \mu^*, \Lambda^*
Initialize: t = 0, \Psi_0 = 0, \mu_0(a|s) = 1/|\mathcal{A}|.

for episode = 1 to N do
\beta = \sigma \times epsiode; reset environment at state x_t
while True do
\text{sample } u_t \sim \mu_t(\cdot|x_t); \text{ obtain cost } c_t \text{ and } x_{t+1}
\text{update } \Psi_t(x_t, u_t), \ \mu_{t+1}(u_t|x_t) \text{ in (14) and (9)}
\text{break if } x_{t+1} = \delta; \ t \leftarrow t+1
```

By increasing β along the episodes, the policy becomes more exploitive from explorative.

$$\Psi_{t+1}(x_t, u_t) = (1 - \nu_t(x_t, u_t))\Psi_t(x_t, u_t) + \nu_t(x_t, u_t) \left[c_{x_t x_{t+1}}^{u_t} - \frac{\gamma^2}{\beta} \log \sum_{a' \in A} \exp \left\{ \frac{-\beta}{\gamma} \Psi_t(x_{t+1}, a') \right\} \right]$$

The left converges to $\Lambda_{\beta}(s, a) =: [T\Lambda_{\beta}](s, a)$

$$\mu_{\beta}^{*}(a|s) = \frac{\exp\{-(\beta/\gamma)\Lambda_{\beta}(s,a)\}}{\sum_{a'\in\mathcal{A}} \exp\{-(\beta/\gamma)\Lambda_{\beta}(s,a')\}}$$

Instead of ARGMIN in Q learning, SOFTMIN with the parameter β is used.

Parametrized MDP with the MEP.

Algorithm 3: Parameterized Reinforcement Learning

```
Input: \beta_{\min}, \beta_{\max}, \tau, T, \nu_t; Output: \mu^*, \zeta, \eta
Initialize: \beta = \beta_{\min}, \mu_t = \frac{1}{|\mathcal{A}|}, and \zeta, \eta, G_{\zeta}^{\beta}, G_{\eta}^{\beta}, K_{\zeta}^{\beta}, L_{\eta}^{\beta},
\Lambda_{\beta} to 0.
while \beta \leq \beta_{\text{max}} do
        Use Algorithm 1 to obtain \mu_{\beta,\zeta\eta}^* at given \zeta, \eta, \beta.
       Consider env1(\zeta,\eta), env2(\zeta',\eta'); set \zeta'=\zeta, \eta'=\eta
       while \{\zeta_s\}, \{\eta_a\} converge do
              for \forall s \in \mathcal{S} do
                      for episode = 1 to T do
                             reset env1, env2 at state x_t,
                             while True do
                                     sample action u_t \sim \mu^*(\cdot|x_t).
                                    env1: obtain c_t, x_{t+1}.
                                    env2: set \zeta_s' = \zeta_s + \Delta \zeta_s, get c_t', x_{t+1}.
                                  find G_{\zeta_s}^{t+1}(x_t) with \frac{\partial c_{x_t x_{t+1}}^{u_t}}{\partial \zeta_s} \approx \frac{c_t' - c_t}{\Delta \zeta_s}.
                                    break if x_{t+1} = \delta; t \leftarrow t + 1.
              Similarly learn G_{\eta_a}^{\beta}. Update \{\zeta_s\}, \{\eta_a\} in (23).
```

 $\leftarrow \tau \beta$

Use perturbation to estimate gradient (Kiefer–Wolfowitz algorithm?) and update the parameters.

Numerical example

Numerical example

Simultaneously Determining the Unknown Parameters and Policy in Parameterized MDPs: We design the 5G small cell network (see Fig. 1) both when the underlying model ($c_{ss'}^a$ and $p_{ss'}^a$) is known (using Algorithm 2) and as well as unknown (using Algorithm 3). In our simulations, we randomly distribute 46 user nodes $\{n_i\}$ at $\{x_i\}$ and the base station δ at z in the domain $\Omega \subset \mathbb{R}^2$ as shown in Fig. 4(a). The objective is to determine the locations $\{y_j\}_{j=1}^5$ (parameters) of the small cells $\{f_j\}_{j=1}^5$ and determine the corresponding communication routes (policy). Here, the state space of the underlying MDP is $S = \{n_1, \dots, n_{46}, f_1, \dots, f_5\}$ where the locations y_1, \dots, y_5 of the small cells are the unknown parameters $\{\zeta_s\}$ of the MDP, the action space is $A = \{f_1, \ldots, f_5\}$, and the cost function $c(s, a, s') = \|\rho(s) - \rho(s')\|_2^2$ where $\rho(\cdot)$ denotes the spatial location of the respective states. The objective is to simultaneously determine the parameters (unknown small cell locations) and the control policy (communication routes in the 5G network).

Thank you for your attention!

Questions and Comments?

