Surname	Other nar	nes
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced	y	
	ciples of Chemistr Id Further Organic Inoptic assessmen	Chemistry
Equilibria ar	nd Further Organic noptic assessmen	Chemistry t) Paper Reference
Equilibria ar (including sy	nd Further Organic noptic assessmen 2 – Afternoon	Chemistry t)

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 3 9 3 0 4 A 0 1 2 4

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The reaction between carbon monoxide and hydrogen reaches a dynamic equilibrium.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

(a) Which of these statements about a dynamic equilibrium is **not** true?

(1)

- A The forward rate of reaction is equal to the backward rate of reaction.
- **B** The concentrations of the products and reactants do not change.
- ☑ C The concentrations of the products and reactants are equal.
- **D** The equilibrium can be approached from either direction.
- (b) The K_c expression for the above reaction is

(1)

$$\square$$
 A $K_c = \frac{[CH_3OH]}{[CO] \times [H_2]^2}$

$$\mathbb{Z}$$
 B $K_{c} = \frac{[CO] \times 2[H_{2}]}{[CH_{3}OH]}$

$$\mathbb{Z}$$
 \mathbb{C} $K_{c} = \frac{[\text{CO}] \times [\text{H}_{2}]^{2}}{[\text{CH}_{3}\text{OH}]}$

(Total for Question 1 = 2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

2 Hydrogen and iodine, both with an initial concentration of 0.010 mol dm⁻³, were allowed to react. At equilibrium, the concentration of hydrogen iodide was 0.0030 mol dm⁻³.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

 K_c is calculated using the values

		$H_2(g)$ / mol dm $^{-3}$	$I_2(g)$ / mol dm $^{-3}$	HI(g) / mol dm ⁻³
×	A	0.0070	0.0070	0.0030
×	В	0.0040	0.0040	0.0030
×	C	0.0040	0.0040	0.0060
×	D	0.0085	0.0085	0.0030

(Total for Question 2 = 1 mark)

3 The reaction below reached a dynamic equilibrium from an initial mixture of all four substances P, Q, R and S in aqueous solution.

$$P + Q \rightleftharpoons R + S$$

The following data were obtained.

Substance	Concentration at equilibrium / mol dm ⁻³
P	0.050
Q	0.040
R	0.020
S	0.010

 $K_{\rm c}$ for the equilibrium is

- **△ A** 0.10
- **B** 0.33
- **C** 3.00
- **D** 10.0

(Total for Question 3 = 1 mark)

4	The Haber process is used to make ammonia f	from nitrogen and hydrogen at 450 °C.
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	$\Delta H = -92.0 \text{ kJ mol}^{-1}$

(a) If the partial pressures of these gases were measured in atm, the units of the equilibrium constant K_p will be

(1)

- \mathbf{A} atm
- \blacksquare **B** atm²
- \square C atm⁻²
- \square **D** atm⁻¹
- (b) When the temperature of the system is increased

(1)

- \square **A** K_p decreases.
- \boxtimes **B** K_p increases.
- \square C K_p stays the same.
- \square **D** K_p first decreases and then increases.

(Total for Question 4 = 2 marks)

- 5 In high performance liquid chromatography, HPLC, which of these factors does **not** affect the time taken for a component to pass through the column?
 - **A** Type of detector
 - **B** Material of stationary phase
 - C Particle size of stationary phase
 - **D** Temperature of column

(Total for Question 5 = 1 mark)

- **6** When equimolar amounts of the solutions below are mixed, which forms a buffer solution with a pH less than 7?
 - A Hydrochloric acid and sodium chloride
 - **B** Ethanoic acid and sodium ethanoate
 - C Sodium hydroxide and sodium chloride
 - **D** Ammonia and ammonium chloride

(Total for Question 6 = 1 mark)

- 7 The pH of a 1.5 mol dm⁻³ solution of hydrochloric acid, HCl(aq), is
 - \boxtimes **A** -1.50
 - **B** -0.18
 - **C** 0.18
 - **D** 1.50

(Total for Question 7 = 1 mark)

- **8** Which of these solid substances is likely to have the greatest standard entropy? Use of the data booklet is not required.
 - A SnO
 - \square **B** SnO₂
 - C SnBr₂
 - **■ D** SnBr₄

(Total for Question 8 = 1 mark)

9 What is the correct name for the molecule shown below?

$$C = C$$
 $C = C$
 $C = C$

- ☑ **A** *Z*-2-bromobut-2-ene
- **B** *E*-2-bromobut-2-ene
- C *E*-3-bromobut-2-ene
- **D** *Z*-3-bromobut-2-ene

(Total for Question 9 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

10	Ketone	s react with hydrogen cyanide, HCN, in the presence of cyanide ions, CN ⁻ .							
	(a) Wh	ich of these ketones does not form a racemic mixture in this reaction?							
		CH ₃ CH ₂ CH ₂ COCH ₃ (1)							
	⋈ B	CH ₃ CH ₂ COCH ₂ CH ₃							
		CH ₃ CH ₂ CH ₂ COCH ₃							
	■ D	CH ₃ CH ₂ CH ₂ COCH ₂ CH ₃							
	(b) Thi	s type of reaction is classified as (1)							
☑ A nucleophilic substitution.									
	⋈ B	nucleophilic addition.							
	⋉ C	electrophilic addition.							
	■ D	electrophilic substitution.							
		(Total for Question 10 = 2 marks)							
11	Which	of these is not observed when ethanoyl chloride reacts with water?							
		Misty fumes given off.							
	⋈ B	The gas given off turns damp blue litmus paper red.							
		The mixture gets hot.							
	■ D	A white precipitate forms.							
		(Total for Question 11 = 1 mark)							
12	UV lig	ht is useful in initiating some reactions because it							
	⋈ A	lowers the activation energy of the reaction.							
	⋈ B	causes bonds in molecules to stretch and bend.							
		causes molecules to form ions.							
	■ D	causes molecules to form free radicals.							
		(Total for Question 12 = 1 mark)							

13 Butane-1,4-diol, HO(CH₂)₄OH, and benzene-1,4-dicarboxylic acid,

HOOC—COOH, react to form a polyester.

(a) The repeat unit of the polyester is

(1)

- $\square \ \mathbf{C} \quad \left[O (CH_2)_4 O C \left[O (CH_2)_4 O C \left[O (CH_2)_4 O C (CH_2)_4 O (CH_2)_5 (CH_2)$
- $\square \mathbf{D} \quad \boxed{ O \quad (CH_2)_4 O C O } \quad \bigcirc O \quad \square \quad \bigcirc O$
- (b) The type of reaction is

(1)

- A hydrolysis.
- **B** addition.
- **C** substitution.
- **D** condensation.

(Total for Question 13 = 2 marks)

14 The equation for the enthalpy of hydration for a magnesium ion is

- \square A $Mg^{2+}(s) + aq \rightarrow Mg^{2+}(aq)$
- \square **B** $Mg^{2+}(g) + aq \rightarrow Mg^{2+}(aq)$
- \square C $Mg^{2+}(aq) \rightarrow Mg^{2+}(g) + aq$
- \square **D** $Mg^{2+}(aq) \rightarrow Mg^{2+}(s) + aq$

(Total for Question 14 = 1 mark)

15 The IR spectrum of a substance is shown below.

Which of the following substances has this spectrum?

You may use the information on page 6 of the data booklet.

- A Propan-1-ol
- **■ B** Propanal
- C Propanone
- **D** Propanoic acid

(Total for Question 15 = 1 mark)

16	Two ketones, $CH_3COCH_2CH_2CH_3$ and $CH_3CH_2COCH_2CH_3$, both have $M_r = 86$.	Which
	peak due to fragmentation into singly charged ions would you expect to be present	nt in the
	mass spectrum of one but not the other?	

⋈ A 71

■ B 57

■ C 43

■ D 29

(Total for Question 16 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.	
17 Two organic compounds, ${\bf X}$ and ${\bf Y}$, both with the molecular formula C_4H_8O , contain a carbonyl group.	
(a) Describe what you would see when 2,4-dinitrophenylhydrazine is added to either o these compounds.	
	(1)
(b) It is suspected that X is a ketone and Y is an aldehyde. Outline a chemical test you could carry out to confirm this, describing the results in each case.	(3)
(c) (i) Give the structural formulae of the two possible isomers of Y which are	
aldehydes.	(1)
(ii) Name the technique you would use to purify the product of the test with 2,4-dinitrophenylhydrazine.	(1)
	(1)
(iii) Other than by spectroscopic techniques, how would you use the purified produto identify compound Y? [Practical details are not required.]	
	(2)
(Total for Question 17 = 8 m	arks)

18	Kits	for manufactu	iring biodies	el from vo	egetable oil	ls and meth	anol are so	old for l	ıome
	use.	The reaction	which takes	place may	y be represe	ented by th	e followin	g equati	ion.

$$3CH_{3}OH + CH_{2}OOCR \xrightarrow{\qquad NaOH(s) \qquad} CH_{2}OH + RCOOCH_{3}$$

$$CHOOCR' \qquad CHOH + R'COOCH_{3}$$

$$| \qquad | \qquad | \qquad |$$

$$CH_{2}OOCR'' \qquad CH_{2}OH + R''COOCH_{3}$$

*(a) Describe any two of the main hazards when carrying out this reaction.	What
precaution would you take to minimise the risk in each case?	

(4)

Hazard	
Precaution	
Hazard	
Precaution	
(b) Suggest two environmental benefits of using these	kits, despite the associated risks.
	(Total for Question 18 = 6 marks)

19	The carboxylic acid, propanoic acid	id, can be prepared by	oxidation of the alcohol,
	propan-1-ol.		

propan-1-ol

propanoic acid

(a) (i) Identify a suitable oxidizing agent you could use in this reaction.

(1)

(ii) If you carried out this preparation in the laboratory, describe **two** measures you would take to ensure the maximum possible yield of propanoic acid is obtained.

(2)

(iii) Propanoic acid can be made by the hydrolysis of a nitrile. Give the structural formula of the nitrile and write an equation for this reaction.

(3)

Structural formula

Equation

	A 1	_							~	~						•			
*1	h	١ŀ	\mathbf{r}_{Ω}	nanoic	acid	reacts	xx/1th	methanol,	CH	H()	to	torm	the	ester	methy	7	nro	nanoate	À
١.	U.	, .	10	panoic	acia	Toucts	VV I LII	memanor,	CII	,011,	, io	101111	uic	Cotor,	moun	ут	proj	panoaic	۰.

$$CH_3CH_2COOH + CH_3OH \rightleftharpoons CH_3CH_2COOCH_3 + H_2O$$

Even with the use of a catalyst, this reaction is quite slow and incomplete. Suggest a reagent, to replace the propanoic acid, which would form the ester at a faster rate. Suggest **two** reasons why your chosen reagent reacts faster.

(3)

(c)	The structure of methyl propanoate can be investigated by using high resolutio	n
	H nuclear magnetic resonance (nmr) spectroscopy.	

(i) What type of radiation interacts with ¹H nuclei in nmr spectroscopy?

(1)

(ii) Describe what happens to ¹H nuclei when they absorb this radiation.

(2)

(iii) Complete the table to show values for the chemical shift of the different ¹H nuclei in methyl propanoate and their splitting pattern. Page 7 of the data booklet gives information about chemical shifts.

(2)

¹ H environment	Chemical shift, δ / ppm	Splitting pattern
CH ₃ O-	3.7	Singlet
-CH ₂ -	2.3	
-СН ₃		Triplet

(Total for Question 19 = 14 marks)

20	The exothermic reaction between carbon monoxide and hydrogen can be used industrially to make methanol. The process is carried out at 250 $^{\circ}$ C and between 50 an 100 atm.	d
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
	(a) Explain why increasing the pressure increases the yield of methanol. Give one disadvantage of increasing the pressure.	
		(2)
	(b) The reaction gives a greater equilibrium yield at 100 °C than at 250 °C.	
	(i) Explain, in terms of the entropy change of the surroundings and the total entropy change of the reaction, why this is so.	
	A calculation is not required.	(2)
		(2)
	(ii) Eurolain valva the magatism is marrowth along comind and at 250 °C	
	(ii) Explain why the reaction is, nevertheless, carried out at 250 °C.	(1)
	(c) Given that the reaction is an equilibrium, suggest two ways in which the atom economy of this process could be maximised without changing the temperature or	
	pressure.	(2)
_	(Total for Question 20 = 7 ma	ırks)

- **21** This question is about the kinetics of the reaction between bromoethane and aqueous hydroxide ions.
 - (a) The results of an experiment to find the initial rate of the reaction are shown in the table below.

[CH ₃ CH ₂ Br] / mol dm ⁻³	[OH ⁻] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
0.100	0.150	1.54×10^{-6}

The rate equation for the reaction is

rate =
$$k[CH_3CH_2Br][OH^-]$$

(i) Calculate the value of k. Give your answer to three significant figures and include units.

(3)

(ii) Calculate the initial rate if the concentrations of both reactants were changed to 0.020 mol dm⁻³.

(1)

(b) (i) State the order of the reaction.

(1)

(ii) The mechanism for this reaction can be inferred from the rate equation. Draw the transition state formed in the reaction between bromoethane and hydroxide ions.

(2)

(c) The rate constant for the reaction between bromoethane and hydroxide ions was determined at five different temperatures. The results are shown in the table below.

Temperature (T)	1/Temperature (1/T) / K ⁻¹	Rate constant, k	ln k
293	3.41×10^{-3}	5.83×10^{-5}	-9.75
303	3.30×10^{-3}	1.67×10^{-4}	-8.70
313	3.19×10^{-3}	5.26 × 10 ⁻⁴	-7.55
323	3.10×10^{-3}	1.36×10^{-3}	-6.60
333		3.77×10^{-3}	

(i) Complete the missing values in the table.

(2)

(ii) Plot a graph of $\ln k$ against 1/T. Calculate the gradient of your graph and use this to calculate the activation energy, $E_{\rm A}$. The Arrhenius equation can be expressed as

$$\ln k = \frac{-E_{\rm A}}{\rm R} \times \left(\frac{1}{\rm T}\right) + \text{a constant}$$

[Gas constant,
$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$
]

(5)

 $1/T/K^{-1}$

 $\ln k$

(Total for Question 21 = 14 marks)

TOTAL FOR SECTION B = 49 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

22 The hydrocarbon butane can be cracked to form propene and methane by passing it over a heated aluminium oxide catalyst at a temperature of 700 K. The equation for the reaction is

$$C_4H_{10}(g) \to C_3H_6(g) + CH_4(g)$$

$$\Delta H = +71.9 \text{ kJ mol}^{-1}$$

(a) (i) Use page 20 of the data booklet to complete the table below.

(1)

Hydrocarbon	S^{\ominus} / J mol ⁻¹ K ⁻¹
$C_4H_{10}(g)$	+310.1
$C_3H_6(g)$	+266.9
CH ₄ (g)	

(ii) Calculate the standard entropy change of the system, $\Delta S_{\text{system}}^{\ominus}$, for this reaction. Include a sign in your answer.

(2)

(iii) Was the sign for your answer as you expected? Fully justify your answer.

(2)

	Include a sign and units in your answer.	
	Use this value and your answer to (ii) to explain why butane cracks into prand methane at this temperature.	ropene
		(3)
(v)	Calculate the minimum temperature needed for this reaction to be thermodynamically feasible.	
		(3)

is able to speed up the reac	ction.			
				(3)
		(Tot	al for Ouestion	n 22 = 14 marks)
				,

(Total for Question 23 = 7 m TOTAL FOR SECTION C = 21 MA TOTAL FOR PAPER = 90 MA	ARKS
b) Use the data on page 19 of the data booklet, and your answer to (a)(ii), to suggest why the bubble bath changes colour when it is diluted by being added to the bath water.	(4)
 (ii) Use the data on page 18 of the data booklet to calculate the pH of a solution of benzoic acid, C₆H₅COOH, of concentration 0.0025 mol dm⁻³. 	of (2)
(a) (i) Write the K_a expression for the dissociation of benzoic acid, C_6H_5COOH .	(1)
The bubble bath 'Colour Change Matey' has amongst its ingredients the weak acid benzoic acid, as well as the indicator bromocresol green. When it is added to bath water, its colour changes from yellow to blue.	

BLANK PAGE

Ţ	3
Ċ	=
0	ر
2	=
ā	,
_	5
ц	J
4	-
4)
a	1
d	į
ځ	3
2	2
Г	
١	۷
÷	Ę
	5
÷:	-
ā	1
۵	
•	
P	2
+	-

		<u> </u>					I.
0 (8)	(18) 4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	ted
7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	oeen repor
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have b
2	(15)	14.0 N nitrogen	31.0 P	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	Elements with atomic numbers 112-116 have been reported but not fully authenticated
٣	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81	ents with
	,		(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg roentgenium 111
			(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	Pt Pt platinum 78	Ds damstadtium 110
			(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109
	1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108
			0	54.9 Mn manganese 25		Re rhenium 75	[264] Bh bohrium 107
	3	mass ool umber	9	50.9 52.0 54.9 V Cr Mn vanadium chromium manganese 23 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 1105
		relativ ato l	(4)	47.9 Ti titanium	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf nutherfordium 104
			(3)	Sc scandium 21	88.9 × yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium r
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 1 56	[226] Ra radium 88
-	(£)	6.9 Li lithium 3	Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87
	.1						

(257] Lr lawrencium 103	No nobelium 102	[256] Md mendelevium 101	Fm fermium 100	Es einsteinium 99	Cf Californium 98	BK berkelium 97	(247) Cm aurium 96	(243) Am americium 95	[242] Pu plutonium 94	[237] Np neptunium 93	238 U uranium 92	Ę	237 [231] Pa protactinii 91
71	70	69	68	67	99	65	64	63	62	61		9	59 60
 רו	Ϋ́	E,	<u>Б</u>	유	ģ	P	PS	Eu	Sm	Pm		P	- 1
175	173	169	167	165	163	159	157	152	150	[147]		144	141 144

* Lanthanide series
* Actinide series