Discrete Utilization and Nutrition: Evidence From Bangladesh

Hamzah S. Ahmed April 2022

Duke University

Contents

1	Introduction
2	Literature Review
3	Data
4	Empirical Strategy
5	Results
6	Robustness
	6.1 World Health Organization
	6.2 Levels of Risk Aversion
7	Limitations
8	Conclusion
9	Appendix A - Full Tables
10	Appendix B - Robustness
	10.1 WHO Data
	10.2 Varying Levels of Risk Aversion
11	Appendix C - GIS Maps: Utilization by Region
12	Appendix D - Additional Graphs: Distribution and Eligibility

Abstract

This paper aims to investigate the relationship between household nutrition and social safety net utilization using data from the Bangladesh Integrated Household Survey to contribute to a growing body of literature that investigates household nutrition as a driving force in (social safety net utilization) decisions. The results of this paper indicate that a unit increase in the number of underweight children correlates with an increase in the likelihood of only utilizing social safety nets that provide cash transfers by six percentage points while decreasing the likelihood of utilizing both types of social safety nets (those that provide cash and those that provide in-kind food transfers) by five percentage points. However, a unit increase in the number of underweight non-children (household members above six years of age) correlates with a decrease in the likelihood of only utilizing monetary social safety nets by one percentage point while increasing the likelihood of utilizing both types of social safety nets by one percentage point as well. These results are also robust to a variety of sensitivity checks. The results of this paper may also have various policy implications for growing and developing countries such as Bangladesh.

Key Words: Discrete Choice, Nutrition, Social Safety Nets, Bangladesh, Health

1 Introduction

In the first quarter of 2019, Bangladesh was the seventh fastest-growing economy in the world [10] and, with a population of approximately 170 million (in a country roughly the size of the state of Iowa), it is one of the most densely populated countries in the world [5]. While dropping over time, as of 2019, roughly 20% of Bangladesh's population lives under the national poverty line of \$1.9 per day [2].

There is extensive literature in welfare economics regarding cash and in-kind transfers as well as consumption and nutrition in the developing world, but there is not as much literature at the intersection of these topics. This paper aims to contribute to this intersection through a nutritional lens by investigating the relationship between nutrition and social safety net utilization in Bangladesh to see how household nutrition impacts social safety net utilization decisions. To help answer this question, data from the third round of the Bangladesh Integrated Household Survey, a nationally representative survey, will be used.

There are many policy motivations underlying this research as well. From the aspect of the government, there are incentives to reduce costs of welfare by decreasing the reliance on in-kind food transfers, as cash transfers are generally cheaper to supply [9]. Moreover, reducing the dependence on in-kind food transfers can also help the local economy by preventing local price reductions and, thus, keeping local producers competitive. There can also be efforts to improve the level of human capital in the future by focusing on improving the lives of children (especially those who are malnourished) at an early stage. Lastly, there are general incentives to reduce the overall reliance on social safety nets. Focusing on infrastructure that helps specific groups can lead to long-term government savings, but less focus should be placed here for developing countries such as Bangladesh.

Ultimately, using a multinomial logit model, the results of this paper support the existence of differential effects on the number of household members that are underweight based on whether they are children or non-children¹. We see that a unit increase in the number of underweight children correlates with a roughly six percentage point increase in the likelihood of only utilizing social safety nets that provides cash transfers, whereas a similar unit increase in the number of underweight non-children correlates with a one percentage point decrease in the same utilization likelihood. Furthermore, we see that equivalent unit changes in the number of underweight children and non-children correlate with a five percentage point decrease and a one percentage point increase in utilizing both types of social safety nets, respectively. These results are robust to a variety of sensitivity checks.

It is important to note that the social safety nets that provide food in Bangladesh are primarily in the form of rice and wheat [1]. The food offered by social safety nets in Bangladesh may not help households with malnourished children as they may require

¹Non-children are categorized as household members over the age of six.

special nutrients² that are not available through social safety nets and thus these households require money to buy them, whereas malnourished non-children may need not only specialized nutrients but general calories, as well.

In order to reduce reliance on in-kind food transfers, the Bangladeshi government may have an incentive to invest in infrastructure that targets the nutritional needs of households. In the context of reducing the overall costs of supplying social safety nets, investment in infrastructure aimed at reducing the number of underweight non-children could lead to long-term savings as the demand for monetary social safety nets would increase while the demand for both monetary and food social safety nets would decrease. This investment could also help bolster the local economy. However, from a perspective of investment in future human capital, creating more social safety nets that provide more nutritional in-kind food transfers may be more beneficial, especially for households with malnourished children. Small investments at an early stage can vastly improve the level and quality of future human capital.

The rest of this paper is organized as follows. Section 2 provides a brief literature review on cash and in-kind transfers along with consumption and risk behavior in the developing world. Section 3 discusses the data used and the general methodology and discusses the initial results. Section 4 discusses the empirical strategy used in the paper. Section 5 discusses the results of the paper. Section 6 conducts various sensitivity checks to test the robustness of the model. Section 7 discusses the limitations of the model and methodology. Section 8 concludes and discusses possible next steps. Sections 9 through 12 include various appendices (labeled A through D).

2 Literature Review

Literature on development and nutrition is broad, and so is their intersection. However, there is much less literature available on social safety net utilization in developing countries, especially regarding household nutrition as the driving force of decisions. Previous literature from the World Bank has identified that the costs for cash transfers and vouchers tend to be significantly lower relative to those of in-kind transfers [9]. This can be due to the additional costs associated with aggregating these in-kind transfers at a large scale. In the context of food transfers, these can include purchasing and harvesting crops and paying the associated labor costs. Furthermore, unlike cash or vouchers, food can rot over time so there is also a natural reduction in the available food stock over time. There is also evidence from the National Bureau of Economic Research that in-kind transfers, when compared to cash transfers, ultimately help consumers more at the expense of local producers [7]. Simply stated, as "free" goods enter the local market, the supply for these goods rise, forcing prices to fall. As many farmers cultivate and sell locally, the introduction of food transfers can ultimately hurt the local economy.

²Some common examples may include dairy and meat products.

Interestingly, Banerjee and Duflo see that, when looking at how the poor spend their money, roughly 50% to 80% of consumption is spent on food³. However, these poor households have the *choice* of spending more on food (and less on other non-essentials), implying that there is no extra compulsion to spend on *more* calories [4]. In the context of this study, this may help explain why the demand for cash transfers seems to dwarf those for in-kind food transfers.

Lastly, an important aspect of these poor households is their level of relative risk. Households with higher levels of relative risk aversion may fundamentally behave differently than households with lower relative levels of risk aversion. Previous research has been conducted by the Federal Reserve Bank of St. Louis to estimate the coefficient of relative risk aversion using data on self-reports of personal well-being from the Gallup World Poll. Among the developing countries researched, Bangladesh had one of the highest levels of relative risk aversion of 1.30 [8]. In comparison, its neighbor, India, had an estimated level of relative risk aversion of 0.92, making it much less risk-averse than Bangladesh. In comparison to the developed countries, Bangladesh also ranked quite high in terms of relative risk aversion. For example, the United States had only a slightly higher level of relative risk aversion of 1.39 compared to Bangladesh's 1.30.

3 Data

Three primary data sources are used in this paper. The main data source comes from the third round of the Bangladesh Integrated Household Survey (BIHS) which was conducted in 2019 and published in 2020 by the International Food Policy Research Institute. The BIHS is a nationally representative household-level survey in Bangladesh that collects detailed data on many household characteristics. For each unit of observation (the household), the primary variables of interest in this paper are utilization of any social safety nets and nutrition (as proxied for by the Body Mass Index). The BIHS survey collects information on all the social safety nets utilized by each household in the past year. There are five primary categories of utilized social safety nets to consider: "None", "Money", "Rice", "Wheat", and "Other Food". For the purposes of this study, these categories are collapsed into three distinct types: "None", "Money", and "Food". It is also important to note that many households can utilize multiple social safety nets so a fourth category, "Both", is also considered for households that utilize multiple types of social safety nets⁴. These categories are mutually exclusive, so households in the category "Money" only only utilized social safety nets that provided cash transfers.

To supplement this rich data, two separate datasets are used to categorize "underweight" individuals by age based on their Body Mass Index (BMI). The primary

³These values have regional variation.

⁴It is important to note that each available social safety net provides *either* food or money. However, households are available to utilize multiple social safety nets and some may provide food while others provide money.

dataset comes from the Centers for Disease Control and Prevention (CDC), which provides the fifth percentile BMI by age which is commonly considered "underweight" in health literature [6]. One drawback, discussed later, is that the CDC data focuses on Americans, which may not be the best indicator of nutrition in other parts of the world. In a robustness check (discussed in detail in Section 6), World Health Organization (WHO) data⁵ is also used and, ultimately, there is no significant difference in results in the marginal effects. In the model, the variable ncUW represents the number of underweight children and the variable ncUW represents the number of underweight non-children.

Along with these primary variables, various other (annual) household characteristics are also used as controls in this paper as they may also help explain household utilization decisions. Some of the most relevant controls are the annual household income (measured by both employment and non-employment income), the travel time to the nearest town, and the household region. Furthermore, many households participate in some form of agriculture, but many do not have the *opportunity* to consume from their harvests. This can be because these households must pay their workers or sell their harvests and do not have any harvest leftover to consume. An indicator for crop consumption is included to net out the ability to consume their own harvest as it can also influence decisions. For instance, a household that can easily produce and consume their own crops may have little need for food transfers and prefer cash transfers instead. Also, an indicator of if the head of the household (the primary respondent) has at least a high school education is also collected. Annual expenditure (on both food and non-food items) is also calculated and used in a standard CRRA utility function. Lastly, the size of the household, broken down into the number of children (nc) and non-children (nnc), is also included.

Table 1 shows the summary statistics of the relevant variables used in the study in both aggregate terms and by household social safety net utilization type. A seemingly staggering statistic may be that the largest household includes 17 members. However, especially in more impoverished areas of Bangladesh, multigenerational households are not uncommon [3]. For the most part, the averages of many of the controls are similar across utilization categories. The one variable that does stands out is the variable "atleastHS" which is an indicator of whether or not the head of the household (the primary respondent) has at least a high school education. When compared to those in other categories, households who who only utilize social safety nets that provide in-kind food transfers are much less likely to have a head who has at least a high school education which may indicate that those without high school educations may only have access to lower paying jobs and thus require food more readily as opposed to cash transfers. However, it is important to note that none of the averages are very high – the

⁵The WHO separates its data by age, one dataset contains BMI information for individuals under five years of age [12] and a second dataset contains BMI information for adolescents and children above five years of age [11].

⁶Those who had vocational training were not considered as having at least a high school education.

highest proportion, as expected, is for households who did not utilize any social safety net but this proportion is not significantly higher than the average of those who only utilize monetary social safety nets. What is most interesting, in regards to the nutrition-related variables, is that the average number of underweight children stays relatively consistent across all utilization types but the average number of underweight non-children has much more variation across all utilization types. This may indicate differential effects based on the number of underweight children and non-children.

Ν Statistic Mean St. Dev. Min Max 0 5,442 3,802,016 householdIncome 170,270.600 166,882.700 householdSize 5,442 4.131 1.734 1 17 numChildren 5,442 0.5270.722 0 5 numNonChildren 5,442 3.604 1.490 1 14 timeToTown 0 5,442 43.403 51.041 2,402 atleastHS 0.2090 5,442 0.0461 0 1 cropConsumed 5,442 0.5740.495numChildUnderweight 5,442 0.1900.4390 3 7 numNonChildUnderweight 0 5,442 0.6900.922

Table 1: Summary Statistics (Aggregate and By Utilization Type)

	None	Money	Food	Both
householdIncome	182369.1210	169661.8309	131235.1374	134110.0971
householdSize	3.8375	4.6081	3.7885	4.5162
numChildren	0.5149	0.5508	0.5000	0.5414
numNonChildren	3.3226	4.0573	3.2885	3.9748
timeToTown	43.3757	41.3259	45.8571	47.9335
atleastHS	0.0555	0.0442	0.0110	0.0216
cropConsumed	0.5948	0.5713	0.5027	0.5198
$\operatorname{numChildUnderweight}$	0.1718	0.2199	0.1703	0.2104
${\bf num Non Child Under weight}$	0.5550	0.8405	0.7060	0.9514

Table 2 shows the proportion of utilization by region. The trend across utilization types is relatively consistent – most households do not utilize any social safety nets but, for the households that do utilize social safety nets, most utilize only money, then both, and then only food. Interestingly, there is much variation in the proportions between regions (see Section 11 – Appendix C) which may indicate some level of regional influence or accessibility that should be accounted for.

Furthermore, in Section 12 – Appendix D, we can see the relationship between the value of total social safety nets used on various characteristics. Unsurprisingly, we see

that households with lower levels of household income (see Figure 6) or employment income (see Figure 7) tend have higher values of total social safety nets utilized. What is more interesting is that households that are closer to town tend to receive higher values of social safety nets utilized (see Figure 10) which may indicate that these social safety nets are more readily available to urban (as opposed to extremely rural) households. The trends regarding the household size (Figure 12) are relatively consistent throughout.

Region	None	Money	Food	Both
Barisal	0.4314	0.2544	0.1197	0.1945
Chittagong	0.5672	0.3372	0.0357	0.0599
Dhaka	0.5933	0.2725	0.0495	0.0847
Khulna	0.5121	0.2931	0.0928	0.1020
Rajshahi	0.5569	0.3211	0.0569	0.0652
Rangpur	0.4203	0.2045	0.1370	0.2383
Sylhet	0.5067	0.3585	0.0566	0.0782

Table 2: Proportion of Social Safety Net Utilization by Region.

4 Empirical Strategy

This paper exploits variation in household characteristics (as mentioned earlier) with a primary focus on the number of underweight children and non-children to analyze the determinants of social safety net utilization by estimating a multinomial logit model. With that objective, we construct an indirect utility function (v_{ij}) where i represents the household and j represents the utilization type; this j can be one of four mutually exclusive types: "None", "Money", "Food", or "Both". For the household i and utilization type j, the indirect utility of the household is as follows:

$$\begin{aligned} v_{ij} &= \alpha_j + \gamma_j \cdot (u(c_i) - k_i) + \beta_j^1 \cdot \mathbf{1}_{ncUW_i = 1} + \beta_j^2 \cdot \mathbf{1}_{ncUW_i = 2} + \beta_j^3 \cdot \mathbf{1}_{ncUW_i = 3} + \\ \eta_j^1 \cdot \mathbf{1}_{nncUW_i = 1} + \eta_j^2 \cdot \mathbf{1}_{nncUW_i = 2} + \ldots + \eta_j^6 \cdot \mathbf{1}_{nncUW_i = 6} + \eta_j^7 \cdot \mathbf{1}_{nncUW_i = 7} + \\ \xi_j^1 \cdot \mathbf{1}_{nc_i = 1} + \xi_j^2 \cdot \mathbf{1}_{nc_i = 2} + \xi_j^3 \cdot \mathbf{1}_{nc_i = 3} + \xi_j^4 \cdot \mathbf{1}_{nc_i = 4} + \xi_j^5 \cdot \mathbf{1}_{nc_i = 5} + \\ \lambda_j^2 \cdot \mathbf{1}_{nnc_i = 2} + \lambda_j^3 \cdot \mathbf{1}_{nnc_i = 3} + \ldots + \lambda_j^{11} \cdot \mathbf{1}_{nnc_i = 11} + \lambda_j^{13} \cdot \mathbf{1}_{nnc_i = 13} + \lambda_j^{14} \cdot \mathbf{1}_{nnc_i = 14} + \\ \theta_j^1 \cdot \mathbf{1}_{region_i = Chittagong} + \theta_j^2 \cdot \mathbf{1}_{region_i = Dhaka} + \ldots + \theta_j^6 \cdot \mathbf{1}_{region_i = Sylhet} + \\ \omega_j \cdot income_i + \nu_j \cdot \mathbf{1}_{cropConsumed_i = 1} + \mu_j \cdot \mathbf{1}_{atleastHS_i = 1} + \zeta_j \cdot timeToTown_i + \varepsilon_{ij} \end{aligned}$$

where $u(c_i) = \frac{c^{1-\sigma}-1}{1-\sigma}$ is the standard CRRA utility function for a specific level of relative risk aversion which uses annual expenditure data to estimate c_i . The value k_i is the associated opportunity cost (lost wages) incurred for signing up to utilize any social safety

net – this cost is zero if no social safety set is utilized and is (assumed to be) one week's worth of (annual) employment income if any social safety net is utilized. This difference is referred to as the "adjusted utility". For this paper, a value of $\sigma = 1.30$, based on estimates using data from the Gallup World Poll [8], is used in the multinomial logit estimation. The choice probability of household i utilizing social safety net j is given by:

$$p_{ij} = \frac{e^{\hat{v}_{ij}}}{\sum_{l=1}^{4} e^{\hat{v}_{il}}} \tag{2}$$

where $\hat{v}_{ij} = v_{ij} - \varepsilon_{ij}$.

It is important to note that a key assumption made here, and throughout this paper, is that households are eligible for every social safety net and can readily utilize any social safety net (after forgoing a small portion of income in order to sign up to get the benefits). The validity of this assumption is tested with the data to see if there existed any eligibility cutoffs. Looking specifically at household and employment income, no clear income cutoff seemed to preclude households from utilizing a social safety net. Furthermore, when looking at rurality⁷, there, again, was no eligibility cutoff. Lastly, there did not seem to be any cutoffs based on the household size either. Of course, these are ad hoc methods (the results of which can be found in Section 12 – Appendix D), to test for eligibility criteria but future research can be focused on identifying which, if any, available social safety nets have some eligibility criteria. Presumably, some criteria does exist, but a cursory look at the most common criteria did not indicate an eligibility cutoff. However, based on the distribution of total value of social safety nets on income (as seen in Figure 6 and Figure 7), poorer households tended to utilize more social safety nets (as the aggregate value is much higher). This may indicate that there are not necessarily eligibility cutoffs but rather criteria for how much or how many social safety nets a household is allowed to utilize based on its income level in a given year.

To summarize the effects of the number of underweight children and non-children on social safety net utilization, an Ordinary Least Squares (OLS) regression is run on the estimated marginal effects. This is done to see how the likelihood of utilization of a specific social safety net type is related to a unit increase in the number of underweight children or non-children.

Four regressions will look at the marginal effect of the number of underweight children. For social safety net type j, the OLS equation looks as follows⁸:

$$ME_i^j = \alpha_i + \beta \cdot ncUW_i + \varepsilon_i \tag{3}$$

⁷Rurality is estimated by the time it takes a household member to travel to the nearest town.

⁸Where $i \in \{1, 2, 3\}$.

Additionally, four similar regressions will look at the marginal effect of the number of underweight non-children. For social safety net type j, the OLS equations looks as follows⁹:

$$ME_i^j = \alpha_i + \beta \cdot nncUW_i + \varepsilon_i \tag{4}$$

5 Results

Although a multinomial logit model can indicate which characteristics of a household are more likely to choose one type of social safety net relative to a reference group ¹⁰, we cannot make any conclusions regarding the changes in magnitude. In order to find magnitudes of change, we must first identify the marginal effects of each variable. These marginal effects can be found in Table 3.

Table 3: Marginal Effects for the Multinomial Logit Model.

Type	Variable	Contrast	Marginal Effect
None	numChildUnderweight	1 - 0	0.0075
None	${\bf num Child Under weight}$	2 - 0	0.0056
None	numChildUnderweight	3 - 0	0.0546
None	${\bf num Non Child Underweight}$	1 - 0	-0.0011
None	num Non Child Underweight	2 - 0	-0.0110
None	${\bf num Non Child Underweight}$	3 - 0	0.0083
None	num Non Child Underweight	4 - 0	0.0061
None	${\bf num Non Child Underweight}$	5 - 0	0.0679
None	num Non Child Underweight	6 - 0	0.1114
None	num Non Child Underweight	7 - 0	0.0896
Money	numChildUnderweight	1 - 0	0.0022
Money	numChildUnderweight	2 - 0	-0.0187
Money	${\bf num Child Under weight}$	3 - 0	0.1251
Money	num Non Child Underweight	1 - 0	-0.0124
Money	num Non Child Underweight	2 - 0	0.0043
Money	num Non Child Underweight	3 - 0	-0.0070
Money	${\bf num Non Child Underweight}$	4 - 0	0.0081
Money	num Non Child Underweight	5 - 0	-0.0874
Money	num Non Child Underweight	6 - 0	-0.2905
Money	num Non Child Underweight	7 - 0	0.0836
Food	numChildUnderweight	1 - 0	-0.0053
Food	numChildUnderweight	2 - 0	0.0036
Food	$\operatorname{numChildUnderweight}$	3 - 0	-0.0711
Food	num Non Child Underweight	1 - 0	0.0054
Food	num Non Child Underweight	2 - 0	-0.0158
Food	num Non Child Underweight	3 - 0	-0.0020

⁹Where $i \in \{1, 2, 34, 5, 6, 7\}$.

¹⁰The full multinomial logit results can be found in 9 where the reference group is "None".

Type	Variable	Contrast	Marginal Effect
Food	${\rm numNonChildUnderweight}$	4 - 0	0.0136
Food	${\bf num Non Child Under weight}$	5 - 0	-0.0712
Food	${\bf num Non Child Under weight}$	6 - 0	-0.0710
Food	${\bf num Non Child Under weight}$	7 - 0	-0.0712
Both	numChildUnderweight	1 - 0	-0.0044
Both	numChildUnderweight	2 - 0	0.0095
Both	numChildUnderweight	3 - 0	-0.1086
Both	num Non Child Underweight	1 - 0	0.0081
Both	${\bf num Non Child Under weight}$	2 - 0	0.0225
Both	${\bf num Non Child Under weight}$	3 - 0	0.0007
Both	${\bf num Non Child Under weight}$	4 - 0	-0.0279
Both	num Non Child Underweight	5 - 0	0.0906
Both	num Non Child Underweight	6 - 0	0.2501
Both	num Non Child Underweight	7 - 0	-0.1020

*Full tables can be found in Section 9 - Appendix A.

Interestingly, having one underweight child (compared to having no underweight children) seems to increase the likelihood of a household to use no social safety nets or only monetary social safety nets by .75 and .22 percentage points, respectively. Moreover, the likelihood of utilizing either only food or both types of social safety nets falls by .53 and .44 percentage points respectively. It is important to point out that the sum of these changes is zero which should always be the case as the total probability must still sum to one.

As the marginal effects are based on the specific number of underweight children and non-children, an OLS regression is run on the marginal effects to estimate the changes of the likelihood of social safety net utilization due to a unit increase in the number of underweight children and non-children.

Table 4 and Table 5 show the results of the eight OLS regressions. Interestingly, both regressions indicate that the effect of a unit increase in the number of underweight children or non-children correlates with an increase in the likelihood of utilizing no social safety net by roughly two percentage points. However, that is where the similarities end. From Table 4, we can see that the unit increase in the number of underweight children correlates with a six percentage point increase in the likelihood of only utilizing social safety nets that provide cash transfers. For all the nutritional variables and choices, this correlation is the largest. Furthermore, from Table 5, a similar unit increase in the number of underweight non-children correlates with a one percentage point decrease in the likelihood of utilizing the same type of social safety net. While the demand for social safety nets that only provide food transfers negatively correlate with the number of underweight children and non-children, it more negatively correlates with the number of underweight children (three percentage point decrease) compared to the number of underweight non-children (one percentage point decrease). Lastly, the relationship between the change in the likelihood of utilizing both types of social safety nets and the number of underweight children and non-children is negative and positive, respectively. A unit increase in the number of underweight children correlates with a five percentage point decrease in the likelihood of utilizing both social safety net types while a unit increase in the number of underweight non-children increases that likelihood by one percentage point. These results indicate differential effects of the number of individuals underweight based on their age.

These differential effects can be partially explained by the types of food transfers provided by the social safety nets in Bangladesh. As the primary food transfers come in the form of rice and wheat, households may not have the necessary nutrients required to help underweight children. Special (and nutritious) food must be bought to assist in child nutrition which can explain why the demand for social safety nets that provides cash transfers positively correlate with the number of underweight children. However, for non-children, it may be a mix of more calories and specialized nutrition which explains why the demand for both types of social safety nets positively correlate with the number of underweight non-children. These results indicate that the nutritional effects on household choice vary based on which types of household members (child and non-child) are suffering from (extreme) malnutrition.

Table 4: OLS Regression For Marginal Effect of the Number of Children Underweight By Utilization Type.

	None	Money	Food	Both
(Intercept)	-0.02	-0.09	0.04	0.07
Number of Underweight Children	0.02	0.06	-0.03	-0.05
R^2	0.72	0.63	0.65	0.65
Num. obs.	3	3	3	3

Table 5: OLS Regression For Marginal Effect of the Number of Non-Children Underweight By Utilization Type.

	None	Money	Food	Both
(Intercept)	-0.04	0.01	0.03	0.00
Number of Underweight Non-Children	0.02	-0.01	-0.01	0.01
\mathbb{R}^2	0.80	0.06	0.65	0.02
Num. obs.	7	7	7	7

The policy implications of these results depend on the goals of the government. For a

developing country like Bangladesh, its primary objective should be to reduce the reliance on "Food" social safety nets due to the government costs for in-kind transfers (which are higher than those of cash transfers) but also to help the local economy. This can be achieved by developing infrastructure that targets the nutritional needs of households, including investment in infrastructure aimed at reducing the number of non-children underweight which would, in theory, increase the demand for solely monetary social safety nets while reducing the demand for both monetary and food social safety nets. However, in the context of human capital investment, creating more social safety nets that provide more nutritional in-kind food transfers may be highly beneficial for (malnourished) children as early childhood intervention and investment can vastly improve human capital in the future.

6 Robustness

6.1 World Health Organization

One primary issue could potentially be the data used to categorize "underweight". A common standard in health literature is that the fifth percentile BMI at any age is considered the cutoff but the CDC data is focused on the American population. There is a valid argument to be made that other countries will have different cutoffs. Although BMI data for Bangladesh is not readily available, using World Health Organization (WHO) data for categorization may lead to varying results. The comparison of marginal effects using CDC and WHO data (along with the absolute differences) can be seen in Table 6.

Table 6: Comparison of Marginal Effects for the Multinomial Logit Model: CDC versus WHO Data.

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
None	$\operatorname{numChildUnderweight}$	1 - 0	0.0075	-0.0060	0.0135
None	${\bf num Child Under weight}$	2 - 0	0.0056	-0.0082	0.0138
None	${\bf num Child Under weight}$	3 - 0	0.0546	0.0308	0.0238
None	num Non Child Underweight	1 - 0	-0.0011	-0.0020	0.0008
None	num Non Child Underweight	2 - 0	-0.0110	-0.0097	0.0013
None	num Non Child Underweight	3 - 0	0.0083	0.0218	0.0136
None	num Non Child Underweight	4 - 0	0.0061	0.0154	0.0093
None	${\bf num Non Child Under weight}$	5 - 0	0.0679	0.0531	0.0149
None	num Non Child Underweight	6 - 0	0.1114	0.0687	0.0427
None	${\bf num Non Child Underweight}$	7 - 0	0.0896	0.0961	0.0065

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
Money	numChildUnderweight	1 - 0	0.0022	0.0172	0.0150
Money	num Child Underweight	2 - 0	-0.0187	-0.0324	0.0138
Money	$\operatorname{numChildUnderweight}$	3 - 0	0.1251	0.1430	0.0178
Money	num Non Child Underweight	1 - 0	-0.0124	-0.0170	0.0047
Money	num Non Child Underweight	2 - 0	0.0043	0.0043	0.0000
Money	num Non Child Underweight	3 - 0	-0.0070	-0.0208	0.0138
Money	num Non Child Underweight	4 - 0	0.0081	-0.0107	0.0188
Money	num Non Child Underweight	5 - 0	-0.0874	-0.0847	0.0027
Money	num Non Child Underweight	6 - 0	-0.2905	-0.2954	0.0049
Money	num Non Child Underweight	7 - 0	0.0836	0.0696	0.0140
Food	numChildUnderweight	1 - 0	-0.0053	0.0008	0.0061
Food	$\operatorname{numChildUnderweight}$	2 - 0	0.0036	-0.0251	0.0286
Food	numChildUnderweight	3 - 0	-0.0711	-0.0690	0.0022
Food	num Non Child Underweight	1 - 0	0.0054	-0.0001	0.0054
Food	num Non Child Underweight	2 - 0	-0.0158	-0.0162	0.0004
Food	num Non Child Underweight	3 - 0	-0.0020	0.0034	0.0055
Food	num Non Child Underweight	4 - 0	0.0136	0.0113	0.0023
Food	num Non Child Underweight	5 - 0	-0.0712	-0.0712	0.0000
Food	num Non Child Underweight	6 - 0	-0.0710	-0.0710	0.0000
Food	num Non Child Underweight	7 - 0	-0.0712	-0.0712	0.0000
Both	numChildUnderweight	1-0	-0.0044	-0.0120	0.0076
Both	numChildUnderweight	2 - 0	0.0095	0.0657	0.0562
Both	numChildUnderweight	3 - 0	-0.1086	-0.1048	0.0038
Both	num Non Child Underweight	1 - 0	0.0081	0.0190	0.0109
Both	num Non Child Underweight	2 - 0	0.0225	0.0216	0.0009
Both	${\bf num Non Child Underweight}$	3 - 0	0.0007	-0.0045	0.0052
Both	${\bf num Non Child Underweight}$	4 - 0	-0.0279	-0.0160	0.0118
Both	numNonChildUnderweight	5 - 0	0.0906	0.1027	0.0121
Both	${\bf num Non Child Underweight}$	6 - 0	0.2501	0.2976	0.0476
Both	${\bf num Non Child Underweight}$	7 - 0	-0.1020	-0.0945	0.0075

*Full tables can be found in Section 10 - Appendix B.

Although the absolute differences between the marginal effects do vary, the sign stays relatively consistent. The only instances where the sign of the marginal effect changes is when it is close to zero (which indicates that the marginal effect is not that large to begin with). To further check the robustness, OLS regressions are run on the data and the results can be seen in Table 7 and Table 8. The results from the OLS regression using WHO data are extremely similar to those using CDC data (Table 4 and Table 5) which indicate that our model is robust to different categorizations of "underweight".

None Money Food Both (Intercept) -0.03-0.080.040.08Number of Underweight Children 0.06 0.02-0.03-0.05 \mathbb{R}^2 0.710.480.98 0.30Num. obs. 3 3 3 3

Table 7: OLS Regression For Number of Children Underweight Using WHO Data.

Table 8: OLS Regression For Number of Non-Children Underweight Using WHO Data.

	None	Money	Food	Both
(Intercept)	-0.03	0.01	0.03	0.00
Number of Underweight Non-Children	0.02	-0.01	-0.01	0.01
R^2	0.91	0.07	0.63	0.04
Num. obs.	7	7	7	7

6.2 Levels of Risk Aversion

The results found in the paper may also vary due to the levels of relative risk aversion so, as a check for robustness, we also investigate how the results, if at all, would change based on slightly varying levels of relative risk aversion. This is important because the value of $\sigma = 1.30$ was based on estimations and, if our model is robust, slight perturbations should not dramatically change our results. We also include a regression using risk neutral preferences ($\sigma = 0$). Again, we see slight variations when changing our level of relative risk aversion slightly but we do see, as expected, dramatic changes when we assume risk neutrality.

Table 9: Marginal Effects with Varying Levels of Risk Aversion

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
None	numChildUnderweight	1 - 0	-0.0424	0.0067	0.0075	0.0060
None	numChildUnderweight	2 - 0	-0.0380	0.0064	0.0056	0.0095
None	numChildUnderweight	3 - 0	0.0037	0.0494	0.0546	0.0557
None	num Non Child Underweight	1 - 0	-0.0641	0.0000	-0.0011	-0.0009
None	${\bf numNonChildUnderweight}$	2 - 0	-0.1230	-0.0070	-0.0110	-0.0106
None	${\bf numNonChildUnderweight}$	3 - 0	-0.0864	0.0043	0.0083	0.0089
None	num Non Child Underweight	4 - 0	-0.0173	0.0038	0.0061	0.0054
None	num Non Child Underweight	5 - 0	-0.0259	0.0651	0.0679	0.0678
None	num Non Child Underweight	6 - 0	0.0076	0.1091	0.1114	0.1118
None	num Non Child Underweight	7 - 0	-0.0120	0.0873	0.0896	0.0890

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
Money	numChildUnderweight	1 - 0	0.0365	0.0039	0.0022	0.0038
Money	numChildUnderweight	2 - 0	0.0406	-0.0251	-0.0187	-0.0239
Money	numChildUnderweight	3 - 0	-0.0011	0.1263	0.1251	0.1235
Money	num Non Child Underweight	1 - 0	0.0291	-0.0134	-0.0124	-0.0144
Money	num Non Child Underweight	2 - 0	0.0871	-0.0012	0.0043	-0.0017
Money	num Non Child Underweight	3 - 0	0.0661	-0.0148	-0.0070	-0.0190
Money	num Non Child Underweight	4 - 0	0.0183	-0.0179	0.0081	-0.0100
Money	num Non Child Underweight	5 - 0	0.0182	-0.0898	-0.0874	-0.0804
Money	num Non Child Underweight	6 - 0	-0.0176	-0.2934	-0.2905	-0.2933
Money	num Non Child Underweight	7 - 0	0.0157	0.0806	0.0836	0.0814
Food	numChildUnderweight	1 - 0	-0.0004	-0.0044	-0.0053	-0.0034
Food	numChildUnderweight	2 - 0	-0.0071	-0.0116	0.0036	-0.0052
Food	num Child Underweight	3 - 0	-0.0007	-0.0699	-0.0711	-0.0716
Food	num Non Child Underweight	1 - 0	0.0140	0.0031	0.0054	0.0042
Food	num Non Child Underweight	2 - 0	-0.0108	-0.0162	-0.0158	-0.0114
Food	num Non Child Underweight	3 - 0	0.0004	0.0093	-0.0020	0.0051
Food	num Non Child Underweight	4 - 0	0.0002	0.0251	0.0136	0.0193
Food	num Non Child Underweight	5 - 0	-0.0063	-0.0700	-0.0712	-0.0713
Food	num Non Child Underweight	6 - 0	-0.0000	-0.0698	-0.0710	-0.0711
Food	num Non Child Underweight	7 - 0	-0.0015	-0.0700	-0.0712	-0.0713
Both	numChildUnderweight	1 - 0	0.0064	-0.0062	-0.0044	-0.0064
Both	numChildUnderweight	2 - 0	0.0045	0.0303	0.0095	0.0197
Both	numChildUnderweight	3 - 0	-0.0019	-0.1058	-0.1086	-0.1075
Both	num Non Child Underweight	1 - 0	0.0210	0.0102	0.0081	0.0111
Both	num Non Child Underweight	2 - 0	0.0467	0.0243	0.0225	0.0237
Both	num Non Child Underweight	3 - 0	0.0199	0.0012	0.0007	0.0051
Both	num Non Child Underweight	4 - 0	-0.0012	-0.0110	-0.0279	-0.0147
Both	num Non Child Underweight	5 - 0	0.0140	0.0947	0.0906	0.0839
Both	num Non Child Underweight	6 - 0	0.0101	0.2542	0.2501	0.2525
Both	num Non Child Underweight	7 - 0	-0.0022	-0.0979	-0.1020	-0.0992

*Full tables can be found in Section 10 - Appendix B.

Using the data in Table 9, we run similar OLS regressions as before and see that, in Table 10 and Table 11, the coefficients for the marginal effect of a unit increase in the number of children and non-children are robust to small perturbations in the level of relative risk aversion but change dramatically when compared to risk-neutrality. However, we have shown that our results are robust to small sensitivity checks regarding the level of relative risk aversion in Bangladeshi households around its estimated value.

Table 10: OLS Regression Coefficients For Marginal Effect of Number of Children Underweight For Varying Levels of Risk Aversion.

	None	Money	Food	Both
$\sigma = 0$	0.02	-0.02	-0.00	-0.00
$\sigma = 1.25$	0.02	0.06	-0.03	-0.05
$\sigma = 1.30$	0.02	0.06	-0.03	-0.05
$\sigma = 1.35$	0.02	0.06	-0.03	-0.05

Table 11: OLS Regression Coefficients For Marginal Effect of Number of Non-Children Underweight For Varying Levels of Risk Aversion.

	None	Money	Food	Both
$\sigma = 0$	0.0	-0.01	-0.00	-0.01
$\sigma = 1.25$	0.02	-0.01	-0.01	0.01
$\sigma = 1.30$	0.02	-0.01	-0.01	0.01
$\sigma = 1.35$	0.02	-0.01	-0.02	0.01

7 Limitations

The primary limitation that must be addressed is the critical assumption made throughout this paper: each household is eligible and can readily choose any social safety net available. Commonly, these forms of social safety nets are available to households within a certain income level or predominantly rural households (or perhaps both). However, when looking at social safety net utilization by household income, employment income, and the time to the nearest town, there is no evidence of an explicit eligibility cutoff in those regards¹¹ (these results can be see in Section 12 – Appendix D). One explanation could be that these social safety nets do not have any eligibility requirements in these categories. However, based on the relationship between the total value of social safety nets utilized and income (as seen in Section 12), poorer households tended to have total value of social safety nets that were much higher than those of richer households. This indicates that there is a possibility that there are various income *tiers* that may preclude certain households from getting more social safety nets. However, a very real third possibility must also be discussed: measurement error. Specifically, in regards to employment income that was only available for the last 30 days, there can be issues of

 $^{^{11}\}mathrm{Although}$ less common, identifying cutoffs based on household size are attempted and also included in Section 12

measurement accuracy. Firstly, there is a strong likelihood that households do not report accurate employment income due to the relatively long recall period. Furthermore, this value was extrapolated linearly to estimate the annual income which tacitly assumes that the household collects the same amount of employment income each month which is not necessarily the case. Overall, this may lead to an overestimate of the annual income which may hide the income eligibility that exists with these various social safety nets. A similar issue can be found in estimating annual food expenditure as we only have information on food expenditure in the past week (which was then linearly extrapolated for the whole year).

Furthermore, many of the questions asked during the BIHS survey have *extremely* long recall periods. For instance, aside from employment income, all other income sources have recall periods that tend to be a year long. This long recall period can lead to inaccuracies as many households, most likely, estimated these values and gave them to the surveyor.

It is also important to note that the final results of the OLS regression use estimated values (the estimated marginal effects). By OLS assumptions, the results are consistent, but the standard errors will not be, so they are not included in the tables provided in this paper. Furthermore, the assumption of the Independence of Irrelevant Alternatives is assumed to be valid when estimating the multinomial logit model.

A natural aspect of marginal effects is that, as one choice probability increases, others must decrease. In all the testing done, the marginal effect of the number of underweight children and non-children on the likelihood of households not utilizing any social safety net is positive which is startling. It can partially be explained by the fact that the likelihood of utilization of "Money" or "Both" (in the case of underweight children and non-children, respectively) both increase but it may also hint that there are other omitted variables that are not controlled for which can lead to this incongruity. Additionally, our model proxies for nutrition through the number of underweight children and non-children but other variables could also be included to create a better estimate of household nutrition. Furthermore, our model characterizes "children" as household members who are no more than six years of age but the results may change if the categorization of "child" changes.

Also, our model assumes that all households have the same level of relative risk aversion and, moreover, the opportunity cost associated with gaining access and utilizing any social safety net is one week's worth of employment income ¹² and this opportunity cost is the same regardless of how many social safety nets they utilized which is most likely not the case.

On a more conceptual basis, this paper focuses on extensive margins and, although the magnitude of social safety net utilization is briefly discussed, it is not readily applied in this paper and intensive margins are not specifically examined. Lastly, we do not have any information on how the monetary social safety nets were utilized by the households.

¹²This value is zero if no social safety net is utilized.

Our analysis primarily assumes that these cash transfers are predominantly used for purchasing more specialized and nutritious food but this is not necessarily the case.

8 Conclusion

This paper aims to investigate the relationship between nutrition and social safety net utilization using evidence from the Bangladesh Integrated Household Survey, a nationally representative survey of Bangladeshi households in 2019. Using a multinomial logit model, we find evidence that there are differential effects of the number of underweight household members by the type of household member (child or non-child) on the social safety nets utilized. We see that a unit increase in the number of underweight children correlate with an increase in the likelihood of a household utilizing social safety nets that only provide cash transfers by six percentage points and a decrease in the likelihood of utilizing both types of social safety nets by five percentage points. Similar increases in the number of underweight non-children correlate with a one percentage point decrease and one percentage point increase, respectively.

The policy implications of these results depend on the goals of the government. For a developing country like Bangladesh, its primary objective should be to reduce the reliance on "Food" social safety nets due to the government costs for in-kind food transfers but also to help the local economy. This can be achieved by developing infrastructure that targets the nutritional needs of households, including investment in infrastructure aimed at reducing the number of underweight non-children. However, in the context of human capital investment, creating more social safety nets that provide more nutritional in-kind food transfers may be highly beneficial to (malnourished) children as early childhood intervention and investment can vastly improve human capital in the future.

Next steps to this research may include more incorporation of other parameters that may explain utilization that would, hopefully, lead to a decrease in the likelihood of a household choosing "None" as the number of underweight children or non-children increase. Also, extensive research into eligibility as well as incorporating the magnitudes of social safety net utilization and additional proxies for household nutrition can also be beneficial to this research. Lastly, incorporating a nested logit model could also be a fruitful expansion of this research design.

References

- [1] International Food Policy Research Institute (IFPRI). Bangladesh Integrated Household Survey (BIHS) 2018-2019. Version Draft Version. 2020. DOI: 10.7910/DVN/NXKLZJ. URL: https://doi.org/10.7910/DVN/NXKLZJ.
- [2] ADB. Bangladesh and ADB. Tech. rep. 1. Manila, PHL: Asian Development Bank, Apr. 2022.
- [3] The Cultural Atlas. *Bangladeshi Culture*. Tech. rep. 1. Australia: The Cultural Atlas, Jan. 2022.
- [4] Abhijit V. Banerjee and Esther Duflo. *The Economic Lives of the Poor*. Tech. rep. 1. Nashville, TN: Journal of Economic Perspectives, Mar. 2007.
- [5] BBS. *Population Census*. Tech. rep. 1. Dhaka, BGD: Bangladesh Bureau of Statistics, Apr. 2022.
- [6] CDC. Percentile Data Files with LMS Values. Version Published Version. 2009. URL: https://www.cdc.gov/growthcharts/percentile_data_files.htm.
- [7] Jesse M. Cunha, Giacomo De Giorgi, and Seema Jayachandran. The Price Effects of Cash Versus In-Kind Transfer. Tech. rep. 17456. Cambridge, MA: National Bureau Of Economic Research, Sept. 2011.
- [8] Néstor Gandelman and Rubén Hernández-Murillo. Risk Aversion at the Country Level. Tech. rep. 005b. St. Louis, MO: Federal Reserve Bank of St. Louis, Feb. 2014.
- [9] Ugo Gentilini. *The Revial of the "Cash versus Food" Debate*. Tech. rep. 7584. Washington, D.C.: World Bank Group, Feb. 2016.
- [10] IMF. Real GDP Growth. Tech. rep. 1. Washginton, D.C.: International Monetary Fund, Mar. 2019.
- [11] WHO. Percentile Data Files with LMS Values For Children over 5.

 Version Published Version. 2009. URL: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age.
- [12] WHO. Percentile Data Files with LMS Values For Children under 5.

 Version Published Version. 2009. URL: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age.

9 Appendix A - Full Tables

[This page area is intentionally left blank.]

Table 12: Probit Model for Utilizing Any Social Safety Net.

	Model 1	Model 4
(Intercept)	102.2544***	56.4015**
	(19.6439)	(20.4984)
adjUtility	-31.7754****	-17.2578**
	(5.9443)	(6.2217)
as.factor(numNonChildUnderweight)1	0.0770	0.1182
	(0.1778)	(0.1876)
as.factor(numNonChildUnderweight)2	0.0805	0.2266
	(0.2780)	(0.2977)
as. factor (num Non Child Underweight) 3	-0.4731	0.1075
	(0.7275)	(0.7687)
as. factor (num Non Child Underweight) 4	-16.4911	-14.3802
	(2033.3113)	(1357.0665)
as. factor (num Non Child Underweight) 5	-3703.9511	-1984.6754
	(51357.3347)	(85161.2628)
as. factor (num Non Child Underweight) 6	-141836.0284	-77005.1561
	(434843.8940)	(323507.5835)
as. factor (num Non Child Underweight) 7	-255915.9459	-94927.0901
	(208909.4727)	(291735.4936)
as. factor (num Child Underweight) 1	-0.2245	-0.2495
	(0.2505)	(0.2870)
as. factor (num Child Underweight) 2	-0.1687	-0.4971
	(0.7303)	(0.8270)
as. factor (num Child Underweight) 3	-21.3950	-19.3196
	(57082.8878)	(42050.7205)
as.factor(numChildren)1		0.1412
		(0.2043)
as.factor(num Children) 2		-0.0483
		(0.3541)
as.factor(numChildren)3		1.1489
		(0.6994)
as.factor(numChildren)4		3.8155**
		(1.3375)
as.factor(numChildren)5		6.0011
		(169553.1281)
as.factor(numNonChildren)2		-0.1374
		(0.2706)
as.factor(numNonChildren)3		-0.1057

	Model 1	Model 4
		(0.2869)
as.factor(numNonChildren)4		-0.3009
		(0.3335)
as.factor(numNonChildren)5		-1.2345^*
		(0.5827)
as.factor(numNonChildren)6		-0.5889
		(0.6903)
as. factor (num Non Children) 7		-14.2194
		(1003.2654)
as. factor (num Non Children) 8		-23.8252
		(120889.5083)
as.factor(numNonChildren)9		-24124.3635
		(33403.6319)
as. factor (num Non Children) 10		-24280.8645
		(562393.2406)
as. factor (num Non Children) 11		-44048.3399
		(193740.7375)
as.factor(numNonChildren)13		-88730.2808
		(362793.3961)
as.factor(numNonChildren)14		-41874.1132
		(100746.1743)
as.factor(region)Chittagong		-0.4469
		(0.3036)
as.factor(region)Dhaka		-0.6142^*
		(0.2830)
as.factor(region)Khulna		-1.0403^*
		(0.4144)
as.factor(region)Rajshahi		-0.8787^*
		(0.3875)
as.factor(region)Rangpur		-0.5737
		(0.3808)
as.factor(region)Sylhet		-1.1525**
1 1 117		(0.3855)
householdIncome		-0.0000***
C /		(0.0000)
as.factor(cropConsumed)1		-1.3154***
C / (/ 1 / HC) 4		(0.1929)
as.factor(atleastHS)1		-1.0488
·· m m		(0.7307)
timeToTown		-0.0002

	Model 1	Model 4
		(0.0020)
AIC	1328.5753	1200.9843
BIC	1407.7981	1458.4584
Log Likelihood	-652.2876	-561.4921
Deviance	1304.5753	1122.9843
Num. obs.	5442	5442

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 13: Marginal Effects for Probit Model.

	Marginal Effect
adjUtility	0.0000
	(0.0000)
as.factor(numNonChildUnderweight)1	0.0000
	(0.0000)
as.factor (num Non Child Underweight) 2	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 3	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 4	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 5	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 6	-1.0000***
	(0.0000)
as. factor (num Non Child Underweight) 7	-1.0000***
	(0.0000)
as. factor (num Child Underweight) 1	0.0000
	(0.0000)
as. factor (num Child Underweight) 2	0.0000
	(0.0000)
as.factor(numChildUnderweight)3	0.0000
	(0.0000)
as.factor(numChildren)1	0.0000
	(0.0000)
as.factor(numChildren)2	0.0000
	(0.0000)
as.factor(numChildren)3	0.0000
	(0.0000)
as.factor(numChildren)4	0.0000
	(0.0000)
as.factor(numChildren)5	0.0000
	(0.0000)
as.factor(numNonChildren)2	0.0000
	(0.0000)
as.factor(numNonChildren)3	0.0000
	(0.0000)
as.factor(numNonChildren)4	0.0000

	Marginal Effect
	(0.0000)
as.factor(numNonChildren)5	0.0000
	(0.0000)
as.factor(numNonChildren)6	0.0000
	(0.0000)
as.factor(numNonChildren)7	0.0000
	(0.0000)
as. factor (num Non Children) 8	0.0000
	(0.0000)
as. factor (num Non Children) 9	-1.0000***
	(0.0000)
as. factor (num Non Children) 10	-1.0000***
	(0.0000)
as. factor (num Non Children) 11	-1.0000***
	(0.0000)
as. factor (num Non Children) 13	-1.0000***
	(0.0000)
as. factor (num Non Children) 14	-1.0000***
	(0.0000)
as.factor(region)Chittagong	0.0000
	(0.0000)
as.factor(region)Dhaka	0.0000
	(0.0000)
as.factor(region)Khulna	0.0000
	(0.0000)
as.factor(region)Rajshahi	0.0000
	(0.0000)
as.factor(region)Rangpur	0.0000
	(0.0000)
as.factor(region)Sylhet	0.0000
	(0.0000)
householdIncome	0.0000
	(0.0000)
as.factor(cropConsumed)1	0.0000
	(0.0000)
as.factor(atleastHS)1	0.0000
	(0.0000)
timeToTown	0.0000
	(0.0000)
Num. obs.	5442

	Marginal Effect
Log Likelihood	-561.4921
Deviance	1122.9843
AIC	1200.9843
BIC	1458.4584

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 14: Multinomial Logit Model For Money (1), Food (2), or Both (3) where None is the Reference Group.

	Model 1	Model 2	Model 3	Model 4
1: (Intercept)	101.7761***	101.7761***	3.9511***	-0.6989***
	(0.0347)	(0.0347)	(0.0000)	(0.0000)
1: adjUtility	-31.7810****	-31.7810***	-1.6466****	-0.2051****
•	(0.0221)	(0.0221)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)1	$0.0259^{'}$	$0.0259^{'}$	0.0135***	-0.0222^{***}
,	(0.0465)	(0.0465)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)2	0.0694^{*}	0.0694^{*}	0.0943***	0.2781***
,	(0.0291)	(0.0291)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)3	-0.4978^{***}	-0.4978^{***}	-0.3141^{***}	-0.2603****
	(0.0034)	(0.0034)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)4	-340.4060^{***}	-340.4060^{***}	-5.8059***	-0.1453^{***}
	(0.0006)	(0.0006)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)5	-999.4432***	-999.4432***	-68.0656***	-18.5161***
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)6	-41196.4962	-41196.4962	-4281.2998^{***}	-646.6018^{***}
			(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)7	-1744.8984	-1744.8984	-769.2768***	-62.9392^{***}
			(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)1	-0.1798^{***}	-0.1798^{***}	-0.1161^{***}	-0.1887^{***}
	(0.0079)	(0.0079)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)2	-0.1280^{***}	-0.1280^{***}	-0.0041^{***}	-0.2219^{***}
	(0.0008)	(0.0008)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)3	-1896.5757^{***}	-1896.5757^{***}	-106.7774***	-4.4766^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: (Intercept)	100.5253^{***}	100.5253^{***}	3.7195***	-0.6293^{***}
	(0.0456)	(0.0456)	(0.0000)	(0.0000)
2: adjUtility	-31.7810^{***}	-31.7810^{***}	-1.6468^{***}	-0.2052^{***}
	(0.0221)	(0.0221)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)1	0.0568^{*}	0.0568^{*}	0.0501^{***}	0.1071^{***}
	(0.0243)	(0.0243)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)2	-0.3830^{***}	-0.3830^{***}	-0.4355^{***}	0.0008***
	(0.0065)	(0.0065)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)3	-0.7056^{***}	-0.7056^{***}	-0.6035^{***}	-0.2599^{***}
	(0.0016)	(0.0016)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)4	-340.6135^{***}	-340.6135^{***}	-6.0626^{***}	0.0027^{***}
	(0.0003)	(0.0003)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)5	-12133.1602^{***}	-12133.1602^{***}	-1255.6159^{***}	-207.0097^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)6	-30045.2104^{***}	-30045.2104^{***}	-2146.2438^{***}	-212.5343***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)7	-5330.1454	-5330.1454	-1264.9288^{***}	-182.7588^{***}
			(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)1	-0.3979^{***}	-0.3979^{***}	-0.2806^{***}	-0.2781^{***}
	(0.0073)	(0.0073)	(0.0000)	(0.0000)

	Model 1	Model 2	Model 3	Model 4
2: as.factor(numChildUnderweight)2	-0.4522***	-0.4522^{***}	-0.1903^{***}	-0.0878^{***}
, - ,	(0.0005)	(0.0005)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)3	-19378.4724^{***}	-19378.4724^{***}	-1994.2820***	-220.8072^{***}
, - ,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: (Intercept)	100.7496***	100.7496***	3.8073***	-1.3629^{***}
	(0.0406)	(0.0406)	(0.0000)	(0.0000)
3: adjUtility	-31.7810^{***}	-31.7810^{***}	-1.6467^{***}	-0.2051^{***}
	(0.0221)	(0.0221)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)1	0.2201^{***}	0.2201^{***}	0.2180^{***}	0.1120^{***}
	(0.0367)	(0.0367)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)2	0.3598^{***}	0.3598^{***}	0.3682^{***}	0.4720^{***}
	(0.0237)	(0.0237)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)3	-0.2662^{***}	-0.2662^{***}	-0.1161^{***}	-0.2266***
	(0.0027)	(0.0027)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)4	-340.4512^{***}	-340.4512^{***}	-5.8627^{***}	-0.5132^{***}
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)5	-998.6112^{***}	-998.6112^{***}	-67.0908***	-17.4247^{***}
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)6	-18642.5813^{***}	-18642.5813^{***}	-445.9157^{***}	-109.3179^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)7	-4200.7185^{***}	-4200.7185^{***}	-1178.7685^{***}	-144.3816^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)1	-0.2330^{***}	-0.2330^{***}	-0.1152^{***}	-0.2448^{***}
	(0.0082)	(0.0082)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)2	-0.1310^{***}	-0.1310^{***}	0.1512^{***}	-0.0537^{***}
	(0.0008)	(0.0008)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)3	-24064.6245^{***}	-24064.6245^{***}	-2226.3325^{***}	-310.1412^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Chittagong			0.1922^{***}	0.5103^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Dhaka			-0.1553^{***}	-0.1481^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Khulna			-0.6798^{***}	-0.6545^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Rajshahi			-0.3564***	-0.3048^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Rangpur			-0.7566***	-0.9600***
			(0.0000)	(0.0000)
1: as.factor(region)Sylhet			-0.6433^{***}	-0.3619^{***}
			(0.0000)	(0.0000)
1: householdIncome			-0.0000^{***}	-0.0000^{***}
			(0.0000)	(0.0000)
1: as.factor(cropConsumed)1			-1.2883^{***}	-0.9612^{***}
			(0.0000)	(0.0000)
1: as.factor(atleastHS)1			-0.8034^{***}	-0.1233^{***}
			(0.0000)	(0.0000)
1: timeToTown			-0.0043^{***}	-0.0053^{***}
			(0.0007)	(0.0007)
2: as.factor(region)Chittagong			-1.4427^{***}	-1.0282***

(0,0000) (Model 1	Model 2	Model 3	Model 4
(0.0000) (0.0000)					
2: as.factor(region)Khulna -1.1847*** -1.0156*** 2: as.factor(region)Rajshahi -1.269*** -1.1845** 2: as.factor(region)Rangpur -0.5165*** -0.6000** 2: as.factor(region)Sylhet -1.7523*** -1.3584*** 2: householdIncome -0.0000** (0.0000) 2: as.factor(cropConsumed)1 -1.6975*** -1.1653*** 2: as.factor(atleastHS)1 -2.1587*** -1.5602*** 2: timeToTown (0.0000) (0.0000) 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.912*** -1.0321** 4: as.factor(region)Rhulna -1.4444*** -1.4139*** 3: as.factor(region)Rajshahi -1.6462*** -1.4630*** 3: as.factor(region)Rappur -0.0586*** -0.4549*** 3: as.factor(region)Sylhet -1.912*** -1.3468*** 4: as.factor(region)Sylhet -1.912*** -1.3468*** 5: as.factor(region)Sylhet -1.912*** -1.3468*** 6: 0.0000 (0.0000) (0.0000) 7: as.factor(region)Sylhet -1.924*** -1.4630*** 8: householdIncome <t< td=""><td>2: as.factor(region)Dhaka</td><td></td><td></td><td>-1.2035^{***}</td><td>-1.1534^{***}</td></t<>	2: as.factor(region)Dhaka			-1.2035^{***}	-1.1534^{***}
2. as.factor(region)Rajshahi -1.4269*** -1.1845** 2. as.factor(region)Rangpur -0.5165*** -0.6060*** 2. as.factor(region)Sylhet -1.7523*** -1.3584*** 2. householdIncome -0.0000** -0.0000** 2. as.factor(cropConsumed)1 -1.4975** -1.163*** 2. as.factor(atleastHS)1 -2.1587** -1.5602*** 2. timeToTown 0.0007 0.0000** 3. as.factor(region)Chittagong -1.3750*** -1.0283*** 3. as.factor(region)Chittagong -1.3750*** -1.0283*** 3. as.factor(region)Rhulna -1.4104*** -1.0321*** 3. as.factor(region)Rajshahi -1.4402*** -1.433*** 4.00000 (0.0000) (0.0000) 3. as.factor(region)Rajshahi -1.4622*** -1.4630*** 4. boseholdIncome -0.3586*** -0.4549*** 5. householdIncome -0.0000** (0.0000) 3. as.factor(region)Sylhet -1.9224*** -1.6688** 6. 0.0000 (0.0000) (0.0000) 7. incertage in the properties of the properties of the properties of the properties				, ,	
2: as.factor(region)Rajshahi -1.4269*** -1.1845*** 2: as.factor(region)Rangpur -0.5165*** -0.6009** 2: as.factor(region)Sylhet -1.7523*** -1.3584*** 2: householdIncome -0.0000** -0.0000** 2: as.factor(cropConsumed)1 -1.6975*** -1.1653*** 2: as.factor(atleastHS)1 -0.0000** -0.0000** 2: timeToTown 0.0007 0.0000 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.9912*** -1.0321*** 3: as.factor(region)Rhulna -1.4044*** -1.4139*** 3: as.factor(region)Rajshahi -1.4644*** -1.433*** 4: 0.0000 (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586*** -0.4549*** 4: 0.0000 (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924*** -1.6688*** 4: 0.0000 (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.368*** -0.000*** 3: as.factor(region)Sylhet -1.368*** -0.000*** 4: as.factor(numChildren)1 -0.0000*** -0.0000	2: as.factor(region)Khulna				
(0.0000 (0.0000)					,
2: as.factor(region)Rangpur -0.5165*** -0.6069*** 2: as.factor(region)Sylhet (0.0000) (0.0000) 2: householdIncome -0.0000*** -0.0000*** 2: as.factor(cropConsumed)1 -1.6975*** -1.1653*** 2: as.factor(atleastHS)1 -1.6975*** -1.1652*** 2: timeToTown (0.0000) (0.0000) 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.0912*** -1.0321*** 4: as.factor(region)Ranghur -1.4404*** -1.4139*** 3: as.factor(region)Ranghur -0.0000 (0.0000) 3: as.factor(region)Rangpur -0.3586*** -0.4549*** 4: as.factor(region)Sylhet -1.9924*** -1.6688*** 3: as.factor(region)Sylhet -1.9924*** -1.6688*** 3: as.factor(cropConsumed)1 -1.672*** -1.3768*** 4: as.factor(copConsumed)1 -1.3798*** -0.0000** 3: as.factor(numChildren)1 -1.672*** -1.3468*** 4: as.factor(numChildren)1 -1.679*** -0.7138*** 5: as.factor(numChildren)3 -0.0000*** 0.0000** 1: as.factor(n	2: as.factor(region)Rajshahi				
(0.0000) (0.0000) (0.0000) (2. as.factor(region)Sylhet -1.7523** -1.3584** (0.0000) (
2: as.factor(region)Sylhet -1.7523*** -1.3584*** 2: householdIncome -0.0000*** -0.0000*** 2: as.factor(cropConsumed)1 -1.6975*** -1.1653*** 2: as.factor(atleastHS)1 -2.1587*** -1.5602*** 2: timeToTown 0.0007 0.0000 3: as.factor(region)Chittagong -1.3756*** -1.0283*** 3: as.factor(region)Dhaka -1.0912*** -1.0283*** 4.00000 (0.0000) (0.0000) 3: as.factor(region)Rhuha -1.4404*** -1.433*** 3: as.factor(region)Rajshahi -1.4662*** -1.4530*** 3: as.factor(region)Rangpur -0.3586*** -0.4549*** 3: as.factor(region)Sylhet -1.9924*** -1.6682*** 4: as.factor(cropConsumed)1 -1.692*** -1.3798** -1.3798** 3: as.factor(cropConsumed)1 -1.672*** -1.3468*** 4: as.factor(numChildren)1 -1.672*** -0.0000** 1: as.factor(numChildren)2 -0.0000** 0.00000 1: as.factor(numChildren)3 -0.0000** 0.00000 1: as.factor(numChildren)4 2.8645*** 1: as.factor(numChildren)5 5	2: as.factor(region)Rangpur				
(0.0000) (0.0000)				, ,	, ,
2: householdIncome -0.0000*** -0.0000*** 2: as.factor(cropConsumed)1 -1.6975*** -1.1697*** 2: as.factor(atleastHS)1 -2.1587** -1.5602** (0.0000) (0.0000) (0.0000) 2: timeToTown 0.0007 0.0000 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.0912*** -1.0321*** 4: as.factor(region)Rajshahi -1.4404*** -1.4139*** 3: as.factor(region)Rajshahi -0.3506*** -0.4549*** 4: as.factor(region)Sylhet -1.9924*** -1.6688*** 5: householdIncome -0.0000*** -0.0000** 3: as.factor(cropConsumed)1 -1.6672*** -1.3468*** 6: 0.0000 (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.6672*** -1.3468*** 6: 0.0000 (0.0000) (0.0000) 1: as.factor(numChildren)1 -1.6672*** -1.3468*** 6: 0.0000 (0.0000) (0.0000) 1: as.factor(numChildren)2 -1.6672** -1.3468*** 6: 0.0000 (0.0000) (0.0000) 1: as.fact	2: as.factor(region)Sylhet				
(0.0000) (0.0000)	0.1.1.11				
2: as.factor(cropConsumed)1 -1.6975*** (0.0000) (0.0000) 2: as.factor(atleastHS)1 -2.1587*** (0.0000) (0.0000) 2: timeToTown (0.0007) (0.0000) (0.0000) 3: as.factor(region)Chittagong -1.3750*** (0.0000) (0.0000) 3: as.factor(region)Dhaka -1.0912*** (0.0000) (0.0000) 3: as.factor(region)Khulna -1.4404*** (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.4404*** (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586*** (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924*** (0.0000) (0.0000) 3: householdIncome (0.0000) (0.0000) 3: as.factor(cropConsumed)1 (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798*** (0.0000) (0.0000) 3: timeToTown (0.0000) (0.0000) 1: as.factor(numChildren)1 (0.0000) (0.0000) 1: as.factor(numChildren)2 (0.0000) (0.0000) 1: as.factor(numChildren)3 (0.0000) (0.0000) 1: as.factor(numChildren)4 2.8645*** 1: as.factor(numChildren)5 52.6862***	2: householdIncome				
(0.0000	0 f+/				, ,
2: as.factor(atleastHS)1 -2.1587*** -1.5602*** 2: timeToTown (0.0000) (0.0000) 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.0912*** -1.0321*** 3: as.factor(region)Khulna -1.4404*** -1.4139** 4.0.0000 (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.4462*** -1.4530*** 3: as.factor(region)Rangpur (0.0000) (0.0000) 3: as.factor(region)Sylhet -0.3586** -0.4549*** 4.0.0000 (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672** -1.3468** 6.0.0000 (0.0000) (0.0000) 3: timeToTown -0.1378*** -0.7138*** 6.0.0000 (0.0000) (0.0000) 1: as.factor(numChildren)1 -0.0065*** 1: as.factor(numChildren)2 -0.0528*** 1: as.factor(numChildren)3 -0.0528*** 1: as.factor(numChildren)4 -0.0000 1: as.factor(numChildren)5 52.6962***	2: as.lactor(cropConsumed)1				
2: timeToTown (0.0000) (0.0007) 0.00007 3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.0912*** -1.0321*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Khulna -1.4404*** -1.4139*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.6462*** -1.4630*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Sylhet -0.3586*** -0.4549*** 3: as.factor(region)Sylhet (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.9924** -1.6688*** 0.00000 (0.0000) (0.0000) 3: as.factor(atleastHS)1 (0.0000) (0.0000) 3: timeToTown 0.001** 0.0000** 1: as.factor(numChildren)1 (0.0000) (0.0000) 1: as.factor(numChildren)2 (0.0000) (0.0000) 1: as.factor(numChildren)3 (0.0000) (0.0000) 1: as.factor(numChildren)4 2.8645*** 1: as.factor(numChildren)5 52.6962***	2. as factor(atleast US)1				
2: timeToTown 0.0007 0.0007 3: as.factor(region)Chittagong -1.3750*** -1.0283** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Dhaka -1.0912*** -1.0321*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Khulna -1.4404*** -1.4139*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.6462*** -1.4630*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586** -0.4549*** (0.0000) (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924** -1.6688** (0.0000) (0.0000) (0.0000) 3: householdIncome -0.0000** -0.0000** 3: as.factor(cropConsumed)1 -1.6672** -1.3468** (0.0000) (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798** -0.7138** (0.0000) (0.0000) (0.0000) 3: as.factor(numChildren)1 (0.0000) (0.0000) 1: as.factor(numChildren)3 (0.0000) (0.0000)	2: as.lactor(atleastH5)1				
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0000) (2. timeTeTown				
3: as.factor(region)Chittagong -1.3750*** -1.0283*** 3: as.factor(region)Dhaka -1.0912**** -1.0321*** 4.00000 (0.0000) (0.0000) 3: as.factor(region)Khulna -1.4404*** -1.4139*** 6.00000 (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.6462*** -1.4630*** 6.00000 (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586*** -0.4549*** 6.00000 (0.0000) (0.0000) 3: householdIncome -1.9924*** -1.6688*** 6.00000 (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672*** -1.3468*** 6.00000 (0.0000) (0.0000) 3: timeToTown 0.0014* 0.0001 1: as.factor(numChildren)1 0.0065*** (0.0000) 1: as.factor(numChildren)2 0.0528*** (0.0000) 1: as.factor(numChildren)3 0.4940*** (0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) 1: as.factor(numChildren)5 52.6962***	z. time to town				
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)	3: as factor(region)Chittagong				, ,
3: as.factor(region)Dhaka -1.0912^{***} -1.0321^{***} 0.00000 (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.4404^{***} -1.4330^{***} 0.00000 (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586^{***} -0.4549^{***} 3: as.factor(region)Sylhet -1.9924^{***} -1.6688^{***} 0.00000 (0.0000) (0.0000) 3: householdIncome -0.0000^{***} -0.0000^{***} 3: as.factor(cropConsumed)1 -1.6672^{***} -1.3468^{***} 0.0000 (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} -0.7138^{***} 0.0000 (0.0000) (0.0000) 3: timeToTown 0.0014 0.0001 1: as.factor(numChildren)1 0.0665*** 0.0528*** (0.0000) 1: as.factor(numChildren)3 0.4940*** 1: as.factor(numChildren)4 0.0000 1: as.factor(numChildren)5 52.6962***	5. as.lactor(region) omittagong				
3: as.factor(region)Khulna (0.0000) (0.0000) 3: as.factor(region)Rajshahi (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.6462^{***} -1.4630^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586^{***} -0.4549^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924^{***} -1.6688^{***} (0.0000) (0.0000) (0.0000) 3: householdIncome -0.0000^{***} -0.0000^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{***} -1.3468^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} -0.7138^{***} (0.0000) (0.0000) (0.0000) 3: timeToTown 0.0014^{**} 0.0001 1: as.factor(numChildren)2 (0.0000) 1: as.factor(numChildren)3 (0.0000) 1: as.factor(numChildren)4 (0.0000) 1: as.factor(numChildren)5 (0.0000)	3: as factor(region)Dhaka				
3: as.factor(region)Khulna -İ.4404*** (0.0000) (0.0000) 3: as.factor(region)Rajshahi -1.6462*** -1.4630*** (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586*** -0.4549*** 60.00000 (0.0000) -0.00000 (0.0000) 3: as.factor(region)Sylhet -1.9924*** -1.6688*** (0.0000) (0.0000) 3: householdIncome -0.0000*** -0.0000*** 60.0000 (0.0000) -0.0000*** 3: as.factor(cropConsumed)1 -1.6672*** -1.3468*** (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798*** -0.7138*** 60.0000 (0.0000) 0.00000 3: timeToTown 0.001** 0.0001 1: as.factor(numChildren)1 0.0065*** (0.0000) 1: as.factor(numChildren)2 0.0528*** (0.0000) 1: as.factor(numChildren)3 0.4940*** (0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) 1: as.factor(numChildren)5 52.6962***	o. ab.iactor (region) Briana				
3: as.factor(region)Rajshahi (0.0000) -1.6462^{***} -1.4630^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(region)Rangpur -0.3586^{***} (0.0000) (0.0000) -0.4549^{***} (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924^{***} -1.6688^{***} (0.0000) (0.0000) -1.6688^{***} (0.0000) (0.0000) 3: householdIncome -0.0000^{***} (0.0000) (0.0000) -0.0000^{***} (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{***} (0.0000) (0.0000) -1.3468^{***} (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} (0.0000) (0.0000) -1.3798^{***} -0.7138^{***} -0.7138^{***} (0.0000) (0.0000) 1: as.factor(numChildren)1 0.0014^{*} (0.0000) 1: as.factor(numChildren)2 0.0528^{***} (0.0000) 1: as.factor(numChildren)3 (0.0000) 1: as.factor(numChildren)4 (0.0000) 1: as.factor(numChildren)5 0.4940^{***} (0.0000) (0.0000) 1: as.factor(numChildren)4 (0.0000) 1: as.factor(numChildren)5	3: as.factor(region)Khulna			, ,	
3: as.factor(region)Rajshahi -1.6462^{***} -1.4630^{***} 3: as.factor(region)Rangpur -0.3586^{***} -0.4549^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924^{****} -1.6688^{***} (0.0000) (0.0000) (0.0000) 3: householdIncome -0.0000^{***} -0.0000^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{****} -1.3468^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{****} -0.7138^{***} (0.0000) (0.0000) (0.0000) 3: timeToTown 0.0014^{**} 0.0014^{**} 1: as.factor(numChildren)1 0.0665^{***} 1: as.factor(numChildren)3 0.0000^{**} 1: as.factor(numChildren)4 0.0000^{**} 1: as.factor(numChildren)5 0.0000^{**}	0. 00.000.000 (0.00.000)====0.000				
$ \begin{array}{c} 3: \text{ as.factor(region)Rangpur} & (0.0000) & (0.0000) \\ -0.3586^{***} & -0.4549^{***} \\ (0.0000) & (0.0000) \\ (0.0000) & (0.000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.000) \\ (0.0000) & (0.000) \\ (0.0000) & (0.000) \\ (0.0000) & (0.0000) \\ (0.0000) & (0.000)$	3: as.factor(region)Rajshahi			, ,	,
3: as.factor(region)Rangpur -0.3586^{***} -0.4549^{***} (0.0000) (0.0000) 3: as.factor(region)Sylhet -1.9924^{***} -1.6688^{***} (0.0000) (0.0000) 3: householdIncome -0.0000^{***} -0.0000^{***} -0.0000^{***} (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{***} -1.3468^{***} (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} -0.7138^{***} -0.7138^{***} (0.0000) (0.0000) 3: timeToTown 0.0014^* 0.0014^* 0.0001 (0.0007) 1: as.factor(numChildren)1 0.0665^{***} (0.0000) 0.0000 1: as.factor(numChildren)3 0.4940^{***} 0.0000 0.0000 1: as.factor(numChildren)4 0.0000 0.0000 1: as.factor(numChildren)5 0.0000	(0 / 3				
3: as.factor(region)Sylhet -1.9924^{***} -1.6688^{***} 3: householdIncome -0.0000^{***} -0.0000^{***} 3: as.factor(cropConsumed)1 -1.6672^{***} -1.3468^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} -0.7138^{***} (0.0000) (0.0000) (0.0000) 3: timeToTown 0.0014^* 0.0001 1: as.factor(numChildren)1 0.0665^{***} 1: as.factor(numChildren)2 0.0528^{***} 1: as.factor(numChildren)3 0.4940^{***} 1: as.factor(numChildren)4 2.8645^{***} 1: as.factor(numChildren)5 52.6962^{***}	3: as.factor(region)Rangpur				
3: householdIncome (0.0000) -0.0000^{***} (0.0000) (0.0000) (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{***} (0.0000) (0.0000) -1.3468^{***} (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} (0.0000) -0.7138^{***} (0.0000) 3: timeToTown 0.0014^* (0.0007) 0.0001 (0.0007) 1: as.factor(numChildren)1 0.0665^{***} (0.0000) 1: as.factor(numChildren)2 0.0528^{***} (0.0000) 1: as.factor(numChildren)3 0.4940^{***} (0.0000) 1: as.factor(numChildren)4 2.8645^{***} (0.0000) 1: as.factor(numChildren)5 52.6962^{***}				(0.0000)	(0.0000)
3: householdIncome -0.0000^{***} (0.0000) (0.0000) -0.0000^{***} (0.0000) -0.0000^{***} (0.0000) 3: as.factor(cropConsumed)1 -1.6672^{***} (0.0000) (0.0000) -1.3468^{***} (0.0000) (0.0000) 3: as.factor(atleastHS)1 -1.3798^{***} (0.0000) (0.0000) -0.7138^{***} (0.0000) 3: timeToTown 0.0014^* (0.0007) 0.0001 (0.0007) 1: as.factor(numChildren)2 0.0665^{***} (0.0000) 1: as.factor(numChildren)3 0.4940^{***} (0.0000) 1: as.factor(numChildren)4 2.8645^{***} (0.0000) 1: as.factor(numChildren)5 52.6962^{***}	3: as.factor(region)Sylhet			-1.9924***	-1.6688^{***}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
3: as.factor(cropConsumed)1 -1.6672^{***} -1.3468^{***} 3: as.factor(atleastHS)1 (0.0000) (0.0000) 3: timeToTown (0.0014^*) (0.0007) 1: as.factor(numChildren)1 (0.0007) (0.0007) 1: as.factor(numChildren)2 (0.0000) 1: as.factor(numChildren)3 (0.0000) 1: as.factor(numChildren)4 (0.0000) 1: as.factor(numChildren)5 (0.0000)	3: householdIncome			-0.0000^{***}	-0.0000***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
3: as.factor(atleastHS)1 -1.3798^{***} -0.7138^{***} 0.0000) (0.0000) (0.0000) 3: timeToTown 0.0014^* 0.0001 1: as.factor(numChildren)1 0.0665^{***} 1: as.factor(numChildren)2 0.0528^{***} 1: as.factor(numChildren)3 0.4940^{***} 1: as.factor(numChildren)4 2.8645^{***} 1: as.factor(numChildren)5 52.6962^{***}	3: as.factor(cropConsumed)1			-1.6672^{***}	-1.3468^{***}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
3: timeToTown 0.0014^* 0.0001 1: as.factor(numChildren)1 0.0665^{***} 1: as.factor(numChildren)2 0.0528^{***} 1: as.factor(numChildren)3 0.4940^{***} 1: as.factor(numChildren)4 2.8645^{***} 1: as.factor(numChildren)5 52.6962^{***}	3: as.factor(atleastHS)1				
				, ,	, ,
1: as.factor(numChildren)1 0.0665*** (0.0000) (0.0000) 1: as.factor(numChildren)2 (0.0000) 1: as.factor(numChildren)3 0.4940*** (0.0000) (0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) (0.0000) 1: as.factor(numChildren)5 52.6962***	3: timeToTown				
(0.0000) 1: as.factor(numChildren)2 0.0528*** (0.0000) 1: as.factor(numChildren)3 0.4940*** (0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) 1: as.factor(numChildren)5	1 ((((((((((((((((((((0.0007)	
1: as.factor(numChildren)2	1: as.factor(numChildren)1				
(0.0000) 1: as.factor(numChildren)3 0.4940*** (0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) 1: as.factor(numChildren)5 52.6962***	1				
1: as.factor(numChildren)3	1: as.iactor(numCniidren)2				
(0.0000) 1: as.factor(numChildren)4 2.8645*** (0.0000) 1: as.factor(numChildren)5 52.6962***	1. as factor(num(hildren)?				
1: as.factor(numChildren)4	1. as.iactor(numennuren)s				
(0.0000) 1: as.factor(numChildren)5 52.6962***	1. as factor(numChildren)4				2 8645***
1: as.factor(numChildren)5 52.6962***	1. addactor (numentation)4				
	1: as.factor(numChildren)5				52.6962***
	1. animotor (mainominion)				(0.0000)

	Model 1	Model 2	Model 3	Model 4
1: as.factor(numNonChildren)2				-0.4947^{***}
				(0.0000)
1: as.factor(numNonChildren)3				-0.4830^{***}
				(0.0000)
1: as.factor(numNonChildren)4				-0.5478^{***}
				(0.0000)
1: as.factor(numNonChildren)5				-0.9570^{***}
				(0.0000)
1: as.factor(numNonChildren)6				-0.8847^{***}
				(0.0000)
1: as.factor(numNonChildren)7				-1.2230***
				(0.0000)
1: as.factor(numNonChildren)8				-59.8081***
4 () ()				(0.0000)
1: as.factor(numNonChildren)9				-245.1510^{***}
1 () () N (CI II) 10				(0.0000)
1: as.factor(numNonChildren)10				-44.7770^{***}
1 C / () () () () () ()				(0.0000)
1: as.factor(numNonChildren)11				-42.0636***
1 (/ N Cl'11)19				(0.0000)
1: as.factor(numNonChildren)13				34.5015***
1 f+(NCl:1d)14				(0.0000)
1: as.factor(numNonChildren)14				45.1598***
2: as.factor(numChildren)1				(0.0000) 0.1638^{***}
2: as.factor(numCmidren)1				
2: as.factor(numChildren)2				$(0.0000) \\ 0.3575^{***}$
2. as.ractor(numerinaren)2				(0.0000)
2: as.factor(numChildren)3				0.3987***
2. as.factor(fium children)5				(0.0000)
2: as.factor(numChildren)4				-170.0231^{***}
2. as.ractor (numerinaren)4				(0.0000)
2: as.factor(numChildren)5				-87.3642^{***}
2. as.lactor (numerinaren)				(0.0000)
2: as.factor(numNonChildren)2				-0.5577^{***}
2. as.raovor (rami voire imaron)2				(0.0000)
2: as.factor(numNonChildren)3				-1.2517^{***}
				(0.0000)
2: as.factor(numNonChildren)4				-1.7647^{***}
				(0.0000)
2: as.factor(numNonChildren)5				-2.3227^{***}
,				(0.0000)
2: as.factor(numNonChildren)6				-2.4161^{***}
,				(0.0000)
2: as.factor(numNonChildren)7				-2.2616^{***}
•				(0.0000)
2: as.factor(numNonChildren)8				-61.3621***
				(0.0000)
2: as.factor(numNonChildren)9				-934.3989^{***}

	Model 1	Model 2	Model 3	Model 4
				(0.0000)
2: as.factor(numNonChildren)10				-294.1585^{***}
				(0.0000)
2: as.factor(numNonChildren)11				-520.8879^{***}
2 ft(NCl.:l.l)12				(0.0000)
2: as.factor(numNonChildren)13				-174.2360*** (0.0000)
2: as.factor(numNonChildren)14				(0.0000) $-316.7919***$
2. as.iactor(numivoncimaren)14				(0.0000)
3: as.factor(numChildren)1				0.1800***
,				(0.0000)
3: as.factor(numChildren)2				0.1972***
				(0.0000)
3: as.factor(numChildren)3				0.4642^{***}
				(0.0000)
3: as.factor(numChildren)4				-201.3877***
2. as factor(num Children) 5				(0.0000) -285.1247^{***}
3: as.factor(numChildren)5				-285.1247 (0.0000)
3: as.factor(numNonChildren)2				-0.0535^{***}
o. abilactor (nami ton chinaron)2				(0.0000)
3: as.factor(numNonChildren)3				0.1748***
,				(0.0000)
3: as.factor(numNonChildren)4				0.0718^{***}
				(0.0000)
3: as.factor(numNonChildren)5				-0.2277^{***}
9 C + / N Clill)C				(0.0000)
3: as.factor(numNonChildren)6				-0.4304***
3: as.factor(numNonChildren)7				(0.0000) -0.7526^{***}
5. as.iactor(numivoncimaren)				(0.0000)
3: as.factor(numNonChildren)8				-59.8090***
				(0.0000)
3: as.factor(numNonChildren)9				-242.6237^{***}
				(0.0000)
3: as.factor(numNonChildren)10				-88.9717^{***}
				(0.0000)
3: as.factor(numNonChildren)11				-39.7858***
3: as.factor(numNonChildren)13				(0.0000)
5. as.factor(numronCmidren)15				-35.6627^{***} (0.0000)
3: as.factor(numNonChildren)14				48.3501***
or adiadoos (manii (di cimardi) 1 1				(0.0000)
AIC	5878.7272	5878.7272	5491.5554	5616.3574
BIC	6116.3957	6116.3957	5927.2809	6388.7799
Log Likelihood	-2903.3636	-2903.3636	-2679.7777	-2691.1787
Deviance	5806.7272	5806.7272	5359.5554	5382.3574
Num. obs.	5442	5442	5442	5442
**** < 0.001 *** < 0.01	4	4	4	4

 $^{-\}frac{1}{1}$ ***p < 0.001; **p < 0.01; *p < 0.05

Table 15: Marginal Effects for the Multinomial Logit Model.

Choice	Variable	Contrast	Marginal Effect
None	atleastHS	1 - 0	0.0128
None	cropConsumed	1 - 0	0.0387
None	numChildren	1 - 0	-0.0040
None	numChildren	2 - 0	-0.0053
None	numChildren	3 - 0	-0.0196
None	numChildren	4 - 0	-0.1727
None	numChildren	5 - 0	-0.5321
None	$\operatorname{numChildUnderweight}$	1 - 0	0.0075
None	${\bf num Child Under weight}$	2 - 0	0.0056
None	${\bf num Child Under weight}$	3 - 0	0.0546
None	numNonChildren	10 - 1	0.1040
None	numNonChildren	11 - 1	0.1024
None	numNonChildren	13 - 1	-0.5126
None	numNonChildren	14 - 1	-0.5126
None	numNonChildren	2 - 1	0.0198
None	numNonChildren	3 - 1	0.0223
None	numNonChildren	4 - 1	0.0266
None	numNonChildren	5 - 1	0.0380
None	numNonChildren	6 - 1	0.0383
None	$\operatorname{numNonChildren}$	7 - 1	0.0449
None	$\operatorname{numNonChildren}$	8 - 1	0.1121
None	numNonChildren	9 - 1	0.1889
None	num Non Child Underweight	1 - 0	-0.0011
None	${\bf num Non Child Underweight}$	2 - 0	-0.0110
None	${\bf num Non Child Underweight}$	3 - 0	0.0083
None	${\bf num Non Child Under weight}$	4 - 0	0.0061
None	${\bf num Non Child Under weight}$	5 - 0	0.0679
None	${\bf num Non Child Underweight}$	6 - 0	0.1114
None	${\bf num Non Child Underweight}$	7 - 0	0.0896
None	region	Chittagong - Barisal	0.0075
None	region	Dhaka - Barisal	0.0266
None	region	Khulna - Barisal	0.0372
None	region	Rajshahi - Barisal	0.0328
None	region	Rangpur - Barisal	0.0282
None	region	Sylhet - Barisal	0.0359
Money	adjUtility		-0.0045

Choice	Variable	Contrast	Marginal Effect
Money	atleastHS	1 - 0	0.0651
Money	cropConsumed	1 - 0	0.0074
Money	householdIncome		0.0000
Money	numChildren	1 - 0	-0.0082
Money	numChildren	2 - 0	-0.0178
Money	numChildren	3 - 0	0.0175
Money	numChildren	4 - 0	0.3456
Money	numChildren	5 - 0	0.7050
Money	$\operatorname{numChildUnderweight}$	1 - 0	0.0022
Money	$\operatorname{numChildUnderweight}$	2 - 0	-0.0187
Money	$\operatorname{numChildUnderweight}$	3 - 0	0.1251
Money	$\operatorname{numNonChildren}$	10 - 1	0.1097
Money	$\operatorname{numNonChildren}$	11 - 1	-0.1292
Money	$\operatorname{numNonChildren}$	13 - 1	0.7263
Money	$\operatorname{numNonChildren}$	14 - 1	-0.0661
Money	$\operatorname{numNonChildren}$	2 - 1	-0.0217
Money	$\operatorname{numNonChildren}$	3 - 1	0.0049
Money	$\operatorname{numNonChildren}$	4 - 1	0.0209
Money	$\operatorname{numNonChildren}$	5 - 1	0.0105
Money	$\operatorname{numNonChildren}$	6 - 1	0.0325
Money	$\operatorname{numNonChildren}$	7 - 1	0.0118
Money	$\operatorname{numNonChildren}$	8 - 1	0.0037
Money	$\operatorname{numNonChildren}$	9 - 1	-0.1726
Money	${\bf num Non Child Under weight}$	1 - 0	-0.0124
Money	${\bf num Non Child Under weight}$	2 - 0	0.0043
Money	${\bf num Non Child Under weight}$	3 - 0	-0.0070
Money	${\bf num Non Child Under weight}$	4 - 0	0.0081
Money	${\bf num Non Child Under weight}$	5 - 0	-0.0874
Money	num Non Child Underweight	6 - 0	-0.2905
Money	num Non Child Underweight	7 - 0	0.0836
Money	region	Chittagong - Barisal	0.1593
Money	region	Dhaka - Barisal	0.0900
Money	region	Khulna - Barisal	0.0491
Money	region	Rajshahi - Barisal	0.0975
Money	region	Rangpur - Barisal	-0.0575
Money	region	Sylhet - Barisal	0.1080
Money	timeToTown		-0.0006
Food	adjUtility		-0.0013
Food	atleastHS	1 - 0	-0.0491
Food	$\operatorname{cropConsumed}$	1 - 0	-0.0113

Choice	Variable	Contrast	Marginal Effect
Food	householdIncome		-0.0000
Food	numChildren	1 - 0	0.0042
Food	numChildren	2 - 0	0.0165
Food	numChildren	3 - 0	-0.0014
Food	numChildren	4 - 0	-0.0679
Food	numChildren	5 - 0	-0.0676
Food	$\operatorname{numChildUnderweight}$	1 - 0	-0.0053
Food	${\bf num Child Under weight}$	2 - 0	0.0036
Food	${\rm numChildUnderweight}$	3 - 0	-0.0711
Food	numNonChildren	10 - 1	-0.1575
Food	numNonChildren	11 - 1	-0.1575
Food	numNonChildren	13 - 1	-0.1575
Food	$\operatorname{numNonChildren}$	14 - 1	-0.1575
Food	numNonChildren	2 - 1	-0.0208
Food	$\operatorname{numNonChildren}$	3 - 1	-0.0806
Food	numNonChildren	4 - 1	-0.1045
Food	$\operatorname{numNonChildren}$	5 - 1	-0.1132
Food	numNonChildren	6 - 1	-0.1162
Food	numNonChildren	7 - 1	-0.0954
Food	numNonChildren	8 - 1	-0.1186
Food	$\operatorname{numNonChildren}$	9 - 1	-0.1575
Food	${\bf num Non Child Underweight}$	1 - 0	0.0054
Food	num Non Child Underweight	2 - 0	-0.0158
Food	num Non Child Underweight	3 - 0	-0.0020
Food	num Non Child Underweight	4 - 0	0.0136
Food	num Non Child Underweight	5 - 0	-0.0712
Food	num Non Child Underweight	6 - 0	-0.0710
Food	${\bf num Non Child Under weight}$	7 - 0	-0.0712
Food	region	Chittagong - Barisal	-0.0639
Food	region	Dhaka - Barisal	-0.0494
Food	region	Khulna - Barisal	-0.0162
Food	region	Rajshahi - Barisal	-0.0408
Food	region	Rangpur - Barisal	-0.0002
Food	region	Sylhet - Barisal	-0.0459
Food	timeToTown		0.0002
Both	adjUtility		-0.0016
Both	atleastHS	1 - 0	-0.0288
Both	$\operatorname{cropConsumed}$	1 - 0	-0.0348
Both	householdIncome		-0.0000
Both	numChildren	1 - 0	0.0080

Choice	Variable	Contrast	Marginal Effect
Both	numChildren	2 - 0	0.0067
Both	numChildren	3 - 0	0.0034
Both	numChildren	4 - 0	-0.1050
Both	numChildren	5 - 0	-0.1053
Both	$\operatorname{numChildUnderweight}$	1 - 0	-0.0044
Both	$\operatorname{numChildUnderweight}$	2 - 0	0.0095
Both	$\operatorname{numChildUnderweight}$	3 - 0	-0.1086
Both	$\operatorname{numNonChildren}$	10 - 1	-0.0562
Both	$\operatorname{numNonChildren}$	11 - 1	0.1843
Both	$\operatorname{numNonChildren}$	13 - 1	-0.0562
Both	$\operatorname{numNonChildren}$	14 - 1	0.7362
Both	$\operatorname{numNonChildren}$	2 - 1	0.0227
Both	$\operatorname{numNonChildren}$	3 - 1	0.0534
Both	$\operatorname{numNonChildren}$	4 - 1	0.0569
Both	$\operatorname{numNonChildren}$	5 - 1	0.0646
Both	$\operatorname{numNonChildren}$	6 - 1	0.0454
Both	$\operatorname{numNonChildren}$	7 - 1	0.0387
Both	$\operatorname{numNonChildren}$	8 - 1	0.0028
Both	$\operatorname{numNonChildren}$	9 - 1	0.1411
Both	${\bf num Non Child Under weight}$	1 - 0	0.0081
Both	${\bf num Non Child Under weight}$	2 - 0	0.0225
Both	${\bf num Non Child Underweight}$	3 - 0	0.0007
Both	${\bf num Non Child Underweight}$	4 - 0	-0.0279
Both	${\bf num Non Child Underweight}$	5 - 0	0.0906
Both	${\bf num Non Child Underweight}$	6 - 0	0.2501
Both	${\bf num Non Child Underweight}$	7 - 0	-0.1020
Both	region	Chittagong - Barisal	-0.1029
Both	region	Dhaka - Barisal	-0.0672
Both	region	Khulna - Barisal	-0.0702
Both	region	Rajshahi - Barisal	-0.0894
Both	region	Rangpur - Barisal	0.0296
Both	region	Sylhet - Barisal	-0.0980
Both	timeToTown		0.0003

10 Appendix B - Robustness

10.1 WHO Data

Table 16: Probit Model for Utilizing Any Social Safety Net Using WHO Data.

	Model 1	Model 4
(Intercept)	103.6563***	56.1927**
	(19.6490)	(20.4583)
adjUtility	-32.2130***	-17.1990**
	(5.9456)	(6.2095)
as.factor (num Non Child Underweight) 1	0.0972	0.1294
	(0.1776)	(0.1874)
as. factor (num Non Child Underweight) 2	0.1155	0.3209
	(0.2785)	(0.2980)
as. factor (num Non Child Underweight) 3	-1.0790	-0.6149
	(1.0156)	(1.0457)
as. factor (num Non Child Underweight) 4	-16.4581	-14.4998
	(2042.5073)	(1445.9995)
as. factor (num Non Child Underweight) 5	-3753.5184	-1976.6331
	(123509.2566)	(149279.9815)
as. factor (num Non Child Underweight) 6	-143791.2356	-76744.0701
	(260184.3611)	(166104.9195)
as.factor(numNonChildUnderweight)7	-259441.1642	-94602.5597
	(207752.0985)	(289633.6255)
as.factor(num Child Underweight) 1	0.1166	0.0770
	(0.2725)	(0.3055)
as.factor(numChildUnderweight)2	-0.1382	0.2707
	(1.0300)	(1.0787)
as. factor (num Child Underweight) 3	-2591.9139	-1382.6865
	(47453132.8145)	(47453132.8148)
as.factor(numChildren)1		0.0590
		(0.1999)
as.factor(numChildren)2		-0.1880
		(0.3491)
as.factor(numChildren)3		0.9160
		(0.6742)
as.factor(numChildren)4		3.4401**
4 ((1.3035)
as.factor(numChildren)5		6.2791
A () 77 (67 15 5) }		(165754.8932)
as.factor(numNonChildren)2		-0.1314
		(0.2703)

	Model 1	Model 4
as.factor(numNonChildren)3		-0.1104
		(0.2860)
as.factor(numNonChildren)4		-0.2945
		(0.3327)
as.factor(numNonChildren)5		-1.2360^*
		(0.5807)
as.factor(numNonChildren)6		-0.5480
		(0.6894)
as.factor(numNonChildren)7		-14.2208
		(1020.2851)
as.factor(numNonChildren)8		-24.0533
		(116706.7417)
as.factor(numNonChildren)9		-24042.0257
		(31979.8416)
as.factor(numNonChildren)10		-24197.8018
		(565114.4766)
as.factor(numNonChildren)11		-43898.9920
		(190570.4034)
as.factor(numNonChildren)13		-88428.9346
		(361106.1212)
as.factor(numNonChildren)14		-41731.0514
		(100768.5316)
as.factor(region)Chittagong		-0.4428
		(0.3034)
as.factor(region)Dhaka		-0.5989^*
		(0.2827)
as.factor(region)Khulna		-1.0265^*
		(0.4143)
as.factor(region)Rajshahi		-0.8754^*
		(0.3872)
as.factor(region)Rangpur		-0.5556
		(0.3805)
as.factor(region)Sylhet		-1.1561**
		(0.3862)
householdIncome		-0.0000***
		(0.0000)
as.factor(cropConsumed)1		-1.3157^{***}
		(0.1930)
as.factor(atleastHS)1		-1.0260
		(0.7306)

	Model 1	Model 4
timeToTown		-0.0003
		(0.0021)
AIC	1328.3074	1200.7354
BIC	1407.5302	1458.2096
Log Likelihood	-652.1537	-561.3677
Deviance	1304.3074	1122.7354
Num. obs.	5442	5442

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 17: Marginal Effects for Probit Model Using WHO Data.

	Marginal Effect
adjUtility	0.0000
	(0.0000)
as.factor(numNonChildUnderweight)1	0.0000
	(0.0000)
as.factor(numNonChildUnderweight)2	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 3	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 4	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 5	0.0000
	(0.0000)
as. factor (num Non Child Underweight) 6	-1.0000***
	(0.0000)
as. factor (num Non Child Underweight) 7	-1.0000***
	(0.0000)
as.factor(numChildUnderweight)1	0.0000
	(0.0000)
as.factor(numChildUnderweight)2	0.0000
	(0.0000)
as. factor (num Child Underweight) 3	0.0000
	(0.0000)
as.factor(numChildren)1	0.0000
	(0.0000)
as.factor(numChildren)2	0.0000
	(0.0000)
as.factor(numChildren)3	0.0000
	(0.0000)
as.factor(numChildren)4	0.0000
	(0.0000)
as.factor(numChildren)5	0.0000
	(0.0000)
as.factor(numNonChildren)2	0.0000
	(0.0000)
as.factor(numNonChildren)3	0.0000
	(0.0000)
as.factor(numNonChildren)4	0.0000

	Marginal Effect
	(0.0000)
as.factor(numNonChildren)5	0.0000
	(0.0000)
as.factor(numNonChildren)6	0.0000
	(0.0000)
as.factor(numNonChildren)7	0.0000
	(0.0000)
as.factor(numNonChildren)8	0.0000
	(0.0000)
as.factor(numNonChildren)9	-1.0000***
	(0.0000)
as. factor (num Non Children) 10	-1.0000***
	(0.0000)
as.factor(numNonChildren)11	-1.0000***
	(0.0000)
as.factor(numNonChildren)13	-1.0000***
	(0.0000)
as.factor(numNonChildren)14	-1.0000***
	(0.0000)
as.factor(region)Chittagong	0.0000
	(0.0000)
as.factor(region)Dhaka	0.0000
	(0.0000)
as.factor(region)Khulna	0.0000
	(0.0000)
as.factor(region)Rajshahi	0.0000
	(0.0000)
as.factor(region)Rangpur	0.0000
	(0.0000)
as.factor(region)Sylhet	0.0000
	(0.0000)
householdIncome	0.0000
	(0.0000)
as.factor(cropConsumed)1	0.0000
	(0.0000)
as.factor(atleastHS)1	0.0000
	(0.0000)
timeToTown	0.0000
	(0.0000)
Num. obs.	5442

	Marginal Effect
Log Likelihood	-561.3677
Deviance	1122.7354
AIC	1200.7354
BIC	1458.2096

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 18: Multinomial Logit Model For Money (1), Food (2), or Both (3) where None is the Reference Group Using WHO Data.

	Model 1	Model 2	Model 3	Model 4
1: (Intercept)	103.1789***	103.1789***	3.5775***	-0.4681^{***}
	(0.0356)	(0.0356)	(0.0000)	(0.0000)
1: adjUtility	-32.2183^{***}	-32.2183^{***}	-1.5368***	-0.2715***
	(0.0221)	(0.0221)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)1	0.0329	0.0329	-0.0036^{***}	-0.0100***
	(0.0470)	(0.0470)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)2	0.1129^{***}	0.1129^{***}	0.1867^{***}	0.2864^{***}
	(0.0289)	(0.0289)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)3	-1.0918^{***}	-1.0918^{***}	-0.8054^{***}	-1.0199***
	(0.0031)	(0.0031)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)4	-325.3958^{***}	-325.3958^{***}	-6.6281^{***}	-0.6279^{***}
	(0.0006)	(0.0006)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)5	-1311.9350^{***}	-1311.9350^{***}	-60.6833^{***}	-9.4150***
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)6	-35888.2006	-35888.2006	-3806.6546^{***}	-805.8316^{***}
			(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)7	-2329.9235	-2329.9235	-713.0387^{***}	-107.5541^{***}
			(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)1	0.1834^{***}	0.1834^{***}	0.1755***	0.2326^{***}
	(0.0050)	(0.0050)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)2	-0.1814^{***}	-0.1814^{***}	0.0423^{***}	0.1000^{***}
	(0.0003)	(0.0003)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)3	-1803.5416	-1803.5416	-34.1020***	-1.1835^{***}
			(0.0000)	(0.0000)
2: (Intercept)	101.9218***	101.9218***	3.3572***	-0.1674^{***}
	(0.0464)	(0.0464)	(0.0000)	(0.0000)
2: adjUtility	-32.2182^{***}	-32.2182^{***}	-1.5370^{***}	-0.2716^{***}
	(0.0221)	(0.0221)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)1	0.0361	0.0361	0.0010^{***}	0.0633^{***}
	(0.0242)	(0.0242)	(0.0000)	(0.0000)
$2: \ as. factor (num Non Child Underweight) \\ 2$	-0.3395^{***}	-0.3395^{***}	-0.3669^{***}	-0.0007^{***}
	(0.0066)	(0.0066)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)3	-1.3860^{***}	-1.3860***	-1.1908***	-0.8748^{***}
	(0.0013)	(0.0013)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)4	-325.5715^{***}	-325.5715***	-6.8130^{***}	-0.4242^{***}
	(0.0003)	(0.0003)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)5	-13000.7603^{***}	-13000.7603^{***}	-1428.1439^{***}	-338.0952^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)6	-22684.5888^{***}	-22684.5888^{***}	-1660.8819***	-208.7269^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)7	-6150.3748***	-6150.3748^{***}	-1178.8167***	-225.9663***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)1	0.0196***	0.0196***	0.0579***	0.1713***
	(0.0052)	(0.0052)	(0.0000)	(0.0000)

	Model 1	Model 2	Model 3	Model 4
2: as.factor(numChildUnderweight)2	-0.5144^{***}	-0.5144^{***}	0.0232***	-0.2251***
	(0.0002)	(0.0002)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)3	-8097.4631^{***}	-8097.4631^{***}	-614.0676^{***}	-63.6807^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: (Intercept)	102.1429***	102.1429***	3.4378***	-1.1253^{***}
	(0.0415)	(0.0415)	(0.0000)	(0.0000)
3: adjUtility	-32.2182^{***}	-32.2182^{***}	-1.5368^{***}	-0.2714^{***}
	(0.0221)	(0.0221)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)1	0.3017^{***}	0.3017***	0.2726***	0.2554^{***}
	(0.0370)	(0.0370)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)2	0.3834^{***}	0.3834^{***}	0.4112^{***}	0.4859^{***}
	(0.0235)	(0.0235)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)3	-0.8602^{***}	-0.8602^{***}	-0.6321^{***}	-0.9877^{***}
	(0.0025)	(0.0025)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)4	-325.5595***	-325.5595***	-6.7140***	-0.7801^{***}
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)5	-1310.9078^{***}	-1310.9078^{***}	-59.7325^{***}	-8.2400***
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)6	-17236.5789^{***}	-17236.5789^{***}	-272.3573***	-28.7329***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)7	-2950.0467^{***}	-2950.0467^{***}	-1116.9985^{***}	-189.6315^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)1	0.0003	0.0003	0.0444***	0.0355^{***}
	(0.0050)	(0.0050)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)2	0.1199^{***}	0.1199^{***}	0.5750^{***}	0.7594^{***}
	(0.0004)	(0.0004)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)3	-10130.3872^{***}	-10130.3872^{***}	-689.4626^{***}	-163.0999***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Chittagong			0.1830^{***}	0.3484^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Dhaka			-0.1527^{***}	-0.1452^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Khulna			-0.6814^{***}	-0.9942^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Rajshahi			-0.3404***	-0.4710^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Rangpur			-0.7998^{***}	-1.0884^{***}
			(0.0000)	(0.0000)
1: as.factor(region)Sylhet			-0.6700****	-0.6697^{***}
			(0.0000)	(0.0000)
1: householdIncome			-0.0000****	-0.0000***
			(0.0000)	(0.0000)
1: as.factor(cropConsumed)1			-1.2716^{***}	-1.2326^{***}
· -			(0.0000)	(0.0000)
1: as.factor(atleastHS)1			-0.7605^{***}	-0.0235^{***}
. ,			(0.0000)	(0.0000)
1: timeToTown			-0.0044^{***}	-0.0040^{***}
			(0.0007)	(0.0006)
2: as.factor(region)Chittagong			-1.4713^{***}	-1.2858^{***}

	Model 1	Model 2	Model 3	Model 4
			(0.0000)	(0.0000)
2: as.factor(region)Dhaka			-1.2049^{***}	-1.2721^{***}
			(0.0000)	(0.0000)
2: as.factor(region)Khulna			-1.1875^{***}	-1.4746^{***}
			(0.0000)	(0.0000)
2: as.factor(region)Rajshahi			-1.4120^{***}	-1.5513***
			(0.0000)	(0.0000)
2: as.factor(region)Rangpur			-0.5559^{***}	-0.8969^{***}
			(0.0000)	(0.0000)
2: as.factor(region)Sylhet			-1.7949^{***}	-1.7240^{***}
			(0.0000)	(0.0000)
2: householdIncome			-0.0000^{***}	-0.0000^{***}
			(0.0000)	(0.0000)
2: as.factor(cropConsumed)1			-1.6861^{***}	-1.4188***
			(0.0000)	(0.0000)
2: as.factor(atleastHS)1			-2.1158^{***}	-1.0308^{***}
			(0.0000)	(0.0000)
2: timeToTown			0.0006	0.0012
			(0.0007)	(0.0007)
3: as.factor(region)Chittagong			-1.3799^{***}	-1.1973^{***}
			(0.0000)	(0.0000)
3: as.factor(region)Dhaka			-1.0936^{***}	-1.0278^{***}
			(0.0000)	(0.0000)
3: as.factor(region)Khulna			-1.4474^{***}	-1.6880^{***}
			(0.0000)	(0.0000)
3: as.factor(region)Rajshahi			-1.6305^{***}	-1.6779^{***}
			(0.0000)	(0.0000)
3: as.factor(region)Rangpur			-0.4061^{***}	-0.6197^{***}
			(0.0000)	(0.0000)
3: as.factor(region)Sylhet			-2.0115***	-2.0252***
			(0.0000)	(0.0000)
3: householdIncome			-0.0000^{***}	-0.0000***
			(0.0000)	(0.0000)
3: as.factor(cropConsumed)1			-1.6517^{***}	-1.6187^{***}
- ((0.0000)	(0.0000)
3: as.factor(atleastHS)1			-1.3408***	-0.5648***
			(0.0000)	(0.0000)
3: timeToTown			0.0013	0.0014*
4 / CINI \			(0.0007)	(0.0007)
1: as.factor(numChildren)1				-0.0298***
d ((((((((((((((((((((0.0000)
1: as.factor(numChildren)2				-0.1373***
d ((((((((((((((((((((0.0000)
1: as.factor(numChildren)3				0.7811***
				(0.0000)
1: as.factor(numChildren)4				3.0191***
1 (((C)))				(0.0000)
1: as.factor(numChildren)5				74.2060***
				(0.0000)

	Model 1	Model 2	Model 3	Model 4
1: as.factor(numNonChildren)2				-0.3111***
				(0.0000)
1: as.factor(numNonChildren)3				-0.3171^{***}
				(0.0000)
1: as.factor(numNonChildren)4				-0.3949***
				(0.0000)
1: as.factor(numNonChildren)5				-0.8680^{***}
1 () () N (CI II) ((0.0000)
1: as.factor(numNonChildren)6				-0.4996***
1 C / (N Cl:11)7				(0.0000)
1: as.factor(numNonChildren)7				-1.4884***
1 C / (N Cl:11)0				(0.0000)
1: as.factor(numNonChildren)8				-98.8546***
1: as.factor(numNonChildren)9				$(0.0000) \\ -325.7551^{***}$
1. as.factor(numivonCinidren)9				
1: as.factor(numNonChildren)10				(0.0000) $-45.2906***$
1. as.factor(numivonCinidren)10				-45.2900 (0.0000)
1: as.factor(numNonChildren)11				-57.8831^{***}
1. as.tactor(numromemnaren)11				(0.0000)
1: as.factor(numNonChildren)13				20.8247***
1. as.tactor(numromematen)15				(0.0000)
1: as.factor(numNonChildren)14				70.5261***
Tr ashactor (hami-tone initiation) i i				(0.0000)
2: as.factor(numChildren)1				0.0151***
((0.0000)
2: as.factor(numChildren)2				0.2059***
,				(0.0000)
2: as.factor(numChildren)3				-0.4439^{***}
				(0.0000)
2: as.factor(numChildren)4				-240.7243^{***}
				(0.0000)
2: as.factor(numChildren)5				-124.3868^{***}
				(0.0000)
2: as.factor(numNonChildren)2				-0.4211^{***}
				(0.0000)
2: as.factor(numNonChildren)3				-1.1545^{***}
				(0.0000)
2: as.factor(numNonChildren)4				-1.6814***
				(0.0000)
2: as.factor(numNonChildren)5				-2.3265***
2 f+/NCl:11>C				(0.0000)
2: as.factor(numNonChildren)6				-2.2299*** (0.0000)
2: as.factor(numNonChildren)7				$(0.0000) \\ -2.7213^{***}$
2. as.iactor(numryonCimuren)				(0.0000)
2: as.factor(numNonChildren)8				-100.3732^{***}
2. as.iactor(namittonomiaren)o				(0.0000)
2: as.factor(numNonChildren)9				-1205.9457^{***}

	Model 1	Model 2	Model 3	Model 4
				(0.0000)
2: as.factor(numNonChildren)10				-385.8328***
0 () () () () () ()				(0.0000)
2: as.factor(numNonChildren)11				-709.6978*** (0.0000)
2: as.factor(numNonChildren)13				(0.0000) -214.7220^{***}
2. as.iactor(numivonomidien)15				(0.0000)
2: as.factor(numNonChildren)14				-433.9345***
,				(0.0000)
3: as.factor(numChildren)1				0.1147***
				(0.0000)
3: as.factor(numChildren)2				0.0167***
0 ((((((((((((((((((((0.0000)
3: as.factor(numChildren)3				0.4343***
3: as.factor(numChildren)4				(0.0000) -268.9345^{***}
5. as.iactor (numering)4				(0.0000)
3: as.factor(numChildren)5				-441.3228***
,				(0.0000)
3: as.factor(numNonChildren)2				0.0064^{***}
				(0.0000)
3: as.factor(numNonChildren)3				0.2759***
9 C (N CI:11)4				(0.0000)
3: as.factor(numNonChildren)4				0.1560***
3: as.factor(numNonChildren)5				$(0.0000) \\ -0.2551^{***}$
5. as.iactor(numivonOmidren)5				(0.0000)
3: as.factor(numNonChildren)6				-0.1012^{***}
,				(0.0000)
3: as.factor(numNonChildren)7				-0.9874^{***}
				(0.0000)
3: as.factor(numNonChildren)8				-99.1412***
3: as.factor(numNonChildren)9				(0.0000) -323.4186^{***}
5. as. actor (numryon Children)9				-323.4180 (0.0000)
3: as.factor(numNonChildren)10				-108.2142^{***}
ov upvidetor (nami torio miaron) 10				(0.0000)
3: as.factor(numNonChildren)11				-55.5831^{***}
,				(0.0000)
3: as.factor(numNonChildren)13				-41.2107^{***}
				(0.0000)
3: as.factor(numNonChildren)14				73.9865***
ATC	E077 000E	E077 000E	E 400 70E1	(0.0000)
AIC BIC	5877.8025 6115.4709	5877.8025 6115.4709	5489.7051 5925.4306	5555.2555 6327.6780
Log Likelihood	-2902.9012	-2902.9012	-2678.8525	-2660.6278
Deviance	5805.8025	5805.8025	5357.7051	5321.2555
Num. obs.	5442	5442	5442	5442
K	4	4	4	4
*** < 0.001. ** < 0.01. * < 0.05				

 $^{-\}frac{1}{1}$ ***p < 0.001; **p < 0.01; *p < 0.05

Table 19: Comparison of Marginal Effects for the Multinomial Logit Model: CDC versus WHO.

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
None	atleastHS	1 - 0	0.0128	0.0076	0.0052
None	cropConsumed	1 - 0	0.0387	0.0406	0.0019
None	numChildren	1 - 0	-0.0040	-0.0003	0.0037
None	numChildren	2 - 0	-0.0053	0.0011	0.0064
None	numChildren	3 - 0	-0.0196	-0.0218	0.0023
None	numChildren	4 - 0	-0.1727	-0.1681	0.0047
None	numChildren	5 - 0	-0.5321	-0.5334	0.0014
None	${\bf num Child Under weight}$	1 - 0	0.0075	-0.0060	0.0135
None	${\bf num Child Under weight}$	2 - 0	0.0056	-0.0082	0.0138
None	${\bf num Child Under weight}$	3 - 0	0.0546	0.0308	0.0238
None	numNonChildren	10 - 1	0.1040	0.0882	0.0158
None	numNonChildren	11 - 1	0.1024	0.0910	0.0114
None	numNonChildren	13 - 1	-0.5126	-0.5243	0.0118
None	numNonChildren	14 - 1	-0.5126	-0.5246	0.0121
None	numNonChildren	2 - 1	0.0198	0.0107	0.0091
None	numNonChildren	3 - 1	0.0223	0.0131	0.0092
None	numNonChildren	4 - 1	0.0266	0.0172	0.0094
None	numNonChildren	5 - 1	0.0380	0.0287	0.0094
None	numNonChildren	6 - 1	0.0383	0.0220	0.0164
None	numNonChildren	7 - 1	0.0449	0.0390	0.0059
None	numNonChildren	8 - 1	0.1121	0.1076	0.0045
None	numNonChildren	9 - 1	0.1889	0.1775	0.0114
None	num Non Child Underweight	1 - 0	-0.0011	-0.0020	0.0008
None	num Non Child Underweight	2 - 0	-0.0110	-0.0097	0.0013
None	num Non Child Underweight	3 - 0	0.0083	0.0218	0.0136
None	num Non Child Underweight	4 - 0	0.0061	0.0154	0.0093
None	numNonChildUnderweight	5 - 0	0.0679	0.0531	0.0149
None	num Non Child Underweight	6 - 0	0.1114	0.0687	0.0427
None	num Non Child Underweight	7 - 0	0.0896	0.0961	0.0065
None	region	Chittagong - Barisal	0.0075	0.0152	0.0077
None	region	Dhaka - Barisal	0.0266	0.0261	0.0005
None	region	Khulna - Barisal	0.0372	0.0433	0.0061
None	region	Rajshahi - Barisal	0.0328	0.0370	0.0041
None	region	Rangpur - Barisal	0.0282	0.0323	0.0041
None	region	Sylhet - Barisal	0.0359	0.0419	0.0061
Money	adjUtility		-0.0045	-0.0051	0.0006

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
Money	atleastHS	1 - 0	0.0651	0.0563	0.0088
Money	cropConsumed	1 - 0	0.0074	0.0049	0.0025
Money	householdIncome		0.0000	0.0000	0.0000
Money	numChildren	1 - 0	-0.0082	-0.0100	0.0018
Money	numChildren	2 - 0	-0.0178	-0.0235	0.0056
Money	numChildren	3 - 0	0.0175	0.0703	0.0527
Money	numChildren	4 - 0	0.3456	0.3362	0.0094
Money	numChildren	5 - 0	0.7050	0.7016	0.0034
Money	${\bf num Child Under weight}$	1 - 0	0.0022	0.0172	0.0150
Money	${\bf num Child Under weight}$	2 - 0	-0.0187	-0.0324	0.0138
Money	${\bf num Child Under weight}$	3 - 0	0.1251	0.1430	0.0178
Money	numNonChildren	10 - 1	0.1097	0.1243	0.0146
Money	numNonChildren	11 - 1	-0.1292	-0.1217	0.0075
Money	numNonChildren	13 - 1	0.7263	0.7369	0.0106
Money	numNonChildren	14 - 1	-0.0661	-0.0956	0.0295
Money	numNonChildren	2 - 1	-0.0217	-0.0082	0.0135
Money	numNonChildren	3 - 1	0.0049	0.0176	0.0127
Money	numNonChildren	4 - 1	0.0209	0.0338	0.0129
Money	numNonChildren	5 - 1	0.0105	0.0273	0.0167
Money	numNonChildren	6 - 1	0.0325	0.0523	0.0198
Money	numNonChildren	7 - 1	0.0118	0.0210	0.0092
Money	numNonChildren	8 - 1	0.0037	0.0165	0.0129
Money	numNonChildren	9 - 1	-0.1726	-0.1510	0.0215
Money	num Non Child Underweight	1 - 0	-0.0124	-0.0170	0.0047
Money	num Non Child Underweight	2 - 0	0.0043	0.0043	0.0000
Money	num Non Child Underweight	3 - 0	-0.0070	-0.0208	0.0138
Money	num Non Child Underweight	4 - 0	0.0081	-0.0107	0.0188
Money	num Non Child Underweight	5 - 0	-0.0874	-0.0847	0.0027
Money	num Non Child Underweight	6 - 0	-0.2905	-0.2954	0.0049
Money	${\bf num Non Child Under weight}$	7 - 0	0.0836	0.0696	0.0140
Money	region	Chittagong - Barisal	0.1593	0.1569	0.0024
Money	region	Dhaka - Barisal	0.0900	0.0950	0.0050
Money	region	Khulna - Barisal	0.0491	0.0474	0.0017
Money	region	Rajshahi - Barisal	0.0975	0.1052	0.0077
Money	region	Rangpur - Barisal	-0.0575	-0.0500	0.0075
Money	region	Sylhet - Barisal	0.1080	0.1081	0.0001
Money	timeToTown		-0.0006	-0.0005	0.0001
Food	adjUtility		-0.0013	-0.0016	0.0002
Food	atleastHS	1 - 0	-0.0491	-0.0371	0.0120
Food	cropConsumed	1 - 0	-0.0113	-0.0108	0.0005

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
Food	householdIncome		-0.0000	-0.0000	0.0000
Food	numChildren	1 - 0	0.0042	0.0001	0.0041
Food	numChildren	2 - 0	0.0165	0.0174	0.0009
Food	numChildren	3 - 0	-0.0014	-0.0408	0.0394
Food	numChildren	4 - 0	-0.0679	-0.0679	0.0001
Food	numChildren	5 - 0	-0.0676	-0.0675	0.0001
Food	numChildUnderweight	1 - 0	-0.0053	0.0008	0.0061
Food	$\operatorname{numChildUnderweight}$	2 - 0	0.0036	-0.0251	0.0286
Food	$\operatorname{numChildUnderweight}$	3 - 0	-0.0711	-0.0690	0.0022
Food	numNonChildren	10 - 1	-0.1575	-0.1572	0.0003
Food	numNonChildren	11 - 1	-0.1575	-0.1572	0.0003
Food	numNonChildren	13 - 1	-0.1575	-0.1572	0.0003
Food	numNonChildren	14 - 1	-0.1575	-0.1572	0.0003
Food	numNonChildren	2 - 1	-0.0208	-0.0200	0.0008
Food	numNonChildren	3 - 1	-0.0806	-0.0820	0.0014
Food	numNonChildren	4 - 1	-0.1045	-0.1054	0.0009
Food	numNonChildren	5 - 1	-0.1132	-0.1142	0.0010
Food	numNonChildren	6 - 1	-0.1162	-0.1210	0.0048
Food	numNonChildren	7 - 1	-0.0954	-0.1042	0.0088
Food	numNonChildren	8 - 1	-0.1186	-0.1149	0.0037
Food	numNonChildren	9 - 1	-0.1575	-0.1572	0.0003
Food	num Non Child Underweight	1 - 0	0.0054	-0.0001	0.0054
Food	num Non Child Underweight	2 - 0	-0.0158	-0.0162	0.0004
Food	num Non Child Underweight	3 - 0	-0.0020	0.0034	0.0055
Food	num Non Child Underweight	4 - 0	0.0136	0.0113	0.0023
Food	num Non Child Underweight	5 - 0	-0.0712	-0.0712	0.0000
Food	num Non Child Underweight	6 - 0	-0.0710	-0.0710	0.0000
Food	num Non Child Underweight	7 - 0	-0.0712	-0.0712	0.0000
Food	region	Chittagong - Barisal	-0.0639	-0.0727	0.0088
Food	region	Dhaka - Barisal	-0.0494	-0.0586	0.0092
Food	region	Khulna - Barisal	-0.0162	-0.0289	0.0127
Food	region	Rajshahi - Barisal	-0.0408	-0.0547	0.0139
Food	region	Rangpur - Barisal	-0.0002	-0.0123	0.0121
Food	region	Sylhet - Barisal	-0.0459	-0.0530	0.0070
Food	timeToTown		0.0002	0.0002	0.0000
Both	adjUtility		-0.0016	-0.0019	0.0002
Both	atleastHS	1 - 0	-0.0288	-0.0268	0.0020
Both	$\operatorname{cropConsumed}$	1 - 0	-0.0348	-0.0347	0.0001
Both	household Income		-0.0000	-0.0000	0.0000
Both	numChildren	1 - 0	0.0080	0.0102	0.0022

Choice	Variable	Contrast	CDC	WHO	Absolute Difference
Both	numChildren	2 - 0	0.0067	0.0050	0.0016
Both	numChildren	3 - 0	0.0034	-0.0076	0.0111
Both	numChildren	4 - 0	-0.1050	-0.1003	0.0047
Both	numChildren	5 - 0	-0.1053	-0.1006	0.0047
Both	numChildUnderweight	1 - 0	-0.0044	-0.0120	0.0076
Both	numChildUnderweight	2 - 0	0.0095	0.0657	0.0562
Both	numChildUnderweight	3 - 0	-0.1086	-0.1048	0.0038
Both	numNonChildren	10 - 1	-0.0562	-0.0554	0.0008
Both	$\operatorname{numNonChildren}$	11 - 1	0.1843	0.1878	0.0035
Both	$\operatorname{numNonChildren}$	13 - 1	-0.0562	-0.0554	0.0008
Both	$\operatorname{numNonChildren}$	14 - 1	0.7362	0.7774	0.0412
Both	$\operatorname{numNonChildren}$	2 - 1	0.0227	0.0175	0.0053
Both	$\operatorname{numNonChildren}$	3 - 1	0.0534	0.0513	0.0022
Both	$\operatorname{numNonChildren}$	4 - 1	0.0569	0.0543	0.0026
Both	$\operatorname{numNonChildren}$	5 - 1	0.0646	0.0582	0.0064
Both	$\operatorname{numNonChildren}$	6 - 1	0.0454	0.0468	0.0014
Both	$\operatorname{numNonChildren}$	7 - 1	0.0387	0.0442	0.0055
Both	$\operatorname{numNonChildren}$	8 - 1	0.0028	-0.0093	0.0121
Both	$\operatorname{numNonChildren}$	9 - 1	0.1411	0.1307	0.0104
Both	${\bf num Non Child Under weight}$	1 - 0	0.0081	0.0190	0.0109
Both	${\bf num Non Child Under weight}$	2 - 0	0.0225	0.0216	0.0009
Both	${\bf num Non Child Under weight}$	3 - 0	0.0007	-0.0045	0.0052
Both	${\bf num Non Child Under weight}$	4 - 0	-0.0279	-0.0160	0.0118
Both	${\bf num Non Child Under weight}$	5 - 0	0.0906	0.1027	0.0121
Both	${\bf num Non Child Under weight}$	6 - 0	0.2501	0.2976	0.0476
Both	${\bf num Non Child Under weight}$	7 - 0	-0.1020	-0.0945	0.0075
Both	region	Chittagong - Barisal	-0.1029	-0.0993	0.0036
Both	region	Dhaka - Barisal	-0.0672	-0.0625	0.0047
Both	region	Khulna - Barisal	-0.0702	-0.0618	0.0083
Both	region	Rajshahi - Barisal	-0.0894	-0.0874	0.0020
Both	region	Rangpur - Barisal	0.0296	0.0300	0.0005
Both	region	Sylhet - Barisal	-0.0980	-0.0971	0.0009
Both	timeToTown		0.0003	0.0003	0.0000

10.2 Varying Levels of Risk Aversion

*Note on Reading The Following Tables: adjUtilityi is simply a byproduct of how the model was constructed; all adjUtility's relate to the same variable (adjUtility) – the CRRA utility of the household less the assumed Opportunity Cost (foregone wages) of utilizing a Social Safety Net.

Table 20: Probit Model of Utilization of Any Social Safety Net with Varying Levels of Risk Aversion.

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
(Intercept)	-0.0232	34.5539**	56.4015**	91.9575**
	(0.1801)	(12.2812)	(20.4984)	(34.5549)
adjUtility2	-0.0000***			
	(0.0000)			
as.factor(numNonChildUnderweight)1	0.2459^{***}	0.1174	0.1182	0.1188
	(0.0659)	(0.1876)	(0.1876)	(0.1875)
as.factor(numNonChildUnderweight)2	0.4848^{***}	0.2249	0.2266	0.2282
	(0.0950)	(0.2977)	(0.2977)	(0.2976)
as.factor(numNonChildUnderweight)3	0.5918^{***}	0.1049	0.1075	0.1097
	(0.1757)	(0.7688)	(0.7687)	(0.7687)
as.factor(numNonChildUnderweight)4	-0.0180	-13.4033	-14.3802	-15.3658
	(0.2923)	(831.4017)	(1357.0665)	(2224.4237)
as. factor (num Non Child Underweight) 5	1.9501	-1013.5733	-1984.6754	-3775.2575
	(1.0570)	(52377.2789)	(85161.2628)	(135135.2255)
as. factor (num Non Child Underweight) 6	-0.3284	-39992.5055	-77005.1561	-145188.3055
	(1.0173)	(187925.3917)	(323507.5835)	(573756.0141)
as. factor (num Non Child Underweight) 7	12.2007	-49325.9192	-94927.0901	-178930.4375
	(324.7460)	(172526.8370)	(291735.4936)	(452980.0531)
as.factor(numChildUnderweight)1	0.1237	-0.2504	-0.2495	-0.2485
	(0.0877)	(0.2871)	(0.2870)	(0.2870)
as. factor (num Child Underweight) 2	0.2605	-0.4959	-0.4971	-0.4983
	(0.2435)	(0.8272)	(0.8270)	(0.8269)
as.factor(numChildUnderweight)3	-0.7179	-18.3267	-19.3196	-20.3140
	(0.9461)	(25501.5876)	(42050.7205)	(69396.2289)
as.factor(numChildren)1	0.0896	0.1451	0.1412	0.1369
	(0.0684)	(0.2045)	(0.2043)	(0.2042)
as.factor(numChildren)2	0.0318	-0.0466	-0.0483	-0.0506
	(0.1143)	(0.3541)	(0.3541)	(0.3540)
as.factor(numChildren)3	-0.2454	1.1554	1.1489	1.1418
	(0.2926)	(0.6996)	(0.6994)	(0.6992)
as.factor(numChildren)4	-0.3120	3.8307**	3.8155**	3.8015**
	(0.7461)	(1.3369)	(1.3375)	(1.3381)
as.factor(numChildren)5	0.2914	5.6391	6.0011	5.0171
	(1.3399)	(95489.4215)	(169553.1281)	(227090.6164)
as.factor(numNonChildren)2	0.0237	-0.1324	-0.1374	-0.1438
	(0.1610)	(0.2707)	(0.2706)	(0.2703)

-	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
as.factor(numNonChildren)3	0.7290***	-0.0988	-0.1057	-0.1140
	(0.1572)	(0.2872)	(0.2869)	(0.2864)
as.factor(numNonChildren)4	1.0740***	-0.2938	-0.3009	-0.3095
	(0.1605)	(0.3338)	(0.3335)	(0.3330)
as.factor(numNonChildren)5	1.4531***	-1.2272^*	-1.2345^*	-1.2434^*
	(0.1719)	(0.5829)	(0.5827)	(0.5824)
as.factor(numNonChildren)6	1.5401***	-0.5824	-0.5889	-0.5971
	(0.1969)	(0.6906)	(0.6903)	(0.6899)
as.factor(numNonChildren)7	2.0547^{***}	-13.2207	-14.2194	-15.2209
	(0.2700)	(610.3188)	(1003.2654)	(1650.4029)
as.factor(numNonChildren)8	2.0066***	-22.4765	-23.8252	-23.8124
	(0.3596)	(62191.5990)	(120889.5083)	(118939.5856)
as.factor(numNonChildren)9	2.3420^{***}	-12524.8531	-24124.3635	-45492.8178
	(0.4869)	(20181.3684)	(33403.6319)	(54879.6426)
as. factor (num Non Children) 10	1.7786	-12595.6616	-24280.8645	-45811.3549
	(1.0238)	(512600.7032)	(562393.2406)	(82284.6676)
as.factor(numNonChildren)11	2.5050^*	-22871.4065	-44048.3399	-83058.6470
	(1.2380)	(111206.8890)	(193740.7375)	(273601.2018)
as.factor(numNonChildren)13	2.3215	-46088.6206	-88730.2808	-167281.0258
	(459.2586)	(216545.0745)	(362793.3961)	(575721.6328)
as.factor(numNonChildren)14	15.0498	-21745.9499	-41874.1132	-78953.3101
	(217.5326)	(61430.3054)	(100746.1743)	(162925.7798)
as.factor(region)Chittagong	-0.5350***	-0.4434	-0.4469	-0.4507
	(0.1276)	(0.3037)	(0.3036)	(0.3035)
as.factor(region)Dhaka	-0.6569***	-0.6134^*	-0.6142^*	-0.6151^*
	(0.1182)	(0.2831)	(0.2830)	(0.2828)
as.factor(region)Khulna	-0.1850	-1.0427^*	-1.0403^*	-1.0382*
	(0.1395)	(0.4146)	(0.4144)	(0.4142)
as.factor(region)Rajshahi	-0.3692^{**}	-0.8736^*	-0.8787^*	-0.8833^*
	(0.1370)	(0.3871)	(0.3875)	(0.3878)
as.factor(region)Rangpur	0.1750	-0.5696	-0.5737	-0.5783
	(0.1407)	(0.3810)	(0.3808)	(0.3806)
as.factor(region)Sylhet	-0.5499***	-1.1491**	-1.1525**	-1.1555**
	(0.1337)	(0.3856)	(0.3855)	(0.3853)
householdIncome	-0.0000***	-0.0000***	-0.0000***	-0.0000***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
as.factor(cropConsumed) 1	-0.4003^{***}	-1.3168***	-1.3154^{***}	-1.3144^{***}
	(0.0606)	(0.1928)	(0.1929)	(0.1928)
as.factor(atleastHS)1	-0.2436	-1.0437	-1.0488	-1.0538
	(0.1451)	(0.7307)	(0.7307)	(0.7307)

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
timeToTown	-0.0000	-0.0002	-0.0002	-0.0002
	(0.0006)	(0.0020)	(0.0020)	(0.0020)
adjUtility3		-8.9672**	,	
		(3.1454)		
adjUtility1		,	-17.2578**	
ŭ v			(6.2217)	
adjUtility4			,	-32.5301**
				(12.1632)
AIC	7000.8976	1200.7813	1200.9843	1201.3064
BIC	7258.3718	1458.2555	1458.4584	1458.7805
Log Likelihood	-3461.4488	-561.3907	-561.4921	-561.6532
Deviance	6922.8976	1122.7813	1122.9843	1123.3064
Num. obs.	5442	5442	5442	5442

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 21: Marginal Effects for the Probit Model with Varying Levels of Risk Aversion.

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
adjUtility2	-0.0000***			
	(0.0000)			
as.factor(numNonChildUnderweight)1	0.0612***	0.0000	0.0000	0.0000
	(0.0164)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildUnderweight)2	0.1206***	0.0000	0.0000	0.0000
	(0.0233)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildUnderweight)3	0.1464***	0.0000	0.0000	0.0000
	(0.0421)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Non Child Underweight) 4	-0.0045	0.0000	0.0000	0.0000
	(0.0725)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Non Child Underweight) 5	0.3969**	0.0000	0.0000	0.0000
	(0.1306)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Non Child Underweight) 6	-0.0799	-1.0000***	-1.0000***	-1.0000***
	(0.2400)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Non Child Underweight) 7	0.5401^{***}	-1.0000***	-1.0000^{***}	-1.0000^{***}
	(0.0308)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Child Underweight) 1	0.0308	0.0000	0.0000	0.0000
	(0.0219)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Child Underweight) 2	0.0650	0.0000	0.0000	0.0000
	(0.0607)	(0.0000)	(0.0000)	(0.0000)
as. factor (num Child Underweight) 3	-0.1667	0.0000	0.0000	0.0000
	(0.1967)	(0.0000)	(0.0000)	(0.0000)
as.factor(numChildren)1	0.0223	0.0000	0.0000	0.0000
	(0.0170)	(0.0000)	(0.0000)	(0.0000)
as.factor(numChildren)2	0.0079	0.0000	0.0000	0.0000
	(0.0284)	(0.0000)	(0.0000)	(0.0000)
as.factor(numChildren)3	-0.0601	0.0000	0.0000	0.0000
	(0.0704)	(0.0000)	(0.0000)	(0.0000)
as.factor(numChildren)4	-0.0760	0.0000	0.0000	0.0000
	(0.1767)	(0.0000)	(0.0000)	(0.0000)
as.factor(numChildren)5	0.0727	0.0000	0.0000	0.0000
	(0.3335)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)2	0.0059	0.0000	0.0000	0.0000
	(0.0400)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)3	0.1803***	0.0000	0.0000	0.0000
	(0.0380)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)4	0.2615***	0.0000	0.0000	0.0000

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
	(0.0368)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)5	0.3379^{***}	0.0000	0.0000	0.0000
	(0.0342)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)6	0.3461^{***}	0.0000	0.0000	0.0000
	(0.0354)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)7	0.4143^{***}	0.0000	0.0000	0.0000
	(0.0359)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)8	0.4056^{***}	0.0000	0.0000	0.0000
	(0.0460)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)9	0.4396***	-1.0000***	-1.0000***	-1.0000***
	(0.0488)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)10	0.3742^{**}	-1.0000***	-1.0000***	-1.0000***
	(0.1418)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)11	0.4522^{***}	-1.0000***	-1.0000***	-1.0000***
	(0.1009)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)13	0.4361	-1.0000***	-1.0000***	-1.0000***
	(42.4234)	(0.0000)	(0.0000)	(0.0000)
as.factor(numNonChildren)14	0.5403^{***}	-1.0000***	-1.0000***	-1.0000***
	(0.0222)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Chittagong	-0.1295^{***}	0.0000	0.0000	0.0000
	(0.0298)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Dhaka	-0.1597^{***}	0.0000	0.0000	0.0000
	(0.0279)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Khulna	-0.0456	0.0000	0.0000	0.0000
	(0.0341)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Rajshahi	-0.0900**	0.0000	0.0000	0.0000
	(0.0325)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Rangpur	0.0437	0.0000	0.0000	0.0000
	(0.0351)	(0.0000)	(0.0000)	(0.0000)
as.factor(region)Sylhet	-0.1324***	0.0000	0.0000	0.0000
	(0.0308)	(0.0000)	(0.0000)	(0.0000)
householdIncome	-0.0000***	0.0000	0.0000	0.0000
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
as.factor(cropConsumed)1	-0.0993***	0.0000	0.0000	0.0000
	(0.0150)	(0.0000)	(0.0000)	(0.0000)
as.factor(atleastHS)1	-0.0597	0.0000	0.0000	0.0000
	(0.0350)	(0.0000)	(0.0000)	(0.0000)
timeToTown	-0.0000	0.0000	0.0000	0.0000
	(0.0001)	(0.0000)	(0.0000)	(0.0000)
adjUtility3	•	0.0000		

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.30$	$\sigma = 1.35$
		(0.0000)		
adjUtility1			0.0000	
			(0.0000)	
adjUtility4			,	0.0000
				(0.0000)
Num. obs.	5442	5442	5442	5442
Log Likelihood	-3461.4488	-561.3907	-561.4921	-561.6532
Deviance	6922.8976	1122.7813	1122.9843	1123.3064
AIC	7000.8976	1200.7813	1200.9843	1201.3064
BIC	7258.3718	1458.2555	1458.4584	1458.7805

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

 ${\it Table~22:~Multinomial~Logit~Model~with~Varying~Levels~of~Risk~Aversion.}$

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
1: (Intercept)	-0.1556***	-0.6584***	-0.6989^{***}	-0.9248***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: adjUtility2	-0.0000****	,	,	, ,
	(0.0000)			
1: as.factor(numNonChildUnderweight)1	0.2371***	-0.0563***	-0.0222***	-0.0375***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)2	0.5597^{***}	0.1863^{***}	0.2781^{***}	0.2375^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)3	0.4070^{***}	-0.1929^{***}	-0.2603***	-0.3247^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)4	0.1007^{***}	-0.2002***	-0.1453***	-0.1918***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)5	0.1199***	-19.1682***	-18.5161^{***}	-16.0635***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)6	-0.0816^{***}	-704.4313^{***}	-646.6018^{***}	-577.5028***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildUnderweight)7	0.0810***	-68.6628^{***}	-62.9392^{***}	-53.9235^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)1	0.2166***	-0.1779^{***}	-0.1887***	-0.1359***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)2	0.2201***	-0.2847***	-0.2219***	-0.3483***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numChildUnderweight)3	-0.0118***	-4.1462***	-4.4766***	-4.3122***
1 ((((((((((((((((((((0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numChildren)1	0.1474***	0.0512***	0.0665***	0.0313***
1 f	(0.0000)	(0.0000)	(0.0000) $0.0528***$	(0.0000)
1: as.factor(numChildren)2	-0.0148*** (0.0000)	0.0070***		0.0146***
1: as.factor(numChildren)3	(0.0000) 0.0085^{***}	(0.0000) $1.1901***$	(0.0000) 0.4940^{***}	(0.0000) 0.8977^{***}
1: as.lactor(numCmidren)5		(0.0000)		
1: as.factor(numChildren)4	(0.0000) 0.0386^{***}	3.2270***	(0.0000) 2.8645^{***}	(0.0000) $2.8878***$
1. as.factor(numerindren)4	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numChildren)5	0.0573***	50.9942***	52.6962***	45.7127***
1. as.iactor(numemidien)s	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)2	-1.0350***	-0.3152***	-0.4947^{***}	-0.4255^{***}
1. 65.160001 (Hulli toli Children) 2	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)3	-0.2579^{***}	-0.2867^{***}	-0.4830^{***}	-0.4187^{***}
1. ac.iactor (nami tonomiarch)	0.2010	0.2001	0.1000	0.1101

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)4	0.1967***	-0.4116^{***}	-0.5478****	-0.4868***
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)5	0.5661***	-0.8230****	-0.9570***	-1.0289****
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)6	0.6200***	-0.5496^{***}	-0.8847^{***}	-0.8781***
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)7	0.7056***	-1.2493^{***}	-1.2230****	-1.4180^{***}
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)8	0.5075***	-67.6597***	-59.8081***	-54.5739****
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)9	0.0850***	-259.9876***	-245.1510***	-218.9231^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)10	0.0498^{***}	-48.5910^{***}	-44.7770***	-39.9333^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)11	0.0876^{***}	-44.4500***	-42.0636^{***}	-35.4977^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)13	0.0399***	37.9273***	34.5015***	33.3421***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(numNonChildren)14	0.0256***	49.1188***	45.1598***	40.6577***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Chittagong	0.2043^{***}	0.4657^{***}	0.5103***	0.4215^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Dhaka	-0.2175^{***}	-0.0716^{***}	-0.1481^{***}	-0.1694^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Khulna	0.1843***	-0.6962^{***}	-0.6545***	-0.6861***
, , , , , , , , , , , , , , , , , , ,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Rajshahi	0.1709***	-0.5205^{***}	-0.3048***	-0.3702^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Rangpur	0.0805***	-1.0576***	-0.9600***	-1.1559***
1 () () ()	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(region)Sylhet	0.1397***	-0.4537^{***}	-0.3619***	-0.4625***
4 1 1 117	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: householdIncome	-0.0000***	-0.0000***	-0.0000***	-0.0000***
1 6 4 6 2 1)1	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: as.factor(cropConsumed)1	-0.2004***	-1.1362***	-0.9612***	-0.9679***
1 f((0.0000) 0.0474^{***}	(0.0000)	(0.0000)	(0.0000)
1: as.factor(atleastHS)1		-0.2963***	-0.1233***	-0.1888*** (0.0000)
1. time To Towns	(0.0000)	(0.0000)	(0.0000)	(0.0000)
1: timeToTown	-0.0026***	-0.0039***	-0.0053***	-0.0035***

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	(0.0000)	(0.0007)	(0.0007)	(0.0006)
2: (Intercept)	-1.0332^{***}	-0.3480****	-0.6293****	-0.6275^{***}
- /	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: adjUtility2	-0.0000	,	,	,
	(0.0000)			
2: as.factor(numNonChildUnderweight)1	0.3390***	0.0477^{***}	0.1071***	0.0845***
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)2	0.0884***	-0.0837^{***}	0.0008***	0.0632***
·	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)3	0.1900***	0.0038***	-0.2599****	-0.1690***
·	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)4	0.0360***	0.2018***	0.0027***	0.1025***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)5	-0.0495^{***}	-228.7581^{***}	-207.0097^{***}	-189.6338^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)6	-0.0098***	-233.4860***	-212.5343^{***}	-192.5666***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildUnderweight)7	-0.0023***	-199.8574^{***}	-182.7588***	-165.9029***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)1	0.0843^{***}	-0.2610^{***}	-0.2781^{***}	-0.2014^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)2	-0.0347^{***}	-0.3593***	-0.0878***	-0.3203^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildUnderweight)3	-0.0189***	-242.4548^{***}	-220.8072^{***}	-200.4508***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildren)1	0.1658***	0.1072^{***}	0.1638^{***}	0.1034***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildren)2	0.1310^{***}	0.2885^{***}	0.3575^{***}	0.3220^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildren)3	-0.1529***	-0.0439^{***}	0.3987^{***}	-0.5601^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildren)4	-0.0210^{***}	-188.9668^{***}	-170.0231^{***}	-156.9873^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numChildren)5	-0.0061***	-96.2489***	-87.3642^{***}	-79.5933^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)2	-0.4889^{***}	-0.4649^{***}	-0.5577^{***}	-0.6098***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)3	-0.2294^{***}	-1.1587^{***}	-1.2517^{***}	-1.3271^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)4	-0.2457^{***}	-1.7517^{***}	-1.7647^{***}	-1.8191***

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)5	0.0044***	-2.3494***	-2.3227****	-2.5118****
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)6	-0.1558****	-2.3012****	-2.4161****	-2.6060****
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)7	0.1026***	-2.6568****	-2.2616^{***}	-2.8292^{***}
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)8	0.0267^{***}	-69.1062***	-61.3621***	-56.6255***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)9	-0.0625***	-1027.4052***	-934.3989***	-849.9322***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)10	-0.0102^{***}	-322.1228***	-294.1585***	-266.4919^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)11	-0.0127^{***}	-571.3592***	-520.8879^{***}	-470.8756^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)13	-0.0011^{***}	-190.1683^{***}	-174.2360***	-157.7530^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(numNonChildren)14	-0.0046***	-344.8724***	-316.7919***	-284.1565***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Chittagong	-1.0931***	-1.1162***	-1.0282***	-1.1145***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Dhaka	-0.7733^{***}	-1.1665^{***}	-1.1534^{***}	-1.2231^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Khulna	0.1402***	-1.1950^{***}	-1.0156***	-1.1892^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Rajshahi	-0.3978***	-1.5948***	-1.1845***	-1.3817^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Rangpur	0.7515***	-0.8267^{***}	-0.6069***	-0.9310***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(region)Sylhet	-0.4454^{***}	-1.4647^{***}	-1.3584^{***}	-1.4757***
2 1 117	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: householdIncome	-0.0000***	-0.0000***	-0.0000***	-0.0000***
0 () () ()	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(cropConsumed)1	-0.4363***	-1.2922***	-1.1653***	-1.1073***
9 (/ / I /IIG)1	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: as.factor(atleastHS)1	-0.4794^{***}	-1.3885^{***}	-1.5602***	-1.8589***
9.4: M.M.	(0.0000)	(0.0000)	(0.0000)	(0.0000)
2: timeToTown	0.0014***	0.0009	0.0000	0.0009
2 (1 4	(0.0000)	(0.0007)	(0.0007)	(0.0006)
3: (Intercept)	-0.6978***	-1.1865***	-1.3629***	-1.4856***

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: adjUtility2	-0.0000^{***}	,	,	,
	(0.0000)			
3: as.factor(numNonChildUnderweight)1	0.3761***	0.1041***	0.1120***	0.1341***
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)2	0.7459***	0.4232***	0.4720***	0.4688***
,	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)3	0.4139***	-0.1176***	-0.2266***	-0.1925***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)4	0.0211***	-0.2459***	-0.5132***	-0.3153***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)5	0.2141^{***}	-18.0154***	-17.4247^{***}	-15.0344***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)6	0.1024^{***}	-119.4960^{***}	-109.3179^{***}	-99.2075***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildUnderweight)7	-0.0034***	-157.3592***	-144.3816^{***}	-129.3472^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)1	0.1664^{***}	-0.2601^{***}	-0.2448***	-0.2178***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)2	0.1351^{***}	0.0883***	-0.0537***	-0.0701***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildUnderweight)3	-0.0297^{***}	-340.0029***	-310.1412^{***}	-280.7567^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildren)1	0.2053***	0.1684***	0.1800***	0.1455***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildren)2	0.0686***	0.1248***	0.1972***	0.1093***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildren)3	0.0947***	0.9027***	0.4642***	1.0203***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildren)4	-0.0310^{***}	-223.0548***	-201.3877***	-185.6003^{***}
0 ((((((((((((((((((((0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numChildren)5	-0.0069^{***}	-311.7750***	-285.1247***	-257.3485^{***}
9 ((0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)2	-1.4154***	-0.0954***	-0.0535***	-0.1808***
9 ((0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)3	-0.1074^{***}	0.1873***	0.1748***	0.0481***
2 fk/NCl 11 \4	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)4	0.2268***	0.0390***	0.0718***	-0.0520***
2. as factor/pure Nor CL:11\r	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)5	0.6647^{***}	-0.2897***	-0.2277^{***}	-0.5073***

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)6	0.5161***	-0.2368****	-0.4304***	-0.5537****
`	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)7	0.2593***	-0.9393***	-0.7526***	-1.0621***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)8	0.0236***	-67.9954***	-59.8090***	-54.7473***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)9	0.3756^{***}	-257.8344^{***}	-242.6237^{***}	-216.8413^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)10	-0.0109***	-98.4706***	-88.9717***	-81.7319***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)11	0.0424^{***}	-42.2621^{***}	-39.7858***	-33.4713***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)13	-0.0018^{***}	-39.3298***	-35.6627^{***}	-32.7273^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(numNonChildren)14	0.0537^{***}	52.1238***	48.3501***	43.4790***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Chittagong	-0.9745***	-1.0702***	-1.0283^{***}	-1.0566***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Dhaka	-0.6894***	-0.9512^{***}	-1.0321***	-1.0091***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Khulna	-0.1534^{***}	-1.4144^{***}	-1.4139^{***}	-1.3940^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Rajshahi	-0.6581^{***}	-1.7042^{***}	-1.4630^{***}	-1.4960^{***}
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Rangpur	0.9348***	-0.5763^{***}	-0.4549***	-0.6338***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(region)Sylhet	-0.7020^{***}	-1.7797***	-1.6688***	-1.7216***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: householdIncome	-0.0000***	-0.0000***	-0.0000***	-0.0000***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(cropConsumed)1	-0.6476^{***}	-1.4946***	-1.3468***	-1.3082***
9 (/ / 1 / 110)1	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: as.factor(atleastHS)1	-0.3103***	-0.6997***	-0.7138***	-0.7000***
9 1: T. T.	(0.0000)	(0.0000)	(0.0000)	(0.0000)
3: timeToTown	0.0016***	0.0013*	0.0001	0.0013*
1	(0.0000)	(0.0007)	(0.0007)	(0.0007)
1: adjUtility3		-0.2240***		
9. adiIItilit9		(0.0000) $-0.2240***$		
2: adjUtility3		-0.2240		

	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
	0 – 0	(0.0000)	0 – 1.0	0 - 1.00
3: adjUtility3		-0.2239***		
o. daj e miej e		(0.0000)		
1: adjUtility1		(0.0000)	-0.2051^{***}	
,, _			(0.0000)	
2: adjUtility1			-0.2052^{***}	
3			(0.0000)	
3: adjUtility1			-0.2051^{***}	
			(0.0000)	
1: adjUtility4				-0.1857^{***}
				(0.0000)
2: adjUtility4				-0.1858***
				(0.0000)
3: adjUtility4				-0.1856^{***}
				(0.0000)
AIC	11458.6064	5596.6288	5616.3574	5636.1352
BIC	12231.0289	6369.0513	6388.7799	6408.5577
Log Likelihood	-5612.3032	-2681.3144	-2691.1787	-2701.0676
Deviance	11224.6064	5362.6288	5382.3574	5402.1352
Num. obs.	5442	5442	5442	5442
K	4	4	4	4

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 23: Marginal Effects with Varying Levels of Risk Aversion

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
None	atleastHS	1 - 0	0.0190	0.0148	0.0128	0.0152
None	cropConsumed	1 - 0	0.0734	0.0400	0.0387	0.0394
None	numChildren	1 - 0	-0.0365	-0.0029	-0.0040	-0.0026
None	numChildren	2 - 0	-0.0055	-0.0030	-0.0053	-0.0037
None	numChildren	3 - 0	-0.0008	-0.0444	-0.0196	-0.0374
None	numChildren	4 - 0	-0.0038	-0.1941	-0.1727	-0.1762
None	numChildren	5 - 0	-0.0081	-0.5343	-0.5321	-0.5317
None	numChildUnderweight	1 - 0	-0.0424	0.0067	0.0075	0.0060
None	numChildUnderweight	2 - 0	-0.0380	0.0064	0.0056	0.0095
None	numChildUnderweight	3 - 0	0.0037	0.0494	0.0546	0.0557
None	$\operatorname{numNonChildren}$	10 - 1	-0.0068	0.0941	0.1040	0.1046
None	$\operatorname{numNonChildren}$	11 - 1	-0.0150	0.0923	0.1024	0.1025
None	numNonChildren	13 - 1	-0.0060	-0.5224	-0.5126	-0.5117
None	$\operatorname{numNonChildren}$	14 - 1	-0.0062	-0.5224	-0.5126	-0.5117
None	$\operatorname{numNonChildren}$	2 - 1	0.2142	0.0126	0.0198	0.0200
None	numNonChildren	3 - 1	0.0522	0.0144	0.0223	0.0228
None	numNonChildren	4 - 1	-0.0340	0.0203	0.0266	0.0273
None	numNonChildren	5 - 1	-0.1207	0.0307	0.0380	0.0426
None	numNonChildren	6 - 1	-0.1191	0.0260	0.0383	0.0406
None	numNonChildren	7 - 1	-0.1292	0.0397	0.0449	0.0513
None	numNonChildren	8 - 1	-0.0854	0.1027	0.1121	0.1131
None	numNonChildren	9 - 1	-0.0300	0.1761	0.1889	0.1889
None	num Non Child Underweight	1 - 0	-0.0641	0.0000	-0.0011	-0.0009
None	num Non Child Underweight	2 - 0	-0.1230	-0.0070	-0.0110	-0.0106
None	num Non Child Underweight	3 - 0	-0.0864	0.0043	0.0083	0.0089
None	num Non Child Underweight	4 - 0	-0.0173	0.0038	0.0061	0.0054
None	num Non Child Underweight	5 - 0	-0.0259	0.0651	0.0679	0.0678
None	num Non Child Underweight	6 - 0	0.0076	0.1091	0.1114	0.1118
None	num Non Child Underweight	7 - 0	-0.0120	0.0873	0.0896	0.0890
None	region	Chittagong - Barisal	0.0429	0.0108	0.0075	0.0131
None	region	Dhaka - Barisal	0.0945	0.0238	0.0266	0.0299
None	region	Khulna - Barisal	-0.0225	0.0371	0.0372	0.0419
None	region	Rajshahi - Barisal	0.0214	0.0383	0.0328	0.0385
None	region	Rangpur - Barisal	-0.1141	0.0308	0.0282	0.0377
None	region	Sylhet - Barisal	0.0295	0.0370	0.0359	0.0419
Money	adjUtility2		-0.0000	-0.0044	-0.0045	-0.0041
Money	atleastHS	1 - 0	0.0260	0.0456	0.0651	0.0628
Money	cropConsumed	1 - 0	-0.0107	0.0033	0.0074	0.0024
Money	householdIncome		-0.0000	-0.0000	0.0000	-0.0000
Money	numChildren	1 - 0	0.0196	-0.0074	-0.0082	-0.0081
Money	numChildren	2 - 0	-0.0073	-0.0165	-0.0178	-0.0163
Money	numChildren	3 - 0	0.0013	0.0830	0.0175	0.0504
Money	numChildren	4 - 0	0.0088	0.3641	0.3456	0.3492
Money	numChildren	5 - 0	0.0116	0.7043	0.7050	0.7047
Money	numChildUnderweight	1 - 0	0.0365	0.0039	0.0022	0.0038
Money	numChildUnderweight	2 - 0	0.0406	-0.0251	-0.0187	-0.0239
Money	numChildUnderweight	3 - 0	-0.0011	0.1263	0.1251	0.1235

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
Money	numNonChildren	10 - 1	0.0109	0.1273	0.1097	0.1262
Money	numNonChildren	11 - 1	0.0173	-0.1155	-0.1292	-0.1056
Money	numNonChildren	13 - 1	0.0084	0.7439	0.7263	0.7426
Money	numNonChildren	14 - 1	0.0038	-0.0509	-0.0661	-0.0344
Money	numNonChildren	2 - 1	-0.1452	-0.0032	-0.0217	-0.0057
Money	numNonChildren	3 - 1	-0.0431	0.0240	0.0049	0.0224
Money	numNonChildren	4 - 1	0.0394	0.0388	0.0209	0.0375
Money	numNonChildren	5 - 1	0.0976	0.0319	0.0105	0.0266
Money	numNonChildren	6 - 1	0.1217	0.0550	0.0325	0.0470
Money	numNonChildren	7 - 1	0.1476	0.0367	0.0118	0.0293
Money	numNonChildren	8 - 1	0.1115	0.0228	0.0037	0.0291
Money	numNonChildren	9 - 1	0.0060	-0.1390	-0.1726	-0.1381
Money	$\operatorname{numNonChildUnderweight}$	1 - 0	0.0291	-0.0134	-0.0124	-0.0144
Money	numNonChildUnderweight	2 - 0	0.0871	-0.0012	0.0043	-0.0017
Money	numNonChildUnderweight	3 - 0	0.0661	-0.0148	-0.0070	-0.0190
Money	numNonChildUnderweight	4 - 0	0.0183	-0.0179	0.0081	-0.0100
Money	numNonChildUnderweight	5 - 0	0.0182	-0.0898	-0.0874	-0.0804
Money	numNonChildUnderweight	6 - 0	-0.0176	-0.2934	-0.2905	-0.2933
Money	numNonChildUnderweight	7 - 0	0.0157	0.0806	0.0836	0.0814
Money	region	Chittagong - Barisal	0.0913	0.1576	0.1593	0.1540
Money	region	Dhaka - Barisal	-0.0044	0.0948	0.0900	0.0889
Money	region	Khulna - Barisal	0.0384	0.0532	0.0491	0.0510
Money	region	Rajshahi - Barisal	0.0653	0.1030	0.0975	0.0989
Money	region	Rangpur - Barisal	-0.0519	-0.0514	-0.0575	-0.0566
Money	region	Sylhet - Barisal	0.0609	0.1084	0.1080	0.1036
Money	timeToTown	Symet Barrear	-0.0006	-0.0005	-0.0006	-0.0005
Food	adjUtility2		0.0000	-0.0014	-0.0013	-0.0013
Food	atleastHS	1 - 0	-0.0233	-0.0412	-0.0491	-0.0547
Food	cropConsumed	1 - 0	-0.0175	-0.0098	-0.0113	-0.0089
Food	householdIncome	_ •	-0.0000	-0.0000	-0.0000	-0.0000
Food	numChildren	1 - 0	0.0056	0.0017	0.0042	0.0026
Food	numChildren	2 - 0	0.0078	0.0150	0.0165	0.0176
Food	numChildren	3 - 0	-0.0092	-0.0397	-0.0014	-0.0490
Food	numChildren	4 - 0	-0.0017	-0.0677	-0.0679	-0.0694
Food	numChildren	5 - 0	-0.0013	-0.0674	-0.0676	-0.0690
Food	numChildUnderweight	1 - 0	-0.0004	-0.0044	-0.0053	-0.0034
Food	numChildUnderweight	2 - 0	-0.0071	-0.0116	0.0036	-0.0052
Food	numChildUnderweight	3 - 0	-0.0007	-0.0699	-0.0711	-0.0716
Food	numNonChildren	10 - 1	-0.0018	-0.1610	-0.1575	-0.1686
Food	numNonChildren	11 - 1	-0.0034	-0.1610	-0.1575	-0.1686
Food	numNonChildren	13 - 1	-0.0010	-0.1610	-0.1575	-0.1686
Food	numNonChildren	14 - 1	-0.0015	-0.1610	-0.1575	-0.1686
Food	numNonChildren	2 - 1	-0.0062	-0.0229	-0.0208	-0.0292
Food	numNonChildren	3 - 1	-0.0092	-0.0846	-0.0806	-0.0911
Food	numNonChildren	4 - 1	-0.0218	-0.1096	-0.1045	-0.1141
Food	numNonChildren	5 - 1	-0.0202	-0.1192	-0.1132	-0.1231
Food	numNonChildren	6 - 1	-0.0283	-0.1243	-0.1162	-0.1298
Food	numNonChildren	7 - 1	-0.0142	-0.1124	-0.0954	-0.1187
Food	numNonChildren	8 - 1	-0.0114	-0.1141	-0.1186	-0.1403

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
Food	numNonChildren	9 - 1	-0.0103	-0.1610	-0.1575	-0.1686
Food	num Non Child Underweight	1 - 0	0.0140	0.0031	0.0054	0.0042
Food	numNonChildUnderweight	2 - 0	-0.0108	-0.0162	-0.0158	-0.0114
Food	numNonChildUnderweight	3 - 0	0.0004	0.0093	-0.0020	0.0051
Food	numNonChildUnderweight	4 - 0	0.0002	0.0251	0.0136	0.0193
Food	numNonChildUnderweight	5 - 0	-0.0063	-0.0700	-0.0712	-0.0713
Food	numNonChildUnderweight	6 - 0	-0.0000	-0.0698	-0.0710	-0.0711
Food	numNonChildUnderweight	7 - 0	-0.0015	-0.0700	-0.0712	-0.0713
Food	region	Chittagong - Barisal	-0.0561	-0.0689	-0.0639	-0.0699
Food	region	Dhaka - Barisal	-0.0392	-0.0558	-0.0494	-0.0567
Food	region	Khulna - Barisal	0.0088	-0.0278	-0.0162	-0.0296
Food	region	Rajshahi - Barisal	-0.0259	-0.0541	-0.0408	-0.0527
Food	region	Rangpur - Barisal	0.0521	-0.0097	-0.0002	-0.0133
Food	region	Sylhet - Barisal	-0.0279	-0.0493	-0.0459	-0.0521
Food	timeToTown	J	0.0001	0.0002	0.0002	0.0002
Both	adjUtility2		-0.0000	-0.0017	-0.0016	-0.0016
Both	atleastHS	1 - 0	-0.0218	-0.0193	-0.0288	-0.0233
Both	cropConsumed	1 - 0	-0.0452	-0.0335	-0.0348	-0.0329
Both	householdIncome		-0.0000	-0.0000	-0.0000	-0.0000
Both	numChildren	1 - 0	0.0113	0.0086	0.0080	0.0082
Both	numChildren	2 - 0	0.0050	0.0045	0.0067	0.0023
Both	numChildren	3 - 0	0.0088	0.0012	0.0034	0.0360
Both	numChildren	4 - 0	-0.0034	-0.1022	-0.1050	-0.1036
Both	numChildren	5 - 0	-0.0022	-0.1026	-0.1053	-0.1040
Both	numChildUnderweight	1 - 0	0.0064	-0.0062	-0.0044	-0.0064
Both	numChildUnderweight	2 - 0	0.0045	0.0303	0.0095	0.0197
Both	numChildUnderweight	3 - 0	-0.0019	-0.1058	-0.1086	-0.1075
Both	numNonChildren	10 - 1	-0.0023	-0.0605	-0.0562	-0.0623
Both	numNonChildren	11 - 1	0.0011	0.1842	0.1843	0.1717
Both	numNonChildren	13 - 1	-0.0013	-0.0605	-0.0562	-0.0623
Both	numNonChildren	14 - 1	0.0039	0.7343	0.7362	0.7147
Both	numNonChildren	2 - 1	-0.0628	0.0135	0.0227	0.0149
Both	numNonChildren	3 - 1	0.0002	0.0462	0.0534	0.0459
Both	numNonChildren	4 - 1	0.0164	0.0506	0.0569	0.0494
Both	numNonChildren	5 - 1	0.0433	0.0566	0.0646	0.0540
Both	numNonChildren	6 - 1	0.0257	0.0434	0.0454	0.0422
Both	numNonChildren	7 - 1	-0.0042	0.0361	0.0387	0.0381
Both	numNonChildren	8 - 1	-0.0147	-0.0114	0.0028	-0.0018
Both	numNonChildren	9 - 1	0.0343	0.1239	0.1411	0.1178
Both	num Non Child Underweight	1 - 0	0.0210	0.0102	0.0081	0.0111
Both	${\bf numNonChildUnderweight}$	2 - 0	0.0467	0.0243	0.0225	0.0237
Both	${\bf numNonChildUnderweight}$	3 - 0	0.0199	0.0012	0.0007	0.0051
Both	${\rm numNonChildUnderweight}$	4 - 0	-0.0012	-0.0110	-0.0279	-0.0147
Both	${\bf num Non Child Under weight}$	5 - 0	0.0140	0.0947	0.0906	0.0839
Both	numNonChildUnderweight	6 - 0	0.0101	0.2542	0.2501	0.2525
Both	numNonChildUnderweight	7 - 0	-0.0022	-0.0979	-0.1020	-0.0992
Both	region	Chittagong - Barisal	-0.0781	-0.0994	-0.1029	-0.0972
Both	region	Dhaka - Barisal	-0.0508	-0.0629	-0.0672	-0.0621
Both	region	Khulna - Barisal	-0.0247	-0.0626	-0.0702	-0.0633

Choice	Variable	Contrast	$\sigma = 0$	$\sigma = 1.25$	$\sigma = 1.3$	$\sigma = 1.35$
Both	region	Rajshahi - Barisal	-0.0607	-0.0872	-0.0894	-0.0847
Both	region	Rangpur - Barisal	0.1139	0.0303	0.0296	0.0321
Both	region	Sylhet - Barisal	-0.0625	-0.0960	-0.0980	-0.0934
Both	timeToTown		0.0002	0.0003	0.0003	0.0003

11 Appendix C - GIS Maps: Utilization by Region

Figure 1: Proportion of households that did not utilize any Social Safety Nets.

Figure 2: Proportion of households that only utilized monetary Social Safety Nets.

Figure 3: Proportion of households that only utilized food Social Safety Nets.

Figure 4: Proportion of households that utilized both Social Safety Nets.

Figure 5: Number of Households in Survey by Region

12 Appendix D - Additional Graphs: Distribution and Eligibility

*Note on Graphs: Choice Utilization of 1 indicates any Social Safety Net was utilized and a 0 indicates no Social Safety Net was utilized.

Figure 6: Scatter plot of total value of Social Safety Nets utilized versus total household income.

Figure 7: Scatter plot of total value of Social Safety Nets utilized versus total employment income.

Figure 8: Scatter plot of total value of Social Safety Nets utilized versus household income per member.

Figure 9: Scatter plot of total value of Social Safety Nets utilized versus employment income per member.

Figure 10: Scatter plot of total value of Social Safety Nets utilized versus Rurality (via time to nearest town).

Figure 11: Household Size and Utilization Level

Figure 12: Number of Children and Utilization Level

Figure 13: Number of Non-Children and Utilization Level