22 April 2019

ZUBKOV MAKSIM, DCAM 777

MASTERING THE GAME OF GO WITH DEEP NEURAL NETWORKS AND TREE SEARCH

AGENDA

- Problem Setting
- MCTS
- Learning process
- Classification policy network
- Reinforcement learning policy network
- Regression value network
- MCTS_Tic-Tac-Toe implementation

PROBLEM SETTING

- Go is a Markov game a game of perfect information
- States space S
- Action space $\mathcal{A}(s)$
- \triangleright Value function v^*
- Reward $r^{i}(s) : r^{1}(s) = -r^{2}(s)$

- \blacktriangleright Transaction function f(s, a)
- Outcome $z_t = \pm r(s_T)$

PROBLEM SETTING

- Policy probability distribution over legal actions $p(a \mid s)$
- Expected outcome if all actions for both players are selected according to policy $v^p(s)$
- Most of games are to

 $v^*(s)$ – the outcome of the game from every state s under perfect play by all players

$$v^*(s) = \begin{cases} z_T, & \text{if } s = s_T \\ \max_a - v^*(f(s, a)), & \text{otherwise} \end{cases}$$

$$v^p(s) = \mathbb{E}\left[z_t \ s_t = s, a_{t...T} \sim p\right]$$

MCTS

- ightharpoonup Prior probability P(s, a)
- MC estimates of total action value $W_v(s, a)$; $W_r(s, a)$
- Number of evaluations and rollout rewards $N_v(s, a); N_r(s, a)$
- Combined mean action value for edge Q(s, a)

- Selection
- Evaluation
- Backup
- Expansion

LEARNING PROCESS

- SL policy network p_{σ}
- Fast policy that can rapidly p_{π}
- PRL policy network p_{ρ}

CLASSIFICATION POLICY NETWORK

- Random selected minibatch $\{s^k, a^k\}_{k=1}^m$
- Predict the winner of games played by the RL policy network against itself v_{θ}

$$\Delta \sigma = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial \log p_{\sigma}(a^k \mid s^k)}{\partial \sigma}$$

REINFORCEMENT LEARNING POLICY NETWORK

n games

$$z_t^i = \pm r(s^{T^i})$$

- Playing until termination on T^i step
- Predict the winner of games played by the RL policy network against itself
 Ti 31

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i \mid s_t^i)}{\partial \rho} (z_t^i - v(s_t^i))$$

VALUE NETWORK REGRESSION

Random sampling U

Sampling t = 1...U - 1 moves from SL policy network $a_t \sim p_{\sigma}(\cdot \mid s_t)$

Semple one move random from all avaliable moves a_U Then sampling moves until the end, t = U + 1..T

Finally get
$$z_t = \pm r(s_T)$$

Then semple $v^{p_\rho} = \mathbb{E}\left[z_{U+1}, a_{U+1...T} \sim p_\rho\right]$

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial v_{\theta}(s^k)}{\partial \theta} (z^k - v_{\theta}(s^k))$$

TIC-TAC-TOE

- Blue draw
- Red player win
- Green computerwin

THANK YOU FOR LISTENING!