CS457/557 Computational Intelligence and Machine Learning

Central Washington University

Gradient Descent - Definition

- Gradient descent is an optimization algorithm which is commonlyused to train machine learning models and neural networks.
- It trains machine learning models by minimizing errors between predicted and actual results minimize the cost function.
- Training data helps these models learn over time, and the cost function within gradient descent specifically acts as a barometer, gauging its accuracy with each iteration of parameter updates.
- Until the function is close to or equal to zero, the model will continue to adjust its parameters to yield the smallest possible error.

- Method to find local optima of differentiable a function f
 - Intuition: gradient tells us direction of greatest increase, negative gradient gives us direction of greatest decrease
 - Take steps in directions that reduce the function value
 - Definition of derivative guarantees that if we take a small enough step in the direction of the negative gradient, the function will decrease in value
 - How small is small enough?

Gradient Descent Algorithm:

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t)$$

where α_t is the t^{th} step size (sometimes called learning rate)

Gradient Descent Algorithm:

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t)$$

where α_t is the t^{th} step size (sometimes called learning rate)

When do we stop?

Gradient Descent Algorithm:

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t)$$

where α_t is the t^{th} step size (sometimes called learning rate)

Possible Stopping Criteria: iterate until $\|\nabla f(x_t)\| \le \epsilon$ for some $\epsilon > 0$

How small should ϵ be?

Gradient Descent: Convex Functions

- For convex functions, local optima are always global optima (this follows from the definition of convexity)
 - If gradient descent converges to a critical point, then the result is a global minimizer
- Not all convex functions are differentiable, can we still apply gradient descent?

Gradients of Convex Functions

• For a differentiable convex function g(x) its gradients yield linear underestimators

Gradients of Convex Functions

• For a differentiable convex function g(x) its gradients yield linear underestimators

Gradients of Convex Functions

• For a differentiable convex function g(x) its gradients yield linear underestimators: zero gradient corresponds to a global optimum g(x)

