

# 转发表设计

#### 路由器实验团队

2020年10月

#### 主要内容

#### **Contents**

- 转发表功能
- 转发表数据结构
- 转发表性能
- 实现思路



#### 转发表功能

- IP分组转发的依据是转发表
  - Forwarding Table,也称FIB, Forwarding Information Base
- 每个表项包含网络前缀及下一跳信息
  - 网络前缀: IP地址前缀、前缀长度或子网掩码
  - 下一跳信息:下一跳接口、下一跳IP地址
- 转发表的操作
  - 插入、更新、删除:软件更新转发表时使用,精确匹配
  - 查询:转发时查询转发表,最长前缀匹配
    - 性能要求高,影响转发速率
- ✓ 编程作业中已练习过基本操作



### 转发表功能

- 转发时, 若转发表中无法查到对应表项
  - 生成一个ICMP Destination Unreachable (Type 3, Code 0)报文并发送给源IP地址(本实验中可选)
    - 需要(再次)查询转发表,获得源IP地址的下一跳信息
    - 该报文TTL可根据实现选取,一般为64或255
    - 包含原IP分组头部及至少8字节有效载荷
    - 若该IP分组已经为ICMP错误报文,则不再发送



#### 转发表数据结构

- 转发表需要基于硬件实现,优化性能
- 蛮力查找
  - 实现简单,性能不佳
- 基于树的数据结构
  - Trie:将IP地址前缀视作字符串,实现最长前缀匹配
  - 压缩Trie:减少树的深度,优化存储空间和性能
- 其他高级数据结构与算法
  - Luleå、Poptrie、.....
- 同时,需要方便软件修改转发表





## 转发表性能





#### 实现思路

- 如何在实验板(XC7A200T)上存储转发表?
  - BRAM: 365×36Kib=1642.5KiB, 最少1周期延迟
  - LUTRAM: 2888Kib=361KiB, 组合逻辑
  - SRAM: 2×2×16Mib=8192KiB, ~10ns
  - 容量越大,延迟越大
- 每条表项约98 bits ( 32+32+32+2 )
  - 若蛮力存储,1000条约11.96KiB
- 存储后,可实现相应数据结构
- 需要为CPU上的软件提供访问接口(后续介绍)
  - 提供访问和配置寄存器?共享内存,暴露存储?



## 本周任务

- 进一步完善转发逻辑
- 设计并实现转发表





# 谢谢