DEVELOPMENT OF REPAIR PROCESSES AND SOURCES FOR C/KC-135 AIRCRAFT WINDOWS/WINDSHIELDS

RICHARD J. OLSON

BATTELLE 505 KING AVENUE COLUMBUS, OH 43201

SEPTEMBER 1994

TECHNICAL REPORT FOR 09/91 - 01/94 C/KC-135 FINAL REPORT CONTRACT NUMBER FO9603-90-D-2217-SD02

DISTRIBUTION AUTHORIZATION:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

PREPARED FOR OKLAHOMA CITY AIR LOGISTICS CENTER TINKER AFB, OK 73145

19941129 087

This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 1994 Technical, C/KC-135 Final Report, 9/01/91 -01/31/94 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Development of Repair Processes and Sources for C/KC-135 Aircraft Windows/Windshields 6. AUTHOR(S) Richard J. Olson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Battelle Contract FO9603-90-505 King Avenue D-2217-SD02 Columbus, Ohio 43201-2693 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Oklahoma City Air Force Logistics Center VEP87CR52R1 OC-ALC/TIETR 3001 Staff Drive, Suite 2AF66A Tinker AFB, OK 73145-3040 Technology Transition Office ASC/SMT 2690 C, Suite 5 Wright-Patterson AFB, OH 45433-7412 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited 13. ABSTRACT (Maximum 200 Words) The U.S. Air Force has historically rejected the notion of using repaired windows/windshields (W/WS). With increasing pressure to reduce fleet operating costs and based on the favorable experience that commercial fleets have had, interest in using repaired W/WS is receiving greater attention. To ensure that repaired W/WS are safe and that they provide similar benefits for the Air Force, a program of evaluation and testing was undertaken to compare new and repaired C/KC-135 W/WS. Optical and electrical properties, pressure integrity, and bird impact resistance of repaired and new W/WS have been evaluated. The bird impact test results are the first data that the Air Force has collected for C/KC-135 W/WS. The functional testing indicated that repaired W/WS are not equal to new W/WS; the new W/WS outperform the repaired W/WS. In terms of removal for cause criteria and absolute performance requirements, however, the repaired W/WS appear to be "good enough." Concerning costs, the direct costs for repair of the W/WS in this program ranged from 65-75% of new W/WS cost, suggesting that money can be saved.

15. NUMBER OF PAGES 14. SUBJECT TERMS Aircraft Transparencies, C/KC-135, Windows/Windshields, Repairs, 264 Pressure Cycle Testing, Falling Ball Impact Testing, Bird Impact 16. PRICE CODE Testing, Repaired Window/Windshield Costs Analysis 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE OF REPORT Unclassified Unclassified Unlimited Unclassified

BAR QUALETY INCRECISED 5

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39.18 298-102 This page intentionally left blank.

TABLE OF CONTENTS

REPORT DOCUMENTATION PAGE iii	
TABLE OF CONTENTS	
LIST OF TABLES vi	
LIST OF FIGURES vii	
SUMMARY x	
PREFACE xii	
1.0 INTRODUCTION	
1.1 Background	
1.2 Objective	
1.3 Approach	
1.4 Report Contents	
•	
2.0 PROTOTYPE SELECTION	
2.1 C/KC-135 W/WS	
2.2 Program Prototypes	
2.3 C/KC-135 #1 and #4 W/WS 5	
3.0 W/WS REPAIRS	
3.1 Aircraft W/WS Damage	
3.2 Repair Vendors	
3.2.1 NORDAM Transparency Division	
3.2.2 Perkins Aircraft Services, Inc	
3.2.3 The Glass Doctor	
3.3 Repair Details	
4.0 PERFORMANCE TESTING	
4.1 Test Philosophy	
4.2 Quality Assurance	
4.3 General Inspection	
4.3.1 Test Procedures	
4.3.1.1 General Visual Examination	
4.3.1.2 W/WS Dimensional Measurements	
4.3.1.3 Basic Electrical Measurements	1
4.3.1.4 Heater Operation Tests	
4.3.1.5 Optical Performance	Ä
4.3.2 General Inspection Test Results	님
4.4 Pressure Integrity	tJ
4.4.1 Test Procedures	Openia, relative and the constraints where
4.4.1.1 Proof Pressure Test	
4.4.1.2 Cyclic Durability Test	
	des
	V 11
	A .5],

TABLE OF CONTENTS (Continued)

4.4.2 Test Facility	18
4.4.3 Test Results	
4.5 Residual Strength Assessment	20
4.5.1 Test Procedures	
4.5.2 Test Facility	
4.5.3 Test Results	
4.6 Bird Impact Testing	
4.6.1 Test Procedures	
4.6.2 Test Facility	
4.6.3 Test Results	
4.7 Performance Testing Summary	23
TA COOT AND A VIOLO	24
5.0 COST ANALYSIS	
5.1 Repair Costs	24
5.2 Costs of New W/WS	
5.3 Cost Comparison	24
6.0 CONCLUSIONS, RECOMMENDATIONS, and DISCUSSION	25
6.1 Conclusions	25
6.2 Recommendations	
6.3 Discussion	29
7.0 REFERENCES	31
APPENDIX A. REPAIR VENDOR AIR AGENCY CERTIFICATES	
	3-1
APPENDIX C. BIRD IMPACT DATA SHEETS	C-1
LIST OF TABLES	
Table 2.1 C/KC-135 W/WS Part Numbers	33
Table 2.2 C/KC-135 Program W/WS	
Table 2.3 C/KC-135 #1 and #4 W/WS Dimensions	36
Table 3.1 C/KC-135 Repaired and Not Repaired #1 W/WS in the Test Program	37
Table 3.2 C/KC-135 Repaired and Not Repaired #4 W/WS in the Test Program	38
Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements	
Z COU Z COURTED V V V V V V V V V V V V V V V V V V V	39
Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements	
	41
Table 4.3 C/KC-135 #1 W/WS Basic Electrical Measurements Test Results	43

LIST OF TABLES (Continued)

Table 4.4 C/KC-135 #4 W/WS Basic Electrical Measurements Test Results	44
Table 4.5 C/KC-135 #1 W/WS Heater Operation Test Results	
Table 4.6 C/KC-135 #4 W/WS Heater Operation Test Results	
Table 4.8 C/KC-135 #4 W/WS Optical Performance Test Results	
<u> </u>	
Table 4.10 C/KC-135 #4 W/WS Pressure Integrity Test Results	
Table 4.11 C/KC-135 #1 W/WS Residual Strength Ball Drop Test Results	51
Table 4.12 C/KC-135 #4 W/WS Residual Strength Ball Drop Test Results	
Table 4.13 C/KC-135 #1 W/WS Bird Impact Test Results	53
Table 4.14 C/KC-135 #4 W/WS Bird Impact Test Results	54
Table 4.15 C/KC-135 W/WS General Inspection Summary	55
Table 4.16 C/KC-135 W/WS Pressure Integrity Test Summary	56
Table 4.17 C/KC-135 W/WS Ball Drop Residual Strength Test Summary	56
Table 4.18 C/KC-135 W/WS Bird Impact Test Summary	57
Table 4.19 C/KC-135 #1 W/WS Mounting Edge Measurements and Bird Impact	
Test Results	58
Table 5.1 Initial C/KC-135 W/WS Repair Estimates	
Table 5.2 C/KC-135 #1 W/WS Actual Repair Costs	
Table 5.3 C/KC-135 #4 W/WS Actual Repair Costs	
Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS	62
Table 5.5 C/KC-135 New W/WS Costs	65
Table 5.6 Repair Cost Comparison Data for C/KC-135 W/WS	65
LIST OF FIGURES	
Figure 2.1 C/KC-135 W/WS Identification	
Figure 2.2 C/KC-135 W/WS Construction	
Figure 2.3 W/WS Construction Showing Location of Slip Planes	
Figure 2.4 C/KC-135 #1 W/WS Cross-Section	
Figure 2.5 C/KC-135 #4 W/WS Cross-Section	70
Figure 3.1 The Glass Doctor Patented Technique for Repair of Conical Cracks in	
Laminated Glass, U.S. Patent # 3,841,932	71
Figure 3.2 The Glass Doctor Patented Technique for Repair of Delaminations,	~~
O'D' Tubble " 19.007.00	72
Figure 4.1 C/KC-135 #1 W/WS Thermal Images From the Heater Test	13
Figure 4.2 C/KC-135 #4 W/WS Thermal Images From the Heater Test	14
Figure 4.3 Worst Optical Distortion Found in Any C/KC-135 #1 W/WS	7.
(S/N 83-H-11-7-432)	75

LIST OF FIGURES (Continued)

Figure 4.4 Worst Optical Distortion Found in Any C/KC-135 #4 W/WS	
(S/N 87-H-04-20-130)	. 76
Figure 4.5 Pressure Integrity Testing Facility	. 77
Figure 4.6 C/KC-135 #1 W/WS Pressure Integrity Mounting Frame	
Figure 4.7 C/KC-135 #4 W/WS Pressure Integrity Mounting Frame	
Figure 4.8 C/KC-135 W/WS Mounting Details	
Figure 4.9 Typical C/KC-135 #1 W/WS Pressure Integrity Test Set Up	. 81
Figure 4.10 Typical C/KC-135 #4 W/WS Pressure Integrity Test Set Up	. 82
Figure 4.11 Worst Delamination Observed in a C/KC-135 #1 W/WS From Pressur	e
Cycling (Repaired W/WS, S/N 82-H-09-06-537)	. 83
Figure 4.12 Worst Delamination Observed in a C/KC-135 #4 W/WS From Pressur	е
Cycling (Repaired W/WS, S/N 5-H-12-16-47)	. 84
Figure 4.13 Residual Strength Falling Ball Test	. 85
Figure 4.14 #1 W/WS Residual Strength Falling Ball Impact Test Showing Test	
Set Up and Consequences of Two Ball Drops (New W/WS, S/N 86-H-10-06-0	162)86
Figure 4.15 #1 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Outboard	
View (S/N 82-H-9-6-537)	. 87
Figure 4.16 #1 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Inboard	
View (S/N 82-H-9-6-537)	. 88
Figure 4.17 #4 W/WS Residual Strength Falling Ball Impact Test Showing Test	
Set Up and Test Result (New W/WS, S/N 92-093-HO-388)	. 89
Figure 4.18 #4 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repaired and Subsequently Delaminated W/WS, Outboard View	
(S/N 5-H-12-16-47)	. 90
Figure 4.19 #4 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repaired and Subsequently Delaminated W/WS, Inboard View	
(S/N 5-H-12-16-47)	
Figure 4.20 C/KC-135 #1 W/WS Bird Impact Mounting Frame	. 92
Figure 4.21 C/KC-135 #4 W/WS Bird Impact Mounting Frame	. 93
Figure 4.22 C/KC-135 #1 W/WS Mounting Hardware Details	. 94
Figure 4.23 Schematic of the PPG Bird Cannon	. 95
Figure 4.24 Support Frame Used for Bird Impact Testing for C/KC-135 W/WS	. 96
Figure 4.25 Typical Pre-Test View of C/KC-135 #1 W/WS (Copilot) Prior to	^=
Bird Impact Testing	. 97
Figure 4.26 Typical Pre-Test View of C/KC-135 #4 W/WS (Pilot) Prior to	
Bird Impact Testing	. 98
Figure 4.27 Bird Impact Test Set Up Showing Impact Velocity Timing Trap (Right)
and Front High Speed Film Camera Equipment (Center)	. 99
Figure 4.28 Bird Impact Spall Sheet Viewed From Behind a C/KC-135 #1 W/WS	100

LIST OF FIGURES (Continued)

Figure 4.29 C/KC-135 #1 W/WS Showing No Damage From a 4-Pound Bird Impact	t
at 250.8 Knots (Repaired W/WS, S/N 89-286-HO-697)	101
Figure 4.30 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 251.7 Knots, Front View (New W/WS, S/N 86-H-10-06-007)	102
Figure 4.31 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 251.7 Knots, Rear View (New W/WS, S/N 86-H-10-06-007) .	103
Figure 4.32 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound	
Bird Impact at 249.4 Knots, Front View (Repaired W/WS, S/N 82-H-10-18-10)	7)104
Figure 4.33 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound	
Bird Impact at 249.4 Knots, Rear View (Repaired W/WS, S/N 82-H-10-18-107) 105
Figure 4.34 Spall Sheet Condition From a 4-Pound Bird Impact at 249.4 Knots on	
a C/KC-135 #1 W/WS With All Glass Plies Failed (Repaired W/WS,	
S/N 82-H-10-18-107)	106
Figure 4.35 C/KC-135 #4 W/WS Showing No Damage From a 4-Pound Bird Impact	
at 248.7 Knots (Not Repaired W/WS, S/N 4-H-10-9-69)	107
Figure 4.36 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 247.5 Knots, Front View (Repaired W/WS, S/N B75-1149)	108
Figure 4.37 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 247.5 Knots, Rear View (Repaired W/WS, S/N B75-1149)	109
Figure 4.38 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure	
From a 4-Pound Bird Impact at 250.8 Knots, Front View (Not Repaired W/WS	
S/N 7-H-2-4-35)	110
Figure 4.39 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure	
From a 4-Pound Bird Impact at 250.8 Knots, Rear View (Not Repaired W/WS,	
S/N 7-H-2-4-35)	111
Figure 4.40 Spall Sheet and W/WS Condition From a Catastrophic 4-Pound Bird	
Impact at 250.8 Knots on a C/KC-135 #4 W/WS (Not Repaired W/WS,	
S/N 7-H-2-4-35)	112
Figure 6.1 Heat Strengthened Glass Residual Stresses	113

SUMMARY

The Air Force, in trying to reduce fleet maintenance costs, is considering using repaired windows/windshields (W/WS). Based on reported cost savings and favorable experience that commercial fleets have had with repaired W/WS, the use of repaired W/WS seems very attractive. Before adopting an operating policy to use repaired W/WS, however, the Air Force decided that structural performance testing of repaired W/WS and a cost analysis were required.

The approach followed for evaluating whether the use of repaired W/WS is justified was to procure some used C/KC-135 W/WS, make repairs on them, and then subject the repaired W/WS to a series of tests to determine the difference in performance when compared with new W/WS. The cost to make the repairs provides the data for the cost benefit analysis. The test results provide the data for an evaluation of fitness for purpose of repaired W/WS.

The testing conducted for this program represents the first full-range, systematic testing of the structural integrity of repaired W/WS for transport-type aircraft. Optical and electrical properties, pressure integrity, and bird impact resistance have been evaluated. In addition, the bird impact test results are the first data that the Air Force has collected for C/KC-135 W/WS.

The test results indicate that repaired W/WS have been restored to a condition better than the prevailing C/KC-135 Technical Order replacement criteria, but they do not perform as well as new W/WS. Many of the repaired W/WS still contain defects that would not pass an OEM quality assurance inspection. Some delamination occurred in a few of the repaired W/WS during pressure cycling, but it was not severe. The residual strength of the pressure cycled W/WS tends to suggest that the repaired W/WS are not quite as good as new W/WS. The bird impact test results are quite clear - new W/WS outperform either repaired or unrepaired W/WS. At the 250 knot impact velocity used in this program, all of the new and repaired #1 and #4 W/WS do, however, meet the no bird penetration requirement, while two of the repaired #1 W/WS technically failed the no spall criterion. From a practical viewpoint, the spall was very modest. One W/WS that was not repaired because of an out of specification heater resistance, failed catastrophically in the bird impact test.

Although repaired W/WS do not perform as well as new W/WS, they were, in fact, restored to a condition better than the prevailing C/KC-135 Technical Order W/WS replacement criteria. On the basis of the fact that they would not be removed from service if found on an aircraft, and the fact that they prevented bird penetration, repaired W/WS appear to be "good enough," at least at a 250 knot bird impact velocity.

The cost analysis indicates that savings may be realized. For this program, the cost of making the repairs was 75-percent of the new W/WS purchase price for #1 W/WS and 65-percent for the #4 W/WS. Considering all five of the C/KC-135 W/WS types and the full

range of estimates, quotes, and actual costs, repairing a C/KC-135 W/WS might cost as little as 41-percent of a new W/WS, but it could also cost as much as 132-percent.

The cost savings are only the direct repair costs. To this must be added the direct cost of transportation and the indirect costs of procuring the service (contracting), administrating it (accounts payable, records management, etc.) and operating it (storage, shipping and handling, outgoing/incoming inspection, etc.). Offsetting these items are a reduced burden, both economic and environmental, from lower landfill costs for W/WS that are taken out of service. These factors will certainly impact the economics and to ignore them would be a false economy. The Air Force should do a complete cost/benefit analysis to satisfy themselves that there is a true economic advantage to using repaired W/WS.

A significant peripheral finding from this study is that a blanket 10-year transport-type aircraft W/WS replacement policy cannot be justified, if W/WS manufacture date is used as the indicator of age. The new W/WS used in this program were manufactured in 1986, and they showed no evidence of degradation due to being in storage for 7 years. To remove and replace these W/WS in 1996, solely on the basis of age, would be wasting operating and maintenance dollars. A better scheme for tracking service history and a service-history-based replacement criterion must be devised for a blanket W/WS replacement policy.

Recommendations that can be made as a result of the work performed on this program are contingent upon the Air Force making a decision, based on the available data, that the performance of repaired W/WS is acceptable. If, in the opinion of the Air Force, the performance of repaired W/WS is deemed "good enough," recommendations are made for approved W/WS repair vendors and repair processes. Recommendations for operating a W/WS repair program are also made.

PREFACE

The work reported herein was performed by Battelle, Columbus, Ohio, under Air Force Contract FO9603-90-D-2217-SD02, "Development of Repair Processes and Sources for C/KC-135 and B-52 Aircraft Windows/Windshields." The program was directed by the Oklahoma City Air Logistics Center (OC-ALC) at Tinker Air Force Base. Air Force administrative direction was provided by Ms. Cindy Cooper, OC-ALC/LADCB. Air Force technical direction was provided by Mr. Robert Koger, OC-ALC/TIETR.

The work was performed during the period of September 1991 to January 1994. The technical program at Battelle was directed by Mr. Richard Olson of Battelle's Engineering Mechanics Department and Mr. Dennis Miller of Battelle's Polymer Center. The author wishes to acknowledge Mr. Herb Goodrich of PPG Industries, Inc. Aircraft Products Division in Huntsville, Alabama for coordinating and conducting the W/WS testing, and Mr. Ryan Rice at Battelle for preparation of the manuscript.

1.0 INTRODUCTION

1.1 Background

Several facilities exist for repairing aircraft windows/windshields (W/WS), and with U.S. Federal Aviation Authority (FAA) approval, many commercial airlines are currently utilizing these services. The cost of repairing a W/WS is substantially less than the purchase price of a new W/WS for commercial fleets, so the incentive for them to use repaired W/WS is large. The favorable experience that the commercial fleet has had with repaired W/WS suggests that they will continue to use repaired W/WS in the foreseeable future.

The U.S. Air Force has historically rejected the notion of using repaired W/WS. With decreasing Congressional funding for the military, measures to reduce fleet operating costs are receiving greater scrutiny. Based on the experience that the commercial fleet has had with repaired W/WS, the issue of using repaired W/WS on military aircraft is now being systematically considered. To ensure that repaired W/WS are safe and that they provide a similar cost savings benefit to the Air Force, a program of thorough evaluation and testing was required.

In September 1991, the Air Force contracted with Battelle to investigate the consequences and impact of using repaired W/WS. The program was to evaluate feasibility by testing the functional performance of repaired W/WS and by performing an economic analysis. Adequate functional performance and a favorable economic analysis would then provide the justification for a recommendation to use repaired W/WS.

The maintainability of Air Force fleet aircraft is an on-going concern because many of the aircraft in the current inventory are projected to have significant roles for many more years (10 to 20 years). By decreasing the lead time and procurement costs for W/WS, the maintainability of the fleet is enhanced. Furthermore, by gaining more control over the spare parts inventory, fewer new parts will be required and the costs of the W/WS program will be reduced.

1.2 Objective

The objective of this program was to provide a rationale for either accepting or rejecting the use of repaired W/WS in Air Force fleet aircraft.

1.3 Approach

The approach followed for evaluating whether use of repaired W/WS is a viable option for the Air Force was to procure some used W/WS, make prototypical repairs on them, and then subject the repaired W/WS to a battery of tests to see if there is any difference in performance when compared with new W/WS. Making prototypical repairs provides

baseline data for repair costs. The battery of tests provides an evaluation of fitness for purpose of the repaired W/WS.

The W/WS selected for evaluation in this program were from C/KC-135 aircraft. These W/WS are of typical laminated glass and plastic construction and include integral heaters. Repairs considered in this program included surface damage, delamination, electrical heater problems, broken layers, and seal/mounting problems. Repairs were subcontracted to commercial fleet W/WS repair stations with instructions to return repairable W/WS to Original Equipment Manufacturer (OEM) specifications per the approved processes in the repair vendor's FAA W/WS Air Agency Certificates. The direct costs for performing the repairs on the test prototypes forms the foundation of the economic analysis.

The approach to evaluating the functional performance of the repaired W/WS involved a rigorous set of tests designed to determine if the repair processes have degraded the W/WS when compared with new W/WS. Both repaired and new W/WS were subjected to pressure, impact, optical, and heater operation tests, similar in spirit to W/WS qualification tests. Provided that the repaired and new W/WS perform the same, the use of repaired W/WS can, at least on a performance basis, be justified.

1.4 Report Contents

In the sections that follow, the results of this $2\frac{1}{2}$ -year study are presented. The report begins with a discussion of the selection of repair candidate prototypes for the program and ends with recommendations for the Air Force on implementing a W/WS repair program. Topics presented include:

- C/KC-135 W/WS construction details
- Selection and condition of the W/WS repaired in this program
- A generic discussion of glass-laminate aircraft W/WS repairs, identification of the repair vendors that were involved with this program, and details of the actual repairs made to the W/WS
- Repaired W/WS performance evaluation, including test procedures, pass/fail criteria, and test results
- A cost analysis
- Conclusions and recommendations.

2.0 PROTOTYPE SELECTION

The C/KC-135 aircraft was selected as the prototype for evaluating the feasibility of using repaired W/WS because the number of aircraft in the fleet is fairly high, the C/KC-135 is projected to be in service for many more years, and because the repair vendors have direct experience repairing the essentially equivalent Boeing 707 W/WS. The C/KC-135 has 10 cockpit W/WS identified in Figure 2.1, 5 on the pilot side and 5 on the copilot side. The set of five W/WS on the copilot side are a mirror image of the pilot side W/WS. W/WS #1 is the forward W/WS, #2 and #3 are side W/WS, and #4 and #5 are eyebrow W/WS. All of the W/WS except #2 are fixed in position. W/WS #2 opens to provide ventilation and ground communication by sliding aft on a track. Table 2.1 lists the current part numbers for the C/KC-135 W/WS.

2.1 C/KC-135 W/WS

Figure 2.2 shows the general construction of the C/KC-135 W/WS. The C/KC-135 W/WS have a three-part glass and vinyl laminate construction. The inner layer is thick, heat-strengthened plate glass designed to withstand cabin pressure forces. A transparent, plasticized, polyvinyl butyral core layer acts as the "fail-safe" load carrying member and prevents shattering in the event of inner ply failure. The outer ply is a relatively thin layer of heat-strengthened glass with no structural significance, but it provides rigidity and a scratch-resistant surface. A phenolic or masonite filler strip, located around the edge of the W/WS, and a metal filler strip embedded in the vinyl provide the means to attach the W/WS to the airframe. Vinyl or vinyl and rubber bumpers protect the sides of the outer ply.

The structural integrity design of C/KC-135 cockpit W/WS is based on two requirements: "fail-safe" pressure integrity and bird impact resistance. The "fail-safe" pressure integrity is founded on two redundant systems, an inner glass ply that can sustain the full rated cabin pressure in the absence of all other layers, and a polymeric core ply that can maintain pressure integrity if the inner and outer glass plies are cracked. The bird impact structural integrity of W/WS is either characterized as "bird bagging" or "bird bounce." Bird bagging W/WS, typically two glass layers with a polymeric core ply, stop bird penetration by large ductile deformation of the core ply, i.e., "bagging" the bird. Bird bounce W/WS are typically multilaminates and cause the bird to "bounce" off the W/WS. The C/KC-135 W/WS main cockpit W/WS are "bird bagging" W/WS.

The glass used in C/KC-135 W/WS is heat strengthened to provide resistance to cracking. The glass is heated to near the softening point and then quenched to produce compressive residual stresses that extend from the outer surface into a depth of about 1/6th of the glass thickness. Below the compressive stress layer lies tensile residual stresses. As long as surface defects do not penetrate into the tensile layer, the glass will exhibit a high resistance to fracture. Once a crack does fully penetrate the tensile layer, the glass will shatter as the tensile stresses are relieved.

The vinyl core, which acts as the "fail-safe" pressure boundary and means for controlling glass fragments in the event of a glass ply failure, is highly plasticized polyvinyl butyral. The vinyl is relatively brittle at low temperatures (-65° F), and unable to absorb much energy per unit volume. At temperatures approaching 130° F, the vinyl becomes very ductile and can absorb a relatively large amount of energy as it is loaded. W/WS heaters, which not only de-fog and de-ice the glass, ensure that the vinyl remains ductile.

An integral part of the C/KC-135 W/WS construction is slip planes or a parting medium at the edges of the glass. A slip plane is located between both the inner glass ply and the vinyl and the outer glass ply and the vinyl as shown in Figure 2.3. The slip planes are thin strips of material at the glass-vinyl interface that keep the glass from bonding to the vinyl. This allows the various plys to move independently at these locations in response to pressure loads and differential thermal expansion. Without the slip planes, the glass at the edges of the W/WS would be prone to fracture because it would exceed its strain limit as it tried to move with the underlying vinyl. The slip planes form a "softer" connection that promotes a more gradual build up of strains in the glass so that it does not exceed its strain capacity. Although the slip planes look similar to delamination, they are not defects but an intentional part of the W/WS design.

The C/KC-135 cockpit W/WS contain heating systems for anti-icing and/or anti-fogging. An electrically conductive film of pyrolytic tin oxide between the outer ply and vinyl core ply is used to heat the #1 and #2 W/WS to reduce ice/frost formation. A similar conductive film between the inner ply and core ply is used on #3, #4, and #5 W/WS for defogging only. The W/WS heating system, so called NESA® coated glass, uses the resistivity of the film to provide the heating. The #1 W/WS also contain fine wires at the W/WS edges between the outer glass ply and vinyl, so-called edge heaters, to correct a heating power deficiency in the corner. The temperature of the #1 and #2 W/WS is controlled with an integral sensor. Externally applied thermal switches control the temperature of #3, #4, and #5 W/WS.

A temperature sensor embedded in the laminate of the #1 W/WS regulates the temperature of the #1 and #2 W/WS when the heater is on. The sensor, a negative temperature coefficient (NTC) thermistor, exhibits increasing resistance with increasing temperature. When wired in an appropriate power amplifier control circuit, as the W/WS and sensor temperature rises, the sensor resistance increases. This causes the control amplifier to shut off current to the W/WS, and hence power dissipated by the heater film, thus reducing the temperature. When the temperature drops below a lower setpoint, the control amplifier turns power back on to the W/WS.

Seals on the W/WS keep cabin pressure in and moisture out. In addition, they act as vibration and shock absorbers and help to compensate for differential thermal expansion. W/WS #3, #4, and #5 utilize a silicone rubber molded-in-place pressure seal that is molded to the W/WS mounting surface. Drawing the W/WS tight to the airframe with its mounting bolts effects the seal. On the #2 W/WS, a bellcrank mechanism presses the W/WS against the airframe when it is closed and latched. The #1 W/WS uses a molded-in-place seal similar the other W/WS, except that a stainless steel Z-channel is sandwiched between a

silicon rubber cushion and a beaded pressure seal. The mounting bolts provide the pressure to hold the W/WS tight against the airframe. All of the C/KC-135 W/WS mount from the inside of the aircraft.

2.2 Program Prototypes

OC-ALC made arrangements to have C/KC-135 W/WS that were removed from fleet aircraft at Tinker AFB shipped to Battelle. Over 100 W/WS were screened to find 75 prototype repair candidates. All five C/KC-135 W/WS types were included in the 75 W/WS population. At the time of their removal, the W/WS were judged not serviceable per the criteria of the applicable C/KC-135 Fuselage Window Tech Order, Section 8 of T.O. 1C-135(K)A-2-2. Indicated reasons for removal from service included: failed heaters, bubbles, scratches, separation, leaks, old, discolored, and corrosion.

The service history of the prototype repair candidates is not known because: 1) very few of the W/WS had airframe numbers, 2) W/WS are not tracked by serial number, and 3) planes are moved from location to location as a part of normal squadron rotation. In most instances, the date of removal from service was not noted. The installation date is not known for any of the W/WS. All that is known for certain is the year the W/WS was made; the first one or two digits of the serial number indicate the year the W/WS was made - a single digit is a 1970's vintage W/WS.

Table 2.2 lists the type, serial number, and condition of the 75 C/KC-135 repair candidates. W/WS that have serial numbers that begin with numbers were made by PPG, while those that start with letters were made by Libbey-Owens-Ford.

At the outset of the program, the plan was to repair and test some of each of the five different C/KC-135 W/WS. A large number of the repair prototype candidate W/WS, however, were judged not repairable by virtue of out-of-specification or open circuit heaters. In conjunction with OC-ALC, the decision was made to proceed with repairing and testing only #1 and #4 W/WS. Although other repair candidates could have been obtained, it was felt that the program objectives could be adequately met if only two of the five W/WS types were evaluated. The #1 and #4 W/WS were selected because they have construction (and consequently repairs) that is typical of all of the C/KC-135 W/WS, there was enough W/WS in the population to conduct all of the tests in the test matrix, and the #1 and #4 W/WS are the only reasonable bird impact test candidates.

2.3 C/KC-135 #1 and #4 W/WS

Table 2.3 lists the general dimensions for the #1 and #4 W/WS. The #1 W/WS is a flat, nearly rectangular W/WS. The #4 W/WS, on the other hand, is roughly square in the plan view and has curvature (approximately 0.65 inches out of plane across the largest diagonal in the viewing area). The general construction was noted in Section 2.1. Figures 2.4 and 2.5 show detailed cross-sections of the #1 and #4 W/WS.

In general, because the #1 W/WS is flat, it is one of the easiest W/WS to manufacture and repair. Being flat, the optics of #1 W/WS are very good. The curvature on the #4 W/WS tends to result in some degree of optical distortion, and the curvature makes it somewhat more difficult than a #1 to repair, in spite of its small size.

3.0 W/WS REPAIRS

3.1 Aircraft W/WS Damage

The most common failure modes of laminated transparencies are:

- Delamination: separation of vinyl from the glass
- Cracks and chipping: glass breakage due to high stress
- Arcing: unbalanced electrical potential within the conductive coating
- Heater Failure: loss of continuity in the heater or heater sensor circuit
- Impaired Vision: surface scratches, contaminates, or internal defects
- Contamination: air or water leaks caused by defective seals
- Vinyl cracking.

Delamination is separation of the glass surface of the inner or outer ply from the vinyl core ply to which it is bonded. Delamination generally starts at the slip planes and moves inward, although it may occur anywhere in the W/WS. It mainly occurs between the outer ply and the vinyl ply. Delamination does not dramatically reduce the strength of the W/WS, but may interfere with vision or W/WS heating if the delamination occurs at the interface where the heating film is located.

Cracks and chips may occur in either of the glass plys and may be caused by impacts or by high stresses at the edges of the glass. Single cracks in the outer ply are unlikely because the temper in this layer precludes a single crack. After the momentary appearance of a crack in the outer layer, the entire layer shatters very abruptly. Small cracks very near the edges of the W/WS may not be cause for removal, provided the crack is not directed toward the center of the pane. Cracks that adversely affect the functioning of the heater would not be acceptable. Chips may occur internally or externally. Internal chips are caused by the glass-vinyl bond strength exceeding the strength of the glass. External chips are generally caused by impacts. Chips usually have a clamshell shape, are rough, and white powdered glass is often in evidence. Chips are detrimental to the strength of the pane.

W/WS busbar breakdown and faults in the heater film cause arcing. Basically, the insulation breaks down and the heater electrical current short circuits to the airframe. Arcing is evidenced by burned areas around electrical braid and along the busbar.

The failure of the W/WS heater to de-ice or defog satisfactorily is one of the most serious failure modes. Arcing, chips, cracks, or lack of continuity in the heater film that render the heater inoperative are cause for W/WS replacement. Uneven heating or hot spots caused by delamination at the glass-vinyl interface with the heating film or chips may also be a cause for removal.

Satisfactory optical properties of the W/WS are paramount. Foggy or cloudy areas may appear in areas where moisture has penetrated the vinyl and has begun to degrade it. Scratches may occur on both the inner and outer plys that may interfere with visibility. Likewise, delamination may become serious enough to warrant replacement of the W/WS on the basis of reduced visibility. Bubbles may occur in the vinyl core ply in W/WS that have been exposed to elevated temperatures. Bubbles are caused by gas liberated from the vinyl, and grow in size and number with increased temperature or longer exposures. Needless operation of the heaters on the ground is a prime cause of bubbles. Bubbles do not have a large effect on strength of the W/WS, but may become serious enough to impair visibility. Although other failure modes may not be evident, poor optical performance is always a sufficient cause for W/WS replacement.

The bumpers on the edge of the outer glass form a moisture barrier. Degradation of the bumper in the form of cracking or separation from the edge of the outer glass ply can allow moisture and air to get into the slip planes. Moisture can degrade the heater film with consequent initiation of heater failure, arcing, delamination, and contamination.

As a result of aging, cracks may occur in the vinyl. Over time, attack by ultraviolet radiation and high temperatures also causes the vinyl to lose ductility. Eventually, cracks may form around the periphery of the W/WS in proximity to the metal insert as the glass and vinyl try to move relative to one another. Vinyl cracks significantly weaken the structure of the W/WS by putting flaws directly in the load path between the transparency and the airframe for bird impact loads. Per Figures 2.4 and 2.5, only the vinyl extends out to the mounting holes, not the glass. Therefore, if the vinyl is cracked near the metal insert, the W/WS could just "punch out" of the frame into the cabin. The vinyl layer is also the pressure "fail-safe" layer, so vinyl cracks are quite important.

In addition to cracking, the vinyl layer may discolor or darken if it is subjected to temperature in excess of 225 F. Foreign substances in the glass-vinyl interface, either from in-service conditions or introduced as a part of a repair process, may also cause discoloration.

3.2 Repair Vendors

3.2.1 NORDAM Transparency Division

NORDAM Transparency Division is one of the world's largest, privately-held, FAA-approved transparency repair stations. They provide comprehensive overhaul capabilities on glass and acrylic W/WS. Located in Tulsa, Oklahoma, NORDAM has more than 15 years experience in the repair and overhaul of aircraft W/WS.

Repairs that NORDAM is authorized to make include relaminating, surface polishing, and seal rehabilitation. Autoclave curing of delamination, bubbles, voids and interlayer vinyl cracking is done with the same laminating cycles, times and methods utilized in the original manufacture of the W/WS. Polishing includes removal of scratches, chips and pits from the outer glass or acrylic plies. Original optimum optics are restored with the least amount of surface removal, in accordance with strict adherence to OEM manual limits for removal. Seal rehabilitation includes cleaning, repairing, or replacing of seals as required. NORDAM is authorized by the FAA under Air Agency Certificate EZ22812K to make the W/WS repairs. Appendix A has a copy of the certificate.

In addition to their W/WS repair business, NORDAM also manufactures W/WS, cockpit side panels, canopies, cabin windows, wing tip lenses and landing light covers for commercial, regional, military, helicopter, and general aviation aircraft. Products made from stretched and cast acrylic, polycarbonate, and glass are made in either monolithic or laminated configurations.

3.2.2 Perkins Aircraft Services, Inc.

Perkins Aircraft Services, Inc. specializes in the overhaul and repair of both monolithic and laminated aircraft transparencies made of glass or acrylic. Located in Ft. Worth, Texas, Perkins is an FAA-approved repair facility authorized to make in-plant and "on the aircraft" repairs.

A five-step process is used by Perkins to restore damaged W/WS to an FAA-serviceable condition. First, all incoming W/WS are given a thorough inspection to determine whether the W/WS can be repaired. W/WS with out-of-specification electrical systems or that are otherwise judged unrepairable are rejected and returned. The second step of the process is repair of delamination. Using a proprietary autoclave process, the W/WS are heated and pressed to rebond the W/WS layers. Polishing, the third step in the W/WS repair process, is done to remove scratches, chips, and in the case of plastic W/WS, crazing, using automated polishing machines. The fourth step is reassembly. In this step, the transparencies are matched up to their original frames, as applicable, and seals and gaskets are replaced. The final step in Perkins' W/WS repair process is to perform a quality assurance inspection to ensure that all of the necessary repairs have been made and that the

W/WS has been restored to OEM specifications. Perkins holds FAA Air Agency Certificate JKQR257L, see Appendix A, which authorizes them to operate their W/WS repair station.

3.2.3 The Glass Doctor

The Glass Doctor of St. Petersburg, Florida got into the aircraft transparency repair business in 1979 after working in the automobile windshield repair business for 10 years. Starting with cabin window repairs, the business has expanded to also include FAA-approved repair of all cockpit W/WS as well as cabin windows.

The Glass Doctor has developed special techniques for repairing chips, nicks, and delaminations in W/WS. Unlike the other aircraft W/WS repair vendors, The Glass Doctor does not rely solely upon polishing and re-autoclaving of the W/WS to effect the repairs. As described in U.S. patents #3,841,932, #3,914,145, and #4,780,162, The Glass Doctor repairs conical cracks by filling the crack with a polymerizable resin that is vibrated into place by motion of the conical plug, see Figure 3.1. Delamination repairs are made by injecting an adhesive between the delaminated plys per Figure 3.2. Polishing for scratch and distortion removal is also done. Using experience gained from their delamination repair techniques. The Glass Doctor has also developed the unique capability to replace failed W/WS heater sensors and can repair open or arcing busbars. Failed heater sensors are replaced by drilling into the vinyl and potting a new sensor in the hole. Open or arcing busbars are repaired by injecting a conductive adhesive material at the glass-vinyl interface where the busbar defect is located. Although there is some controversy in the aircraft W/WS repair industry associated with the repairs that The Glass Doctor makes, repairs are under warranty for up to 3 years (scratches excluded), and the reported rate of warranty work is very low.

The Glass Doctor operates its W/WS repair station under FAA Air Agency Certificate OX4R430M. A copy of The Glass Doctor's certificate is attached in Appendix A.

3.3 Repair Details

Some of the damage described in Section 3.1 can be repaired. To test the capabilities of the repair vendors to return W/WS to a serviceable condition, contacts at the three repair vendors were established to solicit their interest in participating in this program. Participation in the program was on a paid basis, with the stipulation that the Air Force, through Battelle, had to know something about the repair processes for quality control reasons. In particular, if the repair processes deviate from the processes used in the original manufacture of the W/WS, the Air Force felt that they needed a specification to ensure that they get the same product each time they buy.

In making arrangements for the repairs, Battelle was to sign confidential disclosure agreements with the repair vendors that would prohibit Battelle from disclosing trade secrets and process details. From their advertising literature, it is clear that the W/WS repair

processes used by NORDAM and Perkins are consistent with the original manufacture of the W/WS. The repairs made by The Glass Doctor, on the other hand, because they involve injection of adhesives and resins into the W/WS, are different than the OEM processes.

Terms and conditions for a site visit and repair of a number of W/WS were successfully negotiated only with NORDAM and Perkins. Thus, only NORDAM and Perkins made W/WS repairs for this program.

The set of 75 C/KC-135 W/WS Battelle had to work with was divided, and half sent to NORDAM and half sent to Perkins. Each vendor evaluated the repairability of the W/WS that they were sent and provided an estimate of the repair costs for each W/WS. In conjunction with Battelle engineers, a subset of the 75 W/WS was selected for repair. Perkins repaired 7 #1 W/WS and 2 #4 W/WS. NORDAM repaired 8 #1's and 8 #4's.

Tables 3.1 and 3.2 provide details of the prototype repairs made to the #1 and #4 W/WS that were subsequently tested. To fill out the test matrix, unrepaired W/WS were included in the test program, one #1 and six #4's. The original intent was to have a balanced number of repairs from each vendor and a balance in the types of repairs made. Unfortunately, it did not work out this way, because Perkins got a disproportionately large number of unrepairable W/WS. Because the performance of unrepaired W/WS provides a baseline for as-removed condition, including them in the test matrix was essential.

4.0 PERFORMANCE TESTING

4.1 Test Philosophy

The fitness for purpose of the repaired C/KC-135 W/WS was evaluated using a rigorous test program. In formulating the test program, the plan was to select a set of tests that would assess the critical performance elements of the W/WS: general electrical/optical/mechanical characteristics, pressure integrity, residual strength, and impact resistance. Performing these types of tests at limiting load or operational conditions, failures would be encouraged in repaired W/WS that would not occur in new W/WS unless the repaired W/WS were degraded either by virtue of their age or by virtue of having undergone the repair process.

The test plan was developed as a joint effort between Battelle, OC-ALC, and the Flight Dynamics Laboratory at Wright-Patterson AFB. Because the Air Force does not own the Boeing 707 airframe design on which the C/KC-135 is based, they do not have W/WS drawings and the W/WS design specifications or W/WS vendor qualification test protocols. Consequently, the test plan was developed from the C/KC-135 Tech Orders and the open literature on W/WS testing. [1-10]

In order to assess whether the performance of the repaired W/WS is satisfactory, a standard for comparison must be defined. Obviously, the performance of new W/WS should be the basis for the comparison. Simply stated, the repaired W/WS should perform just like new W/WS. In an ideal situation, information for new W/WS would be available to define the required tests for the repaired W/WS and the existing new W/WS data would form the basis for the comparisons. The information available from Boeing and OC-ALC suggested that data on prior C/KC-135 W/WS testing was sparse or very difficult to retrieve, so the scope of the testing program had to include tests of new W/WS to generate the baseline new W/WS performance data. In addition, because of uncertainty in setting some of the parameter selections for the tests (load levels, primarily), the test program included a methodology phase verification to establish that the new W/WS would pass the tests. Although testing of new W/WS was primarily a response to the lack of readily available new W/WS test data, it does facilitate the process of making the comparisons because both new and repaired W/WS were tested under absolutely identical conditions.

The new W/WS used in this program were supplied by OC-ALC from stock at Tinker AFB. The new #1's were copilot side W/WS. All of the other W/WS in the program were from the pilot side. Copilot side #1 W/WS were used because the stock of these W/WS was higher. The pilot and copilot side W/WS are mirror images of one another, so they should perform identically.

The test program was originally to be conducted at OC-ALC or other Air Force test facilities, with Battelle providing oversight and test data analysis. After the test program was defined, an attempt was made to locate Air Force facilities to perform the prescribed tests. The test plan required facilities for general W/WS optical/electrical/mechanical inspection, pressure and thermal cycling, and bird impact testing. Although portions of the testing could be performed at various Air Force facilities, no single site had all of the capabilities, and in many cases, substantial modifications or upgrades would be required to accommodate the specific needs of this program at sites where portions of the work could be done. In addition, quoted costs at the Air Force facilities were quite high. To fulfill the testing requirement, therefore, an outside vendor, PPG Industries, Inc. Aircraft Products Division was subcontracted to do all of the C/KC-135 W/WS testing.

PPG's Aircraft Products Division, located in Huntsville, Alabama, has been in the aircraft transparency business since 1926 and is an OEM supplier for C/KC-135 W/WS as well as other Boeing 777 series aircraft. The Huntsville plant is America's largest and most modern facility for producing aircraft transparencies. It fabricates W/WS with heat strengthened and chemically tempered glasses, as-cast and stretched acrylics, and polycarbonates for commercial, military, and general aviation aircraft. As a leader in the field of aircraft transparency technology, PPG has built an impressive W/WS qualification testing facility. The facility includes bird impact testing, environmental testing, high strain rate material evaluation, dynamic deflection analysis with high speed photography, dynamic stress analysis with strain gages, and ballistic testing for transparent armor. In performing the tests for this program, PPG used the same test fixtures, test procedures, and QA

requirements in use today to make new OEM W/WS for C/KC-135's. These capabilities at a single site, coupled with their intimate knowledge of the C/KC-135 W/WS and the functionally equivalent Boeing 777 series products, proved valuable to this program.

4.2 Quality Assurance

The testing conducted at PPG was performed in accordance with specifications defined in contract deliverable Data Item A046 to OC-ALC entitled "Final Master Test Plan/Program Test Plan on Development of Repair Processes and Sources for C/KC-135 Aircraft Windows/Windshields." This document was submitted to PPG as "Program Test Plan on Testing of Repaired C/KC-135 Aircraft Windows/Windshields" for preparation of their proposal bid. The corresponding PPG document, "Verification Test Procedure on C/KC-135 Aircraft Repaired Transparencies #1, #4, and #5 Windows, Revision A," was reviewed and approved by Battelle and defined the detailed scope of work.

PPG is an OEM supplier for C/KC-135 W/WS and consequently, they have a vested interest in selling new W/WS. Because using repaired W/WS would reduce sales of new W/WS, PPG could be perceived as having an inherent bias against repaired W/WS which might be reflected in the test results. PPG offered, and Battelle frequently exercised, the option to witness the tests. No indication was ever detected that they were attempting to influence the outcome of the tests. Their work was always done to the highest of professional standards. Fixture fabrication, minor deviations from the prescribed test procedures to accommodate instrumentation problems, etc., were all done with Battelle's concurrence. Suggestions that Battelle made to enhance the value of the test program were willingly implemented. Their final report is presented as a factual record of their observations and does not attempt to bias the conclusions of this report.

All instrumentation used in the conduct of this program was calibrated in accordance with PPG Quality Control procedures which guarantees that all significant instrumentation was in calibration when used and that adequate records are kept to document such calibrations.

4.3 General Inspection

4.3.1 Test Procedures

General electrical/optical/mechanical testing of repaired W/WS was performed to ensure that the W/WS is in specification electrically, that the repair operations have not adversely affected optical qualities, and that the fit and finish is correct. All of the W/WS tested in this program were initially given a thorough 14-item inspection by the PPG Quality Control Department. The inspection included:

- 1) Locating and recording the customer part number
- 2) Locating and recording the W/WS serial number
- 3) General visual inspection
- 4) Gasket/seal evaluation
- 5) Thickness measurements at prescribed locations
- 6) Physical tolerance check
- 7) Bus-to-bus resistance
- 8) Sensing element resistance
- 9) Electrical insulation integrity test
- 10) Heater operation test
- 11) Heating film scratch test
- 12) Luminous transmittance and haze measurement
- 13) Optical deviation measurement
- 14) Optical distortion photograph.

With little exception, the indication of which W/WS were new, repaired, or unrepaired was difficult to determine from a superficial visual examination. Only a detailed technical examination, equivalent to an OEM post-production quality control check, was able to uncover differences between the W/WS.

4.3.1.1 General Visual Examination

A visual examination was performed on each W/WS to assess its general condition. During this inspection, the part number and serial number were located and recorded, the W/WS was checked for delaminations and vinyl cracks, and the condition of the seal was evaluated. Criteria for the various aspects of the visual examination were based on PPG experience as an OEM for these W/WS. A rating of accept or reject was employed.

4.3.1.2 W/WS Dimensional Measurements

The repair of delaminations involves re-autoclaving of the W/WS to rebond the vinyl inner layer to the glass. Because the vinyl layer is pressed at an elevated temperature and consequently may flow, the overall thickness of the W/WS may be reduced and the location of power/sensor terminals and bolt holes may shift. To determine if the repair processes cause such changes, some dimensional measurements of the W/WS were made.

To assess the extent of thickness reduction caused by re-autoclaving, total thickness of the W/WS was measured at selected locations. For the #1 W/WS, a 12-point grid was used, while a 2 by 2 grid was used for #4 W/WS. Measurements were made to the nearest 0.001 inch using a micrometer.

The physical tolerance check was made to see if critical dimensions, including proper fit dimensions, location of electrical connections, and bolt hole locations, had been changed by the repairs. Each W/WS was checked using check fixtures used in the original manufacture of these W/WS. An overall dimensional trim check was requested, but the OEM check tool was designed to be used prior to application of the edge coating material. Removal of the edge coating to make the measurements did not seem justified, in light of the fact that part of the repair process entails replacement of the edge coating, so the overall dimensional trim measurement was abandoned. A go-no go rating was used for the check fixture tests that could be made.

4.3.1.3 Basic Electrical Measurements

Electrical resistance measurements were made using the standard electrical resistance measurement function on Fluke digital multimeters to determine if the heaters and sensors were within acceptable tolerances. Both bus-to-bus resistance and sensor resistance (#1 W/WS only) were measured. From the Boeing overhaul manual, the bus-to-bus resistance should be 31-58 ohms for the #1 W/WS and 60-100 ohms for #4 W/WS. Sensor resistance for #1 W/WS is temperature dependent, and should be 305 to 320 ohms at 70° F. The #4 W/WS does not have an integral sensor.

Electrical insulation integrity was checked using a Hipotronics 300 Series Hipot and Megohmmeter at 2500 volts A.C. On #1 W/WS, insulation integrity was checked between the power bus and the sensor element, sensor element and the metal frame retainers, and from sensor element to sensor element. On #4 W/WS, the integrity was checked between the power bus and the metal frame retainers. Only a pass or fail rating is considered.

4.3.1.4 Heater Operation Tests

Sensor operation and heating uniformity were evaluated by infrared imaging. In this test, the W/WS was powered with 60 Hertz power at a voltage appropriate to the W/WS heater resistance. During the power up, the ability of the W/WS sensor to regulate the

temperature was established. When thermal equilibrium was attained, an infrared imaging system was used to make a photograph of the thermal contours on the glass.

To supplement the thermal imaging heater test, a scratch test of the heater film was performed. In this test, the heater is powered up (350 volts A.C. for #1 W/WS, 81 volts A.C. for #4 W/WS) and the W/WS is viewed using polarized light. Although the vinyl core ply of the W/WS is birefringent, scratches in the heater film show up dramatically as blackgray starbursts. A pass-fail rating on the scratch test is given.

4.3.1.5 Optical Performance

The optical performance of each W/WS was assessed in three ways; a haze and luminous transmittance test, an optical deviation measurement, and an optical distortion test.

Haze and luminous transmittance measurements were performed in accordance with ASTM D-1003-92, "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics." The luminous transmittance test measures how transparent a body is, and is the ratio of the light transmitted through a body to the light incident upon it. The haze test measures the cloudy appearance of an otherwise transparent specimen caused by light scattered from within the specimen or from its surfaces. Haze and luminous transmittance measurements will detect whether the repair processes have adversely affected the clarity and/or coloring of the vinyl and whether the glass surfaces have been adequately polished. The haze and luminous transmittance measurements were made using a Pacific Scientific XL-211 Hazegard System hazemeter at the center of each W/WS. Per Mil-G-25871B (Military Specification: Glass, Monolithic, Aircraft Glazing) Paragraph 3.7, the original luminous transmittance should be greater than 72 percent and 78.4 percent for #1 and #4 W/WS, respectively. The original haze of a transparency greater than 0.62 inches thick should be less than 2.5 percent, per Mil-G-25871B Paragraph 3.9.

Optical deviation measures the flatness of a transparency. In the case of a repaired W/WS, grinding, polishing, and/or uneven pressing to remove delaminations may cause the front and back surfaces of the W/WS to deviate from a parallel condition, causing images to be deformed. PPG's "German Light," measures the flatness of a transparency using the distance between the front surface reflection of a normally directed beam of light and the light reflected from the back surface of the transparency to calculate the angular deviation from parallel. Measurements are given in terms of minutes of angular arc.

Optical deviation was measured using MIL-G-25871B Paragraph 4.4.6.2.1 as a reference at 8 locations on #1 W/WS and at 4 locations on #4 W/WS. The measurement locations were principally around the edges of the W/WS where deviation is expected to be most severe in a relaminated W/WS. Deviations under 4.5 arc minutes are considered acceptable anywhere 2 inches in from the forward edge, top and inboard edges and 4 inches in from the aft edge on #1 W/WS. Deviations of up to 9 arc minutes are acceptable in the

#1 W/WS edges. Deviation for the #4 W/WS is much less stringent than for #1 W/WS, 18 arc minutes anywhere 2 inches in from the edges.

Optical distortion was assessed using MIL-G-25871B Paragraph 4.4.6.3 as a reference. The distortion was determined by a single-exposure photograph of a grid viewed through the W/WS. Photographs were made with the W/WS parallel to the grid board. There is no reference specification for distortion for these W/WS. A distortion of greater than 1 part in 40 is essentially no distortion. As a reference, MIL-W-81752A sets a distortion limit of 1:15 for Navy fighter/attack aircraft. A 1 part in 4 distortion would probably be considered unacceptable for the #4 C/KC-135 W/WS.

4.3.2 General Inspection Test Results

Tables 4.1 through 4.8 summarize the results of the general inspections. In a number of areas, the repaired W/WS are the equivalent of new W/WS - dimensional fit, optical properties, and heater operation. There are, however, some troublesome areas - seals, unremoved delaminations, some insulation integrity faults, and a few out of specification heater resistances that suggest that the repaired W/WS are not quite up to OEM standards for a new W/WS. As indicated, most of the general inspection tests had an accept/reject criterion. For the heater tests and optical distortion, there are no established criteria. Figures 4.1 and 4.2 show thermal images from the heater tests. Figures 4.3 and 4.4 show the worst optical distortion found during the inspections. Appendix B contains the data sheets for the general inspections.

In addition to the general inspection data summarized in the tables and figures, two interesting items worth noting came to light. First, there was one commercial fleet W/WS in the program, and second, the new #1 W/WS were surprisingly old.

One of the #1 W/WS, S/N 83-H-11-7-432, has a commercial part number, 5-89354-3096, instead of the expected military part number 5-89354-501 (pilot side #1). Superficially, the two W/WS look identical and can be interchanged. The commercial #1 W/WS, however, unlike the military #1 W/WS, does not have slip planes and edge heaters. Rather, the slip planes and edge heaters of the military #1 W/WS have been replaced by a PPG-proprietary urethane ply. From the discussion in Section 2.1 about the construction of the C/KC-135 W/WS, the slip planes are areas around the edge of the W/WS where the glass has been prevented from bonding to the vinyl so that the edge of the glass does not become overstressed during thermal expansion. The urethane ply in the commercial W/WS accommodates the differential thermal expansion with a fully bonded W/WS structure. The edge heaters keep the vinyl "soft" in the W/WS corners. According to PPG, the urethane layer in the commercial W/WS reduces the tendency for delamination and edge chipping, and does not degrade any of the other properties of the W/WS. PPG feels that the commercial W/WS is superior to the military counterpart.

The new #1 W/WS were manufactured in 1986. This suggests that either the W/WS inventory at Tinker AFB is not maintained on a first-in first-out basis, or that reorder

quantities are large and that it takes a long time to deplete the stock. In any event, because of the potential time lag between manufacture and installation, manufacture date is not a good indicator of possible service life. Some of the new #1 W/WS were made several years before some of the W/WS that were repaired, and so it is not appropriate to assume that W/WS with older serial numbers have seen more service. Whether or not this is common to all of the W/WS in the inventory is not known, but it is something to consider if a service life limitation is imposed that does not track actual use.

4.4 Pressure Integrity

4.4.1 Test Procedures

Pressure integrity was evaluated with a three-step sequence. The first step was a proof pressure test. Samples which passed the proof pressure test then went on to a cyclic pressure durability test. Finally, samples which passed the cyclic durability test were proof pressure tested again.

4.4.1.1 Proof Pressure Test

This test was performed as an initial acceptance and final test on all pressure integrity test articles. The test candidates were mounted in a test fixture and pressurized at a rate not exceeding 0.84 psi per minute to 1.33 times the C/KC-135 relief valve setting of 9.42 psi (12.59 psig). The maximum pressure was held for 15 minutes and then released at a rate not greater than 0.84 psi per minute. The test was conducted at ambient temperature. At completion of the test, the W/WS was inspected for delamination and electrical resistance.

The data requirements for the proof pressure test consisted of pressure-time records and the post-test delamination inspection and electrical resistance measurements. For test articles that did not hold pressure due to breakage or cracking, a photograph of the failed W/WS was required.

The criterion for failure of the test was inability to hold pressure due to cracking or breakage. Delamination or failure of the heater to operate were to be noted, but were not sufficient to disqualify the specimen from further testing.

4.4.1.2 Cyclic Durability Test

This test was performed on all W/WS that passed the initial proof pressure test. The test was conducted with an outward-acting constant amplitude cyclic pressure varying from 0.00 to 9.42 psig, applied at a rate not greater than 0.84 psi per minute. The inboard side of the W/WS was to be held at room temperature $(72^{\circ} \text{ F} \pm 10^{\circ} \text{ F})$ and the outboard side was to be at -65° F \pm 10° F with the heater energized. The cyclic pressure was to be applied until failure was observed or run out, with run out calculated to simulate a 10 year life for a

C/KC-135 (520 cycles). Test article inspections were to be performed at 5 years of simulated service and at the conclusion of the test.

The data requirements for the cyclic durability test consisted of pressure, inboard side air temperature, outboard side air temperature, and bus-to-bus resistance, all as a function of time. Marking of delaminations on the surface of the outer ply and then photographing the W/WS served to document any visual damage to the W/WS. Mode of failure and a photograph of the failed test article were to be used to document specimens that did not survive this test.

The criterion for failure in the cyclic durability test was inability to hold pressure due to cracking or breakage. Failure of the heater was to be noted, but was not sufficient cause to stop the pressure cycling.

4.4.2 Test Facility

The test facility for conducting the pressure integrity testing utilized PPG's Environmental Qualification Test Facility. This facility has three walk-in environmentally controlled chambers that can be used to expose transparencies to temperatures as low as -100° F and as high as +185° F. Pressure chambers with mounting flanges for transparencies fit into the wall of the environmental chambers to permit simultaneous pressure and temperature control, per Figure 4.5. Internal heating and cooling capacity, as well as small fans inside the pressure chambers ensure that the transparency inboard side conditions can be maintained, independent of the outboard side conditions. The facility is controlled by 16-bit Macsym 350 process control computers that manage the temperature and pressure in real time, and perform data acquisition.

Each W/WS was instrumented with 4 thermocouples, two inboard and two outboard, one directly on the glass surface and one 1-inch off the surface. A strain-gage-based pressure transducer was used to measure the pressure chamber pressure.

The #1 W/WS heaters were powered by a 400 Hertz 0-500 volt A.C. motor-generator set adjusted to generate an output voltage consistent with the W/WS bus-to-bus resistance. On the #1 W/WS, the integral sensor was used to control the temperature. The #4 W/WS were powered by 70 volts A.C. 60 Hertz power derived from 120 volt A.C. building power. This voltage is consistent with T.O. 1C-135(K)A-2-2 Paragraph 8-9. The temperature of the #4 W/WS was controlled using a thermocouple-based temperature controller set to have the same operating characteristics as the thermal snap switch that is found on C/KC-135's per T.O. 1C-135(K)A-2-2 Paragraph 8-10: control point about 100° F, switch closure at 90° ±10° F, switch opening at 110° ± 10° F.

The pressure integrity test W/WS were mounted in simulated frames per the drawings shown in Figures 4.6 and 4.7. The rationale for using simulated frames was; 1) less expensive than using an actual fuselage section, and 2) a simulated frame could be made

much stiffer than the sheet metal fuselage section and thus would maximize potentially damaging deformation in the W/WS.

The #1 W/WS were bolted to the frame shown in Figure 4.6 using hardware equivalent to that used in the actual aircraft W/WS installation kit, per Figure 4.8a. Unlike the actual aircraft installation, Grade 8 socket head cap screws and nuts were used. Aluminum washers similar to the ones in the installation kit were used. No curtain clips or wire clamps were installed. Bolt torques and tightening sequences followed T.O. 1C-135(K)A-2-2 Paragraph 8-55. One #1 W/WS was tested at a time. Figure 4.9 shows a #1 W/WS in the pressure test facility.

The #4 W/WS were installed using 16-gauge sheet metal retainers and silicone rubber gasket strips fabricated to simulate those used in the aircraft, Figure 4.8b. Grade 8 socket head caps screws and nuts were used instead of actual aircraft bolts and nuts, with no curtain clips or wire clamps. Bolt torques and tightening sequences followed the prescriptions in T.O. 1C-135(K)A-2-2 Paragraph 8-61. Two #4 W/WS were pressure tested at a time, as shown in Figure 4.10.

4.4.3 Test Results

The results of the pressure integrity testing are presented in Tables 4.9 and 4.10. None of the W/WS, repaired, not repaired, or new, exhibited any catastrophic failures. Two of the repaired W/WS did experience delaminations, while no evidence of delamination was detected in the new W/WS. Figure 4.11 shows the worst delamination observed in a #1 W/WS. Figure 4.12 shows the worst delamination observed in a #4 W/WS. In these figures, the edge of the delamination has been outlined with a black marker. The delamination in the #1 W/WS would not interfere with pilot vision, and may not even be noticed. The delamination in the #4 W/WS, would, most likely, be noticed and reported by a pilot.

A curious "healing" phenomenon was noted in some of the W/WS. Immediately after the pressure cycling, the W/WS were examined for delamination and a marker was used to outline its edge. Some time later, after the W/WS had returned to room temperature, the extent of the delamination was observed to have reduced. Residual stresses in the W/WS cause the delaminations to close up. Discussing this point with the PPG staff confirmed that the "healing" phenomenon is not unique to our tests. PPG indicated that they occasionally get W/WS back on warranty that do not appear to be damaged in any way. Applying some thermal and pressure cycles to the W/WS is generally sufficient to open the delaminations. Although the consequences of this phenomenon for this program are nil, it does suggest that a pilot or copilot could report diminished vision in a W/WS that may not be detectable by the ground crew.

4.5 Residual Strength Assessment

4.5.1 Test Procedures

The residual strength of a selected subset of the W/WS that passed the pressure integrity tests was assessed with a falling ball impact test. In this test, a spherical steel ball was dropped onto the W/WS using Mil-G-25871B Paragraph 4.4.3 as a reference, see Figure 4.13. Unlike Mil-G-25871B where the purpose is to make certain that no separation or delamination of glass from the vinyl occurs, the purpose of this test was to see if repaired W/WS that have been pressure cycled have a reduced capacity for moderate impacts.

The procedure for conducting the falling ball impact tests was to establish a suitable ball weight and drop height to cause significant outboard ply damage without breaking the core ply of a new W/WS that had passed the pressure integrity tests, and then test a few of the remaining W/WS under these conditions.

In the case of the #1 W/WS, a 2-pound ball dropped from a height of 15 feet broke the outer glass ply and crushed the glass in the impact area with a web of cracks emanating from the impact site. Because of the size of the #1 W/WS, two ball drops could be performed, in some cases. For the #4 W/WS, a 1-pound ball dropped from 15 feet did similar damage. A single drop was done on #4 W/WS.

4.5.2 Test Facility

The test facility for conducting the ball drop consisted of a drop tower with ball guide tube and electromagnetic ball release mechanism, and a support frame for the W/WS. Because the PPG ball drop facility was designed only to accommodate small test panels and not full W/WS, boundary conditions at the W/WS edges could not be freely prescribed and a center drop on the #1 W/WS could not be done. Rather, the W/WS were supported by a square frame with a 1-foot by 1-foot opening on the face of the bottom (inboard) glass ply. Due to a space restriction, approximately half of the #1 W/WS extended beyond the support frame, but was supported at the same height as the impact target area. Because all W/WS were treated consistently, the somewhat imprecise nature of the boundary is not as issue.

4.5.3 Test Results

Tables 4.11 and 4.12 detail the results of the falling ball residual strength impact testing, while Figures 4.14 through 4.19 show the test set-ups and selected consequences of the impacts. The results of the ball drop are not conclusive because only a single new W/WS was tested of each type. The worst damage occurred in repaired W/WS with delamination, so there appears to be a suggestion that the ball drops do more damage to the repaired W/WS than the new W/WS.

4.6 Bird Impact Testing

4.6.1 Test Procedures

The bird impact testing was conducted using ASTM F330-89, "Bird Impact Testing of Aerospace Transparent Enclosures" as a model. The W/WS were mounted in a simulated frame placed at the correct inclination and sweepback angles for level flight and impacted with a real 4-pound bird in the center at 250 knots. Testing was done at room temperature, performing a single shot on each W/WS. A spall sheet was placed behind the W/WS.

The simulated frames used in the bird impact tests were similar to the ones used in the pressure integrity tests, Figures 4.20 and 4.21. The rationale for using simulated frames was the same as in the case of the pressure integrity tests. Mounting hardware and installation procedures were consistent with the applicable C/KC-135 Tech Order, T.O. 1C-135(K)A-2-2. Figure 4.22 shows the bolts, O-rings, washers, and nuts used to secure a #1 W/WS in the test frame.

The #1 W/WS were inclined 45 degrees with a sweepback angle of 30 degrees, while the #4 W/WS were inclined 58.12 degrees with a sweepback angle of 35.3 degrees, per information obtained from Boeing and verified by measurement on a C/KC-135 by OC-ALC. The reference for the inclination angle is a vertical line. The reference for the sweepback angle is a horizontal line normal to the centerline of the aircraft. The #1 W/WS as installed presents a fairly large target for the bird package. Because of the size and oblique installed angle, the bird package nearly fills the #4 W/WS.

The data requirements for the bird impacts tests consisted of a pre-test photograph, bird weight, high speed film of the impact, impact velocity, a post-test photograph, a record of the disposition of the spall sheet, and written comments from a post-test examination of the W/WS.

4.6.2 Test Facility

PPG's bird impact test facility is one of the most advanced in the world, capable of shooting one to eight pound birds at impact velocities from 29 to 751 knots, depending on the bird weight. The pneumatic cannon has a 40-foot long barrel with a nominal 10-inch diameter. A pressurized reservoir provides compressed air to propel a metal can, called a sabot, containing the bird to the target. When the sabot reaches the end of the barrel after firing, it is collected by a stripper and spring system that absorbs the sabot's kinetic energy. As the bird continues to the target, approximately 10 feet away, it passes through a timing trap system to measure its velocity. Figure 4.23 shows a schematic of the important elements of the bird cannon.

The velocity of the bird at impact is a calibrated function of the air pressure pushing the sabot down the barrel. A dual rupture diaphragm system fires the gun. Assuming that

Diaphragms 1 and 2 in Figure 4.23 are rated to burst at P_b psi and that test pressure, P_t , is greater than P_b but less than $2P_b$, putting $\frac{1}{2}P_t$ in the Step Chamber keeps both diaphragms from bursting. Opening the Solenoid Exhaust Valve vents the Step Chamber to atmosphere and causes Diaphragms 1 and 2 to burst almost simultaneously applying test pressure in the reservoir to the sabot.

A massive frame support system, adjustable for inclination angles from 25 to 85 degrees was use to hold the simulated W/WS frame. Figure 4.24 shows the support frame with a #1 W/WS mounted. Figures 4.25 and 4.26 show views of W/WS mounted and ready for testing. To ensure that the test article is in its proper position, the impact point is identified with a helium/neon laser centered in the end of the barrel. Installation angles were measured with a precision clinometer.

High speed photographic records of the impacts were made with up to three 16-millimeter cameras operating at up to 11,000 frames per second. The cameras and lighting system are tied into the cannon firing system so that when the fire button is depressed, the lighting is switched on, the cameras come up to speed, and an internal camera speed signal fires the gun. Typically, two cameras recorded the impact from the front, while the third camera recorded the impact from the rear.

Bird speed is measured in three axes and averaged to compensate for minor deviations in the bird package's flight pattern prior to impact. Basically, the time for the bird package to traverse a fixed distance is measured and converted to velocity. Because the timing system requires more than 50-percent of the timing system lights to be obscured, false time readings and consequent incorrect speed indications triggered by small particles or moisture clouds that precede the bird package are eliminated. Figure 4.27 shows the velocity timing trap and front camera positioning.

A spall sheet was placed at the pilot's head position to determine if any glass fragments or bird residue comes through the W/WS in the event of a failure. In Figure 4.25, the spall sheet can be seen behind the W/WS as a black rectangular sheet slightly left of center. Figure 4.28 shows the spall sheet from behind a #1 W/WS.

4.6.3 Test Results

A summary of the bird impact test results is presented in Tables 4.13 and 4.14. A gradation in impact damage for #1 W/WS is shown in Figures 4.29 to Figure 4.34, ranging from no damage to all glass plies failed. A similar gradation of bird impact results for #4 W/WS is shown in Figures 4.35 to 4.40. Other W/WS with similar damage look about the same as these figures. The bird impact data sheets are attached as Appendix C.

Concerning the test comments about bird residue on the spall sheet, it must be noted that the simulated frame had no aerosmoother sealant between the frame and the transparency. Furthermore, there was no cosmetic trim pieces on the inside of the W/WS.

Either one or both of these would probably have prevented bird residue from squeezing between the W/WS and the frame. Ply breakage would not be affected by the presence of aerosmoother or trim pieces.

4.7 Performance Testing Summary

The performance testing data have been summarized in Tables 4.15 to 4.18. From these summaries, the obvious conclusion is that used W/WS do not perform as well as new W/WS. Although trends are difficult to identify in the data because there always seem to be exceptions and because the data base is so small, the performance of W/WS that have been in service, whether repaired or not, is below that of new W/WS.

In a number of categories, the repaired W/WS were the equal of new W/WS: dimensional fit, optical properties, and heater performance. In other cases, they were not: residual delamination, seals and bumpers, delamination during pressure cycling, more damage in the ball drop test, and poorer performance in the bird impact testing. Some of the issues such as seal and bumper problems and residual delamination can easily be rectified. The delamination during pressure cycling is merely annoying because it is an impaired vision issue that would develop over time and is not a serious structural failure.

The bird impact test results are conclusive. The new W/WS performed significantly better than the repaired and not repaired W/WS. At worst, the outboard ply of a new W/WS was broken. For the repaired #1 W/WS, fully half of the samples had all three plies fail, although none had bird penetrations. For the repaired #4 W/WS, only an outboard ply was broken. The unrepaired #4 W/WS performed the worst in the bird impact tests, with one whole W/WS punching out of the frame. This W/WS was rejected for repair, but it appears that it was for an out-of-specification heater and not for any unrepairable structural deficiency. Similarly, the other two unrepaired #4 W/WS that were damaged were also rejected for out-of-specification heaters. The fact that repaired W/WS performed somewhat better than unrepaired W/WS seems to indicate that the repairs themselves do not degrade the W/WS.

Some of the repaired #1 W/WS had a reduced thickness in the edge attachment area. The reduced mounting edge thickness was noticed when bolts that had previously worked satisfactorily for mounting new W/WS in the frames for bird impact tests appeared to be too long. Basically, the bolts would bottom-out on the aluminum spacers in the phenolic mounting block before the W/WS was tight to the frame (see Figure 2.4). The reduction in frame thickness could have been caused by extrusion of the vinyl inner layer during the relamination repair process, it could have occurred as a result of creep during service, or it could be an artifact of the original manufacturing processes. Table 4.19 summarizes edge measurements that were made on the #1 bird impact W/WS and a set of unrepaired W/WS that were not part of the rest of this program. Reduced mounting edge thickness appears to correlate with more severe impact damage, but does not correlate with age or whether or not the W/WS has been repaired.

5.0 COST ANALYSIS

The second element in the evaluation of the feasibility of using repaired W/WS in Air Force fleet aircraft was a cost analysis. The commercial fleet has a very favorable cost benefit using repaired W/WS. If using W/WS is to be a viable option for the Air Force, the costs for making the repairs has to be justifiably less than the cost of a new W/WS.

5.1 Repair Costs

During initial contacts with NORDAM, Perkins, and The Glass Doctor and prior to contracting for any repairs, an estimate was solicited for repairing small numbers of each of the five C/KC-135 W/WS types. NORDAM prices their repairs on the basis of how much work is required to do the repair, i.e., a W/WS that only needs polishing costs less than a W/WS that needs polishing and relaminating, and thus they could only give rough estimates. Perkins has a fixed price for repairing a given type of W/WS, regardless of the number of steps required to repair the W/WS, and offers up to a 30-percent discount for large volume customers. The Glass Doctor offered a fixed cost per W/WS type. All of the repair vendors perform incoming inspections and reject unserviceable W/WS, charging only for those that they successfully repair. Table 5.1 summarizes the initial repair quotations from the three vendors.

The actual costs for making the prototype repairs on the #1 and #4 W/WS that were performance tested are listed in Tables 5.2 and 5.3. Actual costs were consistent with the initial repair estimates. For reference, Table 5.4 summarizes the quoted repair cost for all 75 of the C/KC-135 repair candidate W/WS that were procured for this program. The latter table reflects the incoming W/WS inspections performed by NORDAM and Perkins.

5.2 Costs of New W/WS

OC-ALC provided costs for new C/KC-135 W/WS. The data in Table 5.5 is the Air Force purchase price as of January 1994.

5.3 Cost Comparison

The average cost for making the prototype repairs on the C/KC-135 #1 W/WS was \$1,943, while the average cost of making the prototype repairs on the #4 W/WS was \$899. Comparing these numbers to the current purchase price, the repairs cost 75-percent of the purchase price of a new #1 and 65-percent of the purchase price of a new #4.

Taking the extremes of the initial repair estimates, actual repair costs, or cost quotes from NORDAM and Perkins, and assuming a large enough volume so that Perkins would offer a 20-percent volume discount, the best-case, actual, and worst-case cost scenarios for repaired C/KC-135 W/WS are as shown in Table 5.6. Had The Glass Doctor participated in the program and repaired W/WS at the prices in their estimate, the low values in Table 5.6

would have gone to 51-percent for #1 W/WS, 62-percent for #2 W/WS, and 34-percent for #3 W/WS.

6.0 CONCLUSIONS, RECOMMENDATIONS, AND DISCUSSION

6.1 Conclusions

The Air Force, in an effort to reduce fleet maintenance costs, is considering the possibility of using repaired W/WS. Prior to adopting such an operating policy, however, the Air Force decided that a systematic evaluation was required to ensure that repaired W/WS are safe and that they provide a reasonable cost savings benefit. Based on the reported cost savings and favorable experience that the commercial fleet has had with repaired W/WS, the use of repaired W/WS seems very attractive.

The approach followed for evaluating whether the use of repaired W/WS is a viable option for the Air Force was to procure some used W/WS, make repairs on them, and then subject the repaired W/WS to a series of tests to determine the difference in performance when compared with new W/WS. The cost to make the repairs provides the data for the cost benefit analysis. The test results provide the data for an evaluation of fitness for purpose of the repaired W/WS.

The test results indicate that repaired W/WS are not equal to new W/WS. Many of the repaired W/WS still contain defects that would not pass an OEM quality assurance inspection. None of the W/WS, new, repaired, or not repaired, exhibited any dramatic differences in pressure integrity. Some delamination occurred in two of the repaired W/WS during pressure cycling, but it was not severe. The residual strength of the pressure cycled W/WS tends to suggest that the repaired W/WS are not quite as good as new W/WS. The bird impact test results are quite clear - the new W/WS outperform either repaired or unrepaired W/WS.

Having established that repaired W/WS are not equal to new W/WS, the question that remains to be answered is whether or not repaired W/WS are "good enough." The replacement criteria in the C/KC-135 W/WS Technical Order, T.O. 1C-135(K)A-2-2, are founded on two major principles:

- 1) A W/WS that has any condition that impairs visibility must be replaced
- 2) The W/WS heater must function properly.

A number of specific inspection items, subordinate to these principles, provide additional criterion for W/WS replacement. According to the prevailing Tech Order inspection criteria, none of the repaired W/WS would have been removed for cause from service. The fact that they were removed and were subsequently restored to a condition better than the W/WS

replacement criterion suggests that they were in fact "good enough." The repair vendors do not claim that they can restore a W/WS to a brand new condition. Rather, they indicate that the repairs they perform return the W/WS to a fully acceptable and functional condition. Under this philosophy, the repaired W/WS do appear to be "good enough."

In terms of performance, the most demanding test is the bird impact. Using the criteria set forth in MIL-W-81752A (Windshield Systems, Fixed Wing Aircraft General Specifications For), Paragraph 3.7.2 specifies that the W/WS should be able to sustain a 4-pound bird impact at maximum achievable operational true airspeed in level flight at up to 5000 feet altitude without any spall. This is substantially the same requirement for commercial fleet W/WS set forth in "Part 25 - Airworthiness Standards: Transport Category Airplanes" of the U.S. Federal Aviation Regulations, Paragraph 25.775. The velocity prescription dictated by MIL-W-81752A and FAA 25.775 is operationally restricted, however, by Part 91, Paragraph 91.117 of the FAA Federal Aviation Regulations which states that 250 knots is the maximum allowable aircraft speed below 10,000 feet above mean sea level without special authorization. Assuming that the 250 knot impact velocity is the proper performance criterion, all of the new and repaired #1 and #4 W/WS meet the no bird penetration requirement, while two of the repaired #1 W/WS technically fair the no spall criterion. From a practical viewpoint, the spall was very modest, so the repaired W/WS appear to be "good enough."

The lone W/WS that experienced a catastrophic bird impact failure (#4 W/WS, S/N 7-H-2-4-35) was not repaired. Reviewing the repair vendor's report on the W/WS, it was rejected for repair due to a heater that was out of specification and not for any gross structural deficiency, such a vinyl cracking or delamination. The only other vendor-reported damage was scratches. The Air Force HOWMAL (how malfunctioned) comments on the removal tag indicated that it had a burnt discoloration in the corner at the edge of the heater. The fact that the heater was defective suggests that the W/WS may have been subjected to inservice pressure cycles with the vinyl unheated. This would have been hard on the glass-vinyl interface, because the vinyl would have been relatively brittle, predisposing the W/WS to fail in the bird impact test. On the other hand, if the heater had been satisfactory, the W/WS probably would have been polished and considered repaired. Because the vinyl itself failed, it is unlikely that polishing would have changed the outcome of the test.

The bird impacts done for this program represent the first ever C/KC-135 W/WS bird impact tests. In addition to demonstrating that repaired W/WS are probably "good enough," the work in this program has confirmed that the basic C/KC-135 W/WS design is adequate.

The new #1 W/WS used in this program were manufactured in 1986. The fact that they performed well in all of the tests, in spite of sitting in warehouse storage for 7 years, indicates that these W/WS do not degrade in storage. This is quite important when considered in the context of a possible blanket 10-year replacement policy, because the only method available now to track the 10 years is by manufacture date. To implement a

meaningful 10-year W/WS replacement cycle policy, it would be necessary to track individual W/WS service history.

The cost analysis indicates that savings may be realized. For this program, the cost of making the repairs was 75-percent of the new W/WS purchase price for #1 W/WS and 65-percent for the #4 W/WS. Considering all five of the C/KC-135 W/WS types and the full range of estimates, quotes, and actual costs, repairing a W/WS might cost as little as 41-percent of a new W/WS, but it could also cost as much as \$32-percent.

The costs quoted are only the direct repair costs. To this must be added the direct cost of transportation and the indirect costs of procuring the service (contracting - more vendors will be involved), administrating it (accounts payable, records management, QA inspection of the vendors, etc.) and operating it (storage, shipping and handling, outgoing/incoming inspection, etc.). These items will certainly make the economics less favorable and to ignore them would be a false economy. On the positive side of the economic issue, the repair vendors do not directly charge for W/WS inspections or for any repair work that does not result in a shippable W/WS. The cost, both economic and environmental, of disposal of all of the W/WS that are currently removed and sent to a landfill cannot be ignored. Repaired W/WS would certainly have an advantage here.

A final consideration of an economic nature that must be factored into the decision to use repaired W/WS is new W/WS availability. There may be a persuasive economic reason to use repaired W/WS if new W/WS are in short supply. The repair vendors could probably be queued up to make repairs, basically on demand, and could provide a "just in time" service. As opposed to having aircraft out of service because new W/WS were not available, repaired W/WS could be used.

6.2 Recommendations

Recommendations that can be made as a result of the work performed on this program are contingent upon the Air Force making a decision, based on the available data, that the performance of repaired W/WS is acceptable.

If, in the opinion of the Air Force, the performance of repaired W/WS is deemed "good enough:"

1) NORDAM Transparency Division, and Perkins Aircraft Services, Inc. are recommended as vendors. No recommendation can be made regarding The Glass Doctor, because they supplied no test articles for this program.

- Based on the results of this study, the repair processes that can be recommended are:
 - a) Relaminating using autoclave processes involving application of heat and pressure
 - b) Grinding and polishing of the external surfaces of the glass
 - c) Seal/bumper maintenance
 - d) Minor clean-up of electrical terminals
- Repair processes that cannot be recommended at this time by virtue of not having been used in this program are:
 - a) Complete replacement of a glass ply
 - b) Delamination or crack repair involving injection of adhesives or filling with transparent polymerizable resins
 - c) Sensor replacement
 - d) Busbar/heater wire repair/replacement
- A formal Air Force quality assurance (Q/A) program should be instituted to set forth requirements for the repair vendors. This will eliminate the annoying, but easily corrected, problems with wrong seals/bumpers on repaired W/WS. In addition, this Q/A program should also be charged with performing an incoming inspection of W/WS coming back from the repair vendors.
- A policy that prevents a W/WS from undergoing more than one repair cycle should be instituted. The contractual requirements for the repair vendors should stipulate that all repaired W/WS must be marked to identify that they have been repaired and by whom. No data have been collected to support the use of rerepaired W/WS.
- The Air Force should use the cost data in this report as the starting point for a complete cost/benefit analysis to satisfy themselves that there is an economic advantage to using repaired W/WS. Full costs, including all direct and indirect cost for labor, materials, and facilities must be included. This must be done on a W/WS by W/WS basis, because the data from this program suggest that some W/WS can be replaced at less cost than they can be repaired.

It is important to emphasize that all of the recommendations offered above are contingent on the Air Force deciding that the performance of the repaired W/WS is adequate.

6.3 Discussion

In reviewing the test data, the question of why one W/WS should perform better or worse than another in a structural test was considered. Four possible causes were identified:

- Vinyl degradation Vinyl, being a plastic is subject to UV degradation and general aging due to loss of plasticizer. As a result of the aging, the vinyl may become brittle and crack, thus reducing its load carrying capacity in the laminate. The vinyl could also be preferentially squeezed from the edge of the W/WS during a relaminating repair process or in service. Because the vinyl is the only structural ply that carries the load into the W/WS frame for a bird impact, if this occurred, the load capacity of the W/WS would be degraded.
- Grinding/polishing of the glass The C/KC-135 W/WS use heat-strengthened glass. In producing this type of glass, the ply is heated to near its softening point and then quenched to introduce compressive residual stresses in the surface layers as shown in Figure 6.1. Tensile stresses inside the glass exist to equilibrate the compressive surface stresses. Because glass only fails due to tensile stresses at the surface, the residual compressive stresses must be overcome to initiate a failure. Grinding and polishing remove some of the beneficial compressive stresses, and hence, the overall strength of the glass ply is reduced. Removal of the highest compressive stress layer, however, must be balanced against removal of flaws. In concert with the obvious effect of removal of the highest compressive stress layer, as far as flaw tolerance goes, the surface may also not be as smooth after grinding/polishing. Smoother surfaces have less flaws and a profoundly higher strength^[11].
- Stress corrosion cracking of the glass The surface of glass contains many microscopic cracks and fissures, and under a sustained load, the presence of moisture exacerbates the growth of these cracks^[12-15]. Generally, water vapor in the air is sufficient to cause the degradation. Elevated temperatures and longer exposures accelerate the stress corrosion cracking effect. Although there is no direct evidence that aircraft W/WS degrade dramatically from this phenomenon, the fact that the W/WS are highly stressed due to thermal and pressure loading, they are exposed to atmospheric moisture, they are routinely heated in a high stress state, and that old W/WS performed below new W/WS in the structural tests suggests that there may be more than a casual cause-effect relationship.
- Fatigue Glass exhibits a complex load rate-cyclic loading behavior. Under a constant maximum load, no effect of cyclic loading is observed, but under increasing maximum load, cyclic loading reduces the strength^[16,17]. The net effect for a W/WS undergoing repeated pressure cycles is not clear, but it seems plausible that some amount of micro-crack propagation occurs.

There is no conclusive evidence that the results of this test program can be directly attributed to any of the mechanisms described above. However, it does not seem unreasonable to suggest that they might. As far as the implications for use of repaired W/WS, vinyl degradation, stress corrosion cracking, and fatigue affect both repaired and unrepaired W/WS. Only repaired W/WS would seem to be susceptible to the grinding/polishing degradation mechanism.

It would be nice to be able to make generalizations about some W/WS being better repair candidates than others, possibly based on age. Unfortunately, there is just too little data to support such generalizations. There are enough inconsistencies in the data, i.e., new W/WS older than some of the repaired ones, some very old W/WS performing just as well as new W/WS (1971 manufacture #1 W/WS S/N 1-H-10-5-480 pressure cycle and ball drop, 1974 manufacture #4 W/WS S/N 4-H-10-9-69 bird strike), etc., that one cannot readily see trends in the data. To try to treat the test results in a statistical manner, looking for correlations, just does not make any sense with such small sample populations. The best that one can say is that repaired W/WS are not equivalent to new W/WS.

It is unfortunate that The Glass Doctor declined to participate in this program. The repairs that The Glass Doctor makes are unique, and based on their cost estimates, quite inexpensive. The long-term performance of the materials that The Glass Doctor injects into the W/WS may be a concern, particularly in terms of extended exposure to ultra-violet radiation. The quality assurance aspect of not being certain of what is being injected in any given repair is also of concern. On the other hand, The Glass Doctor does warranty repairs, other than improper handling, for up to three years.

The issue of commercial construction W/WS versus military construction W/WS deserves some comment. According to PPG, back when Boeing 707's were first coming into service, chipping of the outer ply glass in the corners was common and was attributed to uneven W/WS heating causing differential thermal expansion/contraction of the glass and the underlying vinyl. The slip planes in the current C/KC-135 W/WS are there to help control this problem. To completely eliminate the problem, Boeing tried sewing fine wires in with the vinvl, so-called edge heaters, to keep the vinyl "soft" in the W/WS corners. This was not very successful, because no additional power was applied to the W/WS and failure of the edge heaters was common. A second solution, was to put external glue-on edge heaters on the inside of the W/WS. This approach, unfortunately, does not put the heat where it is needed - at the outer glass ply to vinyl interface. The final solution, which is the current commercial W/WS standard, was to put a thin layer of polyurethane between the vinyl and the outer glass ply. Because the polyurethane is more ductile and does not bond as tightly to the glass as vinyl, the glass and vinyl can move somewhat independently. The polyurethane layer, which could simply be added to the existing W/WS because of the large tolerances on glass and overall assembly thickness, eliminated the edge cracking problems and did away with the need for slip planes and edge heaters. The cost of a polyurethane layer W/WS is something less than 10-percent higher than the cost of a vinyl-only W/WS. The polyurethane is itself significantly more expensive, but this is balanced against less labor because the slip

planes and edge heaters are eliminated. For commercial fleets, the higher cost is justified on the basis of more flight hours between W/WS replacements. For C/KC-135's, because they do not see nearly the flight hours per year that commercial planes see, the cost to benefit ratio for the technically superior polyurethane layer W/WS may not be low enough.

7.0 REFERENCES

- 1) MIL-W-81752A, "Windshield Systems, Fixed Wing Aircraft General Specification For."
- 2) Kelley, M.E., "Aircraft Transparency Testing Methodology," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- Bain, P.H., "An Industry Test Program for Interlayer Equivalency," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 4) King, R.D., and Wright, R.W., "Glass in High Speed Transport," Glass Technology, Vol 28 No 2, April 1987, pp. 73-81.
- 5) Hornsey, W.W., Rothe, W.F., "New Aircraft Windshield Applications Using Ion Exchange Glass," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 6) MIL-G-25871B, "Military Specification; Glass, Laminated, Aircraft Glazing."
- 7) Campbell, L.G., and Marshall, J.W., "Windshield Flight Environment Simulator," Aircraft Engineering, March 1976, pp. 4-9.
- 8) Lawrence, J.H., "Windshield Weight Reduction Through Use of High-Strength Glass and Polyurethane Interlayers," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 9) U.S. Federal Aviation Regulations, Paragraph 25.775, "Part 25 Airworthiness Standards: Transport Category Airplanes."
- 10) U.S. Federal Aviation Regulations, Paragraph 91.117, "Part 91 General Operating and Flight Rules."
- 11) McLellan G.W. and Shand, E.B., Glass Engineering Handbook, McGraw-Hill, New York, 1984, pp. 6-4.
- 12) Phillips, C.J., Glass, Its Industrial Applications, Reinhold Publishing Corporation, New York, 1960, pp. 82-85.

- 13) Greene, C.H., Modern Glass Practice, Cahners Books, Boston, 1975, pp.358-359.
- Weidehorn, S.M., and Bolz, L.H., "Stress Corrosion and Static Fatigue of Glass," Journal of the American Ceramic Society, Vol 53, 1970, pp. 543-548.
- 15) Freiman, S.W., "Effects of Chemical Environment on Slow Crack Growth in Glasses and Ceramics," *Journal of Geophysical Research*, Vol 89, 1984, pp.4072-4076.
- 16) Stanworth, J.E., *Physical Properties of Glass*, Oxford Press, London, 1950, pp. 100-101.
- 17) McLellan G.W. and Shand, E.B., Glass Engineering Handbook, McGraw-Hill, New York, 1984, pp. 6-4 to 6-6.

Table 2.1 C/KC-135 W/WS Part Numbers

Type of Windshield	NSN	Part Number
#1 Pilot	1560-01-048-1885 FL	5-89354-501
#1 Copilot	1560-01-048-1786 FL	5-89354-502
#2 Pilot	1560-01-009-3320 FL	5-89355-501
#2 Copilot	1560-01-008-7396 FL	5-89355-502
#3 Pilot	1560-00-575-6302 FL	5-89356-501
#3 Copilot	1560-00-575-6297 FL	5-89356-502
#4 Pilot	1560-00-575-6299 FL	5-71764-501
#4 Copilot	1560-00-575-6298 FL	5-71764-502
#5 Pilot	1560-00-575-6300 FL	5-89358-501
#5 Copilot	1560-00-575-6301 FL	5-89358-502

Table 2.2 C/KC-135 Program W/WS

Type of Windshield (1-5)	S/N	Condition
1	82-H-9-6-537	repairable
1	84-H-3-19-220	repairable
1	1-H-10-5-480	repairable
1	83-H-9-19-294	not repairable
1	83-H-9-19-282	repairable
1	83-H-8-15-756	repairable
1	82-H-10-18-107	repairable
1	83-H-11-7-432	repairable
1	82-H-9-6-235	repairable
1	83-H-11-21-325	repairable
1	86-H-12-01-146	repairable
1	88-H-02-08-436	repairable
1	6-H-8-4-26	repairable
1	89-286-НО-697	repairable
1	82-H-10-105	repairable
1	83-H-9-19-459	repairable
1	82-H-12-6-431	repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
2	4-H-9-27-168	repairable
2	6-H-1-15-28	repairable
2	85-H-06-03-722	repairable
2	6-H-2-27-57	not repairable
2	6-H-2-20-23	not repairable
3	5-H-3-2-730	not repairable
3	6-H-3-18-28	not repairable
3	6-H-4-6-25	not repairable
3	6-H-12-10-30	not repairable
3	B73-2815	not repairable
3	B73-3439	not repairable
3	B73-3565	not repairable
3	B73-2462	not repairable
3	85-H-01-07-725	not repairable
3	0-H-9-1-1140	not repairable
3	B73-2509	not repairable
3	5-H-2-16-042	not repairable
3	B73-3955	not repairable
3	4-H-10-4-02	not repairable
3	4-H-9-18-15	not repairable
3	7-H-12-13-67	not repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
4	4-H-10-15-108	not repairable
4	4-H-10-9-75	not repairable
4	4-H-9-28-87	repairable
4	5-H-12-16-47	repairable
4	6-H-4-29-50	not repairable
4	8-H-2-06-585	repairable
4	87-H-04-20-130	repairable
4	7-H-1-25-01	not repairable
4	3-H-4-26-45	repairable
4	82-H-12-6-392	not repairable
4	B75-1149	repairable
4	6-H-12-02-36	not repairable
4	85-H-07-01-276	repairable
4	7-H-2-4-35	not repairable
4	90-173-HO-721	repairable
4	4-H-10-9-69	not repairable
4	4-C-02-12-10	not repairable
4	84-H-10-15-1225	repairable
4	85-H-07-01-366	repairable
4	85-H-09-02-795	not repairable
4	5-H-5-23-84	not repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
5	4-C-5-16-11	not repairable
5	4-C-5-28-16	not repairable
5	4-H-8-30-95	repairable
5	5-H-2-5-75	not repairable
5	2-H-12-15-58	not repairable
5	H-30-67	not repairable
5	7-H-10-14-56	repairable
5	2-H-6-20-70	not repairable
5	2-H-4-24-49	not repairable
5	4-C-7-12-22	repairable
5	4-H-8-33-64	not repairable
5	5-H-12-5-05	repairable
5	4-C-6-12-13	not repairable
5	2-H-6-29-06	not repairable
5	3-H-5-23-79	repairable

Table 2.3 C/KC-135 #1 and #4 W/WS Dimensions

Γ	#1 W/S	#4 W/S
Length (approx), inches	35	13
Height (approx), inches	18	10
Thickness (approx), inches	1	1
Weight (approx), pounds	46	8

Table 3.1 C/KC-135 Repaired and Not Repaired #1 W/WS in the Test Program

	Repair Vendor Damage				
S/N	Vendor	Comments	Vendor Repair Comments		
83-H-11-7-432	Perkins	delaminated			
82-H-10-18-105	Perkins	delaminated, scratched			
88-H-02-08-436	NORDAM	scratches	polish, replace bumper and pressure seal		
82-H-12-6-431	NORDAM	scratches and chips	polish, replace bumper and pressure seal		
1-H-10-5-480	Perkins	delaminated, scratched			
83-H-9-19-294	Perkins	delaminated	not repairable		
82-H-9-6-537	NORDAM	scratches	polish, replace bumper and pressure seal		
83-H-9-19-459	NORDAM	scratches and chips	polish, replace bumper and pressure seal		
83-H-9-19-282	Perkins	delaminated			
83-H-8-15-756	Perkins	delaminated			
84-H-3-19-220	Perkins	delaminated, scratched			
86-H-12-01-146	NORDAM	scratches and chips	polish, replace bumper and pressure seal		
82-H-10-18-107	Perkins	delaminated			
82-H-9-6-235	NORDAM	scratches	polish, replace bumper and pressure seal		
83-H-11-21-325	NORDAM	scratches and chips	polish, replace bumper and pressure seal		
89-286-HO-697	NORDAM	scratches	polish, replace bumper and pressure seal		

Table 3.2 C/KC-135 Repaired and Not Repaired #4 W/WS in the Test Program

	Repair	Vendor Damage	
S/N	Vendor	Comments	Repair Comments
B75-1149	NORDAM	scratches	polish, replace bumper and
			pressure seals
85-H-07-01-276	NORDAM	scratches	polish, replace bumper and
			pressure seals
90-173-HO-721	Perkins	bad terminal block	
5-H-5-23-84	NORDAM	delamination, scratches, bad resistance	not repairable
7-H-2-4-35	NORDAM	scratches, bad resistance	not repairable
4-H-10-9-69	Perkins	contaminated	not repairable
82-H-12-6-392	Perkins	contaminated	not repairable
6-H-12-02-36	Perkins	bad resistance	not repairable
87-H-04-20-130	NORDAM	scratches	polish, replace bumper and
			pressure seals
8-H-2-06-585	Perkins	delamination, scratches	
85-H-07-01-366	NORDAM	scratches	polish, replace bumper and pressure seals
5-H-12-16-47	NORDAM	delamination, scratches	polish, autoclave, replace
311 12 10 17	110101111		bumper and pressure seals
84-H-10-15-1225	NORDAM	delamination, scratches	polish, autoclave, replace
			bumper and pressure seals
4-H-9-28-87	NORDAM	scratches	polish, replace bumper and
			pressure seals
3-H-4-26-45	NORDAM	delamination, scratches,	polish, autoclave, replace
		and chips bumper and pressure sea	
4-H-10-15-108	NORDAM	delamination, scratches,	not repairable
		bad resistance	

Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
86-H-10-06-062	new	acc	acc	acc	acc	
86-H-10-06-092	new	acc	acc	acc	acc	
86-H-10-06-013	new	acc	acc	acc	acc	
86-H-10-06-048	new	acc	acc	acc	acc	
83-H-11-7-432	repaired	REJ	REJ	acc	acc	1,a
82-H-10-18-105	repaired	REJ	REJ	acc	acc	1,2,b
88-H-02-08-436	repaired	REJ	REJ	acc	acc	1,b
82-H-12-6-431	repaired	REJ	acc	acc	acc	1
1-H-10-5-480	repaired	REJ	REJ	acc	acc	1,c
83-H-9-19-294	not repaired	REJ	REJ	REJ	acc	1,2,d
82-H-9-6-537	repaired	REJ	REJ	acc	acc	1,c
83-H-9-19-459	repaired	REJ	REJ	acc	acc	1,2,b

1 - air and delamination at edges

2 - surface scratch(es)

3 - delamination at edges

a - air and water breach sealb - seal needs to be trimmed

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal f - bad bumper

6 - surface chip

g - no outboard seal

h - no outboard bumper

Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements Test Results continued (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
86-H-10-06-007	new	acc	acc	acc	acc	
86-H-10-06-030	new	acc	acc	acc	acc	
86-H-10-06-022	new .	acc	acc	acc	acc	
86-H-10-06-096	new	acc	acc	acc	acc	
83-H-9-19-282	repaired	REJ	REJ	acc	acc	3,c
83-H-8-15-756	repaired	acc	REJ	acc	acc	С
84-H-3-19-220	repaired	REJ	REJ	acc	acc	4,b
86-H-12-01-146	repaired	acc	REJ	acc	acc	С
82-H-10-18-107	repaired	REJ	REJ	acc	acc	5,b
82-H-9-6-235	repaired	REJ	REJ	acc	acc	1,2,6,b
83-H-11-21-325	repaired	REJ	REJ	acc	acc	1,b
89-286-НО-697	repaired	REJ	REJ	acc	acc	2,b

1 - air and delamination at edges

a - air and water breach seal

2 - surface scratch(es)

b - seal needs to be trimmed

3 - delamination at edges

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
B75-1149	repaired	REJ	REJ	acc	acc	3,c
92-064-HO-471	new	acc	acc	acc	acc	
92-064-HO-473	new	acc	acc	acc	acc	
92-059-HO-350	new	acc	acc	acc	acc	
92-025-HO-006	new	acc	acc	acc	acc	
92-119-HO-186	new	acc	acc	acc	acc	
85-H-07-01-276	repaired	REJ	REJ	acc	no data	1,c
90-173-HO-721	repaired	acc	REJ	acc	acc	С
5-H-5-23-84	not repaired	REJ	REJ	REJ	acc	1,2,e,f
7-H-2-4-35	not repaired	REJ	REJ	no data	acc	1,2,f
4-H-10-9-69	not repaired	REJ	REJ	REJ	acc	1,g,h
82-H-12-6-392	not repaired	REJ	REJ	REJ	acc	1,g,h
6-H-12-02-36	not repaired	REJ	REJ	acc	acc	1,h

1 - air and delamination at edges a - air and water breach seal

2 - surface scratch(es)

b - seal needs to be trimmed

3 - delamination at edges

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements Test Results continued (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
87-H-04-20-130	repaired	REJ	REJ	acc	acc	6,c
8-H-2-06-585	repaired	REJ	REJ	acc	no data	1,c,i
85-H-07-01-366	repaired	REJ	REJ	acc	acc	1,c,f
92-064-HO-470	new	acc	acc	acc	acc	
92-098-HO-591	new	acc	acc	acc	acc	
92-093-НО-392	new	acc	acc	acc	acc	
92-093-НО-388	new	acc	acc	acc	acc	
5-H-12-16-47	repaired	REJ	REJ	acc	acc	1,c
84-H-10-15-1225	repaired	REJ	REJ	REJ	acc	1,2,c
4-H-9-28-87	repaired	REJ	acc	acc	acc	1
3-H-4-26-45	repaired	REJ	REJ	REJ	acc	1,2,f,g
4-H-10-15-108	not repaired	REJ	REJ	REJ	acc	1,2,

1 - air and delamination at edges

2 - surface scratch(es)

2 - Surface Scratch(es)

3 - delamination at edges

a - air and water breach seal

b - seal needs to be trimmed

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.3 C/KC-135 #1 W/WS Basic Electrical Measurements Test Results (acc=acceptable, REJ=reject)

				Inst	lation Inte	grity
S/N	Туре	Bus Resistance	Sensor Resistance	bus-to- sensor	sensor-to- frame	sensor-to- sensor
86-H-10-06-062	new	acc	acc	acc	acc	acc
86-H-10-06-092	new	acc	acc	acc	acc	acc
86-H-10-06-013	new	acc	acc	acc	acc	acc
86-H-10-06-048	new	acc	acc	acc	acc	acc
83-H-11-7-432	repaired	acc	acc	acc	acc	acc
82-H-10-18-105	repaired	acc	acc	acc	acc	REJ
88-H-02-08-436	repaired	acc	acc	acc	acc	REJ
82-H-12-6-431	repaired	acc	acc	acc	acc	acc
1-H-10-5-480	repaired	acc	acc	acc	acc	acc
83-H-9-19-294	not repaired	acc	acc	acc	acc	REJ
82-H-9-6-537	repaired	acc	acc	acc	acc	REJ
83-H-9-19-459	repaired	acc	acc	acc	acc	REJ
86-H-10-06-007	new	acc	acc	acc	acc	acc
86-H-10-06-030	new	acc	acc	acc	acc	acc
86-H-10-06-022	new	acc	acc	acc	acc	acc
86-H-10-06-096	new	acc	acc	acc	acc	acc
83-H-9-19-282	repaired	acc	acc	acc	acc	acc
83-H-8-15-756	repaired	acc	acc	acc	acc	acc
84-H-3-19-220	repaired	acc	acc	acc	acc	REJ
86-H-12-01-146	repaired	acc	acc	acc	acc	acc
82-H-10-18-107	repaired	acc	acc	acc	acc	REJ
82-H-9-6-235	repaired	acc	acc	acc	acc	REJ
83-H-11-21-325	repaired	acc	acc	acc	acc	REJ
89-286-НО-697	repaired	acc	acc	acc	acc	REJ

Table 4.4 C/KC-135 #4 W/WS Basic Electrical Measurements Test Results (acc=acceptable, REJ=reject)

		Bus	Insulation Integrity
S/N	Туре	Resistance	bus-to-frame
B75-1149	repaired	acc	acc
92-064-HO-471	new	acc	acc
92-064-HO-473	new	acc	acc
92-059-HO-350	new	acc	acc
92-025-HO-006	new	acc	acc
92-119-НО-186	new	acc	acc
85-H-07-01-276	repaired	REJ	no data
90-173-НО-721	repaired	REJ	acc
5-H-5-23-84	not repaired	REJ	acc
7-H-2-4-35	not repaired	REJ	acc
4-H-10-9-69	not repaired	acc	acc
82-H-12-6-392	not repaired	acc	acc
6-H-12-02-36	not repaired	acc	acc
87-H-04-20-130	repaired	acc	acc
8-H-2-06-585	repaired	acc	acc
85-H-07-01-366	repaired	acc	acc
92-064-HO-470	new	acc	acc
92-098-HO-591	new	acc	acc
92-093-HO-392	new	acc	acc
92-093-НО-388	new	acc	acc
5-H-12-16-47	repaired	REJ	acc
84-H-10-15-1225	repaired	acc	acc
4-H-9-28-87	repaired	acc	acc
3-H-4-26-45	repaired	acc	acc
4-H-10-15-108	not repaired	REJ	acc

Table 4.5 C/KC-135 #1 W/WS Heater Operation Test Results (acc=acceptable, REJ=reject)

		Heater	Hot/Cold	Heater Film
S/N	Туре	Operation	Spots	Scratch Test
86-H-10-06-062	new	90-110° F	no	acc
86-H-10-06-092	new	90-115° F	no	acc
86-H-10-06-013	new	90-110° F	no	acc
86-H-10-06-048	new	90-110° F	no	acc
83-H-11-7-432	repaired	85-115° F	no	acc
82-H-10-18-105	repaired	85-110° F	no	acc
88-H-02-08-436	repaired	90-110° F	no	acc
82-H-12-6-431	repaired	95-120° F	no	acc
1-H-10-5-480	repaired	90-115° F	no	acc
83-H-9-19-294	not repaired	no test	-	acc
82-H-9-6-537	repaired	80-140° F	no	acc
83-H-9-19-459	repaired	90-110° F	no	acc
86-H-10-06-007	new	90-115° F	no	acc
86-H-10-06-030	new	90-115° F	no	acc
86-H-10-06-022	new	missing photo	-	acc
86-H-10-06-096	new	90-110° F	no	acc
83-H-9-19-282	repaired	90-115° F	no	acc
83-H-8-15-756	repaired	90-115° F	no	acc
84-H-3-19-220	repaired	90-110° F	no	acc
86-H-12-01-146	repaired	95-120° F	no	acc
82-H-10-18-107	repaired	90-115° F	no	acc
82-H-9-6-235	repaired	90-115° F	no	acc
83-H-11-21-325	repaired	90-115° F	no	acc
89-286-HO-697	repaired	90-115° F	no	acc

Table 4.6 C/KC-135 #4 W/WS Heater Operation Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Heater Operation	Hot/Cold Spots	Heater Film Scratch Test
B75-1149	repaired	95-115° F	no	acc
92-064-HO-471	new	95-110° F	no	acc
92-064-HO-473	new	95-120° F	no	acc
92-059-HO-350	new	95-110° F	no	acc
92-025-HO-006	new	95-110° F	no	acc
92-119-НО-186	new	missing photo	-	acc
85-H-07-01-276	repaired	no test	-	REJ
90-173-НО-721	repaired	no test		acc
5-H-5-23-84	not repaired	95-115° F	no	acc
7-H-2-4-35	not repaired	95-115° F	no	acc
4-H-10-9-69	not repaired	95-110° F	no	acc
82-H-12-6-392	not repaired	95-115° F	no	acc
6-H-12-02-36	not repaired	95-110° F	no	acc
87-H-04-20-130	repaired	95-110° F	no	acc
8-H-2-06-585	repaired	95-110° F	no	acc
85-H-07-01-366	repaired	missing photo	-	acc
92-064-HO-470	new	95-110° F	no	acc
92-098-HO-591	new	95-115° F	no	acc
92-093-HO-392	new	95-135° F	no	acc
92-093-НО-388	new	95-110° F	no	acc
5-H-12-16-47	repaired	95-110° F	no	acc
84-H-10-15-1225	repaired	95-110° F	no	acc
4-H-9-28-87	repaired	95-110° F	no	acc
3-H-4-26-45	repaired	95-110° F	no	acc
4-H-10-15-108	not repaired	95-115° F	no	acc

Table 4.7 C/KC-135 #1 W/WS Optical Performance Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Luminous Transmittance	Haze	Deviation	Distortion, center/edge
5/18	Type	Traisilluance	Haze	Deviation	<u> </u>
86-H-10-06-062	new	acc	acc	acc	none/1:30
86-H-10-06-092	new	acc	acc	acc	none/none
86-H-10-06-013	new	acc	acc	acc	none/none
86-H-10-06-048	new	acc	acc	acc	none/none
83-H-11-7-432	repaired	acc	acc	acc	none/1:20
82-H-10-18-105	repaired	acc	acc	acc	none/none
88-H-02-08-436	repaired	acc	acc	acc	none/none
82-H-12-6-431	repaired	acc	acc	acc	none/none
1-H-10-5-480	repaired	acc	acc	acc	none/none
83-H-9-19-294	not repaired	acc	acc	acc	none/none
82-H-9-6-537	repaired	acc	acc	acc	none/none
83-H-9-19-459	repaired	acc	acc	acc	none/none
86-H-10-06-007	new	acc	acc	acc	none/none
86-H-10-06-030	new	acc	acc	acc	none/none
86-H-10-06-022	new	acc	acc	acc	none/none
86-H-10-06-096	new	acc	acc	acc	none/none
83-H-9-19-282	repaired	acc	acc	acc	none/none
83-H-8-15-756	repaired	acc	acc	acc	none/none
84-H-3-19-220	repaired	acc	acc	acc	none/none
86-H-12-01-146	repaired	acc	acc	acc	none/1:30
82-H-10-18-107	repaired	acc	acc	acc	none/1:40
82-H-9-6-235	repaired	acc	acc	acc	none/none
83-H-11-21-325	repaired	acc	acc	acc	none/none
89-286-НО-697	repaired	acc	acc	acc	none/none

Table 4.8 C/KC-135 #4 W/WS Optical Performance Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Luminous Transmittance	Haze	Deviation	Distortion, center/edge
B75-1149	repaired	acc	acc	acc	none/1:18
92-064-HO-471	new	acc	acc	acc	none/1:11
92-064-HO-473	new	acc	acc	acc	none/1:14
92-059-HO-350	new	acc	acc	acc	none/1:7
92-025-HO-006	new	acc	acc	acc	none/1:8
92-119-НО-186	new	acc	acc	acc	missing photo
85-H-07-01-276	repaired	acc	acc	acc	none/1:12
90-173-НО-721	repaired	acc	acc	acc	none/1:10
5-H-5-23-84	not repaired	acc	acc	acc	none/none
7-H-2-4-35	not repaired	acc	acc	acc	none/1:25
4-H-10-9-69	not repaired	acc	acc	acc	none/1:21
82-H-12-6-392	not repaired	acc	acc	acc	none/1:7
6-H-12-02-36	not repaired	acc	acc	acc	none/none
87-H-04-20-130	repaired	acc	acc	acc	1:16/1:5
8-H-2-06-585	repaired	acc	acc	acc	none/1:22
85-H-07-01-366	repaired	acc	acc	acc	none/1:8
92-064-HO-470	new	acc	acc	acc	none/1:12
92-098-HO-591	new	acc	acc	acc	none/1:9
92-093-НО-392	new	acc	acc	acc	none/1:10
92-093-НО-388	new	acc	acc	acc	none/1:9
5-H-12-16-47	repaired	acc	acc	acc	none/none
84-H-10-15-1225	repaired	acc	acc	acc	none/1:6
4-H-9-28-87	repaired	acc	acc	acc	none/1:16
3-H-4-26-45	repaired	acc	acc	acc	none/none
4-H-10-15-108	not repaired	acc	acc	acc	1:16/1:22

Table 4.9 C/KC-135 #1 W/WS Pressure Integrity Test Results

S/N	Туре	Initial Proof Pressure Test	Damage from Pressure Cycling	Final Proof Pressure Test
86-H-10-06-062	new	passed	no apparent damage	passed
86-H-10-06-092	new	passed	no apparent damage	passed
86-H-10-06-013	new	passed	no apparent damage	passed
86-H-10-06-048	new	passed	no apparent damage	passed
83-H-11-7-432	repaired	passed	no apparent damage	passed
81-H-10-18-105	repaired	passed	no apparent damage	passed
88-H-02-08-436	repaired	passed	no apparent damage	passed
82-H-12-6-431	repaired	passed	no apparent damage	passed
1-H-10-5-480	repaired	passed	no apparent damage	passed
83-H-9-19-294	not repaired	passed	no apparent damage	passed
82-H-9-6-537	repaired	passed	delamination near slip plane areas	passed
83-H-9-19-459	repaired	passed	delamination near slip plane areas	passed

Table 4.10 C/KC-135 #4 W/WS Pressure Integrity Test Results

S/N	Туре	Initial Proof Pressure Test	Damage from Pressure Cycling	Final Proof Pressure Test
87-H-04-20-130	repaired	passed	no apparent damage	passed
8-H-2-06-585	repaired	passed	no apparent damage	passed
85-H-07-01-366	repaired	passed	no apparent damage	passed
92-064-HO-470	new	passed	no apparent damage	passed
92-098-HO-591	new	passed	no apparent damage	passed
92-093-HO-392	new	passed	no apparent damage	passed
92-093-HO-388	new	passed	no apparent damage	passed
5-H-12-16-47	repaired	passed	large amount of delamination along forward edge and lower forward corner	passed
84-H-10-15-1225	repaired	passed	no apparent damage	passed
4-H-9-28-87	repaired	passed	no apparent damage	passed
3-H-4-26-45	repaired	passed	delamination in lower forward corner of less than 1 square inch	passed
4-H-10-15-108	not repaired	passed	no apparent damage	passed

Table 4.11 C/KC-135 #1 W/WS Residual Strength Ball Drop Test Results

W/WS S/N	Туре	Damage from Pressure Cycling	Comments
86-H-10-06-062	new	no apparent damage	Two ball drops. Outboard glass ply broken. Crushing in impact area. No delamination created by cracking of the outer ply.
83-H-9-19-459	repaired	delamination near slip plane areas	Two ball drops. Outboard glass ply broken. Core ply intact. No delamination from glass breakage.
1-H-10-5-480	repaired	no apparent damage	Two ball drops. Outboard glass ply broken. No delamination from outer ply cracking.
81-H-10-18-105	repaired	no apparent damage	One ball drop only. Both glass plies failed. Large amount of spall driven from core ply inboard surface.
82-H-9-6-537	repaired	delamination near slip plane areas	One ball drop only. Both glass plies failed. Large amount of spall removed from core ply surface.

Table 4.12 C/KC-135 #4 W/WS Residual Strength Ball Drop Test Results

W/WS S/N	Туре	Damage from Pressure Cycling	Comments
92-093-HO-388	new	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
87-H-04-20-130	repaired	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
8-H-2-06-585	repaired	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
3-H-4-26-45	repaired	delamination in lower forward corner of less than 1 square inch	Both glass plies failed. Large area of core ply inboard surface spalled in impact area.
5-H-12-16-47	repaired	large amount of delamination along forward edge and lower forward corner	Both glass plies failed. Large area of core ply inboard surface spalled in impact area.

Table 4.13 C/KC-135 #1 W/WS Bird Impact Test Results

	Shot			Impact Velocity	
Date	Number	S/N	Type	(knots)	Comments
6/22/93	783	86-H-10-06-007	new	251.7	Outboard glass ply broken. Core ply intact. Small amount
					of bird residue impacted spall sneet - entry between outboard glass ply and W/WS frame when mounting O-rings
	-				compressed.
6/22/93	784	86-H-10-06-030	new	251.1	No damage. Small amount of bird residue on spall sheet,
• #==					same as Shot 783.
6/23/93	785	86-H-10-06-22	new	252.8	No damage. No bird residue on spall sheet.
6/23/93	786	86-H-10-06-96	new	252.6	No damage. No bird residue on spall sheet.
6/24/93	792	83-H-9-19-2-282	repaired	249.6	Outboard ply intact. Core ply failed. No glass spall on spall
					sheet.
7/19/93	793	83-H-8-15-756	repaired	249.4	All glass plies failed. Minor glass spall on spall sheet.
7/19/93	794	84-H-3-19-220	repaired	250.1	Outboard glass ply failed. Core ply intact.
7/20/93	795	86-H-12-01-146	repaired	252.4	No glass breakage. Z-bar retainer bent badly.
7/20/93	962	82-H-10-18-107	repaired	249.4	All glass plies failed. Minor amount of glass spall from
					inboard ply on spall sheet.
7/20/93	797	82-H-9-6-235	repaired	251.0	Outboard glass ply failed. Core ply intact.
7/21/93	798	83-H-11-21-325	repaired	247.5	All glass plies failed. No spall on spall sheet.
7/22/93	799	89-286-НО-697	repaired	250.8	No damage.

	Shot			Impact Velocity	
Date	Number	S/N	Type	(knots)	Comments
9/1/93	815	B75-1149	repaired	247.5	Outboard glass ply failed. Bird residue between outboard retainer gasket along aft edge and ton right corner. Bent
9/1/93	816	92-064-HO-471	new	251.3	No damage. Small amount of bird residue between outboard retainer and W/WS. No bent bolts.
9/1/93	817	92-064-HO-473	new	248.9	No damage. Minor bird residue through aft edge.
9/1/93	818	92-059-НО-350	new	225.1	Bird cannon misfire due to camera failure. Inboard glass ply
					cimpped.
9/29/93	835	92-025-HO-006	new	248.4	No damage.
9/29/93	988	92-119-HO-186	mem	247.8	No damage.
9/29/93	837	85-H-07-01-276	repaired	248.7	No damage.
9/29/93	838	90-173-HO-721	repaired	247.1	No damage.
9/30/93	839	5-H-5-23-84	not repaired	251.2	Outboard ply broken. No bird penetration. Interlayer tear in lower forward corner.
9/30/93	840	7-H-2-4-35	not repaired	250.8	Catastrophic failure. Entire laminated panel torn out at insert.
9/30/93	841	4-H-10-9-69	not repaired	251.0	No damage.
6/30/63	842	82-H-12-6-392	not repaired	250.8	No damage.
10/1/93	843	6-H-12-02-36	not repaired	250.3	All glass plys failed. 4-inch long interlayer tear at lower forward corner. Some glass spall.
				-	

Table 4.15 C/KC-135 W/WS General Inspection Summary

	#1 W/WS		#4 W/WS			
Category	New	Repaired	Not Repaired	New	Repaired	Not Repaired
Number Tested	8	15	1	9	10	6
Number with delamination, scratches, or chips	0	13	1	0	9	6
Number with seal deficiencies	0	14	1	0	8	6
Number with vinyl cracks	0	0	1	0	2	4
Number with bad dimensional check	0	0	0	0	0	0
Number with bad bus resistance	0	0	0	0	3	3
Number with bad sensor resistance	0	0	0	_	_	_
Number with bad insulation	0	9	1	0	0	0
Number with poor heater performance	0	0	1	0	1	0
Number with bad optics	0	0	0	0	0	0

Table 4.16 C/KC-135 W/WS Pressure Integrity Test Summary

	#1 W/WS			#4 W/WS		
Category	New	Repaired	Not Repaired	New	Repaired	Not Repaired
Number Tested	4	7	1	4	7	1
Number failing initial proof pressure test	0	0	0	0	0	0
Number failing during pressure cycling	0	0	0	0	0	0
Number failing final proof pressure test	0	0	0	0	0	0
Number delaminated	0	2	0	0	2	0

Table 4.17 C/KC-135 W/WS Ball Drop Residual Strength Test Summary

	#1 W/WS		#4 W/WS	
Category	New	Repaired	New	Repaired
Number Tested	1	4	1	4
Number with initial delamination	0	2	0	2
Number with outboard ply failure only	1	. 2	1	2
Number with both glass plys failed	0	2	0	2

Table 4.18 C/KC-135 W/WS Bird Impact Test Summary

	#1 V	V/WS	#4 W/WS			
Category	New	Repaired	New	Repaired	Not Repaired	
Number Tested	4	8	5	3	5	
Number undamaged	3	2	4	2	2	
Number with outboard ply broken only	1	2	1	1	1	
Number with inboard ply broken only	0	1	0	0	0	
Number with all glass plies failed	0	3	0	0	2	
Number with no inner ply glass spall	4	6	5	3	3	
Number with minor inner ply glass spall	0	2	0	0	1	
Number with major inner ply glass spall	0	0	0	0	1	
Number with no bird penetration	4	8	5	3	4	
Number with minor bird penetration	0	0	0	0	0	
Number with major bird penetration	0	0	0	0	1	

Table 4.19 C/KC-135 #1 W/WS Mounting Edge Measurements and Bird Impact Test Results

		Edge Thickness,	
S/N	Type	inches	Bird Impact Comments
86-H-10-06-007	new	0.936	Outboard glass ply broken. Core ply intact.
		0.943	
		0.942	
82-H-10-18-107	repaired	0.843	All glass plies failed. Minor amount of
		0.852	glass spall from inboard ply on spall sheet.
		0.838	
83-H-9-19-282	repaired	similar to	Core ply failed. No glass spall on spall
		82-H-10-18-107	sheet.
83-H-8-15-756	repaired	similar to	All glass plies failed. Minor glass spall on
		82-H-10-18-107	spall sheet.
83-H-11-21-325	repaired	0.927	All glass plies failed. No spall on spall
	-	0.936	sheet.
		0.939	
86-H-06-030	new	0.908 min	No damage.
86-H-10-06-22		0.940 max	
86-H-10-06-96			
84-H-3-19-220			Outboard glass ply failed.
86-H-12-01-146	repaired		No glass breakage.
82-H-9-6-235	теринец		Outboard glass ply failed.
89-286-HO-697			No damage.
91-010-HO-206		0.850 min	
		0.909 max	
87-H-06-29-758		0.893 min	
		0.920 max	
87-H-09-21-671		0.886 min	Not bird impact tested.
	unrepaired	0.922 max	1100 ond impact tested.
90-180-HO-139		0.839 min	
		0.887 max	
82-H-9-20-127		0.902 min	
		0.918 max	

Table 5.1 Initial C/KC-135 W/WS Repair Estimates

T	ype of W/WS	NORDAM ^a	Perkins ^b	The Glass Doctor ^b	
	1	\$1,890	\$2,000	\$1,327 ^c	
	glass only	\$1,512	\$1,500	\$896	
2	frame and glass	\$6,700	-	-	
	3	\$735 Category I ^d \$945 Category II \$945 Category III \$1,280 Category IV	\$750	\$516	
4		\$975	\$875	\$667	
5		5 \$750		\$484	

Notes:

- a) Estimate, actual price quote based on specific repairs required as determined by incoming inspection.
- b) Fixed price.
- c) Sensor repair or replacement, \$437 additional.
- d) NORDAM #3 W/WS Repair/Overhaul Categories:

All repair categories include complete disassembly, inspection, and reassembly with new seal and new grommets.

Category	Transparency Repair		
I	Polish inner and outer panes		
II	Polish outer pane, replace inner pane		
III	Polish inner pane, replace outer pane		
IV	Replace inner and outer panes		

Table 5.2 C/KC-135 #1 W/WS Actual Repair Costs (NR=not repairable)

S/N	Repair Vendor	Vendor Damage Comments	Repair Cost
83-H-11-7-432	Perkins	delaminated	\$2,000
82-H-10-18-105	Perkins	delaminated, scratched	\$2,000
88-H-02-08-436	NORDAM	scratches	\$1,695
82-H-12-6-431	NORDAM	scratches and chips	\$2,090
1-H-10-5-480	Perkins	delaminated, scratched	\$2,000
83-H-9-19-294	Perkins	delaminated	\$0, NR
82-H-9-6-537	NORDAM	scratches	\$1,893
83-H-9-19-459	NORDAM	scratches and chips	\$1,893
83-H-9-19-282	Perkins	delaminated	\$2,000
83-H-8-15-756	Perkins	delaminated	\$2,000
84-H-3-19-220	Perkins	delaminated, scratched	\$2,000
86-H-12-01-146	NORDAM	scratches and chips	\$1,695
82-H-10-18-107	Perkins	delaminated	\$2,000
82-H-9-6-235	NORDAM	scratches	\$1,695
83-H-11-21-325	NORDAM	scratches and chips	\$2,090
89-286-HO-697	NORDAM	scratches	\$2,090

Table 5.3 C/KC-135 #4 W/WS Actual Repair Costs (NR=not repairable)

Repair Vendor Damage			
S/N	Vendor	Comments	Repair Cost
B75-1149	NORDAM	scratches	\$559
85-H-07-01-276	NORDAM	scratches	\$954
90-173-НО-721	Perkins	bad terminal block	\$875
5-H-5-23-84	NORDAM	delamination, scratches, bad resistance	\$0, NR
7-H-2-4-35	NORDAM	scratches, bad resistance	\$0, NR
4-H-10-9-69	Perkins	contaminated	\$0, NR
82-H-12-6-392	Perkins	contaminated	\$0, NR
6-H-12-02-36	Perkins	bad resistance	\$0, NR
87-H-04-20-130	NORDAM	scratches	\$954
8-H-2-06-585	Perkins	delamination, scratches	\$875
85-H-07-01-366	NORDAM	scratches	\$559
5-H-12-16-47	NORDAM	delamination, scratches	\$1,151
84-H-10-15-1225	NORDAM	delamination, scratches	\$1,151
4-H-9-28-87	NORDAM	scratches	\$559
3-H-4-26-45	NORDAM	delamination, scratches, and chips	\$1,349
4-H-10-15-108	NORDAM	delamination, scratches, bad resistance	\$0, NR

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS (NR=not repairable)

Type of W/WS (1-5)	S/N	Repair Vendor	Cost of Repair
1	82-H-9-6-537	NORDAM	\$1,893
1	84-H-3-19-220	Perkins	\$2,000
1	1-H-10-5-480	Perkins	\$2,000
1	83-H-9-19-294	Perkins	\$0, NR
1	83-H-9-19-282	Perkins	\$2,000
1	83-H-8-15-756	Perkins	\$2,000
1	82-H-10-18-107	Perkins	\$2,000
1	83-H-11-7-432	Perkins	\$2,000
1	82-H-9-6-235	NORDAM	\$1,695
1	83-H-11-21-325	NORDAM	\$2,090
1	86-H-12-01-146	NORDAM	\$2,090
1	88-H-02-08-436	NORDAM	\$1,695
1	6-H-8-4-26	NORDAM	\$2,683
1	89-286-HO-697	NORDAM	\$2,090
1	82-H-10-105	Perkins	\$2,000
1	83-H-9-19-459	NORDAM	\$1,893
1	82-H-12-6-431	NORDAM	\$2,090
2	4-H-9-27-168	NORDAM	\$1,919
2	6-H-1-15-28	NORDAM	\$1,524
2	85-H-06-03-722	NORDAM	\$1,721
2	6-H-2-27-57	Perkins	\$0, NR
2	6-H-2-20-23	Perkins	\$0, NR
3	5-H-3-2-730	NORDAM	\$0, NR
3	6-H-3-18-28	NORDAM	\$0, NR
3	6-H-4-6-25	NORDAM	\$0, NR
3	6-H-12-10-30	NORDAM	\$0, NR
3	B73-2815	Perkins	\$0, NR
3	B73-3439	Perkins	\$0, NR

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS continued (NR=not repairable)

Type of W/WS (1-5)	S/N	Repair Vendor	Cost of Repair
3	B73-3565	Perkins	\$0, NR
3	B73-2462	NORDAM	\$0, NR
3	85-H-01-07-725	Perkins	\$0, NR
3	0-H-9-1-1140	NORDAM	\$0, NR
3	B73-2509	Perkins	\$0, NR
3	5-H-2-16-042	NORDAM	\$0, NR
3	B73-3955	Perkins	\$0, NR
3	4-H-10-4-02	Perkins	\$0, NR
3	4-H-9-18-15	Perkins	\$0, NR
3	7-H-12-13-67	NORDAM	\$0, NR
4	4-H-10-15-108	NORDAM	\$0, NR
4	4-H-10-9-75	Perkins	\$0, NR
4	4-H-9-28-87	NORDAM	\$559
4	5-H-12-16-47	NORDAM	\$1,151
4	6-H-4-29-50	Perkins	\$0, NR
4	8-H-2-06-585	Perkins	\$875
4	87-H-04-20-130	NORDAM	\$954
4	7-H-1-25-01	Perkins	\$0, NR
4	3-H-4-26-45	NORDAM	\$1,349
4	82-H-12-6-392	Perkins	\$0, NR
4	B75-1149	NORDAM	\$559
4	6-H-12-02-36	Perkins	\$0, NR
4	85-H-07-01-276	NORDAM	\$954
4	7-H-2-4-35	NORDAM	\$0, NR
4	90-173-НО-721	Perkins	\$875
4	4-H-10-9-69	Perkins	\$0, NR
4	4-C-02-12-10	Perkins	\$0, NR
4	84-H-10-15-1225	NORDAM	\$1,151

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS continued (NR=not repairable)

Type of W/WS (1-5)	S/N	Repair Vendor	Cost of Repair
4	85-H-07-01-366	NORDAM	\$559
4	85-H-09-02-795	Perkins	\$0, NR
4	5-H-5-23-84	NORDAM	\$0, NR
5	4-C-5-16-11	Perkins	\$0, NR
5	4-C-5-28-16	NORDAM	\$0, NR
5	4-H-8-30-95	NORDAM	\$486
5	5-H-2-5-75	Perkins	\$0, NR
5	2-H-12-15-58	NORDAM	\$0, NR
5	H-30-67	NORDAM	\$0, NR
5	7-H-10-14-56	NORDAM	\$1,079
5	2-H-6-20-70	Perkins	\$0, NR
5	2-H-4-24-49	Perkins	\$0, NR
5	4-C-7-12-22	NORDAM	\$881
5	4-H-8-33-64	Perkins	\$0, NR
5	5-H-12-5-05	NORDAM	\$486
5	4-C-6-12-13	Perkins	\$0, NR
5	2-H-6-29-06	Perkins	\$0, NR
5	3-H-5-23-79	NORDAM	\$881

Table 5.5 C/KC-135 New W/WS Costs

Designation	NSN	Part Number	USAF Cost
#1 Pilot	1560-01-048-1885 FL	5-89354-501	
#1 Copilot	1560-01-048-1786 FL	5-89354-502	\$2,582
#2 Pilot	1560-01-009-3320 FL	5-89355-501	
#2 Copilot	1560-01-008-7396 FL	5-89355-502	\$1,445
#3 Pilot	1560-00-575-6302 FL	5-89356-501	4.47 0
#3 Copilot	1560-00-575-6297 FL	5-89356-502	\$1,479
#4 Pilot	1560-00-575-6299 FL	5-71764-501	
#4 Copilot	1560-00-575-6298 FL	5-71764-502	\$1,372
#5 Pilot	1560-00-575-6300 FL	5-89358-501	A1.05 0
#5 Copilot	1560-00-575-6301 FL	5-89358-502	\$1,078

Table 5.6 Repair Cost Comparison Data for C/KC-135 W/WS

	Cost as a Percentage of New Purchase Price		
Type of W/WS	High [*]	Actual	Low*
1	81	75	61
2	132	-	83
3	87	-	41
4	71	65	41
5	100	-	45

^{*} Based on Extremes of Estimates, Actual Costs, and Quotes from NORDAM and Perkins Aircraft Services, assuming a 20-percent volume discount from Perkins

Figure 2.1 C/KC-135 W/WS Identification

Figure 2.2 C/KC-135 W/WS Construction

Figure 2.3 W/WS Construction Showing Location of Slip Planes

Figure 2.4 C/KC-135 #1 W/WS Cross-Section

Figure 2.5 C/KC-135 #4 W/WS Cross-Section

Figure 3.1 The Glass Doctor Patented Technique for Repair of Conical Cracks in Laminated Glass, U.S. Patent # 3,841,932

Figure 3.2 The Glass Doctor Patented Technique for Repair of Delaminations, U.S. Patent # 4,780,162

a) Typical (S/N 86-H-10-06-062)

b) Most Out-of-the-Ordinary (S/N 82-H-9-6-537)

Figure 4.1 C/KC-135 #1 Thermal Images From the Heater Test

a) Typical (S/N 92-064-HO-471)

b) Most Out-of-the-Ordinary (S/N 92-093-HO-392)

Figure 4.2 C/KC-135 #4 W/WS Thermal Images From the Heater Test

Figure 4.4 Worst Optical Distortion Found in Any C/KC-135 #4 W/WS (S/N 87-H-04-20-130)

Figure 4.5 Pressure Integrity Testing Facility

Figure 4.6 C/KC-135 #1 W/WS Pressure Integrity Mounting Frame

Figure 4.7 C/KC-135 #4 W/WS Pressure Integrity Mounting Frame

a) #1 W/WS

b) #4 W/WS

Figure 4.8 C/KC-135 W/WS Mounting Details

Figure 4.9 Typical C/KC-135 #1 W/WS Pressure Integrity Test Set Up

Figure 4.10 Typical C/KC-135 #4 W/WS Pressure Integrity Test Set Up

Worst Delamination Observed in a C/KC-135 #1 W/WS From Pressure Cycling (Repaired W/WS, S/N 82-H-09-06-537) Figure 4.11

Figure 4.12 Worst Delamination Observed in a C/KC-135 #4 W/WS From Pressure Cycling (Repaired W/WS, S/N 5-H-12-16-47)

Figure 4.13 Residual Strength Falling Ball Test

Figure 4.14 #1 W/WS Residual Strength Falling Ball Impact Test Showing Test Set Up and Consequences of Two Ball Drops (New W/WS, S/N 86-H-10-06-062)

Figure 4.15 #1 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Outboard View (S/N 82-H-9-6-537)

Figure 4.16 #1 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Inboard View (S/N 82-H-9-6-537)

Figure 4.18 #4 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Outboard View (S/N 5-H-12-16-47)

Figure 4.19 #4 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Inboard View (S/N 5-H-12-16-47)

Figure 4.20 C/KC-135 #1 W/WS Bird Impact Mounting Frame

Figure 4.21 C/KC-135 #4 W/WS Bird Impact Mounting Frame

Figure 4.23 Schematic of the PPG Bird Cannon

Figure 4.25 Typical Pre-Test View of C/KC-135 #1 W/WS (Copilot) Prior to Bird Impact Testing

Figure 4.26 Typical Pre-Test View of C/KC-135 #4 W/WS (Pilot) Prior to Bird Impact Testing

Figure 4.27 Bird Impact Test Set Up Showing Impact Velocity Timing Trap (Right) and Front High Speed Film Camera Equipment (Center)

Figure 4.29 C/KC-135 #1 W/WS Showing No Damage From a 4-Pound Bird Impact at 250.8 Knots (Repaired W/WS, S/N 89-286-HO-697)

Figure 4.30 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 251.7 Knots, Front View (New W/WS, S/N 86-H-10-06-007)

Figure 4.31 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 251.7 Knots, Rear View (New W/WS, S/N 86-H-10-06-007)

Figure 4.32 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound Bird Impact at 249.4 Knots, Front View (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.33 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound Bird Impact at 249.4 Knots, Rear View (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.34 Spall Sheet Condition From a 4-Pound Bird Impact at 249.4 Knots on a C/KC-135 #1 W/WS With All Glass Plies Failed (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.35 C/KC-135 #4 W/WS Showing No Damage From a 4-Pound Bird Impact at 248.7 Knots (Not Repaired W/WS, S/N 4-H-10-9-69)

Figure 4.36 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 247.5 Knots, Front View (Repaired W/WS, S/N B75-1149)

Figure 4.37 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 247.5 Knots, Rear View (Repaired W/WS, S/N B75-1149)

Figure 4.38 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure From a 4-Pound Bird Impact at 250.8 Knots, Front View (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 4.39 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure From a 4-Pound Bird Impact at 250.8 Knots, Regar View (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 4.40 Spall Sheet and W/WS Condition From a Catastrophic 4-Pound Bird Impact at 250.8 Knots on a C/KC-135 #4 W/WS (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 6.1 Heat Strengthened Glass Residual Stresses

		·
		_

APPENDIX A
REPAIR VENDOR AIR AGENCY CERTIFICATES

Air Agency Certificate

Number EZ22812K

This certificate is issued to NORDAM TRANSPARANCIES DIVISION

whose business address is
510 S. LANSING
TULSA; OKLAHOMA 74120

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency, and is empowered to operate an approved REPAIR STATION

with the following ratings:
LIMITED - SPECIALIZED SERVICE

This certificate, unless canceled, suspended, or revoked, shall continue in effect INDEFINITELY

By direction of the Administrator

Dalo issued:

February 21, 1990

HAROLD D. WRIGHT

ACTING MANAGER, SW-FSDO-15

Chis Certificiet is not Etginsicrobic, and any major change in the basic facilities, or in the location thereof, shall be immediately reported to the appropriate regional office of the federal aviation administration

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Limitations:

The nating () sot forth on Stir Styonoy Cortificate Number = 222612% is are limited to the following:

LIMITED RATING:

Specialized Service

Transparency inspection and repair in accordance with Aircarrier Engineering Orders, O.E.M Manuals, and NR 0101-301.

None

Detegated authorities:

Dato issued on remised:

July 3, 1990

For the Steministration:

(Coy & Standie

ROY C. WIEDEN

PRINCIPAL MAINTENANCE INSPECTOR

FAA Form 8000_4_1 (1-75)

FORMERLY PAR FORM 300.1 CAGE ASW-FSDO-15

Air Agency Certificate

Number JKQR257L

This certificate is issued to PERKINS AIRCRAFT SERVICES, INC.

whose business address is 5001 NORTH FREEWAY, SUITE B FORT WORTH, TEXAS 76106

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency, and is empowered to operate an approved Repair Station;

with the following ratings:
LIMITED SPECIALIZED SERVICE (10-08-93)

This certificate, unless canceled, suspended, or revoked, shall continue in effect indefinitely.

By direction of the Administrator

Dato issuod :

May 2, 1991

Kenneth D. Robinson

This Certificate is not Centificable, and any major change in the basic facilities, or in the location thereof, shall be immediately reported to the appropriate regional office of the federal aviation administration

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Limitations:

The rating (s) set forth on Stir Styrney brontificate Number JKQR257L the following:

is are limited to

LIMITED RATINGS:

SPECIALIZED SERVICE

Repair of aircraft windows, transparent enclosures, structural and non-structural composite panels, cores, flaps, ailerons and radomes.

Above repairs will be performed in accordance with aircraft manufacturer's repair procedures, air carrier approved instructions and Perkins Aircraft Services, Inc., Process Specification PPS0001, Revision A, dated 09-15-93, as revised.

Delegated authorities · NONE

Dato issued or verised:

October 8, 1993

Standley H. Cobb

FORMERLY FAA FORM 300.1 PAGE 2

FAA Form 8000-4-1 (1-75)

Air Agency Certificate

. Vumber 0X4R430M

This certificate is issued to THE GLASS DOCTOR

uchose business address is 2390 26th AVENUE NORTH St. Petersburg, Florida 33713

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency; and is empowered to operate an approved REPAIR STATION

with the following ratings:

This certificate, unless canceled, suspended, or revoked, shall continue in effect INDEFINITELY

By direction of the Administrator

Dato issued :

September 27, 1979 Replacement May 1, 1990

North Florida FSDO-15

This Extrificant is not Transfitable, and any major change in the basic facilities, or in the location thereof, small be immediately reported to the appropriate regional office of the federal aviation administration

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Limitations:

The nating (s) set forth on Air Agency Contificate Number OXAR430M the following:

is are limited to

LIMITED RATINGS:

SPECIALIZED SERVICE - Refurbish and repair aircraft plastic and glass windows, windshields, canopies, navigation light lenses, and other miscellaneous small transparencies, including nicks, chips, delamination, electrical busses and temperature sensor installation.

> All inspections and rework will be accomplished in accordance with the following data as applicable to the unit being worked.

> Aircraft Manufacturer's Maintenance Manuals/ Instruction.

FAA Approved process Specification, #1979 Cabin and Cockpit Windows dated 12-31-84 (as amended).

Air Carrier's Approved Specifications.

FAA Advisory Circular 43.13-1A, Acceptable Methods, Techniques, and Practices, Chapter 9. Windshields, Enclosures and Exits.

Delegated authorities: NONE

Date issued or revised:

May 1, 1990

Principal Maintenance Inspector

FAA Form 8000-4-1 (1-75)

FORMERLY FAA FORM 390.1 PAGE 2

Page 1 of 1

APPENDIX B
GENERAL INSPECTION DATA SHEETS

This page intentionally left blank.

Customer Part Number: 5-89.	<u> 354 - s</u>	702	
Unit Serial Number: 86-H	-10-01	6-062	
*	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance:	Dec	5-21-93	22 PPG 28
<u>34.3</u> Ohms	•		
Thermal Image:		<u>5-20-93</u>	52 व्यव 28
S.E. Resistance: 307	acci	5-24-93	22 996 28
Insulation Test Power to S.E.:	_ok_	MAY 25 1993	22 P P8 77
(2500 VAC) S.E. to Metal: S.E. to S.E.:	01	•	
Nesa Scratch Test (350 VAC):	ol	MAY 25 1993	·2 PP6 M
Light Transmittance:	77.6	MAY 2 5 1993	22 PPG 77
Haze:	1,/	MAY 25 1993	22 PPG 77
Photo (Single Exposure):		MAY 2 6 1993	22 PPG 4
Deviation Inspection:	Peca 1	<u> </u>	22 PPG 28
(German Light per Template) 1: 3.0 2: 2.0 3: 1.0 4: $5:1.0$ 6: 2.0 7: 1.0 8:	3.0		
Dimensional Inspection:	•	5-25-93 0,	22.750 28 £1/21
Unit Thickness:	Occ	5-25-23	22 PPG 28
(Per Template)			
5:1.105 6:1.104 7:1.103 8:	1,103 1,103 1,100		
9:1.703		JUN 02 1993	90 an-
Seal Evaluation:	Ace		22 PPG 77
(Comments)			
Visual Inspection:	Acc	JUN 02 1993	22 PP6 77
(Place comments on attached sheet)			

Check for vinyl cracks

Visual Inspection Map & Comments

Thickness Template

(3) 1.103
(1) 1.105
(2) 1.105
(3) 1.105
(1) 1.105
(1) 1.105

1/103

@ 1.100

Deviation Template

3 1.105

1.100

③ 1.0 ⊕ 3.0 ③ 2.0 ② 2.0 ① 2.0

@ 1.10f

Customer Part Number: $5-89354-502$				
Unit Serial Number: 86-H-10-06-092				
·	Acc/Rej	Date	Inspector	
Bus to Bus Resistance: 34.9 Ohms	acc	5-21-83	22 PPG 28	
Thermal Image:		5-20-93	_	
S.E. Resistance: 389	Acc	5-21-93	8 2 29 9 5 2 8	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	for	JUN 0 4 1993	22 PM TF	
S.E. to S.E.: Nesa Scratch Test (350 VAC):	'	70% 0 8 1 8 93	£ 277339	
Light Transmittance: 73.7	4	ากพ์ 0 อ 1883	52 Pr 3 09	
Haze:	A	ากผู้ 0 ล 1 333	E2 7.70 33	
Photo (Single Exposure):		JUN 1 4 1993	22 EPG 8	
Deviation Inspection:	910 1.0 3.0	<u>5-25-93</u>	22 PPG 28	
5: 2.0 6: 0.6 7: $1/0$ 8: Dimensional Inspection:	: <u>.3.0</u>			
	Acce.	<u>5-25-93</u>	22. P PG 27	
5:1:102 6:1:100 7:1.105 8:	1.100 1.102 1.100			
Seal Evaluation:		JUN 0 4 1993	22 PP6 77	
(Comments)				
Visual Inspection:	poo	JUN 04 1993	22 PP6 77	

Aac JUN 0 4 1993 22 PP8 77 Check for vinyl cracks Visual Inspection Map & Comments Some AHR Thickness Template 1098 3/100 T 1100 91100 11/02 D 1/00 3/102 31102 ()/00 1.100 6//0 Deviation Template 305 **(**)10 220

1,0

P1100/00 11200 1	<u> </u>			
Customer Part Number: 5-893 5 4-502				
Unit Serial Number: $86-4-10-06-013$				
	Acc/Rej	Date	Inspector	
Bus to Bus Resistance: 33% Ohms	Acc	5-21-93	22 PPG 28	
Thermal Image:		5-20-93	22 PF3 28	
S.E. Resistance: 314	Dre.	5-24-93	22 P.PG 28	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	W DIV	MAT 25 1993	22 PP6 77:	
S.E. to S.E.: Nesa Scratch Test (350 VAC):	Wok	MAY 25 1993	22 PPG 77	
	479.7	MAY 25 1993	22 P P6 77	
-	W1.3	MAY 25 1993	PP6 X	
Photo (Single Exposure):		MAY 2 . 1983	22 PPG 4	
Deviation Inspection: (German Light per Template) 1: 0.5	!: 1,0 :: 0,5	6-25-93	<u>87</u> 546 <u>77</u>	
Dimensional Inspection:			82 244 <u>22</u>	
5:1.092 6:1.093 7:1.094 8	: 1.098 : 1.094 : 1.095	<u>5-25-43</u>	86 0	
Seal Evaluation: (Comments)	Acc	Seel 20 unc	22 PPG 77	
Visual Inspection: (Place comments on attached sheet)	Aoc	JUN 02 1993	22 PPG 77	

1.103

per 6-383 22. ppr -Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 3 1.045 91.098 91.094 . (2).1.100 1.091 1.094 3 1.094 31.092 1.093 @1.095 1/100 Deviation Template 3 0.5 ⊕ *l.O*

(5)1.b

6/0

Customer Part Number: 5-89354-502				
Unit Serial Number: 86-H-/0-06-048				
	Acc/Rej	Date	Inspector	
Bus to Bus Resistance:	Boc	5-21-93	22 PPG 28	
<u>36.6</u> Ohms	•		an i un	
Thermal Image:		5-20-93	32 PPG 28	
S.E. Resistance: 3/0	Box.		22 PPG 28	
Insulation Test: Power to S.E.:	ok	mmi 25 19 93	22 PPG 77	
(2500 VAC) S.E. to Metal:	- Of			
S.E. to S.E.:	60	MAY 25 1993	22 PPG 77	
Nesa Scratch Test (350 VAC):	(1) 9	MAY 25 1993		
Light Transmittance:	80.9		22 PPG 77	
Haze:	1.1	MAY 25 1993	22 PPG 77	
Photo (Single Exposure):		MAY 2 6 1993	22 PPG 4	
Deviation Inspection:	5 Acc	5-25-93	87 57 1 77	
(German Light per Template) 1:2.0 2:2.0 3:2.0 4	:0.5			
	: 2.0			
·				
Dimensional Inspection:	<u> </u>	C = 5 02	87 5dd 77	
Unit Thickness: (Per Template)	pcc_	<u>5-25-93</u>		
1:1.095 2:1.000 3:1.085 4:	: 1.0 9 3 :1.100			
	1.197			
Seal Evaluation:	Aco	JUN 02 1993	22 PPG 77	
(Comments)				
	Acc	JUN 02 1993	22 PPG 77	
Visual Inspection: (Place comments on attached sheet)				

220

1 2.0

11 (V. V.) (V.) (M.)

AT A MARKS OF

B-9

(3) 1.0

1.0

5-89354-3096 Customer Part Number: 83-H-11-7-432 Unit Serial Number: Acc/Rej Date Inspector 22 PPG 28 Bus to Bus Resistance: HLO Ohms 22.PPG 28 5-20-93 Thermal Image: 22 PP: 28 315+315 5.-21-93 S.E. Resistance: ... 0 4 19**93** 22 PP8 7 ALV Power to S.E.: Insulation Test: Bar S.E. to Metal: (2500 VAC) Ass S.E. to S.E.: Nesa Scratch Test (350 VAC): JUN 0.9 1993 **2**£ €r 3 39 JUN 0 # 1993 12 12 6 39 Light Transmittance: 22 774 34 70 N D = 1993 Haze: ?2 PPG 8 JUN 1 4 1993 Photo (Single Exposure): **22** PP9 20 Deviation Inspection: (German Light per Template) 4:310 2:2,0 1:<u>3,0</u> 5:<u>/.0</u> 6: 1.0 Dimensional Inspection: 22 PPG 28 acc 5-26-93 Unit Thickness: (Per Template) 4: 1.101 1://02 2: /1/07 3:*/,/00* 7:1102 8:1.102 6:1102 5:403 12: 1.098 10: 1,099 11: 1,102 JUN 04 1993 22 PP8 77 ReJ Seal Evaluation: LOOKS (Comments) AIR J JUN 0 4 1993 22 PP6 77 Re5 Visual Inspection: (Place comments on attached sheet)

Visual Inspection Map & Comments

AIR, Delam And WATER JUST About ALL the Way Araind Unit

Thickness Template

Deviation Template

5-89354-501 Customer Part Number: 82-H-10-18-105 Unit Serial Number: Inspector Acc/Rej <u>Date</u> 22 PPG 28 Bus to Bus Resistance: 43.8 Ohms 22 876 28 Thermal Image: 3 22 PPG 28 308 S.E. Resistance: JUN 04 1993 22 PP6 77 Power to S.E.: Insulation Test: S.E. to Metal: (2500 VAC) S.E. to S.E.: Nesa Scratch Test (350 VAC): 🕰 Pra 39 JUN 0.9 1993 10ù 0 à 1883 K Frady Light Transmittance: 8c 7.00 39 JUN 0.4 1993 Haze: JUN 1 4 1993 22 PPG 8 Photo (Single Exposure): 22 PPG 28 Deviation Inspection: (German Light per Template) 5:<u>2.0</u> 6: /. i) Dimensional Inspection: 22 PPG 28 Unit Thickness: (Per Template) 4:1,100 2:1.097 1:*1.099* 5:1.099 6:<u>/109</u>3 JUN 04 1993 Seal Evaluation: (Comments) JUN 04 1993 22 PP6 77 Visual Inspection: (Place comments on attached sheet)

Acc JUN 0 4 1993 .2 PP6 77 Check for vinyl cracks Visual Inspection Map & Comments 1515 UNIT BOTTOM se R \cdot Thickness Template 3/100 (F)1100 91092 (1)/095 D. 1097 (1097 3.1099 @¹⁰⁹⁵ ©1098 1099 Deviation Template 31.0 ⊕ 05 220

Customer Part Number: 5-893	54-50	<u> </u>	Ar Comment
Unit Serial Number: §8-H-C	12-08	-436	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: <u>\h2.8</u> Ohms		5-21-93	32 PPG 28
Thermal Image:		5-20-93	22 PPG 28
S.E. Resistance: 308	Acc	5-21-93	22 PPG 28
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Aco	JUN 0 4 1993	22 9 5 77;
S.E. to S.E.: 12.8 Ke 7+16H Nesa Scratch Test (350 VAC):		Jun 0 9 1 9 93	22 PrG 39
Light Transmittance: 73.6	A	100 0 a 1993	<u> </u>
Haze: 2.3	_A	70 i 0 a 1883	Zz 200 39
Photo (Single Exposure):		JUN 1 4 1993	22 PPG 8
	1.0 2.0	<u>5-25-93</u>	22 P.F.S 28
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: $\underline{i.090}$ 2: $\underline{l.100}$ 3: $\underline{l.100}$ 4: 5: $\underline{l.102}$ 6: $\underline{l.102}$ 7: $\underline{l.102}$ 8: 9: $\underline{l.102}$ 10: $\underline{l.100}$ 11: $\underline{l.104}$ 12:		<u>5-25-93</u>	22 PFG 28
Seal Evaluation:	Re5	JUN 0 4 1993	22 PPG 77.
(Comments) Sept Needs Sede	Cuttin	y Brook	on outbe
Visual Inspection: (Place comments on attached sheet)	Re5	JUN 0 4 1993	22 P PS 37

۲. ج

TO STANKE TO THE

ACA JUN 04 1993 12 PPS 77.

Visual Inspection Map & Comments

AIR And DOLAM LOCATED ALL AROUND The

Thickness Template

Deviation Template

Customer Part Number: 5-89	354-S	0/	
Unit Serial Number: §2-H-	12-6-9	/3/	
•	Acc/Rej	Date	Inspector
Bus to Bus Resistance:		5-21-93	22 296 28
<u>#3.8</u> Ohms			1-1'7-
Thermal Image:		5-20-93	82 554 27
S.E. Resistance: 314	acc.	5-24-93	22 FPG 28
Insulation Test: Power to S.E.:	Aco	MAY 25 1993	22 PP6 17
(2500 VAC) S.E. to Metal: S.E. to S.E.:	And		
Nesa Scratch Test (350 VAC):	Acc	MAY 25 1993	22 PPG 77
Light Transmittance:	825	MAY 25 1993	22 0 P6 77 :
Haze:	12	MAY 25 1993	22 PP6 77
Photo (Single Exposure):		MAY 2 6 1993	22 PPG 4
Deviation Inspection:	acc.	5-24-93	22 PPG 28
(German Light per Template)	2.0		
1: $\frac{2 \cdot 0}{2 \cdot 0}$ 2: $\frac{2 \cdot 0}{6 \cdot 2 \cdot 0}$ 3: $\frac{2 \cdot 0}{7 \cdot 2 \cdot 0}$ 4: 5: $\frac{2 \cdot 0}{6 \cdot 2 \cdot 0}$ 6: $\frac{2 \cdot 0}{6 \cdot 2 \cdot 0}$ 7: $\frac{2 \cdot 0}{6 \cdot 2 \cdot 0}$ 8:	2.0		
Dimensional Inspection:			
	Acc.	5-24-93	22 PP0 25
(Per Template) E.L.			
5:1.063 6:1.063 7:1.067 8:	1.063		
9: $\frac{1}{1.063}$ 10: $\frac{1}{1.062}$ 11: $\frac{1}{1.062}$ 12:	1.063	HIN 49 1002	00.00
Seal Evaluation:	Asa	JUN 02 1993	22 PPG 77
(Comments)			
Visual Inspection:	ReJ	JUN 02 1993	22 PPS 77
(Place comments on attached sheet)			

Deviation Template

Customer Part Number: 5-8933	54-50	<u> </u>	
Unit Serial Number: 1-1/2-10-	5-48	<u> </u>	
	Acc/Rej	Date	Inspector
∨ Bus to Bus Resistance: <u>#2,2</u> Ohms		<u>5-21-93</u>	22 PFG 28
Thermal Image:		<u>5-19-93</u>	22 RPG 23
√S.E. Resistance:	**************************************	5-24-93	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	Age	MAY 2 5 1993	
Nesa Scratch Test (350 VAC):	Acc	MAY 25 1993	22 PPG 77
Light Transmittance:	826	MAY 25 1993	22 PP6 27
Haze:	1.2	MAY 25 1993	22 PPS 77
Photo (Single Exposure):	•	MAY 2 6 1993	22 PPG 4
Deviation Inspection:	2.0 2.0	5-24-93	<u> </u>
Dimensional Inspection:			
/ Unit Thickness: (Per Template) 1:././03 2:/./04 3:/./05 4: 5:/./08 6:/./04 7:/./09 8: 9:/./04 10:/./05 11:/./08 12:		<u>5-24-93</u> 	<u> </u>
Seal Evaluation: (Comments) WRONG SEAL	Re5	JUN 02 1993	22 PP6 77:
WILON & SERV	- ND 00		
Visual Inspection: (Place comments on attached sheet)	Ret	JUN 02 1993	22 pps 77

Visual Inspection Map & Comments

Air AU Alone The sage of unit.

Thickness Template

Deviation Template

Customer Part Number: $5 - 89$	3 5 4-5	50/	
Unit Serial Number: §3-H-	9-19-	294	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 50.8 Ohms		5-21-23	. PPG 2€
Thermal Image:		K-20-93	22 PPG 28
S.E. Resistance: (314	ace	5-21-93	<u> 82 pga SS</u>
Insulation Test: Power to S.E.:	pac	JUN 0 4 1993	-P6 77
(2500 VAC) S.E. to Metal: S.E. to S.E.: Nesa Scratch Test (350 VAC):	Jut 2	JUN 0 9 1993	•
Light Transmittance: 77.0		JUN 0 s 1993	7½ PFG 39
/·7	<u> </u>	JUN 0 > 1993	ZZ PY 6 35
Photo (Single Exposure):		JUN 1 4 1993	22 PPQ 8
Deviation Inspection: (German Light per Template) 1: $2 \cdot 0$	(bce) 1.0 3.0	<u>5-25-93</u>	22 EFG 28
Dimensional Inspection:			
Unit Thickness:	Re_	5-25-93	22 BPS 28
(Per Template) 1: $(.099)$ 2: $(.099)$ 3: $(.099)$ 4: 5: $(.099)$ 6: $(.06)$ 7: $(.05)$ 8: 9: $(.05)$ 10: $(.06)$ 11: $(.06)$ 12: $(.06)$	1.10D 1.102 1.096		•
Seal Evaluation:	Res	JUN 0 4 1993	22 PP6 7
(Comments) Unit Appen	4RS 70	Be Con	ien neart
Visual Inspection: (Place comments on attached sheet)	Res	JUN 04 1993	22 PP 6 77

Res JUN 04 1993 22 PPG 77 Check for vinyl cracks Visual Inspection Map & Comments みりり AROUNd DUER Thickness Template 3 1099 P 1180 D 1099 1102 9 1105 102 @ 110Y 31104 11099 @109b @ /106 Deviation Template

Customer Part Number:	5-893	254-5	01	
Unit Serial Number: 6	82-H-	9-6- 9	537	
		Acc/Rej	Date	Inspector
Bus to Bus Resistance:			5-21-93	22 PPG 28
<u>H21</u>	/_Ohms			
Thermal Image:			<u>5-20-93</u>	22 ppg 28
S.E. Resistance: 3/	2	Acc	5-21-93	 22 244 22
Insulation Test: Power to		Acc	JUN 0 4 1993	22 PPG 77
(2500 VAC) S.E. to		noa		
S.E. to S.E. T	+16 F	A	JUN 0 9 1993	22: P7G 39
	y.2	A	700 0 9 1993	12 7ru 3 9
/, ·		-	JUN 0. 8 1593	Žziru d9
Haze:			1111 4 1002	2200
Photo (Single Exposure):			JUN 1 4 1993	22 PPG 28
Deviation Inspection:		Rocc	5-26-93	. 22.5.7.3.26
(German Light per Template) 1: 0.6 2: 1.0 3: 0.) <u>5</u> 4:	1,D 2,0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98:	2, Û		
Dimensional Inspection:				
_	<u></u>	Real	5-26-93	2 P P 3 28
Unit Thickness: (Per Template)	_			
1: <u>/./24</u> 2: <u>/./24</u> 3: <u>/./</u>	<u>/</u> 9 4:/ 2/) 8:	1,124		
5: <u>/./26</u> 6: <u>/./20</u> 7: <u>/./</u> 9: <u>/./27</u> 10: <u>/./22</u> 11: <u>/./</u>		1118		•
Seal Evaluation:		Res "	JUN 04 1993	22
(Comments) wrong	seal	on ou	the side	2
		0 <	JUN 0 4 1993	22 P Pe 7 7
Visual Inspection: (Place comments on attached	d sheet)	ReJ		24 FFB FF

Check for vinyl cracks

11.12 ANAMA 11.13

ACC JUN 0 4 1993 22 PP6 7

Visual Inspection Map & Comments

Air & Delam Located ALL Around UNIT.

Thickness Template

Deviation Template

Customer Part Number: Unit Serial Number: Inspector Acc/Rej Date 22 PPG 28 Bus to Bus Resistance: 4/12 Ohms 22 Pog 28 Thermal Image: 87 5dd 27 S.E. Resistance: 313 22 PPG 77 JUN 04 1993 Power to S.E.: Insulation Test: S.E. to Metal: (2500 VAC) S.E. to S.E.: PIST. FWP + HTT FW) center Nesa Scratch Test (350 VAC): JUN 0 = 1993 22 PPG 39 JUN 0 H 1993 Z2 ? r 3 u3 Light Transmittance: 100 0 s 1993 Haze: 22 PPG 8 JUN 1 4 1993 Photo (Single Exposure): **22** PPG 23 Deviation Inspection: (German Light per Template) 1: 2,0 2:// 3:1.0 7: <u>4.D</u> 5:<u>///</u>__ 6:015 Dimensional Inspection: 5-25-93 22 PFG 27 Unit Thickness: (Per Template) 4: 1.101 2:1.099 3:1102 1:1.102 8:11/02 7:1102 5:1.102 6:1.107 12:1100 11:1101 10:1106 9:1102 JUN 0 4 1993 22 PPG FF Seal Evaluation: (Comments) Needs SCAL 77 PPS 27 JUN 04 1993 Visual Inspection: (Place comments on attached sheet)

ALC JUN 0 4 1993 22 PP6 77 Check for vinyl cracks Visual Inspection Map & Comments BAd S/S The Unit. DOATEd SURFACE SER Very Thickness Template 1/86 10 3/102 (1) 10 (9/102 1 //01 01102 P 1168 ©1100 (1) 1/80) 1102 Deviation Template

بر. زر

3/0

Customer Part Number: 5-89	364-5	702	<u> </u>
Unit Serial Number: 86-14-	10-06-	007	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:	Bus	5-21-93	22 PPG 28
37.5 Ohms	,		22 PPG 28
Thermal Image:		<u> </u>	
S.E. Resistance: 208	ara:	5-24-93	22 PPG 28
Insulation Test: Power to S.E.:	Mak	MAY 2 5 1993	22 PP6 77
(2500 VAC) S.E. to Metal: S.E. to S.E.:	of of		**************************************
Nesa Scratch Test (350 VAC):	MOX	MAY 2 5 1993	22 PPG 77
Light Transmittance:	86.3	MAY 25 1993	22 PP6 77
_	1.4	MAY 25 1993	22 PPG 77
Haze: Photo (Single Exposure):	-	MAY 2 5 1993	22 PPG 4
	Park	5-25-93	8रं ९५२ रट
(comparate)	1.7)	. **	
1: 0.5 2: 1.0 3: 3.0 4 5: 0.5 6: 1.0 7: 1.0 8	0.5	1	<i>.</i>
Dimensional Inspection:			22 PPG 28
Unit initaless.		5-25-93	00 000
1:[.097 2:[.085 3:[.091 4 5:1095 5:1.094 7:1.095 8	1.095		-
9: <u>1,096</u> 10: <u>1,097</u> 11: <u>1.093</u> 12	1.091	JUN 02 1993	22 PPs 77
Sear Evaluation.	Acc	JON 02 1555	_ 22 PFG //
(Comments)			
		JUN 02 1993	22 ⊅⊃s 77
Visual Inspection: (Place comments on attached sheet)	Acc	3011 1/2 1333	105 FTC 11

Deviation Template

Pilot/Co-Pilot Main wir	GRATATO	
Customer Part Number: 5-89359	1502	
C/ // /= A/		
Unit Serial Number: 86-H-/0-06	<u> </u>	
Acc/Re	ej <u>Date</u>	Inspector
Bus to Bus Resistance:	5-21-93	22 PPG 28
Bus to Bus Resistants 34.8 Ohms	-	
Thermal Image:	5-20-93	22 PPG 28
	5-24-9 3	22 PPG 28
S.E. RESIDENT	MAY 25 1993	22 PPG 77
Insulation Test: Power to S.E.: MON. (2500 VAC) S.E. to Metal:		
S.E. to S.E.:		
Nesa Scratch Test (350 VAC):	MAY 25 1993	22 PPG 77
Light Transmittance: 177.	3 MAY 25 1993	22 PPG 77
-	MAY 25 1993	' 22 pp
Haze:	MA1 23 1000	22 ppg 77
Photo (Single Exposure):		
Deviation Inspection: Acc	5-25-93	22 PPG 28
· · · · · · · · · · · · · · · · · · ·	• •	
$1 \cdot 0 \cdot 4^{-}$ $2 \cdot 3 \cdot 9^{-}$ $3 \cdot \frac{2 \cdot 0}{2 \cdot 0}$		
5: <u>0.5</u> 6: <u>0.5</u> 7: <u>1.0</u> 8: <u>2.0</u>		
	MAY 2 5 1993	22 FPG 4
Dimensional Inspection:		
Unit Thickness: Acc	<u>5-25-93</u>	22 PPG 28
(Per Template)		
1:////		
5:110-17		
9: <u>1.677</u> 10. <u>1.077</u>	JUN 02 1993	22 PPB 77
Seal Evaluation:		22 PPR 37
(Comments)		
	JUN 02 1993	22 PPG 77
Visual Inspection:		
(Place comments on attached sheet)		

.

0.05

Customer Part Number: 5-89	354-5	02	
		1-022	•
Onit Serial Number.	Acc/Rej		Inspector
	4		22 PPG 28
Bus to Bus Resistance: 33.6 Ohms	gr-	<u>5-21-93</u>	
			22 PPG 28
Thermal Image:		5-20-93	<u> </u>
S.E. Resistance: 3 314	acci	5-24-23	22 PPG 28
Insulation Test: Power to S.E.:	4/	MAY 25 1993	22 PP8 77
(2500 VAC) S.E. to Metal:	OK .		
S.E. to S.E.:	. 1/	MAY 25 1993	22 PPG 77
Nesa Scratch Test (350 VAC):	<u>orc</u>		22 PPG 77
Light Transmittance:	78.6	MAY 25 1993	
Haze:	1.3	MAY 25 1993	22 PPG 77 -
	_	MAY 2 5 1993	22 PPG 4
Photo (Single Exposure):			22 EPG 28
Deviation Inspection: (German Light per Template)	·lice	5-25-93	
1: 0.5 $2: 0.0$ $3: 1.0$	20	· , · · · · ·	
$5: \underline{n}, \underline{5} \qquad 6: \underline{1}, \underline{v} \qquad 7: \underline{2:o} \qquad 8:$	<u> </u>		
Dimensional Inspection:	Da.	5-25-93	22 EPG 28
Unit Thickness: (Per Template)		<u> </u>	
$1 + 0.00$ $2 + 0.00$ $3 + \frac{1.093}{2}$ $4 + \frac{1.093}{2}$	1.090 1.103		·
577775 9.7.909 1.00	1.100		-
Seal Evaluation:	Asc	JUN 02 1993	22 PPG 77
(Comments)			
	040 -	JUN 02 1993	22 P 36 77
Visual Inspection:	Ago		22 11 4

Unit Serial Number: 86-H-10-06-086 Bus to Bus Resistance: 33.5 ohms Thermal Image: 5-2.93 279628 Insulation Test: Power to S.E.: Walk MAY 25 1993 22 PP6 77 Light Transmittance: 1.30 WAC): MAY 25 1993 22 PP6 77 Light Transmittance: 1.3 MAY 25 1993 22 PP6 77 Light Transmittance: 1.3 MAY 25 1993 22 PP6 77 Beviation Inspection: German Light per Template) 1: 2.0 2: 2.0 3: 2.0 8: 2.0 Dimensional Inspection: German Light per Template) 1: 1.00 2: 2.0 8: 2.0 Dimensional Inspection: German Light per Template) 1: 1.05 6: 1.0 7: 2.0 8: 2.0 Dimensional Inspection: German Light per Template) 1: 1.05 6: 1.00 7: 1.00 8: 1.00 8: 2.0 Dimensional Inspection: German Light per Template) 1: 1.05 8: 1.02 8: 2.0 Dimensional Inspection: German Light per Template) 1: 1.05 8: 1.05 8: 1.05 6: 1.05 6: 1.05 11: 1.05 11: 1.105 11: 1.	Customer Part Number: 5-89	354-5	02	
Bus to Bus Resistance: 23.5 Ohms	Cd 11			<u>.</u>
### 25 1993 22 PP6 77 #### 25 1993 22 PP6 77 ###		Acc/Rej	<u>Date</u>	Inspector
Thermal Image: 300 201 5-24-93 22 PP6 77	Bus to Bus Resistance: 33.5 Ohms	Dec	5-21-93	82 249 SS
Insulation Test: Power to S.E.: MAY 25 1993 22 PP6 77 Nesa Scratch Test (350 VAC): S.E. to Metal: S.E. to S.E.: MAY 25 1993 22 PP6 77 Light Transmittance: 77.8 MAY 25 1993 22 PP6 77 Light T	Thermal Image:			
S.E. to S.E.:	S.E. Resistance: 300			
Nesa Scratch Test (350 VAC): MAY 25 1993 22 PP6 77 Haze:		ANOL .	MAY 25 1993	22 P P6 77
Light Transmittance: Haze: Photo (Single Exposure): Deviation Inspection: (German Light per Template) 1:2.0 2:2.0 3:2.0 4:2.0 5:0.0 6://0 7:20 8:2.0 Dimensional Inspection: (Per Template) 1:1.09\$ 2:1.100 3:1.105 8:1.05 5:1.099 6:1.103 7:1.105 8:1.05 9:1.103 10:1.103 11:1.100 12:1.103 Seal Evaluation: (Comments) Wi sual Inspection:		wolf	MAY 25 1993	22 PPG 77
### Haze: 1,3	£	72.8	MAY 25 1993	22 PP6 77
Photo (Single Exposure): Deviation Inspection: (German Light per Template) 1:2.0		1,3	MAY 2 5 1993	22 PP6 77
Deviation Inspection: (German Light per Template) 1:2.0			MAY 2 8 1993	22 PPG 4
Comments		acces.	5-25-93	22 PPG 22
Unit Thickness: (per Template) 1: .09% 2: .100 3: .105 4: .105 5: .099 6: .103 7: .105 8: .105 9: .10% 10: .105 11: .100 12: .105 Seal Evaluation: (Comments) Visual Inspection: Acc JUN 02 1993 22 PP6 77	(German Light per Template) 1:2.0 2:2.0 3:2.0 4	1: <u>2.</u> 0 3: <u>2.0</u>		
Unit Thickness: (Per Template) 1: 1.09\$ 2: 1.100 3: 1.105 4: 1.105 5: 1.099 6: 1.103 7: 1.105 8: 1.105 9: 1.103 10: 1.105 11: 1.100 12: 1.100 Seal Evaluation: (Comments) Visual Inspection: JUN 02 1993 22 PP6 77		Bec 9-	5-25-93	22 PPG 28
Visual Inspection: Wisual Inspection: Wisual Inspection: Wisual Inspection:	(Per Template) 1: 1.09% 2: 1.100 3: 1.105 4 5: 1.099 6: 1.103 7: 1.105	1:1.105		
Visual Inspection:	•	Asc		22 PPG 77
· · · · · · · · · · · · · · · · · · ·	Visual Inspection:		JUN 02 1993	22 PPS 77

63£322 PM77 Acc Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 3 1.105 P1.105 91-108 (1) /.10° . 3. 1.100 . 1.185 @ 1.10⁵ 31.099 @1.103 @ 1.103 11.098 Deviation Template (4) 2° 0 2.0 ⊕ /.0

Customer Fart Number:	9-19-		
Unit Serial Number: 03-74-	Acc/Rej		Inspector
Bus to Bus Resistance:		5-21-93	82 व्यव ८८
<u>#1.7</u> Onms	_	<u>5-19-93</u>	N 558 38
Thermal Image:	0	5 01 G2	22 PPG 28
S.E. Resistance: 314	(Acc.	5-24-93	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	Acre		•
Nesa Scratch Test (350 VAC):	Das		
Light Transmittance:	823		
Haze:	1.1	MAY 2 6 1993	22 PPG 4
Photo (Single Exposure):			22 FPG 28
Deviation Inspection: (German Light per Template) 1: 3.0	: 1.0 : 2.0	<u>5-24-93</u>	
Dimensional Inspection:			
(Per Template) 1: 1.094 2: 1.095 3: 1096 4 5: 1.002 6: 1.202 7: 1.105 8		<u>5-24-43</u>	22 PP:: 28
9: 1.001 10: 1.097 11: 1.100 12 Seal Evaluation: (Comments) WRDN9 Seal		JUN 02 1993	: PP6 77
(Comments) <u>WRDNg BERK</u>	. ON 00	// // 0/64	
Visual Inspection:		JUN 02 1993	22 PP6 77
(Place comments on attached sheet).		

Ade 6.293 PPG # Check for vinyl cracks Visual Inspection Map & Comments FOCATE DeLAM Thickness Template 1-097 3 1-096 9,001 1.100 11/100 · (2) 1-095 1.105 31.002 @//0 @1.097 @1-000 1.094 Deviation Template 330. (F) 1.0 720 **2** 3.0 ⊕^{1.7} 03.0

Customer Part Number: $5-89$	354-5	-0/_	
Unit Serial Number: &3_H_			
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:	٠	5-21-93	<u>32</u> 299 SS
<u> </u>		5-19-93	32 538 ZC
Thermal Image:	Real	5-24-93	22 PPG 28
S.E. Resistance: 3/3 Insulation Test: Power to S.E.:	Das	MAY 25 1993	22 PP 6 77
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	the	:	
Nesa Scratch Test (350 VAC):	Aca	MAY 25 1993	22 PPG 77
	80,7	MAY 25 1993	22 PP6 77
Light Transmittance:	1.D	MAY 25 1993	22 PPG 77
Haze:		MAY 2 6 1993	22 PPG 4
Photo (Single Exposure):		- 02	82 252 28
(German Light per Template) 1:2.0 2:0.5 3:1.0 4	: 1.0 : 2.0	<u> 5-24-9-3</u>	:
Dimensional Inspection:			22 999 <u>28</u>
(Per Template) 1: 1.077 2: 1.082 3: 1.084 4 5: 1.045 6: 1.045 7: 1.087 8 9: 1.047 10: 1.086 11: 1.045 12	- Noc. - 1.085 - 1.085 - 1.085 - Res	5-24-93 Jun 02 1993 UTBd . Sig	22 PP6 77
Visual Inspection: (Place comments on attached sheet		JUN 0 2 1993	22 9 P\$ 75

PITOC/CO FITOU			
Customer Part Number: 5-8	9354-50	<u> </u>	
Unit Serial Number: 84-14	-3-19-	220	
	Acc/Rej		Inspector 2 PPG 28
Bus to Bus Resistance:		<u>5-21-93</u> <u>5-20-93</u>	87 299 X
Thermal Image:	Ann	5-21-93	87 S43 7%
S.E. Resistance: \$316		JUN 0 4 1993	22 PP6 77
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: (250 VAC) S.E. to S.E.:	Doc		-
UNT CENTER HOLL Nesa Scratch Test (350 VAC):	. <u> </u>	JUN 0.9 1993	22 PFG 39
Light Transmittance: 72,3	A	JUŅ 0 9 1993	7½ PPG 39
Haze: , 7	_ <i>B</i>	JUN 0 9 1993	Žž PPG 39
Photo (Single Exposure):	. 	JUN 1 4 1993	S Ddo cc
Deviation Inspection: (German Light per Template) 1: 1.0	*	<u>5-25-93</u>	22 PFG 28
Dimensional Inspection: Unit Thickness:	acc	<u>5-25-93</u>	22 EFG 28
(Per Template) 1: 1.093 2: 1.090 3: 1.089	4: 1:094 8: 1:091 2: 1:093	עע 0 4 19 93	-i P Ps 77
Seal Evaluation: (Comments) Seal Weed>	Bos NUTTM		
Visual Inspection:	- Re5	JUN 0 4 1993	22 PPG 77
(Place comments on attached shee	et)	` - -	

Customer Part Number: 5-89	354-5	-01	
Unit Serial Number: 86-H-/	2-01-	146	معام بالشداء
•	Acc/Rej	Date	Inspector
Bus to Bus Resistance:	Be	5-21-93	22 PPG 28
Bus to Bus Resistance. 36.5 Ohms	,		
Thermal Image:		5-20-93	
S.E. Resistance: 309	Alex	5-24-93	22 EPG 28
Insulation Test: Power to S.E.:	Aco	MAY 25 1993	22 PPG 77
(2500 VAC) S.E. to Metal: S.E. to S.E.:	Age		
Nesa Scratch Test (350 VAC):	Dec	MAY 25 1993	22 PPG 77
	81.D	MAY 25 1993	22 PPG 77
Light Transmittance:	8	MAY 25 1993	22 PPS 39
Haze:		MAY 2 6 1993	42 PPG 4
Photo (Single Exposure):			
- ' Tomplate'	•	5.24-9.3	22 PPG 25
1: $\frac{3.0}{2.0}$ 2: $\frac{3.0}{6.0.4}$ 3: $\frac{2.0}{7.4.0}$ 8	: <u>#. D</u> : <u>2. D</u>	 \$	
			5-22- -22-PFG 4. VOID LIPE
Dimensional Inspection:		MAY 2 5 1993	
Unit Inicaless.	acc	5-24-93	22 PPG 28
(Per Template) 1://093 2://094 3://095 4	: 1.099		
$= 1 + \omega \omega$ $= 6 \cdot 1 \cdot 101$ $= 1 \cdot 101 \cdot 100 = 100$: <u>1.100 </u>		
 :	Res	JUN 02 1333	22 PPG 77
Seal Evaluation: (Comments) Wary Seal	an o	wat about	
	Acc	JUN 02 1993	22 976 77
Visual Inspection: (Place comments on attached sheet		· . <u></u> ·	-

ADR 6-393 2000 17 Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 3 1.095 1.098 9 1.098 11/103 D1094 D.1.100 31.098 (i)/.101 1,093 @1.101 Deviation Template 3 20 **40 3.0** <u>ن</u>ه ه ①3º

Customer Part Number: 5-89354-501					
Unit Serial Number: 82-H-/0	1-18-	107	: -		
	cc/Rej	Date	Inspector		
Bus to Bus Resistance:		5-21-93	22 PPG 28		
Bus to Bus Resistance. <u> </u>		E 2 7 7	22 PPG 28		
Thermal Image:		5-20-73			
S.E. Resistance: 3// 7	doc	5-21-93	22 ppg 28		
Inculation Test: Power to S.E.: 1	Jas	JUN 0 4 1993	22 PPG 77		
(2500 VAC) S.E. to Metal: 2500 S.E. to S.E.:			-		
Nesa Scratch Test (350 VAC):	<i>A</i>	JUN 0 9 1593	£ 27 € £ 5 7 € £		
Light Transmittance: 77.8	A	JUN 0.8 1993	22 PP6 35		
7	A	JUN 0.4 1893	€E 29¶ <u>34</u>		
Haze:		JUN 1 4 1993	?2 PPC R		
Photo (Single Exposure):	<i>A</i> .	5-25-93	22 P.F.G 28		
(Gorman Light per Template)	-	0 20 10			
1: $\underline{3}$, $\underline{0}$ 2: $\underline{3}$, $\underline{0}$ 3: $\underline{2}$, $\underline{0}$ 4: $\underline{0}$ 5: $\underline{2}$, $\underline{0}$ 6: \underline{I} , $\underline{0}$ 7: $\underline{2}$, $\underline{0}$ 8: $\underline{3}$	3.0	- , .			
Dimensional Inspection:	· • ·				
Unit Thickness:	acc_	5-25-93	22 PFG 28		
(Per Template)	n@#	4.			
5:1.096 5:1.096 7:1.096 8:1	1996	•	·		
9: $\frac{1.075}{1.095}$ 10: $\frac{1091}{1.090}$ 12: $\frac{1}{1.090}$	092	:	·- 22 ₽₽\$ 77		
Seal Evaluation:	Re5	JUN 0 4 1993	22 975 77		
(Comments) Seal Needs C	utting	70 511	e		
			•		
	Re5	JUN 04 1993	2.3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
(Place comments on attached sheet)	•				

Check for vinyl cracks	Fra JUN 04	1993 :2 PPS TR	
Visual Inspection Map & Comm	ments		
Delam	Deton	1	
	. \	\ \	•
		\ \	•
: \			
	0 /		
Delon	Deh	m /	
1		- (00.14)01	
Delam Located in	ALL +001	i conve	
memolata	e e e		
Thickness Template		-	
3/093	1091 .: (10		
\$1094	9 1095		
		990	-
①1089 ③1095 ①1093	(2) 1096	· · · · · · · · · · · · · · · · · · ·	
\. \(\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	Vinge (I)	1047	
\ ⊕1093 €	عرمار		·-
, memlate			_
Deviation Template		_	
3 2ª ·	05 3	20	·
	<u> </u>	`\	
$\sqrt{\mathbb{Q}^{\mathfrak{I}^{\mathcal{D}}}}$		· \	*
1	; ;		ئى م
\) 2 0	: ভূ ¹⁰	-
/ ω	, · · · · · · · · · · · · · · · · · · ·	<i>⋑</i> ` \	•

Customer Part Number: 5-8935	4-501	<u>′</u>	-
Unit Serial Number: \$2-H-9	7-6-9	35	·
z.	Acc/Rej	Date	Inspector
		5-21-93	22 PPG 28
Bus to Bus Resistance:	·	1.5	
Thermal Image:		5-20-93	22 PPG 28
	Acc	5-21-93	82 ३१९ ८८
5.2. 1.00_0	Acr.		
(2500 VAC) S.E. to Metal:	BOO		
SIS ALR ATTUPSE Deathbb		JUŅ 0 9 1993	22 PPG 39
		ini	arra 19
Light Transmittance: 748	<u></u>	JUN 0:9 1993	22 Fr 3 39
Haze:		JUNA 4-1833-	ZPP08
Photo (Single Exposure):	acce		22 PPS 28
Deviation Inspection:	5-26-9	<u>3-26-93</u> :	
German Light per Template) 1: 2.0	7,0 3,D		-
Dimensional Inspection:	· · · · · · · · · · · · · · · · · · ·		
OHIL IHICHESS.	ace_	<u>5-26-93</u>	22 PPG 28
(Per Template) 1: 1.090 2: 1.093 3: 1.090 4: 1 5: 1.084 6: 1.097 7: 1.097 8: 1	10/0 .		- -
9:1.095 10:1.090 11:1.091 12:1	1085	JUN 0 4 1993	•••
Seal Evaluation:	Res		22 PPS 77
(Comments) Sept Needs C	utting	on o	A BO Sel
		JUN 0 4 1993	
Visual Inspection:	265	JON V 2 1000	22 9 78 77
(Place comments on attached sheet)		ه ره فعد	

ACC JUN 0 4 1993 42 PP8 T Check for vinyl cracks Visual Inspection Map & Comments .5/1 UIN' Delam Ain Buch LOCATEC SURFACE SCR Thickness Template 1095 3 1090 **(**0) 91095 109! (1095) D.1093 3/088 @ 10\$A 1090 Deviation Template 320 330 (1) gi

: ⑤

OFD

KC-135 Transparency Review Data Sheet Pilot/Co-Pilot Main Windshield

Customer Part Number: 5-893	54-50	1	
Unit Serial Number: 83-H-	11-21-	325	• • • • • • • • • • • • • • • • • • •
	Acc/Rej	Date	Inspector
		5-21-93	22 PPG 28
Bus to Bus Resistance: 45,7 Ohms		2	
Thermal Image:		5-20-93	22 PPG 28
	Acc	5-21-93	22 PFG 28
E. Resistance: 313		JUN 0 4 1993	·- 2P6 99
nsulation Test: Power to S.E.: 2500 VAC) S.E. to Metal:		_	
S.E. to S.E.:			22 PFG 39
17.0 Res Hillt Jesa Scratch Test (350 VAC):	<u></u>	JUN 0.9 1993	•
ight Transmittance: 73.7	A_	70 0.8 1233	<u>\$2.7ri 39</u>
laze:		JUN 0. 9 1593	39 يام ج
Photo (Single Exposure):		JUN 1 4 1993	?2 PP00
	0	-	<u>22</u> epg 28
Deviation Inspection: (German Light per Template)	* - * -	1-25-93	
$\begin{array}{cccc} \text{(German Hight per language)} & 3: / \cdot D & 3: / \cdot D & 4 \\ \text{5:} / \cdot D & 6: 0.5 & 7: 2.0 & 8 \\ \end{array}$: <u>1. D</u> : 3. D	1. 1. 1	
5: /(U) 6: <u>013 / A10</u>	•		•
Dimensional Inspection:	<u></u>		
Jnit Thickness:	Acc	5-25-23	22 F.7 G 28
(Per Template)	: 1,088		• *
5:1,090 5:1,092 7:1,090 8	:1.090	<u></u>	
9: 1.04% 10: 1.085 11: 1.089 12	: 1.089	FDG1 & 0 MUI	· _
Seal Evaluation:	Mas	JUN 0 4 1993	22 PPS 7F
(Comments) Sept Need 7	or Be	TRIMEN. 1	3 Acki
	05	JUN 0 4 1592	22 2Ps 77
Visual Inspection:	· 1(e)		
(Place comments on attached sheet	,	•	

ACO JUN 0 4 1993 Check for vinyl cracks Visual Inspection Map & Comments LOCATE DOLAM Thickness Template 31083 (9) 10⁹⁰ (9) 10⁹⁰ (9) 10⁹⁰ (9) 10⁹⁰ ⊕1888 ⊙1093 @1889 1090 Deviation Template (10 010 3/10

KC-135 Transparency Review Data Sheet Pilot/Co-Pilot Main Windshield

Customer Part Number: 5-893	354-5	01	
Unit Serial Number: \$9 28	6 #0	697	
Unit Serial News	H. D Acc/Rej	Date	Inspector
	Acce	5-21-93	22
Bus to Bus Resistance: 38.0 ohms	HECE		<u> </u>
Thermal Image:		5-20-93	22 PPG 28
· ·	Acc	5-21-93	22 299 28
	Pdc	JUN 0 4 1993	22 PPE 37
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Boe		
S.E. to S.E.:		·- < \(\frac{\pi}{2}\).	92 pêg 39
Nesa Scratch Test (350 VAC):	<u>+</u>	JUN 0:9 1993	
Light Transmittance: 77.9	·_A_		4 7/3 39
Haze:	_A	70 0:a 1333	<u>26</u> 173 39
Photo (Single Exposure):	•••	JUN 1 4 1993 '	12 PPOR
	an	5-25-93	22 PPG 28
Deviation Inspection: (German Light per Template)	: <u>3.D</u> -	* :	
3: 4.0 3: 4.0 4	2.0		
<u> </u>			
Dimensional Inspection:	''-		20.22
Unit Thickness:	Del	<u>.5-25-93</u>	22 PPG 28
1:1103//	:1.045	***	
5:1.080 6:1.086 7:1.083 8	:1.089 :1.087	•:	. 7
J - 110 J 1	Ros	JUN 0 4 1993	22 PP6 77
Seal Evaluation: (Comments)	4	- A. 7	7 1 6 10
Sept Needs	CUTTIL	1 - OR OUT	/7a 0120
	Boes	JUN 0 4 1393	. 35 0 52 3 ₹
Visual Inspection: (Place comments on attached sheet			·

Customer Part Number: 5-89	357-	/	
Ras	- 1149		
Unit Serial Number:			
	Acc/Rej	Date	Inspector
	2	5-21-93	37 232 78
Bus to Bus Resi nace: 7/, / Ohms			
		5-21-93	82 pag 25
Thermal Image: Insulation Test	ACC	MAY 2 6 1993	22PPG43
(2500 VAC)		•	_
	OK_	MAY 2 6 1985	22PPG43
Nesa Scratch Test (81 VAC):	82.8	MAY 2 6 1993	2009G13
Light Transmittance:		MAY 2 6 1993	222293
Haze:	1.8	-	?? PPG 8
Photo (Single Exposure):	22 PPG 47	JUN 1 4 1893	
	Ac	JUN 0.9 1993	2277339
Deviation Inspection: (German Light per Template) $1: \leq 10 \qquad 2: \leq 10 \qquad 3: \leq 10$	<u></u>	-	
Dimensional Inspection:			`
	Dec	5-26-93	22 PPG 28
Unit Thickness: (Per Template) 1: <u>/4</u>) 2: <u>/4/</u> 3: <u>/57</u>			
1:,/40	Acc	JUN 0 3 1993	22 PP6 77
Check for Vinyl Cracks:	Hec	0.2 1993	
Seal Evaluation:	Res	JUN 0 3 1993	- P6 77
(Comments) WRONG Seal	on ou	TBd.	
-			
	Res	eeel 80 mul	22 PPB 10
Visual Inspection: (Place comments on attached shee			,

	点					
Winter	SUCARATION	from	GLAGS	Edge	ALL	AROUND
6100,5	sugaration	·	<u>; </u>			
Dolam	AROUND	UniT	in ooke	MR	UNIT	17:45
5112 Gan	SER. Ze	mover	Betwee	<u>، ۾. ري</u>	Ly.	

Thickness Template

Customer Part Number: 5-71	764-S	0/	• •••
Unit Serial Number: 92 06	y HO	471	
	Acc/Rej	<u>Date</u> <u>5-24-23</u>	Inspector
Bus to Bus Resistance: 69.9 Ohms			<u>87</u> 522 37
Thermal Image:		<u>5-24-23</u>	22 DDs 77
Insulation Test: Power to Metal: (2500 VAC)			
Nesa Scratch Test (81 VAC):	Dec		22 PP\$ 772
Light Transmittance:		MAY 26 1993 .	
Haze:		MAY 26 1293	
Photo (Single Exposure):		2 6 MAY 1993 MAY 26 1993	
Deviation Inspection: (German Light per Template) 1: 3 2: 3 3: 3 4:	Jan 3	-21 -21 -21 -21 -21 -21 -21 -21 -21 -21	22 PPG 77
Dimensional Inspection:	· · ·	<u></u>	इर इंटर टर
Unit Thickness: 697 (Per Template) 1:.693 2:.690 3:.674 4:	<u>1180.</u> <u>192</u> -	<u>5-25-93</u>	
Check for Vinyl Cracks:	Aso	JUN 02 1993	22 PPG 77.
Seal Evaluation:	Ante	JUN 02 1993	22 pPG 77
(Comments)			
Visual Inspection: (Place comments on attached sheet)		JUN 02 1993	22 pP 6 7 7

Visual Inspection Map & Comments

Thickness Template

.

Customer Part Number: 5-7	71764-	50/	• •
Unit Serial Number: 92-0	064- HG	0-473	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:Ohms	1910	5-24-93	22 235 55 7
	•	5-24-83	22 PPG 23
Thermal Image: Insulation Test: Power to Metal	: Ace		22 PPG 77
(2500 VAC)	_		22 PPG 77
Nesa Scratch Test (81 VAC):	ALR 069	MAY 26 1993 MAY 26 1993	22 PPG 77
Light Transmittance:	1.2	MAY 26 1993	22 PP6 77
Haze: Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47
Deviation Inspection:	Asc	MAY 26 1993	₽ PPG 77
Tomplatel	4:_3	≈ ;	<u>i</u>
Dimensional Inspection:	· · ·		22 PPG 28
Unit Thickness: (Per Template) 1: 685 2: 688 3: 690	*	5-25-93	
	ABC.	JUN 02 1993	22 PP 6 77 4
Check for Vinyl Cracks: Seal Evaluation:	Noc	JUN 02 1993	22 PPG 77
(Comments)			
1000000			
Visual Inspection:	Acc	JUN 02 1993	22 PP6 77
(Place comments on attached shee	t)	:1.	

Visual Inspection Map & Comments

Thickness Template

ustomer Part Number: 5-7/7			
nit Serial Number: 92 05	9 HO		•
	Acc/Rej	Date	Inspector
us to Bus Resistance: 70,1 Ohms	- per:	5-24-93	22 PPG 28
hermal Image:		5-24-87	
nsulation Test: Power to Metal:	Acc	MAY 26 1993	22 PPG 77
esa Scratch Test (81 VAC):	ans.	MAY 26 1993	_2 PPG 77
	79.7	MAY 26 1993	22 PPG 77
ight Transmittance:	1.2	MAY 26 1993	22 PPG 77
aze:		2 6 MAY 1993	22 PPG 47.
hoto (Single Exposure):	Ann	MAY 26 1993	22 PPG 77
eviation Inspection: German Light per Template) :2:	:3		
imensional Inspection:		•	
nit Thickness:	· Occi	<u>5-25-93</u>	22 PPG 28
Per Template) :.649 2:.690 3:.691 4	: .682	. <u></u>	
heck for Vinyl Cracks:	Asc	JUN 02 1993	22 pPG 77
eal Evaluation:	Aor	JUN 02 1993	22 PP6 77
Comments)			
	Ana	JUN 02 1993	22 PPG 27

Visual Inspection Map & Comments Thickness Template 1 689 Deviation Template 33

Customer Part Number: 5-7/7	64-50			·. .
Unit Serial Number: $92 - 0.5$	25-410-	-006		
	Acc/Rej	<u>Date</u>	Inspector	
Bus to Bus Resistance: 193 Ohms	-acr	5-24-93	22 PFG 28	· ·
Thermal Image:	•	<u>.5-24-93</u>	22 EPG 28	
Insulation Test: Power to Metal	: Acc	MAY 26 1993	22 PPG 77	- ,
(2500 VAC)	Acc	MAY 26 1993	22 pPs 27_	
Nesa Scratch Test (81 VAC):	80,2	MAY 26 1993	22 PPG 77	
Light Transmittance:	1.1	MAY 26 1993	22 PPS 77	
Haze: Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47	
Deviation Inspection: (German Light per Template) 1: 5 2: 3 3: 3	Acc. 4: <u>5</u>	MAY 26 1993	22 PP6 77	
Dimensional Inspection:	-	:		
Unit Thickness: (Per Template) 1: <u>694</u> 2: <u>693</u> 3: <u>695</u>	4: 1690	<u>5-25-93</u>	22 500 25	
Check for Vinyl Cracks:	ADE	JUN 02 1993	3 22 PPG 77	
Seal Evaluation:	Acc	JUN 02 393	2 PP6 77	· •
(Comments)				
		์ ไปหาก 2 1993		
Visual Inspection:	<i>A0a</i>	·	22 PFG 77	

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: 5-7	1764-5	- 6 /	
Unit Serial Number: 92-119	40 186	<u>.</u>	·
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 64.8 Ohms	ACC	9/2/43 T.T. 1-	22 PPG 15
Thermal Image:	· <u>·</u>	9/2/95	
Insulation Test: Power to Metal: (2500 VAC)		4/2/43	22 PPG 15
Nesa Scratch Test (81 VAC):	ACC	9/7/93	22 PPG 15
Light Transmittance: 81.5	Acc	4/2/43	- 07 757 75
Haze:	ACC	4/2/93	
Photo (Single Exposure):	<u> </u>		
(Corman Light per Templace)	<u> </u>	9/2/93	di Defi 12
Dimensional Inspection:			
Unit Thickness:	PCC	5/2/03	18 Ddd 55
(Per Template) 1: 686 2: 688 4	: . 688	± :	
	Acc	9/2/93	22 PPG 15
Check for Vinyl Cracks: Seal Evaluation:	n.	5/2/43	22 EP3 15
			
(Comments)			
	Acc	9/292	22.5 r 15
Visual Inspection: (place comments on attached sheet			

Thickness Template

Customer Part Number: 5-71764-50]
Unit Serial Number: 85-H-07-01-276
Acc/Rej <u>Date</u> <u>Inspector</u>
Bus to Bus Resistance: A ReJ MAY 26 1993 22 PP6 77 Ohms
Thermal Image:
Insulation Test: Power to Metal:
Nesa Scratch Test (81 VAC): * Re5 MAY 26 1993 22 PP6 77
C/2 Q MAY 26 1933 22 9Fs 77
Light Transmittance:
2 5 MAY 1993 22 PFG 47
Photo (Single Exposure): Deviation Inspection: NAY 25 1533 22 PPe 72
Deviation Inspection: (German Light per Template) 1: 4 2: 10 3: 7 4: 4
Dimensional Inspection:
Unit Thickness: (Per Template) 1:.757.693 2:.700 3:.695 4:.692
Check for Vinyl Cracks: JUN 02 1993 22 PP6 77
Seal Evaluation:
(Comments) * OPEN CIRCUIT WRONG SEAL ON OUTDO 51 de
Visual Inspection: (Place comments on attached sheet)

open Power	Circuit	- 				_
Unit hAS	AIR	ALL	ROOND	1/2	unit	_
						_

Thickness Template

Customer Part Number: 5-7/7	64-50	. 1	-
Unit Serial Number: 90 173	HO	721	· · · · · · · · · · · · · · · · · · ·
Bus to Bus Resistance: 68.4 Ohms	Res Res Hotel	Date M MAY 26 1993	Inspector
Thermal Image: Insulation Test: Power to Metal:	see	MAY 26 1993	22 PPG 77
(2500 VAC) Nesa Scratch Test (81 VAC):	Ase.	MAY 26 1993	22 PPG 77
Light Transmittance:	80.9	MAY 26 1993 MAY 26 1993	22 PPG 77 22 PPG 77
Haze: Photo (Single Exposure):	<u> </u>	MAY 2 6 1993	22 PPG 4
Deviation Inspection:	Acc 5	MAY 26 1993	22 PPG 77
Dimensional Inspection:	<u> </u>	<u>5-25-93</u>	22 PPG 28
Unit Thickness: (Per Template) 1: <u>646</u> 2: <u>682</u> 3: <u>688</u> 4:		•	
Check for Vinyl Cracks:	AOC	JUN 0 2 1993	22 PPG 77
Seal Evaluation:	<u>Res</u>	JUN 0 2 1993	22 PPe 77.
(Comments) W.O.M. Type - Gat Jore OF Reading Aug 07	David Aig	collo son 1es NO Re	-e7/me
Visual Inspection: (Place comments on attached sheet)	Acc	JUN 02 1993	

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: $5-717$ Unit Serial Number: $5-H-5$	764- <i>13</i> 23-	CG F 84	
Unit Serial Number: $5-H-5$			
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: $1/3.0$ ohms		5-21-93	
Thermal Image:		5-21-93	8Z 5dd ZZ
Insulation Test: Power to Metal:	<u>Acc</u>	MAY 2 6 1993	22 PPG43
(2500 VAC) Nesa Scratch Test (81 VAC):	OK	MAY 2 6 1993	22PPG43
Light Transmittance:	80.7		
Haze:	,4	1983 B 3 YAM	22 PP 643 PP 643
Photo (Single Exposure):		JUN1 4 1993	22 ppg 10
Deviation Inspection: (German Light per Template) 1: 4 3 2: 4 3: 4	<u> su</u> : <u>43</u>	6-8-93	
Dimensional Inspection:	· · · - ·		22 2PG 28
Unit Thickness: (Per Template) 1:.642 2:.643 3:.684 4:		5-24-93	
Check for Vinyl Cracks:	Rav.	JUN 0 3 1993	22 PPs 77
Sear Evaluacion.	Res		22 PPS 77
(Comments) BAS Sept. L	Benger	an B	retted Sur
Visual Inspection: (Place comments on attached sheet)	-Re5	JUN 08 1993	\$5 \$20 mg.

Visual Inspection Map & Comments 9/5.

A D:	oLA~ = A	located	ALL	Arond	UNIT
		WORTE d			
•					,
face	scr	LACATED	M-S	MARKed	
TO CA					

Thickness Template

Customer Part Number: 5-71	764-5	01 clg. H.	· · · · ·
Unit Serial Number: 7-H-	2-4-	35	
man a proper	Acc/Rej	Date	Inspector
Bus to Bus Resistance:Ohms		5-21-93	
Thermal Image:		5-21-93	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	ACCI	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):		MAY 2 6 1983	22PPG43
Light Transmittance:	81.6	MAY 2 5 1993	
Haze:		1014 0 6 1783	-229,9643
buoco (studie mebonaria).		JUN 1 4 1993	A
Deviation Inspection: (German Light per Template) 1: <u> </u>	<u>-</u> 3	6-8-53	PP ₁
Dimensional Inspection:	·		
Unit Thickness:	acc.	5-26-23	22 PPG 28
(Per Template) 1: 1696 2: 1694 3: 1692 4:	.692	. ···-	
Check for Vinyl Cracks:		JUN 0 3 1993	22 PPG 77
	<i>D</i> ₂ ≺	JUN 03 1993	22 FPG 77
Seal Evaluation:	1500		
(Comments) Bod Bunfly			
Visual Inspection: (Place comments on attached sheet)	Re5	JUN 03 1983	22 5Ps 117

Girlono Scr. Foration As marked

Thickness Template

Customer Part Number: 5-71	764		
11 11 19	-		
Unit Serial Number: 4-H-70		·	· · · ·
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:		5-21-93	37. 566 77.
85,0 ohms			8र इट्ट र
Thermal Image:		5-21-93	22PPG43
Insulation Test: Power to Metal: (2500 VAC)	fcc,	MAT 2 0 1000	
Nesa Scratch Test (81 VAC):	<u> 0 K</u>	MAY 2 6 1993	22PPG43
Light Transmittance:		MAY 2 6 1993	22.P.P.G43
Haze:	1, 0	MAY 2 6 1553	22ºPG43
Photo (Single Exposure):	22 PPG 47	JUN 1 4 1993	22 PPG 8
Deviation Inspection:	40	6-8-93	22 PPG 10
(German Light per Template) 1: $\angle 3$ 2: $\angle .3$ 3: $\angle 3$ 4	: <u>23</u>		
Dimensional Inspection:			72
Unit Thickness:	acc.	5-21-63	8 <u>2</u> 294 <u>22</u>
(Per Template) 1:.677 2:.674 3:.679 4:	.676		
and all decolors	7e5	JUN 0 3 1993	22 PPG 77,
Check for Vinyl Cracks:	Ros	JUN 03 1993	22 PPa 77
Seal Evaluation: No Sea			
(Comments) // 52A	~ 01	- Ingal	
Visual Inspection:	Res	JUN 03 FFE	22 6 77
(Place comments on attached sheet)			

. •		
AIR / DOLAN / VINLY CRACKS	LOCATED	pa
ARRONA DNIT		

Thickness Template

Customer Part Number:

5-71764-501

Unit Serial Number: Acc/Rej Inspector Date 87 EEE 74 Bus to Bus Resistance: 7 ohms 8756266 Thermal Image: MAY 2 6 1993 22PPG43 Power to Metal: _ Insulation Test: (2500 VAC) 22PPG43 MAY 2 6 1993 Nesa Scratch Test (81 VAC): 22PPG43 MAY 2 6 1993 Light Transmittance: MAY 2 6 1993 Haze: 22 PPG 47 <u>JUN 1 4 1993</u> Photo (Single Exposure): Deviation Inspection: (German Light per Template)
1: $\angle 3$ 2: $\angle 4.5$ 3: $\underline{4}.$ Dimensional Inspection: 22 PPG 28 Unit Thickness: (Per Template) 3:-668 2:06/2 1: 06/06 22 PP6 77 JUN 03 1993 Check for Vinyl Cracks: JUN 03 1993 22 PPS 77 Seal Evaluation: (Comments) JUN 081283 22 3 72 Visual Inspection:

(Place comments on attached sheet)

Visual Inspection Map & Comments

Ain	Delam	And	VINLA	CRACKS	LOCATED ALL
					•
AR OUNT	Unit				
M. Commercial					

Thickness Template

Customer Part Number: 5	-71764-50	× /	·•
Unit Serial Number: 6-	-H-12-02.	-36	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 123.2 94.8	Ohms	<u>5-21-93</u>	
Thermal Image:		5-21-93	82 299 25
Insulation Test: Power to M	setal: ACC	MAY 2 6 1993	22PPG43
(2500 VAC) Nesa Scratch Test (81 VAC):	A (/	May 2 <u>6 1993</u>	22PPG43
		MAY 2 8 1993	22.00 G43
Light Transmittance:	. 8	MAY 2 5 15 <u>8</u> 3	eenile 15
Haze:		JUN 1 4 1833	¥₽28
Photo (Single Exposure):	<u></u>	JUN 0.9 1993	Z2 77 G 39
Deviation Inspection: (German Light per Template) 1:3	4: 43		-
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: 687 2: 686 3: 684		.5-26-93	22 EFG 28
1: <u>,687</u> 2: <u>,686</u> 3: <u>,684</u>		JUN 03 1993	
Check for Vinyl Cracks:	soc		22 PPG 77
Seal Evaluation:	Pet	JUN 0 3 1993	22 p Ps 77
(Comments) No Bunger	on outal	5,20	
Visual Inspection: (Place comments on attached	sheet)	JUN 0 8 TS3	·22 5 .79 77

: :_.

5-71764-501 Customer Part Number: 87-4-04-20-130 Unit Serial Number: Acc/Rej Date Inspector 32 PPG 28 Bus to Bus Resistance: 73.1 Ohms 5-24-93 22 PPG 28 Thermal Image: Insulation Test: Power to Metal: Ase MAY 26 1993 22 PPG 77 (2500 VAC) ANC MAY 26 1993 22 PPG 77 Nesa Scratch Test (81 VAC): 86.5 MAY 26 1993 22 PPG 77 Light Transmittance: MAY 28 7993 22 PPG 37 Haze: 22 PPC 47 2-6 MAY 1993 Photo (Single Exposure): MAY 26 1993 22 PPG 77 Deviation Inspection: (German Light per Template) Dimensional Inspection: Ac. 5-25-93 Unit Thickness: (Per Template) 2: 707 3: 7/2 4: 702 1:*.695* JUN 0% 127 22 PP6 77 Check for Vinyl Cracks: JUN 02 1993 Seal Evaluation: whoug send on outside side (Comments) ReJ JUN 02 1993 22 17 57 Visual Inspection: (Place comments on attached sheet)

508	mce	chis	Loc	ATOL	2/2 10	down	CONTER	A FRO	om fu	d. Nse
And	OThe	رو جر	2 FACE	Defeat	3 40	eATed	CONTER	0+	7 زیران	
			· ··· · · · · · · · · · · · · · · · ·							
	.,									
										
-										

Thickness Template

Customer Part Number: 5-7/7	164-50	of Chy-H	
Unit Serial Number: 8-H-2	-06-	585	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 29.2 Ohms		5-21-93	22 _ 326 28
Thermal Image:		5-21-93	22 BB 22
Insulation Test: Power to Metal: (2500 VAC)	ACC	<u>MAY 2 6 199</u> 3	22PPG43
Nesa Scratch Test (81 VAC):	OK_	MAY 2 6 1983	22P PG43
Light Transmittance:	82.6	MAY 2 8 1963	22 0964 6
Haze:	1./	MAY 2 3 1983	2005640
Photo (Single Exposure):	22 PPG 47		22 PPG 8
Deviation Inspection: (German Light per Template) 1:	<u>sec</u> <u> </u>	6/8-93	22 Ptu 10
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:.692 2:.69/ 3:.693 4:	:693		
Check for Vinyl Cracks:		JUN 0 3 1993	22 PP6 77
Seal Evaluation:	Res	JUN 031293	22 P PS 77
(Comments) Whom Seal	مر م	Abd &	معل
Burger is 12	70-13 B	u Hetthe	21118
Visual Inspection: (Place comments on attached sheet)	Res:	JUN 0 3 1993	22 978 77

Air And	Delane	hocated	ALL	ARon S	UniT

Thickness Template

Customer Part Number: 85-H-07-01-366 Unit Serial Number: Acc/Rej Date Inspector <u> 22</u> 253 <u>28</u> Bus to Bus Resistance: 43.7 ohms Thermal Image: MAY 2 6 1993 22PPG43 Insulation Test: Power to Metal: (2500 VAC) 22PPG43 MAY 2 6 1993 DK Nesa Scratch Test (81 VAC): 22PPG43 MAY 2 S 1393 Light Transmittance: 2209012 Haze: ?2 PPQ 8 JUN 1 4 1595 22 PPG 47 Photo (Single Exposure): Deviation Inspection: (German Light per Template)
1: 4 3 2 4 5 3 5 7 Dimensional Inspection: 22 PFG 28 5-26-93 Unit Thickness: (Per Template) 3: 697 1: .699 2: ,701 JUN 03 1993 22 PP6 77 Aac Check for Vinyl Cracks: JUN 03 1993 22 PP6 77 Seal Evaluation: (Comments) JUN 03 1393 Re5 22 FP8 🅦 Visual Inspection: (Place comments on attached sheet)

Visual Inspection Map & Comments

	 DELAIN	15	LOCATED	ALL	ARBUNI
UniT.					

Thickness Template

Customer Part Number: 5-717	64-	50/	
Unit Serial Number: 92 06	4 HO	<u>470</u>	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 74.4 Ohms	acc.	5-24-93	22 PPG 28
			.
Thermal Image:		5-24-93	82 275 S
Insulation Test: Power to Metal: (2500 VAC)	ser	MAY 26 1993	22 PPG 77
Nesa Scratch Test (81 VAC):	Acc	MAY 26 1993	22 9 26 77
Light Transmittance:	18.6	MAY 26 1993	22 PPG 77
Haze:	/, 3	MAY 26 1993	22 PPG 77
11000			22 PPG 47
Photo (Single Exposure):		2 6 MAY 1993 MAY 2 6 1993	22 PPG 77
Deviation Inspection: (German Light per Template) 1: 3 2: 3 3: 3 4:	Aac 3	MAT 20 100	22 77 6 77
Dimensional Inspection:	-		
Unit Thickness:	Oca_	5-25-93	22 PPG 28
(Per Template) 1: <u>683</u> 2: <u>687</u> 3: <u>686</u> 4:	.685		
Check for Vinyl Cracks:	Ass	JUN 02 1993	22 PPG 77
Seal Evaluation:	Rac	JUN 02 1993	22 PPG 99
			- •
(Comments)			
	Bac	JUN 02 1993	22 PPG 77
· zz conp	Mac		
(Place comments on attached sheet)			

Thickness Template

5-71764-501

Customer Part Number: 92-098 HO 591 Unit Serial Number: Acc/Rej Date Inspector 5-24-93 Bus to Bus Resistance: 67,7 Ohms 5-211-93 Thermal Image: 22 PPG 17 MAY 26 1993 Insulation Test: Power to Metal: 1 .(2500 VAC) Acc MAY 26 1993 22 PPG 77 Nesa Scratch Test (81 VAC): 22 PPG 73 MAY 26 1993 Light Transmittance: MAY 26 1993 22 PPG 77 Haze: 2 6 MAY 1993 22 PPG 47. Photo (Single Exposure): MAY 26, 1993 22 PPG 77 Deviation Inspection: (German Light per Template) 1:_5_ Dimensional Inspection: 22 PPG 28 Becc. 5-25-93 Unit Thickness: (Per Template) 3: .688 4: .690 2:.643 1:,692 JUN 02 1993 22 PP6 77 Aac Check for Vinyl Cracks: JUN 02 1993 22 PP6 77 Seal Evaluation: BUT Acceptable SEAL LOOSE (Comments) JUN 02 1393 22 PP# 79 pas Visual Inspection: (Place comments on attached sheet)

Visual Inspection Map & Comments

Seal	Loose	A\$	MARKED		
				-	

Thickness Template

Customer Part Number: 5-7/	764-	501	
Unit Serial Number: $92-0$	93 H	0 392	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 68,0 Ohms	acci.	5-24-93	22 PPG 28
<u>\$\delta\lambda\</u>		5-24-93	32 FPG 28
Insulation Test: Power to Metal:	Acc		22 PPG 77.
(2500 VAC) Nesa Scratch Test (81 VAC):		MAY 26 1993	22 PPG 77
Light Transmittance:	29.8	MAY 26 1993	22 PPG 77
Haze:	1,0	MAY 26 1993	22 PPG 77
Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47
Deviation Inspection: (German Light per Template) 1: 5 2: 5 3: 3 4:	Au 5	MAY 26 1993	22 pPG 77
Dimensional Inspection:			22 DEO 00
Unit Thickness: (Per Template) 1: <u>686</u> 2: <u>1686</u> 3: <u>688</u> 4:	<u>ase</u> .688	7-25-93	22 PPG 28
Check for Vinyl Cracks:	Ann	JUN 02 1993	22 PPG ?7
Seal Evaluation:	Acc	JUN 02 1993	22 PPC 77
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Arc	JUN 02 1993	22 PPG 77

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: $5-7$	1764-	-501	
Unit Serial Number: $92 - 0$	93 - H	0 <u>- 38</u> 8	
Bus to Bus Resistance:	Acc/Rej	<u>Date</u> 5-24-93	Inspector 22 PPG 28
73.7_Ohms	<i>y y y</i>		22 000
Thermal Image:		5-24-93	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	Ace	MAY 26 1993	22 PPG 77
Nesa Scratch Test (81 VAC):	Acc	MAY 26 1993	32 PPG 77
Light Transmittance:	80.6	MAY 26 1993	22 PPG 77
Haze:		MAY 28 1988	22 PPG 77
Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47
Deviation Inspection: (German Light per Template) 1: 5 2: 5 3: 5 4:	pse 7	MAY 26 1993	22 PPG 77
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:.688 2:.685 3:.691 4:	Acc. .691	5-25-93	22 PPG 28
Check for Vinyl Cracks:	Acc	JUN 02 1993	22 PPG 77
Seal Evaluation:	ACC	JUN 02 1993	<i>₽₽8.77</i>
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Ace	JUN 02 1993	22 PP6 77

:

Visual Inspection Map & Comments

Thickness Template

5-71764-501 Chg. H Customer Part Number: 5-H-12-16-47 Unit Serial Number: Acc/Rej Date Inspector 22 896 28 5-21-93 Bus to Bus Resistance: 101.0 Ohms 5-21-93 22 PPG 28 Thermal Image: 22PPG43 Insulation Test: Power to Metal: // MAY 2 6 1993 (2500 VAC) MAY 2 6 1993 _O K 22PPG43 Nesa Scratch Test (81 VAC): MAY 2 6 1983 81,2 Light Transmittance: HAY 2 8 12931 Haze: JUN1 4 1993 22 PFG 47 Photo (Single Exposure): JUN 0 9 1993 ₱2 PPG 39 Deviation Inspection: (German Light per Template)
1: 444 32: 23 3: 23 Dimensional Inspection: acc. 5-26-93 Unit Thickness: (Per Template) 3: .685 4: .679 1: .684 JUN 03 1993 22 PPG 17 Check for Vinyl Cracks: JUN 03 1993 22 PP6 77 Seal Evaluation: wrong seal or outsides side (Comments) Re5 22 27 77 JUN 03 1993 Visual Inspection: (Place comments on attached sheet)

AIR AM	Defor	ALL AZOUND	Edyo	of	Mnit

Thickness Template

Customer Part Number:

5-71764-501

84- H-10- 15- 122 5 Unit Serial Number: Acc/Rej <u>Date</u> Inspector Bus to Bus Resistance: 22 EPG 28 Thermal Image: Insulation Test: Power to Metal: Add MAY 26 1993 22 PPG 77 (2500 VAC) 22 PPG 77 Aca MAY 26 1993 Nesa Scratch Test (81 VAC): MAY 28 IFF 22 PPG 77 Light Transmittance: MAY 28 RELO 22 PPG 77 Haze: 2 6 MAY 1993 22 PPG 47 Photo (Single Exposure): ASC MAY 28 1993 22 PPG 77 Deviation Inspection: (German Light per Template) 1:<u>3</u> 2:<u>3</u> 3:<u>3</u> Dimensional Inspection: 55 ESC 58 5-25-93 Unit Thickness: (Per Template) 3: . 709 1:.702 2:.704 4:,700 JUN 02 1993 22 PPG 77

(Place comments on attached sheet)

Check for Vinyl Cracks:

Seal Evaluation:

Visual Inspection:

(Comments)

Wrong SERL ON OUTBO Side An GERLANT VERY BAD SLAND

JUN 02 1993

22 PP6 77

Ra JUN 92 1993

AIR	Logar	od AL	La Round Lower/F Le Lou	UN17.	glus	A LAR	5 e.
Amou	ما قیس	nATed.	LOWER/F	·wd. A	Lore w	The d	e Lan
ALS 0	VINLy	CRACKS	behou	u To	BC 51A	RTING	

Thickness Template

Customer Part Number: $5-57/$	64-13	Chy-F	
Unit Serial Number: $4-H-9$	-28-8	7_	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 45% Ohms		<u>5-21-93</u>	22 PPG 28
Thermal Image:		5-21-93	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	ACC	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	<u>ok</u>	MAY 2 6 1993	22PPG43
Light Transmittance:	87.1	MAY 2 6 1503	2299843
Haze:	1.2	MAY 2 9 1343	22PPGK
Photo (Single Exposure):	22 PPG 47	JUN 1 4 1993	22 PPG 8
Deviation Inspection: (German Light per Template) 1: <u>C 3</u> 2: <u>C 3</u> 3: <u>C 3</u> 4:	_A _c_3	JUN 0.9 1993	ŹZ Fy3 39
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: .675 2: .68/ 3: .68/ 4:		5-26-93	22 PPG 28
Check for Vinyl Cracks:	Hac	JUN 0 3 1993	
Seal Evaluation:	ME	JUN 03 1993	rr agg 23
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Peo	JUN 0 3 1993	3 n.16 32

	1 1	47.	- 1-	151
De LAM Am	d Hin	ALL	AROUND	Mind
			······································	

Thickness Template

Customer Part Number: <u>5-89357-1</u>		
Unit Serial Number: $3-H-4-26-4$	5	
Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 87.00hms	5-21-93	35 PPG 28
	5-21-93	87 55d 27
Insulation Test: Power to Metal: <u>ACC</u> , (2500 VAC)	MAY 2 6 1993	22PPG43
•	AY 2 6 1993	22PPG43
Light Transmittance: 81,1	MAY 8 6 19 <u>6</u> 3	2209643
	MAY 9 - 1743	Zepana Zepana
	JUN141393	200
Deviation Inspection: (German Light per Template) 1: <u>43</u> 2: <u>43</u> 3: <u>43</u> 4: <u>43</u>	6-8-93	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dimensional Inspection:		
Unit Thickness: (Per Template) 1:.678 2:.679 3:.684 4:.683	-26.93	22 PPG 28
Check for Vinyl Cracks:		~ 22 P Ps 7 F
Seal Evaluation: Pes .	JUN 0 3 1993	'22 PPs 77
(Comments) No Seal And BAd BU	mper o	on 001Ba
Visual Inspection: (Place comments on attached sheet)	UN 0 3 1993	22 PPB 77

Visual Inspection Map & Comments

BURFAC	e scr.	V(e I	marked	
linky	CROCK	A-S	MANKER	

Thickness Template

Deviation Template

Customer Part Number: $5-7/$	764-,	13 Chg. F	
Unit Serial Number: $4-H-10$	-15_/	08	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 127.7 ohms		5-21-93	<u>22</u> ppg 28
Thermal Image:		5-21-93	22 PPG 28 22 PH 440
Insulation Test: Power to Metal:	Acc.	MAY 2 6 1993	22PPG43
(2500 VAC) Nesa Scratch Test (81 VAC):	0 K_	MAY 2 6 1993	22PPG43
Light Transmittance:		MAY 2 8 1993	22PPG43
Haze:		#3Y 2 8 1S&3	227645
Photo (Single Exposure):	22 PFG 47	_JUN 1 4 1993	22 PPG 10
Deviation Inspection: (German Light per Template) 1: <u> </u>	2 3	6-8-93	
Dimensional Inspection:		JUN 1 4 1993	-
Unit Thickness: (Per Template)	ace	5-24-93	22 PPG 28
1: <u>.67%</u> 2: <u>.686</u> 3: <u>.686</u> 4:	.1684		
Check for Vinyl Cracks:	Res	JUN 0 3 1993	22 PP6 77
Seal Evaluation:	Ra5	JUN 03 1993	22 PPS 37
(Comments) BAD Sept And	Bumque	ek	
Visual Inspection: (Place comments on attached sheet)	Res	JUN 0 3 1993	:₽6 7 9

Visual Inspection Map & Comments

BAD SURFACE SOR LO	apted Throughout the UNIT
	•
AIR And DOLAM LOOA.	Ted ALL AROUND UNIT

Thickness Template

-

APPENDIX C
BIRD IMPACT DATA SHEETS

Sample 1.D. <u>5-89364-50</u> 2	S/N 86-H-10-06-007 Date 6/22/93
Bus to Bus 37.5 OHMS	Delamination chk. OK

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual	
Temperature I.B.	R.T.	70°F	
Temperature O.B.	R.T.	70°F	
Bird Wt. (lbs)	4.0	4.020	
Bird Speed (kts)	2500	251.7	

Ambient *F 70 *F

Impact Loc. CENTER
Installation 45 *

Angle
Sweep Back
Angle

NEW	#1	واحه	Ω.ц
NEW		دادي	Ж·Н.

Shot No.: <u>783</u> Test Date: <u>6/21/93</u> Tested By: <u>HEG.</u>

Test Results:

OUTBOARD PLY BLOKEN. CORE PLY INTACT. SMALL AMOUNT OF BIRD IMPACTED WITNESS PLATE. BIRD ENTERED OVER UPPER EDGE OF WINDOW ON IMPACT. COMPRESSION OF IMBOARD MOUNTING O-HAGS PROBABLE GAUSE.

PPG Witness: March Date: 6/27/97

Sample 1.D. <u>5-893</u> Bus to Bus <u>34.9</u>	•		ion chk. <u>O</u> K	
Requirements: High Speed Film (3	cameras) _	YES Spall	Shield Instal	led <u>YES</u>
Test Conditions	Requested	Actual	Ambient *F	72°F
Temperature I.B.	R.T.	72°F	Impact Loc.	C
Temperature O.B.	R.T.	72 F	Installation	
Bird Wt. (lbs)	4.0	4.010	Sweep Back - Angle	30°
Bird Speed (kts)	250.0	251.1	Aligie	
NEW #1 W/s	R. H.			

NO DAMAGE. SMALL AMOUNT OF BIRD ENTERED OVER. TOPEDGE. SAME REASONS AS SHOT# 783.

PPG Witness: Wesolvul Date: 6/27/93

Test Results:

Sample 1.D. 5-893			-10-06-27 D	
Requirements:				,
High Speed Film (3	cameras) 🗋	<u>(€)</u> Spall	Shield Instal	led YES
Test Conditions	Requested	Actual	Ambient *F	72°F
Temperature I.B.	R.T.	72°F	Impact Loc.	CENTER
Temperature O.B.	Q.T.	72°F	Installation	45*
Bird Wt. (lbs)	4.0	4.010	Angle Sweep Back	<i>3</i> °°
Bird Speed (kts)	750.0	757 9	Angle	

NEW #1 WS R.H.

Shot No.: 785 Test Date: 6/23/93 Tested By: HEG

Test Results:

No DAMAGE. No BIAD RESIDUE ON WITNESS PLATE.

PPG Witness: 473/93

Sample 1.D. <u>5-893</u> Bus to Bus <u>33.5</u>			ht-10-06-0960 on chk. OK	
Requirements:	cameras) _	<u>(€∫</u> Spall	Shield Instal	led <u>Y€</u> S
Test Conditions	Requested	Actual	Ambient *F	73°F
Temperature I.B.	R.T.	73 °F	Impact Loc.	CENTER
Temperature O.B.	RT.	73°F	Installation Angle	45°
Bird Wt. (lbs)	4.0	4.010	Sweep Back Angle	30°
Bird Speed (kts)	250	2526	Angre	
NEW #1 W/S R	.ાન.			
Shot No.: 786	Test Date:	424193	Tested By:	tee
Test Results:				
NO DAMAGE. 1	to BIRD	RESIDUE	SALIO HO	s Plate.

PPG Witness: Moodel Date: 6/24/93

Bus to Bus 41.	7	Delaminat	ion chk. <u>A</u> k	
Requirements: High Speed Film (3 cameras) <u>`</u>	(ES Spal	l Shield Install	ed <u>YES</u>
Test Conditions	Requested	Actual	Ambient *F -	72°F
		1	WIND LOUGH	
Temperature I.B.	R.T.	72°F	Impact Loc -	CENTER
Temperature I.B. Temperature O.B.	R.T.	72°F	Impact Loc Installation	CENTER
			1 .	·

Shot No.: 792 Test Date: 7/19/93 Tested By: HEG
Test Results:

CORE PLY FAILED. NO SPACE ON WITNESS PLATE.

PPG Witness: Masonal Date: 7/19/93

Sample 1.D. <u>5-89</u>	354-501	s/N 83H-8-15-756 Date 7/19/93			
Bus to Bus 46.0	<u> </u>	Delamination	on chk. OR		
Requirements:					
High Speed Film (3	cameras) 🛚	E \$ Spall	Shield Instal	led YES	
				•	
Test Conditions	Requested	Actual	Ambient °F -	73°F	
Temperature I.B.	R.T.	73°F		CENTEL	
Temperature O.B.	RT.	73°F	Installation Angle -	45°	
Bird Wt. (lbs)	4.0	4.005	Sweep Back Angle -	30°	
Bird Speed (kts)	250	249.4	Angle		
REPAIRED #1 WIS	LH.				
shot No.: 793	Test Date:_	7/19/93	Tested By: HE	<u>G-</u>	
Test Results:					
ALL PLIES FAIL	ED. MIN	or space	ON WITHE	Ers PLATE	

PPG Witness: Woodne Date: 7/19/93

NO PENETRATION.

Sample I.D. <u>5-893</u> Bus to Bus <u>44.</u>			-3-19-22 p on chk. <u>c</u>	
Requirements: High Speed Film (3	cameras) <u> </u>	(ES Spall	Shield Instal	led <u>YES</u>
Test Conditions	Requested	Actual		73°F
Temperature I.B.	R.T.	73°F	Ambient °F	
Temperature O.B.	P.T.	73°F	Installation Angle	45°
Bird Wt. (lbs)	4.0	4.000	Sweep Back Angle	30°
Bird Speed (kts)	250	250.1	Angre	
REPAILED # 1 W/S	L.H.			
Shot No.: 794 Test Results:	Test Date:_	7/20/93	Tested By: H	£&
OUTBOALD PC	FAILED.	COLE PL	y INTHA.	

PPG Witness: USoopel Date: 7/20/93

Sample 1.D. <u>5-893</u>	54- <i>5</i> 01	s/N 86-H	-12-01-146 Date 7/20193		
Bus to Bus	<u> </u>	Delamination chk			
Requirements: High Speed Film (3	cameras) 💄	(ES Spall	Shield Installed YES		
Test Conditions	Requested	Actual	Ambient 'F GENTER 75°		
Temperature I.B.	R.T.	75°F	Impact Loc. OENTER		
Temperature O.B.	LT.	75°F	Installation 45°		
Bird Wt. (1bs)	4.0	4.010	Sweep Back 35°		
Bird Speed (kts)	250	252.4	Aligie		
REPAIRED #1 Lot	S L.H.				
shot No.: <u>795</u>	Test Date:_	7/20/93	Tested By: HEG		
Test Results:					
NO GLASS BRET	trage.	Au Pcie	INTACT. BENT Z		
RETAINER BAD	۲۷.				

PPG Witness: 1200000 Date: 7/70/93

Sample I.D. <u>5-893</u> Bus to Bus <u>41.3</u>	54-501		10-18-107 on chk. <u>Ok</u>	
Requirements: High Speed Film (3	cameras) _	√ES Spall	Shield Insta	11ed <u>YES</u>
Test Conditions	Requested	Actual	Ambient °F	75°F
Temperature I.B.	R.T.	75°F	Impact Loc.	
Temperature O.B.	RT.	75°F	installation Angle	n 45°
Bird Wt. (lbs)	4.0	4.010	Sweep Back	300
Bird Speed (kts)	250	249.4	Angle	
REPAILED #1 W!	s L.H.			
shot No.: 79L		7/20/93	Tested By: <u>l</u>	+EG
Test Results:				

PPG Witness: 120193

ALL PLIES FAILED. MINOR SPALL.

Sample 1.D. 5-893	54-501		-9-6-235 c		
Bus to Bus 43.4		Delamination chk			
Requirements: High Speed Film (3	cameras) 🕽	(ES Spall	Shield Instal	led YE J	
Test Conditions	Requested	Actual	Ambient °F	70°F	
Temperature I.B.	RT.	70°F	Impact Loc.	CENTER	
Temperature O.B.	RT.	70°F	Installation Angle	450	
Bird Wt. (lbs)	4.0	4.005	Sweep Back Angle	32°	
Bird Speed (kts)	250	251.0	Angre		
REPAIRED #1 WS	L.H.				
Shot No.: 797		7/2/193	Tested By: H	EG	
Test Results:					

PPG Witness: 12/93

CUTBOALD PLY FAILED. COLE PLY INTACT

Sample 1.D. <u>5-89354-50</u> Bus to Bus 45.7		S/N 83-H-11-21-325 Date 7/2/93 Delamination chk. OK			
Requirements: High Speed Film (3 cameras) YES Spall Shield Installed YES					
Test Conditions	Requested	Actual	Ambient 'F 70°F		
Temperature I.B.	R.T.	70°F	Impact Loc. CENTER		
Temperature O.B. Bird Wt. (1bs) Bird Speed (kts) 250		70°F	Installation 450		
		4.005	Sweep Back Angle		
		247.5	Vila i e		
REPAIRED # 1 W/S L.H.					
Shot No.: 798 Test Date: 7/2/93 Tested By: HEG					
Test Results:					
ALL PLIES PAILED. COME PLY SPALLED BUT NOWE D.					
WITNESS PLATE					

PPG Witness: 12193

Sample .D. 5-8939	S/N 89-28	6-140-697	Date 7/22/9		
Bus to Bus	Delamination chk				
Requirements: High Speed Film (3 cameras) YES Spall Shield Installed YES					
Test Conditions	Requested	Actual	Ambient *F	65°F	
Temperature I.B.	Ret	45°F	Impact Loc.	CENTER	
Temperature O.B.	PLT:	65°F	Installatio		
Bird Wt. (lbs)	4.0	4,000	Sweep Back Angle		
Bird Speed (kts)	250	250.8	Aligic		
REPAILED					
Shot No.: 799 Test Date: 7122193 Tested By: HEG-					
Test Results:					

PPG Witness: A Goodwel Date: 7/22/93

NODAMAGE

Sample 1.D. <u>5-89</u>	357-1	-		ate <u>911193</u>
Bus to Bus 71.1		Delaminat [*]	ion chk. SEE	DATA SHEET
Requirements:	•			
High Speed Film (3	cameras) _	YES Spall	l Shield Instal	led YES
Test Conditions	Requested	Actual	Ambient *F	71 ° F
	Requested	Actual 71°F	Ambient *F	
Test Conditions Temperature 1.B. Temperature 0.B.			Impact Loc.	CENTER
Temperature I.B.	R.T.	71°F	Impact Loc.	CENTER

REPAIRED #4 WHOOW L.H.

Shot No.: 915 Test Date: 911193 Tested By: HEG

Test Results:

OUTBOARD GLASS FALCO. BIRD PENETRATION BETWEEN O.B. RETAINER & GASKET ALONG AFT EDGE & AT TOP AFT CORNER. BENT 14 MANNING BOLTS.

PPG Witness: 191193

Sample 1.D. <u>5-71764-501</u> S/N <u>92-064-H0-471</u> Date <u>G11193</u> Bus to Bus <u>69.8</u> Delamination chk. <u>OK</u>				
Requirements: High Speed Film (3	3 cameras) 📐	 ES Spall	Shield Insta	11ed <u>YES</u>
Test Conditions	Requested	Actual	Ambient *F	_71°E
Temperature I.B.	R.T.	7104	Impact Loc.	CENTER
Temperature O.B.	R.T.	71°F	Installation	58.25
Bird Wt. (1bs)	4.5	4.020	Sweep Back - Angle	35 °
Bird Speed (kts)	250	251.3	Angre	
New#4 WINDOW LH.				
Shot No.: 616 Test Date: 91193 Tested By: HEG				
Test Results:	_			
No DAMHGE.				
BETWEEN O.B.	RETAINER	- 4 611	DOW CASKE	IT. NO BEN

PPG Witness: M. Show Date: 9/1/93

BOLTS.

Sample I.D. 5-71764-501 S/N 92-064-H0-473 Date 9/1193

Bus to Bus 69:4 Delamination chk. OK

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions Requested Actual Ambient F

Test Conditions	Requested	Actual
Temperature I.B.	R.T.	72°F
Temperature O.B.	RT.	72°F
Bird Wt. (1bs)	4.0	4.015
Bird Speed (kts)	250	248.9

Ambient *F	72°F
Impact Loc.	CENTER
Installation Angle	58.2°
Sweep Back Angle	35°
_	

NEW #4 WARROW L.H.

Shot No.: 817 Test Date: Gli 193 Tested By: HEG

Test Results:

NO DAMAGE. NO BENT BOCTS. MINDE BIND PENETRATION APT EDGE & BOTTOM EDGE.

PPG Witness: Date: 9/1/97

Samp	le	1.D. 5-71764-501	s/n <u>92-059-Ho-350</u>	Date 91193
Bus	to	Bus 70.1	Delamination chk	<u> </u>

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	RT.	72°F
Temperature O.B.	RT.	72°F
Bird Wt. (lbs)	4.0	4020
Bird Speed (kts)	250	225-1

Ambient °F -	7288
Impact Loc	CENTER
Installation Angle -	58·2°
Sweep Back Angle -	35°
Angle -	

Shot No.: 818 Test Date: 9/1/93 Tested By: HEG

Test Results:

NO TEST. MISFIRE. CAMERA FILM BROKE. LARGE GLASS CHIP BLOWN OFF LOWER AFT CORNER OPPOSITE TERMINAL BLOCK. UNIT WILL BE REPLACED BY PRO & DATA REUSUED.

PPG Witness: Date: 911/93

1 -			5-H0-006 [
Requirements: 2 High Speed Film (•	E \$ Spall	Shield Instal	11ed <u>Y€</u> J
Test Conditions	Requested	Actual	Ambient *F	72°F
Temperature I.B.	2.7.	73°F	Impact Loc.	CENTER
Temperature O.B.	RT.	73°F	Installation Angle	58.2
Bird Wt. (lbs)	4.0	4.015	Sweep Back Angle	35 0
Bird Speed (kts)	250	248.4	Aligie	, , , , , , , , , , , , , , , , , , ,
NEW #4 WADO	ى ل.H.	9/20102	Tested By: H	

No DAMAGE.

Test Results:

PPG Witness: Date: 9/29/93

Sample 1.D. <u>5-7170</u> Bus to Bus <u>64</u> .			0n chk. 0	_
Requirements:	L rcameras) _	(ES Spall	Shield Instal	1ed 7E S
Test Conditions	Requested	Actual	Ambient °F	73°F
Temperature I.B.	RT.	73°F	Impact Loc.	CENTER
Temperature O.B.	RT.	73°F	Installation Angle	58.2°
Bird Wt. (1bs)	4.0	4.005	Sweep Back Angle	350
Bird Speed (kts)	750	747 8	A. C.	

NEW# 4 WHOW L.H. - REPLACEMENT FOR SHOT #818

Shot No.: 836 Test Date: 9/29/93 Tested By: HEG

Test Results:

NO DAM AGE

Sample I.D. 5-71764-501 S/N 85-H-07-01-276 Date 9/29/93

Bus to Bus OPEN Delamination chk. SEE DATA SHEET

Requirements:

High Speed Film (2 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	Riti	73°F
Temperature O.B.	P.T.	73°F
Bird Wt. (lbs)	4.0	4.015
Bird Speed (kts)	250	248.7

Ambient 'F 73 F

Impact Loc.
Installation 50.2°

Angle
Sweep Back
Angle

REPAIRED \$4 WARDOW L.H.

Shot No.: 837 Test Date: 9/29/93 Tested By: HEG

Test Results:

NO DAMAGE

PPG Witness: 4700000 Date: 9/29/93

Sample 1.D. 5-71764-50		s/N 90-173-HO-721 Date 9/2919					
Bus to Bus OPEN		Delamination chk					
Requirements:							
High Speed Film (3	cameras)	(E) Spa11	Shield Insta	11ed <u>YES</u>			
Test Conditions	Requested	Actual	Ambient *F	74°F			
Temperature I.B.	Lit.	74°F	Impact Loc.	0- 55			
Temperature O.B.	LT.	74° R	Installation				
Bird Wt. (lbs)	4.0	4.005	Sweep Back Angle	36 *			
Bird Speed (kts)	250	247.1	, <u>,</u>				
REPAILED #4 W	ا حن ١٥٥مبر	-· H.					
shot No.: 838			Tested By: 🚹	HEG			
Test Results:							
NODAMAGE							

PPG Witness: 4 2000 Date: 9/29/93

Sample I.D. 5-71764-13 CNC F S/N 5-H-5-23-84 Date 9/30/93

Bus to Bus 118.0 Delamination chk. SEE DATA SHEET

Requirements:

High Speed Film (cameras) YES Spall Shield Installed YES

Test Conditions Requested Actual

Temperature I.B. I.T. 70°F

Temperature O.B. I.T. 70°F

Bird Wt. (1bs) 4.0 4.015

250

Ambient 'F CENTER Impact Loc. Installation Angle Sweep Back Angle

REPAILED #4 WINDOW L.H.

Shot No.: 839 Test Date: 9130 193 Tested By: 1456

Test Results:

Bird Speed (kts)

OUTBOARD PLY BROKEN. NO BILD PENETRATION. INTERLAYER TORN IN LOWER FORWARD WARDE.

251.2

PPG Witness: 4 Date: 9/30/97

Sample	1.0.5-71764-501 cm6.H.	s/N 7-H-2-4-35	
Bus to	Bus 119.8	Delamination chk.	SEE DATA SHEET

Requirements:

High Speed Film (2 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature (.B.	R.T.	71°F
Temperature O.B.	L.T.	7108
Bird Wt. (lbs)	4.0	4.005
Bird Speed (kts)	250	750·8

Ambient *F	718
Impact Loc.	وصآفاك
Installation Angle	58.2°
Sweep Back Angle	35°

REIAINED #4 WINDOW . L.H.

Shot No.: 840 Test Date: 9/30/93 Tested By: HEG

Test Results:

PLUTURE FRAME REMANING IN FIXTURE.

PPG Witness: Date: C/38/95

			0-9-69 D on chk. <u>SEE</u>	ate <u>9/30/</u> 93 DATA SHEE
Requirements: 7 High Speed Film (2	cameras) 🕽	ES Spall	Shield Instal	1ed <u>YE</u>
Test Conditions	Requested	Actual	Ambient *F	7201
Temperature 1.B.	Qut	72°F	Impact Loc.	CENTER
Temperature O.B.	LT.	72°F	Installation Angle	58.20
Bird Wt. (1bs)	4.0	4.010	Sweep Back Angle	35
Bird Speed (kts)	250	251.0	Angle	
Reserves # 4 w		L.H. 9130/93	Tested By: <u></u>	· E &

PPG Witness: 120/93

Test Results:

NO DAMAGE

Sample I.D. <u>5-71764-501</u> Bus to Bus <u>79.7</u>		S/N 87-H-12-6-397 Date 9/30/97 Delamination chk. SEE DATA SHEE					
Requirements:	_ cameras) _	YE S Spall	Shield Instal	1ed YE			
Test Conditions	Requested	Actual	Ambient *F	7208			
Temperature I.B.	R.T.	728	Impact Loc.	Center			
Temperature O.B.	RT.	7201	Installation Angle	58.20			
Bird Wt. (1bs)	4.0	4.010	Sweep Back Angle	35			
Bird Speed (kts)	250	252.8	Angre				
Shot No.: 842 Test Results:	Test Date:		Tested By: <u>H</u>	<u> </u>			
NO DAMAGE	•						

PPG Witness: 18 Date: 9/30/93

Sample I.D. 5-71764-561 S/N 6-H-12-62-36 Date [6]

Requirements:

High Speed Film (2 cameras) YEI Spall Shield Installed YEI

Test Conditions	Requested	Actual
Temperature I.B.	R.T.	72°F
Temperature O.B.	P.T.	72 F
Bird Wt. (1bs)	4.0	4.015
Bird Speed (kts)	250	250.3

Ambient 'F

Impact Loc.
Installation
Angle
Sweep Back
Angle

72 F

CENTEL

58.2

Relation #4 WINDOW L.H.

Shot No.: 843 Test Date: 10/1/97 Tested By: LEC

Test Results:

BOTH GLASS PLIES FAILED. 4" TEAR IN INTERLAYER ALDUND LOWER FORWARD COLVER.

PPG Witness: # Coolel Date: 10/1/93

DEVELOPMENT OF REPAIR PROCESSES AND SOURCES FOR C/KC-135 AIRCRAFT WINDOWS/WINDSHIELDS

RICHARD J. OLSON

BATTELLE 505 KING AVENUE COLUMBUS, OH 43201

SEPTEMBER 1994

TECHNICAL REPORT FOR 09/91 - 01/94 C/KC-135 FINAL REPORT CONTRACT NUMBER FO9603-90-D-2217-SD02

DISTRIBUTION AUTHORIZATION:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

PREPARED FOR OKLAHOMA CITY AIR LOGISTICS CENTER TINKER AFB, OK 73145 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 3. REPORT TYPE AND DATES COVERED 2. REPORT DATE 1. AGENCY USE ONLY (Leave blank) September 1994 Technical, C/KC-135 Final Report, 9/01/91 -01/31/94 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Development of Repair Processes and Sources for C/KC-135 Aircraft Windows/Windshields 6. AUTHOR(S) Richard J. Olson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Battelle Contract FO9603-90-505 King Avenue D-2217-SD02 Columbus, Ohio 43201-2693 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Oklahoma City Air Force Logistics Center VEP87CR52R1 OC-ALC/TIETR 3001 Staff Drive, Suite 2AF66A Tinker AFB, OK 73145-3040 Technology Transition Office ASC/SMT 2690 C, Suite 5 Wright-Patterson AFB, OH 45433-7412 11. SUPPLEMENTARY NOTES 12a, DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited 13. ABSTRACT (Maximum 200 Words) The U.S. Air Force has historically rejected the notion of using repaired windows/windshields (W/WS). With increasing pressure to reduce fleet operating costs and based on the favorable experience that commercial fleets have had, interest in using repaired W/WS is receiving greater attention. To ensure that repaired W/WS are safe and that they provide similar benefits for the Air Force, a program of evaluation and testing was undertaken to compare new and repaired C/KC-135 W/WS. Optical and electrical properties, pressure integrity, and bird impact resistance of repaired and new W/WS have been evaluated. The bird impact test results are the first data that the Air Force has collected for C/KC-135 W/WS. The functional testing indicated that repaired W/WS are not equal to new W/WS; the new W/WS outperform the repaired W/WS. In terms of removal for cause criteria and absolute performance requirements, however, the repaired W/WS appear to be "good enough." Concerning costs, the direct costs for repair of the W/WS in this program ranged from 65-75% of new W/WS cost, suggesting that money can be saved. 15. NUMBER OF PAGES 14. SUBJECT TERMS Aircraft Transparencies, C/KC-135, Windows/Windshields, Repairs, 264 Pressure Cycle Testing, Falling Ball Impact Testing, Bird Impact 16. PRICE CODE Testing, Repaired Window/Windshield Costs Analysis 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF THIS PAGE OF ABSTRACT OF REPORT Unclassified Unlimited Unclassified Unclassified

NSN 7540-01-280-5500

This page intentionally left blank.

TABLE OF CONTENTS

REPORT DOCUM	ENTATION PAGE			 	 	 	• •	 iii
TABLE OF CONTI	ENTS			 	 	 		 . v
LIST OF TABLES				 	 	 		 vi
LIST OF FIGURES	•			 	 	 		 vii
SUMMARY				 	 	 		 . x
PREFACE				 	 	 		 xii
1.0 INTRODUCTIO	ON			 	 	 		 . 1
	nd							
1.2 Objective				 	 	 		 . 1
1.3 Approach				 	 	 		 . 1
1.4 Report Co	ontents			 	 	 	• •	 . 2
2.0 PROTOTYPE S								
2.1 C/KC-135	5 W/WS			 	 	 		 . 3
2.2 Program l	Prototypes			 	 	 		 . 5
2.3 C/KC-135	5 #1 and #4 W/WS			 	 	 	• •	 . 5
3.0 W/WS REPAIR								
	V/WS Damage							
3.2 Repair Ve	endors			 	 	 		 . 8
	ORDAM Transpare							
	erkins Aircraft Serv							
	he Glass Doctor							
3.3 Repair De	etails			 	 	 	• •	 . 9
4.0 PERFORMANO								
4.1 Test Philo	osophy			 	 	 		 10
4.2 Quality A	ssurance			 	 	 		 12
4.3 General In	nspection			 	 	 		 12
	est Procedures							
• •	.3.1.1 General Visu							13
	.3.1.2 W/WS Dime							14
	3.1.3 Basic Electric							14
	3.1.4 Heater Opera							14
	3.1.5 Optical Perfo							15
	eneral Inspection T							16
	Integrity							17
	est Procedures							17
	4.1.1 Proof Pressu							17
4.	4.1.2 Cyclic Dural	oility Tes	t	 	 	 		 17

TABLE OF CONTENTS

(Continued)

4.4.2 Test Facility	
4.4.3 Test Results	
4.5 Residual Strength Assessment	20
4.5.1 Test Procedures	
4.5.2 Test Facility	20
4.5.3 Test Results	20
4.6 Bird Impact Testing	21
4.6.1 Test Procedures	21
4.6.2 Test Facility	21
4.6.3 Test Results	22
4.7 Performance Testing Summary	23
5.0 COST ANALYSIS	24
5.1 Repair Costs	24
5.2 Costs of New W/WS	24
5.3 Cost Comparison	
6.0 CONCLUSIONS, RECOMMENDATIONS, and DISCUSSION	25
6.1 Conclusions	25
6.2 Recommendations	27
6.3 Discussion	29
7.0 REFERENCES	31
APPENDIX A. REPAIR VENDOR AIR AGENCY CERTIFICATES	۱-1
APPENDIX B. GENERAL INSPECTION DATA SHEETS I	
	C-1
LIST OF TABLES	
Table 2.1 C/KC-135 W/WS Part Numbers	33
Table 2.2 C/KC-135 Program W/WS	
Table 2.3 C/KC-135 #1 and #4 W/WS Dimensions	36
	37
Table 3.2 C/KC-135 Repaired and Not Repaired #4 W/WS in the Test Program	38
Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements	
Test Results	39
Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements	
Test Results	41
	43

LIST OF TABLES (Continued)

Table 4.4 C/KC-135 #4 W/WS Basic Electrical Measurements Test Results	44
Table 4.5 C/KC-135 #1 W/WS Heater Operation Test Results	45
Table 4.6 C/KC-135 #4 W/WS Heater Operation Test Results	
Table 4.7 C/KC-135 #1 W/WS Optical Performance Test Results	
Table 4.8 C/KC-135 #4 W/WS Optical Performance Test Results	48
Table 4.9 C/KC-135 #1 W/WS Pressure Integrity Test Results	
Table 4.10 C/KC-135 #4 W/WS Pressure Integrity Test Results	50
Table 4.11 C/KC-135 #1 W/WS Residual Strength Ball Drop Test Results	51
Table 4.12 C/KC-135 #4 W/WS Residual Strength Ball Drop Test Results	52
Table 4.13 C/KC-135 #1 W/WS Bird Impact Test Results	
Table 4.14 C/KC-135 #4 W/WS Bird Impact Test Results	54
Table 4.15 C/KC-135 W/WS General Inspection Summary	55
Table 4.16 C/KC-135 W/WS Pressure Integrity Test Summary	56
Table 4.17 C/KC-135 W/WS Ball Drop Residual Strength Test Summary	56
Table 4.18 C/KC-135 W/WS Bird Impact Test Summary	57
Table 4.19 C/KC-135 #1 W/WS Mounting Edge Measurements and Bird Impact	
Test Results	58
Table 5.1 Initial C/KC-135 W/WS Repair Estimates	
Table 5.2 C/KC-135 #1 W/WS Actual Repair Costs	
Table 5.3 C/KC-135 #4 W/WS Actual Repair Costs	61
Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS	62
Table 5.5 C/KC-135 New W/WS Costs	65
Table 5.6 Repair Cost Comparison Data for C/KC-135 W/WS	65
LIST OF FIGURES	
LIST OF FIGURES	
Figure 2.1 C/KC-135 W/WS Identification	66
Figure 2.2 C/KC-135 W/WS Construction	67
Figure 2.3 W/WS Construction Showing Location of Slip Planes	
Figure 2.4 C/KC-135 #1 W/WS Cross-Section	
Figure 2.5 C/KC-135 #4 W/WS Cross-Section	
Figure 3.1 The Glass Doctor Patented Technique for Repair of Conical Cracks in	
Laminated Glass, U.S. Patent # 3,841,932	71
Figure 3.2 The Glass Doctor Patented Technique for Repair of Delaminations,	
U.S. Patent # 4,780,162	72
Figure 4.1 C/KC-135 #1 W/WS Thermal Images From the Heater Test	73
Figure 4.2 C/KC-135 #4 W/WS Thermal Images From the Heater Test	74
Figure 4.3 Worst Optical Distortion Found in Any C/KC-135 #1 W/WS	
(S/N 83-H-11-7-432)	75
· ·	

LIST OF FIGURES (Continued)

Figure 4.4	Worst Optical Distortion Found in Any C/KC-135 #4 W/WS	
_		76
Figure 4.5	Pressure Integrity Testing Facility	77
Figure 4.6	C/KC-135 #1 W/WS Pressure Integrity Mounting Frame	78
	C/KC-135 #4 W/WS Pressure Integrity Mounting Frame	79
Figure 4.8	C/KC-135 W/WS Mounting Details	80
Figure 4.9	Typical C/KC-135 #1 W/WS Pressure Integrity Test Set Up	81
Figure 4.10	Typical C/KC-135 #4 W/WS Pressure Integrity Test Set Up	82
Figure 4.11	Worst Delamination Observed in a C/KC-135 #1 W/WS From Pressure	
Cyclin	g (Repaired W/WS, S/N 82-H-09-06-537)	83
Figure 4.12	Worst Delamination Observed in a C/KC-135 #4 W/WS From Pressure	
Cyclin	g (Repaired W/WS, S/N 5-H-12-16-47)	84
Figure 4.13	Trestant Dateing at a training at a second	85
Figure 4.14	#1 W/WS Residual Strength Falling Ball Impact Test Showing Test	
Set Up	and Consequences of Two Ball Drops (New W/WS, S/N 86-H-10-06-062)	86
Figure 4.15	#1 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repair	red and Subsequently Delaminated W/WS, Single Ball Drop, Outboard	
View ((S/N 82-H-9-6-537)	87
Figure 4.16	#1 W/WS Residual Strength Falling Ball Impact Test Result for a	
	ed and Subsequently Delaminated W/WS, Single Ball Drop, Inboard	
	(5/14 02-11-5 0 557)	88
Figure 4.17	#4 W/WS Residual Strength Falling Ball Impact Test Showing Test	
Set Up	Mile Test Researce (11011 111 115) Size >= 000 ==00 115	89
Figure 4.18	#4 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repair	ed and Subsequently Delaminated W/WS, Outboard View	
(S/N 5		90
Figure 4.19	#4 W/WS Residual Strength Falling Ball Impact Test Result for a	
Repair	red and Subsequently Delaminated W/WS, Inboard View	^4
(S/N 5	(=11=12=1V==1)	91
Figure 4.20	C/IC 155 // T TT TT DIE ZEPEST III S	92
Figure 4.21	C/IC 195 // 1 11/ 118 Bird Milputs 1120	93
Figure 4.22	C/IIC IDD //I T/T/T/D I/ID III	94
Figure 4.23	Schematic of the PPG Bird Cannon	90 07
Figure 4.24	Dupport Franc Open for Dira ampage a comme	96
Figure 4.25	Typical Pre-Test View of C/KC-135 #1 W/WS (Copilot) Prior to	97
Bird Ir		91
Figure 4.26	Typical Pre-Test View of C/KC-135 #4 W/WS (Pilot) Prior to	ΛC
Bird Ir	mirati i Count	98
Figure 4.27	Bird Impact Test Set Up Showing Impact Velocity Timing Trap (Right)	99
and Fr	Olit High Opecu I iiii Cuincia Equipiatelle (Collect)	
Figure 4.28	Bird Impact Spall Sheet Viewed From Behind a C/KC-135 #1 W/WS	00

LIST OF FIGURES (Continued)

Figure 4.29 C/KC-135 #1 W/WS Showing No Damage From a 4-Pound Bird Impact	t
at 250.8 Knots (Repaired W/WS, S/N 89-286-HO-697)	101
Figure 4.30 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 251.7 Knots, Front View (New W/WS, S/N 86-H-10-06-007)	102
Figure 4.31 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 251.7 Knots, Rear View (New W/WS, S/N 86-H-10-06-007)	103
Figure 4.32 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound	
Bird Impact at 249.4 Knots, Front View (Repaired W/WS, S/N 82-H-10-18-107)	7) 104
Figure 4.33 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound	
Bird Impact at 249.4 Knots, Rear View (Repaired W/WS, S/N 82-H-10-18-107)) 105
Figure 4.34 Spall Sheet Condition From a 4-Pound Bird Impact at 249.4 Knots on	
a C/KC-135 #1 W/WS With All Glass Plies Failed (Repaired W/WS,	
S/N 82-H-10-18-107)	106
Figure 4.35 C/KC-135 #4 W/WS Showing No Damage From a 4-Pound Bird Impact	
at 248.7 Knots (Not Repaired W/WS, S/N 4-H-10-9-69)	107
Figure 4.36 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 247.5 Knots, Front View (Repaired W/WS, S/N B75-1149)	108
Figure 4.37 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound	
Bird Impact at 247.5 Knots, Rear View (Repaired W/WS, S/N B75-1149)	109
Figure 4.38 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure	
From a 4-Pound Bird Impact at 250.8 Knots, Front View (Not Repaired W/WS	
S/N 7-H-2-4-35)	110
Figure 4.39 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure	
From a 4-Pound Bird Impact at 250.8 Knots, Rear View (Not Repaired W/WS,	
S/N 7-H-2-4-35)	111
Figure 4.40 Spall Sheet and W/WS Condition From a Catastrophic 4-Pound Bird	
Impact at 250.8 Knots on a C/KC-135 #4 W/WS (Not Repaired W/WS,	
S/N 7-H-2-4-35)	112
Figure 6.1 Heat Strengthened Glass Residual Stresses	113

SUMMARY

The Air Force, in trying to reduce fleet maintenance costs, is considering using repaired windows/windshields (W/WS). Based on reported cost savings and favorable experience that commercial fleets have had with repaired W/WS, the use of repaired W/WS seems very attractive. Before adopting an operating policy to use repaired W/WS, however, the Air Force decided that structural performance testing of repaired W/WS and a cost analysis were required.

The approach followed for evaluating whether the use of repaired W/WS is justified was to procure some used C/KC-135 W/WS, make repairs on them, and then subject the repaired W/WS to a series of tests to determine the difference in performance when compared with new W/WS. The cost to make the repairs provides the data for the cost benefit analysis. The test results provide the data for an evaluation of fitness for purpose of repaired W/WS.

The testing conducted for this program represents the first full-range, systematic testing of the structural integrity of repaired W/WS for transport-type aircraft. Optical and electrical properties, pressure integrity, and bird impact resistance have been evaluated. In addition, the bird impact test results are the first data that the Air Force has collected for C/KC-135 W/WS.

The test results indicate that repaired W/WS have been restored to a condition better than the prevailing C/KC-135 Technical Order replacement criteria, but they do not perform as well as new W/WS. Many of the repaired W/WS still contain defects that would not pass an OEM quality assurance inspection. Some delamination occurred in a few of the repaired W/WS during pressure cycling, but it was not severe. The residual strength of the pressure cycled W/WS tends to suggest that the repaired W/WS are not quite as good as new W/WS. The bird impact test results are quite clear - new W/WS outperform either repaired or unrepaired W/WS. At the 250 knot impact velocity used in this program, all of the new and repaired #1 and #4 W/WS do, however, meet the no bird penetration requirement, while two of the repaired #1 W/WS technically failed the no spall criterion. From a practical viewpoint, the spall was very modest. One W/WS that was not repaired because of an out of specification heater resistance, failed catastrophically in the bird impact test.

Although repaired W/WS do not perform as well as new W/WS, they were, in fact, restored to a condition better than the prevailing C/KC-135 Technical Order W/WS replacement criteria. On the basis of the fact that they would not be removed from service if found on an aircraft, and the fact that they prevented bird penetration, repaired W/WS appear to be "good enough," at least at a 250 knot bird impact velocity.

The cost analysis indicates that savings may be realized. For this program, the cost of making the repairs was 75-percent of the new W/WS purchase price for #1 W/WS and 65-percent for the #4 W/WS. Considering all five of the C/KC-135 W/WS types and the full

range of estimates, quotes, and actual costs, repairing a C/KC-135 W/WS might cost as little as 41-percent of a new W/WS, but it could also cost as much as 132-percent.

The cost savings are only the direct repair costs. To this must be added the direct cost of transportation and the indirect costs of procuring the service (contracting), administrating it (accounts payable, records management, etc.) and operating it (storage, shipping and handling, outgoing/incoming inspection, etc.). Offsetting these items are a reduced burden, both economic and environmental, from lower landfill costs for W/WS that are taken out of service. These factors will certainly impact the economics and to ignore them would be a false economy. The Air Force should do a complete cost/benefit analysis to satisfy themselves that there is a true economic advantage to using repaired W/WS.

A significant peripheral finding from this study is that a blanket 10-year transport-type aircraft W/WS replacement policy cannot be justified, if W/WS manufacture date is used as the indicator of age. The new W/WS used in this program were manufactured in 1986, and they showed no evidence of degradation due to being in storage for 7 years. To remove and replace these W/WS in 1996, solely on the basis of age, would be wasting operating and maintenance dollars. A better scheme for tracking service history and a service-history-based replacement criterion must be devised for a blanket W/WS replacement policy.

Recommendations that can be made as a result of the work performed on this program are contingent upon the Air Force making a decision, based on the available data, that the performance of repaired W/WS is acceptable. If, in the opinion of the Air Force, the performance of repaired W/WS is deemed "good enough," recommendations are made for approved W/WS repair vendors and repair processes. Recommendations for operating a W/WS repair program are also made.

PREFACE

The work reported herein was performed by Battelle, Columbus, Ohio, under Air Force Contract FO9603-90-D-2217-SD02, "Development of Repair Processes and Sources for C/KC-135 and B-52 Aircraft Windows/Windshields." The program was directed by the Oklahoma City Air Logistics Center (OC-ALC) at Tinker Air Force Base. Air Force administrative direction was provided by Ms. Cindy Cooper, OC-ALC/LADCB. Air Force technical direction was provided by Mr. Robert Koger, OC-ALC/TIETR.

The work was performed during the period of September 1991 to January 1994. The technical program at Battelle was directed by Mr. Richard Olson of Battelle's Engineering Mechanics Department and Mr. Dennis Miller of Battelle's Polymer Center. The author wishes to acknowledge Mr. Herb Goodrich of PPG Industries, Inc. Aircraft Products Division in Huntsville, Alabama for coordinating and conducting the W/WS testing, and Mr. Ryan Rice at Battelle for preparation of the manuscript.

1.0 INTRODUCTION

1.1 Background

Several facilities exist for repairing aircraft windows/windshields (W/WS), and with U.S. Federal Aviation Authority (FAA) approval, many commercial airlines are currently utilizing these services. The cost of repairing a W/WS is substantially less than the purchase price of a new W/WS for commercial fleets, so the incentive for them to use repaired W/WS is large. The favorable experience that the commercial fleet has had with repaired W/WS suggests that they will continue to use repaired W/WS in the foreseeable future.

The U.S. Air Force has historically rejected the notion of using repaired W/WS. With decreasing Congressional funding for the military, measures to reduce fleet operating costs are receiving greater scrutiny. Based on the experience that the commercial fleet has had with repaired W/WS, the issue of using repaired W/WS on military aircraft is now being systematically considered. To ensure that repaired W/WS are safe and that they provide a similar cost savings benefit to the Air Force, a program of thorough evaluation and testing was required.

In September 1991, the Air Force contracted with Battelle to investigate the consequences and impact of using repaired W/WS. The program was to evaluate feasibility by testing the functional performance of repaired W/WS and by performing an economic analysis. Adequate functional performance and a favorable economic analysis would then provide the justification for a recommendation to use repaired W/WS.

The maintainability of Air Force fleet aircraft is an on-going concern because many of the aircraft in the current inventory are projected to have significant roles for many more years (10 to 20 years). By decreasing the lead time and procurement costs for W/WS, the maintainability of the fleet is enhanced. Furthermore, by gaining more control over the spare parts inventory, fewer new parts will be required and the costs of the W/WS program will be reduced.

1.2 Objective

The objective of this program was to provide a rationale for either accepting or rejecting the use of repaired W/WS in Air Force fleet aircraft.

1.3 Approach

The approach followed for evaluating whether use of repaired W/WS is a viable option for the Air Force was to procure some used W/WS, make prototypical repairs on them, and then subject the repaired W/WS to a battery of tests to see if there is any difference in performance when compared with new W/WS. Making prototypical repairs provides

baseline data for repair costs. The battery of tests provides an evaluation of fitness for purpose of the repaired W/WS.

The W/WS selected for evaluation in this program were from C/KC-135 aircraft. These W/WS are of typical laminated glass and plastic construction and include integral heaters. Repairs considered in this program included surface damage, delamination, electrical heater problems, broken layers, and seal/mounting problems. Repairs were subcontracted to commercial fleet W/WS repair stations with instructions to return repairable W/WS to Original Equipment Manufacturer (OEM) specifications per the approved processes in the repair vendor's FAA W/WS Air Agency Certificates. The direct costs for performing the repairs on the test prototypes forms the foundation of the economic analysis.

The approach to evaluating the functional performance of the repaired W/WS involved a rigorous set of tests designed to determine if the repair processes have degraded the W/WS when compared with new W/WS. Both repaired and new W/WS were subjected to pressure, impact, optical, and heater operation tests, similar in spirit to W/WS qualification tests. Provided that the repaired and new W/WS perform the same, the use of repaired W/WS can, at least on a performance basis, be justified.

1.4 Report Contents

In the sections that follow, the results of this $2\frac{1}{2}$ -year study are presented. The report begins with a discussion of the selection of repair candidate prototypes for the program and ends with recommendations for the Air Force on implementing a W/WS repair program. Topics presented include:

- C/KC-135 W/WS construction details
- Selection and condition of the W/WS repaired in this program
- A generic discussion of glass-laminate aircraft W/WS repairs, identification of the repair vendors that were involved with this program, and details of the actual repairs made to the W/WS
- Repaired W/WS performance evaluation, including test procedures, pass/fail criteria, and test results
- A cost analysis
- Conclusions and recommendations.

2.0 PROTOTYPE SELECTION

The C/KC-135 aircraft was selected as the prototype for evaluating the feasibility of using repaired W/WS because the number of aircraft in the fleet is fairly high, the C/KC-135 is projected to be in service for many more years, and because the repair vendors have direct experience repairing the essentially equivalent Boeing 707 W/WS. The C/KC-135 has 10 cockpit W/WS identified in Figure 2.1, 5 on the pilot side and 5 on the copilot side. The set of five W/WS on the copilot side are a mirror image of the pilot side W/WS. W/WS #1 is the forward W/WS, #2 and #3 are side W/WS, and #4 and #5 are eyebrow W/WS. All of the W/WS except #2 are fixed in position. W/WS #2 opens to provide ventilation and ground communication by sliding aft on a track. Table 2.1 lists the current part numbers for the C/KC-135 W/WS.

2.1 C/KC-135 W/WS

Figure 2.2 shows the general construction of the C/KC-135 W/WS. The C/KC-135 W/WS have a three-part glass and vinyl laminate construction. The inner layer is thick, heat-strengthened plate glass designed to withstand cabin pressure forces. A transparent, plasticized, polyvinyl butyral core layer acts as the "fail-safe" load carrying member and prevents shattering in the event of inner ply failure. The outer ply is a relatively thin layer of heat-strengthened glass with no structural significance, but it provides rigidity and a scratch-resistant surface. A phenolic or masonite filler strip, located around the edge of the W/WS, and a metal filler strip embedded in the vinyl provide the means to attach the W/WS to the airframe. Vinyl or vinyl and rubber bumpers protect the sides of the outer ply.

The structural integrity design of C/KC-135 cockpit W/WS is based on two requirements: "fail-safe" pressure integrity and bird impact resistance. The "fail-safe" pressure integrity is founded on two redundant systems, an inner glass ply that can sustain the full rated cabin pressure in the absence of all other layers, and a polymeric core ply that can maintain pressure integrity if the inner and outer glass plies are cracked. The bird impact structural integrity of W/WS is either characterized as "bird bagging" or "bird bounce." Bird bagging W/WS, typically two glass layers with a polymeric core ply, stop bird penetration by large ductile deformation of the core ply, i.e., "bagging" the bird. Bird bounce W/WS are typically multilaminates and cause the bird to "bounce" off the W/WS. The C/KC-135 W/WS main cockpit W/WS are "bird bagging" W/WS.

The glass used in C/KC-135 W/WS is heat strengthened to provide resistance to cracking. The glass is heated to near the softening point and then quenched to produce compressive residual stresses that extend from the outer surface into a depth of about 1/6th of the glass thickness. Below the compressive stress layer lies tensile residual stresses. As long as surface defects do not penetrate into the tensile layer, the glass will exhibit a high resistance to fracture. Once a crack does fully penetrate the tensile layer, the glass will shatter as the tensile stresses are relieved.

The vinyl core, which acts as the "fail-safe" pressure boundary and means for controlling glass fragments in the event of a glass ply failure, is highly plasticized polyvinyl butyral. The vinyl is relatively brittle at low temperatures (-65° F), and unable to absorb much energy per unit volume. At temperatures approaching 130° F, the vinyl becomes very ductile and can absorb a relatively large amount of energy as it is loaded. W/WS heaters, which not only de-fog and de-ice the glass, ensure that the vinyl remains ductile.

An integral part of the C/KC-135 W/WS construction is slip planes or a parting medium at the edges of the glass. A slip plane is located between both the inner glass ply and the vinyl and the outer glass ply and the vinyl as shown in Figure 2.3. The slip planes are thin strips of material at the glass-vinyl interface that keep the glass from bonding to the vinyl. This allows the various plys to move independently at these locations in response to pressure loads and differential thermal expansion. Without the slip planes, the glass at the edges of the W/WS would be prone to fracture because it would exceed its strain limit as it tried to move with the underlying vinyl. The slip planes form a "softer" connection that promotes a more gradual build up of strains in the glass so that it does not exceed its strain capacity. Although the slip planes look similar to delamination, they are not defects but an intentional part of the W/WS design.

The C/KC-135 cockpit W/WS contain heating systems for anti-icing and/or anti-fogging. An electrically conductive film of pyrolytic tin oxide between the outer ply and vinyl core ply is used to heat the #1 and #2 W/WS to reduce ice/frost formation. A similar conductive film between the inner ply and core ply is used on #3, #4, and #5 W/WS for defogging only. The W/WS heating system, so called NESA® coated glass, uses the resistivity of the film to provide the heating. The #1 W/WS also contain fine wires at the W/WS edges between the outer glass ply and vinyl, so-called edge heaters, to correct a heating power deficiency in the corner. The temperature of the #1 and #2 W/WS is controlled with an integral sensor. Externally applied thermal switches control the temperature of #3, #4, and #5 W/WS.

A temperature sensor embedded in the laminate of the #1 W/WS regulates the temperature of the #1 and #2 W/WS when the heater is on. The sensor, a negative temperature coefficient (NTC) thermistor, exhibits increasing resistance with increasing temperature. When wired in an appropriate power amplifier control circuit, as the W/WS and sensor temperature rises, the sensor resistance increases. This causes the control amplifier to shut off current to the W/WS, and hence power dissipated by the heater film, thus reducing the temperature. When the temperature drops below a lower setpoint, the control amplifier turns power back on to the W/WS.

Seals on the W/WS keep cabin pressure in and moisture out. In addition, they act as vibration and shock absorbers and help to compensate for differential thermal expansion. W/WS #3, #4, and #5 utilize a silicone rubber molded-in-place pressure seal that is molded to the W/WS mounting surface. Drawing the W/WS tight to the airframe with its mounting bolts effects the seal. On the #2 W/WS, a bellcrank mechanism presses the W/WS against the airframe when it is closed and latched. The #1 W/WS uses a molded-in-place seal similar the other W/WS, except that a stainless steel Z-channel is sandwiched between a

silicon rubber cushion and a beaded pressure seal. The mounting bolts provide the pressure to hold the W/WS tight against the airframe. All of the C/KC-135 W/WS mount from the inside of the aircraft.

2.2 Program Prototypes

OC-ALC made arrangements to have C/KC-135 W/WS that were removed from fleet aircraft at Tinker AFB shipped to Battelle. Over 100 W/WS were screened to find 75 prototype repair candidates. All five C/KC-135 W/WS types were included in the 75 W/WS population. At the time of their removal, the W/WS were judged not serviceable per the criteria of the applicable C/KC-135 Fuselage Window Tech Order, Section 8 of T.O. 1C-135(K)A-2-2. Indicated reasons for removal from service included: failed heaters, bubbles, scratches, separation, leaks, old, discolored, and corrosion.

The service history of the prototype repair candidates is not known because: 1) very few of the W/WS had airframe numbers, 2) W/WS are not tracked by serial number, and 3) planes are moved from location to location as a part of normal squadron rotation. In most instances, the date of removal from service was not noted. The installation date is not known for any of the W/WS. All that is known for certain is the year the W/WS was made; the first one or two digits of the serial number indicate the year the W/WS was made - a single digit is a 1970's vintage W/WS.

Table 2.2 lists the type, serial number, and condition of the 75 C/KC-135 repair candidates. W/WS that have serial numbers that begin with numbers were made by PPG, while those that start with letters were made by Libbey-Owens-Ford.

At the outset of the program, the plan was to repair and test some of each of the five different C/KC-135 W/WS. A large number of the repair prototype candidate W/WS, however, were judged not repairable by virtue of out-of-specification or open circuit heaters. In conjunction with OC-ALC, the decision was made to proceed with repairing and testing only #1 and #4 W/WS. Although other repair candidates could have been obtained, it was felt that the program objectives could be adequately met if only two of the five W/WS types were evaluated. The #1 and #4 W/WS were selected because they have construction (and consequently repairs) that is typical of all of the C/KC-135 W/WS, there was enough W/WS in the population to conduct all of the tests in the test matrix, and the #1 and #4 W/WS are the only reasonable bird impact test candidates.

2.3 C/KC-135 #1 and #4 W/WS

Table 2.3 lists the general dimensions for the #1 and #4 W/WS. The #1 W/WS is a flat, nearly rectangular W/WS. The #4 W/WS, on the other hand, is roughly square in the plan view and has curvature (approximately 0.65 inches out of plane across the largest diagonal in the viewing area). The general construction was noted in Section 2.1. Figures 2.4 and 2.5 show detailed cross-sections of the #1 and #4 W/WS.

In general, because the #1 W/WS is flat, it is one of the easiest W/WS to manufacture and repair. Being flat, the optics of #1 W/WS are very good. The curvature on the #4 W/WS tends to result in some degree of optical distortion, and the curvature makes it somewhat more difficult than a #1 to repair, in spite of its small size.

3.0 W/WS REPAIRS

3.1 Aircraft W/WS Damage

The most common failure modes of laminated transparencies are:

- Delamination: separation of vinyl from the glass
- Cracks and chipping: glass breakage due to high stress
- Arcing: unbalanced electrical potential within the conductive coating
- Heater Failure: loss of continuity in the heater or heater sensor circuit
- Impaired Vision: surface scratches, contaminates, or internal defects
- Contamination: air or water leaks caused by defective seals
- Vinyl cracking.

Delamination is separation of the glass surface of the inner or outer ply from the vinyl core ply to which it is bonded. Delamination generally starts at the slip planes and moves inward, although it may occur anywhere in the W/WS. It mainly occurs between the outer ply and the vinyl ply. Delamination does not dramatically reduce the strength of the W/WS, but may interfere with vision or W/WS heating if the delamination occurs at the interface where the heating film is located.

Cracks and chips may occur in either of the glass plys and may be caused by impacts or by high stresses at the edges of the glass. Single cracks in the outer ply are unlikely because the temper in this layer precludes a single crack. After the momentary appearance of a crack in the outer layer, the entire layer shatters very abruptly. Small cracks very near the edges of the W/WS may not be cause for removal, provided the crack is not directed toward the center of the pane. Cracks that adversely affect the functioning of the heater would not be acceptable. Chips may occur internally or externally. Internal chips are caused by the glass-vinyl bond strength exceeding the strength of the glass. External chips are generally caused by impacts. Chips usually have a clamshell shape, are rough, and white powdered glass is often in evidence. Chips are detrimental to the strength of the pane.

W/WS busbar breakdown and faults in the heater film cause arcing. Basically, the insulation breaks down and the heater electrical current short circuits to the airframe. Arcing is evidenced by burned areas around electrical braid and along the busbar.

The failure of the W/WS heater to de-ice or defog satisfactorily is one of the most serious failure modes. Arcing, chips, cracks, or lack of continuity in the heater film that render the heater inoperative are cause for W/WS replacement. Uneven heating or hot spots caused by delamination at the glass-vinyl interface with the heating film or chips may also be a cause for removal.

Satisfactory optical properties of the W/WS are paramount. Foggy or cloudy areas may appear in areas where moisture has penetrated the vinyl and has begun to degrade it. Scratches may occur on both the inner and outer plys that may interfere with visibility. Likewise, delamination may become serious enough to warrant replacement of the W/WS on the basis of reduced visibility. Bubbles may occur in the vinyl core ply in W/WS that have been exposed to elevated temperatures. Bubbles are caused by gas liberated from the vinyl, and grow in size and number with increased temperature or longer exposures. Needless operation of the heaters on the ground is a prime cause of bubbles. Bubbles do not have a large effect on strength of the W/WS, but may become serious enough to impair visibility. Although other failure modes may not be evident, poor optical performance is always a sufficient cause for W/WS replacement.

The bumpers on the edge of the outer glass form a moisture barrier. Degradation of the bumper in the form of cracking or separation from the edge of the outer glass ply can allow moisture and air to get into the slip planes. Moisture can degrade the heater film with consequent initiation of heater failure, arcing, delamination, and contamination.

As a result of aging, cracks may occur in the vinyl. Over time, attack by ultraviolet radiation and high temperatures also causes the vinyl to lose ductility. Eventually, cracks may form around the periphery of the W/WS in proximity to the metal insert as the glass and vinyl try to move relative to one another. Vinyl cracks significantly weaken the structure of the W/WS by putting flaws directly in the load path between the transparency and the airframe for bird impact loads. Per Figures 2.4 and 2.5, only the vinyl extends out to the mounting holes, not the glass. Therefore, if the vinyl is cracked near the metal insert, the W/WS could just "punch out" of the frame into the cabin. The vinyl layer is also the pressure "fail-safe" layer, so vinyl cracks are quite important.

In addition to cracking, the vinyl layer may discolor or darken if it is subjected to temperature in excess of 225 F. Foreign substances in the glass-vinyl interface, either from in-service conditions or introduced as a part of a repair process, may also cause discoloration.

3.2 Repair Vendors

3.2.1 NORDAM Transparency Division

NORDAM Transparency Division is one of the world's largest, privately-held, FAA-approved transparency repair stations. They provide comprehensive overhaul capabilities on glass and acrylic W/WS. Located in Tulsa, Oklahoma, NORDAM has more than 15 years experience in the repair and overhaul of aircraft W/WS.

Repairs that NORDAM is authorized to make include relaminating, surface polishing, and seal rehabilitation. Autoclave curing of delamination, bubbles, voids and interlayer vinyl cracking is done with the same laminating cycles, times and methods utilized in the original manufacture of the W/WS. Polishing includes removal of scratches, chips and pits from the outer glass or acrylic plies. Original optimum optics are restored with the least amount of surface removal, in accordance with strict adherence to OEM manual limits for removal. Seal rehabilitation includes cleaning, repairing, or replacing of seals as required. NORDAM is authorized by the FAA under Air Agency Certificate EZ22812K to make the W/WS repairs. Appendix A has a copy of the certificate.

In addition to their W/WS repair business, NORDAM also manufactures W/WS, cockpit side panels, canopies, cabin windows, wing tip lenses and landing light covers for commercial, regional, military, helicopter, and general aviation aircraft. Products made from stretched and cast acrylic, polycarbonate, and glass are made in either monolithic or laminated configurations.

3.2.2 Perkins Aircraft Services, Inc.

Perkins Aircraft Services, Inc. specializes in the overhaul and repair of both monolithic and laminated aircraft transparencies made of glass or acrylic. Located in Ft. Worth, Texas, Perkins is an FAA-approved repair facility authorized to make in-plant and "on the aircraft" repairs.

A five-step process is used by Perkins to restore damaged W/WS to an FAA-serviceable condition. First, all incoming W/WS are given a thorough inspection to determine whether the W/WS can be repaired. W/WS with out-of-specification electrical systems or that are otherwise judged unrepairable are rejected and returned. The second step of the process is repair of delamination. Using a proprietary autoclave process, the W/WS are heated and pressed to rebond the W/WS layers. Polishing, the third step in the W/WS repair process, is done to remove scratches, chips, and in the case of plastic W/WS, crazing, using automated polishing machines. The fourth step is reassembly. In this step, the transparencies are matched up to their original frames, as applicable, and seals and gaskets are replaced. The final step in Perkins' W/WS repair process is to perform a quality assurance inspection to ensure that all of the necessary repairs have been made and that the

W/WS has been restored to OEM specifications. Perkins holds FAA Air Agency Certificate JKQR257L, see Appendix A, which authorizes them to operate their W/WS repair station.

3.2.3 The Glass Doctor

The Glass Doctor of St. Petersburg, Florida got into the aircraft transparency repair business in 1979 after working in the automobile windshield repair business for 10 years. Starting with cabin window repairs, the business has expanded to also include FAA-approved repair of all cockpit W/WS as well as cabin windows.

The Glass Doctor has developed special techniques for repairing chips, nicks, and delaminations in W/WS. Unlike the other aircraft W/WS repair vendors, The Glass Doctor does not rely solely upon polishing and re-autoclaving of the W/WS to effect the repairs. As described in U.S. patents #3,841,932, #3,914,145, and #4,780,162, The Glass Doctor repairs conical cracks by filling the crack with a polymerizable resin that is vibrated into place by motion of the conical plug, see Figure 3.1. Delamination repairs are made by injecting an adhesive between the delaminated plys per Figure 3.2. Polishing for scratch and distortion removal is also done. Using experience gained from their delamination repair techniques, The Glass Doctor has also developed the unique capability to replace failed W/WS heater sensors and can repair open or arcing busbars. Failed heater sensors are replaced by drilling into the vinyl and potting a new sensor in the hole. Open or arcing busbars are repaired by injecting a conductive adhesive material at the glass-vinyl interface where the busbar defect is located. Although there is some controversy in the aircraft W/WS repair industry associated with the repairs that The Glass Doctor makes, repairs are under warranty for up to 3 years (scratches excluded), and the reported rate of warranty work is very low.

The Glass Doctor operates its W/WS repair station under FAA Air Agency Certificate OX4R430M. A copy of The Glass Doctor's certificate is attached in Appendix A.

3.3 Repair Details

Some of the damage described in Section 3.1 can be repaired. To test the capabilities of the repair vendors to return W/WS to a serviceable condition, contacts at the three repair vendors were established to solicit their interest in participating in this program. Participation in the program was on a paid basis, with the stipulation that the Air Force, through Battelle, had to know something about the repair processes for quality control reasons. In particular, if the repair processes deviate from the processes used in the original manufacture of the W/WS, the Air Force felt that they needed a specification to ensure that they get the same product each time they buy.

In making arrangements for the repairs, Battelle was to sign confidential disclosure agreements with the repair vendors that would prohibit Battelle from disclosing trade secrets and process details. From their advertising literature, it is clear that the W/WS repair

processes used by NORDAM and Perkins are consistent with the original manufacture of the W/WS. The repairs made by The Glass Doctor, on the other hand, because they involve injection of adhesives and resins into the W/WS, are different than the OEM processes.

Terms and conditions for a site visit and repair of a number of W/WS were successfully negotiated only with NORDAM and Perkins. Thus, only NORDAM and Perkins made W/WS repairs for this program.

The set of 75 C/KC-135 W/WS Battelle had to work with was divided, and half sent to NORDAM and half sent to Perkins. Each vendor evaluated the repairability of the W/WS that they were sent and provided an estimate of the repair costs for each W/WS. In conjunction with Battelle engineers, a subset of the 75 W/WS was selected for repair. Perkins repaired 7 #1 W/WS and 2 #4 W/WS. NORDAM repaired 8 #1's and 8 #4's.

Tables 3.1 and 3.2 provide details of the prototype repairs made to the #1 and #4 W/WS that were subsequently tested. To fill out the test matrix, unrepaired W/WS were included in the test program, one #1 and six #4's. The original intent was to have a balanced number of repairs from each vendor and a balance in the types of repairs made. Unfortunately, it did not work out this way, because Perkins got a disproportionately large number of unrepairable W/WS. Because the performance of unrepaired W/WS provides a baseline for as-removed condition, including them in the test matrix was essential.

4.0 PERFORMANCE TESTING

4.1 Test Philosophy

The fitness for purpose of the repaired C/KC-135 W/WS was evaluated using a rigorous test program. In formulating the test program, the plan was to select a set of tests that would assess the critical performance elements of the W/WS: general electrical/optical/mechanical characteristics, pressure integrity, residual strength, and impact resistance. Performing these types of tests at limiting load or operational conditions, failures would be encouraged in repaired W/WS that would not occur in new W/WS unless the repaired W/WS were degraded either by virtue of their age or by virtue of having undergone the repair process.

The test plan was developed as a joint effort between Battelle, OC-ALC, and the Flight Dynamics Laboratory at Wright-Patterson AFB. Because the Air Force does not own the Boeing 707 airframe design on which the C/KC-135 is based, they do not have W/WS drawings and the W/WS design specifications or W/WS vendor qualification test protocols. Consequently, the test plan was developed from the C/KC-135 Tech Orders and the open literature on W/WS testing. [1-10]

In order to assess whether the performance of the repaired W/WS is satisfactory, a standard for comparison must be defined. Obviously, the performance of new W/WS should be the basis for the comparison. Simply stated, the repaired W/WS should perform just like new W/WS. In an ideal situation, information for new W/WS would be available to define the required tests for the repaired W/WS and the existing new W/WS data would form the basis for the comparisons. The information available from Boeing and OC-ALC suggested that data on prior C/KC-135 W/WS testing was sparse or very difficult to retrieve, so the scope of the testing program had to include tests of new W/WS to generate the baseline new W/WS performance data. In addition, because of uncertainty in setting some of the parameter selections for the tests (load levels, primarily), the test program included a methodology phase verification to establish that the new W/WS would pass the tests. Although testing of new W/WS was primarily a response to the lack of readily available new W/WS test data, it does facilitate the process of making the comparisons because both new and repaired W/WS were tested under absolutely identical conditions.

The new W/WS used in this program were supplied by OC-ALC from stock at Tinker AFB. The new #1's were copilot side W/WS. All of the other W/WS in the program were from the pilot side. Copilot side #1 W/WS were used because the stock of these W/WS was higher. The pilot and copilot side W/WS are mirror images of one another, so they should perform identically.

The test program was originally to be conducted at OC-ALC or other Air Force test facilities, with Battelle providing oversight and test data analysis. After the test program was defined, an attempt was made to locate Air Force facilities to perform the prescribed tests. The test plan required facilities for general W/WS optical/electrical/mechanical inspection, pressure and thermal cycling, and bird impact testing. Although portions of the testing could be performed at various Air Force facilities, no single site had all of the capabilities, and in many cases, substantial modifications or upgrades would be required to accommodate the specific needs of this program at sites where portions of the work could be done. In addition, quoted costs at the Air Force facilities were quite high. To fulfill the testing requirement, therefore, an outside vendor, PPG Industries, Inc. Aircraft Products Division was subcontracted to do all of the C/KC-135 W/WS testing.

PPG's Aircraft Products Division, located in Huntsville, Alabama, has been in the aircraft transparency business since 1926 and is an OEM supplier for C/KC-135 W/WS as well as other Boeing 777 series aircraft. The Huntsville plant is America's largest and most modern facility for producing aircraft transparencies. It fabricates W/WS with heat strengthened and chemically tempered glasses, as-cast and stretched acrylics, and polycarbonates for commercial, military, and general aviation aircraft. As a leader in the field of aircraft transparency technology, PPG has built an impressive W/WS qualification testing facility. The facility includes bird impact testing, environmental testing, high strain rate material evaluation, dynamic deflection analysis with high speed photography, dynamic stress analysis with strain gages, and ballistic testing for transparent armor. In performing the tests for this program, PPG used the same test fixtures, test procedures, and QA

requirements in use today to make new OEM W/WS for C/KC-135's. These capabilities at a single site, coupled with their intimate knowledge of the C/KC-135 W/WS and the functionally equivalent Boeing 777 series products, proved valuable to this program.

4.2 Quality Assurance

The testing conducted at PPG was performed in accordance with specifications defined in contract deliverable Data Item A046 to OC-ALC entitled "Final Master Test Plan/Program Test Plan on Development of Repair Processes and Sources for C/KC-135 Aircraft Windows/Windshields." This document was submitted to PPG as "Program Test Plan on Testing of Repaired C/KC-135 Aircraft Windows/Windshields" for preparation of their proposal bid. The corresponding PPG document, "Verification Test Procedure on C/KC-135 Aircraft Repaired Transparencies #1, #4, and #5 Windows, Revision A," was reviewed and approved by Battelle and defined the detailed scope of work.

PPG is an OEM supplier for C/KC-135 W/WS and consequently, they have a vested interest in selling new W/WS. Because using repaired W/WS would reduce sales of new W/WS, PPG could be perceived as having an inherent bias against repaired W/WS which might be reflected in the test results. PPG offered, and Battelle frequently exercised, the option to witness the tests. No indication was ever detected that they were attempting to influence the outcome of the tests. Their work was always done to the highest of professional standards. Fixture fabrication, minor deviations from the prescribed test procedures to accommodate instrumentation problems, etc., were all done with Battelle's concurrence. Suggestions that Battelle made to enhance the value of the test program were willingly implemented. Their final report is presented as a factual record of their observations and does not attempt to bias the conclusions of this report.

All instrumentation used in the conduct of this program was calibrated in accordance with PPG Quality Control procedures which guarantees that all significant instrumentation was in calibration when used and that adequate records are kept to document such calibrations.

4.3 General Inspection

4.3.1 Test Procedures

General electrical/optical/mechanical testing of repaired W/WS was performed to ensure that the W/WS is in specification electrically, that the repair operations have not adversely affected optical qualities, and that the fit and finish is correct. All of the W/WS tested in this program were initially given a thorough 14-item inspection by the PPG Quality Control Department. The inspection included:

- 1) Locating and recording the customer part number
- 2) Locating and recording the W/WS serial number
- 3) General visual inspection
- 4) Gasket/seal evaluation
- 5) Thickness measurements at prescribed locations
- 6) Physical tolerance check
- 7) Bus-to-bus resistance
- 8) Sensing element resistance
- 9) Electrical insulation integrity test
- 10) Heater operation test
- 11) Heating film scratch test
- 12) Luminous transmittance and haze measurement
- 13) Optical deviation measurement
- 14) Optical distortion photograph.

With little exception, the indication of which W/WS were new, repaired, or unrepaired was difficult to determine from a superficial visual examination. Only a detailed technical examination, equivalent to an OEM post-production quality control check, was able to uncover differences between the W/WS.

4.3.1.1 General Visual Examination

A visual examination was performed on each W/WS to assess its general condition. During this inspection, the part number and serial number were located and recorded, the W/WS was checked for delaminations and vinyl cracks, and the condition of the seal was evaluated. Criteria for the various aspects of the visual examination were based on PPG experience as an OEM for these W/WS. A rating of accept or reject was employed.

4.3.1.2 W/WS Dimensional Measurements

The repair of delaminations involves re-autoclaving of the W/WS to rebond the vinyl inner layer to the glass. Because the vinyl layer is pressed at an elevated temperature and consequently may flow, the overall thickness of the W/WS may be reduced and the location of power/sensor terminals and bolt holes may shift. To determine if the repair processes cause such changes, some dimensional measurements of the W/WS were made.

To assess the extent of thickness reduction caused by re-autoclaving, total thickness of the W/WS was measured at selected locations. For the #1 W/WS, a 12-point grid was used, while a 2 by 2 grid was used for #4 W/WS. Measurements were made to the nearest 0.001 inch using a micrometer.

The physical tolerance check was made to see if critical dimensions, including proper fit dimensions, location of electrical connections, and bolt hole locations, had been changed by the repairs. Each W/WS was checked using check fixtures used in the original manufacture of these W/WS. An overall dimensional trim check was requested, but the OEM check tool was designed to be used prior to application of the edge coating material. Removal of the edge coating to make the measurements did not seem justified, in light of the fact that part of the repair process entails replacement of the edge coating, so the overall dimensional trim measurement was abandoned. A go-no go rating was used for the check fixture tests that could be made.

4.3.1.3 Basic Electrical Measurements

Electrical resistance measurements were made using the standard electrical resistance measurement function on Fluke digital multimeters to determine if the heaters and sensors were within acceptable tolerances. Both bus-to-bus resistance and sensor resistance (#1 W/WS only) were measured. From the Boeing overhaul manual, the bus-to-bus resistance should be 31-58 ohms for the #1 W/WS and 60-100 ohms for #4 W/WS. Sensor resistance for #1 W/WS is temperature dependent, and should be 305 to 320 ohms at 70° F. The #4 W/WS does not have an integral sensor.

Electrical insulation integrity was checked using a Hipotronics 300 Series Hipot and Megohmmeter at 2500 volts A.C. On #1 W/WS, insulation integrity was checked between the power bus and the sensor element, sensor element and the metal frame retainers, and from sensor element to sensor element. On #4 W/WS, the integrity was checked between the power bus and the metal frame retainers. Only a pass or fail rating is considered.

4.3.1.4 Heater Operation Tests

Sensor operation and heating uniformity were evaluated by infrared imaging. In this test, the W/WS was powered with 60 Hertz power at a voltage appropriate to the W/WS heater resistance. During the power up, the ability of the W/WS sensor to regulate the

temperature was established. When thermal equilibrium was attained, an infrared imaging system was used to make a photograph of the thermal contours on the glass.

To supplement the thermal imaging heater test, a scratch test of the heater film was performed. In this test, the heater is powered up (350 volts A.C. for #1 W/WS, 81 volts A.C. for #4 W/WS) and the W/WS is viewed using polarized light. Although the vinyl core ply of the W/WS is birefringent, scratches in the heater film show up dramatically as blackgray starbursts. A pass-fail rating on the scratch test is given.

4.3.1.5 Optical Performance

The optical performance of each W/WS was assessed in three ways; a haze and luminous transmittance test, an optical deviation measurement, and an optical distortion test.

Haze and luminous transmittance measurements were performed in accordance with ASTM D-1003-92, "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics." The luminous transmittance test measures how transparent a body is, and is the ratio of the light transmitted through a body to the light incident upon it. The haze test measures the cloudy appearance of an otherwise transparent specimen caused by light scattered from within the specimen or from its surfaces. Haze and luminous transmittance measurements will detect whether the repair processes have adversely affected the clarity and/or coloring of the vinyl and whether the glass surfaces have been adequately polished. The haze and luminous transmittance measurements were made using a Pacific Scientific XL-211 Hazegard System hazemeter at the center of each W/WS. Per Mil-G-25871B (Military Specification: Glass, Monolithic, Aircraft Glazing) Paragraph 3.7, the original luminous transmittance should be greater than 72 percent and 78.4 percent for #1 and #4 W/WS, respectively. The original haze of a transparency greater than 0.62 inches thick should be less than 2.5 percent, per Mil-G-25871B Paragraph 3.9.

Optical deviation measures the flatness of a transparency. In the case of a repaired W/WS, grinding, polishing, and/or uneven pressing to remove delaminations may cause the front and back surfaces of the W/WS to deviate from a parallel condition, causing images to be deformed. PPG's "German Light," measures the flatness of a transparency using the distance between the front surface reflection of a normally directed beam of light and the light reflected from the back surface of the transparency to calculate the angular deviation from parallel. Measurements are given in terms of minutes of angular arc.

Optical deviation was measured using MIL-G-25871B Paragraph 4.4.6.2.1 as a reference at 8 locations on #1 W/WS and at 4 locations on #4 W/WS. The measurement locations were principally around the edges of the W/WS where deviation is expected to be most severe in a relaminated W/WS. Deviations under 4.5 arc minutes are considered acceptable anywhere 2 inches in from the forward edge, top and inboard edges and 4 inches in from the aft edge on #1 W/WS. Deviations of up to 9 arc minutes are acceptable in the

#1 W/WS edges. Deviation for the #4 W/WS is much less stringent than for #1 W/WS, 18 arc minutes anywhere 2 inches in from the edges.

Optical distortion was assessed using MIL-G-25871B Paragraph 4.4.6.3 as a reference. The distortion was determined by a single-exposure photograph of a grid viewed through the W/WS. Photographs were made with the W/WS parallel to the grid board. There is no reference specification for distortion for these W/WS. A distortion of greater than 1 part in 40 is essentially no distortion. As a reference, MIL-W-81752A sets a distortion limit of 1:15 for Navy fighter/attack aircraft. A 1 part in 4 distortion would probably be considered unacceptable for the #4 C/KC-135 W/WS.

4.3.2 General Inspection Test Results

Tables 4.1 through 4.8 summarize the results of the general inspections. In a number of areas, the repaired W/WS are the equivalent of new W/WS - dimensional fit, optical properties, and heater operation. There are, however, some troublesome areas - seals, unremoved delaminations, some insulation integrity faults, and a few out of specification heater resistances that suggest that the repaired W/WS are not quite up to OEM standards for a new W/WS. As indicated, most of the general inspection tests had an accept/reject criterion. For the heater tests and optical distortion, there are no established criteria. Figures 4.1 and 4.2 show thermal images from the heater tests. Figures 4.3 and 4.4 show the worst optical distortion found during the inspections. Appendix B contains the data sheets for the general inspections.

In addition to the general inspection data summarized in the tables and figures, two interesting items worth noting came to light. First, there was one commercial fleet W/WS in the program, and second, the new #1 W/WS were surprisingly old.

One of the #1 W/WS, S/N 83-H-11-7-432, has a commercial part number, 5-89354-3096, instead of the expected military part number 5-89354-501 (pilot side #1). Superficially, the two W/WS look identical and can be interchanged. The commercial #1 W/WS, however, unlike the military #1 W/WS, does not have slip planes and edge heaters. Rather, the slip planes and edge heaters of the military #1 W/WS have been replaced by a PPG-proprietary urethane ply. From the discussion in Section 2.1 about the construction of the C/KC-135 W/WS, the slip planes are areas around the edge of the W/WS where the glass has been prevented from bonding to the vinyl so that the edge of the glass does not become overstressed during thermal expansion. The urethane ply in the commercial W/WS accommodates the differential thermal expansion with a fully bonded W/WS structure. The edge heaters keep the vinyl "soft" in the W/WS corners. According to PPG, the urethane layer in the commercial W/WS reduces the tendency for delamination and edge chipping, and does not degrade any of the other properties of the W/WS. PPG feels that the commercial W/WS is superior to the military counterpart.

The new #1 W/WS were manufactured in 1986. This suggests that either the W/WS inventory at Tinker AFB is not maintained on a first-in first-out basis, or that reorder

quantities are large and that it takes a long time to deplete the stock. In any event, because of the potential time lag between manufacture and installation, manufacture date is not a good indicator of possible service life. Some of the new #1 W/WS were made several years before some of the W/WS that were repaired, and so it is not appropriate to assume that W/WS with older serial numbers have seen more service. Whether or not this is common to all of the W/WS in the inventory is not known, but it is something to consider if a service life limitation is imposed that does not track actual use.

4.4 Pressure Integrity

4.4.1 Test Procedures

Pressure integrity was evaluated with a three-step sequence. The first step was a proof pressure test. Samples which passed the proof pressure test then went on to a cyclic pressure durability test. Finally, samples which passed the cyclic durability test were proof pressure tested again.

4.4.1.1 Proof Pressure Test

This test was performed as an initial acceptance and final test on all pressure integrity test articles. The test candidates were mounted in a test fixture and pressurized at a rate not exceeding 0.84 psi per minute to 1.33 times the C/KC-135 relief valve setting of 9.42 psi (12.59 psig). The maximum pressure was held for 15 minutes and then released at a rate not greater than 0.84 psi per minute. The test was conducted at ambient temperature. At completion of the test, the W/WS was inspected for delamination and electrical resistance.

The data requirements for the proof pressure test consisted of pressure-time records and the post-test delamination inspection and electrical resistance measurements. For test articles that did not hold pressure due to breakage or cracking, a photograph of the failed W/WS was required.

The criterion for failure of the test was inability to hold pressure due to cracking or breakage. Delamination or failure of the heater to operate were to be noted, but were not sufficient to disqualify the specimen from further testing.

4.4.1.2 Cyclic Durability Test

This test was performed on all W/WS that passed the initial proof pressure test. The test was conducted with an outward-acting constant amplitude cyclic pressure varying from 0.00 to 9.42 psig, applied at a rate not greater than 0.84 psi per minute. The inboard side of the W/WS was to be held at room temperature $(72^{\circ} \text{ F} \pm 10^{\circ} \text{ F})$ and the outboard side was to be at -65° F \pm 10° F with the heater energized. The cyclic pressure was to be applied until failure was observed or run out, with run out calculated to simulate a 10 year life for a

C/KC-135 (520 cycles). Test article inspections were to be performed at 5 years of simulated service and at the conclusion of the test.

The data requirements for the cyclic durability test consisted of pressure, inboard side air temperature, outboard side air temperature, and bus-to-bus resistance, all as a function of time. Marking of delaminations on the surface of the outer ply and then photographing the W/WS served to document any visual damage to the W/WS. Mode of failure and a photograph of the failed test article were to be used to document specimens that did not survive this test.

The criterion for failure in the cyclic durability test was inability to hold pressure due to cracking or breakage. Failure of the heater was to be noted, but was not sufficient cause to stop the pressure cycling.

4.4.2 Test Facility

The test facility for conducting the pressure integrity testing utilized PPG's Environmental Qualification Test Facility. This facility has three walk-in environmentally controlled chambers that can be used to expose transparencies to temperatures as low as -100° F and as high as +185° F. Pressure chambers with mounting flanges for transparencies fit into the wall of the environmental chambers to permit simultaneous pressure and temperature control, per Figure 4.5. Internal heating and cooling capacity, as well as small fans inside the pressure chambers ensure that the transparency inboard side conditions can be maintained, independent of the outboard side conditions. The facility is controlled by 16-bit Macsym 350 process control computers that manage the temperature and pressure in real time, and perform data acquisition.

Each W/WS was instrumented with 4 thermocouples, two inboard and two outboard, one directly on the glass surface and one 1-inch off the surface. A strain-gage-based pressure transducer was used to measure the pressure chamber pressure.

The #1 W/WS heaters were powered by a 400 Hertz 0-500 volt A.C. motor-generator set adjusted to generate an output voltage consistent with the W/WS bus-to-bus resistance. On the #1 W/WS, the integral sensor was used to control the temperature. The #4 W/WS were powered by 70 volts A.C. 60 Hertz power derived from 120 volt A.C. building power. This voltage is consistent with T.O. 1C-135(K)A-2-2 Paragraph 8-9. The temperature of the #4 W/WS was controlled using a thermocouple-based temperature controller set to have the same operating characteristics as the thermal snap switch that is found on C/KC-135's per T.O. 1C-135(K)A-2-2 Paragraph 8-10: control point about 100° F, switch closure at 90° \pm 10° F, switch opening at 110° \pm 10° F.

The pressure integrity test W/WS were mounted in simulated frames per the drawings shown in Figures 4.6 and 4.7. The rationale for using simulated frames was; 1) less expensive than using an actual fuselage section, and 2) a simulated frame could be made

much stiffer than the sheet metal fuselage section and thus would maximize potentially damaging deformation in the W/WS.

The #1 W/WS were bolted to the frame shown in Figure 4.6 using hardware equivalent to that used in the actual aircraft W/WS installation kit, per Figure 4.8a. Unlike the actual aircraft installation, Grade 8 socket head cap screws and nuts were used. Aluminum washers similar to the ones in the installation kit were used. No curtain clips or wire clamps were installed. Bolt torques and tightening sequences followed T.O. 1C-135(K)A-2-2 Paragraph 8-55. One #1 W/WS was tested at a time. Figure 4.9 shows a #1 W/WS in the pressure test facility.

The #4 W/WS were installed using 16-gauge sheet metal retainers and silicone rubber gasket strips fabricated to simulate those used in the aircraft, Figure 4.8b. Grade 8 socket head caps screws and nuts were used instead of actual aircraft bolts and nuts, with no curtain clips or wire clamps. Bolt torques and tightening sequences followed the prescriptions in T.O. 1C-135(K)A-2-2 Paragraph 8-61. Two #4 W/WS were pressure tested at a time, as shown in Figure 4.10.

4.4.3 Test Results

The results of the pressure integrity testing are presented in Tables 4.9 and 4.10. None of the W/WS, repaired, not repaired, or new, exhibited any catastrophic failures. Two of the repaired W/WS did experience delaminations, while no evidence of delamination was detected in the new W/WS. Figure 4.11 shows the worst delamination observed in a #1 W/WS. Figure 4.12 shows the worst delamination observed in a #4 W/WS. In these figures, the edge of the delamination has been outlined with a black marker. The delamination in the #1 W/WS would not interfere with pilot vision, and may not even be noticed. The delamination in the #4 W/WS, would, most likely, be noticed and reported by a pilot.

A curious "healing" phenomenon was noted in some of the W/WS. Immediately after the pressure cycling, the W/WS were examined for delamination and a marker was used to outline its edge. Some time later, after the W/WS had returned to room temperature, the extent of the delamination was observed to have reduced. Residual stresses in the W/WS cause the delaminations to close up. Discussing this point with the PPG staff confirmed that the "healing" phenomenon is not unique to our tests. PPG indicated that they occasionally get W/WS back on warranty that do not appear to be damaged in any way. Applying some thermal and pressure cycles to the W/WS is generally sufficient to open the delaminations. Although the consequences of this phenomenon for this program are nil, it does suggest that a pilot or copilot could report diminished vision in a W/WS that may not be detectable by the ground crew.

4.5 Residual Strength Assessment

4.5.1 Test Procedures

The residual strength of a selected subset of the W/WS that passed the pressure integrity tests was assessed with a falling ball impact test. In this test, a spherical steel ball was dropped onto the W/WS using Mil-G-25871B Paragraph 4.4.3 as a reference, see Figure 4.13. Unlike Mil-G-25871B where the purpose is to make certain that no separation or delamination of glass from the vinyl occurs, the purpose of this test was to see if repaired W/WS that have been pressure cycled have a reduced capacity for moderate impacts.

The procedure for conducting the falling ball impact tests was to establish a suitable ball weight and drop height to cause significant outboard ply damage without breaking the core ply of a new W/WS that had passed the pressure integrity tests, and then test a few of the remaining W/WS under these conditions.

In the case of the #1 W/WS, a 2-pound ball dropped from a height of 15 feet broke the outer glass ply and crushed the glass in the impact area with a web of cracks emanating from the impact site. Because of the size of the #1 W/WS, two ball drops could be performed, in some cases. For the #4 W/WS, a 1-pound ball dropped from 15 feet did similar damage. A single drop was done on #4 W/WS.

4.5.2 Test Facility

The test facility for conducting the ball drop consisted of a drop tower with ball guide tube and electromagnetic ball release mechanism, and a support frame for the W/WS. Because the PPG ball drop facility was designed only to accommodate small test panels and not full W/WS, boundary conditions at the W/WS edges could not be freely prescribed and a center drop on the #1 W/WS could not be done. Rather, the W/WS were supported by a square frame with a 1-foot by 1-foot opening on the face of the bottom (inboard) glass ply. Due to a space restriction, approximately half of the #1 W/WS extended beyond the support frame, but was supported at the same height as the impact target area. Because all W/WS were treated consistently, the somewhat imprecise nature of the boundary is not as issue.

4.5.3 Test Results

Tables 4.11 and 4.12 detail the results of the falling ball residual strength impact testing, while Figures 4.14 through 4.19 show the test set-ups and selected consequences of the impacts. The results of the ball drop are not conclusive because only a single new W/WS was tested of each type. The worst damage occurred in repaired W/WS with delamination, so there appears to be a suggestion that the ball drops do more damage to the repaired W/WS than the new W/WS.

4.6 Bird Impact Testing

4.6.1 Test Procedures

The bird impact testing was conducted using ASTM F330-89, "Bird Impact Testing of Aerospace Transparent Enclosures" as a model. The W/WS were mounted in a simulated frame placed at the correct inclination and sweepback angles for level flight and impacted with a real 4-pound bird in the center at 250 knots. Testing was done at room temperature, performing a single shot on each W/WS. A spall sheet was placed behind the W/WS.

The simulated frames used in the bird impact tests were similar to the ones used in the pressure integrity tests, Figures 4.20 and 4.21. The rationale for using simulated frames was the same as in the case of the pressure integrity tests. Mounting hardware and installation procedures were consistent with the applicable C/KC-135 Tech Order, T.O. 1C-135(K)A-2-2. Figure 4.22 shows the bolts, O-rings, washers, and nuts used to secure a #1 W/WS in the test frame.

The #1 W/WS were inclined 45 degrees with a sweepback angle of 30 degrees, while the #4 W/WS were inclined 58.12 degrees with a sweepback angle of 35.3 degrees, per information obtained from Boeing and verified by measurement on a C/KC-135 by OC-ALC. The reference for the inclination angle is a vertical line. The reference for the sweepback angle is a horizontal line normal to the centerline of the aircraft. The #1 W/WS as installed presents a fairly large target for the bird package. Because of the size and oblique installed angle, the bird package nearly fills the #4 W/WS.

The data requirements for the bird impacts tests consisted of a pre-test photograph, bird weight, high speed film of the impact, impact velocity, a post-test photograph, a record of the disposition of the spall sheet, and written comments from a post-test examination of the W/WS.

4.6.2 Test Facility

PPG's bird impact test facility is one of the most advanced in the world, capable of shooting one to eight pound birds at impact velocities from 29 to 751 knots, depending on the bird weight. The pneumatic cannon has a 40-foot long barrel with a nominal 10-inch diameter. A pressurized reservoir provides compressed air to propel a metal can, called a sabot, containing the bird to the target. When the sabot reaches the end of the barrel after firing, it is collected by a stripper and spring system that absorbs the sabot's kinetic energy. As the bird continues to the target, approximately 10 feet away, it passes through a timing trap system to measure its velocity. Figure 4.23 shows a schematic of the important elements of the bird cannon.

The velocity of the bird at impact is a calibrated function of the air pressure pushing the sabot down the barrel. A dual rupture diaphragm system fires the gun. Assuming that

Diaphragms 1 and 2 in Figure 4.23 are rated to burst at P_b psi and that test pressure, P_t , is greater than P_b but less than $2P_b$, putting $\frac{1}{2}P_t$ in the Step Chamber keeps both diaphragms from bursting. Opening the Solenoid Exhaust Valve vents the Step Chamber to atmosphere and causes Diaphragms 1 and 2 to burst almost simultaneously applying test pressure in the reservoir to the sabot.

A massive frame support system, adjustable for inclination angles from 25 to 85 degrees was use to hold the simulated W/WS frame. Figure 4.24 shows the support frame with a #1 W/WS mounted. Figures 4.25 and 4.26 show views of W/WS mounted and ready for testing. To ensure that the test article is in its proper position, the impact point is identified with a helium/neon laser centered in the end of the barrel. Installation angles were measured with a precision clinometer.

High speed photographic records of the impacts were made with up to three 16-millimeter cameras operating at up to 11,000 frames per second. The cameras and lighting system are tied into the cannon firing system so that when the fire button is depressed, the lighting is switched on, the cameras come up to speed, and an internal camera speed signal fires the gun. Typically, two cameras recorded the impact from the front, while the third camera recorded the impact from the rear.

Bird speed is measured in three axes and averaged to compensate for minor deviations in the bird package's flight pattern prior to impact. Basically, the time for the bird package to traverse a fixed distance is measured and converted to velocity. Because the timing system requires more than 50-percent of the timing system lights to be obscured, false time readings and consequent incorrect speed indications triggered by small particles or moisture clouds that precede the bird package are eliminated. Figure 4.27 shows the velocity timing trap and front camera positioning.

A spall sheet was placed at the pilot's head position to determine if any glass fragments or bird residue comes through the W/WS in the event of a failure. In Figure 4.25, the spall sheet can be seen behind the W/WS as a black rectangular sheet slightly left of center. Figure 4.28 shows the spall sheet from behind a #1 W/WS.

4.6.3 Test Results

A summary of the bird impact test results is presented in Tables 4.13 and 4.14. A gradation in impact damage for #1 W/WS is shown in Figures 4.29 to Figure 4.34, ranging from no damage to all glass plies failed. A similar gradation of bird impact results for #4 W/WS is shown in Figures 4.35 to 4.40. Other W/WS with similar damage look about the same as these figures. The bird impact data sheets are attached as Appendix C.

Concerning the test comments about bird residue on the spall sheet, it must be noted that the simulated frame had no aerosmoother sealant between the frame and the transparency. Furthermore, there was no cosmetic trim pieces on the inside of the W/WS.

Either one or both of these would probably have prevented bird residue from squeezing between the W/WS and the frame. Ply breakage would not be affected by the presence of aerosmoother or trim pieces.

4.7 Performance Testing Summary

The performance testing data have been summarized in Tables 4.15 to 4.18. From these summaries, the obvious conclusion is that used W/WS do not perform as well as new W/WS. Although trends are difficult to identify in the data because there always seem to be exceptions and because the data base is so small, the performance of W/WS that have been in service, whether repaired or not, is below that of new W/WS.

In a number of categories, the repaired W/WS were the equal of new W/WS: dimensional fit, optical properties, and heater performance. In other cases, they were not: residual delamination, seals and bumpers, delamination during pressure cycling, more damage in the ball drop test, and poorer performance in the bird impact testing. Some of the issues such as seal and bumper problems and residual delamination can easily be rectified. The delamination during pressure cycling is merely annoying because it is an impaired vision issue that would develop over time and is not a serious structural failure.

The bird impact test results are conclusive. The new W/WS performed significantly better than the repaired and not repaired W/WS. At worst, the outboard ply of a new W/WS was broken. For the repaired #1 W/WS, fully half of the samples had all three plies fail, although none had bird penetrations. For the repaired #4 W/WS, only an outboard ply was broken. The unrepaired #4 W/WS performed the worst in the bird impact tests, with one whole W/WS punching out of the frame. This W/WS was rejected for repair, but it appears that it was for an out-of-specification heater and not for any unrepairable structural deficiency. Similarly, the other two unrepaired #4 W/WS that were damaged were also rejected for out-of-specification heaters. The fact that repaired W/WS performed somewhat better than unrepaired W/WS seems to indicate that the repairs themselves do not degrade the W/WS.

Some of the repaired #1 W/WS had a reduced thickness in the edge attachment area. The reduced mounting edge thickness was noticed when bolts that had previously worked satisfactorily for mounting new W/WS in the frames for bird impact tests appeared to be too long. Basically, the bolts would bottom-out on the aluminum spacers in the phenolic mounting block before the W/WS was tight to the frame (see Figure 2.4). The reduction in frame thickness could have been caused by extrusion of the vinyl inner layer during the relamination repair process, it could have occurred as a result of creep during service, or it could be an artifact of the original manufacturing processes. Table 4.19 summarizes edge measurements that were made on the #1 bird impact W/WS and a set of unrepaired W/WS that were not part of the rest of this program. Reduced mounting edge thickness appears to correlate with more severe impact damage, but does not correlate with age or whether or not the W/WS has been repaired.

5.0 COST ANALYSIS

The second element in the evaluation of the feasibility of using repaired W/WS in Air Force fleet aircraft was a cost analysis. The commercial fleet has a very favorable cost benefit using repaired W/WS. If using W/WS is to be a viable option for the Air Force, the costs for making the repairs has to be justifiably less than the cost of a new W/WS.

5.1 Repair Costs

During initial contacts with NORDAM, Perkins, and The Glass Doctor and prior to contracting for any repairs, an estimate was solicited for repairing small numbers of each of the five C/KC-135 W/WS types. NORDAM prices their repairs on the basis of how much work is required to do the repair, i.e., a W/WS that only needs polishing costs less than a W/WS that needs polishing and relaminating, and thus they could only give rough estimates. Perkins has a fixed price for repairing a given type of W/WS, regardless of the number of steps required to repair the W/WS, and offers up to a 30-percent discount for large volume customers. The Glass Doctor offered a fixed cost per W/WS type. All of the repair vendors perform incoming inspections and reject unserviceable W/WS, charging only for those that they successfully repair. Table 5.1 summarizes the initial repair quotations from the three vendors.

The actual costs for making the prototype repairs on the #1 and #4 W/WS that were performance tested are listed in Tables 5.2 and 5.3. Actual costs were consistent with the initial repair estimates. For reference, Table 5.4 summarizes the quoted repair cost for all 75 of the C/KC-135 repair candidate W/WS that were procured for this program. The latter table reflects the incoming W/WS inspections performed by NORDAM and Perkins.

5.2 Costs of New W/WS

OC-ALC provided costs for new C/KC-135 W/WS. The data in Table 5.5 is the Air Force purchase price as of January 1994.

5.3 Cost Comparison

The average cost for making the prototype repairs on the C/KC-135 #1 W/WS was \$1,943, while the average cost of making the prototype repairs on the #4 W/WS was \$899. Comparing these numbers to the current purchase price, the repairs cost 75-percent of the purchase price of a new #1 and 65-percent of the purchase price of a new #4.

Taking the extremes of the initial repair estimates, actual repair costs, or cost quotes from NORDAM and Perkins, and assuming a large enough volume so that Perkins would offer a 20-percent volume discount, the best-case, actual, and worst-case cost scenarios for repaired C/KC-135 W/WS are as shown in Table 5.6. Had The Glass Doctor participated in the program and repaired W/WS at the prices in their estimate, the low values in Table 5.6

would have gone to 51-percent for #1 W/WS, 62-percent for #2 W/WS, and 34-percent for #3 W/WS.

6.0 CONCLUSIONS, RECOMMENDATIONS, AND DISCUSSION

6.1 Conclusions

The Air Force, in an effort to reduce fleet maintenance costs, is considering the possibility of using repaired W/WS. Prior to adopting such an operating policy, however, the Air Force decided that a systematic evaluation was required to ensure that repaired W/WS are safe and that they provide a reasonable cost savings benefit. Based on the reported cost savings and favorable experience that the commercial fleet has had with repaired W/WS, the use of repaired W/WS seems very attractive.

The approach followed for evaluating whether the use of repaired W/WS is a viable option for the Air Force was to procure some used W/WS, make repairs on them, and then subject the repaired W/WS to a series of tests to determine the difference in performance when compared with new W/WS. The cost to make the repairs provides the data for the cost benefit analysis. The test results provide the data for an evaluation of fitness for purpose of the repaired W/WS.

The test results indicate that repaired W/WS are not equal to new W/WS. Many of the repaired W/WS still contain defects that would not pass an OEM quality assurance inspection. None of the W/WS, new, repaired, or not repaired, exhibited any dramatic differences in pressure integrity. Some delamination occurred in two of the repaired W/WS during pressure cycling, but it was not severe. The residual strength of the pressure cycled W/WS tends to suggest that the repaired W/WS are not quite as good as new W/WS. The bird impact test results are quite clear - the new W/WS outperform either repaired or unrepaired W/WS.

Having established that repaired W/WS are not equal to new W/WS, the question that remains to be answered is whether or not repaired W/WS are "good enough." The replacement criteria in the C/KC-135 W/WS Technical Order, T.O. 1C-135(K)A-2-2, are founded on two major principles:

- 1) A W/WS that has any condition that impairs visibility must be replaced
- 2) The W/WS heater must function properly.

A number of specific inspection items, subordinate to these principles, provide additional criterion for W/WS replacement. According to the prevailing Tech Order inspection criteria, none of the repaired W/WS would have been removed for cause from service. The fact that they were removed and were subsequently restored to a condition better than the W/WS

replacement criterion suggests that they were in fact "good enough." The repair vendors do not claim that they can restore a W/WS to a brand new condition. Rather, they indicate that the repairs they perform return the W/WS to a fully acceptable and functional condition. Under this philosophy, the repaired W/WS do appear to be "good enough."

In terms of performance, the most demanding test is the bird impact. Using the criteria set forth in MIL-W-81752A (Windshield Systems, Fixed Wing Aircraft General Specifications For), Paragraph 3.7.2 specifies that the W/WS should be able to sustain a 4-pound bird impact at maximum achievable operational true airspeed in level flight at up to 5000 feet altitude without any spall. This is substantially the same requirement for commercial fleet W/WS set forth in "Part 25 - Airworthiness Standards: Transport Category Airplanes" of the U.S. Federal Aviation Regulations, Paragraph 25.775. The velocity prescription dictated by MIL-W-81752A and FAA 25.775 is operationally restricted, however, by Part 91, Paragraph 91.117 of the FAA Federal Aviation Regulations which states that 250 knots is the maximum allowable aircraft speed below 10,000 feet above mean sea level without special authorization. Assuming that the 250 knot impact velocity is the proper performance criterion, all of the new and repaired #1 and #4 W/WS meet the no bird penetration requirement, while two of the repaired #1 W/WS technically fair fine no spall criterion. From a practical viewpoint, the spall was very modest, so the repaired W/WS appear to be "good enough."

The lone W/WS that experienced a catastrophic bird impact failure (#4 W/WS, S/N 7-H-2-4-35) was not repaired. Reviewing the repair vendor's report on the W/WS, it was rejected for repair due to a heater that was out of specification and not for any gross structural deficiency, such a vinyl cracking or delamination. The only other vendor-reported damage was scratches. The Air Force HOWMAL (how malfunctioned) comments on the removal tag indicated that it had a burnt discoloration in the corner at the edge of the heater. The fact that the heater was defective suggests that the W/WS may have been subjected to inservice pressure cycles with the vinyl unheated. This would have been hard on the glass-vinyl interface, because the vinyl would have been relatively brittle, predisposing the W/WS to fail in the bird impact test. On the other hand, if the heater had been satisfactory, the W/WS probably would have been polished and considered repaired. Because the vinyl itself failed, it is unlikely that polishing would have changed the outcome of the test.

The bird impacts done for this program represent the first ever C/KC-135 W/WS bird impact tests. In addition to demonstrating that repaired W/WS are probably "good enough," the work in this program has confirmed that the basic C/KC-135 W/WS design is adequate.

The new #1 W/WS used in this program were manufactured in 1986. The fact that they performed well in all of the tests, in spite of sitting in warehouse storage for 7 years, indicates that these W/WS do not degrade in storage. This is quite important when considered in the context of a possible blanket 10-year replacement policy, because the only method available now to track the 10 years is by manufacture date. To implement a

meaningful 10-year W/WS replacement cycle policy, it would be necessary to track individual W/WS service history.

The cost analysis indicates that savings may be realized. For this program, the cost of making the repairs was 75-percent of the new W/WS purchase price for #1 W/WS and 65-percent for the #4 W/WS. Considering all five of the C/KC-135 W/WS types and the full range of estimates, quotes, and actual costs, repairing a W/WS might cost as little as 41-percent of a new W/WS, but it could also cost as much as \$32-percent.

The costs quoted are only the direct repair costs. To this must be added the direct cost of transportation and the indirect costs of procuring the service (contracting - more vendors will be involved), administrating it (accounts payable, records management, QA inspection of the vendors, etc.) and operating it (storage, shipping and handling, outgoing/incoming inspection, etc.). These items will certainly make the economics less favorable and to ignore them would be a false economy. On the positive side of the economic issue, the repair vendors do not directly charge for W/WS inspections or for any repair work that does not result in a shippable W/WS. The cost, both economic and environmental, of disposal of all of the W/WS that are currently removed and sent to a landfill cannot be ignored. Repaired W/WS would certainly have an advantage here.

A final consideration of an economic nature that must be factored into the decision to use repaired W/WS is new W/WS availability. There may be a persuasive economic reason to use repaired W/WS if new W/WS are in short supply. The repair vendors could probably be queued up to make repairs, basically on demand, and could provide a "just in time" service. As opposed to having aircraft out of service because new W/WS were not available, repaired W/WS could be used.

6.2 Recommendations

Recommendations that can be made as a result of the work performed on this program are contingent upon the Air Force making a decision, based on the available data, that the performance of repaired W/WS is acceptable.

If, in the opinion of the Air Force, the performance of repaired W/WS is deemed "good enough:"

1) NORDAM Transparency Division, and Perkins Aircraft Services, Inc. are recommended as vendors. No recommendation can be made regarding The Glass Doctor, because they supplied no test articles for this program.

- 2) Based on the results of this study, the repair processes that can be recommended are:
 - a) Relaminating using autoclave processes involving application of heat and pressure
 - b) Grinding and polishing of the external surfaces of the glass
 - c) Seal/bumper maintenance
 - d) Minor clean-up of electrical terminals
- Repair processes that cannot be recommended at this time by virtue of not having been used in this program are:
 - a) Complete replacement of a glass ply
 - b) Delamination or crack repair involving injection of adhesives or filling with transparent polymerizable resins
 - c) Sensor replacement
 - d) Busbar/heater wire repair/replacement
- A formal Air Force quality assurance (Q/A) program should be instituted to set forth requirements for the repair vendors. This will eliminate the annoying, but easily corrected, problems with wrong seals/bumpers on repaired W/WS. In addition, this Q/A program should also be charged with performing an incoming inspection of W/WS coming back from the repair vendors.
- A policy that prevents a W/WS from undergoing more than one repair cycle should be instituted. The contractual requirements for the repair vendors should stipulate that all repaired W/WS must be marked to identify that they have been repaired and by whom. No data have been collected to support the use of rerepaired W/WS.
- The Air Force should use the cost data in this report as the starting point for a complete cost/benefit analysis to satisfy themselves that there is an economic advantage to using repaired W/WS. Full costs, including all direct and indirect cost for labor, materials, and facilities must be included. This must be done on a W/WS by W/WS basis, because the data from this program suggest that some W/WS can be replaced at less cost than they can be repaired.

It is important to emphasize that all of the recommendations offered above are contingent on the Air Force deciding that the performance of the repaired W/WS is adequate.

6.3 Discussion

In reviewing the test data, the question of why one W/WS should perform better or worse than another in a structural test was considered. Four possible causes were identified:

- Vinyl degradation Vinyl, being a plastic is subject to UV degradation and general aging due to loss of plasticizer. As a result of the aging, the vinyl may become brittle and crack, thus reducing its load carrying capacity in the laminate. The vinyl could also be preferentially squeezed from the edge of the W/WS during a relaminating repair process or in service. Because the vinyl is the only structural ply that carries the load into the W/WS frame for a bird impact, if this occurred, the load capacity of the W/WS would be degraded.
- Grinding/polishing of the glass The C/KC-135 W/WS use heat-strengthened glass. In producing this type of glass, the ply is heated to near its softening point and then quenched to introduce compressive residual stresses in the surface layers as shown in Figure 6.1. Tensile stresses inside the glass exist to equilibrate the compressive surface stresses. Because glass only fails due to tensile stresses at the surface, the residual compressive stresses must be overcome to initiate a failure. Grinding and polishing remove some of the beneficial compressive stresses, and hence, the overall strength of the glass ply is reduced. Removal of the highest compressive stress layer, however, must be balanced against removal of flaws. In concert with the obvious effect of removal of the highest compressive stress layer, as far as flaw tolerance goes, the surface may also not be as smooth after grinding/polishing. Smoother surfaces have less flaws and a profoundly higher strength^[11].
- Stress corrosion cracking of the glass The surface of glass contains many microscopic cracks and fissures, and under a sustained load, the presence of moisture exacerbates the growth of these cracks^[12-15]. Generally, water vapor in the air is sufficient to cause the degradation. Elevated temperatures and longer exposures accelerate the stress corrosion cracking effect. Although there is no direct evidence that aircraft W/WS degrade dramatically from this phenomenon, the fact that the W/WS are highly stressed due to thermal and pressure loading, they are exposed to atmospheric moisture, they are routinely heated in a high stress state, and that old W/WS performed below new W/WS in the structural tests suggests that there may be more than a casual cause-effect relationship.
- Fatigue Glass exhibits a complex load rate-cyclic loading behavior. Under a constant maximum load, no effect of cyclic loading is observed, but under increasing maximum load, cyclic loading reduces the strength^[16,17]. The net effect for a W/WS undergoing repeated pressure cycles is not clear, but it seems plausible that some amount of micro-crack propagation occurs.

There is no conclusive evidence that the results of this test program can be directly attributed to any of the mechanisms described above. However, it does not seem unreasonable to suggest that they might. As far as the implications for use of repaired W/WS, vinyl degradation, stress corrosion cracking, and fatigue affect both repaired and unrepaired W/WS. Only repaired W/WS would seem to be susceptible to the grinding/polishing degradation mechanism.

It would be nice to be able to make generalizations about some W/WS being better repair candidates than others, possibly based on age. Unfortunately, there is just too little data to support such generalizations. There are enough inconsistencies in the data, i.e., new W/WS older than some of the repaired ones, some very old W/WS performing just as well as new W/WS (1971 manufacture #1 W/WS S/N 1-H-10-5-480 pressure cycle and ball drop, 1974 manufacture #4 W/WS S/N 4-H-10-9-69 bird strike), etc., that one cannot readily see trends in the data. To try to treat the test results in a statistical manner, looking for correlations, just does not make any sense with such small sample populations. The best that one can say is that repaired W/WS are not equivalent to new W/WS.

It is unfortunate that The Glass Doctor declined to participate in this program. The repairs that The Glass Doctor makes are unique, and based on their cost estimates, quite inexpensive. The long-term performance of the materials that The Glass Doctor injects into the W/WS may be a concern, particularly in terms of extended exposure to ultra-violet radiation. The quality assurance aspect of not being certain of what is being injected in any given repair is also of concern. On the other hand, The Glass Doctor does warranty repairs, other than improper handling, for up to three years.

The issue of commercial construction W/WS versus military construction W/WS deserves some comment. According to PPG, back when Boeing 707's were first coming into service, chipping of the outer ply glass in the corners was common and was attributed to uneven W/WS heating causing differential thermal expansion/contraction of the glass and the underlying vinyl. The slip planes in the current C/KC-135 W/WS are there to help control this problem. To completely eliminate the problem, Boeing tried sewing fine wires in with the vinyl, so-called edge heaters, to keep the vinyl "soft" in the W/WS corners. This was not very successful, because no additional power was applied to the W/WS and failure of the edge heaters was common. A second solution, was to put external glue-on edge heaters on the inside of the W/WS. This approach, unfortunately, does not put the heat where it is needed - at the outer glass ply to vinyl interface. The final solution, which is the current commercial W/WS standard, was to put a thin layer of polyurethane between the vinyl and the outer glass ply. Because the polyurethane is more ductile and does not bond as tightly to the glass as vinyl, the glass and vinyl can move somewhat independently. The polyurethane layer, which could simply be added to the existing W/WS because of the large tolerances on glass and overall assembly thickness, eliminated the edge cracking problems and did away with the need for slip planes and edge heaters. The cost of a polyurethane layer W/WS is something less than 10-percent higher than the cost of a vinyl-only W/WS. The polyurethane is itself significantly more expensive, but this is balanced against less labor because the slip

planes and edge heaters are eliminated. For commercial fleets, the higher cost is justified on the basis of more flight hours between W/WS replacements. For C/KC-135's, because they do not see nearly the flight hours per year that commercial planes see, the cost to benefit ratio for the technically superior polyurethane layer W/WS may not be low enough.

7.0 REFERENCES

- 1) MIL-W-81752A, "Windshield Systems, Fixed Wing Aircraft General Specification For."
- 2) Kelley, M.E., "Aircraft Transparency Testing Methodology," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- Bain, P.H., "An Industry Test Program for Interlayer Equivalency," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 4) King, R.D., and Wright, R.W., "Glass in High Speed Transport," Glass Technology, Vol 28 No 2, April 1987, pp. 73-81.
- 5) Hornsey, W.W., Rothe, W.F., "New Aircraft Windshield Applications Using Ion Exchange Glass," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 6) MIL-G-25871B, "Military Specification; Glass, Laminated, Aircraft Glazing."
- 7) Campbell, L.G., and Marshall, J.W., "Windshield Flight Environment Simulator," Aircraft Engineering, March 1976, pp. 4-9.
- 8) Lawrence, J.H., "Windshield Weight Reduction Through Use of High-Strength Glass and Polyurethane Interlayers," Conference on Aerospace Materials and Enclosures, Scottsdale AZ, July 11-14, 1983.
- 9) U.S. Federal Aviation Regulations, Paragraph 25.775, "Part 25 Airworthiness Standards: Transport Category Airplanes."
- 10) U.S. Federal Aviation Regulations, Paragraph 91.117, "Part 91 General Operating and Flight Rules."
- 11) McLellan G.W. and Shand, E.B., Glass Engineering Handbook, McGraw-Hill, New York, 1984, pp. 6-4.
- 12) Phillips, C.J., Glass, Its Industrial Applications, Reinhold Publishing Corporation, New York, 1960, pp. 82-85.

- 13) Greene, C.H., Modern Glass Practice, Cahners Books, Boston, 1975, pp.358-359.
- Weidehorn, S.M., and Bolz, L.H., "Stress Corrosion and Static Fatigue of Glass," Journal of the American Ceramic Society, Vol 53, 1970, pp. 543-548.
- 15) Freiman, S.W., "Effects of Chemical Environment on Slow Crack Growth in Glasses and Ceramics," *Journal of Geophysical Research*, Vol 89, 1984, pp.4072-4076.
- 16) Stanworth, J.E., *Physical Properties of Glass*, Oxford Press, London, 1950, pp. 100-101.
- 17) McLellan G.W. and Shand, E.B., Glass Engineering Handbook, McGraw-Hill, New York, 1984, pp. 6-4 to 6-6.

Table 2.1 C/KC-135 W/WS Part Numbers

Type of Windshield	NSN	Part Number
#1 Pilot	1560-01-048-1885 FL	5-89354-501
#1 Copilot	1560-01-048-1786 FL	5-89354-502
#2 Pilot	1560-01-009-3320 FL	5-89355-501
#2 Copilot	1560-01-008-7396 FL	5-89355-502
#3 Pilot	1560-00-575-6302 FL	5-89356-501
#3 Copilot	1560-00-575-6297 FL	5-89356-502
#4 Pilot	1560-00-575-6299 FL	5-71764-501
#4 Copilot	1560-00-575-6298 FL	5-71764-502
#5 Pilot	1560-00-575-6300 FL	5-89358-501
#5 Copilot	1560-00-575-6301 FL	5-89358-502

Table 2.2 C/KC-135 Program W/WS

Type of Windshield (1-5)	S/N	Condition
1	82-H-9-6-537	repairable
1	84-H-3-19-220	repairable
1	1-H-10-5-480	repairable
1	83-H-9-19-294	not repairable
1	83-H-9-19-282	repairable
1	83-H-8-15-756	repairable
1	82-H-10-18-107	repairable
1	83-H-11-7-432	repairable
1	82-H-9-6-235	repairable
1	83-H-11-21-325	repairable
1	86-H-12-01-146	repairable
1	88-H-02-08-436	repairable
1	6-H-8-4-26	repairable
1	89-286-HO-697	repairable
1	82-H-10-105	repairable
1	83-H-9-19-459	repairable
1	82-H-12-6-431	repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
2	4-H-9-27-168	repairable
2	6-H-1-15-28	repairable
2	85-H-06-03-722	repairable
2	6-H-2-27-57	not repairable
2	6-H-2-20-23	not repairable
3	5-H-3-2-730	not repairable
3	6-H-3-18-28	not repairable
3	6-H-4-6-25	not repairable
3	6-H-12-10-30	not repairable
3	B73-2815	not repairable
3	B73-3439	not repairable
3	B73-3565	not repairable
3	B73-2462	not repairable
3	85-H-01-07-725	not repairable
3	0-H-9-1-1140	not repairable
3	B73-2509	not repairable
3	5-H-2-16-042	not repairable
3	B73-3955	not repairable
3	4-H-10-4-02	not repairable
3	4-H-9-18-15	not repairable
3	7-H-12-13-67	not repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
4	4-H-10-15-108	not repairable
4	4-H-10-9-75	not repairable
4	4-H-9-28-87	repairable
4	5-H-12-16-47	repairable
4	6-H-4-29-50	not repairable
4	8-H-2-06-585	repairable
4	87-H-04-20-130	repairable
4	7-H-1-25-01	not repairable
4	3-H-4-26-45	repairable
4	82-H-12-6-392	not repairable
4	B75-1149	repairable
4	6-H-12-02-36	not repairable
4	85-H-07-01-276	repairable
4	7-H-2-4-35	not repairable
4	90-173-HO-721	repairable
4	4-H-10-9-69	not repairable
4	4-C-02-12-10	not repairable
4	84-H-10-15-1225	repairable
4	85-H-07-01-366	repairable
4	85-H-09-02-795	not repairable
4	5-H-5-23-84	not repairable

Table 2.2 C/KC-135 Program W/WS continued

Type of Windshield (1-5)	S/N	Condition
5	4-C-5-16-11	not repairable
5	4-C-5-28-16	not repairable
5	4-H-8-30-95	repairable
5	5-H-2-5-75	not repairable
5	2-H-12-15-58	not repairable
5	H-30-67	not repairable
5	7-H-10-14-56	repairable
5	2-H-6-20-70	not repairable
5	2-H-4-24-49	not repairable
5	4-C-7-12-22	repairable
5	4-H-8-33-64	not repairable
5	5-H-12-5-05	repairable
5	4-C-6-12-13	not repairable
5	2-H-6-29-06	not repairable
5	3-H-5-23-79	repairable

Table 2.3 C/KC-135 #1 and #4 W/WS Dimensions

	#1 W/S	#4 W/S
Length (approx), inches	35	13
Height (approx), inches	18	10
Thickness (approx), inches	1	1
Weight (approx), pounds	46	8

Table 3.1 C/KC-135 Repaired and Not Repaired #1 W/WS in the Test Program

	Repair	Vendor Damage	
S/N	Vendor	Comments	Vendor Repair Comments
83-H-11-7-432	Perkins	delaminated	
82-H-10-18-105	Perkins	delaminated, scratched	
88-H-02-08-436	NORDAM	scratches	polish, replace bumper and pressure seal
82-H-12-6-431	NORDAM	scratches and chips	polish, replace bumper and pressure seal
1-H-10-5-480	Perkins	delaminated, scratched	
83-H-9-19-294	Perkins	delaminated	not repairable
82-H-9-6-537	NORDAM	scratches	polish, replace bumper and pressure seal
83-H-9-19-459	NORDAM	scratches and chips	polish, replace bumper and pressure seal
83-H-9-19-282	Perkins	delaminated	
83-H-8-15-756	Perkins	delaminated	
84-H-3-19-220	Perkins	delaminated, scratched	
86-H-12-01-146	NORDAM	scratches and chips	polish, replace bumper and pressure seal
82-H-10-18-107	Perkins	delaminated	
82-H-9-6-235	NORDAM	scratches	polish, replace bumper and pressure seal
83-H-11-21-325	NORDAM	scratches and chips	polish, replace bumper and pressure seal
89-286-HO-697	NORDAM	scratches	polish, replace bumper and pressure seal

Table 3.2 C/KC-135 Repaired and Not Repaired #4 W/WS in the Test Program

	Repair	Vendor Damage	
S/N	Vendor	Comments	Repair Comments
B75-1149	NORDAM	scratches	polish, replace bumper and pressure seals
85-H-07-01-276	NORDAM	scratches	polish, replace bumper and pressure seals
90-173-HO-721	Perkins	bad terminal block	
5-H-5-23-84	NORDAM	delamination, scratches, bad resistance	not repairable
7-H-2-4-35	NORDAM	scratches, bad resistance	not repairable
4-H-10-9-69	Perkins	contaminated	not repairable
82-H-12-6-392	Perkins	contaminated	not repairable
6-H-12-02-36	Perkins	bad resistance	not repairable
87-H-04-20-130	NORDAM	scratches	polish, replace bumper and pressure seals
8-H-2-06-585	Perkins	delamination, scratches	
85-H-07-01-366	NORDAM	scratches	polish, replace bumper and pressure seals
5-H-12-16-47	NORDAM	delamination, scratches	polish, autoclave, replace bumper and pressure seals
84-H-10-15-1225	NORDAM	delamination, scratches	polish, autoclave, replace bumper and pressure seals
4-H-9-28-87	NORDAM	scratches	polish, replace bumper and pressure seals
3-H-4-26-45	NORDAM	delamination, scratches, and chips	polish, autoclave, replace bumper and pressure seals
4-H-10-15-108	NORDAM	delamination, scratches, bad resistance	not repairable

Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
86-H-10-06-062	new	acc	acc	acc	acc	
86-H-10-06-092	new	acc	acc	acc	acc	
86-H-10-06-013	new	acc	acc	acc	acc	
86-H-10-06-048	new	acc	acc	acc	acc	
83-H-11-7-432	repaired	REJ	REJ	acc	acc	1,a
82-H-10-18-105	repaired	REJ	REJ	acc	acc	1,2,b
88-H-02-08-436	repaired	REJ	REJ	acc	acc	1,b
82-H-12-6-431	repaired	REJ	acc	acc	acc	1
1-H-10-5-480	repaired	REJ	REJ	acc	acc	1,c
83-H-9-19-294	not repaired	REJ	REJ	REJ	acc	1,2,d
82-H-9-6-537	repaired	REJ	REJ	acc	acc	1,c
83-H-9-19-459	repaired	REJ	REJ	acc	acc	1,2,b

1 - air and delamination at edges

2 - surface scratch(es)

3 - delamination at edges

a - air and water breach sealb - seal needs to be trimmed

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal h - no outboard bumper

Table 4.1 C/KC-135 #1 W/WS General Examination and Dimensional Measurements Test Results continued (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
86-H-10-06-007	new	acc	acc	acc	acc	
86-H-10-06-030	new	acc	acc	acc	acc	
86-H-10-06-022	new	acc	acc	acc	acc	
86-H-10-06-096	new	acc	acc	acc	acc	
83-H-9-19-282	repaired	REJ	REJ	acc	acc	3,c
83-H-8-15-756	repaired	acc	REJ	acc	acc	С
84-H-3-19-220	repaired	REJ	REJ	acc	acc	4,b
86-H-12-01-146	repaired	acc	REJ	acc	acc	С
82-H-10-18-107	repaired	REJ	REJ	acc	acc	5,b
82-H-9-6-235	repaired	REJ	REJ	acc	acc	1,2,6,b
83-H-11-21-325	repaired	REJ	REJ	acc	acc	1,b
89-286-HO-697	repaired	REJ	REJ	acc	acc	2,b

1 - air and delamination at edges

a - air and water breach seal b - seal needs to be trimmed

2 - surface scratch(es)

c - wrong seal on outboard side

3 - delamination at edges

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
B75-1149	repaired	REJ	REJ	acc	acc	3,c
92-064-HO-471	new	acc	acc	acc	acc	
92-064-HO-473	new	acc	acc	acc	acc	
92-059-HO-350	new	acc	acc	acc	acc	
92-025-HO-006	new	acc	acc	acc	acc	
92-119-HO-186	new	acc	acc	acc	acc	
85-H-07-01-276	repaired	REJ	REJ	acc	no data	1,c
90-173-НО-721	repaired	acc	REJ	acc	acc	С
5-H-5-23-84	not repaired	REJ	REJ	REJ	acc	1,2,e,f
7-H-2-4-35	not repaired	REJ	REJ	no data	acc	1,2,f
4-H-10-9-69	not repaired	REJ	REJ	REJ	acc	1,g,h
82-H-12-6-392	not repaired	REJ	REJ	REJ	acc	1,g,h
6-H-12-02-36	not repaired	REJ	REJ	acc	acc	1,h

1 - air and delamination at edges

a - air and water breach seal

2 - surface scratch(es)

b - seal needs to be trimmed

3 - delamination at edges

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.2 C/KC-135 #4 W/WS General Examination and Dimensional Measurements Test Results continued (acc=acceptable, REJ=reject)

S/N	Туре	Visual Examination	Seal	Vinyl	Dimensional Check	Comments
87-H-04-20-130	repaired	REJ	REJ	acc	acc	6,c
8-H-2-06-585	repaired	REJ	REJ	acc	no data	1,c,i
85-H-07-01-366	repaired	REJ	REJ	acc	acc	1,c,f
92-064-HO-470	new	acc	acc	acc	acc	
92-098-HO-591	new	acc	acc	acc	acc	
92-093-НО-392	new	acc	acc	acc	acc	
92-093-НО-388	new	acc	acc	acc	acc	
5-H-12-16-47	repaired	REJ	REJ	acc	acc	1,c
84-H-10-15-1225	repaired	REJ	REJ	REJ	acc	1,2,c
4-H-9-28-87	repaired	REJ	acc	acc	acc	1
3-H-4-26-45	repaired	REJ	REJ	REJ	acc	1,2,f,g
4-H-10-15-108	not repaired	REJ	REJ	REJ	acc	1,2,

1 - air and delamination at edges

a - air and water breach seal

2 - surface scratch(es)

b - seal needs to be trimmed

3 - delamination at edges

c - wrong seal on outboard side

4 - air and delamination throughout d - seal falling apart

5 - delamination in corners

e - bad seal

6 - surface chip

f - bad bumper

g - no outboard seal

h - no outboard bumper

Table 4.3 C/KC-135 #1 W/WS Basic Electrical Measurements Test Results (acc=acceptable, REJ=reject)

	**************************************			Insulation Integrity		grity
S/N	Туре	Bus Resistance	Sensor Resistance	bus-to- sensor	sensor-to- frame	sensor-to- sensor
86-H-10-06-062	new	acc	acc	acc	acc	acc
86-H-10-06-092	new	acc	acc	acc	acc	acc
86-H-10-06-013	new	acc	acc	acc	acc	acc
86-H-10-06-048	new	acc	acc	acc	acc	acc
83-H-11-7-432	repaired	acc	acc	acc	acc	acc
82-H-10-18-105	repaired	acc	acc	acc	acc	REJ
88-H-02-08-436	repaired	acc	acc	acc	acc	REJ
82-H-12-6-431	repaired	acc	acc	acc	acc	acc
1-H-10-5-480	repaired	acc	acc	acc	acc	acc
83-H-9-19-294	not repaired	acc	acc	acc	acc	REJ
82-H-9-6-537	repaired	acc	acc	acc	acc	REJ
83-H-9-19-459	repaired	acc	acc	acc	acc	REJ
86-H-10-06-007	new	acc	acc	acc	acc	acc
86-H-10-06-030	new	acc	acc	acc	acc	acc
86-H-10-06-022	new	acc	acc	acc	acc	acc
86-H-10-06-096	new	acc	acc	acc	acc	acc
83-H-9-19-282	repaired	acc	acc	acc	acc	acc
83-H-8-15-756	repaired	acc	acc	acc	acc	acc
84-H-3-19-220	repaired	acc	acc	acc	acc	REJ
86-H-12-01-146	repaired	acc	acc	acc	acc	acc
82-H-10-18-107	repaired	acc	acc	acc	acc	REJ
82-H-9-6-235	repaired	acc	acc	acc	acc	REJ
83-H-11-21-325	repaired	acc	acc	acc	acc	REJ
89-286-HO-697	repaired	acc	acc	acc	acc	REJ

Table 4.4 C/KC-135 #4 W/WS Basic Electrical Measurements Test Results (acc=acceptable, REJ=reject)

		Bus	Insulation Integrity
S/N	Туре	Resistance	bus-to-frame
B75-1149	repaired	acc	acc
92-064-HO-471	new	acc	acc
92-064-HO-473	new	acc	acc /
92-059-НО-350	new	acc	acc
92-025-HO-006	new	acc	acc
92-119-НО-186	new	acc	acc
85-H-07-01-276	repaired	REJ	no data
90-173-НО-721	repaired	REJ	acc
5-H-5-23-84	not repaired	REJ	acc
7-H-2-4-35	not repaired	REJ	acc
4-H-10-9-69	not repaired	acc	acc
82-H-12-6-392	not repaired	acc	acc
6-H-12-02-36	not repaired	acc	acc
87-H-04-20-130	repaired	acc	acc
8-H-2-06-585	repaired	acc	acc
85-H-07-01-366	repaired	acc	acc
92-064-HO-470	new	acc	acc
92-098-HO-591	new	acc	acc
92-093-НО-392	new	acc	acc
92-093-HO-388	new	acc	acc
5-H-12-16-47	repaired	REJ	acc
84-H-10-15-1225	repaired	acc	acc
4-H-9-28-87	repaired	acc	acc
3-H-4-26-45	repaired	acc	acc
4-H-10-15-108	not repaired	REJ	acc

Table 4.5 C/KC-135 #1 W/WS Heater Operation Test Results (acc=acceptable, REJ=reject)

		Heater	Hot/Cold	Heater Film
S/N	Туре	Operation	Spots	Scratch Test
86-H-10-06-062	new	90-110° F	no	acc
86-H-10-06-092	new	90-115° F	no	acc
86-H-10-06-013	new	90-110° F	no	acc
86-H-10-06-048	new	90-110° F	no	acc
83-H-11-7-432	repaired	85-115° F	no	acc
82-H-10-18-105	repaired	85-110° F	no	acc
88-H-02-08-436	repaired	90-110° F	no	acc
82-H-12-6-431	repaired	95-120° F	no	acc
1-H-10-5-480	repaired	90-115° F	no	acc
83-H-9-19-294	not repaired	no test	-	acc
82-H-9-6-537	repaired	80-140° F	no	acc
83-H-9-19-459	repaired	90-110° F	no	acc
86-H-10-06-007	new	90-115° F	no	acc
86-H-10-06-030	new	90-115° F	no	acc
86-H-10-06-022	new	missing photo	-	acc
86-H-10-06-096	new	90-110° F	no	acc
83-H-9-19-282	repaired	90-115° F	no	acc
83-H-8-15-756	repaired	90-115° F	no	acc
84-H-3-19-220	repaired	90-110° F	no	acc
86-H-12-01-146	repaired	95-120° F	no	acc
82-H-10-18-107	repaired	90-115° F	no	acc
82-H-9-6-235	repaired	90-115° F	no	acc
83-H-11-21-325	repaired	90-115° F	no	acc
89-286-НО-697	repaired	90-115° F	no	acc

Table 4.6 C/KC-135 #4 W/WS Heater Operation Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Heater Operation	Hot/Cold Spots	Heater Film Scratch Test
B75-1149	repaired	95-115° F	no	acc
92-064-HO-471	new	95-110° F	no	acc
92-064-HO-473	new	95-120° F	no	acc
92-059-HO-350	new	95-110° F	no	acc
92-025-НО-006	new	95-110° F	no	acc
92-119-НО-186	new	missing photo	-	acc
85-H-07-01-276	repaired	no test	-	REJ
90-173-НО-721	repaired	no test	-	acc
5-H-5-23-84	not repaired	95-115° F	no	acc
7-H-2-4-35	not repaired	95-115° F	no	acc
4-H-10-9-69	not repaired	95-110° F	no	acc
82-H-12-6-392	not repaired	95-115° F	no	acc
6-H-12-02-36	not repaired	95-110° F	no	acc
87-H-04-20-130	repaired	95-110° F	no	acc
8-H-2-06-585	repaired	95-110° F	no	acc
85-H-07-01-366	repaired	missing photo	-	acc
92-064-HO-470	new	95-110° F	no	acc
92-098-HO-591	new	95-115° F	no	acc
92-093-НО-392	new	95-135° F	no	acc
92-093-НО-388	new	95-110° F	no	acc
5-H-12-16-47	repaired	95-110° F	no	acc
84-H-10-15-1225	repaired	95-110° F	no	acc
4-H-9-28-87	repaired	95-110° F	no	acc
3-H-4-26-45	repaired	95-110° F	no	acc
4-H-10-15-108	not repaired	95-115° F	no	acc

Table 4.7 C/KC-135 #1 W/WS Optical Performance Test Results (acc=acceptable, REJ=reject)

		Luminous			Distortion,
S/N	Type	Transmittance	Haze	Deviation	center/edge
86-H-10-06-062	new	acc	acc	acc	none/1:30
86-H-10-06-092	new	acc	acc	acc	none/none
86-H-10-06-013	new	acc	acc	acc	none/none
86-H-10-06-048	new	acc	acc	acc	none/none
83-H-11-7-432	repaired	acc	acc	acc	none/1:20
82-H-10-18-105	repaired	acc	acc	acc	none/none
88-H-02-08-436	repaired	acc	acc	acc	none/none
82-H-12-6-431	repaired	acc	acc	acc	none/none
1-H-10-5-480	repaired	acc	acc	acc	none/none
83-H-9-19-294	not repaired	acc	acc	acc	none/none
82-H-9-6-537	repaired	acc	acc	acc	none/none
83-H-9-19-459	repaired	acc	acc	acc	none/none
86-H-10-06-007	new	acc	acc	acc	none/none
86-H-10-06-030	new	acc	acc	acc	none/none
86-H-10-06-022	new	acc	acc	acc	none/none
86-H-10-06-096	new	acc	acc	acc	none/none
83-H-9-19-282	repaired	acc	acc	acc	none/none
83-H-8-15-756	repaired	acc	acc	acc	none/none
84-H-3-19-220	repaired	acc	acc	acc	none/none
86-H-12-01-146	repaired	acc	acc	acc	none/1:30
82-H-10-18-107	repaired	acc	acc	acc	none/1:40
82-H-9-6-235	repaired	acc	acc	acc	none/none
83-H-11-21-325	repaired	acc	acc	acc	none/none
89-286-НО-697	repaired	acc	acc	acc	none/none

Table 4.8 C/KC-135 #4 W/WS Optical Performance Test Results (acc=acceptable, REJ=reject)

S/N	Туре	Luminous Transmittance	Haze	Deviation	Distortion, center/edge
B75-1149	repaired	acc	acc	acc	none/1:18
92-064-HO-471	new	acc	acc	acc	none/1:11
92-064-HO-473	new	acc	acc	acc	none/1:14
92-059-HO-350	new	acc	acc	acc	none/1:7
92-025-HO-006	new	acc	acc	acc	none/1:8
92-119-НО-186	new	acc	acc	acc	missing photo
85-H-07-01-276	repaired	acc	acc	acc	none/1:12
90-173-НО-721	repaired	acc	acc	acc	none/1:10
5-H-5-23-84	not repaired	acc	acc	acc	none/none
7-H-2-4-35	not repaired	acc	acc	acc	none/1:25
4-H-10-9-69	not repaired	acc	acc	acc	none/1:21
82-H-12-6-392	not repaired	acc	acc	acc	none/1:7
6-H-12-02-36	not repaired	acc	acc	acc	none/none
87-H-04-20-130	repaired	acc	acc	acc	1:16/1:5
8-H-2-06-585	repaired	acc	acc	acc	none/1:22
85-H-07-01-366	repaired	acc	acc	acc	none/1:8
92-064-HO-470	new	acc	acc	acc	none/1:12
92-098-HO-591	new	acc	acc	acc	none/1:9
92-093-HO-392	new	acc	acc	acc	none/1:10
92-093-HO-388	new	acc	acc	acc	none/1:9
5-H-12-16-47	repaired	acc	acc	acc	none/none
84-H-10-15-1225	repaired	acc	acc	acc	none/1:6
4-H-9-28-87	repaired	acc	acc	acc	none/1:16
3-H-4-26-45	repaired	acc	acc	acc	none/none
4-H-10-15-108	not repaired	acc	acc	acc	1:16/1:22

Table 4.9 C/KC-135 #1 W/WS Pressure Integrity Test Results

S/N	Туре	Initial Proof Pressure Test	Damage from Pressure Cycling	Final Proof Pressure Test
86-H-10-06-062	new	passed	no apparent damage	passed
86-H-10-06-092	new	passed	no apparent damage	passed
86-H-10-06-013	new	passed	no apparent damage	passed
86-H-10-06-048	new	passed	no apparent damage	passed
83-H-11-7-432	repaired	passed	no apparent damage	passed
81-H-10-18-105	repaired	passed	no apparent damage	passed
88-H-02-08-436	repaired	passed	no apparent damage	passed
82-H-12-6-431	repaired	passed	no apparent damage	passed
1-H-10-5-480	repaired	passed	no apparent damage	passed
83-H-9-19-294	not repaired	passed	no apparent damage	passed
82-H-9-6-537	repaired	passed	delamination near slip plane areas	passed
83-H-9-19-459	repaired	passed	delamination near slip plane areas	passed

Table 4.10 C/KC-135 #4 W/WS Pressure Integrity Test Results

S/N	Туре	Initial Proof Pressure Test	Damage from Pressure Cycling	Final Proof Pressure Test
87-H-04-20-130	repaired	passed	no apparent damage	passed
8-H-2-06-585	repaired	passed	no apparent damage	passed
85-H-07-01-366	repaired	passed	no apparent damage	passed
92-064-HO-470	new	passed	no apparent damage	passed
92-098-HO-591	new	passed	no apparent damage	passed
92-093-HO-392	new	passed	no apparent damage	passed
92-093-HO-388	new	passed	no apparent damage	passed
5-H-12-16-47	repaired	passed	large amount of delamination along forward edge and lower forward corner	passed
84-H-10-15-1225	repaired	passed	no apparent damage	passed
4-H-9-28-87	repaired	passed	no apparent damage	passed
3-H-4-26-45	repaired	passed	delamination in lower forward corner of less than 1 square inch	passed
4-H-10-15-108	not repaired	passed	no apparent damage	passed

Table 4.11 C/KC-135 #1 W/WS Residual Strength Ball Drop Test Results

W/WS S/N	Туре	Damage from Pressure Cycling	Comments
86-H-10-06-062	new	no apparent damage	Two ball drops. Outboard glass ply broken. Crushing in impact area. No delamination created by cracking of the outer ply.
83-H-9-19-459	repaired	delamination near slip plane areas	Two ball drops. Outboard glass ply broken. Core ply intact. No delamination from glass breakage.
1-H-10-5-480	repaired	no apparent damage	Two ball drops. Outboard glass ply broken. No delamination from outer ply cracking.
81-H-10-18-105	repaired	no apparent damage	One ball drop only. Both glass plies failed. Large amount of spall driven from core ply inboard surface.
82-H-9-6-537	repaired	delamination near slip plane areas	One ball drop only. Both glass plies failed. Large amount of spall removed from core ply surface.

Table 4.12 C/KC-135 #4 W/WS Residual Strength Ball Drop Test Results

W/WS S/N	Туре	Damage from Pressure Cycling	Comments
92-093-HO-388	new	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
87-H-04-20-130	repaired	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
8-H-2-06-585	repaired	no apparent damage	Outboard glass ply broken. Core ply intact. No delamination associated with glass breaking.
3-H-4-26-45	repaired	delamination in lower forward corner of less than 1 square inch	Both glass plies failed. Large area of core ply inboard surface spalled in impact area.
5-H-12-16-47	repaired	large amount of delamination along forward edge and lower forward corner	Both glass plies failed. Large area of core ply inboard surface spalled in impact area.

Table 4.13 C/KC-135 #1 W/WS Bird Impact Test Results

Date Number 6/22/93 783	umber			Volorita,	
	S	N/S	Type	(knots)	Comments
	ç	86-H-10-06-007	new	251.7	Outboard glass ply broken. Core ply intact. Small amount of bird residue impacted spall sheet - entry between outboard glass ply and W/WS frame when mounting O-rings compressed.
6/22/93 78	784	86-H-10-06-030	new	251.1	No damage. Small amount of bird residue on spall sheet, same as Shot 783.
6/23/93 78	785	86-H-10-06-22	new	252.8	No damage. No bird residue on spall sheet.
6/23/93 78	982	86-H-10-06-96	new	252.6	No damage. No bird residue on spall sheet.
6/24/93 79	792	83-H-9-19-2-282	repaired	249.6	Outboard ply intact. Core ply failed. No glass spall on spall sheet.
7/19/93 79	793	83-H-8-15-756	repaired	249.4	All glass plies failed. Minor glass spall on spall sheet.
7/19/93 79	794	84-H-3-19-220	repaired	250.1	Outboard glass ply failed. Core ply intact.
7/20/93 79	795	86-H-12-01-146	repaired	252.4	No glass breakage. Z-bar retainer bent badly.
7/20/93 79	962	82-H-10-18-107	repaired	249.4	All glass plies failed. Minor amount of glass spall from inboard ply on spall sheet.
7/20/93 7	797	82-H-9-6-235	repaired	251.0	Outboard glass ply failed. Core ply intact.
7/21/93 7	798	83-H-11-21-325	repaired	247.5	All glass plies failed. No spall on spall sheet.
7/22/93 7	799	89-286-HO-697	repaired	250.8	No damage.

				Impact	
	Shot			Velocity	
Date	Number	S/N	Type	(knots)	Comments
9/1/93	815	B75-1149	repaired	247.5	II ±=
					retainer gasket along aft edge and top right corner. Bent bolts.
9/1/93	816	92-064-HO-471	new	251.3	No damage. Small amount of bird residue between outboard retainer and W/WS. No bent bolts.
9/1/93	817	92-064-HO-473	new	248.9	No damage. Minor bird residue through aft edge.
9/1/93	818	92-059-НО-350	new	225.1	Bird cannon misfire due to camera failure. Inboard glass ply
					cnippea.
6/56/63	835	92-025-HO-006	meu	248.4	No damage.
9/29/93	836	92-119-HO-186	new	247.8	No damage.
9/29/93	837	85-H-07-01-276	repaired	248.7	No damage.
9/29/93	838	90-173-HO-721	repaired	247.1	No damage.
9/30/93	839	5-H-5-23-84	not repaired	251.2	Outboard ply broken. No bird penetration. Interlayer tear in lower forward corner.
6/30/63	840	7-H-2-4-35	not repaired	250.8	Catastrophic failure. Entire laminated panel torn out at insert.
9/30/93	841	4-H-10-9-69	not repaired	251.0	No damage.
9/30/93	842	82-H-12-6-392	not repaired	250.8	No damage.
10/1/93	843	6-H-12-02-36	not repaired	250.3	All glass plys failed. 4-inch long interlayer tear at lower forward corner. Some glass spall.

Table 4.15 C/KC-135 W/WS General Inspection Summary

		#1 W/WS	3		#4 W/WS	3
Category	New	Repaired	Not Repaired	New	Repaired	Not Repaired
Number Tested	8	15	1	9	10	6
Number with delamination, scratches, or chips	0	13	1	0	9	6
Number with seal deficiencies	0	14	1	0	8	6
Number with vinyl cracks	0	0	1	0	2	4
Number with bad dimensional check	0	0	0	0	0	0
Number with bad bus resistance	0	0	0	0	3	3
Number with bad sensor resistance	0	0	0	_	_	_
Number with bad insulation	0	9	1	0	0	0
Number with poor heater performance	0	0	1	0	1	0
Number with bad optics	0	0	0	0	0	0

Table 4.16 C/KC-135 W/WS Pressure Integrity Test Summary

		#1 W/WS	5		#4 W/WS	5
Category	New	Repaired	Not Repaired	New	Repaired	Not Repaired
Number Tested	4	7	1	4	7	1
Number failing initial proof pressure test	0	0	0	0	0	0
Number failing during pressure cycling	0	0	0	0	0	0
Number failing final proof pressure test	0	0	0	0	0	0
Number delaminated	0	2	0	0	2	0

Table 4.17 C/KC-135 W/WS Ball Drop Residual Strength Test Summary

	#1	W/WS	#4	W/WS
Category	New	Repaired	New	Repaired
Number Tested	1	4	1	4
Number with initial delamination	0	2	0	2
Number with outboard ply failure only	1	2	1	2
Number with both glass plys failed	0	2	0	2

Table 4.18 C/KC-135 W/WS Bird Impact Test Summary

	#1 V	W/WS	#4 W/WS		
Category	New	Repaired	New	Repaired	Not Repaired
Number Tested	4	8	5	3	5
Number undamaged	3	2	4	2	2
Number with outboard ply broken only	1	2	1	1	1
Number with inboard ply broken only	0	1	0	0	0
Number with all glass plies failed	0	3	0	0	2
Number with no inner ply glass spall	4	6	5	3	3
Number with minor inner ply glass spall	0	2	0	0	1
Number with major inner ply glass spall	0	0	0	0	1
Number with no bird penetration	4	8	5	3	4
Number with minor bird penetration	0	0	0	0	0
Number with major bird penetration	0	0	0	0	1

Table 4.19 C/KC-135 #1 W/WS Mounting Edge Measurements and Bird Impact Test Results

		Edge Thickness,	
S/N	Туре	inches	Bird Impact Comments
86-H-10-06-007	new	0.936	Outboard glass ply broken. Core ply intact.
		0.943	
		0.942	
82-H-10-18-107	repaired	0.843	All glass plies failed. Minor amount of
		0.852 0.838	glass spall from inboard ply on spall sheet.
	. ,	-	Core ply failed. No glass spall on spall
83-H-9-19-282	repaired	similar to 82-H-10-18-107	sheet.
00 YY 0 15 75C		similar to	All glass plies failed. Minor glass spall on
83-H-8-15-756	repaired		spall sheet.
90 II 11 01 005	bominana	0.927	All glass plies failed. No spall on spall
83-H-11-21-325	repaired	0.927	sheet.
		0.939	
86-H-06-030	new	0.908 min	No damage.
86-H-10-06-22		0.940 max	
86-H-10-06-96			
84-H-3-19-220			Outboard glass ply failed.
86-H-12-01-146			No glass breakage.
82-H-9-6-235	repaired		Outboard glass ply failed.
89-286-HO-697			No damage.
91-010-HO-206		0.850 min	
		0.909 max	
87-H-06-29-758		0.893 min	
		0.920 max	
87-H-09-21-671	unrepaired	0.886 min	Not bird impact tested.
		0.922 max	·
90-180-НО-139		0.839 min	
		0.887 max	
82-H-9-20-127		0.902 min	
		0.918 max	

Table 5.1 Initial C/KC-135 W/WS Repair Estimates

T	ype of W/WS	NORDAM ^a	Perkins ^b	The Glass Doctor ^b
	1	\$1,890	\$2,000	\$1,327°
	glass only	\$1,512	\$1,500	\$896
2	frame and glass \$6,700		_	-
	3	\$735 Category I ^d \$945 Category II \$945 Category III \$1,280 Category IV	\$750	\$516
4		\$975	\$875	\$667
	5	\$750	\$875	\$484

Notes:

- a) Estimate, actual price quote based on specific repairs required as determined by incoming inspection.
- b) Fixed price.
- c) Sensor repair or replacement, \$437 additional.
- d) NORDAM #3 W/WS Repair/Overhaul Categories:

All repair categories include complete disassembly, inspection, and reassembly with new seal and new grommets.

Category	Transparency Repair
I	Polish inner and outer panes
II	Polish outer pane, replace inner pane
III	Polish inner pane, replace outer pane
IV	Replace inner and outer panes

Table 5.2 C/KC-135 #1 W/WS Actual Repair Costs (NR=not repairable)

S/N	Repair Vendor	Vendor Damage Comments	Repair Cost
83-H-11-7-432	Perkins	delaminated	\$2,000
82-H-10-18-105	Perkins	delaminated, scratched	\$2,000
88-H-02-08-436	NORDAM	scratches	\$1,695
82-H-12-6-431	NORDAM	scratches and chips	\$2,090
1-H-10-5-480	Perkins	delaminated, scratched	\$2,000
83-H-9-19-294	Perkins	delaminated	\$0, NR
82-H-9-6-537	NORDAM	scratches	\$1,893
83-H-9-19-459	NORDAM	scratches and chips	\$1,893
83-H-9-19-282	Perkins	delaminated	\$2,000
83-H-8-15-756	Perkins	delaminated	\$2,000
84-H-3-19-220	Perkins	delaminated, scratched	\$2,000
86-H-12-01-146	NORDAM	scratches and chips	\$1,695
82-H-10-18-107	Perkins	delaminated	\$2,000
82-H-9-6-235	NORDAM	scratches	\$1,695
83-H-11-21-325	NORDAM	scratches and chips	\$2,090
89-286-НО-697	NORDAM	scratches	\$2,090

Table 5.3 C/KC-135 #4 W/WS Actual Repair Costs (NR=not repairable)

	Repair	Vendor Damage	
S/N	Vendor	Comments	Repair Cost
B75-1149	NORDAM	scratches	\$559
85-H-07-01-276	NORDAM	scratches	\$954
90-173-НО-721	Perkins	bad terminal block	\$875
5-H-5-23-84	NORDAM	delamination, scratches, bad resistance	\$0, NR
7-H-2-4-35	NORDAM	scratches, bad resistance	\$0, NR
4-H-10-9-69	Perkins	contaminated	\$0, NR
82-H-12-6-392	Perkins	contaminated	\$0, NR
6-H-12-02-36	Perkins	bad resistance	\$0, NR
87-H-04-20-130	NORDAM	scratches	\$954
8-H-2-06-585	Perkins	delamination, scratches	\$875
85-H-07-01-366	NORDAM	scratches	\$559
5-H-12-16-47	NORDAM	delamination, scratches	\$1,151
84-H-10-15-1225	NORDAM	delamination, scratches	\$1,151
4-H-9-28-87	NORDAM	scratches	\$559
3-H-4-26-45	NORDAM	delamination, scratches, and chips	\$1,349
4-H-10-15-108	NORDAM	delamination, scratches, bad resistance	\$0, NR

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS (NR=not repairable)

Type of W/WS (1-5)	S/N	Repair Vendor	Cost of Repair
1	82-H-9-6-537	NORDAM	\$1,893
1	84-H-3-19-220	Perkins	\$2,000
1	1-H-10-5-480	Perkins	\$2,000
1	83-H-9-19-294	Perkins	\$0, NR
1	83-H-9-19-282	Perkins	\$2,000
1	83-H-8-15-756	Perkins	\$2,000
1	82-H-10-18-107	Perkins	\$2,000
1	83-H-11-7-432	Perkins	\$2,000
1	82-H-9-6-235	NORDAM	\$1,695
1	83-H-11-21-325	NORDAM	\$2,090
1	86-H-12-01-146	NORDAM	\$2,090
1	88-H-02-08-436	NORDAM	\$1,695
1	6-H-8-4-26	NORDAM	\$2,683
1	89-286-HO-697	NORDAM	\$2,090
1	82-H-10-105	Perkins	\$2,000
1	83-H-9-19-459	NORDAM	\$1,893
1	82-H-12-6-431	NORDAM	\$2,090
2	4-H-9-27-168	NORDAM	\$1,919
2	6-H-1-15-28	NORDAM	\$1,524
2	85-H-06-03-722	NORDAM	\$1,721
2	6-H-2-27-57	Perkins	\$0, NR
2	6-H-2-20-23	Perkins	\$0, NR
3	5-H-3-2-730	NORDAM	\$0, NR
3	6-H-3-18-28	NORDAM	\$0, NR
3	6-H-4-6-25	NORDAM	\$0, NR
3	6-H-12-10-30	NORDAM	\$0, NR
3	B73-2815	Perkins	\$0, NR
3	B73-3439	Perkins	\$0, NR

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS continued (NR=not repairable)

Type of W/WS (1-5)	· S/N	Repair Vendor	Cost of Repair
3	B73-3565	Perkins	\$0, NR
3	B73-2462	NORDAM	\$0, NR
3	85-H-01-07-725	Perkins	\$0, NR
3	0-H-9-1-1140	NORDAM	\$0, NR
3	B73-2509	Perkins	\$0, NR
3	5-H-2-16-042	NORDAM	\$0, NR
3	B73-3955	Perkins	\$0, NR
3	4-H-10-4-02	Perkins	\$0, NR
3	4-H-9-18-15	Perkins	\$0, NR
3	7-H-12-13-67	NORDAM	\$0, NR
4	4-H-10-15-108	NORDAM	\$0, NR
4	4-H-10-9-75	Perkins	\$0, NR
4	4-H-9-28-87	NORDAM	\$559
4	5-H-12-16-47	NORDAM	\$1,151
4	6-H-4-29-50	Perkins	\$0, NR
4	8-H-2-06-585	Perkins	\$875
4	87-H-04-20-130	NORDAM	\$954
4	7-H-1-25-01	Perkins	\$0, NR
4	3-H-4-26-45	NORDAM	\$1,349
4	82-H-12-6-392	Perkins	\$0, NR
4	B75-1149	NORDAM	\$559
4	6-H-12-02-36	Perkins	\$0, NR
4	85-H-07-01-276	NORDAM	\$954
4	7-H-2-4-35	NORDAM	\$0, NR
4	90-173-HO-721	Perkins	\$875
4	4-H-10-9-69	Perkins	\$0, NR
4	4-C-02-12-10	Perkins	\$0, NR
4	84-H-10-15-1225	NORDAM	\$1,151

Table 5.4 Cost Quotes for All Prototype Repair Candidate C/KC-135 W/WS continued (NR=not repairable)

Type of W/WS	S/N	Repair Vendor	Cost of Repair
(1-5)			
4	85-H-07-01-366	NORDAM	\$559
4	85-H-09-02-795	Perkins	\$0, NR
4	5-H-5-23-84	NORDAM	\$0, NR
5	4-C-5-16-11	Perkins	\$0, NR
5	4-C-5-28-16	NORDAM	\$0, NR
5	4-H-8-30-95	NORDAM	\$486
5	5-H-2-5-75	Perkins	\$0, NR
5	2-H-12-15-58	NORDAM	\$0, NR
5	H-30-67	NORDAM	\$0, NR
5	7-H-10-14-56	NORDAM	\$1,079
5	2-H-6-20-70	Perkins	\$0, NR
5	2-H-4-24-49	Perkins	\$0, NR
5	4-C-7-12-22	NORDAM	\$881
5	4-H-8-33-64	Perkins	\$0, NR
5	5-H-12-5-05	NORDAM	\$486
5	4-C-6-12-13	Perkins	\$0, NR
5	2-H-6-29-06	Perkins	\$0, NR
5	3-H-5-23-79	NORDAM	\$881

Table 5.5 C/KC-135 New W/WS Costs

Designation	NSN	Part Number	USAF Cost
#1 Pilot	1560-01-048-1885 FL	5-89354-501	44.504
#1 Copilot	1560-01-048-1786 FL	5-89354-502	\$2,582
#2 Pilot	1560-01-009-3320 FL	5-89355-501	
#2 Copilot	1560-01-008-7396 FL	5-89355-502	\$1,445
#3 Pilot	1560-00-575-6302 FL	5-89356-501	44.47 0
#3 Copilot	1560-00-575-6297 FL	5-89356-502	\$1,479
#4 Pilot	1560-00-575-6299 FL	5-71764-501	\$1,070
#4 Copilot	1560-00-575-6298 FL	5-71764-502	\$1,372
#5 Pilot	1560-00-575-6300 FL	5-89358-501	¢1.070
#5 Copilot	1560-00-575-6301 FL	5-89358-502	\$1,078

Table 5.6 Repair Cost Comparison Data for C/KC-135 W/WS

	Cost as a Percentage of New Purchase Price		
Type of W/WS	High [*]	Actual	Low*
1	81	75	61
2	132	-	83
3	87	-	41
4	71	65	41
5	100	-	45

^{*} Based on Extremes of Estimates, Actual Costs, and Quotes from NORDAM and Perkins Aircraft Services, assuming a 20-percent volume discount from Perkins

Figure 2.1 C/KC-135 W/WS Identification

Figure 2.2 C/KC-135 W/WS Construction

Figure 2.3 W/WS Construction Showing Location of Slip Planes

Figure 2.4 C/KC-135 #1 W/WS Cross-Section

Figure 2.5 C/KC-135 #4 W/WS Cross-Section

Figure 3.1 The Glass Doctor Patented Technique for Repair of Conical Cracks in Laminated Glass, U.S. Patent # 3,841,932

Figure 3.2 The Glass Doctor Patented Technique for Repair of Delaminations, U.S. Patent # 4,780,162

a) Typical (S/N 86-H-10-06-062)

b) Most Out-of-the-Ordinary (S/N 82-H-9-6-537)

Figure 4.1 C/KC-135 #1 Thermal Images From the Heater Test

a) Typical (S/N 92-064-HO-471)

b) Most Out-of-the-Ordinary (S/N 92-093-HO-392)

Figure 4.2 C/KC-135 #4 W/WS Thermal Images From the Heater Test

Figure 4.4 Worst Optical Distortion Found in Any C/KC-135 #4 W/WS (S/N 87-H-04-20-130)

Figure 4.5 Pressure Integrity Testing Facility

Figure 4.6 C/KC-135 #1 W/WS Pressure Integrity Mounting Frame

Figure 4.7 C/KC-135 #4 W/WS Pressure Integrity Mounting Frame

a) #1 W/WS

b) #4 W/WS

Figure 4.8 C/KC-135 W/WS Mounting Details

Figure 4.9 Typical C/KC-135 #1 W/WS Pressure Integrity Test Set Up

Figure 4.10 Typical C/KC-135 #4 W/WS Pressure Integrity Test Set Up

Worst Delamination Observed in a C/KC-135 #1 W/WS From Pressure Cycling (Repaired W/WS, S/N 82-H-09-06-537) Figure 4.11

Figure 4.12 Worst Delamination Observed in a C/KC-135 #4 W/WS From Pressure Cycling (Repaired W/WS, S/N 5-H-12-16-47)

Figure 4.13 Residual Strength Falling Ball Test

Figure 4.14 #1 W/WS Residual Strength Falling Ball Impact Test Showing Test Set Up and Consequences of Two Ball Drops (New W/WS, S/N 86-H-10-06-062)

Figure 4.15 #1 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Outboard View (S/N 82-H-9-6-537)

Figure 4.16 #1 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Single Ball Drop, Inboard View (S/N 82-H-9-6-537)

Figure 4.18 #4 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Outboard View (S/N 5-H-12-16-47)

Figure 4.19 #4 W/WS Residual Strength Falling Ball Impact Test Result for a Repaired and Subsequently Delaminated W/WS, Inboard View (S/N 5-H-12-16-47)

Figure 4.20 C/KC-135 #1 W/WS Bird Impact Mounting Frame

Figure 4.21 C/KC-135 #4 W/WS Bird Impact Mounting Frame

Figure 4.23 Schematic of the PPG Bird Cannon

Figure 4.25 Typical Pre-Test View of C/KC-135 #1 W/WS (Copilot) Prior to Bird Impact Testing

Figure 4.26 Typical Pre-Test View of C/KC-135 #4 W/WS (Pilot) Prior to Bird Impact Testing

Figure 4.29 C/KC-135 #1 W/WS Showing No Damage From a 4-Pound Bird Impact at 250.8 Knots (Repaired W/WS, S/N 89-286-HO-697)

Figure 4.30 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 251.7 Knots, Front View (New W/WS, S/N 86-H-10-06-007)

Figure 4.31 C/KC-135 #1 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 251.7 Knots, Rear View (New W/WS, S/N 86-H-10-06-007)

Figure 4.32 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound Bird Impact at 249.4 Knots, Front View (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.33 C/KC-135 #1 W/WS Showing All Glass Plies Failed From a 4-Pound Bird Impact at 249.4 Knots, Rear View (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.34 Spall Sheet Condition From a 4-Pound Bird Impact at 249.4 Knots on a C/KC-135 #1 W/WS With All Glass Plies Failed (Repaired W/WS, S/N 82-H-10-18-107)

Figure 4.35 C/KC-135 #4 W/WS Showing No Damage From a 4-Pound Bird Impact at 248.7 Knots (Not Repaired W/WS, S/N 4-H-10-9-69)

Figure 4.36 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 247.5 Knots, Front View (Repaired W/WS, S/N B75-1149)

Figure 4.37 C/KC-135 #4 W/WS Showing Outboard Ply Failure From a 4-Pound Bird Impact at 247.5 Knots, Rear View (Repaired W/WS, S/N B75-1149)

Figure 4.38 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure From a 4-Pound Bird Impact at 250.8 Knots, Front View (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 4.39 C/KC-135 #4 W/WS Showing a Catastrophic All Glass Plies Failure From a 4-Pound Bird Impact at 250.8 Knots, Regar View (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 4.40 Spall Sheet and W/WS Condition From a Catastrophic 4-Pound Bird Impact at 250.8 Knots on a C/KC-135 #4 W/WS (Not Repaired W/WS, S/N 7-H-2-4-35)

Figure 6.1 Heat Strengthened Glass Residual Stresses

. APPENDIX A
REPAIR VENDOR AIR AGENCY CERTIFICATES

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Air Agency Certificate

Number EZ22812K

This certificate is issued to NORDAM TRANSPARANCIES DIVISION

whose business address is
510 S. LANSING
TULSA; OKLAHOMA 74120

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency, and is empowered to operate an approved REPAIR STATION

with the following ratings:
LIMITED - SPECIALIZED SERVICE

This certificate, unless canceled, suspended, or revoked, shall continue in effect INDEFINITELY

By direction of the Administrator

Dalo issued :

February 21, 1990

HAROLD D. WRIGHT

ACTING MANAGER, SW-FSDO-15

This Criticity is not Cronstrable, and any major chance in the basic facilities, or in the location thereof, shall be immediately reported to the appropriate regional office of the federal aviation administration

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Similations:

is are limited to The rating () sot forth on Stir Styoney Vortificate Number EZ22612K the following:

LIMITED RATING:

Specialized Service

Transparency inspection and repair in accordance with Aircarrier Engineering Orders, O.E.M Manuals, and NR 0101-301.

None

Detegated authorities:

Dato issued on nonised:

July 3, 1990

ROY G. WIEDEN

PRINCIPAL MAINTENANCE INSPECTOR

FAA Form 8000-4-1 (1-75)

FORMERLY FAA COIM 300.1 CAGE : ASW-FSDO-LS

Air Agency Certificate

Number JKQR257L

This certificate is issued to PERKINS AIRCRAFT SERVICES, INC.

whose business address is 5001 NORTH FREEWAY, SUITE B FORT WORTH, TEXAS 76106

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency, and is empowered to operate an approved Repair Station;

with the following ratings:
LIMITED SPECIALIZED SERVICE (10-08-93)

This certificate, unless canceled, suspended, or revoked, shall continue in effect indefinitely.

By direction of the Administrator

Dalo issuod :

May 2, 1991

Kenneth D. Robinson
Acting Manager, FTW FSDO

This Certificate is not Certificable, and any major change in the basic facilities, or in the location thereof, shull be immediately reported to the appropriate regional office of the federal aniation administration

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Limitations:

The mating (s) set forth on Sir Agency. Vertificate Number JKQR257L the following:

is are limited to

LIMITED RATINGS:

SPECIALIZED SERVICE

Repair of aircraft windows, transparent enclosures, structural and non-structural composite panels, cores, flaps, ailerons and radomes.

Above repairs will be performed in accordance with aircraft manufacturer's repair procedures, air carrier approved instructions and Perkins Aircraft Services, Inc., Process Specification PPS0001, Revision A, dated 09-15-93, as revised.

Delegaled authorities: NONE

Date issued or revised:

October 8, 1993

For the Standing Cob

Standley H. Cobb

PMI FTW FSDO

FAA Form 8000-4-1 (1-75)

Air Agency Certificate

. Vumber OX4R430M

This certificate is issued to THE GLASS DOCTOR

whose business address is 2390 26th AVENUE NORTH St. Petersburg, Florida 33713

upon finding that its organization complies in all respects with the requirements of the Federal Aviation Regulations relating to the establishment of an Air Agency, and is empowered to operate an approved REPAIR STATION

with the following ratings:

This certificate, unless canceled, suspended, or revoked, shall continue in effect INDEFINITELY

By direction of the Administrator

September 27, 1979

North Florida FSDO-15

Replacement May 1, 1990 This Certificate is not Ctansferable, and any major change in the basic facilities, or in the location thereof, SHALL BE IMMEDIATELY REPORTED TO THE APPROPRIATE REGIONAL OFFICE OF THE FEDERAL AVIATION ADMINISTRATION

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAA Form 8000-4 (1-67) SUPERSEDES FAA FORM 390.

Repair Station Operations Specifications

(Continuation)

Limitations:

The rating (s) set forth on Fir Agency Cortificate Number OX4R430M

is are limited to

the following:

LIMITED RATINGS:

SPECIALIZED SERVICE - Refurbish and repair aircraft plastic and glass windows, windshields, canopies, navigation light lenses, and other miscellaneous small transparencies, including nicks, chips, delamination, electrical busses and temperature sensor installation.

> All inspections and rework will be accomplished in accordance with the following data as applicable to the unit being worked.

> Aircraft Manufacturer's Maintenance Manuals/ Instruction.

FAA Approved process Specification, #1979 Cabin and Cockpit Windows dated 12-31-84 (as amended).

Air Carrier's Approved Specifications.

FAA Advisory Circular 43.13-1A, Acceptable Methods, Techniques, and Practices, Chapter 9. Windshields, Enclosures and Exits.

Telegated authorities: NONE

Date issued on revised:

May 1, 1990

For the Administrate

Principal Maintenance Inspector

FAA Form 8000-4-1 (1-75)

FORMERLY FAA FORM 390.1 PAGE 2

Page 1 of 1

Visual Inspection Map & Comments

Air	And	DeLAm	15	LOCATEd	ALL	AROUNT
Unit.						

Thickness Template

Deviation Template

Customer Part Number: 5-717	64-	50/	
Unit Serial Number: 92 06	4 HO	470	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 74.4 Ohms	acc.	5-24-93	22 PPG 28
Thermal Image:		5-24-93	82 929 28
Insulation Test: Power to Metal:	ser	MAY 26 1993	22 PPG 17
(2500 VAC) Nesa Scratch Test (81 VAC):	Acc	MAY 26 1993	22 9 26 77
Light Transmittance:	18.6	MAY 26 1993	22 PPG 77
Haze:	/,3	MAY 26 1993	22 PPG 77
Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47
Deviation Inspection:	ARR 3	MAY 26 1993	22 PPG 77
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: <u>683</u> 2: <u>.687</u> 3: <u>.686</u> 4:	_	<u>5-25-93</u>	22 PPG 28
Check for Vinyl Cracks:	Aso	JUN 02 1993	22 PPG 77
Seal Evaluation:	Bac	JUN 02 1993	22 PPG 57
(Comments)			
	, , , , , , , , , , , , , , , , , , , ,		
Visual Inspection: (Place comments on attached sheet)	pse	JUN 02 1993	22 PPG 77

Thickness Template

Customer Part Number:

5-71764-501

Unit Serial Number: 92-0	98 H	to 591	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 67,7 Ohms	Acr	15-24-93	22 P.23 20
Thermal Image:		5-24-9	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	see	MAY 26 1993	22 PPG 17
Nesa Scratch Test (81 VAC):		MAY 26 1993	22 PPG 77
Light Transmittance:	78.9	MAY 26 1993	22 PPG 77
Haze:	1.2	MAY 26 1993	22 PPG 7.
Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47.
- · · ·	DIL	MAY 26,1993	22 PPG 77
Deviation Inspection: (German Light per Template) 1: 5 2: 5 3: 3 4:	<u>5</u>		
Dimensional Inspection:			
Unit Thickness:	acc.	5-25-23	22 PPG 28
(Per Template) 1: <u>.692</u> 2: <u>.683</u> 3: <u>.688</u> 4:	.690		
Check for Vinyl Cracks:	Acc	JUN 02 1993	22 PP 6 77
Seal Evaluation:	Acc	JUN 02 1993	22 P P6 77
(Comments) Seal Looke Bu	T Aacs	stable	
		7	
Visual Inspection: (Place comments on attached sheet)	pas	JUN 02 1393	22 PP+ 79

Visual Inspection Map & Comments

Seal	Loose	A\$	MARKED		

Thickness Template

Customer Part Number: $5-71$ Unit Serial Number: $92-0$		50/ 0 392	
Bus to Bus Resistance: 68.0 Ohms	Acc/Rej	<u>Date</u> <u>5-24-93</u>	SZ 9dd ZZ
Thermal Image: Insulation Test: Power to Metal: (2500 VAC)	Acc	5-24-93 MAY 26 1993	87 564 77 22 PPG 77
Nesa Scratch Test (81 VAC): Light Transmittance:	Acc 29.8	MAY 26 1993 MAY 26 1993	22 PPG 77 22 PPG 77
Haze: Photo (Single Exposure):	1,0	MAY 26 1993 2 6 MAY 1993	22 PPG ¹⁷
Deviation Inspection:	Au 5	MAY 26 1993	22 PPG 77
Dimensional Inspection: Unit Thickness: (Per Template)		7-25-93	22 PFG 28
1: <u>686</u> 2: <u>1686</u> 3: <u>.688</u> 4: Check for Vinyl Cracks:	<u>Aso</u>	JUN 0 2 1993	22 PPG 77 22 PPG T7
Seal Evaluation: (Comments)	Mac	JUN 02 1993	22 976 17
Visual Inspection: (Place comments on attached sheet)	Ave	JUN 02 1993	22 PPG 77

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: $5-7$	1764-	-501	
Unit Serial Number: $92 - 0$	93 - H	0-388	
Bus to Bus Resistance:	Acc/Rej	<u>Date</u> <u>5-24-93</u>	Inspector 22 PPG 28
73.7 Ohms Thermal Image:		<u>5-24-93</u>	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	Ace	MAY 26 1993	22 PPG 77
Nesa Scratch Test (81 VAC):		MAY 26 1993	32 PPG 77
Light Transmittance:	80.6	MAY 26 1993	22 PPG 17
Haze:	1,5	#AY 2 8 1988	22 PPG 77
Photo (Single Exposure):		2 6 MAY 1993	22 PPG 47
Deviation Inspection: (German Light per Template) 1: 5 2: 5 3: 5 4:	pse 7	MAY 26 1993	22 PPG 77
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:488 2:485 3:494 4:	Acc .691	5-25-93	22 EPG 28
1:4088 2:4077 3:5071 4.	<u> </u>		
Check for Vinyl Cracks:	Acc	JUN 02 1993	22 PPG 77
Seal Evaluation:	ACC	JUN 021993	P8 77
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Ace	JUN 02 1993	22 PP6 70

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: 5-7/3	764-5	0/ Chy. H	
Unit Serial Number: $5-H-J$	2-16-	47	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: $(\partial/\cdot D)$ Ohms		5-21-93	55 PPG 28
Thermal Image:		5-21-93	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	Mcc.	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	<u> </u>		22 PPG43
Light Transmittance:	81,2	MAY 2 8 1983	22ºPG43
Haze:	1,5	56Y 2 5 19 9 3	
Photo (Single Exposure):	22 PFG 47	20117 7 1000	22 PPQ 8
Deviation Inspection: (German Light per Template) 1: 4344 232: 23 3: 23 4:	<u>A</u>	JUN 0.9 1993	₹2 PPG 39
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:.684 2:.679 3:.685 4:		<u> 5-26-93</u>	22 PPG 28
Check for Vinyl Cracks:	Aco	JUN 03 1993	22 PPG 77
Seal Evaluation:	Re5	JUN 0 3 1993	22 PP6 77
(Comments) WRONG SEA	LON	out and 5	·d.
Visual Inspection: (Place comments on attached sheet)	Re5	JUN 0 3 1993	22 PPS 77

ATR And	Delan	ALL	AZOUND	Edyo	af	llnit
			- W			

Thickness Template

Customer Part Number:

(Comments)

Visual Inspection:

5-71764-501

84-14-10-15-1225 Unit Serial Number: Acc/Rej Date Inspector **22** P.P.S 28 Bus to Bus Resistance: 22 EPG 28 Thermal Image: 22 PPG 77 Power to Metal: Add MAY 26 1993 Insulation Test: (2500 VAC) 22 PPG 77 ALC MAY 26 1993 Nesa Scratch Test (81 VAC): MAY 28 IFF 22 PPG 77 Light Transmittance: /, 2 #AY 28 は26 22 PPG 77 Haze: 2 6 MAY 1993 22 PPG 47 Photo (Single Exposure): MAY 26 1993 22 PPG 77 Deviation Inspection: (German Light per Template) 1: <u>3</u> 2: <u>3</u> 3: <u>3</u> Dimensional Inspection: Unit Thickness: (Per Template) 3: . 709 4:,700 2: . 704 1:,702 JUN 02 1993 22 PPG 77 Check for Vinyl Cracks: JUN 02 1993 Seal Evaluation:

(Place comments on attached sheet)

Wrong SEAL ON OUTBO Side And SEPLANT VERY BAD SLAND

Ras JUN 92 1993

22 PP6 77

ARGO.
delan
/

Thickness Template

Customer Part Number: $5-57/$	64-13	Chy-F	
Unit Serial Number: $4-H-9-$	-28-8	7	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 45% Ohms		<u>5-21-93</u>	22 PPG 28
Thermal Image:		5-21-93	22 PPG 28
Insulation Test: Power to Metal: (2500 VAC)	Acc	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	OK	MAY 2 6 1993	22PPG43
Light Transmittance:	87.1	MAY 2 6 1983	2299643
Haze:	1.2	MAY 2 9 1543	mp9635
Photo (Single Exposure):	22 PPG 47	JUN 1 4 1993	22 PPG 8
Deviation Inspection: (German Light per Template) 1: <u>3</u> 2: <u>3</u> 3: <u>3</u> 4:	_A _c ₃	- 1993 e.o nul	ŻZ FY 3 39
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: .675 2: .68/ 3: .68/ 4:	<u>ace</u> .679	5-26-93	22 PPG 28
Check for Vinyl Cracks:	Place	JUN 0 3 1993	
Seal Evaluation:	ARC	JUN 0 3 1993	17 9dg 53
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Res	JUN 0 3 199	3 n.18 F

De Lam	And	Ain	ALL	ARound	utnut

Thickness Template

Customer Part Number: 5-893	57-1		
Unit Serial Number: 3-H-4	-26-	4.5	
	Acc/Rej		Inspector
Bus to Bus Resistance: 97.0 Ohms		5-21-93	22 PPG 28
Thermal Image:		5-21-93	87 5 d a 77
Insulation Test: Power to Metal: (2500 VAC)	ACC,	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	01/	MAY 2 6 1993	22PP643
Light Transmittance:	81,1	MAY 8 6 1983	22PP64S
Haze:	_1,1_	May 8 5 10gg	22PF445
Photo (Single Exposure):	22 PPG 47.	JUN141293	52 PPQ 8
Deviation Inspection: (German Light per Template) 1: 4: 4:	<u>≠</u> 	6-5-93	- YPG
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:.678 2:.679 3:.684 4:.		5-26-93	22 PPG 28
Check for Vinyl Cracks:	RES		~ '22' P P6 7 F
Seal Evaluation:	Pes	JUN 0 3 1993	'22 PPs 77
(Comments) No Seal And B	had B	umper o	on 001Ba
Visual Inspection: (Place comments on attached sheet)	Re5	JUN 0 3 1993	22 APB 78

Visual Inspection Map & Comments

C D (a .	Agmas	10.0	mandrad		
SURTACI	e sere	N 2- 2	marked	<u> </u>	
VINLY	CHACK	4-5	MANUCE		

Thickness Template

Deviation Template

Customer Part Number: 5-7/	764-	13 Ug, F	
Unit Serial Number: 4-H-/0	-15_/	08	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance:		5-21-93	22 PFG 28
127.7 Ohms		<u> </u>	22 222 25
Thermal Image:		5-21-93	22 2PG 28
Insulation Test: Power to Metal:	Acc.	MAY 2 6 1993	22PPG43
(2500 VAC)			22PPG43
Nesa Scratch Test (81 VAC):	OK_		2277643
Light Transmittance:	<u>81, 8</u>	MAY 2 5 1993	22PPG43
Haze:	1.4	May 2 8 1963	<u> </u>
Photo (Single Exposure):	22 PFG 47	JUN 1 4 1993	22 PPG 8
	Acc	6-8-93	22 PPG 10
Deviation Inspection: (German Light per Template) 1: <u>73</u> 2: <u>73</u> 3: <u>73</u> 4:	<u>2</u> 3		
1: <u>23</u> 2: <u>23</u> 3: <u>23</u> 4:	23		
Dimensional Inspection:		JUN 1 4 1993	
Unit Thickness:	Cen	5-24-93	22 PPG 28
(Per Template)		معنی سیانی اسارانی	
1: <u>.678</u> 2: <u>.686</u> 4:			
Check for Vinyl Cracks:	Re5	JUN 0 3 1993	22 PP6 77
Seal Evaluation:		JUN 03 1993	22 P P6 77
(Comments) <u>BAO Sept And</u>	Duringa		
Visual Inspection:	Res	JUN 03 1993	<u>- 26 70 </u>
(Place comments on attached sheet)			

Visual Inspection Map & Comments

BAD SUR	froe sor	LOGATED	Throughout	The UNIT
				1
AIR And	DeLAM L	popled A	U Around	UNIT

Thickness Template

APPENDIX C
BIRD IMPACT DATA SHEETS

Sample	1.D. <u>5-89364-50</u> 2	S/N 86-H-10-06-007 Date 6/22/93
Bus to	Bus 37.5 OHMS	Delamination chk. OK

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	R.T.	70°F
Temperature O.B.	R.T.	70°F
Bird Wt. (lbs)	4.0	4.020
Bird Speed (kts)	2500	251.7

Ambient *F	70°F
Impact Loc Installation Angle	CENTER 45°
Sweep Back Angle	30°

NEW	#1	كالمه	Ω.ц
NEW	1	داس	K·H.

Shot No.: 783 Test Date: 6/74/93 Tested By: HEG.

Test Results:

OUTBOALD PLY BLOKEN. CORE PLY INTACT. SMALL AMOUNT OF BIRD IMPACTED WITNESS PLATE. BIRD ENTERED OVER UPPER EDGE OF WINDOW ON IMPACT. COMPRESSION OF IMBOALD MOUNTING O-LINGS PROBABLE CAUSE.

PPG Witness: Alanowe Date: 6/27/97

Samp le	1.D. <u>5-89354-502</u>	S/N_ 86-H-10-06-30 Date 6/22/93
Bus to	Bus 34.8	Delamination chk. OK

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	R.T.	72°F
Temperature O.B.	R.T.	72 F
Bird Wt. (lbs)	4.0	4.010
Bird Speed (kts)	250.0	251.1

Ambient °F 72°F

Impact Loc. CENTER

Installation 45°

Angle

Sweep Back

Angle

NEW	# 1	دادما	R. H.	
-----	-----	-------	-------	--

Shot No.: 784 Test Date: 622193 Tested By: HEG

Test Results:

NO DAMAGE. SMALL AMOUNT OF BIRD ENTERED OVER TOPEDGE. SAME REASONS AS SHOT# 783.

PPG Witness: Moodrul Date: 6/27/93

Sample I.D. <u>5-89</u> Bus to Bus <u>33.6</u>			-10-06-27 D	
Requirements: High Speed Film (3	s cameras) _	l€s_Spall	Shield Instal	1ed YES
Test Conditions	Requested	Actual	Ambient °F	72°F
Temperature I.B.	R.T.	72°F	Impact Loc.	CENTER
Temperature O.B.	2.7.	72°F	Installation Angle	45*
Bird Wt. (lbs)	4.0	4.010	Sweep Back	<i>3</i> °°
Bird Speed (kts)	250.0	252.8	Angle	
NEW #1 WS R	·H-			
Shot No.: 785 Test Date: 6/23/93 Tested By: HEG				

NO DAMAGE. NO BIAO RESIDUE ON WITHESS PLATE.

PPG Witness: 473/93

Test Results:

Sample 1.D. 5-893 Bus to Bus 33.5			H-10-06-096 _D on chk. <u>OK</u>	
Requirements: High Speed Film (3	cameras) <u>`</u>	(€ ∫ Spall	Shield Instal	led <u>YEs</u>
Test Conditions	Requested	Actual	Ambient *F	73°F
Temperature 1.B.	R.T.	73 °F	Impact Loc.	
Temperature O.B.	RT.	73°F	Installation Angle	45°
Bird Wt. (lbs)	4.0	4.010	Sweep Back Angle	30°
Bird Speed (kts)	250	2526	Angre	
NEW #1 W/s R	.ાન.			
Shot No.: 786 Test Date: 6/24/93 Tested By: 1185				
NO DAMAGE. NO BIRD RESIDUE ON WITHESS PLATE.				

PPG Witness: Marchael Date: 6/24/93

Sample 1.D. <u>5-89354-5</u> 2/	S/N 83-H-9-19-282 Date 7/19/93
Bus to Bus	Delamination chk. <u>AC</u>

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual]
Temperature I.B.	R.T.	72°F	
Temperature O.B.	R.T.	72°F	
Bird Wt. (lbs)	4.0	4.001	
Bird Speed (kts)	250	249.6	

Ambient *F -	72°F
Impact Loc	CENTER
Installation	450
Angle - Sweep Back Angle -	30

REPAIRED	#1	rale	1.4
NEYM ICEV	•	دىدى	ωП.

Shot No.: 792 Test Date: 7/19/93 Tested By: HEG

Test Results:

CORE PLY FAILED. NO SPACE ON WITNESS PLATE.

PPG Witness: Marchael Date: 7/19/93

Sample I.D. <u>5-89</u> Bus to Bus <u>46.0</u>			3-15 <i>-756</i> on chk. <u>co</u> k	
Requirements: High Speed Film (3	cameras) <u>\</u>	€ \$_ Spall	Shield Insta	11ed <u>YES</u>
Test Conditions	Requested	Actual	Ambient *F	73°F
Temperature I.B.	R. T.	73°F	Impact Loc.	CENTEL
Temperature O.B.	RT.	73°F	Installation Angle	
Bird Wt. (lbs)	4.0	4.005	Sweep Back Angle	30°
Bird Speed (kts)	250	249.4	, and to	
REPAIRED #1 WIS	LH.			
Shot No.: 793 Test Date: 7/19/93 Tested By: HEG-				
Test Results:				
ALL PLIES FAILED. MINOR SPACE ON WITHERS PLATE				
NO PENETLATION.				

PPG Witness: 4 Soone Date: 7/19/93

			-3-19-72 D	ate <u>7 20 9</u> 3 -
Requirements: High Speed Film (3	cameras) <u>\</u>	(돈) Spall	Shield Instal	led YES
Test Conditions	Requested	Actual	Ambient *F	73°r
Temperature !.B.	R.T.	73°F	Impact Loc	CENTER
Temperature O.B.	LT-	73°F	Installation	45°
Bird Wt. (lbs)	4.0	4.000	Angle - Sweep Back	30°
Bird Speed (kts)	250	250.1	Angle -	
REPARLED # 1 W/S L.H.				
Shot No.: 794	Test Date:	7/20/93	Tested By: H	£&
Test Results:				
OUTBOALD PLY FAILED. COLE PLY INTACT.				

PPG Witness: 4 Loopvel Date: 7/20/93

Sample 1.D.5-89354-501 S/N 86-H-12-01-146 Date 7/20193				
Bus to Bus Delamination chk				
Requirements:			·	
High Speed Film (3	cameras) 🗅	ES Spall	Shield Installed YES	
Test Conditions	Requested	Actual	Ambient 'F CONTER 75°	
Temperature I.B.	R.T.	75°F	Impact Loc. CENTER	
Temperature O.B.	LT.	75°F	Installation 450	
Bird Wt. (lbs)	4.0	4.010	Sweep Back 350	
Bird Speed (kts)	250	252.4		
REPAIRED # 1 Lols L.H.				
Shot No.: 795 Test Date: 7/20/93 Tested By: HEG				
Test Results:				
NO GLASS BREAKAGE. ALL PLIES INTACT. BENT Z				
RETAINER BADLY.				

PPG Witness: 1200000 Date: 7/70/93

Sample	1.D. <u>5-89354-501</u>	S/N 82-H-10-18-107 Date 7/20/93
Bus to	Bus 41.3	Delamination chk. Ok

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	27.	75°F
Temperature O.B.	RT.	75°F
Bird Wt. (lbs)	4.0	4.010
Bird Speed (kts)	250	249.4

Ambient *F	75 °F
Impact Loc. Installation Angle	CENTER 45°
Sweep Back Angle	300

REPAILED	# _ا سا	S L.H.
KENMILLO	1 44.	, <u> </u>

Shot No.: 796 Test Date: 7/20/93 Tested By: 1+EG

Test Results:

ALL PLIES FAILED. MINOR SPACE.

PPG Witness: Hoodree Date: 7/20/93

Sample I.D. 5-89354-501 S/N 82-H-4-6-235 Date 7/2/93				
Bus to Bus 43.6	+	Delaminati	on chk. <u>EK</u>	•
Requirements:				
High Speed Film (3	cameras) 🛚	E \$ Spall	Shield Instal	led YEJ
Test Conditions	Requested	Actual	Ambient *F	70°F
Temperature 1.B.	RT.	70°F	Impact Loc.	CENTER
Temperature O.B.	R.T.	70°F	Installation Angle	450
Bird Wt. (1bs)	4.0	4.005	Sweep Back Angle	300
Bird Speed (kts)	250	251.0	7915	
REPAIRED #1 Ws	L.H.			
Shot No.: 797 Test Date: 7/2/93 Tested By: HEG				
Test Results:				
CUTBOALD PLY FAILED. COLE PLY INTACT				

PPG Witness: 12/93

Sample I.D. 5-89354-501 s/n 83-H-11-21-325 Date 7/2/93 Bus to Bus __45.7 Delamination chk. _______ Requirements: High Speed Film (3 cameras) YES Spall Shield Installed YES Requested Actua1 Test Conditions Ambient *F Temperature I.B. 7008 R.T. Impact Loc. Installation Temperature O.B. RT. 70°F Angle Sweep Back Bird Wt. (1bs) 4.0 4.005 Angle Bird Speed (kts) 250 247.5 REPAIRED # 1 W/S L.H. Shot No.: 798 Test Date: 7/2/93 Tested By: HEG Test Results: ALL PLIES FAILED. COME PLY SPALLED BUT NOWE ON

PPG Witness: 2/2/93

WITNESS PLATE.

Sample 1.D. 5-8939	54-50 <u>1</u>	s/N 89-28	6-140-697	Date 7/22/9
Bus to Bus38.0		Delaminati	on chk	
Requirements: High Speed Film (3	cameras) _	(ES Spall	Shield Insta	11ed 7E S
Test Conditions	Requested	Actual	Ambient *F	<u> </u>
Temperature I.B.	R.T.	45°F	Impact Loc.	CENTER
Temperature O.B.	R.T.	65°F	Installation Angle	
Bird Wt. (lbs)	4.0	4,000	Sweep Back Angle	30°
Bird Speed (kts)	250	250.8	Angre	,
REPAILED				
Shot No.: 799	Test Date:_	7122/93	Tested By: H	-E.G-
Test Results:				
NODAMAGE				

PPG Witness: A Soobul Date: 7/22/93

Sample 1.D. <u>5-89357-1</u>	s/n B75-1149	Date 91193
Bus to Bus 71.1	Delamination chk. Sec	DATA SHEET

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	RT.	7108
Temperature O.B.	R.T.	71°F
Bird Wt. (1bs)	4.5	4.015
Bird Speed (kts)	250	247.5

Ambient *F	714
Impact Loc. Installation	CENTER 58.2°
Angle Sweep Back Angle	35°

REPAIRED #4 WHOW L.H.

Shot No.: 915 Test Date: 91193 Tested By: HEG

Test Results:

OUTBOALD GUAST FAILED. BILD PENETLATION BETWEEN O.B. RETAINEL & GASKET ALONG AFT EDGE & AT TOP AFT COLUEL. BENT 14 MANIMINE BOLTS.

PPG Witness: Maleone Date: 9/1/93

Sample I.D. <u>5-717</u> Bus to Bus		S/N <u>92-06</u> Delaminati		_{ate} 41193 C	
Requirements: High Speed Film (3 cameras) YES Spall Shield Installed YES					
Test Conditions	Requested	Actual	Ambient *F	718	
Temperature !.B.	R.T.	7108	Impact Loc.	CENTER	
Temperature O.B.	Q.T.	7107	Installation Angle		
Bird Wt. (1bs)	4.5	4.020	Sweep Back	35°	

New#4 WINDOW LH.

251.3

Shot No.: \$16 Test Date: 91193 Tested By: HEG

250

Test Results:

Bird Speed (kts)

No DAMAGE. SMALL AMOUNT OF BILD PENETLATION
BETWEEN D.B. RETAINER & WINDOW GASKET. NO BENT
BOLTS.

PPG Witness: M. Showe Date: 9/1/93

Sample I.D. <u>5-71764-501</u> S/N <u>92-064-H0-473</u> Date <u>91193</u>

Bus to Bus <u>69.4</u> Delamination chk. <u>Ok</u>

Requirements:

High Speed Film (3 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	R.T.	72°F
Temperature O.B.	RT.	72°F
Bird Wt. (1bs)	4.0	4.015
Bird Speed (kts)	250	248.9

Ambient F 72 F
Impact Loc.
Installation 58.2 Sweep Back
Angle 35

HEW #4 WANDOW L.H.

Shot No.: 817 Test Date: G1193 Tested By: HEG

Test Results:

NO DAMAGE. NO BENT BOLTS. MINDE BIND PENETRATION APT EDGE & BOTTOM EDGE.

PPG Witness: Date: 9/1/93

		acterie			
Sample 1.D. <u>5-717</u> Bus to Bus			9-40-350 D. on chk. OK		
Requirements: High Speed Film (3 cameras) YES Spall Shield Installed YES					
Test Conditions	Requested	Actual	Ambient °F -	7207	
Temperature I.B.	RT.	72°F	Impact Loc	CENTER	
Temperature O.B.	RT.	72°F	Installation Angle	58·2°	
Bird Wt. (lbs)	4.0	4.020	Sweep Back Angle	35°	
			Aligie -		

Shot No.: 818 Test Date: 9/1/93 Tested By: HEG

225-1

250

Test Results:

Bird Speed (kts)

NO TEST. MISFIRE. CAMERA FILM BROKE. LARGE GLASS CHIP BLOWN OFF LOWER AFT CORNER OFFOSITE TERMINAL BLOCK. UNIT WILL BE REPLACED BY PIG & DATA REUSUED.

PPG Witness: 19 Date: 9/1/9>

Sample 1.D. 5-71764-501				Date 9/29/93
Bus to Bus 69.3 Delamination chk. OK			DIC	
Requirements: 7				
High Speed Film (cameras) YES Spall Shield Installed YES				
Test Conditions	Requested	Actual	Ambient *F	72°F
Temperature I.B.	R. T.	73°F	Impact Loc	CENTER
Temperature O.B.	RT.	73°F	Installation	on 58.2
Bird Wt. (1bs)	4.0	4015	Sweep Back Angle	35 °
Bird Speed (kts)	250	248.4	Angre	
NEW #4 WARDOW L.H.				
Shot No.: 835	Test Date:	9129193	Tested By:	HEC
Test Results:				
No DAMAGE.				

PPG Witness: 1200 Date: 9/79/93

			9-140-186 D on chk. O	
Requirements: High Speed Film (6	2 -cameras)	(ES Spall	Shield Instal	1ed <u>7ES</u>
Test Conditions	Requested	Actual	Ambient *F	73 %
Temperature I.B.	RT.	73%	Impact Loc.	CENTER
Temperature O.B.	RT.	73°F	Installation Angle	58.2°
Bird Wt. (1bs)	4.0	4.005	Sweep Back Angle	35°
Bird Speed (kts)	250	247.8	Augle	

NEW# 4 WHOW L.H. - REPLACEMENT FOR SHOT #818

Shot No.: 836 Test Date: 9/29/93 Tested By: HEG

Test Results:

NO DAM AGE

PPG Witness: Date: 9/29/9>

Sample 1.D.5-71764-501 S/N 85-14-07-01-276 Date 9/29/93

Bus to Bus OPEN Delamination chk. SEE DATA SHEET

Requirements:

High Speed Film (2 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature I.B.	Riti	73°F
Temperature O.B.	27.	73°F
Bird Wt. (lbs)	4.0	4.015
Bird Speed (kts)	250	248.7

Ambient F

Impact Loc.
Installation
Angle
Sweep Back
Angle

35°

REPAIRED \$4 WARREN L.H.

Shot No.: 837 Test Date: 9/29/93 Tested By: HEG

Test Results:

NO DAMAGE

PPG Witness: Wood

Date: 9/29/93

Sample 1.D. 5-/1164-50(S/N-70-11)			-MD-121	Date 716717
Bus to Bus _ OPEN	<u> </u>	Delaminati	on chk. <u>C</u>	K
Requirements: High Speed Film (2)	cameras)	(ES Spall	Shield Insta	11ed <u>7E5</u>
Test Conditions	Requested	Actual	Ambient *F	74°F
Temperature I.B.	ea.	74°1°	Impact Loc.	A- 100
Temperature O.B.	LT.	74°R	Installatio	
Bird Wt. (lbs)	4.0	4.005	Sweep Back Angle	35 -
Bird Speed (kts)	250	247.1	Aligie	
REPAILED #4 W	ا حين المريد	H.		
shot No.: 838	Test Date:	9129193	Tested By: <u>A</u>	ÆG
Test Results:				
No DAMAGE				

PPG Witness: 4 2 Date: 9/29/93

Sample I.D. <u>5-7 76</u> Bus to Bus			-23-184 ton chk. SEE	DATA SHEET
Requirements:	Z Pcameras) _	<u>Υ∈Σ</u> Spall	Shield Instal	1ed <u>YES</u>
Test Conditions	Requested	Actual	Ambient °F	70°F
Temperature I.B.	RT.	7008	Impact Loc.	
Temperature O.B.	P.T.	70°17	Installation Angle	58.20
Bird Wt. (lbs)	4.0	4.015	Sweep Back	36 *

4.015

251.2

Angle

REPAILED #4 WINDOW L.H.

250

Shot No.: 839 Test Date: 9130 193 Tested By: 14EG

Test Results:

Bird Speed (kts)

OUTBOARD PLY Broken. No BILD PENETRATION. INTERLAYER TORM IN LOWER POLWARD CORNER.

Sample	1.0.5-71764-501 eng. H.	s/N_7-H-2-4-35	Date 9/30/93
Bus to	Bus 119.8	Delamination chk.	SEE DATA SHEET

Requirements:

High Speed Film (2 cameras) YES Spall Shield Installed YES

Test Conditions	Requested	Actual
Temperature 1.B.	R.T.	71°F
Temperature O.B.	L.T.	71°F
Bird Wt. (lbs)	4.0	4.005
Bird Speed (kts)	250	750·8

Ambient *F	718
Impact Loc.	وصاتقال
Installation Angle	58.2°
Sweep Back Angle	35°

REMINED #4 WINDOW . L.H.

Shot No.: 840 Test Date: 9130193 Tested By: HEG

Test Results:

PLUTURE FRAME REMANING IN FIXTURE.

PPG Witness: Date: 0/30/99

Sample I.D. <u>5-7174</u> Bus to Bus <u>86.</u>		· ————	0-9-69 D.	
Requirements: High Speed Film (2)	cameras)	ES Spall	Shield Instal	1ed YE
Test Conditions	Requested	Actual	Ambient °F	7201
Temperature I.B.	Dit	72°F	Impact Loc.	COUTER
Temperature O.B.	P_T.	72°F	Installation	58.20
Bird Wt. (1bs)	4.0	4.010	Sweep Back Angle	35
Bird Speed (kts)	250	251.0	Aligie	
ROMEO #4 W	ماه ۱۹۵۸	し.H.		
Shot No.: 841	Test Date:	9/30/93	Tested By: <u>H</u>	EG
Test Results:				
NO DAMAGO	=			

PPG Witness: 12000 Date: 9/30/93

Sample 1.D. <u>5-7174</u> Bus to Bus			12-6-392 D		
Requirements: High Speed Film (2 cameras) YES Spall Shield Installed YES					
Test Conditions	Requested	Actual	Ambient *F	7208	
Temperature I.B.	R.T.	728	Impact Loc.	CENTER	
Temperature O.B.	R.T.	7201		58.2°	
Bird Wt. (1bs)	4.0	4.010	Sweep Back Angle	35	
Bird Speed (kts)	250	८५२.८			
Shot No.: 842 Test Results:	Test Date:		Tested By: H	EE	

PPG Witness: 16 Date: 9/30/93

Sample I.D. 5-71764-501 S/N 6-H-12-02-36 Date Laligy

Bus to Bus 96-8 Delamination chk. SEE DATA SHEET

Requirements:

High Speed Film (2 cameras) YEI Spall Shield Installed YEI

Test Conditions	Requested	Actual
Temperature I.B.	Rit.	72°F
Temperature O.B.	P.T.	72 F
Bird Wt. (1bs)	4.0	4.015
Bird Speed (kts)	250	250.3

Ambient F

Impact Loc.
Installation
Angle
Sweep Back
Angle

72 F

CENTEL

35 °

RETAILED #4 WINDOW LH.

Shot No.: 843 Test Date: 101197 Tested By: HEC

Test Results:

BOTH GLASS PLIES FAILED. 4" TEAR IN INTERLAYER ALDUND LOWER FORWARD COLVER.

PPG Witness: Mt Coolee Date: 10/1/93

APPENDIX B
GENERAL INSPECTION DATA SHEETS

This page intentionally left blank.

Customer Part Number: 5-89	<u> 354 - 5</u>	102	
Unit Serial Number: 86-H	-10-01	6-062	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance:	Don_	5-21-93	22 PPG 28
Thermal Image:		<u>5-25-93</u>	इंट इश्व इंट
S.E. Resistance: 307	acci	5-24-93	82 299 58
Insulation Tests Power to S.E.:	ok	MAY 25 1993	22 P P8 77
(2500 VAC) S.E. to Metal: S.E. to S.E.:	01	•	
Nesa Scratch Test (350 VAC):	of.	MAY 2 5 1993	·2 PP6 🗯
Light Transmittance:	77.6	MAY 2 5 1993	22 PPG 77
Haze:	1,1	MAY 2 5 1993	22 PPG 77
Photo (Single Exposure):		MAY 2 6 1993	22 PPG 4
Deviation Inspection:	(Rece)	<u> </u>	22 PPG 28
(German Light per Template) 1: 3.0 2: 2.0 3: 1.0 4: 1.0 6: 1.0 7: 1.0 8:	3.0		
Dimensional Inspection:		5-25-932 2,	22-200-25-6 %,
	0-	,	22 PPG 28
Unit Thickness: (Per Template)	Occ_	<u>5-25-93</u>	24.11.0 20
1: <u>1.100</u> 2: <u>1.102</u> 3: <u>1.103</u> 4: 5: <u>1.105</u> 6: <u>1.104</u> 7: <u>1.105</u> 8:	1,10 <u>3</u> 1,10 <u>3</u> 1,100		
Seal Evaluation:	Aca	JUN 0 2 1993	22 PPG 77
(Comments)			
Visual Inspection:	Acc	JUN 02 1993	22 PP6 77
(Place comments on attached sheet)			

Acr 6-393 \$ PP 17 Check for vinyl cracks / Visual Inspection Map & Comments Thickness Template 1-105 (1) 3 1.103 (F) 1.103 91.105 11/.103 . 3.1.102 1.105 1/103 3 1.105 @1.10+ @ 1.100 1.100

Customer Part Number: 5-89354-502				
Unit Serial Number: 86-H-	10-06-	-092_		
	Acc/Rej	<u>Date</u>	Inspector	
Bus to Bus Resistance: 34,9 Ohms	acc	5-21-93	22 PPG 28	
Thermal Image:		5-20-93	22 EP9 28	
S.E. Resistance: 309	Acc	5-21-93	22 PPG 28	
Insulation Test: Power to S.E.:	pre	JUN 04 1993	22 PM W	
(2500 VAC) S.E. to Metal: S.E. to S.E.:	Hoe			
Nesa Scratch Test (350 VAC):	_A	70N 0 8 1883	2 277439	
Light Transmittance: 737		JUŅ 0.9 1993	#4 7 r G 59	
Haze:	A	ากห์ ถ ล 1 683	Z2 7/4 39	
Photo (Single Exposure):		JUN 1 4 1993	²² EPG 8	
Deviation Inspection:	Alc	5-25-93	22 PPG 28	
(German Light per Template) 1:// 2: 2.0 3:0.5 4:	1.0			
5: <u>2.0</u> 6: <u>0.5</u> 7: <u>//0</u> 8:	<u>3,0</u>			
Dimensional Inspection:				
Unit Thickness:	Acc.	<u>5-25-83</u>	22. P PG 20	
	1.100			
5: $\frac{1102}{9:\frac{1}{100}}$ 6: $\frac{1}{100}$ 7: $\frac{1}{105}$ 8: $\frac{1}{100}$ 10: $\frac{1}{1098}$ 11: $\frac{1}{102}$ 12:	1.102 1,100		,	
Seal Evaluation:	Dec	JUN 0 4 1993	22 PPG 77	
(Comments)				
Visual Inspection:	soe	JUN 04 1993	22 P P6 77	
(Place comments on attached sheet)				

Customer Part Number: 5-893	364-50	2	
Unit Serial Number: 86-4-	10-06-	013	
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 33.8 Ohms	Acc	5-21-93	22 PPG 28
Thermal Image:		5-20-93	22 PPG 28
S.E. Resistance: 3/4	Bec	5-24-93	22 P.PG 28
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	W DOW	MAT 25 1993	22 PP6 77;
S.E. to S.E.: / Nesa Scratch Test (350 VAC):	WOK	MAY 25 1993	22 PPG 77
	479.7	MAY 25 1993	22 PP6 77
	W/.3	MAY 25 1993	PP6 JA
naze.		MZ; 2 - 1993	22 PPG 4
Photo (Single Exposure):			87 544 77
Deviation Inspection: (German Light per Template) 1: 0.5 2: 2.0 3: 0.5 4 5: 1.0 6: 1.0 7: 2.0 8	: 1,0 : 0,5	6-25-93	<u> </u>
Dimensional Inspection:			
Unit Thickness:	acc.	5-25-93	82 259 22
5: 1.092 6: 1.093 7: 1.094 8	: 1.098 : 1.094 :1.095		
Seal Evaluation:	Acc	JUN 02 1993	22 PPG 77
(Comments)			
Visual Inspection: (Place comments on attached sheet)	Acc	JUN 02 1993	22 PPG 77

1.103

(S)1.6

(b) 1.0

Customer Part Number: 5-89354-502				
Unit Serial Number: \$6-H-/0-06-048				
	Acc/Rej	Date	Inspector	
Bus to Bus Resistance:	Doc	5-21-93	22 PPG 28	
<u>.36.6</u> Ohms	ŕ		.m -u-l	
Thermal Image:		5-20-93	55 Ebe 58	
S.E. Resistance: 3/0	(Rec.	5-24-93	22 PPG 28	
Insulation Test: Power to S.E.:	_oK	mai 25 19 93	22 PPG 77	
(2500 VAC) S.E. to Metal: S.E. to S.E.:	- of	·		
Nesa Scratch Test (350 VAC):	of C	MAY 25 1993	22 PPG 77	
Light Transmittance:	80.9	MAY 25 1993	22 PPG 77	
Haze:	1.1	MAY 25 1993	22 PPG 77	
Photo (Single Exposure):		MAY 2 8 1993	22 PPG 4	
Deviation Inspection:	5Acc	5-25-93	87 57 1 77	
(German Light per Template) 1: $\mathcal{L}_1\mathcal{O}$ 2: $\mathcal{L}_1\mathcal{O}$ 3: $\mathcal{L}_1\mathcal{O}$ 4:	0.5			
5: 110 6: 015 7: 110 8:	2.0			
Dimensional Inspection:				
Unit Thickness:	Dec.	5-25-93	82 299 28	
(Per Template)	1.095			
5://0 75 6://097 7://02 8:	1.100			
9: <u>1,100</u> 10: <u>1,103</u> 11: <u>1,097</u> 12:	1.197	IIIN	20 pDo =>	
Seal Evaluation:	Aco	JUN 02 1993	22 PPG 77	
(Comments)				
		JUN 02 1993		
Visual Inspection: (Place comments on attached sheet)	Acc		22 PPG 77	

Thickness Template

Customer Part Number: 5-89354-3096				
Unit Serial Number: 83-H-11-7-432				
•	Acc/Rej	Date	Inspector	
Bus to Bus Resistance: HI.O Ohms	Dec	5-21-93	22 PPG 28	
Thermal Image:		5-26-93	22. PPG 28	
S.E. Resistance: 315+315	Pra.	521-93	22 PP: 28	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Acr	0 4 1993	22 PPs 🅦	
S.E. to S.E.:	Ass	JUŅ 0. 9 1993	25 8⊬3 39	
Nesa Scratch Test (350 VAC):		1993 ב 0 אחר	Zz 6 6 39	
Light Transmittance: 76.4 Haze:	_N	JUN 0 8 1993	Z2 7 C 4 33	
Photo (Single Exposure):		JUN 1 4 1993	?2 PPG 8	
Deviation Inspection: (German Light per Template) 1: 3.0	200 3.0 1.0	<u>5-26-93</u>	22 RPG 20	
Dimensional Inspection:		5-26-43	22 PPG 28	
5:1.103 6:1.102 7:1.102 8:	1.101 1.102 1.098	<u> </u>		
Seal Evaluation: (Comments) The Seal 115elf Aid Jos but A	Re5 Looks	JUN 04 1993 600 J 600 J 600 J	22 PPS 77 and Bumpa water	
Visual Inspection: (Place comments on attached sheet)	Pe5	JUN 0 4 1993	22 P Ps 77	

Visual Inspection Map & Comments

Ali, Delam And WATER JUST About ALL The WAY Around Unit

Thickness Template

5-89354-501 Customer Part Number: 82-H-10-18-105 Unit Serial Number: Acc/Rej <u>Date</u> Inspector 22 PPG 28 Bus to Bus Resistance: 4.3.8 Ohms 22 979 22 Thermal Image: 3 308 5-21-83 22 PPG 28 S.E. Resistance: JUN 04 1993 22 PPs 77 Power to S.E.: Insulation Test: S.E. to Metal: (2500 VAC) S.E. to S.E.: Nesa Scratch Test (350 VAC): 😤 Pra 39 JUN 0.9 1993 10 i 0 i 1993 K Frady Light Transmittance: 86 Ero 39 100 0'A 1883 Haze: JUN 1 4 1993 22 PPG 8 Photo (Single Exposure): 22 PPG 28 Deviation Inspection: (German Light per Template) 3: 1,0 7: 2.0 5: <u>2.0</u> 6: <u>/. i)</u> Dimensional Inspection: 22 896 28 Unit Thickness: (Per Template) 2:1.097 4:1.100 1:1.099 5:1.099 6:1,093 JUN 04 1993 Seal Evaluation: (Comments) JUN 04 1993 22 PP6 77 Visual Inspection: (Place comments on attached sheet)

ACC JUN 0 4 1993 .2 PP6 77 Check for vinyl cracks Visual Inspection Map & Comments 1515 UNIT DeLam AIR Bottom Locate sc R Thickness Template 3/100 91092 **(1)00** 10/095 · (2) 1097 3 1099 21097 @1095 ©1098 1099 Deviation Template 31.0 ⊕ 05 72.0 220

Customer Part Number: 5-893	54-50	<u> </u>	the second
Unit Serial Number: \$8-H-02-08-436			
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: <u>H1.8</u> Ohms		5-21-93	32 PPG 28
Thermal Image:		5-20-93	22 PPS 28
S.E. Resistance: 308	Acc	5-21-93	22 PPG 28
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Aga	JUN 0 4 1993	22 PPB 774
S.E. to S.E.: (12.8 Re.) + 16 H Nesa Scratch Test (350 VAC):	#	ากห์ 0 อ เ ล ือ3	227rg 39
Light Transmittance: 73.6	A	10N 0 a 1993	KL 7 r v 39
наze: 2.3	_A	JUŅ 0 H 1993	ZZ 200 39
Photo (Single Exposure):	•	JUN 1 4 1993	22 PPG 8
Deviation Inspection: (German Light per Template) 1: 0.5	1.0 1.0	<u>5-25-93</u>	22 PPS 28
Dimensional Inspection:			
		<u>5-25-93</u>	22 PPS 28
Seal Evaluation:	Re5	JUN 04 1993	22 PPG 77.
(Comments) Sept Needs	Cuttin	y Brook	on outbe
Visual Inspection:	Re5	JUN 0 4 1993	22 PPS 77

Visual Inspection Map & Comments

AIR and Dolan Located ALL ARound The

Thickness Template

Customer Part Number: 5-89354-50/				
Unit Serial Number: 82-H-12-6-431				
	Acc/Rej	Date	Inspector	
Bus to Bus Resistance:		5-21-93	87 542 ZZ	
<u>#3.9</u> Ohms			82 pdd 77	
Thermal Image:		5-20-93	86.550.61	
S.E. Resistance: 314	acc.	5-24-93	22 EPG 28	
Insulation Test: Power to S.E.:	Aco	MAY 25 1993	22 PP6 17	
(2500 VAC) S.E. to Metal: S.E. to S.E.:	A der	•	•	
Nesa Scratch Test (350 VAC):	Acc	- MAY 25 1993	22 PP G 77	
	87.5	MAY 25 1993	22 p P6 77	
Light Transmittance:		MAY 25 1993	22 PP6 77:	
Haze:	1		22 PPG 4	
Photo (Single Exposure):		MAY 2 6 1993	22 22 22	
Deviation Inspection: (German Light per Template)	acc	5-24-93	22 PPG 28	
$1: 2 \cdot 0 \qquad 2: 2 \cdot 0 \qquad 3: 2 \cdot 0 \qquad 4:$	2.0			
$5: \underline{2\cdot0}$ $6: \underline{2\cdot0\cdot0}$ $7: \underline{2\cdot0}$ $8:$	210			
Dimensional Inspection:				
Unit Thickness:	Are	5-24-93	22 PPn 2n	
(Per Template) Ek'	1.066			
5:1,063 6:1.063 7: <u>1,067</u> 8:	1.063			
$9: \overline{1,063}$ $10: \overline{1.062}$ $11: \overline{1062}$ $12:$		JUN 02 1993	22 PPG 77	
Seal Evaluation: (Comments)	Asa			
(COMMISSION)				
	01	JUN 02 1993	22 PP8 77	
Visual Inspection: (Place comments on attached sheet)	ReJ	34.100	42 419 11	

Ase 6-3-83 22 086 77 Check for vinyl cracks Visual Inspection Map & Comments Delam DelAm Thickness Template 3 1.063 1.066 91.063 11-062 - 31.081 1.067 1:068 31-063 1.062 1.063 @1063 Deviation Template 3 210 (F) 2,0 320 (1) 2.D 720

(b) LD

S 200

0,20

Customer Part Number: 5-8933	54-50) / ———	
Unit Serial Number: 1-# -/0-	5-480	<u> </u>	
	Acc/Rej	Date	Inspector
∨ Bus to Bus Resistance: <u>#2,2</u> Ohms		<u>5-21-93</u>	22 PFG 28
Thermal Image:		5-19-93	22 RPG 23
√S.E. Resistance:	*	5-24-93	
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	Asp.	MAY 2 5 1993	22 PP6 77:
Nesa Scratch Test (350 VAC):	Anc	MAY 25 1993	22 PPG 77
Light Transmittance:	826	MAY 2 5 1993	22 PP6 7
Haze:	1.2	MAY 25 1993 3	22 PP6 77
Photo (Single Exposure):		MAY 2 6 1993	22 PPG 4
Deviation Inspection: (German Light per Template) 1:2:0 2:3:0 3:2.0 4:	2.0 2.0	5-24-93	<u> </u>
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:././03	-	5-24-93	<u> </u>
Seal Evaluation: (Comments) WRONG SEAL	Be5	JUN 02 1993 1785 5.2	22 PP6 77:
Visual Inspection: (Place comments on attached sheet)	ReJ	JUN 02 1993	22 pPs 77

Air

Thickness Template

Customer Part Number: 5 - 89354 - 501				
Unit Serial Number: 83-H-	9-19-	294		
	Acc/Rej	<u>Date</u>	Inspector	
Bus to Bus Resistance: 50.8 Ohms		5-21-23	PPG 28	
Thermal Image:		K-20-93	22 PPG 28 22 PPG 28	
S.E. Resistance: (314	ace	5-21-93		
Insulation Test: Power to S.E.:	Asc	JUN 0 4 1993	.P6 77	
(2500 VAC) S.E. to Metal: S.E. to S.E.: Nesa Scratch Test (350 VAC):	Jut 2	JUN 0 9 1993	22 773 39	
Light Transmittance: 77.0		JUN 0 % 1993	7% PFG 39	
/.7	<u> </u>	JUN 0 > 1993	LZ Pru JS	
Photo (Single Exposure):		JUN 1 4 1993	22 PPQ 8	
Deviation Inspection: (German Light per Template) 1: $2 \cdot 0$	110 3.0	<u>5-25-93</u>	22 EFS 28	
Dimensional Inspection:				
7.77		<u>£-25-93</u>	22 EFG 28	
9: <u> ./03</u> 10: <u> ./02</u> 11: <u>///02</u> 12: Seal Evaluation:		JUN 0 4 1993	22 PP6 7	
(Comments) Unit Appe	ARS TO	Be Con	ien apost	
Visual Inspection: (Place comments on attached sheet)	Res	JUN 04 1993	22 PP6 77	

Res JUN 04 1993 22 PPG 77 Check for vinyl cracks Visual Inspection Map & Comments みりり ARound uniT. DOLAM The DUER SER Thickness Template 1100 31099 (1) 1000 (2) 1099 9 1105 110x 31104 (1)094 P 1107 @109b @/106 Deviation Template

Customer Part Number: 5-89:	3 <i>5</i> 4- 5	01	
Unit Serial Number: 82-H-	9-6-	537	
•	Acc/Rej	Date	Inspector
Bus to Bus Resistance: H2./ Ohms		5-21-93	22 PPG 28
Thermal Image:		<u>5-20-93</u>	88 agg 26
S.E. Resistance: 3/2	Acc	5-21-93	<u>22</u> 28
Insulation Test: Power to S.E.:	Acc	JUN 0 4 1993	22 PPG 77
S.E. to Metal: S.E. to S.E.: Nesa Scratch Test (350 VAC):	= A	JUN 0 × 1993	22 #79 3 9
742		700 6 0 MAT	ZZ ?ru 39
Light Transmittance: //2		JUN 0. 8 1593	Zzitru 39
Haze:			
Photo (Single Exposure):		JUN 1 4 1993	22 PPG 28
Deviation Inspection: (German Light per Template) 1: 0.65	110 2.0	<u>5-26-93</u>	
Dimensional Inspection:			2 PPs 28
Unit Thickness: (Per Template)		5-26-93	41730
- 1112-7 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		าร์ปู่ท 04 363	
Seal Evaluation:	Res "	the way	22 Pro 77
(Comments) wrong seel	on du		
Visual Inspection: (Place comments on attached sheet)	Res	JUN 0 4 1993	22 P Pa 7 7

Check for vinyl cracks

COLD AND MAN AND COLD

ACC JUN 0 4 1993 22 PP6 77

Visual Inspection Map & Comments

Air & Delan Located All Around UNIT.

Thickness Template

Customer Part Number: Unit Serial Number: Inspector Acc/Rej Date 5-21-93 22 PPG 28 Bus to Bus Resistance: ルルユ Ohms 22 POG 28 Thermal Image: 22 PPG 28 S.E. Resistance: 313 JUN 04 1993 22 PPG 77 Power to S.E.: Insulation Test: S.E. to Metal: (2500 VAC) S.E. to S.E.: DIST. FWP + HTT Swicen 22 PPG 39 Nesa Scratch Test (350 VAC): JUN 0 = 1993 JUN 0 # 1993 77.8 Z2 ? : 3 .9 Light Transmittance: 104 0 a 1893 Haze: 22 PPC 8 JUN 1 4 1993 Photo (Single Exposure): 5-25-93 **22** PPG 23 Deviation Inspection: (German Light per Template) 1: 2,0 2:<u>[,])</u> 3:1.0 7: <u>//./)</u> 5:<u>///</u>___ 6:015 Dimensional Inspection: Rec 5-25-93 22 PPG 27 Unit Thickness: (Per Template) 4: 1.101 2:1.099 . 3:<u>///02</u> 1:1.102 8:1./02 7:1.102 5:1.102 6:1.107 11: 1.101 12:1100 10:1106 9:/1102 JUN 0 4 1993 22 PPG 77 Seal Evaluation: (Comments) Needs CUTTIZE 19 20月7月 JUN 0 4 1993 Visual Inspection: (Place comments on attached sheet)

2

©110°

1102

(1)80)

Customer Part Number: 5-89364-502					
Unit Serial Number: $86-14-10-06-007$					
	Acc/Rej	Date	Inspector		
Bus to Bus Resistance: 277	Bus	5-21-83	22 PPG 28		
Bus to Bus Resistance. 37.5 Ohms	<u></u>				
Thermal Image:		5-21-93	22 PPG 28		
S.E. Resistance: 308	aca.	5-24-93	22 PPG 28		
38	WK	MAY 2 5 1993	22 P P6 77		
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Mod		• • • • • • • • • • • • • • • • • • • •		
S.E. to S.E.:	RO OF	MAY 25 1993	66 600 m		
Nesa Scratch Test (350 VAC):	to.	···	22 PPG 77		
Light Transmittance:	86.3	MAY 25 1993	22 PP6 77		
Haze:	1.4	MAY 25 1993	22 PPG 77		
		MAY 2 5 1993	22 PPG 4		
Photo (Single Exposure):	<i>P</i>	5-25-93	8 Z 523 ZZ		
Deviation Inspection: (German Light per Template)	ucez_	<u> </u>			
1: 0.5 2: 1.0 3: 3.0 4	: 1,0 : 0,5	- <u></u>			
$5: \underline{\rho_1 \kappa}$ $6: \underline{I, 0}$ $4: \underline{J_1 0}$ $6: \underline{I, 0}$		•			
Dimensional Inspection:					
	Brc.	5-25-93	82 254 52		
(Per Template)	: 1.095	_ :			
5:1.095 6:1.094 7:1.095 8	:11093				
9:1.096 10:1.097 11:1.093 12	: <u>[.091</u>	JUN 02 1993	22 PP 6 77		
Seal Evaluation:	Acc		277077		
(Comments)					
Visual Inspection:	Acc	JUN 02 1993	<u>₽</u> ₽Р6 77		
(Place comments on attached sheet)				

100

Customer Part Number: _5-89354-502			
C/ 1/ 1; A/ AZD			
Unit Serial Number: 8 6 H-1			Tomoston
–	Acc/Rej	Date	Inspector
Bus to Bus Resistance:	· Reci	5-21-93	22 PPG 2ε
Bus to Bus Resistance. 34.8 Ohms			22 PPG 28
Thermal Image:		5-20-93	BC 229 50
S.E. Resistance: \$ 3/2	acc.	5-24-93	22 PPG 28
·	whole	MAY 25 1993	22 PPG 77
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	Wok		
S.E. to S.E.:	War.	MAY 25 1993	
Nesa Scratch Test (350 VAC):	Mor		22 PPG 77
Light Transmittance:	27.3	MAY 25 1993	22 PPG 77
	1.3	MAY 25 1993	22 PP8 77
Haze:			•
Photo (Single Exposure):			22 PPG 28
Deviation Inspection:	acc	5-25-93	ZZ PP G Z8
(German Light per Template) 1: 0.4 2: 3.0 3: 2.0 4	:1.0 :2.0	•	
5: <u>0:5</u> 6: <u>0:5</u> 7: <u>1:0</u> 8	: <u>2.U</u>		
		MAY 2 5 1993	22 FFG 4
Dimensional Inspection:			
Unit Thickness:	Acc/	5-25-93	22 EFG 28
(Per Template)	1.008		
1:////3	: 1.098		
	: <u>1.095</u>		
J. 1107 1	Acc	JUN 02 1993	22 PPB 77
Seal Evaluation:	<u> Poc</u>		
(Comments)			
	A	JUN 02 1993	22 PPG 77
Visual Inspection:	<u>Ros</u>		
(Place comments on attached sheet	,		

.

Customer Part Number: 5-89	354-5	02_	
Unit Serial Number: \(\frac{6}{4} - H - \)	10-06	-022	
onic serial serial	Acc/Rej		Inspector
	Ar.	5-21-93	22 PPG 28
Bus to Bus Resistance: 33.6 Ohms	griz		
Thermal Image:		5-20-93	22 PPG 28
-	acci	5-24-23	22 PPG 28
J.H. 165200	ok.	MAY 25 1993	22 PP6 77
(2500 VAC) S.E. to Metal:	ON TOP		
S.E. to S.E.:	-127(····	MAY 25 1993	22 PPG 77
Nesa Scratch Test (350 VAC):	nd/		22 PPG 77
Light Transmittance:		MAY 25 1993 MAY 25 1993	22 PPG 77
Haze:	<u>/.3</u>		22 PPG 4
Photo (Single Exposure):		MAY 2 5 1993	
Deviation Inspection:	·acc_	<u>5-25-93</u>	22 EPG 28
(German Light per Template) 1:0.5 2:0.0 3:/.0 4:	0.0 20		
$5: \underline{n}, \overline{5}$ $6: \underline{I}, \overline{0}$ $7: \underline{2}: \overline{0}$ $8:$: <u>20</u>	-	
			·
Dimensional Inspection:	ach.	5-25-93	22 EPG 28
Unit Thickness: (Per Template)		<u> </u>	
11000 21097 3: 1,093 4;	1 <u>.098</u> :1-163		
	1.10D	JUN 02 1993	- 50 4 77
Seal Evaluation:	Asc	JUN () 2 1555	22 PPG 77
(Comments)			
		1111 c 2 4062	
Visual Inspection:	Ada	JUN 02 1993	22 P ?6 77
(Place comments on attached sheet)	•	• -	

= :	354-5		
Unit Serial Number: 86-H-1	10-06-	096	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance: 23.5 Ohms	Dec	5-21-93	82 249 25
Thermal Image:		<u>5-20-83</u>	22 PPG 28
S.E. Resistance: 4 300	accl.	5-24-93	22 PPG 28
Insulation Test: Power to S.E.:/ (2500 VAC) S.E. to Metal:	SON .	MAY 2 5 1993	22 PP6 77
S.E. to S.E.:	WOOL	MAY 25 1993	22 PPG 77
Nesa Scratch Test (350 VAC):	77.8	MAY 2 5 1993	22 PP6 77
Light Transmittance:	1.3	MAY 25 1993	22 PP6 77
Haze:	113	MAY 2 5 1993	22 PPG 4
Photo (Single Exposure):	ace,		
Deviation Inspection: (German Light per Template) 1: 2.0	<u>5-25-7</u> : <u>2.0</u> : <u>2.0</u>	<u>5-25-93</u>	22 PPG 22
Dimensional Inspection:	Bec 5-25-97	<u>5-25-93</u>	22 PPG 28
5-1-060 5:1.103 7:1.105 8	: 1.105 : 1.105 : 1.103		
Seal Evaluation: (Comments)	Asc	JUN 02 1993	22 PPG 77
Visual Inspection:	poc	JUN 02 1993	22 PPS 77
(Place comments on attached sheet)		

6-3-83 22 PM77 Acc Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 3 1.105 \$1.105 91.108 (1) /.10° . 3.1100 . 1.105 31.099 @ 1.10⁵ O1.103 @ 1.103 11.098 Deviation Template (4) 2 O 2.0 ⊕ /.0

Customer Part Number: 5-89	354_	501	
Unit Serial Number: 83- H-	9-19-	282	
Unit belauf bear	Acc/Rej	Date	Inspector
Bus to Bus Resistance:		5-21-93	22 PPG 28
Thormal Image:		5-19-93	
S.E. Resistance: 314	acc.	5-24-93	22 PPG 28
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	Ace Ace		
Nesa Scratch Test (350 VAC):	Das		
Light Transmittance:	823	· · ·	
Haze:	1.1	MAY 2 6 1993	22 PPG 4
Photo (Single Exposure):			22 EPG 28
Deviation Inspection: (German Light per Template) 1: 3.0	: 1.0 : 2.0	<u>5-24-93</u>	
Dimensional Inspection:			
		<u>5-24-43</u>	
	Res	JUN 02 1993	: PP6 7F
(Comments) <u>WRDNG</u> GERL	on ou	TBd Side	
Visual Inspection: (Place comments on attached sheet		JUN 02 1993	22 PPt 77
(brace comments on arrached succes	•		

Ade 6.393 = PPa 77 Check for vinyl cracks Visual Inspection Map & Comments The DeLAM LOCATE Thickness Template 1-097 3 1-096 9,001 F 1.100 11 /100 · 1-095 1.105 31.002 (2)/./ro @1.099 @1-00° 1.094 Deviation Template 330. (+) 1. O 720 **3.0** ⊕^{1.7} (1) 3.D

Customer Part Number: 5-89	354-5	-0/	
Unit Serial Number: &3_H=			
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:		5-21-93	22 999 28
<u> ДС. ()</u> Ohms		<u>5-19-93</u>	37 500 75
Thermal Image:	Reac	5-24-93	22 PPG 28
S.E. Resistance: 3/3	DAR	MAY 25 1993	22 PP6 77.
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal: S.E. to S.E.:	And And		
Nesa Scratch Test (350 VAC):	soc	MAY 25 1993	22 PPG 72
	80.7	MAY 25 1993	22 PP6 774
Light Transmittance:	1,0	MAY 25 1993	22 PPG 77
Haze:		MAY 2 6 1993	22 PPG 4
Photo (Single Exposure):			.87 EEE 77
	: 1.0 : 2.0	<u>5-24-7-3</u>	:: _,
Dimensional Inspection:	- Rec.	5-24-93	82 299 28
(Per Template)	: 1.085	<u>5 27 18</u>	::
Seal Evaluation:	Re5	JUN 02 1993	
(Comments) WRONG SEAL	_nv 0	ur Wa · Dte	
Visual Inspection: (Place comments on attached sheet		JUN 0 2 1993	22 PPs 79

-

Pilot/Co-Pilot Ma	in Winds	niera	***
Customer Part Number: 5-89			•
Unit Serial Number: 84-H-	3-19-	220	• •
	Acc/Rej	Date 6-01-93	Inspector 2 ppg 28
Bus to Bus Resistance: HH 1.50hms		<u>5-20-93</u>	१८ वृद्ध दर
Thermal Image:		_	87 SdI 77
S.E. Resistance: 314		5-21-9-3 JUN 04 1993	22 PP6 77
Insulation Test: Power to S.E.: (2500 VAC) S.E. to Metal:	pac	- 7	-
LINT CENTER HOLD	<u>-</u>	JUN 0 9 1993	22 PPG 39
Nesa Scratch Test (350 VAC): Light Transmittance: 77,3	A	70ú 0 a 1893	% PPG 39
Haze: ,7	A	JUN 0 9 1993	22 PPG 39
Photo (Single Exposure):		JUN 1 4 1993	8000 cc
neviation Inspection:	acer	5-25-93	22 PFG 28
TOWN 1976	: <u>0.5</u> : <u>2.0</u>	71 8 8.	
Dimensional Inspection:			22.00-
Unit Thickness: (Per Template) 1:1.093 2:1.090 3:1.089 4	<u> Rec</u> :1:094	<u>5-25-93</u>	22 EFG 28
$\frac{1.11081}{5.1.096}$ 5:1.096 8	: 1.091 : 1.093	0.4 1993	-2 PP s 77
Seal Evaluation: (Comments) Seal Need:	Bes NoTTH	JUN 0 4 1993	
	- Re5	JUN 0 4 1993	22 P PG 77
Visual Inspection: (Place comments on attached sheet		* <u>-</u> .	

Customer Part Number: 5-89	354-5	01		
Unit Serial Number: 86-H-1.	2-01-	146		
	Acc/Rej	Date	Inspector	
Bus to Bus Resistance:	Bec.	5-21-93	22 PPG 28	_
Bus to Bus Resistance: 36.3 Ohms	_,.	:_	20 28	
Thermal Image:		5-20-93		
S.E. Resistance: 4 309	Acce	5-24-93	22 PPG 28	-
Insulation Test: Power to S.E.:	ACO	MAY 25 1993	22 PPG 77	~~
(2500 VAC) S.E. to Metal: S.E. to S.E.:	Ace			
Nesa Scratch Test (350 VAC):	Dec	MAY 25 1993	22 PPG 77	
Light Transmittance:	81.0	MAY 25 1993	22 PPG 77	:
	.8	MAY 25 1993	22 P PS 29	
Haze:		MAY 2 & 1983	42 PPG 4	<i></i>
Photo (Single Exposure):	A.	5.24-93	22 PPG 25	
		. <u> </u>		
1: 3.0 2: 3.0 3: 2.0 4 5: 2.0 6: 0.6 7: 4.0 8	<u>#.0</u> <u>2.0</u>	ī. :		
			-22 PFG 4. VO10	5-26-43 Nec
Dimensional Inspection:		MAY 2 5-1993		.
Unit Thickness:	acc	5-24-53	22 PPG 28	
(Per Template) 1://93 2://94 3://95 4 5://94 6://0/ 7://02 8	: 11099	Sie	· .	
$5: \frac{1.094}{0:098}$ $6: \frac{1.099}{0:099}$ $7: \frac{1.02}{0:099}$ $8: \frac{1.099}{0:099}$ $11: \frac{1.03}{0:09}$ $12: \frac{1.099}{0:099}$	1.101	•••		
Seal Evaluation:	Res	JUN 02 1553	22 PPG 77	
Seal Evaluation: (Comments) Wars Seal	an or	N-04		
		11.01 - 2 - 2.02		
Visual Inspection:	Acc	JUN 02 1993	22 PPS 77	•
(Place comments on attached sheet)		-		

Ace 6-393 2000 11 Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 3 1.095 9 1.098 1.098 11/103 . D.L.094 D.1.100 31.098 @ 1.101° @1.101 1.093 Deviation Template 3 20 **40 3.0** <u>ن</u>ه ه ①3º

Customer Part Number: 5-893	354-5	0 /	
Unit Serial Number: 82-H-	10-18-	107	: -
	Acc/Rej	Date	Inspector
		5-21-93	22 PPG 28
Bus to Bus Resistance: 4/3_ohms		. ·- <u>-</u> -	
Thermal Image:		5-20-93	22 29 92 28
S.E. Resistance: 311	doc	5-21-93	22 PPc 28
Insulation Test: Power to S.E.:	•	JUN 04 1993	_
(acao mag) S.R. to Metal:	por		•
S.E. to S.E.: O.D PIST FWD CEMER Lower Nesa Scratch Test (350 VAC):	<i>A</i>	10N 0.9 1893	22 PFG J9
Light Transmittance: 77.8		JUN 0.8 1993	58 oda 32
7	A	JNN 0 7 1883	€E 99¶ <u>₹</u>
Haze:		JUN 1 4 1993	22 PPC R
Photo (Single Exposure):			
(Corman Light per Template)		<u>5-25-93</u>	
1: $\frac{3.0}{5:2.0}$ 2: $\frac{3.0}{6:1.0}$ 3: $\frac{2.0}{7:2.0}$ 8	: 0,5 : 3,0	·	
5: <u>X</u> 1/7 0.71			
Dimensional Inspection:			
Unit Thickness:	acc_	<u>5-25-93</u>	<u>22 PPG 28</u>
	: 1.094	*:	
5:1.095 6:1.096 7:1.096 8	: <u>1,096</u> : <u>1.092</u>	*	 •_
9: 110 /13 10: 127	Re 5	אָטן _{0 4} 1993 אַ	22 PPS 77
Seal Evaluation: (Comments)		- C. 7	
(Comments) Seal Needs	CUTTING	10 312	
Visual Inspection:	Res	30N 04 1993	2 建氯 双
(Place comments on attached sheet			

heck for vinyl cracks	JUN 0 4 1993 :2 PPE TR
Visual Inspection Map & Co	Comments
Delam	Dolon
\(\frac{1}{\ell}\)	\ \
\ \.	\ \
•	Dehan
Delon	
nelam Located	IN ALL FOOR CONTRACT
Delam Located	
Thickness Template	, the same
	1091
3/093	(9
⊕1094	91095
Q1089	①1096 ①1096 \
(0.055	
1093	© 1096 @ 1097
<u>} </u>	
Deviation Template	المنظمة المنظم المنظمة المنظمة
3 20 .	⊕05
Q37	(T) 90
	1
\	
/ . ~~	(G) \$0 (G) 10 \
1 0	

Customer Part Number: 5-89354-50		- <u>-</u> -
Unit Serial Number: \$2-H-9-6-9		·. — -
Acc/Rej	Date	Inspector
Bus to Bus Resistance: H3,4 Ohms	5-21-93	22 PPG 28
Thermal Image:	5-20-93	22 PPG 28
	5-21-93	8 <u>2</u> 299 <u>SS</u>
Insulation Test: Power to S.E.: Acc (2500 VAC) FULL S.E. to Metal: Acc S.E. to S.E.: SIGNATURE FOR HIGH	JUN 0 9 1993	<u>∞</u> . 20 39
Light Transmittance: 748	10 0 a iad3	<u>477339</u>
Haze: 13	7007 41655 A	ZEFriss
Photo (Single Exposure):	E 01 03	22 PPS 28
Deviation Inspection: $5 \cdot 26 - 7$ (German Light per Template) 1: $2 \cdot 0$		_
Dimensional Inspection:	50102	22 PPG 28
Unit Thickness:	0 <u>4</u> 1993	· · ·
Seal Evaluation: (Comments) Seal Needs Cutting	on 0	22 PPE 77
Visual Inspection: (Place comments on attached sheet)	JUN 0 4 1993	22 9 78 37

Ain And Delam LOBATED ALL ARoun)	UINT
SURFACE SCR LOCATED AS MARKED. SURFACE Chie LOCATED AS MARKED	

Thickness Template

\$110C/CO			
Customer Part Number: 5-893	54-50	<u> </u>	
Unit Serial Number: §3-H-	11-21-	325	• :
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:		5-21-93	22 PPG 28
<u>45.7</u> Ohms	·		22 PPG 28
Thermal Image:		5-20-93	
S.E. Resistance: 313	Acc	<u>5-21-93</u>	22 PFc 28
Insulation Test: Power to S.E.:	ser	JUN 04 1993	nDe TH
(2500 VAC) S.E. to Metal: S.E. to S.E.:	But	-	
Nesa Scratch Test (350 VAC):	. 	JUN 0:9 1993	22 PFG 39
		10v 0.a 1883	* 2/ Pro 19
Light Transmittance: 73.7	A	JUŅ 0. a 1993	ود ود د
Haze:			
Photo (Single Exposure):		<u>JUN 1 4 1993</u>	22 PFG 28
Deviation Inspection:	ace	1-25-93	
(German Light per Template) 1: /, 0 2: 2, 0 3: /, 0 4	: 1. D : 3. D	- :.	
$5: \frac{7}{1 \cdot 0} \qquad 6: \frac{7}{0 \cdot 0} \qquad 7: \frac{2}{2 \cdot 0} \qquad 8$: <u>3.0</u>		•
Dimensional Inspection:	<u> </u>		
	Rec	5-25-93	22 F.P.G 28
Unit Thickness: (Per Template)	: 1,088	•	• *
5:1.090 6:1.092 7:1.090 . 8	:1.090		,
9: 1.044 10: 1.085 11: 1.089 12	1.087 Base	JUN 0 4 1993	22 PPS 77
Seal Evaluation: (Comments)	Mos		
Sept Need 1	T Be	TRIMEN. 1	3 ACRI
	0 -	JUN 0 4 159?	22 Po 77
Visual Inspection:	Res		Fr LL S VS
(Place comments on attached sheet	,		

Aca JUN 04 1993 22 PP6.77. Check for vinyl cracks Visual Inspection Map & Comments Thickness Template 31083 9188 31090 91089 090 ©1099 (†) 1888 (†) 1098 @1089 1090 Deviation Template (10 010 (3/10

21400/00		
Customer Part Number: 5-89354-5	01	
Unit Serial Number: \$9 286 #	691	
Acc/Rej	Date	Inspector
Real	5-21-93	22 PPG 28
Bus to Bus Resistance: 38.0 Ohms		-
Thermal Image:	5-20-93	22 PPG 28
S.E. Resistance: 309 Acc	5-21-93	22 299 28
- Ma	JUN 04 1993	22 ppe 33.
(2500 VAC) S.E. to Metal:		
S.E. to S.E.:	JUN 0:9 1993	22 PrG 39
Nesa Scratch Test (350 VAC):	JUN 0.9 1993	
Light Transmittance: 77.9		<u> </u>
Haze:	JUN 0:9 1993	22 193 39
Photo (Single Exposure):	JUN 1 4 1993	12 PPOR
0	5-25-93	22 PPG 28
Deviation Inspection: (German Light per Template) 1: $\frac{2.0}{2.0}$	<u>5-45 10</u>	
Dimensional Inspection:		
4	5-25-93	22 PPG 28
Unit Thickness: (Per Template)	<u></u>	
1: 1.080 $2: 1.080$ $3: 1.085$ $4: 1.085$	÷	
5: 1.087 6: 1.086 7: 1.083 8: 1.087 9: 1.089 10: 1.090 11: 1.086 12: 1.087		े . र ्ग
Seal Evaluation:	JUN 0 4 1993	22 PP6 77
_		71-0/-
Sept Needs Cutting	- OR OUT	17d Stew
Alas	JUN 0 4 1393	72 9 95 77
Visual Inspection: (Place comments on attached sheet)		·

Customer Part Number: 5-89	357-	<u>/</u>	
Unit Serial Number: <u>875</u> -	- 1149		
	Acc/Rej	Date	Inspector
Bus to Bus Resi ance: 7/, / Ohms	<u> </u>	· <u>5-21-93</u>	
Thermal Image:	- And	<u>5-2/-93</u> MAY 2 6 1993	22PPG43
Insulation Test ower to Metal (2500 VAC)	ok_	MAY 2 6 1585	22P?G43
Nesa Scratch Test (81 VAC):	52.8	MAY 2 6 1993	2219643
Light Transmittance:	1.8	MAY 2 6 1983	222?643
Haze:	22 PPG 47	JUN 1 4 1993	?? PPG 8
Photo (Single Exposure):	Ac	JUN 0.9 1993	2277339
Deviation Inspection: (German Light per Template) 1: 2: 2: 3:	4: <u>6/0</u>	-	
Dimensional Inspection:	0-	5-26-93	22 PPG 28
Unit Thickness: (Per Template) 1: <u>.740</u> 2: <u>.74/</u> 3: <u>.757</u>	4: .740		
	Acc	JUN 0 3 1993	22 PP6 77
Check for Vinyl Cracks:	Res	JUN 03 1993	- P6 77
Seal Evaluation: (Comments) WRONS Seal	<u></u>	MBJ.	
(Comments) $\frac{\omega \eta \delta \sim \xi}{\omega \eta \delta \sim \xi}$			
	Res	EEEI 60 NUL	22 PP8 70
Visual Inspection: (Place comments on attached sheet)			

=
-

	4						10.
Wintu	SUDARATIO	is tho	m GH	265 C	dse_	ALL	HROUND
111111	Superation	-	· ;		<u> </u>		
0/4	AROUNO SER.	1 7		an Rowal	₹	UNIT	17:45
Delam	141100 20	2 212	o Bat	(1001)	.0.	Lu .	

Thickness Template

Customer Part Number: 5-71	764-S	0/	- • •••	
Unit Serial Number: 92 06	y HO	471		
Bus to Bus Resistance: 69. Ohms	Acc/Rej	<u>Date</u> <u>5-24-23</u>	Inspector RESELTE	
Thermal Image:		5-24-23		
Insulation Test: Power to Metal: (2500 VAC)	Acc	MAY 26 1993	22 PP6 77	
Nesa Scratch Test (81 VAC):	Dec	MAY 26 1993	22 PP6 777	
Light Transmittance:		MAY 26 1993		,
Haze:		MAY 26 1993		• ·
Photo (Single Exposure):		2 6 MAY 1993 MAY 26 1993		
Deviation Inspection: (German Light per Template) 1: 3 2: 3 3: 3	_Asr	2.		
Dimensional Inspection:	· ·	<u></u>	इर इस्त रह	
Unit Thickness: 697 (Per Template) 3: 697 1: 698 2: 690 3: 634 4:	.692 -	<u>5-25-93</u>		
Check for Vinyl Cracks:	Aso	JUN 02 1993	22 PPG 77.	
Seal Evaluation:	Ank	JUN 02 1993	_22 pP6 77	
(Comments)				
Visual Inspection: (Place comments on attached sheet)	Bro	JUN 02 1993	22 PP6 70	

Visual Inspection Map & Comments

<u>,</u>21 e tæ

Thickness Template

Bus to Bus Resistance: ### 5-24-93 Thermal Image: Insulation Test: Power to Metal: MAY 26 1993 22 PPG 77	
Thermal Image: 5-24-93 22 PPG 22	
Thermal Image:	170 -
DOWER TO METAL! NO	
(2500 VAC) 22 PPG 77	-
Nesa Scratch Test (81 VAC): And MAY 26 1993 Light Transmittance: 999 MAY 26 1993 MAY 26 1993 MAY 26 1993	_
Haze: 1.2 1553 22 PP6 77	
Photo (Single Exposure): MAY 26 1993 # PPG 77	-
Deviation Inspection: (German Light per Template) 1: 3 2: 3 3: 3 4: 3	
Dimensional Inspection:	-
Unit Thickness: Acc 5-25-23 80 30 4: .691 4: .691	
Check for Vinyl Cracks: AGC JUN 02 1993 22 PPG 77	<u>'</u>
Seal Evaluation: Lac JUN 02 1993 22 PPG 77	-
(Comments)	— . —
Visual Inspection: (Place comments on attached sheet) JUN 02 1993 22 PP6 7	- <u>7.</u>

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: 5-7/76	4-50/		
Unit Serial Number: 92 05			·
		·	
		Date	Inspector
Bus to Bus Resistance: 70.1 Ohms	- per	5-24-93	22 PPG 28
mhormal Image:		5-24-87	22, PPG 28
Insulation Test: Power to Metal:	Acc	MAY 26 1993	22 PPG 77.
(2500 VAC) Nesa Scratch Test (81 VAC):	Acc	MAY 26 1993	PPG 77
	797	MAY 26 1993	22 PPG 77
Light Transmittance:	1.2	MAY 26 1993	22 PPG 77
Haze:		.2 6 MAY 1993	22 PPG 47.
Photo (Single Exposure):			m - '
Deviation Inspection: (German Light per Template) 1: 3 2: 3 3: 4	: 3	MAY 2 6 1993	
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:,649 2:.690 3:.691 4:	Occ.	5-25-93	22 896 28
1:,649 2:.690 3:.691 4:	: .682		· · · · · ·
		JUN 02 1993	22 pPG 77
Seal Evaluation:		JUN 02 1993	22 PP6 77
(Comments)	``		
Visual Inspection:	Ann	JUN 02 1993	22 PPG 27
(Place comments on attached sheet)	- 	· -	:

Visual Inspection Map & Comments Thickness Template 1 689 Deviation Template **3**3 33 ①³

Customer Part Number: 5-7/7		/		•••
Unit Serial Number: $92 - 0.2$	5-p/0-	-006		_
	Acc/Rej	<u>Date</u>	Inspector	
Bus to Bus Resistance:Ohms		<u>5-24-93</u>	22 PPG 28	_
Thermal Image:		<u>5-24-93</u> May 26 1993	22 EPG 28	- , ·
Insulation Test: Power to Metal: (2500 VAC)	Acc		22 PPG 77	
Nesa Scratch Test (81 VAC):	Acc	MAY 26 1993	22 pPs 77	
Light Transmittance:	80,2	MAY 26 1993 MAY 25 1993	22 PPG 77	
Haze:	1.1	2 6 MAY 1993	22 PPG 47	
Photo (Single Exposure):	Acc	MAY 0 0 1003	22 PPS 77	
Deviation Inspection: (German Light per Template) 1: 5 2: 3 3: 3 4	: <u>5</u>	1		• -
Dimensional Inspection:				
Unit Thickness: (Per Template) 1: <u>.694</u> 2: <u>.693</u> 3: <u>.645</u> -4		<u>5-25-93</u>	92 PP0 26	•
Check for Vinyl Cracks:	Ase	JUN 02 1993		<u></u>
Seal Evaluation:	Asc	JUN 02 293	2 PP6 77	
(Comments)				
Visual Inspection: (Place comments on attached sheet	Asa.	JUN 02 1993	22 PFG 77	

Visual Inspection Map & Comments

Thickness Template

Customer Part Number: 5-7	764-5	- u /	
Unit Serial Number: 92-119	40 186		•
	Acc/Rej	<u>Date</u>	Inspector
·			
Bus to Bus Resistance: 69.8 Ohms	ACC	7 T 1 -	22 PPG 15
Thermal Image:		9/2/9	22 PPG 15
Insulation Test: Power to Metal: (2500 VAC)	ACC	9/2/93	22 FFG 15
Nesa Scratch Test (81 VAC):	Acc	9/7/93	22 PPG 15
Light Transmittance: 61.5	ACC ACC	4/2/62	00 and an
Haze:	#10	4/2/99	
Photo (Single Exposure):	·		
	<u> </u>	9/2/93	22 FP 6 15
Dimensional Inspection:		•	•
Unit Thickness:	ACC	5/2/03	18 Ddd 55
(Per Template) 1: 686 2: 688 4		, ±:	
Check for Vinyl Cracks:	Acc	- 9/2/93	22 PPG 15
Check for vinyr crosses			22 EP3 15
Seal Evaluation:	Acc	9/2/93	
(Comments)			
		9/2 42	22. Er 15
Visual Inspection: (place comments on attached sheet)	Acc	-11-15	
(Place comments on attached sheet)	•	•	

Thickness Template

Customer Part Number: 5-7/	1764-5	50/	
GU 2 G G G G G G G G G G	07-01.		
Unit Serial Number:			,
	Acc/Rej	Date	Inspector
Bus to Bus Resistance:	* ReJ	MAY 26 1993	22 PP6 77
Ohms		70.55	
Thermal Image:			
Insulation Test: Power to Metal (2500 VAC)			
Nesa Scratch Test (81 VAC):		MAY 26 1993	
	82.9	MAY 26 1933	22 PPS 77
Light Transmittance:		MAY 2 8 1993	
Haze:	1:0	2 6 MAY 1993	22 PPG 47
Photo (Single Exposure):		MAY 2 5 1933	22 094 77
Deviation Inspection:	AU	MM1 25 .002	22 110 -8
(German Light per Template) 1: 4 2: 10 3: 7	4: 4		 -
Dimensional Inspection:	<u> </u>		
Unit Thickness:			
(Per Template) 1: 727-693 2: 700 3: 695	4: <u>-692</u>	10 Sept.	
	Atc	JUN 02 1993	22 PPG 77
	Res		
	· ,		
(Comments) & OPEN CIRC.	0N 00	17Bd 51dA	8
wind & souls	1		
Visual Inspection:	Res	JUN 02 1993	22 998 77
(Place comments on attached sheet			

Visual Inspection Map & Comments

open Power	Circuit	·				
Unit hAS	AIR	ALL	ROOND	1/2	unit	

Thickness Template

Customer Part Number: $\frac{5-717}{2}$,		-
Init Serial Number:90/7]	<u> </u>		and the same
	Acc/Rej		Inspector
Bus to Bus Resistance:	1805 M	MAY 26 1993	22 PPG 77
chermal Image:			
Insulation Test: Power to Metal:	Ace	MAY 26 1993	22 PPG 77
(2300 •AC)	aaa	MAY 26 1993	22 PPG 77
Nesa Scratch Test (81 VAC):	80.9	MAY 26 1993	22 PPG 77_
Light Transmittance:		MAY 26 1993	22 PPG 77
Haze: Photo (Single Exposure):	<i></i>	MAY 2 8 1993	22 PPG 4
Deviation Inspection: (German Light per Template) 1: 7 2: 7 3: 3 4:	Acc 5	MAY 26 1993	22 PPG 77
Dimensional Inspection:			
	ace.	5-25-93	22 PPG 28
(Per Template) 1: <u>.646</u> 2: <u>.682</u> 3: <u>.688</u> 4:	.684	<u>.</u>	
Check for Vinyl Cracks:	AOC	JUN 02 1993	22 PPG 77
Seal Evaluation:		JUN 02 1993	
(Comments) www 71/Pe	20 WS 118	cuito soi	not Bd sido
Reading And Di	Ther Tim	es NO K	e Ading_
Visual Inspection: (Place comments on attached sheet)	HOU!	JUN 02 1993	22 PF & 👼

Visual Inspection Map & Comments

open Power Circuit.
wrong Tupe of Seal on outbox side.

Thickness Template

Customer Part Number:

Unit Serial Number: $5-H-5$	<u>- 23-</u>	84	•
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance:		5-21-93	
1/8.D ohms		: .::	
Thermal Image:		5-21-93	22 PPG 28
Insulation Test: Power to Metal:	ACC	MAY 2 6 1993	2ZPPG43
(2500 VAC)	0K	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	80.7	MAY 2 5 1993	22PPG43
Light Transmittance:	.4	1982 8 3 1983	22PPG43
Haze:		JUN 1 4 1993	EL PPG 8
Photo (Single Exposure):		6-8-93	22 PPG 10
Deviation Inspection: (German Light per Template)	23	- 0 75	
$1: \underline{43} \qquad 2: \underline{23} \qquad 3: \underline{43} \qquad 4:$: <u> </u>	~ .	•
Dimensional Inspection:	<u> </u>		·
Unit Thickness:	acc.	5-21-93	22 2PG 28
(Per Template) 1:.642 2:.643 3:.684 4:	.686 -	7.1	·
Check for Vinyl Cracks:	Rav.	JUN 0 3 1993	22 PP6 77
	Res	JUN 03 1993	22 PP6 77
Seal Evaluation.			and sub
(Comments) BAS Sead + 1	2 cm		
		JUN 0 8 1993	ন্ত্ৰ মুক্তি ক্ৰ
Visual Inspection:	-Re5_		436 SE # 40
(Place comments on attached sheet)	-		

Visual Inspection Map & Comments

9/5.

V/k

Air

Octor

V

Sel

		AROND UNIT
LOCATEd	A 3	markel
1 sealed	AB	MARKED
		LACATED AS

Thickness Template

Customer Part Number: 5-71	764-5	01 clg, H-	•
	2-4-	, -	<u> </u>
Onic Berrar			
and seed	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 19.8 Ohms	·	5-21-93	
Thermal Image:		5-21-93	72 PPG 28
Insulation Test: Power to Metal:	ACC	MAY 2 6 1993	22PPG43
(2500 VAC) (2500 VAC):		MAY 2 6 1983	22PPG43
Light Transmittance:	81.6	MAY 2 5 1993	22PPG43
Haze:		WAY 0 4 1553	
PHOCO (Bingie		JUN 1 4 1993	A
Deviation Inspection: (German Light per Template) 1:ムろ 2:ム3 3:ム3 4	<u></u>	6-8-53	- PP
Dimensional Inspection:	<u> </u>		
Unit Thickness: (Per Template) 1: <u>/696</u> 2: <u>/694</u> 3: <u>/692</u> 4:	<u>acc.</u>	5-26-93	22 PPG 28
1: 1696 2: 1594 3: 1692 4:	<u> </u>		
Check for Vinyl Cracks:		JUN 0 3 1993	
Seal Evaluation:	Re5	JUN 03 1993	22 PPG 77
(Comments) BABenefic			
Visual Inspection:		אטע 0 3 1583	22 596 m
(Place comments on attached sheet)		. * **	

Air And Dolam Tocation Around the unit

Thickness Template

Customer Part Number: 5-71	764		
Unit Serial Number: 4-H-10	-9-6	,9	
Unit Serial Number:		· · · · ·	· · · · · · · · · · · · · · · · · · ·
	Acc/Rej	Date	Inspector
		5-21-93	३१ वृद्ध <u>१</u> ३
Bus to Bus Resistance: 85.0 Ohms			व्हर इस्त र
Thermal Image:		5-21-93	
Insulation Test: Power to Metal: (2500 VAC)	MCI.	MAY 2 6 1993	22PPG43
Insulation Test: Power to Metal: (2500 VAC)	<u> </u>		
Nesa Scratch Test (81 VAC):	OK_	MAY 2 6 1993	22PPG43
		MAY 2 6 1993	22PPG43
Light Transmittance:	1, 0		220PG43
Haze:			22 PPG 8
Photo (Single Exposure):		JUN1 4 1993	22 PPG 10
Deviation Inspection:	4-0	6-8-93	
(German Light per Template) 1: $\angle 3$ 2: $\angle .3$ 3: $\angle 3$ 4:	23		
Dimensional Inspection:			
Unit Thickness:	acc.	5-21,-63	22 PFG 28
(Per Template) 1: .677 2: .674 3: .679 4:			
		-200	22 PP6 77,
Check for Vinyl Cracks:	Re5	JUN 0 3 1993	
	ROS	JUN 0 3 1993	22 PP8 77
Seal Evaluation:			-
(Comments) NO Sea	~ 01	in myent	
Transfion:	Res	JUN 03 FFEE	22 988 77
Visual Inspection: (Place comments on attached sheet)		 •	

ATA / Dolgon / VINLY CRACKS ARDUXA UN'T	located	ell
1000 1 10 100	Dorive	
NAKOOKA DAGU		

Thickness Template

Customer Part Number:

Unit Serial Number: $82-H-16$	2-6-5	72_	
	Acc/Rej	<u>Date</u>	Inspector
Bus to Bus Resistance:		5-21-93	N. E. Z.
Bus to Bus Resistance. 79,7 Ohms		_	87 Sec 66 .
Thermal Image:		F21-93	
<pre>Insulation Test: Power to Metal: (2500 VAC)</pre>	Acc.	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	<u>ok</u>	MAY 2 6 1993	22PPG43
Light Transmittance:	\$2.3	MAY 2 6 1993	22PPG43
Haze:	1.0	MAY 2 6 1993	22PPG43
Photo (Single Exposure):	22 PPG 47	JUN 1 4 1993	22 PP0 8
	-0	6-8-93	Z _{PPG} 10
Deviation Inspection: (German Light per Template) 1: <u>L</u> 3 2: <u>L</u> 4. 5 3: <u>4</u> . 5 4			
Dimensional Inspection:			22 PPG 28
	Rev	5-21-93	=116.58
(Per Template) 1: 666 2: 666 3: 666 4:	<u>-165</u> -	×	
an al can trimul Cracks.	Pe5	JUN 03 1993	22 PP6 77
Check for Vinyl Cracks:	12.5	JUN 0 3 1993	22 FPS 77
Seal Evaluation:	•		
(Comments) No Seal of	some		
Visual Inspection:	Ras	JUN 0 8 1983	22 FPB M
(Dlace comments on attached sheet)		•	

Visual Inspection Map & Comments

Air,	Delam	And	Vinly	CRACKS	LOCARN	ALL
- '''					<u> </u>	
AR OUNT	Unit					
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						

Thickness Template

Customer Part Number: 5-7/7	164-5c	<i>,</i> /	
Unit Serial Number: $6-H-1$	2-02	-36	
: :	Acc/Rej	Date	Inspector
Bus to Bus Resistance: $\frac{/23.2}{96.8}$ Ohms	·	<u>5-21-93</u>	
Thermal Image:		5-21-93	22 PPS 28
Insulation Test: Power to Metal:	_ACC_	MAY 2 6 1993	22PPG43
(2500 VAC) Nesa Scratch Test (81 VAC):		MAY 2 6 1993	22PPG43
Light Transmittance:	82.2	MAY 2 8 1093	22PP643
Haze:	8	MAY 2 8 1503	ZPP643
Photo (Single Exposure):	22 PFG 47	JUN1 4 1933	
Deviation Inspection: (German Light per Template) 1: <u>63</u> 2: <u>63</u> 3: <u>63</u> 4:	<u>A-</u> : <u><3</u>	JUN 0.9 1993	<u> </u>
Dimensional Inspection:			
01115 111101-1-1-1		5-26-93	22 PFG 28
1: <u>1647</u> 2: <u>1646</u> 3: <u>1644</u> 4:	-685	e Maria de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la co	
Check for Vinyl Cracks:	por	JUN 0 3 1993	22 PPG 77
Seal Evaluation:	ReJ	JUN 0 3 1993	22 pPs 97
(Comments) No Bunger on	OUTAL	sido	
	のって	JUN 08 233	22 cBa 74
Visual Inspection: (Place comments on attached sheet)		- 	2 26.3 11

. . .

5-71764-501 Customer Part Number: 87-4-04-20-130 Unit Serial Number: Acc/Rej Date Inspector Acc. 5-24-83 22 PPG 28 Bus to Bus Resistance: 73.1_Ohms 5-24-93 22 PPG 28 Thermal Image: Power to Metal: Acc MAY 26 1993 22 PPG 77 Insulation Test: (2500 VAC) A20 MAY 26 1993 22 PPG 77 Nesa Scratch Test (81 VAC): 22 PPG 77 MAY 26 1993 Light Transmittance: MAY 26 1993 22 PPG 37 Haze: 22 PPC +i 2.6 MAY 1993 Photo (Single Exposure): MAY 26 1993 22 PPG 77 Deviation Inspection: (German Light per Template) 1: 9 2: 5 3:<u>7</u> Dimensional Inspection: Pec 5-25-93 825-1277 Unit Thickness: (Per Template) 3:<u>.7/2</u> 4:<u>.702</u> 1:.695 2:<u>, 707</u> JUN 02 12 PPG 77 Check for Vinyl Cracks: JUN 02 1993 Seal Evaluation: whoug sout on outside side

B-76

ReJ JUN 02 1993

(Comments)

Visual Inspection:

(Place comments on attached sheet)

Visual Inspection Map & Comments

50 RA	nce	chio	LOCA	Ted_	2/2"in	down	And I'	- FROI	u fud.	2/5
سط	OTher	८ ५०८	face_	Detect	75 LO	CATEC	CONTOR	_0+	UNIT	
				·						
										

Thickness Template

Customer Part Number: 5-7/7	164-50	of Chy-H	
Unit Serial Number: $8-H-2$	-06-	585	
	Acc/Rej		Inspector
Bus to Bus Resistance: 29.2 Ohms		5-21-93	<u> </u>
Thermal Image:		5-21-93	22 22: 22
Insulation Test: Power to Metal: (2500 VAC)	ACC	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	DK	MAY 2 6 1983	22P PG43
Light Transmittance:	82.6	MAY 2 8 1983	2299648
Haze:		MAY 2 3 1983	
Photo (Single Exposure):		JUN 1 4 1993	22 PPG 8
Deviation Inspection: (German Light per Template) 1:4, 3 2:44.3 3:43 4:		6/8-93	2 974
Dimensional Inspection:			
Unit Thickness: (Per Template) 1:.692 2:.69/ 3:.693 4:	.693		
Check for Vinyl Cracks:	Acc	JUN 0 3 1993	22 PP6 77
Seal Evaluation:	Res	JUN 031293	22 PPS 77
(Comments) Wrong Seel (Burger is B	or or	I bed si	Side
Visual Inspection: (Place comments on attached sheet)	Res:	JUN 03 1993	22 9 7% 77

Air	Azd	Delane	hocated	ALL	ARon: S	UNIT
	,					· · · · · · · · · · · · · · · · · · ·

Thickness Template

Customer Part Number: 5-7/764-50/			
Unit Serial Number: 85-H-0	07-01	-366	1947
	Acc/Rej	Date	Inspector
Bus to Bus Resistance: 43.7 Ohms		5-21-93	22.283.28
Thermal Image:		5-21-93	22 BEG 25
Insulation Test: Power to Metal: (2500 VAC)	ACC	MAY 2 6 1993	22PPG43
Nesa Scratch Test (81 VAC):	DK_	MAY 2 6 1993	22PPG43
Light Transmittance:	82.8	MAY 2 9 1393	22PPG43
Haze:		- 3AY 2 2 7/8 2	22.PPag
Photo (Single Exposure):	22 PPG 47	JUN1 4 1593	A.
Deviation Inspection: (German Light per Template) 1: 4: 3: 7 4:	4.5	<u>6-8-93</u>	
Dimensional Inspection:			
Unit Thickness: (Per Template) 1: .649 2: .70/ 3: .697 4:		<u>5-24-93</u>	22 PFG 28
Check for Vinyl Cracks:	Aor	JUN 0 3 1993	22 PP6 77
Seal Evaluation:	Res	JUN 0 3 1993	22 PP6 77
(Comments) BAd Buffer an out by	مر مذ	- whom	J. Deel
Visual Inspection: (Place comments on attached sheet)	Re5	JUN 0 3 1393	22 FP6 /A