<u>Температурный контроллер ТС322</u>

Техническое описание и инструкция по эксплуатации.

Оглавление.

1. Требования безопасности	3
2. Назначение прибора и принцип работы	4
3. Подготовка к работе	5
4. Интерфейс управления контроллером	6
5. Интерфейс связи с компьютером	11
6. Web-интерфейс и загрузка калибровок	15
7. Распайка разъемов и кабелей	17
8. Технические характеристики	18
9. Условия эксплуатации	18
10. Гарантийные обязательства	19
11. Комплектность	20

1. Требования безопасности

<u>Внимание!</u> Запрещено отключать/подключать датчики температуры или нагреватели во включенном состоянии контроллера. Это может привести к выходу прибора из строя.

<u>Внимание!</u> Нагреватели и датчики температуры должны быть изолированы от земляных и прочих электрических цепей установки. Во избежание выхода прибора из строя в случае повреждения изоляции нагревателя на задней панели прибора вблизи разъёмов контроллера DH15F «INSERT1» и «INSERT2» установлены защитные предохранители номиналом 3A и 2A соответственно.

<u>Внимание!</u> Для уменьшения шумов и паразитных наводок подключение датчиков температуры рекомендуется выполнять экранированным кабелем с подключением экрана <u>только</u> со стороны контроллера (контакт 3 разъёмов контроллера DH15F «INSERT1» и «INSERT2»). Необходимо убедиться в отсутствии контакта экрана с земляными и прочими электрическими цепями установки.

Внимание! Не используйте одновременно интерфейсы связи с компьютером USB и RS232, это может привести к сбою в работе прибора.

- не использовать неисправный прибор и кабели с нарушением изоляции.
- не открывать крышки прибора.
- ремонт прибора должен осуществляться только квалифицированным персоналом.

2. Назначение прибора и принцип работы

Двухканальный температурный контроллер ТС322 (далее контроллер) предназначен для измерения, регулирования и стабилизации температуры в криогенных системах, включая измерительные ячейки криостатов, систем термостатирования полупроводниковых приборов и сенсоров, а также требующих прецизионного контроля температуры модулях промышленных криогенных установок.

Тип датчиков температуры – термометр сопротивления с отрицательным температурным коэффициентом сопротивления. Измерение сопротивления осуществляется в режиме стабилизации напряжения на датчике, что обеспечивает снижение рассеиваемой мощности на датчике при понижении температуры и позволяет избежать его перегрева.

Для регулирования и стабилизации температуры контроллер управляет двумя нагревателями используя пропорционально-интегрально-дифференциальный (ПИД) алгоритм. Алгоритм работы ПИД регулятора связывает величину разбаланса температуры датчиков $\Delta T = T_0 - T$ (T_0 — целевая температура) с рассеиваемой соответствующим нагревателем мощностью W через сумму трех вкладов:

$$y(t) = K_P \Delta T + K_I \int_0^t \Delta T(t) dt + K_D \frac{d(\Delta T(t))}{dt},$$

$$W(t) = a \cdot y(t)$$
(1)

где K_P , K_I , K_D — коэффициенты, определяющие относительные величины пропорционального, интегрального и дифференциального вкладов соответственно, a — нормировочный коэффициент. В алгоритм работы ПИД регулятора контроллера внесены следующие ограничения:

$$0 \le y(t) \le 1,$$

$$-1 \le J \le 1,$$

$$J = K_I \int_0^t \Delta T(t) dt,$$
(2)

3. Подготовка к работе

Перед работой внимательно изучите настоящее техническое описание.

Убедитесь, что выключатель сети контроллера «POWER» установлен в положение «0».

Внимание! Не производите коммутацию соединительных кабелей при включенном контроллере, это может привести к повреждению прибора.

Подключите к температурному контроллеру кабели датчиков температуры и нагревателей (разъёмы «INSERT1», «INSERT2»).

Для использования возможности внешнего управления прибором, соедините контроллер с компьютером кабелем USB или RS232 или ETHERNET.

<u>Внимание!</u> Не используйте одновременно интерфейсы USB и RS232, это может привести к сбою в работе прибора.

Соедините прибор кабелем питания с электрической сетью переменного тока 220 В частотой 50 Гц, обеспечивающей реальное заземление.

Включите питание.

Прибор готов к работе.

Рис. 1.

На рис.1 представлено основное окно экрана управления контроллером в режиме общей информации. Для первого и второго каналов отображаются текущие значения температур датчиков, целевые значения температур, значения мощностей нагревателей и режимы их работы:

- "Off" нагреватель выключен,
- "Const. I" режим постоянного тока нагревателя,
- "Stabilize" режим автоматической стабилизации,
- "Sweep" режим линейной развёртки температуры.

В случае неисправности датчика температуры или нагревателя контроллер отобразит следующий статус:

- "No sensor" обрыв датчика температуры,
- "OPEN" обрыв нагревателя,
- "Overrun" короткое замыкание датчика температуры,
- "SHORT" короткое замыкание нагревателей.

В левой верхней части экрана доступен выбор режима работы основного окна в режиме управления 1 / 2 каналом "CH1" / "CH2" (рис.2) и возврат в режим общей информации "ALL". В левой нижней части экрана доступна кнопка вызова окна настройки контроллера «Config» (рис.3)

В нижней части окна отображается строка текущего состояния контроллера.

Рис. 2.

На рис.2 представлено основное окно экрана управления контроллером в режиме управления выбранным каналом. В верхней части окна отображаются номер канала, целевая температура, текущие температура и мощность нагревателя. При нажатии на значение мощности нагревателя отображение меняется на ток нагревателя. Ниже располагается график изменения от времени текущей температуры (красный), целевой температуры (желтый) и мощности нагревателя (зелёный) в процентах от выбранной максимальной мощности. В правой части экрана располагаются следующие кнопки управления выбранным каналом:

- «Stabilize» включение режима стабилизации целевого значения температуры (при выборе режима кнопка подсвечивается зелёным цветом),
- «Set T» установка целевого значения температуры,
- «Sweep» включение режима линейной развёртки температуры. При выборе данного режима автоматически запускается стабилизация температуры и линейное изменение целевого значения температуры. (при выборе режима кнопка подсвечивается зелёным цветом),
- «Set I» включение нагревателя в режиме постоянного тока (при выборе режима кнопка подсвечивается зелёным цветом),
- «Heat. off» выключение нагревателя (при выборе режима кнопка подсвечивается зелёным цветом).

Рис. 3.

На рис.3 представлено окно настройки контроллера (кнопка «Config» в основном окне). В верхней части окна настройки контроллера расположено поле выбора/индикации настраиваемого канала. Ниже для выбранного канала доступны поле индикации/выбора калибровки «Sensor», а также следующие кнопки:

- «Configure» вызов окна настройки текущей калибровки,
- «PID» вызов окна настройки ПИД параметров стабилизации температуры (рис.4),
- «H-range» выбор диапазона работы нагревателя (5%, 10%, 25%, 50%, 75% и 100% от максимальной мощности),
- «System» вызов окна системных настроек (не зависит от выбранного канала),
- «Advanced» вызов окна заводских настроек (пользователю недоступно),
- «Save» сохранение текущих параметров,
- «Close» возврат к основному окну.

В окне настройки текущей калибровки «Configure» доступен выбор следующих параметров для текущей калибровки:

- «Sensor voltage» выбор значения напряжения, стабилизируемого на датчике температуры (Для температурного датчика Cernox 1050, LakeShore, рекомендуется использовать 10мВ.),
- «Мах. temperature» установка значения максимальной температуры (выше указанного значения температуры нагреватель автоматически отключается),
- «Close» возврат к окну настройки контроллера.

В окне системных настроек «Config – System» доступны три вкладки:

- «About» информация о контроллере,
- «Serial» настройка параметров интерфейса связи RS-232,
- «Network» информация о состоянии подключения LAN (Ethernet).

Рис. 4.

На рис.4 представлено окно настройки ПИД параметров стабилизации температуры (кнопка «PID» в окне настройки контроллера). В верхней части окна отображаются текущая и целевая температуры, текущие ПИД параметры (K_P – пропорциональный, K_I – интегральный и K_D – дифференциальный), текущие значения переменных ПИД алгоритма PID input, PID output и PID integ. (ΔT , y и J в формулах 1-2 соответственно). Ниже располагается индикатор текущего значения мощности нагревателя и график изменения от времени текущей температуры (красный), целевой температуры (желтый) и мощности нагревателя (зелёный). В левой части окна доступны следующие кнопки:

- «Set K_P» установка значения пропорционального параметра K_P,
- «Set K_I» установка значения интегрального параметра K_I,
- «Set K D» установка значения дифференциального параметра K_D,
- «Stabilize» включение режима стабилизации целевого значения температуры (при выборе режима кнопка подсвечивается зелёным цветом),
- «Set T» установка целевого значения температуры,
- «Set I» включение нагревателя в режиме постоянного тока (при выборе режима кнопка подсвечивается зелёным цветом),
- «Save» сохранение текущих параметров,
- «Close» возврат к основному окну.

5. Интерфейс связи с компьютером

Порт RS-232

Параметры связи:

Baudrate: Настраивается в разделе «Config - System – Serial»

Data bits: 8

Parity: Hастраивается в разделе «Config - System – Serial»

Stop bits: Настраивается в разделе «Config - System – Serial»

Flow control: не используется

Протокол: SCPI

На основном экране в строке статуса отображаются текущие параметры порта RS-232 в краткой форме (например, "9600,8n1").

Порт USB

Порт USB работает через преобразователь USB-RS-232 на основе FTDI FT232. Настройки виртуального порта RS-232 совпадают с параметрами порта RS-232.

Поскольку порты USB и RS232 используют один и тот же внутренний физический канал связи, не допускается одновременное использование обоих портов.

Порт LAN (Ethernet)

Настройка параметров сети осуществляется автоматически по протоколу DHCP.

При подключенной сети текущий IPv4 или IPv6 адрес отображается на основном экране в строке статуса (приоритет отдается адресу IPv4).

Полный список адресов, назначенных сетевому интерфейсу, отображается в разделе "Config - System - Network".

Работа осуществляется по протоколу RAW SCPI через TCP/IP (порт 5025).

Система команд SCPI

Запрос — Посылка от компьютера устройству

Ответ — Ответ от устройства компьютеру

Формат описания команд стандартный для протокола SCPI. Пример:

Команда: MEASure[n]:TEMPerature?

Допускается использование как короткого, так и длинного формата записи команды. Следующие команды равнозначны:

MEAS:TEMP?

measure:temperature?

Некоторые команды допускают указание номера канала, что обозначено последовательносью символов [n]. Указанную последовательность символов следует заменить на номер канала (1 или 2) или опустить.

Пример:

Вариант 1: MEAS:TEMP? — запрос температуры 1 канала (используется значение параметра по-умолчанию)

Вариант 2: MEAS1:TEMP? – запрос температуры 1 канала (явно)

Вариант 3: MEAS2:TEMP? – запрос температуры 2 канала (явно)

Описание команд

(версия 2.5)

Стандартная команда идентификации устройства

Запрос: *IDN?

Otbet: Cryotel, Model 312 Temperature Controller, SN00118, 2.5

Запрос названия канала:

Запрос: SYSTem:CHANNEL[n]:NAME?

Ответ: "Channel 1"

Установка названия канала:

Запрос: SYSTem:CHANNEL[n]:NAME "Bottom cell"

Ответ: отсутствует

Запрос текущей температуры датчика в градусах Кельвина

Запрос: MEASure[n]:TEMPerature?

Ответ: XXX.XXX

Запрос текущего сопротивления датчика в Омах

Запрос: MEASure[n]:RESistance?

Ответ: ХХХ.Х

Запрос целевой температуры

Запрос: PID[n]:TEMPerature:TARGet?

Ответ: XXX.XXX

Установка целевой температуры

Запрос: PID[n]:TEMPerature:TARGet XXX.XXX

Ответ: отсутствует

Запрос параметров PID-регулирования (KP, KI, KD)

Запрос: PID[n]:KP? (аналогично PID[n]:KI? и PID[n]:KD?)

Ответ: Х.ХХ

Установка параметров PID-регулирования (KP, KI, KD)

Запрос: PID[n]:KP X.XXX (аналогично PID[n]:KI и PID[n]:KD)

Ответ: отсутствует

Запрос текущего режима работы нагревателя

Запрос: HEATer[n]:MODE?

Ответ: OFF (нагреватель выключен)

Ответ: СС (на нагреватель подаётся постоянный ток)

Ответ: PID (режим PID-регулирования)

Выключение нагревателя

Запрос: HEATer[n]:MODE:OFF

Ответ: отсутствует

Включение нагревателя в режиме постоянного тока

Запрос: HEATer[n]:MODE:CC

Ответ: отсутствует

Включение нагревателя в режиме PID-регулирования

Запрос: HEATer[n]:MODE:PID

Ответ: отсутствует

Запрос фактического (измерянного) тока через нагреватель в Амперах

Запрос: HEATer[n]:CURRent:MEASured?

Ответ: Х.ХХХ

Запрос установленного тока нагревателя в Амперах

Запрос: HEATer[n]:CURRent?

Ответ: X.XXX

Установка тока нагревателя в Амперах

Запрос: HEATer[n]:CURRent X.XXX

Ответ: отсутствует

Запрос выбранного датчика температуры

Запрос: SENSOR[n]?

Ответ: Cernox1050_72

Выбор датчика температуры

Запрос: SENSOR[n] "Cernox1050_72"

Ответ: отсутствует

6. Web-интерфейс и загрузка калибровок

Загрузка калибровок осуществляется через Web-интерфейс прибора по протоколу HTTP.

Для доступа к Web-интерфейсу прибора необходимо ввести IP-адрес контроллера в строку адреса Web-браузера (в формате http://<IP-адрес>/). Рекомендуется использовать современный браузер Mozilla Firefox или Google Chrome, работа в других браузерах возможна, но не гарантируется.

На Web-странице прибора доступны два раздела: «Status» и «Configuration».

В разделе «Status» отображается общая информация о приборе и текущая температура на датчике.

В разделе «Configuration» отображается таблица загруженных калибровок «Sensors».

В верхней части таблицы есть кнопка «Add», при нажатии на которую отображается диалог добавления калибровки. При нажатии на кнопку «Edit» у уже загруженных калибровок отображается аналогичный диалог для редактирования параметров существующих калибровок.

У каждой калибровки есть следующие параметры:

«Name» - название калибровки. Рекомендуется указывать модель датчика и его серийный номер.

«Order» - число, которое определяет порядок следования калибровок в списке выбора (экран «Config»): калибровки сортируются по возрастанию параметра «Order».

«Sensor voltage» - задает напряжение на датчике (мВ). Для температурного датчика Cernox 1050, LakeShore, рекомендуется использовать 10мВ.

«Мах. Temperature» – задает максимальную допустимую температуру датчика. Выше указанного значения температуры нагреватель автоматически отключается.

«Calibration file» – файл калибровки. Если редактируется уже загруженная калибровка и файл не выбран, то файл калибровки в памяти устройства не заменяется.

Нажатие на кнопку «Save changes» сохраняет изменения. Нажатие на кнопку «Cancel» закрывает диалог без сохранения.

Формат файла калибровок

Файл калибровок представляет собой текстовый файл в кодировке UTF-8 без использования BOM (byte order mark).

На каждой строке файла располагаются два числа (целых или дробных) в десятичном формате, разделенные одиночным символом табуляции. Первое число соответствует температуре в градусах Кельвина, второе число – сопротивлению датчика температуры в Омах.

Все строки, не соответствующие указанному формату, игнорируются.

Калибровка должна содержать данные, монотонно возрастающие или монотонно убывающие по температуре и сопротивлению. Максимальное количество точек в калибровке – 1920.

После изменения параметров текущего выбранного датчика температуры необходимо повторно выбрать указанный датчик (либо командой SCPI, либо выбором из выпадающего списка любого другого датчика и повторным выбором отредактированного), либо перезапустить прибор.

7. Распайка разъемов и кабелей

а) Разъемы датчиков температуры и нагревателей DH15F «INSERT1» / «INSERT2»:

```
1 — I+
2 — U+
3 — экран
4 — U-
5 — I-
11,12 — Нагреватель+
14,15 — Нагреватель-
```

<u>Внимание!</u> Нагреватели и датчики температуры должны быть изолированы от земляных и прочих электрических цепей установки. Во избежание выхода прибора из строя в случае повреждения изоляции нагревателя на задней панели прибора вблизи разъёмов контроллера DH15F «INSERT1» и «INSERT2» установлены защитные предохранители номиналом 3A и 2A соответственно.

<u>Внимание!</u> Для уменьшения шумов и паразитных наводок подключение датчиков температуры рекомендуется выполнять экранированным кабелем с подключением экрана <u>только</u> со стороны контроллера (контакт 3 разъёмов контроллера DH15F «INSERT1» и «INSERT2»). Необходимо убедиться в отсутствии контакта экрана с земляными и прочими электрическими цепями установки.

б) RS-232 DB9M:

DB9F	7	DB9F
2	-	2
3	-	3
5	-	5

В контроллере используется гальванически развязанный интерфейс RS232.

<u>Внимание!</u> Не используйте одновременно интерфейсы связи с компьютером USB и RS232, это может привести к сбою в работе прибора.

8. Технические характеристики

Количество измерительно-управляющих каналов

Тип датчиков температуры резистивный с

отрицательным ТКС

4-80 мВ

Диапазон напряжения на датчике температуры¹ Точность измерения полезного сигнала датчика

Точность измерения полезного сигнала датчика 0.1% Диапазон измеряемых температур 2 $1.5-310~\mathrm{K}$ Точность измерения температуры 2 $3\mathrm{mK}+0.1\%$ Точность стабилизации температуры 2 $1\mathrm{mK}+0.03\%$

Количество ячеек для хранения калибровок³ 30

Максимальная мощность нагревателей 1, 2 каналов⁴ 75Вт, 25Вт Типовое сопротивление нагревателей⁴ 25 Ом Дискретность установки тока нагревателя 0.03 мА Алгоритм управления мощностью нагревателя ПИД Быстродействие 10 мс

Разрядность ЦАП и АЦП 16 бит, 18 бит

Напряжение сети 230 В

Интерфейс ПК RS-232, USB, Ethernet

9. Условия эксплуатации

Прибор обеспечивает устойчивую работу при напряжении переменного тока электрической сети в диапазоне 200-240 В частотой 50 Гц. Система электропитания соответствует европейскому стандарту подключения, обеспечивающему реальное заземление.

Прибор работает при температуре окружающего воздуха от $+10^{\circ}$ C до $+45^{\circ}$ C и относительной влажности воздуха не более 50% при температуре 23° C.

Прибор должен использоваться в незапыленных помещениях.

<u>Внимание!</u> Запрещено отключать/подключать датчик температуры или нагреватель во включенном состоянии контроллера. Это может привести к выходу прибора из строя.

^{1 –} Контроллер работает в режиме стабилизации напряжения на датчике температуры.

 $^{^2}$ — Данные приведены для температурного датчика Cernox 1050, LakeShore. Абсолютная точность измерения температуры определяется используемым датчиком.

³ – Максимальное количество точек в калибровке – 1920.

 $^{^4}$ — Максимальные возможные напряжение и ток нагревателей подобраны под типовое сопротивление нагревателей $U_{max}=(P_{max}*25)^{1/2},~I_{max}=(P_{max}/25)^{1/2}.$ Допускается использование нагревателей с другим сопротивлением R, однако следует учитывать, что использование нагревателя с меньшим сопротивлением приведёт к уменьшению максимальной мощности $P_{max}=I_{max}^2*R$, а с большим сопротивлением — к ограничению развёртки тока $I\leq U_{max}/R$ и максимальной мощности $P_{max}=U_{max}^2/R$.

10. Гарантийные обязательства

Гарантийное обслуживание - 12 мес. со дня поставки по товарной накладной, при соблюдении потребителем правил эксплуатации в соответствии с инструкцией.

В течение всего срока гарантийного обслуживания изготовитель осуществляет техническую поддержку и безвозмездно устраняет все неисправности прибора, происшедшие по вине изготовителя. В случае необоснованности претензии, затраты на диагностику и экспертизу прибора оплачиваются потребителем. Прибор принимается в гарантийный ремонт (а также при возврате) в полностью укомплектованном виде. Гарантия не распространяется на дефекты, возникшие в случаях:

- нарушения установленных производителем режимов хранения, эксплуатации и обслуживания прибора;
- ненадлежащей транспортировки и погрузо-разгрузочных работ;
- наличия следов воздействия веществ, агрессивных к материалам прибора;
- наличия повреждений, вызванных пожаром, стихией, форс-мажорными обстоятельствами;
- повреждений, вызванных неправильными действиями потребителя;
- наличия следов постороннего вмешательства в конструкцию прибора.

Техническая поддержка включает консультации по вопросам, связанным с эффективной эксплуатацией поставляемого оборудования и предоставляется по телефону (499) 503-87-77 доб. 4-99 и e-mail info@cryotel.ru службы поддержки.

Послегарантийное обслуживание поставщик обеспечивает по отдельному договору.

Средний срок службы прибора - 5 лет с момента изготовления.

11. Комплектность

Технический паспорт	1 шт.
Температурный контроллер ТС322	1 шт.
Кабель RS232	1 шт.
Кабель питания 220В	1 шт.
Разъем для кабеля подключения датчика	
температуры и нагревателя DB15MHD	2 шт.
Техническое описание и инструкция по эксплуатации	1 шт

«ПЕТОИЧЯ» ООО

Общество с ограниченной ответственностью «Криотехника и электроника» 119991, г. Москва, ул. Вавилова 38 тел. (499) 503-87-77 доб. 4-99, e-mail: info@cryotel.ru