Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 3

Równania różniczkowe rzedu drugiego sprowadzalne do równań rzedu pierwszego. Równania różniczkowe liniowe o współczynnikach stałych. Układy równań różniczkowych rzędu pierwszego.

ZADANIA

- 3.1. Rozwiązać równania różniczkowe z warunkami początkowymi, jeżeli są podane
- a) $y'' = 1 y'^2$,
- b) $y'' = x + \sin x$,
- c) $2y'' = 3y^2$, y(-2) = 1 = y'(-2),
- d) xy'' = 2(x + y'), y(1) = 0, y'(1) = -1.
- 3.2. Sprawdzić, która z podanych par tworzy układ fundamentalny na zadanym przedziale. Znaleźć rozwiązania tych równań z zadanymi warunkami początkowymi
- a) $y_1(x) = e^{-x}$, $y_1(x) = e^{2x}$, $(-\infty, \infty)$, y'' y' 2y = 0, y(0) = -1, y'(0) = -5,
- b) $y_1(x) = \ln x$, $y_2(x) = x$, (0, e), $x^2(1 \ln x)y'' + xy' y = 0$, y(1) = 2, y'(1) = 1,
- c) $y_1(x) = x$, $y_2(x) = x^2$, $(0, \infty)$, $x^2y'' 2xy' + 2y = 0$, y(1) = 3, y'(1) = 1.
- 3.3. Rozwiązać równania różniczkowe liniowe o stałych współczynnikach z warunkami początkowymi
- a) y'' + 9y = 0, $y(\frac{\pi}{3}) = 1$, $y'(\frac{\pi}{3}) = 1$,
- b) y'' 2y' + y = 0, y(1) = 2, y'(1) = 3,
- c) y'' 7y' + 10y = 0, y(0) = 1, y'(0) = 5.
- 3.4.* Korzystajac z metody uzmienniania stałych rozwiązać równania różniczkowe
- a) $y'' + 4y' + 4y = e^{-2x}$,
- b) $y'' y = \frac{4x^2 + 1}{x\sqrt{x}}$,
- c) $y'' 2y' \operatorname{tg} x = 1$.
- 3.5.* Rozwiązać układy równań różniczkowych z warunkami początkowymi, jeżeli są podane
- a) y' = y + x, z' = y + z + x,
- b) x' 3x 8y = 0, y' + x + 3y = 0,
- c) $y' = 1 \frac{1}{z}$, $z' = \frac{1}{y-x}$,
- d) $x' = x \ln y$, y' = -y, $x(0) = e^{-2}$, $y(0) = e^{2}$, e) $x' = x^{3}$, $y' = \frac{1}{yx^{2}}$, $x(0) = \frac{1}{\sqrt{2}}$, $y(0) = -\sqrt{2}$.

ODPOWIEDZI

3.1. a)
$$y = -x + \ln |C_1 e^{2x} + 1| + c_2$$
, b) $y = \frac{1}{6}x^3 + C_1 x - \sin x + C_2$, c) $y = \frac{4}{x^2}$ (lub $y = \frac{4}{(x+4)^2}$), d) $y = \frac{x^3}{3} - x^2 + \frac{2}{3}$.

3.2. a)
$$y = e^{-x} - 2e^{2x}$$
, b) $y = 2x - \ln x$, c) $y = 5x - 2x^2$.

3.2. a)
$$y = e^{-x} - 2e^{2x}$$
, b) $y = 2x - \ln x$, c) $y = 5x - 2x^2$.
3.3. a) $y = -\cos 3x - \frac{1}{3}\sin 3x$, b) $y = (1+x)e^{x-1}$, c) $y = e^{5x}$.

3.4. a)
$$y = C_1 e^{-2x} + C_2 x e^{-2x} + \frac{x^2}{2} e^{-2x}$$
, b) $y = C_1 e^x + C_2 e^{-x} - 4\sqrt{x}$,

c)
$$y = C_1 + C_2 \lg x + \frac{x \lg x}{2}$$

c)
$$y = C_1 + C_2 \operatorname{tg} x + \frac{x \operatorname{tg} x}{2}$$
.
3.5. a) $y(x) = Ae^x - x - 1, z(x) = Axe^x + Be^x + 1$,

b)
$$x(t) = -4Ae^t - Be^{-t}, y(t) = Ae^t + Be^{-t},$$

c)
$$y(x) = \frac{1}{AB}e^{-Bx} + x, z(x) = Ae^{Bx}$$
.

d)
$$x(t) = e^{2-t}, y(t) = e^{-(2-t)^2/2},$$

c)
$$y(x) = \frac{1}{AB}e^{-Bx} + x, z(x) = Ae^{Bx},$$

d) $x(t) = e^{2-t}, y(t) = e^{-(2-t)^2/2},$
e) $x(t) = \frac{1}{\sqrt{2(1-t)}}, y(t) = \pm \sqrt{4 - 2(1-t)^2}.$