

Lecture 14

Chance and Probability

Weekly Goals

- Today
 - Simulation
 - Chances
- Wednesday
 - Methods of sampling
 - Distributions of large random samples
- Friday
 - Models that involve chance
 - Assessing the consistency of the data and the model

Announcements

- HW3 and Lab 4 regrades due tonight!
- HW5 due this Thursday (Wednesday for a bonus point)
- Project 1 due this Friday (Thursday for a bonus point)
 - If working with a partner:
 - only one person should submit
 - make sure that you both add each other as partners on okpy

Control Statements

Control Statements

These statements *control* the sequence of computations that are performed in a program

- The keywords if and for begin control statements
- The purpose of if is to define functions that choose different behavior based on their arguments
- The purpose of for is to perform a computation for every element in a list or array

The Monty Hall Problem

Monty Hall Problem

https://probabilityandstats.files.wordpress.com/2017/05/monty-hall-pic-1.jpg

The Final Choice

Probability

Basics

- Lowest value: 0
 - Chance of event that is impossible
- Highest value: 1 (or 100%)
 - Chance of event that is certain

- Complement: If an event has chance 70%, then the chance that it doesn't happen is
 - 100% 70% = 30%
 - 0.7 = 0.3

Equally Likely Outcomes

Assuming all outcomes are equally likely, the chance of an event A is:

A Question

- I have three cards: ace of hearts, king of diamonds, and queen of spades.
- I shuffle them and draw two cards at random without replacement.

 What is the chance that I get the Queen followed by the King?

Multiplication Rule

Chance that two events A and B both happen

= $P(A \text{ happens}) \times P(B \text{ happens given that } A \text{ has happened})$

- The answer is less than or equal to each of the two chances being multiplied
- The more conditions you have to satisfy, the less likely you are to satisfy them all

Another Question

- I have three cards: ace of hearts, king of diamonds, and queen of spades.
- I shuffle them and draw two cards at random without replacement.

 What is the chance that one of the cards I draw is a King and the other is Queen?

Addition Rule

If event A can happen in exactly one of two ways, then

$$P(A) = P(first way) + P(second way)$$

 The answer is greater than or equal to the chance of each individual way

Complement: At Least One Head

- In 3 tosses:
 - Any outcome except TTT
 - \circ P(TTT) = $(1/2) \times (1/2) \times (1/2) = 1/8$
 - P(at least one head) = 1 P(TTT) = 1 (1/8) = 87.5%

- In 10 tosses:
 - 0 1 (1/2)**10 = 99.9%