মনুমিয়া একজন ফেরিওয়ালা, বাড়ি বাড়ি গিয়ে আম বিক্রি করেন। তিনি অনুভূমিকভাবে 2 মিটার লম্বা একটি সুষম লাঠির একপ্রান্ত হাত রেখে অপরপ্রান্তে W ওজনের আমের ঝুড়ি বহন করেন।

- ক) B বিন্দুতে 200N বল কাজ করলে এবং BC= 1.2 মিটার হলে P=?
- খ) দেখাও যে, লোকটির কাঁধের উপর চাপ, হাত ও কাঁধের দূরত্বের ব্যস্তানুপাতিক।
- গ) কাঁধ হতে আমের ঝুড়ি ও হাতের দূরত্ব যথাক্রমে a ও x হলে দেখাও যে, কাঁধের ওপর চাপ $W(1+\frac{a}{x})$

BC=1.2 মিটার

$$\therefore 200.BC = P.AC$$

বা,
$$200 \times 1.2 = P \times .8$$

$$\therefore P = 300N$$

মনে করি, AB লাঠির B প্রান্তে W ওজনের বোঝাটি খাড়া নিচের দিকে ক্রিয়াশীল। A বিন্দুতে হাতের চাপ P খাড়া নিচের দিকে ক্রিয়া করে এবং C বিন্দুতে লোকটির কাঁধের ওপর চাপ R ক্রিয়া করে।

$$\therefore R = P + W$$

মনে করি, লোকটির হাত হতে কাঁধের দূরত্ব = x.

$$AB = 2$$
 মিটার। $AC = X$ মিটার।

$$BC = (2 - x)$$
 মিটার।

সাম্যাবস্থার জন্য P ও W এর লব্ধি R এর সমান ও বিপরীত মুখী হবে।

$$P.AC = W.BC$$

বা,
$$Px = W.(2-x)$$

বা,
$$Px = 2w - Wx$$

বা,
$$(P+W)x=2W$$

বা,
$$R = \frac{2W}{x}$$

লাঠির দৈর্ঘ্য 2 মিটার ও বোঝাটির ওজন ${f W}$ নির্দিষ্ট বলে ${\it R}lpha rac{1}{2}$

অতএব x এর মান বৃহত্তম হলে R এর মান ন্যুনতম হবে।

∴লোকটির কাঁধের ওপর চাপ দৈর্ঘ্যের ব্যবস্তনুপাতিক। (দেখানো হলো)

ধরি, B বিন্দুতে ওজন W,A বিন্দুতে চাপ P এবং কাঁধের উপর C বিন্দুতে চাপ R

$$\therefore R = P + W \dots (i)$$

আবার, P ও W বলদ্বয়ের লব্ধি R

$$\therefore P.AC = W.BC$$

$$P.x = W.a$$

$$\therefore P = \frac{W}{x}.a$$

(i) নং হতে, R = P + W

$$=\frac{W}{x}a+W=W(1+\frac{a}{x})$$
 (দেখানো হলো)

২নং প্রশ্নের সমাধান

একটি রিকশার চাকার মধ্যে সমদূরত্বে বৃত্তাকার পথে মোট ছয়টি স্পোক (Spoke) রয়েছে। কেন্দ্র হতে প্রতিটি স্পোক বরাবর ক্রিয়াশীল বলগুলির মধ্যে পরপর চারটি বল যথাক্রমে 10N, 12N, 15N এবং 18N

- ক) চিত্র অঙ্কন করে বলগুলি দেখাও।
- খ) চাকাটি যেহেতু ভারসাম্য আছে সেহেতু পঞ্চম এবং ষষ্ঠ স্পোক বরাবর কার্যরত বলের মান নির্ণয় কর।
- গ) যদি চতুর্থ স্পোকটি ভেঙ্গে যায় তবে দেখাও যে পঞ্চম স্পোক বরাবর কার্যকর বল যে পরিমাণ বৃদ্ধি পায়, ষষ্ঠ স্পোক বরাবর কার্যরত বল সে পরিমাণ হাস পায় এবং তা ভেঙ্গে যাওয়া স্পোকে কার্যরত বলের সমান।

(ক) এর সমাধান

(খ) এর সমাধান

যেহেতু বৃত্তাকার চাকাটিতে ৬টি স্পোক রয়েছে, তাই স্পোক গুলোর মধ্যবর্তী কোণ= $\frac{360^0}{6} = 60^0 = \theta$

মনে করি, অপর দুইটি বল P ও Q.

এবার X অক্ষ বরাবর বলগুলোর অংশক বিভাজন করলে পাই-

 $10\cos 0^{0} + 12\cos 60^{0} + 15\cos 120^{0} + 18\cos 180^{0} + P\cos 240^{0} + Q\cos 300^{0} = 0$

$$\overline{4}$$
, $10+6+(-7.5)+(-18)-\frac{P}{2}+\frac{Q}{2}=0$

$$\boxed{4}, -9.5 - \frac{1}{2}(P - Q) = 0$$

বা,
$$\frac{1}{2}(P-Q) = 9.5$$

$$\therefore P - Q = 19 \dots (i)$$

y অক্ষ বরাবর বলগুলোর অংশক বরাবর বিভাজন করে পাই-

 $10\sin 0^{0} + 12\sin 60^{0} + 15\sin 120^{0} + 18\sin 180^{0} + P\sin g \ 240^{0} + Q\sin 300^{0} = 0$

$$41, 0+10.39+12.99+0-\frac{\sqrt{3}}{2}P-\frac{\sqrt{3}}{2}=Q=0$$

বা,
$$23.38 = \frac{\sqrt{3}}{2}(P+Q)$$

বা,
$$P+Q=26.99$$
(ii)

(i) ও (ii) নং সমীকরণ সমাধান করে

$$Q = 22.995 \cong 23N$$

$$P = 3.995 \cong 4N$$

(গ) এর সমাধান

যদি চতুর্থ স্পোক ভেঁঙে যায়,

মনে করি, পঞ্চম স্পৌক এবং ষষ্ঠ স্পৌকে যথাক্রমে x নিউটন বলে বৃদ্ধি এবং x নিউটন বলহোস পায়,

 $10\cos 0^{0} + 12\cos 60^{0} + 15\cos 120^{0} + 0\cos 180^{0} + (4+x)\cos 240^{0} + (23-x)\cos 300^{0} = 0$

$$\boxed{4, 10+6-7.5-0} \frac{4+x}{2} + \frac{(23-x)}{2} = 0$$

$$\boxed{4, -8.5 = \frac{23 - x}{2} - \frac{4 + x}{2}}$$

$$41, \frac{23 - x - 4 - x}{2} = 8.5$$

$$4 \cdot 10^{1} - 2x + 19 = -17$$

$$4$$
, $-2x = -17 - 19 = -36$

$$\therefore x = 18$$

: পঞ্চম স্পোকে 18N্রাস পায় এবং ষষ্ঠ স্পোকে 18N বৃদ্ধি পায়।

৩ নং প্রশ্নের সমাধান

দেওয়া আছে P ও Q দুইটি অসদৃশ সমান্তরাল বল (P>Q) এবং যথাক্রমে A ও B বিন্দুতে ক্রিয়াশীল।

- ক) যদি P ও Q এর ক্রিয়ারেখা বরাবর যথাক্রমে (P+3) এবং (Q+5) মানের বল প্রয়োগ করা হলেও তাদের ক্রিয়াবিন্দুর অবস্থান অপরিবর্তিত থাকে তবে দেখাও যে, 5P=3Q.
- খ) P ও Q উভয়ের মানকে যদি 5 নিউটন পরিমাণ বাড়ানো হয় তবে এদের লব্ধির প্রয়োগ বিন্দু x দূরত্বে সরে যায়। প্রমাণ কর যে, $x=\frac{5AB}{P-Q}$.
- গ) P ও Q বলের লব্ধি C বিন্দুতে ক্রিয়াশীল। P ও Q যদি পরস্পর স্থান পরিবর্তন করে তবে তাদের লব্ধি C' বিন্দুতে ক্রিয়াশীল। CC' এর মান নির্ণয় কর।

(ক) এর সমাধান

 \mathbf{P} ও \mathbf{Q} বলের ক্রিয়াবিন্দু \mathbf{C} হলে, $P \times BC = Q \times AC$

বা,
$$P \times BC = Q \times (AB + BC)$$

বা,
$$BC = \frac{Q.AB}{P-Q}$$

আবার, (P+3) ও (Q+5) বলের ক্রিয়াবিন্দু C।

$$\therefore BC = \frac{(Q+5)AB}{(P+3)-(Q+5)}$$

সুতরাং
$$\frac{Q}{P-Q} = \frac{Q+5}{P-Q-2}$$

 $\therefore 5P = 3Q$ (দেখানো হলো)

(খ) এর সমাধান

P ও Q বলের ক্রিয়াবিন্দু C হলে

$$P \times BC = Q \times AC$$

বা,
$$P \times BC = Q \times (AB + BC)$$

$$BC = \frac{Q.AB}{P - Q}$$

আবার, (P+5), (Q+5) বলের ক্রিয়াবিন্দু D হলে

$$BD = \frac{(Q+5)AB}{P-Q}$$

$$\therefore x = BD - BC = \frac{(Q+5)AB}{P-Q} - \frac{Q.\ AB}{P-Q} = \frac{5.\ AB}{P-Q} \ (প্রমাণিত)$$

(গ) এর সমাধান

P ও Q বলের ক্রিয়াবিন্দু C হলে

$$Q \times AC = P \times BC$$

$$Q \times (AB + BC) = P \times BC$$

$$BC = \frac{A. AB}{P - Q}$$

আবার, P ও Q বলদ্বয় স্থান বিনিময় করলে P ও Q বলের ক্রিয়াবিন্দু \mathcal{C}'

$$P \times AC' = Q \times BC'$$

$$P \times (BC' - AB) = Q \times BC'$$

$$BC' = \frac{P \cdot AB}{P - Q}$$

$$\therefore CC' = BC + BC' = \frac{(P+Q)AB}{P-Q} (Ans.)$$

৪ নং প্রশ্রের উত্তর

l দৈর্ঘ্যের একটি সুতার দুই প্রান্ত একই অনুভূমিক রেখার a দূরত্বে (l>a) অবস্থিত A ও B বিনউদতে বাঁধা আছে। W ওজনের একটি মসৃণ আংটা সূতার ওপর দিয়ে অবাধে চলাচল করতে পারে। P মানের একটি অনুভূমিক বল আংটাটিকে টেনে B বিন্দুর খাড়া নিচে স্থির রাখে।

- ক) টান ও ওজনের সংজ্ঞান দাও।
- খ) অনুভূমিক বল P এর মান নির্ণয় কর।
- গ) দেখাও যে, সূতার টান $T = \frac{W(a^2 + l^2)}{2l^2}$

(ক) এর সমাধান

কোনো বস্তুকে একটি সুতা বা দন্ডের সাহায্যে টানা হলে ঐ সুতা বা দন্ড বরাবর বস্তুর উপর ক্রিয়াশীল বলকে টান বলে। যে বলে পৃথিবী কোনো বস্তুকে আকর্ষণ করে তাকে ওজন বলা হয়। বস্তুর ওজন W ভর এবং অভিকর্ষজ ত্বরণ g হলে W=mg= বস্তুর ভর \times অভিকর্ষজ ত্বরণ।

(খ) এর সমাধান

একই অনুভূমিক রেখার a দূরত্বে অবস্থিত A ও B বিন্দুতে l দৈর্ঘ্যবিশিষ্ট একটি মসৃণ সূতার প্রান্তদ্বয় আবদ্ধ আছে। B বিন্দুর খাড়া নিচে W ওজনের একটি বস্তুকে অনুভূমিক দিকে প্রযুক্ত P বলের সাহায্যে স্থিরবস্থায় রাখা হয়েছে। মনে করি, রশির টান T এবং

$$\angle ACB = \theta$$
 $AC \times CB = 1$

A

A

A

B

T

P

মনে করি, তাহলে AC=x যেহেতু CB=l-x বিন্দুতে C এবং P, W, T বল চারটি ভাসসাম্যে আছে, সুতরাং যেকোনো দিকে তাদের লম্বাংশের বীজগাণিতিক সমষ্টি শূন্য হবে। অনুভূমিক দিকে বিভাজিত করে, $P+T\cos(90^\circ+\theta)=0$

বা,
$$P = T \sin \theta$$

আবার উল্লম্ব দিকে বিভাজিত করে.

$$W \sin 270^{\circ} + P \sin 0^{\circ} + T \sin 90^{\circ} + T \sin(90^{\circ} + \theta) = 0$$

বা,
$$T(1+\cos\theta)-W=0$$

বা,
$$T(1+\cos\theta)=W$$

ৰা,
$$T = \frac{W}{1 + \cos \theta} = \frac{W}{1 + \frac{l - x}{x}} = \frac{Wx}{l}$$

কিন্ত
$$x^2 = a^2 + (l - x)^2 = a^2 + l^2 - 2lx$$
বা, $a^2 + l^2 = 2lx$ বা, $x = \frac{a^2 + l^2}{2l}$

$$\therefore T = \frac{W}{l} x = \frac{W}{l} \left(\frac{a^2 + l^2}{2l^2}\right) = \frac{W(a^2 + l^2)}{2l^2} \quad \text{(দেখানো হলো)}$$

(গ) এর সমাধান

$$P = T \sin \theta = \frac{W(a^2 + l^2)}{2l^2} \cdot \frac{a}{x} = \frac{W(a^2 + l^2)}{2l^2} \cdot \frac{2al}{a^2 + l^2} = \frac{Wa}{l} (Ans.)$$

প্র্যাকটিস অংশঃ সুজনশীল প্রশ্নঃ

সূজনশীল প্রশ্ন-১

একটি হেলানো তলের উপর **ছ্**মি ওদৈর্ঘ্যের সমান্তরালে ক্রিয়াশীল যথাক্রমে $_S$ ও T দুইটি পৃথক বল এর প্রত্যেক একাকী W ওজনের কোন বস্তুকে সমতলের উপর স্থিরভাবে ধরে রাখতে পারে। [R হলো প্রতিক্রিয়া বল]

- ক. হেলানো তলের কোণ lpha হলে S ও W বলের অনুপাত নির্ণয় কর।
- খ. W কে S ও T এর মাধ্যমে প্রকাশ কর।
- গ. S ও T বলদ্বয় একসাথে ক্রিয়া করলে দেখাও যে, $S^2-T^2=R^2-W^2$

সূজনশীল প্রশ্নঃ-২

একজন ক্রিকেট ব্যাটসম্যান তার ব্যাটিং প্রাক্টিসের জন্য 15ইঞ্চি একটি সুতারু A ও B প্রান্তদ্বয়কে ছাদের 12 ইঞ্চি দুরত্বে অবস্থিত দুটি ভিন্ন অনুস্থমিক বিন্দুতে বেধে দিলেন। এর পর একটি মসৃণ ওজনহীন আংটার সাহায্যে W ওজনের একটি বলকে ঐ সুতা থেকে ঝুলিয়ে দিলেন।

- ক. ছাদ থেকে আংটার সর্বনিম্ন বিন্দুর দুরত্ব নির্ণয় কর।
- খ. W=6N হলে সুতার টান নির্ণয় কর।
- গ. বলটিকে যদি AB সূতার যে কোন বিন্দু C তে গিট দিয়ে ঝুলিয়ে দেওয়া হয় তবে দেখাও যে CA অংশের টান

$$rac{W.AC}{4.AB.\Delta}(AB^2+BC^2-CA^2)$$
 যেখানে Δ হল ABC ত্রিভুজের ক্ষেত্রফল।

সৃজনশীল প্রশ্ন-৩

ঘর্ষণহীন মৃসণতলের বড় কংক্রিটের ব-ককে দুই জন ব্যক্তি দুটি রশির সাহায্য ছমির উপর দিয়ে টেনে নিয়ে যাচ্ছে। রশিদ্বয়ের প্রযুক্ত বল যথাক্রমে P ও Q এবং তাদের অন্তর্ভূক্ত কোণ । ভিন্ন কোনো দিক হতে বস্তুর উপর α বল প্রয়োগ করলে বস্তুটি স্থির হয়ে যায়।

- ক. P=10N এবং Q=15N হলে এদের বৃহত্তম লব্ধি নির্ণয় কর।
- খ. দিতীয় রাশিতে Q বলের পরিমাণ দিগুণ অথবা বিপরীতমুখী করলে উভয়ক্ষেত্রের বস্তুটিকে স্থির রাখার জন্য S কে দিগুণ করতে হলে P:Q:S বের কর।
- গ. ১ম রশির দিক বরাবর S বলের লম্বাংশ Q হলে প্রমাণ কর যে, $S^2 + P^2 = Q(Q + 2P)$

সৃজনশীল প্রশ্ন-৪

মহাশূন্যে অবস্থিত দুটি বৃহৎ বস্তু A ও B বিন্দু থেকে C বিন্দুতে অবস্থিত অপেক্ষাকৃত ক্ষুদ্র একটি বস্তুকে নিজের দিকে আকর্ষণ করছে। এই আকর্ষণ বলের মান যথাক্রমে $\cos A$ ও $\cos B$ এর সমানুপাতিক।

- ক. ক্ষুদ্রতর বস্তুটি A ও B বস্তুদ্বয়ের কেন্দ্র সংযোগকারী সরলরেখার উপর একটি নিদির্স্থ বিন্দুতে অবস্থিত হলে এর উপর প্রযুক্ত বলদ্বয়ের লব্ধি নির্ণয় কর।
- খ. ক্ষুদ্রতম বস্তুর উপর প্রযুক্ত বলদ্বয়ের লব্ধি ও C কোণের মধ্যে বিদ্যমান সম্পর্কটি নির্ণয়কর।

গ. প্রমান কর যে, ক্ষুদ্রতর বস্তুটির উপর প্রযুক্ত বলদ্বয়ের লব্ধির দিক C কোণকে $\dfrac{1}{2}(c+B-A)$ এবং অংশে বিভক্ত করে।

সূজনশীল -৫

একটি বস্তুকণার উপর $\sqrt{3.2}$ এবং1 একক মানের তিনটি বল কার্যরত।

- ক. বলগুলির বৃহত্তম ও ক্ষুদ্রতম বলদ্বয়ের বৃহত্তম ও ক্ষুদ্রতম লব্ধি নির্ণয় কর।
- খ. বলগুলি সাম্যাবস্থায় থাকলে মধ্যবর্তী কোণ নির্ণয় কর।
- গ. বলগুলি পরস্পরের সাথে 120° কোণ উৎপন্ন করলে লব্ধির মান ও দিক নির্ণয় কর।

সূজনশীল প্রশ্ন-৬

R,S,T বল তিনটি একটি বিন্দুতে ক্রিয়ারত থেকে ভারসাম্য সৃষ্টি করেছে।

- ক. কী শর্তে একই বিন্দুতে ক্রিয়ারত তিনটি বল সাম্যাবস্থার সৃষ্টি করবে?
- খ. R ও S এর অন্তর্গত কোণ R ও T এর অন্তর্গত কোণের দ্বিগুন হলে প্রমান কর যে, $S^2=T^2+RS$
- গ. বল তিনটি যথাক্রমে $\triangle ABC$ এর পরিকেন্দ্র O বিন্দুতে OA,OB এবং OC বরাবর ক্রিয়ারতক্রিয়ারত হলে দেখাও যে, যদি BC=1,CA=m,AB=n হয় তবে $R:S:T=1^2(m^2+n^2-1^2):m^2(n^2+1^2-m^2):n^2(1^2+m^2-n^2)$

সুজনশীল প্রশাঃ৭

উদ্দীপক: P_1,P_2,P_3 সদৃশ সমান্তরাল বলত্রয় যথাক্রমে ABCত্রিভুজের A,B,C বিন্দুতে ক্রিয়া করছে।

- ক., এক বিন্দুতে ক্রিয়ারত দুটি বলের একটি অপরটির দিগুণ এবং এদের লব্ধি ক্ষুদ্র বলটির ক্রিয়ারেখার উপর লম্ব হলে বলদ্বয়ের মধ্যকার কোণ নির্ণয় কর।
- খ. উদ্দীপকের বলগুলোর লব্ধি লম্ব কেন্দ্র ক্রিয়ারত হলে দেখাও যে, $P_1\cot A=P_2\cot B=P_3\cot C$