Workshop Week 8: COMP20008 2019

- 1. What is classification? What is regression? What is the difference between the two?
- 2. What is the difference between training data and testing data?
- 3. Consider the following data set for a binary class problem and consider building a decision tree using this data.

Feature A	Feature B	Class Label
$\overline{\mathrm{T}}$	F	+
${ m T}$	$\mid \mathrm{T}$	+
${ m T}$	\mid T	+
${ m T}$	F	_
${ m T}$	Т	+
\mathbf{F}	F	_
F	F	_
\mathbf{F}	F	_
${ m T}$	Γ	_
${ m T}$	F	_

- Write a formula for the information gain when splitting on feature A.
- Write a formula for the information gain when splitting on feature B.
- Which feature would the decision tree induction algorithm choose?
- 4. Consider the following simple dataset

X	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
У	-	-	+	+	+	-	-	+	-	-

- Classify the point x=5.0 according to its 1-, 3-, 5- and 9-nearest neighbors.
- How does the parameter k affect the k-NN classifier? What would be the behaviour as $k \to \infty$?
- 5. The algorithm discussed in lectures for using a decision tree to classify an instance, did not consider the situation where the test instance may having missing feature values. Describe two ways one could use a decision tree to make a classification in this situation.
- 6. (Harder) Suppose Alice takes a dataset D with 100 instances, 4 features, plus a class label feature. She computes the correlation of each of the 4 features with the class label using mutual information and discards the two features with lowest correlation. She

now has a processed version D' of the dataset (2 features, class label feature and 100 instances). She splits D' into two - 80% training (80 instances) and 20% testing (20 instances). She learns a decision tree model on the training set and evaluates the model accuracy on the testing set. She reports the accuracy as being 90%. Why might this estimate of 90% accuracy be over-optimistic? Give reasons.

7. Load the workshop-week8-2019.ipynb jupyter notebook and complete the two practical exercises.