Precalculus

Express sin(kx), cos(kx) via sin x, cos x using Euler's formula

Todor Miley

2019

Example

Express sin(3x) and cos(3x) via cos x and sin x.

$$\cos(3x) + i\sin(3x)$$
$$= e^{3ix}$$

Example

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(\frac{3x}{3x}) + i\sin(\frac{3x}{3x}) = e^{3ix}$$

Euler's f-la

• Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.

Example

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$
$$= e^{3ix}$$

$$= (e^{ix})^3$$

Todor Milev

Example

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$

$$= e^{3ix}$$

$$= (e^{ix})^3$$

Example

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$

Euler's f-la

$$= e^{3ix}$$

$$= (e^{ix})^3 = (\cos x + i \sin x)^3$$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = ?$

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$
$$= e^{3ix}$$

$$= (e^{ix})^3 = (\cos x + i \sin x)^3$$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
= e^{3ix}
= $(e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
= $\cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
 $= e^{3ix}$
 $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
 $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
 $= e^{3ix}$
 $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
 $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$

$$= e^{3ix}$$

$$= (e^{ix})^3 = (\cos x + i\sin x)^3$$

$$= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$$

$$= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$$
Euler's f-la

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$

$$= e^{3ix}$$

$$= (e^{ix})^3 = (\cos x + i\sin x)^3$$

$$= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$$

$$= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$$
Euler's f-la

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$

$$= e^{3ix}$$

$$= (e^{ix})^3 = (\cos x + i\sin x)^3$$

$$= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$$

$$= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$$
Euler's f-la

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
 $= e^{3ix}$
 $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
 $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$
 $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$
 $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
 $= e^{3ix}$
 $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
 $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$
 $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$
 $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$. $\cos(3x) + i\sin(3x)$ | Euler's f-la $= e^{3ix}$ $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$ $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$ $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$ $= (\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$. $\cos(3x) + i\sin(3x)$ | Euler's f-la $= e^{3ix}$ $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$ $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$ $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$ $= (\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

 $=\cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$

 $= (\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

• Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Example

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$. $\cos(3x) + i\sin(3x)$ | Euler's f-la $= e^{3ix}$ $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$ $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$

Use $i^2 = -1$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
= e^{3ix}
= $(e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
= $\cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$
= $\cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$
= $\cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$
= $(\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
= e^{3ix}
= $(e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
= $\cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$
= $\cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$
= $\cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$
= $(\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

The real parts of the starting and final expression must be equal; therefore:

$$\cos(3x) = \cos^3 x - 3\cos x \sin^2 x$$

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Express $\sin(3x)$ and $\cos(3x)$ via $\cos x$ and $\sin x$.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
 $= e^{3ix}$
 $= (e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
 $= \cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$
 $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$
 $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ | Use $i^2 = -1$
 $= (\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

The real parts of the starting and final expression must be equal; likewise the imaginary parts must be equal; therefore:

$$\cos(3x) = \cos^3 x - 3\cos x \sin^2 x$$

$$\sin(3x) = 3\cos^2 x \sin x - \sin^3 x$$