информационная технология

РЕЖИМЫ РАБОТЫ ДЛЯ АЛГОРИТМА п-РАЗРЯДНОГО БЛОЧНОГО ШИФРОВАНИЯ

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом ТК 22 «Информационная технология»
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28.12.93 № 272

Настоящий стандарт подготовлен на основе применения аутентичного текста международного стандарта UCO/MЭK 10116—91 «Информационная технология, Режимы работы для алгоритма n-разрядного блочного шифрования»

3 ВВЕДЕН ВПЕРВЫЕ

С Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационная технология

РЕЖИМЫ РАБОТЫ ДЛЯ АЛГОРИТМА *п*-РАЗРЯДНОГО БЛОЧНОГО ШИФРОВАНИЯ

Information technology. Modes of operation for an n-bit block cipher algorithm

Дата введения 1994-07-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт описывает четыре режима работы для алгоритма *п*-разрядного блочного шифрования.

Примечание 1 — Приложение A содержит пояснения характеристик каждого режима.

Настоящий стандарт устанавливает четыре определенных режима так, что при применении алгоритма *п*-разрядного блочного шифрования (например, защиты передачи данных, хранения данных, подтверждения подлинности) этот стандарт представляет полезную справку, например для требований к режиму работы и значениям параметров (соответственно).

Для некоторых режимов набивка может требовать гарантий, чтобы все переменные открытого текста были необходимой длины.

Примечание 2 — Для режима работы шифрования с обратной связью — CFB (Cipher Feedback) (см. раздел 6) определяются два параметра: j и k. Для режима работы с обратной связью по выходу — OFB (Output Feedback) (см. раздел 7) задается один параметр j. При использовании одного из этих режимов работы значение(я) параметров должно быть выбрано и применено всеми сторонами при передаче сообщений.

2 ОПРЕДЕЛЕНИЯ

В настоящем стандарте использованы следующие определения.

2.1 Открытый текст — незашифрованная информация.

2.2 Шифротекст — зашифрованная информация.

2.3 Алгоритм *n*-разрядного блочного шифрования — алгоритм блочного шифрования, в котором блоки открытого текста и блоки шифротекста имеют длину *n* разрядов.

2.4 Связывание блоков — такое шифрование информации, при котором каждый блок шифротекста является криптографически за-

висимым от предшествующего блока шифротекста.

2.5 Начальное значение — IV (Initializing Value) — значение, используемое в определении начальной точки процесса шифрования.

2.6. Запускающая переменная — SV (Starting Variable) — переменная, полученная от начального значения и используемая в определении запускающей точки режимов работы.

Примечание 3 — Метод получения заптускающей переменной от начального значения не определен в настоящем стандарте. Он требует описания пры любом использовании режимов работы.

2.7 Криптографическая синхронизация — согласование процесса шифрования и дешифрования.

з обозначения

В настоящем стандарте функциональное отношение, определяемое алгоритмом блочного шифрования, записывается как

C = eK(P)

где P — блок открытого текста;

С — блок шифротекста;

K — ключ.

Выражение еК является операцией шифрования, использующей ключ К.

Соответствующая функция дешифрования записывается как P = dK(C).

Переменная, обозначенная заглавной буквой, как например вышеуказанными буквами P и C, представляет собой одномерный массив разрядов.

Например,

$$A = (a_1, a_2, \ldots, a_m) \in B = (b_1, b_2, \ldots, b_m)$$

представляют собой массивы m разрядов, пронумерованных от l до m. Все массивы разрядов записываются с наибольшего значащего разряда в левой позиции.

Операция сложения по модулю 2, известная также как функция «исключающее ИЛИ», представляется символом \bigoplus . Операция, относящаяся к массивам, например к A и B, определяется как

 $A \bigoplus B = (a_1 \bigoplus b_1, a_2 \bigoplus b_2, \ldots, a_m \bigoplus b_m).$

Операция выбора совокупности j старших слева разрядов массива A, чтобы генерировать j-разрядный массив, записывается как $A \sim j = (a_1, a_2, \ldots, a_i)$.

Эта операция определена только для $j \leqslant m$, где m — число разрядов в массиве A.

«Функция сдвига» S_k определяется следующим образом.

Для заданных m-разрядной переменной X и k-разрядной переменной F, где $k \ll m$, действие функции сдвига S_k (X|F) таково, что образует m-разрядную переменную

 $S_k(X|F) = (x_{k+1}, x_{k+2}, \dots, x_m, f_1, f_2, \dots, f_k)$ при k < m.

В результате происходят сдвиг разрядов массива X влево на k позиций с отбрасыванием x_1, \ldots, x_k и размещение массива F на самых правых k позициях массива X. Если k=m, происходит полное замещение массива X на F.

Используется особый случай этой функции, в котором берется m-разрядная переменная I(m) из последующих «1» битов и сдвигается переменной F из k разрядов, где $k \leqslant m$.

В результате:

 $S_k(I(m)|F) = (1, 1, \ldots, 1, f_1, f_2, \ldots, f_k)$ при k < m; $S_k(I(m)|F) = (f_1, f_2, \ldots, f_k)$ при k = m, где m-k наиболее старших разрядов представляют собой «1».

4 РЕЖИМ ЭЛЕКТРОННОГО КОДОВОГО СПРАВОЧНИКА — ECB (ELECTRONIC CODEBOOK)

- 4.1 Переменные, используемые для режима шифрования ЕСВ:
- а) последовательность из q блоков открытого текста P_1, P_2, \ldots, P_n , каждый по n разрядов;

b) ключ *K*;

с) получающаяся в результате последовательность q блоков шифротекста C_1, C_2, \ldots, C_q , каждый по n разрядов.

4.2 Режим ЕСВ при шифровании описывается следующим об-

разом:

 $C_i = eK(P_i)$ для i = 1, 2, ..., q. (1)

4.3 Режим ЕСВ при дешифровании описывается следующим образом:

 $P_i = dK(C_i)$ для i = 1, 2, ..., q. (2)

5 РЕЖИМ ПОСЛЕДОВАТЕЛЬНОГО БЛОЧНОГО ШИФРОВАНИЯ — CBC (CIPHER BLOCK CHAINING)

- 5.1 Переменные, используемые для режима СВС при шифровании:
- а) последовательность q блоков открытого текста $P_1,\ P_2,\ldots$, P_q , каждый по n разрядов;
 - b) ключ *K*;
 - c) запускающая переменная SV из n разрядов;

d) последовательность q блоков шифротекста

 C_1, C_2, \ldots, C_q , каждый по n разрядов.

5.2 Режим СВС при шифровании описывается следующим образом:

шифрование первого блока открытого текста

$$C_1 = eK(P_1 \bigoplus SV), \tag{3}$$

далее

$$C_i = eK(P_i \oplus C_{i-1})$$
 для $i = 2, 3, ..., q.$ (4)

Данная процедура показана в верхней части рисунка 1. Запускающая переменная SV используется для генерации первых выходных данных шифротекста. Затем шифротекст суммируется помодулю 2 к последующему открытому тексту перед шифрованием.

5.3 Режим СВС при дешифровании описывается следующим

образом:

дешифрование первого зашифрованного блока
$$P_i = dK(C_i) \bigoplus SV,$$
 (5)

далее

$$P_i = dK(C_i) \oplus C_{i-1}$$
 для $i=2, 3, ..., q.$ (6)

Эта процедура показана в нижней части рисунка 1.

6 РЕЖИМ ШИФРОВАНИЯ С ОБРАТНОЙ СВЯЗЬЮ — CFB (CIPHER FEEDBACK)

- 6.1 Работу режима СГВ определяют два параметра:
- размер переменной обратной связи k, где $1 \le k \le n$;
- размер переменной открытого текста j, где $1 \le j \le k$.

Переменные, используемые при работе в режиме СГВ, следующие:

- а) входные переменные:
 - 1) последовательность q переменных открытого текста P_1 , P_2, \ldots, P_q , каждая по i разрядов;
 - ключ K;
 - 3) запускающая переменная SV, имеющая n разрядов;
- b) промежуточные результаты:

Рисунок 1 — Режим работы последовательного блочного шифрования (СВС)

- 1) последовательность q входных блоков алгоритма X_1 , X_2 , ..., X_q , каждый по n разрядов;
- 2) последовательность q выходных блоков алгоритма Y_1 , Y_2 , . . . , Y_q , каждый по n разрядов;
- 3) последовательность q переменных E_1, E_2, \ldots, E_q , каждая по n разрядов;
- 4) последовательность q-1 переменных обратной связи F_1 , F_2, \ldots, F_{q-1} , каждая по k разрядов;
- с) выходные переменные, т. е. последовательность q переменных шифротекста C_1, C_2, \ldots, C_q , каждая по j разрядов.
- 6.2 Входной блок X представляет собой ряд его начальных значений

$$X_1 = S_1 V. (7)$$

Операция шифрования каждой переменной открытого текставилючает в себя пять этапов:

а) использование алгоритма шифрования
$$Y_i = eK(X_i)$$
; (8)

b) выбор старших слева
$$j$$
 разрядов $E_i = Y_i \sim j;$ (9)

c) формирование переменной шифротекста
$$C_i = P_i \bigoplus E_i;$$
 (10)

d) формирование переменной обратной связи
$$F_i = S_i(I(k) \mid C_i);$$
 (11)

е) функцию сдвига

$$X_{i+1} = S_k(X_i | F_i).$$
 (12)

Эти этапы повторяются для $i=1, 2, \ldots, q$, заканчиваясь уравнением (12) на последнем цикле. Процедура представлена на левой стороне рисунка 2. Старшие слева ј битов выходного блока У алгоритма шифрования используются для шифрования ј-разрядной переменной открытого текста сложением по модулю 2. Оставшиеся разряды блока У отбрасываются. Переменные текста и шифротекста имеют разряды, пронумерованные от 1 до і.

Переменная шифротекста дополняется размещением k-i битов «1» в позиции ее старших слева разрядов так, чтобы она стала k-разрядной переменной обратной связи F. Затем входного блока Х сдвигаются влево на k позиций и F вставляется в самые правые k позиций, чтобы образовать новое значение X. В этой операции сдвига самые левые \hat{k} разрядов блока X отбрасываются.

6.3. Переменные, используемые для дешифрования, являются такими же, как и те, которые используются для шифрования. Входной блок X представляет собой начальные значения $X_i = SV$.

Операция дешифрования каждой переменной шифротекста включает в себя пять этапов:

а) использование алгоритма шифрования

$$Y_i = eK(\vec{X}_i); \tag{13}$$

b) выбор самых левых *j* разрядов

$$E_i = Y_i \sim j; \tag{14}$$

с) формирование переменной открытого текста

$$P_i = C_i \bigoplus E_i; \tag{15}$$

d) формирование переменной обратной связи

$$F_i = S_j(I(k) \mid C_i); \tag{16}$$

е) функцию сдвига

$$X_{i+1} = S_k(X_i|F_i).$$
 (17)

 $X_{i+1} = S_k(X_i | F_i)$. (17) Эти этапы повторяются для $i=1,\ 2,\dots,\ q$, заканчиваясь уравнением (17) в последнем цикле. Процедура представлена в правой части рисунка 2. Самые левые ј разрядов выходного блока У алгоритма шифрования используются для дешифрования ј-разрядной 2. Оставшиеся переменной шифротекста сложением по модулю разряды блока У отбрасываются. Переменные открытого текста и шифротекста имеют разряды, пронумерованные от 1 до і.

Переменная шифротекста дополняется размещением k-i битов st«1» в позициях самых левых разрядов так, чтобы она стала k-разрядной переменной обратной связи Г. Затем разряды входного блока Х сдвигаются влево на k позиций и F вставляется в самые правые k позиций, чтобы образовать новое значение X. В этой операции сдвига самые левые k разрядов блока X отбрасываются.

Рисунок 2 — Режим работы шифрования с обратной связью (СГВ)

6.4' Рекомендуется, чтобы режим СГВ использовался с равными значениями j и k. При этой рекомендации (j=k) уравнений (11) и (16) могут быть записаны в виде $F_i = C_i$ (подставлено i=k).

7 РЕЖИМ С ОБРАТНОЙ СВЯЗЬЮ ПО ВЫХОДУ — OFB (OUTPUT FEEDBACK)

7.1 Режим работы OFB определяет один параметр, т. е. размер переменной открытого текста j, где $1 \le j \le n$.

Переменные, используемые при работе в режиме OFB:

- а) входиые переменные:
 - 1) последовательность q переменных открытого текста P_1 P_2, \ldots, P_q , по j разрядов каждая;
 - 2) ключ K;
 - 3) запускающая переменная SV из n разрядов;
- b) промежуточные результаты:
 - 1) последовательность q входных блоков алгоритма X_1 , X_2 , ..., X_q , по n разрядов каждый;
 - 2) последовательность q выходных блоков алгоритма Y_1 , Y_2, \ldots, Y_q , по n разрядов каждый;
 - 3) последовательность q переменных E_1, E_2, \ldots, E_q , по j разрядов каждая;

ГОСТ Р ИСО/МЭК 10116—93

с) выходные переменные, т. е. последовательность q переменных шифротекста C_1, C_2, \ldots, C_q , по j разрядов каждая.

7.2. Входной блок X представляет собой ряд его начальных

$$X_i = SV. (18)$$

Операция шифрования каждой переменной открытого текста включает в себя четыре этапа:

а) использование алгоритма шифрования

$$Y_i = eK(X_i); (19)$$

b) выбор самых левых *і* разрядов

$$E_i = Y_i \sim i; \tag{20}$$

с) формирование переменных шифротекста

$$C_i = P_i(+) \vec{E}_i; \tag{21}$$

d) операцию обратной связи

$$X_{i+1} = Y_i. \tag{22}$$

Эти этапы повторяются для $i=1, 2, \ldots, q$, заканчиваясь уравнением (21) на последнем цикле. Процедура показана в левой части рисунка 3. Результат каждого применения алгоритма шифрования, которым является блок Y_i , используется для обратной связи и становится следующим значением X_i , а именно X_{i+1} . Самые левые i разрядов в Y_i используются для шифрования входной переменной.

Рисунок 3 — Режим работы шифрования с обратной связью по выходу (OFB)

7.3. Переменные, используемые для дешифрования, являются такими же, как и используемые для шифрования. Входной блок X представляет собой ряд его начальных значений $X_i = SV$.

Операция дешифрования каждой переменной шифротекста

включает в себя четыре этапа:

а) использование алгоритма шифрования $Y_i = eK(X_i);$ (23)

b) выбор самых левых j разрядов $E_i = Y_i \sim j;$ (24)

с) формирование переменной открытого текста $P_i = C_i \bigoplus E_i$; (25)

 $X_{i+1} = Y_i$. (26)

Эти этапы повторяются для $i=1, 2, \ldots, q$, заканчиваясь уравнением (26) на последнем цикле. Процедура представлена в правой части рисунка 3. Значения X_i и Y_i , используемые как для дешифрования, так и для шифрования, одинаковы; отличается только уравнение (25).

ПРИЛОЖЕНИЕ А

(информационное)

СВОЙСТВА РЕЖИМОВ РАБОТЫ

А.1 Свойства режима работы электронного кодового справочника (ЕСВ)

АЛЛ Условия применения

Передаваемые блоки информации — это такой перенос информации между ЭВМ и людьми, который может иметь повторения или обычно используемые последовательности. В режиме ЕСВ идентичный открытый текст синтезирует (при том же ключе) идентичные блоки шифротекста.

А.1.2 Характеристики режима ЕСВ:

а) шифрование и дешифрование блоков могут осуществляться независимо от других блоков;

b) переупорядочение блоков шифротекста приведет к соответствующему пе-

реупорядочению блоков открытого текста;

с) тождественный блок открытого текста всегда породит тождественный блок шифротекста (при одном и том же ключе), делая его уязвимым к «словарной атаке».

Режим ЕСВ обычно не рекомендуется для сообщений длиннее чем один блок. Применение режима ЕСВ может в дальнейшем быть установлено в международных стандартах для таких специальных целей, когда повторение характеристик допустимо или блоки доступны индивидуально.

А.1.3 Требования к набивке

Только блоки по n разрядов могут быть зашифрованы и дешифрованы. Блоки другой длины должны быть дополнены до n-разрядного предела.

А.1.4 Распространение ошибки

В режиме ЕСВ один или более ошибочных битов внутри отдельного блока шифротекста будут воздействовать только на дешифрование блока, в котором ошибка(ки) произошла (ли). При предположении, что шифр обладает свойством, при котором замена одного бита открытого текста вызывает в среднем 50 %-е изменение шифротекста, каждый бит восстановленной версии открытого текста этого блока будет иметь среднюю ошибку порядка 50 %.

А.1.5 Если границы блока утрачиваются между шифрованием и дешифрованием (например, обусловлены ошибкой бита), синхронизация между операциями шифрования и дешифрования будет утеряна до тех пор, пока не будут восстановлены правильные границы блока. Результат всех операций дешифрования будет неверным, пока границы блока утрачены.

A.2 Свойства режима работы последовательного блочного шифрования (CBC)

А.2.1 Условия применения

Режим СВС порождает тождественный шифротекст всякий раз, когда шифруется тождественный открытый текст с использованием тождественных ключа и запускающей переменной. Пользователям, которых интересует эта характеристика, необходимо знать, каж следует заменять запуск открытого текста, ключа или запускающей переменной. Во-первых, это введение уникального идентификатора (например, счетчика прироста) в начало каждого передаваемого в режиме СВС блока информации. Во-вторых, для случая, когда шифруют записи, размеры которых не должны увеличиваться, — использование некоторой переменной, например запускающей переменной, которая может быть вычислена из записи без

знания ее компонентов (например, ее адреса в запоминающем устройстве с про-извольной выборкой).

А.2.2 Свойства

Свойства режима СВС:

а) последующая операция делает блоки шифротекста зависимыми от текущего и всех предыдущих блоков открытого текста, и поэтому блоки не могут быть переставлены;

b) использование различных значений SV исключает шифрование тождест-

венного открытого текста в тождественный шифротекст.

А.2.3 Требование к набивке

Только блоки по n разрядов могут быть зашифрованы и дешифрованы. Блоки другой длины должны быть дополнены до n-разрядного предела. Если это не допустимо, последняя переменная может обрабатываться специальным путем Два примера специальной обработки приведены ниже.

Первой возможностью обработать неполную последнюю переменную (т. е. переменную P_q при i < n разрядов, где q должно быть больше 1) является шиф-

рование в режиме OFB, как описано ниже:

а) -шифрование $C_a = P_a \oplus (eK(C_{a-1}) \sim i)$: (27):

b) дешифрование

$$P_q = C_q \oplus (eK(C_{q-1}) \sim j). \tag{28}$$

Тем не менее эта последняя переменная уязвима к «выбранной атаке открытого текста», если SV не является секретной или если она используется бо-

лее одного раза с тождественным ключом (см. А.4).

Вторая возможность известна как «шифротекст—упрятывание». Допустим, что последние две переменные открытого текста представляют собой P_{q-1} и P_q , где P_{q-1} есть n-разрядный блок, P_q является переменной из j < n разрядов в q должно быть больше 1.

а) Шифрование.

Пусть C_{q-1} является блоком шифротекста, получаемым из P_{q-1} с использованием метода, описанного в 5.2. В таком случае

 $C_q = eK(S_j(C_{q-1}|P_q))$ (29)

Последние две переменные шифротекста в таком случае представляют собой $C_{q-1} \sim j$ и C_q

b) Дешифрование

 C_q должна быть дешифрована первой, в результате чего она дает переменную P_q и самые правые n-j разрядов C_{q-1} :

 $S_{j}(C_{q-1}|P_{q}) = dK(C_{q}).$ (30) Законченный блок C_{q-1} теперь доступен, и P_{q-1} может быть получен с ис-

пользованием метода, описанного в 5.3.

Две замыкающие переменные шифротекста дешифруются в обратном порядке, что делает это решение менее пригодным для аппаратной реализации.

А.2.4 Распространение ошибки

В режиме СВС один и более ошибочных разрядов внутри отдельного блока шифротекста будут влиять на дешифрование двух блоков (блока, в котором ошибка совершена, и последующего блока). Если ошибки есть в *i*-ом блоке шифротекста, каждый разряд *i*-то дешифрованного блока открытого текста будет иметь в среднем порядка 50 % ошибок при предположении, что шифр обладает таким свойством, при котором изменение одного разряда открытого текста приводит в среднем к 50 %-ному изменению в шифротексте. Дешифрованный (*i*+1) блок открытого текста будет иметь только те разряды в ошибке, которые пряможависят от разрядов шифротекста в ошибке. Если ошибки содержит переменная из менее чем п разрядов, распространение ошибки зависит от выбранного

метода специальной обработки. В первом примере дешифрованный короткий блок будет иметь те разряды в ошибке, которые прямо связаны с разрядами шифротекста в ошибке. Если ошибки есть в блоке, предшествующем блоку из менее чем п разрядов, дешифрованный короткий блок будет иметь среднее значение разрядов ошибки порядка 50 %. В шифротексте, имеющем случайные ошибки, короткий блок или последний блок шифротекста приводит к ошибочным разрядам порядка 50 %.

А.2.5 Границы блока

Если границы блока утрачиваются между шифрованием и дешифрованием (например, обусловлены ошибкой разряда), синхронизация между операциями шифрования и дешифрования будет утеряна до тех пор, пока не будут восстановлены правильные границы блока. Результат всех операций дешифрования будет неверным, пока границы блока утрачены.

А.3 Свойства режима работы шифрования с обратной связью (CFB)

А.3.1 Условия применения Режим СГВ порождает тождественный шифротекст всякий раз, когда шифруется тождественный открытый текст с использованием тождественных ключа и запускающей переменной. Пользователям, которых интересует эта характеристика, необходимо знать, как заменить запуск открытого текста, ключ или запускающую переменную. Во-первых, это введение уникального идентификатора (например, счетчика прироста) в начало каждого передаваемого в режиме СГВ блока информации. Во-вторых, в случае, когда шифруют записи, размеры которых не должны увеличиваться, — использование некоторой переменной, например запускающей переменной, которая может быть вычислена из записи без знания ее компонентов (например, ее адреса в запоминающем устройстве с произвольной выборкой).

А.3.2 Свойства

Свойства режима CFB:

а) последующая операция делает переменные шифротекста зависимыми от текущей и всех предыдущих переменных открытого текста, и поэтому *j*-разрядные переменные связаны вместе и не могут быть переставлены;

b) использование различных значений SV делает невозможным шифрование

тождественного открытого текста в тождественный шифротекст;

с) оба процесса шифрования и дешифрования в режиме СFВ используют формулу шифрования алгоритма;

d) мощность режима CFB зависит от размера k (максимальна, если j=k);

е) выбор малого значения j будет требовать больше циклов на единицу открытого текста из-за алгоритма шифрования и, таким образом, вызовет большие непроизводительные издержки процесса.

А.З.З Требования к набивке

Только блоки по *j* разрядов могут быть зашифрованы и дешифрованы. Бло ки другой длины должны быть дополнены до *j*-разрядного предела. Тем не менее, в большинстве применений *j* следует выбирать равным размеру символа и набивка не потребуется.

А.3.4 Распространение ошибки

В режиме СГВ ошибки в любом *j*-разрядном элементе шифротекста будут влиять на дешифрование следующего шифротекста до тех пор, пока биты в ошибке будут сдвигаться без сохранения выдвигаемых разрядов входного блока режима СГВ. Первый подверженный влиянию *j*-разрядный элемент открытого текста будет искажен именно в тех местах, где в шифротексте имеется ошибка. При предположении, что шифр обладает свойством, при котором изменение одного бита открытого текста вызывает в среднем 50 %-е изменение в шифротексте, в последующем дешифрованном открытом тексте каждый разряд будет

иметь среднюю ошибку порядка 50 % до тех пор, пока все ошибки будут сдвигаться без сохранения выдвигаемых разрядов входного блока

А.3.5 Границы блока

Если *j*-разрядные границы утеряны между шифрованием и дешифрованием (например, обусловлены ошибкой разряда), криптографическая синхронизация будет восстановлена до *n* разрядов после того, как восстановятся *j*-разрядные границы. Если блок из *j* разрядов утерян, синхронизация будет восстановлена автоматически после обработки *n* разрядов.

А.4 Свойства режима работы с обратной связью по выходу (OFB)

А.4.1 Условия применения

Режим ОГВ порождает тождественный шифротекст всякий раз, когда шифруется тождественный открытый текст с использованием тождественных ключа и запускающей переменной. Кроме того, в режиме ОГВ порождается тождественный поток ключей, когда используются тождественные ключ и SV. Следовательно, из соображений секретности специальная SV должна быть использована только один раз для заданного ключа.

А.412 Свойства Свойства режима ОГВ:

а) отсутствие связанности делает режим OFB более уязвимым к специальным атакам;

b) использование различных значений SV, порождая различные потоки ключей, препятствует шифрованию тождественного открытого текста в тождественный шифротекст;

с) обе процедуры шифрования и дешифрования в режиме ОFВ используют формулу шифрования алгоритма;

ду возуми ОЕР и по поритма;

d) режим OFB не зависит от открытого текста при генерации потока клю-

чей, используемых для сложения по модулю 2 к открытому тексту;

е) выбор малого значения *j* будет требовать больше циклов на единицу открытого текста из-за алгоритма шифрования и, таким образом, вызовет большие непроизводительные издержки процесса.

А.4.3 Требования к набивке

Только блоки по j разрядов могут быть зашифрованы и дешифрованы. Блоки другой длины должны быть дополнены до j-разрядного предела. Тем не менее, в большинстве применений j следует выбирать равным размеру символа и набивка не потребуется.

А.4.4 Распространение ошибки

Режим ОГВ не расширяет ошибки шифротекста на выходе результирующего открытого текста. Каждый бит в ошибке шифротекста вызывает только один бит, который будет ошибочным в дешифрованном открытом тексте.

А.4.5 Границы блока

Режим ОГВ не является самосинхронизирующимся. Если две операции шифрования и дешифрования выходят из синхронизации, система нуждается в приведении в исходное состояние (реинициализации). Такая потеря синхронизации может быть (если j > 1) из-за потери правильных границ блоков по j разрядов (например, обусловлена ошибкой разряда).

Каждое восстановление исходного состояния должно использовать значение SV, отличное от значений SV, использованных до этого с тождественным ключом. Основанием для этого является то, что для тождественных параметров всякий раз должен порождаться идентичный поток разрядов. Указанные условия

делают режим OFB уязвимым к «известной атаке открытого текста».

ПРИЛОЖЕНИЕ В

(информационное)

информация о патентах

В процессе подготовки международного стандарта ИСО/МЭК 10116 была собрана информация о патентах, от которых может зависеть применение данного стандарта. Было выявлено, что такие патенты принадлежат корпорациям IBM и UNISYS.

Однако Международная организация по стандартизации — ISO (International Organization for Standardization) не может дать авторитетной или исчернывающей информации об очевидности, обоснованности или области распространения патентов или подобных прав

Владельцы патентов приняли положение, по которому в оговоренные периоды лицензии будут допускать предоставление права применения данного международного стандарта при условии, что те, кто желает получить лицензии, согласны отвечать взаимностью.

Дополнительная информация имеется в распоряжении фирм:

Director of Commercial Relations

International Business Machines Corporation (IBM)

2000 Purchase Street

PURCHASE, N. Y. 10577

Director, Industry Relations UNISYS PO Box 500 Blue Bell, PA 19424 U. S. A.

ПРИЛОЖЕНИЕ С

(информационное)

ПРИМЕРЫ ДЛЯ РЕЖИМОВ РАБОТЫ

С.1 Общие сведения

В этом приложении приведены примеры для шифрования и дешифрования передаваемых блоков информации с использованием режимов работы, установленных в настоящем стандарте. Используемые параметры:

а) алгоритм шифрования — алгоритм шифрования данных (DEA — Data

Encryption Algoritm). Значение n = 64;

b) криптографический ключ — 01234567890ABCDEF; c) запускающая переменная — 1234567890ABCDEF;

d) открытый текст — 7-битный код ASCII (американский стандартный код для обмена информацией) для слов «Now is the time for all» (в шестнадцатеричном представлении 4E6F772069732074 68652074696D6520 666F7220616C6C20). Для режима CFB открытый текст — 7-битный кол ASCII для слова «Now» (в шестнадцатеричном представлении 4E6F77).

С.2 Режим ЕСВ

Примеры шифрования и дешифрования в режиме ЕСВ даны в таблицах С.1 и С.2 соответственно. Таблица С.1 — Режим ЕСВ, шифрование

	Открытый текст P_i	Входной блок алгоритма	Выходной блок алгоритма	ІНифротекст Сі
-	4E6F772069732074	4E6F772069732074	3FA40E8A984D4815	3FA40E8A984D4815
ପ	68652074696D6520	68652074696D6520	6A271787AB8883F9	6A271787AB8883F9
ღ	666F7220616C6C20	666F7220616C6C20	893D51EC4B563B53	893D5(1EC48563B53

Таблица С.2 — Режим ЕСВ, дешифрование

Выходной блок алгоритма	9732074 4E6F772069732074	96D6520 68652074696D6520	16C6C20 666F7220516C6C20
	3.15 4E6F772069732074	F9 68652074696D6520	353 666F7220616C6C20
Входной блок алгоритма	3FA40E8A984D4815	6A271787AB8883F9	893D51EC4B563B53
Шифротекст Рі	3FA40E8A984D4815	6A271787AB8883F9	893D51EC48563B53
		ଫ	ဇ

С.3 Режим СВС

Примеры шифрования и дешифрования в режиме СВС даны в таблицах С.3 и С.4 соответственно.

Таблица С.3 — Режим СВС, шифрование

	1	i	1
Шифротекст Сі	E5C7CDDE872BF27C	43E984008C389C0F	693788499A7C05F6
Выходной блок алгоритма	E5C7CDDE872BF27C	43E934008C389C0F	683788499A7C05F6
Входной блок алгоритма	5C5B2158F9D8ED9B	8DA2EDAAEE46975C	25864620ED54F02F
Открытый текст P_i	4E6F772069732074	68:52074696D6520	666F7220616C6C20
		Ø	8 2

Таблица С.4 — Режим СВС, дешифрование

·	Шифротекст P_i	Входной блок алгоритма	Выходной блок алгоритма	Открытый текст C_i
-	E5C7CDDE872BF27C	E5C7CDDE872BF27C	5C5B2158F9D8ED9B	4E6F772069732074
63	43E934008C389C0F	43E934008C389C0F	8DA2EDAAEE46975C	68652074696D6520
8	683788499A7C05F6	683788499A7C05F 6	25864620ED54F02F	666F7220616C6C20

С.4 Режим СГВ

Примеры шифрования и дешифрования в режиме СFB даны в таблицахС.5 и С.6 соответственно. Для этих примеров выбраны параметры $j=k=8;\ k$ разрядов обратной связи показаны наклонным (курсивным) шрифтом.

Таблица С.5 — Режим СГВ, шифрование

Шифротекст С.	F3	ŦI	DA
Выходной блок алгоритма	BD661569AE874E25	7039546F9A0F6330	AD1.B78B0BB371BE7
Входной блок алгоритма	1234567880ABCDEF	34567830ABCDEF <i>F3</i>	5678901ABCDEFF31F
Открытый текст P_i	4E	Ξ 9	77
	=	ୟ	3

Таблица С.6 — Режим СГВ, дешифрование

•	Шифротекст $P_{\mathfrak{t}}$	Входной блок алгоритма	Выходной блок алгоритма	Открытый текст Сі
1	F3	1234567890ABCDEF	BD661569AE874E25	4Ē
2	٦. ٦.	34667890ABCDEFF3	7039546F9A0F6330	6E
ငှာ	DA	567890ABCDEFF31F	AD1B78B0BB371BE7	77

С.5 Режим ОГВ

Примеры шифрования и дешифрования в режиме ОFВ даны в таблицахС.7 и С.8 соответственно. Для этих примеров выбран параметр j=64.

Таблица С.7 — Режим ОГВ, шифрование

-				
	Открытый текст P_i	Входной блок алгоритма	Выходной блок алгоритма	Шифротекст Сі
-	4E6F772069732074	1234567890ABCDEF	BD661569AE874E25	F3096249C7F46E51
2	68652074696D6520	BD661569AE874E25	5D976A504786581F	35F24A242EEB3D3F
8	605F7220616C6C20	5D976A504786581F	5B0229C3443694E3	3D6D5BE3265AF8C3

Таблица С. В. — Режим ОГВ, дешифрование

4 1000	Шяфротекст P_i	Входной блок алгоритма	Выходной блок алгоритма	Открытый текст С.
_	F3096249C7F46E51	,1234567890ABCDEF	BD66.1569AE874E25	4E6F772069732074
ŝ	35F24A242EEB3D3F	BD661569AE874E25	5D976A504786581F	68652074696D6520
ж	3D6D5BE3226AF19C3	5D976A504786581F	5B0229C3443694E3	666F72 <mark>206</mark> 16C6C20

УДК 681.33:006.354

П85

Ключевые слова: информационная технология, режим работы, алгоритм *п*-разрядного блочного шифрования, алгоритм шифрования, защита передачи данных, хранение данных, подтверждение подлинности, режим работы с обратной связью, режим работы с обратной связью по выходу, открытый текст, шифротекст, связывание блоков, запускающая переменная, криптографическая синхронизация

ОКСТУ 4002

Редактор *Л. В. Афанасенко* Технический редактор *О. Н. Никитина* Корректор *Т. А. Васильева*

Сдано в наб. 04.02.94. Подп. в печ. 06.04.94. Усл. п. л. 1,40. Усл. кр.-отт 1,40. Уч.-изд. л. 1,20. Тир. 411 эмз. С 1167.