4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (1)

Stoff	\mathcal{E}_{r}
Aceton	20,7
Ammoniak	22,4
Benzin	2 2,2
Ethanol	24,3
Holz, imprägniert	3,5 5
Luft, trocken	1,006
Methanol	33,1
Öl	2,2
Polyethylen	2,3
Schwefelwasserstoff	5,8
Toluol	2,38
Wasser	80,4

Dielektrizitätskonstanten verschiedener Stoffe

[P. Devine: Füllstandsmessung mit Radar;H. Kuchling: Taschenbuch der Physik]

Kapazität eines Plattenkondensators

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{I}$$

⇒ Wegmessung, Druckmessung

$$\Delta I = -I_0 \cdot \frac{\Delta C}{C_0} \qquad \Delta p \sim -I_0 \cdot \frac{\Delta C}{C_0}$$

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (2)

Differenzialkondensator mit $dI_1 = -dI_2$

$$dC_1 = \frac{\partial C_1}{\partial I_1} \Big|_{I_1 = I_0} \cdot dI_1 = -\frac{C_0}{I_0} \cdot dI_1$$

$$\underline{dC_2} = \frac{\partial C_2}{\partial I_2} \Big|_{I_2 = I_0} \cdot dI_2 = -\frac{C_0}{I_0} \cdot dI_2 = \underline{-dC_1}$$

Differenzialkondensatoren (Prinzip)

[A. Baumann et al: Automatisierungstechnik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (3)

Kapazitive Drucksensoren: Einkammermesszelle (links), Zweikammermesszelle (rechts)

[G. Strohrmann: Messtechnik im Chemiebetrieb; J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (4)

1: Si-Oberplatte

2: seismische Masse

3: Si-Oxid-Verbindung

4: Si-Unterplatte

5: Glassubstrat

Wirkung von Trägheitskräften

$$\vec{F} = -k \cdot \vec{s} = m \cdot \vec{a}$$

⇒ Messung

von

Beschleunigungen ā

Kapazitiver
Beschleunigungssensor:
Prinzip (links),
Bulk-Si-Sensor (oben)

[P. Gerigk et al: Kraftfahrzeugtechnik; Bosch: Autoelektrik, Autoelektronik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (5)

Differenzialkondensator mit $dA_1 = -dA_2$

$$dC_{1} = \frac{\partial C_{1}}{\partial A_{1}} \Big|_{A_{1} = A_{0}} \cdot dA_{1} = \frac{\mathcal{E}_{0} \cdot \mathcal{E}_{r}}{I_{0}} \cdot dA_{1} = \frac{C_{0}}{A_{0}} \cdot dA_{1}$$

$$\frac{dC_{2}}{\partial A_{2}} = \frac{\partial C_{2}}{\partial A_{2}} \Big|_{A_{2} = A_{0}} \cdot dA_{2} = \frac{C_{0}}{A_{0}} \cdot dA_{2} = \underline{-dC_{1}}$$

Drehkondensatoren: Prinzip (oben), **bauliche Ausführungen** (unten)

[A. Baumann et al: Automatisierungstechnik; K. Beuth: Bauelemente, Elektronik 2]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (6)

Kapazitiver Flächensensor in Computermaus

[Sensor TCS2 von Upek]

Kapazitiver Ziehsensor in Laptops

[mbfingermetrica.com]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (7)

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (8)

Füllstandsmessung

$$h = I_0 \cdot \left(\frac{C - C_0}{C_0}\right) \cdot \frac{1}{\varepsilon_r - 1}$$

$$\frac{\Delta C}{C_0} = (\varepsilon_r - 1) \cdot \frac{\Delta I}{I_0}$$

$$\frac{\Delta C}{C_0} = (\varepsilon_r - 1) \cdot \frac{\Delta I}{I_0}$$

Kapazitive Füllstandsmessprinzipien

[J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren; VEGA]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (9)

Feldlinienberechnungen an einem kapazitiven Füllstandssensor

[F. Baumgartner, R. Bräcker, NTB]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.2 KAPAZITIVE SENSORPRINZIPIEN (10)

Kapazitive Feuchtesensoren

[H.J. Gevatter: Automatisierungstechnik 1]

Kennlinien von Feuchtesensoren

[Bosch: Autoelektrik, Autoelektronik]