Zad 1. Sprawdz, ze $\langle a,b \rangle = \langle c,d \rangle \implies a=c \ \land \ b=d$

Z definicji pary uporzadkowanej wg. Kuratowskiego:

$$\langle a,b\rangle=\{\{a\},\{a,b\}\}$$

DOWOD:

Ustalmy dowolne abcd takie, ze $\langle a,b\rangle=\langle c,d\rangle$. Wowczas

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$$

Rozpatrzmy pzypadki:

1. a = b

Wtedy mamy

$$\{\{a\},\{a,a\}\} = \{\{a\}\} = \{\{c\},\{c,d\}\}$$

i wtedy z aksjomatu ekstencjonalnosci

$${a} = {c} = {c, d}$$

wiec a=c=d, czyli $a=c \wedge b=d$.

2. $a \neq b$

Wtedy $\{a\} \neq \{a,b\}$, stad wnioskujemy

$$\{c\} = \{a\},\$$

wiec c=a.

Dalej zauwazamy, ze $\{a,b\} \neq \{c\}$, bo $c=a \neq b$, wiec

$${a,b} = {c,d} = {a,d}$$

i poniewaz $a \neq b$, to b = d.

Zad 2. Udowodnij, ze $\bigcup \mathcal{P}(A) = A$.

DOWOD:

1. $\bigcup \mathcal{P}(A) \supseteq A$

Ustalmy dowolne $x \in A$. Cheemy pokazac, ze $x \in \bigcup \mathcal{P}(A)$. Zauwazmy, ze

$$A \in \mathcal{P}(A)$$
,

wiec z definicji sumy otrzymujemy

$$x \in \bigcup \mathcal{P}(A)$$
.

2. $\bigcup \mathcal{P}(A) \subseteq A$

Ustalmy dowolne $x \in \bigcup \mathcal{P}(A)$. Wowczas istnieje $B \in \mathcal{P}(A)$ takie, ze

$$x \in B$$
.

Z definicji zbioru potegowego

$$B \subseteq A$$
,

 $\mathtt{zatem} \ \mathtt{z} \ \mathtt{definicji} \ \mathtt{zawierania} \ x \in A \,.$

Zad 3. Niech A bedzie zbiorem niepustym. Ktore z ponizszych twierdzen sa prawdziwe?

Jesli A = | A|, to $\emptyset \in A$.

Teza
$$A = \bigcup A \implies \emptyset \in A$$
.

Z aksjomatu regularnosci wiemy, ze istnieje $x \in A$ taki, ze

$$(\heartsuit) \forall a \in A \quad \neg (y \in x).$$

Gdyby $\emptyset \neq x$, to istnialoby $z \in x$. Poniewaz $z \in x$ i $x \in A$, to

$$z \in \bigcup A$$

czyli z zalozenia mamy $z \in A$, co jest sprzeczne z (\heartsuit) . Wobec tego $x = \emptyset \in A$.

Jesli $\emptyset \in A$, to $A = \bigcup A$.

NIE: Niech $A=\{\emptyset\}$. Wowczas $\emptyset\in\{\emptyset\}$ i $\bigcup A=\emptyset
eq \{\emptyset\}=A$

Jesli $\bigcup A = \bigcap A$, to $A = \{x\}$ dla pewnego x

Teza: $\bigcup A = \bigcap A \implies \exists x \quad A = \{x\}$

Niech $x \in A$. Zalozmy nie wprost, ze istnieje $y \in A$ takie, ze $y \neq x$. Bez straty ogoolnosci mozemy zalozyc, ze istnieje $t \in x$ i $t \notin y$.

Z definicji sumy $t \in \bigcup A$, a z drugiej strony, z definicji przekroju, $t \notin \bigcap A$. Czyli $\bigcap A \neq \bigcup A$ i otrzymujemy sprzecznosc z zalozeniem.

Zad 4. Ktora z ponizszych rownosci zachodzi dla dowolnego zbioru A?

$$\bigcap \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcap \mathcal{P}(B) : B \subseteq A \}$$

Po lewej szukamy wspolnego elementu wszystkich podzbiorow zbioru A - jest to \emptyset . Z prawej strony mam rodzine wszystkich przekrojow. Czyli zeby byc podzbiorem wszystkich podzbiorow zbioru A trzeba byc \emptyset

$$\bigcap \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcap \mathcal{P}(B) : B \subseteq A \}$$

$$\mathcal{P}(A)$$

Zad 5. Udowodnij, ze aksjomat pary wynika z pozostalych aksjomatow teorii ZF_0 .

Bierzemy zbior induktywny i pzetlaczamy go przez odpowiednia funkcje.

Ustalmy dwa dowoolne x,y. Rozwazmy zbior

$$p = \{z : \exists t \in \omega \mid (t = \emptyset \land z = x) \lor (t \neq \emptyset \land z = y)\}\$$

na mocy aksjomatu zastepowania.

Ustalmy dowolne z. Mamy

$$z \in p \iff \exists \ t \in \omega \quad (t = \emptyset \land z = x) \lor (t \neq \emptyset \land z = y) \iff$$

$$\iff \exists \ t \in \omega \quad (t = \emptyset \land z = x) \lor \exists \ t \in \omega \quad (t \neq \emptyset \land z = y)$$

$$dokonczyc \ przeksztalcanie$$

$$\iff z = x \lor z = y$$

Musimy wziac zbior min 2-el i otrzymac pare jako el tego zbioru.

!!nie ma w jezyku ∅, czyli musimy to zastapic nieuzywajac znaczka

Zad 6.

Mamyzbior A i formule jezyka TM φ . Rozwazmy dwa przypadki

1.
$$\forall x \in A \quad \neg \varphi(x)$$
. Wtedy

$$\{x \in A : \varphi(x)\} = \emptyset$$

2. $\exists x \in A \quad \varphi(x)$. Niech x bedzie tym istniejacym elementem A, wtedy

$$\psi(t, z, p) = (\varphi(t) \land z = t) \lor (\neg \varphi(t) \land z = p).$$

Mamy formule i mamy parametr - teraz bedziemy stosowac te formule do tego parametru.

Niech b bedzie zbiorem istniejacym na mocy aksjomatu zastepowania.

$$\begin{split} z \in b &\iff (\exists \ t \in a \quad (\varphi(t) \land z = t) \lor (\neg \ \varphi(t) \land z = p)) \iff \\ &\iff \exists \ t \in A \quad (\varphi(t) \land z = t) \lor (\exists \ t \in A \quad (\neg \ \varphi(t) \land z = x)) \iff \\ &\iff (\exists \ t \quad (z \in A \land \varphi(z))) \lor (\exists \ t \quad t \in A \land \neg \ \varphi(t) \land z = x) \iff \\ &\iff (z \in A \land \varphi(z)) \lor z = x \iff \\ &\iff z \in A \land \varphi(z) \end{split}$$

Zad 9

Latwiej jest zfunkcji wyboru (FW) w selektor (AC).

$$FW \implies AC$$

Niech \mathcal{A} bedzie niepusta, rozlaczna rodzina zbiorow niepustych. Chcemy dla tej rodziny znalezc slektor. Wiemy, ze istniejedla niej funkcja.

Niech

$$F: \mathcal{A} \rightarrow \bigcup \mathcal{A}$$

bedzie funkcja wyboru rodziny ${\mathcal A}$, czyli

$$\forall A \in \mathcal{A} \quad F(A) \in A.$$

Niech $S = \operatorname{rng}(F)$. S jest selekorem, bo

- 1. dla dowolnego $A \in \mathcal{A}$ mamy $|A \cap S| \ge 1$ (bo $F(A) \in Arng(F)$)
- 2. dla dowolnego $A\in\mathcal{A}$ mamy $|A\cap S|\leq 1$, bo \mathcal{A} jest rozlaczne (gdyby $F(A_1)\in A\cap S$ dla pewnego $A_1\in\mathcal{A}$, to poniewaz $F(A_1)\in A_1$, wiec $A\cap A_1\neq\emptyset$ sprzecznosc).

$$\mathtt{AC} \Longrightarrow \mathtt{FW}$$

Ustalmy dowolna rodzine zbiorow niepustych A.

Rozwazmy rodzine

$$\mathcal{A}' = \{ \{A\} \times A : A \in \mathcal{A} \}$$

i ta rodzina jest parami rozlaczna - kazdy ze zbiorow zostaje wysuniety na inny poziom. Do tej rodziny mozemy teraz zastosowac aksjomat wyboru, czyli istnieje dla niej selektor S.

Okazuje sie, ze S sam w sobie jest funkcja wyboru rodziny \mathcal{A} :

$$|S \cap (\{A\} \times A)| = 1,$$

wiec S jest zbiorem par $\{A\} \times A$, czyli funkcja gdzie $\operatorname{dom}(S) = \mathcal{A}$, a $\operatorname{rng}(S) = \bigcup \mathcal{A}$.