Laboratorio di misura

Lorenzo Mauro Sabatino

1 Introduzione

Fare fisica richiede fare misure. In fisica, usiamo spesso relazioni funzionali per comprendere come una quantità **varia** in funzione di un'altra. Ad esempio, se si applica una forza costante a un oggetto, la sua accelerazione sarà direttamente proporzionale alla forza (relazione lineare).

Attenzione: non basta fare misure. Bisogna essere in grado di dare un senso ai risultati che si ottengono e confrontarli con quelli ottenuti da altre persone.

2 Usare Google Maps per stimare il valore di Pi Greco

2.1 Procedimento

Trova tre oggetti circolari (di diametri diversi) su Google Maps
Misura circonferenza e diametro di ciascuno tramite l'interfaccia di Maps (PC: click tasto destro $>$ Misura distanza. Ipad: tenere premuto $>$ Misura distanza)
Riporta i dati nella Tabella 1
Costruisci un grafico con la circonferenza sull'asse Y e il diametro sull'asse X. Prova a farlo per ciascun oggetto ripetendo la misurazione oppure in un unico grafico metti insieme i dati raccolti da tutti gli oggetti
Calcola il coefficiente angolare (pendenza), cioè il rapporto $\Delta y/\Delta x$. Il valore che ottieni dovrebbe darti una stima abbastanza buona di Pi Greco (π)

Oggetto (nome/numero)	Diametro d [m]	Circonferenza C [m]
<u></u>		

Tabella 1

Qui trovi il link per Google Maps (puoi cliccarlo): https://www.google.com/maps Qui puoi scaricare un template di un file Excel per costruire il grafico: Template Suggerimento 1: cerca elementi geologici o strutture artificiali circolari

Suggerimento 2: di solito quando un meteorite colpisce la Terra lascia un grande cratere abbastanza circolare. Ne riesci a trovare alcuni? Altrimenti cerca dei serbatoi circolari artificiali che si trovano in molte città

Suggerimento 3: se non trovi nulla, eccone alcuni:

- Cratere in Quebec
- Serbatoi
- Aeroporto
- Rotonda
- Pista circolare
- Quartiere

2.2 Risultati

Qual è la tua stima di Pi Greco? Confrontala con il valore noto $\pi\approx 3{,}14159\ldots$
Se hai misurato più oggetti, ottieni sempre lo stesso valore di π oppure valori diversi?
Cosa può causare le differenze? (strumento, risoluzione, abilità, metodo di misura, ecc.)
Cosa succede al tuo grafico se usi più punti (più misure)? La stima diventa più stabile o più incerta?
Se i tuoi punti non cadono esattamente su una retta, come lo interpreti?
Se due compagni hanno valori diversi, chi ha "ragione"? Oppure possono aver ragione entrambi?
Prova a stimare l'incertezza delle tue misure: quanto pensi di poter sbagliare nel misurare un diametro o una circonferenza su Google Maps?
Con questa incertezza, rientra nel margine di errore la differenza tra la tua stima e il valore noto di π ?

3 Incertezza delle misure

Dalla misurazione precedente, probabilmente hai scoperto che il tuo valore di Pi Greco differisce dal valore accettato (3,14159...). Potrebbe essere leggermente più alto o leggermente più basso a seconda dell'accuratezza della tua misurazione. Questo grado di "bontà" sarà determinato da molti fattori: la qualità degli strumenti, la loro risoluzione intrinseca, la tua abilità come sperimentatore, ecc.

Possiamo quantificare questa "bontà" considerando l'errore associato alla misurazione. In scienza, errore **non** significa sbaglio, o risposta errata, come nel linguaggio comune. Nelle misurazioni scientifiche, l'errore si riferisce specificamente a quanto siamo sicuri della nostra misurazione. Maggiore è l'errore, minore è la nostra sicurezza nelle nostre misurazioni. La nostra misurazione può comunque essere corretta, solo che ne siamo meno certi.