	AIM: To learn IIR filter design using Bilinear Transformation
	SOFTWARE: - Spyder (Python 3.8)
_	
	THEORY:
_	Steps for designing IIR filter using BLT. step 1: Prewarp analog frequency using the equation.
	$ \Omega = \frac{2}{\text{Td}} \tan \left(\frac{\omega}{2}\right) $
	step 2: Find the order based on appropriate ximation.
	For butterworth filter
	$\log\left(\frac{\Omega s}{\Delta p}\right)$ $\log\left(\frac{\Omega s}{\Delta p}\right)$
	Step 3: To find: Poles of Bullerworth filter
_	step 4: Find Normalized Trapisfer function HIs) for
	given order. step 5: Analog to analog frequency transformation. H(s) => Hals).
	step 6: Compute digital filter Transfer Function
	step 6: Compute digital filter Transfer Function Ha(3) $\left \frac{2}{s \to T_d} \left(\frac{1-z}{1+z^{-1}} \right) \right $
1	
+	

	SIEPS OF PROGRAM:
	1. Import the required libraries.
	a Define all the filter specifications.
	3. Convert the frequency into prewarped frequency. 4. Convert the order filter into Z-domain.
	1. Convert the order filter into Z-domain.
	5. Print Numerator and denominator coefficients.
	6. Plot the magnitude response of the filter.
	CONCLUSION:
	1. In this experiment, we have learned to design IIR filter
	using Bilinear transformation and Butterworth approximation.
-	2. The order N by program and analytically is same.
-	
-	