Faculty of Computer and Information Sciences, Ain Shams University: Too Wrong to Pass Too Correct to Fail

Pillow, Isaac, Mostafa, Islam

Contents

Combinatorics

2021

1.1	Burnside Lemma		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1.2	Catlan Numbers		٠	•	•	•	•	٠	•	٠	٠	•					٠	٠		•	٠	•	٠	•	٠	•	•	٠	•	
Alge	ebra																													
2.1	Primitive Roots																													
2.2	Discrete Logarithm																													
2.3	Iteration over submask	cs																												
2.4	Totient function																													
2.5	CRT and EEGCD																													
2.6	FFT																													
2.7	Fibonacci																													
2.8	Gauss Determinant																													
2.9	GAUSS SLAE																													
2.10	Matrix Inverse																													
2.11	NTT				•																	•					•			

- 3 Max Flow
- 4 Matching
- 5 Trees
- 6 Strings
- 7 Geometry
- 8 Number Theory
- 9 DP
- 10 Misc.

1 Combinatorics

1.1 Burnside Lemma

1.2 Catlan Numbers

```
const int MOD = ....
       const int MAX = ....
      int catalan[MAX];
       void init() {
           catalan[0] = catalan[1] = 1;
           for (int i=2; i<=n; i++) {</pre>
               catalan[i] = 0;
               for (int j=0; j < i; j++) {</pre>
                   catalan[i] += (catalan[j] * catalan[i-j-1]) % MOD;
  10
                   if (catalan[i] >= MOD) {
  11
                       catalan[i] -= MOD;
  12
  13
  14
  15
      }
  16
  17
      // 1- Number of correct bracket sequence consisting of n opening and n closing
       // 2- The number of rooted full binary trees with n+1 leaves (vertices are not
           numbered).
            A rooted binary tree is full if every vertex has either two children or no
  20 // 3- The number of ways to completely parenthesize n+1 factors.
      // 4- The number of triangulations of a convex polygon with n+2 sides
             (i.e. the number of partitions of polygon into disjoint triangles by using
            the diagonals).
     // 5- The number of ways to connect the 2n points on a circle to form n disjoint
            chords.
  24 // 6- The number of non-isomorphic full binary trees with n internal nodes (i.e.
            nodes having at least one son).
      // 7- The number of monotonic lattice paths from point (0,0) to point (n,n) in a
             square lattice of size nxn,
            which do not pass above the main diagonal (i.e. connecting (0,0) to (n,n))
       // 8- Number of permutations of length n that can be stack sorted
             (i.e. it can be shown that the rearrangement is stack sorted if and only
           there is no such index i<j<k, such that ak<ai<aj ).
      // 9- The number of non-crossing partitions of a set of n elements.
      // 10- The number of ways to cover the ladder 1..n using n rectangles
       // (The ladder consists of n columns, where ith column has a height i).
5
```

2 Algebra

5

5

2.1 Primitive Roots

```
int powmod (int a, int b, int p) {
        int res = 1;
        while (b)
            if (b & 1)
                res = int (res * 111 * a % p), --b;
                a = int (a * 111 * a % p), b >>= 1;
        return res:
 9
10
    int generator (int p) {
12
        vector<int> fact;
13
        int phi = p - 1, n = phi;
        for (int i = 2; i * i <= n; ++i)
            if (n % i == 0) {
15
16
                fact.push_back (i);
17
                while (n \% i == 0)
18
                    n /= i;
19
20
        if (n > 1)
21
            fact.push_back (n);
22
23
        for (int res = 2; res <= p; ++res) {</pre>
            bool ok = true;
```

2.2 Discrete Logarithm

```
// Returns minimum x for which a \hat{x} \% m = b \% m, a and m are coprime.
    int solve(int a, int b, int m) {
        a %= m, b %= m;
 4
        int n = sqrt(m) + 1;
 5
 6
         int an = 1;
        for (int i = 0; i < n; ++i)</pre>
 7
            an = (an * 111 * a) % m;
 9
10
        unordered_map<int, int> vals;
11
         for (int q = 0, cur = b; q \le n; ++q) {
12
            vals[cur] = q;
13
             cur = (cur * 111 * a) % m;
14
15
16
         for (int p = 1, cur = 1; p \le n; ++p) {
17
            cur = (cur * 111 * an) % m;
18
             if (vals.count(cur)) {
19
                 int ans = n * p - vals[cur];
20
                 return ans;
21
22
23
         return -1;
24 }
25
26 //When a and m are not coprime
    // Returns minimum x for which a ^x \% m = b \% m.
    int solve(int a, int b, int m) {
29
        a %= m, b %= m;
30
        int k = 1, add = 0, g;
31
        while ((g = gcd(a, m)) > 1) {
32
            if (b == k)
33
                return add;
34
            if (b % g)
35
                return -1;
36
            b /= g, m /= g, ++add;
            k = (k * 111 * a / q) % m;
37
38
39
40
        int n = sqrt(m) + 1;
41
        int an = 1;
        for (int i = 0; i < n; ++i)
43
            an = (an * 111 * a) % m;
44
45
        unordered_map<int, int> vals;
46
        for (int q = 0, cur = b; q \le n; ++q) {
47
            vals[cur] = q;
48
             cur = (cur * 111 * a) % m;
49
50
51
        for (int p = 1, cur = k; p <= n; ++p) {</pre>
            cur = (cur * 111 * an) % m;
53
             if (vals.count(cur)) {
54
                 int ans = n * p - vals[cur] + add;
55
                 return ans;
56
57
58
         return -1;
```

2.3 Iteration over submasks

```
1 int s = m;
2 while (s > 0) {
3 ... you can use s ...
4 s = (s-1) & m;
5 }
```

2.4 Totient function

```
1 void phi_1_to_n(int n) {
        vector<int> phi(n + 1);
 3
        phi[0] = 0;
        phi[1] = 1;
         for (int i = 2; i \le n; i++)
 6
            phi[i] = i;
        for (int i = 2; i <= n; i++) {</pre>
 8
 9
            if (phi[i] == i) {
10
                 for (int j = i; j <= n; j += i)</pre>
11
                     phi[j] -= phi[j] / i;
12
13
14
```

2.5 CRT and EEGCD

```
1 ll extended(ll a, ll b, ll &x, ll &y) {
 3
        if(b == 0) {
            x = 1;
             y = 0;
 5
 6
             return a;
        11 x0, y0;
 9
        11 g = \text{extended}(b, a \% b, x0, y0);
10
        x = y0;
11
        y = x0 - a / b * y0;
12
        return q ;
14
15
   ll de(ll a, ll b, ll c, ll &x, ll &y) {
16
17
        11 g = extended(abs(a), abs(b), x, y);
18
        if(c % g) return -1;
19
20
        x \star = c / q;
21
        y \star = c / g;
23
        if(a < 0)x = -x;
24
        if(b < 0)y = -y;
25
        return q;
26
    pair<11, 11> CRT(vector<11> r, vector<11> m) {
29
        11 r1 = r[0], m1 = m[0];
31
        for(int i = 1; i < r.size(); i++) {</pre>
33
             11 r2 = r[i], m2 = m[i];
34
             11 x0, y0;
35
             11 g = de(m1, -m2, r2 - r1, x0, y0);
36
37
             if(q == -1) return \{-1, -1\};
38
39
             11 \text{ nr} = x0 * m1 + r1;
40
             11 \text{ nm} = m1 / g * m2;
41
             r1 = (nr % nm + nm) % nm;
```

2.6 FFT

```
#include<iostream>
    #include <bits/stdc++.h>
    #define 11 long long
    #define ld long double
    #define rep(i, a, b) for(int i = a; i < (b); ++i)
    #define all(x) begin(x), end(x)
    #define sz(x) (int)(x).size()
    #define IO ios base::sync with stdio(0); cin.tie(0); cout.tie(0);
    using namespace std;
    typedef complex<double> C;
11
    typedef vector<double> vd;
    typedef vector<int> vi;
    typedef pair<int, int> pii;
14
    void fft(vector<C>& a) {
15
         int n = sz(a), L = 31 - \underline{builtin_clz(n)};
16
         static vector<complex<long double>> R(2, 1);
17
         static vector<C> rt(2, 1); // (^ 10% fas te r i f double)
18
         for (static int k = 2; k < n; k \neq 2) {
19
            R.resize(n);
20
             rt.resize(n);
21
             auto x = polar(1.0L, acos(-1.0L) / k);
22
             rep(i, k, 2 * k) rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
23
^{24}
        vi rev(n);
25
         rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
26
         rep(i, 0, n) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
27
         for (int k = 1; k < n; k *= 2)
28
            for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
29
                Cz = rt[j + k] * a[i + j + k]; //
30
                 a[i + j + k] = a[i + j] - z;
31
                 a[i + j] += z;
32
33
34 vd conv(const vd& a, const vd& b) {
        if (a.empty() || b.empty()) return {};
36
        vd res(sz(a) + sz(b) - 1);
37
        int L = 32 - \underline{\quad} builtin_clz(sz(res)), n = 1 << L;
38
         vector<C> in(n), out(n);
39
        copy(all(a), begin(in));
        rep(i, 0, sz(b)) in[i].imag(b[i]);
41
         fft(in);
42
         for (C& x : in) x *= x;
         rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
         rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
         return res:
47
48
49 int main() {
50
51
         //Applications
52
        //1-All possible sums
53
54
         //2-All possible scalar products
55
         // We are given two arrays a[] and b[] of length n.
56
         //We have to compute the products of a with every cyclic shift of b.
57
         //We generate two new arrays of size 2n: We reverse a and append n zeros to
             it.
58
         //And we just append b to itself. When we multiply these two arrays as
             polynomials,
59
         //and look at the coefficients c[n-1], c[n], ..., c[2n-2] of the product c,
             we get:
60
         //c[k]=sum i+j=k a[i]b[j]
61
62
         //3-Two stripes
```

2.7 Fibonacci

```
1
2
3
    // F(n-1) * F(n+1) - F(n)^2 = (-1)^n
4
5    // F(n+k) = F(k) * F(n+1) + F(k-1) * F(n)
6
6
7    // F(2*n) = F(n) * (F(n+1) + F(n-1))
8
9    //GCD ( F(m) , F(n) ) = F(GCD(n,m))
```

2.8 Gauss Determinant

```
const double EPS = 1E-9;
    int n;
    vector < vector<double> > a (n, vector<double> (n));
    double det = 1;
    for (int i=0; i<n; ++i) {</pre>
         int k = i;
 8
         for (int j=i+1; j<n; ++j)</pre>
             if (abs (a[j][i]) > abs (a[k][i]))
                 k = j;
10
11
         if (abs (a[k][i]) < EPS) {</pre>
12
             det = 0;
13
             break;
14
15
        swap (a[i], a[k]);
16
         if (i != k)
17
             det = -det;
18
         det *= a[i][i];
19
         for (int j=i+1; j<n; ++j)</pre>
            a[i][j] /= a[i][i];
21
         for (int j=0; j < n; ++j)
22
             if (j != i && abs (a[j][i]) > EPS)
                 for (int k=i+1; k<n; ++k)</pre>
23
24
                     a[j][k] = a[i][k] * a[j][i];
25
26
    cout << det;
```

2.9 GAUSS SLAE

```
1
    const double EPS = 1e-9;
    const int INF = 2; // it doesn't actually have to be infinity or a big number
    int gauss (vector < vector<double> > a, vector<double> & ans) {
        int n = (int) a.size();
        int m = (int) a[0].size() - 1;
         vector<int> where (m, -1);
        for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
10
             int sel = row;
11
             for (int i = row; i < n; ++i)</pre>
                 if (abs (a[i][col]) > abs (a[sel][col]))
                     sel = i;
             if (abs (a[sel][col]) < EPS)</pre>
14
15
                 continue;
16
             for (int i = col; i <= m; ++i)</pre>
```

```
17
                swap (a[sel][i], a[row][i]);
18
             where[col] = row;
19
20
             for (int i = 0; i < n; ++i)
21
                if (i != row) {
22
                     double c = a[i][col] / a[row][col];
23
                     for (int j = col; j <= m; ++j)</pre>
24
                         a[i][j] -= a[row][j] * c;
25
26
            ++row;
27
28
29
        ans.assign (m, 0);
30
        for (int i = 0; i < m; ++i)
31
            if (where[i] != -1)
32
                ans[i] = a[where[i]][m] / a[where[i]][i];
33
        for (int i = 0; i < n; ++i) {
34
             double sum = 0;
35
             for (int j = 0; j < m; ++j)
36
                 sum += ans[j] * a[i][j];
37
             if (abs (sum - a[i][m]) > EPS)
38
                 return 0;
39
40
41
        for (int i = 0; i < m; ++i)
42
            if (where [i] == -1)
43
                return INF;
44
        return 1;
45
```

2.10 Matrix Inverse

```
// Sometimes, the questions are complicated - and the answers are simple. //
    #pragma GCC optimize ("03")
    #pragma GCC optimize ("unroll-loops")
    #include <bits/stdc++.h>
    #define 11 long long
5
    #define ld long double
    #define IO ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    using namespace std;
    vector < vector<double> > gauss (vector < vector<double> > a) {
10
11
         int n = (int) a.size();
12
        vector<vector<double> > ans(n, vector<double>(n, 0));
13
14
         for (int i = 0; i < n; i++)
15
             ans[i][i] = 1;
16
         for(int i = 0; i < n; i++) {</pre>
             for(int j = i + 1; j < n; j++)
   if(a[j][i] > a[i][i]) {
17
18
19
                     swap(a[j], a[i]);
20
                     swap(ans[j], ans[i]);
21
22
             double val = a[i][i];
23
             for (int j = 0; j < n; j++) {
                 a[i][j] /= val;
24
25
                 ans[i][j] /= val;
^{26}
27
             for (int j = 0; j < n; j++) {
28
                 if(j == i)continue;
29
                 val = a[j][i];
30
                 for (int k = 0; k < n; k++) {
31
                     a[j][k] -= val * a[i][k];
32
                     ans[j][k] = val * ans[i][k];
33
34
35
36
         return ans;
37
38
    int main() {
39
40
         IO
```

```
41
        vector<vector<double> > v(3, vector<double> (3) );
42
        for (int i = 0; i < 3; i++)
43
            for (int j = 0; j < 3; j++)
44
                cin >> v[i][i];
45
46
        for(auto i : gauss(v)) {
47
            for(auto j : i)
48
              cout << j << " ";
49
            cout << "\n";
50
51
```

2.11 NTT

```
1
    struct NTT {
        int mod ;
 3
        int root ;
        int root 1 :
 5
        int root_pw ;
        NTT(int _mod, int primtive_root, int NTT_Len) {
 8
 9
            mod = mod;
10
            root_pw = NTT_Len;
11
            root = fastpower(primtive_root, (mod - 1) / root_pw);
12
            root_1 = fastpower(root, mod - 2);
13
14
        void fft(vector<int> & a, bool invert) {
15
            int n = a.size();
16
17
            for (int i = 1, j = 0; i < n; i++) {
18
                int bit = n >> 1;
19
                for (; j & bit; bit >>= 1)
20
                     j ^= bit;
21
                 j ^= bit;
22
23
                if (i < j)
                    swap(a[i], a[j]);
25
26
27
            for (int len = 2; len <= n; len <<= 1) {</pre>
28
                int wlen = invert ? root_1 : root;
29
                for (int i = len; i < root_pw; i <<= 1)</pre>
30
                     wlen = (int)(1LL * wlen * wlen % mod);
31
32
33
                for (int i = 0; i < n; i += len) {</pre>
34
                     int w = 1:
35
                     for (int j = 0; j < len / 2; j++) {
36
                         int u = a[i + j], v = (int)(1LL * a[i + j + len / 2] * w %
                              mod);
37
                         a[i + j] = u + v < mod ? u + v : u + v - mod;
38
                         a[i + j + len / 2] = u - v >= 0 ? u - v : u - v + mod;
39
                         w = (int) (1LL * w * wlen % mod);
40
41
                }
42
            }
43
44
            if (invert) {
                int n_1 = fastpower(n, mod - 2);
45
46
                for (int & x : a)
47
                    x = (int) (1LL * x * n_1 % mod);
48
49
50
        vector<int> multiply(vector<int> &a, vector<int> &b) {
51
            vector<int> fa(a.begin(), a.end()), fb(b.begin(), b.end());
52
53
            while(n < a.size() + b.size())</pre>
54
                n \ll 1;
55
56
             fa.resize(n);
             fb.resize(n);
```

2.12 NTT of KACTL

```
1 ///(Note faster than the other NTT)
    ///If the mod changes don't forget to calculate the primitive root
    using 11 = long long;
    const 11 mod = (119 << 23) + 1, root = 3; // = 998244353
    // For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
    // and 483 << 21 (same root). The last two are > 10^9.
    typedef vector<ll> v1;
    11 modpow(11 b, 11 e) {
10
        11 \text{ ans} = 1;
11
         for (; e; b = b * b % mod, e /= 2)
12
             if (e & 1) ans = ans * b % mod;
13
        return ans:
15 void ntt(vl &a) {
16
        int n = sz(a), L = 31 - \underline{builtin_clz(n)};
17
         static vl rt(2, 1);
18
        for (static int k = 2, s = 2; k < n; k *= 2, s++) {
19
             rt.resize(n);
20
             11 z[] = {1, modpow(root, mod >> s)};
21
             f(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
22
23
        vector<int> rev(n);
24
        f(i,0,n) \text{ rev}[i] = (\text{rev}[i / 2] | (i \& 1) << L) / 2;
25
         f(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
26
         for (int k = 1; k < n; k *= 2)
27
             for (int i = 0; i < n; i += 2 * k) f(j, 0, k) {
28
                 11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
29
                 a[i + j + k] = ai - z + (z > ai ? mod : 0);
                 ai += (ai + z >= mod ? z - mod : z);
31
32
33
    vl conv(const vl &a, const vl &b) {
34
         if (a.empty() || b.empty()) return {};
         int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s), n = 1 << B;
```

```
int inv = modpow(n, mod - 2);
37
        vl L(a), R(b), out(n);
38
        L.resize(n), R.resize(n);
39
        ntt(L), ntt(R);
40
        f(i,0,n) out [-i & (n-1)] = (l1)L[i] * R[i] % mod * inv % mod;
41
        ntt(out);
42
        return {out.begin(), out.begin() + s};
43
44
    vector<int> v;
45
    vector<ll> solve(int s, int e) {
46
        if(s==e) {
            vector<11> res(2);
47
48
            res[0] = 1;
49
            res[1] = v[s];
50
            return res;
51
52
        int md = (s + e) \gg 1;
        return conv(solve(s,md),solve(md+1,e));
53
```

- 3 Max Flow
- 4 Matching
- 5 Trees
- 6 Strings
- 7 Geometry
- 8 Number Theory
- 9 DP
- 10 Misc.