Příklady z první části vyřešte a odpovědi včetně postupu napište do připravených mezer.

- 1. (2 body) Najděte vzdálenost bodu  $\mathbf{z}=(1,0,1,0)\in\mathbb{R}^4$  od nadroviny  $\{\mathbf{x};\ \mathbf{a}^T\mathbf{x}=b\}$ , kde  $\mathbf{a}=(1,1,1,2),\ b=3$ .

  Můžeme využít např. známého vzorce  $\frac{|\mathbf{a}^T\mathbf{z}-b|}{\|\mathbf{a}\|}=\frac{|(1,1,1,2)(1,0,1,0)-3|}{\|(1,1,1,2)\|}=\frac{1}{\sqrt{7}}$ . K jeho odvození stačí vědět, že velikost pravoúhlého průmětu vektoru  $\mathbf{z}$  na přímku se směrem  $\mathbf{a}$  je  $\frac{|\mathbf{a}^T\mathbf{z}-b|}{\|\mathbf{a}\|}$ . Pro získání vzdálenosti od té nadroviny ale musíme vektor posunout o  $-\mathbf{x}_0$ , kde  $\mathbf{x}_0$  je libovolný vektor splňující  $\mathbf{a}^T\mathbf{x}_0=b$ . Tím dostaneme  $\frac{|\mathbf{a}^T(\mathbf{z}-\mathbf{x}_0)|}{\|\mathbf{a}\|}=\frac{|\mathbf{a}^T\mathbf{z}-b|}{\|\mathbf{a}\|}$ .
- 2. Nechť  $X = \text{span}\{(1,2,3,4), (1,0,1,0), (0,1,0,0)\}$ . Najděte
  - a) (1 bod) bázi podprostoru  $X^{\perp}$ ,
  - b) (1 bod) matici ortogonálního projektoru na podprostor  $X^{\perp}$ ,
  - c) (1 bod) matici ortogonálního projektoru na podprostor X.

a) 
$$X^{\perp} = \text{span}\{(2, 0, -2, 1)\}, \text{ b) } \mathbf{U} = \frac{1}{3} \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}, \text{ projektor } \mathbf{P} = \mathbf{U}\mathbf{U}^T = \frac{1}{9} \begin{bmatrix} 4 & 0 & -4 & 2 \\ 0 & 0 & 0 & 0 \\ -4 & 0 & 4 & -2 \\ 2 & 0 & -2 & 1 \end{bmatrix}, \text{ c) } \mathbf{I} - \mathbf{P}.$$

- 3. Máme 5 pozorování (0,1),(1,1),(2,3),(3,3),(4,4) tvaru  $(x_i,y_i)$ . Hledáme optimální regresní přímku  $y=\theta_1x+\theta_2$ , kde  $\theta_1,\theta_2\in\mathbb{R}$  jsou hledané parametry.
  - a) (1 bod) Formulujte úlohu maticově jako problém nejmenších čtverců.
  - b) (2 body) Vyřešte tento problém.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \\ 4 \end{bmatrix}$$

Hledáme  $\theta \in \mathbb{R}^2$  minimalizující  $\|\mathbf{A}\theta - \mathbf{b}\|^2$ . To je to samé, jako řešit soustavu normálních rovnic  $\mathbf{A}^T \mathbf{A}\theta = \mathbf{A}^T \mathbf{b}$ , což je soustava

$$\begin{bmatrix} 30 & 10 \\ 10 & 5 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 32 \\ 12 \end{bmatrix},$$

jejíž jediné řešení je  $\theta_1 = \theta_2 = \frac{4}{5}$ .

- 4. Pro matici  $\mathbf{A} \in \mathbb{R}^{15 \times 5}$  hledáme nejbližší matici hodnosti  $\leq 3$ . Víme, že matice  $\mathbf{A}^T \mathbf{A}$  má vlastní čísla 2, 1, 4, 9, 0.
  - a) (1 bod) Formulujte úlohu maticově jako optimalizační problém a napište hodnotu účelové funkce v optimu.
  - b) (1 bod) Jaké bude optimální řešení tohoto problému, budeme-li hledat matici hodnosti  $\leq 4$ ?
  - a) min  $\|\mathbf{B} \mathbf{A}\|^2$  pro  $\mathbf{B} \in \mathbb{R}^{15 \times 5}$ , kde rank  $\mathbf{B} \leq 3$ . V optimu je chyba  $s_4^2 + s_5^2 = 1$ . b) Protože  $\mathbf{A}$  má podle hodnot singulárních čísel hodnost 4, bude optimální řešení právě  $\mathbf{A}$  a chyba bude nulová.

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela vyplňte barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY.

(Za každou správnou odpověď je 1 bod.)



Příklady z první části vyřešte a odpovědi včetně postupu napište do připravených mezer.

- 1. Nechť  $X=\{(x_1,x_2,x_3,x_4);\;x_1=x_4\},\;\mathbf{z}=(4,3,2,1).$  Najděte kolmou projekci vektoru  $\mathbf{z}$ 
  - a) (2 body) na X,
  - b) (1 bod) na  $X^{\perp}$

Je snadnější začít podúlohou b), neboť  $X^{\perp}$  je generován pouze jedním vektorem. b)  $\mathbf{y}=\frac{(4,3,2,1)(1,0,0,-1)}{\sqrt{2}}\frac{(1,0,0,-1)}{\sqrt{2}}=\frac{3}{2}(1,0,0,-1)$ . a)  $\mathbf{x}=\mathbf{z}-\mathbf{y}=(5/2,3,2,5/2)$ 

2. (2 body) Pro afinní podprostor  $X = (1, 2, 3, 4) + \text{span}\{(1, 0, 1, 0), (2, 1, 0, 1), (1, 1, 1, 1)\}$  najděte matici a vektor pravých stran soustavy  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , jejíž řešení je X.

Například  $\mathbf{A} = \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}$  (jednořádková matice), b = 2.

- 3. Závislost proměnné z na proměnných x,y modelujeme regresní funkcí  $z \approx f(x,y) = a(x-y)^2 + be^{x+y} + cxy + d$ . Odhadujeme parametry  $a,b,c,d \in \mathbb{R}$  funkce z naměřených bodů  $(x_i,y_i,z_i),\ i=1,\ldots,100,$  ve smyslu nejmenších čtverců.
  - a) (2 body) Formulujte úlohu v maticové podobě.
  - b) (1 bod) Za jakých předpokladů bude mít úloha jediné řešení? Takové řešení napište.
  - a) Vektor neznámých parametrů je  $\mathbf{p}=(a,b,c,d)$ , matice  $\mathbf{A}\in\mathbb{R}^{100\times 4}$  má v řádku i vektor  $((x_i-y_i)^2,e^{x_i+y_i},x_iy_i,1)$  a dále  $\mathbf{z}=(z_1,\ldots,z_{100})$ . Hledáme minimum funkce  $\|\mathbf{A}\mathbf{p}-\mathbf{z}\|^2$ . b) Má-li  $\mathbf{A}$  lineárně nezávislé sloupce, pak je jediné optimální řešení  $\mathbf{A}^+\mathbf{z}=(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{z}$ .
- 4. Matice **A** typu  $10^4 \times 50$  má prvky 0 nebo 1. Každý řádek i odpovídá jedné osobě a každý sloupec j streamovací službě (Netflix, Spotify atd.), přičemž  $a_{ij} = 1$  právě tehdy, když si osoba i předplácí službu j.
  - a) (1 bod) Co vyjadřují prvky matice  $\mathbf{A}^T \mathbf{A}$ ? Interpretujte jejich numerické hodnoty.
  - b) (1 bod) Matice  $\mathbf{A}^T \mathbf{A}$  má jen 15 nenulových singulárních čísel  $s_1, \dots, s_{15}$ . Napište teoretickou chybu aproximace matice  $\mathbf{A}^T \mathbf{A}$  maticí hodnosti nejvýše 10.
  - a) Složka  $b_{ij}$  matice  $\mathbf{A}^T \mathbf{A}$  udává, kolik lidí celkem předplácí současně služby i a j. b) Chyba je  $s_{11}^2 + \ldots + s_{15}^2$ .

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela vyplňte barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY.

(Za každou správnou odpověď je 1 bod.)



- 1. Nechť  $\mathbf{A}$  je matice s lineárně nezávislými řádky. Matice ortogonálního projektoru na podprostor null  $\mathbf{A}^T$  je
  - (a) neplatí žádné uvedené tvrzení
  - (b)  $I A^T (AA^T)^{-1}A$
  - (c)  $\mathbf{I} \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$
  - (d)  $\mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{A}$
- ll (e)  $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$
- 2. Rozhodněte, co je správně.
  - (a) neplatí žádné z uvedených tvrzení
  - (b) rank(AB) = rank A rank B
  - (c)  $rank(AB) = min\{rank A, rank B\}$
  - (d)  $\operatorname{rng} \mathbf{AB} \subseteq \operatorname{rng} \mathbf{B}$
- fl (e) rng AB = rng A
- 3. Máme matice  $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_k \in \mathbb{R}^{n \times n}$  takové, že každá matice  $\mathbf{A}_i$  má ortonormální sloupce. Označme  $\mathbf{B} = \mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_k$  součin těchto matic.
  - (a) Matice **B** je ortogonální.
  - (b) Matice **B** má ortonormální sloupce, ale nemusí být ortogonální.
  - (c) Matice **B** je ortogonální jen tehdy, když  $k \leq 2$ .
  - (d) Matice **B** je identická.
- ll (e) Neplatí žádné výše uvedené tvrzení.
- 4. Nechť  $n \geq 2$  a  $\mathbf{a} \in \mathbb{R}^n$  je nenulový vektor. Ortogonální projektor promítající na podprostor span $\{\mathbf{a}\}$  je
  - (a) je singulární matice
  - (b) je matice plné hodnosti
  - (c) je symetrická regulární matice
  - (d) je široká matice, která není čtvercová
- ll (e) žádná z uvedených možností
- 5. Pro která  $a \in \mathbb{R}$  je matice  $\begin{bmatrix} a & 1 \\ 0 & 1 \end{bmatrix}$  ortogonální projektor?
  - (a) žádná z uvedených možností
  - (b) pro a = 0
  - (c) pro  $a \in \{0,1\}$
  - (d) pro  $a \in [0, 1]$
- fl (e) pro  $a \ge 0$
- 6. Množina  $\{\mathbf{x} \in \mathbb{R}^n; \ \mathbf{a}^T \mathbf{x} = b\}$ , kde  $\mathbf{a} \neq \mathbf{0}$ ,
  - (a) je afinní podprostor dimenze n-1
  - (b) je vždy lineární podprostor
  - (c) je vždy přímka, která nemusí procházet počátkem
  - (d) je konečná
- ll (e) nesplňuje žádnou z uvedených možností

| OPT                       | midterm | 5.           | 4   | 2023   |
|---------------------------|---------|--------------|-----|--------|
| $\mathbf{O}_{\mathbf{I}}$ | muctm   | $\mathbf{o}$ | · • | . 4040 |

| $\mathbf{D}^{\vee}$ | . ,   |
|---------------------|-------|
| Pru                 | meni: |
| 1 11                | mom.  |
|                     |       |

Jméno:

000

- 7. Máme zadánu symetrickou matici  ${\bf A}$  řádu n.
  - (a) Její nejmenší vlastní číslo splňuje  $\lambda \leq \mathbf{x}^T \mathbf{A} \mathbf{x}$  pro libovolný vektor  $\mathbf{x}$  takový, že  $\|\mathbf{x}\| = 1$ .
  - (b) Její největší vlastní číslo  $\lambda$  je vždy kladné a platí  $\lambda = \max \mathbf{x}^T \mathbf{A} \mathbf{x}$  pro vektory  $\mathbf{x}$  splňující  $\|\mathbf{x}\| = 1$ .
  - (c) Optimální řešení úlohy max  $\{\mathbf{x}^T \mathbf{A} \mathbf{x} | \mathbf{x} \in \mathbb{R}^n\}$  vždy existuje.
  - (d) Kvadratická forma  $\mathbf{x}^T \mathbf{A} \mathbf{x}$  nabývá vždy maxima pro nějaký vektor  $\mathbf{x}$  splňující  $\|\mathbf{x}\| = 1$ .
  - (e) Každý vlastní vektor odpovídající největšímu vlastnímu číslu matice **A** je řešením úlohy max  $\{\mathbf{x}^T \mathbf{A} \mathbf{x} | \mathbf{x} \in \mathbb{R}^n\}$ .
- 8. Pro úlohu nejmenších čtverců  $\min_{{\bf x}\in\mathbb{R}^n}\|{\bf y}-{\bf A}{\bf x}\|^2$  platí:
  - (a) Optimálních řešení může být nekonečně mnoho.
  - (b) Hodnota v optimu je vždy 0.
  - (c) Úloha nemusí mít optimální řešení.
  - (d) Optimální řešení je vždy tvaru  $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y}$ .
  - (e) Každé řešení úlohy nejmenších čtverců je i řešením soustavy  $\mathbf{A}\mathbf{x}=\mathbf{y}.$
- 9. Hledáme afinní podprostor X dimenze 5 minimalizující součet čtverců kolmých vzdáleností od vektorů  $\mathbf{a}_1, \dots, \mathbf{a}_{1000} \in \mathbb{R}^{50}$ .
  - (a) X je afinním podprostorem prostoru  $\mathbb{R}^{50}$ .
  - (b) X je afinním podprostorem prostoru  $\mathbb{R}^5$ .
  - (c) Neplatí žádná z uvedených možností.
  - (d) Hledaný afinní podprostor X nemusí existovat.
  - (e) X je vždy lineárním obalem 5 lineárně nezávislých vektorů.
- 10. Rozhodněte, co platí pro matici  $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ .
  - (a) Neplatí žádná z uvedených možností.
  - (b) A je pozitivně definitní.
  - (c) A má vlastní číslo 0.
  - (d) Kvadratická forma  $\mathbf{x}^T \mathbf{A} \mathbf{x}$  má minimum v bodě 0.
  - (e) Optimální hodnota úlohy min  $\{\mathbf{x}^T \mathbf{A} \mathbf{x} | \mathbf{x} \in \mathbb{R}^2, \|\mathbf{x}\| = 1\}$  je kladná.