Preduciska 24 - SVD, PCA & data analysis

Motivace: maime dataset -> uložený obrázek/zdravotní decta/ data preference hudby/filmi/--/deta z burzy/...

Problem -> majone hodre dat & nevime jak je analyzavat & 2 nelze je prakticky dlouho Lladout

m) potrebujene kompresi dat, blera zadrova důležité rysy analýzu dat m> co z nich lze vyzíst

-> ve sponsté prépadir maine detaset v tabulce:

ľ						
	12	12	203	12	12	
	12	12	203	12	12	
	203	203	203	203	203	
	12	12	203	12	12	
	12	12	203	12	12	
	1/2	1/12	202	112	112	

odpovída zernobilému obrázku-> císla ma skále 0 až 255 odpovidají odshrunm sedi (255~ bíla) => tady mame «svetlý křížna tmavém poli"

	vēk	válu	krevní tlak
pacient 1			
pacients			
pacient 3			
·			

	vēk	vála	krevní flak	akcie	A akcie B	akcie C		vēk	bydliste
ent 1				simulaceI			uzivatel 1 uzivatel 2		
out 2				simula@ I			uzivatel 3		
eut 3				si mula ce II					
1			1	1		,		1	ı

	vēk	bydliste	prijem_
uzivatel 1			
uzivatel 2			
uživatel 3			
1			'

=> mame data v matici a cheeme

- · komprimovat vehikost matice
- · nanelyzorat, a meim Fiká

Hlavni néstroj: singularni rozklad (SVD) pro A E R^{mxn} m>n.

Lingebra 2: HAER " JUER", VER", ZER":

• $\bigcup_{1} \bigvee_{j} \int_{1}^{\infty} \int_{1}^{\infty}$

Komprese dat =) $A = \sigma_1 \vec{v}_1 \vec{v}_1 + \sigma_2 \vec{v}_2 \vec{v}_2 + \dots + \sigma_n \vec{v}_n \vec{v}_n$ (to. dyadický 602voj A) Ecle 5. jsou nezáporné a nerostouci · | Divi | = 1 ... unitármi matice $A \approx 6 \cdot \vec{V}_{1} \cdot \vec{V}_{1} + 6 \cdot \vec{V}_{2} \cdot \vec{V}_{3} = A_{r}$ =) idea aproximace A: memory cost $A \sim m \cdot n$ $A_r = \bigcup_{i,i \in r} \sum_{i \in r_i, i \in r} (\bigvee_{i,i \in r_i} \sum_{i \in r_i, i \in r_i} (\bigvee_{i,i \in r_i, i \in r_i} (\bigvee$ Véta (Eckhart-Young-Mirsky) Majme A = Rmxn, r < n < m. Neeht A = UEV je singulairmi rozblad. Pak nejpresnejší aproximace A matici hodnosti r je právě matice Ar dana prvními r členy dyadického rozvoje A. Mûzeme zapsat jako XXE Rmxr, YE Rnxr matice luduosti (json pravé matice tvaru X.Y pro A - XYTTI 2, F | A - A - Mejaké XeR, YeR -> tedy právé matice s memory aust r. (mm) $Nowic: \|A-A_r\|_2 = G_{r+1} \otimes \|A-A_r\|_F = G_{r+1}^2 + G_{r+2}^2 + \dots + G_{m:m(m,n)}^2$ => Sporteur m singular nu'ho rozkladu (= singular value decomposition = SD) jsme schopni majit nejpresnejsi kompresi dat v Eucleidovské norme z m·n dat ma v. (m+n) dat. Python Demo: image compression

Analyza dat data = rádley matice = body ai = R & mam jich m -> i=1,...,n motivace pro n = 3: • kdy \(\text{ budon \(\text{a}_1, ..., \text{a}_m v\text{\text{sechuy le\text{\text{\text{z}}}} t na jedné prímce => smērový vektor 3 té přímky mi o těch datech hodue vypovádá m) slovy: všechna data mají stejny "poměr" mezi hoduotami, teatures" («ratio) m> liší se jen šlálováním nebo-li rozptyl v datech læ rysvétlit pozorovamím (=variance) pouze tohoto skálovámí • ledy = \alpha_1,..., am lezi vokolo prinky" m> všechuy rovnosti výše læ nahradit «≈" a dostaneme m) slovy: data mají podobný "poměr" mezi hoduotami, features" a tedy rozptyl /rozdíly v datech odpovídejí pase škálování tohoto poměrní DEDTOVAMI! Pokud by deta ležela približné v rovine dané vektory 5,52 pak mame $\begin{bmatrix} -\tilde{a}_1 - \\ -\tilde{a}_m - \end{bmatrix} \approx \begin{bmatrix} \tilde{a}_m & \tilde{a}_{n2} \\ \tilde{a}_{m1} & \tilde{a}_{m2} \end{bmatrix} \cdot \begin{bmatrix} -\tilde{s}_1 - \\ -\tilde{s}_2 - \end{bmatrix} \dots rank-2 \dots a opet plati, Ze rozptyl v datech lze "približne vysvekit" pouze skalovamim pomerní hodnot prvků vektorů <math>\tilde{s}_1, \tilde{s}_2, \tilde{t}$: pomerů konkretuích hodnot vektorů $\tilde{s}_1, \tilde{s}_2, \tilde{t}$: pomerů konkretuích hodnot masich merených "features" Pozorovanu 2: V R' funguje stejna idea, jen « nejde vizualizovat" Pozorovámi 3: Aualyzovat data = najít co nejmenší počet š, ..., šr, Eteré mem tablo « vysvetle" ty data. Vektorium si, ..., sir se Fike « principal components (= of the dataset)." Jejich nalezení odpovída na lezení nejlepōlí rank-r aproximaci matice A mo stati sportat SVD! (tr. PCA= component)
avalysis 'Lython demo: Ivis destaset

ve smyslu pameti, j: low-rank j. A≈XYT Motivace "Ze statistiky": Matice A ∈ R " obsahuje mase data m> chtel bych (rlemou aproximaci) Eterá zadytí "co nejvíc" z mých dat. Protože každý sloupec (= feature) může mít níplně jiné velikosti & typy dat (věk vs. váhu)
jako prvnú krok data výcentrujeme & mormalizujeme controvaní dat je vždy užitečne $\underbrace{\overrightarrow{u}} := \frac{1}{N} \sum_{i=1}^{V_1} \widetilde{A}_{:i} \times A^{\text{centr}} := \left[\widetilde{A}_{:i} - \widetilde{u}_{i} \dots \widetilde{A}_{:in} \widetilde{u}_{i} \right]$ $\underbrace{\widetilde{A}_{:i} - \widetilde{u}_{i}}_{:i} \times A^{\text{centr}} = \left[\widetilde{A}_{:i} - \widetilde{u}_{i} \dots \widetilde{A}_{:in} \widetilde{u}_{i} \right]$ $\begin{array}{c}
\overleftarrow{\sigma} := \begin{bmatrix} \| A_{\Lambda_1}^{\text{centr}} \|_2 \\ \| A_{M_1}^{\text{centr}} \|_2 \end{bmatrix} & & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$ mormalizace zansi na aplikaci -> často vyne chavame nebo volime jinou nomu Pak "zachytit co nejvice à dat à" le prodopit jako "zachytit co nejvice à variability data-setu Ã" Variabilità $\hat{A} \approx \text{kovariancm}$ matice = $\frac{1}{N-1} \cdot (\tilde{A} - \tilde{u})(\tilde{A} - \tilde{u})^T = \frac{1}{N-1} \cdot A^{\text{centr}}(A^{\text{centr}})^T$ Zachytit co nejlépe vouriability A

tedy odpovida

Min Min Min Acentr (Acentr) T - XYT || F

X,YER MXT Protože matice 1 Acentr (Acentr) je zjevné symmetrické z pozitivné semi-definitní => resemm json X, Y davé r dominantimi vl. pary 1 Acentr (Acentr) T

~) tedy dominantuimi r členy SVD rozvoje matice Acentr Tomesto principle avození se Fika PCA (principle component analysis)