BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHON HỌC SINH GIỚI QUỐC GIA TRUNG HOC PHÓ THÔNG NĂM HQC 2021 - 2022

ĐỀ THI CHÍNH THỰC

Môn: VÂT LÝ

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022

Đề thi gồm 03 trang, 05 câu

Câu I (4,0 điểm)

Một thanh cứng AB đồng chất, tiết diện đều, chiều dài L và khối lượng M. Đầu B của thanh có thể trượt trên mặt sàn nằm ngang và đầu A được gắn với một điểm trên ổ trục nhỏ, nhẹ sao cho thanh có thể quay không ma sát quanh điểm đó. Ô trục có thể trượt không ma sát trên một giá đỡ cứng cổ định CD dang cung tròn bán kính r = 42,4 cm. Biết rằng phản lực tác dụng lên ô trục luôn theo phương bán kính của cung CD. Cho gia tốc trọng trường $g = 9.8 \text{ m/s}^2$, bỏ qua sức cản của không khí.

- 1. Thanh có chiều dài L = r, khối lượng M = 0.5 kg và ổ trục được nối với một lò xo nhẹ có độ cứng k = 50 N/m (Hình 1a). Bỏ qua ma sát giữa đầu B của thanh và mặt sàn. Giả thiết độ cong của lò xo không ảnh hưởng đến độ cứng của nó và đầu B luôn tiếp xúc với mặt sàn. Khi thanh AB cân bằng:
- a) Biết góc hợp bởi thanh và mặt sàn là $\theta_0 = 49.8^{\circ}$. Tính chiều dài tự nhiên ℓ_0 của lò xo.
- b) Tác động nhẹ để hệ thanh và lò xo dao động. Tìm chu kỳ dao động bé của thanh.
- chiều dài $L = L_1 = r\sqrt{2}$ cm, khối có Thanh $M = M_1 = 2.0 \text{ kg và hệ số ma sát giữa đầu B của thanh với mặt sàn}$ nằm ngang là $\mu = 0.4$. Giữ thanh AB hợp với phương ngang một góc $\theta = 30^{\circ}$ (Hình 1b). Thanh được thả tự do không vận tốc đầu. Tại thời điểm ngay sau khi thả, hãy tính:
- a) Gia tốc góc của thanh.
- b) Lưc tác dung của sàn ngang lên đầu B của thanh.

Cho: $cos(x+\varepsilon) \simeq cos(x) - \varepsilon sin(x) khi \varepsilon nhỏ$.

Hình la

Hình 1b

Câu II (4,0 điểm)

Cho n mol khí lý tưởng đơn nguyên tử thực hiện chu trình A-B-C-D-E-F-A trên giản đồ p-V (Hình 2). Trong đó A-B, C-D và E-F là các quá trình đẳng nhiệt, B-C, D-E và F-A là các quá trình đoạn nhiệt. Nhiệt độ của các quá trình đẳng nhiệt: A-B là T_1 , C-D là T_2 và E-F là T_3 ($T_1 > T_2 > T_3$). Biết rằng

trong các quá trình giãn nở đẳng nhiệt A-B và C-D, thể tích khí sau khi giãn nở tăng m lần so với thể tích khí trước khi giãn nở. Cho hằng số khí lý tưởng là R. Hãy xác định:

- 1. Tỉ số $\frac{V_F}{V_E}$ giữa các thể tích khí ở trạng thái F và E theo m.
- 2. Công của khí khi thực hiện một chu trình trên theo n, m, R, T_1, T_2, T_3 .
- 3. Nhiệt lượng khí nhận được trong một chu trình theo n, m, R, T_1, T_2 .
- 4. Hiệu suất của chu trình theo T_1, T_2, T_3 .

Câu III (4,0 điểm)

1. Cho một mặt tròn trong chân không, bán kính R, có điện tích phân bố đều với mật độ điện tích mặt σ . Xuất phát từ công thức điện trường hoặc điện thế gây bởi điện tích điểm, xác định cường độ điện trường tại điểm M nằm trên trục đi qua tâm và vuông góc với mặt tròn, cách tâm mặt một đoạn h. Nhân xét giá trị cường độ điện trường trong trường hợp h << R.

2. Cho hai bản kim loại tròn, cùng bán kính R, đặt song song và đồng trục, cách nhau một khoảng d (d << R) và được giữ cố định. Bản trên được nối với điểm có hiệu điện thế không đổi V(V>0) so với đất, bản dưới được nối đất (Hình 3a). Không gian giữa hai bản là chân không. Kim loại dẫn điện tốt, hằng số điện là ϵ_0 .

a) Tính năng lượng điện trường trong không gian giữa hai bản và lực tương tác tĩnh điện giữa hai bản theo R,d,ϵ_0,V .

b) Một đĩa kim loại tròn rất mỏng, có khối lượng m, bán kính r (r << d) được đặt trên mặt và đồng trục đi qua tâm của bản dưới (Hình 3b). Bỏ qua tác dụng của trọng lực, hiệu ứng điện liên quan đến các mép của bản kim loại và đĩa mỏng, độ tự cảm và hiệu ứng ảnh điện.

b1) Giữ đĩa, tìm điện tích q trên đĩa theo r,d,ϵ_0,V .

b2) Thả nhẹ đĩa, thấy đĩa liên tục chuyển động lên, xuống giữa hai bản kim loại. Cho rằng đĩa chỉ chuyển động theo phương thẳng đứng đi qua tâm của các bản kim loại. Va chạm giữa đĩa với các bản kim loại là không đàn hồi với hệ số phục hồi $k = \frac{V_s}{V_t}$, trong đó v_t và v_s tương ứng là tốc độ của

đĩa ngay trước và ngay sau mỗi lần va chạm với các bản kim loại. Sau nhiều lần va chạm, tốc độ v_s sẽ tiến dần đến một giá trị không đổi v_{sgh} . Giả thiết rằng, khi va chạm, toàn bộ bề mặt của đĩa đồng thời chạm vào bản kim loại và sự trao đổi điện tích xảy ra một cách tức thời ở mỗi lần va chạm. Tìm vận tốc v_{sgh} theo m,r,d,k,ϵ_0,V .

Câu IV (4,0 điểm)

1. Cho hệ gồm bốn gương phẳng G_1, G_2, G_3 và G_4 , đặt vuông góc với mặt phẳng giấy và được ghép vuông góc với nhau (Hình 4a). M, N là hai điểm nằm trước các gương và nằm trên mặt phẳng giấy. a) Hãy vẽ đường truyền của một tia sáng xuất phát từ điểm M, phản xạ lần lượt qua các gương G_1, G_2, G_3 và G_4 , sau đó đi đến được điểm N.

b) Xét tia sáng từ điểm M đến được các gương, phản xạ qua các gương rồi qua điểm N. Biết số lần phản xạ trên G_1 là m ($m \ge 0$) và chỉ phản xạ một lần trên các gương còn lại.

b1) Tìm các giá trị có thể của m.

b2) Khi m = 2, tìm số cách vẽ đường truyền tia sáng.

2. Ở cuối thế kỷ XIX, người ta cho rằng mọi loại sóng đều cần một môi trường để truyền trong đó. Sóng âm cần môi trường không khí, sóng biển cần môi trường nước,... do đó một cách tự nhiên quan niệm sóng điện từ cần một môi trường để truyền trong đó cũng được thừa nhận. Môi trường này được gọi là "ête". Thí nghiệm nghiên cứu giả thuyết về sự tồn tại của ête được thực hiện bởi Michelson (Hình 4b). Bộ thí nghiệm gồm hai gương phẳng phản xạ toàn phần đặt tại M₁, M₂; gương phản xạ bán phần dạng bản mỏng mà tia sáng có thể xuyên qua và phản xạ tại bề

2/3

mặt đặt tại M_0 ; màn quan sát giao thoa đặt tại M. Khoảng cách từ M_0 tới M_1 và M_2 đều bằng L.

Một chùm tia sáng hẹp, song song xuất phát từ một nguồn ánh sáng đơn sắc S với bước sóng λ đi theo hai đường: đường 1 từ $S \to M_0 \to M_1 \to M_0 \to M$, đường 2 từ $S \to M_0 \to M_2 \to M_0 \to M$, rồi sau đó giao thoa trên màn M.

Giả sử rằng ête tồn tại, khi đó trong hệ qui chiếu gắn với Trái Đất, vận tốc của sóng điện từ phải bằng tổng vận tốc \vec{c} của sóng điện từ đối với ête và vận tốc kéo theo \vec{v} của ête so với Trái Đất với phương như trên Hình 4b.

a) Xác định hiệu quang trình chùm sáng đi theo đường 1 và đường 2 theo L,c,v.

b) Xoay cả hệ thí nghiệm một góc 90° quanh trục quay đi qua M_0 và vuông góc với mặt phẳng hình vẽ. Phương chiều \vec{v} của ête so với Trái Đất là không đổi khi xoay hệ thí nghiệm. Tính độ dịch chuyển của hệ vân giao thoa theo λ, L, c, v . Biết độ dịch chuyển của hệ vân giao thoa là tỉ số giữa hiệu quang trình và bước sóng λ .

c) Kết quả quan sát cho thấy không có sự dịch chuyển của hệ vân giao thoa khi xoay hệ thí nghiệm. So sánh kết quả quan sát với kết quả tính toán lý thuyết ở trên, có nhận xét gì về giả thuyết tồn tại ête? Cho: $(1-x)^n \approx 1-nx$, khi $x \ll 1$.

Câu V (4,0 điểm)

Các tia vũ trụ mang đến Trái Đất rất nhiều hạt sơ cấp với năng lượng cao, trong đó có các piôn (π^-) , êlectron (e),... Các piôn là những hạt không bền, chúng phân rã thành muyôn (μ^-) và phân notrinô $(\tilde{\nu}_{\mu})$ ở độ cao khoảng $10\,\mathrm{km}$ so với mặt đất. Êlectron là hạt rất bền.

1. Trong hệ quy chiếu gắn với mặt đất (Oxy), một hạt π^- chuyển động theo chiều dương của trục Ox với tốc độ $v_{\pi^-} = 0,96c$, phân rã theo phương trình:

$$\pi^- \to \mu^- + \tilde{\nu}_{\mu} \tag{*}$$

Biết tốc độ ánh sáng trong chân không là c = 3.10^8 m/s, khối lượng nghi của π^- , μ^- và $\tilde{\nu}_\mu$ lần lượt là m_{π^-0} = 139,6 MeV/c², m_{μ^-0} = 105,7 MeV/c² và $m_{\tilde{\nu}_\mu} \approx 0$.

a) Trong hệ qui chiếu gắn với khối tâm hệ muyôn và phản notrinô, muyôn bay theo phương lệch một góc $\theta' = 30^{\circ}$ so với chiều dương trục O'x', (O'x' cùng hướng Ox). Tính tốc độ v_{μ} của muyôn do phản ứng (*) tao ra trong hệ qui chiếu khối tâm và hệ qui chiếu mặt đất.

b) Muyôn do sự phân rã (*) tạo ra bay thẳng đứng xuống dưới về phía mặt đất. Cho biết ở trạng thái nghỉ muyôn có thời gian sống là 2,2.10⁻⁶ s. Hỏi muyôn sinh ra ở độ cao 10 km có bay tới mặt đất không?

2. Trong hệ quy chiếu gắn với mặt đất Oxy có điện trường đều \vec{E} đủ mạnh ngược chiều Ox. Tại thời điểm t=0, một êlectron (điện tích -e, khối lượng nghỉ m_{e0}) có năng lượng cao chuyển động với vận tốc \vec{v}_0 theo chiều Oy và đi qua O (Hình 5). Bỏ qua tác dụng của trọng lực. Tìm tốc độ của êlectron tại thời điểm t>0.

Thí sinh KHÔNG được sử dụng tài liệu.

• Giám thị KHÔNG giải thích gì thêm.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỚI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

HƯỚNG DẪN CHẨM THI Đề thi chính thức

Môn: **VẬT LÝ**

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022

Hướng dẫn chấm thi gồm 06 trang

I. HƯỚNG DẪN CHUNG

1. Giám khảo chấm đúng như đáp án, biểu điểm của Bộ Giáo dục và Đào tạo.

2. Nếu thí sinh có cách trả lời khác đáp án nhưng đúng thì giám khảo vẫn chấm điểm theo biểu điểm của Hướng dẫn chấm thi.

3. Giám khảo không quy tròn điểm thành phần của từng câu, điểm của bài thi.

II. ĐÁP ÁN, BIỂU ĐIỂM

Câu	DAP AN, BIEU DIEM	1 2
Cau	Nội dung Câu I (4,0 điểm)	Điểm
1.a.	Thế năng của cơ hệ: $U = \frac{Mgr}{2} \sin\theta + \frac{1}{2} k (r\theta - l_0)^2$	
	Vị trí cân bằng của hệ thoả mãn $\frac{dU}{d\theta}$ =0	1,0
	$\frac{Mgr}{2}\cos\theta_0 + kr(r\theta_0 - l_0) = 0 (1)$	
	$\ell_0 = 0,4$ m	
1.b.	Năng lượng của cơ hệ	
İ	$E = U + T = \frac{Mgr}{2}\sin(\theta_0 + \xi) + \frac{1}{2}k[r(\theta_0 + \xi) - l_0]^2 + \frac{1}{2}I_B\dot{\xi}^2$	
	Năng lượng được bảo toàn nên $\frac{dE}{dt}$ =0	
	$\frac{\mathrm{Mgr}}{2}\cos(\theta_0 + \xi) + \mathrm{kr}\left[r(\theta_0 + \xi) - l_0\right] + I_{\mathrm{B}} \ddot{\xi} = 0$	1,0
	Sử dụng phương trình (1) và áp dụng điều kiện góc bé sinξ≈ξ suy ra phương trình chuyển động	
	$\ddot{\xi} + \frac{kr^2 - 0.5Mgrsin\theta_0}{I_B} \xi = 0$	
	Chu kỳ dao động bé	
	$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I_B}{kr^2 - 0.5Mgrsin\theta_0}} = 0.38 \text{ s}, \text{ $\dot{\sigma}$ dây } I_B = \frac{Mr^2}{3}$	
2.a.	Các phương trình chuyển động (Giả sử vận tốc góc của thanh có hướng đi vào mặt phẳng giấy và đầu B trượt ra ngoài) $F_{ms} - N_{A} \cos 45^{\circ} = M_{1} a_{Gx} \qquad (1)$	
	$N_{B} - M_{1}g - N_{A}\sin 45^{\circ} = M_{1}a_{Gy} (2)$ $\frac{N_{B}L_{1}}{2}\cos 30^{\circ} + \frac{N_{A}L_{1}}{2}\sin 15^{\circ} - \frac{F_{ms}L_{1}}{2}\sin 30^{\circ} = I_{G}\gamma (3)$ $\overline{a}_{B/A} \qquad \overline{A}_{B/A} \qquad \overline{A}_{B/A$	

Câu		Nội dung		Điểm
	Ta có: $\vec{a}_B = \vec{a}_A + \vec{a}_{B/A}$ ($\vec{a}_{B/A}$ là gia tốc c	của B so với hệ quy	chiếu gắn với thanh AB)	3.6.11
	Chiếu lên phương thẳng đứng $-a_A \sin 45^\circ + \gamma L_1 \cos 30^\circ = 0$ (4)			
	Ta có: $\vec{a}_G = \vec{a}_A + \vec{a}_{G/A} = a_A \cos\theta \vec{i} - a_A \sin\theta$	$n\theta \vec{j} - \gamma \vec{k} \times \left(-\frac{L_1}{2} \cos \theta \right)$	$\theta \vec{i} - \frac{L_1}{2} \sin \theta \vec{j}$	
	Chiếu lên hai phương	(2	2)	1,5
	$a_{Gx} = a_A \cos 45^\circ - \frac{\gamma L_1}{2} \sin 30^\circ$ (5)			
	$a_{Gy} = -a_A \sin 45^\circ + \frac{\gamma L_1}{2} \cos 30^\circ$ (6)			
	$\gamma = 12.2 \text{ rad/s}^2.$			
	Ta có $a_B = a_A \cos 45^\circ - \gamma L_I < 0$ thoả mã	n giả thiết đầu B tr	rượt ra ngoài	
2.b.	Lực tác dụng của sàn lên điểm B: \vec{F}_B =	$=\vec{F}_{ms} + \vec{N}_{B}, N_{B} = 7,0$)7 N	0.5
	$F_B = 7.6 \text{ N}$			0,5
1.	Câu II (4,0 điểm) Trong các quá trình đoạn nhiệt:			
	$TV^{\gamma-1} = \text{const} \implies T \propto V^{1-\gamma}$			
	Như vậy trong các quá trình BC, DE	và FA:		
				1,0
	$\frac{T_{1}}{T_{2}} = \left(\frac{V_{B}}{V_{C}}\right)^{1-\gamma}; \frac{T_{2}}{T_{3}} = \left(\frac{V_{D}}{V_{E}}\right)^{1-\gamma}; \frac{T_{3}}{T_{1}} = \left(\frac{V_{D}}{V_{D}}\right)^{1-\gamma}; \frac{T_{3}}{T_{1}} = \left$	A		
	Nhân vế với vế 3 phương trình trên ta	có:		
	$1 = \left(\frac{V_B}{V_A} \frac{V_D}{V_C} \frac{V_F}{V_E}\right)^{1-\gamma} \rightarrow 1 = \left(m^2 \frac{V_F}{V_E}\right)^{1-\gamma}$	$\xrightarrow{V_{\rm F}} = \frac{1}{{\rm m}^2}$		
2.	Trong các quá trình đẳng nhiệt: $\Delta U =$	0;		
	Do đó: $\Delta Q = \Delta W = nRT \ln \frac{V_s}{V_t}$			
	Trong các quá trình đoạn nhiệt: $\Delta Q =$	0		
	Do đó: $-\Delta U = \Delta W = -nC_v(T_s - T_s)$	$_{t}) = nC_{v}(T_{t} - T_{s})$		2,0
	Quá trình	ΔQ	ΔW	
	AB (Đẳng nhiệt)	nRT ₁ ln(m)	nRT ₁ ln(m)	
	BC (Đoạn nhiệt)	0	$nC_{v}(T_1-T_2)$	
	CD (Đẳng nhiệt)	nRT ₂ ln(m)	nRT ₂ ln(m)	
	DE (Đoạn nhiệt)	0	$nC_V(T_2-T_3)$	
	EF (Đẳng nhiệt)	-2nRT ₃ ln(m)	$-2nRT_3 ln(m)$	
	FA (Đoạn nhiệt)	0	$nC_{V}(T_3-T_1)$	
	Công trong 1 chu trình là: $W = nR(T_1 - T_2)$	$+T_2-2T_3)\ln(m)$		
3.	Nhiệt hấp thụ bởi khí: $Q_{ab} = Q_{+} = nR($	$(T_1 + T_2) \ln(m)$		0,5
4.	Hiệu suất: $\eta = \frac{W}{Q_{ab}} = 1 - \frac{2T_3}{T_1 + T_2}$			
	Q_{ab} $T_1 + T_2$			0,5

Câu	Nội dung	Điểm
	Câu III (4,0 điểm)	2.0111
1.	Xét vi phân điện tích dq = $\sigma 2\pi$ rdr gây ra điện trường tại điểm M.	
	$dE = \frac{1}{4\pi\epsilon_0} \frac{hdq}{(r^2 + h^2)^{3/2}} = \frac{\sigma 2\pi h}{4\pi\epsilon_0} \frac{rdr}{(r^2 + h^2)^{3/2}}$	
	$4\pi\varepsilon_0 (r^2 + h^2)^{3/2} \qquad 4\pi\varepsilon_0 (r^2 + h^2)^{3/2}$	1,0
	$\begin{pmatrix} R \\ r \end{pmatrix} \begin{pmatrix} dq \\ g \end{pmatrix}$	
	$E = \int dE = \frac{\sigma 2\pi h}{4\pi\epsilon_0} \int_0^R \frac{rdr}{(r^2 + h^2)^{3/2}} = \frac{\sigma}{2\epsilon_0} (1 - \frac{h}{\sqrt{R^2 + h^2}})$	
	$4\pi\epsilon_0 \int_0^1 (r^2 + h^2)^{3/2} 2\epsilon_0 \sqrt{R^2 + h^2}$	
	$R \gg h \Rightarrow E = \frac{\sigma}{2\varepsilon_0}$	
2.0	0	
2.a.	Điện tích Q trên bản kim loại sinh ra bởi điện thế V	
	$Q = \sigma . \pi R^2 = \varepsilon_0 E . \pi R^2 = \varepsilon_0 \left(\frac{V}{d}\right) \pi R^2, E = \frac{V}{d}$	
	$1 - 1 \varepsilon \pi R^2$	1,0
	Năng lượng tích trữ giữa hai bản kim loại: $U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{\varepsilon_0 \pi R^2}{d}V^2$	
	Lực tác dụng lên tấm kim loại khi điện thế V được giữ không đổi	
	$F_{\rm E} = -\frac{\partial U}{\partial d} = \frac{1}{2} \varepsilon_0 \pi R^2 \frac{V^2}{d^2}$	
	val_2	
2.b.	b1. Điện tích q trên đĩa nhỏ, sử dụng tỉ lệ diện tích đối với đĩa	
	$q = -\left(\frac{\pi r^2}{\pi R^2}\right) Q = -\varepsilon_0 \pi \frac{r^2}{d} V$	0,25
	b2. Xét bản kim loại dưới, gọi v _n là vận tốc của đĩa nhỏ ngay sau va chạm lần thứ n, động	
	năng của đĩa trên tấm dưới được cho bởi: $K_{n-down} = \frac{1}{2} m v_n^2$	
	Khi đĩa lên bản kim loại trên, thế năng của đĩa thay đổi: $\Delta U_{up} = q V$]
	Vì vậy, động năng của đĩa ngay trước va chạm lần thứ n với bản trên là	
	$K_{n-up} = K_{n-down} + q V$	
	Theo đề bài $k = \frac{V_s}{V_t}$, do đó động năng đĩa ngay sau và trước va chạm lần thứ n với bản trên	
	$K'_{n-up} = k^2 K_{n-up} = k^2 (K_{n-down} + q V)$	
	Khi đĩa đi xuống, thế năng của đĩa thay đổi: $\Delta U_{down} = q V$	1,75
	Động năng của đĩa trước khi va chạm lần thứ n+1 với bản dưới	
	$K'_{n-down} = K'_{n-up} + q V = k^2(K_{n-down} + q V) + q V$	
	Động năng đĩa ngay sau và trước khi va chạm lần thứ n+1 với bản tụ dưới	
	$K_{(n+1)-\text{down}} = k^2 K'_{n-\text{down}} = k^2 \left[k^2 (K_{n-\text{down}} + q V) + q V] \right]$	
	2	
	$K_{(n+1)-down} = k^4 K_{n-down} + k^2 (1+k^2) q V = k^4 \frac{1}{2} m v_n + k^2 (1+k^2) q V$	
	Theo đề bài khi $n \to \infty, \Rightarrow v_{n+1} = v_n$,	
	Khi đó ta có $K_{(n+1)-down} \rightarrow K_{n-down}$	
	$\Leftrightarrow k^4 \frac{1}{2} m v_n^2 + k^2 (1 + k^2) q V = \frac{1}{2} m v_n^2$	
	$2^{mv_n+K}\left(\frac{1+K}{2}\right) \mathbf{q} = \frac{1}{2}^{mv_n}$	
	Cuối cùng tìm được: $v_{sgh} = v_n = \sqrt{\frac{2k^2}{1-k^2}} \frac{ q V}{m} = \sqrt{\frac{2k^2}{1-k^2}} \frac{\varepsilon_0 \pi r^2}{md} V^2$	
	$v_{\text{sgh}} - v_{\text{n}} - \sqrt{\frac{1-k^2}{1-k^2}} = \sqrt{\frac{1-k^2}{1-k^2}} \frac{v_{\text{m}}}{\text{md}}$	

Câu	Nội dung	Điểm
	Câu IV (4,0 điểm)	
1.a.	Muốn tia ló từ G_4 qua N thì tia tới G_4 phải đi qua ảnh N_4 của N qua gương G_4	
	Tương tự xác định được các ảnh N_3, N_2, N_1 của G_3, G_2, G_1 .	
	Tia sáng cần vẽ là tia MABCDN : N ₄	
	173	
	G_4 D	
	1 M	
	A C	
	G_1 G_3	
	1	1,0
	i G_2 B	
	i	
	i	
	N ₁	
	142	:
1.b.	b1. Tia phản xạ từ gương G_1 thuộc nửa mặt phẳng phải, muốn quay lại G_1 thì phải phản xạ	
	trên G_3 (nửa mặt phẳng trái) do đó số lần phản xạ trên G_1 chỉ có thể là nhiều hơn, bằng hoặc	0,5
	ít hơn 1 đơn vị. Các giá trị khả dĩ của m để bài toán có nghiệm là $m = 0,1,2$.	
	b2. Trường hợp $m = 2$,	
	Giả sử đường đi của tia sáng là: $M \to G_a \to G_b \to G_c \to G_d \to G_e \to N$ viết tắt là	
	$G_aG_bG_cG_dG_e$.	
	Theo thứ tự đường đi của tia sáng, gương G_3 luôn phải nằm giữa hai gương G_1 .	
	+ Khi G_2, G_3, G_4 nằm giữa hai gương G_1 có: $3! = 6$ cách vẽ	
	$G_1G_2G_3G_4G_1; G_1G_2G_4G_3G_1; G_1G_3G_2G_4G_1$	
	$G_1G_3G_4G_2G_1;G_1G_4G_2G_3G_1;G_1G_4G_3G_2G_1$	0,25
	Turong tur:	
	+ Khi G_2 , G_3 hoặc G_3 , G_4 nằm giữa hai gương G_1 có: $2 \times 2! \times 2! = 8$ cách vẽ	
	$G_1G_3G_2G_1G_4,$	
	+ Khi G_3 nằm giữa hai gương G_1 có: $3! = 6$ cách vẽ	
	$G_2G_1G_3G_1G_4,$	
	Kết quả: Có 20 cách vẽ.	
2.a.		
	\vec{v}	
	M_0 \vec{v} M_0	
	$S + I \neq M_0 \land I$	1,75
	Tia sáng theo phương vuông góc với \vec{v}	
	✓	
	Thời gian ánh sáng đi từ $M_0 \rightarrow M_2$ và ngược lại là:	
	2 0 2 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1	
	I	

Câu	Nội dung	Điểm
	$t_1 = \frac{L}{c - v} + \frac{L}{c + v} = \frac{2Lc}{c^2 - v^2} = \frac{2L}{c} \left(1 - \frac{v^2}{c^2}\right)^{-1}$	
	Tốc độ ánh sáng từ $M_0 \rightarrow M_1$ và ngược lại đều bằng: $\sqrt{c^2 - v^2}$	
	Thời gian ánh sáng đi từ $M_0 \rightarrow M_1$ và ngược lại là: $t_2 = \frac{2L}{\sqrt{c^2 - v^2}} = \frac{2L}{c} \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$	
	Độ lệch thời gian khi ánh sáng đi theo đường (2) và (1):	
	$\Delta t_1 = t_1 - t_2 = \frac{2L}{c} \left[\left(1 - \frac{v^2}{c^2} \right)^{-1} - \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}} \right]$	
	Tính gần đúng ta có: $\Delta t_1 \approx \frac{Lv^2}{c^3}$. Suy ra hiệu quang trình: $\Delta d = c\Delta t_1 = \frac{Lv^2}{c^2}$	
2.b.	Khi xoay thí nghiệm đi 90° trên mặt phẳng nằm ngang, vận tốc kéo theo của gió ête có phương vuông góc với vận tốc kéo theo ban đầu; khi đó hai tia sáng theo hai đường sẽ đổi vai trò cho nhau.	
	$\Delta t_2 = \frac{2L}{c} \left[\left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}} - \left(1 - \frac{v^2}{c^2} \right)^{-1} \right]$	0.05
	Kết quả này cho thấy hiệu quang trình trước và sau khi quay sẽ sai khác nhau một lượng là 2Δd. Như vậy (nếu tồn tại gió ête) khi xoay chậm hệ ta sẽ quan sát được sự dịch chuyển theo của hệ vân giao thoa trên màn M. Độ dịch chuyển của hệ vân là:	0,25
	$\frac{\Delta t_1 - \Delta t_2}{\lambda} c = \frac{4L}{\lambda} \left[\left(1 - \frac{v^2}{c^2} \right)^{-1} - \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}} \right] \approx \frac{4L}{\lambda} \left(1 + \frac{v^2}{c^2} - 1 - \frac{v^2}{2c^2} \right) = \frac{2Lv^2}{\lambda c^2}$	
2.c.	Kết quả quan sát thực nghiệm cho thấy không có sự dịch chuyển của hệ vân giao thoa khi xoay hệ thí nghiệm nên có thể khẳng định: - Hoặc ête <i>không</i> tồn tại Hoặc ête không chuyển động tương đối so với Trái Đất.	0,25
	(Học sinh trả lời đúng một trong hai ý đều cho điểm) Câu V (4,0 điểm)	
1.a.	Gọi S là hệ quy chiếu gắn mặt đất, S' là hệ quy chiếu gắn khối tâm muyôn và notrinô. Áp dụng bảo toàn động lượng và năng lượng cho sự phân rã của hạt piôn trong hệ quy chiếu S'.	
	$0 = \vec{p}'_{\mu} + \vec{p}'_{\nu} \Leftrightarrow \frac{m_{\mu 0} v'_{\mu}}{\sqrt{1 - \left(\frac{v'_{\mu}}{c}\right)^{2}}} = p'_{\nu} (1); m_{\pi 0} c^{2} = \frac{m_{\mu 0} c^{2}}{\sqrt{1 - \left(\frac{v'_{\mu}}{c}\right)^{2}}} + p'_{\nu} c (2)$	
	Từ (1) và (2) ta được	
	$m_{\pi 0} c = \frac{m_{\mu 0} c}{\sqrt{1 - \left(\frac{v'_{\mu}}{c}\right)^{2}}} + \frac{m_{\mu 0} v'_{\mu}}{\sqrt{1 - \left(\frac{v'_{\mu}}{c}\right)^{2}}} \Rightarrow \sqrt{1 - \left(\frac{v'_{\mu}}{c}\right)^{2}} = \frac{m_{\mu 0}}{m_{\pi 0}} \left(1 + \frac{v'_{\mu}}{c}\right)$	
	$\left(\frac{m_{\mu 0}}{m_{\pi 0}}\right)^{2} = \frac{1 - \frac{v'_{\mu}}{c}}{1 + \frac{v'_{\mu}}{c}} \Rightarrow v'_{\mu} = c \frac{1 - \left(\frac{m_{\mu 0}}{m_{\pi}}\right)^{2}}{1 + \left(\frac{m_{\mu 0}}{m_{\pi 0}}\right)^{2}} = 0,2714c$	1,75

thức cộng vận tốc, ta cố: $ v_{\mu\nu} = \frac{v'_{\mu} \cos\theta' + v_{\pi}}{1 + \frac{v'_{\mu} \cos\theta'}{c^2} v_{\pi}} = 0.9750 c; v_{\mu\nu} = \frac{v'_{\mu} \sin\theta' \sqrt{1 - \frac{v^2_{\pi}}{c^2}}}{1 + \frac{v'_{\mu} \cos\theta'}{c^2} v_{\pi}} = 0,0309 c $ Ta cố: $v_{\mu} = \sqrt{v_{\mu\nu}^2 + v_{\mu\nu}^2} = 0.9755 c $ Hoặc biến đổi ta được: $v_{\mu} = \sqrt{v_{\mu}^2 + v_{\mu\nu}^2} = c \left(1 - \frac{1 - \frac{v'^2_{\mu}}{c^2}}{1 + \frac{v'_{\mu} \cos\theta'}{c^2}}\right)^{1/2} \left(1 - \frac{v^2_{\pi}}{c^2}\right)^{1/2} $ Thay gốc $\theta' = 30^\circ$, ta được $v_{\mu} = 0.9755 c = 2.92658.10^3 \text{ m/s}$ 1.b. Do sự chẩm lại của thời gian, nên thời gian sống của hạt muyôn trong hệ quy chiếu S là $ T = \frac{T'}{\sqrt{1 - \frac{v^2_{\mu}}{c^2}}} = 7.29.10^{\circ 6} \text{ s} $ Quầng đường hạt muyôn đi được là: $d = \frac{T'v_{\mu}}{\sqrt{1 - \frac{v^2_{\mu}}{c^2}}} \approx 2920 \text{m} < 10^4 \text{m} $ (5.0) Kết luận hạt muyôn không thể xuống tới mặt đất. $ X\acute{e}t$ electron có vận tốc v_0 , diễn tích c chuyên đổng trong điện trường đều. Ở thời điểm t: $ \frac{d\tilde{p}_{\nu}}{dt} \approx -c\tilde{E} \Rightarrow p_{e_0} = cEt; p_{e_0} = p_{e_0} = \frac{m_{e_0}v_0}{\sqrt{1 - \left(\frac{v_0}{c}\right)^2}} (3) $ Mặt khác: $\tilde{p}_e = m_e \tilde{v}_e = \frac{\varepsilon_e}{c^2} \tilde{v}_e \Rightarrow p_{e_0} = \frac{\varepsilon_e}{c^2} v_x; p_{e_0} = \frac{\varepsilon_e}{c^2} v_x; q_0$ $ = \frac{\varepsilon_e}{v_0} v_0^2 + m_{e_0}^2 c^4 = \sqrt{1 - \left(\frac{v_0}{c}\right)^2} \left(1 - \left(\frac{v_0}{c}\right)^2\right)^{1/2} $ Vận tốc của hạt electron là: $ v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c^2}\right)^2 + \left(\frac{eEt}{m_{e_0}c^2}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e_0}c^2}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)} \right)^{1/2} $	Câu	Nội dung	Điểm
$\begin{aligned} v_{\mu x} &= \frac{v_{\mu}^{'} \cos \theta^{'} + v_{x}^{'}}{1 + \frac{v_{\mu}^{'} \cos \theta^{'}}{c^{2}}} v_{x} = 0,9750c; v_{\mu y} &= \frac{v_{\mu}^{'} \sin \theta^{'} \sqrt{1 - \frac{v_{\mu}^{2}}{c^{2}}}}{1 + \frac{v_{\mu}^{'} \cos \theta^{'}}{c^{2}}} v_{x} \\ &= 0,9755c \end{aligned}$ $\begin{aligned} &\text{Hoặc biến đổi ta được: } v_{\mu} = \sqrt{v_{\mu}^{2}} + v_{\mu y}^{2}} = 0,9755c \\ &\text{Hoặc biến đổi ta được: } v_{\mu} = \sqrt{v_{\mu}^{2}} + v_{\mu y}^{2}} = c \left[1 - \frac{1 - \frac{v_{\mu}^{2}}{c^{2}}}{1 - \left(1 + \frac{v_{\mu}^{2}}{c^{2}}\right)^{1/2}} \right]^{1/2} \\ &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &\text{Thay gốc } \theta^{'} = 30^{\circ}, \text{ ta được } v_{\mu} = 0,9755c = 2,92658.10^{\circ} \text{ m/s} \end{aligned}$ $\begin{aligned} &Louis dual dual dual dual dual dual dual dual$		Trong hệ quy chiếu S', hạt μ bay lệch góc θ ' so với phương ban đầu hạt π . Sử dụng công	
$ \begin{array}{ll} Ta\;c\acute{o}:\;v_{\mu}=\sqrt{v_{\mu x}^{2}+v_{\mu y}^{2}}=0,9755c\\ \\ Hoặc biến đổi ta được:\;v_{\mu}=\sqrt{v_{\mu x}^{2}+v_{\mu y}^{2}}=c\\ \\ 1-\frac{\left(1-\frac{v_{\mu}^{2}}{c^{2}}\right)\left(1-\frac{v_{\mu}^{2}}{c^{2}}\right)^{1/2}}{\left(1+\frac{v_{\mu}^{2}v\cos\theta^{2}}{c^{2}}\right)^{2}}\\ \\ Thay gốc\;\theta^{\prime}=30^{\circ},\;ta được\;v_{\mu}=0,9755c=2,92658.10^{8}\;m/s\\ \\ 1.b.\;$			
$ \begin{array}{ll} Ta\;c\acute{o}:\;v_{\mu}=\sqrt{v_{\mu x}^{2}+v_{\mu y}^{2}}=0,9755c\\ \\ Hoặc biến đổi ta được:\;v_{\mu}=\sqrt{v_{\mu x}^{2}+v_{\mu y}^{2}}=c\\ \\ 1-\frac{\left(1-\frac{v_{\mu}^{2}}{c^{2}}\right)\left(1-\frac{v_{\mu}^{2}}{c^{2}}\right)^{1/2}}{\left(1+\frac{v_{\mu}^{2}v\cos\theta^{2}}{c^{2}}\right)^{2}}\\ \\ Thay gốc\;\theta^{\prime}=30^{\circ},\;ta được\;v_{\mu}=0,9755c=2,92658.10^{8}\;m/s\\ \\ 1.b.\;$		$v_{\mu x} = \frac{v'_{\mu} \cos \theta' + v_{\pi}}{1 + \frac{v'_{\mu} \cos \theta'}{c^{2}} v_{\pi}} = 0,9750 c; v_{\mu y} = \frac{v'_{\mu} \sin \theta' \sqrt{1 - \frac{v_{\pi}^{2}}{c^{2}}}}{1 + \frac{v'_{\mu} \cos \theta'}{c^{2}} v_{\pi}} = 0,0309 c$	
Thay gốc $\theta'=30^\circ$, ta được $v_\mu=0.9755c=2.92658.10^8$ m/s Do sự chậm lại của thời gian, nên thời gian sống của hạt muyôn trong hệ quy chiếu S là $T=\frac{T'}{\sqrt{1-\frac{v_\mu^2}{c^2}}}=7.29.10^{-6}~\text{s}$ Quâng đường hạt muyôn đi được là: $d=\frac{T'v_\mu}{\sqrt{1-\frac{v_\mu^2}{c^2}}}\approx 2920\text{m} < 10^4\text{m}$ Kết luận hạt muyôn không thể xuống tới mặt đất. 2. Két electron có vận tốc v_o , điện tích e chuyển đông trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_2}{dt}=-e\vec{E}\Rightarrow p_{ex}=eEt; p_{ey}=p_{eo}=\frac{m_{eo}v_o}{\sqrt{1-\left(\frac{v_o}{c}\right)^2}}(3)$ Mặt khác: $\vec{p}_c=m_e\vec{v}_e=\frac{\epsilon_e}{c^2}\vec{v}_c\Rightarrow p_{ex}=\frac{\epsilon_e}{c^2}v_x; p_{ey}=\frac{\epsilon_o}{c^2}v_y$ (4) $\epsilon_e=\sqrt{p_e^2c^2+m_{eo}^2c^4}=\sqrt{\frac{m_{eo}^2v_o^2}{1-\left(\frac{v_o}{c}\right)^2}+(eEt)^2}c^2+m_{eo}^2c^4}$ $Từ (3) và (4) ta có: v_x=\frac{eEc^2}{\epsilon_e}t; v_y=\frac{m_{eo}v_oc^2}{\epsilon_e\sqrt{1-\left(\frac{v_o}{c}\right)^2}} v=\sqrt{v_x^2+v_y^2}=c\left(\frac{(\frac{v_o}{c})^2+(\frac{eEt}{m_{eo}c})^2\left(1-(\frac{v_o}{c})^2\right)}{1+(\frac{eEt}{m_{eo}c})^2\left(1-(\frac{v_o}{c})^2\right)}\right)^{1/2}$			
1.b. Do sự chậm lại của thời gian, nên thời gian sống của hạt muyồn trong hệ quy chiếu S là $T = \frac{T'}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} = 7,29.10^{-6} \text{ s}$ Quảng đường hạt muyôn di được là: d = $\frac{T'v_{\mu}}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} \approx 2920 \text{m} < 10^4 \text{m}$ Kết luận hạt muyôn không thể xuống tới mặt đất. 2. Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\bar{p}_e}{dt} = -e\bar{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1 - \left(\frac{v_0}{c}\right)^2}} (3)$ Mặt khác: $\bar{p}_e = m_e \bar{v}_e = \frac{\varepsilon_e}{c^2} \bar{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y$ (4) $\varepsilon_e = \sqrt{p_e^2 c^2 + m_{e0}^2 c^4} = \sqrt{\frac{m_{e0}^2 v_0^2}{1 - \left(\frac{v_0}{c}\right)^2} + (eEt)^2} \frac{1}{c^2 + m_{e0}^2 c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\varepsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e\sqrt{1 - \left(\frac{v_0}{c}\right)^2}}$ $Vận tốc của hạt electron là: v = \sqrt{v_x^2 + v_y^2} = e\left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$		Hoặc biến đổi ta được: $v_{\mu} = \sqrt{v_{\mu x}^2 + v_{\mu y}^2} = c \left(1 - \frac{\left(1 - \frac{v_{\mu}^{12}}{c^2}\right)\left(1 - \frac{v_{\pi}^2}{c^2}\right)}{\left(1 + \frac{v_{\mu}^{1} v \cos \theta^{1}}{c^2}\right)^2}\right)^{1/2}$	
$T = \frac{T'}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} = 7,29.10^{-6} \text{ s}$ Quảng đường hạt muyôn đi được là: } $d = \frac{T'v_{\mu}}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} \approx 2920 \text{m} < 10^4 \text{m}$ $Kết luận hạt muyôn không thể xuống tới mặt đất.}$ 2. Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1 - \left(\frac{v_0}{c}\right)^2}} (3)$ $Mặt khác: \vec{p}_e = m_e \vec{v}_e = \frac{\varepsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y (4)$ $\varepsilon_e = \sqrt{p_e^2c^2 + m_{e0}^2c^4} = \sqrt{\frac{m_{e0}^2v_0^2}{1 - \left(\frac{v_0}{c}\right)^2} + (eEt)^2} \frac{1}{c^2 + m_{e0}^2c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\varepsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e\sqrt{1 - \left(\frac{v_0}{c}\right)^2}}$ $Vận tốc của hạt electron là: v = \sqrt{v_x^2 + v_y^2} = e\left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$			
Quầng đường hạt muyôn đi được là: $d = \frac{T'v_{\mu}}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} \approx 2920 \text{m} < 10^4 \text{m}$ Kết luận hạt muyôn không thể xuống tới mặt đất. 2. Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1 - \left(\frac{v_0}{c}\right)^2}} (3)$ Mặt khác: $\vec{p}_e = m_e \vec{v}_e = \frac{\varepsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y (4)$ $\varepsilon_c = \sqrt{p_e^2 c^2 + m_{e0}^2 c^4} = \sqrt{\frac{m_{e0}^2 v_0^2}{1 - \left(\frac{v_0}{c}\right)^2} + (eEt)^2} c^2 + m_{e0}^2 c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\varepsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e \sqrt{1 - \left(\frac{v_0}{c}\right)^2}}$ $Vân tốc của hạt electron là:$ $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$	1.b.	Do sự chậm lại của thời gian, nên thời gian sống của hạt muyôn trong hệ quy chiếu S là	
Kết luận hạt muyôn không thể xuống tới mặt dất. 2. Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1-\left(\frac{v_0}{c}\right)^2}} (3)$ Mặt khác: $\vec{p}_e = m_e \vec{v}_e = \frac{\varepsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y (4)$ $\varepsilon_e = \sqrt{p_e^2 c^2 + m_{e0}^2 c^4} = \sqrt{\left(\frac{m_{e0}^2 v_0^2}{1-\left(\frac{v_0}{c}\right)^2} + (eEt)^2\right) c^2 + m_{e0}^2 c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\varepsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e \sqrt{1-\left(\frac{v_0}{c}\right)^2}}$ $Vận tốc của hạt electron là:$ $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}{1+\left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$		V C ²	0.50
Kết luận hạt muyôn không thể xuống tới mặt dất. 2. Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1-\left(\frac{v_0}{c}\right)^2}} (3)$ Mặt khác: $\vec{p}_e = m_e \vec{v}_e = \frac{\varepsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y (4)$ $\varepsilon_e = \sqrt{p_e^2 c^2 + m_{e0}^2 c^4} = \sqrt{\left(\frac{m_{e0}^2 v_0^2}{1-\left(\frac{v_0}{c}\right)^2} + (eEt)^2\right) c^2 + m_{e0}^2 c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\varepsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e \sqrt{1-\left(\frac{v_0}{c}\right)^2}}$ $Vận tốc của hạt electron là:$ $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}{1+\left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$		Quãng đường hạt muyôn đi được là: $d = \frac{T'v_{\mu}}{\sqrt{1 - \frac{v_{\mu}^2}{c^2}}} \approx 2920 \text{m} < 10^4 \text{m}$	0,30
2. Xét electron có vận tốc v_0 , diện tích e chuyển động trong điện trường đều. Ở thời điểm t: $\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1-\left(\frac{v_0}{c}\right)^2}} (3)$ Mặt khác: $\vec{p}_e = m_e \vec{v}_e = \frac{\epsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\epsilon_e}{c^2} v_x; p_{ey} = \frac{\epsilon_e}{c^2} v_y (4)$ $\epsilon_e = \sqrt{p_e^2 c^2 + m_{e0}^2 c^4} = \sqrt{\left(\frac{m_{e0}^2 v_0^2}{1-\left(\frac{v_0}{c}\right)^2} + (eEt)^2\right) c^2 + m_{e0}^2 c^4}$ $Từ (3) và (4) ta có: v_x = \frac{eEc^2}{\epsilon_e} t; v_y = \frac{m_{e0}v_0c^2}{\epsilon_e\sqrt{1-\left(\frac{v_0}{c}\right)^2}}$ $Vận tốc của hạt electron là:$ $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}{1+\left(\frac{eEt}{m_{e0}c}\right)^2 \left(1-\left(\frac{v_0}{c}\right)^2\right)}\right)^{1/2}$, · · · · · · · · · · · · · · · · · · ·	
$\begin{split} \frac{d\vec{p}_{e}}{dt} &= -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_{0}}{\sqrt{1 - \left(\frac{v_{0}}{c}\right)^{2}}} (3) \\ M \breve{a}t \; kh\acute{a}c: \; \vec{p}_{e} &= m_{e}\vec{v}_{e} = \frac{\epsilon_{e}}{c^{2}}\vec{v}_{e} \Rightarrow p_{ex} = \frac{\epsilon_{e}}{c^{2}}v_{x}; p_{ey} = \frac{\epsilon_{e}}{c^{2}}v_{y} (4) \\ \epsilon_{e} &= \sqrt{p_{e}^{2}c^{2} + m_{e0}^{2}c^{4}} = \sqrt{\left(\frac{m_{e0}^{2}v_{0}^{2}}{1 - \left(\frac{v_{0}}{c}\right)^{2} + (eEt)^{2}\right)c^{2} + m_{e0}^{2}c^{4}} \\ T \grave{r} \; (3) \; v\grave{a} \; (4) \; ta \; c\acute{o}: \; v_{x} = \frac{eEc^{2}}{\epsilon_{e}} \; t; v_{y} = \frac{m_{e0}v_{0}c^{2}}{\epsilon_{e}\sqrt{1 - \left(\frac{v_{0}}{c}\right)^{2}}} \\ V \hat{a}n \; t\acute{o}c \; c\grave{u}a \; hat \; electron \; l\grave{a}: \\ v &= \sqrt{v_{x}^{2} + v_{y}^{2}} = c \left(\frac{\left(\frac{v_{0}}{c}\right)^{2} + \left(\frac{eEt}{m_{e0}c}\right)^{2}\left(1 - \left(\frac{v_{0}}{c}\right)^{2}\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^{2}\left(1 - \left(\frac{v_{0}}{c}\right)^{2}\right)}\right)^{1/2} \end{split}$	2.	Xét electron có vận tốc v_0 , điện tích e chuyển động trong điện trường đều. Ở thời điểm t:	
$\epsilon_{e} = \sqrt{p_{e}^{2}c^{2} + m_{e0}^{2}c^{4}} = \sqrt{\frac{m_{e0}^{2}v_{0}^{2}}{1 - \left(\frac{v_{0}}{c}\right)^{2}} + (eEt)^{2}} c^{2} + m_{e0}^{2}c^{4}}$ $T \dot{v} (3) \dot{v} \dot{a} (4) ta c\acute{o}: v_{x} = \frac{eEc^{2}}{\epsilon_{e}} t; v_{y} = \frac{m_{e0}v_{0}c^{2}}{\epsilon_{e}\sqrt{1 - \left(\frac{v_{0}}{c}\right)^{2}}}$ $V \dot{a} \dot{v} \dot{a} \dot{v} \dot{a} \dot{a} \dot{a} \dot{a} \dot{a} \dot{a} \dot{a} a$		$\frac{d\vec{p}_e}{dt} = -e\vec{E} \Rightarrow p_{ex} = eEt; p_{ey} = p_{e0} = \frac{m_{e0}v_0}{\sqrt{1 - \left(\frac{v_0}{c}\right)^2}} $ (3)	
Từ (3) và (4) ta có: $v_x = \frac{eEc^2}{\varepsilon_e} t$; $v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e\sqrt{1-(\frac{v_0}{c})^2}}$ Vận tốc của hạt electron là: $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{(\frac{v_0}{c})^2 + (\frac{eEt}{m_{e0}c})^2 \left(1-(\frac{v_0}{c})^2\right)}{1+(\frac{eEt}{m_{e0}c})^2 \left(1-(\frac{v_0}{c})^2\right)}\right)^{1/2}$		Mặt khác: $\vec{p}_e = m_e \vec{v}_e = \frac{\varepsilon_e}{c^2} \vec{v}_e \Rightarrow p_{ex} = \frac{\varepsilon_e}{c^2} v_x; p_{ey} = \frac{\varepsilon_e}{c^2} v_y$ (4)	
Vận tốc của hạt electron là: $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)} \right)^{1/2}$ $The extraction of the electron là:$			
Vận tốc của hạt electron là: $v = \sqrt{v_x^2 + v_y^2} = c \left(\frac{\left(\frac{v_0}{c}\right)^2 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)}{1 + \left(\frac{eEt}{m_{e0}c}\right)^2 \left(1 - \left(\frac{v_0}{c}\right)^2\right)} \right)^{1/2}$ $The extraction of the electron là:$		Từ (3) và (4) ta có: $v_x = \frac{eEc^2}{\varepsilon_e} t$; $v_y = \frac{m_{e0}v_0c^2}{\varepsilon_e \sqrt{1 - (\frac{v_0}{c})^2}}$	1,75
	ĺ	· ·	
Tổng điểm toàn bài			
		Tổng điểm toàn bài	20,00

BỘ GIÁO DỰC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021 - 2022

ĐÈ THI CHÍNH THỰC

Môn: VẬT LÝ

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 05/3/2022

Đề thi gồm 03 trang, 05 câu

Câu I (4,0 điểm)

Một ống trụ đồng chất, tiết diện đều, có bán kính trong R_1 và bán kính ngoài R_2 , khối lượng riêng ρ và chiều dài L (Hình 1a). Gọi O là khối tâm của ống. Lấy gia tốc trọng trường là $g=9.8 \text{ m/s}^2$, bỏ qua sức cản của không khí. 1. Từ định nghĩa mômen quán tính của chất điểm, hãy chứng minh công thức tính mômen quán tính I_0 của ống trụ đã cho đối với trục quay trùng với trục của ống là:

$$I_{o} = \frac{\pi \rho L}{2} (R_{2}^{4} - R_{1}^{4})$$

2. Ông trụ được đặt trên một mặt phẳng nghiêng cố định hợp với mặt phẳng ngang một góc α , trục ống nằm ngang (Hình 1b). Cho hệ số ma sát trượt và hệ số ma sát nghi giữa ống trụ và mặt phẳng nghiêng đều bằng μ . Thả cho ống trụ bắt đầu chuyển động. Biết ống trụ lăn không trượt trên mặt phẳng nghiêng. Tìm giá trị lớn nhất của α .

3. Người ta gắn chặt một vật nặng vào thành trong của ống. Hệ ống trụ và vật nặng có khối lượng M=12~kg và được xem là một vật rắn với khối tâm G bị dịch chuyển so với O theo phương bán kính của ống một đoạn d. Ông lăn không trượt trên một mặt sàn nằm ngang. Cho d=10 cm, $R_2=40~cm$, mômen quán tính của hệ so với trực quay song song với trực của ống và đi qua G là $I_G=M.k_G^2$, với $k_G=38~cm$. Tại thời điểm hệ ống trụ và vật nặng chuyển động lăn với vận tốc góc $\omega=0,5~rad/s$, khối tâm G và O ở cùng độ cao so với mặt sàn (Hình 1c). Hãy xác định gia tốc góc của ống trụ và phản lực vuông góc do mặt sàn tác dụng lên ống trụ tại thời điểm này.

Hình 1c

Câu II (4,0 điểm)

Bài toán này bàn về một trong các nguyên lý của việc sử dụng máy li tâm thế khí để tách các đồng vị nặng và nhẹ khỏi nhau, nguyên liệu ban đầu là hỗn hợp khí mà phân tử chứa nguyên tố cần tách đồng vị.

Xét mô hình một máy li tâm khí là một bình trụ kín bán kính trong R_0 , chiều cao đủ nhỏ để có thể bỏ qua phân bố mật độ khí theo trọng lực và có trục quay thẳng đứng trùng với trục đối xứng của bình. Bình trụ chứa đầy hỗn hợp gồm hai khí lý tưởng A và B, có tỉ phần khối lượng lần lượt là a% và b% (a%+b%=100%), có nhiệt độ T và có áp suất riêng phần lần lượt là p_{A0} và p_{B0} .

Cho bình trụ quay với tốc độ góc không đổi ω , trong một thời gian đủ dài để áp suất thành bình ổn định và các phân tử khí quay cùng tốc độ ω quanh trục của bình. Biết khối lượng mol của khí A và B lần lượt là μ_A và μ_B ($\mu_B > \mu_A$), hằng số khí lý tưởng là R. Coi nhiệt độ T của khí không đổi.

- 1. Tính áp suất riêng phần do khí A và B tác dụng lên thành bình theo $R_0, p_{A0}, p_{B0}, \mu_A, \mu_B, \omega, R, T$.
- 2. Tính tỉ phần khối lượng của hai khí trên tại sát thành bình.

Áp dụng số: $\mu_A = 311$ g/mol, $\mu_B = 314$ g/mol, a% = 99,3%, b% = 0,7%, R = 8,31 J/(mol.K). Tính tỉ phần khối lượng của hai khí tại sát thành bình khi $\omega = 30000$ vòng/phút, bán kính $R_0 = 30$ cm, nhiệt đô khí là T = 400 K không đổi.

3. Để làm giàu khí B đến một tỉ phần cho trước người ta phải ghép nối tiếp các bình li tâm thành tầng, trong đó đưa khí rút ra tại thành bình li tâm trước làm đầu vào cho bình li tâm tiếp theo. Với các số liệu và kết quả ở ý 2., thì bao nhiều tầng cần được ghép để làm giàu khí B lên mức 2%? Cho biết các bình li tâm là giống hệt nhau và quay với cùng tốc độ.

Câu III (4,0 điểm)

Một dây kim loại đồng chất, cứng, tiết diện đều, khối lượng m, được uốn thành một khung hình vuông 1-2-3-4, có cạnh chiều dài L và hai đầu M, N (khoảng cách MN << L). Đường kính của dây là rất nhỏ so với L. Khung nằm trong không khí. Cho hằng số từ là μ_0 .

1. Khung được đặt trong từ trường đều có cảm ứng từ B, phương vuông góc với mặt phẳng giấy, chiều hướng vào trong. Khung dây có thể quay không ma sát quanh trục OO' đi qua trung điểm của hai đoạn 1-4 và 2-3. Trục OO' vuông góc với trục Ox và nằm trong mặt phẳng giấy (Hình 3a). Bỏ qua hiện tượng tự cảm.

a) Tại thời điểm t=0, mặt phẳng của khung hợp với trục Ox một góc nhỏ θ_0 . Từ thời điểm này, giữ cho trong khung dây luôn có một dòng điện I_0 không đổi chiều từ $N{\longrightarrow}4{\longrightarrow}3{\longrightarrow}2{\longrightarrow}1{\longrightarrow}M$ thì khung bắt đầu dao động. Xác định chu kỳ dao động và phương trình mô tả sự thay đổi góc hợp bởi mặt phẳng khung với trục Ox theo thời gian t.

b) Tại thời điểm $t=t_0>0$, nhìn từ điểm O theo hướng OO' thấy mặt phẳng khung dây đang quay cùng chiều kim đồng hồ đi qua vị trí mặt phẳng khung chứa trục Ox, ngắt bỏ dòng điện I_0 . Mô tả chuyển động của khung dây sau khi ngắt dòng điện và xác định điện áp u_{MN} giữa hai điểm M và N theo thời gian t.

2. Khung chỉ nằm trong từ trường của một dòng điện thẳng dài vô hạn song song với cạnh 1-4 của khung và khung quay đều với vận tốc góc ω quanh trực trùng với cạnh 1-4. Trong dây vô hạn có dòng điện không đổi I_0 . Khoảng cách từ dòng điện I_0 đến trực quay của khung là D(D > L) (Hình 3b).

- a) Xác định điện áp u_{MN} ở vị trí cạnh 4-3 hợp với trục Ox một góc φ .
- b) Tìm ϕ khi u_{MN} đạt giá trị lớn nhất và xác định giá trị lớn nhất này.

Câu IV (4,0 điểm)

Cho một chùm sáng đơn sắc song song có bước sóng λ , tiết diện ngang S_0 chiếu vào một quang hệ. Sau khi ra khỏi quang hệ, chùm sáng tới gương chắn M phẳng theo góc tới α (Hình 4). Chùm sáng song song đi ra khỏi quang hệ có tiết diện ngang là S_1 và mật độ hạt (số phôtôn trong một đơn vị thể tích) là n.

1. Cho biết quang hệ gồm một gương phẳng và hai thấu kính hội tụ có tiêu cự lần lượt là f_1 , f_2 ($f_1 > f_2$).

Hình 4

a) Hãy chỉ ra ít nhất một cách vẽ sơ đồ bố trí các dụng cụ quang học trong quang hệ để tạo ra chùm sáng song có tiết diện ngang nhỏ hơn và có phương vuông góc với phương ban đầu.

b) Tìm mối liên hệ giữa $\frac{S_1}{S_0}$ và f_1 , f_2 .

2. Cho biết gương chắn M được giữ cố định, không cho ánh sáng truyền qua và có hệ số phản xạ là R. Xác định độ lớn của lực gây bởi chùm sáng tác dụng lên một đơn vị diện tích ở bề mặt gương M theo n,α, R,λ, hằng số Planck h và tốc độ ánh sáng c.

Câu V (4,0 điểm)

1. Xử lý số liệu

Linh kiện nhiệt điện trở NTC là điện trở có giá trị giảm khi nhiệt độ của nó tăng và được sử dụng để làm cảm biến nhiệt độ, trở bù nhiệt trong các mạch khuếch đại... Vật liệu làm linh kiện là vật liệu bán dẫn. Lý thuyết và thực nghiệm đã chỉ ra rằng điện trở R của NTC phụ thuộc vào nhiệt độ tuyệt đối T theo công thức (trong hệ đơn vị SI):

$$R = A.T^{-3/2}.e^{\frac{\Delta E_g}{2k_BT}}$$

Trong đó ΔE_g có thứ nguyên là năng lượng được gọi là độ rộng vùng cấm của vật liệu bán dẫn chế tạo NTC; $k_B = 1,38.10^{-23}$ J/K là hằng số Boltzmann; A là một hệ số không đổi.

Hình 5

Để xác định độ rộng vùng cấm của bán dẫn chế tạo NTC, một học sinh đã tiến hành đo điện trở của NTC theo nhiệt độ. So đồ bố trí thí nghiệm như Hình 5: linh kiện NTC được nhúng trong nước (bọc cản thận để cách điện với nước nhưng linh kiện vẫn dễ trao đổi nhiệt với nước), nhiệt độ của nước đo bằng nhiệt kế, điện trở của NTC đo bằng ôm kế. Nước ban đầu là nước nóng. Các bước tiến hành:

- Đọc giá trị nhiệt độ trên nhiệt kế để ghi lại nhiệt độ nước.
- Đọc giá trị điện trở hiển thị trên ôm kế để ghi lại điện trở của NTC.

Trong quá trình đo, nhiệt độ nước giảm chậm từ 70 °C xuống 40 °C theo thời gian. Học sinh thực hiện phép đo nhiệt độ nước và điện trở cùng lúc, ghi lại kết quả đo và được bảng số liệu như sau:

t (°C)	70	65	60	55	50	45	40
$R(k\Omega)$	1,63	1,99	2,44	3,04	3,73	4,44	5,63

Hãy dùng phương pháp xử lý số liệu thực nghiệm bằng đồ thị để xác định độ rộng vùng cấm ΔE_g của vật liệu chế tạo NTC. Giá trị ΔE_g ở đơn vị eV (1 eV = 1,6.10⁻¹⁹ J). Không yêu cầu tính sai số.

2. Phương án thí nghiệm

Xác định công suất hiệu dụng và hệ số công suất của quạt điện dùng phương pháp 3 vôn kế. Khi quạt điện đang ở chế độ vận hành, quạt sẽ tiêu thụ một giá trị công suất hiệu dụng với một hệ số công suất xác định. Trong bài thí nghiệm này ta cần xây dựng phương án sử dụng đồng thời cả 3 vôn kế để xác định công suất hiệu dụng và hệ số công suất của một quạt điện khi quạt đang chạy ổn định. Cho các dụng cụ sau:

- 03 vôn kế dùng để đo điện áp hiệu dụng xoay chiều, có thể coi là lý tưởng;
- Một điện trở thuần có điện trở R đã biết;
- Nguồn điện xoay chiều thích hợp (chưa biết điện áp hiệu dụng);
- Quạt điện sử dụng nguồn điện xoay chiều;
- Dây điện, khoá K, đầu nối điện cần thiết.

Yêu cầu:

- a) Vẽ sơ đồ bố trí thí nghiệm để có thể xác định được công suất hiệu dụng và hệ số công suất của quạt điện khi nó hoạt động ổn định.
- b) Xây dựng công thức cần thiết, các bước tiến hành và cách xử lý số liệu thí nghiệm để xác định công suất hiệu dụng và hệ số công suất của quạt điện đã cho.

------HÊT-----

- Thí sinh KHÔNG được sử dụng tài liệu.
- Giám thị KHÔNG giải thích gì thêm.

BỘ GIÁO DỰC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

HƯỚNG DẪN CHẨM THI Đề thi chính thức

Môn: **VẬT LÝ**

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 05/3/2022

Hướng dẫn chấm thi gồm 06 trang

I. HƯỚNG DẪN CHUNG

- 1. Giám khảo chấm đúng như đáp án, biểu điểm của Bộ Giáo dục và Đào tạo.
- 2. Nếu thí sinh có cách trả lời khác đáp án nhưng đúng thì giám khảo vẫn chấm điểm theo biểu điểm của Hướng dẫn chấm thi.
 - 3. Giám khảo không quy tròn điểm thành phần của từng câu, điểm của bài thi.

II. ĐÁP ÁN, BIỂU ĐIỂM

Câu	Nội dung	Điểm
	Câu I (4,0 điểm)	_ Diein
1.	$I = \int r^2 dm = \int_{R_1}^{R_2} dr \left(\int_0^{2\pi} \rho r^3 d\phi \left(\int_0^L dz \right) \right)$ $I = \frac{\pi \rho L}{2} \left(R_2^4 - R_1^4 \right)$	1,0
2.	- Lăn không trượt: Phương trình cơ bản của vật rắn quay: $\tau = I\beta \rightarrow F_{ms}.R_2 = \frac{\pi\rho L}{2}\left(R_2^4 - R_1^4\right)\frac{a_1}{R_2} \rightarrow F_{ms} = \frac{\pi\rho L}{2}\left(R_2^4 - R_1^4\right)\frac{a_1}{R_2^2}$ Định luật II Newton theo phương tiếp tuyến với quỹ đạo: $Mgsin\alpha - F_{ms} = Ma_1 \Rightarrow \pi\rho\left(R_2^2 - R_1^2\right)Lgsin\alpha - \frac{\pi\rho L}{2}\left(R_2^4 - R_1^4\right)\frac{a_1}{R_2^2} = \pi\rho\left(R_2^2 - R_1^2\right)La_1$ $\rightarrow a_1 = \frac{2R_2^2gsin\alpha}{3R_2^2 + R_1^2} (1)$ - Lăn có trượt: $F_{ms} = \mu Mgcos\alpha$ Định luật II Newton theo phương tiếp tuyến với quỹ đạo: $Mgsin\alpha - F_{ms} = Ma_2 \Rightarrow \pi\rho\left(R_2^2 - R_1^2\right)Lgsin\alpha - \mu\pi\rho\left(R_2^2 - R_1^2\right)Lgcos\alpha = \pi\rho\left(R_2^2 - R_1^2\right)La_2$ $\Rightarrow a_2 = g\left(sin\alpha - \mu cos\alpha\right) (2)$ $a_1 = a_2 \Rightarrow \frac{2R_2^2gsin\alpha_{max}}{3R_2^2 + R_1^2} = g\left(sin\alpha_{max} - \mu cos\alpha_{max}\right)$ $\Rightarrow tan\alpha_{max} = \frac{3R_2^2 + R_1^2}{R_2^2 + R_1^2}\mu$	1,0
3.	\vec{F}_{ms} hướng sang phải, các phương trình chuyển động	2,0

$$F_{ms} = Ma_{Gx}(1)$$

 $-Mg + N = Ma_{Gy}(2)$
 $-Nd + F_{ms}R_2 = I_G\gamma$ (3)

Ông trụ lăn không trượt nên: $a_0 = -\gamma R_2$

Công thức cộng gia tốc: $\vec{a}_G = \vec{a}_O + \vec{\gamma} \times \vec{r}_{G/O} - \omega^2 \vec{r}_{G/O}$

Suy ra
$$\begin{cases} a_{Gx} = -\gamma R_2 - \omega^2 d(4) \\ a_{Gy} = \gamma d(5) \end{cases}$$

(1), (2)
$$v\dot{a}$$
 (3): $-M(a_{Gy} + g)d + Ma_{Gx}R_2 = I_G\gamma$

Thay (4) và (5) vào:
$$-M(\gamma d + g) \times d - M(\gamma R_2 + \omega^2 d) R_2 = I_G \gamma$$

$$\gamma = -\frac{d\left(g + \omega^2 R_2\right)}{\left(d^2 + R_2^2 + k_G^2\right)} = -3,15 \text{ rad/s}^2 \text{ (nguợc chiều với } \vec{k}\text{) (} a_{Gx} > 0 \text{ phù hợp với giả sử)}$$

Tính được N = 113,8(N)

Câu II (4,0 điểm)

1. Hệ ở trạng thái cân bằng: Khí trong bình quay với cùng vận tốc quay ω của bình Xét một lớp khí mỏng bề dày dr cách trục quay một khoảng r, mật độ khí là $\rho(r)$

Lớp khí ở trạng thái cân bằng: $dp(r) = \frac{p(r)\mu}{RT} \omega^2 r dr$ với μ là khối lượng mol của chất khí

Suy ra:
$$\frac{dp(r)}{p(r)} = \frac{\mu}{RT} \omega^2 r dr$$

$$\Rightarrow$$
 p(r) = p(0) exp $\left(\frac{\mu\omega^2 r^2}{2RT}\right)$

Suy ra
$$\rho(r) = \rho(0) \exp\left(\frac{\mu \omega^2 r^2}{2RT}\right)$$

 $p(0),p(r),\rho(0),\rho(r)$ lần lượt là áp suất và mật độ khối lượng tại tâm bình và tại vị trí cách tâm bình khoảng r

Gọi ρ_0 là mật độ khí khi chưa quay. Bảo toàn khối lượng khối khí trong toàn thể tích bình:

$$\int_{V} \rho(r) dV = \rho_0 V \Rightarrow \rho(0) = \rho_0 \frac{\mu \omega^2 R_0^2}{2RT} \frac{1}{\exp\left(\frac{\mu \omega^2 R_0^2}{2RT}\right) - 1}$$

Vì áp suất tỷ lệ thuận với mật độ khí nên ta cũng có công thức tương tự như trên với p(0) và p_0

$$p_{A}(R_{0}) = p_{A0} \frac{\mu_{A} \omega^{2} R_{0}^{2}}{2RT} \frac{exp\left(\frac{\mu_{A} \omega^{2} R_{0}^{2}}{2RT}\right)}{exp\left(\frac{\mu_{A} \omega^{2} R_{0}^{2}}{2RT}\right) - 1}, p_{B}(R_{0}) = p_{B0} \frac{\mu_{B} \omega^{2} R_{0}^{2}}{2RT} \frac{exp\left(\frac{\mu_{B} \omega^{2} R_{0}^{2}}{2RT}\right)}{exp\left(\frac{\mu_{B} \omega^{2} R_{0}^{2}}{2RT}\right) - 1}$$

2. Trong các máy ly tâm khí có ω rất lớn nên có thể bỏ qua 1 ở dưới mẫu, ta có sự phụ thuộc của mật độ vào khối lượng phân tử μ:

1,0

2,5

	$\rho(R_0) = \rho_0 \frac{\mu \omega^2 R_0^2}{2RT}, \ \rho_A(R_0) = \rho_{A0} \frac{\mu_A \omega^2 R_0^2}{2RT}, \ \rho_B(R_0) = \rho_{B0} \frac{\mu_B \omega^2 R_0^2}{2RT}$	
	$\rightarrow \frac{\rho_A}{\rho_B} = \frac{a}{b} \cdot \frac{\mu_A}{\mu_B}$ không phụ thuộc vào ω và R_0 và T .	
	Tuy nhiên các thông số này sẽ ảnh hưởng đến thời gian ly tâm để đạt hiệu quả. Áp dụng số :	
	$\Rightarrow b' = \frac{\rho_B}{\rho_B + \rho_A} = \frac{b\mu_B}{a\mu_A + b\mu_B} = \frac{0,7.314}{99,3.311 + 0,7.314} = 0,7067\%$	
3.	Số tầng ly tâm cần thiết để làm giàu đến mức 2% là	
	$\frac{2\%}{98\%} = \frac{0.7}{99.3} \cdot \left(\frac{314}{311}\right)^{n} \Rightarrow n = \frac{\ln\left(\frac{2.99.3}{98.0.7}\right)}{\ln\left(\frac{314}{311}\right)} = 110.7$	0,5
	→ 111 tầng li tâm	
1 -	Câu III (4,0 điểm)	
1.a.	Mô men quán tính của khung dây quanh trục OO' là	į
	$J = J_{12} + J_{23} + J_{34} + J_{41} = \frac{mL^2}{6}$; trong đó $J_{12} = J_{34} = \frac{mL^2}{16}$; $J_{23} = J_{41} = \frac{mL^2}{48}$	
	Gọi góc θ là góc hợp bởi phần mặt phẳng chứa cạnh 1-2 của khung và trục quay OO' với	
	trục Ox. Mômen ngẫu lực từ: $M = I_0 BS \cos(\vec{B}, \vec{n}) = -I_0 BL^2 \sin \theta$	
	Với góc θ nhỏ ta có $\sin \theta \approx \theta \implies M = -I_0 B L^2 \sin \theta \approx -I_0 B L^2 \theta$	
	Phương trình động lực học của khung dây là	
	$J\ddot{\theta} = -I_0BL^2\theta \Rightarrow \ddot{\theta} + \frac{6I_0B}{m}\theta = 0$	1,0
	Khung dây dao động điều hoà với tần số $\Omega = \sqrt{\frac{6I_0B}{m}}, T = 2\pi \sqrt{\frac{m}{6I_0B}}$	
	Từ điều kiện ban đầu $\theta = \theta_0$, $\dot{\theta} = 0$ tìm được phương trình chuyển động:	
	$\theta = \theta_0 \cos(\sqrt{\frac{6I_0B}{m}}t)$	
1.b.	Tại thời điểm ngắt dòng thì $\theta = 0$, $\dot{\theta}_{max} = \theta_0 \sqrt{\frac{6I_0B}{m}}$	
	Sau khi ngắt dòng điện, khung không chịu tác dụng của mômen lực từ. Vì bỏ qua mọi ma	
	sát, khung dây tiếp tục quay đều với vận tốc góc không đổi là $\dot{\theta}_{max} = \theta_0 \sqrt{\frac{6I_0B}{m}}$	
	Các đoạn dây 1-2, 3-4 chuyển động cắt các đường sức từ, (số đường sức từ trường qua	
	khung giảm, \vec{B}_{C} cùng chiều với \vec{B}) suất điện động cảm ứng trên đoạn dây 1-2; 3-4 có cực	1,0
	dương tương ứng tại điểm 1 và điểm 3 và có độ lớn bằng nhau:	
	$\varepsilon_{\rm C} = BLv \sin \left[\theta_0 \sqrt{\frac{6I_0B}{m}} (t - t_0) \right]$	
	Trong đó $v = \frac{L}{2}\omega_0 = \frac{\theta_0 L}{2}\sqrt{\frac{6I_0 B}{m}}$ là tốc độ chuyển động tròn của đoạn dây 1-2 và 3-4.	
	$\varepsilon_{\rm C} = \frac{{\rm BL}^2 \theta_{\rm o}}{2} \sqrt{\frac{6{\rm I}_{\rm o} {\rm B}}{\rm m}} \sin \left[\theta_{\rm o} \sqrt{\frac{6{\rm I}_{\rm o} {\rm B}}{\rm m}} (t - t_{\rm o}) \right]$	
	<u> </u>	

	$u_{MN} = u_{12} + u_{34} = 2\varepsilon_{C} = BL^{2}\theta_{0}\sqrt{\frac{6I_{0}B}{m}}\sin\left[\theta_{0}\sqrt{\frac{6I_{0}B}{m}}(t - t_{0})\right]$	
2.a.	Xét tại thời điểm nào đó cạnh song song với trực của khung cách dây dẫn một khoảng a, khung quay một góc φ so với đường nối trực của khung với dây dẫn (Hình vẽ) ta có: $a^2 = D^2 + L^2 - 2DL\cos\phi$ Lấy vi phân hai vế: $2ada = 2DL\sin\phi d\phi \qquad (1)$ Cảm ứng từ tại vị trí đó là: $B = \frac{\mu_0 I_0}{2\pi a}$ Độ biến thiên từ thông trong thời gian dt là $d\Phi = \vec{B} \cdot d\vec{S} = \frac{\mu_0 I_0}{2\pi a} L da$ Trên khung dây xuất hiện một suất điện động cảm ứng $u_{MN} = -\frac{d\Phi}{dt} = -\frac{\mu_0 I_0 L}{2\pi a} \frac{DL\sin\phi}{a} \frac{d\phi}{dt} = -\frac{\mu_0 I_0 L^2 \omega D}{2\pi a^2} \sin\phi$ $u_{MN} = -\frac{\mu_0 I_0 L^2 \omega D}{2\pi} \frac{\sin\phi}{D^2 + L^2 - 2LD\cos\phi}$	1,0
2.b.	Hiệu điện thế u_{MN} đạt giá trị lớn nhất khi $f(\phi) = \frac{\sin \phi}{D^2 + L^2 - 2LD\cos \phi}$ đạt cực đại, khi đó $\frac{d}{d\phi} \left(\frac{\sin \phi}{D^2 + L^2 - 2LD\cos \phi} \right) = 0$ $(D^2 + L^2 - 2LD\cos \phi_{max})\cos \phi_{max} - 2LD\sin^2 \phi_{max} = 0$ $(D^2 + L^2)\cos \phi_{max} = 2DL(\cos^2 \phi_{max} + \sin^2 \phi_{max}) \Rightarrow \cos \phi_{max} = \frac{2DL}{D^2 + L^2}$ Vậy khung có u cực đại khi: $\phi_{max} = \arccos(\frac{2DL}{D^2 + L^2})$ Giá trị cực đại của u_{MN} : $\cos \phi_{max} = \frac{2DL}{D^2 + L^2} \Rightarrow \sin \phi_{max} = \frac{D^2 - L^2}{D^2 + L^2}$ $u_{MN max} = \frac{\mu_0 I_0 L^2 \omega D}{2\pi (D^2 - L^2)}$	1,0
1.a.	Gọi L ₁ , L ₂ là các thấu kính hội tụ có tiêu cự tương ứng là f ₁ , f ₂ . Để tăng mật độ chùm sáng thì thấu kính hội tụ L ₁ phải được đặt trước L ₂ . Để đảm bảo chùm sáng ra khỏi quang hệ là song song thì tiêu điểm ảnh của thấu kính L ₁ phải trùng với tiêu điểm vật của L ₂ . Gương để đổi phương chùm tia, tia phản xạ vuông góc với tia tới. Góc tới là 45 ⁰ .Gương có thể đặt trước hoặc sau hệ hai thấu kính. Ví dụ:	1,0

1.b.	Gọi F là tiêu điểm ảnh của thấu kính L_1 (cũng là tiêu điểm vật của thấu kính L_2)	
	Từ tính chất đồng dạng của các tam giác ΔAO_1F , ΔBO_2F có tỉ lệ:	1.0
	$\frac{S_1}{S_0} = \left(\frac{f_2}{f_1}\right)^2 < 1$	1,0
2.	Số phôtôn đến đến diện tích S trong thời gian Δt là:	
	$N = nSc \cos \alpha \Delta t$.	
	N phôtôn có động lượng:	
	$p_{x} = \frac{hf}{\cos \alpha . n. Sc \cos \alpha \Delta t} = hfn. S\cos^{2} \alpha \Delta t$	
	\vec{c}	
	$p_{y} = \frac{hf}{c} \sin \alpha . n. Sc \cos \alpha \Delta t = \frac{hf}{2} n. S \sin 2\alpha \Delta t$	
	$p_y = \frac{-\sin \alpha \cdot \sin 2\alpha \cdot \cot \alpha}{2}$	
	Sau phản xạ trên gương có hệ số phản xạ R, động lượng của N phôtôn là:	
	$p' = -Rhf.n.Scos^2 \alpha \Delta t$	

 $p'_{x} = -Rhf.n.Scos^{2} αΔt$ $p'_{y} = R\frac{hf}{2}n.Ssin 2αΔt$

Độ biến thiên động lượng của N hạt trong thời gian Δt là:

$$\Delta p_x = p_x - p'_x = \text{hnf.S}(1+R)\cos^2 \alpha \Delta t$$

$$\Delta p_y = p_y - p'_y = \frac{hn}{2} f.S(1-R) \sin 2\alpha \Delta t$$

Lực tác dụng lên một đơn vị diện tích mặt gương theo các phương vuông góc và song song với mặt gương:

$$F_{x} = \frac{\Delta p_{x}}{S\Delta t} = hnf.(1+R)\cos^{2}\alpha = hn\frac{c}{\lambda}.(1+R)\cos^{2}\alpha$$

$$F_{y} = \frac{\Delta p_{y}}{S\Delta t} = \frac{hn}{2} \frac{c}{\lambda} . (1 - R) \sin 2\alpha$$

$$F = \sqrt{F_{x}^{2} + F_{y}^{2}} = \frac{nhc}{2\lambda} \sqrt{(1-R)^{2} \sin^{2} 2\alpha + 4(1+R)^{2} \cos^{4} \alpha}$$

Câu V (4,0 điểm)

	1.	Logarit hai vế và biến đổi được $\ln\left(RT^{\frac{3}{2}}\right) = \ln A + \frac{\Delta E_g}{2k_BT}$
Į		l de la companya de

Đặt
$$X = X = \frac{1}{T}$$
; $Y = \ln\left(RT^{\frac{3}{2}}\right)$; $a = \ln A$; $b = \frac{\Delta E_g}{2k_B}$ ta có $Y = a + bX$ dạng đường thẳng

Bảng xử lý số liệu:

t(°C)	70	65	60	55	50	45	40
T(K)	343	338	333	328	323	318	313
$R(k\Omega)$	1,63	1,99	2,44	3,04	3,73	4,44	5,63
1/T (K ⁻¹)	2,92	2,96	3,00	3,05	3,10	3,14	3,19
ln(RT ^{3/2})	16,17	16,34	16,52	16,69	16,86	17,06	17,25

1,0

2,0

