PROJECT DEVELOPMENT PHASE SPRINT II

Assignment Date	06-10-2022
Team ID	PNT2022TMID19759
Project Name	Efficient Water Quality Analysis and Prediction using
	Machine Learning
Maximum Marks	8 Marks

DATA PRE-PROCESSING

1. Importing Required Package:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings

2. Upload dataset

Data= pd.read_csv (r"C:\Users\karthick\Desktop\water_dataX.csv", encoding='ISO-8859-1')

3. Data

	STATION CODE	LOCATIONS	STATE	Temp	D.O. (mg/l)	PH	CONDUCTIVITY (µmhos/cm)	B.O.D. (mg/l)	NITRATENAN N+ NITRITENANN (mg/l)	FECAL COLIFORM (MPN/100ml)	TOTAL COLIFORM (MPN/100ml)Mean	year
0	1393	DAMANGANGA AT D/S OF MADHUBAN, DAMAN	DAMAN & DIU	30.6	6.7	7.5	203	NAN	0.1	11	27	2014
1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI	GOA	29.8	5.7	7.2	189	2	0.2	4953	8391	2014
2	1475	ZUARI AT PANCHAWADI	GOA	29.5	6.3	6.9	179	1.7	0.1	3243	5330	2014
3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.7	5.8	6.9	64	3.8	0.5	5382	8443	2014
4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.5	5.8	7.3	83	1.9	0.4	3428	5500	2014
	***	-					464			***	***	
1986	1330	TAMBIRAPARANI AT ARUMUGANERI, TAMILNADU	NAN	NAN	7.9	738	7.2	2.7	0.518	0.518	202	2003
1987	1450	PALAR AT VANIYAMBADI WATER SUPPLY HEAD WORK, T	NAN	29	7.5	585	6.3	2.6	0.155	0.155	315	2003
1988	1403	GUMTI AT U/S SOUTH TRIPURA, TRIPURA	NAN	28	7.6	98	6.2	1.2	NAN	NAN	570	2003
1989	1404	GUMTI AT D/S SOUTH TRIPURA, TRIPURA	NAN	28	7.7	91	6.5	1.3	NAN	NAN	562	2003
1990	1726	CHANDRAPUR, AGARTALA D/S OF HAORA RIVER, TRIPURA	NAN	29	7.6	110	5.7	1.1	NAN	NAN	546	2003

4.

1991 rows × 12 columns

Dat	:a.head()											
	STATION CODE	LOCATIONS	STATE	Temp	D.O. (mg/l)	РН	CONDUCTIVITY (µmhos/cm)	B.O.D. (mg/l)	NITRATENAN N+ NITRITENANN (mg/l)	FECAL COLIFORM (MPN/100ml)	TOTAL COLIFORM (MPN/100ml)Mean	year
0	1393	DAMANGANGA AT D/S OF MADHUBAN, DAMAN	DAMAN & DIU	30.6	6.7	7.5	203	NAN	0.1	11	27	2014
1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI	GOA	29.8	5.7	7.2	189	2	0.2	4953	8391	2014
2	1475	ZUARI AT PANCHAWADI	GOA	29.5	6.3	6.9	179	1.7	0.1	3243	5330	2014
3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.7	5.8	6.9	64	3.8	0.5	5382	8443	2014
4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.5	5.8	7.3	83	1.9	0.4	3428	5500	2014

```
year
count 1991,000000
mean 2010.038172
std 3.057333
min 2003.000000
25% 2008.000000
50% 2011,000000
75% 2013,000000
max 2014.000000
```

```
Data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1991 entries, 0 to 1990
Data columns (total 12 columns):
                                                       Non-Null Count Dtype
#
     Column
      STATION CODE
                                                        1991 non-null
                                                                             object
 0
      LOCATIONS
                                                        1991 non-null
 1
                                                                              object
 2
      STATE
                                                        1991 non-null
                                                        1991 non-null
       Temp
                                                                              object
     D.O. (mg/1)
                                                        1991 non-null
                                                       1991 non-null
1991 non-null
                                                                             object
object
      PH
      CONDUCTIVITY (µmhos/cm) 1991 non-null B.O.D. (mg/l) 1991 non-null NITRATENAN N+ NITRITENANN (mg/l) 1991 non-null
                                                                             object
object
 9 FECAL COLIFORM (MPN/100ml)
10 TOTAL COLIFORM (MPN/100ml)Mean
                                                       1991 non-null
                                                      1991 non-null
1991 non-null
                                                                              object
11 year
dtypes: int64(1), object(11)
memory usage: 186.8+ KB
```

7.

```
Data.shape
(1991, 12)
```

```
Data.isnull().any()
STATION CODE
                                     False
LOCATIONS
                                     False
STATE
                                     False
Temp
                                     False
D.O. (mg/1)
                                     False
PH
                                     False
CONDUCTIVITY (µmhos/cm)
                                    False
                                    False
B.O.D. (mg/1)
NITRATENAN N+ NITRITENANN (mg/l)
                                    False
FECAL COLIFORM (MPN/100ml)
                                    False
TOTAL COLIFORM (MPN/100ml)Mean
                                    False
                                     False
year
dtype: bool
```

```
Data.isnull().sum()
                                    0
STATION CODE
LOCATIONS
                                   0
STATE
                                   0
Temp
                                   0
D.O. (mg/1)
                                   0
                                  0
CONDUCTIVITY (µmhos/cm)
B.O.D. (mg/1)
                                   0
NITRATENAN N+ NITRITENANN (mg/l)
                                  0
FECAL COLIFORM (MPN/100ml)
                                   0
TOTAL COLIFORM (MPN/100ml)Mean
                                  0
                                   0
year
dtype: int64
```

10.

```
Data.dtypes
STATION CODE
                                    object
LOCATIONS
                                    object
                                    object
STATE
Temp
                                    object
D.O. (mg/1)
                                    object
                                    object
CONDUCTIVITY (µmhos/cm)
                                    object
B.O.D. (mg/1)
                                    object
NITRATENAN N+ NITRITENANN (mg/l)
                                   object
FECAL COLIFORM (MPN/100ml)
                                   object
TOTAL COLIFORM (MPN/100ml)Mean
                                   object
year
                                    int64
dtype: object
```

```
Data.isnull().sum()
STATION CODE
                                    0
LOCATIONS
                                    0
STATE
Temp
D.O. (mg/l)
CONDUCTIVITY (µmhos/cm)
B.O.D. (mg/1)
NITRATENAN N+ NITRITENANN (mg/l)
FECAL COLIFORM (MPN/100ml)
TOTAL COLIFORM (MPN/100ml)Mean
                                    0
year
dtype: int64
```

```
Data['STATION CODE']=pd.to_numeric(Data[ 'STATION CODE'],errors="coerce")
Data['LOCATIONS']=pd.to_numeric(Data[ 'LOCATIONS'],errors="coerce")
Data['STATE']=pd.to_numeric(Data[ 'STATE'],errors="coerce")
Data['Temp']=pd.to_numeric(Data[ 'Temp'],errors="coerce")
Data['D.O. (mg/l)']=pd.to_numeric(Data['D.O. (mg/l)'], errors="coerce")
Data['Ph']=pd.to_numeric(Data['Ph'], errors = "coerce")
Data['B.O.D. (mg/l)']=pd.to_numeric(Data['B.O.D. (mg/l)'], errors = "coerce")
Data['CONDUCTIVITY (µmhos/cm)']=pd.to_numeric(Data['CONDUCTIVITY (µmhos/cm)'], errors = "coerce")
Data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to_numeric(Data['NITRATENAN N+ NITRITENANN (mg/l)'], errors="coerce")
Data['TOTAL COLIFORM (NPN/100ml) Mean']=pd.to_numeric(Data['FICAL COLIFORM (NPN/100ml)Mean'], errors="coerce")
Data['FECAL COLIFORM (MPN/100ml)']=pd.to_numeric(Data['FECAL COLIFORM (MPN/100ml)'], errors="coerce")
Data_I'EFCAL COLIFORM (MPN/100ml)']=pd.to_numeric(Data['FECAL COLIFORM (MPN/100ml)'], errors="coerce")
Data_I'EFCAL COLIFORM (MPN/100ml)']=pd.to_numeric(Data['FECAL COLIFORM (MPN/100ml)'], errors="coerce")
            Data.dtypes
]: STATION CODE
                                                                                                                                                float64
            STATE
                                                                                                                                                float64
              Temp
            D.O. (mg/1)
                                                                                                                                                 float64
            CONDUCTIVITY (µmhos/cm)
                                                                                                                                                 float64
            B.O.D. (mg/l)
NITRATENAN N+ NITRITENANN (mg/l)
                                                                                                                                                 float64
             FECAL COLIFORM (MPN/100ml)
            TOTAL COLIFORM (MPN/100ml)Mean
                                                                                                                                                  object
            year
TOTAL COLIFORM (MPN/100ml) Mean
                                                                                                                                               float64
            dtype: object
```

13.

```
Data.isnull().sum()
STATION CODE
                                      122
  LOCATIONS
                                      1991
 STATE
                                     1991
 Temp
                                       92
  D.O. (mg/1)
                                        8
                                       25
  CONDUCTIVITY (µmhos/cm)
  B.O.D. (mg/1)
                                       43
 NITRATENAN N+ NITRITENANN (mg/l)
                                      225
  FECAL COLIFORM (MPN/100ml)
                                      316
  TOTAL COLIFORM (MPN/100ml)Mean
                                       0
  TOTAL COLIFORM (MPN/100ml) Mean
                                      132
 dtype: int64
```

14.

```
Data['Temp'].fillna(Data['Temp'].mean(), inplace=True)

Data['D.O. (mg/l)'].fillna(Data['D.O. (mg/l)'].mean(), inplace=True)

Data['PH'].fillna(Data['PH'].mean(), inplace=True)

Data['CONDUCTIVITY (\umathrmumhos/cm)'].fillna(Data['CONDUCTIVITY (\umathrmumhos/cm)'].mean(), inplace=True)

Data['B.O.D. (mg/l)'].fillna(Data['B.O.D. (mg/l)'].mean(), inplace=True)

Data['NITRATENAN N+ NITRITENANN (mg/l)'].fillna(Data['NITRATENAN N+ NITRITENANN (mg/l)'].mean(), inplace=True)

Data['TOTAL COLIFORM (MPN/100ml) Mean'].fillna(Data['TOTAL COLIFORM (MPN/100ml) Mean'].mean(), inplace=True)
```

```
#Let us rename the columns for simplification
Data=Data.rename (columns = {'D.O. (mg/l)': 'do'})
Data=Data.rename (columns = {'CONDUCTIVITY (µmhos/cm)': 'co'})
Data=Data.rename (columns = {'B.O.D. (mg/l)': 'bod'})
Data=Data.rename (columns = {'NITRATENAN N+ NITRITENANN (mg/l)':'na'})
Data=Data.rename (columns = {'TOTAL COLIFORM (MPN/100ml) Mean': 'tc'})
Data=Data.rename (columns = {'STATION CODE': 'station'})
Data=Data.rename (columns = {'LOCATIONS': 'location'})
Data=Data.rename (columns = {'STATE': 'state'})
Data=Data.rename (columns = {'PH':'ph'})
```

```
#calculation of dissolved oxygen
Data['ndo']=Data.do.apply(lambda x: (100 if (x>=6)
                                        else(80 if (6>=x>=5.1)
                                             else(60 if (5>=x>=4.1)
                                                   else(40 if (4>=x>=3)
                                                        else 0)))))
#catulation of Ph
Data['npH']=Data.ph.apply(lambda x: (100 if (8.5>=x>=7)
                                        else(80 if (8.6>=x>=8.5) or (6.9>=x>=6.8)
                                              else(60 if (8.8>=x>=8.6) or (6.8>=x>=6.7)
else(40 if (9>=x>=8.8) or (6.7>=x>=6.5) else 0)))))
#calculation of total coliform
Data['nco']=Data.tc.apply(lambda x:(100 if (5>=x>=0)
                                       else(80 if (50>=x>=5)
                                            else(60 if (500>=x>=50)
else(40 if (10000>=x>=500)
                                                       else 0)))))
Data['nbod']=Data.bod.apply(lambda x: (100 if (3>=x>=0)
                                          else(80 if (6>=x>=3)
                                                else(60 if (80>=x>=6)
                                                     else(40 if (125>=x>=80)else 0)))))
#calculation of electrical conductivity
Data['nec']=Data.co.apply(lambda x: (100 if (75>=x>=0)
                                        else(80 if (150>=x>=75)
                                              else(60 if (225>=x>=150)
                                                   else(40 if (300>=x>=225)
                                                        else 0)))))
#Calulation of nitrate
Data['nna'] = Data.na.apply(lambda x:(100 if (20>=x>=0))
                                       else(80 if (50>=x>=20)
                                            else(60 if (100>=x>=50)
else(40 if (200>=x>=100)
                                                       else 0)))))
#Claculate water quality index WQI
```

```
#Claculate water quality index WQI
Data['wph']=Data.nph* 0.165

Data['wdo']=Data.ndo * 0.281

Data['wdo']=Data.nbod* 0.234

Data['wec']=Data.nec* 0.009

Data['wne']=Data.nna* 0.028

Data['wco']=Data.nco* 0.281

Data['wqi']=Data.wph+Data.wdo+Data.wbod+Data.wec+Data.wna+Data.wco
  Data
```

	station	location	state	Temp	do	ph	co	bod	na	FECAL COLIFORM (MPN/100ml)	 nbod	nec	nna	wph	wdo	wbod	wec	wna	wco	wqi
0	1393.0	NaN	NaN	30.600000	6.7	7.5	203.0	6.940049	0.100000	11.000	 60	60	100	16.5	28.10	14.04	0.54	2.8	22.48	84.46
1	1399.0	NaN	NaN	29.800000	5.7	7.2	189.0	2,000000	0.200000	4953.000	 100	60	100	16.5	22.48	23.40	0.54	2.8	11.24	76.96
2	1475.0	NaN	NaN	29.500000	6.3	6.9	179.0	1.700000	0.100000	3243.000	 100	60	100	13.2	28.10	23.40	0.54	2.8	11.24	79.28
3	3181.0	NaN	NaN	29.700000	5.8	6.9	64.0	3,800000	0.500000	5382.000	 80	100	100	13.2	22.48	18.72	0.90	2.8	11.24	69.34
4	3182.0	NaN	NaN	29.500000	5.8	7.3	83.0	1.900000	0.400000	3428.000	 100	80	100	16.5	22.48	23.40	0.72	2.8	11.24	77,14
		***								not .	 			100	***		***	in		
1986	1330.0	NaN	NaN	26.209814	7.9	738.0	7.2	2.700000	0.518000	0.518	 100	100	100	0.0	28.10	23.40	0.90	2.8	16.86	72.06
1987	1450.0	NaN	NaN	29.000000	7.5	585.0	6.3	2,600000	0.155000	0.155	 100	100	100	0.0	28.10	23.40	0.90	2.8	16.86	72.06
1988	1403.0	NaN	NaN	28,000000	7.6	98.0	6.2	1.200000	1.623079	NaN	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44
1989	1404.0	NaN	NaN	28.000000	7.7	91.0	6.5	1.300000	1.623079	NaN	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44
1990	1726.0	NaN	NaN	29.000000	7.6	110.0	5.7	1,100000	1.623079	NaN	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44

1991 rows × 26 columns

```
#calculation overall wai for each year
average=Data.groupby( 'year')['wqi'].mean()
average.head()

year
2003 66.239545
2004 61.290000
2005 73.762689
2006 72.909714
2007 74.233000
Name: wqi, dtype: float64
```

```
import matplotlib.pyplot as plt
import seaborn as sns

sns.barplot(x = 'year',y = 'wqi',data = Data)
plt.show()
```


20.

```
#Splitting the data into dependent and independent variables
x = Data.iloc[:,:7].values
y = Data.iloc[:,7:].values
```

```
x.shape
(1991, 7)

y.shape
(1991, 19)
```

```
x_train
array([[1.4280e+03,
                                           nan, ..., 6.1000e+00, 3.1000e+00,
                              nan,
           7.3800e+02],
         [1.4620e+03,
                              nan,
                                           nan, ..., 5.4000e+00, 7.5000e+00,
         2.4130e+03],
[1.9270e+03,
                                           nan, ..., 8.5000e+00, 7.5000e+00,
                              nan,
          1.6900e+02],
          [2.2860e+03,
                              nan,
                                           nan, ..., 6.3000e+00, 6.9000e+00,
           7.3000e+01],
         [2.2940e+03,
3.0298e+04],
                              nan,
                                           nan, ..., 3.9000e+00, 7.6000e+00,
         [1.3840e+03,
                                           nan, ..., 6.7000e+00, 6.4000e+00,
           5.0000e+0111)
 y_train
  array([[5.5, 2.73, 32.0, ..., 2.80000000000003, 22.48000000000004, 72.1000000000001],
         [7.4, 1.5, 59.0, ..., 2.80000000000003, 16.86000000000000,
           72.681,
         [3.6, 1.6230787089467718, nan, ..., 2.80000000000000003, 22.48000000000004, 89.1400000000001],
         [1.6, 0.0, 787.0, ..., 2.80000000000003, 11.24000000000002,
           79.640000000000001],
         [2.5, 0.59, 4830.0, ..., 2.80000000000003, 11.24000000000002,
         65.18],

[0.5, 3.6, 500.0, ..., 2.80000000000003, 11.24000000000002,

66.44]], dtype=object)
23.
  x_test
]: array([[3184.
                                                       5.2 ,
                                                                   7.1 , 192.
                                         nan, ...,
                             nan,
                                                       7. ,
8. ,
                             nan,
            [2284.
                                         nan, ...,
                                                                   7.3
                                                                            60.
            [2051. ,
                             nan,
                                        nan, ...,
                                                                           278.
            [3190. ,
                                                       5.4 ,
                                                                   7.6 ,
                             nan,
                                        nan, ...,
                                                                             40.
            [1704.
                              nan,
                                         nan, ...,
                                                        4.033,
                                                                   7.667, 855.
            [3081.
                                                                   8.
                                                                         , 674.
                              nan,
                                         nan, ...,
                                                        6.1 ,
                                                                                    11)
... y_test
   array([[2.6, 0.3, 5073.0, ..., 2.800000000000003, 11.240000000000000, 76.96000000000001],
            [0.8, 0.18, 631.0, ..., 2.80000000000003, 11.24000000000002,
             82.94],
            [1.1, 0.11, 3.0, ..., 2.800000000000003, 22.480000000000004,
             93.64],
            [1.6, 0.07, 290.0, ..., 2.80000000000003, 11.24000000000000,
             77.3200000000000000],
            [21.333, 1.767, 17433.0, ..., 2.8000000000000003, 0.0,
           33.3399999999999],
[0.9, 1.0, 2.0, ..., 2.80000000000003, 11.24000000000002,
82.03999999999]], dtype=object)
24.
station location state Temp do ph co bod na FECAL COLIFORM (MPN/100ml) ... nbod nec nna wph wdo wbod wec wna wco wqi
 0 rows × 26 columns
25.
   #Fitting Decision Tree classifier to the training set
   from sklearn.ensemble import RandomForestRegressor
   regressor= RandomForestRegressor(n estimators= 10, criterion="entropy")
  regressor
```

RandomForestRegressor(criterion='entropy', n estimators=10)