Ve501 Probability and Random Processes

2021 Fall

Homework 3

Due: November 9, 2021, in the class

Submission Instructions

- 1. Follow the JI Honor Policies.
- 2. Write down the key intermediate steps, instead of simply giving the final answers.
- 3. Submit your homework in A4 papers. Neat and tidy handwriting is allowed.
- 4. No late homework submission is allowed.

<u>1.</u> Let X and Y be ternary random variables taking values 1, 2 and 3 with joint probabilities $p_{XY}(i,j)$ given by the matrix

$$\begin{bmatrix} \frac{1}{8} & 0 & \frac{1}{8} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{8} & 0 & \frac{1}{8} \end{bmatrix}$$

- (a) Find $p_X(i)$ and $p_Y(j)$ for i, j = 1, 2, 3.
- (b) Compute P(X < Y).
- (c) Determine whether or not X and Y are independent.

2. A rectangle of width W and height H is drawn where W is a uniform random variable on $(0, \omega]$ and H is a uniform random variable on (0, h]. For $0 < \lambda < 1$, find the probability that the area of the rectangle exceeds λ times the maximum possible area. Assume that W and H are independent.

3. Use the law of total probability to solve the following problems.

- (a) Evaluate $E[\cos(X+Y)]$ if given X=x, Y is conditionally uniform on $[x-\pi,x+\pi]$.
- (b) Evaluate P(Y > y) if $X \sim \text{uniform}[1,2]$, and given X = x, Y is exponential with parameter x.
- (c) Evaluate $E[Xe^Y]$ if $X \sim \text{uniform}[3,7]$, and given X = x, $Y \sim N(0, x^2)$.
- (d) Let $X \sim \text{uniform}[1,2]$, and suppose that given X = x, $Y \sim N\left(0, \frac{1}{x}\right)$. Evaluate $E[\cos(XY)]$.

<u>4.</u> Find $P(X \le Y)$ if X and Y are independent with $X \sim \exp(\lambda)$ and $Y \sim \exp(\mu)$.

<u>5.</u> Use the Auxiliary RV approach to derive an expression for the PDF of Z if Z = 2X + Y, assuming X and Y have some joint PDF, $f_{XY}(x, y)$. For dummy variable, let W = Y. You may leave your answer in terms of an integral.