Advanced topics on Algorithms

Luciano Gualà www.mat.uniroma2.it/~guala/

Parameterized algorithms Episode I (pilot)

main reference:

pick any two

We would like

```
    to solve (NP-)hard problems
    fast (polynomial time) algorithms
    to compute exact solutions
    parameterized
    algorithms
```

idea: aim for exact algorithms, but confine the exponential dependence to a parameter

goal: an algorithm whose running time is polynomial in the problem size n and exponential in the parameter

exact algorithm running fast provided k is small

parameter: k(x) nonnegative integer associated to the instance x

parameterized problem: a problem + a parameter

we say: "problem P w.r.t. parameter k"

k-Vertex Cover

Input:

- a graph G=(V,E)
- a nonnegative integer k

question:

is there a vertex cover $S \subseteq V$ of size at most $|S| \le k$

parameter: k

example: k can actually be small

star graph

Brute-force solution:

- try all O(nk) subsets of k vertices
- for each subset S:
 - check whether S is a vertex cover

running time: O(nk m)

BAD

nf(k)

exponent depends on k

Definition (FPT)

A parameterized problem is Fixed Parameter Tractable (FPT) if it can be solved in time

any function independent of
$$n \& k$$

Bounded-search tree algorithm:

- consider any (uncovered) edge e=(u,v)
- either $u \in S$ or $v \in S$ (or both)
- guess which one: try both possibilities
 - 1. add u to S, delete u and all incident edges from G
 - recurse on G with k'=k-1
 - 2. add v to S, delete v and all incident edges from G
 - recurse on G with k'=k-1
 - 3. return the OR of the two outcomes
- base case: k=0 if there is an (uncovered) edge in G return FALSE, return TRUE otherwise

running time: analysis of the recursion tree

time $O(2^k n)$

GOOD

FPT algorithm

Toolbox (to show a problem is FPT)

bounded-search trees

treewidth

kernelization

idea: pre-processing an instance in order to simplify it to a much smaller equivalent instance

kernelization: a polynomial-time algorithm that converts an instance (x,k) into a small and equivalent instance (x',k') kernel

equivalent: the answer of (x,k) is the same of the answer of (x',k')

small: the size of (x',k') is $\leq f(k)$

Theorem

A parameterized problem is FPT iff it admits a kernelization.

proof

kernelize and obtain an instance of size $n' \le f(k)$.

run any finite algorithm with running time g(n) on the kernel.

Total running time: $n^{O(1)}+g(f(k))$.

Let A be an f(k)nc time algorithm

if $n \le f(k)$ the instance is already kernelized

if $f(k) \le n$

- 1. solve the instance by running A in time $f(k)n^c \le n^{c+1}$ (polynomial)
- 2. output a O(1)-size YES/NO instance as appropriate (to kernelize)

polynomial kernel for k-Vertex Cover

based on reduction rules

- rule 1: if there is a vertex v of degree \geq k+1, then delete v (and all its incident edges) from G and decrement the parameter k by 1. The new instance is (G-v,k-1)
- rule 2: if G contains an isolated (0-degree) vertex v, delete v from G. The new instance is (G-v,k)

polynomial kernel for k-Vertex Cover

based on reduction rules

- rule 1: if there is a vertex v of degree \geq k+1, then delete v (and all its incident edges) from G and decrement the parameter k by 1. The new instance is (G-v,k-1)
- rule 2: if G contains an isolated (0-degree) vertex v, delete v from G. The new instance is (G-v,k)

Lemma

If (G,k) is a YES-instance and none of the above rules is applicable to G, then $|E(G)| \le k^2$ and $|V(G)| \le 2k^2$.

proof

Since rule 1 is not applicable every vertex has degree $\leq k$

Since rule 2 is not applicable, every vertex has an incident edge

polynomial kernel for k-Vertex Cover

based on reduction rules

- rule 1: if there is a vertex v of degree \geq k+1, then delete v (and all its incident edges) from G and decrement the parameter k by 1. The new instance is (G-v,k-1)
- rule 2: if G contains an isolated (0-degree) vertex v, delete v from G. The new instance is (G-v,k)
- rule 3: let (G, k) be an instance such that rule 1 & 2 are not applicable. If k<0 or G has more than k² edges or more than 2k² vertices, conclude that (G,k) is a NO-instance. Output a canonical NO-instance.

running time: naive implementation $O(n^2)$ a clever implementation O(n+m)

solving k-Vertex Cover:

kernelization + bound-search tree alg \rightarrow $O(n+m+2^k k^2)$

what can be the parameter k?

- the size k of the solution we are looking for
- the maximum degree of the input graph
- the dimension of the point set in the input
- the length of the strings in the input
- the length of the clauses in the input Boolean formula
- the number of moves in a puzzle game
- the budget in an augmenting problem

- ...

Examples of NP-hard problems that are FPT:

- finding a vertex cover of size k
- finding a path of length k
- finding k disjoint triangles
- drawing a graph in the plane with k edge crossings
- finding disjoint paths that connects k pairs of vertices
- finding the maximum clique in a graph of maximum degree k

- ...

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the problem is not FPT unless FPT=W[1].

Examples of W[1]-hard problems:

- finding a clique/independent set of size k
- finding a dominating set of size k
- finding k pairwise disjoint sets
- given a graph G, finding k vertices that covers at least s edges (partial Vertex Cover)
- given a Boolean formula, decide if can be satisfied by assigning TRUE to at most k variables

- ...

games to play

- The FPT vs W[1]-hardness game
 - is the problem FPT?
- The f(k) game for FPT problems
 - what is the best f(k) dependence on the parameter?
- The exponent game for W[1]-hard problems
 - what is the best possible dependence on k in the exponent?