Week 5 & 6 - Exercises

Max Holst Mikkelsen

Advanced Linear Algebra

Week 5 - Exercise 1

• Show that, in a vector space $(V,+,\cdot)$ over a field \mathbb{F} , for all $x\in V$ and $\alpha\in \mathbb{F}$ one has $\alpha\cdot x=0$ iff $\alpha=0_{\mathbb{F}}$ or $x=0_V$. Moreover, show that $(-1_{\mathbb{F}})\cdot x=-x$. Here $0_{\mathbb{F}}$, $1_{\mathbb{F}}$ denote the additive and multiplicative neutral elements in \mathbb{F} and 0_V the zero vector in V.

Assume $\alpha \cdot x = 0$. We prove that $\alpha = 0$ or x = 0 by showing that $\alpha \neq 0$ implies x = 0. So suppose $\alpha \neq 0$. Then

$$\alpha \cdot x = 0 \Longrightarrow \alpha \cdot x = \alpha \cdot x + \alpha \cdot x = \alpha \cdot (x + x)$$
$$\Longrightarrow x = \alpha^{-1} \cdot \alpha \cdot x = \alpha^{-1} \cdot \alpha \cdot (x + x) = x + x \Longrightarrow x = 0$$

Conversely, assume that $\alpha = 0$ or x = 0. If $\alpha = 0$ then

$$\alpha \cdot x = (\alpha + \alpha) \cdot x = \alpha \cdot x + \alpha \cdot x \Longrightarrow \alpha \cdot x = 0$$

A similar argument proves that $\alpha \cdot x = 0$ if x = 0.

Week 5 - Exercise 1 continued

• Show that, in a vector space $(V, +, \cdot)$ over a field \mathbb{F} , for all $x \in V$ and $\alpha \in \mathbb{F}$ one has $\alpha \cdot x = 0$ iff $\alpha = 0_{\mathbb{F}}$ or $x = 0_V$. Moreover, show that $(-1_{\mathbb{F}}) \cdot x = -x$. Here $0_{\mathbb{F}}$, $1_{\mathbb{F}}$ denote the additive and multiplicative neutral elements in \mathbb{F} and 0_V the zero vector in V.

We have

$$(-1) \cdot x + x = (-1) \cdot x + 1 \cdot x = (-1+1) \cdot x = 0 \cdot x = 0$$

 $\implies (-1) \cdot x = -x$

Week 5 - Exercise 2

• Let $p \in \mathbb{N}$ be a prime. Show that if V is a vector space over \mathbb{Z}_p , then $\underbrace{x + x + \dots + x}_{p \text{ times}} = 0$ for every $x \in V$.

We have

$$\underbrace{x + x + \dots + x}_{p \text{ times}} = \underbrace{1 \cdot x + 1 \cdot x + \dots + 1 \cdot x}_{p \text{ times}}$$
$$= \underbrace{(1 + 1 + \dots + 1)}_{p \text{ times}} \cdot x = p \cdot x = 0$$

since p = 0 in \mathbb{Z}_p .

Week 5 - Exercise 3 (Halmos §1, exercise 5)

- 5. Let $\mathbb{Q}(\sqrt{2})$ be the set of all real numbers of the form $\alpha + \beta \sqrt{2}$, where α and β are rational.
 - (a) Is $\mathbb{Q}(\sqrt{2})$ a field?
 - (b) What if α and β are required to be integers?

We consider the set

$$\mathbb{Q}(\sqrt{2}) = \{\alpha + \beta\sqrt{2} \mid \alpha, \beta \in \mathbb{Q}\}\$$

(a) For all $\alpha, \beta \in \mathbb{Q}$ not both 0 we have

$$\frac{1}{\alpha + \beta\sqrt{2}} = \frac{\alpha - \beta\sqrt{2}}{(\alpha + \beta\sqrt{2})(\alpha - \beta\sqrt{2})} = \frac{\alpha - \beta\sqrt{2}}{\alpha^2 - 2\beta^2}$$
$$= \frac{\alpha}{\alpha^2 - 2\beta^2} - \frac{\beta}{\alpha^2 - 2\beta^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

Thus, $\mathbb{Q}(\sqrt{2})$ is a field.

(b) $\mathbb{Z}(\sqrt{2})$ is not a field since $2-\sqrt{2}$ (for example) does not have a multiplicative inverse.

Week 5 - Exercise 4 (Halmos §4, exercise 4)

- 4. Sometimes a subset of a vector space is itself a vector space (with respect to the linear operations already given). Consider, for example, the vector space \mathbb{C}^3 and the subsets \mathbb{U} of \mathbb{C}^3 consisting of those vectors $(\xi_1, \, \xi_2, \, \xi_3)$ for which
 - (a) ξ_1 is real,
 - (b) $\xi_1 = 0$,
 - (c) either $\xi_1 = 0$ or $\xi_2 = 0$,
 - (d) $\xi_1 + \xi_2 = 0$,
 - (e) $\xi_1 + \xi_2 = 1$.

In which of these cases is v a vector space?

We denote the subsets of \mathbb{C}^3 by U_j for $j = a, \ldots, e$.

- (a) We have $(1,0,0) \in U_a$, but $i \cdot (1,0,0) = (i,0,0) \notin U_a$. Thus, U_a is not closed under scalar multiplication.
- (b) We have $(0,0,0) \in U_b$. If $(0,\xi_2,\xi_3), (0,\eta_2,\eta_3) \in U_b$ and $\alpha \in \mathbb{C}$ we have

$$\alpha \cdot (0, \xi_2, \xi_3) = (0, \alpha \xi_2, \alpha \xi_3) \in U_b$$
$$(0, \xi_2, \xi_3) + (0, \eta_2, \eta_3) = (0, \xi_2 + \eta_2, \xi_3 + \eta_3) \in U_b$$

Hence, U_b is a subspace.

Week 5 - Exercise 4 (Halmos §4, exercise 4) - continued

4. Sometimes a subset of a vector space is itself a vector space (with respect to the linear operations already given). Consider, for example, the vector space \mathfrak{C}^3 and the subsets \mathfrak{V} of \mathfrak{C}^3 consisting of those vectors $(\xi_1, \, \xi_2, \, \xi_3)$ for which

- (a) ξ_1 is real,
- (b) $\xi_1 = 0$, (c) either $\xi_1 = 0$ or $\xi_2 = 0$,
- (d) $\xi_1 + \xi_2 = 0$, (e) $\xi_1 + \xi_2 = 1$.

In which of these cases is "U a vector space?"

- (c) We have $(1,0,0) \in U_c$ and $(0,1,0) \in U_c$, but $(1,0,0) + (0,1,0) = (1,1,0) \notin U_c$. Thus, U_c is not closed under addition.
- (d) We have $(0,0,0) \in U_d$. Let $(\xi_1,\xi_2,\xi_3), (\eta_1,\eta_2,\eta_3) \in U_d$ and $\alpha \in \mathbb{C}$. Then $\xi_1 + \xi_2 = 0$ and $\eta_1 + \eta_2 = 0$. We have $\alpha \xi_1 + \alpha \xi_2 = \alpha (\xi_1 + \xi_2) = 0$ and $\xi_1 + \eta_1 + \xi_2 + \eta_2 = 0$. Thus,

$$\alpha \cdot (\xi_1, \xi_2, \xi_3) = (\alpha \xi_1, \alpha \xi_2, \alpha \xi_3) \in U_d$$
$$(\xi_1, \xi_2, \xi_3) + (\eta_1, \eta_2, \eta_3) = (\xi_1 + \eta_1, \xi_2 + \eta_2, \xi_3 + \eta_3) \in U_d$$

Hence, U_d is a subspace.

(e) We have $(0,0,0) \notin U_e$. Further, $(1,0,0) \in U_e$ and $(0,1,0) \in U_e$, but $(1,0,0)+(0,1,0)=(1,1,0) \notin U_e$ and $2\cdot(1,0,0)=(2,0,0) \notin U_e$. Thus, U_e is neither closed under addition nor scalar multiplication.

Week 5 - Exercise 5 (Halmos §7, exercise 1)

1. (a) Prove that the four vectors

$$x = (1, 0, 0),$$

 $y = (0, 1, 0),$
 $z = (0, 0, 1),$
 $u = (1, 1, 1),$

in C3 form a linearly dependent set, but any three of them are linearly independent.

(b) If the vectors x, y, z, and u in \mathcal{O} are defined by x(t) = 1, y(t) = t, $z(t) = t^2$, and $u(t) = 1 + t + t^2$, prove that x, y, z, and u are linearly dependent, but any three of them are linearly independent.

Since u = x + y + z, the four vectors form a linearly dependent set. To see why x, y, u are linearly independent, we assume that

$$(0,0,0) = \alpha_1 x + \alpha_2 y + \alpha_3 u = \alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(1,1,1)$$

for some $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$. This yields the following set of equations:

$$\alpha_1 + \alpha_3 = 0$$
, $\alpha_2 + \alpha_3 = 0$, $\alpha_3 = 0$

Hence, $\alpha_1=\alpha_2=\alpha_3=0$ which shows that x,y,u are linearly independent. Similarly, one shows that any three of x,y,z,u are linearly independent. Since $1\mapsto (1,0,0),\ t\mapsto (0,1,0),\ t^2\mapsto (0,0,1)$ yields an isomorphism from \mathcal{P}_2 to \mathbb{C}^3 , exactly the same arguments apply in (b).

Week 5 - Exercise 6 (Halmos §7, exercise 2)

2. Prove that if $\mathfrak R$ is considered as a rational vector space (see § 3, (8)), then a necessary and sufficient condition that the vectors 1 and ξ in $\mathfrak R$ be linearly independent is that the real number ξ be irrational.

We consider $\mathbb R$ as a vector space over $\mathbb Q$. Let $\xi\in\mathbb R$. We prove the claim by contraposition.

Assume that 1 and ξ are linear dependent. This means that we can write ξ as a linear combination of 1, i.e. there is an $\alpha\in\mathbb{Q}$ such that $\xi=\alpha\cdot 1=\alpha$. Thus, $\xi\in\mathbb{Q}$.

Assume that $\xi\in\mathbb{Q}$. Since $\xi=\xi\cdot 1$, we have written ξ as a linear combination of 1, and we conclude that 1 and ξ are linearly dependent.

Week 5 - Exercise 7 (Halmos §7, exercise 5)

5. (a) The vectors $(\xi_1,\ \xi_2)$ and $(\eta_1,\ \eta_2)$ in \mathfrak{C}^2 are linearly dependent if and only if $\xi_1\eta_2=\xi_2\eta_1.$

(b) Find a similar necessary and sufficient condition for the linear dependence of two vectors in \mathfrak{C}^3 . Do the same for three vectors in \mathfrak{C}^3 .

(c) Is there a set of three linearly independent vectors in C2?

- (a) Let $(\xi_1,\xi_2), (\eta_1,\eta_2) \in \mathbb{C}^2$. Assume without loss of generality that $\xi_1 \neq 0 \neq \xi_2$. Suppose $\xi_1\eta_2 = \xi_2\eta_1$. Set $\alpha = \frac{\eta_1}{\xi_1} = \frac{\eta_2}{\xi_2}$. Then $(\eta_1,\eta_2) = \alpha(\xi_1,\xi_2)$ which shows that (ξ_1,ξ_2) and (η_1,η_2) are linearly dependent. Suppose that (ξ_1,ξ_2) and (η_1,η_2) are linearly dependent. This means that there is an $\alpha \in \mathbb{C}$ such that $(\eta_1,\eta_2) = \alpha(\xi_1,\xi_2)$ or equivalently $\eta_1 = \alpha\xi_1$ and $\eta_2 = \alpha\xi_2$. Hence, $\alpha = \frac{\eta_1}{\xi_1} = \frac{\eta_2}{\xi_2}$ from which $\xi_1\eta_2 = \xi_2\eta_1$ follows.
- (b) Note that $\xi_1\eta_2=\xi_2\eta_1$ is equivalent to the condition that

$$\det\begin{pmatrix} \xi_1 & \eta_1 \\ \xi_2 & \eta_2 \end{pmatrix} = 0$$

The generalisation to \mathbb{C}^3 is that $(\xi_1, \xi_2, \xi_3), (\eta_1, \eta_2, \eta_3), (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{C}^3$ are linearly dependent if and only if

$$\det \begin{pmatrix} \xi_1 & \eta_1 & \zeta_1 \\ \xi_2 & \eta_2 & \zeta_2 \\ \xi_3 & \eta_2 & \zeta_3 \end{pmatrix} = 0$$

(c) No, see Theorem 1.22.

Week 5 - Exercise 8

• (From the Exam 2020): Argue that the set $B' = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ constitutes a basis for \mathbb{R}^2 .

Since $\dim(\mathbb{R}^2)=2$ and |B'|=2, it suffices to show that B' is linearly independent (see Corollary 1.23). To show linear independence, we assume that

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

for some $\alpha_1, \alpha_2 \in \mathbb{R}$. This yields the following set of equations:

$$\alpha_1 + \alpha_2 = 0$$
$$-\alpha_2 = 0$$

From the second equation we see that $\alpha_2 = 0$, and the first equation then implies that $\alpha_1 = 0$. Thus, B' is linearly independent, and B' constitutes a basis for \mathbb{R}^2 .

Week 6 - Exercise 1

• Consider the vector space \mathbb{C}^5 and denote by $P \colon \mathbb{C}^5 \to \mathbb{C}^5$ the map $P(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, 0, 0, 0)$. Show that P is linear and determine its kernel, range, nullity and rank. Moreover, show that $\mathbb{C}^5/\ker(P) \simeq \mathbb{C}^2$.

Let
$$(x_1, x_2, x_3, x_4, x_5)$$
, $(y_1, y_2, y_3, y_4, y_5) \in \mathbb{C}^5$ and $\alpha \in \mathbb{C}$. Then
$$P((x_1, x_2, x_3, x_4, x_5) + (y_1, y_2, y_3, y_4, y_5)) = P(x_1 + y_1, x_2 + y_2, x_3 + y_3, x_4 + y_4, x_5 + y_5)$$

$$= (x_1 + y_1, x_2 + y_2, 0, 0, 0)$$

 $= (x_1, x_2, 0, 0, 0) + (y_1, y_2, 0, 0, 0)$

 $= P(x_1, x_2, x_3, x_4, x_5) + P(y_1, y_2, y_3, y_4, y_5)$

and

$$P(\alpha(x_1, x_2, x_3, x_4, x_5)) = P(\alpha x_1, \alpha x_2, \alpha x_3, \alpha x_4, \alpha x_5)$$

$$= (\alpha x_1, \alpha x_2, 0, 0, 0)$$

$$= \alpha(x_1, x_2, 0, 0, 0)$$

$$= \alpha P(x_1, x_2, x_3, x_4, x_5)$$

Thus, P is linear. We have

$$\begin{split} & \textit{N}(P) = \mathsf{span}\{(0,0,1,0,0); (0,0,0,1,0); (0,0,0,0,1)\}, \\ & \textit{R}(P) = \mathsf{span}\{(1,0,0,0,0); (0,1,0,0,0)\} \\ & \mathsf{null}(P) = \dim \textit{N}(P) = 3, \qquad \mathsf{rank}(P) = \dim \textit{R}(P) = 2 \end{split}$$

Week 6 - Exercise 1 - continued

• Consider the vector space \mathbb{C}^5 and denote by $P \colon \mathbb{C}^5 \to \mathbb{C}^5$ the map $P(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, 0, 0, 0)$. Show that P is linear and determine its kernel, range, nullity and rank. Moreover, show that $\mathbb{C}^5 / \ker(P) \simeq \mathbb{C}^2$.

We define the map $A: \mathbb{C}^5/N(P) \to \mathbb{C}^2$ by $A((x_1, x_2, x_3, x_4, x_5) + N(P)) = (x_1, x_2)$. Then A is well-defined. Indeed, if $(x_1, x_2, x_3, x_4, x_5) + N(P) = (y_1, y_2, y_3, y_4, y_5) + N(P)$ then $(x_1 - y_1, x_2 - y_2, x_3 - y_3, x_4 - y_4, x_5 - y_5) \in N(P)$ so that

$$(0,0,0,0,0) = P(x_1 - y_1, x_2 - y_2, x_3 - y_3, x_4 - y_4, x_5 - y_5) = (x_1 - y_1, x_2 - y_2, 0, 0, 0)$$

Hence, $x_1=y_1$ and $x_2=y_2$ and thus $(x_1,x_2)=(y_1,y_2)$. It is straightforward to check that A is linear (more or less same calculations as for the map P). To see injectivity, we assume that $A((x_1,x_2,x_3,x_4,x_5)+N(P))=(0,0)$ for some $(x_1,x_2,x_3,x_4,x_5)\in\mathbb{C}^5$. Then $(x_1,x_2)=(0,0)$ and thus

$$(x_1, x_2, x_3, x_4, x_5) + N(P) = (0, 0, x_3, x_4, x_5) + N(P) = (0, 0, 0, 0, 0) + N(P)$$

This shows that $N(A)=\{(0,0,0,0,0)+N(P)\}$ or equivalently that A is injective. The surjectivity of A is clear. Hence, A is an isomorphism and $\mathbb{C}^5/N(P)\simeq\mathbb{C}^2$. Alternatively, one may argue that

$$\dim \mathbb{C}^5/N(P) = \dim \mathbb{C}^5 - \dim N(P) = 5 - 3 = 2$$

by Theorem 2.14, and thus $\mathbb{C}^5/N(P)\simeq\mathbb{C}^2$ follows from the fact that $\dim\mathbb{C}^5/N(P)=\dim\mathbb{C}^2$, see Corollary 2.8.

Week 6 - Exercise 2 (Halmos §22, exercise 1)

1. Consider the quotient spaces obtained by reducing the space \mathcal{O} of polynomials modulo various subspaces. If $\mathfrak{M} = \mathcal{O}_n$, is \mathcal{O}/\mathfrak{M} finite-dimensional? What if \mathfrak{M} is the subspace consisting of all even polynomials? What if \mathfrak{M} is the subspace consisting of all polynomials divisible by x_n (where $x_n(t) = t^n$)?

We consider the vector space

$$\mathbb{R}[x] = \{a_0 + a_1 x + \dots + a_m x^m \mid m \in \mathbb{N}_0, a_i \in \mathbb{R} \text{ for } i = 0, \dots, m\}$$

and the subspaces

$$\begin{split} \mathcal{P}_n &= \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{R} \text{ for } i = 1, \dots, m\} \\ \mathcal{P}_{\text{even}} &= \{a_0 + a_1 x^2 + \dots + a_m x^{2m} \mid m \in \mathbb{N}_0, a_i \in \mathbb{R} \text{ for } i = 0, \dots, m\} \\ \mathcal{P}_{x^n} &= \{x^n (a_0 + a_1 x + \dots + a_m x^m) \mid m \in \mathbb{N}_0, a_i \in \mathbb{R} \text{ for } i = 0, \dots, m\} \\ &= \{a_0 x^n + a_1 x^{n+1} + \dots + a_m x^{n+m} \mid m \in \mathbb{N}_0, a_i \in \mathbb{R} \text{ for } i = 0, \dots, m\} \end{split}$$

Then we have the quotient spaces $\mathbb{R}[x]/\mathcal{P}_n$, $\mathbb{R}[x]/\mathcal{P}_{\text{even}}$ and $\mathbb{R}[x]/\mathcal{P}_{x^n}$.

Week 6 - Exercise 2 (Halmos §22, exercise 1) - continued

Recall that if V is a vector space and U is a subspace of V then we have the projection $\pi\colon V\to V/U$ given by $\pi(x)=x+U$ with the following property:

Theorem 2.14. Let C be a basis for U and B a basis for V with $C \subseteq B$. Then the projection π maps the complement $B \setminus C$ bijectively onto a basis for V/U. In particular, if dim V is finite then dim $(V/U) = \dim V - \dim U$.

The vector spaces have the following bases:

$$\begin{split} & B(\mathbb{R}[x]) = \{1, x, x^2, \dots\}, \quad B(\mathcal{P}_n) = \{1, x^2, \dots x^n\} \\ & B(\mathcal{P}_{even}) = \{1, x^2, x^4, \dots\}, \quad B(\mathcal{P}_{x^n}) = \{x^n, x^{n+1}, x^{n+2}, \dots\} \end{split}$$

Thus, it follows from Theorem 2.14 that we have the following bases for the quotient spaces:

$$B(\mathbb{R}[x]/\mathcal{P}_n) = \{x^{n+1} + \mathcal{P}_n, x^{n+2} + \mathcal{P}_n, \dots\}$$

$$B(\mathbb{R}[x]/\mathcal{P}_{\text{even}}) = \{x + \mathcal{P}_{\text{even}}, x^3 + \mathcal{P}_{\text{even}}, \dots\}$$

$$B(\mathbb{R}[x]/\mathcal{P}_{x^n}) = \{1 + \mathcal{P}_{x^n}, x + \mathcal{P}_{x^n}, \dots, x^{n-1} + \mathcal{P}_{x^n}\}$$

Hence, $\mathbb{R}[x]/\mathcal{P}_{x^n}$ is finite-dimensional whereas $\mathbb{R}[x]/\mathcal{P}_n$ and $\mathbb{R}[x]/\mathcal{P}_{x^n}$ are infinite-dimensional.

Week 6 - Exercise 3

• Let U, V be vector spaces over a field \mathbb{F} and let $A \in \operatorname{Hom}(U, V)$ be an isomorphism. Show that the set theoretical inverse map $A^{-1} \colon V \to U$ is linear and hence an isomorphism as well.

Let $v, w \in V$ and $\alpha \in \mathbb{F}$. Then

$$A\left(A^{-1}(v) + A^{-1}(w)\right) = AA^{-1}(v) + AA^{-1}(w) = v + w$$

Applying A^{-1} to both sides yields $A^{-1}(v+w) = A^{-1}(v) + A^{-1}(w)$. Similarly,

$$A\left(\alpha A^{-1}(v)\right) = \alpha A A^{-1}(v) = \alpha v \Longrightarrow A^{-1}(\alpha v) = \alpha A^{-1}(v)$$

Thus, A^{-1} is linear.

Week 6 - Exercise 4

- Recall that $C(\mathbb{R}, \mathbb{R})$ denotes the vector space (over \mathbb{R}) of continuous functions from \mathbb{R} to \mathbb{R} .
 - (a) Show that $C^1(\mathbb{R}, \mathbb{R}) := \{ f \in C(\mathbb{R}, \mathbb{R}) \mid f \text{ continuously differentiable} \}$ is a subspace of $C(\mathbb{R}, \mathbb{R})$.
 - (b) Show that the map $f\mapsto f'$ defines a linear map $D\colon C^1(\mathbb{R},\mathbb{R})\to C(\mathbb{R},\mathbb{R})$ and determine its kernel and range.
 - (c) Contemplate why the result in (b) does not contradict Theorem 2.10.

Theorem 2.10. Assume that U and V both have the finite dimension n. If A is surjective or injective, then it is bijective.

- (a) We have $0 \in C^1(\mathbb{R}, \mathbb{R})$. If $f, g \in C^1(\mathbb{R}, \mathbb{R})$ and $\alpha \in \mathbb{R}$ we know from calculus that f+g and αf are also differentiable, and if f' and g' are continuous then so is (f+g)'=f'+g' and $(\alpha f)'=\alpha f'$. Thus, $C^1(\mathbb{R}, \mathbb{R})$ is a subspace of $C(\mathbb{R}, \mathbb{R})$.
- (b) If $f,g\in C^1(\mathbb{R},\mathbb{R})$ and $\alpha\in\mathbb{R}$ we have (f+g)'=f'+g' and $(\alpha f)'=\alpha f'$. Thus, the map $f\mapsto f'$ is linear. The kernel consists of all constant functions from \mathbb{R} to \mathbb{R} and the range is $C(\mathbb{R},\mathbb{R})$, i.e. the map is surjective. To see this, let $g\in C(\mathbb{R},\mathbb{R})$ be given. Then we know from the Fundamental Theorem of Calculus that $f:\mathbb{R}\to\mathbb{R}$ given by $f(x)=\int_{-\infty}^x g(t)dt$ satisfies $f\in C^1(\mathbb{R},\mathbb{R})$ and f'=g.
- (c) The map $f\mapsto f'$ is surjective and not injective (the kernel is nontrivial). This does not contradict Theorem 2.10 since it only applies for finite-dimensional vector spaces, and $C(\mathbb{R},\mathbb{R})$ and $C^1(\mathbb{R},\mathbb{R})$ are infinite-dimensional.