Probabilities	Risks and Losses	Solve $\nabla_{\theta} log P(\mathcal{X} \theta) P(\theta) = 0$	(1) Ordinary least squares	3.2 Gaussian Process Regression
Expectation / Var / Covar	Conditional Expected Risk	1.3 Bayesian density learning	$Y = \beta_0 + \sum_{j=1}^d X_j \beta_j = X^T \beta$,	joint Gaussian over all outputs
$\mathbb{E}[X] = \int_{\Omega} x f(x) dx = \int_{\Omega} x \mathbb{P}[X = x] dx$	$R(f,X) = \int_{\mathbb{R}} \mathcal{L}(Y,f(X)) \mathbb{P}(Y X) dY$	Prior Knowledge of $p(\theta)$,	β_0 =bias, $X, \beta \in \mathbb{R}^{d+1}$.	$\mathbf{y} = f(X) + \mathbf{\varepsilon} \mathbf{\varepsilon} \sim \mathcal{N}(\mathbf{\varepsilon} 0, \mathbf{\sigma}\mathbb{I}_n),$
$\mathbb{E}_{Y X}[Y] = \mathbb{E}_Y[Y X]$	Total Expected Risk $R(f)$ =	Find Posterior Density: $p(\theta X)$.	- Minimization through gradient	$f(X) \sim GP(m(X), k(X, X'))$
$\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \mathbb{E}_{Y X}[f(X,Y) X]$	$\mathbb{E}_{X}[R(f,X)] = \int_{\mathcal{X}} R(f,X) \mathbb{P}[X] dX$	$\mathcal{X}^n = \{x_1, \cdots, x_n\}$	descent or closed form	$m(X) = 0 \text{ if } f(X) = X\beta$ Prediction
$\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	$= \int_{\mathcal{X}} \int_{\mathbb{R}} \mathcal{L}(Y, f(X)) \mathbb{P}[X, Y] dX dY.$	$p(\theta \mid \mathcal{X}^n) = \frac{p(x_n \mid \theta) p(\theta \mid \mathcal{X}^{n-1})}{\int p(x_n \mid \theta) p(\theta \mid \mathcal{X}^{n-1} d\theta)}$	Closed Form	
$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	Empirical Risk Minimizer (ERM) \hat{f} :	1.4 Frequentist (Fisher): ML estimation	$RSS(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta) =$	$P(\begin{vmatrix} \mathbf{y} \\ \mathbf{y}_* \end{vmatrix}) = \mathcal{N}(\mathbf{y} m(X), \begin{vmatrix} \mathbf{C_n} & \mathbf{k} \\ \mathbf{k^T} & c \end{vmatrix})$
	$\hat{f} \in \operatorname{argmin}_{f \in \mathcal{C}} \hat{R}(\hat{f}, Z^{train})$	1. Define parametric model (e.g.	$(\mathbf{v} - \mathbf{X}\mathbf{\beta})^T (\mathbf{v} - \mathbf{X}\mathbf{\beta}) \hat{\mathbf{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{v}$	$\begin{bmatrix} \mathbf{v}_* \end{bmatrix}^{-3} \begin{pmatrix} \mathbf{y}_m(\mathbf{x}), \begin{bmatrix} \mathbf{k}^T & c \end{bmatrix} \end{pmatrix}$
	$\hat{R}(\hat{f}, Z^{train/test}) = \frac{1}{n} \sum_{i=1}^{n} Q(Y_i, \hat{f}(X_i))$	$\mathcal{N}(\theta, 1)$	$(\mathbf{y} - \mathbf{X}\mathbf{\beta})^T (\mathbf{y} - \mathbf{X}\mathbf{\beta}), \hat{\mathbf{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Prediction	$p(y_* \mathbf{x}_*,\mathbf{X},\mathbf{y}) = \mathcal{N}(y_* \mathbf{\mu}_*,\sigma_*^2)$
$\mathcal{N}(x \mu,\sigma^2) = \frac{\sigma}{\sqrt{2\pi\sigma^2}}$		2. Define the likelihood as function	$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y},$	$ \mu_{y_*} = \mathbf{k}^T \mathbf{C}_n^{-1} \mathbf{y} \mathbf{C}_n = \mathbf{K} + \mathbf{\sigma}^2 \mathbb{I} $
		of parametric model (prob of the	(2) Ridge regression:	$\sigma_*^2 = c - \mathbf{k}^T \mathbf{C}_n^{-1} \mathbf{k}$ $c = k(x_*, x_*) + \sigma^2$
$(2\pi)^{D/2} \mathbf{\Sigma} ^{1/2}$	$\mathbb{P}[X Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]} = \frac{\mathbb{P}[Y X]\mathbb{P}[X]}{\mathbb{P}[Y]}$	observations given the parameter	$\min(y - \mathbf{X}\beta)^{\top}(y - \mathbf{X}\beta)$ s.t. $\sum_{i=1}^{d} \beta_i^2 \le$	11
$\operatorname{Exp}(x \lambda) = \lambda e^{-\lambda x},$	Math and Basics	θ), e.g. $\mathbf{P}(y_1,,y_n \mid \theta) =$		$t \mathbf{k} = k(x_*, \mathbf{X})$ $\mathbf{K}_{ij} = k(x_i, x_j)$ 4 Classification
	Some gradients	$\prod_{i \le n} \mathbf{P}(y_i \mid \boldsymbol{\theta}) = \prod_{i \le n} \mathcal{N}(y_i, \boldsymbol{\theta}, 1)$	$\Rightarrow (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \ \boldsymbol{\beta}\ ^2$	
Sigmoid: $\sigma(x) = 1/(1 + e^{-x})$	\mathbf{f} $\nabla_{\mathbf{x}}\mathbf{f}$ \mathbf{f} \mathbf{df}/\mathbf{dx}	3. estimator maximizes	$\mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ridge}} = \sum_{i=1}^{d} \mathbf{u}_{i} \frac{d_{j}^{2}}{d_{i}^{2} + \lambda} \mathbf{u}_{j}^{T} \mathbf{y}$	$A = \frac{\# correct}{all}, R = \frac{TP}{TP + FN}, P = \frac{TP}{TP + FP}$
$unif(a,b) : x \in [a,b]? \frac{1}{b-a} : 0$	$ x _2^2 2x a^Tx a$	$\hat{\theta}_{ML} = \arg \max_{\theta} \mathbf{P}(y_1,, y_n \mid \theta)$	J J	4.1 Discriminative / Generative Models
Optimization	$ x _1$ $ sng(x) $ $ x^Ta $ $ a $	(log-likelihood)	$-\frac{a_{\bar{j}}}{d_{\perp}^2 + \lambda}$ small for small SV.	Discriminative models: model
Gradient Descent	$x^{\mathrm{T}}Ax \mid (A+A^{\mathrm{T}})x \mid \sigma \sigma(1-\sigma)$	1.5 Properties of ML Estimators:	- $d_i \rightarrow 1$ for large SV.	decision boundary between classes
$ heta^{ ext{new}} \leftarrow heta^{ ext{old}} ext{-} \eta abla_{ heta} \mathcal{L}$	x^Tx $2x$	- Consistent $(\theta_{ML} \rightarrow \theta_0)$ as $n \rightarrow \infty$	- Suppresses contributions of small	p(y x). E.g. HMM, Naive Bayes Generative model: explicitly model
	$\nabla_{\beta} (y - X\beta)^T (y - X\beta) = 2(X^T X\beta - X^T y)$	- Equivariant: $\hat{\theta}_{ML}$: θ , $g(\hat{\theta}_{ML})$: $g(\theta)$, Evals (remove multicoli. blowing	the distribution of each class. $p(x,y)$.
Less zigzag by adding momentum:	Positive semi-definite matrices M	g invertible	up variance).	E.g. Perc., SVM, trad. NNs.
	$\forall x \in \mathbb{R}^n : x^{\mathrm{T}} M x \ge 0 \Leftrightarrow$	- Asymptotically normal:	(3) LASSO	4.2 Classifiers
	all eigenvalues of M are pos: $\lambda_i \geq 0$	$1/\sqrt{n}(\theta_{ML}-\theta_0)$ converges to rv	$\hat{\boldsymbol{\beta}}^{LASSO} = \operatorname{argmin}_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$	Probabilistic Generative Classifier
	Kernels	with distribution	subject to $\sum_{j=1}^{d} \beta_j \le s$.	(1) Assume distribution of labels
	Similarity based reasoning	$\mathcal{N}(0,J^{\text{-}1}(\mathbf{ heta})I(\mathbf{ heta})J^{\text{-}1}(\mathbf{ heta})$	9	$p(Y \theta)$ and $p(X Y=y)$,
	$K(\mathbf{x}, \mathbf{x}')$ pos.semi-def. (all EV ≥ 0)	- Asymptotically efficient: θ_{ML}	Rewrite as $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}_j $	(2) MLE over joint likelihood
	Gram Matrix $K = K(\mathbf{x}_i, \mathbf{x}_i), 1 \le i, j \le n$	minimizes $\mathbb{E}[(\theta_{ML}-\theta_0)^2]$. I.e.	- Large λ will set some coefficients	$P(\mathbf{X}, \mathbf{y} \mathbf{\theta}),$
Bias-Variance tradeoff	$K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}'), K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$	$\mathbb{E}[(\theta_{ML}-\theta_0)^2]=\frac{1}{L_n(\theta_0)}$	equal to $0 \rightarrow$ sparse solution	(3) Bayes $y = \operatorname{argmax}_{y} p(y X) \propto$
$\operatorname{Bias}(\hat{f}) = \mathbb{E}[\hat{f}] - f$	$K(\mathbf{x},\mathbf{x}')=K_1(\mathbf{x},\mathbf{x}')K_2(\mathbf{x},\mathbf{x}')$	Rao Cramer Bound	(model selection) (4) Bayesian Linear Regression	$p(y)\prod_{i=1}^{n}p(x_{i} y)$
	$K(\mathbf{x},\mathbf{x}') = \alpha K_1(\mathbf{x},\mathbf{x}') + \beta K_2(\mathbf{x},\mathbf{x}')$	There exists no estimator such that	D 0 1 11 11 1 0	$p(y)\prod_{i=1}^n p(x_i y)$ Prob. Discr. Classifier (2D: log. regr.)
$ \mathcal{Z} \downarrow\uparrow$ $ \mathcal{F} \uparrow\downarrow\Rightarrow \text{Var}\uparrow\downarrow$ Bias $\downarrow\uparrow$	$K(\mathbf{x}, \mathbf{x}') = K_1(h(\mathbf{x}), h(\mathbf{x}')) h : \mathcal{X} \to \mathcal{X}$	$\mathbb{E}[(\hat{\theta}^* - \theta_0)^2] = 0, \mathbb{E}[(\hat{\theta} - \theta_0)^2] \ge \frac{1}{I_n(\theta_0)}, \hat{\theta}$		
	$\mathbf{K}(\mathbf{x},\mathbf{x}) = n(\mathbf{K}_1(\mathbf{x},\mathbf{x}))$ n. polytexp	unbiased $I_n(\theta_0) = \mathbb{E}\left[\frac{\partial^2 \log[\mathcal{X}_n \theta]}{\partial \theta^2}\right]$	$p(\beta 11)=3(\beta 9,11)=0$	(1) Assume the posterior
$\mathbb{E}_D \mathbb{E}_{Y X=x}(\hat{f}(x)-Y)^2 =$	Kernel Function Examples:	unbrased $I_n(\theta_0) = \mathbb{E}\left[\frac{\partial \theta^2}{\partial \theta^2}\right]$	$\Lambda = \Sigma^{-1}$ precision mat. Favors $\beta = 0$.	$P(y=1 X) = \sigma(w^{\top}x + w_0) = \sigma(\tilde{w}^{\top}x).$
$\mathbb{E}_D(\hat{f}(x)-\mathbb{E}_D(\hat{f}(x))^2+(\mathbb{E}_D(\hat{f}(x)))$	$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$ $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^p$	Efficiency $e(\theta_n) = \frac{1}{\text{Var}[\hat{\theta}_n]I_n(\theta)}$	Posterior: Given observed X, y	(2) MLE over likelihood $p(\mathbf{y} \mathbf{X}, w)$
$-\mathbb{E}(Y \mid X=x))^2 + \mathbb{E}(Y-\mathbb{E}(Y \mid X=x))^2$	RBF(Gauss): $K(\mathbf{x}, \mathbf{x}') = e^{- \mathbf{x} - \mathbf{x}' _2^2/h^2}$	$e(\theta_n)=1$ (efficient) $\lim_{n\to\infty} e(\theta_n)=1$	$p(\beta \mathbf{X}, \mathbf{y}, \Lambda) = \mathcal{N}(\beta \mu_{\beta}, \Sigma_{\beta})$	$=p(\mathbf{y}=1 \mathbf{X},w)^{y}\cdot(1-p(\mathbf{y}=1 \mathbf{X},w)^{1-y})$
0.1 Loss-Functions		(asym. efficient)	$\mu_{\beta} = (\mathbf{X}^T \mathbf{X} + \sigma^2 \Lambda)^{-1} \mathbf{X}^T \mathbf{y}$	$\Rightarrow L(w) = \log p(\mathbf{y} \mathbf{X}, \mathbf{w})$
0-1 Loss: Piecewise cont, not diff	1 Density Estimation with Parametric	Stein estimator For finite samples	$\Sigma_{\beta} = \sigma^2 (\mathbf{X}^T \mathbf{X} + \sigma^2 \Lambda)^{-1}$	$=c+\sum_{i}[y_{i}\log\sigma(\mathbf{w}^{\top}x_{i})]$
$\mathcal{L}^{0-1}(y,c(x)) = (c(x)=y) ? 0:1$	Models	might be better sol (ML estimators	Bayesian lr with gaussian prior =	$+(1-y_i)\log(1-\sigma(\mathbf{w}^{\top}x_i)]$
Hinge Loss:	1.1 Maximum Likelihood (MLE)	not nec. efficient).	ridge for $\Lambda = \lambda \mathbb{I}_d$, $\sigma = 1$	(3) GD/ Newton's over $-L(w)$.
\sim - (v, c($x//$ - max(0, 1) $v x x /$	Likelihood: $\mathbb{P}[X \theta] = \prod_{i \leq n} p(x_i \theta)$	2 Linear Regression	3 Non-Linear Regression	(4) w* to predict. Discriminative Classifier
refeeption Boss.	Find: $\hat{\mathbf{\theta}} \in \operatorname{argmax}_{\mathbf{\theta}} \mathbb{P}[X \mathbf{\theta}]$	- Optimal solution for regression	3.1 Feature Transformations	Choose loss func $\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$,
$(y, e(x)) y \mapsto x (y, e(x))$	Procedure: solve $\nabla_{\theta} \log \mathbb{P}[\mathfrak{X} \theta] \equiv 0$	$\arg \min_f \mathbb{E}(Y - f(X))^2$ given by	$f(X) = \sum_{m=1}^{M} \beta_m h_m(X), h_m(X) : \mathbb{R}^d \mapsto$	Approximate exp. risk with the emp.
exponential Eoss.	Consistent: converges to best θ_0 .	$f^*(x) = \mathbb{E}(Y X=x)$	$\mathbb{R}, 1 \leq m \leq M$	loss \hat{R} . Optimal classif.
$\mathcal{L}^{\exp}(y, c(x)) = \exp(-yc(x))$	1.2 Maximum A Posteriori (MAP)	- Statistical learning theory:	- Determine Boundaries e.g.	
20815110 20551	Assume prior $\mathbb{P}(\theta)$	Directly minimize empirical risk	$ x_1 + x_2 < 1 \Rightarrow x_1 + x_2 - 1 < 0$	
	Find: $\hat{\theta} \in \operatorname{argmax}_{\theta} P(\theta \mid \mathcal{X}) =$	$\arg\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2$	Use $\phi(X) = x_1 + x_2 - 1$, $w = 1$	
	$= \operatorname{argmax}_{\theta} P(\mathcal{X} \theta) P(\theta)$		- 2 boundaries: multiply 2 equations	

	Complementary Slackness:	5 Ensemble Methods	(1) Define prior and calculate	Prior:
Make the model predictions as close	$\lambda_i f_i(x^*) = 0 \forall i$:	5.1 Bagging	likelihood (decoder), (2) approximate	$n(z-k z+\alpha) = \int \frac{N_{k,i}}{\alpha+N-1}$ existing k
as possible to a set of target values.	$\lambda_i > 0 \Rightarrow f_i(x^*) = 0, f_i(x^*) < 0 \Rightarrow \lambda_i = 0$	Bootstrap sets: Draw <i>M</i> bootstrap	posterior (encoder)	$p(z_i=k \mathbf{z}_{-i},\alpha) = \begin{cases} \frac{\alpha+N-1}{\alpha} & \text{existing } k \\ \frac{\alpha}{\alpha+N-1} & \text{otherwise} \end{cases}$
	4.8 Support Vector Machine (SVM)	sets, Train M base models	Informative, disentangled and robust	(α+/ν-1
		(1) (14)	by the choice of $p_{\theta}(\cdot Z)$ and $q_{\phi}(\cdot x)$.	Chinese Restaurant Problem
	\mathbf{y}_i are support vectors	Random forests	Denoising Autoencoder	Clustering property to draw samples.
	Functional Margin Problem:	Bagging with trees. Each tree	Blank out parts of the input image	Sit at table ∝ # people on it.
	minimizes $ \mathbf{w} $ for $m=1$:	considers subset of variables.	during training; more robust.	8.2 Gibbs Sampling
	$L(\mathbf{w}, w_0, \alpha) =$	Reduce corr. between base trees.	7 Clustering	Init: assign data to cluster with prior
1 3	$= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i [z_i (\mathbf{w}^T \mathbf{y}_i + w_0) - 1]$	5.2 Boosting	k-means or EM. Neither can detect	$\pi_i, \sum \pi_i < 1$ (using e.g. stick-br.)
proj mean: $\mathbf{m}_k = \frac{1}{n_k} \sum_{n \in \mathcal{C}_k} w^T x_n = w^T m_k$		Fit models iteratively (model depends		Remove <i>x</i> from <i>k</i> , compute θ_k ,
· · · · · · · · · · · · · · · · · · ·	Dual Representation:		(no constraints on the covariance	Compute Gibbs sampler prob. (CRP)
within-class var $(y_k = w \ x_k)$:	•	weight to the observations that were	matrix).	and sample new cluster assignment
k = n < 0 k &	Conditions: $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0, \frac{\partial \mathcal{L}}{\partial w_0} = 0$	wrong in prev. step).	7.1 k-means	$z_i \sim p(z_i x_{-i}, \theta_k)$
2 ist of proj incumst ii (iii iii 2)	$\Rightarrow w^* = \sum_i \alpha_i y_i x_i, \sum_i \alpha_i y_i = 0$	Ada Boost (Adaptive Boosting)	Assign each x to closest center.	Final Gibbs sampler (Stick-Breaking):
Class proj. cov: $\mathbf{s}_1^2 + \mathbf{s}_2^2 = w^T (s_1^2 + s_2^2) w$	$\max_{\alpha} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_i \alpha_i -$	Loss function: 0-1 Loss, place high	Compute new centers. Repeat.	$p(z_i=k \mathbf{z}_{-i},\mathbf{x},\alpha,\mu)=Prior \times likelihood$
Fishers Criterion:	$\sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j, \alpha_i \ge 0, \sum_i \alpha_i y_i = 0$	weights on samples that are very hard	7.2. Coupeign Mixtures	$\int \frac{N_{k,-i}}{\alpha + N-1} p(x_i \mathbf{x}_{-i,k}, \mu) \text{ existing } k$
$J(w) = \frac{(\mathbf{m}_1 + \mathbf{m}_2)^2}{2 + 2} = \frac{between \ class \ var}{1 + 2}$	Simplifies to:	to classify. Detect Outliers by high w.	Direct optimization of log-likelihood	$= \begin{cases} \frac{\alpha + N - 1}{\alpha} P(x_i \mu) \text{ otherwise} \end{cases}$
	$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$, s.t.	Gradient Boosting		
	$\alpha_i \geq 0, \sum_i \alpha_i y_i = 0$	Learn dir from the residual error instd	is (sum within the log) \rightarrow no closed	9 PAC Learning
Classification with fisher:	Optimal Margin: $\mathbf{w}^T \mathbf{w} = \sum_{i \in SV} \alpha_i^*$	of updating the weights.	form solution.	9.1 The PAC Learning Model
	$w^{T}x + w_{0} = \sum_{i=1}^{n} (\alpha_{i}y_{i}x_{i})^{T}x + w_{0} =$	$f_M(x) = \sum_{i=1}^M \beta_i h_i(x)$	EM Mixture models solve this:	ε error parameter, δ confidence val
1. Fisher's projection	$\sum_{i=1}^{n} \alpha_i y_i \langle x_i, x \rangle + w_0$, efficient.	$f_M(\hat{x}) = \sum_{i=1}^{M} \beta_i h_i(x)$ Forward Stagewise Additive Model-	introduce latent indicator vars for	- PAC learn.: $\mathbf{P}(\mathcal{R}(\hat{c}_n^*) \leq \varepsilon) \geq 1 - \delta$
$w^* \propto S_w^{-1}(\overline{x}_0 - \overline{x}_1)$	NonLinear SVM	ing	mode assignments, max. joint	- General Setting:
	Use kernel in discriminant funct:	Method to approximately compute a	likelihood of observable and latent	$\mathbf{P}(\mathcal{R}(\hat{c}_n^*) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \le \varepsilon) \ge 1 - \delta$
\mathcal{E}	$g(\mathbf{x}) = \sum_{i, i=1}^{n} \alpha_i \alpha_j z_i z_j K(\mathbf{x_i}, \mathbf{x})$	classifier of the form	vars.	- Efficiently PAC learnable:
4.5 Perceptron Algorithm	Soft Margin SVM (relax constraints)	$c(x) = sgn(\sum_{t} \alpha_{t} b^{(t)})$ that approximately	7.3 EM algorithm	Algorithm runs in poly time in $1/\epsilon$
1		minimizes the empirical loss	$\int 1$ c generated x	and $1/\delta$ (computing X_{min}^n and
	$\min_{\mathbf{w},w_0,\xi} \frac{1}{2} \mathbf{w} ^2 + C \sum_{i \le n} \xi_i$	$\sum_{i\leq n} L(y_i,c(x_i)). \Rightarrow AdaBoost equ.$	$M_{xc} = \begin{cases} 1 & \text{of generated } X \\ 0 & \text{ot } w \end{cases}$	compl. of <i>n</i>)
Cost Function: $L(\mathbf{w}) =$	s.t. $y_i(\mathbf{w}^T x_i + w_0) \ge 1 - \xi_i, \xi_i \ge 0$	6 Deep Learning	(" "	9.2 Rectangle Learning
$\sum_{i \leq n} \mathcal{L}(y_i, c(x_i)) = \sum_{i \in \mathcal{M}} -y_i \mathbf{w}^{T} x_i$	Multiclass SVM	6.1 Activation Functions	This gives $\mathbf{P}^{(k)}$	Pick tight rectangle. Diff between
$\nabla L(\mathbf{w}) = \sum_{i: y_i \mathbf{w}^{T} x_i < 0} - y_i x_i$	score per class, set margin as min diff	Make NN function non-linear.	$P(X,M \Theta) = \prod_{x \in X} \prod_{c=1}^{k} (\pi_c P(\mathbf{x} \Theta_c))^{M_{\mathbf{x}c}}$	picked rectangle \hat{R} and true rectangle
GD with update: $\eta(\kappa)(-y_ix_i)$	of largest + second largest score.	$\begin{cases} 0 & \text{for } x < 0 \end{cases}$	E-Step	R with few examples. Rectangles are
Variable increment perceptron	$\min_{w} \frac{1}{2} w = \min_{\{w_z\}_{n=1}^M} \frac{1}{2} \sum_{z}^M w_z^T w_z$	Rel 11: $f(x) = \langle $	$\gamma_{\mathbf{x}c} = \mathbb{E}_{M}[M_{\mathbf{x}c} \mathcal{X}, \mathbf{\theta}^{(j)}] = \frac{P(\mathbf{x} c, \mathbf{\theta}^{(j)}) P(c \mathbf{\theta}^{(j)})}{P(\mathbf{x} \mathbf{\theta}^{(j)})}$	efficiently PAC learnable.
converges if Irain set is lin.sep.,	$w^T - w^T$ $w^T $ s t $\forall v \in V$	$\left(\begin{array}{ccc} x & joi & x \geq 0 \end{array} \right)$	M-Step	9.3 Example: Half-line learning
$\Pi(K) \geq 0, \sum_{k=0}^{\infty} \Pi(K) \rightarrow \infty \text{ for } t \rightarrow \infty,$	$(\mathbf{w}_{z_i}^T \mathbf{y}_i + w_{z_i,0}) - \max_{z \neq z_i} (\mathbf{w}_z^T \mathbf{y}_i + w_{z,0}) \ge 1$	Sigmoid : $\sigma(x) = \frac{1}{1 + \exp(-x)}$		$\mathcal{C} = \mathcal{H} = \{\mathbb{I}_{[l,\infty)} : l \in \mathbb{R}\}$, where
$\frac{\sum_{k \le t} \eta^2(k)}{\left(\sum_{k \le t} \eta(k)\right)^2} \to 0 \text{ for } t \to \infty$		Tanh: $tanh(x) = \frac{2}{2} - 1$	$\mu_c^{(j+1)} = \frac{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c} \mathbf{x}}{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c}}$	
$\left(\sum_{k\leq t} \mathfrak{q}(k)\right)^2$	$\hat{z} = \operatorname{argmax}_z(w_z^T y + w_{z,0})$ Structured SVM	Tanh : $tanh(x) = \frac{2}{1+e^{-2x}} - 1$ 6.2 Training Neural Networks	$(\sigma_c^2)^{(j+1)} = \frac{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c} (\mathbf{x} - \boldsymbol{\mu}_c)^2}{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c}}$	$\mathbb{I}_{(l, \infty)} = \begin{cases} 0 & x < l \text{ fix } f^* \in \mathbb{R}, \text{ con-} \\ & x = 1, \dots, \infty \end{cases}$
4.6 Lagrange Dual Formulation		$\min_{\theta} \sum_{i \leq n} \mathcal{L}(y_i, NN_{\theta}(x_i))$	$(i+1) 1 \Sigma_{\mathbf{x} \in \mathcal{X}} \forall \mathbf{x} c$	$\mathbb{I}_{[l,\infty)} = \begin{cases} s & \text{if } j = l, \text{ or } l \\ 1 & \text{if } x \ge l \text{ sider } c^* = \mathbb{I}_{[l^*,\infty)} \end{cases}$
	$\min_{w} \frac{1}{2} w ^2 \text{ s.t.}$	6.3 Regularization	$\pi_c^{(j+1)} = \frac{1}{ \mathfrak{X} } \sum_{\mathbf{x} \in \mathfrak{X}} \gamma_{\mathbf{x}c}$	let
1. Generalized Lagrangian:	$w^T \Psi(x_i, y_i) \ge \Delta(y_i, y') + w^T \Psi(x_i, y')$	or rrogaranzation	8 Non-Param Bayesian Methods	$X_{min}^n := \min_{i < n, Y_i = 1} X_i, \hat{c}_n := \mathbb{I}_{X_{min}^n}, \infty)$
$\mathcal{L}(\mathbf{w}, \lambda, \alpha) = f(\mathbf{w}) + \sum_{i} \lambda_{i} g_{i}(\mathbf{w}) +$	$\forall y' \neq y_i, i \leq n$	Early stop., Dropout, bay. priors, L2 6.4 Variational Autoencoders	8.1 Dirichlet (Multivariate Beta)	Let $l_{\varepsilon}^+ \in \mathbb{R}$ s.t. $\mathbf{P}(l^* \leq X_i \leq l_{\varepsilon}^+) = \varepsilon$.
$\sum_{i} \alpha_{i} h_{i}(\mathbf{w}), \alpha_{i} \geq 0$	Output Space Representation as joint		$Dir(\mathbf{x} \alpha) = \frac{1}{B(\alpha)} \cdot \prod_{k=1}^{n} x_k^{\alpha_k - 1}$	``````````````````````````````````````
2. $\max_{\alpha \in \mathcal{A}} \min_{\beta \in \mathcal{A}} \mathcal{L} < \min_{\beta \in \mathcal{A}} \max_{\alpha \in \mathcal{A}} \mathcal{L}$	feature map: $\psi(z, y)$	Learn meaningful representations		### ### ### ### #### #################
3. constraints $\nabla_{\mathbf{w}} \mathcal{L} = 0, \nabla_{w_0} \mathcal{L} = 0$	Scoring function: $f_{\mathbf{w}}(z, \mathbf{y}) = \mathbf{w}^T \mathbf{\psi}(\mathbf{z}, \mathbf{y})$	without supervision.	$B(\alpha) = \frac{\prod_{k=1}^{n} \Gamma(\alpha_k)}{\Gamma(\sum_{l=1}^{n} \alpha_k)}$	TC I+ < Vn . I* < V < Vn
4. $\max_{\alpha,\lambda} \mathcal{L}$ with plugged in $\Rightarrow \alpha_i$	Classify: $\hat{z}=h(\mathbf{y}) \operatorname{argmax}_{z \in \mathcal{K}} f_{\mathbf{w}(z,\mathbf{y})}$	Objective	Dirichlet Proces $DP(\alpha, H)$:	If $l_{\varepsilon}^+ \leq X_{min}^n$: $l^* \leq X_i \leq X_{min}^n$.
4.7 Slaters \Rightarrow Str. dual. \Rightarrow compl. Sl.	υ · (υ) υ ζΕπυ π (ε, y)	enc_{θ} mapping measurements in \mathcal{X} to	$(G(T_1)G(T_K)) \sim Dir(\alpha H(T_1)\alpha H(T_k))$	Then $\mathcal{R}(\hat{c}_n) = \mathbf{P}(l^* \le X_i \le X_{min}^n)$
- weak d.: $d^* \le p^*$, strong d: $d^* = p^*$		prob. dists. over space Z	Stick-Brooking Process	$\geq \mathbf{P}(l^* \leq X_i \leq l_{\varepsilon}^+) = \varepsilon$
- slaters: $\exists x : h_i(x) < 0$ (strict)		$enc_{\theta}: x \in \mathcal{X} \mapsto p_{\theta}(\cdot x) \text{ over } \mathcal{Z}$	$\beta_k \sim Beta(1, \alpha), \rho_k = \beta_k (1 - \sum_{i=1}^{k-1} \rho_i)$	$\mathbf{P}(l_{\varepsilon}^{+} \leq X_{min}^{n}) = \prod_{i}^{n} \mathbf{P}[X_{i} \notin [l^{*}, l_{\varepsilon}^{+})] =$
5.20.515. 200.101/00/00 (001100)		Variational Inference: find posterior	l = l = l = l	$\prod (1 - \mathbf{P}(l^* \le X_i \le l_{\varepsilon}^+)) = (1 - \varepsilon)^n$

