4. Électromagnétisme

4.2. Magnétostatique

Table des matières

1.	1.1. Courant électrique	2 2
		2
2.	Symétries et invariances du champ magnétostatique	3
3.	3.1. Flux du champ magnétostatique	3 3 3
4.	4.1. Méthode	4 4 5 5
5.	Cartes de champ	6
6.	6.1. Moment magnétique	9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	6.3.3 Énergie potentielle d'interaction	ı

Introduction

- Logiciel de simulation en électromagnétisme : Visualis Electromagnetism 2.9 téléchargeable gratuitement à l'adresse suivante http://www.visualis-physics.com/fr/index.html
- Simulation université du Mans http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/ 02/mnelectricite.html

1. Distributions de courant électrique

1.1. Courant électrique

1.2. Vecteur densité de courant volumique

1.3. Force volumique de Lorentz

- 2. Symétries et invariances du champ magnétostatique Voir le document associé : *Les symétries des champs*.
- 3. Propriétés du champ magnétostatique
- 3.1. Flux du champ magnétostatique

3.2. Circulation du champ magnétostatique

3.3. Quelques ordres de grandeur

Champ magnétique

- créé par le cerveau humain : $B \approx 10^{-15}$ T à la surface du crâne ;
- terrestre : 4 à 5×10^{-5} T à la surface de la Terre (à Paris, 20 μ T pour la composante horizontale et 40 μ T pour la composante verticale);
- créé par un aimant permanent : 0, 1 à 1 T à quelques millimètres de sa surface ;
- créé par un électroaimant : quelques teslas; par exemple, 1 à 12 T dans un imageur par résonance magnétique (IRM).

 $\label{lem:www.cea.fr/content/download/5413/35366/.../p030_35_Lethimonier.pdf$

- 4. Distributions de courant à haut degré de symétrie
- 4.1. Méthode

4.2. Fil rectiligne « infini »

4.3. Câble rectiligne « infini » de rayon R

4.4. Solénoïde « infini »

5. Cartes de champ

• Fils rectilignes parallèles
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/
02/electri/filverti.html
Champ crée par des fils rectilignes

• Bobines plates http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/ 02/electri/helmoltz.html

• Bobinage torique http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/ 02/electri/toremagne.html

6. Dipôle magnétique

6.1. Moment magnétique

6.2. Champ magnétique dipolaire

6.2.1. Lignes de champ magnétique

6.2.2. Champ dipolaire

• Approximation dipolaire

• Champ magnétique créé

- 6.3. Dipôle magnétique dans un champ magnétostatique extérieur
- 6.3.1. Comportement du dipôle (aspect qualitatif)

6.3.2. Actions subies

• Dans un champ magnétostatique extérieur uniforme

• Dans un champ magnétostatique extérieur non uniforme

6.3.3. Énergie potentielle d'interaction