

A Level · Edexcel · Maths

5.5 Reciprocal & **Inverse Trigonometric Functions (A Level** only)

Total Marks	/188
Very Hard (8 questions)	/51
Hard (8 questions)	/48
Medium (8 questions)	/47
Easy (12 questions)	/42

Scan here to return to the course

or visit savemyexams.com

Easy Questions

1 Sketch the graph of $y = \csc x$, for $-180^{\circ} \le x \le 180^{\circ}$.

(2 marks)

2 (a)	Write down the domain and range for the function $rc\cos heta$.
(b)	(2 marks) Hence sketch the graph of $y = \arccos \theta$.
	(2 marks)
3	Solve the equation cot $x=3$, for $-\pi \le x \le \pi$, giving your answers to three significant figures.
	(3 marks)
4	Sketch the graph of $y = \sec \theta$, for $-\pi \le \theta \le \pi$.
	Label any points of intersection with the coordinate axes and state the equations of any asymptotes.
	(4 marks)

5 Starting with the identity

$$\sin^2 x + \cos^2 x \equiv 1$$

show that

- (i) $1 + \cot^2 x \equiv \csc^2 x$
- (ii) $\tan^2 x + 1 \equiv \sec^2 x$

(4 marks)

6 Show that

$$\sec^2 \theta \sin \theta \equiv \tan \theta \sec \theta$$

7 (a)	Write down the domain and range for the function $rcsin heta.$	
(b)	Hence sketch the graph of $y = \arcsin \theta$.	(2 marks)
		(2 marks)
8	Solve the equation $\csc^2 x - 2 \csc x - 8 = 0$ for $0^{\circ} \le x \le 360^{\circ}$, giving you to one decimal place where appropriate.	ır answers
		(3 marks)
9	Show that	
	$\cot x \csc x \sec x \equiv 1 + \cot^2 x$	
		(3 marks)
40		
10	Solve the equation sec θ tan θ -sec θ = 0, for $0 \le x \le 2\pi$, giving your answer form.	s ın exact

(4 marks)

11 (a)	Write down the domain and range for the function $\arctan heta.$	
	(2 mar	ks)
(b)	Hence sketch the graph of $y = \arctan \theta$.	
	(2 mar	ks)

12 (a) Sketch the graph of $y = 2 \sec 2x$, for $-\pi \le x \le \pi$.

(2 marks)

(b) Draw a suitable line on your graph to show that the equation $2 \sec 2x = 4$ has four solutions in the range $-\pi \le x \le \pi$.

(2 marks)

Medium Questions

1 (a) Use the definitions of the secant, cosecant and cotangent functions to show that

$$\sec \theta \cot \theta \equiv \csc \theta$$
.

(2 marks)

(b) Hence solve, in the range $0 \le \theta \le 2\pi$, the equation

$$\sec \theta \cot \theta = -2$$

2 (a) Show that the equation

$$3-\sec\theta = \frac{2}{\sec\theta}$$

can be rewritten in the form

$$(\sec \theta - 2)(\sec \theta - 1) = 0$$

(2 marks)

(b) Hence solve, in the range $0 \le \theta \le 2\pi$, the equation

$$3 - \sec \theta = \frac{2}{\sec \theta}$$

(4 marks)

3 (a)	Using the double angle formula $\sin 2A \equiv 2 \sin A \cos A$, show that the equation
	$\sec x \csc x - 5 = \csc 2x$
	can be rewritten in the form
	$\operatorname{coesec} 2x = 5.$
	(3 marks
	(S marks
(b)	Hence solve, in the range $0 \le x \le 2\pi$, the equation
	$\sec x \csc x - 5 = \csc 2x$
	giving your answers correct to 3 significant figures.
	(3 marks
	(5 marks)

4 (a) Show that the equation

$$\tan^2 x = 6 \sec x - 10$$

can be rewritten in the form

$$(\sec x - 3)^2 = 0$$

(3 marks)

(b) Hence solve, in the range $0 \le x \le 2\pi$, the equation

$$\tan^2 x = 6 \sec x - 10$$

giving your answers correct to 3 significant figures.

- **5** Given that *x* satisfies the equation $\arccos x = k$, where $0 < k < \frac{\pi}{2}$
 - (i) state the range of possible values of X,
 - express both $\sin k$ and $\tan k$ in terms of x. (ii)

(5 marks)

0 (a) The that for $0 \le X \le 1$, arcsin $X = arccos \sqrt{1 - X}$	6 (a)	Prove that for $0 \le x \le 1$, $\arcsin x = \arccos \sqrt{\frac{1}{x}}$	$\sqrt{1-x^2}$
---	-------	---	----------------

(4 marks)

(b) Explain why this is not true for $-1 \le x < 0$.

(2 marks)

- Sketch, in the interval $-2\pi \le \theta \le 2\pi$, the graph of y = 3 + 2 cosec θ , include **7** (i) asymptotes and label the coordinates of all maximum and minimum points.
 - Hence, deduce the number of solutions to the equation 3+2 cosec $\theta = \frac{1}{2}$ in the (ii) interval $-2\pi \le \theta \le 2\pi$.

(5 marks)

8 (a)	The function f is defined as $f(x) = \arccos x$, $-1 \le x \le 1$, and the function	g	is such
	that $g(x) = f(3x)$.		

Sketch the graph of y = f(x) and state the range of f.

(3 marks)

(b) Sketch the graph of
$$y = g(x)$$
 and state the domain of g.

(3 marks)

(c) Find the inverse function
$$g^{-1}(x)$$
 and state its domain.

(2 marks)

Hard Questions

1 (a) Rewrite tan θ cosec θ as a single trigonometric function.

(2 marks)

(b) Hence solve, in the range $-\pi < \theta \le \pi$, the equation

$$\tan\theta \csc\theta = -\frac{2\sqrt{3}}{3}$$

(3 marks)

2 Solve, in the range $0 \le \theta \le 2\pi$, the equation

$$\frac{2}{\csc \theta} - \csc \theta = 1$$

(6 marks)

3	Using the double angle formula $\sin 2A \equiv 2 \sin A \cos A$, find the solutions to the
	equation

$$\sec x \csc x - 75 = 5 \csc 2x$$

in the range $-\pi < x \le \pi$. Give your answers correct to 3 significant figures.

(6 marks)

4 (a) Show that the equation

$$2 \cot^2 x = 1 - 5 \csc x$$

can be rewritten in the form

$$(2 \csc x - 1)(\csc x + 3) = 0$$

(3 marks)

(b) Hence solve, in the range $0 \le x \le 2\pi$, the equation

$$2 \cot^2 x = 1 - 5 \csc x$$

giving your answers correct to 3 significant figures.

- **5** Given that x satisfies the equation $\arcsin x = k$, where $-\frac{\pi}{2} < k < 0$,
 - (i) state the range of possible values of X,
 - express both $\cos k$ and $\tan k$ in terms of x. (ii)

(5 marks)

6 Prove that for $-1 \le x \le 0$, $\arccos x = \pi - \arcsin \sqrt{1 - x^2}$.

(7 marks)

- Sketch, in the interval $-2\pi \le \theta \le 2\pi$, the graph of $y = -5 + \frac{1}{2}\sec \theta$, include asymptotes and label the coordinates of all maximum and minimum points.
 - (ii) Hence deduce the range of values for k for which the equation $-5 + \frac{1}{2} \sec \theta = k$ has no solutions.

(5 marks)

8 (a) The function f is defined as $f(x) = \arctan x$, $x \in \mathbb{R}$, and the function g is such that $g(x) = \frac{2}{\pi} f(x) - 1 .$

Sketch the graph of y = f(x) and state the range of f.

(3 marks)

(b) Sketch the graph of y = g(x) and state the range of g.

(3 marks)

(c) Find the inverse function $g^{-1}(x)$ and state its domain.

(2 marks)

Very Hard Questions

1 Solve, in the range $-\pi < \theta \le \pi$, the equation

$$\frac{\sec\theta\cot\theta}{\csc\theta\tan\theta} = -\sqrt{3}$$

(5 marks)

2 Solve, in the range $0 \le \theta \le 2\pi$, the equation

$$6\sec\theta + \frac{2\sqrt{3}}{\sec\theta} = -3 - 4\sqrt{3}$$

Leaving your answers as exact values.

(6 marks)

3 Using the double angle formulae $\sin 2A \equiv 2\sin A\cos A$ and $\cos 2A \equiv \cos^2 A - \sin^2 A$, find the solutions to the equation

$$(\csc x - \sec x) \left(\frac{1}{\sec x} + \frac{1}{\csc x} \right) = \cot 2x + 3$$

in the range $-\pi < x \le \pi$. Give your answers correct to 3 significant figures.

(6 marks)

4 Solve, in the range $0 \le x \le 2\pi$, the equation

$$3 \cot^2 x - 4\sqrt{3} = (6 - 2\sqrt{3}) \csc x - 3$$

Leaving your answers as exact values.

(6 marks)

- **5** Given that x satisfies the equation $\arctan x = k$, where $-\frac{\pi}{2} \le k \le 0$
 - state the range of possible values of X, (i)
 - express both $\sin k$ and $\cos k$ in terms of x. (ii)

(5 marks)

6 Prove that for $x \le -1$,

$$\arcsin\frac{1}{x} = -\arccos\left(-\frac{\sqrt{x^2 - 1}}{x}\right)$$

(7 marks)

7 (a) Sketch, in the interval $-2\pi \le \theta \le \pi$, the graph of $y = 2 + 3 \sec(\theta + \frac{\pi}{2})$, include asymptotes and label the coordinates of all maximum and minimum points.

(3 marks)

(b) Deduce the maximum and minimum values of $\frac{1}{2+3\sec\left(\theta+\frac{\pi}{2}\right)}.$

(4 marks)

8 (a) The function f is defined as $f: x \mapsto \arcsin x$, $-1 \le x \le 1$, and the function g is such that

$$g(x) = \frac{4f\left(\frac{x}{3}\right)}{\pi} + 2$$

Sketch the graph of y = g(x) and state the domain and range of g.

(4 marks)

(b) Define the inverse function g^{-1} in the form g^{-1} : $x \mapsto ...$

(2 marks)

(c) Over the same domain as g, the function h is defined as h: $x \mapsto p \arccos(qx)$.

Given that h(x) = -g(x) for all x in the two functions' common domain, determine the values of p and q.