

CS7GV1: Computer Vision

Course Number : CS7GV1

Instructor : Dr. Subrahmanyam Murala

Email : muralas@tcd.ie

Wednesday : 9.00 AM - 11.00 AM (Lloyd Institute (INS))

COURSE SYLLABUS

UINT-I: Introduction to Computer Vision

- ☐ Introduction of CV
- ☐ Applications of CV
- ☐ Linear Filters
- ☐ Edge Detection
- ☐ Image Pyramids

COURSE SYLLABUS

<u>UINT-II</u>: Feature Detection and Matching

- Interest points and Harris corner detection
- ☐ Scale Invariant Keypoints
- ☐ Scale Invariant Feature Descriptors (SIFT)
- ☐ Speed Up Robust Features (SURF) (Self Study)

COURSE SYLLABUS

UINT-III: Multiple Views and Motion

- **☐** Stereo Introduction
- Camera Calibration
- **☐** Stereo Correspondence
- ☐ Optical Flow
- Motion Detection in Videos

COURSE SYLLABUS

UINT-IV : Machine Learning for Comp	outer Vision
☐ K- Nearest Neighbor (KNN)	
□ Neural Networks (NN)	
☐ Deep Lerning-Convolutional Neu	ral Networks (CNNs)
☐ Auto-Encoders	
□ Deep Generative Models	
□ Diffusion Models	
☐ Transformers	

COURSE SYLLABUS

UINT-V: DL for Computer Vision Applications

- ☐ CNN architectures for Classification
- ☐ Regression Applications
- ☐ Sematic Segmentation
- Motion Detection (FlowNet)
- ☐ Scene Understanding, etc.

TEXT BOOKS

- □ Richard Szeliski, "Computer Vision: Algorithms and Applications," Springer, 2010.
- ☐ Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Prentice Hall.
- □ Research Publications (will be provided during lectures).

EVALUATION CRITERIA:

Method	Marks (%)
Examinations	35%
Final Project	35%
Assignments	30%

- **Assignments:** 30% (3-5 python coding assignments)
- **Examinations:** 35% (3 quizzes will be conducted, each lasting 30 minutes, with weightings of 8%, 12%, and 15% respectively)
- Final Project: 35% (includes project demo and presentation)

