CS432/632: Reinforcement Learning Lab Assignment #3

Due Date: March 21, 2024

Instructor: Dr. Surya Prakash (E-mail: surya@iiti.ac.in)

Course TAs:

1. Prasad Kanhegaonkar (E-mail: phd2101201007@iiti.ac.in)

2. Doli Uppal (E-mail: phd2201201001@iiti.ac.in)

3. Prashant Digambar Pathak (E-mail: phd2301101010@iiti.ac.in)

4. Aishwarya Priyadarshini (E-mail: ms2304101003@iiti.ac.in)

5. Aravind Ramagiri (E-mail: phd2301101006@iiti.ac.in)

Iterative Policy Evaluations

Problem 1: Consider an undiscounted (that is, γ =1), episodic task in a 4 x 4 grid world with following policy and reward mechanism. The objective is to reach the terminal states (denoted by T) from any given state.

Policy: Equiprobable random policy (that is, actions UP, DOWN, LEFT, RIGHT, all have the same probability) and actions are deterministic.

Reward: $R_{s,s'}^a = -1$ for actions a and transition from states s, s'

Consider that V(s)=0 for all the states initially.

T	1	2	3
4	5	6	7
8	9	10	11
12	13	14	T

Problem 2: Do the above problem considering that <u>actions are stochastic (desired action has 0.4 probability whereas the rest have 0.2 each)</u> and the task has discounted reward collection with γ =0.1.

<u>Submission</u>: The programs written for above problems need to be submitted for evaluation. The submissions will be taken using a Google form and the link for the same is https://forms.gle/k8vZ5Uc9WjSTSQ5n6. You need to also demonstrate your code to one of the TAs with proper explanation.