

A Feature-Driven Fixed-Ratio Lossy Compression Framework for Real-World Scientific Datasets

Md Hasanur Rahman*, Sheng Di[†], Kai Zhao[†], Robert Underwood[†], Guanpeng Li*, Franck Cappello[†]

*Computer Science Department, University of Iowa, IA, USA

*Mathematics and Computer Science Division, Argonne National Laboratory, IL, USA

*Computer Science Department, University of Alabama at Birmingham, AL, USA

Introduction

Challenges in scientific data management

- Extremely large volume of data per simulation
- Nyx^[1] can produce upto hundreds of perabytes of data per simulation
- Threat to limited available memory capacity, storage, space and I/O bandwidth

Cosmology Simulation: Nyx^[2]

[1] Almgren et al, "Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY" [2] https://deixismagazine.org/2013/12/rewinding-the-universe

Introduction

Integration of lossy compressor support

- Error bounded lossy compression (e.g., SZ[18], ZFP[12])
- High compression ratio with high data fidelity

Research gap

- X Obtaining target compression ratio requires iterative executions under many error bounds
- In advance knowledge before compression
- Better utilization of limited resources
- An efficient fixed-ratio mechanism is needed
- X No lossy compressor supports fixed-ratio mode

Introduction

Existing fixed-ratio framework

- **FRaZ** [20]: a generic fixed-ratio framework
- X High computational cost
- × Need to run underlying compressor at each iteration
- × Requires trail-and-error-based iterative runs

Our Solution: FXRZ

- An efficient fixed-ratio compressor-agnostic framework
- Efficient compressor-agnostic fixed-ratio framework is non-trivial
- Exploit data characteristics such as smoothness, textures, distribution
- No need to run the underlying compressor

Research Background

- Compression ratio: ratio of original data size to the compressed one
- Data distortion: quality of reconstructed data w.r.t original data
- Error bound: Maximum error between reconstructed and original data

FXRZ Design Overview

Data features extraction

Data smoothness, spreadness, special patten

Optimization strategies

- 4-point stripe uniform sampling for efficiency
- Adjust target compression ratio for better accuracy

ML model

Random forest regressor

Data augmentation

- Why? To generate ample training samples without expensive compressor run
- How? Augment a few measured compression results based on interpolation to obtain ample results

FXRZ: Data Features Extraction

Value range

(Max value – Min value) from sample data

Mean value

Average of sampled data values

Mean Lorenzo difference (MLD)

$$lorenzo_{i,j} = d_{i-1,j} + d_{i,j-1} - d_{i-1,j-1}$$

2D Case:

Mean spline difference (MSD)

[3]
$$spline_i = -\frac{1}{16}d_{i-3} + \frac{9}{16}d_{i-1} + \frac{9}{16}d_{i+1} - \frac{1}{16}d_{i+3}$$

(b) Longitudinal Section Visualization

FXRZ: Analysis of Data Features

Data characteristics by data features

- Value Range and Mean Value reveal the data amplitude and spreadness
- MND and MLD reveal the spatial data smoothness
- MSD feature is particularly effective in detecting the wave textures/patterns

Feature	Nyx Baryon Density	QMCPack BigScale	RTM SmallScale	RTM BigScale	Hurricane TC		
Value Range	4.90	35.36	0.16	0.05	104.81		
Mean Value	0.97	16.75	0.00	0.02	45.63		
MND	0.01	0.29	1.1E-4	5.5E-5	0.67		
MLD	0.31	0.30	9.2E-5	4.0E-5	31.30		
MSD	8.4E-3	0.33	1.3E-4	6.1E-5	0.79		

Table: Feature values across datasets

Figure: Compression ratios with datasets and compressors under same error bound

FXRZ: Optimization Strategies

Observation

- overall compression ratio is very sensitive to smooth region
- These regions lead to overestimation of true compressibility

Solution: Adjusting TCR for better accuracy

- Compressibility Adjustment (CA): Need to adjust TCR based on density of data
- Split the dataset into small blocks, e.g., 4x4 for 2D
- Constant and non-constant block: based on value range in block
- 15% of mean value is used as value range threshold
- Formula: ACR = TCR * R

Fig.: Illustration of constant and non-constant blocks

Fig.: CA optimization of Nyx Baryon Density with SZ

Experiment Setup

Datasets

Frequently used in lossy compression studies [45-48]

App.	# Fields	TSteps	Dim	Size	Domain
Nyx-1	4	6	512×512×512	12.00GB	Cosmology
Nyx-2	4	1	512×512×512	2.00GB	Cosmology
QMCPack-1	1	1	288×115×69×69	0.59GB	Quantum Structure
QMCPack-2	2	1	480×115×69×69	1.96GB	Quantum Structure
QMCPack-3	2	1	816×115×69×69	3.33GB	Quantum Structure
RTM-Small	1	7	449×449×235	1.24GB	Seismic Wave
RTM-Big	1	2	849×849×235	1.26GB	Seismic Wave
Hurricane	2	7	100×500×500	1.30GB	Weather

Table: Datasets

Assessment levels of FXRZ capability

- Capability level 1: across different time steps of same application model
- Capability level 2: across different simulation configurations within application model

Baseline: FRaZ [20]

Evaluate FRaZ under two max-iterations: 6 and15

Estimation error

■ |TCR - MCR| / TCR

Evaluation: Accuracy (Capability 1 and 2)

Figure: Estimation error comparison with different testing fields and compressors

Evaluation: Efficiency W.R.T Compression Time

Comparison between FXRZ and FRaZ with 15 iterations

■ Average analysis time based on 25~30 uniformly selected TCRs

App.	Test Fields/	SZ		ZFP		MGARD+		FPZIP	
	Snapshots	FXRZ	FRaZ	FXRZ	FRaZ	FXRZ	FRaZ	FXRZ	FRaZ
Nyx	FRaZ can be 1	_		than F		error	bound	08x 06x 11x 11x	17.31x 10.75x 25.36x 20.84x
QMCPack	BigScale Spin0 BigScale Spin1	0.08x 0.08x	7.72x 7.78x	0.07x 0.07x	7.69x 5.42x	0.068x 0.07x	11.42x 11.51x	0.08x 0.08x	22.01x 17.12x
RTM	BigScale Snapshot-750 BigScale Snapshot-800	0.09x 0.09x	8.10x 7.23x	0.68x 0.71x	32.72x 29.41x	0.12x 0.13x	21.29x 19.44x	0.13x 0.13x	16.85x 15.79x
Hurricane	QCLOUD Snapshot-48 TC Snapshot-48	0.20x 0.17x	9.14x 5.93x	0.47x 0.19x	15.57x 14.84x	0.22x 0.18x	14.09x 21.20x	0.22x 0.18x	14.78x 25.72x
Average	Across All Domains	0.10x	6.85x	0.24x	13.19x	0.11x	17.03x	0.12x	18.65x

Table: Average analysis time cost with respect to compression time

Conclusion & Acknowledgement

- We propose FXRZ a feature-driven compressor-agnostic framework
- Goal: efficient estimation of appropriate error bound setting based on given TCR
- Evaluate FXRZ using 4 lossy compressors with 10-real world scientific datasets
- The average estimation error is only 8.24%
- FXRZ's online analysis time is only 0.14x compared to compression time
- FXRZ is 108x faster than FRaZ

Email: mdhasanur-rahman@uiowa.edu

Webpage: https://hasanur-rahman.github.io

