Affine Root Systems

Clair Dai

June 23, 2016

Contents

1	Notation and Terminology	2
2	Defn of ARS	3
3	Direct sums and reducibility	4
4	Chambers and Bases	5
5	Classification of irreducible reduced ARS	6

The elements of S are affine-linear functions on a f.d.v.s. real Eucildean space E and satisfy axioms analogous to those of finite root system. The set S of affine roots are infinite, and the Weyl group W(S) is an affine Weyl group, that is to say an infinite group of displacements of E generated by reflections.

One way to construct ARS is from FRS. Let R be a (not necessarily reduced) FRS in V, and let <, > be a scalar product on V which is invariant under the action of the Weyl group W(R). For each $\alpha \in \mathbb{R}$, $k \in \mathbb{Z}$ be the affine-linear fct on V defined by $a_{\alpha,k} := <\alpha, x>+k$, then we get a ARS S(R) defined by

$$S(R) := \{a_{\alpha,k} : \text{ where k is odd, if } \frac{1}{2}\alpha \notin R; k \in \mathbb{Z}, \text{ o.w } \}$$

For an ARS S, we define positive roots and negative roots in the usual way, by choosing Weyl chamber C for S. If S is irreducible, C is a rectilinear l-simplex $(l = \dim E)$.

1 Notation and Terminology

Let E be an affine space over a field K: that is to say E is a set on which a K v.s. V acts faithfully and transitively. (Call the elements of V translations of E).

Definition 1.1. Let E, E' affine spaces /K, V, V' its vector space of translation. A map $f: E \to E'$ is an affine linear if there exists a K-linear map $Df: V \to V'$, called derivative of f s.t.

$$f(x+v) = f(x) + Df(v) \tag{1}$$

for all $x \in E$ and $v \in V$. In particular, a function $f : E \to K$ is affine linear iff there exists a linear form $Df : V \to K$ s.t. the above equation holds.

Let F denote the K-v.s of all affine linear fcts $f:E\to K$, then $D:F\to V^*$, whose kernel is the line F^0 in F consisting of the constant fcts.

Now let $K = \mathbb{R}$, then we have a bilinear form $\langle u, v \rangle$, (what?) then (2.1) becomes

$$f(x+v) = f(x) + \langle Df, v \rangle$$

and Df is the gradient of f.

Definition 1.2. Let $\langle f, g \rangle$ be a positive semi-def bilinear form on the spaces F as follows:

$$\langle f, g \rangle := \langle Df, Dg \rangle \tag{2}$$

 $f \in F$ is isotropic iff f is a constant fct. For $0 \neq v \in V$, we define $f^{\vee} := \frac{2f}{\langle f, f \rangle}$ and $H_f := \{x \in E : f(x) = 0\}$ where H_f is an affine hyperplane in E. The reflection is the affine lin isometry $w_f : E \to E$ given by

$$w_f(x) = x - f^{\vee}(x)Df = x - f(x)Df^{\vee}$$
(3)

 w_f acts on $F: w_f(g) = g \circ w_f^{-1} = g \circ w_f$. Explicitly, for any $g \in F$

$$w_f(g) = g - f^{\vee}(x)Df = x - f(x)Df^{\vee} \tag{4}$$

Definition 1.3. For $0 \neq u \in V$, let $w_u : V \to V$ be the reflection in the hyperplane orthogonal to u, so that $w_u := v - \langle u, v \rangle u^{\vee}$

Proposition 1.4. For any non-constant fct $f \in F$ we have $D_{w_f} = w_{Df}$.

Proof. Let $v \in V$ and $x \in E$, then

$$(D_{w_f})(v) = w_f(x+v) - w_f(x) = (x+v - f(x+v)Df^{\vee}) - (x - f(x)Df^{\vee}) = v - (f(x+v) - f(x))Df^{\vee} = v - \langle Df, v \rangle Df^{\vee} = w_{Df}(v)$$

Finally, let $w: E \to E$ be an affine linear isometry. Then its derivative Dw is a linear isometry of V, i.e. we have $\rangle(Dw)u, (Dw)v\langle$ for all $u, v \in V$. The map w acts by transposition on $F: w(f) = f \circ w^{-1}$ and we have

Proposition 1.5. D(w(f)) = (Dw)(Df)

Proof. For if $v \in V$ and $x \in E$, then

$$\begin{split} \langle D(wf), v \rangle &= (wf)(x+v) - (wf)(x) \\ &= f(w^{-1}(x+v)) - f(w^{-1}(x)) \\ &= f(w^{-1}(x) + (Dw)^{-1}(v)) - f(w^{-1}(x)) \\ &= \langle Df, (Dw)^{-1}v \rangle \\ &= \langle Dw(Df), v \rangle \end{split}$$

2 Defn of ARS

Let E be a real Euclidean space of dim l, and let V be its space of translations. We give E the usual topology, defined by the mrtric ||x - y|| si that is locally compact. Let F denote the v.s. of affine linear fcts on E.

Definition 2.1. An affine root system on E is defined to be a subset S of F satisfying the following axioms:

(AR 1) S spans F, and the elements of S are nonisotropic, i.e. there are non-constant functions.

(AR 2) $w_{\alpha}S = S$

(AR 3) $\langle \alpha, \beta^{\vee} \rangle \in \mathbb{Z}$ for all $a, b \in S$

(AR 4) W(S)(as a discrete group) acts properly on E

The elements of S are called affine roots. Let $W(S) := w_a : a \in S$ be the Weyl group of S

Remark 2.2. In finite case, we deduce that if $a, \lambda a$ are proportional affine roots, then by (AR3). Since $\langle a, \lambda a^{\vee} \rangle = \langle a, \frac{2\lambda a}{\langle \lambda a, \lambda a \rangle} \rangle = \frac{2}{\lambda} \in \mathbb{Z}$, and $\langle \lambda a, a^{\vee} \rangle = \langle \lambda a, \frac{2a}{\langle a, a \rangle} \rangle = 2\lambda \in \mathbb{Z}$. Thus, $\lambda = \pm \frac{1}{2}, \pm 1, \pm 2$.

Definition 2.3. We said root a is indivisible if $a \in S$ but $\frac{1}{2}a \notin S$. We say S is reduced if each $a \in S$ is indivisible (i.e. if the only roots proportional to a are $\pm a$)

Here we have a good example to understand the def of ARS.

Definition 2.4. Let R be a FRS in a \mathbb{R} f.d.v.s V. For each $\alpha \in R$ and $k \in \mathbb{Z}$, define affine linear functional on V

$$a_{\alpha,k}(x) = <\alpha, x > +k \tag{5}$$

where <, > is a pos-def bilinear form on V invariant under the Weyl group of R. Let $S(R) := \{a_{\alpha,k}\}.$

Proposition 2.5. $S(R) := \{a_{\alpha,k}\}$ is a reduced ARS on V and $n \in \mathbb{Z}$ if $\frac{1}{2}\alpha \notin R$; $n \in 2\mathbb{Z}+1$ if $\frac{1}{2}\alpha \in R$

Proof. To prove this we need to verify four axioms and show it is reduced, we look at (AR 2), let $a = a_{\alpha,k}, b = a_{\beta,l} \in S(R)$, since $\langle \alpha^{\vee}, \beta \rangle = \langle a^{\vee}, b \rangle$,

$$w_a(b)(x) = b(x) - \langle a^{\vee}, b \rangle a(x)$$
 (6)

$$= <\beta, x> +n - < a^{\lor}, b> (<\alpha, x> +m)$$
 (7)

$$= <\beta + < a^{\vee}, b > \alpha, x > +n - < a^{\vee}, b > m$$
 (8)

$$= <\beta + <\alpha^{\vee}, \beta > \alpha, x > +n - <\alpha^{\vee}, b > m \tag{9}$$

hence
$$w_a(b) = a_{\gamma,k}$$
, where $\gamma = \beta + \langle \alpha^{\vee}, \beta \rangle \alpha$ and $k = n - \langle \alpha^{\vee}, b \rangle m$.

3 Direct sums and reducibility

Let E_i be f.d. real Euclidean spaces, let V_i be the space of translations of E_i , F_i the space of affine llinear fuctions on E_i . Let E, V be the profuct of E_i, V_i respectively. Thus, E is the translation of V, the action of V on E is defined by

$$(x_1,...,x_r) + (v_1,...,v_r) = (x_1 + v_1,...,x_r + v_r)$$

and the bilinear form on V is defined as

$$<(u_1,...,u_r),(v_1,...,v_r)>:=\sum < u_i,v_i>$$

Now let F be the space of affine linear functions on E, let p_i be the projection of E onto E_i . Then the map $\pi_i : F_i \to F$ defined by $\pi_i(f_i) := f_i \circ p_i$ are injective isometries, i.e. it preserves the scalar product (1.2). The space $p_i(F_i)$ generate F, are mutually orthogonal, and contain the line F^0 of constant functions.

Let S_i be an ARS on E_i and $S'_i = \pi_i(S_i) \subset F$. let

$$\bigcup_{i=1}^{r} S_i' \tag{10}$$

Proposition 3.1. S is an ARS on E. We call root system S the direct sum of the S_i , we denote it by $\bigsqcup_{i=1}^r S_i'$

Proposition 3.2.

$$S_i', S_j'$$
 are orthogonal if $i \neq j$ (11)

Conversely, let E be a f.d. real Eucliden space, V its space of translations, and S an affine root systems on E. Let S'_i be substets of S satisfy (2.6), (2.7). From (δ 1), it follows that the S'_i are pairwise disjoint, then partition of S

4 Chambers and Bases

Let $\mathfrak{h} := \{H_a : a \in S\}$ a set of affine hyperplanes in the E, $w(H_a) = H_{wa}$, for all $w \in W(S)$ and $a \in S$.

Proposition 4.1. h is locally finite.

Proof. $E - \bigcup_{a \in S} H_a$ is open in E since affine roots vanishes on \mathfrak{h} locally finite. Therefore, all connected components of it are open bacause E iis locally connected. These components are called the chambers (some other papers used alcoves, however, they have same literally meaning) of W(S).

Proposition 4.2. The Weyl group W(S) acts faithfully and transtively on the set of chambers.

To simplify statements of results, sps S is irreducible. Then each chamber is an open rectilinear l-simplex. If S is irreducible, the chamber are orthogonal products of simplexes.

Choose a chamber C from now on, $x_i, i=0,...,l$ be the vertices of C, then $C=\{x=\sum_{i=0}^l \lambda_i x_i \in E: \sum_{i=0}^l \lambda_i =1, \lambda_i>0\}$

Now let B ne the set of indivisible affine roots $a \in S$ which s.t. H_a is a wall of C, and a(x) > 0 for all $x \in C$. Then B consists of l + 1 roots, one for each wall of C. Clearly B is a basis of F.

Proposition 4.3. The Weyl group W(S) is generated by the reflections w_a for $a \in B$

Proposition 4.4. Let $b \in S$ be indivisible. Then b = wa for some $w \in W(S)$ and some $a \in B$

Proof. The hyperplane H_b is a wall of some chamber C' on which b is positive. Since the Weyl group W(S) acts faithfully and transtively on the set of chambers, C' = wC for some $w \in W(S)$. Hence $w^{-1}b$ is a positive on C, and $H_{w^{-1}b} = w^{-1}H_b$ is a wall of C, so that $w^{-1}b \in B$

Proposition 4.5. Let L be the lattice in F generated by B, which is a free abelian group of rank l + 1, then L = L(S)

Proposition 4.6. Each affine root $a \in S$ is a linear combo of $a_0, a_1, ..., a_l$ with rational integer coefficients which are all ≥ 0 if a is positive, and all ≤ 0 if a is negative.

Definition 4.7. We call such B a basis of the ARS S

Example 4.8. Let R be a finite irreducible root system, $\alpha_1, ... \alpha_l$ a basis of R, and let ϕ be the highest root of R relative to this basis. Then the affine roots $a_0 = 1 - \phi, a_i = \alpha_i (i = 1, ..., l)$ form a basis if the ARS S(R).

5 Classification of irreducible reduced ARS

Let S be an irred reduced ARS, C chamber of S, $x_0, ..., x_l$ vertices of C, and $B = a_0, ..., a_l$ the corresponding basis. For each i, let F_i be the subspace of F vanish at $x_i, S_i = S \cap F_i$. On F_i the bilinear form $\langle f, g \rangle$ is positive definite. Let W_i be the subgroup of W(S) which fixes x_i .

Proposition 5.1. (1) S_i is a FRS in F_i , and is reduced if S is reduced.

- (2) $B a_i$ is a basis of S_i
- (3) W_i is the Weyl group of S_i

Now assume S is reduced. We construct a Dynkin diagram for S according to the usual prescription: the nodes of the diagram for S $a_0, a_1, ..., a_l$ belongs to the basis B, and the bonds and arrows follow the same rules for FRS. One thing to notice here is that for rank 1 ARS S, we have to allow bonds which have infinitely multiplicity

If R is of type X, where X is one of the symbols A_n , B_n , C_n , D_n , BC_n , E_6 , E_7 , E_8 , F_4 , G_2 we say that S(R) (resp. $S(R)^{\vee}$) is of type X (resp. X^{\vee})

Theorem 5.2. Every irreducible reduced ARS is similar to S(R) or $S(R)^{\vee}$.

Figure 1: Dynkin Diagrams