コンピュータ理工学実験レポート 参考例

単元3 「電圧降下法による抵抗測定」

1. 目的 (通常はハンドアウトに記載されているので、簡潔にまとめる)

例:抵抗に流れる電流と両端の電圧から抵抗値を測定する。測定機器、機器接続方法により、測定値が異なる場合があることを確認し、その原因を理解する。

2. 理論(背景となっている原理を紹介する。自分で調べた参考文献、ウェブなどからの知識を盛り込むこともあり得る。)

例:抵抗測定法として電圧降下法と、ブリッジ法がある。ここでは電圧降下法について述べる。

注)ブリッジ法について自分で調べたことを述べても良い。

抵抗値を調べるには、抵抗に流れる電流と抵抗の両端の電位差(電圧降下という)がわかればオームの法則から R=V/I により、抵抗値が求まる。測定器としては電流を求めるための電流計と電圧を求めるための電圧計が必要である。それらの接続の仕方によって、I-V 法と V-I 法がある。

注) 図、回路図等はハンドアウトの記載のものを流用しても良い。

- 3. 方法,結線図 (実験手順、写真・スケッチ)
- 4. 使用器具&機器、測定対象 機材名・ID・素子名…

(項目 3.,4. は、まとめて 3. 実験内容 としても良い。)

例:

使用機材:

- ・テスター メーカー、型番、固有番号など
- ・アナログ直流電圧計 横河 型番、固有番号など

レンジ: 0.3, 1.0, 3.0, 10, 30 V

・アナログ直流電流計 横河 型番、固有番号など

mAメータ レンジ: 0.3, 1.0, 3.0, 10, 30 mA

 μ A メータ レンジ: 3, 10, 30, 100, 300, 3000 μ A

・直流電源 メーカー、型番、固有番号など

最大 18V 出力

ブレッドボード、配線キット

測定試料

抵抗

カラーコード、公称値を記載 表にすると見やすい。

測定方法

具体的配線を回路図など用いて示す。

工夫したこと:(特になければ記載の必要なし)

- 1) I-V 法、V-I 法は以下の図のように、電圧計の端子の片側だけを電流計の前後に接続することで 簡単に切り替えができるように工夫した。
- 2)抵抗はあらかじめブレッドボード上に全種類を配置し、接続を切り替えるだけで抵抗を簡単に選択できるように工夫した。

- 5. 測定結果 (取得テ ー 療と計算結果一覧、実験式、ク ラフ[単位]など)
- 例)(測定結果を表にまとめる。表が大きすぎる場合は、測定条件は別にまとめて、抵抗値のみの表にしたほうが良い。)

以下に、各測定方法、測定レンジ、測定結果を表に示す。

STATE TO A CONTRACT OF THE CON									
公称值	$LCR[\Omega]$	テスタ	レンジ	電圧計[V]	レンジ	電 流 計	レンジ	測定値	V-I 法
[Ω]		[Ω]		(I-V 法)		[mA]		[Ω]	省略->
						(I-V 法)		V/I(I-V)	
1.2	1.25								

例) 表に示す測定結果をグラフに示す。

(別紙としてグラフ用紙がある場合は、その旨記す。)

注)図から読み取れる傾向を記す。

例)

- 1) 公称値と LCR メータは XX%以内で一致する。これはカラーコードの表示精度以内であった。
- 2) I-V 法では、高い抵抗値($1M\Omega$?) では、公称値より低い傾向がある。
- 3) V-I 法では、小さな抵抗(1Ω ?)では、公称値よりも大きな実測値が得られた。 などなど・・・・・。

6. 考察 (結果の解釈と、結果から演繹される主張)

(ここでは、なぜ公称値と測定値に差が生じたのかを議論する。)

理想的には電圧計は内部抵抗 $R_V=\infty\Omega$ 、電流計は $R_I=0$ Ω であるが、実際には有限の内部 抵抗 R_V 、 R_I を持つため、上記の回路は下記のように表わすことができる。

上図の下の図は電流計、電圧計の内部抵抗のみを表示した等価回路である。この図に示すように I-V 法では電流は電圧計の内部抵抗 Rv と被測定抵抗 Rx とに分流する。したがって電流計の測定値 I は、Rx に流れる電流よりも大きい。つまり見かけ上、抵抗値は低く見える。

$$I = \frac{V}{R_V} + \frac{V}{R_V}$$
 $R = \frac{V}{I} = 以下省略$

(この議論を進めるとどんな場合に測定値と公称値のずれが大きくなるか、さらには電圧計の内部抵抗を具体的に何 Ω か求めることができる。もちろんレンジにより異なる。 V-I 法についても同様の議論をし、どんな場合に測定値と公称値のずれが大きくなるか、さらには電流計の内部抵抗を具体的に何 Ω か求めることができる。もちろんレンジにより異なる。)

7. まとめ

電圧降下法により、 $1\Omega \sim 1\,\mathrm{M}\Omega$ まで 5 種類の抵抗値を LCR メータ、テスター、I-V 法、V-I 法など複数の測定法により測定した。その結果、 ・・・・・ 以下省略。

8. (あれば)参考資料 教科書・ハンドアウト以外の文献、WWW

例:(付録として)ブリッジ法について調査した結果を添付する。

ブリッジ法はホイーストンブリッジが代表的であり、高精度に抵抗を測定する場合に用いられる。 以下省略。・・・・。