STS-基于2D 全景图像的牙齿分割任务技术文档-

 C_C

1. 赛题任务及难点介绍

1.1 赛题介绍

找到稳健的基于半监督的牙齿分割方法,以促进基于随着计算机辅助设计(CAD)的牙科的发展。

1.2 数据概况

初赛与复赛独立,复赛不允许使用初赛数据进行训练使用;

比赛共提供3000张牙齿图像,包含900张有标签的牙齿图像(提供原图以及对应的mask)以及2100张 无标签的牙齿全景图像。

1.3 数据现状、难点

复赛数据集当中,包含标签的数据量较少,且标签由不同机构、团体共同完成,不同团体的标注风格 有差异;

训练数据集有样本多次出现、且不均匀分布在labelled训练集以及unlabelled训练集,对unlabelled训练集利用带来干扰。

2. 解决方案

2.1 数据划分

使用KFold将训练数据重新划分为训练集和验证集(4:1),保证训练样本和验证样本分布一致

fold0	Train	Train	Train	Train	Valid
fold1	Train	Train	Train	Valid	Train
fold2	Train	Train	Valid	Train	Train
fold3	Train	Valid	Train	Train	Train
fold4	Valid	Train	Train	Train	Train

2.2 数据预处理

2.2.1 重复图像筛选

经过我们统计观察,训练样本当中存在大量重复出现的图片,在划分数据时可能会将一组重复图像同时划分到训练集和验证集,会导致验证集泄露,验证指标虚高,错过真正合适的checkpoint

train_477.png

train_836.png

train_160.png

train_684.png

2.2.2 多标签样本过滤

在重复图像对当中,有相当一部分数据存在标签不一致现象,我们尝试了多种方式处理这种类型数据:

- 1.同时保留两种情况,但同时位于训练集或测试集。
- 2.同时删除两个标签的样本
- 2.删除其中一个保留另一个

经实验测试,保留较精细的,测试集表现最佳

2.3 模型框架

图像经预处理后统一resize为1024*1024,或者640,1280尺寸送入编码层提取特征,提取到的特征送入解码层得到预测结果。

2.4 伪标签

我们的5fold交叉验证分数与测试集分数有相同的涨跌趋势,使用labelled数据集训练的本地最好的模型对unlabelled数据集进行推理,得到伪标签。

针对伪标签的使用,我们对常见的使用方式进行了实验:

- 1.真实标签+伪标签混合训练;
- 2.伪标签预训练+真实标签训练微调;
- 3.伪标签预训练+真实标签+伪标签混合训练微调;

Labelled data	Pesude data	Pesude Pretrain	Cross valid
$\sqrt{}$	×	×	0.9477
$\sqrt{}$	×	$\sqrt{}$	0.9538
$\sqrt{}$	$\sqrt{}$	×	0.9546
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0.9559

2.5 困难样本训练

将验证集分数排行最低10%的数据加入训练集进行训练,增加对困难样本的捕捉能力

2.6 模型训练参数配置

2.6.1 损失函数

CELoss+Dice Loss+Lovasz Loss

2.6.2 优化器

AdamW

2.6.3 学习率

3e-4

2.6.4 学习率下降策略

余弦衰减

2.7 模型预测

2.7.1 多模多尺度融合

训练样本采用1024*1024、640*1280两种尺度进行Unet和Sam的训练,推理时加权融合预测

2.7.2 TTA

TTA是常用的推理手段,对测试图像进行增强,增加预测的准确性。

3. 结果展示

4. 参考资料

1. Fang, Yuxin, et al. A Visual Representation for Neon Genesis - arXiv preprint arXiv:2303.11331,2023.

- 2. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Doll´ar, P., and Girshick, R., "Segment anything," (2023).
- 3.Tan, Mingxing, et al. Smaller Models and Faster Training arXiv preprint arXiv:2104.00298,2021.
- $4. Zhang\ H\ ,\ Cisse\ M\ ,\ Dauphin\ Y\ N\ ,et\ al.mixup:\ Beyond\ Empirical\ Risk\ Minimization [J].$
- 2017.DOI:10.48550/arXiv.1710.09412.
- 5.Lee D H .Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks[J]. 2013.