Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 16/17

$$y := Ax, \qquad x, y \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n}$$

1D matrix distribution

$$y := Ax, \qquad x, y \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n}$$

• A is partitioned along the rows, and distributed over p processes. Process i owns block A_i .

$$A = \begin{bmatrix} A_0 \\ \hline A_1 \\ \hline \vdots \\ \hline A_{p-1} \end{bmatrix},$$

$$y := Ax, \qquad x, y \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n}$$

- A is partitioned along the rows, and distributed over p processes.
 Process i owns block A_i.
- x is partitioned in p blocks; process i owns block x_i .

$$A = \begin{bmatrix} \frac{A_0}{A_1} \\ \vdots \\ A_{p-1} \end{bmatrix}, \quad x = \begin{pmatrix} \frac{x_0}{x_1} \\ \vdots \\ x_{p-1} \end{pmatrix},$$

$$y := Ax, \qquad x, y \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n}$$

- A is partitioned along the rows, and distributed over p processes. Process i owns block A_i .
- x is partitioned in p blocks; process i owns block x_i .
- Goal: Compute y, and distribute it the same way as x.
 Rationale: y overwrites x.

$$A = \begin{bmatrix} \frac{A_0}{A_1} \\ \vdots \\ A_{p-1} \end{bmatrix}, \quad x = \begin{pmatrix} \frac{x_0}{x_1} \\ \vdots \\ x_{p-1} \end{pmatrix}, \quad y = \begin{pmatrix} \frac{y_0}{y_1} \\ \vdots \\ y_{p-1} \end{pmatrix}$$

1D matrix distribution

$$y := Ax, \qquad x, y \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n}$$

- A is partitioned along the rows, and distributed over p processes. Process i owns block A_i .
- x is partitioned in p blocks; process i owns block x_i .
- Goal: Compute y, and distribute it the same way as x.
 Rationale: y overwrites x.

$$A = \begin{bmatrix} \frac{A_0}{A_1} \\ \vdots \\ A_{p-1} \end{bmatrix}, \quad x = \begin{pmatrix} \frac{x_0}{x_1} \\ \vdots \\ x_{p-1} \end{pmatrix}, \quad y = \begin{pmatrix} \frac{y_0}{y_1} \\ \vdots \\ y_{p-1} \end{pmatrix}$$

Note: A_i, x_i and y_i indicate a *block* of rows, not a single row.

1D matrix distribution

Algorithm

Paolo Bientinesi | MPI

1D matrix distribution

Algorithm

- 1 $x = Allgather(x_i)$ x becomes available to every process
- 2 $y_i = A_i x$ local computation

Parallel cost (lower bound for $T_p(n)$)

1D matrix distribution

Algorithm

- 1 $x = Allgather(x_i)$ x becomes available to every process
- 2 $y_i = A_i x$ local computation

Parallel cost (lower bound for $T_p(n)$)

- $2\frac{n^2}{p}\gamma$

Sequential cost

1D matrix distribution

Algorithm

- 1 $x = Allgather(x_i)$ x becomes available to every process

Parallel cost (lower bound for $T_p(n)$)

- $2\frac{n^2}{p}\gamma$

Sequential cost

• $T_1(n) = 2n^2\gamma$

1D matrix distribution

Speedup

Paolo Bientinesi | MPI

1D matrix distribution

$$S_p(n) = \frac{T_1(n)}{T_p(n)} = \frac{2n^2\gamma}{\log_2(p)\alpha + n\beta + 2\frac{n^2}{p}\gamma}$$

Efficiency

1D matrix distribution

$$S_p(n) = \frac{T_1(n)}{T_p(n)} = \frac{2n^2\gamma}{\log_2(p)\alpha + n\beta + 2\frac{n^2}{p}\gamma}$$

Efficiency

$$E_p(n) = \frac{S_p(n)}{p} = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}$$

Strong scalability

1D matrix distribution

$$S_p(n) = \frac{T_1(n)}{T_p(n)} = \frac{2n^2\gamma}{\log_2(p)\alpha + n\beta + 2\frac{n^2}{p}\gamma}$$

$$E_p(n) = \frac{S_p(n)}{p} = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}$$

Strong scalability

$$\lim_{p \to \infty} E_p(n) = 0 \quad \bigstar$$

Weak scalability

local memory = $M \Rightarrow$ combined memory = Mp largest problem (n_M) solvable with p processes? $n_M^2 = Mp$

1D matrix distribution

Speedup

$$S_p(n) = \frac{T_1(n)}{T_p(n)} = \frac{2n^2\gamma}{\log_2(p)\alpha + n\beta + 2\frac{n^2}{p}\gamma}$$

Efficiency

$$E_p(n) = \frac{S_p(n)}{p} = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}$$

Strong scalability

$$\lim_{p \to \infty} E_p(n) = 0 \quad \bigstar$$

Weak scalability

local memory = $M \Rightarrow$ combined memory = Mp largest problem (n_M) solvable with p processes? $n_M^2 = Mp$

$$\lim_{p \to \infty} E_p(n_M) = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\alpha} + \frac{\sqrt{p}}{2M} \frac{\beta}{\alpha}} = 0 \quad \bigstar$$

GEMV, distribution by columns

- A is partitioned along the columns, and distributed over p processes. Process i owns block A_i . Note that A_i now denotes a block of columns.
- x is partitioned as before; process i owns x_i.
- **Goal:** Compute y, and distribute it the same way as x.

$$A = \begin{bmatrix} A_0 & A_1 & \dots & A_{p-1} \end{bmatrix}, \quad x = \begin{pmatrix} \frac{x_0}{x_1} \\ \vdots \\ x_{p-1} \end{pmatrix}, \quad y = \begin{pmatrix} \frac{y_0}{y_1} \\ \vdots \\ y_{p-1} \end{pmatrix}$$

Algorithm

Paolo Bientinesi | MPI

Algorithm

- 2 $y = \text{Reduce-Scatter}(y^{(i)})$

local computation reduction: sum of $y^{(i)}$'s + scatter

Parallel cost

Algorithm

- 2 $y = \text{Reduce-Scatter}(y^{(i)})$

local computation reduction: sum of $y^{(i)}$'s

+ scatter

Parallel cost

- $1 2 \frac{n^2}{p} \gamma$

Analysis

Algorithm

- 2 $y = \text{Reduce-Scatter}(y^{(i)})$

local computation

reduction: sum of $y^{(i)}$'s

+ scatter

Parallel cost

- $1 2 \frac{n^2}{p} \gamma$

Analysis

Compared to the previous case (A partitioned by rows), $T_p(n)$ now has one extra term $(n\gamma)$; this algorithm is therefore also not scalable

GEMV: 2D matrix distribution

• A is partitioned according to a 2D mesh of processes, with $p = r \times c$. P_{ij} , the (i,j) process in the mesh, owns block A_{ij} .

$$\begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0,(c-1)} \\ P_{10} & P_{11} & \cdots & P_{1,(c-1)} \\ \vdots & \vdots & \ddots & \vdots \\ P_{(r-1),0} & P_{(r-1),1} & \cdots & P_{(r-1),(c-1)} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & \cdots & A_{0,(c-1)} \\ A_{10} & A_{11} & \cdots & A_{1,(c-1)} \\ \vdots & \vdots & \ddots & \vdots \\ A_{(r-1),0} & A_{(r-1),1} & \cdots & A_{(r-1),(c-1)} \end{pmatrix}$$

As before, x and y are partitioned in p blocks;
 x is mapped to the mesh by columns, y by rows.

Example:
$$p = 2 \times 3$$

$$\left(\begin{array}{c|c|c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \end{array}\right), \quad \left(\begin{array}{c|c|c|c} x_0 & x_2 & x_4 \\ \hline x_1 & x_3 & x_5 \end{array}\right), \quad \left(\begin{array}{c|c|c} y_0 & y_1 & y_2 \\ \hline y_3 & y_4 & y_5 \end{array}\right)$$

Cost

2D matrix distribution

Algorithm

Paolo Bientinesi | MPI

Cost

2D matrix distribution

Algorithm

- 1 $x_I = Allgather(x_i)$ within columns
- $y_J = A_{ij} x_I$
- $y_j = \text{Reduce-scatter}(y_J)$ within rows

Parallel cost (lower bound for $T_p(n)$)

 x_I is a "block"

local computation

Cost

2D matrix distribution

Algorithm

1 $x_I = Allgather(x_i)$ within columns

 x_I is a "block"

 $2 y_J = A_{ij} x_I$

local computation

 $3 \ y_j = \text{Reduce-scatter}(y_J) \text{ within rows}$

Parallel cost (lower bound for $T_p(n)$)

- $2 \frac{n^2}{p} \gamma$

Sequential cost

 $T_1(n) = 2n^2 \gamma$

$$2\frac{n^2}{p}\gamma + \left(\log_2(r) + \log_2(c)\right)\alpha + \left(\frac{n}{c} + \frac{n}{r}\right)\beta + \frac{n}{r}\gamma$$

$$\begin{aligned} & \text{Parallel cost} & 2\frac{n^2}{p}\gamma + (\log_2(r) + \log_2(c))\,\alpha + \left(\frac{n}{c} + \frac{n}{r}\right)\beta + \frac{n}{r}\gamma \\ & \text{assuming } r = c = \sqrt{p} & 2\frac{n^2}{p}\gamma + \log_2(p)\alpha + \frac{n}{\sqrt{p}}(2\beta + \gamma) \end{aligned}$$

$$S_p(n) = \frac{p}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{2\beta + \gamma}{\gamma}}$$

Parallel cost
$$2\frac{n^2}{p}\gamma + (\log_2(r) + \log_2(c))\,\alpha + \left(\frac{n}{c} + \frac{n}{r}\right)\beta + \frac{n}{r}\gamma$$
 assuming $r = c = \sqrt{p}$
$$2\frac{n^2}{p}\gamma + \log_2(p)\alpha + \frac{n}{\sqrt{p}}(2\beta + \gamma)$$

Speedup
$$S_p(n) = \frac{p}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{2\beta + \gamma}{\gamma}}$$

Efficiency
$$E_p(n) = S_p(n)/p = \dots$$

Parallel cost
$$2\frac{n^2}{p}\gamma + (\log_2(r) + \log_2(c))\,\alpha + \left(\frac{n}{c} + \frac{n}{r}\right)\beta + \frac{n}{r}\gamma$$
 assuming $r = c = \sqrt{p}$
$$2\frac{n^2}{p}\gamma + \log_2(p)\alpha + \frac{n}{\sqrt{p}}(2\beta + \gamma)$$

Speedup
$$S_p(n) = \frac{p}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{2\beta + \gamma}{\gamma}}$$

Efficiency
$$E_p(n) = S_p(n)/p = \dots$$

Strong scalability
$$\lim_{p\to\infty} E_p(n) = 0$$

2D matrix distribution

$$\begin{aligned} & \text{Parallel cost} & & 2\frac{n^2}{p}\gamma + \left(\log_2(r) + \log_2(c)\right)\alpha + \left(\frac{n}{c} + \frac{n}{r}\right)\beta + \frac{n}{r}\gamma \\ & \text{assuming } r = c = \sqrt{p} & & 2\frac{n^2}{p}\gamma + \log_2(p)\alpha + \frac{n}{\sqrt{p}}(2\beta + \gamma) \end{aligned}$$

assuming
$$r = c = \sqrt{p}$$

$$S_p(n) = \frac{p}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{2\beta + \gamma}{\gamma}}$$

Efficiency

Speedup

$$E_p(n) = S_p(n)/p = \dots$$

Strong scalability

$$\lim_{p \to \infty} E_p(n) = 0 \quad \bigstar$$

Weak scalability

local memory = $M \Rightarrow$ combined memory = Mplargest problem (n_M) solvable with p processes? $n_M^2 = Mp$

$$\lim_{p \to \infty} E_p(n_M) = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\alpha} + \frac{1}{2\sqrt{M}} \frac{2\beta + \gamma}{\alpha}} = 0 \quad \bigstar \dots \checkmark$$

Exercise

2D matrix distribution

- A is partitioned according to a 2D mesh of processes, with $p = r \times c$. Process P_{ij} owns block A_{ij} .
- x and y are partitioned in p blocks, and mapped to the mesh by columns.
- Sketch out the algorithm to compute y.
- Determine the cost of the algorithm.
- Study the scalability of the algorithm.

Paolo Bientinesi | MPI

Parallel Matrix Distribution

How to store a (large) matrix using $p = r \times c$ processes?

1D, block of rows (or columns)
 Bad idea

• 1D (block) cyclic, either by rows or columns Bad idea

• 2D, $r \times c$ quadrants Not so good

• 2D (block) cyclic Good idea!

References

- Applet: http://acts.nersc.gov/scalapack/hands-on/datadist.html
- "Introduction to High-Performance Scientific Computing" by Victor Eijkhout (free download).
- "A Comprehensive Approach to Parallel Linear Algebra Libraries" (Technical Report, University of Texas). Chapter 3, pages 19–40.