1. Problema

El circuito de la figura procesa la señal cuyo espectro se muestra. El filtro paso-alto y el detector de pico del circuito de la figura son ideales. La frecuencia de corte del filtro es $100\,\mathrm{Hz}$. El amplificador operacional está alimentado (y satura) con $\pm 15\,\mathrm{V}$.

- 1. Dibuje las señales $v_1(t)$ y $v_2(t)$ en función del tiempo. Señale las cotas relevantes.
- 2. ¿Se enciende el diodo LED? ¿Por qué?

Solución

El circuito consta de tres bloques ideales: filtro paso-alto, detector y comparador.

La señal v_1 es senoidal de 2 V de amplitud y 2 ms de período. La señal v_2 es constante, $v_2 = 2$ V, igual a la amplitud de v_1 .

Si $v_2 > 3$ V, $v_0 = +15$ V y el LED está apagado. Si $v_2 < 3$ V, $v_0 = -15$ V y el LED está encendido. Como $v_2 < 3$ V, el diodo está encendido.

2. Problema

El OP-AMP del circuito de la figura está alimentado (y satura) a ± 15 V. Su corriente máxima de salida es $i_{0, \max} = \pm 10$ mA.

- 1. ¿Está saturado el amplificador operacional? ¿Por qué?
- 2. Determine v_0 y v_- .

Solución

Si el OP-AMP no está saturado, $v_-=0$ y $v_0=-12$ V. En este caso, $i_0=-28$ mA. Pero esto no es posible porque $i_{0,\,\mathrm{max}}=\pm10$ mA. Por tanto, el OP-AMP está saturado en corriente. Es decir, $i_0=-10$ mA, $v_-\neq0$ y $|v_0|<15$ V.

Para determinar v_0 y v_- sustituimos la salida del OP-AMP por una fuente de corriente con $i_0=-10\,\mathrm{mA}$ y usamos la regla de Kirchhoff de corrientes en el nodo de salida. Entonces,

$$-10 \,\mathrm{mA} = \frac{v_0 - 4}{4 \,\mathrm{k}} + \frac{v_0}{0.5 \mathrm{k}} \quad \Rightarrow \quad v_0 = -4 \,\mathrm{V}$$

Por último, la corriente en la rama que conecta la fuente de $4\,\mathrm{V}$ con la salida v_0 es $i=8/4\,\mathrm{k}=2\,\mathrm{mA}$. Por tanto, $v_-=4-1\,\mathrm{k}\times i=+2\,\mathrm{V}$.

3. Problema

El circuito de la figura usa un diodo ideal. La señal de entrada, v_i , tiene el espectro indicado.

- 1. Suponga que se ha elegido correctamente R y C para que el circuito sea un buen detector de pico. Dibuje $v_0(t)$ indicando las cotas relevantes.
- 2. Si $R=1\,\mathrm{k}\Omega$ y $C=1\,\mu\mathrm{F}$, ¿es un buen detector de pico para esta señal? ¿Por qué?

Solución

Si elegimos bien R y C, la señal de salida es una tensión constante de 6 V (con rizado despreciable).

Si $R=1\,\mathrm{k}\Omega$ y $C=1\,\mu\mathrm{F}$, la constante de tiempo del circuito RC es $\tau=1\,\mathrm{ms}$, que coincide con el período de la señal v_i . Por tanto, el condensador se descarga mucho en cada ciclo de la señal, dando lugar a un rizado muy grande.

La expresión de la tensión de rizado, $V_r = V_p (t_{\rm off}/\tau)$, solo es válida si $t_{\rm off} \ll \tau$. En este caso, $t_{\rm off} \approx T$ y $V_p = 6$ V. Pero en la segunda parte de este problema $t_{\rm off} \approx \tau$. Por tanto, esa expresión no es válida para justificar que el detector no es bueno.

4. Problema

El circuito de la figura usa un amplificador de tensión y un filtro. El amplificador tiene una ganancia $G=10\,\mathrm{V/V}$, resistencia de entrada $R_{\mathrm{in}}=10\,\mathrm{k}\Omega$ y resistencia de salida $R_{\mathrm{out}}=1\,\mathrm{k}\Omega$.

Queremos diseñar el filtro para reducir al máximo el armónico de $1 \,\mathrm{kHz}$ de la señal v_i sin atenuar de forma apreciable el armónico de $10 \,\mathrm{Hz}$.

- 1. ¿Qué frecuencia de corte elegiría?
- 2. ¿Qué valor de C debemos usar para conseguir esa frecuencia de corte?
- 3. Dibuje el espectro de la señal de salida v_0 obtenido con este filtro.

Solución

El circuito es una conexión serie de un filtro paso-bajo y un amplificador.

Análisis asintótico. La figura siguiente muestra la respuesta en frecuencia asintótica del circuito en escala logarítmica, donde $G_{\rm max}\approx 5\,{\rm V/V}$ y $f_C=1/(2\pi R_{\rm equiv}C)$, donde $R_{\rm equiv}=3\,{\rm k}||10\,{\rm k}$. De esta respuesta en frecuencia vemos que, si elegimos una frecuencia de corte $f_C=10\,{\rm Hz}$, la ganancia del circuito es $0.01\,G_{\rm max}$ a la frecuencia de1 kHz. Esto permite obtener la máxima atenuación de este armónico sin atenuación apreciable a $10\,{\rm Hz}$.

Usando este resultado, debemos usar un condensador $C \approx 7 \,\mu\text{F}$. El espectro de la señal de salida está formado por una componente DC y un armónico de $10 \, \text{Hz}$, ambos de $15 \, \text{V}$ de amplitud, y un armónico de $1 \, \text{kHz}$ de $0.1 \, \text{V}$.

En la práctica, el armónico de 10 Hz se atenúa 3 dB, que es completamente aceptable en la mayoría de las aplicaciones. Si esta atenuación no fuese admisible usamos el análisis siguiente:

Análisis no asintótico. En este caso, el diagrama asintótico es muy bueno para frecuencias $f < f_C/3$ y $f > 3f_C$. Por tanto, elegimos $f_C = 30$ Hz. En este caso, $C \approx 2.3 \, \mu \text{F}$. El espectro de la señal de salida está formado por una componente DC y un armónico de 10 Hz, ambos de 15 V de amplitud, y un armónico de $1 \, \text{kHz}$ de 0.3 V.

5. Problema

Queremos diseñar el circuito de control de una puerta de garaje. Para controlar la apertura y cierre de la puerta se dispone de una señal P generada por el pulsador de un mando a distancia (P = 1 cuando se pulsa).

La apertura y cierre de la puerta la realiza un motor que se controla mediante dos señales, M_0 para abrirla y M_1 para cerrarla.

- $M_1M_0 = 00$. El motor está parado.
- $M_1M_0 = 01$. El motor abre la puerta.
- $M_1M_0 = 10$. El motor cierra la puerta.
- $M_1M_0 = 11$. Esta señal no se debe generar para evitar daños al motor.

Por último, el motor dispone de una salida T que indica si la puerta ha llegado a su tope (T=1 si la puerta está completamente abierta o cerrada).

El funcionamiento del circuito ha de ser el siguiente:

- 1. En el arranque supondremos que la puerta está cerrada.
- 2. Cuando se pulse el pulsador (P=1), la puerta comenzará a abrirse. Si se pulsa de nuevo el pulsador, la puerta se parará. Una nueva pulsación hará que la puerta empiece a cerrarse. Esto permite poder dejar la puerta a medio abrir.
- 3. El ciclo anterior se puede repetir las veces que se quiera: si cuando está cerrando pulsamos el pulsador, la puerta se parará; si volvemos a pulsar se empezará a abrirse; si volvemos a pulsar, parará, ...
- 4. Cuando la puerta cierre completamente, el motor se parará (para que no se queme). De forma análoga, cuando la puerta se abra completamente, el motor se parará también.
- 5. Si la puerta está completamente abierta y pulsamos el pulsador, la puerta comenzará a cerrarse.

Diseñe el diagrama de estados del sistema, identificando claramente las entradas y salidas. Indique también claramente si en alguna de las entradas es necesario usar un detector de flanco.

Solución

El diagrama de estados del control de la puerta del garaje (modelo de Moore) es el mostrado en la figura. El sistema secuencial tiene cuatro **estados**, donde y_k representa el estado. El orden de las entradas es PT y el orden de las salidas en los estados es M_1M_0 . El estado A representa que la puerta está cerrada o se ha parado cuando cerraba. El estado B representa que la puerta se está abriendo. El estado C representa que la puerta está abierta o se ha parado cuando se abría. El estado D representa que la puerta se está cerrando. Se necesita un detector de flanco para la señal P.

6. Problema

Un instrumento de medida produce dos señales binarias de salida, A y B. La señal A solo puede tomar los valores (0, 1, 2, 3, 4, 5) y, por tanto, estará representada por palabras de tres bits, $(A_2A_1A_0)$. La señal B es una señal binaria de un bit.

Queremos diseñar un circuito lógico combinacional que produzca las funciones F_1 y F_2 .

- La función $F_1 = 0$ si A < 3 independientemente del valor de B. Y debe valer F = 1 cuando $A \ge 3$ y B = 1. En el resto de casos, $F_1 = 0$.
- La función $F_2 = 0$ si A < 3 y B = 0. Y debe valer F = 1 en el resto de casos.
- 1. Escriba las tablas de verdad para las funciones F_1 y F_2 .
- 2. Determine la función lógica simplificada de cada una de esas funciones.
- 3. Dibuje el circuito lógico para implementar la función lógica F_1 .

Solución

Las tablas de verdad de las funciones F_1 y F_2 son:

función F_1 :

$$F_1(B,A_2,A_1,A_0) = \sum m(11,12,13) + d(6,7,14,15) = BA_2 + BA_1A_0$$

función F_2 :

$$F_2(B, A_2, A_1, A_0) = \sum m(3, 4, 5, 8, 9, 10, 11, 12, 13) + d(6, 7, 14, 15) = A_1 A_0 + A_2 + B_1 A_0 + A_2 + B_2 A_0 + A_2 A_0 +$$