Bilateral Filtering

DS-GA 1013 Spring 2021 Yupei Zhou, Zhuoyuan Xu

Outline

- 1. Motivation
- 2. Definition of Bilateral Filtering
- 3. Application
- 4. Hyperparameter Tuning

Why is image filtering important?

- 1. Produce stylish effects
- 2. Correct defects and smooth images

Why is image filtering important?

Denoising

Why is image filtering important?

Tone Mapping

Figure from Durand 02

Where does bilateral filtering come from?

Before bilateral filtering, we have Gaussian filtering:

Averaging colors or intensities of nearby pixels in space

Why do we use bilateral filtering over others?

Blurred Edges from Gaussian Filter

Why do we use bilateral filtering over others?

Halo Artifact from Gaussian Filter

Why do we use bilateral filtering over others?

Halo Artifact from Gaussian Filter

Definition of Gaussian Filtering

Image = 2D array of pixels (x, y)

Each pixel = intensity (scalar) in gray-level image or color (vector) in color image

Gaussian distribution (window size determined by σ)

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}exp(\frac{-x^2}{2\sigma^2})$$

Definition of Gaussian Filtering

limited smoothing

strong smoothing

Definition of Bilateral Filtering

normalization factor

$$W_p = \sum_{q \in S} G_{\sigma_S}(||p - q||)G_{\sigma_r}(|I_p - I_q|)$$

space difference

intensity range

$$BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_S}(||p - q||) G_{\sigma_r}(|I_p - I_q|) I_q$$

 $\sigma_{\rm S}$ = size of the neighborhood

 σ_{r} = lower boundary of an edge intensity value

Definition of Bilateral Filtering

Definition of Bilateral Filtering

From gray-level image to color image:

Gray-level:
$$BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_S}(||p-q||) G_{\sigma_r}(|I_p-I_q|) I_q$$
 intensity (scalar points)

Color:
$$BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_S}(||p-q||) G_{\sigma_r}(||C_p-C_q||) C_q$$
 color, e.g. RGB (vector)

Gaussian vs Bilateral

Gaussian vs Bilateral (frequency)

Gaussian vs Bilateral (large σ_r)

Gaussian vs Bilateral (large $\sigma_{_{\! \Gamma}}$, frequency)

Hyperparameter Tuning

increasing σ_r

 $\sigma_s = 15, \sigma_r = 0.25$

increasing $\sigma_{_{S}}$

increasing σ_r

 $\sigma_s=~15,\,\sigma_r=~0.2$

 $\sigma_s=~15,\,\sigma_r=~0.5$

Reference

[1] "A Gentle Introduction to Bilateral and Its Applications". Sylvain Paris, Pierre Kornprobst, Jack Tumblin and Fredo Durand. ACM SIGGRAPH 2008.

[2] Pierre Kornprobst, Jack Tumblin, and Fr´edo Durand. "Bilateral Filtering: Theory and Applications".In:Foundations and Trends in Computer Graphics and Vision 4 (Jan. 2009), pp. 1–74