

Tópicos de Matemática II - 2015/ 2016 1º Teste - Tópicos de resolução

Exercício 1

a)
$$u_n = -\frac{14}{5} \Leftrightarrow \frac{1-3n}{n+1} = -\frac{14}{5} \Leftrightarrow 5-15n = -14n - 14 \Leftrightarrow n = 19$$

$$u_{19} = -\frac{14}{5}$$

b)

$$u_{n+1} - u_n = \frac{1 - 3(n+1)}{n+2} - \frac{1 - 3n}{n+1} = \frac{-3n - 2}{n+2} - \frac{1 - 3n}{n+1} = \frac{-3n^2 - 3n - 2n - 2 - n + 3n^2 - 2 + 6n}{(n+2)(n+1)}$$

$$= \frac{-4}{(n+2)(n+1)} < 0, \forall n \in IN.$$

 $(u_n)_n$ é monótona (estritamente) decrescente.

c)
$$\lim_{n} u_n = \lim_{n} \frac{n\left(\frac{1}{n} - 3\right)}{n\left(1 + \frac{1}{n}\right)} = \lim_{n} \frac{\frac{1}{n} - 3}{1 + \frac{1}{n}} = \frac{0 - 3}{1 + 0} = -3$$

 $(u_n)_n$ é convergente pois tende para um número real. Sendo convergente é também, necessariamente, limitada.

Nota: Por $(u_n)_n$ ser estritamente decrescente e convergir para -3, sabemos que $-3 < u_n \le u_1$, $\forall n \in IN$, ou seja: $-3 < u_n \le -1$, $\forall n \in IN$.

Exercício 2

Por exemplo:
$$a_n = \left(-\frac{1}{2}\right)^n$$

Exercício 3

a)
$$\lim_{n} \frac{n^{3} \left(-7 - \frac{5}{n} + \frac{1}{n^{2}}\right)}{3n \sqrt{1 + \frac{1}{n^{2}}}} = \lim_{n} \frac{n^{2} \left(-7 - \frac{5}{n} + \frac{1}{n^{2}}\right)}{3\sqrt{1 + \frac{1}{n^{2}}}} = \frac{(+\infty)(-7 - 0 + 0)}{3\sqrt{1 + 0}} = -\infty$$

b)
$$\lim_{n} \frac{\left(\sqrt{2n-3} - \sqrt{2n+5}\right)\left(\sqrt{2n-3} + \sqrt{2n+5}\right)}{\sqrt{2n-3} + \sqrt{2n+5}} = \lim_{n} \frac{2n-3 - (2n+5)}{\sqrt{2n-3} + \sqrt{2n+5}} = \lim_{n} \frac{-8}{\sqrt{2n-3} + \sqrt{2n+5}} = \frac{-8}{(+\infty)} = 0$$

c)
$$\lim_{n} \frac{\left(1 - \frac{2}{n}\right)^{n} \times \left(1 - \frac{2}{n}\right)^{3}}{\left(1 + \frac{1}{n}\right)^{n} \times \left(1 + \frac{1}{n}\right)^{3}} = \frac{e^{-2} \times 1^{3}}{e^{1} \times 1^{3}} = e^{-3}$$

d)

• Para n par:
$$\lim_{n} (n^2 - n) = \lim_{n} \left[n^2 \left(1 - \frac{1}{n} \right) \right] = (+\infty)(1 - 0) = +\infty$$

• Para n impar: $\lim_{n} (n^2 + n) = +\infty$

Então: $\lim_{n \to \infty} (n^2 - (-1)^n n) = +\infty$

Exercício 4

a)
$$D_f = \{x \in IR: 2x + 4 > 0\} =]-2 + \infty[$$

b)
$$f(16) = \frac{1}{\sqrt{2 \times 16 + 4}} = \frac{1}{\sqrt{36}} = \frac{1}{6}$$
. Logo, o ponto $\left(16, \frac{1}{6}\right)$ pertence ao gráfico de f .

Exercício 5

a)

i)
$$D_g = [-2,3]; D'_g = [-1,2]$$

iv) Máximo absoluto: 2; mínimo absoluto: -1.

b) Tem 4 soluções: -2,1,3 e ainda outra entre 1 e 2.

Exercício 6

a)
$$-x^2+4x+5=-(x^2-4x-5)=-[(x-2)^2-4-5]=-(x-2)^2+9$$

Nota: a parábola representativa do gráfico de f tem vértice de abcissa $-\frac{b}{2a} = 2$ e ordenada f(2) = 9. Logo: $f(x) = -(x-2)^2 + 9$.

b)
$$x = 2$$

- c) Por exemplo: 1 e 3
- **d**) A parábola representativa do gráfico de f tem concavidade "voltada para baixo" e a ordenada do seu vértice é 9; logo: $D_f' =]-\infty, 9$]

Exercício 7

Exercício 8

a) Cálculo auxiliar:
$$2x-x^2=0 \Leftrightarrow x(2-x)=0 \Leftrightarrow x=0 \lor x=2$$

$$\frac{}{0}$$
 C.S. = $[0,2]$

b)
$$2x^3 + 3x^2 - 2x \le 0 \Leftrightarrow x(2x^2 + 3x - 2) \le 0$$

Cálculo auxiliar:
$$2x^2 + 3x - 2 = 0 \Leftrightarrow x = \frac{-3 \pm \sqrt{9 + 16}}{4} \Leftrightarrow x = -2 \lor x = \frac{1}{2}$$

X	$-\infty$	-2		0		1/2	$+\infty$
X	_	_		0	+	+	+
$2x^2 + 3x - 2$	+	0	_	_	_	0	+
$x(2x^2+3x-2)$	_	0	+	0	_	0	+

$$C.S. = \left] -\infty, -2 \right] \cup \left[0, \frac{1}{2} \right]$$

c) Cálculos auxiliares:
$$x-2=0 \Leftrightarrow x=2$$
; $x^2+3=0 \Leftrightarrow x^2=-3 \Leftrightarrow x \in \phi$; $4-x=0 \Leftrightarrow x=4$

X	$-\infty$	2		4	$+\infty$
x-2	_	0	+	+	+
x^2+3	+	+	+	+	+
4-x	+	+	+	0	_
$(x-2)(x^2+3)(4-x)$	_	0	+	0	_

$$C.S. =]2,4[$$