Power Management Software Overview (TDA2xx/TDA2ex/TDA3xx)

Agenda

- PRCM Hardware Overview
 - Power, Clock Domains, Module Level
- How to keep Power consumption in check?
 - Initialize the system:
 - Set power state for different Modules.
 - Set the clock rate for CPUs.
 - Dynamic Power Management
 - Software Thermal Management
- Power Management (PM) Software Stack Overview
 - PMHAL
 - PMLIB

PRCM Hardware Overview

PRCM Hardware Overview

Module PM

Master Standby

- Valid for Initiators to the Interconnect.
- When Master does not want clocks configure IP level SYSCONFIG MIDLEMODE or STANDBYMODE.
- PRCM reflects status in CLKCTRL[x].STBYST

Slave Idle

- Valid for modules which respond to requests.
- Configure PRCM register CLKCTRL. MODULEMODE.
- Configure IP level SYSCONFIG SIDLEMODE or IDLEMODE.
- PRCM reflects status in CLKCTRL[x]. IDLEST

5

Clock Domain (CD) PM

- Clock domain allows control of the dynamic/active power consumption of the device.
- Device has multiple Clock Domains.
 Each Clock domain may have one or more modules.

Rel	Condition For INACTIVE
AND	All master modules in the clock domain are in STANDBY state.
	No wake-up request is asserted by any module of the clock domain.
	No static domain dependency from any other domain is active.
	The SW_SLEEP/HW_AUTO clock transition mode is set for the clock domain (CLKTRCTRL $= 0x1 / 0x3$).

Rel	Condition For ACTIVE
OR	The SW_WKUP clock transition mode for the clock domain is set (CLKTRCTRL $= 0x2$).
	At least one wake-up request is asserted by one of the modules of the clock domain
	At least one static dependency from another clock domain is active.

Clock Activity State can be read from CM_<CD>_CLKSTCTRL. CLKACTIVITY_*_F/ICLK

Power Domain (PD) PM

- Power Domain allows for control of leakage power consumption of the device.
- If no clock domains are on the PD can go to ON-INACTIVE, RETENTION or OFF state.
- If any one clock domain is active then the power domain would remain on.

Wake-up ON-ACTIVE
transitions
ON-INACTIVE ON-INACTIVE
CSWR
OFF Sleep transitions

PD State	Logic State	Memory State	CD State
ON-ACTIVE	ON	ON	ACTIVE
ON-INACTIVE		PWRSTCTRL. <mem>_ONSTATE</mem>	IDLE
CSWR	ON	PWRSTCTRL. <mem>_RETSTATE</mem>	IDLE
OFF	OFF	OFF	IDLE

TDA2xx/2ex vs TDA3xx (PRCM)

- TDA2xx has 5 Voltage Domains (VD_CORE, VD_MPU, VD_DSPEVE, VD_GPU, VD_IVA); TDA3xx has 2 voltage domains (VD_CORE, VD_DSPEVE)
- TDA3xx does not support Adaptive Body Bias (ABB)
- TDA2xx has 5 temperature sensors (VD_CORE, VD_MPU, VD_DSPEVE, VD_GPU, VD_IVA); TDA3xx has 1 temperature sensor (VD_CORE)
- TDA2xx has different clock tree structure than TDA3xx due to DPLL changes.

How to keep Power consumption in check?

System Initialization

10

Initializing the system

Ensure modules not getting used are turned off.

Module Name	Reset Power State	SBL Desired Action
MPU CO & C1	ON	Force Off C1 when not used
IPU, DSP1 & 2	OFF	Initialize core when valid application image is present. Power Off if not.
EVE1 /EVE2	ON (Clock Gated)	Initialize core when valid application image is present. Power Off if not.
MMC1, IEEE1500_2_OCP	ON	Disable Module if not used

 Modules like MMC2, MLB_SS, SATA, OCP2SCP1, OCP2SCP3, USB_OTG_SS1, USB_OTG_SS2, USB_OTG_SS3, USB_OTG_SS4, PCIESS1, PCIESS2 etc are disabled by default..

Initializing the system

- System Configuration: (Set the Power and Clock State for different modules)
 - Program the module to any of the 3 states:
 - **DISABLED** Lowest Power Configuration.
 - AUTO CLOCK GATE (AUTO_CG) Clocks disabled when module not used.
 - ALWAYS ENABLED Highest Power Configuration
- Takes care of Power Domain, Clock Domain, Module level (optional clocks, sysconfig) and Static dependency configuration.
- Additionally takes care of reset configurations.
- Example: starterware \examples\pm\systemconfig\main tda2xx/tda3xx.c
- Note: This API does not take care of dependencies between enabling modules.

System Configuration API

pmErrCode_t PMLIBSysConfigSetPowerState(

const pmlibSysConfigPowerStateParams_t *inputTable,

uint32_t numConfig,

uint32_t timeout,

pmlibSysConfigErrReturn_t *resultReturn);

Module Name	Power State
Module 1	Always Enabled
Module 2	Disabled
Module 3	Auto CG

Initializing the system

Clock Rate (Setting the clock rate for different CPUs/Peripherals)

- Takes care of required OPP change for the given frequency.
- Internal database maintained to find the corresponding DPLL configurations for the given frequency.
- "Generic Clk ID" support provided to allow the user to not have to remember the clock name for each and every module.

Set Optimal Voltage for Lower Power Dissipation

- AVS should be executed before other domains are taken out of reset and before their DPLLs are locked. (in SBL)
- Reduce the risk of Hot devices entering into a thermal condition.
- Ensure reliability and to guarantee that the lifetime POHs are achieved.

Increase performance and reduce leakage

- Adaptive Body Bias (ABB)
- Apply a voltage to the NWELL of the PMOS transistors to change the Threshold Voltage.
- Configure at Boot time.

Reverse Body Bias (RBB)	Forward Body Bias (FBB)
VBBNW > VDD	VBBNW < VDD
For Strong Samples	For Weak Samples
Increase V _{th}	Decrease V _{th}
Reduce Leakage	Increase Performance

Valid only for TDA2xx

16

APIs to Set AVS & ABB at the right OPP

```
pmErrCode t retVal = PM SUCCESS;
pmhalVmOppId t oppId;
const pmhalPmicOperations t *pmicOps;
/* Enable I2C1 for PMIC Communication
 * Force Wake-up clock domain l4per*/
PMHALCMSetCdClockMode(
PMHAL PRCM CD L4PER,
PMHAL PRCM CD CLKTRNMODES SW WAKEUP,
PM TIMEOUT INFINITE);
PMHALModuleModeSet (PMHAL PRCM MOD I2C1,
PMHAL PRCM MODULE MODE ENABLED,
PM TIMEOUT INFINITE);
/* Get the pmic ops and register with
the pmic interface. */
pmicOps = PMHALTps65917GetPMICOps();
retVal = PMHALPmicRegister(pmicOps);
```

PMHAL:

- starterware_\include\pm\pmhal\pmhal_vm.h
- starterware_\include\pm\pmhal\pmhal_pmic.h

```
if (PM SUCCESS == retVal)
 retVal = PMHALVMSetOpp(
           PMHAL PRCM VD MPU, oppid,
           PM TIMEOUT INFINITE);
  /* VD CORE can only support OPP NOM
  retVal |= PMHALVMSetOpp(
            PMHAL PRCM VD CORE,
            PMHAL VM OPP NOM,
            PM TIMEOUT INFINITE);
  /* Set the voltage for
   * PMHAL PRCM VD IVAHD,
   * PMHAL PRCM VD DSPEVE
   * and PMHAL PRCM VD GPU.
for (vdId = PMHAL PRCM VD IVAHD;
      vdId < PMHAL PRCM VD RTC;
      vdId++)
   retVal |= PMHALVMSetOpp (vdId,
             oppId,
             PM TIMEOUT INFINITE);
                                     17
```

TEXAS INSTRUMENTS

Dynamic Power Management

Reduce power consumption when a CPU Core is not getting used

— Frame Processing

- Context of the CPU is maintained.
- Configure Interrupts which would act as wakeup events.
- Define the lowest power state of the CPU when not processing.
 - MPU: Closed Switch Retention startertware \examples\pm\cpuidle\main a15host.c
 - IPU: Auto Clock Gate startertware \examples\pm\cpvidle\main m4.c
 - DSP: Auto Clock Gate startertware \examples\pm\cpuidle\main c66x.c
 - EVE: Auto Clock Gate starterware \examples\pm\arp32 cpuidle\main arp32.c

MPU CPU Idle Sequence

2 One Time CPU O Initialization (Beginning of Application)

```
/* 1st param indicates the type of the
  ramp 0 - Slow Ramp up, 1 - Fast
  Ramp up, 2<sup>nd</sup> param The value set in
  this field determines the slow
  ramp-up time */
pmhalMpuLprmHgRampParams_t hgRampParam
  = {1, 0};
```

Programs MPU_PRCM

```
/* Enable Hg/FastRampup in Retention*/
PMHALMpuLprmSetHgRampParams (
                       &hqRampParam);
PMHALMpulprmSetMercuryRetention();
pmlibSysConfigPowerStateParams t
inputTable = {
PMHAL PRCM MOD MPU,
PMLIB SYS CONFIG AUTO CG };
status = PMLIBSysConfigSetPowerState(
&inputTable, 1, PM TIMEOUT NOWAIT,
NULL);
3
    Call @ Run Time between Frames (SYSBIOS Idle Task)
/* Configuring enabled Interrupts to
be wakeup capable */
MPU WUGEN 0 Interrupt Lookup();
PMLIBCpuIdle (
PMHAL PRCM PD STATE RETENTION);
```

PMLIB: starterware_\include\pm\pmlib\pmlib_cpuidle.h
PMHAL: starterware_\include\pm\pmhal\pmhal_mpu_lprm.h
WUGEN: starterware_\include\armv7a\tda2xx\mpu_wugen.h

DSP CPU Idle Sequence

```
One Time DSP Initialization
pmlibSysConfigPowerStateParams t inputTable = {
PMHAL PRCM MOD DSP1, PMLIB SYS CONFIG AUTO CG };
status = PMLIBSysConfigSetPowerState(
&inputTable, 1, PM TIMEOUT NOWAIT, NULL);
/* C66x CorePac has an additional field to enable power down mode*/
PMLIBSetCorepacPowerDown ((uint32 t) 1U);
/* Configuring enabled Interrupts to be wakeup capable */
DSP WUGEN IRQ Interrupt Lookup (); Call @ Run Time between Frames (SYSBIOS Idle Task)
/* Idle Instruction and sysconfig configuration. Parameter is dummy
  * /
status = PMLIBCpuidle (PMHAL PRCM PD_STATE_ON_INACTIVE);
```

Dummy Parameter for DSP/EVE/IPU

PMLIB: starterware_\include\pm\pmlib\pmlib_cpuidle.h WUGEN: starterware_\include\c66x\dsp_wugen.h

IPU CPU Idle Sequence

```
/* Set IPU to Auto clock Gate*/
                                                                One Time IPU Initialization
pmlibSysConfigPowerStateParams t inputTable = {
PMHAL PRCM MOD IPU1, PMLIB SYS CONFIG AUTO CG};
status = PMLIBSysConfigSetPowerState
&inputTable, 1, PM TIMEOUT NOWAIT, NULL);
                                                              Special Care about for TDA3xx
#ifdef TDA3XX FAMILY BUILD
/*This is required as the force override bit CTRL CORE SEC IPU WAKEUP
 * does not set the right values for the PRCM registers and when the
 * override is lifted then cores are left in a bad power and reset state.
 * /
PMHALResetRelease (PMHAL PRCM RG IPU1 CPU0 RST, PM TIMEOUT NOWAIT);
PMHALResetRelease (PMHAL PRCM RG IPU1 RST, PM TIMEOUT NOWAIT);
retVal += (int32 t) PMHALModuleModeSet (PMHAL PRCM MOD IPU1,
                                         PMHAL PRCM MODULE MODE AUTO,
                                         PM TIMEOUT NOWAIT);
#endif
                                                                 Only when CPU1 not Used
PMHALResetAssert (PMHAL PRCM RG IPU1 CPU1 RST);
IPU WUGEN Interrupt Lookup();
                                                         Call @ Run Time (SYSBIOS Idle Task)
retVal = (int32 t) PMLIBCpuIdle (PMHAL PRCM PD STATE RETENTION);
                                                                       Dummy Parameter
                                                                        for DSP/EVE/IPU
```

PMHAL: starterware_\include\pm\pmhal\pmhal_rm.h WUGEN: starterware_\include\ armv7m\ipu_wugen.h

TEXAS INSTRUMENTS

EVE CPU Idle Sequence

```
One Time EVE Initialization
pmlibSysConfigPowerStateParams t inputTable = {
PMHAL PRCM MOD EVE1, PMLIB SYS CONFIG AUTO CG};
status = PMLIBSysConfigSetPowerState(
&inputTable, 1, PM TIMEOUT NOWAIT, NULL);
                                              Call @ Run Time between Frames (SYSBIOS Idle Task)
ARP32 WUGEN IRQ Interrupt Lookup();
/* Program Force Standby for the EDMA TCs */
HW WR REG32 (SOC EVE EDMA TCO BASE + EDMA TC SYSCONFIG, 0 \times 0);
HW WR REG32 (SOC EVE EDMA TC1 BASE + EDMA TC SYSCONFIG, 0 \times 0);
status = PMLIBCpuldle (PMHAL PRCM PD STATE ON ACTIVE);
/* Program Smart Standby for the EDMA TCs after coming out of Idle*/
HW WR REG32 (SOC EVE EDMA TCO BASE + EDMA TC SYSCONFIG, 0x28);
HW WR REG32 (SOC EVE EDMA TC1 BASE + EDMA TC SYSCONFIG, 0x28);
```

Software Thermal Management

Software Thermal Management

Alert regarding a thermal event

Alert Regarding a Thermal Event

```
One Time Thermal Event Initialization
/* Registering TimerIsr */
Intc IntRegister (IRQ NUM,
  (IntrFuncPtr) TemperatureSensorIsr,
  NULL);
/* temp in milli deg C */
HOT EVT TEMP THRESH = 100000;
 /* 100 deg C */
PMHALBgapSetHotThreshold(voltId,
  HOT EVT TEMP THRESH);
       HOT Event!!
        TemperatureSensorIsr:
```

```
Configure HOT/Cold Threshold Based on Thermal Actions
COLD EVT TEMP THRESH = 70000;
 /* 70 dea C */
PMHALBgapSetColdThreshold(voltId,
COLD EVT TEMP THRESH);
/* temp in milli deg C */
HOT EVT TEMP THRESH = 110000;
 /* 110 dea C */
PMHALBgapSetHotThreshold (voltId,
HOT EVT TEMP THRESH);
```

Disable **Temperature** IRQ

Alter Hot and Cold **Temperature** Threshold

Clear Pending Temperature IRQ

Enable **Temperature** IRQ

Take necessary thermal Action

27

Example: starterware \examples\pm\junction temp sensor\main tda2xx.c

PM Software Stack

28

Power Management Software Stack

Voltage Manager (VM)
Clock Domain Manager (CM)

Power Domain Manager (PDM) Reset Domain Manager (RM) Temperature Manger (Temp)
Module Manager (MM)

References

- ADAS PM Application Note: https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=286
 70.42872.8315.8463
- PRCM Hardware Details: TDA2xx/TDA2ex/TDA3xx TRM
- VisionSDK_DevelopmentGuide.pdf Section 7 for PM Vision SDK integration details.
- For any further questions please contact your TI representative.

Thank you