

SEQUENCE LISTING

<110> Li, Limin
Aghdasi, Bahman

<120> MAMMALIAN GENES INVOLVED IN RAPAMYCIN RESISTANCE AND
TUMORGENESIS: RAPR7 GENES

<130> 70017.11USWO

<140> US 10/524,426

<141> 2005-02-15

<150> PCT/US2003/026073

<151> 2003-08-15

<150> US 60/404,311

<151> 2002-08-15

<160> 23

<170> PatentIn version 3.3

<210> 1

<211> 1886

<212> DNA

<213> Murine

<220>

<221> misc_feature

<222> (3)..(4)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (191)..(191)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (239)..(239)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (314)..(314)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (373)..(373)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (391)..(391)

<223> n is a, c, g, or t

<220>

```
<221> misc_feature
<222> (931)..(931)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (968)..(968)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1007)..(1007)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1011)..(1011)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1013)..(1014)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1016)..(1016)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1061)..(1065)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1089)..(1089)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1113)..(1113)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1117)..(1117)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1137)..(1137)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1159)..(1159)
<223> n is a, c, g, or t

<220>
```

```

<221> misc_feature
<222> (1165)..(1165)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1168)..(1168)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1198)..(1198)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1239)..(1239)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1387)..(1387)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1818)..(1818)
<223> n is a, c, g, or t

<400> 1
tcnnattccc gagaataaat ttctgtgact aactcttcct tttgttggtt ctcatggca      60
tatgccttat gaaggtaaca tacccaagct gcctctgcct cccgcagtga acccctaccc      120
tgccctttgg caggttctct tactgaccat ccccacctgc cccacacatc ctcccctatg      180
caccccaact ntgagccccct cctgctcagt aagtctgttag acttgggtggg tatattggnc      240
tcattgagac tgcaggccct tggagggcag gctctgacct gcagtaagat gtgtgagtga      300
tactcagcac acantaggtg gataaataacc cccacagtagt gtgggttagtg agccctgtga      360
gtccactgta agncaccatc tacatggca nagcctgctt taagcgtggg ttagggacac      420
aacagtctct tcagcagggc ttctggcacc atctacacaa gtccatcctc agctcttcca      480
ctccccgggtt ccctcctgga cctgtgtgac tctgaggaac ttggggatt cctaacctcc      540
cctttcaact gagcccttgg ctcttggagt tagccacaac ctaactactc aggtccctcc      600
aacaagggga ctgtgtctgt ggctggatga ctcatgcaca ctgctccatc ccgcaatctt      660
gggcgggact tgggctgggg aggatgccag ccagctcagg ctaggagctt gcatcctgtt      720
gccccaaccc agccctacca gaacagagt tactcagagc tccaggacaa aaatctggaa      780
acagagagcc ggctctcatt tggaccgaga tctgagtgat gaaaagagca ggcagaggaa      840
acagcaagtt caaagttcct gaggtgggaa tgcgcttgac acaacggaga cctgagaaga      900

```

acacagcaaa ggccgtgtta catttgcgtc	960
cagacatngc gaggactcac ctggataatc cagagccatg	1020
ttttttttt ttccttcttt tttcttttc tcttttttg nnnnngggccc	1080
tttctttng tagccccggc tgaaaaaaactnactntgt agaccaaact	1140
ctcacagaga tcctcctgnc tttgnctncc gagtacaagg gttaaaagcc	1200
ccactggcca ggctaaactaa ggttcttaac ttttaagna ttatTTTCT ttcttatgt	1260
tgtgtatatg ggggagggga tgcacaaggg catggggggg gggtccctgc	1320
agaagggtgccca gatccctggg agctggaatt aaagttagtc atgaaacatc	1380
actgggnaac tgaacttggg tcctctgcga gaggagtaat ggtcttaact	1440
ctctaggccc aatgtctggt tttgtttgt tttgtttgt tttgtttgt	1500
tttgtatTTG ggggtttttt tttgtctgtt tggttggttt gtttggttt tcttgagaca	1560
gggtttctct gtatagccct ggctgtcctg gaactcaactc tataacttag	1620
aactcagaaa tcctcctgccc tctgcctccc aagtgtcgat attaaaggcc	1680
ctgccccacg ccaatgtctg tattttattc atctctgcag aatctctttt	1740
ggaacatcat cccagattct gggaaagtaca ctgaagacaa tgggggtgggt	1800
tcctatgccc tttacatnct ccctacctat ttcatgtat accatgtatc	1860
cacaggccac agcttaaacc tcctc	1886

<210> 2
 <211> 2856
 <212> DNA
 <213> Murine

<400> 2	
atgagtgagt ctataactcac aggcaactgag aaagccagac tcaacggcta	60
ccctccaa gatgtAACCA tgatctacca gctcatcaca ggccacagct taaacctccc	120
tcccctttgt cacatctcca ccatcaacca cacccttcca tctttctttt catctgacac atatcttcca	180
acccttcagt catctaataa gcagacttta aaagccacgg gtcctggata tccaatggaa	240
aatgaccaaaa ggaagaacac ttgctcctta gtccgacaag aaggtttcaa aggagtcacc	300
ttgcatgctg aagcacttcc cacagaagga gcacccccc ccccacctca tctgcaggat	360
tccgagatgg aagagaagag gcgaaaatat tccatcagca gcgacaactc tgataccact	420
gacggtcacg tgacatccac atcagcatca agatgttcca aactgcccag cagcaccaag	480
tcgggctggc cccggcagaa cgagaagaag ccctcagagg tttccggac agacttgatc	540
acagccatga agatcccaga ttcataccag ctcagcccgg atgactacta catcctggcg	600

gaccgcgtggc gacaagaatg ggagaaaagg gtgcaggtac ctgctggagc ggaggccatt
ccagagccctg tggtgaggct cctcccacca ctgaaaggcc cccccacgc gatgtcccc
gatacgcccc cacttggtga gggtgcctat cctgactggc caggaggcag ccgcgtacgac
ctggatgaga tcgatgcgtc ctggttggaa cttctcaact cggagctcaa ggagatggag
aagcccggc tggatgagct aacgttagag cgtgttctag aggagctaga gacattgtgc
caccagaata tggcacaggc cattgagaca caggagggc tggcatcga gtacgacgag
gacgttgtct gcgacgtgtg ccgttccct gaaggcgagg atggcaacga gatggtcttc
tgtgacaaat gcaatgtctg tgtgcaccag gcatgctacg ggatcctcaa ggtgcctacg
ggcagctggc tggccggac ctgtgcctg ggagtccagc ctaagtgcct gctctgcccc
aagcgaggag gagccctgaa gcccaactaga agtgggacca agtgggtaca cgtcagctgt
gccctgtgga ttccctgaggt cagcattggc tgtccagaga agatggagcc cattaccaag
atctcgacata ttccggccag ccgctggcc ctgtcctgca gcctctgcaa ggagtgcaca
ggtacctgca tccagtgttc catgccttcc tgcatcacag cattccacgt tacgtgcgcc
tttgaccgag gcctggaaat gcggactata ttagctgaca atgacgaggt caagttcaag
tcactttgcc aggagcacag tgacggggc cctcgaggtg agcctacttc tgagcctgtg
gagcccagcc aggccgttga ggatctggaa aaggtgacct tacgcaagca gcggctgcag
cagctggaag aaaacttcta tgagctagt gагccagctg aggtggctga acggctagac
ctggctgagg cactggtgga cttcatctac cagtaactgga agttgaagcg gagagctaat
gccaaccagc cgctgttgac gcccaagact gacgaggtgg acaacctggc ccaacaggaa
caggatgtcc tctatcgacg cctgaagctt ttcacccacc tgccgcagga cctggagagg
gtaaggaacc tggctacat ggtgacaaga cgggagagaa cgaaacacac catctgtaaa
cttcaggagc agatattcca tctacagatg aaacttattt agcaagaccc ttgcagagag
ccttctggaa ggaggtcaaa gggcaagaag aatgattcaa aaaggaaagg ccgagaggg
cccaaggccca gcagccctga gaagaaagag aaagtgaagg ctggcccgat gtctgtgt
ggcagctgg gtctatccac ctcgttcccc atcgacggca ctttcttcaa cagctgggt
gcacagtcgg ttcatcgac agcagaggac atggccatga gcgagtggtc ttgtacat
ggccaccggg aggtccctgc tccaggtctg ctgtcagagg aattgctaca agatgaggag
acgctgtca gttcatgag ggacccctcg ctacgacccctg gtgaccctgc cagaaaggcc
cgaggccca ctcgcctgat tgccaagaag aaaccatccc cgctgcagga tggggccact
gcacggacca ctccagacaa gcaacccaaag aaggcctggg cccaggatgg caaggggacg
2400

caaggaccac	ccatgaggaa	gccaccacgg	aggacgtctt	ctcatttgcc	gtccagccct	2460
gcagctgggg	actgtccagt	cccagcaaca	ctggaaagcc	ctccaccact	ggcctccgag	2520
atactagaca	agacagcccc	catggcttcc	gacttaaatg	tccaagtgcc	tggccctaca	2580
gtgagcccca	aacccttggg	caggctccgg	ccaccccgag	agatgaaggt	cagtcggaaa	2640
tctccgggtg	ctagatccga	tgctgggaca	ggactaccgt	ctgctgtggc	cgagaggcca	2700
aaggtcagcc	tgcatttga	caccgaggct	gacggctact	tctctgatga	ggagatgagc	2760
gattctgagg	tagaggcaga	ggacagtggg	gtacaacgag	cttccagggg	ggcaggggca	2820
gaggaggtgg	ttcgcatggg	ggtgctggcc	tcctaa			2856

<210> 3
<211> 951
<212> PRT
<213> Murine

<400> 3

Met	Ser	Glu	Ser	Ile	Leu	Thr	Gly	Thr	Glu	Lys	Ala	Arg	Leu	Asn	Gly
1				5				10					15		

Tyr	Leu	Leu	Gln	Asp	Val	Thr	Met	Ile	Tyr	Gln	Leu	Ile	Thr	Gly	His
					20			25					30		

Ser	Leu	Asn	Leu	Pro	Pro	Leu	Cys	His	Ile	Ser	Thr	Ile	Asn	His	Thr
						35		40				45			

Leu	Pro	Ser	Phe	Ser	Ser	Asp	Thr	Tyr	Leu	Pro	Thr	Leu	Gln	Ser
						50		55			60			

Ser	Asn	Lys	Gln	Thr	Leu	Lys	Ala	Thr	Gly	Pro	Gly	Tyr	Pro	Met	Glu
65					70				75			80			

Asn	Asp	Gln	Arg	Lys	Asn	Thr	Cys	Ser	Leu	Val	Arg	Gln	Glu	Gly	Phe
					85			90			95				

Lys	Gly	Val	Thr	Leu	His	Ala	Glu	Ala	Leu	Pro	Thr	Glu	Gly	Ala	Pro
					100			105			110				

Pro	Pro	Pro	Pro	His	Leu	Gln	Asp	Ser	Glu	Met	Glu	Glu	Lys	Arg	Arg
				115			120			125					

Lys	Tyr	Ser	Ile	Ser	Ser	Asp	Asn	Ser	Asp	Thr	Thr	Asp	Gly	His	Val
					130			135			140				

Thr Ser Thr Ser Ala Ser Arg Cys Ser Lys Leu Pro Ser Ser Thr Lys
145 150 155 160

Ser Gly Trp Pro Arg Gln Asn Glu Lys Lys Pro Ser Glu Val Phe Arg
165 170 175

Thr Asp Leu Ile Thr Ala Met Lys Ile Pro Asp Ser Tyr Gln Leu Ser
180 185 190

Pro Asp Asp Tyr Tyr Ile Leu Ala Asp Pro Trp Arg Gln Glu Trp Glu
195 200 205

Lys Gly Val Gln Val Pro Ala Gly Ala Glu Ala Ile Pro Glu Pro Val
210 215 220

Val Arg Leu Leu Pro Pro Leu Lys Gly Pro Pro Thr Gln Met Ser Pro
225 230 235 240

Asp Ser Pro Thr Leu Gly Glu Gly Ala His Pro Asp Trp Pro Gly Gly
245 250 255

Ser Arg Tyr Asp Leu Asp Glu Ile Asp Ala Tyr Trp Leu Glu Leu Leu
260 265 270

Asn Ser Glu Leu Lys Glu Met Glu Lys Pro Glu Leu Asp Glu Leu Thr
275 280 285

Leu Glu Arg Val Leu Glu Glu Leu Glu Thr Leu Cys His Gln Asn Met
290 295 300

Ala Gln Ala Ile Glu Thr Gln Glu Gly Leu Gly Ile Glu Tyr Asp Glu
305 310 315 320

Asp Val Val Cys Asp Val Cys Arg Ser Pro Glu Gly Glu Asp Gly Asn
325 330 335

Glu Met Val Phe Cys Asp Lys Cys Asn Val Cys Val His Gln Ala Cys
340 345 350

Tyr Gly Ile Leu Lys Val Pro Thr Gly Ser Trp Leu Cys Arg Thr Cys
355 360 365

Ala Leu Gly Val Gln Pro Lys Cys Leu Leu Cys Pro Lys Arg Gly Gly
370 375 380

Ala Leu Lys Pro Thr Arg Ser Gly Thr Lys Trp Val His Val Ser Cys
385 390 395 400

Ala Leu Trp Ile Pro Glu Val Ser Ile Gly Cys Pro Glu Lys Met Glu
405 410 415

Pro Ile Thr Lys Ile Ser His Ile Pro Ala Ser Arg Trp Ala Leu Ser
420 425 430

Cys Ser Leu Cys Lys Glu Cys Thr Gly Thr Cys Ile Gln Cys Ser Met
435 440 445

Pro Ser Cys Ile Thr Ala Phe His Val Thr Cys Ala Phe Asp Arg Gly
450 455 460

Leu Glu Met Arg Thr Ile Leu Ala Asp Asn Asp Glu Val Lys Phe Lys
465 470 475 480

Ser Leu Cys Gln Glu His Ser Asp Gly Gly Pro Arg Ser Glu Pro Thr
485 490 495

Ser Glu Pro Val Glu Pro Ser Gln Ala Val Glu Asp Leu Glu Lys Val
500 505 510

Thr Leu Arg Lys Gln Arg Leu Gln Gln Leu Glu Glu Asn Phe Tyr Glu
515 520 525

Leu Val Glu Pro Ala Glu Val Ala Glu Arg Leu Asp Leu Ala Glu Ala
530 535 540

Leu Val Asp Phe Ile Tyr Gln Tyr Trp Lys Leu Lys Arg Arg Ala Asn
545 550 555 560

Ala Asn Gln Pro Leu Leu Thr Pro Lys Thr Asp Glu Val Asp Asn Leu
565 570 575

Ala Gln Gln Glu Gln Asp Val Leu Tyr Arg Arg Leu Lys Leu Phe Thr
580 585 590

His Leu Arg Gln Asp Leu Glu Arg Val Arg Asn Leu Cys Tyr Met Val
595 600 605

Thr Arg Arg Glu Arg Thr Lys His Thr Ile Cys Lys Leu Gln Glu Gln
610 615 620

Ile Phe His Leu Gln Met Lys Leu Ile Glu Gln Asp Leu Cys Arg Glu
625 630 635 640

Pro Ser Gly Arg Arg Ser Lys Gly Lys Lys Asn Asp Ser Lys Arg Lys
645 650 655

Gly Arg Glu Gly Pro Lys Gly Ser Ser Pro Glu Lys Lys Glu Lys Val
660 665 670

Lys Ala Gly Pro Glu Ser Val Leu Gly Gln Leu Gly Leu Ser Thr Ser
675 680 685

Phe Pro Ile Asp Gly Thr Phe Phe Asn Ser Trp Leu Ala Gln Ser Val
690 695 700

Gln Ile Thr Ala Glu Asp Met Ala Met Ser Glu Trp Ser Leu Asn Ser
705 710 715 720

Gly His Arg Glu Asp Pro Ala Pro Gly Leu Leu Ser Glu Glu Leu Leu
725 730 735

Gln Asp Glu Glu Thr Leu Leu Ser Phe Met Arg Asp Pro Ser Leu Arg
740 745 750

Pro Gly Asp Pro Ala Arg Lys Ala Arg Gly Arg Thr Arg Leu Pro Ala
755 760 765

Lys Lys Lys Pro Ser Pro Leu Gln Asp Gly Pro Ser Ala Arg Thr Thr
770 775 780

Pro Asp Lys Gln Pro Lys Lys Ala Trp Ala Gln Asp Gly Lys Gly Thr
785 790 795 800

Gln Gly Pro Pro Met Arg Lys Pro Pro Arg Arg Thr Ser Ser His Leu
805 810 815

Pro Ser Ser Pro Ala Ala Gly Asp Cys Pro Val Pro Ala Thr Leu Glu
820 825 830

Ser Pro Pro Pro Leu Ala Ser Glu Ile Leu Asp Lys Thr Ala Pro Met
835 840 845

Ala Ser Asp Leu Asn Val Gln Val Pro Gly Pro Thr Val Ser Pro Lys
850 855 860

Pro Leu Gly Arg Leu Arg Pro Pro Arg Glu Met Lys Val Ser Arg Lys
865 870 875 880

Ser Pro Gly Ala Arg Ser Asp Ala Gly Thr Gly Leu Pro Ser Ala Val
885 890 895

Ala Glu Arg Pro Lys Val Ser Leu His Phe Asp Thr Glu Ala Asp Gly
900 905 910

Tyr Phe Ser Asp Glu Glu Met Ser Asp Ser Glu Val Glu Ala Glu Asp
915 920 925

Ser Gly Val Gln Arg Ala Ser Arg Glu Ala Gly Ala Glu Glu Val Val
930 935 940

Arg Met Gly Val Leu Ala Ser
945 950

<210> 4
<211> 829
<212> PRT
<213> Murine

<400> 4

Met Glu Glu Lys Arg Arg Lys Tyr Ser Ile Ser Ser Asp Asn Ser Asp
1 5 10 15

Thr Thr Asp Gly His Val Thr Ser Thr Ser Ala Ser Arg Cys Ser Lys
20 25 30

Leu Pro Ser Ser Thr Lys Ser Gly Trp Pro Arg Gln Asn Glu Lys Lys
35 40 45

Pro Ser Glu Val Phe Arg Thr Asp Leu Ile Thr Ala Met Lys Ile Pro
50 55 60

Asp Ser Tyr Gln Leu Ser Pro Asp Asp Tyr Tyr Ile Leu Ala Asp Pro
65 70 75 80

Trp Arg Gln Glu Trp Glu Lys Gly Val Gln Val Pro Ala Gly Ala Glu
85 90 95

Ala Ile Pro Glu Pro Val Val Arg Leu Leu Pro Pro Leu Lys Gly Pro
100 105 110

Pro Thr Gln Met Ser Pro Asp Ser Pro Thr Leu Gly Glu Gly Ala His
115 120 125

Pro Asp Trp Pro Gly Gly Ser Arg Tyr Asp Leu Asp Glu Ile Asp Ala
130 135 140

Tyr Trp Leu Glu Leu Leu Asn Ser Glu Leu Lys Glu Met Glu Lys Pro
145 150 155 160

Glu Leu Asp Glu Leu Thr Leu Glu Arg Val Leu Glu Glu Leu Glu Thr
165 170 175

Leu Cys His Gln Asn Met Ala Gln Ala Ile Glu Thr Gln Glu Gly Leu
180 185 190

Gly Ile Glu Tyr Asp Glu Asp Val Val Cys Asp Val Cys Arg Ser Pro
195 200 205

Glu Gly Glu Asp Gly Asn Glu Met Val Phe Cys Asp Lys Cys Asn Val
210 215 220

Cys Val His Gln Ala Cys Tyr Gly Ile Leu Lys Val Pro Thr Gly Ser
225 230 235 240

Trp Leu Cys Arg Thr Cys Ala Leu Gly Val Gln Pro Lys Cys Leu Leu
245 250 255

Cys Pro Lys Arg Gly Gly Ala Leu Lys Pro Thr Arg Ser Gly Thr Lys
260 265 270

Trp Val His Val Ser Cys Ala Leu Trp Ile Pro Glu Val Ser Ile Gly
275 280 285

Cys Pro Glu Lys Met Glu Pro Ile Thr Lys Ile Ser His Ile Pro Ala
290 295 300

Ser Arg Trp Ala Leu Ser Cys Ser Leu Cys Lys Glu Cys Thr Gly Thr
305 310 315 320

Cys Ile Gln Cys Ser Met Pro Ser Cys Ile Thr Ala Phe His Val Thr
325 330 335

Cys Ala Phe Asp Arg Gly Leu Glu Met Arg Thr Ile Leu Ala Asp Asn
340 345 350

Asp Glu Val Lys Phe Lys Ser Leu Cys Gln Glu His Ser Asp Gly Gly
355 360 365

Pro Arg Ser Glu Pro Thr Ser Glu Pro Val Glu Pro Ser Gln Ala Val
370 375 380

Glu Asp Leu Glu Lys Val Thr Leu Arg Lys Gln Arg Leu Gln Gln Leu
385 390 395 400

Glu Glu Asn Phe Tyr Glu Leu Val Glu Pro Ala Glu Val Ala Glu Arg
405 410 415

Leu Asp Leu Ala Glu Ala Leu Val Asp Phe Ile Tyr Gln Tyr Trp Lys
420 425 430

Leu Lys Arg Arg Ala Asn Ala Asn Gln Pro Leu Leu Thr Pro Lys Thr
435 440 445

Asp Glu Val Asp Asn Leu Ala Gln Gln Glu Gln Asp Val Leu Tyr Arg
450 455 460

Arg Leu Lys Leu Phe Thr His Leu Arg Gln Asp Leu Glu Arg Val Arg
465 470 475 480

Asn Leu Cys Tyr Met Val Thr Arg Arg Glu Arg Thr Lys His Thr Ile
485 490 495

Cys Lys Leu Gln Glu Gln Ile Phe His Leu Gln Met Lys Leu Ile Glu
500 505 510

Gln Asp Leu Cys Arg Glu Pro Ser Gly Arg Arg Ser Lys Gly Lys Lys
515 520 525

Asn Asp Ser Lys Arg Lys Gly Arg Glu Gly Pro Lys Gly Ser Ser Pro
530 535 540

Glu Lys Lys Glu Lys Val Lys Ala Gly Pro Glu Ser Val Leu Gly Gln
545 550 555 560

Leu Gly Leu Ser Thr Ser Phe Pro Ile Asp Gly Thr Phe Phe Asn Ser
565 570 575

Trp Leu Ala Gln Ser Val Gln Ile Thr Ala Glu Asp Met Ala Met Ser
580 585 590

Glu Trp Ser Leu Asn Ser Gly His Arg Glu Asp Pro Ala Pro Gly Leu
595 600 605

Leu Ser Glu Glu Leu Leu Gln Asp Glu Glu Thr Leu Leu Ser Phe Met
610 615 620

Arg Asp Pro Ser Leu Arg Pro Gly Asp Pro Ala Arg Lys Ala Arg Gly
625 630 635 640

Arg Thr Arg Leu Pro Ala Lys Lys Lys Pro Ser Pro Leu Gln Asp Gly
645 650 655

Pro Ser Ala Arg Thr Thr Pro Asp Lys Gln Pro Lys Lys Ala Trp Ala
660 665 670

Gln Asp Gly Lys Gly Thr Gln Gly Pro Pro Met Arg Lys Pro Pro Arg
675 680 685

Arg Thr Ser Ser His Leu Pro Ser Ser Pro Ala Ala Gly Asp Cys Pro
690 695 700

Val Pro Ala Thr Leu Glu Ser Pro Pro Pro Leu Ala Ser Glu Ile Leu
705 710 715 720

Asp Lys Thr Ala Pro Met Ala Ser Asp Leu Asn Val Gln Val Pro Gly
725 730 735

Pro Thr Val Ser Pro Lys Pro Leu Gly Arg Leu Arg Pro Pro Arg Glu
740 745 750

Met Lys Val Ser Arg Lys Ser Pro Gly Ala Arg Ser Asp Ala Gly Thr
755 760 765

Gly Leu Pro Ser Ala Val Ala Glu Arg Pro Lys Val Ser Leu His Phe
770 775 780

Asp Thr Glu Ala Asp Gly Tyr Phe Ser Asp Glu Glu Met Ser Asp Ser
785 790 795 800

Glu Val Glu Ala Glu Asp Ser Gly Val Gln Arg Ala Ser Arg Glu Ala
805 810 815

Gly Ala Glu Glu Val Val Arg Met Gly Val Leu Ala Ser
820 825

```

<210> 5
<211> 2750
<212> DNA
<213> Homo sapiens

<400> 5
gttttaaaaa gaaacagaaa catacacagg gggtttgtga atggtgccga ccgcggccat      60
cgcagttgga ggctattttt tggggggat ggaagagaag aggcaaaat actccatcag      120
cagtgacaac tctgacacca ctgacagtca tgcgacatct acatccgcat caagatgctc      180
caaactgccc agcagcacca agtcgggctg gccccgacag aacgaaaaga agccctccga      240
ggtttccgg acagacttga tcacagccat gaagatcccg gactcatacc agctcagccc      300
ggatgactac tacatcctgg cagacccatg gcgacaggaa tggagaaag gtgtcaggt      360
gcctgccgg gcagaggcca tcccagagcc cgtggtgagg atcctccac cactggaagg      420
ccccctgcc caggcatccc cgagcagcac catgcttggt gagggctccc agcctgattg      480
gccagggggc agccgctatg acttggacga gattgatgcc tactggctgg agctcatcaa      540
ctcggagctt aaggagatgg agaggccgga gctggacgag ctgacattag agcgtgtgct      600
ggaggagctg gagaccctgt gccaccagaa tatggccagg gccattgaga cgcaggaggg      660
gctgggcattc gagtacgacg agatgttgt ctgcacgtg tgtcgcttc ctgagggcga      720
ggatggcaac gagatggctc tctgtgacaa gtcaacgtc tgtgtgcattc aggcatgcta      780
cgggatcctc aaggtgccca cggcagctg gctgtccgg acgtgtgccc tgggtgtcca      840
gccaaggatgc ctgctctgcc ccaagcgagg aggaccttg aagcccacta gaagtggac      900
caagtgggtg catgtcagct gtgcctatg gattcctgag gtcagcatcg gctgcccaga      960
gaagatggag cccatcacca agatctcgca tatcccagcc agccgctggg ctctgtcctg      1020
cagcctctgc aaggaatgca caggcacctg catccagtgt tccatgcctt cctgcgtcac     1080
agcgttccat gtcacatgctg ccttgacca cggcctggaa atgcggacta tattagcaga     1140
caacgatgag gtcaagttca agtcattctg ccaggagcac agtgacgggg gcccacgtaa     1200
tgagcccaca tctgagccca cggAACCCAG ccaggctggc gaggacctgg aaaaggtgac     1260
cctgcgcaga cagcggctgc agcagctaga ggaggacttc tacgagctgg tggagccggc     1320
tgaggtggct gagcggctgg acctggctga ggcactggc gacttcatct accagtactg     1380
gaagctgaag aggaaagcca atgccaacca gcccgtgtg acccccaaga ccgacgaggt     1440
ggacaacctg gcccagcagg agcaggacgt cctctaccgc cgcctgaagc tcttcaccca     1500
tctgcggcag gacctagaga gggtagaaa tctgtgctac atggtgacaa ggcgcgagag     1560
aacgaaacac gccatctgca aactccagga gcagatattc cacctgcaga taaaacttat     1620

```

tgaacaggat	ctgtgtcgag	agcggctctgg	gaggagagca	aagggcaga	agagtgactc	1680
gaagaggaag	ggctgcgagg	gctccaaggg	cagcaactgag	aagaaagaga	aagtgaaggc	1740
ggggcctgac	tcatgtctgg	ggcagctggc	aggcctgtcc	acctcattcc	ccatcgatgg	1800
caccccttcc	aacagctggc	tggcacagtc	ggtgcagatc	acagcagaga	acatggccat	1860
gagcgagtgg	ccactgaaca	atgggcacccg	cgaggaccct	gctccagggc	tgctgtcaga	1920
ggaactgctg	caggacgagg	agacactgct	cagttcatg	cgggaccct	cgctgcgacc	1980
tggtgaccct	gcttaggaagg	cccgaggccg	caccgcctg	cctgccaaga	agaaaccacc	2040
accaccacca	ccgcaggacg	ggcctggttc	acggacgact	ccagacaaag	cccccaagaa	2100
gacctggggc	caggatgcag	gcagtggcaa	gggggtcaa	gggccaccta	ccaggaagcc	2160
accacgtcgg	acatcttctc	acttgcgcgc	cagccctgca	gccggggact	gtcccatcct	2220
agccacccct	gaaagccccc	cgcactggc	ccctgagacc	ccggacgagg	cagcctcagt	2280
agctgctgac	tcatgtgtcc	aagtgcctgg	ccctgcagca	agccctaagc	ctttgggccc	2340
gctccggcca	ccccgcgaga	gcaaggtaac	ccggagattg	ccgggtgcca	ggcctgatgc	2400
tgggatggga	ccaccttcag	ctgtggctga	gaggcccaag	gtcagcctgc	atttgacac	2460
tgagactgat	ggctacttct	ctgatggga	gatgagcgcac	tcatgttag	aggccgagga	2520
cggtgtgggtg	cagcggggtc	cccgggaggc	agggcagag	gaggtggtcc	gcatggcgt	2580
actggcctcc	taactcaccc	cttccctgt	cccaggccct	gccctggtcc	ccccacaagg	2640
cctcagccca	gtcacaactg	ccatccag	tctctgctga	gtgtcccaga	ccctcgaggc	2700
tgccactccg	tcgtggtttt	attttaata	tagagagat	tttgaattct		2750

<210> 6
 <211> 850
 <212> PRT
 <213> Homo sapiens

<400> 6

Met Val Pro Thr Ala Ala Ile Ala Val Gly Gly Tyr Phe Leu Gly Gly
 1 5 10 15

Met Glu Glu Lys Arg Arg Lys Tyr Ser Ile Ser Ser Asp Asn Ser Asp
 20 25 30

Thr Thr Asp Ser His Ala Thr Ser Thr Ser Ala Ser Arg Cys Ser Lys
 35 40 45

Leu Pro Ser Ser Thr Lys Ser Gly Trp Pro Arg Gln Asn Glu Lys Lys
 50 55 60

Pro Ser Glu Val Phe Arg Thr Asp Leu Ile Thr Ala Met Lys Ile Pro
65 70 75 80

Asp Ser Tyr Gln Leu Ser Pro Asp Asp Tyr Tyr Ile Leu Ala Asp Pro
85 90 95

Trp Arg Gln Glu Trp Glu Lys Gly Val Gln Val Pro Ala Gly Ala Glu
100 105 110

Ala Ile Pro Glu Pro Val Val Arg Ile Leu Pro Pro Leu Glu Gly Pro
115 120 125

Pro Ala Gln Ala Ser Pro Ser Ser Thr Met Leu Gly Glu Gly Ser Gln
130 135 140

Pro Asp Trp Pro Gly Gly Ser Arg Tyr Asp Leu Asp Glu Ile Asp Ala
145 150 155 160

Tyr Trp Leu Glu Leu Ile Asn Ser Glu Leu Lys Glu Met Glu Arg Pro
165 170 175

Glu Leu Asp Glu Leu Thr Leu Glu Arg Val Leu Glu Glu Leu Glu Thr
180 185 190

Leu Cys His Gln Asn Met Ala Arg Ala Ile Glu Thr Gln Glu Gly Leu
195 200 205

Gly Ile Glu Tyr Asp Glu Asp Val Val Cys Asp Val Cys Arg Ser Pro
210 215 220

Glu Gly Glu Asp Gly Asn Glu Met Val Phe Cys Asp Lys Cys Asn Val
225 230 235 240

Cys Val His Gln Ala Cys Tyr Gly Ile Leu Lys Val Pro Thr Gly Ser
245 250 255

Trp Leu Cys Arg Thr Cys Ala Leu Gly Val Gln Pro Lys Cys Leu Leu
260 265 270

Cys Pro Lys Arg Gly Gly Ala Leu Lys Pro Thr Arg Ser Gly Thr Lys
275 280 285

Trp Val His Val Ser Cys Ala Leu Trp Ile Pro Glu Val Ser Ile Gly
290 295 300

Cys Pro Glu Lys Met Glu Pro Ile Thr Lys Ile Ser His Ile Pro Ala
305 310 315 320

Ser Arg Trp Ala Leu Ser Cys Ser Leu Cys Lys Glu Cys Thr Gly Thr
325 330 335

Cys Ile Gln Cys Ser Met Pro Ser Cys Val Thr Ala Phe His Val Thr
340 345 350

Cys Ala Phe Asp His Gly Leu Glu Met Arg Thr Ile Leu Ala Asp Asn
355 360 365

Asp Glu Val Lys Phe Lys Ser Phe Cys Gln Glu His Ser Asp Gly Gly
370 375 380

Pro Arg Asn Glu Pro Thr Ser Glu Pro Thr Glu Pro Ser Gln Ala Gly
385 390 395 400

Glu Asp Leu Glu Lys Val Thr Leu Arg Lys Gln Arg Leu Gln Gln Leu
405 410 415

Glu Glu Asp Phe Tyr Glu Leu Val Glu Pro Ala Glu Val Ala Glu Arg
420 425 430

Leu Asp Leu Ala Glu Ala Leu Val Asp Phe Ile Tyr Gln Tyr Trp Lys
435 440 445

Leu Lys Arg Lys Ala Asn Ala Asn Gln Pro Leu Leu Thr Pro Lys Thr
450 455 460

Asp Glu Val Asp Asn Leu Ala Gln Gln Glu Gln Asp Val Leu Tyr Arg
465 470 475 480

Arg Leu Lys Leu Phe Thr His Leu Arg Gln Asp Leu Glu Arg Val Arg
485 490 495

Asn Leu Cys Tyr Met Val Thr Arg Arg Glu Arg Thr Lys His Ala Ile
500 505 510

Cys Lys Leu Gln Glu Gln Ile Phe His Leu Gln Met Lys Leu Ile Glu
515 520 525

Gln Asp Leu Cys Arg Glu Arg Ser Gly Arg Arg Ala Lys Gly Lys Lys
530 535 540

Ser Asp Ser Lys Arg Lys Gly Cys Glu Gly Ser Lys Gly Ser Thr Glu
545 550 555 560

Lys Lys Glu Lys Val Lys Ala Gly Pro Asp Ser Val Leu Gly Gln Leu
565 570 575

Ala Gly Leu Ser Thr Ser Phe Pro Ile Asp Gly Thr Phe Phe Asn Ser
580 585 590

Trp Leu Ala Gln Ser Val Gln Ile Thr Ala Glu Asn Met Ala Met Ser
595 600 605

Glu Trp Pro Leu Asn Asn Gly His Arg Glu Asp Pro Ala Pro Gly Leu
610 615 620

Leu Ser Glu Glu Leu Leu Gln Asp Glu Glu Thr Leu Leu Ser Phe Met
625 630 635 640

Arg Asp Pro Ser Leu Arg Pro Gly Asp Pro Ala Arg Lys Ala Arg Gly
645 650 655

Arg Thr Arg Leu Pro Ala Lys Lys Pro Pro Pro Pro Pro Gln
660 665 670

Asp Gly Pro Gly Ser Arg Thr Thr Pro Asp Lys Ala Pro Lys Lys Thr
675 680 685

Trp Gly Gln Asp Ala Gly Ser Gly Lys Gly Gln Gly Pro Pro Thr
690 695 700

Arg Lys Pro Pro Arg Arg Thr Ser Ser His Leu Pro Ser Ser Pro Ala
705 710 715 720

Ala Gly Asp Cys Pro Ile Leu Ala Thr Pro Glu Ser Pro Pro Leu
725 730 735

Ala Pro Glu Thr Pro Asp Glu Ala Ala Ser Val Ala Ala Asp Ser Asp
740 745 750

Val Gln Val Pro Gly Pro Ala Ala Ser Pro Lys Pro Leu Gly Arg Leu
755 760 765

Arg Pro Pro Arg Glu Ser Lys Val Thr Arg Arg Leu Pro Gly Ala Arg
770 775 780

Pro Asp Ala Gly Met Gly Pro Pro Ser Ala Val Ala Glu Arg Pro Lys
785 790 795 800

Val Ser Leu His Phe Asp Thr Glu Thr Asp Gly Tyr Phe Ser Asp Gly
805 810 815

Glu Met Ser Asp Ser Asp Val Glu Ala Glu Asp Gly Gly Val Gln Arg
820 825 830

Gly Pro Arg Glu Ala Gly Ala Glu Glu Val Val Arg Met Gly Val Leu
835 840 845

Ala Ser
850

<210> 7
<211> 834
<212> PRT
<213> Homo sapiens

<400> 7

Met Glu Glu Lys Arg Arg Lys Tyr Ser Ile Ser Ser Asp Asn Ser Asp
1 5 10 15

Thr Thr Asp Ser His Ala Thr Ser Thr Ser Ala Ser Arg Cys Ser Lys
20 25 30

Leu Pro Ser Ser Thr Lys Ser Gly Trp Pro Arg Gln Asn Glu Lys Lys
35 40 45

Pro Ser Glu Val Phe Arg Thr Asp Leu Ile Thr Ala Met Lys Ile Pro
50 55 60

Asp Ser Tyr Gln Leu Ser Pro Asp Asp Tyr Tyr Ile Leu Ala Asp Pro
65 70 75 80

Trp Arg Gln Glu Trp Glu Lys Gly Val Gln Val Pro Ala Gly Ala Glu
85 90 95

Ala Ile Pro Glu Pro Val Val Arg Ile Leu Pro Pro Leu Glu Gly Pro
100 105 110

Pro Ala Gln Ala Ser Pro Ser Ser Thr Met Leu Gly Glu Gly Ser Gln
115 120 125

Pro Asp Trp Pro Gly Gly Ser Arg Tyr Asp Leu Asp Glu Ile Asp Ala
130 135 140

Tyr Trp Leu Glu Leu Ile Asn Ser Glu Leu Lys Glu Met Glu Arg Pro
145 150 155 160

Glu Leu Asp Glu Leu Thr Leu Glu Arg Val Leu Glu Glu Leu Glu Thr
165 170 175

Leu Cys His Gln Asn Met Ala Arg Ala Ile Glu Thr Gln Glu Gly Leu
180 185 190

Gly Ile Glu Tyr Asp Glu Asp Val Val Cys Asp Val Cys Arg Ser Pro
195 200 205

Glu Gly Glu Asp Gly Asn Glu Met Val Phe Cys Asp Lys Cys Asn Val
210 215 220

Cys Val His Gln Ala Cys Tyr Gly Ile Leu Lys Val Pro Thr Gly Ser
225 230 235 240

Trp Leu Cys Arg Thr Cys Ala Leu Gly Val Gln Pro Lys Cys Leu Leu
245 250 255

Cys Pro Lys Arg Gly Gly Ala Leu Lys Pro Thr Arg Ser Gly Thr Lys
260 265 270

Trp Val His Val Ser Cys Ala Leu Trp Ile Pro Glu Val Ser Ile Gly
275 280 285

Cys Pro Glu Lys Met Glu Pro Ile Thr Lys Ile Ser His Ile Pro Ala
290 295 300

Ser Arg Trp Ala Leu Ser Cys Ser Leu Cys Lys Glu Cys Thr Gly Thr
305 310 315 320

Cys Ile Gln Cys Ser Met Pro Ser Cys Val Thr Ala Phe His Val Thr
325 330 335

Cys Ala Phe Asp His Gly Leu Glu Met Arg Thr Ile Leu Ala Asp Asn
340 345 350

Asp Glu Val Lys Phe Lys Ser Phe Cys Gln Glu His Ser Asp Gly Gly
355 360 365

Pro Arg Asn Glu Pro Thr Ser Glu Pro Thr Glu Pro Ser Gln Ala Gly
370 375 380

Glu Asp Leu Glu Lys Val Thr Leu Arg Lys Gln Arg Leu Gln Gln Leu
385 390 395 400

Glu Glu Asp Phe Tyr Glu Leu Val Glu Pro Ala Glu Val Ala Glu Arg
405 410 415

Leu Asp Leu Ala Glu Ala Leu Val Asp Phe Ile Tyr Gln Tyr Trp Lys
420 425 430

Leu Lys Arg Lys Ala Asn Ala Asn Gln Pro Leu Leu Thr Pro Lys Thr
435 440 445

Asp Glu Val Asp Asn Leu Ala Gln Gln Glu Gln Asp Val Leu Tyr Arg
450 455 460

Arg Leu Lys Leu Phe Thr His Leu Arg Gln Asp Leu Glu Arg Val Arg
465 470 475 480

Asn Leu Cys Tyr Met Val Thr Arg Arg Glu Arg Thr Lys His Ala Ile
485 490 495

Cys Lys Leu Gln Glu Gln Ile Phe His Leu Gln Met Lys Leu Ile Glu
500 505 510

Gln Asp Leu Cys Arg Glu Arg Ser Gly Arg Arg Ala Lys Gly Lys Lys
515 520 525

Ser Asp Ser Lys Arg Lys Gly Cys Glu Gly Ser Lys Gly Ser Thr Glu
530 535 540

Lys Lys Glu Lys Val Lys Ala Gly Pro Asp Ser Val Leu Gly Gln Leu
545 550 555 560

Ala Gly Leu Ser Thr Ser Phe Pro Ile Asp Gly Thr Phe Phe Asn Ser
565 570 575

Trp Leu Ala Gln Ser Val Gln Ile Thr Ala Glu Asn Met Ala Met Ser
580 585 590

Glu Trp Pro Leu Asn Asn Gly His Arg Glu Asp Pro Ala Pro Gly Leu
595 600 605

Leu Ser Glu Glu Leu Leu Gln Asp Glu Glu Thr Leu Leu Ser Phe Met
610 615 620

Arg Asp Pro Ser Leu Arg Pro Gly Asp Pro Ala Arg Lys Ala Arg Gly
625 630 635 640

Arg Thr Arg Leu Pro Ala Lys Lys Lys Pro Pro Pro Pro Pro Gln
645 650 655

Asp Gly Pro Gly Ser Arg Thr Thr Pro Asp Lys Ala Pro Lys Lys Thr
660 665 670

Trp Gly Gln Asp Ala Gly Ser Gly Lys Gly Gln Gly Pro Pro Thr
675 680 685

Arg Lys Pro Pro Arg Arg Thr Ser Ser His Leu Pro Ser Ser Pro Ala
690 695 700

Ala Gly Asp Cys Pro Ile Leu Ala Thr Pro Glu Ser Pro Pro Pro Leu
705 710 715 720

Ala Pro Glu Thr Pro Asp Glu Ala Ala Ser Val Ala Ala Asp Ser Asp
725 730 735

Val Gln Val Pro Gly Pro Ala Ala Ser Pro Lys Pro Leu Gly Arg Leu
740 745 750

Arg Pro Pro Arg Glu Ser Lys Val Thr Arg Arg Leu Pro Gly Ala Arg
755 760 765

Pro Asp Ala Gly Met Gly Pro Pro Ser Ala Val Ala Glu Arg Pro Lys
770 775 780

Val Ser Leu His Phe Asp Thr Glu Thr Asp Gly Tyr Phe Ser Asp Gly
785 790 795 800

Glu Met Ser Asp Ser Asp Val Glu Ala Glu Asp Gly Gly Val Gln Arg
805 810 815

Gly Pro Arg Glu Ala Gly Ala Glu Glu Val Val Arg Met Gly Val Leu
820 825 830

Ala Ser

<210> 8		
<211> 329		
<212> DNA		
<213> Homo sapiens		
<400> 8		
gggggttgggt gaatggtgcc gaccgcggcc atcgagttg gaggctattt tttggggggg	60	
gtgagtagcg tccatggagt tactttgcgc ccactcctag cggcaccggc ttaggtcctg	120	
cggcccgacc gtccccggcg gggggcggtgg ggcctggac gccgcgggccc cggccgcctc	180	
cctcgccgcg accccggatg gatgcgcgcc ccccgccctc cccaggagct	240	
cccggttcg ggagcatcct tcccgcgccg gtccctgcag cggcgcgtag ccgagggcag	300	
cggccgtca gggggcaccg cggagcaag	329	
<210> 9		
<211> 58		
<212> DNA		
<213> Homo sapiens		
<400> 9		
atggaagaga agaggcgaaa atactccatc agcagtgaca actctgacac cactgaca	58	
<210> 10		
<211> 95		
<212> DNA		
<213> Homo sapiens		
<400> 10		
gtcatgcgac atctacatcc gcatcaagat gctccaaact gcccagcagc accaagtcgg	60	
gctggccccc acagaacgaa aagaagccct ccgag	95	
<210> 11		
<211> 158		
<212> DNA		
<213> Homo sapiens		
<400> 11		
gttttccgga cagacttgat cacagccatg aagatccgg actcatacca gctcagcccg	60	
gatgactact acatcctggc agacccatgg cgacaggaat gggagaaagg tgtgcaggtg	120	
cctgcccggg cagaggccat cccagagccc gtggtag	158	
<210> 12		
<211> 161		
<212> DNA		
<213> Homo sapiens		
<400> 12		
gatcctccca ccactggaag gccccctgc ccaggcatcc ccgagcagca ccatgcttgg	60	

tgagggctcc cagcctgatt ggccaggggg cagccgctat gacttggacg agattgatgc	120
ctactggctg gagctcatca actcgagct taaggagatg g	161
<210> 13	
<211> 212	
<212> DNA	
<213> Homo sapiens	
<400> 13	
agaggccgga gctggacgag ctgacattag agcgtgtgct ggaggagctg gagaccctgt	60
gccaccagaa tatggccagg gccattgaga cgcaaggaggg gctgggcata gagtacgacg	120
aggatgttgt ctgcacgtg tgcgtctc ctgagggcga ggatggcaac gagatggtct	180
tctgtgacaa gtgcaacgtc tgtgtgcata ag	212
<210> 14	
<211> 168	
<212> DNA	
<213> Homo sapiens	
<400> 14	
gcatgctacg ggatcctcaa ggtgcccacg ggcagctggc tgcgtccggac gtgtgccctg	60
gggtgtccacg caaatgtgcct gctctgcccc aagcgaggag gagccttgaa gcccactaga	120
agtgggacca agtgggtgca tgcgtctgt gccttatgga ttcctgag	168
<210> 15	
<211> 117	
<212> DNA	
<213> Homo sapiens	
<400> 15	
gtcagcatcg gctgcccaga gaagatggag cccatcacca agatctcgca tatcccagcc	60
agccgctggg ctctgtcctg cagcctctgc aaggaatgca caggcacctg catccag	117
<210> 16	
<211> 465	
<212> DNA	
<213> Homo sapiens	
<400> 16	
tgttccatgc ttccatgcgt cacagcggtt catgtcacat ggcgccttga ccacggcctg	60
gaaatgcgga ctatattagc agacaacgtt gaggtcaagt tcaagtctt cttgtccaggag	120
cacagtgtacg ggggcccacg taatgagccc acatctgtac ccacggaaacc cagccaggct	180
ggcgaggacc tggaaaagggt gaccctgcgc aagcagcggc tgcgtcgactt agaggaggac	240
ttctacgacg tgggtggagcc ggctgagggtg gctgagcggc tggacctggc tgaggcactg	300

gtcgacttca tctaccagta ctggaagctg aagaggaaag ccaatgccaa ccagccgctg	360
ctgaccccca agaccgacga ggtggacaac ctggcccagc aggagcagga cgtcctctac	420
cggccgcctga agctttcac ccatctgcgg caggacctag agagg	465
<210> 17	
<211> 118	
<212> DNA	
<213> Homo sapiens	
<400> 17	
gttagaaatc tgtgctacat ggtgacaagg cgcgagagaa cgaaacacgc catctgcaaa	60
ctccaggagc agatattcca cctgcagatg aaacttattg aacaggatct gtgtcgag	118
<210> 18	
<211> 818	
<212> DNA	
<213> Homo sapiens	
<400> 18	
gcctgtccac ctcattcccc atcgatggca ctttttcaa cagctggctg gcacagtccg	60
tgcagatcac agcagagaac atggccatga gcgagtggcc actgaacaat gggcaccgcg	120
aggacctgc tccagggctg ctgtcagagg aactgctgca ggacgaggag acactgctca	180
gcttcatgcg ggaccctcg ctgcgacctg gtgaccctgc taggaaggcc cgaggccgca	240
cccgccctgcc tgccaagaag aaaccaccac caccaccacc gcaggacggg cctggttcac	300
ggacgactcc agacaaagcc cccaagaaga cctggggcca ggatgcaggg agtggcaagg	360
ggggtcaagg gccacctacc aggaagccac cacgtcggac atcttctcac ttgccgtcca	420
gccctgcagc cggggactgt cccatcttag ccaccctga aagccccccg ccactggccc	480
ctgagacccc ggacgaggca gcctcagtag ctgctgactc agatgtccaa gtgcctggcc	540
ctgcagcaag ccctaagcct ttgggcccgc tccggccacc ccgcgagagc aaggtaaccc	600
ggagattgcc ggggccagg cctgatgctg ggatgggacc accttcagct gtggctgaga	660
ggcccaaggt cagcctgcat tttgacactg agactgatgg ctacttctct gatggggaga	720
tgagcactc agatgttagag gccgaggacg gtggggtgca gcggggtccc cgggaggcag	780
ggcagagga ggtggccgc atggcgtac tggcctcc	818
<210> 19	
<211> 1440	
<212> DNA	
<213> Homo sapiens	
<400> 19	

cggccctggg gacagggcgg gctagggcg ccccagagt catggggagt ccggggccag	60
ggtgccagca ggcgtggtgg tggggctgca agggaggggca cccttcccc acggggcccg	120
caacgctacc tggactcccc gccggagcca aacaactggg cgggggggttgc gggggggcggc	180
gacgggggttgc tcgggagcgg agatccgagt gaataagaaa aaagtggcta ctccccctcc	240
ctcgctcctc ctgccccccc ccacccacc cccacccaa cacatttttt ttttctaaag	300
agatcacaag gaagtcttgg tttaaaaaga aacagaaaca tacacagggg gttggtaat	360
ggtgccgacc gcggccatcg cagttggagg ctatTTTg ggggggggtga gtagcgtcca	420
tggagttact ttgcgcccac tcctagcggc accggcttag gtcctgcggg ccgaccgtcc	480
ccggcggggg gcgtggggcc tgggacgccc cggggccggc cgcctccctc gccgcgaccc	540
cggatggatg cgcccccgc gcccctccgc gcccggccca ggagctcccg gcttcgggag	600
catccttccc ggcgggtcc ctgcagcggc gcgtagccga gggcagcggc cgtcaggggg	660
gcaccgcgga gcaaggtaag atccagcccc cggcggatgg gcccgcgca tctccacgac	720
gttatttggc gttttgcaa cagatctgcc agcgctcttc gtccttcgc tctctttgc	780
tcgctcgctc cctctctctc ctgctggctg cctgttctag gaagccagcg cggagagggg	840
ggggatgcac agcacagggg agagagattt cgcattttgg tcagtcgtgt tttaaagagt	900
acagtgcggg gaggctgaga gggcgcatg caacaacaac ttttggagg gtgagcttgg	960
cgaccttctt tattaatgac tgccgcaaaag cgccccggg ccggcgaggg ggcgcggcg	1020
ggcgggggcg cgccagggtct gcaacttccc cgcggctcc ggccgggcgt aggggctgcg	1080
gcgggagatg ggtacgggtgg ggaggtcgag cggccgggc gggggctccg agaacctgga	1140
gctatctgcc ctccctgtctc cccgagtttc attttgttgc tacgcagcac gtccggcg	1200
cgaaccgggc tgagccggtg cacatgacct cgcgtggc tcacgtgcag ccggccgggt	1260
cccagacacc ttccgggggc caccgcctcc gcccgtcgc cccctctccc ggcccgggtgc	1320
acgcgggcgc tgacgcggg ggcagcatgc tcggctcctg gggttggagg ctctgcacaa	1380
attagacagt tttttggag gggcgggggca cacccttcc aggtgagtgt ggagggtgcg	1440

<210> 20

<211> 50

<212> DNA

<213> Homo sapiens

<400> 20

cccgccggag ccaaacaact gggcgggggg ttgggggggc ggcgacgggg	50
--	----

<210> 21

<211> 50

<212> DNA
<213> Homo sapiens

<400> 21
ccggcgaaaaa gcggtggggcc tgggacgccc cggggccggc cgccctccctc 50

<210> 22
<211> 50
<212> DNA
<213> Homo sapiens

<400> 22
accttcttta ttaatgactg cggcaaaggcg cccccggggcc ggcgaggggg 50

<210> 23
<211> 50
<212> DNA
<213> Homo sapiens

<400> 23
gcccccgggc cggcgaggggg gcgcgggcgg gcgggggcgc gccaggcgt 50