Problem Set 5 Real Analysis

Bennett Rennier barennier@gmail.com

January 15, 2018

Ex 4.5 Suppose m is Lebesgue measure. Define $x + A = \{x + y \mid y \in A\}$ and $cA = \{cy \mid y \in A\}$ for $x \in \mathbb{R}$ and c a real number. Show that if A is a Lebesgue measurable set, then m(x + A) = m(A) and m(cA) = |c|m(A).

Proof. Let $B_i = (c_i, d_i]$ be a covering of A. Notice that since $A \subseteq \bigcup_{i=1}^{\infty} B_i$, then $x + A \subseteq \bigcup_{i=1}^{\infty} x + B_i$. We also see that $\ell(x + B_i) = \ell((x + c_i, x + d_i]) = (x + d_i) - (x + c_i) = d_i - c_i = \ell((c_i, d_i]) = \ell(B_i)$. Thus, $\sum_{i=1}^{\infty} \ell(B_i) = \sum_{i=1}^{\infty} \ell(x + B_i)$. Since $x + A \subseteq x + \bigcup_{i=1}^{\infty} B_i$, this shows that $m^*(x + A) \leq m^*(x + \bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} m^*(x + B_i) = \sum_{i=1}^{\infty} \ell(x + B_i) = \sum_{i=1}^{\infty} \ell(B_i)$. Since $m^*(x + A)$ is less than any half-open covering of A, this means that $m^*(x + A) \leq m^*(A)$. If we let x + A = C, we see that A = -x + C. Thus, we can do a similar argument on C and -x + C, and see that $m^*(-x + C) \leq m^*(C)$, which means that $m^*(A) \leq m^*(x + A)$. This proves that $m^*(A) = m^*(x + A)$.

If $c \geq 0$, then $\sum_{i=1}^{\infty} \ell(cB_i) = \sum_{i=1}^{\infty} (c \cdot c_i, c \cdot d_i) = \sum_{i=1}^{\infty} c(d_i - c_i) = c \sum_{i=1}^{\infty} d_i - c_i = c \sum_{i=1}^{\infty} \ell(B_i)$. If c < 0, then $\sum_{i=1}^{\infty} \ell(cB_i) = \sum_{i=1}^{\infty} \ell(c \cdot (c_i, d_i)) = \sum_{i=1}^{\infty} \ell(cB_i) = 0$. Thus, using a similar argument as above, we see that $m^*(cA) = |c|m^*(A)$.

Now to prove that x + A is Lebesgue measurable. Since A is Lebesgue measurable, then for any E,

$$m^{*}\left(E\right)=m^{*}\left(E\cap A\right)+m^{*}\left(E\cap A^{c}\right)$$

Let E = -x + F. This means that

$$m^*(-x+F) = m^*((-x+F) \cap A) + m^*((-x+F) \cap A^c)$$

Let $y \in (-x+F) \cap A$. This means that $y \in -x+F$ and $y \in A$. Thus, $y+x \in F$ and $y+x \in x+A$. This proves that $y+x \in F \cap (x+A)$ and thus $y \in -x+(F \cap (x+A))$. This is reversible, and so $m^*((-x+F) \cap A) = m^*(-x+(F \cap (x+A))) = m^*(F \cap (x+A))$. Similarly, $m^*((-x+F) \cap A^c) = m^*(F \cap (x+A^c))$. If $y \in x+A^c$, then $y-x \notin A$, which means that $y \notin x+A$, and thus $y \in (x+A)^c$. This is reversible, so $m^*((-x+F) \cap A) = m^*(F \cap (x+A^c)) = m^*(F \cap (x+A)^c)$. Thus,

$$m^*(-x+F) = m^*(F) = m^*(F \cap (x+A)) + m^*(F \cap (x+A)^c)$$

Since E was arbitrary, so is F, and thus, x + A is measurable. Let $E = \frac{1}{c}F$. Similarly, we get that

$$m^*\left(\frac{1}{c}F\right) = m^*\left(\frac{1}{c}F\cap A\right) + m^*\left(\frac{1}{c}F\cap A^c\right)$$

Let $y \in \frac{1}{c}F \cap A$, then $cy \in F$ and $cy \in cA$. This means that $cy \in F \cap cA$, and thus that $y \in \frac{1}{c}(F \cap cA)$. This is all reversible once again. We also see that if $y \in cA^c$, then $\frac{1}{c}y \in A^c$ which means that $\frac{1}{c}y \notin A$, and then that $y \notin cA$, and thus $y \in (cA)^c$. This is again, reversible. This shows that

$$m^*\left(\frac{1}{c}F\right) = m^*\left(\frac{1}{c}\left(F\cap cA\right)\right) + m^*\left(\frac{1}{c}\left(F\cap (cA)^c\right)\right)$$

Pulling out the $\frac{1}{c}$ as a $\left|\frac{1}{c}\right|$ and dividing by $\left|\frac{1}{c}\right|$, this proves that cA is measurable.

Ex 4.6 Let m be Lebesgue measure. Suppose for each n, A_n is a Lebesgue measurable subset of [0,1]. Let B consist of those points x that are in infinitely many of the A_n .

- 1) Show B is Lebesgue measurable
- 2) If $m(A_n) > \delta > 0$ for each n, show $m(B) \ge \delta$
- 3) If $\sum_{n=1}^{\infty} m(A_n) < \infty$ prove that m(B) = 0
- 4) Give an example where $\sum_{n=1}^{\infty} m(A_n) = \infty$, but m(B) = 0

Proof. 1) We see that

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

To prove this, let $x \in B$. Then x is in infinitely many A_n . This means that $x \in \bigcup_{k=n}^{\infty} A_k$ for all n, which means that $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$. Now, if $x \notin B$, that is that x is only in finitely many A_n (perhaps none of them), say A_{n_1}, \ldots, A_{n_j} , then $x \notin \bigcup_{k=n_j+1}^{\infty} A_k$, which means that $x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_k$. This proves that the two sets are equal. Since the Lebesgue measurable sets form a σ -algebra, they are closed under countable unions and countable intersections. Thus, B is Lebesgue measurable.

- 2) We see that $m(B) = \lim_{j \to \infty} m\left(\bigcap_{n=1}^{j} \bigcup_{k=n}^{\infty} A_{k}\right)$. Let $B_{n} = \bigcup_{k=n}^{\infty} A_{k}$. We see that $B_{n+1} \subseteq B_{n}$. Thus, $\bigcap_{n=1}^{j} B_{n} = B_{j}$. Since $A_{j} \subseteq B_{j}$, we see that $m\left(\bigcap_{n=1}^{j} \bigcup_{k=n}^{\infty} A_{k}\right) = m\left(\bigcap_{n=1}^{j} B_{j}\right) = m\left(B_{j}\right) \ge m\left(A_{j}\right) > \delta$ for any j. Thus, $m(B) = \lim_{j \to \infty} m\left(\bigcap_{n=1}^{j} \bigcup_{k=n}^{\infty} A_{k}\right) \ge \delta$.
- 3) Let $\varepsilon > 0$. If $\sum_{n=1}^{\infty} m(A_n) < \infty$, then there's a k such that $\sum_{n=1}^{\infty} m(A_n) \sum_{n=1}^{k} m(A_n) < \varepsilon$. Notice that

$$\sum_{n=1}^{\infty} m(A_n) = \sum_{n=k}^{\infty} m(A_n) + \sum_{n=1}^{k} m(A_n)$$

Thus, since these are all finite, we see that $\sum_{n=k}^{\infty} m\left(A_{k}\right) = \sum_{n=1}^{\infty} m\left(A_{n}\right) - \sum_{n=1}^{k} m\left(A_{n}\right) < \varepsilon$. Since $B \subseteq \bigcup_{n=k}^{\infty} A_{k}$ for any k, we see that $m\left(B\right) \leq m\left(\bigcup_{n=k}^{\infty} A_{n}\right) \leq \sum_{n=k}^{\infty} A_{n} < \varepsilon$. Thus, $m\left(B\right) < \varepsilon$ for any $\varepsilon > 0$. This proves that $m\left(B\right) = 0$.

4) Let A_n be the Fat Cantor set on [0,1], where $m(A_n) = \frac{1}{n}$. Thus, $\sum_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$. I think this set works, but I do not know how to prove that m(B) = 0.

Ex 4.7 Suppose $\varepsilon \in (0,1)$ and m is Lebesgue measure. Find a measurable set $E \subseteq [0,1]$ such that the closure of E is [0,1] and $m(E) = \varepsilon$.

Proof. Let $Q = \mathbb{Q} \cap [0,1]$, and let $E = (0,\varepsilon) \cup Q$. Since $(0,\varepsilon) \subseteq [0,1]$ and $Q \subseteq [0,1]$, this means that $E \subseteq [0,1]$. Since $\bar{Q} = [0,1]$ and $Q \subseteq E$, we see that $[0,1] \subseteq \bar{E}$. Since $E \subseteq [0,1]$ and [0,1] is closed, that means $\bar{E} \subseteq [0,1]$. This proves that $\bar{E} = [0,1]$.

We see that $m(E) \leq m(Q) + m((0,\varepsilon)) = 0 + \varepsilon = \varepsilon$. Also, since $(0,\varepsilon) \subseteq E$, then $m((0,\varepsilon)) = \varepsilon \leq m(E)$. Thus, $m(E) = \varepsilon$. This proves the statement.

Ex 4.10 Let $\varepsilon \in (0,1)$, let m be Lebesgue measure, and suppose A is a Borel measurable subset of \mathbb{R} . Prove that if

$$m(A \cap I) \le (1 - \varepsilon) m(I)$$

for every interval I, then m(A) = 0.

Proof. Let $A_n = A \cap [-n, n]$. This means that $m(A_n) \leq 2n$. Let $\{J_i\}$ be a collection of half-open/half-closed intervals covering A_n . Let $\{O_i\}$ be the same interval of $\{J_i\}$ except we remove the point on the closed side. Notice that $m(O_i) = m(J_i)$. If any of the points we removed from J_i was a point in A_n , then remove that point too from A_n and call the result A'_n . Since we're only removing at most countably many points, notice that $m(A'_n) = m(A_n) \leq \infty$, and that $A'_n \subseteq \bigcup_{i=1}^{\infty} O_i$. Now we see that,

$$m(A_n) = m(A'_n) = m(A'_n \cap \bigcup_{i=1}^{\infty} O_i) \le m(A \cap \bigcup_{i=1}^{\infty} O_i) = m(\bigcup_{i=1}^{\infty} (A \cap O_i)) \le \sum_{i=1}^{\infty} m(A \cap O_i)$$

Since O_i is an open interval, we see that

$$m(A_n) \le \sum_{i=1}^{\infty} m(A \cap O_i) = \sum_{i=1}^{\infty} (1 - \varepsilon) m(O_i) = (1 - \varepsilon) \sum_{i=1}^{\infty} m(J_i) = (1 - \varepsilon) \sum_{i=1}^{\infty} \ell(J_i)$$

If we take the infinmum over all such J_i 's, we see that $m(A_n) \leq (1 - \varepsilon) m(A_n)$. This is only true if $m(A_n) = 0$. We see that

$$m(A) = m(\bigcup_{i=1}^{\infty} A_n) \le \sum_{i=1}^{\infty} m(A_n) = \sum_{i=1}^{\infty} 0 = 0$$

Thus, m(A) = 0.

Ex 4.12 Let m be Lebesgue measure. Construct a Borel subset A of \mathbb{R} such that $0 < m(A \cap I) < m(I)$ for every open interval I.

Proof. Enumerate all closed intervals with rational endpoints as I_k . For I_k , construct the fat cantor set in the first half and the interval and call it A_k . Do the same for the second half of the interval and call it B_k . We see that A_k and B_k are disjoint. Let $A = \bigcup_{n=1}^{\infty} A_n$. If I is an open interval, then it contains at least two rationals, and thus contains an I_k for some k. Thus, $A_k \in I$ and $B_k \in I$. This means that

$$0 < m(A_k) \le m(A \cap I) < m(A \cap I) + m(B_k) \le m(I)$$

We see that $m(A \cap I) < m(A \cap I) + m(B_n)$ as A and B_n are disjoint. Thus $0 < m(A \cap I) < m(I)$.

Ex 4.18 Suppose $A \subseteq \mathbb{R}$ has Lebesgue measure 0. Prove that there exists $c \in \mathbb{R}$ such that $A \cap (c + \mathbb{Q}) = \emptyset$, where $c + \mathbb{Q} = \{c + x \mid x \in \mathbb{Q}\}$ and \mathbb{Q} is the rational numbers.

Proof. Suppose $A \subseteq \mathbb{R}$ has Lebesgue measure 0. Also, assume that for every $c \in \mathbb{R}$, $A \cap (c + \mathbb{Q}) \neq \emptyset$. For each $c \in \mathbb{R}$, let w_c be an element of $A \cap (c + \mathbb{Q})$, and let C be the collection of these w_c 's. We see that $m^*(C) = m^*(C + q)$. Let $x \in [0, 1]$. Since $x \in \mathbb{R}$, then there's a $w_x = x + q$ for some rational q. Thus, $x = w_x - q$ for some rational q, which means that $x \in K - q$. This means that $x \in K - q$. This proves that $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$. This proves that $x \in K - q$ has a sum of $x \in K - q$. This proves that $x \in K - q$ has a sum of $x \in K - q$. This proves that $x \in K - q$ has a sum of $x \in K - q$. This proves that $x \in K - q$ has a sum of $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that there must be some $x \in K - q$ such that $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that there must be some $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that there must be some $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$ has a sum of $x \in K - q$. This means that $x \in K - q$ has a sum of $x \in K - q$ has a