

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri(West), Mumbai 400058-India (An Autonomous Institute Affiliated to University of Mumbai

End Semester Examination

Max. Marks: 100 Class: FYMCA

Course Code:MC501 Course: Data Structures **Duration: 3 Hrs**

Semester: I Date: 8/3/23 Time: 2 to 5

Instructions:

(1) All Questions are Compulsory.

(2) Draw neat diagrams.

(3) Assume suitable data if necessary.

No	Question										Max. Marks	CO	BI			
Q1 A	Apply stack operations to convert following infix expression into postfix expression. Construct an algorithm for the same. (A+B)*C+(D*F)/G										8	1	3			
Q1 B	Apply Interpolation Search to find key 120 from following data. Write an algorithm for the same. 12, 120, 45, 35, 100, 88, 67, 45, 34, 78											7	3	3		
Q1 C	given relation. $T(n) = 2 T(n/2) + n$								5	4	3					
Q2 A	Build Binary Search Tree for the following data 10, 20, 2, 45, 67, 8, 5, 7, 100, 16 Construct a non recursive algorithm for preorder traversal.								8	2	3					
Q2 B	Use Fold shifting hashing technique along with Quadratic probing collision resolution technique to calculate the address of following set of elements. Consider the number of memory locations are 1080 Elements: 12346, 18987, 99981, 78781, 868688, 8989898, 45654										7	3	3			
Q2 C	Illustrate the data structure used to keep web browser history with the help of an example.										5	1	3			
Q3 A	Compare worst case complexity of Bubble and Selection Sort with the help of an example.								10	4	4					
Q3 B	Build Huffman Tree for the following data.														3.	3
		Char.	A	В	С	D	E	F	G	Н	I	J		•		
		Freq.	100	24	43	21	45	22	18	56	78	34				
	OR Build B Tree of order 5 of following data and identify which properties of B tree are satisfied? N G A H E K Q M F W L T Z															

Q4	Commerce Chall Co. 1 I. I. C. 1			
A	Compare Shell Sort and Insertion Sort in terms of number of passes and	10	4	4
	iterations required to sort following data			
	10, 45, 67, -8, 7, -18, 78, -90			
Q4	Construct an algorithm for Polynomial Addition using Linked List with	10	1	3
В	suitable example.			
Q5	Build AVL Tree for the following data and construct an algorithm for RR	10	2	3
A	rotation			
	10, 20, 30, 45, 67, 4, 7, 10			
Q5	A queue is setup in a circular array A[0n-1] with front and rear defined as	5	1	3
В	usual. Assume that n-1 locations in the array are available for storing the			250
	elements. Give a formula for the number of elements in the queue in terms			
	of rear, front and n.			
	OR			
	Illustrate how Sparse Matrix is implemented using Linked List with the help		13	
	of an example.			
Q5	Apply Floyd Warshall's algorithm on following Graph to identify the	5	2	3
C	shortest path.			
	•			
	(A)			
	7			
	12			
	15			
	(B) 13 (C)			
	3 2			
	(D)			