Bit Adders

Si fa la somma degli ingressi, il riporto va messo in \mathcal{C}_{out} il risultato in \mathcal{S} .

Full adders from half adders

Un full adders può essere composto partendo da 2 half adders, il risultato di un adders alla quale passiamo A e B viene passato come input ad un altro full adders insieme al valore utilizzato come C_{in} . I 2 riporti di questi vengono confrontati in un OR, dando il riporto finale (C_{out}). Il risultato di quest'ultimo vale come risultato(S).

Multi-bit adders (CPA_s)

Tipi di sommatori a propagazione del riporto

- Ripple carry (lento)
- Carry look ahead (veloce)
- Prefix (velocissimo)

I carry look ahead ed I prefix sono più veloci per gli adders di larga scala ma richiedono più hardware.

Ripple carry adder

Concatena insieme adders ad 1 bit. Il carry ripple passa attraverso l'intera catena.

Come svantaggio è però più lento rispetto agli altri.

Come si può notare, passiamo 2 input per ogni adder, più un \mathcal{C}_{in} al primo adder, il risultato del primo adder verrà salvato come S_0 , il riporto verrà passato come \mathcal{C}_{in} all'adder successivo, che lo ripasserà poi al prossimo. L'ultimo adder passerà il \mathcal{C}_{out} .

Delay temporale del ripple carry adder

 $t_{\text{ripple}} = Nt_{FA}$ Nè il numero degli adder, t_{FA} è il delay temporale per ogni adder.

Carry look ahead adder

Calcola C_{out} per k blocchi di bit adder usando segnali di generazione e propagazione. Se A_i e A_b valgono uno, si riceverà un riporto (*carry*).

La colonna i produce un riporto (*carry*) sia generandolo, sia propagandolo dal precedente riporto (*carry*).

Segnale generato $G_i = A_i B_i$ Segnale propagato $P_i = A_i + B_i$

Essendo che i valori G e P sono pre-calcolati, il percorso critico è ciò che parte da \mathcal{C}_{in} a \mathcal{C}_{out} .

 G_i e P_i sono i risultati della propagazione/generazione, essi sono pre-calcolati.

Delay temporale del look ahead adder

Per N-bit adder con K-blocchi:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

 T_{pg} è il delay generato ogni P_i G_i , T_{pg_block} è il delay generato ogni $P_{i:j}$ $G_{i:j}$

 T_{and_or} = Delay da \mathcal{C}_{in} a \mathcal{C}_{out} del blocco finale AND-OR.

Un look ahead adder è generalmente più veloce di un ripple carry adder quando il numero di adder da utilizzare è superiore a 16.

Subtracter

Equality

