FYZIKÁL	Jméno a příjmení Filip Gulán			ID 165423	
	Ročník	Předmět	Kroužek	Lab. skup.	
FEKT VUT BRNO		1	IFY	14	Α
Spolupracoval		Měřeno dne		Odevzdáno dne	
Filip Ježovica		11. 3. 2014		25. 3 .2014	
Příprava	Opravy	Učitel Hodnocení			
Název úlohy					
Teplotné žiarenie					

2014

Úloha merania

Overte platnosť Stefan-Boltzmanovho zákona a určte koeficient pohltivosti α žiariaceho telesa.

Teoretický rozbor:

Časť spektra elektromagnetického žiarenia začínajúce infračerveným až po ultrafialové žiarenie sa nazýva *teplotné žiarenie*.

Výkon prenášaný týmto žiarením sa nazýva *žiarivý tok* Φ_e a jeho jednotkou je Watt. Je to žiarivá energia, ktorá prechádza plochou S za jednotku času. Pre vyjadrenie vyžarovania a ožarovania telies v jednotlivých miestach ich povrchu, zavádzame *intenzitu vyžarovania* M_e a *intenzitu ožarovania* E_e . Intenzita teplotného vyžarovania M_e je rovná:

$$M_e = \frac{d\Phi_e}{dS}$$

a intenzita ožarovania Ee je definovaná vzťahom:

$$E_e = \frac{d\Phi_e}{dS}$$

čo je žiarivý tok vychádzajúci alebo dopadajúci na jednotku plochy:

$$[M_e] = [E_e] = W.m^{-1}$$
.

Telesá žiarenie vydávajú, ale aj primajú z iných telies. Z celkového dopadajúceho toku každá látka časť odráža, časť prepúšťa a zbytok pohlcuje. Pohlteným žiarením sa telesá hlavne zahrievajú.

Obmedzme sa na látky, ktoré žiarivú energiu neprepúšťajú, ale iba odrážajú alebo pohlcujú.

Odrazivosť je pomer odrazeného k dopadajúcemu toku:

$$\rho = \frac{\Phi_{e, odr}}{\Phi_{e, dop}}$$

Pohltivosť je pomer pohlteného k dopadajúcemu toku:

$$\alpha = \frac{\Phi_{e, pohl}}{\Phi_{e, dop}}.$$

Súčet pohlteného a odrazeného toku sa rovná jednej. Uvažujeme totiž látky, ktoré neprepúšťajú žiarivú energiu, takže všetko čo dopadne sa buď odrazí alebo pohltí.

$$\Phi_{e,dop} = \Phi_{e,odr} + \Phi_{e,pohl} \implies p + a = 1$$

Celkom teda postačí určovať koeficient pohltivosti $\alpha + \rho = 1$ ktorý nadobúda hodnotu od 0 do 1. Dokonalo čierne teleso má pohltivosť $\alpha = 1$ a také teleso teda pohltí všetko žiarenie dopadajúce na jeho povrch. Ak zahrejeme toto teleso na vysokú teplotu, je jeho intenzita vyžarovania najväčšia, aká je pri teplote T možná a závisí iba na tejto teplote. Vzťah medzi oboma veličinami vyjadruje Stefanov-Boltzmanov zákon:

$$M_{e,0} = \sigma T^4$$

kde T je teplota a σ je Stefanova-Boltzmanová konštanta (σ = 5,67.10⁻⁸ W.m⁻².K⁻⁴). Avšak dokonalo čierne teleso neexistuje. Tak ako neexistuje dokonale lesklé teleso, ktoré by odrážalo všetko dopadajúce žiarenie.

U reálnych žiaričov je koeficient pohltivosti α < 1. Ak α pre všetky vlnové diaľky v spektre žiarenia rovnaký, potom nazývame taký žiarič šedé teleso. Intenzita vyžarovania šedého žiariča je:

$$M_e = \alpha$$
. $M_{e,0}$.

Pre taký žiarič má Stefanov-Boltzamannov zákon tvar:

$$M_e = \alpha.\sigma.T^4$$

Výkon vlákna:

$$P = L\pi d\alpha\sigma T^4$$

Použité prístroje:

- prípravok s RP a vypínačom.
- Meriaci prípravok (žiarovka, čočka, mikrometer)
- Meradlo
- Zdroj napätia
- Ampérmeter
- Voltmeter
- Počítač

Namerané hodnoty:

Odpor vlákna za studena								
	U/[mV]	I/[mA]	R/[Ohm]					
1	3	1,2	2,5					
2	6,4	2,4	2,666					
3	9,6	3,6	2,666					
4	12,8	4,8	2,666					
5	16,2	6	2,7					

V-A charakteristika, príkon, odpor, teplota, pohltivosť								
	U/[V]	I/[mA]	P/[W]	R/[Ohm]	R/R0	T/[K]	Alfa	
1	0,4	57	0,022	7,017	2,658	627	0,28	
2	1,5	114	0,171	13,157	4,984	1081	0,246	
3	2,4	145	0,348	16,551	6,27	1322	0,225	
4	3	164	0,492	18,292	6,929	1442	0,224	
5	4	194	0,776	20,618	7,811	1600	0,233	
6	5	220	1,1	22,727	8,61	1741	0,236	
7	6	246	1,476	24,39	9,24	1851	0,248	
8	7	268	1,876	26,119	9,895	1963	0,249	
9	8	288	2,304	27,777	10,523	2070	0,247	
10	9	308	2,772	29,22	11,069	2161	0,25	
11	10	330	3,3	30,303	11,48	2230	0,263	
12	11	345	3,795	31,884	12,079	2328	0,255	
13	12	370	4,625	33,783	12,798	2445	0,255	
14	13,5	402	5,829	36,069	13,664	2584	0,258	

Grafy:

Výpočty:

Odpor vlákna za studena:

:
$$R = \frac{U}{I} = \frac{9.6}{3.6} = 2,666 \Omega$$

Priemerná hodnota odporu:

$$R' = \frac{\sum R}{n} = \frac{13,198}{5} = 2,6396 \,\Omega$$

Rozmery vlákna:

Vzdialenosť predmetu od šošovky:

Vzdialenosť obrazu od šošovky:

Šírka obrazu vlákna ď:

Dĺžka obrazu vlákna y':

a= 8,5 cm

ď= 68,7 cm

ď= 0,215 cm

y'= 8,5 cm

Skutočná šírka vlákna d:

$$d = d' * \frac{a}{a'} = 0.215 * \frac{8.5}{68.7} = 0.0266 cm$$

Skutočná dĺžka vlákna žiarovky y:

$$y = y' * \frac{a}{a'} = 8.5 * \frac{8.5}{68.7} = 1.0516 cm$$

Príklad výpočtu 4. riadku tabuľky:

$$R = \frac{U}{I} = \frac{3}{164*10^{-3}} = 18,292\Omega$$

$$P = U \cdot I = 3*164*10^{-3} = 0,492W$$

$$\alpha = \frac{P}{\pi * v * d * \sigma * T^4} = \frac{0,492}{\pi * 1,05 * 10^{-2} * 0.027 * 10^{-2} * 5.67 * 10^{-8} * 1442^4} = 0,224$$

Smernicu sme si určili pomocou vzťahu:

$$k = \frac{\log y_2 - \log y_1}{\log x_2 - \log x_1} = \frac{\log 5,829 - \log 0,022}{\log 2584 - \log 627} = 3,94$$

Záver:

Všetky hodnoty merania boli prehľadne spracované do tabuliek. Získané a vypočítané hodnoty sa môžu viac alebo menej líšiť od skutočnej požadovanej hodnoty. Tieto odchýlky mohli nastať behom merania, nepresným meraním alebo zaokrúhľovaním pri výpočte hodnôt. Počas merania sme zistili koeficient pohltivosti α , ktorý sa pri našej meranej žiarovke pohyboval medzi 0,224 a 0,258. Mocninnú závislosť výkonu žiarovky na teplote vlákna sme vyniesli do logaritmického zobrazenia a závislosť nám vyšla podľa očakávaní lineárna. Veľkosť smernice nám vyšla 3,94. A odpor žiarovky za studena je asi 2,666 Ω . Naším meraním sme potvrdili existenciu Stefan-Boltzmanovho zákona.