```
a 0 \in nat  // 0 es un elemento de nat

b (\forall n : nat | : S.n \in nat)  // sin está en nat, su sucesor también lo está

c (\forall n : nat | : S.n \neq 0)  // el 0 no es sucesor de ningún número natural

d (\forall n : nat | S.n = S.m : n=m)  // S = sin esta

e (\forall A : 2^{nat} | 0 \in A \land (\forall n : A | : S.n \in A) : A = nat)
```

Teorema A:

Además:

Principio del buen orden: Todo subconjunto no vacío de los naturales tiene un primer elemento o elemento mínimo, con respecto al orden estricto (nat,<).

Teo B (Formas normales para nat)

```
n \in \mathbf{nat} \equiv n=0 \lor (\exists m: \mathbf{nat} | : n=S.m)

a \ divide \ b \equiv a | b \ \equiv (\exists c | : a*c = b)

a \ divisor \ de \ b \equiv a | b

b \ multiplo \ de \ a \equiv a | b
```

Nótese que la definición anterior permite afirmar que:

- x | 0
- $0 \mid x \equiv x=0$.

Además, se pueden establecer otros conceptos como, por ejemplo:

```
par.n \equiv 2|n

impar.n \equiv \neg par.n
```

Teorema A:

- 1 $a \mid b \Rightarrow a \mid b \cdot c$
- 2 $a|b \wedge b|c \Rightarrow a|c$
- 3 $a|b \wedge a|c \Rightarrow a|(m*b + n*c)$
- 4 $c\neq 0 \Rightarrow (c*a|c*b \equiv a|b)$
- 5 $a \mid b \land b \mid a \Rightarrow a = \pm b$
- 6 a|b \land a>0 \land b>0 \Rightarrow a\le b

Definición B:

```
p primo \equiv p>1 \land (\foralld:nat| d>0 \land d|p : d=1 \lor d=p)
```

Definición A

```
Se definen las funciones
```

```
// Pre: n≥0 ∧ d>0
q= 0;
r= n;
// Inv: n = q*d+r ∧ 0≤r
// Cota: r-d
while (r≥d) {
    q= q+1;
    r= r-d;
}
// Pos: n = q*d+r ∧ 0≤r<d</pre>
```

 $n,d:int, d>0 \Rightarrow (\exists q,r \mid 0 \le r < d: n = q*d+r)$

• si n = q*d+r, con 0≤r<d, q y r son únicos

• si - (d|n), existen q, r con n = q*d+r, 0 < r < d.

```
1 \mod(b,c) = \mod(c,b)
2 (b,c) \neq (0,0) \Rightarrow mcd(b,c) = (min x,y | b*x+c*y>0 : b*x+c*y)
3 mcd(b,c) = d \Rightarrow (\exists x,y \mid : d=bx+cy)
   Es un corolario del resultado anterior.
4 \mod(b, \mod(c, d)) = \mod(\mod(b, c), d)
5 d|c \wedge d|b \Rightarrow d|mcd(b,c)
6 \mod (b, b) = |b|
7 \mod (b, 1) = 1
8 \mod (b, 0) = |b|
9 \mod (b,c) = \mod (|b|,|c|)
10 mcd(b,c) = mcd(b,b+c) = mcd(b,b-c)
11 d>0 \Rightarrow d*mcd(b,c) = mcd(d*b,d*c)
12 d|b \wedge d|c \wedge d>0 \Rightarrow mcd(b/d,c/d) = mcd(b,c)/d
   Si g = mcd(b,c): mcd(b/g,c/g) = 1.
13 d \mid b \cdot c \land mcd(d, c) = 1 \Rightarrow d \mid b
14 b \mid m \wedge c \mid m \Rightarrow mcm (b,c) \mid m
15 m>0 \Rightarrow mcm(m*b, m*c) = m*mcm(b,c)
16 mcm (b, c) *mcd (b, c) = b*c
Si a I b y b I a, entonces si ambos son positivos, a = b
```

Versión 1: restas

// Pos: x = mcd(b,c)

```
// Pre: b>0 ^ c>0

x = b;
y = c;

// Inv: x>0 ^ y>0 ^ mcd(x,y) = mcd(b,c)

// Cota: x+y

while (x!=y) {
   if (x>y) {
       x = x-y;
   }
   else y = y-x;
}
```

Versión 2: divisiones

```
// Pre: b≥0 ∧ c≥0
x = b;
y = c;

// Inv: x≥0 ∧ y≥0 ∧ mcd(x,y) = mcd(b,c)
// Cota: y

while (y!=0) {
   int x1 = x;
   x = y;
   y = x1 % x;
}
// Pos: x = mcd(b,c)
```

Algor itmo de Eucli des **Teorema fundamental de la Aritmética:** todo número natural se puede expresar como producto de primos.

$$n = (*p| p primo: p^e)$$

Teo C:

$$\mathbf{a} \quad \overline{\mathbf{m}^*\mathbf{n}}_{k} = \overline{\mathbf{m}}_{k} + \overline{\mathbf{n}}_{k}$$

b
$$m \mid n \equiv (\forall k \mid : m_k \le n_k \le n$$

$$\mathbf{c} = \overline{\text{mcd}(b,c)}_{k} = \min(\overline{m}_{k}, \overline{n}_{k})$$

d
$$\overline{\text{mcm}(b,c)}_k = \max(\overline{m}_k, \overline{n}_k)$$

Teorema A

p primo,
$$p|a*b \Rightarrow p|a \vee p|b$$

Teorema C

Hay infinitos primos.

CONGRUENCIAS

Sean a, b, m:int, m≠0.

$$a =_m b \equiv m \mid (b-a)$$

Teorema A

Sean a, b, c, d, m:int, $m \neq 0$.

1
$$a =_m b \equiv res(a,m) = res(b,m)$$

$$2$$
 a $=_m$ a

3 a =_m b
$$\Rightarrow$$
 b =_m a

4
$$a =_m b \land b =_m c \Rightarrow a =_m c$$

5
$$a =_m b \Rightarrow a+c =_m b+c$$

6
$$a =_m b \Rightarrow a*c =_m b*c$$

7
$$a =_m b \land c =_m d \Rightarrow a+c =_m b+d$$

8
$$a =_m b \land c =_m d \Rightarrow a*c =_m b*d$$

Teorema B

Sean a, x, y, d, m, n:int; d, $n\neq 0$; a, m>0

1
$$a*x =_m a*y \equiv x =_{m/mcd(a,m)} y$$

2
$$a*x =_m a*y \land mcd(a,m)=1 \Rightarrow x =_m y$$

3
$$x =_m y \wedge d \mid m \Rightarrow x =_d y$$

4
$$x =_{m} y \wedge x =_{n} y \equiv x =_{mcm(m,n)} y$$

Divisibilidad:

Teorema A

1
$$n = 3 (+k \mid 0 \le k < r : d_k)$$

Dem:

Nótese que 10 = $_3$ 1. Usando repetidamente propiedades de las congruencias, se llega a 10^k = $_3$ 1, para cualquier k, $0 \le k < r$. También: $d_k * 10^k$ = $_3$ d_k , $0 \le k < r$. Por tanto:

2
$$n = q (+k | 0 \le k \le r : d_k)$$

3
$$n =_{11} (+k \mid 0 \le k < r : (-1)^k * d_k)$$

Teorema A (de Fermat)

p primo,
$$\neg(p|a) \Rightarrow a^{p-1} =_p 1$$

Primos relativos:

Teorema D (de Euler)
$$a \perp m \quad \Rightarrow \quad a^{\phi \, (m)} =_m \, 1$$

INDUCCIÓN

```
Teo : (∀n|: p.n)
Dem:
Inducción sobre nat.
Predicado de inducción: p.n ≡ ...

Caso base: p.0
    ⟨Demostración de p.0⟩

Caso Inductivo: p(n+1)
HI: p.n, n≥0
    ⟨Demostración de p(n+1)⟩
```

```
Teo: (\forall n \mid : n^3 - n =_3 0)
Dem:
Inducción sobre nat.
Predicado de inducción: d.n \equiv n^3-n =_3 0, n \ge 0
Caso Base: d.0
        (Aritmética)
        \langle =_{m} reflexiva \rangle
Caso Inductivo: d(n+1)
HI: d.n, n≥0
(n+1)<sup>3</sup>-(n+1)
        ⟨Aritmética⟩
   n^3+3n^2+3n+1-n-1
        (Aritmética)
   n^3-n + 3*(n^2+n)
 =_3 \langle HI: n^3-n =_3 0 \rangle
   3*(n^2+n)
        \langle m * x =_{m} 0 \rangle
```

Definiciones recursivas:

- (1) Definir $f.0,...,f.n_0$, para un $n_0 \in nat$.
- (2) Definir f.k, usando valores anteriores f.0,...,f(k-1)), para n₀<k.

Ejemplo A

1 Dado un número natural a>0, considérese la función g definida así:

```
g: nat \rightarrow nat

g.0 = 1

g(2*n) = (g.n)*(g.n) , n\ge 0

g(2*n+1) = g(2*n)*a , n\ge 0
```

La definición de g es buena: se define en 0 y, para $n \ge 0$ está bien definida, considerando el caso en que n sea par o impar. Cuando n es par la definición se apoya en la de g (n/2); cuando es impar, en la de g (n-1).

Se puede mostrar que $g \cdot n = a^n$, $n \ge 0$. Nótese que se necesita una inducción fuerte que, además, sigue el esquema de casos que está presente en la definición de g. Como ya se dijo, esto no es casual.

EJEMPLOS DE EJERCICIOS:

3a El residuo de la división entera (13*4⁷¹³ + 5) ÷ 11 AYUDA: Use el Teorema de Fermat y aritmética modular.

```
Para aplicar aritmética modular, se pueden calcular residuos módulo 11 de los operandos de la expresión. Así, si
```

```
13 =_{11} r
4^{713} =_{11} s
5 =_{11} t
```

3a mcd (19288544, 19288550)

mcd(19288544,19288550)

=
$$\langle mcd(a,b) = mcd(a-b,b) \rangle$$
mcd(19288544,6)

= $\langle mcd(p*a,p*b) = p*mcd(a,b) \rangle$
 $2*mcd(9644272,3)$

= $\langle \neg (3|9644272), primo.3 \rangle$
 $2*1$

= $\langle aritmética \rangle$

se tendrá que

$$res(13*4^{713} + 5, 11) =_{11} r*s+t$$

Claramente:

13
$$=_{11}$$
 r = 2
5 $=_{11}$ t = 5

Para calcular t tal que $4^{713} =_{11} s$, $0 \le s < 11$.

Por el Teorema de Fermat, ya que mcd (4, 11) =1, primo.11:

$$4^{11-1} =_{11} 1$$

$$= 4^{10} =_{11} 1$$

Por tanto (multiplicando miembro a miembro 71 veces):

```
(4^{10})^{71} =_{11} 1^{71}
= 4^{710} =_{11} 1
= \langle a =_{m} b \Rightarrow a*p =_{m} b*p \rangle
4^{713} =_{11} 4^{3}
= \langle 64 = 4^{3} \rangle
4^{713} =_{11} 64
= \langle 64 = 11*5 + 9 \rangle
4^{713} =_{11} 9
```

Es decir, s=9.

Resumiendo:

```
res(13*4<sup>713</sup> + 5, 11)
=11
2*9+5
=11
23
=11
1.
```

Sistemas de congruencia:

1 [25/100]

Encuentre todas las soluciones para el sistema de congruencias (x, y: int):

- (1) $5*x + 6*y =_3 12$
- (2) $4*x + 2*y =_3 1$

Sumando miembro a miembro las congruencias se llega a

(3)
$$9*x + 8*y =_3 13$$

Por tanto, ya que $9*x =_3 0$, $8*y =_3 -y$, $13 =_3 1$:

$$0 - y =_3 1$$

 \equiv

$$y =_3 -1$$

=

$$y =_{3} 2$$

Ahora, remplazando en la congruencia (2) el valor $y=_3-1$

$$4 \times x - 2 =_3 1$$

$$4*x =_3 3$$

$$\equiv$$
 $\langle 4*x =_3 x; 3 =_3 0 \rangle$

$$x =_3 0$$

Resumiendo, las soluciones son de la forma

$$x =_3 0$$
, $y =_3 2$

O, equivalentemente:

$$x = 3*u, y = 2+3*v$$
, $u, v \in int$.

Como demostrar que un número es divisible:

3

[25/100]

Pruebe que, para todo $n \in nat$: n*(n+1)*(2*n+1) es divisible por 3. Dem: Inducción sobre n∈nat. Predicado de Inducción: Q.n \equiv n*(n+1)*(2*n+1) = 0, n \geq 0 Caso Base: Q.0 0*(0+1)*(2*0+1)= (Aritmética) 0 $=_{3}$ 0 Caso Inductivo: Q(n+1) HI: Q.n, n≥0 (n+1)*(n+1+1)*(2*(n+1)+1)(Aritmética) (n+1)*(n+2)*(2*n+3) $=_3$ $\langle 3 =_3 0 \rangle$ (n+1)*(n+2)*2*n(Aritmética) n*(n+1)*(2n+4) $=_3$ $\langle 4 =_3 1 \rangle$ n*(n+1)*(2*n+1) $=_3$ $\langle HI \rangle$ 0 $=_3$ (Caso: $n=_31$) 1* (1+1) * (2*1+1) =₃ 1*2*3 =3 0 Caso: $n=_32$ n*(n+1)*(2*n+1) $=_3$ (Caso: $n=_31$) 2*(2+1)*(2*2+1) 2*3*5