QuickSort

Análise de Algoritmo

EDUARDO HENRIQUE MACHADO NATÁLIA ALMADA

QuickSort

Charles Antony Richard Hoar - 1960

O algoritmo Quicksort implementa a estratégia da divisão e conquista., ou seja: Subdivide o problema original em subproblemas menores, que são resolvidos recursivamente.

Vantagens

Rápido e eficiente na execução média

Funciona bem em ambientes de memória virtual

Vantagem em ordenar *in place*

Não requer muito espaço

Pontos em destaque

Rapidez	Memória Virtual	In Place	Economia de espaço
Dividir o problema em subproblemas permite a ordenação eficaz de conjuntos de dados de forma rápida e precisa.	Localidade Espacial: acessa elementos em regiões contíguas do array durante a partição e a troca, Localidade Temporal: eusa partes do array durante a execução; O menor uso de memória adicional significa que menos páginas de memória precisam ser alocadas	Ele realiza a ordenação dos elementos dentro do array original, sem a necessidade de alocar espaço adicional significativo para uma cópia dos dados.	Não requer espaço adicional proporcional ao tamanho do array para ordenar os dados. O espaço extra necessário é apenas para o armazenamento da pilha de chamadas recursivas (ou a pilha explícita usada em versões iterativas)

O melhor caso ocorre quando todas as chamadas de Divide devolvem um índice q a meio caminho entre p e r, e portanto o vetor A[p .. q-1] tem $\lceil (n-1)/2 \rceil$ elementos e o vetor A[q+1 .. r] tem $\lceil (n-1)/2 \rceil$ elementos.

- Nível O (Raiz): Custo é n
- Nível 1: O array é dividido em duas sublistas de tamanho $\frac{n}{2}$. Custo total neste nível é $2*\frac{n}{2}=n$
- Nível 2: Cada sublista é dividida em duas partes de tamanho D
 Custo total neste nível é 4*D=n

Complexidade Melhor e Médio Caso:

O melhor caso ocorre quando todas as chamadas de Divide devolvem um índice q a meio caminho entre p e r, e portanto o vetor A[p .. q-1] tem $\lceil (n-1)/2 \rceil$ elementos e o vetor A[q+1 .. r] tem $\lceil (n-1)/2 \rceil$ elementos.

- Nível k:
- Existem 2^k sublistas, cada uma de tamanho $n*(2^k)$ Custo total neste nível é 2 * $\underline{n}_k^k = n$

Número Total de Níveis:

O número de níveis é log 2n (cada nível da recursão reduz o problema pela metade)

O melhor caso ocorre quando todas as chamadas de Divide devolvem um índice q a meio caminho entre p e r, e portanto o vetor A[p .. q-1] tem $\lceil (n-1)/2 \rceil$ elementos e o vetor A[q+1 .. r] tem $\lceil (n-1)/2 \rceil$ elementos.

- T(n): O tempo total necessário para ordenar um array de n elementos.
- $2xT(\frac{n}{2})$: O custo total das duas chamadas recursivas. Cada chamada recursiva é responsável por ordenar uma das duas sublistas de tamanho .
- O(n): O custo para particionar o array de n elementos. Esse é o custo de reorganizar os elementos em torno do pivô.

$$T(n)=2xT(\frac{n}{2})+O(n)$$

Complexidade

Somatória Total dos Custos

$$T(n) = \sum_{i=0}^{\log_2 n-1} c imes n$$

$$T(n) = c \times n \times \log_2 n$$

Complexidade:

 $O(n \log n)$

Complexidade

Pior Caso:

Ocorre quando todas as chamadas de Divide devolvem q = p ou q = r. Como Divide faz n-1 comparações, a intuição sugere que T*(n) obedece a <u>recorrência</u> T*(n) = n-1 + T*(0) + T*(n-1).

•
$$T*(n) = T*(n-1) + n - 1$$

= $T*(n-2) + (n-2) + (n-1)$
= $T*(n-3) + (n-3) + (n-2) + (n-1)$
= $T*(n-4) + (n-4) + (n-3) + (n-2) + (n-1)$
:
= $T*(0) + 0 + 1 + 2 + ... + (n-2) + (n-1)$
= $n(n-1)/2$.

Complexidade Pior Caso:

O melhor caso ocorre quando todas as chamadas de Divide devolvem um índice q a meio caminho entre p e r, e portanto o vetor A[p .. q-1] tem $\lceil (n-1)/2 \rceil$ elementos e o vetor A[q+1 .. r] tem $\lceil (n-1)/2 \rceil$ elementos.

• Nível O (Raiz): Custo é n

 Nível 1: O array é dividido em uma sublista de tamanho n-1 e uma de tamanho 0.

Custo total neste nível é n-1

• Nível 2: A sublista de tamanho n-1 é dividida em uma sublista de tamanho n-2 e uma de tamanho 0.

Custo total neste nível é n-2

Complexidade Pior Caso:

O melhor caso ocorre quando todas as chamadas de Divide devolvem um índice q a meio caminho entre p e r, e portanto o vetor A[p .. q-1] tem $\lceil (n-1)/2 \rceil$ elementos e o vetor A[q+1 .. r] tem $\lceil (n-1)/2 \rceil$ elementos.

- Nível k:
- A cada nível, o custo é n-k, até que a sublista ténha tamanho 1) Custo total neste nível é $2 * \underline{n} = n$

Número Total de Níveis:

O número de níveis é n

Pior Caso:

Somatória Total dos Custos

$$T(n) = \sum_{i=0}^{n-1} (n-i)$$
 $T(n) = n + (n-1) + (n-2) + \ldots + 1$
 $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Melhor e Médio Caso:

Complexidade:

$$O(n^2)$$

 $O(n^2)$

n (log n) é a quantidade de vezes que você pode dividir n pela metade até chegar a 1

n: representa o número de operações necessárias para combinar as sublistas em cada nível de divisão O(n²) significa que o tempo de execução do algoritmo cresce proporcionalmente ao quadrado do tamanho da entrada

 $O(n^2)$

Então, log(8) = 3.

O tempo de execução do algoritmo seria proporcional a:

$$8 * 3 = 24$$

Então, o tempo de execução seria proporcional a:

$$8^2 = 64$$

 $O(n^2)$

Então, log(1024) = 10

O tempo de execução do algoritmo seria proporcional a:

1024 * 10 = 10240

Em ms \approx 10,24 segundos

Então, o tempo de execução seria proporcional a:

 $1024^2 = 1048576$

Em ms \cong 1048,5 segundos \cong 17,47minutos

Tem melhor?

MergeSort

O MergeSort mantém uma complexidade de O (nlogn) em todos os casos devido à sua estrutura constante de divisão e mesclagem. O array é dividido sempre exatamente ao meio, ordena e depois mescla.

O Quicksort mantém uma complexidade de O (nlogn) apenas quando se comporta bem ou conforme o esperado, divide o array baseando na escolha de um pivô, os maiores vao pra uma lista e os menores para outra. Sem mesclagem.

Tem melhor?

MergeSort

O MergeSort é mais estável. O quicksort não.

O MergeSort usa O(n) memória extra. O quicksort O(logn).

DEPENDE

QuickSort é geralmente mais eficiente devido ao menor overhead de memória e melhor desempenho em cache, mas requer boas estratégias de escolha de pivô para evitar o pior caso.

