EWA, Inc. (Electronic Warfare Associates, Inc.)

ADDENDUM TEST REPORT TO 91974-5

Lock, SRCED-2

Tested To The Following Standards:

FCC Part 15 Subpart C Section 15.249 and RSS-210 Issue 8

Report No.: 91974-5A

Date of issue: July 1, 2011

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 30 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.249(a) Carrier & Spurious Emissions	7
-20dBc Occupied Bandwidth	9
Bandedge	11
15.249(d) Field Strength Of Spurious Emissions	14
RSS-210	27
99 % Bandwidth	27
Supplemental Information	29
Measurement Uncertainty	29
Emissions Test Details.	29

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

EWA, Inc. (Electronic Warfare Associates, Inc.)

Joyce Walker

13873 Park Center Rd. Suite 500

Herndon, VA 20171

S046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Jason Pizzillo Project Number: 91071

DATE OF EQUIPMENT RECEIPT: May 27, 2011

DATE(S) OF TESTING: May 27 - June 1, 2011

Revision History

Original: Testing of the Lock, SRCED-2 to FCC Part 15 Subpart C Section 15.249 and RSS-210 Issue 8. **Addendum A:** To revise the data in sequence 9 of section 15.249(d) to include the 40 dB correction factor and also correct an error in the RBW that was listed on the data sheet. No new test data was added.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services

Steve 2 Be

CKC Laboratories, Inc.

Page 3 of 30 Report No.: 91974-5A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Site Registration & Accreditation Information

Location	CB #	Japan	Canada	FCC
Fremont	US0082	R-2160, C2332 & T-228	3082B-1	958979

Page 4 of 30 Report No.: 91974-5A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.249 and RSS-210 Issue 8

Description	Test Procedure/Method	Results
Carrier & Spurious Emissions	FCC Part 15 Subpart C Section 15.249(a) / ANSI C63.4 (2005)	Pass
-20dBc Occupied Bandwidth	FCC Part 15 Subpart C / ANSI C63.4 (2005)	Pass
Bandedge	FCC Part 15 Subpart C / ANSI C63.4 (2005)	Pass
Field Strength of Spurious Emissions	FCC Part 15 Subpart C Section 15.249 (d) / ANSI C63.4 (2005)	Pass
99% Bandwidth	RSS-210 Issue 8	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

The EUT is battery operated. Testing is performed with the EUT operating on a fresh set of batteries.

Page 5 of 30 Report No.: 91974-5A

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

<u>Lock</u>

Manuf: EWA, Inc. (Electronic Warfare Associates, Inc.)

Model: SRCED-2 Serial: None

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 6 of 30 Report No.: 91974-5A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.249(a) Carrier & Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc. (Electronic Warfare)**

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 91071
 Date: 5/31/2011

 Test Type:
 Maximized Emissions
 Time: 09:31:15

Equipment: Lock Sequence#: 1

Manufacturer: EWA, Inc. (Electronic Warfare) Tested By: A. Brar

Model: SRCED-2 S/N: None

Test Equipment:

	r				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP04241	Cable	FSJ1-50A	3/2/2010	3/2/2012
T2	ANP05138	Cable	FSJ1P-50A-4	3/19/2010	3/19/2012
T3	AN02061	Horn Antenna-ANSI	DRG-118A	1/17/2011	1/17/2013
		C63 5			

Equipment Under Test (* = EUT):

. — 1 ··· 1 ··· 1 ··· 1	— / -			
Function	Manufacturer	Model #	S/N	
Lock*	EWA, Inc. (Electronic	SRCED-2	None	
	Warfare)			

Support Devices:

Support Devicesi				
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

The device is single channel NB modulation device with low data rate.

Temp: 65.7°F

Relative Humidity: 40%

AP: 1026mbar

2.480967GHz Fundamental Readings. RBW 1MHz / VBW 3MHz.

FCC 15.31e is covered by this data sheet by operating the EUT on a fresh set of batteries.

EUT's Power Amplifier output is set to -2dBm.

Page 7 of 30 Report No.: 91974-5A

Ext Attn: 0 dB

Λ	1easu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	1	
	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
	1	2480.967M	59.9	+0.5	+2.3	+27.9		+0.0	90.6	94.0	-3.4	Vert
								293				137
	2	2481.000M	55.3	+0.5	+2.3	+27.9		+0.0	86.0	94.0	-8.0	Horiz
								228				100

Test Setup Photos

Page 8 of 30 Report No.: 91974-5A

-20dBc Occupied Bandwidth

Test Engineer: A. Brar / N. Gamez

Test Set up

Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission. The device is single channel NB modulation device with low data rate.

Temp: 65.7°F

Relative Humidity: 40%

AP: 1026mbar

2.480967GHz Fundamental Frequency. RBW 100kHz / VBW 300kHz.

EUT's Power Amplifier output is set to -2dBm.

Test Equipment								
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due			
02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013			
P04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012			
P05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012			
02061	Horn Antenna- ANSI	DRG-118A	ARA	1/17/2011	1/17/2013			
	C63.5							

Test Data

Page 9 of 30 Report No.: 91974-5A

Test Setup Photos

Page 10 of 30 Report No.: 91974-5A

Bandedge

Test Engineer: A. Brar / N. Gamez

Test Set up

Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission. The device is single channel NB modulation device with low data rate.

Temp: 65.7°F

Relative Humidity: 40%

AP: 1026mbar

2.480967GHz Fundamental Frequency. RBW 1MHz / VBW 3MHz.

EUT's Power Amplifier output is set to -2dBm.

Test Equipment								
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due			
02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013			
P04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012			
P05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012			
02061	Horn Antenna- ANSI C63.5	DRG-118A	ARA	1/17/2011	1/17/2013			
02810	Preamp	83051A	HP	1/15/2010	1/15/2012			
P05843	Cable	32022-2-29094K-48TC	AstroLab	7/30/2010	7/30/2012			

Page 11 of 30 Report No.: 91974-5A

Test Data

Average

Test Setup Photos

15.249(d) Field Strength Of Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc.** (Electronic Warfare)

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 91071
 Date: 6/1/2011

 Test Type:
 Maximized Emissions
 Time: 13:35:53

Equipment: Lock Sequence#: 9

Manufacturer: EWA, Inc. (Electronic Warefare) Tested By: N. Gamez

Model: SRCED-2 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00432	Loop Antenna	6502	3/31/2011	3/31/2013
T2	ANP05440	Cable		3/7/2011	3/7/2013
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
			3.7	
Lock*	EWA, Inc. (Electronic	SRCED-2	None	
	Warefare)			

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Spurious Emissions. 0.009-30MHz. Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

The device is single channel NB modulation device with low data rate.

T: 63.9°F RH: 44% AP: 1029mbar

2.480967GHz Fundamental Frequency. 9k-150kHz 100Hz RBW / 300Hz VBW

150k-30MHz 9kHz RBW / 30kHz VWB

EUT's Power Amplifier output is set to -2dBm.

FCC 15.249a is covered by this data sheet, harmonics and spurious emissions were collected in the same data sheet.

Page 14 of 30 Report No.: 91974-5A

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.		Т	est Distance	e: 5 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table		$dB\mu V/m$	dB	Ant
1	851.200k	25.5	+11.4	+0.0	+0.0		-31.1	5.8	29.0	-23.2	Paral
							-5				100
2	615.800k	28.0	+11.3	+0.0	+0.0		-31.1	8.2	31.8	-23.6	Perpe
2	704 1201-	26.2	. 11 5	+ O O	+ O O		365 -31.1	((20.6	-24.0	100
3	704.120k	20.2	+11.5	+0.0	+0.0		-51.1 365	6.6	30.6	-24.0	Paral 100
4	813.200k	24.8	+11.4	+0.0	+0.0		-31.1	5.1	29.4	-24.3	Perpe
-	013.200k	24.0	111.4	10.0	10.0		-5	5.1	27.4	24.5	100
5	2.070M	23.9	+11.3	+0.1	+0.0		-31.1	4.2	29.5	-25.3	Perpe
							-5				100
6	2.014M	23.4	+11.3	+0.1	+0.0		-31.1	3.7	29.5	-25.8	Paral
							364				100
7	4.121M	18.0	+11.1	+0.1	+0.0		-31.1	-1.9	29.5	-31.4	Paral
							-5				100
8	5.050M	15.4	+11.1	+0.1	+0.0		-31.1	-4.5	29.5	-34.0	Perpe
	22 20 21			0.2	0.1		-5	44.0	20.7	44.0	100
9	22.296M	9.4	+9.6	+0.2	+0.1		-31.1	-11.8	29.5	-41.3	Paral
10	20.255M	11.4	+6.6	+0.2	+0.1		365	-12.7	29.5	-42.2	100 Dama
10	29.355M	11.4	+0.0	+0.3	+0.1		-31.1 365	-12.7	29.5	-42.2	Perpe 100
11	220.000k	37.5	+10.9	+0.0	+0.0		-71.1	-22.7	20.8	-43.5	Perpe
11	220.000K	37.3	110.7	10.0	10.0		365	22.1	20.0	73.3	100
12	430.700k	31.4	+11.0	+0.0	+0.0		-71.1	-28.7	14.9	-43.6	Paral
							-5				100
13	223.500k	36.9	+10.9	+0.0	+0.0		-71.1	-23.3	20.6	-43.9	Paral
							365				100
14	52.520k	49.0	+11.3	+0.0	+0.0		-71.1	-10.8	33.2	-44.0	Perpe
							365				100
15	403.900k	31.4	+11.0	+0.0	+0.0		-71.1	-28.7	15.5	-44.2	Perpe
1.0	50 7001	47.0	. 11.2	. 0. 0	. 0. 0		-5	10.6	22.2	44.0	100
16	58.780k	47.2	+11.3	+0.0	+0.0		-71.1 365	-12.6	32.2	-44.8	Paral 100
17	102.300k	42.4	+11.1	+0.0	+0.0		-71.1	-17.6	27.4	-45.0	Paral
1.7	102.300K	42.4	+11.1	+0.0	+0.0		-71.1 -5	-17.0	21.4	-43.0	100
18	101.500k	42.2	+11.1	+0.0	+0.0		-71.1	-17.8	27.5	-45.3	Perpe
	101.500K	12.2	111.1	10.0	10.0		-5	17.0	27.5	13.3	100
19	27.294k	51.0	+12.6	+0.0	+0.0		-71.1	-7.5	38.9	-46.4	Perpe
	-						-5				100
20	28.295k	50.3	+12.5	+0.0	+0.0		-71.1	-8.3	38.6	-46.9	Paral
							-5				100
21	14.951k	52.8	+14.0	+0.0	+0.0		-71.1	-4.3	44.1	-48.4	Perpe
							364				100
22	9.093k	53.0	+18.0	+0.0	+0.0		-71.1	-0.1	48.4	-48.5	Paral
							365				100

Page 15 of 30 Report No.: 91974-5A

CKC Laboratories, Inc. Date: 6/1/2011 Time: 13:35:53 EWA, Inc. (Electronic Warfare) WO#: 91071 Model:SRCED-2 SN:None

15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 5 Meters Sequence#: 9 Parallel

× Readings × QP Readings ▼ Ambient O Peak Readings

Average Readings

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc.** (**Electronic Warfare**)

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: 91071 Date: 5/31/2011
Test Type: Maximized Emissions Time: 16:36:52
Equipment: Lock Sequence#: 5

Manufacturer: EWA, Inc. (Electronic Warfare) Tested By: N. Gamez

Model: SRCED-2 S/N: None

Test Equipment:

1 est Equ	іртені.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00852	Biconilog Antenna	CBL 6111C	11/16/2010	11/16/2012
T2	ANP05440	Cable		3/7/2011	3/7/2013
Т3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	AN00730	Preamp		1/31/2011	1/31/2013
T5	ANP05299	Cable	RG214	3/6/2011	3/6/2013
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Lock*	EWA, Inc. (Electronic Warfare)	SRCED-2	None

Support Devices:

. 11			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Spurious Emissions. 30-1000MHz. Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

FCC 15.249a is covered by this data sheet; harmonics and spurious emissions were collected at the same time.

The device is single channel NB modulation device with low data rate.

Temp: 67.8°F

Relative Humidity: 40%

AP: 1028mbar

2.480967GHz Fundamental Frequency. RBW 120kHz / VBW 120kHz.

EUT's Power Amplifier output is set to -2dBm.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	-	•	T5						•		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	494.000M	36.7	+17.7	+1.3	+0.6	-27.3	+0.0	29.2	46.0	-16.8	Vert
			+0.2				165				100
2	889.800M	28.0	+21.8	+1.9	+1.0	-27.3	+0.0	25.6	46.0	-20.4	Vert
			+0.2				-5				101
3	35.700M	28.8	+17.6	+0.3	+0.2	-27.6	+0.0	19.3	40.0	-20.7	Horiz
			+0.0				365				101
4	112.200M	37.9	+10.9	+0.6	+0.3	-27.5	+0.0	22.3	43.5	-21.2	Horiz
			+0.1				365				147
5	481.000M	32.4	+17.4	+1.3	+0.6	-27.4	+0.0	24.5	46.0	-21.5	Vert
			+0.2				165				100

Page 17 of 30 Report No.: 91974-5A

6	494.000M	32.0	+17.7	+1.3	+0.6	-27.3	+0.0	24.5	46.0	-21.5	Horiz
	57 5 0003 5	20.5	+0.2		0.0	27.2	-5		460		139
7	676.000M	28.6	+19.6	+1.6	+0.8	-27.3	+0.0	23.5	46.0	-22.5	Horiz
			+0.2				365				101
8	106.700M	36.9	+10.5	+0.6	+0.3	-27.5	+0.0	20.9	43.5	-22.6	Horiz
			+0.1				365				147
9	416.000M	32.5	+15.9	+1.2	+0.6	-27.4	+0.0	22.9	46.0	-23.1	Vert
			+0.1				165				100
10	602.800M	28.5	+19.1	+1.5	+0.7	-27.2	+0.0	22.8	46.0	-23.2	Vert
			+0.2				365				119
11	416.000M	31.6	+15.9	+1.2	+0.6	-27.4	+0.0	22.0	46.0	-24.0	Horiz
			+0.1				-5				139
12	124.350M	33.7	+11.6	+0.6	+0.3	-27.4	+0.0	18.9	43.5	-24.6	Horiz
			+0.1				365				147
13	114.900M	34.0	+11.1	+0.6	+0.3	-27.4	+0.0	18.7	43.5	-24.8	Horiz
			+0.1				365				147
14	41.100M	28.7	+13.3	+0.3	+0.2	-27.5	+0.0	15.0	40.0	-25.0	Vert
			+0.0				364				101
15	138.950M	32.9	+11.6	+0.6	+0.3	-27.5	+0.0	18.0	43.5	-25.5	Horiz
			+0.1				365				147
16	208.000M	33.3	+9.6	+0.8	+0.4	-27.4	+0.0	16.8	43.5	-26.7	Horiz
			+0.1				365				101
17	122.000M	30.9	+11.5	+0.6	+0.3	-27.4	+0.0	16.0	43.5	-27.5	Vert
			+0.1				-5				101
18	84.425M	31.0	+8.2	+0.5	+0.2	-27.5	+0.0	12.4	40.0	-27.6	Horiz
			+0.0				168				102
19	962.200M	28.1	+22.1	+2.0	+1.0	-27.8	+0.0	25.7	54.0	-28.3	Horiz
			+0.3				-5				101
20	260.000M	30.8	+12.6	+0.9	+0.4	-27.4	+0.0	17.4	46.0	-28.6	Vert
			+0.1				106				101
21	53.125M	28.6	+7.9	+0.4	+0.2	-27.5	+0.0	9.6	40.0	-30.4	Vert
		_0.0	+0.0				-5				101
22	75.300M	28.6	+7.1	+0.5	+0.2	-27.5	+0.0	8.9	40.0	-31.1	Vert
		_0.0	+0.0	. 5.0			365	2.7	. 3.0		97
23	55.575M	28.6	+7.1	+0.4	+0.2	-27.5	+0.0	8.8	40.0	-31.2	Horiz
23	22.2721.1	20.0	+0.0		. 3.2	_,	-5	3.0	. 5.0	21.2	135
24	186.300M	28.9	+9.0	+0.8	+0.4	-27.5	+0.0	11.7	43.5	-31.8	Horiz
	100.5001.1	20.7	+0.1	1 0.0		27.5	-5	11./	13.3	21.0	166
25	180.650M	28.9	+8.9	+0.7	+0.4	-27.5	+0.0	11.5	43.5	-32.0	Vert
23	100.050141	20.7	+0.1	10.7	10.7	21.3	364	11.5	73.3	32.0	101
			10.1				JUT				101

CKC Laboratories, Inc. Date: 5/31/2011 Time: 16:36:52 EWA, Inc. (Electronic Warfare) WO#: 91071 Model:SRCED-2 SN:None

15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#. 5 Horiz

→ Readings
× QP Readings
▼ Ambient

Peak Readings
Average Readings
1 · 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc.** (Electronic Warfare)

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 91071
 Date: 5/31/2011

 Test Type:
 Maximized Emissions
 Time: 11:44:12

Equipment: Lock Sequence#: 2
Manufacturer: EWA, Inc. (Electronic Warfare) Tested By: A. Brar

Model: SRCED-2 S/N: None

Test Equipment:

Test Equi	P				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP04241	Cable	FSJ1-50A	3/2/2010	3/2/2012
T2	ANP05138	Cable	FSJ1P-50A-4	3/19/2010	3/19/2012
Т3	AN02061	Horn Antenna-ANSI	DRG-118A	1/17/2011	1/17/2013
		C63.5			
T4	AN02810	Preamp	83051A	1/15/2010	1/15/2012
T5	ANP05843	Cable	32022-2-29094K-	7/30/2010	7/30/2012
			48TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Lock*	EWA. Inc. (Electronic Warfare)	SRCED-2	None	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Spurious Emissions. 1-12.5GHz. Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

FCC 15.249a is covered by this data sheet; harmonics and spurious emissions were collected at the same time.

The device is single channel NB modulation device with low data rate.

Temp: 65.7°F

Relative Humidity: 40%

AP: 1026mbar

2.480967GHz Fundamental Frequency. RBW 1MHz / VBW 3MHz.

EUT's Power Amplifier output is set to -2dBm.

Ext Attn: 0 dB

Meast	urement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	4962.500M	38.9	+0.8	+3.5	+32.9	-26.8	+0.0	50.4	54.0	-3.6	Vert
			+1.1				-5				138
2	2502.500M	41.4	+0.5	+2.4	+27.9	-26.4	+0.0	46.5	54.0	-7.5	Vert
			+0.7				76				138
3	2483.500M	36.9	+0.5	+2.3	+27.9	-26.5	+0.0	41.8	54.0	-12.2	Vert
	Ave		+0.7				292				138
^	2483.500M	60.9	+0.5	+2.3	+27.9	-26.5	+0.0	65.8	54.0	+11.8	Vert
			+0.7				292				138

Page 20 of 30 Report No.: 91974-5A

35.6	+0.5	+2.3	+27.9	-26.5	+0.0	40.5	54.0	-13.5	Vert
	+0.7				292				138
59.7	+0.5	+2.3	+27.9	-26.5	+0.0	64.6	54.0	+10.6	Vert
	+0.7				292				138
37.9	+0.4	+1.9	+25.7	-28.2	+0.0	38.3	54.0	-15.7	Horiz
	+0.6				86				117
38.5	+0.4	+1.5	+23.5	-28.3	+0.0	36.1	54.0	-17.9	Vert
	+0.5				365				138
30.3	+0.5	+2.3	+27.9	-26.5	+0.0	35.2	54.0	-18.8	Vert
	+0.7				292				138
52.9	+0.5	+2.3	+27.9	-26.5	+0.0	57.8	54.0	+3.8	Vert
	+0.7				292				138
23.5	+0.5	+2.4	+27.9	-26.5	+0.0	28.5	54.0	-25.5	Vert
	+0.7				292				138
50.4	+0.5	+2.4	+27.9	-26.5	+0.0	55.4	54.0	+1.4	Vert
	+0.7				292				138
39.3	+0.5	+2.3	+27.8	-26.5	+0.0	44.1	94.0	-49.9	Vert
	+0.7				365				138
	59.7 37.9 38.5 30.3 52.9 23.5 50.4	+0.7 59.7 +0.5 +0.7 37.9 +0.4 +0.6 38.5 +0.4 +0.5 30.3 +0.5 +0.7 52.9 +0.5 +0.7 23.5 +0.5 +0.7 50.4 +0.5 39.3 +0.5	+0.7 59.7 +0.5 +2.3 +0.7 37.9 +0.4 +1.9 +0.6 38.5 +0.4 +1.5 +0.5 30.3 +0.5 +2.3 +0.7 52.9 +0.5 +2.3 +0.7 23.5 +0.5 +2.4 +0.7 50.4 +0.5 +2.4 +0.7 39.3 +0.5 +2.3	+0.7 59.7 +0.5 +2.3 +27.9 +0.7 37.9 +0.4 +1.9 +25.7 +0.6 38.5 +0.4 +1.5 +23.5 +0.5 30.3 +0.5 +2.3 +27.9 +0.7 52.9 +0.5 +2.3 +27.9 +0.7 23.5 +0.5 +2.4 +27.9 +0.7 50.4 +0.5 +2.4 +27.9 +0.7 39.3 +0.5 +2.3 +27.8	+0.7 59.7 +0.5 +2.3 +27.9 -26.5 +0.7 37.9 +0.4 +1.9 +25.7 -28.2 +0.6 38.5 +0.4 +1.5 +23.5 -28.3 +0.5 30.3 +0.5 +2.3 +27.9 -26.5 +0.7 52.9 +0.5 +2.3 +27.9 -26.5 +0.7 23.5 +0.5 +2.4 +27.9 -26.5 +0.7 50.4 +0.5 +2.4 +27.9 -26.5 +0.7 39.3 +0.5 +2.3 +27.8 -26.5	+0.7 292 59.7 +0.5 +2.3 +27.9 -26.5 +0.0 292 37.9 +0.4 +1.9 +25.7 -28.2 +0.0 86 38.5 +0.4 +1.5 +23.5 -28.3 +0.0 +0.5 365 30.3 +0.5 +2.3 +27.9 -26.5 +0.0 +0.7 292 52.9 +0.5 +2.3 +27.9 -26.5 +0.0 292 23.5 +0.5 +2.4 +27.9 -26.5 +0.0 292 50.4 +0.5 +2.4 +27.9 -26.5 +0.0 +0.7 292 39.3 +0.5 +2.3 +27.8 -26.5 +0.0 292	+0.7 292 59.7 +0.5 +2.3 +27.9 -26.5 +0.0 64.6 37.9 +0.4 +1.9 +25.7 -28.2 +0.0 38.3 40.6 86 38.5 +0.4 +1.5 +23.5 -28.3 +0.0 36.1 30.3 +0.5 +2.3 +27.9 -26.5 +0.0 35.2 +0.7 292 52.9 +0.5 +2.3 +27.9 -26.5 +0.0 57.8 +0.7 292 50.4 +0.5 +2.4 +27.9 -26.5 +0.0 28.5 +0.7 292 39.3 +0.5 +2.3 +27.8 -26.5 +0.0 44.1	+0.7 292 59.7 +0.5 +2.3 +27.9 -26.5 +0.0 64.6 54.0 37.9 +0.4 +1.9 +25.7 -28.2 +0.0 38.3 54.0 38.5 +0.4 +1.5 +23.5 -28.3 +0.0 36.1 54.0 30.3 +0.5 +2.3 +27.9 -26.5 +0.0 35.2 54.0 +0.7 292 52.9 +0.5 +2.3 +27.9 -26.5 +0.0 57.8 54.0 +0.7 292 50.4 +0.5 +2.4 +27.9 -26.5 +0.0 28.5 54.0 +0.7 292 50.4 +0.5 +2.4 +27.9 -26.5 +0.0 55.4 54.0 +0.7 292 39.3 +0.5 +2.3 +27.8 -26.5 +0.0 44.1 94.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CKC Laboratories, Inc. Date: 5/31/2011 Time: 11:44:12 EWA, Inc. (Electronic Warfare) WO#: 91071

Model:SRCED-2 SN:None 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#. 2 Horiz

O Peak Readings Average Readings

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc.** (Electronic Warfare)

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 91071
 Date: 5/31/2011

 Test Type:
 Maximized Emissions
 Time: 14:33:25

Equipment: Lock Sequence#: 3

Manufacturer: EWA, Inc. (Electronic Warfare) Tested By: N. Gamez

Model: SRCED-2 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02693	Active Horn Antenna-ANSI C63.5 Antenna Factors (dB)	AMFW-5F- 12001800-20-10P	11/23/2010	11/23/2012
T2	AN03143	Cable	32022-29094K- 144TC	9/10/2009	9/10/2011
T3	ANP00928	Cable	various	3/29/2010	3/29/2012
T4	ANP05843	Cable	32022-2-29094K- 48TC	7/30/2010	7/30/2012
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Lock*	EWA, Inc. (Electronic	SRCED-2	None	
	Warfare)			

Support Devices:

T I			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Spurious Emissions. 12.5-18GHz. Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

FCC 15.249a is covered by this data sheet; harmonics and spurious emissions were collected at the same time.

The device is single channel NB modulation device with low data rate.

Temp: 67.8°F

Relative Humidity: 40%

AP: 1028mbar

2.480967GHz Fundamental Frequency. RBW 1MHz / VBW 3MHz.

EUT's Power Amplifier output is set to -2dBm.

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	$\overline{\text{MHz}}$	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16734.000	42.7	-16.1	+5.8	+0.7	+2.0	+0.0	35.1	54.0	-18.9	Horiz
	M										
							-5				100
2	16674.000	42.8	-16.2	+5.8	+0.7	+2.0	+0.0	35.1	54.0	-18.9	Vert
	M										
							365				99

Page 22 of 30 Report No.: 91974-5A

3 15948	000 42.6	-16.1	+5.6	+0.7	+1.9	+0.0	34.7	54.0	-19.3	Vert
M										
						-5				99
4 13353	500 42.5	-15.8	+5.1	+0.8	+1.8	+0.0	34.4	54.0	-19.6	Horiz
M										
						365				100
5 15974	000 41.8	-16.1	+5.6	+0.7	+1.9	+0.0	33.9	54.0	-20.1	Horiz
M										
						-5				100
6 13263	500 41.6	-15.6	+5.1	+0.8	+1.8	+0.0	33.7	54.0	-20.3	Vert
M										
						364				99

CKC Laboratories, Inc. Date: 5/31/2011 Time: 14:33:25 EWA, Inc. (Electronic Warfare) WO#: 91071 Model:SRCED-2 SN:None

15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 3 Vert

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **EWA, Inc.** (Electronic Warfare)

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 91071
 Date: 5/31/2011

 Test Type:
 Maximized Emissions
 Time: 15:02:07

Equipment: Lock Sequence#: 4

Manufacturer: EWA, Inc. (Electronic Warfare) Tested By: N. Gamez

Model: SRCED-2 S/N: None

Test Equipment:

_ rest =qttq					
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02694	Active Horn Antenna-ANSI C63.5 Antenna Factors (dB)	AMFW-5F- 18002650-20-10P	11/10/2010	11/10/2012
T2	AN03143	Cable	32022-29094K- 144TC	9/10/2009	9/10/2011
Т3	ANP00929	Cable	various	3/29/2010	3/29/2012
T4	ANP05843	Cable	32022-2-29094K- 48TC	7/30/2010	7/30/2012
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Lock*	EWA, Inc. (Electronic Warfare)	SRCED-2	None	

Support Devices:

T I			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Spurious Emissions. 18-25GHz. Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission.

FCC 15.249a is covered by this data sheet; harmonics and spurious emissions were collected at the same time.

The device is single channel NB modulation device with low data rate.

Temp: 67.8°F

Relative Humidity: 40%

AP: 1028mbar

2.480967GHz Fundamental Frequency. RBW 1MHz / VBW 3MHz.

EUT's Power Amplifier output is set to -2dBm.

Ext Attn: 0 dB

Reading listed by margin. Test Distance: 3 Meters Measurement Data: T4 T1 T2 T3 Dist Corr Spec Margin Polar # Freq Rdng $\,MHz\,$ dB dB dB Table $dB\mu V/m dB\mu V/m$ dB dBμV dB Ant 1 23257.000 44.3 -16.8 +6.9 +3.1+2.540.0 54.0 -14.0 Vert +0.0M 99 365 2 21530.000 43.1 -15.8+6.6+3.1+2.4+0.039.4 54.0 -14.6Vert M 99 -5

> Page 24 of 30 Report No.: 91974-5A

3 24289.000 M	44.0	-17.4	+7.1	+3.0	+2.6	+0.0	39.3	54.0	-14.7	Horiz
						-5				99
4 21546.000	42.4	-15.8	+6.6	+3.1	+2.4	+0.0	38.7	54.0	-15.3	Horiz
M						365				99
5 19874.000	41.7	-15.4	+6.3	+3.3	+2.2	+0.0	38.1	54.0	-15.9	Horiz
M						-5				99
						-3				99
6 18656.000	41.8	-15.7	+6.2	+3.4	+2.2	+0.0	37.9	54.0	-16.1	Vert
M										
						364				99

CKC Laboratories, Inc. Date: 5/31/2011 Time: 15:02:07 EWA, Inc. (Electronic Warfare) WO#: 91071 Model:SRCED-2 SN:None

15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 4 Vert

O Peak Readings

* Average Readings
1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Setup Photos

RSS-210

99 % Bandwidth

Test Engineer: A. Brar / N. Gamez

Test Setup

The Lock is installed in a wooden fixture standing up vertical on a foam piece. It is powered by fresh batteries. The Lock is set to continuous transmission. The device is single channel NB modulation device with low data rate.

Temp: 65.7°F

Relative Humidity: 40%

AP: 1026mbar

2.480967GHz Fundamental Frequency. RBW 20kHz / VBW 200kHz.

EUT's Power Amplifier output is set to -2dBm.

Test Equipment										
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due					
02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013					
P04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012					
P05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012					
02061	Horn Antenna- ANSI	DRG-118A	ARA	1/17/2011	1/17/2013					
	C63.5									

Test Data

Page 27 of 30 Report No.: 91974-5A

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 29 of 30 Report No.: 91974-5A

	SAMPLE CALCULATIONS							
	Meter reading (dBμV)							
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBµV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING									
RADIATED EMISSIONS 30 MHz 1000 MHz 120									
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 30 of 30 Report No.: 91974-5A