Spis treści

Zadanie 1. Metody rozwiązywania równań nieliniowych z jedną niewiadomą	2
a) metoda bisekcji	4
b) metoda siecznych	6
c) metoda Newtona (stycznych)	7
Zadanie 2. Metoda Mullera MM1	9
Załącznik 1. Kod źródłowy zadania 1.	11
Załącznik 2. Kod źródłowy zadania 2.	16

Zadanie 1. Metody rozwiązywania równań nieliniowych z jedną niewiadomą

Celem zadania jest napisanie programu obliczającego wszystkie zera funkcji f(x) = 2.3*sin(x)+4*ln(x+2)-11 w przedziale [2, 12].

- 1. Wybór przedziałów startowych oraz ograniczeń.
- 2. Implementacja metod (oraz stworzenie warunków, w których minimum jedna z nich zawodzi):
 - a. bisekcji
 - b. siecznych
 - c. stycznych (Newtona)

Koncepcja rozwiązania

 Początkowo napisana została metoda wspomagająca rysowanie wykresu funkcji (rysunek 1).

Przedziały zaś zostały dobrane wg. dwóch kryteriów:

- 1) maksymalna wielkość
- możliwość poprawnego wykonania każdej metody dla zadanej funkcji w zadanym przedziale.

Ostateczne przedziały startowe zostały wybrane *metodą inżynierskiej*

intuicji oraz prób i błędów jak przedstawiono na rysunku 1 - [6;8], [8.3;10], [12; 15].

Ograniczenia:

- Każda z metod została ograniczona parametrem globalnym dokladnosc_zer
 określającym maksymalny moduł liczby mogącej być uznawanej w przybliżeniu za równą
 0.
- Metoda bisekcji oraz siecznych zostały również ograniczone parametrem globalnym wielkosc_przedzialu, aby zapobiegać przypadkom, w którym dla funkcji o małym nachyleniu pierwiastki zostaną wyznaczone niedokładnie.
- **Metoda stycznych (Newtona)** została ograniczona ze względu na maksymalną liczbę iteracji ilosc_iteracji.
- Metoda stycznych (Newtona) zostaje przerwana gdy któryś z kolejno wyznaczonych punktów wychodzi poza początkowy przedział – funkcja nowy_przedzial_sieczny chroni przed pochodną o zbyt małym nachyleniu zgłaszając błąd w niedozwolonym przypadku.

Sprawdzenie

1. Do sprawdzenia poprawności wyznaczonego wykresu użyty został generator

wykresów ze strony:

matemaks.pl/program-dorysowania-wykresowfunkcji.html

Wygenerowany został rysunek 2 pokrywający się z rysunkiem 1.

2. Z kolei sprawdzenie poprawności wyznaczonych miejsc zerowych następowało na dwóch drogach – analityczne wyliczenie za pomocą funkcji wartość_funkcji (x) oraz graficznie- wszystkie 3 metody wygenerowały wykres z rysunku 3 co potwierdza poprawność ich działania.

Komentarz

- a. W celu zautomatyzowania wyboru przedziałów startowych dla metody bisekcji oraz siecznych można napisać funkcję wybierz przedziały działającą wg. listy kroków:
 - 1) Podziel badany przedział na 100 części małych przedziałów. Przedziały te powinny nachodzić na siebie z dokładnością do epsilona, tak aby nie było przypadku, w którym jeden kończy się na miejscu zerowym, a drugi na nim zaczyna (przypadek nieobsłużony przez metody).
 - 2) Dla każdego małego przedziału przeprowadź test **sprawdzenie_przedziału** sprawdzający warunek f(x1)*f(x2)<0.
 - 3) W przypadku spełnienia warunku dopisz go do wektora przedziałów, w których znajduje się pierwiastek funkcji.
 - 4) Na podstawie utworzonego wektora oblicz miejsca zerowe.

W projekcie metoda ta nie została zaimplementowana ze względu na wymóg doboru szerokich przedziałów startowych.

Zadanie 1a. Metoda bisekcji

Koncepcja rozwiązania

Zaimplementowana została klasyczna metoda bisekcji:

- 1. Z przedziału [x1,x2] wyznacz punkt c = (x1+x2)/2.
- 2. Jeśli c jest miejscem zerowym oraz przedział jest odpowiednio mały zwróć c.
- 3. Jeśli nie za pomocą metody sprawdź_przedział wybierz [x1,c] lub [c,x2], w którym znajduje się miejsce zerowe.
- 4. Powróć do kroku i.

Sprawdzenie

Dla parametrów dokładnosc zer=0.001 oraz wielkosc przedzialu=0.1.

```
metoda bisekcji przedzial nr 1 ([6;8])
x=7.000000 y=-0.700033
x=7.500000 y=0.162567
x=7.250000 y=-0.208420
x=7.375000 v=-0.006645
x=7.437500 v=0.082156
x=7.406250 y=0.038790
x=7.390625 y=0.016329
x=7.382813 y=0.004906
x=7.378906 y=-0.000853
metoda bisekcji przedzial nr 2 ([8.3;10])
x=9.150000 y=-0.730176
x=8.725000 y=-0.028380
x=8.512500 y=0.229330
x=8.618750 y=0.110034
x=8.671875 y=0.043095
x=8.698438 y=0.007909
x=8.711719 y=-0.010100
x=8.705078 y=-0.001061
x=8.701758 y=0.003432
x=8.703418 y=0.001187
x=8.704248 y=0.000064
metoda bisekcji przedzial nr 3 ([12;15])
x=13.500000 y=1.812064
x=12.750000 y=0.184950
x=12.375000 y=-0.775508
x=12.562500 y=-0.295103
x=12.656250 y=-0.054088
x=12.703125 y=0.065796
x=12.679688 y=0.005930
x=12.667969 y=-0.024062
x=12.673828 y=-0.009061
x=12.676758 y=-0.001564
x=12.678223 y=0.002183
x=12.677490 y=0.000310
```

Komentarz

a. Metoda bisekcji działa zgodnie z oczekiwaniami – w każdym kroku widać, że o połowę zmniejsza zadany w danej iteracji przedział. Co ciekawe jest to metoda, która w każdym kolejnym kroku nie zawsze zmniejsza wartość bezwzględną y na co przykładem jest przedział nr 1.

W zadanych warunkach średnia ilość iteracji wynosiła 10,66.

Warunki, w których metoda nie działa

a. Metoda bisekcji jest najprostszą metodą, która może najłatwiej zawieźć przez błąd programisty – zły dobór przedziału startowego (niespełniający warunku f(x1)*f(x2)<0. Gdy uruchomiłem program właśnie dla takiego przedziału zapętlił on po ok. 20 iteracjach jeden wynik.</p>

Przypuszczałem, że metoda bisekcji może zawieźć gdy przedziałem startowym będzie [x1 pierwiastek_funkcji] zaś dokładność_zer będzie mała. Uruchomiłem więc następującą funkcję:

```
x_bisekcja = bisekcja([0 7.3794839], 0.000001, wielkosc_przedzialu)

output
```

```
ilosc iteracji 24 x_zero 7.379483e+00f, wartosc -3.645547e-07f
```

Jak widać metoda bisekcji nawet w takim przypadku szybko zbiega do poprawnego wyniku.

Zadanie 1b. Metoda siecznych

Koncepcja rozwiązania

Zaimplementowana została metoda siecznych w postaci:

- 1. Na podstawie przedziału [x1,x2] wyznacz funkcję liniową zawierającą te punkty.
- 2. Wyznacz miejsce zerowe tej funkcji korzystając z wzoru:

```
c = (x2*y1-x1*y2)/(y1-y2);
```

- 3. Jeśli c jest miejscem zerowym oraz przedział jest odpowiednio mały zwróć c.
- 4. Jeśli nie za pomocą metody sprawdź_przedział wybierz [x1,c] lub [c,x2], w którym znajduje się miejsce zerowe.
- 5. Powróć do kroku i.

<u>Sprawdzenie</u>

Dla parametrów dokladnosc zer=0.001 oraz wielkosc przedzialu=0.1.

```
metoda siecznych przedzial nr 1 ([6;8])
x=7.745004 y=0.393375
x=7.560390 y=0.232099
x=7.294705 y=-0.132650
x=7.391328 y=0.017351
x=7.380152 y=0.000986
metoda siecznych przedzial nr 2 ([8.3;10])
x=8.552678 y=0.186585
x=8.769956 y=-0.092217
x=8.698089 y=0.008377
x=8.704074 y=0.000299
metoda siecznych przedzial nr 3 ([12;15])
x=13.435563 y=1.703456
x=12.712354 y=0.089322
x=12.672334 y=-0.012885
x=12.677379 y=0.000026
```

Komentarz

 b. Metoda siecznych w każdym kolejnym kroku zmniejsza wartość bezwzględną y na co przykładem jest przedział nr 1. Przy zadanych warunkach zmiany te są bardzo widoczne – od 2 do 10 razy.

W zadanych warunkach **średnia ilość iteracji** wynosiła **4,33**. Czyli 2,46 raza szybciej niż metoda bisekcji co jest wartością większą niż ta teoretyczna (rząd zbieżności 1,618 raza większy od metody bisekcji).

Warunki, w których metoda nie działa

b. Nie udało mi się wpaść na pomysł jak w podanej implementacji metoda siecznych może zawieźć.

Zadanie 1c. Metoda stycznych (Newtona)

Koncepcja rozwiązania

Zaimplementowana została klasyczna metoda bisekcji:

- 1. Zapamiętaj przedział [x1 x2] jako przedział początkowy.
- 2. Poprowadź prostą n styczną do punktu x1. (m = f'(x1))
- 3. Wyznacz miejsce zerowe (x0) prostej *n* z wzoru:

```
x0 = (m*x1-y1)/m;
```

- 4. Sprawdź czy x0 należy do przedziału początkowego.
- 5. Jeśli nie przerwij wykonywanie algorytmu i poinformuj o źle dobranym przedziale.
- 6. Wybierz nowy przedział [x0 x2].
- 7. Sprawdź czy osiągnięto maksymalną ilość iteracji jeśli tak to przerwij.
- 8. Powróć do kroku 2.

Sprawdzenie

Dla parametrów dokladnosc zer=0.001 oraz wielkosc_przedzialu=0.1.

```
metoda stycznych przedzial nr 1 ([6;8])
x=7.227625 y=-0.247805
x=7.366706 y=-0.019047
x=7.379371 y=-0.000167
metoda stycznych przedzial nr 2 ([8.3;10])
x=8.968366 y=-0.406259
x=8.729374 y=-0.034459
x=8.704639 y=-0.000466
metoda stycznych przedzial nr 3 ([12;15])
x=12.753573 y=0.193995
x=12.676923 y=-0.001141
x=12.677369 y=-0.000000
```

Komentarz

- c. Metoda stycznych w zadanych warunkach działa zdecydowanie najlepiej zmniejszając w każdym kroku wartość bezwzględną y ok. dziesięciokrotnie.
 - W zadanych warunkach **średnia ilość iteracji** wynosiła **3**. Jednakże zagadnieniem było dobranie przedziału startowego tak aby krok 4 algorytmu został spełniony.

Warunki, w których metoda nie działa

c. Metoda stycznych jest najłatwiejsza do "zepsucia" – trzeba dobrać punkt startowy tak aby pochodna w kolejnych punktach była na tyle stroma aby nie wyszła poza przedział startowy.

Przykładowo dla wywołania:

```
x_styczne = met_stycznych([0 8], dokladnosc_zer, ilosc_iteracji)
```

```
metoda stycznych przedzial nr 1
x=1.913351 y=-3.376055
1.9134 8.0000
```

Error using mnum_0301>nowy_przedzial_styczny (line 122)

Error. Punkt poza przedzialem. Nalezy wybrac inny przedzial poczatkowy

Error in met_stycznych">mnum_0301>met_stycznych (line 109)
[c przedzialy(i,:)] = nowy_przedzial_styczny(przedzialy(i,:), pierwotny_przedzial);

Wyznaczony punkt leży poza przedziałem startowym co jest sygnalizowane przez komunikat o błędzie.

Wniosek

Najszybszą metodą okazała się metoda stycznych – rekomendowałbym ją jako funkcję pierwszego wyboru dla funkcji, których wykres wydaje się mieć nachylenia dalekie od płaskich. Jednakże przy tej metodzie trzeba uważnie dobierać przedział startowy.

Najlepszą metodą w mojej opinii pod względem stosunku niezawodności do szybkości jest metoda siecznych. Tę rekomendowałbym jako uniwersalną.

Z kolei najprostszą okazała się metoda bisekcji, która nie wymagała podczas implementacji żadnych obliczeń analitycznych.

Zadanie 2. Metoda Mullera MM1

Celem zadania jest napisanie programu obliczającego za pomocą metody Mullera MM1 wszystkie zera funkcji:

$$f(x) = -x^4 + 2.5x^3 + 2.5x^2 + x + 0.5$$

Przygotowanie

Jak w poprzednim zadaniu rozpoczęto od sporządzenia wykresu (rysunek 4) oraz porównaniu

go z internetowym generatorem.

Weryfikacja poprawności miejsc zerowych również została zweryfikowana jak w przykładzie z zadania pierwszego.

Małym wyzwaniem było wyznaczenie wszystkich miejsc zerowych - a dokładniej wybranie punktów startowych, które doprowadzą do każdego z nich. Na początku zostały one wyznaczone w kalkulatorze: wolframalpha.com

Aby wiedzieć do jakich wartości zespolonych się kierować.

Ograniczenia:

• Parametr dokladnosc_zer określający maksymalny moduł liczby mogącej być uznawanej w przybliżeniu za równą 0.

Koncepcja rozwiązania

Metoda MM1 w tym przykładzie kolejno:

- 1. Na podstawie zadanych punktów [x1,x2,x3] wyznacza parabolę a.
- 2. Z paraboli a wyznacza punkt x4 położony jak najbliżej x3 o mniejszym module.
- 3. Jeśli x4 jest miejscem zerowym przerwij i zwróć x4.
- 4. Jeśli nie x1=x2; x2=x3; x3=x4.
- 5. Wróć do kroku 1.

Za pomocą prób, obserwacji oraz intuicji miejsca zerowe zostały wyznaczone następująco:

```
a. m_zerowe = MM1(-2, -1, 0, dokladnosc_zer)
b. m_zerowe'
c. m_zerowe = MM1(2, 2.5, 3, dokladnosc_zer)
d. m_zerowe = MM1(-1.5, -1, -.075, dokladnosc_zer)
```

Output:

```
a.
      iteracje = 2993
      m \text{ zerowe} = -0.0897 + 0.4639i
   b.m zerowe = -0.0897 + 0.4639i
   c.
x3=1.309452 y3=8.769211
x3=0.981267 y3=5.323449
x3=4.260596 y3=-86.024360
x3=2.405002 y3=18.686569
x3=3.003810 y3=12.406233
x3=1.829165 y3=14.799351
x3=1.217180 y3=7.734285
x3=3.749557 y3=-26.473761
x3=3.039440 y3=11.488013
x3=3.302571 y3=2.160562
x3=2.114552 y3=17.437233
x3=1.537924 y3=11.450517
x3=3.375882 y3=-1.330900
x3=3.333815 y3=0.724199
x3=3.348833 y3=0.006692
x3=2.133360 y3=17.571278
x3=1.612679 y3=12.336067
x3=3.349045 y3=-0.003550
x3=3.348932 y3=0.001882
x3=3.348971 y3=0.000000
   x3=-0.829451 v3=-0.509438
   x3=0.064350 \quad v3=0.575352
   x3=3.711550 v3=-23.294617
   x3=-0.614874 y3=0.106201
   x3=-0.670210 y3=-0.001636
   x3=0.544890 y3=2.103453
   x3=9.832952 y3=-6719.520988
   x3=-0.670191 y3=-0.001593
   x3=-0.670173 y3=-0.001552
   x3=-0.669460 y3=0.000029
```

Komentarz

Do znalezienia pierwiastków rzeczywistych lepiej sprawdziłyby się metody z zadania pierwszego. Jednakże nie byłyby w stanie odnaleźć pierwiastków urojonych. Jak można zauważyć są one bardzo wymagające i potrzebują ok 200 razy więcej iteracji niż pierwiastki rzeczywiste.

Załącznik 1. Kod źródłowy zadania 1.

```
start
clc;
clear;
x = linspace(0, 15, 100);
przedziały poczatkowe
przedzialy = [6 8; 8.3 10; 12 15];
dokladnosc_zer = 0.001;
wielkosc przedzialu = 0.01;
ilosc_iteracji = 100;
for i=1:3
    %wybor i-tego przedzialu
    if sprawdzenie przedzialu(przedzialy(i,:)) == 0
        error('Error, zostaly wybrane zle przedzialy');
    end
end
wykres
figure
v = wartosc funkcji(x);
plot(x,y,'b-',[0 15], [0 0], 'k--', przedzialy(1,:),
wartosc_funkcji(przedzialy(1,:)), 'r*', przedzialy(2,:),
wartosc_funkcji(przedzialy(2,:)), 'c*', przedzialy(3,:),
wartosc_funkcji(przedzialy(3,:)), 'k*');
legend(\{'f(x)', 'y=0'\}, 'Location', 'southwest'\};
title('wykres funkcji f(x)=2,3*\sin(x)+4*\ln(x+2)-11');
oszacowanie miejsc zerowych na podstawie rysunku (skrypt prof Tatjeskiego mowi, zeby
estymowac na poodstawie rysunku)
% wartosc_funkcji(7.25)
% wartosc_funkcji(8)
% wartosc funkcji(9)
% wartosc funkcji(12.5)
porownanie
% przekroczenie przedzialu startowego
% x styczne = met stycznych([0 8], dokladnosc zer, ilosc iteracji)
x_bisekcja = bisekcja(przedzialy, dokladnosc_zer, wielkosc_przedzialu)
x_sieczne = met_siecznych(przedzialy, dokladnosc_zer, wielkosc_przedzialu)
x styczne = met stycznych(przedziały, dokladnosc zer, ilosc iteracji)
y_bisekcja = wartosc_funkcji(x_bisekcja)
y_sieczne = wartosc_funkcji(x_sieczne)
y_styczne = wartosc_funkcji(x_styczne)
figure
plot(x,y,'b-',[0 15], [0 0], 'k--', x_bisekcja, wartosc_funkcji(x_bisekcja),
'go');
```

legend({'f(x)', 'y=0', 'm. zerowe met. bisekcji'}, 'Location', 'southwest');

title('wykres funkcji $f(x)=2,3*\sin(x)+4*\ln(x+2)-11$ ');

```
plot(x,y,'b-',[0 15], [0 0], 'k--', x_sieczne, wartosc_funkcji(x_sieczne),
'go');
legend({'f(x)', 'y=0', 'm. zerowe met. siecznych'},'Location','southwest');
title('wykres funkcji f(x)=2,3*sin(x)+4*ln(x+2)-11');
plot(x,y,'b-',[0 15], [0 0], 'k--', x_styczne, wartosc_funkcji(x_styczne),
'go');
legend({'f(x)', 'y=0', 'm. zerowe met. stycznych'},'Location','southwest');
title('wykres funkcji f(x)=2,3*sin(x)+4*ln(x+2)-11');
```

funkcje pomocnicze glowne

1. metoda bisekcji

```
function x = bisekcja(przedzialy, dokladnosc_zer, wielkosc_przedzialu)
    ilosc_pierwiastkow = size(przedzialy,1);
    x = zeros(ilosc pierwiastkow);
    x = wektor(x);
    for i = 1:ilosc pierwiastkow
        fprintf('metoda bisekcji przedzial nr %d\n', i);
        iteracje = 0;
        c = 0;
        while (abs(wartosc funkcji(c))>dokladnosc zer | (przedzialy(i,2)-
przedzialy(i,1))>wielkosc przedzialu)
            iteracje = iteracje + 1;
            [c przedzialy(i,:)] = polowienie_przedzialu(przedzialy(i,:));
            fprintf('x=%f y=%f\n', c, wartosc_funkcji(c));
        end
        x(i) = c;
    end
end
```

polowienie przedzialow dla metody bisekcji

```
function [c nowy_przedzial] = polowienie_przedzialu(przedzial)
    c = (przedzial(1)+przedzial(2))/2;
    if(sprawdzenie_przedzialu([przedzial(1) c]) == 1)
        nowy_przedzial = [przedzial(1) c];
    else
        nowy_przedzial = [c przedzial(2)];
    end
end
```

2. metoda siecznych

```
x(i) = c;
end
end
```

zmniejszenie przedzialow dla metody siecznych

```
function [d nowy_przedzial] = nowy_sieczny_przedzial(przedzial, c)
    d = wyznacz_zero_f_liniowej(przedzial);
    if(przedzial(2) == c)
        nowy_przedzial = [d przedzial(2)];
    else
        nowy_przedzial = [przedzial(1) d];
    end
end
```

wyznaczenie zera f. liniowej wyznaczonej na podstawie punktow z koncow przedzialu na podstawie wyliczonego analitycznie wzoru

```
function c = wyznacz_zero_f_liniowej(przedzial)
    x1 = przedzial(1);
    x2 = przedzial(2);
    y1 = wartosc_funkcji(x1);
    y2 = wartosc_funkcji(x2);
    c = (x2*y1-x1*y2)/(y1-y2);
end
```

3. metoda stycznych

```
function x = met_stycznych(przedzialy, dokladnosc_zer, ilosc_iteracji)
    ilosc_pierwiastkow = size(przedzialy,1);
    x = zeros(ilosc_pierwiastkow);
    x = wektor(x);
    for i = 1:ilosc pierwiastkow
        fprintf('metoda stycznych przedzial nr %d\n', i);
        iteracje = 0;
        c = 0;
        pierwotny_przedzial = przedzialy(i,:);
        while (abs(wartosc_funkcji(c))>dokladnosc_zer & iteracje <</pre>
ilosc_iteracji)
            iteracje = iteracje + 1;
            [c przedzialy(i,:)] = nowy_przedzial_styczny(przedzialy(i,:),
pierwotny_przedzial);
            fprintf('x=%f y=%f\n', c, wartosc_funkcji(c));
        x(i) = c;
    end
end
```

zmniejszenie przedzialow dla metody stycznych

```
function [d nowy_przedzial] = nowy_przedzial_styczny(przedzial,
pierwotny_przedzial)
    d = nowy_punkt_styczny(przedzial(1));
    if(d >= pierwotny_przedzial(1) & d <= pierwotny_przedzial(2))
        nowy_przedzial = [d przedzial(2)];
    else</pre>
```

```
disp(przedzial);
    disp(d);
    error('Error. Punkt poza przedzialem. Nalezy wybrac inny przedzial
poczatkowy');
    end
end
```

wyznaczenie miejsca zerowego na podstawie pochodnej oraz poprzedniego punktu

```
function x0 = nowy_punkt_styczny(x)
    m = wartosc_pochodnej(x);
    y = wartosc_funkcji(x);
    x0 = (m*x-y)/m;
end
```

wyznaczenie pochodnej dla podanych x-ow

```
function y = wartosc_pochodnej(x)
    y = 23*cos(x)/10+4/(x+2);
end
```

funkcje pomocnicze dodatkowe

wyznaczenie wyjsc dla podanych x-ow i zadanej funkcji

```
function y = wartosc_funkcji(x)
   [temp rozmiar_x] = size(x);
   if rozmiar_x == 1
        x = x';
        rozmiar_x = temp;
end
   y = zeros(rozmiar_x);
   y = y(:,1);
   for i = 1:rozmiar_x
        y(i,1) = 2.3*sin(x(1,i))+4*log(x(1,i)+2)-11;
end
end
```

sprawdzenie czy w podanym przedziale jest miejsce zerowe

```
function result = sprawdzenie_przedzialu(przedzial)
   if wartosc_funkcji(przedzial(1))*wartosc_funkcji(przedzial(2)) < 0
      result = 1;
   else
      result = 0;
   end
end</pre>
```

wartosc najwiekszego bledu

```
function y = najwieksze_zero(x)
    y = max(abs(wartosc_funkcji(x)));
end
```

funkcja wektoryzujaca macierz diagonalna

```
function w = wektor(A)
  rozmiar = size(A);
```

```
for i = 1:rozmiar
      w(i,1) = A(i,i);
end
end
```

Załącznik 2. Kod źródłowy zadania 2.

program

```
clc;
clear;
x = linspace(-1.5,3.5,100);
dokladnosc_zer = 0.001;

m_zerowe = MM1(-2, -1, 0, dokladnosc_zer)
m_zerowe
m_zerowe = MM1(2, 2.5, 3, dokladnosc_zer)
m_zerowe = MM1(-1.5, -1, -.075, dokladnosc_zer)
figure
y = wartosc_funkcji(x);
plot(x,y,'b-',[-1.5 3.5], [0 0], 'k--')
legend({'f(x)', 'y=0'},'Location','southwest');
title('wykres funkcji f(x)=-x^4+2.5x^3+2.5*x^2+x+0.5');
```

funkcje metody Mullera

metoda MM1

```
function x = MM1(x1, x2, x3, dokladnosc_zer)
   iteracje = 0;
   while (abs(wartosc_funkcji(x3))>dokladnosc_zer & iteracje < 10000)
       [x1 x2 x3] = kolejny_punkt(x1,x2,x3);
       iteracje = iteracje + 1;
       %fprintf('x3=%f y3=%f\n', x3, wartosc_funkcji(x3));
   end
   disp(iteracje);
   x = x3;
end</pre>
```

wyznaczenie kolejnego punktu na podstawie paraboli

```
function [x1 x2 x3] = kolejny_punkt(x1, x2, x3)
    q = (x3-x2)/(x2-x1);
    a = q*wartosc_funkcji(x3) - q*(q+1)*wartosc_funkcji(x2) +
q^2*wartosc_funkcji(x1);
    b = (2*q+1)*wartosc_funkcji(x3) - (q+1)^2*wartosc_funkcji(x2) +
q^2*wartosc_funkcji(x1);
    c = (q+1)*wartosc_funkcji(x3);

    x1 = x2;
    x2 = x3;

    if (b+sqrt(b^2-4*a*c)) > (b-sqrt(b^2-4*a*c))
        x3 = x2 - (x2-x1)*(2*c/(b+sqrt(b^2-4*a*c)));
    else
        x3 = x2 - (x2-x1)*(2*c/(b-sqrt(b^2-4*a*c)));
    end
end
```

funkcje pomocnicze dodatkowe

wyznaczenie wyjsc dla podanych x-ow i zadanej funkcji

```
function y = wartosc_funkcji(x)
    wielomian = [0.5 \ 1 \ 2.5 \ 2.5 \ -1];
    rozmiar_w = size(wielomian,2);
    [temp rozmiar_x] = size(x);
    if rozmiar_x == 1
        x = x';
        rozmiar_x = temp;
    end
    y = zeros(rozmiar_x);
    y = y(:,1);
    for i = 1:rozmiar_x
        for j = 1:rozmiar_w
            y(i,1) = y(i,1) + wielomian(j)*(x(1,i))^(j-1);
        end
    end
end
```

sprawdzenie czy w podanym przedziale jest miejsce zerowe

```
function result = sprawdzenie_przedzialu(przedzial)
   if wartosc_funkcji(przedzial(1))*wartosc_funkcji(przedzial(2)) < 0
      result = 1;
   else
      result = 0;
   end
end</pre>
```

wartosc najwiekszego bledu

```
function y = najwieksze_zero(x)
    y = max(abs(wartosc_funkcji(x)));
end
```

funkcja wektoryzujaca macierz diagonalna

```
function w = wektor(A)
    rozmiar = size(A);
    for i = 1:rozmiar
        w(i,1) = A(i,i);
    end
end
```

1. wzor na kolejnego x: https://www.youtube.com/watch?v=XIIEjwtkONc

Muller's Method

•
$$x_{n+1} = x_n - (x_n - x_{n-1}) \frac{2c}{\max(b \pm \sqrt{b^2 - 4ac})}$$

•
$$a = qf(x_n) - q(1+q)f(x_{n-1}) + q^2f(x_{n-2})$$

•
$$b = (2q+1)f(x_n) - (1+q)^2 f(x_{n-1}) + q^2 f(x_{n-2})$$

•
$$c = (1+q)f(x_n)$$

•
$$q = \frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}}$$