Core2530-B-User-Manual

目录 ▼

Zigbee组网实验

Zigbee组网最少需要一个协调器和一个路由器,模块出厂后内置Bootloader,可以直接通过串口将固件下载到模块。

注:组网通信实验需要Core2530 (B)两块, XBee USB Adapter底板两块。

Zigbee角色介绍

1. 协调器 (Coodinator)

- 选择一个频道和PAN ID,组建网络
- 允许路由和终端结点加入这个网络
- 对网络中的数据进行路由
- 必须保持供电,不能进入睡眠状态
- 可以为睡眠的终端结点保留数据,至其唤醒后取回

2. 路由器 (Router)

- 在进行数据收发之前,必须首先加入一个Zigbee网络
- 本身加入网络后,允许路由和终端结点加入
- 加入网络后,可以对网络中的数据进行路由
- 必须保持供电,不能进入睡眠状态
- 可以为睡眠的终端结点保留数据,至其唤醒后取回

3. 终端 (End Device)

- 在进行数据收发之前,必须首先加入一个Zigbee网络
- 不允许其他设备加入
- 必须通过其父节点收发数据,不能对网络中的数据进行路由
- 可由电池供电,必要时可以进入睡眠状态

Bootloader

1. Bootloader简介

利用模块内置的Bootloader,用户可以通过串口直接下载应用程序而不需要CC Debugger;但Bootloader的烧录必须通过CC Debugger。

本模块配套的bootloader.hex , 具体工作情况如下:

模块上电后,如果Flash内部应用程序有效,则立刻开始执行;否则LED1闪烁,表示没有应用程序,可以通过串口进行下载。

因为模块出厂前还另外烧写了Router.bin的应用程序,所以模块接上usb线后,则会直接执行router应用程序,如果要重新进入到"可串口下载程序"状态,可长按Boot 按键,同时按下Reset按键,此时可看到LED1灯开始闪动,则可重新烧写程序。

2. CC debugger驱动安装

- 解压例程提供的软件包CC-Debugger_Drivers.7z到安装目录中。
- 双击 Setup_SmartRF_Drivers-1.2.0.exe 打开安装程序
- 点击Next,选择安装路径

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-1.jpg)

■ 点击 Install , 等待安装完成

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-2.jpg)

■ 安装结束后,连接CC Debugger到电脑,打开windows 设备管理器,如有下图显示的硬件,说明驱动安装成功。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-3.jpg)

3. 烧录Bootloader

- 将模块安装到底板上,通过USB线连接电脑,同时连接CC Debugger
- 打开底板电源,按下CC Debugger上的RESET按键,如果指示灯变为绿色说明通信正常,可以下载。
- 打开SmartRF Studio7,选择软件右上角Flash Programmer并打开。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-4.jpg)

■ 选择Program CCxxxx Soc or MSP430 , Flash image处选择需要下载的烧录文件,这里选择bootloader_wait.hex , 单击Perform actions开始下载。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-5.jpg)

■ 如果底部出现信息: program and verify OK , 同时底板LED1开始闪烁 , 说明下载成功。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-6.jpg)

固件下载

这里以两套Core2530 (B) + XBee USB Adapter为例,分别烧录协调器和路由器固件,完成组网。为方便描述,将这两套系统称为A和B。

- 将A、B通过USB线接入电脑,上电后分别记录对应的串口号
- 如果之前已有bootloader固件,且Flash内部应用程序应用程序有效,重新复位A或B后,模块会直接执行应用程序。需要长按Boot按键,同时按下Reset按键,此 时可看到LED1灯开始闪动,则可重新烧写程序。如果没有固件,上电后LED1闪烁,说明直接进入Bootloader模式,不需要按Boot按键。
- 打开串口烧录软件 SBDemo.exe

(/wiki/%E6%96%87%E4%BB%B6:Core2530-

XCore2530-User-Manual-7.jpg)

■ 填入A对应的串口号,点击...,Image File选择 Coordinator.bin 固件,点击 Load Image开始下载,等待下载结束。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-8.jpg)

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-9.jpg)

- B选择Router.bin固件,下载方式同上。
- 打开两个串口调试助手,串口号分别对应A和B,波特率38400、数据位8、停止位1。
- 重新复位A,等待串口输出 "Coordinator ok",说明网络建立成功。
- 重新复位B,等待串口输出"Router ok",说明路由器已经加入网络,**组网成功**。

模块组网诵信

以下操作均直接使用UART串口发送和接收数据。

广播模式通信

描述:广播方式是由一个设备发送信息至整个Zigbee网络上的所有设备

格式:要发送的数据

示例:

如果任意一个模块需要以广播的方式发送信息 "Hello Waveshare" ,操作现象如下:

字符串输入框输入以下字符,点击发送:

Hello Waveshare

所有路由和协调器的字符串接收框都可以接收以下信息:

Hello Waveshare

点对点通信

描述:实现网络中任意两个节点之间的通信

格式: P2P 目的地址 要发送的数据

示例:

如果A模块要向B模块发送数据"Hello World",操作和现象如下:

通过AT+GETADDR读取A和B模块的短地址

字符串输入框:

AT+GETADDR

便能够读取到A模块和B模块的地址:

Module A ADDR=0x50F5

Module B ADDR=0x3CB8

在A模块使用P2P指令就可以给B模块发送数据了。如下:

P2P 3CB8 Hello World

此时就只有B模块能收到以下数据,其他的节点和路由都无法收到数据。

Hello World

点对多通信

描述:一个节点向指定的多个节点发送数据

格式: O2M 目的地址个数目的地址1目的地址2... 发送的数据

示例:

如果A模块要向B,C模块发送数据"Hello World",操作和现象如下:

通过AT+GETADDR读取A,B,C模块的短地址

字符串输入框:

AT+GETADDR

字符串接收框:

Module A ADDR=0x50F5

Module B ADDR=0x3CB8

Module C ADDR=0x143E

在A模块使用O2M指令就可以给B、C模块发送数据了。如下:

O2M 2 3CB8 143E Hello World

此时就只有B,C模块能收到以下数据,其他的节点和路由都无法收到数据。

Hello World

使用上位机

上位机介绍

ZBSCOMM是微雪电子根据本模块专门开发的一款上位机软件,通过它可以对模块进行设置并且能够读取当前模块的配置信息;如果你不想采用上位机配置模块,同样也可以通过模块内置的AT指令集完成操作。

(/wiki/%E6%96%87%E4%BB%B6:Core2530-XCore2530-User-Manual-10.jpg)

指令详解

表 1: 重启模块

命令	AT+RESTART
输入参数	无
返回值	RESTART OK
备注	当串口返回 RESTART OK 之后,模块重新启动

表 2: 恢复出厂设置

AT+RESET
SETUART OK SETCHN OK SETPANID OK
重启模块之后生效 出厂参数:
PANID : 0xFFFF (随机分配)
CHANNEL : 11/2405MHz
UART选择:0(选择串口0)
波特率:38400
流控制:0(无流控制)

表 3: 串口信息配置

命令	AT+SETUART 串口通道 波特率 流控制(命令参数之间用空格隔开)	
功能介绍	设置串口号,波特率,流控制,	
输入参数	串口通道:这里必须写0,选择串口0进行配置。 波特率:9600-115200	
	流控制:这里必须写0,关闭流控制	
成功:SETUART OK 失败:SETUART ERR		
备注	出厂参数:UART选择:0(选择串口0) 波特率:38400	
	流控制:0(无流控制)	

示例:

如果需要设置串口的波特率,只需在字符串输入框中输入"AT+SETUART 0 38400 0"点击发送即可,需重启设备才生效,操作和现象如下:

字符串输入框:

AT+SETUART 0 38400 0

字符串接收框:

SETUART OK

表 4: 信道设置

命令	AT+SETCHN 信道
功能介绍	设置Zigbee的信道。
输入参数	信道: 取值范围 11-26。
返回值	成功返回: SETCHN OK 失败返回: SETCHN ERR
备注	所有的模块必须设置为同一的信道才可以进行组网,默认自动分配。 出厂参数: 11/2405MHz。

表 5: 设置PAN ID

命令	AT+SETPANID 局域网标志符	
功能介绍	Zigbee协议使用一个16位的局域网标志符(PANID)来标识一个网络	
输入参数	局域网标志符 : 0x0000-0x3FFE	
返回值	成功返回:SETPANID OK 失败返回:SETPANID ERR	
备注	如果PANID=0xFFFF:设备将建立或加入一个"最优"的网络。 如果PANID≠0xFFFF:设备建立或加入指定PANID网络。	
ш/_	PANID的出现一般是伴随在确定信道以后的。	

表 6: 读取所有配置信息

命令	AT+GETCFG
功能介绍	读取所有的配置信息
输入参数	无
	UART:串口的参数(波特率,流控制)。 PANID:局域网标志符
返回值	ADDR:自己的短地址
松口旧	FADDR:父辈的短地址
	CHANNEL:模块的通信信道

表 7: 读取串口配置信息

	命令	AT+GETUART
	功能介绍	读取串口的配置信息
输入参数		无
	返回值	串口编号:0/1(串口0/串口1) 串口波特率:9600-115200
ZHE	流控制:0/1(没有流控制/有流控制)	

表 8: 读取当前通信信道

命令	AT+GETCHN
功能介绍	读取模块的通信信道
输入参数	无
返回值	返回 CHANNEL的信道值

表 9: 读取自身PAN ID

命令	AT+GETPANID
功能介绍	读取当前网络的标示符
输入参数	无
返回值	成功将返回:PANID=0xxxx; 不成功返回:PANID=0xFFFE

表 10: 读取自身短地址

命令	AT+GETADDR
功能介绍	读取自身短地址
输入参数	无
返回值	返回ADDR=0xXXXX;
备注	短地址长度:16位 用于点对点,点对多的数据传输

表 11: 读取父节点短地址

命令	AT+GETFADDR
功能介绍	读取父节点的短地址
输入参数	无
返回值	FADDR=0xXXXX;
备注	短地址长度:16位

表 12: 读取自身IEEE地址

命令	AT+GETIEEE
功能介绍	读取自身IEEE地址
输入参数	无
返回值	IEEE=xx xx xx xx xx xx xx xx xx
备注	设备的IEEE是一个64位的地址

表 13: 读取父节点IEEE地址

命令	AT+GETFIEEE
功能介绍	读取父节点的IEEE地址
输入参数	无
返回值	MY_FIEEE=xx xx xx xx xx xx xx xx xx
备注	父设备的IEEE是一个64位的地址

手机百科

Copyright © 2018 深圳市微雪电子有限公司 (http://waveshare.net) 版权所有