# K-najbližih suseda

K-NEAREST NEIGHBORS

### K-najbližih suseda

- Šta predstavlja kNN i zašto nam je potreban?
- Kako najbolje odabrati faktor K?
- Kada ćemo koristiti kNN algoritam?
- Kako izgleda i radi kNN algoritam?
- Analiza podataka korišćenjem kNN

## Modeli mašinskog učenja (1)

Izračunati prediktivnu vrednost na osnovu učenja iz postojećih podataka, koji su nam dostupni



Podaci (ulaz)

Primena neke tehnike ili tehnika mašinskog učenja

Predviđeni izlaz

### Modeli mašinskog učenja (2)





#### Primer 1

| Mačke                                       | Psi                                       |
|---------------------------------------------|-------------------------------------------|
| Oštre kandže na šapama, pogodne za penjanje | Meke šape,<br>ne može da se penje uz drvo |
| Vrlo male uši                               | Velike uši                                |
| Majukanje (MJAU-MJAU)                       | Lajanje i režanje (AV-AV)                 |
| Ne voli da se igra, već da se mazi          | Voli da trči i da se igra u društvu       |
| Voli da jede ribu                           | Voli da jede meso i koske, ne jede ribu   |



Length of ears →

## Primer 2 - Oglasi

- U svetu digitalnog marketinga: kako odabrati da li kupcu nuditi artikal X ili Y ?
- Jedan od načina koristiti klasifikacione tehnike
- Uticaj ulaznih parametara na izlaz/predikciju



# Šta je kNN?

- Algoritam mašinskog učenja, spada u tehnike nadgledanog učenja (eng. supervised)
- Može se koristiti u klasifikaciji i regresiji, ali su u industriji češći klasifikacioni problemi predikcije
- Svaki algoritam mašinskog učenja treba da vodi računa o 3 aspekta:
  - Jednostavno tumačenje izlaznih podataka
  - Vreme izvršavanja algoritma
  - Koliko je dobra moć predviđanja
- kNN u klasifikaciji: klasifikuje tačku posmatranja u odnosu na to kako su susedi klasifikovani

#### Primer 3 - Belo ili crveno vino?

- kNN posmatra sve primerke u skupu podataka (dataset-u) i klasifikuje nove primerke zasnovane na sličnosti
- Kolika je vrednost K?



#### Primer 3 - Belo ili crveno vino?

- k u KNN algoritmu predstavlja parametar koji označava broj najbližih suseda koji su uključeni (u procesu glasanja)
- U datom primeru odabraćemo na primer 5 najbližih suseda i na osnovu njih videti koliko primeraka belog ili crvenog vina imamo u tom skupu
- Vino ćemo klasifikovati kao crveno, jer 4 od 5 najbližih suseda pripada kategoriji crvenih vina, a samo jedan sused pripada belim vinima



#### Kako odabrati faktor K?

- kNN algoritam je zasnovan na sličnosti karakteristika (osobina)
- Izbor prave vrednosti za faktor K je proces koji se naziva "podešavanje parametara" (eng. parameter tuning)
- Što bolji faktor K odredimo, preciznost našeg modela će biti bolja



### Primer 3 - Izbor faktora K? (1)



Ukoliko je faktor k = 3, možemo novo vino u našem skupu podataka klasifikovati kao:



Crveno: 2

Belo: 1

### Primer 3 - Izbor faktora K? (2)



Ukoliko je faktor k = 7, možemo novo vino u našem skupu podataka klasifikovati kao:



Crveno: 3

Belo: 4

#### Primer 3 - Kako odabrati faktor K?

- ▶ Ako je faktor K=3 naše vino je crveno, a ako K promenimo na vrednost 7 suseda, onda je belo, koje K odabrati?
- Izbor faktora K:
  - $ightharpoonup \sqrt{n}$ , gde je n ukupan broj svih instanci (primeraka) u skupu podataka
  - bira se neparna vrednost k, da bi se izbegla konfuzija kojoj od dve klase pripada
- Veća vrednost K ima manju šansu za grešku!



#### Kada koristimo kNN algoritam?

Možemo koristiti algoritam k-najbližih suseda kada:

imamo podatke koji su označeni



Crveno vino

▶ imamo podatke "bez šuma" -----

 imamo mali skup podataka koje analiziramo (zato što je kNN "lazy learning" metoda)

| Težina | Visina | Klasa za<br>kilažu osobe |
|--------|--------|--------------------------|
| 51     | 167    | mršava                   |
| 62     | 182    | odbojkašica              |
| 69     | 176    | 23 god.                  |
| 64     | 173    | normalna                 |
| 65     | 172    | normalna                 |

### Primer 4 - Visine i težine osoba (1)

- Imamo skup podataka sa visinama (u cm) i težinama (u kg)
- Izlazne klase su: normalna ili mršava osoba

| Težina [kg] | Visina [cm] | Klasa    |
|-------------|-------------|----------|
| 51          | 167         | mršava   |
| 62          | 182         | normalna |
| 69          | 176         | normalna |
| 64          | 173         | normalna |
| 65          | 172         | normalna |
| 56          | 174         | mršava   |
| 58          | 169         | normalna |
| 57          | 173         | normalna |
| 55          | 170         | normalna |

## Primer 4 - Visine i težine osoba (2)

- Na osnovu datog skupa podataka, a korišćenjem kNN algoritma, odrediti da li ove osobe spadaju u klasu Normalna ili Mršava
- Pretpostavka: ne znamo kako se računa BMI (body mass index) !!!

| Osoba | Težina [kg] | Visina [cm] | Klasa |
|-------|-------------|-------------|-------|
| Α     | 57          | 170         | ?     |
| В     | 66          | 182         | ?     |

#### kNN - A ko su nam najbliži susedi?

- ► Za pronalaženje najbližih suseda koristimo neku metriku:
  - Euklidska razdaljina / Pitagorino rastojanje (eng. Euclidean distance)
  - Menhetn razdaljina (eng. Manhattan distance)
  - Čebiševa razdaljina (eng. Chebyshev distance)
  - Mahalanobisova razdaljina (eng. *Mahalanobis distance*)
- Euklidsko rastojanje u dvodimenzionalnom prostoru računa se kao:

$$dist = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$





#### Primer 4 - Visine i težine osoba (3)



- $dist(\mathbf{d1}) = \sqrt{(170-167)^2 + (57-51)^2} \sim = 6.7$
- dist(**d2**)=  $\sqrt{(170-182)^2 + (57-62)^2} \sim = 13$
- dist(d3)=  $\sqrt{(170-176)^2 + (57-69)^2} \sim = 13.4$

- Nepoznata tačka osoba A
- Nepoznata tačka osoba B

#### Primer 4 - Visine i težine osoba (4)

Na osnovu tačke A(x,y) = (57, 170) tražimo Euklidsku razdaljinu do svih drugih tačaka, pa na osnovu faktora K određujemo koji susedi su najbliži

| Težina [kg] | Visina [cm] | Klasa    | Euklidska raz. (od tačke A) |
|-------------|-------------|----------|-----------------------------|
| 51          | 167         | mršava   | 6.7                         |
| 62          | 182         | normalna | 13                          |
| 69          | 176         | normalna | 13.4                        |
| 64          | 173         | normalna | 7.6                         |
| 65          | 172         | normalna | 8.2                         |
| 56          | 174         | mršava   | 4.1                         |
| 58          | 169         | normalna | 1.4                         |
| 57          | 173         | normalna | 3                           |
| 55          | 170         | normalna | 2                           |

Imamo n=10 instanci,  $\sqrt{10} = 3.1$ 

Prema faktoru K=3, ovo su 3 najbliža suseda => normalna

#### Pseudo kod algoritma kNN

- ▶ 1. Učitaj podatke
- 2. Izračunaj vrednost faktora K
- > 3. Da dobijete prediktivnu klasu, iterirajte od prvog do poslednjeg primerka u okviru trening skupa podataka
  - > 3.1. Izračunati razdaljinu između tražene instance (tačke) i svih instanci iz trening skupa. (u našem primeru smo odabrali Euklidsko rastojanje)
  - > 3.2. Sortirati izračunate razdaljine u rastućem poretku.
  - > 3.3. Uzeti najviših K redova iz sortiranog niza.
  - > 3.4. U K redova analizirati koliki je broj pojavljivanja klasa.
  - > 3.5. Dobijeni rezultat je prediktivna klasa za traženu instancu.

# Česta greška: kNN i k-Means poistovećivanje

|                             | kNN (k najbližih suseda)                                                                                                                                        | k-Means (k srednjih vrednosti)                                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tehnika učenja              | nadgledano (supervised)                                                                                                                                         | nenadgledano (unsupervised)                                                                                                                                                              |
| Za koje probleme se koristi | klasifikaciju (i ponekad regresiju)                                                                                                                             | klasterizaciju                                                                                                                                                                           |
| Na čemu je zasnovan         | sličnosti karakteristika                                                                                                                                        | deljenje objekata u klastere (tako da<br>svaka instanca mora pripadati tačno<br>jednom klasteru)                                                                                         |
| Šta znači K                 | k je broj najbližih suseda korišćenih u klasifikaciji                                                                                                           | k je broj klastera koje algoritam<br>pokušava da identifikuje iz podataka                                                                                                                |
| Gde se koristi              | koristi se za klasifikaciju i regresiju poznatih podataka, gde je obično atribut/vrednost uslova ciljane instance poznata (samo nije prediktivna klasa poznata) | koristi se obično za scenarije razumevanja demografske slike stanovništva, segmentacije tržišta, trendova u društvenim medijima, otkrivanja anomalija, (svuda gde su klasteri nepoznati) |

# Česta greška: kNN i k-Means poistovećivanje (2)

|            | kNN (k najbližih suseda)                                                                                                                                                                                                                                                                     | k-Means (k srednjih vrednosti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treniranje | kNN nema klasičnu fazu obučavanja, a predviđanje se vrši na osnovu samo K najbližih suseda (često sa Euklidskim rastojanjem) na osnovu ponderisanih vrednosti tačaka koje se posmatraju.  Algoritam završava rad kada se sve instance koje se posmatraju klasifikuju (sa željenom tačnošću). | k-Means u fazi obučavanja posmatra K odabranih instanci (~ centroidi). Svaka tačka u vektorskom prostoru je dodeljene klasteru koji predstavlja najbliže (euklidsko rastojanje) od centroida. Kada se klasteri formiraju, za svaki klaster centroid se ažurira na srednju vrednost svih članova klastera. Formiranje klastera ponovo počinje (resetuje se) sa novim centroidom. Ovo se ponavlja sve dok centroidi sami ne postanu klasteri. Predviđanje se vrši na osnovu najbližeg centroida. |
| Podaci     | kNN zahteva označene tačke (labelirane)                                                                                                                                                                                                                                                      | k-Means ne zahteva označene tačke                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### kNN







#### k-Means

