PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-333743

(43) Date of publication of application: 02.12.1994

(51) Int. CI.

H01F 17/00 H01F 41/04 H01F 41/10

(21) Application number: 05-118377 (71) Applicant: MURATA MFG CO LTD

(22) Date of filing:

20.05.1993 (72) Inventor : KONOIKE TAKEHIRO

MARUSAWA HIROSHI TOMONO KUNISABURO

(54) LAMINATED CHIP COIL AND ITS MANUFACTURE (57) Abstract:

PURPOSE: To provide a highly stable laminated chip coil having a high Q and a small temperature changing rate for inductance and its manufacture.

CONSTITUTION: In a laminated chip coil 10 made of a plurality of laminated magnetic body sheets 2, 5 and 12 on which conductor lines are formed, a plurality of non-magnetic body sheets 7 are arranged on upper and lower surfaces or on one surface of a magnetic body sheet laminated body. Also, a process for preparing a magnetic body green sheet 1, a process for forming conductor lines 3, 6 and 13 on the magnetic body green sheet 1 and obtaining magnetic body sheets 2, 5 and 12, process for overlapping the magnetic body sheets 2, 5 and 12 and obtaining a laminated body on which a coil 11 is formed, a process for disposing a non-magnetic body sheet 7 on

the upper and lower surfaces or one surface of the laminated body, a process for obtaining a sintered body 8 by baking in one united body after laminating and bonding under pressure a laminated body and non-magnetic body sheet 7, and a process of providing an external electrode 9 to be connected to both the terminal ends of the coil to the side face of the sintered body 8 are provided.

LEGAL STATUS

[Date of request for examination]

16.03.2000

[Date of sending the examiner's

27. 05. 2003

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

BEST AVAILABLE COPY

[Date of final disposal for
application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's
decision of rejection]
[Date of requesting appeal against
examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-333743

(43)公開日 平成6年(1994)12月2日

(51)IntCL ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H01F	17/00	D	7319-5E		
	41/04	В	8019-5E		
	41/10	Α	8019-5E		

審査請求 未請求 請求項の数2 OL (全4頁)

		金 直胡水	不明水 明水頃の数2 しし (主 4 貝)
(21)出願番号	特顧平5-118377	(71)出廢人	000006231 株式会社村田製作所
(22)出願日	平成5年(1993)5月20日		京都府長岡京市天神二丁目26番10号
		(72)発明者	鴻池 健弘 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内
		(72)発明者	丸澤 博
			京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内
		(72)発明者	伴野 国三郎
	•		京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内

(54) 【発明の名称】 積層チップコイルおよびその製造方法

(57)【要約】

【目的】Qが高く、インダクタンスの温度変化率が小さく、かつ高安定な積層チップコイルおよびその製造方法を提供する。

【構成】導体線路が形成された複数の磁性体シートを積層してなる積層チップコイルにおいて、磁性体シート積層体の上下面あるいはその一方の面に複数の非磁性体シートを配したことを特徴とするものである。また、磁性体グリーンシートを準備する工程と、該磁性体グリーンシート上に導体線路を形成し磁性体シートを得る工程と、該磁性体シートを重ね合わせコイルを形成した積層体を得る工程と、該積層体の上下面あるいはその一方の面に非磁性体シートを配置する工程と、前記積層体および非磁性体シートを積層圧着した後、一体的に焼成して焼結体を得る工程と、該焼結体の側面に前記コイルの両終端に接続する外部電極を設ける工程とを備えたことを特徴とするものである。

1

【特許請求の範囲】

【請求項1】導体線路が形成された複数の磁性体シート を積層してなる積層チップコイルにおいて、磁性体シー ト積層体の上下面あるいはその一方の面に複数の非磁性 体シートを配したことを特徴とする積層チップコイル。

【請求項2】磁性体グリーンシートを準備する工程と、 該磁性体グリーンシート上に導体線路を形成し磁性体シ ートを得る工程と、該磁性体シートを重ね合わせコイル を形成した積層体を得る工程と、該積層体の上下面ある いはその一方の面に非磁性体シートを配置する工程と、 前記積層体および非磁性体シートを積層圧着した後、一 体的に焼成して焼結体を得る工程と、該焼結体の側面に 前記コイルの両終端に接続する外部電極を設ける工程と を備えたことを特徴とする積層チップコイルの製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、主に各種の電子回路に インダクタンス素子として用いられる積層チップコイル およびその製造方法に関するものである。

[0002]

【従来の技術】従来の積層チップコイルとしては、特開 昭55-91103号公報に記載されているように、磁 性体と導体パターンとを交互に印刷し、各層の導体パタ ーンを接続してコイルを形成する印刷型積層チップコイ ルが知られている。あるいは、特開昭62-61305 号公報に記載されているように、表面に所定の導体パタ ーンを印刷した複数の磁性体シートを重ね合わせ、各層 の導体パターンを接続してコイルを形成するシート型積 層チップコイルが知られている。

[0003]

【発明が解決しようとする課題】ところが、上記従来例 の積層チップコイルは、印刷型あるいはシート型のいず れにおいても、発生した磁束の大部分が磁性体内部を通 る閉磁路構造をとるため、インダクタンスを大きくでき るという利点を有する反面、コイルのQが磁性体のQに 支配され低い値となるため、共振回路などの高いQを要 求される用途には使用できなかった。

【0004】また、インダクタンスの温度変化率が磁性 体の初透磁率の温度変化率に支配され大きな値となるた 40 め、共振回路などの温度安定性の要求される用途には使 用できなかった。

【0005】さらに、コイルに電流を印加することによ り発生した磁束の大部分が磁性体内部を通るため、この 磁束により磁性体内部の磁界が大きくなり、磁束を取り 去った後も磁性体の残留磁束密度の大きさに比例した磁 化が残るため、インダクタンスが変化し特性の安定に欠 けるという問題があった。

【0006】本発明は、Qが高く、インダクタンスの温 度変化率が小さく、かつ高安定な積層チップコイルおよ 50 導体線路13aと導体線路13bを、磁性体グリーンシ

びその製造方法を提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明においては、導体線路が形成された複数の磁 性体シートを積層してなる積層チップコイルにおいて、 磁性体シート積層体の上下面あるいはその一方の面に複 数の非磁性体シートを配したことを特徴とするものであ る。

【0008】また、磁性体グリーンシートを準備する工 程と、該磁性体グリーンシート上に導体線路を形成し磁 性体シートを得る工程と、該磁性体シートを重ね合わせ コイルを形成した積層体を得る工程と、該積層体の上下 面あるいはその一方の面に非磁性体シートを配置する工 程と、前記積層体および非磁性体シートを積層圧着した 後、一体的に焼成して焼結体を得る工程と、該焼結体の 側面に前記コイルの両終端に接続する外部電極を設ける 工程とを備えたことを特徴とするものである。

[0009]

【作用】上記の構成によれば、コイルを埋設した磁性体 20 シート積層体の上下面あるいはその一方の面に複数の非 磁性体シートを配したことにより、コイルから発生した 磁束の一部が磁性体内部に閉じ込められずに非磁性体シ ートを通過して積層チップコイルの外部に漏れ出る。こ のため、漏れ出た磁東は、無限大の非磁性体あるいは空 気に影響を受け、磁性体自身のQや初透磁率の温度変化 に影響を受けないため、積層チップコイルのQが高くな るとともに、インダクタンスの温度変化率が小さくな る。さらに、磁性体内部の磁界が小さくなり、そのた め、磁束を取り去った後に残留する磁化も小さくなるた 30 め、使用中にインダクタンスが変化することがない。

[0010]

【実施例】以下、本発明による積層チップコイルおよび ・ その製造方法の実施例を図面を用いて説明する。図1に 示すように、磁性体グリーンシート1は、例えば三酸化 二鉄(FezOs)を主成分とするフェライト磁性体粉 末をバインダおよび溶剤等と混練してペースト状にし、 厚さ十数~数十μmの薄いシート状に成形したものであ

【0011】磁性体シート2は、磁性体グリーンシート 1の上面に略J字状の導体線路3aを形成し、下面に同 じく略J字状の導体線路3bを形成し、導体線路3aと 導体線路3bを、磁性体グリーンシート1を貫いて形成 され内周面に導体が固着されたスルーホール4によっ て、電気的に接続した略U字状の導体線路3を有するも のである。

【0012】また、磁性体シート12は、磁性体シート 2を水平方向に180°回転したもので、磁性体グリー ンシート1の上面に略 J 字状の導体線路 1 3 a を形成 し、下面に同じく略J字状の導体線路13bを形成し、

ート1を貫いて形成され内周面に導体が固着されたスル ーホール14によって、電気的に接続した略U字状の導 体線路13を有するものである。

【0013】さらに、磁性体シート5は、磁性体グリー ンシート1の片面に、磁性体グリーンシート1の長辺と 平行に設けた接続電極6 aと、接続電極6 aと導通し磁 性体グリーンシート1の短辺の片端部に設けた引出電板 6 bからなる導体線路 6 を有するものである。なお、導 体線路3、6、13およびスルーホール4、14の内周 面の導体は銀ペースト等で構成したものである。

【0014】そして、磁性体シート2と磁性体シート1 2を交互に複数積層し、磁性体シート2の下面の導体線 路3bと磁性体シート2の下側の磁性体シート12の上 面の導体線路13aを接触させるとともに、磁性体シー ト12の下面の導体線路13bと磁性体シート12の下 側の磁性体シート2の上面の導体線路3aを接触させる ようにして、磁性体シート2と磁性体シート12のすべ ての導体線路を電気的に導通する。

【0015】その後、磁性体シート2と磁性体シート1 を内側に向け、かつ引出電極6 b どうしが対向しないよ うに重ね合わせ、上側の磁性体シート5の接続電極6 a が磁性体シート2の導体線路3aに接触し、下側の磁性 体シート5の接続電極6aが磁性体シート12の導体線 路13 bと接触するようにする。これにより、導体線路* *56b-6a-3a-3b-...-13a-13b-6a-6 bの経路で導通したコイルを埋設した磁性体シート 積層体が形成できる。

【0016】一方、非磁性体シート7は、例えば酸化チ タン(TiO2)を主成分とする絶縁体粉末をパインダ および溶剤等と混練してペースト状にし、厚さ十数~数 十μmの薄いシート状に成形したものである。

【0017】そして、磁性体シート積層体の上下面の磁 性体シート5の表面に、非磁性体シート7を複数積層 10 し、プレス機にて加圧して圧着し、焼成炉にて所定の焼 成温度並びに時間で一体的に焼成処理して図2に示すよ うに焼結体8を得る。その後、焼結体8の側端面に磁性 体シート5の引出電極6b(図示しない)と電気的に接 続するように、銀ペースト等で外部電極9を形成して積 層チップコイル10を得る。なお、非磁性体シート7は 磁性体シート積層体の上下面に限らずどちらか一方の面 のみに取り付けてもよい。

【0018】図3は、磁性体シート2、5、12および 非磁性体シートクをそれぞれ複数積層して形成した積層 2の積層体の上下面に、磁性体シート5を、導体線路6 20 チップコイル10の断面を示す模式図であり、コイル1 1から発生した磁束は非磁性体シート7を通過して積層 チップコイル10の外部へ漏れ出る。

[0019]

【表 1】

	本実施例による	従来の
特性	積層チップコイル	積層チップコイル
インダクタンス (μΗ)	1 0	1 0
Q	120	6 5
20~80℃におけるインダク		
タンスの温度変化率	200	800
(ppm/°C)		
直流5V、100mA印加後の		
インダクタンスの変化率	- O. 1	-2.0
(%)		

【0020】表1は、本発明の実施例により得られた積 層チップコイルの特性を、磁性体シートのみからなる従 来の積層チップコイルの特性と、周波数2MHzにおい て比較したものである。 表 1 から明らかなように、 本実 施例においては、Qが高く、インダクタンスの温度変化 率が小さく、さらに、直流電流を印加した後のインダク タンスの変化率も小さい高安定な積層チップコイルが得 られることがわかる。なお、本発明による積層チップコ

ではなく、その要旨の範囲内で種々に変形することがで きる。例えば、導体線路3、6、13の形状やスルーホ ール4、14の形成位置、磁性体シート2、5、12お よび非磁性体シート7の積層枚数等は任意であり上記実 施例に限定されるものではない。

[0021]

【発明の効果】以上説明したように、本発明にかかる積 層チップコイルおよびその製造方法によれば、磁性体シ イルおよびその製造方法は、上記実施例に限定するもの 50 ート積層体の上下面あるいはその一方の面に非磁性体か 5

らなる複数のシートを配したことにより、発生した磁束の一部が非磁性体シートを通過して積層チップコイルの外部に漏れ出るので、コイルのQは磁性体のQに影響されなくなるため高い値となり、共振回路等に使用することができる。

【0022】また、コイルが磁性体の初透磁率の温度変化に影響を受けないため、インダクタンスの温度変化率が小さくなり、共振回路等の温度安定性の要求される用途に使用することができる。さらに、磁性体内部の磁界が小さくなり、そのため、磁束を取り去った後に残留す 10 る磁化も小さくなるため、使用中にインダクタンスが変化することがなくなり特性が安定する。

【0023】また、磁性体シートの厚み、コイルの巻数、非磁性体シートの厚み等を適宜選択できるので、所望のQ,インダクタンスおよびインダクタンスの温度変化率を有する積層チップコイルを簡単に設計することができる。さらに、各層のシートを一括して積層し一体的に焼成して焼結体を得るため、簡便な工法で積層チップ

コイルを得ることができる。

【図面の簡単な説明】

【図1】本発明の実施例による積層チップコイルの分解 斜視図である。

【図2】本発明の実施例による積層チップコイルの斜視図である。

【図3】本発明の実施例による積層チップコイルの模式的断面図である。

【符号の説明】

1	磁性体グリーンシート
2, 5, 12	磁性体シート
3, 6, 13	導体線路
4, 14	スルーホール
7	非磁性体シート
8	焼結体
9	外部電極
1 0	積層チップコイル・
1 1	コイル

【図1】

[図2]

[図3]

