10/10 points (100%)

Quiz, 10 questions

✓ Con	gratulations! You passed!	Next Item
•	1/1 points	
	hich notation would you use to denote the 3rd layer's activation put is the 7th example from the 8th minibatch?	ons when the
($a^{[8]{3}(7)}$	
($a^{[3]\{7\}(8)}$	
($a^{[8]\{7\}(3)}$	
($a^{[3]\{8\}(7)}$	
	Correct	
•	1 / 1 points	
	/hich of these statements about mini-batch gradient descent d ith?	lo you agree
	Training one epoch (one pass through the training set) ubatch gradient descent is faster than training one epoch batch gradient descent.	_

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time

(vectorization).

Optimization Quiz, 10 questions	One iteration of mini-batch gradient descent (computing on a nalgoiriteming batch) is faster than one iteration of batch gradient descent. Correct	10/10 points (100%)
	1/1 points	
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. Correct	
	If the mini-batch size is m, you end up with batch gradient descent which has to process the whole training set before making progress. Correct	.,,

1/1

10/10 points (100%)

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect

10/10 points (100%)

Quiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd:
$$\theta_2 10^{\circ} C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 10, v_2^{corrected} = 7.5$$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

10/10 points (100%)

Quiz, 10 questions

$$\alpha = \frac{1}{1 + 2 * t} \alpha_0$$

apply)

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing $\boldsymbol{\beta}$ will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Optimizatio	(1) is gradient descent with momentum (small β), (2) is gradient on algorithms	10/10 points (100%
Quiz, 10 questions	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)	
	1/1 points	
	9.	
	Suppose batch gradient descent in a deep network is taking excessively lo to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	
	Try better random initialization for the weights Correct	
	Try using Adam	
	Correct	
	Try mini-batch gradient descent	
	Correct	
	Try initializing all the weights to zero	
	Un-selected is correct	
	Try tuning the learning rate $lpha$	
	Correct	

10/10 points (100%)

Quiz, 10 questions

points

10.

Which of the following statements about Adam is False?

- We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,$ $\varepsilon=10^{-8}$)
- The learning rate hyperparameter α in Adam usually needs to be tuned.
- Adam combines the advantages of RMSProp and momentum
- Adam should be used with batch gradient computations, not with mini-batches.

