Exam Functional Programming – December 3rd 2014

Name	
Student number	
I study CS/AI/Other	

- Write **neatly** and carefully. Use a pen (no pencil!) with black or blue ink.
- Write your answers in the answer boxes. If you need more space, use the back side of the sheet and make a reference to it.
- You can score 90 points. You get 10 points for free, yielding a maximum of 100 points in total. Your exam grade is the obtained points divided by 10.
- If you need auxiliary lemmas in a proof, then prove the validity of these lemmas as well.

You may use throughout the entire exam the following functions:

```
[] ++ ys
(x:xs) ++ ys
                   = ys
= x : (xs++ys)
foldr f z []
foldr f z (x:xs)
                   = z
                  = f x (foldr f z xs)
sum []
                   = 0
                   = x + sum xs
sum (x:xs)
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
tail (x:xs)
                   = X
                   = xs
length []
                   = 0
length (x:xs) = 1 + length xs
            = \x -> f (g x)
f.g
zip (x:xs) (y:ys) = (x,y) : zip xs ys zip xs y = 1
zip xs ys
            = []
= []
zipWith _ [] _
zipWith _ _ []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
```

$(5 \times 2 = 10 \text{ g})$ (a) What is	points) s the type of the following Haskell function wtel?
	= [] :xs) = if x == [] then wxs else x:wxs wxs = wtel xs
(b) What is	s the type of the following Haskell function cl?
cl ps =	ps ++ [(p,s) (p,q) <- ps, (r,s) <- ps, q==r]
(c) What is	s the type of the standard Haskell indexing operator !! (as an example [010]!!3 = 3)?
(d) What is	s the type of the following Haskell function map2?
	[] [] = [] (x:xs) (y:ys) = (f x y) : map2 f xs ys
(e) What is	s the type of the following Haskell function tw?
tw = (\:	$f \rightarrow (\langle x \rangle (f.f) x)$

2.	5 points) Consider a positive integer N . We denote its decimal digits by X_0 , X_1 ,, X_k . The number N is called funny number if you can select at most three (but at least one) of its digits such that N is a divisor of the number $X_0 + X_1 + + X_k - S)^S$, where S is the sum of the selected digits. As an example, 1458 is a funny number since $1 + 4 + 5 + 8 - (1 + 5)^{1+5} = 12^6 = 2985984$ is divisible by 1458. Note that we selected the two digits 1 and 5.						
	e a Haskell function isFunny (including its type) that takes an integer number as its argument, and returns True only if this argument is a funny number.						

Use a list comm	rahansian ta maka w	our own implamar	etation of the stands	rd Haskall function	manlianta
	rehension to make your x yields a list of le				
"aaaaa".	·		•		
Dafina a functi	m double Deve ve	o which takes a lis	t of strings as its are	rumant and rawareas	anah alamant
	on doubleReverse				
and then revers		The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	
and then revers	es the resulting list.	The implementation	on of doubleReve	erse must use a list	

4. (3+3+4=10 points)

• The function powers n returns the infinite list $[n^0, n^1, n^2, n^3, ...]$. Give a recursive Haskell implementation (including its type) of the function powers.

• The sequence a_k is defined as follows: $a_0 = 1$, $a_1 = 2$, $a_k = 3a_{k-1} + 2a_{k-2}$ for integer k > 1. Define the infinite list seqa, which is the list $[a_0, a_1, a_2, a_3, a_4, \ldots]$, so seqa!!k should yield a_k .

• In the following figure you see the first 5 rows of Pascal's triangle:

To build the triangle, start with the row [1] at the top (we call this row 0), then continue placing numbers below it in a triangular pattern. Each row consists of elements that are the sum of the two numbers above it (except for the boundaries, which are all 1). In the figure, it is highlighted that the 4 in row 4 is obtained by adding the numbers 1 and 3 from row 3.

Give a definition of the infinite list pascalTriangle :: [[Integer]], such that pascalTriangle!!n yields the nth row of Pascal's triangle (i.e. pascalTriangle!!4 = [1, 4, 6, 4, 1]).

5.	(15 points) The abstract data type (ADT) Set tp implements a data type for the storage of <i>sets</i> of the type tp, where tp is of the class Ord (i.e. the elements are ordered).
	Implement a module Set that exports the ADT Set. You can choose a concrete implementation yourself, however this
	implementation must be hidden from the user of this module.
	The following operations on the data type Set must be implemented:
	• empty returns an empty set.
	• isEmpty returns True for an empty set, otherwise False.
	• insert: returns the set after insertion of an element.
	• delete: returns the set after removal of an element.
	 union: returns the union of two sets. intersection: returns the intersection of two sets.
	• Intersection, returns the intersection of two sets.

<pre>f:: Integer -> Integer f 0 = 0 f 1 = 1 f n = 5*(f (n-1)) - 6*(f (n-2))</pre>					
g :: Integer -> Integer -> Integer g n 0 = 1 g n e = n*(g n (e - 1))					
Prove for all natural numbers n: $f n = g 3 n - g 2 n$					

6. (15 points) Given are the following Haskell definitions of the functions f and g:

<pre>sum :: [Integer] -> Integer sum [] = 0 sum (x:xs) = (sum xs) + x</pre>						
<pre>reverse :: [a] -> [a] reverse [] = [] reverse (x:xs) = reverse xs ++ [x]</pre>						
Prove that sum (reverse xs) = sum xs for all finite lists xs.						

7. (15 points) Given are the definitions of the Haskell functions sum, and reverse: