Contents

1	Fun	ctions		2
	1.1	poly.fa	actor – polynomial factorization	2
		1.1.1	brute_force_search - search factorization by brute force .	2
		1.1.2	divisibility test – divisibility test	4
		1.1.3	minimum absolute injection – send coefficients to mini-	
			mum absolute representation	
		1.1.4	padic factorization – p-adic factorization	
		1.1.5	upper bound of coefficient –Landau-Mignotte bound of	
			coefficients	
		1.1.6	zassenhaus – squarefree integer polynomial factorization	
			by Zassenhaus method	
		1.1.7	integerpolynomialfactorization – Integer polynomial fac-	
			torigation	,

Chapter 1

Functions

1.1 poly.factor – polynomial factorization

The factor module is for factorizations of integer coefficient univariate polynomials.

This module using following type:

polynomial:

polynomial is the polynomial generated by function poly.uniutil.polynomial.

1.1.1 brute_force_search - search factorization by brute force

Find the factorization of ${\tt f}$ by searching a factor which is a product of some combination in ${\tt fp}$ _factors. The combination is searched by brute force. The argument ${\tt fp}$ _factors is a list of poly.uniutil.FinitePrimeFieldPolynomial .

1.1.2 divisibility test – divisibility test

```
{\bf divisibility\_test(f: \it polynomial, g: \it polynomial)} \rightarrow {\it bool}
```

Return Boolean value whether f is divisible by g or not, for polynomials.

1.1.3 minimum_absolute_injection – send coefficients to minimum absolute representation

```
\text{minimum absolute injection(f:} \ \textit{polynomial}) \rightarrow \textit{\textbf{F}}
```

Return an integer coefficient polynomial F by injection of a $\mathbf{Z}/p\mathbf{Z}$ coefficient polynomial f with sending each coefficient to minimum absolute representatives.

The coefficient ring of given polynomial f must be IntegerResidueClass-Ring or FinitePrimeField.

1.1.4 padic factorization – p-adic factorization

```
padic factorization(f: polynomial) \rightarrow p, factors
```

Return a prime p and a p-adic factorization of given integer coefficient square-free polynomial f. The result factors have integer coefficients, injected from \mathbb{F}_p to its minimum absolute representation.

†The prime is chosen to be:

- 1. f is still squarefree mod p,
- 2. the number of factors is not greater than with the successive prime.

The given polynomial ${\tt f}$ must be poly.uniutil.IntegerPolynomial .

1.1.5 upper_bound_of_coefficient -Landau-Mignotte bound of coefficients

```
\textbf{upper} \ \ \textbf{bound} \ \ \textbf{of} \ \ \textbf{coefficient(f:} \ \textbf{\textit{polynomial})} \rightarrow \textbf{\textit{long}}
```

Compute Landau-Mignotte bound of coefficients of factors, whose degree is no greater than half of the given ${\tt f}$.

The given polynomial f must have integer coefficients.

1.1.6 zassenhaus – squarefree integer polynomial factorization by Zassenhaus method

```
{\tt zassenhaus(f:\it polynomial)} 	o {\it list of factors f}
```

Factor a squarefree integer coefficient polynomial ${\tt f}$ with Berlekamp-Zassenhaus method.

${\bf 1.1.7} \quad integer polynomial factorization - Integer polynomial \\ factorization$

 $integer polynomial factorization (\texttt{f:} \textit{polynomial}) \rightarrow \textit{factor}$

Factor an integer coefficient polynomial **f** with Berlekamp-Zassenhaus method.

factor output by the form of list of tuples that formed (factor, index).

Bibliography