ECE 1513: Introduction to Machine Learning

Lecture 1: Preliminaries and Clustering

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

What is Machine Learning?

It's a hard question to answer accurately

Mitchel defines ML as "... the study of computer algorithms that improve automatically through experience..."

and

Goodfellow et al. informally define ML as "...a form of applied statistics with increased emphasis on the use of computers to statistically estimate complicated functions..."

and . . .

What is Machine Learning?

But not too hard to answer practically

We define ML as the set of data-driven approaches that help us understand the environment and its behavior, and generalize it!

Data-driven approaches have long been with us in science and engineering!

Early Example from 1827: Ohm's Law

What Did Ohm Do?

Georg Ohm did three major steps

- He saw a pattern and hypothesized some mathematical model
 - □ Electric current increases with voltage
 - $\,\,\,\,\,\,\,\,\,\,$ The constant changes with the length and material
 - ↳ ...
- He collected data
- He used mathematical tools to extract the modeled pattern

Learning Task

Any learning task has three components

- Model that captures the Pattern
- Data
- Learning Algorithm

Example: Clustering

Monthly amount of transactions versus # of transactions per month

Example: Classification

Sleep time versus # of times the pet makes noise

Example: Regression

Salary versus years of experience

Example: Playing Chess

10/46

Dataset

A set of data samples

$$\mathbb{D} = \{\boldsymbol{x}_n : n = 1, \dots, N\}$$

with $\boldsymbol{x}_n \in \mathbb{R}^d$

Let's formulate data in our examples

- Clustering
- Classification
- Regression
- Playing Chess

Model

A pre-assumed function

$$f: \boldsymbol{x} \mapsto \boldsymbol{y}$$

for a data sample $oldsymbol{x}$ and $oldsymbol{\mathsf{output}}\ oldsymbol{y}$ that fits the learning task

Let's formulate model in our examples

- Clustering
 - Classification
 - Regression
 - Playing Chess

Learning Algorithm

Algorithm that gets dataset and returns the exact model

$$\mathcal{A}: \mathbb{D} \mapsto f^{\star}$$

f* does the mapping such that we get to the desired output

Let's formulate learning algorithm in our examples

- Clustering
 - Classification
 - Regression
 - Playing Chess
 - ? How can we define a "good" learning algorithm?

Unsupervised Learning

Data samples are not labeled

$$\mathbb{D} = \{\boldsymbol{x}_n : n = 1, \dots, N\}$$

Here, we are looking for a pattern in the data

Other components of an unsupervised task

- Model captures the pattern hidden in data
- Learning Algorithm

Examples of unsupervised learning

- Clustering
 - Dimensionality Reduction
 - Distribution Learning

Supervised Learning

Data samples are labeled

$$\mathbb{D} = \{(\boldsymbol{x}_n, \boldsymbol{v_n}) : n = 1, \dots, N\}$$

Here, we are looking for a model that describes the relation

Other components of a supervised task

- Model describes the relation between data samples and their labels
- Learning Algorithm

Examples of supervised learning

- Classification
- Regression

Reinforcement Learning

Data samples are series of actions, states and rewards

$$\mathbb{D} = \left\{ \left\{ \left(a_n^t, s_n^t, r_n^t \right) : t = 1, \dots \right\} : n = 1, \dots, N \right\}$$

Here, we are looking for optimal policy, i.e., policy that maximizes future returns

$$G_t = r^t + r^{t+1} + \dots$$

Other components of a reinforcement task

- Model describes a policy
- Learning Algorithm

Examples of reinforcement learning

Playing Game, Control Robots, . . .

Reinforcement learning is not discussed in this course, but you may consider taking Reinforcement Learning in next Fall

Further Read

Bishop

□ Chapter 1: Sections 1.1 and 1.3

Introductory

ESL

→ Chapter 1

Mitchell

→ Chapter 13: Sections 13.1 and 13.2

· Goodfellow, et al.

□ Chapter 5: Sections 5.1 and 5.2

Introductory Supervised

Reinforcement

Unsupervised

Introductory

Unsupervised Learning

Why do we start with unsupervised learning?

- Many basic problems are unsupervised
- It helps us to recap some basics we need later

Problem of Clustering

This is a basic sign of intelligence

- We cluster everything around us
 - → Trees, flowers, animals, . . .
- We often start with simple clustering and extend hierarchically
 - □ Plants and animals
 - → Plants could be trees, flowers, . . .
- The further we go, the more intelligent we get!

Basic Clustering Task: Data

Data samples are points in d-dimensional space

$$\mathbb{D} = \{\boldsymbol{x}_n : n = 1, \dots, N\}$$

with $\boldsymbol{x}_n \in \mathbb{R}^d$

In Examples

In examples, we always think of two dimensions for sake of simplicity

Recall our bank record example

20/46

Basic Clustering Task: Pattern

We assume that the samples can be grouped into clusters

Recall our bank record example

Basic Clustering Task: Model

We use a model to capture the clustering pattern

$$f\left(\boldsymbol{x}_{n}\right)=k\in\left\{ 1,\ldots,K\right\}$$

for some integer K

Some definitions and assumptions

• Cluster subspace k

$$\mathbb{C}_k = \{ \boldsymbol{x}_n : f(\boldsymbol{x}_n) = k \}$$

Cluster subspaces partition the data space

$$\mathbb{C}_1 \cup \ldots \cup \mathbb{C}_K = \mathbb{X} \iff$$
 all possible samples $\mathbb{C}_j \cap \mathbb{C}_k = \emptyset \iff \forall j \neq k$

Basic Clustering Task: Learning Algorithm

The learning algorithm gets data and find a good f

$$\mathcal{A}: \mathbb{D} \mapsto f^{\star}$$

- ? What is a "good" model?
- We'll answer it!

An Intuitive Model: *K Centroids*

Let's use a simple and intuitive model

$$f(\boldsymbol{x}) = \underset{k \in \{1, \dots, K\}}{\operatorname{argmin}} \|\boldsymbol{x} - \boldsymbol{\mu}_k\|$$

for K centroids $\mu_1,\ldots,\mu_K\in\mathbb{R}^d$

K Centroids: Learning Algorithm

The model is valid for any set of centroids!

The learning algorithm is to start from \mathbb{D} and learn good centroids

$$\mathcal{A}: \mathbb{D} \mapsto \boldsymbol{\mu}_1^{\star}, \dots \boldsymbol{\mu}_K^{\star}$$

- ? What is a "good" set of centroids?
- We'll answer it!

K-Means Clustering Algorithm: Intuitive Derivation

Given the centroids, we can easily assign each $oldsymbol{x}_n \in \mathbb{D}$ to a cluster-set

```
\begin{array}{l} \text{Cluster\_Assignment}(\boldsymbol{\mu}_1,\dots,\boldsymbol{\mu}_K)\colon\\ \text{ $\#$ we want to find $\mathcal{C}_1\cup\dots\cup\mathcal{C}_K=\mathbb{D}$}\\ 1\colon \text{ for $n=1:N$ do}\\ 2\colon & \text{Assign $\boldsymbol{x}_n$ to cluster-set $\mathcal{C}_{f(\boldsymbol{x}_n)}$ with}\\ & f\left(\boldsymbol{x}_n\right) = \underset{k\in\{1,\dots,K\}}{\operatorname{argmin}}\|\boldsymbol{x}_n-\boldsymbol{\mu}_k\|\\ 3\colon \text{ end for}\\ 4\colon \operatorname{Return}\mathcal{C}_1,\dots,\mathcal{C}_K \end{array}
```

K-Means Clustering Algorithm: Intuitive Derivation

Given the cluster sets, we can move centroids to the center of cluster-sets

```
Centroid_Update(\mathcal{C}_1,\ldots,\mathcal{C}_K):
     # we want to find \mu_1, \ldots, \mu_K
 1: for k = 1 : K do
 2: if C_k \neq \emptyset then
 3:
           Move \mu_k to the center of cluster \mathcal{C}_k, i.e.,
                                              \mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{x \in \mathcal{C}_k} x_n
 4:
     else
 5:
           Leave \mu_{k} unchanged
        end if
 7: end for
 8: Return \mu_1, \ldots, \mu_K
```

27/46

K-Means Clustering Algorithm

We could iterate till we converge

```
K-\text{Means}(): \\ 1: \text{Initiate } \mu_1, \dots, \mu_K \\ 2: \text{ while } \mu_1, \dots, \mu_K \text{ changing do} \\ 3: \quad \text{Set } \mathcal{C}_1, \dots, \mathcal{C}_K \leftarrow \text{Cluster\_Assignment}(\mu_1, \dots, \mu_K) \\ 4: \quad \text{Update } \mu_1, \dots, \mu_K \leftarrow \text{Centroid\_Update}(\mathcal{C}_1, \dots, \mathcal{C}_K) \\ 5: \text{ end while} \\ 6: \text{ Return } \mu_1, \dots, \mu_K \\ \end{aligned}
```

Initial centroids

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

¹This example is taken from Bishop's book, Chapter 9

Iteration 4 - Converged

¹This example is taken from Bishop's book, Chapter 9

Example: 2-Means Clustering¹

Iteration 4 - Converged

¹This example is taken from Bishop's book, Chapter 9

K-Means Clustering Algorithm: Alternative Formulation

 ${ t Cluster_Assignment}(oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K)$:

- 1: for n = 1 : N do
- 2: Assign K weights $r_{n,1}, \ldots, r_{n,K}$ to sample x_n as

$$r_{n,k} = egin{cases} 1 & ext{if } k = \operatorname{argmin}_{j \in \{1,\dots,K\}} \|oldsymbol{x}_n - oldsymbol{\mu}_j\| \ 0 & ext{otherwise} \end{cases}$$

- 3: end for
- 4: Return $r_{n,k}$ for k = 1 : K and n = 1 : N

Properties of $r_{n,k}$

$$\sum_{k=1}^K r_{n,k} = 1$$
 and $\sum_{n=1}^N r_{n,k} = |\mathcal{C}_k|$

K-Means Clustering Algorithm: Alternative Formulation

```
Centroid_Update(\{r_{n,k}\}):
```

- 1: for k = 1 : K do
- 2: if $\sum_{n} r_{n,k} > 0$ then
- 3: Move μ_k to the center of cluster k, i.e.,

$$oldsymbol{\mu}_k = rac{\displaystyle\sum_{n=1}^N r_{n,k} oldsymbol{x}_n}{\displaystyle\sum_{n=1}^N r_{n,k}}$$

- 4: else
- 5: Leave μ_k unchanged
- 6: end if
- 7: end for
- 8: Return μ_1, \ldots, μ_K

K-Means Clustering Algorithm: Alternative Formulation

We could iterate till we converge

```
K-\text{Means()}:
1: Initiate \mu_1, \dots, \mu_K
2: while \mu_1, \dots, \mu_K changing do
3: Set \{r_{n,k}\} \leftarrow \text{Cluster\_Assignment}(\mu_1, \dots, \mu_K)
4: Update \mu_1, \dots, \mu_K \leftarrow \text{Centroid\_Update}(\{r_{n,k}\})
5: end while
6: Return \mu_1, \dots, \mu_K
```

This is a better form to extend K-means clustering to a soft format

Defining Objective: Risk

- ? What is a "good" set of centroids?
- We'll answer it!

We may define a metric to evaluate how our model performs

$$\mathcal{J}(\{r_{n,k}\}, \{\mu_k\}) = \frac{1}{N} \sum_{k=1}^{K} \sum_{n=1}^{N} r_{n,k} \|x_n - \mu_k\|^2$$

This specifies the risk we take with this model

Notion of Optimality

- ? What is a "good" set of centroids?
- We'll answer it!

Optimal Clustering

Optimal assignments $\{r_{n,k}^{\star}\}$ and centroids $\{oldsymbol{\mu}_k^{\star}\}$ minimize the risk

$$\left\{ r_{n,k}^{\star}\right\} ,\left\{ \boldsymbol{\mu}_{k}^{\star}\right\} =\underset{\left\{ r_{n,k}\right\} ,\left\{ \boldsymbol{\mu}_{k}\right\} }{\operatorname{argmin}}\,\mathcal{J}\left(\left\{ r_{n,k}\right\} ,\left\{ \boldsymbol{\mu}_{k}\right\} \right)$$

K-Means Clustering: Risk Minimization

Risk minimization for clustering is hard, so we can use alternating optimization

Risk_Minimzation():

1: Initiate
$$\mu_1^*, \dots, \mu_K^*$$

- 2: while μ_1^*, \dots, μ_K^* changing do
- 3: Minimize the risk for fixed centroids $\{\mu_k^*\}$

$$\left\{ \begin{matrix} r_{n,k}^* \\ \end{matrix} \right\} = \operatorname*{argmin}_{\left\{ r_{n,k} \right\}} \mathcal{J} \left(\left\{ r_{n,k} \right\}, \left\{ \boldsymbol{\mu}_k^* \right\} \right)$$

4: Minimize the risk for fixed assignments $\{r_{n,k}^*\}$

$$\left\{ \boldsymbol{\mu}_{k}^{*}\right\} = \operatorname*{argmin}_{\left\{\boldsymbol{\mu}_{k}\right\}} \mathcal{J}\left(\left\{\boldsymbol{r}_{n,k}^{*}\right\}, \left\{\boldsymbol{\mu}_{k}\right\}\right)$$

- 5: end while
- 6: Return $\boldsymbol{\mu}_1^*,\ldots,\boldsymbol{\mu}_K^* \approx \boldsymbol{\mu}_1^\star,\ldots,\boldsymbol{\mu}_K^\star$

K-Means Clustering: Risk Minimization

Minimize the risk for fixed centroids $\{oldsymbol{\mu}_k^*\}$

$$\left\{ \begin{matrix} r_{n,k}^* \\ \end{matrix} \right\} = \operatorname*{argmin}_{\left\{ r_{n,k} \right\}} \mathcal{J} \left(\left\{ r_{n,k} \right\}, \left\{ \boldsymbol{\mu}_k^* \right\} \right)$$

which is done by

Cluster_Assignment (μ_1, \dots, μ_K) :

- 1: for n = 1 : N do
- 2: Assign K weights $r_{n,1}, \ldots, r_{n,K}$ to sample x_n as

$$r_{n,k} = egin{cases} 1 & ext{if } k = \operatorname{argmin}_{j \in \{1,\dots,K\}} \|m{x}_n - m{\mu}_j\| \\ 0 & ext{otherwise} \end{cases}$$

- 3: end for
- 4: Return $r_{n,k}$ for k = 1 : K and n = 1 : N

K-Means Clustering: Risk Minimization

Minimize the risk for fixed assignments $\{r_{n,k}^*\}$

$$\{\boldsymbol{\mu}_{k}^{*}\} = \operatorname*{argmin}_{\{\boldsymbol{\mu}_{k}\}} \mathcal{J}\left(\left\{r_{n,k}^{*}\right\}, \left\{\boldsymbol{\mu}_{k}\right\}\right)$$

which is done by

```
\label{eq:control_Update} \begin{split} &\text{Centroid\_Update}(\{r_{n,k}\}) \colon \\ &\text{1: for } k=1:K \text{ do} \\ &\text{2: } &\text{ if } \sum_n r_{n,k} > 0 \text{ then} \\ &\text{3: } &\text{Move } \mu_k \text{ to the center of cluster } k \\ &\text{4: } &\text{else} \\ &\text{5: } &\text{Leave } \mu_k \text{ unchanged} \\ &\text{6: } &\text{end if} \\ &\text{7: end for} \\ &\text{8: Return } \mu_1, \dots, \mu_K \end{split}
```

K-Means Clustering \equiv Risk Minimization

So we conclude

$$Risk_{minimzation}() \equiv K-Means()$$

Back to our binary example

Each RGB pixel is a sample $x_n \in \mathbb{R}^3$: we cluster with

²This example is taken from Bishop's book, Chapter 9

Each RGB pixel is a sample $x_n \in \mathbb{R}^3$: we cluster with K=10

²This example is taken from Bishop's book, Chapter 9

Each RGB pixel is a sample $x_n \in \mathbb{R}^3$: we cluster with K=3

²This example is taken from Bishop's book, Chapter 9

Each RGB pixel is a sample $x_n \in \mathbb{R}^3$: we cluster with K=2

²This example is taken from Bishop's book, Chapter 9

Choice of Hyperparameter

- ? How do we know K?
- This is a hyperparameter

K-Means Clustering Always Converge

- ? Does K-means clustering always converge to a stable state?
- Yes! You can show it!

However, it doesnot necessary end with what we want!³

³This example is taken from MacKay's book, Chapter 20

K-Means Clustering Always Converge

- ? Does K-means clustering always converge to a stable state?
- Yes! You can show it!

However, it doesnot necessary end with what we want!³

41/46

³This example is taken from MacKay's book, Chapter 20

Risk as Expected Error

Recall that

$$\sum_{k=1}^{K} r_{n,k} = 1$$

We can look at $r_{n,k}$ for k = 1 : K as a probabilities, i.e., $r_{n,k} \in [0,1]$

Risk ≡ Expected Error

We can then interpret the risk as an expected error for clustering

$$\mathcal{J}\left(\left\{r_{n,k}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) = \frac{1}{N} \sum_{k=1}^{K} \sum_{n=1}^{N} r_{n,k} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$
$$= \mathbb{E}\left\{\mathcal{E}\left(\boldsymbol{x}\right)\right\}$$

with $\mathcal{E}(x)$ quantifying how bad we have classified

Soft *K*-Means Clustering Algorithm

 ${ t Soft_Cluster_Assignment}(oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K)$:

- 1: for n = 1 : N do
- 2: Assign K weights $r_{n,1}, \ldots, r_{n,K}$ to sample x_n for some β as

$$r_{n,k} = \frac{e^{-\beta \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2}}{\sum_{k=1}^{K} e^{-\beta \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2}}$$

- 3: end for
- 4: Return $r_{n,k}$ for k = 1 : K and n = 1 : N

Soft K-Means Clustering Algorithm

Centroid_Update $(\{r_{n,k}\})$:

- 1: for k = 1 : K do
- 2: if $\sum_{n} r_{n,k} > 0$ then
- 3: Move μ_k to the center of cluster k, i.e.,

$$oldsymbol{\mu}_k = rac{\displaystyle\sum_{n=1}^N r_{n,k} oldsymbol{x}_n}{\displaystyle\sum_{n=1}^N r_{n,k}}$$

- 4: else
- 5: Leave μ_k unchanged
- 6: end if
- 7: end for
- 8: Return μ_1, \ldots, μ_K

Soft *K*-Means Clustering Algorithm

We could iterate till we converge

```
\begin{array}{l} \operatorname{Soft}_{-}K\operatorname{-Means}(): \\ 1: \operatorname{Initiate}\ \mu_1,\dots,\mu_K \\ 2: \ \text{while}\ \mu_1,\dots,\mu_K \ \operatorname{changing}\ \text{do} \\ 3: \quad \operatorname{Set}\ \{r_{n,k}\} \leftarrow \operatorname{Soft}_{-}\operatorname{Cluster}_{-}\operatorname{Assignment}(\mu_1,\dots,\mu_K) \\ 4: \quad \operatorname{Update}\ \mu_1,\dots,\mu_K \leftarrow \operatorname{Centroid}_{-}\operatorname{Update}(\{r_{n,k}\}) \\ 5: \ \operatorname{end}\ \text{while} \\ 6: \ \operatorname{Return}\ \mu_1,\dots,\mu_K \end{array}
```

Further Read

- MacKay
- Bishop
- ESL
 - □ Chapter 14: Section 14.3

K-means and Soft K-means

K-means

Clustering