Details of the Model

Shaurya Pednekar

May 2, 2021

Decision Variables (Found by Optimizer)

- Courses: c_i for $i \in \{1, ..., m\}$
 - $c_i = \begin{cases} 1, & \text{if course } i \text{ should be offered} \\ 0, & \text{otherwise} \end{cases}$
- Student Assignments: s_{ij} for $i \in \{1, ..., n\}, j \in \{1, ..., m\}$
 - $s_{ij} = \begin{cases} 1, & \text{if student } i \text{ is assigned course } j \\ 0, & \text{otherwise} \end{cases}$

Other Variables (Fixed before Running Optimizer)

- Course Ratings: r_{ij}
 - r_{ij} = student i's rating for course j
- Course Timings: t_{ij}

 $t_{ij} = \begin{cases} 1, & \text{if course } i \text{ takes place at time-step } j \\ 0, & \text{otherwise} \end{cases}$

Objective Function

$$\max \sum_{i \in n} \sum_{j \in m} (s_{ij} \cdot c_j) \cdot r_{ij}$$

Constraints:

Constraint 1: Time Conflict Constraint

Constraint 2: Bounds on Number of Courses Assigned to a Student

Constraint 3: Cap on Number of Students in a Course

Constraint 4: Each Prof Offers Exactly 1 Course

Constraints Represented Mathematically:

Constraint 1: Time Conflict Constraint

For each time-step k: For each student i

$$\sum_{j \in m} c_j \cdot s_{ij} \cdot t_{jk} \le 1$$

Constraint 2: Bounds on Number of Courses Assigned to a Student

For each student *i*:

$$1 \le \sum_{j \in m} c_j \cdot s_{ij} \le 2$$

Constraint 3: Cap on Number of Students in a Course

For each course *j*:

$$\sum_{i \in n} c_j \cdot s_{ij} \le 15$$

Assumption: The cap on each course is 15 students.

Constraint 4: Each Prof Offers Exactly 1 Course

For each Prof p

$$1 \le \sum_{i \in \text{Prof } p \text{'s courses}} c_i \le 1$$