N1-HQ-curve-HMIII

March 6, 2020

```
[1]: import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
```

1 Introduction

Aim Extract the HQ curves of the Heart Mate 3 device, for different RPMs. We constraint the curves to be polynomials of degree two.

2 Curve coefficients

Report data points

```
[2]: # Dictionnary: RPM [int] -> data [list of xs [list] and ys[list]]
# x = Q, y = P
data = {}
```

```
[3]: data[3000] = [
        [0.0, 1.0, 2.0, 2.9], # flow
        [32, 29, 23, 14], # pressure
]
```

```
[4]: data[4000] = [
       [0.0, 2.0, 3.0, 4.5],
       [58, 49, 41, 16]
]
```

```
[5]: data[5000] = [
       [0.0, 2.0, 4.0, 6.0],
       [90, 80, 63, 19]
]
```

```
[6]: data[6000] = [
        [0.0, 2.0, 4.0, 6.0, 7.0, 7.4],
        [131, 120, 105, 70, 36, 22]
```

```
[7]: data[7000] = [
        [0.0, 2.0, 4.0, 5.0, 8.0],
        [177, 168, 150, 140, 63]
]

[8]: data[8000] = [
        [0.0, 2.0, 3.0, 5.0, 6.0, 8.0, 10.0],
        [232, 220, 211, 191, 178, 126, 43]
]

[9]: data[9000] = [
        [0.0, 2.0, 4.0, 6.0, 9.0, 10.0, 11.0],
        [290, 278, 263, 240, 164, 125, 72]
]
```

Adjust units The reported flow rate values are in L/min, while the model assumes ml/s. Thus we have to multiply every measure of Q by 1000/60.

```
[10]: for RPM in data:
    data[RPM] = np.array(data[RPM])
    data[RPM][0] = data[RPM][0] * 1000 / 60
```

2.1 Fit polynomials

Procedure

- 1. We reconstruct the HQ curve with the same axes as the original plot, as a mean of comparison
- 2. We reconstruct the HQ curve with **inverted axes**,
 - i.e. we perform polynomial regression with P as the input and Q as the output

Demo

```
[11]: # Demo numpy.polyfit: f(x)=x^2
x = [-1,0,1, 1.2]
y = [1,0,1, 2]
coefs = np.polyfit(x, y, 2)
coefs # order: x^n, x^n-1, ..., x^1, x^0
print(coefs)
plt.scatter(x, y)
x = np.linspace(-2, 2, 100)
plt.plot(x, np.polyval(coefs, x));
```

[1.22017354 0.11388286 -0.0835141]


```
Compute coefficients of the polynomials
```

```
[12]: # Pressure in function of flow
    coefs = {}
    # Flow in function of pressure
    coefs_rev = {}

    for k in data:
        x = data[k][0]
        y = data[k][1]
        coefs[k] = np.polyfit(x, y, deg=2)
        coefs_rev[k] = np.polyfit(y, x, deg=2)
```

```
[13]: coefs
```

HQ plot

```
[15]: fig,ax = plt.subplots(1,1,figsize=(10,5))
Qmax = 12 * 1000/60
Q = np.linspace(0, Qmax, 1000)

for RPM, coef in coefs.items():
    plt.scatter(data[RPM][0], data[RPM][1])
    plt.plot(Q, np.polyval(coef, Q))

plt.xlim(0, Qmax); plt.ylim(0, 300); plt.grid(ls='--');
plt.xlabel("Flow Q [ml/s]"); plt.ylabel("Pressure head dP [mmHg]");
plt.title("Reconstructed HQ curve");
```



```
[16]: fig,ax = plt.subplots(1,1,figsize=(5, 10))
for RPM, coef in coefs_rev.items():
    pmin = min(data[RPM][1])
    pmax = max(data[RPM][1])
    dP = np.linspace(pmin, pmax, 1000)
```


3 Compare HQ curve of HM2

3.1 Coefficients

Code in the modelica file VAD:

```
Q = if RPM == 10000 then min(306.65 - 4.03 * dP + 0.0127 * dP ^ 2, 133) else if RPM == 9000 then min(245.16 - 3.6 * dP + 0.0119 * dP ^ 2, 116.667) else if RPM == 8000 then min(195.85 - 3.506 * dP + 0.0136 * dP ^ 2, 100) else 0;
```

```
[17]: coef = {}
mins = {}
```

```
[18]: coef[10000] = [0.0127, -4.03, 306.65]
coef[9000] = [0.0119, -3.6, 245.16]
coef[8000] = [0.0136, -3.506, 195.85]
```

```
[19]: mins[10000] = 133
mins[9000] = 116.667
mins[8000] = 100
```

3.2 Plotting without min applied

```
[20]: dP = np.linspace(0, 300, 1000)
  plt.subplots(1,1,figsize=(10, 8))

for elem in coef :
    Q = np.polyval(coef[elem], dP)
    plt.plot(dP, Q, label=elem)

plt.grid(ls='--'); plt.xlabel("dP"); plt.ylabel("Q");
  plt.legend();
```


3.3 Apply min

```
[21]: curves = {}
    dP = np.linspace(0, 300, 1000)
    for elem in coef :
        Q = np.polyval(coef[elem], dP)
        curves[elem] = Q

[22]: # Apply the min
    curves_corrected = {}
    for RPM in curves :
        curves_corrected[RPM] = [ min(mins[RPM], q) for q in curves[RPM] ]

[23]: plt.subplots(1,1,figsize=(10,7))
    dP = np.linspace(0, 300, 1000)
    for RPM in curves_corrected:
        plt.plot(dP, curves_corrected[RPM], label=RPM)
```

```
plt.grid(ls='--'); plt.xlabel("dP"); plt.ylabel("Q");
plt.legend();
```


4 Reconsider the range of values for dP

The blue curve LVAD2.dP on top of is HM3, the red curve LVAD.dP is for HM2.

4.1 HM2 HQ curve restricted in the observed dP range

```
[24]: dPmax = 85
    plt.subplots(1,1,figsize=(10, 8))
    for RPM in curves_corrected :
        plt.plot(dP, curves_corrected[RPM], label=RPM)

plt.grid(ls='--'); plt.xlabel("dP"); plt.ylabel("Q");
    plt.legend(); plt.xlim(0, dPmax);
    plt.title("HMII HQ curve restricted in the observed dP range");
```


4.2 HM3 HQ curve: Determine points where Q start to decrease

Given $Q = a_2x^2 + a_1x + a_0$, with x=dP, we calculate points where Q'(x) = 0, i.e. we calculate the x s.t. $x = -\frac{a_1}{2a_2}$

```
[25]: dP_critical = {}

for RPM in coefs_rev :
    dP_critical[RPM] = - coefs_rev[RPM][1] / (2 * coefs_rev[RPM][0])
print(dP_critical)
```

{3000: 12.327586206896544, 4000: 18.936938447758124, 5000: 26.363277370964347, 6000: 33.71218154391415, 7000: 78.7562258994521, 8000: 63.73170049641598, 9000: 93.81680219082028}

```
[28]: fig,ax = plt.subplots(1,1,figsize=(10,5))

dPmax_HMIII = 300
```

```
dP = np.linspace(0, dPmax_HMIII, 1000)
for RPM in dP_critical :
    # Compute Q
    Q = np.polyval(coefs_rev[RPM], dP)
    # Compute the points where Q begins to decrease
    a0, a1, a2 = coefs_rev[RPM][2], coefs_rev[RPM][1], coefs_rev[RPM][0]
    crit = dP critical[RPM]
    q_crit = a0 + a1 * crit + a2 * crit ** 2
    # Once Q starts to decrease, set a constant
    Q = [ q if dP[i] >= crit else q_crit for i,q in enumerate(Q) ]
    print("(dP_crit, Q_crit) = ({}, {})".format(crit, q_crit))
    # Plot the cross marker
    plt.scatter(crit, q_crit, marker='x', color="red")
    ## Plot the curve
    plt.plot(dP, Q, label=RPM)
plt.xlim(0, dPmax_HMIII); plt.ylim(0, 200); plt.legend();
plt.xlabel("dP"); plt.ylabel("Q");
```

