MTH 101-Calculus

Spring-2021

Assignment 5: Series, Power Series, Taylor Series

- 1. Let $f:[0,1]\to\mathbb{R}$ and $a_n=f(\frac{1}{n})-f(\frac{1}{n+1})$. Show that if f is continuous then $\sum_{n=1}^{\infty}a_n$ converges and if f is differentiable and |f'(x)|<1 for all $x\in[0,1]$ then $\sum_{n=1}^{\infty}|a_n|$ converges.
- 2. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals:

(a) $\frac{\sqrt{n+1}-\sqrt{n}}{n}$ (e) $\frac{n \ln n}{2}$

(b) $1 - \cos \frac{1}{n}$ (c) $2^{-n-(-1)^n}$ (d) $\left(1 + \frac{1}{n}\right)^{n(n+1)}$ (f) $\frac{\log n}{n^p}$, (p > 1) (g) $e^{-n}(\cos n)n^2 \sin \frac{1}{n}$

3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive terms satisfying $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for all $n \geq N$. Show that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ also converges. Test the series $\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^n n!}$ for convergence.

4. Show that the series $\frac{1}{4^1} + \frac{1}{5^2} + \frac{3}{4^3} + \frac{1}{5^4} + \frac{5}{4^5} + \frac{1}{5^6} + \frac{7}{4^7} + \cdots$ converges.

5. Show that the series $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$ converges but not absolutely.

6. Determine the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n^2 3^n}$ converges.

- 7. Among π^e and e^{π} which one is bigger?
- 8. For a complex number z=x+iy, define e^z to be $e^x.e^{iy}$. Assuming the fact that the power series $\sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$ converges to e^z absolutely, show that $e^{ix} = \cos x + i \sin x$ for $x \in \mathbb{R}$.