

# **Economical Digital Air Pressure Sensor**

# **WF183DE**

#### **Main Features**

- Digital pressure and temperature direct reading
- Operating Voltage:2.4V~5.5V
- Pressure range:0~1500kPa(Absolute pressure)
- Internal Complement Algorithm
- Factory calibration free
- High precision
- Working current: 1.5mA
- Standby power consumption:2uA
- Operating Temperature: -40~+125°C Communication
- interface: IIC, UART, OWI, choose one
- size:3.8 x 3.6 x 0.8 mm

#### Typical Applications

- Handheld tire pressure gauge, TPMS
- Weather forecast
- Industrial Pressure and Temperature Sensor Systems
- Sports Watches
- Electronic cigarettes

#### **Product Description**

 $WF183DEIt\ is\ an\ economical\ digital\ pressure\ and\ temperature\ sensor,\ which\ contains\ aMEMS pressure\ sensor\ and\ a\ high-resolution twenty\ four\ pressure\ sensor\ and\ a\ high-resolution\ pressure\ sensor\ and\ a\ high-resolution\ pressure\ pr$ 

 $Position \ \Sigma\ ADC and DSP. WF183DE Provides\ high accuracy\ calibrated\ pressure\ and\ temperature\ digital\ outputs\ through\ a\ variety\ of\ communication\ interfaces.$ 

The product has been calibrated for pressure and temperature before leaving the factory, so it can be plugged and played without the need for customers to calibrate it.

 $A \textit{ variety of communication interfaces are available, convenient \texttt{MCUModel selection reduces the customer's overall machine cost.} \\$ 

WF183DEWaterproof level reachesIP 65, meeting most waterproof product requirements.



#### 1. Block Diagram



Figure 1: Internal block diagram

# 2. Pin configuration

| Foot positio | nam | <b>e</b> direction | Function                      |
|--------------|-----|--------------------|-------------------------------|
| 1            | SCL | enter              | IIC clock input               |
| 2            | GND | enter              | Power supply ground           |
| 3            | VDD | enter              | Power supply positive         |
| 4            | VS  | Output             | External capacitor (required) |
| 5            | RX  | enter              | Serial data input             |
| 6            | TX  | Output             | Serial data output            |
| 7            | OWI | Input/Output       | Single-wire communication     |
| 8            | SDA | Input/Output       | IIC data port                 |



Figure 2: Pinout



# 3. Electrical characteristics

## 3.1 Limit parameters

| parameter                     | symbol          | state           | Minimum | maximum              | unit   |
|-------------------------------|-----------------|-----------------|---------|----------------------|--------|
| Overpressure                  | Рмах            |                 |         | 2X                   | 2times |
| Supply voltage                | V <sub>DD</sub> |                 | - 0.2   | 5.5                  | V      |
| Interface voltage             | Vif             |                 | - 0.3   | V <sub>DD</sub> +0.3 | V      |
| Operating range temperature   | Тор             |                 | - 40    | 125                  | °C     |
| Storage temperature range     | Тѕтс            |                 | - 50    | 150                  | °C     |
| Maximum soldering temperature | Тмѕ             | longest40Second |         | 250                  | °C     |

#### 3.2 Electrical parameters

| parameter                      | symbol | Environmental conditions | Minimum | standard | maximum | unit |
|--------------------------------|--------|--------------------------|---------|----------|---------|------|
| Peak current                   | Іреак  | During the conversion    |         | 1.5      |         | mA   |
| Quiescent Current              | Іѕтв   |                          |         | 2        | 3.5     | uA   |
| Serial communication baud rate |        |                          |         | 9600     |         | Hz   |
| Digital input high voltage     | ViH    |                          | 0.8     |          |         | V    |
| Digital input low voltage      | VIL    |                          |         |          | 0.2     | V    |
| Digital output high voltage    | Vон    | Io= 0.5 mA               | 0.9     |          |         | V    |
| Digital output low voltage     | VoL    | Io= 0.5 mA               |         |          | 0.1     | V    |
| IIC Clock                      | F      |                          |         |          | 400     | kHz  |

# 3.3 Pressure and temperature parameters

| parameter                      | symbol | condition                                     | Minimum | standard | maximum | unit |
|--------------------------------|--------|-----------------------------------------------|---------|----------|---------|------|
| Pressure measurement range     | PFS    |                                               | 0       |          | 1500    | kPa  |
| Absolute pressure accuracy     |        | 10°C to80°C Standard atmospheric pressure     |         | 1.5      |         | kPa  |
|                                |        | - 20°C to 125°C Standard atmospheric pressure |         | 3.5      |         | kPa  |
| Relative pressure accuracy     |        | exist25°C                                     |         | 0.5      |         | kPa  |
|                                |        | from0°C to70°C                                |         | 1.5      |         | kPa  |
| Maximum error (voltage effect) |        | Voltage 2.4Varrive5.5 V                       |         |          | 2.5     | kPa  |
| Pressure/Altitude Resolution   |        | Pressure Mode                                 |         | 0.01     |         | kPa  |
| Over reflow drift              |        | After reflow                                  |         | 0.5      |         | kPa  |
| Long-term drift                |        | go through1Years later                        |         | 1.5      |         | kPa  |
| Reflow Oven Profile            |        | IPC/JEDEC J-STD-020C                          |         | 0.5      |         | kPa  |



## 4.UART communication mode

#### Serial port configuration

| Baud rate | Start position | Data bits | Stop bits | Check digit |
|-----------|----------------|-----------|-----------|-------------|
| 9600      | 1              | 8         | 1         | NO          |

#### Serial port command format

| Start sign | Data length | Control instructions | Check digit |
|------------|-------------|----------------------|-------------|
| 0x55       | 1byte       | 1byte                | 1byte       |

#### Serial port control instruction set

| Control instructions | Command word | Function                           | Remark                                                                                                                    |
|----------------------|--------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| CMD_CAL_T            | 0x0E         | Get real-time temperature          | Calculate the current temperature once and return it. Be sure to read the temperature before reading the pressure.        |
| CMD_CAL_T1           | 0x27         | Get high-precision temperature     | Calculates high-precision temperature and returns it, suitable for measuring in temperature fluctuations                  |
| CMD_CAL_P1           | 0x0D         | Get real-time air pressure         | Calculate the current air pressure and return it                                                                          |
| CMD_CAL_P2           | 0x26         | Obtain high-precision air pressure | Calculates high-precision air pressure and returns it, suitable for measuring in situations where air pressure fluctuates |
| CMD_CAL_P3           | 0X3C         | Get forecast air pressure          | Calculates and returns the predicted air pressure, suitable for measuring in situations where air pressure fluctuates     |

#### Serial port return value format

| Start sign | Data length | Data Types | Return data | Check digit |
|------------|-------------|------------|-------------|-------------|
| 0xAA       | 1 byte      | 1 byte     | n byte      | 1byte       |

#### Serial port return value data type

| Value return data type | Type word | Return to content  | Return content format |
|------------------------|-----------|--------------------|-----------------------|
| RET_T                  | 0x0A      | Temperature value  | S16                   |
| RET_P1                 | 0x09      | Air pressure value | U32                   |
| RET_P2                 | 0x18      | Air pressure value | U32                   |
| RET_P3                 | 0x3C      | Air pressure value | U32                   |

Check digit description

# CRC format: CRC-8/MAXIM x8+x5+x4+1

**Example:** 

```
u8 Cal_uart_buf_CRC(u8 *arr, u8 len)
    {
        u8 crc=0;
        u8 i=0;
while(len--)
    {
        crc ^= *arr++;

        for(i = 0;i < 8;i++)
            {
             if(crc & 0x01) crc = (crc >> 1) ^ 0x8c; else crc
            >>= 1;
            }
        }
        return crc;
        }
```



#### Other notes

The operation process of converting the current pressure is: first obtain the temperature, then obtain the pressure. Since the converted pressure needs to be compensated according to the current temperature, it is necessary to collect the conversion temperature first. Send the obtained temperature to convert the current temperature.

In normal mode: the serial port automatically enters standby mode after receiving no signal for about 3 seconds

#### Example

1. Get real-time temperature value (CMD\_CAL\_T)

TX: 55 04 0E 6A,

RX: AA 06 0A 02 01 22 Return result (s16) 0x0102 =258 258/10= 25.8 °C

2. Get real-time pressure value (CMD\_CAL\_P1)

TX: 55 04 0D 88

RX: AA 08 09 A0 86 01 00 7F Return result (u32): 0x0186A0 = 100000 100000/1000 = 100kPa

#### **UART Application Circuit**





#### 5. OWI communication mode

When the sensor is in standby mode, the single bus is in input state (internally pulled up), and the MCU pulls it down0.2mS, Then it enters the input state and waits for the sensor to send pressure data.

After the sensor data is sent, it returns to the input state.

Communication timing (1T is 25uS)



| Start sign | Air pressure high byte | Parity bit      | Start sign | Air pressure low byte | Parity bit      | Start sign | Check Byte                    | Parity bit      |
|------------|------------------------|-----------------|------------|-----------------------|-----------------|------------|-------------------------------|-----------------|
| Start      | 1 byte                 | 1 bit           | Start      | 1 byte                | 1 bit           | Start      | 1 byte                        | 1 bit           |
| start      | Pressure<15:8>         | Even number = 0 | start      | Pressure<7:0>         | Even number = 0 | start      | Pressure<15:8>+Pressure<7:0>  | Even number = 0 |
|            |                        | Odd = 1         |            |                       | Odd = 1         |            | The sum of the lower8Bit Data | Odd = 1         |

#### For example:

High Byte<15:8>:0x01 Low Byte< 7:0>: 0x2C Check byte: 0x2D Air pressure: 0x12C = 300KPA

# **OWI Application Circuit**





## 6.IIC communication mode

#### Slave device address: 0xDA

| A7 | A6 | A5 | A4 | A3 | A2 | A1 | Write/Read |
|----|----|----|----|----|----|----|------------|
| 1  | 1  | 0  | 1  | 1  | 0  | 1  | 0/1        |

# register

| address | describe         | Read/Write | Bit7 | Bit6                    | Bit5 | Bit4          | Bit3      | Bit2      | Bit1      | Bit0    | Default value |
|---------|------------------|------------|------|-------------------------|------|---------------|-----------|-----------|-----------|---------|---------------|
| 0x0A    | Order            | Write only |      | 00                      | 000  |               | 0110(pres | sure)/010 | O(tempera | iture)  | 0x00          |
| 0x0B    | High pressure    | Read-only  |      |                         | Р    | ressure valu  | ıe<31:24> |           |           |         | 0x00          |
| 0x0C    | High pressure    | Read-only  |      |                         | Р    | ressure valu  | ıe<23:16> |           |           |         | 0x00          |
| 0x0D    | Low pressure     | Read-only  |      | Pressure value<15:8>    |      |               |           |           | 0x00      |         |               |
| 0x0E    | Low pressure     | Read-only  |      |                         | Pi   | ressure value | e<7:0>    |           |           |         | 0x00          |
| 0x0F    | High temperature | Read-only  |      | Temperature value<15:8> |      |               |           |           | 0x00      |         |               |
| 0x10    | Low temperature  | Read-only  |      | Temperature value<7:0>  |      |               |           |           | 0x00      |         |               |
| 0x13    | state            | Read-only  |      |                         | r    | eserve        |           |           | 1         | LFinish | 0x00          |

# Timing

| Write Command | start | Slave Device Address 0 | answer | Register Address | answer | Order | answer | stop |
|---------------|-------|------------------------|--------|------------------|--------|-------|--------|------|
| pressure      | start | 0xDA                   | Ack    | 0x0A             | Ack    | 0x06  | Ack    | stop |
| temperature   | start | 0xDA                   | Ack    | 0x0A             | Ack    | 0x04  | Ack    | stop |

| Check Status | start | Slave Device Address | 0 | answer | Register Address | answer | start | Slave Device Address | 1 | answer | Read Data | No answer | stop |
|--------------|-------|----------------------|---|--------|------------------|--------|-------|----------------------|---|--------|-----------|-----------|------|
|              | start | 0xDA                 |   | Ack    | 0x13             | Ack    | start | 0xDB                 |   | Ack    | <7:0>     | Nack      | stop |

| Read Da   | ta start | Slave Device Address | 0 | answer | register | answer | start | Slave Device Address | 1 | answer | Read Data | No answer | stop |
|-----------|----------|----------------------|---|--------|----------|--------|-------|----------------------|---|--------|-----------|--------|-----------|--------|-----------|--------|-----------|-----------|------|
| temperatu | start    | 0xDA                 |   | Ack    | 0x0F     | Ack    | start | 0xDB                 |   | Ack    | <15:8>    | Ack    | <7:0>     |        |           |        |           | Nack      | stop |
| pressure  | start    | 0xDA                 |   | Ack    | 0x0B     | Ack    | start | 0xDB                 |   | Ack    | <31:24>   | Ack    | <23:16>   | Ack    | <15:8>    | Ack    | <7:0>     | Nack      | stop |

Data conversion example

Tel: +86-755-23311175

Temperature: 0xOF=0x01,0x10=0x02; 0x0102=258; 258/10=25.8 °C

Pressure: 0xOB= Ox00 ,0xOC=0x1,0xOD=0x86,0xOE=0xA0 ; 0x186A0=100000; 100000/1000= 100 kPa

Note: Be sure to measure the temperature before measuring the pressure.



**IIC Application Circuit** 





# 7. Package (LGA8)



#### 8. Packaging instructions





## 9. Reflow soldering recommendations



| stage                                    | Guidance Value (Lead-free)      |
|------------------------------------------|---------------------------------|
| Heating rate TsMax to TP                 | Less than or equal to3°C/Second |
| Preheating minimum temperature TsMin     | 150°C                           |
| Preheating maximum temperature TsMax     | 200°C                           |
| Warm-up time Ts (TsMin to TsMax)         | 60 to 180 seconds               |
| Minimum reflow temperature TL            | 217°C                           |
| Reflow time t <sub>L</sub>               | 60 to 150 seconds               |
| Maximum reflow temperatureT <sub>P</sub> | 250°C                           |
| Maximum temperature timet <sub>P</sub>   | 20 to 40 seconds                |
| Cooling rate                             | Less than or equal to4°C/Second |
| 25°CTime to maximum temperature          | longest8minute                  |