1.4 The Limit of a Function

We will see that there are other techniques of determining limits other than tables.

The Limit of a Function

The notation $\lim_{x\to a} f(x) = L$ reads "the limit of f(x) as x approaches a is L". (x approaches a from either side)

$$f(x) = -x^2 - x + 4$$

From the graph we see that as *x* approaches 1 from the left or from the right the limit is 2.

$$\lim_{x \to 1} f(x) = 2$$

One-Sided Limits

Left-hand limit: $\lim_{x \to a^{-}} f(x) = L$ limit approaching *a* from left.

Right-hand limit: $\lim_{x\to a^+} f(x) = L$ limit approaching *a* from right.

Two-Sided Limits

If $\lim_{x \to a^{-}} f(x) = L$ and $\lim_{x \to a^{+}} f(x) = L$, then $\lim_{x \to a} f(x)$ exists

and is equal to *L*. $\lim_{x\to a} f(x)$ is called a **two-sided limit**.

Determine: $\lim_{x \to 1} f(x)$

$$\lim_{x \to 1^{-}} f(x) = 3$$

$$\lim_{x\to 1^+} f(x) = 3$$

$$\therefore \lim_{x \to 1} f(x) = 3$$

$$\lim_{x\to 1^-} f(x) = 1$$

$$\lim_{x \to 1^+} f(x) = 4$$

$$\therefore \lim_{x\to 1} f(x)$$

does not exist.

$$\lim_{x \to 1^{-}} f(x) = -\infty$$

$$\lim_{x\to 1^+} f(x) = \infty$$

$$\therefore \lim_{x\to 1} f(x)$$

does not exist.

If $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$ then $\lim_{x \to a} f(x)$ does not exist.

Using a table ...
$$f(x) = \frac{1}{x-1} + 3$$

$x \rightarrow 1^-$	
\mathcal{X}	f(x)
0	2
0.5	1
0.9	-7
0.99	-97
0.999	-997

$x \rightarrow 1^+$	
χ	f(x)
2	4
1.5	5
1.1	13
1.01	103
1.001	1003

As x approaches 1 from the left or the right, we see that the limits are not equal.

$$\lim_{x \to 1} f(x)$$
does not exist.

We say that f(x) is a discontinuous function.

Continuous Functions

A function is *continuous* at a if $\lim_{x\to a} f(x) = f(a)$ and

- 1. The value a is in the domain of f.
- 2. $\lim_{x\to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x) = f(a)$

A function is *continuous* if it is continuous at *a* for all values of *a* in the domain.

A function is *discontinuous* at *a* when f(a) is not defined; $\lim_{x \to a} f(x)$ does not exist or $\lim_{x \to a} f(x) \neq f(a)$

Properties of Limits Involving Polynomial Functions.

Some Basic Limits

If a and c are real numbers and n is an integer, then

1.
$$\lim_{x\to a} c = c$$

$$Ex 1. \lim_{x\to 1} 8 = 8$$

$$2. \lim_{x \to a} x = a$$

$$Ex \ 2. \lim_{x \to -4} x = -4$$

3.
$$\lim_{x \to a} x^n = a^n$$
, if $a \neq 0$ when $n < 0$. $Ex 3$. $\lim_{x \to 2} x^3 = 2^3$

$$Ex \ 3. \lim_{x\to 2} x^3 = 2^3$$

Limit Laws

1) Constant Law

If f(x) = C (a constant) then

$$\lim_{x \to a} f(x) = C$$

Ex.
$$\lim_{x\to 2} (-3) = -3$$

2) Constant Multiplier Law

If $\lim_{x \to a} f(x) = L$ then

$$\lim_{x \to a} \left[cf(x) \right] = cL$$

Ex. $\lim_{x\to 3} (2x^2) = 2\lim_{x\to 3} (x^2)$

 $= 2(3^2)$ = 18

3) Sum/Difference Law

If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ then

$$\lim_{x \to a} [f(x) \pm g(x)] = L \pm M$$

Ex.
$$\lim_{x \to 3} [x^2 - 2x] = \lim_{x \to 3} x^2 - \lim_{x \to 3} 2x$$

= 9 - 6 = 3

Limits of Polynomial Functions

For any polynomial function P(x), $\lim_{x\to a} P(x) = P(a)$

Example: Determine the limit of the function:

$$\lim_{x \to -3} (2x^2 + 3x - 5)$$

 $2x^2 + 3x - 5$ is a polynomial function

$$\lim_{x \to -3} (2x^2 + 3x - 5) = 2(-3)^2 + 3(-3) - 5$$
$$= 18 - 9 - 5$$
$$= 4$$