FORMULE INTEGRALE

1-5: Să se calculeze următoarele integrale curbilinii folosind formula Green-Riemann:

- 1. $\int_C (3y e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, unde C este curba de ecuație $x^2 + y^2 = 9$.
- **2.** $\int_C xy dx + x^2 dy$, unde C este dreptunghiul cu vârfurile (0,0), (3,0), (3,1), (0,1).
- **3.** $\int_C xy dx + x^2 y^3 dy$, unde C este triunghiul cu vârfurile (0,0), (1,0), (1,2).
- **4.** $\int_C \left(y+e^{\sqrt{x}}\right) dx + \left(2x+\cos y^2\right) dy$, unde C este frontiera domeniului delimitat de intersecția parabolelor $y=x^2$ și $x=y^2$.
- **5.** Considerăm forța $F(x,y) = xy^2\vec{i} + 2x^2y\vec{j}$ care acționează asupra unei particule materiale. Folosiți formula Green-Riemann pentru a determina lucrul mecanic a forței F necesar deplasării particulei de la origine la punctul (2,2), apoi la punctul (2,4) și înapoi la origine.

6-9: Calculați cu ajutorul formulei Stokes următoarele integrale curbilinii (cu reprezentare grafică):

- **6.** $\int_{\gamma} y dx + z dy + x dz$, unde γ este curba de intersecție a suprafețelor de ecuație $z = x^2 + y^2$ și x + y + z = 0.
- 7. $\int_{\gamma} x^2 y^3 dx + dy + z dz$, unde γ este curba de ecuație $x^2 + y^2 = 1$, din planul z = 0 iar suprafața S care

are frontiera γ este $z=\sqrt{1-x^2-y^2}$, și are normala orientată în interior.

8. Calculați $\int_{\gamma} (z-y)dx + (x-z)dy + (y-x)dz$, unde γ este conturul ΔABC , A(a,0,0), B(0,b,0)

și C(0,0,c) , cu a,b,c>0 , parcurs în sensul $A\to B\to C$.

9. Calculați $\int_{\gamma} (y-z)dx + (z-x)dy + (x-y)dz$, unde γ este curba de intersecție a suprafețelor de

ecuație $x^2 + y^2 = 1$ și $x + \frac{z}{2} = 1$ (orientarea la alegere).

- **10.** Calculați fluxul câmpului $\vec{V}=x^3\vec{i}+x^2y\vec{j}+x^2z\vec{k}$ prin fețele cilindrului $x^2+y^2=R^2$, $0\leq z\leq a$ (R>0, a>0), folosind formula Gauss-Ostrogradski (cilindrul este considerat împreună cu bazele aflate în planele z=0, respectiv z=a)
- **11.** Calculați fluxul câmpului $\vec{V} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ prin fața exterioară a sferei $x^2 + y^2 + z^2 = 4$.
- **12.** Se consideră câmpurile vectoriale definite prin: $\vec{U} = \frac{\vec{r}}{\left\|\vec{r}\right\|^3}$, $\vec{V} = \frac{\vec{a} \times \vec{r}}{\left\|\vec{r}\right\|^3}$ și $\vec{W} = \left\|\vec{r}\right\| \cdot r$, unde \vec{a} este un

vector constant iar $ec{r}$ este vectorul de poziție al unui punct oarecare din \mathbb{R}^3 . Se cere:

- a) Calculați $\operatorname{div} \vec{U}$, $\operatorname{div} \vec{V}$ și $\operatorname{div} \vec{W}$;
- b) Calculați fluxul câmpurilor \vec{U} , \vec{V} și \vec{W} printr-o sferă centrată în origine (normala se alege la exterior).

1

Indicații și răspunsuri

1. Avem
$$P(x, y) = 3y - e^{\sin x}$$
 și $Q(x, y) = 7x + \sqrt{y^4 + 1}$. Atunci:

$$\int\limits_{C=\partial K} P dx + Q dy = \iint\limits_{K} \left[\frac{\partial}{\partial x} \Big(7x + \sqrt{y^4 + 1} \Big) - \frac{\partial}{\partial y} \Big(3y - e^{\sin x} \Big) \right] dx dy = \iint\limits_{K} 4 dx dy \, . \text{ Domeniul } K \text{ va fi un disc: } K = \left\{ \left(x, y \right) \in \mathbb{R}^2 \, \middle| \, x^2 + y^2 \leq 9 \right\} \, . \text{ Se trece la coordonate polare: } x = r \cos t \, , \, \, y = r \sin t \, , \, \, J = r \, \, \text{sin}$$

$$r \in [0,3], t \in [0,2\pi)$$
 . Integrala devine:
$$\int\limits_{C=\partial K} P dx + Q dy = \int_0^3 \biggl(\int_0^{2\pi} 4r \, dr \biggr) dt = 36\pi \ .$$

2. Avem P(x, y) = xy și $Q(x, y) = x^2$. Atunci:

$$\int\limits_{C=\partial K} P dx + Q dy = \iint\limits_{K} \left[\frac{\partial}{\partial x} \Big(x^2 \Big) - \frac{\partial}{\partial y} \Big(xy \Big) \right] dx dy = \iint\limits_{K} x dx dy \ . \ \text{Domeniul} \ K \ \ \text{este de tip dreptunghi}$$

$$K = \left\{ \left(x, y \right) \in \mathbb{R}^2 \,\middle|\, x \in \left[0, 3\right], \, y \in \left[0, 1\right] \right\} \text{ $,$ i integral a devine: } \int\limits_{C = \partial K} P dx + Q dy = \int\limits_{0}^{1} \left(\int\limits_{0}^{3} x \, dx \right) dy = \frac{9}{2} \,.$$

3. Avem P(x, y) = xy și $Q(x, y) = x^2y^3$. Atunci:

$$\int_{C=\partial K} P dx + Q dy = \iint_K \left[\frac{\partial}{\partial x} (x^2 y^3) - \frac{\partial}{\partial y} (xy) \right] dx dy = \iint_K x (2y^3 - 1) dx dy$$
. Domeniul K este de tip

intergrafic: $K = \{(x, y) \in \mathbb{R}^2 | x \in [0, 1], 0 \le y \le 2x \}$. Integrala devine:

$$\int_{0}^{\infty} P dx + Q dy = \int_{0}^{1} \left(\int_{0}^{2x} x (2y^{3} - 1) dy \right) dx = \int_{0}^{1} \left(8x^{5} - 2x^{2} \right) dx = \frac{2}{3}.$$

4. Avem $P(x, y) = y + e^{\sqrt{x}}$ și $Q(x, y) = 2x + \cos y^2$. Atunci:

$$\int\limits_{C=\partial K} P dx + Q dy = \iint\limits_{K} \left[\frac{\partial}{\partial x} \left(2x + \cos y^2 \right) - \frac{\partial}{\partial y} \left(y + e^{\sqrt{x}} \right) \right] dx dy = \iint\limits_{K} dx dy \,. \quad \text{Domeniul} \quad K \quad \text{este} \quad \text{de} \quad \text{tip}$$

 $\text{intergrafic \circi este delimitat de curbele} \quad y=x^2 \quad \text{\circi} \quad y=\sqrt{x} \text{ , } K=\left\{\left(x,y\right)\in\mathbb{R}^2 \left|x\in\left[0,1\right],x^2\leq y\leq\sqrt{x}\right.\right\}.$

Integrala devine:
$$\int_{C=\partial K} P dx + Q dy = \int_0^1 \left(\int_{x^2}^{\sqrt{x}} dy \right) dx = \int_0^1 \left(\sqrt{x} - x^2 \right) dx = \frac{1}{3}.$$

5. $F(x,y) = xy^2\vec{i} + 2x^2y\vec{j}$, cu $P(x,y) = xy^2$ și $Q(x,y) = 2x^2y$. Atunci:

$$\int\limits_{C=\partial K} P dx + Q dy = \iint\limits_{K} \left[\frac{\partial}{\partial x} \Big(2x^2 y \Big) - \frac{\partial}{\partial y} \Big(xy^2 \Big) \right] dx dy = \iint\limits_{K} 2xy \, dx dy \, . \text{ Ecuația dreptei care trece prin punctele}$$

(0,0) și (2,2) este y=x, iar ecuația dreptei care trece prin punctele (0,0) și (2,4) este y=2x.

Domeniul K este de tip intergrafic: $K = \{(x,y) \in \mathbb{R}^2 \mid x \in [0,2], x \le y \le 2x\}$. Integrala devine:

$$\int_{C=\partial K} P dx + Q dy = \int_0^2 \left(\int_x^{2x} 2xy \, dy \right) dx = \int_0^2 3x^3 dx = 12.$$

6. z=-x-y este un plan ce trece prin origine și nu intersectează axele de coordonate în alt punct (se verifică acest lucru prin calcul). Suprafața S este situată în planul z=-x-y și frontiera ei este curba γ (intersecția cu paraboloidul $z=x^2+y^2$). Orientarea normalei la S este în direcția de creștere a lui z iar orientarea lui γ este în sens trigonometric. Conform formulei Stokes avem $\int_{\mathcal{X}} \vec{V} dr = \iint_{S} \operatorname{rot} \vec{V} \cdot \vec{n} \, d\sigma$, unde

câmpul vectorial asociat în mod canonic formei diferențiale este $\vec{V}=y\vec{i}+z\vec{j}+x\vec{k}$ iar ${\rm rot}\vec{V}=-\vec{i}-\vec{j}-\vec{k}$. Suprafața S se parametrizează cartezian, $\vec{r}\left(x,y\right)=x\cdot\vec{i}+y\cdot\vec{j}+\left(-x-y\right)\cdot\vec{k}$, $\overrightarrow{N}=\vec{i}+\vec{j}+\vec{k}$ iar produsul scalar este ${\rm rot}\vec{V}\cdot\vec{N}=-3$, deci $\iint_S {\rm rot}\vec{V}\cdot\vec{n}\,d\sigma=\iint_D -3dxdy$. Pentru a obține $D=pr_{xOy}S$ se "elimină" z din ecuațiile inițiale și avem $x^2+y^2=-x-y$, adică $\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\left(\frac{1}{\sqrt{2}}\right)^2$ (cerc cu centrul în $\left(-\frac{1}{2},-\frac{1}{2}\right)$ și ${\rm raz}$ ă $\frac{1}{\sqrt{2}}$), deci $D=pr_{xOy}S=\left\{(x,y)\in\mathbb{R}^2\left|\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2\leq\left(\frac{1}{\sqrt{2}}\right)^2\right\}$. Se trece la coordonate polare cu $x=-\frac{1}{2}+r\cos t$, $y=-\frac{1}{2}+r\sin t$, jacobianul J=r , cu $r\in\left[0,\frac{1}{\sqrt{2}}\right]$ și $t\in\left[0,2\pi\right]$ și se obține: $\iint_D -3dxdy=-3\int_0^{2\pi}\left(\int_0^{1/\sqrt{2}}rdr\right)dt=-3\sqrt{2}\pi$.

7. Conform formulei Stokes avem $\int\limits_{\gamma} \vec{V} dr = \iint\limits_{S} {\rm rot} \vec{V} \cdot \vec{n} \, d\sigma \, , \, {\rm unde \ câmpul \ vectorial \ asociat \ \hat{n} \ mod \ canonic}$ formei diferențiale este $\vec{V} = x^2 y^3 \vec{i} + \vec{j} + z \vec{k} \ \ {\rm iar \ rot} \ \vec{V} = 0 \vec{i} + 0 \vec{j} - 3 x^2 y^2 \vec{k} \, . \, {\rm Suprafața} \ S \ {\rm se \ parametrizează}$ cartezian: $\vec{r} \left(x, y \right) = x \cdot \vec{i} + y \cdot \vec{j} + \left(\sqrt{1 - x^2 - y^2} \, \right) \cdot \vec{k} \, ,$

 $\overrightarrow{N}_{\mathrm{int}} = -\overrightarrow{N}_{\mathrm{ext}} = \frac{x}{\sqrt{1-x^2-y^2}} \overrightarrow{i} + \frac{y}{\sqrt{1-x^2-y^2}} \overrightarrow{j} - \overrightarrow{k} \quad \text{iar produsul scalar este} \quad \mathrm{rot} \overrightarrow{V} \cdot \overrightarrow{N}_{\mathrm{int}} = 3x^2y^2 \,, \quad \mathrm{deci} \quad \prod_{S} \mathrm{rot} \overrightarrow{V} \cdot \overrightarrow{n} \, d\sigma = \prod_{D} 3x^2y^2 \, dx \, dy \,, \quad \mathrm{unde} \quad D = p r_{xOy} S = \left\{ \left(x,y \right) \in \mathbb{R}^2 \, \middle| \, x^2 + y^2 \leq 1 \right\} \,. \quad \text{Se trece la coordonate} \quad \mathrm{polare} \quad \mathrm{cu} \quad x = r \cos t \,, \quad y = r \sin t \,, \quad \mathrm{jacobianul} \quad J = r \,, \quad \mathrm{cu} \quad r \in \left[0,1 \right] \quad \mathrm{si} \quad t \in \left[0,2\pi \right] \quad \mathrm{si} \quad \mathrm{se obtine:} \quad \prod_{D} -3 \, dx \, dy = 3 \int_0^{2\pi} \left(\int_0^1 r^5 \cos^2 t \cdot \sin^2 t \, dr \, dt \right) \, dt = \left(\ldots \right) = \frac{\pi}{8} \,.$

8. Conform formulei Stokes avem $\int_{\gamma} \vec{V} dr = \iint_{S} \operatorname{rot} \vec{V} \cdot \vec{n} \, d\sigma \text{, unde câmpul vectorial asociat în mod canonic}$ formei diferențiale este $\vec{V} = (z-y)\vec{i} + (x-z)\vec{j} + (y-x)\vec{k} \text{ iar } \operatorname{rot} \vec{V} = 2\left(\vec{i} + \vec{j} + \vec{k}\right). \text{ Suprafața } S \text{ (a triunghiului } ABC \text{) se parametrizează cartezian: } \vec{r} \left(x,y\right) = x\vec{i} + y\vec{j} + c\left(1 - \frac{x}{a} - \frac{y}{b}\right)\vec{k} \text{,}$

 $\overrightarrow{N} = \left(-p, -q, 1\right) = \frac{c}{a}\overrightarrow{i} + \frac{c}{b}\overrightarrow{j} + \overrightarrow{k} \qquad \text{iar} \qquad \text{produsul} \qquad \text{scalar} \qquad \text{este} \qquad \text{rot} \overrightarrow{V} \cdot \overrightarrow{N} = 2\left(\frac{c}{a} + \frac{c}{b} + 1\right), \qquad \text{decision}$ $\iint_{S} \operatorname{rot} \overrightarrow{V} \cdot \overrightarrow{n} \, d\sigma = \iint_{D} 2\left(\frac{c}{a} + \frac{c}{b} + 1\right) dx dy \,, \quad \text{unde} \quad D = pr_{xOy}S = \left\{(x,y) \in \mathbb{R}^2 \,\middle|\, 0 \leq x \leq a, 0 \leq y \leq -\frac{b}{a}x + b\right\}$ (proiecţia pe xOy este triunghiul "plin" OAB). Se obţine:

$$\iint_{D} 2\left(\frac{c}{a} + \frac{c}{b} + 1\right) dxdy = 2\left(\frac{c}{a} + \frac{c}{b} + 1\right) \int_{0}^{a} \left(\int_{0}^{-\frac{b}{a}x + b} dy\right) dx = (\dots) = \left(bc + ca + ba\right).$$

9. $x + \frac{z}{2} = 1$ este un plan ce nu trece prin origine și intersectează Ox în x = 1 și Oz în z = 2. Suprafața

S este situată în planul $x + \frac{z}{2} = 1$ și frontiera ei este curba γ (intersecția cu cilindrul $x^2 + y^2 = 1$).

Alegem orientarea normalei la S în direcția de creștere a lui z iar orientarea lui γ în sens trigonometric.

Conform formulei Stokes avem $\int\limits_{x}^{y} \vec{V} dr = \iint\limits_{x}^{z} {\rm rot} \vec{V} \cdot \vec{n} \, d\sigma$, unde câmpul vectorial asociat în mod canonic

 $\text{formei diferențiale este } \vec{V} = \left(y-z\right)\vec{i} + \left(z-x\right)\vec{j} + \left(x-y\right)\vec{k} \quad \text{iar } \operatorname{rot} \vec{V} = -2\left(\vec{i}+\vec{j}+\vec{k}\right). \quad \text{Suprafața} \quad S$

(situată în planul $x + \frac{z}{2} = 1$) se parametrizează cartezian: $\vec{r}(x, y) = x\vec{i} + y\vec{j} + (2 - 2x)\vec{k}$,

 $\overrightarrow{N} = \left(-p, -q, 1\right) = 2\overrightarrow{i} + 0\overrightarrow{j} + \overrightarrow{k} \text{ iar produsul scalar este } \operatorname{rot} \overrightarrow{V} \cdot \overrightarrow{N} = -6 \text{ , deci } \iint_{S} \operatorname{rot} \overrightarrow{V} \cdot \overrightarrow{n} \, d\sigma = \iint_{D} -6 \, dx dy \text{ ,}$

 $\text{unde } D = pr_{xOy}S = \left\{ \left(x,y\right) \in \mathbb{R}^2 \ \middle| \ x^2 + y^2 \leq 1 \right\}. \text{ Se trece la coordonate polare cu } x = r\cos t \text{ , } y = r\sin t \text{ , } t = r\cos t \text{ .}$

jacobianul J=r , cu $r\in [0,1]$ și $t\in [0,2\pi]$ și se obține: $\iint\limits_{D} -6\,dxdy = -6\int_{0}^{2\pi} \biggl(\int_{0}^{1} r\,dr\biggr)dt = -6\pi\,.$

10. Condițiile teoremei G-O. sunt îndeplinite și avem: $I = \iint\limits_{\partial K} \vec{V} \cdot \vec{n} \, d\sigma = \iiint\limits_K {\rm div} \vec{V} \, dx \, dy \, dz$.

$$\operatorname{div} \vec{V} = \frac{\partial}{\partial x} \Big(x^3 \Big) + \frac{\partial}{\partial y} \Big(x^2 y \Big) + \frac{\partial}{\partial z} \Big(x^2 z \Big) = 5x^2 \,, \quad \text{deci:} \quad I = \iint_D \left(\int_0^a 5x^2 dz \, \right) dx dy = 5a \iint_D x^2 dx dy \,, \quad \text{under} \quad I = \iint_D \left(\int_0^a 5x^2 dz \, \right) dx dy = 5a \iint_D x^2 dx dy \,.$$

 $D = pr_{xOy}K = \left\{ \left(x,y \right) \in \mathbb{R}^2 \,\middle|\, x^2 + y^2 \le R^2 \right\}. \text{ Se trece la coordonate polare cu } x = r\cos t \text{ , } y = r\sin t \text{ ,}$ jacobianul J = r , cu $r \in [0,R]$ și $t \in [0,2\pi]$ și se obține:

$$I = 5a \int_0^{2\pi} \left(\int_0^R r^2 \sin^2 t \cdot r \, dr \right) dt = (...) = \frac{5aR^4}{4} \pi.$$

11.Condițiile teoremei G-O. sunt îndeplinite și avem: $\iint\limits_{\partial K} \vec{V} \cdot \vec{n} \, d\sigma = \iiint\limits_K {\rm div} \vec{V} \, dx dy dz \, .$

$$\mathrm{div}\vec{V} = \frac{\partial}{\partial x}\Big(x^2\Big) + \frac{\partial}{\partial y}\Big(y^2\Big) + \frac{\partial}{\partial z}\Big(z^2\Big) = 2\Big(x+y+z\Big)\,,\quad \mathrm{deci:}\quad I = 2 \iiint_K \big(x+y+z\big)\,dx\,dy\,dz\,\,.\quad \mathrm{Se}\quad \mathrm{trece}\quad \mathrm{lag}(x+y+z)\,dx\,dy\,dz\,\,.$$

coordonate sferice cu $x=r\sin\theta\cos\varphi$, $y=r\sin\theta\sin\varphi$, $z=r\cos\theta$, jacobianul $J=r^2\sin\theta$, $r\in[0,2]$, $\theta\in[0,\pi]$ și $\varphi\in[0,2\pi]$ și se obține:

$$2\iiint_{K} (x+y+z) dx dy dz = 2\int_{0}^{\pi} \int_{0}^{2\pi} \left(\int_{0}^{2} r(\sin\theta\cos\varphi + \sin\theta\sin\varphi + \cos\theta) \cdot r^{2} \sin\theta dr \right) d\varphi d\theta = (...) = 0$$

12. Avem $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, cu $\|\vec{r}\| = \sqrt{x^2 + y^2 + z^2}$ și $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$. Câmpurile vectoriale sunt:

$$\vec{U} = \frac{\vec{r}}{\|\vec{r}\|^3} = \frac{1}{\sqrt{(x^2 + y^2 + z^2)^3}} (x\vec{i} + y\vec{j} + z\vec{k}),$$

$$\vec{V} = \frac{\vec{a} \times \vec{r}}{\|\vec{r}\|^3} = \frac{1}{\sqrt{(x^2 + y^2 + z^2)^3}} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ x & y & z \end{vmatrix} = \frac{1}{\sqrt{(x^2 + y^2 + z^2)^3}} \left((a_2 z - a_3 y) \vec{i} + (a_3 x - a_1 z) \vec{j} + (a_1 y - a_2 x) \vec{k} \right)$$

$$\vec{W} = \|\vec{r}\| \cdot r = \sqrt{x^2 + y^2 + z^2} \left(x\vec{i} + y\vec{j} + z\vec{k} \right).$$

a)
$$\operatorname{div} \vec{U} = \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) + \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) + \frac{\partial}{\partial z} \left(\frac{z}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) =$$

$$= \frac{-2x^2 + y^2 + z^2}{\sqrt{(x^2 + y^2 + z^2)^5}} + \frac{x^2 - 2y^2 + z^2}{\sqrt{(x^2 + y^2 + z^2)^5}} + \frac{x^2 + y^2 - 2z^2}{\sqrt{(x^2 + y^2 + z^2)^5}} = 0;$$

$$\operatorname{div} \vec{V} = \left[\frac{\partial}{\partial x} \left(\frac{a_2 z - a_3 y}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) + \frac{\partial}{\partial y} \left(\frac{a_3 x - a_1 z}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) + \frac{\partial}{\partial z} \left(\frac{a_1 y - a_2 x}{\sqrt{(x^2 + y^2 + z^2)^3}} \right) \right] =$$

$$\operatorname{div} \vec{V} = \left[\frac{\partial}{\partial x} \left[\frac{a_2 z - a_3 y}{\sqrt{(x^2 + y^2 + z^2)^3}} \right] + \frac{\partial}{\partial y} \left[\frac{a_3 x - a_1 z}{\sqrt{(x^2 + y^2 + z^2)^3}} \right] + \frac{\partial}{\partial z} \left[\frac{a_1 y - a_2 x}{\sqrt{(x^2 + y^2 + z^2)^3}} \right] \right]$$

$$= \frac{-3}{\sqrt{(x^2 + y^2 + z^2)^5}} \left[a_2 x z - a_3 x y + a_3 x y - a_1 y z + a_1 y z - a_2 x z \right] = 0;$$

$$\operatorname{div} \vec{\mathbf{W}} = \frac{\partial}{\partial x} \left(x \sqrt{x^2 + y^2 + z^2} \right) + \frac{\partial}{\partial y} \left(y \sqrt{x^2 + y^2 + z^2} \right) + \frac{\partial}{\partial z} \left(z \sqrt{x^2 + y^2 + z^2} \right) = 5 \sqrt{x^2 + y^2 + z^2} = 5 \| \vec{r} \|.$$

b) Fluxul câmpului $\vec{U} = \frac{1}{\sqrt{\left(x^2+y^2+z^2\right)^3}} \left(x\vec{i}+y\vec{j}+z\vec{k}\right)$ nu se poate calcula cu ajutorul formulei Gauss-

Ostrogradski deoarece condițiile teoremei nu sunt îndeplinite (în punctul $(0,0,0) \in K$, componentele câmpului vectorial nu sunt de clasă C^1). Fluxul se va calcula folosind integrala de suprafață (pentru sfera de rază R, centrată în origine): $\iint \vec{U} \cdot \vec{n} \, d\sigma$. Se parametrizează sfera folosind coordonate sferice:

 $x = R \sin \theta \cos \varphi \,, \quad y = R \sin \theta \sin \varphi \,, \quad z = R \cos \theta \,, \quad \theta \in \left[0, \pi\right] \quad \text{si} \quad \varphi \in \left[0, 2\pi\right]. \quad \text{Parametrizarea} \quad \text{este}$ $\vec{r} \left(\theta, \varphi\right) = R \sin \theta \cos \varphi \vec{i} + R \sin \theta \sin \varphi \vec{j} + R \cos \theta \vec{k} \quad \text{iar} \quad \text{câmpul} \quad \text{vectorial} \quad \vec{U} \quad \text{devine:}$ $\vec{U} \left(\vec{r} \left(\theta, \varphi\right)\right) = \frac{1}{R^2} \left(\sin \theta \cos \varphi \vec{i} + \sin \theta \sin \varphi \vec{j} + \cos \theta \vec{k}\right). \quad \text{Vectorii tangenți sunt:}$

$$r_{\theta} = \frac{\partial r}{\partial \theta} = R\cos\theta\cos\varphi\,\vec{i} + R\cos\theta\sin\varphi\,\vec{j} - R\sin\theta\vec{k} \;\; \\ \sin\varphi\,\vec{i} = \frac{\partial r}{\partial \varphi} = -R\sin\theta\sin\varphi\,\vec{i} + R\sin\theta\cos\varphi\,\vec{j} + 0\vec{k} \;\; . \label{eq:r_theta}$$

Vectorul normal este: $\vec{N} \left(\theta, \varphi \right) = r_{\theta} \times r_{\varphi} = R^2 \left(\sin^2 \theta \cos \varphi \, \vec{i} + \sin^2 \theta \sin \varphi \, \vec{j} + \sin \theta \cos \theta \, \vec{k} \right)$ iar produsul scalar $\vec{U} \cdot \vec{N} = \sin \theta$. Obținem astfel: $\iint_{\mathcal{S}} \vec{U} \cdot \vec{n} \, d\sigma = \int_{0}^{2\pi} \left(\int_{0}^{\pi} \sin \theta \, d\theta \, \right) d\varphi = 4\pi \, .$

Fluxul câmpului
$$\vec{V} = \frac{1}{\sqrt{\left(x^2+y^2+z^2\right)^3}}\left(\left(a_2z-a_3y\right)\vec{i} + \left(a_3x-a_1z\right)\vec{j} + \left(a_1y-a_2x\right)\vec{k}\right)$$
 nu se poate calcula

cu ajutorul formulei Gauss-Ostrogradski din aceleași considerente ca în cazul câmpului vectorial U . Fluxul se va calcula folosind integrala de suprafață (pentru sfera de rază R , centrată în origine): $\int_{c}^{c} \vec{V} \cdot \vec{n} \, d\sigma$. Se

procedează ca mai sus (aceeași parametrizare, același vector normal

$$\vec{N}(\theta, \varphi) = R^2 \left(\sin^2 \theta \cos \varphi \vec{i} + \sin^2 \theta \sin \varphi \vec{j} + \sin \theta \cos \theta \vec{k} \right)$$
 iar

 $\vec{V} \left(\vec{r} \left(\theta, \varphi \right) \right) = \frac{1}{R^2} \Big[\left(a_2 \cos \theta - a_3 \sin \theta \sin \varphi \right) \vec{i} + \left(a_3 \sin \theta \cos \varphi - a_1 \cos \theta \right) \vec{j} + \left(a_1 \sin \theta \sin \varphi - a_2 \sin \theta \cos \varphi \right) \vec{k} \Big]$ \$\text{si se obţine produsul scalar } \vec{V} \cdot \vec{N} = 0 \quad \text{Obtinem astfel:} \$\iiint_{\vec{V}} \vec{V} \cdot \vec{n} d\sigma = 0 \end{align*}.

Fluxul câmpului $\vec{W} = \sqrt{x^2 + y^2 + z^2} \left(x \vec{i} + y \vec{j} + z \vec{k} \right)$ se poate calcula cu ajutorul formulei Gauss-Ostrogradski (sunt îndeplinite condițiile teoremei), deci $\iint_S \vec{W} \cdot \vec{n} \, d\sigma = \iiint_K \mathrm{div} \vec{W} \, dx dy dz$. De la punctul a)

avem ${
m div}\vec{{
m W}}={\color{red}5}\sqrt{x^2+y^2+z^2}$, deci pentru calcularea integralei triple folosim trecerea la coordonate sferice: $x=r\sin\theta\cos\varphi$, $y=r\sin\theta\sin\varphi$, $z=r\cos\theta$, jacobianul $J=r^2\sin\theta$ și domeniul parametrilor: $r\in[0,R]$, $\theta\in[0,\pi]$ și $\varphi\in[0,2\pi]$. Obținem :

$$\iiint\limits_K \operatorname{div} \vec{W} \, dx dy dz = \iiint\limits_K 5\sqrt{x^2 + y^2 + z^2} \, dx dy dz = \int_0^{2\pi} \int_0^{\pi} \left(\int_0^R 5r \cdot r^2 \sin \theta \, dr \right) d\theta d\phi = 5\pi R^4.$$