人工智能 认识数据

中山大学 计算机学院

机器学习一般流程

数据 → 特征 → 模型→ 结果

You receive an email from a medical researcher concerning a project that you are eager to work on.

Hi,

I've attached the data file.

Each line contains the information for a single patient and consists of five fields.

We want to predict the last field using the other fields.

Thanks and see you in a couple of days.

The first few rows of the file are as follows:

Nothing looks strange. You put your doubts aside and start the analysis.

Two days later you arrive for the meeting, and before the meeting, you strike up a conversation with a statistician who is working on the project.

SON LINE

Statistician: So, you got the data for all the patients?

Data Miner: Yes. I haven't had much time for analysis, but I do have a few interesting results.

Statistician: Amazing. There were so many data issues with this set of patients that I couldn't do much.

Data Miner: Oh? I didn't hear about any possible problems.

Statistician: But surely you heard about what happened to field 4? It's supposed to be measured on a scale from 1 to 10, with <u>0 indicating a missing value</u>, but because of a data entry error, <u>all 10's were changed into 0's.</u>

Data Miner: Interesting. Were there any other problems?

Statistician: Yes, fields 2 and 3 are basically the same, but I assume that you probably noticed that.

Data Miner: Yes, but these fields were only weak predictors of field 5.

012 232 33.5 0 10.7 020 121 16.9 2 210.1 027 165 24.0 0 427.6 :

Statistician: Anyway, given all those problems, I'm surprised you were able to accomplish anything.

Data Miner: True, but my results are really quite good. Field 1 is a very strong predictor of field 5. I'm surprised that this wasn't noticed before.

Statistician: What? Field 1 is just an identification number.

Data Miner: Nonetheless, my results speak for themselves.

Statistician: Oh, no! I just remembered. We assigned ID numbers after we sorted the records based on field 5. There is a strong connection, but it's meaningless. Sorry.

Lesson: Get to know your data!

012 232 33.5 0 10.7 020 121 16.9 2 210.1 027 165 24.0 0 427.6

6

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field,
 characteristic, or feature

Objects

- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

1)
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Measurement of Length

 The way you measure an attribute is somewhat may not match the attributes properties.

Types of Attributes

- There are different types of attributes
 - Nominal 定类变量
 - Examples: ID numbers, eye color, zip codes
 - Ordinal 定序变量
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval 定距变量
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio 定比变量
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

Distinctness: = ≠

- Order: < >

– Addition: + -

Multiplication: * /

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., <u>nominal</u> attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Attribute Level	Transformation	Comments
Nominal	Any one-to-one mapping	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	$new_value = a * old_value + b$ where a and b are constants 华氏度 = 摄氏度 × 1.8 + 32	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value 1 meter = 3 feet	Length can be measured in meters or feet.

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Important Characteristics of Structured Data

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph and HTML Links


```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers</a>
```

Chemical Data

Benzene Molecule (苯分子): C₆H₆

Ordered Data: Sequential Data

Sequential Data

Time	Customer	Items Purchased
t1	C1	A, B
t2	C3	A, C
t2	C1	C, D
t3	C2	A, D
t4	C2	E
t5	C1	A, E

Customer	Time and Items Purchased
C1	(t1: A,B) (t2:C,D) (t5:A,E)
C2	(t3: A, D) (t4: E)
C3	(t2: A, C)

Ordered Data: Sequence Data

Genomic sequence data

ATCTCTTGGCTCCAGCATCGATGAAGAACGCA
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGT
GAACTGTCAAAACTTTTTAACAACGGATCTCTT
TGTTGCTTCGGCGGCGCCCGCAAGGGTGCCCG
GGCCTGCCGTGGCAGATCCCCAACGCCGGGCC
TCTCTTGGCTCCAGCATCGATGAAGAACGCAG
CAGCATCGATGAAGAACGCAGCGAAACGCGAT
CGATACTTCTGAGTGTTCTTAGCGAACTGTCA
CGGATCTCTTGGCTCCAGCATCGATGAAGAAC
ACAACGGATCTCTTGGCTCCAGCATCGATGAAGAAC
GGATCTCTTGGCTCCAGCATCGATGAAGAAC
GATGAAGAACGCAGCGAAACGCGATATGTAAT

Ordered Data: Time Series Data

Special type of sequential data

Temporal autocorrelation

Ordered Data: Spatio-Temporal Data

Average Monthly Temperature of land and ocean

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

15 10 -5 -10 15 0 0.2 0.4 0.6 0.8 1 Time (seconds)

Two Sine Waves

Two Sine Waves + Noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Outliers

X distribution map

边缘填充: If: |X – mean| > 3*std

Then: Outliers X = mean+/-3*std

均值填充: If: |X – mean| > 3*std Then: Outliers X = mean

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources

- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Discretization
- Attribute Transformation
- Feature creation
- Feature subset selection

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability

Aggregation

SON LINES UNIVERSE OF LINES OF

Variation of Precipitation in Australia

1982-1993的降水量,国土按经纬度分成3030个网格

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis. 数据初步调研与最终分析
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement (无效回抽样)
 - As each item is selected, it is removed from the population
- Sampling with replacement (有放回抽样)
 - Objects are not removed from the population as they are selected for the sample.
 - ◆ In sampling with replacement, the same object can be picked up more than once (每个对象被选中的概率保持不变)
- Stratified sampling (分层抽样)
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

39

Progressive Sampling

- Start with a small sample
- Increase the sample size
- Need to evaluate the sample to judge if it is large enough
- Marginal effect (边际效应)

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Dimensionality Reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

- 变量之间是有一定的相关关系的
- 当两个变量之间有一定相关关系 时,可以解释为这两个变量的信 20, 息有一定的重叠
- 主成分分析是对于原先提出的所。有变量,将重复的变量(关系紧。密的变量)删去多余,建立尽可能少的新变量,使得这些新变量。是两两不相关的
- 这些新变量在反映信息方面尽可等。能保持原有的信息

Discretization

- Discretization: Transform a continuous attribute to categorical attribute
- The best discretization depends on the algorithm being used
- How many categories?
- How to map the values of continuous attributes to these categories?
- How many split points to choose and where to place them?
- Solutions
 - Unsupervised discretization
 - Supervised discretization

Discretization Without Using Class Labels

Supervised Discretization: Entropy (熵)

- Entropy (熵)
 - 熵的概念是由德国物理学家克劳修斯于1865年所提出。熵最初 是被用在热力学方面的
 - 香农1948年的一篇论文《A Mathematical Theory of Communication》是出了**信息熵**的概念,解决了对信息的量化度量问题,并且以后信息论也被作为一门单独的学科
- 要搞清楚一件非常不确定的事,就需要了解大量的信息。相反,如果我们对某件事已经有了较多的了解,我们不需要太多的信息就能把它搞清楚。
- 对于任意一个随机变量 X, 熵定义如下: "变量的不确定性越大, 熵也就越大, 把它搞清楚所需要的信息量也就越大。"

香农外传: http://blog.sciencenet.cn/blog-453322-978153.html

Entropy (熵)

- 世界杯谁是冠军?
- 世界杯赛后问一个知道结果的观众"哪支球队是冠军"?他不愿意直接告诉我,而要让我猜,并且我每猜一次,他要收一元钱才肯告诉我是否猜对了,那么我需要付给他多少钱才能知道谁是冠军呢?
- 我可以把球队编上号,从1到32,然后提问: "冠军的球队在1-16号中吗?"假如他告诉我猜对了,我会接着问: "冠军在1-8号中吗?"假如他告诉我猜错了,我自然知道冠军队在9-16中。这样最多只需要五次,我就能知道哪支球队是冠军
- 谁是世界杯冠军这条消息的信息量值五块钱

Entropy (熵)

- 不需要猜五次就能猜出谁是冠军,巴西、德国、意大利这样的球队得冠军的可能性比美国、越南等队大的多。
- 第一次猜测时不需要把32个球队等分成两个组,而可以把少数几个最可能的球队分成一组,把其它队分成另一组。然后我们猜冠军球队是否在那几只热门队中。
- 重复这样的过程,根据夺冠概率对剩下的候选球队分组, 直到找到冠军队。也许三次或四次就猜出结果。
- 当每个球队夺冠的可能性(概率)不等时,"谁世界杯冠军"的信息量比五比特少。香农指出,它的准确信息量应该是
 - "谁是世界杯冠军"的信息量:
 - = (p1*log p1 + p2*log p2 + . . . +p32*log p32),
 - p1,···p32是32个球队各自夺冠的概率
- 课外阅读:《数学之美》第六章"信息的度量与作用"

Supervised Discretization

- 基于熵的离散化方法
 - 最大化区间的纯度

$$e_i = -\sum_{j=1}^k p_{ij} \log_2 p_{ij}$$

首先,需要定义熵(entropy)。设 k 是不同的类标号数, m_i 是某划分的第 i 个区间中值的个数,而 m_{ij} 是区间 i 中类 j 的值的个数。第 i 个区间的熵 e_i 由如下等式给出

 $p_{ij} = m_{ij}/m_i$ 是第 i 个区间中类 j 的概率(值的比例)。

类别1=X,类别2=0		
p11=3/4, p12=1/4	X X	0 0
p21=1/4, p22=3/4	X 0	0 X

Supervised Discretization

- 熵: 区间纯度的度量
 - 只包含一个类: 熵为0
 - 包含所有类,并且每类出现的概率相等: 熵最大
- 划分连续属性的简单方法:
 - 将初始值切分成两部分,让结果区间产生最小的熵
 - 然后选取熵最大的区间,重复该过程
 - 直到区间数量达到用户指定个数

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Standardization and Normalization

Attribute Transformation

Standardization (x-mean)/sd

Max-Min (x-min)/(max-min) 0 - 1

Sigmod $1/(1+\exp(-x))$ 0 - 1

Tanh $(\exp(x)-\exp(-x))/(\exp(x)+\exp(-x))$ -1 - 1

 $\log \log(x)$

Nesting log(Normalization/Max-Min/Sigmod/Tanh)

1 引入问题

数据 → 预处理 → 特征工程 → 机器学习算法 → 结果

引入问题

模型和算法只是帮助我们逼近这个上限

数据和特征决定了数据挖掘的上限

特征创建(Feature Creation)

- 由原始数据创建新的特征,从而更有效地捕捉原始数据中的重要信息
- 常用方法
 - 特征提取 (Feature Extraction)
 - 空间映射 (Mapping Data to New Space)
 - 特征构造 (Feature Construction)

2 特征创建:特征提取

- 特征提取 (Feature Extraction): 由原始数据 创建新的特征
- 例子: 对图片是否包含人脸进行二分类
 - 原始数据是像素
 - 提取人脸相关的边缘特征、区域特征等

- 常用的特征提取技术都是针对具体领域的
- 数据挖掘用于新领域时,需开发新的特征提取方法

特征创建:空间映射

• 将数据进行空间映射,使用不同的视角挖掘数据

数据空间映射之后,可以更好地提取特征

特征创建:空间映射

• 空间映射: 傅里叶变换

对时间序列实施傅立叶变换, 转换成频率信息明显的表示

特征创建:空间映射

• 空间映射: 傅里叶变换

2 特征创建:空间映射

• 空间映射: 傅里叶变换

噪声图像

去除外围幅值后幅度图

傅里叶变换后幅度图

去噪后的图像

2 特征创建:特征构造

特征构造 (Feature Construction): 原始特征包含了必要信息,但是形式不适合,因此需由原特征构造新特征

- 例子: 人工制品分类
 - 使用不同材料制造:木材、陶土、铜、黄金等
 - 希望根据制造材料对它们进行分类
 - 原始特征: 质量、体积
 - 构造的新特征:密度=质量/体积
- 常用的方法: 使用专家的意见构造特征

3 特征二元化 (Binarization)

- 有些数据挖掘算法要求输入是二元属性形式
- 类别特征包括:
 - 无序类别 (Categorical)
 - 有序类别 (Ordinal)

特征二元化: 无序类别

无序类别(Categorical)

分类值	整数值	X 1	X 2	Хз
blue	0	0	0	0
green	1	0	0	1
red	2	0	1	0
black	3	0	1	1
white	4	1	0	0

 独热编码(One hot Encoding): 把每个无序特征转 化为一个数值向量

分类值	X 1	X 2	Х з	X 4	X 5
blue	1	0	0	0	0
green	0	1	0	0	0
red	0	0	1	0	0
black	0	0	0	1	0
white	0	0	0	0	1

特征二元化: 有序类别

有序类别 (Ordinal)

向量表示方法 (Multi-hots Encoding): 值之间有顺序的含义

当status特征向量输入模型时,对于status这个类别特征模型会学习出w1,w2,w3三个权重,如果是good的话将会是w1w2w3的叠加,如果取值为bad的话只有w1,从而体现出有序性

3 特征二元化:特征组合

- 基本特征仅仅是真实特征分布在低维空间的映射,不足以描述真实分布,加入组合特征 是为了在更高维空间拟合真实分布,使得预测更准确
- 线性模型对于非线性关系缺乏准确刻画,特征组合正好可以加入非线性表达,增强模型的表达能力
- 基本特征可以认为是用于全局建模,组合特征更加精细,是个性化建模,所以基本特征 +组合特征兼顾了全局和个性化
- 可以通过笛卡尔乘积的方式来组合2个或多个特征
- 例如有两个类别特征color和light,分别取值red, green, blue和on, off。两个特征可以
 分别转化为3维和2维的向量,对他们做笛卡尔乘积转化后可以组合出6维的向量

X	on	off
red		
green		
blue		

Feature Creation

连续特征 (continuous features)

Student ID	Age	Weight(kg)	Height(cm)
0	18	56	174
1	21	61	176
2	25	58	168

• 连续特征处理:

MinMax Scale:

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

- Log transform: $z_i = \log(1 + x_i)$

描述统计特征: min max mean median mode std var ...

特征二元化:例子

• 一学生属性如下,如何转化为能够输入模型的特征向量?

Student ID	age	weight	height	gender	status
0	18	65	178	M	Bad

- 连续特征age、weight、height 进行MinMax scale: [0, 0.29, 1]
- 无序特征gender进行One hot Encoding: [1, 0]
- 有序特征status向量化: [1, 0, 0]
- 最终表示学生0的特征向量为: [0, 0.29, 1, 1, 0, 1, 0, 0]

3 特征二元化: 例子

• 时间信息包含有丰富的数据意义

- 例如: 2017-10-01 16:38:43

Year	Month	Day of Month	Week	Holiday
2017	10	1	Sunday	Yes

Season	Hour Type	Day of Holiday	Hour of Day
Autumn	Afternoon	1	16/24

3 特征二元化: 例子

- 地理位置信息包含有丰富的数据意义
 - 例如:广东省广州市番禺区大学城

Province	City	Area	Distribution	City-level
广东	广州	番禺区	东南	1

Longitude	Latitude	Area Type	Temperature type
113.23	23.16	学校	Hot

案例分析:客户用电异常行为分析

- 国家电网提供了88436名用户,2014~2016年每 天的用电数据
- 基于用户的用电数据, 挖掘窃电用户行为特征, 识别窃电用户, 这是一个二分类问题

案例分析: 客户用电异常行为分析

• 观察问题

- 一 窃电用户平均用电度数偏高
- 一 窃电用户用电量瞬时波幅偏高

• 特征工程

用户用电度数最大值、均值、中位数

案例分析: 客户用电异常行为分析

观察问题

- 一 窃电用户用电量的波动性比较大
- 非窃电用户用电的稳定性比较强

• 特征工程

- 用户用电度数标准差、四分位数、异常值的个数
- 一稳定性衡量由前后等长一段 时间的数据相似度计算

4

案例分析: 客户用电异常行为分析

• 空间映射

- 用户用电数据由一维向量转 换成二维矩阵
- 一 二维矩阵转换成灰度图

• 观察问题

- 一 窃电用户的图形黑白相间
- 非窃电用户的图形相对空旷

• 特征工程

用卷积神经网络对图像进行 自动化特征提取

窃电用户

非窃电用户

将7周用电量数据转换成7*7灰度图矩阵

案例分析: 客户用电异常行为分析

用户用电稳定性特征

用户用电趋势性特征

用户用电Pool特征

复赛			
A榜	B榜		
排名		队伍名称	最高得分(B)
1		我们又回来了-美林数据	0.94274
2		隐马尔可夫联盟	0.93373
3		打酱油`拎壶冲	0.92871
4		TNT_000_	0.92564

Another way to reduce dimensionality of data

Redundant features

- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

• Techniques:

- Brute-force approaches (暴力):
 - Try all possible feature subsets as input to data mining algorithm
- Embedded approaches (嵌入):
 - Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches (过滤):
 - Features are selected before data mining algorithm is run
- Wrapper approaches (包装):
 - Use the data mining algorithm as a black box to find best subset of attributes

- Brute-force approaches:
 - (1) 产生过程
 - (2) 评价函数
 - (3) 停止准则
 - (4) 验证过程

- Embedded approaches
 - 学习器自动选择特征
 - 正则化 (L1、L2): 正则化主要是将L1/L2范数作为惩罚项添加到损失函数上,由于正则项非零,这就迫使那些弱的特征所对应的系数变成0。
 - 决策树 (熵、信息增益): 决策树算法在树增长过程的每个递归步都必须选择一个特征,将样本集划分成较小的子集,选择特征的依据通常是划分后子节点的纯度,划分后子节点越纯,则说明划分效果越好,可见决策树生成的过程也就是特征选择的过程
 - 深度学习: 从神经网络的中间层的某一层输出可作为特征

- Filter approaches:
- 思路:特征和目标变量之间的关联
 - 统计检验,如卡方检验、t检验
 - 相关系数,如皮尔森相关系数、
 - 互信息和最大信息系数 (MIC)

	适用范围	是否标准化	计算复杂度	鲁棒性
Pearson	线性数据	是	低	低
spearman	线性、简单单调非线性数据	是	低	中等
Kendall	线性、简单单调非线性数据	是	低	中等
阀值相关	线性、非线性数据	是	ョ	高
最大相关系数	线性、非线性数据	是	高	中等
相位同步相关	时变序列	是	中等	中等
距离相关	线性、非线性数据	是	中等	迴
核密度估计(KDE)	线性、非线性数据	否	ョ	间
k-最邻近距离(KNN)	线性、非线性数据	否	硘	峘
MIC	线性、非线性数据	是	低	迴

- Wrapper approaches:
- 思路:通过模型选择特征
 - 构建单个特征的模型,通过模型的准确性为特征排序
 - 训练能够对特征打分的预选模型,如RandomForest、
 Logistic Regression

医学数据集:

Leukemia 7129×72

• Colon 2000×62

特征样例:

sp.	Sample 1	Sample 2	• • • • •	Sample k
Gene	(Cancer)	(Normal)		
Gene 1	29	19	••••	16
Gene 2	5	17	••••	40
		••••		
Gene n	13	8	••••	2

特征选择结果:

Leukemia (SVM)

Number of genes	Train accuracy	Test accuracy
100	100	99.31
50	100	98.276
34	100	99.31
20	100	98.621
10	100	98.621
8	100	96.552
5	100	95.172
3	100	92.759
1	92.093	78.966

特征选择结果:

Colon (SVM)

Number of genes	Train accuracy	Test accuracy
100	100	80.4
50	100	80.8
33	100	82
20	100	79.2
10	100	78.8
8	100	77.6
5	99.189	75.6
3	95.405	77.6
1	80	71.6

选择有效的特征能提高预测准确性!

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p 4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance (闵可夫斯基距离)

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance (汉明距离), which
 is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

```
M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
```

Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

$$p = 1000000000$$

 $q = 0000001001$

```
M_{01} = 2 (the number of attributes where p was 0 and q was 1) M_{10} = 1 (the number of attributes where p was 1 and q was 0) M_{00} = 7 (the number of attributes where p was 0 and q was 0) M_{11} = 0 (the number of attributes where p was 1 and q was 1)
```

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

$$\cos\left(\frac{1}{\sqrt{2}}\right)$$
 公式(1)+

$$\cos(\theta) = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$

$$= \frac{(x_1, y_1) \cdot (x_2, y_2)}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \times ||\mathbf{b}||^{+}}$$

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product and ||d|| is the length of vector d.

Example:

$$d_1 = 3 205000200$$

$$d_2 = 100000102$$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

- 将向量根据坐标值,绘制到向量空间中。
- 求得夹角,得出夹角的余弦值,用于代表两个向量的相似性
- 夹角越小,余弦值越接近于1,它们的**方向**更加吻合,则越相似

Correlation (PCC皮尔森相关性)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$\begin{aligned} p_k' &= (p_k - \textit{mean}(p)) \, / \, \textit{std}(p) \\ q_k' &= (q_k - \textit{mean}(q)) \, / \, \textit{std}(q) \\ &\quad \textit{correlation}(p, q) = \frac{1}{n} \, p' \bullet q' \\ r &= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right) \end{aligned}$$

$$r = \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

先标准化,再内积;

Cosine vs PCC: 标准化的过程不同

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Thanks