Monte Carlo Methods

Univariate

Nipun Batra

June 14, 2023

IIT Gandhinagar

Introduction

General Form

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \tag{1}$$

Using Monte Carlo methods, we can estimate the above expectation by sampling x_i from p(x) and computing the average of $f(x_i)$.

$$\mathbb{E}_{x \sim p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 (2)

where $x_i \sim p(x)$.

1

Estimating Pi using Monte Carlo (Part 1)

We can estimate the value of pi using Monte Carlo methods by considering a unit square with a quarter circle inscribed within it.

- Let p(x) be defined over the unit square using the uniform distribution in two dimensions, i.e., p(x) = U(x) = 1 for x ∈ [0,1]².
- Let f(x) be the indicator function defined as follows:

$$f(x) = \begin{cases} \mathsf{Green}(1), & \text{if } x \text{ falls inside the quarter circle,} \\ \mathsf{Red}(0), & \text{otherwise.} \end{cases}$$

Estimating Pi using Monte Carlo (Part 1)

• Or, we can write f(x) to be the following:

$$f(x) = \begin{cases} 1, & \text{if } x_1^2 + x_2^2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Or, using the indicator function, we can write f(x) to be the following:

$$f(x) = \mathbb{I}(x_1^2 + x_2^2 \le 1)$$

Estimaing prior predictive distribution

- Let $p(\theta)$ be the prior distribution of parameter $\theta \in R^2$. Say, for example, $p(\theta_i) = \mathcal{N}(0,1) \forall i$.
- Let $p(y|\theta,x)$ be the likelihood function. Say, for example, $p(y|\theta,x) = \mathcal{N}(\theta_0 + \theta_1 x, 1)$.
- Then, the prior predictive distribution is given by:

$$p(y|x) = \int p(y|\theta, x)p(\theta)d\theta \tag{3}$$

$$p(y|x) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\theta_i, x)$$
 (4)

where $\theta_i \sim p(\theta)$.

- Let p(x) be the target distribution from which we want to sample.
- Let q(x) be a proposal distribution from which we can sample.
- Let M be a constant such that $M \ge \frac{p(x)}{q(x)} \forall x$.
- Then, we can sample from p(x) by sampling from q(x) and accepting the sample with probability $\frac{p(x)}{Mq(x)}$.

Proof of Rejection Sampling

Acceptance Probability $\alpha(x)$

$$\alpha(x) = \frac{p(x)}{Mq(x)} \tag{5}$$

Bayes Rule for Acceptance

$$P(Sample|Accept) = \frac{P(Accept|Sample)P(Sample)}{P(Accept)}$$
 (6)

P(Sample)

We draw samples from q(x), so P(Sample) = q(x).

Proof of Rejection Sampling

Further,
$$P(Accept|Sample) = \alpha(x) = \frac{p(x)}{Mq(x)}$$
.

Finally, $P(Accept) = \int P(Accept|Sample)P(Sample)dSample = \int \alpha(x)q(x)dx = \frac{1}{M}\int p(x)dx = \frac{1}{M}$.

P(Accept)

$$P(Accept) = \frac{1}{M} \tag{7}$$

Thus,
$$P(Sample|Accept) = \frac{p(x)}{Mq(x)} \times \frac{q(x)}{1/M} = p(x)$$
.

Thus, we have shown that the samples we accept are distributed according to p(x).

Challenges with Rejection Sampling

- Rejection sampling is inefficient when the target distribution is very different from the proposal distribution.
- In this case, we will reject a lot of samples.
- This is a problem when sampling from high-dimensional distributions.
- Acceptance probability $\alpha(x)$ is very low.