#_ Becoming a Data Scientist [the StudyPlan]

Phase 1: Foundational Knowledge

Duration: 2 months

1. Mathematics

- Clinear Algebra (15 hours)
 - Study concepts like vectors, matrices, eigenvalues, and eigenvectors.
 - Resources: Khan Academy's Linear Algebra course Khan Academy Linear Algebra
- Calculus (15 hours)
 - Learn about differentiation, integration, limits, and derivatives.
 - Resources: Khan Academy's Calculus courses Khan AcademyCalculus
- O Probability and Statistics (15 hours)
 - Study probability theory, random variables, distributions, and basic statistics.
 - Resources: Khan Academy's Probability and Statistics courses Khan Academy Probability and Statistics

2. **Programming**

- O Python (60 hours)
 - Syntax and Basic Concepts (10 hours)
 - Data Structures (15 hours)
 - Control Structures (10 hours)
 - Functions (10 hours)
 - Object-Oriented Programming (15 hours)
 - Resources: Python.org's official tutorial Python.org
 Official Tutorial
- O R (optional) (20 hours)
 - If you choose R as well, allocate time for syntax and basic concepts.
 - Resources: "R for Data Science" by Hadley Wickham and Garrett Grolemund R for Data Science

Phase 2: Data Manipulation and Visualization

Duration: 2 months

1. Data Manipulation

- O Numpy (Python) (20 hours)
 - Learn how to work with arrays and matrices.
 - Resources: Numpy documentation Numpy Documentation
- O Pandas (Python) (30 hours)
 - Study data structures like Series and DataFrames for data manipulation.
 - Resources: "Python for Data Analysis" by Wes McKinney

 Python for Data Analysis
- Dplyr (R) (20 hours)
 - If you chose R, learn data manipulation using dplyr.
 - Resources: DataCamp's "Introduction to the Tidyverse" course <u>Introduction to the Tidyverse</u>

2. Data Visualization

- O Matplotlib (Python) (20 hours)
 - Start with basic plotting techniques.
 - Resources: Matplotlib documentation <u>Matplotlib</u>

 Documentation
- Seaborn (Python) (20 hours)
 - Explore more advanced and aesthetic visualizations.
 - Resources: Seaborn documentation Seaborn Documentation
- ggplot2 (R) (20 hours)
 - If you chose R, learn data visualization using ggplot2.
 - Resources: "Data Visualization with ggplot2" by Hadley Wickham Data Visualization with ggplot2
- O Interactive Visualization Tools (10 hours)
 - Explore libraries like Plotly and Bokeh for interactive visualizations.
 - Resources: Plotly documentation Plotly Documentation

📊 Phase 3: Exploratory Data Analysis and Preprocessing

Duration: 1 month

1. Exploratory Data Analysis (EDA) (20 hours)

- Study techniques like histograms, scatter plots, box plots, and correlation matrices.
- Resources: DataCamp's "Exploratory Data Analysis in Python" course Exploratory Data Analysis in Python

2. Feature Engineering (15 hours)

- Understand techniques to create new features from existing data.
- Resources: "Feature Engineering for Machine Learning" by Alice Zheng and Amanda Casari <u>Feature Engineering for Machine</u> Learning

3. Data Cleaning (10 hours)

- Learn about identifying and handling missing values, duplicates, and inconsistencies.
- Resources: DataCamp's "Cleaning Data in Python" course Cleaning Data in Python

4. Handling Missing Data (10 hours)

- Study methods like imputation and understand the implications of missing data.
- O Resources: "Handling Missing Data in R" on DataCamp <u>Handling</u>

 <u>Missing Data in R</u>

5. Data Scaling and Normalization (5 hours)

- Understand the importance of scaling and normalizing data for certain algorithms.
- O Resources: "Feature Scaling in Machine Learning" on Analytics Vidhya Feature Scaling in Machine Learning

6. Outlier Detection and Treatment (10 hours)

- O Learn how to identify and handle outliers in your data.
- O Resources: Techniques of Outlier Detection and Treatment

	4: Machine Learning 3 months
1.Super	vised Learning: Regression (25 hours)
•	Linear Regression (10 hours)
	Polynomial Regression (5 hours)
	Regularization Techniques (10 hours)
\bigcirc	Resources: "Introduction to Machine Learning with Python" by
	Andreas C. Müller and Sarah Guido <u>Introduction to Machine</u>
	Learning with Python
2. Super	vised Learning: Classification (35 hours)
\bigcirc	Logistic Regression (10 hours)
\bigcirc	k-Nearest Neighbors (k-NN) (5 hours)
\bigcirc	Support Vector Machines (SVM) (10 hours)
\bigcirc	Decision Trees (5 hours)
\bigcirc	Random Forest (5 hours)
\bigcirc	Gradient Boosting (10 hours)
\bigcirc	Resources: Coursera's "Machine Learning" by Andrew Ng Machin
	Learning
3. Unsup	ervised Learning: Clustering (15 hours)
\bigcirc	K-means (5 hours)
\bigcirc	DBSCAN (5 hours)
\bigcirc	Hierarchical Clustering (5 hours)
\bigcirc	Resources: "Introduction to Unsupervised Learning" on
	DataCamp Introduction to Unsupervised Learning
4.Unsup	pervised Learning: Dimensionality Reduction (15 hours)
\bigcirc	Principal Component Analysis (PCA) (5 hours)
_	t-Distributed Stochastic Neighbor Embedding (t-SNE) (5 hours
\bigcirc	Linear Discriminant Analysis (LDA) (5 hours)
\bigcirc	Association Rule Learning (5 hours)
\bigcirc	Resources: Introduction to Unsupervised Learning
5.Model	Evaluation and Validation (20 hours)
\bigcirc	Cross-validation (5 hours)
\bigcirc	Hyperparameter Tuning (5 hours)
\bigcirc	Model Selection Techniques (5 hours)

<pre>O Evaluation Metrics (5 hours)</pre>	
O Resources: scikit-learn documentation on Model Selection and	k
Evaluation scikit-learn Model Selection and Evaluation	
Phase 5: Deep Learning	
Duration: 3 months	
1.Neural Networks (20 hours)	
○ Perceptron (5 hours)	
○ Multi-Layer Perceptron (MLP) (15 hours)	
Resources: Coursera's "Neural Networks and Deep Learning" by	1
Andrew Ng <u>Neural Networks and Deep Learning</u>	
2.Convolutional Neural Networks (CNNs) (25 hours)	
○ Image Classification (10 hours)	
Object Detection (10 hours)	
○ Image Segmentation (5 hours)	
 Resources: Deep Learning Specialization on Coursera by Andro 	∋W
Ng <u>Deep Learning Specialization</u>	
3.Recurrent Neural Networks (RNNs) (20 hours)	
Sequence-to-Sequence Models (10 hours)	
○ Text Classification (5 hours)	
○ Sentiment Anαlysis (5 hours)	
O Resources: "Natural Language Processing Specialization" on	
Coursera by deeplearning.ai <u>Natural Language Processing</u>	
<u>Specialization</u>	
4.Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) (15	
hours)	
○ Time Series Forecasting (10 hours)	
C Language Modeling (5 hours)	
○ Resources: "Sequence Models" course on Coursera by	
deeplearning.ai <u>Sequence Models</u>	
5.Generative Adversarial Networks (GANs) (15 hours)	
○ Image Synthesis (5 hours)	
<pre>O Style Transfer (5 hours) O Data Augmentation (5 hours)</pre>	
\ / DULU AUMENLULAUN (J. 1884)	

O Resources: Generalive Adversarial Networks (GANS)
Specialization" on Coursera by deeplearning.ai Generative
Adversarial Networks (GANs) Specialization
Phase 6: Advanced Topics
Duration: 3 months
1.Natural Language Processing (NLP) (30 hours)
<pre>Text Preprocessing (10 hours)</pre>
<pre>O Word Embeddings (10 hours)</pre>
Recurrent Neural Networks for NLP (5 hours)
Transformer Models (e.g., BERT, GPT) (5 hours)
O Resources: "Natural Language Processing in Action" by Hobson
Lane, Cole Howard, and Hannes Hapke <u>Natural Language</u>
Processing in Action
2. Time Series Analysis (20 hours)
<pre>Time Series Decomposition (5 hours)</pre>
○ Autoregressive Integrated Moving Average (ARIMA) (5 hours)
○ Seasonal ARIMA (SARIMA) (5 hours)
<pre> Exponential Smoothing Methods (5 hours) </pre>
O Prophet (5 hours)
Resources: "Time Series Analysis and Its Applications" by
Robert H. Shumway and David S. Stoffer Time Series Analysis
and Its Applications
<pre>Phase 6: Advanced Topics (Continued)</pre>
Duration: 3 months
3.Recommender Systems (15 hours)
Collaborative Filtering (5 hours)
○ Content-Based Filtering (5 hours)
○ Matrix Factorization (5 hours)
○ Hybrid Methods (5 hours)
O Resources: "Recommender Systems Handbook" by Francesco Ricci,

Lior Rokach, and Bracha Shapira <u>Recommender Systems Handbook</u>

4.Causal Inference (15 hours)
○ Experimental Design (5 hours)
○ Observational Studies (5 hours)
O Propensity Score Matching (5 hours)
Instrumental Variable Analysis (5 hours)
O Resources: "Causal Inference: What If" by Miguel A. Hernán
and James M. Robins <u>Causal Inference: What If</u>
5. Advanced Deep Learning (25 hours)
○ Advanced Architectures (10 hours)
○ Generative Models (10 hours)
Advanced Techniques for NLP and Computer Vision (5 hours)
O Resources: "Dive into Deep Learning" by Aston Zhang, Zachary
C. Lipton, and Mu Li <u>Dive into Deep Learning</u>
6.Bayesian Statistics and Probabilistic Programming (20 hours)
O Bayesian Inference (5 hours)
Markov Chain Monte Carlo (MCMC) (5 hours)
Probabilistic Graphical Models (5 hours)
○ Stan, PyMC3, or Edward (5 hours)
O Resources: "Probabilistic Programming & Bayesian Methods for
Hackers" by Cam Davidson-Pilon Probabilistic Programming &
Bayesian Methods for Hackers
Phase 7: Big Data Technologies
Duration: 2 months
1.Cloud Services (15 hours)
Ocloud Providers (5 hours)
○ AWS Services (Optional) (10 hours)
O Resources: AWS Documentation AWS Documentation
2. Spark (20 hours)
○ Understanding RDDs (5 hours)
O DataFrames (5 hours)
O MLlib (10 hours)
O Resources: "Learning Spark" by Holden Karau, Andy Konwinski,
Patrick Wendell, and Matei Zaharia Learning Spark

3. NoSQL Databases (15 hours)
○ MongoDB (5 hours)
○ Cassandra (5 hours)
O HBase and Couchbase (5 hours)
Resources: MongoDB Documentation MongoDB Documentation
4.Stream Processing Frameworks (10 hours)
○ Apache Kafka (5 hours) ○ Apache Flink (2.5 hours)
○ Apache Storm (2.5 hours) ○ Resources: Apache Kafka
Documentation Apache Kafka
<u>Documentation</u>
🚻 Phase 8: Data Visualization and Reporting
Duration: 1 month
1. Dashboarding Tools (15 hours)
○ Tableau (5 hours)
O Power BI (5 hours)
Dash (Python) (2.5 hours)
<pre>O Shiny (R) (2.5 hours)</pre>
O Resources: Tableau Public Gallery
O Resources: Power BI Learning Resources Power BI Learning
Resources
Resources: Plotly Dash Documentation Plotly Dash
Documentation
O Resources: Shiny Gallery Shiny Gallery
2. Storytelling with Data (10 hours)
— "Storytelling with Data" by Cole Nussbaumer Knaflic (Book)
○ Resources: "Storytelling with Data" by Cole Nussbaumer Knaflic
Storytelling with Data
3. Effective Communication (5 hours)
"Communicating Data Science Results" on Coursera
O Resources: "Communicating Data Science Results" on Coursera
by the University of Washington Communicating Data Science

Results

Phase 9: Domain Knowledge and Soft Skills

Duration: Ongoing

1. Industry-specific Knowledge (Ongoing)

O Stay updated with industry trends, use cases, and challenges.

2. Problem-solving (Ongoing)

Regularly solve coding challenges and participate in data science competitions.

3. Communication Skills (Ongoing)

Engage in discussions, write blog posts, and present your findings.

4. Time Management (Ongoing)

O Continuously adjust your schedule based on your progress and goals.

5. **Teamwork** (Ongoing)

Collaborate on projects, join data science communities, and attend meetups.

Phase 10: Ethical Considerations and Bias in Data Science

Duration: Ongoing

1. Fairness in Machine Learning (Ongoing)

O Follow recent research and guidelines on bias and fairness in AI.

2. Bias Detection and Mitigation (Ongoing)

Stay informed about techniques and tools for detecting and mitigating bias.

3. Privacy and Data Security (Ongoing)

Keep up with best practices and regulations related to data privacy.

O Study strategies to optimize model performance and

Phase 11: Deployment and Productionisation

scalability.