第四章 决策树

By Xian2207, 13689903575, wszhangxian@126.com

4.1 信息熵和信息增益

4.1.1 名词定义

[1] 信息熵 information entropy: 度量样本纯度的一种指标。公式如下

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k . \tag{4.1}$$

Ent - 信息熵的缩写;

D - 样本空间;

y - 为分类数目,例如二分类,y=2;

pk - 某样本所占样本总数的比例,例如二分类,正样本 10 个,负样本 5 个,则 pk 为 10/15 或 5/15;

[2] <mark>信息增益 information gain:</mark> 分支节点的权值,其值越高,代表该属性来划分类的纯度越高。用信息增益划分是 ID3 决策树的算法核心。

$$\operatorname{Gain}(D, a) = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) . \tag{4.2}$$

V - 某一属性子样本的总数;

D^v - 子样本占样本空间的个数;

D - 样本空间;

|| - 求绝对值。

4.1.2 举例 I 计算某属性的信息熵和增益

[1] 总样本空间

# cc	olor	root	knock	pattern	umbilicus	touch	label
1	1	1	1	1	1	1	1
2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
4	1	1	2	1	1	1	1
5	3	1	1	1	1	1	1
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
8	2	2	1	1	2	1	1
9	2	2	2	2	2	1	0
10	1	3	3	1	3	2	0
11	3	3	3	3	3	1	0
12	3	1	1	3	3	2	0
13	1	2	1	2	1	1	0
14	3	2	2	2	1	1	0
15	2	2	1	1	2	2	0
16	3	1	1	3	3	1	0
17	1	1	2	2	2	1	0

[2] 子样本

D1

# c	olor	root	knock	pattern	umbilicus	touch	label
1	1	1	1	1	1	1	1
4	1	1	2	1	1	1	1
6	1	2	1	1	2	2	1

D3

15 2

[3]计算流程

A:求 Ent(D)

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

B:求 Ent(D^V)

$$\begin{split} \operatorname{Ent}(D^1) &= -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000 \;, \\ \operatorname{Ent}(D^2) &= -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918 \;, \\ \operatorname{Ent}(D^3) &= -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722 \;, \end{split}$$

C:求 Gain(D, color)

$$Gain(D, 色泽) = Ent(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} Ent(D^{v})$$

$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right)$$

$$= 0.109.$$

4.1.3 举例 Ⅱ 计算根蒂属性的信息熵和增益

[1] 总样本空间

# cc	olor	root	knock	pattern	umbilicus	touch	label
1	1	1	1	1	1	1	1
2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
4	1	1	2	1	1	1	1
5	3	1	1	1	1	1	1
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
8	2	2	1	1	2	1	1
9	2	2	2	2	2	1	0
10	1	3	3	1	3	2	0
11	3	3	3	3	3	1	0
12	3	1	1	3	3	2	0
13	1	2	1	2	1	1	0

14	3	2	2	2	1	1	0
15	2	2	1	1	2	2	0
16	3	1	1	3	3	1	0
17	1	1	2	2	2	1	0

[2] 子样本

D1

D1							
# cc	olor	root	knock	pattern	umbilicus	touch	label
1	1	1	1	1	1	1	1
2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
4	1	1	2	1	1	1	1
5	3	1	1	1	1	1	1
12	3	1	1	3	3	2	0
16	3	1	1	3	3	1	0
17	1	1	2	2	2	1	0
D2							
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
8	2	2	1	1	2	1	1
9	2	2	2	2	2	1	0
13	1	2	1	2	1	1	0
14	3	2	2	2	1	1	0
15	2	2	1	1	2	2	0

D3

10 1 3 3 1 3 2 0

11 3 3 3 3 1 0

[3]计算流程

A:求 Ent(D)

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

B:求 Ent(D^V)

$$Ent(D1) = -[(5/8)*log2(5/8) + (3/8)*log2(3/8)] = 0.95443;$$

$$Ent(D2) = -[(3/7)*log2(3/7) + (4/7)*log2(4/7)] = 0.98523;$$

Ent(D3) =
$$-[(0/2)*log2(0/2) + (2/2)*log2(2/2)] = 0$$
;

C:求 Gain(D, root)

Gain(D, root) = Ent(D) - sum[(D
v
/D)*Ent(D v)]
= 0.998 - [(8/17)*0.95443 + (7/17)*0.98523 + (0/2)*0]
= 0.14317

总结:

- (1) 任何属性的信息熵是一样的,但该属性的信息增益却不一样;
- (2) 计算信息增益,需对该属性的值先排序如 1,2,3,然后再计算;
- (3) 把第一列序号考虑进去,由序列号计算的信息增益远大于 color, root, knock,...etc.;
- (4) 信息增益划分偏好属性值多的属性,这样不利于学习器泛化能力的展示。

4.2 信息增益率

4.2.1 信息增益率定义

$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)} , \qquad (4.3)$$

其中

$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$
(4.4)

4.4 式称为<mark>属性的固定值(intrinsic value)</mark>。当属性的取值越多,D^v的空间越大,则 4.4 式的值越大,即 4.3 式的分母越大,从而平衡信息增益准则偏好属性值多的影响。该方法是 C4.5 决策树算法的核心。

4.2.2 举例计算 color 属性的增益率

IV(alpha) = -[(D1/D)*log2(D1/D) + (D2/D)*log2(D2/D) + (D3/D)*log2(D3/D)]

= -[(6/17)*log2(6/17)+(6/17)*log2(6/17)+(5/17)*log2(5/17)]

= 1.5799

 $Gain_ratio(D, color) = 0.109/1.5799$

= 0.068987

4.3 基尼指数

4.3.1 基尼指数定义

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

$$= 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2.$$

$$(4.5)$$

Gini(D) 反映了从数据集 D 中随机抽取两个样本,其类别标记不一致的概率。因此, Gini(D) 越小,则数据集 D 的纯度越高。

$$\operatorname{Gini_index}(D, a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v) . \tag{4.6}$$

同上, 基尼指数越小, 纯度越高, 可作为属性划分依据。

4.3.2 举例计算 color 属性的基尼指数

[1]计算流程

A:
$$D1 = 6$$
; $D2 = 6$; $D3 = 5$; $D = 17$;

Gini(D3) =
$$1 - [(1/5)*(1/5) + (4/5)*(4/5)]$$

= 0.32;

C: Gini_index =
$$(6/17)*0.5 + (6/17)*0.44444 + (5/17)*0.32$$

= 0.42744

4.4 预剪枝

以下为预剪枝计算案例。

4.4.1 训练集

#	color	root	knock	pattern	umbilicus	touch	label
1	1	1	1	1	1	1	1
2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
10	1	3	3	1	3	2	0
14	3	2	2	2	1	1	0
15	2	2	1	1	2	2	0
16	3	1	1	3	3	1	0
17	1	1	2	2	2	1	0

4.4.2 计算增益

[1] 以 color 为基准的样本空间变为

D1

#	color	root	knock	pattern	umbilicu	IS	touch label
1	1	1	1	1	1	1	1
6	1	2	1	1	2	2	1
10	1	3	3	1	3	2	0
17	1	1	2	2	2	1	0

D2

color root knock pattern umbilicus touch label

2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
7	2	2	1	2	2	2	1
15	2	2	1	1	2	2	0

D3

#	color	root	knock	pattern	umbilicu	S	touch	label
14	3	2	2	2	1	1	0	
16	3	1	1	3	3	1	0	

[2]计算信息熵

Ent(D) =
$$-[(5/10)*log2(5/10) + (5/10)*log2(5/10)] = 1;$$

Ent(D1) =
$$-[(2/4)*log2(2/4) + (2/4)*log2(2/4)] = 1;$$

Ent(D2) =
$$-[(3/4)*log2(3/4) + (1/4)*log2(1/4)] = 0.81128;$$

Ent(D3) =
$$-[(0/2)*log2(0/2) + (2/2)*log2(2/2)] = 0;$$

[3]计算信息增益

Gain(D, color) = 1 - (1*(4/10) + 0.81128*(4/10) + 0*(2/10)) = 0.27549;

同理,以 root 为基准

D1

#	color	root	knock	pattern	umbilicu	s t	ouch	label
1	1	1	1	1	1	1	1	
2	2	1	2	1	1	1	1	
3	2	1	1	1	1	1	1	
16	3	1	1	3	3	1	0	
17	1	1	2	2	2	1	0	

6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
14	3	2	2	2	1	1	0
15	2	2	1	1	2	2	0
D3							
10	1	3	3	1	3	2	0

计算信息熵和增益

Ent(D) = 1, 同 color;

Ent(D1) = -[(3/5)*log2(3/5)+(2/5)*log2(2/5)] = 0.97095;

Ent(D2) = -((2/4)*log2(2/4) + (2/4)*log2(2/4))=1;

Ent(D3) = -((0/1)*log2(0/1)+(1/1)*log2(1/1)) = 0;

Gain(D, root) = 1 - (0.97095*(5/10) + 1*(4/10) + 0*(1/10)) = 0.11452;

同理,以 knock 为基准

D1

1	1	1	1	1	1	1	1
3	2	1	1	1	1	1	1
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
15	2	2	1	1	2	2	0
16	3	1	1	3	3	1	0

D2

2	2	1	2	1	1	1	1
14	3	2	2	2	1	1	0
17	1	1	2	2	2	1	Λ

```
D3
```

10 1 3 3 1 3 2 0

计算信息熵和增益

Ent(D) = 1;

Ent(D1) = -((4/6)*log2(4/6) + (2/6)*log2(2/6)) = 0.9183;

Ent(D2) = 0.9183;

Ent(D3) = 0;

Gain(D, knock) = 1 - (0.9183*(6/10) + 0.9183*(3/10) + 0*(1/10)) = 0.17353;

同理,以 pattern 为基准

D1

10 1 15 2

D2

14 3 17 1

D3

16 3 1 1 3 3 1 0

计算增益

Gain(D, pattern) = 0.17353;

同理,以 umbilicus 为基准

_		
\neg	1	

1	1	1	1	1	1	1	1
2	2	1	2	1	1	1	1
3	2	1	1	1	1	1	1
14	3	2	2	2	1	1	0
D2							
6	1	2	1	1	2	2	1
7	2	2	1	2	2	2	1
15	2	2	1	1	2	2	0
17	1	1	2	2	2	1	0
D3							

16 3

10 1

Ent(D1) =
$$-((3/4)*log2(3/4) + (1/4)*log2(1/4)) = 0.81128$$
;

1

3 3

1

Ent(D2) = 1;

Ent(D3) = 0;

Gain(D, umbilicus) = 1 - (0.81128*(4/10) + 1*(4/10) + 0*(2/10)) = 0.27549;

1

3

3

3

2

1

0

0

同理以 touch 为基准

Gain(D, touch) = 0.11110(假设)

4.4.3 确定划分属性

D3(10,16) -> 坏瓜; 最终决策树如下

```
比较各增益,color 和 umbilicus 一样,任选其一,我们选择 umbilicus,子集为
D1(1, 2, 3, 14);
D2(6,7,15,17);
D3(10,16);
D1 以 color 为划分基准,子集为
D11(1) -> 好瓜
D12(2,3) -> 好瓜;
D13(14) -> 坏瓜;
D2以 root 为基准,子集为
D21(17) -> 坏瓜;
D22(6, 7, 15);
D22 以 color 为例
D221(6) ->好瓜;
D222(7,15);
D222 以 pattern 为例
D2221(15) -> 坏瓜;
D2222(7) -> 好瓜;
```


4.4.4 测试集

有了训练好的决策树,现找以下测试集进行验证

D

#	color	root	knock	pattern	umbilicu	IS	touch label
4	1	1	2	1	1	1	1
5	3	1	1	1	1	1	1
8	2	2	1	1	2	1	1
9	2	2	2	2	2	1	0
11	3	3	3	3	3	1	0
12	3	1	1	3	3	2	0
13	1	2	1	2	1	1	0

[1] 以 umbilicus 为划分属性

D1

4	1	1	2	1	1	1	1
5	3	1	1	1	1	1	1
13	1	2	1	2	1	1	0

8	2	2	1	1	2	1	1
9	2	2	2	2	2	1	0
D3							
11	3	3	3	3	3	1	0 (坏瓜)
12	3	1	1	3	3	2	0 (坏瓜)
[2]	再以 colc	or 为划分/	属性				
D11	_						
4	1	1	2	1	1	1	1 (好瓜)
13	1	2	1	2	1	1	0 (好瓜)
D12	2						
5	3	1	1	1	1	1	1 (坏瓜)
[3]	再以 root	: 为划分属	属性				

[4] 精确度

验证集精确度:

D22(8,9) 好瓜

- 4 的 label 为 1, 实际为 1;
- 5 的 label 为 0,实际为 1,错误;
- 8的 label 为 1,实际为 1;
- 9的 label 为 1,实际为 0,错误;
- 11 的 label 为 0,实际为 0;
- 12 的 label 为 0,实际为 0;
- 13 的 label 为 1,实际为 0,错误;

故根据训练集产生的决策树,测试集正确率 = 4/7 = 0.57413;

4.4.5 剪枝处理

假设剪枝如下,直接将凹陷和稍凹设置为好瓜

根据 D1, D2, D3 可知,

D1(4,513)好瓜;

D2(8,9)好瓜;

D3(11,12)坏瓜

测试集正确率 = 5/7 = 0.71429 提升了。确定 umbilicus 可为第一次划分属性。接着对上图的 节点 2 进行色泽划分,决策树为

正确率 = 4/7,相比 0.71429 低,所以色泽(上上图中的节点 2 好瓜)不可划分;对于节点 3,如果按 root 划分,决策树(决策树图因为书上有误,可能是数据集标签问题)为

正确率 = 4/7,相比 0.71429 低,所以不划分。同样节点 4,已经属于同一类,不可裁剪或划分。最终确定的决策树如下,只有一层,也叫<mark>决策树桩</mark>。

总结

预剪裁前提是需一棵训练好的决策树,从上往下,对非叶节点逐个考察,判断剪枝前后测试 集正确率大小。优点是可降低过拟合风险,减少分支展开,降低训练开销,降低验证开销。 但风险是会出现欠拟合。

4.5 后剪枝

总结:后剪枝前提是先生成一颗完全决策树,从小到上,对所有非叶节点逐个考察,判断剪枝后测试集的正确率大小,逐个剪枝。优点是比预剪枝泛化能力强,但验证开销大。

4.6 连续值处理

上述属性值均为离散值,若为连续值,则采用二分法。

4.6.1 二分法定义

$$T_a = \left\{ \frac{a^i + a^{i+1}}{2} \mid 1 \leqslant i \leqslant n - 1 \right\} , \tag{4.7}$$

$$Gain(D, a) = \max_{t \in T_a} Gain(D, a, t)$$

$$= \max_{t \in T_a} Ent(D) - \sum_{\lambda \in \{-, +\}} \frac{|D_t^{\lambda}|}{|D|} Ent(D_t^{\lambda}) , \qquad (4.8)$$

4.6.2 举例

D: 样本空间加入密度和糖度等连续属性;

# c	olor	root	knock	pattern	umbilicus	touch	density	suger	label
1	1	1	1	1	1	1	0.697	0.46	1
2	2	1	2	1	1	1	0.774	0.376	1
3	2	1	1	1	1	1	0.634	0.264	1
4	1	1	2	1	1	1	0.608	0.318	1
5	3	1	1	1	1	1	0.556	0.215	1
6	1	2	1	1	2	2	0.403	0.237	1
7	2	2	1	2	2	2	0.481	0.149	1

8	2	2	1	1	2	1	0.437	0.211	1
9	2	2	2	2	2	1	0.666	0.091	0
10	1	3	3	1	3	2	0.243	0.267	0
11	3	3	3	3	3	1	0.245	0.057	0
12	3	1	1	3	3	2	0.343	0.099	0
13	1	2	1	2	1	1	0.639	0.161	0
14	3	2	2	2	1	1	0.657	0.198	0
15	2	2	1	1	2	2	0.36	0.37	0
16	3	1	1	3	3	1	0.593	0.042	0
17	1	1	2	2	2	1	0.719	0.103	0

4.6.3 计算划分点

[1] 密度排序

 $T_{\Re g} = \{0.243,\ 0.245,\ 0.343,\ 0.36,\ 0.403,\ 0.437,\ 0.481,\ 0.556,\ 0.593,\ 0.608,\ 0.634,\ 0.639,\ 0.657,\ 0.666,\ 0.697,\ 0.719,\ 0.774\}.$

D: 排序后空间如下

# cc	lor	root	knock	pattern	umbilicus	touch	density	suger	label
10	1	3	3	1	3	2	0.243	0.267	0
11	3	3	3	3	3	1	0.245	0.057	0
12	3	1	1	3	3	2	0.343	0.099	0
15	2	2	1	1	2	2	0.36	0.37	0
6	1	2	1	1	2	2	0.403	0.237	1
8	2	2	1	1	2	1	0.437	0.211	1
7	2	2	1	2	2	2	0.481	0.149	1
5	3	1	1	1	1	1	0.556	0.215	1
16	3	1	1	3	3	1	0.593	0.042	0

4	1	1	2	1	1	1	0.608	0.318	1
3	2	1	1	1	1	1	0.634	0.264	1
13	1	2	1	2	1	1	0.639	0.161	0
14	3	2	2	2	1	1	0.657	0.198	0
9	2	2	2	2	2	1	0.666	0.091	0
1	1	1	1	1	1	1	0.697	0.46	1
17	1	1	2	2	2	1	0.719	0.103	0
2	2	1	2	1	1	1	0.774	0.376	1

[2] 计算 Ta

i = 1; $T_a = (0.243+0.245)/2 = 0.244$

I = 2; $T_a = (0.245+0.343)/2 = 0.294$

I = 3; $T_a = (0.343+0.360)/2 = 0.351$

...

 $Ta = \{0.244, 0.294, 0.351, 0.381, 0.420, 0.459, 0.518, 0.574, 0.6, 0.621, 0.636, 0.648, 0.661, 0.681, 0.708, 0.746\};$

[3]计算增益

Ta = 0.244;

 $Dt- = \{0.243\};$

Dt+={0.245, 0.343, 0.36, 0.403, 0.437, 0.481, 0.556, 0.593, 0.608, 0.634, 0.639, 0.657, 0.666, 0.697, 0.719, 0.774};

Ent(D) = -((8/17)*log2(8/17) + (9/17)*log2(9/17)) = 0.99750;

Ent(Dt-) = -((0/1)*log2(0/1) + (1/1)*log2(1/1)) = 0;

Ent(Dt+) = -((8/16)*log2(8/16) + (8/16)*log2(8/16)) = 1;

Gain(D, density, 0.244) = 0.99750 - (0*(1/17) + 1*(16/17)) = 0.056324

Ta = 0.294;

 $Dt- = \{0.243, 0.245\};$

Dt+= {0.343, 0.36, 0.403, 0.437, 0.481, 0.556, 0.593, 0.608, 0.634, 0.639, 0.657, 0.666, 0.697, 0.719, 0.774};

Ent(Dt-) = -((0/2)*log2(0/2) + (2/2)*log2(2/2)) = 0;

Ent(Dt+) = -((8/15)*log2(8/15) + (7/15)*log2(7/15)) = 0.997;

Gain(D, density, 0.294) = 0.99750 - (0*(2/17) + 0.997*(15/17)) = 0.11779;

Ta = 0.351;

 $Dt- = \{0.243, 0.245, 0.343\};$

Dt+= {0.36, 0.403, 0.437, 0.481, 0.556, 0.593, 0.608, 0.634, 0.639, 0.657, 0.666, 0.697, 0.719, 0.774};

Gain(D, density, 0.351) = 0.187;

.....

Ta = 0.381;

Gain(D, density, 0.381) = 0.263;

Ta = 0.42;

Gain(D, density, 0.42) = 0.094;

.....

比较发现,Ta=0.381 时,增益为 0.263 (最大),故选择 0.381 为划分点,即高于 0.381 为好瓜,低于 0.381 为坏瓜;糖度依此方法,可发现,Ta=0.126 时,增益为 0.349 (最大),故选择 0.126 为糖度划分点,即糖度低于 0.126 为坏瓜,高于此为好瓜。结合其他信息增益,

Gain(D, 色泽) = 0.109; Gain(D, 根蒂) = 0.143;

Gain(D, 敲声) = 0.141; Gain(D, 纹理) = 0.381;

Gain(D, 脐部) = 0.289; Gain(D, 触感) = 0.006;

Gain(D, 密度) = 0.262; Gain(D, 含糖率) = 0.349.

决策树生成如下

注意: 离散属性如 color, root, knock, touch 划分时不可连续划分, 如 pattern-color-knock-touch, 不能出现 pattern-pattern-color-knock-knock 这样划分; 但连续属性可以, 如下决策树

4.7 缺失值处理

样本空间如下:

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1		蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	-	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	-	否
12	浅白	蜷缩	-	模糊	平坦	软粘	否
13	-	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	****	沉闷	稍糊	稍凹	硬滑	否

定义

$$\rho = \frac{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in D} w_{\boldsymbol{x}}} , \qquad (4.9)$$

$$\rho = \frac{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in D} w_{\boldsymbol{x}}}, \qquad (4.9)$$

$$\tilde{p}_{k} = \frac{\sum_{\boldsymbol{x} \in \tilde{D}_{k}} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}} \qquad (1 \leqslant k \leqslant |\mathcal{Y}|), \qquad (4.10)$$

$$\tilde{r}_{v} = \frac{\sum_{\boldsymbol{x} \in \tilde{D}^{v}} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}} \qquad (1 \leqslant v \leqslant V). \qquad (4.11)$$

$$\tilde{r}_{v} = \frac{\sum_{\boldsymbol{x} \in \tilde{D}^{v}} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}} \quad (1 \leqslant v \leqslant V) . \tag{4.11}$$

4.9 - 无缺失值样本所占的比例;

4.10 - 无缺失值样本中第 K 类所占的比例;

4.11 - 无缺失值样本中某一属性值样本所占的比例

增益计算公式

$$Gain(D,a) = \rho \times Gain(\widetilde{D},a) = \rho \times (Ent(\widetilde{D}) - \sum_{v=1}^{n} \widetilde{r}_{v}Ent(\widetilde{D}^{v}))$$

$$Ent(\widetilde{D}) = -\sum_{k=1}^{|y|} \widetilde{p}_k \log_2 \widetilde{p}_k$$

1 样本空间

#	color	root	knock	pattern	umbilicus	touch	label
1	X	1	1	1	1	1	1
2	2	1	2	1	1	X	1
3	2	1	Х	1	1	1	1
4	1	1	2	1	1	1	1
5	Χ	1	1	1	1	1	1
6	1	2	1	1	Х	2	1
7	2	2	1	2	2	2	1
8	2	2	1	Х	2	1	1
9	2	Χ	2	2	2	1	0
10	1	3	3	Х	3	2	0
11	3	3	3	3	3	X	0
12	3	1	Х	3	3	2	0
13	Χ	2	1	2	1	1	0
14	3	2	2	2	1	1	0
15	2	2	1	1	Х	2	0
16	3	1	1	3	3	1	0
17	1	Х	2	2	2	1	0

2 计算增益

[1] 以 color 为基准计算其增益

color root knock pattern umbilicus touch label

2	2	1	2	1	1	Χ	1
3	2	1	X	1	1	1	1
4	1	1	2	1	1	1	1
6	1	2	1	1	X	2	1
7	2	2	1	2	2	2	1
8	2	2	1	X	2	1	1
9	2	X	2	2	2	1	0
10	1	3	3	X	3	2	0
11	3	3	3	3	3	X	0
12	3	1	X	3	3	2	0
14	3	2	2	2	1	1	0
15	2	2	1	1	X	2	0
16	3	1	1	3	3	1	0
17	1	Х	2	2	2	1	0

无缺失样本 D' = {2,3,4,6,7,8,9,10,11,12,14,15,16,17}共 14 个,正样本 6 个,负样本 8 个,假定权值都为 1;则

rho = 14/17;

Ent(D') = -((6/14)*log2(6/14) + (8/14)*log2(8/14)) = 0.98523;

[2] 样本进行划分

D1:

4	1	1	2	1	1	1	1
6	1	2	1	1	X	2	1
10	1	3	3	X	3	2	0
17	1	Х	2	2	2	1	0

D2

2 2 1 2 1 1 X 1

3	2	1	X	1	1	1	1
J	2	1	^	1	1	1	_
7	2	2	1	2	2	2	1
8	2	2	1	X	2	1	1
9	2	X	2	2	2	1	0
15	2	2	1	1	Х	2	0
D3							
11	3	3	3	3	3	Х	0
12	3	1	X	3	3	2	0
14	3	2	2	2	1	1	0

计算熵

16 3

Ent(D1) =
$$-((2/4)*log2(2/4) + (2/4)*log2(2/4)) = 1;$$

Ent(D2) =
$$-((4/6)*log2(4/6) + (2/6)*log2(2/6)) = 0.918$$
;

1 1 3

$$Ent(D3) = 0;$$

计算增益

Gain(D', color) =
$$0.98523 - (1*(4/14) + 0.918*(6/14) + 0*(4/14)) = 0.306$$
;

3

1

0

Gain(D, color) =
$$rho*Gain(D', color) = (14/17)*0.306 = 0.252;$$

同理,

Gain(D, root) = 0.171;

Gain(D, knock) = 0.145;

Gain(D, pattern) = 0.424;

Gain(D, umbilicus) = 0.289;

Gain(D, touch) = 0.006;

比较发现,pattern 属性的增益值最大,故作为第一次划分属性

[3] pattern 划分

第一次划分,决策树如下

D: 总样本空间

#	color	root	knock	pattern	umbilicus	touch	label	
1	X	1	1	1	1	1	1	
2	2	1	2	1	1	Х	1	
3	2	1	Х	1	1	1	1	
4	1	1	2	1	1	1	1	
5	Χ	1	1	1	1	1	1	
6	1	2	1	1	Х	2	1	
7	2	2	1	2	2	2	1	
9	2	Χ	2	2	2	1	0	
11	3	3	3	3	3	X	0	
12	3	1	Х	3	3	2	0	
13	Χ	2	1	2	1	1	0	
14	3	2	2	2	1	1	0	
15	2	2	1	1	Х	2	0	
16	3	1	1	3	3	1	0	
17	1	Х	2	2	2	1	0	

#	color	root	knock	pattern	umbilicus	touch	label
1	Χ	1	1	1	1	1	1
2	2	1	2	1	1	Х	1
3	2	1	Х	1	1	1	1
4	1	1	2	1	1	1	1
5	Χ	1	1	1	1	1	1
6	1	2	1	1	X	2	1
15	2	2	1	1	X	2	0
D'	2						
7	2	2	1	2	2	2	1
9	2	Х	2	2	2	1	0
13	Х	2	1	2	1	1	0
14	3	2	2	2	1	1	0
17	1	X	2	2	2	1	0
D'3	3						
11	3	3	3	3	3	X	0
12	3	1	Х	3	3	2	0
16	3	1	1	3	3	1	0

[3] 任选一子节点继续划分属性

如选择节点 3,将其作为新 D

#	color	root	knock	pattern	umbilicus	touch	label
7	2	2	1	2	2	2	1
9	2	Х	2	2	2	1	0
13	Х	2	1	2	1	1	0

14	3	2	2	2	1	1	0
17	1	X	2	2	2	1	0

[4] 对样本空间的缺失值处理

如图,将第一次划分前缺失的8和10全部放入节点3中,注意权值发生变化:

节点 2:8 和 10 的权值为 7/15;

节点 3:8 和 10 的权值为= 5/15 = 1/3;

节点 4:8 和 10 的权值为= 3/15 = 1/5;

对于节点 3,加入 8 和 10 后

D:

#	color	root	knock	pattern	umbilicus	touch	label
7	2	2	1	2	2	2	1
8	2	2	1	X	2	1	1
9	2	Χ	2	2	2	1	0
10	1	3	3	X	3	2	0
13	X	2	1	2	1	1	0
14	3	2	2	2	1	1	0
17	1	Х	2	2	2	1	0

对于节点 3, 去掉缺失值 D'为

#	color	root	knock	pattern	umbilicus	touch	label
7	2	2	1	2	2	2	1

8	2	2	1	X	2	1	1
9	2	X	2	2	2	1	0
10	1	3	3	X	3	2	0
14	3	2	2	2	1	1	0
17	1	X	2	2	2	1	0

rho3 = [原来 D 中无缺失样本总数 + 外来无缺失总数(注意权值 1/3 对应节点 3)]/[原来 D 中样本总数(包含缺失) + 外来样本总数(注意权值为 1/3))

= (4+2/3)/(5+2/3) = 14/17;

正样本比例 = (1 + 1/3) / (4+ 2/3) = 4/14;

负样本比例 = (4+1/3) / (4+2/3) = 10/14;

注意: 若 10 也是 label 1,则

正样本比例 = (1+2/3)/(4+2/3) = 0.35714;

负样本比例 = 3/(4 + 2/3) = 0.64286;

Ent(D') = -((4/14)*log2(4/14) + (10/14)*log2(10/14)) = 0.86312;

以 color 为准,无缺失值样本空间为

D'1

10	1	3	3	X	3	2	0
17	1	X	2	2	2	1	0
D'2							
7	2	2	1	2	2	2	1
8	2	2	1	X	2	1	1
9	2	Х	2	2	2	1	0

D'3

14 3 2 2 2 1 1 0

比较发现, knock 属性可做划分, 决策树变为

发现 9,14,17 都是 label 0,一类的,所以直接标记为叶子,即坏瓜; 10 也是坏瓜。但节点 5 中有 1 和 0,需继续划分,下面要对节点 5 重复上述计算,权值仍是 1/3,继承自节点 3。

$D = \{7,8,13\}$

#	color	root	knock	pattern	umbilicus	touch	label
7	2	2	1	2	2	2	1
8	2	2	1	Х	2	1	1
13	Х	2	1	2	1	1	0

rho5 = (1 + 1/3) / (2 + 1/3) = 0.57143;

正样本比例 = ((1+1/3) / (2 + 1/3))= 0.57143;

负样本比例 = (1/(2+1/3)) = 0.42857;

Ent(D') = -(0.57143*log2(0.57143) + 0.42857*log2(0.42857)) = 0.98523;

以 color 为基准,D'

color root knock pattern umbilicus touch label7 2 2 1 2 2 2 1

```
2
             2
                               Χ
                                         2
8
                      1
                                                  1
                                                           1
D1 = \{0\};
D2 = \{7,8\};
D3 = \{0\};
# color
                           pattern umbilicus
                                                         label
           root
                  knock
                                                touch
7
    2
             2
                               2
                                         2
                                                  2
                                                           1
                       1
8
    2
             2
                                         2
                       1
                               Χ
                                                  1
                                                           1
Ent(D'1) = 0;
Ent(D'2) = -((1+1/3)/(1+1/3)*log2((1+1/3)/(1+1/3)) + 0) = 0;
Ent(D'3) = 0;
Gain(D', color) = 0.98523 - (0*0 + 0*2/2 + 0*0)) = 0.98523;
Gain(D, color) = 0.98523*0.57143 = 0.56299;
同理,
root: 无缺失值,则直接计算增益
# color
           root
                  knock
                           pattern umbilicus
                                                touch
                                                         label
7
    2
             2
                       1
                               2
                                         2
                                                  2
                                                           1
    2
             2
8
                               Χ
                                         2
                                                           1
             2
13 X
                       1
                               2
                                         1
                                                  1
                                                           0
D1 = \{0\};
D2 = \{7,8,13\};
D3 = \{0\};
Ent(D1) = 0;
Ent(D2) = -(((1+1/3)/(2+1/3))*log2(((1+1/3)/(2+1/3)))+(1/(2+1/3))*log2((1/(2+1/3)))) = 0.98523;
```

Ent(D3) = 0;

Gain(D, root) = 0.98523 - (0*0/3+0.98523*(3/3)+0*0/3) = 0;

```
同理,
```

Gain(D, knock) = 0;

同理,

Umbilicus

D1

13 X 2 1 2 1 1 0

D2

7 2 2 1 2 2 1 8 2 2 1 X 2 1 1

 $\mathsf{Ent}(\mathsf{D}) = -(((1+1/3)/(2+1/3)) * \log 2(((1+1/3)/(2+1/3))) + ((1/(2+1/3)) * \log 2(1/(2+1/3)))) = 0.98523;$

Ent(D1) = 0;

Ent(D2) =0;

Gain(D, umbilicus) = 0.98523;

...

比较可知,umbilicus增益最大,{7,8,13}按此属性划分,决策树为

4.8 多变量处理决策树

上述例子多是二分类, 若是多分类, 需用到多变量决策树。示例如下: 训练集样本 D

依据上述数据求增益,决策树如下

#	density	suger	label
1	0.697	0.46	1
2	0.774	0.376	1
3	0.634	0.264	1
4	0.608	0.318	1
5	0.556	0.215	1
6	0.403	0.237	1
7	0.481	0.149	1
8	0.437	0.211	1

```
0.091
9
   0.666
                    0
10 0.243
            0.267
                    0
11 0.245
            0.057
                    0
12 0.343
            0.099
                    0
13 0.639
            0.161
                    0
14 0.657
            0.198
15 0.36
            0.37
                    0
            0.042
16 0.593
                    0
17 0.719
            0.103
                    0
```


则决策树对应的分类边界为

图 4.11 图 4.10 决策树对应的分类边界

分析:对大量连续性数据而言,上述分类边界训练开销过大,验证开销也很大。如果能用斜边界即斜划分,时间将大大缩短,方法是对属性组合求增益,然后分类:

以上即多变量决策树,可实现斜划分解决复杂的多分类问题。最终分类结果如下图多变量决策树(线性分类器)

图 4.14 图 4.13 多变量决策树对应的分类边界 至此, 决策树算法总结完毕。