CS2106

Introduction to **Operating Systems**

Lecturer

Djordje Jevdjic (George)

COM2-03-34 WFH

jevdjic@nus.edu.sg

Email to arrange for consultation

- Research interests: computer architecture, operating systems, DNA-based data storage
- Academic history: Univ. of Belgrade → Barcelona Supercomputing Center → EPFL →
 Univ. of Washington → Microsoft Research → NUS

Co-Lecturer

SOO Yuen Jien

COM2-02-61 WFH

sooyj@comp.nus.edu.sg

Email to arrange for consultation

- A familiar face ©
- This time ensuring that you do great in CS2106 tutorials

Course Objectives

Synopsis:

- Introduces basic concepts in operating systems
- Focuses on these areas:
 - OS Structure and Architecture
 - Process Management
 - Memory Management
 - File Management
 - OS Protection Mechanisms

Objectives:

- Identify & understand major functionalities of modern operating systems
- Able to extend and apply the knowledge in future related courses

Specific Learning Outcomes

- After this course, you should:
 - understand how an OS manages computational resources for multiple users and applications, and the impact on application performance
 - appreciate the abstractions and interfaces provided by OS
 - be comfortable in writing multi-process/thread programs and avoid common pitfalls such as deadlocks, starvation and race conditions
 - be comfortable writing system programs that utilize POSIX syscall for process, memory and I/O management
 - be able to self-learn advanced OS topics

Assessment Weightage

- Weightage for various components:
 - Participation in Tutorials: 5%
 - Lab Assignments: 25%
 - Midterm: 20%
 - Date: Sat, March 13 (Week 8)
 - Timing: 10AM
 - Online (LumiNUS quiz)
 - □ Final exam: **50%**
 - Tue, May 4th, 9AM

Assessment – Lab Assignments (25%)

- Five Graded Lab Assignments:
 - Done individually, or in teams of two
 - Each assignment spans 2 weeks
 - Simple exercise(s) related to the core problem (1%)
 - Complete the assignment (the remainder %)
 - Lab session for:
 - Clarify lab questions and clear doubt
 - Both weeks: Demo the simple exercise(s) to lab TA for the (1%)
 - You don't have to be in the same lab group as your teammate
 - Demoes are graded individually
 - Submit online you can work from home
 - "Simple" programming questions:
 - Linux on x86, using C
- Put the theory in lecture into actual practice
 - Learn Linux (or Unix in general)
 - Learn to interact with OS or simulate aspects of OS

Assessment - Plagiarism

- NUS takes a serious stand on plagiarism cases
 - All lab assignments will be sent for plagiarism checks
- Plagiarism for lab assignment submission:
 - Every violation of the NUS academic conduct will be formally reported to the UG office

Resources

- Mainly on LumiNUS:
 - Workbins:
 - Lectures, tutorials and labs
 - Forums:
 - Lectures
 - Tutorials
 - Labs
 - General
 - Announcement
 - and

References

- Main supplementary text (not mandatory):
 - Modern Operating Systems (Edition 3+)
 by Andrew S. Tanenbaum
 - Operating System Concepts (Edition 8+)
 by Abraham Silberschatz, Peter Baer Galvin & Greg Gagne
 - Operating Systems: Three Easy Pieces
 by Remzi H. Arpaci-Dusseau & Andrea C. Arpaci-Dusseau
 - All three books can be found online!
- Lecture notes:
 - As self-contained as possible

Acknowledgement

- Many of the lecture materials are created by
 A/P Soo Yuen Jien
 - Lecture notes and tutorials reused with some changes