

TRABALHO 1 (ZEROS DE FUNÇÕES) - CÁLCULO NUMÉRICO COMPUTACIONAL CURSO DE CIÊNCIA DA COMPUTAÇÃO, 1° SEM/2025, PROF. ROGÉRIO L. RIZZI

GrupoAlunos(as)	

ATENÇÃO: LEIA ATENTAMENTE INSTRUÇÕES ABAIXO.

- Escreva precisa e acuradamente os passos necessários para responder corretamente as questões, justificando e discutindo os argumentos ou métodos empregados para resolver cada item. As interpretações delas é parte integrante não são aceitas apenas as respostas, sendo necessário o desenvolvimento solicitado.
- Os relatórios deverão ser entregues em documento em formato .pdf, não sendo aceitos outros padrões. O documento deve conter respostas às questões que sejam objetivamente identificáveis, e que estejam legíveis e organizadas. Pode-se copiar as saídas no console do Scilab para inserir as respostas se e quando for o caso. Os códigos fontes devem ser enviados com o arquivo no modo. compactado identificado como "TRAB1-ZEROS-Gi-Pj.zip(ou rar)".
- Para o cálculo de derivadas utilize, querendo, o software da Wolframalpha (Mathematica) https://www.wolframalpha.com/input?i=derivative

.....TRABALHO 1 - ZEROS REAIS DE FUNÇÕES REAIS.....TRABALHO 1 - ZEROS REAIS DE FUNÇÕES REAIS.....

Na correção dos exercícios, Partes 1 e 2, é verificado:

- 1) Análise por inspeção (dos sinais) para determinar os intervalos candidatos
- 2) GRÁFICO DA FUNÇÃO NO DOMÍNIO DE DEFINIÇÃO DA FUNÇÃO (TODO O INTERVALO)
- 3) Análise teórica da existência e unicidade da solução no intervalo escolhido
- 4) USO DOS MÉTODOS DE APROXIMAÇÃO DA: A) BISSECÇÃO, B) FALSA POSIÇÃO, C) NEWTON-RAPHSON, D) SECANTE
- 5) VERIFICAÇÃO DA FUNÇÃO NA APROXIMAÇÃO OBTIDA.

PARTE 1: Realize corretamente o solicitado usando os algoritmos discutidos, que você deve aperfeiçoar e modificar quando e se for necessário.

Problema 1.1: Obter uma aproximação às raízes das funções:

- 1. $f(x) = x^2 3$ no intervalo [1, 2], $com \epsilon = 10^{-6}$.
- 2. $g(x) = x^2 + \ln(x)$ no intervalo [0, 5; 1], com $\epsilon = 10^{-5}$.

Solução:

Problema 1.2: Obter uma aproximação para primeira raiz positiva da função:

- 1. $f(x) = e^{-x} sen(x)$, $com \epsilon = 10^{-5}$.
- 2. $f(x) = x \ln(x) 3$, 2 no intervalo [2, 3], com $\epsilon = 10^{-6}$

Solução:

Problema 1.3: Obter uma aproximação às raízes das funções:

- 1. $f(x) = \cos(x) + x$ no intervalo [-1, 0], $\cos \epsilon = 10^{-5}$.
- 2. $g(x) = e^x + x$ no intervalo [-1, 0], com o $\epsilon = 10^{-5}$.

Solução:

Problema 1.4: Obter uma aproximação às raízes:

- 1. A raiz cúbica de $f(x) = x^3 5$, sendo o $\epsilon = 10^{-6}$.
- 2. A raiz negativa de $g(x) = x^3 5x^2 + x + 3$, com $\epsilon = 10^{-6}$.

Solução:

Problema 1.5: Obter uma aproximação à raiz de:

- 1. f(x) = sen(x) tg(x) no intervalo [3, 4], $com \epsilon = 10^{-5}$.
- 2. $f(x) = e^{-x^2} \cos(x)$ no intervalo [1, 2], $\cos \epsilon = 10^{-5}$.

Solução:

Problema 1.6: Obter uma aproximação às raízes das funções:

- 1. $g(x) = x^3 x 1$ no intervalo [1, 2], $com \epsilon = 10^{-6}$.
- 2. $h(x) = 4 \operatorname{sen}(x) e^x$ no intervalo [0, 1], $\operatorname{com} \epsilon = 10^{-5}$.

Solução:

PARTE 2: Idem Parte 2. Observação: Atenção com os limites dos intervalos à plotagem e as especificações dos intervalos de busca e a condição inicial para o NR e Secante. Pode ser que algum método não convirja para certas condições, o que pode ser remediado (ou não) considerando novos intervalos ou condições iniciais. Use sempre $\epsilon = 10^{-5}$.

Problema 2.1: Discuta a função $f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$ definida nos números reais, comprovando ou refutando que ela possui raízes no intervalo [-0,3;1,1]. Se sim, isole uma raiz em um subintervalo apropriado ao estudo detalhado.

......

Solução:

Problema 2.2: A função de captação de energia solar em um campo plano de espelhos pode ser especificada por:

$$f(A) = \frac{\pi \left(\frac{h}{cos(A)}\right)^2 F}{0,5\pi D^2 (1+sen(A)-0,5cos(A))} - C \label{eq:factor}$$

Nela, $0 \le A \le \pi/25$ é o ângulo de campo; F é a fração de campo com cobertura de espelhos (adimensional); D é o diâmetro do coletor (m); h é o comprimento do coletor (m); C é o fator geométrico de concentração solar (adimensional). Considere os dados: h = 300m; F = 0.8; D =14m; C = 1200 e calcular uma aproximação para A na correspondente equação.

Solução:

Problema 2.3: Certo material potencialmente perigoso à vida humana (neve, fluxo de detritos,...) está se movimentando em uma região montanhosa segundo a função:

$$p(t) = 7(2, 0 - 0, 9^t) - d$$

Nela, d (km) é a distância do local de ejeção do material até uma região habitada; t (h) é o tempo. Considere que d = 10 e calcule uma aproximação para o tempo (h) em que tal material atinge o local habitado na correspondente equação.

Solução:

Problema 2.4: A função utilizada frequentemente para estimar o nível de concentração de oxigênio C(d) (mg/L) em um rio, em relação ao ponto de descarga de poluentes, é como:

$$C(d) = 10 - 20(\exp(-0.2d) - \exp(-0.75d)) - 0$$

Nela d (km) é a distância medida a partir do local de descarga dos poluentes; 0 é nível de oxigênio do corpo de água. Calcule a distância d para o qual o nível de oxigênio é para 0 = 5 (mg/L) na correspondente equação.

Solução:

GRUPOS-PRÁTICA 1

G1: Pedro Miotto, Vinícius Castamann, Thiago G4: Carlos Eduardo, Ithony Elivis, Lucas David Oliveira, Gabriel Costa

G2: Gabriel da Silva, Arthur Fomes, Henrique	G5:	Paula	Miloca,	Heloisa	Raquel,	Alexia
Ferreira, Lucas Antenor	Hoshino, Kayra Yokoyama					
G3: Pedro Moraes, Eduardo Nogueira, Matheus						
Seghatti						

GRUPOS-PRÁTICA 2				
G1: Kurt Cobai, Felipe Kiznik	G4: Emanuel Eleut, Guilherme Henrique, João			
	Vitor			
G2: Pedro Augusto, Ana Julia, Maila Alves, Lucas	s G5: Luciano Augusto, Raianny Vitoria, Gabriel			
Henrique	Luiz			
G3: Eric Barbacha, Matheus Artur, Rafael	G6: Gustavo Rafael, Pedro Henrique, Vitor			
Loureiro	Krieser, Guilherme Reolon			

.....