Robot Dynamics & Control

June, 5th, 2024

Duration - 3:00 h

Important notes:

- If the model parameters / joint positions / trajectories do not correspond to those defined in the task, the corresponding task will not be graded.
- If the model uses workspace variables, a .mat file or an .m script defining them must be included, otherwise the corresponding tasks will not be graded.
- In the tasks using *RigidBodyTree*, a .mat file or an .m script defining it must be included, otherwise the corresponding tasks will not be graded.

2R Planar Robot

Consider a planar 2R robot with the following set of parameters:

Mass of link 1: 4 Kg Length of link 1: 35 cm Mass of link 2: 0.7 Kg Length of link 2: 17.5 cm

Task 1: Statics

- 1) Set joint positions at $q = [-35^{\circ}, 55^{\circ}]$. Implement gravity compensation using the manipulator statics.
- 2) Implement gravity compensation in the same configuration of ex. 1) considering a spherical end-effector of mass M_{ee} = 4.5 Kg and two additional masses (modeled as a spherical objects): one of 1 Kg placed on link 1 at 1/3 of its total length, the other one of 0.5 Kg placed on link 2 at 2/3 of its total length.

Task 2: Newton-Euler Algorithm

Implement the Newton-Euler algorithm for recursive inverse dynamics. Generate a cubic polynomial trajectory with the following initial and final configurations: $q_i = [20^\circ, 60^\circ]$, $q_f = [-20^\circ; 90^\circ]$. Consider gravity effect. Do not consider damping in the joints.

Task 3: Control

Implement the PD controller with gravity compensation term. Given the following initial joint configuration $q_{\rm i}=[30^\circ,65^\circ]$ control the robot to reach the final configuration $q_{\rm f}=[55^\circ;-30^\circ]$.

2R Spatial Robot

- Consider a 3-dimensional 2R robot like shown in figure (second joint axis should be orthogonal to first joint axis) with the following set of parameters:
- Mass of link 1: 2 Kg
- Length of link 1: 40 cm
- Mass of link 2: 6.5 Kg
- Length of link 2: 30 cm
- Gravity should act on the z-axis of the world frame

Task 1: Statics

- 1) Consider the joint configuration $q = [60^{\circ}, -25^{\circ}]$. Implement gravity compensation using the manipulator statics.
- 2) Implement gravity compensation in the same configuration of ex. 1) using the manipulator statics considering a spherical end-effector of mass Me = 4.8 Kg and an additional mass of 2.2 Kg (modeled as a spherical object) placed on link 2 at 2/3 of its total length.

Task 2: Newton-Euler Algorithm

Implement the Newton-Euler algorithm for recursive inverse dynamics. Generate a cubic polynomial trajectory with the following initial and final configurations: $q_i = [-45^\circ, 25^\circ]$, $q_f = [-45^\circ; 10^\circ]$. Consider gravity effects. Do not consider damping in the joints.

Task 3: Control

Implement the PD controller with gravity compensation term. Given the following initial joint configuration $q_i = [-25^\circ, 45^\circ]$ control the robot to reach the final configuration $q_f = [100^\circ; 80^\circ]$.