- 2) Sea G una gráfica.
 - *a*) Demuestra que, si *G* es simple, entonces cada ciclo de longitud mínima en *G* es una subgráfica inducida por vértices.

Recordemos que un ciclo es un circuito que no repite vértices salvo el primero que es igual al último y una gráfica inducida es una subgráfica que contiene todos los vértices de *C* y todas las aristas de *G* que conectan los vértices de *C*.

Dem: Por contrapuesta.

Sea G un agráfica simple y $C = (v_1, v_2, \dots, v_n, v_1)$ un ciclo en G, si C no es una subgráfica inducida por vértices de G, entonces C no es de longitud mínima.

Como C no es inducida por vértices, por definición de ser gráfica inducida por vértices existe una arista $uv \in E_G$ tal que $uv \notin E_C$ para u,v no consecutivos, esto pasa por definición de G, al ser simple la arista faltante no es arista múltiple o un lazo, por lo que la arista tiene que incidir a dos vertices no consecutivos en G.

Tomese el siguiente ejemplo.

Entonces se puede divir a G en dos ciclos, en particular el ciclo $C' = (v_0, v_1, v_2, v_0)$ que está formado por la arista v_0v_2 que vive en G y que no vive en C, lo que la combierte en un ciclo de longitud más corto que la longitud de C. Esto implica que si el ciclo C no es inducido entonces no es de longitud mínima, lo que es equivalente a decir que si C es un ciclo más pequeño entonces es inducido por vértices.

b) Prueba que lo anterior no es necesariamente cierto si *G* no es simple. Daremos un contrajemplo.

Cosiderece la siguiente gráfica

Figura 1: contrajemplo.

Notemos el ciclo $C = (v_1, e_6, v_1)$ de longitud minima 1 y para que C sea una subgráfica inducida por vertices de G debe ocurrir que E_C contenga todas las aristas de G que une a los vertices en V_C pero vemos que esto no pasa porque el lazo $e_7 \notin E_C$ pero $e_7 \in E_G$ por lo que no es una subgráfica inducida por vértices.

7) Sea G una gráfica con $V_G = \{v_1, v_2, \dots, v_n\}$, y sea A su matriz de adyacencia asociada a dicho ordenamiento de V_G . Demuestra que, para cada entero no negativo k, el número de $v_i v_j - caminos$ de longitud k es $(A^k)_{i,j}$

Sea $A=(a_{ij})\in M_{n\times n}(\mathbb{R})$ una matriz de adyacencia asociada al ordenamiento de la gráfica G

Lo demostraremos por inducción.

Casos Base: k = 1, que es la longitud del $v_i v_j - camino$, este existe si y solo si $v_i v_j \in E_G$ pero esto está dado por la matriz de adyacencia asociada a la gráfica G que es $(A)_{i,j}$ por definción.

Hipótesis de inducción: Nosostros afirmamos que para todo entero k = n no negativo es verdad que el número de $v_i v_j - camino$ de longitud n es $(A^k)_{i,j}$.

Paso inductivo: Por demostrar que se cumple para n + 1. Probemos que el número de $v_i v_j - camino$ de longitud n + 1 es $(A^k)_{i,j}$

Notemos que $A^{n+1}=A\cdot A^n$, por hipótesis de inducción el número de caminos de n desde v_i a v_l es $(A^n\cdot A)=\sum_{l=1}^m (A^n)_{i,l}\cdot (A)_{l,j}$.

donde $(A^n)_{i,l}$ cuenta de los caminos de longitud n desde v_i hasta v_l y donde $(A)_{l,j}$ es el número de caminos que existen entre v_l y v_j y aporta en almenos 1 valor a la longitud del camino, dicho de otro modo indica la posibilidad de moverse de v_l a v_j en al menos un paso, i.e $(v_0, v_1, \ldots, v_l, v_j)$.

Por lo tanto el número de caminos de longitud k + 1 desde v_i hasta v_j es $(A^k)_{i,j}$.