MES Wadia College of Engineering Pune-01

Department of Computer Engineering

Name of Student:	Class:	
Semester/Year:	Roll No:	
Date of Performance:	Date of Submission:	
Examined By:	Experiment No: Part A-05	

PART: A) ASSIGNMENT NO: 05

Title: Data Analytics-II

- 1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

OBJECTIVES:

Students should be able to data analysis using logistic regression using Python for any open source dataset.

PREREQUISITE:

- Basic of Python Programming
- Concept of Regression.

APPRATUS:

- Programming Language: Python.
- Dataset: Boston Dataset (https://www.kaggle.com)

ALGORITHM STEP: (Boston Dataset):

- Step 1: Import libraries and create alias for Pandas, Numpy and Matplotlib
- Step 2: Import the Social_Media_Adv Dataset
- Step 3: Initialize the data frame
- Step 4: Perform Data Preprocessing
- Step 5: Use Logistic regression(Train the Machine) to Create Model
- Step 6: Predict the y_pred for all values of train_x and test_x

- Step 7: Evaluate the performance of Model for train_y and test_y
- Step 8: Calculate the required evaluation parameters

CONCLUSION:

QUESTIONS:

- 1. Explain Logistic Regression in details
- 2. Differentiate between Linear and Logistic Regression
- 3. Consider the binary classification task with two classes positive and negative. Find out TP,TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall

N = 165	Predicted YES	Predicted NO
Actual YES	TP = 150	FN = 10
Actual NO	FP = 20	TN = 100

- 4. Comment on whether the model is best fit or not based on the calculated values.
- 5. Write python code for the preprocessing mentioned in step 4. And explain every step in detail.