Deep-Learning: the basics

A. Allauzen

Université Paris-Sud / LIMSI-CNRS

9 mai 2017

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- Vanishing gradient

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- 4 Vanishing gradient

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- 4 Vanishing gradient

A choice of terminology

Logistic regression (binary classification)

$$f(a = \boldsymbol{w_1}^t \boldsymbol{x}) = \frac{1}{1 + e^{-a}}$$

A choice of terminology

Logistic regression (binary classification)

$$f(a = \boldsymbol{w_1}^t \boldsymbol{x}) = \frac{1}{1 + e^{-a}}$$

A single artificial neuron

pre-activation : $a_1 = \boldsymbol{w_1}^t \boldsymbol{x}$

 $y_1 = f(\mathbf{w_1}^t \mathbf{x}), f$ is the activation function of the neuron

A choice of terminology - 2

From binary classification to K classes (Maxent)

$$f(a_k = w_k^t x) = \frac{e^{a_k}}{\sum_{k'=1}^K e^{a_{k'}}} = \frac{e^{a_k}}{Z(x)}$$

A choice of terminology - 2

From binary classification to K classes (Maxent)

$$f(a_k = w_k^t x) = \frac{e^{a_k}}{\sum_{k'=1}^K e^{a_{k'}}} = \frac{e^{a_k}}{Z(x)}$$

A simple neural network

$$y_1 = f(\boldsymbol{w_1^t} \boldsymbol{x})$$

- \bullet x : input layer
- \bullet y: output layer
- \bullet each y_k has its parameters w_k
- f is the **softmax** function

Two layers fully connected

Two layers fully connected

Two layers fully connected

- \bullet f is usually a non-linear function
- \bullet f is a component wise function
- \bullet e.g the softmax function:

$$y_k = P(c = k | \boldsymbol{x}) = \frac{e^{\boldsymbol{w_k}^t \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w_{k'}}^t \boldsymbol{x}}} = \frac{e^{\boldsymbol{W}_{k,:} \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{W}_{k',:} \boldsymbol{x}}}$$

• tanh, sigmoid, relu, ...

Bias or not bias

Implicit Bias

Explicit bias

With neural network: add a hidden layer

 \boldsymbol{x} : raw input representation

the internal and tailored representation

Intuitions

- Learn an internal representation of the raw input
- Apply a non-linear transformation
- \bullet The input representation \boldsymbol{x} is transformed/compressed in a new representation \boldsymbol{h}
- Adding more layers to obtain a more and more abstract representation

How do we learn the parameters?

For a supervised single layer neural net

Just like a maxent model:

- Calculate the gradient of the objective function and use it to iteratively update the parameters.
- Conjugate gradient, L-BFGS, ...
- In practice: Stochastic gradient descent (SGD)

With one hidden layer

- The internal ("hidden") units make the function non-convex ... just like other models with hidden variables :
 - hidden CRFs (Quattoni et al. 2007), ...
- But we can use the same ideas and techniques
- Just without guarantees ⇒ backpropagation (Rumelhart et al.1986)

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- 4 Vanishing gradient

Ex. 1 : A single layer network for classification

 θ = the set of parameters, in this case :

$$\boldsymbol{\theta} = (\boldsymbol{W})$$

The log-loss (conditional log-likelihood)

Assume the dataset $\mathcal{D} = (x_{(i)}, c_{(i)})_{i=1}^{N}, c_{(i)} \in \{1, 2, \dots, C\}$

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{N} l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)}) = \sum_{i=1}^{N} \left(-\sum_{c=1}^{C} \mathbb{I} \left\{ c = c_{(i)} \right\} \log(P(c|\boldsymbol{x}_{(i)})) \right)$$
(1)

$$l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)}) = -\sum_{k=1}^{C} \mathbb{I}\{k = c_{(i)}\} \log(y_k)$$
(2)

Ex. 1: optimization method

Stochastic Gradient Descent (Bottou2010)

For (t = 1; until convergence; t + +):

- Pick randomly a sample $(\boldsymbol{x}_{(i)}, c_{(i)})$
- Compute the gradient of the loss function w.r.t the parameters (∇_{θ})
- Update the parameters : $\theta = \theta \eta_t \nabla_{\theta}$

Questions

- convergence : what does it mean?
- what do you mean by η_t ?
 - convergence if $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$
 - $\eta_t \propto t^{-1}$
 - and lot of variants like Adagrad (Duchi et al.2011), Down scheduling, ... see (LeCun et al.2012)

Ex. 1 : compute the gradient - 1

Inference chain:

$$\boldsymbol{x}_{(i)} \longrightarrow (\boldsymbol{a} = \boldsymbol{W} \boldsymbol{x}_{(i)}) \longrightarrow (\boldsymbol{y} = f(\boldsymbol{a})) \longrightarrow l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})$$

The gradient for w_{kj}

$$\nabla_{w_{kj}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial w_{kj}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial \boldsymbol{y}} \times \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{a}} \times \frac{\partial \boldsymbol{a}}{\partial w_{kj}}$$
$$= -(\mathbb{I}\{k = c_{(i)}\} - y_k)x_j = \delta_k x_j$$

Ex. 1 : compute the gradient - 2

Generalization

$$\nabla_{\boldsymbol{W}} = \boldsymbol{\delta} \boldsymbol{x}^t$$
$$\delta_k = -(\mathbb{I}\{k = c_{(i)}\} - y_k)$$

with δ the gradient at the pre-activation level.

Ex. 1 : Summary

Inference: a forward step

- ullet matrice multiplication with the input $oldsymbol{x}$
- Application of the activation function

One training step: forward and backward steps

- Pick randomly a sample $(\boldsymbol{x}_{(i)}, c_{(i)})$
- ullet Compute $oldsymbol{\delta}$
- Update the parameters : $\boldsymbol{\theta} = \boldsymbol{\theta} \eta_t \boldsymbol{\delta} \boldsymbol{x}^t$

Notations for a multi-layer neural network (feed-forward)

One layer, indexed by l

- \bullet $\boldsymbol{x}^{(l)}$: input of the layer l
- $\mathbf{y}^{(l)} = f^{(l)}(\mathbf{W}^{(l)} \ \mathbf{x}^{(l)})$
- ullet stacking layers : $oldsymbol{y}^{(l)} = oldsymbol{x}^{(l+1)}$
- $x^{(1)} = a data example$

Ex. 2: with one hidden layer

To learn, we need the gradients for:

- ullet the output layer : $abla_{oldsymbol{W}^{(2)}}$
- the hidden layer : $\nabla_{\boldsymbol{W}^{(1)}}$

For the output layer

As in the Ex. 1:

$$egin{aligned}
abla_{oldsymbol{W}^{(2)}} &= oldsymbol{\delta}^{(2)} oldsymbol{x}^{(2)}^t, ext{ with } \\ \delta_k^{(2)} &= -(\mathbb{I}\left\{k = c_{(i)}\right\} - y_k) \\ oldsymbol{y} & o oldsymbol{y}^{(2)} \\ oldsymbol{W} & o oldsymbol{W}^{(2)} \\ oldsymbol{x} & o oldsymbol{x}^{(2)} = oldsymbol{y}^{(1)} \end{aligned}$$

For the hidden layer - 1

The goal : compute $\boldsymbol{\delta}^{(1)}$

Inference (/forward) chain from $a^{(1)}$ to the output :

$$\boldsymbol{y}^{(1)} = f^{(1)}(\boldsymbol{a}^{(1)}) \rightarrow \left(\boldsymbol{a}^{(2)} = \boldsymbol{W}^{(2)} \boldsymbol{y}^{(1)}\right) \rightarrow \left(\boldsymbol{y}^{(2)} = f^{(2)}(\boldsymbol{a}^{(2)})\right) \rightarrow l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})$$

Backward / Back-propagation :

$$\delta_j^{(1)} = \nabla_{a_j^{(1)}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial a_j^{(1)}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial \boldsymbol{y}^{(2)}} \times \frac{\partial \boldsymbol{y}^{(2)}}{\partial \boldsymbol{a}^{(2)}} \times \frac{\partial \boldsymbol{a}^{(2)}}{\partial y_j^{(1)}} \times \frac{\partial \boldsymbol{y}_j^{(1)}}{\partial a_j^{(1)}}$$

For the hidden layer - 2

Backward / Back-propagation :

$$\delta_{j}^{(1)} = \nabla_{a_{j}^{(1)}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial a_{j}^{(1)}} = \frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x}_{(i)}, c_{(i)})}{\partial \boldsymbol{y}^{(2)}} \times \frac{\partial \boldsymbol{y}^{(2)}}{\partial \boldsymbol{a}^{(2)}} \times \frac{\partial \boldsymbol{a}^{(2)}}{\partial y_{j}^{(1)}} \times \frac{\partial \boldsymbol{y}_{j}^{(1)}}{\partial a_{j}^{(1)}}$$
$$= f'^{(1)}(a_{j}) \left(\boldsymbol{W}_{:,j}^{(2)} \boldsymbol{\delta}^{(2)}\right)$$

For the hidden layer - 3

$$\begin{split} & \nabla_{{\bm y}^{(1)}} = {{\bm W}^{(2)}}^t {\bm \delta}^{(2)}, \, \text{then} \\ & {\bm \delta}^{(1)} = & \nabla_{{\bm a}^{(1)}} = {f^{(1)}}'({\bm a}^{(1)}) \circ \left({{\bm W}^{(2)}}^t {\bm \delta}^{(2)} \right) \end{split}$$

For the hidden layer - 4

As for the output layer, the gradient is:

$$abla_{m{W}^{(1)}} = {m{\delta}^{(1)}}{m{x}^{(1)}}^t$$
, with $\delta_j^{(1)} =
abla_{a_j^{(1)}}$
 ${m{\delta}^{(1)}} = f'^{(1)}({m{a}^{(1)}}) \circ ({m{W}^{(2)}}^t {m{\delta}^{(2)}})$

The term $(\boldsymbol{W}^{(2)}^t \boldsymbol{\delta}^{(2)})$ comes from the upper layer.

Back-propagation : generalization

For a hidden layer l:

• The gradient at the pre-activation level :

$$\boldsymbol{\delta}^{(l)} = f'^{(l)}(\boldsymbol{a}^{(l)}) \circ \left(\boldsymbol{W}^{(l+1)^t} \boldsymbol{\delta}^{(l+1)}\right)$$

• The update is as follows:

$$\boldsymbol{W}^{(l)} = \boldsymbol{W}^{(l)} - \eta_t \boldsymbol{\delta}^{(l)} \boldsymbol{x}^{(l)^t}$$

The layer should keep:

- \bullet $W^{(l)}$: the parameters
- $f^{(l)}$: its activation function
- \bullet $x^{(l)}$: its input
- $a^{(l)}$: its pre-activation associated to the input
- $oldsymbol{\delta}^{(l)}$: for the update and the back-propagation to the layer l-1

Back-propagation: one training step

Pick a training example : $\boldsymbol{x}^{(1)} = \boldsymbol{x}_{(i)}$

Forward pass

For
$$l = 1$$
 to $(L-1)$

- Compute $y^{(l)} = f^{(l)}(W^{(l)}x^{(l)})$
- $x^{(l+1)} = y^{(l)}$

$${\pmb y}^{(L)} = f^{(L)}({\pmb W}^{(L)}{\pmb x}^{(L)})$$

Backward pass

Init:
$$\boldsymbol{\delta}^{(L)} = \nabla_{\boldsymbol{a}^{(L)}}$$

For l = L to 2 // all hidden units

$$\bullet \ \boldsymbol{\delta}^{(l-1)} = f'^{(l-1)}(\boldsymbol{a}^{(l-1)}) \circ (\boldsymbol{W}^{(l)}{}^t \boldsymbol{\delta}^{(l)})$$

•
$$\mathbf{W}^{(l)} = \mathbf{W}^{(l)} - \eta_t \boldsymbol{\delta}^{(l)} \mathbf{x}^{(l)^t}$$

$$\mathbf{W}^{(1)} = \mathbf{W}^{(1)} - n_t \boldsymbol{\delta}^{(1)} \mathbf{x}^{(1)}^t$$

Initialization recipes

A difficult question with several empirical answers.

One standard trick

$$\boldsymbol{W} \sim \mathcal{N}(0, \frac{1}{\sqrt{n_{in}}})$$

with n_{in} is the number of inputs

A more recent one

$$W \sim \mathcal{U}\left[-\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}\right]$$

with n_{in} is the number of inputs

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- Wanishing gradient

Some useful libraries

Theano

Written in python by the LISA (Y. Bengio and I. Goodfellow)

TensorFlow

The Google library with python API

Keras

A high-level API, in Python, running on top of either TensorFlow or Theano.

Torch

The Facebook library with Lua python API

- CPU/GPU
- Automatic differentiation based on computational graph

Computation graph

A convenient way to represent a complex mathematical expressions:

- each node is an operation or a variable
- an operation has some inputs / outputs made of variables

Example 1: A single layer network

- \bullet Setting $\boldsymbol{x}^{(1)}$ and $\boldsymbol{W}^{(1)}$
- ullet Forward pass $o oldsymbol{y}^{(1)}$

$$\boldsymbol{y}^{(1)} = f^{(1)}(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(1)})$$

Training computation graph

- A variable node encodes the label
- To compute the output for a given input
 - \rightarrow forward pass
- ullet To compute the gradient of the loss wrt the parameters $(oldsymbol{W}^{(1)})$
 - $\rightarrow\,$ backward pass

A function node

Forward pass

This node implements :

$$\boldsymbol{z} = f(\boldsymbol{x}, \boldsymbol{y})$$

A function node - 2

Backward pass

A function node knows:

• the "local gradients" computation

$$\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}}$$

• how to return the gradient to the inputs :

$$\left(\frac{\partial l}{\partial z}\frac{\partial z}{\partial x}\right), \left(\frac{\partial l}{\partial z}\frac{\partial z}{\partial y}\right)$$

Summary of a function node

```
# store the values
        x, y, z
                    z = f(x, y)
                                                                            # forward
                                                        # local gradients
               \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}} \to \frac{\partial f}{\partial \boldsymbol{y}}
\left(\frac{\partial l}{\partial x}\frac{\partial z}{\partial x}\right), \left(\frac{\partial l}{\partial u}\frac{\partial z}{\partial u}\right)
                                                                         # backward
```

Example of a single layer network

Forward

For each function node in topological order

• forward propagation

Which means:

$$m{a}^{(1)} = m{W}^{(1)} m{x}^{(1)}$$

$$\mathbf{y}^{(1)} = f^{(1)}(\mathbf{a}^{(1)})$$

$$l(y^{(1)}, c_{(i)})$$

Example of a single layer network

Forward

For each function node in reversed topological order

• backward propagation

Which means:

- $\bullet \ \nabla_{\boldsymbol{W}^{(1)}}$

Example of a two layers network

- The algorithms remain the same,
- even for more complex architectures
- Generalization by coding the function node

Example in Theano - 1

```
import theano
import theano.tensor as T
# Define the input
x = T.fvector('x')
# The parameters of the hidden layer
H = 100 \# hidden layer size
n_in=im.shape[0] # dimension of inputs
n_out=H
Wi = uniform(shape=[n_out,n_in], name="Wi")
bi=shared0s([n_out],name="bi")
# parameters for the output layer
n in=H
n_out=NLABELS
Wo = uniform(shape=[n_out,n_in], name="Wo")
bo=shared0s([n_out],name="bo")
```

Example in Theano - 2

```
# define the hidden layer
h = T.nnet.relu(T.dot(Wi,x)+bi)
# output layer and related variables:
p_y_given_x = T.nnet.softmax(T.dot(Wo,h)+bo)
y_pred = T.argmax(p_y_given_x)
# Compute the cost function
ygold = T.iscalar('gold_target')
cost = -T.log(p_y_given_x[0][ygold])
# 1/ Store all the learnt parameters:
params = [Wi. bi. Wo. bo]
# 2/ Get the gradients of everyone
gradients = T.grad(cost,params)
# 3/ Collect the updates
upds = [(p, p - (learning_rate * g))
            for p, g in zip(params, gradients)]
```

Example in Tensorflow - 1

```
import tensorflow as tf
# x isn't a specific value. It's a placeholder,
# a value that we'll input to run a computation.
x = tf.placeholder(tf.float32, [None, 784])
# Define the parameters as variables
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# the prediction variable
y = tf.nn.softmax(tf.matmul(x, W) + b)
# the gold standard (a placeholder)
y_ = tf.placeholder(tf.float32, [None, 10])
```

Example in Tensorflow - 2

```
# the loss function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduct
# SGD
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_6
# Init. of all the variables
# This defines the operations but does not run it yet.
init = tf.initialize_all_variables()
# open a session
sess = tf.Session()
sess.run(init)
# Training
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
```

Outline

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- 4 Vanishing gradient

Regularization l^2 or gaussian prior or weight decay

The basic way:

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{i=1}^{N} l(oldsymbol{ heta}, oldsymbol{x}_{(i)}, c_{(i)}) + rac{\lambda}{2} ||oldsymbol{ heta}||^2$$

- The second term is the regularization term.
- Each parameter has a gaussian prior : $\mathcal{N}(0, 1/\lambda)$.
- λ is a hyperparameter.
- The update has the form:

$$\boldsymbol{\theta} = (1 + \eta_t \lambda) \boldsymbol{\theta} - \eta_t \nabla_{\boldsymbol{\theta}}$$

Dropout

A new regularization scheme (Srivastava and Salakhutdinov2014)

- For each training example: randomly turn-off the neurons of hidden units (with p = 0.5)
- At test time, use each neuron scaled down by p
- Dropout serves to separate effects from strongly correlated features and
- prevents co-adaptation between units
- It can be seen as averaging different models that share parameters.
- It acts as a powerful regularization scheme.

Dropout - implementation

The layer should keep:

- $oldsymbol{oldsymbol{partial}} oldsymbol{W}^{(l)}: ext{the parameters}$
- $f^{(l)}$: its activation function
- $x^{(l)}$: its input
- $a^{(l)}$: its pre-activation associated to the input
- $oldsymbol{\delta}^{(l)}$: for the update and the back-propagation to the layer l-1
- $m^{(l)}$: the dropout mask, to be applied on $x^{(l)}$

Forward pass

For
$$l = 1$$
 to $(L - 1)$

- Compute $\boldsymbol{y}^{(l)} = f^{(l)}(\boldsymbol{W}^{(l)}\boldsymbol{x}^{(l)})$
- $x^{(l+1)} = y^{(l)} = y^{(l)} \circ m^{(l)}$

$$y^{(L)} = f^{(L)}(W^{(L)}x^{(L)})$$

Outline

- Neural Nets : Basics
 - Terminology
 - Training by back-propagation
- 2 Tools
- 3 Drop-out
- 4 Vanishing gradient

Experimental observations (MNIST task) - 1

The MNIST database

```
82944649709295159133
13591762822507497832
1/836/03100112730465
26471899307102035465
```

Comparison of different depth for feed-forward architecture

- Hidden layers have a sigmoid activation function.
- The output layer is a softmax.

Experimental observations (MNIST task) - 2

Varying the depth

- Without hidden layer : $\approx 88\%$ accuracy
- 1 hidden layer (30) : $\approx 96.5\%$ accuracy
- 2 hidden layer (30) : $\approx 96.9\%$ accuracy
- 3 hidden layer (30) : $\approx 96.5\%$ accuracy
- 4 hidden layer (30): $\approx 96.5\%$ accuracy

Experimental observations (MNIST task) - 2

Varying the depth

- Without hidden layer : $\approx 88\%$ accuracy
- 1 hidden layer (30): $\approx 96.5\%$ accuracy
- 2 hidden layer (30): $\approx 96.9\%$ accuracy
- 3 hidden layer (30): $\approx 96.5\%$ accuracy
- 4 hidden layer (30): $\approx 96.5\%$ accuracy

(From http://neuralnetworksanddeeplearning.com/chap5.html)

Intuitive explanation

Let consider the simplest deep neural network, with just a single neuron in each layer.

 w_i, b_i are resp. the weight and bias of neuron i and C some cost function.

Compute the gradient of C w.r.t the bias b_1

$$\frac{\partial C}{\partial b_1} = \frac{\partial C}{\partial y_4} \times \frac{\partial y_4}{\partial a_4} \times \frac{\partial a_4}{\partial y_3} \times \frac{\partial y_3}{\partial a_3} \times \frac{\partial a_3}{\partial y_2} \times \frac{\partial y_2}{\partial a_2} \times \frac{\partial a_2}{\partial y_1} \times \frac{\partial y_1}{\partial a_1} \times \frac{\partial a_1}{\partial b_1}$$
(3)

$$= \frac{\partial C}{\partial y_4} \times \sigma'(a_4) \times w_4 \times \sigma'(a_3) \times w_3 \times \sigma'(a_2) \times w_2 \times \sigma'(a_1)$$
 (4)

Intuitive explanation - 2

The derivative of the activation function : σ'

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

But weights are initialize around 0.

The different layers in our deep network are learning at vastly different speeds :

- when later layers in the network are learning well,
- early layers often get stuck during training, learning almost nothing at all.

Solutions

Change the activation function (Rectified Linear Unit or ReLU)

- Avoid the vanishing gradient
- Some units can "die"

See (Glorot et al.2011) for more details

Do pre-training when it is possible

See (Hinton et al.2006; Bengio et al.2007):

when you cannot really escape from the initial (random) point, find a good starting point.

More details

See (Hochreiter et al. 2001; Glorot and Bengio 2010; LeCun et al. 2012)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.

2007.

Greedy layer-wise training of deep networks.

In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 153–160. MIT Press.

Léon Bottou.

2010.

Large-scale machine learning with stochastic gradient descent.

In Yves Lechevallier and Gilbert Saporta, editors, *Proceedings of COMPSTAT'2010*, pages 177–186. Physica-Verlag HD.

John Duchi, Elad Hazan, and Yoram Singer.

2011.

Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res., 12:2121-2159, July.

Xavier Glorot and Yoshua Bengio.

2010.

Understanding the difficulty of training deep feedforward neural networks.

In JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), volume 9, pages 249–256, May.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.

2011.

Deep sparse rectifier neural networks.

In Geoffrey J. Gordon and David B. Dunson, editors, *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11)*, volume 15, pages 315–323. Journal of Machine Learning Research - Workshop and Conference Proceedings.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.

2006.

A fast learning algorithm for deep belief nets.

Neural Computation, 18(7):1527–1554, JUL.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.

2001.

Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

In Kremer and Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.

Yann LeCun, Léon Bottou, Genevieve Orr, and Klaus-Robert Müller.

2012.

Efficient backprop.

In Grégoire Montavon, GenevièveB. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science, pages 9–48. Springer Berlin Heidelberg.

Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Michael Collins, and Trevor Darrell.

2007.

Hidden conditional random fields.

IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1848-1852, October.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.

1986.

Learning representations by back-propagating errors.

Nature, 323(6088):533-536, 10.

Nitish Srivastava and Ruslan Salakhutdinov.

2014.

Multimodal learning with deep boltzmann machines.

Journal of Machine Learning Research, 15:2949–2980.