

F0317 FÍSICA II

Informe de Laboratorio N° 2

Circuitos de corriente continua en estado transistorio

Grupo 3

Kirchhoff, Gustav^{1*} (12345/6)

Maxwell, James C.¹ (12345/6)

Faraday, Michael¹ (12345/6)

01/03/2025

¹{gustav.kirchhoff,james.maxwll,mfaraday}@alu.ing.unlp.edu.ar *Autor responsable del informe

Objetivo — determinación de las constantes de tiempo (τ) de carga y descarga de un circuito RC. Análisis de la dependencia de τ en función de los valores de resistencia y capacidad que conforman el circuito.

Nomenclatura

- q Carga [C]
- I Corriente [A]
- U Potencial eléctrico [V]
- \vec{E} Campo eléctrico [V/m]
- \vec{B} Campo magnético [T]

1. Introducción

Coloque aquí la Introducción a su trabajo destacando el interés y los objetivos del mismo.

2. Marco teórico

Si corresponde, describa aquí los fundamentos analíticos de su trabajo indicando las referencias consultadas para obtener la información en el formato adecuado. Por ejemplo, [1], [2, p. 12], [3].

También se puede agregar ecuaciones matemáticas, como

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \iint_S \vec{J} \cdot d\vec{A}. \tag{1}$$

Estas se pueden citar como Ecuación 1.

3. Metodología

Si corresponde, describa aquí la metodología empleada para desarrollar su trabajo. Recuerde mencionar y detallar dentro del texto principal todas las tablas y figuras incluidas en el documento.

4. Resultados

Utilice esta sección para presentar y analizar sus resultados. Incluya preferetemente gráficos vectoriales para garantizar la calidad de las imágenes. Recuerde mencionar y explicar el contenido de todas las figuras en el cuerpo principal del trabajo.

Figura 1: Boxplot genérico.

5. Conclusiones

Detalle aquí las conclusiones de su trabajo.

A. Apéndice

Si corresponde, utilice uno o más apéndices para complementar la información del trabajo.

Bibliografía

- [1] D. J. Griffiths, Introduction to Electrodynamics, 4th ed. Pearson Education, 2017.
- [2] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, 1999.
- [3] J. C. Maxwell, «A Dynamical Theory of the Electromagnetic Field», *Philosophical Transactions of the Royal Society of London*, vol. 155, pp. 459-512, 1865.