SAS Final Project

BY: Luke Faro, Larry Agyei, Elijah Eberly, Shane Artis

Project Background

- Group Interest in NBA statistics
- Obtained NBA data from Kaggle for the years 2004-2022
- Used the games.csv file to accurately predict team wins
- Data can be used to help coaches, players, and spectators

Data Description

- NBA games.csv file
- Data contained games from 2004 2022
- Some missing data, no outliers
- Used a filter and data partition node to reduce the noise
- Variables include:
 - date, team, points both home and away
 - assists and rebounds home and away

Data Prep

- Stat Explore Node
 - Gave insight on missing data (18726 out of 81274)
 - Mean, Skewness, and Standard Deviation
- Cluster / Variable Cluster
 - Set final maximum to 5
 - Helps remove collinearity, redundancy
 - Able to see how variables are grouped

Name	Role	Level
AST_away	Input	Interval
AST_home	Input	Interval
FG3_PCT_away	Input	Interval
FG3_PCT_home	Input	Interval
FG_PCT_away	Input	Interval
FG_PCT_home	Input	Interval
FT_PCT_away	Input	Interval
FT_PCT_home	Input	Interval
GAME_DATE_EST	Rejected	Interval
GAME_ID	Rejected	Nominal
GAME_STATUS_TEXT	Rejected	Nominal
HOME_TEAM_ID	Rejected	Nominal
HOME_TEAM_WINS	Target	Interval
PTS_away	Rejected	Interval
PTS_home	Rejected	Interval
REB_away	Input	Interval
REB_home	Input	Interval
SEASON	Rejected	Interval
TEAM_ID_away	Rejected	Interval
TEAM_ID_home	Rejected	Interval
VISITOR_TEAM_ID	Rejected	Nominal

- Logistic Regression
- Using Home_Team_Wins as Target Variable
- We used four different nodes
 - First the file import node
 - Filter node
 - Data Partition node
 - Regression node
- Resulted in a R-squared of 48.02%
- All variables were significant as they are less than .05

Model Fit Statistics

R-Square	0.4802	Adj R-Sq	0.4797
AIC	-21114.9599	BIC	-21112.9361
SBC	-21035.4499	C(p)	11.0000

Ar	alysis	of Maximum	Likelihood	Estimates	
Parameter	DF	Estimate	Standard Error	t Value	Pr > t
<u> </u>	20				
Intercept	1	0.6757	0.1020	6.62	<.0001
AST_away	1	-0.00827	0.000868	-9.53	<.0001
AST_home	1	0.00741	0.000886	8.36	<.0001
FG3_PCT_away	1	-0.5400	0.0378	-14.29	<.0001
FG3_PCT_home	1	0.5724	0.0374	15.32	<.0001
FG_PCT_away	1	-2.9505	0.0954	-30.91	<.0001
FG_PCT_home	1	2.7416	0.0954	28.75	<.0001
FT_PCT_away	1	-0.4789	0.0353	-13.58	<.0001
FT_PCT_home	1	0.4853	0.0364	13.32	<.0001
REB_away	1	-0.0105	0.000674	-15.54	<.0001
REB home	1	0.00939	0.000675	13.90	<.0001

- Stepwise logistic regression
 - Starts with most significant adding more variables each
- The most significant variables was field goal percentage home and away
- Field goal pct home and away resulted R-squared of 39.37%
- Stopped at step 8 as no more significant improvement
- Resulted in overall R-squared of 47.27%

Step 8: Effect FT PCT home entered.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	8	1160.825950	145.103244	1139.85	<.0001
Error	10171	1294.771692	0.127300		
Corrected Total	10179	2455.597642			

Model Fit Statistics

R-Square	0.4727	Adj R-Sq	0.4723
AIC	-20974.0826	BIC	-20972.3181
SBC	-20909.0290	C(n)	152,7554

Analysis of Maximum Likelihood Estimates

		Standard		
DF	Estimate	Error	t Value	Pr > t
1	0.6941	0.0954	7.28	<.0001
1	-0.5902	0.0377	-15.66	<.0001
1	0.6147	0.0372	16.52	<.0001
1	-3.3027	0.0825	-40.02	<.0001
1	3.0610	0.0809	37.86	<.0001
1	-0.4837	0.0354	-13.66	<.0001
1	0.4833	0.0366	13.20	<.0001
1	-0.0107	0.000642	-16.70	<.0001
1	0.00943	0.000638	14.79	<.0001
	1 1 1 1 1	1 0.6941 1 -0.5902 1 0.6147 1 -3.3027 1 3.0610 1 -0.4837 1 0.4833 1 -0.0107	DF Estimate Error 1 0.6941 0.0954 1 -0.5902 0.0377 1 0.6147 0.0372 1 -3.3027 0.0825 1 3.0610 0.0809 1 -0.4837 0.0354 1 0.4833 0.0366 1 -0.0107 0.000642	DF Estimate Error t Value 1 0.6941 0.0954 7.28 1 -0.5902 0.0377 -15.66 1 0.6147 0.0372 16.52 1 -3.3027 0.0825 -40.02 1 3.0610 0.0809 37.86 1 -0.4837 0.0354 -13.66 1 0.4833 0.0366 13.20 1 -0.0107 0.000642 -16.70

- Backwards Logistic Regression
 - Removes least important variables and leaves the most important variables
- Results were the same as original model
- R-squared of 48.02%
- All variables were significant as they are less than .05

Model Fit Statistics R-Square 0.4802 Adj R-Sq 0.4797 AIC -21114.9599 BIC -21112.9361 SBC -21035.4499 C(p) 11.0000

An	alysis	of Maximum	Likelihood	Estimates	
			Standard		
Parameter	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.6757	0.1020	6.62	<.0001
AST_away	1	-0.00827	0.000868	-9.53	<.0001
AST_home	1	0.00741	0.000886	8.36	<.0001
FG3_PCT_away	1	-0.5400	0.0378	-14.29	<.0001
FG3_PCT_home	1	0.5724	0.0374	15.32	<.0001
FG_PCT_away	1	-2.9505	0.0954	-30.91	<.0001
FG_PCT_home	1	2.7416	0.0954	28.75	<.0001
FT_PCT_away	1	-0.4789	0.0353	-13.58	<.0001
FT_PCT_home	1	0.4853	0.0364	13.32	<.0001
REB_away	1	-0.0105	0.000674	-15.54	<.0001
REB home	1	0.00939	0.000675	13.90	<.0001

- Decision Tree
- Set Maximum depth to 4 everything else left unchanged for first pass
- Used import file, transform variables, data partition and then a decision tree
- Field goal percentage away was most important followed by field goal percentage home
- Average Square Error (ASE) of 15% resulting in 85% accuracy rate

84	Fit Statisti	cs				
85						
86	Target=H0ME_	TEAM_WINS Target Label=' '				
87						
88	Fit					
89	Statistics	Statistics Label	Train	Validation	Test	
90						
91	_NOBS_	Sum of Frequencies	10660.00	7995.00	7996.00	
92	_MAX_	Maximum Absolute Error	0.98	0.98	0.98	
93	_SSE_	Sum of Squared Errors	1509.61	1206.92	1160.18	
94	_ASE_	Average Squared Error	0.14	0.15	0.15	
95	_RASE_	Root Average Squared Error	0.38	0.39	0.38	
96	_DIA_	Divisor for ASE	10660.00	7995.00	7996.00	
97	_DFT_	Total Degrees of Freedom	10660.00			
98						

- Decision Tree
- Set 3 splits per decision and having a max depth of 6 yielded improved accuracy
- Changing the split method from Chi Squared to Gini slightly decreased accuracy

lodel Sele	ction bas	ed on Valld: Ave	erage Squared Err	or (_VASE_)	
				Valid:	Train:
				Average	Average
Selected	Model			Squared	Squared
Model	Node	Model Des	scription	Error	Error
Y	Tree3	Decision Tree	(3Branch/Max6)	0.14677	0.12490
	Tree	Decision Tree	(Max4)	0.15198	0.14199
	Tree2	Decision Tree	(Gini/Max4)	0.15198	0.14199

- MBR / K-Nearest Neighbor
- Using default settings on first pass
- Returned an Average Squared Error of 18%
- Slightly worse predictor of home team wins when compared to decision tree and linear regression models
 - Even with a refined model

46	Fit Statisti	ne .			
47	ric scacisci				
48	Target=HOME	TEAM WINS Target Label=' '			
49	rarge c-nons_	IDAI_WIND Target Daber-			
50	Fit				
51	Statistics	Statistics Label	Train	Validation	Test
52					15/55/50
53	NU	Number of Estimated Weights	10.00		
54	NOBS	Sum of Frequencies	10632.00	7995.00	7996.00
55	SUMW	Sum of Case Weights Times Freq	10632.00	7995.00	7996.00
56	_DFT_	Total Degrees of Freedom	10632.00		
57	DFM_	Model Degrees of Freedom	10.00		
58	DFE	Degrees of Freedom for Error	10622.00		
59	_ASE_	Average Squared Error	0.16	0.18	0.18
60	_RASE_	Root Average Squared Error	0.40	0.43	0.42
61	_DIV_	Divisor for ASE	10632.00	7995.00	7996.00
62	_SSE_	Sum of Squared Errors	1699.85	1451.98	1411.54
63	_MSE_	Mean Squared Error	0.16	0.18	0.18
64	_RMSE_	Root Mean Squared Error	0.40	0.43	0.42
65	_AVERR_	Average Error Function	0.16	0.18	0.18
66	_ERR_	Error Function	1699.85	1451.98	1411.54
67	_MAX_	Maximum Absolute Error	0.94	1.00	1.00
68	_FPE_	Final Prediction Error	0.16		
69	_RFPE_	Root Final Prediction Error	0.40		
70	_AIC_	Akaike's Information Criterion	-19471.92		-
71	_SBC_	Schwarz's Bayesian Criterion	-19399.21		

- MBR / K-Nearest Neighbor
- Increasing the number of neighbors collected improved accuracy
- Changing the input method to Scan yielded marginally better results

Fit Statis	tics			
Model Sele	ction bas	ed on Valid: Average	e Squared Er	ror (_VASE_)
			Valid:	Train:
			Average	Average
Selected	Model	Model	Squared	Squared
Model	Node	Description	Error	Error
Y	MBR3	MBR (Nearest 20)	0.17963	0.16210
	MBR2	MBR Scan	0.18152	0.15941
	MBR	MBR Default	0.18159	0.15990

Results

- Used a model comparison with all models
- Original logistic regression model worked best
- No models achieved less than 10 for ASE
- Possibly due to missing data
- MBR / KNN performed the worst
- Found that Field goal percentage was most important for a team winning the game
- Need to shoot more shoots

Model Sele	ction bas	ed on Valid: Aver	age Squared	Error (_VASE_)
			Valid:	Train:
			Average	Average
Selected	Model	Model	Squared	Squared
Model	Node	Description	Error	Error
Y	Reg	Regression	0.12766	0.12624
	Reg2	Stepwise	0.12766	0.12624
	Reg3	Backward	0.12766	0.12624
	Tree	Decision Tree	0.15133	0.14314
	MBR	MBR	0.17890	0.15995

Results

- Our findings can be used for determine success and predicting possible championship teams
- Help coaches identify strengths and weaknesses
- Many teams now have data scientist to help because they have seen the benefits
 - Example: not directly related to basketball but the movie Moneyball

Q&A