7506-2021 Coloquio 12-8-2021

Román Vázquez Lareu

TOTAL POINTS

70 / 100

QUESTION 1

- 1 Punto 1 20 / 50
 - √ 0 pts Correct
 - √ 30 pts Punto c mal.
 - 1 Esto está radicalmente mal. Al devolver 1 o 0 luego no puede comparar contra el próximo registro porque ya no tiene la fecha. Pierde la estructura de los registros. Las operaciones de reduce tienen que devolver la misma estructura que usan como input.

QUESTION 2

2 Punto 2 50 / 50

√ - 0 pts Correcto.

```
tests = [("2021-01-15",4000, "11",0),
                                      ("2021-01-15",4000, "11",0),
("2021-01-15",4000, "14",0),
                                       ("2021-02-15",4000, "12",1),
                                      ("2021-02-15",3000, "12",1),
("2021-03-13",5000, "11",0),
                                       ("2021-03-15",3000, "11",0),
                                      ("2021-03-15",4000, "13",1),
("2021-03-15",5000, "13",1),
                                       ("2021-03-15",4000, "11",0),
                                       ("2021-03-11",1000, "14",1),
                                      ("2021-03-11",5000, "11",0),
("2021-10-12",5000, "11",0),
                                       ("2021-02-12",5000, "15",0)
        localidades = [("l1","n1","BsAs"),
                                                          ("12","n2","p2"),
("13","n3","p3"),
                                                           ("14", "n4", "BsAs"),
                                                           ("15","n5","p5")
        testsRdd = sc.parallelize(tests)
        localidadesRdd = sc.parallelize(localidades)
¬ a)
        tests\_localidades\_primer\_trimestre = testsRdd.filter(lambda x: (x[0].split("-")[0]=="2021") & (x[0].split("-")[1] in ["01","02","03"])). cache() in the context of the co
        [('l1', 'BsAs'), ('l4', 'BsAs')]
        tests_to_join = tests_localidades_primer_trimestre.map(lambda x: (x[2],x[1]) )
                          [('11', 4000),
                            ('11', 4000),
('11', 4000),
('14', 4000),
('12', 4000),
('12', 3000),
('11', 5000),
```

```
('11', 3000),
           ('13', 4000),
('13', 5000),
('11', 4000),
           ('14', 1000),
('11', 5000),
('15', 5000)]
   tests\_bsas = tests\_to\_join.join(id\_localides\_bsas).map(lambda x: (x[1][0],1) ).reduceByKey(lambda x,y: x+y).reduce(lambda x,y: x if x[1]>y[1] else y)[0]
   tests_bsas
          4000
- b)
   tests\_localidades\_primer\_trimestre\_positividad\_nula = tests\_localidades\_primer\_trimestre.map(lambda x: (x[2],(1,1) if x[3] == 1 else (0,1) )) \\
                                                                          .reduceByKey(lambda x,y: (x[0]+y[0],x[1]+y[1]) ).filter(lambda x: (x[1][0]==0) )
   tests\_localidades\_primer\_trimestre\_positividad\_nula.map(lambda x: (1,1)).reduceByKey(lambda x,y: x+y).collect()[0][1]
         2
- c)
   from datetime import datetime
   def diferencia entre fechas(fecha1,fecha2):
        fecha1 = datetime.strptime(fecha1, "%Y-%m-%d")
fecha2 = datetime.strptime(fecha2, "%Y-%m-%d")
        return abs((fecha2 - fecha1).days)
   tests\_localidades\_primer\_trimestre\_por\_localidad = tests\_localidades\_primer\_trimestre.map(lambda \ x: \ (x[2],(x[0],x[3])))
          [('11', ('2021-01-15', 0)),
           ('11', ('2021-01-15', 0)),
('14', ('2021-01-15', 0)),
('12', ('2021-02-15', 1)),
('12', ('2021-02-15', 1)),
            ('11', ('2021-03-13', 0)),
('11', ('2021-03-15', 0)),
           ('13', ('2021-03-15', 1)),
('13', ('2021-03-15', 1)),
('13', ('2021-03-15', 1)),
('11', ('2021-03-15', 0)),
('14', ('2021-03-11', 1)),
```

```
('11', ('2021-03-11', 0)),
('15', ('2021-02-12', 0))]
```


1 Punto 1 20 / 50

- √ 0 pts Correct
- √ 30 pts Punto c mal.

1 Esto está radicalmente mal. Al devolver 1 o 0 luego no puede comparar contra el próximo registro porque ya no tiene la fecha. Pierde la estructura de los registros. Las operaciones de reduce tienen que devolver la misma estructura que usan como input.

Y = aproximonor = (Y, - Ŷ,) m = 1 printer Entreno a la ruguerion con el de train. La ruguesión mán simple en la lineal elip rute Evror de train = Even de test = 0.5 MSE train = = (4-4)2+(4-4)2 \(\frac{1}{4} \big(\frac{1}{4} - \frac{1}{4} \big) = \big(\frac{1}{4} + \d^2 + \d^2 + \d^2 \big) = ud^2 = d^2 MSE Text = d2 = 0,5 (=> d = \(\sigma_{15}\) = 1/\(\frac{1}{2}\) set train net tex (2,4+1/1) 2, 4-1/1 (614 (5,4+1/52) (8,4 (5, 4-1/02)

b) auwracy train ms = 0,6 accuracy trainma - 0,5 allurally averaging 0,1 1011 0 0,1 10,1 0 0.5 10,1 0,1 10,5 10,6 0135 1011 V 0,1 0,4 0,1 X 0,6 0,35 X0,9 0,9 0,9 X 0,9 0,9 0,9 X 0,9 0,9 1011 X0,6 0135 5/10 6/10 verdadero 7/10 V 016

			HOJA N
			- 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15
			HOJA Nº
200			PECHA
C) clase	lalul	mean enco	
A	1	1+1 = 1	
A	1	1+1 = 1	
8	0 =>	0+1 = 0,5	
		0+1 = 015	
		0+1 - 0,5	
		0+111 = 0,5	
Poenteuro	label	y	arbol:
Courtere 1	1	11 <0,6	/ >2016
1	1	1	0 1
0,5	0	01	
0,5	1	OX	
0,5	0	01	
0,5	1	OX	
		6/8 >	0,75

test Train Al momento de clarificar solo tengo en La distancia que usa KNN es la euclidea, con el gráfico es evidente como clairficacia, no hace falta ver distancias Exmala Clarfilla verde Charfice magte

2 Punto 2 **50** / **50**

√ - 0 pts Correcto.