COURSE DESCRIPTION FORM

INSTITUTION FAST - National University of Computers and Emerging

Sciences

PROGRAM (S) TO

BE

BS - Computer Science

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled-out form should not be more than 2-3 pages.)

Course Title	Theory of Computation / Automata								
Course Code	CS3005	Credit Hours	3 + 0						
Prerequisites by Course(s)	Discrete Structures	Spring 2023							
Assessment Instruments (With tentative weights)	Midterm 30% (2 Mid semester example 150% (Comprehensive end of semester)	Semester Work 20% (at least 3 assignments and 3 quizzes) Midterm 30% (2 Mid semester exam – Week 6 and Week 11) Minal 50% (Comprehensive end of semester exam)							
Course Coordinator	Muhammad Shahzad								
Office Hours	Details displayed outside my Basen	nent (Old library- CS Block).							
Current Catalog Description	Finite State Models: Language defir languages, Finite automata (FAs), Transducers (automata with outper Grammars and PDA: CFGs, Derivation of CFLs, Normal form grammars and grammars and linear bounded automatical Turing Machines Theory: Turing rencoding, Universal Turing Machines	Transition graphs (TGs), NFAs, Klout), Pumping lemma and non-relations, derivation trees and ambigoarsing, Decidability, Context sensomata (LBA), Chomsky's hierarchachines, Post machine, Variation	eene's theorem, egular language uity, Simplifying sitive languages, ny of grammars						
Textbook (or Laboratory Manual for Laboratory Courses)	 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation P. Linz. Introduction to Formal Languages and Automata, 6th edition, 2017 (or 5th or 4th edition), Jones and Barlett Daniel I. A. Cohen, Introduction to Computer Theory 								
Reference Material	 John Martin, Introduction to Languages and the Theory of Computation, Third Edition Michael Sipser, Introduction to Theory of Computation Instructor Notes 								
Course Goals	A. Course Learning Outcomes	(CLOs)							

CLO No.	Course Learning Outc		Bloom Taxonomy	Tools		
CLO-1	automata theory and for	e the different concepts in ormal languages such as ata, regular expressions,	C2 (Understand)	A1, Q1		
CLO-2	Prove properties of languages, grammars and automata with rigorously formal mathematical methods C2 (Understand) A2, Q2					
CLO-3	Design of automata, RE and CFG C3 (Apply) Q3, M1, F1					
CLO-4	Transform between equivalent NFAs, DFAs and C3 (Apply) M1, F1 Res					
CLO-5	performing simple tasks		C2 (Understand)	A3, M2, F1 Q3		
Tool: A = As	ssignment, $Q = Quiz$, $M = N$	Midterm, F=Final, CEP = Col	mplex Engineering Prob	lem.		
B. Prog	ram Learning Outco	omes				
PLO 1	Computing Knowledge	computing fundamenta	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems			
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.				
PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet appropriate consideration for public health and safety, cultural, societal, and environmental considerations.				
PLO 4	Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods				
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.				
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.				
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems				
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.				
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.				
	Communication	Communicate effectively on complex computing activities with the computing community and with				
PLO 10		activities with the compactivities with the compaction at large.	puting community and	ı witn		
PLO 10	Project Mgmnt and Finance		ge and understanding s and economic decis	ı of		

				s and F Outcom		Ds: Prog	gram Le	earning (Outcon	nes)	
						PLO	s				
		1	2	3	4	5	6	7	8	9	1
CLOs	1	•									
	2		~								
	3			~							
	4			~							
	5			~							

Topics Covered in the Course (Tentative plan)

Please note:

- 1. Students are expected to go through the suggested reading topics from at least one reference book and internet, before & after each class.
- Representative topic of suggested chapters is given week-wise (on right) as Chapter [Ullman] / [Cohen]. Please read the full chapter(s).
- 3. Apart from graded assignments, students are expected to discuss and solve exercises at the end of

Week	Lecture	Topics	CLO	Chapters	Assessments
1.	1.	Discussion on Course Outline,	CLO-1	[HMU]:1.1	
		Introduction to Finite Automata		[Linz]: 1	
	2.	What does automata mean?	CLO-1	[HMU]: 1.5	
		Introduction to Languages,		[DC]: 1	
		Alphabets, Strings			
	3.	Kleene Star Closure, Regular	CLO-3	[DC]: 4	
		Expression (RE)		[HMU]: 3	
				[JM]: 3	
				[Linz]: 3	
2.	1.	Equivalent RE, Finite Automaton	CLO-3	[HMU]: 2	
		(FAs), Equivalent FAs		[JM]: 2	
				[MS]: 1	
	2.	ΓΛ corresponding to finite lenguages	CLO-3	[] :1, 0.4	
	۷.	FA corresponding to finite languages, Transition Graph	CLO-3	[Linz]: 2.1 [DC]: 6	
		Hansilion Graph		[DC]. 6	
	3.	Continued			
	٥.	Continued			
3.	1.	Examples of TGs: accepting all strings,	CLO-4	[Linz]: 2	Assignment 1
		accepting none, starting with b, not		[DC]: 6	Friday Release
		ending in b, containing aa, containing		_	Week 3
		aa or bb.			
	2.	Generalized Transition Graph	CLO-4	[DC]: 6	

each chapter.		3.	Language accepted by NFA, Recursive definition of NFA	CLO-4	[Linz]: 2.2 [HMU]:2.3	
	4.	1.	Basis Clause and Inductive Clause of NFA	CLO-4, 2	[Instructor Notes]	Quiz no 1
		2.	NFA with Λ Transitions, Language accepted by NFA- Λ, Definition of Λ-Closure, Basis Clause and Inductive Clause of NFA- Λ	CLO-4	[Instructor Notes]	
		3.	Conversion of NFA- Λ to equivalent NFA	CLO-4	[Instructor Notes]	
	5.	1.	Conversion of NFA to equivalent DFA	CLO-4	[Instructor Notes]	Assignment 1 submission
		2.	Equivalence of DFAs, NFAs and NFA- Λ	CLO-4	[Instructor Notes]	Monday Week 5
		3.	Kleene's Theorem Part-1 & Part-2	CLO-4	[JM]: 3.4, 3.5 [DC]: 7	
	6.	1.	MiddEnswiretien			
		2.	Mid-I Examination			
		3.				
	7.	1.	Complement of Regular Language and Complement of DFA, Intersection of Regular Languages	CLO-3	[Instructor Notes]	
		2.	Properties of RLs	CLO- 2,3	[Linz]: 4 [HMU]: 4	
		3.	Pumping Lemma	CLO-3	[HMU]: 4.1 [JM]: 2.4	
	8.	1.	Minimization of DFA	CLO-4	[Instructor Notes] [HMU]: 4.4	Quiz no 2 Assignment 2 Friday Release Week 8
		2.	Mealy & Moore Machines	CLO-4	[DC]: 9	
		3.	Conversion between Mealy & Moore Machines	CLO-4	[Instructor Notes]	
	9.	1.	Regular Grammars, Linear Grammar, Context-free Languages (CFL), Context-free grammars (CFG).	CLO- 2,3	[DC]: 13 [MS]: 2	
		2.	Parse Trees, Derivations and ambiguity and Chomsky-normal-form grammars (CNF), Null Production	CLO-3	[DC]: 20 [Linz]: 6.2	
		3.	Trees, Polish Notations, Total Language Tree	CLO-3	[JM]: 4.4	

	10.	1.	Push down automata (PDA)) CL		[JM]: 5	Assignment 2
						[DC]: 17 [MS]: 2.2	submission Monday Week 10
		2.	Deterministic PDA, Pumpi for CFG	ing Lemma CL	.O-5		
		3.	NPDA and CFG Equivalence	ce CL	.O-5		
	44						
	11.	1. 2.	Mid-II Examination				
		3.					
	12.	4	Turing Machines (TM) Intro	° CL	0.5	IMC1. 2.4	
	12.	1.	Turing Machines (TM) Intro Formalities			[MS]: 3.1 [Linz]: 9	
		2.	Designing TM Acceptors/Transducers	as CL	.O-5	[Linz]: 9	
		3.	Turing's Thesis, Turing Variations	Machine CL		[MS]: 3.2 [DC]: 27	
	13.	1.	Universal Turing Machine D	Decidability CL		[JM]: 7.8 [DC]: 27	Assignment 3 Friday Release Week 13
		2.	Recursive vs. recursively er	numerable CL		[JM]: 8 [DC]: 28	
		3.	Continued				
	14.	1.	Decidable Problem and Uno Problem,	decidable CL	l i	[JM]: 9 [HMU]: 9 [MS]: 4	Quiz no 3
		2. 3.	Continued Continued				
	15.	1. 2.	Reducibility, Reduction prob The Chomsky Hierarchy	CL	.0-	[MS]: 5.1 [JM]: 8.3	Assignment 3 submission
		3.	Continued	1,2	2,3		Monday Week 15
	16.	1.	Revision				
Class Time Spent on	Т	heory	Problem	Solutio	n Desi	ign	Social and Ethical Issues
(in credit hours)		5	Analysis 15	28			0
Oral and Written Communications			required to submit at le			and 3 qui	1

Instructor NameSyeu Faisai Aii	
Course Coordinator Signature:	Instructor Signature:
Date 10-01-2025	-