WST211

Practical 1

Date: 8 February 2016

Homework – Hand in at the latest on 15 February 2016 @ 13h30

Contents:

The practical activities are split into two sections:

Section A: This is intended as a revision exercise of the SAS programming activities from the first year level. It is slightly more comprehensive, but requires the same procedures as used at the first year level.

Section B: Simulations in SAS. The content is aimed at enhancing theoretical aspects, usually through simulation studies.

Instructions:

- ❖ Hand in a typed document with your answers which includes the following:
 - > Table of contents
 - > Answers
 - > SAS program
 - > SAS output
- ❖ Attach a copy of the SAS program in an appendix.
- ❖ Attach the relevant outputs of the SAS output.
- ❖ According to the question, make interpretations about the SAS output.
- * Round the answers to 3 decimal places.

Section A

Water quality is determined by measuring particulate levels of several substances. The Utah Division of Water Quality collected water samples from a specific well for the period January 1990 to December 1991 and measured the nitrate, zinc and TDS (total dissolved solids) levels for each sample. The dataset **well.dat** is given on ClickUP.

Variable	Columns
Date (month/day)	1-5
Year	7-8
Nitrate (mg/l)	11-15
Zinc (mg/l)	18-22
TDS (mg/l)	25-27

.

The dataset is space delimited and can be imported into SAS by using the following statements:

```
data well;
infile 'c:\well.dat' dlm=' ';
input v1$ v2 v3 v4 v5;
```

Ouestions

- 1. Give the mean and standard deviation of the nitrate, zinc and TDS measurements for all the samples collected.
- 2. Draw joint boxplots in SAS to compare the zinc of samples collected in 1990 and in 1991. Hand in the relevant SAS output.
- 3. Give the five-point summary statistics for zinc of samples collected in 1990 and 1991 by completing the following table.

mmary statistic	1990	1991
nimum		

Five-point summary of zinc for 1990 and 1991

Summary statistic	1990	1991
Minimum		
First quartile		
Median		
Third quartile		
Maximum		

Section B

Study the notes "Simulations in SAS" (available on ClickUP) and answer the questions that follow.

Ouestions

- 1. Draw 10000 values randomly from a standard normal population and determine the following probabilities empirically (that is through a simulation). Use a seed value of 50.
 - a) $P(Z > 1.8), Z \sim N(0,1)$.
 - b) $P(-1.024 < Z < 1.335), Z \sim N(0,1).$

Note: The rannor(seed) function generates a value randomly from the N(0,1) population. The seed value can be any integer. If 0 is chosen, the values generated will differ for each simulation.

- 2. A man pays R10 to win a R30 Kewpie doll. His probability of winning on each throw is 0.2. He must win a doll for each of his three children. Let *X* be the random variable indicating the number of throws required to win three dolls. Determine through simulation empirical values for the following. (Use 1000000 simulations and a seed value of 1.)
 - a) The probability that 10 throws are needed to win the four dolls, that is P(X = 10).
 - b) The probability that at least ten throws will be required, that is $P(X \ge 10)$.
 - c) The probability that at least seven throws but no more than eighteen throws will be required, that is P $(7 \le X \le 18)$.
 - d) The expected number of throws needed to win four dolls, that is E(X).

Note: The ranuni(seed) function generates a value randomly from the UNIF(0,1) population. In this problem, a value in the interval [0,0.3] can be considered as winning on a throw.