LoRaWANTM

Trabajo final de Redes de Comunicación Ing. en Telecomunicaciones Scalambrin Luca - Markevich Nahuel

Introducción: LoRa/LoRaWAN

IoT - Internet de los objetos

- Se estiman +20 billones de dispositivos empleando conceptos de IoT.
- Para el 2025 se espera un impacto económico anual de \$6,2 trillones de U\$D.
- Gran utilización en:
- Cuidado de salud
- Transporte
- Gestión de infraestructura urbana (Smart cities)
- Smart Homes
- Agricultura

Modelo básico de tres capas de la arquitectura de una red destinada a IoT

Arquitectura básica

- Server layer: capa de aplicación que almacena y da uso de los datos colectados.
- Network layer: interconecta dispositivos con dispositivos y dispositivos con el servidor.
- Device layer: colecta los datos que serán utilizados por otras capas.

¿Qué se busca?

- Escalabilidad: se pronostican densidades de 60k dispositivos por km².
- Costo: los chips deben tener costos muy reducidos.
- Battery life: se busca una larga autonomía, lo cual es necesario para reducir costos de la red.
- Poder de cómputo: los dispositivos(end-nodes) tienen capacidades reducidas.
- Throughput ??
- Conexiones persistentes ??

No son cruciales en una primera instancia

¿Cuál es el mejor estándar para IoT?

Una posible propuesta: LPWAN

- Low Power Wide Area Network

Una tecnología LPWAN: LoRaWANTM

LoRa modulation

- Long Range: gran rango de sensibilidad disponible, pero tasas bajas (hasta $40 \sim 50 \text{kbps}$).
- Capa física que implementa CSS (Chirp Spread Spectrum), patentado.
- Sinusoide cuya frecuencia varía linealmente con el tiempo.
- SF: spreading factor (# bits presentes en cada símbolo)
- Algunas definiciones:

$$T_S = 2^{SF}/B$$
, $R_b = SF/T_S = SF * B / 2^{SF}$.

LoRa modulation

Ortogonalidad entre los diferentes SF

	SF
SF	SNR
7	$-7.5~\mathrm{dB}$
8	-10 dB
9	$-12.5~\mathrm{dB}$
10	-15 dB
11	-17.5 dB
12	-20 dB
Marie Control	

LoRaWANTM

Define el protocolo de comunicación y, a diferencia de la modulación LoRa, es de tipo "open", regido por LoRa Alliance.

- Conexión tipo estrella típica.
- ED conectados a más de un GW.

Modelo de capas

LoRaWAN - ns3

Modelado

Todo el proceso de Tx/Rx deberá ser simplificado para poder llevar a cabo la simulación

- <u>Measurement Model:</u>
- Efectos de propagación
- Desvanecimiento de pequeña escala
- Ganancia de antenas

- <u>Performance Model:</u> determina la prob. de recibir paquete de forma correcta. Se utilizan:
- Niveles de potencia del enlace
- Posibles nodos interferentes

Modelado

Publicaciones que analizan diferentes modelos y efectos que degradan las comunicaciones

- "Dedicated networks for IoT: PHY/MAC state of the art and challenges" C. Goursaud and J.M. Gorce
- "A Study of LoRa: Long Range & Low Power Networks for the Internet of Things"
 A. Augustin, J. Yi and W. M. Townsley
- "LoRa for the internet of things" M. Bor, J. E. Vidler and U. Roedig

Interferencias debido a los diferentes SF, mediciones con chip SX1276 para evaluar la performance de decodificación, análisis de las causas del evento "packet loss" (framework SimPy para simular)

Modelado

Conclusión

Modelar el esquema de la red puede no ser algo trivial

Measurement model

Dado un conjunto Tx/Rx, se busca conocer la potencia de señal recibida

$$L [dB] = L_{Prop}[dB] + L_{Buildings}[dB]$$

Measurement model

Dado un conjunto Tx/Rx, se busca conocer la potencia de señal recibida

$$L [dB] = L_{Prop}[dB] + L_{filds}[dB]$$

Performance model

Utiliza:

- Pot. recibidas (measurement model) e información sobre el lugar y tiempo de orígen de Tx

Genera:

- Abstracciones sobre la capa física real, para poder calcular la interferencia

Módulo LoRa

• "Network level performances of a LoRa system" - Davide Magrin

(Cada bloque con su correspondiente "helper")

Módulo LoRa

Consideraciones para las simulaciones:

- Los esquemas empleados son de tipo "LoRa Class A Network" (transmisiones siempre iniciadas por EndNodes).
- Tráfico únicamente en el sentido "UpLink" (¿Limitación?).
- Arquitectura basada en EndNodes y Gateways (nivel al que se implementa la modulación LoRa).
- Freq.(Banda EU): 868.1MHz, 868.3MHz y 868.5MHz.
- SF: 7, 8, 9, 10, 11 y 12.

Bloques fundamentales

PeriodicSender corre sobre todos los nodos (tráfico según el estándar MAR, "Technical Report 45.820")

Simulación: esquema, métricas y código

Objetivo de trabajo

Analizar escenario simplificado de una 'smart city':

- Observar efectos de variar parámetros los de transmisión
- Validar resultados contrastando con publicación de referencia*
- Analizar concordancia con lo previsto por la teoría

Esquemas de simulación

Esquemas simples de $smart\ city$: un Gateway central y ${\bf N}$ nodos distribuidos en un radio ${\bf R}$.

• Esquema 1:

- \circ R = 7500 m
- \circ N = 200
- \circ BW = [125; 250; 500] kHz

• Esquema 2:

- \circ R = [2,5; 5; 7,5; 10] km
- \circ N = [200:2000]
- \circ BW = 500 kHz
- \circ SF = 10

Métricas y parámetros de simulación

• Parámetros de simulación:

- o Radio (R)
- Número de nodos (N)
- Ancho de banda (BW)
- Spread factor (SF)
- Tamaño de payload (= 33 bytes)
- Tiempo de simulación (= 200')
- Período de transmisión (= 600")

• Métricas representativas:

- vs Spread factor y BW
 - Packet Success Rate
 - Time on Air
 - Throughput

- o vs Número de nodos y R
 - Packet Success Rate

Principales bloques de simulación (I)

 Creación de helpers y dispositivos, y configuración de movilidad similar a lo usual.

• Seteo de SF y BW

Instalación de PeriodicSender

```
//Forzamos el SF a todos los nodos, l = 12 - SF
Config::SetDefault ("ns3::EndDeviceLorawanMac::DataRate", UintegerValue (1));
// Seteo de BW en cada nodo
std::vector<double> dataRate V(7,bw);
for (NodeContainer::Iterator ji = endDevices.Begin (); ji != endDevices.End (); ++ji){
 Ptr<Node> node = *ji;
 Ptr<LoraNetDevice> loraNetDevice = node->GetDevice (0)->GetObject<LoraNetDevice> ();
 Ptr<LorawanMac> lmac = loraNetDevice->GetMac();
 lmac->SetBandwidthForDataRate (dataRate V);
    Install applications on the end devices
Time appStopTime = Seconds (simulationTime);
PeriodicSenderHelper appHelper = PeriodicSenderHelper ();
appHelper.SetPeriod (Seconds (appPeriodSeconds));
appHelper.SetPacketSize (packSize);
ApplicationContainer appContainer = appHelper.Install (endDevices);
appContainer.Start (Seconds (0));
appContainer.Stop (appStopTime);
```

Principales bloques de simulación (II)

- Cálculo de ToA*:
 - \circ Calcula: $T_s = 2^{SF}/BW$
 - Calcula tiempo de preámbulo y de payload según SF, tamaño de paquete, Ts y otros parámetros predeterminados.
 - o Devuelve:

```
ToA = T_{preamb} + T_{payload}
```

```
CALCULO DE TOA
Time GetTimeOnAir (uint8 t sf, double bw, uint32 t pack size,
                                        uint32 t nPreamble = 8, double crc = 1){
  // Compute the symbol duration
  // Bandwidth is in Hz
  double tSym = pow (2, int(sf)) / (bw);
  // Compute the preamble duration
  double tPreamble = (double(nPreamble) + 4.25) * tSym;
  // num and den refer to numerator and denominator of the time on air formula
  double num = 8 * pack size - 4 * sf + 28 + 16 * crc;
  double den = 4 * (sf);
  double payloadSymbNb = 8 + std::max (std::ceil (num / den) * (1 + 4), double(0));
  // Time to transmit the payload
  double tPayload = payloadSymbNb * tSym;
  // Compute and return the total packet on-air time
  return Seconds (tPreamble + tPayload);
```

Resultados

Tasa de éxito de paquetes (PSR) - Esquema 1

• Mejora significativa con el aumento del SF

Esperable: sensibilidad vs SF

• Caída en SF = 12 (?)

Tiempo de aire (ToA) - Esquema 1

- Aumento significativo de ToA con el SF
- Decremento de ToA con el BW

Esperable:

- Relación directa de fórmula
- Data rate vs SF

Throughput - Esquema 1

- Decremento de ToA con el SF
- Aumento de ToA con el BW

Esperable:

- Relación directa de fórmula

No tan esperable:

- Mayor data rate > Mayor PSR

Radio de cobertura y cantidad de nodos (I) - Esq. 2

• Desmejoría significativa con distancia

Límite de alcance (sensibilidad)

Desmejoría con cantidad de nodos

Interferencia (exceso de tráfico)

Radio de cobertura y cantidad de nodos (II) - Esq. 2*

- Misma desmejoría vs distancia
- Constante vs cantidad de nodos

Poco tráfico = poca interferencia

*Tiempo de simulación = 24 hs

Períodos de transmisión:

Período tx	% nodos
24 hs	40%
2 hs	40%
60'	15%
30'	5%

Tasa de éxito de paquetes (PSR) - Esquema 1*

• Mejora significativa con el aumento del SF

Esperable: sensibilidad vs SF

Conclusiones

Conclusiones

• Se lograron aplicar conceptos referidos a la modulación LoRa sobre el simulador ns3, utilizando el módulo correspondiente.

• Se obtuvieron resultados que fueron consistentes con los modelos empleados en el módulo de LoRaWAN.

• Se lograron reproducir, con algunas diferencias, los resultados de la publicación de referencia*

Muchas gracias!