```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\6_Salesworkload1.csv")
 df.fillna(0,inplace=True)
 df

Out[2]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLea
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

In [3]: df.head()

Out[3]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	39
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	8:
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	43
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	30!
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	16
4.6										

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7658 entries, 0 to 7657
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	MonthYear	7658 non-null	object				
1	Time index	7658 non-null	float64				
2	Country	7658 non-null	object				
3	StoreID	7658 non-null	float64				
4	City	7658 non-null	object				
5	Dept_ID	7658 non-null	float64				
6	Dept. Name	7658 non-null	object				
7	HoursOwn	7658 non-null	object				
8	HoursLease	7658 non-null	float64				
9	Sales units	7658 non-null	float64				
10	Turnover	7658 non-null	float64				
11	Customer	7658 non-null	float64				
12	Area (m2)	7658 non-null	object				
13	Opening hours	7658 non-null	object				
d+		- h + / 7 \					

dtypes: float64(7), object(7)

memory usage: 837.7+ KB

In [5]: import seaborn as sns

In [6]: df.describe()

Out[6]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Custon
count	7658.000000	7658.000000	7658.000000	7658.000000	7.658000e+03	7.658000e+03	765
mean	4.994777	61930.456124	9.460695	22.013058	1.075346e+06	3.717505e+06	1
std	2.585859	29975.929873	5.343407	133.231761	1.727560e+06	6.001448e+06	(
min	0.000000	0.000000	0.000000	0.000000	0.000000e+00	0.000000e+00	1
25%	3.000000	29650.000000	5.000000	0.000000	5.441375e+04	2.720558e+05	1
50%	5.000000	73949.000000	9.000000	0.000000	2.927625e+05	9.300810e+05	1
75%	7.000000	87703.000000	14.000000	0.000000	9.154812e+05	3.251488e+06	(
max	9.000000	98422.000000	18.000000	3984.000000	1.124296e+07	4.271739e+07	(
1							D

In []:

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x151b2691550>


```
In [8]: df1=df.drop(['Country'],axis=1)
    df1
    df1=df1.drop(df1.index[1537:])
    df1.isna().sum()
```

Out[8]: MonthYear 0 Time index 0 StoreID 0 City 0 Dept_ID 0 0 Dept. Name HoursOwn HoursLease Sales units 0 Turnover 0 Customer 0 Area (m2) 0 Opening hours dtype: int64

```
In [9]: sns.displot(df['StoreID'])
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x151b9ea71f0>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

In [11]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [12]: df1.isna().sum()

Out[12]: MonthYear 0 Time index 0 StoreID 0 City 0 0 Dept_ID Dept. Name 0 HoursOwn 0 HoursLease 0 Sales units 0 0 Turnover 0 Customer Area (m2) 0 Opening hours dtype: int64

In [24]: y=df1['Turnover']
 x=df1.drop(['Turnover','MonthYear','City','Opening hours','Dept. Name','Custome
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
 print(x_train)

	Time index	StoreID	Dept_ID	HoursOwn	HoursLease	Sales units
196	1.0	95434.0	9.0	2158.842	0.0	63985.0
1191	2.0	87703.0	1.0	2627.745	0.0	498005.0
1216	2.0	19000.0	8.0	2102.196	0.0	87440.0
1189	2.0	96857.0	17.0	31.47	996.0	95.0
1352	2.0	64983.0	8.0	2778.801	0.0	113880.0
				• • •		
653	1.0	98422.0	7.0	5088.699	0.0	234040.0
167	1.0	19769.0	11.0	2895.24	0.0	465450.0
77	1.0	73949.0	9.0	874.866	0.0	53330.0
1410	2.0	83160.0	17.0	2416.896	0.0	160.0
556	1.0	83160.0	12.0	6303.441	0.0	5908995.0

[1075 rows x 6 columns]

```
In [25]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[25]: 304904.29054210894

```
In [26]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[26]: <matplotlib.collections.PathCollection at 0x151bb81e070>


```
In [27]: model.score(x_test,y_test)
```

Out[27]: 0.8595662480283945