SUITES NUMÉRIQUES

Capacités attendues

- Utiliser le raisonnement par récurrence;
- Être capable d'étudier une suite (majoration, minoration, monotonie);
- Connaitre la suite arithmétique ou géométrique;
- Calculer la somme de *n* termes consécutifs d'une suite arithmétique ou d'une suite géométrique;
- Connaître les situations des suites arithmétiques ou géométriques;
- Utiliser les suites arithmétiques et les suites géométriques pour résoudre des problèmes;

1	SUITES NUMÉRIQUES	. 2
7	Définition	3
11)	Façons de définir une suite :	3
	1 Suites définies par la donnée explicite de leurs termes :	3
	2 Suites définies par récurrence :	4
Ш	Suite majorée, minorée, bornée	4
IV	Sens de variation :	5
V	Suites arithmétiques :	6
	1 Définition et variations	
	2 Expression de u_n en fonction de n	6
	3 Somme de termes consécutifs	
VI	Suites géométriques :	8
	1 Définition	
	2 Expression de u_n en fonction de n	8
	3 Variations	
	4 Somme de termes consécutifs	9
VII	Exercices d'annlications	10

Définition

Définition

Une suite est une fonction définie sur \mathbb{N} . Une suite numérique est une suite à valeurs dans \mathbb{R} .

L'image de n par une suite u se note u_n et est appelé terme de rang n de la suite. Une suite u est aussi notée $(u_n)_{n\in\mathbb{N}}$.

Remarque

- On peut aussi définir une suite à partir d'un certain rang.
- Une suite étant une fonction, les définitions (de la majoration, de la minoration et de la monotonie) restent les mêmes .

Façons de définir une suite :

Suites définies par la donnée explicite de leurs termes :

• Toute fonction définie sur $[0 ; +\infty[$ (ou sur un intervalle de la forme $[a ; +\infty[)$ permet de définir une suite.

Application

Calculer les premiers termes de la suite définie sur \mathbb{N} par $u_n = 2n - 5n - 1$.

Solution

$$u_0 = 2 \times 0^2 - 5 \times 0 - 1 = -1$$
; $u_1 = 2 \times 1^2 - 5 \times 1 - 1 = -4$; $u_2 = 2 \times 2^2 - 5 \times 2 - 1 = -3$; $u_3 = 2 \times 3^2 - 5 \times 3 - 1 = 2$; $u_4 = 2 \times 4^2 - 5 \times 4 - 1 = 11$

• Les propriétés des nombres entiers permettent aussi de définir explicitement des suites qui ne peuvent pas être obtenues simplement par une fonction définie sur \mathbb{R} .

Application

Calculer les premiers termes des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}^*}$ où $u_n=(-1)^n$ et v_n est le nombre de diviseurs de n.

Solution

$$u_0 = 1$$
; $u_1 = -1$; $u_2 = 1$; $u_3 = -1$; ... $v_1 = 1$; $v_2 = 2$; $v_3 = 2$; $v_4 = 3$; $v_5 = 2$; $v_6 = 4$...

2 Suite

Suites définies par récurrence :

Une suite peut aussi être définie par son premier terme (ou ses premiers termes) et par une relation permettant de calculer chaque terme en fonction du précédent (ou des précédents).

Application

Calculer les premiers termes des suites ci-dessous définies sur N.

$$u$$
 est définie par
$$\begin{cases} u_0 = -6 \\ u_{n+1} = -\frac{1}{2}u_n - 1 \quad \text{pour tout } n \ge 0 \end{cases}$$

Solution

$$u_1 = -\frac{1}{2}u_0 - 1 = -\frac{1}{2} \times (-6) - 1 = 2$$
; $u_2 = -\frac{1}{2}u_1 - 1 = -\frac{1}{2} \times 2 - 1 = -2$

$$u_3 = -\frac{1}{2}u_2 - 1 = -\frac{1}{2} \times (-2) - 1 = 0$$
; $u_4 = -\frac{1}{2}u_3 - 1 = -\frac{1}{2} \times 0 - 1 = -1$

$$v$$
 est définie par $\left\{ \begin{array}{ll} v_0=1 \text{ ; } v_1=1 \\ v_{n+2}=v_{n+1}+v_n \end{array} \right.$ pour tout $n\geq 0$

Solution

$$v_2 = v_1 + v_0 = 1 + 1 = 2$$
; $v_3 = v_2 + v_1 = 2 + 1 = 3$; $v_4 = v_3 + v_2 = 3 + 2 = 5$; $v_5 = v_4 + v_3 = 5 + 3 = 8$; $v_6 = v_5 + v_4 = 8 + 5 = 13$

$$w$$
 est définie par $w_0 = 3$ et
$$\begin{cases} w_{n+1} = \frac{w_n}{2} & \text{si } w_n \text{ est pair} \\ w_{n+1} = 3w_n + 1 & \text{si } w_n \text{ est impair} \end{cases}$$

Solution

$$w_1 = 3 \times w_0 + 1 = 3 \times 3 + 1 = 10; w_2 = \frac{w_1}{2} = \frac{10}{2} = 5; w_3 = 3 \times w_2 + 1 = 3 \times 5 + 1 = 16; w_4 = \frac{w_3}{2} = \frac{16}{2} = 8;$$

$$w_5 = \frac{w_4}{2} = \frac{8}{2} = 4; w_6 = \frac{w_5}{2} = \frac{4}{2} = 2$$

Remarque

lorsqu'une suite est définie par récurrence, on essaye de se ramener à une formule explicite des termes, mais ce n'est pas toujours possible.

Suite majorée, minorée, bornée

Propriété

- Dire que u est **majorée** signifie qu'il existe un réel M tel que, $(\forall n \in \mathbb{N}), u_n \leq M$.
- Dire que u est **minorée** signifie qu'il existe un réel m tel que, $(\forall n \in \mathbb{N}), u_n \ge m$.
- Dire que *u* est **bornée** signifie que *u* est à la fois majorée et minorée.

Sens de variation :

Définition

u est croissante (strictement croissante) si n <math>(n <math>u est décroissante (strictement décroissante) si $n <math>(n u_p)$

Propriété

Une suite (u_n) est croissante si et seulement si, pour tout n, $u_n \le u_{n+1}$. Une suite (u_n) est décroissante si et seulement si, pour tout n, $u_n \ge u_{n+1}$. Une suite (u_n) est constante si et seulement si, pour tout n, $u_n = u_{n+1}$.

Remarques

- Ne pas mélanger u_{n+1} et $u_n + 1$
- Dans la pratique, pour déterminer le sens de variation d'une suite, on s'intéresse au signe de la différence $u_{n+1} u_n$.
- Dans le cas où tous les termes de la suite sont strictement positifs, on peut aussi comparer le quotient $\frac{u_{n+1}}{u_n}$ à 1.

Application

Déterminer le sens de variation des suites suivantes :

• u est définie sur \mathbb{N} par $u_n = 3n + (-1)^n$.

Solution

Étudions la différence $u_{n+1} - u_n$: $(\forall n \in \mathbb{N}), u_{n+1} - u_n = 3(n+1) + (-1)^{n+1} - 3n - (-1)^n = 3 - 2 \times (-1)^n > 0$ La suite (u_n) est donc croissante.

• v est définie sur $\mathbb N$ par $\left\{ \begin{array}{l} v_0=2\\ v_{n+1}=-v_n^2+v_n \end{array} \right.$ pour tout $n\in\mathbb N$

Solution

Étudions la différence $v_{n+1} - v_n$: Pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = -v_n^2 + v_n - v_n = -v_n^2 < 0$. La suite (v_n) est donc décroissante.

• w est définie sur \mathbb{N}^* par $w_n = \frac{2^n}{n}$.

Solution

Les termes de la suite sont strictement positifs, on étudie donc le quotient $\frac{w_{n+1}}{w_n}$.

Pour tout
$$n \in \mathbb{N}^*$$
, $\frac{w_{n+1}}{w_n} = \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \frac{2^{n+1}}{2^n} \times \frac{n}{n+1} = \frac{2n}{n+1}$

Pour tout $n \ge 1$, $2n \ge n+1$ donc $\frac{w_{n+1}}{w_n} \ge 1$. La suite (w_n) est donc décroissante.

V

Suites arithmétiques :

Définition et variations

Définition

Une suite (u_n) est arithmétique s'il existe un nombre r, appelé raison de la suite, tel que, $(\forall n \in \mathbb{N}), u_{n+1} = u_n + r$.

On a alors : $u_{n+1} - u_n = r$ (la différence de deux termes consécutifs est constante)

Application

Les suites u et v définies sur \mathbb{N} par $u_n = 3n - 4$ et $v_n = n^2 + 2$ sont-elles arithmétiques?

Solution

• Pour tout n, $u_{n+1} - u_n = 3(n+1) - 4 - (3n-4) = 3n + 3 - 4 - 3n + 4 = 3$. La suite u est donc arithmétique de raison 3.

• $v_0=2$, $v_1=3$, $v_2=6$ ainsi $v_1=v_0+1$ et $v_2=v_1+3$ La suite v n'est donc pas arithmétique.

Propriété

Soit (u_n) une suite arithmétique de raison r.

Si r > 0 alors (u_n) est strictement croissante.

Si r = 0 alors (u_n) est constante.

Si r < 0 alors (u_n) est strictement décroissante.

2

Expression de u_n en fonction de n

Propriété

Soit (u_n) une suite arithmétique de raison r.

Pour tous entiers naturels n et p:

$$u_n = u_p + (n - p)r$$

En particulier, pour tout entier naturel n:

$$u_n = u_0 + nr$$

Démonstration

On suppose n > p. On a :

$$u_n-u_{n-1}=r$$
; $u_{n-1}-u_{n-2}=r$; ... $u_{p+2}-u_{p+1}=r$; $u_{p+1}-u_p=r$
En additionnant toutes ces égalités, on obtient : $u_n-u_p=(n-p)r$
soit $u_n=u_p+(n-p)r$

Somme de termes consécutifs

Propriété

Soit (u_n) une suite arithmétique. $S_n = u_0 + u_1 + ... + u_n = \sum_{i=0}^{n-1} u_i$.

- **1** Première formule : $S_n = (n+1)\frac{u_0 + u_n}{2}$.
- Plus généralement : si S = x + ... + y est la somme de p termes consécutifs d'une suite arithmétique, alors : $S = \frac{p(x+y)}{2}$ (demi-somme des termes extrêmes \times nombre de termes). C'est-à-dire : $\sum_{i=p}^{i=n} u_i = u_p + u_{p+1} + ... + u_n = (n-p+1) \left(\frac{u_p + u_n}{2}\right)$

Démonstration

Première formule : écrivons S_n de deux façons différentes, une fois à l'endroit, une fois à l'envers :

 $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ et $S_n = u_n - + u_{n-1} + \dots + u_1 + u_0$. En ajoutant terme à terme : $2S_n = (u_0 + u_n) + (u_1 + u_{n-1}) + \dots + (u_p + u_{n-p}) + \dots + (u_n + u_0)$. Or, pour tout $p : u_p + u_{n-p} = (u_0 + pr) + (u_n - pr) = u_0 + u_n$.

On en déduit : $2S_n = (n+1)(u_0 + u_n)$ (car il y a (n+1) termes) donc $S_n = (n+1)\frac{u_0 + u_n}{2}$

 $S = x + \dots + y = x + (x + r) + (x + 2r) + \dots + x + (p - 1)r \text{ (puisqu'il y a } p \text{ termes)}.$ $S = y + (y - r) + (y - 2r) + \dots + y - (p - 1)r)$ En effectuant la somme terme à terme, on obtient : $2S = (x + y) + (x + y) + \dots + (x + y) = p(x + y)$ (puisqu'il y a p termes) d'où : $S = \frac{p(x + y)}{2}$.

Application

Déterminer la somme des n premiers nombres impairs.

Solution

La suite des nombres impairs est la suite arithmétique de raison 2 telle que $u_1 = 1$

$$u_1 + u_2 + \dots + u_{n-1} + u_n = n \times \frac{u_1 + u_n}{2} = n \times \frac{u_1 + u_1 + (n-1)r}{2} = n \times \frac{2 + 2n - 2}{2} = n^2$$

calculer $S = 100 + 102 + \dots + 154$.

Solution

Ce sont les termes d'une suite arithmétique de raison r=2. Et il y a 28 termes (154 = 100+27×2).

Donc:
$$S = \frac{28(100 + 154)}{2} = 3556$$

Suites géométriques :

1 Définition

Définition Une suite (u_n) est géométrique si et seulement s'il existe un nombre réel q appelé raison de la suite, tel que, pour tout entier naturel n : $u_{n+1} = qu_n$.

Application

Les suites u et v définies sur \mathbb{N} par $u_n = -4 \times 3^n$ et $v_n = n^2 + 1$ sont-elles géométriques?

Solution

Pour tout n, $\frac{u_{n+1}}{u_n} = \frac{-4 \times 3^{n+1}}{-4 \times 3^n} = 3$. La suite u est donc géométrique de raison 3. $v_0 = 1$, $v_1 = 2$, $v_2 = 5$ ainsi $v_1 = 2 \times v_0$ et $v_2 = 2$, $5 \times v_1$. La suite v n'est donc pas géométrique.

Expression de u_n **en fonction de** n

Propriété Soit (u_n) une suite géométrique de raison q. Pour tous entiers naturels n et $p: u_n = u_p \times q^{n-p}$ En particulier, pour tout entier naturel $n: u_n = u_0 \times q^n$

Démonstration

On suppose n > p. On a : $\frac{u_n}{u_{n-1}} = q$; $\frac{u_{n-1}}{u_{n-2}} = q$; ... $\frac{u_{p+2}}{u_{p+1}} = q$; $\frac{u_{p+1}}{u_p} = q$ En multipliant toutes ces égalités, on obtient : $\frac{u_n}{u_p} = q^{n-p}$ soit $u_n = u_p \times q^{n-p}$

3 Variations

Propriété Soit (u_n) une suite géométrique de raison $q \neq 0$. Si q > 1 alors $\begin{cases} \sin u_0 > 0, u \text{ est strictement croissante.} \\ \sin u_0 < 0, u \text{ est strictement décroissante.} \end{cases}$ Si q = 1 alors u = 1 est constante. Si u = 1 alors u = 1 alors

Si q < 0 alors u n'est pas monotone.

Démonstration

Pour tout n, $u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n = u_0 \times q^n (q-1)$ Le signe de $u_{n+1} - u_n$ s'obtient donc en fonction du signe de u_0 , du signe de q^n et du signe de q-1.

Somme de termes consécutifs

Propriété Soit (u_n) une suite géométrique de raison q tel que $q \neq 1$.

- 1 Pour tout entier naturel $n: 1+q+q^2+\cdots+q^{n-1}+q^n=\frac{1-q^{n+1}}{1-q}$.
- **2** $S_n = u_0 + u_1 + \dots + u_n = \sum_{i=1}^{n-1} u_i = u_0 \cdot \frac{1 q^{n+1}}{1 q}$
- **3** En général, pour tous entiers naturels n et p tel que $n \ge p$ on a :

$$S_n = u_p + u_{p+1} + \dots + u_n = \sum_{i=p}^{i=n} u_i = u_p \cdot \frac{1 - q^{n-p+1}}{1 - q}$$

Démonstration

Posons $S = \sum_{i=1}^{n-1} q^i = 1 + q + q^2 + \dots + q^{n-1} + q^n$. On a alors $qS = q + q^2 + q^3 + \dots + q^n + q^{n+1}$

Ainsi,
$$S - qS = 1 - q^{n+1}$$
. D'où : $S = \frac{1 - q^{n+1}}{1 - q}$

- 3 Montrons par récurrence que $(\forall n \ge p)$, $S_n = u_p + u_{p+1} + ... + u_n = \sum_{i=1}^{n-1} u_i = u_p \cdot \frac{1 q^{n-p+1}}{1 q}$.

Posons:
$$P(n)$$
: $S_n = u_p + u_{p+1} + ... + u_n = \sum_{i=p}^{i=n} u_i = u_p \cdot \frac{1 - q^{n-p+1}}{1 - q}$.

- Pour n = p, on a : $S_p = u_p$ et u_p . $\frac{1 q^{p-p+1}}{1 a} = u_p$. Donc la propriété P(n) est vraie.

• Supposons que
$$P(n)$$
 est vraie et montrons que $P(n+1)$ est vraie.
C'est-à-dire on montre que $S_{n+1}=u_p.\frac{1-q^{n-p+2}}{1-q}.$

On a:
$$S_{n+1} = u_p + u_{p+1} + ... + u_n + u_{n+1} = S_n + u_{n+1}$$

On a:
$$S_{n+1} = u_p + u_{p+1} + \dots + u_n + u_{n+1} = S_n + u_{n+1}$$

Soit $S_{n+1} = u_p \cdot \frac{1 - q^{n-p+1}}{1 - q} + u_p \cdot q^{n-p+1} = u_p \cdot \left(\frac{1 - q^{n-p+1}}{1 - q} + q^{n-p+1}\right) = u_p \cdot \frac{1 - q^{n-p+2}}{1 - q}.$

D'après le principe de récurrence $(\forall n \geq p)$, P(n)

Exercices d'applications

Application 1

Montrer que la suite (u_n) définie par $u_0=1$, $u_1=1$ et, pour tout $n\in\mathbb{N}$, par $u_{n+2}=2u_{n+1}-u_n-2$ est décroissante.

Solution

Pour montrer que la suite est décroissante il suffit de montrer que $u_{n+1} - u_n \le 0$ pour tout n.

- initialisation : $u_0 = u_1 = 1$ donc c'est vrai pour n = 0
- Hérédité : on suppose que $u_{n+1} u_n \le 0$ et on montre que $u_{n+2} u_{n+1} \le 0$. On a : $u_{n+2} - u_{n+1} = [2u_{n+1} - u_n - 2] - u_{n+1} = u_{n+1} - u_n - 2 = \underbrace{[u_{n+1} - u_n]}_{\le 0} - 2 \le 0$.

D'après le principe de récurrence, $(\forall n \in \mathbb{N}), u_{n+1} - u_n \leq 0$. Donc la suite est décroissante.

Application 2

On considère la suite (u_n) définie par $u_0=5$ et, pour tout entier n , $3u_{n+1}=u_n+4$.

- **1** Calculer u_1 et u_2 puis démontrer que, pour tout entier n, $u_n \ge 2$.
- **2** Montrer que (u_n) est une suite décroissante.

Solution

On considère la suite (u_n) définie par $u_0 = 5$ et, pour tout entier n, $3u_{n+1} = u_n + 4$.

Calculons u_1 et u_2 : $u_1 = 3$ et $u_2 = \frac{7}{3}$.

Démontrons par récurrence que, pour tout entier n, $u_n \ge 2$.

Initialisation : $u_0 = 5 \ge 2$ donc c'est vrai pour n = 0.

Hérédité : on suppose que $u_n \ge 2$ pour un entier n et on montre que $u_{n+1} \ge 2$.

On a : $u_n \ge 2$. Alors $u_n + 4 \ge 6$ d'où $\frac{u_n + 4}{3} \ge \frac{6}{3} = 2$ donc $u_{n+1} \ge 2$.

Donc d'après la principe de récurrence on a : Pour tout n, $u_n \ge 2$

Pour montrer que (u_n) est une suite décroissante, on montre par récurrence que : $(\forall n \in \mathbb{N}), u_{n+1} < u_n$.

Initialisation : on a déjà montré que $u_1 = \frac{7}{2}$ et $u_0 = 5$. Alors $u_1 < u_0$

Hérédité : on suppose que $u_{n+1} < u_n$; alors $u_{n+1} + 4 < u_n + 4$.

Donc $\frac{u_{n+1}+4}{3} < \frac{u_n+4}{3}$, c'est-à-dire $u_{n+2} < u_{n+1}$.

Donc par récurrence que pour tout n, $u_{n+1} < u_n$. La suite est donc **décroissante**.

Application 3

Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n - n$. Démontrer que, pour tout entier n, $u_n = 2^n + n + 1$.

Solution

Démonstration par récurrence :

- Initialisation : Pour n = 0 : $u_0 = 2$ et $2^n + n + 1 = 2^0 + 0 + 1 = 1 + 1 = 2$ donc la propriété est vraie pour n = 0.
- Hérédité : on suppose la propriété vraie pour un rang n quelconque donc $u_n = 2^n + n + 1$. et on démontre qu'elle vraie au rang n + 1 :

 On $a : u_n = 2u_n n = 2 \times (2^n + n + 1) = 2^{n+1} + 2n + 2 n = 2^{n+1} + n + 2$

On a : $u_{n+1} = 2u_n - n = 2 \times (2^n + n + 1) - = 2^{n+1} + 2n + 2 - n = 2^{n+1} + n + 2$. La propriété est héréditaire.

D'après le principe de récurrence, $(\forall n \in \mathbb{N})u_n = 2^n + n + 1$.

Application 4

On considère la suite (u_n) définie par $u_0=5$ et, pour tout entier n, $3u_{n+1}=u_n+4$. On pose, pour tout entier n, $v_n=u_n-2$.

1 Montrer que (v_n) est une suite géométrique. En déduire l'expression de v_n en fonction de n.

2 Soit
$$S_n = \sum_{k=0}^n v_k = v_0 + v_1 + \dots + v_n$$
 et $T_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$.

Déterminer l'expression de S_n , puis de T_n , en fonction de n.

Solution

1 Montrons que (v_n) est une suite géométrique :

$$\forall n \in \mathbb{N}, v_{n+1} = u_{n+1} - 2 = \frac{u_n + 4}{3} - 2 = \frac{u_n + 4 - 6}{3} = \frac{u_n - 2}{3} = \frac{1}{3}v_n.$$

La suite (v_n) est géométrique, de raison $q = \frac{1}{3}$ et de premier terme $v_0 = u_0 - 2 = 3$.

On en déduit
$$v_n = 3 \times \left(\frac{1}{3}\right)^n$$

2 Déterminons l'expression de S_n , puis de T_n , en fonction de n: S_n est la **somme** des premiers termes consécutifs d'une suite géométrique :

$$S_n = v_0 \times \frac{1 - q^n}{1 - q} = 3 \times \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = 3 \times \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} = \boxed{\frac{9}{2} \left(1 - \left(\frac{1}{3}\right)^n\right)}.$$

On a : $v_n = u_n - 2$ c'est-à-dire $u_n = v_n + 2$.

Donc
$$T_n = \sum_{k=0}^n u_k = S_n + 2(n+1) = \boxed{\frac{9}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) + 2(n+1)}.$$

Application 5

On considère la suite (u_n) définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$: $u_{n+1} = \sqrt{\frac{1 + u_n}{2}}$.

Montrer, par récurrence, que pour tout $n \ge 1$ on a : $\frac{1}{\sqrt{2}} \le u_n \le 1$

Solution

Effectuons une démonstration par récurrence :

- Initialisation :Pour n = 1 : $u_1 = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$ donc la propriété est vraie pour n = 1.
- Hérédité : on suppose la propriété vraie pour un rang n quelconque, donc $\frac{1}{\sqrt{2}} \le u_n \le 1$.

Alors:
$$\frac{1}{\sqrt{2}} \leqslant u_n \leqslant 1^2 \Rightarrow 1 + \frac{1}{\sqrt{2}} \leqslant 1 + u_n \leqslant 2 \Rightarrow \frac{1}{2} + \frac{2}{2\sqrt{2}} \Rightarrow \frac{1 + u_n}{2} \leqslant 1 \Rightarrow \frac{1}{2} \leqslant \frac{1 + u_n}{2} \leqslant 1$$

$$(\operatorname{car} \frac{1}{2} \leqslant \frac{1}{2} + \frac{1}{2\sqrt{2}}).$$

D'où, puisque la fonction $x \mapsto \sqrt{x}$ est croissante : $\frac{1}{\sqrt{2}} \le \sqrt{\frac{1+u_n}{2}} \le 1$.

D'où
$$\frac{1}{\sqrt{2}} \le u_{n+1} \le 1$$
.

D'après le principe de récurrence, la propriété est vraie pour tout $n \ge 1$.

Application 6

La suite de Fibonacci est la suite $(F_n)_{n\in\mathbb{N}}$ définie par $F_1=F_2=1$ et, pour tout entier naturel n non nul, $F_{n+2}=F_{n+1}+F_n$.

Démontrer par récurrence, pour tout entier naturel n non nul : $F_1^2 + F_2^2 + \cdots + F_n^2 = F_n \times F_{n+1}$.

Solution

- Initialisation : Pour n=1, $F_1^2=1^2=1$ et $F_1\times F_2=1\times 1=1$ donc $F_1^2=F_1\times F_2$; la propriété est vraie pour n=1.
- Hérédité : on suppose la propriété vraie pour un rang n quelconque, donc $F_1^2 + \cdots + F_n^2 = F_n \times F_{n+1}$. et on démontre qu'elle est vraie pour un rang n+1 :

$$F_1^2 + F_2^2 + \dots + F_n^2 + F_{n+1}^2 = \left[F_1^2 + F_2^2 + \dots + F_n^2\right] + F_{n+1}^2$$

$$= F_n \times F_{n+1} + F_{n+1}^2$$

$$= F_n \times F_{n+1} + F_{n+1}^2$$

$$= F_{n+1} \left[F_n + F_{n+1}\right]$$

$$= \left[F_{n+1} \times F_{n+2}\right]$$

La propriété est héréditaire

D'après le principe de récurrence, la propriété est vraie pour tout $n \ge 1$.

- **01** (Les questions sont indépendantes)
 - La suite (u_n) est définie par : $u_0 = 2$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = 2u_n 3$. Montrer que : $(\forall n \in \mathbb{N})$, $u_n = 3 - 2^n$.
 - On considère la suite (u_n) définie par : $u_0=0$ et $(\forall n\in\mathbb{N}), u_{n+1}=\frac{5u_n-1}{4u_n+1}$. Montrer que $(\forall n\in\mathbb{N}), u_n\neq \frac{1}{2}$.
- Soit la suite numérique (u_n) définie par : $u_0 = 2$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{1}{5}u_n + 3 \times 0, 5^n$.
 - **1 a.** Recopier et, à l'aide de la calculatrice, compléter le tableau des valeurs de la suite (u_n) approchées à 10^{-2} près :

n	0	1	2	3	4	5	6	7	8
u_n	2								

- **b.** D'après ce tableau, énoncer une conjecture sur le sens de variation de (u_n) .
- **2 a.** Démontrer, par récurrence, que : $(\forall n \in \mathbb{N}^*), u_n \ge \frac{15}{4} \times 0, 5^n$.
 - **b.** En déduire que, $(\forall n \in \mathbb{N}^*)$, $u_{n+1} u_n \leq 0$.
- **3** Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n 10 \times 0, 5^n$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** En déduire que : $(\forall n \in \mathbb{N}), u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0, 5^n$.
- On considère la suite numérique (u_n) définie par : $u_0 = 1$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.
 - 1 Calculer les quatre premiers termes de la suite.
 - **2** Prouver par récurrence que : $(\forall n \in \mathbb{N}), u_n \ge 1$.
 - **3** Démontrer que la suite est majorée par $\sqrt{3}$.
 - **4** Déterminer le sens de variation de la suite (u_n) .
 - On considère la suite (v_n) définie par : $(\forall n \in \mathbb{N}), v_n = \frac{u_n \sqrt{3}}{u_n + \sqrt{3}}$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** Exprimer v_n , puis u_n , en fonction de n

- **1** Déterminer u_0 , u_4 , r et u_n .
- **2** On considère la suite (v_n) définie par : $(\forall n \in \mathbb{N}), v_{n+1} = \sqrt{2 + v_n^2}$ et $v_0 = 1$.
 - **a.** Calculer v_1 , v_2 et v_3 .
 - **b.** On pose $(\forall n \in \mathbb{N})$, $w_n = v_n^2$.
 - i. Montrer que (w_n) est une suite arithmétique dont on donnera le premier terme et la raison.
 - ii. Déterminer w_n et v_n en fonction de n.
- 3 On considère la suite (a_n) définie par : $(\forall n \in \mathbb{N})$, $a_{n+1} = \frac{9a_n}{4a_n + 3}$ et $a_0 = \frac{1}{2}$.
 - **a.** Montrer que $a_n \neq 0$.
 - **b.** On pose $(\forall n \in \mathbb{N})$, $b_n = 2 \frac{3}{a_n}$.
 - i. Montrer que (b_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - ii. Déterminer b_n et a_n en fonction de n.
- On considère la suite (u_n) définie par : $u_0 = 3$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{8(u_n 1)}{u_n + 2}$.
 - **1** Montrer que $(\forall n \in \mathbb{N})$, $2 < u_n < 4$.
 - **2** Étudier la monotonie de la suite (u_n) .
 - **3 a.** Montrer que $(\forall n \in \mathbb{N})$, $4 u_{n+1} \le \frac{4}{5}(4 u_n)$.
 - **b.** En déduire $(\forall n \in \mathbb{N}), 4 u_n \le (\frac{4}{5})^n$.
 - **c.** On pose $S_n = u_0 + u_1 + u_2 + \dots + u_n$. Montrer que $(\forall n \in \mathbb{N}), S_n \ge 4n - 1 + \frac{4^{n+1}}{5^n}$.
 - $\boxed{\textbf{4}} \text{ On pose } (\forall n \in \mathbb{N}), v_n = \frac{u_n 4}{u_n 2}.$
 - **a.** Montrer que (v_n) est une suite géométrique dont on donnera le premier terme et la raison.
 - **b.** Déterminer v_n et u_n en fonction de n.
 - **c.** On pose $S_n = v_0 + v_1 + v_2 + \dots + v_n$. Déterminer S_n en fonction de n.
- On considère la suite (u_n) définie par $u_0 = 3$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = 1 \frac{9}{4u_n}$.
 - 14 Montre que $(\forall n \in \mathbb{N}), u_n > \frac{3}{2}$

07

La suites (u_n) est définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n + 3}{2}$ pour $n \in \mathbb{N}$.

La suite (S_n) est définie par $S_n = u_0 + u_1 + \dots + u_{n-1} + u_n = \sum_{k=0}^n u_k$ pour $n \in \mathbb{N}$.

- **1** Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 3$.
- **2** En déduire le sens de variation de la suite (u_n) .
- Soit (w_n) la suite définie par $w_n = u_n 3$ pour tout $n \in \mathbb{N}$.
 - **a.** Démontrer que (w_n) est une suite géométrique dont on donnera la raison.
 - **b.** En déduire : $u_n = -\frac{3}{2^n} + 3$ pour tout $n \in \mathbb{N}$.
- **4 a.** Déterminer le sens de variations de la suite (S_n) .
 - **b.** Cours. Démontrer que pour $q \neq 1$ et $n \in \mathbb{N}$, $1 + q + q^2 + \dots + q^n = \frac{1 q^{n+1}}{1 q}$.
 - **c.** En déduire un expression de S_n en fonction de n.
- **5** Dans cette question, toute trace de recherche, même partielle, sera évaluée. Soient une suite $(x_n)_{n\in\mathbb{N}}$ et la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=x_0+x_1+\cdots+x_n$. Dire, en justifiant, si l'affirmation suivante est vraie ou fausse : « les suites (x_n) et (s_n) ont le même sens de variation. »