Supplementary Information

Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station

Nicholas Nastasi^{1,2,3}, Ashleigh Bope^{1,2,3}, Marit E. Meyer⁴, John M. Horack⁵, and Karen C. Dannemiller^{2,3*}.

Supplemental Table S1: Frozen dust sample dates and location. These frozen samples were not vacuumed, instead they were picked from the location and placed into a sterile bag. They were then frozen at -80 \(\text{\pi}\)C until use in this study.

Sample date	Sample Location
GMT 111	NOD3 D3-01 HEPA
GMT 111	LAB15D5
GMT 111	NOD1D301
GMT 118	LAB101 IMV INLET
GMT 118	LABS5D HEPA
GMT 118	NOD3D2-15 INLET
GMT 118	NOD1D3 01 HEPA GRATE INLET
GMT 118	NOD3D3-01 HEPA INLET GRATE

¹Environmental Science Graduate Program, Ohio State University, Columbus, OH 43210

²Department of Civil, Environmental, & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH 43210

³Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210

⁴NASA Glenn Research Center, Cleveland, OH 44135

⁵Department of Mechanical and Aerospace Engineering, College of Engineering and John Glenn College of Public Affairs, Ohio State University, Columbus, OH 43210

^{*}Corresponding Author

a) Bacterial growth after 2 weeks at each constant ERH condition

b) Time-of-Wetness modeling of bacterial growth in ISS dust

Supplemental Figure S1: A) Bacterial concentration of original dust and at each ERH condition tested (50, 60, 70, 80, 85, 90, and 100%) after two weeks at 25°C. Quantities for each condition represent a total of 36 qPCR measurements from 4 vacuum bags with triplicate physical samples from each bag and triplicate qPCR measurements per sample. B) Time-of-Wetness models for bacterial growth in ISS dust for elevated (85% ERH) and saturated (100% ERH) conditions.

Supplemental Table S2: Fungal and bacterial concentrations for 2-week incubation samples at 25°C and each ERH condition tested.

Equilibrium Relative Humidity Condition	Vacuum Bag	Fungal Concentration (SE/mg dust)	Bacterial Concentration (cells/mg dust)
		6.14E+04	2.96E+05
Original Dust	1	4.69E+04 7.51E+04	7.28E+05 7.03E+05
	2	2.17E+04	1.36E+06
		2.06E+05	1.11E+06
		4.93E+05	1.57E+06

		1	
		7.02E+06	3.26E+05
	3	2.59E+06	4.73E+05
		1.51E+06	9.87E+04
		3.09E+07	7.85E+07
	4	3.50E+06	2.86E+07
		6.30E+06	1.32E+07
500/	4	1.66E+06	1.94E+06
50%	1	1.43E+06	1.83E+07
		2.38E+06	3.66E+07
		2.04E+04	2.73E+06
	2	1.33E+04	2.22E+06
		1.75E+04	2.19E+06
		7.84E+05	1.83E+03
	3	2.12E+06	1.07E+03
		4.43E+06	1.51E+04
		1.49E+07	3.57E+07
	4	5.42E+06	1.03E+07
		1.75E+07	1.97E+07
		1.15E+06	4.57E+06
	1	1.57E+06	3.26E+06
		2.44E+06	1.16E+06
		2.60E+04	7.25E+06
	2	1.33E+03	8.17E+04
60%		7.32E+04	3.95E+07
0070		2.62E+06	9.95E+03
	3	2.34E+06	3.33E+04
		1.18E+07	5.13E+05
		7.06E+06	1.48E+07
	4	9.47E+06	3.30E+07
		1.29E+07	3.24E+07
70%	1	1.33E+06	3.92E+06

		1.50E+06	1.35E+06
		6.26E+05	5.81E+05
		3.43E+04	3.59E+06
	2	6.37E+04	7.31E+06
		4.09E+03	4.19E+06
		2.92E+06	9.19E+03
	3	1.65E+06	5.69E+04
		3.00E+06	1.38E+05
		5.23E+06	6.18E+06
	4	9.50E+06	3.51E+07
		4.12E+06	1.56E+07
		9.64E+07	2.39E+06
	1	8.69E+06	3.14E+06
		7.58E+07	1.82E+07
80%		2.51E+04	4.71E+05
	2	1.14E+04	8.43E+05
		1.30E+04	2.07E+05
	3	1.83E+08	3.38E+03
	ı		
		4.45E+07	2.09E+07
		5.06E+07	4.45E+04
		1.64E+07	1.37E+07
	4	7.75E+07	1.95E+07
		7.75E+07	6.10E+07
		1.81E+08	7.61E+05
	1	5.71E+08	1.56E+06
		2.38E+08	1.48E+06
		1.18E+06	2.54E+05
85%	2	6.83E+06	1.38E+06
		5.61E+06	2.25E+05
		3.82E+09	4.82E+06
	3	5.02E+09	7.94E+06
		5.09E+09	1.94E+06

1.04E+10 1.72E+0 4 1.25E+10 2.39E+0 9.60E+09 1.20E+0 1.53E+10 3.08E+0)8)8
9.60E+09 1.20E+0	18
1.53E+10 3.08E+0	
	16
1 1.67E+10 7.46E+0	16
2.50E+10 3.20E+0)7
3.17E+08 5.43E+0)7
2 2.35E+08 5.81E+0	16
3.29E+08 6.09E+0	16
90% 1.28E+10 1.32E+0	16
3 1.50E+10 1.56E+0	7
1.48E+10 8.78E+0)5
1.04E+10 2.03E+0	18
4 5.14E+09 1.13E+0	18
6.10E+09 4.79E+0	7
2.80E+10 9.91E+0	16
1 2.31E+10 1.89E+0	7
4.25E+10 5.31E+0	16
6.19E+08 3.37E+0	17
2 7.04E+08 3.75E+0	7
4.85E+08 4.22E+0)7
100% 3.26E+10 2.83E+0	7
3 3.91E+10 2.80E+0	7
2.78E+10 1.07E+0	7
2.11E+10 1.17E+0	9
4 1.92E+10 6.78E+0	7
1.64E+10 2.37E+0	18

Supplemental Table S3: Summary of Satterthwaite two-sample t-test statistics for fungal and bacterial 2-week incubations.

Satterthwaite Two-Sample ttest					
Original Dust vs:	Fungal P- value	Bacteria P-value			
50% RH	0.3893	0.5996			
60% RH	0.368	0.4377			
70% RH	0.4554	0.5243			
80% RH	0.0439	0.4594			
85% RH	< 0.0001	0.1293			
90% RH	< 0.0001	0.005			
100% RH	< 0.0001	0.0001			

Supplemental Table S4: qPCR values for fungal and bacterial quantities for frozen dust sample and the original dust collected from the ISS vacuum bags.

Sample	Fungal Quantity (spore equivalents per mg dust)	Bacterial Quantity (cells per mg dust)
Bag 1 Original Dust (Average)	6.12E+04	1.40E+05
Bag 2 Original Dust (Average)	2.17E+04	5.93E+05
Bag 3 Original Dust (Average)	1.24E+04	7.67E+04
Bag 4 Original Dust (Average)	1.88E+04	7.61E+06
Frozen NOD3 D3-01 GMT111	1.60E+03	2.74E+06
Frozen NOD3 D2-15 INLET GMT118	5.63E+02	9.90E+05
Frozen NOD3 D3-01 HEPA GRATE INLET GMT118	6.47E+02	7.39E+05
Frozen NOD1 D3-01 GMT111	2.60E+02	9.21E+05

Frozen NOD1 D3-01 HEPA GRATE INLET GMT118	1.77E+02	1.80E+05
Frozen LAB 15-D5 GMT111	7.68E+02	4.99E+05
Frozen LAB 101 IMV INLET GMT118	5.22E+02	1.69E+05
Frozen LAB S5D HEPA GMT118	1.40E+02	3.12E+05

Supplemental Table S5: Total fungal growth rates for TOW incubations. Values represent the average of the 4 ISS bags collected.

	Total Fungal Growth Rate (spore eq/mg dust/day)				
TOW Condition	Day 5 - Day 10	Day 10 - Day 14	Day 14 -Day 21	Day 5 - Day 21	
50% RH, 24 hours	6.69E+03	0	4.96E+03	1.19E+03	
85% RH, 6 hours	1.88E+04	0	2.53E+03	3.25E+03	
85% RH, 12 hours	1.30E+04	0	2.54E+04	1.26E+04	
85% RH, 18 hours	5.18E+04	9.77E+03	7.85E+04	5.30E+04	
85% RH, 24 hours	2.83E+06	1.14E+07	9.52E+06	7.91E+06	
100% RH, 6 hours	0	7.65E+04	1.39E+05	6.67E+04	
100% RH, 12 hours	7.27E+04	1.50E+06	1.90E+06	1.23E+06	
100% RH, 18 hours	1.42E+07	4.02E+07	2.77E+07	2.66E+07	
100% RH, 24 hours	4.22E+07	1.14E+07	1.38E+07	2.21E+07	

Supplemental Table S6: qPCR values for all TOW samples

Condition	Bag	TOW	Day	Fungal Concentration (Spore equivalents/mg Dust)	Bacterial Concentration (Cells/mg Dust)		
	4		5	5.05E+05	1.97E+06		
		6	10	8.75E+05	8.31E+05		
Elevated		4	1	1	0	14	6.29E+05
(85% ERH) 1	1	21	6.44E+05	6.66E+05			
		12	5	5.99E+05	1.22E+07		
		12	10	1.22E+06	2.80E+06		

•	ī	ī			
			14	1.13E+05	1.60E+06
			21	1.88E+05	1.90E+06
			5	1.01E+05	5.72E+05
		18	10	8.99E+05	1.03E+06
			14	9.39E+05	1.67E+06
-	1	1	1 1		
			21	5.61E+05	6.54E+05
			5	4.35E+04	3.82E+06
		24	10	3.78E+06	1.79E+06
		24	14	8.43E+06	9.42E+05
			21	1.50E+08	4.53E+06
			5	1.19E+05	5.21E+05
		6	10	1.19E+05	3.97E+05
		6	14	1.28E+05	2.58E+05
			21	1.92E+05	1.57E+05
			5	5.49E+05	2.26E+06
			10	1.84E+05	1.82E+06
		12	14	1.13E+06	8.33E+06
			21	1.74E+06	2.22E+06
	2		5	1.15E+05	7.72E+05
			10	2.95E+05	4.41E+06
		18	14	3.85E+05	1.37E+06
			21	2.15E+06	8.26E+05
			5	2.77E+05	1.33E+07
		2.4	10	4.80E+07	3.11E+07
		24	14	2.23E+08	3.37E+07
			21	3.38E+08	1.80E+07
			5	7.23E+03	2.89E+07
			10	1.54E+04	5.22E+07
	3	6	14	6.24E+03	7.56E+07
			21	5.70E+03	4.12E+07
		12	5	3.82E+02	1.67E+07

			10	1.04E+03	9.25E+07
			14	7.48E+02	4.26E+07
			21	2.04E+04	5.92E+07
			5	1.82E+03	3.49E+07
		10	10	2.71E+04	1.37E+07
		18	14	3.61E+04	1.71E+07
			21	4.22E+05	1.44E+07
			5	4.03E+03	5.09E+07
			10	1.65E+06	1.10E+08
		24	14	3.38E+06	6.10E+07
			21	9.95E+06	1.32E+08
	_		5	5.87E+03	3.42E+07
	4	6	10	3.35E+03	3.29E+07
		1	1		
			14	1.05E+04	1.77E+07
			21	3.66E+03	1.78E+07
			5	3.14E+03	4.40E+08
		43	10	3.08E+03	4.48E+07
		12	14	4.34E+03	5.50E+07
			21	4.65E+03	6.31E+07
			5	8.47E+02	1.84E+07
		10	10	3.37E+04	6.66E+07
		18	14	5.20E+04	3.55E+07
			21	4.83E+05	5.15E+08
			5	1.05E+04	1.02E+08
		24	10	3.49E+06	9.17E+07
		24	14	4.66E+06	7.72E+07
			21	7.61E+06	6.89E+07
			5	1.13E+06	1.23E+06
Saturated	_		10	2.63E+05	1.05E+06
(100% ERH)	1	1 6	14	9.69E+05	7.13E+05
		21	3.55E+06	7.07E+05	

12 10		•				
12				5	3.22E+05	1.17E+06
14			12	10	7.33E+04	8.26E+05
18				14	2.95E+06	6.81E+05
18				21	1.30E+07	3.02E+05
18				5	2.28E+07	1.00E+06
14 7.91E+08 2.30E+06 21 1.37E+09 9.02E+05 5 2.16E+08 7.38E+06 10 5.44E+08 1.72E+07 14 6.80E+08 1.88E+07 21 6.35E+08 4.53E+07 5 2.16E+04 4.63E+05 10 2.04E+04 1.56E+05 14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 21 1.63E+06 1.41E+06 21 1.33E+06 1.41E+06 21 1.33E+06 1.41E+06 14 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 10 6.01E+08 7.88E+06 11 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07			10	10	2.30E+08	6.14E+05
S			18	14	7.91E+08	2.30E+06
24				21	1.37E+09	9.02E+05
14				5	2.16E+08	7.38E+06
14 6.80E+08 1.88E+07 21 6.35E+08 4.53E+07 5 2.16E+04 4.63E+05 10 2.04E+04 1.56E+05 14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 21 1.33E+06 1.41E+06 10 1.33E+06 1.41E+06 11 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 21 4.34E+08 7.87E+05 21 5.94E+07 2.93E+06 21 4.34E+08 7.87E+05 21 6.01E+08 7.88E+06 10 6.01E+08 7.88E+06 11 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07			2.4	10	5.44E+08	1.72E+07
6 5 2.16E+04 4.63E+05 10 2.04E+04 1.56E+05 14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 21 1.63E+05 8.83E+05 10 1.33E+06 1.41E+06 21 5.92E+07 7.87E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 21 4.34E+08 1.20E+06 21 4.34E+08 7.87E+05 24 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 21 1.07E+09 4.31E+07 21 1.07E+09 4.31E+07			24	14	6.80E+08	1.88E+07
10 2.04E+04 1.56E+05 14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 21 1.33E+06 1.41E+06 10 1.33E+06 1.41E+06 14 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 24 10 6.01E+08 7.88E+06 10 6.01E+08 7.88E+06 11 6.48E+08 1.49E+07 12 1.07E+09 4.31E+07				21	6.35E+08	4.53E+07
14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 12 5 4.20E+05 8.83E+05 10 1.33E+06 1.41E+06 14 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 24 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 21 1.07E+09 4.31E+07 21 1.07E+09 4.31E+07				5	2.16E+04	4.63E+05
14 5.58E+05 1.71E+06 21 1.63E+06 1.41E+06 21 1.63E+06 1.41E+06 31 1.33E+06 1.41E+06 10 1.33E+06 1.41E+06 21 5.92E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 24 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 21 1.07E+09 4.31E+07				10	2.04E+04	1.56E+05
10			6	14	5.58E+05	1.71E+06
10 1.33E+06 1.41E+06 14 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07				21	1.63E+06	1.41E+06
12		2		5	4.20E+05	8.83E+05
14 2.06E+07 5.62E+05 21 5.92E+07 7.87E+05 18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07			42	10	1.33E+06	1.41E+06
18 5 1.09E+08 8.05E+06 10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07			12	14	2.06E+07	5.62E+05
10 1.76E+08 1.81E+07 14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07				21	5.92E+07	7.87E+05
14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07			18	5	1.09E+08	8.05E+06
14 2.54E+08 1.20E+06 21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07	 	<u></u>	<u></u>		4.705.00	4.045.07
21 4.34E+08 7.87E+05 5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07						
5 9.48E+07 2.93E+06 10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07						
10 6.01E+08 7.88E+06 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07						
24 14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07						
14 6.48E+08 1.49E+07 21 1.07E+09 4.31E+07 5 7.53E+02 1.40E+07			24	10		7.88E+06
5 7.53E+02 1.40E+07				14	6.48E+08	1.49E+07
				21	1.07E+09	4.31E+07
3 6 10 1.31E+04 3.59E+07				5	7.53E+02	1.40E+07
		3	6	10	1.31E+04	3.59E+07
14 1.55E+04 6.03E+07				14	1.55E+04	6.03E+07

			21	9.11E+04	2.55E+07	
			5	1.34E+04	2.71E+06	
			10	3.64E+05	2.33E+06	
		12	14	1.65E+06	4.85E+06	
			21	4.18E+06	4.58E+06	
			5	2.14E+06	2.65E+07	
			10	6.85E+06	4.75E+07	
		18	14	9.51E+06	1.76E+07	
			21	2.07E+07	5.92E+07	
			5	9.99E+06	1.36E+08	
			10	1.93E+07	1.62E+08	
		24	14	2.23E+07	9.70E+07	
			21	1.53E+07	6.62E+07	
			5	1.00E+03	1.59E+07	
			10	2.33E+04	3.79E+07	
		6	14	2.00E+03	7.75E+06	
			21	1.54E+05	5.69E+07	
			5	4.02E+04	2.14E+07	
		_	4.0	10	4.78E+05	1.63E+07
		12	14	1.01E+06	3.34E+07	
	4		21	3.00E+06	3.94E+08	
	4		5	9.90E+05	1.46E+07	
		10	10	5.26E+06	3.61E+07	
		18	14	6.35E+06	4.49E+07	
			21	8.99E+06	4.09E+07	
			5	6.33E+06	5.67E+07	
		24	10	1.16E+07	8.44E+07	
			14	1.13E+07	5.56E+08	
			21	1.36E+07	8.91E+07	
Lippo o difi a d			5	3.35E+04	6.96E+07	
Unmodified (50% ERH)	1	24	10	2.39E+04	1.17E+08	
(22/22/11)			14	8.98E+03	8.89E+07	

i	i	i	_			
			21	3.86E+04	1.09E+08	
			5	8.82E+04	1.03E+04	
	2	2.4	10	1.78E+05	9.88E+03	
	2	24	14	7.24E+04	8.85E+04	
			21	1.71E+05	9.00E+03	
			5	8.95E+02	7.45E+03	
	2	2.4	10	2.28E+03	1.65E+04	
	3	24	24	14	1.04E+03	2.12E+04
			21	9.93E+01	1.88E+04	
		24	5	7.25E+03	3.14E+04	
	_		10	2.16E+03	7.72E+03	
	4		14	2.25E+03	1.37E+04	
			21	2.14E+03	1.06E+04	

Supplemental Table S7: Effective growth rate constants (k) for TOW at constant (24 hours per day) ERH conditions

Condition	Bag	Fungal Growth Rate Constant (k) day ⁻¹	Bacterial Growth Rate (k) day ⁻¹
	1	2.0883	0.2729
Elevated	2	2.6005	0.6109
(85% ERH)	3	2.3404	1.2368
	4	2.2270	0.0808
	1	1.9641	0.4745
Saturated	2	2.3545	0.2664
(100% ERH)	3	1.2885	0.5486
,	4	1.0897	0.2811
	1	0.1363	0.1080
Unmodified (50% ERH)	2	0.3937	0.1790
	3	0	0.3038
	4	0	0

Supplemental Table S8: Effective growth constants (R) for all TOW samples.

Condition	Bag	TOW	Fungal Effective Growth Constant (k) day ⁻¹	Bacterial Effective Growth Constant (k) day ⁻¹
		6	0.4927	0
	1	12	0.0580	0.0357
		18	0.6663	0.1331
		6	0.4436	0
	2	12	1.2930	0.2295
Elevated (85%		18	1.0405	0
ERH)	3	6	0.1579	1.0814
,		12	0.4963	1.1516
		18	1.3337	0.7030
	4	6	0.1469	0
		12	0.169	0
		18	1.4775	0.5764
		6	0.7963	0
	1	12	0.9499	0
		18	2.3585	0.1730
		6	1.1897	0.1395
Saturated (100% ERH)	2	12	1.9720	0.0000
		18	2.0660	0.0000
		6	1.0310	1.0354
	3	12	1.9749	1.3814
		18	1.9627	1.0164
		6	0.9060	0.0000
	4	12	1.7531	0.5017
		18	1.8361	0.1168

Supplemental Table S9: Relative growth constants (R/k) for all TOW samples.

Condition	Bag	TOW	Fungal Relative Growth Constant (R/k)	Bacterial Relative Growth Constant (R/k)
		6	0.2359	0
	1	12	0.0278	0.0649
		18	0.3191	0.2418
		6	0.1706	0
	2	12	0.4972	0.4170
Elevated		18	0.4001	0
(85% ERH)		6	0.0675	1.9649
Litti	3	12	0.2121	2.0925
		18	0.5699	1.2774
	4	6	0.0660	0
		12	0.0759	0
		18	0.6634	1.0473
		6	0.4054	0
	1	12	0.4836	0
		18	1.2008	0.4406
		6	0.5053	0
	2	12	0.8375	0.3553
Saturated (100% ERH)		18	0.8775	0
		6	0.8002	2.6369
	3	12	1.5327	3.5182
		18	1.5232	2.5886
		6	0.8314	0
	4	12	1.6088	1.2778
		18	1.6850	0.2975

Supplemental Table S10: Most common taxa that was present in all sequenced samples sorted by order, genus, and species for bacteria and fungi.

Name	Present in % of Samples	Name	Present in % of Samples	
Funga	l Order	Bacterial Order		
Eurotiales	100	Bacillales	99	
Helotiales	95	Actinomycetales	99	
Sporidiobolales	94	Clostridiales	96	
Saccharomycetales	88	Lactobacillales	92	
Pleosporales	78	Pseudomonadales	84	
Hypocreales	75	Gemellales	80	
Tremellales	71	Pasteurellales	75	
Malasseziales	64	Fusobacteriales	75	
Incertae sedis	61	Streptophyta	74	
Capnodiales	61	Bacteroidales	74	
Funga	al Genus	Bacterial Genus		
Aspergillus	100	Staphylococcus	99	
Penicillium	95	Corynebacterium	99	
Rhodotorula	94	Anaerococcus	87	
Candida	79	Streptococcus	85	
Cyberlindnera	79	Finegoldia	82	
Fusarium	70	Brevibacterium	79	
Alternaria	69	Actinomyces	78	
Gibberella	66	Pseudomonas	78	
Malassezia	64	Lactobacillus	77	
Talaromyces	61	Micrococcus	76	
Funga	l Species	Bacteri	al Species	

Aspergillus sydowii	100	Corynebacterium kroppenstedtii	81
Aspergillus unguis	100	Staphylococcus pettenkoferi	78
Penicillium chrysogenum	90	Lactobacillus helveticus	74
Aspergillus hongkongensis	85	Acinetobacter rhizosphaerae	70
Aspergillus nidulans	84	Veillonella parvula	70
Cyberlindnera jadinii	81	Veillonella dispar	69
Aspergillus ruber	77	Haemophilus parainfluenzae	67
Candida tropicalis	72	Corynebacterium stationis	65
Penicillium corylophilum	70	Faecalibacterium prausnitzii	65
Rhodotorula dairenensis	69	Rothia dentocariosa	61
Rhodotorula mucilaginosa	69	Corynebacterium variabile	60
Penicillium gladioli	67	Streptococcus infantis	60
Fusarium acutatum	66	Staphylococcus saprophyticus	60
Gibberella intricans	66	Corynebacterium durum	60
Talaromyces minioluteus	61	Streptococcus anginosus	60
Aspergillus penicillioides	61	Capnocytophaga ochracea	58
Malassezia restricta	60	Prevotella melaninogenica	57
Alternaria alternata	60	Aggregatibacter segnis	53

Candida albicans	Sphingobium yanoikuyae	52
Malassezia globosa	Campylobacter ureolyticus	51

PC2: 18 %

-0.25

-0.50

-0.50

0.00 PC1: 30 %

-0.25

0.25

Supplemental Figure S2: Fungal principal coordinate analyses of time-of-wetness samples separated out by elevated (A) and saturated (B) relative humidity conditions.

−0.4

−Ó.2

0.0 0.2 PC1: 43 % 0.6

0.4

0.00

Supplemental Figure S3: Fungal principal coordinate analyses of time-of-wetness samples separated out by time points of 6 hours (A), 12 hours (B), 18 hours (C), and 24 hours (D).

Supplemental Figure S4: Fungal principal coordinate analyses of 50% ERH time-of-wetness samples separated out by sample days.

Supplemental Table S11: Adonis values for fungal bray Curtis PCoA analysis for each time-of-wetness condition.

Variable	R ²	P-value			
	50% RH only				
Bag	0.288	0.010			
Day	0.013	0.927			
	85% RH only				
Bag	0.121	0.001			
Time of Wetness	0.159	0.001			
Day	0.007	0.793			
	100% RH only				
Bag	0.145	0.001			
Time of Wetness	0.090	0.002			
Day	0.025	0.086			
	6-hour TOW only	,			
Bag	0.163	0.001			
Relative Humidity	0.072	0.019			
Day	0.036	0.198			
	12-hour TOW onl	у			
Bag	0.123	0.001			
Relative Humidity	0.111	0.001			
Day	0.018	0.702			
18-hour TOW only					
Bag	0.175	0.001			
Relative Humidity	0.185	0.001			
Day	0.009	0.838			
	24-hour TOW only				
Bag	0.104	0.001			

Relative Humidity	0.201	0.001
Day	0.008	0.786

a) Bacteria 2-week Constant RH

b) Bacteria Time-of-Wetness

Supplemental Figure S5: A) Bacterial PCoA plots for constant ERH 2-week incubations. Only original dust, 50%, 80%, 85%, 90%, and 100% ERH samples were sequenced. B) Bacterial PCoA plot for Time-of-Wetness incubations. Only constant 24-hour samples for 50% and 100% ERH conditions were performed for days 5, 10, 14, and 21. Both figures represent weighted unifrac distance matrices.

Supplemental Table 12: Adonis statistics for bacterial time of wetness beta diversity measurements.

Variable	R^2	P-value			
	Bacterial Time of Wetness (50% and 100% RH for 24 hours only)				
Bag	0.050	0.008			
RH	0.282	0.001			
Day	0.039	0.016			
Bacterial 2-week Incubations (Original Dust, 50%, 80%, 85%, 90%, and 100% RH)					
Bag	0.038	0.018			
RH	0.218	0.001			

Supplemental Figure S6: Principal coordinate analyses of frozen dust sample returned from the ISS. Frozen samples were compared to original dust samples (from ISS vacuum bag) as well as 2-week incubations at 50%, 85%, and 100% ERH. Fungi PCoA plots used the Bray-Curtis dissimilarity statistics (C), while bacteria used both weighted (A) and unweighted unifrac (B).

Supplemental Table S13: Adonis statistics for fungal and bacterial frozen sample comparisons. Frozen samples were compared to original dust samples (from ISS vacuum bag) as well as 2-week incubations at 50%, 85%, and 100% RH.

Frozen Sample Comparison Adonis				
Comparison	R^2	P-value		
Fungal Bray-Curtis Dissimilarity	0.361	0.001		
Bacterial Unweighted Unifrac	0.505	0.001		
Bacterial Weighted Unifrac	0.876	0.001		

Supplemental Table S14: Fungal alpha diversity Kruskal-Wallis statistics for richness and Shannon diversity for 2-week incubations at each RH conditions tested. Significant changes in both richness and Shannon diversity

compared to the original dust began to occur at 80% RH (Q<0.05).

Condition	Richness		Shannon Diversity		rsity	
Original Dust vs.	Н	P-value	Q-value	н	P-value	Q-value
50% RH	1.33	0.2481	0.3158	0.85	0.3556	0.4526
60% RH	0.80	0.3706	0.4324	0.27	0.6033	0.6757
70% RH	1.14	0.2852	0.3472	1.08	0.2987	0.3983
80% RH	1.69	0.1938	0.2584	5.07	0.0243	0.0426
85% RH	6.91	0.0086	0.0134	9.01	0.0027	0.0075
90% RH	10.83	0.0001	0.0023	8.33	0.0039	0.0091
100% RH	4.33	0.0374	0.0551	7.68	0.0056	0.0120

Supplemental Table S15: Richness and Shannon diversity Kruskal-Wallis statistics for fungal time-of-wetness samples.

	Richness			Shannon Diversity		
Variable	Н	P-value	Q-value	н	P-value	Q-value
Fungal Time-of-Wetness 50% ERH, 24 hours only						
Day 5 vs. Day 10	0.83	0.7728	0.9274	0.33	0.5637	1
Day 5 vs. Day 14	0.75	0.3865	0.9274	0.83	0.7728	1
Day 5 vs. Day 21	0.75	0.3865	0.9274	0	1	1

Fungal Time-of-Wetness 85% ERH Only						
6 hours vs. 12 hours	1.84	0.1748	0.2098	0.46	0.4975	0.4975
6 hours vs. 18 hours	2.14	0.1436	0.2098	2.76	0.0969	0.1261
6 hours vs. 24 hours	17.52	< 0.0001	< 0.0001	18.79	< 0.0001	< 0.0001
	Fungal	Time-of-We	tness 100%	ERH Onl	у	
6 hours vs. 12 hours	7.78	0.0053	0.0106	6.76	0.0093	0.0186
6 hours vs. 18 hours	11.66	0.0001	0.0038	7.57	0.0059	0.0178
6 hours vs. 24 hours	9.22	0.0024	0.0072	8.20	0.0042	0.0178
	Funga	ıl Time-of-W	/etness 6 ho	our Only		
85% vs. 100% ERH	6.00	0.0143	0.0143	6.19	0.0129	0.129
	Funga	l Time-of-W	etness 12 h	our Only	,	
85% vs. 100% ERH	12.57	< 0.0001	< 0.0001	12.02	0.0001	0.0001
Fungal Time-of-Wetness 18 hour Only						
85% vs. 100% ERH	21.22	< 0.0001	< 0.0001	9.51	0.0020	0.0020
Fungal Time-of-Wetness 24 hour Only						
50% vs 85% ERH	17.20	< 0.0001	< 0.0001	11.25	0.0010	0.0012
50% vs 100% ERH	20.14	< 0.0001	< 0.0001	13.64	0.0002	0.0007

Supplemental Figure S7: Frozen sample alpha diversity plots for (A) bacteria and (B) fungi. Frozen dust samples were compared to original dust, 50% ERH 2-week, 85% ERH 2-week, and 100% ERH 2-week incubations.

Supplemental Table S16: Kruskal-Wallis test statistics for alpha diversity metrics for all sequenced bacterial samples.

	Richness		hannon Diversity		rsity	
Condition	н	P-value	Q-value	Н	P-value	Q-value
Bacteria 2-week Incubations						
OD vs. 50% RH	0.08	0.7726	0.8278	0.08	0.7728	0.7728

OD vs. 80% RH	0.08	0.7724	0.8278	0.12	0.7290	0.7728
OD vs. 85% RH	8.72	0.0031	0.0052	10.83	0.0001	0.0021
OD vs. 90% RH	17.30	< 0.0001	0.0001	17.28	< 0.0001	0.0002
OD vs. 100% RH	17.30	< 0.0001	0.0001	17.28	< 0.0001	0.0002
Bacteria Time-of-Wetness Incubations						
50% vs 100% RH, 24 hours	22.56	< 0.0001	< 0.0001	22.11	< 0.0001	< 0.0001

Supplemental Table S17: Kruskal-Wallis test statistics for fungal and bacterial frozen sample comparisons.

	Richness		Shannon Diversity		ersity	
		Fu	ıngi			
Frozen vs.	Н	P-value	Q-value	Н	P-value	Q-value
Original Dust	0.15	0.6997	0.6697	1.01	0.3159	0.4445
50% RH, 2-week	2.75	0.0970	0.1213	0	1	1
85% RH, 2-week	12.63	0.0004	0.0014	13.71	0.0002	0.0011
100% RH, 2-week	10.27	0.0013	0.0027	13.71	0.0002	0.0011
Bacteria						

Frozen vs.	н	P-value	Q-value	н	P-value	Q-value
Original Dust	6.91	0.0086	0.0143	6.10	0.0136	0.0169
50% RH, 2-week	7.74	0.0054	0.0108	6.10	0.0136	0.0169
85% RH, 2-week	12.07	0.0005	0.0013	11.52	0.0001	0.0017
100% RH, 2-week	13.76	0.0002	0.0007	13.71	0.0002	0.0001

Supplemental Table S18: Differential abundance fungal comparison between non-elevated (Original Dust, 50, 60, 70% RH) and elevated (80, 85, 90, 100% RH) after 2-week constant ERH incubations at 25° C

Fungal Species	Unadjusted Pvalue	Adjusted FDR P-value				
More abundant at non-elevated RH conditions						
Candida tropicalis	<.0001	<.0001				
Rhodotorula dairenensis	<.0001	<.0001				
Rhodotorula mucilaginosa	<.0001	<.0001				
Fusarium acutatum	<.0001	<.0001				
Gibberella intricans	<.0001	<.0001				
Talaromyces minioluteus	<.0001	<.0001				
Malassezia restricta	<.0001	<.0001				
Alternaria alternata	<.0001	<.0001				
Candida albicans	<.0001	<.0001				
Malassezia globosa	<.0001	<.0001				
Cladosporium delicatulum	<.0001	<.0001				
Verticillium dahliae	<.0001	<.0001				
Papiliotrema laurentii	<.0001	<.0001				
Fusarium culmorum	<.0001	<.0001				
Candida parapsilosis	<.0001	<.0001				
Debaryomyces hansenii	<.0001	<.0001				
Aspergillus conicus	<.0001	<.0001				
Epicoccum nigrum	<.0001	<.0001				
Mycosphaerella tassiana	<.0001	<.0001				

Candida hyderabadensis	<.0001	<.0001
Malassezia sympodialis	<.0001	<.0001
Naganishia diffluens	<.0001	<.0001
Alternaria brassicae	<.0001	<.0001
Nigrospora oryzae	<.0001	<.0001
Rhodosporidiobolus fluvialis	<.0001	<.0001
Wallemia tropicalis	<.0001	<.0001
Colletotrichum gloeosporioides	<.0001	<.0001
Naganishia albida	<.0001	<.0001
Aureobasidium namibiae	<.0001	<.0001
Alternaria nepalensis	<.0001	<.0001
Malassezia caprae	<.0001	<.0001
Vishniacozyma victoriae	<.0001	<.0001
Alternaria metachromatica	<.0001	<.0001
Cyberlindnera jadinii	0.001	0.0019
Malassezia dermatis	<.0001	0.0001
Malassezia pachydermatis	<.0001	0.0001
Candida sake	<.0001	0.0002
Alternaria terricola	<.0001	0.0002
Zygosaccharomyces rouxii	0.0001	0.0003
Penicillium glabrum	0.0002	0.0004
Agaricus bisporus	0.0002	0.0005
Acremonium charticola	0.0002	0.0005
Malassezia arunalokei	0.0003	0.0006
Trichosporon asahii	0.0003	0.0006
Septoria cretae	0.0003	0.0006
Cladosporium halotolerans	0.0004	0.0008
Phaeosphaeria podocarpi	0.0005	0.0009
Malassezia cuniculi	0.0006	0.0012
Dekkera custersiana	0.0006	0.0012
Aspergillus restrictus	0.0006	0.0012
Lasiodiplodia brasiliensis	0.0007	0.0014
Colletotrichum truncatum	0.0008	0.0015
Saccharomyces cerevisiae	0.0013	0.0023
Corynespora torulosa	0.0021	0.0036
Schizophyllum amplum	0.0021	0.0036
Filobasidium magnum	0.0026	0.0042

Bipolaris sorokiniana	0.0025	0.0042
Symmetrospora vermiculata	0.0025	0.0042
Stagonosporopsis dorenboschii	0.0027	0.0043
Pyrenochaetopsis leptospora	0.0028	0.0045
Penicillium sclerotigenum	0.0043	0.0067
Xenodidymella humicola	0.0043	0.0067
Penicillium expansum	0.005	0.0076
Leptospora rubella	0.0055	0.0082
Penicillium decumbens	0.0056	0.0083
Vishniacozyma heimaeyensis	0.0061	0.0088
Plectosphaerella oratosquillae	0.0069	0.0099
Sarocladium implicatum	0.0071	0.0101
Aspergillus flavus	0.0094	0.0131
Cystobasidium slooffiae	0.0137	0.0189
Cystobasidium pinicola	0.0159	0.0213
Trichothecium roseum	0.0158	0.0213
Alternaria didymospora	0.02	0.0265
Penicillium brevicompactum	0.0211	0.0273
Paramyrothecium roridum	0.0212	0.0273
Cladosporium sphaerospermum	0.0287	0.0367
Penicillium thymicola	0.0304	0.0384
More abundant at elevated RH		
conditions		
Aspergillus sydowii	<.0001	<.0001
Aspergillus unguis	<.0001	<.0001
Aspergillus nidulans	<.0001	<.0001
Aspergillus subversicolor	<.0001	<.0001
Penicillium chrysogenum	0.0009	0.0016
Aspergillus hongkongensis	0.0046	0.0071

Supplemental Table S19: Differential abundance fungal comparison between original dust samples and 24-hour TOW saturated (100% RH) conditions. There were 52 fungal species more abundant in the original dust compared to 6 species more abundant at saturated conditions.

Fungal Species	Unadjusted P-value	Adjusted FDR P-value			
More abundant in Original Dust (52 species)					
Gibberella intricans	<.0001	<.0001			
Malassezia restricta	<.0001	<.0001			

Malassezia globosa	<.0001	<.0001
Cladosporium delicatulum	<.0001	<.0001
Papiliotrema laurentii	<.0001	<.0001
Fusarium culmorum	<.0001	<.0001
Cladosporium halotolerans	<.0001	<.0001
Cyberlindnera jadinii	<.0001	<.0001
Alternaria alternata	<.0001	0.0001
Fusarium acutatum	<.0001	0.0002
Talaromyces minioluteus	<.0001	0.0002
Aspergillus penicillioides	<.0001	0.0002
Epicoccum nigrum	<.0001	0.0002
Malassezia sympodialis	<.0001	0.0002
Naganishia diffluens	<.0001	0.0002
Aspergillus conicus	<.0001	0.0004
Mycosphaerella tassiana	<.0001	0.0004
Candida albicans	0.0001	0.0005
Wallemia tropicalis	0.0001	0.0006
Candida parapsilosis	0.0008	0.0031
Rhodotorula mucilaginosa	0.0008	0.0032
Nigrospora oryzae	0.0008	0.0032
Debaryomyces hansenii	0.0014	0.005
Stagonosporopsis dorenboschii	0.0017	0.0059
Rhodosporidiobolus fluvialis	0.0021	0.007
Penicillium glabrum	0.0021	0.007
Corynespora torulosa	0.0022	0.0071
Verticillium dahliae	0.0024	0.0075
Candida hyderabadensis	0.0025	0.0075
Aureobasidium namibiae	0.0027	0.008
Malassezia dermatis	0.003	0.0087
Vishniacozyma victoriae	0.0037	0.0104
Candida tropicalis	0.005	0.0132
Rhodotorula dairenensis	0.0049	0.0132
Alternaria brassicae	0.0057	0.0148
Penicillium sclerotigenum	0.0065	0.0161
Malassezia arunalokei	0.0069	0.0167
Malassezia caprae	0.0097	0.0229
Agaricus bisporus	0.0115	0.0264
Colletotrichum gloeosporioides	0.0132	0.0297
Dekkera custersiana	0.0134	0.0297
Lasiodiplodia brasiliensis	0.0149	0.0323

Phaeosphaeria podocarpi	0.0155	0.0328
Penicillium thymicola	0.0211	0.0438
Candida sake	0.0215	0.0438
More abundant at 100% RH 24	hr TOW only (6 species)
Aspergillus sydowii	<.0001	<.0001
Aspergillus unguis	<.0001	<.0001
Penicillium chrysogenum	<.0001	<.0001
Aspergillus nidulans	<.0001	<.0001
Aspergillus subversicolor <.	.0001 <.	0001
Penicillium gladioli <.0001	0.0002	

Supplemental Table S20: Differential abundance fungal comparison between unmodified (50% RH) 24-hour TOW samples and 24-hour TOW saturated (100% RH) conditions. There were 29 fungal species more abundant in the unmodified condition compared to 10 species more abundant at saturated conditions.

Unadjusted P- Adjusted FDR P-Fungal Species More abundant at unmodified (50% ERH) conditions (29 species)

value		value
<.0001	0.0005	
<.0001	0.0007	
0.0001	0.0013	
0.0003	0.0032	
0.0005	0.0042	
0.0006	0.0042	
0.0006	0.0044	
0.0011	0.0072	
0.0013	0.0079	
0.0015	0.0086	
0.0016	0.009	
0.0022	0.011	
0.0021	0.011	
0.0028	0.0135	
0.004	0.017	
0.004	0.017	
0.0051	0.0208	
0.0059	0.0224	
0.0079	0.0288	
0.0095	0.0325	
0.0106	0.035	
0.0116	0.0361	
0.0114	0.0361	
	<.0001 <.0001 0.0001 0.0003 0.0005 0.0006 0.0006 0.0011 0.0013 0.0015 0.0016 0.0022 0.0021 0.0028 0.004 0.004 0.0051 0.0059 0.0079 0.0095 0.0106 0.0116	<.0001

Debaryomyces hansenii	0.012	0.0362
Malassezia arunalokei	0.0141	0.0415
Stagonosporopsis dorenbosch	ii 0.0157	0.0432
Penicillium glabrum	0.0159	0.0432
Vishniacozyma victoriae	0.0152	0.0432
Aureobasidium namibiae	0.0171	0.0453
More abundant at saturated	(100% ERH) c	onditions (10
species)		
Aspergillus sydowii	<.0001	<.0001
Aspergillus unguis	<.0001	<.0001
Penicillium chrysogenum	<.0001	<.0001
Aspergillus nidulans	<.0001	<.0001
Penicillium gladioli	<.0001	<.0001
Aspergillus subversicolor	<.0001	<.0001
Aspergillus hongkongensis	0.0004	0.0033
Aspergillus puniceus	0.0033	0.0153
Penicillium concentricum	0.0056	0.0219

Aspergillus flavus

Supplemental Table S21: Differential abundance fungal comparison between high (85% RH) 24-hour TOW samples and 24-hour TOW saturated (100% RH) conditions. There was 1 fungal species more abundant in the high condition compared to 8 species more abundant at saturated conditions.

0.0299

0.0085

Fungal Species	Unadjusted P-value	Adjusted FDR P-value		
More abundant at High (85% ERH) conditions (1 species)				
Aspergillus penicillioides	<.0001	0.0001		
More abundant at saturated (100% ERH) conditions (8 species)				
Penicillium chrysogenum	<.0001	<.0001		
Penicillium gladioli	<.0001	<.0001		
Aspergillus flavus	<.0001	0.0009		
Aspergillus tamarii	0.0004	0.0079		
Aspergillus nidulans	0.0008	0.0107		
Aspergillus subversicolor	0.0007	0.0107		
Penicillium concentricum	0.0008	0.0107		
Aspergillus puniceus	0.0025	0.0296		

Supplemental Table S22: Differential abundance fungal comparison between high (85% RH) for all TOW samples and all TOW saturated (100% RH) conditions. There were 30 fungal species more abundant in the high condition compared to 4 species more abundant at saturated conditions.

Fungal Species	Unadjusted P-value	Adjusted FDR P-value
----------------	--------------------	----------------------

More abundant at high (85% ERH) conditions All TOW (30 species)			
Alternaria alternata	<.0001	0.0004	
Malassezia restricta	<.0001	0.0008	
Epicoccum nigrum	<.0001	0.0008	
Mycosphaerella tassiana	<.0001	0.0009	
Gibberella intricans	0.0001	0.0014	
Aspergillus penicillioides	0.0001	0.0014	
Cladosporium delicatulum	0.0001	0.0014	
Aspergillus conicus	0.0002	0.0018	
Candida albicans	0.0003	0.0025	
Malassezia globosa	0.0005	0.0039	
Debaryomyces hansenii	0.0006	0.0039	
Penicillium sclerotigenum	0.0007	0.0039	
Colletotrichum gloeosporioides	0.0007	0.0039	
Sarocladium implicatum	0.0007	0.0039	
Phaeosphaeria podocarpi	0.0007	0.0039	
Fusarium acutatum	0.0011	0.0056	
Alternaria brassicae	0.0013	0.0066	
Cyberlindnera jadinii	0.002	0.0095	
Malassezia cuniculi	0.0029	0.0131	
Penicillium aurantiogriseum	0.0034	0.015	
Plectosphaerella oratosquillae	0.0059	0.0251	
Pseudopithomyces chartarum	0.0063	0.0257	
Fusarium culmorum	0.0075	0.0271	
Penicillium citrinum	0.0077	0.0271	
Penicillium thymicola	0.0071	0.0271	
Zygosaccharomyces rouxii	0.0072	0.0271	
Papiliotrema laurentii	0.011	0.0363	
Saccharomyces cerevisiae	0.0132	0.0424	
Verticillium dahliae	0.0152	0.0468	
Lasiodiplodia brasiliensis	0.0155	0.0468	
More abundant at saturated Conditions (100% ERH) All TOW (4 species)			
Aspergillus sydowii	<.0001	0.0013	
Aspergillus nidulans	<.0001	0.0002	
Aspergillus subversicolor <.0001	0.0002 As	spergillus unguis	

0.0005

0.0039

Supplemental Table 23: Example of bacterial differential abundance analysis for non-elevated (original dust and 50% RH) and elevated (80, 85, 90, and 100% RH) conditions for 2-week incubations. No bacterial species were found to be more abundant in either condition. This was true for all time-of-wetness incubation comparisons as well (not shown).

Bacterial Species	Unadjusted	Adjusted FDR
Corumphactorium kronnonstadtii	P-value 0.4687	Pvalue 0.5723
Corynebacterium kroppenstedtii		
Staphylococcus pettenkoferi	0.4587	0.5723
Lactobacillus helveticus	0.4267	0.5723
Veillonella parvula	0.4783	0.5723
Acinetobacter rhizosphaerae	0.4827	0.5723
Veillonella dispar	0.4783	0.5723
Haemophilus parainfluenzae	0.4773	0.5723
Rothia mucilaginosa	0.4818	0.5723
Faecalibacterium prausnitzii	0.4799	0.5723
Corynebacterium stationis	0.3218	0.5723
Rothia dentocariosa	0.4833	0.5723
Streptococcus infantis	0.4765	0.5723
Staphylococcus saprophyticus	0.2376	0.5723
Corynebacterium variabile	0.1595	0.5723
Streptococcus anginosus	0.4834	0.5723
Corynebacterium durum	0.4789	0.5723
Capnocytophaga ochracea	0.488	0.5723
Prevotella melaninogenica	0.4826	0.5723
Roseburia faecis	0.4532	0.5723
Lachnoanaerobaculum orale	0.4901	0.5723
Gemmiger formicilis	0.4199	0.5723
Rothia aeria	0.4932	0.5723
Aggregatibacter segnis	0.486	0.5723
Sphingobium yanoikuyae	0.3243	0.5723
Campylobacter ureolyticus	0.4823	0.5723
Brevibacterium paucivorans	0.5421	0.5834
Pseudomonas veronii	0.2718	0.5723
Staphylococcus succinus	0.3254	0.5723
Blautia obeum	0.2901	0.5723
Clostridium clostridioforme	0.4763	0.5723
Prevotella nanceiensis	0.4921	0.5723
Ruminococcus bromii	0.7364	0.7422
Bacteroides uniformis	0.4816	0.5723
Actinomyces europaeus	0.4813	0.5723
Neisseria subflava	0.4414	0.5723
Staphylococcus equorum	0.4831	0.5723
Selenomonas noxia	0.4827	0.5723

Micrococcus luteus	0.3841	0.5723
Kocuria palustris	0.4722	0.5723
Prevotella copri	0.3542	0.5723
Coprococcus eutactus	0.4756	0.5723
Neisseria oralis	0.5037	0.5723
Staphylococcus aureus	0.4904	0.5723
Lactobacillus delbrueckii	0.4541	0.5723
Prevotella intermedia	0.597	0.6266
Campylobacter rectus	0.5022	0.5723
Porphyromonas endodontalis	0.2417	0.5723
Actinobacillus porcinus	0.0523	0.5723
Xanthomonas campestris	0.4035	0.5723
Acinetobacter guillouiae	0.1078	0.5723
Lactobacillus iners	0.4833	0.5723
Bacteroides caccae	0.4824	0.5723
Prevotella pallens	0.5112	0.5723
Raphanus sativus	0.3651	0.5723
Ruminococcus callidus	0.6408	0.6563
Brevibacterium aureum	0.3173	0.5723
Dorea formicigenerans	0.4045	0.5723
Malus domestica	0.2903	0.5723
Sphingomonas yabuuchiae	0.5137	0.5723
Lactobacillus hamsteri	0.5267	0.5767
Bacteroides ovatus	0.061	0.5723
Alistipes putredinis	0.4847	0.5723
Abiotrophia defectiva	0.0553	0.5723
Bulleidia moorei	0.4814	0.5723
Prevotella nigrescens	0.4868	0.5723
Actinobacillus parahaemolyticus	0.5525	0.5893
Coprococcus catus	0.5251	0.5767
Neisseria cinerea	0.1916	0.5723
Roseburia inulinivorans	0.0275	0.5723
Lactobacillus zeae	0.3927	0.5723
Bifidobacterium adolescentis	0.5381	0.5834
Acinetobacter lwoffii	0.4828	0.5723
Blautia producta	0.6528	0.6632
Collinsella aerofaciens	0.3588	0.5723
Haemophilus influenzae	0.0035	0.4473
Dorea longicatena	0.5568	0.5893

Akkermansia muciniphila	0.4866	0.5723
Eubacterium biforme	0.6081	0.6279
Ruminococcus gnavus	0.4971	0.5723
Tetragenococcus halophilus	0.415	0.5723
Ruminococcus lactaris	0.6055	0.6279
Prevotella tannerae	0.1506	0.5723
Propionibacterium acnes	0.7683	0.7683
Parabacteroides distasonis	0.4786	0.5723
Staphylococcus haemolyticus	0.5056	0.5723
Staphylococcus lugdunensis	0.0714	0.5723
Alistipes onderdonkii	0.0174	0.5723
Clostridium celatum	0.4807	0.5723
Streptococcus luteciae	0.4011	0.5723
Bacteroides plebeius	0.4228	0.5723
Butyricicoccus pullicaecorum	0.3384	0.5723
Atopobium rimae	0.464	0.5723
Corynebacterium aurimucosum	0.3477	0.5723
Rothia nasimurium	0.2269	0.5723
Jeotgalicoccus psychrophilus	0.3406	0.5723
Ruminococcus torques	0.233	0.5723
Cardiobacterium valvarum	0.4312	0.5723
Geobacillus vulcani	0.3282	0.5723
Paracoccus aminovorans	0.3156	0.5723
Psychrobacter marincola	0.305	0.5723
Corynebacterium simulans	0.4117	0.5723
Ruminococcus albus	0.4256	0.5723
Enhydrobacter aerosaccus	0.3782	0.5723
Brevibacterium casei	0.3777	0.5723
Alistipes finegoldii	0.3198	0.5723
Anoxybacillus kestanbolensis	0.3445	0.5723
Staphylococcus sciuri	0.3351	0.5723
Neisseria bacilliformis	0.463	0.5723
Bacteroides coprophilus	0.3823	0.5723
Psychrobacter pulmonis	0.3095	0.5723
Flavobacterium succinicans	0.2183	0.5723
Arabidopsis thaliana	0.0851	0.5723
Rothia amarae	0.1633	0.5723
Peptostreptococcus anaerobius	0.3786	0.5723
Pseudoclavibacter bifida	0.2885	0.5723
Erwinia chrysanthemi	0.2708	0.5723

Bacillus coagulans	0.2688	0.5723
Cucurbita pepo	0.4661	0.5723
Treponema socranskii	0.4393	0.5723
Methylobacterium adhaesivum	0.3441	0.5723
Streptococcus agalactiae	0.4272	0.5723
Paracoccus marcusii	0.3902	0.5723
Acinetobacter schindleri	0.3701	0.5723
Micrococcus terreus	0.4271	0.5723
Enterococcus cecorum	0.4012	0.5723
Cupriavidus gilardii	0.2283	0.5723
Alloiococcus otitis	0.4274	0.5723

Constant RH 2-week Incubations

Supplemental Figure S8: Mean relative (A) and absolute (B) abundance data for fungal genus in constant equilibrium relative humidity (ERH) incubation samples. Original dust was not incubated and represents what was in the dust in the ISS vacuum bags with no ERH exposure. For each ERH condition, samples were incubated for 2 weeks at 25°C. Each condition (including original dust) represents the mean of 12 total dust samples which includes 3 physical triplicates from the 4 ISS vacuum bags used in this study.

Supplemental Figure S9: Mean relative (A) and absolute (B) abundance data for fungal genus of frozen ISS dust and original dust samples. Original dust was not incubated and represents what was in the dust in the ISS vacuum bags with no ERH exposure. Frozen dust samples were collected onboard the ISS via a tweezer (no vacuum), placed in a triple-sealed plastic bag, and stored at -80°C until use in this study. The abundance data represents of a total of 12 samples for original dust samples (3 for each ISS bag) and 8 frozen dust samples (1 for each location sampled).