Compulsory Exercise 1

TMA4268 Statistical Learning V2023

Emma Skarstein, Kenneth Aase, Daesoo Lee, Stefanie Muff, Department of Mathematical Sciences, NTNU

Hand out date: February 8, 2023

The submission deadline is: February 23 2023, 23:59h using Blackboard

Introduction

Maximal score is 43 points. You must score at least 60% to pass the exercise, which is required to take the final exam. Remember that there are two compulsory exercises/projects, and you must score at least 60% in each of them.

Supervision

We will use the times where we would have lectures and exercises for supervision in the usual lecture rooms. Supervision hours:

- Monday, February 13, 10:15-12:00 in KJL2
- Thursday, February 16, 08:15-10:00 in EL3 and 10:15-12:00 in KJL2

Remember that there is also the Mattelab forum, and we strongly encourage you to use it for your questions outside the supervision hours – this ensures that all other students benefit from the answers (try to avoid emailing the course staff).

Practical issues (Please read carefully)

- Group size is 2 or 3 join a group (self enroll) before handing in on Blackboard. We prefer that you do not work alone.
- Please organize yourself via the Mattelab discussion forum (https://mattelab2023v.math.ntnu.no/c/t ma4268/6) to find a group. Once you formed a group, log into Blackboard and add yourself to the same group there.
- If you did not find a group even when using Mattelab, you can email Stefanie (stefanie.muff@ntnu.no) and I will try to match you with others that are alone (please use this really only if you have already tried to find a group).
- Remember to write your names and group number on top of your submission file!
- The exercise should be handed in as **one R Markdown file and a pdf-compiled version** of the R Markdown file (if you are not able to produce a pdf-file directly please make an html-file, open it in your browser and save as pdf no, not landscape but portrait please). We will read the pdf-file and use the Rmd file in case we need to check details in your submission.

- You may want to work through the R Markdown bonus part in the R course (https://digit.ntnu.no/courses/course-v1:NTNU+IMF001+2020/about)
- In the R-chunks please use both echo=TRUE and eval=TRUE to make it simpler for us to read and grade.
- Please do not include all the text from this file (that you are reading now) we want your R code, plots and written solutions use the template from the course page (https://wiki.math.ntnu.no/tma4268/20 23v/subpage6).
- Please **not more than 12 pages** in your pdf-file! (This is a request, not a requirement.)
- Please save us time and **do not submit word or zip**, and do not submit only the Rmd. This only results in extra work for us!

R packages

You need to install the following packages in R to run the code in this file. It is of course also possible to use more or different packages.

```
install.packages("knitr")
                              # probably already installed
install.packages("rmarkdown") # probably already installed
install.packages("ggplot2")
                              # plotting with gaplot2
install.packages("dplyr")
                              # for data cleaning and preparation
install.packages("tidyr")
                              # also data preparation
install.packages("carData")
                              # dataset
                              # for KNN
install.packages("class")
install.packages("pROC")
                              # calculate roc
install.packages("plotROC")
                              # plot roc
install.packages("ggmosaic")
                              # mosaic plot
```

Multiple/single choice problems

There will be a few multiple and single choice questions. This is how these will be graded:

- Multiple choice questions (2P): There are four choices, and each of them can be TRUE or FALSE. If you make one mistake (either wrongly mark an option as TRUE/FALSE) you get 1P, if you have two or more mistakes, you get 0P. Your answer should be given as a list of answers, like TRUE, TRUE, FALSE, FALSE, for example.
- Single choice questions (1P): There are several choices, and only *one* of the alternatives is the correct one. You will receive 1P if you choose the correct alternative and 0P if you choose wrong. Only say which option is true (for example (ii)).

Problem 1 (9P)

We consider the following regression problem

$$Y = f(\mathbf{x}) + \varepsilon$$
, where $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$.

Assume now that the true function $f(\mathbf{x})$ is a linear combination of the observed covariates, that is $f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$, where \mathbf{x} and $\boldsymbol{\beta}$ are both vectors of length p + 1.

We know that the OLS estimator in this case is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$, with design matrix \mathbf{X} and response vector \mathbf{Y} . In this task we will look at a competing estimator $\tilde{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ (this is called the ridge regression estimator), where $\lambda \geq 0$ is a constant tuning parameter that controls the bias-variance trade-off. Observe that for $\lambda = 0$ the ridge regression estimator is equivalent to $\hat{\boldsymbol{\beta}}$.

We will first derive mathematical formulas for the bias and variance of $\widetilde{\beta}$ and then we will plot these curves in R.

a) (1P)

Find the expected value and the variance-covariance matrix of $\widetilde{\beta}$.

b) (2P)

Let $\widetilde{f}(\mathbf{x}_0) = \mathbf{x}_0^T \widetilde{\boldsymbol{\beta}}$ be the prediction at a new covariate vector \mathbf{x}_0 . Using a), find the expected value and variance for $\widetilde{f}(\mathbf{x}_0) = \mathbf{x}_0^T \widetilde{\boldsymbol{\beta}}$.

c) (1P)

Explain with words how we can interpret the three terms: bias, variance and irreducible error.

d) (2P)

Find the expected MSE at \mathbf{x}_0 , $E[(y_0 - \widetilde{f}(\mathbf{x}_0))^2]$.

Hint: Use that the expected MSE can be decomposed into squared bias, variance and irreducible error, and then move on from there.

Plotting the bias-variance trade-off

The estimator $\widetilde{\beta}$ is a function of the tuning parameter λ , which controls the bias-variance trade-off. Using the decomposition derived in c) we will plot the three elements (bias, variance and irreducible error) using the values in the code chunk below. values is a list with the design matrix X, the vector \mathbf{x}_0 as \mathbf{x}_0 , the parameters vector beta and the irreducible error sigma.

```
id <- "1X_80KcoYbng1XvYFDirxjEWr7LtpNr1m" # google file ID
values <- dget(sprintf("https://docs.google.com/uc?id=%s&export=download", id))

X <- values$X
dim(X)

## [1] 100 81

x0 <- values$x0
dim(x0)

## [1] 81 1
beta <- values$beta
dim(beta)

## [1] 81 1
sigma <- values$sigma
sigma</pre>
```

[1] 0.5

e) (1P)

First we will create the squared bias function (bias) which takes as inputs the parameter lambda, X, x0, beta and returns the squared bias. You have only to fill the value <- ... and run the chunk of code to plot the squared bias, where value is the squared bias as derived in d).

```
library(ggplot2)
bias <- function(lambda, X, x0, beta) {
   p <- ncol(X)
   value <- ...
   return(value)
}
lambdas <- seq(0, 2, length.out = 500)
BIAS <- rep(NA, length(lambdas))
for (i in seq_along(lambdas)) BIAS[i] <- bias(lambdas[i], X, x0, beta)
dfBias <- data.frame(lambdas = lambdas, bias = BIAS)
ggplot(dfBias, aes(x = lambdas, y = bias)) +
   geom_line(color = "hotpink") +
   xlab(expression(lambda)) +
   ylab(expression(bias^2))</pre>
```

f) (1P)

Now we will create the variance function which takes the same inputs as the squared bias. As in e) you have to fill only the value <- ... and run the code to plot the variance.

```
variance <- function(lambda, X, x0, sigma) {
  p <- ncol(X)
  inv <- solve(t(X) %*% X + lambda * diag(p))
  value <- ...
  return(value)
}
lambdas <- seq(0, 2, length.out = 500)
VAR <- rep(NA, length(lambdas))
for (i in seq_along(lambdas)) VAR[i] <- variance(lambdas[i], X, x0, sigma)
dfVar <- data.frame(lambdas = lambdas, var = VAR)
ggplot(dfVar, aes(x = lambdas, y = var)) +
  geom_line(color = "gold") +
   xlab(expression(lambda)) +
  ylab("variance")</pre>
```

g) (1P)

Fill in the exp_mse of the following code to calculate the expected MSE for the same lambda values that you plugged in above. Then plot all the components together and find the value of λ which minimizes the expected MSE.

```
exp_mse <- ...
lambdas[which.min(exp_mse)]</pre>
```

Problem 2 (15P)

Bert-Ernie has his eye on a career in academia, but has not really decided on a field yet. Like most academics, his greatest concern is his future salary as a tenured professor. He comes across the Salaries dataset from the carData R package, and decides to perform a statistical analysis to try to find out how he can maximize his future salary as an academic.

To get more information about the covariates in the dataset, you should run ?Salaries after loading the data. It's also a good idea to do a *descriptive analysis* of the data before fitting any models. A good starting point can be the ggpairs() function from the GGally package.

library(carData)
?Salaries

GGally::ggpairs(Salaries)

Figure 1: Pairs plot of the academic salary data set.

After doing a descriptive analysis, Bert-Ernie makes a multiple linear regression model with all covariates included, which he calls model1.

```
# Fit full model
model1 <- lm(salary ~ ., data = Salaries)
summary(model1)</pre>
```

```
## Call:
## lm(formula = salary ~ ., data = Salaries)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                   Max
  -65248 -13211 -1775
##
                        10384
                                99592
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  65955.2
                              4588.6 14.374 < 2e-16 ***
## rankAssocProf
                  12907.6
                              4145.3
                                        3.114
                                               0.00198 **
## rankProf
                  45066.0
                              4237.5
                                               < 2e-16 ***
                                       10.635
## disciplineB
                  14417.6
                              2342.9
                                        6.154 1.88e-09 ***
## yrs.since.phd
                    535.1
                               241.0
                                        2.220
                                               0.02698 *
                   -489.5
                               211.9
                                       -2.310
## yrs.service
                                               0.02143 *
## sexMale
                   4783.5
                              3858.7
                                        1.240
                                               0.21584
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 22540 on 390 degrees of freedom
## Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463
## F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16
```

a) Categorical variables (2P)

The covariate rank is categorical, with the three possible values AsstProf (assistant professor), AssocProf (associate professor) and Prof (full professor).

i) How does the lm() function encode for this type of covariate, and what are the interpretations of the rankAssocProf and rankProf estimates, respectively? (1P)

The output from summary() tells us the p-values of rankAssocProf and rankProf, but not rank as a whole.

ii) Perform an appropriate test to check whether there is evidence that rank as a whole has an impact on salary. The output from summary() is not enough to do this. (1P)

b) Conflicting model results? (2P)

Coefficients:

Having heard of the gender wage-gap, Bert-Ernie is surprised to see that model1 finds no evidence that sex has an effect on salary. To make sure nothing has gone wrong, he fits a new model with sex as the only covariate (along with an intercept).

```
sex_model <- lm(salary ~ sex, data = Salaries)
summary(sex_model)

##
## Call:
## lm(formula = salary ~ sex, data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57290 -23502 -6828 19710 116455
##</pre>
```

```
##
               Estimate Std. Error t value Pr(>|t|)
                 101002
                               4809
                                     21.001
##
                                             < 2e-16 ***
   (Intercept)
                                      2.782
  sexMale
                   14088
                               5065
                                             0.00567 **
##
##
  Signif. codes:
                             .001 '**'
                                       0.01
##
## Residual standard error: 30030 on 395 degrees of freedom
## Multiple R-squared:
                        0.01921,
                                     Adjusted R-squared:
## F-statistic: 7.738 on 1 and 395 DF, p-value: 0.005667
```

The new model finds strong evidence that sex has an effect on salary. How would you explain the fact that sex_model finds evidence of sex impacting salary, but the full model model1 does not? Make one or two figures to demonstrate your explanation, with proper figure captions explaining the figure(s). (2P)

Hint: The descriptive analysis might be useful to identify what is going on.

c) Model assumptions and transformation (2P)

Checking the assumptions of model1, Bert-Ernie observes that the assumptions of the linear regression model are not fulfilled in model1.

```
library(ggplot2)
library(ggfortify)
autoplot(model1, smooth.colour = NA)
```


Figure 2: Diagnostic plots for 'model1'.

- i) Based on the figure below, which assumptions are not fulfilled? (1P)
- ii) Bert-Ernie has heard that sometimes such issues may be solved by transforming the response or covariates of the model, so he decides to try treating the log-transform of salary as the response in a

new model. Implement the new model, and call it model2. Have the model assumptions improved in model2 compared to model1? (1P)

d) Interactions (2P)

Bert-Ernie hypothesizes that the impact of sex on salary in academia might be stronger in older generations. While keeping the log-transformed response and all the other covariates in the model he therefore decides to design a model with an interaction term between sex and yrs.since.phd.

- i) Implement the model with the interaction term, and call it model3 (1P).
- ii) Interpret the results from model3. Is Bert-Ernie's hypothesis correct? (1P)

e) Bootstrap (4P)

You might have noticed that the R^2 we get from summary() is just a point estimate, without any uncertainty associated to it. We can use the bootstrap to estimate the uncertainty of the R^2 in our models. To this end:

- (i) Generate 1000 bootstrap samples of the R^2 in model1. Use set.seed(4268) at the beginning of the bootstrap iterations to ensure that your results are reproducible (2P).
- (ii) Plot the respective distribution of the values (0.5P).
- (iii) Find the standard error and the 95% quantile interval (1P).
- (iv) Interpret what you see (0.5P).

Throughout, show your R code and printouts.

f) Picking a field (3P)

We (and Bert-Ernie) now assume that model1 is the correct (that is, the data-generating) model. After some character development (namely, all this R coding is giving him a headache) Bert-Ernie has figured out that he would rather work in a theoretical field than an applied field. But, money-conscious as always, he decides that he will follow this dream if and only if his model predicts that 20 years after finishing his PhD he will be earning at least 75 000\$ every nine months, with 95% certainty. He does not care how much he earns, as long as it is more than 75 000\$. He is sure that he will get a permanent position immediately upon finishing his PhD (so his yrs.since.phd will equal his yrs.service), that he will have become full professor within the 20 years and that his sex will still be male.

```
# Make a data frame containing two new observations, corresponding to
# Bert-Ernie's two possible futures
bert ernie <- data.frame(rank = c("Prof", "Prof"),
                          discipline = c("A", "B"), # Theoretical, applied
                          yrs.since.phd = c(20, 20),
                          yrs.service = c(20, 20),
                          sex = c("Male", "Male"))
# Use the full model to predict his salary
preds <- predict(object = model1,</pre>
                 newdata = bert_ernie,
                 interval = "confidence",
                 level = 0.975) # Not 0.95 since we don't care about upper limit
# Check predictions
preds
##
          fit.
                   lwr
                             upr
```

```
## 2 131133.2 126145.6 136120.8
```

```
# Check if lower limit for salary in a theoretical field is large enough
preds[1, 2] > 75000
```

```
## [1] TRUE
```

He sees that the lower limit of the computed interval beats 75 000\$ by a fair amount, so he breathes a sigh of relief. However, he has made two errors in the call to predict().

- i) Correct his mistakes, and make the calculation he was actually interested in, still using predict(). Will he still be able to follow his dream after making the correction, or are many sleepless nights of debugging R code looming in his future? (1P)
- ii) Write down an analytic expression for the correct lower limit, and implement the analytic expression in R to make sure you get the same result as from predict(). (2P)

Hint: see Recommended Exercises Week 3.

R-hint: In the implementation you might have use for the functions model.matrix(), coef(), sigma(), df.residual(), qt(), sqrt(), solve() and t(), and the matrix multiplication operator %*%.

Problem 3 (13P)

The Bigfoot Field Researchers Organization (BFRO) is an organization dedicated to investigating the bigfoot mystery, and for years they have been collecting reported sightings in a database. They manually classify their reports into

- Class A: Clear sightings in circumstances where misinterpretation or misidentification of other animals can be ruled out with greater confidence
- Class B: Incidents where a possible bigfoot was observed at a great distance or in poor lighting conditions and incidents in any other circumstance that did not afford a clear view of the subject.

However, they wonder if this can be automated and done by a classification algorithm instead. So in this task, you will set up a few different classification algorithms for this aim, and evaluate their performance.

Feel free to look at the original data, bigfoot_original below, however in this task we will be using a slightly simplified version of the data set where we have extracted some variables of interest and deleted observations that are missing any of these variables of interest.

Download the data as below, and run through the provided cleaning/preparation steps.

```
bigfoot_original <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/mast
```

```
heard = grepl("heard", observed)) %>%
# Remove unnecessary variables:
dplyr::select(-c("classification", "observed")) %>%
# Remove any rows that contain missing values:
tidyr::drop_na()
```

The data we will use for this task includes the following variables:

- class: the assigned class of the observation, coded as 1 = Class A, 0 = Class B
- longitude: longitude of the observation
- latitude: latitude of the observation
- visibility: estimated visibility at the time and place of observation (higher value means better visibility)
- fur: does the report contain the word "fur"? (TRUE/FALSE)
- howl: does the report contain the word "howl"? (TRUE/FALSE)
- saw: does the report contain the word "saw"? (TRUE/FALSE)
- heard: does the report contain the word "heard"? (TRUE/FALSE)

For the following tasks, we will be using all of these variables.

The data is split into test and training sets as follows:

Please remember to use the same seed when you split the data into training and test set.

```
set.seed(2023)
# 70% of the sample size for training set
training_set_size <- floor(0.7 * nrow(bigfoot))

train_ind <- sample(seq_len(nrow(bigfoot)), size = training_set_size)

train <- bigfoot[train_ind, ]
test <- bigfoot[-train_ind, ]</pre>
```

a) (2P)

- (i) (1P) Fit a **logistic regression** model using the training set, and perform the classification on the test set, using a 0.5 cutoff. How many of the reports were classified as clear sightings (class A, category 1)?
- (ii) (1P) Single choice: According to this model, how would the odds that an observation is classified as Class A change if the report contains the word "saw", compared to if it does not? (all other covariates stay the same)
- 1) We multiply by 1.292.
- 2) We multiply it with -3.64.
- 3) We multiply by 0.275.
- 4) We multiply by 3.64.
- 5) We add 3.64.
- 6) We add 1.292.

b) (3P)

(i) (1P) Fit a **QDA** model using the training set, and perform the classification on the test set, using a 0.5 cutoff. How many of the reports were classified as class A?

- (ii) (2P) Which statements about linear discriminant analysis and quadratic discriminant analysis are true and which are false? Say for *each* of them if it is true or false.
- 1) QDA differs from LDA in that it assumes that observations of different classes come from Gaussian distributions with different covariance matrices.
- 2) LDA is a better choice in cases where there are a lot of observations and so reducing bias is important.
- 3) Even if the Bayes decision boundary is linear, QDA will be a better choice.
- 4) QDA assumes that the observations are drawn from a multivariate Gaussian distribution with common mean vector and class-specific covariance matrix

c) (2P)

(i) (1P) Fit a **KNN** model using the training set, and perform the classification on the test set, with k = 25 (use the knn function from the class package).

R-hints: In the knn() function set prob=T to ensure you get the class probabilities that you then need in d) (change the "..." to the correct input):

```
knnMod \leftarrow knn(train = ..., test = ..., cl = ..., k = 25, prob = TRUE)
```

(ii) (1P) Explain how you could choose the tuning parameter k in a better way. How does k relate to the bias-variance trade-off in this context?

d) (6P)

We now wish to compare the performance of the three models (logistic regression, QDA and KNN) on this dataset, in order to report back to BFRO on our results.

- i) (2P) In this case, are we interested in prediction or inference? What implications would it have for the model choice if we wanted to do prediction, and what implications would it have if we wanted to do inference? In conclusion, does the question of whether our aim is prediction or inference exclude any of the three candidate models in this case? (comment briefly)
- ii) (3P) Make confusion matrices for the three predictions performed on the test set in a) c), and report the confusion matrices, along with sensitivity and specificity. Explain briefly: What does sensitivity and specificity mean? Feel free to explain using the bigfoot example. Make sure it is clear in the confusion matrix which numbers show the predictions and which show the true values.
- iii) (1P) Present a plot of the ROC curves and calculate the area under the curve (AUC) for each of the classifiers.
- iv) (1P) Summarize the performance of the three classifiers with words, based on the evaluations above. Which one would you choose? Justify briefly.

R-hints:

• To obtain P(y=1) from the knn() output you have to be aware that the respective probabilities attributes(knnMod)\$prob are the success probability for the actual class where the categorization was made. So if you want to get a vector for P(y=1), you have to use 1 - P(y=0) for the cases where the categorization was 0:

• You might find the functions roc() and ggroc() from the package pROC useful, but there are many ways to plot ROC curves.

Problem 4 (6P)

a) (4P)

To calculate the LOOCV statistic when we have N training data points we typically have to fit N models and evaluate the error of each fit on its left out observation. This task can be computationally intensive when N is large. Fortunately, for linear models there is formula for doing this with fitting just the full data model.

Show that for the linear regression model $Y = \mathbf{X}\beta + \varepsilon$ the LOOCV statistic can be computed by the following formula

$$CV = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2 ,$$

where $h_i = \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i$ and \mathbf{x}_i^{\top} is the *i*th row of \mathbf{X} .

Hints:

- 1. You need to calculate $\hat{y}_{(-i)}$, which is the predicted value of y when the ith observation is kept out. This can be written as $\hat{y}_{(-i)} = \mathbf{x}_i^{\top} \hat{\boldsymbol{\beta}}_{(-i)}$.
- 2. $\mathbf{X}_{(-i)}^{\top} \mathbf{X}_{(-i)} = \mathbf{X}^{\top} \mathbf{X} \mathbf{x}_i \mathbf{x}_i^{\top}$, where $\mathbf{X}_{(-i)}$ is the \mathbf{X} matrix without the *i*th row.
- 3. Analogously $\mathbf{X}_{(-i)}^{\top} \mathbf{y}_{(-i)} = \mathbf{X}^{\top} \mathbf{y} \mathbf{x}_i y_i$.
- 4. The Sherman-Morrison formula will be useful.

b) Multiple choice (2P)

Say for each statement below whether it is true or false.

- (i) The LOOCV will lead to more bias, but less variance than 10-fold CV in the estimated prediction error.
- (ii) The formula from **a**) is not valid for polynomial regression.
- (iii) The formula from a) is valid when we use the log transform of the response in linear regression.
- (iv) The validation set-approach is the same as 2-fold CV.