Formal Languages week4

Michelle Bergin

November 1, 2018

1 Chap3: 1(abc), 2(abc), 4(ab), 12, 15, 21, 25

1(abc) Let G be the grammar

$$S \to abSc|A$$

$$A \to cAd|cd$$

(a) Give a derivation of ababccddcc.

$$S \to abSc$$

 $\rightarrow ababScc$

 $\rightarrow ababAcc$

 $\rightarrow ababcAdcc$

 $\rightarrow ababccddcc$

(b) Build the derivation tree for the derivation in part (a).

I did above? ↑

(c) Use set notation to define L(G)

Base is cd.

otherwise you will have c* cd d*

Once you get to A you cannot return to S, so you will have 0 or more ab's and 0 or more c's at the end

$$\{ab^nc^md^mc^n|n\geq 0, m>0\}$$

2(abc) Let G be the grammar

$$S \to ASB|\lambda$$

$$A \to aAb|\lambda$$

$$B \to bBa|ba$$

 \bullet Give a leftmost derivation of aabbba.

AAAS

 $S \to ASB$

 $\rightarrow ASba$

 $\to A \lambda b a$

 $\rightarrow aAbba$

 $\rightarrow aaAbbba$

 $\rightarrow aa\lambda bbba$

 $\rightarrow aabbba$

• Give a rightmost derivation of abaabbbabbaa.

AAAASBAASBS

$$S \to ASB$$

 $\rightarrow ASbBa$

 $\rightarrow ASbbaa$

 $\rightarrow AASBbbaa$

 $\rightarrow aAbASBbbaa$

 $\rightarrow a\lambda bASBbbaa$

 $\rightarrow abASbabbaa$

 $\rightarrow abA\lambda babbaa$

 $\rightarrow abaAbbabbaa$

 $\rightarrow abaaAbbbabbaa$

 $\rightarrow abaa\lambda bbbabbaa$

 $\rightarrow abaabbbabbaa$

• ..

- 4(ab) Let DT be the derivation tree (in book)
 - (a) Give a leftmost derivation that generates the tree DT.
 - 10 Construct a grammar over $\{a,b\}$ whose language is $\{a^mb^n|0\leq n\leq m\leq 3n\}$.

$$S \rightarrow bSa|bSaaa|\lambda$$

12 Construct a grammar over $\{a,b\}$ whose language contains precisely the strings with the same

numbers of a's and b's

$$S \to aASb|\lambda$$

$$A \rightarrow aAb|aabb$$

15 The set of strings over $\{a, b, c\}$ in which all the a's precede the b's, which in turn precede the c's. It is possible that there are no a's, b's, or c's.

$$S \to ABC | \lambda$$

$$A \to aA|a|\lambda$$

$$B \to b B |b| \lambda$$

$$C \to cC|c|\lambda$$

21 The set of strings over $\{a,b\}$ that do not contain the substring aba.

$$S \to AaB$$

$$A \rightarrow aAa|a$$

$$B \to b B b | b$$

25 The set of strings over $\{a,b\}$ with an even number of a's or an odd number of b's.

$$S \to AB$$

$$A \to aAa|aa$$

$$B \to b B b | b$$