Machine Learning Homework#4

-- Unsupervised Clustering & Dimensionality Reduction

b02901120 羅志軒

Analyze the most common words in the clusters My cluster:

wordpress, oracl, use, apach, excel, matlab, file, magento, hibern, drupal, linq, scala, spring, sharepoint, visual, haskel, ajax, studio, bash, qt

True tages:

wordpress, oracle, svn, apache, excel, matlab, visual-studio, cocoa, osx, bash, spring, hibernate, scala, sharepoint, ajax, qt, drupal, linq, haskell, magento

討論:

因為Tf-idf基本上還是利用特定字出現的頻率來判斷字的重要性,所以像use, file...類似於stopwords但並沒有被列入的字還是會被保留下來,若我們提高對字出現頻率過多的懲罰,或許可以解決此類問題

Visualize the data by projecting onto 2-D space

My cluster (20 clusters)

True cluster

True cluster

My cluster (60 clusters)

My cluster (60 clusters)

My cluster (100 clusters)

討論:

這裡我取TruncatedSVD後20維component中的第1維和第20維當作投影後的2D平面數值,可以發現基本上分成20個cluster的結果已經相當不錯,增加cluster數可以一定程度上將資料分的更開,但相對於正確資料界線較為明確的分群還有一些差距。

Compare different methods

Nomalization of Tf-df:

normalizaion可以有效幫助kmeans於相同的基準下對Tf-idf後的字分群,正確率從0.30027上升至0.46831

Data preprocessing:

在本次作業中我使用三種preprocess方式,1. 消除標點符號及將字全部轉換為小寫

- 2. 删除stopwords: 利用nltk的'stopwords'字庫去除掉常見但不重要的字
- 3. Stem: 英文中包含許多詞性及分詞形式,基本上表達的意義是相近的,為了避免 Tf-idf重複將這些意義相似的字列為最重要的幾個字,所以可以使用stem的方式簡化字 詞,使重點明確被表達出來,正確率大約可以上升0.02~0.03左右。

Tf-idf vs Bag-of-Word:

cluster number	Tf-idf	Bag-of-Word
20	0.4695	0.5155
60	0.7651	0.7498
100	0.7958	0.8047
200	0.6795	0.7714

LSA vs PCA:

cluster number	LSA	PCA
100	0.7958	0.7498
200	0.6795	0.7817
500	0.6970	0.7585

討論:

在所有方法中以調整cluster數對正確率的影響最大,原因和使用F-measure計算正確率有關,若cluster數上升,正確分辨資料在不同群的機率上升,即FP上升,正確率隨之上升,但若cluster數上升太多,正確分辨資料在同群的機率下降,即FN上升,正確率隨之下降