metapath2vec: Scalable Representation Learning for Heterogeneous Networks

Contents

Preliminaries

Paper Review

Experiments

Implementation

 $[0, 0, 0, 1, 0, 0, 0, 0] \rightarrow [0.12, 0.49, 0.23, 0.58]$

Words in sentences are closely related to their neighbors

<u>Preliminaries – (2) DeepWalk</u>

: Attempt to embed graph nodes to vectors

- Document(Corpus) → Graph
- Sentence → Random Walk
- Word → Node

(a) Random walk generation.

(b) Representation mapping.

Preliminaries – (3) Node2Vec

: More general way to generate random walks

- BFS → Learn local feature of the node, i.e, s tructural role
- DFS → Learn global feature of the node, i.e, homophily

BFS

Paper Review : Metapath2vec

: Previous works only focus on homogeneous graphs. Thus, node(or edge) types do not affec t random walk process.

However, this is not realistic.

(a) Heterogeneous Information Network

Paper Review: Metapath2vec

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
  node r, Walk length l, Context size k, Return p, In-out q)
  \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G' = (V, E, \pi)
  Initialize walks to Empty
  for iter = 1 to r do
     for all nodes u \in V do
       walk = node2vecWalk(G', u, l)
       Append walk to walks
  f = StochasticGradientDescent(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
  Inititalize walk to [u]
  for walk iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = AliasSample(V_{curr}, \pi)
     Append s to walk
  return walk
```

Node2vec Algorithm.

```
Input: The heterogeneous information network G = (V, E, T),
        a meta-path scheme \mathcal{P}, #walks per node w, walk
        length l, embedding dimension d, neighborhood size k
Output: The latent node embeddings \mathbf{X} \in \mathbb{R}^{|V| \times d}
initialize X:
for i = 1 \rightarrow w do
    for v \in V do
        MP = MetaPathRandomWalk(G, \mathcal{P}, v, l);
        X = HeterogeneousSkipGram(X, k, MP);
    end
end
return X:
MetaPathRandomWalk(G, \mathcal{P}, v, l)
MP[1] = v;
for i = 1 \rightarrow l-1 do
    draw u according to Eq. 3;
    MP[i+1] = u:
end
return MP:
HeterogeneousSkipGram(X, k, MP)
for i = 1 \rightarrow l do
    v = MP[i];
    for j = max(0, i-k) \rightarrow min(i+k, l) & j \neq i do
        c_t = MP[j];
        X^{new} = X^{old} - \eta \cdot \frac{\partial O(X)}{\partial X} (Eq. 7);
    end
end
```

ALGORITHM 1: The metapath2vec++ Algorithm.

Paper Review: Metapath2vec

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
  node r, Walk length l, Context size k, Return p, In-out q)
  \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G' = (V, E, \pi)
  Initialize walks to Empty
  for iter = 1 to r do
     for all nodes u \in V do
       walk = node2vecWalk(G', u, l)
       Append walk to walks
  f = StochasticGradientDescent(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
  Inititalize walk to [u]
  for walk iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = AliasSample(V_{curr}, \pi)
     Append s to walk
  return walk
```

Node2vec Algorithm.

Regardless of types

```
Input: The heterogeneous information network G = (V, E, T),
        a meta-path scheme \mathcal{P}, #walks per node w, walk
        length l, embedding dimension d, neighborhood size k
Output: The latent node embeddings \mathbf{X} \in \mathbb{R}^{|V| \times d}
initialize X:
for i = 1 \rightarrow w do
   for v \in V do
        MP = MetaPathRandomWalk(G, \mathcal{P}, v, l):
        X = HeterogeneousSkipGram(X, k, MP);
end
return X:
MetaPathRandomWalk(G, P, v, l)
MP[1] = v;
for i = 1 \rightarrow l-1 do
    draw u according to Eq. 3;
   MP[i+1] = u;
end
return MP:
HeterogeneousSkipGram(X, k, MP)
for i = 1 \rightarrow l do
    v = MP[i];
    for j = max(0, i-k) \rightarrow min(i+k, l) & j \neq i do
        c_t = MP[j];
       X^{new} = X^{old} - \eta \cdot \frac{\partial O(X)}{\partial X} (Eq. 7);
    end
end
```

ALGORITHM 1: The metapath2vec++ Algorithm.

Follows the meta-path

Paper Review : Metapath2vec

- Metapath2vec : Compare the probability of every nodes in the graph
 - → Maximize the likelihood of preserving both the structure and semantics of a given network.
- Metapath2vec++: Compare the probability of nodes with the same type
 - → Accurate and efficient prediction of a node's heterogeneous neighborhood.

Paper Review: Metapath2vec

Experiments

- (1) The number of walks per node w: 1000;
- (2) The walk length *l*: 100;
- (3) The vector dimension d: 128 (LINE: 128 for each order);
- (4) The neighborhood size k: 7;
- (5) The size of negative samples: 5.

- Macro-F1 : Average accuracy
- Micro-F1 : Class-wise accuracy

Table 2: Multi-class venue node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.0723	0.1396	0.1905	0.2795	0.3427	0.3911	0.4424	0.4774	0.4955	0.4457
Macro-F1	LINE (1st+2nd)	0.2245	0.4629	0.7011	0.8473	0.8953	0.9203	0.9308	0.9466	0.9410	0.9466
Macro-F1	PTE	0.1702	0.3388	0.6535	0.8304	0.8936	0.9210	0.9352	0.9505	0.9525	0.9489
	metapath2vec	0.3033	0.5247	0.8033	0.8971	0.9406	0.9532	0.9529	0.9701	0.9683	0.9670
	metapath2vec++	0.3090	0.5444	0.8049	0.8995	0.9468	0.9580	0.9561	0.9675	0.9533	0.9503
	DeepWalk/node2vec	0.1701	0.2142	0.2486	0.3266	0.3788	0.4090	0.4630	0.4975	0.5259	0.5286
Micro-F1	LINE (1st+2nd)	0.3000	0.5167	0.7159	0.8457	0.8950	0.9209	0.9333	0.9500	0.9556	0.9571
MICTO-F1	PTE	0.2512	0.4267	0.6879	0.8372	0.8950	0.9239	0.9352	0.9550	0.9667	0.9571
	metapath2vec	0.4173	0.5975	0.8327	0.9011	0.9400	0.9522	0.9537	0.9725	0.9815	0.9857
	metapath2vec++	0.4331	0.6192	0.8336	0.9032	0.9463	0.9582	0.9574	0.9700	0.9741	0.9786

Table 3: Multi-class author node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.7153	0.7222	0.7256	0.7270	0.7273	0.7274	0.7273	0.7271	0.7275	0.7275
Macro-F1	LINE (1st+2nd)	0.8849	0.8886	0.8911	0.8921	0.8926	0.8929	0.8934	0.8936	0.8938	0.8934
Macro-F1	PTE	0.8898	0.8940	0.897	0.8982	0.8987	0.8990	0.8997	0.8999	0.9002	0.9005
	metapath2vec	0.9216	0.9262	0.9292	0.9303	0.9309	0.9314	0.9315	0.9316	0.9319	0.9320
	metapath2vec++	0.9107	0.9156	0.9186	0.9199	0.9204	0.9207	0.9207	0.9208	0.9211	0.9212
	DeepWalk/node2vec	0.7312	0.7372	0.7402	0.7414	0.7418	0.7420	0.7419	0.7420	0.7425	0.7425
Micro-F1	LINE (1st+2nd)	0.8936	0.8969	0.8993	0.9002	0.9007	0.9010	0.9015	0.9016	0.9018	0.9017
MICIO-F1	PTE	0.8986	0.9023	0.9051	0.9061	0.9066	0.9068	0.9075	0.9077	0.9079	0.9082
	metapath2vec	0.9279	0.9319	0.9346	0.9356	0.9361	0.9365	0.9365	0.9365	0.9367	0.9369
	metapath2vec++	0.9173	0.9217	0.9243	0.9254	0.9259	0.9261	0.9261	0.9262	0.9264	0.9266

Experiments

Table 5: Case study of similarity search in AMiner Data

Rank	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	www
0	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	www
1	EMNLP	ICML	AAAI	ECCV	STOC	TOCS	HPCA	CCS	TOSEM	TOG	CCR	CSCW	SDM	PVLDB	ECIR	WSDM
2	NAACL	AISTATS	AI	ICCV	SICOMP	OSDI	MICRO	NDSS	FSE	SI3D	HotNets	TOCHI	TKDD	ICDE	CIKM	CIKM
3	CL	JMLR	JAIR	IJCV	SODA	HotOS	ASPLOS	USENIX S	ASE	RT	NSDI	UIST	ICDM	DE Bull	IR J	TWEB
4	CoNLL	NC	ECAI	ACCV	A-R	SIGOPS E	PACT	ACSAC	ISSTA	CGF	CoNEXT	DIS	DMKD	VLDBJ	TREC	ICWSM
5	COLING	MLJ	KR	CVIU	TALG	ATC	ICS	JCS	E SE	NPAR	IMC	HCI	KDD E	EDBT	SIGIR F	HT
6	IJCNLP	COLT	AI Mag	BMVC	ICALP	NSDI	HiPEAC	ESORICS	MSR	Vis	TON	MobileHCI	WSDM	TODS	ICTIR	SIGIR
7	NLE	UAI	ICAPS	ICPR	ECCC	OSR	PPOPP	TISS	ESEM	JGT	INFOCOM	INTERACT	CIKM	CIDR	WSDM	KDD
8	ANLP	KDD	CI	EMMCVPR	TOC	ASPLOS	ICCD	ASIACCS	A SE	VisComp	PAM	GROUP	PKDD	SIGMOD R	TOIS	TIT
9	LREC	CVPR	AIPS	T on IP	JAIG	EuroSys	CGO	RAID	ICPC	GI	MobiCom	NordiCHI	ICML	WebDB	IPM	WISE
10	EACL	ECML	UAI	WACV	ITCS	SIGCOMM	ISLPED	CSFW	WICSA	CG	IPTPS	UbiComp	PAKDD	PODS	AIRS	WebSci

<u>Implementation</u>

Dataset

AMiner dataset, reduced to 100,000 authors and 200,000 papers

Hparams

Walks per node: 150

Walk length: 12

Neighborhood size: 3

Embedding dimension: 10

Number of negative samples: 3

Learning rate: 1e-3

Batch size: 512

<u>Implementation</u>

```
def calc_prob(AWP, num_author, device):
    prob = torch.zeros(num_author, device=device)

for i in range(AWP.size(1)):
    prob[AWP[0][i]] += 1

prob = torch.pow(prob, .75) / math.pow(AWP.size(1), .75)

return prob
```

Calculates prior distribution for negative sampling

```
def __init__(self, N_author, N_venue, N_paper, prob, args):
    super(metapath2vec, self). init ()
    self.N_author = N_author
    self.N_venue = N_venue
    self.N_paper = N_paper
    self.N_total = N_author + N_venue + N_paper
    self.prob = prob
    self.path = args.metapath
    self.l = args.walk_len
    self.d = args.d
    self.k = args.neighborhood
    self.lr = args.lr
    # Dim : [author, venue, paper] x d
    self.embedding = nn.Embedding(num_embeddings=self.N_total, embedding_dim=self.d)
```

Initializes embedding matrix

Implementation

```
def walk(self, starting_points, AWP, PPV, VPP, PWA):
   def _random_select(tf):
       ret = torch.zeros(tf.size(0), 1, dtype=int)
                                                                     def negative sample(prob, bound):
       for i in range(tf.size(0)):
                                                                          samples = torch.tensor([], dtype=int)
          idx = tf[i].nonzero().squeeze(1)
          x = random.randint(0, idx.size(0))
          ret[i] = x
                                                                          for i in range(bound.size(0)):
                                                                              idx = prob.multinomial(num samples=self.k).unsqueeze(0)
       return ret
   path = starting points.clone().detach()
                                                                              while torch.isin(idx, bound[i]).sum().item() != 0:
   for _ in range(0, self.1, 4): #Only considered APVPA
                                                                                  idx = prob.multinomial(num_samples=self.k).unsqueeze(0)
       p = AWP[1, _random_select(AWP[0, :] == path[:, -1].unsqueeze(1))]
                                                                              samples = torch.cat([samples, idx], dim=0)
       v = PPV[1, _random_select(PPV[0, :] == p)]
       p = VPP[1, _random_select(VPP[0, :] == v)]
       a = PWA[1, _random_select(PWA[0, :] == p)]
                                                                          return samples #[batch_size, N_neg]
       path = torch.cat([path, a], dim=-1)
                                                                            Performs negative sampling
```

Performs random walk

return path

Implementation

Performs skip-gram optimization

Implementation

```
@torch.no_grad()
def test(args):
    path = os.path.join(args.basedir, args.expname, args.testname)
    model = torch.load(path)
    if args.dataset == 'AMiner':
        dataset = AMiner(root=args.datadir)
    else:
        raise NotImplementedError
    test_embeddings = model['embedding'][dataset[0]['author']['y_index']]
    test_labels = dataset[0]['author']['y']
    writer = SummaryWriter(path)
    writer.add_embedding(
        test_embeddings,
        test_labels
    writer.close()
```

Visualizes embedding space

