# NASA TH X2 65361

# BROUWER-LYDDANE ORBIT GENERATOR ROUTINE

E.A. GALBREATH

SEPTEMBER 1970





GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND

| 02   | NZO 4239                      | 0          |
|------|-------------------------------|------------|
| ¥.   | - PACKESSHON NUMBERIO         | (THRU)     |
| õ    | (PAGES)                       |            |
| Ш    | TMX 653(1)                    | (CODE)     |
| FACI | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) |

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

#### BROUWER-LYDDANE ORBIT GENERATOR ROUTINE

E. A. Galbreath
Program Systems Branch
Mission & Trajectory Analysis Division

June 1970

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

#### INTRODUCTION

This document contains a complete description of the Brouwer-Lyddane Orbit generator routine (BROWR0) which was written as a part of the Definitive Orbit Determination System (DODS). The routine accepts as input a set of Brouwer Mean elements at a specified epoch and outputs the position and velocity vectors at requested times along with intermediate data if requested. The formulation for the routine was derived from the following sources:

- 1. Brouwer, Dirk. "Solution of the Problem of Artificial Satellite Theory Without Drag." The Astronomical Journal, Vol. 64, (Oct. 1959), 378-397.
- 2. Lyddane, R. H. "Small Eccentricities or Inclinations in the Brouwer Theory of Artificial Satellite." The Astronomical Journal, Vol. 68, (June 1963), 555-558.
- 3. Siry, J. W. "A Mathematical Formulation of the Brouwer-Lyddane Orbit Theory."

In addition to the basic Brouwer Theory, the BROWR0 routine calls subroutines for computing Delta L Drag and complementary perturbations in order to allow for the inclusion of these effects on the satellite's orbit. This document contains a description of these subroutines.

The Brouwer-Lyddane Orbit generator routine was checked out first in a stand-alone environment and then within the DODS system. DODS is a Fortran language system of programs that execute under MVT on the S/360 75 and 95 computers. The size of the system made it necessary to structure it in segments that could overlay each other in the computer as functional needs changed during execution. Thus, instead of one complete program or set of programs residing in core storage during the entire running time, only those portions needed are in core. Because interfacing with DODS was a major consideration in the programming, some techniques are utilized that would not be necessary in a stand-alone environment. For example, in BROWR0 many variables which could be assumed to contain valid data once they had been computed in a stand-alone environment had to be recomputed when running under DODS since there was a possibility of their being destroyed by the DODS overlay between successive calls to the subroutine. In the complementary perturbation subroutine indicators that determine the logical flow of the program and the time-element array had to be saved before each exit and restored at each entry for the same reason. Since the Fortran "COMMON" statements could not be used in DODS all subroutine arguments had to be passed through the argument list.

A detailed description of the Brouwer-Lyddane Orbit generator routine and the subroutines called by BROWRO follows. The subroutines referenced but not described in this document are part of the DODS system and their description can be found in the appropriate DODS documentation.

PAGE: 1-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### DEFINITIVE ORBIT DETERMINATION SYSTEM

BROWR0 - Brouwer-Lyddane Orbit Generation Subroutine

#### I. LANGUAGE:

Fortran IV Level G and Level H

#### II. PURPOSE:

The objective of this subroutine is to compute the position vector (x, y, z) and the velocity vector  $(\dot{x}, \dot{y}, \dot{z})$  of an artificial satellite at any time T, when given a set of elements at a time  $T_0$  called epoch.

- a Semi-major axis
- e<sub>0</sub> Eccentricity
- i<sub>0</sub> Inclination
- $\ell_0$  Mean anomaly
- go Argument of perigee
- h<sub>0</sub> Longitude of Ascending node

#### III. INTERFACE INFORMATION

- A. The Calling Module is ORBGN0
- B. The called modules are:
  - (1) DRAG Computes  $\Delta \ell$  drag
  - (2) REDUCE Reduces angle between 0 &  $2\pi$
  - (3) KEPLRI solves Kepler's equation
  - (4) DATANO Computes the Double Precision Arctan (y/x)
  - (5) PERTFO Reads complementary Perturbations tape for Brouwer
  - (6) MPIDO0 Output intermediate data is requested.
  - (7) MPERRO Error handling routine.

#### C. Calling Sequence

SUBROUTINE BROWRO (EPHEM, K, ELEP, SATID, DPT, ZONALS, CF, PLN, IDOBE, IDVICE, IERR, SAVE, INDA).

PAGE: 2-28

(75)

4

DATE: 20 June, 1969 SYMBOL: BROWR0

8

CONTRIBUTOR: E. A. Galbreath

3

IERR

SAVE INDA

**GSFC** 

(20)

 $\Xi$ 

Format LFLF LF LF LF SF П Π H I SI DUT, Rad/DUT? Units Rad/DUT3 None None None None None DUT None Calling Sequence Arguments position and velocity vectors are Input: The times (t<sub>k</sub>-t<sub>0</sub>) for which put times; Brouwer double primed elements for Input times. Brouwer mean elements at epoch Logical Output Unit Designation vectors corresponding to in-Indicators for IDO of Brouwer Zonal Harmonics Coefficients Indicator for First Pass of an Output: Position and velocity Table I Pertape Logical Number **Drag Parameters Table** Error Return Indication Number of Input Times Description Satellite I.D. number Normal Return = 0 to be computed. Constant Table Elements Save Area Iteration 0/1 1/0 0 0 Analytic Symbol Argument Name ZONALS EPHEM IDVICE ELEP SATID IDOBE

(09)

9

Dimension

(31, K)

2

¥

DPT

PLN  $\mathbf{CF}$ 

PAGE: 3-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

### DEFINITION OF ARRAYS: EPHEM (I, J)

| $\sqrt{1}$ | 1              | 2    | 3   | 4 | 5 | 6 | 7  | 8          | -        |
|------------|----------------|------|-----|---|---|---|----|------------|----------|
| 1          | T <sub>1</sub> | blan | k — |   |   |   |    |            | <u> </u> |
| 2          | T <sub>2</sub> |      |     |   |   |   |    |            |          |
| 3          | Т3             |      |     |   |   |   | IN | IPUT ARRAY |          |
| •          |                |      |     |   |   |   |    |            |          |
| •          |                |      |     |   |   |   |    |            |          |
| •          |                |      |     |   |   |   |    |            |          |
| K          | $T_k$          |      |     |   |   |   |    |            |          |

#### OUTPUT ARRAY

| $\frac{1}{I}$ |                |         |                           |                              |                           |                        |                           |      |                   |       |                                 |                                   |                |  |   | 31           |
|---------------|----------------|---------|---------------------------|------------------------------|---------------------------|------------------------|---------------------------|------|-------------------|-------|---------------------------------|-----------------------------------|----------------|--|---|--------------|
| 1<br>2<br>3   | T <sub>1</sub> | $X_1$   | Y <sub>1</sub>            | $\mathbf{Z_1}$               | х <sub>1</sub>            | $\dot{\mathbf{Y}}_{1}$ | Ż                         | a''  | e''               | i''   | g''                             | h''                               | l <u>'</u> ''- |  | - | <del>-</del> |
| 2             | T <sub>2</sub> | $X_2$   | Y <sub>2</sub>            | $Z_2$                        | $\dot{x}_{2}$             | $\dot{Y}_2$            | $\dot{z_2}$               | a''  | e <sub>2</sub> '' | i''   | $g_2^{\dagger\dagger}$          | h''                               | 1''            |  |   |              |
| 3             | Т3             | $X_3$   | Y <sub>3</sub>            | $\mathbf{Z_3}$               | $\dot{X}_3$               | $\dot{Y}_3$            | $\dot{z}_{_3}$            | a''  | e''               | i''   | g <sub>3</sub> <sup>11</sup>    | h''                               | 1''            |  |   |              |
| •             |                |         |                           |                              |                           |                        |                           |      |                   |       |                                 |                                   |                |  |   |              |
| •             |                |         |                           |                              |                           |                        |                           |      |                   |       | ~                               |                                   |                |  |   |              |
| К             |                |         |                           |                              |                           |                        |                           |      |                   |       |                                 |                                   |                |  |   |              |
| K             | T <sub>k</sub> | $X_{k}$ | $\mathbf{Y}_{\mathbf{k}}$ | $\mathbf{Z}_{_{\mathbf{k}}}$ | $\dot{X}_{_{\mathbf{k}}}$ | $\dot{\dot{Y}}_k$      | $\dot{Z}_{_{\mathbf{k}}}$ | a '' | e''               | i'' k | $g_{\mathbf{k}}^{\prime\prime}$ | $h_{\mathbf{k}}^{\dagger\dagger}$ | l'' k          |  |   |              |
|               |                |         |                           |                              |                           |                        |                           |      |                   |       |                                 |                                   |                |  |   |              |

PAGE: 4-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

ELEP(1) = 
$$T_0$$
 Epoch Time in DUT  
ELEP(2) =  $a_0$  In DUL  
ELEP(3) =  $e_0$   
ELEP(4) =  $i_0$   
ELEP(5) =  $g_0$   
ELEP(6) =  $h_0$   
ELEP(7) =  $\ell_0$ 

#### DRAG PARAMETERS ARRAY

$$\begin{array}{ll} \text{DPT(1)} - \text{DPT (20)} \} \ t_0, t_1, \dots, t_{19} & \text{DUT} \\ \text{DPT(21)} - \text{DPT (40)} \} \ N_{2,0}, N_{2,1}, \dots, N_{2,19} & \text{Rad/DUT}^2 \\ \text{DPT (41)} - \text{DPT (60)} \} \ N_{3,0}, N_{3,1}, \dots, N_{3,19} & \text{Rad/DUT}^3 \end{array}$$

ZONALS(1) =  $C_{2,0}$  2nd zonal harmonic from Harmonic Coeff. file ZONALS(2) =  $C_{3,0}$  3rd zonal harmonic from Harmonic Coeff. file ZONALS(3) =  $C_{4,0}$  4th zonal harmonic from Harmonic Coeff. file ZONALS(4) =  $C_{5,0}$  5th zonal harmonic from Harmonic Coeff. file

#### PLN - Perturbation Tape Logical Number

- > 0 Read Pert Tape From Unit Number PLN
- < 0 Do not read Pert Tape
- = 0 Error

IDOBE(N) = Intermediate data output (IDO) indicator

IDOBE(N) = 0, No IDO

IDOBE(N) = i, Output data at every ith iteration

- N = 1 Brouwer elements with secular, long period and short period terms. a, e, i, g, h, l
- N = 2 Brouwer elements with secular terms only. a", e", i", g", h", l"
- N = 3 (L' + G' + H')
- N = 4 L, G, H
- N = 5 Contributions from secular, long, and short period terms  $\delta e$ ,  $\delta i$ , (Sin i"/2)  $\delta h$ , e"  $\delta \ell$
- N = 6 Complementary Perturbations at Request time  $\triangle a$ ,  $\triangle e$ ,  $\triangle i$ ,  $\triangle g$ ,  $\triangle h$ ,  $\triangle \ell$

PAGE: 5-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

N = 7 True Anomaly (f); Eccentric Anomaly (E) at Request time

N = 8 K2, K3, K4, K5

NOTE: (1) All IDO will have time as an output.

- (2) IDO's will be Long Format
- (3) [i] will be constant for all outputs, i.e., [i] will not vary if more than one IDO requested.

IDVICE(1) - Sysout logical file number

> 0 use sysout

< 0 do not use

= 0 error

IDVICE(2) - Dedicated printer logical file number. (Treat value same as above)

IDVICE(3) - Tape logical file number (treat value same as above).

SAVE(1) - SAVE (20) Save area

PAGE: 6-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

Table 2
Logical Record Format Working Constants Pool

| _              |
|----------------|
| $\mathbf{CF}$  |
| $\mathbf{c}$   |
|                |
| Array          |
| œ.             |
| H              |
| ۵.             |
| ۹,             |
| -              |
| ö              |
| _              |
| ×              |
| _≃             |
| ب              |
| 7              |
| =              |
| the definition |
| ⋍              |
| _              |
| Φ              |
| 9              |
|                |
| Ø              |
| 18             |
| m              |
| This           |
| _              |
| Η              |
|                |

|                                |          |          |       |        |       |        |        | _   |
|--------------------------------|----------|----------|-------|--------|-------|--------|--------|-----|
| Dutan. Dogganisation           |          | Internal | al    | T.     | Input | Re     | Report |     |
| Entry Description              | Bytes    | Format   | Units | Format | Units | Format | Units  | r - |
| Conversion Section - 200 Bytes |          |          |       |        |       |        |        | _   |
| CF(1) Meter/Int. Foot          | œ        | LF       | None  | D-Code | None  | D-Code | None   |     |
| 2) Meter/Nau. Mile             | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 3) Kilometer/DUL               | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 4) Kilometer/A.U.              | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 5) Int. Foot/Nau. Mile         | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 6) Nau. Mile/DUL               | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 7) S. Mile/DUL                 | ∞        | LF       | None  | D-Code | None  | D-Code | None   |     |
| 8) (Km/Sec)/(DUL/DUT)          | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| CF(9) Seconds/DUT              | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| 10)-CF(25) Blank               |          |          |       |        |       |        |        |     |
| Mathematical Constants and     |          |          |       |        |       |        |        |     |
| Tolerance - 200 Bytes          | -        |          |       |        |       |        |        |     |
| $CF(26) PI(\pi)$               | <b>∞</b> | LF       | None  | D-Code | None  | D-Code | None   |     |
| CF(27) J, Normalization factor | 80       | LF       | None  | D-Code | None  | D-Code | None   |     |
| 28) Normal Eqn. Tol.           | 8        | LF       | None  | D-Code | None  | D-Code | None   |     |
| CF(29)-CF(50) Blank            |          |          |       |        |       |        |        |     |
| Astrodynamic Constants         |          |          |       |        |       |        |        |     |
| CF(51) Mean Radius of Moon     | 8        | LF       | DUL   | D-Code | Km    | D-Code | Km     |     |
| CF(52) Earth Equatorial Radius |          |          |       |        |       |        |        |     |
| (Mean), R.                     | 8        | LF       | DUL   | D-Code | Km    | D-Code | Km     |     |

PAGE: 7-28 DATE: 20 Ju

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

Km<sup>3</sup>/Sec<sup>3</sup> Km/Sec  ${
m Km/Sec}^2$ Deg/Day Rad/Sec Degrees Units None None None None None Days Km Km Report D-Code Format Km<sup>3</sup>/Sec<sup>3</sup> Km/Sec<sup>2</sup> Deg/Day Rad/Sec Km/Sec Degrees Units None None None None None Days Km Κm Input D-Code Format DUL3/DUT2 DUL/DUT<sup>2</sup> DUL/DUT Rad/DUT Rad/DUT Units None None None None None Days DUL DUL Rad Rad Internal Format r r r r r r r r LF LF LF F H LF Bytes œ  $\infty$   $\infty$   $\infty$   $\infty$   $\infty$   $\infty$   $\infty$   $\infty$ 8 8 00 œ 8 CF(65)  $\mu$  = GM (Grav. Const. times CF(58) 1 Astronomical Unit A.U. CF(57) Mass Ratio-Sun to Earth CF(63) Mean Motion of Sun, Tau CF(54) Flat. Coef. of Reference CF(53) Mean Rotational Rate of CF(67) KSUBC Critical Inclina-CF(64) Obliquity of Ecliptic,  $\epsilon$ CF(60) Eccentricity (e)-Earth CF(61) Normal Gravity-Earth CF(66) Julian Date for Space CF(55) Mass-Ratio-Earth to CF(59) Polar Radius-Earth CF(56) Mass-Ratio-Sun to CF(62) Speed of Light, C Entry Description Earth and Moon Mass of Earth) - CF(73) Blank tion tolerance Earth,  $\omega_{\rm e}$ Ellipsoid Epoch Moon CF(68

Table 2—Continued

PAGE: 8-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### INTERFACE BLOCK DIAGRAM



PAGE: 9-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### FUNCTIONAL ANALYSIS

#### BROUWER- LYDDANE FLOW CHART



PAGE: 10-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 11-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 12-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 13-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 14-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 15-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 16-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath



PAGE: 17-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### FORMULATION

#### I. ZONAL HARMONICS DETERMINATION

$$J_{2} = -\overline{C}_{2,0} \sqrt{5}; \quad K_{2} = 1/2 J_{2} R_{e}^{2}$$

$$J_{3} = -\overline{C}_{3,0} \sqrt{7}; \quad K_{3} = -J_{3} R_{e}^{3}$$

$$J_{4} = -\overline{C}_{4,0} \sqrt{9}; \quad K_{4} = -3/8 J_{4} R_{e}^{4}$$

$$J_{5} = -\overline{C}_{5,0} \sqrt{11}; \quad K_{5} = -J_{5} R_{5}^{5}$$

where  $\overline{C}_{i\,,\,0}$  is the normalized form of Harmonic Coefficients taken from the DODS Harmonic Coefficients Array.

 $R_e$  = Radius of earth taken from Constants File

II. CALL DRAG TO COMPUTE  $\Delta \ell_{\text{DRAG}}$  AT TIME T.

$$\Delta \ell_{DRAG} = \sum_{q=0}^{m} \sum_{p=2}^{3} N_{p,q} (t - t_q)^p$$

where  $m = 0, 1, 2, \cdots 19$ 

#### III. COMPUTE MEAN MOTION

1. Without pert tape 
$$N_0 = \sqrt{\frac{\mu}{a_0^3}}$$

2. With pert tape 
$$N = \sqrt{\frac{\mu}{(a_0'')^3}} \quad \text{where } a_0'' = a_0 + \Delta a/2$$

#### IV. COMPUTE:

$$\eta = \sqrt{1 - e^{\pi 2}}$$
 $\gamma_4 = K_4/a^{\pi 4}$ 
 $\gamma_2 = K_2/a^{\pi 2}$ 
 $\gamma_4' = \gamma_4/\eta^8$ 
 $\gamma_2' = \gamma_2/\eta^4$ 
 $\gamma_5 = K_5/a^{\pi 5}$ 

PAGE: 18-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

$$\gamma_3 = K_3/a^{3}$$

$$\gamma_3' = \gamma_3/\eta^6 \qquad \gamma_5'' = \gamma_5/\eta^{10}$$

$$\theta = \cos i''$$

$$\dot{\mathcal{L}} = \eta \, \mathbf{N} \left\{ \gamma_2' \left[ \frac{3}{2} (3\,\theta^2 - \delta) + \gamma_2' \left( \frac{3}{32} \right) \right] \left[ \theta^2 \left( -96\,\, \eta + 30 - 90\,\, \eta^2 \right) \right. \\ + \left. \left( 16\,\, \eta + 25\,\eta^2 - 15 \right) + \theta^4 \left( 144\,\, \eta + 25\,\eta^2 + 105 \right) \right] \right] \\ + \left. e''^2 \, \gamma_2' \left( \frac{15}{16} \right) \left( 3 + 35\,\theta^4 - 30\,\theta^2 \right) \right\} \\ \dot{\mathbf{g}} = \mathbf{N} \left\{ \frac{5}{16} \, \gamma_4' \left[ \left[ \theta^2 \left( 126\,\, \eta^2 - 27 \right) + \theta^4 \left( 385 - 189\,\eta^2 \right) \right] \right. \\ \left. - 9\,\, \eta^2 + 21 \right] \right. + \gamma_2' \left[ \frac{3}{32} \, \gamma_2' \left[ \theta^4 \left( 45\,\, \eta^2 + 360\,\, \eta + 385 \right) \right. \right. \\ \left. + \theta^2 \left( 90 - 192\,\, \eta - 126\,\, \eta^2 \right) + \left( 24\,\, \eta + 25\,\, \eta^2 - 35 \right) \right] \\ + \frac{3}{2} \left( 5\,\theta^2 - 1 \right) \right] \right\} \\ \dot{\mathbf{h}} = \mathbf{N} \left\{ \gamma_4' \left( \frac{5}{4} \right) \, \theta \, \left( 3 - 7\,\theta^2 \right) \left( 5 - 3\,\, \eta^2 \right) + \gamma_2' \left[ \gamma_2' \left( \frac{3}{8} \right) \right. \\ \left. \times \left[ \theta \, \left( 12\,\, \eta + 9\,\, \eta^2 - 5 \right) - \theta^3 \, \left( 5\,\, \eta^2 + 36\,\, \eta + 35 \right) \right] \right. \\ \left. - 3\,\theta \right] \right\}$$

PAGE: 19-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

V. Critical inclination test quantity ( $I_c$ ) is compared to  $K_c$ , where  $K_c$  = .01

$$I_c = 25 \ \theta^5 \ \gamma_2 \ e^{\pi 2}/(1 - 5 \ \theta^2)^2$$
.

If I > K then

$$\delta_1 e = (\ell' + g' + h') = e'' \delta \ell = \delta_1 i = 0$$

$$\left(\sin\frac{i''}{2}\right)\delta h=0$$

If I<sub>c</sub> ≤ K<sub>c</sub> then compute

$$\delta_1$$
 e,  $\ell'$  + g' + h', e"  $\delta \ell$ ,

$$\delta_1$$
 i,  $\left(\sin\frac{i''}{2}\right)\delta h$ 

VI. COMPUTE A1-A10

$$A_1 = \left(\frac{1}{8}\gamma_2' \eta^2\right) \left\{1 - 11 \theta^2 - \left[ (40 \theta^4)/(1 - 5 \theta^2) \right] \right\}$$

$$A_2 = \left(\frac{5}{12}\right) \left(\frac{\gamma_4'}{\gamma_2'}\right) \eta^2 \left\{1 - \left[8 \theta^4/(1 - 5 \theta^2)\right] - 3 \theta^2\right\}$$

$$A_3 = \left(\frac{\gamma_5'}{\gamma_2'}\right) (3 e^{\pi 2} + 4)$$

$$A_5 = \left\{ \frac{\gamma_5'}{\gamma_2'} (3 e^{u} + 4) \right\} \left\{ 1 - \frac{24 \theta^4}{(1 - 5 \theta^2)} - 9 \theta^2 \right\}$$

$$A_4 = \frac{\gamma_5'}{\gamma_2'} \left\{ 1 - \frac{(24 \ \theta^4)}{(1 - 5 \ \theta^2)} - 9 \ \theta^2 \right\}$$

PAGE: 20-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

$$A_{10} = Sin (i'') \eta^2$$

$$A_6 = (\gamma_3'/\gamma_2') (1/4)$$

$$A_7 = A_6 \times A_{10}$$

$$A_8 = \left(\frac{\gamma_5'}{\gamma_2'}\right) e^{\pi 2} \left\{1 - \frac{16 \theta^4}{(1 - 5 \theta^2)} - 5 \theta^2\right\}$$

#### COMPUTE B13-B15

$$B_{13} = e'' (A_1 - A_2)$$
  
 $B_{14} = A_7 + (5/64) (A_5) A_{10}$   
 $B_{15} = A_8 (A_{10}) (35/384)$ 

#### COMPUTE A11-A27

$$A_{11} = 2 e^{x^2}$$

$$A_{12} = 3 e^{x^2} + 2$$

$$A_{13} = \theta^2 (A_{12})$$

$$A_{14} = (5 e^{x^2} + 2) [\theta^4/(1 - 5 \theta^2)]$$

$$A_{15} = \theta^4/(1 - 5 \theta^2)^2$$

$$A_{16} = \theta^2/(1 - 5 \theta^2)$$

$$A_{18} = e^x \sin(i^x)$$

$$A_{19} = A_{18}/(1 + \eta)$$

PAGE: 21-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

$$A_{20} = (1 + \theta) \sin i''$$
 $A_{21} = e'' \theta$ 
 $A_{22} = e''^2 \theta$ 
 $A_{23} = (A_{21}) \tan \left(\frac{i''}{2}\right)$ 
 $A_{24} = e'' \eta^2 \sin i''$ 
 $A_{25} = A_{12} + 2$ 
 $A_{26} = 16 (A_{16}) + 40 (A_{17}) + 3$ 
 $A_{27} = A_{22} (1/8) [11 + 200 (A_{17}) + 80 (A_{16})]$ 

#### COMPUTE B1-B12

$$\begin{split} B_1 &= \eta \; (A_1 - A_2) - \left\{ [A_{11} - 400 \; (A_{15}) - 40 \; (A_{14}) \right. \\ &- 11 \; (A_{13})] \; \left( \frac{1}{16} \right) \; [11 + 200 \; (A_{17}) + 80 \; (A_{16})] \; (A_{22}) \; \left( \frac{1}{8} \right) \right\} \\ &\times \gamma_2' + \left\{ [-80 \; (A_{15}) - 8 \; (A_{14}) - 3 \; (A_{13}) + A_{11}] \; \left( \frac{5}{24} \right) \right. \\ &+ \frac{5}{12} \; (A_{26}) \; (A_{22}) \right\} \left( \frac{\gamma_4'}{\gamma_2'} \right) \\ B_2 &= (A_6) \; (A_{19}) \; (2 + \eta - e^{\mu 2}) + \left( \frac{5}{64} \right) \; (A_5) \; (A_{19}) \; \eta^2 \\ &- \left( \frac{15}{32} \right) A_4 \; (A_{18}) \; \eta^3 + \; \left[ \left( \frac{5}{64} \right) A_5 + A_6 \right] \; (A_{21}) \; Tan \; \left( \frac{i''}{2} \right) \\ &+ (9 \; e^{\mu 2} + 26) \; \left( \frac{5}{64} \right) \; A_4 \; (A_{18}) \; + \frac{15}{32} \; (A_3) \; A_{21} \; (A_{26}) \\ &\times \; Sin \; i'' \; (1 - \theta) \end{split}$$

PAGE: 22-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

$$\begin{split} \mathbf{B}_{3} &= \left\{ \left[ 80 \; (\mathbf{A}_{17}) + 5 + 32 \; (\mathbf{A}_{16}) \right] \; (\mathbf{A}_{22}) \; \text{Sin i''} \; (\theta - 1) \right. \\ &\times \left( \frac{35}{576} \right) \; \frac{\gamma_{5}'}{\gamma_{2}'} \; \mathbf{e''} \right\} - \; \left\{ \left[ (\mathbf{A}_{22}) \; \text{Tan} \; \left( \frac{\mathbf{i''}}{2} \right) + \left[ 2 \; \mathbf{e''}^{2} + 3 \; (1 - \eta^{3}) \right] \right. \\ &\left. \text{Sin i''} \right] \; \left( \frac{35}{1152} \right) \; \left( \frac{\mathbf{A}_{8}}{\mathbf{e''}} \right) \right\} \end{split}$$

$$B_4 = \eta e'' (A_1 - A_2)$$

$$B_5 = \left[ (9 e^{\pi 2} + 4) (A_{10}) A_4 \left( \frac{5}{64} \right) + A_7 \right] \eta$$

$$B_6 = \left(\frac{35}{384}\right) A_8 (\eta^3) \sin(i'')$$

$$B_7 = [(\eta^2 A_{18})/(1-5\theta^2)] \left[ \frac{1}{8} \gamma_2' (1-15\theta^2) + (1-7\theta^2) \times \left( \frac{\gamma_4'}{\gamma_2'} \right) \left( -\frac{5}{12} \right) \right]$$

$$B_8 = \left(\frac{5}{64}\right) \left\{ (A_3) \ \eta^2 \left[1 - 9 \ \theta^2 - \left[\frac{24 \ \theta^4}{(1 - 5 \ \theta^2)}\right]\right] \right\}$$

$$B_9 = A_8 \left(\frac{35}{384}\right) \eta^2$$

$$B_{10} = Sin i'' \left[ (A_{22}) (A_{26}) \left( \frac{\gamma_4'}{\gamma_2'} \right) \left( \frac{5}{12} \right) - A_{27} (\gamma_2') \right]$$

$$B_{11} = A_{21} \left[ A_5 \left( \frac{5}{64} \right) + A_6 + A_3 \left( A_{26} \right) \left( \frac{15}{32} \right) Sin^2 i'' \right]$$

PAGE: 23-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

$$B_{12} = -\left\{ \left[ 80 \left( A_{17} \right) + 32 \left( A_{16} \right) + 5 \right] \left[ \left( A_{22} \right) e'' \sin^2 i'' \right] \right.$$

$$\times \left. \left( \frac{35}{576} \right) \left( \frac{\gamma_5'}{\gamma_2'} \right) \right] \right\} + \left[ A_8 \left( A_{21} \right) \left( \frac{35}{1152} \right) \right]$$

## VII. COMPUTE DOUBLE PRIMED ELEMENTS

$$\ell'' = \dot{\ell} (t - t_0) + N_0 (t - t_0) + \ell_0 + \Delta \ell_{DRAG}$$

$$g'' = \dot{g} (t - t_0) + g_0$$

$$h'' = \dot{h} (t - t_0) + h_0$$

$$f'' = Arctan \left[ \frac{Sin f''}{Cos f''} \right]$$

where

Sin 
$$f'' = \eta$$
 Sin E''

Cos  $f'' = \text{Cos E''} - e$ 

$$r'' = a'' (1 - e'' \cos E'')$$

E" is double primed eccentric anomaly computed from Kepler's equation.

If Pert tape is being used,

$$a'' = a_0 + \Delta_p a$$
  $\ell_0 = \ell_0 + \Delta_p \ell$   
 $e'' = e_0 + \Delta_p e$   $g_0 = g_0 + \Delta_p g$   
 $i'' = i_0 + \Delta_p i$  ,  $h_0 = h_0 + \Delta_p h$ 

If Pert tape is not used,

PAGE: 24-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### COMPUTE A (SEMI-MAJOR AXIS):

$$a = a'' \left\{ 1 + \gamma_2 \left[ \left( 3\theta^2 - 1 \right) \left( \frac{e''^2}{\eta^6} \right) \left( \eta + \left( \frac{1}{1 + \eta} \right) \right) + \left( \frac{3\theta^2 - 1}{\eta^6} \right) \left( e'' \cos f'' \right) \right.$$

$$\times \left( 3 + 3e'' \cos f'' + e''^2 \cos^2 f'' \right) + 3 \left( 1 - \theta^2 \right) \left( \frac{a''}{r''} \right)^3 \cos \left( 2g'' + 2f'' \right) \right] \right\}$$

$$\delta_{\eta} e = B14 \sin g'' + B13 \cos 2g'' - B15 \sin 3g''$$

COMPUTE  $\ell' + g' + h'$ :

$$\ell' + g' + h' = \ell'' + g'' + h'' + B3 \cos 3g'' + B1 \sin 2g'' + B2 \cos g''$$

 $e'' \delta \ell = B4 \sin 2g'' - B5 \cos g'' + B6 \cos 3g''$ 

$$-\frac{1}{4} \eta^{3} \gamma_{2}' \left\{ 2 \left( 3\theta^{2} - 1 \right) \left[ \left( \frac{a''}{r''} \right)^{2} \eta^{2} + \frac{a''}{r''} + 1 \right] \sin f'' + 3 \left( 1 - \theta^{2} \right) \left[ \left[ -\left( \frac{a''}{r''} \right)^{2} \eta^{2} \right] \right] \right\}$$

$$-\frac{a''}{r''} + 1 \left[ \sin \left( 2g'' + f'' \right) + \left[ \left( \frac{a''}{r''} \right)^{2} \eta^{2} + \frac{a''}{r''} + \frac{1}{3} \right] \sin \left( 3f'' + 2g'' \right) \right]$$

$$\delta I = \frac{1}{2} \gamma_2' \theta \sin i'' \left\{ e'' \cos (3f'' + 2g'') + 3 \left[ e'' \cos (2g'' + f'') + \cos (2g'' + 2f'') \right] \right\}$$

$$-\frac{A21}{\eta^2}$$
 (B8 Sin g" + B7 Cos 2g" - B9 Sin 3g")

PAGE: 25-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

COMPUTE 
$$\ell + g + h$$

$$\ell + g + h = \ell' + g' + h' + \left\{ \left( \frac{1}{\eta + 1} \right) \frac{1}{4} e'' \gamma_2' \eta^2 \left[ 3 \left( 1 - \theta^2 \right) \left[ \sin \left( 3f'' + 2g'' \right) \right] \right] \times \left\{ \frac{1}{3} + \left( \frac{a''}{r''} \right)^2 + \frac{a''}{r''} \right\} + \sin \left( 2g'' + f'' \right) \left( 1 - \left( \eta^2 \left( \frac{a''}{r''} \right)^2 + \frac{a''}{r''} \right) \right) \right] + 2 \sin f'' \left( 3\theta^2 - 1 \right) \left( \eta^2 \left( \frac{a''}{r''} \right)^2 + \left( \frac{a''}{r''} \right) + 1 \right) \right\} + \gamma_2' \left( \frac{3}{2} \right) \left[ \left( -2\theta - 1 - 5\theta^2 \right) \right] \times \left( e'' \sin f'' + f'' - \ell'' \right) + \left( 3 + 2\theta - 5\theta^2 \right) \left\{ \gamma_2' \left( \frac{1}{4} \right) \left[ e'' \sin \left( 3f'' + 2g'' \right) + 3 \left[ \sin \left( 2g'' + 2f'' \right) + e'' \sin \left( 2g'' + f'' \right) \right] \right] \right\}$$

$$\delta e = \delta_1 e + \left\{ \frac{1}{2} \eta^2 \left[ 3 \left( \frac{1}{\eta^6} \right) \gamma_2 \left( 1 - \theta^2 \right) \cos \left( 2g'' + 2f'' \right) + e'' \sin \left( 2g'' + f'' \right) \right] \right\}$$

$$\times \left\{ 3e'' \cos^2 f'' + 3 \cos f'' + e''^2 \cos^3 f'' + e'' \right\}$$

$$- \left\{ \gamma_2' \left( 1 - \theta^2 \right) \left[ 3 \cos \left( 2g'' + f'' \right) + \cos \left( 3f'' + 2g'' \right) \right] \right\}$$

$$+ \left( 3\theta^2 - 1 \right) \gamma_2 \left( \frac{1}{\eta^6} \right) \left\{ e'' \eta + \left( \frac{e''}{1 + \eta} \right) + 3e'' \cos^2 f'' + 3 \cos f'' + e''^2 \cos^3 f \right\} \right\}$$

PAGE: 26-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

COMPUTE e (ECCENTRICITY)

$$e = \sqrt{(e'' \delta \ell)^2 + (e'' + \delta e)}$$

COMPUTE i (INCLINATION)

$$i = \operatorname{Arc} \operatorname{Sin} \left( \sqrt{\left( \operatorname{Sin} \frac{i''}{2} \delta h \right)^2 + \left( \delta \operatorname{I} \operatorname{Cos} \frac{i''}{2} \left( \frac{1}{2} \right) + \operatorname{Sin} \frac{i''}{2} \right)^2} \right)$$

If e = 0, set  $\ell = 0$ 

If  $e \neq 0$ , compute  $\ell$  (mean anomaly)

$$\ell = \operatorname{Arctan} \left( \frac{e'' \, \delta \ell \, \operatorname{Cos} \, \ell'' + (e'' + \delta e) \, \operatorname{Sin} \, \ell''}{(e'' + \delta e) \, \operatorname{Cos} \, \ell'' - e'' \, \delta \ell \, \operatorname{Sin} \, \ell''} \right)$$

If i = 0 set h = 0

If  $i \neq 0$  compute h (longitude of the ascending node)

$$h = \operatorname{Arctan} \left( \frac{\operatorname{Sin} \frac{i''}{2} \delta h \left( \operatorname{Cos} h'' \right) + \operatorname{Sin} h'' \left( \frac{1}{2} \delta \operatorname{I} \operatorname{Cos} \frac{i''}{2} + \operatorname{Sin} \frac{i''}{2} \right)}{\operatorname{Cosh} h'' \left( \frac{1}{2} \delta \operatorname{I} \operatorname{Cos} \frac{i''}{2} + \operatorname{Sin} \frac{i''}{2} \right) - \operatorname{Sin} h'' \left( \operatorname{Sin} \frac{i''}{2} \delta h \right)} \right)$$

COMPUTE g (ARGUMENT OF PERIGEE)

$$g = (\ell + g + h) - \ell - h$$

COMPUTE E (ECCENTRIC ANOMALY) USING KEPLER'S EQUATION.

COMPUTE f (TRUE ANOMALY)

$$f = Arctan \left( \frac{Sin E \sqrt{(1-e^2)}}{Cos E - e} \right)$$

COMPUTE r (RADIUS VECTOR)

$$\frac{r}{a} = 1 - e \cos E$$

PAGE: 27-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### COMPUTE POSITION VECTOR (x, y, z)

$$x = r [Cosh Cos (g + f) - Sinh Cos i Sin (g + f)]$$

$$y = r [Cosh Cos i Sin (g + f) + Sinh Cos (g + f)]$$

$$z = r [Sin i Sin (g + f)]$$

#### COMPUTE VELOCITY VECTOR $(\dot{x}, \dot{y}, \dot{z})$

$$\dot{x} = \sin E \left( e \sqrt{a \mu} / r \right) \left[ \cos h \cos \left( g + f \right) - \sin h \cos i \right]$$

$$\times \sin \left( g + f \right) \right] - \sqrt{1 - e^2} \sqrt{a \mu} / r \left[ \sinh \cos i \cos \left( g + f \right) \right]$$

$$+ \cos h \sin \left( g + f \right) \right]$$

+ Sin h Cos (g + f)] - 
$$\sqrt{1 - e^2} (\sqrt{a\mu}/r)$$
 [Sin h Sin (g + f)

$$\dot{z} = e \operatorname{Sin} E (\sqrt{a\mu}/r) \operatorname{Sin} i \operatorname{Sin} (g + f)$$
  
+  $[\sqrt{1 - e^2} (\sqrt{a\mu}/r) \operatorname{Sin} i \operatorname{Cos} (g + f)]$ 

- Cos h Cos i Cos (g + f)]

 $\dot{y} = e \sin E (\sqrt{a\mu/r}) [\cos h \cos i \sin (g + f)]$ 

PAGE: 28-28

DATE: 20 June, 1969 SYMBOL: BROWR0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### RESTRICTIONS AND LIMITATIONS

I. Mathematical Restrictions: None

II. Data Restrictions: None

III. Hardware Restrictions: None

IV. Programming Language Restrictions: None

PAGE: 1-12

DATE: 12 January, 1970

SYMBOL: PERTFO

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### DEFINITIVE ORBIT DETERMINATION SYSTEM

PERTF0 - Complementary Perturbations Tape Read Routine

#### I. LANGUAGE:

Fortran IV, Level G and Level H

#### II. PURPOSE:

This subroutine reads the complementary perturbations tape for the Brouwer-Lyddane Orbit generator.

#### III. INTERFACE INFORMATION

A. Calling Module is BROWR0

#### B. Called Modules are

- (1) INTPL0 performs backward difference interpolation for Complementary Perturbations Tape Read Routine
- (2) MPERRO Error handling routine from DODS
- (3) TCONV0 Time Conversion Routine from DODS

#### C. Calling sequence

Subroutine PERTF0 (PLN, SATID, TIME, KMULT, B, IERR, EPHEM)

PAGE: 2-12

DATE: 12 January, 1970

SYMBOL: PERTFO

CONTRIBUTOR: E. A. Galbreath

Table I Calling Sequence Arguments

| Argument Analytic | 0/1       | Description                                                    | Units             | Format | Dimension |
|-------------------|-----------|----------------------------------------------------------------|-------------------|--------|-----------|
| TOQ1              |           |                                                                |                   |        |           |
|                   | <b>}1</b> | Perturbation Tape Logical Input Unit                           | None              | LF     | -         |
|                   | H         | Satellite Identification Number                                | None              | LI     |           |
| *t=t+t0           | H         | Request time                                                   | DUT               | LF     |           |
|                   | 0/1       | K-multiplier for $\Delta \ell$ drag computation                | None              | ij     |           |
|                   | 0         | Array of elements from perturbation tape for time t            | DUL<br>Rad        | LF     | (9)       |
|                   | 0/1       | Array to store variables that may be destroyed by DODS overlay | DUL<br>DUT<br>Rad | LF     | (31, 50)  |

\*t0 - epoch time

PAGE: 3-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### DEFINITION OF ARRAYS:

#### B ARRAY

$$B(1) = a_0 \text{ in DUL}$$

$$B(2) = e_{p}$$

$$B (3) = i_p (Rad)$$

B (4) = 
$$\ell_p$$
 (Rad)

$$B (5) = g_p (Rad)$$

$$B(6) = h_p \quad (Rad)$$

Elements from perturbations tape.

PLN - Perturbations tape unit number

PLN > 0 Read Pert tape on this unit

PLN < 0 Do not read Pert tape

PLN = 0 Error

#### EPHEM ARRAY

Array to store variables that might be destroyed by DODS overlay.

PAGE: 4-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath

GSFC

# INTERFACE BLOCK DIAGRAM



PAGE: 5-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### PERTFO FLOWCHART



PAGE: 6-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath



PAGE: 7-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath



PAGE: 8-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath



PAGE: 9-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath



PAGE: 10-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath



PAGE: 11-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath

GSFC

# BROUWER PERTAPE FORMAT

| Record #1 - Header Record                                                      |  |
|--------------------------------------------------------------------------------|--|
| 1 7 4 77 10                                                                    |  |
| 1 Fortran Word Count                                                           |  |
| 2 Time Increment - days                                                        |  |
| 3 Month                                                                        |  |
| 4 Day                                                                          |  |
| 5 Year                                                                         |  |
| 6 Satellite ID number                                                          |  |
| 7   Input Semi-major Axis - E.R.                                               |  |
| 8 Input Eccentricity                                                           |  |
| 9 Input Inclination - degrees                                                  |  |
| 10 Input right ascension of the ascending node - degrees                       |  |
| 11 Input argument of perigee - degrees                                         |  |
| 12 Input mean anomaly - degrees                                                |  |
| 13 Input time from midnight - days                                             |  |
| 14 Input period - minutes                                                      |  |
| No. of records on tape excluding header and trailer                            |  |
| 16 Delta mean anomaly option indicator                                         |  |
| (1 - delta drag mean anomaly not computed on tape                              |  |
| 0 - delta drag mean anomaly computed on tape.)                                 |  |
| Record 2 to N                                                                  |  |
| 1 Fortran Word count                                                           |  |
| 2 Time in seconds from epoch                                                   |  |
| 3 A (semi-major axis) - ER                                                     |  |
| 4 e (eccentricity)                                                             |  |
| 5 i (Inclination) - $\pi/2 \le i \le \pi/2$                                    |  |
| 6 $\triangle M$ (mean anomaly change from $t_0$ ) $0 \le \triangle M \le 2\pi$ |  |
| 7 $\omega$ (argument of perigee) $0 \le \omega \le 2\pi$                       |  |
| 8 $\Omega$ (right ascension of the ascending node) $0 \le \Omega \le 2\pi$     |  |
| Last Record - Trailer Record                                                   |  |
| 1 Fortran Word count                                                           |  |
| $2  .99999999 \times 10^{30}$                                                  |  |
| 3-8 Dummy Words                                                                |  |

PAGE: 12-12

DATE: 12 January, 1970

SYMBOL: PERTF0

CONTRIBUTOR: E. A. Galbreath

GSFC

#### RESTRICTIONS AND LIMITATIONS

#### I. Mathematical Restrictions:

None

#### II. Data Restrictions:

There must be at least 3 data records on the perturbation tape before the start time for the run and at least 3 data records on tape after the end time for the run.

### III. Hardware Restrictions:

None

### IV. Programming Language Restrictions:

The perturbation tape may be backspaced during the program, therefore the pert tape must be unblocked. Blocked tapes give undetermined results if backspaced.

PAGE: 1-6

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

#### DEFINITIVE ORBIT DETERMINATION SYSTEM

INTPL0 - Backward Difference Interpolation Function

### I. LANGUAGE:

Fortran IV, Level G and Level H

## II. PURPOSE:

This subroutine interpolates for the elements  $a_p$ ,  $e_p$ ,  $i_p$ ,  $\ell_p$ ,  $g_p$ ,  $h_p$  when given a request time ( $t_{REQ}$ ) between two times on the tape.

## III. INTERFACE INFORMATION

- A. Calling Module is PERTF0
- B. Calling Sequence SUBROUTINE INTPLO (TIME, A, B, TSUBO, DELTA)

PAGE: 2-6

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

Table I Calling Sequence Arguments

| Dimension                     |                                             | (6,7)                                                     | (9)                                                                     |                                         |                                                       |
|-------------------------------|---------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| Format                        | LF                                          | LF                                                        | LF                                                                      | LF                                      | LF                                                    |
| Units                         | DUT                                         | DUT,<br>DUL,<br>Rad                                       | DUL, Rad                                                                | DUT                                     | DUT                                                   |
| Description                   | Request time                                | Array of times and elements<br>from the perturbation tape | Array of interpolated elements from perturbation tape for request time. | Sixth time in the time element array A. | Time increment between times on the perturbation tape |
| 0/I                           | -                                           | H                                                         | 0                                                                       | H                                       | I                                                     |
| Analytic<br>Symbol            | t <sub>REQ</sub> =t+t <sub>0</sub><br>EPOCH |                                                           |                                                                         | °د                                      | Δt                                                    |
| Argument Analytic Name Symbol | TIME                                        | <b>V</b>                                                  | Ф                                                                       | TSUB0                                   | DELTA                                                 |

PAGE: 3-6

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

## DEFINITION OF ARRAYS: A(I, J)



# B ARRAY

$$B(1) = a \text{ in DUL} \\ B(2) = e^{p} \\ B(3) = i^{p} \\ B(4) = \ell_{p} \\ B(5) = g_{p} \\ B(6) = h_{p}$$
Radians

**PAGE: 4-6** 

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

GSFC

# INTERFACE BLOCK DIAGRAM



PAGE: 5-6

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

### FUNCTIONAL ANALYSIS

## **Backward Difference Interpolation**



#### DIFFERENCE TABLE



**PAGE: 6-6** 

DATE: 20 June, 1969 SYMBOL: INTPL0

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

$$\begin{aligned} & (\text{element})_{\text{p}} = f\left(t_{6}\right) + \Delta f\left(t_{5}\right) \left(tt_{0}\right) + \Delta^{2} f\left(t_{4}\right) \left[\frac{\left(tt_{0}\right) \left(tt_{1}\right)}{2}\right] \\ & + \Delta^{3} f\left(t_{3}\right) \left[\frac{\left(tt_{0}\right) \left(tt_{1}\right) \left(tt_{2}\right)}{6}\right] + \Delta^{4} f\left(t_{2}\right) \\ & \times \left[\frac{\left(tt_{0}\right) \left(tt_{1}\right) \left(tt_{2}\right) \left(tt_{3}\right)}{24}\right] + \Delta^{5} f\left(t_{1}\right) \\ & \times \left[\frac{\left(tt_{0}\right) \left(tt_{1}\right) \left(tt_{2}\right) \left(tt_{3}\right) \left(tt_{4}\right)}{120}\right] \end{aligned}$$

Where

$$tt_0 = t - t_6$$

$$tt_1 = \Delta t + tt_0$$

$$tt_2 = \Delta t + tt_1$$

$$tt_3 = \Delta t + tt_2$$

$$tt_4 = \Delta t + tt_3$$

#### RESTRICTION AND LIMITATIONS

- I. Mathematical Restrictions: None
- II. Data Restrictions: None
- III. Hardware Restrictions: None
- IV. Programming Language Restrictions: None.

PAGE: 1-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

GSFC

### DEFINITIVE ORBIT DETERMINATION SYSTEM

 $Drag - \Delta L Drag Subroutine$ 

## I. Language:

Fortran IV, Level G and Level H

### II. Purpose:

This subroutine computes  $\Delta \ell_{\text{DRAG}}$  for time t = t - t<sub>0</sub> from input parameters t<sub>p,q</sub> and N<sub>p,q</sub>.

# III. Interface Information

- A. Calling Module is BROWR0
- B. Called Module is REDUCE which reduces angle between 0 & 2  $\pi$
- C. Calling Sequence

Subroutine Drag (DPT, PI2, DRAGL, T0, T, KMULT)

PAGE: 2-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

Calling Sequence Arguments

| Argument Analytic Name Symbol | Analytic<br>Symbol | 0/1 | Description                | Units                                                | Format | Format Dimension |
|-------------------------------|--------------------|-----|----------------------------|------------------------------------------------------|--------|------------------|
| DPT                           |                    | I   | Drag Parameters Table      | DUT,<br>Rad/DUT <sup>2</sup><br>Rad/DUT <sup>3</sup> | LF     | (09)             |
| PI2                           | $2\pi$             | н   | 2π radians                 | Rad                                                  | LF     |                  |
| DRAGL                         | ∆l drag            | 0   | Delta L drag               | Rad                                                  | LF     |                  |
| To                            | t <sub>o</sub>     | Н   | Epoch                      | DUT                                                  | LF     |                  |
| L                             |                    | Н   | Request time $t = t - t_0$ | DUT                                                  | LF     |                  |
| KMULT                         |                    | П   | K-multiplier               |                                                      | I      |                  |

PAGE: 3-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

# DEFINITION OF ARRAYS

$$\begin{array}{c}
DPT (1) \\
\downarrow \\
DPT (20)
\end{array}$$

$$\begin{array}{c}
t_0, t_1, \dots, t_{19} \\
\downarrow \\
DPT (21)
\end{array}$$

$$\begin{array}{c}
N_{2,0}, N_{2,1}, \dots, N_{2,19} \\
DPT (40)
\end{array}$$

$$\begin{array}{c}
DPT (41) \\
\downarrow \\
DPT (60)
\end{array}$$

$$\begin{array}{c}
N_{3,0}, N_{3,1}, \dots, N_{3,19} \\
\end{array}$$

PAGE: 4-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

GSFC

# INTERFACE BLOCK DIAGRAM



PAGE: 5-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

## DRAG FLOWCHART



PAGE: 6-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath



PAGE: 7-7

DATE: 29 May, 1969 SYMBOL: DRAG

CONTRIBUTOR: E. A. Galbreath

**GSFC** 

## FUNCTIONAL ANALYSIS

# I. Formula for computing

$$\Delta \ell_{DRAG} = \sum_{q=0}^{m} \sum_{p=2}^{3} N_{p,q} |t - t_{q}|^{p}$$

where  $m = 0, 1, 2, \cdots 19$ 

## RESTRICTIONS AND LIMITATIONS

- I. Mathematical Restrictions: None
- II. Data Restrictions: None
- III. Hardware Restrictions: None
- IV. Programming Language Restrictions: None