Μείωση διάστασης

Δημήτρης Κουγιουμτζής

10 Δεκεμβρίου 2019

Τεχνολογία αισθητήρων, αποθήκευσης, δικτύωσης \longrightarrow καταγραφή δεδομένων από πολλές μεταβλητές. Τις θέλουμε όλες; Η κατάρα της διαστατικότητας

Τεχνολογία αισθητήρων, αποθήκευσης, δικτύωσης — καταγραφή δεδομένων από πολλές μεταβλητές. Τις θέλουμε όλες; Η κατάρα της διαστατικότητας Μείωση διάστασης είναι η διαδικασία που από ένα υψηλο-διάστατο σύνολο δεδομένων δημιουργεί ένα άλλο μικρότερης διάστασης που διατηρεί το μεγαλύτερο μέρος της

πληροφορίας των αρχικών δεδομένων.

Τεχνολογία αισθητήρων, αποθήκευσης, δικτύωσης \longrightarrow καταγραφή δεδομένων από πολλές μεταβλητές. Τις θέλουμε όλες; Η κατάρα της διαστατικότητας

Μείωση διάστασης είναι η διαδικασία που από ένα υψηλο-διάστατο σύνολο δεδομένων δημιουργεί ένα άλλο μικρότερης διάστασης που διατηρεί το μεγαλύτερο μέρος της πληροφορίας των αρχικών δεδομένων.

Δύο βασικές κατηγορίες μεθόδων μείωσης διάστασης:

- 1. Επιλογή υποσυνόλου μεταβλητών (προβολή στους φυσικούς άξονες).
- Μετασχηματισμός των μεταβλητών των αρχικών δεδομένων σε νέες λιγότερες μεταβλητές (μετασχηματισμός ή/και προβολή).

Τεχνολογία αισθητήρων, αποθήκευσης, δικτύωσης \longrightarrow καταγραφή δεδομένων από πολλές μεταβλητές. Τις θέλουμε όλες; Η κατάρα της διαστατικότητας

Μείωση διάστασης είναι η διαδικασία που από ένα υψηλο-διάστατο σύνολο δεδομένων δημιουργεί ένα άλλο μικρότερης διάστασης που διατηρεί το μεγαλύτερο μέρος της πληροφορίας των αρχικών δεδομένων.

Δύο βασικές κατηγορίες μεθόδων μείωσης διάστασης:

- 1. Επιλογή υποσυνόλου μεταβλητών (προβολή στους φυσικούς άξονες).
- 2. Μετασχηματισμός των μεταβλητών των αρχικών δεδομένων σε νέες λιγότερες μεταβλητές (μετασχηματισμός ή/και προβολή).

Προβλήματα όπου χρησιμοποιείται η μείωση διάστασης:

- 1. Διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις.
- 2. Μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης και ταξινόμησης

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;
- 2. Απόρριψη μεταβλητών που έχουν ισχυρή συσχέτιση με άλλες μεταβλητές. Σε μια τέτοια περίπτωση, ποια από τις δύο θα απορρίψουμε;

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;
- 2. Απόρριψη μεταβλητών που έχουν ισχυρή συσχέτιση με άλλες μεταβλητές. Σε μια τέτοια περίπτωση, ποια από τις δύο θα απορρίψουμε;
- 3. Απόρριψη μεταβλητών με 'μικρή σημαντικότητα'. Πως ορίζεται; π.χ. με την τεχνική του τυχαίου δάσους (random forest).

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;
- 2. Απόρριψη μεταβλητών που έχουν ισχυρή συσχέτιση με άλλες μεταβλητές. Σε μια τέτοια περίπτωση, ποια από τις δύο θα απορρίψουμε;
- 3. Απόρριψη μεταβλητών με 'μικρή σημαντικότητα'. Πως ορίζεται; π.χ. με την τεχνική του τυχαίου δάσους (random forest).

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;
- 2. Απόρριψη μεταβλητών που έχουν ισχυρή συσχέτιση με άλλες μεταβλητές. Σε μια τέτοια περίπτωση, ποια από τις δύο θα απορρίψουμε;
- 3. Απόρριψη μεταβλητών με 'μικρή σημαντικότητα'. Πως ορίζεται; π.χ. με την τεχνική του τυχαίου δάσους (random forest).

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

1. Όλα τα παραπάνω!

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Απόρριψη μεταβλητών με χαμηλή διασπορά. Πόσο χαμηλή διασπορά; Τυποποίηση των μεταβλητών;
- 2. Απόρριψη μεταβλητών που έχουν ισχυρή συσχέτιση με άλλες μεταβλητές. Σε μια τέτοια περίπτωση, ποια από τις δύο θα απορρίψουμε;
- 3. Απόρριψη μεταβλητών με 'μικρή σημαντικότητα'. Πως ορίζεται; π.χ. με την τεχνική του τυχαίου δάσους (random forest).

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

- 1. Όλα τα παραπάνω!
- 2. Τεχνικές επιλογής υποσυνόλου μεταβλητών που αποδίδουν καλύτερα (επιλογή προς τα εμπρός, πίσω, βηματική).

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων
- 2. Μη-γραμμικοί μετασχηματισμοί, π.χ. πολυδιάστατη κλιμάκωση (multidimensional scaling), εκμάθηση πολλαπλότητας (manifold learning)

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων
- 2. Μη-γραμμικοί μετασχηματισμοί, π.χ. πολυδιάστατη κλιμάκωση (multidimensional scaling), εκμάθηση πολλαπλότητας (manifold learning)

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων
- 2. Μη-γραμμικοί μετασχηματισμοί, π.χ. πολυδιάστατη κλιμάκωση (multidimensional scaling), εκμάθηση πολλαπλότητας (manifold learning)

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

1. Όλα τα παραπάνω!

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων
- 2. Μη-γραμμικοί μετασχηματισμοί, π.χ. πολυδιάστατη κλιμάκωση (multidimensional scaling), εκμάθηση πολλαπλότητας (manifold learning)

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

- 1. Όλα τα παραπάνω!
- 2. Άλλοι γραμμικοί μετασχηματισμοί: γραμμική διαχωριστική ανάλυση (linear discriminant analysis), μερικά ελάχιστα τετράγωνα (partial least squares),

Για τη διερεύνηση σχέσεων σε μεταβλητές και παρατηρήσεις:

- 1. Γραμμικοί μετασχηματισμοί: ανάλυση κύριων συνιστωσών, ανάλυση ανεξάρτητων συνιστωσών, ανάλυση κανονικών συσχετίσεων
- 2. Μη-γραμμικοί μετασχηματισμοί, π.χ. πολυδιάστατη κλιμάκωση (multidimensional scaling), εκμάθηση πολλαπλότητας (manifold learning)

Για τη μείωση μεταβλητών εισόδου σε μοντέλα παλινδρόμησης, ταξινόμησης:

- 1. Όλα τα παραπάνω!
- 2. Άλλοι γραμμικοί μετασχηματισμοί: γραμμική διαχωριστική ανάλυση (linear discriminant analysis), μερικά ελάχιστα τετράγωνα (partial least squares),
- 3. Μη-γραμμικά μοντέλα όπως νευρωνικά δίκτυα.

Παράδειγμα προβολής στο επίπεδο

Δίνονται σημεία $\mathbf{x}_i = [x_{i1}, x_{i2}]'$ στο επίπεδο σε φυσικές συντεταγμένες (e_1, e_2) .

Ορίζεται η γραμμή v_1 με γωνία θ από την οριζόντια γραμμή e_1 , $y=\frac{\sin(\theta)}{\cos(\theta)}x$, και η γραμμή v_2 κάθετη στην v_1 στην αρχή των αξόνων, $y=-\frac{\cos(\theta)}{\sin(\theta)}x$.

Παράδειγμα προβολής στο επίπεδο

Δίνονται σημεία $\mathbf{x}_i = [x_{i1}, x_{i2}]'$ στο επίπεδο σε φυσικές συντεταγμένες (e_1, e_2) .

Ορίζεται η γραμμή v_1 με γωνία θ από την οριζόντια γραμμή e_1 , $y=\frac{\sin(\theta)}{\cos(\theta)}x$, και η γραμμή v_2 κάθετη στην v_1 στην αρχή των αξόνων, $y=-\frac{\cos(\theta)}{\sin(\theta)}x$.

$$P = \begin{bmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{bmatrix}$$

$$P = \begin{bmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{bmatrix}$$

Τα σημεία $\mathbf{y}_i = [y_{i1}, y_{i2}]'$ προβολής των \mathbf{x}_i στην ευθεία v_1 δίνονται ως $\mathbf{y}_i = P\mathbf{x}_i$

$$P = \begin{bmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{bmatrix}$$

Τα σημεία $\mathbf{y}_i = [y_{i1}, y_{i2}]'$ προβολής των \mathbf{x}_i στην ευθεία v_1 δίνονται ως $\mathbf{y}_i = P\mathbf{x}_i$

$$P = \begin{bmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{bmatrix}$$

Τα σημεία $\mathbf{y}_i = [y_{i1}, y_{i2}]'$ προβολής των \mathbf{x}_i στην ευθεία v_1 δίνονται ως $\mathbf{y}_i = P\mathbf{x}_i$

Η ανάλυση κύριων συνιστωσών (principal component analysis, PCA) σκοπό έχει να βρει έναν υποχώρο διάστασης d < p (p η διάσταση του χώρου των δεδομένων) που εξηγεί όσο το δυνατόν περισσότερο τη διασπορά των σημείων.

Η ανάλυση κύριων συνιστωσών (principal component analysis, PCA) σκοπό έχει να βρει έναν υποχώρο διάστασης d < p (p η διάσταση του χώρου των δεδομένων) που εξηγεί όσο το δυνατόν περισσότερο τη διασπορά των σημείων.

Έστω $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$ μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Η ανάλυση κύριων συνιστωσών (principal component analysis, PCA) σκοπό έχει να βρει έναν υποχώρο διάστασης d < p (p η διάσταση του χώρου των δεδομένων) που εξηγεί όσο το δυνατόν περισσότερο τη διασπορά των σημείων.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Αρχικά, επεξεργασία των δεδομένων:

1. Κεντράρισμα: για κάθε συνιστώσα $j, j = 1, \ldots, p$, το x_{ij} αντικαθίσταται από $x_{ij} - \bar{x}_j$, $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$.

Η ανάλυση κύριων συνιστωσών (principal component analysis, PCA) σκοπό έχει να βρει έναν υποχώρο διάστασης d < p (p η διάσταση του χώρου των δεδομένων) που εξηγεί όσο το δυνατόν περισσότερο τη διασπορά των σημείων.

Έστω $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$ μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Αρχικά, επεξεργασία των δεδομένων:

- 1. Κεντράρισμα: για κάθε συνιστώσα $j, j = 1, \ldots, p$, το x_{ij} αντικαθίσταται από $x_{ij} \bar{x}_j$, $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$.
- 2. Κατά περίπτωση τυποποίηση των τιμών διαιρώντας με την τυπική απόκλιση σε κάθε συνιστώσα, x_{ij}/s_j .

Η ανάλυση κύριων συνιστωσών (principal component analysis, PCA) σκοπό έχει να βρει έναν υποχώρο διάστασης d < p (p η διάσταση του χώρου των δεδομένων) που εξηγεί όσο το δυνατόν περισσότερο τη διασπορά των σημείων.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Αρχικά, επεξεργασία των δεδομένων:

- 1. Κεντράρισμα: για κάθε συνιστώσα $j, j = 1, \ldots, p$, το x_{ij} αντικαθίσταται από $x_{ij} \bar{x}_j$, $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$.
- 2. Κατά περίπτωση τυποποίηση των τιμών διαιρώντας με την τυπική απόκλιση σε κάθε συνιστώσα, x_{ij}/s_j .

Βήματα της διαδικασίας PCA:

1. Υπολογισμός πίνακα διασπορών - συνδιασπορών:

 $S = \frac{1}{n-1} X^\mathsf{T} X$. Αν προηγηθεί τυποποίηση, S είναι πίνακας συσχέτισης.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\ldots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

- 2. Υπολογισμός ιδιοτιμών $\lambda_1,\ldots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.
- Υπολογισμός ιδιοδιανυσμάτων ${\bf a}_1,\ldots,{\bf a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I){\bf a}_j=0,\ j=1,\ldots,p$, με τη συνθήκη πως τα ${\bf a}_j$ είναι ορθοκανονικά $({\bf a}_i{\bf a}_i^T=1,\ {\bf a}_j{\bf a}_i^T=0)$.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\ldots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων $\mathbf{a}_1,\ldots,\mathbf{a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I)\mathbf{a}_j=0$, $j=1,\ldots,p$, με τη συνθήκη πως τα \mathbf{a}_j είναι ορθοκανονικά $(\mathbf{a}_i\mathbf{a}_i^\mathsf{T}=1,\,\mathbf{a}_j\mathbf{a}_i^\mathsf{T}=0)$.

Ισχύει $L = A^{\mathsf{T}} S A$, A πίνακας $p \times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p \times p$ πίνακας των ιδιοτιμών.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\dots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων ${\bf a}_1,\ldots,{\bf a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I){\bf a}_j=0,\ j=1,\ldots,p$, με τη συνθήκη πως τα ${\bf a}_j$ είναι ορθοκανονικά $({\bf a}_i{\bf a}_i^{\mathsf T}=1,\ {\bf a}_j{\bf a}_i^{\mathsf T}=0).$

Ισχύει $L=A^{\mathsf{T}}SA$, A πίνακας $p\times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p\times p$ πίνακας των ιδιοτιμών.

Οι ιδιοτιμές είναι διαταγμένες σε φθίνουσα σειρά:

$$\lambda_1 \ge \lambda_2 \ge \dots, \lambda_p$$
.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\dots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων $\mathbf{a}_1,\ldots,\mathbf{a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I)\mathbf{a}_j=0$, $j=1,\ldots,p$, με τη συνθήκη πως τα \mathbf{a}_j είναι ορθοκανονικά $(\mathbf{a}_i\mathbf{a}_i^\mathsf{T}=1,\,\mathbf{a}_j\mathbf{a}_i^\mathsf{T}=0)$.

Ισχύει $L=A^{\mathsf{T}}SA$, A πίνακας $p\times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p\times p$ πίνακας των ιδιοτιμών.

Οι ιδιοτιμές είναι διαταγμένες σε φθίνουσα σειρά:

$$\lambda_1 \ge \lambda_2 \ge \dots, \lambda_p$$
.

3. Οι νέες μεταβλητές λέγονται κύριες συνιστώσες (principal components, PC) και ορίζονται από τον μετασχηματισμό $y_j=\mathbf{a}_i^\mathsf{T}(\mathbf{x}-\overline{\mathbf{x}}),\,j=1,\ldots,p.$

2. Υπολογισμός ιδιοτιμών $\lambda_1,\dots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων ${\bf a}_1,\ldots,{\bf a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I){\bf a}_j=0,\ j=1,\ldots,p$, με τη συνθήκη πως τα ${\bf a}_j$ είναι ορθοκανονικά $({\bf a}_i{\bf a}_i^{\sf T}=1,\ {\bf a}_j{\bf a}_i^{\sf T}=0).$

Ισχύει $L=A^{\mathsf{T}}SA$, A πίνακας $p\times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p\times p$ πίνακας των ιδιοτιμών.

Οι ιδιοτιμές είναι διαταγμένες σε φθίνουσα σειρά:

$$\lambda_1 \ge \lambda_2 \ge \dots, \lambda_p$$
.

3. Οι νέες μεταβλητές λέγονται κύριες συνιστώσες (principal components, PC) και ορίζονται από τον μετασχηματισμό $y_j = \mathbf{a}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}}), j = 1, \ldots, p$.

Αυτός ο μετασχηματισμός δηλώνει περιστροφή γύρω από το μέσο όρο (κέντρο βάρους) των χ.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\dots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων ${\bf a}_1,\ldots,{\bf a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I){\bf a}_j=0,\ j=1,\ldots,p$, με τη συνθήκη πως τα ${\bf a}_j$ είναι ορθοκανονικά $({\bf a}_i{\bf a}_i^{\mathsf T}=1,\ {\bf a}_j{\bf a}_i^{\mathsf T}=0).$

Ισχύει $L=A^{\mathsf{T}}SA$, A πίνακας $p\times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p\times p$ πίνακας των ιδιοτιμών.

Οι ιδιοτιμές είναι διαταγμένες σε φθίνουσα σειρά:

$$\lambda_1 \ge \lambda_2 \ge \dots, \lambda_p$$
.

3. Οι νέες μεταβλητές λέγονται κύριες συνιστώσες (principal components, PC) και ορίζονται από τον μετασχηματισμό $y_j = \mathbf{a}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}}), j = 1, \ldots, p$.

Αυτός ο μετασχηματισμός δηλώνει περιστροφή γύρω από το μέσο όρο (κέντρο βάρους) των χ.

Τα στοιχεία του a_j εκφράζουν τις διευθύνσεις συνημιτόνων που συνδέουν το αρχικό με το νέο σύστημα συντεταγμένων.

2. Υπολογισμός ιδιοτιμών $\lambda_1,\ldots,\lambda_p$ του S: επίλυση της εξίσωσης $|S-\lambda I|=0$, όπου |x| είναι η ορίζουσα του πίνακα x και I ο μοναδιαίος πίνακας $p\times P$.

Υπολογισμός ιδιοδιανυσμάτων ${\bf a}_1,\ldots,{\bf a}_p$ του S: επίλυση των p εξισώσεων $(S-\lambda_j I){\bf a}_j=0,\,j=1,\ldots,p$, με τη συνθήκη πως τα ${\bf a}_j$ είναι ορθοκανονικά $({\bf a}_i{\bf a}_i^{\sf T}=1,\,{\bf a}_j{\bf a}_i^{\sf T}=0).$

Ισχύει $L=A^{\mathsf{T}}SA$, A πίνακας $p\times p$ των ιδιοδιανυσμάτων και L διαγώνιος $p\times p$ πίνακας των ιδιοτιμών.

Οι ιδιοτιμές είναι διαταγμένες σε φθίνουσα σειρά:

$$\lambda_1 \geq \lambda_2 \geq \ldots, \lambda_p$$
.

3. Οι νέες μεταβλητές λέγονται κύριες συνιστώσες (principal components, PC) και ορίζονται από τον μετασχηματισμό $y_j = \mathbf{a}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}}), \ j = 1, \dots, p.$

Αυτός ο μετασχηματισμός δηλώνει περιστροφή γύρω από το μέσο όρο (κέντρο βάρους) των χ.

Τα στοιχεία του \mathbf{a}_j εκφράζουν τις διευθύνσεις συνημιτόνων που συνδέουν το αρχικό με το νέο σύστημα συντεταγμένων.

Τα PC δίνονται ως γραμμικός συνδυασμός των αρχικών μεταβλητών.

4. Ο μετασχηματισμός των αρχικών παρατηρήσεων στο νέο σύστημα συντεταγμένων PC: Y = XA

- 4. Ο μετασχηματισμός των αρχικών παρατηρήσεων στο νέο σύστημα συντεταγμένων PC: Y = XA
- Y έχει τα σκορ κυρίων συνιστωσών (PC scores). Τα PC scores είναι και αυτά κεντραρισμένα όπως τα στοιχεία του X και ασυσχέτιστα.

- **4**. Ο μετασχηματισμός των αρχικών παρατηρήσεων στο νέο σύστημα συντεταγμένων PC: Y = XA
- Y έχει τα σκορ κυρίων συνιστωσών (PC scores). Τα PC scores είναι και αυτά κεντραρισμένα όπως τα στοιχεία του X και ασυσχέτιστα.

Μπορεί επίσης να εκφραστούν οι αρχικές μεταβλητές ως προς τα PCs: $\mathbf{x} = \bar{\mathbf{x}} + A\mathbf{y}$.

4. Ο μετασχηματισμός των αρχικών παρατηρήσεων στο νέο σύστημα συντεταγμένων PC: Y = XA

Y έχει τα σκορ κυρίων συνιστωσών (PC scores). Τα PC scores είναι και αυτά κεντραρισμένα όπως τα στοιχεία του X και ασυσχέτιστα.

Μπορεί επίσης να εκφραστούν οι αρχικές μεταβλητές ως προς τα PCs: $\mathbf{x} = \bar{\mathbf{x}} + A\mathbf{y}$.

Προβολή

5. Μόνο τα d PCs που αντιστοιχούν σε υψηλές ιδιοτιμές (εκφράζουν μεγάλη μέρος της διασποράς των δεδομένων) συμπεριλαμβάνονται για την ανάλυση και τα p-d απορρίπτονται:

$$Y_d = XA_d$$

όπου A_d έχει τα πρώτα d ιδιοδιανύσματα και μέγεθος $p \times d$, και ο πίνακας Y_d έχει μέγεθος $n \times d$.

Δημιουργούμε δείγμα n=1000 παρατηρήσεων από διμεταβλητή κανονική κατανομή με διασπορά της πρώτης τ.μ. 1 και της δεύτερης τ.μ. 4. Τα δεδομένα μετασχηματίζονται από το \mathbb{R}^2 στο \mathbb{R}^3 με τον πίνακα

$$W = \left[\begin{array}{cc} 0.2 & 0.8 \\ 0.4 & 0.5 \\ 0.7 & 0.3 \end{array} \right]$$

Αυτά είναι τα αρχικά δεδομένα στον $n \times p$ πίνακα X (p=3).

Δημιουργούμε δείγμα n=1000 παρατηρήσεων από διμεταβλητή κανονική κατανομή με διασπορά της πρώτης τ.μ. 1 και της δεύτερης τ.μ. 4. Τα δεδομένα μετασχηματίζονται από το R^2 στο R^3 με τον πίνακα

$$W = \left[\begin{array}{cc} 0.2 & 0.8 \\ 0.4 & 0.5 \\ 0.7 & 0.3 \end{array} \right]$$

Αυτά είναι τα αρχικά δεδομένα στον $n \times p$ πίνακα X (p=3).

Δημιουργούμε δείγμα n=1000 παρατηρήσεων από διμεταβλητή κανονική κατανομή με διασπορά της πρώτης τ.μ. 1 και της δεύτερης τ.μ. 4. Τα δεδομένα μετασχηματίζονται από το R^2 στο R^3 με τον πίνακα

$$W = \left[\begin{array}{cc} 0.2 & 0.8 \\ 0.4 & 0.5 \\ 0.7 & 0.3 \end{array} \right]$$

Αυτά είναι τα αρχικά δεδομένα στον $n \times p$ πίνακα X (p=3).

Μέθοδοι επιλογής της διάστασης του υποχώρου προβολής:

Μέθοδοι επιλογής της διάστασης του υποχώρου προβολής:

• Αθροιστικό ποσοστό διασποράς που εξηγείται Ορίζεται ένα κατώφλι του αθροιστικού ποσοστού διασποράς, έστω t_d . Το d θα πρέπει να ικανοποιεί τη σχέση

$$t_d = 100 \frac{\sum_{i=1}^d \lambda_i}{\sum_{j=1}^p \lambda_j}$$

Μέθοδοι επιλογής της διάστασης του υποχώρου προβολής:

Αθροιστικό ποσοστό διασποράς που εξηγείται
 Ορίζεται ένα κατώφλι του αθροιστικού ποσοστού διασποράς,
 έστω t_d. Το d θα πρέπει να ικανοποιεί τη σχέση

$$t_d = 100 \frac{\sum_{i=1}^d \lambda_i}{\sum_{j=1}^p \lambda_j}$$

Scree plot

Γράφημα λ_i vs i.

Ανίχνευση κάποιας αλλαγής στην κλίση της πτωτικής τάσης ('αγκώνας ') ή στην οριζοντίωση της.

Μέθοδοι επιλογής της διάστασης του υποχώρου προβολής:

Αθροιστικό ποσοστό διασποράς που εξηγείται
 Ορίζεται ένα κατώφλι του αθροιστικού ποσοστού διασποράς,
 έστω t_d. Το d θα πρέπει να ικανοποιεί τη σχέση

$$t_d = 100 \frac{\sum_{i=1}^d \lambda_i}{\sum_{j=1}^p \lambda_j}$$

Scree plot

Γράφημα λ_i vs i.

Ανίχνευση κάποιας αλλαγής στην κλίση της πτωτικής τάσης ('αγκώνας ') ή στην οριζοντίωση της.

• Μέγεθος διασποράς

Διατηρούνται οι ιδιοτιμές που είναι πάνω από κάποιο όριο. Το όριο μπορεί να δίνεται ως ποσοστό του μέσου όρου των ιδιοτιμών, π.χ. $\lambda_i \geq 0.7\bar{\lambda}$.

Εφαρμόζουμε PCA σε ένα σύνολο επιπέδων εκφράσεων p=384 γονιδίων σε n=17 χρονικές στιγμές.

Εφαρμόζουμε PCA σε ένα σύνολο επιπέδων εκφράσεων p=384 γονιδίων σε n=17 χρονικές στιγμές.

Τυποποίηση;

Εφαρμόζουμε PCA σε ένα σύνολο επιπέδων εκφράσεων p=384 γονιδίων σε n=17 χρονικές στιγμές.

Κεντράρισμα;

Τυποποίηση ;

Επιλογή διάστασης υποχώρου:

Scree plot

Αθροιστικό ποσοστό διασποράς

Επιλογή διάστασης υποχώρου:

Scree plot

Αθροιστικό ποσοστό διασποράς

Επιλογή διάστασης υποχώρου:

Μέγεθος διασποράς (όριο στη μέση τιμή των λ_i)

d=3, d=5 διάσταση του PC υποχώρου από τον αρχικό χώρο διάστασης p=17.

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$ μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Κεντράρισμα: για κάθε συνιστώσα j, $j=1,\ldots,p$, το x_{ij} αντικαθίσταται από $x_{ij}-\bar{x}_j$, $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$.

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Κεντράρισμα: για κάθε συνιστώσα j, $j=1,\ldots,p$, το x_{ij} αντικαθίσταται από $x_{ij}-\bar{x}_j$, $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$.

SVD:
$$X = U\Sigma V^{\mathsf{T}}$$

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Κεντράρισμα: για κάθε συνιστώσα j, $j=1,\ldots,p$, το x_{ij} αντικαθίσταται από $x_{ij}-\bar{x}_j$, $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$.

SVD:
$$X = U\Sigma V^{\mathsf{T}}$$

• U μεγέθους $n \times n$ έχει ορθοκανονικά διανύσματα βάσης του \mathbb{R}^n ($UU^\mathsf{T} = I$), αριστερά ιδιάζοντα διανύσματα.

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Κεντράρισμα: για κάθε συνιστώσα j, $j=1,\ldots,p$, το x_{ij} αντικαθίσταται από $x_{ij}-\bar{x}_j$, $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$.

SVD: $X = U\Sigma V^{\mathsf{T}}$

- U μεγέθους $n \times n$ έχει ορθοκανονικά διανύσματα βάσης του \mathbb{R}^n ($UU^\mathsf{T} = I$), αριστερά ιδιάζοντα διανύσματα.
- Σ διαγώνιος μεγέθους $n \times p$ έχει τις ιδιάζουσες τιμές στη διαγώνιο $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p$.

Η ανάλυση ιδιάζουσων τιμών (singular value decomposition, SVD) είναι ισοδύναμη με την PCA αλλά εφαρμόζεται απευθείας στον πίνακα δεδομένων X.

Έστω
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}$$
 μεγέθους $n \times p$ και $\mathbf{x}_i \in \mathsf{R}^p$

Κεντράρισμα: για κάθε συνιστώσα j, $j=1,\ldots,p$, το x_{ij} αντικαθίσταται από $x_{ij}-\bar{x}_j$, $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$.

SVD: $X = U\Sigma V^{\mathsf{T}}$

- U μεγέθους $n \times n$ έχει ορθοκανονικά διανύσματα βάσης του \mathbb{R}^n ($UU^\mathsf{T} = I$), αριστερά ιδιάζοντα διανύσματα.
- Σ διαγώνιος μεγέθους $n \times p$ έχει τις ιδιάζουσες τιμές στη διαγώνιο $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p$.
- V μεγέθους $p \times p$ έχει ορθοκανονικά διανύσματα βάσης του \mathbb{R}^p ($VV^\mathsf{T} = I$), δεξιά ιδιάζοντα διανύσματα.

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow {\sf SVD}$ 'οικονομικού μεγέθους': $X=U\Sigma V^{\sf T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow \mathsf{SVD}$ 'οικονομικού μεγέθους ': $X=U\Sigma V^\mathsf{T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Για τη μείωση διάστασης των δεδομένων σε d < p, θεωρούμε πως d προσεγγίζει την τάξη r του X. Η προσέγγιση χαμηλής τάξης του X (low-rank approximation):

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow \mathsf{SVD}$ 'οικονομικού μεγέθους ': $X=U\Sigma V^\mathsf{T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Για τη μείωση διάστασης των δεδομένων σε d < p, θεωρούμε πως d προσεγγίζει την τάξη r του X. Η προσέγγιση χαμηλής τάξης του X (low-rank approximation):

$$X_d = U_d \Sigma_d V_d^\mathsf{T}$$

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow \mathsf{SVD}$ 'οικονομικού μεγέθους ': $X=U\Sigma V^\mathsf{T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Για τη μείωση διάστασης των δεδομένων σε d < p, θεωρούμε πως d προσεγγίζει την τάξη r του X. Η προσέγγιση χαμηλής τάξης του X (low-rank approximation):

$$X_d = U_d \Sigma_d V_d^{\mathsf{T}}$$

• U_d μεγέθους $n \times d$, επιλέγονται μόνο τα πρώτα d αριστερά ιδιάζοντα διανύσματα.

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow \mathsf{SVD}$ 'οικονομικού μεγέθους ': $X=U\Sigma V^\mathsf{T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Για τη μείωση διάστασης των δεδομένων σε d < p, θεωρούμε πως d προσεγγίζει την τάξη r του X. Η προσέγγιση χαμηλής τάξης του X (low-rank approximation):

$$X_d = U_d \Sigma_d V_d^{\mathsf{T}}$$

- U_d μεγέθους $n \times d$, επιλέγονται μόνο τα πρώτα d αριστερά ιδιάζοντα διανύσματα.
- Σ_d μεγέθους $d \times d$, επιλέγονται μόνο οι πρώτες d ιδιάζουσες τιμές.

Συνήθως έχουμε n>p (περισσότερες παρατηρήσεις από μεταβλητές).

Τα n-p αριστερά ιδιάζοντα διανύσματα είναι αυθαίρετα και αντιστοιχούν σε μηδενικές γραμμές του $\Sigma\Rightarrow \mathsf{SVD}$ 'οικονομικού μεγέθους ': $X=U\Sigma V^\mathsf{T}$ με U μεγέθους $n\times p$ και Σ μεγέθους $p\times p$.

Για τη μείωση διάστασης των δεδομένων σε d < p, θεωρούμε πως d προσεγγίζει την τάξη r του X. Η προσέγγιση χαμηλής τάξης του X (low-rank approximation):

$$X_d = U_d \Sigma_d V_d^{\mathsf{T}}$$

- U_d μεγέθους $n \times d$, επιλέγονται μόνο τα πρώτα d αριστερά ιδιάζοντα διανύσματα.
- Σ_d μεγέθους $d \times d$, επιλέγονται μόνο οι πρώτες d ιδιάζουσες τιμές.
- V_d μεγέθους $p \times d$, επιλέγονται μόνο τα πρώτα d δεξιά ιδιάζοντα διανύσματα.

•
$$\lambda_i = \sigma_i^2/(n-1)$$
, $i = 1, ..., p$
 $(X^T X = V(\Sigma^T \Sigma) V^T \text{ Kal } S = \frac{1}{n-1} X^T X)$

- $\lambda_i = \sigma_i^2/(n-1)$, i = 1, ..., p $(X^T X = V(\Sigma^T \Sigma) V^T \text{ Kal } S = \frac{1}{n-1} X^T X)$
- ullet A=V, ${f a}_i={f v}_i$, ιδιοδιανύσματα είναι τα δεξιά ιδιάζοντα διανύσματα.

- $\lambda_i = \sigma_i^2/(n-1), i = 1, ..., p$ $(X^T X = V(\Sigma^T \Sigma) V^T \text{ Kal } S = \frac{1}{n-1} X^T X)$
- \bullet A=V, ${\bf a}_i={\bf v}_i$, ιδιοδιανύσματα είναι τα δεξιά ιδιάζοντα διανύσματα.

Κύριες συνιστώσες,

PCA:
$$y_j = \mathbf{a}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}})$$
, SVD: $y_j = \mathbf{v}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}})$, $j = 1, \dots, p$

- $\lambda_i = \sigma_i^2/(n-1)$, i = 1, ..., p $(X^T X = V(\Sigma^T \Sigma) V^T \text{ Kal } S = \frac{1}{n-1} X^T X)$
- \bullet A=V, ${\bf a}_i={\bf v}_i$, ιδιοδιανύσματα είναι τα δεξιά ιδιάζοντα διανύσματα.

Κύριες συνιστώσες,

PCA:
$$y_j = \mathbf{a}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}})$$
, SVD: $y_j = \mathbf{v}_j^\mathsf{T}(\mathbf{x} - \overline{\mathbf{x}})$, $j = 1, \dots, p$

Σκορ κυρίων συνιστωσών,

PCA:
$$Y = XA$$
, SVD: $Y = XV = U\Sigma$

Ασκήσεις Κεφαλαίου 6

 Δημιουργείστε δείγμα n = 1000 παρατηρήσεων από διμεταβλητή κανονική κατανομή με διασπορά της πρώτης τ.μ. 1 και της δεύτερης τ.μ. 4. Στη συνέχεια μετασχηματίστε τα δεδομένα από το R² στο R³ με τον πίνακα

$$W = \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.5 \\ 0.7 & 0.3 \end{bmatrix}$$

- Βρείτε τις ιδιοτιμές και ιδιοδιανύσματα του πίνακα διασπορών συνδιασπορών. Σχηματίστε τα σκορ κυρίων συνιστωσών στο R³.
- (β) Κάνετε το scree plot. Δείξτε γραφικά πως τα σκορ κυρίων συνιστωσών περιορίζονται στο R² (κάνετε κατάλληλη περιστροφή στο τριοδιάστατο σχήμα).
- (γ) Σχηματίστε τα σκορ κυρίων συνιστωσών στο ${\bf R}^2$ και συγκρίνετε αυτό το σχήμα με το αρχικό των σημείων που δημιουργήσατε (στο ${\bf R}^2$).
- Εφαρμόστε την ανάλυση PCA σε ένα σύνολο επιπέδον εκφράσεων p = 384 (μεταβλητές) γονιδίων σε n = 17 χρονικές στιγμές (παρατηρήσεις), που δίνονται στο αρχείο γeast. dat.
 - (a) Extilinate th diagraph $d \leq p$ yie th meiwon diagraphs me Π^a .
 - (β) Σχηματίστε τα σκορ κυρίων συνιστωσών στο ${\bf R}^2$ και ${\bf R}^3$.
- Εφαρμόστε την ανάλυση PCA στα δεδομένα της Άσκησης 5.8 (στο αρχείο physical.txt).
 - (a) Εκτιμήστε τη διάσταση $d \le p$ για τη μείωση διάστασης με Π΄Α.
 - (β΄) Σχηματίστε τα σκορ κυρίων συνιστωσών στο ${\bf R}^2$ και ${\bf R}^3$.

Η ανάλυση ανεξάρτητων συνιστωσών (independent component analysis, ICA) χρησιμοποιείται για την εξαγωγή κρυμμένων / υποκείμενων συνιστωσών του X.

Η ανάλυση ανεξάρτητων συνιστωσών (independent component analysis, ICA) χρησιμοποιείται για την εξαγωγή κρυμμένων / υποκείμενων συνιστωσών του X.

PCA βρίσκει τις ασυσχέτιστες συνιστώσες.

ICA βρίσκει τις συνιστώσες που είναι όσο το δυνατόν πιο ανεξάρτητες και με μη-Γκαουσιανή κατανομή.

Η ανάλυση ανεξάρτητων συνιστωσών (independent component analysis, ICA) χρησιμοποιείται για την εξαγωγή κρυμμένων / υποκείμενων συνιστωσών του X.

ΡCΑ βρίσκει τις ασυσχέτιστες συνιστώσες.

ICA βρίσκει τις συνιστώσες που είναι όσο το δυνατόν πιο ανεξάρτητες και με μη-Γκαουσιανή κατανομή.

ICA έχει χρησιμοποιηθεί κυρίως για το διαχωρισμό σημάτων σε πηγές (blind source separation),

Η ανάλυση ανεξάρτητων συνιστωσών (independent component analysis, ICA) χρησιμοποιείται για την εξαγωγή κρυμμένων / υποκείμενων συνιστωσών του X.

ΡCΑ βρίσκει τις ασυσχέτιστες συνιστώσες.

ICA βρίσκει τις συνιστώσες που είναι όσο το δυνατόν πιο ανεξάρτητες και με μη-Γκαουσιανή κατανομή.

ICA έχει χρησιμοποιηθεί κυρίως για το διαχωρισμό σημάτων σε πηγές (blind source separation),

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_p]$$
 μεγέθους $n \times p$ p σήματα, $\mathbf{x}_i = [x_i(1), x_i(2), \dots, x_i(n)]^\mathsf{T}$, $i = 1, \dots, p$

Η ICA καλείται να λύσει το πρόβλημα του 'coctail party'

Η ICA καλείται να λύσει το πρόβλημα του 'coctail party'

Υποθέσεις:

- 1. Οι πηγές \mathbf{s}_i (κρυφές συνιστώσες των \mathbf{x}_i) είναι ανεξάρτητες.
- 2. Οι πηγές s; έχουν μη-Γκαουσιανή κατανομή.

Πίνακας σημάτων πηγών: $S = [\mathbf{s}_1, \dots, \mathbf{s}_p]$ μεγέθους $n \times p$.

Πίνακας σημάτων πηγών: $S = [\mathbf{s}_1, \dots, \mathbf{s}_p]$ μεγέθους $n \times p$.

X = SA (μίξη των ανεξάρτητων πηγών)

$$\mathbf{x}_i = a_{i,1}\mathbf{s}_1 + \ldots + a_{i,p}\mathbf{s}_p, \quad i = 1,\ldots,p$$

A: πίνακας μίξης (mixing matrix) μεγέθους $p \times p$.

Πίνακας σημάτων πηγών: $S = [\mathbf{s}_1, \dots, \mathbf{s}_p]$ μεγέθους $n \times p$.

$$X = SA$$
 (μίξη των ανεξάρτητων πηγών)

$$\mathbf{x}_i = a_{i,1}\mathbf{s}_1 + \ldots + a_{i,p}\mathbf{s}_p, \quad i = 1,\ldots,p$$

A: πίνακας μίξης (mixing matrix) μεγέθους $p \times p$.

Αντίστροφα

S=XW (διαχωρισμός των αναμεμειγμένων σημάτων) $W=A^{-1}$: πίνακας διαχωρισμού (separating matrix) μεγέθους $p\times p$.

Πίνακας σημάτων πηγών: $S = [\mathbf{s}_1, \dots, \mathbf{s}_p]$ μεγέθους $n \times p$.

$$X = SA$$
 (μίξη των ανεξάρτητων πηγών)

$$\mathbf{x}_i = a_{i,1}\mathbf{s}_1 + \ldots + a_{i,p}\mathbf{s}_p, \quad i = 1,\ldots,p$$

A: πίνακας μίξης (mixing matrix) μεγέθους $p \times p$.

Αντίστροφα

S = XW (διαχωρισμός των αναμεμειγμένων σημάτων) $W = A^{-1}$: πίνακας διαχωρισμού (separating matrix) μεγέθους $p \times p$.

Διαφορετικές μέθοδοι βρίσκουν τον πίνακα W που μεγιστοποιεί την ανεξαρτησία ή/και τη μη-Γκαουσιανή κατανομή.

1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε $Var(s_i^2)=1$.

- 1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε ${\sf Var}(s_i^2)=1.$
- 2. Η σειρά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη.

- 1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε ${\sf Var}(s_i^2)=1.$
- 2. Η σειρά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη.

Γιατί οι ανεξάρτητες συνιστώσες \mathbf{s}_i πρέπει να είναι μη-Γκαουσιανές;

- 1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε ${\sf Var}(s_i^2)=1.$
- 2. Η σειρά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη.

Γιατί οι ανεξάρτητες συνιστώσες \mathbf{s}_i πρέπει να είναι μη-Γκαουσιανές;

Κεντρικό οριακό θεώρημα: Ο μέσος όρος ανεξάρτητων τυχαίων μεταβλητών θα έχει κατανομή πιο κοντά σε Γκαουσιανή. \Rightarrow Η μίξη των συνιστωσών πηγής \mathbf{x}_i θα είναι πιο κοντά σε Γκαουσιανή από ότι οι ανεξάρτητες συνιστώσες \mathbf{s}_i .

- 1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε ${\sf Var}(s_i^2)=1.$
- 2. Η σειρά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη.

Γιατί οι ανεξάρτητες συνιστώσες \mathbf{s}_i πρέπει να είναι μη-Γκαουσιανές;

Κεντρικό οριακό θεώρημα: Ο μέσος όρος ανεξάρτητων τυχαίων μεταβλητών θα έχει κατανομή πιο κοντά σε Γκαουσιανή. \Rightarrow Η μίξη των συνιστωσών πηγής \mathbf{x}_i θα είναι πιο κοντά σε Γκαουσιανή από ότι οι ανεξάρτητες συνιστώσες \mathbf{s}_i .

Για αυτό και η μέθοδος βασίζεται στη μεγιστοποίηση της απόκλισης από Γκαουσιανή της εκτιμώμενης πηγής $\mathbf{s}_i = \Sigma_i \mathbf{w}_i \mathbf{x}_i$.

- 1. Η διασπορά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη. Μπορούμε αυθαίρετα να θέσουμε ${\sf Var}(s_i^2)=1.$
- 2. Η σειρά των ανεξάρτητων συνιστωσών δεν είναι καθορισμένη.

Γιατί οι ανεξάρτητες συνιστώσες \mathbf{s}_i πρέπει να είναι μη-Γκαουσιανές;

Κεντρικό οριακό θεώρημα: Ο μέσος όρος ανεξάρτητων τυχαίων μεταβλητών θα έχει κατανομή πιο κοντά σε Γκαουσιανή. \Rightarrow Η μίξη των συνιστωσών πηγής \mathbf{x}_i θα είναι πιο κοντά σε Γκαουσιανή από ότι οι ανεξάρτητες συνιστώσες \mathbf{s}_i .

Για αυτό και η μέθοδος βασίζεται στη μεγιστοποίηση της απόκλισης από Γκαουσιανή της εκτιμώμενης πηγής $\mathbf{s}_i = \Sigma_i \mathbf{w}_i \mathbf{x}_i$.

Αν πάνω από μια συνιστώσα \mathbf{s}_i είναι Γκαουσιανές, τότε δε μπορούν να ξεχωρίσουν.

Προλεύκανση σημαίνει ο X να μετασχηματιστεί σε X' που έχει $\mathrm{Cov}(X')=I$:

Προλεύκανση σημαίνει ο X να μετασχηματιστεί σε X' που έχει $\mathrm{Cov}(X')=I$:

$$X' = \Sigma^{-1} U X$$
 (Σ και U άπό SVD)

Προλεύκανση σημαίνει ο X να μετασχηματιστεί σε X' που έχει $\mathrm{Cov}(X')=I$:

$$X' = \Sigma^{-1} U X$$
 (Σ και U άπό SVD)

 \mathbf{s}_i ανεξάρτητα (με διασπορά $1) \Rightarrow \mathsf{Cov}(S) = I$.

Προλεύκανση σημαίνει ο X να μετασχηματιστεί σε X' που έχει $\mathrm{Cov}(X')=I$:

$$X' = \Sigma^{-1} U X$$
 (Σ και U άπό SVD)

 \mathbf{s}_i ανεξάρτητα (με διασπορά $1)\Rightarrow \mathsf{Cov}(S)=I$.

Για
$$\mathbf{x}_i$$
: Cov $(X) = \frac{1}{n-1}X^TX = (SA)^TSA = A^TA$.

Προλεύκανση σημαίνει ο X να μετασχηματιστεί σε X' που έχει $\mathrm{Cov}(X')=I$:

$$X' = \Sigma^{-1} U X$$
 (Σ και U άπό SVD)

 \mathbf{s}_i ανεξάρτητα (με διασπορά $1) \Rightarrow \mathsf{Cov}(S) = I$.

Για
$$\mathbf{x}_i$$
: Cov $(X) = \frac{1}{n-1}X^TX = (SA)^TSA = A^TA$.

Αν ο X έχει ${\sf Cov}(X)=I\Rightarrow A^{\sf T}A=I\Rightarrow A$ ορθοκανονικός πίνακας (αντί να έχουμε να εκτιμήσουμε p^2 στοιχεία θα έχουμε p(p-1)/2).

Παράδειγμα

Δύο ανεξάρτητα σήματα πηγών: 1) τερέτισμα (chirp), 2) ήχος κρουστού (gong) $S=[\mathbf{s}_1,\mathbf{s}_2]$

Παράδειγμα

Δύο ανεξάρτητα σήματα πηγών: 1) τερέτισμα (chirp), 2) ήχος κρουστού (gong) $S = [\mathbf{s}_1, \mathbf{s}_2]$

Τυχαίος πίνακας μίξης
$$A = \left[egin{array}{cc} -0.1 & 0.3 \\ -2.5 & -0.2 \end{array}
ight]$$

Παράδειγμα

Δύο ανεξάρτητα σήματα πηγών: 1) τερέτισμα (chirp), 2) ήχος κρουστού (gong) $S=[\mathbf{s}_1,\mathbf{s}_2]$

Τυχαίος πίνακας μίξης
$$A = \left[egin{array}{cc} -0.1 & 0.3 \\ -2.5 & -0.2 \end{array}
ight]$$

Τα παρατηρούμενα σήματα, $X = [\mathbf{x}_1, \mathbf{x}_2]$

Πίνακας διαχωρισμού
$$W = \left[egin{array}{ccc} -0.1820 & 0.3317 \\ -0.9833 & -0.9434 \end{array}
ight]$$

Πίνακας διαχωρισμού
$$W = \left[egin{array}{ccc} -0.1820 & 0.3317 \\ -0.9833 & -0.9434 \end{array}
ight]$$

Τα σήματα από ICA, S = XW

Πίνακας διαχωρισμού
$$W=\left[egin{array}{ccc} -0.1820 & 0.3317 \\ -0.9833 & -0.9434 \end{array}
ight]$$

Τα σήματα από ICA, S = XW

Δε φαίνεται να ανακτώνται τα αρχικά σήματα πηγής!

Με προλεύκανση, $X' = \Sigma^{-1} U X$ (Σ και U άπό SVD)

Με προλεύκανση, $X' = \Sigma^{-1} U X$ (Σ και U άπό SVD)

Με προλεύκανση, $X' = \Sigma^{-1} U X$ (Σ και U άπό SVD)

Πίνακας διαχωρισμού
$$W' = \begin{bmatrix} -0.0290 & 0.9995 \\ -0.9996 & -0.0304 \end{bmatrix}$$

Με προλεύκανση, $X' = \Sigma^{-1}UX$ (Σ και U άπό SVD)

Πίνακας διαχωρισμού
$$W' = \begin{bmatrix} -0.0290 & 0.9995 \\ -0.9996 & -0.0304 \end{bmatrix}$$

Τα σήματα από ICA, S = X'W'

Με προλεύκανση, $X' = \Sigma^{-1}UX$ (Σ και U άπό SVD)

Πίνακας διαχωρισμού
$$W' = \begin{bmatrix} -0.0290 & 0.9995 \\ -0.9996 & -0.0304 \end{bmatrix}$$

Τα σήματα από ICA, S = X'W'

Τα αρχικά σήματα ανακτώνται!

Τυχαίος πίνακας μίξης
$$A = \begin{bmatrix} -0.1 & 0.3 & -0.2 \\ -2.5 & -0.2 & -0.3 \end{bmatrix}$$

Τυχαίος πίνακας μίξης
$$A = \left[\begin{array}{ccc} -0.1 & 0.3 & -0.2 \\ -2.5 & -0.2 & -0.3 \end{array} \right]$$

Τυχαίος πίνακας μίξης
$$A = \left[\begin{array}{ccc} -0.1 & 0.3 & -0.2 \\ -2.5 & -0.2 & -0.3 \end{array} \right]$$

Πίνακας διαχωρισμού
$$W'=\left[egin{array}{cc} 0.0358 & 0.9993 \\ -0.9994 & 0.0372 \end{array}
ight]$$

Τυχαίος πίνακας μίξης
$$A = \left[\begin{array}{ccc} -0.1 & 0.3 & -0.2 \\ -2.5 & -0.2 & -0.3 \end{array} \right]$$

Πίνακας διαχωρισμού
$$W'=\left[egin{array}{cc} 0.0358 & 0.9993 \\ -0.9994 & 0.0372 \end{array}
ight]$$

Τα σήματα από ICA, S = X'W'

- Φορτώστε τα σήματα ήχου από 1) τερέτισμα και 2) κρουστό από τα αρχεία chirp.mat και gong.mat που υπάρχουν ως παραδείγματα στο Matlab. Κρατήστε τις πρώτες 10000 παρατηρήσεις από κάθε σήμα.
 - (α) Επιλέξτε ένα τυχαίο πίνακα μίξης Α μεγέθους 2 × 2 και μετασχηματίστε τα αρχικά σήματα σε δύο αναμεμιγμένα σήματα. Εφαρμόστε την μέθοδο ICA με και χωρίς προλεύκανση και ελέγξετε αν ανακτώνται τα δύο αρχικά σήματα (τερέτισμα και κρουστό).
 - (β) Επαναλάβετε το ίδιο με παραπάνω αλλά για πίνακα μίξης Α μεγέθους 2 × 3.