SURFACES

Rodrigo Silveira

Curve and Surface Design Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

1) Explicit equation

1) Explicit equation

$$z = f(x, y)$$
, for $x \in [x_0, x_1]$, $y \in [y_0, y_1]$, f continuous

1) Explicit equation

$$z = f(x, y)$$
, for $x \in [x_0, x_1]$, $y \in [y_0, y_1]$, f continuous

The surface is
$$S = \{(\mathbf{x}, \mathbf{y}, \mathbf{f}(\mathbf{x}, \mathbf{y})) / x \in [x_0, x_1], y \in [y_0, y_1]\}$$

1) Explicit equation

$$z = f(x, y)$$
, for $x \in [x_0, x_1]$, $y \in [y_0, y_1]$, f continuous

The surface is $S = \{(\mathbf{x}, \mathbf{y}, \mathbf{f}(\mathbf{x}, \mathbf{y})) / x \in [x_0, x_1], y \in [y_0, y_1] \}$

Example: $z = \sin x \sin y$

2) Implicit equation

F(x, y, z) = 0, for F continuous

2) Implicit equation

$$F(x, y, z) = 0$$
, for F continuous

The surface is
$$S = \{(x, y, z) / F(x, y, z) = 0\}$$

2) Implicit equation

$$F(x, y, z) = 0$$
, for F continuous

The surface is
$$S = \{(x, y, z)/F(x, y, z) = 0\}$$

Example:
$$x^2 + y^2 + z^2 = 4$$

2) Implicit equation

$$F(x, y, z) = 0$$
, for F continuous

The surface is $S = \{(x, y, z) / F(x, y, z) = 0\}$

Example: $x^2 + y^2 + z^2 = 4$

3) Parametric equation

3) Parametric equation

The surface is $S = \{ (\mathbf{x}(\mathbf{u}, \mathbf{v}), \mathbf{y}(\mathbf{u}, \mathbf{v}), \mathbf{z}(\mathbf{u}, \mathbf{v})) / u \in [u_0, u_1], v \in [v_0, v_1] \}$

3) Parametric equation

The surface is $S = \{ (\mathbf{x}(\mathbf{u}, \mathbf{v}), \mathbf{y}(\mathbf{u}, \mathbf{v}), \mathbf{z}(\mathbf{u}, \mathbf{v})) / u \in [u_0, u_1], v \in [v_0, v_1] \}$

Example: $(u, u\cos(v), u\sin(v))$

3) Parametric equation

The surface is $S = \{ (\mathbf{x}(\mathbf{u}, \mathbf{v}), \mathbf{y}(\mathbf{u}, \mathbf{v}), \mathbf{z}(\mathbf{u}, \mathbf{v})) / u \in [u_0, u_1], v \in [v_0, v_1] \}$

Example: $(u, u\cos(v), u\sin(v))$

Advantages and disadvantages?

Advantages and disadvantages?

• Explicit equations: easy to discretize and represent, but cannot express all surfaces

Advantages and disadvantages?

- Explicit equations: easy to discretize and represent, but cannot express all surfaces
- **Implicit equations**: allow to represent all surfaces, also proving properties and testing points for containment. However, they are not easy to discretize and to represent graphically

Advantages and disadvantages?

- Explicit equations: easy to discretize and represent, but cannot express all surfaces
- **Implicit equations**: allow to represent all surfaces, also proving properties and testing points for containment. However, they are not easy to discretize and to represent graphically
- **Parametric equations**: allow to represent all surfaces, and are easy to discretize. However, algebraic manipulation is not easy

Advantages and disadvantages?

- Explicit equations: easy to discretize and represent, but cannot express all surfaces
- **Implicit equations**: allow to represent all surfaces, also proving properties and testing points for containment. However, they are not easy to discretize and to represent graphically
- **Parametric equations**: allow to represent all surfaces, and are easy to discretize. However, algebraic manipulation is not easy

the choice for surface design for CAD and Graphics

Easier: surfaces based on curves

Easier: surfaces based on curves

Ruled surfaces

Easier: surfaces based on curves

Ruled surfaces

Surfaces that can be drawn by moving a line in space

 \rightarrow For every point p on the surface, there exists a line $\ell(x)$ that is contained in the surface

Easier: surfaces based on curves

Ruled surfaces

Surfaces that can be drawn by moving a line in space

 \rightarrow For every point p on the surface, there exists a line $\ell(x)$ that is contained in the surface

Examples:

Easier: surfaces based on curves

Ruled surfaces

Surfaces that can be drawn by moving a line in space

 \rightarrow For every point p on the surface, there exists a line $\ell(x)$ that is contained in the surface

Easier: surfaces based on curves

Ruled surfaces

Surfaces that can be drawn by moving a line in space

 \rightarrow For every point p on the surface, there exists a line $\ell(x)$ that is contained in the surface

Easier: surfaces based on curves

Ruled surfaces

Surfaces that can be drawn by moving a line in space

 \rightarrow For every point p on the surface, there exists a line $\ell(x)$ that is contained in the surface

Source: http://math.arizona.edu/~models

Ruled surface: helicoid

Ruled surface: helicoid

Ruled surface: helicoid

Consider a circular helix with axis 0z

The *helicoid* associated is the set of all lines perpendicular to 0z that go through a point in 0z and one in the helix.

Ruled surface: helicoid

Consider a circular helix with axis 0z

The *helicoid* associated is the set of all lines perpendicular to 0z that go through a point in 0z and one in the helix.

Parametrization

Ruled surface: helicoid

Consider a circular helix with axis 0z

The *helicoid* associated is the set of all lines perpendicular to 0z that go through a point in 0z and one in the helix.

Parametrization

A point on circular helix:

$$P(t) = (a\cos t, a\sin t, bt)$$

A point on the axis 0z: Q(s) = (0, 0, s)

Ruled surface: helicoid

Consider a circular helix with axis 0z

The *helicoid* associated is the set of all lines perpendicular to 0z that go through a point in 0z and one in the helix.

Parametrization

A point on circular helix:

$$P(t) = (a\cos t, a\sin t, bt)$$

A point on the axis 0z: Q(s) = (0, 0, s)

Horizontal line through P(t) and Q(s):

To be horizontal, we set s = bt

Ruled surface: helicoid

Consider a circular helix with axis 0z

The *helicoid* associated is the set of all lines perpendicular to 0z that go through a point in 0z and one in the helix.

Parametrization

A point on circular helix:

$$P(t) = (a\cos t, a\sin t, bt)$$

A point on the axis 0z: Q(s) = (0, 0, s)

Horizontal line through P(t) and Q(s):

To be horizontal, we set s = bt

Thus:
$$S(t, \lambda) = (1 - \lambda)Q(t) + \lambda P(t)$$

= $(1 - \lambda)(0, 0, bt) + \lambda(a\cos t, a\sin t, bt)$
= $(a\lambda\cos t, a\lambda\sin t, bt)$

Surfaces of revolution

Surfaces of revolution

Surface created by rotating a curve (generatrix or profile) around a line (axis)

Surfaces of revolution

Surfaces of revolution

Surfaces of revolution

Surfaces of revolution

rotation from 0 to π

Surfaces of revolution

Surfaces of revolution

Surfaces of revolution

Surface created by rotating a curve (*generatrix*) around a line (*axis*)

Given a parametrization of the generatrix curve, say, in the xy-plane, so P(t)=(x(t),y(t),0), $t\in[0,1]$, and an axis, say 0y, we obtain the parametrization of the surface of revolution around tha axis as follows:

Surfaces of revolution

Surface created by rotating a curve (*generatrix*) around a line (*axis*)

Given a parametrization of the generatrix curve, say, in the xy-plane, so P(t)=(x(t),y(t),0), $t\in[0,1]$, and an axis, say 0y, we obtain the parametrization of the surface of revolution around tha axis as follows:

Surfaces of revolution

Surface created by rotating a curve (*generatrix*) around a line (*axis*)

Given a parametrization of the generatrix curve, say, in the xy-plane, so P(t)=(x(t),y(t),0), $t\in[0,1]$, and an axis, say 0y, we obtain the parametrization of the surface of revolution around tha axis as follows:

$$T_y(w) = \begin{pmatrix} \cos w & 0 & \sin w \\ 0 & 1 & 0 \\ -\sin w & 0 & \cos w \end{pmatrix}$$

rotation by angle w around y-axis

Surfaces of revolution

Surface created by rotating a curve (*generatrix*) around a line (*axis*)

Given a parametrization of the generatrix curve, say, in the xy-plane, so P(t)=(x(t),y(t),0), $t\in[0,1]$, and an axis, say 0y, we obtain the parametrization of the surface of revolution around tha axis as follows:

$$T_y(w) = \begin{pmatrix} \cos w & 0 & \sin w \\ 0 & 1 & 0 \\ -\sin w & 0 & \cos w \end{pmatrix}$$

rotation by angle w around y-axis

Then the surface expression is:

$$P(u)T_{y}(w)$$

for $u \in [0,1]$ and $w \in [0,2\pi]$

Surfaces of revolution

Surface created by rotating a curve (*generatrix*) around a line (*axis*)

Given a parametrization of the generatrix curve, say, in the xy-plane, so P(t)=(x(t),y(t),0), $t\in[0,1]$, and an axis, say 0y, we obtain the parametrization of the surface of revolution around tha axis as follows:

$$T_y(w) = \begin{pmatrix} \cos w & 0 & \sin w \\ 0 & 1 & 0 \\ -\sin w & 0 & \cos w \end{pmatrix}$$

rotation by angle w around y-axis

Then the surface expression is:

$$P(u)T_y(w)$$

$$= (x(u)\cos w, y(u), x(u)\sin w)$$

for $u \in [0,1]$ and $w \in [0,2\pi]$

Example of surface of revolution: cone

What is a cone?

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

(0,0,0)

... the set of all lines through v forming angle α with ℓ .

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

(0,0,0)

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

$$\tan(\pi/2 - \alpha) = \frac{z}{\sqrt{x^2 + y^2}}$$
 (slope of orange segment)

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

(0,0,0)

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

$$\tan(\pi/2 - \alpha) = \frac{z}{\sqrt{x^2 + y^2}}$$
 (slope of orange segment)

$$\tan(\pi/2 - \alpha) = \frac{1}{\tan \alpha}$$

Then we have
$$\frac{1}{\tan \alpha} = \frac{z}{\sqrt{x^2 + y^2}} \Leftrightarrow \tan \alpha = \frac{\sqrt{x^2 + y^2}}{z}$$

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

 $\begin{array}{c}
z \\
y \\
(0,0,0)
\end{array}$

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

$$\tan(\pi/2 - \alpha) = \frac{z}{\sqrt{x^2 + y^2}}$$
 (slope of orange segment)

$$\tan(\pi/2 - \alpha) = \frac{1}{\tan \alpha}$$

Then we have
$$\frac{1}{\tan \alpha} = \frac{z}{\sqrt{x^2 + y^2}} \Leftrightarrow \tan \alpha = \frac{\sqrt{x^2 + y^2}}{z}$$

$$x^2 + y^2 = z^2 \tan^2 \alpha \Leftrightarrow x^2 + y^2 - z^2 \tan^2 \alpha = 0$$

Example of surface of revolution: cone

What is a cone?

A right circular cone with apex point v, axis ℓ (a line through v), and aperture angle 2α (for $0 < \alpha < \pi/2$) is....

(0,0,0)

... the set of all lines through v forming angle α with ℓ .

Example: apex is (0,0,0), axis is 0z, an equation is:

$$\tan(\pi/2 - \alpha) = \frac{z}{\sqrt{x^2 + y^2}}$$
 (slope of orange segment)

$$\tan(\pi/2 - \alpha) = \frac{1}{\tan \alpha}$$

Then we have $\frac{1}{\tan \alpha} = \frac{z}{\sqrt{x^2 + y^2}} \Leftrightarrow \tan \alpha = \frac{\sqrt{x^2 + y^2}}{z}$

$$x^{2} + y^{2} = z^{2} \tan^{2} \alpha \Leftrightarrow x^{2} + y^{2} - z^{2} \tan^{2} \alpha = 0$$

implicit equation of the cone

Example of surface of revolution: cone

Now as a surface of revolution...

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

Line making angle α with 0z

 $P(u)=u\vec{\mathbf{v}}$, for $u\in\mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

Line making angle α with 0z

 $P(u) = u\vec{\mathbf{v}}$, for $u \in \mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

 $\vec{\mathbf{v}} = (1, \text{slope of line})$

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

$$P(u)=u\vec{\mathbf{v}}$$
, for $u\in\mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

$$\vec{\mathbf{v}} = (1, \text{slope of line}) = (1, \tan{(\pi/2 - \alpha)}) = (1, \frac{1}{\tan{\alpha}})$$

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

$$P(u)=u\vec{\mathbf{v}}$$
, for $u\in\mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

$$\vec{\mathbf{v}} = (1, \mathsf{slope} \ \mathsf{of} \ \mathsf{line}) = (1, \tan{(\pi/2 - \alpha)}) = (1, \frac{1}{\tan{\alpha}})$$

$$P(u) = u(1, \frac{1}{\tan \alpha}) = (u, \frac{u}{\tan \alpha})$$

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

$$P(u)=u\vec{\mathbf{v}}$$
, for $u\in\mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

$$\vec{\mathbf{v}} = (1, \mathsf{slope} \ \mathsf{of} \ \mathsf{line}) = (1, \tan{(\pi/2 - \alpha)}) = (1, \frac{1}{\tan{\alpha}})$$

$$P(u) = u(1, \frac{1}{\tan \alpha}) = (u, \frac{u}{\tan \alpha})$$

$$C(u) = P(u)T_z(w) = (x(u)\cos w, x(u)\sin w, y(u))$$

for
$$u \in \mathbb{R}$$
, $w \in [0, 2\pi]$

Example of surface of revolution: cone

Now as a surface of revolution...

Question: what is the generatrix curve?

Line making angle α with 0z

$$P(u)=u\vec{\mathbf{v}}$$
, for $u\in\mathbb{R}$, and some $\vec{\mathbf{v}}$ in \mathbb{R}^3

$$\vec{\mathbf{v}} = (1, \mathsf{slope} \ \mathsf{of} \ \mathsf{line}) = (1, \tan{(\pi/2 - \alpha)}) = (1, \frac{1}{\tan{\alpha}})$$

$$P(u) = u(1, \frac{1}{\tan \alpha}) = (u, \frac{u}{\tan \alpha})$$

$$C(u) = P(u)T_z(w) = (x(u)\cos w, x(u)\sin w, y(u))$$

$$=\left(u\cos w,u\sin w,\frac{u}{\tan \alpha}\right) \text{ for } u\in\mathbb{R},\ w\in[0,2\pi]$$

parametric equation of the cone

Normal vector, tangent plane

Let S be a surface parametrized as $S(u,v) = (x(u,v),y(u,v),z(u,v)) \mbox{ for } (u,v) \mbox{ in some domain}$

Normal vector, tangent plane

Let ${\cal S}$ be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions x,y,z have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = (\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}) \\
\frac{\partial S}{\partial v} = (\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v})
\end{bmatrix}$$

Normal vector, tangent plane

Let S be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
\frac{\partial S}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{bmatrix}$$

- A point P is called *regular* if $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$:
- are continuous at P

exist

• their cross product is not zero

If one of these conditions does not hold for P, it is called a singular point

A surface is called *regular* if all its points are regular

Normal vector, tangent plane

Let S be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
\frac{\partial S}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{bmatrix}$$

- A point P is called *regular* if $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$:
- exist
- are continuous at P
- their cross product is not zero

If one of these conditions does not hold for P, it is called a singular point A surface is called regular if all its points are regular

Normal vector

Normal vector, tangent plane

Let S be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
\frac{\partial S}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{bmatrix}$$

A point P is called *regular* if $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$:

- exist
- are continuous at P
- their cross product is not zero

If one of these conditions does not hold for P, it is called a singular point A surface is called regular if all its points are regular

Normal vector

If
$$P$$
 is regular, then $\vec{N} = \frac{\partial S}{\partial u}(P) \times \frac{\partial S}{\partial v}(P)$ (normal vector to S at P)

Normal vector, tangent plane

Let S be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
\frac{\partial S}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{bmatrix}$$

- A point P is called *regular* if $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$:
- exist
- ullet are continuous at P
- their cross product is not zero

If one of these conditions does not hold for P, it is called a singular point A surface is called regular if all its points are regular

Normal vector

If
$$P$$
 is regular, then $\vec{N} = \frac{\partial S}{\partial u}(P) \times \frac{\partial S}{\partial v}(P)$ (normal vector to S at P)

Tangent plane

The plane tangent to S at P is given by the plane defined by P and \vec{N}

Normal vector, tangent plane

Let S be a surface parametrized as

$$S(u,v) = (x(u,v),y(u,v),z(u,v))$$
 for (u,v) in some domain

If the functions $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ have partial derivatives, we consider

$$\begin{bmatrix}
\frac{\partial S}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \\
\frac{\partial S}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
\end{bmatrix}$$

- A point P is called *regular* if $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$:
- exist
- are continuous at P
- their cross product is not zero

If one of these conditions does not hold for P, it is called a *singular* point A surface is called *regular* if all its points are regular

Normal vector

If
$$P$$
 is regular, then $\vec{N} = \frac{\partial S}{\partial u}(P) \times \frac{\partial S}{\partial v}(P)$ (normal vector to S at P)

Tangent plane

The plane tangent to S at P is given by the plane defined by P and \vec{N}

Normal vector, tangent plane

 $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$ are tangent vectors in the u and v directions

Figure from oreilley.com

Normal vector, tangent plane

 $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$ are tangent vectors in the u and v directions

If nothing "goes wrong", they define the tangent plane at ${\cal P}$

Figure from oreilley.com

Normal vector, tangent plane

 $\frac{\partial S}{\partial u}(P)$ and $\frac{\partial S}{\partial v}(P)$ are tangent vectors in the u and v directions

If nothing "goes wrong", they define the tangent plane at ${\cal P}$

Exceptions:

- ullet Surface does not have a tangent plane at P
- ullet Parametrization is irregular at P

Figure from oreilley.com

Normal vector, tangent plane: example

The apex of a cone is a **singular point**

Normal vector, tangent plane: example

The apex of a cone is a **singular point**

Consider the cone $x^2 + y^2 = z^2$, which can be parametrized as:

 $(u\cos v, u\sin v, \frac{u}{\tan \alpha})$, for $\alpha=\pi/4$, so we have,

Normal vector, tangent plane: example

The apex of a cone is a **singular point**

Consider the cone $x^2 + y^2 = z^2$, which can be parametrized as:

$$(u\cos v, u\sin v, \frac{u}{\tan \alpha})$$
, for $\alpha = \pi/4$, so we have,

$$S(u,v)=(u\cos v,u\sin v,u)$$
, for $u\in\mathbb{R}$ and $v\in[0,2\pi)$

Normal vector, tangent plane: example

The apex of a cone is a singular point

Consider the cone $x^2 + y^2 = z^2$, which can be parametrized as:

$$(u\cos v, u\sin v, \frac{u}{\tan \alpha})$$
, for $\alpha = \pi/4$, so we have,

$$S(u,v)=(u\cos v,u\sin v,u)$$
, for $u\in\mathbb{R}$ and $v\in[0,2\pi)$

$$\frac{\partial S}{\partial u} = (\cos v, \sin v, 1)$$

$$\frac{\partial S}{\partial v} = (-u\sin v, u\cos v, 0)$$

Normal vector, tangent plane: example

The apex of a cone is a singular point

Consider the cone $x^2 + y^2 = z^2$, which can be parametrized as:

$$(u\cos v, u\sin v, \frac{u}{\tan \alpha})$$
, for $\alpha = \pi/4$, so we have,

$$S(u,v)=(u\cos v,u\sin v,u)$$
, for $u\in\mathbb{R}$ and $v\in[0,2\pi)$

The tangent vectors are as follows:

$$\frac{\partial S}{\partial u} = (\cos v, \sin v, 1)$$

$$\frac{\partial S}{\partial v} = (-u \sin v, u \cos v, 0)$$

$$\vec{N}(u, v) = \frac{\partial S}{\partial u}(u, v) \times \frac{\partial S}{\partial v}(u, v) = (-u \cos v, -u \sin v, u)$$

Normal vector, tangent plane: example

The apex of a cone is a singular point

Consider the cone $x^2 + y^2 = z^2$, which can be parametrized as:

$$(u\cos v, u\sin v, \frac{u}{\tan \alpha})$$
, for $\alpha = \pi/4$, so we have,

$$S(u,v)=(u\cos v,u\sin v,u)$$
, for $u\in\mathbb{R}$ and $v\in[0,2\pi)$

The tangent vectors are as follows:

For the apex,
$$P=(0,0,0)$$
, we get $\vec{N}(0,0)=0$ (thus, the apex is a singular point)

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

$$S(u, v) = (u, v, \sqrt{1 - u^2 - v^2})$$

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

$$\vec{N}(u,v) = \frac{\partial S}{\partial u}(u,v) \times \frac{\partial S}{\partial v}(u,v) = \left(\frac{u}{\sqrt{1-u^2-v^2}}, \frac{v}{\sqrt{1-u^2-v^2}}, 1\right)$$

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Parametrization 1

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

For the north pole, u=v=0, we have $\vec{N}=(0,0,1)$ (regular point)

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Parametrization 1

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Parametrization 1

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

For the north pole, u=v=0, we have $\vec{N}=(0,0,1)$ (regular point)

Parametrization 2

$$S(\theta, \varphi) = (\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$$

for
$$\theta \in [0,2\pi)$$
 and $\varphi \in [0,\pi/2)$

north pole

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Parametrization 1

$$S(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

$$\vec{N}(u,v) = \frac{\partial S}{\partial u}(u,v) \times \frac{\partial S}{\partial v}(u,v) = \left(\frac{u}{\sqrt{1-u^2-v^2}}, \frac{v}{\sqrt{1-u^2-v^2}}, 1\right)$$

Parametrization 2

$$S(\theta, \varphi) = (\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$$

$$S(\theta, \varphi) = (\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$$

$$\frac{\partial S}{\partial \theta} = (-\cos\varphi\sin\theta, \cos\varphi\cos\theta, 0)$$

$$\frac{\partial S}{\partial \varphi} = (-\sin\varphi\cos\theta, -\sin\varphi\sin\theta, \cos\varphi)$$

for
$$\theta \in [0, 2\pi)$$
 and $\varphi \in [0, \pi/2)$

north pole

$$\frac{\partial S}{\partial \theta} = (-\cos\varphi\sin\theta, \cos\varphi\cos\theta, 0) \qquad \vec{N}(\theta, \varphi) = \cos\varphi(\cos\varphi\cos\theta, \cos\varphi\sin\theta, \sin\varphi)$$

$$\frac{\partial S}{\partial \varphi} = (-\sin\varphi\cos\theta, -\sin\varphi\sin\theta, \cos\varphi)$$

Normal vector, tangent plane: example

Consider the north hemisphere of the unit sphere

Parametrization 1

$$S(u, v) = (u, v, \sqrt{1 - u^2 - v^2})$$

$$\frac{\partial S}{\partial u} = (1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}})$$

$$\frac{\partial S}{\partial u} = (0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}})$$

Parametrization 2

$$S(\theta, \varphi) = (\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$$

for
$$\theta \in [0,2\pi)$$
 and $\varphi \in [0,\pi/2)$

$$\frac{\partial S}{\partial \theta} = (-\cos\varphi\sin\theta, \cos\varphi\cos\theta, 0)$$
$$\frac{\partial S}{\partial \varphi} = (-\sin\varphi\cos\theta, -\sin\varphi\sin\theta, \cos\varphi)$$

singular point

north pole