Применение метода суперкомпиляции для специализации реляционных программ

Мария Куклина, М42363

Университет ИТМО Научный руководитель: Близнец Иван Александрович Научный консультант: Вербицкая Екатерина Андреевна 2020

Реляционное программирование

Определение

Вид декларативного программирования, в котором программы представляются как набор отношений между аргументами.

Пример

Пример запросов для отношения "меньше или равно" $\mathsf{leq}^o \subseteq \mathsf{Int} \times \mathsf{Int}$:

- \bullet leq $^{o}(1, 2)$ проверка корректности отношения.
- $leq^{o}(X, Y)$ поиск значений X и Y, при которых отношение выполняется.

miniKanren

Встраиваемый предметно-ориентированный язык реляционного программирования, представленный как набор операторов 1 .

Применение

- Легковесная логическая подсистема проекта.
- Поиск лечения редких генетических заболеваний в точной медицине².
- Порождение решения задач поиска по решению задачи распознавания³.

¹ "Relational Programming in miniKanren: Techniques, Applications, and Implementations", Byrd, 2009

² "The Algorithm for Precision Medicine (Invited Talk)", Might, 2019

³ "Relational Interpreters for Search Problems", Lozov, Verbitskaia и Boulytchev, 2019

Постановка проблемы

- Сложность реализации эффективных программ.
- Поиск входов по выходам отношения работает значительно медленнее, чем "прямой" запуск.

Специализация

Определение

Автоматизированная техника оптимизации программ, при которой из программы удаляются избыточные вычисления, зависимые от частично известного входа 4 .

- Частичная дедукция класс методов специализации для логический языков, в частности, для Prolog.⁵
- Специализация miniKanren на основе конъюнктивной частичной дедукции (CPD)⁶.
 - Сложна в поддержке, даёт нестабильные результаты.
 - Однако предоставляет библиотеку для построения специализаторов.

⁴ Partial evaluation and automatic program generation, Jones, Gomard и Sestoft, 1993

⁵ Advanced Techniques for Logic Program Specialisation, Leuschel, 1997

⁶ "Relational Interpreters for Search Problems", Lozov, Verbitskaia и Boulytchev, 2019

Суперкомпиляция

Определение

Техника автоматической трансформации и анализа программ, при которой программа символьно исполняется с сохранением истории вычислений, на основе которой принимаются решения об оптимизации.

- Суперкомпиляторы применяются во основном для функциональных языков⁷.
- Полуавтоматическая суперкомпиляция для Prolog⁸.
- Теоретические доводы для автоматической суперкомпиляции для Prolog^9 .

⁷ "Introduction to Supercompilation", Sørensen и Glück, 1998

⁸ A Prolog Positive Supercompiler, Diehl, 1997

Цели и задачи

Цель

Улучшение результатов специализации реляционных программ путём применения метода суперкомпиляции.

Задачи

- Реализовать базовый суперкомпилятор для miniKanren.
- Рассмотреть возможные методы улучшения получившегося суперкомпилятора.
- Протестировать результаты и сравнить их с результатами CPD и с оригинальными программами.

Суперкомпиляция для miniKanren

Рис. 1: Схема алгоритма суперкомпиляции

Особенности шага развёртки для miniKanren

Развёртка определяет шаг символьного вычисления в суперкомпиляторе, на котором порождается множество возможных состояний программы.

Значимые отличия

- Несколько возможных видов развёртки.
- Допускается переупорядочивание элементов выражения.

Результаты задачи

- Реализован базовый алгоритм суперкомпиляции.
 - Развёртка рассматривает все возможные состояния.
 - Используемый алгоритм обобщения основан на алгоритме для конъюнктивной частичной дедукции, для которого доказана терминируемость.
- Разработан и реализован алгоритм построения оптимизированной программы по графу суперкомпиляции.

Улучшение суперкомпиляции для miniKanren

Проблемы

- Повторение символьных вычислений из-за стратегии свёртки.
- Классическое использование обобщения может приводить к избыточным вычислениям.
 - Существует техника обобщения, описанная в статьях⁹.
 - Придумана специфичная для miniKanren техника обощения.
- Тривиальная стратегия вычисления порождает слишком много ветвей исполнения.
- В используемой реализации miniKanren нет способа эффективно сообщить, что можно прервать вычисление.

⁹ "Introduction to Supercompilation", Sørensen и Glück, 1998

Результаты задачи

- Применены подходы по улучшению алгоритма суперкомпиляции.
 - Добавлено кэширование.
 - Реализованы модификации обобщения.
 - Проанализированы и реализованы допустимые стратегии вычисления.
- Расширение библиотеки для специализации неравенствами.
- Расширение суперкомпилятора, при котором учитывается "негативная" информация.

Тестирование

Реализация miniKanren: проект OCanren¹⁰

Реализация CPD для miniKanren: проект uKanren_transformations¹¹

Реализация CPD для Prolog: проект ECCE¹²

Платформа: Intel Core i5-6200U CPU, 2.30GHz, DDR4, 12GiB.

Сценарий тестирования:

- Суперкомпиляция тестовой программы.
- Трансляция остаточной программы в OCanren.
- Замер времени исполенения.
- Сравнение времени исполнения с оригинальной программой и реализациями CPD.

¹⁰ https://github.com/JetBrains-Research/OCanren

¹¹https://github.com/kajigor/uKanren_transformations/

¹² https://github.com/leuschel/ecce

Тестирование

Программы для тестирования

- sort Алгоритм реляционной сортировки.

 Запрос : сортировка случайного списка длины 50
- isPath Проверка принадлежности пути графу. Запрос: поиск произвольного пути длины 10, принадлежащих графу с 21 вершиной и 50 рёбрами.
- logint Реляционный интерпретатор формул логики высказываний.
 Запрос: поиск 1000 истинных формул в данной
 - Запрос: поиск 1000 истинных формул в данной подстановке.
 - lam Реляционный интерпретатор лямбда-выражений. Запрос: поиск n термов, сводящихся к указаной форме.

Результаты тестирования

Сравнение улучшений

	Вариации суперкомпиляторов						
Стратегии	Б.С.	M.1	M.2	M.3	M.4	M.5	
развёртки							
Full	_	-	0.078	0.062	-	-	
Full-non-rec	0.137	0.040	0.093	0.042	0.069	0.040	
Seq	0.086	0.082	0.066	0.049	0.050	0.041	
Non-rec	0.043	0.031	0.063	0.044	0.055	0.046	
Rec	0.037	0.034	0.045	0.040	0.051	0.049	
Min	0.037	0.039	0.049	0.041	0.054	0.045	
Max	0.068	0.070	0.067	0.036	0.062	0.071	
First	0.104	0.100	0.110	0.095	0.137	0.073	

Рис. 2: Запуск logint для генерации формул с двумя переменными, секунды.

Результаты тестирования

Базовый суперкомпилятор

Параметр	Оригинал	ECCE	CPD	M.C.			
sort	случайный список фиксированной длины						
50	8.42	12.28	13.2	0.242			
isPath	10 путей						
граф 3	> 300	1.03	1.19	1.81			
isPath	произвольный путь длины 10						
граф 1	12.51	1.01	1.20	0.48			
граф 2	> 300s	1.73	2.09	0.48			
logint	размер подстановки						
0	> 300	0.17	2.7	0.11			
1		0.09	1.7	0.07			
lam	термы в нормальной форме						
50 термов	> 300	2.98	0.08	0.04			

Рис. 3: Результаты сравнения алгоритмов специализации, секунды

Результаты работы

- Реализован и протестирован суперкомпилятор для задачи специализации.
- Применены подходы по улучшению качества суперкомпиляции для задачи специализации.
- Добавлены ограничения неравенства в библиотеку по специализации.
- Исправление багов библиотеки для специализации.

Спасибо за внимание!

- Работа будет представлена во второй половине мая на воркшопе по трендам логического программирования TEASE-LP.
- Ссылка на репозиторий: https://github.com/RehMaar/uKanren-spec