LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharshana A

Class: 7

Section : A

School : AKV Public School

Login ID : AKV123

Dharshana A's Performance Report

Score: 11/40 Percentage: 27.5%

Dharshana A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
Teacher's Feedback to Student					
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved	
LCM	Finding LCM
Types of angles	Identification of types of angles

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

 $\underline{Question:\ 2}$

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 = _____

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is _____°.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Data handling

Topics to be Improved		
Chance of probability	Basis of probability, Sample space in probability	
Arithmetic mean, mode and median	Mean, Median and Mode	

and median	Weemi, Weemin and Wood	
Hi, here in this video you	a will learn Basics of probability	
Question: 7		
Identify the sure events and im	apossible events	
(i) The sun rises in the west		
(ii) Water is colourless.		
(iii) Clock rotates in clock wis	se direction.	
(iv) Ball is square in shape.		
Answer:		
Events that cannot occur are confere, The sun rises in the west event. Clock rotates in clock wise directions.	alled (sure/ impossible) events. alled (sure/ impossible) events. a is event. Water is colourless is ection is event. Ball is square in shape is	
event.		
	(greater / smaller) than probability of	
Answer:		
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	
Question: 9		
Raju has pencil, an eraser, a so probability of getting a pen fro	cale, sharpener, colour pencil and protractor in his om his box.	box. What is the

 $\underline{Answer:}$

Does Raju have p	e pen in his box, of getting pen from h	(Yes/ N	Jo).	0/1)		
Hi, here in th	nis video you will le	earn M	ean, Mo	edian, N	I ode	
Question: 10						
Find the mode of	f the following data: 5	, 15, 23,	5, 32, 44,	72, 55, 6, 3	8, 5, 65, 45, 6	67, 24, 19 and 98.
$\underline{Answer:}$						
Arranging the da	ber that occurs ta in ascending order: occurs most number of					
Question: 11						
	tains median of the gi					
ascending or desc Arrange the given	(first/cencending order. In data in ascending or the given data is	der :				
Question: 12						
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =,	, Median = ar	nd Mode	=	_ .		
Answer:						
$Mean = \frac{1}{100}$	of all observation of observation of observation					
Therefore, mean	observation = = in ascending order : _			of observa	tion =	

Here, median = $\underline{\hspace{1cm}}$, mode = $\underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability ———————————————————————————————————
Question: 13
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 14
Write the possible outcomes while spinning the given wheel.
0 10 250 100 5 25 1 500
Answer: Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 15
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

A bag of	contains,	_ and	balls.
If one o	of the ball is blue in colour, then other b	oall can be	or
If one o	of the ball is green in colour, then other	ball can be	or
If one o	of the ball is red in colour, then other ba	all can be	or
Therefo	ore, if two balls are taken out then possi	ble outcomes are blue	+
	+	+	

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Related angles Basic of angles		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Angle sum property of triangle	Angle sum property of triangle	
Faces vertex and edges		
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

(i) Alternate angles are _____ (equal / not equal).

(ii) Correspondi	ng angles a	re	(equal	/ not equal).		
Here, alternate an Corresponding an	_					
Hi, here in the	is video y	ou will learn	Criteria	of congruence	ee	
Question: 19						
Circle the groups	that contain	in congruent ima	iges.			
			7 		. <	
$\underline{Answer:}$						
(identical/non-ide	entical) in s	hapes and size.	·	areongruent/not cong		
$\underline{\textit{Question: 20}}$						
If the three sides triangles are cong		-	-	ponding sides of th A/SAS) criteria .	e other	triangle, then two
Answer:						
Two triangle are _ Criteria for congr	uence of tri	angles are SSS,	not congru	nent) if they are id and	entical i	n shapes and size.
		seria (2/3) corresponding s		of the triangle are other triangle.		(equal/
				nde included angle of		
				s andles and the include		
	SSS	sides &	and	_ angles are equal		
	SAS	sides a	and	_ angles are equal		
	ASA	sides a	and	_ angles are equal		
Question: 21						
The triangles LNI	M and PRG	are congruent	by SAS cri	teria. Then find th	ie side F	'K

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Related Angles

Question: 22

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

.....

Question: 23

Find the angle of $\angle DBE$

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \\ = 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \\ = \underline{\hspace{1cm}} \\ \text{Therefore, } \angle DBE = \underline{\hspace{1cm}} \\$$

Question: 24

Find the complementary angles in the given diagram.

.....

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

......

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

.....

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn **Angle sum property**

Question: 28

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\qquad}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 29

Which of the following triangle satisfy the angle sum property.

......

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = ____ = ___ = ____

In $\triangle KLM$, Sum of the angles = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = _

Therefore, the triangles that satisfy the angle sum property are =

Question: 30

Find the angles of triangle, if their angles are in the ratio 8:6:4.

$\underline{Answer:}$

Ratio of angles in the triangle is _____

Let's consider the angles of the know sum of the angles. Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ The angles of the triangle are	of a triangle is $\underline{}$ = 180°. The value of $x = \underline{}$	
Hi, here in this video y	rou will learn Basics of 3D model	
Question: 31		
A point at which two or mor	re lines segments meet is called((Vertex/ edges/ faces).
Answer:		
	point (line/line segment/ray). where two or more line segments meet(Vertex/egram,	edges/ faces).

Question: 32

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

	, 0	es and faces in a cu edges and		
Question: 33				
How many verti	ices, edges and fac	ces does dices have	?	
		1.5		
		(0 • -/		
Answer:				
	ce is			
-		 edges and	faces.	
				— (1988)
Hi here in t	his video vou v	will learn Pyth	agoras property	100 100 100 100 100 100 100 100 100 100
	mis video you	wiii icaiii i ytii	agoras property	
Question: 34				
			= sum	of the squares of the
legs.	u triangie, square	or the	— Suii	for the squares of the
Answer:				
	orem is only appli	icable for	triangle.	
	v		otenuse/legs) and other tw	vo sides are called
	(hypotenuse/ legs			
Pythagoras theo	orem states that _			•
$\underline{Question:~35}$				
Find the hypote	enuse of the triang	gle ABC if base is	12 m and altitude is 5 m.	
Answer:				

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 36

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = ____

By Pythagoras theorem, $(____)^2 = (____)^2 + (____)^2$ $= ___ + ___$

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved		
Operations on rational numbers	Division of rational numbers	
Properties of integers	Associative property	
Fractions	Division of fraction, Multiplication of fractions	
Introduction to rational numbers	Basics of rational numbers	
Law of Exponents	Law of Exponents	
Integers	Basics of integers	
Decimals	Multiplication and division of decimals	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 37

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = $_$ and divisor = $_$

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 38

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 39

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

......

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Properties of integers**

Question: 40

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

$\underline{Answer:}$

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ____ = ____

From the given option ______ satisfies the closure property.

(11)	Associative property: Rearranging the parentheses (b) Therefore, $(a + b) + c = $	· · · · · · · · · · · · · · · · · · ·		
	From the given option	satisfi	es the Associative proj	perty.
(iii)	Commutative property: Changing the order of the adden Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	`	does not/ does) chang	e the sum.
	From the given option		es the Commutative p	roperty.
(iv)	Identity property : The sum of _	and a	any number always ret	urns same number.
	Therefore, $a + \underline{\hspace{1cm}} = a$ From the given option $\underline{\hspace{1cm}}$	satisfi	es the Identity propert	ty.
			<i>J</i> 1 1	·
\overline{Que}	stion: 41			
Mark	the operations in which commut	ative proper	ty holds true for any t	wo integers.
	Addition Sub	otraction	Multiplication	Division
Ans	wer:			
For a The The Que	ommutative property, changing the (does not/ does) changing two integers, commutative process commutative property for addition commutative property for multiple stion: 42 additive identity and multiplicative wer:	ge the result perty holds is ication is ve identity the	true for e same? (Yes or No)	.
The	city property holds only forIdentity property for addition is _ Identity property for multiplication		and additive identi	
Ther	efore, additive identity is	(equal / no	et equal) to multiplicat	tive identity.
	here in this video you will l			
Find	the shape which contains the imp	proper fraction	on of $5\frac{2}{7}$.	^
	<u>10</u> 35	$\frac{10}{7}$	$\left(\begin{array}{c} 37 \\ 7 \end{array}\right)$	$\frac{32}{7}$

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

.....

.....

......

Question: 44

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 45

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 46

The numbers in the diagram represents_____.

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called _____.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

.....

Question: 47

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

......

denominator is equal to _____(zero/ one/ any integer other than zero).

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Question: 48

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn Multiplication on fractions

Question: 49

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 50

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

......

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 51

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn Law of exponents

Question: 52

 $(x)^0$ is equal to ______.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____
Power = ____

Any number or variable with power zero is equal to _____. Therefore, $(x)^0$ equal to _____.

Question: 53

i. $a^m \times a^n =$ ______

ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

Question: 54

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to_____(One/ Zero).

Any number with power one is equal to ______(same/ different) number.

Hi, here in this video you will learn Basics of integers

Question:	55
Question.	oo

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 56

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

.....

Naturals numbers

Answer:

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______.

Now, 1, 4, -10 are in ______.

Question: 57

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of _____

Therefore, positive numbers are _____ (in/not in) integers.

Hi, here in this video you will learn Basics of decimals

Question: 58

Shade 0.4 part of the given shape.

Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 59
Solve the following.
(i) 0.4×1.2
(ii) 0.48×1.2
Answer:
 (i) 0.4 × 1.2 : Multiplication of 0.4 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is (ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = \div =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = $

(iii)	ii) Place the decimal point after digits counting from the right in the quadivision.	otient after
	ten the cost of one chocolate is the cost of 15 chocolates = cost of one chocolate × = x =	=

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Equivalent ratios	Basic of proportion	
Profit and loss	Prediction of loss and profit	
Percentage	Basic of percentage	

 Hi , here in this video you will learn $\operatorname{\mathbf{Simple}}$ $\operatorname{\mathbf{Interest}}$

Question: 61

Match the following.

Column A		
i	Principle(P)	
ii	Amount (A)	
iii	Rate (R)	
iv	Time period (T)	

Column B			
a	Interest calculated based on this		
b	Total sum you borrow		
С	Number of years		
d	Total sum with interest		

Answer:
Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 62
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given:
$Amount = \underline{\hspace{1cm}}$, $Principle = \underline{\hspace{1cm}}$, $Time period = \underline{\hspace{1cm}}$.
If Amount and principle is given, then formula for calculating interest is
Interest = =
$\underline{Question: \ 63}$
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

Answer:

$Interest = \underline{\hspace{1cm}}$, Time period =	=, Principal =	·
Detection	x 100		
Rate of interest =	Principal x		
Substituting values	in the formula,		
D	x 100		
Rate of interest =	x 100 Principal x		
Rate of interest $=$ $_{-}$			
Therefore, the rate of	of interest is	%	
Hi, here in this	video you will learn	Basics of proportion	
Question: 64			
If a:b and c:d are eq	quivalent ratio, then it o	can be expressed as	
Answer:			
,	ion / ratio) is used to express proportion is	xpress (one/two) equivalent	ratios.
Question: 65			
		part of A and B. Are the two ratios e	
			
	A		
		В	
Answer:			
Shaded part of A = Ratio of shaded to the Shaded part of B = Unshaded part of B Ratio of shaded to the	= $=$ $=$	Fractional form =	
	(equal/ not eq	ual) to Fraction form of B.	
If a : b :: c : d is pr	coportion, shade the cor	rect expression	

a =	$\frac{bc}{d}$	

Answer:

<u></u>
Two equivalent ratio which are proportion, it can be written as a : b :: c : d
or $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ (in fraction).
First and fourth term are called and second and third term are called
In proportion, product of extreme terms is (equal to/ not equal to) product of middle
terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$,
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Profit and Loss
Question: 67
Anu bought a book for $\ref{100}$ and sold it for $\ref{150}$. Here, cost price of a book is and sellin price of a book is
Answer:
The price that is paid to buy or purchase a goods is price and the price at which goods a sold is called price. Therefore, cost price of a book =, selling price of a book =
Question: 68
You bought a bat for ₹50 to play cricket. After one week, you sold that bat for ₹150. Is that a profit or loss for you?
Answer:
In profit, selling price cost price. $(<,>,=)$ In loss, selling price cost price. $(<,>,=)$ Cost price of a bat = selling price of a bat = Cost price is (greater / smaller) than selling price. Then it is
Question: 69
Janu bought a smart phone for $Rs.19,499$ and after one week she sold her phone at a loss of $Rs.2500$. Find the selling price of the phone.
Answer:

Therefore, selling price = _____

Cost price of a smart phone = _____ , loss = ____ . Loss = ____ - ___ = ___ - ___ = ___ - ___

H1, here in this video you will learn Basics of percentage	
Question: 70	
2% can be written as	
$\underline{Answer:}$	
Percentages are numerators of fractions with denominator $2\% = { }$	
Question:~71	
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark Arun?	k scored by
$\underline{Answer:}$	
Arun attended LaPIS test for marks. He got mark	S.
75 % can be written in fraction form	
Then the mark scored by Arun = Total mark \times 75% = \times =	=
Question: 72	
There are 25 apples in a basket in which 10 of them are rotten. Find the percentagapples.	ge of rotten
Answer:	
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =	

Convert it into a percent= _____ x ____% = _____

Algebra

Topics to be Improved			
Basics of simple equation	Solving of simple equation, Formating of simple equation		
Terms of an expression	Identification of terms in an expression		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		

Hi, here in this video you will learn Solving an equation

Question: 73	
--------------	--

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 74

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

$\underline{Question: 75}$

Arrange the terms in the descending order when the value of x is 2.

$$2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4 \qquad \frac{1}{2}z$$

Answer:

The given expression are _____

The value of x is substituting value of x
$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$
$x + 3 = \underline{\qquad} = \underline{\qquad} \qquad \underline{\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad}} = \underline{\qquad}$
$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$
Arranging in descending order:,,, Their respective algebraic terms are,,,
Hi, here in this video you will learn Solving an equation using application
Question: 76
Box A Box B
Box B contains times the number of chocolates in Box A
$\underline{Answer:}$
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A)
Question: 77
Write the equation for the following statement. Subtracting four times of m from 4 is n
Answer:
Four times of $m = \underline{\hspace{1cm}}$
Subtracting four times of m from $4 = \underline{\hspace{1cm}}$
The equation is
Question: 78
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:

Sum of 2a and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and 2 =Therefore, sum of 2a and 9 | Add 9 to the product of a and 2Hi, here in this video you will learn Terms of an expression Question: 79 Separate the variables and constants for all the terms given in the box 16r $54c^4$ 18 0 ab12 4xAnswer: In algebraic expression, variables are represented by _____ and Constant is a Terms Constants Variables Question: 80 Mark the expression that contains two terms. 3x + 5 12a 4xy 12a + b + 1 7m + 0Answer: The terms in the expression 3x + 5 is/are _____. The terms in the expression 12a is/are _____. The terms in the expression 4xy is/are $_$ The terms in the expression 12a + b + 1 is/are _____ The terms in the expression 7m + 0 is/are _____. Question: 81 Shade the outline of circle that contains the term of the given expression.

$6m^2$		7mm	1	_m 1
nm^{-}	_	7mn	+	n_L

4				
\boldsymbol{A}	ns	w	er	:

In algebraic expression,	$_{\scriptscriptstyle\perp}$ (variables/	terms)	are connected	d together	with	operations
of addition.						
Here,,,		ar	e the terms of	the given	expr	ession.

Hi, here in this video you will learn **Types of expression**

Question: 82

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, (variables/ terms)	are connected	together with	operations
of addition.				
The terms in the expression are,		$_$, and $_$		
Therefore, there are terms in the	expression.			

.....

.....

Question: 83

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 84

......

$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
<i>Question:</i> 85
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\underline{Answer:}$
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
<i>Question:</i> 86
Complete the expression $7r^2 + r \Box - 2 \Box = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (7 + \ 2)_{r^2} = _$
Question: 87 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have:
(ii) How many icecreams Sam have more than Ram :
Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total chocolates Ram and Sam have : Ram's chocolate + Sam's chocolates = + =	
(ii)	How many icecreams Sam have more than Ram : icecream icecream = =	