STAT 500

More on Blocking Designs

Efficiency of Blocking

- Is RCBD better than CRD?
 - If the experiment was repeated on similar e.u.'s, should you block?
 - Not a question about how to analyze the observed data.
 Analysis should match the design.
- How to measure "better"?
 - Consider the **error variance** for each design:

$$\sigma^2_{CRD}$$
 versus σ^2_{RCBD}

- Efficiency of RCBD relative to CRD is $\sigma^2_{CRD}/\sigma^2_{RCBD}$.
- Efficiency $> 1 \Rightarrow$ RCBD provides more precise estimates of treatment mean contrasts.

Randomized Complete Block Designs

Can also express Efficiency in terms of sample sizes

$$Var(ar{Y}_{\cdot j} - ar{Y}_{\cdot k}) = \sigma_e^2(rac{2}{n})$$

To have $Var(\bar{Y}_{.j} - \bar{Y}_{.k})$ the same for both designs, we need

$$egin{aligned} \sigma_{CRD}^2 \left(rac{2}{n_{CRD}}
ight) = \sigma_{RCBD}^2 \left(rac{2}{n_{RCBD}}
ight) \end{aligned}$$

 \Rightarrow

Efficiency
$$= rac{\sigma_{CRD}^2}{\sigma_{RCBD}^2} = rac{n_{CRD}}{n_{RCBD}}$$

 \bullet i.e. Efficiency = 1.5 \Rightarrow CRD requires 50% more units per treatment than the RCBD

Randomized Complete Block Designs

- ullet In the randomized block design that provided the data $\hat{\sigma}^2_{RCBD} = MS_{error}$
- Snedecor and Cochran give

$$\hat{\sigma}_{CRD}^2 = rac{(n-1)MS_{blocks} + n(J-1)MS_{error}}{nJ-1}$$

as an unbiased estimate of the error variance if a completely randomized design had been used instead (proof in Cochran and Cox, 1957)

 \bullet One complication is that $\hat{\sigma}^2_{CRD}$ and $\hat{\sigma}^2_{RCBD}$ have different degrees of freedom.

RCBD: Efficiency

 Fisher used "relative amount of information", an estimated efficiency,

$$rac{(\mathsf{df}_{RCBD}+1)(\mathsf{df}_{CRD}+3)\hat{\sigma}_{CRD}^2}{(\mathsf{df}_{RCBD}+3)(\mathsf{df}_{CRD}+1)\hat{\sigma}_{RCBD}^2}$$

to adjust for d.f.

- Typical values of efficiency depend on the subject matter
- Values of 1.10 to 1.30 are common (eg, blocking often reduces the number of units by 10 to 30 percent)

Efficiency of Penicillin Experiment

ANOVA Table

Source	d.f.	SS	MS	F	p-value
Blocks	4	264	66.000	3.50	0.0407
Processes	3	70	23.333	1.24	0.3387
Error	12	226	18.833		
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Total	10	F60			
Total	19	560			

Efficiency of Penicillin Experiment

$$egin{align*} oldsymbol{\hat{\sigma}_{RCBD}^2} &= MS_{error} = 18.833 \ & \hat{\sigma}_{CRD}^2 \ &= \ rac{(n-1)MS_{blocks} + n(J-1)MS_{error}}{nJ-1} \ & = \ rac{(4)(66.0) + (5)(3)(18.833)}{19} = 28.76289 \ & = 28$$

estimated efficiency =
$$\frac{(12+1)(16+3)(28.76289)}{(12+3)(16+1)(18.833)} = 1.48$$

ullet To have the same efficiency, $n_{\mbox{CRD}} = 1.48 n_{\mbox{RCBD}}$

RCBD: Diagnostics

Assumptions (each treatment used equally often in each block)

- Independence of errors
- Homogeneous error variance
- Normality of errors
- Block and treatment effects are additive (no interaction)
- Relative importance of first three assumptions and diagnoses are similar to before
- Non-parametric test: Friedman test performs an ANOVA with observed data replaced by ranks within blocks

Additive Model

Additivity - treatment effect is the same within each block.

Additive Model:
$$Y_{ij} = \mu + eta_i + au_j + \epsilon_{ij}$$

Non-additivity - treatment effect varies depending on block.

Non-Additive Model:
$$Y_{ij} = \mu + eta_i + au_j + (eta au)_{ij} + \epsilon_{ij}$$

ullet Unless replicates of treatments within blocks, we cannot test for significance of $(eta au)_{ij}$

Tukey's Test for Non-Additivity

- Used when no replicates of treatments within blocks
- Detects one specific pattern of non-additivity: multiplicative interaction between block and treatment effects.

Tukey Model:
$$Y_{ij} = \mu + eta_i + au_j + \kappa eta_i au_j + \epsilon_{ij}$$

ullet Tukey constructed an F test for $H_0: \kappa = 0$ vs. $H_a: \kappa
eq 0$

More than One Blocking Factor

- Can use a broader definition of blocks
- Example: if gender and age are both blocking factors, then one could use as blocks: males 20-29, males 30-39, females 20-29, etc.
- Problem have many blocks = need many experimental units
- Special case: Latin Square Designs

- Two blocking variables
- Number of levels for each blocking factor = number of treatments (or its multiple)
 - Three treatments each block has three levels (or 6, 9, 12, etc.)
 - Four treatments each block has four levels (or 8, 12, 16, etc.)
- Each block contains only one unit for each treatment
- Each level of each blocking variable gets all treatments

Latin Square Designs: Example

- Fuel efficiency study
 - Block 1 (row blocks) = Drivers (1 through 4)
 - Block 2 (column blocks) = Cars (1 through 4)
 - Treatments = Fuel Additives (A, B, C, D)
 - Each treatment occurs once in each row and once in each column

Latin Square Designs: Example

• Example Latin Square Design

	Cars				
Drivers	1	2	3	4	
1	В	Α	C	D	
2	Α	C	D	В	
3	C	D	В	Α	
4	D	В	Α	C	

Advantages

- Can estimate treatment effects in a small study
- Can use two blocking factors to reduce variability

Limitations

- Levels of each blocking variable must equal (or be a multiple of) the number of treatments
- Analysis assumes no interactions between blocking factors and treatments: critical, because each block contains only one unit for each treatment
- Few degrees of freedom for error, can increase by using multiple Latin squares

Model

$$Y_{ijk} = \mu + \beta_i + \gamma_j + \tau_k + \epsilon_{ijk}$$

where $i,j,k=1,2,\ldots,r$

- ullet eta_i first blocking factor effect
- ullet γ_i second blocking factor effect
- ullet au_k is a fixed treatment effect
- ullet k is the treatment and is determined by (i,j)
- ullet $\epsilon_{ijk} \sim NID(0, \sigma^2)$

ANOVA table

source	d.f.	SS
Block 1	r-1	$r_{^{\scriptstyle\Sigma}i}(ar{Y}_{i\cdots}-ar{Y}_{\cdots})^2$
Block 2	r-1	$r \Sigma_{m{j}} (ar{Y}_{m{\cdot}m{j}} ar{Y}_{m{\cdot}})^2$
Treatment	r-1	$r ar{ar{Y}}_{k} (ar{Y}_{\cdot \cdot \cdot k} - ar{Y}_{\cdot \cdot \cdot \cdot})^2$
Error	(r-1)(r-2)	SS_{error}
Total	r^2-1	$\Sigma_{m{i}} \Sigma_{m{j}} (Y_{m{i}m{j}.} - ar{m{Y}})^2$

where $ar{Y}_{\cdots}=r^{-2}\,oldsymbol{ iny 2}_{i}\,oldsymbol{ iny 2}_{j}\,Y_{ij}_{\cdot}$ and

- Inference
 - Tests for treatment based on usual F-test
 - CIs for means, pairwise comparisons, contrasts as in one-way ANOVA