Connection Coefficients

Here, a = alpha, m = mu, n = nua = 0

-r/rho**2 - M/Delta + r/Delta

a**2*sin(2*theta)/(2*rho**2)

-r/rho**2 - M/Delta + r/Delta

a**2*sin(2*theta)/(2*rho**2)

a = 1

-Delta*(Delta*r + rho**2*(M - r))/rho**6

r/rho**2 + M/Delta - r/Delta

```
-a**2*sin(2*theta)/(2*rho**2)
                                  0
                                 0
                   -a**2*sin(2*theta)/(2*rho**2)
                          -Delta*r/rho**2
                                  0
                                 0
                                 0
                                  0
Delta^*r^*(a^{**}2 + r^{**}2)^*(a^{**}2 + r^{**}2 - 2^*rho^{**}2)^*sin(theta^{**}2)/rho^{**}6
               Delta*a**2*sin(2*theta)/(2*rho**6)
                                 0
                                  0
                                  0
                                 0
                a**2*sin(2*theta)/(2*Delta*rho**2)
                              r/rho**2
                                  0
                                 0
                              r/rho**2
                   -a**2*sin(2*theta)/(2*rho**2)
                                  0
                                 0
                                 0
                                  0
```

a = 2

(a**2 + r**2)**2*(-a**2*(cos(theta*(theta - 2)) - cos(theta*(theta + 2)))/4 - rho**2*theta*cos(theta**2))/rho**6

a = 3

r*(-a**2 - r**2 + 2*rho**2)/(rho**2*(a**2 + r**2))

a**2*sin(2*theta)/(2*rho**2) + theta/tan(theta**2)

r*(-a**2 - r**2 + 2*rho**2)/(rho**2*(a**2 + r**2))

a**2*sin(2*theta)/(2*rho**2) + theta/tan(theta**2)