

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭61-76440

⑫ Int. Cl.

C 07 C 65/32
A 61 K 31/165
31/19
31/235
31/335
31/655
C 07 C 69/78
103/76
103/84
105/00
107/06
C 07 D 303/38
303/40

識別記号

ADV

庁内整理番号

7144-4H
7330-4C
7330-4C
7330-4C
7252-4C
7055-4H
7144-4H
7144-4H
8318-4H
8318-4H
6640-4C
6640-4C

⑬ 公開 昭和61年(1986)4月18日

審査請求 未請求 発明の数 3 (全10頁)

⑭ 発明の名称 安息香酸誘導体

⑮ 特願 昭59-197089

⑯ 出願 昭59(1984)9月19日

⑰ 発明者 首藤 純一 東京都目黒区東山2丁目25 三宿住宅6-102
⑯ 出願人 首藤 純一 東京都目黒区東山2丁目25 三宿住宅6-102
⑯ 代理人 弁理士 砂川 五郎 外1名

明細書

1. 発明の名称 安息香酸誘導体

2. 特許請求の範囲

(1) 一般式 (I)

式中 R₁, R₂, R₃, R₄, 及び R₅ は水素原子、低級アルキールを示し、またそれらの隣接する2つのものは両者が一緒になって5~8員環のシクロアルキール基を形成することができるが、全部のものが同時に水素原子であつてはならず、R₆ は水酸基、低級アルコキシ基、-NR₇R₈ 基(式中R₇とR₈は水素原子又は低級アルキール基を示す)を意味し、Xは

(式中R₇とR₈は水素原子又は低級アルキール

基を示す)を意味する、で示される安息香酸誘導体

(2) (a) 一般式 (I) の基Xが-C(=O)R₇-C(=O)R₈-基を示す化合物を対応するアセトフェノン誘導体とテレフタルアルデヒド酸エステル又はその誘導体とを塩基の存在下縮合させることにより、

を示す化合物を対応するX基が

を示す化合物をエポキシ化剤を用いて酸化することにより、

(c) Xが-N=N-基である化合物は対応するアニリンの誘導体を酸触媒の存在又は非存在下でバラニトロソ安息香酸エステルと縮合することにより、

(d) Xが-N(=O)-基または-N=N(=O)-基である化合物は対応するフェニルヒドロキシアミンとバラニトロソ安息香酸又はその誘導体とを(c)項におけると同様に縮合させることにより

(e) Xが $-N=N(O)-$ 基または $-N(O)=N-$ 基である化合物を対応するニトロソベンゼン誘導体とバラヒドロキシアミノ安息香酸又はその誘導体と(c)項におけると同様に結合させることにより

(f) Xが $-N(R_7)-C(O)-$ 基である化合物は対応するアニリン誘導体をテレフタル酸の反応性誘導体(酸ハロゲニド又はエステル等)でアシル化することにより

(g) Xが $-C(O)-N(R_7)-$ である化合物はバラアミノ安息香酸又はその誘導体を、対応する安息香酸の反応性誘導体(酸ハロゲン又はエステル等)で常法によりアシル化することにより製造し、

その様にして得られた化合物を所望により加水分解することを特徴とする一般式(I)

(式中 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 及びXは上記の意味を有する)で示される安息香酸誘導体の製造方法

- 3 -

で示される安息香酸誘導体等が薬理学的に価値有る化合物であって、良性又は悪性の腫瘍の局所的又は全身的治療並びに上記疾患の予防に使用できることが報告せられている。それら化合物は、また、にきび、かいせん、その他の肥厚するか又は病理的に変化した角化を伴う皮膚病やアレルギー又は炎症性疾患の全身的又は局所的治療に適している。

発明の構成:

いま、一般式(I)

式中 R_1 , R_2 , R_3 , R_4 , 及び R_5 は水素原子、低中級アルキルを示し、またそれらの隣接する2つのものは両者が一緒になって5~8員環のシクロアルキル基を形成することができるが、全部のものが同時に水素原子であってはならず、 R_6 は水酸基、低級アルコキシ基、 $-NR_7R_8$ 基(式中 R_7 と R_8 とは水素原子又は低級アルキル基を示す)をそしてXは

(3) 一般式(I)で示される安息香酸誘導体を含有することを特徴とする癌細胞株に白血病細胞の分化誘導剤

3. 発明の詳細な説明

発明の目的:

この発明は医薬として有用な新規な有機化合物を開発し治療界に提供しようとするものである。

従来の技術:

癌治療法は外科的療法と直接或は間接に癌細胞を死滅させる化学療法とに大別することができるが、更に第3の方法として癌細胞の分化を促し説明させる、という興味深い方法が見出されている。

(a) Proc. Natl. Acad. Sci. USA 77 2936 (1980) (b) J. Med. Chem. 25 1269 (1982)、Blood, 62 709 (1983). (c) 細胞工学 2 No. 12 (1983).

(d) THE RECEPTORIS Vol. 1-2, M.B. Sporn et al ACADEMIC PRESS 1984参照]

ビタミンA酸や上記参考文献(d)並びにドイツ特許公開公報 28 54 354 により式

- 4 -

を意味する、で示される安息香酸誘導体が癌細胞株に白血病細胞の分化を形態的及び機能的に促進させる化合物であつて、上記の第3の方法による癌治療に使用出来ることがわかった。

即ち、本発明の化合物について、ヒト急性前骨髓性白血病HL-60細胞を用いて多粒球への分化を核の形態及びニトロブルーテトラゾリウム(NBT)の還元能によって判定する癌細胞の分化誘導試験を行ったが、その方法は以下のとおりである。HL-60細胞を5%牛胎児血清を含む RPMI 1640培地にて継代培養し、対数増殖期の細胞が細胞数 3×10^4 / mlとなるように同上培地で希釈調製し、次いで所定の濃度の被験薬物を加え、5日間培養後に細胞を固定し、Wright-Giemsa染色を

上記の様にして得られたカルボン酸にメタノール中でジアゾメタンのエーテル溶液を加えることにより、メチルエスチルが定量的に得られた。

融点 119~120.5°C

実施例 2

100mg (0.287mmol) の p -[(E)-2-(5, 6, 7, 8-テトラヒドロ-5, 5, 8, 8-テトラメチル-2-ナフチル) エチニル] 安息香酸メチルエスチルを 5ml のクロロホルムに溶かし、50mg (0.288mmol) の m-クロル過安息香酸をクロロホルムに溶かした溶液に加えて 2 時間還流する。原料消失後、反応液を冷却して不溶物を滤去し、1N 塩酸ソーダ水溶液、1N 硝酸ソーダ水溶液及び飽和食塩水で順次洗った後、無水硫酸ソーダで脱水し溶媒を留去すれば、エポキシ体 (I) 式 (R_3 と R_4 は $-C(CH_3)_2CH_2CH_2C(CH_3)_2-$ で X は $-CH-CH-$ 基、 $R_6 = OCH_3$) が得られる。融点 163~168°C
(收率 92.0%)

このエポキシ体 (エスチル) をエタノール中 1N

苛性ソーダで加水分解し塩酸で中和した後、酢酸エチルで抽出し、溶媒を留去し酢酸エチルから再結することにより対応するカルボン酸を得た。

融点 215~216°C

元素分析 $C_{23}H_{26}O_3$ として

計算値 (%) C: 78.82, H: 7.48

実験値 (%) C: 79.03, H: 7.74

実施例 3

5, 5, 8, 8-テトラメチル-5, 6, 7, 8-テトラヒドロナフタリン (1.2g) を、硫酸中で硝酸-硫酸によりニトロ化することにより、2-ニトロ誘導体を得た。m.p. 71~72°C (0.9g、メタノールから再結晶)。このニトロ体をアルコール中 $Pd-C$ を触媒として接触還元し、2-アミノ-5, 5, 8, 8-テトラメチル-5, 6, 7, 8-テトラヒドロナフタリンを得た。m.p. 72~73°C (ヘキサンから再結晶)。

このアミノ体 (0.2g) を酢酸 (10ml) に溶かし、トリクロロ酢酸 (0.1g) を加え、少過剰の

- 11 -

4-ニトロソ安息香酸メチルエスチルを混合し、室温下 2 時間放置する。メタノールを留去し、メタノールから再結晶することにより、融点 118.5~119.5°C のアゾ化合物 (R_3 、 $R_4 = -C(CH_3)_2CH_2CH_2C(CH_3)_2-$ 、 $R_6 = OCH_3$ 、 $X = -N=N(O)-$) 0.32g を得る。

元素分析 $C_{22}H_{26}N_2O_2$

計算値 C: 75.40, H: 7.48, N: 7.98

実験値 C: 75.28, H: 7.29, N: 7.81

上記のアゾ化合物をメタノール中、1N の苛性ソーダで加水分解し、例 2 と同様に、あと処理することにより対応するカルボン酸を得ることが出来た。融点 287~288°C

実施例 4

実施例 3 で得られたニトロ体 (100mg) を、含水テトラヒドロフラン (30ml) に溶かし、アルミニウムアルガム (アルミホイル 300mg と $HgCl_2$ 5% 水溶液 30ml から作る) により還元し、対応するヒドロキシルアミン誘導体を得る。これを精製することなしに、少過剰の 2-ニトロソ安息香酸メチルエスチルと反応させて、アゾキシ誘導体

- 12 -

(R_3 、 $R_4 = -C(CH_3)_2CH_2CH_2C(CH_3)_2-$ 、 $R_6 = OCH_3$ 、 $X = -N=N(O)-$) を得る。m.p. 114~115°C (ヘキサンから再結晶)。MASS: $M^+ = 366$

実施例 5

実施例 3 によりえられた 2-アミノ-5, 5, 8, 8-テトラメチル-5, 6, 7, 8-テトラヒドロナフタリン (1mmol) を、テレフタル酸グリドモノメチルエスチル (1.1mmol) とビリジン中常温で反応させる、定量的収率で、一般式 (I) (R_3 、 $R_4 = -C(CH_3)_2CH_2CH_2C(CH_3)_2-$ 、 $X = NH-CO-$ 、 $R_6 = OCH_3$) で示される化合物が得られた。

融点 211~212°C (メチレンクロリドヘキサンから再結晶)。

このものをメタノールに溶かし、1N 苛性ソーダにより室温で 2 時間反応させ、稀塩酸で中和し、酢酸エチルで抽出し、溶媒を留去して得られる結晶を酢酸エチル-ヘキサンから再結し、m.p. 205.5~206.5°C の (I) 式中 (R_3 、 $R_4 = -C(CH_3)_2CH_2CH_2C(CH_3)_2-$ 、 $X =$

$-\text{NH}-\text{CO}-$ 、 $\text{R}_6 = \text{OH}$) で示されるテレフタ
ル酸アミド誘導体を得た。

実施例 6

3、4-ジエチル安息香酸クロリド (1.1mmol)
を4-アミノ安息香酸メチルエステル (1mmol)
と無水ピリジン 10ml 中、室温で5時間反応させ
る。水を加えてクロロホルムで抽出し、希塩酸、
ついで水で洗いクロロホルムを留去する。生成物
をメタノールから再結晶し、(I)式 (R_3, R_4
 $= \text{Et}$ 、 $\text{X} = -\text{CO}-\text{NH}-$ 、 $\text{R}_6 = \text{OCH}_3$)
m.p. 162~165°Cを得る。收率定量的。

同様にして多数の化合物が合成されたが、その中
No. 1~87 (上記実施例のものも含む) の化
合物が第一表に一括表示されている。表中合成法
の欄の a) - g) の記号はそれぞれ特許請求の範
囲 1 中に記載の合成方法 a) - g) がそれら化合
物の合成に使用されたことを示すものである。

No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	Anal	mp	合成分
1	H	$-\text{C}(\text{CH}_3)_2\text{CH}_2\text{CH}_2\text{C}(\text{CH}_3)_2$	H	H	OH	$-\text{C}(\text{CH}_3)_2\text{CH}_2\text{C}(\text{CH}_3)_2$	$\text{C}_{24}\text{H}_{28}\text{O}_3$	202.5-203.5	b	
2	H	H	$-(\text{CH}_3)_2\text{CH}_2$	H	OCH_3	"	$\text{C}_{25}\text{H}_{30}\text{O}_3$	137.5-139	b	
3	H	H	i-Pr	i-Pr	H	OCH_3	"	$\text{C}_{23}\text{H}_{28}\text{O}_3$	112-113	b
4	H	H	Et	Et	H	OH	"	$\text{C}_{20}\text{H}_{22}\text{O}_3$	145-148	b
5	H	Et	Et	H	OH	$-\text{C}(\text{CH}_3)_2\text{CH}_2$	$\text{C}_{20}\text{H}_{20}\text{O}_3$	178.5-180	a	
6	H	i-Pr	i-Pr	H	H	OH	"	$\text{C}_{22}\text{H}_{24}\text{O}_3$	197.5-199	a
7	tBu	H	H	tBu	H	OH	"	$\text{C}_{24}\text{H}_{28}\text{O}_3$	215-216	a
8	H	tBu	H	tBu	H	OH	"	$\text{C}_{24}\text{H}_{28}\text{O}_3$	202-203.5	a
9	H	H	tBu	H	H	OH	"	$\text{C}_{20}\text{H}_{20}\text{O}_3$	245-246	a
10	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{22}\text{O}_3$	119-120.5	a	
11	H	H	$-(\text{CH}_3)_2\text{CH}_2$	$-(\text{CH}_3)_2\text{CH}_2$	H	OH	"	$\text{C}_{24}\text{H}_{26}\text{O}_3$	203-204	a
12	"	"	"	"	OCH_3	"	$\text{C}_{28}\text{H}_{34}\text{O}_3$	128-129.5	a	
13	"	"	"	"	OCH_3	"	$\text{C}_{25}\text{H}_{28}\text{O}_3$	93.5-94	a	
14	"	"	"	"	NH_2	"	$\text{C}_{24}\text{H}_{27}\text{O}_2\text{N}$	208.5-209	a	
15	H	Et	Et	H	H	OH	$-\text{NH}-\text{C}(=\text{O})-\text{C}_{18}\text{H}_{19}\text{NO}_3\cdot\text{H}_2\text{O}$	259.5-260.5	f	
16	H	H	i-Pr	H	H	OH	"	$\text{C}_{17}\text{H}_{17}\text{NO}_3$	>300	f
17	H	i-Pr	H	H	H	OH	"	$\text{C}_{17}\text{H}_{17}\text{NO}_3$	103.5-105	f
18	"	"	"	"	OCH_3	"	$\text{C}_{18}\text{H}_{19}\text{NO}_3$	104-106	f	
19	i-Pr	H	H	H	H	OH	"	$\text{C}_{17}\text{H}_{17}\text{NO}_3$	269.5-271	f
20	"	"	"	"	OCH_3	"	$\text{C}_{18}\text{H}_{19}\text{NO}_3$	165.5-167.5	f	
21	H	tBu	H	H	H	OH	"	$\text{C}_{18}\text{H}_{19}\text{NO}_3$	Amorph	f
22	i-Pr	H	H	H	i-Pr	OH	$\text{C}_{20}\text{H}_{23}\text{NO}_3\cdot\text{H}_2\text{O}$	>300	f	
23	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{25}\text{NO}_3$	292-293	f	
24	i-Pr	H	H	i-Pr	H	OH	"	$\text{C}_{20}\text{H}_{23}\text{NO}_3$	230-231.5	f
25	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{25}\text{NO}_3$	183-184.5	f	
26	i-Pr	H	i-Pr	H	H	OH	$\text{C}_{20}\text{H}_{23}\text{NO}_3\cdot\text{H}_2\text{O}$	244.5-246	f	
27	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{25}\text{NO}_3$	165-166.5	f	
28	H	i-Pr	H	i-Pr	H	OH	"	$\text{C}_{20}\text{H}_{23}\text{NO}_3$	256.5-258.5	f
29	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{25}\text{NO}_3$	151-152	f	
30	H	i-Pr	i-Pr	H	H	OH	"	$\text{C}_{20}\text{H}_{23}\text{NO}_3$	220.5-221.5	f
31	"	"	"	"	OCH_3	"	$\text{C}_{21}\text{H}_{25}\text{NO}_3$	137.5-138	f	

No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	Anal	mp	合成法
32	H	cyclo hexyl-	H	H	H	OH	-NH-C(=O)-	C ₂₀ H ₂₁ NO ₃	237-237.5	f
33	"	"	"	"	OCH ₃	"		C ₂₁ H ₂₃ NO ₃	157-158	f
34	H	H	-(CH ₃) ₂ C(OH) ₂		H	OCH ₃	"	C ₂₃ H ₂₇ NO ₃	211-212	f
35	H	H	-(CH ₃) ₂ C(OH) ₂		H	OH	"	C ₂₂ H ₂₅ NO ₃	205.5-206.5	f
36	H	H	Et	Et	H	OCH ₃	"	C ₁₉ H ₂₁ NO ₃	122-123	f
37	H	H	tBu	H	H	OCH ₃	"	C ₁₉ H ₂₁ NO ₃	182-183	f
38	"	"	1-Pr	"	"	"	"	C ₁₈ H ₁₉ NO ₃	200-202	f
39	H	H	H	tBu	H	"	"	C ₁₉ H ₂₁ NO ₃	143.5-145	f
40	"	"	C ₅ H ₉	"	"	"	"	C ₂₀ H ₂₁ NO ₃	Amorph	f
41	H	Et	H	H	H	OH	-N=N-	C ₁₅ H ₁₄ N ₂ O ₂	191.5-192	c
42	H	H	1-Pr	H	H	OH	"	C ₁₆ H ₁₆ N ₂ O ₂	266.5-268.5	c
43	H	1-Pr	H	H	H	OH	"	C ₁₆ H ₁₆ N ₂ O ₂	186.5-188.5	c
44	1-Pr	H	H	H	H	OH	"	C ₁₆ H ₁₆ N ₂ O ₂	195.5-197	c
45	H	tBu	H	H	H	OH	"	C ₁₇ H ₁₈ N ₂ O ₂	245-246	c
46	1-Pr	H	H	H	1-Pr	OH	"	C ₁₉ H ₂₂ N ₂ O ₂	Amorph	c
47	1-Pr	H	H	1-Pr	H	OH	"	C ₁₉ H ₂₂ N ₂ O ₂	192.5-193	c
48	1-Pr	H	1-Pr	H	H	OH	"	C ₁₉ H ₂₂ N ₂ O ₂	205-208	c
49	H	1-Pr	H	1-Pr	H	OH	"	C ₁₉ H ₂₂ N ₂ O ₂	201-203	c
50	H	1-Pr	1-Pr	H	H	OH	"	C ₁₉ H ₂₂ N ₂ O ₂	230.5-232	c
51	H	cyclo hexyl-	H	H	H	OH	"	C ₁₉ H ₂₀ N ₂ O ₂	248-248.5	c
52	H	H	CH ₃	H	OCH ₃	"		C ₁₅ H ₁₄ N ₂ O ₂	115-116.5	c
53	"	"	"	"	OH	"		C ₁₄ H ₁₂ N ₂ O ₂	191-193.5	c
54	H	H	1-Pr	H	H	OCH ₃	"	C ₁₇ H ₁₆ N ₂ O ₂	91.5-92	c
55	H	H	Et	Et	H	OCH ₃	"	C ₁₈ H ₂₀ N ₂ O ₂	44-44.5	c
56	"	"	"	"	OH	"		C ₁₇ H ₁₆ N ₂ O ₂	215-216	c
57	H	H	-(CH ₃) ₂ C(OH) ₂		H	OCH ₃	"	C ₂₂ H ₂₆ N ₂ O ₂	118.5-119.5	c
58	"	"	"	"	OH	"		C ₂₁ H ₂₄ N ₂ O ₂	287-288	c
59	H	H	H	tBu	H	OCH ₃	"	C ₁₈ H ₂₀ N ₂ O ₂	104-105	c
60	H	H	-(CH ₃) ₂ C(OH) ₂		H	OCH ₃	C(=O)-CH(H)-O-	C ₂₄ H ₂₈ O ₃	163-166	b
61	"	"	"	"	OH	"		C ₂₃ H ₂₆ O ₃	215-216	b
62	H	H	H	tBu	H	OH	"	C ₁₉ H ₂₀ O ₃	199-200.5	b
63	H	H	-(CH ₃) ₂ C(OH) ₂		H	OCH ₃	+ -N=N- O-	C ₂₂ H ₂₆ N ₂ O ₃	114-115	d,e

No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	Anal	mp	合成法
64	H	H	$-(\text{CH}_3)_2\text{CCH}_2$ $-(\text{CH}_3)_2\text{CCH}_2$	H	OCH ₃	$-\text{N}-\text{CO}-$ CH_3	C ₂₄ H ₂₉ NO ₃	117-118	f	
65	H	H	Et	Et	H	OCH ₃	-CO-NH-	C ₁₉ H ₂₁ NO ₃	162-165	g
66	H	H	tBu	tBu	H	OH	$-\text{CH}-\text{CH}-$ O	C ₁₉ H ₂₀ O ₃	207-207.5	b
67	H	H	$-(\text{CH}_3)_2\text{CCH}_2$ $-(\text{CH}_3)_2\text{CCH}_2$	H	OCH ₃	-CO-NH-	C ₂₃ H ₂₇ NO ₃	205-207	g	

表2

R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	濃度 (M)	有効殺虫 (%)	無効殺虫 (%)	殺虫率 (%)(最高効率)	NET (%)
コントロール							-	98	2	0	1
H	H	tBu	H	H	OH	$-\text{C}=\text{CH}-\text{CH}-\text{O}-$	10^{-9}	45	48	6	68
H	Et	Et	H	H	OCH ₃	"	10^{-8}	38	54	8	72
H	$-(\text{CH}_3)_2\text{CCH}_2$	$-(\text{CH}_3)_2\text{CCH}_2$	H	H	OH	"	10^{-10}	2	86	12	95
H	"	"	H	H	OCH ₃	"	10^{-9}	5	91	4	97
H	tBu	H	tBu	H	OH	"	10^{-10}	2	82	16	95
H	tBu	H	H	H	OCH ₃	$-\text{CH}=\text{CH}-\text{O}-$	10^{-8}	20	69	9	70
H	$-(\text{CH}_3)_2\text{CCH}_2$	$-(\text{CH}_3)_2\text{CCH}_2$	H	H	OCH ₃	"	10^{-8}	19	63	18	78
"	"	"	"	"	$-\text{C}=\text{CH}-$	$\text{CH}_3\text{O}-$	10^{-8}	12	79	9	81
"	"	"	"	"	$-\text{N}=\text{N}-$		10^{-9}	41	49	10	60
H	i-Pr	i-Pr	H	H	OH	"	10^{-8}	39	50	11	55
H	$-(\text{CH}_3)_2\text{CCH}_2$	$-(\text{CH}_3)_2\text{CCH}_2$	H	H	OH	$-\text{N}=\text{N}-\text{O}-$	10^{-8}	40	53	7	70
"	"	"	"	"	$-\text{NH}-\text{CO}-$		10^{-10}	3	78	19	98
"	"	"	"	OCH ₃	"		10^{-9}	3	85	12	97
H	i-Pr	i-Pr	H	H	OH	"	10^{-8}	7	82	11	90

手 槟 植 正 書

昭和59年10月24日

特許庁長官 志賀 学殿

1. 事件の表示

昭和59年特許願第197089号

2. 発明の名称

安息香酸誘導体

3. 補正をする者

事件との関係：特許出願人

住所 東京都目黒区東山2-25 三宿住宅6-102

氏名 首藤 紘一

4. 代理人

住所 東京都渋谷区神宮前2-2-39-417

電話 (402) 9088

氏名 弁理士(6334)砂川 五郎

住所 同 所

氏名 弁理士(6403)砂川 萬里

5. 補正の対象

明細書の「発明の詳細な説明」の欄

6. 補正の内容

明細書の添付の表1第3項目の末行に次記一行を加入する。

「68 | H H // H OH // C₂₂H₂₅NO₃ 256-257 g」