Robust Real Rate Rules

Tom Holden

Deutsche Bundesbank

Paper and slides available on https://www.tholden.org/.

The views expressed in this paper are those of the author and do not represent the views of the Deutsche Bundesbank, the Eurosystem or its staff.

Motivation: Fragility of the Taylor principle

- The Taylor principle requires the response of nominal rates to inflation to be greater than one.
 - Sufficient for determinacy in simple models. (Guarantees no sunspots.)
- Insufficient if there is e.g.:
 - A fraction of hand-to-mouth households (Gali, Lopez-Salido & Valles 2004).
 - Firm-specific capital (Sveen & Weinke 2005).
 - High government spending (Natvik 2009).
 - A positive inflation target (Ascari & Ropele 2009), particularly with trend growth + sticky wages (Khan, Phaneuf & Victor 2019).
- Inverts if there are e.g.:
 - Enough hand-to-mouth households (Bilbiie 2008).
 - Certain financial frictions (Manea 2019).
 - Non-rational expectations (Branch & McGough 2010; 2018).
 - Active fiscal policy (Leeper & Leith 2016; Cochrane 2022).

This paper

- Monetary rules with a unit response to real rates guarantee determinate inflation under the weakest possible assumptions on the rest of the economy.
 - o Robust to household heterogeneity, non-rational households/firms, active fiscal policy, missing transversality conditions, existence/slope of the Phillips curve, etc.
 - Fisher equation is key for monetary transmission.

- Enable the determinate robust implementation of an arbitrary path for inflation.
 - So can match observed inflation dynamics, or any model's optimal policy.

- Easy to implement in practice, with bonds of any maturity.
 - Using perpetuities answers Cochrane (2011) critique.
 - Also solves all ZLB determinacy and steady-state multiplicity issues.

A first example

- Nominal bond: \$1 bond purchased at t returns $(1 + i_t)$ at t + 1.
- Real bond (e.g., TIPS): \$1 bond purchased at t returns $(1 + r_t + \pi_{t+1})$ at t + 1.
 - o π_{t+1} is realized inflation between t and t+1.
- Arbitrage between these two implies the Fisher equation:

$$i_t = r_t + \mathbb{E}_t \pi_{t+1}$$

Abstracting from inflation risk / term / liquidity premia for now.

• Central bank uses the "real rate rule":

$$i_t = r_t + \phi \pi_t$$

• With $\phi > 1$. Then:

$$\mathbb{E}_t \pi_{t+1} = \phi \pi_t$$

• Unique non-explosive solution, $\pi_t = 0$. Determinate inflation!

Why is this robust? No need for Euler!

- Does not require an aggregate Euler equation to hold.
 - Robust to heterogeneous households and hand-to-mouth agents.
 - Robust to non-rational household expectations.

- For the Fisher equation to hold just need either:
 - o Two deep pocketed, fully informed, rational agents in the economy, OR
 - A large market of rational agents with dispersed information. (Hellwig 1980; Lou et al. 2019)

- Much more likely financial market participants have RE than households.
 - o Can even partially relax the RE requirement for financial market participants.

Why is this robust? No need for Phillips!

- Does not require an aggregate Phillips curve to hold.
 - o Robust to slope of the Phillips curve (if it exists).
 - Robust to forward/backward looking degree of Phillips curve equation.
 - Robust to non-rational firm expectations.

- If CB is unconcerned with output and unemployment, they do not need to care about the Phillips curve or its slope.
 - Under this monetary rule, the Phillips curve is irrelevant for inflation dynamics.
 - The Phillips curve (if it exists) determines the output gap, given inflation.

Only require that at least some prices are adjusted each period using current information.

Real rate rules elsewhere in the literature

- Papers with rules responding to real rates, for analytic convenience e.g.:
 - o Adão, Correia & Teles (2011), Holden (2019), Lubik, Matthes & Mertens (2019).
- Closest prior work: Cochrane (2017; 2018; 2022) on spread targeting.
 - o Cochrane briefly considers a rule of the form $i_t = r_t + \phi \pi_t$ before setting $\phi = 0$.
 - Determinacy in Cochrane's world comes from the Fiscal Theory of the Price Level.
- Other related work:
 - Hetzel (1990) proposes using nominal bond, real bond spread to guide policy.
 - Dowd (1994) proposes targeting the price of price level futures contracts.
 - o Hall & Reis (2016) propose making interest on reserves a function of price level deviations from target, e.g. nominal return from \$1 of $\$(1 + r_t) \frac{p_{t+1}}{p_t^*}$ or $\$(1 + i_t) \frac{p_t}{p_t^*}$.
- Large literature on rules tracking efficient ("natural") real interest rate.
 - o E.g., Cúrdia et al. (2015). Very different idea.

Real rate rules in non-linear models

Nominal and real bond pricing:

$$I_t \mathbb{E}_t \frac{\Xi_{t+1}}{\Pi_{t+1}} = 1, \qquad R_t \mathbb{E}_t \Xi_{t+1} = 1$$

Non-linear real rate rule:

$$I_t = R_t \Pi \left(\frac{\Pi_t}{\Pi}\right)^{\phi}$$

• So:

$$\mathbb{E}_t \frac{\Xi_{t+1}}{\mathbb{E}_t \Xi_{t+1}} \frac{\Pi}{\Pi_{t+1}} = \left(\frac{\Pi}{\Pi_t}\right)^{\phi}$$

- $\Pi_t = \Pi$ is always one solution of this equation! Always locally unique.
 - o Approximately globally unique under weak assumptions: there exists $\overline{Z} \geq 1$ such that for all sufficiently high ϕ , $1 \leq \frac{\Pi}{\Pi_t} \leq \overline{Z}^{\frac{1}{\phi-1}} \to 1$ as $\phi \to \infty$. So, for large ϕ , $\Pi_t \approx \Pi$.
 - \circ Under slightly stronger restrictions on the SDF, $\Pi_t = \Pi$ is globally unique solution for all sufficiently high ϕ .

Monetary policy shocks

• Suppose the CB uses the rule:

$$i_t = r_t + \phi \pi_t + \zeta_t$$

• with $\phi > 1$, and ζ_t drawn from an AR(1) process with persistence ρ .

• Then from the Fisher equation:

$$\mathbb{E}_t \pi_{t+1} = \phi \pi_t + \zeta_t$$

- Unique solution: $\pi_t = -\frac{1}{\phi \rho} \zeta_t$.
 - Contractionary (positive) monetary policy shocks reduce inflation.
 - \circ If the CB is more aggressive (ϕ is larger) inflation is less volatile.
 - Can understand inflation dynamics without knowing the rest of the economy.

Explaining observed inflation dynamics

- Large literature finds no role for the Phillips curve in forecasting inflation.
 - Atkeson & Ohanian (2001), Ang, Bekaert & Wei (2007), Stock & Watson (2009), Dotsey, Fujita & Stark (2018).
 - \circ E.g., in post-1984 period, Dotsey, Fujita & Stark (2018) find that an IMA(1,1) model beats Phillips curve based forecasts (both conditionally and unconditionally).
 - One theoretical explanation: McLeay & Tenreyro (2019).

- Also: Miranda-Agrippino & Ricco (2021):
 - Contractionary monetary policy shock causes immediate fall in the price level.
 - Delayed impact on unemployment.

- All supportive of models in which causation in PC only runs in one direction: from inflation to the output gap.
 - As here!

Output dynamics in a simple model

• As before, CB sets $i_t = r_t + \phi \pi_t + \zeta_t$, so $\pi_t = -\frac{1}{\phi - \rho} \zeta_t$.

• Rest of model 1: Phillips curve (PC), with mark-up shock ω_t :

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa x_t + \kappa \omega_t$$

• Rest of model 2: Discounted/compounded Euler equation (EE) (Bilbiie 2019), n_t exogenous natural rate ($\delta = 1$, $\zeta =$ EIS recovers standard Euler equation):

$$x_t = \delta \mathbb{E}_t x_{t+1} - \varsigma (r_t - n_t)$$

- PC implies: $x_t = -\frac{1}{\kappa} \frac{1-\beta\rho}{\phi-\rho} \zeta_t \omega_t$. x_t does not help forecast inflation as $\mathbb{E}_t \pi_{t+1} = \rho \pi_t$.
 - o Once you know π_t , there is no extra useful information in x_t .

Real rate dynamics in a simple model

• In the model of the last slide, if ω_t is IID, EE implies:

$$r_t = n_t + \frac{1}{\varsigma} \left[\frac{1}{\kappa} \frac{(1 - \beta \rho)(1 - \delta \rho)}{\phi - \rho} \zeta_t + \omega_t \right]$$

- Derived without solving EE forward!
 - \circ Implies degree of discounting/compounding (δ) has no impact on determinacy.
 - Also implies robustness to missing transversality conditions.
 - Contrasts with Bilbiie (2019): if $\zeta > 0$ and $\beta \leq 1$, with a standard Taylor rule, $\phi > 1$ is only sufficient for determinacy if $\delta \leq 1$.
 - \circ Contrasts with Bilbiie (2008): if $\delta = 1$ and $\varsigma < 0$, with a standard Taylor rule, $\phi > 1$ is neither necessary nor sufficient for determinacy.

- Under real rate rule, $\phi > 1$ is always necessary and sufficient! (Given $\phi \ge 0$.)
 - \circ Robust to lags in EE and PC. (PC lag may reduce persistence of effect of monetary shocks on x_t !)

Responding to other endogenous vars

In the model:

$$\begin{split} i_t &= r_t + \phi \pi_t + \phi_x x_t + \zeta_t \\ \pi_t &= \tilde{\beta} (1 - \varrho_\pi) \mathbb{E}_t \pi_{t+1} + \tilde{\beta} \varrho_\pi \pi_{t-1} + \kappa x_t + \kappa \omega_t \\ x_t &= \tilde{\delta} (1 - \varrho_x) \mathbb{E}_t x_{t+1} + \tilde{\delta} \varrho_x x_{t-1} - \varsigma(r_t - n_t) \end{split}$$

- o If $\kappa > 0$, $\phi_{\kappa} \ge 0$ and $\tilde{\beta} \in [0,1]$, then $\phi_{\pi} > 1$ is sufficient for determinacy!
- o Real rate rule still helps robustness as it disconnects EE from prices.
- More generally, $\phi_{\pi} > 1$ always sufficient for determinacy providing responses to other endogenous variables are small enough (in any model).
 - Implies robustness to non-unit responses to real rates. Other vars may proxy real rates.
- For greater robustness, replace other endogenous vars in rule with structural shocks.
 - \circ If structural shocks (e.g., ω_t) not observed can infer from structural equations.
 - If equation parameters not known, can learn in real time, still with determinacy!

Implementing arbitrary inflation dynamics

Suppose CB uses the rule:

$$i_t = r_t + \mathbb{E}_t \pi_{t+1}^* + \phi(\pi_t - \pi_t^*)$$

• π_t^* : an exogenous stochastic process, possibly a function of economy's other shocks.

- So, from the Fisher equation: $\mathbb{E}_t(\pi_{t+1} \pi_{t+1}^*) = \phi(\pi_t \pi_t^*)$.
- With $\phi > 1$, unique, determinate solution: $\pi_t = \pi_t^*$.
- The CB can hit an arbitrary path for inflation!
 - E.g., optimal policy. So real rate rules can attain highest possible welfare.
 - o And real rate rules can explain any observed inflation dynamics.

• Related literature on implementation of optimal policy: Svensson & Woodford (2003), Dotsey & Hornstein (2006), Evans & Honkapohja (2006), Evans & McGough (2010).

Avoiding "over determinacy"

- If price level is determinate independent of MP, then $\phi > 1$ can mean explosive π_t .
 - o E.g., true if fiscal policy is active (real surpluses do not respond to debt).
 - \circ With one period debt, active fiscal, flex. prices: $\pi_t \mathbb{E}_{t-1}\pi_t = -\varepsilon_{s,t}$.
 - \circ So, with real rate rule: $\pi_t = \phi \pi_{t-1} + \varepsilon_{\zeta,t-1} \varepsilon_{s,t}$. Explosive!
- This is a knife edge result.
 - o In any model: $\eta_t \coloneqq \pi_t \mathbb{E}_{t-1}\pi_t = \alpha \varepsilon_{\zeta,t} + \nu_t$, where $\mathbb{E}_{t-1}\nu_t \varepsilon_{\zeta,t} = 0$ and $\mathbb{E}_{t-1}\nu_t = 0$.
 - o From RRR and Fisher: $\alpha \phi e_t = \alpha \mathbb{E}_t e_{t+1}$, where $e_t \coloneqq \mathbb{E}_t \pi_{t+1}$.
 - o If $\alpha \neq 0$ (as in data!), then $e_t = 0$ is unique stationary soln, so $\eta_t = \pi_t = \alpha \varepsilon_{\zeta,t} + \nu_t$. Stable! Determinate!
 - \circ Explosions only unavoidable if MP shock has no contemporaneous impact on π_t !
- With active fiscal policy, geometric coupon debt gives a stable π_t solution with $\phi > 1$.
 - Still consistent with transversality! ↑ bubble in debt price balanced by ↓ quantity. Initial debt price jumps.
 - o With passive MP this implies multiplicity, so FTPL does not guarantee uniqueness.

Practical implementation: Setup

- Markets in short maturity inflation protected securities may be illiquid or unavailable.
 - Suppose instead they instead target five-year returns.
 - Long maturities may have substantial risk/term/liquidity premia.
 - Extra complication: Inflation may be observed with a lag. One month for US CPI.

Notation:

- o i_t : nominal yield per period on a five-year sovereign (nominal) bond at t.
- o r_t : real yield per period on a five-year sovereign inflation protected bond at t.
- o T: number of periods in five years. E.g., if t is measured in months, T = 60.
- o *L*: information lag. Market participants use the t-L information set in period t.
- o v_{t-L} risk (etc.) premia on five-year nominal bonds relative to five-year real bonds at t. (Lagged subscript as participants use t-L date variables at t.)
- $\circ \bar{\nu}_{t-L}$ central bank's period t belief about level of ν_{t-L} (possibly correlated with ν_{t-L}).

Practical implementation: Maths

Fisher equation:

$$i_t - r_t = \nu_{t-L} + \mathbb{E}_{t-L} \frac{1}{T} \sum_{k=1}^{T} \pi_{t+k}$$

CB uses the rule:

$$i_t - r_t = \bar{\nu}_{t-L} + \mathbb{E}_{t-L} \frac{1}{T} \sum_{k=1}^{T} \pi_{t+k}^* + \phi(\pi_{t-L} - \pi_{t-L}^*)$$

Combining implies:

$$\mathbb{E}_t \frac{1}{T} \sum_{k=1}^T (\pi_{t+k+L} - \pi_{t+k+L}^*) = (\bar{\nu}_t - \nu_t) + \phi(\pi_t - \pi_t^*)$$

• With $\phi > 1$ this has a unique solution of the form:

$$\pi_t = \pi_t^* + \mathbb{E}_t \sum_{j=0}^{\infty} A_j (\bar{\nu}_{t+j} - \nu_{t+j}), \qquad A_0 = -\frac{1}{\phi}, \qquad A_j = O\left(\phi^{-\frac{j}{T+L}}\right) \text{ as } j \to \infty$$

Practical implementation: Discussion

- CB's inflation error $\pi_t \pi_t^*$ is stationary as long as $\bar{\nu}_{t+j} \nu_{t+j}$ is stationary.
- If ϕ is large enough, $\pi_t \approx \pi_t^*$. If aggressive enough, limited knowledge of risk premia and information lags make no difference to CB's ability to hit $\pi_t = \pi_t^*$.

- Note: CB's trading desk should hold $i_t r_t$ constant between meetings.
 - \circ This requires i_t to move between meetings, in response to observed changes in r_t .
 - \circ No reason this should be significantly harder than holding i_t fixed.

- CB could also offer to exchange \$1 face value of real debt for $\$(1 + i_t r_t)$ face value of nominal, as proposed by Cochrane (2017; 2018).
- Or to buy/sell portfolios with \$1 nominal debt, -\$1 real debt for \$ $(i_t r_t)$.
- Or trade inflation swaps (which pay $\Pi_{t+1} K_t$ at t+1, with no payments at t).

Responses to Cochrane (2011) and problems of ZLB

- Cochrane (2011) argues no reason to rule out explosive NK equilibrium.
- Using a type of nominal and real perpetuities gives one resolution. Pricing:

$$Q_{I,t} = \mathbb{E}_t \frac{\Xi_{t+1}}{\Pi_{t+1}} [Q_{I,t+1} + \Pi^{t+1}], \qquad Q_{R,t} = \mathbb{E}_t \frac{\Xi_{t+1}}{\Pi_{t+1}} [Q_{R,t+1} + P_{t+1}]$$

 \circ Monetary rule, (with $\phi > \Xi^{-1}$ has opposite response to inflation than conventional):

$$\hat{Q}_{I,t} = \hat{Q}_{R,t} \left(\frac{\Pi}{\Pi_t}\right)^{-\frac{\phi}{\Xi\phi-1}}, \qquad \hat{Q}_{I,t} := \frac{Q_{I,t}}{\Pi^t}, \qquad \hat{Q}_{R,t} := \frac{Q_{R,t}}{P_t}.$$

Log-linearization:

$$\phi \pi_t = \mathbb{E}_t \pi_{t+1}, \qquad \hat{q}_{R,t} - \hat{q}_{I,t} = \mathbb{E} \mathbb{E}_t [\hat{q}_{R,t+1} - \hat{q}_{I,t+1}] + \mathbb{E}_t [\pi_{t+1}].$$

 \circ With $\phi > \Xi^{-1}$, then exploding inflation is inconsistent with finite nominal perpetuity price.

- Targeting perpetuity prices also removes all ZLB problems, as no ZUB on perpetuity prices.
 - o Intuition for unconventional sign: Suppose at ZLB for ever, then $\hat{Q}_{I,t} = \infty$. CB selling perpetuities rules this out.

Conclusion

- The Taylor principle does not guarantee determinacy with standard monetary rules.
- Real rate rules guarantee determinacy no matter the rest of the economy. Easy to implement.

• Classic determinacy results may be reinterpreted as defining "sufficiently close to a real rate rule".

- Real rate rules enable the determinate implementation of arbitrary inflation dynamics.
- As such, they can attain high welfare and explain observed dynamics.

- Also established:
 - o FTPL does not give uniqueness, and active-active policy is not necessarily explosive.
 - o Real rate rules on perpetuities give global uniqueness even with the ZLB, without imposing stationarity.

Extra slides

• But don't price setters determine inflation?

• Welfare with simple real rate rules.

References

But don't price setters determine inflation?

Suppose all firms doubled their price today. What would happen?

- The CB observes high inflation, so (e.g.) offers a deposit facility paying $i_t = r_t + \phi \pi_t > r_t$ (continuously adjusting i_t as r_t moves).
- Financial market participants still expect zero future inflation, so they are happy to deposit and receive $i_t > r_t$.
- The entirety of the money stock ends up being transferred to this deposit facility (and r_t almost certainly rises).
- Consumers have no cash ⇒ at least some goods are not sold ⇒ goods markets do not clear.
- At least some firms reduce their price until markets clear.
 - This will only occur when $\pi_t = 0$.

Welfare

• Recap: Real rate rules can determinately implement an arbitrary path for inflation, including optimal policy. Automatic that they can attain high welfare!

- Makes sense to limit to "simple" real rate rules though.
 - o "Simple" here means simple dynamics of targeted inflation.
 - Claim: Looking for optimal simple inflation dynamics is a useful approach to policy.

- Two exercises follow:
 - o MA(0), MA(1) and ARMA(1,1) inflation policy in a simple NK model. Latter is sufficient to attain unconditional optimal.
 - Examination of optimal policy in the Justiniano, Primiceri & Tambalotti (2013) model. Multiple shock ARMA(1,2) inflation policy is very close to fully optimal.

A simple NK model for policy analysis

• Look at welfare in a simple model with the Phillips curve (ω_t IID):

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa x_t + \kappa \omega_t$$

And the policy objective to minimise:

$$(1-\beta)\mathbb{E}\sum_{k=0}^{\infty}\beta^{k}(\pi_{t+k}^{2}+\lambda x_{t+k}^{2})=\mathbb{E}(\pi_{t}^{2}+\lambda x_{t}^{2})$$

Equality under the constraint that policy must be time-invariant.

• Optimal policy must have an MA(∞) representation ($\theta_1, \theta_2, ...$ TBD):

$$\pi_t = \kappa \sum_{k=0}^{\infty} \theta_k \omega_{t-k}$$

Implies objective is:

$$\mathbb{E}(\pi_t^2 + \lambda x_t^2) = \mathbb{E}[\omega_t^2] \sum_{k=0}^{\infty} \left[\kappa^2 \theta_k^2 + \lambda (\theta_k - \beta \theta_{k+1} - \mathbb{1}[k=0])^2\right]$$

Welfare of real rate rules in a simple model

- Optimising subject to $\pi_t = \pi_t^*$ being MA(0) gives the discretionary optimum with $\pi_t = \kappa \frac{\lambda}{\lambda + \kappa^2} \omega_t$ and $\pi_t + \frac{\lambda}{\kappa} x_t = 0$.
- Optimising subject to $\pi_t = \pi_t^*$ being an MA(1) gives a solution with $\pi_t = \kappa \theta_0 \omega_t + \kappa \theta_1 \omega_{t-1}$ where $\theta_0 \ge 0$ and $\theta_1 \le 0$.
 - o Thus ω_t increases π_t while reducing $\mathbb{E}_t \pi_{t+1}$, lessening output gap movements.

- Optimising subject to $\pi_t = \pi_t^*$ being an ARMA(1,1) give the unconditionally optimal solution from the prior literature (e.g. Damjanovic, Damjanovic & Nolan (2008)) with $\pi_t + \frac{\lambda}{\kappa}(x_t \beta x_{t-1}) = 0$.
 - o Optimal MA coefficient equals $-\beta \approx -0.99$. Close to the IMA(1,1) processes estimated by Dotsey, Fujita & Stark (2018) for the post-1984 period.

Policy frontiers (varying λ)

Log relative variances to ARMA(1,1) policy

Note: $\beta = 0.99$, $\kappa = 0.02$.

MA(0) and MA(1) policies generate too much inflation variance.

Optimal inflation dynamics in a richer model

Using the Justiniano, Primiceri & Tambalotti (2013) model and replication files.

Blue: actual US inflation dynamics.

Red: inflation dynamics under optimal policy and US historical shocks. Less persistent!

Simple approximation to optimal policy 1/2

• For any $\rho \in (-1,1)$, the solution for optimal inflation has a multiple shock, ARMA(1, ∞) representation:

$$\pi_t - \pi = \rho(\pi_{t-1} - \pi) + \sum_{k=0}^{\infty} \sum_{n=1}^{N} \theta_{n,k}^{(\rho)} \varepsilon_{n,t-k}$$

 $\circ \ \varepsilon_{1,t}, \dots, \varepsilon_{N,t}$ are the model's structural shocks.

• Approximate by truncating MA terms at some point: E.g. multiple shock ARMA(1, K):

$$\pi_t^{(K)} - \pi = \rho(\pi_{t-1}^{(K)} - \pi) + \sum_{k=0}^K \sum_{n=1}^N \theta_{n,k}^{(\rho)} \varepsilon_{n,t-k}$$

• Henceforth: "multiple shock ARMA" = "MSARMA".

Simple approximation to optimal policy 2/2

Proportion of the variance of optimal inflation in the Justiniano, Primiceri & Tambalotti (2013) model explained by truncating the number of MA lags.

MSARMA(1,1) explains > 90% of optimal inflation variance, MSARMA(1,2) > 95%!

References

- Adão, Bernardino, Isabel Correia & Pedro Teles. 2011. 'Unique Monetary Equilibria with Interest Rate Rules'. *Review of Economic Dynamics* 14 (3) (July): 432–442.
- Ang, Andrew, Geert Bekaert & Min Wei. 2007. 'Do Macro Variables, Asset Markets, or Surveys Forecast Inflation Better?' *Journal of Monetary Economics* 54 (4) (May 1): 1163–1212.
- Ascari, Guido & Tiziano Ropele. 2009. 'Trend Inflation, Taylor Principle, and Indeterminacy'. *Journal of Money, Credit and Banking* 41 (8): 1557–1584.
- Atkeson, Andrew & Lee E Ohanian. 2001. 'Are Phillips Curves Useful for Forecasting Inflation?' Edited by Edward J Green & Richard M Todd. *Federal Reserve Bank of Minneapolis Quarterly Review* (Winter 2001): 12.
- Bilbiie, Florin. 2008. 'Limited Asset Markets Participation, Monetary Policy and (Inverted) Aggregate Demand Logic'. Journal of Economic Theory 140 (1) (May 1): 162–196.
- ——. 2019. *Monetary Policy and Heterogeneity: An Analytical Framework*. 2019 Meeting Papers. Society for Economic Dynamics.
- Branch, William A. & Bruce McGough. 2010. 'Dynamic Predictor Selection in a New Keynesian Model with Heterogeneous Expectations'. *Journal of Economic Dynamics and Control* 34 (8) (August 1): 1492–1508.

- ——. 2018. 'Chapter 1 Heterogeneous Expectations and Micro-Foundations in Macroeconomics'. In *Handbook of Computational Economics*, edited by Cars Hommes & Blake LeBaron, 4:3–62. Handbook of Computational Economics. Elsevier.
- Cochrane, John H. 2011. 'Determinacy and Identification with Taylor Rules'. *Journal of Political Economy* 119 (3): 565–615.
- ——. 2017. 'The Grumpy Economist: Target the Spread'. *The Grumpy Economist*.
- ——. 2018. 'The Zero Bound, Negative Rates, and Better Rules' (March 2): 27.
- ——. 2022. *The Fiscal Theory of the Price Level*. Princeton University Press.
- Cúrdia, Vasco, Andrea Ferrero, Ging Cee Ng & Andrea Tambalotti. 2015. 'Has U.S. Monetary Policy Tracked the Efficient Interest Rate?' *Journal of Monetary Economics* 70: 72–83.
- Damjanovic, Tatiana, Vladislav Damjanovic & Charles Nolan. 2008. 'Unconditionally Optimal Monetary Policy'. *Journal of Monetary Economics* 55 (3) (April 1): 491–500.
- Dotsey, Michael, Shigeru Fujita & Tom Stark. 2018. 'Do Phillips Curves Conditionally Help to Forecast Inflation?' International Journal of Central Banking: 50.
- Dotsey, Michael & Andreas Hornstein. 2006. 'Implementation of Optimal Monetary Policy'. *Economic Quarterly*: 113–133.
- Dowd, Kevin. 1994. 'A Proposal to End Inflation'. The Economic Journal 104 (425): 828-840.
- Evans, George W. & Seppo Honkapohja. 2006. 'Monetary Policy, Expectations and Commitment'. *The Scandinavian Journal of Economics* 108 (1): 15–38.

- Evans, George W. & Bruce McGough. 2010. 'Implementing Optimal Monetary Policy in New-Keynesian Models with Inertia'. *The B.E. Journal of Macroeconomics* 10 (1).
- Gali, Jordi, J. David Lopez-Salido & Javier Valles. 2004. 'Rule-of-Thumb Consumers and the Design of Interest Rate Rules'. *Journal of Money, Credit, and Banking* 36 (4) (July 28): 739–763.
- Hall, Robert E & Ricardo Reis. 2016. *Achieving Price Stability by Manipulating the Central Bank's Payment on Reserves*. Working Paper. National Bureau of Economic Research.
- Hellwig, Martin F. 1980. 'On the Aggregation of Information in Competitive Markets'. *Journal of Economic Theory* 22 (3) (June 1): 477–498.
- Hetzel, Robert L. 1990. 'Maintaining Price Stability: A Proposal'. *Economic Review of the Federal Reserve Bank of Richmond* (March): 3.
- Holden, Tom D. 2019. Existence and Uniqueness of Solutions to Dynamic Models with Occasionally Binding Constraints. EconStor Preprints. ZBW Leibniz Information Centre for Economics.
- Justiniano, Alejandro, Giorgio E. Primiceri & Andrea Tambalotti. 2013. 'Is There a Trade-Off between Inflation and Output Stabilization?' *American Economic Journal: Macroeconomics* 5 (2) (April): 1–31.
- Khan, Hashmat, Louis Phaneuf & Jean Gardy Victor. 2019. 'Rules-Based Monetary Policy and the Threat of Indeterminacy When Trend Inflation Is Low'. *Journal of Monetary Economics* (March): S0304393219300479.
- Leeper, E. M. & C. Leith. 2016. 'Chapter 30 Understanding Inflation as a Joint Monetary–Fiscal Phenomenon'. In *Handbook of Macroeconomics*, edited by John B. Taylor & Harald Uhlig, 2:2305–2415. Elsevier.

- Lou, Youcheng, Sahar Parsa, Debraj Ray, Duan Li & Shouyang Wang. 2019. 'Information Aggregation in a Financial Market with General Signal Structure'. *Journal of Economic Theory* 183 (September 1): 594–624.
- Lubik, Thomas A., Christian Matthes & Elmar Mertens. 2019. *Indeterminacy and Imperfect Information*. Federal Reserve Bank of Richmond Working Papers.
- Manea, Cristina. 2019. 'Collateral-Constrained Firms and Monetary Policy': 66.
- McLeay, Michael & Silvana Tenreyro. 2019. 'Optimal Inflation and the Identification of the Phillips Curve'. In . NBER Chapters. National Bureau of Economic Research, Inc.
- Miranda-Agrippino, Silvia & Giovanni Ricco. 2021. 'The Transmission of Monetary Policy Shocks'. *American Economic Journal: Macroeconomics* 13 (3) (July): 74–107.
- Natvik, Gisle James. 2009. 'Government Spending and the Taylor Principle'. *Journal of Money, Credit and Banking* 41 (1): 57–77.
- Stock, James & Mark W. Watson. 2009. 'Phillips Curve Inflation Forecasts'. In *Understanding Inflation and the Implications for Monetary Policy*, edited by Jeffrey Fuhrer, Yolanda Kodrzycki, Jane Little & Giovanni Olivei, 99–202. Cambridge: MIT Press.
- Sveen, Tommy & Lutz Weinke. 2005. 'New Perspectives on Capital, Sticky Prices, and the Taylor Principle'. *Journal of Economic Theory* 123 (1). Monetary Policy and Capital Accumulation (July 1): 21–39.
- Svensson, Lars E. O & Michael Woodford. 2003. 'Implementing Optimal Policy through Inflation-Forecast Targeting' (June).