Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization

Class Logistics and Agenda

- Logistics:
 - Office Hours Zoom and Student Room
 - Started to test python 3.11 (with Apple M2)
- Agenda:
 - Finish Visualization Demo
 - Town Hall Lab One
- Next Time:
 - Dimensionality Reduction
 - PCA
 - Sampling
 - Images

Class Overview, by topic

What is the difference in these plots?

F	Passengerld	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	2	3	male	Q	,
D	1	0	3	Braund, Mr. Owen Harns	male	22.0	1	0	A6-211/1	7.2500	S	O	1	1	0	
1	2	1	1	Cunnings, Mrs. John Bradley (Florence Enggs 1h	female	0.90	1	0	PC 17599	71.2033	c	0	0	0	0	1
2	3	1	3	Heikkinen, Miss Laina	temale	28.0	D	0	STON/02. 3101282	£ 9250	s	a	1	D	0	

Let's look at some graphs

You tell me what conclusions we are getting from

these graphs

- Histogram
- · KDE
- HeatMaps and Correlation
- Scatter and Scatter Matrix
- Box / Violin / Swarm

03.Data Visualization.ipynb

Matplotlib Seaborn Plotly

Now you have visualization building blocks

Lab One: Town Hall

Supplemental Slides

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	L∞ p1		р3	p4	
p1	0	2	3	5	
p2	2	0	1	3	
р3	3	1	0	2	
p4	5	3	2	0	

Distance Matrix

Mahalanobis Distance

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

 Σ is the covariance matrix of the input data X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product and ||d|| is the length of vector d.

Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$\begin{aligned} d_1 & \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ ||d_1|| &= (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_{k} = (p_{k} - mean(p)) / std(p)$$

$$q'_{k} = (q_{k} - mean(q)) / std(q)$$

 $correlation(p,q) = p' \cdot q'$

Visualization Techniques: Distributions

Histogram

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.

KDE

- Add up Gaussian underneath each point value
- STD of gaussian is equivalent to number of bins in histogram

Two-Dimensional Distributions

- Estimate the joint distribution of the values of two attributes
- Example: petal width and petal length
 - What does this tell us?

Scatter Plot Matrix Colored by Class

Visualization Techniques: Box Plots

Box Plots

- Invented by J. Tukey
- Another way of displaying the distribution of data
- Following figure shows the basic part of a box plot

Visualization Techniques: Box Plots

Box Plots

Example: Comparing Attributes

Instance Correlation Matrix

Instance Correlation Matrix

Parallel Coordinates Plots for Iris Data

