Chapter 2. Fourier Representation of Signals and Systems – *Review*

<u>Summary:</u> Time- and frequency-domain representations of signals, properties of signals, time- and frequency-domain analysis of systems (signal transmission), Fourier transform, Fourier series.

Textbook coverage: signment Project Exam Help

- 2.1 Fourier Transform the state of the state
- 2.2 Properties of Fourier Transform (Haykin & Moher 2.2)
- 2.3 Fourier Series and Fourier Transform of Periodic Signals (Haykin & Moher 2.4 and 2.5)
- 2.4 Transmission of Signals through Linear Time-Invariant Systems (Haykin & Moher 2.6)
- 2.5 Filters (Haykin & Moher 2.7 and more)
- 2.6 Energy Spectral Density and Autocorrelation Function for Energy Signals (Haykin & Moher 2.8)
- 2.7 Power Spectral Density and Autocorrelation Function for Power Signal (Haykin & Moher 2.9 and more)

Signal: A set of data that is functions of one or more independent variables.

- Examples: speech signal, air pressure as a function of time, etc.
- Focus on single-variable continuous signal: A function of time g(t).

Fundamental signals: Assignment Project Exam Help

- Dirac delta function:
$$\delta(t) = 0$$
 for $t \neq 0$ and $\int_{-\infty}^{\infty} \delta(t) dt = 1$ $\int_{-\infty}^{\infty} g(t) \delta(t - t_0) dt = g(t_0)$;

WeChat: cstutorcs
$$sgn(t) = \begin{cases} 1 & \text{cstutorcs} \\ 0 & \text{for } t < 0 \end{cases}$$
- Signum function: $sgn(t) = \begin{cases} 0 & \text{for } t < 0 \\ -1 & \text{for } t < 0 \end{cases}$

- Unit step function:
$$\mathbf{u}(t) = \begin{cases} 1 & , t > 0 \\ 1/2 & , t = 0 \\ 0 & , t < 0 \end{cases}$$

https://tutorcs.com

Fundamental signals (cont):

- Unit rectangular function: $\operatorname{rect}(t) = \begin{cases} 1, & -\frac{1}{2} \le t \le \frac{1}{2} \\ 0, & t < -\frac{1}{2} \text{ or } t > \frac{1}{2} \end{cases}$
- Unit triangle function: Assignment Project Exam Help
- Sinc function: $\frac{\text{httpsin/tutorcs.com}}{\sin c(t)} = \frac{1}{2}$
- Complex exponential function: $x(t) = e^{jw_0t} = \cos(w_0t) + j\sin(w_0t)$

https://tutorcs.com

Periodic signal: g(t) = g(t + nT)

- T: fundamental period (the smallest period) of signal g(t)

Symmetric signal

- Even signal: g(t) = g(-t) - Odd signal: g(t) = -g(-t) Assignment Project Exam Help

https://tutorcs.com

Q: is $x(t) = e^{jw_0t}$ a periodic signals? WeChat: cstutorcs Signal: A set of data that is functions of one or more independent variables.

- Examples: speech signal, air pressure as a function of time, etc.
- Focus on single-variable continuous signal: A function of time g(t).

Signal energy & power - Energy: $E_q = \int_{-\infty}^{\infty} |g(t)|^2 dt$ Project Exam Help

- Power: $P_g = \lim_{T \to \infty} \frac{1}{T} \int_{T}^{T/2} p g(t) dt t dt = \lim_{T \to \infty} \int_{T}^{T/2} p g(t) dt dt$

- Energy signal: $0 < E_q < \infty$ - Power signal: $0 < P_q$ Chat: cstutorcs

Q1: Are periodic signals are energy signals?

Q2: Is there any signal that is both energy signal and power signal?

Q3: Is there any signal that is neither energy signal nor power signal?

https://tutorcs.com

System: An entity that processes its inputs to produce outputs.

input
$$g(t)$$
 System output $y(t)$

- Processing the input signal to modify it or to extract information from it.
- Focus on single-input-single-output, linear time-invariant (LTI) systems.

Assignment Project Exam Help

A system is <u>linear</u> if <u>the principle of superposition</u> holds, i.e., its response to the weighted sum of a <u>humber/of inputs is equal</u> to the weighted sum of its responses when each input is applied individually.

If
$$g_1(t) \rightarrow y_1(t)$$
, $g_2(t)$ We that: cstutorcs then for any $a_1, a_2, \ a_1g_1(t) + a_2g_2(t) \rightarrow a_1y_1(t) + a_2y_2(t)$.

Q: Are following systems linear?

(a)
$$g(t) \rightarrow e^{g(t)}$$

(b)
$$g(t) \rightarrow g(t) + 1$$

https://tutorcs.com

A system is <u>time invariant</u> if its response to a time-shifted input by any amount of time is equal to the time-shift of its response to the input with the same amount of time.

If
$$g(t) \to y(t)$$
, then for any T , $g(t-T) \to y(t-T)$.

Q: Are following systems time invariant? x(t) and y(t) represent input and output of the system.

- (a) $g(t) \rightarrow g(t)$ Assignment Project Exam Help
- (b) $g(t) \rightarrow \sin(t)g(t)$ https://tutorcs.com

A system is linear time-in an attics the form of the conditions hold.

example: $g(t) \rightarrow g(t) + 1$ is not a LTI system as it is non-linear.

Consider linear time-invariant (LTI) systems.

The <u>unit impulse response</u> of a system, h(t), is its output when the input is the unit impulse function $\delta(t)$.

$$\delta(t) \to h(t)$$

For an LTI system, its output to any input g(t) is the convolution of the input and its unit imposer response. Ject Exam Help

$$y(t) = g \frac{\text{thttps://tuforcs.706m}}{-\infty} \tau d\tau$$

WeChat: cstutorcs

A system is **Causal** if it does not respond before the excitation is applied.

- For a causal LTI system, h(t) = 0 for t < 0.

A system is **stable** if the output is bounded for all bounded input.

- For a stable LTI system, $\int_{-\infty}^{\infty} |h(t)| dt < \infty$

https://tutorcs.com

input
$$g(t)$$
 \longrightarrow LTI system $h(t)$ output $y(t) = g(t) * h(t)$

Assignment Project Exam Help Why frequency-domain representation/analysis?

- https://tutorcs.com
 Understand a signal via its frequency components (Fourier transform, Fourier series) WeChat: cstutorcs
- Understand a system's response for different frequency components (Frequency response).

Why frequency-domain representation/analysis?

- Understand a signal via its frequency components (Fourier transform, Fourier series)
- Understand a system's response for different frequency components (Frequency reassignment Project Exam Help

2.1 Fourier Transform

Represent a non-periodic signal as a continuous sum of infinitesimal 'simple' exponential functions

Def. The Fourier transform of a nonperiodic signal g(t) (if Fourier transformable) is:

Given the Fourier transform: 6 (4), the Sright time-domain signal can be recovered by the following inverse Fourier transform:

We Chat: cstutorcs
$$g(t) = \int_{-\infty}^{\infty} G(f) \exp(j2\pi f t) df.$$

g(t) and G(f) constitute a **Fourier transform pair.**

f: frequency in Hertz (Hz).

 $\omega = 2\pi f$: frequency in radian/second (rad/sec).

$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi f t) dt. \implies g(t) = \int_{-\infty}^{\infty} G(f) \exp(j2\pi f t) df.$$

Notation:

$$G(f) = \mathbf{F}[g(t)]$$
 $g(t) = \mathbf{F}^{-1}[G(f)]$ $g(t) \rightleftharpoons G(f)$

Lower case letter: time function

Upper case letter: frequency function

Assignment Project Exam Help

Q1: Please compute F[https://tutorcs.com

Q2: Given $G(f) = \delta(f), g(t) = ?$

$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi f t) dt. \implies g(t) = \int_{-\infty}^{\infty} G(f) \exp(j2\pi f t) df.$$

Table 1: Basic Fourier transform pairs

Time-domain function $g(t)$	Fourier transform $G(f)$
1	$\delta(f)$
$\delta(t)$ Assignment Project Exam Help	
$\frac{u(t)}{\text{rect}\left(\frac{t}{T}\right)}$ https://tutor	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$rect\left(\frac{t}{T}\right)$ https://tutor	$T\operatorname{sinc}(fT)$
2Wsinc(2WteChat: cstuftorcsv)	
$\Delta\left(\frac{t}{T}\right)$	$\frac{T}{2}$ sinc ² $\left(\frac{fT}{2}\right)$
$e^{-at}u(t) \ (a>0)$	$\frac{1}{a+j2\pi f}$
$e^{-a t } (a > 0)$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\sin(2\pi f_c t)$	$\frac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$

https://tutorcs.com

G(f): Generally, a complex function of frequency f.

$$G(f) = |G(f)| \exp[j\theta(f)] = |G(f)| \angle \theta(f)$$

Amplitude spectrum (magnitude spectrum): |G(f)|

Phase spectrum: & figure Project Exam Help

Prove: for a real-value tupe intytores.com

- $G(-f) = G^*(f) \rightarrow \text{conjugate symmetry}$
- $|G(-f)| = |G(f)| \rightarrow$ even function of f
- $\theta(-f) = -\theta(f) \rightarrow \text{odd-symmetric w.r.t. } f$

https://tutorcs.com

Bandwidth of a signal: The difference between the highest and lowest frequencies of the spectral components of a signal.

- It is convention to state the bandwidth as the range of positive frequencies.
- A signal cannot be strictly limited in both time and frequency.

For band-limite A signal sment Project Exam Hel

- <u>Baseband signal:</u> energy centered around zero-frequency. https://tutorcs.com
- <u>Bandpass signal:</u> energy centered around a frequency far away from part. <u>CStutorcs</u>

https://tutorcs.com

https://tutorcs.com

Bandwidth of a signal: The difference between the highest and lowest frequencies of the spectral components of a signal.

- It is convention to state the bandwidth as the range of positive frequencies.
- A signal cannot be strictly limited in both time and frequency.

For pulse-like signst ignment Project Exam Help

- main lobe bandwidth for symmetric signals
- 3-dB bandwidth https://tutorcs.com
- 95% essential bandwidth of a signal: Range of the frequency that contains 95% of the energy.

2.2 Properties of Fourier Transform

- 1. Linearity: $c_1g_1(t) + c_2g_2(t) \rightleftharpoons c_1G_1(f) + c_2G_2(f)$
- 2. Time scaling: $g(t) \rightleftharpoons G(f)$ then $g(at) \rightleftharpoons \frac{1}{|a|}G(\frac{f}{a})$ (Dilation) Assignment Project Exam Help
- 3. Conjugation: $g^*(t) \rightleftharpoons G^*(-f)$ https://tutorcs.com
- 4. **Duality**: $g(t) \rightleftharpoons G(f)$ then $G(t) \rightleftharpoons g(-f)$

- 5. Time shifting: $g(t-t_0) \rightleftharpoons e^{-j2\pi f t_0} G(f)$
- 6. Frequency shifting: $g(t) \exp(j2\pi f_c t) \Rightarrow G(f f_c)$ for any constant f_c .

7. Areas under g(t) and G(f):

$$\int_{-\infty}^{+\infty} g(t)dt = G(0)$$
 and $\int_{-\infty}^{+\infty} G(f)df = g(0)$

8. Differentiation and integration:

$$\frac{d}{dt}g(t) \rightleftharpoons j2\pi fG(f) \quad \text{and} \quad \int_{-\infty}^{\infty} g(\tau)d\tau \rightleftharpoons \frac{\text{Help}}{j2\pi f}G(f) + \frac{1}{2}G(0)\delta(f)$$
https://tutorcs.com

9. Convolution and Modulation:

$$g_1(t) * g_2(t) \rightleftharpoons G_1(f) \stackrel{\text{Chat:}}{:} Cstutorcs_1(t) \cdot g_2(t) \rightleftharpoons G_1(f) * G_2(f)$$

10. Parseval's theorem:

$$E_g = \int_{-\infty}^{+\infty} |g(t)|^2 dt = \int_{-\infty}^{+\infty} |G(f)|^2 df$$

https://tutorcs.com

Energy Spectral Density & Autocorrelation Function for Energy Signals

For an energy signal g(t), i.e. $E_g = \int_{-\infty}^{\infty} |g(t)|^2 dt < \infty$, its **energy spectral density** is defined as:

$$\Psi_g(f) = |G(f)|^2$$
, where $g(t) \rightleftharpoons G(f)$.
Assignment Project Exam Help

Wiener-Khitchine Relation: energy signal's autocorrelation function and energy spectral density functions form Fourier transform pair:

where the autocorrelation function
$$R_g(\tau) \rightleftharpoons \Psi_g(f)$$
, where the autocorrelation function $R_g(\tau) = \int_{-\infty}^{\infty} g(t)g^*(t-\tau)dt$.

Energy spectral density tells how signal energy spreads over frequencies, so we have the Parseval's Theorem:

$$E_g = \int_{-\infty}^{\infty} |G(f)|^2 df = \int_{-\infty}^{\infty} \Psi_g(f) df = R_g(0) = \int_{-\infty}^{\infty} |g(t)|^2 dt$$

Parseval's Power theorem & Power Spectral Density of Power Signals

For a power signal
$$g(t)$$
, i.e. $P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt < \infty$, define
$$g_T(t) = \begin{cases} g(t) & -\frac{T}{2} \le t \le T/2 \\ \text{Assignment Projecto Exermistelelp} \end{cases}$$

Then $g_T(t)$ is an energy signal torcs.com

From
$$g_T(t) \rightleftharpoons G_T(f)$$
 Parseval's power theorem is
$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} |G_T(f)|^2 df$$
$$= \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{T} |G_T(f)|^2 df = \int_{-\infty}^{\infty} S_g(f) df$$

Define **power spectral density (PSD)** of g(t) as:

$$S_g(f) = \lim_{T \to \infty} \frac{1}{T} |G_{T_0}(f)|^2$$

PSD tells how signal power spreads over frequencies.

Assignment Project Exam Help

https://tutorcs.com

The **auto-correlation function** of power signal g(t) is

$$R_g(\tau) = \lim_{T \to \infty} \frac{\nabla f(t)}{T} \int_{-T/2}^{T} g(t)g^*(t-\tau)dt$$

Similarly, we have $R_g(\tau) \rightleftarrows S_g(f)$ and $P_g = \int_{-\infty}^{\infty} S_g(f) df = R_g(0)$

2.3 Fourier Series and Fourier Transform of Periodic Signals

 $g_{T_0}(t)$: A periodic signal with period T_0 .

Fundamental frequency: $f_0 = \frac{1}{T_0}$

A periodic signal $g_{T_1}(t)$ can be represented as a sum of complex exponential (complex exponential Fourier series):

https://tutorcs.com
$$g_{T_0}(t) = \sum_{C_n \exp(j2\pi n f_0 t)} f_0(t)$$

where $c_n = \frac{T_0}{T_0} \sqrt{\frac{T_0}{2}} g_{T_0}(t) e^{-j2\pi n f_0 t} dt$.

Fourier transform of $g_{T_0}(t)$ is:

$$G_{T_0}(f) = \sum_{n=-\infty}^{+\infty} c_n \delta(f - nf_0)$$

https://tutorcs.com

For periodic signal get with period To Fundamental freq, fo = 7. FS: grati = \(\sum_{n=-40}^{\infty} \Can \) = \(\frac{1}{70} \) Can = \(\frac{1}{70} \) \(\frac{7}{15} \) gratinfot dt ⇒ FT: GTo(f) = \(\sum_{\text{T}} \sum_{\text{Cn}} \display(\text{f-nfo}) \) To find a for cos (Hofot) by definition: Cn= = To Sty Co confot) e Jannfot dt = 1 5 T/2 E) 27 f (Ln) t + e - J27 f (n+1) t dt $=\frac{1}{270}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{j2\pi f_{0}(1-n)t}dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-j2\pi f_{0}(n+1)t}dt$ $=\frac{1}{270}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{j2\pi f_{0}(1-n)t}dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-j2\pi f_{0}(n+1)t}dt$ $=\frac{1}{270}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{j2\pi f_{0}(1-n)}\frac{e^{j2\pi f_{0}(1-n)}}{e^{j2\pi f_{0}(1-n)}}e^{j2\pi f_{0}(n+1)}\frac{e^{j2\pi f_{0}(n+1)}}{e^{j2\pi f_{0}(n+1)}}$ $=\frac{1}{270}\left[\frac{e^{j2\pi f_{0}(1-n)}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-j2\pi f_{0}(n+1)}}{e^{j2\pi f_{0}(1-n)}}e^{j2\pi f_{0}(n+1)}\right]$ $=\frac{1}{270}\left[\frac{e^{j2\pi f_{0}(1-n)}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-j2\pi f_{0}(n+1)}}{e^{j2\pi f_{0}(n+1)}}e^{-j2\pi f_{0}(n+1)}\right]$ - 1 [2 j Sh [π (We chat:] cstutorcs $= \frac{\operatorname{Sin}\left[\pi(1-n)\right]}{2\pi(1-n)} + \frac{\operatorname{Sin}\left[\pi(n+1)\right]}{2\pi(n+1)}$ $= \begin{cases} \frac{0}{\sin[\pi(\tan)]} & n=1 \\ \frac{\sin[\pi(\tan)]}{2\pi(\tan)} & n=1 \end{cases}$ $= \begin{cases} 0 & n \neq \pm 1 \\ -\pi \cos [\pi(1-n)] & n = 1 \\ -2\pi & n = 1 \end{cases}$ $\frac{\pi \cos [\pi(1+n)]}{2\pi} \begin{pmatrix} n = 1 & n = -1 \\ n = -1 & n = -1 \end{pmatrix}$ $= \begin{cases} 0 & n \neq \pm 1 \\ \frac{1}{2} & n = 1 \\ \frac{1}{2} & n = -1 \end{cases}$ $\Rightarrow C_0 \left(2\pi f_0 t\right) = \sum_{n=-\infty}^{\infty} C_n e^{\int 2\pi f_0 t} = \frac{1}{2} e^{\int 2\pi f_0 t} + \frac{1}{2} e^{-\int 2\pi f_0 t}$

Relation between FT and FS

Define two signals g(t) and $g_{T_0}(t)$:

$$g_{T_0}(t) = \sum_{m=-\infty}^{\infty} g(t - mT_0)$$

Let $g(t) \rightleftharpoons G(f)$ $g_{T_0}(t) \rightleftharpoons G_{T_0}(f)$, we have $c_n = \frac{1}{T_0}G_{T_0}(f)$ where $c_n = \frac{1}{T_0}G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ are $G_{T_0}(f)$ and $G_{T_0}(f)$ are $G_{T_0}(f)$ and G_{T

$$G_{T_0}(f) = f_0 \sum_{n=-\infty}^{\infty} G(nf_0)\delta(f - nf_0).$$

Repetition in the time domain results in sampling in the frequency domain.

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

Power spectral density for periodic signal $g_{T_0}(t)$ with period T_0 .

$$G_{T_0}(f) = f_0 \sum_{n=-\infty}^{\infty} G(nf_0)\delta(f - nf_0).$$
 $f_0 = \frac{1}{T_0}$

Then its power spectral den Pitoject Exam Help

$$S_{g_{T_0}}(f) = \sum_{n = -\infty}^{\infty} |c_n|^2 \delta(f/\pi n f_0) = \sum_{n = -\infty}^{\infty} f_0^2 |G(nf_0)|^2 \delta(f - n f_0)$$

WeChat: cstutorcs

Parseval's power theorem for periodic signal:

$$\frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

2.4 Transmission of signals through LTI systems

System: An entity that processes its inputs to produce outputs.

input
$$g(t) \longrightarrow \text{System} \longrightarrow \text{output } y(t)$$

- Processing the input signal to modify it or to extract information from it.
 Focus on single-input-single-output, linear time-invariant (LTI) system.

https://tutorcs.com

The <u>unit impulse response</u> of a system, h(t), is its output when the input is the unit impulse function that: cstutorcs

$$\delta(t) \to h(t)$$

For an LTI system, its output to any input g(t) is the convolution of the input and its unit impulse response:

$$y(t) = g(t) * h(t) = \int_{-\infty}^{\infty} g(\tau)h(t - \tau)d\tau$$

For an LTI system, its <u>frequency response</u> is the Fourier transform of its unit impulse response:

$$H(f) = \int_{-\infty}^{\infty} h(t) \exp(-j2\pi f t) dt. \quad h(t) \rightleftharpoons H(f)$$

- Magnitude response |H(f)|
- Phase response by 1, or 2H (F) ect Exam Help

https://tutorcs.com

The output of an LTI system with any input g(t) in freq. domain:

$$Y(f) = H(f)G(f) \stackrel{\text{cstutores}}{=} g(t) * h(t) :$$

Given any LTI system's input-output pair $g(t) \rightarrow y(t)$, the impulse response of the system can be specified in two steps;

- Step 1: $H(f) = \frac{Y(f)}{G(f)}$
- Step 2: $h(t) = \mathcal{F}^{-1}(H(f))$

https://tutorcs.com

https://tutorcs.com

Filters

- Filters are systems that are designed to remove some unwanted components or features from a signal.
 - Low-pass filter
 - High-pasafilternment Project Exam Help
 - Band-pass filter
 - Band-reject or https://ltutorcs.com

- WeChat: cstutorcs
 Cutoff frequencies: frequencies beyond which the filter will not pass the signal components.
- 3-dB frequencies: the frequency at which the power-transfer ratio of the filter drops to half of the maximum, i.e., the energy spectral density (or PSD) at this frequency is half (3dB drop) of its maximum.

Effect of filtering (LTI system) on energy spectral density

$$g(t) \longrightarrow h(t) \longrightarrow y(t)$$

$$Y(f) = H(f)G(f) \Rightarrow \Psi_y(f) = |H(f)|^2 \Psi_g(f).$$

The energy spectral density of the output equals the energy spectral density of the input multiplied by the squared amplitude of frequency response of the LTI system.

WeChat: cstutorcs

Effect of filtering (LTIC system) on power spectral density

$$g(t) \longrightarrow h(t) \longrightarrow y(t)$$

$$S_y(f) = |H(f)|^2 S_g(f)$$