WS 2019/20 Shestakov

Übungsaufgaben zur Vorlesung "Analysis I"

Blatt 11

Aufgabe 1. Untersuchen Sie die folgenden Funktionenfolgen $(f_n)_{n\in\mathbb{N}}$ auf Konvergenz und gleichmäßige Konvergenz auf E_1 und E_2 :

a)
$$f_n(x) = \frac{nx^2}{1+2n+x}$$
, $E_1 = [0,1]$, $E_2 = [1, +\infty)$

b)
$$f_n(x) = \sum_{k=1}^n \frac{x^2}{1+k^{\frac{3}{2}}x^2}$$
, $E_1 = \mathbb{R}$. Ist die Grenzfunktion stetig auf \mathbb{R} ?

Aufgabe 2. Sei $f(x) = \frac{1}{x}$. Zeigen Sie:

- a) Die Funktion f ist auf jedem Intervall $[a, +\infty)$, a > 0, gleichmäßig stetig.
- b) Die Funktion f ist auf jedem Intervall (0, a], a > 0, nicht gleichmäßig stetig.

Aufgabe 3. Die Funktion $f: I \to \mathbb{R}$ sei im Punkt $\xi \in I$ differenzierbar. Zeigen Sie:

a) Es gibt eine reelle Konstante K und eine punktierte δ -Umgebung $\dot{U}:=\{x\colon 0<|x-\xi|<\delta\}$ von ξ derart, dass für alle $x\in\dot{U}\cap I$ die Ungleichung

$$|f(x) - f(\xi)| < K|x - \xi|$$

gilt.

b) f ist stetig in ξ .

Aufgabe 4.

- a) Sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$. Schreiben Sie die Gleichung der Tangente an f in Punkten (1,1) und (2,8) auf. Machen Sie eine Skizze.
- b) Unter welchen Bedingungen an $a, b, c \in \mathbb{R}$ stimmt eine Tangente an den Graphen von $f(x) = ax^2 + bx + c$ mit der x-Achse überein?

Abgabe: Bis 17. Januar vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1		2		3		4		
	a	b	a	b	a	b	a	b	
Punkte	4	3	2	2	3	2	2	2	20

Präsenzaufgaben und Anregungen

- 1. Sei $D \subset \mathbb{R}$ und $f, f_n \colon D \to \mathbb{R}$ für $n \in \mathbb{N}$. Zeigen Sie: Existiert ein $\varepsilon > 0$ und eine Folge $(x_n)_{n \in \mathbb{N}}$ in D, so dass $|f_n(x_n) f(x_n)| \ge \varepsilon$ für alle $n \in \mathbb{N}$, so kann $(f_n)_{n \in \mathbb{N}}$ nicht gleichmäßig auf D gegen f konvergieren.
- 2. Untersuchen Sie die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ auf gleichmäßige Konvergenz auf X,X_1 und X_2 , wenn

a)
$$f_n(x) = \sqrt{x + \frac{1}{n}} - \sqrt{x}, X = [0, +\infty)$$

b)
$$f_n(x) = \frac{xn}{n+x^n}$$
, $X_1 = (0,1)$, $X_2 = (1, +\infty)$

c)
$$f_n(x) = nxe^{-nx^2}$$
, $X_1 = [0, 1]$, $X_2 = [1, +\infty)$

- 3. Untersuchen Sie die Funktion f auf gleichmäßige Stetigkeit auf X, falls:
 - a) $f(x) = \ln x, X = (0, 1)$
 - b) $f(x) = \sin x, X = \mathbb{R}$
 - c) $f(x) = x^2, X = \mathbb{R}$
- 4. Man beweise oder widerlege:
 - a) ? $f, g: \mathbb{R} \to \mathbb{R}$ gleichmäßig stetig auf $\mathbb{R} \Rightarrow fg$ gleichmäßig stetig auf \mathbb{R} ?
 - b) ? Eine stetige Funktion bildet Cauchy-Folgen auf Cauchy-Folgen ab. ?
 - c) ? Jede beschränkte stetige Funktion auf einem beschränkten Intervall ist gleichmäßig stetig. ?
 - d) ? Wenn eine Funktion f in einem Punkt x_0 eine Ableitung besitzt, aber die Funktion g keine, hat die Funktion f + g keine Ableitung in x_0 . ?
 - e) ? Wenn die Funktionen f und g in einem Punkt x_0 keine Ableitung besitzen, hat die Funktion f+g keine Ableitung in x_0 . ?
- 5. Finden Sie eine Funktion $f: \mathbb{R} \to \mathbb{R}$, sodass die Tangente an f im Punkt $(x_0, f(x_0)), x_0 \neq 0$, die x-Achse im Punkt $(\frac{x_0}{2}, 0)$ schneidet, für alle $x_0 \neq 0$.
- 6. Untersuchen Sie die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ auf Differenzierbarkeit auf \mathbb{R} und finden Sie die Ableitungen, wo es möglich ist:

2

a)
$$f(x) = \begin{cases} \frac{x-1}{4}(x+1)^2, & \text{falls } |x| \le 1, \\ |x|-1, & \text{falls } |x| > 1 \end{cases}$$

b)
$$f(x) = x\sqrt{|x|}$$