MATH 136 Personal Notes

by Sam Gunter

Instructors: Ian Payne, Conrad Hewitt
Textbook: Elementary Linear Algebra by L Spence, A.J. Insel, A.H. Friedberg
Course Notes by: Conrad Hewitt
• Winter 2021 • University of Waterloo •

1	Vectors in \mathbb{R}^n	2
2	Dot Product	3
3	Inner Product on \mathbb{C}^n	5
4	The Cross Product	6
5	An Introduction to Linear Combinations and Span	6
6	Lines and Planes in \mathbb{R}^n	7
7	Systems of Linear Equations	8
8	Gauss-Jordan	10
9	Systems of Linear Equations	12
10	Real and Complex Examples	12
11	Matrix Multiplication	12
12	Properties of Matrices	14
13	Linear Transformations	17
14	Matrix Inverse	21
15	The Determinant	22
16	Diagonalization and the Eigenvalue	26
17	Subspaces, Span and Bases	28
18	Matrix Representation of a Linear Operator	31
19	Diagonalization of Linear Operators	32
20	Special Subspaces and Bases	33
21	Vector Space	34
22	The Rowspace of a Matrix	36
23	Matrix Representations of Linear Transformations	36

The Invertible Matrix Theorem Let $A \in M_{n \times n}(\mathbb{F})$, A is invertible if and only if

- A^{-1} is invertible (Def Invertibility)
- A^T is invertible (Lemma 13.13i)
- $\forall c \neq 0 \in \mathbb{F}, cA$ is invertible (Lemma 13.13ii)
- $\exists B \in M_{n \times n}(\mathbb{F})$ such that $AB = BA = I_n$ (Lemma 14.1)
- A is the product of elementary matrices (Lemma 13.14)
- $A\mathbf{x} = \mathbf{b}$ has a unique solution $\forall \mathbf{b} \in \mathbb{F}^n$ (Lemma 13.12)
- $A\mathbf{x} = \mathbf{0}$ has only the trivial solution (Lemma 13.12)
- $RREF(A) = I_n$ (Corollary 14.1)
- nullity(A) = 0 (Corollary 13.3)
- Rank(A) = n (Lemma 14.2)
- $Col(A) = \mathbb{F}^n$ (Corollary 13.1)
- A has n pivots (Def Rank)
- dim(Row(A)) = n (Corollary 22.1)
- dim(Col(A)) = n (Lemma 13.13i, Corollary 22.1)
- $N(A) = \{0\}$ (Lemma 13.5, Lemma 13.6)
- Columns of A are linearly dependent (Lemma 17.5)
- Columns of A form a basis for \mathbb{F}^n (Lemma 17.11, Lemma 17.5)
- Columns of A span \mathbb{F}^n (Lemma 17.9)
- Rows of A are linearly dependent (Def Rowspace)
- Rows of A span $M_{1\times n}(\mathbb{F})$ (Def Rowspace)
- $det(A) \neq 0$ (Corollary 15.7)
- 0 is not an eigenvalue of A (Corollary 16.1)
- 0 is not root of Δ_A (Def Characteristic Polynomial)
- T_A is an invertible linear transformation (Lemma 13.16)
- $[T_A]_B$ is invertible for all basis B (Lemma 16.1, Lemma 18.2)
- T_A is onto (Def Matrix Representation)
- T_A is one-to-one (Def Matrix Representation)
- $N(T_A) = \{0\}$ (Lemma 13.6)
- $R(T_A) = \mathbb{F}^n$ (Def Onto)

1 Vectors in \mathbb{R}^n

Def Vector: Has both magnitude and direction, notation may be $\mathbf{v}, \underline{v}, \overline{v}, \overrightarrow{v}$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Note: The failure to include the T to indicate the transpose is incorrect

Def Addition: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, their sum is

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{bmatrix}$$

Def Zero Vector: For a vector $\in \mathbb{R}^n$, it is the zero vector **0** if it has the property

 $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Lemma 1: Addition Rules. Let $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$

- (i) $\mathbf{w} + \mathbf{v} = \mathbf{v} + \mathbf{w}$
- (ii) z + v + w = z + (v + w) = (z + v) + w
- (iii) $\mathbf{v} + \mathbf{0} = \mathbf{v}$

Def Subtraction: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, subtraction is defined by

$$\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w})$$

Lemma 2: Cancellation Identity. Let $\mathbf{z} \in \mathbb{R}^n$

$$\mathbf{v} - \mathbf{v} = \mathbf{0}$$

Note: $-\mathbf{v}$ is called the additive inverse

Def Scalar Multiplication: For a vector $\mathbf{z} \in \mathbb{R}^n$ and scalar $p \in \mathbb{R}$, scalar multiplication is defined as

$$p\mathbf{v} = \begin{bmatrix} pv_1 \\ pv_2 \\ \vdots \\ pv_n \end{bmatrix}$$

Lemma 3: Properties of Scalar Multiplication. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $p, q \in \mathbb{R}$

- $(i) (p+q)\mathbf{v} = p\mathbf{v} + q\mathbf{v}$
- (ii) $(qp)\mathbf{v} = q(p\mathbf{v})$
- (iii) $p(\mathbf{v}+\mathbf{w}) = p\mathbf{v} + p\mathbf{w}$
- (iv) $0\mathbf{v} = \mathbf{0}$

Lemma 4: Properties of Zero. Let $\mathbf{v} \in \mathbb{R}^n$, $a \in \mathbb{R}$

$$a\mathbf{v} = 0 \implies a = 0 \lor \mathbf{v} = \mathbf{0}$$

2 Dot Product

Def Dot Product:

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \bullet \begin{bmatrix} 00 - 38w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = v_1w_1 + v_2w_2 + \dots + v_nw_n$$

Lemma 1: Properties of the dot product. Let $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$, $a \in \mathbb{R}$

- (i) Symmetry: $\mathbf{v} \bullet \mathbf{w} = \mathbf{w} \bullet \mathbf{v}$
- (ii) Linearity: $(\mathbf{v} + \mathbf{w}) \bullet \mathbf{z} = \mathbf{v} \bullet \mathbf{z} + \mathbf{w} \bullet \mathbf{z}$
- (iii) Linearity: $(a\mathbf{w}) \bullet \mathbf{v} = a(\mathbf{w} \bullet \mathbf{v})$
- (iv) Non-negativity: $\mathbf{v} \bullet \mathbf{v} >= 0$ thus $\mathbf{v} \bullet \mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0}$

Def Norm (Length): of $\mathbf{v} \in \mathbb{R}^n$ is

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \bullet \mathbf{v}}$$

Lemma 2: Let $\mathbf{v} \in \mathbb{R}^n$, $a \in \mathbb{R}$

$$||a\mathbf{v}|| = |a|||\mathbf{v}||$$

Def Unit Vector: $\mathbf{v} \in \mathbb{R}^n$ is a unit vector if

$$\|\mathbf{v}\| = 1$$

Def Normalization: For a $\mathbf{z} \in \mathbb{R}^n$, produce a unit vector in the direction of \mathbf{z} ($\hat{\mathbf{z}}$) by scaling it.

 $\hat{\mathbf{z}} = rac{\mathbf{z}}{\|\mathbf{z}\|}$

Def Orthogonal: The vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal if $\mathbf{v} \bullet \mathbf{w} = 0$, Note: $\mathbf{v}, \mathbf{0}$ are always orthogonal as $\mathbf{v} \bullet \mathbf{0} = 0$

Def Angle: The angle θ between vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ is

$$\mathbf{v} \bullet \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta \quad \text{or} \quad \theta = \arccos \left(\frac{\mathbf{v} \bullet \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \right)$$

Def Projection: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ where $\mathbf{w} \neq \mathbf{0}$, the projection of \mathbf{v} along \mathbf{w} , or the projection of \mathbf{v} in the \mathbf{w} direction is

$$Proj_{\mathbf{w}}(\mathbf{v}) = \mathbf{w} \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2}$$
 or $Proj_{\mathbf{w}}(\mathbf{v}) = (\mathbf{v} \cdot \hat{\mathbf{w}})\hat{\mathbf{w}}$ or $Proj_{\mathbf{w}}(\mathbf{v}) = \hat{\mathbf{w}}(\|\mathbf{v}\| \cos \theta)$

Def Component: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ where $\mathbf{w} \neq \mathbf{0}$, the component of \mathbf{v} along \mathbf{w} , or the scalar component of \mathbf{v} in the \mathbf{w} direction is

$$Comp_{\mathbf{w}}(\mathbf{v}) = \|\mathbf{v}\| \cos \theta$$

Def Remainder: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ where $w \neq 0$, the remainder r is

$$Perp_{\mathbf{w}}(\mathbf{v}) = \mathbf{v} - Proj_{\mathbf{w}}(\mathbf{v})$$

Lemma 3: Let $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$, $a \in \mathbb{R}$

The projection of a vector \mathbf{v} along \mathbf{w} and the remainder are orthogonal to each other

3 Inner Product on \mathbb{C}^n

Def Standard Inner Product on \mathbb{C}^n : For vectors $\mathbf{w}, \mathbf{z} \in \mathbb{C}^n$, the standard inner product is

$$\langle \mathbf{w}, \mathbf{z} \rangle = w_1 \overline{z}_1 + w_2 \overline{z}_2 + \dots + w_n \overline{z}_n$$

Lemma 1: Properties of the standard inner product. Let $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{C}^n$, $a \in \mathbb{C}$

- (i) Conjugate Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$
- (ii) Linearity: $\langle (\mathbf{v} + \mathbf{w}), \mathbf{z} \rangle = \langle \mathbf{v}, \mathbf{z} \rangle + \langle \mathbf{w}, \mathbf{z} \rangle$
- (iii) Linearity: $\langle a\mathbf{v}, \mathbf{w} \rangle = a \langle \mathbf{v}, \mathbf{w} \rangle$
- (iv) Non-negativity: $\langle \mathbf{v}, \mathbf{v} \rangle >= 0$ thus $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Longleftrightarrow \mathbf{v} = \mathbf{0}$

Def Length: of $\mathbf{v} \in \mathbb{C}^n$ is

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Lemma 2: Properties of the length. Let $\mathbf{v} \in \mathbb{C}^n$, $c \in \mathbb{C}$

- (i) $||c\mathbf{v}|| = |c|||\mathbf{v}||$
- (ii) $||c\mathbf{v}|| >= 0$ thus $||\mathbf{v}|| = 0 \iff \mathbf{v} = \mathbf{0}$

Def Orthogonality in \mathbb{C}^n : The vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ are orthogonal if

$$\langle \mathbf{v}, \mathbf{w} \rangle = 0$$

Def Projection in \mathbb{C}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$, the projection of \mathbf{v} in the \mathbf{w} direction is defined as

$$Proj_{\mathbf{w}}(\mathbf{v}) = \mathbf{w} \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{w}\|^2}$$
 or $Proj_{\mathbf{w}}(\mathbf{v}) = \langle \mathbf{v}, \hat{\mathbf{w}} \rangle \hat{\mathbf{w}}$

Def Field: The field \mathbb{F} can cause different solutions to an equation depending on if $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$

Def Standard Inner Product on \mathbb{F}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$, the standard inner product is

$$\langle \mathbf{w}, \mathbf{z} \rangle = w_1 \overline{z}_1 + w_2 \overline{z}_2 + \dots + w_n \overline{z}_n$$

Note: if $\mathbb{F} = \mathbb{R}$, this is the dot product on \mathbb{R}^n

Note: if $\mathbb{F} = \mathbb{C}$, this is the Standard Inner Product on \mathbb{C}^n

4 The Cross Product

Def Cross Product: For vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$,

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Note: Defined only in \mathbb{R}^3

Lemma 1: Properties of the cross product. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, with $\mathbf{z} = \mathbf{u} \times \mathbf{v}$

- (i) **z** is orthogonal to **u** and **v**, thus $\mathbf{z} \bullet \mathbf{u} = 0$ and $\mathbf{z} \bullet \mathbf{v} = 0$
- (ii) Skew-symmetric: $\mathbf{v} \times \mathbf{u} = -\mathbf{z} = -(\mathbf{u} \times \mathbf{v})$
- (iii) The length of \mathbf{z} is $\|\mathbf{z}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta)$
- (iv) Right-hand Rule: If the pointer finger of your right hand points in the direction of **u**, and the middle finger of your right hand points in the direction of **v**, then your thumb points in the direction of **z**:

Lemma 2: Linearity of the cross product. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3, a \in \mathbb{R}$, them cross product is linear in both arguments.

First argument:
$$\begin{cases} (\mathbf{x} + \mathbf{z}) \times \mathbf{y} = (\mathbf{x} \times \mathbf{y}) + (\mathbf{z} \times \mathbf{y}) \\ a\mathbf{x} \times \mathbf{y} = a(\mathbf{x} \times \mathbf{y}) \end{cases}$$

Second argument:
$$\begin{cases} (\mathbf{x} \times (\mathbf{z} + \mathbf{y}) = (\mathbf{x} \times \mathbf{z}) + (\mathbf{x} \times \mathbf{y}) \\ \mathbf{x} \times a\mathbf{y} = a(\mathbf{x} \times \mathbf{y}) \end{cases}$$

5 An Introduction to Linear Combinations and Span

Def Linear Combination: For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$, and scalars $a, b \in \mathbb{F}$. A linear combination is of the form

$$a\mathbf{v} + b\mathbf{w}$$

Note: $0\mathbf{v} + 0\mathbf{w} = \mathbf{0}$ is always a linear combination of \mathbf{v}, \mathbf{w}

Note: Linear Combinations can be extended to an arbitrary number of vectors in \mathbb{F}^n

Def Span: For vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \in \mathbb{F}^n$. The span of the vectors is the set of all linear combination of the vectors

$$Span(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}) = \{a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_p\mathbf{v}_p : a_1, a_2, \dots, a_p \in \mathbb{F}\}$$

6 Lines and Planes in \mathbb{R}^n

There are 4 ways to create an equation of a straight line in \mathbb{R}^n

1. Slope (m) and y-intercept (b)

$$y = mx + b$$

2. A point (x_1, y_1) and slope (m)

$$y - y_1 = m(x - x_1)$$

3. Two points $(x_1, y_1), (x_2, y_2)$

$$\frac{y - y_2}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

4. A point (x_1, y_1) , slope $(\frac{q}{p}, p \neq 0)$ and a parameter (t)

$$x = x_1 + pt$$
 and $y = y_1 + qt$

Def Parametric equations of a line in \mathbb{R}^2 : For constants p, q, as t changes the point on the line shifts to all real numbers

$$x = x_1 + pt$$
 and $y = y_1 + qt$, for $t \in \mathbb{R}$

Note: If p = 0, then the line is vertical

Def Vector equation of a line in \mathbb{R}^2 : The terminal point of the vector gives the coordinates for points on the line $(x_1 + tp, y_1 + tq)$

$$x = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} + t \begin{bmatrix} p \\ q \end{bmatrix} = \mathbf{v} + t\mathbf{w} \text{ for } t \in \mathbb{R}$$

Note: w is parallel to the line, but is a point on the line iff v is a multiple of w

Def Vector equation of a line in \mathbb{R}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{w} \neq \mathbf{0}$, the line through \mathbf{v} with direction \mathbf{w} is

$$L = \{ \mathbf{v} + t\mathbf{w} : t \in \mathbb{R} \}$$

Note: The are many other vectors which can produce the same line from a different ${\bf v}$

Def Parametric equations of a line in \mathbb{R}^n : Given an equation of a line in \mathbb{R}^n in vector form, the parametric form of the equation is

$$\begin{cases} x = v_1 + tw_1 \\ y = v_2 + tw_2 \\ \vdots \\ z = v_n + tw_n \end{cases}$$

Def Line in \mathbb{R}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{w} \neq \mathbf{0}$, the L is a set of vectors with associated terminal points

$$L = \{ \mathbf{v} + t\mathbf{w} : t \in \mathbb{R} \}$$

Def Line through the Origin in \mathbb{R}^n with Span: For vector $\mathbf{w} \in \mathbb{R}^n$, $\mathbf{w} \neq \mathbf{0}$, the line through the Origin with direction \mathbf{w} is

$$\mathrm{Span}(\{\mathbf{w}\}) = \{\mathbf{0} + t\mathbf{w} : t \in \mathbb{R}\}\$$

Note: The line is unique, but it can be created in other ways

Def Plane through the Origin in \mathbb{R}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{v}, \mathbf{w} \neq \mathbf{0}, \mathbf{w} \neq m\mathbf{v}$, the plane through the Origin is defined as

$$P = \operatorname{Span}(\{\mathbf{v}, \mathbf{w}\}) = \{s\mathbf{v} + t\mathbf{w} : s, t \in \mathbb{R}\}\$$

Def Vector equation of a plane in \mathbb{R}^n : For vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{v}, \mathbf{w} \neq \mathbf{0}, \mathbf{w} \neq m\mathbf{v}, s, t \in \mathbb{R}$, any vector with a terminal point on the plane has the form

$$\mathbf{x} = s\mathbf{v} + t\mathbf{w}$$

Note: The vectors v, w are tangent to the plane

Def Plane in \mathbb{R}^n : For vectors $\mathbf{p}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{v}, \mathbf{w} \neq \mathbf{0}, \mathbf{w} \neq m\mathbf{v}$, a plane is defined as

$$P = \{ \mathbf{p} + s\mathbf{v} + t\mathbf{w} : s, t \in \mathbb{R} \}$$

Note: This is not a Span

Note: \mathbf{v} and \mathbf{w} are on the line iff $\mathbf{p} \in \mathrm{Span}(\{\mathbf{v}, \mathbf{w}\})$

Technique Given vectors \mathbf{p} , \mathbf{q} , \mathbf{r} . A unique plane with these three points can be created by using the fact that $\mathbf{v} = \mathbf{q} - \mathbf{p}$ and $\mathbf{w} = \mathbf{r} - \mathbf{p}$ will always be tangential to the plane

$$\prod = \{\mathbf{p} + s(\mathbf{q} - \mathbf{p}) + t(\mathbf{r} - \mathbf{p}) : s, t \in \mathbb{R}\}\$$

Def Scalar equation of a plane in \mathbb{R}^3 : For vectors $\mathbf{p}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3, \mathbf{v}, \mathbf{w} \neq \mathbf{0}, \mathbf{w} \neq m\mathbf{v}$, the scalar equation of the plane passing through \mathbf{p} with \mathbf{v} and \mathbf{w} tangential to it is

$$\mathbf{n} \bullet (\mathbf{x} - \mathbf{p}) = (\mathbf{v} \times \mathbf{w}) \bullet (\mathbf{x} - \mathbf{p}) = 0$$

Note: The plane goes through the origin iff the vector $\mathbf{0}$ satisfies this equation for \mathbf{x}

7 Systems of Linear Equations

Def Linear Equation: Each unknown $x_1, x_2, \dots x_n$ is either to the exponent 0 or 1

Def Linear System of m Equations with n unknowns:

$$\begin{cases} a_{11}x_1 + x_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + x_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots \\ a_{m1}x_1 + x_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Note: The scalars $a_{ij} \in \mathbb{F}$ are known cofficients

Note: The variables $x_1, x_2, \dots x_n \in \mathbb{F}$ are unknowns

Note: The variables $b_1, b_2, \dots b_m \in \mathbb{F}$ are collectively the right-hand side

Def Solution Set: The scalars $y_1, y_2, \dots y_n \in \mathbb{F}$ solve the equations if $x_i = y_i$ satisfies

$$\mathbf{x} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Note: The solution set is the set of all solutions

Theorem 1 The solution set to a system of linear equations is either empty, contains 1 element, or contains infinite elements

Def Inconsistent and Consistent Systems: If a solution set is empty, the system is inconsistent, if the solution set is non-empty, it is consistent

Note: 0 = a where $a \neq 0$ is always inconsistent

Def Equivalent systems: Two linear systems are equivalent if they have the same solution set

Def Elementary Operations: Basic operations that can be performed on linear systems to produce an equivalent system

Type I: Interchange two equations

Type II: Multiply one equation by a non-zero scalar

Type III: Add one equation to the multiple of another equation

Note: Combinations of elementary operations are valid, but will not be used in this course

Def Trivial equation: The equation 0 = 0 is always true and means nothing

Def Gaussian Elimination:

- Forward elimination: Create an equivalent solution with each first x_i having scalar 1
- Back substitution: Setting the above x_i s to 0 with lowest x_i
- Backward elimination: Setting them all to scalar 1?.

Def Free variable: An unknown is a free variable when it can be assigned any real value in the solution set

Def Basic variable: An unknown is a basic variable if not a free variable

8 Gauss-Jordan

Def Coefficient Matrix: A linear system of equation can be represented by a matrix of its coefficients

$$\begin{bmatrix} a_{11} & a_{11} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Note: The $(i,j)^{th}$ entry of the matrix or c_{ij} , is row i, column j

Def Augmented Matrix: The coefficient matrix including the values of b, $B = (A \mid \mathbf{b})$

$$\begin{bmatrix} a_{11} & a_{11} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{bmatrix}$$

Def Zero Row: A row where all its entries are zeros, thus 0 = 0

Note: If the coefficient matrix has less zero rows than an augmented matrix, the system of equations is inconsistent

Def Leading Entry: The first non-zero entry in a row Note: Leading 1 is a leading entry that has been scaled to 1

Def Leading Variable: The variable located at the leading entry position x_k

Def Pivot Column: The j column of a position of a leading entry

Def Pivot Position: The (i,j) position of a leading entry

Def Pivot: The Pivot Position if it is non-zero

Technique Gauss Procedure:

- Isolate a row with a non-zero tern in its first column, and Type I to first row
- Use Type III to reduce the i position of all lower rows to 0
- Repeat

Def Row Echelon Form: The REF(A) matrix is created after Gauss Procedure is completed, of the form

$$\begin{bmatrix} a_{11} & a_{11} & \dots & a_{1n} & | & b_1 \\ 0 & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & & & & & \\ 0 & 0 & \dots & a_{mn} & | & b_m \end{bmatrix}$$

Technique Jordan Procedure:

- Scale bottom pivot row to have pivot position 1 with Type II
- Use Type III to reduce the *i* position of all higher rows to 0
- Repeat

Note: Called backward-elimination

Def Reduced Row Echelon Form: The RREF(A) matrix is created after Jordan Procedure is completed, of the form

$$\begin{bmatrix} 1 & 0 & a_{13} & \dots & 0 & | & b_1 \\ 0 & 1 & a_{23} & \dots & 0 & | & b_2 \\ 0 & 0 & 0 & \dots & 0 & | & b_3 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & 1 & | & b_m \end{bmatrix}$$

Lemma 1 If A is a matrix, then there is a unique RREF(A)

Technique Canonical Gauss-Jordan:

- Isolate the first row with a non-zero term in its first column, and Type I to first row
- Scale bottom pivot row to have pivot position 1 with Type II
- Use Type III to reduce the i position of all lower rows to 0
- Repeat
- Repeat: Use Type III to reduce the *i* position of all higher rows to 0

9 Systems of Linear Equations

Def Notation: The set of matrices with p rows and q columns is $M_{p\times q}(\mathbb{R}), M_{p\times q}(\mathbb{C}), M_{p\times q}(\mathbb{C})$

Def Rank: The number of pivots when a matrix A is in RREF

$$rank(A) \le p \text{ and } rank(A) \le q$$

Note: If rank(A) = p, then $rank(A) = rank(A \mid \mathbf{b})$ is consistent

Lemma 1 The system of linear equations is consistent iff $rank(A) = rank(A \mid \mathbf{b})$

Def Nullity: The nullity of a matrix A is

$$nullity(A) = q - rank(A)$$

Lemma 2 If the system of linear equations is consistent, then the solution set contains nullity(A) parameters

10 Real and Complex Examples

Def Homogeneous System: A system is homogeneous if in the augmented matrix $\mathbf{b} = 0$ Note: A homogeneous system is always consistent as the trivial solution is always satisfied $A\mathbf{0} = \mathbf{0}$

Def Null Space: The nullspace of a matrix A, is the solution set of the matrix denoted by N(A)

Note: The nullspace of a homogeneous system is a span

11 Matrix Multiplication

Def Row Vector: The vector $\mathbf{G} \in M_{1 \times n}$ is a row, distinguished from column vectors by capitalization

Note: \mathbf{G}_{j} is the entry in the j^{th} column

Def Decomposition of a Matrix:

$$\begin{bmatrix} a_{11} & a_{11} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^m \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$$

Def Matrix Multiplication: Let $A \in M_{m \times n}$, $\mathbf{x} \in \mathbb{F}^n$, then $A\mathbf{x} =$

$$\begin{bmatrix} a_{11} & a_{11} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{11}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^m \end{bmatrix} \mathbf{x}$$

Lemma 1 Linearity of Matrix Multiplication: Let $A \in M_{m \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$, then

$$\begin{cases} A(\mathbf{x} + \mathbf{y}) &= A\mathbf{x} + A\mathbf{y} \\ A(c\mathbf{x}) &= cA\mathbf{x} \end{cases}$$

Remark: for $A \in M_{m \times n}$, $\mathbf{w} \in \mathbb{F}^n$,

$$(A\mathbf{w})_i = \langle (\mathbf{A}^i)^T, \overline{\mathbf{w}} \rangle$$

thus if $A \in M_{m \times n}(\mathbb{R})$ then

$$(A\mathbf{w})_i = (\mathbf{A}^i)^T \bullet \mathbf{w}$$

Def Associated Homogeneous System: For an inhomogeneous system $C\mathbf{x} = \mathbf{d} \neq \mathbf{0}$, the associated homogeneous system is $D\mathbf{x} = \mathbf{0}$

Lemma 2 If $\mathbf{x}_1, \mathbf{x}_2 \in S, a_1 \in \mathbb{F}$, then $(\mathbf{x}_1 + \mathbf{x}_2) \in S$ and $a_1\mathbf{x}_1 \in S$

Lemma 3 Relation between \tilde{S} and S I: If $\mathbf{y}_1, \mathbf{y}_2 \in$ an inhomogeneous system \tilde{S} , then $(\mathbf{y}_1 - \mathbf{y}_2) \in$ the associated homogeneous system S

Def Particular Solution: A particular solution to $A\mathbf{x} = \mathbf{b}$ is referred to as \mathbf{x}_p

Lemma 4 Relation between \tilde{S} and S II: The solution set of an inhomogeneous system \tilde{S} can be constructed from the associated homogeneous system S and a single particular solution

$$\tilde{S} = \{ \mathbf{y}_n + \mathbf{x} : \mathbf{x} \in S \}$$

Lemma 5 Relation Between Inhomogeneous Systems with Matching Coefficient Matrices: Let \tilde{S}_1 be the solution set to $A\mathbf{x} = \mathbf{b}$ and \tilde{S}_2 be the solution set to $A\mathbf{x} = \mathbf{c}$. Then

$$\tilde{S}_2 = \{\mathbf{p}_2 + (\mathbf{z} - \mathbf{p}_1) : \mathbf{z} \in \tilde{S}_1\}$$

that is if

$$\tilde{S}_1 = \{\mathbf{p}_1 + a_1\mathbf{w}_1 + \dots + a_q\mathbf{w}_q : a_1, a_2, \dots, a_1 \in \mathbb{F}\}\$$

then

$$\tilde{S}_2 = \{ \mathbf{p}_2 + a_1 \mathbf{w}_1 + \dots + a_q \mathbf{w}_q : a_1, a_2, \dots, a_1 \in \mathbb{F} \}$$

Def Matrix Multiplication: Let $A \in M_{m \times n}$, $B \in M_{n \times p}$, then

$$AB = C = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix}$$

where $C \in M_{m \times p}$ Note: The j^{th} column of C, $\mathbf{c}_j = A\mathbf{b}_j$ Note: The $(i, j)^{th}$ entry of C is $\mathbf{A}^i \mathbf{b}_j$

Def Column Span: The span of the columns of A

$$Col(A) = Span(\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}) = \{\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_n \mathbf{a}_n : \alpha_1, \dots, \alpha_n \in \mathbb{F}\}\$$

Note: If C = AB, then $\mathbf{c}_k \in Col(A)$ for $k = 1, \dots, p$

Lemma 6 Solution of a linear system: The system of linear equations $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in Col(A)$

12Properties of Matrices

Def Equality: Let $A \in M_{m \times n}$, $B \in M_{p \times q}$, A and B are equal means that

(i) m = p and n = q (same size)

(ii) $a_{ij} = b_{ij}$ for all i = 1, 2, ..., m and j = 1, 2, ..., n (entries are equal)

Note: Holds for \mathbb{R}^n and \mathbb{C}^n

Def Addition: Let $A, B \in M_{m \times n}$, then

(i) $A + B = D \in M_{m \times n}$

(ii) $d_{ij} = a_{ij} + b_{ij}$ for all i = 1, 2, ..., m and j = 1, 2, ..., m

Note: Addition of different sizes is not defined

Lemma 1 Properties of Matrix Addition: Let $A, B, C \in M_{m \times n}$, then

(i) A + B = B + A

(ii)
$$A + B + C = (A + B) + C = A + (B + C)$$

(iii) $\exists \mathbb{O} \in M_{m \times n}, \mathbb{O} + A = A$

(iv) $-A + A = \mathbb{O}$

Note: The Zero Matrix is defined as \mathbb{O} , and sometimes includes size $\mathbb{O}_{m\times n}$

Def Multiplication by a Scalar: Let $A \in M_{m \times n}, c \in \mathbb{F}$, then

(i)
$$cA = F \in M_{m \times n}$$

(ii)
$$f_{ij} = ca_{ij}$$
 for all $i = 1, 2, ..., m$ and $j = 1, 2, ..., m$

Lemma 2 Properties of Matrix Multiplication by a Scalar: Let $A, B \in M_{m \times n}, C \in M_{n \times p}, c, d \in \mathbb{F}$, then

(i)
$$cA = Ac$$

(ii)
$$c(A+B) = cA + cB$$

(iii)
$$(c+d)A = cA + dA$$

(iv)
$$c(dA) = (cd)A$$

(v)
$$c(AC) = (cA)C = A(cC) = cAC$$

Def Transpose of a Matrix: Let $A \in M_{m \times n}$, then the transpose is

$$(A^T)_{mn} = (A)_{nm}$$

Note: The rows are made into columns in the order in which they appear

Lemma 3 Properties of Transpose: Let $A, B \in M_{m \times n}, c \in \mathbb{F}$, then

(i)
$$(A+B)^T = A^T + B^T$$

(ii)
$$(cA)^T = cA^T$$

(iii)
$$(A^T)^T = A$$

Lemma 4 Properties of Matrix Multiplication: Let $A, G \in M_{m \times n}, B, D \in M_{n \times p}, C \in M_{p \times q}$, then

(i)
$$(A+G)B = AB + GB$$

(ii)
$$A(B+D) = AB + AD$$

(iii)
$$(AB)C = A(BC) = ABC$$

(iv)
$$(AB)^T = B^T A^T$$

Def Square Matrix: Let $A \in M_{m \times n}$, then A is a square matrix iff n = m

Def Symmetric: Let $A \in M_{n \times n}$, then B is a symmetric iff $A = A^T$

Def Skew-symmetric: Let $A \in M_{n \times n}$, then A is a skew-symmetric iff $A = -A^T$

Def Upper Triangular: Let $A \in M_{n \times n}$, then A is a upper triangular $(U\Delta)$ iff $a_{ij} = 0$ for all i = 1, 2, ..., n and j = 1, 2, ..., n where i > j

Note: The product of $U\Delta$ matrices is $U\Delta$

Def Lower Triangular: Let $A \in M_{n \times n}$, then A is a lower triangular $(L\Delta)$ iff $a_{ij} = 0$ for all i = 1, 2, ..., n and j = 1, 2, ..., n where i < j

Note: The transpose of $U\Delta$ is $L\Delta$

Note: The product of $L\Delta$ matrices is $L\Delta$

Def Diagonal: Let $A \in M_{n \times n}$, then A is diagonal iff $c_{ij} = 0$ for all i = 1, 2, ..., n and j = 1, 2, ..., n where $i \neq j$

Note: Is both $L\Delta$ and $U\Delta$

Def Diagonal Entries: Let $A \in M_{n \times n}$, then a_{ii} are the diagonal entries of A, and $(a_{11}, a_{22}, \ldots a_{nn})$ is the main diagonal of A

Note: $C = diag(c_{11}, c_{22}, \dots, c_{nn})$ is the diagonal matrix $C \in M_{n \times n}$

Def Identity Matrix: The matrix diag(1, 1, ... 1) is called the identity matrix I where $I_n \in M_{n \times n}$

Note: For $A \in M_{m \times n}$, $I_m A = A$ and $AI_n = A$

Def Elementary Matrix: A matrix created by performing a single ERO on the identity matrix

Note: Elementary matrices can be classified as Type I, Type II, Type III

Lemma 5 Let $C \in M_{m \times n}$, if the same ERO is performed on $C \to B$ and $I_m \to E$, then

$$B = EC$$

Lemma 6 Let $C \in M_{m \times n}$, if a finite number q of EROs are performed on $C \to D$ and each is represented by $I_m \to E_1, E_2, \dots E_q$, then

$$D = E_q \dots E_2 E_1 C$$

^{*}example

^{*}example

^{*}example

13 Linear Transformations

Def Function Definition: Let $A \in M_{m \times n}(\mathbb{F})$, then the function determined by the matrix A is

$$T_A: \mathbb{F}^n \to \mathbb{F}^m, T_A(\mathbf{x}) = A\mathbf{x}$$

Lemma 1: Let $A \in M_{m \times n}(\mathbb{F})$, $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$, $c \in \mathbb{F}$, then T_A is linear, that is

$$\begin{cases} T_A(\mathbf{x} + \mathbf{y}) &= T_A(\mathbf{x}) + T_A(\mathbf{y}) \\ T_A(c\mathbf{x}) &= cT_A(\mathbf{x}) \end{cases}$$

Def Linear Transformation: Let $T: \mathbb{F}^n \to \mathbb{F}^m$, T is a linear transformation if and only if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{F}^n, c \in \mathbb{F}$

$$\begin{cases} T(\mathbf{x} + \mathbf{y}) &= T(\mathbf{x}) + T(\mathbf{y}) \\ T(c\mathbf{x}) &= cT(\mathbf{x}) \end{cases}$$

Lemma 2: Let $T: \mathbb{F}^n \to \mathbb{F}^m$, T is a linear transformation if and only if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{F}^n, \forall c_1, c_2 \in \mathbb{F}$

$$T(c_1\mathbf{x} + c_2\mathbf{y}) = c_1T(\mathbf{x}) + c_2T(\mathbf{y})$$

Lemma 3: Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation, then

$$T(\mathbf{0}_{\mathbb{F}^n}) = \mathbf{0}_{\mathbb{F}^m}$$

Def Range: Let $T: \mathbb{F}^n \to \mathbb{F}^m$, The range of T is the set of image points of T, that is

$$R(T) = \{T(\mathbf{x}) : \mathbf{x} \in \mathbb{F}^n\}$$

Note: R(T) is a subset of \mathbb{F}^m

Lemma 4: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then

$$R(T_A) = Col(A)$$

Def Onto: The function $T: \mathbb{F}^n \to \mathbb{F}^m$ is onto if and only if the range of T is the entire codomain of T, that is

$$R(T) = \mathbb{F}^m$$

Note: If $S: \mathbb{F}^n \to \mathbb{F}^m$ is a linear transformation, then S is onto means that $R(S) = \mathbb{F}^m$

Corollary 1 from Lemma 4: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then T_A is onto if and only if $Col(A) = \mathbb{F}^m$

Corollary 2 from Lemma 4: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then T_A is onto if and only if rank(A) = m

Def Nullspace: Let $T: \mathbb{F}^n \to \mathbb{F}^m$, The nullspace of T is the set of vectors such that their image under T is the zero vector

$$N(T) = \{ \mathbf{x} \in \mathbb{F}^n : T(\mathbf{x}) = \mathbf{0}_{\mathbb{F}^m} \}$$

Note: If T is a linear transformation, $\mathbf{0}_{\mathbb{F}^n} \in N(T)$ thus the nullspace is never empty

Lemma 5: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then

$$N(T_A) = N(A)$$

Def One-to-one: The function $T: \mathbb{F}^n \to \mathbb{F}^m$ is one-to-one if and only if distinct points have distinct images, that is $\forall \mathbf{x}, \mathbf{y} \in \mathbb{F}^n$

$$\mathbf{x} \neq \mathbf{y} \Longrightarrow T(\mathbf{x}) \neq T(\mathbf{y})$$

Lemma 6: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then T_A is one-to-one if and only if

$$N(T_A) = \{\mathbf{0}_{\mathbb{F}^n}\}$$

Corollary 3: Let $A \in M_{m \times n}(\mathbb{F})$ and $T_A : \mathbb{F}^n \to \mathbb{F}^m$, then T_A is onto if and only if nullity(A) = 0 if and only if rank(A) = n

Def Matrix representation of a linear transformation: Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. The matrix representation of T is the $(m \times n)$ matrix whose columns are the images of the basic vectors in the standard basis in \mathbb{F}^n , that is

$$[T]_S = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} & \dots & \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} (T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n)) \end{bmatrix}$$

Note: The s indicates that the standard basis is being used as the domain/codomain

Note: $[T_A]_S = A$ Note: $T_{[T]_S} = T$

Note: T is onto if and only if $rank([T]_S) = m$

Note: T is one-to-one if and only if $rank([T]_S) = n$

Lemma 7: Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation, if $\mathbf{x} \in \mathbb{F}^n$ then

$$T(\mathbf{x}) = [T]_S \mathbf{x}$$

Lemma 8: Let $f: \mathbb{R} \to \mathbb{R}$ be a linear transformation, if $p \in \mathbb{R}$ with $f(p) = \alpha \in \mathbb{R}$, then

$$f(x) = \frac{\alpha}{p}x$$

Def Composite Functions: For functions $T_1: \mathbb{F}^n \to \mathbb{F}^m, T_2: \mathbb{F}^m \to \mathbb{F}^p$, The composite function $T_2 \circ T_1: \mathbb{F}^n \to \mathbb{F}^p$ is

$$T(\mathbf{x}) = (T_2 \circ T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

Lemma 9: Let $T_1: \mathbb{F}^n \to \mathbb{F}^m, T_2: \mathbb{F}^m \to \mathbb{F}^p$ be a linear transformations, then $(T_2 \circ T_1)(\mathbf{x})$ is also a linear transformation

Lemma 10: Let $T_1: \mathbb{F}^n \to \mathbb{F}^m, T_2: \mathbb{F}^m \to \mathbb{F}^p$ be a linear transformations, then

$$[T_2 \circ T_1]_S = [T_2]_S [T_1]_S$$

Def T^p : For the function $T: \mathbb{F}^n \to \mathbb{F}^n$, we define

$$T^p = T \circ T^{p-1}$$

Note: $T^0 = T_I$, the identity transformation $(T_I(\mathbf{x}) = \mathbf{x})$

Corollary 4 of Lemma 10: Let $T: \mathbb{F}^n \to \mathbb{F}^n, p \in \mathbb{N}$, then

$$[T^p]_S = ([T]_S)^p$$

Def Invertibility of a Matrix: For $A \in M_{n \times n}$, A is invertible if $\exists B \in M_{n \times n}$ where

$$AB = BA = I_n$$

Note: B or A^{-1} , the inverse, is also invertible

Def Singularity of a Matrix: For $A \in M_{n \times n}$, A is singular if it is not invertible

Lemma 11 Unique Inverses: Let $A \in M_{n \times n}$ be invertible, then B is unique

Lemma 12: Let $A \in M_{n \times n}$ be invertible, then

$$A\mathbf{x} = \mathbf{b}$$
 has a unique solution $\mathbf{z} = A^{-1}\mathbf{b}, \forall \mathbf{b} \in \mathbb{F}^n$

Lemma 13 Properties of the Inverse: Let $A, B \in M_{n \times n}$ be invertible, $C, D \in M_{n \times m}$ be invertible, and $c \neq 0 \in \mathbb{F}$, then

- (i) A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$
- (ii) cA is invertible and $(cA)^{-1} = c^{-1}A^{-1}$
- (iii) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- (iv) if AC = AD, then C = D
- (v) if $AC = \mathbb{O}_{n \times m}$, then $C = \mathbb{O}_{n \times m}$

Lemma 14 Inverses of Elementary Matrices: All elementary matrices are invertible and their inverses are of the same type

- (I) The inverse of a type I is itself
- (II) The inverse of type II are from scaling by m^{-1} instead of m
- (III) The inverse of type III are from subtracting instead of adding row i

Def Invertible functions: For the function $T_1: \mathbb{F}^n \to \mathbb{F}^m$, it is invertible if and only if $\exists T_2: \mathbb{F}^m \to \mathbb{F}^n$ such that

$$T_2 \circ T_1 = T_{I_{\mathbb{F}^n}}$$
 and $T_1 \circ T_2 = T_{I_{\mathbb{F}^m}}$

Note: If and only if it is one-to-one and onto

Lemma 15: Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear transformation, if T is invertible then its inverse T^{-1} is unique and linear

Lemma 16: Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear transformation, then T is invertible if and only if $[T]_S$ is an invertible matrix, then

$$[T^{-1}]_S = ([T]_S)^{-1}$$

Corollary 5 of Lemma 16: Let $A \in M_{n \times n}(\mathbb{F})$, if $A\mathbf{x} = \mathbf{b}$ has a unique solution $\forall \mathbf{b} \in \mathbb{F}^n$ then A is an invertible matrix

Def Isomorphism: An invertible linear transformation is called an isomorphism

14 Matrix Inverse

Lemma 1: Let $A \in M_{n \times n}(\mathbb{F})$, if $\exists B \in M_{n \times n}(\mathbb{F})$ such that $AB = I_n$ then A is invertible **Lemma 2** Invertibility of a Matrix: Let $A \in M_{n \times n}(\mathbb{F})$, then A is invertible if and only if Rank(A) = n

Corollary 1 of Lemma 2: Let $A \in M_{n \times n}(\mathbb{F})$, then A is invertible if and only if $RREF(A) = I_n$

Lemma 3 Algorithm for Matrix Inversion: Let $A \in M_{n \times n}(\mathbb{F})$, then

- Construct $(A \mid I_n)$
- Reduce until A is in REF, if $rank(A) \neq n$, A is not invertible
- Reduce until A is in RREF, in $(I_n \mid B)$, $B = A^{-1}$

Lemma 4 Invertibility of a Matrix $M_{2\times 2}(\mathbb{F})$: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then A is invertible if and only if $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Note: ad - bc is the determinant of the matrix

Def from Lecture Rotation in \mathbb{R}^2 : $T_\theta: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation from rotating θ radians around the origin

Notice that

$$T_{\theta} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
$$T_{\theta} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

then

$$T_{\theta}(\mathbf{x}) = T_{\theta} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \cos(\theta) - x_2 \sin(\theta) \\ x_1 \sin(\theta) + x_2 \cos(\theta) \end{bmatrix}$$

thus

$$[T_{\theta}(\mathbf{x})]_{S} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$[T_{\alpha+\beta}]_S = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{bmatrix} = \begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix}$$

15 The Determinant

Def Submatrix: The $(i,j)^{th}$ submatrix of $A \in M_{n \times n}$, $M_{ij}(A)$ is the $(n-1) \times (n-1)$ matrix obtained from removing the i^{th} row and j^{th} column

Def Determinant of 1×1 , 2×2 matrices: If $A \in M_{1 \times 1}(\mathbb{F})$ then

$$\det(A) = a_{11}$$

If $A \in M_{2\times 2}(\mathbb{F})$ then

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

Def First Row Expansion of the Determinant: If $A \in M_{n \times n}(\mathbb{F})$ with $n \geq 2$ then for det : $M_{n \times n} \to \mathbb{B}$

$$\det(A) = \sum_{j=1}^{j=n} a_{1j}(-1)^{1+j} \det(M_{1j}(A))$$

Def I^{th} Row Expansion of the Determinant: If $A \in M_{n \times n}(\mathbb{F})$ with $n \ge 2$ for any $I \le n$ then

$$\det(A) = \sum_{j=1}^{j=n} a_{Ij} (-1)^{I+j} \det(M_{Ij}(A))$$

Def J^{th} Column Expansion of the Determinant: If $A \in M_{n \times n}(\mathbb{F})$ with $n \geq 2$ for any $J \leq n$ then

$$\det(A) = \sum_{i=1}^{i=n} a_{iJ}(-1)^{i+J} \det(M_{iJ}(A))$$

Def Cofactor: If $A \in M_{n \times n}(\mathbb{F})$ the $(i, j)^{th}$ cofactor of A is

$$C_{ij}(A) = (-1)^{i+j} \det(M_{ij}(A))$$

Lemma 1: Let $A \in M_{n \times n}(\mathbb{F})$, then

$$\det(A) = \det(A^T)$$

Lemma 2: Let $A \in M_{n \times n}(\mathbb{F})$ be a upper (lower) triangle, then

$$\det(A) = a_{11}a_{22}\dots a_{nn} = \prod_{i=1}^{n} a_{ii}$$

Corollary 1 of Lemma 2: Let $A \in M_{n \times n}(\mathbb{F})$ be a diagonal matrix, then Lemma 2 holds and

$$\det(I_n) = 1$$

Theorem 1: Let
$$A \in M_{n \times n}(\mathbb{F}) = \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^n \end{bmatrix}$$
, then

a) The determinant is skew-symmetric under the interchange of rows

$$\det \begin{pmatrix} \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^k \\ \vdots \\ \mathbf{A}^i \\ \vdots \\ \mathbf{A}^n \end{bmatrix} = -\det \begin{pmatrix} \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^i \\ \vdots \\ \mathbf{A}^k \\ \vdots \\ \mathbf{A}^n \end{bmatrix} \end{pmatrix}$$

b) The determinant is a linear operation on rows, that is for $\mathbf{B}^i \in M_{1 \times n}(\mathbb{F}), c_1, c_2 \in \mathbb{F}$

$$\det \begin{pmatrix} \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ c_1 \mathbf{A}^i + c_2 \mathbf{B}^i \\ \vdots \\ \mathbf{A}^n \end{bmatrix} \right) = c_1 \det \begin{pmatrix} \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{A}^i \\ \vdots \\ \mathbf{A}^n \end{bmatrix} + c_2 \det \begin{pmatrix} \begin{bmatrix} \mathbf{A}^1 \\ \mathbf{A}^2 \\ \vdots \\ \mathbf{B}^i \\ \vdots \\ \mathbf{A}^n \end{bmatrix} \right)$$

Note: The same statement is true if rows are replaced with columns throughout

Corollary 2 of Theorem 1: Let $A \in M_{n \times n}(\mathbb{F})$ have two identical rows (columns), then

$$\det(A) = 0$$

Corollary 3 of Theorem 1 Determinants of elementary matrices: Let E_k be an elementary matrix of type k, then

i) When E_1 is obtained from I_n by interchanging 2 rows then

$$\det(E_1) = -1$$

ii) When E_2 is obtained from I_n by scaling a row by $m \neq 0 \in \mathbb{R}$ then

$$\det(E_2) = m$$

iii) When E_3 is obtained from I_n by adding a multiple of a row to another row then

$$\det(E_3)=1$$

Corollary 4 of Theorem 1 EROs and the determinant: Let $B \in M_{n \times n}(\mathbb{F})$ be a single ERO from $A \in M_{n \times n}(\mathbb{F})$, then

- i) If ERO is type I, then det(B) = -det(A)
- ii) If ERO is type II by $m \neq 0 \in \mathbb{R}$, then $\det(B) = m \det(A)$
- iii) If ERO is type III, then det(B) = det(A)

Corollary 5: Let $B \in M_{n \times n}(\mathbb{F})$ be a single ERO with elementary matrix E from $A \in M_{n \times n}(\mathbb{F})$, then

$$\det(B) = \det(E) \det(A)$$

Corollary 6: Let $B \in M_{n \times n}(\mathbb{F})$ be a series of EROs $E_1 E_2 \dots E_q$ from $A \in M_{n \times n}(\mathbb{F})$, then

$$\det(B) = \det(E_1 E_{q-1} \dots E_1 A) = \det(E_q) \det(E_{q-1}) \dots \det(E_1) \det(A)$$

Corollary 7 Invertibility iff the determinant is non-zero.: Let $A \in M_{n \times n}(\mathbb{F})$, then A is invertible if and only if

$$det(A) \neq 0$$

def I think: A singular matrix must be if det(a) = 0?

Corollary 8 Determinant of a product: Let $A, B \in M_{n \times n}(\mathbb{F})$, then

$$det(AB) = det(A) det(B)$$

Corollary 9: Let $A \in M_{n \times n}(\mathbb{F})$ be invertible, then

$$\det(A^{-1}) = (\det(A))^{-1}$$

Def Adjoint (adjunct) of a Matrix: If $A \in M_{n \times n}(\mathbb{F})$ the adjoint of A is the transpose of the matrix of cofactors of A, that is $\forall i, j = 1, 2, ... n$

$$(adj(A))_{ij} = C_{ji}(A)$$

Note: For $(I_n)_{ij}$, if i = j then $(I_n)_{ij} = 1$, else $(I_n)_{ij} = 0$

Lemma 3: Let $A \in M_{n \times n}(\mathbb{F})$, then

$$Aadj(A) = adj(A)A = det(A)I_n$$

Corollary 10: Let $A \in M_{n \times n}(\mathbb{F})$, if $\det(A) \neq 0$ then

$$A^{-1} = \left(\frac{1}{\det(A)}\right) adj(A)$$

Lemma 4 Cramer's Rule: Let $A \in M_{n \times n}(\mathbb{F})$, $A\mathbf{x} = \mathbf{b} \in \mathbb{F}^n$ where $\det(A) \neq 0$, if B_j is A with the j^{th} column replaced by \mathbf{b} , then

$$A\mathbf{x} = \mathbf{b}$$
 is given by $x_j = \frac{\det(B_j)}{\det(A)}$

Lemma 5: Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathbb{R}^2$, the area of the parallelogram with sides \mathbf{v} , \mathbf{w} is

$$A = \left| \det \left(\begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \right) \right|$$

Def Standard Triple Product: If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, the scalar triple product $STP(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} \bullet (\mathbf{y} \times \mathbf{z})$ is the volume of the parallelepiped with $\mathbf{x}, \mathbf{y}, \mathbf{z}$ as sides

$$V = |STP(\mathbf{x}, \mathbf{y}, \mathbf{z})|$$

Lemma 6: Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, then

$$STP(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \det \begin{pmatrix} \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} \mathbf{x}^T \\ \mathbf{y}^T \\ \mathbf{z}^T \end{bmatrix} \end{pmatrix}$$

16 Diagonalization and the Eigenvalue

Def Eigenvector: If $A \in M_{n \times n}(\mathbb{F})$ then the vector $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of A if and only if $\exists \lambda \in \mathbb{F}$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

Note: λ is an eigenvalue Note: (λ, \mathbf{x}) is an eigenpair

Def Eigenvalue Equation: If $A \in M_{n \times n}(\mathbb{F})$, $\mathbf{x} \in \mathbb{F}^n$, then

$$A\mathbf{x} = \lambda \mathbf{x} \text{ or } (A - \lambda I_n)\mathbf{x} = \mathbf{0}$$

Note: There is an eigenvector iff $A - \lambda I_n$ is not invertible

Note: Thus looking for a λ where $\det(A - \lambda I_n) = 0$

Def Characteristic Polynomial: If $A \in M_{n \times n}(\mathbb{F}), t \in \mathbb{F}$ then the characteristic polynomial is

$$\Delta_A(t) = \det(A - t\lambda)$$

Note: The characteristic equation is $\Delta_A(t) = 0$

Def Eigenspace: If $A \in M_{n \times n}(\mathbb{F})$, $\lambda_1 \in \mathbb{F}$ is an eigenvalue of A, then the eigenspace is

$$E_{\lambda_1} = N(A - t\lambda)$$

Note: Contains all eigenvectors of λ_1 and ${\bf 0}$

Def Similar: If $A, B \in M_{n \times n}(\mathbb{F})$, then A is similar to B if $\exists Q \in M_{n \times n}$ such that

$$Q^{-1}AQ = B$$

Note: If A is similar to B, then B is similar to A

Def Similarity Transformation: If $A, Q \in M_{n \times n}(\mathbb{F})$ then the similarity transformation is $T: M_{n \times n} \to M_{n \times n}$ defined by

$$T(A) = Q^{-1}AQ$$

Def Trace: If $A \in M_{n \times n}(\mathbb{F})$ then the trace is the sum of its diagonal entries

$$tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} (A)_{ii}$$

Lemma 1: Let $A, B \in M_{n \times n}(\mathbb{F})$ be similar, then

- (i) $\det(A) = \det(B)$
- (ii) tr(A) = tr(B)

Def Diagonalizable Matrix: If $A \in M_{n \times n}(\mathbb{F})$ and $D \in M_{n \times n}$ is diagonal, then A is diagonalizable if $\exists P \in M_{n \times n}(\mathbb{F})$ such that

$$D = P^{-1}AP$$

Note: A is similar to a diagonal matrix

Lemma 2 Diagonalization I: Let $A \in M_{n \times n}(\mathbb{F})$ have eigenpairs $(\lambda_1, \mathbf{v}_1) \dots (\lambda_n, \mathbf{v}_n)$ where $\lambda_1 \neq \dots \neq \lambda_n$. Let $P = (\mathbf{v}_1, \dots \mathbf{v}_n)$ then P is invertible and

$$P^{-1}AP = D = diag(\lambda_1, \dots \lambda_n)$$

Lemma 3 Properties of the Characteristic Polynomial I: Let $A \in M_{n \times n}(\mathbb{F})$ have characteristic polynomial $\Delta_A(t) = \det(A - tI_n)$, then

(i) $\Delta_A(t)$ is a n^{th} order polynomial in t

$$\Delta_A(t) = b_0 + b_1 t + \dots + b_{n-1} t^{n-1} + b_n t^n$$

- (ii) $b_n = (-1)^n$
- (iii) $b_{n-1} = (-1)^{n-1} tr(A)$
- (iv) $b_0 = \det(A)$

Lemma 4 Properties of the Characteristic Polynomial I: Let $A \in M_{n \times n}(\mathbb{C})$ have characteristic polynomial $\Delta_A(t) = \det(A - tI_n)$, with A having eigenvalues $\lambda_1 \dots \lambda_n$, then

(i)
$$\sum_{i=1}^{n} \lambda_i = tr(A) = (-1)^{n-1} b_{n-1}$$

(ii)
$$\prod_{i=1}^{n} \lambda_i = \det(A) = b_0$$

Corollary 1 of Lemma 4: Let $A \in M_{n \times n}(\mathbb{F})$, then A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A

Lemma 5: Let $A \in M_{n \times n}(\mathbb{F})$ be similar, then they have the same characteristic polynomials and the same eigenvalues

Def from Lecture: If $P^{-1}AP = D$ (similar), then $D = PAP^{-1}$ and

$$A^{n} = PDP^{-1}PDP^{-1} \dots PDP^{-1} = PDI_{n}DI_{n} \dots I_{n}DP^{-1} = PDD \dots DP^{-1} = PD^{n}P^{-1}$$

17 Subspaces, Span and Bases

Def Subspace: A subset $V \in \mathbb{F}^n$ is called a subspace of \mathbb{F}^n to mean that

- (i) $\mathbf{0} \in V$
- (ii) Closure under addition: $\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{x} + \mathbf{y} \in V$
- (iii) Closure under scalar multiplication: $\forall \mathbf{x} \in V, c \in \mathbb{F}, c\mathbf{x} \in V$

Note: \mathbb{F}^n and $\{\mathbf{0}\}$ are trivial subspaces of \mathbb{F}^n

Lemma 1 Checking for a Subspace: Let V be a subset of \mathbb{F}^n , then V is a subspace if and only if

- (i) V is non-empty
- (ii) $\forall \mathbf{x}, \mathbf{y} \in V, c \in \mathbb{F}, c\mathbf{x} + \mathbf{y} \in V$

Example 1:

- (a) \mathbb{F}^n is a subspace
- (b) $\{0\}$ is a subspace
- (c) if $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \in \mathbb{F}^n$ then $Span(\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\})$ is a subspace
- (d) Let $A \in M_{n \times n}(\mathbb{F})$, Col(A) is a subspace
- (e) Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation, R(T) is a subspace of \mathbb{F}^m
- (f) Let $A \in M_{m \times n}(\mathbb{F})$, the solution set $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{F}^n
- (g) Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation, N(T) is a subspace of \mathbb{F}^n
- (h) Let $A \in M_{n \times n}(\mathbb{F})$ with eigenvalue λ , E_{λ} is a subspace of \mathbb{F}^n

Example 3:

(a) \mathbb{F} has only \mathbb{F} and $\{0\}$ as subspaces

Def Linear Dependence: $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p$ being linear dependent means that exists $c_1, c_2, \dots c_p$ not all zero such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$

Note: The trivial linear combination $c_1 = 0, c_2 = 0, \dots c_p = 0$ also makes the **0** vector

Def Linear Independence: $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p$ being linear independent means that there does not exist non-zero $c_1, c_2, \dots c_p$ such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$

Def Basis: Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$ be a subset of the subspace $V \in \mathbb{F}^n$. B is a basis means that B is a linearly independent set of vectors which spans V

Lemma 2: Let $\mathbf{0} \in S \subseteq \mathbb{F}^n$ then S is linearly dependent

Lemma 3: Let $S = \{\mathbf{x}\} \subseteq \mathbb{F}^n$, then S is linearly dependent if and only if $\mathbf{x} = \mathbf{0}$

Lemma 4: Let $S = \{\mathbf{x}, \mathbf{y}\} \subseteq \mathbb{F}^n$, then S is linearly dependent if and only if one vector is a multiple of the other

Lemma 5: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \subseteq \mathbb{F}^n, A = (\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p \in M_{n \times p})$ with rank(A) = r and pivot columns $q_q, q_2, \dots q_r$, Let $U = \{\mathbf{v}_{q_1}, \mathbf{v}_{q_2}, \dots \mathbf{v}_{q_r}\}$, then

- (a) S is linearly independent if and only if r = p
- (b) U is linearly independent
- (c) A subset of S that contains U and any other vector from S is linearly dependent
- (d) Span(U) = Span(S)

Corollary 1 of Lemma 5: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \subseteq \mathbb{F}^n$. If n < p then S is linearly dependent

Lemma 6: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \subseteq \mathbb{F}^n$ be linearly independent, Let $\mathbf{w} \in \mathbb{F}^n$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p, \mathbf{w}\}$ is linearly dependent if and only if $w \in Span(S)$

Lemma 7: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k, \dots \mathbf{v}_p\} \subseteq \mathbb{F}^n$ be linearly independent, then $S \setminus \{\mathbf{v}_k\}$ is linearly independent

Lemma 8: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \subset V$ where V is a subspace of \mathbb{F}^n , then Span(S) is a subspace of V

Lemma 9: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$ where $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p \in \mathbb{F}^n$, then $Span(S) = \mathbb{F}^n$ if and only if $rank([\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_p]) = n$

Lemma 10: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$ where $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p \in \mathbb{F}^n$, then if S is a basis for \mathbb{F}^n then S has exactly n vectors (p = n)

Lemma 11: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ for distinct $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n \in \mathbb{F}^n$, then S is linearly independent if and only if $Span(S) = \mathbb{F}^n$

Def Dimension: The number of elements in a basis for \mathbb{F}^n (n) is the dimension or n-dimensional

$$dim(\mathbb{F}^n)=n$$

Def Standard Basis: The standard basis for \mathbb{F}^n is the set of n vectors $S = \{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$

Theorem 1 Unique Representation Theorem: Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ be a basis for \mathbb{F}^n , then $\forall \mathbf{v} \in \mathbb{F}^n$ there exists unique scalars $c_1, c_2, \dots c_n \in \mathbb{F}$ such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

Def Coordinates and Components: For a basis of \mathbb{F}^n $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$, with $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \sum_{i=1}^n c_i\mathbf{v}_i \in \mathbb{F}^n$, the coordinate/component vector is

$$[\mathbf{v}]_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Note: This is a if and only if relationship

Lemma 12 Taking Coordinates is a Linear Transformation: Let B be a basis for \mathbb{F}^n , then $[]_B : \mathbb{F}^n \to \mathbb{F}^n$ given by $\mathbf{x} \to [\mathbf{x}]_B$ is a linear transformation

Lemma 13: Let $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}, B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_n\}$ be a bases for \mathbb{F}^n , Let $\mathbf{x} \in \mathbb{F}^n$ with $[\mathbf{x}]_{B_1} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, [\mathbf{x}]_{B_2} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$, then

$$[\mathbf{x}]_{B_2} = {}_{B_2}[I]_{B_1}[\mathbf{x}]_{B_1} \text{ and } [\mathbf{x}]_{B_1} = {}_{B_1}[I]_{B_2}[\mathbf{x}]_{B_2}$$

where $B_2[I]_{B_1} = \begin{bmatrix} [\mathbf{v}_1]_{B_2} & [\mathbf{v}_2]_{B_2} & \dots & [\mathbf{v}_n]_{B_2} \end{bmatrix}$ and $B_1[I]_{B_2} = \begin{bmatrix} [\mathbf{w}_1]_{B_1} & [\mathbf{w}_2]_{B_1} & \dots & [\mathbf{w}_n]_{B_1} \end{bmatrix}$

Def Change of Basis (Coordinates) Matrix: The change-of-basis matrix from basis B_1 to basis B_2 is $B_2[I]_{B_1}$

Corollary 2: Let $B_1 = \{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\} = S, B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_n\}$ be bases for \mathbb{F}^n , Let $\mathbf{x} \in \mathbb{F}^n$ with $[\mathbf{x}]_{B_1} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, [\mathbf{x}]_{B_2} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$, then

$$[\mathbf{x}]_{B_2} = {}_{B_2}[I]_S[\mathbf{x}]_S \text{ and } [\mathbf{x}]_S = {}_S[I]_{B_2}[\mathbf{x}]_{B_2}$$

where $B_2[I]_S = \begin{bmatrix} [\mathbf{e}_1]_{B_2} & [\mathbf{e}_2]_{B_2} & \dots & [\mathbf{e}_n]_{B_2} \end{bmatrix}$ and $S[I]_{B_2} = \begin{bmatrix} [\mathbf{w}_1]_S & [\mathbf{w}_2]_S & \dots & [\mathbf{w}_n]_S \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_n \end{bmatrix}$

Corollary 3: The change of basis matrices $B_1[I]_{B_2}$, $B_2[I]_{B_1}$ are inverses of each other, that is

$$B_1[I]B_2B_2[I]B_1 = I_n$$

18 Matrix Representation of a Linear Operator

Def Linear Operator: For a linear transformation $T: \mathbb{F}^n \to \mathbb{F}^m$, T being a linear operator means that m = n such that $T: \mathbb{F}^n \to \mathbb{F}^n$

Def Matrix Representation: For a linear operator T on \mathbb{F}^n with basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$, the matrix representation of T with respect to B is

$$[T]_B = [[T(\mathbf{v}_1)]_B \quad [T(\mathbf{v}_2)]_B \quad \dots \quad [T(\mathbf{v}_n)]_B]$$

Lemma 1: Let T be a linear operator on \mathbb{F}^n , Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ be a basis for \mathbb{F}^n , if $\mathbf{v} \in \mathbb{F}^n$ then

$$[T(\mathbf{v})]_B = [T]_B[\mathbf{v}]_B$$

Lemma 2: Let T be a linear operator on \mathbb{F}^n , Let B_1, B_2 be a bases for \mathbb{F}^n , then $[T]_{B_1}$ and $[T]_{B_2}$ are similar, and

$$[T]_{B_2} = {}_{B_2}[I]_{B_1}[T]_{B_1B_1}[I]_{B_2} = ({}_{B_1}[I]_{B_2})^{-1}[T]_{B_1B_1}[I]_{B_2}$$

$$[T]_{B_1} = {}_{B_1}[I]_{B_2}[T]_{B_1B_2}[I]_{B_1} = ({}_{B_2}[I]_{B_1})^{-1}[T]_{B_2B_2}[I]_{B_1}$$

Corollary 1: Let T be a linear operator on \mathbb{F}^n , Let B be a basis for \mathbb{F}^n , then $[T]_B$ and $[T]_S$ are similar, and

$$[T]_S = _S[I]_B[T]_{BB}[I]_S = (_B[I]_S)^{-1}[T]_{BB}[I]_S$$

$$[T]_B = {}_B[I]_S[T]_{SS}[I]_B = ({}_S[I]_B)^{-1}[T]_{SS}[I]_B$$

19 Diagonalization of Linear Operators

Def Linear Operator: For a linear operator T in \mathbb{F}^n , the eigenvalue equation

$$T(\mathbf{x}) = \lambda \mathbf{x}$$

where **x** is the non-zero eigenvector and $\lambda \in \mathbb{F}$ is the eigenvalue

Lemma 1: Let T be a linear operator on \mathbb{F}^n , Let B be a basis for \mathbb{F}^n , then (λ, \mathbf{x}) is an eigenpair of T if and only if $(\lambda, [\mathbf{x}]_B)$ is a eigenpair of $[T]_B$

Def Diagonalizable: For a linear operator T in \mathbb{F}^n , T being diagonalizable means that there exists a basis B of \mathbb{F}^n such that $[T]_B$ is a diagonal matrix

Lemma 2: Let T be a linear operator on \mathbb{F}^n , then T is diagonalizable if and only if there exists a basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ of \mathbb{F}^n consisting of eigenvectors of T

Lemma 3: Let T be a linear operator on \mathbb{F}^n , Let B be a basis for \mathbb{F}^n , then T is diagonalizable if and only if the matrix $[T]_B$ is diagonalizable

Corollary 1: Let $A \in M_{n \times n}(\mathbb{F})$, then A is diagonalizable if and only if there exists a basis of \mathbb{F}^n of eigenvectors of A

Lemma 4: Let $A \in M_{n \times n}(\mathbb{F})$ have eigenpairs $(\lambda_1, \mathbf{v}_1), (\lambda_2, \mathbf{v}_2), \dots (\lambda_m, \mathbf{v}_m)$ for $1 \le m \le n$. If the eigenvalues are all different, then the set $W = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$ is linearly independent

Def Characteristic Polynomial: For a linear operator T in \mathbb{F}^n and basis B for \mathbb{F}^n , the characteristic polynomial of T is

$$\Delta_T(t) = \Delta_{[T]_B}(t)$$

Def Algebraic Multiplicity: The algebraic multiplicity of eigenvalue λ of $A \in M_{n \times n}(\mathbb{F})$ is the highest power of the factor $(t - \lambda)^{a_{\lambda}}$ that divides the characteristic polynomial, that is

$$(t-\lambda)^{a_{\lambda}} \mid \Delta_A(t)$$
 but $(t-\lambda)^{a_{\lambda}+1} \nmid \Delta_A(t)$

Def Geometric Multiplicity: The geometric multiplicity of eigenvalue λ of $A \in M_{n \times n}(\mathbb{F})$ is the dimension of the eigenspace E_{λ} , g_{λ}

Lemma 5: Let λ be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$, then

$$1 \le g_{\lambda} \le a_{\lambda}$$

Lemma 6: Let $A \in M_{n \times n}(\mathbb{F})$ have eigenvalues $\lambda_1, \lambda_2, \dots \lambda_m$ with eigenspaces $E_{\lambda_1}, E_{\lambda_2}, \dots E_{\lambda_m}$ having bases $B_1, B_2, \dots B_m$, then

$$B = B_1 \cup B_2 \cup \cdots \cup B_m$$
 is linearly independent

Lemma 7: Let $A \in M_{n \times n}(\mathbb{F})$ have $\Delta_A(t) = (\lambda_1 - t)^{a_{\lambda_1}} (\lambda_2 - t)^{a_{\lambda_2}} \dots (\lambda_m - t)^{a_{\lambda_m}} h(t)$ where $\lambda_1, \lambda_2, \dots \lambda_m$ are eigenvalues of A and h(t) is a polynomial in t with no linear factors, then

A is diagonalizable if and only if both h(t) = 1 and $a_{\lambda_i} = g_{\lambda_i}$ for each $i = 1, 2, \dots m$

20 Special Subspaces and Bases

Def Trivial Subspace: $Span(\emptyset) = \{0\}$ where \emptyset is a basis for $\{0\}$ with dimension 0

Lemma 1: Let V be a subspace of \mathbb{F}^n , then there exist a linearly subset W with $p \leq n$ elements such that

$$Span(W) = V$$

Def Basis: For a subspace U of \mathbb{F}^n , the subset W of U being a basis means that

- 1. $W \subseteq U$
- 2. W is linearly independent
- 3. Span(W) = U

Lemma 2: Let V be a subspace of \mathbb{F}^n , where $U = \{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{v}_p\}, W = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_q\}$ are bases for V, then p = q

Def Dimension: For a subspace V of \mathbb{F}^n , the dimension dim(V) = p is the number of vectors in a basis for V

Lemma 3 Replacement Theorem: Let V be a subspace of \mathbb{F}^n such that dim(V) = k > 0, where $W = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_q\}$ is a basis for V, then W can be extended to a basis B of \mathbb{F}^n Remark 1: rank(A) = dim(Col(A))

Theorem 1 The Dimension Theorem (or Rank-Nullity Theorem): Let $A \in M_{m \times n}(\mathbb{F})$, then

$$n = dim(Col(A)) + dim(N(A))$$

thus

$$n = rank(A) + nullity(A)$$
 and $n = rank(T_A) + nullity(T_A)$

21 Vector Space

Axioms

- (I) Closure under addition: $\forall \mathbf{v}, \mathbf{w} \in V, v \oplus \mathbf{w} \in V$
- (II) Closure under scalar multiplication: $\forall \mathbf{v} \in V, c \in \mathbb{F}, c \odot \mathbf{v} \in V$

and eight other axioms need to be satisfied for a vector space

- (a) $\forall \mathbf{v}, \mathbf{w} \in V, \mathbf{v} \oplus \mathbf{w} = \mathbf{w} \oplus \mathbf{v}$
- (b) $\forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V, (\mathbf{v} \oplus \mathbf{w}) \oplus \mathbf{z} = \mathbf{v} \oplus (\mathbf{w} \oplus \mathbf{z})$
- (c) $\forall \mathbf{v} \in V, \mathbf{0} \oplus \mathbf{v} = \mathbf{v}$
- (d) $\forall \mathbf{v} \in V, \mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}$
- (e) $\forall \mathbf{v}, \mathbf{w} \in V, c \in \mathbb{F}, c \odot (\mathbf{v} \oplus \mathbf{w}) = (c \odot \mathbf{v}) \oplus (c \odot \mathbf{w})$
- (f) $\forall \mathbf{v} \in V, c, d \in \mathbb{F}, (c+d) \odot \mathbf{v} = (c \odot \mathbf{v}) \oplus (d \odot \mathbf{v})$
- (g) $\forall \mathbf{v} \in V, c, d \in \mathbb{F}, (c \times d) \odot \mathbf{v} = c \odot (d \odot \mathbf{v})$
- (h) $\forall \mathbf{v} \in V, c, d \in \mathbb{F}, 1 \odot \mathbf{v} = \mathbf{v}$

Def Vector Space: If we are given a set V, a field \mathbb{F} , a \oplus , \odot , and all axioms hold, this is a vector space over \mathbb{F}

Def Linear Combination: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with $\mathbf{v}_1, \mathbf{v}_2 \in V, c_1, c_2 \in \mathbb{F}$, then a linear combination is $(c_1 \odot \mathbf{v}_1) \oplus (c_2 \odot \mathbf{v}_2)$

Def Span: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with $W = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_p\} \subset V$, then the set of all linear combinations of the elements of W is

$$Span(W) = \{(c_1 \odot \mathbf{v}_1) \oplus (c_2 \odot \mathbf{v}_2) \oplus \cdots \oplus (c_p \odot \mathbf{v}_p) : c_i \in \mathbb{F}, i = 1, 2, \dots p\}$$

Def Vector Subspace: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with a subset U of V, then U being a subspace means that U is a non-empty subset closed under addition and scalar multiplication, thus

- 1. $U \neq \emptyset$
- 2. $\forall \mathbf{u}_1, \mathbf{u}_2 \in U, \mathbf{u}_1 \oplus \mathbf{u}_2 \in U$
- 3. $\forall \mathbf{u}_1 \in U, c \in \mathbb{F}, c \odot \mathbf{u}_1 \in U$

Lemma 1: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n , the zero vector is unique

Lemma 2: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n with $\mathbf{x} \in V$, the additive inverse $(-\mathbf{x})$ is unique

Lemma 3: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n with $a \in \mathbb{F}, \mathbf{x} \in V$, then

$$0 \odot \mathbf{x} = \mathbf{0}$$
 and $a \odot \mathbf{0} = \mathbf{0}$

Lemma 4 The additive inverse: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n with $\mathbf{x} \in V$, then

$$-\mathbf{x} = (-1) \odot \mathbf{x}$$

Lemma 5 The cancellation identity: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n with $a \in \mathbb{F}, \mathbf{x} \in V$, if $a \odot \mathbf{x} = \mathbf{0}$, then

$$a = 0 \text{ or } \mathbf{x} = \mathbf{0}$$

Lemma 6: Let $(V, \oplus, \mathbb{F}, \odot)$ be a vector space over \mathbb{F}^n with $W = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_p\} \subset V$ where $p \geq 1$, then Span(W) is the smallest subspace of V that contains W

Def Linear Dependence: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with $W = \{\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_p\} \subset V$, W being linearly dependent means that $\exists a_i \in \mathbb{F}, i = 1, 2, \dots p \neq 0$ such that

$$(a_1 \odot \mathbf{w}_1) \oplus (a_2 \odot \mathbf{w}_2) \oplus \cdots \oplus (a_n \odot \mathbf{w}_n) = \mathbf{0}$$

Def Basis: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\} \subset V$, B being a basis means that

- 1. $B \subset V$
- 2. Span(B) = V
- 3. B is linearly independent

Def Components/Coordinates: For a vector space over \mathbb{F} of $(V, \oplus, \mathbb{F}, \odot)$ with $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$ being a basis for V, the components/coordinates of a vector $\mathbf{v} \in V$ are the scalars such that

$$\mathbf{v} = (a_1 \odot \mathbf{v}_1) \oplus (a_2 \odot \mathbf{v}_2) \oplus \cdots \oplus (a_p \odot \mathbf{v}_p)$$

Note:
$$[\mathbf{v}]_B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$
 is the coordinate vector of \mathbf{v} in B

22 The Rowspace of a Matrix

Def Rowspace: For a $A \in M_{m \times n}(\mathbb{F})$, the rowspace is a vector subspace of $M_{1 \times n}(\mathbb{F})$

$$Row(A) = Span(\{\mathbf{A}^1, \mathbf{A}^2, \dots \mathbf{A}^m\})$$

Lemma 1: Let $A \in M_{m \times n}(\mathbb{F})$, if B is performed by elementary row operations on A, then

$$Row(A) = Row(B)$$

Corollary 1: Let $A \in M_{m \times n}(\mathbb{F})$,

$$dim(Row(A)) = rank(A)$$

Lemma 2: Let $A \in M_{m \times n}(\mathbb{F})$, then

$$rank(A) = rank(A^T)$$

23 Matrix Representations of Linear Transformations

Def Linear transformation: For a $T:U\in\mathbb{F}^n\to V\in\mathbb{F}^m$, being a linear transformation means that

- 1. For all $\mathbf{u}_1, \mathbf{u}_2 \in U$, $T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2)$
- 2. For all $\mathbf{u} \in U, c \in \mathbb{F}, T(c\mathbf{u}) = cT(\mathbf{u})$

Def Matrix Representation: For a $T: U \to V$, with $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_p\}$ being a basis for $U \in \mathbb{F}^n$ and $B_2 = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_q\}$ being a basis for $V \in \mathbb{F}^m$

$$B_2[T]_{B_1} = [[T(\mathbf{u}_1)]_{B_2} \quad [T(\mathbf{u}_2)]_{B_2} \quad \dots \quad [T(\mathbf{u}_p)]_{B_2}]$$

Lemma 1: Let $T: T \to V$, with B_1 being a basis for $U \in \mathbb{F}^n$ and B_2 being a basis for $V \in \mathbb{F}^m$ and $B_2[T]_{B_1}$ is the matrix representation of the linear transformation, then for all $\mathbf{x} \in U$

$$[T(\mathbf{x})]_{B_2} = {}_{B_2}[T]_{B_1}[\mathbf{x}]_{B_1}$$