GATE (2020) PH(14-26)

1

EE24BTECH11040 - Mandara Hosur

EACH OF THE FOLLOWING QUESTIONS CARRY ONE MARK EACH

- 1) Let \hat{a} and \hat{a}^{\dagger} , respectively denote the lowering and raising operators of a onedimensional simple harmonic oscillator. Let $|n\rangle$ be the energy eigenstate of the simple harmonic oscillator. Given that $|n\rangle$ is also an eigenstate of $\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$, the corresponding eigenvalue is
 - a) n(n-1)
 - b) n(n + 1)
 - c) $(n+1)^2$
 - d) n^2
- 2) Which one of the following is a universal logic gate?
 - a) AND
 - b) NOT
 - c) OR
 - d) NAND
- 3) Which one of the following is the correct binary equivalent of the hexadecimal F6C?
 - a) 0110 1111 1100
 - b) 1111 0110 1100
 - c) 1100 0110 1111
 - d) 0110 1100 0111
- 4) The total angular momentum j of the ground state of the ${}_{8}^{17}O$ nucleus is
 - a) $\frac{1}{2}$
 - b) 1

 - c) $\frac{3}{2}$ d) $\frac{5}{2}$
- 5) A particle X is produced in the process $\pi^+ + p \rightarrow K^+ + X$ via the strong interaction. If the quark content of the K^+ is $u\bar{s}$, the quark content of X is
 - a) $c\bar{s}$
 - b) uud
 - c) uus
 - d) ud
- 6) A medium $(\varepsilon_r > 1, \mu_r = 1, \sigma > 0)$ is semi-transparent to an electromagnetic wave when
 - a) Conduction current >> Displacement current
 - b) Conduction current << Displacement current
 - c) Conduction current = Displacement current
 - d) Both Conduction current and Displacement current are zero

- 7) A particle is moving in a central force field given by $\mathbf{F} = -\frac{k}{r^3}\hat{\mathbf{r}}$ where $\hat{\mathbf{r}}$ is the unit vector pointing away from the center of the field. The potential energy of the particle is given by
- 8) Choose the correct statement related to the Fermi energy (E_F) and the chemical potential (μ) of a metal.
 - a) $\mu = E_F$ only at 0 K
 - b) $\mu = E_F$ at finite temperature
 - c) $\mu < E_F$ at 0 K
 - d) $\mu > E_F$ at finite temperature
- 9) Consider a diatomic molecule formed by identical atoms. If E_V and E_e represent the energy of the vibrational nuclear motion and electronic motion respectively, then in terms of the electronic mass m and nuclear mass M, $\frac{E_V}{E_c}$ is proportional to
 - a) $\left(\frac{m}{M}\right)^{\frac{1}{2}}$ b) $\frac{m}{M}$

 - c) $\left(\frac{m}{M}\right)^{\frac{3}{2}}$ d) $\left(\frac{m}{M}\right)^2$
- 10) Which one of the following relations determines the manner in which the electric field lines are refracted across the interface between two dielectric media having dielectric constants ε_1 and ε_2 (see figure)?

- a) $\varepsilon_1 \sin \theta_1 = \varepsilon_2 \sin \theta_2$
- b) $\varepsilon_1 \cos \theta_1 = \varepsilon_2 \cos \theta_2$
- c) $\varepsilon_1 \tan \theta_1 = \varepsilon_2 \tan \theta_2$
- d) $\varepsilon_1 \cot \theta_1 = \varepsilon_2 \cot \theta_2$
- 11) If **E** and **B** are the electric and magnetic fields respectively, then $\mathbf{E} \cdot \mathbf{B}$ is
 - a) odd under parity and even under time reversal
 - b) even under parity and odd under time reversal
 - c) odd under parity and odd under time reversal
 - d) even under parity and even under time reversal
- 12) A small disc is suspended by a fiber such that it is free to rotate about the fiber axis

(see figure). For small angular deflections, the Hamiltonian for the disc is given by

$$H = \frac{p_{\theta}^2}{2I} + \frac{1}{2}\alpha\theta^2$$

where I is the moment of inertia and α is the restoring torque per unit deflection. The disc is subjected to angular deflections (θ) due to thermal collisions from the surrounding gas at temperature T and p_{θ} is the momentum conjugate to θ . The average and the root-mean-square angular deflection, θ_{avg} and θ_{rms} , respectively are

- a) $\theta_{avg} = 0$ and $\theta_{rms} = \left(\frac{k_B T}{\alpha}\right)^{\frac{3}{2}}$
- b) $\theta_{avg} = 0$ and $\theta_{rms} = \left(\frac{k_B T}{\alpha}\right)^{\frac{1}{2}}$
- c) $\theta_{avg} \neq 0$ and $\theta_{rms} = \left(\frac{k_B T}{\alpha}\right)_{3}^{\frac{1}{2}}$
- d) $\theta_{avg} \neq 0$ and $\theta_{rms} = \left(\frac{k_B T}{\alpha}\right)^{\frac{3}{2}}$
- 13) As shown in the figure, an ideal gas is confined to chamber A of an insulated container, with vacuum in chamber B. When the plug in the wall separating the chambers A and B is removed, the gas fills both the chambers. Which one of the following statements is true?

- a) The temperature of the gas remains unchanged
- b) Internal energy of the gas decreases
- c) Temperature of the gas decreases as it expands to fill the space in chamber B
- d) Internal energy of the gas increases as its atoms have more space to move around