Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba December 18, 2022

SOLUTION OF EXERCISESHEET 9

Exercise 9-1

Exercise 9-2

Exercise 9-3

(a) **To show:** Prove that regular CPA security implies λ -CPA security.

We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the λ -CPA-security of Π which is successful with non-negligible probability. From this we construct our adversary $\mathcal B$ against the CPA-security of Π which invokes $\mathcal A$. $\mathcal B$ has to provide an encryption oracle for $\mathcal A$. To do this, he forwards any message m $\mathcal A$ sends to his oracle to his own oracle and recieves the ciphertext c. He then makes a vector $\vec C$, which contains λ -times the ciphertext c, and forwards it to $\mathcal A$.

 \mathcal{A} eventually outputs two messages $(\widetilde{m_0},\widetilde{m_1})$, which \mathcal{B} forwards to his challenger. Then he sends an vector $\vec{C_b}$ to \mathcal{A} , which contains λ -times the recieved ciphertext c_b . Then \mathcal{B} outputs the same bit b like \mathcal{A} does.

 \mathcal{B} invokes \mathcal{A} and \mathcal{A} is efficient. Because of that, the message length have to be poly. Furthermore forwarding messages is in poly time too. So \mathcal{B} is efficient.

To analyse the success, we ascertain, that \mathcal{B} simulates the λ -CPA-game perfectly to \mathcal{A} . So the success probability of \mathcal{B} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the CPA security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

It follows that the scheme is λ -CPA secure, if it CPA secure. In other words, regular CPA security implies λ -CPA security.

(b) **To show:** Prove that λ -CPA security implies normal CPA security.

We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the CPA-security of Π which is successful with non-negligible probability. From this we construct our adversary $\mathcal B$ against the λ -CPA-security of Π which invokes $\mathcal A$. $\mathcal B$ has to provide an encryption oracle for $\mathcal A$. To do this, he forwards any message m $\mathcal A$ sends to his oracle to his own oracle and recieves the ciphertextvector $\vec C=(c_1,...,c_\lambda)$. He then forwards only the first ciphertext c_1 to $\mathcal A$.

 \mathcal{A} eventually outputs two messages $(\widetilde{m_0},\widetilde{m_1})$, which \mathcal{B} forwards to his challenger. From the recieved ciphertextvector $\vec{C_b}$ he again forwards only the first ciphertext to \mathcal{A} . Then \mathcal{B} outputs the same bit b like \mathcal{A} does.

 \mathcal{B} invokes \mathcal{A} and \mathcal{A} is efficient. Because of that, the message length have to be poly. Furthermore forwarding messages is in poly time too. So \mathcal{B} is efficient.

To analyse the success, we ascertain, that \mathcal{B} simulates the CPA-game perfectly to \mathcal{A} . So the success probability of \mathcal{B} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the λ -CPA security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

It follows that the scheme is CPA secure, if it λ -CPA secure. In other words, λ -CPA security implies normal CPA security.

Exercise 9-4

So ok and possible?