Predict-and-recompute conjugate gradient variants

Tyler Chen

February 12, 2020

Follow along

Acknowledgements

We are gathered on the unceded land of the Coast Salish people, and in particular of the Duwamish Tribe.

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1762114. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Collaborators

- Erin C. Carson
- Anne Greenbaum
- Kelly Liu

Introduction

- Conjugate gradient (CG) is used to solve a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ when $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric positive definite
- CG has low storage and floating point operation costs
 - one matrix vector product, two inner products, and a few vector updates each iteration
- Modern supercomputers have reached exascale (10^{18} flops)
 - Krylov subspace methods can only reach a fraction of this rate because of communication costs
- Convergence of CG in finite precision is not very well understood in general
- Need to address communication costs, while considering numerical properties!

The conjugate gradient algorithm

Algorithm 1 Hestenes and Stiefel Conjugate Gradient (preconditioned)

```
1: procedure HS-CG(\mathbf{A}, \mathbf{M}, \mathbf{b}, \mathbf{x}_0)
               initialize()
         for k = 1, 2, ... do
                     \mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}
         \mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{s}_{k-1}. \tilde{\mathbf{r}}_k = \mathbf{M}^{-1} \mathbf{r}_k
        \nu_k = \langle \tilde{\mathbf{r}}_k, \mathbf{r}_k \rangle
        \beta_k = \nu_k / \nu_{k-1}
        \mathbf{p}_{k} = \tilde{\mathbf{r}}_{k} + \beta_{k} \mathbf{p}_{k-1}
         \mathbf{s}_k = \mathbf{A} \mathbf{p}_k
10:
         \mu_k = \langle \mathbf{p}_k, \mathbf{s}_k \rangle
11:
                    \alpha_k = \nu_k/\mu_k
              end for
12:
13: end procedure
```

Communication costs

- on large machines the cost of reading and moving data dominates the cost of floating point operations
- inner products and dense matrix vector products require global communication
- sparse matrix vector products require local communication
- vector updates require no communication

- In each iteration we would like to hide communication by computing all inner products and matrix vector products simultaneously
- Do this by finding mathematically equivalent expressions for an inner product using recurrences
 - the new expressions are not equivalent in finite precision; i.e. the order of things has changed
- various ways of doing this have been studied before; see for instance¹
 - typically maintain two inner products and one matrix vector product per iteration

¹Saad 1985; Meurant 1987; Saad 1989; Chronopoulos and Gear 1989; Ghysels and Vanroose 2014.

- CG is particularly sensitive to any rounding errors
- changing the order in which computations are performed can have an impact
- some of the communication hiding variants have very different behavior

Figure: Convergence of finite precision conjugate gradient

- In finite precision orthogonality is lost, so induction based arguments for optimality of iterates no longer hold
- The primary effects are:
 - Delay of convergence
 - Loss of ultimately attainable accuracy
- There is numerical analysis theory for both effects:
 - Delay of convergence: perturbed Lanczos recurrence²

$$- \mathbf{A}\mathbf{Q}_k = \mathbf{Q}_k \mathbf{T}_k + \gamma_k \mathbf{q}_{k+1} \mathbf{e}_k^{\mathsf{T}} + \mathbf{F}_k$$

- Loss of accuracy: residual gap³

-
$$\Delta_{\mathbf{r}_k} := (\mathbf{b} - \mathbf{A}\mathbf{x}_k) - \mathbf{r}_k$$

²Paige 1976; Paige 1980; Greenbaum 1989.

³Greenhaum 1997

Figure: Convergence of finite precision conjugate gradient

Figure: Convergence of finite precision conjugate gradient

Figure: Convergence of finite precision conjugate gradient

Figure: Convergence of finite precision conjugate gradient

- idea: use recursively updated quantities as a predictor for their true values to allow iteration to continue, then recompute them directly at a later point in the iteration
- if this is done in a smart way, it won't affect the communication structure of the algorithm

Algorithm 2 Hestenes and Stiefel Conjugate Gradient (preconditioned)

```
1: procedure HS-CG(\mathbf{A}, \mathbf{M}, \mathbf{b}, \mathbf{x}_0)
                 initialize()
          for k = 1, 2, ... do
                         \mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}
          \mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{s}_{k-1}, \ \tilde{\mathbf{r}}_k = \mathbf{M}^{-1} \mathbf{r}_k
          \nu_k = \langle \tilde{\mathbf{r}}_k, \mathbf{r}_k \rangle
         eta_k = \stackrel{\sim}{
u_k} \stackrel{\sim}{
u_k} \stackrel{\sim}{
u_{k-1}} \ \mathbf{p}_k = \stackrel{\sim}{\mathbf{r}}_k + eta_k \mathbf{p}_{k-1}
           \mathbf{s}_k = \mathbf{A}\mathbf{p}_k
10:
          \mu_k = \langle \mathbf{p}_k, \mathbf{s}_k \rangle
11:
                        \alpha_k = \nu_k/\mu_k
12:
            end for
13: end procedure
```

Algorithm 3 Predict-and-recompute conjugate gradient

```
1: procedure PR-CG(\mathbf{A}, \mathbf{M}, \mathbf{b}, \mathbf{x}_0)
                   initialize()
                   for k = 1, 2, ... do
                            \mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}
                          \mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{s}_{k-1}, \ \tilde{\mathbf{r}}_k = \tilde{\mathbf{r}}_{k-1} - \alpha_{k-1} \tilde{\mathbf{s}}_{k-1}
                \nu_k' = \nu_{k-1} - 2\alpha_{k-1}\delta_{k-1} + \alpha_{k-1}^2 \gamma_{k-1}
           \beta_k = \nu_k'/\nu_{k-1}
          \mathbf{p}_k = \tilde{\mathbf{r}}_k + \beta_k \mathbf{p}_{k-1}
                            \mathbf{s}_k = \mathbf{A}\mathbf{p}_k, \ \tilde{\mathbf{s}}_k = \mathbf{M}^{-1}\mathbf{s}_k
                           \mu_k = \langle \tilde{\mathbf{p}}_k, \tilde{\mathbf{s}}_k \rangle, \ \delta_k = \langle \tilde{\mathbf{r}}_k, \tilde{\mathbf{s}}_k \rangle, \ \gamma_k = \langle \tilde{\mathbf{s}}_k, \tilde{\mathbf{s}}_k \rangle, \ \nu_k = \langle \tilde{\mathbf{r}}_k, \tilde{\mathbf{r}}_k \rangle
10:
11.
                            \alpha_k = \nu_k/\mu_k
12:
                   end for
13: end procedure
```

Algorithm 4 Pipelined predict-and-recompute conjugate gradient

```
1: procedure pipe-PR-CG(\mathbf{A}, \mathbf{M}, \mathbf{b}, \mathbf{x}_0)
                    initialize()
                   for k = 1, 2, ... do
                             \mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}
                           \mathbf{r}_{k} = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{\tilde{s}}_{k-1}, \tilde{\mathbf{r}}_{k} = \tilde{\mathbf{r}}_{k-1} - \alpha_{k-1} \tilde{\mathbf{s}}_{k-1}
                     \mathbf{w}_k' = \mathbf{w}_{k-1} - \alpha_{k-1} \mathbf{u}_{k-1}, \ \tilde{\mathbf{w}}_k' = \tilde{\mathbf{w}}_{k-1} - \alpha_{k-1} \tilde{\mathbf{u}}_{k-1}
                            \nu'_{k} = \nu_{k-1} - 2\alpha_{k-1}\delta_{k-1} + \alpha_{k-1}^{2}\gamma_{k-1}
           \beta_k = \nu_k'/\nu_{k-1}
           \mathbf{p}_k = \tilde{\mathbf{r}}_k + \beta_k \mathbf{p}_{k-1}
                           \mathbf{s}_k = \mathbf{w}_k' + \beta_k \mathbf{s}_{k-1}, \ \mathbf{\tilde{s}}_k = \mathbf{\tilde{w}}_k' + \beta_k \mathbf{\tilde{s}}_{k-1}
10:
            \mathbf{u}_k = \mathbf{A} \tilde{\mathbf{s}}_k, \ \ \tilde{\mathbf{u}}_k = \mathbf{M}^{-1} \mathbf{u}_k
11:
12.
                            \mathbf{w}_{l} = \mathbf{A} \tilde{\mathbf{r}}_{l}, \quad \tilde{\mathbf{w}}_{l} = \mathbf{M}^{-1} \mathbf{w}_{l}
                            \mu_k = \langle \mathbf{p}_k, \mathbf{s}_k \rangle, \ \delta_k = \langle \tilde{\mathbf{r}}_k, \mathbf{s}_k \rangle, \ \gamma_k = \langle \tilde{\mathbf{s}}_k, \mathbf{s}_k \rangle, \ \nu_k = \langle \tilde{\mathbf{r}}_k, \mathbf{r}_k \rangle
13.
14:
                             \alpha_{k} = \nu_{k}/\mu_{k}
15:
                    end for
16: end procedure
```

variant	mem.	vec.	scal.	time
HS-CG	4 (+1)	3 (+0)	2	$2C_{\text{gr}} + T_{\text{mv}} + C_{\text{mv}}$
CG-CG	5 (+1)	4 (+0)	2	$\begin{aligned} &C_{\text{gr}} + T_{\text{mv}} + C_{\text{mv}} \\ &C_{\text{gr}} + T_{\text{mv}} + C_{\text{mv}} \\ &C_{\text{gr}} + T_{\text{mv}} + C_{\text{mv}} \end{aligned}$
M-CG	4 (+2)	3 (+1)	3	
PR-CG	4 (+2)	3 (+1)	4	
GV-CG	7 (+3)	6 (+2)	2	$\begin{aligned} & \max(C_{\text{gr}}, T_{\text{mv}} + C_{\text{mv}}) \\ & \max(C_{\text{gr}}, T_{2\text{mv}} + C_{\text{mv}}) \\ & \max(C_{\text{gr}}, T_{2\text{mv}} + C_{\text{mv}}) \end{aligned}$
pipe-PR-M-CG	6 (+4)	5 (+3)	3	
pipe-PR-CG	6 (+4)	5 (+3)	4	

Table: Summary of costs for various conjugate gradient variants. Values in parenthesis are the additional costs for the preconditioned variants.

Figure: Convergence of conjugate gradient variants

- expressions for residual gap and three term Lanczos recurrence for PR-CG and pipe-PR-CG provides insight into improved convergence⁴
- practical use remains to be determined
- but, will be included in PETSc v3.13: -ksp_type pipeprcg
 - in this code the two matrix products are not overlapped with one another: is there an easy way to do this in PETSc?

⁴Chen and Carson 2020.

Figure: Perturbed Lanczos recurrence measures

Future work

- Try to incorporate predict-and-recompute idea into s-step methods
- Selective re-orthogonalization in low precision or high performance contexts
- Further numerical analysis of CG
 - when does $\mathbf{r}_k \to 0$?
 - when is $\langle \mathbf{r}_k, \mathbf{r}_{k-1} \rangle \approx 0$?
 - can we determine which problems will be "hard" ahead of time?

References

- Chen, Tyler and Erin C. Carson (2020). "Predict-and-recompute conjugate gradient variants". In:
- Chronopoulos, A.T. and Charles William Gear (1989). "s-step iterative methods for symmetric linear systems". In: *Journal of Computational and Applied Mathematics* 25.2, pp. 153–168.
- Ghysels, Pieter and Wim Vanroose (2014). "Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm". In: *Parallel Computing* 40.7, pp. 224–238.
- Greenbaum, Anne (1989). "Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences". In: Linear Algebra and its Applications 113, pp. 7–63.
- (1997). Iterative Methods for Solving Linear Systems. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.
- Meurant, Gérard (1987). "Multitasking the conjugate gradient method on the CRAY X-MP/48". In: *Parallel Computing* 5.3, pp. 267–280.
- Paige, Christopher Conway (Dec. 1976). "Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix". In: *IMA Journal of Applied Mathematics* 18.3, pp. 341–349.
- (1980). "Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem". In: Linear Algebra and its Applications 34, pp. 235–258.
- Saad, Yousef (1985). "Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method". In: SIAM Journal on Scientific and Statistical Computing 6.4, pp. 865–881.
- (1989). "Krylov Subspace Methods on Supercomputers". In: SIAM Journal on Scientific and Statistical Computing 10.6, pp. 1200–1232.

slides chen.pw/d/0ak

