Video Game EDA and Visualization

Yang Fei(Sophia)

2020_8

Table of Contents

Data Cleaning3
import the dataset3
Deal with the missing values3
Change the analysis size4
drop the outliers4
EDA6
generate the the relationship between platform and sale count6
generate the the relationship between different years and count7
generate the the relationship between different years and percentage8
generate the the relationship between different game and percentage9
generate the the relationship between different game and Sale Count10
generate the the relationship between different Publisher and Sale Count 11
generate the the relationship between different Genre and Sale Count
generate the histogram of North America data13
generate the histogram of Japan14
generate the histogram of Europe15
<pre>## Warning in extract(path, exdir = path.expand(dirname(default_inst()))): error 1</pre>
in extracting from zip file
Warning in system2("tlmgr", args,): '"tlmgr"' not found
<pre>## Warning in system2("texhash"): '"texhash"' not found</pre>
<pre>## Warning in system2(if (usermode) "fmtutil-user" else "fmtutil-sys", " all", : ## '"fmtutil-sys"' not found</pre>
<pre>## Warning in system2(if (usermode) "updmap-user" else "updmap-sys"): '"updmap- ## sys"' not found</pre>

```
## Warning in system2("fc-cache", args): '"fc-cache"' not found
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use
these themes.
##
        Please use hrbrthemes::import_roboto_condensed() to install Roboto
Condensed and
##
        if Arial Narrow is not on your system, please see
https://bit.ly/arialnarrow
## Loading required package: ggplot2
## No renderer backend detected. gganimate will default to writing frames to
separate files
## Consider installing:
## - the `gifski` package for gif output
## - the `av` package for video output
## and restarting the R session
##
## ****************
## Note: As of version 1.0.0, cowplot does not change the
##
    default ggplot2 theme anymore. To recover the previous
##
    behavior, execute:
    theme set(theme cowplot())
##
## ****************
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggthemes':
##
##
      theme_map
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
## Loading required package: pacman
## WARNING: Rtools is required to build R packages, but is not currently
installed.
```

```
##
## Please download and install Rtools 4.0 from https://cran.r-
project.org/bin/windows/Rtools/.
## Skipping install of 'bbplot' from a github remote, the SHA1 (82af5952) has
not changed since last install.
## Use `force = TRUE` to force installation
```

Data Cleaning

import the dataset

import the dataset. check the size of the dataframe

```
#import the dataset
raw_data<-read.csv('E:/DS/repo/My_Project/Video_Game_EDA_R/vgsales.csv')</pre>
head(raw_data, 5)
                              Name Platform Year
##
     Rank
                                                         Genre Publisher
NA Sales
## 1
                        Wii Sports
                                        Wii 2006
                                                        Sports
                                                                Nintendo
41.49
## 2
                 Super Mario Bros.
                                                      Platform
                                                                Nintendo
        2
                                        NES 1985
29.08
                    Mario Kart Wii
## 3
        3
                                        Wii 2008
                                                        Racing Nintendo
15.85
## 4
                 Wii Sports Resort
                                        Wii 2009
                                                        Sports
                                                                Nintendo
15.75
## 5
        5 Pokemon Red/Pokemon Blue
                                         GB 1996 Role-Playing Nintendo
11.27
## EU_Sales JP_Sales Other_Sales Global_Sales
## 1
        29.02
                  3.77
                              8.46
                                          82.74
## 2
         3.58
                  6.81
                              0.77
                                          40.24
## 3
        12.88
                  3.79
                              3.31
                                          35.82
## 4
        11.01
                  3.28
                              2.96
                                          33.00
        8.89
                 10.22
## 5
                              1.00
                                          31.37
dim(raw data)
## [1] 16598
                11
```

Deal with the missing values

compute and drop the "N/A" number

```
#compute the "N/A" number
sum(raw_data$Year == "N/A")
## [1] 271
#drop the "N/A" rows
w<-which(raw_data$Year=="N/A")</pre>
```

```
raw_data2<-raw_data[-w,]
dim(raw_data2)
## [1] 16327 11</pre>
```

Change the analysis size

change the the period to recent 12 years

```
#select the recent 5 years
raw_data_3<-filter(raw_data2,Year>2005,Year<2017)
dim(raw_data_3)
## [1] 10210 11</pre>
```

drop the outliers

```
#select and delete outliers
plot(density(raw_data_3$NA_Sales))
```

density.default(x = raw_data_3\$NA_Sales)


```
boxplot(raw_data_3$NA_Sales)
## get the outliers
out=boxplot(raw_data_3$NA_Sales)$out
```



```
## get the outliers index
x<-which(raw_data_3$NA_Sales %in% out)
## get the clean data
clean_data<-raw_data_3[-x,]
## check the clean data
boxplot(clean_data$NA_Sales)</pre>
```



```
dim(clean_data)
## [1] 9211 11
```

EDA

generate the the relationship between platform and sale count

```
platform <-clean_data %>%
    group_by(Platform)%>%
    summarise(Count = n())

## `summarise()` ungrouping output (override with `.groups` argument)

ggplot(platform,aes(x = Platform , y = Count,fill=Count)) +
    theme_bw()+
    theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
    geom_col() +
    ggtitle('Platform VS Sale Count')+
    scale_fill_distiller(palette = 'Spectral') +
    ylab('Sale Count')
```


generate the the relationship between different years and count

```
years <-clean_data %>%
   group_by(Year)%>%
   summarise(Count = n())

## `summarise()` ungrouping output (override with `.groups` argument)

ggplot(years,aes(x = Year , y = Count,fill=Count)) +
   theme_bw()+
   geom_col() +
   theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
   hjust = 0.5, vjust = 0.5))+
   ggtitle('Year vs Sale Count')+
   scale_fill_distiller(palette = 'Spectral') +
   ylab('Sale Count')+
   xlab('Year')
```


generate the the relationship between different years and percentage

```
Year freq<-table(clean data$Year)
Year_Per<- prop.table(table(clean_data$Year) * 100)</pre>
year_df<-data.frame(cbind(Year_freq,Year_Per))</pre>
year_df
##
        Year freq
                    Year Per
## 2006
              909 0.09868635
## 2007
             1069 0.11605689
## 2008
             1274 0.13831289
## 2009
             1310 0.14222126
## 2010
             1137 0.12343937
## 2011
             1037 0.11258278
## 2012
              587 0.06372815
## 2013
              471 0.05113451
## 2014
              520 0.05645424
## 2015
              565 0.06133970
## 2016
              332 0.03604386
ggplot(year_df,aes(x = row.names(year_df) , y = Year_Per,fill=Year_Per)) +
  geom col()+
  bbc_style() +
  theme bw()+
  theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5)+
  ggtitle('Year VS Sale Percentage')+
  scale_fill_distiller(palette = 'Spectral') +
```

```
ylab('Percentage')+
xlab('Year')
```


generate the the relationship between different game and percentage

```
Name_freq<-table(clean data$Name)</pre>
Name Per<- prop.table(table(clean data$Name) * 100)</pre>
Name df<-data.frame(cbind(Name freq,Name Per))</pre>
head(Name_df, 10)
##
                                             Name_freq
                                                           Name_Per
## .hack//G.U. Vol.1//Rebirth
                                                     1 0.0001085658
## .hack//G.U. Vol.2//Reminisce
                                                     1 0.0001085658
## .hack//G.U. Vol.2//Reminisce (jp sales)
                                                     1 0.0001085658
## .hack//G.U. Vol.3//Redemption
                                                     1 0.0001085658
## .hack//Link
                                                     1 0.0001085658
## .hack: Sekai no Mukou ni + Versus
                                                     1 0.0001085658
## [Prototype 2]
                                                     3 0.0003256975
## 007: Quantum of Solace
                                                     5 0.0005428292
## 1 vs. 100
                                                     1 0.0001085658
## 1/2 Summer +
                                                     1 0.0001085658
Name df<- head(Name df[order(Name df$Name freq, decreasing = T), ], 10)
ggplot(Name df,aes(x = row.names(Name df) , y = Name Per,fill=Name Per)) +
  geom col()+
  bbc_style() +
  theme_bw()+
```

```
theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
   ggtitle('Game Vs Sale Percentage')+
   scale_fill_distiller(palette = 'Spectral') +
   ylab('Percentage')+
   xlab('Game')
```

Game Vs Sale Percentage

generate the the relationship between different game and Sale Count

```
Name_freq<-table(clean_data$Name)</pre>
Name_Per<- prop.table(table(clean_data$Name) * 100)</pre>
Name_df<-data.frame(cbind(Name_freq,Name_Per))</pre>
head(Name_df,10)
##
                                             Name freq
                                                            Name Per
## .hack//G.U. Vol.1//Rebirth
                                                      1 0.0001085658
## .hack//G.U. Vol.2//Reminisce
                                                      1 0.0001085658
## .hack//G.U. Vol.2//Reminisce (jp sales)
                                                      1 0.0001085658
## .hack//G.U. Vol.3//Redemption
                                                      1 0.0001085658
## .hack//Link
                                                      1 0.0001085658
## .hack: Sekai no Mukou ni + Versus
                                                      1 0.0001085658
## [Prototype 2]
                                                      3 0.0003256975
## 007: Quantum of Solace
                                                      5 0.0005428292
## 1 vs. 100
                                                      1 0.0001085658
## 1/2 Summer +
                                                      1 0.0001085658
Name_df<- head(Name_df[order(Name_df$Name_freq, decreasing = T), ], 10)</pre>
```

```
ggplot(Name df,aes(x = row.names(Name df) , y = Name freq,fill=Name freq)) +
  geom col()+
  bbc_style() +
  theme bw()+
  theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5)+
  ggtitle('Game Vs Sale Count (Top 10)')+
  scale_fill_distiller(palette = 'Spectral') +
  ylab('Sale Count')+
  xlab('Game Name')
```

Game Vs Sale Count (Top 10)

Game Name

generate the the relationship between different Publisher and Sale Count

```
Publisher freq<-table(clean data$Publisher)</pre>
Publisher Per<- prop.table(table(clean data$Publisher) * 100)</pre>
Publisher_df<-data.frame(cbind(Publisher_freq,Publisher_Per))</pre>
head(Publisher df, 10)
##
                    Publisher_freq Publisher_Per
## 10TACLE Studios
                                 3 0.0003256975
## 1C Company
                                    0.0003256975
## 2D Boy
                                 1 0.0001085658
## 49Games
                                 1 0.0001085658
## 505 Games
                               159 0.0172619694
## 5pb
                                61 0.0066225166
## 7G//AMES
                                    0.0004342634
## Abylight
                                 1 0.0001085658
```

```
## Ackkstudios
                               10 0.0010856585
## Acquire
                               13 0.0014113560
Publisher_df<- head(Publisher_df[order(Publisher_df$Publisher_freq,
decreasing = T), ], 10)
ggplot(Publisher df,aes(x = row.names(Publisher df) , y =
Publisher freq,fill=Publisher freq)) +
  geom_col()+
  bbc style() +
  theme bw()+
  theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5)+
  ggtitle('Publisher Vs Sale Count (Top 10)')+
  scale_fill_distiller(palette = 'Spectral') +
  ylab('Sale Count')+
  xlab('Publisher')
```

Publisher Vs Sale Count (Top 10)

Publisher

generate the the relationship between different Genre and Sale Count

```
Genre freg<-table(clean data$Genre)</pre>
Genre_Per<- prop.table(table(clean_data$Genre) * 100)</pre>
Genre_df<-data.frame(cbind(Genre_freq,Genre_Per))</pre>
head(Genre_df,10)
##
                 Genre freq Genre Per
## Action
                        2082 0.22603409
## Adventure
                         984 0.10682879
```

```
## Fighting
                       368 0.03995223
                      1135 0.12322223
## Misc
## Platform
                       288 0.03126696
## Puzzle
                       351 0.03810661
## Racing
                       508 0.05515145
## Role-Playing
                       902 0.09792639
## Shooter
                       575 0.06242536
## Simulation
                       549 0.05960265
Genre_df<- head(Genre_df[order(Genre_df$Genre_freq, decreasing = T), ], 10)</pre>
ggplot(Genre_df,aes(x = row.names(Genre_df) , y =
Genre freq,fill=Genre freq)) +
  geom col()+
  bbc_style() +
  theme bw()+
  theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5)+
  ggtitle('Genre Vs Sale Count (Top 10)')+
  scale_fill_distiller(palette = 'Spectral') +
  ylab('Sale Count')+
 xlab('Genre')
```

Genre Vs Sale Count (Top 10)

generate the histogram of North America data

```
ggplot(data = clean_data, mapping = aes(x = NA_Sales)) +
  geom_histogram(bins = 50, fill = "blue", color = "cyan") +
```

```
bbc_style() +
  theme_bw()+
  theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
  scale_fill_distiller(palette = 'Spectral') +
  xlab("Sales in North America (in millions)") +
  ylab("Frequency") +
  ggtitle("North American Sales Histogram")
```

North American Sales Histogram

Sales in North America (in millions)

generate the histogram of Japan

```
ggplot(data = clean_data, mapping = aes(x = JP_Sales)) +
   geom_histogram(bins = 50, fill = "red", color = "cyan") +
   bbc_style() +
   theme_bw()+
   theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
   scale_fill_distiller(palette = 'Spectral') +
   xlab("Sales in japan (in millions)") +
   ylab("Frequency") +
   ggtitle("Japan Sales Histogram")
```


generate the histogram of Europe

```
ggplot(data = clean_data, mapping = aes(x = EU_Sales)) +
   geom_histogram(bins = 50, fill = "green", color = "cyan") +
   bbc_style() +
   theme_bw()+
   theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
   scale_fill_distiller(palette = 'Spectral') +
   xlab("Sales in Europe (in millions)") +
   ylab("Frequency") +
   ggtitle("Europe Sales Histogram")
```


generate the

histogram of global data

```
ggplot(data = clean_data, mapping = aes(x = Global_Sales)) +
    geom_histogram(bins = 50, color = "cyan") +
    bbc_style() +
    theme_bw()+
    theme(panel.border = element_blank(),axis.text.x = element_text(angle = 45,
hjust = 0.5, vjust = 0.5))+
    scale_fill_distiller(palette = 'Spectral') +
    xlab("Sales in Global (in millions)") +
    ylab("Frequency") +
    ggtitle("Global Sales Histogram")
```

