Multivariate analysis of variance (MANOVA)

Multivariate analysis of variance

- Standard ANOVA has just one response variable.
- What if you have more than one response?
- Try an ANOVA on each response separately.
- But might miss some kinds of interesting dependence between the responses that distinguish the groups.

Packages

```
library(car) # may need to install first
library(tidyverse)
library(MVTests) # also may need to install
```

Small example

- Measure yield and seed weight of plants grown under 2 conditions: low and high amounts of fertilizer.
- Data (fertilizer, yield, seed weight):

```
url <- "http://ritsokiguess.site/datafiles/manova1.txt"
hilo <- read_delim(url, " ")</pre>
```

dbl (2): yield, weight

i Use `spec()` to retrieve the full column specification fo
i Specify the column types or set `show_col_types = FALSE`

2 responses, yield and seed weight.
 Multivariate analysis of variance (MANOVA)

The data

hilo

fertilizer	yield	weight
low	34	10
low	29	14
low	35	11
low	32	13
high	33	14
high	38	12
high	34	13
high	35	14

Boxplot for yield for each fertilizer group

Yields overlap for fertilizer groups.

Boxplot for weight for each fertilizer group

Weights overlap for fertilizer groups.

ANOVAs for yield and weight

```
hilo.y <- aov(yield ~ fertilizer, data = hilo)
summary(hilo.y)

## Df Sum Sq Mean Sq F value Pr(>F)
## fertilizer 1 12.5 12.500 2.143 0.194

## Residuals 6 35.0 5.833

hilo.w <- aov(weight ~ fertilizer, data = hilo)
summary(hilo.w)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## fertilizer 1 3.125 3.125 1.471 0.271
## Residuals 6 12.750 2.125
```

Neither response depends significantly on fertilizer. But...

Plotting both responses at once

- Have two response variables (not more), so can plot the response variables against each other, labelling points by which fertilizer group they're from.
- First, create data frame with points (31, 14) and (38, 10) (why? Later):

• Then plot data as points, and add line through points in d:

The plot

Comments

- Graph construction:
 - Joining points in d by line.
 - geom_line inherits colour from aes in ggplot.
 - Data frame d has no fertilizer (previous colour), so have to unset.
- Results:
 - High-fertilizer plants have both yield and weight high.
 - True even though no sig difference in yield or weight individually.
 - Drew line separating highs from lows on plot.

MANOVA finds multivariate differences

• Is difference found by diagonal line significant? MANOVA finds out.

```
response <- with(hilo, cbind(yield, weight))
hilo.1 <- manova(response ~ fertilizer, data = hilo)
summary(hilo.1)</pre>
```

```
## Df Pillai approx F num Df den Df Pr(>F)
## fertilizer 1 0.80154 10.097 2 5 0.01755 *
## Residuals 6
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 Yes! Difference between groups is diagonally, not just up/down (weight) or left-right (yield). The yield-weight combination matters.

Strategy

- Create new response variable by gluing together columns of responses, using cbind.
- Use manova with new response, looks like 1m otherwise.
- With more than 2 responses, cannot draw graph. What then?
- If MANOVA test significant, cannot use Tukey. What then?
- Use discriminant analysis (of which more later).

Another way to do MANOVA

```
using Manova from package car:
hilo.2.lm <- lm(response ~ fertilizer, data = hilo)
hilo.2 \leftarrow Manova(hilo.2.lm)
hilo.2
##
## Type II MANOVA Tests: Pillai test statistic
             Df test stat approx F num Df den Df Pr(>F)
##
## fertilizer 1 0.80154 10.097 2 5 0.01755 *
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Same result as small-m manova.
- Manova will also do repeated measures, coming up later.

Assumptions

- normal distribution of each response within each treatment group (actually multivariate normal with correlations between response variables)
 - assess with boxplots as usual (or normal quantile plots)
- each response has same spread across all treatment groups, and constant correlation between response variables across treatment groups
 - assess with Box M test. This is very sensitive to unequal spread, so there is only a problem if P-value less than say 0.001. (BoxM in package MVTests.)

Assumptions for yield-weight data

For normal quantile plots, need "extra-long" with all the data values in one column:

There are only four observations per response variable - treatment group combination, so graphs are not very informative (over):

The plots

Box M test

- Make sure package MVTests loaded first.
- Then pull out the numeric columns from dataframe, and (separately) the grouping column:

```
hilo %>% select(yield, weight) -> numeric_values summary(BoxM(numeric_values, hilo$fertilizer))
```

```
## Box's M Test
##
## Chi-Squared Value = 1.002964 , df = 3 and p-value: 0.801
No problem at all with unequal spreads.
```

Another example: peanuts

- Three different varieties of peanuts (mysteriously, 5, 6 and 8) planted in two different locations.
- Three response variables: y, smk and w.

```
u <- "http://ritsokiguess.site/datafiles/peanuts.txt"
peanuts.orig <- read_delim(u, " ")</pre>
```

```
## Rows: 12 Columns: 6
```

```
## -- Column specification -----
```

Delimiter: " "

```
## dbl (6): obs, location, variety, y, smk, w
```

##

i Use `spec()` to retrieve the full column specification for ## i Specify the column types or set `show col types = FALSE`

The data

peanuts.orig

obs	location	variety	у	smk	w
1	1	5	195.3	153.1	51.4
2	1	5	194.3	167.7	53.7
3	2	5	189.7	139.5	55.5
4	2	5	180.4	121.1	44.4
5	1	6	203.0	156.8	49.8
6	1	6	195.9	166.0	45.8
7	2	6	202.7	166.1	60.4
8	2	6	197.6	161.8	54.1
9	1	8	193.5	164.5	57.8
10	1	8	187.0	165.1	58.6
11	2	8	201.5	166.8	65.0
12	2	8	200.0	173.8	67.2

Setup for analysis

[6,] 195.9 166.0 45.8

```
peanuts.orig %>%
  mutate(
    location = factor(location),
    variety = factor(variety)
  ) -> peanuts
response <- with(peanuts, cbind(y, smk, w))
head(response)
##
                smk w
## [1.] 195.3 153.1 51.4
   [2,] 194.3 167.7 53.7
## [3,] 189.7 139.5 55.5
## [4,] 180.4 121.1 44.4
## [5,] 203.0 156.8 49.8
```

Analysis (using Manova)

```
peanuts.1 <- lm(response ~ location * variety, data = peanuts)
peanuts.2 <- Manova(peanuts.1)
peanuts.2

##
## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## location 1 0.89348 11.1843 3 4 0.020502 *
## variety 2 1.70911 9.7924 6 10 0.001056 **
## location:variety 2 1.29086 3.0339 6 10 0.058708 .
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Comments

- Interaction not quite significant, but main effects are.
- Combined response variable (y,smk,w) definitely depends on location and on variety
- Weak dependence of (y,smk,w) on the location-variety combination.
- Understanding that dependence beyond our scope right now.

Normal quantile plots

Setup for normal quantile plots

Make the plots (save to show on next page)

```
ggplot(d, aes(sample = xvals)) + stat_qq() +
   stat_qq_line() +
   facet_grid(xname ~ location, scales = "free") -> g1

ggplot(d, aes(sample = xvals)) + stat_qq() +
   stat_qq_line() +
   facet_grid(xname ~ variety, scales = "free") -> g2
```

The plot for location

The plot for variety

g2

Comments

- this time there are only six observations per location and four per variety, so normality is still difficult to be confident about
- ullet y at location 1 seems to be the worst for normality (long tails / outliers), and maybe y at location 2 is skewed left, but the others are not bad
- there is some evidence of unequal spread (slopes of lines), but is it bad enough to worry about? (Box M-test, over).

Box's M tests

##

• One for location, one for variety:

Box's M Test

```
peanuts %>% select(y:w) -> numbers
summary(BoxM(numbers, peanuts$location))
```

```
## Box's M Test
##
## Chi-Squared Value = 12.47797 , df = 6 and p-value: 0.0521
summary(BoxM(numbers, peanuts$variety))
```

```
## \mbox{thi-Squared Value} = 10.56304 , df = 12 and p-value: 0.567
```

• Neither of these P-values is low enough to worry about. (Remember, the P-value here has to be *really* small to indicate a problem.)