

Data Analytics SET10109

Design Principles Natalie Kerracher

(n.kerracher@napier.ac.uk)

Introduction

- First some (graphical) Math
- Basic Concepts
- Colour

Basic Growth Equations

Decay Equations

Many names

Name	Name	Name	Type	Shown
Linear	Correlated	Linear Regression	Growth	First Slide
Linear	Correlated	Linear Regression	Decay	Second Slide *
Exponential Decay	Exponential distribution	Laplacian <u>distribution</u>	Decay	Second Slide
Power <u>Law</u>	Inverse Power equation		Decay	Second Slide
Increases Exponentially	Exponential equation		Growth	First Slide

Scale

Edinburgh Napier

Scale is not resizing.

Length

Separation

Area

$$A_{real} = \pi r^2$$
$$A_p = r^{2\alpha}$$

Radius:
Actual Area
Perceived Area

1			
3.	1	4	
1			

Horizontal-Vertical Illusion

Ambiguous Information: Area (Context)

2.5D Shape

2.5D Shape

Ambiguous Information: Position in 2.5D

space

Visual Channels

Control the appearance of marks

Accuracy

- How accurately does a channel convey information.
- Can mean different things depending on context.
- For Measure/ratio variables:
 - ➤ How close to the actual value is the human guestimate.
- For categories
 - How well do viewer distinguish between different categories.
 - > Red/Green is easier to distinguish than light-green/ligher-green.

Accuracy

Steven's Psychophysical Power Law: S= I[™]

Steven's Power Law

 Accuracy: how close is human perceptual judgement to some objective measurement of the stimulus?

Steven's Psychophysical Power Law: S= I[™]

Steven's power law: $S=I^n$

Perception of sensation:

Magnified (n>1):

- Greyscale lightness
- Red-grey saturation

Compressed (n<1):

- Area
- brightness

Accurate (n=1):

Length

Figure from Munzner (2014) p104; based on original from Stevens, S.S. (1975). Psychophysics: introduction to its perceptual, neural, and social prospects, Transaction Publishers. Page 17.

Precision

- Accuracy measures closeness to the true value.
- Precision measure consistency in response.

Human Accuracy

Just Noticeable Difference

What is the smallest difference between two stimuli?

Shape

Just Noticeable Difference

What is the smallest difference between two stimuli?

Determines our ability to understand the data.

We can only detect differences we can see.

Depends on:

Stimuli: Size, Colour, Contrast, Texture etc.

Also depends on:

Context: Size, Colour, Contrast, Texture etc. of everything around it.

No two individuals are the same!

Not all scales are linear

Generally JND is inversed

Section Summary

Different 'channels' have different properties.

They vary in their ability to convey information

Individual will vary in how the perceive your image.

Section Summary

- Viewers exhibit wide range of accuracy and precision
 - With substantial variations between individuals.
- Values can be consistently overestimated and underestimated.
- Accuracy and precision can both be affected by the size of the measurement.
 - Non-linear relationship between perceived value and actual value.

Colour

- "Colour used poorly is worse than no colour at all" Edward Tufte
 - "Above all, do no harm"
 - colour can cause the wrong information to stand out and
 - make meaningful information difficult to see.

Colour spaces

Additive Spaces

Subtractive Spaces

Colours on the screen are not the same as printed colours

Printers generally have a smaller range of colour than Screens (left) Printers cannot perfectly reproduce many shades (right)

Colour in humans

Cells in the retina are sensitive to light at different wavelengths.

The wavelengths are roughly

Red, Green & Blue

Colour perception is made by combining these colours.

How colour is displayed

Computer displays (LCD, CRT) operate by lighting up tiny little pixels with one of three colours;

Red Green Blue

Colours are additive sums

Red, Green and Blue colour are **not** in exactly the same position and **not** in equal numbers.

RGB Colour space

HSV Colour Space

Brewer Palettes

Brewer palettes (colorbrewer.org) provide a range of palettes based on HSV model which make life easier for us....

Fig. Courtesy of M. Krzwinski,

M. Krzwinski, behind every great visualization is a design principle, 2012

Conversion to Grey scale

- Ensure chosen colour set works well in grey scale
 - Sequential palette works well here

HSB DESATURATION

The Bartleson-Breneman Effect

Perceived luminance depends on the background.

Larger contrasts induce brighter seeming stimuli

Steven Few's Graph Design IQ Test

http://www.perceptualedge.com/files/GraphDesignIQ.html

Study guide for this lecture

Required Reading:

Munzner, T. (2014). Visualization Analysis and Design.

Chapter 5 - Marks and Channels

Chapter 10 - Map Colour and Other Channels.

Reflective Questions:

- Discuss the properties of data that need to be considered when designing a visualisation, and give examples of how they might influence your design choices.
- Discuss the different properties of an image that are available to us when designing a visual representation and the factors that need to be taken into consideration when making our design choices.
- Illustrating with examples, explain the rules which help us select the best visual encodings for our data.

References

- Edinburgh Napier

 Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. a., & Silva, C. T. (2011). A User 新東東南

 Visualization Effectiveness Using EEG and Cognitive Load. *Computer Graphics Forum*, *30*(3), 791-800.

 doi:10.1111/j.1467-8659.2011.01928.x
- Bresciani, S., & Eppler, M. J. (2008). The Risks of Visualization A Classification of Disadvantages Associated with Graphic Representations of Information.
- Cleveland, W., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. *Journal of the American Statistical ..., 79*(387), 531-554.
- Ellis, G., & Dix, A. (2007). A taxonomy of clutter reduction for information visualisation. *IEEE transactions on visualization and computer graphics*, *13*(6), 1216-23. doi:10.1109/TVCG.2007.70535
- Fekete, J.-daniel, & Plaisant, C. (2002). Interactive Information Visualization of a Million Items. *Information Visualization*, 2002. *INFOVIS* 2002. *IEEE Symposium on*, 117-124. doi:10.1109/INFVIS.2002.1173156
- Stephen Few (2005). Effectively Communicating Numbers: Selecting the Best Means and Manner of Display. http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf
- Hall, J. (2002). Animation: can it facilitate?, 247-262. doi:10.1006/ijhc.1017
- Heer, J., & Bostock, M. (2010). Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. *CHI* 2010. Atlanta, Georgia, USA. Retrieved from http://vis.stanford.edu/files/2010-MTurk-CHI.pdf
- Heer, J., & Robertson, G. (2007). Animated transitions in statistical data graphics. *IEEE transactions on visualization and computer graphics*, *13*(6), 1240-7. doi:10.1109/TVCG.2007.70539
- Inbar, O., Tractinsky, N., & Meyer, J. (2007, August). Minimalism in information visualization: attitudes towards maximizing the data-ink ratio. In *Proceedings of the 14th European conference on Cognitive ergonomics: invent!* explore! (pp. 185-188). ACM.
- Mackinlay, J. (1987). Automating the Design of Graphical Presentations of Relational Information. *ACM Transactions on Graphics (TOG)*, *5*(April 1986), 110-141.
- Meyer, M., Sedlmair, M., & Munzner, T. (2012). The Four-Level Nested Model Revisited: Blocks and Guidelines.
- Munzner, T. (2009). A Nested Model for Visualization Design and Validation. *Visualization and Computer Graphics, IEEE Transactions on*, *15*(6), 921-928. doi:10.1109/TVCG.2009.111
- Robertson, G., Fernandez, R., Fisher, D., Lee, B., & Stasko, J. (2008). Effectiveness of animation in trend visualization. *IEEE transactions on visualization and computer graphics*, *14*(6), 1325-32. doi:10.1109/TVCG.2008.125
- Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.

• Tufte, E. R. (1990). *Envisioning Information*. Cheshire, CT: Graphics Press.

Further reading

behind every great visualization is a design principle: MARTIN KRZYWINSKI -2012 http://mkweb.bcgsc.ca/vizbi/2012/