Q1 (10点)

ID: fourier/text01/page01/009

ある周期性時間領域アナログ信号の周期が T=4 [秒] であるとする。 f(0)=-1、f(1)=2、f(2)=3、f(3)=0 のとき、f(5) はいくつになる か選択肢 $a\sim d$ の中から 1 つ選びなさい。

(a)

f(5) = -1

(b)

f(5) = 2

(c)

f(5) = 3

(d)

f(5) = 0

Q2 (10点)

ID: fourier/text01/page01/010

ある周期性時間領域アナログ信号の周期が T=2 [秒] のとき、基本周波数 f_1 [Hz] はいくつになるか選択肢 $a\sim d$ の中から 1 つ選びなさい。

(a)

$$f_1 = 1 \, [Hz]$$

(b)

$$f_1 = 2$$
 [Hz]

(c)

$$f_1 = 1/2 \text{ [Hz]}$$

$$f_1 = 1/4 \text{ [Hz]}$$

Q3 (10点)

ID: fourier/text01/page01/011

以下の周期性時間領域アナログ信号 (サイン波) の周期 T [秒] を選択肢 $a \sim d$ の中から 1 つ選びなさい。

(a)

$$T = 1$$
 [秒]

(b)

$$T=2$$
 [秒]

(c)

$$T=3$$
 [秒]

$$T=4$$
 [秒]

\sim 4	110	⊢ \
$\mathbf{Q4}$	(10	<u></u> т 1
$\mathbf{Q}4$	ιτυ	π
v	`	••••

ID: fourier/text01/page02/001

フーリエの知り合いを選択肢 a~d の中から1つ選びなさい。

(a)

デカルト

(b)

ニュートン

(c)

ピタゴラス

(d)

ナポレオン

Q5 (10点)

ID: fourier/text01/page03/006

ある周期性時間領域アナログ信号 (周期 T=1 [秒]) が以下の式で与えられている時、直流成分のグラフを選択肢 $a\sim d$ の中から1つ選びなさい。

$$f(t) = 2 - 1 \cdot \cos(1 \cdot 2\pi \cdot t) + 3 \cdot \cos(2 \cdot 2\pi \cdot t)$$

Q6 (10点)

ID: fourier/text01/page03/007

ある周期性時間領域アナログ信号 (周期 T=1 [秒]) が以下の式で与えられている時、第 2 高調波のグラフを選択肢 $a\sim d$ の中から 1 つ選びなさい。

$$f(t) = -2 + 2 \cdot \cos(1 \cdot 2\pi \cdot t) + 3 \cdot \cos(2 \cdot 2\pi \cdot t + \pi/2)$$

Q7 (10点)

ID: fourier/text01/page04/002

ある周期性時間領域アナログ信号 f(t) の複素フーリエ級数展開が以下の式で与えられている時、複素フーリエ係数 C[1] を選択肢 $a\sim d$ の中から 1 つ選びなさい。なお w_1 [rad/秒] を基本角周波数とする。

$$f(t) = \left\{ 1 \cdot e^{\{-j \cdot \pi/3\}} \right\} \cdot e^{\{j \cdot (-2) \cdot w_1 \cdot t\}} + \left\{ 2 \cdot e^{\{-j \cdot \pi/2\}} \right\} \cdot e^{\{j \cdot (-1) \cdot w_1 \cdot t\}}$$

$$+ 1$$

$$+ \left\{ 2 \cdot e^{\{j \cdot \pi/2\}} \right\} \cdot e^{\{j \cdot 1 \cdot w_1 \cdot t\}} + \left\{ 1 \cdot e^{\{j \cdot \pi/3\}} \right\} \cdot e^{\{j \cdot 2 \cdot w_1 \cdot t\}}$$

(a)

C[1] = 1

(b)

C[1] = 0

(c)

 $C[1] = 2 \cdot e^{\{j \cdot \pi/2\}}$

(d)

 $C[1] = 1 \cdot e^{\{j \cdot \pi/3\}}$

Q8 (10点)

ID: fourier/text01/page04/003

ある周期性時間領域アナログ信号 f(t) の複素フーリエ級数展開が以下の式で与えられている時、複素フーリエ係数 C[0] を選択肢 $a\sim d$ の中から 1 つ選びなさい。なお w_1 [rad/秒] を基本角周波数とする。

$$f(t) = \left\{ 3 \cdot e^{\{-j \cdot \pi/4\}} \right\} \cdot e^{\{j \cdot (-2) \cdot w_1 \cdot t\}} + \left\{ 1 \cdot e^{\{j \cdot \pi/3\}} \right\} \cdot e^{\{j \cdot (-1) \cdot w_1 \cdot t\}}$$

$$+ (-1)$$

$$+ \left\{ 1 \cdot e^{\{-j \cdot \pi/3\}} \right\} \cdot e^{\{j \cdot 1 \cdot w_1 \cdot t\}} + \left\{ 3 \cdot e^{\{j \cdot \pi/4\}} \right\} \cdot e^{\{j \cdot 2 \cdot w_1 \cdot t\}}$$

(a)

C[0] = 0

(b)

$$C[0] = 3 \cdot e^{\{-j \cdot \pi/4\}}$$

(c)

$$C[0] = 3 \cdot e^{\{j \cdot \pi/4\}}$$

$$C[0] = -1$$

Q9 (10点)

ID: fourier/text01/page04/004

ある周期性時間領域アナログ信号の k 番目の複素フーリエ係数 C[k] が以下の式で与えられている時、-k 番目の複素フーリエ係数 C[-k] を選択肢 $a\sim d$ の中から 1 つ選びなさい。

$$C[k] = 1 \cdot e^{\{-j \cdot \pi/3\}}$$

(a)

$$C[-k] = 0$$

(b)

$$C[-k] = 1 \cdot e^{\{j \cdot \pi/3\}}$$

(c)

$$C[-k] = 1 \cdot e^{\{-j \cdot \pi/3\}}$$

$$C[-k] = (-1) \cdot e^{\{-j \cdot \pi/3\}}$$

Q10 (10点)

ID: fourier/text01/page05/007

ある周期性時間領域アナログ信号が以下の式で与えられている時、複素フーリエ係数 C[1] を選択肢 $a\sim d$ の中から 1 つ選びなさい。なお w_1 [rad/秒] を基本角周波数とする。

$$f(t) = 0 + 3 \cdot \cos(1 \cdot w_1 \cdot t - \pi/2) + 1 \cdot \cos(2 \cdot w_1 \cdot t + \pi/4)$$

(a)

$$C[1] = \frac{3}{2} \cdot e^{\{-j \cdot \pi/2\}}$$

(b)

$$C[1] = 3 \cdot e^{\{j \cdot \pi/2\}}$$

(c)

$$C[1] = \frac{1}{2} \cdot e^{\{j \cdot \pi/4\}}$$

$$C[1] = 0$$