1 The computation of $G_n(\mathbb{Q}_p)$

1.1 The computation of the first block M_{11}

Proposition 1.1.1. Let $x = \sum_{i=1}^{n-1} \lambda_i e_{i,i+1}$, where $\lambda_i \in \mathbb{Q}_p$ not all zero. Then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = l + m$, where \mathbf{l} is the number of sequences of non-zero coefficients of the form $\lambda_j, \lambda_{j+1}, \ldots, \lambda_{j+k-1}, \lambda_{j+k}$ and $\lambda_{j-1} = \lambda_{j+k+1} = 0^1$, and \mathbf{m} is the number of zero coefficients $\lambda_j = 0$, such that also $\lambda_{j-1} = \lambda_{j+1} = 0$.

Proof. Let $y = \sum_{i=1}^{n-1} \mu_i e_{i,i+1} \in \mathcal{C}_{\gamma_3}(x)$, where $\lambda_i \in \mathbb{Q}_p$. For every $1 \leq 1$ $i \leq n-1$, denote by c_i the constraint equation $[\lambda_i e_{i,i+1}, \mu_{i+1} e_{i+1,i+2}]$ $[\lambda_{i+1}e_{i+1,i+2},\mu_ie_{i,i+1}] = (\lambda_i\mu_{i+1} - \lambda_{i+1}\mu_i)e_{i,i+2} = 0.$ Let $1 \le j \le n-1$ and $1 \le k \le n-1-j$ be two indices, such that $\lambda_{j-1} = \lambda_{j+k+1} = 0$, and $\lambda_j, \lambda_{j+1}, \ldots, \lambda_{j+k-1}, \lambda_{j+k}$ are all non-zero, then by constraints $c_j, c_{j+1}, \ldots, c_{m-1}$ we have that $\mu_m = \frac{\lambda_m}{\lambda_{m-1}} \mu_{m-1} = \frac{\lambda_m}{\lambda_{m-1}} \frac{\lambda_{m-1}}{\lambda_{m-2}} \mu_{m-2} = \frac{\lambda_m}{\lambda_{m-2}} \mu_{m-2} = \cdots = \frac{\lambda_m}{\lambda_j} \mu_j$, for every $j+1 \leq m \leq j+k-1$, which means that all μ coefficients of y, with indices from j+1 to j+k, depend on the first coefficient, namely μ_i . We denote the free choice of μ_i by $\mu_i = *$. One easily checks that we can choose freely any coefficient μ_m from j+1 to j+k, instead of μ_j , and all other coefficients in that range will depend on our choice of μ_m . By constraint c_{j-1} , we have that $\lambda_{j-1}\mu_j - \lambda_j\mu_{j-1} = 0$, but $\lambda_{j-1} = 0$, hence $\lambda_j\mu_{j-1}$ must vanish, but $\lambda_j \neq 0$, which obviously means that $\mu_{j-1} = 0$. Similarly, we have that $\mu_{j+k+1} = 0$, due to constraint c_{j+k} . By constraint c_{j+k+1} , we have that $\lambda_{k+k+1}\mu_{j+k+2} - \lambda_{j+k+2}\mu_{j+k+1} = 0$, but $\lambda_{j+k+1} = \mu_{j+k+1} = 0$, hence, $\lambda_{j+k+1}\mu_{j+k+2}$ must vanish, but $\lambda_{j+k+1}=0$, which means that we need to look at constraint c_{j+k+2} , that is, $\lambda_{j+k+2}\mu_{j+k+3} - \lambda_{j+k+3}\mu_{j+k+2} = 0$. We check the different options. If $\lambda_{j+k+2} = 0$, then $\lambda_{j+k+3}\mu_{j+k+2}$ must vanish. Therefore, if $\lambda_{j+k+3} \neq 0$, then $\mu_{j+k+2} = 0$, but if $\lambda_{j+k+3} = 0$, then $\mu_{j+k+2} = *$. If $\lambda_{i+k+2} \neq 0$, then again $\mu_{i+k+2} = *$. If $\lambda_{i+k+2} \neq 0$, then $\mu_{i+k+2} = *$, and we continue the same way as for λ_i and its following coefficients.

Corollary 1.1.2. Let $\mathcal{L}_{n,p}$ be the \mathbb{Q}_p -Lie algebra associated with $\mathcal{U}_n(\mathbb{Z})$. If $n \geq 5$, then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = \dim^{\gamma_1/\gamma_3} - 1$ if and only if $x \in \{\lambda e_{12} + \gamma_2 \mathcal{L}_{n,p}\}$ or $x \in \{\lambda e_{n-1,n} + \gamma_2 \mathcal{L}_{n,p}\}$, for a non-zero scalar $\lambda \in \mathbb{Q}_p$. If n = 4, then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = \dim^{\gamma_1/\gamma_3} - 1$ if and only if $x \in \{\lambda e_{12} + \mu e_{34} + \gamma_2 \mathcal{L}_{n,p}\}$, for $\lambda, \mu \in \mathbb{Q}_p$ not both zero.

¹We extend our notation of indices, to include also the case where j=1 or j+k=n-1, and define that $\lambda_{j-1}=\lambda_0=0$ or $\lambda_{j+k+1}=\lambda_n=0$, respectively

Proof. Let $z = \lambda_{j,j+2} e_{j,j+2}$, where $1 \leq j \leq n-2$ and $\lambda_{j,j+2} \in \mathbb{Q}_p$, then for every $w \in \gamma_1/\gamma_3$, either z commutes with w or $[z,w] \in \gamma_3 \mathcal{L}_{n,p}$, which means that $\lambda_{j,j+2}e_{j,j+2} \in \mathcal{C}_{\gamma_1/\gamma_3}$, for every $1 \leq j \leq n-2$. Hence, $\gamma_2/\gamma_3 = 1$ $\langle e_{13}, e_{24}, \dots, e_{n-2,n} \rangle \subset \mathcal{C}_{\gamma_1/\gamma_3}(x)$. Therefore, we only need to discuss elements of the quotient γ_1/γ_2 , for the purpose of this proof. Suppose that $x = \lambda_1 e_{12} + z$, where $z \in \gamma_2 \mathcal{L}_{n,p}$, then we have one sequence of non-zero coefficients, namely λ_1 , and we have n-2 zero coefficients $\lambda_2=\lambda_3=\cdots=\lambda_{n-1}=0$, from which n-3 are between two other zeros. Hence, by 1.1.1, we have that $C_{\gamma_1/\gamma_2}(x) = 1 + (n-3) = n-2 = (n-1)-1 = \dim^{\gamma_1/\gamma_2} - 1$. Similarly, the same goes also for $x = \lambda_{n-1}e_{n-1,n} + z$. Suppose that dim $\gamma_1/\gamma_3 - 1$, but $x = \sum_{i=1}^{n-1} \lambda_i e_{i,i+1}$, such that there exists a sequence of non-zero coefficients $\lambda_i, \lambda_{i+1}, \ldots, \lambda_{j+k}$, where $2 \leq j \leq n-2$ and $1 \leq k \leq n-1-j$. Clearly, the number of zero coefficients in x is less or equal to n-1-(k+1)=n-k-2, but at least two of them have a neighboring non-zero coefficient, so the number of zeros that lie between two other zeros is less or equal to n-k-4. To show that the total dimension of $C_{\gamma_1/\gamma_2}(x)$ is less than n-2, we shall use induction on l the number of sequences of consecutive non-zero coefficients. For l=1, we have just shown that. Let $x=\sum_{i=1}^{n-1}\lambda_i e_{i,i+1}$, such that $\lambda_j = \lambda_{j+1} = \cdots = \lambda_{j+k} = 0$. By proposition 1.1.1, $C_{\gamma_1/\gamma_2}(x) = l + m$. Replace all the zeros from j to j + k by a sequence of non-zero coefficients, then obviously $\lambda_{i-1} = \lambda_{i+k+1} = 0$. If either λ_{i-1} or λ_{i+k+1} were originally between two other zero coefficients, then