MTech Data Science Sem III

Subject: Deep Learning (703DB0C016)

Lecture	Date	Topics	Hours
	Chapter 1	Introduction to Deep Learning	4
1	17-07-2022	About deep learning, Perceptron, Activation Functions, Perceptron examples, Multi- output Perceptron, Single Layer and Deep/Dense Neural Network, Loss Function, Gradient Descent, Backpropagation, Learning Rates, and Regularization Lab Work 1: Perceptron in Tensorflow Iris using Dense Neural Network Assignment 1: Estimate first iteration of single neural network with two variables	4
	~	Designing DNN to identify financial risk	
	Chapter 2	Deep Convolution Network	12
2	24-07-2022	Computer vision (CV) and applications, Disadvantage of applying DNN in CV (use case in lab work), convolutions and filters with examples, feature maps, pooling (max and average), and strides Lab Work 2: MNIST using DNN Convolution and Pooling step-by-step in python MNIST using CNN Assignment 2: Cifar10 and Cifar100 using CNN	4
3	31-07-2022	Tensorflow – Image Generator, Augmentation, Regularization Lab Work 3: Building CNN to classify Indian Classical Dance Visualizing effect of CNN Layers Assignment 3: Building CNN to classify different breed of snakes and visualizing the effect of CNN layers for each breed	4
4	07-08-2022	Case Study: Speech Recognition using CNN, basics of audio speech recognition, spectral bandwidth, short term Fourier transform, and MFCC spectral Lab Work 4: Building a CNN model to identify emotions from an audio speech Assignment 4: To design and build a CNN model to identify dysarthria disease	4

MTech Data Science Sem III

	Chapter 3	Deep Sequence Modelling	16
5	14-08-2022*	Applications and relationships, Neurons with recurrence, RNN and intuition, backpropagation through time, gradient issues, tokenization, pad sequences and embeddings Lab Work 5: To build a sarcasm NLP classifier using Embeddings Assignment 5: To build an NLP model to combat fake news/contents menace using Embeddings	4
6	21-08-2022	RNN for time series, LSTM, and bidirectional LSTM Lab Work 6: To build LSTM model for grocery sales forecasting Assignment 6: Build a LSTM model with and without return sequences using any TS data Write a report on Convolution with LSTM with its architecture	4
7	28-08-2022	Case Study 1: Image captioning, tokenizer and feature using sequences and Xception network, and model architecture for image captioning Lab Work 7: To build image captioner using CNN-DNN-RNN in Flickr 8k dataset Assignment 7: In group of 5 build an image captioner using COCO dataset Write a report on recent developments in COCO dataset	4
8	04-09-2022	Case Study 2: Netflix Movie Tag Generation, vectorization, LSTM with NLP, and return sequences Lab Work 8: To generate Netflix movie tags using Embeddings and LSTM Assignment 8: In group of 3, build a system to predict book genre using LSTM in NoSQL Design a model prototype for text generation with examples. Write a report on BERT and Transformers (individual assignment)	4
	Chapter 4	Transfer Learning and Object Detection	12
9	11-09-2022	About transfer learning, weights sharing, VGG16, Xception, InceptionV3 Discussion on project Lab Work 9.1: VGG16, Xception, InceptionV3 to classify cats and dogs in tensorflow Assignment 9.1: Draw VGG16, Xception and InceptionV3 network	4

MTech Data Science Sem III

		ResNet 50, 101, 152 and DenseNet 121, 161, and U-NET	
10	18-09-2022	Discussion on project	4
		Lab Work 9.2:	
		• ResNet 50, 101, 152 and DenseNet 121, 161 to classify cats and dogs in fastai	
		Assignment 9.2:	
		• Draw ResNet 50, 101, 152 and DenseNet 121, 161	
		Design U-NET for car and truck classification	
	25-09-2022*	Case Study: Object Detection, R-CNN,	4
		Lab Work 10:	
11		To implement R-CNN in Tensorflow Hub	
11		Assignment 10:	
		Write a report on recent developments in object detection including YOLO.	
		• In group of 3, design an object detection prototype for identifying bike helmet	
	Chapter 5	Deep Generative Modelling	8
	02-10-2022	About generative modelling, and anomaly detection using auto encoder	4
12		Assignment (Uncredited):	
		Implement auto encoder to convert high resolution image to low resolution	
		 Implement auto encoder to convert high resolution image to low resolution Variational Auto Encoder 	
13	09-10-2022		4
13	09-10-2022	Variational Auto Encoder	4 8
13	09-10-2022	Variational Auto Encoder GANs, generator and discriminator implementation	
		Variational Auto Encoder GANs, generator and discriminator implementation Miscellaneous	8

^{*} ICA Test - 20 marks each

Dates are tentative | Assignments: 30 marks

Text Books:

- 1. Charu C. Aggarwal, Neural Networks and Deep Learning, Springer International Publishing, 2018.
- 2. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

Reference Books:

- 1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, 2006.
- 2. Duda, Richard, Peter Hart, and David Stork, Pattern Classification, 2nd edition, Wiley-Interscience, 2000.
- 3. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- 4. Reza Zadeh, Bharath Ramsundar, TensorFlow for Deep Learning, 1st edition, O'Reilly Media Inc, 2018.
- 5. Zaccone, Giancarlo, Deep Learning with TensorFlow, 2nd edition, Packt Publishing, 2018.