Probability Theory

Ikhan Choi

September 8, 2021

Contents

I	Random variables	2
1	Measure theory for probability1.1 Uniqueness of measures	3 3
2	Probability distributions	4
3	Independence	5
II	Limit theorems	6
4	Laws of large numbers	7
5	Central limit theorems	8
6		9
II	I Stochastic processes	10
7	Martingales	11
8	Markov chains	12
9	Wiener process	13
IV	Stochastic calculus	14

Part I Random variables

Measure theory for probability

1.1 Uniqueness of measures

1.1 (Dynkin's π - λ theorem). Let \mathcal{P} and \mathcal{L} be a π -system and a λ -system respectively, and $\ell(\mathcal{P})$ the smallest λ -system containing \mathcal{P} .

- (a) If $A \in \ell(\mathcal{P})$, then $\mathcal{G}_A := \{B : A \cap B \in \ell(\mathcal{P})\}$ is a λ -system.
- (b) $\ell(\mathcal{P})$ is a π -system.
- (c) If a λ -system is a π -system, then it is a σ -algebra.
- (d) If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

1.2.

1.2 Kolmogorov extension theorem

Probability distributions

sample space, events random variable, distributions, expectation sample space of an "experiment" equally likely outcomes coin toss dice roll ball drawing number permutation life time of a light bulb

discrete vs continuous joint, conditional, expectation

Independence

Part II Limit theorems

Laws of large numbers

Central limit theorems

Part III Stochastic processes

Martingales

Markov chains

Wiener process

Part IV Stochastic calculus