01204211 Discrete Mathematics Lecture 3: Logical proofs

Jittat Fakcharoenphol

August 18, 2015

How to prove a mathematical statement

Given propositions P and Q, these are a very useful logical equivalences (referred to as the De Morgan's Laws).

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

(Note that \neg takes precedence over \lor or \land .)

How can we prove that the first statement is true?

Proof by exhaustion

For any proposition
$$P$$
 and Q , $\neg(P \lor Q) \equiv \neg P \land \neg Q$.

Proof.

We will prove by exhaustion. There are 4 cases as in the truth table below.

P	Q	$P \lor Q$	$\neg (P \lor Q)$	$\neg Q \wedge \neg P$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	T

Note that for all possible truth values of P and Q, $\neg(P \lor Q)$ equals $\neg P \land \neg Q$. Thus, the statement is true.

