

1. Introdução aos Sistemas Fuzzy

Aspectos de definição e principais características

Aspectos de Definição:

- <u>Definição 1</u>: São sistemas que tentam explorar as formas que o cérebro usa para o tratamento de informações qualitativas e incertas.
- <u>Definição 2</u>: São sistemas que suportam os modos de raciocínio que são aproximados, ao invés de exatos, como estamos naturalmente acostumados a trabalhar.
- <u>Definição 3</u>: São sistemas capazes de tratar informações vagas, aproximadas, as quais são expressas por regras linguísticas.

Principais Características:

- Exploram a riqueza da informação:
 - Informações qualitativas.
 - > Redes neurais artificiais só trabalham com informações quantitativas.
- Permitem expressar imprecisões e incertezas (Ex. da Churrascaria).
- O raciocínio é executado de forma aproximada (não exata).
- Independem da modelagem matemática.
- Sistemas baseados em regras linguísticas.

1. Introdução aos Sistemas Fuzzy

Vantagens dos sistemas fuzzy

- Conceitualmente fácil de ser entendido.
- Flexibilidade explícita pela tolerância à imprecisão de dados.
- Modelagem não-linear de processos com complexidade arbitrária.
- Construído baseando na experiência dos especialistas.
- Pode ser integrado com outras ferramentas convencionais.
- Baseado em linguagem natural.

1. Introdução aos Sistemas Fuzzy

O conceito de inexatidão

- O cérebro humano processa informações inexatas de forma direta:
 - > Hoje está mais ou menos quente.
 - > O show é **meio** caro.
 - > Aquele rapaz é baixinho.
 - > Coloque **um pouco** (uma pitada) de sal.
 - > A tensão está muito alta.
 - > Picanha bem passada.
- Mas, paradoxalmente, não há incerteza sobre a eventual quantificação do valor que se quer representar (ou repassar a ideia).
- O problema é como definir "linguisticamente" esse valor.

1. Introdução aos Sistemas Fuzzy Exemplo do jogo de golfe Se a bola está longe do buraco e o terreno está levemente inclinado da esquerda para direita, bata na bola fortemente e numa direção um pouco a esquerda da bandeira. Se a bola está muito perto do buraco e o terreno é plano, bata na bola suavemente e diretamente na direção do buraco. Como se pode definir a distância: Muito Perto: menor que 1 metro Perto: entre 1 e 3 metros > Médio: entre 3 e 5 metros Longe: entre 5 e 7 metros Muito Longe: maior que 7 metros Como classificar a distância 4.99m? Intuitivamente, sabe-se que 4.99 está mais para "Longe" do que para "Médio".

2. Conceitos de Lógica Clássica Resumo da lógica clássica de conjuntos Na lógica clássica (booleana, binária, Aristóteles), os objetos pertencem ou não a uma determinada classe ou a um determinado conjunto. A resposta se resume a "Sim" ou "Não", "Verdadeiro" ou "Falso", 0 ou 1, etc. Exemplo: Seja o seguinte gráfico denotando o conceito de "Velocidade Alta". $\mu(v)$ Função Característica (Inclusão): $\mu(v) = \begin{cases} 1 \text{, se } 100 \le v \le 140 \\ 0 \text{, caso contrário} \end{cases}$ 100 140 v(km/h)

3. Conceitos de Lógica Fuzzy Terminologia para representar conjuntos fuzzy Em termos de implementação computacional, os conjuntos fuzzy são normalmente representados de maneira discreta. Para um conjunto fuzzy A, discreto e finito, tendo elementos definidos em um universo de discurso X, o mesmo conjunto pode ser denotado da seguinte forma: $A = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + \mu_A(x_3)/x_3 + ... + \mu_A(x_n)/x_n$ ➤ Onde o sinal de adição indica a composição de todos elementos do conjunto A, e *n* especifica a quantidade de elementos de discretização. \triangleright Então, cada termo $\mu_A(x_i)/x_i$ fornece o grau de pertinência $\mu_A(x_i)$ do elemento x_i em relação ao conjunto fuzzy A. Como exemplo, o conjunto fuzzy A, dado pela função de pertinência ilustrada no gráfico, poderia ser representado por: A = 0.0/1 + 0.0/2 + 0.33/3 + 0.66/4 + 1.0/5 + 0.66/6 + 0.33/7 + 0.0/8 + 0.0/9 $\mu_A(x)$ 0,66 0,33

4. Definições da Lógica Fuzzy Conjunto fuzzy normalizado • DEFINIÇÃO 1. Conjunto Fuzzy Normalizado • Um conjunto fuzzy A é normalizado se pelo menos um de seus elementos possui grau de pertinência igual a 1, ou seja, μ_A(x_i)=1. • Exemplificando, têm-se: μ_A(x) 1 0,66 0,33 μ_A(x) 1 Conjunto Normalizado A Conjunto Normalizado

4. Definições da Lógica Fuzzy

Cardinalidade de conjunto fuzzy

• DEFINIÇÃO 5. Cardinalidade de Conjunto Fuzzy

➤ A cardinalidade de um conjunto fuzzy A é a soma dos graus de pertinência de todos os elementos de A, os quais pertencem a universo de discurso X, ou seja:

$$Card(A) = \sum_{x \in X} \mu_A(x)$$

Exemplo 1. Seja o conjunto fuzzy discreto A dado por:

$$A = 0.1/1 + 0.3/2 + 0.6/3 + 1.0/4 + 0.6/5 + 0.2/6$$
, com $X = \{1,2,3,4,5,6\}$
 $Card(A) = ?$

> Exemplo 2. Seja o conjunto fuzzy contínuo A dado por:

4. Definições da Lógica Fuzzy

Cortes em conjunto fuzzy

DEFINIÇÃO 6. Cortes em Conjunto Fuzzy

▶Um corte α em um conjunto fuzzy A é especificado por um conjunto crisp que contem todos os elementos de A, pertencentes ao universo de discurso X, que possuem grau de pertinência maior ou igual a α , ou seja:

$$A_{\alpha} = \{ x \in X \mid \mu_{A}(x) \geq \alpha \}$$

Exemplo 1. Seja o conjunto fuzzy discreto *A* dado por:

$$A = 0.3/1 + 0.7/2 + 1.0/3 + 0.9/4 + 0.6/5 + 0.2/6$$
, com $X = \{1,2,3,4,5,6\}$
 $A_{0,4} = ?$

Exemplo 2. Seja o conjunto fuzzy contínuo *A* dado por:

5. Operações com Conjuntos Fuzzy

União entre conjuntos fuzzy

Conjunto UNIÃO

• O conjunto **UNIÃO**, entre dois conjuntos fuzzy A e B, pertencentes a um mesmo universo de discurso X, é formado por todos os valores **máximos** entre $\mu_A(x)$ e $\mu_B(x)$. Formalmente, tem-se:

$$\mu_A(x) \cup \mu_B(x) = \max\{\mu_A(x), \mu_B(x)\}\$$

 Generalizando, para uma coleção de m conjuntos fuzzy, todos definidos num mesmo universo de discurso X, tem-se:

$$\bigcup_{i=1}^{m} \mu_{A_{i}}(x) = \max\{\mu_{A_{1}}(x), \ \mu_{A_{2}}(x), \dots, \mu_{A_{m}}(x)\}$$

Outros operadores de **UNIÃO**:

Soma Algébrica
$$\Rightarrow \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Soma Limitada $\Rightarrow \min\{1, \mu_A(x) + \mu_B(x)\}$
Soma Drástica $\Rightarrow \begin{cases} \mu_A(x), \text{ se } \mu_B(x) = 0 \\ \mu_B(x), \text{ se } \mu_A(x) = 0 \\ 1, \text{ caso contrário} \end{cases}$

Qual a vantagem de se utilizar o operador "Máximo" na União?

5. Operações com Conjuntos Fuzzy

Interseção entre conjuntos fuzzy

Conjunto INTERSEÇÃO

• O conjunto **INTERSEÇÃO**, entre dois conjuntos fuzzy A e B, pertencente a um universo de discurso X, é formado por todos os valores **mínimos** entre $\mu_A(x)$ e $\mu_B(x)$. Formalmente, tem-se:

$$\mu_A(x) \cap \mu_B(x) = \min\{\mu_A(x), \mu_B(x)\}$$

 Generalizando, para uma coleção de m conjuntos fuzzy, todos definidos num mesmo universo de discurso X, tem-se:

$$\bigcap_{i=1}^{m} \mu_{A_{i}}(x) = \min\{\mu_{A_{1}}(x), \ \mu_{A_{2}}(x), \dots, \mu_{A_{m}}(x)\}\$$

Outros operadores de INTERSEÇÃO:

Produto Algébrico
$$\Rightarrow \mu_A(x) \cdot \mu_B(x)$$

Produto Limitado $\Rightarrow \max\{0, \mu_A(x) + \mu_B(x) - 1\}$
Produto Drástico $\Rightarrow \begin{cases} \mu_A(x), \text{ se } \mu_B(x) = 1 \\ \mu_B(x), \text{ se } \mu_A(x) = 1 \\ 0, \text{ caso contrário} \end{cases}$

Qual a vantagem de se utilizar o operador "Mínimo" na Interseção?

5. Operações com Conjuntos Fuzzy Conjunto complemento, S-Norma e T-Norma Conjunto COMPLEMENTO O conjunto **COMPLEMENTO** de um conjunto nebuloso *A*, pertencente a um universo de discurso X, é formado pela subtração de $\mu_A(x)$ do valor unitário 1. Formalmente, tem-se: $\mu_{\overline{A}}(x) = 1 - \mu_A$ Operador S-Norma Uma S-norma (co-norma triangular) é uma operação matemática binária, S: $[0,1] \times [0,1] \rightarrow [0,1]$, que deve satisfazer as seguintes propriedades: 1. x S 1 = 1, sendo que x S 0 = x (Condição de contorno) 2. x S y = y S x (Propriedade Comutativa) 3. x S(y S z) = (x S y) S z (Propriedade Associativa) 4. Se " $x \le y$ " e " $w \le z$ ", então " $x \le w$ " \le " $y \le z$ " (Monotonicidade) Operador T-Norma Uma T-norma (norma triangular) é uma operação matemática binária, $T: [0,1] \times [0,1] \rightarrow [0,1]$; que deve satisfazer as seguintes propriedades: 1. x T 1 = x, sendo que x T 0 = 0 (Condição de contorno) 2. x T y = y T x (Propriedade Comutativa) 3. x T(y Tz) = (x Ty) Tz (Propriedade Associativa) 4. Se " $x \le y$ " e " $w \le z$ ", então $x T w \le y T z$ (Monotonicidade) Constata-se então que o Max é uma S-norma e o Min é uma *T*-norma.

5. Operações com Conjuntos Fuzzy Algoritmo computacional O algoritmo computacional da operação de União, utilizando o operador Max, pode ser implementado da seguinte maneira: Algoritmo UNIÃO N: inteiro {Quantidade de elementos de discretização} X: vetor[1..N] de reais {Valores dos elementos do universo de discurso X} A: Vetor[1..N] de reais {Valores dos graus de pertinência de A} B: Vetor[1..N] de reais {Valores dos graus de pertinência de B} Z: Vetor[1..N] de reais {Valores dos graus de pertinência de A\cup B} {Atribuir os valores discretizados em X, A e B} Para i de 1 até N faça $\begin{cases} Z[i] = Max(A[i],B[i]) \\ Fim_Para \end{cases}$ Para i de 1 até N faça Imprima("Quando x = x, X[i]) Imprima("Valor da união é: ",Z[i]) Fim Para

6. Aspectos de Projeto

Discussões sobre utilização de sistemas fuzzy

Aspectos de Projeto

- Todos os conjuntos fuzzy relacionados à uma variável específica devem ser sempre compostos pelos mesmos elementos do respectivo universo de discurso.
- A representação discreta dos conjuntos fuzzy é aquela normalmente utilizada para aplicações práticas.
- As expressões analíticas das funções de pertinência são utilizadas apenas para produzir os vetores que serão utilizados para representar a forma discreta dos números fuzzy.

Quando Usar Sistemas Fuzzy

- Em situações em que se dispõe de pouca informação quantitativa a respeito do processo a ser mapeado.
 - Se dispuser de um conjunto de informações quantitativas (medições) relacionando entradas/saídas, as redes neurais pode ser também uma alternativa de uso.
- Em situações em que as variáveis do processo estão imersas em ambientes de incerteza e imprecisão.
- Em situações em que o processo é melhor definido tendo-se como base o conhecimento especialista sobre o processo.
 - ➤ Especialista (Expert) → É aquele indivíduo que possui a capacidade elaborar diagnósticos ou recomendações sobre o processo, por meio da utilização de termos incertos/imprecisos.

24

