	A CONTRACT OF THE PARTY OF THE		
4,3	F = MSHO = SSHO = C4ZO - SSZ		
	- (p-1) SET - N-(pH) - (p-1) SET - N-(pH)		
	$P^{2} = [-\frac{55E}{55T} : 55E = 55T (1-P^{2})$ $: f = \frac{55T (1-P^{2}) - 55T (1-P^{2})}{55T (1-P^{2})} = \frac{(P^{2}-P^{2})(n-cpt)}{(P^{2}-P^{2})(1-P^{2})}$ $= \frac{(P^{2}-P^{2})(1-P^{2})}{(P^{2}-P^{2})(1-P^{2})}$		
>			
	when n=26. J=2. P=I. Pp2=0.9. Pq2=0.8		
F= (0.7-0.8) (16-6) = 10			
	$d = 1/0.$ $\sqrt{2, 20, 17} = 5.85 \qquad \boxed{75.85}$		
	which means the increase in R' from partial model to full model is statistically significant at 1% level.		
	full model is statistically significant at 1% level.		
2)			

3,10	(a) $\chi = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
Ь,	
	$ (x'x)^{-1} = \begin{pmatrix} 5 & 15 \\ 15 & 51 \end{pmatrix}^{-1} = \frac{1}{5x55 - 15x55} \begin{bmatrix} 55 & -15 \\ -15 & 5 \end{bmatrix} - \begin{bmatrix} \frac{11}{10} - \frac{3}{10} \\ \frac{3}{10} - \frac{1}{10} \end{bmatrix} $ $ (x'x)^{-1} (x'x) = \begin{pmatrix} \frac{11}{10} & -\frac{3}{2} \\ \frac{3}{10} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} 5 & 15 \\ 15 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $
c)	$\frac{1}{1}$ $\frac{1}$
<i>y</i>	

d).	$ \hat{q} = (\chi'x)^{-1} \chi'y $ $ = \begin{pmatrix} \frac{11}{10} - \frac{3}{10} \\ \frac{3}{10} - \frac{1}{10} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ 7 \\ 9 \\ 10 \end{pmatrix} = \begin{pmatrix} \frac{11}{10} \\ \frac{19}{10} \\ 10 \end{pmatrix} $
	i. J. = 1.1, J. = 1.9, J= 1.1+1.9x
	E(4) = \$6 + \$1, x1 + \$p x + \$p x x x \$\left(\beta - \beta - \beta + \beta \right) = \psi 0 \\ \text{E(4)} = \$\beta 0 + \beta 1 - \beta 2 - \beta 2 = \text{S} \\ \beta 0 - \beta 1 + \beta 2 - \beta 2 = \text{S} \\ \beta 0 - \beta 1 + \beta 2 - \beta 2 = \text{S} \\ \beta 0 + \beta 1 - \beta 2 + \beta 2 = \text{S} \\ \beta 0 + \beta 1 - \beta 2 + \beta 2 = \text{S} \\ \beta 0 + \beta 1 - \beta 2 + \beta 2 \\ \beta 0 + \beta 1 - \beta 2 + \beta 2 \\ \beta 0 + \beta 1 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 - \beta 2 \\ \beta 0 + \beta 1 - \beta 2 - \beta

Moreover, the interaction between gender and race exists. Male and White have separate positive effects on the salary but if both are offered together then the total effect on the salary can be greater than their sum.

```
3.12
a)
cobb = read.csv("Desktop/Predictive Analytics/Assignment/HW 2/Cobb-Douglas.csv")
row(cobb)
fit1 = lm(log(cobb$output)~log(cobb$capital) + log(cobb$labor))
summary(fit1)
The result is:
lm(formula = log(cobb$output) ~ log(cobb$capital) + log(cobb$labor))
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-1.7604 -0.2665 -0.0694 0.1926 3.7975
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                -1.71146 0.09671 -17.70 <2e-16 ***
(Intercept)
log(cobb$capital) 0.20757 0.01719 12.08 <2e-16 ***
log(cobb$labor) 0.71485 0.02314 30.89 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4781 on 566 degrees of freedom
Multiple R-squared: 0.8378, Adjusted R-squared: 0.8373
F-statistic: 1462 on 2 and 566 DF, p-value: < 2.2e-16
b)
var <- vcov(fit1)</pre>
var_b3 = var[2,2] + var[3,3] + 2 * var[2,3]
t = (0.20757 + 0.71485 - 1) / sqrt(var_b3)#use estimated b1 and b2 as x bar, mu = 1
t > qt(0.025,566) #according to regression result, 566 is degree of freedom
The result is:
> var <- vcov(fit1)</pre>
> var_b3 = var[2,2] + var[3,3] + 2 * var[2,3]
> t = (0.20757 + 0.71485 - 1) / sqrt(var_b3)#use estimated b1 and b2 as x bar, mu = 1
```

t < lower confidence interval limit at 95% level, therefore, we reject H0: <math>b1 + b2 = 1, which means: based on current sample, there is not enough evidence to prove that labor and capital count for all productivity.

> t > qt(0.025,566) #according to regression result, 566 is degree of freedom

<u>c)</u>

[1] -4.509281

[1] FALSE

Fit new full model and partial model:

```
cl <- log(cobb$capital) - log(cobb$labor)</pre>
fit2 = lm((log(cobb$output)-log(cobb$labor)) ~ cl+log(cobb$labor))
summary(fit2)
fit3 = lm((log(cobb$output)-log(cobb$labor)) ~ cl)
summary(fit3)
f = (0.2393-0.212) * 566 / ((2-1) * (1-0.2393))
# Rp^2 and Rq^2 are r-squared of full model and partial model
\# n - (p+1) is the d.f. of the full model
abs(f) < qf(0.95,1,566)
The result is:
Call:
lm(formula = (log(cobb$output) - log(cobb$labor)) ~ cl)
Residuals:
   Min
            1Q Median
                           30
                                 Max
-1.4824 -0.2625 -0.0601 0.1848 3.9127
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
0.01740 12.35 <2e-16 ***
cl
            0.21489
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4861 on 567 degrees of freedom
Multiple R-squared: 0.212,
                              Adjusted R-squared: 0.2106
F-statistic: 152.5 on 1 and 567 DF, p-value: < 2.2e-16
> f = (0.2393-0.212) * 566 / ((2-1) * (1-0.2393))
> # Rp^2 and Rq^2 are r-squared of full model and partial model
> # n - (p+1) is the d.f. of the full model
[1] 20.31261
> abs(f) < qf(0.95,1,566)
[1] FALSE
```

Since f is larger than upper limit of confidence interval, we reject the hypothesis that b3 = 0. The conclusion is the same as b).

```
a)
salary <- read.csv("Desktop/Predictive Analytics/Assignment/HW 2/salaries.csv")</pre>
salary$Gender <- relevel(salary$Gender,ref = "Male")</pre>
salary$Dept <- relevel(salary$Dept,ref = "Purchase")</pre>
fit_salary = lm(loq10(salary$Salary)~salary$YrsEm+salary$PriorYr+salary$Education+salary$Super
                +salary$Dept+salary$Gender)
summary(fit_salary)
The result is:
Call:
lm(formula = log10(salary$Salary) ~ salary$YrsEm + salary$PriorYr +
    salary$Education + salary$Super + salary$Dept + salary$Gender)
Residuals:
     Min
                1Q
                      Median
                                   30
                                            Max
-0.089659 -0.024036 -0.004498 0.028587 0.089410
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                   4.4287934 0.0213399 207.535 < 2e-16 ***
(Intercept)
                  0.0074788 0.0011931 6.269 2.72e-07 ***
salary$YrsEm
salary$PriorYr 0.0016839 0.0019568 0.861 0.395039
0.0003901 0.0008056 0.484 0.631115
salary$Super
salary$DeptAdvertse -0.0387774  0.0249146 -1.556  0.128124
salary$DeptEngineer -0.0057292 0.0197703 -0.290 0.773597
salary$DeptSales -0.0937783 0.0225745 -4.154 0.000185 ***
salary$GenderFemale 0.0230683 0.0142917 1.614 0.115002
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04586 on 37 degrees of freedom
Multiple R-squared: 0.8634,
                              Adjusted R-squared: 0.8338
F-statistic: 29.22 on 8 and 37 DF, p-value: 9.629e-14
The regression result matches the equation given in the question.
salary$Gender <- relevel(salary$Gender,ref = "Female")</pre>
salary$Dept <- relevel(salary$Dept,ref = "Sales")</pre>
fit\_salary1 = lm(log10(salary\$Salary) \sim salary\$YrsEm + salary\$PriorYr + salary\$Education + salary\$Super
                  +salary$Dept+salary$Gender)
summary(fit_salary1)
```

The result is:

```
Call:
 lm(formula = log10(salary$Salary) ~ salary$YrsEm + salary$PriorYr +
         salary$Education + salary$Super + salary$Dept + salary$Gender)
Residuals:
            Min
                                    10
                                                 Median
                                                                               30
                                                                                                   Max
 -0.089659 -0.024036 -0.004498 0.028587 0.089410
 Coefficients:
                                             Estimate Std. Error t value Pr(>|t|)

      (Intercept)
      4.3580834
      0.0248414
      175.436
      < 2e-16</td>
      ***

      salary$YrsEm
      0.0074788
      0.0011931
      6.269
      2.72e-07
      ***

      salary$PriorYr
      0.0016839
      0.0019568
      0.861
      0.395039

      salary$Education
      0.0170345
      0.0033360
      5.106
      1.02e-05
      ***

      salary$Super
      0.0003901
      0.0008056
      0.484
      0.631115

      salary$DeptPurchase
      0.0937783
      0.0225745
      4.154
      0.000185
      ***

      salary$DeptAdvertse
      0.0550009
      0.0230111
      2.390
      0.022045
      *

      salary$GenderMale
      -0.0230683
      0.0142917
      -1.614
      0.115002

                                           4.3580834 0.0248414 175.436 < 2e-16 ***
 (Intercept)
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04586 on 37 degrees of freedom
Multiple R-squared: 0.8634,
                                                                 Adjusted R-squared: 0.8338
F-statistic: 29.22 on 8 and 37 DF, p-value: 9.629e-14
```

According to the new regression result, coefficients of variables are:

Variable	Coefficient
Male	-0.023
Purchase	0.094
Advertise	0.055
Engineer	0.088

<u>c)</u>

Different p-values means under different reference categories, the same apartment has different accuracies to predict the dependent variable. If the regression reference is Purchase, then department of Engineer is highly non-significant, and cannot be used to predict the salary. However, if the reference is Sales, then based on this category, department of Engineer is highly significant, thus is an accurate dimension to predict the salary.

```
d)
salary$Dept <- relevel(salary$Dept,ref = "Purchase")
fit_salary2 = lm(log10(salary$Salary)~salary$YrsEm+salary$Education+salary$Dept)
summary(fit_salary2)</pre>
```

The regression result is:

```
Call:
lm(formula = log10(salary$Salary) ~ salary$YrsEm + salary$Education +
   salary$Dept)
Residuals:
    Min
             10
                  Median
                             3Q
                                     Max
-0.114193 -0.028068 -0.002002 0.033938 0.081774
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                4.439005 0.019804 224.142 < 2e-16 ***
(Intercept)
              0.007660 0.001208 6.341 1.57e-07 ***
salary$YrsEm
salary$DeptEngineer -0.002507 0.020037 -0.125 0.901046
salary$DeptSales -0.087593 0.022740 -3.852 0.000414 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.04677 on 40 degrees of freedom
                         Adjusted R-squared: 0.8272
Multiple R-squared: 0.8464,
F-statistic: 44.09 on 5 and 40 DF, p-value: 3.099e-15
```

From the regression result, it can be seen that after dropping the PriorYr, Super, and Gender independent variables, p-values of YrsEm and Education are small, indicating that they are correlated to the salary. For one more year employed in the company, you can get \$0.007 more in your salary. For one more year educated after high school, you can get \$0.18 more in your salary.

Implementing extra SS method:

```
f = (0.8634 - 0.8464) * 37 / ((8 - 5) * (1 - 0.8634))
# Rp and Rq are R-squared in a) and d), n - (p+1) is the d.f in a)
#p and q are independent variables in a) and c)
f
abs(f) < qf(0.95,3,37)

The result is:
> f = (0.8634 - 0.8464) * 37 / ((8 - 5) * (1 - 0.8634))
> # Rp and Rq are R-squared in a) and d), n - (p+1) is the d.f in a)
> #p and q are independent variables in a) and c)
> f
[1] 1.534895
> abs(f) < qf(0.95,3,37)
[1] TRUE</pre>
```

It can be seen that we accept the hypothesis that coefficients of gender, PriorYr, and Super are 0.