Pertemuan 18

TRANSFORMASI LAPLACE

Definisi

Misalkan F(t) suatu fungsi t dan t > 0, maka transformasi Laplace dari F(t) dinotasikan dengan $L\{F(t)\}$ yang didefinisikan oleh:

$$\mathbf{L}\left\{\mathbf{F}(\mathbf{t})\right\} = \int_{0}^{\infty} e^{-st} F(t) dt = \mathbf{f}(\mathbf{s})$$

Karena L $\{F(t)\}$ adalah integral tidak wajar dengan batas atas di tak hingga (∞) maka

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} F(t) dt$$

$$= \lim_{p \to \infty} \int_{0}^{p} e^{-st} F(t) dt$$

Transformasi Laplace dari F(t) dikatakan ada, jika integralnya konvergen untuk beberapa nilai s, bila tidak demikian maka transformasi Laplace tidak ada.

Selanjutnya bila suatu fungsi dari t dinyatakan dengan huruf besar, misalnya W(t), G(t), Y(t) dan seterusnya, maka transformasi Laplace dinyatakan dengan huruf kecil yang bersangkutan sehingga $L\{W(t)\} = w(s)$, $L\{G(t)\} = g(s)$, $L\{Y(t)\} = y(s)$ dan seterusnya.

Teorema

Jika F(t) adalah fungsi yang kontinu secara sebagian-sebagian dalam setiap interval $0 \le t \le N$ dan eksponensial berorde γ untuk t > N, maka transformasi Laplace f(s) ada untuk setiap s > γ

Berdasarkan definisi di atas, dapat ditentukan transformasi Laplace beberapa fungsi sederhana.

Nomor	F(t)	$L\{F(t)\} = f(s)$
1.	1	$\frac{1}{s}$, s > 0
2.	Т	$\frac{1}{s^2}, \mathbf{s} > 0$
3.	t²	$\frac{2}{s^3}$, s > 0
4.	t" n = 0,1,2,3,	$\frac{n!}{s^{n+1}}, s>0$
5.	e ^{at}	$\frac{1}{s-a}$, $s > 0$
6.	sin at	$\frac{a}{s^2 + a^2}, \ \mathbf{s} > 0$
7.	cos at	$\frac{s}{s^2 + a^2}, \ \mathbf{s} > 0$
8.	sinh at	$\frac{a}{s^2 - a^2}, \ \mathbf{s} > a $
9.	cosh at	$\frac{s}{s^2 - a^2}, \mathbf{s} > a $
10.	$\frac{1}{1-t}$	
11.	$\frac{1}{\sqrt{2t-2}}$	

Untuk memahamkan bagi pembaca, berikut ini diberikan beberapa contoh transformasi Laplace suatu fungsi.

Tentukan transformasi Laplace fungsi berikut:

1.
$$F(t) = 1$$

$$L\{F(t)\} = L\{1\}$$

$$=\int\limits_{0}^{\infty}e^{-st}(1)dt$$

$$= \lim_{p\to\infty}\int_0^p e^{-st}dt$$

$$=\lim_{p\to\infty}\left[-\frac{1}{s}e^{-st}\right]_0^p$$

$$= \lim_{p \to \infty} \left[-\frac{1}{se^{-\infty}} + \frac{1}{se^0} \right]$$

$$= 0 + \frac{1}{s}$$

$$=\frac{1}{s}$$

$$= f(s)$$

$$F(t) = t$$

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} \, \mathbf{t} \, d\mathbf{t}$$

$$= \lim_{p\to\infty}\int\limits_0^p e^{-st}t\,\mathrm{d}t$$

$$= \lim_{p\to\infty}\int_{0}^{p}t.-\frac{1}{s}d(e^{-st})$$

$$= -\frac{1}{s} \lim_{p \to \infty} t e^{-st} - \int_{0}^{p} e^{-st} dt$$

$$= -\frac{1}{s} \lim_{p \to \infty} \left[t e^{-st} + \frac{1}{s} e^{-st} \right]_0^p$$
$$= -\frac{1}{s} \left[0 - \frac{1}{s} \right]$$
$$= \frac{1}{s^2}$$

2.
$$F(t) = e^{at}$$

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} e^{at} dt$$

$$= \lim_{p \to \infty} \int_{0}^{p} e^{-(s-a)t} dt$$

$$= \frac{1}{s-a} \lim_{p \to \infty} \left[e^{-(s-a)t} \right]_{0}^{p}$$

$$= \frac{1}{-(s-a)} \lim_{p \to \infty} \left[\frac{1}{e^{(s-a)^{\infty}}} - \frac{1}{e^{(s-a)0}} \right]$$

$$= \frac{1}{s-a}$$

3. $F(t) = \sin at$

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} \sin at \, dt$$

$$= \lim_{p \to \infty} \int_{0}^{p} e^{-st} - \frac{1}{a} d(\cos at)$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} + \int_{0}^{\infty} \frac{1}{a} \cos at d(e^{-st}) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} + \int_{p}^{\infty} -\frac{s}{a} \cos at \cdot e^{-st} dt \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} - \frac{s}{a} \int_{0}^{\infty} e^{-st} \cdot \frac{1}{a} d(\sin at) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} - \frac{s}{a^{2}} (e^{-st} \sin at - \int_{0}^{p} \sin at \cdot d(e^{-st}) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} - \frac{s}{a^{2}} (e^{-st} \sin at - \int_{0}^{p} \sin at \cdot -se^{-st}) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(-\frac{1}{a} \cos at \cdot e^{-st} - \frac{s}{a^{2}} e^{-st} \sin at - \frac{s^{2}}{a^{2}} \int_{0}^{p} \sin at \cdot se^{-st} \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \frac{a^{2}}{a^{2} + s^{2}} \left(-\frac{1}{a} \cos at \cdot e^{-st} - \frac{s}{a^{2}} \sin at \cdot e^{-st} \right)_{0}^{p}$$

$$= \frac{a^{2}}{a^{2} + s^{2}} \left(-\frac{\cos at}{a \cdot e^{st}} - \frac{s \cdot \sin at}{a^{2} \cdot e^{st}} \right)$$

$$= \frac{a^{2}}{a^{2} + s^{2}} (1/a)$$

$$= \frac{a}{a^{2} + s^{2}} (1/a)$$

4.
$$F(t) = \cos at$$

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} \cos at \, dt$$

$$= \lim_{p \to \infty} \int_{0}^{p} e^{-st} \frac{1}{a} d(\sin at)$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} - \int_{0}^{\infty} \frac{1}{a} \sin at d(e^{-st}) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} + \int_{p}^{\infty} \frac{s}{a} \sin at \cdot e^{-st} dt \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} + \frac{s}{a} \int_{0}^{\infty} e^{-st} \cdot \frac{1}{a} d(-\cos at) \right)_{0}^{p}$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} + \frac{s}{a^2} (e^{-st} (-\cos at) - \int_0^p -\cos at \cdot d(e^{-st}) \right)_0^p$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} - \frac{s}{a^2} (e^{-st} \cos at) + \int_0^p \cos at \cdot - s e^{-st} dt \right) \Big|_0^p$$

$$= \lim_{p \to \infty} \left(\frac{1}{a} \sin at \cdot e^{-st} - \frac{s}{a^2} (e^{-st} \cos at) - \frac{s^2}{a^2} \int_0^p \cos at \cdot e^{-st} \right) \Big|_0^p$$

$$= \lim_{p \to \infty} \frac{a^2}{s^2 + a^2} \left(\frac{1}{a} \sin at . e^{-st} - \frac{s}{a^2} \cos at . e^{-st} \right)_0^p$$

$$= \frac{a^2}{s^2 + a^2} \left(\frac{\sin at}{a \cdot e^{st}} - \frac{s \cdot \cos at}{a^2 \cdot e^{st}} \right)$$

$$= \frac{a^2}{s^2 + a^2} ((0 - 0) - (0 - s/a^2))$$

$$=\frac{a^2}{s^2+a^2}(s/a^2)$$

$$= \frac{a}{s^2 + a^2}$$

5.1 Syarat Cukup Transformasi Laplace Ada

Jika F(t) adalah kontinu secara sebagian-sebagian dalam setiap selang berhingga $0 \le t \le N$ dan eksponensial berorde γ untuk t > N, maka transformasi Laplacenya f(s) ada untuk semua s > γ .

Perlu ditekankan bahwa persyaratan-persyaratan yang dinyatakan adalah CUKUP untuk menjamin bahwa transformasi Laplace-nya ada. Akan tetapi transformasi Laplace dapat ada atau tidak walaupun persyaratan ini tidak dipenuhi.

5.2 Metode Transformasi Laplace

Untuk memudahkan bagi pengguna matematika, terdapat beberapa cara yang digunakan untuk menentukan transformasi Laplace. Cara tersebut adalah:

a. Metode langsung, berkaitan dengan definisi.

Metode ini berkaitan langsung dengan definis

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} F(t) dt$$
$$= \lim_{p \to \infty} \int_{0}^{p} e^{-st} F(t) dt$$

Contoh

$$\mathbf{L}\{\mathbf{t}\} = \int_{0}^{\infty} e^{-st} \mathbf{t} d\mathbf{t}$$

$$= \lim_{p \to \infty} \int_{0}^{p} e^{-st} t dt$$

$$= \lim_{p \to \infty} \int_{0}^{p} t \cdot -\frac{1}{s} d(e^{-st})$$

$$= -\frac{1}{s} \lim_{p \to \infty} t e^{-st} - \int_{0}^{p} e^{-st} dt$$

$$= -\frac{1}{s} \lim_{p \to \infty} \left[t e^{-st} + \frac{1}{s} e^{-st} \right]_{0}^{p}$$

$$= -\frac{1}{s} \left[0 - \frac{1}{s} \right]$$

$$= \frac{1}{s^{2}}$$

b. Metode Deret

Misal F(t) mempunyai uraian deret pangkat yang diberikan oleh

$$\mathbf{F(t)} = \mathbf{a}_0 + a_1 t + a_2 t^2 + a_3 t^3 + \dots$$

$$=\sum_{n=0}^{\infty}a_{n}t^{n}$$

Maka transformasi Laplacenya dapat diperoleh dengan menjumlahkan transformasi setiap sukunya dalam deret, sehingga:

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \mathbf{L}\{\mathbf{a}_0\} + L\{a_1t\} + L\{a_2t^2\} + L\{a_3t^3\} + \dots$$

$$= \frac{a_o}{s} + \frac{a_1}{s^2} + \frac{2!a_2}{s^3} + \dots$$

$$= \sum_{n=0}^{\infty} \frac{n!a_n}{s^{n+1}}$$

Syarat ini berlaku jika deretnya konvergen untuk s > γ

c. Metode Persamaan differensial

Metode ini menyangkut menemukan persaman differensial yang dipenuhi oleh F(t) dan kemudian menggunakan teorema-teorema di atas.

d. Menurunkan terhadap parameter

- e. **Aneka ragam metode**, misalnya dengan menggunakan teoremateorema yang ada.
- f. **Menggunakan tabel-tabel**, melalui penelusuran rumus yang sudah ditetapkan.

5.3 Sifat-sifat Transformasi Laplace

Transformasi Laplace suatu fungsi mempunyai beberapa sifat, diantaranya adalah

a) Sifat linear

Jika c_1 dan c_2 adalah sebarang konstanta, sedangkan $F_1(t)$ dan $F_2(t)$ adalah fungsi-fungsi dengan transformasi-transformasi Laplace masing $f_1(s)$ dan $f_2(s)$, maka:

$$\mathbf{L}\{\mathbf{c}_{1}F_{1}(t)+\mathbf{c}F_{2}(t)\}=\mathbf{c}_{1}f_{1}(s)+\mathbf{c}_{2}f(s)$$

Bukti:

$$\mathbf{L}\{\mathbf{c}_{1}F_{1}(t)+\mathbf{c}F_{2}(t)\} = \int_{0}^{\infty} e^{-st}\{c_{1}F_{1}(t)+c_{2}F_{2}(t)\}dt$$

$$= \int_{0}^{\infty} e^{-st}c_{1}F_{1}(t)dt + \int_{0}^{\infty} e^{-st}c_{1}F_{2}(t)dt$$

$$= c_{1}\int_{0}^{p} e^{-st}F_{1}(t)dt + c_{2}\int_{0}^{\infty} e^{-st}F_{2}(t)dt$$

$$= c_{1}f_{1}(s)+c_{2}f_{2}(s)$$

Contoh

1. L{5t-3} = L{5t} - L{3}
= 5 L{t} - 3 L{1}
= 5
$$\frac{1}{s^2}$$
 - $3\frac{1}{s}$
= $\frac{5}{s^2}$ - $\frac{3}{s}$

2. L{6 sin 2t - 5 cos 2t} = L{6 sin 2t} - L{5 cos 2t}
= 6 L{sin 2t} - 5 L{cos 2t}
= 6
$$\frac{2}{s^2 + 4} - 5 \frac{s}{s^2 + 4}$$

= $\frac{12 - 5s}{s^2 + 4}$

$$\mathbf{L}\{(\mathbf{t}^2+1)^2\} = \mathbf{L}\{\mathbf{t}^4+2t^2+1\}$$

$$= \mathbf{L}\{t^4\} + L\{2t^2\} + L\{1\}$$

$$= \mathbf{L}\{\mathbf{t}^4\} + 2\mathbf{L}\{t^2\} + \mathbf{L}\{1\}$$

$$= \frac{4!}{s^{4+1}} + 2\left(\frac{2!}{s^{2+1}}\right) + \frac{1}{s}$$

$$= \frac{24}{s^5} + \frac{4}{s^3} + \frac{1}{s}$$

3.
$$L\{4e^{5t}+6t^2-3\sin 4t+2\cos 2t\}$$

= $L\{4e^{5t}\}+L\{6t^2\}-L\{3\sin 4t\}+L\{2\cos 2t\}$
= $4L\{e^{5t}\}+6\{t^2\}-3L\{\sin 4t\}+2L\{\cos 2t\}$

$$= 4\frac{1}{s-5} + 6\frac{2}{s^3} - 3\frac{4}{s^2+4} + 2\frac{s}{s^2+4}$$
$$= \frac{4}{s-5} + \frac{12}{s^3} - \frac{12}{s^2+16} + \frac{2s}{s^2+4}$$

Dengan menggunakan sifat linear, tentukan transformasi Laplace fungsí berikut.

1.
$$F(t) = 2t^2 + e^{-t}$$

2.
$$F(t) = 6\sin 2t - \cos 2t$$

3.
$$F(t) = (\sin t - \cos t)^2$$

4.
$$F(t) = \cosh 3t - \frac{1}{2} \sinh t$$

5.
$$F(t) = (2t + 2)^{3}$$

6.
$$F(t) = (\sin t - 3)^3$$

b) Sifat translasi atau pergeseran pertama

Jika
$$L{F(t)} = f(s)$$
 maka $L{e^{at}F(t)} = f(s-a)$

Bukti

Karena L{F(t)} =
$$\int_{0}^{\infty} e^{-st} F(t) dt = f(s)$$
, maka

$$\mathbf{L}\{\mathbf{e}^{at}F(t)\} = \int_{0}^{\infty} e^{-st}e^{at}F(t)dt$$
$$= \int_{0}^{p} e^{-(s-a)t}F(t)dt$$
$$= \mathbf{f}(\mathbf{s-a})$$

Contoh:

1. Tentukan L{ $e^{-3t}F(t)$ }, jika L{F(t)} = f(s) Menurut sifat 2 di atas, L{ $e^{at}F(t)$ } = f(s-a)

Maka
$$L\{e^{-3t}F(t)\} = f((s-(-3))$$

= $f(s+3)$

2. Tentukan L { $e^{2t}F(t)$ }, jika L{F(t)} = f(s/a) Menurut sifat 2 di atas, L{ $e^{at}F(t)$ } = f(s-a)

Maka L{e^{2t}F(t)} = f(s-2/a)
= f(
$$\frac{s}{a} - \frac{2}{a}$$
)

3. Tentukan $L\{e^{-t}\cos 2t\}$.

Karena L{cos 2t} =
$$\frac{s}{s^2+4}$$
 = f(s), maka

L{e^{-t}cos 2t} = f(s+1)
=
$$\frac{(s+1)}{(s+1)^2 + 4}$$

= $\frac{s+1}{s^2 + 2s + 5}$ = f(s)

4. Tentukan $L\{e^{-2t}(3\cos 6t - 5\sin 6t)\}$

Menurut sifat linear,

$$\mathbf{L}\{\mathbf{e}^{-2t}(3\cos 6t - 5\sin 6t)\} = \mathbf{L}\{\mathbf{e}^{-2t}(3\cos 6t)\} - L\{e^{-2t}(5\sin 6t)\}$$
$$= 3\mathbf{L}\{\mathbf{e}^{-2t}\cos 6t\} - 5L\{e^{-2t}\sin 6t\}\}$$

Karena L{cos 6t} = $\frac{s}{s^2 + 36}$ = f(s), dan L{sin 6t} = $\frac{6}{s^2 + 36}$ = f(s) maka menurut sifat translasi

$$3L\{e^{-2t}\cos 6t\} = 3f(s+2)$$

$$=3\frac{(s+2)}{(s+2)^2+36}$$
, dan

$$5L\{e^{-2t}\sin 6t\} = 5f(s+2)$$

= 5
$$\frac{6}{(s+2)^2+36}$$
, sehingga

$$\mathbf{L}\{\mathbf{e}^{-2t}(3\cos 6t - 5\sin 6t)\} = \mathbf{3} \frac{(s+2)}{(s+2)^2 + 36} - \mathbf{5} \frac{6}{(s+2)^2 + 36}$$
$$= \frac{3s - 24}{s^2 + 4s + 40}$$

Soal

Tentukan transformasi Laplace fungsi

1)
$$F(t) = e^{-t} \sin^2 t$$

2)
$$F(t) = (1+te^{-t})^3$$

3)
$$F(t) = e^{-t} (3\sinh 2t - 5\cosh 2t)$$

4)
$$F(t) = (t+2)^2 e^t$$

5)
$$F(t) = e^{2t} (\sinh 2t + \cosh 3t)$$

6)
$$F(t) = e^{-\sqrt{t}}(1+2t)$$

c. Sifat translasi atau pergeseran kedua

Jika L{F(t)} = f(s) dan G(t) =
$$\begin{cases} F(t-a), t > a \\ 0, t < a \end{cases}$$
 maka

$$\mathbf{L}\{\mathbf{G}(\mathbf{t})\} = \mathbf{e}^{-as} f(s)$$

Bukti

$$\mathbf{L}\{\mathbf{G}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} G(t) dt$$

$$= \int_{0}^{a} e^{-st} G(t) dt + \int_{a}^{\infty} e^{-st} G(t) dt$$

$$= \int_{0}^{a} e^{-st} (0) dt + \int_{a}^{\infty} e^{-st} F(t-a) dt$$

$$= \int_{a}^{\infty} e^{-st} F(t-a) dt$$

Misal u = t-a maka t = u+a dan du = dt, sehingga

$$\int_{a}^{\infty} e^{-st} F(t-a) dt = \int_{0}^{\infty} e^{-s(u+a)} F(u) du$$

$$= e^{-as} \int_{0}^{\infty} e^{-su} F(u) du$$

$$= e^{-as} f(s)$$

Contoh

Carilah L{F(t)} jika F(t) =
$$\begin{cases} \cos(t - \frac{2\pi}{3}), t > \frac{2\pi}{3} \\ 0, t < \frac{2\pi}{3} \end{cases}$$

Menurut definisi transformasi Laplace

$$\mathbf{L}\{\mathbf{F}(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} F(t) dt$$
$$= \int_{0}^{2\pi/3} e^{-st} (0) dt + \int_{2\pi/3}^{\infty} e^{-st} \cos(t - 2\pi/3) dt$$

$$= \int_{0}^{\infty} e^{-s(u+2\pi/3)} \cos u du$$

$$= e^{-2\pi s/3} \int_{0}^{\infty} e^{-su} \cos u du$$

$$= \frac{se^{-2\pi s/3}}{s^{2}+1}$$

d. Sifat pengubahan skala

Jika L{F(t)} = f(s), maka L{F(at)} =
$$\frac{1}{a} f\left(\frac{s}{a}\right)$$

Karena L{F(t)} =
$$\int_{0}^{\infty} e^{-st} F(t) dt$$
 maka

$$\mathbf{L}\{\mathbf{F(at)}\} = \int_{0}^{\infty} e^{-st} F(at) dt$$

Misal u = at, du = a dt atau dt =
$$\frac{du}{a}$$

Sehinga L{F(at)}
$$= \int_{0}^{\infty} e^{-st} F(at) dt$$
$$= \int_{0}^{\infty} e^{-u\left(\frac{s}{a}\right)} F(u) \frac{du}{a}$$
$$= \frac{1}{a} \int e^{-u\left(\frac{s}{a}\right)} F(u) du$$
$$= \frac{1}{a} f\left(\frac{s}{a}\right)$$

Contoh:

1. Jika L{F(t)} =
$$\frac{6}{(s+2)^3}$$
 = f(s)

maka L{F(3t)} =
$$\frac{1}{3}f(\frac{s}{3})$$

= $\frac{1}{3}\frac{6}{(s/3+2)^3}$
= $\frac{6.9}{(s+6)^3}$

Soal:

1. Carilah L{F(t)}, jika F(t) =
$$\begin{cases} (t-1)^2, t > 1 \\ 0, 0 < t < 1 \end{cases}$$

2. Jika L{F(t)} =
$$\frac{s^2 - s + 1}{(2s+1)^2(s-1)}$$
, carilah L{F(2t)}

3. Jika L{F(t)} =
$$\frac{e^{-1/s}}{s}$$
, carilah L{e^{-t} F(3t)}

Jawab L{F(t)} = $\frac{e^{-1/s}}{s} = f(s)$, maka menurut sifat 4 diperoleh

$$\mathbf{L}\{\mathbf{F(3t)}\} = \frac{1}{3} f\left(\frac{s}{3}\right)$$

Sehingga L{F(3t)} =
$$\frac{1}{3} \frac{e^{-\frac{3}{s}}}{\frac{s}{3}}$$

= $\frac{1}{s} e^{-\frac{3}{s}}$
= f(s)

Berdasarkan sifat Jika $L{F(t)} = f(s)$ maka $L{e^{at} F(t)} = f(s-a)$ (sifat 2)

Maka L{
$$e^{-t}F(3t)$$
} = f(s+1)

$$= \frac{1}{(s+1)} e^{-\frac{3}{(s+1)}}$$

e. Transformasi Laplace dari turunan-turunan

$$Jika L{F(t)} = f(s) maka L{F'(t)} = sf(s) - F(0)$$

Karena Karena L{F(t)} = $\int_{0}^{\infty} e^{-st} F(t) dt = f(s)$, maka

$$\mathbf{L}\{\mathbf{F'(t)}\} = \int_{0}^{\infty} e^{-st} F'(t) dt$$

$$= \int_{0}^{\infty} e^{-st} dF(t)$$

$$= \left(e^{-st} F(t) - \int_{0}^{\infty} F(t) d(e^{-st}) \right)_{0}^{p}$$

$$= -\mathbf{F(0)} + \mathbf{s} \int_{0}^{\infty} e^{-st} \mathbf{F(t)} dt$$

$$= \mathbf{sf(s)} - \mathbf{F(0)}$$

Jika L{F'(t)} =
$$sf(s) - F(0)$$
 maka L{F''(t)} = $s^2 f(s) - sF(0) - F'(s)$

Bukti

$$\mathbf{L}\{\mathbf{F}''(\mathbf{t})\} = \int_{0}^{\infty} e^{-st} F''(t) dt$$
$$= \int_{0}^{\infty} e^{-st} d(F'(t))$$

$$= \left(e^{-st}F'(t) - \int_{0}^{\infty} F'(t)d(e^{-st})\right)$$

$$= \left(e^{-st}F'(t) + s\int_{0}^{\infty} F'(t)e^{-st}dt\right)$$

$$= \left(e^{-st}F'(t) + s[sf(s) - F(0)]\right)$$

$$= \mathbf{s}^{2}f(s) - sF(0) - F'(0)$$

Dengan cara yang sama diperoleh

$$\mathbf{L}\{\mathbf{F}'''(t)\} = \int_{0}^{\infty} e^{-st} F'''(t) dt$$

$$= \int_{0}^{\infty} e^{-st} d(F''(t))$$

$$= \left(e^{-st} F''(t) - \int_{0}^{\infty} F''(t) d(e^{-st}) \right)$$

$$= \left(e^{-st} F''(t) + s \int_{0}^{\infty} e^{-st} F''(t) dt \right)$$

$$= \mathbf{e}^{-st} F''(t) + s \left(e^{-st} F'(t) - \int_{0}^{\infty} F'(t) d(e^{-st}) \right)$$

$$= \mathbf{s}^{3} f(s) - s^{2} F(0) - s F'(0) - F''(0)$$

Akhirnya dengan menggunakan induksi matematika dapat ditunjukkan bahwa, jika

$$L{F(t)} = f(s)$$

maka

$$\mathbf{L}\{\mathbf{F}^{(n)}(t)\} = \mathbf{s}^{n} f(s) - s^{n-1} F(0) - s^{n-2} F'(0) - \dots - s F^{(n-2)}(0) - F^{(n-1)}(0)$$

Contoh soal

Dengan menggunakan sifat transformasi Laplace dari turunan-turuan, tunjukkan bahwa

$$\mathbf{L}\{\sin \mathsf{at}\} = \frac{a}{s^2 + a^2} = \mathbf{f}(\mathbf{s})$$

Misal F(t) = \sin at diperoleh F'(t) = $a \cos$ at, F''(t) = $-a^2 \sin at$

Sehingga L{sin at} = $-\frac{1}{a^2}$ L{F''(t)}.

Dengan menggunakan sifat transformasi Laplace dari turunan-turunan diperoleh

L{sin at} =
$$-\frac{1}{a^2}$$
 ($\mathbf{s}^2 f(s) - sF(0) - F'(0)$)
$$= -\frac{1}{a^2} \left(s^2 \frac{a}{s^2 + a^2} - s(0) - a \right)$$

$$= -\frac{1}{a^2} \left(\frac{as^2}{s^2 + a^2} - a \right)$$

$$= -\frac{1}{a^2} \left(\frac{as^2 - as^2 - a^3}{s^2 + a^2} \right)$$

$$= \frac{a}{s^2 + a^2}$$

f. Tansformasi Laplace dari integral-integral

Jika L{F(t)} = f(s) maka L
$$\left\{\int_{0}^{t} F(u)du\right\} = \frac{f(s)}{s}$$

Bukti:

Misal
$$G(t) = \int_{0}^{t} F(u)du$$
 maka $G'(t) = F(t)$ dan $G(0) = 0$

Dengan mentransformasikan Laplace pada kedua pihak, diperoleh:

$$L\{G'(t)\} = L\{F(t)\}$$

$$\Leftrightarrow$$
 s L{G(t)}-G{0} = f(s)

$$\Leftrightarrow$$
 s L{G(t)} = f(s)

$$\Leftrightarrow$$
 L{G(t)} = $\frac{f(s)}{s}$

Jadi diperoleh L{
$$\int_{0}^{t} F(u)du$$
} = $\frac{f(s)}{s}$

Contoh

1. Carilah
$$\mathbf{L} \left\{ \int_{0}^{t} \frac{\sin u}{u} du \right\}$$

$$Misal F(t) = \frac{\sin t}{t}$$

Maka L{F(t)} = arc tan
$$\frac{1}{s}$$

Sehingga menurut sifat transformasi di atas $\mathbf{L}\left\{\int_{0}^{t} \frac{\sin u}{u} du\right\} = \frac{f(s)}{s} = \frac{1}{s}\arctan\frac{1}{s}$

2. Buktikan L
$$\left\{\int_{0}^{t} \frac{\sin u}{u} du\right\} = \frac{1}{s} \arctan \frac{1}{s}$$

Bukti:

Misal F(t) =
$$\int_{0}^{t} \frac{\sin u}{u} du \text{ maka F(0)} = 0$$

 $F'(t) = \frac{\sin t}{t}$ dan t $F'(t) = \sin t$. Dengan mengambil transformasi Laplace kedua bagian

$$L\{tF'(t)\} = L\{sint\} \text{ atau } (-1)^1 \frac{d}{ds} (sf(s) - F(0)) = \frac{1}{s^2 + 1}$$

$$\Leftrightarrow \frac{d}{ds} sf(s) = -\frac{1}{s^2 + 1}$$

$$\Leftrightarrow sf(s) = -\int \frac{1}{s^2 + 1} ds$$

$$\Leftrightarrow$$
 $sf(s) = -\arctan s + C$

Menurut teorema harga awal, $\underset{s\to\infty}{Lim} sf(s) = \lim_{t\to 0} F(t) = F(0) = 0$

Sehingga diperoleh c = $\frac{\pi}{2}$.

Jadi sf(s) =
$$\frac{1}{s}$$
arctan $\frac{1}{s}$

3. Buktikan L
$$\left\{\int_{t}^{\infty} \frac{\cos u}{u} du\right\} = \frac{\ln(s^2 + 1)}{2s}$$

Bukti:

Misal F(t) =
$$\int_{t}^{\infty} \frac{\cos u}{u} du$$
 maka F'(t) = $-\frac{\cos t}{t}$ atau tF'(t) = $-\cos t$

$$\mathbf{L}\{tF'(t)\} = \mathbf{L}\{-\cos t\}$$

(-1)
$$\frac{d}{ds}(sf(s) - F(0)) = -\frac{s}{s^2 + 1}$$
 atau $\frac{d}{ds}sf(s) = \frac{s}{s^2 + 1}$

$$sf(s) = \frac{1}{2}ln(s^2 + 1) + c$$

Menurut teorema harga akhir, $\lim_{s\to 0} sf(s) = \lim_{t\to 0} F(t) = 0$, sehingga c = 0.

Jadi sf(s) =
$$\frac{1}{2}$$
ln(s² + 1) atau f(s) = $\frac{\ln(s^2 + 1)}{2s}$

g. Perkalian dengan tⁿ

Jika L{F(t)} = f(s) maka L{tⁿ F(t)} = (-1)ⁿ
$$\frac{d^n}{ds^n} f(s) = (-1)f^{(n)}(s)$$

Bukti.

Karena $f(s) = \int_{0}^{\infty} e^{-st} F(t) dt$ maka menurut aturan Leibnitz untuk menurunkan dibawah tanda integral, diperoleh:

$$\frac{df}{ds} = \mathbf{f'(s)} \qquad = \frac{d}{ds} \int_{0}^{\infty} e^{-st} F(t) dt$$

$$= \int_{0}^{\infty} \frac{\partial}{\partial s} e^{-st} F(t) dt$$

$$= \int_{0}^{\infty} -t e^{-st} F(t) dt$$

$$= -\int_{0}^{\infty} e^{-st} \{tF(t)\} dt$$

$$= -\mathbf{L}\{tF(t)\}$$

Jadi L{tF(t)} =
$$-\frac{df}{ds}$$
 = $-f'(s)$

Contoh

1. Tentukan L{t sin at}

Jawab

L{sin at} = $\frac{a}{s^2 + a^2}$, maka menurut sifat perkalian dari pangkat tⁿ diperoleh

$$L\{t F(t)\} = (-1)^n \frac{d^n f(s)}{ds^n}$$
, sehingga

$$L\{ t \sin at \} = (-1) \frac{d}{ds} \left(\frac{a}{s^2 + a^2} \right)$$

$$=\frac{2as}{\left(s^2+a^2\right)^2}$$

2. Tentukan $L\{t^2\cos at\}$

Menurut sifat di atas, $L\{t^2\cos at\} = (-1)^2 \frac{d^2}{ds^2} \left(\frac{s}{s^2 + a^2}\right)$

$$= \frac{d}{ds} \left(\frac{a^2 - s^2}{\left(s^2 + a^2\right)^2} \right)$$

$$= \frac{2s^3 - 6a^2s}{(s^2 + a^2)^3}$$

h. Sifat pembagian oleh t

Jika L{F(t)} = f(s) maka L
$$\left\{\frac{F(t)}{t}\right\} = \int_{0}^{\infty} f(u)du$$

Bukti:

Misal G(t) =
$$\frac{F(t)}{t}$$
 maka F(t) = t G(t).

Dengan menggunakan definis transformasi Laplace untuk kedua bagian, maka diperoleh bentuk L{F(t)} = L{t G(t)} atau f(s) = $-\frac{d}{ds}L{G(t)}$ atau f(s) = $-\frac{dg}{ds}$.

Selanjutnya dengan mengintegralkan diperleh

$$\int \mathbf{f(s)} = \int -\frac{dg}{ds}.$$

$$g(s) = -\int_{\infty}^{s} f(u)du$$

$$= \int_{s}^{\infty} f(u) du$$

$$\mathbf{Jadi} \, \mathbf{L} \left\{ \frac{F(t)}{t} \right\} = \int_{s}^{\infty} f(u) du$$

Soal-soal

1) Tentukan transformasi Laplace untuk fungsi yang diberikan

a.
$$F(t) = t \cos 2t$$

b.
$$F(t) = t \sin 3t$$

c.
$$F(t) = t(3\sin 2t-2\cos 5t)$$

d.
$$F(t) = t^2 \sin t$$

e.
$$F(t) = (t^2 - 3t + 2)\sin 3t$$

f.
$$F(t) = t^3 \cos t$$

g.
$$F(t) = (t^2-1)(1-\cos t)$$

2) Jika F(t) =
$$\begin{cases} t^2, 0 < t \le 1 \\ 0, t > 1 \end{cases}$$

Carilah L{F"(t)}

3) Diketahui F(t) =
$$\begin{cases} 2t, 0 \le t \le 1 \\ t, t > 1 \end{cases}$$

- a. $carilah L{F(t)}$
- b. carilah L{F'(t)}
- c. apakah L(F'(t)) = sf(s) F(0) berlaku untuk kasus ini
- 4) Tunjukkan bahwa $\int_{0}^{\infty} te^{-3t} \sin t dt = \frac{3}{50}$
- 5) Tunjukkan bahwa

$$\mathbf{L}\left(\int_{0}^{t} (u^{2} - u + e^{-u}) du\right) = \frac{1}{s} L\{t^{2} - t + e^{-t}\}\$$

6) Perlihatkan bahwa

a. L{
$$\frac{e^{-at} - e^{-bt}}{t}$$
} = $\ln \left| \frac{s+b}{s+a} \right|$

b. L
$$\left\{ \frac{\cos at - \cos bt}{t} \right\} = \frac{1}{2} \ln \left| \frac{s^2 + b^2}{s^2 + a^2} \right|$$

7) Tunjukkan bahwa:

$$\mathbf{a.} \ \mathbf{L} \left(\int_{0}^{1} \frac{1 - u^{-u}}{u} du \right) = \frac{1}{s} \ln \left| 1 + \frac{1}{s} \right|$$

b. Jika L{F(t)} = f(s) maka L
$$\left\{\int_{0}^{t} dt_{1} \int_{0}^{t_{1}} F(u) du\right\} = \frac{f(s)}{s_{2}}$$