Examen type de Langage Machine, datant de janvier 2019

Responsable de l'activité d'apprentissage : Jean-Luc Collinet

jeanluc.collinet@vinci.be

Modalités spécifiques à cette partie :

Accès à SASM sur machine.

TABLE DES CODES ASCII

hex	caractère	hex	caractère	hex	caractère	hex	caractère
00		20	sp (espace)	40	@	60	` (apost. inv.)
01		21	!	41	Α	61	а
02		22	"	42	В	62	р
03		23	#	43	С	63	С
04		24	\$	44	D	64	d
05		25	%	45	E	65	е
06		26	&	46	F	66	f
07	bel	27	' (apostrophe)	47	G	67	g
80	bs	28	(48	Н	68	h
09		29)	49		69	i
0A	If	2A	*	4A	J	6A	j
0B		2B	+	4B	K	6B	k
0C	ff	2C	, (virgule)	4C	L	6C	
0D	cr	2D	- (moins)	4D	M	6D	m
0E		2E	. (point)	4E	N	6E	n
0F		2F	/	4F	0	6F	0
10		30	0	50	Р	70	р
11		31	1	51	Q	71	q
12		32	2	52	R	72	r
13		33	3	53	S	73	S
14		34	4	54	T	74	t
15		35	5	55	U	75	u
16		36	6	56	V	76	V
17		37	7	57	W	77	W
18		38	8	58	Х	78	Х
19		39	9	59	Υ	79	у
1A		3A	: (2 points)	5A	Z	7A	Z
1B	esc	3B	; (point virgule)	5B	[7B	{
1C		3C	<	5C	\	7C	
1D		3D	=	5D]	7D	}
1E		3E	>	5E	٨	7E	~
1F		3F	?	5F	_ (souligné)	7F	del

Question 1: (4 points)

<u>1.1</u>

Un *range* est une étendue de valeurs d'une plus petite à une plus grande. Par exemple, avec un nombre à deux chiffres binaires, on peut écrire 4 valeurs décimales : 0, 1, 2 et 3. Ainsi, l'étendue - le range - commence à 0 (la plus petite valeur) et se termine à 3 (la plus grande valeur).

Écrivez le *range* des nombres décimaux (non signés) correspondant à un nombre binaire à n chiffres :

<u>1.2</u>

Combien de chiffres binaires j'ai besoin pour représenter un nombre décimal allant jusqu'à...

15?

1024?

1.3

2¹⁶ bytes valent combien de Kb?

<u>1.4</u>

Complétez le tableau suivant :

Décimal	8		10	11
Hexadécimal				
Binaire		1001		
Décimal	12	13	14	
Hexadécimal				F
Binaire				

Question 2 : (8 points)

Ouvrez le programme Examen.Question.2.asm dans l'IDE SASM. Il se trouve dans votre répertoire Z: d'examen.

Déterminez l'adresse de chaque instruction, sa taille et son codage en hexadecimal :

Adresse (dans 1'IDE SASM)	Instruction	Taille	Codage hexadécimal
	mov ebp,esp		
	xor edx,edx		
	mov ecx,19		
	inc edx		
	call op		
	dec ecx		
	jnz yoyo		
	ret (dans la procédure)	1 octet	

Question 3: (14 points)

Écrivez un **programme en NASM** qui demande à l'utilisateur d'entrer **10 nombres entiers** en décimal (non signés). Les nombres sont à stocker dans un tableau **en mémoire**.

Affichez ensuite le plus grand nombre à l'écran.

Travaillez avec des nombres qui ont une taille de 2 octets.

Vous pouvez utiliser l'IDE SASM pour élaborer votre réponse.

Question 4: (14 points)

Écrivez un programme en NASM qui demande à l'utilisateur d'entrer une phrase d'au plus 254 caractères (255 en considérant *Enter*).

Cherchez dans cette phrase le nombre d'occurrences de la lettre 'o' (o minuscule) et affichez ce nombre à l'écran.

Par exemple,

si l'utilisateur entre au clavier « Bonjour, tout le monde ! », votre programme affiche à l'écran « Le nombre d'occurrences de la lettre o minuscule est 4. ».

Vous pouvez utiliser l'IDE SASM pour élaborer votre réponse.