Introduction to RNA-seq

Differential gene expression and pathway enrichment

What is the purpose?

We want to identify why expression levels differ across conditions

Expression level

Significant difference

Challenges

- Few replicates
- Discrete count data
- Variability from biological replicates

Deviations from global mean

No significant difference

Sources of variability

Courtesy of Paul Pavlidis, UBC

Normalization

We want to account for factors that prevent direct comparison of raw count data

- 1. Within samples: gene transcript length and GC content
- 2. Between samples: batch effects and sequencing depth

Approach

- 1. RPKM/FPKM: between genes within a sample
- 2. TPM: within a sample or between samples
- 3. Median of ratios: between samples (DESeq2)

Principal components analysis

- Dimensionality reduction
- Finds principal components that maximize variance

DESeq2

- Estimating the variability of genes given their sequencing depth and behaviour relative to other genes
- Fit a negative binomial distribution to the count data
- Wald test evaluates the impact of explanatory variables
 - Approximation of the likelihood ratio test

Volcano plots

Multiple test correction

- When we are searching for significance across multiple hypotheses, we have to adjust our p-value threshold downward
- Recall that the p-value is the probability of obtaining results at least as extreme as the results observed
- Important for both DGE and pathway enrichment

- Bonferroni correction: α/n.
- 2. Benjamini-Hochberg: P_(k)≤ α•k / n

Fishing for enriched pathways

- Given a set of genes, we want to find what pathways are associated with them
- Every pathway is a hypothesis and gene matches are evidence that the hypothesis is true

Count matrix paper for R tutorial

BIOINFORMATICS ARTICLE

SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis

Wenhui Yu^{1,‡}, Keng Chen^{1,‡}, Guiwen Ye^{3,‡}, Shan Wang², Peng Wang¹, Jinteng Li¹, Guan Zheng¹, Wenjie Liu¹, Jiajie Lin¹, Zepeng Su¹, Yunshu Che¹, Feng Ye³, Mengjun Ma¹, Zhongyu Xie^{1,*} and Huiyong Shen^{1,*,†}

¹Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China, ²Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China and ³Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China

Other resources

The Gene Ontology Resource http://geneontology.org/