

RINGS WITH ASSOCIATORS IN THE RIGHT NUCLEUS

D. Prabhakara Reddy* and K. Jayalakshmi**

In this paper we prove that if R is a simple ring with associator in the right nucleus then R is associative. We extend this result to prime and semi prime rings also.

2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary 17A30.

KEY WORDS AND PHRASES: Nucleus, Simple ring, Prime ring, Semi prime ring, Associator, Associator ideal.

1. Introduction

In [2] E. Kleinfeld proved that if R is a semi prime ring such that $(R, R, R) \subseteq N_l \cap N_m \cap N_r$ and (R, +) has no elements of order 2 then R is associative. In [1] Chen-Te Yen has proved that if R is a simple ring of characteristic not 2 with associators in the left nucleus then R is associative. In [3] E. Kleinfeld and Margaret Kleinfeld has shown that assuming associators in the left nucleus, simple rings with identity 1 and characteristic not 2 must be associative. In this paper using the results of paper [1] and [3] we prove that (1) if R is a simple ring with associator in the right nucleus then is associative, (2) if R is a prime ring with associator in the right nucleus then R is associative and (3) if R satisfies the identity (R, R, (R, R, R)) = 0 and if for all $a \in R$, $a^2 = 0$ implies a = 0, then R must be associative.

2. Preliminaries

Let *R* be a non associative ring. We shall denote the associator by (x, y, z) = (xy)z - x(yz) for all $x, y, z \in R$. In any ring *R* one has the following nuclei:

$$N_l = \{n \in R/(n, R, R) = 0\}$$
 - left nucleus
 $N_m = \{n \in R/(R, n, R) = 0\}$ - middle nucleus
 $N_r = \{n \in R/(R, R, n) = 0\}$ - right nucleus.

And where the nucleus N is defined by $N = \{ n \in R/(n, R, R) = 0 = (R, n, R) = (R, R, n) \}$.

A ring R is called simple if $R^2 \neq 0$ and the only nonzero ideal of R is itself. A ring is called prime if for any two of its ideals A and B with AB = 0 it follows that either A = (0) or B = (0). Since R^2 is a nonzero ideal of R, we have $R^2 = R$. A ring R is called semi prime if the only ideal of R which squares to zero is the zero ideal. Note that each associator is linear in each argument. Thus N_V and N_R are additive subgroups of R, R.

We shall make use of the Teichmuller identity.

$$(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z \quad \forall w, x, y, z \in R,$$
 (1)

which is valid in any ring.

As a consequence of (1), we have that N_{ν} , N_{m} and N_{r} are associative subrings of R.

Suppose that $n \in R_{r}$, then with w = n in (1) we obtain

$$(x, y, zn) = (x, y, z) n, \quad \forall x, y, z \in R \text{ and } n \in N_r.$$
 (2)

Department of Mathematics, Sri Venkateswara University, Tirupati-517 502, (A.P.), India, E-mail: prabhakarareddyd@gmail.com
Department of Mathematics, JNTUA College of Engineering, Anantapur-515 002, (A.P.), India, E-mail: jayalakshmikaramsi@gmail.com

Let *A* be the associator ideal of a ring *R*. By (1) *A* can be characterized as all finite sums of associators and right (or left) multiples of associators. Hence, we obtain

$$A = (R, R, R) + (R, R, R)R,$$

= (R, R, R) + R (R, R, R). (3)

Lemma 2.1: Let $T = \{t \in R / tR = 0 = Rt\}$. Then T is an ideal of R.

Proof: Let $t_1, t_2 \in T$, then for every $x \in R$ we obtain

$$t_1 x = 0$$
, $t_2 x = 0$ and $xt_1 = 0$ and $xt_2 = 0$.

Also,

$$x(t_1 - t_2) = xt_1 - xt_2 = 0,$$

$$(t_1 - t_2) x = t_1 x - t_2 x = 0.$$

Now for $r \in R$, $t \in T$, rT and Tr are also in T. Hence (rt)x = 0 and x(tr) = 0. And hence rt and tr both belong to T. Hence T is an ideal of R.

Theorem 2.2: Let *R* be a simple ring and satisfies (*) $(R, R, R) \subseteq N_r$. Then *R* is associative.

Proof: Assume that R is not associative. Then by (3) and (*), we obtain

$$R = R^2 = RA = R(R, R, R)$$

Similarly, we obtain

$$R = AR = (R, R, R) R. \tag{4}$$

Using (1) and (*) we obtain

$$w(x, y, z) + (w, x, y) z \in N_r, \quad \forall w, x, y, z \in R.$$
 (5)

Then with y(R, R, R) in (5) and applying (*) we obtain

$$w(x, y, z) \in N_r$$
.

i.e., $R(R, (R, R, R), R) \subseteq N_r$.

Now using this, (*) and (2) we obtain

$$0 = (R, R, R, (R, (R, R, R), R)) = (R, R, R) (R, (R, R, R), R)$$
(6)

and so

$$R(R, R, R)(R, (R, R, R), R) = R(R, R, R)(R, (R, R, R), R)$$

= 0.

Using (4) results in

$$R(R, (R, R, R), R) = 0.$$
 (7)

From (7) and (4) we obtain

$$0 = R (R,(R,R,R),R) = (R, R, R) R (R, (R, R, R), R)$$

$$= (R, A, R) R (R, (R, R, R), R), \text{ since } R \text{ is simple}$$

$$= (R, (R, R, R), R) R (R, (R, R, R), R)$$

$$= (R, (R, R, R), R) R (R, A, R)$$

$$= (R, (R, R, R), R) R (R, R, R)$$

$$= (R, (R, R, R), R) R (R, R, R)$$

$$= (R, (R, R, R), R) R (R, R, R)$$

$$= (R, (R, R, R), R) R (R, R, R)$$
(8)

From (7) and (8) $(R, (R, R, R), R) \subseteq T$. Since T is an ideal and simplicity of R yields T = R or T = 0. But T = R implies RR = 0, a contradiction. Thus T = 0.

Hence (R, (R, R, R), R) = 0. Hence the associator (R, R, R) are now in the middle and the right nucleus. So we may use [2] to obtain a contradiction. Now we show that the associator (R, R, R) is also in the left nucleus.

For, replace n by ((a, b, c), d, e) in (2) where $a, b, c, d, e \in R$ and $((a, b, c), d, e) \in N_r$ by the hypothesis. Thus,

$$(x, y, z((a, b, c), d, e)) = (x, y, z)((a, b, c), d, e).$$
 (9)

Now applying (1) we obtain,

$$(x, y, z((a, b, c), d, e)) + (x, y, (z, (a, b, c), d) e) = (x, y, (z(a, b, c), d, e)) - (x, y, (z, (a, b, c) d, e)) + (x, y, (z, (a, b, c), de)).$$

$$(10)$$

$$(x, y, z ((a, b, c), d, e)) + (x, y, (z, (a, b, c), d) e) = 0,$$

(x, y, z((a, b, c), d, e)) = -(x, y, (z, (a, b, c), d)e), using the fact that associators are in the right and the middle nucleus we obtain (x, y, (z, (a, b, c), d)e) = 0 implying, (x, y, z((a, b, c), d, e)) = 0. Hence we obtain,

$$0 = (R, R, R((R, R, R), R, R)) = (R, R, R)((R, R, R), R, R)$$
by (2)

$$A((R, R, R), R, R) = 0.$$
 (11)

Since A = R we obtain

$$R((R, R, R), R, R) = 0.$$
 (12)

Form (12) and (4) we obtain

$$0 = (R, R, R) R ((R, R, R), R, R)$$

$$= (A, R, R) R ((R, R, R), R, R)$$

$$= ((R, R, R), R, R)) R ((R, R, R), R, R)$$

$$= ((R, R, R), R, R) R (A, R, R)$$

$$= ((R, R, R), R, R) R (R, R, R) \text{ since } R \text{ is simple.}$$

$$= ((R, R, R), R, R) R.$$
(13)

Thus from (12) and (13) $(R, R, (R, R, R)) \subseteq T$. Since T is an ideal simplicity of R yields T = R or T = 0. But T = R implies RR = 0 which is again a contradiction. Thus T = 0 and so ((R, R, R), R, R) = 0 and hence we obtain the associators now in the left nucleus as well. Hence $(R, R, R) \subseteq N_l \cap N_m \cap N_r$. Thus [2] applies. This completes the proof of the Theorem.

Theorem 2.3: Let *R* be a prime ring and satisfies (*) $(R,R,R) \subseteq N_r$. Then *R* is associative.

Proof: Let *R* be not associative. Then from (6)

$$0 = (R, R, R, (R, (R, R, R), R))$$

= (R, R, R) (R, (R, R, R), R),
= A (R, (R, R, R), R).

From Lemma 2.1 $(R, (R, R, R), R) \subseteq T$ and T is an ideal of R. Hence we obtain AT = 0. But since R is prime we either have A = 0 or T = 0. But A being an associator ideal is not equal to zero. Hence we have T = 0 implying (R, (R, R, R), R) = 0. i.e., (R, R, R) are in the middle and the right nucleus. Now from (11), 0 = A(R, R, (R, R, R)) But $((R, R, R), R, R) \subseteq T$ and AT = 0. But since R is prime we either have A = 0 or T = 0. But A being an associator ideal is not equal to zero. Hence we have T = 0 implying ((R, R, R), R, R) = 0. i.e. (R, R, R) are in the left nucleus as well which results in $(R, R, R) \subseteq N$. At this point we make use of the result in [2] to obtain a contradiction.

Theorem 2.4: If R satisfies the identity (R, R, (R, R, R)) = 0 and if for all aR, $a^2 = 0$ implies a = 0 then R must be associative.

Proof: As in earlier computation, we deduce that (R, R, R) (R, (R, R, R), R) = 0. Thus $(v, (w, x, y), z)^2 = 0$. Hence (v, (w, x, y), z) = 0, proving that (R, R, R) is in the middle nucleus of R. This implies (R, R, R) ((R, R, R), R, R) = 0. Then $((x, y, z), v, w)^2 = 0$. So that (R, R, R) is in R, the nucleus of R. Now we use [2] to see that R is associative.

REFERENCES

- [1] Chen-Te.Yen, (2002), Simple Rings of Characteristic Not 2 with Associators in the Left Nucleus are Associative, *Tamkang Journal of Mathematics*, Vol. 33, Pp. 93-95.
- [2] E. Kleinfeld, (1986), A Class of Rings which are Very Nearly Associative, *Amer. Math. Monthly*, Vol. 93, No. 1, Pp. 720-722.
- [3] E. Kleinfeld, and Margaret Kleinfeld, (1999), Simple Rings with (*R*, *R*, *R*) in the Left Nucleus, *Tamkang Journal of Mathematics*, Vol. 30, No. 1, Pp. 35-37.
- [4] R. D. Schafer, (1966), An Introduction to Non-Associative Algebra, Pure and Appl. Math., Academic Press, New York.