🖎 Exercice 1 :

😊 1^{ère} partie :

Soit f la fonction numérique d'une variable réelle x définie par: $f(x) = \frac{\sqrt{x^2 - 4 + x}}{x}$.

- 1 a Déterminer D_f l'ensemble de définition de la fonction f .
 - b Trouver les limites de f aux bornes des intervalles de l'ensemble de définition $D_{\scriptscriptstyle f}$
- ② Etudier les branches infinie de la courbe $\left(\mathscr{C}_{f}\right)$.
- ${rac{}{ rac{}{ }} }$ Montrer que la courbe $\left(\mathscr{C}_{_{\! f}}
 ight)$ admet un centre de $\,$ symétrie $\, \Omega \! \left(0,1
 ight) .$
- 4 Etudier la dérivabilité de f en 2 à droite et interpréter le résultat géométriquement.
- **⑤** Calculer f'(x) pour tout $x \in D_f$.

😊 2^{ème} partie :

Soit g la fonction numérique d'une variable réelle x définie par :

$$\begin{cases} g(x) = f(x) & ; \quad x \in]-\infty; -2] \cup [2; +\infty[$$

$$g(x) = \sqrt{4 - x^2} + 1 & ; \quad x \in]-2; 2[$$

- ① a Déterminer D_g l'ensemble de définition de la fonction g . b - Montrer que la restriction de g à l'intervalle]-2;2[est une fonction paire.
- 2 Montrer que la fonction q est continue en 2.
- 3 Etudier la dérivabilité de g en 2 à gauche et interpréter le résultat géométriquement.
- 4 Calculer g'(x) pour tout $x \in]-2;2[$.
- ⑤ Dresser le tableau de variation de g .
- 6 Tracer $\left(\mathscr{C}_{\!\scriptscriptstyle g}\right)$ dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$.

😊 3^{ème} partie :

Soit h restriction de g à l'intervalle $\left[2;+\infty\right[$.

- 1 Montrer que la fonction h admet une fonction réciproque h^{-1} définie sur un intervalle J à déterminer .
- ② Montrer que la fonction h^{-1} est dérivable sur J.
- $\center{3}$ Dresser le tableau de variation de h^{-1} .
- **5** Calculer $(\forall x \in J)$: $h^{-1}(x)$.

🖎 Exercice 2 :

Soit f la fonction numérique d'une variable réelle x définie par: $f(x) = \sqrt[3]{(x-1)^2(x+2)}$

- ① Déterminer D_f l'ensemble de définition de la fonction f, et calculer $\lim_{x \mapsto +\infty} f\left(x
 ight)$.
- 2 Calculer les limites suivantes et interpréter les résultats géométriquement :

$$\lim_{x \to 1^+} \frac{f(x)}{x-1} \quad \text{et} \quad \lim_{x \to 1^-} \frac{f(x)}{x-1} \quad \text{et} \quad \lim_{x \to -2^+} \frac{f(x)}{x-2}.$$

- \mathfrak{J} a Etudier la dérivabilité de la fonction f sur D_f - $\{1\}$.
 - b Calculer f'(x) pour tout $x \in D_f \{1\}$.
 - c Etudier les variations de f.
- ⑤ Etudier les branches infinie de la courbe (\mathscr{C}_f) .
- **(6)** Tracer (\mathscr{C}_f) dans un repère orthonormé (O,\vec{i},\vec{j}) .(On prends $\sqrt[3]{2} \approx 1,25$ et $\sqrt[3]{4} \approx 1,6$).

🖎 Exercice 3:

Soit f la fonction numérique d'une variable réelle x définie par: $f(x) = x - 1 - \frac{1}{\sqrt[3]{x} - 1}$

- \bigcirc a Déterminer D_f l'ensemble de définition de la fonction f .
 - b Trouver les limites de f aux bornes des intervalles de l'ensemble de définition.
- ② a Montrer (Δ) d'équation y=x-1 est une asymptote oblique à la courbe $\left(\mathscr{C}_f\right)$ au voisinage de $+\infty$.
 - b Etudier les positions relatives de (\mathscr{C}_f) et la droite (Δ) .
- 3 Etudier la dérivabilité de g en 0 à droite et interpréter le résultat graphiquement.
- 4 Calculer f'(x) pour tout $x \in D_f$, puis Dresser le tableau de variation de f.
- ⑤ Montrer que l'équation f(x) = 0 admet une unique solution α tel que $2\sqrt{2} \prec \alpha \prec \frac{27}{8}$.
- **6** Soit g restriction de f à l'intervalle]1;+ ∞ [
 - a Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on déterminera .
 - b Montrer que : $g^{-1}(6) = 8$.
 - c Montrer que la fonction g^{-1} est dérivable au point $y_0 = 6$.
 - d Calculer $(g^{-1})'(6)$.
- 6 Tracer $\left(\mathscr{C}_{\!_{f}}\right)$, $\left(\mathscr{C}_{\!_{g^{-1}}}\right)$ et $\left(\Delta\right)$ dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.