Extending graphical models

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information November 16, 2020

Beta-binomial model in the news

Before we go on: recent news!

- Pfizer COVID-19 vaccine
- Moderna COVID-19 vaccine

Pfizer's claim: "at least 90% effective" (I also saw some news

outlets report "up to 90% effective")
Moderna's claim: "94.5% effective"

Beta-binomial model

Defining parameters:

- π_c : probability that a control subject becomes ill
- π_{v} : probability that a vaccinated subject becomes ill
- Derived quantity: Vaccine efficacy:

$$VE = 1 - \frac{\pi_v}{\pi_c}$$

Parameter for the model:

$$\theta = \frac{1 - VE}{2 - VE} = \frac{\pi_v}{\pi_v + \pi_c}$$

Pfizer's prior

Let *y* be the number of cases that come from the vaccinated group.

The model:

$$y \sim \text{Binomial}(\theta, n)$$

 $\theta \sim \text{Beta}(0.700102, 1)$

Prior is stated in Pfizer's press release. Appears chosen so that the VE at prior mean θ is 30%. Prior 95% interval for VE is about (-26.2, 0.995).

4

Pfizer's prior

Pfizer's prior

What's the data?

The Pfizer press release didn't state the number of cases from each group, but stated the overall number of cases as 94. So, we'd have to reverse-engineer the number of cases from the vaccine arm:

• If we interpret 90% as the sample efficacy, at most 8 cases came from the vaccine arm

Then the posterior for θ is

$$p(\theta|y) = \text{Beta}(0.700102 + 8, 1 + 86)$$

7

Posterior distribution

Posterior distribution

Another reverse-engineering

Another interpretation of the 90% figure:

 The 95% credible interval for vaccine effectiveness lies entirely above 90%

This is a more optimistic interpretation – for this, we need at most 3 cases in the vaccine arm.

Posterior distribution

Posterior distribution

Moderna's vaccine

We don't have to do as much reverse engineering for Moderna's data, because they published case counts:

- 90 cases in the placebo arm
- 5 cases in the vaccine arm

However, the press release doesn't appear to indicate the type of analysis that resulted in the 94.5% figure.

Posterior distribution

Posterior distribution

Further reading

A few sources:

- "A look at Biontech/Pfizer's Bayesian analysis of their Covid-19 vaccine trial" skranz.github.io//r/2020/11/ 11/CovidVaccineBayesian.html
- "The Pfizer-Biontech Vaccine May Be A Lot More Effective Than You Think" http://blog.fellstat.com/?p=440
- "How to describe Pfizer's beta(0.7, 1) prior on vaccine effect?" https://statmodeling.stat.columbia.edu/ 2020/11/13/pfizer-beta-prior-vaccine-effect/

Graphical models, mixtures, plate

notation

Bayesian networks

A Bayesian network is a probabilistic model based on a DAG.

- DAG represents relationships between variables
- Each variable equipped with a probability distribution conditional on its parents in the graph
- DAG implies certain factorization / conditional independence properties

Recap: directed graphs

Figure from Causality

Recap: directed graphs

Figure from Causality

Joint probability distribution

$$P(x_1,\ldots,x_5)=P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2,x_3)P(x_5|x_4)$$

Plate models

Plate models: a formalism for specifying graphical / hierarchical models with multiple observations / groups

- Similar to a directed graph, but groups repeated structures into "plates"
- Plates indicated by rectangles surrounding variables
- Can indicate observable/latent variables by shading

Example: election forecast model

As an example, we can write our hierarchical election forecasting model in plate notation:

Example: election forecast model

As an example, we can write our hierarchical election forecasting model in plate notation:

Joint distribution:

$$p(y,x,\delta,\tau) = p(\tau) \prod_{i=1}^{11} p(\delta_i|\tau) \prod_{i=1}^{5} 0p(y_i|x,\delta)$$

Expanding to the full model graph

Example: latent Dirichlet allocation

Example in practice: latent Dirichlet allocation (Blei et al, 2003)

- Model for topics and words in documents
- A document is modeled as a sequence of words; each word is associated with a topic
- Idea: each document has an underlying distribution of topics, and each word is chosen from a randomly selected topic

Data generating process as an algorithm

A document is represented as a vector of words $w = w_i$.

Steps for generating a document:

- 1. Choose $\theta \sim \text{Dirichlet}(\alpha)$.
- 2. For each word:
 - 2.1 Choose a topic $z \sim \text{Multinomial}(\theta)$
 - 2.2 Choose a word $w \sim \text{Multinomial}(\beta|\mathbf{z})$

Writing down the model

A document is represented as a vector of words $w = w_i$.

$$w_i \sim \text{Multinomial}(\beta_z)$$
 $z \sim \text{Multinomial}(\theta)$
 $\theta \sim \text{Dirichlet}(\alpha)$

(priors omitted for now)

Example: latent Dirichlet allocation

In plate notation:

Comparison to other models

Two simpler models:

- Pure unigram model
 - Each word drawn independently from underlying distribution of words
 - No topic variable
- Mixture of unigrams
 - Documentwise topic variable
 - Each word drawn from a distribution of words according to topic

Comparison to other models

Summary

Today:

- Some current events
- Plate notation, LDA example

Going forward:

- More on the LDA example
- Temporal models