

Ramesh Ragala VIT Chennai

- Semi-supervised learning (SSL) is a class of machine learning techniques that make use of both labeled and unlabeled data for training.
- Unsupervised Learning
 - Let X = $(x_1,x_2,...x_n)$ be a set of n examples or points, where $x_i \in \mathcal{X}$ for all i ∈ [n] = {1,2,...,n}.
 - it is assumed that the points are drawn i.i.d. (independently and identically distributed) from a common distribution on \mathcal{X} .
 - The goal of unsupervised learning is to find interesting structure in the data X.
 - It has been argued that the problem of unsupervised learning is fundamentally that of estimating a density which is likely to have generated X.

supervised Learning

- The goal is to learn a mapping from x to y, given a training set made of pairs (x_i,y_i).
- Here, the y_i ∈ Y are called the labels or targets of the examples x_i
 If the labels are numbers Y denotes the column vector of labels.
- The pairs (x_i, y_i) are sampled i.i.d. from some distribution which here ranges over X × Y. → This task is well defined, since a mapping can be evaluated through its predictive performance on test examples
- it is assumed that the points are drawn i.i.d. (independently and identically distributed) from a common distribution on \mathcal{X} .
- When y ∈ R or R^d (i.e. when the labels are continuous), the task is called regression.
- There are two families of algorithms for supervised learning.
 - Generative algorithms → try to model the class-conditional density by some unsupervised learning procedure. A predictive density can
 - then he inferred by applying Rayes theorem

- supervised Learning
- There are two families of algorithms for supervised learning.
 - Generative algorithms → try to model the class-conditional density p(x/y) by some unsupervised learning procedure. A predictive density can then be inferred by applying Bayes theorem:

$$p(y|x) = \frac{p(x|y)p(y)}{\int_{\mathbb{Y}} p(x|y)p(y)dy}.$$

Discriminative algorithms → do not try to estimate how the x_i have been generated, but instead concentrate on estimating p(y/x). Some discriminative methods even limit themselves to modeling whether p(y/x) is greater than or less than 0.5. Example SVM

- Semi-supervised learning falls between
 - Unsupervised learning (without any labeled training data) and
 - Supervised learning (with completely training data)
- Learn predictive tasks
 - Uses both labeled data and unlabeled data
 - Small amount of labeled data
 - Large amount of unlabeled data
- The dataset X = (x_i)_{i∈[n]} can be divided into two parts:
 - The points $X_1 = (x_1, x_2, \dots, x_l)$ for which labels $Y_1 = (y_1, y_2, \dots, y_l)$ are provided.
 - The points $X_u = (x_{l+1}, x_{l+2}, \dots x_{l+u})$ does not know the labels
 - This is a standard semi-supervised learning
- Semi-supervised learning with constraints
 - Partial supervision is possible
 - Example: these points have the same target.

- Two types of learning will be used in Semi-supervised learning and sometime semi-supervised learning may refer either of
 - Transductive learning
 - Inductive learning
- Transductive learning
 - The idea of transduction is to perform predictions only for the test points. i.e it is used to infer the correct labels for the given unlabeled data $(x_{l+1}, x_{l+2}, ... x_{l+u})$ only.

Given $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^l$ and $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, learn a function $f: \mathcal{X}^{l+u} \longrightarrow \mathcal{Y}^{l+u}$ so that f is expected to be a good predictor on the unlabeled data $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$.

- Inductive learning
 - the goal is to output a prediction function which is defined on the entire space X. i.e. it is used to infer the correct mapping from X to Y.

Given $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^l$ and $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, learn a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ so that f is expected to be a good predictor on future data.

- Examples of Semi-supervised learning
 - Self-training
 - Co-training
- Applications of Semi-supervised Learning
 - Speech analysis
 - Telephone conversation transcription
 - 400 hours annotation time for each hour of speech
 - Protein sequence classification
 - Web page classification

Simple architecture of Semi-supervised learning

Need of Semi-supervised Learning

- Labeled data is costly for many applications
- The acquisition of labeled data for learning problem often requires a skilled human agent or a physical experiments
- Examples:
 - Speech Analysis
 - Classification of web based text
- Unlabeled data is not expensive and able to get large quantity also
- By using these combination, it can produce considerable improvement in learning accuracy

Semi-supervised Learning

Supervised Learning

- Class 1 sample
- Class 2 sample
- Decision boundary using supervised
 - Unlabeled sample

CSE6017 - Mining of Massive Datasets

Decision boundary using semi-supervise learning

- The classes of semi-supervised learning methods
 - Generative Models
 - Low Density Separation
 - Graph Based Methods
 - Change of Representation
 - Self-training
 - Co-training