MINIMAL ALGEBRAS

ARTURO

ABSTRACT. In this note

1. Preliminaries

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $\operatorname{Pol}(\mathbf{A})$ the smallest set containing

- (1) $\{f^{\mathbf{A}}: f \in F\};$
- (2) $\{\pi_i^n : A^n \to A, 1 \le i \le n, n \in \omega\};$
- (3) the constant 0-ary operations

and closed under composition. The elements of $Pol(\mathbf{A})$ are called **polynomial** operations. We say that two algebras \mathbf{A} and \mathbf{B} on the same carrier are **polynomial** equivalent if $Pol(\mathbf{A}) = Pol(\mathbf{B})$.

Example 1.2. If
$$\varphi \in \operatorname{Clo}_{m+n}(\mathbf{A})$$
 and $(a_1, \dots, a_m) \in A^m$, then $\psi : A^n \to A \quad (b_1, \dots, b_n) \mapsto \varphi(a_1, \dots, a_m, b_1, \dots, b_n)$

is a polynomial operation.

2. Finite Minimal Algebras

Definition 2.1. A nontrivial finite algebra \mathbf{A} is **minimal** iff every noncostant element of $\operatorname{Pol}_1(\mathbf{A})$ is bijective.

The goal is to classify, up to polynomial equivalence, all the finite minimal algebras.

Example 2.2. The following are examples of minimal algebras.

- (1) any algebra with carrier 2;
- (2) a nontrivial finite vector space **A** over a finite field **k**: every $\pi \in \operatorname{Pol}_1(\mathbf{A})$ is of the form $\pi(v) = av + b$ for some $a \in k, b \in A$;
- (3) a group of permutations acting on a finite set 1 .

We shall prove that, up to polynomial equivalence, there are no other finite minimal algebras.

¹Let **G** be a group acting on a set *A*. Each *g* ∈ *G* induces an operation $\varphi_g: A \to A$ given by $\varphi_g(a) = g \cdot a$. Let $\Phi_{\mathbf{G}} := \{\varphi_g: g \in G\}$. A **G**-set can be seen as an algebra $(A, \Phi_{\mathbf{G}})$.

2 ARTURO

Lemma 2.3. Let **A** be a minimal algebra. If every element of $Pol(\mathbf{A})$ is essentially unary, then **A** is polynomial equivalent to $(A, \Phi_{\mathbf{G}})$ where **G** is a finite group acting on A.

Proof. Since **A** is minimal, $\operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$ is a subgroup of $\operatorname{Sym}(A)$. Let $\mathbf{G} := \operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$. If $\psi \in \operatorname{Pol}(\mathbf{A})$, either ψ is constant or ψ is essentially unary, hence $(A, \Phi_{\mathbf{G}})$ is polynomially equivalent to **A**.

Theorem 2.4 ([3]). Let **A** be a minimal algebra with |A| > 2. If $Pol(\mathbf{A})$ contains an operation which is not essentially unary, then **A** is polynomially equivalent to a \mathbf{k} -vector space for a finite field \mathbf{k} .

Theorem 2.5. Every algebra **A** with carrier 2 is polynomially equivalent to one of the following:

- (1) $\mathbf{E}_0 = (2, \emptyset);$
- (2) $\mathbf{E}_1 = (2, \neg);$
- (3) $\mathbf{E}_3 = (2, \land, \lor, \neg);$
- (4) $\mathbf{E}_4 = (2, \wedge, \vee);$
- (5) $\mathbf{E}_5 = (2, \vee);$
- (6) $\mathbf{E}_6 = (2, \wedge).$

Each of them is not polynomially equivalent to the other².

Remark 2.6. Up to isomorphism, $\mathbf{E}_5(\simeq \mathbf{E}_6)$ is the only semilattice with two elements, while \mathbf{E}_3 and \mathbf{E}_4 are the only Boolean algebra and lattice, respectively, with two elements.

Definition 2.7. Let **A** be a minimal algebra. We say that **A** is of

- (1) **type 1** (or **unary**) if **A** is polynomially equivalent to $(A, \Phi_{\mathbf{G}})$ for some $\mathbf{G} \leq \operatorname{Sym}(A)$;
- (2) **type 2** (or **affine**) if \mathbf{A} is polynomially equivalent to a vector space over a finite field \mathbf{k} ;
- (3) type 3 (or Boolean) if A is polynomially equivalent to E_3 ;
- (4) type 4 (or lattice) if A is polynomially equivalent to \mathbf{E}_4 ;
- (5) type 5 (or semilattice) if A is polynomially equivalent to \mathbf{E}_5 .

 $^{^2}$ A classical theorem by Post states that the set of clones of operations on 2 is countable infinite. By Theorem 2.5 among these there are exactly seven distinct clones containing the constant operations. However it has been proven that the set of clones on 3 containing the constant operations is uncountable.

3. Relative Minimal Algebras

Definition 3.1. Let **A** be a finite algebra and let $\delta < \theta \in \text{Con}(\mathbf{A})$. We say that **A** is (δ, θ) -minimal if for all $\varepsilon \in \text{Pol}_1(\mathbf{A})$ either ε is bijective or $\varepsilon(\theta) \subseteq \delta$.

Remark 3.2. Observe that **A** is minimal iff **A** is (Δ, ∇) -minimal.

Definition 3.3. Let **A** be a (α, β) -minimal algebra. An (α, β) -trace of **A** is a β -equivalence class which contains at least two δ -equivalence classes.

Lemma 3.4. Let **A** be a finite (δ, θ) -minimal algebra and let N be a (δ, θ) -trace. Then the algebra $(\mathbf{A}||N)/(\delta/N)$ is minimal.

Definition 3.5. Let **A** be a finite algebra and $B, C \subseteq A$. We say that B, C are **polynomial isomorphic** $(B \sim C)$ if there are $\varphi, \psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $\varphi[B] = C, \psi[C] = B$ and $\psi\varphi[B = 1_B, \varphi\psi[C] = 1_C$.

Remark 3.6. If $B, C \subseteq A$ are polynomial isomorphic in **A**, then $\mathbf{A}||B \simeq \mathbf{A}||C$.

4. Tame Congruences

Definition 4.1. Let **A** be a finite algebra and $\alpha, \beta \in \text{Con}(\mathbf{A})$ with $\alpha < \beta$. We denote by

- (1) $E(\mathbf{A})$ the set of $\varepsilon \in Pol_1(\mathbf{A})$ such that $\varepsilon^2 = \varepsilon$;
- (2) $U_{\mathbf{A}}(\alpha, \beta)$ the set $\{\varphi[A] : \varphi \in \operatorname{Pol}_1(\mathbf{A}), \varphi(\beta) \nsubseteq \alpha\};$
- (3) $M_{\mathbf{A}}(\alpha, \beta)$ the set of minimal elements of $U_{\mathbf{A}}(\alpha, \beta)$.

Remark 4.2. Let **A** be an algebra. An equivalence relation α is a congruence of **A** iff $\varphi(\alpha) \subseteq \alpha$ for every $\varphi \in \text{Pol}_1(\mathbf{A})$.

Let **A** be a finite algebra. In this section we adopt the following convention, concerning the restriction (-|U) operation, for $U \subseteq A$:

- if $\theta \in \text{Con}(\mathbf{A}), \ \theta | U := \theta \cap U^2;$
- if $\varphi: A^n \to A$, $\varphi|U$ is the function $U^n \to A$, $(u_1, \dots, u_n) \mapsto \varphi(u_1, \dots, u_n)$;
- $\operatorname{Pol}(\mathbf{A})|U := \{\psi|U : \psi \in \operatorname{Pol}(\mathbf{A}) \text{ and } \psi[U^n] \subseteq U\};$
- $\mathbf{A}||U := (U, \operatorname{Pol}(\mathbf{A})|U).$

Lemma 4.3. Let **A** be a finite algebra. Let $\varepsilon \in E(\mathbf{A})$, $U = \varepsilon[A]$. Then (-|U|): $Con(\mathbf{A}) \to Con(\mathbf{A}||U|)$ is a surjective (\land, \lor) -homomorphism.

Lemma 4.4. Let $\varepsilon \in E(\mathbf{A})$, $U := \varepsilon[A]$, and $\varnothing \neq N \subset U$. Then $\mathbf{A}||N = (\mathbf{A}||U)||N$.

Proof. That $(\operatorname{Pol}(\mathbf{A})|U)|N \subseteq \operatorname{Pol}(\mathbf{A})|N$ is obvious. Conversely, let $\psi = \varphi|N$ for some $\varphi \in \operatorname{Pol}(\mathbf{A})$ with $\varphi[N^k] \subseteq N$. Clearly, $\varepsilon \varphi[U^k] \subseteq U$. If $(a_1, \ldots, a_k) \in N$, $\varphi(a_1, \ldots, a_k) \in N \subseteq U$, hence $\varphi(a_1, \ldots, a_k) = \varepsilon(a)$ for some $a \in A$. Hence $\varepsilon \varphi(a_1, \ldots, a_k) = \varepsilon^2(a) = \varepsilon(a) \in N$ so that $(\varepsilon \varphi|U)|N = \varphi|N$. We have shown that ψ is an operation of $(\mathbf{A}||U)||N$.

4 ARTURO

Definition 4.5. Let **A** be a finite algebra and $\alpha, \beta \in \text{Con}(\mathbf{A})$ with $\alpha < \beta$. The pair (α, β) is a pair of **tame** congruences if there is $V \in M_{\mathbf{A}}(\alpha, \beta)$, $\varepsilon \in E(\mathbf{A})$ such that $\varepsilon[A] = V$ and $(-|V|) : [\alpha, \beta] \to [\alpha|V, \beta|V]$ is 0, 1-separating³.

Lemma 4.6. Let (α, β) be a tame pair of congruences of a finite algebra \mathbf{A} . For every $U \in M_{\mathbf{A}}(\alpha, \beta)$, there is $\varepsilon \in E(\mathbf{A})$ such that $\varepsilon[A] = U$.

Proof. Since (α, β) is tame, there is $V_0 \in M_{\mathbf{A}}(\alpha, \beta)$ and $\varepsilon_0 \in E(\mathbf{A})$ such that $V_0 = \varepsilon_0[A]$ and $(-|V_0|)$ is 0, 1-separating.

Claim 1. If $(x, y) \in \beta - \alpha$, there is $\varphi \in \text{Pol}_1(\mathbf{A})$ with $\varphi[A] = V_0$ and such that $(\varphi(x), \varphi(y)) \in \beta | V_0 - \alpha | V_0$.

Proof. Let $\theta := \{(x,y) \in \beta : (\varepsilon_0 \varphi(x), \varepsilon_0 \varphi(y)) \in \alpha \text{ for all } \varphi \in \text{Pol}_1(\mathbf{A})\}$. Now, $\theta \in [\alpha, \beta]$ and $\alpha | V_0 = \theta | V_0$; that $\alpha | V_0 \subseteq \theta | V_0$ is obvious, for the converse:

$$\theta|V_0 = \{(a,b) \in \beta \cap V_0^2 : (\varepsilon_0 \varphi(a), \varepsilon_0 \varphi(b)) \in \alpha \quad \forall \varphi \in \operatorname{Pol}_1(\mathbf{A})\}$$

$$= \{(\varepsilon_0(x), \varepsilon_0(y)) \in \beta : (\varepsilon_0 \varphi \varepsilon_0(x), \varepsilon_0 \varphi \varepsilon_0(y)) \in \alpha \quad \forall \varphi \in \operatorname{Pol}_1(\mathbf{A})\}$$

$$\subseteq \{(\varepsilon_0(x), \varepsilon_0(y)) \in \beta : (\varepsilon_0(x), \varepsilon_0(y)) \in \alpha\}$$

$$= \{(a,b) \in \beta : (a,b) \in \alpha \cap V_0^2\}$$

$$= \alpha|V_0$$

This implies that $\theta = \alpha$, since $(-|V_0|)$ is 0-separating. Thus $(x,y) \in \beta - \alpha$ implies $(x,y) \in \beta - \theta$. By definition of θ , there is $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $(\varepsilon_0 \psi(x), \varepsilon_0 \psi(y)) \notin \alpha$. Thus $\varphi := \varepsilon_0 \psi$ satisfies the conditions $\varphi[A] \subseteq V_0$ and $(\varphi(x), \varphi(y)) \in \beta |V_0 - \alpha| V_0$. Hence $\varphi[A] = V_0$ by (α, β) -minimality.

Claim 2. The relation β is the transitive closure of

$$\alpha \cup \{(\psi(x), \psi(y)) : (x, y) \in \beta | V_0, \psi \in \operatorname{Pol}_1(\mathbf{A}) \}.$$

Proof. The transitive closure of $\alpha \cup \{(\psi(x), \psi(y)) : (x, y) \in \beta | V_0, \psi \in \operatorname{Pol}_1(\mathbf{A})\}$ is $\alpha \vee \theta(\beta | V_0)$. But $\alpha \vee \theta(\beta | V_0) \in [\alpha, \beta]$, and therefore, since $(-|V_0|)$ is 1-seprating, $\beta = \alpha \vee \theta(\beta | V_0)$.

Assume that $U \in M_{\mathbf{A}}(\alpha, \beta)$. Then, by definition, there is $\mu \in \operatorname{Pol}_1(\mathbf{A})$ such that $\mu[A] = U$ and $\mu(\beta) \nsubseteq \alpha$. This implies that the equivalence relation

$$\mu^{-1}(\alpha) = \{(a,b) : (\mu(a), \mu(b)) \in \alpha\}$$

is such that $\beta \nsubseteq \mu^{-1}(\alpha)$. Then by Claim 2 there are $a,b \in V_0$ and $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $(a,b) \in \beta$ and $(\mu\psi(a),\mu\psi(b)) \notin \alpha$. The function $\mu_1 := \mu\psi\varepsilon_0$ satisfies $\mu_1[A] \subseteq U$ and $\mu_1(\beta) \nsubseteq \alpha$: there are $x,y \in A$ such that $(a,b) = (\varepsilon_0(x),\varepsilon_0(y)) \in \beta$ but $(\mu_1(a),\mu_1(b)) = (\mu\psi\varepsilon_0(x),\mu\psi\varepsilon_0(y)) \notin \alpha$. Thus $\mu_1[A] = U$ by (α,β) -minimality. Observe that $\mu_1[V_0] = \mu_1\varepsilon_0[A] = \mu\psi\varepsilon_0^2[A] = \mu_1[A]$, so that $\mu_1[V_0] = U$. Apply Claim 1 to the pair $(\mu_1(a),\mu_1(b))$ to get $\nu \in \operatorname{Pol}_1(\mathbf{A})$ such that $\nu[A] = V_0$ and $(\nu\mu_1(a),\nu\mu_1(b)) \notin \alpha$. Now, since $\mu_1\nu[A] = \mu_1[V_0] = U$, $\mu_1\nu|U$ is bijective; since U is finite, there is k > 1 such that $(\mu_1\nu|U)^k = (\mu_1\nu)^k|U = 1_U$. Let $\varepsilon := (\mu_1\nu)^k$.

³Let **L**, **N** be two lattices. A (\land, \lor) -homomorphism $\alpha: \mathbf{L} \to \mathbf{N}$ is 0,1-separating if $\alpha^{-1}[\{\alpha(i)\}] = i$ for i = 0, 1.

We have: $\varepsilon[A] = (\mu_1 \nu)^k [A] = (\mu_1 \nu)^{k-1} [U] = U$ and, consequently, for all $a \in A$, $\varepsilon^2(a) = \varepsilon(a)$ since $\varepsilon(a) \in U$. Therefore $\varepsilon \in E(\mathbf{A})$.

Definition 4.7. Let **A** be a finite algebra minimal with respect to (δ, θ) . We say that **A** has **type i** relative to (δ, θ) if for every (δ, θ) -trace N, $(\mathbf{A}||N)/(\delta|N)$ is a minimal algebra of type **i**.

Definition 4.8. Let (α, β) be tame in a finite algebra **A**. Let N be a (α, β) -trace. We define the **type** of (α, β) , written $\operatorname{typ}(\alpha, \beta)$, to be the type of the minimal algebra $\mathbf{M} = (\mathbf{A}||N)/(\alpha|N)$.

Finally, for a finite algebra **A**, we define $\operatorname{typ}\{\mathbf{A}\} := \{\operatorname{typ}(\alpha, \beta) : (\alpha, \beta) \text{ is tame}\}\$ and for a class K of finite algebras, $\operatorname{typ}\{K\} := \cup \{\operatorname{typ}\{\mathbf{A}\} : \mathbf{A} \in K\}.$

5. Omitting Types

Definition 5.1. Let V be a variety. An algebra $A \in V$ is called

- (1) **free** if there is an isomorphism $\mathbf{A} \simeq \mathbf{F}_{\mathsf{V}}(\kappa)$ for some cardinal κ ;
- (2) **finitely generated** if there is a surjective homomorphism $\mathbf{F}_{\mathsf{V}}(n) \to \mathbf{A}$ for some $n \in \omega$.

Definition 5.2. A variety V is called

- (1) **locally finite** if all its finitely generated algebras are finite;
- (2) **finitely presented** if V has a finite set of function symbols and $V = Alg(\Sigma)$ for a finite set of equations Σ ;
- (3) finitely generated if $V = V(\mathbf{A}_1, \dots, \mathbf{A}_n)$ for $\mathbf{A}_1, \dots, \mathbf{A}_n$ finite similar algebras.

Remark 5.3. Observe that $V(\mathbf{A}_1, \dots, \mathbf{A}_n) = V(\mathbf{A}_1 \times \dots \times \mathbf{A}_n)$.

Lemma 5.4. Let V be a variety. If V is finitely generated then it is locally finite.

Proof. By the previous remark, we can assume that $V = V(\mathbf{A})$ for some \mathbf{A} finite. Let $n < \omega$. We prove that $\mathbf{F}_{V}(n)$ is finite. Consider the homomorphism

$$\mathbf{F}_{\mathsf{V}}(n) \to \mathbf{A}^{A^n}, \quad t(x_1, \dots, x_n) \mapsto t^{\mathbf{A}}$$

This homomorphism is injective: if $t^{\mathbf{A}} = s^{\mathbf{A}}$, then $\mathbf{A} \models t \equiv s$, i.e. t = s in $\mathbf{F}_{\mathsf{V}}(n)$. Thus $\mathbf{F}_{\mathsf{V}}(n)$ is finite.

Definition 5.5. Let V and W be two varieties. We say that V is **interpretable** into W $(V \le W)$ if there is a clone homomorphism $Clo(V) \to Clo(W)$.

Remark 5.6. Let W, V be two varieties. We unravel what $W \leq V$ means in a simple case. Let F be a finite set of function symbols. Let V be a variety of algebras over F, defined by the equations

$$(1) s_1 \equiv t_1, \dots, s_k \equiv t_k.$$

6 ARTURO

Assume that for each $f \in F_n$ there is $t \in Clo_n(W)$ such that the interpetation of the t's satisfy the equations (1). Then the assignment $f \mapsto t$ extends to a clone homomorphism $Clo(V) \to Clo(W)$. Of course, the converse also holds; thus this is equivalent to W < V.

Lemma 5.7. Let W, V be two varieties such that $W \leq V$. Assume that W is

- *idempotent*;
- finitely presented;
- the finite set of equations defining W contains at most one function symbol per side.

Let $\mathbf{A} \in V$, $\varepsilon \in \mathrm{E}(\mathbf{A})$, $U := \varepsilon[A]$, $\beta \in \mathrm{Con}(\mathbf{A})$ and $S := a/\beta \cap U$ for $a \in U$. Then $W \leq V(\mathbf{A}||S)$.

Proof. By assumption W can be described by a finite set of equations of the form

(2)
$$f_i(x_{i_1}, \dots, x_{i_k}) \equiv f_i(x_{j_1}, \dots, x_{j_k})$$

where f_i and f_j are members of a finite set F of function symbols. Since $W \leq V$, there is an assignment $f \mapsto t$ extending to a clone homomorphism. We need to find a clone homomorphism $Clo(W) \to Clo(\mathbf{A}||S)$. Consider $f \mapsto \varphi := \varepsilon t_i^{\mathbf{A}}|S$. Firstly, it is well defined: if $(a_1, \ldots, a_n) \in S$, $(\varphi(a_1, \ldots, a_n), \varphi(a_1, \ldots, a_n)) \in \beta$ but

$$\varphi(a,\ldots,a) = \varepsilon t^{\mathbf{A}}(a,\ldots,a) = \varepsilon(a) \in U$$

so that $\varphi(a_1,\ldots,a_n)\in S$ and therefore $\varphi\in\operatorname{Pol}(\mathbf{A})|S$. Finally, using that $\mathsf{W}\leq\mathsf{V}$

$$\varphi_i(a_{i_1}, \dots, a_{i_h}) = \varepsilon t_i^{\mathbf{A}}(a_{i_1}, \dots, a_{i_h})$$

$$= \varepsilon t_j^{\mathbf{A}}(a_{j_1}, \dots, a_{j_k})$$

$$= \varphi_i(a_{j_1}, \dots, a_{j_k}).$$

Theorem 5.8. Let V be a locally finite variety. The following are equivalent:

- (1) $1 \notin \text{typ}\{V\};$
- (2) there is an idempotent variety W such that $W \leq V$ and $W \nleq Set$.

Corollary 5.9. Let **A** be a finite idempotent algebra. There is $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) = \mathbf{N}$ iff $\mathbf{1} \in typ\{HS(\mathbf{A})\}$.

Proof. If $\mathbf{1} \in \operatorname{typ}\{HS(\mathbf{A})\}$, then $\mathbf{1} \in \operatorname{typ}\{HSP(\mathbf{A})\}$. Since \mathbf{A} is finite, then, by Lemma 5.4 $HSP(\mathbf{A})$ is locally finite, and therefore, by Theorem 5.8, for every idempotent variety W, either $W \nleq HSP(\mathbf{A})$ or $W \leq \operatorname{Set}$. In particular, since \mathbf{A} is idempotent, $HSP(\mathbf{A}) \leq \operatorname{Set}$. This means that there is a clone homomorphism $\operatorname{Clo}(\mathbf{A}) \to \mathbf{N}$. Equivalently, every term operation of \mathbf{A} is a projection. Hence, $\operatorname{Clo}(\mathbf{A}) = \mathbf{N}$.

Conversely, let $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) = \mathbf{N}$; this means that \mathbf{B} is term equivalent to a set. Hence \mathbf{B} is polynomial equivalent to a set on which the trivial group acts. Then $\mathbf{1} \in typ\{\mathbf{B}\}$, and therefore $\mathbf{1} \in typ\{HS(\mathbf{A})\}$.

Theorem 5.10 ([2]). Let **A** be a finite idempotent algebra. Then $Clo(\mathbf{A})$ contains a weak near-unanimity operation iff $\mathbf{1} \notin typ\{HS(\mathbf{A})\}$.

References

- [1] Hobby, D., McKenzie, R. (1988). The structure of Finite Algebras. Contemporary Mathematics 76, American Mathematical Society.
- [2] Maróti, M., McKenzie, R. (2008). Existence theorems for weakly symmetric operations. Algebra Universalis 59, 463-489.
- [3] Pálfy, P. P. (1984). Unary polynomials in algebras I. Algebra Universalis 18, 262-273.