## integrator\_reset\_1.xbe

## **Attributes**

```
xbe name=integrator_reset_1 integrate=yes
+ limit_tstep=yes save_history=yes allow_ssw=no reset=yes
# y = k int (x dt)
# output is reset when an active edge at r is detected.
Jacobian: variable
input_vars: x r
output_vars: y
aux_vars:
iparms:
+ active_pos_edge=1
+ active_neg_edge=0
sparms:
rparms:
+ k=1
+ r_high=1
+ delt_min=0.1u
+ y_reset=0.0
+ r_prev=0
+ r_cross=0
stparms: y_st=0
igparms: y_ig=0
outparms: x y r
```

## **Description**

integrator\_reset\_1 gives  $y = \int k x dt$ . The parameter y\_st provides the start-up value for y in start-up simulation.

A reset facility is also provided. If active\_pos\_edge is 1, and a positive edge is encountered at r, the integrator output y is reset to y\_reset. Similarly, if active\_neg\_edge is 1, and a negative edge is encountered at r, the integrator output y is reset to y\_reset.

The parameter r\_high denotes the high level of r. A time point, delt\_min after the current time, is added after the active edge is detected.

 $\mathbf{r}$ ,  $\mathbf{x}$ ,  $\mathbf{y}$  are made available as output variables. Fig. 1 illustrates the working of this element, when a constant input x = 1 is appled.



Figure 1: Input x(t) and output y(t) for integrator\_reset\_1.xbe. The parameter values are k = 1e3, active\_pos\_edge = 1, active\_neg\_edge = 0, y\_reset = 0, r\_high = 1, delt\_min = 1u.