2D Circle Drawing

Circle Drawing

- Symmetry: Circle sections in adjacent octants within one quadrant are symmetric with respect to the 45° line dividing the two octants.
- Circle equation: $(x x_c)^2 + (y y_c)^2 = r^2$

$$x^{2} + y^{2} = r^{2}$$
, with $(x_{c}, y_{c}) = (0, 0)$

Parametric equation

$$x = x_c + r\cos\theta$$
$$y = y_c + r\sin\theta$$

Circle Drawing

8-way symmetry

```
void circleSym8 (int R)
      r2 = R * R;
      putPixel(0, R); putPixel(0, -R);
      putPixel(R, 0); putPixel(-R, 0);
      x = 1; y = round(sqrt(r2 - x*x));
      while (x < y) {
            putPixel(x, y); putPixel(x, -y);
            putPixel(-x, y); putPixel(-x, -y);
            putPixel(y, x); putPixel(y, -x);
            putPixel(-y, x); putPixel(-y, -x);
            x++
            y = round(sqrt(r2 - x*x));
```

Midpoint Algorithm

$$f_{circle}(x, y) = x^2 + y^2 - R^2$$

Midpoint Algorithm

$$f_{circle}(x, y) \begin{cases} <0, (x, y) \text{ is inside the circle boundary} \\ =0, (x, y) \text{ is on the circle boundary} \\ >0, (x, y) \text{ is outside the circle boundary} \end{cases}$$

Assuming (x_k, y_k) has been plotted, we need to determine whether the pixel at positions (x_k+1,y_k) or (x_k+1,y_k-1) is closer to the circle. We calculate p_k by

$$p_k = f_{circle}(x_k + 1, y_k - \frac{1}{2}) = (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - R^2$$
 (***)

- $p_k < 0$, the midpoint is inside the circle
 - $\Rightarrow y_k$ is closer to the circle boundary
- $p_k \ge 0$, the midpoint is on or outside the circle
 - $\Rightarrow y_{k-1}$ is selected

Midpoint Algorithm

- Reduce calculation of $p_k(x_k, y_k)$ in (***) by

$$p_{k+1} = f_{circle}(x_{k+1} + 1, y_{k+1} - \frac{1}{2}) = \left[(x_k + 1) + 1 \right]^2 + \left(y_{k+1} - \frac{1}{2} \right)^2 - R^2$$

$$\Rightarrow p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

and define an adaptive increment for each step

$$p_k < 0, p_{k+1} = p_k + 2(x_k + 1) + 1 \text{ by } y_{k+1} = y_k$$

 $p_k \ge 0, p_{k+1} = p_k + 2(x_k + 1) + 1 - 2y_{k+1} \text{ by } y_{k+1} = y_k - 1$

where the initial value of p_i is defined by

$$p_{0} = f_{circle}(x_{0} + 1, y_{0} - \frac{1}{2}) = f_{circle}(1, R - \frac{1}{2}) = 1 + \left(R - \frac{1}{2}\right)^{2} - R^{2}$$

$$\Rightarrow p_{0} = \frac{5}{4} - R \approx 1 - R$$

Example

Given radius of circle R=10 and the starting point (0,R) of the first octant, we will draw the first octant (until x=y).

The initial value $p_0 = 1-R = -9$.

k	p _k	(x_{k+1}, y_{k+1})	2x _{k+1}	2y _{k+1}
0	-9	(1,10)	2	20
1	-6	(2,10)	4	20
2	-1	(3,10)	6	20
3	6	(4,9)	8	18
4	-3	(5,9)	10	18
5	8	(6,8)	12	16
6	5	(7,7)	14	14

(Computer Graphic: C Version, 2nd Ed., D.Hearn, et.al., p. 101)

Questions

- How can we generalize the Midpoint concept to draw conics such as ellipse, parabola, and hyperbole?
- Can we apply the Midpoint concept to draw trigonometric functions such as sin(x) and cos(x)?

References

- [1] D. Hearn, M.P. Baker, Computer Graphic: C Version in 2nd Ed., Prentice Hall, 1996.
- [2] D.N.D.Tien, V.Q. Hoang, L. Phong, CG-Course Slide, HCM-University of Science.