Série N2 Exercice N°1

a3)
$$\beta \land \neg \beta \vdash \alpha$$
 (la Contradiction)

$$\alpha$$
, $\neg \alpha \vdash \beta$ (la contradiction)

On a : α et $\neg \alpha$ (CONTRADICTION)

$$\frac{\alpha}{\beta} = \frac{\alpha}{\beta} = \frac{\beta}{\beta}$$

$$\frac{\beta}{\beta} = \frac{\beta}{\beta} = \frac{\beta}{\beta}$$

$$\frac{\beta}{\beta} = \frac{\beta}{\beta} = \frac{\beta}$$

On suppose en plus : $\neg \beta$

Contradiction ⊥ sur la 1ere Ligne des hypothèses: On applique la règle (I ¬) on élimine ¬ β pour déduire ¬ ¬ β

On applique la règle (E—) pour déduire α

a3)
$$\beta \land \neg \beta \vdash \alpha$$
 (la Contradiction)

a4)
$$\alpha$$
, $\neg \alpha \vdash \beta$ (la Contradiction)

A partir d'une Contradiction \(\perp \)
On peut déduire n'importe quelle formule!

a1)
$$\alpha \vdash \neg \neg \alpha$$

On peut introduire un NON sur n'importe quelle formule

b1)
$$\alpha \vdash \alpha \lor \beta$$
 Etant donné qu'on est dans le système déductif de $\mathcal{L}p(\neg, \land)$, on doit remplacer le \lor par sa définition. Cela revient à montrer : $\alpha \vdash \neg(\neg \alpha \land \neg \beta)$ On suppose en plus : $\neg \alpha \land \neg \beta$ On applique la règle (E \land) pour déduire $\neg \alpha$ On applique la règle (E \land) pour déduire $\neg \alpha$ et déduire $\neg(\neg \alpha \land \neg \beta)$ et déduire $\neg(\neg \alpha \land \neg \beta)$

b2)
$$\beta \vdash \alpha \lor \beta$$
 Etant donné qu'on est dans le système déductif de $\mathcal{I}p(\neg, \land)$, on doit remplacer le \lor par sa définition. Cela revient à montrer :
$$\beta \vdash \neg(\neg \alpha \land \neg \beta)$$
 On suppose en plus :
$$\neg \alpha \land \neg \beta$$
 On applique la règle (E \land) pour déduire
$$\neg \beta$$
 On applique la règle (E \land) pour déduire
$$\neg \beta$$
 on applique la règle (I \neg) pour supprimer (
$$\neg \alpha \land \neg \beta$$
) et déduire
$$\neg(\neg \alpha \land \neg \beta)$$

c1)
$$\alpha \rightarrow \beta$$
, $\alpha \vdash \beta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$, on doit remplacer la \rightarrow par sa définition.

Cela revient à montrer : $\neg(\alpha \land \neg \beta)$, $\alpha \vdash \beta$

$$\frac{-(\alpha \wedge -\beta)}{\alpha \wedge -\beta} \xrightarrow{(1 \wedge)} \frac{\alpha}{\alpha \wedge -\beta}$$

$$\frac{--\beta}{\beta} \xrightarrow{(E-)} (E-)$$

On suppose en plus : $\neg \beta$

On applique la règle (I \land) pour déduire $\alpha \land \neg \beta$

Contradiction \bot :
On applique la règle (I \neg)
pour supprimer $\neg \beta$ et
déduire $\neg \neg \beta$

On applique la règle (E \neg) pour déduire β

C2)
$$\alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$$

Hypothèse : D1

Conclusion : D2

On demande de faire la déduction D2, en utilisant la déduction D1 comme une hypothèse (⇒ : Si Alors) :

C3)
$$\vdash \alpha \rightarrow \beta \Rightarrow \alpha \vdash \beta$$

Hypothèse : D2 Conclusion : D1

On demande de faire la déduction D1, en utilisant la déduction D2 comme une hypothèse (⇒ : Si Alors) :

On demande de faire la déduction D3, en utilisant les déductions D1 et D2 comme des hypothèses (⇒: Si Alors)

b3)
$$\alpha \vdash \delta$$
 et $\beta \vdash \delta \Rightarrow \alpha \lor \beta \vdash \delta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$,

on doit remplacer le v par sa définition.

Cela revient à :

$$\alpha \vdash \delta$$
 et $\beta \vdash \delta \Rightarrow \neg(\neg \alpha \land \neg \beta) \vdash \delta$

Hypothèse N°1: D1 Hypothèse N°2: D2 Conclusion : D3

On fait alors la déduction D3

Exercice N°1

b3)
$$\alpha \vdash \delta$$
 et $\beta \vdash \delta \Rightarrow \neg(\neg \alpha \land \neg \beta) \vdash \delta$

On suppose en plus :
$$\alpha$$
, β et \neg δ

On a :
$$\neg$$
 ($\neg \alpha \land \neg \beta$)

$$\frac{1}{\delta} + yp1 = \frac{1}{\delta} + yp2 = \frac{1}{\alpha} + \frac$$

 $\neg (\neg \alpha \land \neg \beta) \text{ Première Contradiction } \bot$ On applique la règle (I ¬) pour supprimer α et déduire $\neg \alpha$

Deuxième Contradiction \bot On applique la règle (I \lnot) pour supprimer β et déduire \lnot β

Troisième Contradiction \bot :
On applique la règle (I \lnot)
pour supprimer \lnot δ et déduire \lnot \lnot δ

d1)
$$\alpha$$
, $\alpha \leftrightarrow \beta \vdash \beta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathcal{P}}(\neg, \land)$,

on doit remplacer le \leftrightarrow par sa définition.

Cela revient à :

$$\alpha$$
 , $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha) \vdash \beta$

d1)
$$\alpha$$
, $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha) \vdash \beta$

On suppose: $\neg \beta$

On a: α et $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$
 \neg

$$\beta$$
, $\alpha \leftrightarrow \beta \vdash \alpha$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathcal{P}}(\neg, \land)$,

on doit remplacer le \leftrightarrow par sa définition.

Cela revient à :

$$\beta$$
, $\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg\alpha) \vdash \alpha$

d2)
$$\beta , \neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha) \vdash \alpha$$
On suppose: $\neg \alpha$

$$\beta \land \neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$$

$$\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$$

$$\neg(\beta \land \neg \alpha)$$

$$\neg(\beta \land \neg \alpha)$$

$$\neg(\beta \land \neg \alpha)$$
Contradiction \bot
On applique la règle (I \neg)
pour supprimer $\neg \alpha$
et déduire $\neg \neg \alpha$

$$\neg(i \neg)$$

On demande de faire la déduction D3, en utilisant les déductions D1 et D2 comme des hypothèses (⇒:SiAlors)

d3)
$$\alpha \vdash \beta \text{ et } \beta \vdash \alpha \Rightarrow \vdash \alpha \leftrightarrow \beta$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathcal{P}}(\neg, \land)$,

on doit remplacer le \leftrightarrow par sa définition.

Cela revient à :

D1

$$\alpha \vdash \beta \text{ et } \beta \vdash \alpha \Rightarrow \vdash \neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg\alpha)$$

Hypothèse N°1: Hypothèse N°2:

Conclusion: D3

On fait alors la déduction D3

D2

Système déductif (\neg, \land)

Première Contradiction \perp On applique la règle (I →) pour supprimer $\alpha \wedge \neg \beta$ et déduire \neg ($\alpha \land \neg \beta$)

Deuxième Contradiction \perp On applique la règle (I →) pour supprimer $\beta \land \neg \alpha$ et déduire \neg ($\beta \land \neg \alpha$)

$$\neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg\alpha)$$

Encore d'autres déductions Exercice 3

Rappel du Théorème de Simplification :

Les déductions où la conclusion est de la forme :

$$\alpha 1 \rightarrow \alpha 2$$

$$\delta 1, \delta 2, \dots, \delta n \vdash \alpha 1 \rightarrow \alpha 2$$

$$\delta 1$$
, $\delta 2$, ..., δn , $\alpha 1 \vdash \alpha 2$

(plus simple!)

Rappel du Théorème de Simplification :

$$\Gamma$$
={ δ 1, δ 2, ..., δ n }

$$\Gamma \vdash \alpha 1 \rightarrow \alpha 2$$

$$\Gamma, \alpha 1 \vdash \alpha 2$$

(plus simple!)

1. Montrer le théorème : $\vdash(\alpha \lor \beta) \rightarrow (\beta \lor \alpha)$

Rappel: Γ , $\alpha 1 \vdash \alpha 2 \Leftrightarrow \Gamma \vdash \alpha 1 \rightarrow \alpha 2$ (cas où Γ est φ)

Donc, cela revient à : $\alpha \lor \beta \vdash \beta \lor \alpha$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathcal{P}}(\neg, \land)$,

on doit remplacer les v par leur définition.

Cela revient à :

$$\neg(\neg \alpha \land \neg \beta) \vdash \neg(\neg \beta \land \neg \alpha)$$

2. Montrer le théorème :

$$\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \alpha \rightarrow \beta)$$

Rappel: Γ , $\alpha 1 \vdash \alpha 2 \Leftrightarrow \Gamma \vdash \alpha 1 \rightarrow \alpha 2$ (cas où Γ est φ)

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha \vdash (\neg \beta \rightarrow \alpha) \rightarrow \beta$$

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha$$
 , $\neg \beta \rightarrow \alpha \vdash \beta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$, on doit remplacer les \rightarrow par leur définition.

Cela revient à :

$$\neg \ (\neg \ \beta \land \neg \neg \ \alpha) \quad , \neg \ (\neg \ \beta \land \neg \ \alpha) \ \vdash \ \beta$$

3. Montrer le théorème :

$$\vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$$

Donc, cela revient à :

$$((\alpha \rightarrow \beta) \rightarrow \alpha) \vdash \alpha$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$,

on doit remplacer les \rightarrow par leur définition.

Cela revient à :

$$\neg (\neg (\alpha \land \neg \beta) \land \neg \alpha) \vdash \alpha$$

4. Montrer le théorème :

$$\vdash (\alpha \rightarrow (\beta \rightarrow \delta)) \rightarrow (\alpha \rightarrow \beta \rightarrow (\alpha \rightarrow \delta))$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta) \vdash (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \delta)$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta \vdash \alpha \rightarrow \delta$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta$, $\alpha \vdash \delta$

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta$, $\alpha \vdash \delta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$,

on doit remplacer les \rightarrow par leur définition.

Cela revient à :

$$\neg (\alpha \land \neg \neg (\beta \land \neg \delta)), \neg (\alpha \land \neg \beta), \alpha \vdash \delta$$

5. Montrer le théorème :

$$\vdash (\alpha \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \lor \beta$$

Donc, cela revient à :

Donc, cela revient à :

$$(\alpha \rightarrow \beta) \rightarrow \beta \vdash \alpha \lor \beta$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$,

remplaçons les → et le ∨ par leurs définitions

$$\neg(\neg(\alpha \land \neg \beta) \land \neg \beta) \vdash \neg(\neg\alpha \land \neg\beta)$$

$$\neg(\neg(\alpha \land \neg \beta) \land \neg \beta) \vdash \neg(\neg\alpha \land \neg \beta)$$
On suppose: $\alpha \land \neg \beta$ et $\neg\alpha \land \neg \beta$

$$\neg(\neg(\alpha \land \neg \beta) \land \neg \beta)$$

$$\neg(\neg(\alpha \land \neg \beta) \land \neg \beta)$$

$$\neg(\alpha \land \neg \beta)$$

$$\neg(\alpha \land \neg \beta)$$

$$\neg(\alpha \land \neg \beta) \land \neg \beta$$

6. Montrer le théorème :

$$\vdash ((\alpha \rightarrow \delta) \land (\beta \rightarrow \delta)) \rightarrow (\alpha \lor \beta \rightarrow \delta)$$

$$(\alpha \rightarrow \delta) \land (\beta \rightarrow \delta) \vdash ((\alpha \lor \beta) \rightarrow \delta)$$

Donc, cela revient à :

$$(\alpha \rightarrow \delta) \land (\beta \rightarrow \delta), \alpha \lor \beta \vdash \delta$$

$$(\alpha \rightarrow \delta) \land (\beta \rightarrow \delta)$$
, $\alpha \lor \beta \vdash \delta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \land)$,

remplaçons les \rightarrow et le \vee par leurs définitions

Cela revient à :

$$\neg (\alpha \land \neg \delta) \land \neg (\beta \land \neg \delta), \neg (\neg \alpha \land \neg \beta) \vdash \delta$$

$$\neg (\alpha \land \neg \delta) \land \neg (\beta \land \neg \delta), \neg (\neg \alpha \land \neg \beta) \vdash \delta$$

$$\neg (\alpha \land \neg \delta) \land \neg (\beta \land \neg \delta) \text{ et } \neg (\neg \alpha \land \neg \beta)$$

$$\neg (\alpha \land \neg \delta) \land \neg (\beta \land \neg \delta) \quad \neg (\neg \alpha \land \neg \beta) \xrightarrow{\alpha \quad \rightarrow \delta} \xrightarrow{\beta \quad \rightarrow \delta} \xrightarrow{(i \land) \quad \beta \land \neg \delta}$$

$$\neg (\alpha \land \neg \delta) \land \neg (\beta \land \neg \delta) \quad \neg (\alpha \land \neg \beta) \xrightarrow{(i \land) \quad 2 \text{fois}} \xrightarrow{\alpha \land \neg \delta} \xrightarrow{(i \land) \quad \beta \land \neg \delta} \xrightarrow{(i \land) \quad \beta \land \neg \delta} \xrightarrow{(i \land) \quad \neg \alpha \land \neg \beta} \xrightarrow{(i \land) \quad \neg \alpha} \xrightarrow{(i$$

7. Montrer la déduction:

$$\alpha \vee (\beta \rightarrow \delta) \vdash (\alpha \vee \beta) \rightarrow \alpha \vee \delta$$

Donc, cela revient à :

$$\alpha \vee (\beta \rightarrow \delta)$$
, $\alpha \vee \beta \vdash \alpha \vee \delta$

$$\alpha \vee (\beta \rightarrow \delta)$$
, $\alpha \vee \beta \vdash \alpha \vee \delta$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathcal{P}}(\neg, \land)$,

remplaçons les \rightarrow et le \vee par leurs définitions

Cela revient à :

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta)), \neg (\neg \alpha \land \neg \beta) \vdash \neg (\neg \alpha \land \neg \delta)$$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta)) , \neg (\neg \alpha \land \neg \beta) \vdash \neg (\neg \alpha \land \neg \delta)$$
On suppose: $\neg \alpha \land \neg \delta$ et $\neg \beta$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta)) = \neg (\neg \alpha \land \neg \beta)$$
On suppose: $\neg \alpha \land \neg \delta$ et $\neg \beta$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta)) = \neg (\neg \alpha \land \neg \beta)$$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta))$$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta))$$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta))$$

$$\neg (\neg \alpha \land \neg \neg (\beta \land \neg \delta))$$

$$\neg (\neg \alpha \land \neg \beta)$$

$$\neg (\neg \alpha \land \neg \beta)$$

Fin Exercices sur le système déductif (¬, ∧)

Autres Systèmes Déductifs

Logique des Propositions

Autres Systèmes déductifs

- -Système (\neg, \rightarrow)
 - -Système (¬, ∨)
 - Système (....)

Les Systèmes Déductifs de la Logique des Propositions

Système Déductif de *Ip*

{ Ensemble de règles associées aux connecteurs }

Les Systèmes Déductifs de la Logique des Propositions

{ Ensemble de règles associées aux connecteurs }

Les Systèmes Déductifs de la Logique des Propositions

Equivalences entre les différents systèmes déductifs (Exo2)

Le But est d'arriver à dire, que toute déduction (démonstration) faite dans un système déductif pourra être effectuée aussi dans un autre système déductif équivalent

Le système déductif (\neg, \land) défini par les règles : $\{(E \land), (I \land), (E \neg), (I \neg)\}$

Le système déductif (\neg, \rightarrow) défini par les règles : $\{(E \rightarrow), (I \rightarrow), (E \neg), (I \neg)\}$

Le système déductif (\neg, \lor) défini par les règles : $\{(E \lor), (I \lor), (E \neg), (I \neg)\}$

Système Déductif (\neg, \rightarrow)

Système Déductif

Système déductif (¬, ∧) Rappel des Règles

Le système déductif (¬, ∧)

Les règles du connecteur « ∧ » : (E ∧) et (I ∧)

1ere Forme:

$$\frac{\alpha \wedge \beta}{\alpha} \quad (E \wedge)$$

2eme Forme:

$$\frac{\alpha \wedge \beta}{\beta} \quad (E \wedge)$$

Règle d'Elimination du « ^ »

$$\alpha \wedge \beta \vdash \alpha$$

 $\alpha \wedge \beta \vdash \beta$

$$\frac{\alpha \qquad \beta}{\alpha \wedge \beta} \qquad (| \wedge)$$

Règle d'Introduction du « 🔨 »

$$\alpha$$
, $\beta \vdash \alpha \land \beta$

Système déductif (¬, ∧) Rappel des Règles

Le système déductif (\neg, \land)

• Les règles du connecteur « ¬ » : (E ¬) et (I ¬)

$$\frac{\neg \neg \alpha}{\alpha} \quad (E \neg)$$

Règle d'Elimination du « ¬ »

$$\neg \neg \alpha \vdash \alpha$$

Règle d'Introduction du « ¬ »

$$\alpha \vdash \bot \Rightarrow \vdash \neg \alpha$$

Autres Systèmes déductifs

Le système déductif (\neg, \rightarrow)

- Les règles du connecteur « ¬ » : (E¬) et (I¬)
- C'est les mêmes règles vues précédemment

$$\frac{\alpha \rightarrow \beta}{\beta}$$
 α (E \rightarrow)

Règle d'Elimination de la « \rightarrow »

$$lpha{
ightarrow}eta$$
 , $lpha$ $dash$ eta

Règle d'Introduction de la « \rightarrow »

$$\alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$$

Autres Systèmes déductifs

Le système déductif (\neg, \lor)

- Les règles du connecteur « ¬ » : (E¬) et (I¬)
- C'est les mêmes règles vues précédemment
- Les règles du connecteur « ∨ » : (E ∨) et (I ∨)

1ere Forme:

$$\frac{\alpha}{\alpha \vee \beta} \quad (I \vee)$$

2eme Forme:

$$\frac{\beta}{\alpha \vee \beta} \quad (| \vee \rangle)$$

Règle d'Introduction du « ∨ »

$$\alpha \vdash \alpha \lor \beta$$

 $\beta \vdash \alpha \lor \beta$

$$\begin{array}{c|c}
 & \beta \\
 & \beta \\
\hline
 & \delta \\
\hline
 & \delta
\end{array}$$

$$\begin{array}{c|c}
 & \alpha \vee \beta \\
\hline
 & \delta
\end{array}$$

$$\begin{array}{c|c}
 & (E \vee) \\
\hline
 & \delta
\end{array}$$

Règle d'Elimination du « 🗸 »

$$\alpha \vdash \delta$$
 et $\beta \vdash \delta$

$$\Rightarrow \alpha \vee \beta \vdash \delta$$
 53

Comment monter que deux (02) systèmes déductifs sont

équivalents?

Système Déductif N°1 défini par : { R1, R2, R3, R4, ... }

Système Déductif N°2 défini par : { R'1, R'2, R'3, R'4, ...}

Exprimable dans

Déduction dans le Système N°2 54

Comment monter que deux (02) systèmes déductifs sont

Montrons que:

Application du 1^{er} sens

Autres Systèmes déductifs

1. Les règles de \rightarrow dans le système (\neg, \land) :

$$(E\rightarrow):\alpha\rightarrow\beta$$
, $\alpha \vdash \beta$

$$(I\rightarrow): \alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$$

Exercice 1:

Démontrer les déductions suivantes dans le langage $L_P(\neg, \land)$:

- **a1)** α|— ¬¬α
- a2) $\vdash \neg (\alpha \land \neg \alpha)$
- a3) $\beta \land \neg \beta \vdash \alpha$
- c1) α , $\alpha \rightarrow \beta \mid -\beta$
- **d1)** $\alpha, \alpha \leftrightarrow \beta \mid -\beta \mid$

- a4) α , $\neg \alpha \mid ---- \beta$
- **b2)** β|— α∨β
- c2) $\alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$
- **d2)** β , $\alpha \leftrightarrow \beta \mid -\alpha$
- **b3)**($\alpha | -\delta$ et $\beta | -\delta$) $\Rightarrow \alpha \vee \beta | -\delta$
 - c3) $\vdash \alpha \rightarrow \beta \Rightarrow \alpha \vdash \beta$
 - d3) $\alpha \vdash \beta$ et $\beta \vdash \alpha \Rightarrow \vdash \alpha \leftrightarrow \beta$

Application du 2^{eme} sens

Autres Systèmes déductifs Exercice N°2

Enoncé de l'exercice N°2 : Montrer les déductions suivantes dans le Système déductif (\neg, \rightarrow)

•
$$\alpha \wedge \beta \vdash \alpha$$

•
$$\alpha \wedge \beta \vdash \beta$$

•
$$\alpha$$
 , $\beta \vdash \alpha \land \beta \Rightarrow Règle (I \land)$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Montrer : $\alpha \land \beta \vdash \alpha$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{p}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\alpha \rightarrow \neg \beta) \vdash \alpha$$

$$\neg(\alpha \to \neg \beta) \vdash \alpha$$
On suppose : $\neg \alpha$ et α

$$\neg(\alpha \to \neg \beta)$$

Montrer : $\alpha \wedge \beta \vdash \beta$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{p}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\alpha \rightarrow \neg \beta) \vdash \beta$$

$$\neg(\alpha \to \neg \beta) \vdash \beta$$
On suppose : α et $\neg \beta$

$$\neg(\alpha \to \neg \beta)$$

$$\alpha \to \neg \beta$$

$$\neg(\alpha \to \neg \beta)$$

$$\alpha \to \neg \beta$$

$$\neg(\alpha \to \neg \beta)$$

Montrer: $\alpha, \beta \vdash \alpha \land \beta$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{p}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\alpha$$
, $\beta \vdash \neg(\alpha \rightarrow \neg \beta)$

$$\begin{array}{c} \alpha \ , \ \beta \vdash \neg(\alpha \to \neg \ \beta) \\ \hline \text{On suppose} \ : \alpha \to \neg \beta \\ \hline \alpha \to \beta \qquad \alpha \\ \hline \neg \beta \qquad (E \to) \\ \hline \hline \neg(\alpha \to \neg \ \beta) \end{array}$$

CONCLUSION

```
Le système déductif (\neg, \land) défini par les règles : { (E \land), (I \land), (E \neg), (I \neg) }
```

Quelques déductions dans le système déductif (\neg, \rightarrow)

1. Montrer le théorème suivant dans le système déductif (\neg, \rightarrow) :

$$\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \alpha \rightarrow \beta)$$

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha \vdash (\neg \beta \rightarrow \alpha) \rightarrow \beta$$

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha$$
 , $\neg \beta \rightarrow \alpha \vdash \beta$

2. Montrer dans le système déductif (\neg, \rightarrow) :

$$\vdash (\alpha \rightarrow (\beta \rightarrow \delta)) \rightarrow (\alpha \rightarrow \beta \rightarrow (\alpha \rightarrow \delta))$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta) \vdash (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \delta)$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta \vdash \alpha \rightarrow \delta$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta$, $\alpha \vdash \delta$

$$\alpha \longrightarrow (\beta \longrightarrow \delta), \ \alpha \longrightarrow \beta, \ \alpha \vdash \delta$$
On a: $\alpha \longrightarrow (\beta \longrightarrow \delta), \ \alpha \longrightarrow \beta$ et α

$$\alpha \longrightarrow \alpha \longrightarrow \beta \qquad \alpha \longrightarrow (\beta \longrightarrow \delta)$$

$$\beta \longrightarrow \delta$$

$$\beta \longrightarrow \delta$$

$$\delta$$

3. Montrer dans le système déductif (\neg, \rightarrow)

$$P \rightarrow Q \rightarrow (R \rightarrow S), \neg S \lor \neg Q, P \rightarrow Q \vdash \neg R \lor \neg P$$

$$\alpha \lor \beta =_{def} \neg \alpha \rightarrow \beta$$

Donc, cela revient à :

$$P \rightarrow Q \rightarrow (R \rightarrow S), \neg \neg S \rightarrow \neg Q, P \rightarrow Q \vdash \neg \neg R \rightarrow \neg P$$

Système déductif (\neg, \rightarrow) Application 3

Montrons que:

Application du 1^{er} sens

Autres Systèmes déductifs

Les règles de \vee dans le système (\neg, \land) :

(IV) 1er:
$$\alpha \vdash \alpha \lor \beta$$
 -- (IV) 2eme: $\beta \vdash \alpha \lor \beta$

(E
$$\vee$$
): $\alpha \vdash \delta$ et $\beta \vdash \delta \Rightarrow \alpha \lor \beta \vdash \delta$

Exercice 1:

Démontrer les déductions suivantes dans le langage $L_P(\neg, \land)$:

- a2) $\vdash \neg (\alpha \land \neg \alpha)$
- a3) $\beta \land \neg \beta \models \alpha$ a4) α , $\neg \alpha \mid -\beta$ **b1)** α∣— α∨β **b2)** β|— α∨β

- **d1)** α , $\alpha \leftrightarrow \beta \vdash \beta$
- d2) β , $\alpha \leftrightarrow \beta \vdash \alpha$
- **b3)**($\alpha | -\delta$ et $\beta | -\delta$) $\Rightarrow \alpha \lor \beta | -\delta$
- c1) α , $\alpha \to \beta \vdash \beta$ c2) $\alpha \vdash \beta \Rightarrow \vdash \alpha \to \beta$ c3) $\vdash \alpha \to \beta \Rightarrow \alpha \vdash \beta$
 - d3) $\alpha \mid -\beta$ et $\beta \mid -\alpha \Rightarrow \mid -\alpha \leftrightarrow \beta$

Application du 2^{eme} sens

Autres Systèmes déductifs Exercice N°2

Enoncé de l'exercice N°2 : Montrer les déductions suivantes dans le Système déductif (¬, ∨)

•
$$\alpha \wedge \beta \vdash \alpha$$

•
$$\alpha \wedge \beta \vdash \beta$$

•
$$\alpha$$
 , $\beta \vdash \alpha \land \beta \implies Règle (I \land)$

$$\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$$

Montrer:
$$\alpha \wedge \beta \vdash \alpha$$

 $\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \lor)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\neg \alpha \lor \neg \beta) \vdash \alpha$$

$$\neg (\neg \alpha \lor \neg \beta) \vdash \alpha$$
On suppose : $\neg \alpha$

$$\neg (\neg \alpha \lor \neg \beta)$$

Montrer:
$$\alpha \wedge \beta \vdash \beta$$

 $\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \lor)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\neg \alpha \lor \neg \beta) \vdash \beta$$

$$\neg (\neg \alpha \lor \neg \beta) \vdash \beta$$
On suppose : ¬β
$$\neg (\neg \alpha \lor \neg \beta)$$

Montrer:
$$\alpha$$
, $\beta \vdash \alpha \land \beta$
 $\alpha \land \beta =_{def} \neg (\neg \alpha \lor \neg \beta)$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_p(\neg, \lor)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\alpha$$
, $\beta \vdash \neg(\neg \alpha \lor \neg \beta)$

CONCLUSION

```
Le système déductif (\neg, \land) défini par les règles : { (E \land), (I \land), (E \neg), (I \neg) }
```

Fin TD sur les systèmes déductifs