Exam 4A Chem 1121 Fall 2013

Name: KEY

SHORT RESPONSE. Show your work (where appropriate) to receive full credit. Use the conversion factor method for all conversion problems!

Q1. [15 pts.] Given the balanced chemical equation:

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$$

a) How many moles of H_2O can be formed when 1.40 mol of O_2 reacts?

b) How many grams of H₂O can be formed when 2.19 mol of O₂ reacts?

$$\frac{420}{2*H = 2*1.008}$$

$$1*0 = 1*16.00$$

$$18.02$$

c) How many **grams** of H_2O can be formed when 43.0 g of O_2 reacts?

d) If 20.1 g of H₂O are actually formed in part c, what is the **percent yield** of this reaction?

5+ 5- = dipole

water. Draw a picture	of the process as part of your answer.	HJH	
Nata-Nat a-Nata- H20	Nata Nata Nata Nata Nata	H Nat	H 7 H
Step 1. Name: Collision	Step 2. Aissociation	Step 3. Name: 50/ua	him
Q3. [10 pts.] Define the	he following solution terms: Smaller components in he s	solution	
b) aqueous	solvent is water		
	max. amount of solute is de		amount of solvent
d) concentrate	ed high ratio of soluti: solu	rent	
e) unsaturated	less solute dissolved than a	rahated solution	

Q2. [15 pts.] Explain the three steps that happen when an ionic compound such as NaCl dissolves in

Q4. [10 pts.] What's the molarity of a solution prepared by dissolving 12.4 g of NaF in water, until the total volume is 250. mL?

$$NaF$$
 $12.4g NaF \times \frac{1 mol NaF}{41.99g NaF} = 0.295 mol NaF$
 $1 \times Na = 22.99$
 $1 \times F = 19.00$
 $1 \times F = 19.00$

Q5. [10 pts.] How many moles of HCl are in 25.0 mL of 12.0 M HCl(aq)?

Q6. [7 pts.] What's the osmolarity of 1.5 M Na₂SO₄(aq)?

$$Na_2SO_+(aq) \longrightarrow 2Na^+(aq) + SO_+^2(aq)$$
1.5M
$$2 \times 1.5M$$

$$4.5M$$

Q7. [8 pts.] What is meant by the term: "colligative property"? Give one example.

Colligative Proporties are physical properties of solutions that are dependent upon total soluticoncentration, not solute identity!

ex: freezing-point depression

Q8. [10 pts.] What will happen if a red blood cell is placed in a hypertonic solution. Explain your answer.

Hypertonic = higher soluti conc = lower H2O conc!

Hypertonic solut has [soluti) ? \$ [H20]]

[H20] water flows out of RBC! \$ water conc is greater in cell, how out.

\$\text{CH20}\$ water flows out of RBC! \$ water conc is greater in cell, how out.

\$\text{CH20}\$ \text{CH20}\$ | \$\text{water}\$ water diffuses out of RBC

\$\text{QSMOSIS}\$ (since RBC has semi-permeable numbrane that prevent solute flow)

Q9. [7 pts.] How many grams of solute are there in 140 mL of a 3.4 % (w/v) solution?

140 mL \text{ } \frac{3.49}{100 mL solution} = \frac{14.89}{100 mL solution} \text{ solution} \text{ } \text{ (25.f.)}

Q10. [8 pts.] What are the four physical quantities that we typically measure when dealing with gases? What are their symbols?

i) pressure, whose symbol is volume, whose symbol is temperature, whose symbol is iii) temperature, whose symbol is iv) throles (chanical amount), whose symbol is n

BONUS: What is the relationship between mmHg and atm?

1 atm = 760 mm Hg

Useful Information

			Perio	odic T	able o	of the	Elem	ents									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	t																2
H																	He
1.01	2											13	14	15	16	17	4.00
.0.	4											5	6	1	8	9	10
Lì	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14,01	16.00	19,00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	SI	P	S	CI	Ar
22 99	24.31	3	540		6	22		9	10	11	12	26.98	28,09	30,97	32.D7	35 45	39 95
19	20	21	22	20	24	25	26	27	20	29	30	31	32	33	.34	35	36
K	Ca	Sc	Ti	l v	Ċr	Mn	Fe	Co	NE	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50,94	52.00	54.94	55.85	58.93	58 69	63.55	65.39	69,72	72.61	74 92160	78,96	79.90	83.60
37	3.6	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
65.47	B7.62	88.91	91,22	92.91	95.94	[38]	101.07	102 91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	5.6	71	72.	73	74	75	76	77	78	79	80	-61	82	63	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	l ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,91	137.33	174 97	178.49	180.95	183 84	156.21	190.23	192.22	195.08	196 97	200 59	204,38	207.20	208.99	[210]	[210]	[222]
97	88	103	104	105	106	107	108	109	11D	111	112	113	114	115	116	117	116
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	(261)	[262]	[266]	[264]	[265]	[268]	12691	[272]	[277]		[265]		{289}		(293)
	-														_	1	
		57	58	59	60	61	62	63	54	65	66	67	68	69	70		
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
	1	138.91	140.12	140 91	144-24	[145]	150 36	151,96	157.25	158 93	162.50	164.93	167.26	168.93	173.04	-	
		69	90	91	92	9.3	94	95	96	97	98	99	100	1D1	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232,04	23 (.04	238 03	[237]	(244)	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[289]	1	

Exam 4B Chem 1121 Fall 2013

Name:	KEY
	SE. Show your work (where appropriate) to receive full credit. Use the or method for all conversion problems!
Q1. [10 pts.] Def	ine the following solution terms:
a) solute	
b) aqueou	as U
c) saturat	Cyour
d) concer	ntrated
e) unsatu	rated
Q2. [8 pts.] What What are their sy	are the four physical quantities that we typically measure when dealing with gases? mbols?
i) —	, whose symbol is
ii)	, whose symbol is
iii)	, whose symbol is
iv)	, whose symbol is
	e Our

Q3. [10 pts.] How many moles of HNO₃ are in 35.0 mL of 15.0 M HNO₃(aq)?

35.0mL	16	15.0 mol HN03	= 0.525mol HNO3
	1000mL	16	(35.f.)

Q4. [7 pts.] What's the osmolarity of 1.5 M $K_2SO_4(aq)$?

See Exam LA

Q5. [8 pts.] What is meant by the term: "colligative property"? Give one example.

See exam u.A

Q6. [15 pts.] Explain the three steps that happen when an ionic compound such as NaCl dissolves in water. Draw a picture of the process as part of your answer.

See Exam Le A

Step 1. Name:

Name:

Step 3. Name:

Q7. [15 pts.] Given the balanced chemical equation:

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(1)$$

a) How many moles of CO_2 can be formed when 1.40 mol of O_2 reacts?

1.40 moles of
$$CO_2$$
 can be formed when 1.40 mol of O_2 reacts?
1.40 mol O_2 $\frac{4 \text{ mol } O_2}{7 \text{ mol } O_2} = 0.800 \text{ mol } CO_2$ (35.f.)

b) How many grams of CO₂ can be formed when 2.19 mol of O₂ reacts?

$$1 \times C = 1 \times 12.01$$
 $2 \times 0 = 2 \times 16.00$
 $4 \cdot 4.01$

c) How many grams of CO_2 can be formed when 43.0 g of O_2 reacts?

$$\frac{0_2}{2 \times 0 = 2 \times 16.00}$$
32.00

$$\frac{2 \times 0 = 2 \times 16.00}{32.00} \qquad \frac{43.0 g_{02}}{32.00} \qquad \frac{1 \text{mol } 0_2}{32.00 g_{02}} \qquad \frac{4 \text{mol } 0_2}{4 \text{mol } 0_2} \qquad \frac{44.0 \lg (0_2)}{4 \text{mol } 0_2} \qquad = 33.8 g_{02} \qquad (35.f.)$$

d) If 30.1 g of CO₂ are actually formed in part c, what is the percent yield of this reaction?

Q8. [10 pts.] What's the molarity of a solution prepared by dissolving 12.4 g of KF in water, until the total volume is 250. mL?

Q9. [10 pts.] What will happen if a red blood cell is placed in a hypotonic solution. Explain your answer. Hypotonic = Lower solution = Higher Hwo conc!

Q10. [7 pts.] How many grams of solute are there in 140 mL of a 2.8 % (w/v) solution?

BONUS: What is the relationship between mmHg and atm?

Useful Information

			Perio	odic T	able	of the	Elem	ents									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	7																18
1																	He
H	-											13	14	15	16	17	4.00
3	4											5	6	17	8	9	10
Ĺi	Be											В	Č	N	ŏ	F	Ne
6 94	901											10.81	12.01	14.D1	16 00	19.00	20,18
11	12											13	14	15	16	17	18
												AI	Si	Р	S	CI	Ar
Na 22 99	Mg 24.31	- 25	127	5	6	7	ı	0	40			26.98	28.09	30.97	32 D7	35.45	39.95
19	29.31	21	22	20	24	25	26	27	10	29	12	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Ĉ۲	Mn	Fe	Co	Ni.	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	40 08	44.96		50 94	52.00	54.94	55.85	58.93	58.69	63:55	65 39	69.72	72.61	74,92160	78.96	79.90	93.BD
39.10 37	30	39	47.87	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		Y				Tc	Ru	Rh	Pd		Cd	In	Sn	Sb	Te	ï	Xe
Rb	Sr		Zr	Nb	Mo					Ag 107.67	112.41	114.82	118.71	121.76	127.60	126.90	131.29
85.47	87,62 56	88.91	91.22	92,91	95.94	[98]	101.07 76	102.91	106.42 78	79	80	81	82	83	84	85	86
55			72	73	l	75		77				TI	Pb	Bi	Po	At	Rn
Cs	Ba*	Lu	Hf	Та	W	Re	Os	lr Tunne	Pt	Au	Hg 200 59	204.38	207.20	208,98	[210]	[][210]	[222]
132.91	137.33	174 97	178.49	180.95	183.84	156.21	190.23	192.22	195.08	196.97	112	_	114	115	116	117	118
87	88	103	104	105	106	107	108	109	110	111	112	113	110	115	116	110	110
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt	51.17		11077		In orth		toost		(293)
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	(268)	[269]	[272]	[277]		[265]		[289]		(21)
	T	57	5-8	59	60	61	62	63	64	6 5	56	67	68	69	70	Î	
		La	Ce	Pr	Nd	Pm	Sm	Еu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		136,91	140.12	140,91	144.24	[145]	150.36	151,96	157,25	159.93	162.50	164.93	167,26	166.93	173.04		
	ŀ	89	90	91	92	93	94	95	96	97	98	99	100	101	102	t	
	**	Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
	1	[227]	232.04	201.04	238.03	[237]	[244]	[243]	12471	[247]	[251]	[252]	[257]	[258]	[259]		
	1	ler) l	232,04	201.09	23000	[231]	12.14)	(210)	[[-17]	(=11)	(=27)	(= 54)	, , , , ,	1		1	

