Homework 9 CSCI4100

Han Hai Rin:661534083 haih2@rpi.edu

November 4th 2018

1. 8th order Feature Transform

Use the 8th order Legendre polynomial feature transform to compute Z. What are the dimensions of Z?

Solution:

After 8th order transform on my two features x1 x2, dimensions on input become 45, and since weed pick 300 random data Z is 45×300

2. **Overfitting** Give a plot of the decision boundary for the resulting weights without any regularization $(\lambda = 0)$. Do you think there is overfitting or underfitting?

 E_{test} here is 0.108 As we can see, overfitting occurs since unnecessary extra boundaries appear. Some data are miscalssified due to those extra boundaries.

3. **Regularization**Give a plot of the decision boundary for the resulting weights with $\lambda = 2$. Do you think there is overfitting or underfitting?

 E_{test} here is 0.0896 As we can see extra boundaries due to overfitting disappear, it is neither overfitting nor underfitting. E_{test} has also improved significantly.

4. Cross Validation.

X axis is the value of lambda while y axis is the error

As we can see, at lower value lambda, both Ecv and Etest has high error, the error converges to low at $\lambda = 1.35$.

5. Pick λ

Use the cross validation error to pick the best value of λ , call it λ^* . Give a plot of the decision boundary for the weights. Use the optimal lambda $\lambda^* = 1.35$

$$E_{test} = 0.083$$

6. Estimate Eout

$$\begin{split} E_{out} < E_{test} + \sqrt{\frac{1}{2N} ln(\frac{4(2N)^{dvc} + 1}{\epsilon})} \\ \text{N=9298-300=8998 use epsilon=0.05}, \\ E_{out} < 0.083 + 0.014 = 0.097 \end{split}$$

7. Is Ecv biased?

No, when each cross validation occurs, the validation point is independent of the training set, therefore Ecv is unbiased.

8. **Data Snooping.** Is E_{test} unbiased? How can we fixed this?

Data snooping occurred, so E_{test} is biased. When we picked lambda, we used data that are used to calculate Etest to find a smallest Etest, therefore it becomes biased. To avoid this, do not use Etest to pick hypothesis, instead, only consider Ein.