1 t- 分 布 和 F- 分 布 下 列 性 质 错误

$$A. \ t_{1-\alpha}(n) = -t_{\alpha}(n)$$

A.
$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$
 B.若 F~F(n_1,n_2),则 $\frac{1}{F}$ ~ $F(n_2,n_1)$

C.
$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_1, n_2)}$$

D.
$$F(n_1,n_2)>0$$

3.
$$(X_1, X_2, \cdots, X_n)$$

$$\mathcal{N}(\mu, \sigma^2)$$

$$\overline{X}$$

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

$$S^{2} = \frac{1}{n} \sum_{j=1}^{n} (X_{j} - \mu)^{2} \qquad \frac{\overline{X} - \mu}{S} \sqrt{n} \qquad \dots$$

A
$$t(n-1);$$
 B $t(n);$ C $\chi^{2}(n-1);$ D $\chi^{2}(n).$

$$D \chi^2(n)$$

4.
$$(X_1, X_2, \dots, X_n)$$
 $N(\mu, \sigma^2)$ μ σ^2

$$N(\mu, \sigma^2)$$

$$\mathbf{A} = \frac{1}{n} \sum_{i} (X_i - \mu)^2;$$

B
$$\frac{1}{n-1}\sum_{i}(X_{i}-\overline{\xi})^{2}$$
;

$$C \cdot \frac{1}{n-1} \sum_{i} (X_i - \mu)^2$$

D
$$\cdot \frac{1}{n} \sum (X_i - \overline{\xi})^2$$
.

5.
$$\hat{\mu}_1 = \frac{1}{3}\xi_1 + \frac{2}{3}\xi_2, \ \hat{\mu}_2 = \frac{1}{2}\xi_1 + \frac{1}{2}\xi_2,$$

A
$$\hat{\mu}_1$$
 $\hat{\mu}_2$ μ

$$B \quad .\, \hat{\mu}_1 \quad \hat{\mu}_2 \qquad ;$$

C . D
$$\hat{\mu}_1 > D \hat{\mu}_2$$
;

D
$$.\hat{\mu}_2 \hat{\mu}_1$$
 .

6
$$(X_1, X_2, \dots, X_n)$$
 λ Possion

$$\lambda$$
 Possion

$$\lambda^2$$

$$\mathbf{B} \quad \overline{\chi}^2$$

A
$$\overline{X}$$
 B \overline{X}^2 C $\overline{X}^2 - \frac{1}{n}\overline{X}$. D $\overline{X}^2 - \overline{X}$.

$$\mathbf{D} \quad \overline{X}^2 - \overline{X}.$$

7.

A 95

90

В D

C

 $H_0: \mu \ge \mu_0, H_1: \mu < \mu_0$

 μ_0 ()

A

В

C

I II

Ι

D

II

$$9 p \sigma^2 Q_e = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

____·

A
$$\frac{Q_e}{n-p-1}$$
; B $\frac{Q_e}{n-p}$; C $\frac{Q_e}{n-p+1}$; D $\frac{Q_e}{n}$.

$$L_n(3^m) \qquad m = \underline{\hspace{1cm}}$$

$$\Phi(1.96) = 0.975, \ \Phi(2.12) = 0.983, \ t_{0.025}(35) = 2.03, \ t_{0.025}(140) = 1.98, \chi^2_{0.1}(1) = 2.71,$$

$$\chi^{2}_{0.05}(1) = 3.84, \chi^{2}_{0.1}(2) = 4.61, \chi^{2}_{0.05}(2) = 5.99, F_{0.05}(1, 2) = 18.51.$$

1.
$$X N(\mu, \sigma^2)$$
 36

$$\bar{x} = 3.5, \, s^2 = 4.$$

$$1 \quad \sigma^2 \qquad \mu \qquad 0.95$$

$$\sigma^2 = 8 \quad \mu \qquad 1-\alpha \qquad (2.5, 4.5) \qquad \alpha \qquad .$$

$$3 \mu=3 \sigma$$
 .

:
$$1 \quad (\overline{X} \pm t_{\frac{2}{\alpha}} \frac{s}{\sqrt{n}}) = (3.5 \pm 2.03 * \frac{2}{6}) = (2.83, 4.18)$$

2
$$\overline{X} \sim N(\mu, \frac{8}{n})$$
, $p = \Phi(\frac{3}{\sqrt{2}}) - \Phi(-\frac{3}{\sqrt{2}}) = 2\Phi(2.12) - 1 = 0.966$, $\alpha = 0.034$

$$3 \quad \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - 3)^2}$$

2.

•

1

2

3

4 2 .

5 2 p .

20.5	19.8	19.7	20.4	20.1	20.0	19.0	19.9	20.1	20.0
20.7	19.8	19.5	20.8	20.4	19.6	20.2	20.0	19.8	20.2

2

	t						
t	df	p			ç	95%	
-0.783	18	0.444	-0.150	0.192	-0.553	0.253	

3.

527

.

3

25	40	47	46
69	51	74	57

	36	26	19	37
		_ ~		0 /

1

4

f_{ij}	25	40	47	46	69	51	74	57	36	26	19	37
e _{ij}		35	42	42	62	56	67	67	29		31	31
$(f_{ij}$ - $e_{ij})^2/e_{ij}$		0.71	0.60	0.38	0.79	0.45	0.73	1.49	1.69		4.65	1.16

1 1

2

3 4

4

4.

5 α =0.05

16

lpha=0.05 .

. 5-

2 SSE MSE

3 6 LSD .

	SS	df	MS	F	p
	5866.083				0.000
	9265.306				0.000
*	4962.917				0.073
	26169.306				

6

1	2	3	4	
36	36	36	36	144
75.2	70.8	55.3	60.4	60.2

5

	SS	df	MS	F	p
	5866.083	3	1955.361	25.75	0.000
	9265.306	15	617.6871	8.12	0.000
*	4962.917	45	110.287	1.45	0.073
	11941.08	80	75.9375		
	26169.306	143			

2 SSE=16904 df=125 MSE=135.232

3 LSD=
$$t_{a/2}(n-k)\sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_j})}$$

= $1.977 \times \sqrt{135.232 \times (\frac{1}{36} + \frac{1}{36})} = 5.4189$

5. 7 Y X₁ X₂ 7

Multiple R	R ²	\mathbb{R}^2	
0.9147	0.8366	0.7899	60.7063

df	SS	MS	F	P-value
2	132093.199	66046.600	17.922	0.002
7	25796.801	3685.257		
9	157890.000			

Coefficients	t Stat	P-value

	-115.288	110.568	-1.043	0.332
X_1	0.578	0.503	1.149	0.288
X_2	3.935	0.699	5.628	0.001

(1)

 \mathbb{R}^2 (2) (3) \mathbb{R}^2 7

 $X_1 \quad X_2 \quad Y$ $X_1 \quad X_2 \qquad Y$ (4) 7

L₈(2⁷) 6. A*B 7 .

8

1 2 y

3

 α =0.05 4

8

	A	В	A*B	С			D	y_i
	1	2	3	4	5	6	7	
1	1	1	1	1	1	1	1	115
2	1	1	1	2	2	2	2	160
3	1	2	2	1	1	2	2	145
4	1	2	2	2	2	1	1	155
5	2	1	2	1	2	1	2	140
6	2	1	2	2	1	2	1	155
7	2	2	1	1	2	2	1	100
8	2	2	1	2	1	1	2	125
S1		570	500	500	540	535	525	
S2		525	595	595	555	560	570	
R		45	95	95	15	25	45	
SS		253.1	1128.1	1128.1	28.1	78.1	253.1	