

Series temporelles - TP5

M1 Mathématiques et finance 2019–2020 Responsable : Adrien Hardy, email : adrien.hardy@univ-lille.fr

Instructions: À votre rythme. Vous pouvez m'envoyer un compte-rendu au format .html et y rediger les questions que vous vous posez si besoin. On organisera éventuellement une session Discord pour y répondre tous ensemble.

Exercice 1 (Simuler des GARCH)

- (1) **Théorie**: Rappeler la définition d'un processus GARCH(p,q). Que veut dire le "CH" de GARCH? Est-ce que sa variance dépend de t? Est-ce que c'est un processus stationnaire? A quoi ressemble l'ACF d'un GARCH(p,q)? Est-ce un bruit blanc fort?
- (2) Simuler "à la main" un modèle ARCH(1) : Créer une fonction qui, après avoir choisi des paramètres ω , α , n renvoie une simulation de longueur n d'une série temporelle qui satisfait les équations ARCH(1) de paramètres ω , α .
 - Indications: On pourra prendre $(\varepsilon_t) \sim BB(0,1)$ gaussien et procéder pour $\sigma_t \ (= \sqrt{\sigma_t^2})$ comme on l'a fait pour simuler le modèle AR(1) dans le TP1 Exercice 3 (d) (sans nécessairement étudier les garanties théoriques).
- (3) Etudier une de vos simulation $(x_t)_{t=1...1000}$ de taille n=1000: Donner le graphe et l'ACF de (x_t) , puis le graphe, l'ACF et la PACF de (x_t^2) . Qu'en pensez-vous? Pouvez-vous modéliser la série (x_t^2) avec un ARMA(p,q)? Faire une étude des résidus de cette modélisation. Donner une prédiction pour la volatilité σ_{1001} .
- (4) Mêmes questions (2) et (3) avec un modèle GARCH(p,q) général ne traiter cette question que si vous avez le temps.

Exercice 2 (INTC)

On considère la série INTC.csv des log-rendements mensuels des actions d'INTEL, de janvier 1973 à décembre 2003, disponible sur ma page web.

- (1) Importer ce jeu de données dans Python et étudier cette série : graphe, ACF, PACF, test de blancheur. Que conclure ?
- (2) Même question pour la série au carré, INTC².
- (3) Au vu des résultat des questions (1) et (2), on aimerait proposer un modèle GARCH pour modèliser INTC, c'est-à-dire un modèle ARMA¹ pour INTC². Pourquoi un modèle ARCH(1) ne semble pas convenir ? A l'aide des critères AIC et BIC quel modèle choisiriez-vous entre un ARCH(p) avec $p \ge 1$ et un ARCH(1,1) ? Etudier les résidus de la modélisation.
- (4) Proposez une prédiction $\hat{\sigma}_{n+1}$ de la volatilité σ_{n+1} connaissant n mesures x_1, \ldots, x_n d'INTC.

¹Où on autorise cette fois une constante additive.