CHAPTER 0 Course Introduction

General Information

- Course name: Database Management Systems
- Course name (in Vietnamese): Hệ quản trị CSDL
- ☐ Course ID: CSC12003
- Number of credits: 4 (3 for theory and 1 for practice)
- Lecturer:
 - □ Phạm Thị Bạch Huệ (ptbhue@fit.hcmus.edu.vn)
- □ TA & Lab:
 - Lương Vĩ Minh (lvminh@fit.hcmus.edu.vn)

Outline

- Course goals
- Course outcomes
- Contents
- Assessments
- Resources
- Regulations & Politics

Course goals

- Knowledge:
 - Describe the general architecture of a DBMS
 - Operate on a relational database consistently using transactions concepts and theory
 - Use concurrency control techniques provided by DBMSs
 - Describe the techniques used by DBMSs for database recovery from failures
 - Apply security mechanisms provided by DBMSs in real-world applications
 - Comprehend the way data is stored or retrieved on storage devices
 - Comprehend the query processing algorithms and query optimization methods
 - Apply functions provided by SQL Server together with a programming language in real-world information systems

Course goals (cont)

- ☐ Skills:
 - Work independently or in group to apply principles of RDBMSs
 - Perform the reading comprehension skills, present and write simple reports in English
 - ☐ Use the functions of a RDBMS, analysis and design to solve real-world information systems

Course Outcomes

СО	Description		
G1.1	Demonstrate independent work on quizzes and homework		
G1.2	Demonstrate working in pair or group on the project		
G2.1	Conduct textbook reading on different chapters and summarize the		
	key features		
G2.2	Show the understanding on a given topic of a DBMS and its		
	application via report writing		
G3.1	Apply principles of a DBMS to analyze an information system		
G3.2	Apply functions provided by a DBMS to design an information		
	system		
G4.1	Describe the roles and relationships between components of a		
	DBMS		

Course outcomes (cont.)

СО	Description
G5.1	Describe the desirable properties of transactions
G5.2	Operate on database consistently using transactions
G6.1	Describe concurrency control techniques used in RDBMSs
G6.2	Apply some concurrency control technique in real-world information systems
G7.1	Describe database recovery techniques used in RDBMSs
G7.2	Explain the state of databases after recovery from failures

Course outcomes (cont.)

СО	Description		
G8.1	Show the understanding on security mechanisms used in DBMSs		
G8.2	Apply security mechanisms to enforce the security policies in real-world		
	information systems		
G9.1	Show understanding on the way to store and retrieve data on storage		
	devices		
G9.2	Apply indexing structures for files properly and effectively in real-world		
	information systems		
G10.1	Show understanding on typical steps when processing (high-level)		
	queries and algorithms used in query processing		
G10.2	Describe query optimization techniques (using heuristic rules or		
	selectivity and cost estimates)		

Course outcomes (cont.)

СО	Description		
G11.1	Declare a database on a typical relational DBMS		
G11.2	Develop real-world applications on implemented databases using functions of the DBMSs		

Contents

- ☐ Chapter 0 Course Introduction
- Chapter 1 Introduction to DBMSs
- Chapter 2 Transaction processing and Concurrency control techniques
- Chapter 3 Database recovery techniques Database security and Authorization
- Chapter 4 Data storage and query processing
- Chapter 5 Algorithms for query processing and Optimization

Assessments

	Description	Ratio
Lecture	Final exam – Writing Open book, 90 minutes	50%
In-class exercises and Homework	3 members in each group Writing report	20%
Lab	Many mini-tests, Project, homework	30%

Textbooks

Resources

- 1. Elmasri & Navathe, *Fundamentals of database systems*, Pearson Education Inc., 7th edition, 2017.
- 2. H. Garcia-Molina, J. D. Ullman, J. Widom, *Database systems: The complete book*, Prentice Hall, 2004.

Materials

Shared drive

Others

- Microsoft SQL Server (or Oracle, DB2)
- Java, .NET

Regulations & Politics

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams.
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.