整数规划问题建模实例

案例1: California 制造公司建厂问题

California制造公司在加州多地有工厂和仓库,但在Los Angeles和San Francisco还没有;为扩展业务,选择在两地建新厂,并考虑在建厂所在地建配套仓库(也可以不建配套仓库);但若两地都建厂,则最多只能在以上两地选一个地点建仓库。

问题:为给公司带来最大的长期效益,是否建厂?建在哪里?是否建仓库?建在哪里?

相 关 信 息

		决策变量	利润值	所需资金
决策序号	Yes/No	(0-1)	(百万\$)	(百万\$)
1	在Los Angeles建厂?	x_1	8	6
2	在San Francisco建厂?	x_2	5	3
3	在Los Angeles建仓库?	x_3	6	5
4	在San Francisco建仓库?	x_4	4	2

可用资金: \$10 million

Max
$$NPV = 8x_1 + 5x_2 + 6x_3 + 4x_4$$

s.t.

资金:

最多一个仓库:

仓库依工厂而建:

0-1变量:

$$6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$x_3 + x_4 \le 1$$

$$x_3 \leq x_1$$

$$x_4 \le x_2$$

 x_1, x_2, x_3, x_4 均为0或1

$$x_1 = 1$$
: 若在L.A.建厂; 否则 $x_1 = 0$;

$$x_2 = 1$$
: 若在S.F. 建厂; 否则 $x_2 = 0$;

$$x_3 = 1$$
: 若在L.A.建仓库; 否则 $x_3 = 0$;

$$x_4 = 1$$
: 若在S.F.建仓库; 否则 $x_4 = 0$ 。

案例2: W门窗公司生产计划问题

- @W玻璃制品公司开发以下两种新产品:
 - ✓ 8英尺铝框玻璃门
 - ✓ 4英尺×6英尺的双把木框窗
- @公司有以下三个工厂:
 - ▶ 工厂1生产铝框和五金件
 - ▶ 工厂2生产木框
 - ▶ 工厂3生产玻璃,并组装窗与门
- @决策变量为门、窗生产数量(整数)

成本与利润信息

工厂 -	单位产品生产	每周可用时间	
<u></u> /	门 (Doors)	窗(Windows)	(小时)
1	1小时/门框	4 3 2	4
2	- M/L	2小时/窗框	12
3	3小时/门	2小时/窗	18
单位利润 (美元)	300	500	

线性规划模型:

- 决策变量:
 - D: 门的生产数量; W: 窗的生产数量
- 目标函数: max Profit = 300D + 500W
- 约束条件: s.t.

エ
$$\Gamma$$
1 1D ≤ 4
エ Γ 2 2W ≤ 12
エ Γ 3 3D + 2W ≤ 18

■ 非负性约束: D, W ≥ 0

@新情景:

对于每一种产品,在开始生产之前都需要为调试生产设备支出一次性的生产准备成本。

- ✓门的生产准备成本为 \$700
- ✓窗的生产准备成本为 \$1300

问题: 两种产品各生产多少可获利 新考虑

@新的利润函数:

$$P = egin{cases} 300D - 700 & ext{只生产门: } D \ge 1 \ 500W - 1300 & ext{只生产窗: } W \ge 1 \ 300D + 500W - 700 - 1300 & ext{都生产: } D \ge 1, W \ge 1 \end{cases}$$

@引入"辅助0-1变量":

分段线性函数

$$y_1 =$$
$$\begin{cases} 1 & \text{如果生产门} \\ 0 & \text{若不生产门} \end{cases} \quad y_2 = \begin{cases} 1 & \text{如果生产窗} \\ 0 & \text{若不生产窗} \end{cases}$$

@新问题的数学规划模型

$$\mathbf{Max} \quad P = 300D + 500W - 700y_1 - 1300y_2$$

s.t.

原约束:

工厂 1:

 $D \leq 4$

工厂 2:

 $2W \le 12$

工厂 3:

 $3D + 2W \le 18$

生产种类约束:

门:

 $D \leq 9999y_1$

窗:

 $W \le 9999y_2$

 $D \ge 0$, $W \ge 0$ 且为整数, y_1 与 y_2 为0-1变量

案例3: W门窗公司新厂运作决策

- @ W公司生产门和窗,已经有以下三个工厂:
 - ▶ 工厂1生产铝框和五金件
 - ▶ 工厂2生产木框
 - > 工厂3生产玻璃,并组装窗与门

公司最近新建了工厂4,也可生产这两种产品;但 为管理方便,管理层决定在工厂3或4中只选一个来运 行——"二选一"约束。

问题: 选哪些厂生产, 生产多少?

生产数据

工厂	单位产品生产	时间(小时)	可用生产时间(小
	门	窗	时)
1	1	0	4
2	0	2	12
3	3	2	18
4	332	4 3 %	28
单位利润	\$300	\$500	

若不考虑"二选一",则产能约束为:

考虑"二选一"约束的表示

定义辅助0-1变量,

$$y_3 = \begin{cases} 1 & 选择工厂3 \\ 0 & 不选工厂3 \end{cases}$$
 $y_4 = \begin{cases} 1 & 选择工厂4 \\ 0 & 不选工厂4 \end{cases}$

$$\bot \Box \Box 3$$
: $3D + 2W \le 18 \rightarrow 3D + 2W \le 18 + 999(1-y_3)$

$$\bot \Box \Box 4$$
: $2D + 4W \le 28 \rightarrow 2D + 4W \le 28 + 999(1-y_4)$

二选一:
$$y_3 + y_4 = 1$$

选一个充分大的 正数即可,不一 定必须是9999。

数学模型

$$Max P = 300D + 500W$$

s.t.

原约束:

工厂1:

工厂 2:

二选一约束:

工厂 3:

工厂 4:

 \mathbf{D}

 ≤ 4

 $2W \le 12$

约束作用机理:

- (1) 如果选中工厂3,那么 y_3 = 1, y_4 = 0。于是工厂 4 的约束右端项充分大,这个约束实际上就不起作用,而只有工厂3的约束起作用,这就相当于不考虑工厂 4。
- (2) 如果选中工厂4,那么 y_3 和 y_4 的0-1机制将使得工厂4的约束发挥作用而工厂3实际上就被淘汰了。

$$3D + 2W \le 18 + 999(1 - y_3)$$

$$2D + 4W \le 28 + 999(1 - y_4)$$

$$y_3 + y_4 = 1$$

$$D \ge 0, W \ge 0; y_3 与 y_4 为 0-1 变量$$

案例4: 西南航空公司人员调度问题

有 4 队机组,从中选择 X 队 ($X \le 4$),分别执行 X 条飞行路线,这些路线要完全覆盖 11 个航班*。

			飞行	方案	 (可行	的航	班次月	字与"	 飞行路	3线)		
航班	1	2	3	4	5	6	7	8	9	10	11	12
1. SFO-LAX	1			1			1			1		
2. SFO-DEN		1			1			1			1	
3. SFO-SEA			1			1			1		2	1
4. LAX-ORD				2		3	2		(3)	(2)		3
5. LAX-SFO	2		,	8	5	3				(E)	(E)	
6. ORD-DEN			3	3	(3)				4			
7. ORD–SEA					9		3/	3		(3)	(3)	4
8. DEN-SFO		2		4	4			()	(5)			
9. DEN-ORD					2			2			2	
10. SEA-SFO		-96	2				4	4				(5)
11. SEA-LAX	DA	, 18				2			2	4	4	2

飞行方案/路线: SFO-DEN-ORD-SEA-SFO

- ■12个飞行方案对应12条可选路线,一个机组负责执飞 一条路线,所以选择的总路线不会超过4条:
- ■各机组人员工资水平有差异,因此执飞不同路线的成本也不同。

机组成本		飞行方案(可行的航班次序与飞行路线)												
(\$1000)	1	2	3	4	5	06	7	8	9	10	11	12		
机组1	2	3	4	6	7	5	7	8	9	9	8	9		
机组2	3	6	1	5	6	7	2	3	8	5	9	2		
机组3	2	5	4	6	2	5	7	4	9	2	8	8		
机组4	3	51	1	5	6	1	2	1	1	5	1	5		

■<u>问题</u>:

每个飞行方案固定由一队机组人员执行。从12个可能的飞行路线中选出 X 个飞行方案,则需要 X 队机组人员。要求使这 X个方案能完成所有航班,且机组人员的总成本最小。

❖ 这 X 个方案能完成所有航班, 意味着这 X 个路线 覆盖了所有航班, 因此这类问题也称为"<u>分组覆</u> 盖问题"。

变量:
$$x_{ij} = \begin{cases} 1 & \text{ $ i 队机组分配到线路 j; $i \leq 4, j \leq 12$} \\ 0 & \text{ $ i 队机组不分配到线路 j} \end{cases}$$

约束条件1-航班覆盖:

航班1:

$$\begin{aligned} x_{11} + x_{21} + x_{31} + x_{41} + \\ x_{14} + x_{24} + x_{34} + x_{44} + \\ x_{17} + x_{27} + x_{37} + x_{47} + \\ x_{1,10} + x_{2,10} + x_{3,10} + x_{4,10} \ge 1 \end{aligned}$$

约束条件1-航班覆盖:

航班2:

$$\begin{aligned} x_{12} + x_{22} + x_{32} + x_{42} + \\ x_{15} + x_{25} + x_{35} + x_{45} + \\ x_{18} + x_{28} + x_{38} + x_{48} + \\ x_{1,11} + x_{2,11} + x_{3,11} + x_{4,11} \ge 1 \end{aligned}$$

航班3:

$$\begin{aligned} x_{13} + x_{23} + x_{33} + x_{43} + \\ x_{16} + x_{26} + x_{36} + x_{46} + \\ x_{19} + x_{29} + x_{39} + x_{49} + \\ x_{1,12} + x_{2,12} + x_{3,12} + x_{4,12} \ge 1 \end{aligned}$$

•••••

约束条件1-航班覆盖:

航班6:

$$\begin{array}{l} x_{14} + x_{24} + x_{34} + x_{44} + \\ x_{15} + x_{25} + x_{35} + x_{45} + \\ x_{19} + x_{29} + x_{39} + x_{49} + \geq 1 \end{array}$$

航班11:

 $\begin{aligned} x_{16} + x_{26} + x_{36} + x_{46} + \\ x_{19} + x_{29} + x_{39} + x_{49} + \\ x_{1,10} + x_{2,10} + x_{3,10} + x_{4,10} + \\ x_{1,11} + x_{2,11} + x_{3,11} + x_{4,11} + \\ x_{1,12} + x_{2,12} + x_{3,12} + x_{4,12} \ge 1 \end{aligned}$

可能分配 机组1 机组2 机组3 机组4 8 9 |10|11|12 2 \bigcirc 5 6 11

为建模方便,为航班覆盖问题引入系数矩阵 $\{a_{ki}\}$:

					飞	行	方	案						$\{a_{kj}\}$						飞;	行.	方	案			
航班	1	2	3	4	5	6	7	8	9	10	11	12		航班	1	2	3	4	5	6	7	8	9	10	11	12
1	1			1			1			1				1	1	0	0	1	0	0	1	0	0	1	0	0
2		1			1			1			1		30	2	0	1	0	0	1	0	0	1	0	0	1	0
3			1			1			1			1		3	0	0	1	0	0	1	0	0	1	0	0	1
• • •		-				• (• •			72				• • •				-		1	P.,	•				
11						2	2	2	2	4	4	2		11	0	0	0	0	0	1	0	0	1	1	1	1

基于系数矩阵 $\{a_{ki}\}$,航班覆盖约束可统一表示为:

$$\sum_{i=1}^{4} \sum_{j=1}^{12} a_{kj} x_{ij} \ge 1, k = 1, ..., 11$$

$\{a_{ki}\}$					•	飞;	行	方	案			
{a _{kj} } 航 班	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0 -
2	0	1	0	0	1	0	0	1	0	0	1	0
3	0	0	1	0	0	1	0	0	1	0	0	1
4	0	0	0	1	0	0	1	0	1	1	0	1
5	1	0	0	0	0	1	0	0	0	1	1	0
•••							••	• >	2		10	
11	0	0	0	0	0	1	0	0	1	1	1	1

 $\{a_{kj}\}$ 的第1行与 $\{x_{ij}\}$ 的 4 个行分别对应相乘再求和,就得到第1个航班的覆盖约束;

 $\{a_{kj}\}$ 的第k行与 $\{x_{ij}\}$ 的 4 个行分别对应相乘再求和,就得到第 k个航班的覆盖约束,k=1,...,11。

约束条件2-机队完整性限制:

机组1:
$$x_{11} + x_{12} + ... + x_{1,9} + x_{1,10} + x_{1,11} + x_{1,12} \le 1$$

机组2:
$$x_{21} + x_{22} + ... + x_{2,9} + x_{2,10} + x_{2,11} + x_{2,12} \le 1$$

机组3:
$$x_{31} + x_{32} + \dots + x_{3,9} + x_{3,10} + x_{3,11} + x_{3,12} \le 1$$

机组4:
$$x_{41} + x_{42} + \dots + x_{4,9} + x_{4,10} + x_{4,11} + x_{4,12} \le 1$$

❖ 意义: 若某机组分给了某条线路,则就不能再同时 执飞其他线路。统一表达式:

$$\sum_{j=1}^{12} x_{ij} \le 1, \quad i = 1, ..., 4$$

				机	组3	机组4	机组	且2				
 航班	1	2	3	4	5	6	7	8	9	10	11	12
1. SFO-LAX	1			1			1			1		
2. SFO-DEN		1			1			1			1	
3. SFO-SEA			1		37_	1			1	1		1
4. LAX-ORD				2	7		2		3	2		3
5. LAX-SFO	2	7	KAS)/		3	7			5	5	
6. ORD-DEN	, Y	2		3	3		R)		4			
7. ORD-SEA						5	3	3		3	3	4
8. DEN-SFO		2		4	4				5			
9. DEN-ORD		-33		2	2			2			2	
10. SEA-SFO	26	R	2				4	4				5
11. SEA-LAX						2			2	4	4	2

				// U		∄ μ≽π ⊃	בו יון					
								l				
		飞行	亍方 多	案 (ī	订行	的航	班次	序与	了飞行	 テ路	戋)	
机组成本	1		2	1	-		▶ 7	0	0	10	11	210
(\$1000)	1	2	3	4	5	6	7	8	9	10	11	12
机组1	2	3	4	6	7	5	7	8	9	9	8	9
机组2	3	6	1	5	6	7	2	3	8	5	9	2
机组3	2	5	4	6	<u>2</u>	5	7	4	9	2	8	8
机组4	3	1	1	5	6	1	2	1	1	5	1	5
		•	•							•		

机组3 机组4 机组2

❖ 三队机组人员分别执飞三个航线即可覆盖所有航班,总成本\$5,000。

✓工会合同问题:

- ❖ 工会的合同规定: 所有机组人员都必须被安排工作。因此,前面空出来的第一个机队也必须被安排在某条航线上。
- ❖ 即使一个航班上有超过一队的机组人员,根据工会合同,公司仍然必须为这些人付出的时间支付与工作相同的报酬。

新模型

新的问题相当于每个机队都必须被完整分配,即:

$$\begin{aligned} x_{11} + x_{12} + \dots + x_{1,9} + x_{1,10} + x_{1,11} + x_{1,12} &= 1 \\ x_{21} + x_{22} + \dots + x_{2,9} + x_{2,10} + x_{2,11} + x_{2,12} &= 1 \\ x_{31} + x_{32} + \dots + x_{3,9} + x_{3,10} + x_{3,11} + x_{3,12} &= 1 \\ x_{41} + x_{42} + \dots + x_{4,9} + x_{4,10} + x_{4,11} + x_{4,12} &= 1 \end{aligned}$$

九组 1		机组4		机组3	3						机组2
	飞行	方	案(ī	丁行	的航	班次	序与	飞行	了路 约	线)	
1	2	2	1	<u> </u>	6 4	7	Q	0	10	11/	12
1		3	4	3		18/	0	9	10	11	12
<u>2</u>	3	4	6	7	5	7	8	9	9	8	9
3	6	1	5	6	7	2	3	8	5	9	<u>2</u>
2	5	4	6	<u>2</u>	5	7	4	9	2	8	8
3	1	<u>1</u>	5	6	1	2	1	1	5	1	5
	1 2 3 2	1 2 2 3 3 3 6 2 5	大行方章1 2 32 3 43 6 12 5 4	飞行方案(下) 1 2 3 4 2 3 4 6 3 6 1 5 2 5 4 6			大行方案(可行的航班次) 1 2 3 4 5 6 7 2 3 4 6 7 5 7 3 6 1 5 6 7 2 2 5 4 6 2 5 7	飞行方案(可行的航班次序与 1 2 3 4 5 6 7 8 2 3 4 6 7 5 7 8 3 6 1 5 6 7 2 3 2 5 4 6 2 5 7 4	飞行方案(可行的航班次序与飞行 1 2 3 4 5 6 7 8 9 2 3 4 6 7 5 7 8 9 3 6 1 5 6 7 2 3 8 2 5 4 6 2 5 7 4 9	大行方案(可行的航班次序与飞行路组) 1 2 3 4 5 6 7 8 9 10 2 3 4 6 7 5 7 8 9 9 3 6 1 5 6 7 2 3 8 5 2 5 4 6 2 5 7 4 9 2	- 大行 大方案(可行 的航班次序与飞行路线) 1 2 3 4 5 6 7 8 9 10 11 2 3 4 6 7 5 7 8 9 9 8 3 6 1 5 6 7 2 3 8 5 9 2 5 4 6 2 5 7 4 9 2 8

❖ 四队机组人员分别执飞四条航线,总成本\$7,000—— 但从前面可知,实际上最少只需要3个机组即可。