

가스 공급량 예측 모델 개발

가스레인저 X 메디치교육센터

01

프로젝트 개요

- 프로젝트 배경
- 프로젝트 목표

02

데이터 분석

- 데이터 설명
- EDA
- 데이터 전처리
- Feature 추가
- 삼관관계

03

모델링 및 분석 결과

- 외부 데이터 Modeling
- 공급량 데이터 Modeling
- 섬늠평가
- 결론
- 시사점 및 한계점

04

● 프로젝트 수행 소감

- 느낌 및 소감

01 프로젝트 개요

<mark>에너지 대란 나비효과</mark>...물류 이어 곡물값에도 영향

질소·요소 등 주요 생산원료 천연가스·석탄 대란에 급등 북미 비료가격 사상 최고치...애그플레이션 더 심해질듯

출처: https://view.asiae.co.kr/article/2021110810213791421

에너지 공급 => 전 가치 사슬에 영향을 미침

4차 산업에 있어서 에너지 공급량 예측 필요

01-1 프로젝트 배경

Q

- 천연가스의 역할

1)

화석연료 중 가장 환경 친화적

2)

수소에너지원 추출 및 탄소중립 사회로의 발판 구축

- 천연가스의 역할

⇒ 천연가스 공급량 예측 모델 구축

02 데이터 분석

© 02-1 HOIH 설명

- 원본데이터

	연월일	시간	구분	공급량
0	2013-01-01	1	Α	2497.129000
1	2013-01-01	2	Α	2363.265000
2	2013-01-01	3	Α	2258.505000
3	2013-01-01	4	Α	2243.969000
4	2013-01-01	5	Α	2344.105000
368083	2018-12-31	20	Н	681.033000
368084	2018-12-31	21	Н	669.961000
368085	2018-12-31	22	Н	657.941000
368086	2018-12-31	23	Н	610.953000
368087	2018-12-31	24	Н	560.896000

연월일: 2013 ~ 2018년도의 데이터

시간 : 1 ~ 24

구분: A, B, C, D, E, G, H (총 7개)

공급량 : 원자료의 계량단위는 m^3 , ton, 혹은 MJ(열량단위)

- 구분(공급사) 별 공급량 확인

: 구분 A, B, C

구분B의 공급량 분포 3000 1500 1000

구분 A는 튀는 값을 제외하고, 일정한 U 모양을 그림 튀는 값(이상치)는 2013년 4월 3일 겸 존재 튀는 값(이상치)는 2013년 7월 26일 겸 존재

구분 B는 튀는 값을 제외하고, 일정한 U 모양을 그림

구분 C의 분포는 불규칙한 모양을 그림 타 구분에 비해 크기의 분포가 10배정도 작으며 불규칙한 튀는 값 존재

- 구분(공급사) 별 공급량 확인

: 구분 D, E

구분 D와 E의 경우 튀는 값 없이 공급량의 분포가 일정한 U 모양을 그림

- 구분(공급사) 별 공급량 확인

: 구분 G, H

구분 G와 H의 경우 튀는 몇 개의 값들을 제외하고 일점한 U모양을 그림

- 공급량 이상치 처리

: 1시간 전후 값과의 차이를 기준으로 튀는 값을 선별하고 평균, 선형보간, prophet 등 다양한 밤법으로 이상치 처리 시도

: 가장 이상치 처리가 잘 된 선형 보간법의 결과

- 파생변수

날짜 파생변수 : 연, 월, 일, 요일, 분기, 음력_분기, 계절, 음력 월, 음력 일, 절기, 평/휴일 여부

	연월일	시간	구분	공급량	year	month	day	weekday	lunar	lun_month	lun_day	quarter	lun_quarter	season	절기명	휴일여부
0	2013-01-01	1	0	2497.129	2013	1	1	1	2012-11-20	11	20	1	4	winter	소한	Y
1	2013-01-01	2	0	2363.265	2013	1	1	1	2012-11-20	11	20	1	4	winter	소한	Υ
2	2013-01-01	3	0	2258.505	2013	1	1	1	2012-11-20	11	20	1	4	winter	소한	Υ
3	2013-01-01	4	0	2243.969	2013	1	1	1	2012-11-20	11	20	1	4	winter	소한	Υ
4	2013-01-01	5	0	2344.105	2013	1	1	1	2012-11-20	11	20	1	4	winter	소한	Υ
383203	2019-03-31	20	6	NaN	2019	3	31	6	2019-02-25	2	25	1	1	spring	청명	N
383204	2019-03-31	21	6	NaN	2019	3	31	6	2019-02-25	2	25	1	1	spring	청명	N
383205	2019-03-31	22	6	NaN	2019	3	31	6	2019-02-25	2	25	1	1	spring	청명	N
383206	2019-03-31	23	6	NaN	2019	3	31	6	2019-02-25	2	25	1	1	spring	청명	N
383207	2019-03-31	24	6	NaN	2019	3	31	6	2019-02-25	2	25	1	1	spring	청명	N

383208 rows x 16 columns

- 파생변수

공급량 파생변수 : 전년도 월별 공급량 평균/표준편차, 공급량 lagging

	연물일	시간	구분	공급량	supply_2160	supply_8760	전년도_윌별공급량_mean	전년도_윌별공급량_std
0	2013-01-01	1	0	2497.129	NaN	NaN	NaN	NaN
1	2013-01-01	2	0	2363.265	NaN	NaN	NaN	NaN
2	2013-01-01	3	0	2258.505	NaN	NaN	NaN	NaN
3	2013-01-01	4	0	2243.969	NaN	NaN	NaN	NaN
4	2013-01-01	5	0	2344.105	NaN	NaN	NaN	NaN
383203	2019-03-31	20	6	NaN	681.033	244.162	320.007126	97.041542
383204	2019-03-31	21	6	NaN	669.961	248.059	320.007126	97.041542
383205	2019-03-31	22	6	NaN	657.941	231.181	320.007126	97.041542
383206	2019-03-31	23	6	NaN	610.953	199.022	320.007126	97.041542
383207	2019-03-31	24	6	NaN	560.896	190.212	320.007126	97.041542

383208 rows x 8 columns

圖 02-4 Feature 추가

① 외부데이터 - 기온

- : 기온과 공급량이 **음의 상관관계성**을 보임
- : 주어진 공급량 데이터의 출처 지역을 알 수 없기 때문에 인구가 제일 많은 **서울지역의 기온**을 사용하기로 결정
- : 결측치의 경우, 선형 보간법으로 대체

② 외부데이터 - 기온 반응(수도권), 산업 기온 반응(서울) 함수

	기온	기온반응도	산업_기온반응도
0	-8.5	0.81834	0.28609
1	-8.4	0.82012	0.28578
2	-8.1	0.82544	0.28469
3	-8.2	0.82367	0.28508
4	-8.2	0.82367	0.28508
•••			
54739	4.9	0.69123	0.08023
54740	4.2	0.72546	0.09372
54741	3.6	0.75204	0.10547
54742	3.0	0.77606	0.11733
54743	2.6	0.79064	0.12528

- 기온반응함수, 산업 기온 반응 함수
- : 기온이 도시가스수요에 미치는 영향을 각 개별 기온대별로 나타내어 일종의 함수 형태로 제시한 것
- ⇒ 구분별 기온에 따라 기온반응함수와 산업 기온 반응 함수 추가

54744 rows × 3 columns

© 02-4 Feature 추가

③ 외부데이터 - 난방지수

: 한국지역난밤공사의 난밤지수(최근 1년간 시간당 최대 열공급 실적을 1000으로 두고 지수화한 값)에 대한 정보를 날짜별, 시간대별, 지사별 난방지수

		일시	기온	기온반응도	산업_기온반응도	난방지수
0	2013-01-01	00:00:00	-8.5	0.81834	0.28609	10695.0
1	2013-01-01	01:00:00	-8.4	0.82012	0.28578	10186.0
2	2013-01-01	02:00:00	-8.1	0.82544	0.28469	9765.0
3	2013-01-01	03:00:00	-8.2	0.82367	0.28508	9468.0
4	2013-01-01	04:00:00	-8.2	0.82367	0.28508	9378.0
368083	2018-12-31	19:00:00	-3.7	0.87942	0.24080	10267.0
368084	2018-12-31	20:00:00	-4.6	0.87371	0.25341	10752.0
368085	2018-12-31	21:00:00	-5.4	0.86584	0.26323	11190.0
368086	2018-12-31	22:00:00	-5.2	0.86803	0.26091	10962.0
368087	2018-12-31	23:00:00	-5.5	0.86469	0.26436	10529.0

④ 외부데이터 - 천연가스의 수입물가지수, 수입금액지수, 수입물량지수

: 천연가스 해외 수입 의존도가 높기 때문에 수입 상품의 종합적인 가격수준을 측정하는 통계지표 3가지 사용

: 한국은행 경제통계시스템으로부터 월별 수입물가, 수입금액, 수입물량지수 추출

	일자	수밉물량지수_천면가스	수밉금액지수_천면가스	수입물가지수(원화)	소비량
0	2013-01-01	138.70	193.49	143.53	6487
1	2013-02-01	142.15	204.18	148.58	5291
2	2013-03-01	144.35	210.42	151.37	4781
3	2013-04-01	113.39	166.03	151.01	4348
4	2013-05-01	98.08	140.76	148.94	3612
70	2018-11-01	137.00	145.58	115.62	4772
71	2018-12-01	162.74	172.60	114.82	6381
72	2019-01-01	132.04	143.13	117.27	6580
73	2019-02-01	133.88	148.47	120.01	5339
74	2019-03-01	96.80	99.68	112.27	4984

75 rows x 5 columns

⑤ 외부데이터 - 천연가스 에너지 소비량

: 천연가스 소비량은 수요를 나타내는 한 지표이기에 공급량 예측에 영향을 줄 것이라 판단

: 한국은행 경제통계시스템으로부터 월 별 천연가스 에너지 소비량 데이터 추출

	밀자	수입물량지수_천면가스	수입금액지수_천연가스	수입물가지수(원화)	소비량
0	2013-01-01	138.70	193.49	143.53	6487
1	2013-02-01	142.15	204.18	148.58	5291
2	2013-03-01	144.35	210.42	151.37	4781
3	2013-04-01	113.39	166.03	151.01	4348
4	2013-05-01	98.08	140.76	148.94	3612
70	2018-11-01	137.00	145.58	115.62	4772
71	2018-12-01	162.74	172.60	114.82	6381
72	2019-01-01	132.04	143.13	117.27	6580
73	2019-02-01	133.88	148.47	120.01	5339
74	2019-03-01	96.80	99.68	112.27	4984

75 rows x 5 columns

1.00

- 상관관계 확인

: 기온반응도, 난방지수 및 공급량 파생변수는 공급량과 양의 상관관계를 가짐

: 계절, 기온은 공급량과 음의 상관관계를 가짐

: 추가한 외부데이터 사이 높은 양의 상관관계를 보임

03 모델링 및 분석 결과

03-1 외부데이터 Modeling

- 외부 데이터 예측 모델

: 외부 데이터 활용 시 2019년 이후 데이터를 활용하는 것은 data leakage에 해당

: 2018년 12월 31일 이전 데이터를 활용하여 예측을 진행한 후 사용

O 활용한 모델

DIII CAS

03-1 외부데이터 Modeling

- 외부 데이터 예측 결과

© 03-2 공급량 Modeling

- 구분 별 모델링 구축

: 구분에 따라 공급량이 다르기 때문에 구분별로 모델림을 진행

- Cross Validation

: 과적합 밤지를 위해 cross validation을 연도별로 진행

03-2 공급량 Modeling

성능 평가 지수

$$NMAE = \frac{1}{N} \sum_{m}^{i} \frac{|true_{i} - predict_{i}|}{true_{i}}$$

- 공급량 예측 모델

learn

- 성능 평가

: Feature Selection을 진행하며 각각의 모델으로 모델림 진행

- 성능 평가

: Feature Selection을 진행하며 각각의 모델으로 모델림 진행

- LGBM 공급량 모델 예측 결과

- LGBM 공급량 모델 예측 결과

03-5 Feature Importance

- Feature Importance

- Feature Importance

응 O3 시사접 및 한계점

- 시사점

보다 정확한 수요전망대비 공급량 예측 가능 → 에너지의 **안정적인 수급** 가능

천연가스 수입 시 스팟 구매 물량과 중잠기 계략물량의 가격차이 (5~10%차이) → 비용 절감에 따른 국부 강화

에너지 대란으로 발생가능한 물류, 곡물 등의 인플레이션 최소화

□ 03-5 시사점 및 한계점

- 한계점

프로젝트 주제에 대한 도메인 지식 한계

외부 데이터 변수를 예측하여 사용하여 변수의 예측값과 실제값의 오차로 인한 분석 모형의 성능 하락 우려

추가된 데이터 사이 강한 상관관계가 나타남 \Rightarrow feature engineering을 통한 공분산성 해결 필요

04 프로젝트 수행 소감

Q&A

감사합니다:)

을 참고자료 참고자료

- 기사 인용

http://www.kharn.kr/news/article.html?no=2652 http://amenews.kr/news/view.php?idx=45488

http://www.e2news.com/news/articleView.html?idxno=216926 http://www.gasnews.com/news/articleView.html?idxno=82668

- 분석 및 모델 관련 자료

https://scikit-learn.org/stable/

https://www.tensorflow.org/?hl=ko

https://facebook.github.io/prophet/

https://www.statsmodels.org/stable/index.html

- 이미지 및 아이콘 출저 자료

https://www.flaticon.com/