Buď (A,\cdot) algebra typu (2) taková, že platí:

- 1. · je asociativní,
- 2. existuje levý jednotkový prvek e,
- 3. ke každému $x \in A$ existuje $y \in A$ takové, že $y \cdot x = e$.

Dokažte, že potom je e jednotkovým prvkem a každé $x \in A$ je invertibilní.

Řešení:

$$(\forall x)(\exists y)\ yx=e,$$
a tedy také $(\exists z)\ zy=e.$ Pak

$$x = ex = (zy)x = z(yx) = ze = z(ee) = z(yx)e = (zy)(xe) = e(xe) = xe.$$

Tedy e je i pravý jednotkový. Dále ukážeme, že x má inverzi:

$$xy = (xe)y = (ze)y = z(ey) = zy = e.$$

Tedy yx = xy = e, tj. $y = x^{-1}$.