Introducere în teoria fasciculelor

Seminar 12 Luni, 12.05.2014.

1. (Colanțuri liftabile) Fie

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

un şir exact de fascicule de grupuri abeliene de bază X. Notăm cu $\check{C}^{\bullet}_{\mathcal{F}}(\mathcal{U}, \mathcal{F}'')$ complexul colanțurilor Čech ale lui \mathcal{F}'' ce pot fi liftate în \mathcal{F} . Demonstrați că dacă \mathcal{F}' este flasc, atunci

$$\check{C}^{\bullet}_{\mathcal{F}}(\mathscr{U},\mathcal{F}'') = \check{C}^{\bullet}(\mathscr{U},\mathcal{F}'')$$
 si $\check{H}^{q}_{\mathcal{F}}(\mathscr{U},\mathcal{F}'') = \check{H}^{q}(\mathscr{U},\mathcal{F}''), \, \forall q.$

2. (Identitatea este omotopă cu 0) Cu notațiile de la curs, demonstrați că

$$h^{q+1}\delta^q + \delta^{q+1}h^q = \mathrm{id}_{\check{C}^q(\mathscr{U},\mathcal{F})}.$$

- 3. (Coomologie cu valori în fascicule de bază $\mathbb{C}^k \times (\mathbb{C}^*)^l$) Fie $X = \mathbb{C}^k \times (\mathbb{C}^*)^l$. Demonstrați că $H^q(X, \mathcal{O}_X) = 0$, pentru orice $q \geq 1$.
- 4. (Coomologie pentru \mathbb{CP}^1) Fie $\mathbb{P}^1 = \mathbb{CP}^1$ și fie $\mathcal{O} = \mathcal{O}_X$ fasciculul structural.
- (i) Folosind coordonate omogene pe $\mathbb{P}^1 = \{[u:v] | (u,v) \in \mathbb{C}^2 \setminus \{(0,0)\}\}$, construiți o acoperire aciclică $\mathscr{U} = \{U,V\}$ a lui \mathbb{P}^1 .
 - (ii) Determinați $\check{C}^0(\mathcal{U}, \mathcal{O}), \check{C}^1(\mathcal{U}, \mathcal{O})$ și scrieți explicit cum acționează operatorul δ^0 .
 - (iii) Calculați ker δ^0 . Determinați $H^0(\mathbb{P}^1, \mathcal{O})$.
 - (iv) Calculați $\check{C}^1(\mathcal{U},\mathcal{O})/_{\mathrm{im}} \delta^0$. Determinați $H^1(\mathbb{P}^1,\mathcal{O})$.

(Indicație (iii), (iv): folosind dezvoltări în serie Laurent).

- $(v)^*$ Folosind același tip de argumente, determinați $H^0(\mathbb{P}^1,\Omega^1), H^1(\mathbb{P}^1,\Omega^1)$.
- 5. (Grup de coomologie infinit dimensional) Fie $X = \mathbb{C}^2 \setminus \{(0,0)\}$ și fie \mathcal{O}_X fasciculul structural. Demonstrați că $H^1(X,\mathcal{O}_X)$ este infinit dimensional. (Indicații: folosiți teorema lui Hartogs; determinați o acoperire aciclică convenabilă pentru X; folosiți dezvoltări în serie Laurent pentru a calcua \check{C}^1 , $\delta^0(\check{C}^0)$).
- 6. (Grupuri de coomologie Čech și rafinarea acoperirilor) Fie X un spațiu topologic, \mathcal{F} un fascicul de grupuri abeliene de bază X. Fie $\mathscr{U} = (U_{\alpha})_{\alpha \in I}$ o acoperire deschisă a lui X și $\mathscr{V} = (V_{\beta})_{\beta \in J}$ o rafinare a sa.
- (i) Fie $\rho: J \to I$ o aplicație de rafinare și $\rho^{\bullet}: \check{C}^{\bullet}(\mathscr{U}, \mathcal{F}) \to \check{C}^{\bullet}(\mathscr{V}, \mathcal{F})$ morfismul de colanțuri indus. Demonstrați că ρ^{\bullet} comută cu δ^{\bullet} (i.e. $\delta^{q} \circ \rho^{q} = \rho^{q} \circ \delta^{q}$, pentru orice q).
 - (ii) Fie Fie $\rho, \rho': J \to I$ aplicații de rafinare. Demonstrați că ρ^{\bullet} și ${\rho'}^{\bullet}$ sunt omotope.
- 7. (Problema Cousin multiplicativă) Orice hipersuprafață analitică din \mathbb{C}^n este dată de zerourile unei singure funcții olomorfe definită, pe \mathbb{C}^n . (Indicații: o hipersuprafață analitică este definită, *local*, de zerourile unei funcții olomorfe, unică până la înmulțirea cu o funcție inversabilă; se generează astfel o acoperire a lui \mathbb{C}^n ; se stabilește ce relație are loc pe intersecții de deschiși, făcând legătura cu fasciculul \mathcal{O}^*).