مبادئ نظرية الفئة Principles of Set Theory

 $^{\chi}$ ما کل کائن ما کائن ما محموعة من الکائنات objects المعرفة جيداً، بحيث أن کل کائن ما

- $x \in A$ إما ينتمي إلى الفئة A و يرمز لذلك بالم
- $X \not\equiv A$ أو لا ينتمى للفئة A و يرمز لذلك بالرمز (b

lowercase letters يرمز للفئات بالأحرف الكبيرة A,B,C,\cdots capital letters يرمز للفئات بالأحرف الكبيرة a,b,c,\ldots

هنالك نوعان من الفئات:

- a) الفئات المنتهية finite sets، و هي الفئات التي تحتوي على عدد منتهٍ من العناصر.
- b) الفئات غير المنتهية infinite sets، و هي الفئات التي تحتوي على عدد غير منتهى من العناصر.

هنالك نوعان من الطرق لتمثيل فئة ما:

a) طريقة رصد العناصر: رصد عناصر تلك الفئة بدون تكرار. مثلا مجموعة الاعداد الفردية اصغر من العدد 10 يمكن ان تكتب كالتالى:

$$A = \{1,3,5,7,9\}$$

طريقة الصفة المميزة Set builder form : ذكر صفة ما تميز عناصر تلك الفئة. مثلا مجموعة الاعداد الفردية
 اصغر من العدد 10 يمكن ان تكتب كالتالي:

 $A = \{x \mid x \text{ is an odd positive} \text{integer less than } 10\}$

 $A = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}$

أمثلة على فئات:

a) فئات الأعداد:

- . $N = \{0,1,2,...\}$ natural numbers: فغة الأعداد الطبيعية. i
- $Z = \{0,\pm 1,\pm 2,\ldots\}$ Integer numbers: فئة الأعداد الصحيحة .ii
- $Q = \left\{ \frac{a}{b} : a, b \in Z, b \neq 0 \right\}$ rational numbers: فئة الأعداد النسبية .iii
- ين فئة الأعداد غير النسبية $\frac{a}{b}$ و هي التي لا يمكن كتابتها على الصيغة $\frac{a}{b}$ حيث .iv .iv .iv و مثل العدد الغير منتهي $\pi=3.1415926\dots$ و العدد غير المنتهي $a,b\neq 0$ و العدد غير المنتهي . $e=2.7182818284\dots$
- v. فئة الأعداد الحقيقية real numbers: و تحوي فئة جميع الأعداد النسبية Q و غير النسبية Q، و يرمز لها $R = \{x: x \in Q \ or \ x \in Q^*\}$ بالرمز Q. أي
 - $C = \{a+ib: a,b \in R, i = \sqrt{-1}\}$ complex numbers فئة الأعداد المركبة. vi
 - $I_n = \{1,2...,n\}$ و يرمز لها بالرمز I_n و يعرف بأنها index set و يرمز لها بالرمز (b
 - رc الفئة الخالية empty set هي الفئة التي لا تحتوي على أي عنصر و يرمز لها بالرمز ϕ .
 - $S = \{x \in R : x^2 = 1\}$ فئة العناصر التي تقع في دائرة الوحدة هي الفئة $S = \{x \in R : x^2 = 1\}$ فئة العناصر التي تقع في دائرة الوحدة هي الفئة و

الفئات الجزئية Subsets:

لتكن A و نرمز لذلك بالرمز $A \subseteq B$ إذا كان لكل $A \subseteq B$ فإن الفئة A فأن الفئة A فأن الفئة $A \subseteq A$ إذا كان لكل $A \subseteq B$ فإن $A \not\subset B$ عندئذٍ نكتب $A \not\subset B$ أذا وجد عنصر $A \not\subset B$ بحيث $A \not\subset B$ ليس عنصراً من عناصر الفئة $A \not\subset B$.

.
$$C\subseteq A$$
 و $B\subseteq A$ عندئذ $C=\{4,6\}$ و $B=\{2,6\}$ ، $A=\{2,4,6\}$ و مثال : إذا كانت

الفئات المتساوية Equal sets

 $B \in A$ يقال لفئتين $A \subseteq B$ و يرمز لذلك بA = B و يرمز لذلك بو equal و يرمز لذلك و equal يقال لفئتين نكتب $A \neq B$ و غثتان غير متساويتين نكتب $A \neq B$.

أمثلة:

$$B\subseteq A$$
 و $A\subseteq B$ متساويتان لأن $A=\{1,3,5\}$ عنساويتان $A=\{1,3,5\}$.1

$$1
ot \in \{\{1\}\}$$
 و الفئتان $C = \{\{1\}\}$ و الفئتان $C = \{\{1\}\}$ و $C = \{\{1\}\}$ و .2

الفئات الجزئية الفعلية Proper subsets

إذا كانت $A \in B$ فئتان، فيقال أن A فئة جزئية فعلية proper subset من الفئة B و يرمز لذلك بالرمز $A \supset A$ إذا كانت $A \subseteq B$ من ثم إذا كانت $A \not \equiv A$ فئة جزئية فعلياً من A فئة جزئية فعلياً من A فئة جزئية فعلياً من A فئة من عناصر الفئة A يكون محتوى في الفئة A و هنالك عنصر واحد على الأقل من عناصرالفئة A ليس من ضمن عناصر الفئة A .

$$N \subset Z \subset Q \subset R \subset C$$
 مثال:

الفئة الشاملة Universal Set

.Universal Set بالفئة الشاملة U بالفئة الشاملة الفئات المعتبرة، عندئذ تسمى الفئة الشاملة U

Absolute complement المتممة المطلقة

ية A absolute complement الخانت A فئات جزئية من B عندئذٍ المتممة المطلقة U فئة شاملة، و A فئات جزئية من U عندئذٍ المتممة المطلقة المقاه الفئة

$$A^c = \{x \in U : x \notin A\}$$

و توضح من خلال الشكل التالي:

المتممة النسبية Relative complement

المتممة النسبية لا B فهي الفئة relative complement المتممة النسبية المتممة النسبية المتممة النسبية المتممة النسبية المتممة النسبية المتممة المتممة النسبية المتممة المتممة

$$B - A = \{x \in B : x \notin A\}$$

و توضح من خلال الشكل التالي

مثال: لتكن
$$U=R$$
 اعتبر الفئات $B=\{x\in R:x\leq 0\}$ و $A=\{x\in R:x\leq -1\ or\ x>1\}$ عندئلاً عندئلاً عند الفئات عند الفئات المثال: لتكن المثال: لتتكن المثال: لتكن المثال:

$$A^c = [-1,1]$$

$$B - A = [-1,0]$$

العمليات على المجموعات Set operations

(i) إتحاد المجموعات

لتكن
$$A$$
 و B فئتان. إتحاد union الفئتين A و B و يرمز له بالرمز $A \cup B$ يعرف بأنه الفئة

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

A و B نوضحه من خلال شكل فن التالى:

و إذا كانت
$$A_1,A_2,\dots$$
 فئات، عندئذٍ إتحاد الفئات A_1,A_2,\dots و يرمز له بالرمز A_1,A_2,\dots يعرف بأنه

$$\bigcup_{j=1}^{\infty} A_j = \{x : x \in A_j \text{ for some } j\}$$

:Intersection of sets تقاطع المجموعات (ii)

لتكن $A \in B$ فئتان. تقاطع intersection الفئتين A و B و يرمز له بالرمز $A \cap B$ يعرف بأنه الفئة

$$A \cap B = \{x : x \in A \ and \ x \in B\}$$

تقاطع الفئتين A و B نوضحه من خلال شكل فن التالي:

و إذا كانت
$$A_1,A_2,\dots$$
 عندئذٍ تقاطع الفئات A_1,A_2,\dots و إذا كانت A_1,A_2,\dots عندئذٍ تقاطع الفئات A_1,A_2,\dots و إذا كانت A_1,A_2,\dots عندئذٍ تقاطع الفئات A_1,A_2,\dots

قوانين دي مورجان:

: عندئذ ، U عندئذ ، الشاملة A,B فئات جزيئة من الفئة الشاملة

$$(A \cup B)^c = A^c \cap B^c \tag{1}$$

$$(A \cap B)^c = A^c \cup B^c \tag{2}$$

البرهان:

$$x \in (A \cup B)^c$$
 ومن ثم $x \in (A \cup B)$ ومن ثم $x \in (A \cup B)^c$ ومن ثم $x \in (A \cup B)^c$ ومن ثم $(x \notin B, x \in U)$ ومن ثم $x \in (A \cup B)^c$ $x \in (A \cup B)^c$

 $(A \cup B)^c \subseteq A^c \cap B^c \qquad \qquad \therefore$

 $(A \cup B)^c = A^c \cap B^c \qquad \qquad \therefore$

(2) تمرین.