COMP S264F Discrete Mathematics Tutorial 4: Set Theory (1) – Suggested Solution

Question 1.

- (a) $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (b) $\{2, 3, 5, 7\}$
- (c) $\{4, 25, 64\}$
- (d) $\{6,7,9\}$

Question 2.

(a)
$$(A \cup B) \cap C = (\{1, 4, 7, 10\} \cup \{1, 2, 3, 4, 5\}) \cap \{2, 4, 6, 8\}$$

= $\{1, 2, 3, 4, 5, 7, 10\} \cap \{2, 4, 6, 8\}$
= $\{2, 4\}$

Thus, $|(A \cup B) \cap C| = 2$.

(b)
$$A \cup (B \cap C) = \{1, 4, 7, 10\} \cup (\{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8\})$$

= $\{1, 4, 7, 10\} \cup \{2, 4\}$
= $\{1, 2, 4, 7, 10\}$

Thus, $|A \cup (B \cap C)| = 5$.

(c)
$$A - B = \{1, 4, 7, 10\} - \{1, 2, 3, 4, 5\}$$

= $\{7, 10\}$

Thus, |A - B| = 2.

(d)
$$B - A = \{1, 2, 3, 4, 5\} - \{1, 4, 7, 10\}$$

= $\{2, 3, 5\}$
Thus, $|(B - A)| = 3$.

(e)
$$\overline{U} = \varnothing$$
.

Thus, $|\overline{U}| = 0$.

(f)
$$\overline{(A \cap B)} \cup C = \overline{(\{1,4,7,10\} \cap \{1,2,3,4,5\})} \cup \{2,4,6,8\}$$

 $= \overline{\{1,4\}} \cup \{2,4,6,8\}$
 $= \{2,3,5,6,7,8,9,10\} \cup \{2,4,6,8\}$
 $= \{2,3,4,5,6,7,8,9,10\}$

Thus, $|\overline{(A \cap B)} \cup C| = 9$.

(g)
$$\overline{A} \cup \overline{B} \cup C = \overline{\{1,4,7,10\}} \cup \overline{\{1,2,3,4,5\}} \cup \{2,4,6,8\}$$

= $\{2,3,5,6,8,9\} \cup \{6,7,8,9,10\} \cup \{2,4,6,8\}$
= $\{2,3,4,5,6,7,8,9,10\}$

Thus, $|\overline{A} \cup \overline{B} \cup C| = 9$.

$$\begin{array}{l} \text{(h)} \ \ (A \cup \overline{C}) - (B - \overline{A}) = (\{1,4,7,10\} \cup \overline{\{2,4,6,8\}}) - (\{1,2,3,4,5\} - \overline{\{1,4,7,10\}}) \\ \\ = (\{1,4,7,10\} \cup \{1,3,5,7,9,10\}) - (\{1,2,3,4,5\} - \{2,3,5,6,8,9\}) \\ \\ = \{1,3,4,5,7,9,10\} - \{1,4\} \\ \\ = \{3,5,7,9,10\} \end{array}$$

Thus,
$$|(A \cup \overline{C}) - (B - \overline{A})| = 5.$$

Question 3.

(a) True

(c) False

(e) False

(g) True

(b) False

(d) True

(f) True

(h) True

Question 4.

(a) By solving $x^2 + x = 2$, we have $A = \{1, -2\}$. Then, $-2 \in A$ and $-2 \notin B$, so $A \nsubseteq B$.

(b) $B = A \cap C = \emptyset$. Hence, $A \nsubseteq B$.

(c) $A = \{2, 4, 6, 8, \dots\}$ is the set of positive even integers. $B = \{1, 2, 3, 4, \dots\}$ is the set of positive integers.

Hence, $A \subseteq B$.

Formal proof: Assume $y \in A$. Then y = 2x for some positive integer x. Thus, y is also a positive integer, i.e., $y \in B$. $A \subseteq B$ follows.

(d) $B = \{1, 2, 3\}$. Then, $4 \in A$ and $4 \notin B$, so $A \nsubseteq B$.

Question 5.

(a) B must contain all of the elements in A so that $A \cap B = A$. Hence, we can deduce that $A \subseteq B$.

(b) A must contain all of the elements in B so that $A \cup B = A$. Hence, we can deduce that $B \subseteq A$.

(c) \overline{A} and B should be disjoint, i.e., having completely different elements. In other words, $A = U - \overline{A}$ contain all of the elements in B, where U is the domain (i.e., universal set). Hence, $B \subseteq A$.

(d) By De Morgan's Law, $\overline{A \cap B} = \overline{A} \cup \overline{B} = \overline{B}$ From (b), we can deduce that $\overline{A} \subseteq \overline{B}$. Therefore, $B = U - \overline{B} \subseteq U - \overline{A} = A$, i.e., $B \subseteq A$.

Question 6.

(a)
$$A \triangle B = (A \cup B) - (A \cap B)$$

= $(\{1, 2, 3\} \cup \{2, 3, 4, 5\}) - (\{1, 2, 3\} \cap \{2, 3, 4, 5\})$
= $\{1, 2, 3, 4, 5\} - \{2, 3\}$
= $\{1, 4, 5\}$

(b) Let U be the universal set. The Venn diagram is

(c) $A \triangle B$ is the set of elements in either sets A or B, but not both.