Chapter 1: The Night Sky

Prof. Douglas Laurence AST 1002

Order of Magnitude

Geocentric View

Constellations

Sidereal vs. Solar Time

24 solar hours = 23 h 56 min sidereal time

Seasons and the Night Sky

Orbital Procession

Phases of the Moon

Phases of the Moon (cont'd)

Solar Eclipses

© 2016 Pearson Education, Inc.

Angular Size

Total vs. Annular Solar Eclipses

© 2016 Pearson Education, Inc.

© 2016 Pearson Education, Inc.

Eclipse Interactive Applet:

https://highered.mheducation.com/olcwe b/cgi/pluginpop.cgi?it=swf::640::480::/site s/dl/free/007299181x/220730/eclipse int eractive.swf::Eclipse%20Interactive

Conditions for Eclipse

Frequencies of Eclipses

- 2 5 solar eclipses occur per year of various types.
 - ~240 per century.
- Total solar eclipses occur somewhere on Earth every ~18mo.
 - But only recur at a given location every ~400yr.
- The moon actually gets further from the Earth each year (3.8 cm/yr) and the sun gets brighter (grows in angular size), so between 650M 1.4B yr from now, total eclipse will be impossible.

Scientific Method

Atoms

Types of Radiation

Mass-Energy Equivalence

$$E = mc^2$$

β -Decay

$n \rightarrow p^+ + e^-$

$$\Delta E = 1.252 \times 10^{-13} \text{ J}$$

Number of electrons

There must be a third particle here

Weird energy unit, 1 MeV = 1.62×10^{-19} J

Elementary Particles

2 Types of Matter:

- Quarks
- Leptons

4 Fundamental Forces:

- Strong Force
- Weak Force
- Electromagnetic Force
- Gravity

Quarks

$$u + u + d + (gluons) \rightarrow p^+$$

$$u + d + d + (gluons) \rightarrow n$$

Leptons

No electric charge

= no electric force!

80.4 GeV

$$e^- + p^+ + (photon) \rightarrow H$$

$$n \to p^+ + e^- + \bar{\nu}_e$$

No strong force!

Chapter 2: Light and Telescopes

Prof. Douglas Laurence AST 1002

Electromagnetic Radiation

$$v = \lambda f$$

$$E = hf$$

Visible Light Spectrum

Isotropic Emission

Blackbody Radiation

Stefan-Boltzmann Law:

$$I = \sigma T^4$$

Wein's Law:

$$\lambda_{max} = \frac{b}{T}$$

Emission and Absorption of Photons

Spectroscopy

Detecting Chemical Elements

Doppler Effect

(a) © 2016 Pearson Education, Inc.

$$\Delta f = \frac{v}{c} f_0$$

Optical Astronomy

An inside look at the Subaru telescope

Radio Astronomy

IR and UV Astronomy

Space-Based Telescopes

© 2016 Pearson Education, Inc.

Chapter 3: The Solar System

Prof. Douglas Laurence AST 1002

The Planets

© 2016 Pearson Education, Inc.

Pluto: Not a Planet (Unfortunately)

Dwarf Planet Orbits

Features of Planets

This edge-on view shows the slight inclinations of the planetary orbits to the ecliptic.

Elliptical Orbits

Table 3.1 Properties of Some Solar System Objects

Object	Orbital semimajor axis (AU)	Orbital period (Earth years)	Orbital eccentricity
Mercury	0.39	0.24	0.206
Venus	0.72	0.62	0.007
Earth	1.00	1.0	0.017
Mars	1.52	1.9	0.093
Jupiter	5.2	11.9	0.048
Saturn	9.5	29.4	0.054
Uranus	19.2	84	0.047
Neptune	30.1	164	0.009
Sun		-	_

^{© 2016} Pearson Education, Inc.

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

Ptolemaic Geocentrism

This model gets messy quickly when accounting for the many planets' (and the Sun's) observed motions on the sky. Jupiter Venus Mercury Moon Mars

© 2016 Pearson Education, Inc.

Heliocentrism (Copernicus)

Heliocentrism (Galileo)

(a) © 2016 Pearson Education, Inc.

Newton's Laws of Motion

I. An object at rest will remain at rest, and an object in motion will remain in motion, unless acted upon by a force.

II.
$$F = ma$$

III. For every action, there is an equal and opposite reaction.

Kepler's Laws of Planetary Motion

- I. Planetary orbits are ellipses
- II. A planet covers equal areas in equal times around the ellipse

III.
$$P^2$$
 (years) = $\frac{a^3 \text{ (AU)}}{M \text{ (solar masses)}}$

Using Kepler's Third Law

