Crossover Trial Power Using Simulation

Eamonn O'Brien 23 July, 2019

Contents

Function to simulate crossover trial using lme4
Function to simulate crossover trial using nlme
Computing Environment

CONTENTS LIST OF TABLES

Contents

List of Figures

List of Tables

Function to simulate crossover trial using lme4

```
\# n - number of patients in each order group sdW - within
# patient standard deviation sdB - between patient standard
# deviation beta - coefficient vector c(Intercept, Treatment,
# Order, Treatment:Order)
require("lme4")
simulatec <- function(n = 10, sdW = 4, sdB = 1, beta = c(8, 1, 1)
    0, 0), alpha = 0.05) {
    # generate data
    Patient \leftarrow as.factor(rep(1:(2 * n), rep(2, 2 * n)))
    Treatment <- c(rep(c("Treatment1", "Treatment2"), n), rep(c("Treatment2",</pre>
        "Treatment1"), n))
    Order <- rep(c("First", "Second"), 2 * n)
    Data <- data.frame(Patient, Treatment, Order)</pre>
    FMat <- model.matrix(~Treatment * Order, data = Data)</pre>
    RMat <- model.matrix(~0 + Patient, data = Data)</pre>
    Response <- FMat %*% beta + RMat %*% rnorm(2 * n, 0, sdB) +
        rnorm(4 * n, 0, sdW)
    Data$Response <- Response
    # analyse
    Fit <- lmer(Response ~ (1 | Patient) + Treatment * Order,
        data = Data)
    Est <- fixef(Fit)[2]</pre>
    Ste <- sqrt(vcov(Fit)[2, 2])</pre>
    prod(Est + c(-1, 1) * qnorm(1 - alpha/2) * Ste) > 0
}
# power for n=20 and treatment effect 4
mean(replicate(1000, simulatec(n = 20, beta = c(8, 4, 0, 0))))
[1] 0.868
# (many warning messages: boundary (singular) fit: see
# ?isSingular)
```

Function to simulate crossover trial using nlme

```
# no warning messages for equivalent analyses compared to
# lme4 A random effect very near zero seems to be the reason
# for the warning message using lme4
require(nlme)
simulaten \leftarrow function(n = 10, sdW = 4, sdB = 1, beta = c(8, 1,
    0, 0), alpha = 0.05) {
    # generate data
    Patient <- as.factor(rep(1:(2 * n), rep(2, 2 * n)))
    Treatment <- c(rep(c("Treatment1", "Treatment2"), n), rep(c("Treatment2",</pre>
        "Treatment1"), n))
    Order <- rep(c("First", "Second"), 2 * n)
    Data <- data.frame(Patient, Treatment, Order)
    FMat <- model.matrix(~Treatment * Order, data = Data)</pre>
    RMat <- model.matrix(~0 + Patient, data = Data)</pre>
    Response <- FMat %*% beta + RMat %*% rnorm(2 * n, 0, sdB) +
       rnorm(4 * n, 0, sdW)
    Data$Response <- Response
    # analyse
    Fit <- lme(Response ~ Treatment * Order, random = ~1 | Patient,
        data = Data, na.action = "na.omit")
    Est <- fixed.effects(Fit)[2]</pre>
    Ste <- sqrt(vcov(Fit)[2, 2])</pre>
    prod(Est + c(-1, 1) * qnorm(1 - alpha/2) * Ste) > 0
# power for n=20 and treatment effect 4
mean(replicate(1000, simulaten(n = 20, beta = c(8, 4, 0, 0))))
```

[1] 0.855

Computing Environment

sessionInfo()

```
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)
Matrix products: default
locale:
[1] LC_COLLATE=English_United Kingdom.1252
[2] LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252
attached base packages:
[1] stats
             graphics grDevices utils
                                          datasets
[6] methods
             base
other attached packages:
[1] nlme_3.1-140 lme4_1.1-21 Matrix_1.2-17 knitr_1.23
loaded via a namespace (and not attached):
[1] Rcpp_1.0.1 lattice_0.20-38 digest_0.6.20
[4] MASS_7.3-51.4 grid_3.6.1 formatR_1.7
[7] magrittr_1.5 evaluate_0.14 stringi_1.4.3
[10] minqa_1.2.4 nloptr_1.2.1 boot_1.3-22
[13] rmarkdown_1.14 splines_3.6.1 tools_3.6.1
[16] stringr_1.4.0 xfun_0.8
                                   yaml_2.2.0
```

This took 74.17 seconds to execute.

[19] compiler_3.6.1 htmltools_0.3.6