STUDY CASE B2W CHALLENGE

Lucas Massaroppe

OVERVIEW

- I. MOTIVATING PROBLEM
- 2. 'SALES.CSV' DATASET
- 3. 'COMP_PRICES.CSV' DATASET
- 4. CONCLUSIONS

MOTIVATING PROBLEM

- Adjust/optimize the relationship between
 Price and Demand
 - Achieve commercial targets

But How?

MOTIVATING PROBLEM

- Analyzing two datasets:
 - 'sales.cvs': contains B2W's transactional information from 9 different products;
 - 'comp_prices.csv': contains 6 competitors' information from the same 9 different product;
 - Data available for the year of 2015.

'SALES.CSV' DATASET

Plot of the products revenue

'SALES.CSV' DATASET

KPSS Test:

- Although only three have stationary behavior, the KPSS test suggests that we treat the set as non-stationary in the trend;
- Nonlinear.

Product ID	ARIMA(p, d, q)	ETS	NNETAR(p, k)
P_1	ARIMA(1, 1, 1), $\widehat{\sigma_e} = 66.87$	$ETS(M, N, N), \widehat{\sigma_e} = 0.04$	NNETAR(4, 2), $\widehat{\sigma_e} = 0.04$
P_2	ARIMA(0, 1, 2), $\widehat{\sigma_e} = 32.21$	$ETS(A, N, N), \widehat{\sigma_e} = 33.56$	NNETAR(7, 4), $\widehat{\sigma_e} = 0.04$
P_3	ARIMA(2, 1, 3), $\widehat{\sigma_e} = 71.28$	$ETS(A, N, N), \widehat{\sigma_e} = 72.13$	NNETAR(7, 4), $\widehat{\sigma_e} = 0.05$
P_4	ARIMA(0,0,0), $\widehat{\sigma_e} = 436.59$	$ETS(A, N, N), \widehat{\sigma_e} = 437.72$	NNETAR(1, 1), $\widehat{\sigma_e} = 0.22$
P_5	ARIMA(0,1,1), $\widehat{\sigma_e} = 109.04$	$ETS(M, N, N), \widehat{\sigma_e} = 0.11$	NNETAR(4, 2), $\widehat{\sigma_e} = 0.08$
P_6	ARIMA(5, 1, 0), $\widehat{\sigma_e} = 231.71$	$ETS(M, A_d, N), \widehat{\sigma_e} = 0.12$	NNETAR(6, 4), $\widehat{\sigma_e} = 0.05$
P_7	ARIMA(0, 1, 1), $\widehat{\sigma_e} = 34.35$	$ETS(A, N, N), \widehat{\sigma_e} = 34.31$	NNETAR(8, 4), $\widehat{\sigma_e} = 0.03$
P_8	ARIMA(2, 1, 1), $\widehat{\sigma_e} = 29.99$	$ETS(M, N, N), \widehat{\sigma_e} = 0.05$	NNETAR(2, 2), $\widehat{\sigma_e} = 0.03$
P_9	ARIMA(1, 1, 1), $\widehat{\sigma_e} = 39.47$	$ETS(M, N, N), \widehat{\sigma_e} = 0.08$	NNETAR(6, 4), $\widehat{\sigma_e} = 0.06$

PREDICTION MODELS

PREDICTION MODELS TUNED

NNETAR(p, k) was chosen due to its ability to:

- model nonlinear dynamics;
- and possible seasonality.

Fine tuning process:

 p = k = 30 are imposed to the neural network, so that it can capture the monthly variation and the nature of the nonlinear dynamics of the data

Product ID	NNETAR(30, 30)
P_1	$\widehat{\sigma_e} = 2.67 \times 10^{-5}$
P_2	$\widehat{\sigma_e} = 4.74 \times 10^{-5}$
P_3	$\widehat{\sigma_e} = 7.59 \times 10^{-5}$
P_4	$\widehat{\sigma_e} = 1.54 \times 10^{-4}$
P_5	$\widehat{\sigma_e} = 1.00 \times 10^{-4}$
P_6	$\widehat{\sigma_e} = 9.82 \times 10^{-3}$
P_7	$\widehat{\sigma_e} = 2.95 \times 10^{-4}$
P_8	$\widehat{\sigma_e} = 7.28 \times 10^{-5}$
P_9	$\widehat{\sigma_e} = 8.26 \times 10^{-5}$

'SALES.CSV' DATASET

Plot of the products revenue forecast

- Nonstationary
- Nonlinear
- Dimensionality reduction

Plot of payment type

Diurnal: blue line (12am --- 12pm)
Nocturnal: red line (12pm --- 12am)

No differentiation between diurnal and nocturnal

Competitors prices plots

Diurnal: blue line (12am --- 12pm) Nocturnal: red line (12pm --- 12am)

No differentiation between diurnal and nocturnal

Plot of the products revenue

Diurnal: blue line (12am --- 12pm)
Nocturnal: red line (12pm --- 12am)

No differentiation between diurnal and nocturnal

Plot of the products revenue forecast

PREDICTION MODELS TUNED

NNETAR(p, k) was chosen due to its ability to:

- model nonlinear dynamics;
- and possible seasonality.

Fine tuning process:

 p = k = 30 are imposed to the neural network, so that it can capture the monthly variation and the nature of the nonlinear dynamics of the data

Product ID	NNETAR(30, 30)
P_1	$\widehat{\sigma_e} = 1.01 \times 10^{-3}$
P_2	$\widehat{\sigma}_e = 4.05 \times 10^{-3}$
P_3	$\widehat{\sigma}_{e} = 4.03 \times 10^{-3}$
P_4	$\widehat{\sigma_e} = 5.61 \times 10^{-3}$
P_5	$\widehat{\sigma_e} = 5.77 \times 10^{-4}$
P_6	$\widehat{\sigma}_e = 1.29 \times 10^{-2}$
P_7	$\widehat{\sigma}_e = 8.92 \times 10^{-3}$
P_8	$\widehat{\sigma}_{e} = 5.19 \times 10^{-3}$
P_9	$\widehat{\sigma_e} = 5.37 \times 10^{-3}$

COMPARISON BETWEEN PREDICTION MODELS

B2W

Product ID	NNETAR(30, 30)
P_1	$\widehat{\sigma_e} = 2.67 \times 10^{-5}$
P_2	$\widehat{\sigma_e} = 4.74 \times 10^{-5}$
P_3	$\widehat{\sigma_e} = 7.59 \times 10^{-5}$
P_4	$\widehat{\sigma_e} = 1.54 \times 10^{-4}$
P_5	$\widehat{\sigma_e} = 1.00 \times 10^{-4}$
P_6	$\widehat{\sigma_e} = 9.82 \times 10^{-3}$
P_7	$\widehat{\sigma_e} = 2.95 \times 10^{-4}$
P_8	$\widehat{\sigma_e} = 7.28 \times 10^{-5}$
P_9	$\widehat{\sigma_e} = 8.26 \times 10^{-5}$

COMPETITORS

Product ID	NNETAR(30, 30)
P_1	$\widehat{\sigma_e} = 1.01 \times 10^{-3}$
P_2	$\widehat{\sigma_e} = 4.05 \times 10^{-3}$
P_3	$\widehat{\sigma_e} = 4.03 \times 10^{-3}$
P_4	$\widehat{\sigma_e} = 5.61 \times 10^{-3}$
P_5	$\widehat{\sigma_e} = 5.77 \times 10^{-4}$
P_6	$\widehat{\sigma_e} = 1.29 \times 10^{-2}$
P_7	$\widehat{\sigma_e} = 8.92 \times 10^{-3}$
P_8	$\widehat{\sigma_e} = 5.19 \times 10^{-3}$
P_9	$\widehat{\sigma_e} = 5.37 \times 10^{-3}$

CONCLUSIONS

- The predictive models developed for B2W outperforms those for the competition
 - Higher quality of measure (low additive noise)
- More work needs to be done to fine tuning of the model
 - Adjustment with interest rate, taxes, market etc.