Appendix: Mathematical Derivations for Recursive Kernel Model (Ilianne's Law)

1. Recursive Kernel Formalism

Let the field $\psi(x, t)$ evolve under a memory-integrated operator:

$$\psi(t) = \psi_0 + \int_0^t K(t - t') \psi(t') dt'$$

Where K(t - t') is the memory kernel representing recursive feedback. The system becomes non-Markovian and history-dependent.

2. Laplace Domain Transformation

Transform to Laplace domain:

$$\mathcal{L}\{\phi(t)\} = \psi(s) = \psi_0 / (1 - K(s))$$

Where:

$$K(s) = \mathcal{L}\{K(t)\} = \int_0^\infty e^{-st} K(t) dt$$

Resonance condition:

Instability when 1 - $K(s) = 0 \Rightarrow \text{pole in } \psi(s)$

This defines conditions for resonance or recursive blow-up.

3. Recursive Coupling in Angular Harmonics

Assume harmonic expansion of source field:

$$S(k, \tau) = \Sigma_{\ell,m} a_{\ell,m}(\tau) Y_{\ell,m}(k)$$

Recursive evolution with memory kernel:

S_Ilianne(k,
$$\tau$$
) = S(k, τ) + $\int_0^{\Lambda} \tau K(\tau - \tau') S(k, \tau') d\tau'$

Now consider recursive coupling of harmonic modes:

$$Y_{\ell 1} m1 Y_{\ell 2} m2 = \Sigma_{\ell,m} \langle \ell 1 m1 \ell 2 m2 | \ell m Y_{\ell m} \rangle$$

4. Recursive Modulation of Power Spectrum

Angular power spectrum:

$$C_{\ell} = \langle |a_{\ell}|^2 \rangle$$

Under recursive modulation:

$$C_{\ell}(\tau) = C_{\ell}(0) + \int_{0}^{\Lambda} \tau K(\tau - \tau') C_{\ell}(\tau') d\tau'$$

In Clebsch-weighted form:

$$C_{\ell}(\tau) = \sum_{\ell} \{\ell 1, \ell 2\} \langle \ell 1, \ell 2, \ell | \ell \rangle^2 \int K(\tau - \tau') C_{\ell}(\ell 1) \langle \tau', \ell | \ell \rangle d\tau'$$

5. Isochoric Instability Threshold

Under volume constraint:

 $dV_{-\psi}/dt = 0 \Rightarrow$ no energy dissipation

Recursive accumulation:

$$\psi(x, t) = \psi_0(x) + \int_0^{\infty} t K(t - t') \psi(x, t') dt'$$

Singularity emerges when:

$$\lim 2 \to tc \, \partial^2 \psi / \partial t^2 \to \infty$$

This defines a blow-up condition in recursive systems, analogous to gravitational collapse.

6. Recursive Multipole Modulation (CMB)

Define modulated spectrum:

$$C_{\ell}^{-1}$$
Ilianne = $C_{\ell}^{-1} \Lambda CDM \cdot [1 + \varepsilon_{\ell} \cos(\omega_{\ell} B + \delta_{\ell})]$

Where:

 ϵ_{ℓ} : modulation amplitude

 $ω_{\ell}$: lattice frequency

 δ_{ℓ} : phase offset

B: global curvature constraint

This reproduces observed low- ℓ anomalies (multipole suppression, Axis of Evil).

Summary of Derivation Tools

Domain	Equation Component	Role
Time Evolution	$\psi(s) = \psi_0 / [1 - K(s)]$	Memory-stability criterion (Laplace domain)
Angular Coupling	CG-weighted recursion	Multipole transitions in CMB harmonics
Spectral Modulation	$C_{\ell} = C_{\ell} + \int K C_{\ell}$	Recursive evolution of angular power spectrum
Collapse Condition	$\partial^2 \psi$ / $\partial t^2 \rightarrow \infty$	Isochoric singularity (runaway feedback)
Physical Kernel	$K(\tau - \tau')$: exp, power-law, etc.	Kernel form determines feedback signature