Table of Contents

- 1. Section 1
 - 1.1 Overview
 - 1.2 Data Preprocessing
- 1. Section 2
 - 2.1 Graph of Price vs Banner
 - 2.2 Graph of Price vs Region
 - 2.3 Graph of Price vs Banner and Region
 - 2.4 Graph of Price vs Banner, Region and Date
 - 2.5 Conclusions

Section 1

Overview

This report explores the aggregated data regarding the prices of the products found in different supermarkets (described here as Banner) in different regions of the United States.

The final form of the dataset is obtained after joining together three separate files namely stores.json, prices.csv and auditors.csv. The dataset contains 6 different supermarket chains namely Walmart, Wegmans, Whole Foods Trader Joes, Safeway and Kroger and 5 different regions namely New York, Northern California, Kansas, Texas and Hawaii. The data is recorded over a period of 14 days from 16th October 2017 to 29th October 2017.

Data Preprocessing

Loading required libraries

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        import statsmodels.formula.api as smf
        import statsmodels.api as sm
        from matplotlib.collections import PatchCollection
        import matplotlib.patches as mpatches
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
        plt.style.use('classic')
        plt.style.use('ggplot')
        plt.style.use('seaborn-whitegrid')
        plt.style.use('seaborn')
```

Loading 'stores' json file

```
stores = pd.read_json("stores.json")
In [3]:
          stores.head()
Out[3]:
                                     Region Store ID
                   Banner
           0
                  Walmart Northern California
                                               66999
               Trader Joes
                           Northern California
                                                4698
           2
                  Safeway
                          Northern California
                                               39482
              Whole Foods Northern California
                                               34957
                  Walmart
                                   New York
                                               12837
```

Loading the 'prices' and 'auditors' csv files

```
In [4]: auditors = pd.read_csv("auditors.csv")
prices = pd.read_csv("prices.csv")
```

```
In [5]:
           auditors.head()
Out[5]:
               Auditor ID
                          First
                                     Last
                                                     Region
            0
                     234
                                   Smith
                                           Northern California
                           Sue
            1
                     536
                           Bob
                                   Smith
                                           Northern California
            2
                      98
                           Jack
                                   Smith
                                                   New York
            3
                     203
                             Jill
                                    Smith
                                                   New York
                     304
                          Jerry
                                 Johnson
                                                      Texas
In [6]:
           prices.head()
Out[6]:
                                                           UPC
               Auditor ID
                              Date
                                    Price
                                           Store ID
            0
                     234
                          10/18/17
                                    24.95
                                              66999
                                                      268588472
            1
                     234
                          10/27/17
                                    49.71
                                              66999
                                                     475245085
                     234
                                    25.75
            2
                          10/20/17
                                              66999
                                                      126967843
            3
                     234
                          10/23/17
                                    18.81
                                              66999
                                                      708930835
                          10/23/17
                     234
                                    33.32
                                              66999
                                                      325885139
```

Creating an outer join on auditors and prices dataframes on the key 'Auditor ID'

```
auditors prices merged = pd.merge(auditors, prices, on = "Auditor ID", how =
In [7]:
          "outer")
          auditors_prices_merged.head()
In [8]:
Out[8]:
              Auditor ID
                                                                  Price
                                                                                        UPC
                         First
                                Last
                                                Region
                                                            Date
                                                                         Store ID
           0
                    234
                          Sue
                               Smith
                                      Northern California
                                                         10/18/17
                                                                  24.95
                                                                           66999
                                                                                  268588472
           1
                    234
                          Sue
                               Smith
                                      Northern California
                                                         10/27/17
                                                                  49.71
                                                                           66999
                                                                                  475245085
           2
                    234
                               Smith
                          Sue
                                      Northern California
                                                         10/20/17
                                                                  25.75
                                                                           66999
                                                                                   126967843
           3
                    234
                          Sue
                               Smith
                                      Northern California
                                                         10/23/17
                                                                  18.81
                                                                           66999
                                                                                   708930835
                    234
                          Sue
                               Smith
                                      Northern California
                                                         10/23/17
                                                                  33.32
                                                                                   325885139
                                                                           66999
```

Creating an outer join on the previously merged dataframe 'auditors_prices_merged' and stores dataframe on the key 'Store ID'

```
In [9]: final_df = pd.merge(auditors_prices_merged, stores, on = "Store ID", how = "ou
ter")
```

Converting UPC and Auditor ID from float type to int type

NaN

NaN

NaN

NaN

0

NaN

NaN

NaN

NaN

12321

12322

12323

12324

these rows

```
In [10]:
          final df['UPC'] = final df['UPC'].fillna(0.0).astype(int)
          final df['Auditor ID'] = final df['Auditor ID'].fillna(0.0).astype(int)
          final df.loc[final df['Region y'] == 'Hawaii']
In [11]:
Out[11]:
                 Auditor ID
                          First Last Region_x
                                               Date
                                                    Price
                                                          Store ID UPC
                                                                            Banner
                                                                                    Region_y
           12319
                           NaN
                                                     NaN
                                                            29342
                                NaN
                                          NaN
                                               NaN
                                                                     0
                                                                            Walmart
                                                                                       Hawaii
           12320
                        0
                           NaN
                                NaN
                                          NaN
                                               NaN
                                                     NaN
                                                             11123
                                                                     0
                                                                         Trader Joes
                                                                                       Hawaii
```

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

39284

40582

59582

50692

0

0

0

Wegmans

Safeway

Kroger

Whole Foods

Hawaii

Hawaii

Hawaii

Hawaii

We see that the location 'Hawaii' more or less has all its values as NA values. Hence, I have decided to exclude

NaN

NaN

NaN

NaN

In [12]: final_df.loc[final_df['Banner'] == 'Kroger']
Out[12]:

	Auditor ID	First	Last	Region_x	Date	Price	Store ID	UPC	Banner	Region_y
12315	0	NaN	NaN	NaN	NaN	NaN	6746	0	Kroger	Northern California
12316	0	NaN	NaN	NaN	NaN	NaN	77955	0	Kroger	New York
12317	0	NaN	NaN	NaN	NaN	NaN	66356	0	Kroger	Texas
12318	0	NaN	NaN	NaN	NaN	NaN	99997	0	Kroger	Kansas
12324	0	NaN	NaN	NaN	NaN	NaN	50692	0	Kroger	Hawaii

We see that the banner 'Kroger' more or less has all its values as NA values. Hence, I have decided to exclude these rows

```
In [13]: final_df = final_df[final_df.Banner != 'Kroger']
  final_df = final_df[final_df.Region_y != 'Hawaii']
```

After joining all the dataframes together, I decided to drop the 'Region_x' column, the reason being the column 'Region_y' comes from the 'stores' dataframe and hence will provide a more accurate location of a store, as compared to the column 'Region_x' column which only gives the location of the store visited by the Auditor.

Also, for Question 1, I created a new dataframe called 'answer_df' and to obtain the desired output, I have dropped the additional columns of 'First', 'Last', 'Date'

```
answer_df = final_df.drop(columns=['Region_x', 'First', 'Last'])
In [14]:
           final df = final df.drop(columns=['Region x'])
In [15]:
           final_df.head()
Out[15]:
               Auditor ID
                         First
                                Last
                                         Date
                                               Price
                                                      Store ID
                                                                     UPC
                                                                           Banner
                                                                                           Region_y
            0
                     234
                          Sue
                               Smith 10/18/17
                                               24.95
                                                        66999
                                                               268588472
                                                                          Walmart
                                                                                   Northern California
                          Sue
            1
                    234
                               Smith
                                      10/27/17
                                                                                   Northern California
                                               49.71
                                                        66999
                                                               475245085
                                                                          Walmart
            2
                     234
                               Smith
                                      10/20/17
                                                                          Walmart
                                                                                   Northern California
                          Sue
                                               25.75
                                                        66999
                                                               126967843
                     234
                               Smith 10/23/17
                                                                                   Northern California
            3
                          Sue
                                               18.81
                                                        66999
                                                               708930835
                                                                          Walmart
                    234
                          Sue Smith 10/23/17 33.32
                                                        66999
                                                               325885139 Walmart Northern California
```

Renaming the 'Region_x' column to 'Region'

```
In [16]: final_df = final_df.rename(index=str, columns={"Region_y": "Region"})
    answer_df = answer_df.rename(index=str, columns={"Region_y": "Region"})
    answer_df_copy = answer_df
```

```
In [17]: banner_region_groupby = final_df.groupby(['Banner', 'Region']).mean()
banner_region_groupby
```

Out[17]:

		Auditor ID	Price	Store ID	UPC
Banner	Region				
Safeway	Kansas	1326.0	30.694151	39485	5.017671e+08
	Northern California	98.0	35.292941	39482	5.211833e+08
	Texas	304.0	30.619833	29382	5.106342e+08
Trader Joes	Kansas	1326.0	29.201024	29384	5.098010e+08
	New York	203.0	30.521937	9487	4.952290e+08
	Northern California	536.0	34.376035	4698	5.201408e+08
	Texas	63.0	29.321849	40586	5.059505e+08
Walmart	Kansas	1326.0	27.646769	40593	5.109277e+08
	New York	203.0	28.427648	12837	5.135045e+08
	Northern California	234.0	32.854515	66999	4.932582e+08
	Texas	63.0	27.958877	50495	5.004522e+08
Wegmans	Kansas	713.0	30.276889	3948	5.054505e+08
	New York	98.0	30.885284	2938	5.111262e+08
	Texas	304.0	30.121931	98638	5.055896e+08
Whole Foods	Kansas	713.0	1.989452	39287	5.072501e+08
	New York	98.0	33.834301	50948	5.107961e+08
	Northern California	536.0	38.417573	34957	5.197973e+08
	Texas	304.0	32.823461	98736	5.061820e+08

Creating a pivot table to get the cross-tabulation of regional prices

Out[18]:

Region	UPC	Banner	Kansas	New York	Northern California	Texas
0	11873171	Safeway	NaN	NaN	6.09	5.19
1	11873171	Trader Joes	NaN	NaN	NaN	4.99
2	11873171	Walmart	NaN	NaN	5.53	4.75
3	11873171	Wegmans	NaN	5.19	NaN	5.09
4	11873171	Whole Foods	1.99	5.69	NaN	5.49

Rearranging the columns

Out[19]:

Region	Banner	UPC	Northern California	New York	Kansas	Texas
0	Safeway	11873171	6.09	NaN	NaN	5.19
1	Trader Joes	11873171	NaN	NaN	NaN	4.99
2	Walmart	11873171	5.53	NaN	NaN	4.75
3	Wegmans	11873171	NaN	5.19	NaN	5.09
4	Whole Foods	11873171	NaN	5.69	1.99	5.49

The NA values are introduced in the answer_df dataframes because a particular Banner is not present in the given location. If we observe the results of the banner_region_groupby dataframe, we can clearly see, for example, that the banner 'Safeway' is not present in the region 'Northern California'

Checking the data types of the columns

Exporting the dataframe to an excel file

```
In [22]: answer_df.to_excel("output.xlsx")
```

Section 2

<pre>In [23]: final_df.head()</pre>										
Out[23]:		Auditor ID	First	Last	Date	Price	Store ID	UPC	Banner	Region
	0	234	Sue	Smith	10/18/17	24.95	66999	268588472	Walmart	Northern California
	1	234	Sue	Smith	10/27/17	49.71	66999	475245085	Walmart	Northern California
	2	234	Sue	Smith	10/20/17	25.75	66999	126967843	Walmart	Northern California
	3	234	Sue	Smith	10/23/17	18.81	66999	708930835	Walmart	Northern California
	4	234	Sue	Smith	10/23/17	33.32	66999	325885139	Walmart	Northern California

Checking the data types of the columns

```
In [24]: final_df.dtypes
Out[24]: Auditor ID
                          int32
         First
                         object
         Last
                         object
                         object
         Date
                        float64
         Price
         Store ID
                          int64
         UPC
                          int32
         Banner
                         object
         Region
                         object
         dtype: object
```

Converting the 'Date' column to date datatype

```
In [25]: final_df['Date'] = pd.to_datetime(final_df['Date'])
In [26]: final_df.dtypes
Out[26]: Auditor ID
                                 int32
         First
                                object
         Last
                                object
                        datetime64[ns]
         Date
         Price
                               float64
         Store ID
                                 int64
         UPC
                                 int32
         Banner
                                object
         Region
                                object
         dtype: object
```

Checking for NA values in the dataset

In [27]: final_df[final_df.isnull().any(axis=1)]

Out[27]:

	Auditor ID	First	Last	Date	Price	Store ID	UPC	Banner	Region
813	536	Bob	Smith	2017-10-19	48.69	60957	340260209	NaN	NaN
814	536	Bob	Smith	2017-10-29	55.79	60957	749133422	NaN	NaN
815	536	Bob	Smith	2017-10-25	5.99	60957	16999755	NaN	NaN
816	536	Bob	Smith	2017-10-28	11.09	60957	673299284	NaN	NaN
817	536	Bob	Smith	2017-10-27	32.79	60957	204071291	NaN	NaN
818	536	Bob	Smith	2017-10-20	11.79	60957	736014357	NaN	NaN
819	536	Bob	Smith	2017-10-27	15.19	60957	252888653	NaN	NaN
820	536	Bob	Smith	2017-10-21	43.79	60957	676939567	NaN	NaN
821	536	Bob	Smith	2017-10-23	44.59	60957	433536637	NaN	NaN
822	536	Bob	Smith	2017-10-18	60.29	60957	83141336	NaN	NaN
823	536	Bob	Smith	2017-10-20	65.19	60957	797375865	NaN	NaN
824	536	Bob	Smith	2017-10-27	47.99	60957	831639757	NaN	NaN
825	536	Bob	Smith	2017-10-23	20.59	60957	24764365	NaN	NaN
826	536	Bob	Smith	2017-10-25	46.99	60957	870309366	NaN	NaN
827	536	Bob	Smith	2017-10-18	30.29	60957	352180692	NaN	NaN
828	536	Bob	Smith	2017-10-21	23.69	60957	888713764	NaN	NaN
829	536	Bob	Smith	2017-10-17	5.89	60957	11873171	NaN	NaN
830	536	Bob	Smith	2017-10-20	2.19	60957	606513778	NaN	NaN
831	536	Bob	Smith	2017-10-29	5.19	60957	266112120	NaN	NaN
832	536	Bob	Smith	2017-10-25	41.49	60957	774342015	NaN	NaN
833	536	Bob	Smith	2017-10-23	18.49	60957	740153739	NaN	NaN
834	536	Bob	Smith	2017-10-29	46.59	60957	853687097	NaN	NaN
835	536	Bob	Smith	2017-10-25	63.79	60957	987411986	NaN	NaN
836	536	Bob	Smith	2017-10-28	21.99	60957	115104280	NaN	NaN
837	536	Bob	Smith	2017-10-26	39.79	60957	980564443	NaN	NaN
838	536	Bob	Smith	2017-10-18	36.79	60957	130358296	NaN	NaN
839	536	Bob	Smith	2017-10-18	41.69	60957	848280790	NaN	NaN
840	536	Bob	Smith	2017-10-26	62.29	60957	504139198	NaN	NaN
841	536	Bob	Smith	2017-10-26	51.89	60957	764458897	NaN	NaN
842	536	Bob	Smith	2017-10-25	4.29	60957	47174618	NaN	NaN
5433	203	Jill	Smith	2017-10-29	34.99	38472	599921977	NaN	NaN
5434	203	Jill	Smith	2017-10-28	59.19	38472	945973686	NaN	NaN
5435	203	Jill	Smith	2017-10-25	25.39	38472	374144563	NaN	NaN
5436	203	Jill	Smith	2017-10-22	60.89	38472	421428384	NaN	NaN

	Auditor ID	First	Last	Date	Price	Store ID	UPC	Banner	Region
5437	203	Jill	Smith	2017-10-25	14.19	38472	456975266	NaN	NaN
5438	203	Jill	Smith	2017-10-27	18.59	38472	16482322	NaN	NaN
5439	203	Jill	Smith	2017-10-17	55.19	38472	81313305	NaN	NaN
5440	203	Jill	Smith	2017-10-18	7.89	38472	672429356	NaN	NaN
5441	203	Jill	Smith	2017-10-19	33.69	38472	107865183	NaN	NaN
5442	203	Jill	Smith	2017-10-28	58.19	38472	357064541	NaN	NaN
5443	203	Jill	Smith	2017-10-23	55.59	38472	778006625	NaN	NaN
5444	203	Jill	Smith	2017-10-29	28.89	38472	45509167	NaN	NaN
5445	203	Jill	Smith	2017-10-25	27.69	38472	361415663	NaN	NaN
5446	203	Jill	Smith	2017-10-16	10.09	38472	673299284	NaN	NaN
5447	203	Jill	Smith	2017-10-19	19.69	38472	723906184	NaN	NaN
5448	203	Jill	Smith	2017-10-18	25.49	38472	576244412	NaN	NaN
5449	203	Jill	Smith	2017-10-29	18.39	38472	363663062	NaN	NaN
5450	203	Jill	Smith	2017-10-28	58.09	38472	917901226	NaN	NaN
5451	203	Jill	Smith	2017-10-29	59.69	38472	495847520	NaN	NaN
5452	203	Jill	Smith	2017-10-23	57.09	38472	514987291	NaN	NaN
5453	203	Jill	Smith	2017-10-20	45.09	38472	723419379	NaN	NaN
5454	203	Jill	Smith	2017-10-22	9.29	38472	526069074	NaN	NaN
5455	203	Jill	Smith	2017-10-19	14.99	38472	125829867	NaN	NaN
5456	203	Jill	Smith	2017-10-16	0.99	38472	278739906	NaN	NaN
5457	203	Jill	Smith	2017-10-23	39.39	38472	55404606	NaN	NaN
5458	203	Jill	Smith	2017-10-16	32.59	38472	915191199	NaN	NaN
5459	203	Jill	Smith	2017-10-20	8.89	38472	949435750	NaN	NaN
5460	203	Jill	Smith	2017-10-17	12.59	38472	561425157	NaN	NaN
5461	203	Jill	Smith	2017-10-18	47.39	38472	963229417	NaN	NaN
5462	203	Jill	Smith	2017-10-27	37.89	38472	376851918	NaN	NaN

804 rows × 9 columns

Classifying the missing values under the column 'Banner' as 'Undefined'

```
In [28]: final_df['Banner'] = final_df['Banner'].fillna('Undefined')
In [29]: final_df['Region'] = final_df['Region'].fillna('Unknown')
```

Rechecking for any remaining NA values

Graph of Price vs Banner

```
In [31]: banner_groupby = final_df.groupby(['Banner']).mean()
    banner_groupby = banner_groupby.drop(columns=['Auditor ID', 'Store ID', 'UPC'
    ])
    banner_groupby
```

Out[31]:

Price

Banner	
Safeway	31.379302
Trader Joes	30.504743
Undefined	32.920100
Walmart	28.877602
Wegmans	30.465411
Whole Foods	24.111734

```
In [33]: n groups = 6
         mean_price = banner_groupby['Price']
         fig, ax = plt.subplots()
         index = np.arange(n_groups)
         bar width = 0.35
         opacity = 0.4
         error_config = {'ecolor': '0.3'}
         rects1 = ax.bar(index, mean_price, bar_width,
                          alpha=opacity, color='b',
                          label='Mean Price of products')
         ax.set_xlabel('Banner')
         ax.set_ylabel('Mean Price in $')
         ax.set_title('Mean Prices of the products by Banner')
         ax.set xticks(index + bar width / 2)
         ax.set_xticklabels(('Safeway', 'Trader Joes', 'Undefined', 'Walmart', 'Wegman
         s', 'Whole Foods'))
         ax.legend()
         fig.tight_layout()
         fig size = plt.rcParams["figure.figsize"]
         fig_size[0] = 10
         fig size[1] = 8
         plt.rcParams["figure.figsize"] = fig_size
         plt.show()
```


Count of Occurrences of each Banner in the dataset

Whole Foods is the cheapest supermarket according to this graph and it also has the most occurences. There is a high number of undefined values.

Graph of Price vs Regions

```
In [35]: region_groupby = final_df.groupby(['Region']).mean()
    region_groupby = region_groupby.drop(columns=['Auditor ID', 'Store ID', 'UPC'
    ])
    region_groupby
```

Out[35]:

Region	
Kansas	21.390198
New York	30.971137
Northern California	35.437907
Texas	30.084550
Unknown	32.920100

```
In [36]: n groups = 5
         mean_price = region_groupby['Price']
         fig, ax = plt.subplots()
         index = np.arange(n_groups)
         bar width = 0.35
         opacity = 0.4
         error_config = {'ecolor': '0.3'}
         rects1 = ax.bar(index, mean_price, bar_width,
                          alpha=opacity, color='r',
                          label='Mean Price of products')
         ax.set_xlabel('Region')
         ax.set_ylabel('Mean Price in $')
         ax.set_title('Mean Prices of the products by Regions')
         ax.set xticks(index + bar width / 2)
         ax.set_xticklabels(('Kansas', 'New York', 'Northern California', 'Texas', 'Unk
         nown'))
         ax.legend()
         fig.tight_layout()
         fig size = plt.rcParams["figure.figsize"]
         fig_size[0] = 10
         fig size[1] = 8
         plt.rcParams["figure.figsize"] = fig_size
         plt.show()
```


Count of Occurences of each region in the dataset

Northern California is the most expensive state, but the number of values for Northern California in the dataset are less than half of that in Texas and nearly half of values in Texas and Kansas

Graph of Price vs Banner and Region

In [38]: banner_region_groupby = banner_region_groupby.drop(columns=['Auditor ID', 'Sto re ID', 'UPC'])
 banner_region_groupby

Out[38]:

		Price
Banner	Region	
Safeway	Kansas	30.694151
	Northern California	35.292941
	Texas	30.619833
Trader Joes	Kansas	29.201024
	New York	30.521937
	Northern California	34.376035
	Texas	29.321849
Walmart	Kansas	27.646769
	New York	28.427648
	Northern California	32.854515
	Texas	27.958877
Wegmans	Kansas	30.276889
	New York	30.885284
	Texas	30.121931
Whole Foods	Kansas	1.989452
	New York	33.834301
	Northern California	38.417573
	Texas	32.823461

```
In [39]: fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

ax = banner_region_groupby.groupby(['Banner', 'Region'])['Price'].mean().unstack().plot(kind = "bar")
ax.set_xlabel("Banner")
ax.set_ylabel("Mean Price in $")
ax.set_title('Mean Prices of the products by Banner and Region')
```

Out[39]: Text(0.5, 1.0, 'Mean Prices of the products by Banner and Region')

Whole foods which had the cheapest mean price, turns out to be the most expensive supermarket chain in this graph. The scaling factors involved in the price calculations may have affected this increase.

Graph of Price vs Banner, Region and Date

Out[40]:

Region	Kansas							
Date	10/16/17	10/17/17	10/18/17	10/19/17	10/20/17	10/21/17	10/22/17	10/23/17
Banner								
Safeway	30.485082	31.099836	29.465000	30.476275	30.662414	33.213729	32.208605	30.63717
Trader Joes	26.681304	28.752500	27.879286	34.132105	27.790000	34.134118	29.751290	29.34000
Walmart	30.457949	26.186216	29.314444	24.540250	24.598293	25.154889	28.331915	32.74714
Wegmans	29.529394	36.446667	31.405385	28.997407	35.731379	26.601429	29.458966	30.37666
Whole Foods	1.990000	1.990000	1.990000	1.990000	1.990000	1.990000	1.990000	1.99000

5 rows × 56 columns

```
In [41]: store_state_perday_df.columns
```

```
store state perday df temp = store state perday df
          store state perday df temp.columns = store state perday df temp.columns.drople
          vel(0)
          store state perday df temp.head()
Out[42]:
           Date
                    10/16/17
                              10/17/17
                                        10/18/17
                                                 10/19/17
                                                           10/20/17
                                                                     10/21/17
                                                                              10/22/17
                                                                                        10/23/17
             Banner
            Safeway
                    30.485082 31.099836
                                       29.465000
                                                 30.476275
                                                           30.662414
                                                                     33.213729
                                                                              32.208605 30.63717
             Trader
                    26.681304
                              28.752500 27.879286
                                                 34.132105
                                                          27.790000
                                                                     34.134118
                                                                              29.751290
                                                                                        29.34000
               Joes
            Walmart
                    30.457949
                              26.186216 29.314444
                                                 24.540250
                                                           24.598293
                                                                     25.154889
                                                                              28.331915 32.74714
           Wegmans
                    29.529394
                              36.446667
                                        31.405385
                                                 28.997407
                                                           35.731379
                                                                     26.601429
                                                                              29.458966
                                                                                        30.37666
             Whole
                     1.990000
                               1.990000
                                         1.990000
                                                  1.990000
                                                            1.990000
                                                                      1.990000
                                                                                1.990000
                                                                                         1.99000
             Foods
          5 rows × 56 columns
                                                                                             In [43]:
          store state perday df Kansas = store state perday df temp.iloc[:,0:14]
          store state perday df New York = store state perday df temp.iloc[:,14:28]
          store_state_perday_df_Northern_California = store_state_perday_df_temp.iloc[:,
          28:42]
          store state perday df Texas = store state perday df temp.iloc[:,42:]
          store state perday df Kansas['Banner'] = ['Safeway' , 'Trader Joes', 'Walmart'
           'Wegmans', 'Whole Foods']
          store_state_perday_df_New_York['Banner'] = ['Safeway' , 'Trader Joes', 'Walmar
          t', 'Wegmans', 'Whole Foods']
          store state perday df Northern California['Banner'] = ['Safeway' , 'Trader Joe
          s', 'Walmart', 'Wegmans', 'Whole Foods']
          store state perday df Texas['Banner'] = ['Safeway' , 'Trader Joes', 'Walmart',
```

Graph of Price vs Banner, Region and Date for Kansas

'Wegmans', 'Whole Foods'l

In [44]: store_state_perday_df_Kansas = store_state_perday_df_Kansas.transpose().reset_
index()
store_state_perday_df_Kansas.head()

Out[44]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	30.4851	26.6813	30.4579	29.5294	1.99
1	10/17/17	31.0998	28.7525	26.1862	36.4467	1.99
2	10/18/17	29.465	27.8793	29.3144	31.4054	1.99
3	10/19/17	30.4763	34.1321	24.5403	28.9974	1.99
4	10/20/17	30.6624	27.79	24.5983	35.7314	1.99

```
In [45]: store_state_perday_df_Kansas.columns
```

```
In [46]: for col in store_state_perday_df_Kansas.columns:
    if (col != 'Date'):
        store_state_perday_df_Kansas[col] = pd.to_numeric(store_state_perday_d
    f_Kansas[col], errors='coerce')
    store_state_perday_df_Kansas.dtypes
```

Out[46]: Banner

Date object
Safeway float64
Trader Joes float64
Walmart float64
Wegmans float64
Whole Foods float64
dtype: object

In [47]: store_state_perday_df_Kansas.head()

Out[47]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	30.485082	26.681304	30.457949	29.529394	1.99
1	10/17/17	31.099836	28.752500	26.186216	36.446667	1.99
2	10/18/17	29.465000	27.879286	29.314444	31.405385	1.99
3	10/19/17	30.476275	34.132105	24.540250	28.997407	1.99
4	10/20/17	30.662414	27.790000	24.598293	35.731379	1.99

```
In [48]: fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

ax = store_state_perday_df_Kansas.plot(kind = "bar")
ax.set_xlabel("Days (0 is 10/16 to 13 being 10/29)")
ax.set_ylabel("Mean Price in $")
ax.set_title('Mean Prices of the products by Banner and Date in Kansas')
```

Out[48]: Text(0.5, 1.0, 'Mean Prices of the products by Banner and Date in Kansas')

The graph suggests that the data for Whole Foods has some anomalies. Trader Joe has always been on the expensive end while Walmart is on the cheaper end.

Graph of Price vs Banner, Region and Date for New York

In [49]: store_state_perday_df_New_York = store_state_perday_df_New_York.transpose().re
 set_index()
 store_state_perday_df_New_York.head()

Out[49]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	NaN	26.8094	31.502	33.2407	27.8192
1	10/17/17	NaN	36.4757	27.316	31.4883	36.5313
2	10/18/17	NaN	31.3823	28.5716	30.0504	32.8985
3	10/19/17	NaN	30.73	28.8984	33.2305	37.7304
4	10/20/17	NaN	26.4689	28.1167	33.59	33.8802

```
In [50]: store_state_perday_df_New_York.columns
```

```
In [51]: for col in store_state_perday_df_New_York.columns:
    if (col != 'Date'):
        store_state_perday_df_New_York[col] = pd.to_numeric(store_state_perday
    _df_New_York[col], errors='coerce')
    store_state_perday_df_New_York.dtypes
```

Out[51]: Banner

Date object
Safeway float64
Trader Joes float64
Walmart float64
Wegmans float64
Whole Foods float64
dtype: object

In [52]: store_state_perday_df_New_York.head()

Out[52]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	NaN	26.809355	31.501967	33.240685	27.819167
1	10/17/17	NaN	36.475714	27.315965	31.488333	36.531270
2	10/18/17	NaN	31.382308	28.571562	30.050377	32.898475
3	10/19/17	NaN	30.730000	28.898393	33.230506	37.730351
4	10/20/17	NaN	26.468947	28.116667	33.590000	33.880164

```
In [53]: fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

ax = store_state_perday_df_New_York.plot(kind = "bar")
ax.set_xlabel("Days (0 is 10/16 to 13 being 10/29)")
ax.set_ylabel("Mean Price in $")
ax.set_title('Mean Prices of the products by Banner and Date in New York')
```

Out[53]: Text(0.5, 1.0, 'Mean Prices of the products by Banner and Date in New York')

Whole Foods is the most expensive of all. Wegmans and Trader Joe are approximately the similar priced supermarkets.

Graph of Price vs Banner, Region and Date for Northern California

In [54]: store_state_perday_df_Northern_California = store_state_perday_df_Northern_Cal
 ifornia.transpose().reset_index()
 store_state_perday_df_Northern_California.head()

Out[54]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	31.7627	28.115	33.1339	NaN	38.8724
1	10/17/17	39.09	35.675	31.4156	NaN	40.4438
2	10/18/17	33.1061	34.5307	31.4621	NaN	39.0442
3	10/19/17	35.8712	34.1355	34.7579	NaN	32.69
4	10/20/17	34.7639	35.859	36.9828	NaN	36.0726

```
In [55]: store_state_perday_df_Northern_California.columns
```

In [56]: for col in store_state_perday_df_Northern_California.columns:
 if (col != 'Date'):
 store_state_perday_df_Northern_California[col] = pd.to_numeric(store_s
 tate_perday_df_Northern_California[col], errors='coerce')
 store_state_perday_df_Northern_California.dtypes

Out[56]: Banner

Date object
Safeway float64
Trader Joes float64
Walmart float64
Wegmans float64
Whole Foods float64
dtype: object

In [57]: store_state_perday_df_Northern_California.head()

Out[57]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	31.762727	28.115000	33.133939	NaN	38.872353
1	10/17/17	39.090000	35.675000	31.415600	NaN	40.443846
2	10/18/17	33.106129	34.530741	31.462059	NaN	39.044167
3	10/19/17	35.871250	34.135455	34.757857	NaN	32.690000
4	10/20/17	34.763913	35.858966	36.982813	NaN	36.072609

```
In [58]: fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

ax = store_state_perday_df_Northern_California.plot(kind = "bar")
ax.set_xlabel("Days (0 is 10/16 to 13 being 10/29)")
ax.set_ylabel("Mean Price in $")
ax.set_title('Mean Prices of the products by Banner and Date in Northern California')
```

Out[58]: Text(0.5, 1.0, 'Mean Prices of the products by Banner and Date in Northern Ca lifornia')

Safeway appears to be the cheapest while Walmart and Trader Joe's prices are comparable over 14 days.

Graph of Price vs Banner, Region and Date for Texas

Out[59]:

Banner	Date	Safeway	Trader Joes	Walmart	Wegmans	Whole Foods
0	10/16/17	28.3466	31.5797	23.9248	30.6997	32.321
1	10/17/17	30.9824	27.2004	23.9733	31.1567	27.4217
2	10/18/17	29.7918	31.2957	29.0126	29.9064	30.89
3	10/19/17	31.9621	30.6268	30.4021	31.1829	36.4423
4	10/20/17	29.6278	26.3485	31.4683	27.6915	35.5997

```
In [60]: store_state_perday_df_Texas.columns
```

```
In [61]: for col in store_state_perday_df_Texas.columns:
    if (col != 'Date'):
        store_state_perday_df_Texas[col] = pd.to_numeric(store_state_perday_df
    _Texas[col], errors='coerce')
    store_state_perday_df_Texas.dtypes
```

Out[61]: Banner

Date object
Safeway float64
Trader Joes float64
Walmart float64
Wegmans float64
Whole Foods float64

dtype: object

```
In [62]: fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 12
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

ax = store_state_perday_df_Texas.plot(kind = "bar")
ax.set_xlabel("Days (0 is 10/16 to 13 being 10/29)")
ax.set_ylabel("Mean Price in $")
ax.set_title('Mean Prices of the products by Banner and Date in Texas')
```

Out[62]: Text(0.5, 1.0, 'Mean Prices of the products by Banner and Date in Texas')

From all the four graphs we can conlcude that the prices fell by the end of the 14th day. In 31st October 2017 was Halloween's and that could be one of the reasons so as to attract customers on the weekend just before it.

Conclusions

- 1) More information on store scaling factor and regional scaling factor can give us more insights on a few things observed in the graphs above. For example, the mean price of Whole Foods is the lowest of all, but when grouped with region, Whole Foods is the most expensive retail store. The reason behind this could be clearer given the above mentioned scaling factors.
- 2) With more details about a particular product, we can be able derive more insights from the data, to see if a particular product category is more expensive in other states even if other categories in that state are cheaper and so on.