

Project CyberSym

Your wish is my command – if you fulfill mine.

A simulation approach to Stafford Beer's CyberSyn Project

Janosch Haber

Supervisor: Dr. Roberto Valenti

Content

- 1) Historical Background
- 2) Research Relevance
- 3) Project Approach
- 4) Results
- 5) Future Work

References

Project CyberSyn (1971)

Cybernetics and Synergy

Goal: Automatically controlling the Chilean industry based on Stafford Beer's **Viable Systems Model**

Project CyberSyn (1971)

Cybernetics and **Syn**ergy

Goal: Automatically controlling the Chilean industry based on Stafford Beer's **Viable Systems Model**

Approach:

- 1) Autonomous Instances
- 2) Multi-level Control
 - => Cybernetic self-regulation

Project CyberSyn (1971)

Cybernetics and Synergy

Goal: Automatically controlling the Chilean industry based on Stafford Beer's **Viable Systems Model**

Approach:

- 1) Autonomous Instances
- 2) Multi-level Control
 - => Cybernetic self-regulation

The Venus Project (1994) Resource-Based Economy

Goal: "A system in which all goods and services are available without the use of money, credits, barter, or any other form of debt or servitude."

The Venus Project (1994) Resource-Based Economy

Goal: "A system in which all goods and services are available without the use of money, credits, barter, or any other form of debt or servitude." 4

Approach:

- Economy based on Resource Availability
 - => Demand determines value

Project CyberSym (2015)

Cybernetics and Symbiosis

Goal: Provide a first assessment on whether Project CyberSyn's approach would have been feasible

Research Question:

Under which conditions can system self-sustainability emerge from within the autonomous collective?

=> Simulation Approach

Method

- Determine the most central features of the system
- Create an abstract representation
- 3) Implement the model in a computer simulation
- 4) Investigate different parameters
- 5) Evaluate **results**

1) Environment with Resources

- 1) Environment with Resources
- 2) Static Agents (limited Range)

- 1) Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)

- 1) Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)
- 4) Distribution of Requests

- 1) Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)
- 4) Distribution of Requests

- 1) Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)
- 4) Distribution of Requests
- 5) Evaluation of Availability

- Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)
- 4) Distribution of Requests
- 5) Evaluation of Availability
- 6) Distribution of Resources

- Environment with Resources
- 2) Static Agents (limited Range)
- 3) Generation of Demand (Wishes)
- 4) Distribution of Requests
- 5) Evaluation of Availability
- 6) Distribution of Resources
- 7) Assembly of partial Products + Transport

1) EVALUATE ENVIRONMENT

EVALUATE ENVIRONMENT
 GENERATE JOB LIST

- 1) EVALUATE ENVIRONMENT
 - 2) GENERATE JOB LIST
 - 3) DETERMINE POSSIBLE ACTIONS
 - A) Resource Extraction
 - B) Product Assembly
 - C) Delivery

- 1) EVALUATE ENVIRONMENT
 - 2) GENERATE JOB LIST
 - 3) DETERMINE POSSIBLE ACTIONS
 - A) Resource Extraction
 - B) Product Assembly
 - C) Delivery
 - 4) RATE OPTIONS
 - A) Request Urgency
 - B) Resource Availability
 - C) Requester Distance

- 1) EVALUATE ENVIRONMENT
 - 2) GENERATE JOB LIST
 - 3) DETERMINE POSSIBLE ACTIONS
 - A) Resource Extraction
 - B) Product Assembly
 - C) Delivery
 - 4) RATE OPTIONS
 - A) Request Urgency
 - B) Resource Availability
 - C) Requester Distance
 - 5) PERFORM BEST ACTION

- 1) EVALUATE ENVIRONMENT
 - 2) GENERATE JOB LIST
 - 3) DETERMINE POSSIBLE ACTIONS
 - A) Resource Extraction
 - B) Product Assembly
 - C) Delivery
 - 4) RATE OPTIONS
 - A) Request Urgency
 - B) Resource Availability
 - C) Requester Distance
 - 5) PERFORM BEST ACTION

Computer Simulation (Repast Simphony)

Number of active Agents for different Deadline Periods

Calculated over 10 iterations.

Parameter settings: 10 agents, 35x35 grid, 130 sources, 12h work/day and adaptive scope

Number of Wishes fulfilled per Agent for different Deadline Periods

Calculated over 10 iterations. Parameter settings: 10 agents, 35x35 grid, 130 sources, 12h work/day and adaptive scope

Average Production Cost Ratio for different Deadline Periods

Calculated over 10 iterations.

Parameter settings: 10 agents, 35x35 grid, 130 sources, 12h work/day and adaptive scope

System Behavior over time

For 24 hours. Calculated over 10 iterations. Parameter settings: 10 agents, 35x35 grid, 130 sources, 12h work/day and adaptive scope

System Behavior over time

For 84 hours. Calculated over 10 iterations. Parameter settings: 10 agents, 35x35 grid, 130 sources, 12h work/day and adaptive scope

Number of active Agents for different Resource Availability

Calculated over 10 iterations. Parameter settings: 10 agents, 35x35 grid, 72h deadline with 12h work/day and adaptive scope

Number of available Sources

→ 26 **→** 52 **→** 78 **→** 104 **→** 130 **→** 165

Number of Wishes fulfilled per Agent for different Resource Availability

Calculated over 10 iterations.

Parameter settings: 10 agents, 35x35 grid, 72h deadline with 12h work/day and adaptive scope

Number of available Sources

Average Production Cost Ratio for different Resource Availability

Calculated over 10 iterations.

Parameter settings: 10 agents, 35x35 grid, 72h deadline with 12h work/day and adaptive scope

→ 26 **→** 52 **→** 78 **→** 104 **→** 130 **→** 165

Division of total Agent Behavior during a complete simulation run

Parameter settings: 10 agents, 35x35 grid, 72h deadline with 12h work/day and adaptive scope

Agents

Number of active Agents for different Populations Sizes

Interval of ticks

Number of agents at simulation start

Agents

Number of Wishes fulfilled per Agent for different Populations Sizes

Calculated over 10 iterations.

Parameter settings: 35x35 grid, 26 sources, 72h deadline with 12h work/day and adaptive scope

Number of agents at simulation start

Agents

Average Production Cost Ratio for different Populations Sizes

Calculated over 10 iterations.

Parameter settings: 35x35 grid, 26 sources, 72h deadline with 12h work/day and adaptive scope

Number of agents at simulation start

Agents

System Behavior over time for different Populations Sizes

For 2 initial agents. Calculated over 10 iterations. Parameter settings: 35x35 grid, 26 sources, 72h deadline with 12h work/day and adaptive scope

Agents

System Behavior over time for different Populations Sizes

For 22 initial agents. Calculated over 10 iterations. Parameter settings: 35x35 grid, 26 sources, 72h deadline with 12h work/day and adaptive scope

Conclusions

 Resource availability and demand distribution determine system sustainability

Also: Even in scarce environments can networks of certain size develop **self-sustainability**

Conclusions

 Resource availability and demand distribution determine system sustainability
 Also: Even in scarce environments can networks of certain size develop self-sustainability

 A certain basis level of resource availability is necessary to preserve a larger group of agents
 And: Higher resource availability decreases the average production cost ratio

Conclusions

 Resource availability and demand distribution determine system sustainability
 Also: Even in scarce environments can networks of certain size develop self-sustainability

- A certain basis level of resource availability is necessary to preserve a larger group of agents
 And: Higher resource availability decreases the average production cost ratio
- Different weighing of rating functions impacts the average production cost ratio

Future Work

- Thoroughly test the influence of the different rating functions
- Assess model performance on large scale simulation runs

Future Work

- Thoroughly test the influence of the different rating functions
- Assess model performance on large scale simulation runs
- Implement real-world production cost determination processes
- Replace the static intelligence heuristics by true cybernetic/ML evaluation functionality
- Implement higher and lower levels of the viable system model

Project CyberSym

Your wish is my command — if you fulfill mine. A simulation approach to Stafford Beer's CyberSyn Project

Janosch Haber Supervisor: Dr. Roberto Valenti

Image Sources

- 1) http://www.vanityfair.fr/uploads/images/201506/dc/vf stafford beer 2180.png
- 2) Based on Medina (2006, p. 21)
- 3) https://www.singularityweblog.com/wp-content/uploads/2013/05/Jacque-Fresco-Venus-Project.jpg
- 4) https://www.thevenusproject.com/en/about/the-venus-project
- 5) Taken from Gershenson (2005)
- 6) http://repast.sourceforge.net/images/Repast logo 100h.png
- 7) Graph generated with https://graphsketch.com/

Modelling Assumptions

- Products are represented through words that can be assembled from letter Resources
- Agents can only contact other Agents and extract Resources within a limited range
- All actions within this range have a cost of 1
- Action utility rating is based on
 - Request Urgency
 - Resource Availability
 - Delivery Distance

Modelling Assumptions

- All Sources are regenerative
- Agents select the highest rating possible action
- Agents can contact requesters to validate active requests
- Optimal production cost = 2n-1 where n is the product size
- Re-use of parts still increases the production cost ratio

Letter Distribution (Resource Availability)

Heuristic Intelligence (Static approach)

