Code No: 13MTE1007 SET-1 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech I Semester Regular / Supplementary Examinations, February-2016

SOLAR ENERGY TECHNOLOGY (Thermal Engineering)

Time: 3 hours Max Marks: 60

Answer any FIVE questions All questions carry equal marks

1.	(a) (b)	Explain the importance of solar energy in the current energy scenario in India? Derive the expression for average solar radiation on a tilted surface?	[6M] [6M]
2.	(a) (b)	Explain about the principle of solar collector system and what are its types? Explain the Construction and operation of liquid flat plate collector?	[6M] [6M]
3.	(a) (b)	Explain about Heat transport system in a solar water heating system? Explain about solar distributed receiver system in a solar water heating system?	[6M] [6M]
4.	(a)	Explain about different methods for sensible heat storage using solids and	[6M]
	(b)	Liquids? Explain about the construction and principle of working of packed bed storage?	[6M]
5.	(a) (b)	What are the applications and limitations of latent bed storage? Write short notes on Solar Ponds and Solar Refrigeration?	[6M]
6.	(a)	What is the significance of a pn junction in the operation of a PV device?	[6M]
	(b)	Explain? Discuss the effect of illumination intensity and load resistance on the performance of a PV cell.	[6M]
7.		What is payback period and how it is calculated.	[12M]
8.		Explain about the cost based analysis of water heating and photo voltaic applications.	[12M]

Code No: 13MPE1005 SET2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M. Tech. I Semester Regular/Supplementary Examinations, February-2016

MODERN CONTROL THEORY (Power Electronics and Electric Drives)

Time: 3 Hours Max Marks: 60

Answer any FIVE questions All questions carry EQUAL marks

- 1. a) Define and explain state, state variable, trajectory and portrait.
 - b) Derive the solution of Non-homogeneous state equations.
- 2. a) Explain the significance of Jordon canonical approach.
 - b) Comment upon controllability and observability of the following state model

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}$$

- 3. a) Explain in detail about Backlash and Saturationnonlinearities.
 - b) Define and explain the significance of equilibrium points.
- 4. a) draw the phase plane trajectory for the following equation using isocline method $\ddot{x} + 2\xi\omega\dot{x} + \omega^2x = 0$ given $\xi = 0.5$ and $\omega = 1$, initial point (0, 6).
 - b) Explain the Isocline method for construction of phase trajectory.
- 5. a) Explain the Lyapunov global stability theorem.
 - b) Determine the stability of the equilibrium state of the following system $\dot{x_1} = 3x_1 + 2x_2$ $\dot{x_2} = -x_1 x_2 x_2^2$ using Lyapunov's method
- 6. a) consider the non-linear system described by the equation $\dot{x_1} = x_2$

$$\dot{x_2} = -x_1^2 x_2 - 2x_1^2$$

By using Krasovskii's method, investigate the stability of the system.

- b) Explain the Lyapunov's instability theorem.
- 7. Linear quadratic regulator problem described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

and has a performance index $J = \int_0^\infty \left[x^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + u^2 \right] dt$ determine the i)

the riccati matrix P (ii) the state feedback matrix K (iii) the closed loop eigen values.

8. For the transfer function $\frac{Y(s)}{U(s)} = \frac{s^3 + 5s^2 + 6s}{s^4 + 10s^3 + 29s^2 + 20s}$ obtain the state model in (i) Observable canonical form (ii) Jordon canonical form (iii) Controllable canonical form

AR13 SET 1

Code No: 13MVL1006

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech I Semester Regular / Supplementary Examinations, February-2016

EMBEDDED & REAL TIME SYSTEMS

(Common to VLSI System Design and Digital Electronics & Communication Systems)
Time: 3 hours

Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

1.		Discuss the different types of processors that can implement the	[12M]
		functionality in Processor Technology.	
2.	a)	Describe the RT level custom single purpose processor design with example.	[6M]
	b)	Discuss the Application Specific Instruction Set Processors.	[6M]
3.	a)	Define the following terms 1) Concurrent processes 2) real time systems 3) Concurrent process model.	[6M]
	b)	•	[6M]
4.	a)	Briefly describe about UART and RS 232.	[8M]
	b)	Write about interrupt service mechanism in RTOS.	[4M]
5.	a)	Draw and explain the architecture of the Kernel.	[6M]
	b)	Explain the need of mail boxes in RTOS based embedded systems.	[6M]
6.	a)	Explain in detail about Semaphores.	[6M]
	b)	Explain about Message queues and Event registers	[6M]
7.	a)	Explain the memory management organisation of RTOS.	[6M]
	b)	Explain in detail about the real-time operating systems and	[6M]
		Windows CE.	
8.		Write short notes on	[6M+6M]
		i) Parallel evaluation of compilation and synthesisii) Verification.	

SET -01

Code No: 13MCS1005

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMUS)

I M.Tech I Semester Regular / Supplementary Examinations, February–2016 Operating Systems

(Computer Science and Engineering)

Time: 3 hours Answer any FIVE questions All questions carry equal marks	Marks: 60
1. a) Write about Multi-programmed batch systemsb) Write about Distributed systems	[7M] [5M]
2. a) Briefly write about vi editorb) Write about tail, head commands with suitable examples	[8M] [4M]
3. a) Write about nl, uniq commands with suitable examplesb) Write about control structures	[2+2 M] [8M]
 4 a) What is a process. Write about various states that a process may undergo, with the help of a neat sketch. Write about Process Control Block b) Write about priority scheduling algorithm. What is the problem with priority scheduling and also write how to overcome the problem 	e [6M]
 5 a) Explain indetail about paging technique b) Consider the reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. How many page faults would occur for the following replacement algorithms for memory with 3 frames. i) FIFO ii) Optimal iii) LRU 	[6M]
6 a) Write the solution for Dining Philosophers problem using monitors.b) Write about interrupted system calls	[6M] [6M]
7 a) Write about file access methodsb) Write about free space management	[6M] [6M]
8 a) Write about semaphore for Mutual Exclusionb) What is a message queue. Write code to create public message queue.	[5M] [7M]

Code No: 13MSE1006 SET-1 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech. I Semester Regular Examinations, February, 2016

FOUNDATION ENGINEERING

(STRUCTURAL ENGINEERING)

(STRUCTURAL ENGINEERING)						
Time: 3 hours Max Marks: 60						
Answer any FIVE questions All questions carry equal marks						
1.	(a)	Describe in brief various geophysical methods. Discuss their uses and limitations	[6M]			
	(b)	Describe various methods of drilling holes for subsurface investigation	[6M]			
2.	(a)	Discuss various types of samplers for obtaining undisturbed samples	[6M]			
	(b)	Write brief note on precautions to be taken in transporting undisturbed samples	[6M]			
3.		A square column foundation is to be designed for a gross allowable load of 250kN. If the load is inclined at an angle of 15° to the vertical, determine the width of foundation. Take factor of safety of 3.0 and use Vesic's equation. Take unit weight of soil =19 kN/m³, c' = 5 kN/m², ϕ ′ = 35°. The depth of the foundation is 1.0m				
4.	(a)	Discuss Meyerhof's Bearing capacity Theory.	[6M]			
	(b)	Determine the ultimate bearing capacity of a square footing $2m \times 2m$ in a soil with unit weight of 18 kN/m^3 , $c = 20 \text{ kN/m}^2$, $\phi' = 20^\circ$. Take the depth of foundation as 1.50m. Use Hansen's equation	[6M]			
5.	(a)	What do you understand by proportioning of shallow foundations?	[6M]			
	(b)	What are the different types of raft foundations?	[6M]			
6.		Design a pile to carry an allowable load of 85kN. The pile is installed in a site containing clay of medium consistency with undrained cohesion varying from 30 kN/m^2 to 50 kN/m^2 over a depth of 3m and a uniform undrained cohesion of $50kN/m^2$ for further depth. Consider the pile to be cast in-situ concrete pile. Take Factor of safety = 3	[12M]			

Code No: 13MSE1006 SET-1

- 7. (a) What is negative skin friction? What is its effect on a pile? [6M]
 - (b) A precast concrete pile is driven with a 30kN drop hammer with free fall of 1.5m. [6M] The average penetration recorded in the last few blows is 5mm per blow. Estimate the allowable load on the pile using Engineering News Formula.
- 8. (a) Discuss the procedure for design of raft foundation [6M]
 - (b) Determine the allowable soil pressure for a raft (10.0 m x 10.0m) if the depth is [6M] 5m and the undrained cohesion is 40 kN/m². Take factor of safety of 2.5

2 of 2
