### SENSOR FUSION IMPLEMENTATION DETAILS

# SENSOR FUSION IMPLEMENTATION DETAIL

NaviFloor Robotics, Inc.

**Document Reference: TD-SF-2023-114** 

Last Updated: December 15, 2023

**Classification: CONFIDENTIAL** 

#### 1. OVERVIEW AND SCOPE

1. This document details the proprietary sensor fusion implementation method

| -      | - 1 -         |             |             |             |             |          |        |
|--------|---------------|-------------|-------------|-------------|-------------|----------|--------|
| 2. The | e information | contained l | nerein is s | ubject to i | ntellectual | property | protec |
|        |               |             |             |             |             |          |        |

#### 2. DEFINITIONS

- 1. "Sensor Array" refers to the integrated collection of sensing devices include
- a) Primary LiDAR units (Model NF-L350X)
- b) Secondary depth sensors (Model DS-2000)
- c) Proprietary terrain mapping sensors (Series TM-X)
- d) Inertial measurement units (IMU-NF-450)

2. "Fusion Algorithm" refers to the Company's proprietary NaviCore Sensor

| 2-                                                                          |
|-----------------------------------------------------------------------------|
| 3. "System" refers to the complete sensor fusion implementation including h |
| 3. TECHNICAL SPECIFICATIONS                                                 |
| _                                                                           |
| 1. Hardware Integration Architecture                                        |
| -                                                                           |
| 1.1. Primary sensor array utilizing quad-core processing units              |
| -                                                                           |
| 1.2. Redundant sensor configuration with n+1 failover capability            |
| -                                                                           |
| 1.3. Real-time data synchronization across multiple sensor streams          |
| -                                                                           |
| 1.4. Hardware-level timestamp correlation with sub-millisecond precision    |

- - 3 -

2. Software Architecture

\_

2.1. Multi-threaded sensor data processing

\_

2.2. Real-time calibration and sensor alignment

\_

2.3. Dynamic sensor weighting based on environmental conditions

\_

2.4. Proprietary error correction algorithms

### 4. IMPLEMENTATION METHODOLOGY

-

1. Sensor Data Collection

- 4 -

1.1. Primary LiDAR scanning at 40Hz refresh rate

\_

1.2. Depth sensor sampling at 60Hz

\_

1.3. Terrain mapping sensor data acquisition at 100Hz

\_

1.4. IMU data collection at 200Hz

\_

2. Data Processing Pipeline

-

2.1. Raw data preprocessing and filtering

\_

2.2. Temporal alignment of sensor streams

- - 5 -

2.3. Environmental condition compensation

\_

2.4. Dynamic calibration adjustments

#### 5. PERFORMANCE SPECIFICATIONS

\_

1. System Accuracy

-

1.1. Positional accuracy: ±2.5mm in standard conditions

\_

1.2. Angular resolution: 0.1° at 20m range

-

1.3. Surface classification accuracy: 99.7%

- -6-

2. Processing Requirements

\_

2.1. Maximum latency: 5ms

\_

2.2. CPU utilization: <60% under normal operation

-

2.3. Memory usage: <4GB RAM

#### 6. SAFETY AND REDUNDANCY

\_

1. Fault Detection

-

1.1. Continuous sensor health monitoring

- -7-

1.2. Automated fault detection and isolation

\_

1.3. Real-time performance degradation analysis

\_

2. Failover Mechanisms

-

2.1. Redundant sensor activation protocols

\_

2.2. Graceful degradation procedures

-

2.3. Emergency operation modes

#### 7. PROPRIETARY NOTICES

| 8 -                                                                           |
|-------------------------------------------------------------------------------|
| 1. The information contained in this document constitutes valuable trade sec  |
|                                                                               |
| -                                                                             |
| 2. This document is protected under applicable intellectual property laws and |
|                                                                               |
| 8. CERTIFICATION AND COMPLIANCE                                               |
|                                                                               |
| -                                                                             |
| 1. The System has been certified to meet the following standards:             |
| -                                                                             |
| 1.1. ISO/TS 15066:2016                                                        |
| -                                                                             |
| 1.2. IEC 61508 SIL 2                                                          |
| -                                                                             |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |

### 1.3. EN ISO 13849-1:2015

# 9. DOCUMENT CONTROL

| -                                                                       |
|-------------------------------------------------------------------------|
| 1. This document is maintained by the NaviFloor Robotics Technical Docu |
|                                                                         |
| -                                                                       |
| 2. Document History:                                                    |
| -                                                                       |
| Version 3.2: December 15, 2023                                          |
| -                                                                       |

Version 3.0: June 15, 2023

Version 3.1: September 30, 2023

# APPROVAL AND AUTHORIZATION

| APPROVED BY:             |
|--------------------------|
| _                        |
| Dr. Elena Kovacs         |
| Chief Research Officer   |
| NaviFloor Robotics, Inc. |
| Date: December 15, 2023  |
|                          |
| _                        |
| Marcus Depth             |
| Chief Technology Officer |
| NaviFloor Robotics Inc   |



