Galileo

Light

- Two people go to two different mountains
- Both have lanterns
- Both groups turn off their lanterns to signal that they are ready for the experiment

Jupiter

- Found the 4 major satellites of Jupiter
- I Io,II Europa,III Ganymede, IV Callisto (Most cratered object in our solar system)
- Jupiter has an obliquity of its ellipse around 3 degrees (tilt of its axis)
 - No seasonal change
 - Belts
 - Moons appear to move back and forth:
 - Edge on
 - Seeing the orbits perpendicular

Kepler

- 8 years sorting Brahe's data
- Mars' orbit is sufficiently eccentric that circular orbits could not be made to fit (credit to Brahe's precision)
- Published his work around 1608/9

Kepler's laws of planetary motion

- All orbits are conic sections (ellipse or hyperbola)
 - Circle/parabola in special cases
- Equal areas in equal times
- A planet's period² is directly proportional to its semi-major axis
 - Orbits of planets or satellites could now be computed

This view produces phenomena

- A, Shadow Transit: Sun → Moon → Jupiter
 - Moon's shadow falls on the moon, looks like a tiny dark object on the brighter Jupiter
- B, Transit: Earth → Moon → Jupiter
- C, Eclipse
 - Moon runs into Jupiter's shadow
 - Seen as the moon disappearing
- D, Occultation
 - Jupiter in front of Moon reappearing
 - Can be observed as object reappearing from Moon
- Compute the expected eclipse times, etc. for an observer at the centre of the sun because the math is easier
- For a given observer, prediction times are modified for Earth's position

Romer

- Noticed that events occurred earlier at A and later at B
- Computed change in distance and change in time and obtained that light travels at 24,000 m/s
 - Low estimate because mean distance to sun wasn't well understood
 - Measured during Venus transits of 1874 and 1882
 - Radar in 1960
- Most observations based on Io, but people thought that the speed of light was too big and this value didn't catch on

Bradley

Speed of Falling Rain

- Suppose V_{car} = 72 km/h = 20 m/s and Θ = 40°
- $V_{rain} = V_{car}/tan\Theta$
- $V_{rain} = 20 / tan 40$
- $V_{rain} \approx 23.8 \text{ m/s}$

Applying this to stars and planets

- a >>>> b
- For light, it's motion:

- $V_I = V_E/\tan \Theta$
- Bradley knew that $\tan\Theta = V_E/V_I$ is really, really small, but had very finely tuned telescopes
 - When the star seemed to appear in a different place, he knew it was because of Earth's motion (known as stellar aberration)
 - As a result of these accurate measurements, he found that $V_1 \approx 301,000$ m/s, which is between $\frac{1}{3}$ of a percent of the speed of light
- 1° = 60' arcminutes
- 1' = arcseconds
- For Earth, its motion:

- Two pieces of evidence to support $V_{\rm I}$ to be around 300,000 km/s
- Unsure of stellar or interplanetary media
- Wanted an Earth-based lab to measure $V_{\scriptscriptstyle I}$

1849 - Hippolyte Fizeau

Version 1: