wCombinations_6s0s

February 6, 2019

```
In [19]: import math
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        plt.style.use('./matplotlibrc')
In [44]: df = pd.read_csv('../../FESR/configurations/wCombinations/6_s0s/fits.csv', header=1)
        df.index = [
            r'$\omega_{cube}, \omega_{quad}$',
            r'$\omega_{kin}, \omega_{cube}$',
            r'$\omega_{kin}, \omega_{cube}, \omega_{quart}$',
            r'$\omega_{kin}, \omega_{quart}$'
        ]
In [115]: df[['alpha', 'c6', 'c8']]
Out[115]:
                                                           alpha
                                                                        с6
                                                                                  с8
         $\omega_{cube}, \omega_{quad}$
                                                        $\omega_{kin}, \omega_{cube}$
                                                        0.150673
                                                                  2.841079 3.652895
         $\omega_{kin}, \omega_{cube}, \omega_{quart}$
                                                        0.133401 1.664969 1.488956
         $\omega_{kin}, \omega_{quart}$
                                                        0.191789 0.542208 0.409060
In [132]: figure, axes = plt.subplots(2, 1, sharex=True)
         axes[0].errorbar(df.index, df['alpha'], df['alphaErr'], marker='o', linestyle='none'
         axes[0].set_ylabel(r'$\alpha_s(m_\tau)$')
         axes[0].legend()
         axes[1].errorbar(df.index, df['c6'], df['c6Err'], marker='o', linestyle='none')
         axes[1].errorbar(df.index, df['c8'], df['c8Err'], marker='o', linestyle='none')
         axes[1].set_ylabel(r'$c_6, c_8$')
         axes[1].set_xlabel('Used weight combination')
         axes[1].legend()
         figure.set_size_inches(12, 7)
```


We plotted the values for the all possible combinations of the weights ω_{kin} , ω_{cube} and ω_{quart} for six s_0s moment for each combination. Consequently the three combinations including only two weights integrate over moments with $s_0s = [m_\tau, 3.0, 2.8]$ and the one combination with all three weights use only $s_s = [m_\tau, 3.0]$. Unfortunately the value of $\max \alpha_s = 0.192$ is too low. Surprisingly the c_6 and c_8 values, which should compensate the low α_s values are also too low to be realistic. This behaviour and the almost non-existing errorbars imply that there are problems with the fitting routine (even though MINUIT has converged!). Suspicious is also the fact, that both the weights indepently deliver results of $\alpha_s > 3.0$.

```
In [155]: index = np.arange(4)
    width=0.2
    plt.gca().set_title(r'$\delta$-contributions')
    plt.bar(index, df['del^(0)'].abs(), width, color='b', label='$\delta^{(0)}$')
    plt.bar(index+width, df['del^(6)'].abs(), width, color='r', label='$\delta^{(6)}$')
    plt.bar(index+2*width, df['del^(8)'].abs(), width, color='c', label='$\delta^{(8)}$'

    plt.gca().set_xticks(index+2*width/2)
    plt.gca().set_xticklabels(df.index)
    plt.gca().set_xtlabel('weight combinations')

    plt.legend()
    plt.gcf().set_size_inches(12, 5)
```


To explain the low α_s values we also plotted the absoulte values of the delta contributions of dimension 0,6 and 8 for each weight combination. For the first three weight combinations the OPE is not converging, because the perturbative contributions are smaller than the dimension six contributions. The fourth weight combination (ω_{kin} , ω_{quart}) seems to converge so and includes the biggest value for $\alpha_s = 0.192$, but is still $\approx 35\%$ to low if one assumes an α_s value above 0.3.