

GENERAL (ELECTRIC

NASA CR 160216

HOUSTON, TEXAS

TECHNICAL INFORMATION RELEASE

TIR 741-MED-4008

FR OM T0 D. G. Fitzjerrell J. A. Rummel, Ph.D./DB6 DATE WORK ORDER REF: WORK STATEMENT PARA: | REFERENCE: 3/29/74 .DM-110T NAS9-12932 SUBJECT User's Instructions for the GE Cardiovascular Model to Simulate LBNP and Tilt Experiments (with Graphic Capabilities)

> N79-25732 (NASA-CR-160216) USER'S INSTRUCTIONS FOR THE GE CARDIOVASCULAR MODEL TO SIMULATE LBNP AND TILT EXPERIMENTS, WITH GRAPHIC CAPABILITIES (General Electric Co.) Unclas 33 p CSCL 06P G3/52 22234 HC A03/MF A01

> > The present form of this cardiovascular model simulates both 1-g and zero-g LBNP experiments and tilt experiments. In addition, the model simulates LBNP experiments at any body angle. The model is currently accessible on the Univac 1110 Time-Shared System in an interactive operational mode. Model output may be in tabular form and/or graphic form. The graphic capabilities are programmed for the Tektronix 4010 graphics terminal and the Univac 1110.

Attachment

CONCURRENCES

Counterpart:

Medical Projects Unit Manager: RCCroston

Engrg. & Advanced

Subsection Mgr. CWFulcher

DISTRIBUTION NASA/JSC: G.Hoffler,M.D.

/db

GE/AGS: D.J.Grounds

CPFile

NASA/JSC: Retha Shirkey/

A. Nicogossian, M.D. C.Sawin, Ph.D.

R.F.Hassell

JM6 (1979 distribution)

M.Buderer, Ph.D. P.Schachter, Ph.D. J.I. Leonard V.J. Marks G.T.Archer

Page No. 1 of

PROGRAM DESCRIPTION

A. <u>IDENTIFICATION</u>

Program Name - G. E. Cardiovascular LBNP Model

(Univac 1110 Version)

Bioengineer Contact - D. G. Fitzjerrell

Programmer's Name - V. J. Marks, GE/JSC, Houst

Date of Issue - March 29, 1974

B. GENERAL DESCRIPTION

A mathematical model and digital computer simulation of the human cardiovascular system and its controls were developed to simulate responses to lower body negative pressure (LBNP) and tilt experiments. The purpose of the model is to provide a method to analyze cardiovascular control hypotheses which cannot be easily tested in an animal or human or in a spaceflight environment.

C. USAGE AND RESTRICTIONS

Machine and Compiler Required - Univac 1110 TSS and Fortran V

Peripheral Equipment Required - Magnetic Tape

- Time-Sharing Terminal

D. PARTICULAR DESCRIPTION

Basic Equations Used and Derivations - See TIR No. 741-MED-2010 (Exercise Model)

Definition of Terms Used - See Table 1.

Detailed Description - Equations describing pulsatile blood flows, pressures, and volumes for 28 model sections of the cardiovascular circulatory model are solved. The circulatory system model, Figure 1, is combined with models of the controlling systems to form a dynamic model to simulate responses to LBNP and tilt. Other characteristics of the combined model include gravity effects, venous tone, venous valves, and intrathoracic and intra-abdominal pressure effects.

E. DESCRIPTION OF INPUT

- (1) Contact V. J. Marks, GE/JSC, Houston, to obtain Univac 1110 sign-on procedures and authorization codes.
- (2) The first inquiry made by the interactive program is for the selection of either an LBNP or Tilt Experiment.
- (3) The responses to conversational output of the program allows the user to change the standard set of initialization data shown in Table 1. If this is desired, the user enters the appropriate index code and new value for each variable as directed. When no more changes are to be requested, zero is entered. If a tilt experiment is being simulated, the value of the angle in degrees, measured positive clockwise from horizontal, should be entered with the index of 575. If graphic output of pressure waveform data is wanted for a given two second interval, the end time should be entered in seconds with an index of 598. Other typical inputs include LBNP simulation protocol (elements 541-560) and print interval (element 599).

F. DESCRIPTION OF OUTPUT

- (1) If the graphic output option is selected, a graphics terminal is required. (The graphics in this program are written for the Tektronix 4010). This option suppresses the initial printout of tabular data. A plotted output is generated as it is computed. As computation proceeds, the output variables selected are buffered and may be outputed in tabular or graphic form as selected.
- (2) Conversational output of the program will ask the user if he wishes to change the standard terminal output list of variables. If so, the user enters the appropriate column number and index code for each variable as directed by the conversational output of the program. The standard set of output variables consists of time and 8 dependent variables which are output each print interval and averaged for the last five heart beats. The selected standard variables are as follows:
- 1 Simulation Time (sec)
- 2 Heart Rate (beats/min)
- 3 Cardiac Output (liters/min)
- 4 Stroke Volume (liters)
- 5 Mean Blood Pressure (mm Hg)
- 6 Systolic Blood Pressure (mm Hg)

(Cont'd)

- 7 Diastolic Blood Pressure (mm Hg)
- 8 Lower Body Negative Pressure (mm Hg) or Tilt angle, (Deg) if selected.
- 9 Total Blood Volume in Legs (ml)

If graphic output option is selected, conversational operation of the program will direct the input of time intervals and start and stop times. (See example page 29). The number of time intervals (3-5) specifies how many increments to divide the time scale. The default option for stop and start times includes the total simulation run. Location and variable limits information for each plotted variable selected is then solicited in a similar manner. It should be noted that each entry must be properly positioned as shown in the example. Each location specified (1-6) directs the location in which the variable will be plotted (see example page 29). An additional option available is plotted output of pressure waveform data. This data is stored at rate of 90 points per second for the two seconds preceding the time entered for element 598. The volume compartments for which pressure waveforms plots may be selected are as follows:

Element	Mnemonic	Volume Compartment
204	PLV	Left Ventricle
208	PAA	Aortic Arch
212	PLTA	Lower Thoracic Aorta
511	PUTA	Upper Thoracic Aorta
214	PLABA	Abdominal Aorta
215	PCILL	Common Iliac Artery
224	PLØC	Lower Carotid Arteries
231	PRENA	Renal Arteries

H. INDEPENDENT SUBROUTINES

CVS	Pulsatile Circulatory Model
CONTRL	Cardiovascular Controlling Systems
ALGO	Integration Algorithm
XIO	Conversational Input/Output
BLKDAT	Initialization Data
TEKTRONIX	PLOT PACKAGE

I. COMPUTER PROGRAM LISTING AND EXAMPLE OUTPUT

(Attached)

TABLE 1
DEFINITIONS

ELEMENT NO.	MNEMONIC	DEFINITION	CONSTANT OR INITIAL VALUE	UNITS
1	X(1)	Stressed Vol., RT. Atrium	89.9	ml
2	x(2)	" , RT. Ventricle	215.8	Ħ
2	X(3)	" " Left Atrium	38.7	11
3 4	X(4)	" Left Ventricle	218.0	n
5	x(5)	" ", Pulmonary Arteries	7.7	11
5 6	x(6)	" " Arterioles	10.6	11
7	x(7)	" " Venules	27.4	m
8	x(8)	" ", Aortic Arch	23.9	II
9	x(9)	Inertance Integral	0.0	_
9 10	X(10)	Integral of Aortic Arch	0.0	mmHg-sec
10	Y(TO)	<u> </u>	0.0	mmig-sec
		Pressure/Beat		
11	X(11)	Inertance Integral	0.0	-
12	X(12)	Stressed Vol., Thoracic Aorta	23.6	ml.
13	X(13)	Integral of Carotid	o.ó	mmHg-sec
~5	(-5)	Pressure/Beat		•
14	X(14)	Stressed Vol., Abdominal Aorta	16.2	ml
15	X(15)	Stressed Vol., Common Iliac Arteries	62.3	11
<u>16</u>	x(16)	" , Legs Small Arteries	62.4	11
17	X(17)	" Legs Arterioles	4.1	11
18	x(18)	" , Legs Venules	126.0	tt .
19	X(19)	" Legs Small Veins	205.0	11
20	X(50)	Femoral Veins	41.0	11
40	11(-0)	, <u> </u>	,_,,	
21	X(21)	Total Vol., Abdominal Vena Cava	355.2	tt
22	X(22)	Total Vol., Thoracic Vena Cava	· 253 . 5	πt
, 23	x(23)	Total Vol., Superior Vena Cava	36.4	11
24	x(24)	Stressed Vol., Lower Carotid Arteries	23.5	11
25	x(25)	" " , Upper Carotid Arteries	31.2	tt
26	x(26)	" ", Head Small Veins	63.4	1t
27	x(27)	" " , Jugular Veins	3.1	\$1
28	x(28)	" " , Superior Mesenteric	254.2	tr
	()	Veins		•
29	X(29)	Stressed Vol., Upper Thoracic Aorta	30.0	11
-	• _			
30	. X(30)	Stressed Vol., Portal Veins	120.7	11
0-		II II Done I Amborries	10 1	tt
31	X(31)	, Renal Arteries	17.1	11
32	X(32)	, Renal veins	43.7	Ħ
33	x(33)	Integral of Left Vent. Flow/Beat	0.0	
34	X(34)	Inertance Integral	0.0	-
35	X(35)	11 11	0.0	_
36	x(36)		0.0	mmUa acc
37	x(37)	Integral of Upper Thoracic Aortic Pres	ssure 0.0	mmHg-sec.
38	x(38)	Not_Used		_
39	x(39)	11	-	
μО	X(40)	11	-	-
•				

ELEMENT	MATERIONE	NUMBER	CONSTANT OR	INTEG
NO.	MNEMONIC	DEFINITION	INITIAL VALUE	UNITS
41	X(41)	Not Used	-	-
42	X(42)	n n	_	-
43	x(43)	u u	_	-
44	Х(Й)	11 11	-	-
45	X(45)	и и	- ,	-
46	X(46)	in in	-	-
47	X(47)	II II	-	-
48 -	x(48)	11 11	_	-
49	X(49)	n _n	-	-
50	X(50)		-	-
E3 300		•		
51 - 100				
101	QRA	Flow from RT. Atrium	Computed	ml/sec
102	QRV .	" " RT. Ventricle	Variable	117, 260
103	QLA	" " Left Atrium	11	11
104	QLV	" " Ventricle .	11	ττ
105	QPA.	" " Pulmonary Arteries	tī	11
106	QPC	" " Pulmonary Arterioles	11	11
107	QPV	" " Venules	Ħ	11
108	QAA	" " Aortic Arch	11	11
109		Not Used		
110		11 11		
777	OTHE A	777 T) - TT FD		_ /
111 112	QUTA	Flow From Upper Thoracic Aorta	Computed	ml/sec
113	QLTA	Flow from Lower Thoracic Aorta Not Used	Variable	••
114	QLABA	Flow from Abdominal Aorta	11	11
115	QCILL.	Flow from Common Iliac Arteries	. 11	11
116	QLGSA	" Leg Small Arteries	11	21
117	-(220,621	Not Used		
118	QLGCAP	Flow from Leg Arterioles	, 11	11
119	QLGVE	" !" Leg Venules	11	11
120	QLGSV	. " Leg Small Veins	11	11
	-	•		
121	QFEV	" - " Femoral Veins	11	ti
122	QABVC	" " Abdominal Vena Cava	11	tt
123	QTHVC	" " Thoracic " "	11	11
124	QSPVC	" " Superior Vena Cava	11	11
125	QLOC	Flow to Lower Carotid Arteries	#	11 ••
126	QUPC	opper	!!	11
127	QHCAP	trom opper caround arcerte	es " "	# **
128	QHSV	Trom Head Small Velus	11	11
129	QJV OG <i>d</i> B	Trom angurar verus	11	11
130	QCØR	Coronary Blood Flow	••	•

*

				1
ELEMENT NO.	MNEMONIC	DEFINITION	CONSTANT OR INTITIAL VALUE	<u>units</u>
NO. 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	MNEMONIC QCSMA QCSMV QPØV QRENA QRENA QRALE QRENV QRET QD(1)	The properties of the properties of the properties of the proof of the properties of	Computed Variable "" "" "" "" ""	UNITS ml/sec "" "" "" "" "" ""
148 149 150	QD(10) QSKB	Not Used Not Used Flow Through Skeleton, Bone Marrow, and Fat	Computed Variable	ml/sec
151 152 153 15 ¹ 155 156 157 158 159	CRA CRV CLA CLV CPA CPC CPV CAA	Compliance, Right Atrium " , Right Ventricle " , Left Atrium " , Left Ventricle " , Pulmonary Arteries "	1.2 1.7 5.3 0.3	ml/mmHg " " ml/mmHg "
161 162 163 164 165 166 167 168	CUTA CLTA CLABA CCILL CLGSA CLGAR CLGVE	Upper Thoracic Aorta Lower Thoracic Aorta Not Used Abdominal Aorta Compliance, Common Iliac Arteries ", Leg Small Arteries ", Leg Arterioles ", Leg Venules	0.4 0.4 0.21 0.8 0.8 0.3 3.956	11 11 11
169 170 - 171 172	CIGSV CFEV	", Leg Small Veins ", Leg Femoral Veins Temporary Storage """	3.1 ⁴ 0.2	11
173 174 175 176 177 178 179	CLØC CUPC CHSV CJV CCSMV CPØV	Compliance, Lower Carotid Arteries " , Upper " " " , Head Small Veins " , Jugular Veins " , Superior Mesenteric Vein Not Used " , Portal Veins	0.3 0.3996 5.3 0.9058 s 9.59 - 6.047	11 11 11 11 11

				8
ELEMENT NO.	MNEMONIC	DEFINITION	CONSTANT OR INITIAL VALUE	UNITS
181 182 183 184 185 186 187 188 189	CRENY CRENV CD(1)	Compliance, Renal Arteries ", Renal Veins Not Used " " " " " " " " "	0.2224 2.517	
191 192 193 194 195 196 197 198 199 200	CD(18)	## ## ## ## ## ## ## ## ## ## ## ## ##		

CALCULATED VARIABLES FOR EACH VOLUME COMPARTMENT

ELEMENT NO.	PRESSURE (mm Hg)		-		PRESSURE DUI	G 	EXTERNAL PRESSURE	VOLUME COMPARTMENT
201 202 203 2 04 205	PRA PRV PLA PLV PPA	322 323 324	V(1) V(2) V(3) V(4) V(5)	421 422 423 424 425	PG(1) PG(2) PG(3) PG(4) PG(5)	455 456 457 458 459	PEXT(1) PEXT(2) PEXT(3) PEXT(4) PEXT(5)	RT. Atrium RT. Ventricle Left Atrium Left Ventricle Pulmonary Ar-
206	PPC		v(6)	426	PG(6)	460	PEXT(6)	teries Pulmonary Ar- terioles
207 208 209 210	PPV PAA Temporary	328	V(7) V(8) rage	427 428 429 430	PG(7) PG(8) PG(9) PG(10)	461 462 463 464	PEXT(7) PEXT(8) PEXT(9) PEXT(10)	Pulmonary Veins Aortic Arch
211 212 213 214	PUTA PLTA Temporary PLABA	7 Sto: 334	V(12) rage V(14)	431 432 433 434	PG(11) PG(12) PG(13) PG(14)	465 466 467 468 469	PEXT(11) PEXT(12) PEXT(13) PEXT(14) PEXT(15)	Upper Thor.Aorta Lower Thor.Aorta Abdominal Aorta Common Iliac
215 216	PCILL PLGSA	335 336	v(15) v(16)	435 436	PG(15) PG(16)	470	PEXT(16)	Artery Leg Small Art-
217 218 219 220	PLGAR PLGVE PLGSV PFEV	337 338 339 340	V(17) V(18) V(19) V(20)	437 438 439 440	PG(17) PG(18) PG(19) PG(20)	471 472 473 474	PEXT(17) PEXT(18) PEXT(19) PEXT(20)	eries Leg Arterioles Leg Veins Leg Small Veins Femoral Veins
221	PABVC	341	V(21)	441	PG(21)	475	PEXT(21)	Abdominal Vena
222	PTHVC	342	۷(22)	442	PG(22)	476	PEXT(22)	Cava Thoracic Vena Cava
223	PSPVC	343	V(23)	443	PG(23)	477	PEXT(23)	Superior Vena Cava
224	Pr ¢ €	344	V(24)	յեյեյե	PG(2 ¹ 4)	478	PEXT(24)	Lower Carotid Arteries
225	PUPC	345	v(25)	445	PG(25)	479	PEXT(25)	Upper C arotid Arteries
226 227 228	PHSV PJV PCSMV	346 347 348	v(26) v(27) v(28)	446 447 448	PG(26) PG(27) PG(28)	480 481 482	PEXT(26) PEXT(27) PEXT(28)	Head Small Veins Jugular Veins Superior Mesen- teric Veins
229	Not Used	349	Not Used	449	Not Used	483	Not Used	
230	₽₽ØV	350	v(30) _æ	450	PG(30)	484	PEXT(30)	Portal Veins

CALCULATED VARIABLES FOR EACH VOLUME COMPARTMENT

ELEMENT NO.	PRESSURE (mm Hg)	TOTAL VOLUME PRESSURE (ml) TO GRAVI		EXTERNAL PRESSURE	VOLUME COMPARTMENT
231 232 233 234 235 236 237 238 239 240	PRENV 3: PD(1) Mean Not Used Not Used 3: " ". 3	51 V(31) 451 PG(31) 52 V(32) 452 PG(32) Upper Thoracic Aortic Pressure 453 - 454 Not 53 - 368 Not Used 69 - V(49) Blood Volume Commax 70 - V(50) Total Blood Volume	486 Used ad = 500	PEXT(31) PEXT(32) OQ.O ml	Renal Arteries Renal Veins
241 242 243 244 245 246 247 248 249		rterial Pressure arotid, Arterial Pressure		90.0 90.0	mmHg mmHg
ELEMENT NO.	MNEMONIC	DEFINITION		ANT OR L VALUE	<u>units</u>
251 252 253 254 255 256 257 258 259	RRA RRV RMV RAV RPA RPC RPV	RT. Atrium Valve Resistance RT. Ventricle Valve Resistanc Left Atrium Valve Left Ventricle Valve Pulmonary Arterioles Pulmonary Capillaries Pulmonary Venules Not Used Not Used	e 0.00	255	mmHg/ml/se
260	RUTA	Upper Thoracic Aorta	0.04		
261 262 263 264 265 266 267 268 269	RLTA RLABA RCILL RLGSA RLGAR RLGCAP RLGVE RLGSV RFEV	Lower Thoracic Aorta Not Used Abdominal Aorta Common Iliac Arteries Leg Small Arteries Leg Arterioles Leg Capillaries Leg Venules Leg Small Veins Femoral Veins	0.04 0.0 0.03 0.03 0.03 4.50 0.45 0.07	003 5 05 508	11 11 11 11 11 11 11

		•		
ELEMENT			CONSTANT OR	
_ NO.	MNEMONIC	DEFINITION	INITIAL VALUE	INTIRA
	THIMIOUS	DISTINITION	INTITAL VALUE	UNITS
271	מזית א ת	Ah 3	0.0000	, ,
	RABVC	Abdominal Vena Cava	0.007380	mmHg/ml/se
272	RTHVC	Thoracic Vena Cava	0.007508	11
273	RSPVC	Superior Vena Cava	0.01502	tr
274	rløc	Lower Carotid Arteries	0.02252	tt
275	RUPC	Upper Carotid Arteries	0.03378	11 ·
276	RHCAP	Head Capillaries		11
277			3.431	
	RHSV	Head Small Veins	0.3754	11
278	RJV	Jugular Veins	0.004302	TT .
279	rcør	Coronary	15.390	tr
280	RCSMA	Superior Mesenteric Arteries	1.9744745	11
281	•	Nr.L TZ		tt
282	Dagar	Not Used		
	RCSMV	Superior Mesenteric Veins	0.2252	11
283	RPOV	Portal Veins	· 0.5255	. 11
284		Not Used		11
285	RRENA	Renal Arteries	0.01502	11
286	RRALE	Renal Arterioles	0.45045	\$1
287	RREFF			11
288		Efferent Arterioles	2.7 44	
	RRENV	Renal Veins	0.6494	11
289	RD(1)	Not Used		
290		II II		
207		AT 1 TO 2		
291		Not Used		
292		11 11		
293		11 11		
29 ¹ 4		11 11		
295		11 11		
296		11 11		
297		11 11		
		31 31		
298	/			
299	RD(11)	31 15		
300	RSKB	Skeleton and Fat	5.150	tt
301	FLPA	Trontones District Autoris	0.0000000	T / T / 2
		Inertance, Pulmonary Arteries	0.0007508	mmHg/ml/sec ²
302	FLAA	, Aortic Aren	0.004	\$1
303		Not Used		
304		11 11		
305	FLUTA	Inertance, Upper Thoracic Aorta	0.004	
306	FLLTA	Inertance, Thoracic Aorta	0.004	11
307		Not Used	0.004	
308	FLLABA		0.001	**
	LTHWD4	Inertance, Abdominal Aorta	0.004	tt
309		Not Used		11
		•		
310 - 320		Not Used		•

UNSTRESSED VOLUMES

ELEMENT NO.	MNEMONIC	DEFINITION	CONSTANT OR INITIAL VALUE	UNITS
		**************************************	7	<u> </u>
371	W(l)	Rt. Atrium	30.0	ml.
372	VU(2)	Rt. Ventricle	0.0	11
373	vu(3)	Left Atrium	30.0	f1
374	VU(4)	Left Ventricle	0.0	17
375	VU(5)·	Pulmonary Arteries	85.0	11
376	vu(6)	Pulmonary Arterioles	15.0	11
377	VU(7)	Pulmonary Veins	400.0	tī
378	vu(8)	Aortic Arch	61.6	
379	VU(9)	Not Used		
380	VU(10)	IT tt	•	
381	VU(11)	tt tt		
382	W(12)	Thoracic Aorta	90.5	
383	vu(13)	Not Used		
384	vu(14)	Abdominal Aorta	43.5	
385	vu(15)	Common Iliac Arteries	5.194	t1
386	vu(16)	Leg Small Arteries	30.0	f1
387	VU(17)	Leg Arterioles	30.0	tt
388	vu(18)	Leg Venules .	0.0	` n
389	VU(19)	Leg Small Veins	04.0	11
390	νυ(20)	Femoral Veins	0.0	tt ·
3),0	10(20)	TOHOLOT ACTIO	0.0	
391	VU(21)	Not Used		
392	VU(22)	n n		
393	VU(23)	11 11		
394	VU(24)	Lower Carotid Arteries	50.0	11
395	VU(25)	Upper Carotid Arteries	50.0	11
396	vu(26)	Head Small Veins	509+0-1	tt
397	VU(27)	Jugular Veins	28.0	11
398	vu(28)	Superior Mesenteric Veins	562.0	11
399	VU(29)	Not Used	, ·	tt
400	vu(36)	Portal Veins	375.0	ττ
401	VU(31)	Renal Arteries	50 . 0	11
402	VU(32)	Renal Veins	150.0	11
403 - 42	0	Not Used	سرس سرس	
			•	,
487	E(1)	Right Atrial Elastance	Computed Variable	mmHg/ml
488	E(2)	Right Ventricle Elastance	11 11 11 tt	11
489	E (3)	Left Atrial Elastance	51 54 21 12	11
490	E(4)	Left Ventricle Elastance		
491	PRN ·	Pressure Şet Point	88.0	mmHg
492	ABIAS	Abdominal Vena Cava Compliance		
		Curve Bias	2.55	-
493	TBIAS	Thoracic Vena Cava Compliance	2.6	
1.01.		. Curve Bias	3.6	₩
-494.	TTHAZ	Tilt Down Time	9999.	
495	TMODEL	Tilt Exp. Select	0.	•
496	SPACE(1)	Not Used	0.0	
497	SPACE(2)		0.0	mmHg
498	ECBV	Effective Circulating Blood Volume	Computed Variable	m <u>1</u>
499 -	PTIS	PTIS-Tissue Press. in Legs	2.0	mmHg
500	BSLG	Blood Shifted from Legs	0.	mmHg
,			~ ·	

ELEMENT NO.	MNEMONIC	DEFINITION	CONSTANT OR INITIAL VALUE	UNITS
501	Z(1)	Length of Vascular Segment	0.0	am.
502	z(2)	11	0.0	em
503	z(3)	n	0.0	tt
504	$\mathbb{Z}(4)$	11	0.0	11
505	Z(5)	tt	0.0	ii.
506	z(6)	11 ,		ti
507	$\overline{z}(7)$	tr	0.0	11
508	z(8)	TŤ	0.0	ų
509	Z(9)	tt	- 7.0	11
510	z(10)	1t	0.0 0.0	. #
51 1	Z(11)	11	0.0	11
512	Z(12)	11	10.0	11
513	Z(13)	tt	10.0	11
5 <u>1</u> 4	z(14)	11	16.0	11
515	Z(15)	û	6.0	11
516	z(16)	τι	33.0	ft
517	Z(17)	11	0.0	it .
518	Z(18)	11		11
519	z(19)	tt	0.0	11
520	z(20)	tt .	33.0 14.0	ît
521	Z(21)	n	14.0	11
522	Z(22)	11	2.0	11
523	z(23)	tt	-7.0	11
524	Z(24)	11	-14.0 -14.0	11
525	Z(25)	II .	0.0	11
526	z(26)	II .	0.0	11
527	Z(27)	11	-1 4.0	Ħ
528	z(28)	11 -		11
529	Z(29)	tt .	0.0	11
530	z(30)	1f	0.0 0.0	tī
53I .	7/21)	n		
532 ·	Z(31)	11	0.0	11
70 <u>~</u>	Z(32)		0.0	11
53 3 534	Z(33)	11	0.0	11
535 535	Z(34)	11	0.0	11
536	Z(35)	tt	0.0	11
537	Z(36) Z(37)	11	0.0	11 11
537 538	Z(37) Z(38)	tt	0.0	
539	7(30)	ti .	0.0	11
540	Z(39) Z(40)	u u	0.0	11
	2(40)	"	0.0	ti
541 542	WK(1) WK(2)	Time(Sec), LBNP Steps	0.0	Sec.
542 543	WK(3)	, 11 II	0.0	mmHg
544	WK(4)	11 11	60.0	Sec.
545		tt tt	-8.0	mmHg
545 546	WK(5) WK(6)	tt tt	120.0	Sec.
547		11 · 11	-16.0	mmHg
547 548	WK(7)		180.0	Sec.
549	WK(8)		- 30.0	mmHg
247 550	WK(9)		240.0	Sec.
550 -	WK(10)	и и .	-40.0	mmHg

TOTAL TOWARD AND TO			1	
ELEMENT			CONSTANT OR	
NO.	MNEMONIC	DEFINITION	INITIAL VALUE	UNITS
	(\			
551	WK(1 1)	Time(Sec), LBNP Steps	300.0	\$ec.
552	WK(12)	tt tt	-50.0	·mmHg
553	MK(J3)	1f If	360.0	Sec.
55 ⁴	WK(14)	11 11		
555	WK(15)	ii ii	0.0	mmHg
556	WK(16)	· n	400.0	Sec.
		•	0.0	mmHg
557 2	WK(17)	•	0.0	Sec.
558	WK(18)	tt 11	0.0	mmHg
559	WK(19)	11 11	0.0	Sec.
560	WK(20)	Finish Time	401.0	
561	HR	Heart Rate	Calculated	Sec.
562	sv	Stroke Volume	ii	Beats/Min
563	co		ŧŧ	Liters
		Cardiac Output		Liters/Min
564	RT	Total Peripheral Resistance	17	mmHg/L/Min
565		Not Used	-	
566		in u .	_	_
567	PSYS	Systolic Blood Pressure	0.0	mmHg
568	PDYS	Diastolic Blood Pressure		ii (
569	- -	Not Used	0.0	•
· 570		not used		-
.710			-	
E EP 3		ų ur		
571		,		
572	PIAB	Intra-Abdominal Pressure	0.0	TT
573	PITH	Intra-Thoracic Pressure	0.0	mmHg
574	+ + TII		- 1.5	
	TEXT TIES ON A	Not Used	-	
575 577	THETA	Body Angle Relative to Horizontal	- 0.0	Degrees
576	SF	Contraction Strength Factor	0.48	_
577	TTOT .	Heart Period	0.833	Sec.
578	TAS	Period of Systole	0.19	Sec.
579	TVS	Period of Diastole	0.36	Sec.
580		Not Used	0.00	nec.
•		Not used		_
581		tt' ti		
582	GNEW	Coin Completel	-	~
583		Gain Constant	-0.0 15	<u></u> -
	PEXIN	Pressure Set Point	88.0	mmHg
584		Not Used	-=	· .=
(585)- 597	· .	Not Used	. .	•
598	WAVEFM	Output Option	340.0	
599		Print Interval		Sec.
600	VLEG		10.0	Sec.
000	A TITLE	Total Leg Blood Volume	0.0	ml

```
COMMON/STATE/x(50),xDOT(50)
  2/STATE/QRA,QRV,QLA,QLV,QPA,QPC,QPV,QAA,QARC,QLAA,QUTA,QLTA,QUABA,
  3QLABA,QCILL,QLGSA,QLGAR,QLGCAP,QLGYE,QLGSY,QFEV,QABVC,QTHVC,QSPVC,
  4QLOC.QUPC.QHCAP.QHSV.QJV.QCOR.QCSMA.QIMA.QCSMV.QPOV.QIMV.
  SQRENA, QRALE, WRENV, QRET, QD(10), QSKB
  6/STATE/CRA, CRy, CLA, CLY, CPA, CPC, CPY, CAA, CARC, CLAA, CUTA, CLTA, CUABA,
  7CLABA, CCILL, CLGSA, CLGAR, CLGVE, CLGSV, CFEV, CAByC, CTHVC, CSPVC,
  BCLOC.CUPC.CHSV.CJV.CC5MV.CIMV.CPOV.
  9CRENA, CRENV, CD(18)
  A/STATE/PRA:PRV:PLA:PLV:PPA:PPC:PPV:PAA:PARC:PLAA:PUTA:PLTA:PUABA:
  BPLABA, PCILL, PLGSA, PLGAR, PLGVE, PLGSV, PFEV, PAByC, PTHVC, PSPVC,
  CPLOC, PUPC, PHSV, PJV, PCSMV, PIMV, PPOV,
  DPRENA, PRENV, PD(16), PM, PMC
   COMMON/STATE/
  ERRA:RRV:RMV;kav;RPA;RPC:RPV;RARC;RLAA;RUTA;RLTA;RUABA;
  FRLABA, RCILL, KLGSA, RLGAR, RLGCAP, RLGVE, RLGSV, RFEV, RABVC,
  GRTHVC, RSPVC. KLOC, RUPC, RHCAP, RHSV, RJV, RCOR, RCSMA, RIMA, RCSMY,
  HRPOV.RIMV.RRENA.RRALE, RREFF, RRENV.RD(11), RSKB
  I/STATE/FLPA:FLAA:FLARC:FLLAA;FLUTA:FLLTA:FLUABA:
  JFLLABA, FLCILL, FLCSMA, FLIMA, FLRENA, FLDM(8)
  K/STATE/V(50), VU(50), PG(34), PEXT(32), E(4)
  * . PRN . ABIAS . THIAS . THAZ . THODEL . SPACE (2) . ECBV . PTIS . BSLG
  L.Z(40), WK(20), HR, SV, CO, RT, PEX, W. PSYS : PDYS, FREQ
  M. VOZDOT. AVD. PIAB. PITH, PMP. THETA. SF
  N.TTOT, TAS, TVS, Cl, C2, GNE*, PEXIN, TR
  * DUMMY (13) WAVEFM, DPRT, VLEG
   COMMON/PLTBUF/NBUF, XBUF(181), YBUF(181,8), NW(8), KSTOPP.PGU(2)
   COMMON/PNTBUF/N(8), KPLT
   COMMON /WAVE/ NBUFW.NWV(B).XBUFW(181),YBUEW(181.8)
   DIMENSION NV(8) . PGDT(2)
   DATA NV/204,224,208,211,212,214,215,231/
   DATA KQ/*N*/*PGD/*
                          ٠,٠
                                */,PGDT/*WAVE*,*FORM*/
   CALL XIO(T)
       ****LONG TERM VASCULAR STRESS RELAXATION****
       ****INPUT BLOOD SHIFT PROTOCAL IN DATA ByS****
   DAY=DumMY(1)
   DIMENSION BVS(200)
   DATA BVS/0.,0.,5.,236.,9.,266.,12.,355.,16.,398.,17.,383.,
  822,,443,,25,,413,,184*0./
   IF(BVS(3) . EQ. 0 . . OR . DAY . EQ. 0 . ) GO TO 75
71 Do 72 I=1,99,2
   BvSD = (BVS(I+3)-BVS(I+1))*(TD-BVS(I))/(BVS(I+2)-BVS(I))
  6+BVS(1+1)
   IF(TD.LE.BVS(1+2).AND.TD.GE.BVS(11)GO TO 73
72 CONTINUE
73 BDOT=(BVSD-BvSN)/14.
                                                           ORIGINAL PAGE IS
   BVSN=bVSN+.1*BDOT
                                                           OF POOR QUALITY
   TD = *1 + TD
   IF(TD+LT+DAY)GO TO 71
   VuoT=vu(18)+vu(19)+vu(20)
   DPCT=-(0.592*BVSN)/VUQT+1.
   Vu(18) = DPCT * VU(18)
   V_{U}(19) = DPCT + vU(19)
   VU(20)=DPCT*vU(20)
   BSLG=BVSD
75 CONTINUE
   CALL CONTRL(T)
```

```
CALL CVS(T)
 1 CALL ALGO(T)
   IF (T.GT.TTHAZ) THETA=O.
   IF (T.LT.WK(20)) 60 TO 1
   IF (KPLT.NE.O) GO TO 4
   WRITE (6,2)
 2 FORMAT ( DDO YOU WISH TO PLOT BUFFERED OUTPUT DATA? (Y/N) )
   READ (5,3) K
 3 FORMAT (1A1)
   IF (K.EQ.KQ) GO TO 40
 4 KSTOPP=1
   CALL PLOT
   CALL NEWPAG
   WRITE (6,5)
 5 FORMAT (*ODO YOU WISH TO PRINT TABULAR OUTPUT DATA? (Y/N)*)
   READ (5,3) K
   IF (K+EQ.KQ) GO TO 40
   CALL NEWPAG
   WRITE (6.10) NW. (N(I), I=1,8)
10 FORMAT(///*
                SECS',8(2X,A6)/+
                                      5991,818/1
  * 8(*
           ******)}
   Do 20 I=1.NBUF
   LP=XBUF(I)
   PT=LP
   IF (MOD(1.30).EQ.O) CALL PAGE3
20 WRITE (6,30) PT, (YBUF(I,J), J#1.8)
30 FORMAT (F7.1,8F8.3)
40 WRITE (6,45)
45 FORMAT(*ODO YOU WISH TO PLOT PRESSURE WAVEFORM DATA? (Y/N)*)
   READ (5,3) K
   IF (K.EQ.KQ) CALL EXIT
   NauF=NBUFW
   PGD(1)=PGDT(1)
   PGD(2)=PGDT(2)
   Do 50 1=1,8
   Na(I) = NAV(I)
   N(I) = NV(I)
   Do 50 J=1.NBUFW
   IF (I.EQ.1) X3UF(J)=XBUFW(J)
   YAUF(J,I)=YBUFW(J,I)
50 CONTINUE
  NWK20=XBUFW(NBUFW)+1.5
   WK(20)=NWK20
   Go TO 4
   END
   SUBROUTINE CVS(T)
            GE CARDIOVASCULAR LBNP MODEL
                           CONTROLLED SYSTEM
   COMMON/STATE/x(50) xDOT(50)
  2/STATE/QRA;QKV;QLA;QLV;QPA;QPC;QPV;QAA;QARC;QLAA;QUTA;QLTA;QUABA;
  30LABA,QCILL,ULGSA,QLGAR,QLGCAP,QLGVE,QLGSV,QFEV,QABVC,QTHVC,QSPVC,
  4QLOC,QUPC,QHCAP,QHSV,QJV,QCOR,QCSMA,QIMA,QCSKV,QPOV,QIMV,
  SQRENA, QRALE, QRENV, QRET, QD(10), QSKB
  6/STATE/CRA;CRV;CLA;CLV;CPA;CPC;CPV;CAA;CARC;CLAA;CUTA;CLTA;CUABA;
  7CLABA: CCILL: CLGSA; CLGAR: CLGVE; CLGSV; CFEV; CAByC; CTHVC; CSPVC;
  8CLOC, CUPC, CHSV, CJV, CCSMV, CIMV, CPOV,
```

C

C

9CRENA, CRENV, CD(18)

```
A/STATE/PRA:PRV:PLA:PLV:PPA:PPC:PPV:PAA:PARC:PLAA:PUTA:PLTA:PUABA:
     BPLABA, PCILL, PLGSA, PLGAR, PLGVE, PLGSV, PFEV, PAByC, PTHVC, PSPVC,
     CPLOC.PUPC.PHSV.PJV.PCSMV.PIMV.PPOV.
     DPRENA, PRENV, PD(16), PM, PMC
      COMMON/STATE/
     ERRA, RRV, RMV, RAV, RPA, RPC, RPV, RARC, RLAA, RUTA, RLTA, RUABA,
     FRLABA, RCILL, REGSA, REGAR, REGCAP, REGVE, REGSV, RFEV, RABVC,
     GRTHVC, RSPVC . RLOC . RUPC, RHCAP, RHSV, RJV, RCOR, RCSMA, RIMA, RCSMV,
     HRPOV.RIMV.RRENA.RRALE.RREFF.RRENV.RO(11).RSKB
     I/STATE/FLPA:FLAA:FLARC:FLLAA:FLUTA:FLLTA:FLUABA:
     JFLLABA, FLCILL, FLCSMA, FLIMA, FLRENA, FLDM(8)
     K/STATE/V(50), VU(50), PG(34), PEXT(32), E(4)
     * * PRN * ABIAS * THIAS * TTHAZ * TMODEL * SPACE (2) * ECBV * PTIS * BSLG
     L.Z(40), WK(20), HR.SV, CO.RT, PEX, W, PSYS. PDYS, FREQ
     M. VO2DOT. AVD. PIAB. PITH. PMP. THETA. SF
     N.TTOT.TAS.TVS.CI.C2.GNEW.PEXIN.TR
     *,DUMMY(13),WAVEFM,DPRT,VLEG
      DIMENSION PRS(1), CMP(32), R50(50), FINR(12)
      EQUIVALENCE (PRS. PRA), (CMP(1), CRA), (RSO(1), RRA), (FINR(1), FLPA)
C
                T IS ELAPSED TIME
C
                TT IS A CLOCK FOR ONE BEAT
      Tr=T=TSVE
      IF (TT-TTOT) 1802,1001,1001.
 1001 TSVE=T
C****.
      C0=X(33)/TTOT+.06
      X(33)=0.0
      PM=X(10)/TTO1
      X(10)=0.0
      PMC=X(13)/TTOT
      X(13)=0*0
      PD(1)=x(37)/TTOT
      X(37)=0.0
      SV=TTOT/60.*CO
      RT=P0(1)/C0
      IF(T.GT.35.) GO TO 993
      DJFF = -V(50) + v(49)
      X(18)=x(18)+DIFF*D.6
      X(19)=X(19)+U1FF+0.4
  993 CONTINUE
     · PSYS=5YS
      PDYS=DYS
      CALL XIO(T)
  110 CALL CONTRL(T)
      TEMP=TEMP+0.2
      IF (TEMP-T) 110.111.111
  111 CONTINUE
      SY5=0.0
      DYS=1000.
      TTOT=60./HR
      TAS=0.10+0.09*TIOT
      TVS=0.16+0.2U+TTOT
C+*** LBNP ****
      IF (T.LT.41. .OR. T.GT.43.) GO TO 20
   10 PG(I)=SIN(THETA/57.2958)+Z(1)+1.05+980./1332.
   20 CONTINUE
```

```
IF (TMODEL.GT.D.) GO TO 26
      Do 25 1=1,18,2
      IF (WK(I) . LT. 0.) GO TO 30
      IF (T+GT+WK(I)) PLBNP=-WK(I+1)
   25 CONTINUE
      GO TO 30
   26 IF (ABS(THETA).LT.1.E-5 .OR. T.LT.40.) GO TO 30
   26 IF (ABS(THETA).GT.1.E-5) TILTD=1.
      IF (ABS(THETA).GT.1.E-5) GO TO 30
      IF (TILTD.GT.2.) GO TO 30
      D_0 = 28 I = 1.32
   28 PG(I)=0.
      TILTD=3.
   30 CONTINUE
      VLEG=U.
      Do 201 [=15,20
      VLEG=VLEG+V(I)
  201 PEXT(I) =-PLBNP
      VLEG=VLEG-VU(18)-VU(19)-VU(20)
      IF(T.GT.WK(3.).OR.BSLG.LT.1.).GO TO 301
      IF (PGBIAS . LT . 2.) PGBIAS=2.
      DVL=554 -- VLFG-BSLG
      IF (DVL.LT.=120.)PGBIAS=PGBIAS+.2
      If (DVL.GT.5.)PGBIAS=PGBIAS-.1
      IF(DVL.GT.-12U..AND.DVL.LT.-5.).PGBIAS=PGBIAS+.05
  301 CONTINUE
      TEMPV=Q.
      Do 16 I=1,32
   16 TEMPV=TEMPV+VU(I)
      ECBV=v(50)-VLEG-TEMPV+VU(18)+VU(19)+VU(20)
     & +VU(15)+VU(16)+VU(17)
C+_++**++++++
 1002 CONTINUE
C * * *
      FOR WAVEFORM PLOTS: SET WAVEFM*598* TO TIME DESIRED
      COMMON /WAVE/ NBUFW, NWV(8) . XBUFW(181), YBUFW(181,8)
      DATA NAV/
                    PLV PLOC
                                PAA PUTA PLTA PLABA PCILL PRENA!/
      DATA NBUFW/0/
      IF (WAVEFM.LT.Q.5) GO TO 220
      IF (NBUFW.EQ.O) WVPT=WAVEFM-2.
      IF (T.LT. NVPT .OR. T.GT. WAVEFM) GO TO 220
      WVPT=WVPT+0.0115
      NRUFW=NBUFW+1
      IF (NBUFW+GT+181) NBUFW=181
      XBUFW(NBUFW)=T
      YBUF-W(NBUFW,1)=PLV
      YBUFK(NBUFA,2)=PLOC
      YBUFA(NBUFW,3)=PAA
      YBUFW(NBUFW,4)=PUTA
      YAUFW(NBUFW,S)=PLTA
      YBUFA(NBUFW,6)=PLABA
      YBUFW(NBUFW,7)=PCILL -
      YOUFW(NOUFW,8)=PRENA
  220 CONTINUE
      IF(TT-TAS)1,2,2
    1 SAS=SIN(3.1416*TT/TAS)
      E(1)=0.05+0.05*5AS*SF
      E(3)=0.12+0.14*SAS*SF
```

```
RSPVC=(20++SAS+40+)/1332.
      RTHYC=(10.+5A5+20.)/1332.
      GO TO 3
    2 E(1)=0.05
      E(3) = 0.12
      RSPVC=.015015
      RTHVC= .0075075
    3 TV=TT=0 • 1
      IF(TV.LT.0.0)TV=0.0
      IF(TV-TVS)4,5,5
    4 Sys=SIN(3.1416.TV/TyS)
      E(2)=0.0175+.39*SF*SVS
      E(4)=0.02+1.50.5F*SVS
      GO TO 6
    5 E(2)=0.0175
      E(4)=0.02
    6 CONTINUE
      Do 11 1=1,4
   11 CMP(I)=1./E(I)
      IF(X(4)+LT+U+U)X(4)=0+0
                COMPUTE VOLUMES
C
      V(50)=0.0
      Do 55 I=1.32
      V(I) = VU(I) + X(I)
   55 V(50)=v(50)+V(1)
      V(50)=V(50)-V(9)-V(11)-V(13)-V(10)-VU(18)-VU(19)-VU(20)
      Do 71 1=1,12
   71 PEXT(I)=PITH
      PEXT(22)=PITH
      PEXT(23)=PITH
      00 72 1=28-32
   72 PEXT(1)=PIAB
      PEXT(14)=PIAS
      PEXT(21)=PIAB
C
                COMPUTE PRESSURES
      00 12 1=1,7
   12 PRS(I)=X(I)/CMP(I)+PEXT(I)
      Do 13 [=15,17
   13 PRS(1)=X(1)/CMP(1)+PEXT(1)
      Do 15 [=18,20
      PRS(I)=X(I)/VU(1)*2*+PEXT(I)+PTIS+PGBIA5-2*
   15 IF(X(I) • GT • VU(1)) PRS(I) =
     &(x(1)-vU(1))/CMP(1)+PEXT(1)+PTIS+PGB1AS
      Do 14 I=24.32
   14 PRS(I)=\lambda(I)/CMP(I)+PEXT(I)
      PAA=X(8)/CAA+PITH
      PUTA=x(29)/CUTA+PITH
      PLTA=x(12)/CLTA+PITH
      IF (PUTA . GT . SYS) SYS=PUTA
     .IF(PUTA+LT+DYS)DYS=PUTA
      PLABA=PIAB-11.826+0.002265*y(14)+0.0097734*v(14)*v(14)
      PLABA=X(14)/CLABA+PIAB
C+++ ABDOMINAL VENA CAVA
      PABVC=-5.4996+0.082408+V(21)-0.00033598*V(21)*V(21)
     ,+n.0000045026*V(21)*V(21)*V(21)
      IF (X(21) • GT • 200 • • AND • X(21) • LT • 350 • )
     • PABVC=•34/150.*(X(21)-200.)+1.15
```

```
C*** THORACIC VENA CAVA
       PTHVC==5.5006+0.1154*V(22)-0.00065873*V(22)*v(22)
      ,+p.Opap01236*v(22)*V(22)*V(22)
       IF (X(22) • GT • 150 • AND • X(22) • LT • 250 • )
      * PTHVC=+3/100+ * (X(22)=150+) + 1+16
       PSPVC==3,4999+0.92409*X(23)=0.042246*X(23)*X(23)
      *+0*00063485*X(23)*X(23)*X(23)
       PTHVC=PIHVC+PEXI(22)+TBIAS
       PABVC=PABVC+PEXT(21)+ABIAS
       PSPVC=PSPVC+PEXT(23)
       QRA=(PRA-PRV)/RRA
C
                 HEART MODEL
       IF (PRA.LT.PRV) QRA=0.0
       QRV=X(Q9)/FLPA
       If (QRV.LT.0.0)QRV=0.0
       XDOT(09)=PRV-PPA-RRV+QRV
       IF(XDOT(09) .LT.0.0.AND.QRV.EQ.0.0) XDOT(09)=0.0
       QLA=(PLA-PLV)/RMV
       IF(PLA.LT.PLV)QLA=0.0
       QLV=X(11)/FLAA
       IF(WLV.LT.0.0)QLV=0.0
       XOOT(11)=PLV-PAA+PG(8)-RAV+QLV
        \texttt{IF}(\texttt{XDOT}(\texttt{11}) \bullet \texttt{LT} \bullet \texttt{D} \bullet \texttt{O} \bullet \texttt{AND} \bullet \texttt{QLV} \bullet \texttt{EQ} \bullet \texttt{O} \bullet \texttt{Q}) \texttt{XDOT}(\texttt{11}) = \texttt{O} \bullet \texttt{O} 
C
                 PULMONARY CIRCULATION
       QFA=(PPA=PPC)/RPA
       QPC={PPC-PPV1/RPC
       QPV=(PPV-PLA)/RPV
¢
                  ARTERIAL MODEL

    QUTA=X(34)/FLLTA

       XDOT(34)=PUTA-PLTA+PG(13)-RLTA*QUTA
       QLTA=X(35)/FLLABA
       XOOT(35)=PLTA-PLABA+PG(14)-RLABA*QLTA
       QLABA=(PLABA-PCILL+PG(15))/RCILL
       QAA=X(36)/FLUTA
       XDOT(36)=PAA-PUTA+PG(12)=RUTA*QAA
C
                 LEGS
       QCILL=(PCILL+PG(16)-PLGSA)/RLGSA
       QLGSA=(PLG5A-PLGAR)/RLGAR
       QLGCAP=(PLGAR-PLGYE)/RLGCAP
       RLGVE= . 075075
       IF(QLGVE.LT.0.0)RLGVE=67.567567
       QLGVE=(PLGVE-PLGSV)/RLGVE
       RLGSV=.075075
       IF(QLGSV.LT.0.0)RLGSV=67.567567
       QLGSV=(PLGSV-PG(19)-PFEV)/RLGSV
¢
                  VENOUS MODEL
       RFEV= + 021021
       IF(QFEV.LT.D.D)RFEV=67.567567
       QFEV=(PFEV-PG(20)-PABVC)/RFEV
       QABVC=(PABVC-PG(21)-PTHVc)/RABVC
       QTHVC=(PTHVC-PG(22)-PRAI/RThVC
       Q5PVC=(PSPVC=PG(23)-PRA)/RSPVC
C
                 HEAD+ARMS
       QLOC=(PAA+PG(24)-PLOC)/RLOC
       QUPC=(PLOC-PUPC)/RUPC
       QHCAP=(PUPC-PHSV)/RHCAP
       QHSV=(PHSV-PJV)/RHSV
```

```
RJV=.004301
      IF(QJv.LT.0.0)RJv=67.567567
      QJV=(PJV=PG(27)=PSPVC)/RJV
C
               CORONARY CIRCULATION
      QCOR=(PAA-PRA)/RCOR
C
               CONTINUITY FOR VENOUS RETURN
      QRET=QSPVC+QTHVC+QCOR'
C
               HEPATIC-SPLANCHNIC CIRCULATION
      QCSMA=(PLTA-PCSMV)/RCSMA
      QC5MV=(PCSMV-PPOV)/RC5MV
      QPOV=(PPOV-PTHVC)/RPOV
C
               RENAL CIRCULATION
      QRENA= (PLABA-PRENA)/RRENA
      QRALE=(PRENA-PRENV)/(RRALE+RREFF)
      QRENV=(PRENV-PABVC)/RRENV
               SKELTON BONE MARROW AND OTHER
C
      QSKB=(PLABA-PABVC)/RSKB
               STATE VARIABLE DERIVATIVES
C
      XDOT(I)=QRET-QRA
      X(10T(2)=QRA-QRV
      XDOT(3)=GPV-LLA
      XDOT(4)=GLA=WLV
      XDOT(5)=QRV-QPA
      XDOT(6)=QPA~WPC
      XDOT(7)=QPC-QPV
      XDOT(8)=QLV-QAA-QCOR-QLOC
      XDOT(10)=PAA
      XDOT(12)=QUTA-QLTA-QCSMA
      XDOT(14)=QLTA-QLABA-QRENA-QSKB
      XDQT(15)=QLABA=QCILL
      XDOT(16)=QCILL-QLGSA
      XDOT(17)=QLGSA-QLGCAP
     TXDOT(18)=QLGCAP-QLGVE
      XDOT(19)=QLGVE-QLGSV
      XDOT(20)=QLGSV=QFEV
      XOOT(21)=QFEV=QABVC+QRENV+QSKB
      XDOT(22)=QABVC+QPOV-QTHVC
      XDOT(23)=QJV-QSPVC
      XDOT(24)=QLOC-QUPC
      XDOT (25) = QUPC-QHCAP
      XDOT (26) = QHCAP-QHSV
      VLQ-VZHQ=(75)TOGX
      XDOT(28)=QCSMA-QCSMV
      XDOT(29)=QAA-QUTA
      XDOT(30)=QC5MV-QPOV
      XDOT (31) = QRENA- WRALE
      XDOT (32) = QRALE-WRENV
      XDOT(33) = QLV
      XBOT([3]=PLOC
      XDOT(37)=PUTA
      RETURN
      END
```

SUBROUTINE CONTRL(T)

COMMON/STATE/X(50), XDOT(50)

2/STATE/QRA,QRV,QLA,QLV,QPA,QPC,QPV,QAA,QARC,QLAA,QUTA,QLTA,QUABA,
3QLABA,QCILL,QLGSA,QLGAR,QLGCAP,QLGVE,QLGSV,QFEV,QABVC,QTHVC,QSPVC,
4QLOC,QUPC,QHCAP,QHSV,QJV,QCOR,QCSMA,QIMA,QCSMV,QPOV,QIMV,

```
SQRENA, QRALE, QRENV, QRET, QD(10), QSKB
     6/STATE/CRA+CRV+CLA+CLV+CPA+CPC+CPV+CAA+CARC+CLAA+CUTA+CLTA+CUABA+
     7CLABA, CCILL, CLGSA, CLGAR, CLGVE, CLGSV, CFEV, CAByC, CTHVC, CSPVC,
     BCLOC, CUPC, CHSV, CJV, CCSMV, CIMV, CPOV,
     9CRENA, CRENV, CD(18)
     A/STATE/PRA.PRV.PLA.PLV.PPA.PPC.PPV.PAA.PARC.PLAA.PUTA.PLTA.PUABA.
     BPLABA, PCILL, PLGSA, PLGAR, PLGVE, PLGSV, PFEV, PABVC, PTHVC, PSPVC,
     CPLOC, PUPC, PHSV, PJV, PCSMV, PIMV, PPOV,
     DPRENA, PRENV, PD(16), PM, PMC
      COMMON/STATE/
     ERRA, RRV, RMV, RAV, RPA, RPC, RPV, RARC, RLAA, RUTA, RLTA, RUABA,
     FRLABA, RCILL, KLGSA, RLGAR, RLGCAP, RLGVE, RLGSV, RFEV, RABVC,
     GRTHVC. KSPVC. KLOC. RUPC, RHCAP, KHSV. RJV. RCOR, RCSMA. RIMA, RCSMV.
     HRPOV, RIMV, RRENA, RRALE, RREFF, RRENV, RD(111), RSKB
     I/STATE/FLPA,FLAA,FLARC,FLLAA,FLUTA,FLLTA,FLUABA,
     JFLLABA, FLCILL, FLCSMA, FLIMA, FLRENA, FLOM(8)
     K/STATE/V(50), VU(50), PG(34), PEXT(32), E(4)
     *, PRN, ABIAS, TBIAS, TTHAZ, TMODEL, SPACE(2), ECbV, PTIS, BSLG
     L,Z(40), %K(20), HR, SV, CO, RT, PEX, W, PSYS, PDYS, FREQ
     M, vO2DOT, AVD, PIAS, PITH, PMP, THETA, SF
     N. TTOT, TAS, TVS, C1, C2, GNEW, PEXIN, TR
     * DUMMY(13) WAVEFM, DPRT VLEG
                CONTROLLED RESISTANCES
      RRALE=600./1332.
      RSKB=6860 • / 1332 •
      RCSMA=10230+/1332.
      RHCAP=4570./1332.
      RCOR=20500./1332.
      RLGAR=7250./1332.
      RKEFF=2-744
      IF (T.LT.5.) SFS=SF
      IF (THETA • GT • 45 • • AND • T • GT • 40 • ) GO TO 600
      RCSMA=1+87
      RLGAR=6000./1332.
      GO TO 610
  400 RREFF=3+75
      SF= + 64
  610 CONTINUE
      IF (ABS(THETA).LT.1.E=5) SF=SFS
C
                                      PRESSURE REFERENCE FUNCTION PR
      E3=E2
      E2=E0
      En=EN
      E4=PRN=PM/2.-PMC/2.
      En=(E3+E2+E0+EN)/4.
      GAIN=GNEA
      PAVG=PD(1)
      IF (PAVG.LT.95. .AND. PAVG.GT.89.) GAIN=1.55.GNEW
      IF (PAVG.LE.89.) GAIN=4.1*GNEW
      DDP=0.533+(ER+GAIN)
      IF(DDP.LT.0.0)DDP=0.0
      TOT=0.300+DDP
      HR=60./TOT
      RETURN
      SUBROUTINE ALGO(T)
```

INTEGRATION ALGORITHM

```
COMMON /STATE/ X(50) , XDOT(50)
   DIMENSION XDS(50)
   IF(H)1,1,2
 2 DO 3 I=1,NOS,
 3 x05(1)=x00T(1)
   T=T+H
   CALL CV5(T)
   DG 4 I=1.NOSV
   X(I)=H/2**(\lambda DOT(I)+\lambda DS(I))+X(I)
10 RETURN
 1 CONTINUE
   NosV=38
   H=.002
   G0 T0 10
   EMD.
   SUBROUTINE XIO(T)
   COMMON/STATE/X(600)
   COMMON/PLTBUF/NBUF, XBUF(181), YBUF(181,8), NW(8), KSTOPP
   COMMON/PNTBUF/N(8) * KPLT
   DIMENSION A(8,6)
   DATA NBUF/1/
   DATA KY, INIT, NWB, NWTL/IHN, 0, 6H
                                       →6H TILT/
  DATA NW/* HR*** CO+,*
                                SV'. PM'.
        SYST', DIAST, LBNP , LEGV'/
   DATA N/561,563,562,249,567,568,469,600/
   IF (INIT.GT.0) GO TO 200
   INIT=1
   MON=0
   CALL CDATE(MD)
   CALL CTIME (MT)
   WRITE(6.5)MD.MT.MDN
 5 FORMAT(/* CARDIOVASCULAR LBNP/TILT MODEL*,6x,A6,* AT *,A6/
        REFER TO GE-AGS USER GUIDE TIR 741-MED-40081//
        **** MODEL INCLUDES MOD NUMBER 1:13//
  * */TO SIMULATE TILT EXPERIMENT ENTER 1.*)
   READ (5,6) X(495)
 6 FORMAT (F5.0)
   初ドITE (6.7)
 7 FORMAT( DDO YOU WANT GRAPHIC OUTPUT? (Y/N) )
   READ (5,20) K
   IF (K.NE.KY) KPLT=1
 9 嬰RITE ( 6,10)
10 FORMATI 1000 YOU WISH TO CHANGE INITIALIZED DATA? (Y/N) 1)
   READ ( 5,20) K
20 FORMAT(1A1)
   IF (K.EQ.KY) GO TO 60
   WRITE ( 6,30)
30 FORMAT( OPLEASE ENTER INDEX(1-600) + VALUE + CR: (13+612.6) )
   GG TO 40
35 WRITE (6,86)
40 READ (5,50, ERR=35) I, VALNEW
50 FORMAT(13, E12.6)
   WRITE (6,55) [, VALNEW
55 FORMAT(4X,3H***,14,F10,4)
   IF (I.LT.1 +UR. 1.GT.600) GO TO 60
   X(I) = VALNEA
```

GO TO 40

```
60 WRITE ( 6,70)
 70 FORMATIODO YOU WISH TO MODIFY THE OUTPUT LIST? (Y/N) )
    READ ( 5,20) K
    IF (K.EQ.KY) GO TO 200
    WRITE ( 6,80)
 80 FORMAT (*OPLEASE ENTER POSITION(2-9), INDEX(1-600), CR: (11,14)*)
    GO TO 90
85 WRITE (6,86)
86 FORMAT (* *READ ERROR**)
90 READ (5,100, ERR=85) IP, I
100 FORMAT(11,14)
    WRITE (6,101) IP, [
101 FORMAT(4x,3H***,12,14)
    IF (IP.EQ.0) GO TO 200
    IF (IP.EQ.1) GO TO 9
    IF (IP.LT.2 .OR. IP.GT.9) GO TO 90
    IF (1.LT.1 +OR. 1.GT.600) GO TO 90
    Go TO (90,102,103,104,105,106,107,108,109),1p
102 N(1)=1
    N% (1)=NWB
    Go TO 90
103 N(2)=I
    Nn (2) = Nw8
    60 TO 9U
104 N(3) = I
    Na (3)=NWB
    GO TO 90
105 N(4)=1
    Nz (4) = NWB
    GC TO 90
106 N(5)=I
    Nw (5) = NWB
    GO TO 90
107 \text{ N(6)}=1
    Ng(6)=N4B
    GO TO 90
108 N(7)=I
    N = (7) = NWB
    GO TO 90
109 N(8)=I
    BWM = (8) \pm MB
    GC TO 90
200 CONTINUE
    IF (T.GT.0.001) GO TO 215
    IF (X(495).LT.G.5) GO TO 210
    IF (N(7).NE.469) GO TO 210
    NA(7)=NWTL
    N(7)=575
210 #RITE (6,205) NW.N
205 FORMATI///*
                 SECS*,8(2X,A6)/+
                                        5991,818/1
      8(1
            ******)}
215 DO 220 I=1,8
    K=N\{I\}
    A(1,5)=X(K)
220 A(I:6)=(A(I:1)+A(I:2)+A(I:3)+A(I:4)+A(I:5))/5-D
    IF (N(7) . EQ . 575 . AND . T . LT . 41.) A(7,5)=0.
    PRITE(6,300) (A(I,5), I=1,8)
```

C

```
IF ((T-PT).-LT-1-1 .OR. AMOD(T_ABS(X(599))).GT-1-) GO TO 310
      IF '(NBUF.GT.1) GO TO 225
      X8UF(1)=0.
      DO 224 I=1,8
 224 YEUF(1,1)=A(1,6)
 225 NauF=NBUF+1
      IF (NBUF.GT.181) NBUF=181
      Xeuf(NgUF)⇒T
      Do 230 I=1.8
  230 YBUF(NBUF.1) = A(1.5)
      IF (KPLT.GJ.U) CALL PLOT
      LP=T
      PT=LP
      IF (KPLT.GT.0) GO TO 310
      WRITE(6,300)PT, (A(1,5), I=1,8)
  300 FORMAT (F7.1,8F8.3)
      IF (X(599) \cdot LT \cdot O \cdot) WRITE (6.305) (X(I), I=1.32)
  305 FORMAT (7X,8F8.3)
  310 Do 320 J=1.4
      Do 320 I=1.8
  320 A(I,J) = A(I,J+1)
      RETURN
      END
      BLOCK DATA
      COMMON/STATE/A(100)
      COMMON/STATE/8(50)
      COMMON/STATE/C(50)
      COMMON/STATE/D(50)
      COMMON/STATE/E(50)
      COMMON/STATE/F(20)
      COMMON/STATE/G(280)
C** STATE
      DATA A/89.9,215.8,38.7,218.0,7.7,10.6,27.4,23.9,0.,0.,
                                                                                1- 10
                                                                               11- 20
     1 0,,23,6,0,,16,2,62,3,62,4,4,1,126,0,205,,2,5,
                                                                               21- 30
     2 355.2,253.5,36.4,23.5,31.2,63.4,3.1,254.2,30.,120.7,
                                                                               31-10u
     3 17.1,43.7,5*0.,0.0,12*0.,50*0./
C+* FLOR
                                                                              101-150
      DATA B/50*0 ./
C** COM>
      DATA = (74*0..1.2,1.7,5.3..3,2*0..,2*.4,0...21,2*.8,.3,3.956,3.14..2, 151-170
     1 3*0.,.3,.3996,5.3,.9058,9.59,1.505,6.047,
                                                                              171-18Ü
                                                                              181-200
     2 .2224,2.517,5.0.,.3,12*0./
C** PRES
                                                                              201-250
      DATA D/48*0.,90.,90./
C** RES
                                                                              251-260
      DATA E/3**007508,.008634,.01502,.05255,.015022,2*0.,.040000,
                                                                              261-270
     1 .040000,0.,.030000,.030,.03003,4.505,.4505,.07508,.07508,.02102,
     2.00738,.007508,.01502,.02252,.03378,3.431,.3754,.004302,15.39,2.35 271-280
     3 ,34,5345,,2252,,5255,,3003,,01502,,45045,2,744,,6494,0,,0,,
                                                                              201-290
     4 9*0.,5 • 15/
                                                                              291-300
C** INRT
      DATA F/-0007508,.004,2*0.,.004,.004,0.,.004,.00626,11*U-/
                                                                              301-320
C+* MISC
      DATA G/48*0.,5000.,5000.,30,,0.,30,,0.,85.,15.,400.,61.6,2*D.,
                                                                              321-380
                                                                              381-390
     1 0.,90.5,0.,43.5,5.194,30.,30.,100.,188.,40.,
                                                                              391-400
     2 3 + 0 . , 50 . , 50 . , 50 9 . , 28 . , 562 . , 0 . 0 , 375 . ,
                                                                              401-420
     3 50 ., 150 ., 18 # 0 .,
```

```
* 34*0.,32*0.,4*0.,88.,2.55.3.60,9999.,0.,
                                                                             421-495
* 0.,0.0,0.,2.,0.,7*0.,~7.,2*0.,
                                                                             496-510
4 0.,10.,10.,16.,6.,33.,2*0.,33.,14.,
                                                                             511-52Ŭ
5 14 • , 2 • , -7 • , -14 • , 0 • , 0 • , -14 • , 13 * 0 • ,
                                                                             521-540
* n.,0.,60.,- 8.,120.,-16.,180.,-30.,240.,-40.,
                                                                             541-550
* 300.,-50.,300.,0.,400.,4*-[.,40].,
                                                                             551-560
6 72 . . . 09 . 6 . 7 . 5 * 0 . . 8 . 3 . 0 . .
                                                                             561-570
7 .0550,0.,-1.5,0.,0.0,.48,.833,.19,.36,46.,
                                                                             571-58u
8 10.,-,015,88.,14.0.,340.,10.,0./
                                                                             581-60U
 END
```

END ONSITE PRINTOUT ON MARCH 27, 1974 AT 08:10:43 DB6=G03432*TPF\$(0).PXX(0)

Tilt Example

CARDIOVASCULAR LBNP MODEL 250174 AT 130841 REFER TO GE-AGS USER GUIDE TIR 741-MED-4008

**** MODEL INCLUDED MOD NUMBER O

TO SIMULATE TILT EXPERIMENT ENTER 1.

DO YOU WISH TO CHAMGE INITIALIZED DATA? (YVM)

PLEASE ENTER INDEX(1-600). VALUE: CR; (13.612.6)

******* 575 70.0000°

))0000. 0 **+++**

DO YOU WISH TO MODIFY THE OUTPUT LIST? (Y/N)

SECS 599	HR 561	©⊡ 563	3V 562	PM 243	3Y2T 567	DIAS 568	TILT 575	LE6V 600
****	****	****	****	****	****	****	****	****
20.0	62.373	6.478	.104		126.404	72.642		584.595
40.0	62.283	6.473	.104		126.437	72.603		584.554
60.0	79.380	5.618	.071		123.011	83.685		954.659
80.0	80.807	5.546	.069		124.698	90.234		998.101
100.0	80.665	5.554	069		123.040	81.826		388.270
120.0	80.478	5.552	.069		122.598	81.984		988.156
140.0	30.541	5.551	.069		122.865	81.803		988.201

OF POOR QUALTE

CARDIOVASCULAR LENP/TILT NODEL 288374 AT 181538 REFER TO GE-AGE USER GUIDE TIR 741-MED-4888

REER HODEL INCLUDES MOD NUMBER &

TO SIMULATE TILT EXPERIMENT ENTER 1.

DO YOU WANT GRAPHIC OUTPUT? (Y/N)

>N

DO YOU WISH TO CHANGE INITIALIZED DATA? (Y/N)

>Y

PLEASE ENTER INDEX(1-656), VALUE, CR; (13,E12.6) >599 36.

EGD 24 445

*** 4 .4646

DO YOU WISH TO HODIFY THE OUTPUT LIST? (Y/N)

SECS	HR	ĊO	S Ų	PH	SYST	DIAS	LBNP	LEGU
599	561	563	562	249	567	568	469	648
****	海市市市	动非牵牵参	康泰寧寧華	- 李章章章章	市中京市市	非安米安排	****	****
35.5	61.893	8.513	. 195	96.381	125.163	73.294	. 006	553.947
60.9	62.95	6.519	.195	96.388	125.868	73.284	. 0 0 9	553.539
58.8	64.695	6.547	.161	99.582	122.552	72.784	-8.000	825.819
129.5	64.711	6.408	.166	99.659	122.419	72.839	-8.666	626.539
155.5	86.753	5.594	. 297	09.359	121,139	72.575	-16.000	698.727
100.0	S\$.275	6.455	. #87	99.291	121.128	73.642	-16.686	696.946
210.0	69.579	8.452	.693	88.781	119.253	73.899	-39.566	826.181
245.0	55.289	8.472	.093	89.584	119.281	73.259	-36.605	825.267
276.5	72.053	8.425	. #89	88.284	110.138	73.758	-46.656	917.365
306.6	72.316	8.456	.689	90.335	118.144	73.786	-40.000	917.123
320.0	76.888	6.366	. #83	87.381	114.356	72.767	-56.6061	969.134

```
67.01
```

] N

```
CARDIOVASCULAR LEMP/TILT MODEL
                                      270374 AT 132341
  PEFER TO GE-AGS USER GUIDE TIR 741-MED-4008
  非常集 MODEL INCLUDES MOD NUMBER @
TO SIMULATE TILT EXPERIMENT ENTER 1.
DO YOU WANT GRAPHIC OUTPUT? (Y/N)
DO YOU WISH TO CHANGE INITIALIZED DATA? (Y/N)
DO YOU WISH TO MODIFY THE OUTPUT LIST? (Y/N)
```

SECS 599 ****	HR 561 ****	CO 563 ቱъ≭≭\$	SU 562 ****	PM 249 ****	SYST 567 ****	DIAS 568 ****	LBNP 469 ****	LEGU 600
		heat-cloud-sdr	ጥጥጥጥጥ	ጥጥጥጥጥ	<u> </u>	<i>ች</i> ችችችች	<u> ች</u> ችችችች	****

TYPE SHIFT-OUT (SO) AND RETURN-->

```
GRAPHIC OUTPUT(Y/N/S)/TIME INTERVALS/STARTM/STOPM/(A2/3F5.0)..
                   Y SCALE
                             (A4,8X,F4.0,2F6.0)
PLOTOYUNUS ) LOC HIGH LOW
             1. 130.
                      50.
                    Y SCALE
                             (A4,8X,F4.0,2F6.0)
PLOTOY N.S.Y LOC HIGH LOW
             2. 10.
                       5.
                    Y SCALE
                              (A4,8%,F4.0,2F6.0)
PLOTON, N.S.) LOC HIGH LOW
             2. .15
                       . 05
                   Y SCALE
                             (A4,8X,F4.0,2F6.0)
PLOT(Y, N,S) LOC HIGH LOW
M
  SYST
                    Y SCALE
                              (A4,8X,F4.0,2F6.0)
PLOT(Y, N.S) LOC HIGH LOW
            3. 150
                       50.
  DIAS
                   Y SCALE
                              (A4,8X,F4,0,2F6,0)
PLOTOY, N.S. LOC HIGH LOW
                      50.
            3. 150.
  LBNP
                    Y SCALE
                              (A4,8%,F4,0,2F6,0)
PLOT(Y, N, S) LOC HIGH LOW
             4. 5.
                      -55
                   Y SCALE
                             (A4,8X,F4.0,2F6.0)
PLOT(Y.N.S) LOC HIGH LOW
```

CARDIOVASCULAR LBMP/TILT HODEL

WAVEFORM GRAPHIC OUTPUT EXAMPLE

```
DO YOU WISH TO PRINT TABULAR OUTPUT DATA? (Y/N)
N
DO YOU WISH TO PLOT PRESSURE WAVEFORM DATA? (Y/N)
>Y
```

```
NAMEFORM GRAPHIC OUTPUT(Y, N.S.) TIME INTERVALS, STARTX, STOPK, (A2, 3F5.0)...
2Y 41
   PLU
                     Y SCALE
                                (A4,8X,F4.0,2F6.0)
PLOTONOS) LOC HIGH LOW
              1.
                  250.
                        -010.
  PLOC
                     Y SCALE
                                (A4,8X,F4.0,2F6.0)
PLOT(Y,N,S) LOC HIGH
                        LOW
              1.
                  200.
                        50.
                     Y SCALE
                                (A4,8%,F4.0,2F6.0)
PLOTOY, N. S.) LOC HIGH
                        LOW
              2.
                  200.
                        50.
  FUTA
                       SCALE
                                (A4,8X,F4.0,2F6.0)
PLOTOY, N.S. LOC HIGH
                        LOM
             2.
                  200.
                        50.
  FLTA
                       SCALE
                                (A4,8X,F4,0,2F6,0)
PLOT(Y, N, S) LOC HIGH
                        LOW
             3.
                        50.
                  200.
 PLABA
                     Y SCALE
                                (A4,8X,F4,0,2F6,0)
PLOTCY, N.S. LOC HIGH
                        LOW
             3.
                  200.
                        50.
 PCILL
                       SCALE
                               (A4,8X,F4.0,2F6.0)
PLOT(Y, N, S) LOC HIGH
                        LON
             4.
                  200.
                        50.
 PRENA
                     Υ
                       SCALE
                               (A4,8X,F4,0,2F6,0)
PLOT(Y,N,S) LOC HIGH
                        LON
             4.
                        50.
                 200.
```

CARDIQUASCULAR LBMP/TILT MODEL

