

How to make science more trustworthy by improving transparency and reproducibility

Gustav Nilsonne

We need less research, better research, and research done for the right reasons.

Doug Altman, 1994

Reproducibility Project: Psychology

- Aimed to empirically investigate the reproducibility of psychological science in a largescale effort
- 97/100 original studies reported significant positive effects
- Actual vs expected positive findings: 35/89 (36%)
- Mean effect size was halved from r = 0.40 to r = 0.20

Open Science Collaboration, 2015

Possible reasons for failed replications

- Hidden moderators
- False negative replications due to chance
- False positive original findings due to chance
- False positive original findings due to biases

Positive and negative findings in a hypothesis testing framework

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

- The probability of detecting a true positive effect in a study, if it exists, is the statistical power
- The proportion of positive effects that exist among studied hypotheses is called the prior probability
- The proportion of observed true positive effects is given by the statistical power multiplied by the prior probability

Share of positive findings by field

Publication bias: a simulation

- We have estimated based on assumptions of 36% replicability and 90% positive findings that negative results were observed 50-100 times before one negative result was published
- Under such circumstances, any field will generate a literature dominated by positive findings

Analytical flexibility

- Data analysis requires many decisions
- The analytical space can be defined as the set of justifiable ways to analyse a dataset with respect to a hypothesis
- Undisclosed exploration of the analysis space can give a biased view
 - → "Researcher degrees of freedom", "forking paths", "p-hacking"

Exploring the multiverse

- Multiverse: conducting all the analyses that could reasonably be conducted on a certain dataset with a certain hypothesis
- Benefits
 - → Shows variability of results due to analytical choices
 - → Shows dependency of results on particular choices
- Limitations
 - → Size and scope of the multiverse are arbitrary
 - → Specifications may be more or less well justified

Multi-analyst studies

- Many groups independently analyse the same data with the same hypotheses
- Typical aims: to estimate how much of the analytical space is traversed under naturalistic circumstances, and how much results vary as a consequence
- Can be used to "stake out boundaries" of a multiverse analysis

The Neuroimaging Analysis Replication and Prediction Study (NARPS)

- Aimed to assess variability in functional magnetic resonance imaging (fMRI) research
- Teams were asked to freely analyze the data with their usual analysis pipeline and report a binary decision for 9 hypotheses
- 70 teams reported results
- No two teams used the same analysis pipeline

Conclusions from NARPS

- Considerable variation observed in methods and results
- Recommendations and suggestions
 - → Share raw data and results (unthresholded maps)
 - → Preregister analysis pipelines
 - → Share analysis code
 - → Use multiple pipelines ("multiverse analysis")

Further multi-analyst projects

- Guidance for multi-analyst studies: 50 experts contributed in a consensus procedure to develop a set of recommendations and a reporting guideline (<u>Aczel et al. 2021</u>)
- <u>EEGManyPipelines</u>: a multi-analyst project for electroencephalography (EEG) data. ~170 independent teams have reported results, analysis phase now ongoing.

- Multi100: Data and hypotheses from 100 papers in social/behavioural sciences will be reanalysed by 5 analysts each
- Further multi-analyst projects in RCT:s and medical registry research forthcoming

Some research practices for increased reproducibility

- Error mitigating practices: standards, code copiloting etc
- Preregistration
- Open digital research objects: papers, data, materials, code
- Reporting multiple analytical strategies
- Replication research

Scientific publishing

Journal article as artefact

Interoperable digital research objects

A theory of change

How to make your research more reproducible

- Be the change that you want to see
- Learn the skills that you wish to practice
- Find your community

Thank you