Exercise1

The GENMOD Procedure

Model Information				
Data Set	WORK.AUTO			
Distribution	Gamma			
Link Function	Log			
Dependent Variable	highwaympg			

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	190	1.9470	0.0102			
Scaled Deviance	190	197.3240	1.0385			
Pearson Chi-Square	190	1.9643	0.0103			
Scaled Pearson X2	190	199.0784	1.0478			
Log Likelihood		-494.2043				
Full Log Likelihood		-494.2043				
AIC (smaller is better)		1004.4087				
AICC (smaller is better)		1005.1747				
BIC (smaller is better)		1030.6743				

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
Intercept		1	4.1811	0.1992	3.7908	4.5715	440.76	<.0001
weight		1	-0.0003	0.0000	-0.0003	-0.0002	65.27	<.0001
height		1	0.0012	0.0039	-0.0065	0.0090	0.10	0.7511
horsepower		1	-0.0034	0.0004	-0.0041	-0.0026	77.74	<.0001
enginesize		1	0.0015	0.0004	0.0006	0.0023	11.22	0.0008
price		1	-0.0000	0.0000	-0.0000	0.0000	0.08	0.7830
ndoors	four	1	0.0074	0.0174	-0.0267	0.0416	0.18	0.6695
ndoors	two	0	0.0000	0.0000	0.0000	0.0000		
Scale		1	101.3477	10.1949	83.2125	123.4352		

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 1 Analysis								
Source	2*LogLikelihood	ogLikelihood DF Chi-Squar		Pr > ChiSq				
Intercept	-1306.0078							
weight	-1079.8538	1	226.15	<.0001				
height	-1062.4948	1	17.36	<.0001				
horsepower	-1000.7707	1	61.72	<.0001				
enginesize	-988.6775	1	12.09	0.0005				
price	-988.5907	1	0.09	0.7684				
ndoors	-988.4087	1	0.18	0.6696				

LR Statistics For Type 3 Analysis								
Source	DF	Chi-Square	Pr > ChiSq					
weight	1	56.36	<.0001					
height	1	0.10	0.7511					
horsepower	1	65.05	< <mark>.0001</mark>					
enginesize	1	10.90	0.0010					
price	1	0.08	0.7831					
ndoors	1	0.18	0.6696					

a) According to the results of the gamma model with log link, the type 1 analysis tell us that the weight, height, horsepower, and enginesize are significant, while price and ndoors are insignificant. Type 3 analysis tells us that weight, horsepower, enginesize are significant, whereas height, price, and ndoors are insignificant. The parameter estimate table indicates that two doors is a constant term, so significant parameters would indicate significant differences from the baseline value. However, difference between two doors and four doors is insignificant. The parameter estimate of weight and horsepower are negative, so increases in weight and horsepower would cause the highyway mpg to decrease. The parameter estimate of enginesize is positive, so increase in enginesize would increase highyway mpg.

Model Information				
Data Set	WORK.AUTO			
Distribution	Gamma			
Link Function	Log			
Dependent Variable	highwaympg			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	191	1.9477	0.0102				
Scaled Deviance	191	197.3241	1.0331				
Pearson Chi-Square	191	1.9619	0.0103				
Scaled Pearson X2	191	198.7543	1.0406				
Log Likelihood		-494.2423					
Full Log Likelihood		-494.2423					
AIC (smaller is better)		1002.4845					
AICC (smaller is better)		1003.0771					
BIC (smaller is better)		1025.4669					

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
Intercept		1	4.1951	0.1926	3.8175	4.5727	474.19	<.0001
weight		1	-0.0003	0.0000	-0.0003	-0.0002	69.10	<.0001
height		1	0.0011	0.0039	-0.0065	0.0088	0.08	0.7753
horsepower		1	-0.0034	0.0004	-0.0041	-0.0027	87.06	<.0001
enginesize		1	0.0014	0.0004	0.0006	0.0022	12.57	0.0004
ndoors	four	1	0.0076	0.0174	-0.0265	0.0418	0.19	0.6604
ndoors	two	0	0.0000	0.0000	0.0000	0.0000		
Scale		1	101.3088	10.1910	83.1806	123.3878		

LR Statistics For Type 3 Analysis								
Source	DF	Chi-Square	Pr > ChiSq					
weight	1	58.87	<.0001					
height	1	0.08	0.7753					
horsepower	1	71.03	<.0001					
enginesize	1	12.22	0.0005					
ndoors	1	0.19	0.6605					

Model Information				
Data Set	WORK.AUTO			
Distribution	Gamma			
Link Function	Log			
Dependent Variable	highwaympg			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	192	1.9486	0.0101				
Scaled Deviance	192	197.3242	1.0277				
Pearson Chi-Square	192	1.9628	0.0102				
Scaled Pearson X2	192	198.7717	1.0353				
Log Likelihood		-494.2830					
Full Log Likelihood		-494.2830					
AIC (smaller is better)		1000.5660					
AICC (smaller is better)		1001.0081					
BIC (smaller is better)		1020.2652					

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
Intercept		1	4.2490	0.0387	4.1732	4.3247	12081.5	<.0001
weight		1	-0.0003	0.0000	-0.0003	-0.0002	83.45	<.0001
horsepower		1	-0.0035	0.0004	-0.0041	-0.0028	96.66	<.0001
enginesize		1	0.0014	0.0004	0.0006	0.0022	12.55	0.0004
ndoors	four	1	0.0095	0.0162	-0.0223	0.0412	0.34	0.5593
ndoors	two	0	0.0000	0.0000	0.0000	0.0000		
Scale		1	101.2670	10.1868	83.1463	123.3369		

LR Statistics For Type 3 Analysis							
Source	DF	Chi-Square	Pr > ChiSq				
weight	1	68.80	<.0001				
horsepower	1	77.72	<.0001				
enginesize	1	12.20	0.0005				
ndoors	1	0.34	0.5595				

The GENMOD Procedure

Model Inform	nation
Data Set	WORK.AUTO
Distribution	Gamma
Link Function	Log
Dependent Variable	highwaympg

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	193	1.9519	0.0101				
Scaled Deviance	193	197.3248	1.0224				
Pearson Chi-Square	193	1.9632	0.0102				
Scaled Pearson X2	193	198.4671	1.0283				
Log Likelihood		-494.4533					
Full Log Likelihood		-494.4533					
AIC (smaller is better)		998.9066					
AICC (smaller is better)		999.2207					
BIC (smaller is better)		1015.3226					

	Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq				
Intercept	1	4.2460	0.0384	4.1708	4.3212	12253.3	<.0001				
weight	1	-0.0003	0.0000	-0.0003	-0.0002	96.13	<.0001				
horsepower	1	-0.0035	0.0003	-0.0042	-0.0029	110.51	<.0001				
enginesize	1	0.0014	0.0004	0.0006	0.0021	12.22	0.0005				
Scale	1	101.0927	10.1692	83.0032	123.1245						

LR Statistics For Type 3 Analysis							
Source	DF	Chi-Square	Pr > ChiSq				
weight	1	77.33	<.0001				
horsepower	1	86.33	<.0001				
enginesize	1	11.89	0.0006				

b) From the Type 3 analysis of a, price has the largest p-value of 0.7831, so we remove it from the full model in the first step. According to the Type 3 analysis after removing price, AIC decreases from 1004.4087 to 1002.4845, and predictor height has the largest p-value of 0.7753, so we remove it in the second step. After removing height, AIC decreases from 1002.4845 to 1000.5660, and the result of Type 3 analysis shows that only ndoors has p-value greater than 0.05, which is 0.5595, so we remove it in the third step. Now, there are three predictors left in the model: weight, horsepower, and enginesize, which have p-value less than 0.05. Also, AIC decreases from 1000.5660 to 998.9066. Therefore, we keep weight, horsepower, and enginesize in our final model.

c) The residual plot shows no reason for concern. The standardized Pearson and deviance residuals are pretty evenly distributed above and below 0, and are all pretty well bounded by -2 and 2. Looking at the plot versus predicted values, we don't see problematic trends, so the assumptions are fine.

Exercise 2

Observations	197
Variables	7

	Simple Statistics									
	highwaympg	citympg	weight	height	horsepower	enginesize	price			
Mean	30.62944162	25.15228426	2558.456853	53.78324873	103.6040609	126.9949239	13279.64467			
StD	6.83625884	6.43786292	521.782047	2.44589903	37.6392053	41.9131144	8010.33422			

	Correlation Matrix									
	highwaympg	citympg	weight	height	horsepower	enginesize	price			
highwaympg	1.0000	0.9724	8001	1131	8037	6847	7087			
citympg	0.9724	1.0000	7556	0593	8220	6557	6929			
weight	8001	7556	1.0000	0.3061	0.7599	0.8489	0.8347			
height	1131	0593	0.3061	1.0000	0846	0.0719	0.1331			
horsepower	8037	8220	0.7599	0846	1.0000	0.8253	0.8120			
enginesize	6847	6557	0.8489	0.0719	0.8253	1.0000	0.8737			
price	7087	6929	0.8347	0.1331	0.8120	0.8737	1.0000			

	Eigenvalues of the Correlation Matrix								
	Eigenvalue	Difference	Proportion	Cumulative					
1	4.96574192	3.88401983	0.7094	0.7094					
2	1.08172209	0.51633227	0.1545	0.8639					
3	0.56538982	0.41160858	0.0808	0.9447					
4	0.15378124	0.02348892	0.0220	0.9667					
5	0.13029232	0.04957439	0.0186	0.9853					
6	0.08071793	0.05836326	0.0115	0.9968					
7	0.02235467		0.0032	1.0000					

The PRINCOMP Procedure

	Eigenvectors									
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7			
highwaympg	409235	0.028342	0.511068	0.150919	0.109474	0.218549	0.698576			
citympg	402703	0.089059	0.550741	050223	0.090639	0.167909	698321			
weight	0.414221	0.210014	0.130190	631395	0.023680	0.600966	0.083573			
height	0.061796	0.943549	080867	0.266949	0.147097	080348	0.001495			
horsepower	0.411111	235116	0.044947	0.574930	0.529655	0.387670	111001			
enginesize	0.401916	029780	0.496168	227877	0.359968	636843	0.065722			
price	0.405475	0.026612	0.404724	0.349726	739926	0.023848	026699			

- a) The first two principal components explain 86.39% of the total variation in the data, so two principal components should be kept in order to explain a minimum total variance of 85%. Based on the average eigenvalue test, two principal components should be kept because only the first two have eigenvalues greater than 1 (the average eigenvalue). Based on the scree plot, three principal components should be kept since after the third principal component the eigenvalues become relatively constant.
- b) The large positive coefficient values of first principal component are weight, height, horsepower, enginesize, and price. The large negative coefficient values of first principal component are highwaympg and citympg. The positive values are car's characteristics, and the negative values are mileage variables. So PC1 is a contrast of car's characteristics and mileage variables. The large positive coefficient values of second principal component are weight and height, and the large negative coefficient value of second principal component is horsepower. So PC2 is a contrast of car's physical feature and car's power.

c) Type 1 has positive values for principal component 1 and 2, which indicates luxury cars have larger than average value of mileage variables compared to car's characteristics and have larger than average value of physical features compared to power. Since type 0 has negative values for principal component 1, this implies non-luxury cars have lower than average value of mileage variables compared to car's characteristics. Type 0 has positive values for principal component 2, this implies non-luxury cars have larger than average value of physical features compared to power.

Exercise 3 The PRINCOMP Procedure

Observations	197
Variables	7

	Simple Statistics									
	highwaympg	citympg	weight	height	horsepower	enginesize	price			
Mean	30.62944162	25.15228426	2558.456853	53.78324873	103.6040609	126.9949239	13279.64467			
StD	6.83625884	6.43786292	521.782047	2.44589903	37.6392053	41.9131144	8010.33422			

Covariance Matrix								
	highwaympg	citympg	weight	height	horsepower	enginesize	price	
highwaympg	46.73	42.80	-2854.03	-1.89	-206.79	-196.18	-38806.69	
citympg	42.80	41.45	-2538.04	-0.93	-199.17	-176.94	-35734.94	
weight	-2854.03	-2538.04	272256.50	390.72	14924.52	18565.73	3488885.73	
height	-1.89	-0.93	390.72	5.98	-7.79	7.37	2607.82	
horsepower	-206.79	-199.17	14924.52	-7.79	1416.71	1301.95	244806.04	
enginesize	-196.18	-176.94	18565.73	7.37	1301.95	1756.71	293336.94	
price	-38806.69	-35734.94	3488885.73	2607.82	244806.04	293336.94	64165454.29	

Total Variance | 64440978.378

Eigenvalues of the Covariance Matrix							
	Eigenvalue	Difference	Proportion	Cumulative			
1	64357720.6	64275285.1	0.9987	0.9987			
2	82435.5	81893.0	0.0013	1.0000			
3	542.5	287.1	0.0000	1.0000			
4	255.4	236.0	0.0000	1.0000			
5	19.4	15.5	0.0000	1.0000			
6	3.9	2.9	0.0000	1.0000			
7	1.0		0.0000	1.0000			

Eigenvectors								
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	
highwaympg	000605	008997	068205	0.119471	0.714344	020062	685787	
citympg	000557	007196	078850	0.135288	0.668186	0.009924	0.727225	
weight	0.054362	0.997748	034375	014904	0.010815	004620	000915	
height	0.000041	0.003005	048282	0.005741	0.001811	0.998578	021564	
horsepower	0.003811	0.019518	0.842386	504439	0.182596	0.043608	0.017007	
enginesize	0.004567	0.031619	0.525347	0.844221	098886	0.020433	009197	
price	0.998503	054550	003830	000977	000029	000056	0.000018	

- a) The first principal components explain 99.87% of the total variation in the data, so one principal components should be kept in order to explain a minimum total variance of 85%. Based on the average eigenvalue test, one principal components should be kept because only the first has eigenvalues greater than the average eigenvalue. Based on the scree plot, one principal components should be kept since after the first principal component the eigenvalues become relatively constant.
- b) The large positive coefficient value of first principal component is price. The negative coefficient values are tiny, so we can ignore it. Therefore, PC1 represents price of cars. Price is the most predominant feature in principal component 1. Since price decides the car's type (luxury or non-luxury), so covariance-based PCA choose out this predominant feature.

- c) Type 0 has negative values for principal component 1, which indicates non-luxury cars have lower than average price of cars. Type 1 has positive values for principal component 1, which indicates luxury cars have larger than average price of cars.
- d) Since a correlation matrix is a covariance matrix of the standardized data, covariance-based PCA is more sensitive to the magnitude of variables' variances.