ACCQ204

1 Les codes en blocs

Définition des codes en blocs

Principe: k bits $\longrightarrow n$ bits avec n > k. On a $\dim(\mathcal{C}) = k$.

Def. Rendement : $R = \frac{k}{n}$.

Not. $C(k, n, d_{\min})$.

Def. Capacité de détection : $t \leq d_{\min} - 1$. Capacité de correction : $t \leq \lfloor \frac{d_{\min} - 1}{2} \rfloor$.

Les codes linéaires en blocs

 \mathcal{C} est un sev de $GF(2)^n$. Alors $d_{\min} = \min_{c \neq 0} w_H(c)$ (poids de Hamming).

Def. Matrice génératrice : $G = [I_{k \times k} \mid P_{k \times (n-k)}] \in \mathfrak{M}_{k \times n}$ sous forme systématique telle que $c = m \cdot G = [m \mid n-k]$ bits de parité].

Def. Matrice de parité : $H \in \mathfrak{M}_{(n-k)\times n}$ la matrice génératrice de \mathcal{C}^{\perp} , donc $\forall c \in \mathcal{C}, c \cdot H^{\mathsf{T}} = 0$. Sous forme systématique : $H = [-P^{\mathsf{T}} \mid I_{n-k}]$.

Def. Vecteur syndrôme : $s = rH^T$ avec r le mot reçu. Alors s = 0 ssi R est un mot de code.

Th (Borne de singleton). $d_{\min} \leq n - k + 1$, d'où la correction d'erreur $2t \leq d_{\min} - 1 \leq n - k$.

On effectue alors un décodage par maximum likelyhood : si les éléments de l'alphabet de départ sont équiprobables, on cherche $\max p(y \mid x)$.

Transformations

- Extension : rajouter des bits de parité.
- Allongement : rajouter des bits d'info.
- Perforation : supprimer des bits de parité.
- Raccourcissement : supprimer des bits d'info.
- Augmentation : ajouter des bits d'info sans modifier la longueur.
- Expurgation: supprimer des bits d'info sans modifier la longueur.

2 Les codes cycliques

Def. Code cyclique : code linéaire en bloc $\mathcal C$ défini sur $\mathrm{GF}(q)$ tel que $\forall c=(c_0,\ldots,c_{n-1})\in\mathcal C, (c_{n-1},c_0,\ldots,c_{n-2})\in\mathcal C$

Représentation polynomiale

Def.
$$c(X) = c_0 + c_1 X + \ldots + c_{n-1} X_{n-1}$$

Décalage cyclique : $Xc(X) \pmod{X^n-1}$.

Def. Polynôme générateur : g(X) l'unique mot de code unitaire de degré minimal.

Tous les mots de code sont multiples de g(X), et $g(X) \mid X^n - 1$. Pour écrire c(X) = g(X)m(X) de manière unique, avec m un mot d'info de degré < k, il faut $\deg(g(X)) = n - k$.

Th. C est un sous-ensemble cyclique de $GF(q)[X]/X^n - 1$ ssi C est un idéal de $GF(q)[X]/X^n - 1$.

On a le morphisme $\phi \colon p(X) \in \mathrm{GF}(q)[X] \to p(X) \pmod{X^n-1}$. $\phi^{-1}(\mathcal{C})$ est un idéal de $\mathrm{GF}(q)[X]$, qui est un corps, donc tous ces idéaux sont principaux et il y a existence et unicité de g(X).

Polynôme de parité

Def. Le polynôme de parité est
$$h(X) = \frac{X^n - 1}{g(X)}$$
.

Pour avoir unicité de l'écriture des mots de code : deg(h) < k.

Forme systématique

c(X)=m(X)g(X) : pour rendre m(X) visible dans g(X), on mettra ses coefficients dans les plus hauts degrés.

Forme souhaitée : $c(X) = X^{n-k}m(X) + t(X)$.

Division euclidienne :
$$X^{n-k}m(X) = \underbrace{q(X)g(X)}_{c,c} + r(X)$$
. On écrit donc $c(X) = X^{n-k}m(X) - r(X)$.

Polynôme syndrôme

Le mot reçu est r(X) = c(X) + e(X), où e est la représentation polynomiale de l'erreur. Alors s(X) est égal au reste de r(X)/g(X) ou de e(X)/g(X).

Si $deg(e(X)) < \frac{d_{min}}{2}$ alors s(X) est unique.

3 Rappels sur les corps finis

Polynôme sur un corps

Tout polynôme P(X) défini sur un corps F peut être factorisé de façon unique en produit de polynômes premiers (irréductible, unitaire, de degré > 1).

Soit un anneau quotient F[X]/P(X). Si p(X) est unitaire, c'est l'ensemble des polynômes de degré inférieur à P(X). C'est un corps ssi P(X) est premier, et c'est alors une extension de F.

Construction de $\mathrm{GF}(p^m)$

Soit P premier dans GF(p)[X], de degré m. Alors GF(p)[X]/P(X) est un corps fini à p^m éléments.

Élément primitif

 $\alpha \in \mathrm{GF}(p^m)$ est **primitif** si tout élément de $\mathrm{GF}(p^m) \setminus \{0\}$ est une puissance de α . Tout corps fini en possède au moins un.

 $(GF(p^m) \setminus \{0\}, \cdot)$ est un groupe cyclique généré par α .

Def. P(X) est un polynôme **primitif** ssi il annule un élément primitif.

Factorisation de X^n-1 , où $n=p^m-1$

Soit $\beta \in \mathrm{GF}(p^m) \setminus \{0\}$, d'ordre r. Alors $\beta^{p^m-1} = (\beta^r)^{\frac{p^m-1}{r}} = 1$ donc β est racine de X^n-1 (r divise l'ordre du groupe).

 $X^n - 1 = \prod_{\beta \in GF(p^m) \setminus \{0\}} (X - \beta)$ et on veut factoriser dans GF(p) maintenant.

Polynôme minimal

Def. Le **polynôme minimal** de $\beta \in GF(p^m)$ est le polynôme de plus petit degré dans GF(p) qui annule β .

Prop (de Frobenius).
$$\forall q \in \mathrm{GF}(p^m)[X], \forall a \in \mathbf{N}, q(X)^{p^a} = \left[\sum_{i=0}^{\deg(q)} q_i X^i\right]^{p^a} = \sum_{i=0}^{\deg(q)} q_i^{p^a} X^{ip^a}.$$

Th. Si f(X) est le polynôme minimal de $\beta \in GF(p^m)$ alors c'est aussi le polynôme minimal de β^p .

Deux éléments de $GF(p^m)$ sont conjugués s'ils ont le même polynôme minimal. Les conjugués de β sont $\{\beta, \beta^p, \beta^{p^2}, \dots, \beta^{p^{r-1}}\}$ où $r = \min\{i \in \mathbf{N}^* \mid \beta^{p^i} = \beta\}$.

Le polynôme minimal de β s'écrit $f(X) = (X - \beta)(X - \beta^p) \cdots (X - \beta^{p^{r-1}})$.

4 Codes BCH

Construction d'un code cyclique

Code cyclique primitif : de longueur $n = p^m - 1$ avec p premier.

Th. Soit β_1, \ldots, β_r les racines dans $GF(p^m)$ de g(X), polynômes générateur d'un code cyclique primitif. Alors $c(X) \in GF(p)[X]$ est un mot de code ssi $\forall i, c(\beta_i) = 0$. De plus $g(X) = \operatorname{ppcm}(f_{\beta_1}(X), \ldots, f_{\beta_r}(X))$ où les f_i sont les polynômes minimaux.

On obtient g(X) en choisissant les racines. On a alors k via deg(g(X)) = n - k.

Les zéros du code sont les i tels que α^i est racine de g(X), avec α un élément primitif.

Les codes BCH

Def. Code BCH: code cyclique ayant 2t zéros consécutifs (qui corrige t erreurs, $d_{\min} \geqslant 2t + 1$).

Construction d'un code BCH, avec $n = p^m - 1$, p premier :

- 1) choisir p(X) premier, de degré m sur $GF(p)[X] \longrightarrow GF(p^m)$,
- 2) calculer les polynômes minimaux des α^i pour $1 \le i \le 2t$,
- 3) calculer $g(X) = ppcm((f_{\alpha^i})_{i=1,...,2t})$.

Décodage par calcul du syndrôme

On a R(X) = c(X) + e(X). Le polynôme syndrôme s(X) est le reste de R(X)/g(x).

Def. vecteur syndrôme : $S = (s_1, \ldots, s_{2t})$ où $s_i = R(\alpha^i)$.

Si S = O, R(x) est un mot de code. On a $s_{2i} = R(\alpha^{2i}) = R(\alpha^{i})^2 = s_i^2$, donc il y a de la redondance.

Ex (Code de Hamming). $BCH(2^m-1,2^m-1-m,3)$. On a $GF(2^m)=GF(2)[X]/P(X)$, g(X)=p(X). Le code corrige une erreur. Algorithme de décodage : calculer s_1 , si $s_1=0$, e(x)=0, sinon $s_1=\alpha^i\neq 0$ et $e(X)=X^i$.

Ex (Code BCH binaire correcteur de 2 erreurs). $S=(s_1,s_2,s_3,s_4)$, $s_2=s_1^2$ et $s_4=s_1^4$. Les composantes non e(X)=0 pas d'erreur $s_1=0$ $s_3=0$

redondantes sont s_1 et s_3 . e(X) = 0 pas d'erreur $s_1 = 0$ $s_3 = 0$ $e(X) = X^i$ erreur en position i $s_1 = \alpha^i$ $s_3 = \alpha^{3i}$ $e(X) = X^i + X^j$ erreurs en positions i et j $s_1 = \alpha^i + \alpha^j$ $s_3 = \alpha^{3i} + \alpha^{3j}$

Def. Polynôme localisateur d'erreurs : $\Lambda(X)$ dont les racines sont les inverses des positions des erreurs dans $GF(p^m)[X]$ (corps localisateur d'erreurs).

Régis - BDE Télécom ParisTech

Dans l'exemple : $\Lambda(X) = (1 + \alpha^i X)(1 + \alpha^j X) \in GF(2^m)[X]$ avec 2 erreurs. En développant on obtient $\Lambda(X) = 1 + s_1 X + \left(s_1^2 + \frac{s_3}{s_4}\right) X^2.$

Transformée de Fourier discrète dans les corps finis

- TDF dans $\mathbf{C}^n:(h_0,\ldots,h_{n-1})\mapsto (H_0,\ldots,H_{n-1})$ avec $H_k=\sum_{l=0}^{n-1}h_l\exp\left(-\frac{2i\pi k}{n}l\right)$. TDF dans $\mathrm{GF}(p^m):\mathrm{soit}\ \alpha\in\mathrm{GF}(p^m)$ tel que $\alpha^n=1$, on a

$$(v_0,\ldots,v_{n-1})\in \mathrm{GF}(p)\longleftrightarrow (V_0,\ldots,V_{n-1})\in \mathrm{GF}(p^m)$$

$$v_i = \frac{1}{n \mod p} \sum_{j=0}^{n-1} V_j \alpha^{-ij} \qquad V_j = \sum_{i=0}^{n-1} v_i \alpha^{ij}$$

Dans le cas p=2 et $n=2^m-1$, on a donc $v_i=\sum_{j=0}^{n-1}V_j\alpha^{-ij}$ et $V_j=\sum_{i=0}^{n-1}v_i\alpha^{ij}$. On définit $v(X)=\sum_{i=0}^{n-1}v_iX^i$ et $V(X)=\sum_{j=0}^{n-1}V_jX^j$. On a $v_i=V(\alpha^{-i})$ et $V_j=v(\alpha^j)$.

Produit de convolution cyclique :

$$v_i = h_i u_i \xrightarrow{\text{TDF}} V_j = \sum_{i=0}^{n-1} H_i U_{(j-i) \mod n}$$

$$v_i = \sum_{j=0}^{n-1} h_j u_{(j-i) \mod n} \xrightarrow{\mathsf{TDF}} V_j = H_j U_j$$

Technique spectrale de décodage des codes BCH

Vecteur reçu : v(X) = c(X) + e(X) ($v_i = c_i + e_i$). Syndromes : $\forall i \in [1; 2t], S_i = v(\alpha^i) = e(\alpha^i) = E_i$.

$$e(X) \xrightarrow{\text{TDF}} E(X)$$
 E_0, \dots, E_{n-1}

Or $(E_1, \ldots, E_{2t}) = (S_1, \ldots, S_{2t})$ est la fenêtre spatiale sur le motif d'erreur.

Supposons ν erreur, avec $\nu \leqslant t$, de positions $i_k, k \in [1; \nu]$.

On a le polynôme localisateur d'erreurs $\Lambda(X) = \prod_{k=1}^{\nu} (1 + \alpha^{i_k} X) = \sum_{i=0}^{n-1} \Lambda_i X^i$. On passe à $\lambda(X) = \sum_{i=0}^{n-1} \lambda_i X^i$, $\lambda_i = \Lambda(\alpha^i) = \sum_{j=0}^{n-1} \Lambda_j \alpha^{-ij} \in \mathrm{GF}(p)$. **Prop.** On $a \forall i, e_i \lambda_i = 0$.

Démonstration. Si i n'est pas la position d'une erreur, $e_i = 0$, sinon i est la position d'une erreur, donc $e_i \neq 0$ mais $\lambda_i = \Lambda(\alpha^{-1}) = 0$.

Système fondamental de décodage, t équations avec t inconnues :

$$\begin{cases} \sum_{j=0}^{n-1} \Lambda_j E_{(k-j) \mod n} = 0 \\ \forall i \in [t+1; 2t], \sum_{j=1}^{n-1} t \Lambda_j S_{k-j} = S_k \end{cases}$$

Algorithme de PGZ. Ériture du système sous forme matricielle :

$$\underbrace{\begin{pmatrix} S_1 & S_2 & \dots & S_t \\ S_2 & S_3 & \dots & S_{t+1} \\ \dots & \dots & \dots & \dots \\ S_t & S_{t+1} & \dots & S_{2t} \end{pmatrix}}_{\text{proteins does surplus pass}} \cdot \begin{pmatrix} \Lambda_t \\ \Lambda_{t-1} \\ \dots \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} S_{t+1} \\ S_{t+2} \\ \dots \\ S_{2t} \end{pmatrix}$$

S'il existe t erreurs, la matrice des syndromes est inversible, donc le système est résoluble et il existe une solution unique. Sinon on reprend mais en testant pour une erreur de moins.

5 Codes Reed-Solomon

Cas particulier des codes BCH.

Def. Un code RS correcteur de t erreurs est un code cyclique de longueur $2^m - 1$ ayant uniquement 2t zéros consécutifs.

Ex. Avec
$$\{1, 2, 3, 4\}$$
, $g(X) = (X - \alpha)(X - \alpha^2)(X - \alpha^3)(X - \alpha^4) \in GF(2^m)[X]$.

Pour les RS, le corps des symboles et le corps localisateur d'erreurs sont les mêmes. Se sont des codes non binaires.

On a $\deg(g(X))=2t$, $g(X)=(X-\alpha)\cdots(X-\alpha^{2t})$ et n-k=2t, d'où $d_{\min}=2t+1$ (code à distance maximale).

Ex. On prend RS(15, 11, 5), sur $GF(16) \simeq GF(2)[X]/1 + X + X^4$, avec $n = 2^4 - 1$.

Il corrige 2 erreurs : $g(X) = X^4 + \alpha^{13}X^3 + \alpha^6X^2 + \alpha^3X + \alpha^{10} \in GF(16)[X]$. On a n - k = 4, donc k = 11 et $d_{\min} = 5$.

Ex. DVB: RS(204, 188) (c'est un RS raccourci, $204 \neq 2^m - 1$). La chaîne de transmission (le code source) impose d'utiliser 188 octets, donc sur $GF(2^8) = GF(256) \simeq GF(2)[X]/X^8 + X^6 + X^3 + X^2 + 1$.

Il corrige 8 erreurs : 2t=16 et l'on a $g(X)=(X+1)(X+\alpha)\cdots(X+\alpha^{15})$. Alors $\deg(g(X))=16\implies k=239$ mais on veut k=188. Donc on raccourcit le code : on rajoute des zéros pour le codage, on les enlève pour la transmission et on les rajoute pour le décodage.

Algorithme d'Euclide

Les zéros du code sont $\{0,\ldots,2t-1\}$. On a $\forall i\in \llbracket 0\,;n-1\rrbracket,\Lambda(\alpha^{-i})E(\alpha^{-i})=\lambda_ie_i=0$. Donc $\Lambda(X)E(X)=0$ mod X^n-1 , d'où $\Lambda(X)E(X)=\Omega(X)(X^n-1)$.

Il vient $[\Lambda(X)E(X) = \Omega(X)(X^n-1)] \mod X^{2t}$, puis $\Lambda(X)[E(X) \mod X^{2t}] = \Omega(X) \mod X^{2t}$ et $\Lambda(X)S(X) = \Omega(X) \mod X^{2t}$. Donc $\Lambda(X)S(X) + q(X)X^{2t} = \Omega(X)$, $\Omega(X)$ est un diviseur commun de S(X) et X^{2t} .

Dans l'algorithe d'Euclide de base on calcule $\operatorname{pgcd}(a(X),b(X))$, en supposant $\operatorname{deg}(b)\leqslant\operatorname{deg}(a)$, par :

$$a(X) = b(X)q_1(X) + r_1(X)$$

$$b(x) = r_1(X)q_2(X) + r_2(X)$$

.....

$$r_i(x) = r_{i+1}(X)q_{i+2}(X) + r_{i+2}(X)$$

et on s'arrête dès que le degré d'un reste est nul.

Dans la version généralisée on a

$$f_i(X)a(X) + g_i(X)b(X) = r_i(X)$$

avec

$$\begin{split} f_i(X) &= f_{i-2}(X) + f_{i-1}(X)q_i(X) \\ g_i(X) &= g_{i-2}(X) + g_{i-1}(X)q_i(X) \\ f_{-1}(X) &= 1 \qquad f_0(X) = 0 \qquad f_1(X) = 1 \\ g_{-1}(X) &= 0 \qquad g_0(X) = 1 \qquad g_1(X) = q_1(X) \end{split}$$

L'algorithme d'Euclide généralisé appliqué à $S(X), X^{2t}$ donne donc $\Lambda(X)$ et $\Omega(X)$. On arrête l'algorithme dès que $r_i(X)$ est de degré $\leqslant t-1$.

Algorithme de Forney pour connaître les valeurs des erreurs

Soit $\Omega(X)$ le polynôme évaluateur d'erreur. En dérivant $\Lambda(X)E(X)=\Omega(X)(X^n-1)$ on obtient

$$\Lambda'(X)E(X) + E'(X)\Lambda(X) = \Omega'(X)(X^n - 1) + n\Omega(X)X^{n-1}$$

Pour *i* une position d'erreur, $\lambda_i = \Lambda(\alpha^{-i}) = 0$ et $e_i = E(\alpha^{-i})$. Donc $\Lambda'(\alpha^{-i})E(\alpha^{-i}) = n\Omega(\alpha^{-i})\alpha^{n-1-i}$.

Régis - BDE Télécom ParisTech 4