Database Management System

FD's & Normalization

Practice Set 02

[MCQ]

1. Consider the following FD sets:

 $S_1 = \{P \rightarrow R, PR \rightarrow S, T \rightarrow PS, T \rightarrow U\}$

 $S_2 = \{P \rightarrow S, QR \rightarrow PS, R \rightarrow Q, T \rightarrow P, T \rightarrow S, T \rightarrow U\}$

 $S_3 = \{P \rightarrow S, R \rightarrow P, R \rightarrow Q, T \rightarrow PU\}$

Which of the following sets is equivalent?

- (a) $S_1 \equiv S_2$
- (b) $S_2 \equiv S_3$
- (c) $S_1 \equiv S_3$
- (d) $S_1 \equiv S_2 \equiv S_3$

[NAT]

2. Consider a relation $R = \{P, Q, R, S, T, U, V, W\}$ with the functional dependency sets $S = \{PR \rightarrow V, S \rightarrow TV, QR \rightarrow S, RV \rightarrow QS, PRS \rightarrow Q, RT \rightarrow PV\}$

The minimum numbers of simple functional dependency in the minimal cover of F is ______?

[NAT]

3. Consider a relation R(P, Q, R, S, T) with the following functional dependencies: $PQR \rightarrow ST$ and $S \rightarrow PQ$, then the number of super keys in R is _____?

[MCQ]

4. Consider the following two decomposition of R(P Q R S T U) with the set of dependencies

 $F = \{PQ \rightarrow R, PR \rightarrow Q, PS \rightarrow T, Q \rightarrow S, QR \rightarrow P, T \rightarrow U\}.$

 S_1 : $R_1(PQ)$, $R_2(QR)$, $R_3(PQST)$, $R_4(TU)$

 S_2 : $R_1(PQR)$, $R_2(PRST)$, $R_3(PSU)$

Which of the statements is are dependency preserving and lossless-join decomposition of R?

- (a) S₁ Only
- (b) S₂ Only
- (c) Both S_1 and S_2
- (d) None of these

[MCQ]

- 5. Consider a relation R(P, Q, R, S, T, U, V, W) be a relation schema, in which of the following FD sets are known to hold = $\{P \rightarrow Q, P \rightarrow R, P \rightarrow S, PT \rightarrow W, T \rightarrow S, T \rightarrow U\}$. Suppose we decompose the relation into two relations, $R_1(PQRS)$, and $R_2(STUVW)$. The above decomposition is
 - (a) lossless join and dependency preserving.
 - (b) lossless join but not dependency preserving.
 - (c) dependency preserving but not lossless join.
 - (d) neither dependency preserving nor lossless join.

[MCQ]

- **6.** Consider the following statements
 - **S₁:** The decomposition $R_1, R_2 ext{.....} R_n$ for a relation schema R are said to be lossless if their natural join results in the original relation R.
 - S_2 : The decomposition R_1 , R_2 R_n for a relation schema R are said to be lossy if their natural join results into addition of extraneous tuples with the original relation R.
 - (a) Only S₁ is true
 - (b) Only S₂ is true
 - (c) Both S_1 and S_2 are true
 - (d) Neither S_1 nor S_2 are true

[MCQ]

7. Consider the relation R(P, Q, R, S, T, U, V, W) with the following set of functional dependencies:

 $F = \{P \rightarrow QRS, P \rightarrow T, TUV \rightarrow W \text{ and } U \rightarrow VW\}$ Which one of the FD in the F is redundant?

- (a) $P \rightarrow ORS$
- (b) $PS \rightarrow T$
- (c) $TUV \rightarrow W$
- (d) $U \rightarrow VW$

[MCQ]

- **8.** Which are the major and important properties of FD's?
 - (a) There should be one to one relationship between attributes in FDs.
 - (b) FDs must be defined in schema.
 - (c) FDs should be non-trivial.
 - (d) All of the above

[MCQ]

9. Assume a relation R(P, Q, R, S, T) with the following functional dependencies

 $\{PQ \rightarrow RST, P \rightarrow R, Q \rightarrow S\}$. which of the following decomposition of R satisfies BCNF?

- (a) $R_1(P, R), R_2(Q, S), R_3(P, Q, R, S, T)$
- (b) $R_1(P, R), R_2(Q, S), R_3(P, Q, R, T)$
- (c) $R_1(P, R), R_2(Q, S), R_3(P, Q, S, T)$
- (c) $R_1(P, R), R_2(Q, S), R_3(P, Q, T)$

[MCQ]

10. Assume a relation R = (P, Q, R, S) and a set F of functional dependencies:

 $F = \{PR \rightarrow S, S \rightarrow P, S \rightarrow Q, S \rightarrow R\}$, Highest normal form satisfied by the relation R is?

- (a) 2NF
- (b) 3NF
- (c) BCNF
- (d) 1NF

[MCQ]

- **11.** Assume the relation R(P, Q, R, S, T) with candidate key PQ is in at least 3NF. which of the following functional dependencies given in option are invalid?
 - (a) $PQ \rightarrow R$
- (b) $ST \rightarrow Q$
- (c) $PQ \rightarrow S$
- (d) $RS \rightarrow T$

[MCQ]

- **12.** Assume a relation R(P, Q, R, S, T, U) with the following dependencies
 - 1. PQ \rightarrow RS
- 2. $T \rightarrow R$
- 3. $Q \rightarrow TU$

Given the functional dependencies as shown above which among the options shows the decomposition of relation R is normalized to 3NF?

- (a) $R_1(P, Q, R, S, T, U) R_2(T, R) R_3(Q, T, U)$
- (b) $R_1(P, Q, R, S) R_2(R, T) R_3(T, U, Q)$
- (c) $R_1(P, Q, R, S) R_2(R, T) R_3(Q, T, U)$
- (d) $R_1(P, Q, S), R_2(T, R) R_3(Q, T, U)$

[MCO]

13. Consider a relation R(P, Q, R, S, T, U, V, W) with the following functional dependencies:

 $\{RW \rightarrow V, P \rightarrow QR, Q \rightarrow RUW, T \rightarrow P, U \rightarrow TV\}$, then the relation R is in _____.

- (a) 1NF
- (b) 2NF
- (c) 3NF
- (d) BCNF

[MCQ]

- **14.** Consider a table/Relation R has one candidate key, then which of the following is always true?
 - (a) If R is in 2NF, then it is also in 3NF
 - (b) If R is in 3NF, then it is also in BCNF
 - (c) If R is in 2NF, but it is not in 3NF
 - (d) None of the above.

[MCQ]

- **15.** Consider a relation R(P, Q, R, S, T) with the set of FD's $\{PQR \rightarrow ST \text{ and } T \rightarrow QRS\}$ which of the following statements is true?
 - (a) R is not in 2NF
 - (b) R is in 2NF but not in 3NF
 - (c) R is in 3NF but not in BCNF
 - (d) R is in BCNF

[MCQ]

16. Consider a relation R (L, M, N, O) with the functional dependencies:

 $L \rightarrow M$

 $M \rightarrow N$,

 $N \rightarrow O$

which one of the following decompositions is not lossless?

- (a) $R_1(L, M), R_2(M, N), R_3(N, O)$
- (b) $R_1(L, M), R_2(L, N), R_3(L, O)$
- (c) $R_1(L, O), R_2(M, O), R_3(N, O)$
- (d) All of the above are lossless

[MSQ]

17. Consider a relation X (P, Q, R, S, T) with the FD's:

 $PQ \rightarrow R$

 $Q \rightarrow S$

 $ST \rightarrow P$

 $Q \rightarrow S$ is a BCNF violation for X. Suppose we decide to decompose X into $X_1(Q, S)$, and $X_2(P, Q, R, S, T)$.

Which of the following statements are incorrect?

- (1) $\{PQ \rightarrow R\}$ is a minimal cover for the FD's that hold in X_2 .
- (2) $PQ \rightarrow R$ is a BCNF violation for X_2 .
- (3) X_2 should be decomposed further into $X_3(P,Q,R)$ and $X_4(R,T)$
- (a) (1)
- (b) (2)
- (c) (3)
- (d) (1) and (2) only

[MCQ]

- **18.** Suppose functional dependency $Q \rightarrow R$ holds in relation R (P, Q, R, S) which additional FD will make R be in 3NF, but not BCNF?
 - (a) $S \rightarrow PQ$
- (b) $PR \rightarrow S$
- (c) $RS \rightarrow Q$
- (d) $PS \rightarrow Q$

Answer Key

1. **(b)**

2. **(6)**

3. **(10)**

4. **(d)**

5. **(d)**

(c)

8. (**d**)

(**d**)

11. (d)

12. (d)

13. (a) 14. (b)

15. (a)

16. (c)

17. (a, c)

18. (c)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5 For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

