# Quiz Đại số 01 (Bài quiz gồm 20 câu hỏi trắc nghiệm)

## Câu 01. Cho khẳng định sau:

"Cho hai mênh đề:

$$\exists x \in D, (P(x) \land Q(x)) \tag{1}$$

$$(\exists x \in D, P(x)) \land (\exists x \in D, Q(x))$$
 (2)

(1) và (2) luôn có cùng giá trị chân lý". Điều nào sau đây là đúng khi nói về khẳng định trên?

- A Khẳng định này là sai. Một ví dụ phản chứng là  $D=\mathbb{Z}$ , P(x)="x<0",  $Q(x)="x\geq0"$ .
- B Khẳng định này là sai. Một ví dụ phản chứng là  $D = \mathbb{N}$ , P(x) = "x là số chính phương, Q(x) = "x là một số lẻ ".
- C Khẳng định này là sai. Một ví dụ phản chứng là  $D = \mathbb{R}$ , P(x) ="x chia hết cho 6", Q(x) ="x chia hết cho 3."
- D Khẳng định này là đúng. Chứng minh theo luật hấp thụ.

Câu 02. Chọn bảng chân lý thích hợp cho:

$$(p \to q) \to (\overline{p} \lor q)$$

|   | p | q | $(p \to q) \to (\overline{p} \lor q)$ |
|---|---|---|---------------------------------------|
|   | 1 | 1 | 0                                     |
| A | 1 | 0 | 1                                     |
|   | 0 | 1 | 0                                     |
|   | 0 | 0 | 0                                     |
|   | p | q | $(p \to q) \to (\overline{p} \lor q)$ |
|   | 1 | 1 | 1                                     |
| C | 1 | 0 | 0                                     |
|   | 0 | 1 | 1                                     |
|   | 0 | 0 | 1                                     |

|   | p | q | $(p \to q) \to (\overline{p} \lor q)$ |
|---|---|---|---------------------------------------|
|   | 1 | 1 | 1                                     |
| B | 1 | 0 | 0                                     |
|   | 0 | 1 | 1                                     |
|   | 0 | 0 | 0                                     |
|   | p | q | $(p \to q) \to (\overline{p} \lor q)$ |
|   | 1 | 1 | 1                                     |
|   | 1 | _ | 1                                     |

|   | p     | q | $(p \rightarrow q) \rightarrow (p \lor q)$ |
|---|-------|---|--------------------------------------------|
|   | 1     | 1 | 1                                          |
| D | 1 0 0 | 0 | 1                                          |
|   | 0     | 1 | 1                                          |
|   | 0     | 0 | 1                                          |

**Câu 03.** Cho ánh xạ  $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ ,  $f(x) = \frac{2x+3}{x-1}$ . Chọn câu trả lời sai.

$$f^{-1}([4;7)) = (2,\frac{7}{2})$$

**Câu 04.** Cho số phức z thỏa mãn:  $z(2-i) = (\overline{z}+1)(1+i)$ Chọn khẳng định sai trong các đáp án dưới đây:

- $\bigcirc$  Phần ảo của z là: -1
- B Số phức liên hợp của z là: 1 i
- C Argument của z là  $\frac{\pi}{4}$
- D Mođun của z là:  $|z| = \sqrt{2}$

**Câu 05.** Nếu |z| = 1 và  $z \neq 1$  thì  $\frac{1+z}{1-z}$  là:

- A Số thực
- C Số ảo

- B Không tồn tại  $\frac{1+z}{1-z}$
- D Số thực dương

Câu 06. Cho số phức  $z = \frac{-1 + i\sqrt{3}}{1 - i}$ . Biết  $z = re^{\frac{a\pi}{b}i}$  và  $r, a, b \in \mathbb{R}$ . Chọn đáp án đúng.

$$\begin{pmatrix}
A \\
a = 12 \\
b = 11
\end{pmatrix}$$

**Câu 07.** Tìm số nguyên dương n nhỏ nhất để  $z = \left(-\sqrt{3} + i\right)^n$  là số thuần ảo.

 $\mathbf{A}$  0

 $(\mathbf{D})$  2

Câu 08. Cho ánh xạ  $f: \mathbb{R} \to \mathbb{R}$   $x \to y = x^3 + 2$  Ánh xạ ngược của  $f: f^{-1}(y) = \sqrt[b]{y-a}$  trong đó  $a,b \in \mathbb{R}$ . Chọn khẳng định đúng.

$$\left\{ \begin{array}{l}
 a = 1 \\
 b = 3
 \end{array} \right.$$

**Câu 09.** Cho ánh xạ  $f: \mathbb{R} \to \mathbb{R}^2$ ,  $f(x) = (2x + 1, 2x^2 + x)$ . Tìm  $f^{-1}(A)$  với  $A = [0,3) \times (-\infty,1]$ 

$$A f^{-1}(A) = (-1;1)$$

**B** 
$$f^{-1}(A) = \left[ -\frac{1}{2}; \frac{1}{2} \right]$$

$$f^{-1}(A) = \left(-\frac{1}{2}; \frac{1}{2}\right)$$

Câu 10. Cho  $f: \mathbb{R} \to \mathbb{R}$ ,  $g: \mathbb{R} \to \mathbb{R}$  với f(x) = 2x - 3,  $g(x) = 3x^2 - 5x + 1$ . Chọn đáp án đúng.

$$A \begin{cases} g \cdot f(x) = 6x^2 - 10x + 43 \\ f \cdot g(x) = 16x^2 - 42x - 1 \end{cases}$$

$$C \begin{cases} g \cdot f(x) = 10x^2 - 10x - 1 \\ f \cdot g(x) = 6x^2 - 10x + 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 12x^2 - 46x + 43 \\ f \cdot g(x) = 6x^2 - 10x - 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 10x^2 - 10x - 1 \\ f \cdot g(x) = 6x^2 - 10x + 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 12x^2 - 46x + 43 \\ f \cdot g(x) = 6x^2 - 10x - 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 16x^2 - 42x - 43 \\ f \cdot g(x) = 10x^2 - 6x - 1 \end{cases}$$

Tìm  $\lambda$ ,  $\beta$  để hệ vô số nghiệm  $\begin{cases} 2x + y + z &= \beta - 2 \\ x + \lambda y + 2z &= 3 \\ 2x - \lambda y - z &= 1 \end{cases}$ 

$$\Lambda$$
  $\lambda = 5$ ,  $\beta = -5$ 

$$\hat{\mathbf{C}}$$
  $\lambda = -5$ ,  $\beta = 5$ 

$$(\mathbf{B}) \lambda = -5$$
,  $\beta = -5$ 

$$\bigcirc$$
  $\lambda = 5$  ,  $\beta = 5$ 

Câu 12. Giải phương trình ma trận:

$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \mathbf{X}$$

$$\begin{bmatrix}
-\frac{5}{4} & 1 & \frac{3}{4} \\
-\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$B \begin{bmatrix}
\frac{5}{4} & 1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{5}{4} & 1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{array}{cccc}
\begin{bmatrix} \frac{5}{4} & -1 & \frac{3}{4} \\ \frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}
\end{array}$$

Số phát biểu đúng về hệ phương trình Cramer:

- (1) Ma trận hệ số là ma trận vuông.
- (2) Định thức của ma trận hệ số bằng 0.
- (3) Hệ phương trình có nghiệm duy nhất.
- (4) Hệ phương trình có nghiệm duy nhất là nghiệm tầm thường.

Khi nào thì ma trận *A* khả nghịch? Câu 14.

$$\bigcirc$$
  $\det(A) \neq 0$ 

$$\bigcirc$$
 det( $A$ )  $\neq 1$ 

$$\bigcirc$$
 det( $A$ ) = 1

Có bao nhiệu ma trận đối xứng trong số các ma trận sau?

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix} C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 5 \\ 2 & 5 & 4 \end{pmatrix} D = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & 5 \\ 3 & 5 & 3 \end{pmatrix} E = \begin{pmatrix} -1 & 0 & -2 & 4 \\ 0 & -2 & 5 & 6 \\ 2 & 5 & -3 & 9 \\ 4 & 6 & 9 & -4 \end{pmatrix}$$

Câu 16. Tìm ma trận *A* thỏa mãn

$$\begin{pmatrix} 3A^T - 3\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}^T \end{pmatrix}^T = \begin{pmatrix} 6 & 12 \\ 9 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 13 & 9 \\ 11 & 7 \end{pmatrix} \qquad \begin{pmatrix} 7 & -11 \\ 9 & 13 \end{pmatrix}$$

$$\begin{pmatrix} 7 & 11 \\ 9 & 13 \end{pmatrix}$$

$$\begin{pmatrix}
9 & 13 \\
7 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
7 & -11 \\
9 & 13
\end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 7 & 11 \\ 9 & 13 \end{pmatrix}$$

Với  $\lambda$  bằng mấy thì r(A) lớn nhất. Biết:

$$A = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 0 & 6 & 10 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & \lambda & -8 & 2 \end{pmatrix}$$

$$\lambda = 6$$

$$\lambda = -6$$

$$\bigcirc$$
  $\lambda \neq -6$ 

$$\lambda \neq 6$$

Tìm ma trận nghịch đảo của ma trận Câu 18.

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$

$$\begin{array}{ccc}
\mathbb{B} & \begin{pmatrix} 7 & -4 \\ -5 & -3 \end{pmatrix}
\end{array}$$

$$\bigcirc \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$$

Tính định thức sau Câu 19.

$$(A)$$
  $-a^3 - b^3 - c^3 - 3abc$ 

$$\mathbf{B}$$
  $a^3 + b^3 + c^3 - 3abc$ 

B 
$$a^3 + b^3 + c^3 - 3abc$$
  
C  $a^3 + b^3 + c^3 + 3abc$ 

$$-a^3 - b^3 - c^3 + 3abc$$

Câu 20. Cho hệ

$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 &= 1\\ x_1 + 2x_2 - x_3 + 4x_4 &= 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 &= m\\ 4x_1 + 8x_2 - 4x_3 + 16x_4 &= m + 1 \end{cases}$$

Với giá trị nào của *m* thì hệ vô nghiệm?



$$\bigcirc$$
  $m \neq 6$ 

$$\bigcirc m \neq 5$$

$$\bigcirc$$
 m  $\neq$  7



## ĐÁP ÁN

| <b>C</b> 09. ( | B) 13. (A)                                          |                                                             |
|----------------|-----------------------------------------------------|-------------------------------------------------------------|
|                |                                                     |                                                             |
| B 11. (        | D 15. (B)                                           | 19. (D)                                                     |
| <u>C</u> 12. ( | $\overline{\mathbf{D}}$ 16. $\overline{\mathbf{D}}$ | 20. <b>D</b>                                                |
|                |                                                     |                                                             |
|                |                                                     |                                                             |
|                | © 10. (B) 11. (C)                                   | C       10. B       14. B         B       11. D       15. B |



#### ĐÁP ÁN VÀ LỜI GIẢI

### Câu 01. Cho khẳng định sau:

"Cho hai mệnh đề:

$$\exists x \in D, (P(x) \land Q(x)) \tag{1}$$

$$(\exists x \in D, P(x)) \land (\exists x \in D, Q(x))$$
 (2)

(1) và (2) luôn có cùng giá trị chân lý". Điều nào sau đây là đúng khi nói về khẳng định trên?

- f A Khẳng định này là sai. Một ví dụ phản chứng là  $D=\mathbb{Z}$ , P(x)="x<0",  $Q(x)="x\geq0"$ .
- **B** Khẳng định này là sai. Một ví dụ phản chứng là  $D = \mathbb{N}$ , P(x) = "x là số chính phương, Q(x) = "x là một số lẻ ".
- C Khẳng định này là sai. Một ví dụ phản chứng là  $D=\mathbb{R}$ , P(x)="x chia hết cho 6", Q(x)="x chia hết cho 3."
- D Khẳng định này là đ<mark>úng. Chứng minh theo luật hấp thụ.</mark>

# Lời giải. Đáp án đúng A.

• Ta xét mệnh đề ""Khẳng định này là sai. Một ví dụ phản chứng là  $D=\mathbb{N}$ , P(x)="x là số chính phương, Q(x)="x là một số lẻ ""

Giả sử (1) và (2) không có cùng giá trị chân lý

Giả sử 
$$\begin{cases} D = \mathbb{Z} \\ P(x) = "x < 0" \\ Q(x) = "x \ge 0" \end{cases}$$

$$Vi -2 < 0 \Rightarrow P(-2)$$
 là đúng  $\Rightarrow \exists x \in D, P(x)$ 

Vì 
$$3 \ge 0 \Rightarrow Q(3)$$
 là đúng  $\Rightarrow \exists x \in D, Q(x)$ 

$$\Rightarrow (\exists x \in D, (P(x)) \land (\exists x \in D, Q(x)) \text{ là đúng}$$
 (3)

Nhưng không có số nguyên nào vừa  $\geq 0$  vừa < 0 được  $\Rightarrow \exists x \in D, (P(x) \land Q(x))$  là sai (4)

Từ (3) và  $(4) \Rightarrow$  điều giả sử là sai.  $\Rightarrow$  Mệnh đề trên đúng.

 Các đáp án (mệnh đề) còn lại ta có thể chứng minh dễ dàng là sai hoặc có các ví dụ phản chứng không hợp lí.

# Câu 02. Chọn bảng chân lý thích hợp cho:

$$(p \to q) \to (\overline{p} \lor q)$$



 $(\mathbf{C})$ 

| p | q | $(p \to q) \to (\overline{p} \lor q)$ |
|---|---|---------------------------------------|
| 1 | 1 | 1                                     |
| 1 | 0 | 0                                     |
| 0 | 1 | 1                                     |
| 0 | 0 | 1                                     |



|   | p     | q | $(p \rightarrow q) \rightarrow (p \lor q)$ |
|---|-------|---|--------------------------------------------|
|   | 1     | 1 | 1                                          |
| D | 1 0 0 | 0 | 1                                          |
|   | 0     | 1 | 1                                          |
|   | 0     | 0 | 1                                          |

**Lời giải.** Đáp án đúng (D).

| p | q | $p \rightarrow q$ | $\overline{p}$ | $\overline{p} \vee q$ | $\mid (p \to q) \to (\overline{p} \lor q) \mid$ |
|---|---|-------------------|----------------|-----------------------|-------------------------------------------------|
| 1 | 1 | 1                 | 0              | 1                     | 1                                               |
| 1 | 0 | 0                 | 0              | 0                     | 1                                               |
| 0 | 1 | 1                 | 1              | 1                     | 1                                               |
| 0 | 0 | 1                 | 1              | 1                     | 1                                               |

Cho ánh xạ  $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ ,  $f(x) = \frac{2x+3}{x-1}$ . Chọn câu trả lời sai. Câu 03.

(A) 
$$f([-1;0]) = \left[-3, -\frac{1}{2}\right]$$

$$\mathbf{C} f^{-1}([4;7)) = \left(2, \frac{7}{2}\right)$$

Lời giải. Đáp án đúng C.

Sai vì 
$$f^{-1}([4;7)) = \left(2, \frac{7}{2}\right]$$

Cho số phức *z* thỏa mãn:  $z(2-i) = (\overline{z}+1)(1+i)$ Chọn khẳng định sai trong các đáp án dưới đây:

- (A) Phần ảo của z là: -1
- (B) Số phức liên hợp của z là: 1 i
- C Argument của z là  $\frac{\pi}{4}$
- D Mođun của z là:  $|z| = \sqrt{2}$

**Lời giải.** Đáp án đúng (A).

Đặt z = a + bi, thay vào phương trình ban đầu ta có:

$$(a+bi)(2-i) = [(a-bi)+1](1+i)$$
  
 $\Leftrightarrow 2a+b+(-a)i+2bi = (a+b+1)+(a+1-b)i$ 

$$\Leftrightarrow 2a + b + (-a)i + 2bi = (a + b + 1) + (a + 1 - b)i$$

$$\Leftrightarrow \begin{cases} 2a + b &= a + b + 1 \\ -a + 2b &= a + 1 - b \end{cases} \Leftrightarrow \begin{cases} a &= 1 \\ b &= 1 \end{cases} \Rightarrow z = 1 + i$$

Nếu |z| = 1 và  $z \neq 1$  thì  $\frac{1+z}{1-z}$  là:

A Số thực

B Không tồn tại  $\frac{1+z}{1-z}$ 

(C) Số ảo

D Số thực dương

**Lời giải.** Đáp án đúng **C**.

$$Goi t = \frac{1+z}{1-z}$$

Biến đổi thu được :  $z = \frac{t-1}{t+1}$ 

Lấy modun 2 vế ta có:  $1 = |z| = \left| \frac{t-1}{t+1} \right| \Leftrightarrow |t-1| = |t+1|$ 

Đặt t = a + bi và thay vào phương trình ta sẽ thu được a = 0

Câu 06. Cho số phức  $z = \frac{-1 + i\sqrt{3}}{1 - i}$ . Biết  $z = re^{\frac{a\pi}{b}i}$  và  $r, a, b \in \mathbb{R}$ . Chọn đáp án đúng.

$$\begin{cases}
 r = 2\sqrt{2} \\
 a = 15 \\
 h = 12
\end{cases}$$

$$\begin{array}{c}
\mathbf{C} \\
 a = 11 \\
 b = 12
\end{array}$$

$$\begin{cases}
r = 4 \\
a = 13 \\
b = 12
\end{cases}$$

Lời giải. Đáp án đúng C.  $re^{\varphi i} = r(\cos \varphi + i \sin \varphi)$  (Công thức Euler)

$$z = \frac{-1 + i\sqrt{3}}{1 - i}$$

$$= \frac{2e^{\frac{2\pi}{3}i}}{\sqrt{2}e^{-\frac{\pi}{4}i}} = \sqrt{2}e^{\frac{2\pi}{3}i - \frac{\pi}{4}i} = \sqrt{2}e^{\frac{11\pi}{12}i}$$

Tìm số nguyên dương n nhỏ nhất để  $z = \left(-\sqrt{3} + i\right)^n$  là số thuần ảo.

 $\mathbf{A}$  0

**Lời giải.** Đáp án đúng (B).

$$z = (-\sqrt{3} + i)^n = \left(2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)\right)^n$$
$$= 2^n \left(\cos\frac{5n\pi}{6} + i\sin\frac{5n\pi}{6}\right)$$

Để z thuần ảo thì  $\cos \frac{5n\pi}{6} = 0 \Leftrightarrow \frac{5n\pi}{6} = \frac{\pi}{2} + k\pi \Leftrightarrow n = \frac{3+6k}{5} (k \in \mathbb{Z})$ *n* nguyên dương nhỏ nhất khi k = 2, khi đó n = 3.

**Câu 08.** Cho ánh xạ  $f: \mathbb{R} \to \mathbb{R}$  $x \to y = x^3 + 2$ 

Ánh xạ ngược của  $f: f^{-1}(y) = \sqrt[b]{y-a}$  trong đó  $a,b \in \mathbb{R}$ . Chọn khẳng định đúng.

$$\begin{array}{c}
\mathbf{A} \\
b = 3
\end{array}$$

$$\begin{cases}
a = 2 \\
b = 2
\end{cases}$$

$$\begin{array}{c}
\mathbb{B} \\ \begin{cases} a=2 \\ b=2 \end{cases} \\
\end{array}
\qquad \qquad \qquad \qquad \mathbb{C} \\ \begin{cases} a=2 \\ b=3 \end{cases}$$

$$\bigcirc \begin{cases} a = 1 \\ b = 2 \end{cases}$$

**Lời giải.** Đáp án đúng **(C**).

$$f^{-1}:\mathbb{R}\to\mathbb{R}$$
 
$$y\to x=f^{-1}(y)$$
 Ta có  $f(x)=y=x^3+2\Rightarrow x=\sqrt[3]{y-2}\longrightarrow f^{-1}(y)=x=\sqrt[3]{y-2}$ 

Câu 09. Cho ánh xạ  $f: \mathbb{R} \to \mathbb{R}^2$ ,  $f(x) = (2x + 1, 2x^2 + x)$ . Tìm  $f^{-1}(A)$  với  $A = [0,3) \times (-\infty,1]$ 

$$A f^{-1}(A) = (-1;1)$$

**B** 
$$f^{-1}(A) = \left[ -\frac{1}{2}; \frac{1}{2} \right]$$

$$f^{-1}(A) = [-1;1]$$

$$D f^{-1}(A) = \left(-\frac{1}{2}; \frac{1}{2}\right)$$

Lời giải. Đáp án đúng (B).

Tập nghịch ảnh  $f^{-1}(A) = \{x \in \mathbb{R} | (2x+1; 2x^2+x) \in [0;3) \times (-\infty;1] \}$ 

$$x \in f^{-1}(A) \Leftrightarrow \begin{cases} 2x + 1 \in [0;3) \\ 2x^2 + x \in (-\infty;1] \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2} \le x < 1 \\ -1 \le x \le \frac{1}{2} \end{cases} \Leftrightarrow -\frac{1}{2} \le x \le \frac{1}{2}.$$

Vậy 
$$f^{-1}(A) = f^{-1}(A) = \left[ -\frac{1}{2}; \frac{1}{2} \right]$$

Câu 10. Cho  $f: \mathbb{R} \to \mathbb{R}$ ,  $g: \mathbb{R} \to \mathbb{R}$  với f(x) = 2x - 3,  $g(x) = 3x^2 - 5x + 1$ . Chọn đáp án đúng.

$$\begin{cases} g \cdot f(x) = 6x^2 - 10x + 43 \\ f \cdot g(x) = 16x^2 - 42x - 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 10x^2 - 10x - 1 \\ f \cdot g(x) = 6x^2 - 10x + 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 12x^2 - 46x + 43 \\ f \cdot g(x) = 6x^2 - 10x - 1 \end{cases}$$

$$\begin{cases} g \cdot f(x) = 16x^2 - 42x - 43 \\ f \cdot g(x) = 10x^2 - 6x - 1 \end{cases}$$

$$\bigcirc \begin{cases} g \cdot f(x) = 10x^2 - 10x - 1 \\ f \cdot g(x) = 6x^2 - 10x + 1 \end{cases}$$

**Lời giải.** Đáp án đúng **B**).

$$g \cdot f(x) = g(f(x)) = g(2x - 3)$$
$$= 3(2x - 3)^{2} - 5(2x - 3) + 1$$
$$= 12x^{2} - 46x + 43$$

$$f \cdot g(x) = f(g(x)) = f(3x^2 - 5x + 1)$$
$$= 2(3x^2 - 5x + 1) - 3$$
$$= 6x^2 - 10x - 1$$

**Câu 11.** Tîm 
$$\lambda$$
,  $\beta$  để hệ vô số nghiệm 
$$\begin{cases} 2x + y + z &= \beta - 2 \\ x + \lambda y + 2z &= 3 \\ 2x - \lambda y - z &= 1 \end{cases}$$

$$\Lambda$$
  $\lambda = 5$ ,  $\beta = -5$ 

$$\lambda = -5$$
,  $\beta = 5$ 

$$\mathbf{B}$$
  $\lambda = -5$  ,  $\beta = -5$ 

$$(\mathbf{D}) \lambda = 5, \beta = 5$$

Lời giải. Đáp án đúng D.

$$\overline{A} = \begin{bmatrix} 2 & 1 & 1 & \beta - 2 \\ 1 & \lambda & 2 & 3 \\ 2 & -\lambda & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & \beta - 2 \\ 0 & 2\lambda - 1 & 3 & 8 - \beta \\ 0 & -\lambda - 1 & -2 & 3 - \beta \end{bmatrix} 
\rightarrow \begin{bmatrix} 2 & 1 & 1 & \beta - 2 \\ 0 & -\lambda - 1 & -2 & 14 - 3\beta \\ 0 & -\lambda - 1 & -2 & 3 - \beta \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & \beta - 2 \\ 0 & -3 & -1 & 14 - 3\beta \\ 0 & 0 & 6 - (\lambda + 1) & 3(3 - \beta) - (\lambda + 1)(3\beta - 14) \end{bmatrix}$$

Vì vậy hệ có vố số nghiệm khi 
$$\Leftrightarrow \begin{cases} 6 - (\lambda + 1) = 0 \\ 3(3 - \beta) - (\lambda + 1)(3\beta - 14) = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda = 5 \\ \beta = 5 \end{cases}$$

Câu 12. Giải phương trình ma trận:

$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \mathbf{X}$$

$$\begin{bmatrix}
-\frac{5}{4} & 1 & \frac{3}{4} \\
-\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{5}{4} & 1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{5}{4} & -1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{5}{4} & -1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{5}{4} & 1 & \frac{3}{4} \\
\frac{3}{4} & 0 & \frac{3}{4}
\end{bmatrix}$$

Lời giải. Đáp án đúng D.

$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + I\mathbf{X}$$

$$\Leftrightarrow \left( \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2 & 2 \\ 5 & 3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\Leftrightarrow \mathbf{X} = \begin{bmatrix} 2 & 2 \\ 5 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \left( \begin{bmatrix} 2 & 2 \\ 5 & 3 \end{bmatrix} \text{ khả nghịch.} \right)$$

$$\Leftrightarrow \mathbf{X} = \begin{bmatrix} -\frac{3}{4} & \frac{1}{2} \\ \frac{5}{4} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & 1 & \frac{3}{4} \\ -\frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}$$

Số phát biểu đúng về hệ phương trình Cramer:

- (1) Ma trận hệ số là ma trận vuông.
- (2) Định thức của ma trận hệ số bằng 0.
- (3) Hệ phương trình có nghiệm duy nhất.
- (4) Hệ phương trình có nghiệm duy nhất là nghiệm tầm thường.







(D) 4

**Lời giải.** Đáp án đúng (A).

(1), (3) là các phát biểu đúng.

Câu 14. Khi nào thì ma trận A khả nghịch?

$$(\mathbf{B}) \det(A) \neq 0$$

(B) 
$$\det(A) \neq 0$$
 (C)  $\det(A) \neq 1$ 

$$\bigcirc$$
 det $(A) = 1$ 

Lời giải. Đáp án đúng (B).

Có bao nhiệu ma trận đối xứng trong số các ma trận sau? Câu 15.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix} C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 5 \\ 2 & 5 & 4 \end{pmatrix} D = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & 5 \\ 3 & 5 & 3 \end{pmatrix} E = \begin{pmatrix} -1 & 0 & -2 & 4 \\ 0 & -2 & 5 & 6 \\ 2 & 5 & -3 & 9 \\ 4 & 6 & 9 & -4 \end{pmatrix}$$

(D) 1

**Lời giải.** Đáp án đúng **B**).

A và C là các ma trân đối xứng.

Câu 16. Tìm ma trận *A* thỏa mãn

$$\left(3A^T - 3\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}^T\right)^T = \begin{pmatrix} 6 & 12 \\ 9 & 15 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 7 & -11 \\ 9 & 13 \end{pmatrix} \qquad \bigcirc \begin{pmatrix} 7 & 11 \\ 9 & 13 \end{pmatrix}$$

$$\bigcirc \left(\begin{matrix} 7 & 11 \\ 9 & 13 \end{matrix}\right)$$

**Lời giải.** Đáp án đúng **D**. Ta có

$$\begin{pmatrix} 3A^{T} - 3\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}^{T} \end{pmatrix}^{T} = \begin{pmatrix} 6 & 12 \\ 9 & 15 \end{pmatrix}$$

$$\Leftrightarrow 3A - 3\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ 9 & 15 \end{pmatrix}$$

$$\Leftrightarrow 3A = \begin{pmatrix} 6 & 12 \\ 9 & 15 \end{pmatrix} + \begin{pmatrix} 15 & 21 \\ 18 & 24 \end{pmatrix}$$

$$\Leftrightarrow A = \begin{pmatrix} 7 & 11 \\ 9 & 13 \end{pmatrix}$$

Với  $\lambda$  bằng mấy thì r(A) lớn nhất. Biết: Câu 17.

$$A = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 0 & 6 & 10 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & \lambda & -8 & 2 \end{pmatrix}$$

$$\Lambda$$
  $\lambda = 6$ 

$$(\mathbf{B}) \lambda = -6$$

$$(\mathbf{C})$$
  $\lambda \neq -6$ 

$$\lambda \neq 6$$

Lời giải. Đáp án đúng C.

$$A = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 0 & 6 & 10 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & \lambda & -8 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 & 4 \\ 0 & 2 & 10 & 6 \\ 4 & 3 & 3 & 1 \\ 6 & 2 & -8 & \lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 & 4 \\ 0 & 2 & 10 & 6 \\ 0 & -5 & -25 & -15 \\ 0 & -10 & -50 & \lambda - 24 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 7 & 4 \\ 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda + 6 \end{pmatrix}$$

Ta thấy  $[r(A)]_{\text{max}} = 3 \quad \Leftrightarrow \quad \lambda \neq -6$ 

Câu 18. Tìm ma trận nghịch đảo của ma trận

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$$

**Lời giải.** Đáp án đúng **D**.

Ta có

$$(A|I) = \begin{pmatrix} 3 & 4 & 1 & 0 \\ 5 & 7 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 4 & 1 & 0 \\ 0 & \frac{1}{3} & -\frac{5}{3} & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & \frac{4}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -5 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 7 & -4 \\ 0 & 1 & -5 & 3 \end{pmatrix}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$$

Câu 19. Tính định th<mark>ức sau</mark>

$$(A)$$
  $-a^3 - b^3 - c^3 - 3abc$ 

$$\mathbf{B}$$
  $a^3 + b^3 + c^3 - 3abc$ 

B 
$$a^3 + b^3 + c^3 - 3abc$$
  
C  $a^3 + b^3 + c^3 + 3abc$ 

$$\mathbf{D} - a^3 - b^3 - c^3 + 3abc$$

Lời giải. Đáp án đúng D.

Ta có

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = acb + bac + cba - c^3 - a^3 - b^3 = 3abc - a^3 - b^3 - c^3$$

Câu 20. Cho hệ

$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 &= 1\\ x_1 + 2x_2 - x_3 + 4x_4 &= 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 &= m\\ 4x_1 + 8x_2 - 4x_3 + 16x_4 &= m + 1 \end{cases}$$

Với giá trị nào của *m* thì hệ vô nghiệm?

$$\bigcirc$$
  $m \neq 4$ 

$$(B)$$
  $m \neq 6$ 

$$\bigcirc m \neq 5$$

$$\bigcirc$$
  $m \neq 7$ 

**Lời giải.** Đáp án đúng **D**. Ta có ma trân bổ sung:

$$\overline{A} = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 4 & 2 \\ 1 & 7 & -4 & 11 & m \\ 4 & 8 & -4 & 16 & m+1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & -3 & 3 & -7 & -3 \\ 0 & 5 & -3 & 7 & m-2 \\ 0 & 0 & 0 & 0 & m-7 \end{bmatrix} \\
\rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & -1 & 3 & -7 & m-8 \\ 0 & -3 & 3 & -7 & -3 \\ 0 & 0 & 0 & 0 & m-7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & -1 & 3 & -7 & m-8 \\ 0 & 0 & -6 & 14 & -3m+21 \\ 0 & 0 & 0 & 0 & m-7 \end{bmatrix}$$

Để hệ vô nghiệm  $\Rightarrow m - 7 \neq 0 \Leftrightarrow m \neq 7$ 

