Recitation #2 (Section 03)

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Linear transformations: recall & practice

Linear transformation *L*

A function $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if

- for all $v \in \mathbb{R}^n$ and for all $\lambda \in \mathbb{R}$ it is true that $L(\lambda \cdot v) = \lambda \cdot L(v)$
- for all $v, w \in \mathbb{R}^n$ it is true that L(w + v) = L(v) + L(w)

Note that if L is a linear transformation then $L(\vec{0}_n) = \vec{0}_m$ (useful to quickly see if a function is NOT linear)

Exercise 1

Is the function f linear? $f: \mathbb{R}^2 \to \mathbb{R}^2$, f((a,b)) = (2a, a+b)

Linear transformations: practice

Exercise 2

Is the function f linear? $f: \mathbb{R}^2 \to \mathbb{R}^3$, f((a,b)) = (a+b,2a+2b,1)

Linear transformations: practice

Exercise 3

Is the function f linear? $f: \mathbb{R}^2 \to \mathbb{R}$, $f((a,b)) = \sqrt{a^2 + b^2}$

Linear transformations: practice

Exercise 4.1

If $v, w \in \mathbb{R}^n$ are linearly independent vectors, are $v, v + w \in \mathbb{R}^n$ also *linearly* independent?

Exercise 4.2

If $v, w \in \mathbb{R}^n$ are linearly independent vectors, are $v, \alpha w \in \mathbb{R}^n$ also linearly independent? ($\alpha \neq 0$)

Linear transformations: matrices

Recall

All linear transformations (synonym map) $L: \mathbb{R}^n \to \mathbb{R}^m$ can be represented as a matrix \tilde{L} with respect to the basis $\tilde{e_1}, ..., \tilde{e_n}$ of \mathbb{R}^n . If the selected basis of \mathbb{R}^n is the canonical basis $e_1, ..., e_n$ then the matrix \tilde{L} is called *canonical matrix*.

Matrices: practice

Exercise 5

Given the linear transformtion $R: \mathbb{R}^2 \to \mathbb{R}^2$ with $R((x,y)) = (\frac{\sqrt{3}}{2}x - \frac{1}{2}y, \frac{1}{2}x + \frac{\sqrt{3}}{2}y)$ find the canonical matrix of R.

Linear transformations: kernel and image

Kernel

Given a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$, the kernel

$$Ker(L) = \{ v \in \mathbb{R}^n | L(v) = \vec{0}_m \}$$

Image

The image is $Im(L) = \{ w \in \mathbb{R}^m | \text{ exists } v \in \mathbb{R}^n \text{ with } L(v) = w \}$

Exercise 5

Find the kernel of the linear transformation $f:\mathbb{R}^2 o \mathbb{R}$,

$$f((a,b)) = 2a - 3b$$

Hint: The kernel is a subspace.

Exercise 6

Find the image of the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}$, f((a,b)) = 2a - 3b

Exercise 7

Find the kernel of
$$\tilde{L} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

Exercise 7: Another way of solving it

Note that
$$\tilde{L} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
 is an invertible matrix!

Prove that for an invertible matrix A then always $ker(A) = {\vec{0}}$

Questions