Frühjahr 22 Themennummer 1 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- (a) Es sei die Funktion $f : \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar mit f'(0) = 0 < f''(0) und $\lim_{x \to +\infty} f(x) = -\infty$. Zeigen Sie: Es gibt ein $\xi > 0$ mit $f'(\xi) = 0$.
- (b) Es sei $(f_n)_{n\in\mathbb{N}}$ eine Folge stetiger Funktionen $f_n:[0,1]\to\mathbb{R}$, die gleichmäßig gegen die Grenzfunktion f konvergiert. Zudem sei

$$F_n(x) := \int_0^x f_n(t) dt$$
 für alle $x \in [0,1]$ und alle $n \in \mathbb{N}$.

Begründen Sie kurz, dass die Integralfunktion

$$F(x) \coloneqq \int_0^x f(t) \, \mathrm{d}t$$

auf [0,1] wohldefiniert ist, und zeigen Sie, dass die Funktionenfolge $(F_n)_{n\in\mathbb{N}}$ gleichmäßig auf [0,1] gegen F konvergiert.

Lösungsvorschlag:

- (a) Weil f'' stetig ist, gibt es ein $\delta > 0$, sodass f''(x) > 0 für alle $x \in (-\delta, \delta)$ gilt (Stetigkeitsdefinition mit $\varepsilon = f''(0)$), also ist f' auf $(-\delta, \delta)$ streng monoton wachsend. Wegen f'(0) = 0, folgt f'(x) > 0 für $x \in (0, \delta)$ und auch f wächst streng monoton auf $(0, \delta)$ und erfüllt f(x) > 0 für $x \in (0, \delta)$. Wegen $\lim_{x \to +\infty} f(x) = -\infty$, gibt es ein $x_0 > \delta$ mit $f(x_0) < 0$. Weil f als C^2 -Funktion auch stetig ist, gibt es nach dem Zwischenwertsatz eine Nullstelle τ von f im Intervall $(\frac{\delta}{2}, x_0)$. Die Funktion f ist nun stetig auf $[0, \tau]$, erfüllt $f(0) = 0 = f(\tau)$ und ist differenzierbar auf $(0, \tau)$. Die Behauptung folgt nun aus dem Satz von Rolle.
- (b) Als gleichmäßiger Grenzwert einer Folge von stetigen Funktionen ist f selbst stetig und daher Riemann-integrierbar, also F wohldefiniert. Für alle $x \in [0,1]$ gilt nun

$$|F(x) - F_n(x)| = \left| \int_0^x f(t) \, dt - \int_0^x f_n(t) \, dt \right| = \left| \int_0^x f(t) - f_n(t) \, dt \right|$$

$$\leq \int_0^x |f(t) - f_n(t)| \, dt \leq x \, ||f_n - f||_{\infty} \leq ||f_n - f||_{\infty}.$$

Die Abschätzung gilt für alle $x \in [0,1]$, also ist $0 \le ||F - F_n||_{\infty} \le ||f_n - f||_{\infty} \to 0$ und nach dem Sandwichlemma/Schachtelungssatz folgt die Behauptung.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$