

UNIVERSITY OF CALOOCAN CITY COMPUTER ENGINEERING DEPARTMENT

Data Structure and Algorithm

Laboratory Activity No. 11

Implementation of Graphs

Submitted by: Luminario, Venice Lou Gabrielle M. *Instructor:* Engr. Maria Rizette H. Sayo

October 18, 2025

DSA

I. Objectives

Introduction

A graph is a visual representation of a collection of things where some object pairs are linked together. Vertices are the points used to depict the interconnected items, while edges are the connections between them. In this course, we go into great detail on the many words and functions related to graphs.

An undirected graph, or simply a graph, is a set of points with lines connecting some of the points. The points are called nodes or vertices, and the lines are called edges.

A graph can be easily presented using the python dictionary data types. We represent the vertices as the keys of the dictionary and the connection between the vertices also called edges as the values in the dictionary.

Figure 1. Sample graph with vertices and edges

This laboratory activity aims to implement the principles and techniques in:

- To introduce the Non-linear data structure Graphs
- To implement graphs using Python programming language
- To apply the concepts of Breadth First Search and Depth First Search

II. Methods

- A. Copy and run the Python source codes.
- B. If there is an algorithm error/s, debug the source codes.
- C. Save these source codes to your GitHub.

from collections import deque

```
class Graph:
  def __init__(self):
     self.graph = \{\}
  def add edge(self, u, v):
     """Add an edge between u and v"""
     if u not in self.graph:
       self.graph[u] = []
     if v not in self.graph:
       self.graph[v] = []
     self.graph[u].append(v)
     self.graph[v].append(u) # For undirected graph
  def bfs(self, start):
     """Breadth-First Search traversal"""
     visited = set()
     queue = deque([start])
     result = []
     while queue:
       vertex = queue.popleft()
       if vertex not in visited:
          visited.add(vertex)
          result.append(vertex)
          # Add all unvisited neighbors
          for neighbor in self.graph.get(vertex, []):
             if neighbor not in visited:
               queue.append(neighbor)
     return result
  def dfs(self, start):
     """Depth-First Search traversal"""
     visited = set()
     result = []
     def dfs util(vertex):
       visited.add(vertex)
       result.append(vertex)
       for neighbor in self.graph.get(vertex, []):
          if neighbor not in visited:
            dfs util(neighbor)
     dfs util(start)
     return result
  def display(self):
     """Display the graph"""
     for vertex in self.graph:
       print(f"{vertex}: {self.graph[vertex]}")
# Example usage
if name == " main ":
  # Create a graph
```

```
g = Graph()
# Add edges
g.add edge(0, 1)
g.add edge(0, 2)
g.add edge(1, 2)
g.add edge(2, 3)
g.add edge(3, 4)
# Display the graph
print("Graph structure:")
g.display()
# Traversal examples
print(f"\nBFS starting from 0: {g.bfs(0)}")
print(f"DFS starting from 0: {g.dfs(0)}")
# Add more edges and show
g.add\_edge(4, 5)
g.add edge(1, 4)
print(f"\nAfter adding more edges:")
print(f"BFS starting from 0: {g.bfs(0)}")
print(f"DFS starting from 0: {g.dfs(0)}")
```

Questions:

- 1. What will be the output of the following codes?
- 2. Explain the key differences between the BFS and DFS implementations in the provided graph code. Discuss their data structures, traversal patterns, and time complexity. How does the recursive nature of DFS contrast with the iterative approach of BFS, and what are the potential advantages and disadvantages of each implementation strategy?
- 3. The provided graph implementation uses an adjacency list representation with a dictionary. Compare this approach with alternative representations like adjacency matrices or edge lists.
- 4. The graph in the code is implemented as undirected. Analyze the implications of this design choice on the add_edge method and the overall graph structure. How would you modify the code to support directed graphs? Discuss the changes needed in edge addition, traversal algorithms, and how these modifications would affect the graph's behavior and use cases.
- 5. Choose two real-world problems that can be modeled using graphs and explain how you would use the provided graph implementation to solve them. What extensions or modifications would be necessary to make the code suitable for these applications? Discuss how the BFS and DFS algorithms would be particularly useful in solving these problems and what additional algorithms you might need to implement.

III. Results

Present the visualized procedures done. Also present the results with corresponding data visualizations such as graphs, charts, tables, or image. Please provide insights, commentaries, or explanations regarding the data. If an explanation requires the support of literature such as academic journals, books, magazines, reports, or web articles please cite and reference them using the IEEE format.

Please take note of the styles on the style ribbon as these would serve as the style format of this laboratory report. The body style is Times New Roman size 12, line spacing: 1.5. Body text should be in Justified alignment, while captions should be center-aligned. Images should be readable and include captions. Please refer to the sample below:

1.

```
Graph structure:

0: [1, 2]

1: [0, 2]

2: [0, 1, 3]

3: [2, 4]

4: [3]

BFS starting from 0: [0, 1, 2, 3, 4]

DFS starting from 0: [0, 1, 2, 3, 4]

After adding more edges:

BFS starting from 0: [0, 1, 2, 4, 3, 5]

DFS starting from 0: [0, 1, 2, 3, 4, 5]
```

- 2. The BFS uses a queue to explore a graph level by level, like checking out all your close friends before their friends, which is great for finding the shortest path in unweighted graphs and runs in time. But it can hog memory if the graph is super wide. DFS, on the other hand, dives deep with a stack often recursively like following one long path until you hit a wall, then backtracking.
- 3. Adjacency lists with dictionaries are space-efficient for sparse graphs, storing only existing edges and making it quick to add nodes or list neighbors. Adjacency matrices is perfect for dense graphs with fast edge checks, but wasteful for sparse ones. Edge lists are simple pairs, ideal for sparse graphs and algorithms like Kruskal's, but slow for neighbor lookups.

- 4. An undirected graph, the add_edge method adds edges both ways, like linking A to B and B to A, which creates a balanced, back-and-forth structure perfect for mutual connections like friendships or roads. To make it directed, just change add_edge to go one way only, turning it into a one-directional flow like web links, where traversals follow the arrows and can lead to new behaviors like hierarchies or dependencies.
- 5. This graph code is handy for real-world uses. In social networks, BFS helps suggest friends by checking your direct connections first, then their friends. For a web crawler, DFS is better at following one link deeply to explore a site's layout. You'd just need to store names or URLs as nodes, and set website links to be one-way.

IV. Conclusion

In conclusion, So we seen how BFS and DFS shine in different ways, BFS for shortest paths in social friend suggestions, DFS for deep dives in web mapping while tweaking the code for directed edges or weights makes it super versatile for real world stuff like navigation or networks. Ultimately, choosing the right algorithm and mods lets us tackle everything from finding connections to exploring sites efficiently, turning abstract graphs into practical tools for everyday problems.

References

[1] Co Arthur O.. "University of Caloocan City Computer Engineering Department Honor Code," UCC-CpE Departmental Policies, 2020.