Лекция 1

Ilya Yaroshevskiy

27 февраля 2021 г.

Содержание

1	Teop	ия погрешности	
	1.1	Вначащие цифры	
	1.2 I	Верные цифры	
		Распространение погрешности	
2	Одномерная минимизация функций 3		
	2.1	Унимодальные функции	
	2.2 I	Трямые методы	
		2.2.1 Метод дихотомии	
1	То	ория погрешности	
_	16	ория погрешности	
Oʻ	гклоне	ние от теоретического решения Виды погрешности:	
	1. Hey	странимая погрешность	
	При	<i>имер.</i> Физические величины, другие константы	
	2. Уст	ранимая погрешнеость Связана с методом решения	
	(a)	Погрешность модели	
		Связана с матиматической формулировкой задачи. Она плохо отображает реальную модель	
	(b)	Остаточная погрешность(Погрешноть аппроксимации)	
	(c)	Погрешность округления	
	(d)	Накапливаемая погрешность	
		Нецелые числа	

- \bullet X^* точное решение
- ullet X- Приближенное решение
- \bullet $X^* X$ погрешность
- $\Delta X = |X^* X|$ абсолютная погрешность $\Delta_X \geq |X^* X|$ предельная абсолютная погрешность, т.е.

$$X - \Delta_X \le X^* \le X + \Delta_X$$

• $\delta X = \left|\frac{X^*-X}{|X|}\right|$ — относительная погрешость $\delta_X \geq \left|\frac{X^*-X}{|X|}\right|$ — предельная относительная погрешность

1.1 Значащие цифры

Определение. Все цифры в изображении отличные от нуля, и нули если они содержатся между значащими цифрами, или расположены в конце числа и указывают на сохранение разряды точности. Нули стоящие левее, отличной от нуля цифры, не являются значащимицифрами Между ненулевыми, или указывающие на точность

$$Пример. \ \ \underbrace{0.00}_{\text{незнач}}.2080$$

 Π ример. $689000 = 0.689 \cdot 10^6 - 3$ значащие цифры $689000 = 0.689000 \cdot 10^6 - 6$ значащих цифр

1.2 Верные цифры

Если, значащая цифра приближенного значения, находящаяся в разряде, в котором выполняется условие — абсолютное значение погрешности не превосходит половину уиницы этого разряда $\Delta \leq 0.5 \cdot 10^k$, где k — номер разряда, то она называется верной

Пример.
$$a = 3.635$$
 $\Delta a = 0.003$

(3)
$$k = 0 \frac{1}{2} \cdot 10^0 = \frac{1}{2} \ge \Delta a$$

(6)
$$k = -1 \frac{1}{2} \cdot 10^{-1} = 0.05 \ge \Delta a$$

(3)
$$k = -2 \frac{1}{2} \cdot 10^{-2} = 0.005 \ge \Delta a$$

(5)
$$k = -3$$
 $\frac{1}{2} \cdot 10^{-3} = 0.0005 < \Delta a \Rightarrow 5$ — сомнительная цифра

1.3 Распространение погрешности

Пример.
$$\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3 = (\sqrt{2}-1)^6 = (3-2\sqrt{2})^3 = 99-70\sqrt{2}$$

 $\sqrt{2}$

$$\frac{7}{5} = 1.4$$

$$\frac{17}{12} = 1.41666$$

$$\frac{707}{500} = 1.414$$

$$\sqrt{2} = 1.4142145624$$

$$\Delta_{x\pm y} = \Delta_x \pm \Delta_y$$

$$\Delta_{(x\cdot y)} \approx |Y|\Delta_X + |X|\Delta_Y$$

$$\Delta_{(\frac{x}{y})} \approx \left|\frac{1}{Y}\right| \Delta_X + \left|\frac{X}{Y^2}|\Delta_Y$$

$$|\Delta u| = |f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1, \dots, x_n)|$$

$$|\Delta u| \approx |df(x_1, \dots, x_n)| = \left|\sum_{i=1}^n \frac{\partial u}{\partial x_i} \Delta x_i\right| \le \sum_{i=1}^n \left|\frac{\partial u}{\partial x_i}\right| \cdot |\Delta x_i|$$

$$|\delta u| = \frac{1}{|u|} = \sum_{i=1}^n \left|\frac{\partial u}{\partial x_i} \cdot \frac{1}{u}\right| \cdot |\Delta x_i| = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| \cdot |\Delta x_i|$$

$$\delta_u = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| \cdot |\Delta x_i|$$

$$\delta_{(X\pm Y)} = \left|\frac{X}{X\pm Y}\right| \delta_X + \left|\frac{Y}{X\pm Y}\right| \delta_Y$$

$$\delta_{(X\cdot Y)} = \delta_X + \delta_Y$$

$$\delta_{(X\cdot Y)} = \delta_X + \delta_Y$$

Пример. $x = \frac{7}{5}$

•
$$f_1 = \left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)$$

$$\delta_{f_1} = 3 \left| \frac{1}{x-1} - \frac{1}{x+1} \right| \cdot |\Delta X| = 6.25 |\Delta X|$$

•
$$f_2 = (\sqrt{2} - 1)^6$$

$$\delta_{f_2} = 6 \left| \frac{1}{x - 1} \right| \cdot |\Delta X| = 15 |\Delta X|$$

•
$$f_3 = (3 - 2\sqrt{2})^3$$

$$\delta_{f_3} = 6 \left| \frac{1}{3 - 2x} \right| \cdot |\Delta X| = 30|\Delta X|$$

•
$$f_4 = 99 - 70\sqrt{2}$$

$$\delta_{f_4} = \left| \frac{90}{99 - 70x} \right| \cdot |\Delta X| = 70|\Delta X|$$

 Π ример.

$$y^2 - 140y + 1 = 0$$

Вычислить корни.

•
$$y = 70 - \sqrt{4899}$$

 $\sqrt{4899} = 69.992...$
 $\sqrt{4899} \approx 69.99$
 $y \approx 70 - 69.99 = 0.01$

$$y = \frac{1}{70 + \sqrt{4899}}$$

$$\sqrt{4899} = 69.99; 70 + 69.99 = 139.99$$

 $y = \frac{1}{140} = 0.00714285 \approx 0.007143$

2 Одномерная минимизация функций

2.1 Унимодальные функции

$$f(x) o \min, \ x \in U$$
 $f(x) o \max \Rightarrow -f(x) o \min$ $x^* \in U$ — точка минимума: $f(x^*) \le f(x) \ \forall x \in U$ U^* — множество точек минимума $\tilde{x} \in U : \exists V(\tilde{x}) \ \forall x \in V \ f(\tilde{x}) \le f(x)$ — локальный минимум

Определение. f(x) — унимодальная функция на [a,b], если:

- 1. f(x) непрерывна на [a, b]
- 2. $\exists \alpha, \beta : a \leq \alpha \leq \beta \leq b$
 - (a) Если $a < \alpha$, то $[a, \alpha]$ f(x) монотонно убывает
 - (b) Если $\beta < b$, то на $[\beta, b]$ f(x) монотонна возрастает
 - (c) $\forall x \in [\alpha, \beta] \ f(x) = f^* = \min_{[a,b]} f(x)$

Примечание. Свойства:

- 1. Любая из точек локального минимума является глобальным минимумом на этом же отрезке
- 2. Функця унимодальная на [a,b] унимодальна на $[c,d] \subset [a,b]$
- 3. f(x) унимодальна на [a,b] $a \le x_1 < x_2 \le b$
 - (a) если $f(x_1) \le f(x_2)$, то $x^* \in [a, x_2]$
 - (b) если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

Определение. f(x) выпукла на [a,b], если:

• $\forall x', x'' \in [a, b]$ и $\alpha \in [0, 1]$:

$$f(\alpha x' + (1 - \alpha)x'') \le \alpha f(x') + (1 - \alpha)f(x'')$$

Примечание. Свойства:

- 1. Если f(x) на [a,b] $[x',x''] \subset [a,b]$
- 2. Всякая выпуклая и непрерывная функция на [a,b] является унимодальной на этом отрезке. Обратное не верно

Определение. x:f'(x)=0 — стационарная точка

2.2Прямые методы

Не требуют вычисление производной. Могут использовать только известные значения.

2.2.1 Метод дихотомии

$$x_{1} = \frac{b+a-\delta}{2} \quad x_{2} = \frac{b+a+\delta}{2}$$

$$\tau = \frac{b-x_{1}}{b-a} = \frac{x_{2}-a}{b-a} \to \frac{1}{2}$$

$$X^{*}[a_{i},b_{i}] \quad \frac{b_{i}-a_{i}}{2} \le \varepsilon$$

$$(2)$$

- 1. x_1 и x_2 ; вычислить $f(x_1)$ и $f(x_2)$
- 2. $f(x_1)$ и $f(x_2)$
 - Если $f(x_1) \leq f(x_2) \rightarrow [a, x_2]$, т.е. $b = x_2$
 - Иначе $[x_1, b] \to [x_1, b]$, т.е. $a = x_1$
- 3. $\varepsilon_n = \frac{b-a}{2} (n \text{номер итерации})$
 - Если $\varepsilon_n > \varepsilon$ переход к следующей итерации(шаг 1)
 - Если $\varepsilon_n \leq \varepsilon$, заврешить поиск(шаг 4)
- 4. $x^* \approx \overline{x} = \frac{a+b}{2}$ $f^* \approx f(\overline{x})$

 $\begin{array}{ll} 2 & \delta \in (0,2\varepsilon) \\ \text{Число итерций } n \geq \log_2 \frac{b-a-\delta}{2\varepsilon-\delta} \end{array}$