

GUIDELINE

Fertigungsaufträge Printlabor 20-21

1. Voraussetzungen für die Fertigung einer Platine (DRU):

- <u>Dimension-Layer</u> (Platinenrand,...)
 - Strichstärke min.6 mil.
- Leiterbahn-Standard:
 - Strichstärke ist 16 mil.
- Poligone:
 - Strichstärke ist 16 mil.
 - Kleinster "Isolate" beträgt 16 mil.
 - o Pro kaschierter Lage (Top / Bot) ist im Standardfall ein eigenes Poligon anzulegen.
- Platinenbeschriftung, einzeln oder kombiniert, verpflichtend auf jeder Platine:
 - "Schule" z.B.:"HTBLA-Sbg" oder "HTL Salzburg" oder "HTL Sbg"
 "Platinenname" und "Version" und "Revision" z.B.: Blinky Vx-x Rx
 - "Namenskürzel" z.B.: WenN
 - o "Klasse", "Datum" z.B.: 4AHEL 15/20 oder 4AHEL 2020
 - "Top" und "Bot" als Beschriftung der Lagen bei zweiseitigen Platinen.
 - Sonderregelungen bei Spezialplatinen!
- Textformatierung:
 - Kleinste Schriftgröße 32mil / "Ratio" 15% / Schrift: Vektor-Font
 - o Sonderregelungen bei Spezialplatinen! (e-Boards,...)
- Kleinster Bohrdurchmesser:
 - Drill ist **0,6mm** (Standardausarbeitung)
- Größter Bohrdurchmesser
 - o Drill ist 3,2mm
 - o Drill >3,2mm nur mehr durch Fräsen oder nachträgliches Aufbohren realisierbar!
- Manuelle Durchkontaktierung
 - Diese ist nur mit Drill = **0,7mm**
- Board wird mit <u>zuvor ausgewählter</u> DRU über den DRC geroutet und überprüft!
 - Aktuelle DRUs (DRU HTL):

HTL A V1.dru für die 2. Jahrgänge

HTL_B_V1.dru für die Standardausarbeitung

HTL_DK_V2.dru für galvanische Durchkontaktierung HTL_SMD_V1.dru für Platinen in SMD-Bestückung

Die aktuellen DRUs befinden sich im SharePoint des PCB.EL:

Dateien > FTKL-HTL > ECAD > dru-HTL

Fräskonturen (Milling-Layer)

- Für Fräskonturen stehen (derzeit) in zwei Fräser zur Verfügung.
 - 1mm
 - 2mm
- Die Konturen werden im Milling-Layer in reeller Breite gezeichnet.
- Langlöcher werden ebenfalls im Milling-Layer in passender Länge gezeichnet.

2. Wo und Wie werden die Fertigungsdateien bereitgestellt:

Die <u>Fertigungsdateien</u>, wie filename.brd, (filename.sch) und/oder frontvorlage.vsdx), sind in den <u>Übergabeordner</u> (\printlabor) der entsprechenden Abteilung in einem Projektpfad zu kopieren:

• Der Übergabeordner ist im Formular wählbar:

Pfad zum Übergabeordner der Elektronik-Abteilung:

\\fs-edu\klassen\EL\printlabor\...

Pfad zum Übergabeordner der Biomed-Abteilung:

\\fs-edu\klassen\BG\printlabor\...

Pfad zum Übergabeordner der Elektro-Abteilung:

\\fs-edu\klassen\\ET\printlabor\...

Pfad Datenträger:

Nur für die spezielle Fertigungsaufträge!

• Der Projektpfad ist wie folgt zu gestalten und im Formular anzugeben:

Projektpfad für SchülerInnen: klasse\name\projekt\... oder klasse\projekt\...

Die "klasse" ist im Printlaborordner schon vorgegeben.

Der "name" ist das Namenskürzel des/der SchülerIn als Ordner.

Das "projekt" ist der Projektordner

Die Fertigungsdateien werden in den jeweiligen Projektordner abgelegt.

Projektpfad für LehrerInnen: name\projekt\...

Der "name" ist das Namenskürzel des/der LehrerIn als Ordner.

Das "projekt" ist der Projektordner

Die Fertigungsdateien werden in den jeweiligen Projektordner abgelegt.

Stand: FA2020-21_V1_Guideline.odt

3. <u>Der Fertigungsauftrag:</u>

- Es ist immer das aktuellste Auftragsformular zu verwenden!
 - Das aktuellste Fertigungsauftragsformular als PDF mit der entsprechenden Guidline steht immer im SharePoint des PCB.EL (<u>Dateien > Fertigungsauftrag</u>) zur Verfügung, da es ständigen Anpassungen unterliegt.

Alte Anträge werden daher nicht für die Produktion übernommen!

- Das Auftragsformular ist vollständig auszufüllen:
 - Auftraggeber:
 - Vor und Nachname, Datum, Jahrgang (wenn nicht in der Auswahl, bitte manuell eintragen!), Email-Adresse für die Fertigstellungsmeldung (Es ist die Email-Adresse des Schul-Accouts zu verwendet!)
 - Fertigungsdaten:
 - Übergabeordner kann ausgewählt werden (Datenträger nur in Sonderfällen unter bestimmten Voraussetzungen möglich!)
 - Projektpfad ...ist der Verzeichnispfad im Übergabeordner: Klasse\Namenskürzel\ Projekt bzw. Klasse\Namenskürzel
 - Fertigungsdateien:
 - dateiname Vx Rx.brd bei Platinen
 - dateiname_Vx.vsdx bei Frontblenden
 - dateiname_Vx.pdf alternativ bei Frontblenden
 - Größenangabe:
 - (L x B in mm) für Zuschnittsberechnung (max. eine Kommastelle).
 Bem.: Wird ein Board mit der Rastereinstellung mm gespeichert, so sind die Platinenabmessungen in der Preview der Boarddatei im Control Panel ablesbar.
 - Anzahl
 - Material und Bearbeitung: (Dies Angaben gelten für <u>alle</u> angegebenen Dateien)
 - Basismaterial derzeit wählbar (Material / Trägerstärke / Cu-Beschichtung):
 - FR4 / 1,5mm / 35-00 µm einseitige Platinen
 - FR4 / 1,5mm / 35-35 µm doppelseitige Platinen mit oder ohne manueller DK
 - FR4 / 1,5mm / 18-18 µm für galvanisch durchkontaktierte Platinen
 - FR4 / 1,5mm / 70-70 µm doppelseitige Platinen mit erhöhter Strombelastung
 - Alucorex 1,5mm Schwarz
 Frontblenden für den Gehäusebau
 - Board-Typ
 - Einlagig Top meist SMD-Bestückung, Testadapter für Breadboards
 - Einlagig Bot Standard für einfache Bestückung in SMT
 - Doppelseitig THT, SMT, Mischtechniken
 - Durchkontaktierung:
 - manuell (drill = 0,7mm)
 - galvanisch (drill = 0,5mm)
 - galvanisch (drill = 0,6mm)
 - Chem.Zinn/Lötlack:
 - keine chem. Verzinnung (Cu mit Fotoresist als Oxidationsschutz)
 - keine chem. Verzinnung & Lötlack (Cu mit einfachem Oxidationsschutz)
 - chemisch Zinn (Oxidationsschutz f
 ür einige Monate)
 - chemisch Zinn & Lötlack (Oxidationsschutz für lange Lagerung)
 - Lötstopmaske: (Nachbearbeitung mit hohem zeitlichen und finanziellem Aufwand!)
 - keine
 - Lötstopmaske Top & Bottom (Nachbearbeitungsverfahren)
 - Besonderheiten: Hier bitte kurze drei Zeilen möglich Hinweise auf Besonderheiten bei der Ausarbeitung machen.(z.B. Bei Fräskonturen)

Freigabeteil: (ohne diesen erfolgt keine Fertigung!)

ProjektbezeichnungBetreuerInFür spätere ZuordnungVor- und Zunahme

NAV_Nr.: Für die Materialbeschaffung von BetreuerIn erfragen!

Unterschriftsfelder Kontrolle & Freigebe und Auftraggeber

4. Der Weg vom Auftrag zum Produkt:

- a) Die Fertigungsdaten im Übergabeordner bereitstellen (Siehe 2.)
- b) Fertigungsauftrag über den Sharepoint suchen und herunterladen, mit PDF-Viewer öffnen, ausfüllen (siehe **3.)** und ausdrucken
- c) Fertigungsauftrag zu den Fertigungsdaten speichern (Kontrolle)
- d) Fertigungsauftrag unterzeichnen (bei Auftraggeber)
- e) Fertigungsauftrag vom/n ProjektleiterIn freigegeben lassen (*Unterschrift*)
- f) Fertigungsauftrag im Printlabor persönlich abgeben
 - Auftrag wird im Printlabor registriert und für die Fertigung vorbereitet
 - · Fertigung des Auftrags
 - Fehler- oder Fertigstellungsmeldung erfolgt per Mail des PCB.EL

Achtung: Keine Annahme von Fertigungsaufträgen in digitaler Form!

- g) Warten auf die Verständigung durch den PCB.EL
 - Die <u>Bearbeitungszeit</u> beträgt je nach Arbeitsaufkommen bei einfacher Ausarbeitung <u>etwa 2 bis 7 Tage!</u>
 - Die galvanische Durchkontaktierung ist von den Produktionsintervallen abhängig und ist wesentlich aufwendiger und zeitintensiver (1 bis 2 Wochen)!
- h) Der fertige Auftrag kann dann entsprechend der im Web-Untis ersichtlichen Raumbelegungszeiten abgeholt werden.

Gutes Gelingen!

Das Printlabor-Team

Stand: FA2020-21_V1_Guideline.odt