Profa: Jandira

Matrizes Relações

Olá tudo bem?

Então, volto a você com uma breve explicações sobre matrizes e também trago alguns exercícios para concretização dos conteúdos ministrados anteriormente.

Só relembrando...

Definição: Uma Matriz relação será tal que o conjunto do domínio representa as *linhas* e o conjunto da imagem representará as *colunas*.

Exemplo

Dados os conjunto A={1,2,3,4} e B={a,b,c}. Seja R a seguinte relação de A para B

$$R=\{(1,a), (1,b), (2,a), (3,b), (4,a), (4,b), (4,c)\}$$

Defina sua matriz relação

<u>Resolução</u>

Como fornecido pelo enunciado teremos $Dom(R)=\{1,2,3,4\}$ e $Im(R)=\{a,b,c\}$.

A relação em matrizes será dados através de "0" para quando não houver relação e "1" para quando houver relação. Lembrando que a ordem é de extrema importancia em um par ordenado (x,y), então teremos a seguinte matriz.

Imagem da relação		a	b	c
	1	1	1	0
	2	1	0	0
	3	0	1	0
	4	1	1	1
	^	I		
	Domínio da r	elação		

Então podemos concluir que o dominio será as linhas e a imagem as colunas... Fácil não??

Profa: Jandira

Exercício 1

Seja $A=\{1,2,3,4\}$ e seja R a relação em A definida por "x divide y", escrita x|y. Determine.

- a) Escreve R como conjunto dos pares ordenados
- b) Determine sua matriz associada
- c) Determine seu grafo associado
- d) Ache a relação inversa

Resolução

a) $R=\{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

b)

	1	2	3	4
1	1	1	1	1
2	0	1	0	1
2 3 4	0 0 0	0	1	0
4	0	0	0	1

c)

b)
$$R^{-1} = \{(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (3,3), (4,4)\}$$

Exercício 2

Seja R uma relação de ordem sobre o conjunto A = {a, b, c, d, e} dada por:

 $R = \{(d, d), (d, e), (d, b), (d, a), (e, e), (b, b), (b, a), (a, a)\}.$

- a) Determine o diagrama de Hasse que representa a relação R.
- b) Determine o grafo associado a essa relação.
- c) Determine o diagrama de Venn associado a essa relação

Profa: Jandira

d) Determine a matriz relação

Resolução

- a) O que devemos observar inicialmente para determinar o diagrama de Hasse?? Observe que se existe alguns parâmetros para seguirmos:
- 1. A relação de transitividade $d \rightarrow b \ e \ b \rightarrow a \ portanto \ d \rightarrow a$
- 2. O diagra de Hasse sempre estará na ordem crescente, como se trata de letra e não podemos identificar quem é maior, podemos observar a relação e concluir que o domínio dessa relação está basicamente em d, já que as demais relações de pares ordenados acontecem dele para ele mesmo, por exemplo, (a,a) e (b,b). Então o d nos norteará. Portanto o diagrama referente a relação é:

Lembre-se do seguinte

Seja R uma relação binária no conjunto A.

- 1. R é **reflexiva** se, $\forall x \in A$, xRx.
- → Cada elemento é relacionado consigo mesmo.
- 2. R é **simétrica** se, $\forall x, y \in A$, se xRy então yRx.
- → Cada elemento relacionado com um outro, o segundo é relacionado com o primeiro.
- 3. R é **transitiva** se, $\forall x, y, z \in A$, se xRy e yRz então xRz.
- → Cada elemento relacionado com um segundo, o segundo é relacionado com um terceiro, então o primeiro é relacionado com o terceiro.
- b) $R = \{(d, d), (d, e), (d, b), (d, a), (e, e), (b, b), (b, a), (a, a)\}.$

c) $R = \{(d, d), (d, e), (d, b), (d, a), (e, e), (b, b), (b, a), (a, a)\}.$

Prof^a: Jandira

d)

	a	b	d	e
a	1	0	0	0
a b d	1	1	0	0
d	1	1	1	1
e	0	0	0	1

Exercício 3

Considere os conjuntos $A = \{1, 3, 5\}$ e $B = \{-1, 2, 7, 9\}$, e a matriz da relação $R: A \rightarrow B$ dada por:

	-1	2	7	9
1	1	0	0	1
3	0	1	0	1
5	0	0	0	0

Determine:

- a) O domínio e a imagem de *R*,
- b) Os pares da relação inversa R^{-1}

<u>Resolução</u>

Pela matriz dada temos a seguinte relação:

$$R=\{(1,-1), (1,9), (3,2), (3,9)\}$$

Lembrando que, na matriz relação o domínio representa as linhas e a imagem representa as colunas. Além disso, em um par ordenado (x,y) o x é o elemento do domínio e o y é o elemento da imagem, portanto:

Profa: Jandira

a)
$$Dom(r) = \{1,3\}$$

$$Im(r)=\{-1, 2, 9\}$$

b) Sendo
$$R=\{(1,-1), (1,9), (3,2), (3,9)\}$$
, temos que:

$$R^{-1} = \{(-1,1), (9,1), (2,3), (9,3)\}$$

Exercício 4

O grafo abaixo representa uma relação R definida no conjunto $A = \{1, 2, 3, 4, 5\}$.

Os pares da relação R são:

<u>Resolução</u>

Observando os sentidos das arestas (flechas) do grafo, temos:

1R2; 1R3; 2R5; 3R4; 4R2;

Logo, os pares da relação R são:

 $R = \{(1,2), (1,3), (2,5), (3,4), (4,2)\}$

Exercício 5

Seja A = $\{2, 3, 4, 6, 8, 12\}$ e defina-se a relação \leq em A por " $x \leq y$ se e só se x divide y".

Como pode ser definido o diagrama de Hasse desta relação?

Solução

 $R=\{(2,2), (2,4), (2,6), (2,8), (2,12), (3,3), (3,6), (3,12), (4,4), (4,8), (4,12), (6,6), (6,12), (8,8), (12,12)\}$

Prof^a: Jandira

IMPORTANTE: Note-se que em algumas relações como 4 e 6, onde 4 ≤ 6, não satisfaz o segundo requisito do enunciado, que pede que seja menor ou igual e ainda seja divisível. O 4 pode até ser menor ou igual a 6, mas 4 não divide 6.

Exercício 6

Elaborar uma rede PERT/COM para o projeto abaixo e determinar o seu caminho crítico e a sua duração

Atividade	Predecessora	Duração
Α		1
В	A	3
С	Α	1
D	В	4
E	С	3
F	D, E	2

<u>Resolução</u>

Caminho crítico A-B-D-F

Duração= 1+3+4+2=10

Exercício 7

O grafo da relação de ordem R é apresentado a seguir

Determine:

Prof^a: Jandira

- a) O Conjunto relação
- b) A matriz associada a relação
- c) O diagrama de Hasse

Resolução

a) Pelo grafo temos que:

bRc; cRa e bRa.

$$R=\{(b,b), (b,c), (b,a), (c,c), (c,a), (a,a)\}$$

b)

	b	c	a
b	1	1	1
c	0	1	1
a	0	0	1

c) Assim, por transitividade $b \to c \ e \ c \to a \ então \ b \to a$ portanto b é o nosso início, ou seja, b é predecessor de c e a (seu nó deve ficar abaixo de c e a). c é predecessor de a, então o nó de c deve ficar abaixo do nó de a. Logo. o diagrama de Hasse será

Exercício 8

Sejam $A=\{1,2,3,4\}$ e as relações R e S sobre A definidas por $R=\{(1,2),(1,1),(1,3),(2,4),(3,2)\}$ e $S=\{(1,4),(1,3),(2,3),(3,1),(4,1)\}$. Pode-se dizer que RoS é:

Resolução

Como $(1,2) \in \mathbb{R}$ e $(2,3) \in \mathbb{S}$, então temos que $(1,3) \in \mathbb{R}$ oS.

- Também (1,1) ∈ R e (1,4) ∈ S, assim, (1,4) ∈ RoS.
- Continuando com este processo, encontra-se que:
- $-RoS = \{(1,4),(1,1),(1,3),(2,1),(3,3)\}$

Profa: Jandira

Exercício 9

Seja a relação $R=\{(x,y)\in N\times N: 2x+y=8\}$. A relação inversa denotada por R^{-1} está indicada em qual das alternativas?

- a) $\{(6,1),(4,2),(2,3)\}$
- b) Ø
- c) $\{(1,6),(2,4),(3,2)\}\{(1,6),(2,4),(3,2)\}$
- d) N

Resolução

Temos que:

$$2x+y=8$$

$$y = 8-2x$$

Para a inversa teremos:

$$x = 8 - 2y \rightarrow x - 8 = -2y \rightarrow -x + 8 = 2y$$

$$y = \frac{-x+8}{2} \rightarrow R^{-1} = \frac{-x+8}{2}$$

Sejam os números:

6, 4 e 2 tal que o domínio e a imagem da relação se dá em N, teremos:

Para x=6

$$R^{-1} = \frac{-x+8}{2} \to R^{-1} = \frac{-6+8}{2} \to R^{-1} = 1$$

Para x=4

$$R^{-1} = \frac{-x+8}{2} \to R^{-1} = \frac{-4+8}{2} \to R^{-1} = 2$$

Para x=2

$$R^{-1} = \frac{-x+8}{2} \rightarrow R^{-1} = \frac{-2+8}{2} \rightarrow R^{-1} = 3$$

Logo a relação inversa de R se dá:

$$\{(6,1),(4,2),(2,3)\}$$