```
In [51]: import numpy as np # Importing NumPy library
import pandas as pd # Importing Pandas library
import matplotlib.pyplot as plt # Importing Matplotlib library's "pyplot" modu
import seaborn as sns # Importing Seaborn library

import os

In [52]: data = pd.read_csv("Classification.csv")
    data['fetal_health'] = data['fetal_health'].replace(1.0,0)
    data['fetal_health'] = data['fetal_health'].replace(2.0,0)
    data['fetal_health'] = data['fetal_health'].replace(3.0,1)
    data
Out[52]: baseline
    value accelerations fetal_movement uterine_contractions light_decelerations severed.
```

Out[52]:		baseline value	accelerations	fetal_movement	uterine_contractions	light_decelerations	severe
	0	120	0.000	0.000	0.000	0.000	
	1	132	0.006	0.000	0.006	0.003	
	2	133	0.003	0.000	0.008	0.003	
	3	134	0.003	0.000	0.008	0.003	
	4	132	0.007	0.000	0.008	0.000	
	•••	•••					
	2121	140	0.000	0.000	0.007	0.000	
	2122	140	0.001	0.000	0.007	0.000	
	2123	140	0.001	0.000	0.007	0.000	
	2124	140	0.001	0.000	0.006	0.000	
	2125	142	0.002	0.002	0.008	0.000	

2126 rows × 22 columns

96.42409033877038

Out[55]:

```
In [53]: X = data.drop(["fetal_health"], axis=1)
y = data['fetal_health']

In [54]: from sklearn.neural_network import MLPClassifier
    from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_st

MLP = MLPClassifier(random_state=1, max_iter=300)

MLP.fit(X_train, y_train)
y_pred=MLP.predict(X_test)

In [55]: #Training Score
MLP.score(X_train, y_train)*100
```

localhost:8793/nbconvert/html/Desktop/BMEN415TutorialCode/ParkerStephen_MLP.ipynb?download=false

```
In [56]: #Testing Score
MLP.score(X_test, y_test)*100
```

Out[56]: 95.30075187969925

In [57]: from sklearn.metrics import classification_report
#evaluate model performance
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0 1	0.99 0.66	0.96 0.91	0.97 0.76	488 44
accuracy macro avg weighted avg	0.82 0.96	0.93 0.95	0.95 0.87 0.96	532 532 532

```
In [58]: from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score

cm = confusion_matrix(y_test, y_pred)
    accuracy_score(y_test, y_pred)
    sns.heatmap(cm, annot=True)
```

Out[58]: <AxesSubplot:>

In [59]: from sklearn.metrics import RocCurveDisplay
 metrics.RocCurveDisplay.from_estimator(MLP, X_test, y_test)
 plt.show()

In []: