Other properties

$$\begin{bmatrix} x_1 \\ y_2 \\ x_3 \end{bmatrix} \sim \gamma \left(\begin{bmatrix} u_1 \\ u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_2 \\ u_2 \end{bmatrix}, \begin{bmatrix}$$

 Zero covariance terms or a diagonal covariance matrix implies that the variables are independent of each other.

$$\sum_{3\times3} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} \chi_1 & 1 & \chi_2 \\ \chi_2 & 1 & \chi_3 \\ \chi_3 & 1 & \chi_4 \end{array}$$

 Any conditional distribution for a subset of the variables conditional on known values for another subset of variables is a multivariate distribution.

Partitioned Gaussian Distributions

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{a} \\ \mathbf{x}_{b} \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_{a} \\ \mu_{b} \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{pmatrix}$$

$$\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1} \qquad \boldsymbol{\Lambda} = \begin{pmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{pmatrix}$$

$$\boldsymbol{\chi}_{a} \sim \mathcal{N}(\boldsymbol{M}_{a}, \boldsymbol{\Sigma}_{aa}) = \boldsymbol{\Sigma}_{aa} \qquad \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{aa} \qquad \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{ab} = \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{ab} = \boldsymbol{\Sigma}_{aa} = \boldsymbol{\Sigma}_{ab} = \boldsymbol{$$

Partitioned Conditionals and Marginals $a = \{13; \{b = \{23\}\}$

$$p(\mathbf{x}_{a}|\mathbf{x}_{b}) = \mathcal{N}(\mathbf{x}_{a}|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$$

$$\boldsymbol{\Sigma}_{a|b} = \boldsymbol{\Lambda}_{aa}^{-1} = \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}$$

$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\Sigma}_{a|b} \{ \boldsymbol{\Lambda}_{aa} \boldsymbol{\mu}_{a} - \boldsymbol{\Lambda}_{ab} (\mathbf{x}_{b} - \boldsymbol{\mu}_{b}) \}$$

$$= \boldsymbol{\mu}_{a} - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\mathbf{x}_{b} - \boldsymbol{\mu}_{b})$$

$$= \boldsymbol{\mu}_{a} + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_{b} - \boldsymbol{\mu}_{b})$$

$$p(\mathbf{x}_{a}) = \int p(\mathbf{x}_{a}, \mathbf{x}_{b}) d\mathbf{x}_{b}$$

$$= \mathcal{N}(\mathbf{x}_{a}|\boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{aa})$$

Finals
$$A = \{13; \{b = \{23\}\}\}$$

$$P(x_1|x_2) = SY(u_{1|2}, \sum_{1|2})$$

$$P([x_1]x_2]) \text{ Derive for bi-variate case.}$$

$$Z = \begin{bmatrix} 0\\11 & 0\\21 & 0\\22 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} u_1\\ u_2 \end{bmatrix}$$

$$M_{112} = M_1 + o_{12}(x_2 - M_2)$$

$$O_{21}$$

Conditional distribution for bivariate case

$$ext{Mean} = \mu_1 + rac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2)
onumber \ ext{Variance} = \sigma_{11} - rac{\sigma_{12}^2}{\sigma_{22}}
onumber$$

Partitioned Conditionals and Marginals

Demos: https://colab.research.google.com/github/goodboychan/goodboychan.github.io/blob/main/ notebooks/2021-08-11-Multivariate-distribution.ipynb

Example 6-1: Conditional Distribution of Weight Given Height for College Men

Suppose that the weights (lbs) and heights (inches) of undergraduate college men have a multivariate normal distribution with mean

vector
$$\underline{\mu} = \begin{pmatrix} 175 \\ 71 \end{pmatrix}$$
 and covariance matrix $\mathbf{\Sigma} = \begin{pmatrix} 550 & 40 \\ 40 & 8 \end{pmatrix}$.

M_{KG} = (80)

The conditional distribution of X_1 weight given x_2 = height is a normal distribution with

$$ext{Mean} = \mu_1 + rac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2) = 175 + rac{40}{8}(x_2 - 71) = -180 + 5x_2$$

Variance =
$$\sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}}$$

= $550 - \frac{40^2}{8}$
= 350

For instance, for men with height = 70, weights are normally distributed with mean = -180 + 5(70) = 170 pounds and variance = 350. (So standard deviation $\sqrt{350} = 18.71$ = pounds)

Notice that we have generated a simple linear regression model that relates weight to height.

Geometry of the Multivariate Normal Distribution

 Can we characterize the shape and orientation of the ellipse that defines that contours of equal density?

Constant probability density contour = {all x such that $(x - \mu)' \Sigma^{-1}(x - \mu) = c^2$ }

 We will see that these can be characterized using eigen vectors and values of the covariance matrix.

Figure 4.4 The 50% and 90% contours for the bivariate normal distributions in Figure 4.2.

Eigen values and Eigen vectors

• A square matrix A has a eigen value, eigen vector pair λ , $e \neq 0$ if $Ae = \lambda e$ where norm of e is 1

Let A be a $k \times k$ square symmetric matrix. Then A has k pairs of eigenvalues and eigenvectors namely,

The eigenvectors can be chosen to satisfy
$$1 = e_1'e_1 = \cdots = e_k'e_k$$
 and be mutually perpendicular. The eigenvectors are unique unless two or more eigenvalues are equal.

Spectral decomposition of A

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \cdots + \lambda_k \mathbf{e}_k \mathbf{e}_k' \mathbf{e}_k'$$

$$(k \times k) (k \times 1)(1 \times k) (k \times 1)(1 \times k)$$

Spectral decomposition of a positive semi-definite matrix

- If A is positive-definite than all eigen-values >= 0

• Example:

$$\mathbf{R} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

y Ay >0 choose $y = e_j$ to show that $\lambda_j ?0$

- First find Eigen values and vectors.
 - 4.5 Eigenvalues and Eigenvectors | STAT 505 (psu.edu)

$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \text{ for } \underline{\lambda_1} = \underline{1 + \rho} \text{ and } \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ for } \underline{\lambda_2} = 1 - \rho$$

$$e_1 \cdot e_2 = 0$$

$$\begin{pmatrix} 1 & \ell \\ \ell & 1 \end{pmatrix} = \begin{pmatrix} 1 + \ell \\ \ell & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

91
$$Z = \lambda_1 e_1 e_1^T + \cdots \rightarrow \lambda_p e_p e_p^T$$

Then
$$Z^{-1} = \frac{1}{\lambda_1} e_1 e_1^T + \cdots \rightarrow \frac{1}{\lambda_p} e_p e_p^T$$

Geometry of the Multivariate Gaussian

Principal component analysis

Projecting high-dimensional data

• When multivariate dataset has a large number of variables, analysis and interpretation of the data may be hard.

• Too many variables pairs, so pairwise correlation may be hard to grasp.

- For convenient visualization and interpretation
 - Reduce the number of variables.

- How to reduce number of variables while capturing most of the information in the data
 - Information == variance

Example

What is the best way to summarize this two dimensional data into a single dimension without losing much of the dispersion?

How to reduce number of variables: many methods

Principal component analysis

Factor analysis

- Other embedding methods
 - Random projection
 - T-SNE

Principal component analysis

- Let original set of p variables be $X_1, X_2, ..., X_p$
- Define a smaller set of new variables that are linear combinations of existing variables.

Variance and Co-variance of the new variables.

Let

$$ext{var}(\mathbf{X}) = \Sigma = egin{pmatrix} \sigma_{11}^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{2}^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{p}^2 \end{pmatrix}$$

Then:

$$ext{var}(Y_i) = \sum_{k=1}^p \sum_{l=1}^p e_{ik} e_{il} \sigma_{kl} = \mathbf{e}_i' \Sigma \mathbf{e}_i$$

$$\operatorname{cov}(Y_i, Y_j) = \sum\limits_{k=1}^p \sum\limits_{l=1}^p e_{ik} e_{jl} \sigma_{kl} = \mathbf{e}_i' \Sigma \mathbf{e}_j$$

Principal components

• First principal component Y_1 is chosen to maximize the variance among all possible linear combinations such that the norm of coefficients is 1.

More formally, select $e_{11,e_{12},\ldots,e_{1p}}$ that maximizes

$$ext{var}(Y_1) = \sum\limits_{k=1}^p \sum\limits_{l=1}^p e_{1k} e_{1l} \sigma_{kl} = \mathbf{e}_1' \Sigma \mathbf{e}_1$$

subject to the constraint that

$$\mathbf{e}_{1}'\mathbf{e}_{1} = \sum_{j=1}^{p} e_{1j}^{2} = 1$$

Second principal component

Select $e_{21}, e_{22}, \ldots, e_{2p}$ that maximizes the variance of this new component...

$$ext{var}(Y_2) = \sum_{k=1}^p \sum_{l=1}^p e_{2k} e_{2l} \sigma_{kl} = \mathbf{e}_2' \Sigma \mathbf{e}_2$$

subject to the constraint that the sums of squared coefficients add up to one,

$$\mathbf{e}_2'\mathbf{e}_2=\sum\limits_{j=1}^p e_{2j}^2=1$$

along with the additional constraint that these two components are uncorrelated.

$$ext{cov}(Y_1, Y_2) = \sum_{k=1}^{p} \sum_{l=1}^{p} e_{1k} e_{2l} \sigma_{kl} = \mathbf{e}_1' \Sigma \mathbf{e}_2 = 0$$

i^{th} Principal Component (PCAi): $oldsymbol{Y}_i$

We select $e_{i1}, e_{i2}, \ldots, e_{ip}$ to maximize

$$ext{var}(Y_i) = \sum\limits_{k=1}^p \sum\limits_{l=1}^p e_{ik} e_{il} \sigma_{kl} = \mathbf{e}_i' \Sigma \mathbf{e}_i$$

subject to the constraint that the sums of squared coefficients add up to one...along with the additional constraint that this new component is uncorrelated with all the previously defined components.

$$\mathbf{e}_i'\mathbf{e}_i = \sum_{j=1}^p e_{ij}^2 = 1$$
 $\operatorname{cov}(Y_1,Y_i) = \sum_{k=1}^p \sum_{l=1}^p e_{1k}e_{il}\sigma_{kl} = \mathbf{e}_1'\Sigma\mathbf{e}_i = 0,$ $\operatorname{cov}(Y_2,Y_i) = \sum_{k=1}^p \sum_{l=1}^p e_{2k}e_{il}\sigma_{kl} = \mathbf{e}_2'\Sigma\mathbf{e}_i = 0,$ \vdots $\operatorname{cov}(Y_{i-1},Y_i) = \sum_{k=1}^p \sum_{l=1}^p e_{i-1,k}e_{il}\sigma_{kl} = \mathbf{e}_{i-1}'\Sigma\mathbf{e}_i = 0.$

For what Y_1 is Variance (Y_1) maximized?

• The coefficient of the first principal component correspond to the Eigen vector with the maximum Eigen value.

More generally

• The i-th principal component corresponds the i-th largest eigen vector.

The variance for the *i*th principal component is equal to the *i*th eigenvalue.

$$var(Y_i) = var(e_{i1}X_1 + e_{i2}X_2 + \dots e_{ip}X_p) = \lambda_i$$

$$cov(Y_i, Y_j) = 0$$

The proportion of variance explained

- The total variance of X
- We can show that sum of p Eigen values equals the total variance

• The fraction of variance explained by the i-th Eigen value $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \cdots + \lambda_n}$

$$\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_s}$$

Reducing number of dimensions

• Variance explained by first k Eigen values $\frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_p}$

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

11.3 - Example: Places Rated

Example 11-2: Places Rated

We will use the Places Rated Almanac data (Boyer and Savageau) which rates 329 communities according to nine criteria:

- 1. Climate and Terrain
- 2. Housing
- 3. Health Care & Environment
- 4. Crime
- 5. Transportation
- 6. Education
- 7. The Arts
- 8. Recreation
- 9. Economics

11.3 - Example: Places Rated | STAT 505 (psu.edu)

Notes

- The data for many of the variables are strongly skewed to the right.
- The log transformation was used to normalize the data.

More demos

https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.09-Principal-Component-Analysis.ipynb