Terceira Prova de Álgebra Linear 1 - 08.013-6 Turma C 12-12-2017

Nome:	RA:	
-------	-----	--

1. Responda VERDADEIRO ou FALSO, justificando sua resposta.

a (\mathbf{F}) Dado $\mathbb{V} = M_{\mathbb{R}}(3,3) =$ o espaço vetorial das matrizes quadradas de ordem 3 então, $\langle A, B \rangle = \text{traço}(A \cdot B)$ define um produto interno em \mathbb{V} ;

Se o produto $\langle A,B\rangle=\mathrm{traco}(A\cdot B)$ fosse um produto interno sobre $M_{\mathbb{R}}(3,3)$ deveríamos ter

$$\langle A, A \rangle > 0$$
 para toda $A \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Mas, para $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ temos que,

$$\langle A, A \rangle = \operatorname{tr}(A^2) = \operatorname{tr} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{tr} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -2 < 0$$

b (F) Em \mathbb{R}^3 existe um produto interno tal que os vetores $v_1 = (1, 1, 3), v_2 = (2, -1, 4)$ e $v_3 = (1, -2, 1)$ são ortogonais dois a dois segundo esse produto interno, ou seja, $\langle v_1, v_2 \rangle = \langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle = 0$;

Sabemos que se $v_1 \perp v_2$, $v_1 \perp v_3$ e $v_2 \perp v_3$ então, $\{v_1, v_2, v_2\}$ é linearmente independente.

Como, det
$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & -1 & 4 \\ 1 & -2 & 1 \end{pmatrix} = -1 + 4 - 12 + 3 - 2 + 8 = 0$$
 segue que, $\{v_1, v_2, v_2\}$ não é L.I.

Portanto, não existe produto interno em \mathbb{R}^3 tal que $v_1 \perp v_2, \, v_1 \perp v_3$ e $v_2 \perp v_3$.

c (\mathbf{V}) Se \mathbb{V} é um espaço vetorial sobre \mathbb{R} , munido de um produto interno $\langle \ , \ \rangle$ então, det $\begin{pmatrix} \langle v,v \rangle & \langle v,w \rangle \\ \langle w,v \rangle & \langle w,w \rangle \end{pmatrix} \geq 0$ para quaisquer vetores $v,w \in \mathbb{V}$.

Lembramos que num espaço vetorial $\mathbb V$ munido de um produto interno $\langle\ ,\ \rangle$ vale a desigualdade de Cauchy-Schwarz:

$$|\langle v,w\rangle| \leq ||v||\cdot||w|| \quad \forall \ v,w \in \mathbb{V}$$

Assim, para quaisquer vetores $v, w \in \mathbb{V}$ temos que, $\langle v, w \rangle^2 \leq ||v||^2 \cdot ||w||^2 = \langle v, v \rangle \cdot \langle w, w \rangle$, ou seja,

$$0 \le \langle v, v \rangle \cdot \langle w, w \rangle - \langle v, w \rangle^2 = \det \begin{pmatrix} \langle v, v \rangle & \langle v, w \rangle \\ \langle w, v \rangle & \langle w, w \rangle \end{pmatrix}$$

2. Em \mathbb{R}^2 existe um produto interno $\langle (x,y),(a,b)\rangle$ tal que $E=\{(1,1),(2,-1)\}$ é uma base ortonormal. Calcule $\langle (3,-7),(-1,4)\rangle$.

Como
$$E$$
 é base ortonormal temos que $\langle v, w \rangle = x \cdot a + y \cdot b$, sendo $[v]_E = \begin{pmatrix} x \\ y \end{pmatrix}$ e $[w]_E = \begin{pmatrix} a \\ b \end{pmatrix}$.

Se $(x,y) = \alpha \cdot (1,1) + \beta \cdot (2,-1)$ então, fazendo as contas, concluímos que, $\alpha = \frac{x+2y}{3}$ e $\beta = \frac{x-y}{3}$. Desta forma, $[(3,-7)]_E = \begin{pmatrix} -\frac{11}{3} \\ \frac{10}{3} \end{pmatrix}$ e $[(-1,4)]_E = \begin{pmatrix} \frac{7}{3} \\ -\frac{5}{3} \end{pmatrix}$. Portanto,

$$\langle (3,-7), (-1,4) \rangle = -\frac{11}{3} \cdot \frac{7}{3} + \frac{10}{3} \cdot \left(-\frac{5}{3}\right) = -\frac{77}{9} - \frac{50}{9} = -\frac{127}{9}$$

3. Em cada um dos itens abaixo temos um espaço vetorial \mathbb{V} , um operador linear $T: \mathbb{V} \to \mathbb{V}$ e um produto interno sobre \mathbb{V} . Em cada caso, determine se T é um operador auto-adjunto ou se T é um operador ortogonal (ou ambos ou não é auto-adjunto nem ortogonal).

a.
$$\mathbb{V} = \mathbb{R}^2$$
, $T(x,y) = (y,x) \in \langle (x,y), (a,b) \rangle = x \cdot a + y \cdot b$;

Dados $(x, y), (a, b) \in \mathbb{R}^2$ temos que,

$$\langle T(x,y),(a,b)\rangle = \langle (y,x),(a,b)\rangle = y\cdot a + x\cdot b = x\cdot b + y\cdot a = \langle (x,y),(b,a)\rangle = \langle (x,y),T(a,b)\rangle$$

Portanto, T é um operador auto-adjunto.

Temos também que, dados $(x, y), (a, b) \in \mathbb{R}^2$

$$\langle T(x,y), T(a,b) \rangle = \langle (y,x), (b,a) \rangle = y \cdot b + x \cdot a = x \cdot a + y \cdot b = \langle (x,y), (a,b) \rangle$$

Logo, T também é um operador ortogonal.

b.
$$\mathbb{V} = M_{\mathbb{R}}(2,3), T\left(\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}\right) = \begin{pmatrix} a_{11} & a_{21} & a_{22} \\ a_{12} & a_{13} & a_{23} \end{pmatrix} \in \langle A, B \rangle = \operatorname{traço}(B^t \cdot A);$$

Notamos que, se $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$ e $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$ então, $\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{13}b_{13} + a_{21}b_{21} + a_{22}b_{22} + a_{23}b_{23}$. Desta forma, temos que

$$E = \{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \}$$

é uma base ordenada ortonormal de $M_{\mathbb{R}}(2,3)$. Temos que:

$$[T]_E^E = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Como $[T]_E^E$ é uma matriz simétrica, segue que T é um operador auto-adjunto.

Como $[T]_E^E$ é uma matriz ortogonal (suas linhas formam uma base ortonormal de \mathbb{R}^6) segue que T é um operador ortogonal.

c. $\mathbb{V} = \mathbb{R}^3$, T é o único operador tal que, T(1,-1,0) = (1,0,0), T(1,1,0) = (0,1,0), T(0,0,-1) = (0,0,1) e $\langle (x,y,z), (a,b,c) \rangle = x \cdot a + y \cdot b + z \cdot c$.

Notamos que,
$$\langle T(1, -1, 0), (1, 1, 0) \rangle = \langle (1, 0, 0), (1, 1, 0) \rangle = 1$$
 e

$$\langle (1, -1, 0), T(1, 1, 0) \rangle = \langle (1, -1, 0), (0, 1, 0) \rangle = -1.$$

Logo, $\langle T(1,-1,0),(1,1,0)\rangle \neq \langle (1,-1,0),T(1,1,0)\rangle$ e portanto, T não é um operador autoadjunto.

Notamos também que,

$$\langle T(1,-1,0), T(1,-1,0) \rangle = \langle (1,0,0), (1,0,0) \rangle = 1 \neq 2 = \langle (1,-1,0), (1,-1,0) \rangle.$$

Portanto, T não é um operador ortogonal.

4. A quádrica 2xy+2yz+2xz=0 representa qual das superfícies abaixo? justifique sua resposta. (Dica: $x^3-3x-2=(x-2)(x+1)^2$)

a. Hiperbolóide

b. Cone

c. Parabolóide

Temos que,

$$2xy + 2yz + 2xz = 0 \iff \begin{pmatrix} x & y & z \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

Calculemos agora os autovalores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que, $[T]_E^E = Q = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ (sendo

 $E = \{(1,0,0),(0,1,0),(0,0,1)\}$ a base ordenada canônica de \mathbb{R}^3).

$$P_T(x) = \det \begin{pmatrix} x & -1 & -1 \\ -1 & x & -1 \\ -1 & -1 & x \end{pmatrix} = x^3 - 1 - 1 - x - x - x = x^3 - 3x - 2 = x(x^2 - 1 - 2) - 2 = x(x^2 - 1) - 2x - 2 = x(x - 1)(x + 1) - 2(x + 1) = (x(x - 1) - 2)(x + 1) = (x^2 - x - 2)(x + 1) = (x - 2)(x + 1)^2$$

Logo, os autovalores de T são $\lambda_1 = -1$, $\lambda_2 = -1$ e $\lambda_3 = 2$.

Seja $F = \{v_1, v_2, v_3\}$ uma base ordenada ortonormal de \mathbb{R}^3 formada pelos autovetores de T associados respectivamente aos autovalores λ_1, λ_2 e λ_3 . Se, $[v]_E = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ e $[v]_F = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ então,

$$(x \ y \ z) \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow (X \ Y \ Z) \cdot \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = 0$$

ou seja, $-X^2 - Y^2 + 2Z^2 = 0$. Essa é a equação de um CONE. Portanto a alternativa correta é a alternativa b. Cone.