Контрольная работа Вариант №4.

Роман Астраханцев, СКБ-171

15 февраля 2022 г.

Задача 1

Дана сеть Фейстеля, состоящая из 8 итераций, с длиной блока n=128 бит. Из мастер ключа $K=(K_1,K_2,K_3,K_4)$, где $K_1,\ldots,K_4\in V_{64}$, итерационные ключи (на итерациях $1,2,3,\ldots,8$) получаются вырабаютываются как последовательность $K_3,K_2,K_4,K_1,K_3,K_2,K_4,K_1$. Обозначим за $E:V_{128}\times V_{256}\to V_{128}$ алгоритм зашифрования.

Описать трудоемкость, вероятность успеха, затраты по памяти и объём материала для методов тотального опробования и слайд-атаки.

Рис. 1: Раунд сети Фейстеля

Рис. 2: Шифр из задачи

Метод тотального опробования

Для начала определим количество материала, необходимое для однозначного опредления ключа. Поскольку одной на паре (P,C) открытого и шифрованного текста, где $P,C \in V_{128}$, можно отбраковать 2^{128} ключей, то потребуется $\lceil \frac{256}{128} \rceil = 2$ различные пары: $(P_1,C_1),(P_2,C_2)$. Будем дальше считать, что они нам даны.

Алгоритм 1: Метод тотального опробования

Вход: Пары открытого и шифрованного текста $(P_1, C_1), (P_2, C_2)$

Выход: Ключ шифрования K

- 1. Для каждого $k \in V_{256}$:
- **2.** Вычислить $B_1 = E(P_1, \tilde{k})$
- **3.** Если $B_1 = C_1$, то
- **4.** Вычислить $B_2 = E(P_2, \tilde{k})$
- **5.** Если $B_2 = C_2$, то
- **6.** Закончить алгоритм и вернуть \tilde{k}

Трудоёмоксть Q этого алгоритма будем измерять в количествах зашифрования, а необходимую для работы алгоритма память M в битах. Тогда имеем

$$Q = 2^{256} + 2^{128} + 1 \approx 2^{256}$$

$$M = (128 + 128) * 2 = 512$$

Вероятность успеха алгоритма P=1, поскольку алгоритм гарантированно находит ключ шифрования.

Слайд-атака

Заметим, что алгоримт зашфирования E представим как $E = G \circ G$, где $G: V_{128} \times V_{256} \to V_{128}$ – работа первых 4 раундов сети Фейстеля представленного в задаче шифра. Точно так же, как и в методе тотального опробования, после нахождения слайд-пары необоходимо будет доопробовать найденный ключ. В общем итоге для восстановления ключа нам потребуется $\lceil \frac{256}{128} \rceil = 2$ различные пары: $(P_1, C_1), (P_2, C_2)$. Будем дальше считать, что они нам даны. Также будем считать, что нам дана возможность по любому открытому тексту получить его зашифрованную версию, иными словами для любого открытого текста P мы можем вычислить E(P,K) даже не зная K.

Алгоритм 2: Метод скольжения

Вход: Пары открытого и шифрованного текста $(P_1, C_1), (P_2, C_2)$ **Выход:** Ключ шифрования K

- **1.** Принять i = 1
- **2.** Пока ключ не найден или $i > 2^{64}$
- 3. i = i + 1
- **4.** Выберем случайно $P \in V_{128}$ открытый текст
- 5. Посчитаем C = E(P, K)
- **6.** Выберем случайно $P' \in V_{128}$ другой открытый текст
- 7. Посчитаем C' = E(P', K)
- **8.** Если napu (P, C) u (P', C') coenanu, то
- 9. Перейти на новую итерацию цикла
- **10.** Решим уравнение P' = G(P) и результат занесём в K_{first}
- 11. Решим уравнение C' = G(C) и результат занесём в K_{last}
- 12. Если $K_{first} = K_{last}$ то
- **13.** Доопробуем ключ K_{first} на парах $(P_1, C_1), (P_2, C_2)$ и в случае успеха вернём ключ K_{first}

Алгоритм 2 был сформулирован как вероятностный, чтобы продемонстрировать его основные характеристики. Детеременированная версия алгоритма (вероятность успеха которой равна 1) легко получается заменой случайного выбора на перебор всевозможных значений.

Трудоёмоксть Q этого алгоритма будем измерять в количествах зашифрования, а необходимую для работы алгоритма память M в битах. Тогда имеем

$$Q = 2^{64} \cdot 2q$$

$$M = (128 + 128) * 2 = 512,$$

где q – это сложность решения уравнения P' = G(P) относительно ключа k.

Согласно парадоксу дней рождений вероятность успеха алгоритма $P\gg 0.9999$.