

EIGENVALUES AND DEFINITENESS

Why

Can we characterize positive (semi-)definite matrices in terms of their eigenvalues?

Main Result

Using eigenvalue decompositions, we can answer in the affirmative.

Proposition 1. Suppose $A \in \mathbf{S}^d$ has smallest eigenvalue $\lambda_{\min}(A)$. Then

$$\begin{split} A \in \mathbf{S}_{+}^{d} & \longleftrightarrow \quad \lambda_{\min}(A) \geq 0 \\ & \longleftrightarrow \quad \operatorname{tr} AB \geq 0 \ \textit{for all } B \in \mathbf{S}_{+}^{d}. \end{split}$$

and

$$A \in \mathbf{S}_{++}^d \quad \longleftrightarrow \quad \lambda_{\min}(A) > 0$$

$$\longleftrightarrow \quad \operatorname{tr} AB > 0 \ \textit{for all nonzero} \ B \in \mathbf{S}_{++}^d.$$

