## Отчет по лабораторной работе №8

Модель конкуренции двух фирм

Голова Варвара Алексеевна

# Содержание

| 1 | Цель работы                                                                                                                                                                                                                     | 4                    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2 | Задание                                                                                                                                                                                                                         | 5                    |
| 3 | Теоретическая справка         3.1 Модель одной фирмы          3.2 Конкуренция двух фирм          3.2.1 Случай 1          3.2.2 Случай 2                                                                                         | 10<br>10             |
| 4 | Выполнение лабораторной работы         4.1 Библиотеки          4.2 Значения          4.3 Переменные          4.4 Случай 1          4.5 Вывод графика для случая 1          4.6 Случай 2          4.7 Вывод графика для случая 2 | 13<br>14<br>15<br>15 |
| 5 | Выводы                                                                                                                                                                                                                          | 17                   |

# **List of Figures**

| 4.1 | Библиотеки       | 13 |
|-----|------------------|----|
| 4.2 | Значения         | 14 |
| 4.3 | Переменные       | 14 |
| 4.4 | Решение          | 15 |
| 4.5 | Вывод графика №1 | 15 |
| 4.6 | Решение          | 16 |
| 4.7 | Вывод графика №2 | 16 |

# 1 Цель работы

Ознакомиться с моделью конкуренции двух фирм и построить графики по этой модели.

### 2 Задание

#### Вариант 28

Случай 1. Рассмотреть две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считать, что в рамках этой модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке. Динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где 
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p_1}^2Nq}, a_2=rac{p_{cr}}{ au_2^2 ilde{p_2}^2Nq}, b=rac{p_{cr}}{ au_1^2 ilde{p_1}^2 au_2^2 ilde{p_2}^2Nq}, c_1=rac{p_{cr}- ilde{p_1}}{ au_1 ilde{p_1}}, c_2=rac{p_{cr}- ilde{p_2}}{ au_2 ilde{p_2}}.$$

Случай 2. Рассмотреть модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед  $M_1M_2$  будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой

уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.00018) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотреть задачу со следующими начальными условиями и параметрами:  $M_0^1=8, M_0^2=9, p_{cr}=35, N=93, q=1$ ,  $\tau_1=35, \tau_2=30, \tilde{p_1}=13.3, \tilde{p_2}=14.5$ .

Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случаев 1 и 2.

## 3 Теоретическая справка

#### 3.1 Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

#### Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
  - M оборотные средства предприятия
  - au длительность производственного цикла
  - p рыночная цена товара
- $\tilde{p}$  себестоимость продукта, то есть переменные издержки на производство единицы продукции
  - $\delta$  доля оборотных средств, идущая на покрытие переменных издержек
- $\kappa$  постоянные издержки, которые не зависят от количества выпускаемой продукции.
  - Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она

равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-k\frac{p}{S}=q\bigg(1-\frac{p}{p_{cr}}\bigg) \quad (1)$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при  $p=p_{cr}$  (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина  $p_{cr}=Sq/k$ . Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при  $p\geq p_{cr}$ ) и обладает свойствами насыщения. Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa \quad (2)$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma \left( -\frac{M\delta}{\tau \tilde{p}} + Nq \left( 1 - \frac{p}{p_{cr}} \right) \right) \quad (3)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр  $\gamma$  зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньшевремени производственного цикла  $\tau$ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0 \quad (4)$$

Из (4) следует, что равновесное значение цены p равно

$$p=p_{cr}\bigg(1-\frac{M\delta}{\tau\tilde{p}Nq}\bigg)\quad (5)$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \left( \frac{p_{cr}}{\tilde{p}} - 1 \right) - M^2 \left( \frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - \kappa \quad (6)$$

Уравнение (6) имеет два стационарных решения, соответствующих условию dM/dt=0:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \quad (7)$$

где

$$a = Nq \bigg(1 - \frac{\tilde{p}}{p - cr}\bigg) \tilde{p} \frac{\delta}{\tau}, b = \kappa Nq \frac{(\tau \tilde{p})^2}{p_{cr} \delta^2} \quad (8)$$

Из (7) следует, что при больших постоянных издержках (в случае  $a^2 < 4b$ ) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть,  $b \ll a^2$ ) и играют роль, только в случае, когда оборотные средства малы. При  $b \ll a$  стационарные значения M равны

$$\tilde{M}_{+} = Nq\frac{\tau}{\delta}\bigg(1 - \frac{\tilde{p}}{p_{cr}}\bigg)\tilde{p}, \tilde{M}_{-} = \kappa\tilde{p}\frac{\tau}{\delta(p_{cr} - \tilde{p})} \quad (9)$$

Первое состояние  $\tilde{M}_+$  устойчиво и соответствует стабильному функционированию предприятия. Второе состояние  $\tilde{M}_-$  неустойчиво, так, что при  $M < \tilde{M}_-$  оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу  $\tilde{M}_-$  соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр  $\delta$  всюду входит в сочетании с au. Это значит,

что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим:  $\delta=1$ , а параметр  $\tau$  будем считать временем цикла, с учётом сказанного.

#### 3.2 Конкуренция двух фирм

#### 3.2.1 Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{split} \frac{dM_{1}}{dt} &= -\frac{M_{1}}{\tau_{1}} + N_{1}q \left(1 - \frac{p}{p_{cr}}\right)p - \kappa_{1} \\ \frac{dM_{2}}{dt} &= -\frac{M_{2}}{\tau_{2}} + N_{2}q \left(1 - \frac{p}{p_{cr}}\right)p - \kappa_{2} \end{split} \tag{10}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N1 и N2 – числа потребителей, приобретших

товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть произведенный каждой фирмой товар не накапливается, а реализуется по цене p.

Тогда

$$\begin{split} \frac{M_1}{\tau_1 \tilde{p}_1} &= N_1 q \bigg(1 - \frac{p}{p_{cr}}\bigg) \\ \frac{M_2}{\tau_2 \tilde{p}_2} &= N_2 q \bigg(1 - \frac{p}{p_{cr}}\bigg) \end{split} \tag{11}$$

где  $\tilde{p}_1$  и  $\tilde{p}_2$  – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} \left( 1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2} \left( 1 - \frac{p}{\tilde{p}_2} \right) - \kappa_1$$
(12)

Уравнение для цены, по аналогии с (3),

$$\frac{dp}{dt} = -\gamma \left( \frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq \left( 1 - \frac{p}{p_{cr}} \right) \right) \quad (13)$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p=p_{cr}\bigg(1-\frac{1}{Nq}\bigg(\frac{M_1}{\tau_1\tilde{p}_1}+\frac{M_2}{\tau_2\tilde{p}_2}\bigg)\bigg) \quad (14)$$

Подставив (14) в (12) имеем:

$$\frac{dM_1}{dt} = c_1 M_1 - bM_1 M_2 - a_1 M_1^2 - \kappa_1$$

$$\frac{dM_2}{dt} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2$$
 (15)

где 
$$a_1=\frac{p_{cr}}{\tau_1^2\tilde{p_1}^2Nq}$$
,  $a_2=\frac{p_{cr}}{\tau_2^2\tilde{p_2}^2Nq}$ ,  $b=\frac{p_{cr}}{\tau_1^2\tilde{p_1}^2\tau_2^2\tilde{p_2}^2Nq}$ ,  $c_1=\frac{p_{cr}-\tilde{p_1}}{\tau_1\tilde{p_1}}$ ,  $c_2=\frac{p_{cr}-\tilde{p_2}}{\tau_2\tilde{p_2}}$  (16)

Исследуем систему (15) в случае, когда постоянные издержки  $(\kappa_1,\kappa_2)$  пренебрежимо малы. И введем нормировку  $t=c_1\theta$ . Получим следующую систему:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \\ &\qquad \qquad (17) \end{split}$$

#### 3.2.2 Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед  $M_1M_2$  будет отличаться.

Например, 
$$\frac{dM_1}{d\theta}=M_1-(\frac{b}{c_1}+0.002)M_1M_2-\frac{a_1}{c_1}M_1^2$$
 
$$\frac{dM_2}{d\theta}=\frac{c_2}{c_1}M_2-\frac{b}{c_1}M_1M_2-\frac{a_2}{c_1}M_2^2$$

## 4 Выполнение лабораторной работы

#### 4.1 Библиотеки

Подключаю все необходимые библиотеки(рис. 4.1).

```
import numpy as np
import math
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

Figure 4.1: Библиотеки

#### 4.2 Значения

Ввод значений из своего варианта (28 вариант)(рис. 4.2).

```
p_cr=35
p1=13.3
p2=14.5
tau1=35
tau2=30
N=93
q=1
```

```
x0=np.array([8,9])
t=np.arange(0,30,0.01)
```

Figure 4.2: Значения

#### 4.3 Переменные

Ввод переменных (рис. 4.3).

```
a1=p_cr/(tau1*tau1*p1*p1*N*q)
a2=p_cr/(tau2*tau2*p2*p2*N*q)
b=p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1=(p_cr-p1)/(tau1*p1)
c2=(p_cr-p2)/(tau2*p2)
```

Figure 4.3: Переменные

### 4.4 Случай 1

Решение 1 (рис. 4.4).

```
def syst1(x,t):
    dx1=x[0]-(b/c1)*x[0]*x[1]-(a1/c1)*x[0]*x[0]
    dx2=(c2/c1)*x[1]-(b/c1)*x[0]*x[1]-(a2/c1)*x[1]*x[1]
    return [dx1, dx2]
y1=odeint(syst1, x0, t)
```

Figure 4.4: Решение

### 4.5 Вывод графика для случая 1

График изменения оборотных средств фирмы 1 и фирмы 2 (рис. 4.5).



Figure 4.5: Вывод графика №1

### 4.6 Случай 2

Решение 2 (рис. 4.6).

```
def syst2(x,t):
    dx1=x[0]-((b/c1)+0.00018)*x[0]*x[1]-(a1/c1)*x[0]*x[0]
    dx2=(c2/c1)*x[1]-(b/c1)*x[0]*x[1]-(a2/c1)*x[1]*x[1]
    return [dx1, dx2]

y2=odeint(syst2, x0, t)
```

Figure 4.6: Решение

### 4.7 Вывод графика для случая 2

График изменения оборотных средств фирмы 1 и фирмы 2 (рис. 4.7).

```
plt.plot(t,y2,lw=2)
plt.title('Случай 2')
plt.grid('True')
```



Figure 4.7: Вывод графика №2

# 5 Выводы

Я ознакомилась с моделью конкуренции двух фирм и построила графики по этой модели.