

Advanced Neural Networks for Computer Vision

Dr Amit Sethi, IITB

Module objectives

Identify problems other than image classification

Match advanced NN architectures suitable for these problems

Design training data and methods for training these architectures

Contents

FCNs and semantic segmentation

Other variants of convolution

Simultaneous localization and recognition

Siamese network for metric learning

Semantic segmentation is labeling pixels greatlearning according to their classes

void	road	sidewalk	building	wall
fence	pole	traffic light	traffic sign	vegetation
terrain	sky	person	rider	car
truck	bus	train	motorcycle	bicycle

on High-Resolution Images" Hengshuang Zhao1, Xiaojuan Qi, | | Xiaoyong Shen, Jianping Shi, Jiaya Jia, ECCV'18

CNN Revisited

For segmentation, a pixel class can be predicted using some spatial context

Pixel labels for training images must be greatlearning labels for training images must be greatlearning for Life known to train for semantic segmentation

Xiaoyong Shen, Jianping Shi, Jiaya Jia, ECCV'18

void	road	sidewalk	building	wall
fence	pole	traffic light	traffic sign	vegetation
terrain	sky	person	rider	car
truck	bus	train	motorcycle	bicycle

To produce a segmentation map downsampling is followed by upsampling

Upsampling can also be learned

greatlearning

Learning for Life

Downsampling and upsampling leads to an hour-glass structure

Proprietary content. ©Great Learning. All Rights Reserved.
Unauthorized use or distribution prohibited

Let us rearrange the layers horizontally

Proprietary content. ©Great Learning. All Rights Reserved.
Unauthorized use or distribution prohibited

More layers can be added

Proprietary content. © Great Learning. All Rights Reserved.

Unauthorized use or distribution prohibited

Visually rearrange layers in a big U

GreatlearningConcatenate previous feature maps for Learning for Life

finer spatial context

Unauthorized use or distribution prohibited

U-Net is based on the ideas described in the previous slides

A sample output for nucleus segmentation in pathology

A general representation of fully convolutional networks. The encoder is composed of convolutional and pooling layers for downsampling and the decoder is composed of deconvolutional layers for upsampling.

Contents

FCNs and semantic segmentation

Other variants of convolution

Simultaneous localization and recognition

Siamese network for metric learning

Using 1x1 convolutions is equivalent to having a fully connected layer

1x1 convolutions can also be used to change the number of feature maps

Inception uses multiple sized convolution filters

Separable convolutions

Inception uses multiple sized convolution filters

Inception Resnet V2 Network

MobileNet filters each feature map separately

GreatlearningA standard architecture on a large image with global average pooling **GAP** Layer roprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Atrous (dilated) convolutions can reatlearning increase the receptive field without increasing the number of weights

Contents

FCNs and semantic segmentation

Other variants of convolution

Simultaneous localization and recognition

Siamese network for metric learning

What is localization

greatlearning

Learning for Life

We can train a regression network to give bounding box coordinates

Faster R-CNN architecture

Classification and regression on region proposals

Proprietary content. ©Great Learning. All Rights Reserved.
Unauthorized use or distribution prohibited

Loss for Simultaneous Classification and Localization

 $\frac{Classification}{Coss_Entropy} = \frac{Regression}{Regression}$ $\frac{Regression}{Regression}$ $\frac{Regression}{Regression}$

Proprietary content. ©Great Learning. All Rights Reserved.
Unauthorized use or distribution prohibited

YOLO Approach to Detecting Multiple Objects

SSD Framework

Contents

- FCNs and semantic segmentation
- Other variants of convolution

Simultaneous localization and recognition

Siamese network for metric learning

CNN Revisited

The last FC layer gives good features

These features are transferable and can Learning for Life be used in an SVM, for example

Proprietary content. ©Great Learning. All Rights Reserved.

Properties of a kernel

- Similarity metric
- High value for similar pairs of inputs
- Low value for dissimilar inputs
- Positive semi-definite

Learning the kernel is called metric learning

- A metric is like a distance
- Inverse of similarity
- It is symmetric
- It follows triangle inequality
- Sometimes, we want to learn a metric

Siamese network as metric learning

Proprietary content. ©Great Learning. All Rights Reserved.
Unauthorized use or distribution prohibited

For example, face verification

Test Image

Referenced Imagestribution prohibited

Target values differ for similar and dissimilar pairs

Or, the relative values are different

Two ways of viewing a metric

- Absolute terms (Regular Siamese training)
 - Distance (x_{ref}, x_+) = Low; Distance (x_{ref}, x_-) = High
 - Similarity (x_{ref}, x_+) = High; Similarity (x_{ref}, x_-) = Low
- Relative terms (Triplet Siamese training)
 - Distance (x_{ref}, x_{-}) Distance (x_{ref}, x_{+}) > Margin
 - Similarity (x_{ref}, x_+) Similarity (x_{ref}, x_-) > Margin

- Class probability was based on a single input
 - ClassProb (x,c) = High when $x \in c$; otherwise low

Some distance and similarity measures

- Distances examples
 - L2 norm of difference (Euclidean distance)
 - L1 norm of difference (City-block/Manhattan dist.)

- Similarity examples
 - Dot product
 - Arc cosine
 - Radial basis function (RBF)

Some distance and similarity measures

Distances examples

- $||(f(x_i) f(x_i))||_2^2$
- $|(f(x_i) f(x_j))|_1$

Similarity examples

- $f(x_i)^T f(x_j)$ or $f(x_i) \cdot f(x_j)$
- $f(x_i) \cdot f(x_j)$ / (|| $f(x_i)$ || || $f(x_j)$ ||)
- $\exp(-||x_i x_j||^2/\sigma^2)$

Loss gradient is propagated back greatlearning back Learning for Life

Loss gradient is propagated back greatlearning back Learning for Life

Pre-trained networks can be used

Some joint layers can also be added

