计算机图形学实验报告

姓名: 学号:

目录

前言	ī		4			
一、	一、图元的生成4					
	1.1 直线的	的生成	4			
	1.1.1	基本原理	4			
	1.1.2	实现算法	4			
	1.1.3	实验结果	6			
	1.2 圆的生	上成	6			
	1.2.1	基本原理	6			
	1.2.2 实现	· 算法	7			
	1.2.3	实验结果	8			
	1.3 相	隋圆的生成	9			
	1.3.1 基本	「原理	9			
	1.3.2 实现	[算法	10			
	1.3.3	实验结果	11			
	1.4 区域均	真充	11			
	1.4.1	基本原理	11			
	1.4.2 实现	图算法	12			
		实验结果				
_,	样条曲线的	的生成	14			
	2.1 Bezier	曲线	14			
	2.1.1	基本原理	14			
	2.1.2	算法实现	14			
	2.1.3	实验结果	16			
	2.2 B 样条	的生成	17			
	2.2.1	基本原理	17			
	2.2.2	实现算法	18			
	2.2.3	实验结果	18			
三、	分形图形的	的生成	19			
	3.1 Koch F	曲线的生成	19			
	3.1.1	基本原理	19			
	3.1.2	实现算法	20			
	3.1.3	实验结果	22			
	3.2 Julia 绯	美的生成	22			
	3.2.1	基本原理	2.2			

计算机图形学实验报告

	3.2.2 实现算法	23			
	3.2.3 实验结果	24			
	3.3 Mandelbrot 集的生成	28			
	3.3.1 基本原理	28			
	3.3.2 生成算法	28			
	3.3.3 实验结果	28			
	3.4 蕨类植物的生成	29			
	3.4.1 基本原理	29			
	3.4.2 算法实现	29			
	3.4.3 实验结果	30			
四、	、软件使用说明	32			
	4.1 直线	32			
	4.2 圆	32			
	4.3 椭圆	33			
	4.4 区域填充	34			
	4.5 Bezier 曲线				
	4.6 B 样条曲线	35			
	4.7 Koch 曲线				
	4.8 Julia 集				
	4.9 Mandebrot 集				
	4.10 蕨类植物	36			
五、	、感言	37			
六、	、参考文献	37			

前言

本次课程设计个人部分采用 QT5.8.0 编写,主要内容为:图元的生成:直线、圆、椭圆、区域填充;样条曲线的生成:Bezier 曲线的生成、B-样条曲线的生成;分形图形的生成:Koch 曲线、Julia 集、Mandelbrot 集和蕨类植物。附件中含有最终工程和可执行文件,各窗口有使用说明。

一、图元的生成

1.1 直线的生成

1.1.1 基本原理

由于我们现在使用的显示器都是栅格显示器,栅格显示器由一个个像素点组成的,故我们显示各种图形实际上都是由一个个离散点显示的。因此,我们可以将屏幕(或者画板)定义好坐标轴,对于特定的图形,只需计算其相应被点亮的栅格的坐标即可显示出所需图形。对于直线来说,只需知道直线两端的端点,用数学知识,即可计算出沿线各点的坐标。由此产生了很多算法,如 DDA 算法、Bresenham 算法、并行画线算法等。

本实验中选择 Bresenham 算法,该算法利用增量计算各点的坐标,无需计算浮点数,效率高,速度快。

1.1.2 实现算法

Bresenham 直线算法流程图一所示。该算法只需要输入两个点的坐标即可完成直线的绘制。程序中,通过鼠标事件获取输入参数。本例中,通过 mousepressEvent()事件获得两次鼠标点击的点的坐标,每次将点的坐标存下,同时计数器加 1,当计数器等于 2 时清零,如此循环,可实现重复绘制点。

图一 直线绘制算法流程图

1.1.3 实验结果

图二 直线生成实验结果

实验结果如图二所示,实验中,鼠标任选两个点(选取的两个点会用红点标注),即自动完成两点间直线的绘制。实验中,分别绘制了横线、竖线、斜率为正的直线、斜率为负的直线、短线等类型的线,由图二可知,实验成功。

1.2 圆的生成

1.2.1 基本原理

本质上来说,圆的生成的基本原理和直线没有大区别,只是图案改变了。由于圆是弧形,故需要更巧妙的设计,本实验中采取中点圆算法绘制圆形,该算法在绘制时每次判断前后两点的中点,若中点在圆弧内,在下一个点外圆弧外方向前进,反之往圆弧内方向前进。且由于圆的对称性,无需计算所有点的坐标,本实验中,只计算第一象限的 1/8 圆弧的坐标,其余坐标利用对称性均可获得。

1.2.2 实现算法

图三 圆的生成算法流程图

圆的生成算法流程图如图三所示,该算法中,输入为圆心坐标和半径,利用

圆的对对称性,只计算第一象限中上半部分(即八分之一圆),其余点的坐标利用对称性绘制。程序中,通过 mousePressEvent()获得圆心的坐标(x0,y0),然后 mouseMoveEvent()获取鼠标移动过程中的位置(x,y),同时计算当前点距圆心的距离(即半径 r)当鼠标松开后,就得到了以上算法的两个输入参数,将圆心坐标和半径代入以上算法,并在 mouseReleaseEvent()事件中调用该算法,即实现圆的生成。

1.2.3 实验结果

图四 圆生成算法实验结果

实验结果如图所示,画圆方法如下:首先鼠标点击一个点,<mark>按住不放</mark>,该点即为圆心,然后拖动鼠标,放开鼠标后即生成圆。由图四可知,该算法绘制的圆效果很好。

1.3 椭圆的生成

1.3.1 基本原理

与圆的生成相比,椭圆的生成过程类似,从算法上来说,椭圆比圆多一个参数,椭圆同时有短轴和长轴,故需要三个参数:长轴长,短轴长和圆心坐标。本设计中仍采用中点椭圆生成算法。

图五 椭圆处理区域

如图五所示,将椭圆分为两个区域处理,其中区域 1 斜率小于-1,区域 2 斜率大于-1,只需计算出第一象限的 1/4 椭圆,其余坐标即可利用对称性获得。利用椭圆方程,可定义如下函数,其中 r_x , r_y 分别为长轴长和短轴长。

$$f_{ellipse}(x,y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

上述函数具有下列特性:

$$f_{ellipse}(x,y) = \begin{cases} < 0 & (x,y)$$
在椭圆内
$$= 0 & (x,y)$$
在椭圆上
$$> 0 & (x,y)$$
在椭圆外

通过上述关系,从 $(0, r_y)$ 开始,在 x 方向取单位步长更新坐标,并计算每次的增量,当到达区域 1 和区域 2 边界时,更换成 y 方向的单位步长,从而将第一象限的点绘制完成,经过一系列简单的数学推导,可得出不同情形下各点的增量,具体形式见实现算法中的流程图部分。

1.3.2 实现算法

图六 椭圆生成算法流程图

椭圆生成算法流程图如图六所示,对比图四圆的生成算法,可见椭圆更为复杂,因为椭圆除了多一个参数外,还得分区域考虑,不同的区域参数更新规则不同,但是其基本原理相同。在椭圆生成算法中,圆心坐标(x0,y0)的获取和圆生成算法相同,利用 mousePressEvent()事件,至于长短轴的获取,为了简便起见,仍

利用 mouseMoveEvent()事件和 mouseReleaseEvent()事件获取鼠标拖动终点(x,y),然后将长轴取为 x 的增量 dx=x-x0,短轴为 dy=y-y0,这种方法相对简单,且实验表明生成的椭圆效果也很好。

1.3.3 实验结果

图七 椭圆生成算法实验结果

实验结果如图七所示,图中绘制了几个不同方向的椭圆。绘制方法如下:首 先点击鼠标左键选择圆心(以红点表示),然后按住鼠标不动,松开后即完成椭 圆的绘制,由图七看见,本例中可实现不同形状的椭圆的绘制,且绘制效果很好。

1.4 区域填充

1.4.1 基本原理

在光栅系统中有两种基本的区域填充方法,一种是通过确定横跨区域的扫描

线的覆盖间距进行填充;另一种是从给定的位置开始涂色直到指定的边界为止。 由此产生了多种不同的填充算法,如扫描线转换法,边界填充算法,泛滥填充算 法等,本设计采用泛滥填充算法。

1.4.2 实现算法

图八 区域填充算法流程图

区域填充算法的流程图如图八所示,其中区域绘制使用的是 mousePressEvent()和 mouseMoveEvent(), 首先 mousePressEvent()获取第一个点, 记为 StartPoint, 然后在 mouseMoveEvent()事件中, 将当前坐标记为 EndPoint, 在

StartPoint 和 Endpoint 两点间绘制直线,绘制完成后将 EndPoint 的值赋给 StartPoint,即不断地将上一时刻的终点值设为下一时刻的起点值。程序中定义了二维数组 image,该数组用来记录画板上各点的颜色索引值,若为白色,则索引记为 0,反之记为 1,在实验过程中,由于只有区域的边界出颜色为黑色,故出边界区域以外,颜色索引皆为 0,image 的行、列索引即画板上各点的坐标值。当选择种子点(x,y),首先判断当前点的颜色索引,若为白色则绘制该点,然后对(x,y)的四邻域点同样进行以上过程。若当前点的颜色索引为 1,则跳过该点,且不检查其周围点。

1.4.3 实验结果

图九 区域填充实验结果

实验结果如图九所示,实验过程如下:首先绘制填充区域(闭合),然后点击"选择种子点"按钮,在区域内单击,即可实现区域填充。本实验中,绘制了两个数字"6",一个数字"8",即产生四个封闭的填充区域,每次单击"选择种子点"按钮,以此将四个区域填充即可。

二、样条曲线的生成

2.1 Bezier 曲线

2.1.1 基本原理

贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。由于用计算机画图大部分时间是操作鼠标来掌握线条的路径,与手绘的感觉和效果有很大的差别。即使是一位精明的画师能轻松绘出各种图形,拿到鼠标想随心所欲的画图也不是一件容易的事。这一点是计算机万万不能代替手工的工作,所以到目前为止人们只能颇感无奈。使用贝塞尔工具画图很大程度上弥补了这一缺憾。贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一。一般来说,贝塞尔曲线可以拟合任何数目的控制点,本设计实现了可拟合任意控制点的功能。

2.1.2 算法实现

本设计中,对贝塞尔曲线的绘制采用 DeCasteljau 算法,该算法是一个递归算法,可以快速得到贝塞尔曲线上的点,该算法的输入是 n 个控制点,输出是贝塞尔曲线上的一个点。DeCasteljau 算法的思想如下:为了计算 n 次贝塞尔曲线上的点 C(u), $u \in [0,1]$,首先将控制点连接形成一条折线 00-01-02······0(n-1)-n00。利用上述方法,计算出折线中每条线段 0j-0(n-n1)-n1 分该线段的比为 n1.

图十 DeCasteljau 算法示意图

然后在折线 $10-11-\dots-1(n-1)$ 上递归调用该算法,以此类推。最终,求得最后一个点 n0。DeCasteljau 证明了,点 n0 一定是曲线上的点。如图十所示,曲线控制点是 00、01、02、03、04、05。线段 00-01 上取点 10,10 分该线段的比为 u:1-u,类似地取点 11、12、13、14,然后第二次迭代在线段 10-11 上取点 20,点 20 分该线段的比为 u:1-u,类似地取点 21、22、23。然后进行下一次迭代,依次类推,直到最后在线段 40-41 上取点 50,50 是最终惟一的点,也是在曲线上的点。对于 $u\in[0,1]$,若对其进行足够小的划分,便可得到足够多的贝塞尔曲线上的点,绘制到屏幕上看到的效果就是一条连续的曲线。该算法的流程图如图十一所示。

图十一 DeCasteljau 算法的流程图

程序中,通过 *mousePressEvent()*获取当前鼠标点击的点的坐标,并存在 points 结构体中,该结构体的成员是一个 QPoint point[20]数组,每个成员可保存 20 个点的信息,若实际中需要更多点可以再添加。每次点击一个点后,在该点处绘制一个小椭圆,用来标注该点,如果当前点不是第一个点,还会将当前点和上一个点以直线的方式连接起来。(如图十二所示)

图十二 控制点绘制方式

得到各控制点坐标后,将 u (程序中为 t)在(0,1)范围内等分,然后每次传入一个 u 值和绘制的 n 个控制点的坐标,得到当前 u 值下贝塞尔曲线上的一个点,并将给点画出来,如此循环,直到 u=1。绘制完成后,将控制点的计数器清零,以便于继续下一次绘制。

2.1.3 实验结果

实验结果如图十二所示,本实验中,首先用鼠标在白板处选取若干个控制点,选取完成后单击"画图"按钮即可实现画图功能,每次绘制完成后,可以不清除继续绘制。由图十二可知,该算法效果很好,生成的曲线很优美。

图十二 Bezier 曲线实验结果

2.2 B 样条的生成

2.2.1 基本原理

B 样条曲线具有两个 Bezier 曲线不具有的优点: (1) B 样条多项式的次数独立于控制点的数目, (2) B 样条允许局部控制曲线或曲面。本设计中,主要绘制的是三次周期性 B 样条,通过 B 样条的通用公式,可将三次周期 B 样条以矩阵的形式写出。

$$P(u) = [u^3 u^2 u 1] \cdot M_B \cdot [P_0 P_1 P_2 P_3]^T$$

其中 $\mathbf{u} \in [0,1]$, P_0 , P_1 , P_2 , P_3 为四个控制点, M_B 是周期性三次多项式的 B-样条矩阵。 M_B 如下所示。

$$M_B = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 - 6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}$$

2.2.2 实现算法

对于 B 样条的生成,其算法非常简单,只需要输入四个控制点,并将四个控制点按照其生成公式计算即可。此处只对程序进行解释,并介绍多于四个控制点的绘制方法。首先,对于控制点的坐标获取方式,和 Bezier 曲线中相同,此处不再赘述。当控制点大于 4 个时,不妨假设为 6 个,那么首先绘制前四个,然后将第二个点视为第一个点,以此类推,第五个点视为第四个点,绘制这四个点的 B 样条曲线,然后继续后移,直至所有点绘制完成。由于 d-1 次 B 样条曲线具有 C^{d-2} 连续性,因此曲线处处连续且光滑。具体到程序中,做法如下:

- (1) 定义一个 points 结构体, 其成员为 point[20]数组, 用以存储鼠标点击的控制点。定义一个 QPointF 数组 a[4]用以存储当前需要绘制的四个点。
- (2) 假设选取了 n 个控制点,定义一个计数器 j 、将 j 初始化为 0 ,对于 j <= n-4 执行以下计算:

 $a[0] = f_1(u)*points.point[j];$

 $a[1] = f_2(u)*points.point[j+1];$

 $a[2] = f_3(u)*points.point[j+2];$

 $a[3] = f_4(u)*points.point[j+3];$

计算完成后,绘制四个点,然后 j=j+1,如此每次移动一个点,实现了绘制多于四个控制点的三次周期性 B 样条曲线的绘制。

2.2.3 实验结果

实验结果如图十三所示,其中左上角为通过循环选取六个控制点中的四个生成的,其余为分别选取 4、5、6 个控制点生成的。实验过程如下:先选取若干个点,选取完成后点击"三次 B 样条"按钮生成 B 样条曲线,本实验同样不需要清除,可继续在已经画了 B 样条的画板上继续绘制。由图十三可见,本设计生成的 B 样条曲线是很光滑的。

图十三 B 样条曲线实验结果

三、分形图形的生成

3.1 Koch 曲线的生成

3.1.1 基本原理

Koch 曲线是这样一条曲线,对于一条直线,将其三等分,然后去掉中间的 那 1/3,以一个只有腰而没有底边的等腰三角形代替,如图十四所示,对于生成 的这条曲线中的每一段(共四段),再次进行上述操作,得出如图十五所示曲线。 其中图十四经过一次迭代,图十五经过两次迭代。以此类推,经过若干次迭代后,

会生成更复杂的图案。

图十四 一次迭代的 Koch 曲线

图十五 两次迭代的 Koch 曲线

3.1.2 实现算法

对于 Koch 曲线, 首先观察其第一次迭代过程, 第一次迭代时, 已知两个点, 利用几何知识可以计算出新出现的三个点的坐标, 然后对于其中的每一段, 重复这个过程。具体计算过程如下:

- (1) 输入两点 point1, point2, 迭代次数 n。
- (2) 计算 dx=point2.x-point1.x,dy=point2.y-point1.y;
- (3) $dx_1=dx/3.0, dy_1=dy/3.0, dx_2=2*dx/3.0, dy_2=2*dy/3.0;$
- (4) 定义点 P1,P2,P3 (即生成的三个点,其中 P3 为中间的点);
- (5) P1.x=point1.x+dx1,P1.y=point1.y+dy1,P2.x=point1.x+dx2,P2.y=point1. y+dy2;
- (6) mid_dx=0.5*dx,mid_dy=0.5*dy,dx3=(sqrt(3.0)/6.0)*(-dy) dy3=(sqrt(3.0)/6.0)*(dx),mid_pont.x=point1.x+mid_dx,mid_point.y=point1.y+mid_dy,P3.x=mid_point.x+dx3,P3.y=mid_point+dy3;
- (7) 相邻的点递归,并每次将最后面的点保存,当 n=0 时结束递归。 实际程序中,把以上(1)-(6)过程包装成一个函数 KochCalculate(QPointF point1,QPointF point2,int n),则(7)可写成如下形式:

```
KochCalculate(point1, P1, n-1);
pointarray. push_back(P1);
KochCalculate(P1, P3, n-1);
pointarray. push_back(P3);
KochCalculate(P3, P2, n-1);
pointarray. push_back(P2);
KochCalculate(P2, point2, n-1);
pointarray. push_back(point2);
```

其中 pointarray 为一个 vector,用以保存生成的所有 Koch 曲线上的点,本设计精心设计了两种 Koch 曲线绘制方式,一种针对与迭代次数少,当迭代次数少时,生成的点很少,看起来是一些离散的点,为此,将这类情况采用两点间用直线连接的方法,从而时曲线看起来美观;另外一种是针对迭代次数较多的情况,在这种情况下,生成的点很少,点与点之间的间距已经足够小了,再用直线连接就没必要了。在本设计中,第一种情况设计成向上生成,第二中情况设计为向下生成,有一个下拉菜单可以切换两种情况,如图十六所示。

图十六 生成方式的选择

3.1.3 实验结果

图十七 Koch 曲线实验结果

实验结果如图十七所示,其中左上角为向上生成 3 次迭代的结果,右上角为向上生成 5 次迭代的结果,左下角为向下生成 10 次迭代的结果,右下角为向下生成 11 次迭代的结果。实验发现,在我实验室的 PC (4GB)上,12 次迭代软件就会出错。由此可见,Koch 曲线的计算量很大,但是由图十七也可以看出 Koch 曲线是一种很优美的曲线。

3.2 Julia 集的生成

3.2.1 基本原理

Julia 集合是一个在复平面上形成分形的点的集合。以法国数学家加斯顿·朱利亚(Gaston Julia)的名字命名。Julia 集合可由下式反复迭代生成:

$$f(z) = z^2 + c$$

在 Julia 集中,c 是固定的值,取某一 z 的初始值,按照上式不断迭代,可生成一个序列,由于 z 的初始值的不同,该序列可能发散也可能收敛,而发散的序列可能经过不同的迭代次数迭代,数列收敛或者到达发散时的不同迭代次数的差异,在复平面上对应不同的区域,对不同的区域添加不同的颜色,便得到了缤纷多彩的 Julia 集图案了。对于复数 z,若|z|>2,都会有 $|z^2|=|z|^2>2*|z|$,也就是说,对这样的 z 进行迭代,一定会发散,因此本程序中把 z 的实部和虚部的取值范围设为[-1.5,1.5]。

3.2.2 实现算法

对于复数 \mathbf{z}_n = \mathbf{a} + \mathbf{b} i, \mathbf{c} = \mathbf{d} + \mathbf{e} i,在实际编程实现中,做以下处理即可得出 $\mathbf{f}(\mathbf{z})$ = $\mathbf{z}^2+\mathbf{c}$ 的更新法则。

- (1) \Rightarrow zx_n = a, zy_n = b, cx = d, cy = e;
- (2) 则对于 z_n 可通过下式子得到 z_{n+1}

$$\begin{cases} zx_{n+1} = zx_n^2 - zy_n^2 + cx \\ zy_{n+1} = 2zx_nzy_n + cy \end{cases}$$

(3) 每经过一次迭代,迭代计数器 it 加 1,退出迭代条件为|z|>2 或达到最大迭代次数,以上过程返回迭代次数。

通过这种数学推导,可以避免复数的运算,在程序中也无需定义复数类型,而只需使用常用的浮点型即可完成 Julia 集的计算。

Julia 集的绘制算法如图十八所示,其中 cx,cy 的值由 LineEdit 控件输入,对于 z,将整个画板(500*500),在[-1.5,1.5]范围内对 zx 和 zy 均分成 500 份,对于不同的 zx, zy 组合计算其迭代次数,根据返回的迭代次数,对不同的点给以不同的颜色,最后得到美丽的 Julia 集图案。

图十八 Julia 集生成算法流程图

3.2.3 实验结果

如图十九至图二十四为不同的 c 取值下 Julia 图案,由这些图可见,Julia 集生成的图案很漂亮。本程序中,采用的是 HSV 色彩空间绘制的图案,故其色彩更加绚丽。

图十九 c=-0.75 生成的 Julia 集图案

图二十 c=0.45-0.1428i 生成的 Julia 集图案

图二十一 c=0.285-0.01i 生成的 Julia 集图案

图二十二 c=-0.8+0.156i 生成的 Julia 集图案

图二十三 c=-0.835-0.2321i 生成的 Julia 集图案

图二十四 c=-0.70176-0.3842 生成的 Julia 集图案

3.3 Mandelbrot 集的生成

3.3.1 基本原理

Mandelbrot 集的基本原理和 Julia 集相同,只是在 Mandelbrot 集中,是固定 z0 的,而改变的是 c,即对于给定的 z0,cx,cy 从最小变为最大,在此过程中,不断更新 $f(z)=z^2+c$,同样可以得到不同的发散次数。

3.3.2 生成算法

Mandelbrot 集的生成算法和 Julia 集基本一致,其流程图和 Julia 集流程图只有一点小差异,即将 Julia 集中的 zx+=delta,zy+=delta 改成 cx+=delta,cy+=delta 即可,故其流程图在此不再绘制,直接给出实验结果。

3.3.3 实验结果

图二十五 Mandelbrot 集实验结果

3.4 蕨类植物的生成

3.4.1 基本原理

对于蕨类植物,采用仿射变换法构造,其过程中各参数如下:

i	a	b	С	d	e	f	P
1	0	0	0	0.16	0	0	0.01
2	0.85	0.04	-0.04	0.85	0	1.6	0.85
3	0.2	-0.25	0.23	0.22	0	1.6	0.07
4	-0.15	0.28	0.26	0.24	0	0.44	0.07

表中 a,b,c,d,e,f 为仿射变换中的参数,每个参数有四种取值,P 为 i 取 1,2,3,4 的概率。仿射变换过程如下式:

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_k \\ y_k \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}$$

由上式可知, 迭代次数的不同, 获得的点数也不同, 最终绘制出来的蕨类植物的疏密程度也不同。

3.4.2 算法实现

蕨类植物生成的算法非常非常简单,就是不断迭代以上公式,对于概率的生成,采用以下方式:

- (1) 随机生成一个 0-100 的数 Num
- (2) 若 Num<1, i=1.即 P=0.01;
- (3) 若 1<=Num<8,i=3, 即 P=0.07;
- (4) 若 8<=Num<15,i=4, 即 P=0.07;
- (5) 若 Num>=15.i=2, 即 P=0.85;

当给定迭代次数后,在迭代次数内,不断生成随机数,并根据 i 取值的不同,采用不同的 a,b,c,d,e,f 计算下一次的坐标,每次计算完成后都画点。在实验中发现,x 的取值范围大致为[-2.5~2.5],y 的取值范围大致为[0~10],因此对 x,y 进行一个简单的数学变换即可将其映射到[0,500]的范围中,即可完美地在画板中显示。

3.4.3 实验结果

图二十六 迭代次数为 2500 次生成的蕨类植物

图二十七 迭代次数为 10000 次生成的蕨类植物

图二十八 迭代次数为 100000 次生成的蕨类植物

图二十九 迭代次数为 400000 次生成的蕨类植物

由以上实验可见, 迭代次数越多, 生成点越多, 蕨类植物就越逼真。

四、软件使用说明

4.1 直线

对于直线,只需要任选两点,即完成直线的绘制,可重复绘制,按清除按钮清空画板。

4.2 圆

对于圆的生成,分为两步:

- (1) 先点击鼠标左键,选择圆心,并按住鼠标左键不放。
- (2) 拖动鼠标,在合适的位置松开,松开后自动完成圆的绘制。

注意:由于画板尺寸有限,不要选择太大的半径。

4.3 椭圆

椭圆的生成和圆的生成类似,此处不在赘述。

4.4 区域填充

区域填充步骤如下:

(1) 在空白画板处绘制填充区域。

(2) 点击"选择种子点"按钮,此时鼠标变为十字形,然后在区域内点击即可。

4.5 Bezier 曲线

Bezier 曲线使用说明如下:

- (1) 选取若干个控制点。
- (2) 点击"画图"按钮即可。

4.6 B 样条曲线

B 样条曲线和 Bezier 曲线使用方法相同,此处不再赘述。

4.7 Koch 曲线

Koch 曲线使用方法如下:

- (1) 选择生成方向(上或者下)
- (2) 设定迭代次数。
- (3) 选取两个点。
- (4) 点击"生成 Koch 曲线"按钮即可生成。

注: 在 Koch 曲线中, 迭代次数不宜过大, 当向上生成时, 若间距不大, 不 宜超过 10 次, 在向下生成时, 实验发现当迭代次数超过 12 次时软件会报错。

4.8 Julia 集

Julia 集使用说明如下:

- (1) 设定迭代次数 (默认为 256 次)。
- (2) 设定 c 的实部和虚部。
- (3) 点击"生成 Julia 集"按钮即可。

4.9 Mandebrot 集

Mandelbrot 集使用说明如下:

- (1) 设定迭代次数 (默认为 256 次)。
- (2) 点击"生成 Mandelbrot 集"按钮即可。

4.10 蕨类植物

蕨类植物使用说明如下:

- (1) 设定迭代次数 (默认为 40 万次)
- (2) 点击"生成蕨类植物"按钮即可。

五、感言

本次课程设计前前后后花了半个月左右,几乎每天都在做,由于没有接触过Qt,且 c++水平很Low,期间遇到很多问题,通过百度、查书、问人等方法一个个解决了,代码也修改了很多次,虽然说用了很长时间,但是很享受这个过程,当看到一个个图形、图案被自己画出来的时候,那种欣慰和满足还是很令人兴奋的。

六、参考文献

- [1]. 计算机图形学(第二版)/(美)赫恩(Hearn, D.)等著,蔡士杰等译.—2版。一北京:电子工业出版社,2002.5
- [2]. Qt5 开发及实例/陆文周主编/-2 版.-北京: 电子工业出版社, 2015.5
- [3]. 计算机图形学实践教程: Visual C++版/孔令德著.—2 版.—北京: 清华大学出版社, 2013.3