A summary

Homogeneous equations

Review

Matrix (definition, dimensions)

An $m \times n$ matrix A is a rectangular array of entries

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

where m is the number of rows and n is the number of column.

RREF

A row-reduced echelon form (RREF) is a special matrix which satisfies certain properties:

- leading one
- zero off
- staircase shape
- zero rows at the bottom

RREF

A row-reduced echelon form (RREF) is a special matrix which satisfies certain properties:

- leading one
- zero off
- staircase shape
- zero rows at the bottom

The relation between a general matrix and an RREF is: **Theorem A** Every matrix can be transformed into a unique RREF by elementary row operations.

Do ask me if you are not sure how to do the row reduction.

Rank of a matrix

Definition The *rank* of a matrix is the number of leading ones in the RREF of A i.e., equals to the non-zero rows in the RREF of A. We can use r(A) to denote the rank of matrix A.

Also, we say that the $m \times n$ matrix A has *full rank* if r(A) = n, i.e. if every column of the RREF of A contains the leading one for some row.

SLE and Matrix equations

Consider m linear equations with n variables x_1, x_2, \ldots, x_n

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

The augmented matrix of an SLE is

$$\begin{bmatrix} A \mid \vec{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

SLE and Matrix equation

We have a matrix equation to represent the SLE.

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \vec{b}$$

where
$$\vec{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$
 and $\vec{b} = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}^T$.

- ullet The number of rows of A equals to the number of linear equations in SLE.
- The number of columns of A equals to the number of variables of SLE.

Solutions of SLE

For any system of linear equations (or a matrix equation) there are exactly 3 possibilities:

- no solution, or
- a unique solution, or
- infinitely many solutions.

RREF and SLE

The method to determine which situation of solutions an SLE (or a matrix equation) $A\vec{x} = \vec{b}$ has, is to compare the rank of the coefficient matrix A and the rank of the augmented matrix $A = \vec{b}$.

RREF and SLE

The method to determine which situation of solutions an SLE (or a matrix equation) $A\vec{x} = \vec{b}$ has, is to compare the rank of the coefficient matrix A and the rank of the augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$.

Explicitly, We have the following theorem

Theorem B Then the SLE $A\vec{x} = \vec{b}$ has:

- no solution if $r(A) < r(\lceil A \mid \vec{b} \rceil)$
- a unique solution if $r(A) = r(\lceil A \mid \vec{b} \rceil) = n$
- infinitely many solutions if $r(A) = r(\lceil A \mid \vec{b} \rceil)$ and r(A) < n.

Let us look at Theorem B further.

Let us look at Theorem B further.

For an SLE, we start with its augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$.

Reduce the augmented matrix

$$\left[A \mid \vec{b}\right] \stackrel{RREF}{\longrightarrow} \left[R \mid \vec{\beta}\right]$$

where R is the RREF of A and $\begin{bmatrix} R & \vec{\beta} \end{bmatrix}$ is the RREF of $\begin{bmatrix} A & \vec{b} \end{bmatrix}$.

Let us look at Theorem B further. For an SLE, we start with its augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$.

Reduce the augmented matrix

$$\left[A\mid\vec{b}\right]\stackrel{\textit{RREF}}{\longrightarrow}\left[R\mid\vec{\beta}\right]$$

where R is the RREF of A and $\begin{bmatrix} R \mid \vec{\beta} \end{bmatrix}$ is the RREF of $\begin{bmatrix} A \mid \vec{b} \end{bmatrix}$.

By the definition, the rank of A equals to the number of leading ones in R and the rank of $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ equals to the number of leading ones in $\begin{bmatrix} R & \vec{\beta} \end{bmatrix}$.

The case: no solution

• $A\vec{x} = \vec{b}$ has no solution if $r(A) < r([R \mid \vec{\beta}])$ Observe the matrix $[R \mid \vec{\beta}]$.

The case: no solution

• $A\vec{x} = \vec{b}$ has no solution if $r(A) < r([R \mid \vec{\beta}])$ Observe the matrix $[R \mid \vec{\beta}]$.

In $[R \mid \vec{\beta}]$, $r(A) < r([R \mid \vec{\beta}])$ is equivalent to that there is a row looking like

$$\begin{bmatrix} 0 & 0 & \dots & 0 & | & 1 \end{bmatrix}$$

which corresponds to the equation 0 = 1.

Hence, in this case, the SLE has no solution.

If not, it means $r(A) = r([R \mid \vec{\beta}])$. In this case, the SLE has solution(s).

If not, it means $r(A) = r([R \mid \vec{\beta}])$. In this case, the SLE has solution(s).

Recall that A is $m \times n$ matrix, where m equals to the number of linear equations and n equals to the number of variables.

If not, it means $r(A) = r([R \mid \vec{\beta}])$. In this case, the SLE has solution(s).

Recall that A is $m \times n$ matrix, where m equals to the number of linear equations and n equals to the number of variables.

The number of solutions relies on the difference n - r(A).

If not, it means $r(A) = r([R \mid \vec{\beta}])$. In this case, the SLE has solution(s).

Recall that A is $m \times n$ matrix, where m equals to the number of linear equations and n equals to the number of variables.

The number of solutions relies on the difference n - r(A).

- If n = r(A) (i.e., A is full rank), then the SLE has unique solution.
- If r(A) < n, then the SLE has an n r(A) parameters of solutions.

• If
$$n = r(A) = r(\lceil R \mid \vec{\beta} \rceil)$$
, then the SLE has unique solution.

• If $n = r(A) = r([R \mid \vec{\beta}])$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like?

• If $n = r(A) = r([R \mid \vec{\beta}])$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like? R is an $m \times n$ matrix of RREF of rank n.

• If $n = r(A) = r([R \mid \vec{\beta}])$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like? R is an $m \times n$ matrix of RREF of rank n.

R has the following properties: the first top n rows are non-zero rows each of which has a leading one. The total number of these leading ones is n which is exactly the number of columns of R. So each column of R has a leading one.

• If $n = r(A) = r([R \mid \vec{\beta}])$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like? R is an $m \times n$ matrix of RREF of rank n.

R has the following properties: the first top n rows are non-zero rows each of which has a leading one. The total number of these leading ones is n which is exactly the number of columns of R. So each column of R has a leading one.

$$R = \left[\begin{array}{c} I_n \\ \mathbf{0} \end{array} \right]$$

where $\mathbf{0}$ is an $(m-n) \times n$ zero matrix.

• If $n = r(A) = r(\lceil R \mid \vec{\beta} \rceil)$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like?

$$R = \left[\begin{array}{c} I_n \\ \mathbf{0} \end{array} \right]$$

where $\mathbf{0}$ is an $(m-n) \times n$ zero matrix.

How about $\vec{\beta}$?

• If $n = r(A) = r(\lceil R \mid \vec{\beta} \rceil)$, then the SLE has unique solution.

Reason: Let us think about the matrix R. What will R look like?

$$R = \left[\begin{array}{c} I_n \\ \mathbf{0} \end{array} \right]$$

where $\mathbf{0}$ is an $(m-n) \times n$ zero matrix.

How about $\vec{\beta}$? The components at $n+1,\ldots,m$ of $\vec{\beta}$ must be zero. Otherwise, any nonzero element at one of these components will contribute a leading one, which will induce the rank of $\begin{bmatrix} R & \vec{\beta} \end{bmatrix}$) greater than the rank of A. Hence $\vec{\beta} = [\beta_1 \ldots \beta_n \ 0 \ldots \ 0]^T$.

• If $n = r(A) = r(\lceil R \mid \vec{\beta} \rceil)$, then the SLE has unique solution.

Reason:

Now we know $R = \begin{bmatrix} I_n \\ \mathbf{0} \end{bmatrix}$ and $\vec{\beta} = [\beta_1 \dots \beta_n \ 0 \dots 0]^T$, where $\mathbf{0}$ is an $(m-n) \times n$ zero matrix.

The augmented matrix $\begin{bmatrix} R & \vec{\beta} \end{bmatrix}$ represents $R\vec{x} = \vec{\beta}$.

By a substitution R and $\vec{\beta}$, we have $R\vec{x} = \begin{bmatrix} I_n \\ \mathbf{0} \end{bmatrix} \vec{x} = \begin{bmatrix} \vec{x} \\ \vec{0} \end{bmatrix} = \vec{\beta}$ and the unique solution is $\vec{x} = (\beta_1, \dots, \beta_n)$.

• If $r(A) = r([R \mid \vec{\beta}]) < n$, then the SLE has infinitely many solutions.

• If $r(A) = r([R \mid \vec{\beta}]) < n$, then the SLE has infinitely many solutions.

Think about the number n: n is not only equals to the number of columns of A but also the number of variables.

• If $r(A) = r([R \mid \vec{\beta}]) < n$, then the SLE has infinitely many solutions.

Think about the number n: n is not only equals to the number of columns of A but also the number of variables.

The number r = r(A) is the number of leading ones in R. Each leading one exists at a certain column of R.

The variables corresponding to a column which does not have a leading one of R will become parameters for the solutions. Hence, there are n - r(A) parameters.

• If $r(A) = r([R \mid \vec{\beta}]) < n$, then the SLE has infinitely many solutions.

Think about the number n: n is not only equals to the number of columns of A but also the number of variables.

The number r = r(A) is the number of leading ones in R. Each leading one exists at a certain column of R.

The variables corresponding to a column which does not have a leading one of R will become parameters for the solutions. Hence, there are n - r(A) parameters.

Then the variables corresponding to a column which contains a leading one of R can be expressed in a way of linear sums of parameters due to the linear equations.

Example

For example, the following RREF

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 5 & 1 \\ 0 & 1 & 0 & 5 & -12 & 3 \\ 0 & 0 & 1 & -3 & 13 & 7 \end{bmatrix}$$

Example

For example, the following RREF

$$\begin{bmatrix}
1 & 0 & 0 & 3 & 5 & | & 1 \\
0 & 1 & 0 & 5 & -12 & | & 3 \\
0 & 0 & 1 & -3 & 13 & | & 7
\end{bmatrix}$$

corresponds to

$$x_1$$
 $+ 3x_4 + 5x_5 = 1$
 x_2 $+ 5x_4 - 12x_5 = 3$
 $x_3 - 3x_4 + 13x_5 = 7$

Let $x_4 = s$ and $x_5 = t$ (two parameters). The SLE has solutions

$$(1-3s-5t, 3-5s+12t, 7+3s-13t, s, t).$$

To summarise,

Theorem The SLE $A\vec{x} = \vec{b}$, where A is an $m \times n$ matrix, has:

- no solution if $r(A) < r(\lceil A \mid \vec{b} \rceil)$
- a unique solution if $r(A) = r(\lceil A \mid \vec{b} \rceil) = n$
- n r(A) parameters of solutions if $r(A) = r([A \mid \vec{b}])$ and r(A) < n.

Example

Suppose that the augmented matrix of a linear system is given by

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & x & y
\end{bmatrix}$$

For what values of x and y is there

- (a) No solution?
- (b) Exactly one solution?
- (c) Infinitly many solutions?

Example

Suppose that the augmented matrix of a linear system is given by

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & x & y
\end{bmatrix}$$

For what values of x and y is there

- (a) No solution? x = 0 and $y \neq 0$
- (b) Exactly one solution? $x \neq 0$ and any values of y
- (c) Infinitly many solutions? x = 0 and y = 0

Homogeneous equations

Definition The SLE $A\vec{x} = \vec{b}$ is *homogeneous* if $\vec{b} = \vec{0}$, i.e., all the constants on the right hand side are zero.

Definition The SLE $A\vec{x} = \vec{b}$ is *homogeneous* if $\vec{b} = \vec{0}$, i.e., all the constants on the right hand side are zero. For example

$$2x + y - z = 0$$
$$y + z = 0$$
$$3x + 2z = 0$$

is homogeneous,

Definition The SLE $A\vec{x} = \vec{b}$ is *homogeneous* if $\vec{b} = \vec{0}$, i.e., all the constants on the right hand side are zero. For example

$$2x + y - z = 0$$
$$y + z = 0$$
$$3x + 2z = 0$$

is homogeneous, but

$$2x + y - z = 0$$

$$y + z = 0$$

$$3x + 2z = 1$$

A homogeneous equation is given by $A\vec{x} = \vec{0}$.

A homogeneous equation is given by $A\vec{x} = \vec{0}$. Indeed, without using the Theorem of rank and solutions of SLE, it is not difficult to see that the zero vector $\vec{0}$ is always a solution because $A\vec{0} = \vec{0}$.

A homogeneous equation is given by $A\vec{x} = \vec{0}$. Indeed, without using the Theorem of rank and solutions of SLE, it is not difficult to see that the zero vector $\vec{0}$ is always a solution because $A\vec{0} = \vec{0}$.

Definition The zero vector $\vec{0}$ is called <u>trivial solution</u> of the homogeneous system $A\vec{x} = \vec{0}$.

The augmented matrix of a homogeneous equation has a form

$$[A \mid \vec{0}]$$
.

The augmented matrix of a homogeneous equation has a form

The augmented matrix of a homogeneous equation has a form
$$\begin{bmatrix} A \mid \vec{0} \end{bmatrix}.$$
 If reduce it, we have
$$\begin{bmatrix} A \mid \vec{0} \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} R \mid \vec{0} \end{bmatrix}$$
 Hence $r(A) = r(\begin{bmatrix} A \mid \vec{0} \end{bmatrix})$

Hence $r(A) = r(\lceil A \mid \vec{0} \rceil)$.

Therefore, any homogeneous equation $A\vec{x} = \vec{0}$ always has solution(s).

Theorem Every homogeneous equation (or a homogeneous linear system) $A\vec{x} = 0$, where A is an $m \times n$ matrix, has

- \bullet either exactly one solution (only the trivial solution) if r(A) = n
- or infinitly many solutions if r(A) < n.

Because of the property $r(A) \leq m$ and $r(A) \leq n$,

Corollary Any homogeneous SLE in which where the number of variables (i.e. equals to n) is larger than the number of equations (i.e. equals to m) has infinitely many solutions.

Examples

cf. Lecture note Example 9.4

If possible, determine how many solutions each of the following SLE's has just from looking at it.

(a)
$$2x + 2y - 5z = 0$$
 (b) $2x + 2y + 8z = 0$
 $23x + 14y - z = 0$ $23x + 14y - z = 1$
(d) $x_1 + 3x_4 + 5x_3 - 2x_6 = 1$
 $x_2 + 5x_4 - 3x_5 + 21x_6 = 3$
 $x_3 - 3x_4 + 7x_5 = 7$

In the end, we collect all info together and consider a homogeneous SLE $A\vec{x} = \vec{b}$ with n equations and n variables.

In the end, we collect all info together and consider a homogeneous SLE $A\vec{x} = \vec{b}$ with n equations and n variables.

Theorem If A is an $n \times n$ matrix, then the following conditions are equivalent:

- 1. A is invertible (i.e., nonsingular).
- 2. r(A) = n (i.e., A has full rank).
- 3. The RREF of A is I (i.e., A is row-equivalent to the identity matrix I).
- 4. The system $A\vec{x} = \vec{b}$ has an unique solution (for all $n \times 1$ column vectors \vec{b}).
- 5. The homogeneous system $A\vec{x} = \vec{0}$ has only the trivial solution.