	Utech
Name :	
Roll No.:	() () () () () () () () () ()
Invigilator's Signature :	

CS/B.TECH/CSE/SEM-8/CS-801B/2013 2013

SOFT COMPUTING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- GROUP A

 (Multiple Choice Type Questions)

 1. Choose the correct answer for the following: 10 × 1 = 10

 i) Perceptron in an example of

 a) Artificial Neural Network

 b) Genetic Algorithm

 c) Expert System

 d) Fuzzy Logic.
 - ii) Fuzzy set theory was introduced by
 - a) Zadeh

- b) Rosenblatt
- c) Minsky
- d) Glover.
- iii) The boundary of the fuzzy A set is defined by those elements x of the universe such that
 - a) $\mu A(x) = 1$
- b) $\mu A(x) = 0$
- c) $0 < \mu A(x) < 1$
- d) $0 \le \mu A(x) \le 1$.

8203 Turn over

CS/B.TECH/CSE/SEM-8/CS-801B/2013

- a) only normal
- only convex b)
- both normal and convex c)
- d) normal but not convex.
- v) Let A and B are two fuzzy sets with membership function μ . Then (x) $A \cup B$ μ is equal to
 - a)
- $\mu_A(x) + \mu_B(x)$ b) $\mu_A(x) \mu_B(x)$
 - $MAX \left\{ \mu_A(x), \ \mu_B(x) \right\} \quad d) \qquad MIN \left\{ \mu_A(x), \ \mu_B(x) \right\}.$ c)
- vi) The Back Propagation learning rule is type of learning.
 - Supervised a)
- Competitive b)
- Boltzmann c)
- d) Reinforcement.
- vii) X-OR problem can be solved by
 - single layer perceptron a)
 - Bayes' theorem b)
 - multi-layer peceptron c)
 - d) all of these.

viii) Combination of genes for representing a particular property of an individual is known as

a) gene

b) genome

c) allele

d) chromosome.

ix) Consider two strings A=11011 and B=00110. After one of the steps of Genetic Algorithm, the string has the values A=11010 and B=00111 then the step is

- a) Mutation
- b) Reproduction
- c) Crossover
- d) none of these.
- x) The problem with simulated annealing is
 - a) It is approximate
 - b) It is a low rate convergence
 - c) It does not yield the desired output
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

2. If A and B are two fuzzy sets:

(i)
$$A = \{ (x_1, \ 0 \cdot 2), (x_2, \ 0 \cdot 7), (x_3.1), (x_4, \ 0) \}$$

 $B = \{ (x_1, \ 0 \cdot 5), (x_2, \ 0 \cdot 3), (x_3, \ 1), (x_4, \ 0 \cdot 1) \},$

find the difference in fuzzy sets.

(ii)
$$A = \left\{ (x_1, \ 0 \cdot 4), \ (x_2, \ 0 \cdot 8), \ (x_3, \ 1), \ (x_4, \ 0) \right\}$$

$$B = \left\{ (x_1, \ 0 \cdot 4), \ (x_2, \ 0 \cdot 3), \ (x_3, \ 0), \ (x_4, \ 0) \right\},$$
find the distance in fuzzy sets. $2\frac{1}{2} + 2\frac{1}{2}$

3. a) What is the composition of fuzzy relation?

b) If *R* and *S* are two fuzzy relations, then find out the composition of the following fuzzy relation :

R	а	В	c	D	S	α	β	γ
1	0.1	0.2	0.0	1.0	a	0.9	0.0	0.3
2	0.3	0.3	0.0	0.2	b	0.2	1.0	0.8
3	0.8	0.9	1.0	0.4	c	0.8	0.0	0.7
					d	0.4	0.2	0.3

2 + 3

4. What are meant by feed forward net, competitive net and sigmoidal function?

8203

- 5. Explain convex fuzzy set and magnitude fuzzy set with an example.
- 6. Given two fuzzy numbers "Approx 3" = $\left\{ \frac{0 \cdot 2}{2} + \frac{1 \cdot 0}{3} + \frac{0 \cdot 2}{4} \right\}$ and "Approx 2" = $\left\{ \frac{0 \cdot 3}{1} + \frac{1 \cdot 0}{2} + \frac{0 \cdot 3}{3} \right\}$; find "Approx 6" using "Approx 6" = " Approx 3" × " Approx 2".

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Consider the neural network of McCulloch-Pitts neuron shown in fig. Each neuron (other than the input neuron N_1 and N_2) has a threshold 2.
 - (i) Define the response of neuron N_5 at time t in terms of the activations of the input neuron, N_1 and N_2 at the appropriate time.
 - (ii) Show that the activation of each neuron that results from an input signal of $N_1 = 1$, $N_2 = 0$ at t = 0;

8

CS/B.TECH/CSE/SEM-8/CS-801B/2013

c) What is an activation function?

2

8. a) Describe fuzzy homorphism with the following example where R and S are fuzzy relation. 5

R	а	b	C	d	S	α	β	γ
а	0.0	0.6	0.0	0.0	α	0.6	0.8	0.0
b	0.0	0.0	0.8	0.0	β	1.0	0.0	0.6
С	1.0	0.0	0.0	0.0	γ	0.6	0.0	0.0
d	0.0	0.6	0.0	0.0				

b) Explain trapezoidal fuzzy number.

If A=(1,5,6,9) and B=(2,2,5,8) are two trapezoidal fuzzy numbers, then find out their multiplication and addition. 2+4

c) Define the following:

4

- (i) Core
- (ii) Support
- (iii) Boundary
- (iv) λ -cut.
- 9. a) What is heteroassociative memory network?
 - b) What is an algorithm of heteroassociative memory net?

4

2

8203

- A heteroassociative net is trained by Hebb outer product rule for input row vectors $S = (x_1, x_2, x_3, x_4)$ to output row vectors $t = (t_1, t_2)$. Find the weigh matrix.
- d) What is cylindrical extension?

3

10. a) What are Ga's? What are its benefits? Explain with the help of a flowchart the working principle of Ga's.

1 + 2 + 3

b) Explain fitness proportionate selection.

3

- c) What are the different types of crossover ? What happens when
 - (i) Crossover rate is decreased
 - (ii) Mutation rate is increased.

 $2 + (2 \times 2)$

11. Write short notes on any *three* of the following :

 3×5

- a) S-norm and T-norm
- b) Fitness function
- c) Boltzman machine
- d) ANN architectures
- e) Simulated annealing.