CS711008Z Algorithm Design and Analysis

Lecture 9. Lagrangian duality and SVM

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline

- Classification problem and maximum margin strategy;
- Solving maximum margin problem using Lagrangian duality;
- SMO technique;
- Kernel tricks;

Classification problem and maximum margin strategy

Classification problem

- Given a set of samples with their category labels (denoted as $(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), ..., (\mathbf{x_n}, y_n), y_i \in \{-1, +1\}$, the goal of classification problem is to find an appropriate function $f(\mathbf{x})$ that can describe the dependency between y_i and $\mathbf{x_i}$; thus, for a new sample \mathbf{x}' , we can infer its category based on $f(\mathbf{x}')$.
- A great variety of classification algorithms have been designed, including Fisher's linear discriminant, logistic regression, decision tree, neural network and SVM.

Linear classifier

	$x^{(1)}$	$x^{(2)}$	v
$\overline{x_1}$	1	-1	-1
$egin{array}{c} x_1 \ x_2 \ x_3 \end{array}$	1	1	+1
x_3	-1	-1	+1
x_4	-1	1	+1

- Unlike decision tree, SVM adopts the classifier with the following type:
 - If $f(\mathbf{x}) > 0$ then y = +1;
 - If $f(\mathbf{x}) < 0$ then y = -1;
- ullet Let's first restrict the $f(\mathbf{x})$ to be linear, i.e.

$$f(\mathbf{x}) = \omega^T \mathbf{x} + b$$

The hyperplane $\omega^T\mathbf{x}+b=0$ is denoted as separating hyperplane.

	$x^{(1)}$	$x^{(2)}$	у
x_1	1	-1	-1
x_2	1	1	+1
x_3	-1	-1	+1
x_4	-1	1	+1

• The objective of training procedure is to find an appropriate setting of ω and b such that all samples in the training set can be correctly labelled using the classifier. We will consider the torlerance of several mislabelled samples later.

Maximum margin strategy

- There are always multiple settings of ω and b that the corresponding classifier works perfectly on all samples. Which one should we use?
- We prefer the one such that the margin between positive and negative samples is maximized: The wider the margin is, the larger the generality performance on new samples. Thus, we needs to solve the following optimization problem:

$$\min_{w,b} \quad \frac{2}{||\omega||}
s.t. \quad y_i(w \cdot x_i + b) - 1 \geqslant 0 \quad i = 1, 2, \dots, n$$

- Note:
 - The restriction $f(\mathbf{x}) > 0$ for positive sample x is implemented as $f(\mathbf{x}) = 1$.
 - The distance for any point x to the hyperplane $\omega^T\mathbf{x}+b=0$ is $\frac{|\omega^T\mathbf{x}+b|}{||\omega||}$. Thus, the margin is: $\frac{2}{||\omega||}$.

An equivalent form with quadratic objective function

An equivalent form is:

$$\min_{w,b} \frac{1}{2} \|w\|^{2}
s.t. \quad y_{i}(w \cdot x_{i} + b) - 1 \geqslant 0 \quad i = 1, 2, \dots, n$$

- Question: how to solve this optimization problem subject to inequality constraints?
- Of course we solve the problem (called primal problem hereafter) directly using convex quadratic programming techniques; however, consider its dual problem will bring great benefits.
- Let's review the conditions of the optimal solution first.

Lagrangian dual explanation of maximum margin problem

• Primal problem:

$$\min_{w,b} \frac{\frac{1}{2} \|w\|^{2}}{s.t.} \quad y_{i}(w^{T}x_{i} + b) \geq 1, \quad i \in \{1, ..., n\}$$

Lagrangian:

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i y_i (w \cdot x_i + b) + \sum_{i=1}^{n} \alpha_i$$

- Notice that Lagrangian is a lower bound of the primal objective function, i.e. $\frac{1}{2} \|w\|^2 \ge L(w,b,\alpha)$, when $\alpha \ge 0$ and \mathbf{w}, \mathbf{b} is feasible.
- Furthermore we have

$$\frac{1}{2} \left\| w \right\|^2 \ge L(w, b, \alpha) \ge \inf_{w, b} L(w, b, \alpha)$$

when $\alpha \geq 0$ and w, b is feasible.

• Denote Lagrangian dual $g(\alpha) = \inf_{w,b} L(w,b,\alpha)$. The above inequality can be rewritten as:

$$\frac{1}{2}\left\|w\right\|^{2} \geq L(w,b,\alpha) \geq g(\alpha)$$

Lagrangian dual function

• What is the Lagrangian dual $g(\alpha)$?

$$g(\alpha) = \inf_{w,b} L(w,b,\alpha)$$

ullet To calculate the inferior bound of L(w,b,lpha), we set its derivates to be 0, i.e.,

$$\frac{\partial L(w, b, \alpha)}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0$$
$$\frac{\partial L(w, b, \alpha)}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = 0$$

and obtain Lagrangian dual function:

$$g(\alpha) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) + \sum_{i=1}^{n} \alpha_i$$

10/11

• Thus $g(\alpha)$ is a lower bound of $\frac{1}{2}\left\|w\right\|^2$ when $\sum_{i=1}^n \alpha_i y_i = 0$ and $\alpha \geq 0$.

Lagrangian dual problem

• Now let's try to find the tightest lower bound of $\frac{1}{2} \|w\|^2$, which can be calculated by solving the following Lagrangian dual problem:

$$\max \quad -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) + \sum_{i=1}^{n} \alpha_i$$
s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\alpha \geq 0$$

- The dual problem has an identical optimal objective function value to the primal problem as the Slater's conditions hold.
- One advantage of the dual problem is that x_i and x_i appears in the form of inner product $x_i^T x_j$; thus, we can simply define a kernel function $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ without knowing the details of map $\phi(.)$.