Started on	Saturday, 13 May 2023, 7:37 PM
State	Finished
Completed on	Saturday, 13 May 2023, 8:08 PM
Time taken	30 mins 33 secs
Grade	7.00 out of 10.00 (70 %)

Question 1

Correct

Mark 1.00 out of 1.00

Given the following unweighted undirected graph please fill in the corresponding adjacency matrix.

	1	2	3	4	5	6
1	0	х	х	х	х	х
2	1	0	х	х	х	х
3	0	0	0	х	х	х
4	0	1	1	0	х	х
5	1	1	0	0	0	X
6	0	1	1	0	0	0

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Which of the following represent the correct pseudo code for non recursive DFS algorithm?

Select one:

```
a. procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.push(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
    for all adjacent vertices of v do
        St.push(v)
```

```
c. procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.pop(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
    for all adjacent vertices of v do
        St.push(a) //a being the adjacent vertex
```

Your answer is correct.

The correct answer is:

4, 20:07	Quiz 9: Attempt revie
Question 3 Correct	
Mark 1.00 out of 1.00	
Time Complexity of Breadth First Search is:	
Select one:	
○ a. O(V / E)	
○ b. O(V * E)	
○ c. O(log(V + E))	
Your answer is correct. The correct answer is: O(V + E)	
Question 4 Correct Mark 1.00 out of 1.00	
For a Graph G = (V, E) and source vertex s, Breadth First Sea builds breadth-first tree with root s that contains all reachable Select one: True False	

https://online.uom.lk/mod/quiz/review.php?attempt=576613&cmid=307759

The correct answer is 'True'.

Question 5
Correct
Mark 1.00 out of 1.00

Which of the following is/are the application(s) of Depth First Search

Select one or more:

- ☑ a. Solving puzzles with only one solution like mazes
 ✔
- b. To find friends and friends of friend of a person in social networks like Facebook
- c. Finding all neighbor nodes in Peer to Peer Networks like BitTorrent.
- ☑ d. Detecting the existence of cycles in a graph.

 ✓

Your answer is correct.

The correct answers are: Solving puzzles with only one solution like mazes, Detecting the existence of cycles in a graph.

Question 6

Incorrect

Mark 0.00 out of 1.00

Find the output of Depth-First search of the following tree using in-order traversal:

Select one:

- \odot a. 0123478569101112
- b. 3564179111210820
- $\bigcirc \ c. \ \ 3\,1\,5\,4\,6\,0\,7\,2\,9\,8\,11\,10\,12$
- d. 0134562789101112

Your answer is incorrect.

The correct answer is: 3 1 5 4 6 0 7 2 9 8 11 10 12

Question 7

Mark 0.00 out of 1.00

Regarding implementation of Breadth First Search using queues, at a given time, what is the maximum difference between depth of any two nodes present in the queue?

Select one:

- a. Atmost 1
- b. 0 x
- o. Insufficient Information
- d. Can be anything

Your answer is incorrect.

The correct answer is: Atmost 1

Question 8

Not answered

Marked out of 1.00

Find the output of Breadth-First Traversal of the following tree:

Select one:

- a. 0123478569101112
- b. 0134562789101112
- o. 3564179111210820
- d. 3154607298111012

Your answer is incorrect.

The correct answer is: 0 1 2 3 4 7 8 5 6 9 10 11 12

, 20:07	Quiz 9: Attempt revi
Question 9	
Correct	
Mark 1.00 o	out of 1.00
The Da	ta structure used in standard implementation of Breadth First Search is?
Select	
(a.	Linked List
O C.	Stack
O d.	Tree
Your ar	nswer is correct.
The cor	rrect answer is: Queue
Question 1	0
Correct	
Mark 1.00 d	out of 1.00
Which o	of the following are NOT a real-life application of graphs?
a.	Social networks
b.	Binary Search Algorithm ✔
○ c.	Google PageRank
○ d.	Routing algorithms in computer networks
Your an	nswer is correct.
The cor	rrect answer is:
Binary	Search Algorithm