

IEL – protokol k projektu

Lukáš, Baštýř xbasty00

21. prosince 2019

Obsah

1	Příklad 1	2
2	Příklad 2	4
3	Příklad 3	6
4	Příklad 4	8
5	Příklad 5	10
6	Shrnutí výsledků	13

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
С	100	80	450	810	190	220	220	720	260	180

Převedeme trojúhlník na hvězdu:

$$R_a = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = \frac{450 * 810}{450 + 810 + 190} = 251.3793\Omega$$

$$R_b = \frac{R_2 * R_3}{R_1 + R_2 + R_3} = \frac{810 * 190}{450 + 810 + 190} = 106.1379\Omega$$

$$R_c = \frac{R_3 * R_1}{R_1 + R_2 + R_3} = \frac{190 * 450}{450 + 810 + 190} = 58.9655\Omega$$

Zjednodušíme zapojení:

$$\begin{array}{rcl} U_{12} &=& U_1 + U_2 = 100 + 80 = 180V \\ R_{78} &=& \frac{R_7 * R_8}{R_7 + R_8} = \frac{260 * 180}{260 + 180} = 106.3634\Omega \\ R_{45c} &=& R_4 + R_5 + R_c = 220 + 220 + 58.9655 = 498.9655\Omega \\ R_{6b} &=& R_6 + R_b = 720 + 106.1379 = 826.1379\Omega \\ R_{456cb} &=& \frac{R_{45c} * R_{6b}}{R_{45c} + R_{6b}} = \frac{498.9655 * 826.1379}{498.9655 + 826.1379} = 311.0809\Omega \\ R_{45678abc} &=& R_a + R_{456cb} + R_{78} = 251.3793 + 311.0809 + 106.3634 = 668.8236\Omega \end{array}$$

Vypočítáme proud:

$$I = \frac{U_{12}}{R_{45678abc}} = \frac{180}{668.8236} = 0.2691A$$

Vypočítáme hledané hodnoty:

$$\begin{array}{rcl} U_{456bc} & = & I*R_{456bc} = 0.2691*311.0809 = 83.7119V \\ I_{R5} & = & \frac{U_{456bc}}{R_{45c}} = \frac{83.7119}{498.9655} = 0.1678A \\ U_{R5} & = & I_{R5}*R_{R5} = 0.1678*220 = 36.9160V \end{array}$$

Hledané hodnoty U_{R5} a I_{R5} jsou:

$$U_{R5} = 36.9160V$$

 $I_{R5} = 0.1678A$

Stanovte napětí U_{R6} a proud $I_{R6}.$ Použijte metodu Théveninovy věty.

sk		U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
	Е	250	150	335	625	245	600	150
U		R ₁	R ₂	R ₃	R_4	R ₆	R6 UR6	

Upravíme zapojení:

$$R_{12} = R_1 + R_2 = 150 + 335 = 485\Omega$$

Vypočítáme nové konstanty:

$$R_e = \frac{R_{12} * R_3}{R_{12} + R_3} = \frac{485 * 625}{485 + 625} = 273.0856\Omega$$

$$U_e = U * \frac{R_3}{R_{12} + R_3} = 250 * \frac{625}{485 + 625} = 140.7658V$$

Zpětně upravíme zapojení:

Zjednodušíme zapojení:

$$R_{e4} = R_e + R_4 = 273.0856 + 245 = 518.0856\Omega$$

Opět vypočítáme nové konstanty:

$$R_{ee} = \frac{R_{e4} * R_5}{R_{e4} + R_5} = \frac{518.0856 * 600}{518.0856 + 600} = 278.0211\Omega$$

$$R_{ee6} = R_{ee} + R_6 = 278.0211 + 150 = 428.0211\Omega$$

$$U_{ee} = U_e * \frac{R_5}{R_{e4} + R_5} = 140.4658 * \frac{600}{518.0856 + 600} = 75.5394V$$

$$I_{ee} = \frac{U_{ee}}{R_{ee6}} = \frac{75.5394}{428.0211} = 0.1765A$$

Výpočítáme hledané hodnoty:

$$\begin{array}{rcl} U_{R6} & = & U_{ee} - R_{ee} * I_{ee} = 75.5394 - 278.0211 * 0.1765 = 26.4687V \\ I_{R6} & = & \frac{U_{R6}}{R_6} = \frac{26.4687}{150} = 0.1765A \end{array}$$

Hledané hodnoty U_{R6} a I_{R6} jsou:

$$U_{R6} = 26.4687V$$

 $I_{R6} = 0.1765A$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

8	sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
	A	120	0.9	0.7	53	49	65	39	32

I. Kirchhův zákon použijeme na uzly v obvodu:

$$A: 0 = I_{R1} + I_{R2} - I_1$$

 $B: 0 = I_{R4} - I_{R2} - I_{R5}$
 $C: 0 = I_{R3} + I_{R5} - I_{R4} - I_2$

Vyjádříme proudy pomocí úzlových napětí:

Substituce
$$G_x = \frac{1}{R_x}$$

$$I_{R1} = \frac{U_A}{R_1} = G_1 * U_A$$

$$I_{R2} = \frac{U_A - U_B}{R_2} = G_2(U_A - U_B)$$

$$I_{R3} = \frac{U_C}{R_3} = G_3 * U_C$$

$$I_{R4} = \frac{U_A - U_B}{R_4} = G_4(U_A - U_B)$$

$$I_{R5} = \frac{U + U_C - U_B}{R_5} = G_5(U + U_C - U_B)$$

Dosadíme proudy do rovnic:

$$0 = G_1U_A + G_2(U_A - U_B) - I_1$$

$$0 = G_4(U_B - U_C) - G_2(U_A - U_B) - G_5(U + U_C - U_B)$$

$$0 = G_3U_C + G_5(U + U_C - U_B) - G_4(U_B - U_C) - I_2$$

Upravíme rovnice:

$$I_3 = G_5 U$$

$$I_1 = U_A(G_1 + G_2) - U_B(G_2)$$

$$I_3 = U_B(G_2 + G_4 + G_5) - U_A(G_2) - U_C(G_4 + G_5)$$

$$I_2 - I_3 = U_C(G_3 + G_4 + G_5) - U_B(G_4 + G_5)$$

Dosadíme hodnoty:

$$\begin{array}{rcl} 0.9 & = & 0.0393U_A - 0.0204U_B + 0U_C \\ 3.75 & = & -0.0204U_A + 0.0773U_B - 0.0569U_C \\ -3.05 & = & 0U_A - 0.0569U_B + 0.0723U_C \end{array}$$

Zapíšeme jako matici a vypočítáme determinant:

$$A = \begin{pmatrix} 0.0393 & -0.0204 & 0 & 0.9 \\ -0.0204 & 0.0773 & -0.0569 & 3.75 \\ 0 & -0.0569 & 0.0723 & -3.05 \end{pmatrix}$$

$$DetA = \begin{vmatrix} 0.0393 & -0.0204 & 0 \\ -0.0204 & 0.0773 & -0.0569 \\ 0 & -0.0569 & 0.0723 \end{vmatrix} = 6.2313 * 10^{-5}$$

Vypočítáme z matice U_B a U_C :

$$U_{B} = \begin{vmatrix} 0.0393 & 0.9 & 0 \\ -0.0204 & 3.75 & -0.0569 \\ 0 & -3.05 & 0.0723 \end{vmatrix} / DetA = 82.845V$$

$$U_{C} = \begin{vmatrix} 0.0393 & -0.0204 & 0.9 \\ -0.0204 & 0.0773 & 3.75 \\ 0 & -0.0569 & -3.05 \end{vmatrix} / DetA = 23.0136V$$

Dopočítáme hledané hodnoty:

$$U_{R4} = U_B - U_C = 82.845 - 23.0136 = 59.8314V$$

 $I_{R4} = \frac{U_{R4}}{R_4} = \frac{58.8314}{39} = 1.5341A$

Hledané hodnoty U_{R4} a I_{R4} jsou:

$$U_{R4} = 59.8314V$$

 $I_{R4} = 1.5341A$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$.

Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [µF]	C_2 [µF]	f [Hz]
С	35	45	10	13	220	70	230	85	75

Vypočítáme kapacitanci:

$$X_C = \frac{-i}{2\pi f C} = -\frac{1}{2\pi f C}i$$

$$X_{C1} = -\frac{1}{2\pi * 75 * 230 * 10^{-6}}i = -9.2264i\Omega$$

$$X_{C2} = -\frac{1}{2\pi * 75 * 85 * 10^{-6}}i = -24.9655i\Omega$$

Vypočítáme induktanci:

$$X_L = 2\pi f L i$$

 $X_{L1} = 2\pi * 75 * 220 * 10^{-3} = 103.6726 i \Omega$
 $X_{L2} = 2\pi * 75 * 70 * 10^{-3} = 32.9867 i \Omega$

Sestavíme rovnice pro smyčková napětí v obvodu:

$$\begin{array}{lll} A & : & 0 = U_1 + I_A X_{L1} + I_A X_{C2} - I_C X_{C2} \\ B & : & 0 = U_2 + I_B X_{C1} + I_B R_1 \\ C & : & 0 = -U_2 + I_C X_{C2} + I_C R_2 + I_C X_{L2} - I_A X_{C2} \end{array}$$

Upravíme rovnice:

$$-U_1 = I_A(X_{L1} + X_{C2}) + 0I_B - I_C X_{C2}$$

$$-U_2 = 0I_A + I_B(X_{C1} + R_1) + 0I_C$$

$$U_2 = -I_A X_{C2} + 0I_B + I_C (X_{L2} + X_{C2} + R_2)$$

Dosadíme do rovnic:

$$\begin{array}{rcl} -35 & = & 78.7071iI_A + 0I_B + 24.9655iI_C \\ -45 & = & 0I_A + (10 - 9.2264i)I_B + 0I_C \\ 45 & = & 24.9655iI_A + 0I_B + (13 + 8.0212i)I_C \end{array}$$

Zapíšeme jako matici a vypočítáme determinant:

$$A = \begin{pmatrix} 78.7071i & 0 & 24.9655i \\ 0 & 10 - 9.2264i & 0 \\ 24.9655i & 0 & 13 + 8.0212i \end{pmatrix} -35 \\ Det A = \begin{pmatrix} 78.7071i & 0 & 24.9655i \\ 0 & 10 - 9.2264i & 0 \\ 24.9655i & 0 & 13 + 8.0212i \end{pmatrix} = 9359.8894 + 10306.1881i$$

Vypočítáme z matice I_A a I_C :

$$I_{A} = \begin{vmatrix} -35 & 0 & 24.9655i \\ -45 & 10 - 9.2264i & 0 \\ 45 & 0 & 13 + 8.0212i \end{vmatrix} / DetA = -1.3688 + 0.4555iA$$

$$I_{C} = \begin{vmatrix} 78.7071i & 0 & -35 \\ 0 & 10 - 9.2264i & -45 \\ 24.9655i & 0 & 45 \end{vmatrix} / DetA = 4.3153 - 0.0339iA$$

Vypočítáme hledané hodnoty:

$$I_{C2} = I_C - I_A = (4.3153 - 0.0339i) - (-1.3688 + 0.4555i) = 5.6841 - 0.4894i$$

$$U_{C2} = I_{C2} * X_{C2} = (5.6841 - 0.4894i) * -24.9655i = -12.2181 - 141.9064i$$

$$|U_{C2}| = \sqrt{RealU_{C2}^2 + ImgU_{C2}^2} = \sqrt{(-12.2181)^2 + (-141.9064)^2} = 142.4314V$$

3. kvadrant

$$\varphi_{C2} = \pi + tan^{-1} \left(\frac{ImgU_{C2}}{RealU_{C2}} \right)$$

$$\varphi_{C2} = \pi + tan^{-1} \left(\frac{-141.9064}{-12.2181} \right) = 4.6265 rad$$

$$\varphi_{C2} = \frac{180}{\pi} * 4.6265 rad = 265.07899^{\circ}$$

Hledané hodnoty $|U_{C2}|$ a ϕ_{C2} jsou:

$$|U_{C2}| = 142.4314V$$

 $\varphi_{C2} = 265.07899^{\circ}$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U[V]	C[F]	$R [\Omega]$	$u_C(0)$ [V]		
Е	40	30	40	11		
R						

Sestavíme rovnice pro smyčková napětí v obvodu a vyjádříme proud:

$$U = U_C + U_R$$

$$U_R = R * I$$

$$U = U_C + R * I$$

$$I = \frac{U - U_C}{R}$$

Hodnoty dosadíme do rovnice (axiomu) pro tento obvod a upravíme:

$$U'_{C} = \frac{1}{C}I$$

$$U'_{C} = \frac{1}{C} * \frac{U - U_{C}}{R}$$

$$U'_{C} = \frac{U - U_{C}}{RC}$$

$$U'_{C} = \frac{40 - U_{C}}{40 * 30} = \frac{1}{30} - U_{C} \frac{1}{1200}$$

$$U'_{C} + U_{C} \frac{1}{1200} = \frac{1}{30}$$

Obecný tvar rovnice a výpočet λ :

$$U_C(t) = K(t)e^{\lambda t}$$

$$0 = \lambda + \frac{1}{1200}$$

$$\lambda = -\frac{1}{1200}$$

Dosadíme do obecného a zderivovaného tvaru:

$$U_C(t) = K(t)e^{-\frac{1}{1200}t}$$

$$U'_C(t) = K'(t)e^{-\frac{1}{1200}t} - \frac{1}{1200}K(t)e^{-\frac{1}{1200}t}$$

Dále dosadíme do rovnice obvodu:

$$U'_C + U_C \frac{1}{1200} = \frac{1}{30}$$

$$K'(t)e^{-\frac{1}{1200}t} - \frac{1}{1200}K(t)e^{-\frac{1}{1200}t} + \frac{1}{1200}K(t)e^{-\frac{1}{1200}t} = \frac{1}{30}$$

$$K'(t)e^{-\frac{1}{1200}t} = \frac{1}{30}$$

Zjistíme K(t) (integrováním):

$$K'(t)e^{-\frac{1}{1200}t} = \frac{1}{30}$$

$$K'(t) = \frac{e^{\frac{1}{1200}t}}{30}$$

$$K(t) = \int K'(t)dt = \frac{e^{\frac{1}{1200}t}}{30}$$

$$K(t) = 40e^{\frac{1}{1200}t} + X$$

Dosadíme do obecného tvaru:

$$U_C(t) = K(t)e^{\lambda}t = (40e^{\frac{1}{1200}} + X)e^{-\frac{1}{1200}t} = 40 + Xe^{-\frac{1}{1200}t}$$

Zjistíme C pomocí počáteční podmínky:

$$U_C(0) = 40 + Xe^{-\frac{1}{1200}t}$$

$$U_C(0) = 40 + Xe^{-\frac{1}{1200}*0}$$

$$11 = 40 + X$$

$$X = -29$$

Naposledy dosadíme:

$$U_C(t) = 40 + Xe^{-\frac{1}{1200}t}$$

$$U_C(t) = 40 + 29e^{-\frac{1}{1200}t}$$

Hledaná hodnota $U_C(t)$ je:

$$U_C(t) = 40 - 29e^{-\frac{1}{1200}t}$$

Kontrola:

$$U'_C + U_C \frac{1}{1200} = \frac{1}{30}$$

$$U_C(t) = 40 - 29e^{-\frac{1}{1200}t}$$

$$U'_C(t) = \frac{29}{1200}e^{-\frac{1}{1200}t}$$

$$\frac{29}{1200}e^{-\frac{1}{1200}t} + \frac{1}{1200}(40 - 29e^{-\frac{1}{1200}t}) = \frac{1}{30}$$

$$\frac{29}{1200}e^{-\frac{1}{1200}t} - \frac{29}{1200}e^{-\frac{1}{1200}t} + \frac{1}{30} = \frac{1}{30}$$

$$\frac{29}{1200}e^{-\frac{1}{1200}t} + \frac{1}{1200}t = \frac{1}{30} + \frac{29}{1200}e^{-\frac{1}{1200}t}$$

$$0 = 0$$

Shrnutí výsledků

Příklad	Skupina	$V {y}$ sledky			
1	С	$U_{R5} = 36.9160V$	$I_{R5} = 0.1678A$		
2	E	$U_{R6} = 26.4687V$	$I_{R6} = 0.1765A$		
3	A	$U_{R4} = 59.8314V$	$I_{R4} = 1.5341A$		
4	С	$ U_{C_2} = 142.4314V$	$\varphi_{C_2} = 265.07899^{\circ}$		
5	Е	$u_C = 40 - 29e^{-\frac{1}{1200}t}$			