Deep Residual Learning for Image Recognition

"CVPR 2016 Best Paper Award"

Presenter: Jingyun Ning

Introduction

Deep Residual Networks (ResNets)

- A simple and clean framework of training "very" deep nets
- State-of-the-art performance for
 - Image classification
 - Object detection
 - Semantic segmentation
 - and more...

ResNets @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Result

Performances increase absolutely

task	2nd-place winner	MSRA	margin (relative)
ImageNet Localization (top-5 error)	12.0	9.0	27%
ImageNet Detection (mAP@.5)	53.6 abso 8.5% l	olute 62.1	16%
COCO Detection (mAP@.5:.95)	33.5	37.3	11%
COCO Segmentation (mAP@.5:.95)	25.1	28.2	12%

- Rased ou kesinet-tht
- Existing techniques can use residual networks or features from it

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

ResNet, 152 layers (ILSVRC 2015)

Is learning better networks as simple as s

No!

Simply stacking layers?

- Plain nets: stacking 3x3 Convlayers...
- 56-layer net has higher training error and test error than 20-layer net

Left: a shallower model (18 layers)

Right: a deeper counterpart (34 layers)

- A deeper model should not have **higher training error**
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as **identity**
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

• Plaint net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)

Deep Residual Learning

• Residual net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

identity hope the 2 weight layers fit F(x)

$$let H(x) = F(x) + x$$

Deep Residual Learning

• F x is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Network "Design"

plain net

Keep it simple

- The basic design (VGG-style)
 - all 3x3 conv (almost)
- spatial size /2 => # filters x2
 - Simple design; just deep!

Other remarks:

- no max pooling(almost)
- no hidden fc
- no dropout

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

A practical design of going deeper

10-crop testing, top-5 val error (%)

ImageNet Classification top-5 error (%)

Exploring over 1000 layers

- Test 1202 layers
 - Training is finished
 - Training error is similar
 - Testing error is high because of over fitting

method			error (%)
Maxout [10]			9.38
NIN [25]			8.81
DSN [24]			8.22
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	$7.54 (7.72 \pm 0.16)$
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7 M	6.43 (6.61±0.16)
ResNet	1202	19.4 M	7.93

Conclusion

- Deep Residual Learning:
 - Ultra deep networks can be easy to train
- Ultra deep networks can gain accuracy from depth
- Ultra deep representations are well transferrable
- Now 200 layers on ImageNet and 1000 layers on CIFAR!

Reference

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
- Slides of Deep Residual Learning @ ILSVRC & COCO 2015 competitions

Thank You!