Dokumentation des Pakets circdia

Stefan Krause

4. Oktober 2016

Inhaltsverzeichnis

1	Gru	ndlagen 3					
	1.1	Die Umgebung circuitdiagram					
	1.2	Einige Befehle für Bauelemente					
	1.3	Einige Befehle für Leitungen und Anschlüsse					
	1.4	Paketoptionen					
2	Bauelemente 6						
	2.1	Spannungsquellen					
	2.2	Stromquellen					
	2.3	Weitere Quellensymbole					
	2.4	Messgeräte					
	2.5	Schalter					
	2.6	Relais					
	2.7	Widerstände					
	2.8	Kondensatoren					
	2.9	Spulen					
	2.10	Dioden					
		Diacs					
		Bipolare Transistoren					
		Mosfets					
		Sperrschicht-Fets					
		Operationsverstärker					
		Linear-ICs					
		Gatter					
		Decoder					
		Arithmetische Bausteine					
		Flipflops					
		TTL-ICs					
3	Loit	ungen und Anschlüsse 43					
J	3.1	Drähte					
	3.2	Lötpunkte					
	3.3	Anschlusspins					
	3.4	Spannungsversorgung					
	$3.4 \\ 3.5$	Spannungspfeile					
	3.6	Strompfeile					
	0.0	Description					

INHALTSVERZEICHNIS

4	Zus	ätze zu den Bauelementen 47	7
	4.1	Verlängerte Zuleitungen	7
	4.2	Stecker und Buchsen	3
	4.3	Spannungspfeile)
	4.4	Signal-Symbole	L
	4.5	Polarität	L
	4.6	Messgeräte-Einheiten	2
	4.7	Schleifer	3
	4.8	Kalt- und Heißleiter	3
	4.9	Photoempfindlichkeit	Į.
	4.10	Lichtaussendung	5
	4.11	Elektrolytkondensatoren	3
	4.12	Windungen für Spulen	3
	4.13	Eisen- und Ferritkerne	7
	4.14	Wicklungssinn)
	4.15	Veränderbarkeit	L
	4.16	Einstellbarkeit	3
	4.17	Zener-Dioden bzw. Z-Dioden)
	4.18	Schottky-Dioden und -Transistoren)
	4.19	Tunneldioden)
	4.20	Kapazitätsdioden	L
	4.21	Thyristoren)
	4.22	Triacs	2
	4.23	Versorgungsspannung	3
	4.24	Eingänge für Gatter	3
	4.25	Schmitt-Trigger-Kennzeichnung	Į.
	4.26	Open-Collector-Kennzeichnung	5
	4.27	Tristate-Ausgänge	3
	4.28	Ausgänge von Decodern	3
	4.29	Ein- und Ausgänge von Flipflops	7
	4.30	Referenzen und Bauelementwerte manuell platzieren)
5		erenzen und Bauelementwerte 82	
	5.1	Horizontale Platzierung	
	5.2	Vertikale Platzierung	
	5.3	Transistor-Platzierung	2
	5.4	Automatische Nummerierung	ł
6	Woi	tere Zusatzpakete 84	1
U	6.1	tere Zusatzpakete 84 Die Paketoption control	
	6.2	Die Paketoption diag	
	6.3		
		1 0 1	
	6.4	Die Paketoption mech)

7	Schi	nellübersicht	85
	7.1	Drähte und Anschlüsse	85
	7.2	Spannungen und Ströme	85
	7.3	Quellen	86
	7.4	Schalter	86
	7.5	Widerstände	87
	7.6	Kondensatoren	88
	7.7	Spulen	88
	7.8	Dioden, Thyristoren, Diacs und Triacs	88
	7.9	Transistoren	89
	7.10	Analog-ICs	90
	7.11	Gatter	90
	7.12	Decoder	91
	7.13	Arithmetische Bausteine	92
	7.14	Flipflops	93

1 Grundlagen

Das Paket circdia dient zum Zeichnen von Schaltplänen. Der Schaltplan wird in einer Umgebung gezeichnet, die intern als tikzpicture-Umgebung des Pakets tikz realisiert ist. Daher können, falls nötig, auch sämtliche in der tikzpicture-Umgebung gültigen Befehle benutzt werden. Ansonsten definiert das Paket Befehle für die verschiedenen Bauelementsymbole, z. B. Widerstand, Transistor oder Gatter. Die Argumentliste für all diese Befehle ist durchgehend fast identisch und enthält immer die Koordinaten, die Orientierung und die Beschriftung.

Wir geben zunächst ein Beispiel, um die allgemeine Funktionsweise des Pakets zu erläutern. In den folgenden Abschnitten werden alle Befehle noch einmal ausführlich beschrieben. Hier nun zunächst der Quelltext für Abb. 1.1:

```
\begin{circuitdiagram}{37}{24}
pin{1}{10}{L}{}
\mathbf{2}{10}{3}{10}
\capac{4}{10}{Huu}{C1}{1n}
\wire{5}{10}{9}{10}
\int \int {7}{10}
\sqrt{7}{10}{7}{8}
\rsin {7}{5}{V}{R1}{270k}
\sqrt{7}{2}{7}{1}
 \ground{7}{0}{D}
\rsin {12}{10}{Hu}{R2}{33k}
wire{15}{10}{19}{10}
\int \int 17 \{10\}
wire{17}{10}{17}{7}
\diode{17}{5}{U1}{D1}{}
\wire{17}{3}{17}{1}
\ground{17}{0}{D}
\trans{npn}{22}{10}{R}{T1}{}
 \wire{23}{7}{23}{1}
```

1. GRUNDLAGEN

```
\ground{23}{0}{D}
\wire{23}{13}{23}{15}
\resis{23}{18}{V1}{R3}{1k}
\wire{23}{21}{23}{22}
\power{23}{23}{U}{}
\junct{23}{13}
\wire{23}{13}
\wire{23}{13}\{26}{13}
\wire{26}{13}
\wire{26}{15}\{26}{11}
\wire{26}{15}\{27}\{15}
\wire{26}\{11}\{27}\{11}
\gate[\schmitt]\{nand}\{30}\{13}\{R}\{}
\pin{36}\{13}\{R}\{}
\end{circuitdiagram}
```


Abbildung 1.1: Das erste Beispiel

Der Quelltext des Schaltplans kann noch vereinfacht werden, indem einige Drahtbefehle in die Bauelemente integriert werden, aber dazu später mehr.

1.1 Die Umgebung circuitdiagram

Die Umgebung cicuitdiagram umfasst den Schaltplan. Sie benötigt zwei zwingende Argumente, nämlich die Breite und die Höhe in Rastereinheiten. Beim Standardschriftgrad von 11 pt beträgt diese Rastereinheit genau 2,1 mm, bei anderen Schriftgraden, oder wenn gerade \small, \Large o. \"a. aktiv ist, skaliert der ganze Schaltplan mit der Maßeinheit ex, also mit der Höhe des "x" in der aktuellen Schrift.

Die Umgebung besitzt noch ein optionales Argument. Ist es draft, so wird der Schaltplan mit einem grauen Koordinatensystem hinterlegt, wie in Abb. 1.2 zu sehen ist:

```
\begin{circuitdiagram}[draft]{17}{10}
\wire{4}{2}{14}{9}
\end{circuitdiagram}
```

Dies hilft bei der Erstellung, weil die Koordinaten für die zu platzierenden Bauelemente und Drähte leichter abgelesen werden können. Die Variante draft* zeichnet das Netz mit der Gitterweite 1 statt 5, falls man es genauer als mit draft benötigt.

Abbildung 1.2: Die Umgebungsoption draft

1.2 Einige Befehle für Bauelemente

Der Befehl \resis zeichnet einen Widerstand. Er besitzt fünf Argumente, die typisch für alle Bauelementbefehle sind. Die ersten beiden beschreiben die x- und y-Koordinate des Mittelpunkts des Bauelements. Das dritte Argument gibt die Orientierung an, und zwar H für horizontal und V für vertikal. An Position vier und fünf stehen die Referenz (z. B. R1) und der Bauelementwert (z. B. 33k); beide können natürlich leer bleiben.

Der Befehl \diode zeichnet eine Diode. Da es bei ihr auf die Richtung ankommt, wäre eine Angabe wie vertikal nicht ausreichend. Bei solchen Bauelementen tritt an die Stelle von H entweder L oder R und an V entweder U oder D. Diese großen Buchstaben beschreiben die Orientierung des Bauelements; kleine Buchstaben hingegen beeinflussen die Position der Beschriftung. Bei der Diode steht das 1 dafür, dass die Referenz links von ihr platziert wird.

Die Befehle \trans und \gate besitzen vor der x-Koordinate ein weiteres zwingendes Argument, nämlich eine Typangabe. Hier sind es npn für einen npn-Transistor bzw. nand für ein NAND-Gatter. Zusätzlich wurde dem Gatter mit \schmitt ein Schmitt-Trigger-Symbol hinzugefügt. Dieser Befehl steht im optionalen Argument ganz vorne. Alle Bauelementbefehle besitzen dieses optionale Argument, um Zusätze zu den Symbolen zu definieren. Dadurch entstehen beispielsweise Zener-Dioden, Photowiderstände oder Drehkondensatoren.

1.3 Einige Befehle für Leitungen und Anschlüsse

Der Befehl \wire zeichnet einen Draht; die ersten beiden Argumente sind die x- und y-Koordinate des Startpunkts, die folgenden beiden die des Endpunkts. Mit dem Befehl \junct wird ein Lötpunkt an einer Stelle erzeugt.

Der Befehl \pin zeichnet kreisförmige Anschlusspins, die auch benannt werden können; hier entfällt das letzte Argument, weil es keinen Bauelementwert gibt. Der Befehl \ground erzeugt ein Masse-Symbol. Mit \power wird eine Pfeilspitze als Spannungsversorgung gezeichnet, die einen Bauelementwert, aber keine Referenz bekommen kann. Hier entfällt also das vorletzte Argument.

1.4 Paketoptionen

Das Paket besitzt einige Optionen. Die folgenden Paketoptionen legen das Verhalten des Pakets fest:

• normalinduc, curlyinduc und filledinduc: Die erste Option stellt ein, dass Spulen mit halbkreisförmigen Windungen, die zweite, dass die Windungen als Schlaufen (also überkreuzend), und die dritte, dass die Spulen als ausgefüllte Rechtecke gezeichnet werden. Der Standard ist normalinduc.

Zusätzlich gibt es die Befehle \normalinduc, \curlyinduc und \filledinduc, um das Aussehen der Spulen einzustellen. Diese Befehle können beliebig oft benutzt werden.

- lineddiode, emptydiode und filleddiode: Die erste Option stellt ein, dass Dioden mit durchgehendem Strich gezeichnet werden, die zweite, dass dieser Strich nicht gezeichnet wird, und die dritte, dass die Diode ausgefüllt wird. Der Standard ist lineddiode.
 - Zusätzlich gibt es die Befehle \lineddiode, \emptydiode und \filleddiode, um das Aussehen der Dioden einzustellen. Diese Befehle können beliebig oft benutzt werden.
- nocircledtrans und circledtrans: Die zweite Option stellt ein, dass Transistoren mit Kreis gezeichnet werden, die erste, dass diese Kreise nicht gezeichnet werden. Der Standard ist nocircledtrans.
 - Zusätzlich gibt es die Befehle \nocircledtrans und \circledtrans, um das Aussehen der Transistoren einzustellen. Diese Befehle können beliebig oft benutzt werden.

Die folgenden Paketoptionen binden Zusatzpakete ein und erweitern so die Funktionalität:

- autoref: Hiermit können die Referenzen der Bauelemente von einer automatischen Nummerierung erzeugt werden. Mehr dazu in Abschn. 5.4.
- color: Hiermit können farbige Widerstandsringe und andere Dinge farbig gezeichnet werden können.
- control: Hiermit können Signalflusspläne aus der Regelungstechnik gezeichnet werden.
- diag: Hiermit können diagonale Bauelemente in Brücken sowie Stern- und Dreieckschaltungen gezeichnet werden. Das Zusatzpaket befindet sich aktuell aber noch in der beta-Phase.
- digital: Hiermit können Digitalbausteine wie Gatter, Decoder und Flipflops gezeichnet werden.
- graph: Hiermit können Graphen wie Bode-Diagramme, Ortskurven oder andere Kennlinien gezeichnet werden.
- ic: Hiermit können ICs durch Angabe ihres Typs gezeichnet werden.
- mech: Hiermit können mechanische Objekte wie Drähte und Bemaßungen gezeichnet werden.
- passive: Hiermit können weitere passive Bauelemente (Widerstände, Kondensatoren, Spulen) gezeichnet werden.
- semicon: Hiermit können weitere Halbleiterbauelemente (Dioden, Diace, Transistoren) gezeichnet werden.
- srcmeas: Hiermit können weitere Quellen und Messinstrumente gezeichnet werden.
- switch: Hiermit können weitere Schalter und Relais gezeichnet werden.

2 Bauelemente

In der Orientierung der Bauelemente stehen grundsatzlich H für "horizontal", L für "left", R für "right", V für "vertical", U für "up" und D für "down".

2.1 Spannungsquellen

Der Befehl \voltsrc zeichnet eine Spannungsquelle und besitzt die fünf Standardargumente. Einige Spannungsquellen sind in Abb. 2.1 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

```
\begin{circuitdiagram}{69}{10} \voltsrc{3}{6}{H}{U1}{5 V} \voltsrc{11}{6}{Hu}{U2}{5 V} \voltsrc{19}{6}{Hdd}{U3}{5 V} \voltsrc{27}{6}{Hr}{U4}{5 V} \voltsrc{36}{6}{V}{U5}{5 V} \voltsrc{36}{6}{V}{U5}{5 V} \voltsrc{48}{6}{V1r}{U6}{5 V} \voltsrc{59}{6}{Vh1}{U7}{5 V} \voltsrc{66}{6}{Vd}{U8}{5 V} \voltsrc{66}{6}{Vd}{U8}{5 V} \voltsrc{66}{6}{Vd}{U8}{5 V} \voltsrc{66}{6}{Vd}{U8}{5 V} \voltsrc{66}{6}{Vd}{U8}{5 V} \end{circuitdiagram}
```


Abbildung 2.1: Spannungsquellen

2.2 Stromquellen

Der Befehl \currsrc zeichnet eine Stromquelle und besitzt die fünf Standardargumente. Einige Stromquellen sind in Abb. 2.2 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

```
\begin{circuitdiagram}{69}{10}
\currsrc{3}{6}{H}{I1}{1 A}
\currsrc{11}{6}{Hu}{I2}{1 A}
\currsrc{19}{6}{Hdd}{I3}{1 A}
\currsrc{27}{6}{Hr}{I4}{1 A}
\currsrc{36}{6}{V}{I5}{1 A}
\currsrc{48}{6}{VIr}{I6}{1 A}
\currsrc{59}{6}{VIr}{I6}{1 A}
\currsrc{59}{6}{VIr}{I3}{1 A}
\currsrc{48}{6}{VIr}{I6}{1 A}
\currsrc{66}{6}{VIr}{I7}{1 A}
\currsrc{66}{6}{Vd}{I8}{1 A}
```

2.3 Weitere Quellensymbole

Der Befehl \othersrc (bereitgestellt von der Paketoption srcmeas) zeichnet eine anderes Quellensymbol und besitzt sechs Argumente. Als erstes Argument steht der Typ (oo, batt usw.), danach folgen die fünf Standardargumente. Einige Quellen sind in Abb. 2.3 bis 2.5 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

Abbildung 2.2: Stromquellen

```
\begin{circuitdiagram}{74}{28}
  \othersrc{batt}{3}{24}{L}{U1}{5 V}
   \othersrc{batt}{22}{24}{R}{U3}{5 V}
   \othersrc{batt}{40}{24}{U}{U5}{5 V}
   \othersrc{batt}{51}{24}{Ud}{U6}{5 V}
   \othersrc{batt}{59}{24}{D}{U7}{5 V}
   \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ 
   \othersrc{batt2}{3}{14}{L}{U9}{5 V}
   \othersrc{batt2}{11}{14}{Lr}{U10}{5 V}
   \othersrc{batt2}{22}{14}{R}{U11}{5 V}
   \othersrc{batt2}{40}{14}{U}{U13}{5 V}
   \othersrc{batt2}{51}{14}{Ud}{U14}{5 V}
   \othersrc{batt2}{59}{14}{D}{U15}{5 V}
   \othersrc{batt2}{70}{14}{Dd}{U16}{5 V}
   \othersrc{battn}{3}{4}{L}{U17}{5 V}
   \othersrc{battn}{11}{4}{Lr}{U18}{5 V}
   \othersrc{battn}{22}{4}{R}{U19}{5 V}
   \othersrc{battn}{40}{4}{U}{U21}{5 V}
   \othersrc{battn}{51}{4}{Ud}{U22}{5 V}
   \othersrc{battn}{59}{4}{D}{U23}{5 V}
   \end{circuitdiagram}
```

```
\begin{circuitdiagram}{69}{21}
\othersrc{+-}{3}{17}{L}{U1}{5} V}
\othersrc{+-}{11}{17}{Lu}{U2}{5} V}
\othersrc{+-}{19}{17}{Rdd}{U3}{5} V}
\othersrc{+-}{27}{17}{Rr}{U4}{5} V}
\othersrc{+-}{36}{17}{U}{U5}{5} V}
\othersrc{+-}{48}{17}{U1r}{U6}{5} V}
\othersrc{+-}{59}{17}{Dh1}{U7}{5} V}
\othersrc{+-}{66}{17}{Dd}{U8}{5} V}
\othersrc{--}{66}{17}{Dd}{U8}{5} V}
\othersrc{--}{3}{6}{L}{I1}{1} A}
\othersrc{--}{11}{6}{Rdd}{I3}{1} A}
```

Abbildung 2.3: Weitere Quellensymbole

\othersrc{->}{27}{6}{Rr}{I4}{1 A} \othersrc{->}{36}{6}{U}{I5}{1 A} \othersrc{->}{48}{6}{Ulr}{I6}{1 A} \othersrc{->}{59}{6}{Dhl}{I7}{1 A} \othersrc{->}{66}{6}{Dd}{I8}{1 A} \end{circuitdiagram}

Abbildung 2.4: Weitere Quellensymbole

begin{circuitdiagram}{69}{32}
 \othersrc{0}{3}{28}{H}{U1}{5 V}
 \othersrc{0}{11}{28}{Hu}{I1}{1 A}
 \othersrc{0}{19}{28}{Hdd}{U2}{5 V}
 \othersrc{0}{27}{28}{Hr}{I2}{1 A}
 \othersrc{0}{36}{28}{V}{U3}{5 V}
 \othersrc{0}{48}{28}{VIr}{I3}{1 A}
 \othersrc{0}{48}{28}{VIr}{I3}{1 A}
 \othersrc{0}{59}{28}{Vh1}{U4}{5 V}
 \othersrc{0}{66}{28}{Vd}{I4}{1 A}
 \othersrc{00}{3}{17}{H}{I5}{1 A}
 \othersrc{00}{31}{17}{HU}{I6}{1 A}

```
\othersrc{oo}{19}{17}{Hdd}{I7}{1 A}
\othersrc{oo}{27}{17}{Hr}{I8}{1 A}
\othersrc{oo}{36}{17}{V}{I9}{1 A}
\othersrc{oo}{48}{17}{V}I9}{1 A}
\othersrc{oo}{48}{17}{V}I10}{1 A}
\othersrc{oo}{59}{17}{V}I11}{I11}{1 A}
\othersrc{oo}{66}{17}{V}d}{I12}{1 A}
\othersrc{()}{3}{6}{H}{I13}{1 A}
\othersrc{()}{11}{6}{Hu}{I14}{1 A}
\othersrc{()}{19}{6}{Hdd}{I15}{1 A}
\othersrc{()}{27}{6}{Hr}{I16}{1 A}
\othersrc{()}{36}{6}{V}{I17}{1 A}
\othersrc{()}{48}{6}{VIr}{I18}{1 A}
\othersrc{()}{48}{6}{VIr}{I18}{1 A}
\othersrc{()}{48}{6}{VIr}{I18}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
\othersrc{()}{66}{6}{VIr}{I19}{1 A}
```


Abbildung 2.5: Weitere Quellensymbole

2.4 Messgeräte

Der Befehl \measdev (bereitgestellt von der Paketoption srcmeas) zeichnet ein Messgerät und besitzt die fünf Standardargumente. Einige Messgeräte sind in Abb. 2.6 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

```
\begin{circuitdiagram}{69}{10}
\measdev{3}{6}{H}{M1}{abc}
\measdev{11}{6}{Hu}{M2}{abc}
\measdev{19}{6}{Hdd}{M3}{abc}
\measdev{27}{6}{Hr}{M4}{abc}
\measdev{36}{6}{V}{M5}{abc}
\measdev{48}{6}{V1r}{M6}{abc}
\measdev{59}{6}{V1r}{M6}{abc}
```

\measdev{66}{6}{Vd}{M8}{abc}
\end{circuitdiagram}

Abbildung 2.6: Messgeräte

2.5 Schalter

Der Befehl \switch zeichnet einen Schalter und besitzt sechs Argumente. Als erstes Argument steht der Typ (off, ontouch, tog* usw.), danach folgen die fünf Standardargumente. Einige Ein/Aus-Schalter sind in Abb. 2.7 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

```
\begin{circuitdiagram}{70}{32}
\sin {off}{3}{28}{L}{S1}{abc}
\svitch{off}{11}{28}{LD}{S2}{abc}
\switch{offline}{19}{28}{L}{S3}{abc}
\switch{offline}{27}{28}{LD}{S4}{abc}
\svitch{on}{35}{28}{L}{S5}{abc}
\svitch{ontouch}{51}{28}{LD}{S7}{abc}
\switch{online}{59}{28}{L}{S8}{abc}
\switch{online}{67}{28}{LD}{S9}{abc}
\svitch{off}{3}{20}{R}{S10}{abc}
\svitch{off}{11}{20}{RD}{S11}{abc}
\svitch{offline}{19}{20}{R}{S12}{abc}
\svitch{offline}{27}{20}{RD}{S13}{abc}
\svitch{on}{35}{20}{R}{S14}{abc}
\svitch{ontouch}{43}{20}{R}{S15}{abc}
\svitch{ontouch}{51}{20}{RD}{S16}{abc}
\svitch{online}{59}{20}{R}{S17}{abc}
\svitch{online}{67}{20}{RD}{S18}{abc}
\strut_{off}{2}{11}{U}{S19}{abc}
 \switch{off}{9}{11}{UR}{S20}{abc}
\switch{offline}{18}{11}{U}{S21}{abc}
\svitch{offline}{25}{11}{UR}{S22}{abc}
\svitch{on}{34}{11}{U}{S23}{abc}
\svitch{ontouch}{42}{11}{U}{S24}{abc}
\switch{ontouch}{50}{11}{UR}{S25}{abc}
\switch{online}{58}{11}{U}{S26}{abc}
\switch{online}{66}{11}{UR}{S27}{abc}
\sin {0ff}{2}{3}{D}{S28}{abc}
 \switch{off}{9}{3}{DR}{S29}{abc}
```

\switch{offline}{18}{3}{D}{S30}{abc} \switch{offline}{25}{3}{DR}{S31}{abc} \switch{on}{34}{3}{D}{S32}{abc} \switch{ontouch}{42}{3}{D}{S33}{abc} \switch{ontouch}{50}{3}{DR}{S34}{abc} \switch{online}{58}{3}{D}{S35}{abc} \switch{online}{66}{3}{DR}{S36}{abc} \end{circuitdiagram}

Abbildung 2.7: Ein/Aus-Schalter

Einige horizontale Wechselschalter sind in Abb. 2.8 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{62}{26}
\strut_{tog}{3}{22}{L}{S1}{abc}
\symbol{switch{tog}{11}{22}{LD}{S2}{abc}}
\symbol{log}{19}{22}{R}{S3}{abc}
\symbol{switch}{tog}{27}{22}{RD}{S4}{abc}
\svitch{tog*}{35}{22}{L}{S5}{abc}
\switch\tog*\\{43\\{22\}\{LD\\{S6\}\{abc\}
\svitch{tog*}{51}{22}{R}{57}{abc}
\symbol{switch{tog*}{59}{22}{RD}{S8}{abc}}
\svitch{togtouch}{11}{13}{LD}{S10}{abc}
\switch{togtouch}{19}{13}{R}{S11}{abc}
\ \ \switch{togtouch}{27}{13}{RD}{S12}{abc}
\witch{togtouch*}{43}{13}{LD}{S14}{abc}
 \switch{togtouch*}{51}{13}{R}{S15}{abc}
\switch{togtouch*}{59}{13}{RD}{S16}{abc}
\svitch{togline}{3}{4}{L}{S17}{abc}
 \svitch{togline}{11}{4}{LD}{S18}{abc}
```


Abbildung 2.8: horizontale Wechselschalter

Einige vertikale Wechselschalter sind in Abb. 2.9 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.2:

```
\begin{circuitdiagram}{70}{22}
\svitch{tog}{11}{19}{UR}{S2}{abc}
\switch{tog}{29}{19}{DR}{S4}{abc}
\switch{tog*}{38}{19}{U}{S5}{abc}
\svitch{tog*}{56}{19}{D}{S7}{abc}
\switch{tog*}{65}{19}{DR}{S8}{abc}
\ \ \switch{togtouch}{2}{11}{U}{S9}{abc}
\ \ \switch{togtouch}{11}{11}{UR}{S10}{abc}
\switch{togtouch}{20}{11}{D}{S11}{abc}
\ \ \switch{togtouch}{29}{11}{DR}{S12}{abc}
\ \ \switch{togtouch*}{47}{11}{UR}{S14}{abc}
\ \ \switch{togtouch*}{56}{11}{D}{S15}{abc}
\\ \
\svitch{togline}{2}{3}{U}{S17}{abc}
\switch{togline}{11}{3}{UR}{S18}{abc}
\switch{togline}{20}{3}{D}{S19}{abc}
\svitch{togline}{29}{3}{DR}{S20}{abc}
\switch{togline*}{38}{3}{U}{S21}{abc}
```


Abbildung 2.9: vertikale Wechselschalter

2.6 Relais

TO DO ...

2.7 Widerstände

Der Befehl \resis zeichnet einen Widerstand und besitzt die fünf Standardargumente. Einige Widerstände sind in Abb. 2.10 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

\begin{circuitdiagram}{72}{10}
\resis{3}{5}{H}{R1}{1 k\0hm}
\resis{12}{5}{Hu}{R2}{1 k\0hm}
\resis{21}{5}{Hdd}{R3}{1 k\0hm}
\resis{29}{5}{Hr}{R4}{1 k\0hm}
\resis{39}{5}{V}{R5}{1 k\0hm}
\resis{50}{5}{Vlr}{R6}{1 k\0hm}
\resis{62}{5}{Vhl}{R7}{1 k\0hm}
\resis{62}{5}{Vd}{R8}{1 k\0hm}
\resis{68}{5}{Vd}{R8}{1 k\0hm}

Abbildung 2.10: Widerstände

2.8 Kondensatoren

Der Befehl \capac zeichnet einen Kondensator und besitzt die fünf Standardargumente. Einige Kondensatoren sind in Abb. 2.11 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1 und 5.2:

```
\begin{circuitdiagram}{67}{10}
\capac{1}{6}{H}{C1}{1 nF}
\capac{12}{6}{Hu}{C2}{1 nF}
\capac{19}{6}{Hdd}{C3}{1 nF}
\capac{24}{6}{Hr}{C4}{1 nF}
\capac{33}{6}{V}{C5}{1 nF}
\capac{44}{6}{Vlr}{C6}{1 nF}
\capac{56}{6}{Vlr}{C6}{1 nF}
\capac{56}{6}{Vd}{C8}{1 nF}
\capac{63}{6}{Vd}{C8}{1 nF}
```

Abbildung 2.11: Kondensatoren

2.9 Spulen

Der Befehl \induc zeichnet eine Spule und besitzt die fünf Standardargumente. Einige horizontale Spulen sind in Abb. 2.12 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{74}{29}
 \normalinduc
 \left(3\right)_{1}_{1} \in H}
 \displaystyle \frac{12}{25}_{Hu}_{L2}_{1 \in H}
 \displaystyle \sum_{21}{25}{Hdd}{L3}{1 \in H}
 \frac{29}{25}{Hr}{L4}{1 \in H}
 \displaystyle \frac{41}{25}{HD}{L5}{1 \ micro \ H}
 \ \left\{ 1 \right\} 
 \displaystyle \frac{59}{25}{HDdd}{L7}{1 \in H}
 \frac{67}{25}{HDr}{L8}{1 \micro H}
 \curlyinduc
 \displaystyle \frac{3}{15}{H}{L9}{1 \micro H}
 \displaystyle \prod_{12}_{15}_{Hu}_{L10}_{1 \in H}
 \induc{21}{15}{Hdd}{L11}{1 \micro H}
 \frac{29}{15}{Hr}{L12}{1 \micro H}
 \displaystyle \frac{41}{15}{HD}{L13}{1 \micro H}
 \int \int {15}{HDu}{L14}{1 \ micro \ H}
 \induc{59}{15}{HDdd}{L15}{1 \micro H}
```

```
\induc{67}{15}{HDr}{L16}{1 \micro H} \filledinduc \induc{3}{5}{H}{L17}{1 \micro H} \induc{12}{5}{Hu}{L18}{1 \micro H} \induc{21}{5}{Hdd}{L19}{1 \micro H} \induc{29}{5}{Hr}{L20}{1 \micro H} \induc{41}{5}{HD}{L21}{1 \micro H} \induc{50}{5}{HDu}{L22}{1 \micro H} \induc{59}{5}{HDdd}{L23}{1 \micro H} \induc{59}{5}{HDdd}{L23}{1 \micro H} \induc{67}{5}{HDr}{L24}{1 \micro H} \induc{67}{5}{HDr}{L24}{1 \micro H} \induc{67}{5}{HDr}{L24}{1 \micro H}
```


Abbildung 2.12: Horizontale Spulen

Einige vertikale Spulen sind in Abb. 2.13 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.2:

```
\begin{circuitdiagram}{73}{32}
 \normalinduc
 \displaystyle \frac{1}{27}{V}_{L1}_{1 \in H}
 \displaystyle \frac{13}{27}{V1r}_{L2}_{1 \in H}
 \frac{24}{27}{Vh1}{L3}{1 \micro H}
 \induc{31}{27}{Vd}{L4}{1 \micro H}
 \induc{39}{27}{VR}{L5}{1 \micro H}
 \displaystyle \frac{51}{27}{VR1r}_{L6}_{1 \in H}
 \ \left(62\right)\left(27\right)\left(VRh1\right)\left(L7\right)\left(1\ \mbox{micro H}\right)
 \ \left(69\right)_{27}_{VRd}_{L8}_{1 \in H}
 \curlyinduc
 \displaystyle \frac{1}{16}{V}_{L9}{1 \in H}
 \induc{13}{16}{Vlr}{L10}{1 \micro H}
 \induc{24}{16}{Vhl}{L11}{1 \micro H}
 \displaystyle \sum_{1}_{16}{Vd}_{L12}_{1 \in H}
 \induc{39}{16}{VR}{L13}{1 \micro H}
 \displaystyle \frac{51}{16}{VR1r}_{L14}_{1 \in H}
```

```
\induc{62}{16}{VRh1}{L15}{1 \micro H} \induc{69}{16}{VRd}{L16}{1 \micro H} \filledinduc \induc{1}{5}{V}{L17}{1 \micro H} \induc{13}{5}{V}r}{L18}{1 \micro H} \induc{24}{5}{Vh1}{L19}{1 \micro H} \induc{31}{5}{Vd}{L20}{1 \micro H} \induc{39}{5}{VR}{L21}{1 \micro H} \induc{51}{5}{VR1}{L22}{1 \micro H} \induc{51}{5}{VR1}{L22}{1 \micro H} \induc{62}{5}{VRh1}{L23}{1 \micro H} \induc{62}{5}{VRh1}{L24}{1 \micro H} \induc{69}{5}{VRd}{L24}{1 \micro H} \end{circuitdiagram}
```


Abbildung 2.13: Vertikale Spulen

2.10 Dioden

Der Befehl \diode zeichnet eine Diode und besitzt die fünf Standardargumente. Einige horizontale Dioden sind in Abb. 2.14 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{61}{26} \lineddiode \diode{3}{22}{L}{D1}{1N4148} \diode{13}{22}{Lu}{D2}{1N4148} \diode{22}{22}{Lr}{D3}{1N4148} \diode{34}{22}{R}{D4}{1N4148} \diode{44}{22}{Ru}{D5}{1N4148} \diode{44}{22}{Ru}{D5}{1N4148} \diode{53}{22}{Rr}{D6}{1N4148} \emptydiode \diode{3}{13}{L}{D7}{1N4148} \diode{3}{13}{L}{D7}{1N4148}
```

```
\diode{22}{13}{Lr}{D9}{1N4148}
\diode{34}{13}{R}{D10}{1N4148}
\diode{44}{13}{Ru}{D11}{1N4148}
\diode{53}{13}{Rr}{D12}{1N4148}
\filleddiode
\diode{3}{4}{L}{D13}{1N4148}
\diode{13}{4}{Lu}{D14}{1N4148}
\diode{22}{4}{Lr}{D15}{1N4148}
\diode{34}{4}{R}{D16}{1N4148}
\diode{34}{4}{Ru}{D17}{1N4148}
\diode{44}{4}{Ru}{D17}{1N4148}
\diode{53}{4}{Rr}{D18}{1N4148}
```


Abbildung 2.14: Horizontale Dioden

Einige vertikale Dioden sind in Abb. 2.15 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.2:

```
\begin{circuitdiagram}{73}{20}
 \lineddiode
 \diode{2}{18}{U}{D1}{1N4148}
 \displaystyle \frac{16}{18}{Ulr}{D2}{1N4148}
 \diode{29}{18}{Ud}{D3}{1N4148}
 \diode{39}{18}{D}{D4}{1N4148}
 \diode{53}{18}{D1r}{D5}{1N4148}
 \diode{66}{18}{Dd}{D6}{1N4148}
 \emptydiode
 \diode{2}{11}{U}{D7}{1N4148}
 \displaystyle \frac{16}{11}{Ulr}{D8}{1N4148}
 \diode{29}{11}{Ud}{D9}{1N4148}
 \diode{39}{11}{D}{D10}{1N4148}
 \displaystyle \frac{53}{11}{D1r}{D11}{1N4148}
 \diode{66}{11}{Dd}{D12}{1N4148}
 \filleddiode
 \diode{2}{4}{U}{D31}{1N4148}
```

 $\diode{16}{4}{Ulr}{D14}{1N4148}$

Abbildung 2.15: Vertikale Dioden

2.11 Diacs

Der Befehl \diac (bereitgestellt von der Paketoption semicon) zeichnet einen Diac und besitzt die fünf Standardargumente. Einige horizontale Diacs sind in Abb. 2.16 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{50}{28}
 \lineddiode
 diac{2}{24}{H}{D1}{DB3}
 diac{10}{24}{Hu}{D2}{DB3}
 \displaystyle \frac{18}{24}{Hr}{D3}{DB3}
 \diac{28}{24}{HD}{D4}{DB3}
 diac{36}{24}{HDu}{D5}{DB3}
 \displaystyle diac{44}{24}{HDr}{D6}{DB3}
 \emptydiode
 \displaystyle diac{2}{14}{H}{D7}{DB3}
 \diac{10}{14}{Hu}{D8}{DB3}
 \displaystyle \frac{18}{14}{Hr}{D9}{DB3}
 diac{28}{14}{HD}{D10}{DB3}
 \displaystyle diac{36}{14}{HDu}{D11}{DB3}
 \displaystyle \frac{44}{14}{HDr}{D12}{DB3}
 \filleddiode
 diac{2}{4}{H}{D13}{DB3}
 \displaystyle \frac{10}{4}{Hu}{D14}{DB3}
 \diac{18}{4}{Hr}{D15}{DB3}
 diac{28}{4}{HD}{D16}{DB3}
 \diac{36}{4}{HDu}{D17}{DB3}
 \displaystyle diac{44}{4}{HDr}{D18}{DB3}
\end{circuitdiagram}
```


Abbildung 2.16: Horizontale Diacs

Einige vertikale Diacs sind in Abb. 2.17 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.2:

```
\begin{circuitdiagram}{67}{20}
 \lineddiode
 \displaystyle diac{2}{18}{V}{D1}{DB3}
 \displaystyle diac{16}{18}{Vlr}{D2}{DB3}
 \diac{28}{18}{Vd}{D3}{DB3}
 \diac{37}{18}{VR}{D4}{DB3}
 \diac{51}{18}{VRlr}{D5}{DB3}
 \displaystyle diac{63}{18}{VRd}{D6}{DB3}
 \emptydiode
 \diac{2}{11}{V}{D7}{DB3}
 \diac{16}{11}{Vlr}{D8}{DB3}
 \diac{28}{11}{Vd}{D9}{DB3}
 \displaystyle \frac{37}{11}{VR}{D10}{DB3}
 \diac{51}{11}{VRlr}{D11}{DB3}
 \displaystyle diac{63}{11}{VRd}{D12}{DB3}
 \filleddiode
 \diac{2}{4}{V}{D31}{DB3}
 \displaystyle \frac{16}{4}{Vlr}{D14}{DB3}
 \diac{28}{4}{Vd}{D15}{DB3}
 \diac{37}{4}{VR}{D16}{DB3}
 \diac{51}{4}{VRlr}{D17}{DB3}
 \diac{63}{4}{VRd}{D18}{DB3}
\end{circuitdiagram}
```

2.12 Bipolare Transistoren

Der Befehl \trans zeichnet einen Transistor und besitzt sechs Argumente. Als erstes Argument steht der Typ (npn oder pnp), danach folgen die fünf Standardargumente. Einige npn-Transistoren sind in Abb. 2.18 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

Abbildung 2.17: Vertikale Diacs

```
\begin{circuitdiagram}{70}{43}
\nocircledtrans
\trans{npn}{8}{38}{L}{T1}{BC548}
\trans{npn}{16}{38}{Lr}{T2}{BC548}
\trans{npn}{29}{38}{Lud}{T3}{BC548}
\trans{npn}{44}{38}{LU}{T4}{BC548}
\trans{npn}{52}{38}{LUr}{T5}{BC548}
\trans{npn}{65}{38}{LUud}{T6}{BC548}
\trans{npn}{3}{27}{R}{T7}{BC548}
\trans{npn}{21}{27}{R1}{T8}{BC548}
\trans{npn}{31}{27}{Rud}{T9}{BC548}
\trans{npn}{39}{27}{RU}{T10}{BC548}
\trans{npn}{57}{27}{RU1}{T11}{BC548}
\trans{npn}{67}{27}{RUud}{T12}{BC548}
\circledtrans
\trans{npn}{8}{16}{L}{T13}{BC548}
\trans{npn}{16}{16}{Lr}{T14}{BC548}
\trans{npn}{29}{16}{Lud}{T15}{BC548}
\trans{npn}{44}{16}{LU}{T16}{BC548}
\trans{npn}{52}{16}{LUr}{T17}{BC548}
\trans{npn}{65}{16}{LUud}{T18}{BC548}
\trans{npn}{3}{5}{R}{T19}{BC548}
\trans{npn}{21}{5}{R1}{T20}{BC548}
\trans{npn}{31}{5}{Rud}{T21}{BC548}
\trans{npn}{39}{5}{RU}{T22}{BC548}
\trans{npn}{57}{5}{RU1}{T23}{BC548}
\trans{npn}{67}{5}{RUud}{T24}{BC548}
\end{circuitdiagram}
```

Einige pnp-Transistoren sind in Abb. 2.19 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{70}{43}
\nocircledtrans
\trans{pnp}{8}{38}{L}{T1}{BC558}
\trans{pnp}{16}{38}{Lr}{T2}{BC558}
```


Abbildung 2.18: npn-Transistoren

```
\trans{pnp}{29}{38}{Lud}{T3}{BC558}
\trans{pnp}{44}{38}{LD}{T4}{BC558}
\trans{pnp}{52}{38}{LDr}{T5}{BC558}
\trans{pnp}{65}{38}{LDud}{T6}{BC558}
\trans{pnp}{3}{27}{R}{T7}{BC558}
\trans{pnp}{21}{27}{R1}{T8}{BC558}
\trans{pnp}{31}{27}{Rud}{T9}{BC558}
\trans{pnp}{39}{27}{RD}{T10}{BC558}
\trans{pnp}{57}{27}{RD1}{T11}{BC558}
\trans{pnp}{67}{27}{RDud}{T12}{BC558}
\circledtrans
\trans{pnp}{8}{16}{L}{T13}{BC558}
\trans{pnp}{16}{16}{Lr}{T14}{BC558}
\trans{pnp}{29}{16}{Lud}{T15}{BC558}
\trans{pnp}{44}{16}{LD}{T16}{BC558}
\trans{pnp}{52}{16}{LDr}{T17}{BC558}
\trans{pnp}{65}{16}{LDud}{T18}{BC558}
\trans{pnp}{3}{5}{R}{T19}{BC558}
\trans{pnp}{21}{5}{R1}{T20}{BC558}
\trans{pnp}{31}{5}{Rud}{T21}{BC558}
\trans{pnp}{39}{5}{RD}{T22}{BC558}
\trans{pnp}{57}{5}{RD1}{T23}{BC558}
\trans{pnp}{67}{5}{RDud}{T24}{BC558}
\end{circuitdiagram}
```


Abbildung 2.19: pnp-Transistoren

2.13 Mosfets

Der Befehl \trans zeichnet einen Transistor und besitzt sechs Argumente. Als erstes Argument steht der Typ (nenh, ndep, penh* usw.), danach folgen die fünf Standardargumente. Einige anreichernde n-Kanal-Mosfets sind in Abb. 2.20 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{72}{21}
\nocircledtrans
\trans{nenh}{3}{16}{Lud}{T1}{BSP\dots}
\trans{nenh}{12}{16}{LUud}{T2}{BSP\dots}
\trans{nenh*}{21}{16}{Lud}{T3}{BSP\dots}
\trans{nenh*}{30}{16}{LUud}{T4}{BSP\dots}
\trans{nenh}{42}{16}{Rud}{T5}{BSP\dots}
\trans{nenh}{51}{16}{RUud}{T6}{BSP\dots}
\trans{nenh*}{60}{16}{Rud}{T7}{BSP\dots}
\trans{nenh*}{69}{16}{RUud}{T8}{BSP\dots}
\circledtrans
\trans{nenh}{3}{5}{Lud}{T9}{BSP\dots}
\trans{nenh}{12}{5}{LUud}{T10}{BSP\dots}
\trans{nenh*}{21}{5}{Lud}{T11}{BSP\dots}
\trans{nenh*}{30}{5}{LUud}{T12}{BSP\dots}
\trans{nenh}{42}{5}{Rud}{T13}{BSP\dots}
\trans{nenh}{51}{5}{RUud}{T14}{BSP\dots}
\trans{nenh*}{60}{5}{Rud}{T15}{BSP\dots}
\trans{nenh*}{69}{5}{RUud}{T16}{BSP\dots}
```

\end{circuitdiagram}

Abbildung 2.20: Anreichernde n-Kanal-Mosfets

Einige verarmende n-Kanal-Mosfets sind in Abb. 2.21 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{72}{21}
\nocircledtrans
\trans{ndep}{3}{16}{Lud}{T1}{BSP\dots}
\frac{ndep}{12}{16}{LUud}{T2}{BSP\dots}
\trans{ndep*}{21}{16}{Lud}{T3}{BSP\dots}
\trans{ndep*}{30}{16}{LUud}{T4}{BSP\dots}
\trans{ndep}{42}{16}{Rud}{T5}{BSP\dots}
\trans{ndep}{51}{16}{RUud}{T6}{BSP\dots}
\trans{ndep*}{60}{16}{Rud}{T7}{BSP\dots}
\trans{ndep*}{69}{16}{RUud}{T8}{BSP\dots}
\circledtrans
\frac{ndep}{3}{5}{Lud}{T9}{BSP\dots}
\trans{ndep}{12}{5}{LUud}{T10}{BSP\dots}
\trans{ndep*}{21}{5}{Lud}{T11}{BSP\dots}
\trans{ndep*}{30}{5}{LUud}{T12}{BSP\dots}
\trans{ndep}{42}{5}{Rud}{T13}{BSP\dots}
\trans{ndep}{51}{5}{RUud}{T14}{BSP\dots}
\trans{ndep*}{60}{5}{Rud}{T15}{BSP\dots}
\trans{ndep*}{69}{5}{RUud}{T16}{BSP\dots}
\end{circuitdiagram}
```

Einige anreichernde p-Kanal-Mosfets sind in Abb. 2.22 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{72}{21}
\nocircledtrans
\trans{penh}{3}{16}{Lud}{T1}{BSP\dots}
\trans{penh}{12}{16}{LDud}{T2}{BSP\dots}
\trans{penh*}{21}{16}{Lud}{T3}{BSP\dots}
\trans{penh*}{30}{16}{LDud}{T4}{BSP\dots}
\trans{penh}{42}{16}{RUd}{T5}{BSP\dots}
```


Abbildung 2.21: Verarmende n-Kanal-Mosfets

```
\trans{penh}{51}{16}{RDud}{T6}{BSP\dots}
\trans{penh*}{60}{16}{Rud}{T7}{BSP\dots}
\trans{penh*}{69}{16}{RDud}{T8}{BSP\dots}
\circledtrans
\trans{penh}{3}{5}{Lud}{T9}{BSP\dots}
\trans{penh}{12}{5}{LDud}{T10}{BSP\dots}
\trans{penh*}{21}{5}{LUd}{T11}{BSP\dots}
\trans{penh*}{30}{5}{LDud}{T11}{BSP\dots}
\trans{penh*}{30}{5}{LDud}{T12}{BSP\dots}
\trans{penh}{42}{5}{Rud}{T13}{BSP\dots}
\trans{penh}{51}{5}{RDud}{T14}{BSP\dots}
\trans{penh}{51}{5}{RDud}{T15}{BSP\dots}
\trans{penh*}{60}{5}{RUd}{T15}{BSP\dots}
\trans{penh*}{60}{5}{RUd}{T15}{BSP\dots}
\trans{penh*}{60}{5}{RDud}{T16}{BSP\dots}
\trans{penh*}{60}{5}{RDud}{T16}{BSP\dots}
\end{circuitdiagram}
```


Abbildung 2.22: Anreichernde p-Kanal-Mosfets

Einige verarmende p-Kanal-Mosfets sind in Abb. 2.23 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{72}{21}
\nocircledtrans
\trans{pdep}{3}{16}{Lud}{T1}{BSP\dots}
\trans{pdep}{12}{16}{LDud}{T2}{BSP\dots}
\trans{pdep*}{21}{16}{Lud}{T3}{BSP\dots}
\trans{pdep*}{30}{16}{LDud}{T4}{BSP\dots}
```

```
\trans{pdep}{42}{16}{Rud}{T5}{BSP\dots}
\trans{pdep}{51}{16}{RDud}{T6}{BSP\dots}
\trans{pdep*}{60}{16}{Rud}{T7}{BSP\dots}
\trans{pdep*}{69}{16}{RDud}{T8}{BSP\dots}
\trans{pdep*}{69}{16}{RDud}{T8}{BSP\dots}
\circledtrans
\trans{pdep}{3}{5}{Lud}{T9}{BSP\dots}
\trans{pdep}{12}{5}{LDud}{T10}{BSP\dots}
\trans{pdep*}{21}{5}{LUd}{T11}{BSP\dots}
\trans{pdep*}{30}{5}{LDud}{T12}{BSP\dots}
\trans{pdep*}{30}{5}{Rud}{T13}{BSP\dots}
\trans{pdep}{42}{5}{Rud}{T13}{BSP\dots}
\trans{pdep}{51}{5}{RUd}{T13}{BSP\dots}
\trans{pdep}{51}{5}{RDud}{T14}{BSP\dots}
\trans{pdep*}{60}{5}{RUd}{T15}{BSP\dots}
\trans{pdep*}{69}{5}{RUd}{T15}{BSP\dots}
\trans{pdep*}{60}{5}{RUd}{T16}{BSP\dots}
\trans{pdep*}{60}{5}{RUd}{T16}{BSP\dots}
\trans{pdep*}{60}{5}{RUd}{T16}{BSP\dots}
```


Abbildung 2.23: Verarmende p-Kanal-Mosfets

2.14 Sperrschicht-Fets

Der Befehl \trans zeichnet einen Transistor und besitzt sechs Argumente. Als erstes Argument steht der Typ (nj oder pj), danach folgen die fünf Standardargumente. Einige n-Kanal-Sperrschicht-Fets sind in Abb. 2.24 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

```
\begin{circuitdiagram}{68}{10}
\nocircledtrans
\trans{nj}{2}{5}{Lud}{T1}{J108}
\trans{nj}{11}{5}{LUud}{T2}{J108}
\trans{nj}{20}{5}{Rud}{T3}{J108}
\trans{nj}{29}{5}{RUud}{T4}{J108}
\circledtrans
\trans{nj}{38}{5}{Lud}{T5}{J108}
\trans{nj}{47}{5}{LUud}{T6}{J108}
\trans{nj}{56}{5}{Rud}{T7}{J108}
\trans{nj}{55}{5}{Rud}{T7}{J108}
\trans{nj}{65}{5}{RUd}{T7}{J108}
\trans{nj}{65}{5}{RUd}{T7}{J108}
\trans{nj}{65}{5}{RUd}{T7}{J108}
\trans{nj}{65}{5}{RUd}{T7}{J108}
\end{circuitdiagram}
```


Abbildung 2.24: n-Kanal-Sperrschicht-Fets

Einige p-Kanal-Sperrschicht-Fets sind in Abb. 2.25 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.3 und 5.4:

\begin{circuitdiagram}{68}{10}
\nocircledtrans
\trans{pj}{2}{5}{Lud}{T1}{J174}
\trans{pj}{11}{5}{LDud}{T2}{J174}
\trans{pj}{20}{5}{Rud}{T3}{J174}
\trans{pj}{29}{5}{RDud}{T4}{J174}
\circledtrans
\trans{pj}{38}{5}{Lud}{T5}{J174}
\trans{pj}{47}{5}{LDud}{T5}{J174}
\trans{pj}{47}{5}{LDud}{T6}{J174}
\trans{pj}{56}{5}{RUd}{T7}{J174}
\trans{pj}{65}{5}{RUd}{T7}{J174}
\trans{pj}{65}{5}{RUd}{T7}{J174}

Abbildung 2.25: p-Kanal-Sperrschicht-Fets

2.15 Operationsverstärker

Der Befehl \opamp zeichnet einen Operationsverstärker und besitzt die fünf Standardargumente. Einige Operationsverstärker sind in Abb. 2.26 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{74}{24} \opamp{7}{18}{L}{IC1}{LM358} \opamp{17}{18}{Lhr}{IC2}{LM358} \opamp{33}{18}{L1}{IC3}{LM358} \opamp{45}{18}{LU}{IC4}{LM358} \opamp{55}{18}{LUhr}{IC5}{LM358} \opamp{70}{18}{LU1}{IC6}{LM358} \opamp{4}{6}{R}{IC7}{LM358} \opamp{4}{6}{R}{IC7}{LM358} \opamp{27}{6}{Rh1}{IC8}{LM358} \opamp{27}{6}{Rh1}{IC9}{LM358}

\opamp{42}{6}{RU}{IC10}{LM358} \opamp{55}{6}{RUh1}{IC11}{LM358} \opamp{65}{6}{RUr}{IC12}{LM358} \end{circuitdiagram}

Abbildung 2.26: Operationsverstärker

2.16 Linear-ICs

Der Befehl \linic (bereitgestellt von der Paketoption ic) zeichnet einen Linear-IC und besitzt sechs Argumente. Als erstes Argument steht der Typ, danach folgen die fünf Standardargumente. Alle derzeit möglichen Linear-ICs sind in Abb. 2.27 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1. Die ICs sind nur in der Orientierung R dargestellt; in der Orientierung L sind sie einfach nur gespiegelt:

\begin{circuitdiagram}{34}{18} \linic{78xx}{5}{9}{Rhr}{IC1}{78xx} \linic{79xx}{17}{9}{Rhr}{IC2}{79xx} \linic{ne555}{28}{9}{Rhr}{IC3}{NE555} \end{circuitdiagram}

Abbildung 2.27: Linear-ICs

2.17 Gatter

Der Befehl \gate (bereitgestellt von der Paketoption digital) zeichnet ein Gatter und besitzt sechs Argumente. Als erstes Argument steht der Typ (and, nand, or usw.), danach folgen die

fünf Standardargumente. Einige AND-Gatter sind in Abb. 2.28 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{71}{12}
\gate{and}{4}{7}{L}{IC1}{7408}
\gate{and}{13}{7}{Lu}{IC2}{7408}
\gate{and}{22}{7}{Ldd}{IC3}{7408}
\gate{and}{31}{7}{Lcc}{IC4}{7408}
\gate{and}{40}{7}{R}{IC5}{7408}
\gate{and}{49}{7}{Ru}{IC6}{7408}
\gate{and}{58}{7}{Rdd}{IC7}{7408}
\gate{and}{67}{7}{Rcc}{IC8}{7408}
\end{circuitdiagram}
```


Abbildung 2.28: AND-Gatter

Einige NAND-Gatter sind in Abb. 2.29 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{71}{12}
\gate{nand}{4}{7}{L}{IC1}{7400}
\gate{nand}{13}{7}{Lu}{IC2}{7400}
\gate{nand}{22}{7}{Ldd}{IC3}{7400}
\gate{nand}{31}{7}{Lcc}{IC4}{7400}
\gate{nand}{40}{7}{R}{IC5}{7400}
\gate{nand}{49}{7}{Ru}{IC6}{7400}
\gate{nand}{58}{7}{Rdd}{IC7}{7400}
\gate{nand}{67}{7}{RCc}{IC8}{7400}
\gate{nand}{67}{7}{RCc}{IC8}{7400}
\end{circuitdiagram}
```


Abbildung 2.29: NAND-Gatter

Einige OR-Gatter sind in Abb. 2.30 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{71}{12}
\gate{or}{4}{7}{L}{IC1}{7432}
\gate{or}{13}{7}{Lu}{IC2}{7432}
\gate{or}{22}{7}{Ldd}{IC3}{7432}
\gate{or}{31}{7}{Lcc}{IC4}{7432}
\gate{or}{40}{7}{R}{IC5}{7432}
\gate{or}{49}{7}{Ru}{IC6}{7432}
\gate{or}{58}{7}{Rdd}{IC7}{7432}
\gate{or}{67}{7}{Rcc}{IC8}{7432}
\gate{or}{67}{7}{Rdd}{IC7}{7432}

Abbildung 2.30: OR-Gatter

Einige NOR-Gatter sind in Abb. 2.31 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

begin{circuitdiagram}{71}{12}
 \gate{nor}{4}{7}{L}{IC1}{7402}
 \gate{nor}{13}{7}{Lu}{IC2}{7402}
 \gate{nor}{22}{7}{Ldd}{IC3}{7402}
 \gate{nor}{31}{7}{Lcc}{IC4}{7402}
 \gate{nor}{40}{7}{R}{IC5}{7402}
 \gate{nor}{49}{7}{Ru}{IC6}{7402}
 \gate{nor}{58}{7}{Rdd}{IC7}{7402}
 \gate{nor}{67}{7}{Rcc}{IC8}{7402}
 \gate{nor}{67}{7}{Rcc}{IC8}{7402}
 \end{circuitdiagram}

Abbildung 2.31: NOR-Gatter

Einige XOR-Gatter sind in Abb. 2.32 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{71}{12} \gate{xor}{4}{7}{L}{IC1}{7486} \gate{xor}{13}{7}{Lu}{IC2}{7486} \gate{xor}{22}{7}{Ldd}{IC3}{7486} \gate{xor}{31}{7}{Lcc}{IC4}{7486} \gate{xor}{40}{7}{R}{IC5}{7486} \gate{xor}{49}{7}{Ru}{IC6}{7486} \gate{xor}{58}{7}{Rdd}{IC7}{7486} \gate{xor}{67}{7}{Rcc}{IC8}{7486} \end{circuitdiagram}

Abbildung 2.32: XOR-Gatter

Einige XNOR-Gatter sind in Abb. 2.33 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{71}{12}
\gate{xnor}{4}{7}{L}{IC1}{74266}
\gate{xnor}{13}{7}{Lu}{IC2}{74266}
\gate{xnor}{22}{7}{Ldd}{IC3}{74266}
\gate{xnor}{31}{7}{Lcc}{IC4}{74266}
\gate{xnor}{40}{7}{R}{IC5}{74266}
\gate{xnor}{49}{7}{Ru}{IC6}{74266}
\gate{xnor}{58}{7}{Rdd}{IC7}{74266}
\gate{xnor}{67}{7}{Rcc}{IC8}{74266}
\gate{xnor}{67}{7}{Rcc}{IC8}{74266}
\gate{xnor}{67}{7}{Rcc}{IC8}{74266}
\gate{xnor}{67}{7}{Rcc}{IC8}{74266}
\end{circuitdiagram}

Abbildung 2.33: XNOR-Gatter

Einige Puffer-Gatter sind in Abb. 2.34 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{73}{12} \gate{buf}{3}{7}{L}{IC1}{7407} \gate{buf}{12}{7}{Lu}{IC2}{7407} \gate{buf}{21}{7}{Ldd}{IC3}{7407} \gate{buf}{29}{7}{Lr}{IC4}{7407} \gate{buf}{41}{7}{R}{IC5}{7407} \gate{buf}{50}{7}{Ru}{IC6}{7407} \gate{buf}{59}{7}{Rdd}{IC7}{7407} \gate{buf}{70}{7}{R1}{IC8}{7407} \end{circuitdiagram}

Abbildung 2.34: Puffer-Gatter

Einige NOT-Gatter sind in Abb. 2.35 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{73}{12}
\gate{not}{3}{7}{L}{IC1}{7404}
\gate{not}{12}{7}{Lu}{IC2}{7404}
\gate{not}{21}{7}{Ldd}{IC3}{7404}
\gate{not}{29}{7}{Lr}{IC4}{7404}
\gate{not}{41}{7}{R}{IC5}{7404}
\gate{not}{50}{7}{Ru}{IC5}{7404}
\gate{not}{59}{7}{Rdd}{IC7}{7404}
\gate{not}{70}{7}{Rl}{IC8}{7404}
\end{circuitdiagram}

Abbildung 2.35: NOT-Gatter

2.18 Decoder

Der Befehl \decoder (bereitgestellt von der Paketoption digital) zeichnet einen Decoder und besitzt sechs Argumente. Als erstes Argument steht der Typ (mux21, demux13 usw.), danach folgen die fünf Standardargumente. Einige Multiplexer sind in Abb. 2.36 bis 2.37 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

\begin{circuitdiagram}{58}{32} \decoder{mux21}{4}{26}{L}{IC1}{74xx} \decoder{mux21e}{14}{26}{L}{IC2}{74xx} \decoder{mux21ne}{24}{26}{L}{IC3}{74xx} \decoder{mux21}{34}{26}{R}{IC4}{74xx}

```
\decoder{mux21e}{44}{26}{R}{IC5}{74xx} \decoder{mux21ne}{54}{26}{R}{IC6}{74xx} \decoder{mux41}{4}{9}{L}{IC7}{74xx} \decoder{mux41e}{14}{9}{L}{IC8}{74xx} \decoder{mux41ne}{24}{9}{L}{IC9}{74xx} \decoder{mux41ne}{24}{9}{L}{IC9}{74xx} \decoder{mux41}{34}{9}{R}{IC10}{74xx} \decoder{mux41e}{44}{9}{R}{IC11}{74xx} \decoder{mux41e}{44}{9}{R}{IC11}{74xx} \decoder{mux41ne}{54}{9}{R}{IC12}{74xx} \decoder{mux41ne}{54}{9}{R}{IC12}{74xx} \decoder{mux41ne}{54}{9}{R}{IC12}{74xx} \end{circuitdiagram}
```


Abbildung 2.36: Multiplexer

```
\begin{circuitdiagram}{58}{64}
\decoder{mux81}{4}{50}{L}{IC1}{74xx}
\decoder{mux81e}{14}{50}{L}{IC2}{74xx}
\decoder{mux81ne}{24}{50}{L}{IC3}{74xx}
\decoder{mux81ne}{24}{50}{R}{IC4}{74xx}
\decoder{mux81}{34}{50}{R}{IC4}{74xx}
\decoder{mux81e}{44}{50}{R}{IC5}{74xx}
\decoder{mux81ne}{54}{50}{R}{IC6}{74xx}
\decoder{mux101}{4}{17}{L}{IC7}{74xx}
\decoder{mux101e}{14}{17}{L}{IC8}{74xx}
\decoder{mux101ne}{24}{17}{L}{IC9}{74xx}
\decoder{mux101ne}{24}{17}{R}{IC10}{74xx}
\decoder{mux101ne}{44}{17}{R}{IC11}{74xx}
\decoder{mux101e}{44}{17}{R}{IC11}{74xx}
\decoder{mux101ne}{54}{17}{R}{IC11}{74xx}
\decoder{mux101ne}{54}{17}{R}{IC12}{74xx}
\decoder{mux101ne}{54}{17}{R}{IC12}{74xx}
```

Einige Demultiplexer sind in Abb. 2.38 bis 2.39 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{58}{24} \decoder{demux12}{4}{19}{L}{IC1}{74xx}
```


Abbildung 2.37: Multiplexer

```
\decoder{demux12d}{14}{19}{L}{IC2}{74xx} \decoder{demux12e}{24}{19}{L}{IC3}{74xx} \decoder{demux12}{34}{19}{R}{IC4}{74xx} \decoder{demux12d}{44}{19}{R}{IC5}{74xx} \decoder{demux12d}{44}{19}{R}{IC5}{74xx} \decoder{demux12e}{54}{19}{R}{IC6}{74xx} \decoder{demux14}{4}{6}{L}{IC7}{74xx} \decoder{demux14d}{14}{6}{L}{IC8}{74xx} \decoder{demux14d}{14}{6}{L}{IC9}{74xx} \decoder{demux14e}{24}{6}{L}{IC10}{74xx} \decoder{demux14d}{34}{6}{R}{IC10}{74xx} \decoder{demux14d}{44}{6}{R}{IC11}{74xx} \decoder{demux14e}{54}{6}{R}{IC12}{74xx} \decoder{demux14e}{54}{6}{R}{IC12}{74xx} \end{circuitdiagram}
```


Abbildung 2.38: Demultiplexer

```
\begin{circuitdiagram}{58}{46}
\decoder{demux18}{4}{36}{L}{IC1}{74xx}
\decoder{demux18d}{14}{36}{L}{IC2}{74xx}
\decoder{demux18e}{24}{36}{L}{IC3}{74xx}
\decoder{demux18e}{24}{36}{R}{IC4}{74xx}
\decoder{demux18d}{44}{36}{R}{IC5}{74xx}
\decoder{demux18d}{44}{36}{R}{IC5}{74xx}
\decoder{demux18e}{54}{36}{R}{IC6}{74xx}
\decoder{demux110}{4}{12}{L}{IC7}{74xx}
\decoder{demux110d}{14}{12}{L}{IC8}{74xx}
\decoder{demux110d}{14}{12}{L}{IC9}{74xx}
\decoder{demux110e}{24}{12}{R}{IC10}{74xx}
\decoder{demux110d}{44}{12}{R}{IC10}{74xx}
\decoder{demux110d}{44}{12}{R}{IC11}{74xx}
\decoder{demux110d}{44}{12}{R}{IC11}{74xx}
\decoder{demux110e}{54}{12}{R}{IC11}{74xx}
\decoder{demux110e}{54}{12}{R}{IC12}{74xx}
\end{circuitdiagram}
```

Wie bei den Multiplexern kann der Data- und Enable-Eingang zu nd und ne negiert werden, und die beiden können auch kombiniert werden, z.B. demux14ndne.

Abbildung 2.39: Demultiplexer

2.19 Arithmetische Bausteine

Der Befehl \arithm (bereitgestellt von der Paketoption digital) zeichnet einen arithmetischen Baustein und besitzt sechs Argumente. Als erstes Argument steht der Typ (halfadd, mul3 usw.), danach folgen die fünf Standardargumente. Einige Addierer sind in Abb. 2.40 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
begin{circuitdiagram}{58}{33}
   \arithm{halfadd}{4}{28}{L}{IC1}{74xx}
   \arithm{fulladd}{14}{28}{L}{IC2}{74xx}
   \arithm{fulladd}{34}{28}{R}{IC3}{74xx}
   \arithm{fulladd}{44}{28}{R}{IC4}{74xx}
   \arithm{add2}{4}{11}{L}{IC5}{74xx}
   \arithm{add3}{14}{11}{L}{IC6}{74xx}
   \arithm{add4}{24}{11}{L}{IC7}{74xx}
   \arithm{add4}{24}{11}{R}{IC9}{74xx}
   \arithm{add4}{34}{11}{R}{IC8}{74xx}
   \arithm{add3}{44}{11}{R}{IC9}{74xx}
   \arithm{add3}{44}{11}{R}{IC9}{74xx}
   \arithm{add4}{54}{11}{R}{IC9}{74xx}
   \arithm{add4}{54}{11}{R}{IC10}{74xx}
   \arithm{add4}{54}{11}{R}{IC10}{74xx}
   \end{circuitdiagram}
```

Einige Multiplizierer sind in Abb. 2.41 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{58}{29}
\arithm{mul1}{4}{24}{L}{IC1}{74xx}
\arithm{mul1}{34}{24}{R}{IC2}{74xx}
```


Abbildung 2.40: Addierer

\arithm{mul2}{4}{10}{L}{IC3}{74xx} \arithm{mul3}{14}{10}{L}{IC4}{74xx} \arithm{mul4}{24}{10}{L}{IC5}{74xx} \arithm{mul2}{34}{10}{R}{IC6}{74xx} \arithm{mul3}{44}{10}{R}{IC7}{74xx} \arithm{mul4}{54}{10}{R}{IC8}{74xx} \arithm{mul4}{54}{10}{R}{IC8}{74xx} \end{circuitdiagram}

Abbildung 2.41: Multiplizierer

2.20 Flipflops

Der Befehl \flipflop (bereitgestellt von der Paketoption digital) zeichnet ein Flipflop und besitzt sechs Argumente. Als erstes Argument steht der Typ (sr, d, jk usw.), danach folgen die fünf Standardargumente. Einige SR-Flipflops sind in Abb. 2.42 dargestellt, weitere

2. BAUELEMENTE

Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{58}{26}
\flipflop{sr}{4}{21}{L}{IC1}{74xx}
\flipflop{sr}{14}{21}{Lu}{IC2}{74xx}
\flipflop{sr}{24}{21}{Lu}{IC3}{74xx}
\flipflop{sr}{34}{21}{R}{IC4}{74xx}
\flipflop{sr}{34}{21}{R}{IC5}{74xx}
\flipflop{sr}{44}{21}{Ru}{IC5}{74xx}
\flipflop{sr}{54}{21}{Rdd}{IC6}{74xx}
\flipflop{nsr}{4}{7}{L}{IC7}{74xx}
\flipflop{nsr}{4}{7}{Lu}{IC8}{74xx}
\flipflop{nsr}{24}{7}{Ldd}{IC9}{74xx}
\flipflop{nsr}{34}{7}{Ru}{IC10}{74xx}
\flipflop{nsr}{34}{7}{Ru}{IC11}{74xx}
\flipflop{nsr}{44}{7}{Ru}{IC12}{74xx}
\hlipflop{nsr}{54}{7}{Ru}{IC11}{74xx}
\hlipflop{nsr}{54}{7}{Rdd}{IC12}{74xx}
\end{circuitdiagram}
```


Abbildung 2.42: SR-Flipflops

Einige D-Flipflops sind in Abb. 2.43 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{58}{26}
\flipflop{d}{4}{21}{L}{IC1}{74xx}
\flipflop{d}{14}{21}{Lu}{IC2}{74xx}
\flipflop{d}{24}{21}{Ldd}{IC3}{74xx}
\flipflop{d}{34}{21}{R}{IC4}{74xx}
\flipflop{d}{34}{21}{Ru}{IC5}{74xx}
\flipflop{d}{44}{21}{Ru}{IC5}{74xx}
\flipflop{d}{54}{21}{Rdd}{IC6}{74xx}
\flipflop{nd}{4}{7}{L}{IC7}{74xx}
\flipflop{nd}{4}{7}{Lu}{IC8}{74xx}
\flipflop{nd}{14}{7}{Lu}{IC8}{74xx}
\flipflop{nd}{24}{7}{Ldd}{IC9}{74xx}
\flipflop{nd}{34}{7}{Ru}{IC10}{74xx}
\flipflop{nd}{34}{7}{Ru}{IC11}{74xx}
\hlipflop{nd}{54}{7}{Ru}{IC11}{74xx}
\hlipflop{nd}{54}{7}{Rdd}{IC12}{74xx}
\end{circuitdiagram}
```


Abbildung 2.43: D-Flipflops

Einige JK-Flipflops sind in Abb. 2.44 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1:

```
\begin{circuitdiagram}{58}{26}
\flipflop{jk}{4}{21}{L}{IC1}{74xx}
\flipflop{jk}{14}{21}{Lu}{IC2}{74xx}
\flipflop{jk}{24}{21}{Lu}{IC3}{74xx}
\flipflop{jk}{24}{21}{Ld}{IC3}{74xx}
\flipflop{jk}{34}{21}{R}{IC4}{74xx}
\flipflop{jk}{44}{21}{Ru}{IC5}{74xx}
\flipflop{jk}{54}{21}{Rdd}{IC6}{74xx}
\flipflop{njk}{44}{7}{L}{IC7}{74xx}
\flipflop{njk}{44}{7}{Lu}{IC8}{74xx}
\flipflop{njk}{14}{7}{Lu}{IC8}{74xx}
\flipflop{njk}{34}{7}{Ru}{IC10}{74xx}
\flipflop{njk}{34}{7}{Ru}{IC11}{74xx}
\flipflop{njk}{44}{7}{Ru}{IC12}{74xx}
\flipflop{njk}{54}{7}{Rdd}{IC12}{74xx}
\hlipflop{njk}{54}{7}{Rdd}{IC12}{74xx}
\end{circuitdiagram}
```


Abbildung 2.44: JK-Flipflops

2.21 TTL-ICs

Der Befehl \ttlic (bereitgestellt von der Paketoption ic) zeichnet einen TTL-IC und besitzt sechs Argumente. Als erstes Argument steht der Typ, danach folgen die fünf Standardargumente. Alle derzeit möglichen TTL-ICs sind in Abb. 2.45 bis 2.48 dargestellt, weitere Möglichkeiten zur Beschriftung in Abb. 5.1. Die ICs sind nur in der Orientierung R dargestellt; in der Orientierung L sind sie einfach nur gespiegelt:

```
\begin{circuitdiagram}{68}{44}
\ttlic{7400}{4}{34}{R}{IC1}{7400}
\ttlic{7401}{14}{34}{R}{IC2}{7401}
\ttlic{7402}{24}{34}{R}{IC3}{7402}
\ttlic{7403}{34}{34}{R}{IC4}{7403}
\ttlic{7404}{44}{34}{R}{IC5}{7404}
\ttlic{7405}{54}{34}{R}{IC6}{7405}
\ttlic{7406}{64}{34}{R}{IC7}{7406}
\ttlic{7407}{4}{11}{R}{IC8}{7407}
\ttlic{7408}{14}{11}{R}{IC9}{7408}
\ttlic{7409}{24}{11}{R}{IC10}{7409}
\ttlic{7410}{34}{11}{R}{IC11}{7410}
\ttlic{7411}{44}{11}{R}{IC12}{7411}
\ttlic{7414}{54}{11}{R}{IC13}{7414}
\ttlic{7420}{64}{11}{R}{IC14}{7420}
\end{circuitdiagram}
```


Abbildung 2.45: TTL-ICs

```
\begin{circuitdiagram}{68}{47}
\ttlic{7421}{4}{36}{R}{IC1}{7421}
\ttlic{7422}{14}{36}{R}{IC2}{7422}
\ttlic{7426}{24}{36}{R}{IC3}{7426}
\ttlic{7427}{34}{36}{R}{IC4}{7427}
\ttlic{7430}{44}{36}{R}{IC5}{7430}
\ttlic{7432}{54}{36}{R}{IC6}{7432}
\ttlic{7433}{64}{36}{R}{IC7}{7433}
\ttlic{7437}{4}{12}{R}{IC8}{7437}
\ttlic{7442}{14}{12}{R}{IC9}{7442}
\ttlic{7447}{24}{12}{R}{IC10}{7447}
\ttlic{7473}{34}{12}{R}{IC11}{7473}
\ttlic{7474}{44}{12}{R}{IC12}{7474}
\ttlic{7475}{54}{12}{R}{IC13}{7475}
\ttlic{7476}{64}{12}{R}{IC14}{7476}
\end{circuitdiagram}
```


Abbildung 2.46: TTL-ICs

```
\begin{circuitdiagram}{68}{50}
\ttlic{7483}{4}{37}{R}{IC1}{7483}
\ttlic{7485}{14}{37}{R}{IC2}{7485}
\ttlic{7486}{24}{37}{R}{IC3}{7486}
\ttlic{7490}{34}{37}{R}{IC4}{7490}
\ttlic{7492}{44}{37}{R}{IC5}{7492}
```

2. BAUELEMENTE

```
\ttlic{74107}{54}{37}{R}{IC6}{74107}
\ttlic{74109}{64}{37}{R}{IC7}{74109}
\ttlic{74112}{4}{12}{R}{IC8}{74112}
\ttlic{74113}{14}{12}{R}{IC9}{74113}
\ttlic{74114}{24}{12}{R}{IC10}{74114}
\ttlic{74122}{34}{12}{R}{IC11}{74122}
\ttlic{74123}{44}{12}{R}{IC12}{74123}
\ttlic{74125}{54}{12}{R}{IC13}{74125}
\ttlic{74126}{64}{12}{R}{IC14}{74126}
\end{circuitdiagram}
```


Abbildung 2.47: TTL-ICs

```
\begin{circuitdiagram}{68}{56}
\ttlic{74132}{4}{41}{R}{IC1}{74132}
\ttlic{74133}{14}{41}{R}{IC2}{74133}
\ttlic{74136}{24}{41}{R}{IC3}{74136}
\ttlic{74137}{34}{41}{R}{IC4}{74137}
\ttlic{74138}{44}{41}{R}{IC5}{74138}
\ttlic{74139}{54}{41}{R}{IC6}{74139}
\ttlic{74145}{64}{41}{R}{IC7}{74145}
\ttlic{74155}{4}{12}{R}{IC8}{74157}
```

```
\ttlic{74173}{24}{12}{R}{IC10}{74173}
\ttlic{74175}{34}{12}{R}{IC11}{74175}
\ttlic{74240}{44}{12}{R}{IC12}{74240}
\ttlic{74244}{54}{12}{R}{IC13}{74244}
\ttlic{74273}{64}{12}{R}{IC14}{74273}
\end{circuitdiagram}
```


Abbildung 2.48: TTL-ICs

3 Leitungen und Anschlüsse

3.1 Drähte

Der Befehl \wire zeichnet einen Draht und besitzt vier Argumente. Die ersten beiden sind die x- und y-Koordinate des Startpunkts, die letzten beiden die des Endpunkts. Einige Drähte sind in Abb. 3.1 dargestellt:

```
\begin{circuitdiagram}{15}{3}
\wire{0}{2}{3}{2}
\wire{5}{0}{5}{3}
\wire{7}{0}{9}{2}
```

\wire{11}{1}{15}{1} \wire{13}{0}{13}{3} \end{circuitdiagram}

Abbildung 3.1: Drähte

Der Befehl besitzt ein optionales Argument, das H oder V sein kann. In diesem Fall wird kein diagonaler Draht, sondern ein rechtwinklig abgeknickter Draht gezeichnet, der entweder zuerst horizontal oder zuerst vertikal verläuft. Einige solche Drähte sind in Abb. 3.2 dargestellt:

\begin{circuitdiagram}{30}{3}
\wire[H]{0}{0}{2}{3}
\wire[V]{4}{0}{6}{3}
\wire[H]{10}{0}{8}{3}
\wire[H]{10}{0}{12}{3}
\wire[H]{16}{3}{18}{0}
\wire[Y]{20}{3}{22}{0}
\wire[H]{26}{3}{24}{0}
\wire[V]{30}{3}{28}{0}
\end{circuitdiagram}

Abbildung 3.2: Abgeknickte Drähte

3.2 Lötpunkte

Der Befehl \junct zeichnet einen Lötpunkt und besitzt zwei Argumente. Dies sind die x- und y-Koordinate des Punkts. Einige Lötpunkte sind in Abb. 3.3 dargestellt:

\begin{circuitdiagram}{13}{3}
\wire{0}{1}{2}{1}
\wire{2}{0}{2}{3}
\junct{2}{1}
\wire{4}{2}{7}{2}
\wire{5}{0}{5}{2}
\junct{5}{2}
\wire{9}{1}{13}{1}
\wire{11}{0}{11}{3}
\junct{11}{1}
\end{circuitdiagram}

Abbildung 3.3: Lötpunkte

3.3 Anschlusspins

Der Befehl \pin zeichnet einen Anschlusspin und besitzt vier Argumente. Dies sind die ersten vier der fünf Standardargumente, d. h. nur der Bauelementwert fällt weg. Einige Anschlusspins sind in Abb. 3.4 dargestellt:

```
\begin{circuitdiagram}{58}{6}
\left\{1\right\}{3}{L}{}
\phi(6){3}{L}{A}
\pi{10}{3}{R}{}
 \pi{14}{3}{R}{B}
 \pin{19}{3}{LR}{}
 pin{23}{3}{LR}{A}
 pin{27}{3}{LRd}{B}
\pi{31}{3}{U}{}
 \pin{35}{3}{U}{A}
\pin{39}{3}{D}{}
 \pi{43}{3}{D}{B}
\pin{47}{3}{UD}{}
\pin{51}{3}{UD}{A}
\pin{57}{3}{UD1}{B}
\end{circuitdiagram}
```


Abbildung 3.4: Anschlusspins

3.4 Spannungsversorgung

Der Befehl \ground zeichnet ein Massesymbol und besitzt drei Argumente. Dies sind die ersten drei der fünf Standardargumente, d. h. Referenz und Bauelementwert fallen weg. Einige Massesymbole sind in Abb. 3.5 dargestellt:

```
\begin{circuitdiagram}{15}{4}
\ground{1}{2}{L}
\ground{5}{2}{R}
\ground{9}{2}{U}
\ground{13}{2}{D}
\end{circuitdiagram}
```

Der Befehl \power zeichnet einen Versorgungsspannungspfeil und besitzt vier Argumente. Dies sind die ersten drei und das letzte der fünf Standardargumente, d. h. die Referenz fällt weg. Einige Versorgungsspannungspfeile sind in Abb. 3.6 dargestellt:

Abbildung 3.5: Masse

\begin{circuitdiagram}{19}{6}
\power{4}{3}{L}{5V}
\power{8}{3}{R}{5V}
\power{14}{3}{U}{5V}
\power{14}{3}{D}{5V}
\end{circuitdiagram}

Abbildung 3.6: Versorgungsspannungspfeile

3.5 Spannungspfeile

Der Befehl \Voltarrow zeichnet einen Spannungspfeil und besitzt sechs Argumente. Die ersten vier sind die beiden Koordinaten das Anfangspunkts und die beiden Koordinaten des Endpunkts. Beim Zeichnen der Linie wird an beiden Enden ein fester Abstand gelassen, damit die Kombination zusammen mit \pin vernünftig aussieht. Das fünfte ist die Orientierung und das sechste der Wert. Einige Spannungspfeile sind in Abb. 3.7 dargestellt:

```
\begin{circuitdiagram}{12}{15}
\pin{2}{13}{R}{}
\pin{2}{2}{U}{}
\ground{2}{0}{D}
\Voltarrow{2}{13}{2}{2}{r}{$U_1$}
\pin{11}{14}{L}{}
\Voltarrow{11}{14}{2}{13}{d}{$U_2$}
\pin{10}{2}{U}{}
\ground{10}{0}{D}
\Voltarrow{10}{2}{11}{14}{14}{1}{$U_3$}
\higher
\deltarrow{2}{2}{11}{14}{14}{1}{$U_3$}
\end{circuitdiagram}
```

3.6 Strompfeile

Der Befehl \currarrow zeichnet einen Strompfeil (ohne Linie oder Draht) und besitzt vier Argumente. Dies sind die ersten drei der fünf Standardargumente, d.h. Referenz und Bauelementwert fallen weg, und das vierte Argument ist der Text. Einige Strompfeile sind in Abb. 3.8 dargestellt:

\begin{circuitdiagram}{43}{6}

Abbildung 3.7: Spannungspfeile

 $\mathbf{0}{3}{4}{3}$ \currarrow{2}{3}{L}{\$I_1\$} $\mathbf{6}{3}{10}{3}$ \currarrow{8}{3}{Ld}{\$I_2\$} $\mathbf{12}{3}{16}{3}$ \currarrow{14}{3}{R}{\$I_3\$} $\mathbf{3}{3}{22}{3}$ \currarrow{20}{3}{Rd}{\$I_4\$} \wire{25}{1}{25}{5} \currarrow{25}{3}{U}{\$I_5\$} $wire{32}{1}{32}{5}$ \currarrow{32}{3}{U1}{\$I_6\$} $\mathbf{35}{1}{35}{5}$ \currarrow{35}{3}{D}{\$I_7\$} $wire{42}{1}{42}{5}$ \currarrow{42}{3}{D1}{\$I_8\$} \end{circuitdiagram}

Abbildung 3.8: Strompfeile

4 Zusätze zu den Bauelementen

Alle Zusätze zu Bauelementen stehen im optionalen Argument an erster Stelle vom Bauelementbefehl.

4.1 Verlängerte Zuleitungen

Die Befehle \wireL, \wireR, \wireLR, \wireU, \wireD und \wireUD zeichnen Leitungen an die Anschlüsse eines Bauelements und besitzen ein Argument. Dies ist die Länge des Drahts. Einige verlängerte Zuleitungen sind in Abb. 4.1 dargestellt:

\begin{circuitdiagram}{70}{39} \voltsrc[\wireL{2}]{5}{34}{H}{U1}{}

```
\voltsrc[\wireU{2}]{12}{34}{V}{U2}{}
   \currsrc[\wireR{2}]{22}{34}{H}{I1}{}
   \currsrc[\wireD{2}]{31}{34}{V}{I2}{}
   \othersrc[\wireLR{1}]{batt}{41}{34}{L}{U3}{}
   \cline{1}{00}{49}{34}{V}{I3}{}
   \cline{2} {off} {60} {34} {R} {S1} {}
   \switch[\wireUD{1}]{online}{66}{34}{U}{S2}{}
   \ \left[ \left( 1 \right) \right] = \left( 1 \right) \left(
   \ \left[ \left[ \left( 1 \right) \right] \left( 1 \right) \right] 
   \resis[\wireL{2}]{23}{23}{H}{R1}{}
   \resis[\wireUD{1}]{29}{23}{V}{R2}{}
   \capac[\wireLR{1}]{37}{23}{Hu}{C1}{}
   \capac[\wireU{2}]{43}{23}{V}{C2}{}
   \induc[\wireLR{1}]{52}{23}{H}{L1}{}
   \induc[\wireUD{1}]{59}{23}{V}{L2}{}
   \diode[\wireR{2}]{66}{23}{L}{D1}{}
   \diode[\wireU{2}]{2}{12}{D}{D2}{}
   \diac[\wireLR{1}]{11}{12}{H}{D3}{}
   \diac[\wireD{2}]{19}{12}{V}{D4}{}
   \trans[\wireR{2}]{npn}{27}{12}{Lud}{T1}{}
   \trans[\wireUD{1}]{pnp}{37}{12}{Rud}{T2}{}
   \trans[\wireU{1.5}]{nenh}{43}{12}{Lud}{T3}{}
   \trans[\wireR{1}]{pdep*}{51}{12}{Rud}{T4}{}
   \trans[\wireUD{1.5}]{nj}{59}{12}{LUud}{T5}{}
   \trans[\wireL{1}]{pj}{68}{12}{RDud}{T6}{}
   \pin[\wireL{2}]{18}{3}{R}{A}
   \pin[\wireD{2}]{23}{3}{U}{B}
   \pin[\wireUD{1}]{27}{3}{UD}{C}
    \ground[\wireR{2}]{32}{3}{L}
    \ground[\wireU{2}]{39}{3}{D}
   \power[\wireR{2}]{47}{3}{L}{5 V}
    \power[\wireD{2}]{54}{3}{U}{12 V}
\end{circuitdiagram}
```

4.2 Stecker und Buchsen

Der Befehl \male verwandelt einen Pin in einen Stecker und besitzt kein Argument. Einige Stecker sind in Abb. 4.2 dargestellt:

```
\begin{circuitdiagram}{19}{6}
\pin[\male]{3}{3}{L}{A}
\pin[\male]{8}{3}{R}{B}
\pin[\male]{14}{3}{U}{A}
\pin[\male]{18}{3}{D}{B}
\end{circuitdiagram}
```

Der Befehl \female verwandelt einen Pin in eine Buchse und besitzt kein Argument. Einige Buchsen sind in Abb. 4.3 dargestellt:

Abbildung 4.1: Verlängerte Zuleitungen

Abbildung 4.2: Stecker

```
\begin{circuitdiagram}{19}{6}
\pin[\female]{3}{3}{L}{A}
\pin[\female]{8}{3}{R}{B}
\pin[\female]{14}{3}{U}{A}
\pin[\female]{18}{3}{D}{B}
\end{circuitdiagram}
```

$$A \supset - \subset B \qquad \begin{matrix} A \\ \lor \end{matrix} \qquad \begin{matrix} & & \\ & & \\ & & \\ & & \end{matrix}$$

Abbildung 4.3: Buchsen

Stecker und Buchsen passen dann ineinander (Abb. 4.4):

```
\begin{circuitdiagram}{7}{2}
\pin[\male]{1}{1}{L}{}
\pin[\female]{1}{1}{R}{}
\pin[\male]{6}{1}{U}{}
\pin[\female]{6}{1}{D}{}
\end{circuitdiagram}
```


Abbildung 4.4: Stecker und Buchsen

4.3 Spannungspfeile

Der Befehl \voltarrow zeichnet einen Spannungspfeil an ein Bauelement und besitzt zwei Argumente. Dies sind die Position des Pfeils und der Text. Einige Bauelemente mit Spannungspfeilen sind in Abb. 4.5 dargestellt:

```
\begin{circuitdiagram}{60}{26}
\voltsrc[\voltarrow{UL}{$U_1$}]{3}{21}{Hd}{U1}{}
\currsrc[\voltarrow{UR}_{$U_2$}]_{11}_{21}_{Hd}_{I1}_{}
\switch[\voltarrow{DL}{$U_3$}]{off}{19}{21}{R}{S1}{}
\c \DR_{\SU_4}_{27}_{21}_{H}_{R1}_{\c}
\capac[\voltarrow{UL}{$U_5$}]{35}{21}{Hd}{C1}{}
\cline{UR} {UL} {43} {21} {Hd} {L1} {}
\diode[\voltarrow{DL}{$U_7$}]{51}{21}{R}{D1}{}
\diac[\voltarrow{DR}{$U_8$}]{58}{21}{H}{D2}{}
\voltsrc[\voltarrow{LU}{$U_9$}]{13}{11}{V}{U2}{}
\currsrc[\voltarrow{LD}{$U_{10}$}]{26}{11}{V}{I2}{}
\ \left[ \left( \C (RU) \right) \right] = \left( \C (RU) \right) 
\resis[\voltarrow{RD}{$U_{12}$}]{46}{11}{V1}{R2}{}
\capac[\voltarrow{LU}{$U_{13}$}]{14}{3}{V}{C2}{}
\cline{LD}{\SU_{14}$}]{24}{3}{V}{L2}{}
\diode[\voltarrow{RU}{\$U_{15}\$}]{33}{3}{D1}{D3}{}
```


Abbildung 4.5: Spannungspfeile

4.4 Signal-Symbole

Der Befehl \sigsym (bereitgestellt von der Paketoption srcmeas) zeichnet ein Spannungsbzw. Strom-Signal-Symbol und besitzt ein Argument. Dies beschreibt die Signalform. Einige Signal-Symbole sind in Abb. 4.6 dargestellt:

```
\begin{circuitdiagram}{66}{16}
\operatorname{cos}_{0}_{3}_{12}_{H}_{U1}_{}
\c \c \sign {cos}{0}{10}{12}{V}{U2}{}
\operatorname{cos} \{0\}\{20\}\{12\}\{H\}\{U3\}\{\}\}
\othersrc[\sigsym{rec}] {o}{37}{12}{H}{U5}{}
\othersrc[\sigsym{rec>}]{o}{44}{12}{V}{U6}{}
\othersrc[\sigsym{-rec}]{o}{54}{12}{H}{U7}{}
\othersrc[\sigsym{-rec>}]{o}{61}{12}{V}{U8}{}
\othersrc[\sigsym{tri}]{o}{3}{3}{H}{I1}{}
\othersrc[\sigsym{tri>}]{o}{10}{3}{V}{I2}{}
\othersrc[\sigsym{-tri}]{o}{20}{3}{H}{I3}{}
\othersrc[\sigsym{-tri>}]{o}{27}{3}{V}{I4}{}
\othersrc[\sigsym{saw}]{o}{37}{3}{H}{I5}{}
\othersrc[\sigsym{saw>}]{o}{44}{3}{V}{I6}{}
\othersrc[\sigsym{-saw}]{o}{54}{3}{H}{I7}{}
\othersrc[\sigsym{-saw>}]{o}{61}{3}{V}{I8}{}
\end{circuitdiagram}
```

4.5 Polarität

Der Befehl \polarity (bereitgestellt von der Paketoption srcmeas) zeichnet ein Plus- und ein Minuszeichen und besitzt ein Argument. Dies beschreibt die Position des Pluszeichens. Einige Polaritäten sind in Abb. 4.7 dargestellt:

Abbildung 4.6: Signal-Symbole

\begin{circuitdiagram}{69}{18} \voltsrc[\polarity{UL}]{4}{14}{H}{U1}{} \currsrc[\polarity{UR}]{13}{14}{Hu}{I1}{} $\c \DR} {00}{31}{14}{Hr}{12}{}$ \voltsrc[\polarity{LU}]{40}{14}{V}{U3}{} \currsrc[\polarity{LD}]\{52\\{14\}\{Vlr\\{I3\\\}\} \othersrc[\polarity{RU}]{batt2}{59}{14}{Uhl}{U4}{} $\operatorname{NOTIC} \operatorname{NOTIC} \{00\} \{66\} \{14\} \{Vd\} \{I4\} \{Vd\} \{I4\} \}$ \measdev[\polarity{UL}]{4}{4}{H}{M1}{} $\measdev[\polarity{UR}]{13}{4}{Hu}{M2}{}$ \measdev[\polarity{LU}]{40}{4}{V}{M5}{} \measdev[\polarity{LD}]{52}{4}{Vlr}{M6}{} \measdev[\polarity{RU}]{59}{4}{Vhl}{M7}{} \measdev[\polarity{RD}]{66}{4}{Vd}{M8}{} \end{circuitdiagram}

Abbildung 4.7: Polaritäten

4.6 Messgeräte-Einheiten

Der Befehl \measunit (bereitgestellt von der Paketoption srcmeas) druckt eine Einheit eines Messgeräts und besitzt ein Argument. Dies ist die Einheit als Text. Einige Messgeräte-Einheiten sind in Abb. 4.8 dargestellt:

\begin{circuitdiagram}{66}{7}

```
\measdev[\measunit{V}]{3}{3}{H}{M1}{}
\measdev[\measunit{kV}]{10}{3}{V}{M2}{}
\measdev[\measunit{mV}]{20}{3}{H}{M3}{}
\measdev[\measunit{A}]{27}{3}{V}{M4}{}
\measdev[\measunit{mA}]{37}{3}{H}{M5}{}
\measdev[\measunit{\micro A}]{44}{3}{V}{M6}{}
\measdev[\measunit{\Ohm}]{54}{3}{H}{M7}{}
\measdev[\measunit{\Ohm}]{54}{3}{V}{M8}{}
\measdev[\measunit{k\Ohm}]{61}{3}{V}{M8}{}
\end{circuitdiagram}
```


Abbildung 4.8: Messgeräte-Einheiten

4.7 Schleifer

Der Befehl \slider zeichnet einen Schleifkontakt an einen Widerstand und besitzt ein Argument. Dies ist die Position des Schleifkontakts. Einige Widerstände sind in Abb. 4.9 dargestellt:

```
\begin{circuitdiagram}{31}{6}
\resis[\slider{U}]{3}{3}{Hd}{R1}{}
\resis[\slider{D}]{11}{3}{H}{R2}{}
\resis[\slider{L}]{19}{3}{V}{R3}{}
\resis[\slider{R}]{28}{3}{V1}{R4}{}
\end{circuitdiagram}
```


Abbildung 4.9: Schleifkontakte bei Widerständen

4.8 Kalt- und Heißleiter

Die Befehle \ptc bzw. \ntc (beide bereitgestellt von der Paketoption passive) kennzeichnen einen Widerstand als Kalt- bzw. Heißleiter und besitzen ein Argument. Dies ist die Position des kurzen Striches und damit des Temperaturbuchstabens ϑ . Einige Kaltleiter sind in Abb. 4.10 dargestellt:

```
\begin{circuitdiagram}{66}{6}
\resis[\ptc{LU}]{3}{3}{Hd}{R1}{}
\resis[\ptc{LD}]{11}{3}{H}{R2}{}
\resis[\ptc{RU}]{19}{3}{Hd}{R3}{}
\resis[\ptc{RD}]{27}{3}{H}{R4}{}
\resis[\ptc{LU}]{36}{3}{V}{R5}{}
```

\resis[\ptc{LD}]{45}{3}{V}{R6}{} \resis[\ptc{RU}]{54}{3}{V1}{R7}{} \resis[\ptc{RD}]{63}{3}{V1}{R8}{} \end{circuitdiagram}

Abbildung 4.10: Kaltleiter

Einige Heißleiter sind in Abb. 4.11 dargestellt:

Abbildung 4.11: Heißleiter

4.9 Photoempfindlichkeit

Der Befehl \photo zeichnet zwei Lichtpfeile, die auf das Bauelement zeigen, und besitzt ein Argument. Dies ist die Position der Pfeile. Einige Photowiderstände sind in Abb. 4.12 dargestellt:

\begin{circuitdiagram}{35}{8}
\resis[\photo{U}]{4}{4}{Hd}{R1}{}
\resis[\photo{D}]{12}{4}{Hu}{R2}{}
\resis[\photo{L}]{21}{4}{V}{R3}{}
\resis[\photo{R}]{31}{4}{V1}{R4}{}
\end{circuitdiagram}

Einige Photodioden sind in Abb. 4.13 dargestellt:

\begin{circuitdiagram}{61}{8} \diode[\photo{U}]{2}{4}{Ld}{D1}{} \diode[\photo{D}]{8}{4}{Lu}{D2}{}

$$\begin{array}{c|c} & R2 \\ \hline R1 & R2 \\ \hline \end{array}$$

Abbildung 4.12: Photoempfindlichkeit bei Widerständen

\diode[\photo{U}]{14}{4}{Rd}{D3}{} \diode[\photo{D}]{20}{4}{Ru}{D4}{} \diode[\photo{L}]{28}{4}{U}{D5}{} \diode[\photo{R}]{38}{4}{U1}{D6}{} \diode[\photo{L}]{47}{4}{D}{D7}{} \diode[\photo{R}]{57}{4}{D1}{D8}{} \end{circuitdiagram}

Abbildung 4.13: Photoempfindlichkeit bei Dioden

4.10 Lichtaussendung

Der Befehl \emit zeichnet zwei Lichtpfeile, die vom Bauelement wegzeigen, und besitzt ein Argument. Dies ist die Position der Pfeile. Einige Leuchtdioden sind in Abb. 4.14 dargestellt:

\begin{circuitdiagram}{61}{8}
\diode[\emit{U}]{2}{4}{Ld}{D1}{}
\diode[\emit{D}]{8}{4}{Lu}{D2}{}
\diode[\emit{U}]{14}{4}{Rd}{D3}{}
\diode[\emit{D}]{20}{4}{Ru}{D4}{}
\diode[\emit{L}]{28}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D5}{}
\diode[\emit{R}]{38}{4}{U}{D1}{D8}{}
\diode[\emit{R}]{38}{4}{D1}{D8}{}
\emit{Circuitdiagram}

Abbildung 4.14: Leuchtdioden

4.11 Elektrolytkondensatoren

Der Befehl \elcap zeichnet ein Pluszeichen an einen Kondensator und besitzt ein Argument. Dies ist die Position des Pluszeichens. Einige Elektrolytkondensatoren sind in Abb. 4.15 dargestellt:

Abbildung 4.15: Elektrolytkondensatoren

4.12 Windungen für Spulen

Der Befehl \windings erlaubt mehr (oder weniger) Windungen bei einer Spule und besitzt ein Argument. Dies ist die Anzahl der zu zeichnenden Windungen. Im Falle der ausgefüllten Spulen wird das Rechteck länger (oder kürzer). Einige Beispiele sind in Abb. 4.16 dargestellt:

```
\begin{circuitdiagram}{62}{28}
\normalinduc
\induc[\windings{2}]{2}{24}{H}{L1}{}
\induc[\windings{2}]{8}{24}{HD}{L2}{}
\[ \] \{13\} \{24\} \{V\} \{L3\} \{\} \}
\induc[\windings{2}]{21}{24}{VR}{L4}{}
\induc[\windings{5}]{32}{24}{H}{L5}{}
\induc[\windings{5}]{42}{24}{HD}{L6}{}
\induc[\windings{5}]{49}{24}{V}{L7}{}
 \induc[\windings{5}]{57}{24}{VR}{L8}{}
\curlyinduc
\induc[\windings{2}]{2}{14}{H}{L9}{}
\induc[\windings{2}]{8}{14}{HD}{L10}{}
 \induc[\windings{2}]{13}{14}{V}{L11}{}
\induc[\windings{2}]{21}{14}{VR}{L12}{}
\induc[\windings{5}]{32}{14}{H}{L13}{}
\induc[\windings\{5\}]\{42\}\{14\}\{HD\}\{L14\}\{\}
\induc[\windings{5}]{49}{14}{V}{L15}{}
 \induc[\windings{5}]{57}{14}{VR}{L16}{}
```

```
\filledinduc
\induc[\windings{2}]{2}{4}{H}{L17}{}
\induc[\windings{2}]{8}{4}{HD}{L18}{}
\induc[\windings{2}]{13}{4}{V}{L19}{}
\induc[\windings{2}]{21}{4}{VR}{L20}{}
\induc[\windings{5}]{32}{4}{H}{L21}{}
\induc[\windings{5}]{42}{4}{HD}{L22}{}
\induc[\windings{5}]{49}{4}{V}{L23}{}
\induc[\windings{5}]{57}{4}{VR}{L24}{}
\induc[\windings{5}]{57}{4}{VR}{L24}{}
```


Abbildung 4.16: Windungen für Spulen

Der Befehl \windings sollte immer als erster stehen, weil die anderen Befehle von dessen Argument abhängen. In Abb. 4.17 ist links eine korrekt und rechts eine fehlerhaft gesetzte Spule dargestellt:

Abbildung 4.17: Eine korrekt und eine fehlerhaft gesetzte Spule

4.13 Eisen- und Ferritkerne

Der Befehl \ironcore (bereitgestellt von der Paketoption passive) zeichnet einen Eisenkern an eine Spule und besitzt kein Argument. Einige Spulen mit Eisenkern sind in Abb. 4.18 dargestellt:

\begin{circuitdiagram}{30}{22}

```
\normalinduc
    \induc[\incore]{3}{19}{Hd}{L1}{}
    \induc[\incore]{11}{19}{HD}{L2}{}
    \label{limits} $$ \left( \frac{18}{19}{V}_{L3}{} \right) $$ induc[\induc]_{18}(19){V}_{L3}{} $$ induc[\induc]_{18
    \cline{19}{VR1}{L4}{}
    \curlyinduc
    \induc[\incore]{3}{11}{Hd}{L5}{}
    \induc[\incore]{11}{11}{HD}{L6}{}
    \induc[\incore]{18}{11}{V}{L7}{}
    \induc[\incore]{28}{11}{VR1}{L8}{}
    \filledinduc
    \induc[\ironcore]{3}{3}{Hd}{L9}{}
    \induc[\ironcore]{11}{3}{HD}{L10}{}
    \induc[\ironcore]{18}{3}{V}{L11}{}
    \induc[\incore]{28}{3}{VR1}{L12}{}
\end{circuitdiagram}
```


Abbildung 4.18: Eisenkerne

Der Befehl \ferrcore (bereitgestellt von der Paketoption passive) zeichnet einen Ferritkern an eine Spule und besitzt kein Argument. Einige Spulen mit Ferritkern sind in Abb. 4.19 dargestellt:

\induc[\ferrcore]{18}{3}{V}{L11}{}
\induc[\ferrcore]{28}{3}{VR1}{L12}{}
\end{circuitdiagram}

Abbildung 4.19: Ferritkerne

Ein Transformator kann durch zwei Spulen mit Eisenkern erzeugt werden, was in Abb. 4.20 dargestellt ist:

\begin{circuitdiagram}{9}{6}
\normalinduc
\induc[\ironcore]{3}{3}{VR1}{L1}{}
\induc[\ironcore]{6}{3}{V}{}{}
\end{circuitdiagram}

Abbildung 4.20: Ein Transformator

Für alleinstehende Eisenkerne dient ein weiterer Befehl: \Ironcore (bereitgestellt von der Paketoption passive) zeichnet eine Doppellinie und besitzt vier Argumente. Diese sind die xund y-Koordinate, die Ausrichtung (H oder V) und die Länge (die man am besten gleich der Anzahl der Windungen wählt). Einige Eisenkerne sind in Abb. 4.21 dargestellt:

\begin{circuitdiagram}{22}{8}
\Ironcore{3}{4}{H}{3}
\Ironcore{12}{4}{H}{5}
\Ironcore{19}{4}{V}{3}
\Ironcore{22}{4}{V}{5}
\end{circuitdiagram}

Ein komplizierterer Transformator ist in Abb. 4.22 dargestellt:

\begin{circuitdiagram}{5}{14}
\normalinduc
\induc[\windings{5}\wireUD{3}]{1}{7}{VR}{}{}

Abbildung 4.21: Alleinstehende Eisenkerne

\Ironcore{2.5}{7}{V}{8} \induc[\windings{8}\wireUD{1}]{4}{7}{V}{}{\wire{4}{4}{5}{4} \end{circuitdiagram}

Abbildung 4.22: Ein komplizierterer Transformator

4.14 Wicklungssinn

Der Befehl \winddot zeichnet einen Punkt für den Wicklungssinn an eine Spule und besitzt ein Argument. Dies ist die Position des Punktes. Einige Spulen mit Wicklungssinn sind in Abb. 4.23 dargestellt:

```
\begin{circuitdiagram}{60}{22}
\normalinduc
\induc[\winddot{L}]{3}{19}{Hd}{L1}{}
\induc[\winddot{R}]{11}{19}{Hd}{L2}{}
\induc[\winddot{L}]{19}{19}{HD}{L3}{}
\induc[\winddot{R}]{27}{19}{HD}{L4}{}
\induc[\winddot{U}]{33}{19}{V}{L5}{}
\induc[\winddot{D}]{41}{19}{V}{L6}{}
\induc[\winddot{U}]{51}{19}{VR1}{L7}{}
\induc[\winddot{D}]{59}{19}{VR1}{L8}{}
\curlyinduc
\induc[\winddot{L}]{3}{11}{Hd}{L9}{}
\induc[\winddot{R}]{11}{11}{Hd}{L10}{}
\induc[\winddot{L}]{19}{11}{HD}{L11}{}
\induc[\winddot{R}]{27}{11}{HD}{L12}{}
\induc[\winddot{U}]{33}{11}{V}{L13}{}
\induc[\winddot{D}]{41}{11}{V}{L14}{}
\induc[\winddot{U}]{51}{11}{VR1}{L15}{}
\induc[\winddot{D}]{59}{11}{VR1}{L16}{}
\filledinduc
```

```
\induc[\winddot{L}]{3}{3}{Hd}{L17}{} \induc[\winddot{R}]{11}{3}{Hd}{L18}{} \induc[\winddot{L}]{19}{3}{HD}{L19}{} \induc[\winddot{R}]{27}{3}{HD}{L20}{} \induc[\winddot{U}]{33}{3}{V}{L21}{} \induc[\winddot{D}]{41}{3}{V}{L22}{} \induc[\winddot{U}]{51}{3}{VR1}{L23}{} \induc[\winddot{D}]{59}{3}{VR1}{L24}{} \induc[\winddot{D}]{59}{3}{VR1}{L24}{} \end{circuitdiagram}
```


Abbildung 4.23: Wicklungssinn

4.15 Veränderbarkeit

Der Befehl \modify zeichnet einen Veränderbarkeitspfeil diagonal durch ein Bauelement und besitzt ein Argument. Dies ist die Position der Pfeilspitze und – bei Widerständen – ob eine Verbindung zum Anschluss hergestellt wird. Einige Quellen sind in Abb. 4.24 dargestellt:

```
\begin{circuitdiagram}{67}{25}
\voltsrc[\modify{LU}]{3}{21}{H}{U1}{}
\voltsrc[\modify{LD}]{11}{21}{H}{U2}{}
\voltsrc[\modify{RU}]{19}{21}{H}{U3}{}
\voltsrc[\modify{LU}]{35}{21}{V}{U5}{}
\voltsrc[\modify{LD}]{44}{21}{V}{U6}{}
\voltsrc[\modify{RU}]{53}{21}{V}{U7}{}
\voltsrc[\modify{RD}]{62}{21}{V}{U8}{}
\currsrc[\modify{LU}]{3}{12}{H}{I1}{}
\currsrc[\modify{LD}]{11}{12}{H}{I2}{}
\currsrc[\modify{RU}]{19}{12}{H}{I3}{}
\currsrc[\modify{RD}]{27}{12}{H}{I4}{}
\currsrc[\modify{LU}]{35}{12}{V}{I5}{}
\currsrc[\modify{LD}]{44}{12}{V}{I6}{}
\currsrc[\modify{RU}]{53}{12}{V}{I7}{}
\currsrc[\modify{RD}]{62}{12}{V}{I8}{}
\othersrc[\modify{LU}]{o}{3}{3}{H}{U9}{}
```


Abbildung 4.24: Veränderbarkeitspfeile bei Quellen

Einige Widerstände sind in Abb. 4.25 dargestellt:

```
\begin{circuitdiagram}{71}{16}
      \resis[\modify{LU}]{5}{13}{H}{R1}{}
      \c \mbox{ resis[$\mathbb{L}U*$]{13}{13}{H}{R2}{}
      \c \LD}{22}{13}{H}{R3}{}
      \c \mbox{ resis[$\mathbb{LD}*$]{30}{13}{H}{R4}{}}
      \r(RU) = (MOdify(RU)) = (39) = (13) = (R5) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13) = (13)
      \r [\m {RU*}] {48}{13}{H}{R6}{}
      \c \mbox{Modify}(RD)]{56}{13}{H}{R7}{}
      \c \mbox{RD*} {65}{13}{H}{R8}{}
      \resis[\modify{LU}]{3}{4}{V}{R9}{}
      \c \m [\m [LU*]]{12}{4}{V}{R10}{}
      \resis[\modify{LD}]{21}{4}{V}{R11}{}
      \resis[\modify{LD*}]{30}{4}{V}{R12}{}
      \resis[\modify{RU}]{39}{4}{V}{R13}{}
      \c \modify{RD}]{57}{4}{V}{R15}{}
      \c \m \c \
\end{circuitdiagram}
```

Einige Kondensatoren sind in Abb. 4.26 dargestellt:

```
\begin{circuitdiagram}{63}{7}
\capac[\modify{LU}]{3}{3}{Hud}{C1}{}
```


Abbildung 4.25: Veränderbarkeitspfeile bei Widerständen

\capac[\modify{LD}] {10}{3}{Hud}{C2}{}
\capac[\modify{RU}] {17}{3}{Hud}{C3}{}
\capac[\modify{RD}] {24}{3}{Hud}{C4}{}
\capac[\modify{LU}] {31}{3}{Vr}{C5}{}
\capac[\modify{LD}] {40}{3}{Vr}{C6}{}
\capac[\modify{RU}] {49}{3}{Vr}{C7}{}
\capac[\modify{RD}] {58}{3}{Vr}{C8}{}
\end{circuitdiagram}

Abbildung 4.26: Veränderbarkeitspfeile bei Kondensatoren

Einige horizontale Spulen sind in Abb. 4.27 dargestellt:

```
\begin{circuitdiagram}{62}{23}
\normalinduc
\induc[\modify{LU}]{3}{19}{H}{L1}{}
\cline{1}{11}{19}{HD}{L2}{}
\induc[\modify{LD}]{19}{19}{H}{L3}{}
\induc[\modify{LD}]{27}{19}{HD}{L4}{}
\induc[\modify{RU}]{35}{19}{H}{L5}{}
\induc[\modify{RU}]{43}{19}{HD}{L6}{}
\induc[\modify{RD}]{51}{19}{H}{L7}{}
\induc[\modify{RD}]{59}{19}{HD}{L8}{}
\curlyinduc
\induc[\modify{LU}]{3}{11}{H}{L9}{}
\induc[\modify{LU}]{11}{11}{HD}{L10}{}
\cline{1}{19}{11}{H}{L11}{}
\[ \] {27}{11}{HD}{L12}{}
\induc[\modify{RU}]{35}{11}{H}{L13}{}
\induc[\modify{RU}]{43}{11}{HD}{L14}{}
\induc[\modify{RD}]{51}{11}{H}{L15}{}
\induc[\modify{RD}]{59}{11}{HD}{L16}{}
\filledinduc
```

```
\induc[\modify{LU}]{3}{3}{H}{L17}{}
\induc[\modify{LU}]{11}{3}{HD}{L18}{}
\induc[\modify{LD}]{19}{3}{H}{L19}{}
\induc[\modify{LD}]{27}{3}{HD}{L20}{}
\induc[\modify{RU}]{35}{3}{H}{L21}{}
\induc[\modify{RU}]{43}{3}{HD}{L22}{}
\induc[\modify{RD}]{51}{3}{H}{L23}{}
\induc[\modify{RD}]{59}{3}{HD}{L24}{}
\end{circuitdiagram}
```


Abbildung 4.27: Veränderbarkeitspfeile bei horizontalen Spulen

Einige vertikale Spulen sind in Abb. 4.28 dargestellt:

```
\begin{circuitdiagram}{71}{22}
\normalinduc
\induc[\modify{LU}]{3}{19}{V}{L1}{}
\cline{Modify{LU}}{12}{19}{VR}{L2}{}
\induc[\modify{LD}]{21}{19}{V}{L3}{}
\cline{LD}{30}{19}{VR}{L4}{}
\induc[\modify{RU}]{39}{19}{V}{L5}{}
\induc[\modify{RU}]{48}{19}{VR}{L6}{}
\induc[\modify{RD}]{57}{19}{V}{L7}{}
\induc[\modify{RD}]{66}{19}{VR}{L8}{}
\curlyinduc
\induc[\modify{LU}]{3}{11}{V}{L9}{}
\induc[\modify{LU}]{12}{11}{VR}{L10}{}
\induc[\modify{LD}]{21}{11}{V}{L11}{}
\induc[\modify{LD}]{30}{11}{VR}{L12}{}
\induc[\modify{RU}]{39}{11}{V}{L13}{}
\induc[\modify{RU}]{48}{11}{VR}{L14}{}
\induc[\modify{RD}]{57}{11}{V}{L15}{}
\induc[\modify{RD}]{66}{11}{VR}{L16}{}
\filledinduc
\induc[\modify{LU}]{3}{3}{V}{L17}{}
\induc[\modify{LU}]{12}{3}{VR}{L18}{}
\induc[\modify{LD}]{21}{3}{V}{L19}{}
```


Abbildung 4.28: Veränderbarkeitspfeile bei vertikalen Spulen

Für alleinstehende Veränderbarkeitspfeile dient ein weiterer Befehl: \Modify (bereitgestellt von der Paketoption passive) zeichnet einen Veränderbarkeitspfeil und besitzt drei Argumente. Diese sind die x- und y-Koordinate und die Position der Pfeilspitze. Einige Veränderbarkeitspfeile sind in Abb. 4.29 dargestellt:

```
begin{circuitdiagram}{39}{16}
   \curlyinduc
   \Ironcore{4.5}{8}{V}{9}
   \induc[\windings{8}\winddot{U}\wireUD{0.5}]{3}{8}{VR}{}}
   \induc[\windings{4}\winddot{D}\wireUD{0.75}]{6}{11.75}{VL}{}}
   \induc[\windings{3}\winddot{U}]{6}{3.5}{VL}{}}
   \Modify{4.5}{10.5}{RU}
   \Modify{14.5}{10.5}{LU}
   \Modify{24.5}{10.5}{RD}
   \modify{34.5}{10.5}{RD}
   \end{circuitdiagram}
```


Abbildung 4.29: Alleinstehende Veränderbarkeitspfeile

4.16 Einstellbarkeit

Der Befehl \trim zeichnet einen Einstellbarkeitsstrich diagonal durch ein Bauelement und besitzt ein Argument. Dies ist die Position der Strichendes und – bei Widerständen – ob eine Verbindung zum Anschluss hergestellt wird. Einige Widerstände sind in Abb. 4.30 dargestellt:

```
\begin{circuitdiagram}{71}{16}
\c \LU} {5}{13}{H}{R1}{}
\resis[\trim{LU*}]{13}{13}{H}{R2}{}
 \resis[\trim{LD}]{22}{13}{H}{R3}{}
\resis[\trim{LD*}]{30}{13}{H}{R4}{}
\resis[\trim{RU}]{39}{13}{H}{R5}{}
\resis[\trim{RU*}]{48}{13}{H}{R6}{}
\resis[\trim{RD}]{56}{13}{H}{R7}{}
 \resis[\trim{RD*}]{65}{13}{H}{R8}{}
\resis[\trim{LU}]{3}{4}{V}{R9}{}
\resis[\trim{LU*}]{12}{4}{V}{R10}{}
\resis[\trim{LD}]{21}{4}{V}{R11}{}
\resis[\trim{LD*}]{30}{4}{V}{R12}{}
\resis[\trim{RU}]{39}{4}{V}{R13}{}
\rsin [\trim{RU*}]{48}{4}{V}{R14}{}
\rsin {RD} {57}{4}{V}{R15}{}
\resis[\trim{RD*}]{66}{4}{V}{R16}{}
\end{circuitdiagram}
```


Abbildung 4.30: Einstellbarkeitsstriche bei Widerständen

Einige Kondensatoren sind in Abb. 4.31 dargestellt:

```
\begin{circuitdiagram}{63}{7}
\capac[\trim{LU}]{3}{3}{Hud}{C1}{}
\capac[\trim{LD}]{10}{3}{Hud}{C2}{}
\capac[\trim{RU}]{17}{3}{Hud}{C3}{}
\capac[\trim{RD}]{24}{3}{Hud}{C4}{}
\capac[\trim{LU}]{31}{3}{Vr}{C5}{}
\capac[\trim{LD}]{40}{3}{Vr}{C6}{}
\capac[\trim{RU}]{49}{3}{Vr}{C7}{}
\capac[\trim{RD}]{58}{3}{Vr}{C8}{}
\eapac[\trim{RD}]{58}{3}{Vr}{C8}{}
```

Einige horizontale Spulen sind in Abb. 4.32 dargestellt:

Abbildung 4.31: Einstellbarkeitsstriche bei Kondensatoren

```
\begin{circuitdiagram}{62}{23}
\normalinduc
\cline{LU} {3}{19}{H}{L1}{}
\induc[\trim{LU}]{11}{19}{HD}{L2}{}
\ \left[ \left( LD \right) \right]  (19){19}{H}{L3}{}
\induc[\trim{LD}]{27}{19}{HD}{L4}{}
\induc[\trim{RU}]{35}{19}{H}{L5}{}
\induc[\trim{RU}]{43}{19}{HD}{L6}{}
\induc[\operatorname{RD}]{51}{19}{H}{L7}{}
\induc[\trim{RD}]{59}{19}{HD}{L8}{}
\curlyinduc
\induc[\trim{LU}]{3}{11}{H}{L9}{}
\induc[\trim{LU}]{11}{11}{HD}{L10}{}
\induc[\trim{LD}]{19}{11}{H}{L11}{}
\induc[\trim{LD}]{27}{11}{HD}{L12}{}
\induc[\trim{RU}]{35}{11}{H}{L13}{}
\induc[\operatorname{RU}]_{43}_{11}_{HD}_{L14}_{}
\induc[\trim{RD}]{51}{11}{H}{L15}{}
\induc[\trim{RD}]{59}{11}{HD}{L16}{}
\filledinduc
\induc[\trim{LU}]{3}{3}{H}{L17}{}
\cline{LU}{11}{3}{HD}{L18}{}
\induc[\trim{LD}]{19}{3}{H}{L19}{}
\induc[\trim{LD}]{27}{3}{HD}{L20}{}
\induc[\trim{RU}]{35}{3}{H}{L21}{}
\induc[\trim{RU}]{43}{3}{HD}{L22}{}
\induc[\trim{RD}]{51}{3}{H}{L23}{}
\induc[\trim{RD}]{59}{3}{HD}{L24}{}
\end{circuitdiagram}
```

Einige vertikale Spulen sind in Abb. 4.33 dargestellt:

Abbildung 4.32: Einstellbarkeitsstriche bei horizontalen Spulen

\curlyinduc $\induc[\trim{LU}]{3}{11}{V}{L9}{}$ \induc[\trim{LU}]{12}{11}{VR}{L10}{} \induc[\trim{LD}]{21}{11}{V}{L11}{} $\induc[\trim{LD}]{30}{11}{VR}{L12}{}$ $\induc[\trim{RU}]{39}{11}{V}{L13}{}$ $\induc[\trim{RU}]{48}{11}{VR}{L14}{}$ $\induc[\trim{RD}]{57}{11}{V}{L15}{}$ $\induc[\trim{RD}]{66}{11}{VR}{L16}{}$ \filledinduc \induc[\trim{LU}]{3}{3}{V}{L17}{} $\induc[\trim{LU}]{12}{3}{VR}{L18}{}$ $\induc[\trim{LD}]{21}{3}{V}{L19}{}$ $\induc[\trim{LD}]{30}{3}{VR}{L20}{}$ \induc[\trim{RU}]{39}{3}{V}{L21}{} \induc[\trim{RU}]{48}{3}{VR}{L22}{} $\induc[\trim{RD}]{57}{3}{V}{L23}{}$ $\induc[\trim{RD}]{66}{3}{VR}{L24}{}$ \end{circuitdiagram}

Abbildung 4.33: Einstellbarkeitsstriche bei vertikalen Spulen

Für alleinstehende Einstellbarkeitsstriche dient ein weiterer Befehl: \Trim (bereitgestellt von

der Paketoption passive) zeichnet einen Einstellbarkeitsstrich und besitzt drei Argumente. Diese sind die x- und y-Koordinate und die Position der Strichendes. Einige Einstellbarkeitsstriche sind in Abb. 4.34 dargestellt:

Abbildung 4.34: Alleinstehende Einstellbarkeitsstriche

4.17 Zener-Dioden bzw. Z-Dioden

Der Befehl \zener zeichnet den Strich der Zener-Diode an eine Diode und besitzt ein Argument. Dies ist die Position des Strichs. Einige Zener-Dioden sind in Abb. 4.35 dargestellt:

```
\begin{circuitdiagram}{51}{6}
\diode[\zener{U}]{2}{2}{L}{D1}{}
\diode[\zener{D}]{8}{2}{L}{D2}{}
\diode[\zener{U}]{14}{2}{R}{D3}{}
\diode[\zener{D}]{20}{2}{R}{D4}{}
\diode[\zener{L}]{26}{2}{U}{D5}{}
\diode[\zener{R}]{33}{2}{U}{D6}{}
\diode[\zener{L}]{40}{2}{D}{D7}{}
\diode[\zener{R}]{47}{2}{D}{D8}{}
\diode[\zener{R}]{47}{2}{D}{D8}{}
```


Abbildung 4.35: Zener-Dioden bzw. Z-Dioden

4.18 Schottky-Dioden und -Transistoren

Der Befehl \schottky (bereitgestellt von der Paketoption semicon) zeichnet die beiden Striche der Schottky-Diode an eine Diode und besitzt kein Argument. Einige Schottky-Dioden sind in Abb. 4.36 dargestellt:

\begin{circuitdiagram}{25}{6}
\diode[\schottky]{2}{2}{L}{D1}{}
\diode[\schottky]{8}{2}{R}{D2}{}
\diode[\schottky]{14}{2}{U}{D3}{}
\diode[\schottky]{21}{2}{D}{D4}{}
\end{circuitdiagram}

Abbildung 4.36: Schottky-Dioden

Dasselbe funktioniert auch bei bipolaren Transistoren. Einige Schottky-Transistoren sind in Abb. 4.37 dargestellt:

Abbildung 4.37: Schottky-Transistoren

4.19 Tunneldioden

Der Befehl \tunnel (bereitgestellt von der Paketoption semicon) zeichnet die beiden Striche der Tunneldiode an eine Diode und besitzt kein Argument. Einige Tunneldioden sind in Abb. 4.38 dargestellt:

\begin{circuitdiagram}{25}{6} \diode[\tunnel]{2}{2}{L}{D1}{}

\diode[\tunnel]{8}{2}{R}{D2}{}
\diode[\tunnel]{14}{2}{U}{D3}{}
\diode[\tunnel]{21}{2}{D}{D4}{}
\end{circuitdiagram}

$$\begin{array}{c|cccc}
D1 & D2 \\
\hline
\end{array} & \begin{array}{c}
D3 & D4
\end{array}$$

Abbildung 4.38: Tunneldioden

4.20 Kapazitätsdioden

Der Befehl \capdio (bereitgestellt von der Paketoption semicon) zeichnet einen Kondensator an eine Diode und besitzt kein Argument. Einige Kapazitätsdioden sind in Abb. 4.39 dargestellt:

```
\begin{circuitdiagram}{27}{20}
\lineddiode
\diode[\capdio]{2}{16}{L}{D1}{}
\diode[\capdio]{8}{16}{R}{D2}{}
\diode[\capdio]{14}{16}{U}{D3}{}
\diode[\capdio]{22}{16}{D}{D4}{}
\emptydiode
\diode[\capdio]{2}{9}{L}{D5}{}
\diode[\capdio]{8}{9}{R}{D6}{}
\diode[\capdio]{14}{9}{U}{D7}{}
\diode[\capdio]{22}{9}{D}{D8}{}
\filleddiode
\diode[\capdio]{2}{2}{L}{D9}{}
\diode[\capdio]{8}{2}{R}{D10}{}
\diode[\capdio]{14}{2}{U}{D11}{}
\diode[\capdio]{22}{2}{D}{D12}{}
\end{circuitdiagram}
```

Abbildung 4.39: Kapazitätsdioden

4.21 Thyristoren

Der Befehl \thyr (bereitgestellt von der Paketoption semicon) zeichnet einen Thyristor-Anschluss an eine Diode und besitzt ein Argument. Dies ist die Position des Anschlusses. Einige Thyristoren sind in Abb. 4.40 dargestellt:

```
\begin{circuitdiagram}{70}{19}
\diode[\thyr{LU}]{2}{15}{Ld}{D1}{}
\diode[\thyr{U}]{8}{15}{Ld}{D2}{}
\diode[\thyr{RU}]{14}{15}{Ld}{D3}{}
\diode[\thyr{LD}]{20}{15}{L}{D4}{}
\diode[\thyr{D}]{26}{15}{L}{D5}{}
\diode[\thyr{RD}]{32}{15}{L}{D6}{}
\diode[\thyr{LU}]{38}{15}{Rd}{D7}{}
\diode[\thyr{U}]{44}{15}{Rd}{D8}{}
\diode[\thyr{RU}]{50}{15}{Rd}{D9}{}
\diode[\thyr{LD}]{56}{15}{R}{D10}{}
\diode[\thyr{D}]{62}{15}{R}{D11}{}
\diode[\thyr{RD}]{68}{15}{R}{D12}{}
\diode[\thyr{LU}]{11}{8}{U}{D13}{}
\diode[\thyr{L}]{20}{8}{U}{D14}{}
\diode[\thyr{LD}]{29}{8}{U}{D15}{}
\diode[\thyr{RU}]{41}{8}{U1}{D16}{}
\diode[\thyr{R}]{50}{8}{U1}{D17}{}
\diode[\thyr{RD}]{59}{8}{U1}{D18}{}
\diode[\thyr{LU}]{11}{2}{D}{D19}{}
\diode[\thyr{L}]{20}{2}{D}{D20}{}
\diode[\thyr{LD}]{29}{2}{D}{D21}{}
\diode[\thyr{RU}]{41}{2}{D1}{D22}{}
\diode[\thyr{R}]{50}{2}{D1}{D23}{}
\diode[\thyr{RD}]{59}{2}{D1}{D24}{}
\end{circuitdiagram}
```


Abbildung 4.40: Thyristoren

4.22 Triacs

Der Befehl \triac (bereitgestellt von der Paketoption semicon) zeichnet einen Triac-Anschluss an einen Diac und besitzt ein Argument. Dies ist die Position des Anschlusses. Einige Triacs

sind in Abb. 4.41 dargestellt:

Abbildung 4.41: Triacs

4.23 Versorgungsspannung

Der Befehl \supply zeichnet Anschlüsse für die Versorgungsspannung bei Operationsverstärkern und besitzt ein Argument. Dies ist die Position der Anschlüsse. Einige Operationsverstärker mit Versorgungsspannung sind in Abb. 4.42 dargestellt:

```
\begin{circuitdiagram}{58}{8}
\opamp[\supply{U}]{4}{4}{L}{IC1}{}
\opamp[\supply{D}]{14}{4}{L}{IC2}{}
\opamp[\supply{UD}]{24}{4}{L}{IC3}{}
\opamp[\supply{U}]{34}{4}{R}{IC4}{}
\opamp[\supply{D}]{44}{4}{R}{IC5}{}
\opamp[\supply{UD}]{54}{4}{R}{IC6}{}
\end{circuitdiagram}
```

4.24 Eingänge für Gatter

Der Befehl \inputs (bereitgestellt von der Paketoption digital) erlaubt mehrere Eingänge bei Gattern und besitzt ein Argument. Dies ist die Anzahl der Eingänge und kann zwischen 2 und 9 liegen. Einige Gatter mit mehreren Eingängen sind in Abb. 4.43 dargestellt:

Abbildung 4.42: Versorgungsspannung für Operationsverstärker

```
begin{circuitdiagram}{52}{17}
    \gate[\inputs{3}] {and}{4}{14}{Lc}{IC1}{}
    \gate[\inputs{3}] {nand}{13}{14}{Lc}{IC2}{}
    \gate[\inputs{3}] {or}{22}{14}{Lc}{IC3}{}
    \gate[\inputs{3}] {nor}{31}{14}{Lc}{IC4}{}
    \gate[\inputs{3}] {xor}{40}{14}{Lc}{IC5}{}
    \gate[\inputs{3}] {xnor}{49}{14}{Lc}{IC5}{}
    \gate[\inputs{6}] {and}{3}{5}{Rc}{IC7}{}
    \gate[\inputs{6}] {nand}{12}{5}{Rc}{IC8}{}
    \gate[\inputs{6}] {or}{21}{5}{Rc}{IC9}{}
    \gate[\inputs{6}] {nor}{30}{5}{Rc}{IC10}{}
    \gate[\inputs{6}] {xor}{39}{5}{Rc}{IC11}{}
    \gate[\inputs{6}] {xnor}{48}{5}{Rc}{IC12}{}
    \end{circuitdiagram}
```


Abbildung 4.43: Mehrere Eingänge für Gatter

4.25 Schmitt-Trigger-Kennzeichnung

Der Befehl \schmitt (bereitgestellt von der Paketoption digital) zeichnet ein Schmitt-Trigger-Symbol in ein Gatter und besitzt kein Argument. Einige Gatter mit Schmitt-Trigger-Symbol sind in Abb. 4.44 dargestellt:

```
begin{circuitdiagram}{68}{17}
   \gate[\schmitt]{and}{4}{12}{L}{IC1}{}
   \gate[\schmitt]{nand}{13}{12}{L}{IC2}{}
   \gate[\schmitt]{or}{22}{12}{L}{IC3}{}
   \gate[\schmitt]{nor}{31}{12}{L}{IC4}{}
   \gate[\schmitt]{xor}{40}{12}{L}{IC5}{}
   \gate[\schmitt]{xnor}{49}{12}{L}{IC6}{}
   \gate[\schmitt]{buf}{57}{12}{L}{IC7}{}
   \gate[\schmitt]{not}{65}{12}{L}{IC8}{}
```

```
\gate[\schmitt]{and}{3}{3}{R}{IC9}{}
\gate[\schmitt]{nand}{12}{3}{R}{IC10}{}
\gate[\schmitt]{or}{21}{3}{R}{IC11}{}
\gate[\schmitt]{nor}{30}{3}{R}{IC12}{}
\gate[\schmitt]{xor}{39}{3}{R}{IC13}{}
\gate[\schmitt]{xor}{48}{3}{R}{IC13}{}
\gate[\schmitt]{xnor}{48}{3}{R}{IC14}{}
\gate[\schmitt]{buf}{57}{3}{R}{IC15}{}
\gate[\schmitt]{not}{65}{3}{R}{IC16}{}
\end{circuitdiagram}
```


Abbildung 4.44: Schmitt-Trigger-Symbole in Gattern

4.26 Open-Collector-Kennzeichnung

Der Befehl \opencoll (bereitgestellt von der Paketoption digital) zeichnet ein Open-Collector-Symbol in ein Gatter und besitzt kein Argument. Einige Gatter mit Open-Collector-Symbol sind in Abb. 4.45 dargestellt:

```
\begin{circuitdiagram}{68}{17}
 \gate[\opencoll]{and}{4}{12}{L}{IC1}{}
 \gate[\opencoll] \{ nand \} \{ 13 \} \{ 12 \} \{ IC2 \} \{ \}
 \gate[\opencoll]{or}{22}{12}{L}{IC3}{}
 \gate[\opencoll]{nor}{31}{12}{L}{IC4}{}
 \gate[\opencoll]{xor}{40}{12}{L}{IC5}{}
 \gate[\opencoll]{xnor}{49}{12}{L}{IC6}{}
 \gate[\opencoll]{buf}{57}{12}{L}{IC7}{}
 \gate[\opencoll]{not}{65}{12}{L}{IC8}{}
 \gate[\opencoll]{and}{3}{3}{R}{IC9}{}
 \gate[\opencoll]{nand}{12}{3}{R}{IC10}{}
 \gate[\opencoll]{or}{21}{3}{R}{IC11}{}
 \gate[\opencoll]{nor}{30}{3}{R}{IC12}{}
 \gate[\opencoll]{xor}{39}{3}{R}{IC13}{}
 \gate[\opencoll] \{xnor} \{48\} \{3\} \{R\} \{IC14\} \{\}
 \gate[\opencoll]{buf}{57}{3}{R}{IC15}{}
 \gate[\opencoll]{not}{65}{3}{R}{IC16}{}
\end{circuitdiagram}
```


Abbildung 4.45: Open-Collector-Symbole in Gattern

4.27 Tristate-Ausgänge

Der Befehl \tristate (bereitgestellt von der Paketoption digital) zeichnet einen Enable-Eingang an den Tristate-Ausgang eines Gatters und besitzt ein Argument. Dies ist U oder D, gefolgt von p für einen nicht-negierten und n für einen negierten Enable-Eingang. Einige Gatter mit Enable-Eingängen sind in Abb. 4.46 dargestellt:

```
\begin{circuitdiagram}{71}{30}
 \gate[\tristate{Up}]{and}{4}{25}{Ld}{IC1}{}
 \gate[\tristate{Un}]{and}{13}{25}{Ld}{IC2}{}
 \gate[\tristate{Dp}]{and}{22}{25}{L}{IC3}{}
 \gate[\tristate{Dn}]{and}{31}{25}{L}{IC4}{}
 \gate[\tristate{Up}]{or}{40}{25}{Ld}{IC5}{}
 \gate[\tristate{Un}] \{\)or\{49\{25\}\Ld\{IC6\}\}
 \gate[\tristate{Dp}]{or}{58}{25}{L}{IC7}{}
 \gate[\tristate{Dn}]{or}{67}{25}{L}{IC8}{}
 \gate[\tristate{Up}]{buf}{4}{15}{Ld}{IC9}{}
 \gate[\tristate{Un}]{buf}{13}{15}{Ld}{IC10}{}
 \gate[\tristate{Dp}] {buf}{22}{15}{L}{IC11}{}
 \gate[\tristate{Dn}]{buf}{31}{15}{L}{IC12}{}
 \gate[\tristate{Up}]{and}{40}{15}{Rd}{IC13}{}
 \gate[\tristate{Un}]{and}{49}{15}{Rd}{IC14}{}
 \gate[\tristate{Dp}] \{ and \} \{ 15 \} \{ R \} \{ IC15 \} \\}
 \gate[\tristate{Dn}]{and}{67}{15}{R}{IC16}{}
 \gate[\tristate{Up}]{or}{4}{5}{Rd}{IC17}{}
 \gate[\tristate{Un}]{or}{13}{5}{Rd}{IC18}{}
 \gate[\tristate{Dp}]{or}{22}{5}{R}{IC19}{}
 \gate[\tristate{Dn}]{or}{31}{5}{R}{IC20}{}
 \gate[\tristate{Up}]{buf}{40}{5}{Rd}{IC21}{}
 \gate[\tristate{Un}] \buf} \{49} \{5} \{Rd} \{IC22} \{\}
 \gate[\tristate{Dp}]{buf}{58}{5}{R}{IC23}{}
 \gate[\tristate{Dn}]{buf}{67}{5}{R}{IC24}{}
\end{circuitdiagram}
```

4.28 Ausgänge von Decodern

Der Befehl \actlowout (bereitgestellt von der Paketoption digital) negiert die Ausgänge der Demultiplexer und besitzt kein Argument. Einige Demultiplexer mit negierten Ausgängen

Abbildung 4.46: Enable-Eingänge für Tristate-Ausgänge an Gattern

sind in Abb. 4.47 dargestellt:

```
\begin{circuitdiagram}{58}{19}
\decoder[\actlowout]{demux12dne}{4}{9}{L}{IC2}{}
\decoder[\actlowout]{demux14nde}{14}{9}{L}{IC2}{}
\decoder[\actlowout]{demux18d}{24}{9}{L}{IC3}{}
\decoder[\actlowout]{demux12ndne}{34}{9}{R}{IC5}{}
\decoder[\actlowout]{demux14de}{44}{9}{R}{IC5}{}
\decoder[\actlowout]{demux18ne}{54}{9}{R}{IC6}{}
\decoder[\actlowout]{demux18ne}{54}{9}{R}{IC6}{}
\end{circuitdiagram}
```


Abbildung 4.47: Negierte Demultiplexer-Ausgänge

4.29 Ein- und Ausgänge von Flipflops

Der Befehl \showclock (bereitgestellt von der Paketoption digital) fügt dem Flipflop einen Takteingang hinzu und besitzt ein Argument. Dies ist p für einen nicht-negierten und n für einen negierten statischen Eingang oder pd für einen nicht-negierten und nd für einen negierten dynamischen Eingang. Einige Flipflops mit Takteingang sind in Abb. 4.48 dargestellt:

\begin{circuitdiagram}{68}{31}

```
\left[ \left( showclock{p} \right) \right] 
        \begin{split} & \flip flop [\showclock{n}]{sr}{14}{26}{L}{IC2}{} \end{split}
        \left[ \left[ \left[ \left( \frac{1}{24} \right) \right] \right] 
        \left[ \left( \frac{1}{26} \right) \right] 
        \left[ \left( \frac{p}{d} \right) \right] 
        \left[ \left( h\right) \right] \left( h\right) \left
        \left[\sinh\left(\frac{pd}{d}{64}{26}{L}{IC7}{6}\right)\right]
        \left[ \left( \frac{15}{L}{IC8} \right) \right]
        \left[ \left[ \left( \frac{14}{15} \right) \right] \right] 
        \left[ \left( \frac{15}{L}\left( 10\right) \right] \right] 
        \left[ \left( \frac{p}{3} \right) \right] 
        \label{limits} $$ \begin{split} & \flip flop [\showclock{n}]{sr}{54}{15}{R}{IC12}{} \end{split} $$
        \left[ \left( \frac{pd}{3} \right) \right] 
        \left[ \left( \frac{1}{2} \right) \right] 
        \left[ \left( \frac{14}{4} \right) \right] 
        \left[ \left( 1 \right) \right] \left( 1 \right) \left( 1 \right
        \left[ \left( \frac{1}{34} \right) \right] 
        \left[\left(\frac{1}{44}{4}\right)\right]
        \left[ \left[ \left[ \left( \frac{1}{2} \right) \right] \right] \right] 
        \label{limits} $$ \begin{split} & \left[ \sinh(x) + \frac{1}{2} \right] {jk} {64} {4} {R} {IC20} {3} \end{split} $$
\end{circuitdiagram}
```


Abbildung 4.48: Takteingänge

Der Befehl \showsetin (bereitgestellt von der Paketoption digital) fügt einem Flipflop den Setzen/Preset-Eingang hinzu und besitzt ein Argument. Dies ist p für einen nicht-negierten und n für einen negierten Eingang. Einige Flipflops mit Preset-Eingang sind in Abb. 4.49 dargestellt:

```
\flipflop[\showsetin{n}]{d}{34}{15}{Lhl}{IC4}{}
\flipflop[\showsetin{p}]{jk}{44}{15}{Lhl}{IC5}{}
\flipflop[\showsetin{n}]{jk}{54}{15}{Lhl}{IC6}{}
\flipflop[\showsetin{p}]{sr}{4}{4}{Rhr}{IC7}{}
\flipflop[\showsetin{n}]{sr}{14}{4}{Rhr}{IC8}{}
\flipflop[\showsetin{p}]{d}{24}{4}{Rhr}{IC9}{}
\flipflop[\showsetin{n}]{d}{34}{4}{Rhr}{IC10}{}
\flipflop[\showsetin{p}]{jk}{44}{4}{Rhr}{IC11}{}
\flipflop[\showsetin{p}]{jk}{44}{4}{Rhr}{IC12}{}
\end{circuitdiagram}
```


Abbildung 4.49: Preset-Eingänge

Der Befehl \showresetin (bereitgestellt von der Paketoption digital) fügt einem Flipflop den Löschen/Clear/Reset-Eingang hinzu und besitzt ein Argument. Dies ist p für einen nicht-negierten und n für einen negierten Eingang. Einige Flipflops mit Reset-Eingang sind in Abb. 4.50 dargestellt:

```
\begin{circuitdiagram}{58}{21}
\flipflop[\showresetin{p}]{sr}{4}{15}{Lhl}{IC1}{}
\flipflop[\showresetin{n}]{sr}{14}{15}{Lhl}{IC2}{}
\flipflop[\showresetin{p}]{d}{24}{15}{Lhl}{IC3}{}
\flipflop[\showresetin{n}]{d}{34}{15}{Lhl}{IC3}{}
\flipflop[\showresetin{p}]{jk}{44}{15}{Lhl}{IC5}{}
\flipflop[\showresetin{n}]{jk}{54}{15}{Lhl}{IC5}{}
\flipflop[\showresetin{n}]{jk}{54}{15}{Lhl}{IC6}{}
\flipflop[\showresetin{p}]{sr}{4}{4}{Rhr}{IC7}{}
\flipflop[\showresetin{n}]{sr}{14}{4}{Rhr}{IC8}{}
\flipflop[\showresetin{p}]{d}{24}{4}{Rhr}{IC9}{}
\flipflop[\showresetin{p}]{d}{34}{4}{Rhr}{IC10}{}
\flipflop[\showresetin{p}]{jk}{44}{4}{Rhr}{IC11}{}
\flipflop[\showresetin{n}]{jk}{44}{4}{Rhr}{IC12}{}
\end{circuitdiagram}
```

Der Befehl \showinvout (bereitgestellt von der Paketoption digital) fügt einem Flipflop den invertierten Ausgang hinzu und besitzt kein Argument. Einige Flipflops mit invertiertem Ausgang sind in Abb. 4.51 dargestellt:

\begin{circuitdiagram}{58}{10}

Abbildung 4.50: Reset-Eingänge

Abbildung 4.51: invertierte Flipflop-Ausgänge

4.30 Referenzen und Bauelementwerte manuell platzieren

Der Befehl \putrefer platziert die Referenz manuell und besitzt drei Argumente. Dies sind die x- und y-Koordinate sowie die Ausrichtung (1, r oder c). Einige Bauelemente mit manuell platzierten Referenzen sind in Abb. 4.52 dargestellt:

```
\begin{circuitdiagram}{40}{8}
\resis[\putrefer{2}{3}{1}\photo{U}]{3}{4}{H}{R1}{33k}
\capac[\putrefer{-1}{2}{r}\trim{RU}]{13}{4}{Vr}{C1}{47p}
\induc[\putrefer{0}{-3.5}{c}\ironcore]{23}{4}{H}{L1}{1m}
\trans[\putrefer{-1}{3}{r}]{nenh}{32}{4}{R}{T1}{BSP\dots}
\end{circuitdiagram}
```

Der Befehl \putvalue platziert in analoger Weise den Bauelementwert manuell. Einige Bauelemente mit manuell platzierten Werten sind in Abb. 4.53 dargestellt:

4. ZUSÄTZE ZU DEN BAUELEMENTEN

Abbildung 4.52: Referenzen manuell platzieren

 $\trans[\putvalue{1}{3.5}{r}]{nenh}{33}{4}{R}{T1}{BSP\dots}\end{circuitdiagram}$

Abbildung 4.53: Bauelementwerte manuell platzieren

Der Befehl \putrefval platziert in analoger Weise Referenz und Bauelementwert manuell für den Fall, dass eine automatische Platzierung eingestellt ist, die beides gemeinsam setzt. Einige Bauelemente mit gemeinsam manuell platzierten Referenzen und Werten sind in Abb. 4.54 dargestellt:

Abbildung 4.54: Referenzen und Bauelementwerte manuell platzieren

Statt platziert können die Referenzen und Bauelementwerte mit \moverefer, \movevalue und \moverefval verschoben werden; hier entfällt das dritte Argument für die Ausrichtung. Einige Bauelemente mit verschobenen Referenzen und/oder Werten sind in Abb. 4.55 dargestellt:

begin{circuitdiagram}{54}{8}
 \resis[\moverefer{2}{0}]{3}{4}{H}{R1}{33k}
 \capac[\moverefer{0}{1.5}]{9}{4}{Hr}{C1}{10n}
 \induc[\movevalue{0}{-1}]{18}{4}{H}{L1}{1m}
 \trans[\movevalue{1}{-1}]{npn}{26}{4}{R}{T1}{BC548}
 \switch[\moverefval{-2}{0}]{off}{40}{4}{Ru}{S1}{abc}
 \diode[\moverefval{1}{-0.5}]{48}{4}{Rd}{D1}{1N4148}
 \end{circuitdiagram}

5. REFERENZEN UND BAUELEMENTWERTE DOKUMENTATION VON CIRCUIA

Abbildung 4.55: Referenzen und Bauelementwerte manuell verschieben

5 Referenzen und Bauelementwerte

In der Platzierung der Referenzen und Bauelementwerte stehen grundsätzlich 1 für "left", r für "right", u für "up", d für "down", c für "center" und h für "half".

5.1 Horizontale Platzierung

Das horizontale Modell wird angewendet bei

- Spannungsquellen, Stromquellen, allgemeinen Quellen, Widerständen, Kondensatoren, Spulen und Diacs mit Orientierung H,
- Schaltern, Dioden, Operationsverstärkern, Gattern und allen ICs mit Orientierung L oder R sowie
- Anschlusspins mit Orientierung L, R oder LR.

In Abb. 5.1 sind alle Möglichkeiten dargestellt, um Referenz und Bauelementwert zu platzieren. In den interessanten Fällen ist zusätzlich die Positionierung dargestellt, wenn eine der beiden Angaben fehlt.

5.2 Vertikale Platzierung

Das vertikale Modell wird angewendet bei

- Spannungsquellen, Stromquellen, allgemeinen Quellen, Widerständen, Kondensatoren, Spulen und Diacs mit Orientierung V,
- Schaltern und Dioden mit Orientierung U oder D sowie
- Anschlusspins mit Orientierung U, D oder UD.

In Abb. 5.2 sind alle Möglichkeiten dargestellt, um Referenz und Bauelementwert zu platzieren. In den interessanten Fällen ist zusätzlich die Positionierung dargestellt, wenn eine der beiden Angaben fehlt.

5.3 Transistor-Platzierung

Das Transistor-Modell ist in Abb. 5.3 am Beispiel von Transistoren nach links und in Abb. 5.4 am Beispiel von Transistoren nach rechts dargestellt.

Abbildung 5.1: Horizontales Modell

Abbildung 5.2: Vertikales Modell

Abbildung 5.3: Transistor-Modell nach links

6. WEITERE ZUSATZPAKETE

Abbildung 5.4: Transistor-Modell nach rechts

5.4 Automatische Nummerierung

Wird bei einem Bauelement als Referenz lediglich * übergeben, so wird diese Referenz durch eine automatisch generierte Nummer ersetzt, sofern die Paketoption autoref gewählt wurde. Dabei werden

- alle Bauelemente \switch zu S1, S2, ...,
- alle Bauelemente \resis zu R1, R2, ...,
- alle Bauelemente \capac zu C1, C2, ...,
- alle Bauelemente \induc zu L1, L2, ...,
- alle Bauelemente \diode und \diac zu D1, D2, ...,
- alle Bauelemente \trans zu T1, T2, ...,
- alle Bauelemente \opamp, \gate, \decoder, \arithm, \flipflop, \linic und \ttlic zu IC1, IC2, ...

Das Symbol * ist im Befehl \autorefsymbol gespeichert und kann deshalb natürlich mit \renewcommand verändert werden. Die Präfixe S, R, C, L, D, T und IC sind jeweils in \cdswitchname, \cdresisname, \cdcapacname, \cddiodename, \cdtransname und \cdicname gespeichert. Der Befehl \newautoref setzt alle Zähler auf 0 zurück, so dass im folgenden Schaltplan wieder mit R1 usw. begonnen wird.

6 Weitere Zusatzpakete

6.1 Die Paketoption control

TO DO ...

6.2 Die Paketoption diag

TO DO ...

6.3 Die Paketoption graph

TO DO ...

6.4 Die Paketoption mech

TO DO ...

7 Schnellübersicht

7.1 Drähte und Anschlüsse

\wire	
\wire[H]	
\wire[V]	
\junct	•
\pin	-0
\pin[\male]	-
<pre>\pin[\female]</pre>	-
\resis[\wireL]	
\resis[\wireR]	
\resis[\wireLR]	
\capac[\wireU]	
\capac[\wireD]	
\capac[\wireUD]	<u> </u>

7.2 Spannungen und Ströme

DOKUMENTATION VON CIRCDIA

\measdev \measdev[\measunit] \measdev[\polarity] \measdev[\coloredpn\polarity] 7.3Quellen \voltsrc \currsrc \othersrc{batt} \othersrc{batt2} \othersrc{battn} \othersrc{+-} \othersrc{o} \othersrc{oo} \othersrc{()} \othersrc{->} \othersrc[\sigsym]{o} 7.4 Schalter \switch{off} \switch{offline} \switch{on}

\switch{ontouch}

DOKUMENTATION VON CIRCDIA

7. SCHNELLÜBERSICHT

\switch{online}	_
\switch{tog}	<u> </u>
\switch{togtouch}	- - -
\switch{togline}	
\switch{tog*}	-000
\switch{togtouch*}	•
\switch{togline*}	- -
\relay	
\relayandswitch	

7.5 Widerstände

\resis	
\resis[\modify]	
\resis[\trim]	
\resis[\slider]	
\resis[\photo]	//
\resis[\ptc]	†† <i>v</i>
\resis[\ntc]	↑↓ <i>ϑ</i>
\resis[\colorstripes]	-

7.6 Kondensatoren

7.7 Spulen

7.8 Dioden, Thyristoren, Diacs und Triacs

\diode	\rightarrow	\rightarrow	
\diode[\emit]	11	// ->+	<i>††</i>

\diode[\photo]	# # ## ##
\diode[\zener]	
\diode[\tunnel]	
\diode[\schottky]	
\diode[\capdio]	
\diode[\thyr]	
\diac	
\diac[\triac]	

DOKUMENTATION VON CIRCDIA

\trans{pdep}	THE OF
\trans{pdep*}	
\trans{nj}	
\trans{pj}	
\trans[\schottky]{npn}	
7.10 Analog-ICs	
\opamp	-+
\opamp[\supply]	
\linic{78xx}	-IN OUT-GND
\linic{79xx}	GND -IN OUT-
\linic{ne555}	VCC -CV -DC -TH O- -TR -RE GND
7.11 Gatter	
\gate{buf}	\

\gate{not}	-
\gate{and}	
\gate{nand}	
\gate{or}	
\gate{nor}	
\gate{xor}	
\gate{xnor}	
\gate[\inputs]{nand}	
\gate[\schmitt]{nand}	
\gate[\opencoll]{nand}	\bigcirc
\gate[\tristate]{nand}	∇

7.12 Decoder

DOKUMENTATION VON CIRCDIA

7.13 Arithmetische Bausteine

$$\label{eq:action} $$\operatorname{Arithm}_{\hat{a}} \ -A \quad \Sigma $$$$

\arithm{fulladd}	-B CO -A -CI Σ
\arithm{add2}	-B1 -B0 CO- -A1 Σ1- -A0 Σ0- -CI
\arithm{mul1}	-В П- -А
\arithm{mul2}	-В1 П3- -В0 П2- -А1 П1- -А0 П0-

7.14 Flipflops

DOKUMENTATION VON CIRCDIA

\flipflop[\showsetin]{d}	$ \begin{array}{c c} \hline & \underline{O} \\ \hline & \overline{S} \\ \hline & \underline{C} \end{array} $
\flipflop[\showresetin]{jk}	$\begin{array}{ccc} J & Q \\ \hline > \overline{C} \\ K & \overline{R} \end{array}$
\flipflop[\showinvout]{sr}	$-\mathrm{R}$ Q