・10月18日分 大問1の解説.

集合の扱いに関して説明が不十分だったようなので、ここで補足をしておきます、

まず, $W=\{x\in V\,;\,x$ に関する条件 $\}$ と書けば,これは"その条件をみたすような V の要素全体からなる集合"を表します.

例 1. $W_1 = \{n \in \mathbb{Z}; n \text{ は偶数 }\}$ とすれば, W は偶数からなる集合.

例 2. $W_2=\{m\in\mathbb{Z}\,;\,|m|<10\}$ とすれば,これは絶対値が 10 未満の整数の集合,つまり $\{0,\pm1,\ldots,\pm10\}$ を表す.

これらの例において, $`n\in\mathbb{Z}'$ や $`m\in\mathbb{Z}'$ と書いていますが,この n や m という記号は,いわゆるダミー変数で,条件を記述するために用意するものです.例えば W_2 なら, $W_2=$ {整数のうち,絶対値が 10 未満のもののなす集合 } と書いてもいいわけですが,数式を用いるほうが直感的にわかりやすいので,このような表記を用いています.

(1) $W_1 = \{(y, ay); y \in \mathbb{R}\} \subset \mathbb{R}^2$ (a は定数)

 $(x, ax), (y, ay) \in W_1$ とする *1 . このとき,この二つの要素の線形結合は

$$\lambda(x, ax) + \mu(y, ay) = (\lambda x + \mu y, a(\lambda x + \mu y)) \in W_1.$$

また,明らかに $(0,0) \in W_1$ なので, W_1 は \mathbb{R}^2 の部分空間になる.

(2) $W_2 = \{(x, x^2); x \in \mathbb{R}\} \subset \mathbb{R}^2$

 $(x, x^2), \ (y, y^2) \in W_2$ とすると,この二つの要素の和は

$$(x, x^2) + (y, y^2) = (x + y, x^2 + y^2)$$

であるが,これは $(x+y)^2=x^2+2xy+y^2\neq x^2+y^2$ であるので, W_2 の要素にはなれない.つまり, W_2 は \mathbb{R}^2 の部分空間ではない.

(3) $W_3 = \{ f \in C(\mathbb{R}) ; f(x) + f(x)^2 = 0 \}$

 $f,g\in W_3$ とする.つまり, $f(x)+f(x)^2=0,\ g(x)+g(x)^2=0$ を満たすとする.このとき,f+g について考えると,

$$(f(x) + g(x)) + (f(x) + g(x))^{2} = (f(x) + f(x)^{2}) + (g(x) + g(x)^{2}) + 2f(x)(g) = 2f(x)g(x).$$

ここで,例えば $f_1(x)=-1$ $(\forall x)$ とすれば, $f_1(x)+f_1(x)^2=0$ であるので $f_1\in W_3$ となるが,上式において $f=f_1,\ g=g_1$ としてみれば $f+g=2f_1^2=2\neq 0$ となるため,f+g は W_3 の要素にはなれない.よって W_3 は $C(\mathbb{R})$ の部分空間ではない.(実は $W_3=\{f_0($ 零関数) $,f_1\}$ である.)

$$(4)^* W_4 = \{ g \in C(\mathbb{R}) ; \int_{-\infty}^{\infty} |g(x)| dx < \infty \}$$

 $f,g\in W_4$ とする.つまり, $\int_\infty^\infty |f(x)|\,dx<\infty$, $\int_\infty^\infty |g(x)|\,dx<\infty$ である.このとき,絶対値の三角不等式より $|\lambda f(x)+\mu g(x)|\leq |\lambda||f(x)|+|\mu||g(x)|$ が成り立つので,

$$\int_{\infty}^{\infty} \left|\lambda f(x) + \mu g(x)\right| dx \leq \int_{\infty}^{\infty} \left(|\lambda| |f(x)| + |\mu| |g(x)|\right) dx = |\lambda| \int_{\infty}^{\infty} |f(x)| \, dx + |\mu| \int_{-\infty}^{\infty} |g(x)| \, dx < \infty$$

となる.また,明らかに $\int_\infty^\infty |f_0(x)|\,dx=0<\infty$ なので W_4 は零元 f_0 も持つ.よって W_4 は $C(\mathbb{R})$ の部分空間になる.

 $^{^{*1}}$ W_1 の定義式の y はダミー変数なので , 実際に W_1 の要素を持ってくるときは y でなくてもよい .