Structure et stabilité des noyaux

Application de l'énergie nucléaire

Elias Khan khan@ipno.in2p3.fr

Supports

- Fascicule dédié: http://ipnwww.in2p3.fr/Elias-KHAN
- Le monde subatomique (L. Valentin) : chap 4
- Physique Nucléaire (Le Sech, Ngo) : chap 10

- <u>www.laradioactivite.com</u>
- http://irfu.cea.fr/la-vallee-de-stabilite/
- http://www.cenbg.in2p3.fr/heberge/EcoleJoliotCurie/coursJC /Joliotcurie2006.pdf

Une leçon particulière

- Pas (ou peu) de cours de physique nucléaire
- Applications technologiques et sociétales
- Elle ne s'intitule pas « énergies nucléaires »

- Nécessite une mise à niveau
- Relier efficacement aux concepts académiques
- Points physiques et non leçon de choses

Plan

- Structure du noyau atomique :
 Interactions + structure en couches
- Stabilité et radioactivité
- Fission
- Fusion
- Résumé des points essentiels

Première partie

Structure du noyau atomique

Les 4 interactions fondamentales

Nom	Intensité	Médiateur	Portée
Forte	1	8 gluons	1fm=10 ⁻¹⁵ m
Electro- magnétique	10 ⁻²	photon	infinie
Faible	10 ⁻⁶	Z°, W+,W-	Contact (10 ⁻¹⁸ m)
Gravitation	10 ⁻³⁹	Graviton?	infinie

La structure primordiale de la matière

NOYAU

PROTON

ATOME

MATIERE

Le nucléon

98% de la masse du nucléon provient de la mer: q et g

L'interaction nucléon-nucléon

Noyau=système à A corps

- Problème à N corps de nucléons
- Fermions liés -> structure en couche
- Lpm ~taille du noyau (R=1,2fm. A^{1/3}) -> champ moyen OK
- Microscopique > Woods-Saxon > HO
- Spin-orbite important (≠ atomes)

Le champ moyen

La structure en couches

N nbre quantique principal

n nbre quantique radial

Inbre quantique orbital

j moment cinétique total $j = \ell \pm 1/2$

La structure en couches

Deuxième partie

Stabilité et radioactivité du noyau

Les radioactivités

Interaction	Nom de la radioactivité (date de découverte)	Particule(s) émise(s) par le noyau		
	γ (1900)	photon		
Electromagnétique	Electron de conversion (1938)	e-		
	β-(1898)	e^{-}, V_{e}		
Faible	β+(1933)	e^+, V_e		
	Capture électronique (1937)	$ u_{ m e}$		
	Double β ⁻ (1980)	$2e^-$, $2v_e$		
	Double capture électronique (2001)	$2v_{\rm e}$		
	β- Etat lié (1992)	$\overline{\nu_{ m e}}$		
	α (1896)	₂ ⁴ He		
Forte (+ELM)	n, p (1970), 2p (2000), 2n (2012)	n ou p ou 2p ou 2n		
	Clusters (1984)	¹⁴ C ou ²⁴ Ne ou ³² Si,		
	Fission (1939)	n + 2 noyaux lourds (90Zr, 132Sn,)		
	Fission ternaire (2010)	n + 3 noyaux lourds		

La structure en couches

Application: (in)stabilité du p et du n

La carte des noyaux

Analogie noyau <-> fluide

Définitions

$$Mc^2 = Nm_nc^2 + Zm_pc^2 - B$$
 Energie de liaison

$$S_n \equiv B(A) - B(A-1) = \left[m_n + M(A-1)\right]c^2 - M(A)c^2$$
 Energie de séparation (ici à 1 neutron)

La goutte liquide nucléaire

Formule semi-empirique de B.W.

$$B = \underbrace{a_V A - a_S A^{2/3} - a_C Z^2 / A^{1/3} - a_A (N-Z)^2 / A + \delta}_{\text{termes classiques}} \text{ termes quantiques}$$

Les constantes sont déterminées expérimentalement

$$a_V \sim 16 \text{ MeV}$$
, $a_S \sim 17 \text{ MeV}$

$$a_C \sim 0.7 \text{ MeV}$$
, $a_A \sim 23 \text{ MeV}$

δ: Superfluidité nucléaire

$$\Rightarrow$$
 B/A = a_V - a_S /A^{1/3} - a_C Z²/A^{4/3} - a_A(N-Z/A)² + δ /A

Application à la stabilité \beta

Application à la fission et la fusion

$$1+2 \rightarrow 3+4$$

$$\downarrow$$
 Chaleur de réaction : $Q=-B_1-B_2+B_3+B_4$
$$\downarrow$$

$$\frac{Q}{A}=\frac{1}{A}\left[A_3.\left(\frac{B_3}{A_3}\right)+A_4.\left(\frac{B_4}{A_4}\right)\right]-\frac{1}{A}\left[A_1.\left(\frac{B_1}{A_1}\right)+A_2.\left(\frac{B_2}{A_2}\right)\right]$$

$$=_s-_e$$

La courbe d'Aston

23

Troisième partie

Fission

Le paramètre de fissilité

Fission **spontanée** (~20 noyaux)

$$a\frac{Z^2}{A^{1/3}} > bA^{2/3} \longrightarrow \frac{Z^2}{A} \gtrsim 30$$

Variété de noyaux fils

La fission induite

La barrière de fission : déformation

Fission par neutron lent (=thermique)

- Energie des n: kT=10⁻² eV (T=293 K)

• Il existe 7 noyaux fissiles (= par capture de n lent) :

L'énergie du neutron

La section efficace de fission

Les fragments de fission

Principe d'un réacteur

Facteur de multiplication

 Nbre de nouvelles fissions induites par fission

$$k = \frac{N_{\textit{fissions}}(i+1)}{N_{\textit{fissions}}(i)}$$

- = nbre de neutrons produits par neutron absorbé
- Nombre total de neutrons produits par un neutron initial =

$$1+k+k^2+k^3+...$$

- □ k < 1: la réaction en chaine s'éteint, le réacteur est sous-critique</p>
- K = 1: la réaction s'entretient d'elle-même
- K > 1: diverge → réacteur sur-critique

Réacteur nucléaire: maitrise de la réaction en chaine

- Une fission donne une fission, en moyenne
- **Evolution** de la puissance: \sim nombre de neutrons \rightarrow après n générations, $P=k^n$
- 40000 générations en une seconde → P (t=1s) = 55 P (t=0) pour k=1,0001

Composants d'un cœur de réacteur

- Combustible
- Caloporteur
- Modérateur
- Barre de contrôle (Cd)

Arrêt du réacteur et déchets

- Produits de fission variés et radioactifs (94%)
- Actinides n'ayant pas fissionné et radio. (6%)

$$P_{arrêt} = 6\% P_{nominale}$$

Réacteurs nucléaires

Reactor type	Main Countries	Number	GWe	Fuel	Coolant	Moderator
Pressurised Water Reactor (PWR)	US, France, Japan, Russia	252	235	enriched UO ₂	water	water
Boiling Water Reactor (BWR)	US, Japan, Sweden	93	83	enriched UO ₂	water	water
Gas-cooled Reactor (Magnox & AGR)	UK	34	13	natural U (metal), enriched UO ₂	CO ₂	graphite

Réacteurs nucléaires

Pressurised Heavy Water Reactor "CANDU" (PHWR)		33	18	natural UO ₂	heavy water	heavy water
Light Water Graphite Reactor (RBMK)	Russia	14	14	enriched UO ₂	water	graphite
	Japan, France, Russia	4	1.3	PuO ₂ and UO ₂		none
Other	Russia, Japan	5	0.2			
	TOTAL	435	364			

REP (GEN II) EPR (GEN III)=super REP

RNR (GEN IV)

Fertiles
$$^{238}U + n \rightarrow ^{239}U \rightarrow ^{239}Np \rightarrow ^{239}Pu$$
 Fissiles $^{232}Th + n \rightarrow ^{233}Th \rightarrow ^{233}Pa \rightarrow ^{233}U$

Quatrième partie

Fusion

Avantages de la fusion thermonucléaire

- Abondance des noyaux légers
- Absence de grande variété de déchets
- Energie libérée plus importante

La barrière de fusion : Coulomb

= inconvénient de la fusion thermonucléaire

La nucléosynthèse primordiale

La nucléosynthèse stellaire

Le cycle CNO existe aussi

Résumé du cycle PP-I

$$4p \to {}^{4}_{2}He + 2e^{+} + 2\nu$$

Q=26,7 MeV

$$T=10^7 \, K$$

$$\rho$$
=10² g.cm⁻³

$$V=10^{26} \text{ m}^3$$

Fusion controlée

Réaction la plus énergétique (Q/A=3,5 MeV) et avec la plus gde section efficace :

$${}_1^2d + {}_1^3t \rightarrow {}_2^4He + n$$

Barrière coulombienne: kT=500 keV (T=109 K) !!

Fusion sous-coulombienne par effet tunnel : kT=10 keV (T=108 K)

Confinement inertiel

Confinement magnétique

Combustible

- deutérium (33 mg/l eau de mer, 1010 années de stock)
- le tritium provient de ⁶Li + n \rightarrow ⁴He + t + 4.78 MeV (Li 2g/t de sel de mer, 10⁷ années)

Pour produire 80 GJ (donné par la fission de 1g d' ²³⁵U) avec la réaction de fusion d + t avec un rendement de 30%, il faut 1mg de lithium et 0.32 mg de deutérium

→ Les perspectives se comptent en milliers d'années

Fusion inertielle par laser

Confinement inertiel par compression Régime explosif

$$T=10^8 \, \text{K}$$
; $\rho=10^4 \, \text{g.cm}^{-3}$

Cf Laser Mégajoule $(P\sim10^6\text{J}/10^{-8}\text{s}=10^{14}\text{W})$

Fusion par confinement magnétique

- Faible concentration d+t (plasma)
- Chauffage par effet Joule+rayonnement micro-onde
- T = 10⁸ K; ρ =10⁻⁹ g.cm⁻³ (cf énergie libérée)
- Confinement par B:
 e et noyaux doivent éviter les parois physiques (refroidissement, impuretés)

Critère de Lawson

Le Tokamak

Les points essentiels

- Noyau=fermions appariés, 3 interactions, LS gd: couches
- 15 radios dont la fission (int. Forte+EM)
- Analogie noyau/fluide: attraction+cœur dur
- Effets Coulomb+surface: Fusion -> Fe <- Fission</p>
- Fission: spontanée, induite(R,L), barrière, pair-impair Tec:Combustible, modérateur, contrôle, caloporteur Refroidissement, stockage; cycle fertile/fissile (Gen IV)
- Fusion: barrière Coulombienne, nucléosynthèse (BB+Stel)
 Tec: inertielle vs. confinement
 kT=10keV (T=10⁸K)