

AES Encryption Backend Flow Assignment

Onsite Part

AES Encryption Architecture

AES-128 is a symmetric block cipher that encrypts 128-bit plaintext using a 128-bit key over 10 rounds. Each round includes SubBytes, ShiftRows, MixColumns, and AddRoundKey operations. The final round omits MixColumns. Round keys are generated using a separate Key Expansion process.

Dimensions & Cells count

Block dimensions= $285 \times 285 \text{ } um^2$

	syn	PNR
Library-cells	91844	95991
AND	51279	51677
BUF	81	2818
REGISTERS	3712	3712
INV	17461	18761
NAND	23426	23765
NOR	9515	9653
OR	36483	36629
XNOR	2752	2751
XOR	3968	3839

Post-Route utilization: 73.181%

largest leaf cells count: sb0 (instance of sub bytes)

with 6721 leaf cells

Logic cells placement

Power & IR drop

Calculate Post-Route leakage power using vectorless analysis

Total Leakage Power: 1.21557553 mW

1.8156%

Calculate Post-Route dynamic power using vectorbased analysis

Total Switching Power: 30.41229120 mW 42.8119%

Static IR drop

Peak = $22.834 \, \text{mV}$

Dynamic IR drop

Peak = 107.58 mV time window (ns): 192.500 196.500

Voltage sources location

Report formality status

Post-Route Formality check: PASS

LVS status: PASS

Report formality status for RTL vs postsyn netlist

Report formality status for post-syn vs post-route netlist.

	Compare Result	Golden	Revised
Root module name		AES_Encryption	AES_Encryption
√ ∨ Primary inputs		257	257
Mapped		257	257
○ ∨ Primary outputs		128	128
∨ Mapped		128	128
Equivalent	128		
√ State key points		3712	3712
√ Mapped		3712	3712
Equivalent	3712		

Report post-route STA results for setup/hold analysis

Setup analysis

WNS: -0.152 ns, caused by reg2out cipher_out[106],

TNS: -17.279 ns all caused by reg2out

Hold analysis

WNS: -0.214 ns, caused by in2reg r0/key_out_reg_38-/D

TNS: -63.961 ns all caused by in2reg

Report detailed timing path for the reg2reg path with the worst negative slack.

Setup analysis

```
Path 1: MET (0.331 ns) Setup Check with Pin test 3 genblk1 r i/r out reg 22 /CK->D
               View: func tt typvzb 25 typical hold
              Group: CLK
         Startpoint: (R) test 2 genblk1 r i/key out reg 11 /CK
           Endpoint: (R) test 3 genblk1 r i/r out reg 22 /D
              Clock: (R) CLK
            N-Sigma: 3.000
                       Capture
                                                        Launch
         Clock Edge:+
                                                                (0.040, 0.000)
        Src Latency:+
                         0.040 (0.040,
                                           0.000)
        Net Latency:+
                         0.447 (0.461,
                                           0.005) (P)
                                                                (0.449, 0.006) (P)
                        1.486 (1.501.
            Arrival:=
                                           0.005)
                                                         0.506 (0.489, 0.006)
                         0.013 (0.009,
              Setup:-
                                           0.001)
       Uncertainty:-
                        0.023 (0.000,
       Cppr Adjust:+
                                           0.008)
      Required Time:=
                        1.409 (1.393, 0.006(-))
       Launch Clock:=
                         0.506 (0.489.
                                           0.006)
          Data Path:+
                         0.572 (0.561,
                                           0.004)
              Slack:=
                         0.331 (0.343,
                                           0.004)
```

Hold analysis

```
Path 1: MET (0.010 ns) Hold Check with Pin test 4 genblk1 r i/key out reg 56 /CK->D
              View: func tt typvzb 25 typical hold
              Group: CLK
        Startpoint: (R) test 3 genblk1 r i/key out reg 56 /CK
          Endpoint: (F) test 4 genblk1 r i/key out reg 56 /D
             Clock: (R) CLK
           N-Sigma: 3.000
                       Capture
                                                         Launch
        Clock Edge:+
       Src Latency:+
                         0.040 (0.040,
                                           0.000)
       Net Latency:+
                         0.479
                                (0.461.
                                           0.006) (P)
                         0.519 (0.501,
                                           0.006)
           Arrival:=
                                                                (0.500, 0.005)
              Hold:+
                         0.016
                               (0.011.
                                           0.002
       Uncertainty:+
                         0.050
       Cppr Adjust:-
                         0.023 (0.000,
                                           0.008)
     Required Time:=
      Launch Clock:=
                         0.485
                                (0.500,
                                           0.005)
         Data Path:+
                         0.074
                                (0.080,
                                           0.002)
                               (0.018,
                                           0.003)
```

Scan Chain

Scan chain length= 3712 FF

```
Chain 1: SI 0
  scan in:
               spi sdi
               spi sdo
 scan out:
 shift enable: scan shift (active high)
  clock domain: spi clk (edge: rise)
 length: 3712
   bit 1 dff0/Q reg[0] <clk (rise)>
   bit 2 dff0/Q reg[1] <clk (rise)>
         dff0/Q reg[2] <clk (rise)>
           dff0/Q req[3] <clk (rise)>
         dff0/Q reg[4] <clk (rise)>
          dff0/Q reg[5] <clk (rise)>
           dff0/Q reg[6] <clk (rise)>
   bit 8
           dff0/Q reg[7] <clk (rise)>
```


Online Part

AES Encryption Backend Flow Assignment

ASIC Design Flow Overview

Operation	Tool	Flow Description
RTL-to-Gate-Level	Yosys + ABC	Logic synthesis, technology mapping, and optimization
Floorplanning & Placement	OpenROAD + OpenPDN	Die boundary definition, macro placement, power grid planning
Placement & CTS	OpenROAD	Standard cell placement and clock tree synthesis
Global & Detailed Routing	OpenROAD	Two-phase routing (global → detailed) with DEF/O-DB output
Post-Route Leakage Power	OpenROAD + OpenSTA	Vectorless analysis using SPEF/DEF/Liberty (worst-case conditions)
Post-Route Dynamic Power	OpenROAD + OpenSTA	Vector-based analysis using SAIF activity files + SPEF parasitics
Static Timing Analysis	OpenSTA & Synopsys ICC	Multi-corner setup/hold analysis with Liberty models
Physical Verification	Magic + Netgen	DRC/LVS checks and antenna rule validation
Parasitic Extraction	SPEF-Extractor	Generate .spef netlist for back-annotation
GDSII Generation	KLayout/Magic	Final layout export to manufacturable GDSII format
Static IR Drop Analysis	Synopsys ICC	Vectorless IR analysis using worst-case power profiles
Dynamic IR Drop Analysis	Synopsys ICC	Vector-based IR analysis with switching activity (VCD) + SPEF
Voltage Source Analysis	Synopsys ICC	Identification and optimization of power delivery network sources

AES ASIC Flow Results using OpenLane

We used 45nm technology Synopsys and 130nm technology with OpenLane

Steps to reach out the best synthesis strategies

- Applying -synth_explore for the RTL that runs a synthesis strategy exploration and reports the
 results in a table by trying multiple predefined synthesis strategies.
- we choose AREA3 as it has the most optimum delay

Best Area	Best Gate Count	Best Delay
843888.12	109921.0	3409.64
AREA 1	AREA 0	AREA 3

Block dimension

- Width = 1837.24, height =1836.0.
- Aspect ratio = 1

Post-synthesis instances count: 132808

Post-synthesis registers count: 4000

Post-route instance count: 139182

Post-Route registers count: 4000

Post-Route utilization: 33%

DRC Report & LVS Status

Module Hierarchical Instance using OpenLane

Module	Leaf Cells per Instance	Instances	Submodule	Sub-Instances per Parent	Total Sub- Instances	Notes
AES_Encryption	-	1	-	-	-	Top-level
DFF_128	128	10	-	-	-	Pipeline registers
Key	237	10	Sbox	4	40	Key expansion
MUX2_1	128	10	-	-	-	Data routing
Mix_Column	448	9	Lut2	16	144	GF(2^8) multiplication
			Lut3	16	144	
Round_reg	256	10	-	-	-	Round state storage
Shift_Rows	0	10	-	-	-	Byte permutation
Sub_Bytes	16	10	Sbox	16	160	Non-linear substitution
			Sub_Key	1	10	Key addition
mux	128	10	-	-	-	Operation selection

► largest leaf cells count: Mix_Column

STA & Power using Synopsys ICC

► Hold Analysis

Data required time 1.12 Data arrival time -0.98Slack (MET) 0.15

► Power Analysis

► Setup Analysis

Internal Power	Switching Power	Leakage Power	Total Power
99.200 mW	126.24 mW	13.483 mW	238.92 mW

- ► For vector-based Analysis we simulated the RTL using an SV TB and generated the VCD file
- ► Click here for more info: Click Here

12

Screenshots Results using Synopsys ICC & KLayout

► IR Drop

Max: 30 mV,

Supply: 1.25 V

► Logic Cells Screenshot

► Most Used Logic Cell Screenshot

NAND2 with driving strength 1

► Formality (rtl vs post synthesis netlist)

**************************************	******	Verifica	ation Res	ults ***	******	*******	******	******
Reference design: r:/WORI Implementation design: i 3840 Passing compare poi	:/WORK/AE		ption					
Matched Compare Points	BBPin	Loop	BBNet	Cut	Port	DFF	LAT	TOTAL
Passing (equivalent)	0	Θ	Θ	θ	128	3712	0	3840
Failing (not equivalent)	9	0	0	0 ******	0	0	·*****	0
•								

▶ GDSII Screenshot

Comparison

Туре	ADFlow	OpenLane	Synopsys	
Clock period	1 ns	4 ns	1ns	
Technology	22 nm	185 nm	45 nm	
Area	Lower	Higher	Medium	
Instance count	Medium	Higher	Lowest	
Cell count	Lower	Higher	Lowest	
Register count	Lower	Higher	Lowest	
Leakage Power	Lower	Higher	Medium	
Dynamic Power	Lower	Higher	Medium	
Utilization	Higher	Medium	Lowest	
Largest Leaf Cell Count Module	SB0 (6721)	Mix Columns (461327)	NAND2_X1 (25632) (ungrouped logic)	
WNS	Violated (-ve)	Violated (-ve)	Met (+ve)	
IR Drop (Vectorless)	Lower	Higher	Medium	

Thank You