

DH@Madrid Summer School 2016

Análisis computacional del soneto del Siglo de Oro - Parte 2

Boria Navarro Colorado - borja@dlsi.ua.es

Universitat d'Alacant Universidad de Alicante

> Departament de Llenguatges i Sistemes Informàtics Departamento de Lenguajes y Sistemas Informáticos

Madrid, 1 de julio de 2016

Índice

- Primera parte:
 - Introducción: marco metodológico.
 - Compilación y anotación de un corpus de sonetos del Siglo de Oro (SdO).
- Segunda parte:
 - Modelos computacionales para el análisis métrico y semántico.
 - Práctica: análisis del corpus a gran escala con buscador (web).

Análisis a gran escala

- LABORATORIO DE INNOVACIÓN EN HUMANIDADES DIGITALES
- ¿Cuáles son los gustos métricos generales de la sonetística áurea? ¿Son constantes o varían a lo largo del periodo?
- ¿Hay patrones métricos característicos de algún autor, escuela, periodo...?, ¿contrastan unos con otros? ¿Hay diferencias rítmico-métricas entre el Renacimiento y el Barroco? ¿Hay gustos comunes?
- ¿Se utilizan patrones métrico similares para tratar temas similares? ¿Hay un ritmo específico para el poema amoroso? ¿Y para el panegírico? ¿Hay relación entre la métrica y la semántica?

• ...

Análisis de la métrica del soneto del Siglo de Oro mediante estadística descriptiva

Análisis métrico

- Análisis gustos métricos:
 - Frecuencias métricas.
 - Por épocas.
 - Evolución temporal.
 - Patrones métricos especiales.

Navarro Colorado (2016) "Hacia un análisis distante distante del endecasílabo áureo" Rhythmica.

Posición	Patrón	Patrón Numérico	Cantidad	Frecuencia (%)
1	-++-	2-6-10	5568	7,83
2	-+-++-	2-4-8-10	5506	7,74
3	++-	3-6-10	5031	7,07
4	-+-+-+-	2-4-6-10	4365	6,14
5	+	4-6-10	3342	4,70
6	-++-+-	2-6-8-10	3151	4,43
7	-+-+-+-+-	2-4-6-8-10	3069	4,31
8	+	4-8-10	2776	3,90
9	+++-	1-4-8-10	2763	3,88
10	++-+	1-4-6-10	2717	3,82
11	++-+-	3-6-8-10	2572	3,62
12	+-+-+-	4-6-8-10	2079	2,92
13	+-++-	1-3-6-10	1936	2,72

Patrones métricos más frecuentes

Tipo de patrón

- Los tres patrones más frecuentes corresponden a los tres tipos básicos de endecasílabo:
 - Heroico: 2, 6, 10
 - Sáfico: 2, 4, 8, 10
 - Melódico: 3, 6, 10
- Hasta la posición 20, re-elaboraciones.
- Resto (fq < 1,5%):
 - Antirrítmicos, pocos apoyos métricos, erróneos.

- Renacimiento:
 - Preferencia por patrones en 6.
 - Uso de patrones con 4 y 5 apoyos métricos.
- Barroco:
 - Preferencia por patrones en 4 y 8.
 - Preferencia por patrones con sólo 3 apoyos.

- Problema de representatividad:
 - Garcilaso infra-representado (38 sonetos)
 - Lope de Vega supra-representado (+1000 sonetos).
- Organización temporal por fecha de nacimiento/fallecimiento de cada autor.
- Grupos de 500 versos.

Evolución patrones métricos (grupos 500 sonetos)

- 2ª generación Renacimiento (gr. 3 -Herrera):
 - Gusto por patrones con apoyos métricos explícitos (4 ó 5).
- 1^a generación Barroco (grs. 4-8):
 - Gusto creciente por metro sáfico (4, 8, 10).
 - Preferencia por patrones con pocos apoyos métricos.

- 2ª generación Barroco (gr. 9 11):
 - Quevedo: vuelta a gustos métricos renacentistas (Garcilaso).
 - Otros autores (Tirso de Molina, Soto de Rojas, etc.) continúan la tradición barroca de Lope de Vega.
 - Patrón melódico (ritmo ternario: 3, 6, 10).

Antirritmia

Evolución patrones anti-rítmicos

Antirritmia

- Preferencia antirritmia en 2-3.
- Primer renacimiento: preferencia acusada por antirritmia en 6-7.
 - Hipótesis: rítmica similar al verso medieval del s. XV.
 - Lectura con cesura: ritmo similar al dodecasílabo 7+5.
 - Íñigo López de Mendoza: preferencia por endecasílabos con apoyo métrico en 7.

Conclusiones

- Punto de vista diferente: distante, a gran escala.
 - Datos generales descriptivos de todo el periodo.
- Corpus representativo hecho literario:
 - Amplio: autores
 - Anotado: métrica
- Método: estadística descriptiva.

¿Cómo se ha hecho?

- Cálculo de frecuencias con Python:
 - Cargar y analizar XML
 - Extracción patrones métrico y cálculo de frecuencias
 - [Opción alternativa] Analizar XML con R:
 - Cfr. Jockers (2014), Text Analysis with R for Students of Literature, págs. 89 y ss.

¿Cómo se ha hecho?

- Dividir corpus en subcorpus (por época, temporal, por autor, etc.) y extraer datos de cada uno.
- Ejercicio práctico: uso de buscador web con GUI.

Métodos avanzados:
Análisis semántico del soneto del Siglo de Oro mediante espacios semánticos vectoriales

Semántica distribucional

- Significado contextual de las palabras:
 - "You shall know a word by the company it keeps" (Firth 1957)
 - "Words will occur in similar contexts if and only if they have similar meanings" (Harris 1951)

Espacio semántico vectorial

- · Representación vectorial.
 - Espacio Semántico Vectorial:
 - Matriz Palabras X Contexto
 - Un vector representa el significado de una palabra.
 - Cada vector está formado por las frecuencias de aparición del vector en cada contexto.

Espacio semántico vectorial

• Similitud:

- Permite realizar cálculos de similitud.
- Cuanta mayor similitud haya entre dos palabras, más semejantes serán sus significados.

LDA Topic Modeling

- El significado (distribucional) de una palabra está representado por *topics*.
- Cada palabra se asigna a cada topic en función de:
 - Cuántas veces se ha asignado la palabra al *topic* previamente.
 - El principal *topic* del texto donde aparece la palabra.

Blei, D.M., (2012) "Probabilistic Topic Models"

LDA Topic Modeling

- Al final del proceso:
 - Extracción de los principales *topics* del corpus.
 - Cada *topic* es un conjunto de palabras representativas.

LDA Topic Modeling

"Genetics"	"Evolution"	"Disease"	"Computers"
human	evolution	disease	computer
genome	evolutionary	host	models
dna	species	bacteria	information
genetic	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Universitat d'Alacant Universidad de Alicante Departament de Llenguatges i Sistemes Informàtics Departamento de Lenguajes y Sistemas Informàticos

LDA Topic Modeling

- 0 2,5 ;oh hay siempre agua canta visto he suena dijo ;qué cantar ;y tienen buena hora ve otro flores cuatro
- 2,5 alma caminos españa buen eres guerra paz melancolía fuerte ¿quién fue castilla ríos quiere caballero guarda rincón manchego mujeres
- 2 2,5 sol viejo sueño jardín agua sed pasa ceño brilla sombras guiomar noble (a primavera tristeza memoria arco arena boca
- 3 2,5 sombra luna noche sueños yo voz vino dulce humilde estrellas fiesta espada calle quimera señora florida fiebre soy fantasma
- 4 2,5 ser sino mundo poeta sí pensamiento pensar conciencia otro puede pretende cada metafísica propia sea lógica real decir lírica
- 5 2,5 verde río flor alto sierra azul campo vi monte piedra nadie nube santa vii tren encina roca romero encinar
- 6 2,5 poeta mairena tiempo ha arte recuerdo verso barroco rima imágenes conceptos función espíritu tanto estrofa español queda artista versos
- 7 2,5 tierra campo hacia campos duero montes cielo verdes oro nieve soria luz ramas fría río castilla álamos sol grises
- 8 2,5 fuente agua tarde clara vieja piedra yo triste aire verano pena cristal alegría historia fue amores labios silencio copla
- 9 2,5 día vida tiempo don plaza olivares maestro mal lluvia toda mil infantil paso mancha negros cuerpo tic-tic divino quisiera
- 10 2,5 corazón mar dios ha señor dice niño hizo aguarda hace espera fe esperanza ilusión cabeza mares vida ;ay gota

- Tipos de topics:
 - Temas tradicionales.
 - Rimas.
 - Relaciones simbólicas.
 - Ruido.

--

Navarro Colorado, B. (2015) "A computational linguistic approach..."

- Tipos de *topics*:
 - Temas tradicionales.

Topic	Tema
amor fuerza desdén arco niño cruel ciego flecha fuego ingrato sospecha	Amor no correspondido
hoy yace sepulcro fénix mármol polvo ceniza ayer guarda muerta piedad cadáver	Funeral, panegírico.
españa rey sangre roma imperio grande baña valor extraña reino carlos hazaña engaña saña bárbaro	Caída imperio (ruinas).

- Tipos de *topics*:
 - Rimas.

Topic	Tema
cielo suelo velo vuelo celo alto consuelo recelo hielo mortal desvelo acá muestra desconsuelo tierra allá cubre duelo eterna	-
gloria memoria victoria historia eterna mayor inmortal triunfo será honor	-
olvido perdido sentido vencido rendido atrevido querido ofendido nacido oído conocido tenido escondido vestido agradecido merecido venido esclarecido podido	

- Tipos de *topics*:
 - Relaciones simbólicas.

Topic	Símbolo
río agua fuente frío corriente cristal desvarío tajo curso aguas betis brío pasa corre ninfas albedrío estío ribera margen	agua – cristal (Petrarca)
hermosa rosa blanco flor color labios rosas cristal blanca púrpura perlas rostro boca nieve abril frente clavel beldad risa	Descripción dama

Universitat d'Alacant Universidad de Alicante Departament de Llenguatges i Sistemes Informàtics Departamento de Lenguajes y Sistemas Informáticos (((•)))

Aplicar Topic Modeling

- Entrada: corpus plano.
- Herramientas:
 - MALLET:
 - http://mallet.cs.umass.edu/
 - Topic Modeling Tool (para corpus en inglés):
 - https://code.google.com/archive/p/topic-modeling-tool/
 - Gensim para Python
 - https://radimrehurek.com/gensim/
 - R
 - https://cran.r-project.org/web/packages/topicmodels/index.html

Aplicar Topic Modeling

- Proceso:
 - Cargar corpus (creación matriz)
 - Extraer topics
- Con MALLET:
 - http://programminghistorian.org/lessons/topic-modeling-and-mallet
 - http://www.dlsi.ua.es/~borja/riilua/6.TopicModeling_v02.pdf

Con R:

- Jockers, M.L., (2014) Text Analysis with R for Students of Literature, págs. 135 y ss.
 - http://link.springer.com/10.1007/978-3-319-03164-4

Conclusiones

- Modelos Semánticos Vectoriales permiten análisis semánticos a gran escala.
 - Semántica distribucional
- LDA Topic Modeling caso concreto de Modelo Semántico Vectorial.
 - Extrae *topics* de amplios corpus.
 - · Cada topic es un conjunto de palabras relacionadas
 - Análisis de topics permite detectar aspectos semánticos recurrentes.

¿Dudas?

Universitat d'Alacant
Universidad de Alicante
Departament de Llenguatges i Sistemes Informàtics
Departamento de Lenguajes y Sistemas Informáticos
(((•)))

•

Práctica 2

- Análisis métrico y semántico del corpus con interfaz web.
 - http://goldenage.cervantesvirtual.com/
 - Análisis métrico: preguntas concretas para familiarizarse con la interfaz.
 - Análisis métrico-semántico (desarrollo):
 - Seleccionar un topic
 - Buscar sus patrones métricos característicos (si los tiene) y analizarlos.

Bibliografía

- Blei, D.M., (2012) "Probabilistic Topic Models", Communications of the ACM, 55 (4), págs. 77–84.
- Firth, J. R. (1957), *Papers in Linguistics.* 1934-1951. Oxford University Press.
- Harris, Z. (1951), Structural Linguistics. University of Chicago Press, Chicago.
- Jockers, M (2014) Text Analysis with R for Students of Literature, Springer.
- McCallum. A. (2002) "Mallet: A machine learning for language toolkit". http://mallet.cs.umass.edu
- Navarro Colorado, B. (2014) "Recursos Informáticos para la investigación literaria". Máster en Estudios Literarios (MAESL), Universidad de Alicante. www.dlsi.ua.es/~borja/riilua/
- Navarro Colorado, B. (2015) "A computational linguistic approach to Spanish Golden Age Sonnets: metrical and semantic aspects", *Proceedings of NAACL-HLT Fourth Workshop on Computational Linguistics for Literature*, págs. 105–113, Denver (Colorado), June 4, 2015.
- Navarro Colorado, B. (2016) "Hacia un análisis distante distante del endecasílabo áureo" Rhythmica, 14.

Contacto:

Borja Navarro Colorado Dto. Lenguajes y Sistemas Informáticos Universidad de Alicante borja@dlsi.ua.es @bncolorado

