$\begin{array}{c} \text{Math 221H - Section 5 - Fall 2009} \\ \text{Laplace Transforms} \end{array}$

Functions		Rules		
f(t)	$\mathcal{L}\{f\}(s)$	h(t)	$\mathcal{L}\{h\}(s)$	Text §
1	$\frac{1}{s}$	f(t) + g(t)	$\mathcal{L}\{f\}(s) + \mathcal{L}\{g\}(s)$	7.1
e^{at}	$\frac{1}{s-a}$, $(s>a)$	cf(t)	$c\mathcal{L}\{f\}(s)$ (c real)	7.1
t^n	$\frac{n!}{s^{n+1}}, (s > 0)$	$f^{(n)}(t)$	$s^{n}\mathcal{L}{f}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots$	
$\sin(bt)$	$\frac{b}{s^2 + b^2}$		$\cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$	7.2
$\cos(bt)$	$\frac{s}{s^2 + b^2}$	$\int_0^t g(\tau) \ d\tau$	$\frac{1}{s}\mathcal{L}\{g\}(s)$	7.2
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$	7.3
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}$	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\})(s)$ (integer $n > 0$)	7.4
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	$\frac{g(t)}{t}$	$\int_{s}^{\infty} \mathcal{L}\{g\}(\sigma) \ d\sigma$	7.4
u(t-a)	$\frac{e^{-as}}{s}$, $(s>0)$	u(t-a)f(t)	$e^{-as}\mathcal{L}\{f(t+a)\}(s)$	7.5
$\delta(t-a)$	e^{-as}	u(t-a)f(t-a)	$e^{-as}\mathcal{L}\{f\}(s)$	7.5