Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization **Problems**

Ferdinando Fioretto ^{1,2} Tiep Le ¹ William Yeoh ¹ Enrico Pontelli ¹ Tran Cao Son ¹

¹Dept. Computer Science, New Mexico State University

²Dept. Mathematics and Computer Science, University of Udine

Sept. 9, 2014

- Motivation and Background
- 2 Branch Consistency for Pseudo-Trees
- 3 Experiments and Results
- 4 Conclusions

Distributed Optimization: Motivations

- Some problems cannot be realistically addressed in a centralized fashion.
- Agents cooperate to achieve a common objective.
- Simultaneously they can purse private goals.
- Agents are constrained by limited communication capabilities.

Source: http://kenanaonline.com/users/antennamaker

- Some problems cannot be realistically addressed in a centralized fashion.
- Agents cooperate to achieve a common objective.
- Simultaneously they can purse private goals.
- Agents are constrained by limited communication capabilities.
- Solving time is important!

Distributed Constrained Optimization (DCOP)

A *DCOP* is defined by a tuple $\langle \mathcal{A}, \mathcal{X}, \mathcal{D}, \mathcal{F} \alpha \rangle$, where:

- \mathcal{A} is a set of *agents*;
- \mathcal{X} is a set of *variables*.
- \mathcal{D} is a set of finite domains.
- \mathcal{F} is a set of *utility functions*, $f_i: \times_{x_i \in scope(f_i)} D_j \mapsto \mathbb{N} \cup \{0, -\infty\}$.
- $\alpha: \mathcal{X} \to \mathcal{A}$ maps each variable to one agent.

Constraint Graph

Pseudo-tree

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3
١.		
3	3	2

Distributed Constrained Optimization (DCOP)

A *DCOP* is defined by a tuple $\langle \mathcal{A}, \mathcal{X}, \mathcal{D}, \mathcal{F} \alpha \rangle$, where:

- \mathcal{A} is a set of *agents*;
- X is a set of variables.
- \circ \mathcal{D} is a set of finite domains.
- \mathcal{F} is a set of *utility functions*, $f_i: \times_{x_i \in scope(f_i)} D_i \mapsto \mathbb{N} \cup \{0, -\infty\}$.
- $\alpha: \mathcal{X} \to \mathcal{A}$ maps each variable to one agent.

Pseudo-tree

x_1	<i>x</i> ₃	Utilities
0	0	$-\infty$
0	1	0
0	2	0
0	3	0
١.		
3	3	

Solving DCOP

- Find an utility maximal assignment for all the variables of the problem.
- Agents communicate exchanging messages.
- This is often the bottleneck!

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	χ_4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

<i>x</i> ₁	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

UTIL Phase Computations of a ₅ ((x_5)): UTIL Table
---	---------	---------------

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\begin{array}{l} \max(20+0,8-\infty,10-\infty,3-\infty) \\ \max(20-\infty,8+0,10-\infty,3-\infty) \\ \max(20-\infty,8-\infty,10+0,3-\infty) \\ \max(20-\infty,8-\infty,10-\infty,3+0) \end{array}$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\begin{array}{l} \max(20+0,8-\infty,10-\infty,3-\infty) \\ \max(20-\infty,8+0,10-\infty,3-\infty) \\ \max(20-\infty,8-\infty,10+0,3-\infty) \\ \max(20-\infty,8-\infty,10-\infty,3+0) \end{array}$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

x_1	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- **Solution** VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\begin{array}{l} \max(20+0,8-\infty,10-\infty,3-\infty) \\ \max(20-\infty,8+0,10-\infty,3-\infty) \\ \max(20-\infty,8-\infty,10+0,3-\infty) \end{array}$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$	=	10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

Distributed Pseudo-Tree Optimization Procedure (DPOP)

- Pseudo-Tree Construction Phase.
- UTIL propagation phase.
- VALUE propagation phase.

x_1	<i>X</i> 4	Utilities		
0	0	$\max(20+0, 8-\infty, 10-\infty, 3-\infty)$	=	20
0	1	$\max(20-\infty, 8+0, 10-\infty, 3-\infty)$	=	8
0	2	$\max(20-\infty, 8-\infty, 10+0, 3-\infty)$		10
0	3	$\max(20-\infty, 8-\infty, 10-\infty, 3+0)$	=	3

<i>x</i> ₁	<i>x</i> ₅	Utilities
0	0	20
0	1	8
0	2	10
0	3	3

- The DCOP community has not focused on exploiting hard constraints. 1
- 2 Number of messages exchanged vs Message Size.

- The DCOP community has not focused on exploiting hard constraints.¹
- Number of messages exchanged vs Message Size.
- **3** Can we improve on these limitations and achieve better results?

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

- Given a set of links.
- Assign them a frequency.
- The inference at the receivers: $|x_i x_j| > s$.
- Use as few frequencies as possible.

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

Exploiting fluid Constitution

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

$UTIL_5$						
X 5	X 4	X1_				
0	0	1				
0	0	2				
0	1	1				
0	1	2				
1	0	1				
1	0	2				
1	1	1				
1	1	2				

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

- In the context of the DPOP algorithm.
- Assume that we are given a DCOP with hard constraints.
- First Trial: Integrating Arc Consistency to prune the UTIL table.

Branch Consistency (BrC)

- Obs. 1: The domain store transmits a limited amount of information. It accounts for no interaction among variables.
- Obs. 2: A Pseudo-Tree branch contains the relevant information to build the UTIL tables.

Branch Consistency (BrC) (cont.)

Def. Branch Consistency for pair of values:

Def. A DCOP is Branch Consistent (BrC) iff for any pair of variables (x_i, x_i) with x_i and x_i in the same branch, and any $(u, v) \in f_{ij}$, (u, v) is branch consistent.

Def. The Value Reachability Matrix (VRM) M_{ii} of x_i and x_i , with x_i ancestor of x_i , is a binary matrix of size $|D_i| \times |D_i|$, where $M_{ii}[r, c] = 1$ iff (r, c) is BrC.

BrC-DPOP consists of 5 phases:

1. Pseudo-tree Generation Phase.

$$x_2$$
 x_3
 x_4
 x_5

BrC-DPOP consists of 5 phases:

2. Path Construction Phase.

X1 < X2			X1 > X3	_	X 3 = X 4	_	X4 = X5	
	0 1 2 3		X 3		X4		X 5	_
X1 0	0111	X 1	[0000]	Х з	[1000]	X 4	[1000	١
1	0011		1000		0100		0100	l
2	0001		1100		0010		0010	l
3	0.000		11110		0001		0001	ı

X4 = X5

BrC-DPOP

BrC-DPOP consists of 5 phases:

2. Path Construction Phase.

BrC-DPOP consists of 5 phases:

2. Path Construction Phase.

	X1 < X2		X 1 > X 3		X3 = X4		X4 = X5		
	2 0 1 2 3	•	X 3		X4	-	X 5	_	
X 1 ([0111]	Χı	[0000]	Х3	[1000]	X4	[1000	٦	
1	0011		1000		0100		0100	Т	
2	0001		1100		0010		0010	Т	
3	0000		11110		0001		0001	1	

BrC-DPOP consists of 5 phases:

3. Arc Consistency Enforcement Phase.

X 1 < X 2			X 1 > X 3		X 3 = X 4		X4 = X5		
X2	0 1 2 3		X 3	_	X4	-	X 5		
X1 0	[0 1 1 1]	X 1	[0000]	Х з	[1000]	X4	[1000]		
- 1	0011		1000		0100		0100		
2	0001		1100		0010		0010		
3	0000		1110		0001		0001		

BrC-DPOP consists of 5 phases:

3. Arc Consistency Enforcement Phase.

X1 < X2	X1 > X3	X3 = X4	X4 = X5		
X ₂ 0 1 2 3	X 3	X 4	X 5		
$X_1 \circ [0 \circ 0 \circ 0]$	X1[0000]	x₃[1000]	X4 [1000]		
1 0 0 1 1	1000	0100	0100		
2 0001	1100	0000	0000		
3 I n n n n l	Innanl	looool	Innnnl		

BrC-DPOP consists of 5 phases:

4. Branch Consistency Enforcement Phase.

X 1 < X 2			X1 > X3		X3 = X4		X4 = X5	
X	0 1 2 3		K 3		X4		X 5	_
X1 0	០០០០ា	X1	ั้ดดดดั	Хз	[1000]	X 4	1000	1
- 1	0011		1000		0100		0100	l
2	0001		1100		0000		0000	l
3	looool		0000		0000		0000	ı

BrC-DPOP consists of 5 phases:

4. Branch Consistency Enforcement Phase.

X1 < X2			X 1 > X 3		X3 = X4		X 4 = X 5	
	0 1 2 3		X 3		X4		X 5	
X1 0	[0000]	X 1	[0000]	Хз	[1000]	X4	[1000]	1
- 1	0011		1000		0100		0100	l
2	0001		1100		0000		0000	l
3	[٥٥٥٥]		ر ٥٥٥٥ع		ر٥٥٥٥م		ر٥٥٥٥ع	J

BrC-DPOP consists of 5 phases:

4. Branch Consistency Enforcement Phase.

DIC-DI OI

BrC-DPOP consists of 5 phases:

4. Branch Consistency Enforcement Phase.

BrC-DPOP consists of 5 phases:

4. Branch Consistency Enforcement Phase.

X1 < X2	X1 > X3	X3 = X4	X 4 = X 5
X2 0 1 2 3	X 3	X4	X 5
X1 0 0 0 0 0	X1[0000]	X3[1000]	X4[1000]
1 0 0 1 1	1000	0100	0100
2 0001	1100	0000	0000
3[0000]	[0000]	[٥٥٥٥]	[0000]

M 54	M 41			M 51	
X 5		X4		X 5	
X4 [1000]	>	(10000 <u>]</u>		X1 0000	
0100	Х	1000	_	1000	
0000	^	1100	=	1100	
Innaal		looool		lnnnn	

BrC-DPOP consists of 5 phases:

5. UTIL and VALUE Phases.

BrC-DPOP consists of 5 phases:

5. UTIL and VALUE Phases.

BrC-DPOP consists of 5 phases:

5. UTIL and VALUE Phases.

BrC-DPOP: Theoretical Results

Let
$$n = |\mathcal{A}|, e = |\mathcal{F}|$$
 and $d = \max_{x_i \in \mathcal{X}} |D_i|$.

- Theorem 1. The AC propagation phase requires O(nde) messages, each of size O(d).
- Theorem 2. The BrC propagation phase requires O(e) messages, each of size $O(d^2)$.
- Theorem 3. The DCOP is arc consistent after the AC propagation phase.
- Theorem 4. The DCOP is branch consistent after the BrC propagation phase.
- Theorem 5. BrC-DPOP is complete and correct.

Experiments: Algorithms

- DPOP
- H-DPOP
- P(rivacy-enhanced) H-DPOP
- AC-DPOP (only AC Propagation phase)
- BrC-DPOP

Experiments: Radio Link Frequency Assignment

Experiments: Random Graphs (Varying p1)

- |A| = 10.
- $|\mathcal{X}| = 10$.
- $\bullet |D_i| = 8, \forall x_i \in \mathcal{X}.$
- p2 = 0.6
- We randomly injected hard constraints of type < or ≠.

Experiments: Random Graphs (Varying p2)

- |A| = 10.
- $|\mathcal{X}| = 10.$
- $|D_i| = 8, \forall x_i \in \mathcal{X}.$
- p1 = 0.6
- We randomly injected hard constraints of type < or ≠.

- Message size is one of the most important bottleneck in solving DCOPs.
- We have introduced the concept of Branch Consistency for Pseudo-Trees.
- We have introduced BrC-DPOP.
- Enhanced performances and scalability on random graphs and RLFA problems.
- We plan to extend this approach by:
 - Exploring propagation of soft constraints.
 - Handling high arity constraints.
- We are also interested in studying memory bounded solutions to scale up even to larger problems.

Conclusions and Future Works

- Message size is one of the most important bottleneck in solving DCOPs.
- We have introduced the concept of Branch Consistency for Pseudo-Trees.
- We have introduced BrC-DPOP.
- Enhanced performances and scalability on random graphs and RLFA problems.
- We plan to extend this approach by:
 - Exploring propagation of soft constraints.
 - Handling high arity constraints.
- We are also interested in studying memory bounded solutions to scale up even to larger problems.

Thank You!

