592	7101 010 101 20125111 a 002		
Provision number	SI-metric stress in MPa	mks-metric stress in kgf/cm ²	U.S. Customary units stress in pounds per square inch (psi)
22.7.4.1(b)(b)	$T_{th} = 0.083 \lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{0.33 \lambda \sqrt{f_c'}}}$	$T_{th} = 0.27\lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{1.1\lambda \sqrt{f_c'}}}$	$T_{th} = \lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{4\lambda \sqrt{f_c'}}}$
22.7.4.1(b)(c)	$T_{th} = 0.083\lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{N_u}{0.33A_g \lambda \sqrt{f_c'}}}$	$T_{th} = 0.27\lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{N_u}{1.1A_g \lambda \sqrt{f_c'}}}$	$T_{th} = \lambda \sqrt{f_c'} \left(\frac{A_g^2}{P_{cp}}\right) \sqrt{1 + \frac{N_u}{4A_g \lambda \sqrt{f_c'}}}$
22.7.5.1(a)	$T_{cr} = 0.33\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}} \right)$	$T_{cr} = \lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}} \right)$	$T_{cr} = 4\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}} \right)$
22.7.5.1(b)	$T_{cr} = 0.33\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{0.33\lambda \sqrt{f_c'}}}$	$T_{cr} = \lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}} \right) \sqrt{1 + \frac{f_{pc}}{1.1 \lambda \sqrt{f_c'}}}$	$T_{cr} = 4\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{4\lambda \sqrt{f_c'}}}$
22.7.5.1(c)	$T_{cr} = 0.33\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{N_u}{0.33A_g \lambda \sqrt{f_c'}}}$	$T_{cr} = \lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{N_u}{1.1 A_g \lambda \sqrt{f_c'}}}$	$T_{cr} = 4\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{N_u}{4A_g \lambda \sqrt{f_c'}}}$
22.7.7.1a	$\sqrt{\left(\frac{V_u}{b_w d}\right)^2 + \left(\frac{T_u p_h}{1.7 A_{oh}^2}\right)^2} \le \phi \left(\frac{V_c}{b_w d} + 0.66 \sqrt{f_c'}\right)$	$\sqrt{\left(\frac{V_u}{b_w d}\right)^2 + \left(\frac{T_u p_h}{1.7 A_{oh}^2}\right)^2} \le \phi \left(\frac{V_c}{b_w d} + 2\sqrt{f_c'}\right)$	$\sqrt{\left(\frac{V_u}{b_w d}\right)^2 + \left(\frac{T_u p_h}{1.7 A_{oh}^2}\right)^2} \le \phi \left(\frac{V_c}{b_w d} + 8\sqrt{f_c'}\right)$
22.7.7.1b	$\left(\frac{V_u}{b_w d}\right) + \left(\frac{T_u p_h}{1.7 A_{oh}^2}\right) \le \phi \left(\frac{V_c}{b_w d} + 0.66\sqrt{f_c'}\right)$	$\left(\frac{V_u}{b_w d}\right) + \left(\frac{T_u p_h}{1.7 A_{oh}^2}\right) \le \phi \left(\frac{V_c}{b_w d} + 2\sqrt{f_c'}\right)$	$\left \left(\frac{V_u}{b_w d} \right) + \left(\frac{T_u p_h}{1.7 A_{oh}^2} \right) \le \phi \left(\frac{V_c}{b_w d} + 8\sqrt{f_c'} \right) \right $
22.9.4.4(b), (c), and (e)	$(3.3 + 0.08f_c')A_c$ $11A_c$ $5.5A_c$	$(34 + 0.08f_c')A_c$ $110A_c$ $55A_c$	$(480 + 0.08f_c')A_c 1600A_c 800A_c$
23.4.4	$V_u \le \phi 0.42 \tan(\theta) \lambda \lambda_s \sqrt{f_c'} b_w d$	$V_u \leq \phi 1.33 \tan(\theta) \lambda \lambda_s \sqrt{f_c'} b_w d$	$V_u \le \phi 5 \tan(\theta) \lambda \lambda_s \sqrt{f_c'} b_w d$
23.4.4.1	$\lambda_s = \sqrt{\frac{2}{1 + 0.004d}} \le 1.0$	$\lambda_s = \sqrt{\frac{2}{1 + 0.04d}} \le 1.0$	$\lambda_s = \sqrt{\frac{2}{1 + \frac{d}{10}}} \le 1.0$
24.3.2	$s = 380 \left(\frac{280}{f_s}\right) - 2.5c_c$ $s = 300 \left(\frac{280}{f_s}\right)$	$s = 38 \left(\frac{2800}{f_s}\right) - 2.5c_c$ $s = 30 \left(\frac{2800}{f_s}\right)$	$s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c$ $s = 12 \left(\frac{40,000}{f_s} \right)$
24.3.2.2	$\Delta f_{ps} \le 250 \text{ MPa}$ $\Delta f_{ps} < 140 \text{ MPa}$	$\Delta f_{ps} \le 2500 \text{ kgf/cm}^2$ $\Delta f_{ps} < 1400 \text{ kgf/cm}^2$	$\Delta f_{ps} \le 36,000 \text{ lb/in.}^2$ $\Delta f_{ps} < 20,000 \text{ lb/in.}^2$
24.5.2.1	$f_t \le 0.62 \sqrt{f_c'}$	$f_t \le 2\sqrt{f_c'}$	$f_t \le 7.5 \sqrt{f_c'}$
	$0.62\sqrt{f_c'} < f_t \le 1.0\sqrt{f_c'}$	$2\sqrt{f_c'} < f_t \le 3.2\sqrt{f_c'}$	$7.5\sqrt{f_c'} < f_t \le 12\sqrt{f_c'}$
	$f_t > 1.0 \sqrt{f_c'}$	$f_t > 3.2 \sqrt{f_c'}$	$f_t > 12\sqrt{f_c'}$
	$f_t \le 0.50 \sqrt{f_c'}$	$f_t \le 1.6 \sqrt{f_c'}$	$f_t \le 6\sqrt{f_c'}$
24.5.3.2	$0.50\sqrt{f'_{ci}}$	$1.6\sqrt{f'_{ci}}$	$6\sqrt{f_{ci}'}$
	$0.25\sqrt{f_{ci}^{\prime}}$	$0.8\sqrt{f_{ci}'}$	$3\sqrt{f'_{ci}}$

