

2-Stage Set Partitioning for Dynamic Vehicle Dispatching

ORberto Hood and the Barrymen

Florentin D. Hildebrandt, Roberto Roberti, Barrett W. Thomas, Marlin W. Ulmer

Dynamic Problem

Two Decisions: partitioning and routing

Optimal Set Partitioning

In an ideal world...

A forecast must suffice...

We consider all scenarios together!

Solve all scenario together!

Key idea:

Served now in **one** scenario → Served now in **all** scenarios Postponed in **one** scenario → Postponed in **all** scenarios

Model and notation:

$$\min \sum_{r \in \mathcal{R}_c} c_r x_r + \frac{1}{|\mathcal{S}_t|} \sum_{j \in \mathcal{S}_t} \sum_{r \in \mathcal{R}_{f,j}} c_r y_{rj}$$

s.t.
$$\sum_{r \in \mathcal{R}_c} a_{ir} x_r + \sum_{r \in \mathcal{R}_{f,i}} a_{ir} y_{rj} = 1$$

$$x_r \in \{0, 1\}$$

 $y_{rj} \in \{0, 1\}$

$$\forall j \in \mathcal{S}_t, \forall i \in C_t \cup C_{tj}$$

$$\forall r \in \mathcal{R}_c$$
 $\forall j \in \mathcal{S}_t, \forall r \in \mathcal{R}_{f,j}$

$$S_t$$
 Set of sampled scenarios

$$C_t$$
 Current requests

$$C_{tj}$$
 Requests sampled in Scenario j

$$R_c$$
 Set of feasible routes for current

$$R_{fj}$$
 Set of feasible routes to deploy in

$$c_r$$
 Costs of route $r \in R_c \cup_{j \in S_t} R_{fj}$

$$a_{ir}$$
 Customer i is served in route r

$$x_r$$
 Route $r \in R_c$ is deployed

$$y_{rj}$$
 Route $r \in R_{fj}$ is deployed

Challenges and solutions

Combinatorial Number of decision variables

Column Generation

Pricing out routes is NP-hard

 → Relax elementarity of routes (generate (q-t)-routes via dynamic programming)

What we get: Dual bound on marginal cost of serving requests now vs later

Finally: Partition current requests accordingly and solve CVRP-TW

Closing Remarks

Thank you to the organizers!

Please reach out:

florentin.hildebrandt@ovgu.de

github.com/flohilde