归纳偏置

概念学习

Outline

- 1 概念学习
- 2 FIND-S
- ③ 变型空间和候选消除算法
- 4 归纳偏置

Topic

- ① 概念学习
- 2 FIND-S
- ③ 变型空间和候选消除算法
- 4 归纳偏置

什么是概念学习

定义

概念学习是指从有关某个布尔函数的输入输出训练样例中, 推断出该布尔函数。

示例

Sky	AirTemp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

假设

- 考虑各属性约束的合取式 h
- 每个属性可取值为:
 - 由"?"表示任意值
 - 明确指定的属性值(如 Water=Warm)
 - 由"∅"表示不接受任何值 (如 Water=∅)
- 例如:

	Sky	AirTemp	Humid	Wind	Water	Forecst
_	$\langle Sunny \rangle$?	?	Strong	?	Same

归纳偏置

• 已知:

- 实例集 X: 可能的日子, 每个日子由下面的属性描述:
 - Sky(可取值为 Sunny, Cloudy 和 Rainy)
 - AirTemp(可取值为 Warm 和 Cold)
 - Humidity (可取值为 Normal 和 High)
 - Wind (可取值为 Strong 和 Weak)
 - Water (可取值为 Warm 和 Cool)
 - Forecast (可取值为 Same 和 Change)
- 假设集 H:每个假设描述为 6 个属性 Sky, AirTemp, Humidity, Wind, Water 和 Forecast 的值约束的合取。约束 可以为"?"(表示接受任意值),"◎"(表示拒绝所有值), 或一特定值。
- 目标概念 c: EnjoySport: X → {0,1}
- 训练样例集 D: 目标函数的正例和反例 $\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$
- 求解:
 - H 中的一假设 h ,使对于 X 中任意 x , h(x) = c(x) 。

归纳学习假设

任一假设如果在足够大的训练样例集中很好地逼近目标函数,它也能在未见实例中很好地逼近目标函数。

more-general-than-or-equal-to

 $x_1 = \langle Sunny, Warm, High, Strong, Cool, Same \rangle$ $x_2 = \langle Sunny, Warm, High, Light, Warm, Same \rangle$

more-general-than-or-equal-to

定义:令 h_j 和 h_k 为在X上定义的布尔函数。定义一个 more-general-than-or-equal-to 关系,记做 \geq_g 。称 $h_j \geq_g h_k$ 当且仅当

$$(\forall x \in X)[(h_k(x) = 1) \to (h_j(x) = 1)]$$

Topic

- 1 概念学习
- 2 FIND-S
- ③ 变型空间和候选消除算法
- 4 归纳偏置

FIND-S 算法

- 将 h 初始化为 H 中最特殊假设
- 对每个正例 x
 - 对 h 的每个属性约束 a;
 - 如果 x 满足 a; 那么不做任何事
 - 否则将 h 中 a; 替换为满足 x 的紧邻的更一般约束
- 輸出假设 h

FIND-S 的假设空间搜索

$$\begin{split} x_1 &= < sunny \ Warm \ Normal \ Strong \ Warm \ Same>, \ + \\ x_2 &= < sunny \ Warm \ High \ Strong \ Warm \ Same>, \ + \\ x_3 &= < Rainy \ Cold \ High \ Strong \ Warm \ Change>, \ - \end{split}$$

 $x_4^- = <Sunny Warm High Strong Cool Change>, +$

h₁ = <Sunny Warm Normal Strong Warm Same> h₂ = <Sunny Warm ? Strong Warm Same>

 $h_3 = <Sunny \ Warm \ ? \ Strong \ Warm \ Same>$

 $h_4 = < Sunny \ Warm \ ? \ Strong \ ? \ ? >$

- 1 概念学习
- 2 FIND-S
- ③ 变型空间和候选消除算法
- 4 归纳偏置

表示

• 一致 (Consistent): 一个假设 h 与训练样例集合 D 一致 (consistent), 当且仅当对 $\langle x, c(x) \rangle$ in D 都有 h(x)=c(x)。

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

• 变型空间 (version space): 关于假设空间 H 和训练样例集 D 的变型空间 (version space),标记为 $VS_{H,D}$,是 H 中与训练样例 D 一致的所有假设构成的子集。

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

- 变型空间 VersionSpace ← 包含 H 中所有假设的列表
- 对每个训练样例 (x, c(x))
 - 从变型空间中移除所有 $h(x) \neq c(x)$ 的假设 h
- 输出 VersionSpace 中的假设列表

归纳偏置

变型空间的更简洁表示

- 定义: 关于假设空间 H 和训练数据 D 的一般边界(General boundary)G,是在 H 中与 D 相一致的极大一般(maximally general)成员的集合。 $S \equiv \{g \in H | Consistent(g, D) \land (\neg \exists g' \in H)[(g' >_g g) \land Consistent(g', D)]\}$
- 定义: 关于假设空间 H 和训练数据 D 的特殊边界(Specific boundary)S,是在 H 中与 D 相一致的极大特殊(maximally specific)成员的集合。 $S \equiv \{s \in H | Consistent(s, D) \land (\neg \exists s' \in H)[(s >_g s') \land Consistent(s', D)]\}$

概念学习

变型空间表示定理

令 X 为一任意的实例集合,H 与为 X 上定义的布尔假设的集合。令 $c: X \to \{0,1\}$ 为 X 上定义的任一目标概念,并令 D 为任一训练样例的集合 $\{\langle x, c(x)\rangle\}$ 。对所有的 X, H, c, D 以及良好定义的 S 和 G:

$$VS_{H,D} = \{ h \in H | (\exists s \in S) (\exists g \in G) (g \geq_g h \geq_g s) \}$$

候选消除算法 (Candidate Elimination Algorithm)

- 将G集合初始化为H中极大一般假设
- 将 S 集合初始化为 H 中极大特殊假设
- 对每个训练样例 d, 进行以下操作:
- 如果 d 是一正例
 - 从 G 中移去所有与 d 不一致的假设
 - 。对 S 中每个与 d 不一致的假设 s
 - 从S中移去s
 - 把 s 的所有的极小泛化式 h 加入到 S 中,其中 h 满足: h 与 d 一致,而且 G 的某个成员比 h 更一般
 - 从S中移去所有这样的假设:它比S中另一假设更一般
- 如果 d 是一个反例
 - 从S中移去所有与d不一致的假设
 - 。对 G 中每个与 d 不一致的假设 g
 - 从 G 中移去 g
 - 把 g 的所有的极小特殊化式 h 加入到 G 中,其中 h 满足: h 与 d 一致,而且 S 的某个成员比 h 更特殊
 - 从 G 中移去所有这样的假设:它比 G 中另一假设更特殊

变型空间和候选消除算法

 G_0 :

{<?, ?, ?, ?, ?, ?>}

算法示例

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

算法示例

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy-Sport?=Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy-Sport?=Yes

算法示例

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

算法示例

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

算法示例

Topic

- 1 概念学习
- 2 FIND-S
- 3 变型空间和候选消除算法
- 4 归纳偏置

一个有偏的假设空间

EnjoySportw 例子中,假设空间限制为只包含属性值的合取。不能够表示最简单的析取形式的目标概念,如 "Sky=Sunny or Sky=Cloudy"。给定以下三个训练样例,它们来自于该析取式假设,我们的算法将得到一个空的变型空间。

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
Sunny	Warm	Normal	Strong	Cool	Change	Yes
Cloudy	Warm	Normal	Strong	Cool	Change	Yes
Rainy	Warm	Normal	Strong	Cool	Change	No

无法生成变型空间的原因

与头两个样例一致,并且能在给定假设空间 H 中表示的最特殊 的假设是:

S2: <?, Warm, Nornal, Strong, Cool, Change> 将第三个样例错误地划为正例。

无偏的学习器

为 EnjoySport 学习任务定义一个新的假设空间 H',允许使用前面的假设的任意析取、合取和否定式。例如目标概念 "Sky=Sunny or Sky=Cloudy" 可被描述为: <Sunny,?,?,?,?> <Cloudy,?,?,?,?> 排除了表达能力的问题,但概念学习算法将完全无法从训练样例中泛化!

无法泛化的原因

如下,假定我们提供了 3 个正例 (x1, x2, x3) 以及两个反例 (x4, x5) 给学习器。这时,变型空间的 S 边界包含的假设正好是三个正例的析取:

变型空间和候选消除算法

$$S : \{(x_1 \lor x_2 \lor x_3)\}$$

因为这是能覆盖 3 个正例的最特殊假设。相似地,G 边界将由那些刚好能排除掉反例的那些假设组成。 $G: \{\neg(x_4 \lor x_5)\}$

归纳编置

定义: 考虑对于实例集合 X 的概念学习算法 L,令

- c 为 X 上定义的任一概念,
- $D_c = \{\langle x, c(x) \rangle\}$ 为 c 的任意训练样例集合。
- $L(x_i, D_c)$ 表示经过数据 D_c 的训练后 L 赋予实例 x_i 的分类。 L 的归纳偏置是最小断言集合 B,它使任意目标概念 c 和相应的训练样例 D_c 满足

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

A ⊢ B 表示 A 逻辑蕴涵 B

• 机械学习器(Rote-Learner)

- 简单地将每个观察到的训练样例存储下来。
- 后续的实例的分类通过在内存中匹配进行。
 - 如果实例在内存中找到了,存储的分类结果被输出。
 - 否则系统拒绝进行分类。

候选消除算法

- 新的实例只在变型空间所有成员都进行同样分类时才输出分类结果
- 否则系统拒绝分类。

Find-S

- 算法寻找与训练样例一致的最特殊的假设
- 用这一假设来分类后续实例。