7.9 Exercise Sheet

Exercise 109. Give a formal proof of $(p \land r)$ from $\{((q \land r) \land q), (p \land p)\}$.

Exercise 110. Show the validity of the following sequents:

- 1. $(p \land q), r \vdash (p \land (r \lor r'));$
- 2. $(p \rightarrow (q \rightarrow r)) \vdash ((p \land q) \rightarrow r);$
- 3. $((p \land \neg r) \rightarrow q), \neg q, p \vdash r;$

Exercise 111. Finish the game at https://profs.info.uaic.ro/~stefan.ciobaca/lnd.html. Do not cheat. It is considered cheating if you change the JavaScript source code, if someone else solves a level for you or if you prove the derived rules using the derived rules themselves.

Exercise 112. Prove that the following inference rules are derivable:

- 1. $\neg \neg i$;
- 2. LEM (law of excluded middle): $\Gamma \vdash (\varphi \lor \neg \varphi)$;
- 3. PBC (proof by contradiction): $PBC \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi;}$
- 4. MT (modus tollens): MT $\frac{\Gamma \vdash (\varphi \to \varphi') \qquad \Gamma \vdash \neg \varphi'}{\Gamma \vdash \neg \varphi}$.

Exercise 113. Prove the soundness theorem for natural deduction (by induction on the number of sequents in the formal proof).

Exercise 114. Show that the rule $\neg \neg e$ is derivable using the LEM (i.e., you may use LEM in the derivation, but not $\neg \neg e$).

Exercise 115. Prove, using the soundness and completeness theorems, that $\varphi_1 \dashv \vdash \varphi_2$ if and only if $\varphi_1 \equiv \varphi_2$.