This listing of claims will replace all prior versions, and listings, of claims in the application:

<u>Listing of Claims</u>:

1. (Original) An image forming method comprising:

exposing a silver halide photographic material and processing the photographic material,

wherein the photographic material contains a compound represented by the following formula (1) and a white area of the processed photographic material exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722:

formula (1)

$$R_1$$
 L_1 $-(L_2=L_3)_k$ R_2 R_4

wherein R_1 and R_2 are each -CN, -COOR or -CONR₇R₈; R_3 and R_4 are each a hydrogen atom, an alkyl group, a cycloalkyl group,

an aryl group or a heterocyclic group; L_1 , L_2 and L_3 are each a methine group and k is 2, provided that the respective - L_2 = L_3 - may be the same or different; R_5 and R_6 are each a hydrogen atom, an alkyl group or an aryl group; R_7 and R_8 are each a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group or R_7 and R_8 may combine with an adjacent nitrogen atom to form a 5- or 6-membered ring, provided that R_7 and R_8 are not hydrogen atoms at the same time and at least one of R_1 , R_2 , R_3 and R_4 is a water-solubilizing group or a group containing a water-solubilizing group.

2. (Original) An image forming method comprising: exposing a silver halide photographic material and processing the photographic material,

wherein the photographic material is exposed by scanning exposure with a light beam and a white area of the photographic material exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722.

3. (Original) An image forming method comprising:

exposing a silver halide photographic material and processing the photographic material,

wherein the photographic material contains a compound represented by formula (1) as claimed in claim 1, the photographic material is exposed by scanning exposure with a light beam and a white area of the processed photographic material exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722.

- 4. (Previously Presented) The image forming method as claimed in claim 1, wherein the total amount of gelatin contained in the photographic material is not more than 6.2 g/m^2 .
- 5. (Previously Presented) The image forming method as claimed in claim 1, wherein the photographic material contains a compound represented by the following formula (2):

formula (2)

wherein R_{51} is a carbonamide group or an anilino group; R_{52} is a phenyl group which may be substituted.

6. (Previously Presented) The image forming method as claimed in claim 1, wherein the photographic material contains a compound represented by the following formula (3):

formula (3)

$$\begin{array}{c|c} R_{B} \\ R_{A}CO-CHCONH \\ O \\ N \\ O \\ R_{E} \\ R_{F} \end{array} (Y_{A})_{n}$$

wherein R_A is an alkyl group; R_B is a halogen atom or an alkoxy group; R_C is $COOR_{D1}$, $-COOR_{D2}COOR_{D1}$, $-NHCOR_{D2}SO_2R_{D1}$, $-N(R_{D3})SO_2R_{D1}$ or $-SO_2N(R_{D3})R_{D1}$, in which R_{D1} is a univalent organic group, R_{D2} is an alkylene group and R_{D3} is an alkyl group, an aralkyl group or a hydrogen atom; Y_A is a univalent organic group; n is 0 or 1; R_E and R_F are each a hydrogen atom or an alkyl group.

- 7. (Original) A silver halide photographic material, wherein the photographic material contains a compound represented by formula (1) as claimed in claim 1 and a white area of the photographic material processed in standard process A exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722.
- 8. (Original) A silver halide photographic material, wherein the photographic material contains a compound represented by formula (2) as claimed in claim 5 and a white area of the photographic material processed in standard process A exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722.

- 9. (Original) A silver halide photographic material, wherein the photographic material contains a compound represented by formula (3) as claimed in claim 6 and a white area of the photographic material processed in standard process A exhibits perception chromaticity indexes a and b of from 0.0 to +2.0 and from -2.2 to -4.0, respectively, wherein said a and b are defined in JIS-Z-8730 and measured in accordance with a method defined in JIS-Z-8722.
- 10. (New) The image forming method of claim 2, wherein the total amount of gelatin contained in the photographic material is not more than $6.2~\mathrm{g/m^2}$.
- 11. (New) The image forming method of claim 2, wherein the photographic material contains a compound represented by the following formula (1):

formula (1)

$$\begin{array}{c|c} R_1 & \downarrow & \downarrow \\ N & \downarrow & \downarrow \\ R_3 & & & R_4 \end{array}$$

wherein R_1 and R_2 are each -CN, -COOR or -CONR₇R₈; R_3 and R_4 are each a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a

heterocyclic group; L_1 , L_2 and L_3 are each a methine group and k is 2, provided that the respective $-L_2=L_3-$ may be the same or different; R_5 and R_6 are each a hydrogen atom, an alkyl group or an aryl group; R_7 and R_8 are each a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group or R_7 and R_8 may combine with an adjacent nitrogen atom to form a 5- or 6-membered ring, provided that R_7 and R_8 are not hydrogen atoms at the same time and at least one of R_1 , R_2 , R_3 and R_4 is a water-solubilizing group or a group containing a water-solubilizing group.

12. (New) The image forming method of claim 2, wherein the photographic material contains a compound represented by the following formula (2):

formula (2)

wherein R_{51} is a carbonamide group or an anilino group; R_{52} is a phenyl group which may be substituted.

13. (New) The image forming method of claim 2, wherein the photographic material contains a compound represented by the following formula (3):

formula (3)

wherein R_A is an alkyl group; R_B is a halogen atom or an alkoxy group; R_C is $COOR_{D1}$, $-COOR_{D2}COOR_{D1}$, $-NHCOR_{D2}SO_2R_{D1}$, $-N(R_{D3})$ SO_2R_{D1} or $-SO_2N(R_{D3})R_{D1}$, in which R_{D1} is a univalent organic group, R_{D2} is an alkylene group and R_{D3} is an alkyl group, an aralkyl group or a hydrogen atom; Y_A is a univalent organic group; n is 0 or 1; R_E and R_F are each a hydrogen atom or an alkyl group.

- 14. (New) The image forming method of claim 3, wherein the total amount of gelatin contained in the photographic material is not more than $6.2~{\rm g/m^2}$.
- 15. (New) The image forming method of claim 3, wherein the photographic material contains a compound represented by the following formula (2):

formula (2)

wherein R_{51} is a carbonamide group or an anilino group; R_{52} is a phenyl group which may be substituted.

16. (New) The image forming method of claim 3, wherein the photographic material contains a compound represented by the following formula (3):

formula (3)

wherein R_A is an alkyl group; R_B is a halogen atom or an alkoxy group; R_C is $COOR_{D1}$, $-COOR_{D2}COOR_{D1}$, $-NHCOR_{D2}SO_2R_{D1}$, $-N(R_{D3})SO_2R_{D1}$ or $-SO_2N(R_{D3})R_{D1}$, in which R_{D1} is a univalent organic group, R_{D2} is an alkylene group and R_{D3} is an alkyl group, an aralkyl group or a hydrogen atom; Y_A is a univalent organic group; n is 0 or 1; R_E and R_F are each a hydrogen atom or an alkyl group.