Circuits

Sinusoidal Analysis

Spring 2022

Context

DC sources

Up to now, we have only considered loadings from DC sources.

Another classical way is to load circuits with alternating currents (AC). For example, sinusoidal sources are AC sources.

Does it change anything compared to DC?

No! Most of the laws/theorems we have seen so far still apply.

But, the repsonse of a circuit can be divided into 2 components:

- lacktriangle a **steady-state response**, the part that remains when $t o \infty$
- lacktriangle a **transient response**, the part that vanishes when $t \to \infty$

Initial condition: v(0) = 0

Equation for t > 0

By applying KVL:

$$v(t) + \tau \frac{dv(t)}{dt} = \sin(1000t)$$

Ims My the phase diff of Vec is 45°?
What's the equivalent DC value of a en cynal? with $\tau = RC = 1 \, \text{ms}$

Solution?

$$v_{ss}(t) = \frac{1}{2\pi} \sin(1000t - 45^\circ)$$

 $v_{ss}(t) = \frac{1}{\sqrt{2}} \sin(1000t - 45^{\circ})$ The transient solution is: $v_{tr}(t) = \frac{1}{2} e^{-t/\tau}$ The transient solution is: $v_{tr}(t) = \frac{1}{2} e^{-t/\tau}$ The transient solution is:

Context

沙河 上海组约大学

when timing is infinit. The first part is

Total solution

almost 0 1 tis very suit, the steady
$$v(t) = \frac{1}{2}e^{-t/\tau} + \frac{1}{\sqrt{2}}\sin(1000t - 45^\circ)$$
 State is

Context 0000

How to determine the solution?

In this lecture, we will only focus on **methods** to determine the **steady-state solution**.

The transient solution can be retrieved from DC analysis and proper initial conditions.

In this course, when dealing with AC circuits, we will **only consider the steady-state solution**.

Complex numbers

Complex representation

Since we are gonna deal with **sinusoidal loadings and responses**, it will be very convenient (mathematically) to represent **every signal** by a **complex number**.

Phasor

Phasor: a complex number that represents the amplitude A and the phase ϕ of a sinusoid

 A/ϕ

Complex numbers

Equivalence

$$z=a+jb$$
 where $A=\sqrt{a^2+b^2}$

and
$$\phi = \operatorname{angle}(a, b) = \arctan\left(\frac{b}{a}\right)$$

$$z = A/\phi$$
 $z = Ae^{j\phi}$

Euler's identity

$$e^{j\phi} = \cos(\phi) + j\sin(\phi)$$

$$\implies \cos(\phi) = \text{Re}(e^{j\phi}) = \frac{e^{j\phi} + e^{-j\phi}}{2}$$

 $\implies \sin(\phi) = \text{Im}(e^{j\phi}) = \frac{e^{j\phi} - e^{-j\phi}}{2i}$

Circuits - Spring 2022 - Pingping DING

Complex numbers

Phasor transform

Suppose we have a sinusoidal voltage:

same w in the RLC circust

$$v(t) = A\cos(\omega t + \phi)$$

resonant trequery

We can represent that voltage by the phasor ${f V}$:

$$\mathbf{V} = A \underline{/\phi}$$

Explanations

$$v(t) = A\cos(\omega t + \phi) = \operatorname{Re}(Ae^{\mathbf{v}(\omega t + \phi)}) = \operatorname{Re}(Ae^{j\phi} \cdot e^{j\omega t}) = \operatorname{Re}(\mathbf{V} \cdot e^{j\omega t})$$

As we are gonna see in the next slides, $e^{j\omega t}$ will be a common factor for every signal.

So, in the phasor representation, we only consider the amplitude ${\cal A}$ and the phase ϕ

Resistor and phasors

$$\xrightarrow{i(t)}$$
 \xrightarrow{R} $\xrightarrow{V(t)}$ $\xrightarrow{-}$

Suppose we have a current $i(t) = A\cos(\omega t + \phi)$ Then, $v(t) = Ri(t) = RA\cos(\omega t + \phi)$

When representing with phasors, we have:

$$\mathbf{I} = A\underline{/\phi}$$
 $\mathbf{V} = RA\underline{/\phi} = R\mathbf{I}$

Ohm's law

Ohm's law is the same with phasors:

$$V = RI$$

Resistor

Capacitor and phasors

Suppose we have a voltage $v(t) = A\cos(\omega t + \phi)$

Then,
$$i(t) = C\frac{dv(t)}{dt} = -CA\omega \sin(\omega t + \phi) = -CA\omega \cos(\omega t + \phi - 90^\circ)$$

$$= -CA\omega \cos(\omega t + \phi - 90^\circ)$$

When representing with phasors, we have:

$$\mathbf{V} = A/\phi$$
 $\mathbf{I} = -CA\omega e^{j(\phi - 90^\circ)} = -CA\omega e^{j\phi} e^{-j90^\circ}$

Phasor relationship

Kind of Ohm's law for phasors:

$$\mathbf{I} = jC\omega\mathbf{V}$$

$$\mathbf{V} = \frac{1}{iC\omega}$$

Circuits -

Capacitor

v(t) and i(t) are out of phase i(t) is leading v(t) by 90° v(t) is lagging i(t) by 90°

Inductor

Inductor and phasors

$$(t)$$
 (t)
 (t)
 (t)
 (t)
 (t)

Suppose we have a current $i(t) = A\cos(\omega t + \phi)$

Then,
$$v(t) = L\frac{di(t)}{dt} = -LA\omega\sin(\omega t + \phi) = -LA\omega\cos(\omega t + \phi - 90^{\circ})$$

When representing with phasors, we have:

$$\mathbf{V} = -LA\omega e^{j(\phi - 90^\circ)} = -LA\omega e^{j\phi} e^{-j90^\circ}$$

Phasor relationship

Kind of Ohm's law for phasors:

$$\mathbf{V} = jL\omega\mathbf{I}$$
 or $\mathbf{I} = \frac{1}{jL\omega}\mathbf{V}$

Inductor

v(t) and i(t) are out of phase v(t) is leading i(t) by 90° i(t) is lagging v(t) by 90°

Generalization of Ohm's law			
Element	Equation	Phasor equation	Circuit
Resistor	v(t) = Ri(t)	$\mathbf{V} = R\mathbf{I}$	R
Capacitor	$i(t) = C \frac{dv(t)}{dt}$	$\mathbf{V} = \frac{1}{jC\omega}\mathbf{I}$	$ \begin{array}{c c} & \overline{jC\omega} \\ & \overline{jC\omega} \\ & + & V \end{array} $
Inductor	$v(t) = L \frac{di(t)}{dt}$	$\mathbf{V}=jL\omega\mathbf{I}$	- JLω + V -

Impedance

In the previous table, the phasor equation was written in the form:

$$V = ZI$$

Z is called the **impedance** (unit: ohms - Ω)

Impedance

Sometimes, it can be useful to use another phasor equation:

$$I = YV$$

Y is called the admittance (unit: siemens - S)

Relationship

Obviously, we have:

$$\mathbf{Z} = \frac{1}{\mathbf{Y}}$$

Circuits -

Impedance/Admittance

Real and imaginary parts

In general, impedances or admittances are complex numbers.

$$\mathbf{Z} = R + jX$$
 and $\mathbf{Y} = G + jB$

- \blacksquare R is called the **resistance** (Ω)
- X is called the **reactance** (Ω)
- *G* is called the **conductance** (S)
- B is called the susceptance (S)

Circuits rules

KVL

Sum of voltages around a closed path is equal to zero.

$$v_1(t) + v_2(t) + \ldots + v_N(t) = 0$$

$$A_1 \cos(\omega t + \phi_1) + A_2 \cos(\omega t + \phi_2) + \ldots + A_N \cos(\omega t + \phi_N) = 0$$

$$Re(A_1 e^{j(\omega t + \phi_1)} + A_2 e^{j(\omega t + \phi_2)} + \ldots + A_N e^{j(\omega t + \phi_N)}) = 0$$

$$Re((A_1e^{j\phi_1} + A_2e^{j\phi_2} + \ldots + A_Ne^{j\phi_N})e^{j\omega t}) = 0$$

■
$$Re((\mathbf{V}_1 + \mathbf{V}_2 + ... + \mathbf{V}_N)e^{j\omega t}) = 0$$

Since $e^{j\omega t} \neq 0$, we have:

$$\boldsymbol{V}_1 + \boldsymbol{V}_2 + \ldots + \boldsymbol{V}_N = 0$$

It means that KVL still applies to phasors.

KCL

Similarly, it can be shown that **KCL still applies to phasors**.

Circuit rules

Impedances in series

When several impedances \mathbf{Z}_i are connected in series, it can be replaced by an equivalent impedance \mathbf{Z}_{ea} :

$$\mathbf{Z}_{eq} = \sum_{i=1}^{N} \mathbf{Z}_{i}$$

Impedances in parallel

When several impedances \mathbf{Z}_i (or admittances \mathbf{Y}_i) are connected in parallel, it can be replaced by an equivalent impedance \mathbf{Z}_{eq} (admittance \mathbf{Y}_{eq}):

$$\mathbf{Z}_{eq} = rac{1}{\sum\limits_{i=1}^{N}rac{1}{\mathbf{Z}_{i}}}$$
 or $\mathbf{Y}_{eq} = \sum\limits_{i=1}^{N}\mathbf{Y}_{i}$

Circuit rules

Source transformation

Sources can be transformed in phasor representation

Thevenin/Norton equivalences

Thevenin and Norton equivalences can be given in phasor representation

Superposition

Superposition can be applied in the phasor domain

Circuit analysis

Analysis

Since we are only considering the sinusoidal steady-state response, the analysis of the circuits will be equivalent to the study of a network of resistors (no differential equation to solve!!!).

The only difference with DC resistor circuits is that we are going to manipulate phasors (complex voltages and currents) and complex impedances.

Circuit analysis

Different steps

- Transform independent sources to phasors*
- Determine the impedance of every passive element
- Apply the analysis tools learned this semester
- Find the phasors of interest and transform them back to a time-domain expression
- * Be careful is sources have different frequencies!!! Everything detailed earlier only applies for signals with the same frequency.

If different frequencies, you can still apply **superposition**. (Check exercise in recitation)