Classification of Finite Simple Groups

Adam Michael

MA376 - Abstract Algebra Department of Mathematics Rose-Hulman Institute of Technology

May 9, 2016

Simple Groups

Definition

A simple group is a nontrivial group with no normal subgroups aside from itself and the trivial group.

Galois Theory sparked the study of finite simple groups

Definition

A group G is solvable if there is a chain of subgroups $\{e\} = G_0 \triangleleft G_1 \triangleleft ... \triangleleft G_k = G$ such that each G_i/G_{i-1} is abelian [4].

Examples

- If G is abelian, then $\{e\} \triangleleft G$, $G/\{e\}$ is abelian, so G is solvable.
- $\{e\} \triangleleft A_3 \triangleleft S_3$, $A_3/\{e\} \cong A_3 \cong \mathbb{Z}_3$, $S_3/A_3 \cong \mathbb{Z}_2$ so S_3 is solvable.
- If G is a nonabelian simple group, then G is not solvable.

Theorem

A polynomial is solvable by radicals if and only if its "Galois group" is solvable.

Classification of Abelian Finite Simple Groups

Theorem

A finite abelian group G is simple if and only if $G \cong \mathbb{Z}_p$ for some prime p.

Proof.

By LaGrange's Theorem, \mathbb{Z}_p is simple. By the Fundamental Theorem of Finite Abelian Groups, $G\cong \mathbb{Z}_{p_1^{e_1}}\times ... \times \mathbb{Z}_{p_k^{e_k}}$. If k>1, G has a normal subgroup isomorphic to $\mathbb{Z}_{p_1^{e_1}}$. If k=1 and $e_1>1$, G has a normal subgroup isomorphic to \mathbb{Z}_{p_1} .

Conjugate Subgroups

Definition

For subgroups H_1 and H_2 of G, H_1 is conjugate to H_2 if there exists a $g \in G$ such that $gH_1g^{-1} = H_2$.

Theorem

If $H \leq G$, H is normal if and only if H has no conjugates in G.

Proof.

- \Rightarrow Let $H \triangleleft G$. Then $\forall g \in G$, $gHg^{-1} = H$, so H has no conjugates.
- ← Let $H_1 \not\triangleleft G$. Then $\exists g \in G$ such that $gH_1g^{-1} \neq H_1$. Let $H_2 = \{ghg^{-1} | h \in H_1\}$. Consider $gh_1g^{-1}, gh_2g^{-1} \in H_2$. Then $gh_1g^{-1}(gh_2g^{-1})^{-1} = g(h_1h_2^{-1})g^{-1} \in H_2$. So $H_2 \leq G$ by the 1 Step Subgroup Test. So H_1 is conjugate to H_2 and $H_1 \neq H_2$.

Sylow Theorems

Theorem (Sylow Theorems [1], 1872)

If G is a finite group of order $p^k n$, p prime and $p \nmid n$, then

- **1** G has $s_p \ge 1$ subgroups of order p^k , called Sylow p-subgroups
- 2 The Sylow p-subgroups are all conjugate

Example

If $s_p = 1$ then the Sylow *p*-subgroup is normal so *G* is not simple.

Feit-Thompson Theorem

Theorem (Feit-Thompson Theorem [1], 1962)

Every finite group of odd order is solvable.

Corollary

Every nonabelian finite simple group has even order.

The Classification Theorem for Finite Simple Groups [1]

Theorem (The Classification Theorem for Finite Simple Groups [1], 2004)

Every finite simple group is isomorphic to one of the following:

- The cyclic groups \mathbb{Z}_p for prime p
- The alternating groups A_n for $n \ge 5$
- The classical groups of Lie type
- The exceptional groups of Lie type or the Tits group ${}^2F_4(2)'$
- 26 sporadic finite simple groups

Classical Groups of Lie Type

For a prime-power q,

- Linear: $PSL_n(q)$, $n \ge 2$, except $PSL_2(2)$ and $PSL_2(3)$
- Unitary: $PSU_n(q)$, $n \ge 3$, except $PSU_3(2)$
- Symplectic: $PSp_{2n}(q)$, $n \ge 2$, except $PSp_4(2)$
- Orthogonal:
 - $P\Omega_{2n+1}(q)$, $n \geq 3$, q odd
 - $P\Omega_{2n}^{+}(q), n \geq 4$
 - $P\Omega_{2n}^{-}(q)$, $n \ge 4$

Example

 $PSL_n(q) = SL_n(q)/Z$ where $SL_n(q)$ is the group of $n \times n$ matrices with entries from the finite field \mathbb{F}_q with determinant 1 and Z is the subgroup of $SL_n(q)$ that are scalar multiples of the identity [1].

Exceptional Groups of Lie Type

For a prime-power q,

- $G_2(q), q \ge 3$;
- $F_4(q)$;
- $E_6(q)$;
- ${}^{2}E_{6}(q)$;
- ${}^3D_4(q)$;

- $E_7(q)$;
- $E_8(q)$
- ${}^{2}B_{2}(2^{2n+1}), n \geq 1;$
- ${}^{2}G_{2}(3^{2n+1}), n \geq 1;$
- ${}^{2}F_{4}(2^{2n+1}), n \geq 1$

Sporadic Finite Simple Groups

- The Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$
- The Leech lattice groups Co_1 , Co_2 , Co_3 , McL, HS, Suz, J_2
- The Fischer groups Fi_{22} , Fi_{23} , Fi'_{24}
- The monstrous groups $\mathbb{M}, \mathbb{B}, Th, HB, He$
- The pariahs $J_1, J_3, J_4, O'N, Ly, Ru$.

Sporadic Finite Simple Groups

Definition

If G is a group and $N \triangleleft H \leq G$, then H/N is called a subquotient of G [5].

Figure: Subquotient diagram of sporadic finite simple groups [2]

References

- R. Wilson, *The Finite Simple Groups*. Springer, 2009.
- Drschawrz, "Diagram of sporadic finite simple groups." https://en.wikipedia.org/wiki/Monster_group#/media/File: Finitesubgroups.svg, 2008.
 - Online; accessed May 7, 2016.
- R. L. Daniel Gorenstein and R. Solomon, "The classification of finite simple groups number 6." Mathematical Surveys and Monographs, vol. 40, no. 6, 2005.
- J. A. Gallian, Contemporary Abstract Algebra. Boston, MA: Brooks / Cole Cengage Learning, 2013.
- D. S. Dummit and R. M. Foote, Abstract Algebra. New Delhi: Wiley-India, 2004.