Matchings and Assignments

Endre Boros 26:711:653: Discrete Optimization

February 19, 2018

a

- ightharpoonup A graph G = (V, E) on 8 vertices.

$$\mathbf{P} = \{(a,c), (c,g), (g,h), (h,e), (e,f)\}$$

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- ► A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e)\}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a,c), (c,g), (g,h), (h,e), (e,f)\}\$$

- An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- For any matching M and any M-augmenting path P we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e)\}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a,c), (c,g), (g,h), (h,e), (e,f)\}$$

- An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- For any matching M and any M-augmenting path P we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- ► A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{ (a, c), (c, g), (g, h), (h, e) \}$$

An M-augmenting path:

$$\mathbf{P} = \{(a,c), (c,g), (g,h), (h,e), (e,f)\}$$

- An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- For any matching M and any M-augmenting path P we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{ (a, c), (c, g), (g, h), (h, e) \}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e), (e, f)\}$$

- ▶ An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- For any matching M and any M-augmenting path P we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- ► A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{ (a, c), (c, g), (g, h), (h, e) \}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e), (e, f)\}$$

- ▶ An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- For any matching M and any M-augmenting path P we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- ► A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{ (a, c), (c, g), (g, h), (h, e) \}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e), (e, f)\}$$

- ▶ An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- ► For any matching *M* and any *M*-augmenting path *P* we have

$$|M \triangle P| = |M| + 1$$

- ▶ A graph G = (V, E) on 8 vertices.
- ► A matching: $\mathbf{M} = \{(b, d), (c, g), (e, h)\}$
- ► An M-alternating path:

$$\mathbf{P} = \{ (a, c), (c, g), (g, h), (h, e) \}$$

► An M-augmenting path:

$$\mathbf{P} = \{(a, c), (c, g), (g, h), (h, e), (e, f)\}$$

- ▶ An improved matching: $\mathbf{M}' = \mathbf{M} \triangle \mathbf{P}$.
- ► For any matching *M* and any *M*-augmenting path *P* we have

$$|M \triangle P| = |M| + 1$$

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ightharpoonup with edges $E \subseteq A \times B$.
- ightharpoonup Let **M** be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(V \cup W)$ and $(X \cup Z)$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ▶ with edges $E \subseteq A \times B$.
- ightharpoonup Let **M** be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(V \cup W)$ and $(X \cup Z)$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ightharpoonup with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ightharpoonup with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ightharpoonup with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $\mathbf{V} \subseteq A$ and $\mathbf{Y} \subseteq B$ as the set of vertices in $V(\mathbf{M})$ that can be reached by an \mathbf{M} -alternating path starting from \mathbf{W} .
- Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(V \cup W)$ and $(X \cup Z)$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(V \cup W)$ and $(X \cup Z)$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ▶ with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ▶ with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- ightharpoonup with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ightharpoonup Let M be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.

- ▶ Consider a bipartite graph $G = (A \cup B, E)$.
- \blacktriangleright with edges $E \subseteq A \times B$.
- ▶ Let \mathbf{M} be a maximum matching in G.
- ▶ Define $\mathbf{W} = A \setminus V(\mathbf{M})$ and $\mathbf{Z} = B \setminus V(\mathbf{M})$.
- ▶ Define $V \subseteq A$ and $Y \subseteq B$ as the set of vertices in V(M) that can be reached by an M-alternating path starting from W.
- ▶ Define $\mathbf{U} = A \setminus (\mathbf{V} \cup \mathbf{W})$ and $\mathbf{X} = B \setminus (\mathbf{Y} \cup \mathbf{Z})$.
- ▶ Then G does not have edges between $(\mathbf{V} \cup \mathbf{W})$ and $(\mathbf{X} \cup \mathbf{Z})$.
- ▶ Furthermore, $C = \mathbf{Y} \cup \mathbf{U}$ is a vertex cover of G.