Pairs Trading

Prof. Daniel P. Palomar
The Hong Kong University of Science and Technology (HKUST)

MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong Kong

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

- Cointegration
- 2 Basic Idea of Pairs Trading
- Obesign of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

- Cointegration is a very interesting property that can be exploited in finance for trading.
- Idea: While it may be difficult to predict individual stocks, it may be easier to predict relative behavior of stocks.
- Illustrative example: A drunk man is wandering the streets (random walk) with a dog. Both paths of man and dog are nonstationary and difficult to predict, but the distance between them is mean-reverting and stationary.

- Everybody is familiar with the concept of correlation between two random variables:
 - correlation is high when they co-move
 - correlation is zero when they move independently
- So what is cointegration?
 - cointegration is high when two quantities move together or remain close to each other
 - cointegration is inexistent if the two quantities do not stay together
- In the financial context:
 - Cointegration of (log-)prices y_t refers to **long-term** co-movements.
 - Correlation of (log-)returns $\Delta y_t = y_t y_{t-1}$ characterizes **short-term** co-movements in (log-)prices y_t .

D. Palomar (HKUST) Pairs Trading 5 / 67

¹Y. Feng and D. P. Palomar, *A Signal Processing Perspective on Financial Engineering*. Foundations and Trends in Signal Processing, Now Publishers, 2016.

• Example of high correlation with no cointegration:

• Indeed the returns are highly correlated, see scatter plot:

• Opposite example of high cointegration with no correlation:

• Indeed the returns are not correlated, see scatter plot:

- A time series is called integrated of order p, denoted as I(p), if the time series obtained
 - by differencing the time series p times is weakly stationary,
 - ullet while by differencing the time series p-1 times is not weakly stationary.
- Example: stock log-prices y_t are integrated of order I(1) because
 - log-prices are not stationary
 - but log-returns $y_t y_{t-1}$ are stationary (at least for some period of time).
- A multivariate time series is said to be cointegrated if it has at least one linear combination being integrated of a lower order, e.g., \mathbf{y}_t is not stationary but $\mathbf{w}^T \mathbf{y}_t$ is stationary for some weights \mathbf{w} .

 Consider the following two nonstationary time series (e.g., log-prices of stocks):

$$y_{1t} = \gamma x_t + w_{1t}$$
$$y_{2t} = x_t + w_{2t}$$

with a stochastic common trend defined as a random walk:

$$x_t = x_{t-1} + w_t$$

where w_{1t} , w_{2t} , w_t are i.i.d. residual terms mutually independent.

- The coefficient γ is the secret ingredient here.
- ullet If γ is known, then we can define the so-called "spread"

$$z_t = y_{1t} - \gamma y_{2t} = w_{1t} - \gamma w_{2t}$$

which is stationary and mean reverting.

• Interestingly, the differences (i.e., log-returns) Δy_{1t} and Δy_{2t} can have an arbitrarily small correlation:

$$\rho = 1/\left(\sqrt{1 + 2\sigma_1^2/\sigma^2}\sqrt{1 + 2\sigma_2^2/\sigma^2}\right).$$

D. Palomar (HKUST) Pairs Trading 11/67

• The log-prices y_{1t} and y_{2t} are cointegrated and the spread $z_t = y_{1t} - \gamma y_{2t}$ is stationary (assume $\gamma = 1$):

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

Basic Idea of Pairs Trading

- Recall that if two time series are cointegrated, then in the long term they remain close to each other.
- In other words, the spread $z_t = y_{1t} \gamma y_{2t}$ is **mean reverting**.
- This mean-reverting property of the spread can be exploited for trading and it is commonly referred to as "pairs trading" or "statistical arbitrage".
- The idea behind pairs trading is to
 - short-sell the relatively overvalued stocks and buy the relatively undervalued stocks,

14 / 67

• unwind the position when they are relatively fairly valued.

Trading the spread

- Suppose the spread $z_t = y_{1t} \gamma y_{2t}$ is mean-reverting with zero mean.
- Stat-arb trading:
 - if spread is low $(z_t < -s_0)$, then stock 1 is undervalued and stock 2 overvalued:
 - buy the spread (i.e., buy stock 1 and short-sell stock 2)
 - unwind the positions when it reverts to zero after i time steps $z_{t+i} = 0$
 - if spread is high $(z_t > s_0)$, then stock 1 is overvalued and stock 2 undervalued:
 - short-sell the spread (i.e., short-sell stock 1 and buy stock 2)
 - unwind the positions when it reverts to zero after i time steps $z_{t+i} = 0$
- The profit, say, from buying low and unwinding at zero is $z_{t+i} z_t = s_0$. So easy!
- Indeed $z_{t+i} z_t = -\gamma(y_{2,t+i} y_{2t}) + (y_{1,t+i} y_{1t})$, so the whole process is like having used a portfolio with weights $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$.
- Recall that the return of a portfolio \mathbf{w} is $\mathbf{w}^T \Delta \mathbf{y}_t$.

Trading the spread

• Illustration on how to trade the spread $z_t = y_{1t} - \gamma y_{2t}$:

²G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis*. John Wiley & Sons. 2004.

D. Palomar (HKUST) Pairs Trading 16 / 67

Pairs trading or statistical arbitrage

• Statistical arbitrage can be used in practice with profits:³

³M. Avellaneda and J.-H. Lee, "Statistical arbitrage in the US equities market," *Quantitative Finance*, vol. 10, no. 7, pp. 761–782, 2010.

D. Palomar (HKUST) Pairs Trading 17 / 67

But how to discover cointegrated pairs and γ ?

- One interesting approach is based on a VECM modeling of the universe of stocks: From the parameter β contained in the low-rank matrix $\Pi = \alpha \beta^T$ one can extract a cointegration subspace. After that, one can design some portfolio within that cointegration subspace.⁴
- A simpler approach to discover pairs is by brute force, i.e., try
 exhaustively different combinations of pairs of stocks and see if they
 are cointegrated.
- But, given a potential pair, how do we obtain the "secret" γ ?
- Easy! Just a simple LS regression!
- Recall that
 - $\bullet \ \gamma$ is needed to form the spread to be traded (i.e., portfolio)
 - ullet the spread mean μ is needed to determine the thresholds for entering a trade and unwind later the position.

D. Palomar (HKUST) Pairs Trading 18 / 67

⁴Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

Design of a pairs trading strategy

- We first focus on pairs trading (i.e., statistical arbitrage between two stocks) as the example to introduce the main steps of statistical arbitrage.
- In practice, pairs trading contains three main steps⁵:
 - Pairs selection: identify stock pairs that could potentially be cointegrated.
 - **Cointegration test**: test whether the identified stock pairs are indeed cointegrated or not.
 - **Trading strategy design**: study the spread dynamics and design proper trading rules.

D. Palomar (HKUST) Pairs Trading 20 / 67

⁵G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis*. John Wiley & Sons. 2004.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

Pairs selection: normalized price distance

 Normalized price distance⁶ (as a rough proxy to measure cointegration):

$$\mathsf{NPD} riangleq \sum_{t=1}^T (ilde{p}_{1t} - ilde{p}_{2t})^2$$

where the normalized price \tilde{p}_{1t} of stock 1 is given by $\tilde{p}_{1t} = p_{1t}/p_{10}$. The normalized prices of stock 2 defined similarly.

- One can easily (i.e., cheaply) compute the NPD for all the possible combination of pairs and select some pairs with smallest NPD as the potentially cointegrated pairs.
- Later one can use a more refined measure of cointegration (more computationally demanding).

D. Palomar (HKUST) Pairs Trading 22 / 67

⁶E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, "Pairs trading: Performance of a relative-value arbitrage rule," *Review of Financial Studies*, vol. 19, no. 3, pp. 797–827, 2006.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

Least Squares (LS) regression

• If the spread z_t is stationary, it can be written as⁷

$$z_t = y_{1t} - \gamma y_{2t} = \mu + \epsilon_t$$

where

- \bullet μ represents the equilibrium value and
- ϵ_t is a zero-mean residual.
- Equivalently, it can be written as

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

which now has the typical form of linear regression.

• Least squares (LS) regression over *T* observations:

$$\underset{\mu,\gamma}{\mathsf{minimize}} \quad \sum_{t=1}^{T} (y_{1t} - (\mu + \gamma y_{2t}))^2$$

⁷G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis.* John Wiley & Sons. 2004.

Cointegration test

- LS regression is used to estimate the parameters μ and γ , obtaining the estimates $\hat{\mu}$ and $\hat{\gamma}$.
- If y_{1t} and y_{2t} are I(1) and are cointegrated, then the estimates converge to the true values as the number of observations goes to infinity⁸.
- Using the estimated parameters $\hat{\mu}$ and $\hat{\gamma}$, we can compute the residuals

$$\hat{\epsilon}_t = y_{1t} - \hat{\gamma} y_{2t} - \hat{\mu}.$$

- Then, one has to decide whether the spread is stationary, i.e., ϵ_t is stationary. In practice, the estimated residuals are used $\hat{\epsilon}_t$
- There are many well-defined mathematical tests for the stationarity of $\hat{\epsilon}_t$, e.g., augmented Dicky-Fuller (ADF) test, Johansen test, etc.

⁸R. F. Engle and C. W. J. Granger, "Co-integration and error correction: Representation, estimation, and testing," *Econometrica: Journal of the Econometric Society*, pp. 251–276, 1987.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

Optimum threshold

- Once some identified pairs have passed the cointegration test, one still needs to decide the entry and exit thresholds to open and unwind the positions, respectively.
- For the sake of concreteness, we focus on studying the entry threshold:
 - ullet open positions when the spread diverges from its long-term mean by s_0
 - unwind the position when it reverts to its mean
- ullet Thus, the key problem now is how to design the value of s_0 such that the total profit is maximized.
- Total profit:

profit of each trade \times number of trades

- profit of each trade is s_0
- number of trades is related to the zero crossings, which can be analized theoretically as well as empirically.
- We focus now on estimating the number of trades.

Optimum threshold s_0 : Parametric approach

- Suppose the spread follows a standard Normal distribution.
- The probability that the spread deviates above from the mean by s_0 or more is

$$1-\Phi(s_0)$$

where $\Phi(\cdot)$ is the c.d.f. of the standard Normal distribution.

• For a path with T days, the number of tradable events is

$$T(1-\Phi(s_0)).$$

- For each trade, the profit is s_0 and then the total profit is $s_0 T(1 \Phi(s_0))$.
- Then the optimal threshold is $s_0^* = \arg \max_{s_0} \{s_0 T(1 \Phi(s_0))\}.$
- In practice, one cannot know the true distribution but can estimate the distribution parameters.
- Then one can compute the total profit based on estimated distribution.

Optimum threshold s_0 : Parametric approach

• Optimal threshold s_0^{\star} maximizes the total profit:

Optimum threshold s₀: Non-parametric approach

- Suppose the observed sample path has length $T: z_1, z_2, \ldots, z_T$.
- We consider J discretized threshold values as $s_0 \in \{s_{01}, s_{02}, \dots, s_{0J}\}$ and the empirical trading frequency for the threshold s_{0i} is

$$\bar{f}_j = \frac{\sum_{t=1}^T \mathbf{1}_{\{z_t > s_{0j}\}}}{T}.$$

- The empirical values \bar{f}_j may not be a smoothed enough and the resulted profit function may not be accurate enough.
- Smooth the trading frequency function by regularization:

$$\underset{\mathbf{f}}{\mathsf{minimize}} \quad \sum_{j=1}^J (\overline{f}_j - f_j)^2 + \lambda \sum_{j=1}^{J-1} (f_j - f_{j+1})^2$$

Optimum threshold s₀: Non-parametric approach

• The problem can be rewritten as

$$\underset{\mathbf{f}}{\mathsf{minimize}} \quad \|\overline{\mathbf{f}} - \mathbf{f}\|_2^2 + \lambda \, \|\mathbf{D}\mathbf{f}\|_2^2$$

where

$$\mathbf{D} = egin{bmatrix} 1 & -1 & & & & & \ & 1 & -1 & & & & \ & & \ddots & \ddots & & \ & & & 1 & -1 \end{bmatrix} \in \mathbb{R}^{(J-1) imes J}.$$

- Setting the derivative of the objective w.r.t. \mathbf{f} to zero yields the optimal solution $\mathbf{f}^* = (\mathbf{I} + \lambda \mathbf{D}^T \mathbf{D})^{-1} \overline{\mathbf{f}}$.
- The optimal threshold is the one maximizes the total profit:

$$s_0^{\star} = \underset{s_{0j} \in \{s_{01}, s_{02}, \dots, s_{0J}\}}{\operatorname{arg max}} \{s_{0j}f_j\}.$$

Optimum threshold s₀: Non-parametric approach

• Optimal threshold s_0^{\star} maximizes the total profit:

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

LS regression for pairs trading

• If the spread z_t is stationary, it can be written as

$$z_t = y_{1t} - \gamma y_{2t} = \mu + \epsilon_t$$

where

- ullet μ represents the equilibrium value and
- \bullet ϵ_t is a zero-mean residual.
- Equivalently, it can be written as

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

which now has the typical form for linear regression.

• Least squares (LS) regression over T observations:

minimize
$$\sum_{\mu,\gamma}^{T} (y_{1t} - (\mu + \gamma y_{2t}))^2$$

 By stacking the T observations in the vectors y₁ and y₂, we can finally write:

minimize
$$\|\mathbf{y}_1 - (\mu \mathbf{1} + \gamma \mathbf{y}_2)\|^2$$

LS regression for pairs trading

- Using the estimated parameters $\hat{\mu}$ and $\hat{\gamma}$, we can compute the residuals $\hat{\epsilon}_t = y_{1t} \hat{\mu} \hat{\gamma}y_{2t}$.
- Then, one has to decide whether the cointegration is acceptable or not so move to the trading part.
- There are many well-defined mathematical tests for the stationarity of $\hat{\epsilon}_t$, e.g., augmented Dicky-Fuller (ADF) test, Johansen test, etc.
- Total profit:

profit of each trade \times number of trades

- profit of each trade is s₀
- number of trades is related to the zero crossings, which can be analized theoretically as well as empirically.
- Ideally, we want residuals with large amplitude (variance) as well as a strong mean reversion because they directly affect the profit.

D. Palomar (HKUST) Pairs Trading 35 / 67

LS regression for pairs trading

LS regression for pairs trading

• But also a bad case: 😞

LS regression for pairs trading

- The problem with the LS regression is that it assumes that μ and γ are constant.
- In practice, they can change with time, resulting in a spread that drifts from equilibrim never to revert back with huge potential losses.
- Thus, in practice, $\overline{\mu}$ and $\overline{\gamma}$ are time-varying and have to be tracked.
- How to track time-varying parameters?
- Of course... Kalman!!!
- Well, you can also try a rolling regression or exponential smoothing, but Kalman works better.

• Recall the previous static relationship for cointegrated series y_{1t} and y_{2t} :

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

• Let's make it time-varying:

$$y_{1t} = \mu_t + \gamma_t y_{2t} + \epsilon_t$$

• Let's further assume that the parameters μ_t and γ_t change slowly over time:

$$\mu_{t+1} = \mu_t + \eta_{1t}$$
$$\gamma_{t+1} = \gamma_t + \eta_{2t}$$

Obviously, this fits nicely the Kalman framework!

Interlude: The Kalman filter

• Kalman filter consist of two equations that model the time-varying hidden state \mathbf{x}_t and the observations \mathbf{y}_t :

$$\mathbf{x}_{t+1} = \mathbf{T}_t \mathbf{x}_t + oldsymbol{\eta}_t \ \mathbf{y}_t = \mathbf{Z}_t \mathbf{x}_t + oldsymbol{\epsilon}_t$$

- The observation equation $\mathbf{y}_t = \mathbf{Z}_t \mathbf{x}_t + \epsilon_t$ relates the observation \mathbf{y}_t to the hidden state \mathbf{x}_t as a linear relationship, where \mathbf{Z}_t is the time-varying observation matrix and ϵ_t is a zero-mean Gaussian error $\epsilon_t \sim \mathcal{N}\left(\mathbf{0},\mathbf{R}\right)$ with covariance matrix \mathbf{R} .
- The state transition equation $\mathbf{x}_{t+1} = \mathbf{T}_t \mathbf{x}_t + \boldsymbol{\eta}_t$ expresses the transition of the hidden state from \mathbf{x}_t to \mathbf{x}_{t+1} as a linear relationship, where \mathbf{T}_t is the time-varying transition matrix and $\boldsymbol{\eta}_t$ is a zero-mean Gaussian error $\boldsymbol{\eta}_t \sim \mathcal{N}\left(\mathbf{0},\mathbf{Q}\right)$ with covariance matrix \mathbf{Q} .
- The Kalman filter is extremely versatile in modeling a variety of real-life processes.⁹

⁹J. Durbin and S. J. Koopman, *Time Series Analysis by State Space Methods*, 2nd Ed. Oxford University Press, 2012.

Kalman filter (state transition equation and observation equation):

$$\mathbf{x}_{t+1} = \mathbf{T}\mathbf{x}_t + \boldsymbol{\eta}_t$$
 $y_{1t} = \mathbf{Z}_t\mathbf{x}_t + \epsilon_t$

where

- $\mathbf{x}_t \triangleq \left[\begin{array}{c} \mu_t \\ \gamma_t \end{array} \right]$ is the hidden state
 $\mathbf{T} \triangleq \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$ is the state transition matrix
- $\eta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ is the i.i.d. state transition noise with $\mathbf{Q} = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$
- $\mathbf{Z}_t \triangleq \begin{bmatrix} 1 & y_{2t} \end{bmatrix}$ is the observation coefficient matrix
- $\epsilon_t \sim \bar{\mathcal{N}}\left(0, \sigma_\epsilon^2\right)$ is the i.i.d. observation noise
- Note that this is a time-varying Kalman filter since \mathbf{Z}_t is time-varying.
- Parameters σ_1^2 , σ_2^2 , σ_ϵ^2 can be estimated using the EM algorithm using historical data for calibration.

• Log-prices of ETFs EWH and EWZ:

 \bullet Tracking of μ and γ by LS, rolling LS, and Kalman:

• Spreads achieved by LS, rolling LS, and Kalman:

Trading of spread from LS:

Trading of spread from rolling LS:

• Trading of spread from Kalman:

• Wealth comparison:

Kalman filter in finance

- The Kalman filter can and has been used in many aspects of financial time-series modeling as one could expect.¹⁰
- Examples of univariate time series: rate of inflation, national income, level of unemployment, etc.
- Typical models include: local model, trend-cycle decompositions, seasonality, etc.
- Examples of multivariate time series: inflation and national income.
- Multiple time series allows for more sophisticated models including common factors, cointegration, etc.
- Also data irregularities can be easily handled, e.g., missing observations, outliers, mixed frequencies.
- Plenty of applications for nonlinear and non-Gaussian models as well, e.g., GARCH modeling and stochastic volatility modeling.

¹⁰A. Harvey and S. J. Koopman, "Unobserved components models in economics and finance: The role of the Kalman filter in time series econometrics," *IEEE Control Systems Magazine*, vol. 29, no. 6, pp. 71–81, 2009.

Outline

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

From pairs trading to statistical arbitrage

- Pairs trading focuses on finding cointegration between two stocks.
- A more general idea is to extend this statistical arbitrage from two stocks to more stocks.
- The idea is still based on cointegration:

Try to construct a linear combination of the log-prices of multiple (more than two) stocks such that it is a **cointegrated mean-reversion** process.

- In the case of two assets, the spread is $z_t = y_{1t} \gamma y_{2t}$, which can be understood as a portfolio with weights: $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$.
- In the general case of many assets, one has to properly design the portfolio w.

D. Palomar (HKUST) Pairs Trading 51/67

Outline

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

VECM

- Denote the log-prices of multiple stocks as \mathbf{y}_t and the log-returns as $\mathbf{r}_t = \Delta \mathbf{y}_t = \mathbf{y}_t \mathbf{y}_{t-1}$.
- Most of the multivariate time-series models attempt to model the log-returns \mathbf{r}_t (because the log-prices are nonstationary whereas the log-returns are weakly stationary, at least over some time horizon).
- However, it turns out that differencing the log-prices may destroy part of the structure.
- The VECM¹¹ tries to fix that issue by including an additional term in the model:

$$\mathbf{r}_t = \phi_0 + \mathbf{\Pi} \mathbf{y}_{t-1} + \sum_{i=1}^{p-1} \tilde{\mathbf{\Phi}}_i \mathbf{r}_{t-i} + \mathbf{w}_t,$$

where the term Πy_{t-1} is called error correction term.

¹¹R. F. Engle and C. W. J. Granger, "Co-integration and error correction: Representation, estimation, and testing," *Econometrica: Journal of the Econometric Society*, pp. 251–276, 1987.

VECM - Matrix Π

- The matrix Π is of extreme importance.
- Notice that from the model $\mathbf{r}_t = \phi_0 + \mathbf{\Pi} \mathbf{y}_{t-1} + \sum_{i=1}^{p-1} \tilde{\mathbf{\Phi}}_i \mathbf{r}_{t-i} + \mathbf{w}_t$ one can conclude that $\mathbf{\Pi} \mathbf{y}_t$ must be stationary even though \mathbf{y}_t is not!!!
- If that happens, it is said that \mathbf{y}_t is cointegrated.
- There are three possibilities for Π:
 - rank $(\Pi) = 0$: This implies $\Pi = 0$, thus \mathbf{y}_t is not cointegrated (so no mystery here) and the VECM reduces to a VAR model on the log-returns.
 - rank $(\Pi) = N$: This implies Π is invertible and thus \mathbf{y}_t must be stationary already.
 - $0 < \operatorname{rank}(\mathbf{\Pi}) < \mathcal{N}$: This is the interestinc case and $\mathbf{\Pi}$ can be decomposed as $\mathbf{\Pi} = \alpha \boldsymbol{\beta}^T$ with $\alpha, \beta \in \mathbb{R}^{N \times r}$ with full column rank. This means that \mathbf{y}_t has r linearly independent cointegrated components, i.e., $\boldsymbol{\beta}^T \mathbf{y}_t$, each of which can be used for pairs trading.

54 / 67

Outline

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

Statistical arbitrage based on factor models

Suppose the stock i is cointegrated with some tradable factors:

$$y_{it} = \boldsymbol{\pi}_i^T \mathbf{y}_t^f + w_{it}$$

where

- yit is the log-price of the stock i,
- \mathbf{y}_{t}^{f} is the log-price of the tradable factors,
- π_i is the vector of loading coefficients
- w_{it} is a stationary mean-reversion process.
- It can also be written in a factor model form:

$$r_{it} = \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{t} + \varepsilon_{it}$$

where

- $r_{it} = y_{it} y_{i,t-1}$ is the log-return of stock i,
- $\mathbf{f}_t = \mathbf{y}_t^f \mathbf{y}_{t-1}^f$ is the log-returns of the tradable factors, and
- $\varepsilon_{it} = w_{it} w_{i,t-1}$ is the specific noise.

Statistical arbitrage based on factor models

Recall the factor model form expression

$$r_{it} = \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{t} + \varepsilon_{it}$$

- The idea now is to first properly select some tradable factors \mathbf{f}_t and then test whether the cumulative summation of the resulted specific noise ε_{it} , i.e., $w_{it} = \sum_{i=0}^{t} \varepsilon_{ij}$, is stationary or not.
- If positive, then one can define a spread to be

$$z_{it} = w_{it} = \sum_{j=0}^{t} \left(r_{ij} - \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{j} \right) = \begin{bmatrix} 1 & -\boldsymbol{\pi}_{i}^{T} \end{bmatrix} \left(\sum_{j=0}^{t} \begin{bmatrix} r_{ij} \\ \mathbf{f}_{j} \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & -\boldsymbol{\pi}_{i}^{T} \end{bmatrix} \begin{bmatrix} y_{it} \\ \mathbf{y}_{t}^{f} \end{bmatrix}$$

Statistical arbitrage based on factor models

- Some tradable examples 12 of \mathbf{f}_t are the log-returns of
 - (explicit factors) the sector ETFs and/or
 - (hidden factors) several largest eigen-portfolios¹³
- Again, for each constructed cointegration component, one can study the spread and find the optimal trading thresholds as before.

58 / 67

D. Palomar (HKUST) Pairs Trading

¹²M. Avellaneda and J.-H. Lee, "Statistical arbitrage in the US equities market," *Quantitative Finance*, vol. 10, no. 7, pp. 761–782, 2010.

¹³A eigen-portfolio is a portfolio whose weight is a eigenvector of the covariance matrix of the stock returns.

Outline

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

Mean-reverting portfolio (MRP)

- In the case of two assets, the spread is $z_t = y_{1t} \gamma y_{2t}$, which can be understood as a portfolio with weights: $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$.
- In the general case of many assets, one has to properly design the portfolio **w**.
- One interesting approach is based on a VECM modeling of the universe of stocks:
 - From the parameter β contained in the low-rank matrix $\Pi = \alpha \beta^T$ one can simply use any column of β (even all of them)
 - ullet Even better, eta defines a cointegration subspace and we can then optimize the portfolio within that cointegration subspace. ¹⁴

D. Palomar (HKUST) Pairs Trading 60 / 67

¹⁴Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

Mean-reverting portfolio (MRP)

- Consider the log-prices \mathbf{y}_t and use $\boldsymbol{\beta}$ to extract several spreads $\mathbf{s}_t = \boldsymbol{\beta}^T \mathbf{y}_t$.
- Let's now use a portfolio **w** to extract the best mean-reverting spread from \mathbf{s}_t as $z_t = \mathbf{w}^T \mathbf{s}_t$.
- To design the the portfolio **w** we have two main objectives (recall that total profit equals: profit of each trade × number of trades):
 - we want large variance (profit of each trade): $\mathbf{w}^T \mathbf{M}_0 \mathbf{w}$, where $\mathbf{M}_i = E\left[(\mathbf{s}_t E[\mathbf{s}_t]) (\mathbf{s}_{t+i} E[\mathbf{s}_{t+i}])^T \right]$
 - we want strong mean reversion (number of trades): many proxies exist like the Portmanteau statistics or crossing statistics.

61 / 67

D. Palomar (HKUST) Pairs Trading

Mean-reverting portfolio (MRP)

 For example, if we use the Portmanteau statistics as a proxy for the mean reversion, the problem formulation becomes:

minimize
$$\sum_{i=1}^{p} \left(\frac{\mathbf{w}^{T} \mathbf{M}_{i} \mathbf{w}}{\mathbf{w}^{T} \mathbf{M}_{0} \mathbf{w}} \right)^{2}$$
 subject to
$$\mathbf{w}^{T} \mathbf{M}_{0} \mathbf{w} = \nu$$

$$\mathbf{w} \in \mathcal{W}.$$

 Using other proxies, the formulation can be expressed more generally as¹⁵

minimize
$$\mathbf{w}^T \mathbf{H} \mathbf{w} + \lambda \sum_{i=1}^p \left(\mathbf{w}^T \mathbf{M}_i \mathbf{w} \right)^2$$
 subject to $\mathbf{w}^T \mathbf{M}_0 \mathbf{w} = \nu$ $\mathbf{w} \in \mathcal{W}$.

D. Palomar (HKUST) Pairs Trading 62 / 67

¹⁵Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

MRP in practice

• Observe several stock log-prices and the spreads obtained from β :

MRP in practice

• Observe several stock log-prices and the spreads obtained from β :

Outline

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
 - Pairs selection
 - Cointegration test
 - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
 - VECM
 - Factor models
 - Optimization of mean-reverting portfolio (MRP)
- Summary

Summary

- First of all, we have discovered the concept of cointegration.
- We have learned the basic idea of pairs trading for cointegrated assets:
 - searching for a cointegrated spread is the first step
 - making sure that the chosen spread remains cointegrated is key (cointegrated tests)
 - \bullet obtaining the cointegration ratio γ and the entering and exiting thresholds are important details.
- We have learned of the use of Kalman (initially developed for tracking missiles) filtering for improved pairs trading.
- We have briefly explored the extension of pairs trading (for two stocks) to statistical arbitrage (for more than two stocks):
 - VECM modeling is an important multivariate time-series modeling tool
 - sophisticated portfolio designs on the cointegration subspace are possible.

Thanks

For more information visit:

https://www.danielppalomar.com

