

Non-Contrastive Self-Supervised Learning

Deep Learning - Beispiel

Deep Learning

Supervised Learning: "Lernen mit Labels"

zurück zur Realität

Anforderungen

- ❖ viele Daten
- Labels
- Hardware
- Zeit

Gegebenheiten

- wenige Daten
- entsprechend wenige Labels

Transfer Learning

Transfer Learning

Encoder lernen	übertragen	Aufgabe lösen
Supervised Learningaufgabenspezifisch	aufgabenspezifischer EncoderFeatures/Wissen aus Domäne A	Supervised Learningaufgabenspezifisch
Domäne A		Daten aus Domäne B
Feature Learning		Features aus Domäne A
		Lösung der Aufgabe

Transfer Learning

Encoder lernen übertragen Aufgabe lösen Supervised Learning aufgabenspezifischer Encoder aufgabenspezifisch Features/Wissen aus Domäne A Daten aus Domäne B Features aus Domäne A Lösung der Aufgabe

Geht das besser?

Self-Supervised Learning

"Füllen von Lücken" Lernen ohne Labels

Contrastive SSL Computer Vision

Allgemein

- * aufgabenagnostisch→ keine Labels
- . "Lücken füllen"

randomly masked

A quick [MASK] fox jumps over the [MASK] dog

predict

A quick brown fox jumps over the lazy dog

Contrastive SSL computer Vision

Joint Embedding Architecture

Contrast

[3, 4]

Contrastive SSL computer Vision

Joint Embedding Architecture

Contrast

[3, 4]

Non-Contrastive SSL - Collapse

- kein Kontrast
- ⚠ triviale Lösung möglich
- ▲ Features sind nutzlos
- Inputs werden "ignoriert"
- konstante Embeddings

Variance-Invariance-Covariance-Regularization

- Ailio

- Non-Contrastive SSL
- wichtigste Elemente
 - Fehlerfunktion
 - Augmentierung
- keine speziellen "Tricks"
 - Momentum Encoder
 - Stop Gradient
 - Clustering

- ...

Variance-Invariance-Covariance-Regularization

- Non-Contrastive SSL
- wichtigste Elemente
 - Fehlerfunktion
 - Augmentierung
- keine speziellen "Tricks"
 - Momentum Encoder
 - Stop Gradient
 - Clustering

- ...

VICReg

Fehlerfunktion - Übersicht

Variance

- ❖ hält Varianz aufrecht
- Ohne Variance-Regularization
 - → konstante Repräsentationen
- **i** VI-Reg funktioniert auch

Invariance

- minimiert Abstand
- Mean-Squared-Error

Covariance

- Dekorrelation
- Embedding-Variablen mit möglichst wenig redundanten Infos
- verhindert informativen Collapse

Fehlerfunktion - Variance

Ailio

Variance

- ❖ hält Varianz aufrecht
- ❖ Ohne Variance-Regularization→ konstante
 - → konstante Repräsentationen
- **i** VI-Reg funktioniert auch

$$v(Z) = \frac{1}{d} \sum_{j=1}^{d} \max(0, \gamma - S(z^{j}, \varepsilon))$$

$$S(x,\varepsilon) = \sqrt{\operatorname{Var}(x) + \varepsilon}$$

$$\gamma = 1$$

Hyperparameter

$$Z = \begin{pmatrix} z_1^1 & \cdots & z_n^1 \\ \vdots & \ddots & \vdots \\ z_1^d & \cdots & z_n^d \end{pmatrix}$$

Fehlerfunktion - Invariance

Invariance

minimiert Abstand

$$Z = \begin{pmatrix} z_1^1 & \cdots & z_n^1 \\ \vdots & \ddots & \vdots \\ z_1^d & \cdots & z_n^d \end{pmatrix}$$

Fehlerfunktion - Covariance

Covariance

- Dekorrelation
- Embedding-Variablen mit möglichst wenig redundanten Infos
- informativen Collapse verhindern

$$c(Z) = \frac{1}{d} \sum_{i \neq j} [C(Z)]_{i,j}^2$$

$$C(Z) = \frac{1}{n-1} \sum_{i=1}^{n} (z_i - \bar{z})(z_i - \bar{z})^T$$

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z$$

$$Z = \begin{pmatrix} z_1^1 & \cdots & z_n^1 \\ \vdots & \ddots & \vdots \\ z_1^d & \cdots & z_n^d \end{pmatrix}$$

Fehlerfunktion - Gesamt

$$l(Z, Z') = \lambda s(Z, Z') + \mu[v(Z) + v(Z')] + \nu[c(Z) + c(Z')]$$

- Suche von Gewichten z.B. via Grid-Search
 - $\lambda = \mu > \nu$
 - $\nu = 1$

Danke! Fragen?

Mehr zu Self-Supervised Learning, VICReg und World Models für autonome KI, gerne im nächsten Vortrag.

Quellen

- [1] K. Potdar und C. Pai, "A Convolutional Neural Network based Live Object Recognition System as Blind Aid", *arXiv*, November 2018. Zugriff am: 29. November 2022. [Online]. Verfügbar unter: https://arxiv.org/abs/1811.10399
- [2] A. Dertat. "Applied Deep Learning Part 4: Convolutional Neural Networks".

 Medium. https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2#9722 (Zugriff am 28. November 2022).
- [3] A. Bardes, J. Ponce und Y. LeCun, "VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning", in International Conference on Learning Representations, Virtual, 25. April 2022. Zugriff am: 29. November 2022. [Online]. Verfügbar unter: https://arxiv.org/abs/2105.04906
- [4] "Illustration of transforms Torchvision main documentation".

 PyTorch. https://pytorch.org/vision/main/auto-examples/plot transforms.html-sphx-glr-auto-examples-plot-transforms-py (Zugriff am 28. November 2022).