

Pavlos Sermpezis, Lars Prehn, Sofia Kostoglou,

Marcel Flores, Athena Vakali, Emile Aben

Data & Web Science Laboratory (Datalab), https://datalab.csd.auth.gr/
Computer Science Dept., Aristotle University of Thessaloniki

Bias in data: a motivational example

- Assume an entire population of 100 people
 - 50 men, 50 women
 - 70 from country A, 30 from country B
- We do a survey with 10 participants
 - o 8 men, 2 women
 - o 8 from country A, 2 from country B

3	Men	Women	Country A	Country B
Entire population	50%	50%	70%	30%
Survey sample	80%	20%	80%	20%

- Is there bias? → Yes! difference in the gender/country distributions between population & sample
- Is bias the same along gender/country? → No! sample is more biased wrt. the gender dimension
- Is bias a problem? → It depends!
 - Goal: estimate the average population height (gender bias is a problem, country bias may be a problem)
 - Goal: calculate % of native spoken languages (gender bias is not a problem, country bias is a problem)

A "domain" or "Autonomous System (AS)" is a network or a collection of networks that are all managed, controlled and supervised by a single entity or organization

today → more than 70,000 ASes

Inter-domain monitoring

Internet measurement platforms

Internet measurement platforms

https://atlas.ripe.net/

- data plane measurements
- > 11,000 probes & anchors
- in > 3000 ASNs

http://www.routeviews.org

https://ris-live.ripe.net/

- BGP RIBs & updates
- 27 route collectors
- peering with > 500 ASNs

- BGP RIBs & updates
- 36 route collectors
- peering with > 300 ASNs

Measurement platforms: a window to the Internet

... but, in practice: a **stained glass** window

The "stained glass" view == Bias

not all network types can be equally seen by the platforms

→ our view of the Internet is **biased**

Example 1 (location bias)

• RIPE Atlas & RIPE RIS have more probes/peers in Europe

RIPE Atlas probes

https://atlas.ripe.net/results/maps/network-coverage/

RIPE RIS route collectors

https://observablehg.com/@emileaben/ris-route-collectors-and-peer-locations

Example 2 (network-type bias)

Peers of RIPE RIS and RouteViews do not equally represent all network types

Example 3 (topological bias)

 ASes that feed to RIPE RIS/RouteViews or host RIPE Atlas probes, are networks that typically peer with many other networks

- Many dimensions of bias
 - location, network size, topology, IXP connectivity, network type, etc.

Internet data sources

- CAIDA AS-rank
 - Network information: location, network size, topology, etc.
- CAIDA AS-relationships
 - Graph information: edgelist (i.e., peering links)
- Peering DB
 - Network information: connectivity, network type, traffic, etc.
- AS hegemony
 - Network information: size, topology
- Country-level Transit Influence (CTI)
 - Network information: size, topology
- ASDB
 - Network information: network types

22 features/characteristics per network (i.e., the bias "dimensions")

The compiled dataset

← 22 network features/characteristics →

	on-related mation	Network-size related information		Topology-related information		IXP-related information		Network type-related information				
	RIR Region	Continent	Customer cone (in #ASNs)	AS hegemony		#neighbors (in #ASNs)		#IXPs connected to		Net. type (PeeringDB)	Net. type (ASDB)	
174	ARIN	North America	32457	0.09	***	6614	***	0		NSP	ICT	
1299	RIPE	Europe	37162	0.10		2328		o		NSP	ICT	
2497	APNIC	Asia	507	0.01		338		16		NSP	NaN	
3320	RIPE	Europe	3015	0.01		667		5		NSP	ICT	
3333	RIPE	Europe	3	0.00		320		1		Non-profit	ICT	
5470	RIPE	Europe	1	0.00		1		NaN		NaN	Education & Research	
15169	ARIN	North America	12	0.01		366		214		Content	ICT	

- Many dimensions of bias
 - o location, network size, topology, IXP connectivity, network type, etc.
- Bias score per dimension
 - Bias == Difference between two distributions
 (all networks vs. networks with vantage points)
 - **Bias score**: Kullback-Leibler divergence metric
 - o i.e, a value between 0 (low bias) and 1 (high bias)

ASN		n-related mation	Network-size related information			
	RIR Region	Continent	Customer cone (in #ASNs)	AS hegemony		
174	ARIN	North America	32457	0.09	***	
1299	RIPE	Europe	37162	0.10		
2497	APNIC	Asia	507	0.01		
3320	RIPE	Europe	3015	0.01		
3333	RIPE	Europe	3	0.00		
5470	RIPE	Europe	1	0.00		
15169	ARIN	North America	12	0.01		

- Many dimensions of bias
 - o location, network size, topology, IXP connectivity, network type, etc.
- Bias score per dimension
 - Bias == Difference between two distributions
 (all networks vs. networks with vantage points)
 - **Bias score**: Kullback-Leibler divergence metric
 - o i.e, a value between 0 (low bias) and 1 (high bias)

ASN		n-related mation	Network-size related information		
	RIR Region	Continent	Customer cone (in #ASNs)	AS hegemony	
174	ARIN	North America	32457	0.09	
1299	RIPE	Europe	37162	0.10	
2497	APNIC	Asia	507	0.01	
3320	RIPE	Europe	3015	0.01	
3333	RIPE	Europe	3	0.00	
5470	RIPE	Europe	1	0.00	
15169	ARIN	North America	12	0.01	

- Many dimensions of bias
 - location, network size, topology, IXP connectivity, network type, etc.
- Bias score per dimension
 - Bias == Difference between two distributions
 (all networks vs. networks with vantage points)
 - Bias score: Kullback-Leibler divergence metric
 - i.e, a value between 0 (low bias) and 1 (high bias)

ASN		n-related mation	Network-size related information			
	RIR Region	Continent	Customer cone (in #ASNs)	AS hegemony		
174	ARIN	North America	32457	0.09		
1299	RIPE	Europe	37162	0.10		
2497	APNIC	Asia	507	0.01		
3320	RIPE	Europe	3015	0.01		
3333	RIPE	Europe	3	0.00		
5470	RIPE	Europe	1	0.00		
15169	ARIN	North America	12	0.01		

- Many dimensions of bias
 - location, network size, topology, IXP connectivity, network type, etc.
- Bias score per dimension
 - Bias == Difference between two distributions
 (all networks vs. networks with vantage points)
 - **Bias score**: Kullback-Leibler divergence metric
 - o i.e, a value between 0 (low bias) and 1 (high bias)
- Radar plot of bias
 - \circ each radius \rightarrow a bias dimension
 - colored lines/areas → bias score
 - \circ high bias \rightarrow far from center

RIPE Atlas is significantly less biased than RIPE RIS and RouteViews in almost all dimensions

RIPE Atlas is significantly less biased than RIPE RIS and RouteViews in almost all dimensions

RIPE RIS has high topology bias (due to route collectors at IXPs) and high network size bias (peers are large networks)

RIPE Atlas is significantly less biased than RIPE RIS and RouteViews in almost all dimensions

RIPE RIS has high topology bias (due to route collectors at IXPs) and high network size bias (peers are large networks)

RIPE Atlas, RIPE RIS and **RouteViews** have relatively *low network-type bias* (PeeringDB vs ASDB)

IPv6 Atlas probes are only slightly more biased than IPv4

Bias in RIPE Atlas measurements with few probes

- Bias vs. number of probes
- Less probes → higher bias
- Automatic selection by Atlas ("Atlas platform") is *more biased* than randomly selecting probes ("Atlas random")!

Bias in RIPE RIS: per route collector analysis

- Each route collector (RC) has different set of peering networks/ASes
- Bias is different for each RC
- Bias vs. number of peers

Do people know?

Not all people know! → our main goal: raise awareness & deepen our understanding

Do you believe there is bias in Internet measurements?

So... what?

- Should I care? → Yes! Bias may affect the insights you get from your measurements
 - e.g., "Estimating the Impact of BGP Prefix Hijacking", IFIP Networking, 2021 [link]

- Be aware of bias! Carefully interpret your results
 - "Which dimensions affect my measurements?"
 - "Is there bias in my dimensions?"

bias of public infrastructure

Dataset, code, API, Web app

- Al4NetMon project https://ai4netmon.csd.auth.gr/
 - You can find all the information about the project!

- Code & Data @ GitHub https://github.com/sermpezis/ai4netmon/
- API https://ai4netmon.csd.auth.gr/api/
 - Documentation @ GitHub
- Web app https://app-ai4netmon.csd.auth.gr/

Web app "Show me the bias"

• Available at https://app-ai4netmon.csd.auth.gr/

Web app "Show me the bias"

Available at https://app-ai4netmon.csd.auth.gr/

Web app "Show me the bias"

Available at https://app-ai4netmon.csd.auth.gr/

Summarizing...

- Our contributions
 - A framework (data, definitions, etc.) to quantify bias
 - Analysis of bias in Internet measurement platforms
 - Code & tools
 - Website https://ai4netmon.csd.auth.gr/
 - Web app https://app-ai4netmon.csd.auth.gr/

- Next steps
 - Unbias Internet measurements [ongoing work] :
 - (a) extend platforms (add extra vantage points)
 - (b) carefully select vantage points (subsampling)
 - Use cases: When the bias really hurts our findings?
 - Bias in ML models based on data from measurements

