Name:

Directions

- This counts as your "attendance" for the day. You must give this to me today to get credit for it.
- You may leave if you finish the packet.
- You may work in groups, and you can ask me for assistance.
- I grade this worksheet based on completion, not accuracy; however, you should strive for completely correct answers in order to make sure you understand the material.
- 1. Evaluate these limits using the "evaluation" strategy.

(a)
$$\lim_{x \to 1} \frac{x^2 + 2}{7 - x}$$

(b)
$$\lim_{x \to \pi} \cos(x)$$

2. Evaluate these limits using the "estimation" strategy.

(a)
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$
 (be sure to be in radians)

(b)
$$\lim_{x \to 0^-} \frac{|x|}{x}$$

3. Find the limits below by simplifying the expression first. Double check your answer by estimating the limit numerically.

(a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

(b)
$$\lim_{h \to 0} \frac{(1+h)^2 - 1}{h}$$

4. Using the graph, evaluate the following limits.

(c)
$$\lim_{x \to 2^-} g(x)$$

(d)
$$\lim_{x \to 2} g(x)$$

(e)
$$\lim_{x \to 2.5} g(x)$$

(f)
$$\lim_{x \to -2} g(x)$$

(g)
$$\lim_{x \to -3^-} g(x)$$

5. Calculators are not always reliable. Consider the function

$$g(x) = \frac{\sqrt{x^2 + 4} - 2}{x^2}.$$

(a) Evaluate g(x) at x = 0.1, 0.01 0.001, and 0.00000001.

$$\begin{array}{c|cc} x & g(x) \\ \hline 0.1 & \\ 0.01 & \\ 0.0001 & \\ 0.00000001 & \\ \end{array}$$

(b) Based on your first three calculations, what do you expect that $\lim_{x\to 0} g(x)$ is equal to?

The issue with x = 0.00000001 is the calculator does not have enough decimal accuracy to handle such small numbers. As such, be careful when using a calculator to evaluate limits.

6. Let
$$g(x) = \begin{cases} \sin(\pi x) & x < 0 \\ x + 1 & x \ge 0 \end{cases}$$

(a) Make a graph of g(x) on the interval [-1,1]

- (b) Find $\lim_{x\to 0^-} g(x)$
- (c) Find $\lim_{x\to 0^+} g(x)$.
- (d) Find $\lim_{x\to 0} g(x)$.

- 7. Limits as $x \to \infty$ or $x \to -\infty$ sometimes need some care. This problem illustrates a method for evaluating such limits.
 - (a) Consider the function $g(x) = \frac{x^2 10x}{13 x^2}$. Our goal with this problem is to find $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{x^2 10x}{13 x^2}$.
 - i. Factor out the largest power of x from the top and bottom of the fraction. (You may need to recall that $x = x^2 \cdot \left(\frac{1}{x}\right)$.
 - ii. Cancel as many factors of x as possible:
 - iii. Evaluate the limit $\lim_{x\to\infty} g(x)$ by remembering some of the "important limits."
 - (b) Apply the same strategy to find the following limit.

$$\lim_{x\to\infty}\frac{x^3}{1+x+x^2}$$