PUC-Minas – Instituto de Informática

ARQ1 – Extra01

Data de entrega: 30/09/2011

Aluno: Mateus Augusto Moraes Ferreira Matrícula: 435669

Nota: 0.45

01.) PROJETAR um circuito binário com portas lógicas capaz de produzir as seguintes saídas:

	abcd	saídas	s2	s1	s0
0	0000	2	0	1	0
1	0001	1	0	0	1
2	0010	1	0	0	1
3	0011	1	0	0	1
4	0100	4	1	0	0
5	0101	2	0	1	0
6	0110	1	0	0	1
7	0111	1	0	0	1
8	1000	4	1	0	0
9	1001	4	1	0	0
10	1010	2	0	1	0
11	1011	1	0	0	1
12	1100	4	1	0	0
13	1101	4	1	0	0
14	1110	4	1	0	0
15	1111	2	0	1	0

s2				
ab\cd	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

s1				
ab\cd	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

s1				
ab\cd	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

a.) montar a equação completa do sinal s2 por mintermos

$$\sum m = (a' * b * c' * d') + (a * b' * c' * d') + (a * b' * c' * d) + (a * b * c' * d') + (a * b * c' * d) + (a * b * c * d')$$

b.) montar a equação compacta do sinal s1 por MAXTERMOS

$$F(A,B,C,D) = \prod M(1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14);$$

c.) montar a equação completa do sinal s0 por mintermos

$$\sum m = (a' * b' * c' * d) + (a' * b' * c * d') + (a' * b' * c * d) + (a' * b * c * d') + (a' * b * c * d) + (a' * b' * c * d)$$

- d.) montar a equação simplificada do sinal s2 pelo mapa de Veitch-Karnaugh (b * c' * d') + (a * b * d') + (a * c')
- e.) montar a equação simplificada do sinal s1 pelo mapa de Veitch-Karnaugh
 (a' * b' * c' * d') + (a' * b * c' * d) + (a * b * c * d) + (a * b' * c * d')
- f.) montar a equação simplificada do sinal s0 pelo mapa de Veitch-Karnaugh (a' * b' * d) + (a' * c)
- g.) montar a equação mais simplificada do sinal s2 pelas propriedades da álgebra

$$(b * c' * d') + (a * b * d') + (a * c') = b * d'(a + c') + (a * c')$$

h.) montar a equação mais simplificada do sinal s1 pelas propriedades da álgebra

(a xnor c) * (b xnor d)

i.) montar a equação mais simplificada do sinal s0 pelas propriedades da álgebra

OBS.: Letra j, k, l está em. v