Introduction

Project in

Hardware-Software Co-design (TIPHSC)

Introduction

Source: Micaela Serra, University of Victoria

http://webhome.cs.uvic.ca/~mserra/HScodesign.html

Teacher

- Kim Bjerge (<u>kbe@iha.dk</u>)
- Lokale 421a

http://dk.linkedin.com/pub/kim-bjerge/6/192/983

Introduction to Project in Hardware/Software Co-design

Contents

- Summary
 - System Engineering and HW/SW Co-design
- Course overview
- Learning objectives and exam
- Report, Projects and groups

Systems Engineering and Project Management

• Systems engineers continually interact with project management

System Life Cycle Processes Overview per ISO/IEC 15288

Systems of Systems

Design Methodology

Software Real-Time Embedded Systems

Domains
Signal Processing
Communication
Control Systems
SoC/MPSoC design

HW/SW Co-design disciplines

- Specification Executable
 - Use cases and non-functional requirements
- System Modeling and Abstractions
 - Model of Computation (State and data flow, PSM)
 - UML/SysML profiles and SystemC (TLM+CAM)
- Partitioning and DSE (Design Space Exploration)
 - Mapping, Platform, Load Balancing, Pareto optimal designs
 - Metrics: Performance, Cost, Security, Power, Size
- Performance Estimation and Analysis
 - Profiling, Timing, Scheduling, Event arrival analysis
- Validation, Verification and Test
 - Simulation and formel verification
 - Simulation verification through refinement (Gajski)

UML and SysML models with different purpose and views

Structure, Behavior, Interaction

Intergrated Co-Design

- Modelling
- Partitioning
- Platform
- Co-Simulation
- Co-Synthesis

Embedded System Level Design Approaches

- Platform-based design
 - Maps system behavior to predefined architecture
- Component-base design (Button-up)
 - Assembles existing components to a predefined platform
- HW/SW co-design (Top-down)
 - Generates the architecture from the specification of the behavior

FPGA development boards (Xilinx/Altera)

Course overview

- Course overview and introduction
- Learning objectives and exam
- Project definition and objectives
- Work in groups to define your project
 - Scope, Objectives
 - Detailed Specification
 - Methodologies and tools
 - Working group contract
 - Planning

- Present your project for the class
 - Goals, Topics
 - Specification
 - Feedback from class and teacher
- Hand-in project definition and spec.
 - Scope, Objectives, Definition
 - Goal for learning
 - First version of report and specification
- Work in Groups
 - Architecture, Design and prototype

- Present your final project
 - Project, Process, Method and conclusion
 - Each group 30 minutes
- Feedback from class and teacher
 - Use inputs to refine you final report
 - Prepare for exam
- Work in Groups
 - Design, Prototype, Documentation ...

Learning objectives and exam

Course Learning Objectives

- Anvende teoretisk funderede metoder til systemanalyse og design. (Project/Product report)
- Analysere samspillet mellem hardware og software i en konkret problemstilling i et system. (Project report)
- Anvende metoder til hardware-software co-design på konkrete problemstillinger. (Project report)
- Evaluere forskellige løsningsmetoders fordele og ulemper i en specifik problemstilling. (Project report)
- Kommunikere analyser og implementerede løsningsmetoder klart og utvetydigt. (Product report)

Anvende teoretisk funderede metoder til systemanalyse og design.

- System Engineering
 - Systems of Systems System Life Cycle Processes
 - Technical process
 - Requirement specification, analysis, architecture, implementation ...
 - Project process
 - Planning, assessment & control, risk management
- Process and methodology
 - Scrum, ROPES, UP, 4+1 View
 - Modified Unified Process for HW/SW Co-design
 - UML/SysML and profiles
- Models of Computation
 - Process State Machines (PSM, Gajski)
 - State based models and data flow

Analysere samspillet mellem hardware og software i en konkret problemstilling i et system.

- Project definition and specification
 - Select and specify topics and objectives for project
 - Prioritize performance metrics
- Analysis and Design
 - HW/SW Allocation, partitioning, mapping
 - Explore and suggest different platform alternatives
 - Load balancing
 - Design Space Exploration
 - Pareto optimal designs
 - Modeling by Specify-Explore-Refine Design Flow (Gajski)
 - SystemC TLM and CAM models

Anvende metoder til hardware-software codesign på konkrete problemstillinger.

- Project definition and specification
 - Decide on methods to be used in project
 - Non-functional requirements
 - Prioritization of performance metrics
 - Power, Area, Speed, Cost, Time
- Analysis and design
 - Define in project how to solve the assignment (Method)
 - Model of Computation (PSM and/or SysML)
 - HW/SW Partitioning
 - Design Space Exploration
 - System Level Design Language (SLDL SystemC)

Evaluere forskellige løsningsmetoders fordele og ulemper i en specifik problemstilling.

- Discussion on work
 - Relate your work and method in relation to problem
 - Comment on the methods you have used and compare to alternatives
 - Use references to papers on similar work
 - Summary of pro and cons on methods and work
 - Identify gaps and limitations

Kommunikere analyser og implementerede løsningsmetoder klart og utvetydigt.

- Report
 - Contents
 - Abstract
 - Introduction
 - Project description
 - Context, Methods, Specification, Analysis, Design, Tools,
 - Results, Discussion, Experience, Excellence, Improvements
 - Conclusion
 - References
 - How to write a good report
 - See guide
- Product documents
 - Requirement specification and analysis
 - Product design document

Exam

- Present your project in groups (15min)
- Individual oral 20 minutes
- External evaluation after the 7-scale
- Present your project with focus on fulfillment of the learning objectives
- Grade based on report and exam
- End March 2011

Report, Tools, Projects and Groups

Report Guides and Examples

- Report guides
 - Guidelines, EIT-projects, templates
- Report examples
 - Exercise 2 (HW/SW Co-Design)
 - Sapien 190 (Embedded Real-time Systems)
 - Pitch detector (Multidisciplinary Project)
 - Evaluation of FPGA based Turbo Coding (AAU)
- Documents found on CampusNet

References and knowledge

- Papers and books from previous courses
- Research on papers relevant for your project
- Incorporate knowledge you already have on related fields
- Remember to have references in your report

Problemord - definitioner

- Emne
 - et afgrænset stofområde
- Problem
 - noget der mangler svar/løsning på inden for stofområdet
- Problemstilling
 - Beskrivelse af den sammenhæng (kontekst) problemet indgår i (der kan være flere problemer i en problemstilling)
- Problemformulering
 - En formulering af ét konkret spørgsmål inden for en problemstilling

Se DGO.	eksempe	S.	127
---------	---------	----	-----

d Ingeniørhøjskolen i Århus

Gode råd om problemformulering

- Den gode opgave styres af problemformuleringen
- Problemformuler fra begyndelsen så højt på Blooms taksonomi som muligt
- Den gode problemformulering lægger op til kvalitet i opgaven
 - ved at stille konkrete og præcist formulerede spørgsmål
- Gør det klart hvad der er problemformulerings hovedspørgsmål med typografi og layout

ENGINEERING COLLEGE OF AARHUS

Blooms taksonomi over indlæringsmål

Høj

- Handling
 - Opstille normer / handleforskrifter Perspektivere
- Vurdering
 - Bedømme ud fra forskellige kriterier
- Syntese
 - Kombinere dele til helhed Fortolke
- Analyse
 - Nedbryde i dele, skille Se system/struktur
- Anvendelse
 - Afprøve, bruge
- Forståelse
 - Forklare med egne ord
- Viden
 - Referere, parafrasere, genkende

Lav

Ingeniørhøiskolen i Århus

31

Reflections in the Report

What?

How?

Why?

Tools

- UML/SysML tools
 - Enterprise Architect, Artisan Studio, Visio, Papyrus
- Altera Design Suite and DE2 board
- Xilinx Studio and Spartan boards
- ImpulseC (High level synthesis C -> VHDL)
- SystemC for system level modeling

Projects

- Gas sensor (Danfoss IXA A/S)
 - Type detection of gas (CO2, NH3, H2O..)
- Active Array Loudspeaker (SoundFocus ApS)
 - Directional control of sound
- Emergency Call System (Anders)
 - Elderly support when calling for help
- HW/SW Co-design in education (Klaus, Morten)
 - Robotics at Herning University

Project Groups (TBD)

- Morten Opprud Jakobsen
- Klaus Kolle
- Anders Hvidgaard Poder
- Peter Høgh Mikkelsen
- Kenneth Pihl
- Saiid Shah Alizadeh
- Jørgen Vrou Hansen

- Work in groups to define your project
 - Scope, Objectives
 - Detailed Specification
 - Methodologies and tools
 - Working group contract
 - Planning

- Present your project for the class
 - Goals, Topics
 - Specification
 - Feedback from class and teacher
- Hand-in project definition and spec.
 - Scope, Objectives, Definition
 - Goal for learning
 - First version of report and specification
- Work in Groups
 - Architecture, Design and prototype

Schedule

- 28.1 Day 1 Project startup
 - Hand-in project description (4.2)
- 11.2 Day 2 Project presentation
 - Hand-in specification (18.2)
- **4.3** Day 3 Final project presentation
- 16.3 Hand-in report and project document
- 23-25.3 Oral Exam

Summary

- Summary
 - System Engineering and HW/SW Co-design
- Course overview
- Learning objectives and exam
- Report, Projects and groups