LONGITUDINAL PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT Data

Hidden Area --> Preliminary Mapping of imported Data

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

Other input parameters to be defined here

$$\alpha_{dot} \coloneqq 0.375 \bullet \frac{rad}{s} = 21.4859 \frac{deg}{s}$$

$$q \coloneqq 0.0445 \cdot \frac{rad}{s} = 2.5497 \cdot \frac{deg}{s}$$

$$\alpha_{dot_bar} \coloneqq \frac{\alpha_{dot} \cdot MAC_W}{2 \cdot V_1} = 0.00884$$

$$q_{bar} \! \coloneqq \! \frac{q \! \cdot \! MAC_W}{2 \! \cdot \! V_1} \! = \! 0.001049$$

$$\alpha_{dot_bar} = 0.506507 \ deg$$

$$q_{bar} = 0.060106 \ deg$$

LONGITUDINAL PARAMETERS

Input parameters

 $mass = (2.853 \cdot 10^5) \ kg$

 $C_{D0} = 0.031$

 $\xi_{CG}\!=\!0.275$

$$\Delta X_W_{LE}_Nose = 25.05 \text{ m}$$

 $\Delta X_{LE}Nose = 63.4 \ m$

$$N_{eng_1}\!=\!2$$

 $\Delta X_CG_eng_1 = 7.97 \ m$

 $Y_{eng_1} = 9.67$ **m**

 $\Delta Z_{eng_1_CG} = 1.03 \text{ m}$

$$N_{eng_2}\!=\!0$$

 $\Delta X _CG_eng_2 = 0 \ m$

 $Y_{eng_2} = 0 \, \boldsymbol{m}$

 $\Delta Z_{eng_2}CG = 0$ m

$$D_{eng} = 3.1 \, \boldsymbol{m}$$

 $\varepsilon_{\alpha_eng} = 0.22$

 $C_{N\alpha'_eng}\!=\!0.137$

Imported parameters

 $M_1 = 0.65$

 $V_1 = 201.6 \frac{m}{s}$

 $p_{dyn} = \left(1.131 \cdot 10^4\right) \, \textbf{Pa}$

 $d_B = 6.33 \ m$

 $C_{M0_B}\!=\!-0.0521$

 $\xi_{ac\ WB} = 0.178$

 $X_{MAC_LE_H} = 3.705 \ m$

 $MAC_H = 5.2 \ m$

 $\xi_{ac_H}\!=\!0.277$

 $C_{L\alpha_H} = 0.0737 \; deg^{-1}$

 $\tau_e\!=\!0.552$

 $i_H = -3.0023 \,\, deg$

 $\alpha_{0L_H}\!=\!-2.865~\pmb{deg}$

 $S_H = 105.41 \ m^2$

 $\eta_H = 0.9$

 $C_{h_\alpha_e} = -0.0001 \ deg^{-1}$

 $C_{h\ \delta\ e}\!=\!-0.0002\ {\it deg}^{-1}$

 $C_{M_ac_H}\!=\!0$

 $MAC_W = 9.505 \ m$

 $X_{MAC_LE_W} = 6.341 \ m$

 $b_W = 60.92 \ m$

 $C_{L\alpha_{-}W} = 0.1016 \ deg^{-1}$

 $i_W = 1.9996 \ deg$

 $\alpha_{0L_W} \!=\! -1.3293~\textbf{deg}$

 $C_{M_ac_W}\!=\!-0.0053$

 $\varepsilon_{0_W}\!=\!0.8422~{\color{red}deg}$

 $\varepsilon_{\alpha W} = 0.252$

 $\Lambda_{W_c4_eqv} = 34.4921~\textbf{deg}$

 $\xi_{ac_W} = 17.819 \ \textit{deg}$

 $S_W = 468.83 \ m^2$

 $AR_W = 7.916$

 $e_W\!=\!0.866$

FUNDAMENTAL COEFFICIENTS AND DISTANCES

Aircraft Lift, Drag, Pitch moment coefficients

$$C_L \coloneqq \frac{mas \cdot g}{p_{dyn} \cdot S_W} = 0.5277$$

$$C_L\!=\!0.5277$$

$$C_M\!\coloneqq\!0$$

$$C_M = 0$$

$$C_D \coloneqq C_{D0} + \frac{{C_L}^2}{\pi \cdot A R_W \cdot e_W} = 0.0439$$

$$C_D\!=\!0.0439$$

$$L \coloneqq p_{dyn} \cdot C_L \cdot S_W = (2.7978 \cdot 10^6) N$$

$$L = (2.853 \cdot 10^5) \ kgf$$

$$D \coloneqq p_{dyn} \cdot C_D \cdot S_W = \left(2.3292 \cdot 10^5\right) N$$

$$D = (2.3751 \cdot 10^4) \ kgf$$

Center of gravity, aerodynamic centers and volume ratios

$$x_{CG} \coloneqq \xi_{CG} \cdot MAC_W = 2.6139 \ m$$

$$x_{CG} = 2.6139 \ m$$

$$\Delta X_CG_Nose \coloneqq x_{CG} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 34.0049 \ \textit{m}$$

$$\Delta X_CG_Nose = 34.0049 \ m$$

$$\Delta \xi_HT_{ac_W}_{MAC_LE} \coloneqq \frac{\left(\Delta X_HT_{LE_Nose} - \Delta X_W_{LE_Nose}\right) - X_{MAC_LE_W} + X_{MAC_LE_H} + \xi_{ac_H} \cdot MAC_H}{MAC_W} = 3.9089$$

$$\Delta \xi _HT_{ac} _W_{MAC\ LE} = 3.9089$$

$$\Delta X_HT_{ac}_CG \coloneqq \left(\Delta X_HT_{LE}_Nose - \Delta X_W_{LE}_Nose\right) - X_{MAC}_{LE}_W + X_{MAC}_{LE}_H + \xi_{ac}_H \cdot MAC_H - x_{CG} = 34.5405 \ m_{CG} + M_{CG}$$

$$\Delta X_HT_{ac}_CG = 34.5405 \ m$$

$$VolumeRatio_{H} \coloneqq \frac{S_{H} \boldsymbol{\cdot} \Delta X_HT_{ac}_CG}{S_{W} \boldsymbol{\cdot} MAC_{W}} = 0.817$$

$$VolumeRatio_{H} = 0.817$$

STICK FIXED AERODYNAMIC COEFFICIENTS

Wing-Body-HTail Lift coefficient curve slopes and basic values

$$K_{WB} \coloneqq 1 + 0.025 \cdot \left(\frac{d_B}{b_W}\right) - 0.25 \cdot \left(\frac{d_B}{b_W}\right)^2 = 0.9999$$

$$K_{WB} = 0.9999$$

$$C_{L\alpha_WB}\!\coloneqq\!K_{WB}\!\cdot\!C_{L\alpha_W}\!=\!5.8214$$

$$C_{L\alpha WB} = 0.1016 \ deg^{-1}$$

$$C_{L\alpha} \coloneqq C_{L\alpha_WB} + \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \left(1 - \varepsilon_{\alpha_W}\right) = 6.4606$$

$$C_{L\alpha} = 0.1128 \ deg^{-1}$$

$$C_{\mathit{LiH}} \coloneqq \eta_H \! \cdot \! \frac{S_H}{S_W} \! \cdot \! C_{\mathit{L}\alpha_H} \! = \! 0.8545$$

$$C_{LiH} = 0.01491 \ deg^{-1}$$

$$C_{L\delta e} \coloneqq \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \boldsymbol{\tau}_e = 0.4717$$

$$C_{L\delta e} = 0.00823~{m deg}^{-1}$$

$$C_{L0_WB}\!\coloneqq\!C_{L\alpha_WB}\!\boldsymbol{\cdot} i_W\!=\!0.2032$$

$$C_{L0\ WB}\!=\!0.2032$$

$$C_{L0}\!\coloneqq\!C_{L0_WB}\!-\!\eta_{H}\!\cdot\!\frac{S_{H}}{S_{W}}\!\cdot\!C_{L\alpha_H}\!\cdot\!\varepsilon_{0_W}\!=\!0.1906$$

$$C_{L0} = 0.1906$$

$$C_{D\alpha} \coloneqq \frac{2 \cdot C_L \cdot C_{L\alpha}}{\pi \cdot AR_W \cdot e_W} = 0.3166$$

$$C_{D\alpha} = 0.0055 \; deg^{-1}$$

Wing-Body-HTail Pitch momentum coefficient curve slopes and basic values

$$C_{M\alpha} \coloneqq C_{L\alpha_WB} \cdot \left(\xi_{CG} - \xi_{ac_WB}\right) - \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \left(1 - \varepsilon_{\alpha_W}\right) = -1.7581$$

$$C_{Mlpha} = -0.03068 \; deg^{-1}$$

$$C_{MiH}\!\coloneqq\!-\eta_{H}\!\cdot\!C_{L\alpha_{\!H}}\!\cdot\!VolumeRatio_{\!H}\!=\!-3.1053$$

$$C_{MiH} = -0.0542 \ deg^{-1}$$

$$C_{M\delta e} \coloneqq -\eta_{H} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} VolumeRatio_{H} \boldsymbol{\cdot} \boldsymbol{\tau}_{e} = -1.7141$$

$$C_{M\delta e} = -0.02992 \ deg^{-1}$$

$$C_{M0_WB} \coloneqq C_{M_ac_W} + C_{M0_B} + C_{L0_WB} \cdot \left(\xi_{CG} - \xi_{ac_WB} \right) = -0.0377$$

$$C_{M0_WB} = -0.0377$$

$$C_{M0} \coloneqq C_{M0_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot \frac{MAC_H}{MAC_W} \cdot C_{M_ac_H} + \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \varepsilon_{0_W} = 0.008$$

$$C_{M0} = 0.00798$$

Unsteady flight coefficients

$$C_{L\alpha_dot} \coloneqq 2 \cdot C_{L\alpha_H} \cdot \eta_H \cdot VolumeRatio_H \ \varepsilon_{\alpha_W} = 1.5651$$

$$C_{L\alpha \ dot} = 0.0273 \ deg^{-1}$$

$$C_{M\alpha_dot} := -C_{L\alpha_dot} \cdot \left(\Delta \xi_HT_{ac}_W_{MAC_LE} - \xi_{CG}\right) = -5.6874$$

$$C_{M\alpha \ dot} = -0.0993 \ deg^{-1}$$

$$C_{Lq_part1} \coloneqq \left(\frac{AR_W + 2\,\cos\left(A_{W_c4_eqv} \right)}{AR_W \cdot \left(\sqrt{1 - {M_1}^2 \cdot \left(\cos\left(A_{W_c4_eqv} \right) \right)^2} \right) + 2 \cdot \cos\left(A_{W_c4_eqv} \right)} \right) \cdot \left(\frac{1}{2} + 2 \cdot \left| \xi_{ac_W} - \xi_{CG} \right| \right) \cdot C_{L\alpha_W} = 3.8225$$

 $C_{Lq \ part2} = 2 \cdot C_{L\alpha \ H} \cdot \eta_H \cdot VolumeRatio_H = 6.2106$

$$C_{Lq} := C_{Lq \ part1} + C_{Lq \ part2} = 10.0331$$

$$C_{Lq} = 0.1751 \; deg^{-1}$$

$K_q = 0.7829$

$$C_{Mq_part1} \coloneqq \left(\frac{\left(\frac{AR_{W}^{-3} \cdot \left(\tan \left(A_{W_c4_eqv} \right) \right)^{2}}{AR_{W} + 6 \cdot \cos \left(A_{W_c4_eqv} \right)} + \frac{3}{\sqrt{1 - {M_{1}}^{2} \cdot \left(\cos \left(A_{W_c4_eqv} \right) \right)^{2}}}}{\sqrt{1 - {M_{1}}^{2} \cdot \left(\cos \left(A_{W_c4_eqv} \right) \right)^{2}}} \right) \cdot \left(-K_{q} \cdot C_{L\alpha_W} \cdot \cos \left(A_{W_c4_eqv} \right) \right) = -0.0673 \ \textit{deg}^{-1} \\ \frac{AR_{W}^{-3} \cdot \left(\tan \left(A_{W_c4_eqv} \right) \right)^{2}}{AR_{W} + 6 \cdot \cos \left(A_{W_c4_eqv} \right)} + 3 \\ \end{array} \right)$$

$$C_{Mq_part2} \coloneqq \left(\frac{AR_W \cdot \left(0.5 \cdot \left| \xi_{ac_W} - \xi_{CG} \right| + 2 \cdot \left| \xi_{ac_W} - \xi_{CG} \right|^2 \right)}{AR_W + 2 \cdot \cos \left(\Lambda_{W_c4_eqv} \right)} + \frac{1}{24} \cdot \left(\frac{AR_W^{-3} \cdot \left(\tan \left(\Lambda_{W_c4_eqv} \right) \right)^2}{AR_W + 6 \cdot \cos \left(\Lambda_{W_c4_eqv} \right)} \right) + \frac{1}{8} \right) = 0.0157 \ \textit{deg}^{-1}$$

$$C_{Mq} \coloneqq C_{Mq_part1} \cdot C_{Mq_part2} - 2 \cdot C_{L\alpha_H} \cdot \eta_H \cdot VolumeRatio_H \cdot \left(\frac{\Delta X_HT_{ac_}CG}{MAC_W}\right) = -26.041$$

$$C_{Mq} = -0.4545 \; deg^{-1}$$

Neutral point and Static Stability Margir

$$\begin{split} \xi_{N} \coloneqq \frac{\xi_{ac_WB} + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \boldsymbol{\cdot} \eta_{H} \boldsymbol{\cdot} \frac{S_{H}}{S_{W}} \boldsymbol{\cdot} \left(1 - \varepsilon_{\alpha_W}\right) \boldsymbol{\cdot} \Delta \xi_H T_{ac_W} W_{MAC_LE}}{1 + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \boldsymbol{\cdot} \eta_{H} \boldsymbol{\cdot} \frac{S_{H}}{S_{W}} \boldsymbol{\cdot} \left(1 - \varepsilon_{\alpha_W}\right)} = 0.5471 \end{split}$$

$$\xi_N = 0.5471$$

$$x_N \coloneqq \xi_N \cdot MAC_W = 5.2004 \ m$$

$$x_N = 5.2004 \ m$$

$$\Delta X_N_Nose := x_N + X_{MAC\ LE\ W} + \Delta X_W_{LE}_Nose = 36.5914\ m$$

$$\Delta X_N_Nose = 36.5914 \ m$$

$$SSM := \xi_{CG} - \xi_N = -0.2721$$

$$\frac{C_{M\alpha}}{C_{I\alpha}} = -0.2721$$

ENGINES CONTRIBUTION

$$T \coloneqq D = \left(2.3292 \cdot 10^5\right) N$$

$$T_c \coloneqq \frac{T}{2 \cdot p_{dyn} \cdot {D_{eng}}^2} = 1.0715$$

$$T = (2.3292 \cdot 10^5) N$$

$$T_c = 1.0715$$

$$N_{eng}\!\coloneqq\!N_{eng_1}\!+\!N_{eng_2}\!\equiv\!2$$

$$S_{eng} \coloneqq \frac{\pi}{4} \cdot D_{eng}^2 = 7.5477 \ m^2$$

$$N_{eng} = 2$$

$$S_{eng} = 7.5477 \ m^2$$

$$C_{N\alpha_eng} := N_{eng} \cdot C_{N\alpha'_eng} \cdot (1 + \varepsilon_{\alpha_eng}) = 0.3343$$

$$C_{N\alpha_eng} = 0.0058 \ deg^{-1}$$

$$C_{M0_eng_1} \coloneqq 2 \cdot T_c \cdot \frac{D_{eng}^{-2}}{S_W} \cdot \frac{\Delta Z_eng_1_CG}{MAC_W} \cdot \frac{N_{eng_1}}{N_{eng}} = 0.0048$$

$$C_{M\alpha_eng_1} \coloneqq C_{N\alpha_eng} \cdot \frac{S_{eng}}{S_W} \cdot \frac{\Delta X_CG_eng_1}{MAC_W} \cdot \frac{N_{eng_1}}{N_{eng}} = 0.0045$$

$$C_{M0_eng_2} \coloneqq 2 \cdot T_c \cdot \frac{D_{eng}^{-2}}{S_W} \cdot \frac{\Delta Z_eng_2_CG}{MAC_W} \cdot \frac{N_{eng_2}}{N_{eng}} = 0$$

$$C_{M\alpha_eng_2} \!\coloneqq\! C_{N\alpha_eng} \!\cdot\! \frac{S_{eng}}{S_W} \!\cdot\! \frac{\Delta X_CG_eng_2}{MAC_W} \!\cdot\! \frac{N_{eng_2}}{N_{eng}} \!=\! 0$$

$$C_{M0_eng_1}\!=\!0.00476$$

$$C_{Mlpha_eng_1} \! = \! 0.00008 \; m{deg}^{-1}$$

$$C_{M0_eng_2}\!=\!0$$

$$C_{M\alpha_eng_2} = 0 \; deg^{-1}$$

$$\Delta \xi_{N_eng_1} \coloneqq \frac{C_{M\alpha_eng_1}}{C_{L\alpha}} = 0.0007$$

$$\Delta \xi_{N_eng_2}\!\coloneqq\!\frac{C_{M\alpha_eng_2}}{C_{L\alpha}}\!=\!0$$

$$\Delta \xi_{N_eng} \coloneqq \Delta \xi_{N_eng_1} + \Delta \xi_{N_eng_2}$$

$$\xi_{N_eng} \coloneqq \xi_N + \Delta \xi_{N_eng}$$

$$x_{N_eng} \coloneqq \xi_{N_eng} \cdot MAC_W = 5.2071 \ m$$

$$\Delta X_N_{eng}_Nose \coloneqq x_{N_eng} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 36.5981~m$$

$$SSM_{eng}\!:=\!\xi_{CG}\!-\!\xi_{N_{eng}}\!=\!-0.2728$$

$$\Delta \xi_{N_eng_1} = 0.0007$$

$$\Delta \xi_{N_eng_2} = 0$$

$$\Delta \xi_{N_eng} = 0.0007$$

$$\xi_{N_eng}\!=\!0.5478$$

$$x_{N_eng}\!=\!5.2071~\boldsymbol{m}$$

$$\Delta X_N_{eng}_Nose = 36.5981 \ m$$

$$SSM_{eng}\!=\!-0.2728$$

 $\alpha_{WB} = 3.0003 \; deg$

 δ_e = 0.2016 deg

 $\alpha_{\!H}\!\coloneqq\!\alpha_{\!W\!B}\!\boldsymbol{\cdot} \left(1-\varepsilon_{\alpha_{\!-\!W}}\right)\!+\!i_{\!H}\!+\!\tau_{e}\!\boldsymbol{\cdot} \delta_{e}\!-\!\varepsilon_{0_{\!-\!W}}$

 $\alpha_H = -1.489 \ deg$

 $C_{LWB} \coloneqq C_{L\alpha_WB} \boldsymbol{\cdot} \left(\alpha_{WB} + i_W\right)$

 $C_{LWB}\!=\!0.508$

 $C_{LH} \coloneqq C_{L\alpha_H} \cdot \alpha_H$

 $C_{LH} \! = \! -0.1097$

 $L_{WB} \coloneqq p_{dyn} \boldsymbol{\cdot} S_W \boldsymbol{\cdot} C_{LWB}$

 $L_{WB} = \left(2.6936 \cdot 10^6\right) N$

 $L_H \coloneqq \eta_H \boldsymbol{\cdot} p_{dyn} \boldsymbol{\cdot} S_H \boldsymbol{\cdot} C_{LH}$

 $L_H = -1.1775 \cdot 10^5 \ N$

 $\frac{L_H}{L_{WB}} \! = \! -0.0437$

STICK FREE AERODYNAMIC COEFFICIENTS

$$F \coloneqq 1 - \tau_e \, \frac{C_{h_\alpha_e}}{C_{h_\delta_e}} = 0.69$$

$$F = 0.69$$

$$C_{M0_free} \coloneqq C_{M0_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot \frac{MAC_H}{MAC_W} \cdot C_{M_ac_H} + \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \varepsilon_{0_W} \cdot F = -0.0062$$

$$C_{M0_free}\!=\!-0.0062$$

$$C_{M\alpha_free} \coloneqq C_{L\alpha_WB} \cdot \left(\xi_{CG} - \xi_{ac_WB} \right) - \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \left(1 - \varepsilon_{\alpha_W} \right) \cdot F = -1.0381$$

$$C_{M\alpha \ free} = -0.0181 \ deg^{-1}$$

$$C_{MiH_free} \coloneqq -\eta_{H} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} VolumeRatio_{H} \boldsymbol{\cdot} F = -2.1428$$

$$C_{MiH\ free} = -0.0374\ deg^{-1}$$

$$\alpha_{free} \coloneqq -\frac{C_{M0_eng_1} + C_{M0_eng_2} + C_{M0_free} + C_{MiH_free} \cdot i_H}{C_{M\alpha_free} + C_{M\alpha_eng_1} + C_{M\alpha_eng_2}} = 6.1457 \ \textit{deg}$$

$$\alpha_{free} = 6.1457 \ deg$$

$$\alpha_{H_free} \coloneqq \alpha_{free} \cdot \left(1 - \varepsilon_{\alpha_W}\right) - \varepsilon_{0_W} + i_H = 0.7525 \ \textit{deg}$$

$$\alpha_{H_free} = 0.7525 \, \, deg$$

$$\delta_{e_free} \coloneqq -\frac{C_{h_\alpha_e}}{C_{h \ \delta \ e}} \ \alpha_{H_free} = -0.4225 \ \textit{deg}$$

$$\delta_{e_free} = -0.4225 \,\, deg$$

$$C_{L0_free} \coloneqq C_{L0_WB} - \eta_H \cdot \frac{S_H}{S_W} \cdot C_{L\alpha_H} \cdot \varepsilon_{0_W} \cdot F = 0.1945$$

$$C_{L0_free}\!=\!0.1945$$

$$C_{L\alpha_free} \coloneqq C_{L\alpha_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot C_{L\alpha_H} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot F = 6.2625$$

$$C_{L\alpha \ free} = 0.1093 \ deg^{-1}$$

$$C_{\mathit{LiH_free}} \coloneqq \eta_H \boldsymbol{\cdot} C_{\mathit{L}\alpha_H} \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} F = 0.5897$$

$$C_{LiH_free} = 0.0103 \ deg^{-1}$$

$$C_{L_free} \coloneqq C_{L0_free} + \left(C_{L\alpha_free} + C_{N\alpha_eng}\right) \cdot \alpha_{free} + C_{LiH_free} \cdot i_H = 0.8712$$

$$C_{L_free}\!=\!0.8712$$

$$C_{D\alpha_free} \coloneqq \frac{2 \cdot C_{L_free} \cdot C_{L\alpha_free}}{\pi \cdot AR_W \cdot e_W} = 0.5067$$

$$C_{D\alpha_free} = 0.0088 \; deg^{-1}$$

$$C_{D_free} \coloneqq C_{D0} + \frac{{C_{L_free}}^2}{\pi \cdot AR_W \cdot e_W} = 0.0662$$

$$C_{D_free}\!=\!0.0662$$

$$\begin{split} \xi_{ac_WB} + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_H \cdot \frac{S_H}{S_W} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot \Delta \xi_H T_{ac_W} MAC_LE \cdot F \\ \xi_{N_free} \coloneqq \frac{1 + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_H \cdot \frac{S_H}{S_W} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot F} = 0.4408 \end{split}$$

$$x_{N_free} := \xi_{N_free} \cdot MAC_W = 4.1895 \ m$$

$$x_{N_free} = 4.1895 \ m$$

$$\Delta X_N_{free}_Nose \coloneqq x_{N_free} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 35.5805 \ m$$

$$\Delta X_N_{free}_Nose = 35.5805 \ m$$

$$SSM_{free} \coloneqq \xi_{CG} - \xi_{N_free} = -0.1658$$

$$SSM_{free} = -0.1658$$

WING-BODY-HTAIL PLANFORM WITH NEUTRAL POINTS

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_Longitudinal.mcdx

Excel Writing

 $n_{sheet} \coloneqq 6$

 $First_Row_{L-1} := 4$

 $Block_{L_1} \coloneqq {}_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m} Longit_Data_Map_{imported} \right)$

 $Excel_Output_{L_1} \coloneqq {}_{\mathsf{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{L_1} \,, n_{sheet} \,, First_Row_{L_1} \right)$

 $First_Row_{L_2} \coloneqq First_Row_{L_1} + \operatorname{rows}\left(Block_{L_1}\right) + 2$

 $Block_{L_2} := {}_{\mathrm{f}} \mathrm{map_matrix_transform} \left({}_{m} Longit_Data_Map_{input} \right)$

 $Excel_Output_{L_2} \coloneqq_{\texttt{f}} \texttt{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{L_2}, n_{sheet} \,, First_Row_{L_2} \right)$

 $First_Row_{L_3} \coloneqq First_Row_{L_2} + \operatorname{rows}\left(Block_{L_2}\right) + 2$

 $Excel_Output_{L_3} \coloneqq {}_{\mathsf{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{L_3} \,, n_{sheet} \,, First_Row_{L_3} \right)$

TeX Macro writing on .tex

$$\label{eq:complete_macros} \begin{split} &_{v} complete_macros_{L} \coloneqq \operatorname{stack}\left(Block_{L_{-1}}^{(2)}, Block_{L_{-2}}^{(2)}, Block_{L_{-3}}^{(2)}\right) \\ &_{v} tex_{L} \coloneqq \\ &_{t} write_matrix\left(\text{``.} \operatorname{Output} \operatorname{LONGITUDINAL_Tex_Macros.tex''}, \\ &_{v} complete_macros_{L}, \text{``'}\right) \end{split}$$