CLAIM AMENDMENTS

Please amend the claims as follows:

Claims 1-21 (Cancelled)

Claim 22 (New Claim)

An optically anisotropic film comprising:

a support which contains a fatty acid cellulose ester having an acyl group including 2 or 3 carbon atoms, provided thereon a liquid crystal layer,

wherein the support has a relationship represented by Formula (I)

the number of luminescent points having a size exceeding 50 μm the support observed in cross Nicole state is zero per 250 mm² and

the number of luminescent points having a size of 5 to 50 μm of the support observed in cross Nicole state is 200 or less per 250 mm^2

Formula (I)
$$(n x + n y)/2 - n z > 0$$

wherein n x represents the refractive index of the support in the direction giving maximum refractive index in the plane of the support, n y represents the refractive index of the support in the direction perpendicular to the direction giving maximum refractive index in the plane of the support, n z represents the refractive index of the support in the thickness direction.

Claim 23 (New Claim)

The optically anisotropic film of claim 22 wherein a retardation value (Rt value) of the support represented by Formula (II) is 50 to 300 nm,

Formula (II)
$$[(n x + n y)/2 - n z] x d$$

wherein d represents the thickness (in nm) of the support.

Claim 24 (New Claim)

The optically anisotropic film of claim 23 wherein the retardation value (Rt value) of the support represented by Formula (II) is 60 to 250 nm.

Claim 25 (New Claim)

The optically anisotropic film of claim 22 wherein the film is stretched with the stretching factor which is between 2 and 50 percent.

Claim 26 (New Claim)

The optically anisotropic film of claim 22 wherein the thickness of the film is from 40 to 150 $\mu m\,.$

Claim 27 (New Claim)

The optically anisotropic film of claim 23 wherein a Rt ratio of the liquid crystal layer to the support represented by Formula (III) is 1.2 or less

Formula (III)

Rt ratio = (Rt'/Rt)

wherein Rt' represents the retardation value in the thickness direction of the liquid crystal layer represented by the following formula

$$Rt' = [(n x' + n y')/2 - n z'] x d'$$

wherein n x' represents refractive index of the liquid crystal layer in the direction giving maximum refractive index in the plane of the liquid crystal layer, and n y' represents refractive index of the liquid crystal layer in the direction perpendicular to the direction giving maximum refractive index in the plane of the liquid crystal layer, while n z' represents the refractive index in the thickness direction of the liquid crystal layer, and d' (in nm) represents the thickness of the liquid crystal layer.

Claim 28 (New Claim)

The optically anisotropic film of claim 22 wherein the liquid crystal mode is twist nematic mode or a vertical alignment mode.

Claim 29 (New Claim)

The optically anisotropic film of claim 22 wherein the film has an alignment layer.

Claim 30 (New Claim)

The optically anisotropic film of claim 29 wherein a liquid crystalline compound constituting the liquid crystal layer is a monomer having a chemically reactive group and after being oriented on the alignment layer, said orientation is fixed while being hardened by light or heat.

Claim 31 (New Claim)

An optically anisotropic film of Claim 29 wherein a liquid crystalline compound constituting the liquid crystal layer is a discotic liquid crystal or a liquid crystal polymer.

Claim 32 (New Claim)

The optically anisotropic film of claim 22 wherein the number of luminescent points having a size of 5 to 50 μm of the support in cross Nicole state is 100 or less per 250 mm².

Claim 33 (New Claim)

The optically anisotropic film of claim 22 wherein the film further comprises time particles having an average particle size of not more than 0.1 μm .

Claim 34 (New Claim)

The optically anisotropic film of claim 22 wherein a solution, employed for casting a fatty acid cellulose ester film on a belt or drum, comprises chlorine free solvents in an amount of at least 50 percent by weight with respect to the entire solvent amount.

Claim 35 (New Claim)

The optically anisotropic film of claim 22 wherein a solvent in a solution employed for casting a fatty acid cellulose ester film on a support comprises at least one alcohol-free solvent and the amount of an alcohol based solvent is 30 percent or less with respect to the total solvent amount.

Claim 36 (New Claim)

The optically anisotropic film of claim 22 wherein a peeling tension for peeling the film from a belt or a drum is between 50 and 400 N/m.

Claim 37 (New Claim)

A liquid crystal display comprising a liquid crystal cell, an optically anisotropic film provided on one surface or both surface of the cell,

wherein the optically anisotropic film comprises

a support which contains a fatty acid cellulose ester having an acyl group including 2 or 3 carbon atoms, provided thereon a liquid crystal layer

wherein the support has a relationship represented by Formula (I)

the number of luminescent points having a size exceeding 50 μm the support observed in cross Nicole state is zero per 250 mm^2 and

the number of luminescent points having a size of 5 to 50 μm of the support observed in cross Nicole state is 200 or less per 250 mm^2

(Formula (I) (n x + n y)/2 - n z > 0

wherein n x represents the refractive index of the support in the direction giving maximum refractive index in the plane of the support, n y represents the refractive index of the support in the direction perpendicular to the direction giving maximum refractive index in the plane of the support, n z represents the refractive index of the support in the thickness direction.

Claim 38 (New Claim)

The liquid crystal display of claim 37 wherein the liquid crystal mode is a vertical alignment mode.

Claim 39 (New Claim)

The liquid crystal display of claim 38 wherein a retardation value (Rt value) of the support represented by Formula (II) is 50 to 300 nm,

Formula (II)
$$[(n x + n y)/2 - n z] x d$$

wherein d represents the thickness (in nm) of the support.

Claim 40 (New Claim)

The liquid crystal display of claim 38 wherein the film has an alignment layer.

Claim 41 (New Claim)

The liquid crystal display of claim 38 wherein the film is stretched with the stretching factor which is between 2 and 50 percent.

Claim 42 (New Claim)

The liquid crystal display of claim 37 wherein the liquid mode is a twist nematic mode.

Claim 43 (New Claim)

The liquid crystal display of claim 42 wherein a retardation value (Rt. value) of the support represented by Formula (II) is 50 to 300 nm

Formula (II)
$$[(n x + n y) / 2 - n z] x d$$

wherein d represents the thickness (in nm) of the support.

Claim 44 (New Claim)

The liquid crystal display of claim 42 wherein the film has an alignment layer.

Claim 45 (New Claim)

The liquid crystal display of claim 42 wherein the film is stretched with the stretching factor which is between 2 and 50 percent.

Claim 46 (New Claim)

The liquid crystal display of claim 37 wherein a retardation value (Rt value) of the support represented by Formula (II) is 50 to 300 nm,

Formula (II)
$$[(n x + n y) / 2 - n z] x d$$

wherein d represents the thickness (in nm) of the support.

Claim 47 (New Claim)

The liquid crystal display of claim 37 wherein the film has an alignment layer.

Claim 48 (New Claim)

The liquid crystal display of claim 37 wherein the film is stretched with the stretching factor which is between 2 and 50 percent.