Il sera tenu compte de la rigueur de votre rédaction, schémas, clarté de vos raisonnement.....

EXERCICE N° 1: 2^{me} loi de Newton

Sur un plan incliné d'un angle $\alpha=30^{\circ}$ par rapport à l'horizontale, on lance vers le haut un solide (S) ponctuel, à partir de l'origine des espaces O à la datet=0s, à la vitesse V_0 . Le diagramme des vitesse du mouvement du mobile est représenté sur la figure ci-contre. Prendre $g=10m.s^{-2}$.

- ① Déterminer V_0 et montrer que l'accélération du mouvement est : $a=-5m.s^{-2}$
- \bigcirc Le mouvement change de sens au point H . Déterminer t_H et en déduire la distance OH.
- (3) A quelle date et avec quelle vitesse le mobile passe -t-il par O de nouveau?
- (4) En appliquant la 2^{me} loi de Newton, montrer que le mouvement se fait sans frottement

EXERCICE N° 2: Mouvement dans un fluide

Une bille (S) de masse m=50g, de masse volumique ρ de rayon r=1,15cm, est lâchée sans vitesse initiale du point O origine du repère (0,Z) dans un tube vertical très long, rempli d'un liquide de viscosité η de masse volumique ρ_0 . prendre $g=9.8m.s^{-2}$. le volume d'une sphère $V=\frac{4}{3}\pi r^3$ Lors de sa chute elle est soumise , en plus de son poids à

- la force de frottement $\vec{f}=-\mu\times\vec{v}$, μ étant le coefficient de frottement visqueux d'expression $\mu=6\pi.\eta.r$
- La poussée d'Archimède $\vec{F_A} = -m_0 \times \vec{g}$ soit ρ_0 la masse volumique le liquide.
- ① En appliquant la 2^{me} loi de Newton montrer que l'équation différentielle vérifiée par la vitesse est $\tau \frac{dv}{dt} + v = V_{lim}$. Donner l'expression du temps τ caractéristique du mouvement et de la vitesse limite V_{lim}
- ② La solution de l'équation différentielle est de la forme $v = A \times e^{-\alpha t} + B$. trouver les expressions de A, B, et, α en fonction de τ et de V_{lim}
- (3) la vitesse limite est $V_{lim} = 7m.s^{-1}$ et $\tau = 0, 8s$ calculer η et ρ_0 .

EXERCICE N° 3: Mouvement plan

un joueur tire une balle d'un point O origine du repère (O, X, Y) avec une vitesse $\vec{v_0}$ qui fait l'angle α avec l'horizontale (0X).

Par pointage on a reconstruit les différents points occupées par le centre de la balle et on a pu, à l'aide d'un logiciel, tracer les courbes qui représentent les variations des composantes de la vitesse sur les deux axes (voirfigure1)

- (1) en appliquant la deuxième loi de Newton, trouver les équations différentielles vérifiées par v_x et par v_y
- (2) trouver les expressions de v_x et de v_y en fonction du temps
- (3) En déduire les équations paramétriques x(t) et y(t) du mouvement
- (4) Trouver l'équation de la trajectoire, quelle est sa nature?
- (5) En se basant sur les courbes de la figure 1
 - 5.1 calculer la vitesse initiale v_0
 - 5.2 calculer l'angle du tir $\, lpha \,$
 - 5.3 calculer l'intensité de l'accélération de la pesanteur g
 - 5.4 à quelle date le balle passe par son sommet S, trouver les coordonnées de ce point
 - 5.5 Quelle distance horizontale, la balle, parcourt-elle horizontalement lorsque elle touche le sol au point A

EXERCICE N° 4: ROTATION

Le montage de la figure ci-dessous représente :

une poulie à double gorge de rayons $r_2 = 2r_1 = 20cm$ et de moment d'inertie $J_{\Delta} = 0, 2kg.m^2$ reliée à deux solides (S_1) de masse m_1 et S_2 de masse $m_2 = 2kg$ par l'intermédiaire deux fils inextensibles ,de masses négligeable et ne glissent pas sur la poulie.

Le solide (S_1) peut glisser sur un plan incliné de l'angle $\alpha=30^\circ$ par rapport à l'horizontale.

les frottements sont négligeable au niveau de l'axe de la poulie, alors que le coefficient de frottement entre le solide S_1 et le plan incliné vaut k = 0, 2. prendre l'intensité de la pesanteur terrestre $g = 10m.s^2$.

On lâche le système à la date t = 0s, de l'origine des espaces, sans vitesses initiales.

- (1) Appliquer la $2^{\text{ème}}$ loi de newton sur S_1 et trouver
 - 1.1 Trouver la relation entre l'accélération a_1 , la masse m_1 , g , l'angle α la composante tangentielle R_x de la réaction du plan inclinée sur S_1 et de la tension T_1 du fil du coté de S_1 .
 - 1.2 Montrer que $R_x = \mp m.g.k.cos(\alpha)$
- ② Appliquer la $2^{\text{ème}}$ loi de newton sur S_2 et trouver la relation entre l'accélération a_2 , la masse m_2 , g et la tension T_2 du fil du coté de S_2 .
- \bigcirc Appliquer R.F.D sur la poulie et montrer que l'accélération angulaire est donnée par l'expression

$$\frac{d^{2}\theta}{dt^{2}} = \frac{r_{1}m_{1}g(sin\alpha \mp kcos\alpha) - m_{2}gr_{2}}{m_{1}r_{1}^{2} + m_{2}r_{2}^{2} + J_{\Delta}}$$

- 4 trouver l'intervalle des valeurs de la masse m_1 pour que le système reste en équilibre
- (5) La masse de S_1 est $m_1 = 16kg$.
 - 5.1 Calculer l'accélération angulaire de la poulie . et en déduire les accélération des mouvements de S_1 et de S-2
 - 5.2 Trouver la vitesse de chaque corps lorsque l'abscisse de S_1 est x=2m.

EXERCICE N° 5 : Pendule élastique : Partie I

On dispose d'un mobile (A) de masse m=0,25kg, fixé à l'une des extrémités d'un ressort à spires non jointives, de masse négligeable et de raideur K=10N/m l'autre extrémité du ressort est accrochée à un support fixe (C) (figure 1).

(A) peut glisser sur un rail horizontal et son centre d'inertie G peut alors se déplacer suivant un axe horizontal x'Ox.

À l'équilibre, G coïncide avec l'origine O de l'axe x 'x.

on déplace le corps (A) dans le sens positif de $x_0 = 2cm$ et on le libère sans vitesse initiale dans un instant pris comme origine des temps

on prend la position d'équilibre O comme référence de l'énergie potentielle totale

Étude théorique

Dans cette partie, on néglige toute force de frottement.

- 1) 1.1 Écrire l'expression de l'énergie mécanique du système [(A), ressort, Terre] en fonction de k, m, x et v.
 - 1.2 Établir l'équation différentielle en x qui régit le mouvement de G.
- ② La solution de cette équation différentielle a pour expression $x = X_m \sin\left(\frac{2\pi}{T_0}t + \varphi\right)$ où X_m et φ sont des constantes et T_0 la période propre de l'oscillateur.
 - 2.1 Déterminer l'expression de T_0 en fonction de m et k et calculer sa valeur.
 - 2.2 Déterminer X_m et φ .

EXERCICE N° 5 : Pendule élastique : Partie II

Étude expérimentale

Dans cette partie, la force de frottement est donnée par $\vec{f} = -\mu \vec{v}$ où μ est une constante positive. Un dispositif approprié a permis de tracer

- la courbe donnant les variations de x = f(t) (figure 2)
- les courbes donnant les variations de l'énergie cinétique $E_c(t)$ de G et de l'énergie potentielle élastique $E_p(t)$ (figure 3).
- (1) quel est le phénomène mis en jeu?
- (2) nommes le régime des oscillations
- (3) En se référant à la figure 2, donner la valeur de la pseudo-période T du mouvement de G. Comparer sa valeur à celle de la période propre T_0 .
- 4 En se référant aux figures 2 et 3, préciser parmi les courbes A et B celle qui représente $E_p(t)$.
- (5) 5.1 Vérifier que le rapport $\frac{X_m(T)}{X_m(0)} = \frac{X_m(2T)}{X_m(T)} = a$ où a est une constante à déterminer. son expression est $a = e^{-\frac{\mu T}{2m}}$, calculer, en SI, la valeur de μ . Sur la figure 3 sont repérés deux instants particuliers notés t_1 et t_2 .
 - 5.2 En se référant à la figure 3, indiquer, en le justifiant, à quel instant t_1 ou t_2 la valeur de la vitesse du mobile est :
 - maximale;
 - nulle.
 - 5.3 Que peut-on conclure quant à la valeur de la force de frottement à chacun de ces instants
 - 5.4 Déduire autour de quel instant t_1 ou t_2 , la diminution de l'énergie mécanique est-elle la plus grande? Fig. 2

BONNE CHANCE