

Química Nivel superior Prueba 1

Miércoles 8 de noviembre de 2017 (tarde)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

8817-6125

	*	c	٣	-	u	ď	1		bla pe	Tabla periódica	es ,	ć	6	2	4	4	7	ć
	-	۷ .	9		n		_	×	ກ	2	=	77	2	<u> </u>	2	<u> </u>	· =	2
~	1,0,			Ŋ Z	Número atómico	nico												2 He 4,00
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
2	37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
9	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 0s 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			++	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

- A. 1
- B. 2
- C. $3,01 \times 10^{23}$
- D. $6,02 \times 10^{23}$

2. ¿Qué solución neutraliza a 50,0 cm³ de NaOH (aq) 0,120 mol dm⁻³?

- A. $12,5 \text{ cm}^3 \text{ de H}_3 \text{PO}_4 0,080 \text{ mol dm}^{-3}$
- B. 25,0 cm³ de CH₃COOH 0,120 mol dm⁻³
- C. $25,0 \text{ cm}^3 \text{ de H}_2\text{SO}_4 0,120 \text{ mol dm}^{-3}$
- D. $50.0 \text{ cm}^3 \text{ de HNO}_3 0.060 \text{ mol dm}^{-3}$

3. ¿Cuál es la presión, en Pa, dentro de un cilindro de 1,0 m³ que contiene 10 kg de $H_2(g)$ a 25 °C? $R = 8,31 \, \text{J K}^{-1} \, \text{mol}^{-1}$; pV = nRT

-3-

A.
$$\frac{1 \times 10^4 \times 8,31 \times 25}{1,0 \times 10^3}$$

B.
$$\frac{5 \times 10^2 \times 8,31 \times 298}{1,0}$$

$$C. \qquad \frac{1 \times 8,31 \times 25}{1,0 \times 10^3}$$

D.
$$\frac{5 \times 10^3 \times 8,31 \times 298}{1.0}$$

4. Un compuesto con M_r = 102 contiene 58,8 % de carbono, 9,80 % de hidrógeno y 31 % de oxígeno en masa. ¿Cuál es su fórmula molecular?

$$A_r$$
: C = 12,0; H = 1,0; O = 16,0

- A. C₂H₁₄O₄
- $\mathsf{B.} \quad \mathsf{C_3H_4O_4}$
- C. C₅H₁₀O₂
- D. C₆H₁₄O

5. ¿Cuál es el número de protones y el número de neutrones en el ¹³¹I?

	Protones	Neutrones
A.	53	78
B.	53	131
C.	78	53
D.	131	53

6. La gráfica representa las diez primeras energías de ionización (EI) de un elemento.

¿Cuál es el elemento?

- A. O
- B. S
- C. Ne
- D. Cl

7.	¿Cuál es la configuración electrónica de un átomo de un metal de transición en su estado
	fundamental?

- A. $[Ne]3s^23p^64s^1$
- B. [Ar]3d9
- C. $1s^22s^22p^63s^23p^64s^23d^{10}4p^2$
- D. [Ar]4s¹3d⁵
- 8. ¿Qué tendencias son correctas a lo largo del periodo 3 (del Na al Cl)?
 - I. El radio atómico disminuye
 - II. El punto de fusión aumenta
 - III. La energía de primera ionización aumenta
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 9. ¿Qué óxido se disuelve en agua para dar una solución con pH menor que 7?
 - A. MgO
 - B. Li₂O
 - C. CaO
 - D. P₄O₁₀
- **10.** El $[CoCl_6]^{3-}$ es naranja mientras que el $[Co(NH_3)_6]^{3+}$ es amarillo. ¿Qué enunciado es correcto?
 - A. El [CoCl₈]³⁻ absorbe luz naranja.
 - B. El estado de oxidación del cobalto en cada complejo es diferente.
 - C. Los diferentes colores se deben a las diferentes cargas de los complejos.
 - D. Los diferentes ligandos causan diferentes desdoblamientos en los orbitales 3d.

11. ¿Cuál de las siguientes series muestra un aumento en el enlace de hidrógeno con el agua?

A. Propano < propanal < propanol < ácido propanoico

B. Propano < propanol < propanal < ácido propanoico

C. Propanal < propano < ácido propanoico < propanol

D. Ácido propanoico < propanol < propanol

12. Se dan los valores de electronegatividad de cuatro elementos.

С	N	0	F
2,6	3,0	3,4	4,0

¿Cuál serie muestra un orden creciente de la polaridad de los enlaces?

A. $CO < OF_2 < NO < CF_4$

 $\mathsf{B.} \qquad \mathsf{CF_4} < \mathsf{CO} < \mathsf{OF_2} < \mathsf{NO}$

C. $NO < OF_2 < CO < CF_4$

 $\mathsf{D.} \quad \mathsf{CF_4} < \mathsf{NO} < \mathsf{OF_2} < \mathsf{CO}$

13. ¿Cuál es el estado de hibridación y la geometría del dominio electrónico alrededor de los átomos de C, N y O señalados con círculos?

	С	О	N
A.	sp³ y tetraédrica	sp² y trigonal plana	sp² y trigonal plana
B.	sp² y trigonal plana	sp y lineal	sp³ y tetraédrica
C.	sp³ y tetraédrica	sp y lineal	sp² y trigonal plana
D.	sp³ y pirámide trigonal	sp² y trigonal plana	sp³ y pirámide trigonal

14. ¿Cuántos enlaces sigma (σ) y enlaces pi (π) hay en esta molécula?

	σ	π
A.	12	6
B.	14	5
C.	16	6
D.	17	5

15. ¿Qué enunciados son correctos para los compuestos iónicos?

- I. La energía de red aumenta a medida que aumenta el radio iónico.
- II. Dentro del mismo grupo, el punto de fusión de las sales tiende a disminuir a medida que aumenta el radio del catión.
- III. La solubilidad en agua depende de la magnitud relativa de la energía de red comparada con la energía de hidratación.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

16. ¿Cuál es la entalpía estándar de formación, en kJ mol⁻¹, del IF (g)?

$$IF_7(g) + I_2(s) \rightarrow IF_5(g) + 2IF(g)$$
 $\Delta H^{\oplus} = -89 \text{ kJ}$

$$\Delta H_{f}^{\Theta}(IF_{7}) = -941 \text{ kJ mol}^{-1}$$

 $\Delta H_{f}^{\Theta}(IF_{5}) = -840 \text{ kJ mol}^{-1}$

- A. -190
- B. -95
- C. +6
- D. +95

17. La combustión de la glucosa es exotérmica y se produce de acuerdo con la siguiente ecuación:

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$$

¿Qué es correcto para esta reacción?

	ΔН⊖	ΔS [⊕]	Espontánea/ no espontánea
A.	negativo	positivo	espontánea
В.	negativo	positivo	no espontánea
C.	positivo	negativo	espontánea
D.	positivo	positivo	no espontánea

- **18.** ¿Qué ecuación representa la entalpía de red del sulfuro de magnesio?
 - A. $MgS(s) \rightarrow Mg(g) + S(g)$
 - B. $MgS(s) \rightarrow Mg^{+}(g) + S^{-}(g)$
 - C. $MgS(s) \to Mg^{2+}(g) + S^{2-}(g)$
 - D. $MgS(s) \rightarrow Mg(s) + S(s)$

- **19.** La variación de entalpía para la disolución de NH_4NO_3 es de $+26\,kJ\ mol^{-1}$ a $25\,^{\circ}C$. ¿Qué enunciado sobre esta reacción es correcto?
 - A. La reacción es exotérmica y la solubilidad disminuye a mayor temperatura.
 - B. La reacción es exotérmica y la solubilidad aumenta a mayor temperatura.
 - C. La reacción es endotérmica y la solubilidad disminuye a mayor temperatura.
 - D. La reacción es endotérmica y la solubilidad aumenta a mayor temperatura.
- **20.** El diagrama muestra el perfil energético para una reacción catalizada y sin catalizar. ¿Cuál representa la variación de entalpía, ΔH , y la energía de activación, E_a , para la reacción **catalizada**?

Coordenada de reacción

	ΔН	<i>E</i> _a (reacción catalizada)
A.	Z	x + z
B.	Z	z + y
C.	-z	x
D.	z + x	x

velocidad =
$$k[X]^0[Y]^2$$

– 10 **–**

¿Por qué factor se incrementará la velocidad de la reacción cuando las concentraciones de ambos X e Y se incrementen por un factor de 3?

- A. 6
- B. 9
- C. 18
- D. 27
- **22.** ¿Qué par de enunciados explica el aumento de la velocidad de una reacción cuando se aumenta la temperatura o se añade un catalizador?

	Aumento de temperatura	Añadido de un catalizador
A.	aumenta la energía cinética media de las partículas	aumenta la energía de activación
B.	disminuye la variación de entalpía de la reacción	aumenta la energía cinética media de las partículas
C.	aumenta la energía cinética media de las partículas	disminuye la energía de activación
D.	aumenta la energía de activación	disminuye la variación de entalpía de la reacción

23. A 700 °C, la constante de equilibrio, K_c , de la reacción es 1,075 × 10⁸.

$$2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$$

¿Qué relación es siempre correcta para el equilibrio a esta temperatura?

- A. $[H_2S]^2 < [H_2]^2 [S_2]$
- B. $[S_2] = 2[H_2S]$
- C. $[H_2S] < [S_2]$
- $\mathsf{D}. \qquad [\mathsf{H}_2 \mathsf{S}]^2 \! > [\mathsf{H}_2]^2 [\mathsf{S}_2]$

24. ¿Qué sucederá si se aumenta la presión de la siguiente mezcla de reacción en equilibrio?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. El equilibrio se desplazará hacia la derecha y el pH disminuirá.
- B. El equilibrio se desplazará hacia la derecha y el pH aumentará.
- C. El equilibrio se desplazará hacia la izquierda y el pH aumentará.
- D. El equilibrio se desplazará hacia la izquierda y el pH disminuirá.
- 25. 10,0 cm³ de una solución acuosa de hidróxido de sodio de pH = 10 se mezclan con 990,0 cm³ de agua destilada. ¿Cuál es el pH de la solución resultante?
 - A. 8
 - B. 9
 - C. 11
 - D. 12
- **26.** ¿Cuál de los siguientes formará una solución tampón si se combina en la relación molar adecuada?
 - A. HCl y NaCl
 - B. NaOH y HCOONa
 - C. NH₄Cl y HCl
 - D. HCl y NH₃

27. ¿Qué indicador es apropiado para la titulación ácido-base que se muestra a continuación?

- A. Azul de timol (p K_a = 1,5)
- B. Naranja de metilo (p K_a = 3,7)
- C. Azul de bromofenol (p K_a = 4,2)
- D. Fenolftaleína (p K_a = 9,6)

28. ¿Qué enunciado es **incorrecto** para una solución de HCOOH 0,10 mol dm⁻³?

- A. pH = 1
- B. $[H^+] << 0.10 \, \text{mol dm}^{-3}$
- C. La [HCOO⁻] es aproximadamente igual a la [H⁺]
- D. El HCOOH está parcialmente ionizado

- 29. ¿Cuál de las siguientes es una reacción rédox?
 - A. $3Mg(s) + 2AlCl_3(aq) \rightarrow 2Al(s) + 3MgCl_2(aq)$
 - B. $SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(l)$
 - C. $KCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + KNO_3(aq)$
 - D. $2NaHCO_3(aq) \rightarrow Na_2CO_3(aq) + CO_2(g) + H_2O(l)$
- **30.** Considere las siguientes semiecuaciones:

$$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$$
 $E^\ominus = +0,54 \text{ V}$ (marrón) (incoloro)

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l)$$
 $E^{\ominus} = +1,51 \text{ V}$ (púrpura) (incoloro)

¿Qué enunciado es correcto para la reacción entre KMnO₄ (aq) y KI (aq) en condiciones ácidas?

- A. El MnO_4^- reduce el I^- a I_2 .
- B. El I⁻ reduce el MnO₄⁻ a Mn²⁺.
- C. El color cambia de marrón a púrpura.
- D. El MnO_4^- se oxida a Mn^{2+} .
- **31.** ¿Cuáles son los productos cuando una solución acuosa de sulfato de cobre(II) se electroliza usando electrodos inertes de grafito?

	Cátodo (electrodo negativo)	Ánodo (electrodo positivo)
A.	Cu(s)	H ₂ (g)
B.	O ₂ (g)	Cu(s)
C.	Cu(s)	O ₂ (g)
D.	H ₂ (g)	O ₂ (g)

32. ¿Cuáles son los estados de oxidación del cromo en el $(NH_4)_2Cr_2O_7(s)$ y en el $Cr_2O_3(s)$?

	$(NH_4)_2Cr_2O_7(s)$	Cr ₂ O ₃ (s)
A.	+7	+3
B.	+6	+3
C.	+6	+6
D.	+7	+6

33. El propeno reacciona separadamente con H_2O/H^+ e H_2/Ni para dar los productos **X** y **Z** respectivamente.

$$\mathbf{X} \xleftarrow{H_2O/H^+} CH_3-CH=CH_2 \xrightarrow{H_2/Ni} \mathbf{Z}$$

¿Cuáles son los principales productos de las reacciones?

	X	z
A.	CH ₃ CH(OH)CH ₃	CH ₃ CH ₂ CH ₃
B.	CH ₃ CH ₂ CH ₂ OH	CH₃C≡CH
C.	CH ₃ C(O)CH ₃	CH ₃ CH ₂ CH ₃
D.	CH ₃ CH(OH)CH ₃	CH₃C≡CH

34. ¿Cuál es el nombre de este compuesto, de acuerdo con las reglas de la IUPAC?

- A. 3-metil-3-butanol
- B. 2-etil-2-propanol
- C. 2-metil-2-butanol
- D. 3-metil-2-butanol
- **35.** ¿Cuál es el producto de la reacción entre la 2-pentanona y borohidruro de sodio, NaBH₄?
 - A. 1-pentanol
 - B. 2-pentanol
 - C. Ácido pentanoico
 - D. Pentanal
- **36.** ¿Qué compuesto se puede oxidar cuando se calienta con solución acidificada de dicromato(VI) de potasio?
 - A. CH₃C(O)CH₂CH₃
 - B. CH₃CH₂CH(OH)CH₃
 - C. (CH₃)₃COH
 - D. CH₃(CH₂)₂COOH

37. ¿Cuál es el número de isómeros ópticos de la isoleucina?

$$\begin{array}{c|c} O & H_3C \\ \hline \\ HO & \\ \hline \\ NH_2 & \\ \end{array}$$

- A. 0
- B. 2
- C. 4
- D. 8
- 38. ¿Qué grupo funcional es responsable del valor de p K_b igual a 4,1 de este compuesto?

- A. Amido
- B. Amino
- C. Cloro
- D. Éter

39. ¿Qué compuesto origina este espectro de RMN de ¹H?

- A. CH₃CH₂OCH₂CH₃
- B. CH₃CH₂OH
- C. CH₃CH₂CH₃
- D. CH₃CH₂CH₂OH
- **40.** Un estudiante lleva a cabo una titulación ácido-base usando un pehachímetro, pero se olvida de calibrarlo. ¿Qué tipo de error se producirá y cómo afectará a la calidad de las mediciones?
 - A. Error aleatorio y menor precisión
 - B. Error sistemático y menor exactitud
 - C. Error sistemático y menor precisión
 - D. Error aleatorio y menor exactitud