

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **Информатика и системы управления**КАФЕДРА **Компьютерные системы и сети**НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.03 Прикладная информатика**

ОТЧЕТ

по домашнему заданию № 1 вариант № 67

Название	Проектир	ование	устройст	в упј	равле-	
	ния с жес	сткой лог	гикой			
Дисциплина	а Основы	проект	ирования	устр	оойств	
	ЭВМ					
Студент гр. І	ТУ6-64Б			_	М.А.Гейне	
_		(Пс	дпись, дата)		(И.О.Фамилия)	
Преподавате	ЛЬ			_	А.Ю.Попов	
_		(Пс	дпись, дата)		(И.О.Фамилия)	

Цель работы: изучить методы проектирования устройств управления с жесткой логикой.

Задание

В ходе выполнения домашнего задания необходимо разработать устройство управления схемного типа, обрабатывающий входное командное слово C = ABCDEF и выдающий сигналы управления $M = M_0, \ldots, M_{k-1}$ операционному блоку в соответствии с приведенной в индивидуальном задании логикой работы. Домашнее задание выполняется в несколько этапов.

- 1. А По диаграмме переходов автомата (Приложение 1) и описанию условий переходов и активных сигналов (дополнительный файл варианты.pdf), определить тип управляющего автомата (автомат Мили или Мура, смешанный). Выбор обосновать.
 - В Произвести кодирование состояний управляющего автомата. Составить схему переходов/состояний полученного автомата. Схему представить в отчете.
- 2. Разработать описание устройства управления на языке VHDL, для чего использовать приведенные в Приложении 2 шаблоны для автоматов Мили и Мура. Разработать тестовое описание для устройства, представляющее собой генератор входных сигналов (см. Приложение 3). Тестовое описание должно обеспечивать проверку всех ветвей автомата

- 3. А Установить ПО ModelSim PE (или аналогичный продукт: Xilinx ISE, Altera Quartus)
 - В Выполнить моделирование полученного теста в ПО ModelSim PE. Результаты моделирования представить в отчете.

Вариант 67

Таблица 1 – Варианты диаграмм и активных сигналов

Вариант	Диаграмма переходов	Активные сигналы М в состоянии					
		S1	S2	S3	S4	S5	S6
67	3	2	0	1,7	5,6	3	4

Таблица 2 – Условия переходов и наименование отладочной платы

Вариант	Название отладочной платы	Активные сигналы С в состоянии					
		У1	У2	У3	У4	У5	
67	Spartan3	<u>@</u>	E_F	CD	_A_C	<u>@</u>	
		У6	У7	У8	У9	У10	
		D_B	<u>@</u>	A_C	C_D	@	
		У11	У12	У13	У14	У15	
		A+C	_B	@	DF	@	

Таблица 3 – Активные сигналы для переходов

Вариант	Активные сигналы М в состоянии						
	У1	У2	У3	У4	У5		
67	У6	У 7	У8	У9	У10		
				5, 6	5, 7		
	У11	У12	У13	У14	У15		
		4					

Рисунок 1 – Общая диаграмма переходов

1 Определение заданного автомата

В соответствии с вариантом домашнего задания была составлена диаграмма переходов состояний автомата, приведённая на рисунке 2.

Рисунок 2 – Диаграмма переходов состояний заданного автомата

Так как выходные сигналы определены в некоторых случаях только состояниями (как в состоянии S2), а в некоторых случаях определены ещё и входными сигналами (переход У9), то можно сказать, что заданный автомат является автоматом смешанного типа.

2 Разработка устройства

После того, как был определён тип автомата, на языке VHDL был описан заданный автомат. Автомат имеет асинхронные вхо-

ды и выходы. Код устройства приведён ниже.

```
_____
-- Company:
-- Engineer:
-- Create Date: 17:40:21 05/09/2021
-- Design Name:
-- Module Name: state_machine - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM. VComponents.all;
entity state machine is
PORT (
           c : IN std logic vector ( 6 DOWNTO 1 );
              clk: IN std logic;
              rst : IN std logic;
              m : OUT std_logic_vector ( 7 DOWNTO 1 ) );
end state machine;
architecture Behavioral of state machine is
       TYPE STATE TYPE IS (s1, s2, s3, s4, s5, s6);
       SIGNAL current state, next state : STATE TYPE;
begin
       clocked proc: PROCESS(clk)
       BEGIN
              IF(rising edge(clk)) THEN
                     IF (rst='1') THEN
                     current state <= s1;
                     ELSE
```

```
current_state <= next_state;</pre>
                   END IF;
          END IF;
END PROCESS clocked proc;
comb proc : PROCESS (current state, C)
BEGIN
         CASE current state IS
         when s1=>
                   m \le (2 = > '1', others = > '0');
                   if (c(5)='1') and c(6)='0') then
                             next state<=s2;</pre>
                   elsif (c(3)='1') and c(4)='1') then
                             next state<=s4;</pre>
                   elsif (c(1)='0') and c(3)='0') then
                             next state<=s6;</pre>
                   else
                             next state<=s1;</pre>
                   end if;
         when s2 \Rightarrow
                   m \le (1 = > '1', others = > '0');
                   if (c(1)='1') and c(3)='0') then
                             next state<=s3;</pre>
                   elsif (c(4)='1') and c(2)='1') then
                             next state<=s5;</pre>
                   else
                             next state<=s2;</pre>
                   end if;
         when s3=>
                   m \le (1 = > '1', 7 = > '1', others = > '0');
                   if (c(2)='0') then
                             m(4) \le 11;
                             next state<=s1;</pre>
                   else
                             next state<=s3;</pre>
                    end if;
         when s4 \Rightarrow
                   m \le (5 = > '1', 6 = > '1', others = > '0');
                   if (c(3)='1') and c(4)='0') then
                             m(5) \le 11;
                             m(6) \le 11;
                             next state<=s5;</pre>
                    else
                             next state<=s4;
                   end if;
         when s5 \Rightarrow
                   m \le (3 = > '1', others = > '0');
                   if (c(4)='1') and c(6)='1') then
                             next state<=s1;</pre>
                   else
                             m(5) \le 11;
                             m(7) \le 11;
```