Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**.

1) Convert the following Boolean equations to corresponding logic circuit using AND, OR, and NOT logic gates (ensure you label each input and output for every logic gate)

$$(A \cdot B' \cdot C) + (A' \cdot B \cdot C')$$

(Note: You can use three input logic gate in your diagram). [5 pts]

- 2) Perform the following number conversions [5 pts]

b) 13.875₁₀=(1101.1110 _____)₂ (3 points)

Final Answer = (a) _____($\underline{D.3}$)16 _____, (b) ___($\underline{1101.1110}$)2

Name:	Key
-------	-----

Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**.

3) Convert the following Boolean equations to corresponding logic circuit using AND, OR, and NOT logic gates (ensure you label each input and output for every logic gate)

$$(A' \cdot B \cdot C) + (A \cdot B' \cdot C')$$

(Note: You can use three input logic gate in your diagram). [5 pts]

Final Answer = _____

4) Perform the following number conversions [5 pts]

a)
$$32BD_{16} = ($$
 12989)₁₀ (3 point)

$$32BD_{16} = 13 \times 16^{0} + 11 \times 16^{1} + 2 \times 16^{2} + 3 \times 16^{3} = 12989$$