2023-01-16 蛟龙四班第五课节比赛题解

——石明

A. 单调的代价

题目描述

给定一个整数序列 a_1,\ldots,a_n , Mas 需要修改其中一些数字,将它调整成一个上升且连续的整数序列

所谓上升且连续,就是指每一个数字恰好比前一个数大 1

若某个数字 a 被改成了 a',则定义它的修改工作量为 |a-a'

请找到一种修改方法,使得修改工作量的总和达到最小,输出这个最小值

输入格式

第一行: 单个整数 n ,表示数列长度

第二行: n 个整数表示 $a_1 \sim a_n$

输出格式

单个整数:表示最小的修改工作量

数据范围

对于 10% 的数据, $1 \leq n \leq 20, 1 \leq a_i \leq 20$

对于 40% 的数据, $1 \leq n \leq 5000, 1 \leq a_i \leq 5000$

对于 100 的数据, $1 \leq n \leq 200000, -10^9 \leq a_i \leq 10^9$

解析

- 既然是 $a_{i+1} a_i = 1, i \in [1, n]$,我们可以以 $a_1 1$ 作为基准数,则 $a_i (i \in [1, n])$ 可以记作 $a_i i$,我们就要让 $a_1 1, a_2 2, a_3 3, ..., a_n n$ 相等,就可以转化成#2141 货仓选址。
- 当然,我们也可以用二分答案来做。每次的check()都是O(n),在乘上log₂10⁹,约等于6×10⁶,不会超时。

```
#include <bits/stdc++.h>
  using namespace std;
3 long long ans; // 注意, ans要是long long
4 int n, a[200005];
 5 int main()
6={
    cin >> n;
    for (int i = 1; i <= n; ++ i)
      cin >> a[i], a[i] -= i; // 最后相等的结果
10
    sort(a + 1, a + n + 1);
11
    for (int i = 1; i <= n; ++ i)
      ans += abs(a[i] - a[(1 + n) / 2]); // 减去中位数的差的绝对值
    cout << ans << '\n';
     return 0;
```

B. 三堆石子

题目大意

题目描述

saM 给 Mas 设计了一个游戏:

 ${
m saM}$ 在地面上放置了三堆石子,数量分别为 a,b,c .

Mas 可进行若干轮下列操作

- Mas 可地面上三堆石子中选择任意非空的两堆
- Mas 从选出的两堆中分别取走一颗石子

当存在超过 1 堆石子为空时,游戏结束

请你计算 Mas 最多能进行多少轮游戏

输入格式

输入三个个整数 a,b,c

输出格式

输出一个整数表示答案

数据规模

对于 10% 的数据, $1 \leq a,b,c \leq 15$ 对于 40% 的数据, $1 \leq a,b,c \leq 10^9$ 对于 100% 的数据, $1 \leq a,b,c \leq 10^{18}$

解析 我们先来分析一下样例: 输入样例1 2 4 6 输出样例1 在第一组样例中, $a_1 + a_2 = a_3$,不难想到, 将 a_1 与 a_3 抵消,则抵消完后 $a_2 = a_3$,在做一次 抵消,得{0,0,0},全部用完。 • 所以,当 $a_1 + a_2 = a_3$ 时,结果等于 a_3 。


```
#include <bits/stdc++.h>
 2 using namespace std;
 3 long long a[3], ans; // long long
4 int main()
 5 ₽ {
     scanf ("%11d%11d%11d", &a[0], &a[1], &a[2]);
     sort(a, a + 3);
     if (a[2] >= a[0] + a[1])
     ans = a[0] + a[1];
10
     else
       ans = (a[0] + a[1] + a[2]) / 2;
12
     printf ("%11d", ans);
     return 0;
```

C. 有趣的赛制

题目大意

题目描述

在某场场时长为 S 的比赛中,有 n 道题,第 i 道题有一个最高得分 a_i 和一个递减因子 b_i

其中 a_i 是第 i 题的最高得分,比赛开始后每过一分钟,该题得分就会减少 b_i

当一道题通过后,选手该题的得分即为确定

选手的整场考试的总得分为选手每题的得分之和

假设 Mas 需要花费 t_i 分钟才能解决第 i 道问题

如何安排做题顺序,能让该场考试的得分最高?

数据规模

对于 10% 的数据, $1 \leq n \leq 10$

对于 60% 的数据, $1 \le n \le 10^3$

对于 100% 的数据, $1 \leq n \leq 10^5$

保证 $1 \leq S \leq 10^9, 1 \leq a_i \leq 10^{12}, 1 \leq b_i \leq 10^3, 1 \leq t_i \leq 10^4$

保证 $b_i imes S \leq a_i$,即每题得分不会变成负数

输入格式

第一行输入两个整数 n,S ,表示该场考试题目数量和比赛时长 保证 $\sum_{i=1}^n t_i \leq S$,即 Mas 能在考试时间内解决所有问题

接下来 n 行,第 i 行三个正整数 a_i,b_i,t_i ,表示第 i 题的最高得分、递减因子以及通过该题需要的时间

输出格式

输出一个整数能获得的最高分数

					解机					
	 我们先定义一个结构体,里面存放三个元素Score,Minus,Time。 我们来看看怎样的排序规则是正确的。每次源的元素乘上另外的时间,与时间乘上另外减的元素,形成排序。 									
	石	角的说	是一个	个前缀]可以 夏和) 目,就	,分数		时间		

```
anclude <bits/stdc++.h>
   using namespace std;
    typedef long long 11;
   ll n, s, ans, total;
   struct node
6 - {
     ll a, b, t;
  } aa[100005];
   bool cmp(node x,node y)
0 - {
    return y.t * x.b > x.t * y.b;
3 int main()
4- {
     scanf ("%11d%11d", &n, &s);
     for (ll i = 1; i <= n; ++ i)
       scanf ("%11d%11d%11d", &aa[i].a, &aa[i].b, &aa[i].t);
     sort(aa + 1, aa + n + 1, cmp);
      for (ll i = 1; i <= n; ++ i)
20 🖃
       total += aa[i].t;
       ans += aa[i].a - total * aa[i].b;
     printf ("%lld", ans);
      return 0;
```

D. 气球

题目大意

题目描述

在一个二维坐标系上,悬浮着 n 只静止不动的气球,第 i 个气球的坐标为 (x_i,h_i)

其中 x_i 表示它的横坐标, h_i 表示它的高度

保证在同一个坐标上,最多只有一只气球

Mas 打算用最少的弓箭射穿所有的气球

每只弓箭射出时需要确定一个高度,当弓箭没有遇到气球时,它会一直保持同样的高度沿x轴正方向运动如果弓箭碰到了气球,气球就会被射穿,弓箭的高度会减少1,然后继续沿水平方向运动,直到遇到下一个气球

请问,Mas 最少需要射出多少只箭,才能将所有的气球全部射穿?

输入格式

第一行:单个正整数表示 n

接下来 n 行,每行两个整数,表示一只气球的坐标

输出格式

单个正整数,表示最少需要多少只箭才能拿射穿所有的气球

数据范围

对于 30% 的数据, $1 \le n \le 10^3$

对于 60% 的数据, $1 \le n \le 10^4$

对于 100% 的数据, $1 \le n \le 10^5$

对于全部的数据 $1 \leq x_i \leq n, , 1 \leq h_i \leq 2 imes n$

	111			解材	T		7.0		
• 手 千 <i>三</i>	发们还 和 x 轴 4	是定) 坐标。	义一个 不难	FO(n ² / 结构 ² 想到, 第一关 ²	体,在 要让	字放高 箭每-	度(he	L,必	•
う ラ 育	为vis _i , 未被戳 前的坐	并记 穿的 标改	记录当 气球(E 为此 ^怎	f射中 前高原 即vis _i 球的。 (nlog	度和坐 = 0), 坐标,	标。给当前	每碰到 方高度]一个 -1,当	

```
struct node
   int x, h;
   bool operator < (const node t) const
    if (h != t.h)
       return h > t.h;
     return x >= t.x;
                           scanf ("%d", &n);
                           for (int i = 1; i <= n; ++ i)
} a[100005];
                     19
                             scanf ("%d%d", &a[i].x, &a[i].h);
                     20
                           sort(a + 1, a + n + 1);
bool vis[100005];
                     21
                           for (int i = 1; i <= n; ++ i)
int n, ans;
                     22
                            if (! vis[i])
                     23
                              ++ ans;
                     25
                              vis[i] = true;
                               int X = a[i].x, H = a[i].h - 1;
                               for (int j = i + 1; j <= n; ++ j)
                                 if (! vis[j] \&\& a[j].h == H \&\& a[j].x > X)
                                   vis[j] = true, -- H, X = a[j].x;
```

Thank you