ДИСЦИПЛИНА	Разработка и эксплуатация радиотелеметрических
	систем часть 1
	полное название дисциплины без аббревиатуры
ИНСТИТУТ	Радиотехнических и телекоммуникационных систем
КАФЕДРА	радиоволновых процессов и технологий
	полное название кафедры
ГРУППА/Ы	РССО-1-3-19; РРБО-1,2-19; РИБО-1-4-19
	номер групп/ы, для которых предназначены материалы
ВИД УЧЕБНОГО	Лекция №2
МАТЕРИАЛА	лекция; материал к практическим занятиям; контрольно-измерительные материалы к прак-
	тическим занятиям; руководство к КР/КП, практикам
ПРЕПОДАВАТЕЛЬ	Исаков Владимир Николаевич
	фамилия, имя, отчество
CEMECTP	5
	указать номер семестра обучения

Лекция 2

Спектральный анализ периодических сигналов

1. Основные характеристики периодических сигналов

Периодический сигнал $s_{\Pi}(t)$ можно рассматривать как результат периодического повторения непериодического сигнала s(t) через определённый интервал времени T, называемый периодом (рис. 1):

Рис. 1. Непериодический и периодический сигналы

$$S_{\Pi}(t) = \sum_{n=-\infty}^{+\infty} s(t - nT).$$

Исаков В.Н. Разработка и эксплуатация радиотелеметрических систем 1 2021 Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru

Периодизация может быть двух видов: с наложением и без наложения периодически повторяющихся импульсов. Условие периодичности записывается в виде:

$$S_{\Pi}(t) = S_{\Pi}(t - nT), n \in \mathbb{Z}.$$

Величина, обратная периоду называется частотой повторения или частотой первой гармоники сигнала

$$f_{\Pi} = f_1 = \frac{1}{T} [\Gamma_{\Pi}].$$

Круговая частота повторения или круговая частота первой гармоники сигала

$$\omega_{\Pi} = \omega_{1} = 2\pi f_{1} = \frac{2\pi}{T}$$
 [рад/с].

В случае периодизации без наложения период T больше или равен длительности образующего импульса $\tau_{\rm u}$ и в качестве параметра периодического сигнала может рассматриваться скважность

$$Q = \frac{T}{\tau_{_{\rm H}}} \ge 1.$$

Скважность характеризует «густоту» периодической последовательности импульсов. При увеличении скважности импульсы следуют реже.

Средней мощностью периодического сигнала на интервале $t \in [a,b]$ называется отношение энергии сигнала на этом интервале к величине этого интервала:

$$P(a,b) = \frac{E(a,b)}{b-a} = \frac{\int_{a}^{b} |s_{II}(t)|^{2} dt}{b-a}.$$

Полная энергия периодического сигнала бесконечна и в качестве энергетической характеристики рассматривается (полная) средняя мощность, под которой понимается отношение энергии сигнала на неограниченном интервале его наблюдения к величине этого интервала:

Рис.3.2. К понятию полной средней мощности периодического сигнала

Обозначив N количество полных периодов сигнала, укладывающихся на интервале [a,b] (рис.2), для средней мощности на этом интервале сможем записать:

$$P(a,b) = \frac{\int_{a}^{b} |s_{\Pi}(t)|^{2} dt}{b-a} = \frac{1}{b-a} \left(\int_{a}^{a+T} |s_{\Pi}(t)|^{2} dt + \int_{a+T}^{a+2T} |s_{\Pi}(t)|^{2} dt + \dots \right)$$

$$\dots + \int_{a+(N-1)T}^{a+NT} |s_{\Pi}(t)|^{2} dt + \int_{a+NT}^{b} |s_{\Pi}(t)|^{2} dt \right).$$

Ввиду периодичности в полученном выражении все интегралы, кроме $\int\limits_{a+NT}^{b} |s_{\Pi}(t)|^2 \ dt$ одинаковы и дают энергию сигнала, локали-

зованную на периоде. Представим также $b-a=NT+\Delta t$, где $0<\Delta t< T$ - остаток от деления нацело интервала наблюдения на период сигнала.

Считая, что сигнал ограничен на периоде, на основании теоремы о среднем установим, что

$$\int_{a+NT}^{b} |s_{\Pi}(t)|^2 dt = \mu \Delta t,$$

где $\min |s_{\Pi}(t)|^2 \le \mu \le \max |s_{\Pi}(t)|^2$ и, следовательно,

$$0 < \mu \Delta t < \max |s_{\Pi}(t)|^2 T.$$

С учётом сказанного выражение для средней мощности приведём к виду:

$$P(a,b) = \frac{1}{NT + \Delta t} \left(NE(a, a + T) + \mu \Delta t \right)$$

При неограниченном увеличении времени наблюдения $N \to \infty$, что позволяет в пределе не учитывать ограниченные слагаемые Δt и $\mu \Delta t$, а для полной мощности периодического сигнала записать:

$$P = \frac{E(a, a+T)}{T}.$$

Таким образом полная средняя мощность периодического сигнала равна его средней мощности за период. Учитывая, что a в наших рассуждениях предполагается произвольным, выражение для средней мощности перепишем в более удобном виде:

$$P = \frac{1}{T} \int_{t}^{t+T} |s_{\Pi}(t')|^{2} dt'.$$

Последняя форма записи особенно подчёркивает, тот факт, что для определения средней мощности периодического сигнала интегрирование может быть выполнено по любому интервалу, величина которого равна периоду.

2. Гармонический сигнал

Простейшим видом периодического сигнала считается гармонический сигнал

$$S_{\Pi}(t) = A\cos(\omega t + \varphi).$$

Параметр A называется амплитудой и определяет максимальное отклонение гармонического сигнала от своего среднего значения, его размерность совпадает с размерностью сигнала. Параметр ω называется частотой гармонического сигнала, имеет смысл параметра

масштаба, измеряется в [рад/с]. Параметр φ измеряется в радианах и называется начальной фазой гармонического сигнала.

График сигнала $s_{\Pi}(t) = A\cos(\omega t)$ показан на рис. 3. Там же показан график сигнала с опережением

Рис..3. Гармонический сигнал

Очевидно, $s_{\Pi 1}(t) = A\cos(\omega(t+t_0)) = A\cos(\omega t + \omega t_0) = A\cos(\omega t + \phi)$, откуда начальная фаза гармонического сигнала определяется его опережением/запаздыванием $\phi = \omega t_0$.

Средняя мощность гармонического сигнала

$$P = \frac{1}{T} \int_{0}^{T} A^{2} \cos^{2}(\omega t + \varphi) dt = \frac{A^{2}}{2T} \int_{0}^{T} dt + \frac{A^{2}}{2T} \int_{0}^{T} \cos(2\omega t + 2\varphi) dt.$$

Так как первый интеграл равен T, а второй интеграл равен нулю, как интеграл от гармонической функции по двум периодам, можем записать:

$$P = \frac{A^2}{2}$$
.

В некоторых случаях рассматривают комплексный гармонический сигнал (комплексную экспоненту)

$$s_{\Pi}(t) = Ce^{j\omega t} = |C|e^{j(\omega t + \varphi_C)} = |C|\cos(\omega t + \varphi_C) + j|C|\sin(\omega t + \varphi_C).$$

Комплексный параметр $\dot{C} = Ce^{j\phi_C}$ называется комплексной амплитудой комплексного гармонического сигнала, C называется

амплитудой, ϕ_C - начальной фазой.

Средняя мощность комплексного гармонического сигнала

$$P = \frac{1}{T} \int_{0}^{T} \left| Ce^{j\omega t} \right|^{2} dt = \frac{1}{T} \int_{0}^{T} |C|^{2} dt = |C|^{2}.$$

3. Ряд Фурье в комплексной форме

Рассмотрим квадратично-интегрируемые интервале $\left[-\frac{T}{2};\frac{T}{2}\right]$ функции. Они образуют гильбертово пространство со ска-

лярным произведением

$$(s_1, s_2) = \int_{-\frac{T}{2}}^{\frac{T}{2}} s_1(t) s_2^*(t) dt.$$

То, что приведённое правило обладает всеми свойствами скалярного произведение можно убедиться непосредственной проверкой.

Рассмотрим в этом пространстве систему функций

$$\left\{f_n(t) = e^{j\omega_n t}\right\}_{n=-\infty}^{+\infty},$$

где $\omega_n=n\omega_1,\ \omega_1=\frac{2\pi}{T}$. Она ортогональна на выделенном интервале

$$\begin{split} \mathbf{u} & \|f_n\| = \sqrt{T} \text{ . Действительно:} \\ & (f_n, f_k) = \int\limits_{-T/2}^{T/2} f_n(t) f_k^*(t) dt = \int\limits_{-T/2}^{T/2} e^{j\omega_n t} e^{-j\omega_k t} dt = \int\limits_{-T/2}^{T/2} e^{j(\omega_n - \omega_k)t} dt = \\ & = \begin{cases} \int\limits_{-T/2}^{T/2} e^{j\frac{2\pi}{T}(n-k)t} dt, n \neq k \\ \int\limits_{-T/2}^{T/2} dt, n = k \end{cases} = \begin{cases} \left. \frac{e^{j\frac{2\pi}{T}(n-k)t}}{j2\pi(n-k)/T} \right|_{-T/2}^{T/2}, n \neq k \\ T, n = k \end{cases}$$

$$= \begin{cases} \frac{e^{j\frac{2\pi}{T}(n-k)\frac{T}{2}} - e^{-j\frac{2\pi}{T}(n-k)\frac{T}{2}}}{j2\pi(n-k)/T}, n \neq k \\ T, n = k \end{cases}, n \neq k = \begin{cases} \frac{\sin[\pi(n-k)]}{\pi(n-k)/T}, n \neq k \\ T, n = k \end{cases}$$

Таким образом, сигнал из $L_2[-T/2; T/2]$ может быть представлен в виде:

$$s_{\Pi}(t) = \sum_{n=-\infty}^{+\infty} C_n f_n(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j\omega_n t} ,$$
 где $C_n = \frac{1}{\left\|f_n\right\|^2} (s_{\Pi}, f_n) = \frac{1}{T} \int_{-T/2}^{T/2} s_{\Pi}(t) f_n^*(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} s_{\Pi}(t) e^{-j\omega_n t} dt .$

Если выйти за пределы интервала [-T/2; T/2], мы обнаружим, что на всей временной оси записанный ряд описывает периодический сигнал с периодом T:

$$s_{\Pi}(t+kT) = \sum_{n=-\infty}^{+\infty} C_n e^{j\omega_n(t+kT)} = \sum_{n=-\infty}^{+\infty} C_n e^{j\omega_n t} e^{j\frac{2\pi n}{T}kT} =$$

$$= \sum_{n=-\infty}^{+\infty} C_n e^{j\omega_n t} = s_{\Pi}(t).$$

То есть квадратично-интегрируемый на периоде (имеющий конечную среднюю мощность) периодический сигнал может быть представлен рядом Фурье в комплексной форме.

Члены ряда $C_n e^{j\omega_n t}$ называются комплексными гармоническими составляющими сигнала (комплексными гармониками). Коэффициенты ряда Фурье C_n являются комплексными амплитудами комплексных гармоник сигнала, $C_n = |C_n| e^{j\phi_n}$. $|C_n|$ - называются амплитудами комплексных гармоник сигнала, а ϕ_n - называются начальными фазами комплексных гармоник сигнала.

Совокупность комплексных амплитуд гармоник сигнала $\left\{C_n\right\}_{n=-\infty}^{+\infty}$ называется его комплексным спектром (или кратко - спектром) в комплексном базисе.

Исаков В.Н. Разработка и эксплуатация радиотелеметрических систем 1 2021 Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru

Совокупность амплитуд комплексных гармоник сигнала $\{|C_n|\}_{n=-\infty}^{+\infty}$ называется его амплитудным спектром в комплексном базисе.

Совокупность начальных фаз комплексных гармоник сигнала $\left\{\phi_{n}\right\}_{n=-\infty}^{+\infty}$ называется его фазовым спектром в комплексном базисе.

Коэффициенты ряда Фурье в комплексной форме для действительного сигнала $s_{\Pi}(t) \in \mathbb{R}$ обладают свойством сопряжённой симметрии:

$$C_{-n} = C_n^*$$
 или
$$\left|C_{-n}\right| = \left|C_n\right|, \ \phi_{-n} = -\phi_n$$

Действительно:

$$C_{-n} = \left(\frac{1}{T} \int_{-T/2}^{T/2} s_{\Pi}(t) e^{-j\omega_{-n}t} dt\right)^{**} = \left(\frac{1}{T} \int_{-T/2}^{T/2} s_{\Pi}(t) e^{-j\omega_{n}t} dt\right)^{*} = C_{n}^{*}.$$

При этом $C_0 = \frac{1}{T} \int_{-T/2}^{T/2} s_{\Pi}(t) dt \in \mathbb{R}$ - действительный, а $\phi_0 \in \{0, \pm \pi\}$,

причём
$$\phi_0 = \begin{cases} 0, \ C_0 > 0 \\ \pm \pi, \ C_0 < 0 \end{cases}$$

4. Ряд Фурье в тригонометрической форме

Преобразуем ряд Фурье в комплексной форме для случая действительного сигнала, учитывая свойство сопряжённой симметрии коэффициентов:

$$\begin{split} s_{\Pi}(t) &= \sum_{n=-\infty}^{+\infty} C_n e^{j\omega_n t} = \sum_{n=-\infty}^{+\infty} |C_n| e^{j(\omega_n t + \varphi_n)} = \\ &= C_0 + \sum_{n=1}^{+\infty} \left(|C_n| e^{j(\omega_n t + \varphi_n)} + |C_{-n}| e^{j(\omega_{-n} t + \varphi_{-n})} \right) = \\ &= C_0 + \sum_{n=1}^{+\infty} \left(|C_n| e^{j(\omega_n t + \varphi_n)} + |C_n| e^{-j(\omega_n t + \varphi_n)} \right) = \end{split}$$

Исаков В.Н. Разработка и эксплуатация радиотелеметрических систем 1 2021 Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru

$$= C_0 + \sum_{n=1}^{+\infty} 2 \operatorname{Re} |C_n| e^{j(\omega_n t + \varphi_n)} = |C_0| \cos \varphi_0 + \sum_{n=1}^{+\infty} 2 |C_n| \cos(\omega_n t + \varphi_n) =$$

$$= \sum_{n=0}^{+\infty} A_n \cos(\omega_n t + \varphi_n),$$

где
$$A_0 = |C_0|$$
, $A_n = 2|C_n|$.

Полученный ряд для действительного сигнала называется рядом Фурье в тригонометрической форме. Возможна также запись

$$s_{\Pi}(t) = A_0 + \sum_{n=1}^{+\infty} A_n \cos(\omega_n t + \varphi_n),$$

где $A_0 = C_0$ может быть положительной или отрицательной.

Член ряда $A_0 = C_0$ (или $A_0 \cos \phi_0$ в первой записи) называется постоянной составляющей сигнала.

График постоянной составляющей сигнала проходит относительно графика самого сигнала так, что совокупная площадь фигуры, ограниченной на периоде графиком постоянной составляющей и графиком сигнала под постоянной составляющей равна таковой же над постоянной составляющей, что следует из очевидного равенства:

$$\int_{-T/2}^{T/2} \left(s_{\Pi}(t) - C_0 \right) dt = \int_{-T/2}^{T/2} \sum_{n=1}^{+\infty} A_n \cos(\omega_n t + \varphi_n) dt = 0.$$

Член ряда Фурье в тригонометрической форме $A_n \cos(\omega_n t + \varphi_n)$ называется n-й гармонической составляющей сигнала (гармоникой). Коэффициенты A_n называются амплитудами гармонических составляющих сигнала. Параметры φ_n называются начальными фазами гармонических составляющих сигнала.

Совокупность амплитуд $\{A_n\}_{n=0}^{+\infty}$ гармонических составляющих сигнала называется его амплитудным спектром в тригонометрическом базисе.

Совокупность $\{\phi_n\}_{n=0}^{+\infty}$ начальных фаз гармонических составляющих сигнала называется его фазовым спектром в

тригонометрическом базисе.

Амплитудный и фазовый спектр сигнала изображают посредством так называемых спектральных диаграмм рис.4. На амплитудную спектральную диаграмму наносят линии высотой A_n на частотах ω_n . На фазовую спектральную диаграмму наносят линии на частотах ω_n той высоты и полярности, которая соответствует ϕ_n .

Представление периодических функций в виде тригонометрического ряда предложил в 1822 году Жан Батист Жозеф Фурье (1768-1830) в работе «Аналитическая теория тепла».

Рис.4. Амплитудный и фазовый спектр

5. Средняя мощность периодического сигнала

С учётом введённого скалярного произведения, выражение для средней мощности периодического сигнала можем переписать в виде:

$$P = \frac{1}{T} \int_{-T/2}^{T/2} |s_{\Pi}(t)|^2 dt = \frac{1}{T} (s_{\Pi}, s_{\Pi}) = \frac{\|s_{\Pi}\|^2}{T}.$$

Привлекая теперь равенство Парсеваля

$$P = \frac{\|s_{\Pi}\|^{2}}{T} = \frac{\sum_{n=-\infty}^{+\infty} |C_{n}|^{2} \|f_{n}\|^{2}}{T} = \frac{\sum_{n=-\infty}^{+\infty} |C_{n}|^{2} T}{T} = \sum_{n=-\infty}^{+\infty} |C_{n}|^{2}.$$

Для действительного сигнала

$$P = \sum_{n=-\infty}^{+\infty} |C_n|^2 = A_0^2 + 2\sum_{n=1}^{+\infty} \frac{A_n^2}{4} = A_0^2 + \sum_{n=1}^{+\infty} \frac{A_n^2}{2}.$$

Средняя мощность периодического сигнала равна сумме средних мощностей его гармонических составляющих.

Литература

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007.
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Дрофа, 2006.
- 3. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986.
- 4. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2000.

Дополнительная литература

- 5. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов.
- Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.)
- 6. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с.
- 7. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с.