

Statistical analysis of the effects of sample drying on metabolite concentrations in pumpkin leaves

Goals: Carry out statistical tests with false discovery correction to identify metabolites, which are significantly altered between the two workup methods

Topics:

- 1. Statistical analysis (2 classes)
- 2. False discovery rate
- 3. Power analysis

Identify the effects of sample drying?

Use DATA: Pumpkin data 2.csv

Treatment

fresh frozen:6

lyophilized:6

Steps:

- 1. Use t-Test to compare metabolite means for each treatment
- 2. Correct for the false discovery rate (FDR) adjusted p-value
- 3. Estimate FDR (q-value)

Visualize:

- 1. Relationship between p-value and FDR adjusted p-value
- 2. Relationship between FDR adjusted p-value and q-value
- 3. Box plots for highest and lowest p-value metabolites

Questions:

1. When should you use a one-sample, two-sample or paired t-test, ANOVA?

Statistics

Hypothesis Testing Strategies

- One sample t-Test is used to compare single value to a population mean
- Two sample t-Test is used to compare 2 independent populations
- Paired t-Test is used to compare the same population (intervention, repeated measures)
- One-way ANOVA (analysis of variance) is used to compare n populations for one factor
- Two-way ANOVA is used to compare n populations for 2 factors
- Repeated Measures ANOVA (e.g time course, intervention, cross-over)
- ANCOVA (analysis of covariance) is used to adjust n populations for covariate (typically continuous) prior to testing for n factors
- Mixed effects models are versatile analogue to linear model or ANOVA/ANCOVA and typically used to adjust for covariates or variance due to repeated measures

^{*}All of the above are parametric tests, and some of which have non-parametric analogues

Question:

Identify all significantly altered metabolites between the two treatments at p<0.05 and FDRp<0.05

Identify all significantly altered metabolites between the two treatments at p<0.05

Identify all significantly altered metabolites between the two treatments at FDRp<0.05

Volcano Plot

Importance based on magnitude of change and significance

Question:

What is the relationship between p-values and FDR adjusted p-values, what is the most and least conservative FDR method?

What is the relationship between p-values and FDR

0.75

p-value

Benjamini & Hochberg (1995) ("BH")

Accepted standard

0.5

t.test_adjusted.p.value

0.25

- Very conservative
- •adjusted p-value = pvalue*# of tests

(e.g. 0.005 * 148 = 0.74)

Statistics

p-value vs. q-value

 q-value can be used to select appropriate p-value cut off for an acceptable FDR for multiple hypotheses tested

- q=0.05 nicely matches assumptions of p=0.05 for multiple hypotheses tested
- q-value 0.2 can be acceptable

Statistics

Question:

Characterize the effect size between dry and fresh treatments for any two metabolites of interest

glycerol 3 glactoside

Effect of drying is minimal

However the following metabolites are significantly altered between the two work up methods

φ	t.test_p.value*	t.test_adjusted.p.value	t.test_q.value	FClyophilizedfresh.frozen
tyramine	3.88e-05	0.00305	0.00181	2.7
pyrazine.2.5.dihydroxyNIST	4. <mark>1</mark> 2e-05	0.00305	0.00181	0.4
linolenic.acid	8.65e-05	0.00326	0.00193	0.4
glycerol.3.galactoside	8.82e-05	0.00326	0.00194	0.4
glyceric.acid	1.41e-04	0.00418	0.00248	2.7
methanolphosphate	9.76e-04	0.02407	0.01323	0.4
threitol	2.08e-03	0.04060	0.02169	2.5
X1.monopalmitin	2.30e-03	0.04060	0.02291	2.8
sorbitol	2.47e-03	0.04060	0.02380	2.5
urea	2.97e-03	0.04401	0.02611	2.2
glycerol.alpha.phosphate	4.44e-03	0.05974	0.03444	2.7

Consequence of workup methods

Different methods can affect the apparent relationships between metabolites

 Analysis of method performance based on metabolite physical properties can be used to spot method bias.

Statistics

Power analysis

Goals: Use power analysis to plan a follow up experiment to detect differences in metabolites due to drying treatment

Steps:

- 1. Calculate effect size and power for three metabolites
- 2. Given the observed effect size calculate the number of samples needed to reach 80% power

Questions:

1. How would you take FDR in to account?

Question:

Calculate the effect size and power for any metabolites of interest

variable		comp	parison	effect.size	alpha	power
zymosterol	lyophilized-	fresh	frozen	0.643	0.05	0.17
xylose	lyophilized-	fresh	frozen	1.45	0.05	0.62
xylonic.acid	lyophilized-	fresh	frozen	1.17	0.05	0.45
val <mark>in</mark> e	lyophilized-	fresh	frozen	0.000465	0.05	0.05
urea	lyophilized-	fresh	frozen	2.1	0.05	0.9
tyrosine	lyophilized-	fresh	frozen	0.148	0.05	0.056
tyramine	lyophilized-	fresh	frozen	4.03	0.05	1
tryptophan	lyophilized-	fresh	frozen	0.362	0.05	0.088

Calculate the effect size and power for any metabolites of interest

Scaled difference in means between treatments

Ability to detect a difference when it exists (control false negative rate)

variable		comp	parison	effect.size	alpha	power
zymosterol	lyophilized-	fresh	frozen	0.643	0.05	0.17
xylose	lyophilized-	fresh	frozen	1.45	0.05	0.62
xylonic.acid	lyophilized-	fresh	frozen	1.17	0.05	0.45
valine	lyophilized-	fresh	frozen	0.000465	0.05	0.05
urea	lyophilized-	fresh	frozen	2.1	0.05	0.9
tyrosine	lyophilized-	fresh	frozen	0.148	0.05	0.056
tyramine	lyophilized-	fresh	frozen	4.03	0.05	1
tryptophan	lyophilized-	fresh	frozen	0.362	0.05	0.088

Probability of being wrong when spotting a difference (control false positive rate)

Biology

Informatics

Chemistry

Utility of power analysis

Identify optimal number of samples to detect differences at some p-value and power in follow-up experiments, given effect sizes calculated from the current experiment

```
comparison effect.size alpha power
     variable
              lyophilized- fresh frozen
                                               0.643 0.05 0.17
   zymosterol
                                                 2.1 0.05
              lyophilized- fresh frozen
                                                            0.9
         urea
       xylose lyophilized- fresh frozen
                                                1.45
                                                     0.05 0.62
4 xylonic.acid lyophilized- fresh frozen
                                                1.17
                                                     0.05 0.45
                                            0.000465
       valine lyophilized- fresh frozen
                                                     0.05 0.05
    samples.per.group effect.size alpha power
                   39
                            0.643 0.05
                                          0.8
  1
```

```
samples.per.group effect.size alpha power
1 9 1.45 0.05 0.8
```


Utility of power analysis

samples.per.group	effect.size	alpha	power
156978	0.01	0.05	0.8
1571	0.1	0.05	0.8
17	1	0.05	0.8
5	2	0.05	0.8

The minimum fold change (FC) in means observable by the study can be calculated using RSD and estimated effect size to reach 0.8 (80%) power given the population size

RSD = 0.21 and effect size (EF) =1.2

$$EF = \frac{m1 - m2}{RSD}$$
 $m1 = EF * RSD + m2 = 1.8 * 0.21 + 1 = 1.38$ $FC = \frac{m1}{m2} = \frac{1.38}{1} = 1.38$

We can observe a minimum of a 38% change in means at 0.8 power (p= 0.05).