

Math93.com

TD - NSI Représentation des données Types et valeurs de base

Les exercices suivants dont l'intitulé est suivi du symbole (c) sont corrigés intégralement en fin du présent TD.

Première partie

Bases

Exercice 1. Quelques conversions

- 1. Convertir en base 2 les nombres suivants :
 - (a) 543
 - (b) 2^8
 - (c) $2^8 + 2^2 + 1$
 - (d) 1025
 - (e) 128
 - (f) $(FAB)_{16}$
 - (g) $(F3)_{16}$
- 2. Convertir en base 10 les nombres suivants :
 - (a) (101101)₂
 - (b) (1000000)₂

- (c) $(1111111)_2$
- (d) (1001)₂
- (e) $(FAB)_{16}$
- (f) $(F3)_{16}$
- 3. Convertir en base 16 les nombres suivants :
 - (a) 543
 - (b) 2^8
 - (c) $16^5 + 1$
 - (d) (10010101)₂
 - (e) $(11111)_2$

Exercice 2. Un peu de Python

BAC Alert!

Ces algorithmes sont très souvent demandés lors de l'épreuve pratique du Bac, il sont à connaître par coeur.

1. Écrire une fonction *conversion_B10_B2(nb)* qui prend en argument un entier nb en base 10 et renvoie son écriture en base 2 sous forme de string.

```
def conversion_B10_B2(nb):
    '''IN : nb integer en base 10
    OUT : string, conversion de nb en base 2'''
    ....
```

Tester votre fonction avec les exemples de l'exercice précédent.

- 2. Écrire une fonction *conversion_B2_B10(nb)* qui prend en argument un string nb en base 2 et renvoie son écriture en base 10 sous forme d'entier.
 - Tester votre fonction avec les exemples de l'exercice précédent.
- 3. Écrire une fonction *conversion_B10_B16(nb)* qui prend en argument un entier nb en base 10 et renvoie son écriture en base 16 sous forme de string.
 - Tester votre fonction avec les exemples de l'exercice précédent.
- 4. Écrire une fonction *conversion_B16_B10(nb)* qui prend en argument un string nb en base 16 et renvoie son écriture en base 10 sous forme d'entier.

Tester votre fonction avec les exemples de l'exercice précédent.

www.math93.com / M. Duffaud

Deuxième partie

Représentation des entiers naturels

Exercice 3. Sujet 0

Question 1

Combien d'entiers positifs ou nuls peut-on représenter en machine sur 32 bits?

- **a.** $2^{32} 1$
- **b.** 2^{32}
- $\mathbf{c.} \ \ 2 \times 32$
- **d.** 32^2

Question 2

Quel est l'entier positif codé en base 2 sur 8 bits dont le code est : 0010 1010?

- **a.** 42
- **b.** 21

- c. 84
- 4 3

Question 3

Quelle est la valeur affichée à l'exécution du programme suivant?

```
# Dans 1'éditeur PYTHON
x=1
for i in range(10):
    x=x*2
print(x)
```

- **a.** 1024
- **b.** 2

- **c.** 20000000000
- **d.** 2048

Question 4

Les entiers positifs ou nuls dont l'écriture en base 16 (hexadécimal) est constituée par un 1 suivi de 0 (par exemple 1, 10, 100, 1000, etc.) sont :

a. les puissances de 2

b. les puissances de 8

c. les puissances de 10

d. les puissances de 16

Question 5

Dans lalgorithme ci-dessous, qui prend en entrée un entier naturel non nul et renvoie son écriture binaire, remplacer les pointillés par lopérateur qui convient.

```
# Dans 1'éditeur PYTHON

def cascade(n):
    chiffres = ''
    while n != 0:
        chiffres = str(n ... 2) + chiffres
        n = n //2
    return chiffres
```

- **a.** //
- **b.** +

c. *

d. %

www.math93.com / M. Duffaud 2/7

Troisième partie

Représentation des entiers relatifs

Rappel: Plus grand et plus petit relatifs sur n bits

— Sur 8 bits : on a $2^8 = 256$ relatifs possibles de -128 à 127 :

$$-2^7 = -128 \longrightarrow \cdots \longrightarrow 2^7 - 1 = 127$$

— Sur 16 bits: on a $2^{16} = 65536$ relatifs possibles de -32768 à 32 767:

$$-2^{15} = -32768 \longrightarrow \cdots \longrightarrow 2^{15} - 1 = 32767$$

Exercice 4. Sujet 0

Question 1

Quel est l'entier relatif codé en base 2 sur un octet dont le code est : 1111 1111?

Exercice 5. Complément à 2 (c)

Donner le compléments à 2 des nombres relatifs suivants avec une mémoire de 8 bits, ou autrement dit, donner la représentation binaire de ces nombres relatifs sur 8 bits.

Exercice 6. Complément à 2 ... à l'envers (c)

Donner les entiers relatifs dont le compléments à 2 avec une mémoire de 8 bits ou autrement dit, donner les relatifs dont la représentation binaire sur 8 bits est :

a) 11001011₂

c) 10000010₂

b) 11010100₂

d) 10101010

Exercice 7. Complément à 2 et somme

On se place sur un registre de 8 bits.

- 1. Donner le complément à 2 des nombres a = -17 et b = -111.
- 2. Donner le complément à 2 des nombres a + b.
- 3. Calculer la somme binaire des compléments à 2 de *a* et de *b* et vérifier si le résultat est cohérent.

Exercice 8. Un peu de Python

Écrire une fonction *representation_8bits(nb)* qui prend en argument un entier relatifs nb en base 10 et qui renvoie un string, le compléments à 2 de nb avec une mémoire de 8 bits, ou autrement dit, la représentation binaire de ces nombres relatifs sur 8 bits.

Si le nombre n'est pas codable sur 8 bits, la fonction devra renvoyer le string 'IMPOSIBLE' Tester votre fonction avec les exemples précédents.

www.math93.com / M. Duffaud 3/7

Quatrième partie

Représentation des flottants

Exercice 9. Sujet 0

Question 1

Que peut-on dire du programme Python suivant de calcul sur les nombres flottants?

```
Dans l'éditeur PYTHON
x = 10.
while x!=0.0:
    x = x - 0.1
```

- a. L'exécution peut ne pas s'arrêter si la variable x n'est jamais égale exactement à 0.0
- **b.** A la fin de l'exécution, la variable x est égale à -0.000001
- c. A la fin de l'exécution, la variable x est égale à 0.000001
- d. L'exécution s'arrête sur une erreur FloatingPointError

Exercice 10. Nombres dyadiques (c)

Coder en binaire les nombres suivants :

a)
$$\frac{75}{16}$$
b) $\frac{101}{101}$

b)
$$\frac{101}{8}$$

Exercice 11. Développement dyadique ou pas ... (c)

- 1. Donner la représentation binaire de la fraction $\frac{11}{16}$
- 2. Donner la représentation binaire de la fraction $\frac{11}{15}$
- 3. Donner le début du développement dyadique de la somme $\frac{11}{16} + \frac{11}{15}$. Le nombre affiché par un ordinateur sera-t-il représentatif de cette somme?

Norme IEEE-754: simple précision Exercice 12.

1. A quel nombre décimal correspond le nombre suivant écrit sur 32 bits :

2. Ecrire la représentation sur 32 bits de $1,375 \times 2^{-3}$

Exercice 13. Développement non dyadique

- 1. Donner la représentation binaire de la fraction $\frac{8}{7}$.
- 2. Donner la représentation binaire de la fraction $\frac{11}{3}$

4/7 www.math93.com / M. Duffaud

Cinquième partie

Représentation des textes

Exercice 14. Sujets 0

Question 2

Quelle est l'affirmation vraie concernant le codage UTF-8 des caractères?

- a. Le codage UTF-8 est sur 1 à 4 octets.
- **b.** Le codage UTF-8 est sur 8 bits.
- c. Le codage UTF-8 est sur 8 octets.
- d. Le codage UTF-8 est sur 7 bits.

Exercice 15. Codage UTF-8 et table ASCII (c)

En utilisant la table ASCII, déterminer quel mot se cache sous les codes UTF-8 suivants?

Exercice 16. Conversion de format (c)

1. Créer un fichier **Microsoft Word** ou **Open Office Text** dans lequel vous tapez les mots (sans espace avant le L ou après le dernier t) :

Le petit

- 2. Enregistrer le fichier sous le nom lepetit.docx et noter la taille du fichier obtenu.
- 3. Dans Word ou Text:
 - (a) aller dans *Fichier* → *Enregistrer sous* (indiquer le nom Lepetit-utf8),
 - (b) sélectionner format du fichier Texte brut
 - (c) puis cliquer sur enregistrer.
 - (d) Choisir autre codage et sélectionner Unicode : UTF-8. C
- 4. Comparer les tailles des deux fichiers (cliquer droit + propriétés). Comment expliquer cette différence.
- 5. Faire de même avec un fichier en inscrivant les mots :

J'étais, aussitôt!

Choisissez ensuite le codade en ASCII. Que remarquez vous?

→ Fin du devoir →

www.math93.com / M. Duffaud 5/7

Corrigés des exercices

Correction de l'exercice 10 : Complément à 2

Donner le compléments à 2 des nombres suivants avec une mémoire de 8 bits.

- a) 100 et -100
- b) 75 et -75
- c) -50 et 50

Correction

a)
$$\begin{cases} 100 &= (0110\ 0100)_2 \\ -100 &= (1001\ 1100)_2 \end{cases}$$

b)
$$\begin{cases} 75 &= (0100\ 1011)_2 \\ -75 &= (1011\ 0101)_2 \end{cases}$$

c)
$$\begin{cases} 50 = (0011\ 0010)_2 \\ -50 = (1100\ 1110)_2 \end{cases}$$

c)
$$\begin{cases} 50 &= (0011\ 0010)_2 \\ -50 &= (1100\ 1110)_2 \end{cases}$$
d)
$$\begin{cases} 89 &= (0101\ 1001)_2 \\ -89 &= (1010\ 0111)_2 \end{cases}$$

Correction de l'exercice 10 : Complément à 2 ... à l'envers

Donner les entiers relatifs dont le compléments à 2 avec une mémoire de 8 bits est;

- a) 11001011₂
- b) 11010100₂
- c) 10000010₂
- d) 10101010₂

Correction de l'exercice 10 : Nombres dyadiques

Coder en binaire les nombres suivants :

a)
$$\frac{75}{16} = 100, 1011_2$$

b)
$$\frac{101}{8} = 1100, 101_2$$

c)
$$14,75 = \frac{59}{4} = 1110,11_2$$

d) $30,5 = \frac{61}{2} = 11110,1$

d)
$$30.5 = \frac{61}{2} = 11110.1$$

Correction de l'exercice 11

1. Donner la représentation binaire de la fraction $\frac{11}{16}$.

$$\frac{11}{16} = (0, 1011)_2$$

2. Donner la représentation binaire de la fraction $\frac{11}{15}$.

 $\frac{11}{15}$ n'est pas un nombre dyadique car le dénominateur de la fraction irréductible n'est pas une puis-

 $\frac{11}{15} \approx 0,7333$ on peut utiliser la méthode du cours et on obtient une période $\underline{1011}$ dans le développement:

 $\frac{11}{15} \approx (0, \underline{1011} \ 1011 \ 1011 \cdots)_2$

6/7 www.math93.com / M. Duffaud

3. Donner le début du développement dyadique de la somme $\frac{11}{16} + \frac{11}{15}$. Le nombre affiché par un ordinateur sera-t-il représentatif de cette somme? On obtient :

$$(1,01101011\cdots)_2$$

Le résultat affiché ne sera donc pas la valeur exacte de la somme.

Correction de l'exercice 15

En utilisant la correspondance de la table ASCII, on trouve : hello.

Correction de l'exercice 16

- (Q1-3)
 - La taille du fichier .docx est de 11,6 KB soit 11 600 Bytes ou 11 600 octets.
 - La taille du fichier .txt est de 13 Bytes soit 13 octets.
 - Le fichier .txt contient du texte brut alors que word ajoute une mise en forme.
- (Q4) : les lettres accentuées ont été mal converties. Le texte a été détérioré.

www.math93.com / M. Duffaud 7/7