Curtin University

MATH1019 Linear Algebra and Statistics for Engineers

Mid-Semester Test, Sem 2 2018; Time Allowed: 1 Hour + 5 minutes reading time

This paper contains 10 pages (including this cover sheet), 5 questions, worth a total of 45 marks

Write your answers in the spaces provided. Write your name and student number on this cover sheet. If pages become separated write your name on all separated sheets. A blank page is attached should you require additional space, however if you need more paper than this, please ask.

NAME:					
STUDENT NUMBER:					
Please circle your work	kshop tutor and corres	sponding workshop time			
Song Wang:	Monday 12–2pm				
Shuang Li:	Monday 12–2pm	Tuesday 8–10am			
Muhammad Kamran:	Monday 4–6pm	Tuesday 1–3pm			
	Tuesday 4–6pm	Thursday 1–3pm			
Shican Liu:	Tuesday 8–10am	Thursday 8–10am			
Mikhail Dokuchaev:	Tuesday 3–5pm	Thursday 4–6am			
	Friday 4–6pm				
Grant Keady:	Wednesday 8–10am				

Question 1. Ten students have just had a statistics test and their results are

75 66 49 23 89 55 60 72 80 69

- (a) Find the mean and standard deviation of their grades. (2 marks)
- (b) Find the lower quartile Q_1 , median Q_2 and upper quartile Q_3 of the above data set.

(6 marks)

(c) Draw the boxplot of the above data set and indicating clearly the whiskers and outlier(s), if any. (4 marks)

Question 2. A survey result shows that hotline service receives on average 4 incoming phone calls in one period.

- (a) Let X be a random number representing the number of incoming phone calls. What probability distribution does X satisfy? (1 mark)
- (b) Find the probability that the hotline service receives 2 or fewer incoming calls in one period, i.e. $P(X \le 2)$. (3 marks)
- (c) What is the probability that the service receives 2 or fewer incoming calls in 2 consecutive periods? (4 marks)
- (d) Using the probability found in part (b), find the probability that any three of the five chosen periods have 2 or fewer incoming calls. (4 marks)

Question 3. You are asked by your boss to design a game having three possible outcomes -1 (loss), 0 (break-even) and 1 (win) for its player with probabilities p_1 , p_2 and p_3 respectively. Your boss would like to see that the expected value and variance of the random outcome are respectively -0.1 and 0.8 (non-fair game). How do you choose p_1 and p_3 if $p_2 = 0.19$? (6 marks)

Question 4. Curtin University claims that the mean salary of its graduates is \$67K (\$67,000). You think Curtin over-estimates the average salary with the aim of attracting more students. You then conduct a survey by randomly sampling 5 Curtin's graduates' salaries and find that the mean salary is $\bar{x} = \$55K$ with the standard deviation s = \$3K.

- (a) Perform a test of hypothesis at the 5% significance level with the intent to prove that Curtin University over-estimates the average salary. (6 marks)
- (b) If we accept Curtin University's claim of the graduate's mean salary $\mu = \$67 \text{K}$ with the standard deviation $\sigma = \$1 \text{K}$, how large a sample is required if we want a 95% confidence interval for the mean μ to have a margin of error of ± 0.05 ?

(4 marks)

Question 5. You are an engineer of a bottled water supplier and you've been asked to set up a machine which fills 500ml water into a bottle. It is known that standard deviation of the volume filled into a bottle by the machine is $\sigma = 20$ ml. From time to time The Australian Competition & Consumer Commission (ACCC) randomly chooses 30 bottles of your products and calculates the average volume \bar{x} of the bottle contents. What is the minimum mean water volume μ in a bottle filled by the machine you need to set in order that $P(\bar{x} > 500\text{ml}) > 0.8$? (5 marks)

Additional working space if required

Additional working space if required

Cumulative probabilities for the Standard Normal distribution

3.4

0.9997

0.9997

0.9997

0.9997

0.9997

0.9997

0.9997

0.9997

0.9997

0.9998

 $P(Z \le z)$ where $Z \sim N(0, 1)$ 0.07 0.08 0.09 0.00 0.01 0.02 0.03 0.04 0.05 0.06 \boldsymbol{z} -3.40.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 -3.30.00050.00040.0003 0.0005 0.00040.00040.00040.00040.00040.00040.0006 -3.20.00070.00070.00060.0006 0.0006 0.0006 0.0005 0.0005 0.00050.0009 -3.10.0010 0.0009 0.0009 0.0008 0.00080.0008 0.0008 0.0007 0.0007 -3.00.0013 0.0013 0.0013 0.0012 0.00120.00110.0011 0.0011 0.0010 0.0010 -2.90.0019 0.0018 0.0018 0.0017 0.00160.0016 0.0015 0.0015 0.0014 0.0014 -2.80.0026 0.0025 0.0024 0.00230.0023 0.0022 0.0021 0.0021 0.0020 0.0019 -2.70.00350.00340.0033 0.0032 0.0031 0.0030 0.0029 0.00280.0027 0.0026 -2.60.00470.00450.00440.00430.00410.00400.00390.00380.0037 0.0036 0.00620.0060 0.0059 0.0054 0.00520.0051 0.0049 0.0048 -2.50.0057 0.0055 -2.40.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064-2.30.0107 0.0104 0.0102 0.0091 0.0089 0.0087 0.0084 0.0099 0.0096 0.0094 -2.20.01390.01360.0132 0.0129 0.01220.01190.01160.01130.0110 0.0125-2.10.01740.01700.0162 0.01580.0154 0.0150 0.0146 0.01790.01660.0143-2.00.0228 0.0222 0.02170.0212 0.0207 0.02020.0197 0.01920.01880.0183-1.90.02870.02810.02740.02680.02620.02560.0250 0.02440.0239 0.0233 -1.80.03590.0351 0.0344 0.0336 0.0329 0.0322 0.03140.03070.0301 0.0294 -1.70.04460.04360.04270.04180.04090.04010.03920.03840.03750.0367 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6-1.50.06680.06550.06430.0630 0.06180.06060.05940.05820.05710.0559 0.0793 0.0778 0.0764 0.0721 0.0708 -1.40.0808 0.07490.0735 0.0694 0.0681 -1.30.0968 0.0951 0.0934 0.0918 0.08530.0838 0.0901 0.08850.0869 0.0823 0.10560.1020-1.20.1151 0.1131 0.1112 0.1093 0.1075 0.1038 0.1003 0.09850.13350.13140.1210-1.10.13570.12920.12710.12510.12300.11900.11700.1515-1.00.15870.15620.14920.14690.1401 0.15390.14460.14230.1379-0.90.1841 0.1814 0.17880.17620.17360.17110.16850.16600.16350.1611 -0.80.2119 0.20900.20610.20330.20050.19770.19490.19220.18940.1867-0.70.24200.2389 0.2358 0.2327 0.2296 0.22660.22360.22060.21770.2148 -0.60.27430.27090.26760.26430.26110.25780.25460.25140.24830.2451-0.50.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 -0.40.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 0.3745 -0.30.3821 0.3783 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.34830.42070.41680.41290.40520.39360.3897 -0.20.4090 0.4013 0.39740.3859 0.4602 0.4562-0.10.45220.44830.44430.44040.43640.43250.42860.4247-0.00.50000.49600.49200.48800.48400.48010.47610.4721 0.46810.4641 0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.53590.53980.54380.5478 0.56360.56750.57140.1 0.5517 0.55570.5596 0.5753 0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.61410.6217 0.6255 0.3 0.6179 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.65540.6591 0.6628 0.6664 0.6700 0.6772 0.6808 0.6844 0.6879 0.40.67360.70190.5 0.6915 0.6950 0.6985 0.70540.70880.71230.71570.7190 0.7224 0.60.72570.72910.73240.73570.73890.74220.74540.74860.75170.7549 0.7 0.75800.76110.76420.76730.77040.77340.77640.77940.78230.78520.80.78810.79100.79390.79670.79950.80230.80510.80780.81060.8133 0.90.81590.81860.82120.82380.82640.82890.83150.83400.83650.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.86430.86650.86860.87080.87290.87490.87700.87900.88100.88300.8849 0.8869 0.8888 0.8907 0.89250.8944 0.8962 0.8980 0.8997 0.9015 1.2 0.90320.90490.90660.90820.90990.91150.9131 0.91470.91620.91771.3 0.9192 0.9207 0.92220.9236 0.92510.9292 0.9306 1.4 0.92650.92790.93190.9332 0.9345 0.9357 0.9370 0.9418 1.5 0.93820.93940.9406 0.9429 0.9441 0.94520.94630.94740.94840.95050.95250.9535 1.6 0.94950.9515 0.95451.7 0.95540.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.96160.96250.9633 1.8 0.9641 0.9649 0.96560.96640.96710.96780.9686 0.96930.9699 0.9706 1.9 0.97130.9719 0.97260.9732 0.9738 0.97440.9750 0.97560.9761 0.9767 $\mathbf{2.0}$ 0.9772 0.9778 0.9783 0.97880.9793 0.9798 0.9803 0.9808 0.9812 0.9817 0.9821 0.9826 0.9830 0.9850 0.9854 2.1 0.9834 0.9838 0.9842 0.9846 0.9857 2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.98902.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9911 0.9913 0.9909 0.9916 0.9918 0.9920 0.99220.9924 0.9932 2.4 0.9927 0.99290.9931 0.9934 0.9936 2.50.9938 0.9940 0.9941 0.99430.9945 0.9948 0.9949 0.99460.99510.99522.60.99530.99550.99560.99570.99590.9960 0.99610.99620.9963 0.9964 2.7 0.9965 0.99660.99670.9968 0.9969 0.99700.99710.99720.9973 0.99742.8 0.99740.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.90.9981 0.9982 0.9982 0.9983 0.99840.99840.9985 0.99850.9986 0.9986 3.00.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.10.99900.99910.99910.99910.99920.99920.99920.99920.99930.9993 3.20.9993 0.9993 0.9994 0.9994 0.9994 0.99940.9994 0.9995 0.9995 0.9995 3.3 0.99950.99950.9995 0.9996 0.99960.9996 0.99960.99960.9996 0.9996

Critical points of the t-distribution

Entry is t where $P(T \geq t) = p$ for t-distribution with ν degrees of freedom

Entity	y is t where	1 (1 2	$\iota) = p$ 10	t-distri	oution wi	un v degre	es of freed
ν	p 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
$\frac{21}{22}$	1.323	1.721	2.080 2.074	2.518 2.508	$\frac{2.831}{2.819}$	3.527 3.505	3.792
	!	1.714					
23	1.319 1.318		2.069 2.064	2.500	2.807	3.485	$3.768 \\ 3.745$
24 25		1.711		2.492	2.797	3.467	
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
31	1.309	1.696	2.040	2.453	2.744	3.375	3.633
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
33	1.308	1.692	2.035	2.445	2.733	3.356	3.611
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
35	1.306	1.690	2.030	2.438	2.724	3.340	3.591
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582
30 37	1.305	1.687	2.026	2.434 2.431	2.719 2.715	3.326	$\frac{3.562}{3.574}$
	l						
38	1.304	1.686 1.685	2.024	2.429	2.712	3.319	3.566
39	1.304		2.023	2.426	2.708	3.313	3.558
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
41	1.303	1.683	2.020	2.421	2.701	3.301	3.544
42	1.302	1.682	2.018	2.418	2.698	3.296	3.538
43	1.302	1.681	2.017	2.416	2.695	3.291	3.532
44	1.301	1.680	2.015	2.414	2.692	3.286	3.526
45	1.301	1.679	2.014	2.412	2.690	3.281	3.520
46	1.300	1.679	2.013	2.410	2.687	3.277	3.515
47	1.300	1.678	2.012	2.408	2.685	3.273	3.510
48	1.299	1.677	2.011	2.407	2.682	3.269	3.505
49	1.299	1.677	2.010	2.405	2.680	3.265	3.500
50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	l						
80 100	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	1.290	1.660	1.984	2.364	2.626	3.174	3.390
200	1.286	1.652	1.972	2.345	2.601	3.131	3.340
500	1.283	1.648	1.965	2.334	2.586	3.107	3.310
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291