Fizika snov

Rok Kos

Gimnazija Vič, Tržaška cesta 72

Kazalo

1 FIZIKALNE KOLIČINE IN ENOTE

Fizikalna količina je produkt merskega števila in merske enote.

1.1 Osnovne in sestavljene enote

Osnovne fizikalne količine	Osnovne fizikalne enote
dolžina	m
masa	kg
čas	S
el. tok	Α
temperatura	K
svetilnost	cd
količina snovi	mol

Vse ostale enote lahko zapišemo s temi.

Sestavljene fizikalne enote: $\frac{m}{s}$, N, J, W..

$$1N = \frac{1kgm}{s^2}$$

1.2 Predpone

P(peta)	$10^{1}5$
T(tera)	$10^{1}2$
G(giga)	10^{9}
М	10^{6}
k	10^{3}
h	10 ²
da	10
d	10^{-1}
С	10^{-2}
m	10^{-3}
μ	10^{-6}
n	10^{-9}
p(piko)	10^{-12}
f(fento)	10^{-15}

1.3 Merjenje

NAPAKE:

 SLUČAJNE(odvisne od natačnosti merilca) → te napake se da zmanjašati z večkratnim merjenjem

• SISTEMATIČNE(odvisne od merilne naprave) → se jih <u>neda odpraviti</u> z večkratnim merjenjem

Vse meritve zapišemo v tabelo

dolžina l	[m]
1	x_1
2	x_2
3	X 3
:	:
n	x_n

Izračun povprečne vrednosti : \overline{x}

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Absolutna Napaka Δx

 Δx je največje odstopanje meritve od povprečne vrednosti.

$$x = \overline{x} \pm \Delta x$$

Relativna Napaka δx

$$\delta x = \frac{\Delta x}{\overline{x}}$$

$$x = \overline{x}(1 \pm \frac{\Delta x}{\overline{x}})$$

1.4 Računanje z napakami

Vsota in razlika

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$(a+b)_{max} = (\overline{a} + \Delta a) + (\overline{b} + \Delta b) = (\overline{a} + \overline{b}) + (\Delta a + \Delta b)$$

$$(a+b)_{min} = (\overline{a} - \Delta a) + (\overline{b} - \Delta b) = (\overline{a} + \overline{b}) - (\Delta a + \Delta b)$$

$$a+b = (\overline{a} + \overline{b}) \pm (\Delta a + \Delta b)$$

$$a-b = (\overline{a} - \overline{b}) \pm (\Delta a + \Delta b)$$

Pri seštevanju in odštevanju seštevamo **absolutne napake. Množenje in deljenje**

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$ab_{max} = (\overline{a} + \Delta a)(\overline{b} + \Delta b) = \overline{a}\overline{b} + \overline{a}\Delta b + \overline{a}\Delta b + \Delta a\Delta \overline{b}^{*0}$$

$$= \overline{a}\overline{b}(1 + \frac{\Delta a}{\overline{a}} + \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 + (\delta a + \delta b))$$

$$ab_{min} = (\overline{a} - \Delta a)(\overline{b} - \Delta b) = \overline{a}\overline{b} - \overline{a}\Delta b - \overline{a}\Delta b + \Delta a\Delta \overline{b}^{*0}$$

$$= \overline{a}\overline{b}(1 - \frac{\Delta a}{\overline{a}} - \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 - (\delta a + \delta b))$$

$$ab = \overline{a}\overline{b}(1 \pm (\delta a + \delta b))$$

$$\frac{a}{b} = \frac{\overline{a}}{\overline{b}}(1 \pm (\delta a + \delta b))$$

Pri množenju in deljenju seštevamo **realtivne napake. Potenciranje**

$$a = \overline{a} \pm \Delta a$$
$$a^n = \overline{a}^n (1 \pm (n\delta a))$$

1.5 Grafična predstavitev rezultatov

- 1. Urejene osi(enote, številke)
- 2. Pravilno vnešene meritve
- 3. Premica, ki se najbolj prilega
- 4. Smerni koeficient(z enotami)
- 5. Fizikalni pomen smernega koeficienta(hitrost, fizikalna količina)

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Zveza: S = vt

2 PREMO IN KRIVO GIBANJE

2.1 Premo gibanje

Gibanje je **realtivno**(vse se vedno giba), vedno je treba povedati glede na kaj se giba.

Lega je kordinata telesa v prostoru.Lahko jo zapišemo s kordinatami kot:

- številsko premico(ena dimenzija)
- 2-dimenzionalni kordinatni sistem(dve dimenziji)
- 3-dimenzionalni kordinatni sistem(tri dimenzije)

Premik definiramo kot <u>razdaljo</u> med <u>začetno</u> in <u>kočno lego</u>, kateremu lahko določimo smer.(se vprašamo kam)

Zapis:

Kartezični(Vektor) \rightarrow (-60km, -70km) ali (x, y) Cilindrične kordinate \rightarrow (-92km, 230 °C) ali (r, α)

Pot se vedno **veča** zato nikoli ne gre v **minus**.

2.2 Hitrost

Hitrost nam pove kakšna pot naredimo v določenem času. Hitrost je vektorska kolilčina odvisna od smeri. Poznamo tudi skalarne količine(npr. Masa).

Enačbe, ki so svete:

$$v = v_0 + at$$

$$s = v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2as$$

2.3 Enakomerno gibanje

To je gibanje pri katerem je **hitrost konstantna**. Telo v enakih časovnih intervalih naredi enako pot. Primer: krogla, ki jo iztrelimo v breztežnostnem prostoru.

$$a = 0$$

$$v = v_0$$

$$s = v_0 t \rightarrow v_0 = \frac{s}{t}$$

$$v^2 = v_0^2$$

Naklon pove hitrost

$$f = tan\alpha = k$$
$$k = \frac{\Delta y}{\Delta x} = \frac{\Delta s}{\Delta t} = v$$

Ploščina pod krivuljo nam pove prepotovano pot.

$$s = tv$$

2.4 Enakomerno pospešeno gibanje

Enakomerno pospešeno gibanje je gibanje pri katerem se hitrost **enakomerno spreminja**. Pospešek nam pove za koliko se v določenem

času spremeni hitrost.
$$\frac{\frac{m}{s}}{s} \rightarrow [\frac{m}{s^2}] \rightarrow enota$$

$$a = \frac{\Delta v}{\Delta t}$$

Strmina premice hitrosti od časa nam pove velikost pospeška.

$$k = \frac{\Delta v}{\Delta t} = a$$

Tangenta na krivuljo grafa poti od časa v vsaki točki govori o hitrosti telesa. Ploščina pod krivuljo grafa pospeška od časa nam pove hitrost.

$$v = at$$

Odvod poti proti času in odvod hitrosti po času

$$v = \frac{ds}{dt}$$
$$v = \frac{dv}{dt}$$

2.5 Prosti pad

$$v = gt$$

$$h = \frac{gt^2}{2}$$

$$v^2 = 2gh$$

Gimnazija Vič

2.6 Navpični met navzdol

$$v = v_0 \pm gt$$

$$h = v_0 t \pm \frac{gt^2}{2}$$

$$v^2 = v_0^2 \pm 2gh$$

2.7 Navpični met navzgor

Smer in velikost pospeška sta vedno ista(osvisna od mase zemlje.) Ko gre telo gor govorimo o pojemku, ko pa dol pa o pospešku.

Ker je pospešek vedno enak se graf ne lomi.

ENAKOMERNO POJEMAJOČE

$$v = v_0 \pm gt$$

$$h = v_0 t \pm \frac{gt^2}{2}$$

$$v^2 = v_0^2 \pm 2gh$$

ENAKOMERNO POSPEŠUJOČE

$$v = gt$$

$$h = \frac{gt^2}{2}$$

$$v^2 = 2gh$$

2.8 Ravninsko gibanje

Gibanje v eno smer ni odvisno od nasprotnega gibanja. Hitrosti se vektorsko seštevajo.

Čas, ki ga bo potreboval za prehod reke je odvisen od samo od **dolžine reke** in **njegove hitrosti**. Celotna pot in zamik pa sta odvisna od reke. Gibanje je **enakomerno**.

$$S = vt$$

$$t = \frac{h}{v_c}$$

$$v^2 = v_r^2 + v_c^2$$

$$S = \sqrt{x^2 + h^2}$$

$$x = v_r t$$

2.9 Vodoravni met

Hitrost \vec{v} je vedno **tangentna** na traektorijo(pot po kateri se premika).

X smer	Y smer
enakomerno gibanje	enakomerno pospešeno gibanje
v = konst.	$a = g, v \neq konst.$
/	prosti pad
t	t

$$v_{x} = \frac{x}{t}$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2}}$$

$$v_{y} = gt$$

$$h = \frac{gt^{2}}{2}$$

2.10 Kroženje

ENAKOMERNO

Kroženje je vedno pospešeno gibanje saj se **vektor vedno spreminja**. Enakomerno pa ker je $|\vec{v}|$ **vedno konstanten**, ne pa sam \vec{v} . t_0 - obhodni čas.

 ν - frekvenca, predstavi število obratov v nekem času.

$$v = \frac{N}{t} = \frac{1}{t_0}[Hz]$$

 ω - kotna hitrost, pove nam za kakšen kot prepotujemo v določenem času, enote so v radianih na sekundo

$$v = \frac{\Delta \phi}{\Delta t} = \frac{360^{\circ}}{t_0} = \frac{2\pi}{t_0} = 2\pi \frac{1}{t_0} = \frac{2\pi v}{s} \left[\frac{1}{s}\right]$$

v - ubodna histrost, je tangentan na krožnico, ubod pomeni zunanji rob, pove nam kolikšen krožni lok(odsek krožnice opravi v določenem času).

$$v = \frac{\Delta l}{\Delta t} = \frac{2\pi r}{t_0} = 2\pi \frac{1}{t_0} r = \omega r \left[\frac{m}{s}\right]$$

 α_r - radialni pospešek, cedno kaže v središče, spreminja smer hitrosti na krožnici.

$$a_r = \frac{\Delta v}{\Delta t} = v\omega = r\omega^2 = \frac{v^2}{r} \left[\frac{m}{s^2}\right]$$

3 SILA IN NAVOR

3.1 **Sila**

Učinki sil:

- SPREMEMBE GIBANJA(ustavi, sprememba hitrosti, smeri...)
- DEFORMACIJA(sprememba oblike)

SILE:

- NOTRANJE(med deli opazovanega telesa)
- ZUNANJE(s katerimi predmeti iz okolice delujemo na opazovalno telo)

SEŠTEVANJE SIL:

 PARALELOGRAMSKO PRAVILO(premaknemo v izhodišče in naredimo vzporednice(paralelogram))

• TRIKOTNIŠKO PRAVILO(silo premaknemo na konce prve sile)

RASTAVLJANJE SIL

3.2 Newtnovi zakoni

- 1. **IZREK O RAVNOVESJU**(če je vsota vseh zunanjih sil, delujejo na telo enaka 0 potem telo miruje ali se giblje premo enakomerno(Telo vztraja v gibanju)).
- 2. F = ma
- 3. **ZAKON O VZAJEMNEM UČINKU**(zakon akcije in reakcije), če <u>1</u>. telo deluje na <u>2</u>. z neko silo, deluje tudi <u>2</u>. nazaj z nasprotno enako silo.

3.3 Ravnovesje sil

3.4 Trenje in lepenje

Telo miruje na vodoravni podlagi.

 F_g - teža je volumsko porazdeljena sila, narišemo jo z prijemališčem v sredini.

 F_n - sila podlage je ploskovno razdeljena in jo narišemo s prejemališčem na sredini ploskve.

Telo še zmeraj miruje.

Sila podlage je sestavljena iz vzdolžne komponente in sile normale. Če povečujemo vlečno silo se spreminja samo vzdolžna komponenta sile podlage.

$$0 <= F' < F_l$$

F_l- sila lepenja

$$F_l = k_l N$$

 k_l - koeficijent lepenja, je neko število brez enote, ki je odvisen samo od hrapavosti stičnih ploskev podlage in telesa

Telo se giblje: F_{tr} - sila trenja

$$F_{tr} = k_{tr}N$$

 k_{tr} - koeficijent trenja

$$k_{tr} < k_l$$

Je vedno manjši, ker zato da **premaknemo telo** potrebujemo več sile, ker moramo pretrgati **medmulekulske vezi** in potem, ko se telo enkrat premika teh vezi ni več in je manjši koeficijent.

3.5 Sile na klancu

Klada miruje na klancu: Velikosti(smeri nasprotne):

- $F_p = F_q$
- $F_d = F'$
- $F_s = N$

$$F_s = F_g \cos \alpha$$

$$F_s = mg \cos \alpha$$

$$F_d = F_g \sin \alpha$$

$$F_d = mg \sin \alpha$$

$$F_s = N = mg \cos \alpha$$

$$F_d = F' = mg \sin \alpha$$

 $\alpha_l \dots$ tik preden se klada premakne(mejni primer)

$$F_d = F_l$$

$$mg^* \sin \alpha_l = k_l mg^* \cos \alpha_l$$

$$k_l = \frac{\sin \alpha_l}{\cos \alpha_l}$$

$$k_l = \tan \alpha_l$$

Uporabljamo samo v tem mejnem primeru.

 α_{tr} . . . mejni kot, klada drsi enakomerno

$$F_{d} = F_{tr}$$

$$mg^{r} \sin \alpha_{tr} = k_{tr} mg^{r} \cos \alpha_{tr}$$

$$k_{tr} = \frac{\sin \alpha_{tr}}{\cos \alpha_{tr}}$$

$$k_{tr} = \tan \alpha_{tr}$$

Klada drsi pospešeno:

$$F = m\alpha$$

$$F_d - F_{tr} = m\alpha$$

$$m^r g \sin \alpha - k_{tr} m^r g \cos \alpha = m^r \alpha$$

$$\alpha = g \sin \alpha - k_{tr} g \cos \alpha$$

1. Pojemek, ko telo zadrsamo po vodoravni podlagi

$$\alpha = 0^{\circ}$$

$$\alpha = -k_{tr}g$$

2. Prosti pad

$$\alpha = 90^{\circ}$$
 $\alpha = -g$

3.6 Sile pri kroženju

$$a_r = \omega^2 r = \frac{v^2}{r} = \omega r$$
 $F_r = ma_r \rightarrow radialnasila$
 $F_r = m\omega^2 r = m\frac{v^2}{r} = m\omega r$

3.7 Deformacije trdnin

- PROŽNE(ko se telo po končanju deformacije vrne v prvotno stanje)
- NEPROŽNE(ko se telo ne vrne ali pa se delno vrne v prvotno stanje)

$$P = \frac{F}{S} \left[1 \frac{N}{m^2} = 1Pa \right]$$
$$\left[1bar = 10^5 \frac{N}{m^2} \right]$$

Velja samo če je pravokotno na ploskev

$$P = \frac{F'}{S}$$

3.8 Hookov zakon

I . . . prvotna dolžina

x . . . raztezek

S...premer žice

$$\frac{F}{S} = \Delta$$

 $\Delta \dots$ raztezna napestost $\left[\frac{N}{m^2}\right]$

$$\frac{x}{k} = \epsilon$$

 $\epsilon \dots$ relativni raztezek

Hookov zakon:

$$\frac{F}{S} = E\frac{X}{l}$$

$$F = \frac{ES}{l}X$$

$$F = kX$$

$$k = \frac{ES}{l}$$

E . . . prožnostni model snovi $[\frac{N}{m^2}]$

3.9 Navor

M ... navor [1Nm]

$$M = rF''$$

$$F'' = F \cos \alpha$$

$$M = rF \cos \alpha$$

$$\cos \alpha = \frac{r'}{r}$$

$$M = rF \frac{r'}{r}$$

$$M = FF'$$

r' . . . ročica(pravokotna razdalja med nosilko sile in osjo)

$$\vec{M} = \vec{r} X \vec{F}$$

Navor je ročica krat sila. **Smer navora** je po <u>desnem vijaku</u>(v našem primeru bi kazal v list). Mi bomo gledali samo kako navor zasuka telo. **Izrek o ravnovesju** pravi:

- 1. Da mora biti rezultanta vseh zunanjih sil 0
- 2. Da mora biti rezultanta vseh navorov 0

Takrat telo miruje ali se giba premo enakomerno.

3.10 Navor teže

$$m = m_1 + m_2 + \dots + m_n$$

$$M = m_1 x_1' g + m_2 x_2' g + \dots + m_n x_n' g$$

$$M = x_t mg$$

$$x_t = \frac{m_1 x_1' + m_2 x_2' + \dots + m_n x_n'}{m}$$

4 NEWTNOVI ZAKONI IN GRAVITACIJA

4.1 Keplerjevi zakoni

(Opisujejo gibanje planetov)

- 1. Planeti se gibljejo po elipsi, sonce je v gorišču elipse.
- 2. Radij vectorja med planetom in soncem opiše v enakih časih enake ploščine(ploščinska hitrost je enaka)
- Kvocient kuba polmera in kvadrata obhodnega časa planeta je za vse planete enaka.

$$\frac{r^3}{t_0^2} = konst$$

4.2 Newtnov gravitacijski zakon

(opisuje privlačno silo med dvema točkastema telesoma) *smer sile je na smeri veznice

$$F = \frac{Gm_1m_2}{r^2}$$

*če povečamo eno maso se obe sile povečata

G . . . gravitacijska konstanta

$$G = 6,67 * 10^{-11} \frac{Nm^2}{kg^2}$$

*vzamemo razdaljo med središčem

1. MASA ZEMLJE

 g_0 ... težni pospešek na površini zemlje r_0 ... polmer zemlje

$$mg_0 = \frac{Gmm_z}{r_0^2}$$

$$g_0 = \frac{Gm_z}{r_0^2}$$

$$m_z = \frac{g_0r_0}{G}$$

$$m_z = \frac{9.81\frac{m}{s^2}(6400km)^2}{6.67 * 10^{-11}\frac{Nm^2}{kq^2}} = 6.02 * 10^{24}kg$$

2. Težni pospešek nad površino zemlje

$$g = g_0(\frac{r_0^2}{r})\dots odsredia$$

 $g = g_0(\frac{r_0^2}{r_0 + h})\dots odpovrinezemlje$

3. Hitrost umetnega satelita, ki kroži okrog zemlje na majhni višini

$$m^{r}g = m^{r}a_{r}$$

$$g_{0}(\frac{r_{0}}{r})^{2} = \frac{v^{2}}{r}$$

$$r = r_{0}$$

$$v^{2} = g_{0}r_{0}$$

$$v = \sqrt{g_{0}r_{0}}$$

$$v = \sqrt{9,81\frac{m}{s^{2}}6400km}$$

$$v = 8000\frac{m}{s} \rightarrow kozminahitrost$$

Obhodni čas:

$$v = \omega r = \frac{2\pi}{t_0} r$$

$$t_0 = \frac{2\pi r}{v}$$

$$t_0 = \frac{2\pi 6400 km}{80000 \frac{m}{s}} = 83.8 min$$

4. Višina geostacionarnega satelita

 $t_0 = 1$ dan \rightarrow ker je goestacionarni satelit

$$\omega = \frac{2\pi}{t_0}$$

$$m^*g = m^*a_r$$

$$g_0(\frac{r_0}{r})^2 = \omega^2 r$$

$$g_0\frac{r_0^2}{r^2} = \frac{4\pi^2}{t_0^2} r$$

$$r^3 = \frac{g_0r_0^2t_0^2}{4\pi^2}$$

$$r = \sqrt{\frac{9,81\frac{m}{s^2}(6400km)^2(24h)^2}{4\pi^2}}$$

$$r = 42354km$$

$$h = r - r_0 = 36100km$$

5. Masa sonca

$$r_{sz} = 1.5 * 10^{8} km$$

$$t_{0} = 365 dni = 32 * 10^{6} s$$

$$\frac{Gm_{s}m_{z}}{r_{sz}^{2}} = m_{z}\omega r_{sz}$$

$$\frac{Gm_{s}}{r_{sz}^{2}} = \frac{4\pi^{2}}{t_{0}^{2}} r_{sz}$$

$$m_{s} = \frac{4\pi^{2}r_{sz}^{3}}{t_{0}^{2}G}$$

$$m_{s} = 2 * 10^{30} kg$$

5 IZREK O GIBALNI KOLIČINI

5.1 Sunek sile in gibalna količina

$$\vec{F} = m\vec{a}$$

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{V}_2 - \vec{V}_1}{\Delta t}$$

$$\vec{F} = m \frac{\vec{V}_1 - \vec{V}_2}{\Delta t}$$

$$\vec{F}\Delta t = m\vec{V}_1 - \vec{V}_2 \rightarrow izrekogibalnikolicini$$

$$\vec{G} = m\vec{V} \dots Gibalnakolicina[Ns, \frac{kgm}{s}]$$

$$\vec{F}\Delta t = \vec{G}_2 - \vec{G}_1 = \Delta \vec{G}$$

Izrek o ohranitvi energije Če je $\vec{F}\Delta t = 0 \rightarrow \Delta \vec{G} \rightarrow \vec{G}_2 = \vec{G}_1$. Če je sunek vseh zunanjih sil enak nič potem se gibalna količina sistema ohrani.

6 DELO IN ENERGIJA

6.1 Delo in mehanska energija

$$A = Fs[1Nm = 1J]$$

A ... delo

s . . . premik prijemališča sile

Velja samo v primeru, ko je sila konstantna in je premik prijemališča vzporeden sili.

F = konst. $\vec{F} || \vec{s}$

$$A = \vec{F}x\vec{s} = Fs\cos\alpha$$

A = 0

A < 0

$$A = \vec{F_X} \times \vec{s} = Fs \cos \alpha$$

$$A = A_1 + A_2 + A_3 = F_x s + 0 - F_3 s$$

6.2 Delo pri raztezanju idealno prožne vzmeti

$$A = \overline{F}s \leftarrow x$$

$$\overline{F} = \frac{0 + kx}{2} = \frac{kx}{2}$$

$$A = \frac{kx^2}{2}$$

6.3 Delo tlaka

$$A = Fx$$

$$p = \frac{F}{S}$$

$$F = pS$$

$$A = pSx$$

$$Sx = \Delta V$$

$$Sx = V_k - V_z$$

$$Vk < Vz$$

$$A = -p\Delta V$$

Formula za povprečen tlak.

6.4 Kinetična energija

$$A = Fs$$

$$F = ma$$

$$a = \frac{\Delta v}{t} = \frac{v_2 - v_1}{t}$$

$$S = \overline{v}t = \frac{v_2 - v_1}{2}t$$

$$A = m\frac{v_2 - v_1}{t}\frac{v_2 - v_1}{2}t$$

$$A = \frac{m}{2}(v_2^2 - v_1^2)$$

$$A = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$$

$$W_k = \frac{mv^2}{2}[J] \dots \text{ kinetična energija}$$

$$A = W_{k2} - W_{k1} = \Delta W_k \text{ izrek o kinetični energiji}$$

 $v_1 \dots z$ ačetna hitrost $v_2 \dots$ končna hitrost

6.5 Potencialna energija

 $A = A_t + A_o$

A . . . delo vseh zunanjih sil

 $A_t \dots$ delo teže

A_o . . . delo vseh zunanjih sil razen teže **SPUŠČANJE TELESA**

$$A_t = Fs$$
 $F = F_g = mg$
 $S = z_1 - z_2 z_1 \dots razdaljamedprijemaliemsileintlemi$
 $A_t = mgz_1 - mgz_2$
 $W_p = mgz[j] \dots$ potencialna energija
 $A_t = W_{p1} - W_{p2}$
 $\Delta W_p = mgh$
 $A_t = \Delta W_p$

POSEBNI PRIMERI

$$A = F's$$

$$F' = F_g \sin \varphi = mg \sin \varphi$$

$$A = mg \sin \varphi s$$

$$\sin \varphi = \frac{h}{s}$$

$$A = mg \frac{h}{s'} s'$$

$$A = mgh/delo teže odvisno samo od višinske razlike$$

6.6 Ohranitev kinetične in potencialne energije

$$A = A_t + A_o$$

$$A = \frac{mv_2^2}{2} - \frac{mv_1^2}{2} \dots \text{ delo vseh zunanjih sil}$$

$$A_t = mgz_1 - mgz_2 \dots \text{ delo vseh zunanjih sil}$$

$$A_o \dots \text{ delo vseh zunanjih sil razen teže}$$

$$A_o = A - A_t$$

$$A_o = \Delta W_k \Delta W_p$$

Zraven ni delo teže, ker smo ga upoštevali pri potencialni energiji. Če je $A_o = 0$, na telo deluje le teža.

$$0 = \Delta W_k \Delta W_p$$

$$\Delta W_k \Delta W_p = konst. \text{Izrek o ohranitvi } W_k \text{ in } W_p$$

Če na telo deluje samo teža se ohranja vsota potencialne in kinetične energije.

6.7 Prožnostna energija

Gimnazija Vič

Delo pri raztezanju vzmeti.

$$A = \frac{kx^2}{2}$$

$$A = W_{pr}$$

$$W_{pr} = \frac{kx^2}{2}$$

$$\Delta W_{pr} = \frac{kx_2^2}{2} - \frac{kx_1^2}{2}$$

$$0 = \Delta W_k \Delta W_p$$

$$\Delta W_k \Delta W_p = konst. Izrek o ohranitvi W_k in W_p$$

6.8 Moč

$$P = \frac{A}{t} \left[1 \frac{J}{s} = 1W \right] \rightarrow \text{wat}$$

$$1kwh = 10^3 \frac{J}{s'} * 3600s' = 3,6 * 10^6 J \rightarrow \text{enota za delo}$$

Če na telo deluje sila:

$$P = \frac{\Delta A}{\Delta t}$$

$$\Delta A = F \Delta s$$

$$\Delta s = v \Delta t \rightarrow \text{če je dovolj majhen interval(vrednost)}$$

$$P = \frac{F v \Delta t'}{\Delta t'}$$

$$P = F v$$

7 TEKOČINA

7.1 Hidrostatični tlak

To je tlak zaradi teže tekočine.

 $F_1 \dots$ sila kapljevina nad kvadromvode $F_2 \dots$ sila kapljevina pod kvadromvode $F_2 = F_1 + F_g$ $p_1 = \frac{F_1}{S}$ $p_1 = p_1 S$ $F_2 = p_2 S$ V = Sh $F_g = mg = \rho Vg = \rho Shg$ $p_2 S = p_1 S + \rho S hg$ $p_2 = p_1 + \rho hg$ $p_2 - p_1 = \rho hg$ $\Delta p = \rho hg$ hidrostatični tlak

Če se spustimo za h se tlak poveča za Δp

$$p_0 = 1bar = 10^5 = 10^5 \frac{N}{m^2}$$

 $p = p_0 + \rho gh$

HIDROSTATIČNI PARADOKS

Tlak na dnu posode je pri vsek enak.

MERJENJE GOSTOTE KAPLJEVINE Z U CEVKO

$$\Delta p_1 = \Delta p_2$$

$$\rho_1 g' h_1 = \rho_1 g' h_1$$

$$\rho_1 = \frac{\rho_2 h_2}{h_1}$$

7.2 Vzgon

Telo potopljeno v kaplevino

Vzgon je rezultanta sil okoliške kaplevine na potopljeno telo in prijemališče ima v težišču izpodrinjene kapljevine. Sila vzgona je po velikosti

enaka teži izpodrinjene kapljevine.

 $F_{vzq} = \rho Vg$ gostota kapljevine in volumen izpodrinjene kapljevine

Telo plava $\rho_{telo} < \rho_{kaplevina}$ Telo lebdi $\rho_{telo} = \rho_{kaplevina}$ Telo potone $\rho_{telo} > \rho_{kaplevina}$

8 TEMPERATURA

8.1 Temperatura

Temperatura je količina, ki opisuje stanje snovi.

Je neurejeno termično gibanje, molekule se vedno premikajo in višja je temperatura bolj se gibljejo, odvisno je tudi od kemične vezi.

S tem se je ukvarjal Ludwig Edward Boltzmann.

 $\overline{W_k} = \frac{3}{2}kT$ temperatura obvezno v kelvinih

k...Boltzmannova konstanta

$$k = 1,38 * 10^{-23} \frac{J}{K}$$

 $W_k \dots$ Povprečna kinetična energija molekule

T...temperatura[°C, K]

Celzijeva skala \rightarrow ledišče vode 0°C, vrelišče vode 100°C Kelvinova skala na osnovi krčenja plinov. Ta lestvica ne vsebuje negativnih vrednosti zato pravimo, da je absolutna temperaturna lestvica.(0 $K = -273^\circ$ in 0° = -273K)

V kolikšnem razmerju je temperatura s kinetično energijo \rightarrow v linearnem.

$$\overline{W_k} = \frac{\overline{\mu v}^2}{2}$$
 $\mu \dots$ masa molekule

Hitrost molekule se spreminja s korenom od časa. Termometri izkoriščajo to, da se s temperaturo veča in manjša prostornina snovi:

- kapljevinski(alkoholni, plinski)
- uporovni(nižja temperatura, večji upor)
- bimetalni(iz dveh različnih kovin, ki se različno raztezajo) → ko se dovolj raztegne prekine električni krog in izklopi napravo

8.2 Temperaturno raztezanje snovi

Obravnavamo samo snovi, ki se lepo raztegujejo(to ne velja za les, vodo, plastiko, ...)

1.

$$l\dots$$
 prvotna dolžina $\Delta l\dots$ podaljšek žice $\alpha\dots$ linearna razteznost $[K^{-1}] \to$ odvisna je od vrste snovi $\Delta l = \alpha l \Delta T$ $\frac{\Delta l}{l} = \alpha \Delta T \dots$ relativni raztezek

2.

$$S_1 = \alpha^2$$
 $S_2 = S_1 + \Delta S$
 $S_2 = (\alpha + \Delta \alpha)^2 = \alpha^2 + 2\alpha\Delta\alpha + \Delta\alpha^2$ zanemarimo, ker so raztezki tako majhni $\Delta S = 2\alpha\Delta\alpha$
 $\Delta \alpha = \alpha\alpha\Delta T$
 $\Delta S = 2\alpha^2\alpha\Delta T$
 $\Delta S = 2S\alpha\Delta T$
 $\Delta S = 2\Delta T$

3.

$$V_1 = \alpha^2$$

$$V_2 = V_1 + \Delta V$$

$$V_2 = (\alpha + \Delta \alpha)^3 = \alpha^3 + 3\alpha^2 \Delta \alpha + 3\alpha \Delta \alpha^{2^{-1}} + \Delta \alpha^{3^{-1}}$$
 zanemarimo
$$\Delta V = 3\alpha^2 \Delta \alpha$$

$$\Delta \alpha = \alpha \alpha \Delta T$$

$$\Delta V = 3\alpha^3 \alpha \Delta T$$

$$\Delta V = 3V\alpha \Delta T$$

$$\frac{\Delta V}{V} = 3\alpha \Delta T$$

$$3\alpha = \beta$$

$$\beta \dots \text{volumska razteznost}[K^{-1}]$$

8.3 Splošna plinska enačba

Okrogla posoda, molekule trkajo ob stene in ustvarjajo tlak

$$n\dots$$
 molekul idealnega plina(število)
 $r\dots$ polmer posode

 $p_1 = \frac{F}{s}$ tlak, ki ga ustvari ena mulekula

 $p = N \frac{F}{s}$
 $F = \mu a_r \mu \dots$ masa ene mulekule

 $a_r = \frac{\overline{v}^2}{r}$
 $S = 4\pi r^2$
 $p = N \frac{\mu \overline{v}^2}{4\pi r^3} * \frac{3}{3}$
 $p = \frac{N\mu \overline{v}^2}{3V}$
 $\overline{W}_k = \frac{\mu \overline{v}^2}{2}$
 $pV = NkT$ Splošna plinska enačna

 $N = N_a * n$
 $N_a = 6,02 * 10^{23} mol^{-1} = 6,02 * 10^{20} kmol^{-1} \dots$ avogadrovo število

 $pV = nN_a kT$
 $N_a = 8 * 310 \frac{J}{Kkmol}$
 $pV = nRT$ temperatura zmeraj v kelvinih

8.4 Raztezanje plinov

$$V = \frac{nR}{P}T$$

$$\Delta V = \frac{nR}{P}\Delta T \text{Pri stalnem tlaku}$$

$$\frac{\Delta V}{V} = \frac{\Delta T}{T}$$

$$\beta = \frac{1}{T}$$

$$= \beta \Delta T$$

8.5 Plinski zakoni

n = konst.množina snovi je konstantna

$$\frac{pV}{T} = nR = konst.$$

 $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$ Splošna plinska enačba za konstantno množino snovi

1. $T = konst in n = konst \rightarrow Izotermna sprememba$

$$p_1V_1 = p_2V_2$$
Boylov zakon
$$p_1 = \frac{p_2V_2}{V_1}$$

2. $V = konst in n = konst \rightarrow Izohorna sprememba$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2} \text{Amontonsov zakon}$$

$$p_1 = T_1 \frac{p_2}{T_2}$$

*Pri crtkani crti postane kapljevina

3. $p = konst in n = konst \rightarrow Izobarna sprememba$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \text{Amontonsov zakon}$$

$$V_1 = T_1 \frac{V_2}{T_2}$$

*Pri crtkani crti postane kapljevina

9 NOTRANJA ENERGIJA IN TOPLOTA

9.1 Energijski zakon

 $W_n = W_k$ (termično gibanje)+ W_p (vezi med mulekulami)+ W_p (posameznega delca)

Idealni plin(model) sestavljajo točkaste molukule, idelano prožno trkajo, zanemarimo vezi med molekulami in notranje energije delcev.

$$W_n = N\overline{W_k}$$
 $N \dots$ število delcev
 $N = \frac{m}{\mu}$
 $\mu \dots$ masa molekule
 $\mu = M * u$
 $u = 1,66 * 10^{-27} kg$
 $\overline{W_k} = \frac{3}{2}kT$
 $W_n = \frac{m}{Mu} \frac{3}{2}kT$
 $W_n = m\frac{3k}{2Mu}T$
 $c \dots$ specifična toplota
 $c = \frac{3k}{2Mu}$

 $W_n = mcT...$ absolutna vrednost notranje energije $\Delta W_n = mc\Delta T...$ sprememba notranje energije

$$c = \frac{\Delta W_n}{m\Delta T} [1 \frac{J}{kgK}]$$
 koliko energije potrbujemo, da 1 kg snovi sefrejemo za 1 Kelvin $Q \dots$ toplota

Toplota je del notranje energije, ki se ob toplotnem stiku pretaka iz telesa z višjo temperaturo v telo z nižjo temperaturo.

$$W_n = A + Q \dots$$
 energijski zakon termodinamike

Če je
$$A = 0$$
, $\Delta W_n \rightarrow Q = mc\Delta T$
Če je $Q + 0$, $\Delta W_n = A$ (je toplotno izolirano)

9.2 Specifična toplota

Načini segrevanja:

• Pri V = konst.

$$\Delta W_n = mc_{\nu}\Delta T$$
 $c_{\nu}\dots$ specifična toplota pri konstatnem volumnu

• Pri p = konst.

 $c_p > c_v$

$$Q=mc_p\Delta T$$

$$c_p\dots$$
 specifična toplota pri konstatnem tlaku
$$A=-p\Delta V\dots$$
 volumen se veča in odriva okolico in s tem povzroča delo
$$\Delta W_n=Q+A$$

$$mc_V\Delta T=mc_p\Delta T-p\Delta V/*\frac{1}{m\Delta T}$$

$$c_V=c_p\frac{p\Delta V}{m\Delta T}$$

Ker če se segreva pri stalnem tlaku se snov segreva in opravi delo.

9.3 Merjenje specifične toplote

$$m_k \dots$$
 masa kovine $T_k \dots$ začetna temperatura kovine $m_V \dots$ masa vode $T_V \dots$ začetna temperatura vode $T_k > T_V$
$$c_V = 4200 \frac{J}{kgK}$$

$$T_V \dots$$
 začetna temperatura zmesi(voda + kovina)
$$Q_k = Q_V$$

$$m_k * c_k * (T_k - T_z) = m_V * c_V * (T_z - T_V)$$

$$c_k = \frac{m_V * c_V * (T_z - T_V)}{m_k * (T_k - T_z)}$$

Gimnazija Vič

2015-2016

9.4 Agregatna stanja

Agregatna stanja:

- trdnine zavzamejo svojo obliko, večja gostota, kot pri kapljevinah in tekočinah, delci med sabo so močno vezani
- kapjevine(tekočine) vedno zavzamejo spodnji del in tvorijo gladino, lahko tvorijo kapjice.
- plini(tekočine) zavzamejo celoten prostor

LED → **VODA** → **PARA**

1. Segrevanje ledu

$$Q = mc_l \Delta T$$
 $c_l = 2100 \frac{J}{kgK} \dots$ specifična toplota ledu

2. Taljenje ledu: izotermen proces, ledišče (temperatura pri kateri se iz trdnega stanja spremeni v kapjevino)

$$Q = q_t m$$
 $q_t \dots$ specifična talilna toplota
 $q_t = \frac{Q}{m} [1 \frac{J}{kgK}]$
 $q_{tv} = 333 \frac{kJ}{kgK}$

3. Segrevanje vode

$$Q = mc_{V}\Delta T$$

$$c_{V} = 4200 \frac{J}{kgK}$$

4. Vrenje(izparevanje): izotermen proces, temperatura pri kateri kapljevina vre pravimo vrelišče

$$Q = mq_i$$

 $q_i\ldots$ specifična talilna toplota(koliko toplote potrebujemo, da izparimo 1 kg sno

$$q_i = \frac{Q}{m} [1 \frac{J}{kgK}]$$

$$q_{iv} = 2250 \frac{kJ}{kgK}$$

5. Segrevanje pare

$$Q = mc_p \Delta T$$

$$c_p = 2100 \frac{J}{kaK} \dots$$
 specifična toplota pare

latenta toplota = specifična toplota

9.5 Sežig

$$Q = mq_s$$

$$q_s[\frac{J}{kaK}]\dots$$
 specifična sežigna toplota, koliko toplote dobimo če sežgemo 1 kg snovi

9.6 Toplotni tok

$$P = \frac{Q}{t} \left[\frac{J}{s} = 1W \right]$$

Tok toplote, ki se skozi dan presek pretoči v določenem času

$$j = \frac{P}{S} [1 \frac{W}{m^2}]$$

 $j\dots$ gostota toplotnega toka

Kolikšen toplotni tok se pretaka skozi izbran presek

$$P = \frac{\gamma S \Delta T}{d}$$

$$\gamma \dots \text{toplotna prevodnost}$$

$$\gamma = \frac{pd}{S \Delta T} \left[1 \frac{Wm}{m^2 K} = 1 \frac{W}{mK} \right]$$

Toplotni tok, ki se s časom ne spreminja pravimo stacionarni toplotni tok.

$$P = \frac{\Delta T}{\frac{d}{\gamma S}}$$

$$R = \frac{d}{\gamma S} \left[1 \frac{m^2 K}{W m^2} = 1 \frac{K}{W} \right] \dots \text{toplotni upor}$$

$$P = \frac{\Delta T}{R}$$

Snovi:

- toplotni izolatorji(stiropor, volna ...) R večji
- toplotni prevodniki(baker, kovine ...) R manjši

Večplastna stena

$$P = \frac{\Delta T}{R}$$

$$R = R_1 + R_2 + R_3$$

Skozi plati teče enak toplotni upor.

Stena z oknom

$$P = P_1 + P_2$$

9.7 Toplotni stroji

$$\Delta W = A + Q$$

 $\Delta W = 0 \rightarrow \text{Krožne spremembe}$ (celotna energija pred je enaka celitni energiji na koncu

 $A = -Q \rightarrow$ opravimo neko delo in dobimo toploto

 $Q = -A \rightarrow$ nekaj grejemo inna opravlja delo

Dva pogoja za toplotni stroj:

• da opravlja krožno spremembo

• dovajamo toploto in naprava opravlja delo

Spremembe:

reverzibilne(obrnljive): da do nekega stanja pridemo po nekih korakih in po istih tudi nazaj v prvotno stanje
 Primer: idealno prožna vzmet

 ireverzibilne(neobrnljive): da do nekega stanja pridemo po nekih korakih, nazaj v prvotno pa podrugih Primer: neprožna vzmet

 $Q_1 \dots$ dovedena toplota(stand. ozn. za prejeto toploto)

A... opravljeno delo

 $Q_2 \dots$ oddana toplota(stand. ozn. za oddano toploto)

 $Q_1 = Q_2 + A \dots$ mehanski izkoristek

 $\eta \dots$ izkoristek

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$
$$\eta = 1 - \frac{Q_2}{Q_1} < 1$$

vedno manjši od 1, ker se morajo vedno ohladiti in zato Q_2 ni nikoli nič

$$T_1 > T_2$$

$$\eta = 1 - \frac{T_2}{T_1} \dots$$
 za idealni toplotni stroj

