Biases in the big data and what we can do about them as a community

Cynthia Chen (UW) and Ryan Wang (Northeastern)

UW workshop on big data, AI and transportation planning applications

CIVIL & ENVIRONMENTAL ENGINEERING

- > Motivation
- > Quantifying biases in Location-Based-Service (LBS) data
 - Data stability, sparsity, pre- and post-processing, algorithms, and socio-demographic and built environment factors
- > Where opportunities lie in transportation planning?
- > Areas that we can work together
 - Scientific aspects
 - Practical aspects

CIVIL & ENVIRONMENTAL ENGINEERING

Funding acknowledgments

- > CIS program (now ISP program);
- > NSF Al Institute
- > Amazon Middle Mile Transportation (Tim Jacobs)

CIVIL & ENVIRONMENTAL ENGINEERING

Active Data Generation

Passive Data Generation
CIVIL & ENVIRONMENTAL ENGINEERING

Table 1. An example HTS (left) and LBS dataset (right)

Actively-generated HTS data								
Date	Departur e Time	Arriv al Time	Departure Census Tract ¹	Arrival Census Tract ¹	Trip Purpos e Work	Main Travel Mode Bus		
2020-01- 02	7:00 AM	7:45 AM	53033006100	53033005300				
2020-01- 02	12:00 PM	12:20 PM	53033005300	53033005200	Lunch	Walk		
2020-01- 02	12:45 PM	1:10 PM	53033005200	53033005300	Work	Walk		
2020-01- 02	4:30 PM	4:50 PM	53033005300	53033005100	Recrea tion	Bus		
2020-01- 02	5:50 PM	6:40 PM	53033005100	53033006100	Home	Bus		

Passively-generated LBS data Time Latitude Longitude Location Accuracy (m) 2020-01-02 7:13:30 42.82473 71.115226 42.83788 2020-01-02 20 71.057814 7:29:11 2020-01-02 42.85123 12 11:11:31 70.913241 2020-01-02 13:10:22 42.85814 -70.913241 2020-01-02 42.82332 10 71.112916 18:32:38

¹ HTS collects <u>lat</u> and long information for every trip origin and destination, which are then converted to census tracts.

	destination, which are their convented to census tracts.								
Time 4	<u> </u>	Table 3. Properties of LBS Data							
		Property	Definition	Metric					
		Data stability	How stable is the LBS data over time?	Number of devices per time period					
6:40 pm -	Trip Segment			Number of records per person per day					
	Trip Segment	Sparsity	How temporally sparse is the LBS data?	Intra-day occupancy					
6:10 pm —		1000	30 907 91	Inter-day occupancy					
5:50 pm —	(Home-based) Trip	Accuracy	How spatially accurate is the LBS data?	Locational accuracy in meters					
	, mp	Spatial gap	What is the spatial gap (in km) between	Jumping distance in kilometers					
4:50 pm —			consecutive observations?						
4:30 pm —	Trip Segment Trip Segment								
	Tripses								
		GPS Signals							
1:10 pm -									
12:45 pm —	- (ed)	▲ Cellular Tower S	Signals						
12:20 pm —									
12:00 pm -	١								

Space

... Trip Segment

(Home-based) Trip

Home

Lunch

Recreation

Work

7:45 am

7:30 am

7:00 am

- > Motivation
- > Quantifying biases in Location-Based-Service (LBS) data
 - Data stability, sparsity, pre- and post-processing, algorithms, and socio-demographic and built environment factors
- > Where opportunities lie in transportation planning?
- > Areas that we can work together
 - Scientific aspects
 - Practical aspects

CIVIL & ENVIRONMENTAL ENGINEERING

A sample of 11 metro regions in U.S.

MSA Type	MSA Name	Population	Sampling rate ¹ (%)	Study sample size ²	Population density (pp/sq. m²)
Mega	New York-Newark- Jersey City, NY-NJ-PA	22,432,947	4.8	15,992	2,934.9
	Los Angeles-Long Beach-Anaheim, CA	12,872,322	4.2	15,000	2,652.9
Large	Boston-Cambridge- Newton, MA-NH	4,900,550	6.1	10,000	1,405.7
	Seattle-Tacoma- Bellevue, WA	4,034,248	4.6	10,000	687.3
	Baltimore-Columbia- Towson, MD	2,844,510	10.1	10,000	1,090
Medium	Tulsa, OK	1,034,123	10.6	10,000	164.8
	Fresno, CA	1,171,617	7.5	10,000	170.4
	Tyler, TX	233,479	11.7	10,000	262.5
Small	Champaign-Urbana, IL	236,514	7.9	10,000	155.6
	Sebring-Avon Park, FL	105,618	10.0	10,000	103.8
	Cheyenne, WY	100,984	8.1	9,008	37.5

¹ Sampling rate is the ratio of number of unique devices with an inferred home location located in the area divided by the area's population. ² Study sample size is the size of the data used for the analysis in this paper.

- > Motivation
- > Quantifying biases in Location-Based-Service (LBS) data
 - Data stability, sparsity, pre- and post-processing, algorithms, and socio-demographic and built environment factors
- > Where opportunities lie in transportation planning?
- > Areas where we can work together
 - Scientific aspects
 - Practical aspects

CIVIL & ENVIRONMENTAL ENGINEERING

- > Motivation
- > Quantifying biases in Location-Based-Service (LBS) data
 - Data stability, sparsity, pre- and post-processing, algorithms, and socio-demographic and built environment factors
- > Where opportunities lie in transportation planning?
- > Areas that we can work together
 - Scientific aspects
 - Practical aspects

CIVIL & ENVIRONMENTAL ENGINEERING

Where do opportunities lie?

- > Aiding National Household Travel Survey (NHTS) data
- > Analysis of travel patterns by population segments
- > Real time, targeted policy formulation and evaluations
- > Resilience and adaptation analysis
- > LBS as the foundational data for micro-simulation of activitytravel patterns

CIVIL & ENVIRONMENTAL ENGINEERING

- > Motivation
- > Quantifying biases in Location-Based-Service (LBS) data
 - Data stability, sparsity, pre- and post-processing, algorithms, and socio-demographic and built environment factors
- > Where opportunities lie in transportation planning?
- > Areas that we can work together
 - Scientific aspects
 - Practical aspects

CIVIL & ENVIRONMENTAL ENGINEERING

Scientific aspects

- > Data pre-processing
- > Data fusion
- > Change point detection
- > Imputing demographics
- > Targeted policy formulation and evaluation

CIVIL & ENVIRONMENTAL ENGINEERING

Practical aspects

- > Journals and funding sponsors shall require reporting of the characteristics of the data used in the study;
- > Sensitivity analyses shall be conducted with respect to how trips and modes are detected;
- > We shall compile a list of open-source data sources as benchmarks;
- > Better, a central registry shall be established for all studies using big data for planning related analysis;

CIVIL & ENVIRONMENTAL ENGINEERING