P510/1 PHYSICS THEORY PAPER 1 AUGUST 2024 2 ½ HRS

UNNASE MOCK EXAMINATIONS

UGANDA ADVANCED CERTIFICATE OF EDUCATION PHYSICS (THEORY)

Paper 1

Time: 2hours 30minutes

INSTRUCTIONS TO CANDIDATES

- Answer FIVE questions, including at least one, but not more than two questions from each of the sections A, B and C.
- Non-programmable scientific electronic calculators may be used.

· Assume where necessary:

0	Acceleration due to gravity, g	=	9.81 ms ⁻²
0	Electronic charge, e,	=	1.6 x 10 - 19 C
0	Mass of the earth	=	5.97 x 10 ²⁴ Kg
	Plank's constant, h,	=	6.6 x 10 - 34 Js
	Stefan's Boltzman's constant, o,	=	5.67 x 10 -8 wm -2 K4
	Radius of the earth	=	6.4 x 10 ⁶ m
	Radius of the sun	-	7 x 108m
	Universal gravitational constant, G,	=	6.67 x 10 ⁻¹¹ Nm ² Kg ⁻²
	Avogadro's number, NA	=	6.02 x 10 ²³ mol -1
	Surface tension of water	=	7.0 x 10 -2 Nm -1
		=	8.31 Jmol ⁻¹ K ⁻¹
	Gas constant, R, The constant 1	-	9.0 x 10 ⁹ F ⁻¹ m
0	The constant		

SECTION A

	SECTION A	(01 mark)
1 0) (i)	Define plastic deformation	(04 marks)
1. a) (i) (ii)	· desire plantic delottilation	
b) (i)	In the determination of Young's modulus of a material in	orm of a
D) (1)	In the determination of Young's modulus of a material wire, explain why a second steel wire usually suspended a	
	anagiman unro	
(;;)	A mass of 20kg is suspended from a copper wire of diame	ter 2mm,
(ii)	density 900Kgm ⁻³ , specific heat capacity 400JKg ⁻¹ K ⁻¹ and	Young's
	Modulus 1.2 x 10 ¹¹ Pa suddenly breaks. Calculate the cha	1190 11
	temperature of the wire.	(05 marks)
c)	Derive an expression for the energy stored in a stretched	wire of
4	length L and extension e having Young's modulus E.	(03 marks)
d)	State and explain the precautions taken while determinin	g Young's
4,	modulus of a wire.	(04 marks)
2. a) (i)	Define surface tension in terms of surface energy	(01 mark)
(ii)	Explain molecular occurrence of surface tension	(04 marks)
b) (i)	A soap bubble of radius 4cm is attached to another bubbl	e of radius
0) (1)	6cm. Find the excess pressure in the common interface for	
	Ocifi. I fild the excess pressure at the	(04 marks)
(ii)	Explain why detergents should have a small angle of cont	act.
(-)		(02 marks)
c) (i)	Define Coefficient of viscosity of a liquid	(01 mark)
(ii)	Describe a simple experiment to demonstrate stream line	and
	turbulent flow in a substance.	(05 marks)
d) (i)	Sketch a graph of potential energy against separation of t	wo
	molecules in a substance.	(01 mark)
(ii)	Explain the main features of the graph in d(i)	(03 marks)
3. a) (i)	Define the term angular velocity	(01 mark)
(ii)	Explain briefly the action of a centrifuge	(03 marks)
b) (i)	Derive an expression for angular velocity w in terms of lir	near speed V
	and arc radius r.	(03 marks)
(ii)	Explain why racing car travels faster on a banked track t	han on a flat
	road.	(04 marks)
c)	A curve of radius 30m is to be banked so that a car may	make a turn
	at a speed of 13ms-1 without depending on friction. Calcu	late the
	slope of the curve.	(03 marks)

Page 2 of 5

UNNASE JOINT MOCK EXAMINATIONS 2024

d) (i)	State the 1 am		
	State the law of floatation	(01 mark)	
(11)	A block of wood of volume 600cm3 floats with two thirds of	its volume	
	immersed in a liquid of relative density 0.8. A piece of alur	ninum of	
	density 2700kgm-3 is attached to the wood so that it can ju		
	a liquid of relative density 1.20. Calculate the volume of al	uminum	
	used.	(05 marks)	
a)	Define the following terms.		
(i)	Simple harmonic motion	(01 mark)	
(ii)	Critical damping	(01 mark)	
(iii)	Free oscillations	(01 mark)	
b) (i)	Explain why oscillation ultimately come to rest for a slight	ly displaced	
	simple pendulum.	(03marks)	
(ii)	Sketch a graph of kinetic and potential energy for a body	executing	
	SHM.	(03 marks)	
c)	A glass U-tube of length L containing a liquid of density b	is tilted	
	slightly and then released. Show that the liquid oscillates	with simple	
	harmonic motion.	(04 marks)	
d)	State the principle conservation of linear momentum	(01 mark)	
e)	A 7500kg truck traveling at 5.0ms-1 East wards collides w	ith a	
	1500kg car moving at 20ms-1 in a direction S60°W. After		
	the two vehicles remain tangled together. Calculate the;		
(i)	Common velocity of the vehicles	(04 marks)	
(ii)	Gain in the heat energy of the vehicles	(02 marks)	
	SECTION B		
. a) (i)	Distinguish between critical pressure and specific critical	volume.	
-, (-,		(02 marks)	
(ii)	State and explain two conditions under when a real gas r		
(22)	as an ideal gas.	(04 marks)	
b) (i)	Derive the Vander Waals equation for ne mole of a gas.	(04 marks)	
(ii)	A real gas has a density of 344kgm ⁻³ at its critical pressu		
(11)	and critical temperature 304K. If its total mass is 4.4x10		
	$V_c = 3b$, where $V_{c is}$ critical volume and b is co-volume. Ca		
	Vander Waals Constant a and b for the gas.	(04 marks)	
-1	State Dalton's law of partial pressure	(01 mark)	
c)	In a pure atmospheric air it may be assumed that 80% o		
d)		i die	
	molecules present are nitrogen of molar mass 0.028kg	rio processire	
	and 20% are oxygen of molar mass 0.032kg. If atmosphere	The pressure	
	110K Pa and temperature is 27°C. Calculate;	(02	
. (i)	Partial pressure exerted by each gas	(03 marks)	
(ii)	Density of air	(02 marks)	
NASE	JOINT MOCK EXAMINATIONS 2024	Page 3 of 5	

5

UN

(01 mark) 6. a) (i) Define a thermometric property (02 marks) (ii) Give two examples of thermometric properties. Describe the structure and action of a digital thermometer. (05 marks) b) c) (i) Define specific latent heat of vaporization of a substance. (01 mark) (ii) State and explain one application of specific latent heat of (04 marks) vaporization. (iii) A bath contains 100kg of water at 60°C. Hot and cold taps are turned on to deliver water each at rate of 2.0x10-3m3 per minute at temperature of 70°C and 10°C respectively. How long will it take before the temperature in the bath has dropped to 45°C d) Explain the significance of latent heat in regulation of body (02 marks) temperature. (01 mark) 7. a) Define partial pressure b) Two hollow spheres A and B of volume 500cm3 and 250cm3 respectively are connected by a narrow tube fitted with a tap. Initially the tap is closed and A is filled with an ideal gas at 10°C at a pressure of 3.0x105Pa and B is filled with an ideal gas at 100°C at a pressure of 1.0x105 Pa. Calculate the equilibrium pressure when the tap is opened. (05 marks) Distinguish between reversible a diabetic and reversible Isothermal c) (i) process. (04 marks) State 3 conditions necessary for a reversible process to occur. (ii) (03 marks) State the laws of black body radiation (02 marks) d) (i) Draw sketch graph of relative intensity against wavelength for a black (ii) body at three different temperatures and use it to explain why the centre of a furnace appears white. (05 marks) SECTION C 8. a) (i) Define radioactivity decay (01 mark)

(ii) Discuss the nature of the radiations from radioactive nuclides.

(04 marks)

(iii) A source emits radiations simultaneously the radiations pass

(iii) A source emits radiations simultaneously the radiations pass through an absorber of different thickness and are detected.

Sketch a graph of intensity of radiation detected against thickness of absorber and explain the main features of the graph. (05 marks)

b) Describe hoe a G-M tube can be used to detect the presence of the radiations in a (iii) above. (05 marks)

- The half life of Uranium 238 is 4.5x10° years and that of radon 226 is 1622 years. Calculate the mass of Uranium presenting 1° 2.05x10-5kg of wery atom of radon. (05 marks)
- 9. a) (i) Define as semi-conductor (01 mark)
 - (ii) Describe the mechanism of conduction of charge through a junction decode. (05 marks)
 - (iii) Sketch the I-V characteristic of the junction diode. (01 mark)
 - b) (i) Define positive rays (01 marks)
 - (ii) Describe a simple experiment to show the existence of positive rays
 (04 marks)
 - c) Electron beam emitted from a hot cathode enters a region of electric field of intensity 3.75x10⁴ Vm⁻¹. If this deflection of the electron beam in the fields is annulled by a magnetic field density 1 x 10⁻³T. After the beams proceed into a region of uniform magnetic field of flux density 8.52x10⁻⁴T and describes a circular path of radius 0.25m. Find the value of the specific charge of the electron beam.
 - d) Describe an experiment to show that cathode rays possess kinetic energy (05 marks)
- 10. a) (i) Define a Photon (01 mark)
 - (ii) Explain briefly the quantum theory for photoelectric effect.

(03 marks)

(iv) State and explain one evidence of the quantum theory of matter.

(04 marks)

- b) Describe an experiment based on Millikan's principle to verify the equation for photoelectric effect. (06 marks)
- c) A 100 mW beam of light of wave length 4000A° is 7m and falls on the caesium surface of a photo cell of radius 4.0cm.
 - (i) How many photons are emitted surface per second from the source.

(02 marks)

(ii) If 70% of the photons that fell in the 4.0cm radius of caesium emit photoelectrons, find the resulting photo current. (04 marks)

END