The data and parameters related to the simulation are given in the following:

Simulation parameters and data

Basic value: $S_{base} = 1000 \text{ kVA}$

Modified IEEE 14-bus information:

Line data:

Distributed generators data:

 	eu gemerui	0 = 10 0= 0000000						
Number	Type	$P^{Max}(kW)$	$P^{Min}(kW)$	$Q^{Max}(kVAr)$	$Q^{Min}(kVAr)$	a	b	c
#1	#1 Generator 300		0	100	-80	0.0430292	20	0
#2	Generator	200	0	150	-100	0.35	20	0

Network data:

Network data:				
From	То	R	X	Current Capacity (Amp)
1	2	0.0922	0.0477	500
2	3	0.493	0.2511	500
3	4	0.366	0.1864	500
4	5	0.3811	0.1941	500
4	7	0.819	0.707	500
6	13	0.1872	0.6188	500
7	8	1.7114	1.2351	500
7	9	1.03	0.74	500
9	10	1.04	0.74	500
10	11	0.1966	0.065	500
13	12	0.3744	0.1238	500
13	14	1.468	1.155	500

Time	Demands' Zones (#bus) (pu)									
(hour)	#2	#5	#9	#10	#11	#12	#13			
#1	0.05	0.01	0.01	0.01	0.0073	0.01	0.001			
#2	0.05	0.01	0.01	0.01	0.0073	0.01	0.02			
#3	0.2	0.014	0.014	0.014	0.0077	0.014	0.02			
#4	0.2	0.014	0.024	0.014	0.0077	0.014	0.01			
#5	0.2	0.014	0.044	0.014	0.0077	0.014	0.01			
#6	0.3	0.017	0.067	0.017	0.0080	0.017	0.011			
#7	0.3	0.017	0.077	0.017	0.0080	0.017	0.017			
#8	0.18	0.022	0.122	0.022	0.0085	0.122	0.022			

#9	0.18	0.022	0.122	0.022	0.0085	0.122	0.122
#10	0.25	0.035	0.135	0.035	0.0095	0.235	0.135
#11	0.3	0.042	0.152	0.052	0.023	0.252	0.152
#12	0.3193	0.048	0.158	0.158	0.034	0.358	0.158
#13	0.3	0.0468	0.160	0.160	0.035	0.360	0.16
#14	0.285	0.053	0.1982	0.2909	0.0353	0.3616	0.2364
#15	0.28	0.050	0.150	0.250	0.030	0.35	0.15
#16	0.27	0.04	0.140	0.240	0.025	0.34	0.14
#17	0.245	0.015	0.115	0.215	0.010	0.315	0.115
#18	0.225	0.009	0.109	0.029	0.0081	0.090	0.109
#19	0.12	0.008	0.108	0.028	0.0070	0.081	0.108
#20	0.115	0.006	0.01	0.016	0.0055	0.070	0.080
#21	0.115	0.006	0.01	0.006	0.0081	0.006	0.065
#22	0.11	0.005	0.006	0.006	0.0081	0.0055	0.054
#23	0.109	0.005	0.006	0.006	0.0053	0.006	0.043
#24	0.1	0.003	0.003	0.003	0.002	0.001	0.008

Time	Reactive loads zones (#bus) (pu)										
(#hour)	#2	#5	#9	#10	#11	#12	#13				
#1	0.001	0.04	0.001	0.003	0.012	0.003	0.002				
#2	0.01	0.05	0.001	0.005	0.012	0.004	0.002				
#3	0.01	0.05	0.0015	0.005	0.012	0.005	0.002				
#4	0.01	0.05	0.0010	0.005	0.012	0.005	0.003				
#5	0.02	0.10	0.0070	0.001	0.021	0.01	0.0031				
#6	0.02	0.16	0.0070	0.001	0.020	0.01	0.0040				
#7	0.14	0.16	0.0070	0.001	0.020	0.01	0.0040				
#8	0.15	0.17	0.02	0.0002	0.023	0.02	0.0043				
#9	0.15	0.17	0.02	0.002	0.021	0.02	0.0071				
#10	0.15	0.18	0.05	0.014	0.035	0.05	0.015				
#11	0.16	0.16	0.06	0.017	0.035	0.012	0.015				
#12	0.15	0.16	0.05	0.025	0.035	0.0162	0.015				
#13	0.184	0.19	0.062	0.0378	0.0382	0.015	0.019				
#14	0.15	0.193	0.015	0.015	0.05	0.01	0.015				
#15	0.17	0.15	0.015	0.015	0.05	0.01	0.009				
#16	0.15	0.10	0.015	0.04	0.05	0.005	0.007				
#17	0.15	0.10	0.008	0.04	0.05	0.005	0.007				
#18	0.15	0.10	0.008	0.04	0.05	0.005	0.005				
#19	0.04	0.12	0.004	0.003	0.002	0.004	0.002				
#20	0.04	0.12	0.004	0.003	0.002	0.002	0.002				
#21	0.04	0.04	0.004	0.003	0.002	0.002	0.002				
#22	0.03	0.02	0.002	0.003	0.002	0.002	0.002				
#23	0.02	0.01	0.002	0.003	0.002	0.002	0.002				
#24	0.001	0.04	0.001	0.003	0.012	0.003	0.0012				

Description	Lifetime (year)	Rating (kVA)
Substation Transformer	15	2000

Electrical system parameters:

Parameter	Value
V^{max}	1.06 (p.u.)
V^{min}	0.94(p.u.)
$V_{1-slack}$	1.06(p.u.)
$\delta_{1-slack}$	0°(degree)

Traffic network's characteristics:

The OD traffic demands data can be found in references [1] and [2]. The Edmonton traffic demand dataset captures hourly traffic flows over one year and is divided into training (75%), validation (15%), and testing sets (10%) for forecasting performance assessment. The data provided below pertains to a typical day.

[1] City of Edmonton Traffic Flow Map. Accessed: Dec. 1, 2022. [Online]. Available: <u>Downtown Area | Traffic Flow Map.</u>

[2] Traffic Volumes, Edmonton [Online]. Available: <u>Traffic Volumes and Turning Movements | City of Edmonton.</u>

	Actual traffic flows of the OD pairs for a typical day									
Time (hour)	OD #1	OD #2	OD #3	OD #4						
#1	70	31	12	9						
#2	63	25	8	4						
#3	55	22	9	6						
#4	44	18	9	4						
#5	40	18	9	4						
#6	45	17	9	5						
#7	54	21	8	8						
#8	59	18	11	6						
#9	70	23	20	7						
#10	88	24	25	12						
#11	108	34	32	13						
#12	113	36	26	10						
#13	103	26	30	14						
#14	114	49	43	15						
#15	135	36	32	17						
#16	102	36	31	16						
#17	105	35	29	14						
#18	113	41	28	11						

#19	144	54	31	15
#20	112	40	36	23
#21	102	33	43	17
#22	96	36	29	22
#23	96	34	23	18
#24	86	37	19	14

Structure of the Traffic network:

Dood #1	From #node	1	Dood #15	From #node	7
Road #1	To #node	2	Road #15	To #node	16
D 1 #2	From #node	2	D 1 #16	From #node	8
Road #2	To #node	3	Road #16	To #node	17
Road #3	From #node	3	D 1 #17	From #node	9
Koad #3	To #node	4	Road #17	To #node	18
Road #4	From #node	1	D 1 #10	From #node	10
Road #4	To #node	5	Road #18	To #node	11
D 1 #5	From #node	2	D 1 #10	From #node	10
Road #5	To #node	6	Road #19	To #node	12
D 1 #/	From #node	3	D 1 #20	From #node	11
Road #6	To #node	7	Road #20	To #node	13
D 1 #7	From #node	4	D 1 #21	From #node	12
Road #7	To #node	8	Road #21	To #node	13
D 1 40	From #node	4	D 1 #22	From #node	12
Road #8	To #node	9	Road #22	To #node	14
Road #9	From #node	5	Road #23	From #node	13
Road #9	To #node	6	Road #25	To #node	15
Road #10	From #node	6	Road #24	From #node	14
Koad #10	To #node	7	Koad #24	To #node	15
Road #11	From #node	7	Road #25	From #node	15
Koad #11	To #node	8	Road #25	To #node	16
Road #12	From #node	8	Road #26	From #node	16
Koau #12	To #node	9	Koau #20	To #node	17
Dood #12	From #node	5	Dood #27	From #node	17
Road #13	To #node	10	Road #27	To #node	18
Road #14	From #node	6			
K0au #14	To #node	11			

	Roads' Non congested Travel times coefficients												
Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road
#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14
4.2	3.36	5.04	3.96	7.64	7.08	3.48	7.08	9.68	2.04	3.72	4.2	6.04	6.88
Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Road	Door	1 #27
#15	#16	#17	#18	#19	#20	#21	#22	#23	#24	#25	#26	Road #27	
3.48	5.44	4.56	1.44	3.72	9.84	5.44	7.68	3.48	3.6	7.6	4.2	8.	96

The traffic flows for each OD pair in a 24-node, 37 roads traffic network (a typical day):

OD PAIR TRAFFIC FLOWS OF THE 24-NODE TRAFFIC NETWORK

ODI	OD I AIR TRAFFIC I LOWS OF THE 24-NODE TRAFFIC IVETWORK									
Time					#OD	pairs				
(Hour)	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
#1	50	40	80	10	40	20	10	70	20	50
#2	60	30	80	10	40	20	30	70	20	50
#3	60	40	60	10	50	30	30	70	20	60
#4	70	40	60	20	60	40	30	70	40	60
#5	170	40	110	20	70	50	30	80	40	60
#6	400	140	340	50	110	80	50	110	70	230
#7	510	150	370	160	320	220	70	350	70	330
#8	580	150	370	150	340	220	180	380	290	420
#9	300	100	180	130	310	200	140	430	260	410
#10	250	90	180	140	190	90	140	230	170	290
#11	280	90	80	40	100	90	90	240	110	300
#12	250	100	250	100	150	150	100	240	120	300
#13	450	110	230	120	120	150	90	300	200	310
#14	480	110	200	150	160	170	110	310	220	300
#15	480	120	210	150	150	180	110	320	220	300
#16	600	200	450	210	400	350	220	450	300	500
#17	610	200	450	210	400	300	220	430	320	550
#18	610	220	450	200	400	300	200	430	350	550
#19	500	190	300	150	300	240	160	370	200	380
#20	460	100	240	100	220	160	110	310	120	220
#21	270	90	170	70	190	130	80	240	50	100
#22	150	70	130	60	130	100	50	160	30	50
#23	90	50	100	30	60	40	20	90	20	50
#24	50	40	90	10	50	40	20	70	20	60