CPSC 304 Midterm 1 May 2010 Total: 15 points

Time allowed: 60 minutes

Question 1 (6 points)

- a) (3 points) Draw an ER diagram for the following scenario:
 - Entity set A has two attributes x1 and x2, with x1 being the primary key.
 - In addition, A has two sub-classes A1 and A2, which are non-covering and may overlap. A1 has an extra attribute x3, and A2 has an extra attribute x4.
 - Entity set B has two attributes x5 and x6. The primary key consists of both attributes.
 - There is a relationship set U, which is many-to-many from A1 to B.
 - There is a relationship set V, which is 1-to-many from B to A2
 - There is a relationship set W, which is 1-to-many from B to A.

b) (3 points) The optimal set of relations (i.e., from the normalization standpoint and having a minimum number of relations) for the scenario in part a) consists of 5 relations. Specify the relational schema for the 5 relations.

 $A(\underline{x1}, x2, Wx5, Wx6)$ $A1(\underline{x1}, x3)$ $A2(\underline{x1}, x4, Vx5, Vx6)$ $B(\underline{x5}, \underline{x6})$ $U(\underline{x1}, \underline{x5}, \underline{x6})$

Question 2 (3 points) Consider the following relation instance R(X,Y,Z):

X	Y	Z
1	a	100
2	b	200
3	a	200
2	b	100

Of all the 6 possible FDs:

- $X \rightarrow Y$,
- $X \rightarrow Z$,
- $Y \rightarrow X$,
- $Y \rightarrow Z$,
- $Z \rightarrow X$, and
- \bullet $Z \rightarrow Y$

which ones are invalidated by the given instance? For each invalidated FD, identify a pair of tuples violating the dependency.

- $X \rightarrow Z$, because of the second and fourth tuples
- $Y \rightarrow X$, because of the first and third tuples
- $Y \rightarrow Z$, because of the first and third tuples, or the second and the fourth
- $Z \rightarrow X$, because of the second and third tuples, or the first and the fourth
- $Z \rightarrow Y$, because of the second and third tuples, or the first and the fourth

Question 3 (6 points) Consider the relation scheme R(A, B, C, D) which satisfies the following functional dependencies:

- (FD1) $A B \rightarrow C$
- (FD2) B $C \rightarrow D$
- (FD3) $CD \rightarrow A$
- a) Identify all the candidate keys of R. *AB*, *BC*.
- b) Pick any one of the keys above and give a formal proof showing that it is a <u>superkey</u>, using Armstrong's axioms, the union and/or the decomposition rule.
 - 1. $AB \rightarrow BC$ (augmentation on FD1)
 - 2. $AB \rightarrow D$ (transitivity on FD2 and 1)
 - 3. $AB \rightarrow BCD$ (union on 1 and 2)
 - 4. AB -> ABCD (augmentation on 3)

Thus, AB is a superkey.

c) Is R in BCNF? Explain your answer. *No, FD3 is not a candidate key.*