Lecture 4: Uniform law and Rademacher complexity

1/16

FAQ for muddiest point

Online learning

 added more motivation and explanation, also lecture note from Tewari, Kakade.

Azuma-Hoeffding

How martingale properties allow the AH bound (will discuss now)
 Questions on the uniform law - will discuss today

Plans for today

- Recap Azuma-Hoeffding proof
- Intuition for Rademacher complexity
- Proof of uniform law with symmetrization
- Application of Rademacher complexity: VC bound for binary classification
 - Proof of VC bound using uniform law
 - Proof of Massart's lemma

3 / 16

4/16

Recap: From Hoeffding to Azuma-Hoeffding

Why use $D_i = \mathbb{E}[g_n(Z)|Z_1,\ldots,Z_i] - \mathbb{E}[g_n(Z)|Z_1,\ldots,Z_{i-1}]$ to decompose g_n ? Azuma-Hoeffding is a *generalization* of Hoeffding (i.e. Azuma-Hoeffding implies Hoeffding), for functions of n independent R.V. instead of sum of n independent RV.

Decomposition of g_n

- For Hoeffding, in $\frac{1}{n} \sum_{i=1}^{n} X_i$ for X_i independent, each R.V. adds fresh randomness \rightarrow
- For AH, in decomposition $\sum_{i=1}^{n} D_i$, each D_i has the additional randomness that is due to addition of Z_i only. This is why we chose the particular D_i (property 1 next slide)

In addition the D_i are in some sense **bounded** (for McDiarmid, generally subgaussian is fine), so sth "like Hoeffding" should work:

- ullet For Hoeffding, each summand is subgaussian ightarrow
- For AH (for proving McDiarmid), each summand is conditionally a.s. bounded and hence also conditionally subgaussian (property 2)

Recap: Martingale properties to prove Azuma-Hoeffding

The following properties of this choice are what we need in the proof (these are the properties of martingale differences)

- 1. D_i is \mathcal{F}_i measurable, i.e. D_i is a deterministic function given specific values for Z_1, \ldots, Z_i
- 2. For any values z_1, \ldots, z_{i-1} , for some a_i, b_i
 - the random variable $D_i|Z_1^{i-1}=z_1^{i-1}$ is bounded in an interval $[a_i,b_i]$ of length L_i and
 - $\mathbb{E}[D_i|Z_1^{i-1}=z_1^{i-1}]=0$ and hence together we use the fact that r.v. bounded a.s. in $[a_i,b_i]$ are $\frac{b_i-a_i}{2}$ subgaussian to get

$$\mathbb{E}[e^{\lambda(D_i - \mathbb{E}[D_i|Z_1^{i-1} = z_1^{i-1}])}|Z_1^{i-1} = z_1^{i-1}] \le e^{\lambda^2(b_i - a_i)^2/8} \le e^{\lambda^2 L_i^2/8}$$

Further we use the tower property (TP): $\mathbb{E}[\mathbb{E}[X|Y,Z]|Y] = \mathbb{E}[X|Y]$

$$\mathbb{E}e^{\lambda\sum_{i=1}^{n}D_{i}}\stackrel{(TP)}{=}\mathbb{E}[\mathbb{E}[e^{\lambda\sum_{i=1}^{n-1}D_{i}}e^{\lambda D_{n}}|Z_{1},\ldots,Z_{n-1}]]$$

$$\stackrel{\text{(1.)}}{=} \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n-1} D_i} \mathbb{E}\left[e^{\lambda D_n} | Z_1, \dots, Z_{n-1}\right]\right] \stackrel{\text{(2.)}}{\leq} e^{\lambda^2 L_i^2 / 8} \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n-1} D_i}\right] = e^{\lambda^2 \sum_{i=1}^{n} L_i^2 / 8}$$

Recap: Uniform tail bound via Rademacher complexity

- Define $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \mid \forall f \in \mathcal{F}\}$
- ϵ_i are i.i.d. Rademacher R.V.
- $Z = \{Z_i\}_{i=1}^n$ are training points $\stackrel{iid}{\sim} \mathbb{P}$

Definition (Rademacher complexity)

Given a function class $\mathcal H$ and distribution $\mathbb P$ on its domain $\mathcal Z$, we define the Rademacher complexity as

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{\epsilon,z} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(z_i)$$

Theorem (Uniform law for the risk, MW Thm 4.10.)

For b-unif. bounded H, with prob. over training data,

$$\mathbb{P}(\sup_{h\in\mathcal{H}}[\mathbb{E}h-\frac{1}{n}\sum_{i=1}^nh(Z_i)]\geq 2\mathcal{R}_n(\mathcal{H})+t)\leq e^{-\frac{nt^2}{2b^2}}$$

Intuition for Rademacher complexity

Consider binary classification setting $\ell(z_i; f) = \mathbb{1}(f(x_i)y_i < 0)$.

1. How does the empirical Rademacher complexity

$$ilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_\epsilon \sup_{f \in \mathcal{F}} rac{1}{n} \sum_{i=1}^n \epsilon_i \ell(z_i, f)$$
 with $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \mid \forall f \in \mathcal{F}\}$

depend on the factors \mathcal{F}, ℓ, n to control excess risk?

- 2. What is the connection between R.C. and VC dimension?
- 3. (Why) is it easier to reason about than the original $\operatorname{Res}(n,\mathcal{H})=\mathbb{E}g_n(Z)$

Some answers

- If \mathcal{F} larger $\to \mathcal{H}$ larger $\to \tilde{\mathcal{R}}_n(\mathcal{H})$ larger (VC dim)
- Similarly if ℓ has small variance $\to \tilde{\mathcal{R}}_n(\mathcal{H})$ is smaller (Lipschitz)
- ullet As n grows, harder to fit $o ilde{\mathcal{R}}_n(\mathcal{H})$ smaller

7/16

Intuition (see figures in handwritten notes)

- Let's look $\tilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \epsilon_i h(z_i)$ for fixed z_i and $h(z_i) = \ell(z_i; f)$ and see how it might decrease with n
- For simplicity, let $\mathcal{Z} = \mathbb{R}$, use e.g. $h(z) = \operatorname{sgn} f(z)$ (you can do it more generally for ℓ)
- Let \mathcal{F} be "smooth" functions, given a draw/sample $\epsilon_1, \ldots, \epsilon_n$ Which $f \in \mathcal{F}$ can achieve large $\tilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \epsilon_i \ell(z_i, f)$?
- Maximizing $\tilde{\mathcal{R}}_n(\mathcal{H})$ requires for each $\{\epsilon_i\}_{i=1}^n$ matching "induced labeling" of $f(\{f(z_i)\}_{i=1}^n)$
- For small n, you can find a f for each sample of $\{\epsilon_i\}_{i=1}^n$ that matches in sign, i.e. $|\{(h(z_1),\ldots,h(z_n)):h\in\mathcal{H}\}|=2^n$, then $\mathbb{E}\sup_{f\in\mathcal{F}}\sum_{i=1}^n\epsilon_ih(z_i)=1$
- For large n, points are too dense, if \mathcal{F} need to be smooth, not that possible for some very "wiggly" $\{\epsilon_i\}_{i=1}^n \to \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \epsilon_i h(z_i)$

Caveats of the uniform law

- Requires boundedness of ℓ (for bounded differences)
 - for regression you also bound suprema of empirical processes, can use Gaussian complexity and Lipschitz-of-Gaussians rule (see MW 3)
 - or argue that ℓ bounded with high probability, cause X and hence f(X) bounded for continuous f
- ullet Super loose bound $o \mathcal{F}$ needs to be algorithm / data dependent
 - we will see for regularized optimizers
 - structural risk minimization
- in second half of lectures we'll discuss a different way to bound for regression → however even there concentration of suprema of empirical processes will be needed

9/16

Proof of uniform law - Step I: Tail bound

Theorem (Uniform tail bound)

For b-unif. bounded ℓ , it holds that

$$\mathbb{P}(\sup_{f\in\mathcal{F}}R(f)-R_n(f)\geq \mathbb{E}[\sup_{f\in\mathcal{F}}R(f)-R_n(f)]+t)\leq e^{-\frac{nt^2}{2b^2}}$$

where the probability is over the training data.

We recapped the proof last lecture, using McDiarmid.

In particular, by the uniform tail bound, if we can prove that $\mathbb{E}[\sup_{f \in \mathcal{F}} R(f) - R_n(f)] \leq 2\mathcal{R}_n(\mathcal{H})$ then it immediately follows that

$$\mathbb{P}(\sup_{h\in\mathcal{H}}\mathbb{E}h(Z) - \frac{1}{n}\sum_{i=1}^{n}h(Z_{i}) \geq 2\mathcal{R}_{n}(\mathcal{H}) + t)$$

$$\leq \mathbb{P}(\sup_{f\in\mathcal{F}}R(f) - R_{n}(f) \geq \mathbb{E}[\sup_{f\in\mathcal{F}}R(f) - R_{n}(f)] + t) \leq e^{-\frac{nt^{2}}{2b^{2}}}$$

This proof step is called symmetrization

Proof of uniform law - Step II: Symmetrization

- (i) For any H, $\sup_H \mathbb{E}H(Z) \leq \mathbb{E}\sup_H H(Z)$ (Exercise)
- (ii) $h(Z_i) h(\tilde{Z}_i)$ is symmetric \rightarrow multiplying by ϵ_i preserves distr.

$$\mathbb{E}_{Z}g_{n}(Z) = \mathbb{E}_{Z} \sup_{h \in \mathcal{H}} \mathbb{E}h - \frac{1}{n} \sum_{i} h(Z_{i})$$

$$= \mathbb{E}_{Z} \sup_{h \in \mathcal{H}} \mathbb{E}_{\tilde{Z}} \frac{1}{n} \sum_{i=1}^{n} h(\tilde{Z}_{i}) - \frac{1}{n} \sum_{i=1}^{n} h(Z_{i})$$

$$\stackrel{(i)}{\leq} \mathbb{E}_{Z,\tilde{Z}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [h(Z_{i}) - h(\tilde{Z}_{i})]$$

$$\stackrel{(ii)}{=} \mathbb{E}_{Z,\tilde{Z},\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} [h(Z_{i}) - h(\tilde{Z}_{i})]$$

$$\leq 2\mathbb{E}_{Z,\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h(Z_{i}) =: 2\mathcal{R}_{n}(\mathcal{H}) \square$$

• Tight: $\frac{\mathcal{R}_n(\mathcal{H})}{2} \leq \mathbb{E} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_i h - \mathbb{E} h \leq 2\mathcal{R}_n(\mathcal{H})$ (MW Prop 4.11.)

11 / 16

Classification setup

- Labels are now in discrete domain $y \in \{-1, +1\}$
- Given f, we predict the label of some x using $\hat{y} = sign(f(x))$
- Evaluation metric: $\ell((x,y);f) = \mathbb{1}_{\{yf(x)<0\}}$ and hence population risk: $R(f) = \mathbb{E}\ell((x,y);f) = \mathbb{P}(y \neq sign(f(x)))$
- A fixed $f \in \mathcal{F}$ defines a labeling from domain $\mathcal{X} \to \{-1, +1\}$. For a given set $Z^n = \{Z_i = (x_i, y_i)\}_{i=1}^n$, the function space \mathcal{F} induces a set in $\{-1, 1\}^n$ that reads $\mathcal{F}(Z^n) = \{(f(Z_1), \dots, f(Z_n)) : f \in \mathcal{F}\}$
- We again use notation $h(z) = \ell(z, f)$ and define

$$\mathcal{H}(Z^n) = \{ (\ell(Z_1; f), \dots, \ell(Z_n; f)) : f \in \mathcal{F} \}$$

Notice that $|\mathcal{F}(Z^n)| = |\mathcal{H}(Z^n)|$

Classification generalization bound

Recap **definition VC dimension** for binary classification: Biggest $n \in \mathbb{N}$ s.t. there exists $Z^n \in \mathcal{Z}^n$ with $\mathcal{H}(Z^n) = \{0,1\}^n$

Finite VC dimension can make \mathcal{H} Glivenko-Cantelli, i.e. $\mathcal{R}_n(\mathcal{H}) = o(1)$. With your neighbor, use that

$$\mathcal{ ilde{R}}_n(\mathcal{H}(Z^n)) \leq \sqrt{rac{2d_{\mathsf{VC}}\log(n+1)}{n}}$$

to prove the following bound

Theorem (uniform VC bound)

If \mathcal{H} has VC dimension d_{VC} , w/ prob $\geq 1-\delta$ for any estimator $f\in\mathcal{F}$

$$\mathbb{P}(yf(X) < 0) \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i f(x_i) < 0} + 4\sqrt{\frac{d_{VC} \log(n+1)}{n}} + \sqrt{\frac{2 \log(1/\delta)}{n}}$$

13 / 16

Proof of VC bound

Lemma (Massart)

For n points $Z^n := \{Z_1, \ldots, Z_n\}$, let all $h : \mathcal{Z} \to \{0, 1\}$ and $\mathcal{H}(Z^n) := \{(h(Z_1), \ldots, h(Z_n)) : h \in \mathcal{H}\}$ with cardinality $|\mathcal{H}(Z^n)|$.

$$\tilde{\mathcal{R}}_n(\mathcal{H}(Z^n)) := \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(Z_i) \leq \sqrt{\frac{2 \log |\mathcal{H}(Z^n)|}{n}}$$

- $|\mathcal{H}(Z^n)|$ corresponds to # labelings for Z^n induced by \mathcal{H}
- ullet if $|\mathcal{H}(Z^n)|$ grows exponentially $o ilde{\mathcal{R}}_n(\mathcal{H}(Z^n)) = \mathit{O}(1)$

Lemma (Sauer-Shelah, MW Prop 4.18.)

If \mathcal{F} has VC dimension d_{VC} , then for any Z_1, \ldots, Z_n we have growth function $N_{\mathcal{H}}(n) := \sup_{Z^n \in \mathcal{Z}^n} |\mathcal{H}(Z^n)| \le (n+1)^{d_{VC}}$ for all $n \ge d_{VC}$.

Hence can use $\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{Z^n} \tilde{\mathcal{R}}_n(\mathcal{H}(Z^n)) \leq \sup_{Z^n \in \mathcal{Z}^n} \tilde{\mathcal{R}}_n(\mathcal{H}(Z^n))$ and Massart with Sauer-Shelah (loose since distribution independent!) in the uniform law to yield result

Proof of Massart

Lemma (Massart)

For n points $Z^n := \{Z_1, \dots, Z_n\}$, let all $h : \mathcal{Z} \to \{0, 1\}$ and $\mathcal{H}(Z^n) := \{(h(Z_1), \dots, h(Z_n)) : h \in \mathcal{H}\}$ with cardinality $|\mathcal{H}(Z^n)|$.

$$\tilde{\mathcal{R}}_n(\mathcal{H}(Z^n)) := \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(Z_i) \leq \sqrt{\frac{2 \log |\mathcal{H}(Z^n)|}{n}}$$

- Step 1: For Rademacher ϵ_i and any Z_1^n we have that $\theta_i := h(Z_i) \in \{0,1\}$, show $\frac{1}{n} \epsilon^\top \theta$ is zero-mean and $\frac{1}{\sqrt{n}}$ sub-gaussian (similar to Hoeffding proof). This follows from the fact that $[a_i,b_i]$ bounded r.v. are $[b_i a_i]/2$ subgaussian
- Step 2: Use the fact from HW 1 that, for N zero-mean subgaussians X_1, \ldots, X_N with sub-gaussian parameter σ

$$\mathbb{E} \max_{i=1..N} X_i \leq \sqrt{2\sigma^2 \log N}$$

Here, $N = \mathcal{H}(Z^n)$ the number of different vectors $(h(Z_1), \ldots, h(Z_n))$

15/16

References

Uniform law

- MW Chapter 4
- "Understanding machine learning" by Shalev-Shwartz, Ben-David, Chapter 26