### Preparing Your Data



Jerry Kurata CONSULTANT

@jerrykur www.insteptech.com



### Machine Learning Workflow



### Machine Learning Workflow

Asking the right question

Preparing data

Selecting the algorithm Training the model

Testing the model

### Machine Learning Workflow



### Overview



Find the data we need

Inspect and clean the data

**Explore the data** 

Mold the data to Tidy data

Demos in Python in Jupyter Notebook



## Tidy Data

Tidy datasets are easy to manipulate, model and visualize, and have a specific structure:

each variable is a column,

each observation is a row,

each type of observational unit is a table.

# 50-80% of a ML project is spent getting, cleaning, and organizing data



### Getting Data

Google

**Government databases** 

Professional or company data sources

Your company

Your department

All of the above

### Pima Indian Diabetes Data

**Originally from UCI Machine Learning Repository** 

pima-data.csv - in demo folder, based on UCI data

Female patients at least 21 years old

768 patient observation rows

10 columns

9 feature columns

Number of pregnancies, blood pressure, glucose, insulin level, ...

1 class column

**Diabetes - True or False** 



### Data Rule #1

Closer the data is to what you are predicting, the better



### Data Rule #2

Data will never be in the format you need



### Getting Data and Notebooks

Modified version of Pima Indian Diabetes Data

Notebooks from course

http://bit.ly/ml\_python





### Demo



**Loading Data** 

**Exploring Data** 

**Cleaning Data** 



# Columns to Eliminate

Not used

No values

**Duplicates** 



# Correlated Columns

#### Same information in a different format

- ID and value associated with ID

#### Add little information

Can cause algorithms to get confused

```
Price = x * Area(sq ft)+ y * Area(sq m)+ z * # of rooms
```



### Molding Data

Adjusting data types

Creating new columns, if required



# Dealing with missing data

#### Ignore it

- Algorithms may fail

#### Impute it - update to "reasonable" values

- Most frequent
- Mean
- Median
- Expert reasonable value



### Data Rule #3

# Accurately predicting rare events is difficult



### Data Rule #4

Track how you manipulate data



### Change Tracking

**Jupyter Notebook** 

Python Interpreter interaction stored via code cells

Documentation stored via markup cells

Still need source code management (Git, TFS, SVN, etc.)



### Summary



Use Pandas to read in demo data

Identified correlated features

Cleaned data

Molded data

**Checked True/False ratio** 

**Discussed data rules** 

