Day 10: Continuous Local Martingales 2

Dain Kim

January 6th

Today's Reading

[L] Chapter 4.2. Continuous Local Martingales Chapter 4.3. The Quadratic Variation of a Continuous Local Martingale Chapter 4.4. The Bracket of Two Continuous Local Martingales Chapter 4.5. Continuous Semimartingales

Review: Continuous Local Martingales

 $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbf{P})$: a filtered probability space

Let T be a stopping time and (X_t) , $t \ge 0$, an adapted process with continuous sample paths.

 X^T : the process X stopped at T.

 $X_t^T := X_{t \wedge T}$.

If S is another stopping time,

$$(X^T)^S = (X^S)^T = X^{S \wedge T}.$$

Review: Continuous Local Martingales

An adapted process $M=(M_t),\ t\geq 0$, with continuous sample paths and M(0)=0 a.s. is called a *continuous local martingale* if there exists a nondecreasing sequence $(T_n)_{n\geq 0}$ of stopping times such that

- 1) $T_n \nearrow \infty$, i.e., $T_n(\omega) \nearrow \infty$ for every $\omega \in \Omega$
- 2) for every n, the stopped process M^{T_n} is a uniformly integrable martingale.

A class ${\mathcal C}$ of random variables is *uniformly integrable* if

- 1) there exists a constant C>0 such that $\mathbf{E}[|X|]< C$ for all $X\in\mathcal{C}$,
- 2) for every $\epsilon > 0$, there exists $\delta > 0$ such that for every measurable set A with $\mathbf{P}(A) < \delta$,

$$\mathbf{E}[|X|I_A] < \epsilon$$

for all $X \in \mathcal{C}$.

This is equivalent to

$$\lim_{K \to \infty} \sup_{X \in \mathcal{C}} \mathbf{E}[|X| \mathbb{1}_{\{|X| \ge K\}}] = 0.$$

Continuous Local Martingales

An adapted process $M=(M_t)$, $t\geq 0$, with continuous sample paths and M(0)=0 a.s. is called a *continuous local martingale* if there exists a nondecreasing sequence $(T_n)_{n\geq 0}$ of stopping times such that

- 1) $T_n \nearrow \infty$, i.e., $T_n(\omega) \nearrow \infty$ for every $\omega \in \Omega$
- 2) for every n, the stopped process M^{T_n} is a uniformly integrable martingale.

If we don't assume $M_0 = 0$ a.s., M_t is a *continuous local martingale* if $N_t = M_t - M_0$ is a continuous local martingale.

We call T_n reduces M if $T_n \nearrow \infty$ and M^{T_n} is a uniformly integrable martingale for every n.

Continuous Local Martingales Remarks

- ullet A continuous local martingale M_t need not satisfy $M_t \in L^1$.
- Martingales with continuous sample paths are continuous local martingales, but not vice versa.
 - ▶ For martingales, $T_n = n$ reduces M.
 - ▶ If B is a (\mathcal{F}_t) -Browniam motion and Z is a \mathcal{F}_0 -measurable random variable, then $Z_t = Z + B_t$ is a continuous local martingale. But Z_t is not a martingale if $\mathbf{E}[|Z|] = \infty$.
- In the definition, if $M_0 = 0$ a.s., the "uniformly integrable martingale" can be replaced by "martingale."
 - $M^{T_n \wedge n}$ is a uniformly integrable martingale.
- The space of all continuous local martingales is a vector space.

Properties

Proposition

- 1) If M is a nonnegative continuous local martingale such that $M_0 \in L^1$, then M is a supermartingale.
- 2) If M is a continuous local martingale and there exists a random variable $Z \in L^1$ such that $|M_t| \leq Z$ for every $t \geq 0$, then M is a uniformly integrable martingale.
- 3) If M is a continuous local martingale and $M_0 \in L^1$, the sequence of stopping times

$$T_n = \inf\{t \ge 0 : |M_t| \ge n\}$$

reduces M.

Theorem

If M is a continuous local martingale and also a finite variation process (in particular, $M_0 = 0$), then $M_t = 0$ for every $t \ge 0$, a.s.

The Quadratic Variation of Continuous Local Martingales

We assume that (\mathcal{F}_t) is a complete filtration. That is, for every $A \subset \Omega$ such that there exists $A \subset B \subset \Omega$ with $\mathbf{P}(B) = 0$, $A \in \mathcal{F}_t$ for all t.

Theorem

Let $M=(M_t)$, $t\geq 0$, be a continuous local martingale. There exists an increasing process $(\langle M,M\rangle_t,\ t\geq 0$, which is unique up to indistinguishability, such that $M_t^2-\langle M,M\rangle_t$ is a continuous local martingale. Moreover,

$$\langle M, M \rangle_t = \lim_{\sup_i |t_{i+1} - t_i| \to 0} \sum_{i=1}^{n-1} (M_{t_i^n} - M_{t_{i-1}^n})^2$$

in probability. The process $\langle M, M \rangle$ is called the *quadratic variation* of M.

The Quadratic Variation of Continuous Local Martingales

Example. Let B be a (\mathcal{F}_t) -Browniam motion. Then B is a martingale with continuous sample paths, so it is a continuous local martingale.

Proposition

For a fixed t,

$$\langle B,B \rangle_t = \lim_{\sup_i |t_{i+1}-t_i| \to 0} \sum_{i=1}^{n-1} (B_{t_i^n} - B_{t_{i-1}^n})^2 = t$$

where $0 = t_0^n < t_1^n < \dots < t_n^n = t$.

Proof. Define $f_j = \mathbbm{1}_{\{t_{j-1},t_j\}}$ for $1 \leq j \leq n$. The functions are independent. Since G is a Gaussian White Noise, note that $\mathbf{E}[G(f_j)^2] = |t_j - t_{j-1}|$. So

$$\mathbf{E}\left[\left(\sum_{i=1}^{n}G(f_{j})^{2}-|t_{j}-t_{j-1}|\right)^{2}\right]=\sum_{i=1}^{n}\operatorname{Var}\left(G(f_{j})^{2}\right)=2\sum_{i=1}^{n}|t_{j}-t_{j-1}|^{2}\to 0.$$

The Bracket of Two Continuous Local Martingales

Let M and N be two continuous local martingales. The *bracket* $\langle M, N \rangle$ is the finite variation process defined by

$$\langle M, N \rangle_t = \frac{1}{2} \left(\langle M + N, M + N \rangle_t - \langle M, M \rangle_t - \langle N, N \rangle_t \right)$$

for every $t \ge 0$.

The bracket $\langle M, N \rangle$ is the unique finite variation process up to indistinguishability such that $M_t N_t - \langle M, N \rangle_t$ is a continuous local martingale.

The Bracket of Two Continuous Local Martingales

Proposition

Let B and B' be two independent (\mathcal{F}_t) -Brownian motions. Then

$$\langle B, B' \rangle_t = 0$$

for every $t \geq 0$.

Proof. We may assume $B_0 = B_0' = 0$. Note that

$$X_t = \frac{1}{\sqrt{2}}(B_t + B_t')$$

is a martingale. Moreover, X is a Brownian motion. Then $\langle X, X \rangle_t = t$, so using the bilinearity, $\langle B, B' \rangle_t = 0$.

Two continuous local martingales M and N are *orthogonal* if $\langle M, N \rangle = 0$.

Continuous Semimartingales

A process $X = (X_t)$, $t \ge 0$, is a *continuous semimartingale* if there is a decomposition

$$X_t = M_t + A_t$$

so that M is a continuous local martingale and A is a finite variation process.

Such decomposition is unique.

For two X = M + A, Y = M' + A' continuous semimartingales with canonical decompositions, the *bracket* is the finite variation process defined by

$$\langle X, Y \rangle_t = \langle M, M' \rangle_t.$$