Scilab Textbook Companion for Numerical Methods by B. Ram¹

Created by
Saurav Suman
B.Tech
Others
NIT Jamshedpur
College Teacher
Self
Cross-Checked by
K. V. P. Pradeep

June 25, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Numerical Methods

Author: B. Ram

Publisher: Pearson

Edition: 1

Year: 2010

ISBN: 9788131732212

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Preliminaries	11
2	Non Linear Equations	13
3	Linear System of Equations	45
4	Eigenvalues and Eigenvectors	7 4
5	Finite Differences and Interpolation	91
6	Curve Fitting	128
7	Numerical Differentiation	141
8	Numerical Quadrature	156
9	Difference Equations	172
10	Ordinary Differential Equations	183
11	Partial Differential Equations	210

List of Scilab Codes

Exa 1.1	Rounding off Numbers
Exa 1.2	Relative Maximum Error
Exa 1.3	Absolute Error
Exa 2.1	Bisection Method
Exa 2.2	Bisection Method
Exa 2.3	Regula Falsi Method
Exa 2.4	Regula Falsi Method
Exa 2.5	Regula Falsi Method
Exa 2.6	Secant Method
Exa 2.7	Newton Raphson Method
Exa 2.8	Newton Raphson Method
Exa 2.9	Newton Raphson Method
Exa 2.10	Newton Raphson Method
Exa 2.11	Newton Raphson Method
Exa 2.12	Iteration Formula
Exa 2.13	Iteration Formula
Exa 2.14	Iteration Formula
Exa 2.15	Newton Raphshon Method
Exa 2.16	Newton Raphshon Method
Exa 2.17	Newton Raphshon Method
Exa 2.18	Newton Raphshon Method for simultaneous equations 2'
Exa 2.19	Newton Raphshon Method for simultaneous equations 28
Exa 2.20	Graeffe Method
Exa 2.21	Graeffe Method
Exa 2.22	Graeffe Method
Exa 2.23	Mullers Method
Exa 2.24	Mullers Method
Exa 2.25	Mullers Method

Exa 2.26	Mullers Method	40
Exa 2.27	Bairstow Method	42
Exa 3.1	Direct Method	45
Exa 3.2	Gaussian Elimination Method	45
Exa 3.3	Gaussian Elimination Method	46
Exa 3.4	Gaussian Elimination Method	48
Exa 3.5	Gauss Jordan Method	49
Exa 3.6	Gauss Jordan Method	50
Exa 3.7	Gauss Jordan Method	51
Exa 3.8	Triangularization Method	53
Exa 3.9	Triangularization Method	54
Exa 3.10	Triangularization Method	56
Exa 3.11	Triangularization Method	57
Exa 3.12	Triangularization Method	59
Exa 3.13	Crout Method	61
Exa 3.14	Crout Method	62
Exa 3.15	Crout Method	64
Exa 3.16	Jacobi Method	65
Exa 3.17	Gauss Seidel Method	66
Exa 3.18	Gauss Seidel Method	67
Exa 3.19	Gauss Seidel Method	67
Exa 3.20	Gauss Seidel Method	68
Exa 3.21	Relaxation Method	68
Exa 3.22	Relaxation Method	70
Exa 3.23	Relaxation Method	72
Exa 4.1	Power Method	74
Exa 4.2	Power Method	75
Exa 4.3	Power Method	76
Exa 4.4	Power Method	77
Exa 4.5	Jacobi Method	78
Exa 4.6	Jacobi Method	79
Exa 4.7	Jacobi Method	80
Exa 4.8	Jacobi Method	81
Exa 4.9	Givens Method	82
Exa 4.10	Givens Method	83
Exa 4.11	Givens Method	84
Exa 4.12	Givens Method	85
Exa. 4.13	House Holder Transformation	86

Exa 4.14	House Holder Transformation
Exa 4.15	Strum Sequence
Exa 4.16	Strum Sequence
Exa 4.17	Gerschgorin Circles
Exa 5.1	Backward Difference Formula 91
Exa 5.3	Factorial Notation Method
Exa 5.5	Finite Differences
Exa 5.6	Finite Differences
Exa 5.11	Finite Differences
Exa 5.16	Finite Differences
Exa 5.17	Error Propagation
Exa 5.18	Error Propagation
Exa 5.20	Newtons Forward Difference Formula
Exa 5.21	Newtons Forward Difference Formula 100
Exa 5.22	Newtons Forward Difference Formula 101
Exa 5.23	Newtons Forward Difference Formula 102
Exa 5.24	Central Difference Derivatives
Exa 5.27	Central Difference Derivatives
Exa 5.28	Divided Difference Interpolation
Exa 5.29	Divided Difference Interpolation 106
Exa 5.30	Maximum Error in Interpolation 107
Exa 5.32	Divided Difference Interpolation
Exa 5.36	Lagranges Interpolation Method 109
Exa 5.37	Lagranges Interpolation Method 110
Exa 5.38	Lagranges Interpolation Method 111
Exa 5.39	Hermite Interpolation Method
Exa 5.40	Hermite Interpolation Method
Exa 5.41	Piecewise Cubic Hermite Interpolation Method 113
Exa 5.43	Inverse Interpolation using Newtons Forward Difference
	Formula
Exa 5.44	Inverse Interpolation using Everett Formula 117
Exa 5.45	Inverse Lagrange Method
Exa 5.46	Newtons Divided Difference Interpolation 118
Exa 5.47	Bessel Interpolation
Exa 5.48	Chebyshev Polynomial
Exa 5.50	Spline Interpolation
Exa 5.51	Spline Interpolation
Exa 5.52	Spline Interpolation
	6

Exa 5.53	Spline Interpolation
Exa 5.54	Spline Interpolation
Exa 6.2	Least Line Square Approximation
Exa 6.3	Least Square Method
Exa 6.4	Least Square Method
Exa 6.5	Power Fit Method
Exa 6.6	Least Square Method
Exa 6.7	Parabola Best Fit
Exa 6.8	Parabola Best Fit
Exa 6.9	Least Square Fit
Exa 6.10	Least Square Fit
Exa 6.11	Least Square Fit
Exa 6.12	Least Square Fit
Exa 7.1	Differentiation
Exa 7.2	Differentiation
Exa 7.3	Richardson Extrapolation
Exa 7.4	Differentiation
Exa 7.5	Stirlings Central Difference Derivatives
Exa 7.6	Stirlings Central Difference Derivatives
Exa 7.7	Stirlings Central Difference Derivatives
Exa 7.8	Stirlings Central Difference Derivatives
Exa 7.9	Newtons Backward Formula
Exa 7.10	Lagranges Differentiation
Exa 7.11	Newtons Divided Difference Interpolation 151
Exa 7.12	Stirlings Central Difference Derivatives
Exa 7.13	Newtons Backward Formula
Exa 7.14	Newtons Divided Difference
Exa 8.1	Simpsons 1 3rd Rule
Exa 8.2	Simpsons 1 3rd Rule and Richardson Extrapolation 157
Exa 8.6	Simpsons 1 3rd Rule and Bessels Quadrature 159
Exa 8.7	Simpsons 1 3rd Rule
Exa 8.8	Rombers Method
Exa 8.9	Rombers Method
Exa 8.10	Rombers Method
Exa 8.11	Integration by Various Methods
Exa 8.12	Euler Maclaurin Methods
Exa 8.13	Trapezoidal and Simpsons Rule
Exa 8.14	Trapezoidal Rule

Exa 9.1	Recurrence formula	172
Exa 9.2	Recurrence formula	172
Exa 9.3	Recurrence formula	173
Exa 9.4	Recurrence formula	173
Exa 9.5	Difference Equation	174
Exa 9.6	Difference Equation	174
Exa 9.8	Recurrence formula	175
Exa 9.9	Particular Solution	176
Exa 9.10	Particular Solution	176
Exa 9.11	Particular Solution	177
Exa 9.12	Particular Solution	178
Exa 9.13	Particular Solution	179
Exa 9.14	Particular Solution	179
Exa 9.15	Particular Solution	180
Exa 9.16	Particular Solution	181
Exa 9.17	Particular Solution	181
Exa 9.18	Particular Solution	182
Exa 10.1	Taylor Method	183
Exa 10.2	Taylor Method	184
Exa 10.3	Taylor Method	185
Exa 10.4	Euler Method	186
Exa 10.5	Euler Method	186
Exa 10.6	Euler and Modified Euler Method	187
Exa 10.7	Modified Euler Method	187
Exa 10.8	Picard Method	188
Exa 10.9	Picard Method	188
Exa 10.10	Picard Method	189
Exa 10.11	Heun Method	190
Exa 10.12	Third Order Runge Kutta Method	190
Exa 10.13	Fourth Order Runge Kutta Method	191
Exa 10.14	Fourth Order Runge Kutta Method for higher order	
	equations	191
Exa 10.15	Fourth Order Runge Kutta Method	192
Exa 10.16	Fourth Order Runge Kutta Method	193
Exa 10.17	Fourth Order Runge Kutta Method for system of 1st	
	order equations	193
Exa 10.18	Fourth Order Runge Kutta Method for higher order	
	equations	194

Exa	10.19	Adams Basforth formula	5
Exa	10.20	Adams Moulton formula	6
Exa	10.21	Adams formula	6
Exa	10.22	Milne Simpson Predictor Corrector Method 19'	7
Exa	10.23	Milne Simpson Predictor Corrector Method 199	9
Exa	10.24	Milne Simpson Predictor Corrector Method 199	9
Exa	10.25	Milne Simpsons formula	0
Exa	10.26	Mullers Method	1
Exa	10.33	Numerov Method	2
Exa	10.34	Numerov Method	2
Exa	10.36	Finite Difference Method 203	3
Exa	10.37	Finite Difference Method	4
Exa	10.38	Finite Difference Method	5
Exa	10.39	Finite Difference Method	5
Exa	10.40	Formula Method	6
Exa	10.41	Eigenvalue Problem	8
Exa	11.1	Gauss Seidel Method	0
Exa	11.2	Gauss Seidel Method	1
Exa	11.3	Gauss Seidel Method	2
Exa	11.4	Gauss Seidel Method	3
Exa	11.5	Gauss Seidel Method	4
Exa	11.6	Gaussian Elimination Method	6
Exa	11.7	Relaxation Method	7
Exa	11.8	Relaxation Method	9
Exa	11.9	Gauss Seidel Method	1
Exa	11.10	Gauss Seidel Method	2
Exa	11.11	Eigenvalue Problem	2
Exa	11.12	Eigenvalue Problem	3
Exa	11.13	Eigenvalue Problem	3
Exa	11.14	Crank Nicolson Method	4
Exa	11.15	Bender Schmidt Method	7
Exa	11.16	Crank Nicolson Method	8
Exa	11.17	Bender Schmidt Method	1
Exa	11.18	Bender Schmidt Method	2
Exa	11.19	Gauss Seidel Method	3
Exa	11.20	Finite Difference Method	4
Exa	11.21	Finite Difference Method	5

List of Figures

5.1 Spline Interpolation			- 12	23
--------------------------	--	--	------	----

Chapter 1

Preliminaries

Scilab code Exa 1.1 Rounding off Numbers

```
1 //Example 1.1
2 //Rounding off Numbers
3 //Page no. 2
4 clc; clear; close;
5 a=[81.9773;48.365;21.385;12.865;27.553]
6 for i=1:5
7     printf('\n%g becomes %.4g\n',a(i),a(i))
8 end
```

Scilab code Exa 1.2 Relative Maximum Error

```
1 //Example 1.2
2 //Relative Maximum Error
3 //Page no. 5
4 clc; clear; close;
5 h=0.001;
6 x=1; y=1; z=1; dx=0.001; dy=0.001; dz=0.001;
7 deff('u=f(x,y,z)', 'u=(5*x*y^2)/z^3')
```

```
8 du=abs(f(x+h,y,z)-f(x,y,z))*dx+abs(f(x,y+h,z)-f(x,y,z))*dz+abs(f(x,y,z+h)-f(x,y,z))*dz;
9 du=du/h;
10 Er=du/f(x,y,z)
11 printf('\nMaximum Error = %.3f\n\nRelative maximum error = %.3f',du,Er)
```

Scilab code Exa 1.3 Absolute Error

```
1 //Example 1.3
2 //Absolute Error
3 //Page no. 6
4 clc; clear; close;
5 a=10; b=0.0356; c=15300; d=62000;
6 ea=0.05; eb=0.0002; ec=100; ed=500;
7 e=ea+eb+ec+ed;
8 printf('\nMaximum Absolute Error of a+b+c+d = %f\n\n', e)
9 E=(c+2*ec)^3-(c+ec)^3
10 printf(' 3\nMaximum Absolute Error of c = %f', E)
```

Chapter 2

18 end

Non Linear Equations

Scilab code Exa 2.1 Bisection Method

```
1 //Example 2.1
2 // Bisection Method
3 // Page no. 14
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3+x^2-1')
6 \times 1 = 0.5; \times 2 = 1; e = 0.0001; i = 0;
7 printf('Iteration\tx1\t\tx2\t\tz\t\tf(z)\n')
8 printf('
      n ')
9 while abs(x1-x2)>e
        z = (x1 + x2)/2
10
                       \%i\t\t\%f\t\%f\t\%f\t\%f\n',i,x1,x2,z,f
        printf('
11
           (z))
12
        if f(z)*f(x1)>0
13
             x1=z
14
        else
15
            x2=z
16
        end
17
        i = i + 1
```

```
19 printf('\n\nThe solution of this equation is %g after %i Iterations',z,i-1)
```

Scilab code Exa 2.2 Bisection Method

```
1 //Example 2.2
2 // Bisection Method
3 // Page no. 15
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-3*x-5')
6 x1=2; x2=2.5; e=0.0001; i=0;
7 printf ('Iteration\tx1\t\tx2\t\tz\t\tf(z)\n')
8 printf('
      n ')
  while abs(x1-x2)>e
       z = (x1 + x2)/2
10
                      \%i \ t \ t\%f \ t\%f \ t\%f \ n ',i,x1,x2,z,f
       printf('
11
           (z))
12
       if f(z)*f(x1)>0
13
            x1=z
14
       else
15
            x2=z
16
       end
17
       i=i+1
18 \text{ end}
19 printf('\n\nThe solution of this equation is \%.4g
      after %i Iterations',z,i-1)
```

Scilab code Exa 2.3 Regula Falsi Method

```
1 / Example 2.3
2 //Regula Falsi Method
3 //Page no. 17
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-5*x-7')
6 \text{ x1=2}; \text{x2=3}; \text{e=0.01}
')
8 printf('\n
     n ')
  for i=0:19
10
       x3=x2*f(x1)/(f(x1)-f(x2))+x1*f(x2)/(f(x2)-f(x1))
       printf(' \%i \t\%f \t\%f \t\%f \t\%f \t\%f \t\%f \n',i,x1,f(x1)
11
          ), x2, f(x2), x3, f(x3))
       if f(x1)*f(x3)>0 then
12
           x1=x3
13
14
       else
           x2=x3
15
16
       end
17
       if abs(f(x3)) < e then
18
           break
19
       end
20 end
21 printf('\n\nThus the root is %.3f correct upto three
       places of decimal', x3)
```

Scilab code Exa 2.4 Regula Falsi Method

```
1 //Example 2.4
2 //Regula Falsi Method
3 //Page no. 18
4 clc; clear; close;
```

```
5 deff('y=f(x)', 'y=x*log10(x)-1.2')
6 \text{ x1=2}; \text{x2=3}; \text{e=0.000001}
8 printf('\n
     n ')
9 \text{ for } i=0:19
10
      x3=x2*f(x1)/(f(x1)-f(x2))+x1*f(x2)/(f(x2)-f(x1))
      11
        ), x2, f(x2), x3, f(x3))
12
      if f(x1)*f(x3)>0 then
13
         x1=x3
14
      else
15
         x2=x3
16
      end
17
      if abs(f(x3)) < e then
18
         break
19
      end
20 end
21 printf('\n\nThus the root is %.3f correct upto three
      places of decimal', x3)
```

Scilab code Exa 2.5 Regula Falsi Method

```
1 //Example 2.5
2 //Regula Falsi Method
3 //Page no. 19
4 clc; clear; close;
5 deff('y=f(x)', 'y=log10(x)-cos(x)')
6 x1=1; x2=1.5; e=0.00000001
7 printf('n\tx1\t\tf(x1)\t\tx2\t\tf(x2)\t\tx3\t\tf(x3)
')
```

```
8 printf('\n
      n ')
9 \text{ for } i=0:19
10
        x3=x2*f(x1)/(f(x1)-f(x2))+x1*f(x2)/(f(x2)-f(x1))
        \label{eq:printf}        \text{printf('\%i\t%f\t%f\t%f\t%f\t%f\t%f\n',i,x1,f(x1))} 
11
            ), x2, f(x2), x3, f(x3))
12
        if f(x1)*f(x3)>0 then
13
             x1=x3
14
        else
15
             x2=x3
16
17
        if abs(f(x3)) < e then
18
             break
19
        end
20 end
21 printf('\n)nThus the root is \%.4f correct upto four
       places of decimal',x3)
```

Scilab code Exa 2.6 Secant Method

```
10 for i=1:6
11
       x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0))
12
       e1=abs(x0-x2)
       printf('%i\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\
13
          t\%.10 f n', i-1, x0, f(x0), x1, f(x1), x2, e1)
14
       x0=x1;
15
       x1=x2
       if abs(x0)<e then
16
17
            break;
18
       end
19 end
20 printf('\n'nTherefore, the root is \%.4f correct upto
       4 decimal places',x2)
```

Scilab code Exa 2.7 Newton Raphson Method

```
1 / Example 2.7
2 //Newton Raphson Method
3 // Page no. 21
4 clc; clear; close;
5 deff('x=f(x)', 'x=x^3-5*x+3')
6 deff('x=f1(x)', 'x=3*x^2-5')
')
8 printf('
     n ')
9 \times 0 = 1; e = 0.00001
10 for i=1:6
      x1=x0-f(x0)/f1(x0)
11
      e1=abs(x0-x1)
12
      printf ( ' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ', i-1, x0, f(x0), f1(x0), x1, e1)
14
      x0=x1;
15
      if abs(x0)<e then
```

Scilab code Exa 2.8 Newton Raphson Method

```
1 / Example 2.8
2 //Newton Raphson Method
3 //Page no. 21
4 clc; clear; close;
5 deff('x=f(x)', 'x=x^4-3*x^3+2*x^2+2*x-7')
6 deff('x=f1(x)', 'x=4*x^3-9*x^2+4*x+2')
')
8 printf('
     n ')
9 \times 0 = 2.1; e = 0.00001
10 for i=1:6
      x1=x0-f(x0)/f1(x0)
11
      e1 = abs(x0 - x1)
12
      printf ( ' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ',i-1,x0,f(x0),f1(x0),x1,e1)
      x0=x1;
14
      if abs(x0)<e then
15
16
          break;
17
      end
18 end
19 printf('\n\nTherefore, this is convergent and root =
      \%.8 \, f', x0)
```

Scilab code Exa 2.9 Newton Raphson Method

```
1 / \text{Example } 2.9
2 //Newton Raphson Method
3 //Page no. 22
4 clc; clear; close;
5 deff('x=f(x)', 'x=exp(x)-5*x')
6 deff('x=f1(x)', 'x=exp(x)-5')
')
8 printf('
     n ')
9 \times 0 = 0.4; e = 0.00001
10 for i=1:5
      x1=x0-f(x0)/f1(x0)
11
      e1=abs(x0-x1)
12
      printf ( ' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ', i-1, x0, f(x0), f1(x0), x1, e1)
      x0=x1;
14
      if abs(x0)<e then
15
16
          break;
17
       end
18 end
19 printf('\n\nTherefore, this is convergent and the
     root is %.10 f', x0)
```

Scilab code Exa 2.10 Newton Raphson Method

```
1  //Example 2.10
2  //Newton Raphson Method
3  //Page no. 22
4  clc; clear; close;
5  deff('x=f(x)', 'x=3*x-cos(x)-1')
6  deff('x=f1(x)', 'x=3+sin(x)')
7  printf('n\txn\t\t\f(xn)\t\tf1(xn)\t\tXn+1\t\tError\n')
')
```

```
8 printf('
     n ')
9 \times 0 = 0.6; e = 0.00001
10 for i=1:3
11
      x1=x0-f(x0)/f1(x0)
      e1=abs(x0-x1)
12
      13
         ',i-1,x0,f(x0),f1(x0),x1,e1)
      x0=x1;
14
      if abs(x0)<e then
15
16
          break;
17
      end
18 end
19 printf('\n\nTherefore, this is convergent and root =
     \%.4 f', x0)
```

Scilab code Exa 2.11 Newton Raphson Method

```
12     e1=abs(x0-x1)
13     printf(' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
         ',i-1,x0,f(x0),f1(x0),x1,e1)
14     x0=x1;
15     if abs(x0)<e then
16         break;
17     end
18 end
19 printf('\n\nTherefore, the root is %.4 f',x0)</pre>
```

Scilab code Exa 2.12 Iteration Formula

```
1 //Example 2.12
2 //Iteration Formula
3 //Page no. 28
4 clc; clear; close;
5 deff('x=f(x)', 'x=1/sqrt(1+x)')
7 printf('
     n ')
8 \times 0 = 0.75; e = 0.00001
  for i=1:8
10
       x1=f(x0)
       e1=abs(x0-x1)
11
       printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
12
         x0, f(x0), x1, e1)
13
       x0=x1;
14
       if abs(x0)<e then
15
           break;
16
       end
17 \text{ end}
18 printf('\n\nTherefore, the root is \%.6 f',x0)
```

Scilab code Exa 2.13 Iteration Formula

```
1 //Example 2.13
2 //Iteration Formula
3 // Page no. 28
4 clc; clear; close;
5 deff('x=f(x)', 'x=(\log 10(x)+7)/2')
7 printf('
     n ')
8 \times 0 = 3.8; e = 0.00001
  for i=1:6
10
       x1=f(x0)
       e1=abs(x0-x1)
11
       printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
12
          x0, f(x0), x1, e1)
13
       x0=x1;
14
       if abs(x0) < e then
15
           break;
16
       end
17 end
18 printf('\n\nTherefore, the root is \%.6 f',x0)
```

Scilab code Exa 2.14 Iteration Formula

```
1 //Example 2.14
2 //Iteration Formula
3 //Page no. 29
4 clc; clear; close;
5 deff('x=f(x)', 'x=exp(x)/5')
6 printf('n\txn\t\t\f(xn)\t\tXn+1\t\tError\n')
```

```
7 printf('
      n ')
8 \times 0 = 0.3; e = 0.00001
9 for i=1:11
10
        x1=f(x0)
11
        e1 = abs(x0 - x1)
        printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
12
           x0, f(x0), x1, e1)
13
        x0=x1;
        if abs(x0)<e then
14
15
             break;
16
        end
17 end
18 printf('\n\nTherefore, the root is \%.6 f',x0)
```

Scilab code Exa 2.15 Newton Raphshon Method

x1=x0-f(x0)/f1(x0)

15

```
e1=abs(x0-x1)
16
        printf(' \%i \t\%.10 \f\t\%.10 \f\t\%.10 \f\t\%.10 \f\n',i-1,
17
            x0,f(x0),x1,e1)
        x0=x1;
18
19
        if abs(x0)<e then
20
             break;
21
        end
22 end
23 printf('\n\nTherefore, the root is \%.4 f \ln \ln n \cdot n \cdot n \cdot x0)
25 \times 0 = x - e2
26 \text{ for } i=1:4
27
        x1=x0-f(x0)/f1(x0)
        e1=abs(x0-x1)
28
        printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
29
            x0, f(x0), x1, e1)
30
        x0=x1;
        if abs(x0)<e then
31
32
             break;
33
        end
34 end
35 printf('\n\nTherefore, the root is \%.4 f',x0)
```

Scilab code Exa 2.16 Newton Raphshon Method

```
1 //Example 2.16
2 //Newton Raphshon Method
3 //Page no. 31
4 clc; clear; close;
5 h=0.001
6 deff('x=f(x)', 'x=x^3-5*x^2+8*x-4')
7 deff('x=f1(x)', 'x=(f(x+h)-f(x))/h')
8 deff('x=f2(x)', 'x=(f1(x+h)-f1(x))/h')
9 printf('n\txn\t\t\f(xn)\t\tXn+1\t\tError\n')
10 printf('
```

```
n ')
11 x0=1.8; e=0.00001
12 \quad for \quad i=1:10
13
        x1=x0-2*f(x0)/f1(x0)
        e1=abs(x0-x1)
14
        printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
15
           x0, f(x0), x1, e1)
16
        x0=x1;
        if abs(x0)<e then
17
18
             break;
19
        end
20 end
21 printf('\n\nTherefore, the root is \%.4 f \ln n \ln ',x0)
```

Scilab code Exa 2.17 Newton Raphshon Method

x0, f(x0), x1, e1)

```
1 //Example 2.17
2 //Newton Raphshon Method
3 //Page no. 32
4 clc; clear; close;
5 h = 0.001
6 deff('x=f(x)', 'x=x^3-x^2-x+1')
7 deff('x=f1(x)', 'x=(f(x+h)-f(x))/h')
8 deff('x=f2(x)', 'x=(f1(x+h)-f1(x))/h')
10 printf('
     n ')
11 x0=0.8; e=0.00001
12 \quad for \quad i=1:10
13
      x1=x0-2*f(x0)/f1(x0)
      e1=abs(x0-x1)
14
15
      printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,
```

Scilab code Exa 2.18 Newton Raphshon Method for simultaneous equations

```
1 //Example 2.18
2 //Newton Raphshon Method for simultaneous equations
3 // Page no. 33
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=x+3*\log 10(x)-y^2');
7 deff('y=f2(x,y)', 'y=2*x^2-x*y-5*x+1');
8 h=0.01;
  function u=f3(x,y,z)
       if z==1 then
10
11
           u=(f1(x+h,y)-f1(x,y))/h
       elseif z==2
12
           u = (f1(x,y+h)-f1(x,y))/h
13
14
       elseif z==3
15
           u=(f2(x+h,y)-f2(x,y))/h
16
       else
17
           u=(f2(x,y+h)-f2(x,y))/h
18
       end
19 endfunction
20 x=3.4; y=2.2;
21 \text{ for } i=1:4
       printf('\n\tx\%i = \%g\t\ty\%i = \%g\n',i-1,x,i-1,y)
22
23
       printf('\nfi(x0,y0) = \%g',f1(x,y));
24 printf('\nomega(x0,y0) = \%g',f2(x,y));
25 printf('\nd(fi)/dx = \%g',f3(x,y,1));
```

Scilab code Exa 2.19 Newton Raphshon Method for simultaneous equations

```
1 //Example 2.19
2 //Newton Raphshon Method for simultaneous equations
3 //Page no. 35
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=1+x^2-y^2');
7 \text{ deff('y=} f2(x,y)', 'y=2*x*y');
8 h=0.01;
  function u=f3(x,y,z)
10
       if z==1 then
11
           u=(f1(x+h,y)-f1(x,y))/h
12
       elseif z==2
           u=(f1(x,y+h)-f1(x,y))/h
13
14
       elseif z==3
15
           u=(f2(x+h,y)-f2(x,y))/h
16
       else
17
           u=(f2(x,y+h)-f2(x,y))/h
18
       end
```

```
19 endfunction
20 x=0.5; y=0.5;
21 for i=1:3
       printf('\n\tx\%i = \%g\t\ty\%i = \%g\n',i-1,x,i-1,y)
22
23
       printf('\nfi(x0,y0) = \%g',f1(x,y));
24 printf('\nomega(x0,y0) = \%g',f2(x,y));
25 printf('\nd(fi)/dx = \%g',f3(x,y,1));
26 printf('\nd(fi)/dy = \%g',f3(x,y,2));
27 printf('\nd(omega)/dx = \%g',f3(x,y,3));
28 printf('\nd(omega)/dy = \%g',f3(x,y,4));
29 A = [f3(x,y,1), f3(x,y,2); f3(x,y,3), f3(x,y,4)];
30 B=[-f1(x,y);-f2(x,y)];
31 C = inv(A) *B;
32 x = x + C(1);
33 y=y+C(2);
34 printf('\n\n\th\%i = \%g\t\tk\%i = \%g\n\n',i,C(1),i,C
      (2));
35 end
36 printf ('\n\tx\%i = \%g\t\ty\%i = \%g\n',i,x,i,y)
```

Scilab code Exa 2.20 Graeffe Method

```
1 //Example 2.20
2 // Graeffe Method
3 //Page no. 38
4 clc; clear; close;
6 a = [1, -5, -17, 20]
7 k=0;
8 \text{ for } k=2:6
9
        for i=1:4
10
            a(k,i)=(-1)^{(i-1)}*(a(k-1,i))^2
            j=1;
11
12
            while i+j<5 & i+j>2
13
                 a(k,i)=a(k,i)+(-1)^{(i-j-1)}*2*(a(k-1,i-j)
```

```
)*a(k-1,i+j)
14
               break
               j = j + 1;
15
16
           end
17
       end
18
  end
  t--t ta2 tt--t ta3 tt--t nt ta0 tt
     ta1 \ t \ t \ ta2')
20 printf(^{,}
     n ')
21
  for i=1:4
       printf(' \%i \t\%g \t\%.4g \t\%.5g \t\%.9g \t\%.8g \
22
         t\%g \setminus t \setminus t\%.10g \setminus n', i-1, a(i,1), a(i,2), abs(a(i,2))
         a(i,1))^{(1/(2^{(i-1))})}, a(i,3), abs(a(i,3)/a(i,3))
         (1/(2^{(i-1)})), a(i,4), abs(a(i,4)/a(i,3))
         ^(1/(2^(i-1))))
23 end
24 \text{ for } i=5:6
       25
         t\%.10 g/n', i-1, a(i,1), a(i,2), abs(a(i,2)/a(i,1))
         (1/(2^{(i-1)})), a(i,3), abs(a(i,3)/a(i,2))
         (1/(2^{(i-1)})), a(i,4), abs(a(i,4)/a(i,3))
         ^(1/(2^(i-1))))
26 \text{ end}
27 printf('\n\nThe Absolute Values of the roots are \%g,
      \%.8g and \%g', abs(a(i,2)/a(i,1))^(1/(2^(i-1))),
     abs(a(i,3)/a(i,2))^(1/(2^(i-1))), abs(a(i,4)/a(i-1)))
      ,3))^(1/(2^(i-1)))
```

Scilab code Exa 2.21 Graeffe Method

```
1 //Example 2.212 //Graeffe Method
```

```
3 //Page no. 39
4 clc; clear; close;
6 a = [1, -2, -5, 6]
7 k=0;
8 \text{ for } k=2:6
9
       for i=1:4
            a(k,i)=(-1)^{(i-1)}*(a(k-1,i))^2
10
            j=1;
11
12
            while i+j<5 \& i+j>2
                 a(k,i)=a(k,i)+(-1)^{(i-j-1)}*2*(a(k-1,i-j)
13
                    )*a(k-1,i+j)
14
                 break
15
                 j=j+1;
16
            end
17
       end
18 end
19 printf('\t\t\ta1\t\t\t\a2\t\t\t\ta3\n k\ta0\ta1\t
      t--t ta2 tt--t ta3 tt--t nt ta0 tt
      ta1 \ t \ t \ ta2')
20 printf('\n
      n ')
21 \text{ for } i=1:4
       printf(' \%i \t\%g \t\%.4g \t\%.5g \t\%.9g \t\%.8g \
22
          t\%g \ t\%.10g \ n', i-1, a(i,1), a(i,2), abs(a(i,2))
          a(i,1))^{(1/(2^{(i-1))})}, a(i,3), abs(a(i,3)/a(i,3))
           (1/(2^{(i-1)})), a(i,4), abs(a(i,4)/a(i,3))
           ^(1/(2^(i-1))))
23 end
24 \text{ for } i=5:6
       printf (' %i\t%g\t%.4g\t%.5g\t\t%.9g\t%.8g\t%.7g\
25
          t\%.10 g/n', i-1, a(i,1), a(i,2), abs(a(i,2)/a(i,1))
          (1/(2^{(i-1)})), a(i,3), abs(a(i,3)/a(i,2))
           (1/(2^{(i-1)})), a(i,4), abs(a(i,4)/a(i,3))
           ^(1/(2^(i-1))))
26 \text{ end}
27 printf('\n\nThe Absolute Values of the roots are \%g,
```

```
\%.8 \,\mathrm{g} and \%\mathrm{g}, abs(a(i,2)/a(i,1))^(1/(2^(i-1))), abs(a(i,3)/a(i,2))^(1/(2^(i-1))), abs(a(i,4)/a(i,3))^(1/(2^(i-1)))
```

Scilab code Exa 2.22 Graeffe Method

```
1 //Example 2.22
2 // Graeffe Method
3 //Page no. 40
4 clc; clear; close;
6 a = [1, -4, 5, -2]
7 k=0;
8 \text{ for } k=2:6
9
         for i=1:4
10
              a(k,i)=(-1)^{(i-1)}*(a(k-1,i))^2
              j=1;
11
12
              while i+j<5 & i+j>2
                    a(k,i)=a(k,i)+(-1)^{(i-j-1)}*2*(a(k-1,i-j)
13
                       )*a(k-1,i+j)
14
                    break
15
                    j=j+1;
16
              end
17
         end
18 end
19 printf('\t\t\ta1\t\t\t\a2\t\t\t\ta3\n k\ta0\ta1\t
       \t--\t \cdot ta2 \cdot t \cdot t--\t \cdot ta3 \cdot t \cdot t--\t \cdot n \cdot t \cdot t \cdot ta0 \cdot t \cdot t \cdot t
       ta1 \ t \ t \ t \ ta2')
20 printf('\n
       n ')
21 \text{ for } i=1:4
         printf(' \%i \ t\%g \ t\% . 4g \ t \ t\% . 5g \ t \ t\% . 9g \ t \ t\% . 8g
22
            t\%g\t\t\%.10g\n',i-1,a(i,1),a(i,2),abs(a(i,2))
            a(i,1))^{(1/(2^{(i-1))})}, a(i,3), abs(a(i,3)/a(i,3))
```

Scilab code Exa 2.23 Mullers Method

```
1 //Example 2.23
2 // Mullers Method
3 //Page no. 41
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^3-x-1')
7 zi = [1;2;3];
8 s=["i","z2","z0","z1","f2","f0","f1","a0","a1","a2",
     "zr+","zr-"]
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1) = zi(3,1) - zi(2,1);
11 for i=2:6
       for j=1:3
12
13
          fz(j,i-1)=f(zi(j,i-1))
14
       di(i-1)=1+li(i-1)
15
16
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
          fz(3,i-1)*(li(i-1)+di(i-1))
```

```
17
        D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
           -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
           -1)+fz(3,i-1))
        D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
18
           -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
           -1)+fz(3,i-1))
        if abs(D1(i-1))>abs(D2(i-1)) then
19
            li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
20
21
        else
22
            li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
        end
24
        hi(i)=li(i)*hi(i-1);
25
        z(i-1)=zi(3,i-1)+hi(i)
        for j=1:2
26
27
            zi(j,i)=zi(j+1,i-1)
28
        end
29
        zi(3,i)=z(i-1)
30 end
31 for i=1:12
32
        if i==1 then
33
            printf(s(i))
34
            for j=1:5
                 printf('\t \t \t \t \i',j-1)
35
36
            end
        elseif i<=4
37
38
            printf(' \ n \%s', s(i))
39
            for j=1:5
                 printf('\t \t \.10 f',zi(i-1,j))
40
41
            end
        elseif i<=7
42
            printf(' \setminus n \%s', s(i))
43
44
            for j=1:5
                 printf('\t\t\%.10f',fz(i-4,j))
45
46
            end
        elseif i<=8
47
            printf(' \setminus n \%s', s(i))
48
            for j=1:5
49
                 printf('\t\t%.10f',li(j))
50
```

```
51
             end
        elseif i<=9
52
             printf(' \ n \%s', s(i))
53
54
             for j=1:5
                  printf('\t \t .10 f', di(j))
55
56
             end
        elseif i<=10</pre>
57
             printf(' \setminus n \%s', s(i))
58
59
             for j=1:5
                  printf('\t \t \.10f',gi(j))
60
61
             end
        elseif i<=11</pre>
62
63
             printf(' \ n \%s', s(i))
64
             for j=1:5
                  printf('\t\t%.10f',z(j))
65
66
             end
        elseif i<=12
67
             printf('\n %s',s(i))
68
             for j=1:5
69
                  printf('\t \t \.10f',zi(j))
70
71
             end
72
        \quad \text{end} \quad
73 end
74 printf('\n\nAt the end of the %i iteration, the root
        of the equation is \%.10 \, f', j-2, z(j))
```

Scilab code Exa 2.24 Mullers Method

```
1 //Example 2.24
2 //Mullers Method
3 //Page no. 42
4 clc; clear; close;
5 
6 deff('y=f(x)', 'y=x^3-x-2')
7 zi=[1.4;1.5;1.6];
```

```
8 s=["i","z2","z0","z1","f2","f0","f1","a0","a1","a2",
      "zr+","zr-"]
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1)=zi(3,1)-zi(2,1);
11 for i=2:6
12
       for j=1:3
13
          fz(j,i-1)=f(zi(j,i-1))
14
       end
15
       di(i-1)=1+li(i-1)
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
16
          fz(3,i-1)*(li(i-1)+di(i-1))
17
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
18
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
19
       if abs(D1(i-1))>abs(D2(i-1)) then
20
           li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
21
       else
22
           li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
       end
       hi(i)=li(i)*hi(i-1);
24
       z(i-1)=zi(3,i-1)+hi(i)
25
26
       for j=1:2
27
           zi(j,i)=zi(j+1,i-1)
28
       end
       zi(3,i)=z(i-1)
29
30 end
31 for i=1:12
       if i==1 then
32
33
           printf(s(i))
34
           for j=1:5
                printf ('\t\t\t\i', j-1)
35
36
           end
       elseif i<=4
37
           printf(' n %s',s(i))
38
           for j=1:5
39
```

```
printf('\t \t \.10 f',zi(i-1,j))
40
41
             end
42
        elseif i<=7
             printf(' \setminus n \%s', s(i))
43
44
             for j=1:5
                  printf('\t\t%.10f',fz(i-4,j))
45
             end
46
        elseif i<=8</pre>
47
             printf(' \setminus n \%s', s(i))
48
             for j=1:5
49
                  printf('\t \t \.10f',li(j))
50
51
             end
52
        elseif i<=9
             printf(' \ n \%s', s(i))
53
54
             for j=1:5
                 55
56
             end
        elseif i<=10
57
             printf(' \setminus n \%s', s(i))
58
59
             for j=1:5
60
                 printf('\t\t%.10f',gi(j))
61
             end
62
        elseif i<=11
63
             printf(' \setminus n \%s', s(i))
64
             for j=1:5
                  printf('\t\t%.10f',z(j))
65
66
             end
67
        elseif i<=12</pre>
             printf(' \ n \%s', s(i))
68
69
             for j=1:5
                  printf('\t \t \.10f',zi(j))
70
71
             end
72
        end
73 end
74 printf('\n\nAt the end of the %i iteration, the root
        of the equation is \%.10 \, f', j-2, z(j))
```

Scilab code Exa 2.25 Mullers Method

```
1 //Example 2.25
2 // Mullers Method
3 // Page no. 43
4 clc; clear; close;
6 deff('y=f(x)', 'y=cos(x)-x*exp(x)')
7 \text{ zi} = [-1;0;1];
8 s=["i","z2","z0","z1","f2","f0","f1","a0","a1","a2",
      "zr+","zr-"]
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1)=zi(3,1)-zi(2,1);
11 for i=2:7
12
       for j=1:3
          fz(j,i-1)=f(zi(j,i-1))
13
14
       end
15
       di(i-1)=1+li(i-1)
16
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
          fz(3,i-1)*(li(i-1)+di(i-1))
17
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
18
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
19
       if abs(D1(i-1))>abs(D2(i-1)) then
           li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
20
21
       else
22
           li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
       end
       hi(i)=li(i)*hi(i-1);
24
25
       z(i-1)=zi(3,i-1)+hi(i)
26
       for j=1:2
```

```
27
             zi(j,i)=zi(j+1,i-1)
28
        end
29
        zi(3,i)=z(i-1)
30 \, \text{end}
31 \text{ for } i=1:12
32
        if i==1 then
             printf(s(i))
33
34
             for j=1:6
35
                  printf ('\t\t\t\i',j-1)
36
             end
37
        elseif i<=4
38
             printf(' \setminus n \%s', s(i))
39
             for j=1:6
                  printf('\t \t .10 f', zi(i-1,j))
40
41
             end
42
        elseif i<=7
             printf(' \ n \%s', s(i))
43
             for j=1:6
44
                  printf('\t\t\%.10f',fz(i-4,j))
45
46
             end
47
        elseif i<=8
             printf(' \ n \%s', s(i))
48
49
             for j=1:6
                  printf('\t\t%.10f',li(j))
50
51
             end
        elseif i<=9
52
53
             printf(' \setminus n \%s', s(i))
54
             for j=1:6
                  printf('\t\t%.10f',di(j))
55
56
             end
        elseif i<=10
57
             printf(' \ n \%s', s(i))
58
59
             for j=1:6
                  printf('\t \t \.10f',gi(j))
60
61
             end
62
        elseif i<=11
             printf('\n %s',s(i))
63
64
             for j=1:6
```

```
printf('\t\t%.10f',z(j))
65
66
            end
       elseif i<=12
67
            printf('\n %s',s(i))
68
            for j=1:6
69
                printf('\t\t\%.10f',zi(j))
70
71
            end
72
       end
73 end
74 printf('\n\nAt the end of the %i iteration, the root
       of the equation is \%.10 \, f', j-2, z(j))
```

Scilab code Exa 2.26 Mullers Method

```
1 //Example 2.26
2 // Mullers Method
3 //Page no. 44
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^3-x^2-x-1')
7 zi=[0;1;2];
8 	ext{ } s = ["i", "z2", "z0", "z1", "f2", "f0", "f1", "a0", "a1", "a2",
      "zr+","zr-"]
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1)=zi(3,1)-zi(2,1);
11 for i=2:7
12
       for j=1:3
13
           fz(j,i-1)=f(zi(j,i-1))
14
       end
       di(i-1)=1+li(i-1)
15
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
16
          fz(3,i-1)*(li(i-1)+di(i-1))
17
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i
          -1)+fz(3,i-1))
```

```
18
        D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
            -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
            -1)+fz(3,i-1))
        if abs(D1(i-1))>abs(D2(i-1)) then
19
20
             li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
21
        else
22
             li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
        end
24
        hi(i)=li(i)*hi(i-1);
        z(i-1)=zi(3,i-1)+hi(i)
25
26
        for j=1:2
27
             zi(j,i)=zi(j+1,i-1)
28
        end
29
        zi(3,i)=z(i-1)
30 \, \text{end}
31 for i=1:12
        if i==1 then
32
33
             printf(s(i))
34
             for j=1:6
                  printf ('\t\t\t\i', j-1)
35
36
             end
        elseif i<=4
37
             printf(' \ n \%s', s(i))
38
             for j=1:6
39
                  \label{eq:printf} \texttt{printf('} \\ \texttt{t} \\ \texttt{\%}.10 \text{ f',zi(i-1,j))}
40
41
             end
42
        elseif i<=7
             printf(' n %s',s(i))
43
             for j=1:6
44
                  printf('\t\t\%.10f',fz(i-4,j))
45
46
             end
        elseif i<=8
47
48
             printf(' \ n \%s', s(i))
49
             for j=1:6
                  printf('\t\t%.10f',li(j))
50
51
             end
        elseif i<=9
52
             printf(' \setminus n \%s', s(i))
53
```

```
for j=1:6
54
                  printf ('\t\t%.10 f', di(j))
55
             end
56
        elseif i<=10</pre>
57
58
             printf(' \setminus n \%s', s(i))
59
             for j=1:6
                  printf('\t \t \.10f',gi(j))
60
61
             end
62
        elseif i<=11</pre>
             printf(' \ n \%s', s(i))
63
             for j=1:6
64
65
                  printf('\t\t%.10f',z(j))
66
             end
        elseif i<=12
67
             printf('\n's',s(i))
68
             for j=1:6
69
                  printf('\t \t \.10f',zi(j))
70
71
             end
72
        end
73 end
74 printf('\n\nAt the end of the %i iteration, the root
        of the equation is \%.10 \, f', j-2, z(j))
```

Scilab code Exa 2.27 Bairstow Method

```
1 //Example 2.27
2 //Bairstow Method
3 //Page no. 48
4 clc; clear; close;
5 deff('y=f(x,p,q)','y=x^4+5*x^3+p*x^2-5*x-9')
6 n=4;
7 a=[1,5,3,-5,-9];
8 p0=a(3); q0=a(4);
9 b(1)=0; b(2)=1; c(1)=0; c(2)=1;
10 for j=1:4
```

```
11
         for i=1:5
12
         printf('\t \t \%i',a(i))
13 end
14
             for k=3:6
15
                   b(k)=a(k-1)-p0*b(k-1)-q0*b(k-2)
16
                   c(k)=b(k)-p0*c(k-1)-q0*c(k-2)
17
             end
18
19
20 printf('\n \%.4 \, f \setminus t',-p0);
21 \text{ for } i=1:4
         printf(' \setminus t \setminus t\%.4 f', -p0*b(i+1))
22
23 end
24 printf('\n \%.4 f \ t \ t', -q0);
25 \text{ for } i=1:3
         printf(' \setminus t \setminus t\%.4 f',-q0*b(i+1))
26
27 \text{ end}
28 printf('\n
       n ')
29 \text{ for } i=1:5
         printf ('\t\t%.2 f=b\%i', b(i+1), i-1)
30
31 end
32 printf('\n \%.4 \, f \setminus t',-p0);
33 \text{ for } i=1:3
         printf(' \setminus t \setminus t\%.4 f', -p0*c(i+1))
34
35 end
36 printf('n %.4ftt',-q0);
37 \text{ for } i=1:2
         printf(' \setminus t \setminus t\%.4 f', -q0*c(i+1))
38
39 end
40 printf('\n
       n ')
41 for i=1:4
         printf ('\t\t%.2 f=c\%i', c(i+1),i-1)
42
43 end
44 printf('\n\n')
```

```
\begin{array}{lll} 45 & \mathsf{cb} \! = \! \mathsf{c}(\mathsf{n} \! + \! 1) \! - \! \mathsf{b}(\mathsf{n} \! + \! 1) \, ; \\ & \mathsf{dp} \! = \! - \! (\mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n} \! - \! 1) \! - \! \mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \\ & -1)) \\ & \mathsf{dq} \! = \! - \! (\mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{cb} \! - \! \mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \! - \! 1)) \\ & \mathsf{dq} \! = \! - \! (\mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{cb} \! - \! \mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \! - \! 1)) \\ & \mathsf{dq} \! = \! - \! (\mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{cb} \! - \! \mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \! - \! 1)) \\ & \mathsf{dq} \! = \! \mathsf{q}(\mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{cb} \! - \! \mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \! - \! 1)) \\ & \mathsf{dq} \! = \! \mathsf{q}(\mathsf{b}(\mathsf{n} \! + \! 1) \! * \! \mathsf{cb} \! - \! \mathsf{b}(\mathsf{n} \! + \! 2) \! * \! \mathsf{c}(\mathsf{n})) / (\mathsf{c}(\mathsf{n}) \, ^2 \! - \! \mathsf{cb} \! * \! \mathsf{c}(\mathsf{n} \! - \! 1)) \\ & \mathsf{p0} \! = \! \mathsf{p0} \! + \! \mathsf{dp}; \\ & \mathsf{q0} \! = \! \mathsf{q0} \! + \! \mathsf{dp}; \\ & \mathsf{q0} \! = \! \mathsf{q0} \! + \! \mathsf{dq}; \\ & \mathsf{printf}(\, \ ' \backslash \mathsf{n} \ \mathsf{dp} = \! \%.6 \, \mathsf{f} \backslash \mathsf{t} \backslash \mathsf{tdq} = \! \%.6 \, \mathsf{f} \backslash \mathsf{n} \ \mathsf{p\%}; \\ & \mathsf{t} \backslash \mathsf{tq} \! \% i = \! \%.6 \, \mathsf{f} \backslash \mathsf{n} \backslash \mathsf{n} \backslash \mathsf{n} \, , \mathsf{dp}, \mathsf{dq}, \mathsf{j}, \mathsf{p0}, \mathsf{j}, \mathsf{j}, \mathsf{q0}); \\ \mathsf{51} \  \  \, \mathsf{end} \  \, \\ & \mathsf{end} \  \, \\ \end{split}
```

Chapter 3

Linear System of Equations

Scilab code Exa 3.1 Direct Method

Scilab code Exa 3.2 Gaussian Elimination Method

```
7
   //triangularization
  for i=1:3
10
        for j=1:4
11
            if i==1 then
12
                 B(i,j)=A(i,j)
            elseif i==2
13
                 B(i,j)=A(i,j)-A(i,1)*A(i-1,j)/A(1,1)
14
                 B(i+1,j)=A(i+1,j)-A(i+1,1)*A(i-1,j)/A
15
                    (1,1)
            elseif i==3
16
17
                 if j==1 then
18
                     A = B
19
                 end
                 B(i,j)=B(i,j)-A(i,2)*B(i-1,j)/B(2,2)
20
21
            end
22
        end
23 end
24 disp(A, 'Augmented Matrix=')
25 disp(B, 'Triangulated Matrix=')
26 //back substitution
27 \times (3) = B(3,4)/B(3,3);
28 printf('\nx(3)= \%i\n',x(3))
29 \quad for \quad i=2:-1:1
30
       k = 0
31
        for j=i+1:3
32
           k=k+B(i,j)*x(j)
33
        end
       x(i) = (1/B(i,i))*(B(i,4)-k)
34
         printf('\nx(\%i) = \%i \n', i, x(i))
35
36
  end
```

Scilab code Exa 3.3 Gaussian Elimination Method

```
1 //Example 3.3
```

```
2 // Gaussian Elimination Method
3 // Page no. 54
4 clc; clear; close;
6 \quad A = [10, -7, 3, 5, 6; -6, 8, -1, -4, 5; 3, 1, 4, 11, 2; 5, -9, -2, 4, 7];
                   //augmented matrix
7 disp(A, 'Augmented Matrix=')
8 \quad C = A;
9 //triangularization
10 for i=1:4
        for j=1:5
11
12
            if i==1 then
13
                 B(i,j)=A(i,j)
            elseif i==2
14
                 B(i,j)=A(i,j)-A(i,1)*A(i-1,j)/A(1,1)
15
                 B(i+1,j)=A(i+1,j)-A(i+1,1)*A(i-1,j)/A
16
                    (1,1)
                 B(i+2,j)=A(i+2,j)-A(i+2,1)*A(i-1,j)/A
17
                    (1,1)
18
            elseif i==3
19
                 if j==1 then
                     C = B
20
21
                 else
22
                     B(i,j)=B(i,j)-C(i,2)*B(i-1,j)/B(2,2)
                     B(i+1,j)=C(i+1,j)-C(i+1,2)*C(i-1,j)/
23
                        C(2,2)
24
                 end
25
            else
26
                 if j==1 then
                     C = B
27
28
                 end
29
                     B(i,j)=B(i,j)-C(i,3)*B(i-1,j)/B(3,3)
30
            end
31
        end
32 end
33
34 disp(B, 'Triangulated Matrix=')
35 //back substitution
```

```
36 \times (4) = B(4,5)/B(4,4);
37 printf ('\nx(4) = \%.0 f\n', x(4))
38 \text{ for } i=3:-1:1
39
         k = 0
40
         for j=i+1:4
             k=k+B(i,j)*x(j)
41
42
         end
         x(i) = (1/B(i,i))*(B(i,5)-k)
43
          printf('\nx(%i) = \%.0 \text{ f} \cdot \text{n',i,x(i)})
44
45 end
```

Scilab code Exa 3.4 Gaussian Elimination Method

```
1 //Example 3.4
2 // Gaussian Elimination Method
3 // Page no. 55
4 clc; clear; close;
                                                  //
6 \quad A = [2,1,1,10;3,2,3,18;1,4,9,16];
      augmented matrix
7 disp(A, 'Augmented Matrix=')
8 //triangularization
9 \text{ for } i=1:3
10
       for j=1:4
            if i==1 then
11
                B(i,j)=A(i,j)
12
            elseif i==2
13
14
                B(i,j)=A(i,j)-A(i,1)*A(i-1,j)/A(1,1)
15
                B(i+1,j)=A(i+1,j)-A(i+1,1)*A(i-1,j)/A
                    (1,1)
            elseif i==3
16
17
                if j==1 then
                     A = B
18
19
                B(i,j)=B(i,j)-A(i,2)*B(i-1,j)/B(2,2)
20
```

```
21
             end
22
        \quad \text{end} \quad
23 end
24
25 disp(B, 'Triangulated Matrix=')
26 //back substitution
27 \times (3) = B(3,4)/B(3,3);
28 printf('\nx(3)= \%i\n',x(3))
29 \text{ for } i=2:-1:1
30
        k=0
        for j=i+1:3
31
32
            k=k+B(i,j)*x(j)
33
        end
        x(i) = (1/B(i,i))*(B(i,4)-k)
34
         printf('\nx(\%i) = \%i \n', i, x(i))
35
36 end
```

Scilab code Exa 3.5 Gauss Jordan Method

```
1 / \text{Example } 3.5
2 //Gauss-Jordan Method
3 //Page no. 57
5 clc; clear; close;
                                           //augmented
7 A = [1,2,1,8;2,3,4,20;4,3,2,16];
      matrix
8
  for i=1:3
10
        j = i
        while (A(i,i) == 0 \& j <= 3)
11
            for k=1:4
12
                 B(1,k) = A(j+1,k)
13
14
                 A(j+1,k)=A(i,k)
15
                 A(i,k) = B(1,k)
```

```
16
            end
            disp(A)
17
            j = j + 1
18
19
       end
20
       for k=4:-1:i
21
            A(i,k)=A(i,k)/A(i,i)
22
       end
23
       disp(A)
       for k=1:3
24
            if(k~=i) then
25
               l=A(k,i)/A(i,i)
26
27
               for m=i:4
28
                   A(k,m) = A(k,m) - 1 * A(i,m)
29
               end
30
            end
31
32
       end
33
       disp(A)
34 end
35
36 \text{ for } i=1:3
       37
38
  end
```

Scilab code Exa 3.6 Gauss Jordan Method

```
1 //Example 3.6
2 //Gauss-Jordan Method
3 //Page no. 57
4
5 clc; clear; close;
6
7 A=[10,1,1,12;1,10,1,12;1,1,10,12]; //augmented matrix
```

```
9 \text{ for } i=1:3
10
        j = i
        while (A(i,i) == 0 \& j <= 3)
11
12
             for k=1:4
13
                  B(1,k) = A(j+1,k)
14
                  A(j+1,k)=A(i,k)
15
                  A(i,k) = B(1,k)
16
             end
17
             disp(A)
18
             j = j + 1
19
        end
20
        for k=4:-1:i
21
             A(i,k)=A(i,k)/A(i,i)
22
        end
23
        disp(A)
        for k=1:3
24
25
             if(k~=i) then
26
                 l=A(k,i)/A(i,i)
27
                 for m=i:4
28
                      A(k,m) = A(k,m) - 1 * A(i,m)
29
                 end
30
             end
31
32
        end
        disp(A)
33
34 end
35
36 for i=1:3
        printf('\nx(%i) = %g\n',i,A(i,4))
37
38
   end
```

Scilab code Exa 3.7 Gauss Jordan Method

```
1 //Example 3.7
2 //Gauss-Jordan Method
```

```
3 // Page no. 58
5 clc; clear; close;
                                                  //augmented
   A = [1,1,1,9;2,-3,4,13;3,4,5,40];
       matrix
8
9
   for i=1:3
10
         j = i
         while (A(i,i) == 0 \& j <= 3)
11
12
              for k=1:4
13
                   B(1,k) = A(j+1,k)
14
                   A(j+1,k)=A(i,k)
                   A(i,k) = B(1,k)
15
16
              end
17
              disp(A)
18
              j = j + 1
19
         end
20
         for k=4:-1:i
21
              A(i,k)=A(i,k)/A(i,i)
22
         \quad \text{end} \quad
23
         disp(A)
24
         for k=1:3
25
              if(k~=i) then
                  l=A(k,i)/A(i,i)
26
27
                  for m=i:4
28
                       A(k,m) = A(k,m) - 1 * A(i,m)
29
                  \quad \text{end} \quad
30
              end
31
32
         end
         disp(A)
33
34 end
35
36 \text{ for } i=1:3
         printf('\nx(\%i) = \%g\n', i, A(i, 4))
37
38 end
```

Scilab code Exa 3.8 Triangularization Method

```
1 / \text{Example } 3.8
2 // Triangularization Method
3 // Page no. 60
4 clc; clear; close;
6 \quad A = [1,2,3;2,5,2;3,1,5];
7 B = [14; 18; 20];
8 printf('A can be factorizaed as follows:\n')
9 printf('\tL\t\t\ *\t\tU\t\t\
                                     = \t \t A')
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
13
        L(i,i)=1
14 end
15 \text{ for } i=1:3
16
        U(1,i) = A(1,i)
17 \text{ end}
18 L(2,1) = A(1,2)/U(1,1);
19 for i=2:3
        U(2,i)=A(2,i)-U(1,i)*L(2,1);
20
21 end
22 L(3,1) = A(1,3)/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf('\n')
26 \text{ for } i=1:3
27
        for j=1:3
            printf(\%.2 f \ t', L(i,j))
28
29
        end
30
31
        if(i==2)
32
             printf(' *
                                ')
```

```
33
        else
34
             printf('\t')
35
        end
36
37
        for j=1:3
38
             printf('%.2f\t',U(i,j))
39
        \verb"end"
        if(i==2)
40
                                 ')
             printf(' =
41
42
        else
             printf('\t')
43
        end
44
45
        for j=1:3
             printf(\%.2 f \ t^{,} A(i,j))
46
47
        end
        printf('\n')
48
49 end
50 printf('\nY=U*X')
51
        Y = inv(L) *B
52
        X = inv(U) * Y
53 printf('\n\nX=')
54 for i=1:3
                        \%\mathrm{i}',X(i,1))
55
        printf('\n
56 end
```

Scilab code Exa 3.9 Triangularization Method

```
1 //Example 3.9
2 //Triangularization Method
3 //Page no. 61
4 clc; clear; close;
5
6 A=[1,2,3;2,5,2;3,1,5];
7 B=[14;18;20];
8 printf('A =\n')
```

```
9
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
13
        L(i,i)=1
14 end
15 \text{ for } i=1:3
        U(1,i) = A(1,i)
16
17 end
18 L(2,1) = A(1,2)/U(1,1);
19 for i=2:3
20
        U(2,i)=A(2,i)-U(1,i)*L(2,1);
21 end
22 L(3,1) = A(1,3)/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf(' \ n')
26 \text{ for } i=1:3
        for j=1:3
27
             printf('%.2f\t',L(i,j))
28
29
        end
30
        if(i==2)
31
                                ')
32
             printf(' *
33
        else
34
             printf('\t')
35
        end
36
37
        for j=1:3
             printf('%.2f\t',U(i,j))
38
39
40
        printf('\n')
41 end
42
        Y = inv(L) *B
43
        X = inv(U) * Y
44
45 printf('\n \nX=')
46 \text{ for } i=1:3
```

```
47 printf('\n %i',X(i,1)) 48 end
```

Scilab code Exa 3.10 Triangularization Method

```
1 //Example 3.10
2 // Triangularization Method
3 // Page no. 62
4 clc; clear; close;
5
6 \quad A = [2,4,-6;1,5,3;1,3,2];
7 B = [-4; 10; 5];
8 printf('A can be factorizaed as follows:\n')
9 printf('\tL\t\t *\t\tU\t\t
                                    = \t \t A'
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
       L(i,i)=1
13
14 end
15 \text{ for } i=1:3
16
       U(1,i) = A(1,i)
17 end
18 L(2,1)=1/U(1,1);
19 for i=2:3
20
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
21 end
22 L(3,1)=1/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf('\n')
26 for i=1:3
       for j=1:3
27
            printf('%.2f\t',L(i,j))
28
29
       end
30
```

```
if(i==2)
31
             printf(' *
                                 ')
32
        else
33
             printf(' \setminus t')
34
35
        end
36
37
        for j=1:3
             printf('%.2f\t',U(i,j))
38
39
        end
        if(i==2)
40
             printf(' =
                                 ')
41
42
        else
             printf('\t')
43
44
        end
45
        for j=1:3
             printf(\%.2 f t, A(i,j))
46
47
        end
48
        printf('\n')
49 end
50 printf('\nY=U*X')
51
        Y = inv(L) *B
52
        X = inv(U) * Y
53 printf('\n \nX=')
54 \text{ for } i=1:3
                        \%i', X(i,1))
55
        printf('\n
56 end
```

Scilab code Exa 3.11 Triangularization Method

```
1 //Example 3.11
2 //Triangularization Method
3 //Page no. 63
4 clc; clear; close;
5
6 A=[1,3,8;1,4,3;1,3,4];
```

```
7 B = [4; -2; 1];
8 printf('A can be factorizaed as follows:\n')
9 printf('\tL\t\t\ *\t\tU\t\t
                                    = \t \t A')
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
13
       L(i,i)=1
14 end
15 for i=1:3
       U(1,i) = A(1,i)
17 end
18 L(2,1)=1/U(1,1);
19 for i=2:3
20
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
21 end
22 L(3,1)=1/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf(' \ n')
26 \text{ for } i=1:3
27
        for j=1:3
            printf('%.2f\t',L(i,j))
28
29
        end
30
        if(i==2)
31
                              ')
32
            printf(' *
33
        else
            printf('\t')
34
35
        end
36
37
        for j=1:3
            printf('%.2f\t',U(i,j))
38
39
        end
        if(i==2)
40
                              ')
            printf(' =
41
42
        else
43
            printf('\t')
44
        end
```

```
45
         for j=1:3
46
              printf (\%.2 \text{ f} \text{ t}, A(i,j))
47
         end
         printf('\n')
48
49 end
50 printf('\nY=U*X')
51
        Y = inv(L) *B
52
        X = inv(U) * Y
53 printf('\n\nX=')
54 \text{ for } i=1:3
         printf('\n
                         \%.2 f', X(i,1))
55
56 end
```

Scilab code Exa 3.12 Triangularization Method

```
1 //Example 3.12
2 // Triangularization Method
3 // Page no. 63
4 clc; clear; close;
5
6 A = [4, -1, 2; -1, 5, 3; 2, 3, 6];
7 B = [12; 10; 18];
8 printf('A can be factorizaed as follows:\n')
9 printf('\tL\t\t\ *\t\tU\t\t
                                    = \t \t A'
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
13
       L(i,i)=1
14 end
15 \text{ for } i=1:3
16
       U(1,i) = A(1,i)
17 \text{ end}
18 L(2,1)=1/U(1,1);
19 for i=2:3
20
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
```

```
21 end
22 L(3,1)=1/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf('\n')
26 \text{ for } i=1:3
27
        for j=1:3
             printf(\%.2 f \ t', L(i,j))
28
29
        end
30
31
        if(i==2)
                                 ')
32
             printf(' *
33
        else
             printf('\t')
34
35
        end
36
37
        for j=1:3
38
             printf(\%.2 f \ t', U(i,j))
39
        end
        if(i==2)
40
41
             printf(' =
                                 ')
42
        else
43
             printf('\t')
44
        end
45
        for j=1:3
46
             printf (\%.2 f t, A(i,j))
47
        end
        printf('\n')
48
49 \text{ end}
50 printf('\nY=U*X')
        Y = inv(L) *B
51
        X = inv(U) * Y
52
53 printf('\n')
54 \text{ for } i=1:3
                       \%.2 \, f', X(i,1))
        printf('\n
55
56 end
```

Scilab code Exa 3.13 Crout Method

```
1 //Example 3.13
2 //Crout Method
3 // Page no. 67
4 clc; clear; close;
6 \quad A = [1,2,3,1;3,1,1,0;2,1,1,0]
7 \text{ for } i=1:3
8
        for j=1:4
9
             if j==1 then
10
                 M(i,j) = A(i,j)
11
             elseif i==1
12
                 M(i,j) = A(i,j)/A(1,1)
13
             elseif j==2
14
                 M(i,j)=A(i,j)-M(1,j)*M(i,j-1)
             elseif i==2
15
16
                 M(i,j) = (A(i,j)-M(i,1)*M(i-1,j))/M(i,2)
17
             elseif j==3
                 M(i,j)=A(i,j)-(M(i,j-2)*M(i-2,j)+M(i,j
18
                     -1)*M(i-1,j))
             else
19
20
                 M(i,j) = (A(i,j) - (M(i,j-3) * M(i-2,j) + M(i,j
                     -2)*M(i-1,j))/M(i,j-1)
21
             end
22
        end
23 end
24 \operatorname{disp}(M, M = ')
25 \text{ for } i=1:3
        for j=1:4
26
27
             if j^{=4} then
                  U1(i,j)=M(i,j)
28
29
             else
30
                 Y(i,1) = M(i,j)
```

```
31
               end
32
         \quad \text{end} \quad
33 end
34 \ U = eye(3,3)
35 \text{ for } i=1:3
36
         for j=1:3
37
               if j>i then
                    U(i,j)=U1(i,j)
38
39
               end
40
         end
41 end
42 \text{ disp}(U, 'U = ')
43 disp(Y, 'Y = ')
44 X = inv(U) * Y
45 printf('\n\nHence, the solution is : \t')
46 for i=1:3
         printf('x\%i = \%i \backslash t \backslash t',i,X(i))
47
48 end
```

Scilab code Exa 3.14 Crout Method

```
1 //Example 3.14
2 // Crout Method
3 //Page no. 68
4 clc; clear; close;
6 A = [2,1,4,12;8,-3,2,20;4,11,-1,33]
  for i=1:3
8
       for j=1:4
9
           if j==1 then
10
                M(i,j)=A(i,j)
11
           elseif i==1
                M(i,j) = A(i,j)/A(1,1)
12
13
           elseif j==2
14
                M(i,j)=A(i,j)-M(1,j)*M(i,j-1)
```

```
15
              elseif i==2
16
                  M(i,j) = (A(i,j)-M(i,1)*M(i-1,j))/M(i,2)
              elseif j==3
17
                  M(i,j)=A(i,j)-(M(i,j-2)*M(i-2,j)+M(i,j
18
                      -1)*M(i-1,j))
19
              else
20
                   M(i,j) = (A(i,j)-(M(i,j-3)*M(i-2,j)+M(i,j
                      -2)*M(i-1,j))/M(i,j-1)
21
              end
22
        end
23 end
24 \operatorname{disp}(M, M = ')
25 \text{ for } i=1:3
26
        for j=1:4
27
              if j^{=4} then
                   U1(i,j)=M(i,j)
28
29
              else
                   Y(i,1) = M(i,j)
30
31
              end
32
        end
33 end
34 \ U = eye(3,3)
35 \text{ for } i=1:3
        for j=1:3
36
37
              if j>i then
38
                   U(i,j)=U1(i,j)
39
              end
40
        end
41 end
42 \text{ disp}(U, 'U = ')
43 disp(Y, 'Y = ')
44 X = inv(U) * Y
45 printf('\n\nHence, the solution is : \t')
46 \text{ for } i=1:3
        printf('x\%i = \%i \backslash t \backslash t',i,X(i))
47
48 \text{ end}
```

Scilab code Exa 3.15 Crout Method

```
1 //Example 3.15
2 //Crout Method
3 //Page no. 69
4 clc; clear; close;
6 A
      =[1,2,-12,8,27;5,4,7,-2,4;-3,7,9,5,11;6,-12,-8,3,49]
  for i=1:4
8
       for j=1:5
9
            if j==1 then
                M(i,j) = A(i,j)
10
            elseif i==1
11
                M(i,j) = A(i,j)/A(1,1)
12
            elseif j==2
13
14
                M(i,j)=A(i,j)-M(1,j)*M(i,j-1)
15
            elseif i==2
                M(i,j) = (A(i,j)-M(i,1)*M(i-1,j))/M(i,2)
16
            elseif j==3
17
                M(i,j)=A(i,j)-(M(i,j-2)*M(1,j)+M(i,j-1)*
18
                   M(2,j))
            elseif i==3
19
20
                M(i,j) = (A(i,j)-(M(i,1)*M(i-2,j)+M(i,2)*M
                   (i-1,j))/M(i,3)
21
            elseif j==4
22
                M(i,j) = A(i,j) - (M(i,j-2) * M(i-2,j) + M(i,j)
                   -1)*M(i-1,j)+M(i,j-3)*M(i-3,j))
23
            else
                M(i,j) = (A(i,j) - (M(i,j-2) * M(i-1,j) + M(i,j
24
                   -3)*M(i-2,j)+M(i,j-4)*M(i-3,j)))/M(i,
                   j-1)
25
            end
```

```
26
         end
27 \text{ end}
28 \operatorname{disp}(M, M = ')
29 \text{ for } i=1:4
30
         for j=1:5
31
               if j^{=5} then
                     U1(i,j)=M(i,j)
32
33
               else
                     Y(i,1) = M(i,j)
34
35
               end
36
         end
37 end
38 \ U = eye(4,4)
39 \text{ for } i=1:4
40
         for j=1:4
               if j>i then
41
                    U(i,j)=U1(i,j)
42
43
               end
44
         end
45 end
46 \operatorname{disp}(U, 'U = ')
47 \text{ disp}(Y, Y' = Y')
48 \quad X = inv(U) * Y
49 printf('\n) nHence, the solution is : \t')
50 \text{ for } i=1:4
         printf('x\%i = \%i \setminus t',i,X(i))
51
52 end
```

Scilab code Exa 3.16 Jacobi Method

```
1 //Example 3.16
2 //Jacobi Method
3 //Page no. 72
4 clc; clear; close;
```

```
6 \times 0 = 0; y = 0; z = 0;
7 deff('x=f1(y,z)', 'x=(y-z+10)/5')
8 deff('y=f2(x,z)', 'y=(-2*x+z+11)/8')
9 deff('z=f3(x,y)', z=(x-y+3)/4')
10 for i=1:13
11
        x1=f1(y0,z0);
12
        y1=f2(x0,z0);
13
        z1=f3(x0,y0);
        printf('\tx(\%i) = \%g\n\ty(\%i) = \%g\n\tz(\%i)
14
           = \%g \backslash n \backslash n \backslash n , i, x1, i, y1, i, z1)
        x0=x1; y0=y1; z0=z1;
15
16 \, \text{end}
17 printf ('Thus we find that solution converges to %g,
      %g \text{ and } %g', x0, y0, z0)
```

Scilab code Exa 3.17 Gauss Seidel Method

```
1 //Example 3.17
           2 //Gauss Seidel Method
           3 //Page no. 73
           4 clc; clear; close;
           5
           6 \times 0 = 0; y = 0; z = 0;
         7 deff('x=f1(y,z)', 'x=(y-z+10)/5')
        8 deff('y=f2(x,z)', 'y=(-2*x+z+11)/8')
        9 deff('z=f3(x,y)', 'z=(x-y+3)/4')
 10 for i=1:8
11
                                                                                                            x0=f1(y0,z0);
12
                                                                                                              y0=f2(x0,z0);
                                                                                                              z0=f3(x0,y0);
13
                                                                                                              printf ('\tx(%i) = \%g\n\n\ty(%i) = \%g\n\n\tz(%i)
14
                                                                                                                                                      = \%g \langle n \rangle \langle n \rangle
15 end
 16 printf ('Thus we find that solution converges to \%g,
                                                                                       %g \text{ and } %g', x0, y0, z0)
```

Scilab code Exa 3.18 Gauss Seidel Method

```
1 //Example 3.18
2 //Gauss Seidel Method
3 //Page no. 74
4 clc; clear; close;
6 \times 0 = 0; y = 0; z = 0;
7 deff('x=f1(y,z)', 'x=(110-y-z)/54')
8 deff('y=f2(x,z)', 'y=(72-2*x-6*z)/15') 9 deff('z=f3(x,y)', 'z=(85+x-6*y)/27')
10 for i=1:5
11
         x0=f1(y0,z0);
12
         y0=f2(x0,z0);
         z0=f3(x0,y0);
13
14
         printf ('\tx(%i) = \%g\n\n\ty(%i) = \%g\n\n\tz(%i)
            = \%g \backslash n \backslash n \backslash n ', i, x0, i, y0, i, z0)
15 end
16 printf ('Thus we find that solution converges to %.3f
       , \%.3 f \text{ and } \%.3 f', x0, y0, z0)
```

Scilab code Exa 3.19 Gauss Seidel Method

```
1 //Example 3.19
2 //Gauss Seidel Method
3 //Page no. 75
4 clc; clear; close;
5
6 x0=0; y0=0; z0=0;
7 deff('x=f1(y,z)', 'x=(32-4*y+z)/28')
8 deff('y=f2(x,z)', 'y=(35-2*x-4*z)/17')
```

Scilab code Exa 3.20 Gauss Seidel Method

```
1 //Example 3.20
2 //Gauss Seidel Method
3 //Page no. 75
4 clc; clear; close;
6 \times 0 = 0; y = 0; z = 0;
7 deff('x=f1(y,z)', 'x=(17-y+2*z)/20')
8 deff('y=f2(x,z)', 'y=(-18-3*x+z)/20')
9 deff('z=f3(x,y)', 'z=(25-3*x+3*y)/20')
10 for i=1:3
11
        x0=f1(y0,z0);
12
        y0=f2(x0,z0);
        z0=f3(x0,y0);
13
14
        printf ('\tx(%i) = \%g\n\n\ty(%i) = \%g\n\n\tz(%i)
           = \%g \backslash n \backslash n \backslash n ', i, x0, i, y0, i, z0)
15 end
16 printf ('Thus we find that solution converges to \%.1g
       , \%.1g \text{ and } \%.1g',x0,y0,z0)
```

Scilab code Exa 3.21 Relaxation Method

```
1 //Example 3.21
   2 //Relaxation Method
   3 // Page no. 79
   4 clc; clear; close;
   6 A = [10, -2, -2, -6; -1, 10, -2, -7; -1, -1, 10, -8]
   7 deff('y=R(i,x,y,z)', 'y=A(i,1)*x+A(i,2)*y+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+
                         i ,4) ')
   8 printf ('dx \cdot tdy \cdot tdz \cdot tdR1 \cdot tdR2 \cdot tdR3 \cdot n
   9 I = eye(3,3)
10 for i=1:3
11
                               printf('\n')
12
                               for j=1:3
                                                 13
14
                                end
15
                                for j=1:3
                                                 \textbf{printf} (\ `\%g \backslash t\ ', \texttt{A(j,i)})
16
17
                                end
18 end
          printf('\n\n\n\n\xi\tyi\tzi\tR1\tR2\tR3\n
                                                                                                                                                                                                                                  —\n ')
20 I1=[0,0,0;0,0,1;0,1,0;1,0,0]
21 \text{ for } i=1:4
22
                                for j=1:3
23
                                                  1 = 0;
24
                                                  for k=1:i
25
                                                                    l=1+I1(k,j)
26
                                                  end
27
                                                  I(i,j)=1
28
                                end
29 end
30 \quad X = eye(1,6) - eye(1,6)
31 \text{ for } i=1:4
                                printf('\n')
32
                                for j=1:3
33
                                                 printf(' %g\t',I1(i,j))
34
                                                  X(j)=X(j)+I1(i,j)
35
```

```
36
       end
37
       for j=1:3
            printf('%g\t',R(j,I(i,1),I(i,2),I(i,3)))
38
            if i==4 then
39
                X(j+3)=X(j+3)+R(j,I(i,1),I(i,2),I(i,3))
40
41
            end
42
        end
43 end
44 printf(' \ n
                                                         --\n ')
45 \text{ for } i=1:6
       printf('\%g\t',X(i))
46
47 end
48 printf('\n\n\nHence the solution is \n\t x = \%g\n\t
      y = %g \ n \ z = %g', X(1), X(2), X(3))
```

Scilab code Exa 3.22 Relaxation Method

```
1 //Example 3.22
     2 // Relaxation Method
     3 //Page no. 80
    4 clc; clear; close;
     6 A = [10, -2, 1, -12; 1, 9, -1, -10; 2, -1, 11, -20]
     7 deff('y=R(i,x,y,z)', 'y=A(i,1)*x+A(i,2)*y+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+
                                           i,4)')
     8 printf('dx \cdot tdy \cdot tdz \cdot tdR1 \cdot tdR2 \cdot tR3 \cdot n
    9 I = eye(3,3)
10 for i=1:3
                                                      printf('\n')
11
12
                                                      for j=1:3
                                                                                    13
14
                                                      end
15
                                                      for j=1:3
```

```
printf('%g\t',A(j,i))
16
17
        end
18 end
19 printf('\n \n \n \n \xi \t yi \t zi \t R1 \t R2 \t R3 \n
                                                          —\n ')
20 I1
      = [0,0,0;0,0;0,0,2;0,1,0;1,0,0;0,0,-0.3;0.2,0,0;0,0.2,0;0,-0.03,0;-0.0
  for i=1:10
21
22
        for j=1:3
23
             1 = 0;
24
             for k=1:i
25
                 l=1+I1(k,j)
26
             end
27
             I(i,j)=1
28
        end
29 end
30 \quad X = \text{eye}(1,6) - \text{eye}(1,6)
31 for i=1:10
32
        printf('\n')
33
        for j=1:3
            printf(' %g\t',I1(i,j))
34
35
             X(j)=X(j)+I1(i,j)
36
        end
37
        for j=1:3
38
             printf('%g\t',R(j,I(i,1),I(i,2),I(i,3)))
39
             if i==10 then
                 X(j+3)=X(j+3)+R(j,I(i,1),I(i,2),I(i,3))
40
41
             end
42
        end
43 end
44 printf('\n
                                                            –\n ')
45 \text{ for } i=1:6
        printf(' %g\t', X(i))
46
47 end
48 printf('\n\n\nHence the solution is \n\t x = \%g\n\t
      y = %g \ n \ z = %g', X(1), X(2), X(3))
```

Scilab code Exa 3.23 Relaxation Method

```
1 //Example 3.23
   2 // Relaxation Method
   3 // Page no. 81
   4 clc; clear; close;
   6 \quad A = [10, -2, -3, -205; -2, 10, -2, -154; -2, -1, 10, -120]
   7 deff('y=R(i,x,y,z)', 'y=A(i,1)*x+A(i,2)*y+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+A(i,3)*z+
                            i,4),)
   8 printf ('dx \cdot tdy \cdot tdz \cdot tdR1 \cdot tdR2 \cdot tdR3 \cdot n
                                                                                                                                                                                                                                                           - ')
   9 I = eye(3,3)
10 for i=1:3
11
                                  printf('\n')
12
                                  for j=1:3
                                                      13
14
                                  end
15
                                  for j=1:3
                                                      printf('%g\t',A(j,i))
16
17
                                  end
18 end
19 printf('\n \n \n \n \xi \t yi \t zi \t R1 \t R2 \t R3 \n
20 I1
                            = [0,0,0;20,0;0,19,0;0,0,18;10,0,0;0,6,0;0,0,2;2,0,0;0,0,1;0,1,0]
21 \text{ for } i=1:10
22
                                  for j=1:3
23
                                                      1 = 0;
24
                                                      for k=1:i
25
                                                                          l=1+I1(k,j)
26
                                                      end
```

27

I(i,j)=1

```
28
        end
29 \quad end
30 \quad X = eye(1,6) - eye(1,6)
31 for i=1:10
32
        printf('\n')
33
        for j=1:3
             printf('\%g\t',I1(i,j))
34
             X(j)=X(j)+I1(i,j)
35
36
        end
37
        for j=1:3
             printf('%g\t',R(j,I(i,1),I(i,2),I(i,3)))
38
39
             if i==10 then
40
                  X(j+3)=X(j+3)+R(j,I(i,1),I(i,2),I(i,3))
41
             end
42
        end
43 end
44 printf('\n
                                                              _\n ')
45 \text{ for } i=1:6
        \textbf{printf} (\ '\ \%g\backslash t\ ', \texttt{X(i)})
46
47 end
48 printf('\n\n\hence the solution is \n\t x = \%g\n\t
      y = %g\n\t z = %g', X(1), X(2), X(3))
```

Chapter 4

Eigenvalues and Eigenvectors

Scilab code Exa 4.1 Power Method

```
1 / \text{Example } 4.1
2 //Power Method
3 // Page no. 89
4 clc; close; clear;
6 A = [1,3,-1;3,2,4;-1,4,10];
7 e=0.001;
8 q0 = [0;0;1];
9 for i=1:5
10
       q1=A*q0;
       a=max(q1)
11
12
       for j=1:3
           q2(j)=q1(j)/a;
13
14
       Scaled
15
         q(\%i) = \%.3 f n
                               %.3 f
                                              \%.3 f \n
               \%.3 f
                                                \%i \n \n',
         i,q1(1),a,i,q2(1),q1(2),q2(2),q1(3),q2(3))
16
       q1=q2;
```

Scilab code Exa 4.2 Power Method

```
1 //Example 4.2
2 //Power Method
3 //Page no. 90
4 clc; close; clear;
6 A = [1, -3, 2; 4, 4, -1; 6, 3, 5];
7 e=0.001;
8 q0=[1;1;1];
9 \text{ for } i=1:9
10
        q1=A*q0;
11
        a=max(q1)
12
        for j=1:3
13
             q2(j)=q1(j)/a;
14
        end
        printf(' \mid nq(\%i)) = \%.4 f   a = \%.4 f
                                                           Scaled
15
           q(\%i) = \%.3 f n
                                     %.3 f
                                                       \%.3 f \n
                  %.3 f
                                                         \%i \n \n',
           i,q1(1),a,i,q2(1),q1(2),q2(2),q1(3),q2(3))
16
        q1=q2;
17
        q0=q1;
18 \, \mathbf{end}
19 q0 = q0 * 30
```

Scilab code Exa 4.3 Power Method

```
1 //Example 4.3
2 //Power Method
3 // Page no. 91
4 clc; close; clear;
6 A = [2, -1, 0; -1, 2, -1; 0, -1, 2];
7 e=0.001;
8 q0=[1;1;1];
9 for i=1:6
10
       q1=A*q0;
       a=max(q1)
11
       for j=1:3
12
13
           q2(j)=q1(j)/a;
14
       end
       Scaled
15
          q(\%i) = \%.3 f \ n
                                 %.3 f
                                              \%.3 f \n
                %.3 f
                                                   \%i \ n \ n'
          i,q1(1),a,i,q2(1),q1(2),q2(2),q1(3),q2(3))
16
       q1=q2;
17
       q0=q1;
18 end
19 q0 = -q0/q0(2)
20 printf ('Hence the largest eigenvalue is \%.3 f with
      the corresponding eigenvector as \%.1 \text{ f} \setminus n
```

```
%.1g\n
%.1f',a,q0(1),q0(2),q0(3))
```

Scilab code Exa 4.4 Power Method

```
1 / Example 4.4
2 //Power Method
3 //Page no. 93
4 clc; close; clear;
6 A = [3, -1, 0; -1, 2, -1; 0, -1, 3];
7 e=0.001;
8 q0=[1;1;1];
9 \text{ for } i=1:5
       q1=A*q0;
10
       a=max(q1)
11
12
       for j=1:3
13
            q2(j)=q1(j)/a;
14
       Scaled
15
          q(\%i) = \%.3 f n
                                  %.3 f
                                                \%.3 \text{ f} \n
                 %.3 f
                                                    \%i \n \n',
          i,q1(1),a,i,q2(1),q1(2),q2(2),q1(3),q2(3))
16
       q1=q2;
17
       q0=q1;
18 end
19 q0 = -q0/q0(2)
20 printf ('Hence the largest eigenvalue is %.1g with
      the corresponding eigenvector as \%.1g\n
      \%.1 \,\mathrm{g} \,\mathrm{n}
```

Scilab code Exa 4.5 Jacobi Method

```
1 //Example 4.5
2 // Jacobi Method
3 // Page no. 95
4 clc; close; clear;
6 A = [10,7,8,7;7,5,6,5;8,6,10,9;7,5,9,10];
7 n=4;
8 \text{ for } k=1:14
        max1=0
10 for i=1:n
11
        for j=1:n
             if A(i,j)>max1 & i~=j then
12
                  max1=A(i,j)
13
                  i1=i; j1=j;
14
15
             end
16
        end
17 \text{ end}
18 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
19 disp(fi,'fi = ')
20 \ 01 = eye(n,n)
21 \ 01(i1,j1) = -\sin(fi)
22 01(j1,i1) = \sin(fi)
23 01(i1,i1) = \cos(fi)
24 \ 01(j1,j1) = \cos(fi)
25 \text{ disp}(01, 'O1 = ')
26 \quad A = inv(01) * A * 01
27 \text{ disp}(A, 'A1 = ')
28 end
29 printf('\n'n The eigenvalues are : \n')
30 \text{ for } i=1:n
```

Scilab code Exa 4.6 Jacobi Method

```
1 / Example 4.6
2 // Jacobi Method
3 //Page no. 97
4 clc; close; clear;
6 A=[1, sqrt(2),2; sqrt(2),3, sqrt(2);2, sqrt(2),1];
7 C = A;
8 V = [sqrt(2), 0, 1/2; sqrt(2), 0, 1/4; 3/(4*sqrt(2)), -1/(4*sqrt(2))]
      sqrt(2)),2]
9 S = eye(3,3)
10 disp(A, "A =")
11 VI = 0;
12 for i=1:3
13
        for j=1:3
14
             if(i~=j)
                 VI = VI + A(i,j)^2
15
                     //initial off diag norm
16
             end
17
        end
18 \text{ end}
19 VI=sqrt(VI);
                         //final threshold
20 VF = VI * 10^{-7};
21 V1 = VI/3;
22 o=poly(0,"o");
```

```
23 \text{ for } i=1:3
24 \text{ for } q=2:3
25
        for p=q-1:-1:1
26
            if(A(p,q)>V1)
27
                 a=-A(p,q);
28
                 b = (A(p,p) - A(q,q))/2
29
                 if(b~=0)
                     w=b*abs(1/b)*(a/sqrt(a^2+b^2));
30
31
                 else
32
                     w = (a/sqrt(a^2+b^2));
33
                 end
                 sin0=w/sqrt(2*(1+sqrt(1-w^2)));
34
35
                 cos0=sqrt(1-sin0^2)
36
            end
            B(p,p)=A(p,p)*cos0^2+A(q,q)*sin0^2-2*A(p,q)*
37
               sin0*cos0
                 B(q,q)=A(p,p)*sin0^2+A(q,q)*cos0^2+2*A(p)
38
                    ,q)*sin0*cos0
                 B(p,q) = (A(p,p)-A(q,q))*sin0*cos0+A(p,q)
39
                    *(cos0^2-sin0^2)
40
                 S(i,i)=S(i,i)
                 S(i,p)=S(i,p)*cos0-S(i,q)*sin0
41
                 S(i,q)=S(i,p)*sin0+S(i,q)*cos0
42
43
44
        end
45 end
46 \, \text{end}
47 disp(B, "B =")
48 \text{ disp(S,"S} =")
49 printf('\n\n\nComputation error in the solution
      provided by book')
```

Scilab code Exa 4.7 Jacobi Method

```
1 //Example 4.7
```

```
2 // Jacobi Method
3 //Page no. 99
4 clc; close; clear;
6 \quad A = [2,3,1;3,2,2;1,2,1];
7 n=3;
8 \text{ for } k=1:10
9
       max1=0
10 for i=1:n
       for j=1:n
11
            if A(i,j)>max1 & i~=j then
12
13
                 \max 1 = A(i,j)
14
                 i1=i; j1=j;
15
            end
16
       end
17 end
18 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
19 disp(fi, 'fi = ')
20 \ 01 = eye(n,n)
21 01(i1, j1) = -\sin(fi)
22 \ 01(j1,i1) = \sin(fi)
23 01(i1,i1) = \cos(fi)
24 01(j1, j1) = \cos(fi)
25 \text{ disp}(01, 'O1 = ')
26 \quad A = inv(01) * A * 01
27 \text{ disp}(A, 'A1 = ')
28 end
29 printf('\n'n The eigenvalues are : \n')
30 for i=1:n
       31
32 end
```

Scilab code Exa 4.8 Jacobi Method

```
1 //Example 4.8
```

```
2 // Givens Method
3 //Page no. 103
4 clc; close; clear;
6 \quad A = [2,3,1;3,2,2;1,2,1];
7 n=3;
8 \text{ for } k=1:1
9
        max1=0
10 i1=2; j1=3;
11 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
12 disp(fi, 'fi = ')
13 01 = eye(n,n)
14 01(i1, j1) = -\sin(fi)
15 01(j1,i1)=sin(fi)
16 \ 01(i1,i1) = \cos(fi)
17 01(j1,j1) = \cos(fi)
18 \text{ disp}(01, 'O1 = ')
19 A = inv(01) * A * 01
20 \text{ disp}(A, 'B = ')
21 end
22 printf('\n\n')
23 l=poly(0,'lb')
24 \quad A = A - 1 * eye(n,n)
25 disp(-det(A), 'Characteristic Equation = ')
26 A=roots(det(A))
27 printf('\n\n The approximate roots of characteristic
        equation are: \langle n \rangle
28 \quad for \quad i=1:n
        printf(' \setminus tl\%i = \%g \setminus t', i, A(i))
29
30 \text{ end}
```

Scilab code Exa 4.9 Givens Method

```
1 //Example 4.9
2 //Givens Method
```

```
3 // Page no. 104
4 clc; close; clear;
6 \quad A = [3,2,1;2,3,2;1,2,3];
7 n=3;
8 \text{ for } k=1:1
9
        max1=0
10 i1=2; j1=3;
11 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
12 \text{ disp}(fi, 'fi = ')
13 01 = eye(n,n)
14 01(i1, j1) = -\sin(fi)
15 01(j1,i1) = sin(fi)
16 \ 01(i1,i1) = \cos(fi)
17 01(j1, j1) = \cos(fi)
18 \text{ disp}(01, 'O1 = ')
19 A = inv(01) * A * 01
20 \text{ disp}(A, 'B = ')
21 end
22 printf(' \n \n')
23 l=poly(0,'lb')
24 \quad A = A - 1 * eye(n,n)
25 disp(-det(A), 'Characteristic Equation = ')
26 A=roots(det(A))
27 printf('\n'n The eigenvalues are : \n')
28 \text{ for } i=1:n
        printf('\tl\%i = \%g\t',i,A(i))
29
30 \text{ end}
```

Scilab code Exa 4.10 Givens Method

```
1 //Example 4.10
2 //Givens Method
3 //Page no. 105
4 clc;close;clear;
```

```
6 A = [8, -6, 2; -6, 7, -4; 2, -4, 3];
7 n=3;
8 \text{ for } k=1:1
9
       max1=0
10 i1=2; j1=3;
11 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
12 disp(fi, 'fi = ')
13 01 = eye(n,n)
14 01(i1, j1) = -\sin(fi)
15 01(j1,i1) = \sin(fi)
16 \ 01(i1,i1) = \cos(fi)
17 01(j1, j1) = \cos(fi)
18 disp(01, 'O1 = ')
19 A = inv(01) * A * 01
20 \text{ disp}(A, 'B = ')
21 end
22 printf(' \n \n')
23 l=poly(0,'lb')
24 \quad A = A - 1 * eye(n,n)
25 disp(det(A), 'Characteristic Equation = ')
26 A=roots(det(A))
27 printf('\n'n The eigenvalues are : \n')
28 \quad for \quad i=1:n
       29
30 end
```

Scilab code Exa 4.11 Givens Method

```
1 //Example 4.11
2 //Givens Method
3 //Page no. 106
4 clc; close; clear;
5
6 A=[1,2,2;2,1,2;2,2,1];
```

```
7 n=3;
8 \text{ for } k=1:1
9
        max1=0
10 i1=2; j1=3;
11 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
12 disp(fi, 'fi = ')
13 01 = eye(n,n)
14 01(i1,j1) = -\sin(fi)
15 01(j1,i1) = sin(fi)
16 \ 01(i1,i1) = \cos(fi)
17 01(j1, j1) = \cos(fi)
18 \text{ disp}(01, 'O1 = ')
19 A = inv(01) * A * 01
20 \text{ disp}(A, 'B = ')
21 end
22 printf('\n\n')
23 l=poly(0,'lb')
24 \quad A = A - 1 * eye(n,n)
25 disp(-det(A), 'Characteristic Equation = ')
26 A=roots(det(A))
27 printf('\n'n The eigenvalues are : \n')
28 \text{ for } i=1:n
        printf('\tl\%i = \%g\t',i,A(i))
29
30 \text{ end}
```

Scilab code Exa 4.12 Givens Method

```
1 //Example 4.12
2 //Givens Method
3 //Page no. 107
4 clc; close; clear;
5
6 A=[1,2,2,2;2,1,2,2;2,2,1,3;2,2,3,1];
7 n=4;
8 for k=1:3
```

```
9
        max1=0
10
        if k==1 then
11
             i1=2; j1=3;
12
        elseif k==2
13
             i1=2; j1=4;
14
        else
15
             i1=3; j1=4;
16
        end
17 fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
18 disp(fi, 'fi = ')
19 01 = eye(n,n)
20 \ 01(i1,j1) = -\sin(fi)
21 \ 01(j1,i1) = \sin(fi)
22 \ 01(i1,i1) = \cos(fi)
23 01(j1,j1) = \cos(fi)
24 \text{ disp}(01, 'O1 = ')
25 \quad A = inv(01) * A * 01
26 \text{ disp}(A, 'B = ')
27 \text{ end}
28 printf('\n\n')
29 l=poly(0,'lb')
30 \quad A = A - 1 * eye(n,n)
31 disp(-det(A), 'Characteristic Equation = ')
32 \quad A = roots(det(A))
33 printf('\n'n The eigenvalues are : \n')
34 for i=1:n
        printf('\tl\%i = \%g\t',i,A(i))
35
36 \text{ end}
```

Scilab code Exa 4.13 House Holder Transformation

```
1 //Example 4.13
2 //House Holder Transformation
3 //Page no. 113
4 clc; clear; close;
```

```
5
6 \quad A = [3,2,1;2,3,2;1,2,3]
7 disp(A, 'A=')
8 k = 0;
9 for j=2:3
10
       k=k+A(j,1)^2;
11 end
12 a=A(2,1)*abs(1/A(2,1))*sqrt(k);
13 disp(a, 'alpha=')
14 U = [0; a+A(2,1); A(3,1)];
15 disp(U, 'U=')
16 U1=U'*U;
17 disp(U1, 'UT*U=')
18 U2=U*U';
19 disp(U2, 'U*UT=')
20 P = eye(3,3) - (2*U2)/U1;
21 disp(P, 'P=');
22 B = P * A * P;
23 disp(B, 'B=');
```

Scilab code Exa 4.14 House Holder Transformation

```
1 //Example 4.14
2 //House Holder Transformation
3 //Page no. 114
4 clc; clear; close;
5
6 A=[1,3,4;3,1,2;4,2,1]
7 disp(A, 'A=')
8 k=0;
9 for j=2:3
10 k=k+A(j,1)^2;
11 end
12 a=A(2,1)*abs(1/A(2,1))*sqrt(k);
13 disp(a, 'alpha=')
```

```
14  U=[0; a+A(2,1); A(3,1)];
15  disp(U, 'U=')
16  U1=U'*U;
17  disp(U1, 'UT*U=')
18  U2=U*U';
19  disp(U2, 'U*UT=')
20  P=eye(3,3)-(2*U2)/U1;
21  disp(P, 'P=');
22  B=P*A*P;
23  disp(B, 'B=');
```

Scilab code Exa 4.15 Strum Sequence

```
1 //Example 4.15
2 //Strum Sequence
3 // Page no. 116
4 clc; clear; close;
6 \quad A = [1, 2, 2; 2, 1, 2; 2, 2, 1]
7 disp(A, 'A=')
8 \text{ k=0};
9 for j=2:3
       k=k+A(j,1)^2;
10
11 end
12 a=A(2,1)*abs(1/A(2,1))*sqrt(k);
13 U=[0;a+A(2,1);A(3,1)];
14 U1=U'*U;
15 U2=U*U';
16 P = eye(3,3) - (2*U2)/U1;
17 B=P*A*P;
18 disp(B, 'Reduced Matrix = ');
19 lb=poly(0,"lb")
20 f01=1;
                                               //strum
      sequence
21 f11=(B(1,1)-lb)*f01;
```

```
22 f2l=(B(2,2)-lb)*f1l-B(1,2)^2*f0l

23 f3l=(B(3,3)-lb)*f2l-B(2,3)^2*f1l

24 disp(f3l, "f3(lambda) = ")

25 disp(roots(f3l), "Therefore the eigenvalues are : ")
```

Scilab code Exa 4.16 Strum Sequence

```
1 //Example 4.16
2 //Strum Sequence
3 //Page no. 117
4 clc; clear; close;
6 A = [8, -6, 2; -6, 7, -4; 2, -4, 3]
7 disp(A, 'A=')
8 k = 0;
9 for j=2:3
       k=k+A(j,1)^2;
10
11 end
12 a=A(2,1)*abs(1/A(2,1))*sqrt(k);
13 U = [0; a+A(2,1); A(3,1)];
14 U1=U'*U;
15 U2=U*U';
16 P = eye(3,3) - (2*U2)/U1;
17 B=P*A*P;
18 disp(B, 'Reduced Matrix = ');
19 lb=poly(0,"lb")
20 f01=1;
                                            //strum
      sequence
21 f11=(B(1,1)-lb)*f01;
22 f21=(B(2,2)-1b)*f11-B(1,2)^2*f01
23 f31=(B(3,3)-1b)*f21-B(2,3)^2*f11
24 disp(f31, "f3(lambda) = ")
25 disp(roots(f31), Therefore the eigenvalues are: ")
```

Scilab code Exa 4.17 Gerschgorin Circles

```
1 //Example 4.17
2 // Gerschgorin Circles
3 //Page no. 118
4 clc; clear; close;
6 \quad A = [1,2,3;2,4,6;3,6,1];
7 j=2;
8 k = 3;
9 printf('The Gerschgorin Circles are : \n\ A = ')
10 for i=1:3
       printf('\t|z-%i| = |\%i| + |\%i| = \%i \setminus n', A(i,i), A(
11
           i,j),A(i,k),A(i,j)+A(i,k))
       if j~=1 then
12
13
            j = j - 1
14
        end
15
        if i==2 then
16
            k=k-1
17
        end
18 end
```

Chapter 5

Finite Differences and Interpolation

Scilab code Exa 5.1 Backward Difference Formula

```
1 / \text{Example } 5.1
2 //Backward Difference Formula
3 // Page no. 124
4 clc; close; clear;
5 printf('\tx\t\ty\t1st Difference 2nd Difference
      3rd Difference 4th Difference\n')
6 printf('
      ')
7 h=0.02;
8 z = [-1;0;1;2;3;4;5]
9 deff('y=f(x)', 'y=x^3-3*x^2+5*x-7')
10 for i=1:7
11
       z(i,2)=f(z(i,1))
12 end
13 for i=3:8
       for j=1:9-i
           z(j,i)=z(j+1,i-1)-z(j,i-1)
15
16
       end
```

```
17 \text{ end}
18 printf('\n')
19 for i=1:7
20
        for j = 1:6
21
             if z(i,j)==0 then
22
                  printf('\t\%i\t',z(i,j))
23
             else
                  printf('\t\%i\t',z(i,j))
24
25
             end
26
        end
        printf('\n')
27
28 end
```

Scilab code Exa 5.3 Factorial Notation Method

```
1 //Example 5.3
2 // Factorial Notation Method
3 //Page no. 131
4 clc; close; clear;
5
6 h=0.0000001; h1=0000000.1
7 deff('y=f(x)', 'y=x^3-2*x^2+x-1')
8 deff('y=f1(x)', 'y=x*(x-1)*(x-2)')
9 deff('y=f2(x)', 'y=x*(x-1)')
10 for i=0:2
       A(i+1,1)=f2(i);
11
12
       A(i+1,2)=i;
       A(i+1,3)=1
13
14
       B(i+1,1)=f(i)-f1(i)
15 end
16 x = poly(0, 'x')
17 C = inv(A) *B
18 disp(C(3), '+', C(2)*x, '+', C(1)*f2(x), '+', f(x))
19 printf('\n \n f(x) = ')
20 deff('y=f3(x)', 'y=C(3)+C(2)*x+C(1)*f2(x)+f(x)')
```

```
21 \quad disp(f3(x))
22 deff('y=f4(x)', 'y=(f3(x+h)-f3(x))/h') //1st
      derivative
23 disp(f4(x), 'dx = ')
24 deff('y=f5(x)', 'y=(f4(x+h1)-f4(x))/h1')
                                                    //2nd
      derivative
25 \text{ disp}(f5(x), 'd2x = ')
26 deff ('y=f6(x)', 'y=(f5(x+h1)-f5(x))/h1')
                                                    //3rd
      derivative
27 \text{ disp}(f6(x), 'd3x = ')
28 deff('y=f7(x)', 'y=(f6(x+h1)-f6(x))/h1')
                                                    //4 \,\mathrm{th}
      derivative
29 disp(f7(x), 'd4x = ')
```

Scilab code Exa 5.5 Finite Differences

```
1 / \text{Example } 5.5
2 //Finite Differences
3 //Page no. 132
4 clc; close; clear;
5 printf('
                 x \setminus t \quad f(x) \setminus t df(x) \setminus t \qquad d2f(x) \setminus t d3f(x) \setminus t
                 d4f(x) \setminus n'
6 printf('
       ')
7 x = [0,1;1,3;2,9;3,poly(0,"y3");4,81]
8 for i=3:6
9
         for j=1:7-i
10
              x(j,i)=x(j+1,i-1)-x(j,i-1)
11
         end
12 end
13 \text{ disp}(x)
14 disp(roots(x(1,6)), "y3 = ")
```

Scilab code Exa 5.6 Finite Differences

```
1 //Example 5.6
2 // Finite Differences
3 //Page no. 132
4 clc; close; clear;
5 printf(' x \setminus t f(x) \setminus t df(x) \setminus t d2f(x) d3f(x)
      d4f(x) n'
6 printf('
      ')
7 x = [0,3;1,12;2,81;3,2000;4,100]
8 for i=3:6
9
       for j=1:7-i
            x(j,i)=x(j+1,i-1)-x(j,i-1)
10
11
        end
12 end
13 \text{ disp}(x)
14 disp(x(1,6), "d4 y(0) = ")
```

Scilab code Exa 5.11 Finite Differences

```
8 for i=3:6
9     for j=1:8-i
10         x(j,i)=x(j+1,i-1)-x(j,i-1)
11     end
12 end
13 disp(x)
14 x1=poly(0,"x")
15 fx=x(1,2)+x1*x(1,3)+(x1^2-x1)*x(1,4)/2+(x1^3-3*x1^2+2*x1)*x(1,5)/6
16 disp("is the required polynomial",fx)
```

Scilab code Exa 5.16 Finite Differences

```
1 //Example 5.16
2 // Finite Differences
3 // Page no. 138
4 clc; close; clear;
6 printf(' x \setminus tf(x) \setminus tdf(x) d2f(x) d3f(x) d4f(x) \setminus n')
7 printf('
8 x = [0,1;1,-1;2,1;3,-1;4,1;5,0;6,0;7,0];
9 \text{ for } i=3:6
       for j=1:8-i
10
            if x(j+1,i-1)^=0 then
11
12
                 x(j,i)=x(j+1,i-1)-x(j,i-1)
13
            end
14
        end
15 end
16 k = -9;
17 for i=1:8
       printf('
18
19
       for j=1:6
20
            if i==j+k then
```

```
21
                 break
            elseif x(i,j) == 0 & j^{=1} & j^{=2}  then
22
                 printf('d%iy%i\t',j-1,i-1)
23
            elseif x(i,j)==0 & i~=1
24
25
                 printf ('y\%i\t',i-1)
26
            else
                 printf('%i\t',x(i,j))
27
28
            end
29
        end
        printf('\n')
30
31
       k=k+2
32 end
33 x1 = poly(0, "x")
34 \text{ fx=x(1,2)+x1*x(1,3)+(x1^2-x1)*x(1,4)/2+(x1^3-3*x1)}
      ^2+2*x1)*x(1,5)/6
35 \text{ for } i=1:3
        x(1+i,6)=16;
36
37
        printf ('\nd5y\%i = 16',i)
38 end
39 printf('\nElements should be constant\n\n');
40 i=1; k=2;
41 for j=5:-1:2
42
        while i<4
            x(k+1,j)=x(k,j)+x(k,j+1);
43
44
            if j>2 then
                 printf('\nd\%iy\%i = \%i', j-1, k, x(k+1, j))
45
46
            else
                 printf ('\ny\%i = \%i',k,x(k+1,j))
47
48
            end
49
            k=k+1;
50
            i=i+1;
51
        end
52
        i=1; k=k-2;
53 end
```

Scilab code Exa 5.17 Error Propagation

```
1 //Example 5.17
2 //Error Propagation
3 //Page no. 140
4 clc; close; clear;
                           y \setminus t \setminus tdy \setminus td2y \setminus t d3y \setminus t
5 printf(' x \setminus t
                                                                d4v
      \t d5yn,
6 printf('
       ')
7 x
      =[1,1;1.1,1.5191;1.2,2.0736;1.3,2.6611;1.4,3.2816;1.5,3.9375;1.6,
8 \text{ for } i=3:7
        for j=1:13-i
9
             x(j,i)=x(j+1,i-1)-x(j,i-1)
10
11
        end
12 end
13 \text{ disp}(x)
14 for i=1:11
        if abs(x(i,7))<10^-5 then
15
16
             continue
17
        else
18
             break
19
        end
20 \, \text{end}
21 printf("\n\Therefore the error is in the value
       corresponding to \%g i.e. \%g, x(i+5,1), x(i+5,2))
```

Scilab code Exa 5.18 Error Propagation

```
1 //Example 5.18
2 //Error Propagation
3 //Page no. 141
```

```
4 clc; close; clear;
                          y \setminus t \setminus tdy \setminus td2y \setminus t d3y \setminus t
5 printf(' x \setminus t
                                                                 d4y
      \t d5y\n')
6 printf('
       ')
7 x
       = [0,2;1,5;2,8;3,17;4,38;5,75;6,140;7,233;8,362;9,533;10,752]
8 for i=3:6
9
        for j=1:13-i
             x(j,i)=x(j+1,i-1)-x(j,i-1)
10
11
        end
12 end
13 \text{ disp}(x)
14 for i=1:11
        if abs(x(i,6))<10^-5 then
15
16
             continue
17
        else
18
             break
19
        end
20 \text{ end}
21 printf("\n\Therefore the error is in the value
       corresponding to \%g i.e. \%g, x(i+4,1), x(i+4,2))
```

Scilab code Exa 5.20 Newtons Forward Difference Formula

```
1 //Example 5.20
2 //Newtons Forward Difference Formula
3 //Page no. 144
4 clc; close; clear;
5 printf('x\t sin x\t\t 1st\t\t 2nd\t\t 3rd\t\t t 4th\t\t 5th\n\t\t\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdifference\tdiffer
```

```
')
7 h = 0.2;
8 z
      = [0.5, 0.47943; 0.7, 0.64422; 0.9, 0.78333; 1.1, 0.89121; 1.3, 0.96356; 1.5]
9 deff('y=f(x,p)', 'y=z(x,2)+p*z(x,3)+p*(p+1)*z(x,4)/2+
      p*(p+1)*(p+2)*z(x,5)/6+p*(p+1)*(p+2)*(p+3)*z(x,6)
      /24^{\circ}
10 deff('y=f1(x,p)', 'y=z(x,2)+p*z(x,3)+p*(p-1)*z(x,4)
      /2+p*(p-1)*(p-2)*z(x,5)/6+p*(p-1)*(p-2)*(p-3)*z(x
      (6)/24+p*(p-1)*(p-2)*(p-3)*(p-4)*z(x,7)/120
11 x01=0.5; x11=0.54;
12 \times 02 = 1.3; \times 12 = 1.36
13 for i=3:7
       for j=1:8-i
14
            z(j,i)=z(j+1,i-1)-z(j,i-1)
15
16
        end
17 end
18 printf('\n')
19 for i=1:6
20
       for j=1:7
            if z(i,j)==0 then
21
22
                printf(' \t')
23
            else
24
                if j==1 then
                     printf('\%.1f\t',z(i,j))
25
26
                else
27
                     printf('%.7f\t',z(i,j))
                end
28
29
            end
30
        end
31
        printf('\n')
32 end
33 p=(x11-x01)/h;
34 disp(f1(1,p), "fp(0.54) =");
35 p = (x12 - x02)/h;
36 disp(f(5,p), "fp(1.36) =");
```

Scilab code Exa 5.21 Newtons Forward Difference Formula

```
1 //Example 5.21
2 //Newton's Forward Difference Formula
3 //Page no. 145
4 clc; close; clear;
5 printf('x \in f(x) \setminus t = 1 \operatorname{st} \setminus t \setminus t
                                                  2 \operatorname{nd} \setminus t \setminus t
                                                                3 \operatorname{rd} \setminus t \setminus t
       \n \t \t \t \difference \t \difference \t \difference \t \difference \t \')
6 printf('\n
       ')
7 h=1;
8 z=[0,-4;1,-1;2,2;3,11;4,32;5,71]
9 deff ('y=f1(x,p)', 'y=z(x,2)+p*z(x,3)+p*(p-1)*z(x,4)
       /2+p*(p-1)*(p-2)*z(x,5)/6
10 x01=0; x11=6;
11 x02=2; x12=2.5
12 for i=3:7
         for j=1:8-i
13
14
              z(j,i)=z(j+1,i-1)-z(j,i-1)
15
         end
16 \text{ end}
17 printf('\n')
18 for i=1:6
19
         for j=1:5
              if z(i,j)==0 & i~=1 then
20
21
                    printf(' \t')
22
              else
23
                    if j==1 then
                         printf(' %.1 f\t',z(i,j))
24
25
                    else
                         printf('%.7f\t',z(i,j))
26
27
                    end
28
              end
```

Scilab code Exa 5.22 Newtons Forward Difference Formula

```
1 //Example 5.22
2 //Newton's Forward Difference Formula
3 //Page no. 147
4 clc; close; clear;
5 printf('x t y t t 1 st t t 2 nd t t 3 rd t t n
      t\t\tdifference\tdifference\tdifference\t')
6 printf('\n
      ')
7 h = 1;
8 z=[0,-3;1,3;2,11;3,27;4,57;5,107]
9 deff('y=f1(x,p)', 'y=z(x,2)+p*z(x,3)+p*(p-1)*z(x,4)
     /2+p*(p-1)*(p-2)*z(x,5)/6
10 \times 01 = 0; \times 11 = 6;
11 x02=2; x12=2.5
12 for i=3:7
13
       for j=1:8-i
14
           z(j,i)=z(j+1,i-1)-z(j,i-1)
15
       end
16 end
17 printf('\n')
```

```
18 for i=1:6
19
       for j = 1:5
            if z(i,j) == 0 & i^=1 then
20
21
                printf(' \t')
22
            else
23
                if j==1 then
24
                     printf(' %.1 f\t',z(i,j))
25
                else
26
                     printf('%.7f\t',z(i,j))
27
                end
28
            end
29
       end
30
       printf('\n')
31 end
32 x = poly(0, 'x')
33 1=z(1,2)+x*z(1,3)+x*(x-1)*z(1,4)/2+x*(x-1)*(x-2)*z
      (1,5)/6
34 disp(1, "The required equation is:")
```

Scilab code Exa 5.23 Newtons Forward Difference Formula

```
11 for i=3:7
12
        for j=1:7-i
            z(j,i)=z(j+1,i-1)-z(j,i-1)
13
14
        end
15 end
16 printf('\n')
17 for i=1:5
18
        for j=1:6
            if z(i,j)==0 then
19
                 printf(' \t')
20
21
            else
22
                 if j==1 then
                     printf('\%i\t',z(i,j))
23
24
                 else
                     printf('%i\t',z(i,j))
25
26
                 end
27
            \verb"end"
28
        end
        printf('\n')
29
30 \text{ end}
31 x = poly(0, 'x')
32 \quad 1=z(1,2)+x*z(1,3)+x*(x-1)*z(1,4)/2+x*(x-1)*(x-2)*z
      (1,5)/6
33 disp(1, "The required equation is:")
34 p = (x11 - x01)/h;
35 disp(f(5,p), "fp(105) =");
```

Scilab code Exa 5.24 Central Difference Derivatives

```
1 //Example 5.24
2 //Central Difference Derivatives
3 //Page no. 160
4 clc; close; clear;
5 printf(' x\t\t y\t\t d\t\t d2\t\t d3\t\t \t d4\n')
```

```
6 printf('
                                ')
    7 h=0.01; s=0.5;
   8 deff('y=f1(x,p)', 'y=z(x,2)+p*z(x,3)+p*(p-1)*(z(x,4)+p*z(x,3)+p*(p-1)*(z(x,4)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,4)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*z(x,3)+p*
                               z(x-1,4))/4
   9 z
                               =[0.01,98.4342;0.02,48.4392;0.03,31.7775;0.04,23.4492;0.05,18.454
10 for i=3:6
                                       for j=1:7-i
11
12
                                                             z(j,i)=z(j+1,i-1)-z(j,i-1)
13
                                       end
14 end
15 printf('\n')
16 for i=1:5
17
                                      for j=1:6
                                                            if z(i,j)==0 then
18
                                                                                    printf(' \t')
19
20
                                                             else
21
                                                                                   printf('%.7f\t',z(i,j))
22
                                                             end
23
                                       end
24
                                       printf('\n')
25 end
26 \times 00 = 0.03; \times 01 = 0.0341;
27 p = (x01 - x00)/h
28 printf('\n\nf(0.0341) = \%g',f1(3,p))
```

Scilab code Exa 5.27 Central Difference Derivatives

```
1 //Example 5.27
2 //Divided Difference Interpolation
3 //Page no. 165
4 clc; close; clear;
```

```
5
6 \quad x = [-4, -1, 0, 2, 5]
7 y = [1245, 33, 5, 9, 1335];
8 \text{ y} 1 = \text{y};
  deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
          //function for finding polynomials
  for i=1:4
10
       for j=1:5-i
11
12
            z(j,i)=P(x,y,j,i)
             y(j)=z(j,i)
13
14
       end
15 end
16 z(6,1)=0;
17 printf('x \setminus ty
                                                       f (x0,
                       f(x0, x1)
                                      f(x0, x1, x3)
      x1, x2, x3)
                    f(x0, x1, x2, x3, x4) \ n'
18 printf('
      n ')
19
       for j=1:5
            20
               n', x(1,j), y1(1,j), z(j,1), z(j,2), z(j,3), z(j,3)
               j,4))
21
       end
22
       x1 = poly(0, 'x')
       fx=y1(1)+(x1-x(1))*z(1,1)+(x1-x(1))*(x1-x(2))*z
23
          (1,2)+(x1-x(1))*(x1-x(2))*(x1-x(3))*z(1,3)+(
          x1-x(1))*(x1-x(2))*(x1-x(3))*(x1-x(4))*z(1,4)
24
       disp(fx, "The Required Equation = ")
```

Scilab code Exa 5.28 Divided Difference Interpolation

```
1 //Example 5.28
2 //Divided Difference Interpolation
3 //Page no. 167
4 clc; close; clear;
```

```
5
6 \quad x = [-1, 0, 3, 6, 7]
7 y = [3, -6, 39, 822, 1611];
8 y1 = y;
  deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
          //function for finding polynomials
  for i=1:4
10
       for j=1:5-i
11
12
           z(j,i)=P(x,y,j,i)
            y(j)=z(j,i)
13
14
       end
15 end
16 z(6,1)=0;
17 printf('x \setminus ty
                                                     f (x0,
                       f(x0, x1)
                                     f(x0, x1, x3)
      x1, x2, x3)
                    f(x0, x1, x2, x3, x4) \ n'
18 printf('
      n ')
19
       for j=1:5
           20
              n', x(1,j), y1(1,j), z(j,1), z(j,2), z(j,3), z(j,3)
              j,4))
21
       end
22
       x1 = poly(0, 'x')
       fx=y1(1)+(x1-x(1))*z(1,1)+(x1-x(1))*(x1-x(2))*z
23
          (1,2)+(x1-x(1))*(x1-x(2))*(x1-x(3))*z(1,3)+(
          x1-x(1))*(x1-x(2))*(x1-x(3))*(x1-x(4))*z(1,4)
24
       disp(fx, "The Required Equation = ")
```

Scilab code Exa 5.29 Divided Difference Interpolation

```
1 //Example 5.29
2 //Divided Difference Interpolation
3 //Page no. 167
4 clc; close; clear;
```

```
5
6 \quad x = [4,5,7,10,11,13]
7 y = [48, 100, 294, 900, 1210, 2028];
8 y1 = y;
  deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
          //function for finding polynomials
  for i=1:6
10
        for j=1:6-i
11
12
            z(j,i)=P(x,y,j,i)
             y(j)=z(j,i)
13
14
        end
15 end
16 z(6,1)=0;
17 printf('x \setminus ty
                                                        f (x0,
                        f(x0, x1)
                                       f(x0, x1, x3)
      x1, x2, x3)
                     f(x0, x1, x2, x3, x4) \ n'
18 printf('
      n ')
        for j=1:5
19
            20
                    \%i\n', x(1,j), y1(1,j), z(j,1), z(j,2), z(
               j,3),z(j,4),z(j,5))
21
        end
        deff('y=f(x1)', 'y=y1(1)+(x1-x(1))*z(1,1)+(x1-x
22
           (1))*(x1-x(2))*z(1,2)+(x1-x(1))*(x1-x(2))*(x1
          -x(3))*z(1,3)')
        printf(' \setminus n \setminus nf(8) = \%g', f(8))
23
        printf(' \setminus n \setminus nf(15)) = \%i', f(15))
24
```

Scilab code Exa 5.30 Maximum Error in Interpolation

```
1 //Example 5.30
2 //Maximum Error in Interpolation
3 //Page no. 169
4 clc; close; clear;
```

```
5  s=1;
6  for i=0:6
7      s=s*((5*%pi)/24-i*%pi/12)
8  end
9  s=s/factorial(7)
10  printf('Maximum Error = %g',s)
```

Scilab code Exa 5.32 Divided Difference Interpolation

```
1 //Example 5.32
2 // Divided Difference Interpolation
3 //Page no. 170
4 clc; close; clear;
5
6 x = [0, 1, 2, 4]
7 y = [1,3,9,81];
8 y1=y;
9 deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
      ') //function for finding polynomials
10 for i=1:4
        for j = 1 : 4 - i
11
             z(j,i)=P(x,y,j,i)
12
              y(j)=z(j,i)
13
14
        end
15 end
16 z(6,1)=0;
17 printf('x \setminus ty
                         f(x0, x1) f(x0, x1, x3) f(x0, x1, x3)
      x1, x2, x3) \setminus n
18 printf('
      n ')
19
        for j=1:3
             printf(' \%i \ t\%i \ t\%i \ t\%i \ t\%i \ t \ t\%i \ t \ t \ n', x(1, t)
20
                j),y1(1,j),z(j,1),z(j,2),z(j,3))
21
        end
```

```
22  \frac{\text{deff}('y=f(x1)', 'y=y1(1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-x(1))*z(1,1)+(x1-
```

Scilab code Exa 5.36 Lagranges Interpolation Method

```
1 //Example 5.36
2 //Lagrange's Interpolation Method
3 //Page no. 176
4 clc; close; clear;
6 x = [7, 8, 9, 10]
7 y = [3, 1, 1, 9]
8 \times 0 = 9.5
9 printf('\tx\ty=f(x)\n--
                                                      –\n ')
10 for i=1:4
        printf('x\%i\t\%i\t \%i\n',i-1,x(i),y(i))
11
12 end
13 p=1;p1=1;i=1;
14 \text{ for } k=1:4
15
        for j=1:4
            if k~=j then
16
                 p=p*(x0-x(j))
17
                 p1=p1*(x(k)-x(j))
18
19
            end
20 end
21 L(k)=p/p1
22 p=1; p1=1;
23 end
24 p = 0;
25 \text{ for } i=1:4
        printf('\n L\%i (x) = \%g\n',i-1,L(i))
26
27
        p=p+L(i)*y(i)
28 end
```

```
29 disp(p, "P(9.5) = ")
```

Scilab code Exa 5.37 Lagranges Interpolation Method

```
1 //Example 5.37
2 //Lagranges Interpolation Method
3 //Page no. 177
4 clc; close; clear;
6 x = [0, 1, 2, 5]
7 y = [2,3,12,147]
8 x0 = poly(0, 'x')
9 printf('\tx\ty=f(x)\n-----
10 for i=1:4
       printf('x\%i\t\%i\t', i-1, x(i), y(i))
11
12 end
13 p=1;p1=1;i=1;
14 \text{ for } k=1:4
       for j=1:4
15
16
            if k~=j then
17
                p=p*(x0-x(j))
                p1=p1*(x(k)-x(j))
18
19
            end
20 \text{ end}
21 L(k)=p/p1
22 p=1; p1=1;
23 end
24 p=0;
25 \text{ for } i=1:4
       disp(L(i),"L(x) = ")
26
       p=p+L(i)*y(i)
27
28 end
29 disp(p, "P(x) = ")
```

Scilab code Exa 5.38 Lagranges Interpolation Method

```
1 //Example 5.38
2 //Lagranges Interpolation Method
3 // Page no. 178
4 clc; close; clear;
6 x = [1,2,3,4,7]
7 y = [2,4,8,16,128]
8 x0 = 5
9 printf('\tx \ty=f(x)\n———
10 for i=1:5
      11
12 end
13 p=1;p1=1;i=1;
14 \text{ for } k=1:5
      for j = 1:5
15
16
          if k~=j then
17
               p=p*(x0-x(j))
               p1=p1*(x(k)-x(j))
18
19
          end
20 end
21 L(k)=p/p1
22 p=1; p1=1;
23 end
24 p = 0;
25 for i=1:5
      printf('\n L\%i (x) = \%g\n',i-1,L(i))
26
      p=p+L(i)*y(i)
27
28 end
29 disp(p, "P(5) = ")
```

Scilab code Exa 5.39 Hermite Interpolation Method

```
1 //Example 5.39
2 //Hermite Interpolation Method
3 // Page no. 181
4 clc; close; clear;
6 \quad x = [-1, 0, 1]
7 y = [-10, -4, -2]
8 y1 = [10,3,2]
9 x0 = poly(0, 'x')
10 printf('\tx\ty=f(x)\n-----
11 for i=1:3
12
       printf('x\%i\t\%i\t',i-1,x(i),y(i))
13 end
14 p=1; p1=1; i=1;
15 \text{ for } k=1:3
       for j=1:3
16
            if k~=j then
17
                p=p*(x0-x(j))
18
19
                p1=p1*(x(k)-x(j))
20
            end
21 end
22 L(k) = p/p1
23 p=1; p1=1;
24 end
25 p=0;
26 L1 = [-3/2, 0, 3/2]
27 for i=1:3
       disp(L(i),"L(x) = ")
28
       p=p+(1-2*L1(i)*(x0-x(i)))*L(i)^2*y(i)+(x0-x(i))
29
          *((L(i))^2)*y1(i)
30 \text{ end}
31 disp(p, "P(x) = ")
```

Scilab code Exa 5.40 Hermite Interpolation Method

```
1 //Example 5.40
2 //Hermite Interpolation Method
3 //Page no. 182
4 clc; close; clear;
6 x = [0, 1, 2]
7 y = [1, 3, 21]
8 y1 = [0,6,36]
9 x0 = poly(0, 'x')
10 printf('\tx\ty=f(x)\n-----
11 for i=1:3
12
       printf('x\%i\t\%i\t',i-1,x(i),y(i))
13 end
14 p=1; p1=1; i=1;
15 \text{ for } k=1:3
       for j=1:3
16
            if k~=j then
17
                p=p*(x0-x(j))
18
19
                p1=p1*(x(k)-x(j))
20
            end
21 end
22 L(k) = p/p1
23 p=1; p1=1;
24 end
25 p=0;
26 L1 = [-3/2, 0, 3/2]
27 for i=1:3
       disp(L(i),"L(x) = ")
28
       p=p+(1-2*L1(i)*(x0-x(i)))*L(i)^2*y(i)+(x0-x(i))
29
          *((L(i))^2)*y1(i)
30 \text{ end}
31 disp(p, "P(x) = ")
```

Scilab code Exa 5.41 Piecewise Cubic Hermite Interpolation Method

```
1 //Example 5.41
2 // Piecewise Cubic Hermite Interpolation Method
3 //Page no. 182
4 clc; close; clear;
6 x = [0, 1]
7 y = [1,3]
8 y1 = [0, 6]
9 x0 = poly(0, 'x')
10 printf('\tx\ty=f(x)\n-----
11 for i=1:2
12
        printf('x\%i\t\%i\t',i-1,x(i),y(i))
13 end
14 p=1; p1=1; i=1;
15 \text{ for } k=1:2
        for j=1:2
16
             if k~=j then
17
                 p=p*(x0-x(j))
18
19
                 p1=p1*(x(k)-x(j))
20
             end
21 end
22 L(k) = p/p1
23 p=1; p1=1;
24 end
25 p=0;
26 L1 = [-1, 1]
27 \text{ for } i=1:2
        disp(L(i),"L(x) = ")
28
        p=p+(1-2*L1(i)*(x0-x(i)))*L(i)^2*y(i)+(x0-x(i))
29
           *((L(i))^2)*y1(i)
30 end
31 \text{ disp}(p,"P2(x) = ")
32 printf('\langle n \rangle n \rangle n \rangle n')
33 x = [1, 2]
34 y = [3, 21]
35 \text{ y1} = [6,36]
```

```
36 \times 0 = poly(0, 'x')
37 printf('\tx\ty=f(x)\n-
                                                          —\n ')
38 \text{ for } i=1:2
        printf('x\%i\t\%i\t %i\n',i-1,x(i),y(i))
39
40 \, \text{end}
41 p=1;p1=1;i=1;
42 \text{ for } k=1:2
43
        for j=1:2
             if k~=j then
44
                  p=p*(x0-x(j))
45
                   p1=p1*(x(k)-x(j))
46
47
             end
48 \text{ end}
49 L(k) = p/p1
50 p=1; p1=1;
51 end
52 p = 0;
53 L1 = [-1, 1]
54 \text{ for } i=1:2
        disp(L(i),"L(x) = ")
55
        p=p+(1-2*L1(i)*(x0-x(i)))*L(i)^2*y(i)+(x0-x(i))
56
            *((L(i))^2)*y1(i)
57 end
58 \text{ disp}(p, "P3(x) = ")
```

Scilab code Exa 5.43 Inverse Interpolation using Newtons Forward Difference Formula

```
7 h = 1;
8 z=[2,8;3,27;4,64;5,125];
9 deff('y=f1(x,s)', 'y=(z(x,3)+(s-1/2)*z(x,4)+z(x,5)
      *(3*s^2-6*s+2)/6)/h
10 deff('y=f2(x,s)', 'y=(z(x,4)+z(x,5)*(s-1))/h^2')
11 deff('y=f3(x,s)', 'y=z(x,5)/h^3')
12 for i=3:5
        for j=1:6-i
13
            z(j,i)=z(j+1,i-1)-z(j,i-1)
14
15
        end
16 \, \text{end}
17 printf('\n')
18 for i=1:4
19
        for j=1:5
            if z(i,j)==0 then
20
                 printf(' \t')
21
22
            else
                 printf('\t^{g'},z(i,j))
23
24
             end
25
        end
26
        printf('\n')
27 \text{ end}
28 \text{ fp=10};
29 f0=z(1,2); x0=z(1,1); x=fp-f0; p=(z(2,1)-z(1,1))/h; y=0;
      k=1; p=1;
30 for i=1:5
31
        if i>3 then
32
            1 = 3;
33
        else
34
            l=i;
35
        end
36
        for j=1:1
37
            for k=j:-1:2
38
                 if k==j then
39
                      y=1;
                 \verb"end"
40
                 y=y*(p-(k-1))
41
42
            end
```

Scilab code Exa 5.44 Inverse Interpolation using Everett Formula

```
1 //Example 5.44
2 //Inverse Interpolation using Everett Formula
3 //Page no. 191
4 clc; close; clear;
5 printf(' \tx \cdot td(\log(x!)/dx) \cdot t \cdot td2 \cdot t
                                                  d4 \ n'
6 printf('\t
       ')
7 x
       = [0.46, -0.0015805620, -0.0000888096, -0.000000396; 0.47, 0.0080664890]
8 h=0.001
9 \text{ for } i=1:2
        printf('\n')
10
        for j=1:4
11
             \texttt{printf('} \backslash t\%g', \texttt{x(i,j))}
12
13
        end
14 end
15 p(1) = -(x(1,2))/(x(2,2)-x(1,2))
16 for i=1:2
17
        p(i+1) = (-x(1,2) - (p(i)^3 - p(i)) *x(1,3)/6 - (-p(i))
            ^3+3*p(i)^2-2*p(i))*x(1,3)/6)/(x(2,2)-x(1,2))
18 \text{ end}
19 for i=1:3
```

Scilab code Exa 5.45 Inverse Lagrange Method

```
1 //Example 5.45
2 //Inverse Lagrange Method
3 //Page no. 192
4 clc; close; clear;
6 x = [30, 34, 38, 42];
7 y = [-30, -13, 3, 18];
8 P = 0;
9 y1=0;
10 for k=0:3
11
       p=1
12
       for j=0:3
13
            if(j^=k)
                 p=p*((y1-y(j+1))/(y(k+1)-y(j+1)))
14
15
            end
16
        end
                    L\%i(f) = \%g \setminus n', k, p)
17
        printf('\n
18
       p=p*x(k+1)
19
       P=P+p;
20 end
21 disp(P, 'Inverse Lagrange interpolation x=')
```

Scilab code Exa 5.46 Newtons Divided Difference Interpolation

```
1 //Example 5.46
2 //Newton's Divided Difference Interpolation
```

```
3 //Page no. 192
4 clc; close; clear;
5
6 x=[3,3.6,3.8]
7 y=[0.13515,0.83059,0.26253];
8 deff('y=f1(x1,x2,y1,y2)','y=(y2-y1)/(x2-x1)');
9 deff('y=f2(x1,x2,x3,y1,y2,y3)','y=(f1(x2,x3,y2,y3)-f1(x1,x2,y1,y2))/(x3-x1)');
10 function [x]=f(x1,x2,x3,y1,y2,y3)
11 x=(x1+2*x2+x3)/4-(f1(x1,x2,y1,y2)+f1(x2,x3,y2,y3))/(4*f2(x1,x2,x3,y1,y2,y3))
12 endfunction
13 disp(f1(x(1),x(2),y(1),y(2)),'f(x1,x2)=')
14 disp(f1(x(2),x(3),y(2),y(3)),'f(x2,x3)=')
15 disp(f2(x(1),x(2),x(3),y(1),y(2),y(3)),'f(x1,x2,x3)=')
16 disp(f(x(1),x(2),x(3),y(1),y(2),y(3)),'x0=')
```

Scilab code Exa 5.47 Bessel Interpolation

```
1 //Example 5.47
 2 // Bessel Interpolation
 3 //Page no. 194
4 clc; close; clear;
 6 deff('y=f(x)', 'y=x^3-15*x+4');
 7 h=0.02; p=1;
8 for i=1:9
9
         z(i,1)=0.22+(i-1)*h
         z(i,2)=f(z(i))
10
11 end
12 printf('
                  x \setminus t \setminus t
                               f(x) \setminus t \qquad d \setminus t \setminus t \qquad d2 \setminus t \setminus t
                                                                          d3
                  d4 \ n'
       t \setminus t
13 printf('
```

```
')
14 for i=3:6
       for j=1:11-i
15
            z(j,i)=z(j+1,i-1)-z(j,i-1)
16
17
       end
18 end
19 printf('\n')
20 for i=1:9
       for j=1:6
21
22
            if z(i,j)==0 then
                printf(' \t')
23
24
25
                printf('%.7f\t',z(i,j))
26
            end
27
       end
28
       printf('\n')
29 end
30 for 1=1:8
       if abs(z(1+1,2))/z(1+1,2)^=abs(z(1,2))/z(1,2)
31
          then
32
            break;
33
       else
34
            1 = 9;
35
       end
36 end
37 function [y]=f1(x,p1)
38
       if x==1 then
39
            y=z(1,2)
40
       elseif x==2
            y=z(1,2)+(p1*(p1-1))/factorial(2)*((z(1-1,4))
41
               +z(1,4))/2)
       elseif x==3
42
43
            y=z(1,2)+(p1*(p1-1))/factorial(2)*((z(1-1,4))
               +z(1,4))/2)+(p1*(p1-1)*(p1-0.5))/
               factorial(3)*(z(1,5))
44
       end
45 endfunction
46 \text{ for } i=1:3
```

Scilab code Exa 5.48 Chebyshev Polynomial

```
1 //Example 5.48
2 //Chebyshev Polynomial
3 //Page no. 199
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=4*x^3+2*x^2');
7 n=4;
8 for i=3:-1:0
9     x(i+1)=cosd(((2*i+1)*%pi)/(2*n))
10     printf('\n x(%i) = %g\n',i,x(i+1))
11 end
```

Scilab code Exa 5.50 Spline Interpolation

```
1 //Example 5.50
2 //Spline Interpolation
3 //Page no. 204
4 clc; close; clear;
5
6 xi=[1,2,3];
7 yi=[-1,4,21];
8 x=poly(0, 'x')
9 deff('y=S(x0,x1)', 'y=(x-xi(x1))*yi(x0)/(xi(x0)-xi(x1))+(x-xi(x0))*yi(x1)/(xi(x1)-xi(x0))');
```

```
10 S1=S(1,2);

11 S2=S(2,3);

12 printf('\n The required Spline is : \n')

13 disp(S2, 'S2 = ',S1, 'S1 = ');
```

Scilab code Exa 5.51 Spline Interpolation

```
1 //Example 5.51
2 //Spline Interpolation
3 //Page no. 204
4 clc; close; clear;
6 \text{ xi} = [1, 2, 3];
7 yi = [-6, -1, 16];
8 h=1; n=2;
9 x = poly(0, 'x')
10 m(2) = (6*(yi(3)-2*yi(2)+yi(1)))/4
11 m(1) = 0; m(3) = 0;
12 function [y]=S(i,x)
13
        y=m(i)*(xi(i+1)-x)^3/(6*h)
14
        y=y+m(i+1)*(x-xi(i))^3/(6*h)
15
        y=y+(yi(i)/h-(m(i)*h)/6)*(xi(i+1)-x)
        y=y+(yi(i+1)/h-(m(i+1)*h)/6)*(-xi(i)+x)
16
17 endfunction
18 for i=1:2
19
        S1(i)=S(i);
20 \, \text{end}
21 printf('\n The required Spline is : \n')
22 disp(', ', '2 < x < = 3', S1(2), 'S2 = ', ', ', '1 < = x < = 2', S1(1),
       'S1 = ');
23 x = 1.5;
24 \text{ if } x \ge 1 \& x \le 2 \text{ then}
25
        i=1;
26 \text{ else } x > 2 \& x <= 3
27
        i=2;
```


Figure 5.1: Spline Interpolation

```
28 end

29 disp(S(i,x),'y(1.5) = ')

30 x=2;h1=0.01;

31 for i=1:2

32 Sd(i,x)=(S(i,x+h1)-S(i,x))/h1

33 end

34 disp(Sd(2,2),Sd(1,2),'y'(2) = ')
```

Scilab code Exa 5.52 Spline Interpolation

```
1 //Example 5.52
```

```
2 //Spline Interpolation
3 //Page no. 205
4 clc; close; clear;
5 deff('y=S1(x)', 'y=18-(75*x)/2+26*x^2-11*x^3/2')
6 deff('y=S2(x)', 'y=-70+(189*x)/2-(40*x^2)+(11*x^3)/2'
7 x=2; h=0.01;
8 S = [S1(x), S2(x)]
9 \text{ for } i=1:2
                     S\%i (%i) = %g\n',i-1,x,S(i))
10
        printf('\n
11 end
12 deff('y=S3(x)', 'y=(S1(x+h)-S1(x))/h')
13 deff('y=S4(x)', 'y=(S2(x+h)-S2(x))/h')
14 S = [S3(x), S4(x)]
15 for i=1:2
                    S'\%i (\%i) = \%g n', i-1, x, S(i)
        printf('\n
16
17 \text{ end}
18 deff ('y=S5(x)', 'y=(S3(x+h)-S3(x))/h')
19 deff('y=S6(x)', 'y=(S4(x+h)-S4(x))/h')
20 S = [S5(x), S6(x)]
21 for i=1:2
        printf('\n S''\%i (\%i) = \%g\n',i-1,x,S(i))
22
23 end
24 printf(' \n \n')
25 \text{ for } i=1:2
26
       for j=1:3
27
            if i==1 then
                 printf('\t%i',j)
28
            elseif j<3</pre>
29
                 printf('\t\%g',S1(j))
30
31
            else
32
                 printf('\t%g',S2(j))
33
            end
34
        end
35
        printf('\n')
36 end
37 x = [1:0.1:2]
38 \text{ plot}(x,S1(x))
```

```
39 x = [2:0.1:3]
40 plot(x, S2(x))
```

Scilab code Exa 5.53 Spline Interpolation

```
1 //Example 5.53
2 //Spline Interpolation
3 // Page no. 206
4 clc; close; clear;
5
6 \text{ xi} = [1, 2, 3];
7 yi = [-3, 4, 23];
8 h=1; n=2;
9 x = poly(0, 'x')
10 m(2) = (6*(yi(3)-2*yi(2)+yi(1)))/4
11 m(1) = 0; m(3) = 0;
12 function [y]=S(i,x)
        y=m(i)*(xi(i+1)-x)^3/(6*h)
13
14
        y=y+m(i+1)*(x-xi(i))^3/(6*h)
        y=y+(yi(i)/h-(m(i)*h)/6)*(xi(i+1)-x)
15
16
        y=y+(yi(i+1)/h-(m(i+1)*h)/6)*(-xi(i)+x)
17 endfunction
18 for i=1:2
19
        S1(i)=S(i);
20 end
21 printf('\n The required Spline is : \n')
22 disp(', ', '2 < x < = 3', S1(2), 'S2 = ', ', ', '1 < = x < = 2', S1(1),
       'S1 = ');
23 x = 1.5;
24 \text{ if } x \ge 1 \& x \le 2 \text{ then}
25
        i=1;
26 \text{ else } x > 2 \& x <= 3
27
        i=2;
28 end
29 disp(S(i,x), 'y(1.5) = ')
```

```
30 x=1; h1=0.01;

31 for i=1:1

32 Sd(i,x)=(S(i,x+h1)-S(i,x))/h1

33 end

34 disp(Sd(1,1),'y'(1) = ')
```

Scilab code Exa 5.54 Spline Interpolation

```
1 / \text{Example } 5.54
2 //Spline Interpolation
3 //Page no. 207
4 clc; close; clear;
6 xi = [0, 1, 2, 3];
7 yi = [1, -1, -1, 0];
8 h=1; n=3;
9 x = poly(0, 'x')
10 m = [4, 1; 1, 4];
11 mb=[12;6];
12 \text{ m} = inv(m) * mb
13 m(3) = m(2);
14 m(2) = m(1);
15 m(1) = 0; m(4) = 0;
16 function [y]=S(i,x)
       y=m(i)*(xi(i+1)-x)^3/(6*h)
17
       y=y+m(i+1)*(x-xi(i))^3/(6*h)
18
       y=y+(yi(i)/h-(m(i)*h)/6)*(xi(i+1)-x)
19
20
       y=y+(yi(i+1)/h-(m(i+1)*h)/6)*(-xi(i)+x)
21 endfunction
22 for i=1:3
23
        S1(i)=S(i);
24 end
25 printf('\n The required Spline is : \n')
26 disp(',',S1(3),'S3 = ',',',S1(2),'S2 = ',',',S1(1),'
      S1 = ');
```

Chapter 6

Curve Fitting

Scilab code Exa 6.2 Least Line Square Approximation

```
1 //Example 6.2
2 //Least Line Square Approximation
3 // Page no. 216
4 clc; close; clear;
6 \quad x = [2;5;6;9;11];
7 y = [2;4;6;9;10]; n=1;
8 printf('\t 2\t\t 2\nn\tx\tx\ty\ty\n
                                                     ----\n ')
9 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0;
10 for i=1:5
11
       printf(' \%i \ t\%i \ t\%i \ t\%i \ t\%i \ n',n,x(i),x(i)
          ^2,y(i),x(i)*y(i),y(i)^2)
12
       x1=x1+n;
       x2=x2+x(i);
13
14
       x3=x3+x(i)^2;
       x4 = x4 + y(i);
15
       x5=x5+x(i)*y(i);
16
17
       x6=x6+y(i)^2;
18 end
19 printf('
```

```
----\n %i
        \t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i, x1, x2, x3, x4, x5, x6)
20
21 A = [x1, x2; x2, x3]
22 B = [x4; x5]
23 C = inv(A) *B;
24 x7 = poly(0, 'x')
y=C(1)+C(2)*x7
26 \text{ disp}(y, y=')
27 \times 0 = \times 2 / \times 1;
28 \text{ y0}=\text{x4/x1};
29 A = x3 - x1 * x0^2;
30 B=x5-x1*x0*y0;
31 C=x6-x1*y0^2;
32 x7 = poly(0, 'b')
33 y=x7^2+(A-C)*x7/B-1
34 \text{ b=roots(y)}
35 a = y0 - b(2) * x0
36 x7 = poly(0, 'x')
37 disp('is the required least line', a+b(2)*x7, 'y = ')
```

Scilab code Exa 6.3 Least Square Method

```
1 //Example 6.3
2 //Least Square Method
3 //Page no. 217
4 clc; close; clear;
5
6 x=[1,2,3,4,5,6,7,8];
7 y=[3,3,4,5,5,6,6,7]; n=1;
8 printf('\t 2\t\t 2\n n\tx\tx\ty\txy\ty\n
-----\n')
9 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0;
10 for i=1:8
11 printf(' %i\t%i\t%i\t%i\t%i\t%i\t%i\n',n,x(i),x(i)
```

```
^2,y(i),x(i)*y(i),y(i)^2)
12
         x1=x1+n;
         x2=x2+x(i);
13
14
         x3=x3+x(i)^2;
15
         x4 = x4 + y(i);
16
         x5=x5+x(i)*y(i);
17
         x6=x6+y(i)^2;
18 end
19 printf('
        \t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i\t^{\%}i, x1, x2, x3, x4, x5, x6)
20 \times 0 = \times 2 / \times 1;
21 y0=x4/x1;
22 \quad A = x3 - x1 * x0^2;
23 B=x5-x1*x0*y0;
24 C = x6 - x1 * y0^2;
25 \text{ x7=poly}(0, b')
26 \quad y = x7^2 + (A-C) * x7/B-1
27 b = roots(y)
28 \quad a = y0 - b(2) * x0
29 x7 = poly(0, 'x')
30 disp('is the required least line', a+b(2)*x7, 'y = ')
```

Scilab code Exa 6.4 Least Square Method

```
1 //Example 6.4
2 //Least Square Method
3 //Page no. 219
4 clc; close; clear;
5
6 t=[0.2,0.4,0.6,0.8,1]
7 h=[0.196,0.785,1.7665,3.1406,4.9075]
8 m=2;
9 for i=1:5
10 t1(i)=t(i)^(2*m)
```

```
11     h1(i)=h(i)*t(i)^2
12 end
13 g=sum(h1)/sum(t1)
14 disp(g,'y = ')
15 g=g*2
16 disp(g,'Gravitational Constatnt :')
```

Scilab code Exa 6.5 Power Fit Method

```
1 / Example 6.5
2 //Power Fit Method
3 //Page no. 220
4 clc; close; clear;
6 \quad x = [2, 2.3, 2.6, 2.9, 3.2]
7 y = [5.1, 7.5, 10.6, 14.4, 19]
8 printf('\t 2\t 3\t 4\t 6\t\t 2\t 3\n x\tx\tx\tx
       \t y \t yx \t yx \n
      n ')
9 x1=0; x2=0; x3=0; x4=0;
10 for i=1:5
        printf(' \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n',x(i),
11
            x(i)^2, x(i)^3, x(i)^4, x(i)^6, y(i), x(i)^2*y(i),
            y(i)*x(i)^3
        x1=x1+x(i)^4;
12
        x2=x2+x(i)^6;
13
14
        x3=x3+x(i)^2*y(i);
15
        x4=x4+y(i)*x(i)^3;
16 end
17 printf('
      n \setminus t \setminus t \frac{\sqrt{g}}{t \sqrt{g}} t \frac{\sqrt{g}}{t \sqrt{g}} n', x1, x2, x3, x4)
18 a(1)=x3/x1;
19 x5 = poly(0, 'x')
```

```
20 disp(a(1)*x5^2, 'The power fit, y = ')
21 a(2) = x4/x2;
22 disp(a(2)*x5^3, 'The power fit, y = ')
23 e = [0, 0]
24 \text{ for } i=1:2
25
       for j=1:5
26
            e(i)=e(i)+(a(i)*x(j)^(i+1)-y(j))^2
27
       end
       e(i) = sqrt(e(i)/5)
28
       printf('\n\nerror\%i = \%.2g\n',i,e(i))
29
30 \, \text{end}
31 if e(1) > e(2) then
32
        disp(a(2)*x5^3, y = ', Hence the best power fir
           curve is')
33 else
       disp(a(1)*x5^2, y = ', Hence the best power fir
34
           curve is')
35 end
```

Scilab code Exa 6.6 Least Square Method

Scilab code Exa 6.7 Parabola Best Fit

```
1 //Example 6.7
2 //Parabola Best Fit
3 // Page no. 222
4 clc; close; clear;
6 x = [0, 1, 2, 3, 4]
7 y = [-2.1, -0.4, 2.1, 3.6, 9.9]
8 n = 1;
9 printf('\t\t 2\t 3\t 4\t t\t 2\n n\t x\t x\t x\t y\
      txy \ tx \ y \ n
      n ')
10 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
11 for i=1:5
12
        printf(' \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n',n,x(i)
           ),x(i)^2,x(i)^3,x(i)^4,y(i),y(i)*x(i),x(i)^2*
           y(i))
13
        x1=x1+n;
14
        x2=x2+x(i);
        x3=x3+x(i)^2;
15
16
        x4=x4+x(i)^3;
17
       x5=x5+x(i)^4;
       x6 = x6 + y(i);
18
19
        x7 = x7 + y(i) * x(i);
20
        x8=x8+x(i)^2*y(i)
```

Scilab code Exa 6.8 Parabola Best Fit

```
1 //Example 6.8
   2 //Parabola Best Fit
    3 //Page no. 223
   4 clc; close; clear;
    6 x = [0.78, 1.56, 2.34, 3.12, 3.81]
    7 y = [2.5, 1.2, 1.12, 2.25, 4.28]
   8 n = 1;
   9 \text{ for } i=1:5
                                        x(i) = (x(i) - 2.34) / 0.78
10
11 end
12 printf('\t\t 2\t 3\t 4\t\t\t 2\n n\tX\tX\tX\tX\ty\
                                 tXy \ tX \ y \ n
13 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
14 for i=1:5
                                         printf (' %.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\t%.2g\
15
                                                         g \t\%.2g \n',n,x(i),x(i)^2,x(i)^3,x(i)^4,y(i),y
                                                          (i)*x(i),x(i)^2*y(i)
```

```
16
         x1=x1+n;
17
         x2=x2+x(i);
18
         x3=x3+x(i)^2;
19
         x4=x4+x(i)^3;
20
         x5=x5+x(i)^4;
21
         x6 = x6 + y(i);
22
         x7 = x7 + y(i) * x(i);
         x8=x8+x(i)^2*y(i)
23
24 end
25 printf('
       n\ \%.\ 2\ f \ t\%.\ 2\ f \ t\%.
       n',x1,x2,x3,x4,x5,x6,x7,x8)
26 A = [x1, x2, x3; x2, x3, x4; x3, x4, x5]
27 B = [x6; x7; x8]
28 C=inv(A)*B;
29 disp(C)
30 \text{ x=poly}(0, 'X')
31 y=C(1)+C(2)*x+C(3)*x^2
32 \text{ disp}(y, 'y = ')
```

Scilab code Exa 6.9 Least Square Fit

```
10 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
11 for i=1:4
12
        printf(' \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n',n,x(i)
           ),x(i)^2,x(i)^3,x(i)^4,y(i),y(i)*x(i),x(i)^2*
           y(i))
13
        x1=x1+n;
14
        x2=x2+x(i);
15
        x3=x3+x(i)^2;
        x4=x4+x(i)^3;
16
        x5=x5+x(i)^4;
17
        x6 = x6 + y(i);
18
        x7 = x7 + y(i) * x(i);
19
20
        x8=x8+x(i)^2*y(i)
21 end
22 printf('
      n \%g \t\%g \t\%g \t\%g \t\%g \t\%g \t\%g \t\%g \n', x1, x2, x3, x4,
      x5, x6, x7, x8)
23 A = [x1, x2, x3; x2, x3, x4; x3, x4, x5]
24 B=[x6;x7;x8]
25 C = inv(A) *B;
26 disp(C)
27 x = poly(0, 'x')
28 y=C(1)+C(2)*x+C(3)*x^2
29 \text{ disp}(y, 'y = ')
```

Scilab code Exa 6.10 Least Square Fit

```
1 //Example 6.10
2 //Least Square Fit
3 //Page no. 224
4 clc; close; clear;
5
6 x=[1,2,3,4]
7 y=[0.3,0.64,1.32,5.4]
```

```
8 n=1;
9 printf('\t\t 2\t 3\t 4\t t\t 2\n n\t x\t x\t x\t y\
       txy \setminus tx y \setminus n
      n ')
10 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
11 for i=1:4
        printf(' \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n',n,x(i)
12
            ),x(i)^2,x(i)^3,x(i)^4,y(i),y(i)*x(i),x(i)^2*
           y(i))
13
        x1=x1+n;
        x2=x2+x(i);
14
15
        x3=x3+x(i)^2;
16
        x4=x4+x(i)^3;
17
        x5=x5+x(i)^4;
18
        x6 = x6 + y(i);
        x7 = x7 + y(i) * x(i);
19
20
        x8=x8+x(i)^2*y(i)
21 end
22 printf('
       n \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n', x1, x2, x3, x4,
      x5, x6, x7, x8)
23 A = [x1, x2, x3; x2, x3, x4; x3, x4, x5]
24 B = [x6; x7; x8]
25 \quad C=inv(A)*B;
26 disp(C)
27 x = poly(0, 'x')
28 y=C(1)+C(2)*x+C(3)*x^2
29 \text{ disp}(y, 'y = ')
```

Scilab code Exa 6.11 Least Square Fit

```
1 //Example 6.9
2 //Least Square Fit
```

```
3 // Page no. 224
4 clc; close; clear;
6 x = [2, 4, 6, 8, 10]
7 y = [3.07, 12.85, 31.47, 57.38, 91.29]
9 printf('\t\t 2\t 3\t 4\t t\t 2\n n\t x\t x\t x\t y\
       txy \ tx \ y \ n
       n ')
10 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
11 for i=1:5
12
         printf(' \%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\t\%g\n',n,x(i)
            ),x(i)^2,x(i)^3,x(i)^4,y(i),y(i)*x(i),x(i)^2*
            y(i))
13
         x1=x1+n;
         x2=x2+x(i);
14
         x3=x3+x(i)^2;
15
         x4=x4+x(i)^3;
16
17
         x5=x5+x(i)^4;
         x6 = x6 + y(i);
18
19
         x7 = x7 + y(i) * x(i);
20
         x8=x8+x(i)^2*y(i)
21 end
22 printf('
       n~\%g\backslash t\%g\backslash t\%g\backslash t\%g\backslash t\%g\backslash t\%g\backslash t\%g\backslash t\%g\backslash n ',x1,x2,x3,x4,
       x5, x6, x7, x8)
23 A = [x1, x2, x3; x2, x3, x4; x3, x4, x5]
24 B = [x6; x7; x8]
25 C=inv(A)*B;
26 disp(C)
27 x = poly(0, 'x')
y=C(1)+C(2)*x+C(3)*x^2
29 \text{ disp}(y, 'y = ')
```

Scilab code Exa 6.12 Least Square Fit

```
1 //Example 6.12
2 //Least Square Fit
3 //Page no. 224
4 clc; close; clear;
6 x = [10, 20, 30, 40, 50]
7 y = [8, 10, 15, 21, 30]
8 n=1;
9 printf('\t\t 2\t 4\t t\t 2\n n\t x\t x\t t\t t\t y\n
10 x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0;
11 for i=1:5
         printf(' \%g\t\%g\t\%g\t\%.9g\t\t\%g\t\%g\n',n,x(i),x(
12
            i)^2,x(i)^4,y(i),x(i)^2*y(i))
        x1=x1+n;
13
14
        x2=x2+x(i);
15
        x3=x3+x(i)^2;
         x4=x4+x(i)^4;
16
        x5=x5+y(i);
17
18
        x6=x6+x(i)^2*y(i)
19 end
20 printf('
       n~\%g\backslash t\%g\backslash t\%g\backslash t\% . 9~g\backslash t\backslash t\%g\backslash t\%g\backslash n ', x1 , x2 , x3 , x4 , x5 , x6
21 A = [x1, x3; x3, x4;]
22 B = [x5; x6]
23 C = inv(A) *B;
24 disp(C)
25 x = poly(0, 'x')
26 y = C(1) + C(2) * x^2
```

27 disp(y,'y =')

Chapter 7

Numerical Differentiation

Scilab code Exa 7.1 Differentiation

```
//Example 7.1
//Differentiation
//Page no. 230
clc; close; clear;
deff('y=f(x)', 'y=sin(x)')
deff('y=f1(x,h)', 'y=(f(x+h)-f(x-h))/(2*h)')
deff('y=f2(x,h)', 'y=(-f(x+2*h)+8*f(x+h)-8*f(x-h)+f(x-2*h))/(12*h)')
h=0.01; x=0.5
d=f1(x,h)
printf('Centred Formula of Order O(h2) = %g\n',d)
printf('\n Centred Formula of Order O(h4) = %g',d1)
```

Scilab code Exa 7.2 Differentiation

```
1 //Example 7.22 // Differentiation
```

```
3 //Page no. 232
4 clc; close; clear;
6 t=[1,1.1,1.2,1.3,1.4]
7 I = [8.2277, 7.2428, 5.9908, 4.5260, 2.9122]
8 L=0.05; R=2; h=0.1;
9 deff('y=f(x)', 'y=L*i1(x)+R*I(x)')
10 deff('y=f1(x,h1)', 'y=(I(x+h1)-I(x-h1))/(2*h)')
11 deff('y=f2(x,h1)', 'y=(-I(x+2*h1)+8*I(x+h1)-8*I(x-h1)
     +I(x-2*h1))/(12*h)')
12 x=3; h1=1;
13 i1(x) = f1(x,h1)
14 E=f(x)
15 printf ('Using Centred Tendency of Order O(h2) \setminus n')
16 printf('I'(1.2) = \%g\n', i1(x))
17 printf('\n E(1.2) = %g',E)
18 i1(x)=f2(x,h1)
19 E=f(x)
20 printf('\n\nUsing Centred Tendency of Order O(h4)\
     n ')
21 printf('I'(1.2) = \%g\n', i1(x))
22 printf('\n E(1.2) = \%g',E)
```

Scilab code Exa 7.3 Richardson Extrapolation

```
1 //Example 7.3
2 //Richardson Extrapolation
3 //Page no. 233
4 clc; close; clear;
5
6 t=[1,1.1,1.2,1.3,1.4]
7 I=[8.2277,7.2428,5.9908,4.5260,2.9122]
8 h=0.1;
9 deff('y=f1(x,h1)', 'y=(I(x+h1)-I(x-h1))/(2*h)')
10 deff('y=f2(x,h1)', 'y=(I(x+2*h1)-I(x-2*h1))/(4*h)')
```

```
11 deff('y=f3(x,h1)','y=(I(x+h1)-I(x-h1))/(2*h)')
12 x=3;h1=1;
13 D0h=f1(x,h1)
14 printf('\nD0(h) = %g\n',D0h)
15 D02h=f2(x,h1)
16 printf('\nD0(2h) = %g\n',D02h)
17 I1=(4*D0h-D02h)/x
18 printf('\nI' (1.2) = %g',I1)
```

Scilab code Exa 7.4 Differentiation

```
1 //Example 7.4
2 //Differentiation
3 //Page no. 233
4 clc; close; clear;
5
6 t=[1.2,1.3,1.4,1.5,1.6]
7 I=[1.5095,1.6984,1.9043,2.1293,2.3756]
8 h=0.1;
9 deff('y=f2(x,h1)','y=(-I(x+2*h1)+8*I(x+h1)-8*I(x-h1)+I(x-2*h1))/(12*h)')
10 x=3; h1=1;
11 i1(x)=f2(x,h1)
12 printf('\nUsing Centred Tendency of Order O(h4)\n')
13 printf('f'(1.4) = %g\n',i1(x))
```

Scilab code Exa 7.5 Stirlings Central Difference Derivatives

```
1 //Example 7.5
2 //Stirlings Central Difference Derivatives
3 //Page no. 238
4 clc;close;clear;
```

```
5 printf(' x \setminus t \setminus t
                         y \setminus t \setminus t d \setminus t \setminus t d \setminus t \setminus t d \mid d \mid t \setminus t
              d4 \ n')
       \setminus t
 6 printf('
       ')
7 h=0.1; s=1;
8 e = [1, 6, 30]
9 deff ('y=f1(x,s)', 'y=((z(x,3)+z(x-1,3))/2+s*z(x-1,4)
       +(z(x-1,5)+z(x-2,5))*(3*s^2-1)/12)/h
10 deff('y=f2(x,s)', 'y=(z(x-1,4))/h^2')
11 deff('y=f3(x,s)', 'y=(z(x-1,5)+z(x-2,5))/(2*h^3)')
12 z
       = [0.7, 0.644218; 0.8, 0.717356; 0.9, 0.783327; 1, 0.841471; 1.1, 0.891207;
13 for i=3:6
14
        for j=1:9-i
             z(j,i)=z(j+1,i-1)-z(j,i-1)
15
16
         end
17 end
18 printf('\n')
19 for i=1:7
20
        for j=1:6
             if z(i,j)==0 then
21
22
                  printf(' \t')
             elseif j==1
23
                              \%.1 f \ t \ t',z(i,j))
24
                   printf('
25
              else
                   printf('%.6f\t',z(i,j))
26
27
             end
28
        end
29
         printf('\n')
30 \, \text{end}
31 fp=0;i=5;
32 \text{ for } j=2:2:6
        fp=fp+((-1)^{(j/2+1)})*(z(i,j)-z(i-2,j))/(2*h*e(j
        i=i-1;
34
35 end
```

```
36 printf('\n\nf'p (\sin'(x))= %g',fp)
```

Scilab code Exa 7.6 Stirlings Central Difference Derivatives

```
1 / \text{Example } 7.6
2 // Stirlings Central Difference Derivatives
3 //Page no. 239
4 clc; close; clear;
5 printf(' x \setminus t \setminus t
                                          d \setminus t \setminus t
                                                      d2 \setminus t \setminus t
                                                                   d3 \setminus t
                            y \setminus t \setminus t
               d4 \ t \ t
                            d5\n')
6 printf('
       ')
7 h=0.2; s=1;
  deff('y=f1()', 'y=(z(4,3)+(3*p^2-1)*z(4,4)/factorial
       (3) - (3*p^2 - 6*p + 2)*z(3,4) / factorial(3))/h'
9 z
       = [0.2, 2.10022; 0.4, 1.98730; 0.6, 1.90940; 0.8, 1.86672; 1, 1.85937; 1.2, 1]
10 x0=0.8; p=poly(0, 'p');
11 for i=3:7
12
         for j=1:9-i
              z(j,i)=z(j+1,i-1)-z(j,i-1)
13
14
         end
15 end
16 printf('\n')
17 for i=1:7
18
         for j=1:7
19
              if z(i,j)==0 then
20
                   printf(' \t')
21
              elseif j==1
                               \%.1 \text{ f} \text{ t} \text{ t} ',z(i,j))
22
                   printf('
23
              else
24
                   printf('%.6f\t',z(i,j))
25
              end
```

```
26
        end
27
        printf('\n')
28 end
29 f1p=f1()
30 disp(f1p)
31 r=roots(f1p);
32 \text{ for } i=1:2
        if abs(r(i)) == r(i) then
33
             r1=r(i)
34
             disp(r(i),"p = ")
35
36
        end
37 end
38 x = x0 + r1 * h;
39 \text{ disp}(x,"x = ")
```

Scilab code Exa 7.7 Stirlings Central Difference Derivatives

```
1 //Example 7.7
     2 // Stirlings Central Difference Derivatives
      3 //Page no. 240
     4 clc; close; clear;
                                                                                                                                                                             y \setminus t \setminus t
                                                                                                                                                                                                                                                  d \setminus t \setminus t
      5 printf(' x \setminus t \setminus t
                                                                                                                                                                                                                                                                                                                      d2 \setminus t \setminus t
                                                                                                                                                                                                                                                                                                                                                                                                    d3 \setminus t
                                                                                         d4 \ n')
                                           \setminus t
      6 printf('
                                            ')
      7 h=0.2; s=1;
     8 a=poly(0, 'a');
     9 b=poly(0, 'b');
10 deff('y=f3(x)', 'y=z(x,1)*y2(x)+(z(x,1)-b)*z(x,2)')
11 deff('y=f4(x)', 'y=y1(x)*a')
12 deff('y=f1(x)', 'y=(z(x+1,2)-z(x-1,2)-(z(x,4)-z(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1,2)-(x-1
                                            (-2,4)) / factorial (3)+4*(z(x-1,6)-z(x-3,6)) /
                                            factorial (5))/(2*h)')
```

13 **deff**('y=f2(x)', 'y=(z(x-1,4)-2*(z(x-2,6))/factorial

```
(4))/h^2
14 z
       = [0.8, 1.73036; 1, 1.95532; 1.2, 2.19756; 1.4, 2.45693; 1.6, 2.73309; 1.8, 3
15 \times 0 = 0.8;
16 for i=3:6
17
        for j=1:10-i
              z(j,i)=z(j+1,i-1)-z(j,i-1)
18
19
         end
20 \text{ end}
21 printf(' \ n')
22 for i=1:8
23
         for j=1:6
24
              if z(i,j)==0 then
25
                   printf(' \t')
26
              elseif j==1
                   printf('
                                 \%.1 \text{ f} \text{ t} \text{ t} \text{ ',z(i,j)}
27
28
              else
                   printf (\%.6 \text{ f} \text{ t}, z(i,j))
29
30
              end
31
         end
         printf('\n')
32
33 end
34 y1(4) = f1(4);
35 \text{ y2}(4) = \text{f2}(4);
36 y1(5)=f1(5);
37 y2(5)=f2(5);
38 \text{ g=f3}(4)
39 printf('\n\ny'(1.4) = \%g\n\ny''(1.4) = \%g\n\ny'(1.6)
        = \%g \ n \ y' \ (1.6) = \%g \ n \ y' \ y' \ (4) \ y' \ (4) \ y' \ (5) \ y' \ (5)
       (5))
40 disp(f3(4),f4(4))
41 printf('\n\n')
42 A = [y1(4), z(4,2); y1(5), z(5,2)];
43 B=[z(4,1)*(y2(4)+z(4,2));z(5,1)*(y2(5)+z(5,2))];
44 disp(f3(5),f4(5))
45
46 C = inv(A) *B;
```

```
47 printf('\n\n a = \gng\n\n b = \gng',C(1),C(2))
```

Scilab code Exa 7.8 Stirlings Central Difference Derivatives

```
1 //Example 7.8
   2 // Stirlings Central Difference Derivatives
   3 // Page no. 242
   4 clc; close; clear;
   5 printf(' x \setminus t \setminus t
                                                                                              y \setminus t \setminus t d \setminus t \setminus t
                                                                                                                                                                     d2 \setminus t \setminus t d3 \setminus t
                                                  d4 \ n')
                        \setminus t
   6 printf('
                         ')
   7 h=0.01;
   8 a=poly(0, 'n');
  9 deff('y=f3(x)', 'y=z(x,1)^2*y2(x)+z(x,1)*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)+(z(x,1))*y1(x)
                         ,1)^2-a^2)*z(x,2)')
10 deff('y=f1(x)', 'y=(z(x+1,2)-z(x-1,2)-(z(x,4)-z(x-1,2))
                         -2,4))/factorial(3))/(2*h)')
11 deff('y=f2(x)', 'y=(z(x-1,4)-2*(z(x-2,6))/factorial)
                         (4))/h^2
12 z
                        =[85,0.0353878892;85.01,0.0346198696;85.02,0.0338490002;85.03,0.0
13 for i=3:6
14
                              for j=1:7-i
                                               z(j,i)=z(j+1,i-1)-z(j,i-1)
15
16
                              end
17 \text{ end}
18 printf('\n')
19 for i=1:5
20
                             for j = 1:6
                                               if z(i,j)==0 then
21
22
                                                                 printf(' \t')
23
                                               elseif j==1
```

```
printf(' %.2f\t',z(i,j))
24
25
            else
                 printf('%.10f\t',z(i,j))
26
27
            end
28
        end
29
        printf('\n')
30 \text{ end}
31 y1(3)=f1(3);
32 y2(3)=f2(3);
33
34 printf('\n\ny'(85.02) = \%g\n\ny''(85.02) = \%.7g\n'n'
      ,y1(3),y2(3))
35 n=f3(3)
36 \text{ disp(n,"} 0 = ")
37 \text{ n=roots(n)}
38 for i=1:2
        if abs(n(i)) == n(i) then
39
            n1=n(i)
40
41
        end
42 end
43 printf('\n\nn = \%.2g',n1)
```

Scilab code Exa 7.9 Newtons Backward Formula

```
9 z
      = [1,7.989;1.1,8.403;1.2,8.781;1.3,9.129;1.4,9.451;1.5,9.750;1.6,1]
10 for i=3:8
11
        for j=1:9-i
12
            z(j,i)=z(j+1,i-1)-z(j,i-1)
13
        end
14 end
15 printf(' \ n')
16 for i=1:7
17
        for j=1:8
18
            if z(i,j)==0 then
                printf(' \t')
19
            elseif j==1
20
                 printf(' %.1f\t',z(i,j))
21
22
            else
                 printf(\%.3f\t',z(i,j))
23
24
            end
25
        end
26
        printf('\n')
27 end
28
29 j=6; y1=0;
30 \text{ for } i=3:6
        y1=y1+z(j,i)/(i-2)
31
32 \quad j = j - 1
33 \, \text{end}
34 y1 = y1/h;
35 y2(7)=f2(7);
36 printf('\n\n dy\n --=\%.10g\n dx',y1)
37 printf('\n \n \n \d2y \n --- = \%.5 g \n \dx2', y2(7))
```

Scilab code Exa 7.10 Lagranges Differentiation

```
1 //Example 7.10
```

Scilab code Exa 7.11 Newtons Divided Difference Interpolation

```
1 //Example 7.11
2 // Newton's Divided Difference Interpolation
3 //Page no. 247
4 clc; close; clear;
6 \quad x = [-1, 1, 2, 3]
7 y = [-21, 15, 12, 3];
8 \text{ y1=y}; h=0.0000001
9 deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
      ') //function for finding polynomials
10 for i=1:3
11
       for j=1:4-i
            z(j,i)=P(x,y,j,i)
12
13
             y(j)=z(j,i)
14
       end
15 end
16 z(6,1)=0;
                                        f(x0, x1, x3)
17 printf('x
                У
                         f(x0, x1)
      (x0, x1, x2, x3) \ n')
18 printf('
```

```
n ')
        for j=1:4
19
             printf(' %i
                            \%i \ \t\%i\t\t\t\%i\t\t, x(1,j)
20
                 ,y1(1,j),z(j,1),z(j,2),z(j,3))
21
        end
22 x1 = poly(0, 'x');
p=1; f=y1(1);
24 \text{ for } i=1:3
25
        for j=1:i
26
             p=p*(x1-x(j))
27
        end
28
        p=p*z(1,i)
29
        f = f + p
30
        p=1;
31 end
32 \text{ disp}(f, "f(x) = ")
33 f1 = y1(1)
34 x2 = poly(h, 'x');
35 \text{ for } i=1:3
36
        for j=1:i
37
             p=p*(x2-x(j))
38
        end
39
        p=p*z(1,i)
40
        f1=f1+p
41
        p=1;
42 \text{ end}
43 f1=(f1-f)/h
44 disp(f1, "f'(x) = ")
45 \text{ r=roots}(f1)
46 disp(r, "Roots = ")
47 \text{ x1=r(2)}
48 p=1; f=y1(1);
49 \text{ for } i=1:3
50
        for j=1:i
             p=p*(x1-x(j))
51
52
        end
53
        p=p*z(1,i)
54
        f = f + p
```

```
55 p=1;
56 end
57 disp(f,"Maximum Value = ")
```

Scilab code Exa 7.12 Stirlings Central Difference Derivatives

```
1 //Example 7.12
2 // Stirlings Central Difference Derivatives
3 // Page no. 248
4 clc; close; clear;
5 printf(' x \setminus t y \setminus t d \setminus t d2 \setminus t
                                                  d3 \setminus t
                                                           d4 \n
      ')
6 printf('
      )
  function [x]=f(x1)
8
       x = 0;
9
        for i=3:6
            x=x+(-1)^(i-1)*(z(x1,i))/((i-2)*h)
10
11
        end
12 endfunction
13 h=1;
z = [-3, -33; -2, -12; -1, -3; 0, 0; 1, 3; 2, 12; 3, 33];
15 \text{ for } i=3:6
        for j=1:9-i
16
            z(j,i)=z(j+1,i-1)-z(j,i-1)
17
18
        end
19 end
20 printf('\n')
21 for i=1:7
22
        for j=1:6
23
            if j==1
                 printf(' \%g\t ',z(i,j))
24
25
            else
                 printf('\%i\t ',z(i,j))
26
```

```
27 end

28 end

29 printf('\n')

30 end

31 printf("\n\nf'(-3) = %g\n\nf'(0) = %g",f(1),f(4))
```

Scilab code Exa 7.13 Newtons Backward Formula

```
1 //Example 7.13
2 //Newtons Backward Formula
3 // Page no. 248
4 clc; close; clear;
5 printf(' x t y t d t d2 t d3 t d4 t d5 n')
6 printf('
      ')
7 h=0.5;
8 deff('y=f_2(x)', 'y=(z(x,4)-z(x,5)+z(x,6))/h^2')
9 z=[1.5,3.375;2,7;2.5,13.625;3,24;3.5,38.875;4,59];
10 for i=1:6
11
       for j=3:7
           z(i,j) = -1
12
13
       end
14 end
15 \text{ for } i=3:7
       for j=1:8-i
16
17
           z(j,i)=z(j+1,i-1)-z(j,i-1)
18
       end
19 end
20 printf(' \ n')
21 for i=1:6
22
       for j=1:7
           if z(i,j) == -1 then
23
                printf(' \t')
24
25
           elseif j==1
```

```
printf(' %.1f\t',z(i,j))
26
27
            else
                 printf('%.3f\t',z(i,j))
28
29
            end
30
        end
31
        printf('\n')
32 end
33
34 \quad j=1; y1=0;
35 \text{ for } i=3:6
36
        y1=y1+(-1)^(i-1)*z(j,i)/(i-2)
37 end
38 y1 = y1/h;
39 y2(7) = f2(1);
40 printf('\n\n f'(1.5) = \%g',y1)
41 printf('\n\n f''(1.5) = \%g', y2(7))
```

Scilab code Exa 7.14 Newtons Divided Difference

Chapter 8

Numerical Quadrature

Scilab code Exa 8.1 Simpsons 1 3rd Rule

```
1 //Example 8.1
2 //Simpsons 1/3rd Rule
3 // Page no 264
4 clc; clear; close;
5 a=0;b=5;n=10;h=(-a+b)/n
7 \quad for \quad i=1:n
       if i==1 then
9
            x(1,i)=a
10
       else
            x(1,i)=x(i-1)+h
11
12
       end
       y(1,i)=1/(4*x(i)+5)
13
14 end
15 disp(y, "f(x) = ", x, "x = ")
16 S=0;
17 for i=1:n
18
       if (i == 1 | i == n)
19
            S=S+y(1,i)
20
       elseif(((i)/2)-fix((i)/2)==0)
21
            S=S+4*y(1,i)
```

Scilab code Exa 8.2 Simpsons 1 3rd Rule and Richardson Extrapolation

```
1 //Example 8.2
2 //Simpsons 1/3rd Rule and Richardson Extrapolation
3 //Page no 264
4 clc; clear; close;
5 a=1;b=2;
6 // simpsons rule when h=0.5
7 h = 0.5
8 n = (b-a)/h+1;
9 for i=1:n
       if i==1 then
10
11
            x(1,i)=a
12
       else
            x(1,i)=x(i-1)+h
13
14
       end
15
       y(1,i)=1/x(i)
16 \text{ end}
17 disp(y, "f(x) = ", x, "x = ")
18 S=0;
19 for i=1:n
       if (i == 1 | i == n)
20
            S=S+y(1,i)
21
       elseif(((i)/2)-fix((i)/2)==0)
22
            S=S+4*y(1,i)
23
24
       else
25
            S=S+2*y(1,i)
```

```
26
        end
27 end
28 S = S * h / 3;
29 printf('\n\nSimpsons 1/3rd Rule Sum when h is 0.5 =
        %g\n\n\n\n\,S)
30
31
32 //simpsons rule when h=0.25
33 h=0.25
34 n = (b-a)/h+1;
35 for i=1:n
36
        if i==1 then
37
             x(1,i)=a
38
        else
39
             x(1,i)=x(i-1)+h
40
        end
        y(1,i)=1/x(i)
41
42 end
43 disp(y, "f(x) = ", x, "x = ")
44 S2=0;
45 \text{ for } i=1:n
        if (i == 1 | i == n)
46
             S2=S2+y(1,i)
47
        elseif(((i)/2)-fix((i)/2)==0)
48
             S2=S2+4*y(1,i)
49
50
        else
51
             S2=S2+2*y(1,i)
52
        end
53 end
54 \text{ S2=S2*h/3};
55 printf('\n\nSimpsons 1/3rd Rule Sum when h is 0.25
       = \%g \langle n \rangle n \langle n', S2 \rangle
56
57
58 // Richardson Extrapolation
59 \quad Q12=16*S2/15-S/15;
60 disp(Q12,"Q12 = ")
61 \operatorname{disp}(\log(2) - \log(1), "Exact Value = ")
```

Scilab code Exa 8.6 Simpsons 1 3rd Rule and Bessels Quadrature

```
1 //Example 8.6
2 //Simpsons 1/3rd Rule and Bessels Quadrature
3 //Page no 271
4 clc; clear; close;
5
6 z
      = [0, 0.5; 0.25, 0.4794; 0.5, 0.4594; 0.75, 0.4398; 1, 0.4207]
7 h=0.25;
  for i=1:3
       printf('\nWhen x = \%g', z(i,1))
9
10
       if i==1 then
            printf(' clearly we have \n\n')
11
12
            for j=1:5
                y(i,j)=1
13
14
            end
15
       elseif i==2
            printf(', using Bessels formula \n\n')
16
17
            for j=1:5
18
                if j==1 then
                    y(i,j)=1
19
20
                else
                    y(i,j)=1+h*(z(i-1,2)*y(i-1,j)+z(i,2)
21
                        *y(i,j-1))/2
22
                end
23
            end
24
       else
25
            printf(', using Simpsons formula \n\n')
            for j=1:5
26
27
                if j==1 then
                    y(i,j)=1+h*(z(i-2,2)+4*z(i-1,2)+z(i
28
                        ,2))/3
```

```
29
                 else
30
                     y(i,j)=1+h*(z(i-2,2)*y(i-2,j)+4*z(i
                        -1,2)*y(i-1,j)+z(i,2)*y(i,j-1))/3
31
                 end
32
            end
33
       end
       for j = 1:5
34
            printf('y\%i(\%g) = \%g\n\n',j,z(i,1),y(i,j))
35
36
       end
37 end
```

Scilab code Exa 8.7 Simpsons 1 3rd Rule

```
1 //Example 8.7
2 //Simpsons 1/3rd Rule
3 // Page no 273
4 clc; clear; close;
6 a=100; b=200;
7 h = 50;
8 n = (b-a)/h+1
9 \quad for \quad i=1:n
        x(1,i)=a+(i-1)*h
10
        f(1,i)=1/\log(x(1,i))
11
12 end
13 disp(f, "f = ", x, "x = ", "If h = 50")
14 l=h*(f(1,1)+4*f(1,2)+f(1,3))/3
15 \text{ disp}(1,"I = ")
16 printf('\n\')
17 h=25;
18 n = (b-a)/h+1
19 for i=1:n
        x(1,i)=a+(i-1)*h
20
21
        f(1,i)=1/\log(x(1,i))
22 \text{ end}
```

```
23 disp(f, "f = ", x, "x = ", "If h = 25")
24 l=h*(f(1,1)+f(1,5)+4*(f(1,2)+f(1,4))+2*f(1,3))/3
25 \text{ disp}(1,"I = ")
26 	 f1=0;
27 for i=100:200
28
       1=0;
29
       for j=2:i/2+1
            if fix(i/j)~=i/j then
30
                 1=1+1;
31
32
            end
33
       end
34
       if l==fix(i/2) then
35
            f1 = f1 + 1
36
       end
37 end
38 disp(f1, "Exact no. of Prime Numbers = ")
```

Scilab code Exa 8.8 Rombers Method

```
1 / \text{Example } 8.8
2 //Rombers Method
3 //Page no 274
4 clc; clear; close;
5
6 a=0;b=1;
7 h = [0.5, 0.25, 0.125];
8 \text{ for } j=1:3
       n=(b-a)/h(j)+1
10 for i=1:n
       x(1,i)=a+(i-1)*h(j)
11
       y(1,i)=1/(1+x(1,i))
12
13 end
14 Q(j) = 0;
15 for i=1:n
16
       if i==1 | i==n then
```

```
Q(j)=Q(j)+h(j)*(y(1,i))/2
17
18
         else
              Q(j)=Q(j)+h(j)*(y(1,i))
19
20
         end
21 end
22 printf('\nx :')
23 for k=1:n
        printf('\t \%g',x(1,k))
24
25 end
26 printf(' \setminus nf(x) : ')
27 \text{ for } k=1:n
        \textbf{printf('} \backslash t\%.4\ f', \textbf{y(1,k))}
28
29 end
30 printf('\n\sqrt{n}Q(\%i) = \%g\n\sqrt{n}',j,Q(j))
31 end
32 R1 = 4 * Q(2)/3 - Q(1)/3
33 S=16*Q(3)/15-R1/15;
34 printf('S = \%g',S)
```

Scilab code Exa 8.9 Rombers Method

```
1 //Example 8.9
2 //Rombers Method
3 //Page no 275
4 clc; clear; close;
5
6 a=4; b=5.2;
7 h=[0.4,0.2];
8 for j=1:2
9    n=(b-a)/h(j)+1
10 for i=1:n
    x(1,i)=a+(i-1)*h(j)
12    y(1,i)=log(x(1,i))
13 end
14 Q(j)=0;
```

```
15 \text{ for } i=1:n
16
        if i==1 | i==n then
             Q(j)=Q(j)+h(j)*(y(1,i))/2
17
18
        else
19
             Q(j)=Q(j)+h(j)*(y(1,i))
20
        end
21 end
22 printf('\nx :')
23 \text{ for } k=1:n
        printf('\t \%g',x(1,k))
24
25 end
26 printf('\setminusnf(x):')
27 \text{ for } k=1:n
        printf ('\t\%.4 f', y(1,k))
28
29 end
30 printf('\n\sqrt{nQ(\%i)} = \%g\n\sqrt{n}',j,Q(j))
31 end
32 R1 = 4 * Q(2) / 3 - Q(1) / 3
33 printf ('R1 = \%g', R1)
```

Scilab code Exa 8.10 Rombers Method

```
1 //Example 8.10
2 //Rombers Method
3 //Page no 275
4 clc; clear; close;
5
6 a=0; b=1;
7 h=[0.5,0.25,0.125];
8 for j=1:3
9     n=(b-a)/h(j)+1
10 for i=1:n
11     x(1,i)=a+(i-1)*h(j)
12     y(1,i)=1/(1+x(1,i)^2)
13 end
```

```
14 Q(j) = 0;
15 if j^{=3} then
        for i=1:n
16
17
        if i==1 | i==n then
18
             Q(j)=Q(j)+h(j)*(y(1,i))/2
19
        else
             Q(j)=Q(j)+h(j)*(y(1,i))
20
21
        end
22 end
23 else
24
        R2=0;
25 \text{ for } i=1:n
26
        if (i == 1 | i == n)
27
             R2=R2+y(1,i)
        elseif(((i)/2)-fix((i)/2)==0)
28
29
             R2=R2+4*y(1,i)
30
        else
31
             R2=R2+2*y(1,i)
32
        end
33 end
34 R2=R2*h(j)/3
35 end
36 printf('\nx :')
37 for k=1:n
        printf('\t %g',x(1,k))
38
39 end
40 printf('\setminusnf(x):')
41 for k=1:n
        printf ('\t\%.4 f', y(1,k))
43 end
44 if j~=3 then
        printf(' \setminus n \setminus nQ(\%i) = \%g \setminus n \setminus n', j, Q(j))
45
46 else
        printf ('\n\nR2 = \%.4g\n\n\n', R2)
47
48 end
49 end
50
51 R1 = 4 * Q(2)/3 - Q(1)/3
```

```
52 S=16*R2/15-R1/15; 53 printf('\nTherefore by Rombergs Method, S = \%.4\,\mathrm{g}',S)
```

Scilab code Exa 8.11 Integration by Various Methods

```
1 //Example 8.11
2 //Integration by Various Methods
3 //Page no 276
4 clc; clear; close;
5 deff('y=f(x)', 'y=1/(1+x^2)')
6 a=0;b=1;
7 S=0; h=1/4;
8 n = (b-a)/h+1
9 \quad for \quad i=1:n
        x(i)=(i-1)*h
10
        y(i)=f(x(i))
11
12 end
13 c = ['x', 'f(x)']
14 for i=1:2
15
        printf('\n',c(i))
16
        for j=1:n
17
             if i==1 then
                  printf('\%g\t',x(j))
18
19
             else
                  \textbf{printf} (\ \ \%.4\,\text{g}\ \ t\ \ \texttt{',y(j)})
20
21
             end
22
        end
23 end
24
25 //trapezoidal rule
26 for i=1:n
             if (i == 1 | i == n)
27
                  S=S+y(i)
28
29
             else
30
                  S=S+2*y(i)
```

```
31
             end
32
        end
        S=S*h/2
33
        printf('\n\n By Trapezoidal Method, I = \%.4 f',S)
34
35 //Simpsons 1/3rd Rule
36 S = 0;
37 \text{ for } i=1:n
        if (i == 1 | i == n)
38
             S=S+y(i)
39
        elseif (((i)/2)-fix((i)/2)==0)
40
             S=S+4*y(i)
41
42
        else
43
             S=S+2*y(i)
44
        end
45 end
46 \text{ S=S*h/3};
47 printf('\n\n By Simpsons 1/3rd Rule, I = \%.4g \n\n\n
       ',S)
48
49 S=0; h=1/6;
50 n = (b-a)/h+1
51 \text{ for } i=1:n
52
        x(i) = (i-1) *h
        y(i)=f(x(i))
53
54 end
55 for i=1:2
56
        printf('\n',c(i))
57
        for j=1:n
             if i==1 then
58
                  printf(\%.4g\t',x(j))
59
             else
60
                  printf(\%.4g\t',y(j))
61
62
             end
63
        end
64 end
65 //Simpsons 3/8 rule
66 \quad for \quad i=1:n
             if (i == 1 | i == n)
67
```

```
S=S+y(i)
68
69
             elseif i^=(n+1)/2
70
                 S=S+3*y(i)
71
             else
72
                 S=S+2*y(i)
73
             end
74
        end
75
        S = S * 3 * h / 8
76
        printf('\n\n By Simpsons 3/8 rule, I = \%.5 f',S)
77
78 //Weddle's Rule
79 S = 0;
80 \text{ for } i=1:n
        if i == (n+1)/2
81
             S=S+6*y(i)
82
        elseif (((i)/2)-fix((i)/2)^=0)
83
             S=S+y(i)
84
85
        else
             S=S+5*y(i)
86
87
        end
88 end
89 S=S*3*h/10;
90 printf('\n\n By Weddles Rule, I = \%.5 f',S)
```

Scilab code Exa 8.12 Euler Maclaurin Methods

```
1 //Example 8.12
2 //Euler Maclaurin Methods
3 //Page no 278
4 clc; clear; close;
5
6 a=0; b=1; h=[0.5,0.25]
7 h1=[6,360,15120]
8 for j=1:2
9 n=(b-a)/h(j)+1
```

```
for i=1:n
10
             x(i)=(i-1)*h(j)
11
12
             y(i) = sin(\%pi * x(i))
13
        end
14
        printf(' \mid x = \mid t')
15
        for i=1:n
             printf('\t^{\%}g',x(i))
16
17
        end
        printf(' \setminus n f(x) = \setminus t')
18
        for i=1:n
19
             printf(\%.4 f t, y(i))
20
21
        end
22
        s=0;
        for i = 0:2
23
             s=s+((-1)^i)*(\%pi^(2*i+1))*(h(j)^(2*(i+1)))/
24
                h1(i+1)
25
        end
26
        for i=1:n
             if i==1 | i==n then
27
                  s=s+y(i)*(h(j))/2
28
29
             else
                  s=s+2*y(i)*(h(j))/2
30
31
             end
32
        end
        printf('\n\nI = \%g\n\n\n',s)
33
34 end
```

Scilab code Exa 8.13 Trapezoidal and Simpsons Rule

```
//Example 8.13
//Trapezoidal and Simpsons Rule
//Page no. 283
clc;close;clear;
ax=4;bx=4.4;ay=2;by=2.4;h=0.1
```

```
7 n = (bx - ax)/h+1
8 n=5;
9 for i=1:n
        x(i)=ax+(i-1)*h
11
        y(i) = ay + (i-1) * h
12 end
13 printf(' y/x \setminus t|')
14 for i=1:n
        printf('\t\%g',x(i))
15
16 \text{ end}
17 printf('\n
18 for i=1:n
         printf(' \n\%g\t \mid \t ', y(i))
19
        for j=1:n
20
             z(i,j)=x(j)*y(i)
21
22
             printf('%g\t',z(i,j))
23
        end
24 end
25
26 //trapezoidal rule
27 s = 0;
28 \text{ for } i=1:n
29
        for j=1:n
             if (i==1 | i==n) & (j==1 | j==n) then
30
31
                 s=s+z(i,j)
             elseif i==1 | i==n | j==1 | j==n
32
                  s=s+2*z(i,j)
33
34
             else
35
                  s=s+4*z(i,j)
36
             end
37
        end
38 \text{ end}
39 s = (s*(h^2))/4
40 printf('\n\n')
41 disp(s, 'Trapezoidal Rule Sum = ')
42 printf('\n\n')
```

```
43 //simpsons rule
44 \, s = 0;
45 \text{ for } i=1:n
       for j=1:n
46
47
            if (i==1 | i==n) & (j==1 | j==n) then
                s=s+z(i,j)
48
            elseif (i/2-fix(i/2)^{-}=0) & (j/2-fix(j/2)^{-}=0)
49
                & (i=1 | j=1 | i=n | j=n)
                s=s+2*z(i,j)
50
            elseif (i/2-fix(i/2)==0) & (j/2-fix(j/2)==0)
51
                & (i=1 | j=1 | i=n | j=n)
                s=s+4*z(i,j)
52
53
            elseif (i/2-fix(i/2)==0) & (j/2-fix(j/2)==0)
                & (i = ceil(n/2) | j = ceil(n/2))
                s=s+8*z(i,j)
54
            elseif (i/2-fix(i/2)==0) & (j/2-fix(j/2)==0)
55
                s=s+16*z(i,j)
56
57
            else
58
                s=s+4*z(i,j)
59
            end
60
       end
61 end
62 s = (s*(h^2))/9
63 disp(s, 'Simpsons Rule Sum = ')
```

Scilab code Exa 8.14 Trapezoidal Rule

```
1 //Example 8.14
2 //Trapezoidal Rule
3 //Page no. 284
4 clc; close; clear;
5
6 ax=1; bx=2; ay=1; by=2; h=0.25
7 n=(bx-ax)/h+1
8 n=5;
```

```
9 for i=1:n
        x(i)=ax+(i-1)*h
10
        y(i) = ay + (i-1) *h
11
12 end
13 printf(' y/x \setminus t|')
14 for i=1:n
        printf('\t^{\%}g\t',x(i))
15
16 end
17 printf(' \ n
      ')
18 for i=1:n
       printf(' \n\%g\t | \t ', y(i))
19
        for j=1:n
20
            z(i,j)=1/(x(j)+y(i))
21
            printf(\%.5g\t\t',z(i,j))
22
23
        end
24 end
25
26 //trapezoidal rule
27 \text{ s=0};
28 \text{ for } i=1:n
29
        for j=1:n
            if (i==1 | i==n) & (j==1 | j==n) then
30
                 s=s+z(i,j)
31
            elseif i==1 | i==n | j==1 | j==n
32
33
                 s=s+2*z(i,j)
34
            else
35
                 s=s+4*z(i,j)
36
            end
37
        end
38 end
39 s = (s*(h^2))/4
40 printf(' \n \n')
41 disp(s, 'Trapezoidal Rule Sum = ')
```

Chapter 9

Difference Equations

Scilab code Exa 9.1 Recurrence formula

```
1 //Example 9.1
2 //Recurrence formula
3 //Page no. 288
4 clc; clear; close;
5
6 y(1)=5;
7 for i=2:7
8      y(i)=2*y(i-1)
9      printf('\ny(%i) = %g\n',i-1,y(i-1))
10 end
```

Scilab code Exa 9.2 Recurrence formula

```
1 //Example 9.3
2 //Recurrence formula
3 //Page no. 291
4 clc; clear; close;
5
```

```
6  x=poly(0, 'x')
7  f=16*x^2-8*x+1;
8  z=roots(f)
9  disp(z,f)
10  printf('\t\tn\n(c1+n*c2) (%g)',z(1))
```

Scilab code Exa 9.3 Recurrence formula

```
1 //Example 9.3
2 //Recurrence formula
3 //Page no. 291
4 clc; clear; close;
5
6 x=poly(0, 'x')
7 f=16*x^2-8*x+1;
8 z=roots(f)
9 disp(z,f)
10 printf('\t\tn\n(c1+n*c2) (%g)',z(1))
```

Scilab code Exa 9.4 Recurrence formula

```
1 //Example 9.4
2 //Recurrence formula
3 //Page no. 291
4 clc; clear; close;
5
6 x=poly(0, 'x')
7 n=3;
8 f=x^(n)-2*x^(n-1)-x^(n-2)+2;
9 z=roots(f)
10 disp(z,f)
11 printf('\n\n')
12 printf(' n n n n\n')
```

```
13 for i=1:n
14    printf('c%i(%g)',i,z(i))
15    if i~=n then
16         printf(' + ')
17    end
18 end
```

Scilab code Exa 9.5 Difference Equation

```
1 //Example 9.5
2 // Difference Equation
 3 // Page no. 291
4 clc; clear; close;
 6 y(1)=1.5; y(2)=3;
7 n = poly(0, 'n')
8 x = poly(0, 'x')
9 f = x^2 - 2 * x + 1;
10 disp(f)
11 x = roots(f)
12 \text{ disp}(x, "x = ")
13 A = [1, 1; 1, 2];
14 B = [y(1); y(2)]
15 C = inv(A) *B
16 for i=1:2
        printf(' \setminus nc(\%i) = \%g \setminus n', i, C(i))
17
18 end
19 yn=C(1)+C(2)*n
20 \text{ disp}(yn,"yn = ")
```

Scilab code Exa 9.6 Difference Equation

```
1 / \text{Example } 9.6
```

Scilab code Exa 9.8 Recurrence formula

```
1 / \text{Example } 9.8
2 //Recurrence formula
3 //Page no. 292
4 clc; clear; close;
6 x = poly(0, 'x')
7 n=2;
8 f=x^{(n)}-5*x^{(n-1)}+6*x^{(n-2)};
9 z=roots(f)
10 disp(z,f)
11 printf('\n')
                                        n \setminus nf(n) = '
12 printf('
                              n
13 for i=1:n
              \texttt{printf} (\ 'c\%i (\%g) \ ', \texttt{i,z(i)}) 
14
         if i~=n then
15
              printf(' + ')
16
17
         end
18 \text{ end}
```

Scilab code Exa 9.9 Particular Solution

```
1 //Example 9.9
2 // Particular Solution
3 // Page no. 293
4 clc; clear; close;
6 x = poly(0, 'x')
7 n=2;
8 f=x^{(n)}-x^{(n-1)}-2*x^{(n-2)};
9 z=roots(f)
10 disp(z,f)
11 printf('\n')
                                     n \cdot nC \cdot F \cdot = ')
12 printf('
                           n
13 for i=1:n
        printf('c\%i(\%g)',i,z(i))
14
        if i~=n then
15
16
             printf(' + ')
17
        end
18 \text{ end}
19 A = [-2,0,0;10,-2,0;9,-5,2];
20 B = [2;0;0];
21 C=inv(A)*B;
                        2 \ln P \cdot I = (\%g) n + (\%g) n + (\%g)', C(1), C
22 printf(' \n \n \t
       (2), C(3))
```

Scilab code Exa 9.10 Particular Solution

```
1 //Example 9.10
2 //Particular Solution
3 //Page no. 294
4 clc; clear; close;
```

```
5
6 x = poly(0, 'x')
7 n=2;
8 f=x^(n)-0*x^(n-1)-4*x^(n-2);
9 z = roots(f)
10 \text{ disp}(z,f)
11 printf('\n\')
12 printf('
                                     n \ C.F. = ')
                           n
13 for i=1:n
        printf('c\%i(\%g)',i,z(i))
        if i~=n then
15
             printf(' + ')
16
17
        end
18 end
19 A = [-3, 0, 0; 4, -3, 0; 4, 2, -3];
20 B = [9;0;0];
21 C=inv(A)*B;
22 printf(' \n \n \t
                      2 \ln P \cdot I = (\%g) n + (\%g) n + (\%g) ', C(1), C
      (2), C(3))
```

Scilab code Exa 9.11 Particular Solution

```
1 //Example 9.11
2 //Particular Solution
3 //Page no. 294
4 clc; clear; close;
5
6 x=poly(0, 'x')
7 n=2;
8 f=x^(n)-0*x^(n-1)-4*x^(n-2);
9 z=roots(f)
10 disp(z,f)
11 printf('\n\n')
12 printf(' n n n\nC.F. = ')
13 for i=1:n
```

Scilab code Exa 9.12 Particular Solution

```
1 //Example 9.12
2 // Particular Solution
3 // Page no. 295
4 clc; clear; close;
6 x = poly(0, 'x')
7 \quad n=2; s=['+', '-'];
8 f=x^(n)-4*x^(n-1)+5*x^(n-2);
9 z = roots(f)
10 disp(z,f)
11 printf('\n\')
                                            n \setminus nC.F. = ')
12 printf('
                              n
13 for i=1:n
       printf('c%i(%g %s i)',i,z(i),s(i))
14
15
        if i~=n then
16
            printf(' + ')
17
        end
18 \text{ end}
19 C=1;
20 printf ('\n\n\t \nP.I = \%g',C)
```

Scilab code Exa 9.13 Particular Solution

```
1 //Example 9.13
2 // Particular Solution
3 // Page no. 295
4 clc; clear; close;
6 x = poly(0, 'x')
7 n=2;
8 f=x^{(n)}-7*x^{(n-1)}+10*x^{(n-2)};
9 z=roots(f)
10 \text{ disp}(z,f)
11 printf(' \setminus n \setminus n')
                            n \ C.F. = 
12 printf('
                        \mathbf{n}
13 for i=1:n
       printf('c%i(%g)',i,z(i))
14
       if i~=n then
15
16
            printf(' + ')
17 end
18 end
19 C = -6;
20 printf('\n \ n \ t \ nP.I = \%g(4)',C)
```

Scilab code Exa 9.14 Particular Solution

```
1 //Example 9.14
2 //Particular Solution
3 //Page no. 296
4 clc; clear; close;
5
6 x=poly(0,'x')
7 n=2;
```

```
8 f=x^{(n)}+5*x^{(n-1)}+4*x^{(n-2)};
9 z=roots(f)
10 \text{ disp}(z,f)
11 printf('\n\')
12 printf('
                                    n \ C.F. = ')
                          n
13 for i=1:n
       printf('c%i(%g)',i,z(i))
14
       if i~=n then
15
            printf(' + ')
16
17
       end
18 \text{ end}
19 C=18;
20 printf('\n \ n \ t \ nP.I = \%g(3)',C)
```

Scilab code Exa 9.15 Particular Solution

```
1 //Example 9.15
2 // Particular Solution
3 // Page no. 296
4 clc; clear; close;
6 x = poly(0, 'x')
7 n=2;
8 f=x^(n)-1*x^(n-1)-2*x^(n-2);
9 z = roots(f)
10 disp(z,f)
11 printf('\n')
12 printf('
                                     n \cdot nC \cdot F \cdot = ')
                          n
13 for i=1:n
       printf('c\%i(\%g)',i,z(i))
14
       if i~=n then
15
            printf(' + ')
16
17
        end
18 \text{ end}
19 A = [5/8, 0; 1/2, 5/8];
```

```
20 B=[3;0]
21 C=inv(A)*B;
22 printf('\n\n\t\t\n\t\nP.I = (\%gn\%g)(4)',C(1),
C(2))
```

Scilab code Exa 9.16 Particular Solution

```
1 //Example 9.16
2 //Particular Solution
3 //Page no. 297
4 clc; clear; close;
5
6 x=poly(0, 'x')
7 n=2;
8 f=x^(n)-2*x^(n-1)+x^(n-2);
9 z=roots(f)
10 disp(z,f)
11 printf('\t\t\nC.F. = (c1+n*c2) (%g)',z(1))
12 A=[1,0,0;8,1,0;12,4,1];
13 B=[1;0;0];
14 C=inv(A)*B;
15 printf('\n\n\t 2\nP.I = (%g)n+(%g)n+(%g)',C(1),C(2),C(3))
```

Scilab code Exa 9.17 Particular Solution

```
1 //Example 9.17
2 //Particular Solution
3 //Page no. 298
4 clc; clear; close;
5
6 x=poly(0,'x')
7 n=2;
```

```
8 f=x^(n)-3*x^(n-1)+2*x^(n-2);
9 z=roots(f)
10 disp(z,f)
11 printf('\t\t n\nC.F. = (c1+n*c2) (%g)',z(1))
12 A=[-4,0;2,-2];
13 B=[2;0];
14 C=inv(A)*B;
15 printf('\n\n\t 2\nP.I = (%g)n+(%g)n',C(1),C(2))
```

Scilab code Exa 9.18 Particular Solution

```
1 //Example 9.16
2 // Particular Solution
3 //Page no. 297
4 clc; clear; close;
6 x = poly(0, 'x')
7 n=1;
8 f=x^(n)-4*x^(n-1);
9 z=roots(f)
10 disp(z,f)
                    n \ C.F. = (c1) \ (\%g), z(1)
11 printf('\t
12 A = [1, 1; 0, 1];
13 B = [6; 0];
14 C = inv(A) *B;
15 printf('\n\n\t\ \t\ n\nP.I = ((\%g)n+(\%g)n)*(4)',C
      (1),C(2))
```

Chapter 10

Ordinary Differential Equations

Scilab code Exa 10.1 Taylor Method

```
1 //Example 10.1
2 // Taylor Method
3 //Page no. 302
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=y-2*x/y')  
7 deff('y=f2(x,y)', 'y=(2*y*f1(x,y)-2-f1(x,y)^2)/y')
8 deff('y=f3(x,y)', 'y=(2*y*f2(x,y)-3*f1(x,y)*f2(x,y)
      +2*f1(x,y)^2)/y
9 h=0.1; y=1;
       x = [0.1; -0.1]
10
       for i=1:2
11
12
       k = y;
13
       for j=1:3
14
        if j==1 then
            k=k+(-1)^{((i-1)*j)*(h^j)*f1(0,y)/factorial(j)}
15
16
        elseif j==2
17
            k=k+(-1)^{((i-1)*j)*(h^j)*f2(0,y)/factorial(j)}
        elseif j==3
18
```

```
 k = k + (-1)^{((i-1)*j)*(h^{j})*f3(0,y)/factorial(j)}  end  20 \quad \text{end}   21 \quad \text{end}   22 \quad printf(' \setminus ny(\%g) = \%g \setminus n \setminus n', x(i), k)  end  23 \quad \text{end}
```

Scilab code Exa 10.2 Taylor Method

```
1 //Example 10.2
2 //Taylor Method
3 //Page no. 303
4 clc;clear;close;
5
6 deff('y=f1(x,y)', 'y=x-y^2')
7 deff(,y=f2(x,y),,y=1-2*x*y+2*y^3)
8 deff('y=f3(x,y)', 'y=-2*(y-4*x*y^2+3*y^4+x^2)')
9 deff('y=f4(x,y)', 'y=-2*y*f3(x,y)-6*f1(x,y)*f2(x,y)')
10 h=0.2; y=1;
11
       x = [0.2, 0.4]
12
       for i=1:2
13
            if i==1 then
14
                k = y;
15
            end
16
       for j=1:4
17
       if j==1 then
           k=k+(h^j)*f1((i-1)*h,y)/factorial(j)
18
19
       elseif j==2
20
            k=k+(h^j)*f2((i-1)*h,y)/factorial(j)
       elseif j==3
21
           k=k+(h^{j})*f3((i-1)*h,y)/factorial(j)
22
23
       elseif j==4
            k=k+(h^j)*f4((i-1)*h,y)/factorial(j)
24
25
       end
26 \, \text{end}
```

```
27 printf('\ny(%g) = %g\n\n',x(i),k) 28 y=k 29 end
```

Scilab code Exa 10.3 Taylor Method

```
1 //Example 10.3
2 // Taylor Method
3 //Page no. 304
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=1')
7 deff('y=f2(x,y)', 'y=x*y')
8 deff('y=f3(x,y)', 'y=x*f1(x,y)+y')
9 deff('y=f4(x,y)', 'y=x*f2(x,y)+2*f1(x,y)')
10 deff('y=f5(x,y)', 'y=x*f3(x,y)+3*f2(x,y)')
11 h=0.5; y=0;
       x = [0.5, 1]
12
       for i=1:2
13
14
            if i==1 then
15
                k = y;
16
           end
17
       for j=1:5
18
       if j==1 then
           k=k+(h^j)*f1((i-1)*h,y)/factorial(j)
19
20
       elseif j==2
21
           k=k+(h^j)*f2((i-1)*h,y)/factorial(j)
22
       elseif j==3
23
           k=k+(h^j)*f3((i-1)*h,y)/factorial(j)
24
       elseif j==4
           k=k+(h^j)*f4((i-1)*h,y)/factorial(j)
25
26
       elseif j==5
           k=k+(h^j)*f5((i-1)*h,y)/factorial(j)
27
28
       end
29 end
```

```
30 printf('\ny(\%g) = \%g\n\n',x(i),k)
31 y=k
32 end
```

Scilab code Exa 10.4 Euler Method

```
1 //Example 10.4
2 //Euler Method
3 //Page no. 309
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=(x-y)/2')
6 y(1)=1;
7 h=0.5;
8 for i=1:7
9     printf('\ny(%g) = %g\n', (i-1)*h,y(i))
10     y(i+1)=y(i)+h*f((i-1)*h,y(i))
11
12 end
```

Scilab code Exa 10.5 Euler Method

```
1 //Example 10.5
2 //Euler Method
3 //Page no. 309
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=(y-x)/(x+y)')
6 y(1)=1;
7 h=0.02;
8 for i=1:6
9    printf('\ny(%g) = %g\n', (i-1)*h,y(i))
10    y(i+1)=y(i)+h*f((i-1)*h,y(i))
11
12 end
```

Scilab code Exa 10.6 Euler and Modified Euler Method

```
1 //Example 10.6
2 //Euler and Modified Euler Method
3 // Page no. 311
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y-x^2')
6 y(1)=1;
7 h=0.2;
8 \text{ for } i=1:4
9
        printf(' \setminus ny(\%g) = \%g \setminus n', (i-1)*h, y(i))
        y(i+1)=y(i)+h*f((i-1)*h,y(i))
10
11 end
12 printf ('\n\n By Modified Euler Method\n')
13 for i=1:4
14
        printf(' \setminus ny(\%g) = \%g \setminus n', (i-1)*h, y(i))
        y(i+1)=y(i)+h*f((i-1)*h+h/2,y(i)+h*f((i-1)*h,y(i)
15
           ))/2)
16 \text{ end}
```

Scilab code Exa 10.7 Modified Euler Method

```
1 //Example 10.7
2 //Modified Euler Method
3 //Page no. 312
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x+abs(sqrt(y))')
6 y(1)=1;
7 h=0.2;
8 for i=1:4
9 printf('\ny(%g) = %g\n',(i-1)*h,y(i))
```

Scilab code Exa 10.8 Picard Method

```
1 //Example 10.8
2 //Picard Method
3 //Page no. 313
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x^2-y')
6 y(1)=1;
7 for i=1:5
8     y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,0.2)
9     printf('\n y%g = %g\n',i,y(i+1))
10 end
```

Scilab code Exa 10.9 Picard Method

```
1 //Example 10.9
2 //Picard Method
3 //Page no. 313
4 clc; clear; close;
5 x=poly(0, 'x')
6 deff('y=f1(x,y)', 'y=x^2')
7 deff('y=f2(x,y)', 'y=2*x*y')
8 y(1)=0;
9 h=poly(0, 'x')
10 for i=1:4
11 for j=1:i
12 if j==1 then
```

```
y1(j)=y(1)+integrate('f1(x,y(j))', 'x')
13
                      ,0,1)
14
             else
                  y1(j) = integrate('f2(x,y1(j)*(x^(2*j-1)))
15
                      ', 'x',0,1)
16
             end
17
        end
18
        printf("\n\n y%i = ",i)
19
        for j=1:i
20
21
             if j==i then
                  printf("x^{\%}i * \%g",2*j+1,y1(j))
22
23
             else
                  printf("x^{\hat{}}\%i * \%g + ", 2*j+1, y1(j))
24
25
             end
26
        end
27
        for j=i:-1:1
28
             y1(j+1)=y1(j)
29
        end
30 \text{ end}
```

Scilab code Exa 10.10 Picard Method

```
1 //Example 10.10
2 //Picard Method
3 //Page no. 314
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=1+x*y')
6 y(1)=1;
7 for i=1:5
8     y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,0.1)
9     printf('\n y%g = %.10g\n',i,y(i+1))
10 end
```

Scilab code Exa 10.11 Heun Method

```
1 //Example 10.11
2 //Heun Method
3 // Page no. 316
4 clc;clear;close;
5 deff('y=f(x,y)', 'y=(x-y)/2')
6 y = 1;
7 h = 0.5;
8 \text{ for } i=1:4
9
       x = (i-1) *h
10
       x1=x+h
11
       p=y+h*f(x,y)
       y=y+h*(f(x,y)+f(x1,p))/2
12
       printf('\n p(\%g) = \%g\n y(\%g) = \%g\n\n',i,p,i,
13
           у)
14
15 \, \text{end}
```

Scilab code Exa 10.12 Third Order Runge Kutta Method

```
1 //Example 10.12
2 //Third Order Runge Kutta Method
3 //Page no. 322
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x^2-y')
6 y=1; h=0.1;
7 for i=1:2
8     x=(i-1)*h
9 K1=h*f(x,y);
10 K2=h*f(x+h/2,y+K1/2);
11 K3=h*f(x+h,y+K2);
```

```
12 y=y+(K1+4*K2+K3)/6
13 printf(' \setminus ny(\%g) = \%.9 f \setminus n \setminus n', x+h, y)
14 end
```

Scilab code Exa 10.13 Fourth Order Runge Kutta Method

```
//Example 10.13
//Fourth Order Runge Kutta Method
//Page no. 323
clc; clear; close;
deff('y=f(x,y)', 'y=x+y')
y=1; x=0; h=0.1;
K1=h*f(x,y);
K2=h*f(x+h/2,y+K1/2);
K3=h*f(x+h/2,y+K2/2);
K4=h*f(x+h,y+K3);
disp(K4,'K4=',K3,'K3=',K2,'K2=',K1,'K1=')
y1=y+(K1+2*K2+2*K3+K4)/6
printf('\ny(1.1) = %.8f\n\n',y1)
```

Scilab code Exa 10.14 Fourth Order Runge Kutta Method for higher order equations

```
10
        K(1) = h * f(x,y,z);
11
        L(1) = h * g(x, y, z);
12
        K(2) = h * f(x+h/2, y+K(1)/2, z+L(1)/2);
13
        L(2) = h * g(x+h/2, y+K(1)/2, z+L(1)/2);
14
        K(3) = h * f(x+h/2, y+K(2)/2, z+L(2)/2);
15
        L(3) = h * g(x+h/2, y+K(2)/2, z+L(2)/2);
16
        K(4) = h * f(x+h, y+K(3), z+L(3));
        L(4) = h * g(x+h, y+K(3), z+L(3));
17
        y=y+(K(1)+2*K(2)+2*K(3)+K(4))/6
18
        z=z+(L(1)+2*L(2)+2*L(3)+L(4))/6
19
20
        for j=1:4
             printf('\n K\%i = \%g\t\tL\%i = \%g\n',j,K(j),j,
21
                L(j))
22
        end
        printf ('\ny(\%g) = \%.8 f\t\tz(\%g) = \%.8 f\n\n\n\n',
23
           x+h,y,x+h,z)
24
   end
```

Scilab code Exa 10.15 Fourth Order Runge Kutta Method

```
1 //Example 10.15
2 //Fourth Order Runge Kutta Method
3 //Page no. 324
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x^2+y^2')
6 y=1; h=0.1;
7 \text{ for } i=1:2
8
        x = (i-1) *h
9
        K1=h*f(x,y);
10 K2=h*f(x+h/2,y+K1/2);
11 K3=h*f(x+h/2,y+K2/2);
12 K4=h*f(x+h,y+K3);
13 disp(K4, 'K4 = ', K3, 'K3 = ', K2, 'K2 = ', K1, 'K1 = ')
14 y = y + (K1 + 2 * K2 + 2 * K3 + K4) / 6
15 printf('\ny(\%g) = \%.13 f\n\n\n\n', x+h,y)
```

Scilab code Exa 10.16 Fourth Order Runge Kutta Method

```
1 //Example 10.16
2 //Fourth Order Runge Kutta Method
3 //Page no. 326
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=(2*x*y+\exp(x))/(x^2+x*\exp(x))')
6 y=0; h=0.2;
7 \text{ for } i=1:2
8
        x=1+(i-1)*h
        K1=h*f(x,y);
9
10 K2=h*f(x+h/2,y+K1/2);
11 K3=h*f(x+h/2,y+K2/2);
12 K4=h*f(x+h,y+K3);
13 disp(K4, 'K4 = ', K3, 'K3 = ', K2, 'K2 = ', K1, 'K1 = ')
14 y = y + (K1 + 2 * K2 + 2 * K3 + K4) / 6
15 printf('\ny(\%g) = \%.13 f\n\n\n\n',x+h,y)
16 \text{ end}
```

Scilab code Exa 10.17 Fourth Order Runge Kutta Method for system of 1st order equations

```
1 //Example 10.17
2 //Fourth Order Runge Kutta Method for system of 1st
    order equations
3 //Page no. 327
4 clc; clear; close;
5 deff('y=f(x,y,z)', 'y=x+z')
6 deff('y=g(x,y,z)', 'y=x-y')
7 y=0; h=0.1; z=1;
8 for i=1:2
```

```
9
        x = (i - 1) * h
       K(1) = h * f(x,y,z);
10
        L(1) = h * g(x,y,z);
11
        K(2) = h * f(x+h/2, y+K(1)/2, z+L(1)/2);
12
13
        L(2) = h * g(x+h/2, y+K(1)/2, z+L(1)/2);
14
       K(3) = h * f(x+h/2, y+K(2)/2, z+L(2)/2);
15
       L(3) = h * g(x+h/2, y+K(2)/2, z+L(2)/2);
        K(4) = h*f(x+h,y+K(3),z+L(3));
16
17
        L(4) = h*g(x+h,y+K(3),z+L(3));
        y=y+(K(1)+2*K(2)+2*K(3)+K(4))/6
18
        z=z+(L(1)+2*L(2)+2*L(3)+L(4))/6
19
20
        for i=1:4
21
            printf('\n K\%i = \%g\t\tL\%i = \%g\n',j,K(j),j,
                L(j))
22
        end
        printf ('\ny(\%g) = \%.8 f\t\tz(\%g) = \%.8 f\n\n\n\n',
23
           x+h,y,x+h,z)
24 end
```

Scilab code Exa 10.18 Fourth Order Runge Kutta Method for higher order equations

```
1 //Example 10.18
2 //Fourth Order Runge Kutta Method for higher order
      equations
3 //Page no. 328
4 clc; clear; close;
5 deff('y=f(x,y,z)', 'y=z')
6 deff('y=g(x,y,z)', 'y=(x^2-y^2)/(1+z^2)')
7 y=1; h=0.5; z=0;
8 for i=1:2
9
       x = (i-1) *h
       K(1) = h * f(x, y, z);
10
       L(1) = h*g(x,y,z);
11
12
       K(2) = h * f(x+h/2, y+K(1)/2, z+L(1)/2);
```

```
13
       L(2) = h * g(x+h/2, y+K(1)/2, z+L(1)/2);
14
       K(3) = h * f(x+h/2, y+K(2)/2, z+L(2)/2);
       L(3) = h * g(x+h/2, y+K(2)/2, z+L(2)/2);
15
16
       K(4) = h * f(x+h, y+K(3), z+L(3));
17
       L(4) = h*g(x+h,y+K(3),z+L(3));
18
        y=y+(K(1)+2*K(2)+2*K(3)+K(4))/6
19
        z=z+(L(1)+2*L(2)+2*L(3)+L(4))/6
        for j=1:4
20
            printf('\n K\%i = \%g\t\tL\%i = \%g\n',j,K(j),j,
21
               L(j))
22
        end
        printf ('\ny(\%g) = \%.8 f\t\tz(\%g) = \%.8 f\n\n\n\n',
23
           x+h,y,x+h,z)
24
  end
```

Scilab code Exa 10.19 Adams Basforth formula

```
1 //Example 10.19
2 //Adams Basforth formula
3 //Page no. 333
4 clc; clear; close;
5 x = [0, 0.1, 0.2, 0.3, 0.4]; i=5;
6 y = [1, 1.0025, 1.0101, 1.0228];
7 h=0.1;
8 deff('y=f(x,y)', 'y=x*y/2')
9 //adams basforth formula
10 y(i)=y(i-1)+h*(55*f(x(i-1),y(i-1))-59*(f(x(i-2),y(i-1)))
     -2)))+37*f(x(i-3),y(i-3))-9*f(x(i-4),y(i-4)))/24
11 disp(y(i), "By Adams Basforth Formula: ")
12 //adams moulton formula
13 y(i)=y(i-1)+h*(9*f(x(i),y(i))+19*f(x(i-1),y(i-1))
      -5*(f(x(i-2),y(i-2)))+f(x(i-3),y(i-3)))/24
14 disp(y(i), "By Adams Moulton Formula: ")
```

Scilab code Exa 10.20 Adams Moulton formula

```
1 //Example 10.20
2 //Adams Moulton formula
3 //Page no. 334
4 clc; clear; close;
5 x = [1, 1.1, 1.2, 1.3, 1.4]; i=5;
6 y = [1, 1.233, 1.548488, 1.978921];
7 h=0.1;
8 deff('y=f(x,y)', 'y=x^2*y+x^2')
9 //adams basforth formula
10 y(i)=y(i-1)+h*(55*f(x(i-1),y(i-1))-59*(f(x(i-2),y(i-1)))
     -2)))+37*f(x(i-3),y(i-3))-9*f(x(i-4),y(i-4)))/24
11 disp(y(i), "By Adams Basforth Formula: ")
12 //adams moulton formula
13 y(i)=y(i-1)+h*(9*f(x(i),y(i))+19*f(x(i-1),y(i-1))
      -5*(f(x(i-2),y(i-2)))+f(x(i-3),y(i-3)))/24
14 disp(y(i), "By Adams Moulton Formula: ")
```

Scilab code Exa 10.21 Adams formula

```
1 //Example 10.21
2 //Adams formula
3 //Page no. 335
4 clc; clear; close;
5 h=0.1;
6 deff('y=f(x,y)', 'y=x-y^2')
7 y(1)=1;
8 for i=1:5
9     x(i)=(i-1)*h
10     K(1)=h*f(x(i),y(i));
11 K(2)=h*f(x(i)+h/2,y(i)+K(1)/2);
```

```
12 K(3)=h*f(x(i)+h/2,y(i)+K(2)/2);
13 K(4)=h*f(x(i)+h,y(i)+K(3));
14 y(i+1)=y(i)+(K(1)+2*K(2)+2*K(3)+K(4))/6
15 printf('\ny(%g) = %.13f\n\n',x(i)+h,y(i+1))
16 end
17 i=5;
18 //adams basforth formula
19 y(i)=y(i-1)+h*(55*f(x(i-1),y(i-1))-59*(f(x(i-2),y(i-2)))+37*f(x(i-3),y(i-3))-9*f(x(i-4),y(i-4)))/24
20 disp(y(i),"By Adams Basforth Formula:")
21 //adams moulton formula
22 y(i)=y(i-1)+h*(9*f(x(i),y(i))+19*f(x(i-1),y(i-1))-5*(f(x(i-2),y(i-2)))+f(x(i-3),y(i-3)))/24
23 disp(y(i),"By Adams Moulton Formula:")
```

Scilab code Exa 10.22 Milne Simpson Predictor Corrector Method

```
1 //Example 10.22
2 // Milne Simpson Predictor Corrector Method
3 //Page no. 336
4 clc; clear; close;
5 deff('y=f11(x,y)', 'y=x^2+y^2-2')
6 deff('y=f22(x,y)', 'y=2*x+2*y*f11(x,y)')
8 deff('y=f44(x,y)', 'y=2*y*f33(x,y)+6*f11(x,y)*f22(x,y)
     ) ')
9 h = 0.1;
10 y=1; y1=y;
11 x(1)=0; k=y;
12 \text{ for } i=2:3
13
      x(i)=x(i-1)+h
14
      for j=1:4
15
      if j==1 then
          k=k+(h^j)*f11(x(i-1),y)/factorial(j)
16
17
      elseif j==2
```

```
k=k+(h^j)*f22(x(i-1),y)/factorial(j)
18
19
                        elseif j==3
20
                                     k=k+(h^j)*f33(x(i-1),y)/factorial(j)
21
                        elseif j==4
22
                                     k=k+(h^j)*f44(x(i-1),y)/factorial(j)
23
                        end
24 end
25 printf ('\ny\%i = \%g\\\n',i-1,k)
26 if i==2 then
27
                       y = k;
28 else
29
                        y2=k;
30 \text{ end}
31 end
32 \text{ k=y1};
33 for j=1:4
34
                        if j==1 then
                                     k=k+(-h^j)*f11(x(1),y1)/factorial(j)
35
36
                        elseif j==2
37
                                     k=k+(-h^{j})*f22(x(1),y1)/factorial(j)
                        elseif j==3
38
39
                                     k=k+(-h^{j})*f33(x(1),y1)/factorial(j)
                        elseif j==4
40
                                     k=k+(-h^j)*f44(x(1),y1)/factorial(j)
41
42
                        end
43 end
44 printf ('\ny\%i = \%g\n\n',-1,k)
45 \text{ y3=k+4*h*}(2*f11(x(1),y1)-f11(x(2),y)+2*f11(x(3),y2))
46 printf('\nPredictor y(0.3) = \%.9 f\n\n',y3)
47 y4=y+h*(f11(x(3),y)+4*f11(x(3)+h,y2)+f11(x(3)+2*h,y3)
                   ))/3
48 printf('Corrector y(0.3) = \%.9 f', y4)
49 y3=y1+4*h*(2*f11(x(2),y)-f11(x(3),y2)+2*f11(x(3)+h,
50 printf('\n\nPredictor y(0.4) = \%.9 \text{ f} \cdot \text{n} \cdot \text{n}',y3)
51 \quad y4=y2+h*(f11(x(3)+h,y2)+4*f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3)+2*h,y3)+f11(x(3
                   +3*h,y3))/3
```

Scilab code Exa 10.23 Milne Simpson Predictor Corrector Method

```
1 //Example 10.23
2 // Milne Simpson Predictor Corrector Method
3 //Page no. 338
4 clc; clear; close;
5 deff('y=f11(y)', 'y=2*y-y^2')
6 h = 0.05;
7 y = [1, 1.0499584, 1.0996680, 1.1488850]
8 for i=1:6
       x(i) = (i-1) *h
9
10 end
11 for i=5:6
12
        y(i)=y(i-4)+4*h*(2*f11(y(i-1))-f11(y(i-2))+2*f11
           (y(i-3)))/3
        printf('\nPredictor y(\%g) = \%.9 f\n\n',x(i),y(i))
13
        y(i)=y(i-2)+h*(f11(y(i-2))+4*f11(y(i-1))+f11(y(i-1))
14
           )))/3
        printf('Corrector y(\%g) = \%.9 \text{ f} \cdot \text{n'}, x(i), y(i))
15
16 \text{ end}
```

Scilab code Exa 10.24 Milne Simpson Predictor Corrector Method

```
1 //Example 10.24
2 //Milne Simpson Predictor Corrector Method
3 //Page no. 339
4 clc; clear; close;
5 deff('y=f11(x,y)', 'y=1+x*y^2')
6 h=0.1;
7 y=[1,1.105,1.223,1.355]
8 for i=1:5
```

```
9     x(i)=(i-1)*h
10 end
11 i=5;
12     y(i)=y(i-4)+4*h*(2*f11(x(i-1),y(i-1))-f11(x(i-2),y(i-2))+2*f11(x(i-3),y(i-3)))/3
13     printf('\nPredictor y(%g) = %.9 f\n\n',x(i),y(i))
14     y(i)=y(i-2)+h*(f11(x(i-2),y(i-2))+4*f11(x(i-1),y(i-1))+f11(x(i),y(i)))/3
15     printf('Corrector y(%g) = %.9 f\n\n',x(i),y(i))
```

Scilab code Exa 10.25 Milne Simpsons formula

```
1 //Example 10.25
2 //Milne Simpsons formula
3 //Page no. 340
4 clc; clear; close;
5 h = 0.1;
6 deff('y=f(x,y)', 'y=x*y+y^2')
7 y(1)=1;
8 \text{ for } i=1:5
9
        x(i) = (i-1) *h
10 end
11 for i=1:3
12
       K(1) = h * f(x(i), y(i));
       K(2) = h * f(x(i) + h/2, y(i) + K(1)/2);
13
       K(3) = h * f(x(i) + h/2, y(i) + K(2)/2);
14
       K(4) = h * f(x(i) + h, y(i) + K(3));
15
16
        y(i+1)=y(i)+(K(1)+2*K(2)+2*K(3)+K(4))/6
17
        for j=1:4
            printf ('\n K\%i = \%.4g\n',j,K(j))
18
19
        printf('\ny(\%g) = \%.4 f\n\n',x(i)+h,y(i+1))
20
21 end
22 i = 5;
23
        y(i)=y(i-4)+4*h*(2*f(x(i-1),y(i-1))-f(x(i-2),y(i-1))
```

Scilab code Exa 10.26 Mullers Method

```
1 //Example 10.26
2 //Milne Simpson and Picard Method
3 //Page no. 341
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x-y^2')
6 y(1)=0; h=0.2;
7 \text{ for } i=1:4
8
       x(i) = (i-1) *h
       y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,x(i))
9
       printf ('\n y\%g = \%.4g\\\n\\\n',i-1,\y
10
           (i+1), i-1, f(x(i), y(i+1)))
11 end
12 for i=5:6
13
       x(i) = (i-1) *h
       if i==5 then
14
15
            y1=y(i)
16
       else
17
            y1 = y(i-1)
18
        end
19
       y(i)=y(i-3)+4*h*(2*f(x(i-1),y(i-(i-5)))-f(x(i-2))
           ,y(i-1))+2*f(x(i-3),y(i-2)))/3
        printf('\nPredictor y(\%g) = \%.4 f\n\n',x(i),y(i))
20
       y(i)=y(i-1)+h*(f(x(i-2),y(i-2))+4*f(x(i-1),y1)+f
21
           (x(i),y(i))/3
22
23
        printf ('Corrector y(\%g) = \%.4 \text{ f} \setminus n \setminus n', x(i), y(i))
24 end
```

```
25 printf('\n\n\nNote: Computation error in book while calculation of predictor and corrector')
```

Scilab code Exa 10.33 Numerov Method

```
1 //Example 10.33
2 //Numerov Method
3 //Page no. 350
4 clc; clear; close;
5 k=0.5; h=%pi/6
6 y(1)=0; y(2)=k;
7 deff('y=f2(x,y)','y=-y')
8 deff('y=g()','y=-1')
9 fi=acos(((2+5*h^2*g()/6)-(1-h^2*g()/12)*y(1))/(2*(1-h^2*g()/12)))
10 y6=k*(sin(6*fi)/sin(fi))
11 disp(y6,"y6 = ")
```

Scilab code Exa 10.34 Numerov Method

```
1 //Example 10.34
2 //Numerov Method
3 //Page no. 351
4 clc; clear; close;
5 k=0.42; h=0.5
6 y(1)=0.5; y(2)=k;
7 deff('y=f2(x,y)', 'y=-y')
8 deff('y=g(x)', 'y=(x-1)*(x-2)')
9 for i=1:4
10     x(i)=(i-1)*h
11 end
12
13 for i=3:4
```

```
14 y(i) = ((2+5*h^2*g(x(i-1))/6)*y(i-1) - (1-h^2*g(x(i-2))/12)*y(i-2))/(1-h^2*g(x(i))/12)
15 printf(' \setminus ny(\%g) = \%.6g \setminus n', x(i), y(i))
16 end
```

Scilab code Exa 10.36 Finite Difference Method

```
1 //Example 10.36
2 //Finite Difference Method
3 //Page no. 353
4 clc; close; clear;
6 h = 0.2;
7 y(1) = 0;
8 deff('y=f2(x,y)', 'y=x+y')
9 \text{ for } i=1:4
        x(i)=i*h
10
11 end
12 for i=1:4
        B(i,1)=h^2*x(i)
13
14
        if i==4 then
15
             B(4,1)=1-B(4,1)
16
        end
        printf ('\ny\%i - 2.04\y\%i + \y\%i = \%g\n', i-1, i, i+1,
17
           B(i,1))
18 \text{ end}
19 A = [-2-h^2, 1, 0, 0; 1, -2-h^2, 1, 0; 0, 1, -2-h^2, 1; 0, 0, 1, -2-h
      ^21
20 C = inv(A) *B;
21 printf('\n\n')
22 \text{ for } i=1:4
        printf('\ny%i = %g\n',i,C(i))
23
24 end
```

Scilab code Exa 10.37 Finite Difference Method

```
1 //Example 10.37
2 //Finite Difference Method
3 // Page no. 354
4 clc; close; clear;
6 h = 0.2;
7 y(1)=1; y(2)=1;
8 deff('y=f2(x,y)', 'y=x+y')
9 \text{ for } i=1:4
10
        x(i)=i*h
11 end
12 A = [0, 1, 0, 0; 1, 0, 1, 0; 0, 1, 0, 1; 0, 0, 1, 0]
13 j=1;
14 for i=1:4
        A(i,i) = -(1.96+2*x(i)^2)/(1+x(i)^2)
15
16 \text{ end}
17 for i=1:4
        B(i,1) = 7*h^2*x(i)
18
19
        if i==4 then
20
             B(4,1) = 2 - B(4,1)
21
        end
        printf('\ny\%i \%gy\%i + y\%i = \%g\n',i-1,A(i,i),i,i
22
           +1,B(i,1))
23 end
24 C = inv(A) *B;
25 printf(' \n \n')
26 \text{ for } i=1:4
        printf('\ny%i = %g\n',i,C(i))
27
28 end
```

Scilab code Exa 10.38 Finite Difference Method

```
1 //Example 10.38
2 // Finite Difference Method
3 //Page no. 354
4 clc; close; clear;
6 h=0.25;
7 y(1)=0;
8 deff('y=f2(x,y)', 'y=x+y')
9 \text{ for } i=1:3
        x(i)=i*h
10
11 end
12 A = [0, 1, 0; 1, 0, 1; 0, 1, 0]
13 j = 1;
14 for i=1:3
        A(i,i) = -(2-h^2*x(i)^2)
15
16 \text{ end}
17 for i=1:3
        B(i,1)=0
18
19
        if i==3 then
             B(3,1) = -1
20
21
        end
        printf('\ny\%i \%gy\%i + y\%i = \%g\n',i-1,A(i,i),i,i
22
           +1,B(i,1))
23 end
24 C = inv(A) *B;
25 printf(' \n \n')
26 \text{ for } i=1:3
        printf('\ny%i = %g\n',i,C(i))
27
28 end
```

Scilab code Exa 10.39 Finite Difference Method

```
1 //Example 10.39
```

```
2 // Finite Difference Method
3 //Page no. 355
4 clc; close; clear;
5
6 h=0.25;
7 y(1)=0;
8 deff('y=f2(x,y)', 'y=x+y')
9 \text{ for } i=1:3
        x(i)=i*h
10
11 end
12 A = [0, 1, 0; 1, 0, 1; 0, 1, 0]
13 j = 1;
14 for i=1:3
        A(i,i) = -(2+64*h^2)
15
16 \, \text{end}
17 for i=1:3
        B(i,1) = -10*h^2
18
19
        printf('\ny\%i \%gy\%i + y\%i = \%g\n',i-1,A(i,i),i,i
           +1,B(i,1))
20 end
21 C = inv(A) *B;
22 printf(' \ n \ ')
23 for i=1:3
        printf('\ny\%i = \%g\n',i,C(i))
24
25 end
```

Scilab code Exa 10.40 Formula Method

```
1 //Example 10.40
2 //Formula Method
3 //Page no. 355
4 clc; clear; close;
5
6 deff('y=f(x,y)', 'y=x*y')
7 y(1)=0; y(6)=1; h=0.2;
```

```
8 \text{ for } i=1:6
        x(i)=(i-1)*h
10 \text{ end}
11 A = eye(4,5) - eye(4,5)
12 B = eye(4,1) - eye(4,1)
13 B(4,1) = -y(6)
14 for i=1:4
              A(i,i)=1;
15
16
             A(i,i+1) = -2-h^2*x(i+1)
17
              A(i,i+2)=1;
18 \text{ end}
19 for i=1:4
20
        for j=1:4
              C(i,j) = A(i,j+1)
21
22
         end
23 end
24 printf('\n\n')
25 \quad A = C;
26 D = inv(A) *B
27 \text{ for } i=1:4
28
        y(i+1)=D(i);
        printf ('\ty%i = \%.5 \text{ f} \setminus \text{t}',i,y(i+1))
29
30 \text{ end}
31 printf('\n\n-----
                                                  ----\n ')
32 k=0;
33 \text{ for } i=1:6
34
         for j=1:3
35
              if j==1 then
36
                   D(i,j)=x(i)*y(i)
                   printf(' f\%i \setminus t\%.4 f \setminus t', i-1, D(i, j))
37
              elseif (i~=1 & i~=2) | k==1
38
                   D(i,j)=D(i,j-1)-D(i-1,j-1)
39
40
                   printf('%.4f\t',D(i,j))
                   if i==2 then
41
42
                        k=2;
43
                   end
44
              end
45
         end
```

```
46
        if i==1 then
47
             k=1;
48
        end
        printf('\n')
49
50 end
51 printf('---
52 \text{ for } i=1:4
        B(i)=D(i+2,3)*(h^2)/12
53
54 end
55
56 B(4,1) = -(B(4,1) - y(6))
57 printf(' \n \n')
58 \text{ for } i=1:4
        A(i,i) = -2
59
60 end
61 z = inv(A) *B
62 \text{ for } i=1:4
        printf('\tz\%i = \%.5 f\t',i,z(i))
63
64 end
65 printf('\n\')
66 \text{ for } i=1:4
        y(i+1)=y(i+1)+z(i);
67
        printf('\ty\%i = \%.5 f\t',i,y(i+1))
68
69 end
70 printf('\n\n\n\n Note: Computation errors in book
```

Scilab code Exa 10.41 Eigenvalue Problem

```
//Example 10.41
//Eigenvalue Priblem
//Page no. 359
clc;close;clear;
h=0.25;
```

```
7 y(1)=0;
8 l=poly(0,'lbd')
9 \text{ deff}('y=f2(x,y)', 'y=x+y')
10 for i=1:3
       x(i)=i*h
11
12 end
13 A = [0, 1, 0; 1, 0, 1; 0, 1, 0]
14 j = 1;
15 for i=1:3
       A(i,i) = -(2-1*h^2)
17 end
18 for i=1:3
19
       B(i,1)=0
       printf(' \mid ny\%i - (2-0.0625*lbd)y\%i + y\%i = \%g \mid n',i
20
          -1,i,i+1,B(i,1))
21 end
22 disp(A)
23 disp(det(A), "Determinant of A =")
24 disp(roots(det(A)), "Roots = ")
25 a=roots(det(A))
26 disp(a(3), "Minimum Value =")
```

Chapter 11

Partial Differential Equations

Scilab code Exa 11.1 Gauss Seidel Method

```
1 //Example 11.1
2 //Gauss-Seidel Method
3 //Page no. 366
4 clc; clear; close;
6 U = [50, 100, 100, 50; 0, 0, 0, 0; 0, 0, 0; 0, 0, 0; 0]
                                                            //
7 A = [4,0,0,-1;0,4,-1,0;0,-1,4,0;-1,0,0,4]
      equation matrix
                               //solution matrix
8 B = [150; 150; 0; 0]
9 X = inv(A) *B
10 for i=1:4
       printf('\n U%i = \%g\n',i,X(i))
11
12 end
13
14 // Jacobi method
15
16 \text{ for } k=1:2
17
       printf('\n')
18
       p=0;
19 for i=1:2
20
       for j=1:2
```

```
21
              U(i+1,j+1) = X(i+p)
22
         end
23
         p=2;
24 end
25 p=3;
26 \text{ for } i=2:3
27
         for j=2:3
              X(i+j-p) = (U(i,j-1)+U(i,j+1)+U(i-1,j)+U(i+1,j)
28
                  ))/4
29
         end
30
         p=2;
31 end
32 \text{ for } i=1:4
         printf('\n U%i(%i) = %g\n',i,k,X(i))
33
34 end
35 \text{ printf}(' \setminus n')
36 \, \text{end}
37 printf('\nHence the solution is : \n\n')
38 \text{ for } i=1:4
         printf(' U\%i = \%g, ',i,X(i))
39
40 \, \mathbf{end}
```

Scilab code Exa 11.2 Gauss Seidel Method

```
1 //Example 11.2
2 //Gauss-Seidel Method
3 //Page no. 368
4 clc; clear; close;
5
6 U=[0,1,2,0;1,0,0,4;2,0,0,5;0,4,5,0]
7 k=1;
8 for i=2:3
9     for j=2:3
10         if (i==2 & j==3) | (i==3 & j==2) then
11         U(i,j)=0
```

```
12
            else
                U(i,j) = (U(i-1,j)+U(i+1,j)+U(i,j-1)+U(i,j
13
                    +1))/4
14
            end
            printf(" u\%i=\%g, ",k,U(i,j))
15
16
            k=k+1
17
        end
18 end
19 for l=1:7
       printf('\n\n')
20
       k=1;
21
22
       for i=2:3
23
       for j=2:3
            U(i,j) = (U(i-1,j)+U(i+1,j)+U(i,j-1)+U(i,j+1))
24
            printf("\n u\%i(\%i)=\%.13g\n",k,1,U(i,j))
25
26
            k=k+1
27
        end
28 end
29
   end
```

Scilab code Exa 11.3 Gauss Seidel Method

```
10 for k=0:5
11
        for i=2:3
12
             p=3;
             for j=2:3
13
14
                  if k==0 & i==2 & j==2 then
15
                      U(i,j)=d(i,j)
16
                  else
                      U(i,j)=s(i,j)
17
18
                  end
                  if k==0 then
19
                      printf('\n U%i = %g\n',i+j-p,U(i,j))
20
21
22
                      printf('\n U%i(%i) = %g\n',i+j-p,k,U
                          (i,j))
23
                  end
24
             end
25
             p=2;
26
        end
        printf(' \setminus n \setminus n')
27
28 end
29 printf('\nHence the solution is : \n\n')
30 \text{ for } i=2:3
31
        for j=2:3
             printf(' U\%i = \%g, ',i,U(i,j))
32
33
        end
34 end
```

Scilab code Exa 11.4 Gauss Seidel Method

```
1 //Example 11.4
2 //Gauss-Seidel Method
3 //Page no. 372
4 clc; clear; close;
5
6 U=[1,2,2,2;0,0,0,2;0,0,0,2;0,0,0,1]
```

```
7 deff('y=d(i,j)', 'y=(U(i-1,j-1)+U(i+1,j+1)+U(i-1,j+1)
      +U(i+1,j-1))/4
                                  //diagonal 5 point
      formula
8 deff('y=s(i,j)', 'y=(U(i-1,j)+U(i+1,j)+U(i,j-1)+U(i,j)
      +1))/4
                         //std 5 point formula
9 U(2,2)=d(2,2);
10 for k=0:4
       for i=2:3
11
12
            p=3;
13
            for j=2:3
                if k==0 & i==2 & j==2 then
14
                     U(i,j)=d(i,j)
15
16
                else
                     U(i,j)=s(i,j)
17
18
                end
                if k==0 then
19
                     printf ('\n U\%i = \%g\n',i+j-p,U(i,j))
20
21
                else
                     printf('\n U%i(%i) = %g\n',i+j-p,k,U
22
                        (i,j))
23
                end
24
            end
25
            p=2;
26
       end
27
       printf('\n\n')
28 \quad {\tt end}
29 printf('\nHence the solution is : \n\')
30 \text{ for } i=2:3
       for j=2:3
31
            printf(' U\%i = \%.3f, ',i,U(i,j))
32
33
       end
34 end
```

Scilab code Exa 11.5 Gauss Seidel Method

```
1 //Example 11.5
2 //Gauss-Seidel Method
3 //Page no. 373
4 clc; clear; close;
5
6 U
      = [0,500,1000,500,0;1000,0,0,0,1000;2000,0,0,0,2000;1000,0,0,0,100]
7 deff('y=d(i,j)', 'y=(U(i-1,j-1)+U(i+1,j+1)+U(i-1,j+1)
                                //diagonal 5 point
      +U(i+1,j-1))/4
      formula
8 deff('y=s(i,j,l)', 'y=(U(i-l,j)+U(i+l,j)+U(i,j-l)+U(i
      , j+l))/4
                          //std 5 point formula
9 U(3,3)=s(3,3,2);
10 \quad for \quad k = 0:10
11
       p=3;
12
       for i=2:4
13
           for j=2:4
                if k=0 & (i=3 & j=3) | (i=2 & j=4)
14
                   |(i==4 \& j==2)|(i==4 \& j==4) then
                    printf('\n U%i(%i) = %g\n',i+j-p,k,U
15
                       (i,j))
16
                    continue
17
                end
                if k==0 & i==2 & j==2 then
18
19
                    U(i,j)=d(i,j)
20
                else
21
                    U(i,j)=s(i,j,1)
22
                end
23
                if i == 2 & j == 2 then
                    U(2,4)=U(2,2);
24
25
                    U(4,2)=U(2,2);
26
                    U(4,4)=U(2,2);
27
                end
28
                if k==0 then
                    printf('\n U%i = \%g\n',i+j-p,U(i,j))
29
                else
30
                    printf('\n U%i(%i) = %g\n',i+j-p,k,U
31
```

```
(i,j))
32
                  end
33
             end
34
             p=p-2;
35
        end
36
        printf('\n\n')
37 end
38 printf('\nHence the solution is : \n\n')
39 p = 3;
40 \text{ for } i=2:4
        for j=2:4
41
             printf(' U\%i = \%.3 f, ',i+j-p,U(i,j))
42
43
        end
44
        p=p-2
45 end
```

Scilab code Exa 11.6 Gaussian Elimination Method

```
1 //Example 11.6
2 // Gaussian Elimination Method
3 //Page no. 374
4 clc; clear; close;
5 A
      =[-4,1,1,0,-80;1,-4,0,1,-10;1,0,-4,1,-160;0,1,1,-4,-90]
                 //augmented matrix
6 disp(A, 'Augmented Matrix=')
7 C = A;
8 //triangularization
9 \text{ for } i=1:4
10
       for j=1:5
           if i==1 then
11
12
                B(i,j)=A(i,j)
           elseif i==2
13
14
                B(i,j)=A(i,j)-A(i,1)*A(i-1,j)/A(1,1)
15
                B(i+1,j)=A(i+1,j)-A(i+1,1)*A(i-1,j)/A
```

```
(1,1)
                 B(i+2,j)=A(i+2,j)-A(i+2,1)*A(i-1,j)/A
16
                     (1,1)
17
            elseif i==3
18
                 if j==1 then
19
                      C = B
20
                 else
                      B(i,j)=B(i,j)-C(i,2)*B(i-1,j)/B(2,2)
21
22
                      B(i+1,j)=C(i+1,j)-C(i+1,2)*C(i-1,j)/
                         C(2,2)
23
                 end
24
            else
25
                 if j==1 then
                      C = B
26
27
                 end
                      B(i,j)=B(i,j)-C(i,3)*B(i-1,j)/B(3,3)
28
29
            end
30
        end
31 end
32
33 disp(B, 'Triangulated Matrix=')
34 //back substitution
35 \times (4) = B(4,5)/B(4,4);
36 printf('\n p(4) = \%.2 f\n', x(4))
37 for i=3:-1:1
38
       k=0
39
        for j=i+1:4
           k=k+B(i,j)*x(j)
40
41
        x(i)=(1/B(i,i))*(B(i,5)-k)
42
         printf('\n p(%i) = \%.2 \text{ f} \setminus \text{n',i,x(i)})
43
44 end
```

Scilab code Exa 11.7 Relaxation Method

```
1 //Example 11.7
2 //Relaxation Method
3 //Page no. 376
4 clc; clear; close;
5
6 \text{ for } i=0:4
7
       for j=0:4
8
            if i=0 \mid j==0 then
9
                 U(5-i,j+1)=0
            elseif i==4 | j==4
10
                 U(5-i,j+1)=(i*j)^2
11
12
            else
13
                 U(5-i,j+1)=0;
14
            end
15
        end
16 \text{ end}
17 S=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
18 disp(U)
19 deff('y=d(i,j)', 'y=(U(i-1,j-1)+U(i+1,j+1)+U(i-1,j+1))
      +U(i+1,j-1))/4
                                  //diagonal 5 point
      formula
20 deff('y=s(i,j,l)', 'y=(U(i-l,j)+U(i+l,j)+U(i,j-l)+U(i,j-l))
      , j+1))/4
                            //std 5 point formula
21 \ U(3,3)=s(3,3,2);
22 \text{ for } k=0:0
23
       p=3;
24
       for i=2:4
25
            for j=2:4
                 if k==0 & (i==3 & j==3) then
26
                     printf('\n U %s(\%i) = %g\n', S(i+j-p)
27
                         ,k,U(i,j))
28
                      continue
29
                 end
30
                 if k==0 \& i==4 \& j==2 then
31
                     U(i,j)=d(i,j)
32
                 else
33
                     U(i,j)=s(i,j,1)
34
                 end
```

```
35
                    if k==0 then
36
                         printf('\n U %s = \%g\n', S(i+j-p), U(i
                             ,j))
37
                    else
                         printf('\n U %s(\%i) = %g\n', S(i+j-p)
38
                             ,k,U(i,j))
39
                    end
40
              end
41
              p=p-2;
42
         end
         printf(' \setminus n \setminus n')
43
44 end
45 printf('\nHence the solution is : \n\')
46 p=3;
47 for i=2:4
         for j=2:4
48
              \label{eq:printf}  \text{printf('} \ U\%s = \%.3\,f\,, \quad \text{`,S(i+j-p),U(i,j))} 
49
50
         end
51
         p=p-2
52 end
```

Scilab code Exa 11.8 Relaxation Method

```
1 //Example 11.7
2 // Relaxation Method
3 //Page no. 378
4 clc; clear; close;
5 h=1/3; k=1/3;
6 \text{ for } i=0:3
7
       for j=0:3
8
            if i=0 \mid j=0 then
                U(4-i,j+1)=i*h+j*k
9
            elseif i==3 | j==3
10
                U(4-i,j+1)=i*h+j*k
11
12
            end
```

```
13
         end
14 end
15 // disp(U, 'U = ')
16 for i=1:4
17
         for j=1:4
18
              if U(i,j)==0 then
19
                   U(i,j)=1;
20
              end
21
         end
22 \quad \mathbf{end}
23 U(3,2)=U(3,2)-1/3;
24 U(2,2) = U(2,2) - 1/3;
25 \ U(3,3) = U(3,3) - 1/3;
26 \quad U(3,2) = U(3,2) - 1/3;
27 U(2,3) = U(2,3) + 1/3;
28 // \operatorname{disp}(U, 'U = ')
29 \text{ for } i=2:3
30
         for j=2:3
              U1(i,j)=U(i+1,j)+U(i-1,j)+U(i,j+1)+U(i,j-1)
31
                  -4*U(i,j)
32
         end
33 end
34 \text{ for } i=2:3
         for j=2:3
35
36
              U(i,j)=U1(i,j)
37
         end
38 end
39 // \operatorname{disp}(U, 'U = ')
40 \text{ disp(U,'U = ')}
41 disp(' ')
42 k=1;
43 \text{ for } i=2:3
         for j=2:3
44
              printf('\t u\%i = \%g,',k,U(i,j))
45
46
              k=k+1
47
         end
48 end
```

Scilab code Exa 11.9 Gauss Seidel Method

```
1 //Example 11.9
2 //Gauss-Seidel Method
3 // Page no. 380
4 clc; clear; close;
6 U = eye(4,4) - eye(4,4)
7 U(2,1)=150; U(3,1)=120;
8 U(2,4)=180; U(3,4)=150
9 deff('y=d(i,j)', 'y=(U(i-1,j-1)+U(i+1,j+1)+U(i-1,j+1)
     +U(i+1,j-1))/4
                                //diagonal 5 point
      formula
10 deff('y=s(i,j)', 'y=(U(i-1,j)+U(i+1,j)+U(i,j-1)+U(i,j)
                        //std 5 point formula
      +1))/4
11 for k=1:6
12
       for i=2:3
13
           p=3;
14
           for j=2:3
15
                    U(i,j)=s(i,j)
                    if i==2 \& j==2 then
16
17
                        U(i+1,j+1)=U(i,j)
                    elseif i==3 & j==3
18
19
                         continue
20
                    end
21
                    printf('\n U%i(%i) = %g\n',i+j-p,k,U
                       (i,j))
22
           end
23
           p=2;
24
       end
       printf('\n\n')
25
26 end
27 printf('\nHence the solution is : \n\n')
28
       p=3;
```

```
29  for i=2:3
30
31     for j=2:3
32         printf(' U%i = %.3f, ',i+j-p,U(i,j))
33     end
34     p=2
35  end
```

Scilab code Exa 11.10 Gauss Seidel Method

```
1 //Example 11.10
2 //Gauss Seidel Method
3 //Page no. 382
4 clc; clear; close;
5
6 0=0.5;
7 A=[-8,8,0;2,-8,4;0,4,-8]; //equation matrix
8 B=[-1;-1;-1]; //solution matrix
9 0v=inv(A)*B;
10 disp(0v,'Values = ')
11 0x=0v(1)+(0v(1)-0)/3
12 disp(0x,'O* = ')
```

Scilab code Exa 11.11 Eigenvalue Problem

```
1 //Example 11.11
2 //Eigenvalue Problem
3 //Page no. 383
4 clc; clear; close;
5 h1=1; h2=3/4;
6 lbd1=2;
7 lbd=poly(0, 'lbd')
8 mu=9*lbd/16;
```

```
9 A=[4-mu,-2,0;-2,4-mu,-1;0,-4,4-mu];
10 disp(determ(A), 'Characteristic Equation = ');
11 r=roots(determ(A))
12 disp(r, 'Roots = ')
13 r1=r(3)
14 Q=((h1/h2)^2*r1-lbd1)/((h1/h2)^2-1)
15 disp(Q, 'Q12 = ')
```

Scilab code Exa 11.12 Eigenvalue Problem

```
1 //Example 11.12
2 //Eigenvalue Problem
3 // Page no. 385
4 clc; clear; close;
6 h1=1/4; h2=1/5;
7 lbd=poly(0, 'lbd')
8 \text{ mu} = 9 * 1bd / 16;
9 A = [1bd-64, 16; 32, 1bd-64];
10 disp(determ(A), 'Characteristic Equation = ');
11 r=roots(determ(A))
12 disp(r, 'Roots = ')
13 r1(1)=r(2)
A = [1bd-100, 0, 25; 0, 1bd-100, 50; 25, 50, 1bd-100];
15 disp(determ(A), 'Characteristic Equation = ');
16 r=roots(determ(A))
17 \text{ disp}(r, 'Roots = ')
18 r1(2)=r(3)
19 Q=((h1/h2)^2*r1(2)-r1(1))/((h1/h2)^2-1)
20 \text{ disp}(Q, Q12 = ')
```

Scilab code Exa 11.13 Eigenvalue Problem

```
1 //Example 11.13
2 //Eigenvalue Problem
3 //Page no. 387
4 clc; clear; close;
5
6 h1=1/2; h2=1/3;
7 lbd=poly(0, 'lbd')
8 mu=9*lbd/16;
9 r1(1)=64
10 A=[2*lbd-324,81;243,lbd-324];
11 disp(determ(A), 'Characteristic Equation = ');
12 r=roots(determ(A))
13 disp(r, 'Roots = ')
14 r1(2)=r(2)
15 Q=((h1/h2)^2*r1(2)-r1(1))/((h1/h2)^2-1)
16 disp(Q, 'Q12 = ')
```

Scilab code Exa 11.14 Crank Nicolson Method

```
1 //Example 11.14
2 //Crank Nicolson Method
3 //Page no. 390
4 clc; clear; close;
5 h=1/2; k=1/8;
6 \text{ r=k/h^2};
7 \text{ for } i=1:3
8
        for j=1:2
9
            if i=1 \mid j=1 then
10
                 u(i,j)=0;
11
            end
12
            if i==3 then
                 u(i,j)=(j-1)*k
13
14
            end
15
        end
16 end
```

```
17 for j=2:2
            u(2,j)=(u(1,j-1)+2*u(2,j-1)+u(3,j-1)+u(1,j)+
18
                u(3,j))/6
19 end
20 u=u
21 printf('\nfor h = 1/2 and k=1/8\n\n')
22 printf('i \setminus j --> ')
23 for i=1:1
       printf('\tu%i\t',i)
24
25 end
26 printf('\n
      )
27 \text{ for } i=2:2
28
        for j=2:2
            printf('\t %.9f',u(i,j))
29
30
        end
31 end
32
33
34
35
36 h=1/4; k=1/8;
37 r=k/h^2;
38 \text{ for } i=1:5
39
        for j = 1:5
40
             if i=1 \mid j=1 then
                 u(i,j)=0;
41
42
             end
             if i==5 then
43
                 u(i,j)=(j-1)*k
44
45
             end
46
        end
47 end
48 a=[3,-1,0;-1,3,-1;0,-1,3];
49 \quad a = inv(a);
50 \text{ for } j=2:5
            b = [u(1,j-1)-u(2,j-1)+u(3,j-1)+u(1,j);u(2,j)]
51
```

```
-1) -u (3, j -1) +u (4, j -1); u (3, j -1) -u (4, j -1) +u
                (5,j-1)+u(5,j)
52
        x=a*b
        u(2,j)=x(1);u(3,j)=x(2);u(4,j)=x(3);
53
54 end
55 u=u,
56 printf('\n\n\n\n\nfor h = 1/4 and k=1/8\n\n')
57 printf('i \setminus j --> ')
58 for i=1:3
        printf('\tu%i\t',i)
59
60 \text{ end}
61 printf('\n
      n ')
62 \text{ for } i=2:2
        for j=2:4
63
             printf('\t %.9f',u(i,j))
64
65
        end
66 end
67
68
69
70
71
72 h=1/4; k=1/16;
73 r=k/h^2;
74 \text{ for } i=1:5
75
        for j=1:3
             if i==1 | j==1 then
76
77
                 u(i,j)=0;
78
             end
79
             if i==5 then
80
                  if j==3 then
                      k=1/8;
81
82
83
                  u(i,j)=(j-1)*k
84
             end
85
        end
```

```
86 end
 87 a = [4, -1, 0; -1, 4, -1; 0, -1, 4];
 88 a = inv(a);
 89 \text{ for } j=2:3
 90
               b = [u(1, j-1) - u(2, j-1) + u(3, j-1) + u(1, j); u(2, j-1)]
                  -1) -u (3, j -1) +u (4, j -1); u (3, j -1) -u (4, j -1) +u
                  (5,j-1)+u(5,j)
91
         x=a*b
         u(2,j)=x(1);u(3,j)=x(2);u(4,j)=x(3);
 92
 93 end
94 \quad u=u
95 printf('\n\n\n\n\nfor h = 1/4 and k=1/16\n\n')
96 printf('i \setminus j \longrightarrow')
97 \text{ for } i=1:3
         printf('\tu%i\t',i)
98
99 end
100 printf('\n
        n ')
101 for i=2:3
102
         printf('\n')
          for j=2:4
103
               printf('\t \%.9f',u(i,j))
104
105
          end
106 \text{ end}
```

Scilab code Exa 11.15 Bender Schmidt Method

```
1  //Example 11.15
2  //Bender Schmidt Method
3  //Page no. 393
4  clc; clear; close;
5
6  h=1; k=1; c=1/sqrt(2);
7  r=k*c^2/h^2;
```

```
8 \text{ for } i=1:5
        u(4,i)=i-1;
10 \, \text{end}
11 k=0;
12 for i=4:-1:1
13
        u(i,1)=0
14
        k=k+1;
15 end
16 k=1;
17 \text{ for } i=2:5
        u(4,i)=k*(4-k)
18
19
        k=k+1;
20 \text{ end}
21 \text{ disp}(u, u = ')
22 k=1;
23 printf(' \n \n')
24 \text{ for } i=3:-1:1
25
        for j=2:4
             u(i,j)=(u(i+1,j-1)+u(i+1,j+1))/2
26
            27
28
             k=k+1;
29
        end
30 \text{ end}
```

Scilab code Exa 11.16 Crank Nicolson Method

```
1 //Example 11.16
2 //Crank Nicolson Method
3 //Page no. 394
4 clc; clear; close;
5 //case 1
6 h=1/4; k=1/8;
7 r=k/h^2;
8 n=1/h+1;
9 for i=1:2
```

```
for j=1:n
10
11
             if i==2 then
12
                 u(i,j) = sin(%pi*(j-1)*h)
13
             end
14
             if j==1 | j==n then
15
                 u(i,j)=0;
16
             end
17
        end
18 \text{ end}
19
20 a = [3, -1, 0; -1, 3, -1; 0, -1, 3];
21 \quad a=inv(a);
22 \text{ for } j=2:4
23
24 end
25 for i=2:-1:2
26
        for j=2:4
          b(j-1)=u(i,j-1)+(1-r)*u(i,j)+u(i,j+1)
27
28
        end
29
        x=a*b
30
        u(i-1,2)=x(1);u(i-1,3)=x(2);u(i-1,4)=x(3);
31 end
32 printf('\nfor h = 1/4 and k=1/8\n\n')
33 for i=1:1
34
        for j=2:4
             printf('\t u\%i = \%.9 f', j-1, u(i, j))
35
36
        end
37 \text{ end}
38 printf(' \n \n')
39
40
41
42 // case 2
43 h=1/4; k=1/16;
44 r=k/h^2;
45 n=1/h+1;
46 \text{ for } i=1:3
        for j=1:n
47
```

```
if i==3 then
48
49
                  u(i,j) = \sin(\pi i) * (j-1) * h
50
             end
             if j==1 | j==n then
51
52
                  u(i,j)=0;
53
             end
54
        \quad \text{end} \quad
55 end
56
57 \quad a = [4, -1, 0; -1, 4, -1; 0, -1, 4];
58 a = inv(a);
59 \text{ for } j=2:4
60
61 end
62 \quad for \quad i=3:-1:2
        for j=2:4
63
           b(j-1)=u(i,j-1)+(1-r)*u(i,j)+u(i,j+1)
64
65
        end
        x=a*b
66
        u(i-1,2)=x(1); u(i-1,3)=x(2); u(i-1,4)=x(3);
67
68 \text{ end}
69 printf('\nfor h = 1/4 and k=1/16\n\n')
70 \quad 1 = 1;
71 for i=2:-1:1
72
        for j=2:4
             printf('\t u\%i = \%.9f',j+l-i,u(i,j))
73
74
        end
75
        printf('\n')
76
        1=3;
77 end
78 printf('\langle n \rangle n \rangle')
79 printf('The Anlytical Solution u1 = \%g', exp(-\%pi^2*k
       )*sin(%pi*h))
80 printf('\n\n'n\nNote : Computation Errors in the
       book')
```

Scilab code Exa 11.17 Bender Schmidt Method

```
1 //Example 11.17
2 //Bender Schmidt Method
3 // Page no. 396
4 clc; clear; close;
6 h=1; k=1/10; c=sqrt(5);
7 r=k*c^2/h^2;
8 for i=1:6
9
       if i<4 then
10
            u(6,i)=20*(i-1)
11
       else
12
            u(6,i)=60
13
       end
14 end
15 \text{ disp}(u, u = ')
16 \text{ k=1};
17 printf('\n\')
18 for i=5:-1:1
19
       for j=2:6
            if j^=6 then
20
21
                u(i,j)=(u(i+1,j-1)+u(i+1,j+1))/2
22
            else
23
                u(i,j)=60
24
            printf('\t u\%i = \%g \t',k,u(i,j))
25
26
            k=k+1;
27
       end
28 end
29 printf('\n')
30 printf('n \neq j \neq i')
31 for i=1:6
32
       printf('%i\t',i-1)
```

```
33 end
34 \text{ printf}(' \setminus n')
35 \text{ for } i=1:51
36 printf(',_')
37 \text{ end}
38
39 k = 0;
40 \quad for \quad i=6:-1:1
         printf(' n \%i | t',k)
41
         for j = 1:6
42
               printf('\%g\t',u(i,j))
43
44
         end
45
         k=k+1;
46 \text{ end}
```

Scilab code Exa 11.18 Bender Schmidt Method

```
1 //Example 11.18
2 //Bender Schmidt Method
3 //Page no. 398
4 clc; clear; close;
6 h=1; k=1/8; c=sqrt(4);
7 r=k*c^2/h^2;
8 deff('y=f(x)', 'y=4*x-x^2/2')
9 for i=1:9
10
       if i~=1 & i~=9 then
11
           u(6,i)=f(i-1)
12
      else
           u(6,i)=0
13
14
       end
15 end
16 \text{ k=1};
17 printf('\n\')
18 for i=5:-1:1
```

```
for j=2:8
19
20
                  u(i,j)=(u(i+1,j-1)+u(i+1,j+1))/2
             printf('\t u%i = \%.4 f \t',k,u(i,j))
21
22
             k=k+1;
23
        end
24 end
25 printf(' \ n')
26 printf('\n\ j\ i |\t')
27 \text{ for } i=1:9
        printf(' \%i \ t', i-1)
28
29 \text{ end}
30 printf(' \ n')
31 for i=1:80
        printf('_')
32
33 end
34
35 \text{ k=0};
36 \text{ for } i=6:-1:1
        printf ('\n %i | t', k)
37
38
        for j = 1:9
39
             printf (\%.4 f t, u(i,j))
40
        end
41
        k=k+1;
42 end
```

Scilab code Exa 11.19 Gauss Seidel Method

```
1 //Example 11.19
2 //Gauss Seidel Method
3 //Page no. 399
4 clc; clear; close;
5
6 h=0.2; k=0.02; r=k/h^2;
7 deff('y=f(x)', 'y=sin(%pi*x)')
8 n=1/h+1;
```

```
9 for i=1:n
10
       u(n,i)=f((i-1)*h)
11 end
12 disp(u)
13 m=1;1=1;
14 printf('\n\')
15 for i=5:-1:1
16
       for j=2:5
17
            u(i,j)=(u(i,j-1)+u(i+1,j+1))/6+2*(u(i+1+1-1,i+1))
               j)+r*(u(i+1+l-1,j-1)-2*(u(i+1+l-1,j))+u(i
               +1+1-1, j+1))/2)/3
            printf(' u\%i(\%i) = \%g \setminus t',m,l,u(i,j))
18
19
            m=m+1;
20
       end
       printf('\n')
21
22
       1=1+1
23 end
24 printf('\n\n'n')
25 printf('The Anlytical Solution u1 = %g', exp(-%pi^2*k)
      )*sin(%pi*h))
```

Scilab code Exa 11.20 Finite Difference Method

```
u(5,i)=0
13
14
        end
15 end
16 \text{ disp}(u, u = ')
17 k=2;
18 printf('\n\')
19 for i=3:-1:1
        for j=2:4
20
21
            u(i,j)=u(i+1,j-1)+u(i+1,j+1)-u(i+2,j)
            printf('\tu%i,%i = \%g',j-1,k,u(i,j))
22
23
        end
24
       k=k+1;
25
        printf('\n')
26 \text{ end}
```

Scilab code Exa 11.21 Finite Difference Method

```
1 //Example 11.21
2 // Finite Difference Method
3 // Page no. 404
4 clc; clear; close;
6 h=1; k=0.25; c=sqrt(16);
7 r=k^2*c^2/h^2;
8 \text{ for } i=2:6
       if i<6 then
9
10
            u(6,i)=(i-1)^2*(5-(i-1))
11
            u(5,i)=(i-1)^2*(5-(i-1))
12
       else
            u(5,i)=0
13
14
       end
15 end
16 \text{ disp}(u, u = ')
17 k=2;
18 printf('\n\')
```