Bioinformatik von RNA- und Proteinstrukturen

Inhaltsverzeichnis

1	For	male Sprachen	1
	1.1	formale Grammatik G	1
	1.2	Klassifikation von formalen Sprachen	2
	1.3	Hidden Markov Model	2
2	Ein	leitung	3
3	Str	ıkturvorhersage	4
	3.1	Nussinov	4
	3.2	Turner-Modell (Nearest-Neighbor-Modell)	4
	3.3	Zuker-Algorithmus	4
		3.3.1 suboptimales Falten	4
	3.4	Wuchty-Algorithmus	4
		3.4.1 Wuchty-Backtracking	4
	3.5	McCaskill	4
	3.6	stochastisches Backtracking	4
	3.7	Strukturvorhersagen verbessern	4
	3.8	Konsensusstrukturvorhersagen	4
	3.9	Wie kann RNA evolvieren?	4
		3.9.1 Neutrale Netzwerke	4
		3.9.2 SHAPE-Abstraktion	4
		3.9.3 Energielandschaften	4
		3.9.4 Faltungskinetik	4
		3.9.5 Barriers Trees	4
		3.9.6 Flooding-Algorithmus	4
		3.9.7 Co-transcriptional folding	4

1 Formale Sprachen

Formale Sprache¹ L über Alphabet Σ L $\subseteq \Sigma^*$ mit Σ^* = Kleensche Hülle² von Σ

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

$$\Sigma^0 = \{\varepsilon\}, \Sigma^1 = \Sigma, \Sigma^2 = \Sigma \times \Sigma$$

$$\varepsilon \to \text{leeres Wort (leere Menge)}$$

Beispiel: $\Sigma = \{a\}, \Sigma^* = \{\varepsilon, a, aa, aaa, ...\}, L = \{a, aa, aaaa, ...\}$

1.1 formale Grammatik G

 $G = (N, \Sigma, P, S) \text{ mit}$

- N = Nichtterminale
- $\Sigma = Alphabet$
- P = Produktionsregeln
- $S = Startsymbol (\epsilon N)$

$$\mathcal{P}\subseteq (N\cup\Sigma)^*/N(N\cup\Sigma)^*\to (N\cup\Sigma)^*$$

Beispiel:

$$\mathbf{G}{=}(\{\mathbf{S}\},\,\{\mathbf{a}\},\,\{S\rightarrow aaS,S\rightarrow a\},\,\mathbf{S})$$

führt zu: S \rightarrow aaS \rightarrow aaa

¹https://de.wikipedia.org/wiki/Formale_Sprache

²https://de.wikipedia.org/wiki/Kleenesche_und_positive_H%C3%BClle

1.2 Klassifikation von formalen Sprachen

durch die Comsky-Hierarchie³:

- Typ 0 = rekursiv auszählbar $(\alpha N\beta \rightarrow \gamma)$
- Typ 1 = kontext-sensitiv $(\alpha N\beta \rightarrow \alpha\gamma\beta)$
- Typ 2 = kontext-frei, N \rightarrow $(N \cup \Sigma)^* \rightarrow$ stochstisch kontextfreie Grammatik (SCFG) \rightarrow Dynamics Programming
- Typ 3 = regular $(N \to \Sigma | \Sigma N) \to \text{dann immer Hidden Markov Model}$ (HMM) modellierbar

Erweiterung mit Wahrscheinlichkeit: $G=(N, \Sigma, P, S, \Omega)$ mit $\Omega =$ Wahrscheinlichkeit für Produktionsregeln

jetzt auf RNA-Vorhersagen:

scoring scheme: Bewertung von σ (paired) = 1, $(\sigma$ ()), σ (unpaired) = 0 scoring function: max Basepairs: + (Summe), Anzahl der Strukturen: · (Multiplikation) choice function: max Basepairs: max, Anazhl der Strukturen: + (Summe)

1.3 Hidden Markov Model

M: Match, I: Insertion, D: Deletion

Grammatik:

- $M \to M_{A_A}|...|I|D$
- $I \rightarrow I_{A_{--}}|...|D|M$
- $\bullet \ \ \mathbf{D} \to D_{_A}|...|M|I$

Beispiel:

³https://de.wikipedia.org/wiki/Chomsky-Hierarchie

Faltungsgrammatik

$$S \to (S)S|.S|\varepsilon$$

 $Nichtterminale = S, Alphabet = \{(,), .\}$

Beispiel in Baumdarstellung:

weiteres Beispiel: Sankoff, Kombination von zwei Grammatiken (Alignment und Faltung)

Alignmentgrammatik

$$\begin{split} \mathbf{S} &\to .S|_S|\varepsilon \\ \mathbf{G} &= (N = \{S\}, \Sigma = \{., _\}, P = \{S \to .S|_S|\varepsilon\}, S) \\ \text{Alignment: } G^2 &= G \times G = (N \times N, \Sigma \times \Sigma, P^2, (S, S)) \\ P^2 &= P \times P = \left(\begin{array}{c} S \\ S \end{array} \right) \end{split}$$

2 Einleitung

Struktur: Form \rightarrow Funktion

Funktion folgt Form, Form folgt Sequenz

Proteine, RNA, DNA: Sequenzen

4 Strukturlevels:

- primäre Struktur (Sequenz): 1 Dimension
- sekundäre Struktur (grobe Annäherung an Struktur): 2 Dimensionen
- tertiäre Struktur (räumliche Struktur): 3 Dimensionen
- quartiäre Struktur (räumliche Anordnung von interagierenden Strukturen): 4 Dimensionen

Behandlung hauptsächlich 2D

3 Strukturvorhersage

- 3.1 Nussinov
- 3.2 Turner-Modell (Nearest-Neighbor-Modell)
- 3.3 Zuker-Algorithmus
- 3.3.1 suboptimales Falten
- 3.4 Wuchty-Algorithmus
- 3.4.1 Wuchty-Backtracking
- 3.5 McCaskill
- 3.6 stochastisches Backtracking
- 3.7 Strukturvorhersagen verbessern
- 3.8 Konsensusstrukturvorhersagen
- 3.9 Wie kann RNA evolvieren?
- 3.9.1 Neutrale Netzwerke
- 3.9.2 SHAPE-Abstraktion
- 3.9.3 Energielandschaften
- 3.9.4 Faltungskinetik
- 3.9.5 Barriers Trees
- 3.9.6 Flooding-Algorithmus
- 3.9.7 Co-transcriptional folding