Image Convolution

We implemented gussian blur technique to blur the images. Since convolution deals with convolving a kernel matrix with all the pixels in the image. Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function. The values in the kernel follows a normal distribution, thus giving the near pixels more weight than the far away neighboring pixels. We divided the pixels equally between the processors and parallelize the algorithm. The two pass algorithm has a time complexity of O(2*n*m*k) where k is the kernel size.

7	23	50	64	14						-	-	-	-	
15	13	31	46	8		0	2	0		-	46	100	128	
42	25	92	31	32	X	0	0	0	=	-	26	62	92	
71	44	74	94	92		0	0	0		-	50	184	62	
2	43	51	35	4						-	-	-	-	

Results:

When convolved with a 9 by 9 kernel, we get.

RGB Images (width * height * 3)	Serial	OpenMp 2 Threads	OpenMp 4 Threads		
1280 * 1920	10	1.44 sec	1.35 sec		
333*500	0.179 sec	0.12 sec	0.12 sec		
3519 * 5279	21 sec	12.5 sec	10 sec		

These are the results when images are convoled with 9 * 9 Kernel

