

Applied Machine Learning - Summer 2021 Assignment 3 - Clustering

Submitted by:

Name	Email
Youssef Metwally	ymetw027@uOttawa.ca
Dina Ibrahim Morsy	dabde007@uOttawa.ca
Adel El Nabarawy	aelna025@uOttawa.ca

Submitted to:

Dr. Murat SIMSEK, SMIEEE

Numerical Questions

Q1 (K-means):

$$A1 = (2, 10), A2 = (2, 5), A3 = (8, 4), A4 = (5, 8), A5 = (7, 5), A6 = (6, 4), A7 = (1, 2), A8 = (4, 9)$$

Euclidean distance : $\sqrt{(x_{cluster} - x_{point})^2 + (y_{cluster} - y_{point})^2}$

ITERATION 1:

Cluster 1: (2,10)	Cluster 2 : (5,8)	Cluster 3: (1,2)
$\sqrt{(2-2)^2 + (10-10)^2}$	$\sqrt{(5-2)^2+(8-10)^2}$	$\sqrt{(1-2)^2+(2-10)^2}$
$\sqrt{(2-2)^2 + (10-5)^2}$	$\sqrt{(5-2)^2 + (8-5)^2}$	$\sqrt{(1-2)^2 + (2-5)^2}$
$\sqrt{(2-8)^2+(10-4)^2}$	$\sqrt{(5-8)^2 + (8-4)^2}$	$\sqrt{(1-8)^2 + (2-4)^2}$
$\sqrt{(2-5)^2+(10-8)^2}$	$\sqrt{(5-5)^2 + (8-8)^2}$	$\sqrt{(1-5)^2 + (2-8)^2}$
$\sqrt{(2-7)^2 + (10-5)^2}$	$\sqrt{(5-7)^2 + (8-5)^2}$	$\sqrt{(1-7)^2 + (2-5)^2}$
$\sqrt{(2-6)^2+(10-4)^2}$	$\sqrt{(5-6)^2 + (8-4)^2}$	$\sqrt{(1-6)^2 + (2-4)^2}$
$\sqrt{(2-1)^2+(10-2)^2}$	$\sqrt{(5-1)^2+(10-2)^2}$	$\sqrt{(1-1)^2+(2-2)^2}$
$\sqrt{(2-4)^2+(10-9)^2}$	$\sqrt{(5-4)^2+(10-9)^2}$	$\sqrt{(1-4)^2+(2-9)^2}$

	Cluster 1: (2, 10)	Cluster 2: (5, 8)	Cluster 3: (1, 2)
A1	0	√13	√65
A2	√25	√18	<mark>√10</mark>
А3	√36	<mark>√25</mark>	√53
A4	√13	0	√52
A5	√ 50	√ 13	√45
A6	√52	√17	√29
A7	√65	√52	0
A8	√5	<mark>√2</mark>	√58

New labeled data points:

1: A1 , 2: A3, A4, A5, A6, A8 , 3: A2, A7

New clusters' centroids:

1: (2, 10)

2: ((8+5+7+6+4)/5,(4+8+5+4+9)/5) = (6, 6)

3:((2+1)/2,(5+2)/2)=(1.5,3.5)

ITERATION 2:

Cluster 2: (6, 6)	Cluster 3: (1.5, 3.5)
$D(A1) = \sqrt{(6-2)^2 + (6-10)^2}$	$D(A1) = \sqrt{(1.5-2)^2 + (3.5-10)^2}$
D(A2)= $\sqrt{(6-2)^2 + (6-5)^2}$	$D(A2) = \sqrt{(1.5 - 2)^2 + (3.5 - 5)^2}$
D(A3)= $\sqrt{(6-8)^2+(6-4)^2}$	D(A3)= $\sqrt{(1.5-8)^2 + (3.5-4)^2}$
D(A4)= $\sqrt{(6-5)^2 + (6-8)^2}$	$D(A4) = \sqrt{(1.5-5)^2 + (3.5-8)^2}$
D(A5)= $\sqrt{(6-7)^2+(6-5)^2}$	D(A5)= $\sqrt{(1.5-7)^2+(3.5-5)^2}$
D(A6)= $\sqrt{(6-6)^2 + (6-4)^2}$	D(A6)= $\sqrt{(1.5-6)^2+(3.5-4)^2}$
D(A7)= $\sqrt{(6-1)^2 + (6-2)^2}$	$D(A7) = \sqrt{(1.5-1)^2 + (3.5-2)^2}$
D(A8)= $\sqrt{(6-4)^2+(6-9)^2}$	D(A8)= $\sqrt{(1.5-4)^2+(3.5-9)^2}$

	Cluster 1: (2, 10)	Cluster 2: (6, 6)	Cluster 3: (1.5, 3.5)
A1	0	5.65	6.52
A2	√25	√17	<mark>1.58</mark>
А3	√36	2.83	6.52
Α4	√13	<mark>√5</mark>	5.7
A5	√50	$\sqrt{2}$	5.7
Α6	√52	2	4.53
Α7	√65	√41	<mark>1.58</mark>
A8	<mark>√5</mark>	√13	6.04

New labeled data points:

1: A1, A8, 2: A3, A4, A5, A6, 3: A2, A7

New clusters' centroids:

1: ((2+4)/2,(10+9)/2) = (3, 9.5)

2: ((8+5+7+6)/4,(4+8+5+4)/4) = (6.5, 5.25)

3:((2+1)/2,(5+2)/2)=(1.5,3.5)

ITERATION 3:

Cluster 1: (3, 9.5)	Cluster 2 : (6.5, 5.25)
$D(A1) = \sqrt{(3-2)^2 + (9.5-10)^2}$	$D(A1) = \sqrt{(6.5 - 2)^2 + (5.25 - 10)^2}$
$D(A2) = \sqrt{(3-2)^2 + (9.5-5)^2}$	$D(A2) = \sqrt{(6.5 - 2)^2 + (5.25 - 5)^2}$
$D(A3) = \sqrt{(3-8)^2 + (9.5-4)^2}$	$D(A3) = \sqrt{(6.5 - 8)^2 + (5.25 - 4)^2}$
$D(A4) = \sqrt{(3-5)^2 + (9.5-8)^2}$	$D(A4) = \sqrt{(6.5 - 5)^2 + (5.25 - 8)^2}$
$D(A5) = \sqrt{(3-7)^2 + (9.5-5)^2}$	$D(A5) = \sqrt{(6.5 - 7)^2 + (5.25 - 5)^2}$
$D(A6) = \sqrt{(3-6)^2 + (9.5-4)^2}$	$D(A6) = \sqrt{(6.5-6)^2 + (5.25-4)^2}$
$D(A7) = \sqrt{(3-1)^2 + (9.5-2)^2}$	$D(A7) = \sqrt{(6.5 - 1)^2 + (5.25 - 2)^2}$
D(A8)= $\sqrt{(3-4)^2 + (9.5-9)^2}$	D(A8)= $\sqrt{(6.5-4)^2+(5.25-9)^2}$

	Cluster 1: (2, 10)	Cluster 2: (6, 6)	Cluster 3: (1.5, 3.5)
A1	<mark>1.11</mark>	6.54	6.52
A2	4.6	4.5	1.58
А3	7.4	<mark>1.95</mark>	6.52
A4	<mark>2.5</mark>	3.13	5.7
A5	6.2	<mark>0.56</mark>	5.7
A6	6.26	1.35	4.53
Α7	7.76	6.38	<mark>1.58</mark>
A8	<mark>1.118</mark>	4.5	6.04

New labeled data points:

1: A1, A4, A8, 2: A3, A5, A6, 3: A2, A7

New clusters' centroids:

1: ((2+5+4)/3,(10+8+9)/3)=(3.66, 9)

2: ((8+7+6)/3,(4+5+4)/3) = (7, 4.33)

3: ((2+1)/2,(5+2)/2)=(1.5, 3.5)

ITERATION 4:

Cluster 1: (3.66, 9)	Cluster 2: (7, 4.33)
$D(A1) = \sqrt{(3.66 - 2)^2 + (9 - 10)^2}$	$D(A1) = \sqrt{(7-2)^2 + (4.33-10)^2}$
$D(A2) = \sqrt{(3.66 - 2)^2 + (9 - 5)^2}$	$D(A2) = \sqrt{(7-2)^2 + (4.33-5)^2}$
$D(A3) = \sqrt{(3.66 - 8)^2 + (9 - 4)^2}$	$D(A3) = \sqrt{(7-8)^2 + (4.33-4)^2}$
$D(A4) = \sqrt{(3.66 - 5)^2 + (9 - 8)^2}$	$D(A4) = \sqrt{(7-5)^2 + (4.33-8)^2}$
$D(A5) = \sqrt{(3.66 - 7)^2 + (9 - 5)^2}$	$D(A5) = \sqrt{(7-7)^2 + (4.33-5)^2}$
$D(A6) = \sqrt{(3.66 - 6)^2 + (9 - 4)^2}$	$D(A6) = \sqrt{(7-6)^2 + (4.33-4)^2}$
$D(A7) = \sqrt{(3.66 - 1)^2 + (9 - 2)^2}$	$D(A7) = \sqrt{(7-1)^2 + (4.33-2)^2}$
D(A8)= $\sqrt{(3.66-4)^2+(9-9)^2}$	$D(A8) = \sqrt{(7-4)^2 + (4.33-9)^2}$

	Cluster 1: (2,10)	Cluster 2: (6,6)	Cluster 3: (1.5,3.5)
A1	<mark>1.93</mark>	7.56	6.52
A2	4.33	5.04	<mark>1.58</mark>
А3	6.62	<mark>1.05</mark>	6.52
A4	<mark>1.67</mark>	4.18	5.7
A5	5.2	<mark>0.67</mark>	5.7
A6	5.5	1.05	4.53
Α7	7.49	6.44	<mark>1.58</mark>
A8	<mark>0.34</mark>	5.55	6.04

New labeled data points:

1: A1, A4, A8, 2: A3, A5, A6, 3: A2, A7

New clusters' centroids:

1: ((2+5+4)/3,(10+8+9)/3)=(3.66, 9)

2: ((8+7+6)/3,(4+5+4)/3) = (7, 4.33)

3: ((2+1)/2,(5+2)/2)=(1.5, 3.5)

THE SAME RESULTS AND CLUSTERS SO WE WILL STOP AFTER **3** ITERATIONS

Q2 (DBSCAN):

<u>1):</u>

Parameters:

epsilon	6.5
minpoints	4

Distance matrix:

A1	A2	А3	A4	A5	A6	A7	A8
0	5	6	3.60555	7.07107	7.2111	8.06226	2.23607
	0	6.08276	4.24264	5	4.12311	3.16228	4.47214
		0	5	1.41421	1.41421	7.28011	6.40312
			0	3.60555	4.12311	7.2111	1.41421
				0	1.41421	6.7082	5
					0	5.38516	5.38516
						0	7.61577
							0

Data points and their neighbors according to the epsilon value:

	A1	A2	А3	A4	A5	A6	A7	A8
A1	A1A1	A2A1	A3A1	A4A1	FALSE	FALSE	FALSE	A8A1
A2	A2A1	A2A2	A3A2	A4A2	A5A2	A6A2	A7A2	A8A2
A3	A3A1	A3A2	A3A3	A4A3	A5A3	A6A3	FALSE	A8A3
A4	A4A1	A4A2	A3A4	A4A4	A5A4	A6A4	FALSE	A8A4
A5	FALSE	A5A2	A3A5	A4A5	A5A5	A6A5	FALSE	A8A5
A6	FALSE	A6A2	A3A6	A4A6	A5A6	A6A6	A7A6	A8A6
A7	FALSE	A7A2	FALSE	FALSE	FALSE	A6A7	A7A7	FALSE
A8	A8A1	A8A2	A3A8	A4A8	A5A8	A6A8	FALSE	A8A8

Data points classification according to minpoints value:

core point	4	(2,10)
core point	7	(2,5)
core point	6	(8,4)
core point	6	(5,8)
core point	5	(7,5)
core point	6	(6,4)
border	2	(1,2)
core point	6	(4,9)

The whole data points classification:

(2,10)	(2,5)	(8,4)	(5,8)	(4,9)			Cluster 1
(2,5)	(8,4)	(5,8)	(7,5)	(6,4)	(1,2)	(4,9)	Cluster 1
(8,4)	(5,8)	(7,5)	(6,4)	(4,9)			Cluster 1
(5,8)	(7,5)	(6,4)	(4,9)				Cluster 1
(7,5)	(6,4)	(4,9)					Cluster 1
(6,4)	(1,2)	(4,9)					Cluster 1
(1,2)							Cluster 1
(4,9)							Cluster 1

<u>2):</u>

Parameters:

epsilon	3.16228
minpoints	2

Distance matrix:

A1	A2	А3	A4	A5	A6	A7	A8
0	5	6	3.60555	7.07107	7.2111	8.06226	2.23607
	0	6.08276	4.24264	5	4.12311	3.16228	4.47214
		0	5	1.41421	1.41421	7.28011	6.40312
			0	3.60555	4.12311	7.2111	1.41421
				0	1.41421	6.7082	5
					0	5.38516	5.38516
						0	7.61577
							0

Data points and their neighbors according to the epsilon value:

	A1	A2	А3	A4	A5	A6	A7	A8
A1	A1A1	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A8A1
A2	FALSE	A2A2	FALSE	FALSE	FALSE	FALSE	A7A2	FALSE
A3	FALSE	FALSE	A3A3	FALSE	A5A3	A6A3	FALSE	FALSE
A4	FALSE	FALSE	FALSE	A4A4	FALSE	FALSE	FALSE	A8A4
A5	FALSE	FALSE	A3A5	FALSE	A5A5	A6A5	FALSE	FALSE
A6	FALSE	FALSE	A3A6	FALSE	A5A6	A6A6	FALSE	FALSE
A7	FALSE	A2A7	FALSE	FALSE	FALSE	FALSE	A7A7	FALSE
A8	A1A8	FALSE	FALSE	A4A8	FALSE	FALSE	FALSE	A8A8

Data points classification according to minpoints value:

(2,10)	1	border
(2,5)	1	border
(8,4)	2	Core
(5,8)	1	border
(7,5)	2	Core
(6,4)	2	Core
(1,2)	1	border
(4,9)	2	Core

The whole data points classification:

(2,10)	(4,9)		
(2,5)	(1,2)		
(8,4)	(7,5)	(6,4)	Cluster 1
(5,8)	(4,9)		
(7,5)	(8,4)	(6,4)	Cluster 1
(6,4)	(8,4)	(7,5)	Cluster 1
(1,2)	(2,5)		Cluster 3
(4,9)	(2,10)	(5,8)	Cluster 2

Data points clustering

As we can see, it's the same result obtained using K-Means clustering algorithm.

Programming Questions:

Q4 (choose the best number of k for k-means algorithm):

1. Using the elbow rule, plot the distortion score (a.k.a inertia) vs the number of clusters.

```
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-
means++', max_iter=100, n_init=1, random_state=69)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
```


2. Determine the optimal number of clusters for k-means.

The optimal number of clusters for k-means is 5 according to the elbow plot.

Q5 (choose the best number of neurons for SOM algorithm):

1. Using the elbow rule, plot the distortion score (a.k.a inertia) vs the number of neurons (max 30 neurons).

```
wcss = []
dim = X.shape[1]
for i in range(2, 31):
    som = SOM(m=i, n=1, dim=dim)
    som.fit(X)
    wcss.append(som.inertia_)
plt.plot(range(2, 31), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of nurouns')
plt.ylabel('WCSS')
```


2. Determine the optimal number of neurons for SOM.

The optimal number of neurons for SOM is 14 according to the elbow plot.

Bonus:

Q5 (choose the best number of k for k-means algorithm):

3. Use T-SNE method to visualize the SOM clusters, obtained from the previous step, on a 2D figure. Use different color code for each cluster.

```
X_reduced = TSNE(n_components=2, random_state=123).fit_transform(X)
dim = X.shape[1]
poki_som = SOM(m=14, n=1, dim=dim)
poki_som.fit(X)
y_predict = poki_som.predict(X)
y_clusters = getTrueLabel(y_predict, y)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y_predict, cmap="plasma")
print("Silhouette Coefficient:", metrics.silhouette_score(X, y_predict))
print("Accuracy:", metrics.accuracy_score(y_clusters, y))
```

Silhouette Coefficient: 0.9744251560548564 Accuracy: 0.2716666666666667

4. Compare the results of the previous step with T-SNE before applying SOM on the Pokémon dataset.

```
# Elbow Plot
wcss = []
dim = X reduced.shape[1]
for i in range(2, 31):
    som = SOM(m=i, n=1, dim=dim)
    som.fit(X reduced)
    wcss.append(som.inertia )
plt.plot(range(2, 31), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of nurouns')
plt.ylabel('WCSS')
# Clusters Visualization
dim = X reduced.shape[1]
poki som = SOM(m=8, n=1, dim=dim)
poki som.fit(X reduced)
y predict = poki som.predict(X reduced)
y clusters = getTrueLabel(y predict, y)
plt.scatter(X reduced[:, 0], X reduced[:, 1], c=y predict, cmap="plasma")
print("Silhouette Coefficient:", metrics.silhouette score(X reduced, y pre
dict))
print("Accuracy:", metrics.accuracy score(y clusters, y))
```

It yields worse result according to the silhouette coefficient and accuracy.

Silhouette Coefficient: 0.63209724 Accuracy: 0.235

Q6 (DBSCAN tuning):

• Plot the epsilon and minpoints values as x-y axes using a 3D figure to show the 10 combinations of epsilon and minpoints that brings you closer to the 10 clusters.

```
def tuneDBSCAN(tune rate = 0.1):
    eps vals = []
    min points vals = []
    num clusters = []
    eps = tune rate
    for min p in range (1, 6):
        while(eps < min p):</pre>
            dbscan = DBSCAN(eps=eps, min samples = min p)
            y predict = dbscan.fit predict(X)
            eps vals.append(eps)
            min points vals.append(min p)
            num clusters.append(len(np.unique(y predict)) - 1)
            eps += tune rate
    re-
turn np.array(eps vals), np.array(min points vals), np.array(num clusters)
e, p, c = tuneDBSCAN(tune rate=0.01)
c 9 = np.where(c == 9)[0]
c 10 = np.where(c == 10)[0]
f eps = 0
f num p = 0
try:
    f eps = e[c 10[0]]
    f num p = p[c 10[0]]
except:
    f eps = e[c 9[0]]
    f num p = p[c 9[0]]
print ('the nearest paramters to get 10 clusters after tuning:')
print('eps=', f eps)
print('min points=', f num p)
```


• Plot DBSCAN clusters.

```
dbscan = DBSCAN(eps = f_eps, min_samples = f_num_p)
y_predict = dbscan.fit_predict(X)
y_clusters = getTrueLabel(y_predict, y)
print("Silhouette Coefficient:", metrics.silhouette_score(X, y_predict))
print("Accuracy:", metrics.accuracy_score(y_clusters, y))
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y_predict, cmap="plasma")
```

