コンピュータの基礎 知識

情報科学の世界II 2018年度 只木 進一(理工学部)

コンピュータの始まり 計算する機械

- ▶途中経過を記録する
 - そろばんや算木:各文明に発生
- 機械式計算機17世紀
 - W. Schickard:未完成
 - ► B. Pascalの <u>Pascaline</u>: 多数を作成
 - ► G. Leibnitz: Pascalineを改良
- 19世紀
 - ► C. Babbageの計算機:蒸気機関
 - https://www.britannica.com/technology/Difference-Engine

電気を使った計算機械

- ► H. Hollerithのパンチ式計算機(1884)
 - アメリカの国勢調査
 - **►IBMの起源**
- −リレー式計算機
 - -ベル研、ハーバード大学
 - −日本でも

電子計算機の登場

- 1942 : <u>Atanasoff-Berry Computer</u>
- ■1945: von Neumannの提案
- 1946 : ENIAC
- プログラム内蔵式の登場
 - プログラムもデータとして入力
 - ハードウェアとソフトウェアの分離

パーソナルコンピュータ

- 1976: Intel 8080, Z-80
- 1977 : Apple II
- 1981 : IBM PC∠MS-DOS
- 1982: NEC PC-9801
- ■情報処理学会コンピュータ博物館

パーソナルコンピュータ Alan Kayの考えたこと

- →思考の道具としてのパーソナルコン ピュータ <u>Dynabook</u>
 - → タブレット型で子供でも携帯できる
 - 複数ウィンドウが表示できるインター フェース
 - ■マルチメディア
 - →ネットワーク
 - 多言語対応

様々なコンピュータ

- −多数で利用する
 - スーパーコンピュータ、サーバー機
- 一人で利用する。様々な利用
 - パーソナルコンピュータ
 - ■デスクトップ、ノート
- 携帯する
 - ■スマートフォーン、タブレット
- ▶組み込みコンピュータ

コンピュータの基本構成要素

- 一中央演算装置 (Central Processing Unit)
 - ■制御装置、演算装置、一時的記憶装置、 周囲とのインターフェース
 - ▶コンピュータの心臓部
- 一記憶装置
 - →メモリなどの内部記憶装置
 - −高速アクセル

- 周辺装置
 - バスで接続
 - 入力装置
 - ► キーボード、マウスなど
 - 出力装置
 - ディスプレイ、プリンタなど
 - → 外部記憶装置
 - 大容量
 - 通信装置

- クラウドストレージ
 - クラウド
 - 自分のディスクのように 見せる
 - 利点と課題

実際の例

Sun Fire X2200 M2

Cisco UCS Mini

コンピュータ内でのデータの取り扱い

- 2進数
- 2進数一けた[0,1]をbitと呼ぶ
- 2進数8桁[0,255]をbyteと呼ぶ
 - → ASCIIコード: 7bitで数字やアルファベットを表現
 - →日本語コード: JIS、SJIS、EUCは2バイト
 - 多言語混在: UTF-8など

$$53 = 32 + 16 + 4 + 1 = 2^{5} + 2^{4} + 2^{2} + 2^{0}$$

$$= (00110101)_{2}$$

$$130 = 128 + 2 = 2^{7} + 2^{1}$$

$$= (10000010)_{2}$$

$$163 = 128 + 32 + 2 + 1 = 2^{7} + 2^{5} + 2^{1} + 2^{0}$$

$$= (10100011)_{2}$$

なぜ、コンピュータは2進数を 使うのか

- 素子が簡単にできる
 - −状態はオンとオフの二つ
- ▶演算規則が簡素

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	10

а	b	$a \times b$
0	0	0
0	1	0
1	0	0
1	1	1

二進数の計算の例

- $-(101)_2 + (11)_2 = (1000)_2$
- $-(101)_2 \times (11)_2 = (101)_2 + (1010)_2 = (1111)_2$

減算

- -8ビットと考える[0,128)
- $-7 4 = (00000111)_2 (00000010)_2$
- 引き算は、上の桁から「借りる」操作 が必要→面倒くさい

減算:続き

- 4に対して2の補数を計算
 - ビットを反転して1を加える:((256 1) 4) + 1
 - $-(11111101)_2 + (00000001) = (111111110)_2$
- → 加算して8ビット部分を計算
- -7 + ((256 1) 4) + 1 = 256 + (7 4)
- $-(00000111)_2 + (111111110)_2 = (100000101)_2$
- $-(00000101)_2 = 3$

接頭辞:3桁每

- $-1k = 10^3$, $1M = 10^3k$, $1G = 10^3M$, $1T = 10^3G$, $1P = 10^3T$
- $-1m = 10^{-3}$, $1\mu = 10^{-3}m$, $1n = 10^{-3}\mu$
- →2進の場合には、1000の代わりに2¹⁰ = 1024を使う

10進数、2進数、8進数、16進 数

- <u>→</u> n進数:使える記号がn個
- 10進数: {0,1,2,3,4,5,6,7,8,9}
 - 9+1=10
- 2進数: {0,1}
 - **1**+1=10
- 8進数: {0,1,2,3,4,5,6,7}
 - - 7+1=10
- 16進数: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - F+1=10
- Ascii Table

課題

→インターネットの通信速度を表す場合、 bpsとBpsという表記が現れる。違いを 調べなさい。