CCI-Bench:

Measuring Cache Coherent Interconnection

Jiacheng Ma & Gefei Zuo EECS 589

- → Why CCI measurement is important?
 - "Understanding PCIe performance for end host networking", SIGCOMM 2018
 - ◆ The features of interconnection may influence future NIC design
 - Currently, PCIe dominates the latency
 - the PCIe subsystem contributes between 77% of the latency for 1500B packets, increasing to more than 90% for small packet sizes.

- → Cache Coherent Interconnection
 - Used to perform inter-CPU communication
 - ◆ Few available information
 - Low latency? (<100ns if cache hit, < 500 ns if cache miss?)
 - Acceptable bandwidth? (<10 Gbs)
 - Hard to measure w/o FPGA: measure CCI between two CPUs?
 - Future NICs
 - NICs want ultra-low latency
 - Embrace the combination of PCIe and CCI interconnection

- → Target: CCI Protocols
 - QPI and UPI from Intel (the most widely used CCI protocol in the world)
 - Other CPU vendors have their own version of CCI
- → Evaluation Platform
 - ◆ Intel Xeon+FPGA Platform
 - HARPv2 (with QPI, without IOMMU)
 - HARPv3 (with UPI, with IOMMU)
 - The only platform we can get close to CCI

- → Intel HARP
 - ◆ CPU and FPGA in the same chip
 - ◆ 1 UPI/QPI + 2 PCIe
- → Use a packet based interface
 - Named CCI-P
 - ◆ RX/TX, similar to NIC
 - An unified abstraction of QPI/UPI/PCIe

So how do we measure it?

A microbenchmark implemented in Verilog, running on FPGA, controlled by CPU.

- → pcie-bench on NetFPGA can't be reused.
 - ◆ The reality of hardware programming we can't change.
- → Metrics (for both PCIe and UPI/QPI)
 - Read / Write bandwidth / latency varied with data length
 - Cache Hints influence
 - Affect descriptor ring access and small packet receive
 - NUMA effect
 - ◆ IOMMU effect

Current Status

- → A preliminary implementation of CCI-Bench
 - Architecture
 - Control Plane, Access Engine,
 Memory Address generator
 - Perform sequence or random memory access
 - Finish simulation
 - Can't run on hardware yet

Thanks. Q&A