LECTURE 3 DESCRIPTIVE STATISTICS: FREQUENCY DISTRIBUTIONS

PSY2002

Hye Won Suk

DESCRIPTIVE STATISTICS

- Descriptive statistics (기술통계) indicate statistical procedures used to summarize, organize, and simplify data.
- Usually, a data set consists of a bunch of scores or measurements. Researchers need to condense a set of scores or measurement into a more manageable and comprehensible form so that any patterns and characteristics in the data can be seen easily and communicated to others. Descriptive statistics serve for this purpose.

DESCRIPTIVE STATISTICS

- In this course we will learn the following three types of descriptive statistics.
 - Frequency distributions (빈도 분포)
 - Central tendency measures (중심경향치)
 - Variability measures (변산성 측정치)

FREQUENCY DISTRIBUTION

- One of the most common descriptive statistics that we can
 use is to summarize scores in a frequency distribution.
- A <u>FREQUENCY DISTRIBUTION</u> (빈도 분포) is an organized tabulation of the number of individuals in each category on the scale of measurement.
- <u>FREQUENCY</u> (빈도) is the number of times a particular score or category occurs, i.e., count.

- A frequency distribution presents a picture of how the individual scores are distributed on the measurement scale.
- A frequency distribution can be given as a frequency table (빈도표) or a frequency graph (빈도 그래프).
- In either case, a frequency distribution provides the following two kinds of information.
 - The set of categories (or numbers) that make up the original measurement scale.
 - The number of individuals (or cases) in each category (frequency or count).

HOW TO MAKE A FREQUENCY TABLE?

- Let's consider the following two situations.
 - How to make a frequency table for the responses on a variable when the variable is measured on a <u>nominal or</u> <u>ordinal scale (i.e., qualitative data)</u>.
 - How to make a frequency table for the responses on a variable when the variable is measured on <u>an interval or ratio scale (i.e., quantitative data)</u>.

- Case I: For a nominal or ordinal scale variable
 - STEP I: Find unique categories.
 - STEP 2: List the unique categories in the first column of the table.
 - STEP 3: Put the frequency associated with each category in the second column.
 - STEP 4:Add other columns such as proportion and % frequency (This step is optional.)

- Example
 - Below are the letter grades of the 15 students who took
 PSY6001 last year.
 - Make a frequency table for the data.

• Basically, a frequency table has two columns as shown below:

X	f
A+	2
Α	3
A-	I
B+	2
В	3
B-	2
C+	I
С	

$$n = \sum f = 2 + 3 + 1 + 2 + 3 + 2 + 1 + 1 = 15$$

• If necessary, we can add other columns in the frequency table.

X	f	p = f/n	% f = p(100)
A+	2	2/15 = 0.13	13%
Α	3	3/15 = 0.20	20%
A-	I	1/15 = 0.07	7%
B+	2	2/15 = 0.13	13%
В	3	3/15 = 0.20	20%
B-	2	2/15 = 0.13	13%
C+	I	1/15 = 0.07	7%
С	I	1/15 = 0.07	7%

• We can also add cumulative frequency as follows:

X	f	cumulative f
A+	2	15 (= 13+2)
Α	3	13 (=10+3)
A-	I	10 (=9+1)
B+	2	9 (=7+2)
В	3	7 (=4+3)
B-	2	4 (=2+2)
C+	I	2 (= +)
С		I

$$n = \sum f = 2 + 3 + 1 + 2 + 3 + 2 + 1 + 1 \neq 15$$

POP QUIZ

• Let's assume that we measured the universities the students taking a class belong to.

X	f
Sogang	25
Yonsei	10
Ewha Womans	5
Catholic	5

• Does it make sense to obtain cumulative frequencies for this data set? If so, how?

- Case 2: For an interval or ratio scale variable
 - Example I: Number of nights drinking during a typical week by college students

- There are 8 unique numbers.
- Make a frequency table as we did for an ordinal variable.

- Case 2: For an interval or ratio scale variable
 - Example 2: An instructor observed the set of 20 exam scores shown below.

- There are 19 unique numbers! When a set of data covers a wide range of values, it is unreasonable to list all of the scores in a frequency distribution table.
- grouped frequency distribution table

 To create a grouped frequency table, you should determine class intervals.

Find the minimum and maximum scores.

- Minimum: 57
- Maximum: 93
- Calculate the range of the scores.

Range =
$$Maximum - Minimum = 93 - 57 = 36$$

- Determine the interval width.
 - Interval width = 2
 - 36/2 = 18
 - About 18 intervals will be used.
 - Interval width = 5
 - 36/5 = 7.2
 - About 7 or 8 intervals will be used.
 - Interval width = 10
 - 36/10 = 3.6
 - About 3 or 4 intervals will be used.
- In general, the interval width yielding around 10 intervals is used for grouped frequency table. However, there is no single right answer for the optimal interval width.
- Let's assume that we decided to use the width of 5.

- Each interval is defined by its bottom score and its top score.
- The bottom score in each interval should be a multiple of the width.
 - If you are using a width of 5 points, the intervals should start with 0, 5, 10, 15, and so on.
 - If you are using a width of 2 points, the intervals should start with 0, 2, 4, 6, and so on.
 - In our example, the minimum score is 57. Therefore, the lowest interval should start with 55 (the highest multiple of 5 that is lower than 57).

• List the class intervals in the first column of the table (from highest to lowest).

- First, list the <u>lower bound</u> (<u>bottom score</u>) of each interval.
- Then list the <u>upper bound</u> (top score) of each interval. The upper bound for each interval equals the lower bound for next interval minimum measurement unit.

• Put the frequency associated with each interval in the second column.

X	f
90-94	3
85-89	3
80-84	2
75-79	4
70-74	3
65-69	0
60-64	3
55-59	2

• If necessary, we can add other columns in the frequency table.

X	f	p = f/n	% f = p(100)
90-94	3	3/20 = 0.15	15%
85-89	3	3/20 = 0.15	15%
80-84	2	2/20 = 0.10	10%
75-79	4	4/20 = 0.20	20%
70-74	3	3/20 = 0.15	15%
65-69	0	0/20 = 0.00	0%
60-64	3	3/20 = 0.15	15%
55-59	2	2/20 = 0.10	10%

• If necessary, we can add cumulative frequency.

X	f	cumulative f
90-94	3	20 (=17+3)
85-89	3	17 (=14+3)
80-84	2	14 (=12+2)
75-79	4	12 (=8+4)
70-74	3	8 (=5+3)
65-69	0	5 (=5+0)
60-64	3	5 (=2+3)
55-59	2	2

HOW TO MAKE A FREQUENCY GRAPH?

- Now, let's think about how to make a graph for a frequency distribution.
- Again, consider the following two situations.
 - How to make a frequency graph for the responses on a variable when the variable is measured on a <u>nominal or</u> <u>ordinal scale</u>.
 - How to make a frequency graph for the responses on a variable when the variable is measured on an interval or ratio scale.

• Example: Hair colors

X	f
Black	4
Blond	3
Brown	13
Red	4

Bar graph

The bars are not "touching." This conveys the fact that our variable consists of a set of categories that are not continuous.

The name of each category is placed at the middle of each bar.

• Example: Exam scores

X	f
90-94	3
85-89	3
80-84	2
75-79	4
70-74	3
65-69	0
60-64	3
55-59	2

Histogram

There is no space between two adjacent bars.

The lower bound of each interval is placed at the left end of each bar.

- Frequency polygon
 - We can make a frequency polygon from the histogram.

Place the dots at the midpoint of the end of each bar and connect them.

No dots are placed beyond the lowest and highest intervals.

- Frequency polygon
 - We can make a frequency polygon from the histogram.

Then delete the histogram to obtain a frequency polygon.

SUMMARY

- Frequency distribution is one of the most common descriptive statistics that shows how the scores are distributed on the measurement scale.
- Frequency table or graph can be constructed.

	Frequency table	Frequency graph
Nominal/Ordinal	 Regular frequency table 	Bar graph
Interval/Ratio	 When the number of response categories is not large: Regular frequency table When the number of response categories is large: Grouped frequency table 	 Histogram Frequency polygon