

Sieci Neuronowe

Sprawozdanie z ćwiczenia 1

Cel ćwiczenia

Celem ćwiczenia jest wprowadzenie/przypomnienie narzędzi i zapoznanie się z danymi z których będziemy korzystać w dalszej części kursu do ewaluacji sieci neuronowych jako metody uczenia maszynowego.

Technologia

Python 3.11, Jupyter Notebook.

Realizacja ćwiczeń

1. Analiza eksploracyjna zbioru danych

Wybór zbioru danych

Zabiór danych pochodzi ze źródła: <u>Heart Disease - UCI Machine Learning Repository</u>

Można było pobrać cały zbiór, który zwierał też dane z innch regionów, ale tak jak w informacji użyto przeprocesowanego zbioru "cleveland". Co ciekawe przy porównaniu rzekomych tych samych zbiorów widać pewne różnice. Zatem końcowy postawiono na użycie kodu z "Import in python".

Jeżeli połączymy dane w pełen zbiór danych, możemy wpisać kilka pierwszych wierszy.

df = pd.concat([X, y], axis=1)
df.head(20)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num
0	63			145	233		2	150		2.3	3	0.0	6.0	0
	67		4	160	286		2	108		1.5		3.0	3.0	2
2	67		4	120	229		2	129		2.6	2	2.0	7.0	1
	37			130	250			187		3.5		0.0	3.0	0
4	41	0	2	130	204		2	172		1.4		0.0	3.0	0
	56		2	120	236			178		0.8		0.0	3.0	0
6	62	0	4	140	268		2	160		3.6	3	2.0	3.0	3
	57		4	120	354			163		0.6		0.0	3.0	0
8	63		4	130	254		2	147		1.4	2	1.0	7.0	2
9	53		4	140	203		2	155		3.1		0.0	7.0	1
10	57		4	140	192			148		0.4	2	0.0	6.0	0
11	56			140	294		2	153		1.3		0.0	3.0	0
12	56		3	130	256		2	142		0.6	2	1.0	6.0	2
13	44		2	120	263			173		0.0		0.0	7.0	0
14	52		3	172	199			162		0.5		0.0	7.0	0
15	57			150	168			174		1.6		0.0	3.0	0
16	48		2	110	229			168		1.0	3	0.0	7.0	1
17	54		4	140	239			160		1.2		0.0	3.0	0
18	48	0	3	130	275			139		0.2		0.0	3.0	0
19	49	1	2	130	266	0	0	171	0	0.6	1	0.0	3.0	0

Możemy sprawdzić typy danych.

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):
                    Non-Null Count Dtype
     # Column
                    303 non-null
         age
                    303 non-null
                    303 non-null
                                     int64
         trestbps 303 non-null
                                     int64
                    303 non-null
         chol
                                     int64
         fbs
                    303 non-null
                                     int64
         restecg
                    303 non-null
                                     int64
                    303 non-null
         exang
                                     int64
     9 oldpeak
                    303 non-null
                                     float64
      10 slope
                    303 non-null
                                     int64
                                     float64
     11 ca
                    299 non-null
     12 thal
                    301 non-null
                                     float64
      13 num
                     303 non-null
    dtypes: float64(3), int64(11) memory usage: 33.3 KB
```

Mimo, że niektóre kolumny są kategoryczne to są zapisane w postaci liczbowej. Zbiór danych posiada 303 próbek i 14 kolumn w tym kolumna 'num' jest kolumną klasy próbki.

Możemy uzyskać podstawowe statystyki zbioru.

df.describe() ✓ 00s														
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	299.000000	301.000000	303.000000
mean	54.438944	0.679868	3.158416	131.689769	246.693069	0.148515	0.990099	149.607261	0.326733	1.039604	1.600660	0.672241	4.734219	0.937294
std	9.038662	0.467299	0.960126	17.599748	51.776918	0.356198	0.994971	22.875003	0.469794	1.161075	0.616226	0.937438	1.939706	1.228536
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	1.000000	0.000000	3.000000	0.000000
25%	48.000000	0.000000	3.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	3.000000	0.000000
50%	56.000000	1.000000	3.000000	130.000000	241.000000	0.000000	1.000000	153.000000	0.000000	0.800000	2.000000	0.000000	3.000000	0.000000
75%	61.000000	1.000000	4.000000	140.000000	275.000000	0.000000	2.000000	166.000000	1.000000	1.600000	2.000000	1.000000	7.000000	2.000000
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	3.000000	3.000000	7.000000	4.000000

Teraz możemy zauważyć, że niektórych danych brakuje. Count(thal) = 301 oraz Count(ca) = 299

Czy występują cechy brakujące i jaką strategię możemy zastosować, żeby je zastąpić?

W przypadku cechy liczbowey 'ca' możemy wstawić średnią w miejsce braków. W przypadku kategorycznej cechy 'thal' możemy wstawić modalną. Byłoby to błędem w przypadku 'ca', ponieważ, mimo że to są liczby to są w przedziale liczb całkowitych 0-3 zatem wstawimy medianę.

```
median = df['ca'].median()
df['ca'].fillna(median, inplace=True)
mode_category = df['thal'].mode()[0]
df['thal'].fillna(mode_category, inplace=True)
```


Czy zbiór jest zbalansowany pod względem liczby próbek na klasy?

0 – brak choroby, [1,4] – choroba

Z informacji dotyczących zbioru wynika, że zbiór miał koncentrować się na wykrywaniu braku lub obecności jakiejś choroby. Dlatego też możemy wyświetlić wykres:

```
abscene = df['num'].value_counts()[0]
some_hearth_disease = df['num'].value_counts()[1:].sum()
print('abscene: ', abscene)
print('some_hearth_disease: ', some_hearth_disease)
plt.bar(['abscene', 'some_hearth_disease'], [abscene, some_hearth_disease])
abscene: 164
```

some_hearth_disease: 139

Dopiero teraz można zaakceptować zbalansowanie pod względem liczby próbek na klasy, aczkolwiek to czy będziemy rozróżniać kategorie choroby trzeba gruntownie ustalić.

Średnie i odchylenia cech liczbowych.

<pre>numeric_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'ca'] df[numeric_features].describe().loc[['mean', 'std']]</pre>											
	age	trestbps	chol	thalach	oldpeak	ca					
mean	54.438944	131.689769	246.693069	149.607261	1.039604	0.663366					
std	9.038662	17.599748	51.776918	22.875003	1.161075	0.934375					

Rozkłady cech liczbowych.

Jedynymi cechami, które mogły być o rozkładzie normalnym to 'chol', 'thalach' i 'age' reszta nie przypomina rozkładów normalnych.

Rozkłady cech kategorycznych:

Tutaj trzeba zauważyć, że dla każdej cechy istnieje jedna klasa, której liczność jest bardzo mała, co sprawia, że rozkłady nie są idealnie równomierne.

Kod przekształcający dane do macierzy cech liczbowych (przykłady × cechy)

```
def one_hot_encode(df, column, column_names):
    dummies = pd.get_dummies(df[column], prefix=column)
    column_names = [column + '_' + str(name) for name in column_names]
    dummies.columns = column_names
    dummies = dummies.astype('int64')
    df = pd.concat([df, dummies], axis=1)
    df.drop(column, axis=1, inplace=True)
    return df
```

```
df = one_hot_encode(df, 'cp', ['typical_angina', 'atypical_angina', 'non-anginal_pain',
    'asymptomatic'])
df = one_hot_encode(df, 'thal', ['normal', 'ST-T_wave_abnormality', 'left_ventricular_hypertrophy'])
df = one_hot_encode(df, 'slope', ['upsloping', 'flat', 'downsloping'])
df = one_hot_encode(df, 'restecg', ['normal', 'fixed_defect', 'reversable_defect'])
```



```
df.info()
✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 23 columns):
 #
    Column
                                        Non-Null Count Dtype
0
   age
                                        303 non-null
                                                        int64
                                        303 non-null
                                                        int64
1
    sex
 2
    trestbps
                                        303 non-null
                                                        int64
                                        303 non-null
                                                        int64
 3
   chol
    fbs
                                        303 non-null
                                                        int64
 4
 5
   thalach
                                        303 non-null
                                                        int64
                                        303 non-null
                                                        int64
 6
    exang
    oldpeak
                                        303 non-null
                                                        float64
                                        303 non-null
                                                        float64
 8
    ca
 9
    num
                                        303 non-null
                                                        int64
 10 cp_typical_angina
                                        303 non-null
                                                        int64
 11 cp_atypical_angina
                                        303 non-null
                                                        int64
 12 cp_non-anginal_pain
                                        303 non-null
                                                        int64
 13 cp_asymptomatic
                                        303 non-null
                                                        int64
 14 thal normal
                                        303 non-null
                                                        int64
 15 thal_ST-T_wave_abnormality
                                        303 non-null
                                                        int64
 16 thal left ventricular hypertrophy 303 non-null
                                                        int64
 17 slope upsloping
                                        303 non-null
                                                        int64
 18 slope flat
                                        303 non-null
                                                        int64
 19 slope_downsloping
                                        303 non-null
                                                        int64
 21 restecg_fixed_defect
                                       303 non-null
                                                        int64
 22 restecg_reversable_defect
                                        303 non-null
                                                        int64
dtypes: float64(2), int64(21)
memory usage: 54.6 KB
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output sets
```

- 2.
- 3.
- 4.
- 5.

Wnioski