

DEI-2113

Carte mesure vitesse bateau et température de l'eau Version PIC16F87x

Document n° 055698 v1

Edité le 29/04/2005

DEI-2113 – Vitesse bateau + T° eau 2

SOMMAIRE

1. INTRODUCTION	3
2. CARACTERISTIQUES	3
2.1. Caractéristiques de la carte électronique	3
2.2. Caractéristiques électriques	3
2.3. Caractéristiques du microcontrôleur PIC16F876	3
2.4. Caractéristiques de la mesure de température	5
2.5. Fonctionnement du capteur de vitesse	5
3. MESSAGERIE NMEA183	6
3.1. Caractéristiques des trames NMEA183	6
3.2. Vitesse du bateau	6
3.3. Température de l'eau	6
4. MESSAGERIE CAN HS NAVYLEC	7
4.1. ID 0x120 (température de l'eau).	7
4.2. ID 0x121 (vitesse bateau)	7

DEI-2113 - Vitesse bateau + T° eau 3

1.Introduction

Cette carte permet de mesure la vitesse d'un bateau et la température de l'eau à l'aide d'un capteur. Cette carte met en forme les signaux d'entrées (mesure de fréquence et mesure analogique) pour les transformer en signaux NMEA183.

2. Caractéristiques

2.1. Caractéristiques de la carte électronique.

- 1 sortie RS422
- 2 Entrée analogique sur 10 bits
- Entrée mesure de la vitesse (fréquence)
- Entrée mesure de température (résistance variable)

2.2. Caractéristiques électriques.

- Alimentation sous 12 V protégée contre les inversions de polarité et les courts circuits.
- Consommation: 11 mA sous 12 V.

2.3. Caractéristiques du microcontrôleur PIC16F876.

- Cœur 8 bit
- Quartz à 8 MHz
- ADC 10 bit
- 1 UART
- Programmation par port « BDM »
- Déboquage temps réel ¹: 2 point d'arrêts
- Programmation en C (compilateur CCS) ou assembleur (programme en assembleur non fourni) avec MPLAB.

¹ Avec débogueur de type ICD2.

1	Port de programmation avec les pins suivante :	
	- 1-2 : MCLR	
	- 2-3:+5V	
	- 4-5 : GND	
	- 6-7 : RB7	
	- 8-9 : RB6	
2	2 Entrées analogiques (brancher la masse du signal sur la masse de	
	l'alimentation)	
3	- Entrée capteur de température (résistance variable)	
-	- Entrée mesure de vitesse (fréquence variable)	
	- Sortie alimentation +5V (PWR)	
Λ	- Sortie NMEA183 (4800 Bauds)	
	- Alimentation +12V de la carte	

A

LED verte clignotante (dans le programme de démonstration)

2.4. Caractéristiques de la mesure de température.

CTN avec une résistance de 18 k Ω au +5V.

Tableau 1 : résistance de la CTN en fonction de la température

Temp (°C)	CTN (kOhm)
-7	40
1	30
5	25
10	20
16	15
25	10
40	5

2.5.Fonctionnement du capteur de vitesse.

Principe : fréquence variable. Plus la fréquence est élevée, plus la vitesse est importante. 1 nœud représente 1.852 km/h → 5.8 Hz On a 5.8 Impulsion à la seconde.

3. Messagerie NMEA183.

3.1. Caractéristiques des trames NMEA183.

Interface physique RS422 (3 fils, liaison différentielle²) 4800 Bauds, Pas de parité, 1 Bit d'arrêt

Champs de longueur variable, séparateur « virgule ».

Début de phrase : \$ (code ASCII 0x24)

Fin de phrase : <CR>,<LF> (code ASCII 0x0D et 0x0A)

Exemples:

\$IIMWV,179.0,R,000.30,N,A<CR><LF>
\$WIXDR,C,020.0,C,,<CR><LF>
\$PLCJ,5B,5B,5F,5F,31,<CR><LF>
\$IIMWV,179.0,R,000.30,N,A<CR><LF>
\$WIXDR,C,020.0,C,,<CR><LF>
\$PLCJ,5B,5B,5F,5F,31,<CR><LF>

3.2. Vitesse du bateau.

VHW (Water Speed & Heading)

vitesse

Unité de mesure de la vitesse N = Nœud

3.3. Température de l'eau.

MTW (Water Température)

Température

Unité de mesure de la température de l'eau C = ° Celsius

² Certaines cartes NAVYLEC ne communiquent pas en différentiel.

4. Messagerie CAN HS NAVYLEC.

La carte DEI-2113 n'a pas de controleur CAN.

Les trames CAN HS (250 kbit/s, ID sur 11 bit) sont renvoyées par la carte DEI-2111 (Centrale de Navigation).

4.1.ID 0x120 (température de l'eau).

ID	0x120
Trame NMEA183	MTW (Température de l'eau)
Taille de la trame	2

4.2.ID 0x121 (vitesse bateau).

ID	0x121
Trame NMEA183	VHW (vitesse bateau)
Taille de la trame	3

01 50 4E → 1.50 Noeud