Algorytmy geometryczne Sprawozdanie z Laboratorium 1

Adam Naumiec

 $naumiec@student.agh.edu.pl\\410936$ Grupa $4-czwartek,\,11:20\cdot12:50,\,tydzień$ B

Spis treści

1	D	ane tech	niczne komputera, na którym wykonywano obliczenia	3
2	C	el ćwicze	enia	3
3	E	tapy rea	lizacji ćwiczenia	3
4		= =	zbiorów losowych punktów	
	4.1	Zbiory.		4
	4.2		wanie losowych punktów i wykorzystanie funkcji bibliotecznych	
	4.3	Wizual	izacja wygenerowanych zbiorów	5
5	0	bliczanie	e wyznaczników	6
	5.1	Użyte v	vyznaczniki	6
	5.2		yznaczników	
	5.3	Metoda	obliczenia wyznaczników	6
6	K	lasyfikad	eja punktów	7
	6.1	=	um klasyfikacyjne	
	6.2	·	ncje dla zera	
_				
7	Α	naliza w	yników	7
	7.1	Tabelar	ryczne porównanie wyników	7
	7.	.1.1 A	naliza danych dla zbioru 🛭	8
	7.		naliza danych dla zbioru B	
	7.	.1.3 A	naliza danych dla zbioru ${\mathcal C}$	9
			naliza danych dla zbioru D	9
	7.2		izacja graficzna wyników	
	7.	.2.1 W	J izualizacja graficzna wyników dla zbioru $oldsymbol{\mathcal{A}}$	
		7.2.1.1	$\varepsilon = 10 - 10$	
		7.2.1.2	$\varepsilon = 10 - 12$	
		7.2.1.3	$\varepsilon = 10 - 14$	
	_	7.2.1.4	$\varepsilon = 10 - 16$	
	7.	$\begin{array}{cc} .2.2 & W \\ 7.2.2.1 \end{array}$	Vizualizacja graficzna wyników dla zbioru $m{\mathcal{B}}$ $m{\varepsilon}=10-10$	
		7.2.2.1 $7.2.2.2$	$\varepsilon = 10 - 10$	
		7.2.2.2 $7.2.2.3$	$\varepsilon = 10 - 12$ $\varepsilon = 10 - 14$	
		7.2.2.4	$\varepsilon = 10 - 16$	
	7.		γ izualizacja graficzna wyników dla zbioru $oldsymbol{\mathcal{C}}$	
		7.2.3.1	$\varepsilon = 10 - 10$	
		7.2.3.2	$\varepsilon = 10 - 12$	
		7.2.3.3	$\varepsilon = 10 - 14$	12
		7.2.3.4	$\varepsilon = 10 - 16$	12

	7.2.4	Wizualizacja graficzna wyników dla zbioru 2	
	7.2.4		
	7.2.4		
	7.2.4	$\epsilon = 10 - 14$	
		$\epsilon = 10 - 16$	
	7.3 Wizu	ıalizacja graficzna różnic	1′
	7.3.1	Wizualizacja graficzna różnic dla zbioru A	1′
	7.3.2	Wizualizacja graficzna różnic dla zbioru B	
	7.3.3	Wizualizacja graficzna różnic dla zbioru 🦸	1′
	7.3.4	Wizualizacja graficzna różnic dla zbioru D	18
8	Testy w	vydajnościowe	2
9	Wniosk	i i podsumowanie	22

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji

Październik MMXXII

1 Dane techniczne komputera, na którym wykonywano obliczenia

Wykorzystano:

- komputer z systemem *macOS* 13 *Ventura*;
- czterordzeniowy procesor Intel Core i5;
- środowisko Jupyter Notebook, PyCharm;
- język programowania *Python* 3;
- wykorzystane biblioteki: random (generowanie losowych zbiorów punktów), math (funkcje trygonometryczne, π), numpy (obliczanie wyznacznika), matplotlib (rysowanie wykresów), time do sprawdzania czasu wykonania obliczeń;
- do przygotowania sprawozdania wykorzystano programy Microsoft Word i Microsoft Excel.

2 Cel ćwiczenia

Porównanie działania klasyfikacji losowo wygenerowanych punktów względem odcinka z wykorzystaniem metody obliczania wyznacznika zaimplementowanego samodzielnie i z wykorzystaniem funkcji bibliotecznych dla różnych tolerancji.

3 Etapy realizacji ćwiczenia

Ćwiczenie wykonano realizując kolejne punkty:

- 1. generacja zbiorów losowych punktów i ich wizualizacja,
- 2. implementacja funkcji obliczających wyznaczniki i przygotowanie działania funkcji bibliotecznych,
- 3. kategoryzacja punktów względem prostej dla różnych tolerancji,
- 4. wizualizacja wyników,
- 5. porównanie wyników otrzymanych różnymi sposobami i wizualizacja różnic,
- 6. testy wydajnościowe,
- 7. wnioski.

4 Generacja zbiorów losowych punktów

4.1 Zbiory

Wygenerowano 4 zbiory punktów:

- 1. **zbiór** \mathcal{A} : 10⁵ losowych punktów o współrzędnych z przedziału [-1000, 1000],
- 2. **zbiór B**: 10⁵ losowych punktów o współrzędnych z przedziału,
- 3. **zbiór** C: 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu r = 100,
- 4. **zbiór** \mathcal{D} : 1000 losowych punktów o współrzędnych z przedziału [-1000,1000] leżących na prostej wyznaczonej przez wektor (a,b), gdzie: a = [-1.0,0.0], b = [1.0,0.1].

4.2 Generowanie losowych punktów i wykorzystanie funkcji bibliotecznych

Losowe liczby generowano za pomocą funkcji *uniform* oraz *randint* z biblioteki *random*. Funkcja ta generuje liczby pseudolosowe z podanego zakresu.

Zbiory \mathcal{A} i \mathcal{B} zawierają wygenerowane punkty zwarte na płaszczyźnie kartezjańskiej z punktami z odpowiednio mniejszego i większego zakresu.

Do generacji punktów w zbiorze *C* wykorzystano z biblioteki *math* funkcje *sin* do obliczania sinusa i *cos* do obliczania cosinusa. Funkcje te zwracają wartości funkcji trygonometrycznych dla podanych argumentów. Wykorzystanie funkcji trygonometrycznych do generowania punktów znajdujących się na okręgu pozwoliło na ich równomierne rozmieszczenie, ponieważ prędkość krzywej jest stała.

Z biblioteki math wykorzystano także funkcję pi zwracającą wartość π z dobrym przybliżeniem. Zbiór C zawiera punkty rozmieszczone na okręgu.

W zbiorze \mathcal{D} generwano punkty leżące na prostej wyznaczonej przez wektor [a, b], gdzie a = [-1,0; 0,0], b = [1,0; 0,0].

Do wizualizacji punktów na płaszczyźnie kartezjańskiej wykorzystano dostarczone narzędzie graficzne wykorzystujące bibliotekę *matplotlib*, która pozwala na rysowanie wykresów oraz dostarczone na laboratoriach narzędzie.

Wykorzystano także bibliotekę *time* do sprawdzenia czasu wykonania obliczeń.

4.3 Wizualizacja wygenerowanych zbiorów

5 Obliczanie wyznaczników

5.1 Użyte wyznaczniki

Do obliczeń wykorzystano:

- 1. przygotowany wyznacznik 2x2,
- 2. biblioteczny wyznacznik 2x2,
- 3. przygotowany wyznacznik 3x3,
- 4. biblioteczny wyznacznik 3x3.

5.2 Opis wyznaczników

Do obliczania wyznacznika funkcją biblioteczną wykorzystano bibliotekę numpy i funkcję linalg.det (do właściwych obliczeń) i funkcję array (do reprezentacji danych w tablicy). Biblioteka numpy to popularna biblioteka programistyczna dla języka Python oferująca wiele funkcji wykorzystywanych do działań matematycznych i operacji na zbiorach danych.

Do obliczania wyznacznika własną implementacją przygotowano funkcje wykonujące stosowne obliczenia odpowiednimi sposobami.

5.3 Metoda obliczenia wyznaczników

Wyznaczniki obliczono następująco:

Wyznacznik	Metoda obliczenia
Przygotowany wyznacznik 2x2	$\det(a,b,c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_{xy} - c_{xy} \end{vmatrix}$
Biblioteczny wyznacznik 2x2	Funkcja <i>linalg.det</i> z biblioteki <i>numpy</i> dla macierzy 2x2
Przygotowany wyznacznik 3x3	$\det(a, b, c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$
Biblioteczny wyznacznik 3x3	Funkcja <i>linalg.det</i> z biblioteki <i>numpy</i> dla macierzy 3x3

Tabela 5.3 Obliczanie wyznacznika

6 Klasyfikacja punktów

6.1 Kryterium klasyfikacyjne

Punkty w zbiorach sklasyfikowano względem prostej ab na:

- 1. współliniowe,
- 2. położone po prawej,
- 3. położone po lewej.

Klasyfikacji dokonano na podstawie wartości wyznacznika dla punktów *a*, *b* i badanego punktu *c*. Wykorzystano następującą zależność:

Punkt c jest wobec punktów a i b:

$$\det(a,b,c) \begin{cases} <0 \Rightarrow po \ prawej, \\ =0 \Rightarrow wsp\'olliniowy, \\ >0 \Rightarrow po \ lewej. \end{cases}$$

6.2 Tolerancje dla zera

Klasyfikacji dokonano z różnymi tolerancjami dla zera (oznaczanymi jako *epsilon*). Wykorzystanie tolerancji związane jest z reprezentacją liczb rzeczywistych w komputerze i wynikającym z tego obarczeniem wyników obliczeń niedokładnością przy wykorzystaniu liczb zmiennoprzecinkowych (w języku *Python* typ zmiennej *float* – 64-bitowa liczba zmiennoprzecinkowa).

Dokonano obliczeń dla tolerancji:

- 1. $\varepsilon = 10^{-10}$.
- 2. $\varepsilon = 10^{-12}$,
- 3. $\varepsilon = 10^{-14}$
- 4. $\varepsilon = 10^{-16}$.

7 Analiza wyników

7.1 Tabelaryczne porównanie wyników

Porównanie wyników dla różnych parametrów dla każdego ze zbiorów:

7.1.1 Analiza danych dla zbioru ${\mathcal A}$ Tabela 7.1.1 Analiza zbioru ${\mathcal A}$				
Wyznacznik	Precyzja	Po lewej	Współliniowe	Po prawej
Duguestowany	10-10	50221	0	49779
Przygotowany wyznacznik	10-12	50221	0	49779
wyznacznik 2x2	10-14	50221	0	49779
ZXZ	10^{-16}	50221	0	49779
D:11: 4	10-10	50221	0	49779
Biblioteczny	10-12	50221	0	49779
wyznacznik 2x2	10-14	50221	0	49779
ZXZ	10 ⁻¹⁶	50221	0	49779
D	10-10	50221	0	49779
Przygotowany	10-12	50221	0	49779
wyznacznik 3x3	10-14	50221	0	49779
OXO	10 ⁻¹⁶	50221	0	49779
D:1.1: -4	10-10	50221	0	49779
Biblioteczny	10-12	50221	0	49779
wyznacznik 3x3	10-14	50221	0	49779
ΘΧG	10-16	50221	0	49779

7.1.2 Analiza danych dla zbioru ${\cal B}$			Tabela 7.1.2 Analiza zbioru ${\mathcal B}$	
Wyznacznik	Precyzja	Po lewej	Współliniowe	Po prawej
Dwgwaotowowy	10-10	49960	7	50033
Przygotowany	10^{-12}	49960	7	50033
wyznacznik 2x2	10-14	49960	7	50033
232	10 ⁻¹⁶	49960	7	50033
D:11: 4	10-10	49966	0	50034
Biblioteczny	10-12	49966	0	50034
wyznacznik 2x2	10-14	49966	0	50034
2x2	10-16	49966	0	50034
Demonstration	10-10	49966	0	50034
Przygotowany	10-12	49966	0	50034
wyznacznik 3x3	10-14	49966	0	50034
δXδ	10 ⁻¹⁶	49966	0	50034
D'1.1'	10 ⁻¹⁰	49966	0	50034
Biblioteczny	10-12	49966	0	50034
wyznacznik	10-14	49966	0	50034
3x3	10 ⁻¹⁶	49966	0	50034

7.1.3 Analiza danych dla zbioru ${\cal C}$			Tabela 7.1.3 Analiza zbioru ${\cal C}$	
Wyznacznik	Precyzja	Po lewej	Współliniowe	Po prawej
Przygotowany	10-10	476	0	524
wyznacznik	10-12	476	0	524
wyznacznik 2x2	10-14	476	0	524
232	10 ⁻¹⁶	476	0	524
D:11: 4	10-10	476	0	524
Biblioteczny	10-12	476	0	524
wyznacznik 2x2	10-14	476	0	524
$\Delta X \Delta$	10-16	476	0	524
D 4	10-10	476	0	524
Przygotowany	10-12	476	0	524
wyznacznik 3x3	10-14	476	0	524
OXO	10-16	476	0	524
D'1.1'	10-10	476	0	524
Biblioteczny	10-12	476	0	524
wyznacznik 3x3	10-14	476	0	524
ΘΧG	10 ⁻¹⁶	476	0	524

7.1.4 Analiza danych dla zbioru $\mathcal D$ Tabela 7.1.4 Analiza zbioru $\mathcal D$				
Wyznacznik	Precyzja	Po lewej	Współliniowe	Po prawej
D	10-10	0	1000	0
Przygotowany wyznacznik	10-12	73	849	78
wyznacznik 2x2	10-14	127	744	129
	10-16	132	731	137
D:h1: -4	10-10	0	1000	0
Biblioteczny	10-12	117	748	135
wyznacznik 2x2	10-14	435	99	466
232	10-16	482	9	509
D +	10-10	0	1000	0
Przygotowany	10-12	0	1000	0
wyznacznik 3x3	10^{-14}	0	1000	0
040	10-16	177	406	417
D:l-1: -4	10-10	0	1000	0
Biblioteczny	10-12	0	1000	0
wyznacznik 3x3	10-14	6	889	105
989	10-16	433	38	529

7.2 Wizualizacja graficzna wyników

Przyjęto następujące oznaczenia:

- żółty punkty znajdujące się po lewej,
- niebieski punkty znajdujące się po prawej,
- czerwony punkty współliniowe.

7.2.1 Wizualizacja graficzna wyników dla zbioru A

7.2.1.1
$$\varepsilon = 10^{-10}$$

7.2.1.2 $\varepsilon = 10^{-12}$

Identyczne jak dla $\varepsilon = 10^{-10}$.

7.2.1.3
$$\varepsilon = 10^{-14}$$

Identyczne jak dla $\epsilon = 10^{-10}$.

7.2.1.4
$$\varepsilon = 10^{-16}$$

Identyczne jak dla $\epsilon = 10^{-10}$.

7.2.2 Wizualizacja graficzna wyników dla zbioru B

7.2.2.1
$$\varepsilon = 10^{-10}$$

Rysunek 7.2.2.1 a) Wizualizacja dla własnego wyznacznika 2x2

Rysunek 7.2.2.1 b) Wizualizacja dla własnego wyznacznika 3x3

Rysunek 7.2.2.1 c) Wizualizacja dla bibliotecznego wyznacznika 2x2

Rysunek 7.2.2.1 d) Wizualizacja dla bibliotecznego wyznacznika 3x3

7.2.2.2
$$\varepsilon = 10^{-12}$$

Identyczne jak dla $\varepsilon=10^{-10}$.

7.2.2.3
$$\varepsilon = 10^{-14}$$

Identyczne jak dla $\varepsilon = 10^{-10}$.

7.2.2.4
$$\varepsilon = 10^{-16}$$

Identyczne jak dla $\varepsilon=10^{-10}.$

7.2.3 Wizualizacja graficzna wyników dla zbioru $\mathcal C$

7.2.3.1
$$\varepsilon = 10^{-10}$$

7.2.3.2 $\varepsilon = 10^{-12}$

Identyczne jak dla $\epsilon = 10^{-10}$.

7.2.3.3
$$\varepsilon = 10^{-14}$$

Identyczne jak dla $\epsilon = 10^{-10}$.

7.2.3.4
$$\varepsilon = 10^{-16}$$

Identyczne jak dla $\epsilon = 10^{-10}$.

7.2.4 Wizualizacja graficzna wyników dla zbioru $\mathcal D$

7.2.4.1
$$\varepsilon = 10^{-10}$$

7.2.4.2 $\varepsilon = 10^{-12}$

7.2.4.3 $\varepsilon = 10^{-14}$

7.2.4.4 $\varepsilon = 10^{-16}$

7.3 Wizualizacja graficzna różnic

7.3.1 Wizualizacja graficzna różnic dla zbioru \mathcal{A}

W tym zbiorze uzyskiwano takie same wyniki dla różnych sposobów mierzenia wyznacznika i różnych precyzji.

7.3.2 Wizualizacja graficzna różnic dla zbioru B

Zbadano różnicę klasyfikacji punktów w zbiorze $\mathcal B$ dla wyznacznika 2x2 własnego i bibliotecznego.

Liczba punktów różniących się klasyfikacją: 7.

7.3.3 Wizualizacja graficzna różnic dla zbioru \mathcal{C}

W tym zbiorze uzyskiwano takie same wyniki dla różnych sposobów mierzenia wyznacznika i różnych precyzji.

7.3.4 Wizualizacja graficzna różnic dla zbioru $\mathcal D$

Zbadano różnicę klasyfikacji punktów w zbiorze \mathcal{D} dla:

• wyznacznika 2x2 własnego i bibliotecznego:

Precyzja	Liczba punktów różniących się klasyfikacją
$\varepsilon = 10^{-10}$	0
$\varepsilon = 10^{-12}$	277
$\varepsilon = 10^{-14}$	702
$\varepsilon = 10^{-16}$	761

Tabela 7.3.4 a)

• wyznacznika 3x3 własnego i bibliotecznego:

Precyzja	Liczba punktów różniących się klasyfikacją
$\varepsilon = 10^{-10}$	0
$\varepsilon = 10^{-12}$	0
$\varepsilon = 10^{-14}$	111
$\varepsilon = 10^{-16}$	528

Tabela 7.3.4 b)

Zwizualizowano punkty różniące się klasyfikacją dla różnych sposobów liczenia wyznaczników 2x2 i 3x3 oraz różnej precyzji:

• dla wyznacznika 2x2 własnego i bibliotecznego:

c.
$$\varepsilon = 10^{-14}$$
,
d. $\varepsilon = 10^{-16}$;

• dla wyznacznika 3x3 własnego i bibliotecznego:

c.
$$\varepsilon = 10^{-14}$$
,
d. $\varepsilon = 10^{-16}$.

Rysunek 7.3.4 a) Różnica klasyfikacji punktów dla wyznacznika 2x2 własnego i bibliotecznego dla $\varepsilon=10^{-14}$

Rysunek 7.3.4 b) Różnica klasyfikacji punktów dla wyznacznika 2x2 własnego i bibliotecznego dla $\varepsilon=10^{-16}$

Rysunek 7.3.4 c) Różnica klasyfikacji punktów dla wyznacznika 3x3 własnego i bibliotecznego dla $\varepsilon=10^{-14}$

Rysunek 7.3.4 d) Różnica klasyfikacji punktów dla wyznacznika 3x3 własnego i bibliotecznego dla $\varepsilon = 10^{-16}$

8 Testy wydajnościowe

W laboratorium wykonano także testy wydajnościowe polegające na sprawdzeniu czasu potrzebnego do wykonania funkcji klasyfikującej punkty w zbiorze na te znajdujące się po lewej stronie, po prawej stronie oraz współliniowe poprzez policzenie wyznacznika różnymi metodami.

Do badania wykorzystano zbiór \mathcal{B} , oraz przyjęto $\varepsilon=10^{-12}$, zbadano wyznaczniki 2x2 oraz 3x3 przygotowane samodzielnie oraz biblioteczne z biblioteki numpy.

Wyniki przybliżono do czwartego miejsca po przecinku i zaprezentowano w tabeli:

Wyznacznik	Czas [s]	
Wyznac	znik 2x2	
Przygotowany	0.0532	
Biblioteczny	0.7978	
Wyznacznik 3x3		
Przygotowany	0.0611	
Biblioteczny	0.8808	

Tabela 8

Czas potrzebny do klasyfikacji punktów w zbiorze dla wyznaczników przygotowanych samodzielnie i bibliotecznych różni się o rząd wielkości. Funkcje samodzielnie zaimplementowane okazały się dużo szybsze.

9 Wnioski i podsumowanie

Zarówno sposób liczenia wyznacznika jak i dokładność obliczeń mają wpływ na klasyfikację punktów. Dla większych zbiorów punktów wyniki są bardziej podatne na zmiany wartości parametrów i sposobów obliczeń, wynika to z dystrybucji wylosowanych punktów.

Obliczanie wyznaczników samodzielnie zaimplementowaną metodą okazało się dawać dokładniejsze wyniki (najbardziej zbliżone do tych oczekiwanych), co więcej przygotowane funkcje były szybsze od tych bibliotecznych o rząd wielkości. Należy pamiętać, że w laboratorium wykonywano obliczenia na zbiorach stosunkowo niedużych – przy działaniach na większych zbiorach danych różnice mogłyby okazać się znaczące i konieczne do wzięcia pod uwagę przy realizacji zadań.

Największe różnice zauważono w zbiorze \mathcal{D} , gdzie punkty ustawione były na prostej. Tutaj najwyraźniej uwydatniła się różnica w sposobie liczenia wyznacznika, szczególnie dla dużych precyzji.

Przez niepewności w obliczeniach nie jesteśmy w stanie w sposób oczywisty wybrać sposobu, który dokonywał klasyfikacji punktów w zbiorach najlepiej. Warto jednak zauważyć, że wyznaczniki samodzielnie zaimplementowane były wydajniejsze (dużo szybsze), natomiast wyznaczniki 3x3 wydawały sie być dokładniejsze (dla rożnych dokładności dawały wyniki najbardziej zbliżone do wyników spodziewanych, szczególnie dla zbioru \mathcal{D} i dużej precyzii). zwiazku z tym wyznacznik 3x3 zaimplementowany W samodzielnie wydaje (najbardziej się najlepszym rozwiązaniem uniwersalnym).

Wyniki laboratorium ukazują jak ważne mogą być sposoby implementacji oraz wykorzystane narzędzia informatyczne i matematyczne przy obliczeniach wymagających dużej precyzji, pokazują także jakie problemy mogą pojawić się przy wykonywaniu obliczeń na liczbach rzeczywistych w komputerze przez sposób w jaki są w nich reprezentowane.

Wnioski te są szczególnie cenne dla projektów informatycznych, w których precyzja obliczeń i identyfikacja pewnych danych z wykorzystaniem algorytmów geometrycznych są sprawą kluczową.

* * *