※ 正规语言的三种表示法综合示例:

【例3.5】 $L = \{ ab^nc, b^n | n \ge 0 \}, \Sigma = \{ a, b, c \};$

1. 正规文法描述:

 $G(S): S\rightarrow A|bB|\epsilon$, $A\rightarrow bA|c$, $B\rightarrow bB|\epsilon$

2. 正规式描述: e = ab*c | b*

3. 有限自动机描述:

表示可接受空串!

【注】 凡是能由上述三种方法表示的语言,一定是正规语言; 反之, 凡是不能由上述三种方法表示的语言, 一定不是正规语言。

3.2 有限自动机的定义和分类

3.2.1 有限自动机的定义

【定义】 有限自动机是一种数学模型,用于描述正 规语言,可定义为五元组: $FA=(Q, \Sigma, S, F, \delta)$

其中:

```
0(有限状态集);
```

Σ(字母表);

S(开始状态集, **S** ⊆ **Q**);

F(结束状态集, **F** ⊆ **Q**);

δ: 变换(二元函数):

$$\delta$$
(i,a) =j 或

【含义】

状态 i 遇符号 a. 变换为状态 j

3.2.2 有限自动机怎样描述语言

令 L(FA)为自动机FA所描述的正规语言;则

FA 存在一条从某初始状态 i 到某结束状态 j 的 连续变换, 且每次变换(=>)的边标记连成的符号串恰好为 x ; 称x为FA接受, 否则拒绝。

如 右图有限自动机:

则 L(FA)的 识别过程如下所 示:

$$\begin{array}{c|c} & & & b & c \\ \hline + & & & 2 & b \\ \hline & & & & b \\ \hline & & & & & & \end{array}$$

※ L(FA)的生成(或识别)过程示例:

1. 第一条通路: FA1

$$+ (1) \stackrel{a}{=} > (2) \stackrel{c}{=} > (3)_{-}$$

$$+ (1) \stackrel{a}{\Rightarrow} (2) \stackrel{b}{\Rightarrow} (2) \stackrel{c}{\Rightarrow} (3)_{-}$$

$$+ (1) \stackrel{a}{=} > (2) \stackrel{b}{=} > (2) \stackrel{c}{=} > (3) -$$

接受空串的 FA的典型特征!

Ⅱ. 第二条通路: FA2

$$+ \textcircled{1} \stackrel{\varepsilon}{=} \textcircled{1}_{-}$$

$$\therefore L(FA1) = \{ ab^nc | n \ge 0 \}$$

$$\therefore L(FA2) = \{ b^n | n \geqslant 0 \}$$

$$L(FA) = \{ab^nc, b^n \mid n \ge 0\}$$

3.2.3 有限自动机的两种表现形式

【例3.6】有限自动机: $FA=(Q, \Sigma, S, F, \delta)$

其中: $Q=\{1, 2, 3, 4\}, \Sigma=\{a, b, c\}, S=\{1, 2\}, F=\{3, 4\}$

$$\delta$$
: δ (1, a) = 2; δ (1, b) = 4; δ (2, b) = 2;

$$\delta$$
 (2, c)=3; δ (2, ϵ)=3; δ (4, b)=4:

FA 的两种表现形式:

(1) 状态图:

(2) 变换表:

开始状态 结束状态

	a	b	C	3
/ + \1	2	4		
+ 2		2	3	3
- 3				
- 4		4		

※ 变换表结构: 行(状态),列(符号),表项(变换后状态)

※ 有限自动机的构造示例:

【例3.7】 A={ abⁿc, (ab)ⁿ|n≥0 } FA的构造:

●方法一: 联合式 ●方法二:组合式1 比较:

有好用的吗?!

或

开始状态不唯一,不好用!

二:带有ε 边,也不好用!

或: 变换函数不单值, 如

(δ(1,a)=(2|4)), 仍不好用!

■方法三: 确定式

$A = \{ab^nc, (ab)^n \mid n \ge 0 \}$

※ 确定的有限自动机如右图所示:

要领:构造的同时,

要考虑连接!

- 3.2.4 有限自动机的分类
 - 1. 确定的有限自动机(DFA)

特征: ①开始状态唯一; ②变换函数单值; ③不带ε边。

- 2. 非确定的有限自动机(NFA)
 - 一 不能全部具备上述特征者!
 - (1) 带有 ϵ 边的非确定的有限自动机 (ϵNFA)
 - (2) 不带有E边的非确定的有限自动机(ENFA)

※ 有限自动机的分类示例

【例3.8 】试分别指出下述有限自动机的分类情况:

3.3 有限自动机的等价变换

有限自动机的等价变换, 是指把FA1变换为FA2, 且有 L(FA1)=L(FA2), 主要包含以下两个内容:

(1) 有限自动机的确定化(NFA=>DFA);

非确定机(NFA)较易构造,但不好用!确定机(DFA)较难构造,但好用!

※ 任何一非确定机NFA, 皆可通过有效 算法把其化为等价的确定机DFA。

(2) 有限自动机的化简(最小化);

※ 对任何一确定机DFA1, 皆可通过有效算法把其化为等价的另一个确定机DFA2, 且DFA2的状态最少。

3.3.1 有限自动机的确定化

|.消除 ε 边算法(εNFA => εNFA 或 DFA):

(1) 若存在ε闭路, 则把ε闭路上各节点 合而为一:

- (2) 标记隐含的开始态和结束态:
 - •开始态的ε通路上的节点: +
 - •结束态逆向ε通路上节点: -

- (3) 对剩余的ε边,逆向逐一进行:
 - ① 删除一个ε边;同时

② 引进新边:

凡由原ε<mark>边终点</mark>发出的边,也要由其始点发出。

(4) 重复步骤(3), 直到再无ε边为止。

※ 消除ε边算法示例:

【例3.9】考查 ENFA:

 $L(\overline{\epsilon}NFA) = ?$

- (1) ε 闭路上的节点等价(① \equiv ②),可合而为一;
- (2) 标记隐含的开始态和

结束态: +④,+③,_①

(3) 逆序逐一删除ε边,

同时引进新边:

$$\Box L(\overline{\epsilon}NFA) = \{ a^m, a^mbc^n, a^mc^n | m \ge 0, n \ge 1 \}$$

ENFA

II. εNFA的确定化算法(εNFA =>DFA):

(1) 构造DFA的变换表(框架):

字母表中符号

 a_3

ENFA开始态集

(2) 按 ENFA 的变换函数

实施变换:

$$\delta(\{q_i^1, ...q_i^n\}, a_k) = \{q_j^1, ...q_j^n\}$$

 $\{q_0^1, ...q_0^n\}$

- (3) 若 $\{q_j^1, ...q_j^n\}$ 未作为状态行标记,则作新行标记;
- (4) 重复步骤(2)(3), 直到在再不出现新状态集为止;
- (5) 标记DFA的开始态和结束态:
- •第一行{q₀¹, ...q₀¹}, (右侧)标记 + ;
- •凡是状态行中含有 $\overline{\epsilon}$ NFA 的结束状态者,(右侧)标记 。

【注】 必要时,新产生的DFA可用状态图表式。

ENFA确定化示例:

【例3.10】联 合式自动机NFA:

※ 确定化过程: DFA:

		а	р	C
+	A {1, 4}	B _{2, 5}		
	B {2, 5}		C{2,4}	D {3}
-	C {2, 4}		F {2}	D {3}
-	D {3}			
	E {5}•		G {4}	
	F {2}		F {2}	D {3}
-	G {4}	E {5}		

【注】A, B, C, ... 状态集的代码

3.3.2 有限自动机的最小化1

有限自动机的最小化,又称有限自动机的化简;是

指: 对给定的确定机DFA1,构造另一个确定机DFA2.使

得 L(DFA1)=L(DFA2), 且DFA2的状态最少。

有限自动机最小化算法,是指构造满足下述条件的确定有限自动机(称为最小机):

(1) 删除无用状态;

其中

(2) 合并等价状态。

【无用状态】是指由开始态达不到的状态(不可达)或者由其出发不能到达结束态的状态(不终结)。

【等价状态】是指这样的两个状态,若分别把其 看作开始态,二者接受的符号串集合相同。

※ 无用状态和等价状态示例:

不终结

【例3.13】 2 a 3 a b 5 -

判断等价性:

4≡5 ? × 3≡5 ? **√**

2≡3 ? × 2≡4 ? ×

【注】如何判断两个状态的等价性?稍后再讨论。

1.删除无用状态算法

※【删除不可达状态】 构造可达状态集 Q_{AR}

- (1) 设 q_0 为开始态,则 令 $q_0 \in Q_{AR}$;
- (2) 若 $q_i \in Q_{AR}$ 且有 $\delta(q_i, a) = q_j$ 则令 $q_j \in Q_{AR}$;
- (3) 重复执行(2), 直到Q_{AR}不再增大为止。
- (4) 从状态集Q中,删除不在QAR中的所有状态。

※【删除不终结状态】 构造可终结状态集 QFN

- (1) 设 q_i 为结束态,则 令 q_i∈Q_{FN};
- (2) 若 $q_j \in Q_{FN}$ 且有 $\delta(q_i, a) = q_j$ 则令 $q_i \in Q_{FN}$;
- (3) 重复执行(2),直到 Q_{FN} 不再增大为止。
- (4) 从状态集Q中,删除不在Q_{FN}中的所有状态。

Ⅱ. 合并等价状态原理与算法1

※【合并等价状态原理】

两个状态i, j等价, 当且仅当满足下面两个条件:

- ① 必须同是结束态,或同不是结束态;
- ② 对所有字母表上符号,状态i,j必变换到等价状态。

【例3.14】把下述自动机最小化:

- (1) 初分成两个不等价子集: $Q_1 = \{1, 2\}, Q_2 = \{3\}$
- (2) 还能分成不等价子集吗?

$$\delta(\{1, 2\}, a) = 2$$

又
$$\delta(\{1, 2\}, b) = 3$$

合并后的最 小自动机

Ⅱ. 合并等价状态原理与算法2

※【合并等价状态算法】 -- 划分不等价状态集

- (1) 初始,把状态集Q化分成两个不等价子集: Q_1 (结束状态集), Q_2 (非结束状态集);
- (2) 把每个Q;再划分成不同的子集,条件是:

同一Q_i中两个状态i, j, 若对字母表中的某个符号, 变换到已划分的不同的状态集中, 则i, j应分离:

如 $\delta(i, a) \in Q_m$, $\delta(j, a) \in Q_n$ 且 $m \neq n$

- (3) 重复步骤(2), 直到再不能划分为止;
- (4) 合并最终划分的每个子集中的各状态(合而为一)。

※ 有限自动机化简示例:

【例3.15】 化简下述 DFA:

DFA的变换表:

	а	b
1	,6	3
3-,	1	5
6	4	
5	7	3
4	4	6
7	4	

l . 删除无用状态(不终结):

动态构造DFA变换表,即从开始状态 1 出发,把变换后的状态填入表项,并同时作为新行标记;如此下去,直到再不出现新状态为止。未出现的状态,就是无用的状态。

【注】 DFA 中的状态 2,8 被删除!

Ⅱ. 合并等价状态:

① \diamondsuit $Q_{NF} = \{ \{1, 3, 4\}, \{5, 6, 7\} \}$

② 取 {1,3,4}:

即 Q_{NE} = { {1}, {3, 4}, {5, 6, 7} }

DFA:

	а	b
1	6	3
3	1	5
6	4	
5	7	3
4	4	6
7	4	

即 $Q_{NF} = \{ \{1\}, \{3\}, \{4\}, \{5, 6, 7\} \}$

④ 取 {5, 6, 7}: 同理,可划分成 Q₁={5}, Q₂={6, 7};

最后: Q_{NE}= { {1}, {3}, {4}, {5}, {6, 7} }

※ (接上页) :

DFA:

合并等价状态: **{6, 7}** 6替换7

	а	b
1	6	3
3	1	5
6	4	
5	6	3
4	4	6

最小的 DFA!

谢谢收看!