EE2021 Devices and Circuits

Single Transistor Amplifier – CC/CD, CE/CS with Degeneration, Current Mirror

Lecture Outline

- Single Transistor Amplifiers,
 CC/CD, CE/CS with degeneration
- Current Mirror

Common Drain (CD)

- Identify Source and Load
- To identify amplifier configuration, we need to consider AC equivalent circuits, i.e. short circuit capacitors
- Input connected to Gate, output connected to Source, Drain connected to neither input nor output ⇒ Common Drain (CD)

DC Analysis

Remove source/load section when doing DC analysis

$$\mu_n C_{ox} = 80 \mu A/V^2$$

 $V_{THN} = 0.7 V$
 $\lambda_n = 0.02 V^{-1}$

Determine DC biasing

$$I_D = I_S = I_{BIAS} = 0.5mA$$

Determine AC small signal parameter

$$\left(\frac{W}{L}\right) = \frac{100}{1}$$

$$g_{m} = \sqrt{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)}I_{D} = 2.83mA/V$$

$$g_{mb} \approx -\frac{g_{m}}{4} = -0.71mA/V$$

$$g_{mb} \approx -\frac{g_m}{4} = -0.71 \text{mA/V}$$

$$r_i = \infty$$

$$r_o = \frac{1}{\lambda_n I_D} = 100k\Omega$$

AC Analysis

Step 2:

Group the remaining component into two-port network

Step 3:

Replace transistor with small signal AC model

Interested in finding out R_{in}, R_{out} and A for the two ports network (Voltage Amplifier)

$$R_{in} = \infty$$

CD – Two-Port Network (Rout)

$$i_{x} \approx -g_{m}v_{gs} - g_{mb}v_{sb} = (g_{m} - g_{mb})v_{x}$$

$$\Rightarrow R_{out} \approx \frac{1}{g_{m} - g_{mb}}$$

CD – Two-Port Network (Rout)

Since no current flow through R_S, v_g is same as AC ground

$$R_{out} \approx \frac{1}{g_m - g_{mb}}$$

Important Result:

If you see the transistor connected in the similar fashion, the resistance looking into the source (R_{out}) is directly given by the formula. **No need to rederive.**

Example:

$$R_S = 100$$
 $r_o = 100k$
 $g_m = 2.83m$ $g_{mb} = -0.71m$
 $\Rightarrow R_{out} \approx 283$

The output impedance does not depend on R_S

MOS - Equivalent Resistance

A resistor, whether you look from top or bottom, always is a resistor with resistance R

Only
APPLICABLE for
AC analysis

- When the drain and gate are connected together, the transistor is called diode connected transistor
- Diode connected transistor has equivalent resistance of 1/g_m if there is no body effect

CD – Two-Port Network (A_V)

■ Without body effect, $g_{mb}v_{sb}=0 \Rightarrow A_{V}\approx 1$

CD - Important Results

1

Since no current flow through $R_{\rm S}$, $v_{\rm g}$ is same as AC ground

$$R_{out} \approx \frac{1}{g_m - g_{mb}}$$

(2)

Relationship between v_{in} and v_{out} is defined as follows:

$$V_{i} \rightarrow V_{out}$$

$$R_{L} \neq V_{out}$$

$$v_{out} = \frac{g_{m}R_{L}}{1 + (g_{m} - g_{mb})R_{L}} v_{i}$$

(3)

Diode Connected Transistor

$$\implies$$
 $\begin{cases} \begin{cases} \begin{cas$

CD – Two-Port Network

Transform the CD amplifier into two-port voltage amplifier

Relationship between v_{in} and v_{out} is defined as follows:

$$v_{i} \rightarrow v_{out}$$

$$R_{L} \neq v_{out}$$

$$v_{out} = \frac{g_{m}R_{L}}{1 + (g_{m} - g_{mb})R_{L}} v_{i}$$

Common Collector (CC)

- Identify Source and Load
- To identify amplifier configuration, we need to consider AC equivalent circuits, i.e. short circuit capacitors
- Input connected to Base, output connected to Emitter, Collector connected to neither input nor output ⇒ Common Collector (CC)

DC Analysis (Self Reading)

Remove source/load section when doing DC analysis

$$I_S = 10^{-15} A$$

 $\beta = 100$
 $V_A = 100 V$

Determine DC biasing

Determine AC small signal parameter

$$g_{m} = \frac{I_{C}}{V_{T}} = 19mA/V$$

$$r_{\pi} = \frac{\beta}{g_{m}} = 5.26k\Omega$$

$$r_{o} = \frac{V_{A}}{I_{C}} = 202k\Omega$$

AC Analysis (Self Reading)

Identify source/load

Step 2:

Group the remaining component into two-port network

Step 3:

Replace transistor with small signal AC model

Interested in finding out R_{in}, R_{out} and A for the two ports network (Voltage Amplifier)

 R_{out}

CC – Two-Port Network (R_{in}) (Self Reading)

$$v_{\pi} = v_{x} - v_{out}$$

$$i_{1} = \frac{v_{out}}{R_{x}}$$

$$\begin{cases} v_x - v_{out} = i_x r_\pi & \text{Eliminate } v_{\text{out}} \text{ and } i_x \\ i_x = i_1 + i_2 - g_m v_\pi \\ = \frac{v_{out}}{R_L} - g_m (v_x - v_{out}) \end{cases} \Rightarrow R_{in} = r_\pi + g_m r_\pi R_L + R_L \\ = r_\pi + (\beta + 1) R_L \\ \approx r_\pi (1 + g_m R_L) \end{cases}$$

$$\Rightarrow i_x = \frac{v_x - i_x r_\pi}{R_L} - g_m i_x r_\pi$$

CC – Two-Port Network (R_{in}) (Self Reading)

Important Result:

If you see the transistor connected in the similar fashion, the resistance looking into the base (R_{in}) is directly given by the formula. **No need to rederive.**

Example:

$$R_{L} = 10k \quad r_{o} = 202k$$

$$\Rightarrow R_{in} = r_{\pi} + (\beta + 1)R_{L}$$

$$= 1.01M$$

 Emitter side resistor helps boost up the input resistance looking into the base

CC – Two-Port Network (R_{out}) (Self Reading)

Eliminate
$$i_b$$
 and keep v_x and i_x

$$\Rightarrow \begin{cases} i_x \approx -(\beta + 1)i_b \\ i_b = -\frac{v_x}{R_S + r_\pi} \end{cases}$$

$$\Rightarrow R_{out} = \frac{R_S + r_{\pi}}{\beta + 1}$$

$$\approx \frac{R_S}{\beta + 1} + \frac{1}{g_m}$$

CC - Two-Port Network (Rout) (Self Reading)

Important Result:

If you see the transistor connected in the similar fashion, the resistance looking into the emitter (R_{out}) is directly given by the formula. No need to rederive.

Example:

$$R_S = 100$$
 $r_{\pi} = 5.26k$
 $r_o = 202k$ $g_m = 19m$
 $\Rightarrow R_{out} \approx 54$

If R_s is small, the output impedance is just the inverse of the transconductance

BJT - Diode Connected Transistor Equivalent Resistance (Self Reading)

Only
APPLICABLE for
AC analysis

- When the collector and base are connected together, the transistor is called diode connected transistor
- Diode connected transistor has equivalent resistance of 1/g_m

CC – Two-Port Network (A_V) (Self Reading)

To determine i_b, we can assume the two ports network present an input resistance R_{in}

$$i_{in} = i_{b} R_{S} V_{i}$$

$$V_{in} \downarrow \downarrow R_{in}$$

$$i_{b} = \frac{V_{in}}{R_{in} + R_{S}}$$

$$R_{in} = r_{\pi} + (\beta + 1)R_{L}$$

Eliminate
$$i_b$$
 and keep v_{out}
$$\Rightarrow A_V = \frac{v_{out}}{v_{in}} = \frac{(\beta+1)i_b \times R_L}{[R_S + r_\pi + (\beta+1)R_L]i_b}$$

$$i_{RL} = (\beta+1)i_b - i_1'$$

$$v_{out} = i_{RL} \times R_L$$

$$= (\beta+1)i_b \times R_L$$

$$= \frac{g_m R_L}{1 + g_m R_L} \approx 1 \quad [If \quad g_m R_L >> 1]$$

CC - Important Results

1

$$R_{in} \Rightarrow r_{\pi} + (\beta + 1)R_{L}$$

$$\approx r_{\pi} \left[1 + \frac{(\beta + 1)}{r_{\pi}} R_{L} \right]$$

$$\approx r_{\pi} \left[1 + g_{m} R_{L} \right]$$

2 R_s

$$R_{out} \approx \frac{R_S}{\beta + 1} + \frac{1}{g_m}$$

$$\approx \frac{1}{g_m} [if \ R_S \ is \ small]$$

(3)

$$\begin{array}{c|c} & 1/g_m & & & 1/g_m \\ \hline & NPN & & & & \\ \end{array} \begin{array}{c} & 1/g_m & & \\ \hline & PNP & & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{$$

 $\overline{4}$

Relationship between v_i and v_{out} is defined as follows:

$$v_{i} - v_{out} = \frac{g_{m}R_{L}}{1 + g_{m}R_{L}}v_{i}$$

CC - Two-Port Network

Transform the CC amplifier into two-port voltage amplifier

Relationship between v_i and v_{out} is defined as follows:

$$V_{i} - \bigvee_{i} V_{out} \quad V_{out} = \frac{g_{m}R_{L}}{1 + g_{m}R_{L}} V_{i}$$

Characteristic of CC/CD

- High input resistance
- Low output resistance
- Close to unity gain
- No polarity inversion
- Ideal buffer (Emitter/Source follower)
- BJT provides larger g_m than MOS (g_m-g_{mb})
 - ⇒ Lower output resistance
 - ⇒ Better buffer

CE with Emitter Degeneration

- Identify Source and Load
- To identify amplifier configuration, we need to consider AC equivalent circuits, i.e. short circuit capacitors
- Input connected to Base, output connected to Collector, Emitter connected to neither input nor output and is connected to a resistor ⇒ CE with Emitter Degeneration

DC Analysis

Remove source/load section when doing DC analysis

$$I_S = 10^{-15} A$$

 $\beta = 100$
 $V_A = 100 V$

Determine DC biasing

$$V_{T} = 26mV$$

$$Assume \quad V_{BE} \approx 0.7V$$

$$I_{E} = \frac{V_{BIAS} - V_{BE}}{R_{E}} = 0.5mA$$

$$I_{A} = \frac{\beta}{R_{E}} I_{A} = 0.495mA$$

$$I_{C} = \frac{\beta}{\beta + 1}I_{E} = 0.495 \,\text{mA}$$

$$V_{BE} = V_T \ln \left(\frac{I_C}{I_S} \right) \approx 0.7001$$

:. Valid Assumption

$$I_B = 4.95 \,\mu A$$

Determine AC small signal parameter

$$g_m = \frac{I_C}{V_T} = 19mA/V$$

$$r_{\pi} = \frac{\beta}{g_m} = 5.26k\Omega$$

$$r_o = \frac{V_A}{I_C} = 202k\Omega$$

If the assumption is invalid, use the updated V_{RF}, reestimate I_C, a few iterations might be needed

AC Analysis

CE with Emitter Degeneration – Two-Port Network (G_m)

$$\begin{cases} i_{in} + i_{out}\big|_{v_{out} = 0} = v_e / R_E \\ i_{out}\big|_{v_{out} = 0} \approx g_m v_\pi = g_m (v_i - v_e) \end{cases} \qquad \frac{i_{out}\big|_{v_{out} = 0}}{g_m r_\pi} + i_{out}\big|_{v_{out} = 0} = \frac{v_i}{R_E} - \frac{i_{out}\big|_{v_{out} = 0}}{g_m R_E}$$

$$\Rightarrow v_e = v_i - \frac{i_{out}\big|_{v_{out} = 0}}{g_m} \qquad \Rightarrow G_m = \frac{i_{out}}{v_i}\big|_{v_{out} = 0} = \frac{g_m r_\pi}{r_\pi + (1 + g_m r_\pi) R_E}$$

$$\approx \frac{g_m}{1 + g_m R_E} = 4mA / V$$

CE with Emitter Degeneration – Two-Port Network (R_{in})

$$v_{\pi} = v_{x} - v_{e}$$
$$= i_{x} r_{\pi}$$

$$\begin{cases} i_{\scriptscriptstyle x} = \frac{v_e}{R_E} - g_{\scriptscriptstyle m} v_{\scriptscriptstyle \pi} = \frac{v_e}{R_E} - g_{\scriptscriptstyle m} (v_{\scriptscriptstyle x} - v_e) \\ v_e = v_{\scriptscriptstyle x} - i_{\scriptscriptstyle x} r_{\scriptscriptstyle \pi} \end{cases} \Rightarrow i_{\scriptscriptstyle x} = \frac{v_{\scriptscriptstyle x}}{R_E} - \frac{i_{\scriptscriptstyle x} r_{\scriptscriptstyle \pi}}{R_E} - g_{\scriptscriptstyle m} i_{\scriptscriptstyle x} r_{\scriptscriptstyle \pi} \\ \Rightarrow R_{in} = r_{\scriptscriptstyle \pi} + g_{\scriptscriptstyle m} r_{\scriptscriptstyle \pi} R_E + R_E \\ \approx r_{\scriptscriptstyle \pi} + (\beta + 1) R_E \\ \approx r_{\scriptscriptstyle \pi} \left[1 + g_{\scriptscriptstyle m} R_E \right] \end{cases}$$

CE with Emitter Degeneration – Two-Port Network (R_{in})

Important Result:

If you see the transistor connected in the similar fashion, the resistance looking into the base (R_{in}) is directly given by the formula. **No need to rederive.**

Example:

$$R_E = 200 \quad r_o = 202k$$

$$\Rightarrow R_{in} = r_{\pi} + (\beta + 1)R_E$$

$$= 25.5k$$

 Emitter side resistor helps boost up the input resistance looking into the base, same formula as CC

CE with Emitter Degeneration – Two-Port Network (R_{out})

$$\Rightarrow \begin{cases} v_x \approx v_e + i_1 r_o = v_e + \left[i_y + g_m (v_e - v_b)\right] r_o \\ v_e = i_y \left[(R_S + r_\pi) / / R_E \right] \\ v_e - v_b = \frac{r_\pi}{R_S + r_\pi} v_e \end{cases} \Rightarrow R_x \approx r_o \begin{cases} 1 + g_m \left[(R_S + r_\pi) / / R_E \right] \left[\frac{r_\pi}{R_S + r_\pi} \right] \end{cases} \\ R_{out} = R_x / / R_C \approx R_C \end{cases}$$

$$\Rightarrow v_x \approx i_y \left[(R_S + r_\pi) / / R_E \right] + i_y r_o + g_m i_y \left[(R_S + r_\pi) / / R_E \right] \left(\frac{r_\pi}{R_S + r_\pi} \right) r_o \end{cases}$$

CE with Emitter Degeneration – Two-Port Network (R_{out})

$$\begin{array}{c}
R_{S} \downarrow R_{X} \\
R_{S} \downarrow R_{X} \approx r_{o} \left\{ 1 + g_{m} \left[\left(R_{S} + r_{\pi} \right) / / R_{E} \right] \left(\frac{r_{\pi}}{R_{S} + r_{\pi}} \right) \right\}
\end{array}$$

Important Result:

If you see the transistor connected in the similar fashion, the resistance looking into the collector (R_x) is directly given by the formula. **No need to rederive.**

Example:

$$R_S = 100$$
 $r_{\pi} = 5.26k$
 $R_E = 200$ $r_o = 202k$
 $g_m = 19m$
 $\Rightarrow R_x \approx 928k$
 $\Rightarrow R_{out} \approx R_C = 2k$

- Emitter side resistor helps boost up the transistor output resistance (R_x)
- Very similar tô CB configuration. Same formula as CB if R_s=0.

CE with Degeneration - Important Results

Important Result:

Transconductance (G_m) is just $g_m/(1+g_mR_E)$

$$R_{\text{T}} \rightleftharpoons \nabla$$

$$R_{\text{in}} \rightarrow R_{\text{in}} \approx r_{\pi} + (\beta + 1)R_{E}$$

$$\approx r_{\pi} [1 + g_{m}R_{E}]$$

$$\begin{array}{c|c}
R_{S} & \downarrow R_{X} \\
R_{S} & \downarrow R_{X} \\
R_{E} & R_{E}
\end{array} \approx r_{o} \left\{ 1 + g_{m} \left[\left(R_{S} + r_{\pi} \right) / / R_{E} \right] \left(\frac{r_{\pi}}{R_{S} + r_{\pi}} \right) \right\}$$

CE with Emitter Degeneration – Two-Port Network

CE with Emitter Degeneration – Two-Port Network (A_V)

$$\begin{split} v_{i} &= \frac{r_{\pi} \left(1 + g_{m} R_{E} \right)}{R_{S} + r_{\pi} \left(1 + g_{m} R_{E} \right)} v_{in} \qquad i_{1} = -\frac{g_{m}}{1 + g_{m} R_{E}} v_{i} \\ v_{out} &= i_{1} \times \left[\left(R_{x} / / R_{C} \right) / / R_{L} \right] \\ &= -\frac{g_{m}}{1 + g_{m} R_{E}} v_{i} \times \left[\left(R_{x} / / R_{C} \right) / / R_{L} \right] \\ A_{V} &= \frac{v_{out}}{v_{in}} = -\frac{r_{\pi} \left(1 + g_{m} R_{E} \right)}{R_{S} + r_{\pi} \left(1 + g_{m} R_{E} \right)} \times \frac{g_{m}}{1 + g_{m} R_{E}} \times \left[\left(R_{x} / / R_{C} \right) / / R_{L} \right] \end{split}$$

CS with Source Degeneration

- Identify Source and Load
- To identify amplifier configuration, we need to consider AC equivalent circuits, i.e. short circuit capacitors
- Input connected to Gate, output connected to Drain, Source connected to neither input nor output and is connected to a resistor ⇒ CS with Source Degeneration

DC Analysis (Self Reading)

Remove source/load section when doing DC analysis

$$\mu_{n}C_{ox}$$
=80 μ A/V²
V_{THN}=0.7V
 λ_{n} =0.02V⁻¹

Determine DC biasing

$$I_D = I_S = I_{BIAS} = 1mA$$

$$\left(\frac{W}{L}\right) = \frac{100}{1}$$

Good approximation, no need to go through detailed calculations

Determine AC small signal parameter

$$g_{m} = \sqrt{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)}I_{D}$$
$$= 4mA/V$$

$$g_{mb} \approx -\frac{g_m}{4} = -1mA/V$$

$$r_i = \infty$$

$$r_{\rm o} = \frac{1}{\lambda_n I_D} = 50 k\Omega$$

AC Analysis (Self Reading)

CS with Source Degeneration – Two-Port Network (G_m) (Self Reading)

Important Result:

Transconductance (G_m) is just $g_m/[1+(g_m-g_{mb})R_E]$

$$v_{gs} = v_i - v_s \qquad v_{sb} = v_s$$

$$\begin{cases} v_s \approx i_{out}\big|_{v_{out}=0} \times R_E \end{cases} \Rightarrow G_m = \frac{i_{out}}{v_i}\bigg|_{v_{out}=0} \Rightarrow G_m = \frac{i_{out}}{v_i}\bigg|_{v_{out}=0} \Rightarrow G_m = \frac{i_{out}}{v_i}\bigg|_{v_{out}=0} \Rightarrow G_m = \frac{i_{out}}{v_i}\bigg|_{v_{out}=0} \Rightarrow g_m v_{gs} + g_{mb}v_{sb} \Rightarrow g_m (v_i - v_s) + g_{mb}v_s = \frac{g_m}{1 + (g_m - g_{mb})R_E} \Rightarrow i_{out}\big|_{v_{out}=0} \approx g_m v_i - (g_m - g_{mb})i_{out}\big|_{v_{out}=0} \times R_E = 2mA/V \end{cases}$$

CS with Source Degeneration – Two-Port Network (R_{out}) (Self Reading)

- Source side resistance helps boost up the transistor output resistance (R_x)
- Same as CG

CS with Degeneration - Important Results

1

Important Result:

Transconductance (G_m) is just $g_m/[1+(g_m-g_{mb})R_E]$

2

CS with Source Degeneration – Two-Port Network

CS with Source Degeneration – Two-Port Network (A_V)

Characteristic of CE/CS with Emitter/Source Degeneration

- High input resistance
- High output resistance
- Lower Gain than CE and CS
- Polarity inversion

Effect of Capacitors

Consider CB amplifier example (Slide 6A-49):

I_{BIAS}=0.5mA

- C_L and C_S are external capacitors added to the circuit, it is usually large (~μF range)
- C_{μ} and C_{π} are parasitic capacitor inherent to the BJT device, it is usually small (~pF range)

6B-44

AC Source

Effect of Capacitors

At low frequency, C_S , C_L , C_μ , C_π —open circuit v_{out} isolated from v_{in} \Rightarrow v_{out} =0

At middle frequency, C_S , $C_L \rightarrow$ short circuit C_μ , $C_\pi \rightarrow$ open circuit 2-port network \Rightarrow v_{out}= $A_V \times v_{in}$

At high frequency, C_S , $C_L \rightarrow$ short circuit C_μ , $C_\pi \rightarrow$ short circuit v_{in} and v_{out} short to ground $\Rightarrow v_{out} = 0$

Effect of Capacitors

- C_S and C_L cause the gain to drop at low frequency due to open circuit at low frequency.
- C_{μ} and C_{π} cause the gain to drop at high frequency due to short circuit at high frequency.
- At the middle frequency, C_S and C_L are short circuit whereas C_μ and C_π are open circuit. The amplifier behaves like 2-port network with gain.
- The lower cut-off point (f_L), i.e. the frequency below which the gain starts to drop are related to RC time constant related to C_S and C_L.
- The upper cut-off point (f_U) , i.e. the frequency above which the gain starts to drop are related to RC time constant related to C_{μ} and C_{π} .

Ideal versus Non-ideal Current Source

Transistor as Current Source

BJT Current Mirror

Determine DC Biasing

$$I_{REF} = I_{C1} + I_{B1} + I_{B2}$$

$$\therefore V_{BE1} = V_{BE2}$$

$$\Rightarrow I_{B1} = I_{B2} = \frac{I_{C1}}{\beta}$$

$$\Rightarrow I_{C2} \approx I_{C1} \approx \frac{\beta}{\beta + 2} I_{REF}$$

Determine AC small signal parameter

$$g_{m1} = g_{m2} = \frac{I_C}{V_T}$$

$$R_{out} = r_o = \frac{V_A}{I_C}$$

 I_{C2} not exactly equal to I_{REF} due to finite current gain β

Look-up Table 1

BJT Current Mirror

Because all BJTs share the same V_{BF}, the transistor currents are proportional to their corresponding area ratio

$$I_{REF} = \frac{V_{DD} - V_{BE}}{R_{REF}}$$
 I_{REF} can be obtained easily through a resisto
$$I_{REF} = \frac{V_{DD} - V_{BE}}{R_{REF}}$$
 I_{REF} can be obtained easily through a resisto

$$I_{C1} \approx I_{REF} = J_{S}e^{\frac{r_{BE}}{V_{T}}} \times Area$$
 $I_{C2} \approx I_{C1} \quad I_{C3} \approx 2 \times I_{C1}$
 $I_{C4} \approx A \times I_{C1}$

- Using same V_{BE} created from the reference branch, different current source can be created by laying out different area of BJT
- The current source is not identical to I_{RFF} due to :
 - Finite current gain β
 - Finite output resistance r_o and different V_{CE} from the reference branch

MOS Current Mirror

Determine DC Biasing

$$I_{REF} = I_{D1}$$

$$\therefore V_{GS1} = V_{GS2}$$

$$\Rightarrow I_{D1} = I_{D2} = I_{REF}$$

Determine AC small signal parameter

$$g_{m1} = g_{m2}$$

$$= \sqrt{2\mu_n C_{ox} \left(\frac{10}{1}\right)} I_{D1}$$

$$R_{out} = r_o = \frac{1}{1}$$

MOS Current Mirror

The drain should be connected to the external circuit (Not shown here).

Because all MOSFETs share the same V_{GS}, the transistor currents are proportional to their corresponding sizing ratio

circuit (Not shown here).
$$I_{REF} = \frac{V_{DD} - V_{GS}}{R_{REF}} \quad I_{REF} \text{ can be obtained easily through a resistor}$$

$$I_{D1} = I_{REF}$$

$$= \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_{M1} \left(V_{GS} - V_{THN}\right)^2$$
 all MOSFETs share the same V_{GS} , stor currents are proportional to their
$$I_{D2} = I_{D1} \quad I_{D3} = 2 \times I_{D1} \quad I_{D4} = 4 \times I_{D1}$$

- Using same V_{GS} created from the reference branch, different current source can be created by laying out different size of MOS transistors
- The current source is not identical to I_{REF} due to finite output resistance r_o and different V_{DS} from the reference branch

Conventional Resistor Biasing for CS

Commonly used technique for discrete circuit design.

Difficult to gauge the M₁ current due to device parameters variation.

Biasing Network:

The resistors (R_{A1} , R_{B1}) determine the V_{GS} biasing and the V_{GS} biasing in turns determines the drain current (I_{D1}) of the transistor (M_1). All AC small signal parameters are related to the drain current of the transistor (I_{D1}).

Determine DC Biasing

 $I_{D1} = K (V_{GS1} - V_{THN})^2$ In the design, the desired I_{D1} is usually given $\Rightarrow V_{GS1}$ can be determined

$$:: V_{GS1} = V_{DD} \times \frac{R_{B1}}{R_{A1} + R_{B1}}$$

 R_{A1} and R_{B1} can be determined

Determine AC Small Signal Parameter

$$g_{m1} = \sqrt{4KI_{D1}}$$

$$r_{o1} = \frac{1}{\lambda I_{D1}}$$

Current Mirror Biasing for CS

Determine DC Biasing

$$I_{REF} = I_{D2} = K(V_{GS2} - V_{THN})^2$$

 $\Rightarrow V_{GS2}$ can be determined

$$:: I_{REF} = \frac{V_{DD} - V_{GS2}}{R_{REF}}$$

 $\Rightarrow R_{RFF}$ can be determined

In the design, the desired I_{D1} is usually given

Biasing Network:

The current mirror configuration ensure M₁ and M₂ has the same current $(I_{D1}=I_{D2})$. The current flow through $M_2 (I_{D2}=I_{RFF})$ is M_2 ($I_{D2}-I_{REF}$) determined by R_{REF}

Resistance looking into the gate is ∞

current mirror. However, M₁ also behaves like CS amplifier with input coming from V_s as highlighted in red.

Determine AC Small Signal Parameter

$$g_{m1} = \sqrt{4KI_{D1}}$$
$$r_{o1} = 1/(\lambda I_{D1})$$

Replace the DC voltage with AC ground

Replace the diodeconnected transistor M₂ with the equivalent resistor 1/g_{m2}

6B-54

Current Mirror Biasing for CS

Because there is no current flowing through R_B (I_{RB} =0) \Rightarrow V_{GS1} = V_{GS2} , i.e. there is no change in DC biasing condition by adding additional R_B

Commonly used technique for integrated circuit design as R_{REF} is externally adjustable to give the desired current

Replace the DC voltage with AC ground

Replace the diodeconnected transistor M₂ with the equivalent resistor 1/g_{m2}

 $R_x = R_B + (1/g_{m2}) / / R_{REF}$ $\approx R_B + 1/g_{m2}$ $1/g_{m2} < < R_{REF}$ $R_{in} = R_x$

R_{in} can be made large by choosing large R_B

BJT Equivalent Resistance Summary (Table 1)

Blue: look into collector terminal Red: look into base terminal Green: look into emitter terminal

Conf	r _x	Conf	r _x	Conf	r _x
R_{C} \uparrow r_{x} R_{E}	$r_{\pi} + (1 + \beta)R_{E}$ $\approx r_{\pi}(1 + g_{m}R_{E})$	r _x R _s R _E	$r_o \left\{ 1 + g_m \left[(r_\pi + R_S) / / R_E \right] \left(\frac{r_\pi}{r_\pi + R_S} \right) \right\}$ $If R_S = 0 and r_\pi << R_E$ $\Rightarrow r_{x,\text{max}} = r_o (\beta + 1)$	r _x E	$\frac{1}{g_m}$
R _S W r _x	$\frac{R_S + r_{\pi}}{1 + \beta} // r_o$ $\approx \frac{R_S}{1 + \beta} + \frac{1}{g_m}$	R _C	$\frac{1}{g_m} \times \frac{r_o + R_C}{r_o + \frac{R_C}{\beta}}$		

MOS Equivalent Resistance Summary (Table 2)

Blue: look into drain terminal

Red: look into gate terminal

Green: look into source terminal

Conf	r _x	Conf	r _x	Conf	r _x
$r_{x} \geqslant R_{E}$	∞	$\begin{array}{c c} r_x \\ & \\ R_s \\ & \\ R_E \end{array}$	$r_o \left[1 + \left(g_m - g_{mb} \right) R_E \right]$	r _x	$\frac{1}{g_m}$
R _s V r _x C	$\frac{1}{g_m - g_{mb}}$	R _C C	$\frac{1}{g_m - g_{mb}} \times \frac{r_o + R_C}{r_o}$		

BJT Amplifier Configurations (Table 3)

BJT	G_{m}	A_{V}
CE (A)	g_m	Derive Based on 2-port Network
CB B	$-g_m$	Derive Based on 2-port Network
CC V _i -V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + g_m R_L}$
CE with Emitter Degeneration	$\frac{g_m}{1+g_m R_E}$	Derive Based on 2-port Network

MOS Amplifier Configurations (Table 4)

MOS	G_{m}	A_{\vee}
CS A	g_{m}	Derive Based on 2-port Network
CG	$-(g_m - g_{mb})$ Drop g_{mb} if no body effect	Derive Based on 2-port Network
CD V _i - V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + (g_m - g_{mb}) R_L} \approx \frac{g_m}{g_m - g_{mb}}$ $Drop \ g_{mb} \ if \ no \ body \ effect$
CS with R _E	$\frac{g_m}{1 + (g_m - g_{mb})R_E}$ $Drop \ g_{mb} \ if \ no \ body \ effect$	Derive Based on 2-port Network

Lecture Summary

- Analyze CC/CD, CS/CE with degeneration amplifiers.
- Analyze MOSFET/BJT current mirror

Reading Assignment

Reading: Reference Book (Sedra & Smith)

```
Chapter 4, pp. 401 – 405, pp. 405 – 408. (CD)
```

Chapter 3, pp. 260 – 265. (CC)

Chapter 3, pp. 252 – 257. (CE with degeneration)

Chapter 4, pp. 399 – 401. (CS with degeneration)

Chapter 6, pp. 587 – 595. (BJT and MOS current mirror)