COMP 335 Worksheet: Context-free grammars

- 1. Let $\Sigma = \{a, b\}$. Find context-free grammars for the following languages:
 - (a) $\{a^n b^m \mid n \le m + 3\}$
 - (b) $\{a^n b^m \mid n \neq 2m\}$
 - (c) $\{a^n b^m \mid 2n \le m \le 3n\}$
 - (d) $\{w \in (a+b)^* \mid n_a(w) \neq n_b(w)\}$
 - (e) $\{w \in (a+b+c)^* \mid n_a(w) + n_b(w) = n_c(w)\}$
 - (f) $\{a^n b^m c^{n+m} \mid n, m \ge 0\}$
 - (g) $\{a^n b^{n+2m} c^m \mid n, m \ge 0\}$
 - (h) $\{w_1cw_2 \mid w_1, w_2 \in (a+b)^*, w_1 \neq w_2^R\}$
 - (i) $\{uvwv^R \mid |u| = |w| = 3, u, v, w \in (a+b)^*\}$
 - (j) $\{a^n b^m c^k \mid k = |n m|\}$
- 2. Show a derivation tree for the string aabbbb with the grammar:

$$S \to AB \mid \lambda$$

$$A \to aB$$

$$B \to Sb$$

- 3. Suppose $\lambda \notin L$ and we have CFG for L that has no λ -productions and no unit productions. Let $w \in L$ with |w| = n. What is the maximium length of a derivation for w?
- 4. Show that the following grammars are ambiguous:

(a)
$$S \to AB \mid aaB$$

$$A \to a \mid Aa$$

$$B \to b$$

(b)
$$S \to ASbS \mid bSaS \mid \lambda$$