PLEASE INCLUDE THIS PAGE WITH YOUR SUBMISSION

NAME:	_Student #	_GROUP:
ENG 1440 Assignment #10		
1. Two missiles were fired from a launch pad located at O. Find the distance between the two missiles when missile A is 2 km from launch pad and missile B is 4 km from the pad.	y	For Vector \mathbf{OA} $\cos \theta_x = 0.7680$ $\cos \theta_y = 0.3840$ $\cos \theta_z = 0.5120$ For vector \mathbf{OB} $\cos \theta_x = 0.7430$ $\cos \theta_x = 0.5570$ $\cos \theta_x = -0.3710$
2. Two boys pull on the pole with forces shown. Represent each force as a vector and then determine the magnitude and direction angles of the resultant.	$F_B = 45 \text{ N}$ $R = 45 \text{ N}$ 1.2 m 5 m 20°	$F_A = 30 \text{ N}$ 0.8 m -6 m
3. Determine the magnitude of the three forces P ₁ , P ₂ , P ₃ , given that their resultant force is R = 80 i + 40 j -90 k	40° 30°	P3 P2 X

PLEASE INCLUDE THIS PAGE WITH YOUR SUBMISSION

Bonus

A pole of length 4m, shown in Fig. 1, is held in place by three cables attached to a wall at points A, B, and C. The forces in the cables are as follows: $F_1 = 350 \text{ N}$, $F_2 = 250 \text{N}$, $F_3 = 300 \text{N}$. Determine the location of point A so that the resultant force exerted on the pole is directed along its axis; i.e., along D0.

