and since

$$||u_{I \cup J} - u_I|| \le ||u_{I \cup J} - u|| + ||u - u_I||$$

and $u_{I \cup J} - u_I = u_J$ since $I \cap J = \emptyset$, we get

$$||u_J|| = ||u_{I \cup J} - u_I|| < \epsilon,$$

which is the condition for $(u_k)_{k\in K}$ to be a Cauchy family.

Conversely, assume that $(u_k)_{k\in K}$ is a Cauchy family. We define inductively a decreasing sequence (X_n) of subsets of E, each of diameter at most 1/n, as follows: For n=1, since $(u_k)_{k\in K}$ is a Cauchy family, there is some finite subset J_1 of K such that

$$||u_J|| < 1/2$$

for every finite subset J of K with $J_1 \cap J = \emptyset$. We pick some finite subset J_1 with the above property, and we let $I_1 = J_1$ and

$$X_1 = \{u_I \mid I_1 \subseteq I \subseteq K, I \text{ finite}\}.$$

For $n \geq 1$, there is some finite subset J_{n+1} of K such that

$$||u_J|| < 1/(2n+2)$$

for every finite subset J of K with $J_{n+1} \cap J = \emptyset$. We pick some finite subset J_{n+1} with the above property, and we let $I_{n+1} = I_n \cup J_{n+1}$ and

$$X_{n+1} = \{u_I \mid I_{n+1} \subseteq I \subseteq K, I \text{ finite}\}.$$

Since $I_n \subseteq I_{n+1}$, it is obvious that $X_{n+1} \subseteq X_n$ for all $n \ge 1$. We need to prove that each X_n has diameter at most 1/n. Since J_n was chosen such that

$$||u_J|| < 1/(2n)$$

for every finite subset J of K with $J_n \cap J = \emptyset$, and since $J_n \subseteq I_n$, it is also true that

$$||u_J|| < 1/(2n)$$

for every finite subset J of K with $I_n \cap J = \emptyset$ (since $I_n \cap J = \emptyset$ and $J_n \subseteq I_n$ implies that $J_n \cap J = \emptyset$). Then for every two finite subsets J, L such that $I_n \subseteq J, L \subseteq K$, we have

$$||u_{J-I_n}|| < 1/(2n)$$
 and $||u_{L-I_n}|| < 1/(2n)$,

and since

$$||u_J - u_L|| \le ||u_J - u_{I_n}|| + ||u_{I_n} - u_L|| = ||u_{J-I_n}|| + ||u_{L-I_n}||,$$

we get

$$||u_J - u_L|| < 1/n,$$