- 1. (10 баллов) Даны булевы переменные x_1, \ldots, x_5 . Постройте две разные булевы формулы в форме КНФ, которые выражают следующую формулу: $x_1 + \ldots x_5 \leq 2$. Первая должна содержать только переменные x_1, \ldots, x_5 , вторая дополнительные переменные.
- 2. (10 баллов) Обозначим первую формулу как AtMostTwoA, вторую AtMostTwoB. Представьте в виде КНФ формулы $y_1 \leftrightarrow AtMostTwoA(x_1, \ldots, x_5)$, $y_2 \leftrightarrow AtMostTwoB(x_1, \ldots, x_5)$.
- 3. (5 баллов) Напишите формулу, выражающую следующее утверждение: 'существует оценка x_1, \ldots, x_5 , такая, что не выполняется y_1 и выполняется y_2 ', используя $y_1 \leftrightarrow AtMostTwoA(x_1, \ldots, x_5)$ и $y_2 \leftrightarrow AtMostTwoB(x_1, \ldots, x_5)$.
- 4. (5 баллов) Проверте получившуюся формулу на SAT-решателе и предоставьте резульат вычисления.
- 5. (10 баллов) Рассмотрим квадратную таблицк 10 × 10 и все возможные прямоугольники внутри сетки, длина и ширина которых не менее 2. Напишите слудющую формлу: существует ли раскраска сетки с использованием трех цветов, чтобы ни один такой прямоугольник не имел одинакового цвета в своих четырех углах.
- 6. (10 баллов) Решите формулу на SAT решателе и по результату решателя (если формула разрешима) постройте нужную таблицу.