Max Wisniewski, Alexander Steen

Tutor: Ansgar Schneider

Aufgabe 1 Typüberprüfung

Bestimmen Sie die Typen der folgenden Funktionen.

(i) $\lambda f x.(f x) + 1$

Lösung:

Die ersten beiden Hinweise, die wir haben, ist, dass wir eine Konstante $1 \in K^{\mathbb{N}_{\perp}}$ und eine Funktion $+ : [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]$. Da wir f in die + Funktion stecken, muss der Rückgabetyp \mathbb{N}_{\perp} sein. Über die Eingabe müssen wir nicht mehr wissen nur, dass f eine Variable nimmt und das x daher diesen Typ haben muss.

$$\lambda f \, x.(f \, x) + 1 \; : \; [[D \to \mathbb{N}_{\perp}] \to \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]$$

Nun setzten wir die Variablen ein und überprüfen.

Sei $f \in X^{[D \to \mathbb{N}_{\perp}]}$ und $x \in X^D$.

Dann ist das einsetzen Korrekt, da $(\lambda f\,x.(f\,x)+1)fx=(f\,x)+1\,:\,\mathbb{N}_{\perp}\to\mathbb{N}_{\perp}$

 $1 \in K^{\mathbb{N}_{\perp}}$ das gilt also, nun überprüfen wir, ob f(x): \mathbb{N} erfüllt.

 $f \in X^{[D \to \mathbb{N}_{\perp}} x \in X^D$, daher ist $fx : \mathbb{N}_{\perp}$.

Der Typ ist daher korrekt.

(ii) $\lambda(x,y)f \cdot f x y$

Lösung:

Sei $x \in X^{D_1}$, $y \in X^{D_2}$ und $f \in X^{D_3}$.

Die Funktion $h = \lambda(x, y)f$. f x y: $D_1 \times D_2 \to D_3 \to D_4$. Wir müssen also überprüfen, was D_1, D_2, D_3 ist und welchen Rückgabetyp wir erhalten.

Setzten wir h(x,y)f ein erhalten wir:

 $f x y : D_4$.

Damit wir nun am Ende ein Element von einem Typ erhalten (hier hätten auch 3 Atome stehen können).

Daher muss f eine Funktion sein, die beide Elemente x, y aufnehmen kann.

 $\Rightarrow D_3 = D_1 \to D_2 \to D_5$. Und da wir nichts anderes tun ist auch $D_4 = D_5$.

Weiter können wir nun nichts mehr sagen, also gilt:

 $h: D_1 \times D_2 \to [D_1 \to D_2 \to D_4] \to D_4.$

(iii) $\lambda f.(f\lambda y.y)$

Lösung:

Sei $f \in X^{D_1}$. Dann hat die Funktion den folgenden Typ $h = \lambda f(f\lambda y.y): D_1 \to D_2$.

Nun setzten wir unser f ein und erhalten

 $(f\lambda y.y): D_2.$

Nun muss nach selben Überlegungen wie oben das f die Funktion $\lambda y.y:[D_3\to D_3]$ schlucken

können.

Daher braucht ist der Typ $f: [[D_3 \to D_3] \to D_4]$. Da dies nun der letzte Schritt ist muss $D_4 = D_2$ sein, da $(f\lambda y.y): D_2$ gelten muss.

Die F Unktion hat also den folgenden Typ (umbenennung der Typklassen): $(h=\lambda f.(f\lambda y.y)\ :\ [[T\to T]\to S]\to S$

Aufgabe 2 Faltung

Der Faltungsoperator lit sei informall bestimmt durch:

$$\underline{\text{lit}} = f(x_1, ... x_n) x_{n+1} = f x_1 (f x_2 (... (f x_n x_{n+1})))$$

- (i) Bestimmen Sie den Typ von <u>lit</u>.
 - Lösung:

 tbd

- (ii) Definieren Sie den Operator <u>lit</u> im getypten λ Kalkül unter Verwendung der Gleichungsschreibweise.
- (iii) Definieren Sie eine Funktion f im getpyten λ Kalkül, so dass

$$f(x_1, ..., x_n)x = \begin{cases} wahr &, \text{ falls } \exists i \leq n : x = x_i \\ false &, \text{ sonst} \end{cases}$$