Homework #10

Raymond Deneckere

Fall 2017

- 1. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is concave. Prove that:
 - (a) $f(y) f(x) \le Df(x)(y x)$, for all $x, y \in \mathbb{R}^n$.

Hint: Recall the result from Q3, HW#9

- (b) $(Df(y) Df(x))(y x) \le 0$, for all $x, y \in \mathbb{R}^n$.
- 2. Sundaram, #6 p. 222.
- 3. Let $U \subset \mathbb{R}^n$ be open and convex, for each i = 1, ..., k let $h_i : U \to \mathbb{R}$ be a quasiconcave funtion. Define

$$D = \{x \in U : h_i(x) \ge 0 \text{ for all } i = 1, ..., k\}.$$

Show that D is convex.

- 4. Sundaram, #7, p. 222.
- 5. Sundaram, #11, p. 223.