

Moving Average Cross

19.12.2021

Yassin Kortam

Table of Contents

Abstract	2
Derivations	3-4
Examples	5-7
Conclusion	8

Abstract

The moving average cross is a very simple and popular strategy in technical analysis. Aside from the curiosities that arise, it is impossible to improve the predictive power of technical analysis strategies without a solid understanding of their mathematical foundations, and this report attempts to prove the moving average strategy. Examples using simple functions that can be expressed as equations as well as real-world moving averages are given.

Derivations

Let f(x) be an arbitrary function that is differentiable on the interval (a,b). The average value of the function on this interval is:

$$\frac{1}{b-a}\int_a^b f(x)dx$$

For the moving average, let the point b be x and let the point a be x - b. By the fundamental theorem of calculus, the resulting expression is:

$$\frac{1}{b} \int_0^x f(x) dx - \frac{1}{b} \int_0^{x-b} f(x) dx$$

If f(x) is at a local extrema when it is equivalent to its moving average, the following equation can be used to express this relation:

$$rac{\mathrm{df}}{\mathrm{d}x}pprox f(x)-rac{1}{b}[\int_0^x f(x)dx-\int_0^{x-b} f(x)dx]$$

Differentiating the equation results in the following:

$$\frac{\mathrm{df}}{\mathrm{d}x} - \frac{\mathrm{d}^2\mathrm{f}}{\mathrm{d}x^2} \approx \frac{1}{b}[f(x) - f(x-b)]$$

Let f(x) be modeled by a linear function or be approximately linear on the given interval. Since the moving average is intended to closely resemble the original function, let b approach 0. The resulting equation is:

$$rac{df}{dx}pprox\lim_{b o 0}igg(rac{f(x)-f(x-b)}{b}igg)$$

The two terms of this equation are equivalent, since this is the definition of a derivative. Thus, the assumption that a moving average over a small interval subtracted from a function is zero when the function is at an extrema is true if the second derivative of a function is zero (the function is linear). In practice, this means that a trendline with a small standard deviation can be drawn to model the function. If this is not possible, multiple trendlines can be drawn.

The equation for a tangent line of a function at a point p for a function f(x) is:

$$f'(p)(x-p)\,+\,f(p)$$

The moving average of which is:

$$f'(p)(x-p-1)+f(p)$$

Let the function h(x) be the previous repeated for all points p = x, satisfying the following:

$$h(x) = f(x) - f'(x)$$

$$f'(x) \approx f(x) - h(x)$$

This means that the extrema of any differentiable function can be found using h, since the equation above is always true. If the equation of the function is unknown, h can be written as the following:

$$h(x) \, pprox \, f(x) \, - \, \lim_{b
ightarrow 0} igg(rac{f(x) \, - \, f(x-b)}{b} igg)$$

Working backwards from the formulas derived earlier, h can be written in terms of the moving average a as such:

$$h(x) \approx f(x) - a'(x)$$

Examples

Functions with local extrema are intersected by their *h* at that point.

Functions that converge to a certain value also get infinitely close to intersecting their h. In this case, the left hand limit of the derivative of f is zero, hence the left hand limit of f is h.

In real-world cases, functions may not be differentiable within the interval (b, x), so moving averages with an appropriate b can be used to approximate the end behavior of the function. The following is a case where b = 100. h is so close to the moving average that it is not visible, but the labels below show the points of intersection.

Conclusions

Moving averages can be used to provide satisfactory approximations of differentiable functions, and the first formula for h can be used to find the exact location of the zero value of the first derivative of such functions. For non-differentiable functions, a differentiable function that approximates them can be used as a substitute, but the efficacy of the strategy becomes poorer with increasing length h. In those cases, further analysis is required to confirm minimums and maximums.