Les deux cas à distinguer :

Dans une démonstration, il y a de nombreuses façons de rédiger le lien entre une étape et la suivante, mais toutes ces façons se rangent en seulement deux catégories : implication ou équivalence.

Exemples d'implications :	Exemples d'équivalences :
• $\operatorname{si} x > 7 \operatorname{alors} x > 0$	• M ∈ (AB) si et seulement si M est aligné avec A et B
• $x > 7$ donc $x > 0$	• Pour que M appartienne à (AB) il faut et il suffit que M soit
• $x > 7 \Rightarrow x > 0$	aligné avec A et B
	 M ∈ (AB) équivaut à M est aligné avec A et B
	• $M \in (AB) \Leftrightarrow M$ est aligné avec A et B

Exercice : Compléter la colonne de droite

P	Q	$P \Rightarrow Q$ ou $Q \Rightarrow P$ ou $P \Leftrightarrow Q$
ABC est isocèle en A	AB = AC	
AB = BC = CD = DA	ABCD est un carré	
x < y et $z < t$	x+z < y+t	
ABCD est un losange	$(AC) \perp (BD)$	
x = 3	$x^2 = 9$	
a+b=c+d	a = c et $b = d$	
x - a = 0 ou x - b = 0	(x-a)(x-b) = 0	
a + x = a + y	x = y	
x y > 0	x > 0 et $y > 0$	
$A \in C(O, r)$	OA = r	
x > 0	$x + y^2 > 0$	
a x = a y	x = y	
ABC est rectangle en B	$AB^2 + BC^2 = AC^2$	
x - 5 = 4	x = 9	
$x^2 = 4$	x = -2 ou $x = 2$	
AI + IB = AB	$I \in [AB]$	
ABCD est un rectangle	AC = BD	
x > y > 0 et z > t > 0	x z > y t	
IA = IB	I milieu de [AB]	
x =4	$x^2 = 16$	