NOIP 模拟赛

HSEFZ 2024.11.19

题目名称	第四题	第三题	第二题	第一题
题目类型	传统题	传统题	传统题	传统题
目录	a	b	С	d
可执行文件名	a	b	С	d
输入文件名	a.in	b.in	c.in	d.in
输出文件名	a.out	b.out	c.out	d.out
每个测试点时限	1 秒	1 秒	1 秒	1秒
内存限制	512 MiB	512 MiB	512 MiB	$512~\mathrm{MiB}$
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言	a.cpp	b.cpp	c.cpp	d.cpp

编译选项

-1	
对于 C++ 语言	-O2 -std=c++14 -static

注意事项(**请仔细阅读**)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件直接放在选手目录下,无需开子文件夹。(建议子文件夹内外各放一份)
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为:Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz,内存 16GB。上述时限以此配置为准。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

第四题(a)

题目背景

Yuna 和她的同伴们来到了 Sin 的体内,在透明的阶梯正下方,她们终于看到了名为梦之 Zanarkand 的城市。

题目描述

梦之 Zanarkand 中的道路结构由 n 个以 (0,0) 为圆心的同心圆 和 m 条过 (0,0) 的直线组成,其中第 i 个圆的半径为 i,且这 m 条直线将圆等分成了 2m 段等长的圆弧。

形式化地说:

- 对于 $1 \le i \le n$,第 i 个圆的方程是 $x^2 + y^2 = i^2$;
- 对于 $1 \leq i \leq m$,第 i 条直线的方程是 $x \sin \frac{\pi i}{m} = y \cos \frac{\pi i}{m}$ 。

令 Q 表示这 n+m 条道路组成的集合,P 表示 Q 中任意两条不同道路之间的交点构成的集合。道路都是无向的。

对于两个不同的点 $a,b\in P$,定义它们之间的距离 $dis(\{a,b\})$ 为沿 Q 中道路从 a 走到 b (或 b 走到 a)的最短路径的长度。

Yuna 已经数出了 n, m, 现在她想让你帮她求出所有 $dis(\{a,b\})$ 的和。

输入格式

从文件 a.in 读入数据。

一行两个正整数 n, m。

输出格式

输出到文件 a.out 中。

一行两个非负整数 p,q 代表答案为 $p\pi+q$,其中 p,q 分别为 π 前的系数和常数项对 998244353 取 模后的结果。容易证明取模前它们均为有理数。

样例 1 输入

样例 1 输出

2 8

样例 1 解释

$$\begin{aligned} dis(p_1,p_2) &= dis(p_2,p_3) = dis(p_3,p_4) = dis(p_1,p_4) = \frac{\pi}{2} \\ dis(p_1,p_5) &= dis(p_2,p_5) = dis(p_3,p_5) = dis(p_4,p_5) = 1 \\ dis(p_1,p_3) &= dis(p_2,p_4) = 2 \end{aligned}$$

样例 2 输入

2 3

样例 2 输出

10 144

样例 3

见选手目录下的 a/a3.in 与 a/a3.ans 。

该组样例满足数据范围中的测试点 2 的限制。

样例 4

见选手目录下的 a/a4.in 与 a/a4.ans 。

该组样例满足数据范围中的测试点 3 的限制。

样例 5

见选手目录下的 a/a5.in 与 a/a5.ans 。

该组样例满足数据范围中的测试点 4 的限制。

样例 6

见选手目录下的 a/a6.in 与 a/a6.ans 。

该组样例满足数据范围中的测试点 $5\sim 10$ 的限制。

数据范围

对于所有数据,保证:

- $1 \le n \le 10^7$;
- $2 \le m \le 10^7$ °

测试点编号	$n,m \leq$	特殊性质
1	30	无
2	500	无
3	5000	无
4	10^{7}	m=2
$5\sim 10$	10^{7}	无

提示

请选手注意可能的精度问题。

第三题(b)

题目描述

你在打 XGESP (X 星球的 GESP), XGESP 有 n 级,并且每次只能跳至多 k 级。具体地:

- 第 $1 \sim k$ 级任何时间都可以打;
- 打第 i>k 级前,你应当已经通过了至少一场 $\geq i-k$ 级的 XGESP 测试。

你可以通过任何级别,但是你还是需要把所有级都打恰好一遍,请问你打的顺序有多少种。

输入格式

从文件 b.in 读入数据。

一行两个正整数 n, k。

输出格式

输出到文件 b.out 中。

一行一个非负整数,代表顺序方案数对 998 244 353 取模的结果。

样例 1 输入

3 2

样例 1 输出

4

样例 1 解释

顺序可以是 [1,2,3], [1,3,2], [2,3,1], [2,1,3]。

样例 2

见选手目录下的 b/b2.in 与 b/b2.ans 。

该组样例满足数据范围中的测试点 1 的限制。

样例 3

见选手目录下的 b/b3.in 与 b/b3.ans 。

该组样例满足数据范围中的测试点 2 的限制。

样例 4

见选手目录下的 b/b4.in 与 b/b4.ans 。

该组样例满足数据范围中的测试点 $3\sim 5$ 的限制。

样例 5

见选手目录下的 b/b5.in 与 b/b5.ans 。

该组样例满足数据范围中的测试点 $6\sim7$ 的限制。

样例 6

见选手目录下的 b/b6.in 与 b/b6.ans 。

该组样例满足数据范围中的测试点 $8\sim10$ 的限制。

数据范围

对于所有数据,保证:

- $1 \le n \le 10^7$;
- $1 \le k \le n$;

测试点编号	$n \leq$	特殊性质
1	10	无
2	10^{7}	А
$3\sim 5$	1000	无
$6\sim7$	10^6	无
$8\sim 10$	10^{7}	无

特殊性质 A: k=1。

第二题(c)

题目描述

给定正整数 n,m,以及长度为 m,值域为 [0,n-1] 的整数序列 $p=(p_1,p_2,\ldots,p_m)$ 。

定义一次操作为:对于某个序列 a,选择 $1 \le l \le r \le |a|$ 的两个数 l,r,如果 $\max(\{a_l,a_{l+1},\ldots,a_r\})$ 在 a 序列中,则将它删除。

对于由非负整数构成的集合 S, mex(S) 表示不在集合 S 内的最小非负整数。

请你计算 $\{0,1,\ldots,(n-1)\}$ 构成的排列 q 的数量,满足:q 能够经过若干次操作(可以不操作)后变为 p。

输入格式

从文件 c.in 读入数据。

第一行两个正整数 n, m。

第二行 m 个非负整数 $p_1, p_2, ..., p_m$ 。

输出格式

输出到文件 c.out 中。

一行一个非负整数表示数量对 998244353 取模后的值。

样例 1 输入

4 2

1 3

样例 1 输出

8

样例 1 解释

满足要求的排列 q 为:

 $[0,1,2,3],[0,1,3,2],[1,0,2,3],[1,0,3,2],[1,3,0,2],[2,0,1,3],[2,1,0,3],[2,1,3,0]_{\circ}$

样例 2 输入

4 4 0 3 2 1

样例 2 输出

1

样例3输入

16 7 9 2 4 0 1 6 7

样例3输出

3520

样例 4 输入

92 4 1 67 16 7

样例 4 输出

726870122

样例 5

见选手目录下的 c/c5.in 与 c/c5.ans 。

该组样例满足数据范围中的测试点 1 的限制。

样例 6

见选手目录下的 c/c6.in 与 c/c6.ans 。

该组样例满足数据范围中的测试点 $2\sim3$ 的限制。

样例7

见选手目录下的 c/c7.in 与 c/c7.ans 。

该组样例满足数据范围中的测试点 $4 \sim 7$ 的限制。

样例 8

见选手目录下的 c/c8.in 与 c/c8.ans 。

该组样例满足数据范围中的测试点 $8\sim10$ 的限制。

数据范围

对于所有数据,保证:

- $1 \le m \le n \le 500$;
- $0 \le p_i < n$;
- $\forall 1 \leq i < j \leq n, p_i \neq p_j$.

测试点编号	$n \le$	特殊性质
1	10	无
$2\sim 3$	100	无
$4\sim7$	500	保证 p 中存在 0
$8\sim 10$	500	无

第一题(d)

题目背景

你说的对,但是这其实是第一题。

题目描述

做不出 CSP-S2 2024 T4, 小 X 一怒之下进行了一个挂的开,内定了编号为 1 的最强选手是自己。

淘汰赛的规则是这样的:初始有 2^n 个人,编号为 $1\sim 2^n$,初始站在第 i 个位置的是 p_i ,小 X 是编号为 1 的选手。第一轮,对于所有 $1\leq k\leq 2^{n-1}$,让 p_{2k-1},p_{2k} 进行单挑,获胜的进入下一轮。接下来一轮,再让相邻两个单挑,获胜的进入下一轮。进行 n 轮后决出冠军。

两个人进行单挑的规则刚开始是编号小的获胜,但是主办方发现只有一个人能获胜,所以修改了规则,给定了一个 $S\subseteq\{2,3,\cdots,2^n\}$,使得 1 号选手无法战胜编号在 S 中的选手,具体地:

- 若两个人编号都 > 2,则编号小的获胜;
- 若一个人编号是 1,且另外一个人编号不在 S 中,则 1 获胜;
- 若一个人编号是 1,且另外一个人编号在 S 中,则另一个人获胜;

主办方修改规则后,小 X 发现他无法总在淘汰赛中夺冠,于是他来求助你这个问题:有多少个初始排列 p 使得他能够成为冠军?

输入格式

从文件 d.in 读入数据。

第一行两个非负整数,代表 n, |S|。

第二行 |S| 个正整数,代表 S 中的元素。保证按从小到大顺序给出。

输出格式

输出到文件 d.out 中。

一行一个数代表答案对 $10^9 + 7$ 取模的结果。

样例 1 输入

2 1

3

样例 1 输出

٤

样例 1 解释

p = [1,4,2,3] 满足条件。第一轮淘汰过后,剩余的选手有 [1,2];第二轮淘汰过后,剩余的选手有 [1],小 X 成功夺冠。

p=[1,2,3,4] 不满足条件。第一轮淘汰过后,剩余的选手有[1,3];第二轮淘汰过后,剩余的选手有[3],小 X 无法成功夺冠。

样例 2 输入

3 0

样例 2 输出

40320

样例 2 解释

答案显然为 $(2^3)! = 40320$ 。

样例 3

见选手目录下的 d/d3.in 与 d/d3.ans 。

该组样例满足数据范围中的测试点 1 的限制。

样例 4

见选手目录下的 d/d4.in 与 d/d4.ans 。

该组样例满足数据范围中的测试点 2 的限制。

样例 5

见选手目录下的 d/d5.in 与 d/d5.ans 。

该组样例满足数据范围中的测试点 3 的限制。

样例 6

见选手目录下的 d/d6.in 与 d/d6.ans 。

该组样例满足数据范围中的测试点 4 的限制。

样例 7

见选手目录下的 d/d7.in 与 d/d7.ans 。

该组样例满足数据范围中的测试点 $5\sim6$ 的限制。

样例 8

见选手目录下的 d/d8.in 与 d/d8.ans。

该组样例满足数据范围中的测试点 $7\sim 10$ 的限制。

数据范围

对于所有数据,保证:

- $1 \le n \le 16$;
- $0 \le |S| \le 100$;
- $S \subseteq \{2, 3, \dots, 2^n\};$
- 输入中给定 S 按从小到大顺序给出。

测试点编号	$n \leq$	特殊性质
1	16	А

测试点编号	$n \leq$	特殊性质
2	3	无
3	4	无
4	16	В
$5\sim 6$	10	С
$7\sim 10$	16	无

特殊性质 A: $S=\emptyset$;

特殊性质 B: |S|=1;

特殊性质 C: $|S| \leq 10$;