

From biomolecular data to information

Antonia Mey

Matteo Degiacomi

matteo.t.degiacomi@dur.ac.uk

@MatteoDegiacomi

Thanks to our sponsors

Schedule

Thursday — Antonia Mey

Friday — N	Matteo	Degiacomi
------------	--------	-----------

13:30-14:45	ML Clustering
14:45-15:00	break
15:00-16:20	ML Dimensionality Reduction
16:20-16:30	Closing remarks
18:00-onwards	Informal social event

09:30-10:45	ML Classification
10:45-11:00	break
11:00-12:30	ML Regressions and Neural Networks
12:30-13:30	Lunch
13:30-onwards	Bring your own problem

What is machine learning?

Artificial intelligence

Design an intelligent agent that perceives its environment and makes decisions to maximise chances of achieving its goal.

Machine learning

Gives computers the ability to learn without specifically being programmed (Arthur Samuel 1959)

Supervised learning

Unsupervised learning

reinforcement learning

Data with labels

Data with labels Feature

The Data Mining World

From scikit-learn.org

The Data Mining World — Clustering

From scikit-learn.org

There are many different clustering algorithms

There are many different clustering algorithms

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

DBSCAN

- 1. Find the points in the ε (eps) neighbourhood of every point, and identify the core points with more than minPts neighbours.
- 2. Find the connected components of core points on the neighbour graph, ignoring all non-core points.
- 3. Assign each non-core point to a nearby cluster if the cluster is an ϵ (eps) neighbour, otherwise assign it to noise.

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

DBSCAN

- 1. Find the points in the ϵ (eps) neighbourhood of every point, and identify the core points with more than minPts neighbours.
- 2. Find the connected components of core points on the neighbour graph, ignoring all non-core points.
- 3. Assign each non-core point to a nearby cluster if the cluster is an ϵ (eps) neighbour, otherwise assign it to noise.

Spectral clustering

In spectral clustering clusters are found by doing an eigenvalue decomposition of the Laplacian

K-means example

Clustering is one of the first steps in building a Markov State Model

