Kort intro til digtek-modulen

Importer modulen

In [1]: from digtek import *

1 Funskjoner

Digtek-modulen introduserer en BolskFunskjon (<BoolFunction>) type i python. Disse funskjonene kan defineres på forskjellige måter og brukes nesten på samme måte som vanlige funskjoner. I tilegg har bolske funskjoner spesielle egenskaper som gjør at de egnes godt til å regne med i mange 'digitalteknikk' sammenhenger. Det finnes tre forskjellige bolske funskjoner med hver sin måte å definere de på:

1.1 Lambda-Funskjoner

Lambdafunksjoner defineres på følgende måte:

In [2]: foo = LambdaFunction(lambda a,b,c: a and b or c and b)

1.2 Minterm-Funksjoner

Mintermfunskjoner defineres ved en tuple/liste/set med mintermer etterfulgt av hvor mange variabler funksjonen har. For eksempel kan en 4-variabel-minterm-funksjon defineres på følgende måte:

In [3]: bar = MintermFunction((6,7,9),4)

1.3 Maksterm-Funksjoner

Makstermfunskjoner defineres på akkurat samme måte som en mintermfunskjon, bare at nå definerer vi makstermene i stede for mintermene:

In [4]: baz = MaxtermFunction((3,4),4)

1.4 Nyttig om bolske-funskjoner

Det er mulig å printe bolske funksjoner på en fin måte. Da brukes *print()*-funskjonen:

In [5]: print(bar)
print(baz)

$$F(x, y, z, w) = \Sigma(9, 6, 7) = \bar{x}yz\bar{w} + \bar{x}yzw + x\bar{y}\bar{z}w$$

$$F(x, y, z, w) = \Pi(3, 4) = (x + y + \bar{z} + \bar{w})(x + \bar{y} + z + w)$$

de bolske-funksjonene har også en innebygd *print()*-funskjon som kan printe med egendefinerte vedier både for variabler og funskjonsnavn. Her er det verdt å merke seg at også *LaTeX* verdier aksepteres som funskjons- og variabel-navn!

```
In [6]: bar.print(name="\\Upsilon",var=("\\alpha","\\beta","\\gamma","\\delta"))
baz.print(name="FoObAr",var="abxy")
```

$$\Upsilon(\alpha, \beta, \gamma, \delta) = \Sigma(9, 6, 7) = \bar{\alpha}\beta\gamma\bar{\delta} + \bar{\alpha}\beta\gamma\delta + \alpha\bar{\beta}\bar{\gamma}\delta$$
$$FoObAr(a, b, x, y) = \Pi(3, 4) = (a + b + \bar{x} + \bar{y})(a + \bar{b} + x + y)$$

Men! Funskjoner er jo ikke til bare for å se pene ut, vi kan også, som nevnt, bruke funskjonene som vanlige python-funskjoner. Her er det også mulig å sammenligne to funskjoner for å se om de er like/ulike. Dette kan komme godt med på eksamen!

```
In [7]: print( foo(1,0,1) )
    print( bar(*(1,1,0,0)) )
    print( foo == bar )
```

U

0

False

Sterkheten til disse funskjonene kommer i form av metodene/funskjonene man kan bruke på de, som fører oss til neste del:

2 Innebygde metoder/funskjoner

2.1 sannhetstabeller

Det er mulig å printe sannhetstabellen til en eller flere funskjoner ved å bruke funksjonen 'table()'. For å sammenligne flere funskjoner kan man kalle funskjonen med flere **boolFunctions** som argumenter.

In [8]: table(bar,baz)

x	у	z	w	F_0	F_1	
0	0	0	0	0	1	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	0	1	
0	1	1	0	1	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	0	1	1	1	
1	0	1	0	0	1	
1	0	1	1	0	1	
1	1	0	0	0	1	
1	1	0	1	0	1	
1	1	1	0	0	1	
1	1	1	1	0	1	

2.2 karnaugh-diagram

Karnaugh-diagram kan enkelt tegnes ved hjelp av 'karnaugh()'-funskjonen. Som argumenter tar denne funskjonen en bolsk-funskjon, og eventuellt variabelnavn:

In [9]: a = LambdaFunction(lambda x,y,z,w,u,v: x and y and z and w or not x and y and v a
karnaugh(a,var="xyzwuv")

			y=0					y=1				
			uv					uv				
			00	01	11	10		00	01	11	10	
x=0	ZW	00	0	0	0	0		0	0	0	0	
		01	0	0	0	0		0	1	1	0	
		11	0	0	0	0		0	1	1	0	
		10	0	0	0	0		0	0	0	0	
							- 1					
x=1	zw	00	0	0	0	0		0	0	0	0	
		01	0	0	0	0		0	0	0	0	
		11	0	0	0	0		1	1	1	1	
		10	0	0	0	0		0	0	0	0	