Markowitz Portfolio Theory and CAPM

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Reference: Investment Science by David Luenberger, chapters 6, 7

©Liming Feng. Do not distribute without permission of the author

Outline

- Understanding risk and return
- Markowitz mean-variance portfolio theory
- Capital asset pricing model (CAPM) and beta
- Harry Markowitz and William Sharpe, Nobel prize laureates in Economics (1990)

Rate of return

- An investment with initial payment X_0 and final receipt X_1
- Rate of return

$$r = \frac{X_1 - X_0}{X_0}$$
 (i.e., $X_1 = (1 + r)X_0$)

Example: buy a stock for 100 and sell later for 110

$$r = \frac{110 - 100}{100} = 10\%$$

Similarly, deposit 100 and get 105 later, r = 5%

• Receive X_0 initially and pay X_1 later

$$r = \frac{(-X_1) - (-X_0)}{-X_0} = \frac{X_1 - X_0}{X_0}$$

Example: borrow 100 and return 105 later, r = 5%

- Short selling: selling an asset that is not owned and needs to be borrowed
 - Borrow an asset, sell and receive X_0
 - ullet At a future time, buy back the asset for X_1 and return it
 - Gain if asset price falls. Loss if asset price rises

Short selling in practice

- Limited gain, unlimited potential loss
- Margin account required for the protection of the lender
 - All proceeds of the short sale will be put in the margin account
 - **Initial margin**: additional x% required in the margin account
 - Maintenance margin: y% in addition to the asset value required all the time
 - Margin call: margin account balance < maintenance margin requirement

• Example (short selling): an investor instructs a broker to short sell 1000 IBM shares at \$100/share. The initial margin is 50% and the maintenance margin is 30%. How far can the share price rise before the investor gets a margin call?

share	total	initial margin	total margin	
price	value			
100	100k	50%×100k=50k	150k	
share	total	maintenance margin	total margin	margin call
price	value			
110	110k	30%×110k=33k	143k	N/A
120	120k	30%×120k=36k	156k	6k
x = 115.38	1000x	$30\% \times 1000x = 300x$	1300 <i>x</i> <150k	N/A
90	90k	50%×90k=45k	135k	can withdraw 15k

Portfolio rate of return

- We assume idealized short selling (no commission/margining)
- Portfolio of n assets and initial investment X_0
- w_i fraction of the initial investment invested in asset i (amount invested in asset i: $w_i X_0$)

$$\sum_{i=1}^n w_i = 1$$

• Rate of return for the portfolio

$$r_p = \frac{\sum_{i=1}^{n} (1 + r_i) w_i X_0 - X_0}{X_0} = \sum_{i=1}^{n} w_i r_i$$

- Negative w_i refers to short selling
- Example: Suppose current IBM and Microsoft share prices are 100 and 20, respectively. An investor buys 50 IBM shares and shorts 50 Microsoft shares. What is the portfolio rate of return if IBM share price rises to 120 and Microsoft share price drops to 12?

$$X_0 = 4000, X_1 = 6000 - 600 = 5400$$

$$r_p = 1400/4000 = 35\%$$

$$w_1 = 125\%, w_2 = -25\%, r_1 = 20\%, r_2 = -40\%$$

$$r_p = w_1 r_1 + w_2 r_2 = 35\%$$

Uncertainty

- Rate of return r is a random variable
 - Expectation: $\bar{r} = \mathbb{E}[r]$
 - Variance measures risk: $\sigma^2 = \text{var}(r)$
 - Covariance: $\sigma_{ij} = \text{cov}(r_i, r_j)$ (in particular, $\sigma_{ii} = \sigma_i^2$)
- Mean standard deviation diagram

• Portfolio rate of return r_p :

$$r_{
ho}=w_1r_1+\cdots+w_nr_n$$
 $\mathbb{E}[r_{
ho}]=w_1ar{r_1}+\cdots+w_nar{r_n}$ $ext{var}(r_{
ho})=\sum_{i,j=1}^nw_iw_j\sigma_{ij}$

- Prefer higher rate of return and lower variance
- Diversification: including more assets in the portfolio

Diversification

- **Example**: returns of three independent stocks have the same variance σ^2 . What is the variance of the rate of return of a portfolio with equal weights in these stocks $(w_1 = w_2 = w_3 = 1/3)$?
 - Variance of the portfolio rate of return:

$$var(r_p) = var\left(\frac{1}{3}r_1 + \frac{1}{3}r_2 + \frac{1}{3}r_3\right) = \frac{1}{3}\sigma^2$$

• Extension to *n* assets: $var(r_p) = \frac{1}{n}\sigma^2$

- **Example**: returns of three correlated stocks have the same variance σ^2 and pairwise covariance $0.3\sigma^2$. What is the variance of the rate of return of a portfolio with equal weights in these stocks?
 - Variance

$$var(r_p) = var\left(\frac{1}{3}r_1 + \frac{1}{3}r_2 + \frac{1}{3}r_3\right) = \frac{0.7}{3}\sigma^2 + 0.3\sigma^2$$

- Extension to *n* assets: $var(r_p) = \frac{0.7}{n}\sigma^2 + 0.3\sigma^2$
- In general, diversification reduces variance
- It may reduce mean return while reducing variance
- Find a balance using Markowitz portfolio theory

Portfolio mean standard deviation diagram

- Given *n* risky assets, determine **feasible set**: pairs (σ_p, \bar{r}_p) for all possible portfolios
- Portfolios of two assets

Mean:
$$\bar{r}_p = w\bar{r}_1 + (1-w)\bar{r}_2$$

Variance: $\sigma_p^2 = w^2\sigma_1^2 + 2w(1-w)\sigma_{12} + (1-w)^2\sigma_2^2$

• Example: consider the following two risky assets. What is the feasible set?

$$\begin{array}{ccc} & \textit{asset 1} & \textit{asset 2} \\ \textit{mean return} & \overline{r}_1 = 20\% & \overline{r}_2 = 22\% \\ \textit{stdev} & \sigma_1 = 4\% & \sigma_2 = 5\% \\ \textit{correlation} & \rho_{12} = 0.3 \end{array}$$

In Excel, let w varies from -0.5 to 1.5, compute \bar{r}_p and σ_p , and draw (\bar{r}_p, σ_p)

	asset 1	asset 2	asset 3			
mean	20%	22%	24%			
stdev	4%	5%	4%			
corr 12, 23, 13	0.3	0.3	-0.1			
W	mean12	stdev12	mean 23	stdev23	mean13	stdev13
-0.50	0.2300	0.0716	0.2500	0.0577	0.2600	0.0651
-0.49	0.2298	0.0711	0.2498	0.0572	0.2596	0.0646
-0.48	0.2296	0.0707	0.2496	0.0568	0.2592	0.0640
-0.47	0.2294	0.0702	0.2494	0.0564	0.2588	0.0635

• Feasible set in the previous example

- Portfolios of three assets
- Example: consider the following three risky assets. What is the feasible set?

 Feasible set for the previous example with 3 assets (no short selling)

With short selling

• Feasible set for portfolios of *n* assets

LHS: no short selling; RHS: with short selling

- Minimum variance set: left boundary of a feasible set
 - For given mean rate of return, the portfolio with smallest variance is on the minimum variance set
 - A risk averse investor prefers portfolios on the minimum variance set
- Efficient frontier: upper portion of the minimum variance set
 - For given standard deviation, the portfolio with largest return is on the efficient frontier
 - An investor wants more money prefers portfolios on the efficient frontier

Minimum variance set and efficient frontier

LHS: Minimum variance set; RHS: efficient frontier

Markowitz model

• Finding the minimum variance portfolio for given expected rate of return \bar{r}

$$\min \quad \frac{1}{2} \sum_{i,j=1}^{n} w_i w_j \sigma_{ij}$$

subject to

$$\sum_{i=1}^n w_i \bar{r}_i = \bar{r}, \quad \sum_{i=1}^n w_i = 1$$

 The optimization problem can be solved numerically, e.g., in Excel

With a risk free asset

- Suppose there is a risk free asset (with deterministic return r_f and zero variance)
- Deposit \$1 at rate r_f , will receive $\{(1 + r_f)\}$; borrow \$1 at rate r_f , need to repay $\{(1 + r_f)\}$
- Consider portfolios of risky asset and risk free asset
 - How to balance risk and return
 - Determine the feasible set and efficient frontier

• Portfolio of n risky assets and a risk free asset: a fraction of w invested in the risk free asset, 1-w invested in a portfolio of risky assets (with mean return \bar{r}_p , variance σ_p^2)

mean:
$$wr_f + (1 - w)\overline{r}_p$$
, variance: $(1 - w)^2 \sigma_p^2$

Feasible set

One fund theorem

- Efficient frontier is a straight line
- Tangent to the feasible set of risky assets
- One fund theorem: there is a portfolio M of risky assets such that any efficient portfolio (with both risky and risk free assets) is a linear combination of M and the risk free asset

Markowitz portfolio theory

- One fund theorem: one portfolio M of risky assets plus risk free investment
- If all investors prefer less risk for given rate of return, all of them will hold M
- M should be the market portfolio (of all risky assets on the market)

Capital market line

• Relation between risk and return (of an efficient portfolio): as risk increases, expected rate of return increases

• For an arbitrary efficient portfolio

$$\bar{r}_p = r_f + \frac{\bar{r}_M - r_f}{\sigma_M} \sigma_p$$

- \bar{r}_M : expected rate of return of market portfolio
- r_f : risk free rate of return;
- σ_M : stdev of market portfolio rate of return
- σ_p : stdev of the rate of return of the efficient portfolio
- Price of risk $(\bar{r}_M r_f)/\sigma_M$: expected rate of return required for each unit of the stdev in addition to r_f

- Relation between risk and return of an individual asset?
- Capital asset pricing model (CAPM): the expected return \bar{r}_i of any asset i satisfies

$$\bar{r}_i - r_f = \beta_i (\bar{r}_M - r_f), \qquad \beta_i = \frac{\sigma_{iM}}{\sigma_M^2}$$

where σ_{iM} : covariance of returns of asset i and market portfolio

- Portfolio with w invested in asset i and 1 w invested in M
- On mean standard deviation diagram:

$$\bar{r} = w\bar{r}_i + (1-w)\bar{r}_M, \quad \sigma = (w^2\sigma_i^2 + 2w(1-w)\sigma_{iM} + (1-w)^2\sigma_M^2)^{1/2}$$

• Tangent to the capital market line at M (i.e., at w = 0)

- Expected excess return of asset i is proportional to expected excess return of market portfolio
- β_i the **beta** of asset i
- In terms of risk and return: β_i measures riskiness of asset i relative to the market portfolio
- Beta of a portfolio of *n* assets with weights w_1, \dots, w_n

$$\beta_p = \sum_{i=1}^n w_i \beta_i$$

Amazon's beta on Sept 8, 2008 (http://finance.aol.com)

Systematic vs specific risk

• By CAPM, $\bar{r}_i - r_f = \beta_i (\bar{r}_M - r_f)$. Consider

$$\epsilon_i = r_i - r_f - \beta_i (r_M - r_f)$$

- $cov(\epsilon_i, r_M) = \sigma_{iM} \beta_i \sigma_M^2 = 0$
- Decomposition of risk: $\sigma_i^2 = \text{var}(\epsilon_i) + \beta_i^2 \sigma_M^2$
- Systematic risk: $\beta_i^2 \sigma_M^2$, risk associated with the market
- **Specific risk**: $var(\epsilon_i)$, uncorrelated with the market
- Q: what is the specific risk for a portfolio on the capital market line?

CAPM in practice

- By CAPM, all efficient portfolios consist of risk free asset and market portfolio
- Market portfolio often represented by major stock market indices: e.g., S&P 500
- Fund managers design portfolios that match stock market indices closely: index funds

Portfolio performance

For an efficient portfolio (capital market line)

$$\bar{r}_p = r_f + \frac{\bar{r}_M - r_f}{\sigma_M} \sigma_p$$

- Consider a portfolio with given historical data
 - estimate \bar{r}_p , σ_p
 - Sharpe ratio

$$S:=\frac{\overline{r}_p-r_f}{\sigma_p}$$

not efficient if

$$S < rac{\overline{r}_M - r_f}{\sigma_M}$$

 As a pricing model: for an asset with current price P and future price Q

$$\frac{\bar{Q}-P}{P}-r_f=\bar{r}_i-r_f=\beta_i(\bar{r}_M-r_f)$$

Pricing formula

$$P = \frac{\bar{Q}}{1 + r_f + \beta(\bar{r}_M - r_f)}$$

Discounted expectation of future value, with risk adjusted discount rate

• Can be used for firms to select projects