## Discrete Structures

Lecture #4

Mr. Hafiz Tayyeb Javed

Department of Computer Science

FAST -- National University of Computer and

Emerging Sciences. CFD Campus

# Recap

- Conditional Statements
- Bi-conditional Statements
- Conversion of NLP to Argument and vice versa
- Inverse / Converse / Contrapositive of statements
- Examples / Exercise

# Argument

An argument is a list of statement called premises (or assumptions or hypotheses) followed by a statement called the conclusion.

# Valid and Invalid Arguments

- ☐ Propositional logic can be used as a math model to investigate the validity of arguments.
- ☐ As argument is a sequence of statements.
- ☐ All but the final statements are called premises.
- ☐ Final statement is called conclusion.
- ☐ <u>Valid Argument</u>: If the premises are all true then the conclusion is also true.
  - i.e. Premises logically implies the conclusion.

# **Argument Validity**

- ☐ Two Ways:
  - ☐ Using truth Tables
  - Reason at a higher level using
    - generally valid rules (inference
    - values).

# Argument

P1 Premise

P2 Premise

P3 Premise

P4 Premise

· C Conclusion

# Valid Argument

An argument is valid if the conclusion is true when all the premises are true.

# **Invalid Argument**

An argument is invalid if the conclusion is false when all the premises are true.

# **Example of Valid Argument**

Show that the following argument form is valid:

premise  $p \rightarrow q$ 

premise

Conclusion ∴ q

|   |              | Pren                                | nise | Conclusion   | 1 |
|---|--------------|-------------------------------------|------|--------------|---|
| p | $\mathbf{q}$ | $\mathbf{p} \rightarrow \mathbf{q}$ | p    | $\mathbf{q}$ |   |
| T | T            | T                                   | T    | T            |   |
| T | F            | F                                   | T    | F            |   |
| F | T            | T                                   | F    | T            |   |
| F | F            | T                                   | F    | F            |   |

The given argument is valid.

# **Example of Invalid Argument**

Show that the following argument form is valid:

premise  $p \rightarrow q$ 

premise

Conclusion **∴** p

|   |         | Pren                                | nise    | Conclusion   | on |
|---|---------|-------------------------------------|---------|--------------|----|
| p | ${f q}$ | $\mathbf{p} \rightarrow \mathbf{q}$ | ${f q}$ | $\mathbf{p}$ |    |
| T | T       | T                                   | T       | T            |    |
| T | F       | F                                   | F       | T            |    |
| F | T       | T                                   | T       | F            |    |
| F | F       | T                                   | F       | F            |    |

The given argument is Invalid.

# Example

Show that the following argument form is valid:

pVq

premise

**Premise** 

 $p \rightarrow \sim q$ 

premise

**Conclusion** 

 $p \rightarrow r$ 

premise

: r

Conclusion

# Example

#### **Premise**

#### **Conclusion**

| p | q | r | $\mathbf{p} \vee \mathbf{q}$ | $p \rightarrow \sim q$ | $p \rightarrow r$ | r |
|---|---|---|------------------------------|------------------------|-------------------|---|
| T | T | Т | T                            | F                      | T                 | T |
| T | T | F | T                            | F                      | F                 | F |
| T | F | Т | T                            | T                      | T                 | T |
| T | F | F | T                            | T                      | F                 | F |
| F | T | Т | T                            | T                      | T                 | T |
| F | T | F | T                            | T                      | T                 | F |
| F | F | Т | F                            | Т                      | Т                 | T |
| F | F | F | F                            | Т                      | Т                 | F |

The given argument is invalid.

#### Exercise – 1

If Tariq is not on team A, then Hameed is on team B

If Hameed is not on team B, then Tariq is on team A.

∴ If Hameed is not on team B, then Tariq is not on team A.

#### **Solution**:

Let t = Tariq is on team A

h = Hameed is on team B

#### Exercise -1 – Cont..

**Solution**: Let

t = Tariq is on team A

h = Hameed is on team B

- 1. If Tariq is not on team A, then Hameed is on team B -- ( $\sim$ t  $\rightarrow$  h)
- 2. If Hameed is not on team B, then Tariq is on team  $A (\sim h \rightarrow t)$
- 3. ∴ If Hameed is not on team A, then Tariq is not on team B

$$B -- \sim h \rightarrow \sim t$$

## Exercise -1 – Cont..

- 1.  $(\sim t \rightarrow h)$
- 2.  $(\sim h \rightarrow t)$
- 3.  $\therefore \sim h \rightarrow \sim t$

|   |   | Pre                    | mise                   | Conclusio                 | on |
|---|---|------------------------|------------------------|---------------------------|----|
| t | h | $\sim t \rightarrow h$ | $\sim h \rightarrow t$ | $\sim$ h $\rightarrow$ ~t |    |
| T | T | T                      | T                      | T                         |    |
| T | F | T                      | T                      | F                         |    |
| F | T | T                      | T                      | T                         |    |
| F | F | F                      | F                      | T                         |    |

The given argument is invalid.

#### Exercise – 2

If at least one of these two numbers is divisible by 6, then the product of these two numbers is divisible by 6.

Neither of these two numbers is divisible by 6.

∴ The product of these two numbers is **not** divisible by 6.

#### **Solution**: Let

d = at least one of these two numbers is divisible by 6

p = product of these two numbers is divisible by 6

#### Exercise -2 – Cont..

Solution: Let,

d = at least one of these two numbers is divisible by 6

p = product of these two numbers is divisible by 6.

- 1. If at least one of these two numbers is divisible by 6, then the product of these two numbers is divisible by 6  $-(d \rightarrow p)$
- 2. Neither of these two numbers is divisible by 6 -- ~d
- 3. ∴ The product of these two numbers is not divisible by 6 -- ~p

## Exercise -2 – Cont..

#### **Solution**:

- 1.  $(d \rightarrow p)$
- 2. ~d
- 3. ∴~p

| ~p |   | Prem                                | nise | Conclusion |
|----|---|-------------------------------------|------|------------|
| d  | p | $\mathbf{d} \rightarrow \mathbf{p}$ | ~d   | ~p         |
| T  | T | T                                   | F    | F          |
| T  | F | F                                   | F    | T          |
| F  | T | T                                   | T    | F          |
| F  | F | T                                   | T    | T          |

The given argument is invalid.

#### Exercise -3

If I got an Eid Bonus, I'll buy a stereo.

If I sell my motorcycle, I'll buy a stereo.

∴ If I get Eid bonus or I sell my motorcycle, then I'll buy a stereo.

#### **Solution**: Let

e = I got an Eid Bonus

s = I'll buy a stereo

m = I sell my motorcycle

## Exercise -3 – Cont..

**Solution**: Let, e = I got an Eid Bonus; s = I'll buy a stereo; m = I sell my motorcycle

- 1. If I got an Eid Bonus, I'll buy a stereo --  $(e \rightarrow s)$
- 2. If I sell my motorcycle, I'll but a stereo --  $(m \rightarrow s)$
- 3.  $\therefore$  If I get Eid bonus or I sell my motorcycle, then I'll buy a stereo e V m  $\rightarrow$  s

| e | S | m | $e \rightarrow s$ | $m \rightarrow s$ | e∨m | $e \lor m \rightarrow s$ |
|---|---|---|-------------------|-------------------|-----|--------------------------|
|---|---|---|-------------------|-------------------|-----|--------------------------|

## Exercise -3 – Cont..

**Solution**:  $(e \rightarrow s)$ ;  $(m \rightarrow s)$ ;  $\therefore e \lor m \rightarrow s$ 

| e              | S | m | $e \rightarrow s$ | $m \rightarrow s$ | e V m | $e \lor m \rightarrow s$ |
|----------------|---|---|-------------------|-------------------|-------|--------------------------|
| T              | T | T | T                 | T                 | T     | T                        |
| $\overline{T}$ | T | F | T                 | T                 | T     | T                        |
| T              | F | T | F                 | Т                 | T     | F                        |
| $\overline{T}$ | F | F | F                 | T                 | T     | F                        |
| F              | T | T | T                 | T                 | T     | T                        |
| F              | T | F | T                 | T                 | F     | T                        |
| F              | F | Т | Т                 | F                 | T     | F                        |
| F              | F | F | T                 | T                 | F     | T                        |

The given argument is valid.

#### Inference Rule

☐ To helps showing that a conclusion follows logically from a set of premises we may apply inference rules on the form,

$$p_1 \dots p_n : q$$

- ☐ The validity of the rule is ensured
  - $\land \land p_n$   $(p_1 \rightarrow q \text{ is a Tautology})$ 
    - o A tautology is a statement which is always true. E.g. p
      پ p.

#### Inference Rule

**☐** Modus Ponens

$$\frac{p}{p \to q} \text{ (Based on [p A (p \to q) \to q])}$$

**□** Modus Tollens

$$\underset{\stackrel{\sim}{\sim}p}{\overset{p\to q}{\sim}} (Based on [(p\to q) \land \sim q \to \sim p])$$

**□** Generalization

#### **Inference Rule**

$$\frac{p Aq}{\therefore p}$$
,  $\frac{p Aq}{\therefore q}$ 

$$\begin{array}{ccc}
p \lor q & p \lor q \\
 \sim q & \sim p \\
 \hline
 \cdots & \cdots & \cdots \\
 \vdots p & \vdots q
\end{array}$$

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
\vdots p \to r
\end{array}$$

# Inference Rule -- Application – An Example

- Example: You are about to leave for University in the morning and discover that you don't have your glasses. You know the following statements are true.
  - A. If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.
  - B. If my glasses are on the kitchen table, then I saw them at breakfast.
  - C. I did not see my glasses at breakfast.
  - D. I was reading the newspaper in the living room or I was reading the newspaper in the kitchen.
  - E. If I was reading the newspaper in the living room then my glasses are on the coffee table.

Where are the glasses??

# Inference Rule -- Application – An Example

Assume,

RK= Reading the newspaper in the kitchen.

GK= Glasses are on the kitchen table.

SB= I saw my glasses at breakfast.

RL= Reading the newspaper in the living room.

GC= Glasses are on the coffee table.

So by rules of inference,

1. 
$$\begin{array}{ccc}
RK \rightarrow GK & (by A) \\
GK \rightarrow SB & (by D) \\
\therefore RK \rightarrow SB (Transiticity)
\end{array}$$

$$2. \begin{array}{c} RK \rightarrow SB & (by 1) \\ \sim SB & (by C) \\ \sim RK & (by modus tollens) \end{array}$$

3. 
$$RL \not R K$$
 (by D)  
 $\sim RK$  (by 2)  
 $\therefore RL$  (by elimination)

4. 
$$\begin{array}{c}
RL \rightarrow GC & (by C) \\
RL & (by 3) \\
\vdots GC & (by modus ponens)
\end{array}$$

So the Glasses are on the Coffee table.

#### Contradiction and Valid Arguments.

☐ Contradiction Rule

Suppose p is some statement whose truth you wish to deduce.

If you can show that the supposition that p is false leads logically to a contradiction, then you can conclude that p is true.

## Contradiction and Valid Arguments.

☐ Contradiction Rule

$$\stackrel{\sim}{-}\stackrel{p\to c}{\stackrel{\sim}{-}}$$
, where c is a contradiction

| p | ~ p | c | $\sim p \rightarrow c$ | p |
|---|-----|---|------------------------|---|
| T | F   | F | T                      | T |
| F | T   | F | F                      | F |

Logical heart of the method of proof by contradiction.

#### **Switches in Series**



#### **Switches in Series**

| Switch | Light Bulb |       |
|--------|------------|-------|
| P      | Q          | State |
| Open   | Open       | Off   |
| Open   | Closed     | Off   |
| Closed | Open       | Off   |
| Closed | Closed     | On    |

#### **Switches in Series**

| Switche | S | Light<br>Bulb |
|---------|---|---------------|
| P       | Q | State         |
| T       | T | T             |
| T       | F | F             |
| F       | Т | F             |
| F       | F | F             |

| P | Q | P∧Q |
|---|---|-----|
| T | T | T   |
| T | F | F   |
| F | T | F   |
| F | F | F   |

#### **Switches in Parallel**



#### **Switches in Parallel**

| Switche | :s | Light<br>Bulb |
|---------|----|---------------|
| P       | Q  | State         |
| Т       | T  | Т             |
| T       | F  | Т             |
| F       | T  | Т             |
| F       | F  | F             |

| P | Q | P∨Q |
|---|---|-----|
| Т | T |     |
| T | F | T   |
| F | Т | T   |
| F | F | F   |

#### **Not Gate or Inverter**

| Input | Output |
|-------|--------|
| P     | Q      |
| 1     | 0      |
| 0     | 1      |



#### **AND Gate**

| Input |   | Output |
|-------|---|--------|
| P     | Q | R      |
| 1     | 1 | 1      |
| 1     | 0 | 0      |
| 0     | 1 | 0      |
| 0     | 0 | 0      |



## **OR Gate**

| Input |   | Output |
|-------|---|--------|
| P     | Q | R      |
| 1     | 1 | 1      |
| 1     | 0 | 1      |
| 0     | 1 | 1      |
| 0     | 0 | 0      |



### **Combinational Circuit**



# Output for a given Input



# Input / Output table for a circuit



### Table for a circuit

| P | Q | R | X | Y | S |
|---|---|---|---|---|---|
| 1 | 1 | 1 |   |   |   |
| 1 | 1 | 0 |   |   |   |
| 1 | 0 | 1 |   |   |   |
| 1 | 0 | 0 |   |   |   |
| 0 | 1 | 1 |   |   |   |
| 0 | 1 | 0 |   |   |   |
| 0 | 0 | 1 |   |   |   |
| 0 | 0 | 0 |   |   |   |

### Table for a circuit – Cont.

| P | Q | R | X | Y | S |
|---|---|---|---|---|---|
| 1 | 1 |   | 1 |   |   |
| 1 | 1 |   | 1 |   |   |
| 1 | 0 |   | 0 |   |   |
| 1 | 0 |   | 0 |   |   |
| 0 | 1 |   | 0 |   |   |
| 0 | 1 |   | 0 |   |   |
| 0 | 0 |   | 0 |   |   |
| 0 | 0 |   | 0 |   |   |

## Table for a circuit – Cont.

| P | Q | R | X | Y | S |
|---|---|---|---|---|---|
|   |   |   | 1 | 0 |   |
|   |   |   | 1 | 0 |   |
|   |   |   | 0 | 1 |   |
|   |   |   | 0 | 1 |   |
|   |   |   | 0 | 1 |   |
|   |   |   | 0 | 1 |   |
|   |   |   | 0 | 1 |   |
|   |   |   | 0 | 1 |   |

## Table for a circuit – Cont.

| P   | Q | R | X | Y | S |
|-----|---|---|---|---|---|
|     |   | 1 |   | 0 | 1 |
|     |   | 0 |   | 0 | 0 |
|     |   | 1 |   | 1 | 1 |
|     |   | 0 |   | 1 | 1 |
|     |   | 1 |   | 1 | 1 |
|     |   | 0 |   | 1 | 1 |
| 1 1 |   | 1 |   | 1 | 1 |
|     |   | 0 |   | 1 | 1 |

# **Boolean Expression for a Circuit**



# **Boolean Expression for a Circuit**



## Circuit for a Boolean Expression





# Circuit for Input / Output Table

|   | INPUTS |   |   |  |
|---|--------|---|---|--|
| P | Q      | R | S |  |
| 1 | 1      | 1 | 0 |  |
| 1 | 1      | 0 | 1 |  |
| 1 | 0      | 1 | 0 |  |
| 1 | 0      | 0 | 0 |  |
| 0 | 1      | 1 | 1 |  |
| 0 | 1      | 0 | 0 |  |
| 0 | 0      | 1 | 0 |  |
| 0 | 0      | 0 | 0 |  |

## Circuit for Input / Output Table – Sol.

|   | INPUT | OUTPUTS |   |
|---|-------|---------|---|
| P | Q     | R       | S |
| 1 | 1     | 1       | 0 |
| 1 | 1     | 0       | 1 |
| 1 | 0     | 1       | 0 |
| 1 | 0     | 0       | 0 |
| 0 | 1     | 1       | 1 |
| 0 | 1     | 0       | 0 |
| 0 | 0     | 1       | 0 |
| 0 | 0     | 0       | 0 |





## Circuit Diagram

$$(P \land Q \land \sim R) \lor (\sim P \land Q \land R) = S$$



#### Exercise – 1

Design a circuit to take input signals P,Q, and R and output a 1 if, and only if, P and Q have the same value and Q and R have opposite values.

### Exercise – 1: Sol.

|   | INPUT | OUTPUTS |   |
|---|-------|---------|---|
| P | Q     | R       | S |
| 1 | 1     | 1       | 0 |
| 1 | 1     | 0       | 1 |
| 1 | 0     | 1       | 0 |
| 1 | 0     | 0       | 0 |
| 0 | 1     | 1       | 0 |
| 0 | 1     | 0       | 0 |
| 0 | 0     | 1       | 1 |
| 0 | 0     | 0       | 0 |

P^Q^~R

~P ^ ~Q ^ R

#### Exercise – 1: Sol.

$$S = (P \land Q \land \sim R) \lor (\sim P \land \sim Q \land R)$$



## Exercise -2



#### Exercise -2: Sol.



**OUTPUT:** 

 $S = (P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q)$ 

## Exercise -2: Sol.

| Statement                                                        | Reason           |
|------------------------------------------------------------------|------------------|
| $(P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q)$        |                  |
| $\equiv (P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q)$ |                  |
| $\equiv (P \vee \sim P) \wedge Q \vee (P \wedge \sim Q)$         | Distributive law |
| $\equiv t \land Q \lor (P \land \sim Q)$                         | Negation law     |
| $\equiv Q \lor (P \land \sim Q)$                                 | Identity law     |
| $\equiv (Q \lor P) \land (Q \lor \sim Q)$                        | Distributive law |

#### Exercise -2: Sol.

| Statement                   | Reason          |
|-----------------------------|-----------------|
| $\equiv (Q \lor P) \land t$ | Negation law    |
| ≡Q∨P                        | Identity law    |
| ≡Q∨P                        | Commutative law |

Thus 
$$(P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q) \equiv P \lor Q$$