

Token Security Audit Report Prepared for Baby Doge Coin

September 2021

Document Properties

Client	Baby Doge Coin
Platform	Binance Smart Chain
Language	Solidity
Codebase 0x18359cf655a444204e46f286edc445c9d30ffc54	

Audit Summary

Delivery Date	01.09.2021
Audit Methodology	Static Analysis, Manual Review
Auditor(s)	Erno Patiala
Classification	Publlic

Contact Information

Company	CheckPoint
Name	Hanna Järvinen
Telegram	t.me/checkpointreport
E-mail	contact@checkpoint.report

Remark: For more information about this document and its contents, please contact CheckPoint team

Table Of Contents

1 Ex	recutive Summary	3
2 Au	ıdit Methodology	4
3 Ri	sk Level Classification	7
4 Pr	oject Overview	9
	4.1 Communication Channels	9
	4.2 Smart Contract Details	10
	4.3 Contract Function Details	13
	4.4 Issues Checking Status	17
	4.5 Detailed Findings Information	19
5 Au	ıdit Result	21
	5.1 Findings Summary	22
6 Di	sclamer	23

1 Executive Summary

On 01/09/2021, CheckPoint conducted a full audit for the Baby Doge Coin to verify the overall security posture including a smart contract review to discover issues and vulnerabilities in the source code. Static Code Analysis, Dynamic Analysis, and Manual Review werdone in conjunction to identify smart contract vulnerabilities together with technical & business logic flaws that may be exposed to the potential risk of the platform and the ecosystem.

After further analysis and internal discussion, we determined a few issues of varying severities that need to be brought up and paid more attention to. More information can be found in **Section 5**'Audit Result'. Practical recommendations are provided according to each vulnerability found and should be followed to remediate the issue.

Baby Doge Coin Low Risk Level

Communication Channels	Website Content Analysis,		
Communication Channels	Social Media Listening		
	Smart Contract Details, Contract Function Details,		
Smart Contract Code	Issues Checking Status, Detailed Findings		
	Information		

2 Audit Methodology

CheckPoint conducts the following procedure to enhance the security level of our clients' tokens:

Pre-Auditing

Planning a comprehensive survey of the token, its ecosystem, possible risks & prospects, getting to understand the overall operations of the related smart contracts, checking for readiness, and preparing for the auditing.

Auditing

Study of all available information about the token on the Web, inspecting the smart contracts using automated analysis tools and manual analysis by a team of professionals.

First Deliverable and Consulting

Delivering a preliminary report on the findings with suggestions on how to remediate those issues and providing consultation.

Reassessment

Verifying the status of the issues and whether there are any other complications in the fixes applied.

Final Deliverable

Providing a full report with the detailed status of each issue.

The security audit process of CheckPoint includes three types testing:

- 1. Examining publicly available information about the token on social networks, including a detailed overview of the official website and analysis of the latest messages and opinions about the token.
- 2. Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated analysis tools.
- 3. Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential problems.

Remark: Manual and Automated review approaches can be mixed and matched including business logic analysis in terms of malicious doers' perspective

In particular, we perform the audit according to the following procedure:

Planning & Understanding

- o determine scope of testing and understand application purpose and workflows;
- o identify key risk areas, including technical and business risks;
- determine approach which sections to review within the resource constraints and review method – automated, manual or mixed.

Automated Review

- adjust automated source code review tools to inspect the code for known unsafe coding patterns;
- verify output of the tool in order to eliminate false positive result, and if necessary,
 adjust and re-run the code review tool.

Manual Review

- o testing for business logic flaws requires thinking in unconventional methods;
- identify unsafe coding behavior via static code analysis.

Reporting

- analyze the root cause of the flaws;
- recommend coding process improvements.

3 Risk Level Classification

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating Methodology:

- Likelihood represents how likely a particular vulnerability is to be uncovered and exploited
 in the wild.
- Impact measures the technical loss and business damage of a successful attack.
- Severity demonstrates the overall criticality of the risk and calculated as the product of impact
 and likelihood values, illustrated in a twodimensional matrix. The shading of the matrix
 visualizes the different risk levels.

Remark: Likelihood and Impact are categorized into three levels: H, M, and L, i.e., High, Medium and Low respectively. Severity is determined by likelihood and impact and can be classified into five categories accordingly, i.e., Critical, High, Medium, Low and Weakness

For prioritization of the vulnerabilities, we have adopted the scheme by five distinct levels for risk: Critical, High, Medium, Low, and Weakness. The risk level definitions are presented in table.

LEVEL

DESCRIPTION

There are safety risks theoretically,
but it is extremely difficult to reproduce in engineering

Low severity vulnerabilities may affect the operation of the DeFi
project in certain scenarios

Medium Severity vulnerability will affect the operation of the DeFi
project. It is recommended to fix medium-risk vulnerabilities

High Severity vulnerabilities will affect the normal operation of the
DeFi project. It is strongly recommended to fix high-risk vulnerabilities

Critical Severity vulnerabilities will have a significant impact on the
security of the DeFi project

4 Project Overview

4.1 Communication Channels

https://babydogecoin.com/

Website was registered on 05-12-2021, registration expires 05-12-2022.

Above the image is an actual snapshot of the current live website of the project.

✓ Mobile Friendly	✓ 6 Social Media Networks		
✓ No JavaScript Errors	✓ 100,000+ Telegram Members		
✓ Visionary Roadmap	✓ 100,000+ Twitter Followers		
✓ Spell Check	✓ Active voice chats		
✓ Valid SSL Certificate	✓ No injected spam found		
✓ Contact Form	✓ No popus found		

Remark: This page contains active links

4.2 Smart Contract Details

Contract Name Baby Doge Coin

Contract Address 0xc748673057861a797275cd8a068abb95a902e8de

Total Supply 420,000,000,000,000

Token Ticker BabyDoge

Decimals 9

Token Holders 568,840

Transactions Count 2,551,615

Top 100 Holders Dominance 73,80%

Liquidity Fee 4

Tax Fee 5

Total Fees 109105021995750614600594993

Uniswap V2 Pair 0xc736ca3d9b1e90af4230bd8f9626528b3d4e0ee0

Baby Doge Coin Top 10 Token Holders

Address	Quantity (Token)	Percentage
Burn Address	147,385,465,353,571,000.16183796	35.0918%
■ 0xeaed594b5926a7d5fbbc61985390baaf936a6b8d	80,772,848,514,277,400.871880636	19.2316%
PancakeSwap V2: BabyDoge 3	14,435,795,446,992,200.228561937	3.4371%
0xa4a6db60a345e40f389792952149b2d1255b9542	12,237,493,641,582,900.560624031	2.9137%
0x63a3d28bb9187809553dd16981c73f498b6b2687	4,935,832,721,345,990.107460366	1.1752%
0x153e7819315fa8d4e8b7f5d43807631bdb0cc3be	3,026,500,079,704,060.379005586	0.7206%
0x6d067e65bc303d14d028425fb7cf0e0f79ba21a1	3,023,885,535,669,210.413712102	0.7200%
0x0d0707963952f2fba59dd06f2b425ace40b492fe	2,126,159,251,130,150.138377517	0.5062%
0xd193933337901aca93139fbeafe80dc23a9c392f	2,095,540,439,400,120.217041133	0.4989%
0x8e9e89c1c4807b7059436e468bb0082f76e6d02f	1,992,057,637,227,800.673418609	0.4743%

√ 35% tokens are permanently removed from circulation

Attention: 19% tokens are locked

Baby Doge Coin Top 10 LP Token Holders

Address	Quantity	Percentage
■ 0xc765bddb93b0d1c1a88282ba0fa6b2d00e3e0c83	508,882.138687288338469037	77.5941%
Burn Address	92,623.746470095960966348	14.1232%
0xa4a6db60a345e40f389792952149b2d1255b9542	52,449.165543902942608183	7.9974%
0xaa3d85ad9d128dfecb55424085754f6dfa643eb1	919.622411538723061554	0.1402%
0xbc0972a9db37a43ad279c3fe6f3bc21daf21596f	124.633464579903152403	0.0190%
0x63050e3622de0e217b81a7f8f649d05314e89b8a	87.066406811527236605	0.0133%
0x95ade8f907d4a62bdcfedd5fd867e18ce9a34a86	74.106730127533989182	0.0113%
0x8cc7bc33f5188b1fb683bedc4dbffa77b136833b	65.384756680177571293	0.0100%
0x3864bd0f81a7712ce0759cce3f0bd7650e83dee8	64.917220533936325939	0.0099%
0xb8bda02f6bd8a52a1243805cdff2bc71a9369951	41.87127581361494732	0.0064%

Baby Doge Coin Contract Interaction Details

4.3 Contract Function Details


```
$ = payable function
# = non-constant function
[Int] = Internal
[Pub] = Public
[Prv] = Private
[Ext] = External
```

- + [Int] IERC20
 - [Ext] totalSupply
 - [Ext] balanceOf
 - [Ext] transfer #
 - [Ext] allowance
 - [Ext] approve #
 - [Ext] transferFrom #

+ [Lib] SafeMath

- [Int] add
- [Int] sub
- [Int] sub
- [Int] mul
- [Int] div
- [Int] div
- [Int] mod
- [Int] mod

+ Context

- [Int] _msgSender
- [Int] _msgData

+ [Lib] Address

- [Int] isContract
- [Int] sendValue #
- [Int] functionCall #
- [Int] functionCall #

- [Int] functionCallWithValue # - [Int] functionCallWithValue # [Prv] functionCallWithValue # + Ownable (Context) - [Pub] owner - [Pub] renounceOwnership # - modifiers: onlyOwner - [Pub] transferOwnership # - modifiers: onlyOwner [Pub] geUnlockTime - [Pub] lock # - modifiers: onlyOwner - [Pub] unlock # + [Int] IUniswapV2Factory - [Ext] feeTo - [Ext] feeToSetter - [Ext] getPair - [Ext] allPairs - [Ext] allPairsLength - [Ext] createPair # - [Ext] setFeeTo # - [Ext] setFeeToSetter # + [Int] IUniswapV2Pair - [Ext] name - [Ext] symbol [Ext] decimals - [Ext] totalSupply - [Ext] balanceOf - [Ext] allowance - [Ext] approve # - [Ext] transfer # - [Ext] transferFrom # - [Ext] DOMAIN_SEPARATOR - [Ext] PERMIT_TYPEHASH - [Ext] nonces - [Ext] permit # - [Ext] MINIMUM_LIQUIDITY - [Ext] factory - [Ext] token0 - [Ext] token1 - [Ext] getReserves [Ext] price0CumulativeLast [Ext] price1CumulativeLast - [Ext] kLast [Ext] mint # - [Ext] burn #

- [Ext] swap #


```
- [Ext] skim #
  - [Ext] sync #
  - [Ext] initialize #
+ [Int] IUniswapV2Router01
  - [Ext] factory
  - [Ext] WETH
  - [Ext] addLiquidity #
  [Ext] addLiquidityETH $
  - [Ext] removeLiquidity #
  - [Ext] removeLiquidityETH #
  - [Ext] removeLiquidityWithPermit #
  - [Ext] removeLiquidityETHWithPermit #
  - [Ext] swapExactTokensForTokens #
  - [Ext] swapTokensForExactTokens #
  - [Ext] swapExactETHForTokens $
  - [Ext] swapTokensForExactETH #
  - [Ext] swapExactTokensForETH #
  - [Ext] swapETHForExactTokens $
  - [Ext] quote
  - [Ext] getAmountOut

    [Ext] getAmountIn

  - [Ext] getAmountsOut
  - [Ext] getAmountsIn
+ [Int] IUniswapV2Router02 (IUniswapV2Router01)

    [Ext] removeLiquidityETHSupportingFeeOnTransferTokens #

    [Ext] removeLiquidityETHWithPermitSupportingFeeOnTransferTokens #

  - [Ext] swapExactTokensForTokensSupportingFeeOnTransferTokens #

    [Ext] swapExactETHForTokensSupportingFeeOnTransferTokens $

  - [Ext] swapExactTokensForETHSupportingFeeOnTransferTokens #
+ CoinToken (Context, IERC20, Ownable)
  - [Pub] <Constructor> #
  - [Pub] name
  - [Pub] symbol
  - [Pub] decimals
  - [Pub] totalSupply
  - [Pub] balanceOf
  - [Pub] transfer #

    [Pub] allowance

  - [Pub] approve #
  - [Pub] transferFrom #
  - [Pub] increaseAllowance #
  - [Pub] decreaseAllowance #
  - [Pub] isExcludedFromReward
  - [Pub] totalFees
  - [Pub] deliver #
  - [Pub] reflectionFromToken
  - [Pub] tokenFromReflection
```


- [Pub] excludeFromReward # - modifiers: onlyOwner - [Ext] includeInReward # - modifiers: onlyOwner - [Prv] _transferBothExcluded # - [Pub] excludeFromFee # - modifiers: onlyOwner - [Pub] includeInFee # - modifiers: onlyOwner - [Ext] setTaxFeePercent - modifiers: onlyOwner - [Ext] setLiquidityFeePercent - modifiers: onlyOwner - [Pub] setNumTokensSellToAddToLiquidity - modifiers: onlyOwner - [Pub] setMaxTxPercent - modifiers: onlyOwner [Ext] setSwapAndLiquifyEnabled # - modifiers: onlyOwner - [Ext] < Fallback > \$ - [Prv] _reflectFee # [Prv] _getValues - [Prv] _getTValues - [Prv] _getRValues - [Prv] _getRate - [Prv] _getCurrentSupply - [Prv] _takeLiquidity # - [Pub] claimTokens - modifiers: onlyOwner - [Prv] calculateTaxFee - [Prv] calculateLiquidityFee - [Prv] removeAllFee # - [Prv] restoreAllFee # - [Pub] isExcludedFromFee - [Prv] _approve # - [Prv] _transfer # - [Prv] swapAndLiquify # - modifiers: lockTheSwap - [Prv] swapTokensForEth # - [Prv] addLiquidity # - [Prv] _tokenTransfer # - [Prv] _transferStandard # - [Prv] transferToExcluded #

- [Prv] _transferFromExcluded #

4.4 Issues Checking Status

CHECKING ITEM	NOTES	RESULT
Arbitrary Jump with Function Type Variable	N / A	PASS
Arithmetic Accuracy Deviation	N/A	PASS
Assert Violation	N/A	PASS
Authorization through tx.origin	N/A	PASS
Business Logic	N/A	PASS
Code with No Effects	N/A	PASS
Critical Solidity Compiler	N/A	PASS
Delegatecall to Untrusted Callee	N/A	PASS
Design Logic	N/A	LOW RISK
DoS with Block Gas Limit	N/A	LOW RISK
DoS with Failed Call	N/A	PASS
Function Default Visibility	N/A	PASS
Hash Collisions With MVLA	N/A	PASS
Incorrect Constructor Name	N/A	PASS
Incorrect Inheritance Order	N/A	PASS
Integer Overflows and Underflows	N/A	PASS
Lack of Proper Signature Verification	N/A	PASS
Message Call with Hardcoded Gas Amount	N/A	PASS
Missing Protection Against SRA	N/A	PASS
Presence of Unused Variables	N/A	PASS
Reentrancy	N/A	PASS
Requirement Violation	N/A	PASS

CHECKING ITEM	NOTES	RESULT
Right-To-Left-Override Control Character	N/A	PASS
Shadowing State Variables	N/A	PASS
Signature Malleability	N/A	PASS
State Variable Default Visibility	N/A	PASS
Timestamp Dependence	N/A	PASS
Transaction Order Dependence	N/A	PASS
Typographical Error	N/A	PASS
Unencrypted Private Data On-Chain	N/A	PASS
Unexpected Ether balance	N/A	PASS
Uninitialized Storage Pointer	N/A	PASS
Use of Deprecated Solidity Functions	N/A	PASS
Weak Sources of Randomness From CA	N/A	PASS
Write to Arbitrary Storage Location	N/A	PASS

Remark: To evaluate the risk, we go through a list of check items and each would be labeled with a severity category. For one check item, if our tool or analysis does not identify any issue, the contract is considered safe regarding the check item

4.5 Detailed Findings Information

Attention: DoS with Block Gas Limit

The function _getCurrentSupply() also uses the loop for evaluating total supply. It also
could be aborted with OUT_OF_GAS exception if there will be a long excluded addresses
list.

```
function _getCurrentSupply() private view returns(uint256, uint256) {
    uint256 rSupply = _rTotal;
    uint256 tSupply = _tTotal;
    for (uint256 i = 0; i < _excluded.length; i++) {
        if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return (_rTotal, _tTotal);
        rSupply = rSupply.sub(_rOwned[_excluded[i]]);
        tSupply = tSupply.sub(_tOwned[_excluded[i]]);
    }
    if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);
    return (rSupply, tSupply);
}</pre>
```

The function includeInReward() uses the loop to find and remove addresses from the
 _excluded list. Function will be aborted with OUT_OF_GAS exception if there will be a long
 excluded addresses list.

```
function includeInReward(address account) external onlyOwner() {
    require(_isExcluded[account], "Account is already excluded");
    for (uint256 i = 0; i < _excluded.length; i++) {
        if (_excluded[i] == account) {
            _excluded[i] = _excluded.length - 1];
            _towned[account] = 0;
            _isExcluded[account] = false;
            _excluded.pop();
            break;
    }
}</pre>
```

Recommendation: Check that the excluded array length is not too big

Attention: Owner Privileges (in the period when the owner is not renounced)

The owner of the contract can exclude accounts from transfer fees and reward distribution.

```
function excludeFromFee(address account) public onlyOwner {
    _isExcludedFromFee[account] = true;
}
```

Owner can change _TaxFeePercent.

```
function setTaxFeePercent(uint256 taxFee) external onlyOwner() {
   _taxFee = taxFee;
}
```

Owner can change _LiquidityFeePercent.

```
function setLiquidityFeePercent(uint256 liquidityFee) external onlyOwner() {
    _liquidityFee = liquidityFee;
}
```

Owner can lock and unlock.

```
function lock(uint256 time) public virtual onlyOwner {
    _previousOwner = _owner;
    _owner = address(0);
    _lockTime = now + time;
    emit OwnershipTransferred(_owner, address(0));
}

//Unlocks the contract for owner when _lockTime is exceeds
function unlock() public virtual {
    require(_previousOwner == msg.sender, "You don't have permission to unlock");
    require(now > _lockTime , "Contract is locked until 7 days");
    emit OwnershipTransferred(_owner, _previousOwner);
    _owner = _previousOwner;
}
```


5 Audit Result

- 1. The contract utilizes SafeMath libraries along with following the ERC20 standard.
- 2. There is a 'tax fee' and 'liquidity fee' on all transactions for any "non-excluded" address that participates in a transfer. The owner has the ability to modify these fees to any percentage at any time.
- 3. A portion of the tax fee is redistributed to existing token holders instantly and automatically at the time of each transaction.
- 4. The owner of the contract can exclude and include accounts from transfer fees and reward distribution.
- 5. The owner has the ability to set and update a maximum transaction percent at any time, which will impose a limit to the number of tokens that can be transferred during any given transaction.

- 6. This maximum transaction amount does not apply to the owner during transactions where the owner is either the sender or the recipient.
- 7. The owner has the ability to use the 'lock' function in order to temporarily set ownership to address(0). Ownership is restored after the duration of time determined by the owner has passed and they use the 'unlock' function. Ownership can additionally be restored (even if ownership was previously renounced), by using the unlock function a second time.
 - 8. Ownership has not been renounced.

5.1 Findings Summary

Baby Doge Coin Low Risk Level

- √ No external vulnerabilities were identified within the smart contract's code
- ✓ In its current state, the token allocation is considered unhealthy, as there are several \$BabyDoge holders that own more than the amount that is currently in liquidity
- ✓ We strongly recommend that the team renounces ownership
- ✓ Please ensure trust in the team prior to investing as they have substantial control within the ecosystem

6 Disclamer

CheckPoint team issues this report with reference to the facts that have occurred or existed before the issuance of this report, and only assumes corresponding responsibility based on these. For the facts that occurred or existed after the issuance, CheckPoint is not able to judge the security status of this project, and is not responsible for them. The security audit analysis and other contents of this report are based on the documents and materials provided to CheckPoint by the information provider till the date of the insurance report. CheckPoint is not responsible for the background and other conditions of the project.

This security audit is not produced to supplant any other type of assessment and does not guarantee the discovery of all security vulnerabilities within the scope of the assessment. However, we warrant that this audit is conducted with goodwill, professional approach, and competence. Since an assessment from one single party cannot be confirmed to cover all possible issues within the smart contract(s), CheckPoint suggests conducting multiple independent assessments to minimize the risks. Lastly, nothing contained in this audit report should be considered as investment advice.

Website

https://checkpoint.report

E-mail

contact@checkpoint.report

Telegram @checkpointreport

Github

https://github.com/checkpointreport