TYPESETTING MATHEMATICS

 \LaTeX : A Professional Document Preparation System

Ratthaprom PROMKAM ratthaprom_p@rmutt.ac.th

Department of Mathematics and Computer Science Rajamangala University of Technology Thanyaburi

March 25, 2023

AGENDA

- 1. Mathematical Expression
- 2. Mathematics Symbols
- 3. Equations
- 4. Brackets and Parentheses
- 5. Matrices
- 6. Adding text to equations
- 7. Formatting mathematics symbols
- 8. Miscellaneous Commands

MATHEMATICAL EXPRESSION

Let
$$x_0 = x_1 = 2^0 = 1$$
, define $x_{n+2} = x_{n+1}^2 + x_{n}^{2n}$ such that $n \leq 100$.

Let
$$x_0 = x_1 = 2^0 = 1$$
, define

$$x_{n+2} = x_{n+1}^2 + x_n^{2n}$$

such that n < 100.

MATHEMATICS PACKAGES

Typesetting mathematics is one of LATEX's greatest strengths. It is also a large topic due to the existence of so much mathematical notation.

```
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{amsthm}
```

```
\usepackage{mathtools, amssymb, amsthm}
```

These packages introduces several new commands that are more powerful and flexible than the ones provided by basic \LaTeX

MATH MODE: IN-LINE STYLE

```
Let $x\in\mathbb{R}$

→ be a distance

→ between points

→ $a$ and $b$.
```

Let $x \in \mathbb{R}$ be a distance between points a and b.

```
Let

→ \(x\in\mathbb{R}\)

→ be a distance

→ between points

→ \(a\) and \(b\).
```

Let $x \in \mathbb{R}$ be a distance between points a and b.

MATH MODE: DISPLAY STYLE

```
Let $x\in\mathbb{R}$ be

→ a distance between

→ points $a$ and $b$.

→ Therefore,

$$ x = \sqrt{a^2+b^2}

→ $$
```

Let $x \in \mathbb{R}$ be a distance between points a and b. Therefore,

$$x = \sqrt{a^2 + b^2}$$

```
Let $x\in\mathbb{R}$ be

→ a distance between

→ points $a$ and $b$.

→ Therefore,

\[ x = \sqrt{a^2+b^2}

→ \]
```

Let $x \in \mathbb{R}$ be a distance between points a and b. Therefore,

$$x = \sqrt{a^2 + b^2}$$

Avoid using the \$\$... \$\$, as it may cause problems.

SYMBOLS

The following is a set of symbols that can be accessed directly from the keyboard:

Beyond those listed above, distinct commands must be issued in order to display the desired symbols, e.g.,

\forall x \in X, \quad \exists y \leq \epsilon

$$\forall x \in X, \quad \exists y \le \epsilon$$

GREEK LETTERS

\alpha, \beta, \gamma, \Gamma, \pi, \Pi, \phi, \varphi

$$\alpha, \beta, \gamma, \Gamma, \pi, \Pi, \phi, \varphi$$

Symbol	Script	Symbol	Script
A and $lpha$	A and \alpha	N and $ u$	N and \nu
${ m B}$ and eta	B and \beta	Ξ and ξ	\Xi and \xi
Γ and γ	\Gamma and \gamma	O and o	0 and o
Δ and δ	\Delta and \delta	Π , π and $arpi$	\Pi, \pi and \varpi
E , ϵ and $arepsilon$	E, \epsilon and \varepsilon	P , $ ho$ and $arrho$	P, \rho and \varrho
${ m Z}$ and ζ	Z and \zeta	Σ , σ and ς	\Sigma, \sigma and \varsigma
${ m H}$ and η	H and \eta	${ m T}$ and $ au$	T and \tau
Θ , θ and ϑ	\Theta, \theta and \vartheta	Y , Υ and v	Y, \Upsilon and \upsilon
I and ι	I and \iota	Φ , ϕ , and $arphi$	\Phi, \phi and \varphi
K , κ and $arkappa$	K, \kappa and \varkappa	X and χ	X and \chi
Λ and λ	\Lambda and \lambda	Ψ and ψ	\Psi and \psi
M and μ	M and \mu	Ω and ω	\Omega and \omega

OPERATORS

An operator is a function that is written as a word: e.g. trigonometric functions (sin, cos, tan, ...), logarithms (log/ln), exponentials (exp), limits (lim), as well as trace (tr) and determinant (det).

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

For certain operators such as limits, the subscript is placed underneath the operator:

$$\lim_{x \to \infty} \exp(-x) = 0$$

MODULAR OPERATOR

For the modular operator there are two commands:

a **\bmod** b

 $a \bmod b$

x \equiv a \pmod{b}

 $x \equiv a \pmod{b}$

POWERS AND INDICES

Powers and indices are equivalent to superscripts and subscripts in normal text mode.

- The caret (^) character is used to raise something.
- The underscore (_) is for lowering.

$$k_{n+1} = n^2 + k_n^2 - k_{n-1}$$

$$f(n) = n^5 +
\leftrightarrow kn^2|_{k=17}$$

$$k_{n+1} = n^2 + k_n^2 - k_{n-1}$$

$$n^{22}$$

$$f(n) = n^5 + kn^2|_{k=17}$$

FRACTIONS AND BINOMIALS

A fraction is created using the

\frac{numerator}{denominator} command. Likewise, the binomial coefficient may be written using the \binom command.

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

You can embed fractions within fractions:

$$\frac{\frac{1}{x} + \frac{1}{y}}{y - z}$$

CONTINUED FRACTIONS

A continued fraction is created using the \cfrac{numerator}{denominator} command.

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$$

ROOTS

The \sqrt command creates a square root surrounding an expression.

$$\sqrt{\frac{a}{b}}$$

You can embed fractions within fractions:

$$\sqrt[n]{1+x+x^2+\cdots+x^n}$$

SUMS AND INTEGRALS

The \sum and \int commands insert the sum and integral symbols respectively.

$$\sum_{i=1}^{10} t_i$$

$$\label{local_displaystyle} $$ \arrowvert = 1^{10} t_i $$$$

$$\sum_{i=1}^{10} t_i$$

$$\int_0^\infty e^{-x} dx$$

$$\int_{a}^{b}$$

SUBSTACKS

```
\sum_{\substack{
    0<i<m \\
    0<j<n
    }}
P(i,j)
```

$$\sum_{\substack{0 < i < m \\ 0 < j < n}} P(i,j)$$

\sum	\sum	\prod	Π	\coprod	П
\bigoplus	\oplus	\bigotimes	\otimes	\bigodot	\odot
\bigcup	U	\bigcap	\cap	\biguplus	+
\bigsqcup	\sqcup	\bigvee	V	\bigwedge	\wedge
\int	\int	\oint	∮	\iint [3]	\iint
\iiint [3]	\iiint	\iiiint [3]	\iiint	\idotsint [3]	$\int \cdots \int$

NUMBERING EQUATIONS

```
Let $x\in\mathbb{R}$ be a distance between

→ points $a$ and $b$. Therefore,

\begin{equation}

x = \sqrt{a^2+b^2}
\end{equation}
```

Let $x \in \mathbb{R}$ be a distance between points a and b. Therefore,

$$x = \sqrt{a^2 + b^2}. (1)$$

ALIGN EQUATIONS

```
\begin{align}
2 (x+y)^2 & = 2xy, \\
3 2(x+y)^2 & = 4xy, \\
4 2x^2+2y^2 & = 0.
5 \end{align}
```

$$(x+y)^2 = 2xy$$
, (2)

$$2(x+y)^2 = 4xy$$
, (3)

$$2x^2 + 2y^2 = 0. (4)$$

ALIGN EQUATIONS (NO NUMBERING)

```
\begin{align*}
2  (x+y)^2 & = 2xy, \\
3  2(x+y)^2 & = 4xy, \\
4  2x^2+2y^2 & = 0.
5  \end{align*}
```

$$(x + y)^2 = 2xy,$$

 $2(x + y)^2 = 4xy,$
 $2x^2 + 2y^2 = 0.$

ALIGN EQUATIONS (SOME NUMBERING)

```
\begin{align}
(x+y)^2 & = 2xy, \\
\nonumber
2(x+y)^2 & = 4xy, \\
2x^2+2y^2 & = 0.
\end{align}
```

$$(x+y)^2 = 2xy,$$
 (5)
 $2(x+y)^2 = 4xy,$
 $2x^2 + 2y^2 = 0.$ (6)

AN ALIGNED EQUATION

$$x_{n+2} = x_{n+1} + x_n,$$
 $x_0 = 0,$ (7) $x_1 = 1.$

BRACKETS AND PARENTHESES

Types	Commands	Results
Parentheses	(x+y)	(x+y)
Brackets	[x+y]	[x+y]
Braces	\{x+y\}	$\{x+y\}$
Angle Brackets	\langle x+y \rangle	$\langle x + y \rangle$
Pipes	x+y	x+y
Double Pipes	\ x+y\	x+y

BRACKETS AND PARENTHESES

$$F = G\left(\frac{m_1 m_2}{r^2}\right)$$

$$\left[\frac{N}{\left(\frac{L}{p}\right) - (m+n)}\right]$$

```
\begin{matrix}
1 & 2 & 3\\
a & b & c \end{matrix}
```

```
\begin{pmatrix}
1 & 2 & 3\\
a & b & c \end{pmatrix}
```

$$\begin{array}{cccc}
1 & 2 & 3 \\
a & b & c
\end{array}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ a & b & c \end{pmatrix}$$

```
\begin{bmatrix}
1 & 2 & 3\\
a & b & c
\end{bmatrix}
```

\begin{Bmatrix}
1 & 2 & 3\\
a & b & c
\end{Bmatrix}

$$\begin{bmatrix} 1 & 2 & 3 \\ a & b & c \end{bmatrix}$$

$$\begin{cases}
 1 & 2 & 3 \\
 a & b & c
 \end{cases}$$

```
\begin{vmatrix}
1 & 2 & 3\\
a & b & c
\end{vmatrix}
```

```
\begin{Vmatrix}
1 & 2 & 3\\
a & b & c
\end{Vmatrix}
```

$$\begin{bmatrix} 1 & 2 & 3 \\ a & b & c \end{bmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
a & b & c
\end{vmatrix}$$

```
\left\langle
\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}
\right\rvert
```

\left\lVert
\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}
\right\rangle

$$\begin{vmatrix} 1 & 2 & 3 \\ a & b & c \end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
a & b & c
\end{vmatrix}$$

```
A_{m,n} =
  \begin{pmatrix}
  a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
  a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
  \vdots & \vdots & \vdots \\
  a_{m,1} & a_{m,2} & \cdots & a_{m,n} \\
  \end{pmatrix}
```

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

ADDING TEXT TO EQUATIONS

Unformatted Text:

```
50 \text{ apples} \times 100 \text{ apples}
= \text{lots of apples}^2
```

 $50 \text{ apples} \times 100 \text{ apples} = \text{lots of apples}^2$

Formatted Text:

```
50 \textrm{ apples} \times 100
\textbf{ apples} = \textit{lots of apples}^2
```

 $50 \text{ apples} \times 100 \text{ apples} = lots of apples^2$

FORMATTING MATHEMATICS SYMBOLS

Command	Sample
	$ABCDEF\ abcdef\ {\tt 123456}$
\mathrm { }	ABCDEF abcdef 123456
	$ABCDEF\ abcdef\ 123456$
	${f ABCDEF}$ abcdef 123456
\mathsf { }	ABCDEF abcdef 123456
\mathtt { }	ABCDEF abcdef 123456
$\mathbf{mathfrak}\{\dots\}$	ABCDEF abcdef 123456
\mathcal { }	\mathcal{ABCDEF}
$\mathbb{L} $	ABCDEF

ACCENTS

a' or a^{\prime}	a'	a''	a''
\hat{a}	\hat{a}	\bar{a}	$ar{a}$
\grave{a}	\grave{a}	\acute{a}	$cute{a}$
\dot{a}	\dot{a}	\ddot{a}	\ddot{a}
\not{a}	, á	\mathring{a}	å
\overrightarrow{AB}	\overrightarrow{AB}	\overleftarrow{AB}	$\stackrel{\longleftarrow}{AB}$
a'''	a'''	a''''	$a^{\prime\prime\prime\prime}$
\overline{aaa}	\overline{aaa}	\check{a}	\check{a}
\breve{a}	$reve{a}$	\vec{a}	$ec{a}$
\dddot{a} [3]		\ddddot{a} [3]	
\widehat{AAA}	\widehat{AAA}	\widetilde{AAA}	\widetilde{AAA}
\stackrel\frown{AAA}	$A\widehat{A}A$		
\tilde{a}	$ ilde{a}$	\underline{a}	\underline{a}

CONTROLLING HORIZONTAL SPACING

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

Command	Space Size
	11pt
\qquad	22pt
١,	3/18 of quad
\:	4/18 of quad
\ ;	5/18 of quad
\!	-3/18 of quad

RELATIONAL SYMBOLS

Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script
<	<	>	>	=	=		\parallel	ł	\nparallel
≤	\leq	≥	\geq	÷	\doteq	×	\asymp	M	\bowtie
«	Λιι	>>	\gg	=	\equiv	+	\vdash	4	\dashv
C	\subset	⊃	\supset	≈	\approx	€	\in	Э	\ni
⊆	\subseteq	⊇	\supseteq	≅	\cong	$\overline{}$	\smile	^	\frown
⊈	\nsubseteq	⊉	\nsupseteq	~	\simeq	F	\models	∉	\notin
С	\sqsubset		\sqsupset	~	\sim	Т	\perp	1	\mid
⊑	\sqsubseteq	⊒	\sqsupseteq	ox.	\propto	~	\prec	>	\succ
≾	\preceq	≥	\succeq	≠	\neq	∢	\sphericalangle	4	\measuredangle
	\therefore		\hecause						

BINARY OPERATIONS

Symbol	Script	Symbol	Script	Symbol Script		Symbol	Script
±	\pm	Λ	\cap	♦	\diamond	0	\oplus
Ŧ	\mp	U	\cup	Δ	\bigtriangleup	θ	\ominus
×	\times	₩	\uplus	∇	\bigtriangledown	8	\otimes
÷	\div	П	\sqcap	△	\triangleleft	0	\oslash
*	\ast	П	\sqcup	▷	\triangleright	0	\odot
*	\star	V	\vee	0	\bigcirc	0	\circ
†	\dagger	٨	\wedge	•	\bullet	\	\setminus
‡	\ddagger		\cdot	2	\wr	П	\amalg

SET/LOGIC NOTATIONS

Symbol	Script	Symbol	Script
3	\exists	\rightarrow	\rightarrow or \to
∄	\nexists	←	\leftarrow or \gets
A	\forall	\mapsto	\mapsto
7	\neg	\Rightarrow	\implies
Π	\cap		
U	\cup		
C	\subset	←	\impliedby
)	\supset	\Rightarrow	\Rightarrow or \implies
€	\in	\leftrightarrow	\leftrightarrow
∉	\notin	\iff	\iff
∋	\ni	\Leftrightarrow	\Leftrightarrow (preferred for equivalence (iff))
٨	\land	Т	\top
V	\lor	Τ	\bot
	\angle	Ø and Ø	\emptyset and \varnothing [1]
		\Rightarrow	\rightleftharpoons

DELIMITERS AND OTHER SYMBOLS

Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script
	or \mid (difference in spacing)		M	/	1	\	\backslash
{	\{	}	\}	(\langle	>	\rangle
1	\uparrow	1	\Uparrow	Γ	\lceil	1	\rceil
	\downarrow		\Downarrow	L	\lfloor	J	\rfloor

Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script
∂	\partial	ı	\imath	R	\Re	∇	\nabla	Х	\aleph
ð	\eth	J	\jmath	3	\Im		\Box	٦	\beth
ħ	\hbar	l	\ell	p	\wp	∞	\infty	ב	\gimel

Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script
\sin	\sin	arcsin	\arcsin	sinh	\sinh	sec	\sec
cos	\cos	arccos	\arccos	cosh	\cosh	csc	\csc
tan	\tan	arctan	\arctan	tanh	\tanh		
cot	\cot	arccot	\arccot	coth	\coth		

Ratthaprom PROMKAM