Recurrences and Master Theorem

Recurrence for divide and conquer sorting algorithms

One pass through the data reduces problem size by half. Process both halves

- Operation takes constant time c
- Base case takes time d

$$T(1) = d$$

 $T(n) = 2T(n/2) + nc$
 $= nc + 2cn/2 + 4cn/4... + n/2*2c + nd$
 $= c(n-1)log n + nd$

COMP20003 Algorithms and Data Structures

Divide and Conquer: Recurrences to Master Theorem

Most common case:

$$T(n) = 2T(n/2) + n$$

General case:

$$T(n) = aT(n/b) + f(n)$$

 $f(n) \in \Theta(n^{\mathbf{d}})$

Most common case:

$$T(n) = 2T(n/2) + n$$

 $a=2, b=2, d=1$

Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n) $f(n) \in \Theta(n^d)$
- *T(n)* closed form varies, depending on whether:
 - $T(n) \in \Theta(n^d)$ $d > \log_{b}a$
 - $d = log_b a$ $T(n) \in \Theta(n^d \log n)$
 - $T(n) \in \Theta(n^{\log_b a})$ $d < log_b a$

Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n), where a>1, b>1, nd asymptotically positive
- *T(n)* closed form varies, depending on whether:
 - $T(n) \in \Theta(n^d)$ $d > log_b a$
 - $d = log_b a$ $T(n) \in \Theta(n^d \log n)$
 - $d < log_b a$ $T(n) \in \Theta(n^{\log_b a})$

The University of Melbourne COMP 20003 Algorithms and Data Structures

Recurrences and Master Theorem

Where do Θ () solutions to the **Master Theorem come from?**

 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$

Size of subproblems decreases by b

- So base case reached after log_bn levels
- Recursion tree log_bn levels

Branch factor is a

At kth level, have ak subproblems

At level k, total work is then

- $a^k * O(n/b^k)^d$
- (#subproblems * cost of solving one)

Where do ⊕() solutions to the **Master Theorem come from?**

 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$

- •At level k, total work is then
 - $a^k * O(n/b^k)^d = O(n^d) * (a/b^d)^k$
- As k (levels) goes from 0 to log_bn, this is a geometric series, with ratio a/bd
 - $\Sigma O(n^d)^* (a/b^d)^k$

Where do Θ () solutions to the **Master Theorem come from?**

 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$

- Geometric series: O(n^d) * (a/b^d)^k
 - as k goes from 0 → log_bn
- •Case 1: ratio a/b^d< 1
 - $(a/b^d)^k$ gets smaller as k goes from 1 \rightarrow log n
 - a/bd First term is the largest, and is <1
 - O(n^d)

Example for $a/b^d < 1$

 $T(n) = 2T(n/2) + n^2$

433-253 Algorithms and Data Structure

The University of Melbourne COMP 20003 Algorithms and Data Structures

Recurrences and Master Theorem

COMP20003 Algorithms and Data Structures

Where do Θ () solutions to the Master Theorem come from? $T(n) = aT(n/b) + f(n), \ f(n) \in \Theta(n^d)$ • Geometric series: $O(n^d) * (a/b^d)^k$ • as k goes from $0 \to log_b n$ • Case 3: ratio $a/b^d > 1$ • $a/b^d > 1 \to series$ is increasing • Sum dominated by last term: • $O(n^d)(a/b^d)^{log(b)n} = n^{log(b)a}$

The University of Melbourne COMP 20003 Algorithms and Data Structures

Recurrences and Master Theorem

• For more on geometric series, and calculation of closed form, see:

http://www.youtube.com/watch?v=JJZ-shHiayU

• 4 minute tutorial from Rose-Hulman Institute of Technology

COMP20003 Algorithms and Data Structure

1-17