SYMMETRIC BLOCK CIPHERS

		BLOCK		
NAME	KEY SIZE	SIZE	ROUNDS	ALGORITHM
			16	
DES	56 BIT	64 BITS	ROUNDS	FEISTEL
			16	
3DES (Runs DES 3 times)	56 BIT	64 BITS	ROUNDS	FEISTEL
			10 (128),	
			12 (192),	
	128,192, &		14 (256)	SUBSTITUTION- PERMUTATION,
AES	256 BITS	128 BITS	ROUNDS	Rijyndael cipher
BLOWFISH (1993 by Bruce				
Schneider, Key expansion and	32 TO 448		16	FEISTEL, in BCrypt, CrashPlan,
encrypion data)	BITS	64 BITS	ROUNDS	Cryptodisk, DriveCrypt
TWO FISH (Bruce Schneider, Neil	UP TO 256	128	16	
Ferguson, design to replace DES)	BITS	BLOCK	ROUNDS	FEISTEL
SKIPJACK (Design by NSA for the			32	
Clipper Chip)	80 BITS	64 BITS	ROUNDS	UNBALANCE FEISTEL
IDEA (by James Massey & Xuejia				
Lai)	128 BITS	64 BITS	8 Rounds	Lai-Massey Scheme
	128 OR 256		12 < 80 -	
CAST	BITS	64 BITS	16>80	PGP, 8 bit rounds
TEA (by David Wheeler and			64	
Roger Needham)	128 BITS	64 BITS	ROUNDS	FEISTEL
SHARK (by Vincent Rijmen, Joan			6	
Daemen, Erick De Win)	128 BITS	64 BITS	ROUNDS	
RC5 & RC6 (Faster version of		32, 64,		
RC5)	up to 2048	128 BITS	up to 255	
SERPENT (Ross Anderson, Eli	128,192, &		32	
Biham, Lars Knudesen)	256 BITS	128 BITS	ROUNDS	SUBSTITUTION- PERMUTATION

SYMMETRIC ALGORITHM METHODS

IV: INTIALIZING VECTOR (Used with below ↓)

Nonce-Generated IV/Counter IV/Fixed IV/Random IV (↓)

CBC: CYPHER BLOCK CHAINING

CTR: Counter (Stream)

CFB:CIPHER FEEDBACK

OFB: OUPUT FEEDBACK (Stream)

ECB:ELECTRONIC CODE BOOK - each plaintext block encrypts to same length cipher block

PCBC: PROPAGATING CIPHER BLOCK CHAINING - used as a federal standard

ASYMETRIC CIPHERS			
RSA	Leverages prime nur	nber	Most Popular / provides authentication and
	characteristics, 1024	-4096 bit	encryption / authentication through digital
	variable key size, 1 r	ound	signatures
ECC	Leverages discrete	provides au	thentication and encryption/ faster than RSA /
	logarithm	Uses less resources than RSA (Used in smaller devices like	
	characteristics	smartphones) / authentication through digital signatures	
El Gamal	Used in recent version	sions of PGP Extension of Diffie Hellman (DH)/ Similar level	
			of protection as RSA and ECC/ usually the
			slowest
DSA	A Federal Information Processing Standard for digital signatures (FIPS 186)		
Diffie Hellman (DH)	No Authentication /	vulnerable to	Man in the middle attacks

FIPS STANDARDS	Acronyms
FIPS 180-2: Secure Hash Algorithm (SHA-1)	
FIPS 140: Define 4 security levels	OCSP – Online Certificate Status
	Protocol
FIPS 186: Digital Signatures	
FIPS 197: AES	
FIPS 201: Identity Verification	I
FIPS 198: Hash-based Message Authentication Code (HMAC)	

KEY EXCHANGE ALGORITHMS
Diffie Hellman (DH)
Menezes-Qu-Vanstone (MQV)
Key Exchange Algorithm (KEA)
Elliptic Curve DH (ECDH)

RANDOM NUMBER GENERATOR TYPES
Table lookup generators
Hardware generators
Algorithmic (software) generators

Standards	
PKCS #1	RSA Cryptography Standard
PKCS #3	Diffie-Hellman Key Agreement Standard
PKCS #5/RFC 2898	Password-based Encryption Standard
PKCS #8	Private-Key Information Syntax Standard
PKCS #13	Elliptic Curve Cryptography Standard
PKCS #14	Pseudo-random Number Generation
PKCS #15	Cryptographic Token Information Format Standard
RFC 1510	Kerberos Network Authentication Service (V5)
RFC 1321	Message Digest 5 (MD5) hash
RFC 2104	Hash-based Message Authentication Code (HMAC)
RFC 3174	Secure Hash Algorithm (SHA-1)
RFC 2040/PKCS#7	Block padding
NIST 800-38A	CBC (Cipher Block Chaining) cipher mode

NSA SUITE B ALGORITHMS
1: AES
2: AES with Galois/Counter Mode Symmetric
Encryption
2. Elliptic Curvo DCA (ECDCA) Digital Signatures
3: Elliptic-Curve DSA (ECDSA) Digital Signatures
4: Eliptic-Curve DSA (ECDSA) Digital Signatures 4: Eliptic-Curve Diffie-Hellman (ECDH) Key

Secure Channel
OCB: Fast but Patent issues
CCM: Slower than OCB but no known Patent issues
CWC: Speed improvement on CCM/universal hashing/ no
patent issues
GCM: NIST standard block cipher mode/ no patent issues/
improvement on CWC

HASH FUNCTION		
MD5	128 BIT HASH, RFC 1321	
MD6	SUBMITED TO THE NIST SHA-3	
	COMPETITION	
SHA	160 bit hash, SHA-1, SHA-2(SHA-224,	message digests - fixed
	SHA-256, SHA-384, SHA-512), SHA3.	length block of data after a hash function
FORK 256	USES A 512 BITS BLOCKS/ 256 bit Hash	
	Value	
RIPEMD-160	160 BIT HASH, EXIST 128, 256 AND 320	
	VERSIONS	

GOST	DEFINED BY RUSSIAN NATIONAL STANDARD, 256 BITS OUTPUT	
TIGER	192 BITS HASH FUNCTION	
MAC & HMAC	A MAC USESES A BLOCK CIPHER IN CBC	
	MODE TO IMPROVE INTEGRITY	

WIFI ENCRYPTION	
WEP (Wired Equivalent Privacy)	RC4 (128 bits or 256 to secure data and CRC-32 for checksum.
WPA Wi-Fi	PSK (Preshared Key & TKIP)
WPA2	802.1x, introduces CCMP (Counter Mode with Cipher Block Chaining)

NUMBER THEORY
PRIME NUMBERS: any number whose factors are 1 and itself only.
CO-PRIMES: A number that has no factors in common with another number.
EULER'S TOTIENT: Part of RSA.
MODULUS OPERATOR: is the reminder of divide A by N
FIBONACCI NUMBERS: adding the last 2 numbers create next
BIRTHDAY PARADOX: Related to hashes and collision.
BIRTHDAY ATTACK: Brute force attack against hashes.

LINEAR CONGRUENTIAL GENERATORS

The algorithm is: Xn+1=(aXn+c)Mod m where n>0

LAGGED FIBONACCI GENERATOR (LFG)

formula: y= X^k+X^j+1. can be Additive LFG, Multiplicative LFG or Two-tap LFG

BLUM BLUM SHUB

The algorithm is: Xn+1=Xn² Mod m

YARROW

BY Bruce Schneider, john Kesley & Niels Ferguson, supplanted by Fortuna

FORTUNA

Group of PRNGs. 3 main components: generator, entropy accumulator and seed file.

DIFFIE HELLMAN

Use to share a key over insecure channel.

RSA (Rivest Shamir Adleman)

relationship with prime numbers, security derives from large prime numbers

encryption: =Me% n decryption: P=Cd % n

MENEZES-QU-VANSTONE

is a protocol for key agreement base on diffie hellman, IEEE P1363

Elliptical Curve (EC): y²=x³ + Ax + B

SYMMETRIC

SYMMETRIC DECRYPTION: P =	E(k,c)
SYMMETRIC ENCRYPTION: C = E(k,p)	

Variables		
Ke	secret key	
E	encryption	
D	Decryption	
m	Message	
a	message authentication code	
h	MAC function	
P	public key	PKI
S	secret key	PKI
S	signature	
V	verification key	
P	plain text	padding
C	cipher text	padding
I (P)	length of Plaintext in bytes	padding
b	block size	padding
K	number of blocks	padding
K_0	Key Stream	
\oplus	XOR	
M	blocks in total	Chances of a Collision expect the first
		duplicate ciphertext block
n	block size of the block cipher	Chances of a Collision expect the first
		duplicate ciphertext block
h	iterative hash function	
T	tag	MAC

NOTABLE DATES IN TIME		
1466	Cipher disk invented by Leon Alberti	
1553	Vigenere Cipher invented by Giovan Battista Bellaso	
1854	Playfair Cipher invented by Charles Wheatstone	
1863	1st successful attack on the Vigenere cipher published by	
	Friedrich Kasiski	
1918	ADFGVX Cipher invented by Colonel Fritz Nebel	
1918	Enigma Machine invented in 1918 by Arthur Scherbius	
WWII	Enigma Machine used by the Germans	
1977	RSA invented by Ron Rivest, Adi Shamir, and Len Adleman	
1988	X.509 first use	
1991	DSA filed and attributed to David Kravitz US Patent 5,231,668	

1993	DSA adopted by US Government with FIPS 186
1993	FISH (Fibonacci Shrinking) published by Siemens
1995	TIGER designed by Ross Anderson
2001	AES (Rijndael) announced as replacement for DES FIPS 197

Historical Ciphers		
Mono-Alphabet Substitution Ciphers: (Single Alphabet)		
Atbash	Reverses the alphabet (A becomes Z, B becomes Y)	
Ceasar	Choose some number by which to shift each letter of the	
	message. (right is "+" left is	
	"-" A "+2" = C C "-1" = B)	
ROT-13	Rotate all characters 13 letters through the alphabet (A	
	becomes N, B becomes O)	
Scytale	Use of a rod of a certain length to create/encrypt a message,	
	and same rod must be used	
	to read/decrypt the message by the recipient	
Multi-Alphabet Substitution	add complexity by adding alphabets to be used for the	
	substitution rounds.	
	Example: We are using three alphabets to do the shifting,	
	each represented by a "+" or a "-"	
	value. When we run out of alphabets, we start over again with the first one, effectively "roundrobining"	
	through the text until it is all shifted.	
	till ough the text until it is all sillited.	
A DOG (+1-2+1)		
B BPH		
The cipher disk	a physical device used to encrypt. Invented by Leon Alberti in 1466. The cipher	
	disk was polyalphabetic; each time you turned the disk, you used a new cipher.	
The Vigenère cipher	invented in 1553 by Giovan Battista Bellaso, but is named for Blaise de Vigenère who developed a stronger version of the cipher. It is a method of encrypting by using a series of interwoven Caesar ciphers based on the letters of a keyword. It is considered a polyalphabetic cipher system. Friedrich Kasiski published the first successful attack against the Vigenère cipher in 1863.	
The Playfair Cipher	invented by Charles Wheatstone in 1854. Uses a five-by-five table containing a keyword or key phrase. To generate the key table, one would first fill in the spaces in the table with the letters of the keyword (dropping any duplicate letters), then fill in the remaining spaces with the rest of the letters of the alphabet in order. The technique encrypts pairs	

	of letters (digraphs), instead of single letters as in the simple substitution cipher. The Playfair is m n p q s br> t u v w x br>
The ADFGVX Cipher	The key for this algorithm is a six-by-six square made up of the letters ADFGVX forming the outer row and column, the rest of the table is comprised of the letters of the alphabet and the numbers 0 through 9 distributed randomly in the square.
The ENIGMA Machine	a multi-alphabet substitution cipher using machinery to accomplish the encryption. In World War II, the Germans used this as an electromechanical rotor-based cipher system.
Affine cipher	The Affine cipher is a type of monoalphabetic substitution cipher, wherein each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter.

 Like OFB, Counter mode turns a block cipher into a stream cipher. It generates the next keystream block by encrypting successive values of a "counter".

Counter (CTR) mode encryption

Propagating Cipher Block Chaining (PCBC) – Each block of plaintext is XORed with the XOR of the previous plaintext block and the previous ciphertext block before being encrypted. As with CBC mode, an initialization vector is used in the first block.

Propagating Cipher Block Chaining (PCBC) mode encryption

Cipher Block Chaining (CBC) – Each block of plaintext is XORed with the previous ciphertext block before being encrypted. This way, each ciphertext block depends on all plaintext blocks processed up to that point. To make each message unique, an initialization vector must be used in the first block.

Cipher Block Chaining (CBC) mode encryption

Cipher Feedback (CFB): Allows encryption of partial blocks rather than requiring full blocks for encryption. This eliminates the need to pad a block like in CBC.

Cipher Feedback (CFB) mode encryption

The Output Feedback (OFB) mode makes a block cipher into a synchronous stream cipher. It generates keystream blocks, which are then XORed with the plaintext blocks to get the ciphertext.

Output Feedback (OFB) mode encryption

Electronic Code Book (ECB) - Each block is encrypted independently, BUT identical plaintext blocks are encrypted into identical ciphertext blocks

Electronic Codebook (ECB) mode encryption