

An Elementary Proof of Lyapunov's Theorem

Author(s): David A. Ross

Source: The American Mathematical Monthly, Aug. - Sep., 2005, Vol. 112, No. 7 (Aug. -

Sep., 2005), pp. 651-653

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of

America

Stable URL: https://www.jstor.org/stable/30037551

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/30037551?seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

 $\textit{Taylor \& Francis}, \ \textit{Ltd.} \ \ \text{and} \ \ \textit{Mathematical Association of America} \ \ \text{are collaborating with JSTOR} \ \ \text{to digitize}, \ \text{preserve and extend access to} \ \ \textit{The American Mathematical Monthly}$

- 6. M. Grady and M. Newman, Residue periodicty in subgroup counting functions, *Contemp. Math.* **166** (1994) 265–273
- 7. ——, Counting subgroups of given index in Hecke groups, *Contemp. Math.* **143** (1993) 431–436.
- 8. E. Grosswald, Topics from the Theory of Numbers, Birkhäuser, Boston, 1984.
- 9. M. Hall, Subgroups of finite index in free groups, Canad. J. Math. 1 (1949) 187–190.
- 10. G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 5th ed., Clarendon, Oxford, 1979.
- 11. M. Newman, Integral Matrices, Academic Press, New York, 1972.
- 12. H. Wilf, generatingfunctionology, Academic Press, San Diego, 1990.
- 13. K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Arch. Math. 29 (1977) 455-457.

Department of Mathematics and Computer Science, Southern Utah University, 351 W. Center St., Cedar City, Utah, 84720
gradym@suu.edu

An Elementary Proof of Lyapunov's Theorem

David A. Ross

1. INTRODUCTION. The early proofs for Lyapunov's theorem on the convexity of vector measures are long and elaborate (see [3] or [2]). More recent proofs use powerful tools such as the theorems of Banach-Alaoglu and/or Krein-Milman (see [4], [1], [5], [6], or [7]). In this note we obtain the Lyapunov theorem as a consequence of the intermediate value theorem.

Suppose that $\mu_1, \mu_2, \dots, \mu_n$ are finite atomless measures on (X, A). (Recall that a measure μ is *atomless* provided for any E with $\mu E > 0$ there is a subset A of E with $0 < \mu A < \mu E$.) Denote by $\mu = (\mu_1, \dots, \mu_n)$ the corresponding \mathbb{R}^n -valued measure.

Theorem 1 (Lyapunov). The set $\{\mu E : E \in A\}$ is convex.

This result is an application of the following, more elaborate theorem:

Theorem 2.

- (LT1) For each E in A and r in [0, 1] there is a subset A of E with A in A and $\mu A = r \mu E$.
- (LT2) For each E in A there is an r in (0, 1) and a subset A of E with A in A and $\mu A = r \mu E$.
- (LT3) For each E in A there is a subfamily $\{A_r\}_{r\in[0,1]}$ of A such that $A_r\subseteq A_s\subseteq E$ whenever $0\leq r\leq s\leq 1$ and $\mu A_r=r\mu E$ for each r in [0,1].

To see that Lyapunov's theorem follows from Theorem 2, let E and F belong to A, and let $0 \le r \le 1$. By LT1 there are subsets E_1 of $E \setminus F$ and F_1 of $F \setminus E$ with $\mu E_1 = r\mu(E \setminus F)$ and $\mu F_1 = (1-r)\mu(F \setminus E)$. Then $\mu(E_1 \cup [E \cap F] \cup F_1) = r\mu E + (1-r)\mu F$.

The proof of Theorem 2 is carried out by an induction on the number n of atomless measures. It is convenient to assume LT3, the strongest of the three statements, as the induction hypothesis for n measures, then prove the weakest of the statements, LT2, for n+1 measures. We therefore need to show that LT1, LT2, and LT3 are equivalent, in the sense that a vector measure μ satisfying any one of the statements must satisfy all three. The proof of this equivalence is postponed until the last section.

Given the measures μ_1, \ldots, μ_n , put

$$\nu = (\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \dots, \mu_1 + \dots + \mu_n).$$

If A belongs to \mathcal{A} and $\nu A = r\nu E$, then one readily verifies that $\mu A = r\mu E$. It follows that we may always assume that $\mu_1 \ll \mu_2 \ll \cdots \ll \mu_n$, where \ll signifies absolute continuity of measures.

2. PROOF OF THEOREM 2. When n=1, LT2 is simply the definition of atomlessness for μ_1 , so Theorem 2 is immediate. We proceed by induction on n. Suppose that Theorem 2 holds for up to n measures, and that E in \mathcal{A} and measures $\mu_1, \mu_2, \ldots, \mu_{n+1}$ are given. Put $\boldsymbol{\nu}=(\mu_2,\ldots,\mu_{n+1})$. By two applications of LT1 there are disjoint sets E^1 , E^2 , and E^3 in \mathcal{A} with $E=E^1\cup E^2\cup E^3$ and $\boldsymbol{\nu}E^i=(1/3)\boldsymbol{\nu}E$ for each i. By LT3, there is for each i a subfamily $\{A_r^i\}_{r\in[0,1]}$ of \mathcal{A} such that $A_r^i\subseteq A_s^i\subseteq E^i$ whenever $0\leq r\leq s\leq 1$ and $\boldsymbol{\nu}A_r^i=r\boldsymbol{\nu}E^i=(r/3)\boldsymbol{\nu}E$. We may assume that $A_1^i=E^i$.

There are now three cases to consider.

Case 1: $\mu_1 E^i = (1/3)\mu_1 E$ for some i. Since also $\nu E^i = (1/3)\nu E$, LT2 holds with r = 1/3.

Case 2: for some choice of i_1 , i_2 , and i_3 ,

$$\mu_1 E^{i_1} \ge \mu_1 E^{i_3} > (1/3)\mu_1 E > \mu_1 E^{i_2}.$$

For definiteness, take $i_1 = 1$, $i_2 = 2$, and $i_3 = 3$. Define a subfamily $\{A_r\}_{r \in [0,1]}$ of \mathcal{A} by

$$A_r = \begin{cases} A_{3r}^1 & \text{if } 0 \le r \le 1/3; \\ A_1^1 \cup A_{3r-1}^2 & \text{if } 1/3 < r \le 2/3; \\ A_1^1 \cup A_1^2 \cup A_{3r-2}^3 & \text{if } 2/3 < r \le 1. \end{cases}$$

One readily verifies that $\nu A_r = r\nu E$ for r in [0, 1]. If $\mu_1 E = 0$, then case 1 applies. Otherwise the function ϕ given on [0, 1] by $\phi(r) = \mu_1 A_r / \mu_1 E$ is well defined. Note that ϕ is increasing. Also, the assumption that $\mu_1 \ll \mu_2$ ensures that ϕ is continuous. Moreover.

$$\phi(1/3) = \frac{\mu_1 A_1^1}{\mu_1 E} = \frac{\mu_1 E^1}{\mu_1 E} > 1/3,$$

and

$$\phi(2/3) = \frac{\mu_1(A_1^1 \cup A_1^2)}{\mu_1 E} = \frac{\mu_1(E^1 \cup E^2)}{\mu_1 E} = \frac{\mu_1 E - \mu_1 E^3}{\mu_1 E} < 1 - 1/3 = 2/3.$$

By the intermediate value theorem, $\phi(r) = r$ for some r in (1/3, 2/3). In other words, $\mu_1 A_r = r \mu_1 E$. Since already $\nu A_r = r \nu E$, $A = A_r$ ensures that LT2 holds.

Case 3: for some choice of i_1 , i_2 , and i_3 ,

$$\mu_1 E^{i_1} \le \mu_1 E^{i_3} < (1/3)\mu_1 E < \mu_1 E^{i_2}.$$

In this case the argument from case 2 applies without change, except now $\phi(1/3) < 1/3$ and $\phi(2/3) > 2/3$.

This exhausts the cases (since $\mu_1 E = \mu_1 E^1 + \mu_1 E^2 + \mu_1 E^3$), and proves the theorem.

3. EQUIVALENCE OF LT1, LT2, AND LT3. The implications

$$LT3 \Rightarrow LT1 \Rightarrow LT2$$

are clear. Assume then that LT2 holds, and fix a set E in A. If A is a subset of E that belongs to A, r is in [0, 1], and $\mu A = r\mu E$, then write $r_A = r$. Let \mathcal{E} be the set of all such A. Order \mathcal{E} by $A \lhd B$ if $A \subseteq B$ and $r_A < r_B$. Let \mathcal{C} be a maximal chain in \mathcal{E} with \emptyset and E belonging to \mathcal{C} . Put $I = \{r_A : A \in \mathcal{C}\}$. It suffices to show that I = [0, 1] (since we can then take $\{A_r\}_{r \in [0,1]} = \mathcal{C}$).

Suppose (in search of a contradiction) that a is a point of (0, 1) that is not in I. Put

$$a_{\infty} = \sup (I \cap [0, a)) \le a$$

and

$$b_{\infty} = \inf (I \cap (a, 1]) \ge a.$$

There exist A_n and B_n in \mathcal{E} for $n=1,2,3,\ldots$ such that r_{A_n} increases to a_∞ and r_{B_n} decreases to b_∞ . Put $A_\infty = \bigcup_n A_n$ and $B_\infty = \bigcap_n B_n$. It is easy to see that A_∞ and B_∞ are members of \mathcal{E} with $a_\infty = r_{A_\infty}$ and $b_\infty = r_{B_\infty}$. Since \mathcal{C} is simply ordered, $A_\infty = \bigcup \{A \in \mathcal{C} : r_A < a\}$ and $B_\infty = \bigcap \{A \in \mathcal{C} : r_A > a\}$. Because \mathcal{C} is maximal, A_∞ and B_∞ belong to \mathcal{C} , and $(a_\infty, b_\infty) \cap I = \emptyset$.

By LT2 there is a subset C of $B_{\infty} \setminus A_{\infty}$ with $\mu C = r\mu(B_{\infty} \setminus A_{\infty})$. Then $A_{\infty} \cup C$ is in \mathcal{E} and $a_{\infty} < r_{(A_{\infty} \cup C)} < b_{\infty}$, so $\mathcal{C} \cup \{A_{\infty} \cup C\}$ is a chain in \mathcal{E} that properly extends \mathcal{C} , a contradiction.

REFERENCES

- Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990) 89–91.
- 2. P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948) 416–421.
- A. Liapounoff, Sur les fonctions-vecteurs complétement additives, Bull. Acad. Sci. URSS Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940) 465–478.
- 4. J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966) 971–972.
- 5. F. Tardella, A new proof of the Lyapunov convexity theorem, SIAM J. Control Optim. 28 (1990) 478-481.
- 6. D. Wulbert, Lyapounov's and related theorems, Proc. Amer. Math. Soc. 108 (1990) 955–960.
- 7. J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971) 351–353.

Department of Mathematics, University of Hawaii, Honolulu, HI 96822 ross@math.hawaii.edu