

Course: OSF Operações Sólido Fluido Solid Fluid Operations

LEQB/MEQB, 2023/24

Chemical and Biological Engineering Section, Department of Chemistry, FCTNOVA

OSF/FCTNOVA

Instructors

- Prof. Rui Oliveira (T, TP)
 - Office 628 DQ
 - Email: rmo@fct.unl.pt
- Prof. Isabel Esteves (TP, P)
 - Office 226 DQ/Lab 513 DQ
 - Email: i.esteves@fct.unl.pt

OSF-FCTUNL

14

III - MOVIMENTO DE PARTÍCULAS NUM FLUIDO

MOVEMENT OF PARTICLES IN A FLUID

OSF-FCTUNL

Problema III.2

Calcular a velocidade limite de uma bola de aço com 2 mm de diâmetro (massa específica = 7.87 g/cm³) em óleo (massa específica 0.9 g/cm³, viscosidade 50 mN s m⁻²).

OSF-FCTUNL

$$F = 3\pi u u d$$

$$F_{g,a} = \frac{\pi d^3}{6} (\rho_s - \rho)g$$

Se a lei de Stokes é válida, Re' > 0.2 (limite teórico)

$$3\pi\mu ud = \frac{\pi d^3}{6}(\rho_s - \rho)g$$

$$u = \frac{d^2(\rho_s - \rho)g}{18\mu}$$

Não estamos em regime laminar e logo a lei de Stokes não é válida.

 $1 \text{ cP} = 1 \text{ mN s/m}^2 = 0.001 \text{ kg m}^{-1}\text{s}^{-1}$

16

Método Gráfico

Factor de fricção
$$\frac{R'}{\rho u^2} = \frac{F}{\rho u^2 \left(\pi d^2/4\right)}$$

"If the drag force equals the apparent weight of the sphere then the accelaration is zero and the sphere settles at a constant velocity u_0 ":

$$F = \frac{\pi d^3}{6} (\rho_s - \rho) g$$

$$\frac{R_0'}{\rho u_0^2} = \frac{\frac{\pi d^3}{6} (\rho_s - \rho)g}{\rho u_0^2 \left(\pi d^2 / 4\right)} = \frac{\pi}{6} \frac{4d^3 (\rho_s - \rho)g}{\rho u_0^2 \pi d^2} = \frac{2}{3} \frac{d(\rho_s - \rho)g}{\rho u_0^2}$$

$$Re'_0 = \frac{u_0 d\rho}{\mu}$$

$$Re'_{0} = \frac{u_{0}d\rho}{\mu}$$

$$\frac{R'_{0}}{\rho u_{0}^{2}} Re'_{0}^{2} = \frac{2}{3} \frac{d(\rho_{s} - \rho)g}{\rho u_{0}^{2}} \left(\frac{u_{0}d\rho}{\mu}\right)^{2}$$

$$\frac{R_0'}{\rho u_0^2} R e'_0^2 = \frac{2}{3} \frac{d^3 (\rho_s - \rho) \rho g}{\mu^2} = \frac{2 \times 0.002^3 (7870 - 900) 900 \times 9.81}{3 \times 0.05^2} = 131.28$$

Ou em alternativa pode usar-se... a Tabela 3.4 livro C&R (pp. 157):

$$\log \frac{R_0'}{\rho u_0^2} Re_0'^2 = \log(131.28) = 2.11$$

$$logRe'_0=0.817$$

$$Re_0' = 6.56$$

$$u_o = \frac{Re'_0\mu}{\rho d} = 6.56 \times \frac{0.05}{900 \times 0.002} = 0.18 \text{ m/s}$$

$Re'_0 =$	$u_0 d\rho$	
ne 0 –	μ	

 $Re'_0 = 6.5$

$$u_o = \frac{Re'_0\mu}{\rho d} = 6.5 \times \frac{0.05}{900 \times 0.002} = 0.18 \text{ m/s}$$

Table 3.4.	Values	of log R	e' as a fi	unction o	$f \log\{(R')\}$	$/\rho u^2)Re'$	2} for spl	nerical pa	rticles	
$\log\{(R'/\rho u^2)Re'^2\}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Ž								3.620	3.720	3.819
ī	3.919	2.018	$\bar{2}.117$	$\bar{2}.216$	2.315	2.414	$\bar{2}.513$	$\bar{2}.612$	$\bar{2}.711$	2.810
0	2.908	1.007	1.105	$\bar{1}.203$	$\bar{1}.301$	1.398	$\bar{1}.495$	1.591	1.686	1.781
1	1.874	1.967	0.008	0.148	0.236	0.324	0.410	0.495	0.577	0.659
→ 2	0.738	0.817	0.895	0.972	1.048	1.124	1.199	1.273	1.346	1.419
3	1.491	1.562	1.632	1.702	1.771	1.839	1.907	1.974	2.040	2.106
4	2.171	2.236	2.300	2.363	2.425	2.487	2.548	2.608	2.667	2.725
5	2.783	2.841	2.899	2.956	3.013	3.070	3.127	3.183	3.239	3.295

Ou ainda em alternativa, em regime de escoamento de transição, tem-se

$$\frac{R_0'}{\rho u_0^2} = \frac{2}{3} \frac{d(\rho_s - \rho)g}{\rho u_0^2} \quad \stackrel{\text{e}}{=} \quad \frac{R_0'}{\rho u_0^2} = \frac{12}{Re'} (1 + 0.15Re'^{0.687})$$

$$Re'_0 = \frac{u_0 d\rho}{\mu}$$

$$\frac{12}{Re'_0}(1+0.15Re'^{0.687}) = \frac{2}{3}\frac{d(\rho_s - \rho)g}{\rho u_0^2}$$

$$\frac{12}{Re'_0}(1+0.15Re'^{0.687}) = \frac{2}{3}\frac{d^3(\rho_s-\rho)\rho g}{\frac{d^2\rho^2u_0^2}{\mu^2}\mu^2}$$

$$\frac{12}{Re'_0}(1+0.15R{e'}^{0.687}) = \frac{2}{3}\frac{d^3(\rho_s - \rho)\rho g}{Re'_0^2\mu^2}$$

$$Re'_0 \left(1 + 0.15Re'^{0.687}\right) - \frac{1}{18} \frac{d^3(\rho_s - \rho)\rho g}{\mu^2} = 0$$

$$Re'_0 = 6.987 = \frac{u_0 d\rho}{\mu}$$

$$u_0 = \frac{6.987 \times 0.05}{900 \times 0.002} = 0.19 \text{ m/s}$$

Problema III.1

Sujeita-se a elutriação uma mistura finamente moída de galena e calcário na proporção de 1 para 4 em massa, mediante uma corrente ascendente de água, que flui a 0.5 cm/s. Supondo que a distribuição de tamanhos é a mesma para ambos os materiais e corresponde à que se indica no quadro seguinte, faça a estimativa da percentagem de galena no material arrastado e no material que fica para trás. Considere a viscosidade absoluta da água igual a 1 mN s m-2 e use a equação de Stokes.

• Diâmetro (mícrons)

20

30

50

60

70

100

80

78

• % em peso de finos

28

40

54

64

88

Dados: densidade da galena =7.5; densidade do calcário=2.7

OSF-FCTUNL 20 1) Determinar o regime de escoamento do fluido, onde o maior Reparticula será o de diâmetro maior de partícula.

$$Re' = \frac{ud\rho}{\mu} = \frac{0.005 \text{ m/s} \times 100 \times 10^{-6} \text{m} \times 1000 \text{ kg/m}^3}{1 \times 10^{-3} \text{ N s/m}^2} = 0.5$$

O regime de escoamento é laminar, pelo que a lei de Stokes se aplica.

$$u_0 = \frac{d^2(\rho_s - \rho)g}{18\mu}$$

Terminal fall velocity, u_0

If the drag force equals the apparent weight of the sphere then the accelaration is zero and the sphere settles at a constant velocity u_0 :

$$F = \frac{\pi d^3}{6} (\rho_s - \rho) g$$

For laminar flow ($\dot{R}e < 0.2$), then stoke's law holds:

$$3\pi\mu u_0 d = \frac{\pi d^3}{6} (\rho_s - \rho)$$

$$3\pi\mu u_0 d = \frac{\pi d^3}{6} (\rho_s - \rho)g$$
 $u_0 = \frac{d^2(\rho_s - \rho)g}{18\mu}$ $\Re e < 0.2$

For turbulent flow ($10^3 \le \acute{R}e \le 10^5$), then Newton's law holds:

$$0.055\pi d^2 \rho u_0^2 = \frac{\pi d^3}{6} (\rho_s - \rho)g$$
 $u_0 = \sqrt{\frac{3d(\rho_s - \rho)g}{\rho}}$

Galena

$$0.005 = \frac{d^2(7500 - 1000)9.81}{18 \times 10^{-3}}$$

$$d_{galena} = 3.76 \times 10^{-5} = 37.6 \ \mu \text{m}$$

Calcário

$$0.005 = \frac{d^2(2700 - 1000)9.81}{18 \times 10^{-3}}$$

$$d_{calcario} = 7.35 \times 10^{-5} = 73.5 \,\mu\text{m}$$

Diâmetros das partículas no limite de separação, i.e., partículas de galena < 37.6 μm e de calcário < 73.5 μm serão removidas na corrente de água.

Diâmetro (mícrons) 20 % em peso de finos 15 30 28 48

50 60 54

70 80 72 78

100 88

Percentagem de tamanho de partícula de galena < 37.6 μm arrastada no fluído

$$\frac{(48-28)}{(40-30)}(37.6-30) + 28 = 43.2\%$$

Percentagem de tamanho de partícula de calcário < 73.5 μm arrastado no fluído

$$\frac{(78-72)}{(80-70)}(73.5-70) + 72 = 74.1\%$$

Conclusão:

Em 100 kg de alimentação, na proporção de 1 para 4 em massa, vem 20 kg de galena e 80 kg de calcário. Então, remove-se 0.432 × 20 = 8.64 kg galena e 0.741 × 80 = 59.28 kg calcário, sedimentando 20 - 8.64 = 11.36 kg galena e 80 - 59.28 = 20.72 kg calcário.

Em 100 kg de alimentação, é arrastado um total de 8.64 + 59.28 = 67.92 kg de sólidos, sendo 8.64 × 100/67.92 = 12.72 %-massa galena e 59.68×100/67.92 = 87.89%-massa calcário. O restante de sólidos sedimenta.

Problema III.4

Quais são as velocidades de sedimentação de placas de mica com 1 mm de espessura e áreas na gama de 6 a 600 mm² num óleo de densidade 0.82 e viscosidade 10 mN s m⁻². A densidade da mica é 3.0.

Particulas não-esféricas - método de Heywood de 6 passos (pp. 166, C&R)

- 1. Determinar o diâmetro médio projetado da partícula, d_n
- 2. Determinar o fator de volume, k'
- 3. Refazer balanços de força para geometria não esférica na sua forma adimensional
- 4. Determinar Reynolds, $log_{10}(Re')$, da Figura 3.6 ou Tabelas 3.4-3.5 como se fosse uma partícula esférica (pp. 157, 158, 161 livro C&R)
- 5. Correções de $log_{10}(Re')$ obtido no passo 4 (partículas esféricas) usando as Tabelas 3.7 e 3.8 devido a geometria não-esférica (pp. 166-167 livro C&R)
- 6. Determinar u_0 de $log_{10}(Re')$ obtido no passo 5

OSF-FCTUNL 23

	Partículas menores	Partículas maiores
A (m ²)	6×10 ⁻⁶	600×10 ⁻⁴
$d_{\rm p}$ (m) diâmetro médio projetado	$\sqrt{\frac{4 \times 6 \times 10^{-6}}{\pi}} = 2.76 \times 10^{-3}$	$\sqrt{\frac{4 \times 6 \times 10^{-4}}{\pi}} = 2.76 \times 10^{-2}$
V (m ³)	$V = 6 \times 10^{-6} \times 1 \times 10^{-3} = 6 \times 10^{-9}$	$V = 6 \times 10^{-4} \times 1 \times 10^{-3} = 6 \times 10^{-7}$
k'	0.284	0.0284

1 e 2

$$A_p = \frac{\pi d_p^2}{4} \Leftrightarrow \boxed{d_p = \sqrt{\frac{4A_p}{\pi}}}$$

Which face to choose? The one with largest Ap!

$$V_p = k'd_p^3 \Leftrightarrow k' = \frac{V_p}{d_p^3}$$

$$\frac{R'}{\rho u^2} Re'^2 = \frac{4k' \rho d_p^3 (\rho_s - \rho)g}{\mu^2 \pi}$$

Partículas menores
$$\frac{R'}{\rho u^2}Re'^2=1338.94$$

$$log\left(\frac{R'}{\rho u^2}Re'^2\right)=3.127$$

Partículas maiores
$$\frac{R'}{\rho u^2}Re'^2=133893.6$$

$$\log\left(\frac{R'}{\rho u^2}Re'^2\right)=5.127$$

Determinar Reynolds, log₁₀(Re'), da Figura 3.6 ou Tabelas 3.4-3.5 como se fosse uma partícula esférica (pp. 157, 158, 161 livro C&R)

Partículas menores
$$\frac{R'}{\rho u^2} Re'^2 = 1338.94$$

$$log\left(\frac{R'}{\rho u^2}Re'^2\right) = 3.127 \longrightarrow log\left(Re'\right) = 1.562$$

Partículas maiores

$$\frac{R'}{\rho u^2} Re'^2 = 133893.6$$

$$log\left(\frac{R'}{\rho u^2}Re'^2\right) = 5.127 \longrightarrow \log\left(\text{Re'}\right) = 2.841$$

Correções de $\log_{10}(\text{Re'})$ obtido no passo 4 (partículas esféricas) usando as Tabelas 3.7 e 3.8 devido a geometria não-esférica (pp. 166-167 livro C&R)

Table 3.7. Corrections to $\log Re'$ as a function of $\log \{(R'/\rho u^2)Re'^2\}$ for non-spherical particles

Table 3.8.	Corrections	to	$\log Re'$	as	a	function	of	$\{\log(R'/\rho u^2)Re'^{-1}\}$	fo
						particles			

$\log\{(R'/\rho u^2)Re'^2\}$	k' = 0.4	k' = 0.3	k' = 0.2	k' = 0.1
- 2	-0.022	-0.002	+0.032	+0.131
ī	-0.023	-0.003	+0.030	+0.131
0	-0.025	-0.005	+0.026	+0.129
1	-0.027	-0.010	+0.021	+0.122
2	-0.031	-0.016	+0.012	+0.111
2.5	-0.033	-0.020	0.000	+0.080
→ 3	-0.038	-0.032	-0.022	+0.025
3.5	-0.051	-0.052	-0.056	-0.040
4	-0.068	-0.074	-0.089	-0.098
4.5	-0.083	-0.093	-0.114	-0.146
→ 5	-0.097	-0.110	-0.135	-0.186
5.5	-0.109	-0.125	-0.154	-0.224
6	-0.120	-0.134	-0.172	-0.255

$\log\{(R'/\rho u^2)Re'^{-1}\}$	k' = 0.4	k' = 0.3	k' = 0.2	k' = 0.1	
4	+0.185	+0.217	+0.289		
4.5	+0.149	+0.175	+0.231		
3	+0.114	+0.133	+0.173	+0.282	
4.5 3 3.5	+0.082	+0.095	+0.119	+0.170	
2	+0.056	+0.061	+0.072	+0.062	
2.5	+0.038	+0.034	+0.033	-0.018	
ī	+0.028	+0.018	+0.007	-0.053	
1.5	+0.024	+0.013	-0.003	-0.061	
0	+0.022	+0.011	-0.007	-0.062	
1	+0.019	+0.009	-0.008	-0.063	
2	+0.017	+0.007	-0.010	-0.064	
3	+0.015	+0.005	-0.012	-0.065	
4	+0.013	+0.003	-0.013	-0.066	
5	+0.012	+0.002	-0.014	-0.066	

Partículas menores (k'=0.284) log(Re') = 1.562 - 0.032 = 1.53

Partículas maiores (k'=0.0284) log(Re') = 2.841 - 0.235 = 2.61

Partículas menores Re' = **33.88** Partículas maiores Re' = **407.38**

Partículas menores $u_0 = 0.15 \text{ m/s}$ Partículas maiores $u_0 = 0.18 \text{ m/s}$

Obter u_0 de $\log_{10}(Re')$ obtido no passo 5

As partículas de mica sedimentam aproximadamente à mesma velocidade.

Prof. Rui Oliveira (T, TP)

Office 628 DQ

Email: rmo@fct.unl.pt

Prof. Isabel Esteves (TP, P) Office 226 DQ/Lab 513 DQ

Email: <u>i.esteves@fct.unl.pt</u>

OSF-FCTUNL

See you soon at the P lab classes!

P1: 12.10, 8h, lab 521

P2: 12.10, 15h, lab 521

P3: 13.10, 8h, lab 521

P4: 13.10, 13h, lab 521