考试科	目名称_	操作	系统原理	里与实践	浅I	(A 卷)	
考试方式:	闭卷	考试日期_	2007 年	月	日 教师_		
系(专业)			年	级		王级	
学号			姓名		成绩	į	
	题号	_	二	三	四		
	分数						
得分	一、解释题	(每小题2分	>,共计 16 分)			
1. 并发 答:两个或两个以上的运行程序在同一时间间隔段内同时执行。							
2. 管科	Ī						
答:把分散在各进程中的临界区集中起来进行管理,并把系统中的共享资源用数据结构抽象地表示出来。管程是一种程序设计语言结构成分,它和信号量具有同等的表达能力							
3. 系统调用 答:操作系统提供程序使用的系统服务函数或过程。							
4. 地址转换 答: 逻辑地址向物理地址的转换。							
5. I/O 设备的控制方式 答: 查询、中断、DMA、通道							

7. 分布式资源搜索算法

答:将一个文件映射到一个进程的内存空间。

6. 内存映射文件

答:在分布式系统中使用集中分布管理资源时,搜索资源的算法,如回声、由近及远、投标等算法。

- 8. 自主访问控制
- 答: 由资源属主自主确定资源授权的方法。

得分 二、问答题(每小题 4 分, 共计 24 分)

- 1. 中断处理的主要工作是什么?如何降低因中断处理对系统效率的影响?
- 答:现场保护,中断分析与处理,返回。 将中断处理分多阶段处理,如底半处理等,以减少高优先级中断时间。
- 2. 简要描述 Hoare 方法实现的管程机制。

答: Hoare 方法将让执行 signal 操作的进程挂起自己,直到被它释放的进程退出管程或产生了其他的等待条件为止。引入一个互斥信号量,保证管程的互斥性,引入一个 next 信号量用于阻塞发送 signal 操作的进程,对于一个等待条件引入一个信号量。

- 3. 说明操作系统虚拟性的意义,给出3个例子。
- 答:屏蔽、隔离具体环境,提高使用接口友好,以便以抽象统一方式使用资源。 设备假脱机,屏幕多窗口,虚拟存储等
- 4. 试比较分页机制与分段机制。
- 答:分段是信息的逻辑单位,有源程序的逻辑结构决定,用户可见,段长可根据用户需要来规定,段起始地址可以从任何主存位置开始。

分页是信息的物理单位,与源程序的逻辑结构无关,用户不可见,页长由系统确定,页面只能以页大小的整数倍地址开始。

- 5. 说明实时调度的目标,给出2种实时调度算法。
- 答:按照要求时间作出响应。

按照期限/裕度调度。

- 6. 简述进程并发中与时间有关的典型错误及其解决方法。
- 答: 永远等待/结果不唯一。

硬件/软件,临界区管理等。

得分 三、计算题(每小题9分,共计45分)

1. 有一个 4 道作业的操作系统,系统采用 SJF 调度算法,作业被调入系统后中途不会退出,但作业运行时可被更短作业抢占。在一段时间内先后有 6 个作业到达,它们的提交和估计运行时间如下表。

作业	提交时间	估计运行时间(分钟)
J1	8: 00	70
J2	8: 20	40
J3	8: 25	20
J4	8: 30	25
J5	8: 35	5
J6	8: 40	10

- 1)分别给出6个作业的开始执行时间、作业完成时间、作业周转时间。
- 2) 计算平均作业周转时间。

答: 1)

作业 号	提交 时间	需运行 时间	开始运行 时间	被抢占还 需运行时间	完成 时间	周转 时间	
J1	8:00	60	8:00	50	10:50	170	
J2	8:20	35	8:20	35	10:00	100	
J3	8:25	20	8:25		8:45	20	
J4	8:30	25	9:00	25	9:25	55	
J5	8:35	5	8:45		8:50	15	
J6	8:40	10	8:50		9:00	20	

2) T=(170+100+20+55+15+20)/6=63.3 分

- 2. 假设系统采用请求分页式虚拟存储管理机制,页面大小为 256 个字节,页面替换算法可采用 LRU 或第二次机会页面替换算法,现有某用户进程,在其创建时为其固定分配了 3 个页框,页框号分别是 20, 51, 88。如果进程的逻辑地址访问序列如下:
- 0, 220, 251, 400, 512, 522, 327, 115, 601, 222, 235, 300, 511, 612 试针对上述两种页面替换算法,分别写出对应的物理地址访问序列,并统计两种算法对应的缺页率。

答:

两种页面替换算法下缺页率相同: 0% (预调入式), 3/14 (请调入式)。

物理地址访问序列相同: 5120、5340、5371、13200、22528、22538、13127、5235、22617、5342、5355、13100、13311、22628

3. 系统中有 P1,P2,P3,P4,P5 五个进程,目前资源需求和使用状况: Available=(1,0,2,0)

Need=
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$
Allocation=
$$\begin{pmatrix} 3 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

问: 1) 此时系统是否处于安全状态? 2) 若 P2 提出资源请求 request2(1, 0, 1, 0), 系统能 否将资源分配给它?

- 答: 1) 安全状态。有 P4,P1,P2,P3,P5 安全序列。
 - 2) 可以。分配后, A=(0,0,1,0), 有 P4,P1,P2,P3,P5 安全序列。

4. 设为某一小容量存储设备设计了一个文件系统,其文件物理结构类似于 UNIX 的多重索引结构,每个文件对应索引项 15 项,每项占 2 个字节,其中直接索引项 12 项,一次间接索引项 2 项,二次间接索引项 1 项。物理块大小为 512 字节,试问该文件系统允许的文件最大尺寸是多少(单位 KB)?

答: 可索引总块数: 12+2×256+1×256×256 = 66060 理论最大尺寸为: 66060*512/1024 = 33030 (KB) 实际需要考虑 每个索引项占两个字节,最大可索引块数: 2^16 = 65536, 因此,实际最大尺寸应小一些。

5. 设磁鼓上分为 8 个区,每区存放一个记录,旋转一周需 8ms。每个记录读出需 1ms,读出后处理需 2ms。在不知当前磁鼓位置的情况下,1) 顺序存放记录 1-8 时,试计算读出并处理 8 个记录的总时间;2) 给出一种 8 个记录优化分布的方案,使得所花的总处理时间减少,且计算所花的总时间。

答: 1) 1, 2, 3, 4, 5, 6, 7, 8 T=8/2+1+2+7*(6+1+2)=7+7*9=70 2) 1, 4, 7, 2, 5, 8, 3, 6 T=8/2+1+2+7*(1+2)=7+21=28 得分

四、编程题 (15分)

假设系统中只有一个公共的消息缓冲区,每次只能容纳一个消息。发送消息,需要把消息从发送进程空间拷贝到公共消息缓冲区;接收消息,则需要把消息从公共消息缓冲区拷贝到接收进程空间。现有三个发送消息进程 PS1, PS2, PS3,分别需要周期性地发送 M1, M2, M3 三种消息,另外有三个接收消息进程 PR1, PR2, PR3,分别需要接收 M1, M2, M3 消息并处理。试用信号量 PV 操作实现这六个进程间的正确同步。

答:

```
Semaphore: full = 1;
Semaphore: emptyi = 0; i = 1, 2, 3;
Cobegin
Procedure PSi
begin
     while(true)
     begin
         P(full);
         send(Mi);
         V(emptyi)
    end;
end;
Procedure PRi
begin
     while(true)
     begin
         P(emptyi);
         receive(Mi);
         V(full);
     end;
end;
end.
```