Notas de estudio para Examen Privado Licenciatura en Física

Diego Sarceño

16 de junio de 2024

Índice general

Ι	Reducción de Datos	2
1.	Incertezas	4
	1.1. Uso y Reporte de Incertezas	4
	1.2. Propagación de Incertezas	4
	1.2.1. La Regla de Raíz Cuadrada para un Experimento de Conteos	4
	1.2.2. Reglas de Propagación de Error	5
	1.3. Análisis Estadístico de Incertezas Aleatorias	6
	1.3.1. Promedio o Media	6
2.	La Distribución Normal	7
	2.1. Distribución Límite	7
	2.2. Distribución Normal (o de Gauss)	7
3.	Rechazo de Datos y la Media Ponderada	9
	3.1. Criterio de Chauvenet	9
	3.2. Media Ponderada	9
4.	Distribución Binomial y de Poisson	10
	4.1. La Distribución Binomial	10
	4.1.1. Aproximación Gaussiana a la Distribución Binomial	
	4.2. Distribución de Poisson	
5.	Prueba Ji Cuadrado y Mínimos Cuadrados	12
	5.1. Mínimos Cuadrados	12
	5.1.1. Una Línea Recta; Ponderaciones Iguales	
	5.1.2. Línea Recta por el Origen; Ponderaciones Iguales	
	5.1.3. Ajuste Ponderado para una Línea Recta	

Parte I Reducción de Datos

"La estadística es la gramática de la ciencia." - karl Pearson.

Incertezas

1.1. Uso y Reporte de Incertezas

valor medido de
$$x = x_{\text{mejor}} \pm \delta x$$
. (1.1)

Donde δx siempre es positivo.

Regla para Escribir incertezas

Las incertezas debe, casi siempre, estar aproximadas a la cifra significativa.

Regla para Escribir Respuestas

La última cifra significativa en cualquier resultado debe tener el mismo orden de magnitud (en la misma posición decimal) que la incerteza.

Definición 1.1.1. La discrepancia esta definida como la diferencia entre 2 valores medidos de la misma cantidad.

Definición 1.1.2.

$$incerteza \; fraccionaria \; o \; relativa \; = \frac{\delta x}{|x_{mejor}|}.$$

1.2. Propagación de Incertezas

1.2.1. La Regla de Raíz Cuadrada para un Experimento de Conteos

Definición 1.2.1. Si observamos la ocurrencias de un evento que pasa aleatoriamente peor con un promedio definido, si se tienen ν ocurrencias en un tiempo T, nuestra estimación para el promedio es

$$(promedio\ de\ n\'umero\ de\ eventos\ en\ el\ tiempo\ T) = \nu \pm \sqrt{\nu}. \tag{1.2}$$

1.2.2. Reglas de Propagación de Error

La sreglas de propagación de error se refiere a uan situación en la cual encontramos varias cantidades x, \ldots, w con incertezas $\delta x, \ldots, \delta w$ y cuando usamos estos valores para calcular q.

Sumas y Restas: $q = x + \cdots + z - (u + \cdots + w)$, entonces

$$\delta q = \sqrt{\delta x^2 + \dots + \delta z^2 + \delta u^2 + \dots + \delta w^2}.$$
 (1.3)

Productos y Cocientes: Si $q = \frac{x \cdots z}{u \cdots w}$,

$$\frac{\delta q}{|q|} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \dots + \left(\frac{\delta z}{z}\right)^2 + \left(\frac{\delta u}{u}\right)^2 + \dots + \left(\frac{\delta w}{w}\right)^2}.$$
 (1.4)

Incerteza de una Potencia: Si n es un numero exacto $q = x^n$

$$\frac{\delta q}{|q|} = |n| \frac{\delta x}{|x|}.\tag{1.5}$$

Incerteza de una función de una Variable: Si q = q(x) es una función de x

$$\delta x = \left| \frac{\mathrm{d}q}{\mathrm{d}x} \right| \delta x. \tag{1.6}$$

o en caso de que q sea muy complicada

$$\delta q = |q(x_{best} + \delta x) - q(x_{best})|. \tag{1.7}$$

Fórmula General de la Propagación de Error: Si $q=q(x,\ldots,z)$ es una función de $x,\ldots,z,$ entonces

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\delta x\right)^2 + \dots + \frac{\partial q}{\partial z}\delta z)^2}.$$
 (1.8)

1.3. Análisis Estadístico de Incertezas Aleatorias

1.3.1. Promedio o Media

La Media: El mejor valor estimado para x, es la media (en este caso: aritmética)

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{1.9}$$

Desviación Estandar: El promedio de las incertezas de las mediciones individuales

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum (x_i - \bar{x})^2}.$$
 (1.10)

Anteriormente el denominador se tomaba como N. Además, podemos identificar a σ_x como la incerteza de cualquier medición de x, $\delta x = \sigma_x$, y podemos decir con un 68 % de confianza que cualquier medición de x caerá dentro de σ_x .

Desviación Estandar de la Media: La incerteza de nuestro mejor valor (la media) es:

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{N}}.\tag{1.11}$$

Si hay errores sistemáticos apreciables, entonces $\sigma_{\bar{x}}$ da la componente aleatoria de la incerteza en nuestra mejor estimación de x

$$\delta x_{ran} = \sigma_{\bar{x}}.\tag{1.12}$$

Si existe una forma para estimar la componente sistematica δx_{sys} , una rasonable (más no rigurosamente justificada) expresión para la incerteza total es la suma de los cuadrados entre ambas incertezas

$$\delta x_{tot} = \sqrt{\delta x_{ran}^2 + \delta x_{sys}^2}. (1.13)$$

La Distribución Normal

2.1. Distribución Límite

Si f(x) es la distribución límite de una variable continua x, entonces

f(x) dx = probabilidad que cualesquiera de las mediciones caerá enre x y x + dx.

у

 $\int_a^b f(x) dx = \text{ probabilidad de que cualesquiera de las mediciones caiga entre } a \text{ y } b.$

La condición de normalización es

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1,\tag{2.1}$$

mientras que la media o valor esperado es

$$\bar{x} = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x \,. \tag{2.2}$$

2.2. Distribución Normal (o de Gauss)

Si las mediciones de x estan sujetos a muchos pero pequeños errores aleatorios pero no sistemáticos, su distribución límite sera la distribución normal:

$$G_{X,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-X)^2/2\sigma^2},$$
 (2.3)

donde X es el valor real d x, centro de la distribución y el valor medio después muchas mediciones. Y, σ es el parámetro de ancho de la distribución y la desviación estándar luego de muchas mediciones.

La probabilidad de una única medición de caer entre t desviaciones estándar de X es

$$P(x \le |t\sigma|) = \frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} \, \mathrm{d}z.$$
 (2.4)

Esta integral es normalmente llamada la función de error. Su valor como una función de t es mostrado en tablas. En partícular, para t=1 la probabilidad es de $68\,\%$.

Un valor aceptado de x sera aquel que caiga a cierta cantidad de desviaciones estandar del centro de la distribución, es decir, con cierto porcentaje mayor a un umbral previamente designado.

Rechazo de Datos y la Media Ponderada

3.1. Criterio de Chauvenet

Si se realizan N mediciones x_1, \ldots, x_N de una única cantidad x, y si una de estas mediciones (x_{sus}) es sospechosamente diferente de las otras, el criterio de Chauvenet da una prueba para decidir si se acepta o no este dato sospechoso. Teniendo la desviación estándar y le media de las mediciones, encontraremos el número de desviaciones estándar por las cuales x_{sus} difiere \bar{x} ,

$$t_{sus} = \frac{|x_{sus} - \bar{x}|}{\sigma_x} \tag{3.1}$$

Luego encontramos la probabilidad (asumiendo que los valores están normalmente distribuidos alrededor de \bar{x} con ancho σ_x) de encontar este resultado tan desviado como x_{sus} , y el número de mediciones esperadas para desviarse esta cantidad es $n = N \times P(\text{fuera } t_{sus}\sigma)$. Si $n < \frac{1}{2}$, entonces de acuerdo al criterio de Chauvenet puedes rechazar el valor de x_{sus} . Dado que existen muchas objeciones al criterio de Chauvenet (especialmente cuando N no es muy grande), esto solo debería ser utilizado como último recurso. Además, esto se pierde DS: se va al carajo si dos o más valores son sospechosos.

3.2. Media Ponderada

Si x_1, \ldots, x_N son mediciones de una cantidad x, con incertezas conocidas $\sigma_1, \ldots, \sigma_N$, entonces el valor mejor estimado al valor real de x es la media ponderada

$$x_{wav} = \frac{\sum w_i x_i}{\sum w_i},\tag{3.2}$$

donde als sumas son sobre todas las mediciones y los pesos son los reciprocos cuadrados de las incertezas correspondientes

$$w_i = \frac{1}{\sigma_i^2}. (3.3)$$

La incerteza de x_{wav} es

$$\sigma_{wav} = \frac{1}{\sqrt{\sum w_i}}. (3.4)$$

Distribución Binomial y de Poisson

4.1. La Distribución Binomial

Conseideraremos un experimento con varios posibles resultados y designamos los resultado (o resultados) particular en el que estamos interesados como un "éxito". Si la probabilidad de éxito en cualquier ensayo es p, entonces la probabilidad de ν éxitos en n ensayos viene dada por la distribución binomial:

$$P(\nu \text{ éxitos en } n \text{ intentos}) = \binom{n}{\nu} p^{\nu} (1-p)^{n-\nu}, \tag{4.1}$$

Si repetimos el conjunto completo de n ensayos muchas veces, esperamos que el número medio de éxitos es

$$\bar{\nu} = np \tag{4.2}$$

y su desviación estándar es

$$\sigma_{\nu} = \sqrt{np(1-p)}.\tag{4.3}$$

4.1.1. Aproximación Gaussiana a la Distribución Binomial

Cuando n es grande, la distribución binomial $B_{n,p}(\nu)$ esta bien aproximada por la función de Gauss con la misma media y desviación estándar, esto es

$$B_{n,p}(\nu) \approx G_{X,\sigma}(\nu).$$
 (4.4)

4.2. Distribución de Poisson

La distribución de Poisson describe experimentos en los cuales se cuentan eventos que ocurren aleatoriamente pero a una tasa promedio definida. SI se cuentan durante un intervalo T, la probabilidad de observar ν eventos es dada por la función de Poisson

$$P_{\mu}(\nu) = e^{-\mu} \frac{\mu^{\nu}}{\nu!},\tag{4.5}$$

donde el parámetro μ es el numero promedio esperado de eventos en el tiempo T: $\bar{\nu} = \mu$. Su desviación estándar es $\sigma_{\nu} = \sqrt{\mu}$.

4.2.1. Aproximación Gaussiana a la Distribución de Poisson

Cuando μ es grande, la distribución de Poisson se aproxima bien a una función Gaussiana con la misma media y desviación estandar:

$$P_{\mu}(\nu) \approx G_{X,\sigma}(\nu).$$
 (4.6)

Prueba Ji Cuadrado y Mínimos Cuadrados

5.1. Mínimos Cuadrados

Se considerarán N pares de mediciones $(x_1, y_1), \ldots, (x_N, y_N)$ de dos variables. El problema recae en encontrar los mejores valores de los parámetros de la curva que una gráfica y vs x se espera que ajuste.

5.1.1. Una Línea Recta; Ponderaciones Iguales

Si y se espera que caiga en una línea recta y = A + Bx, si las medidas de y tienen todas la misma incerteza, las mejores aproximaciones para las constantes son

$$A = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Delta} \tag{5.1}$$

У

$$B = \frac{N \sum xy - \sum x \sum y}{\Delta},\tag{5.2}$$

donde Δ es

$$\Delta = N \sum x^2 - \left(\sum x\right)^2. \tag{5.3}$$

Basados en las observaciones, la mejor estimación para las incertezas son

$$\sigma_y = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - A - Bx_i)^2},$$
(5.4)

$$\sigma_A = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}},\tag{5.5}$$

$$\sigma_B = \sigma_y \sqrt{\frac{N}{\Delta}}.\tag{5.6}$$

5.1.2. Línea Recta por el Origen; Ponderaciones Iguales

Si y se espera que caiga en una línea recta que atraviese el origen y = Bx, si las mediciones de y todas tienen la misma incerteza, la mejor estimación para las constantes es

$$B = \frac{\sum xy}{\sum x^2}. ag{5.7}$$

Basados en las observaciones, las incertezas son

$$\sigma_y = \sqrt{\frac{1}{N-1} \sum (y_i - Bx_i)^2},$$
(5.8)

$$\sigma_B = \frac{\sigma_y}{\sqrt{\sum x^2}}. (5.9)$$

5.1.3. Ajuste Ponderado para una Línea Recta

Si y se espera que sea una línea recta, y los valores medidos de y tienen diferentes y conocidas incertezas σ_i , introducimos las ponderaciones $w_i = \frac{1}{\sigma_i^2}$, las mejores estimaciones de las constantes son

$$A = \frac{\sum wx^2 \sum wy - \sum wx \sum wxy}{\Delta},$$

$$B = \frac{\sum w \sum wxy - \sum wx \sum wy}{\Delta},$$
(5.10)

$$B = \frac{\sum w \sum wxy - \sum wx \sum wy}{\Delta},\tag{5.11}$$

$$\Delta = \sum w \sum wx^2 - (wx)^2. \tag{5.12}$$

Cuyas incertezas son

$$\sigma_A = \sqrt{\frac{\sum wx^2}{\Delta}},\tag{5.13}$$

$$\sigma_B = \sqrt{\frac{\sum w}{\Delta}}.\tag{5.14}$$

5.1.4. **Otras Curvas**

Si y se supone como un polinomio $y = A + Bx + \cdots + Hx^n$, entonces existe un método análogo, pero las ecuaciones son bastante engorrosas. También curvas de la forma $y = Af(x) + \cdots + Hk(x)$, donde las funciones son conocidas, existe un método análogo también. Otra forma es linearizar el problema; por ejemplo, para una función exponencial, su "linearización" es $z = \ln y = \ln A + Bx$.

Bibliografía

- [1] Stephen J Blundell and Katherine M Blundell. Concepts in thermal physics. Oup Oxford, 2010.
- [2] Profesor Denis Boyer. Statistical physics, 2021.
- [3] Enrico Fermi. Thermodynamics. Courier Corporation, 2012.
- [4] David J Griffiths. Introduction to electrodynamics. Cambridge University Press, 2023.
- [5] Jerry B Marion. Classical dynamics of particles and systems. Academic Press, 2013.
- [6] EJ Moulton. H. goldstein, classical mechanics. 1952.
- [7] John R Reitz et al. Fundamentos de la teoría electromagnética. Biblioteca Hernán Malo González, 1996.
- [8] Profesor PhD. Rodrigo Sacahui. Electromagnetismo 1, 2021.
- [9] Jun John Sakurai and Jim Napolitano. *Modern quantum mechanics*. Cambridge University Press, 2020.
- [10] Profesor Ing. Rodolfo Samayoa. Mecánica cuántica, 2022.
- [11] Profesor Ing. Rodolfo Samayoa. Mecánica estadística, 2022.
- [12] John Robert Taylor and John R Taylor. Classical mechanics, volume 1. Springer, 2005.
- [13] Profesor David Tong. Classical mechanics, 2004-05.
- [14] Profesor David Tong. Dynamics and relativity, 2013.
- [15] Profesor David Tong. Statistical physics, 2013.
- [16] Profesor David Tong. Electromagnetism, 2015.
- [17] Nouredine Zettili. Quantum mechanics: concepts and applications. 2009.