Imperial College London

Simulation Methods for Barrier and Look-back Options

Simulation Methods for Finance under the supervision of Professor Harry Zheng

Authors:
Thomas Espel
Konstantin Kulak
Callum MacIver
Zhentian Qiu
Vera Zhang

CONTENTS ii

Contents

I	Basic Task	Т			
1	Generate Random Number1.1 Presentation1.2 Generating the uniform distribution1.3 Generating the normal distribution	1 1 1			
2	European Option	2			
	2.1 Presentation	2			
	2.2 Likelihood Ratio Greeks	3			
II	Main Task	6			
3	Barrier Option	6			
	3.1 Presentation	6			
	3.2 Another Method using Rayleigh Distribution	6			
4	Look-back Option	9			
	4.1 Presentation	9			
	4.2 Another Method using Rayleigh Distribution	9			
\mathbf{A}	ppendix	ii			
\mathbf{A}	Closed-formed formula of Barrier Options	ii			
В	Code	iii			
\mathbf{C}	Figures	iv			
D	App User Guide				
\mathbf{E}	Package Manual x				

Part I

Basic Task

1 Generate Random Number

1.1 Presentation

There are two methods we used to generate random numbers. The first one is to generate a uniform distribution and then transform it into Standard Normal Distribution. The second method we tried is the system build-in function Random, which can directly generate a variable follows Standard Normal Distribution.

1.2 Generating the uniform distribution

To generate a uniform distribution we tried two ways: one can use the system build-in methods rand. The function will return a number between 1 and $2^{15} - 1$ randomly. The range is around 30,000, way below 100,000, the sample size we plan to generate. In other words, when we use rand to simulate 100,000 entries, there will be numbers appear more than once, which will create bias. We prefer the second way to generate a uniform distribution: linear congruential generator.

$$n_i = (an_{i-1}) \mod m$$

for i = 1, 2, ..., 10,000, and we let $a = 7^5$, and $m = 2^{31} - 1$, which gives about 2 billion points. We run 100,000 times and will only use 0.005% of all points. Theoretically, no pattern should appear. $\frac{n_i}{m}$ will give a uniform distribution from (0,1).

1.3 Generating the normal distribution

To transform the uniform distribution we got into Standard Normal Distribution, we have tried three methods. By Central Limit theory,

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}$$

where X_i is from the uniform distribution we generated previously. Z_n converges in distribution to SND, however, it requires n, the number of uniform distribution, to be sufficiently large. Therefore this method requires significantly large simulations and speed is slow consequently.

We also tried Box-Muller methods [1]

$$Z_1 = \sqrt{-2lnX_1}sin(2\pi X_2), \ \mathbb{Z}_2 = \sqrt{-2lnX_1}cos(2\pi X_2)$$

Since its simulation involves computation of *sine* and *cosine*, the speed is slow. We prefer the last method, Marsaglia Polar method.

let
$$V_1 = 2U_1 - 1$$
, $V_1 = 2U_2 - 1$.

where U_1 and U_2 are two independent uniform distribution. Let $W = V_1^2 + V_2^2$. If W > 1, return to the beginning. Otherwise,

$$N_1 = \sqrt{\frac{(-2logW)}{W}}V_1, \ N_2 = \sqrt{\frac{(-2logW)}{W}}V_2$$

As the computation does not involve *sine* and *cosine*, it is generally faster than Box-Muller.

Method	Mean	Variance	Time (seconds)
${ t rand} + { t CLT}$	1.77 e-5	0.999909	90.34
rand + Box-Muller	-6.80 e-5	1.000703	8.64
rand + Marsaglia Polar	1.70 e-5	1.000472	6.40
LCG + CLT	1.52 e-5	0.999973	236.3
LCG + Box-Muller	-1.27 e-4	0.999797	11.59
LCG + Marsaglia Polar	7.36 e-5	0.999979	10.52
random	3.58 e-4	1.000210	1.498

Table 1: We note that the Marsaglia method is faster compared to the other methods. Note that the run time depends on the computer used for the simulation (here a 3.4 GHz Intel Core i7). We have generated 100,000,000 variables to obtain these results.

Table 1 is the simulation result of Standard Normal distribution and time used by different methods from generating 100,000,000 random variables. As shown in the table, when using CLT¹ generating standard normal distribution, the time needed is significantly longer than the rest methods. Marsaglia Polar method gives a variance closer to 1 compared to Box-Muller methods. Linear congruential generator gives a variance closer to 1 compared to rand method. Hence we use the combination of linear congruential generator and Marsaglia methods to simulate random variables. This was also the opportunity for us to have full control over the generation of random numbers, as it is a critical step towards efficient simulations [1]. It also features very good results in terms of statistical parameters and time.

2 European Option

2.1 Presentation

The asset price in a risk neutral probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, P)$ follows Geometric Brownian Motion,

$$dS_t = rS_t dt + \sigma S_t dW_t, \ 0 < t < T$$

with initial price $S_0 = S$, where r is riskless interest rate, σ volatility, and W_t the standard Brownian motion. A European call option price at time t with maturity time T is given by

$$C_t = E[e^{-r(T-t)}(S_T - K)^+|F_t]$$

For the basic task, we let $S_0 = 100$, K = 100, interest rate r = 0.05, volatility $\sigma = 0.4$, maturity time T = 1. We use Monte Carlo method to simulate

$$S_T = S_0 e^{(r - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z}$$

and get sample distribution of $(S_T - K)^+$. By Black-Scholes formula,

$$C_{bs}(S_0, K) = N(d_1)S_0 - N(d_2)Ke^{-rT}$$

where

$$d_1(S_0, K) = \frac{1}{\sigma\sqrt{T}} \left[ln(\frac{S_0}{K}) + (r + \frac{\sigma^2}{2})T \right], \ d_2(S_0, K) = d_1 - \sigma\sqrt{T}$$

The closed-form Greeks are calculated the following way:

$$\delta_{bs} = \frac{\partial C}{\partial S_0} = \Phi(d_1), \quad \gamma_{bs} = \frac{\partial^2 C}{\partial S_0^2} = \frac{\Phi'(d_1)}{S_0 \sigma \sqrt{T}}, \quad \nu_{bs} = \frac{\partial C}{\partial \sigma} = \Phi'(d_1) \sqrt{T}$$

¹Central Limit Theorem

2.2 Likelihood Ratio Greeks

To calculate the Greeks from simulation, we compare Likelihood ratio method and Pathwise method. As the Call option price is given by

$$C = e^{-rT} E[(S_T - K)^+] = e^{-rT} \int (S_T - K)^+ h_{S_0}(S_T) dS_T$$

where $h_{S_0}(S_T)$ is the probability density function of $(S_T - K)^+$. Then by Likelihood ratio methods, the partial dirivative of C with respect to S_0 is

$$\frac{\partial C}{\partial S_0} = \int (S_T - K)^+ \frac{d}{dS_0} h_{S_0}(S_T) dS_T = E[(S_T - K)^+ \frac{h'_{S_0}(S_T)}{h_{S_0}(S_T)}]$$

And the lognormal density function of S_T is given by

$$h(x) = \frac{1}{x\sigma\sqrt{T}}\phi(\xi(x)), \quad \xi(x) = \frac{\ln(x/S_0) - (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$

Therefore [1],

$$Delta_{LR} = \frac{\partial C}{\partial S_0} = E[e^{-rT}(S_T - K)^{+} \frac{Z}{S_0 \sigma \sqrt{T}}]$$

where Z N(0,1).

$$Gamma_{LRLR} = \frac{\partial^2 C}{\partial S_0^2} = E[e^{-rT}(S_T - K)^+ (\frac{Z^2 - 1}{S_0^2 \sigma^2 T} - \frac{Z}{S_0^2 \sigma \sqrt{T}})]$$
$$Vega_{LR} = \frac{\partial C}{\partial \sigma} = E[e^{-rT}(S_T - K)^+ \left(\frac{Z^2 - 1}{\sigma} - Z\sqrt{T}\right)]$$

2.3 Pathwise Derivative Greeks

By pathwise methods, the Greeks are given as following² [1], with $Z \sim N(0,1)$:

$$\begin{aligned} Delta_{PW} &= \frac{\partial C}{\partial S_0} = E[e^{-rT}\mathbb{1}_{S_T > K} \frac{S_T}{S_0}] \\ Gamma_{LRPW} &= \frac{\partial^2 C}{\partial S_0^2} = E[e^{-rT}\mathbb{1}_{S_T > K} \frac{KZ}{S_0^2 \sigma \sqrt{T}}] \\ Gamma_{PWLR} &= \frac{\partial^2 C}{\partial S_0^2} = E[e^{-rT}\mathbb{1}_{S_T > K} \frac{S_T}{S_0^2} \left(\frac{Z}{\sigma \sqrt{T}} - 1\right)] \\ Vega_{PW} &= \frac{\partial C}{\partial \sigma} = E[e^{-rT}\mathbb{1}_{S_T > K} S_T (\sqrt{T}Z - \sigma T)] \end{aligned}$$

The results calculated from the closed-form formulae and the simulations are represented in Table 2.

We can see that the simulation results improve and get closer to the theoretical values as the simulation number increases. Hence to compare the results from different methods, we will only analyze the simulation results from the largest simulation number - 100,000 in this case. This is even more clear on the graphs (Figure 1).

We now have a closer look at 100,000 simulations, which is the industry standard and which is above the 1,000 simulations threshold we have noticed on the graphs. For delta, although the fastest methods is LR, it has a significantly lower accurany. Gamma LRLR is the most

²For gamma, there are two different methods.

Figure 1: A graphical analysis of the error of the Greeks depending on the number of simulations. We notice that there is a significant increase above 1000 simulations in all cases. This is very clear on our vega which tends to have a very high error variance below 1,000 simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

		Black -Scholes	Monte Carlo Simulation		
		Diack -Scholes	1,000	10,000	100,000
Option	rice	18.023	19.0162	17.6732	18.0014
Delta	LR	0.627409	0.662561	0.612362	0.627889
Delta	\mathbf{PW}	0.027409	0.64485	0.623239	0.627453
	PW LR	0.0094605	0.0101213	0.00919597	0.00945029
Gamma	LR PW		0.00994418	0.00930474	0.00944593
	LR LR		0.00975465	0.00918059	0.0095502
Vega	LR	37.842	39.0186	36.7224	38.2008
vega	PW	31.042	40.4851	36.7839	37.8012

Table 2: Table with the result of our simulations for different Monte-Carlo iterations. We can clearly see the improvement between 1,000 and 10,000 simulations.

1,000,000 MC simulations	Error Mean	Error Variance	Time (seconds)
Option Price	na	na	5.0 e-6
Delta LR	4.1 e-3	9.7 e-6	1.4 e-3
Delta PW	1.8 e-3	1.8 e-6	9.9 e-4
Gamma PWLR	6.1 e-5	2.0 e-9	1.4 e-3
Gamma LRPW	3.5 e-5	7.4 e-10	1.4 e-3
Gamma LRLR	1.9 e-4	2.1 e-8	4.7 e-3
Vega LR	7.7 e-1	3.3 e-1	4.6 e-3
Vega PW	2.4 e-1	3.2 e-2	1.6 e-3

Table 3: Sample from our similation dataset with 100,000 Monte-Carlo similations. Note that the run time depends on the computer (here a 3.1 GHz Intel Core i5). We computed the absolute error and since the option price is computed using the closed form formula no error is represented.

accurate but it is the slowest, so gamma PWLR seems to be a good compromise. Vega PW is both faster and more accurate than vega LR.

For the following section, PW methods will be infeasible to do for Barrier Option. Hense, we will use Likelihood ratio method when calculating the Greeks.

Part II

Main Task

3 Barrier Option

3.1 Presentation

Let T denote option expiration time and [0,T] lookback period. For $T_0 \leq t \leq T$ denote by

$$m_0^T = \min_{0 < t < T} S_t, \quad M_0^t = \max_{0 < t < T} S_t$$

For an up-and-out barrier call option $A_T = (S_T - K)^+ 1_{\max 0 \le t \le T} S_{t \le B}$, where B is a barrier leve and 1_S is an indicator function.

We stimulate the path of S_t by taking the maturity time T into 1,000 steps, and we simulate 5,000 such paths. We have an M_0^T for each path. However, this method is bordensome as we need to generate each step for each path. The simulation process is long.

3.2 Another Method using Rayleigh Distribution

Hense, we tried second method using Rayleigh Distribution to simulate the distribution of M_0^t directly. The maximum of a standard Brownian motion starting at the origin to be at b at time 1 over period [0, T] has the Rayleigh distribution [2, 3, 4]

$$F(x) = 1 - e^{-2x(x-b)}, \ x \ge b.$$

solving the equation $F(x) = u, u \in (0,1)$ has roots

$$x = \frac{b}{2} \pm \frac{\sqrt{b^2 - 2log(1-u)}}{2}$$

Hense, at time T with S_T ,

$$M^T = \frac{S_T + \sqrt{S_T^2 - 2T log U}}{2}$$

And we simulate S_T by Black-Scholes formula

$$S_T = S_0 e^{(r - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z}$$

Therefore,

$$\boldsymbol{M}^T = S_0 e^{\frac{1}{2}log(\frac{S_T}{S_0}) + \sqrt{log(\frac{S_T}{S_0})^2 - 2\sigma^2 T log U}}$$

With this method, we only need to generate S_T for each path and one random variable for the uniform distribution to get the M^T . It reduces the amount of simulation by 500 times (as before, 1,000 S_t need to be generated for each path).

As we mentioned previously, it is impossible to find the partial direvative of the indicator function $1_{M_0^T \leq B}$ with respect to S_0 . Hense pathwise method is eliminated by us. For the likelihood ratio method, we find the differentiation of joint cumulative density function of S_T and the M_T to be

$$f_{uo}(x, m, T) = \frac{1}{\sqrt{T}} \left(\phi(\frac{x - \mu T}{\sqrt{T}}) - e^{2m\mu} \phi(\frac{x - 2m - \mu T}{\sqrt{T}}) \right)$$

	Closed Form	Monte Carlo 100,000 Simulation
Option Price	15.18	15.11
Delta LR	0.776	0.769
Gamma LRLR	2.58 e-3	2.89 e-3
Vega LR	15.55	16.02

Table 4: Theoretical results compared to simulation results with the same parameters as the European option and a barrier at XX.

100,000 MC simulations	Error Mean	Error Variance	Time (seconds)
Option Price	na	na	na
Delta LR	1.508 e-2	1.40 e-4	2.109
Gamma LRLR	6.186 e-4	2.131 e-7	2.118
Vega LR	2.405	3.435	2.113

(a) Error statistics and computation time for the "classical" method. We computed the absolute error and since the option price is computed using the closed form formula no error is represented.

1,000,000 MC simulations	Error Mean	Error Variance	Time (seconds)
Option Price	na	na	
Delta LR	1.036 e-2	3.029 e-5	9.284 e-2
Gamma LRLR	1.895 e-4	1.895 e-8	1.475 e-1
Vega LR	7.507 e-1	3.220 e-1	1.097 e-1

(b) Error statistics and computation time for the Rayleigh method. We computed the absolute error and since the option price is computed using the closed form formula no error is represented.

Table 5: Sample from our simulation dataset with the new fast method for barrier option simulation. It is clear that the results have significantly improved compared with the previous method. note that the run time depends on the computer used (here a 3.4 GHz Intel Core i7).

B BARRIER OPTION 8

where $x=\frac{1}{\sigma}ln\frac{x}{S_0},\,\mu=\frac{1}{2}(r-\frac{\sigma^2}{2})$ and $m=\frac{1}{\sigma}ln\frac{M_T}{S_0}$. Then we can find the Greeks accordingly, the detail of the computation is in Appendix A.

To analyze further the accuracy of our simulation, we plot the simulated option prices and greaks versus their theoretical value as barrier increases (Figure 2).

Figure 2: A graphical analysis of the error of the Greeks depending on the computation time. We notice that the method with Rayleigh distribution is between 100 and 1,000 times faster. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10. However, due to the extremely slow computation time for LR methods, we only computed up to 100,000 samples compared to 1,000,000 for the Rayleigh method.

4 Look-back Option

4.1 Presentation

Look-back call option with fixed strike price K has payoff $(M_0^T - K)^+$. The call option price at time t is

$$c(S_0, K, t) = e^{-r(T-t)} E[(max(M_0^t, M_t^T) - K)^+ | \mathcal{F}_t]$$

The closed-form formula for fixed strike look-back call option at time 0 [1, 4] is

$$c(S_0, K, 0) = C_{bs}(S_0, K) + \frac{S_0 \sigma^2}{2r} \{ \Phi[d_2(S_0, K)] - e^{-rT} \frac{S_0}{K}^{-\frac{2r}{\sigma^2}} \Phi[-d_1(K, S_0)] \}$$

The probability density function of the distribution of Maximum S_t for standard Brownian motion for the period of (0, T) is

$$f = \frac{2}{\sqrt{T}}\phi\left(\frac{m-aT}{\sqrt{T}}\right) - 2ae^{2am}\Phi\left(\frac{-m-aT}{\sqrt{T}}\right)$$

and the cumulative density function is

$$F = \Phi\left(\frac{m - aT}{\sqrt{T}}\right) - e^{2am}\Phi\left(\frac{-m - aT}{\sqrt{T}}\right)$$

We used Newton-Raphson method to solve for the above cumulative density function F = U the uniform distribution. Hense, for each random number we generate from [0,1], we receive one m by solving for F. To get M^T of stock price which follows geometric Browninan motion with starting price S_0 , we let $M^T = S_0 e^{\sigma m}$.

4.2 Another Method using Rayleigh Distribution

In a similar way as for the barrier option, we have also implemented a faster and more efficient method. The results can be compared on the Figure [?].

		Closed Form	Monte-Carlo 100,000 Simulation
Option	ı Price	37.76	37.715
Delta	LR	1.329	1.329
Delta	\mathbf{PW}	1.529	1.322
	PW LR		0.021
Gamma	LR PW		-0.0023
	LR LR		0.021
Vega	LR	98.68	100.56
vega	\mathbf{PW}	90.00	111.02

Table 6: Theoretical results compared to simulation results with the same parameters as the European option and a $\min/\max = 100$. Note in this specific case we have a problem with Vega PW.

100,000 MC simulations	Error Mean	Error Variance	Time (seconds)
Delta LR	5.568 e-3	1.768 e-5	0.269
Gamma PWLR	8.383 e-5	3.638 e-9	0.261

(a) Error statistics and computation time for the "classical" method. We computed the absolute error and since the option price is computed using the closed form formula no error is represented.

1,000,000 MC simulations	Error Mean	Error Variance	Time (seconds)
Delta LR	5.44 e-3	1.67 e-5	0.145
Delta PW	9.34 e-4	5.05 e-7	0.068
Gamma LRLR	2.80 e-4	4.39 e-8	0.153
Gamma PWLR	2.91 e-4	4.93 e-8	0.153
Vega LR	1.189	0.779	0.157
Vega PW	7.503	0.050	0.061

(b) Error statistics and computation time for the Rayleigh method. We computed the absolute error and since the option price is computed using the closed form formula no error is represented.

Table 7: Sample from our simulation dataset with the new fast method for barrier option simulation. It is clear that the results have significantly improved compared with the previous method. note that the run time depends on the computer used (here a 3.4 GHz Intel Core i7).

Figure 3: A graphical analysis of the error of the Greeks depending on the computation time. We notice that the method with Rayleigh distribution is between 10 and 100 times faster. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

REFERENCES i

References

[1] Harry Zheng (Pr.), Simulation Methods for Finance, Imperial College London, London, 2018.

- [2] Diogo Monteiro da Costa Soares Justino, *Hedging of Barrier Options*, Instituto Universitário de Lisboa, Lisbon, 2010.
- [3] Paul Glasserman (Pr.), Monte Carlo Methods in Financial Engineering, Springer Sciencea, New York, 2013.
- [4] Peter G. Zhqng (Pr.), Exotic Options, A Guide to Second Generation Options, World Scientific Publishing, Hong Kong, 1998 (second edition).

Appendix

A Closed-formed formula of Barrier Options

$$UOC(S_0, K, B) = 1_{B>K} \left\{ C_{bs}(S_0, K) - C_{bs}(S_0, B) - (B - K)e^{-rT}\Phi[d_1(S_0, B)] - \frac{B^{\frac{2v^2}{\sigma^2}}}{S_0} \left[C_{bs}(\frac{B^2}{S_0}, K) - C_{bs}(\frac{B^2}{S_0}, B) - (B_0 - K)e^{-rT}\Phi[d_1(S_0, B)] \right] \right\}$$
(1)

Where C_{bs} and d_1 are as stated in the Black-Scholes formula (1) and (2), and $v = r - \frac{\sigma^2}{2}$.

closed form for DOC price is

$$C_{DO}(S_0, K, B) = C_{bs}(S_0, K) - (\frac{S_0}{B})^{-2\frac{v}{\sigma^2}} C_{bs}(\frac{B^2}{S_0}, K)$$

where $v = r - \frac{\sigma^2}{2}$.

$$\begin{split} \delta_{D}OC = & \delta_{BS}(S_{0}, K) - \delta_{BS}(S_{0}, B) - \frac{B - K}{\sigma S_{0} \sqrt{T}} e^{-rT} \Phi(d_{2}(S_{0}, B)) \\ & + \left(\frac{2v}{\sigma^{2} S_{0}} \left(\frac{B}{S_{0}}\right)^{2v/\sigma^{2}}\right) \\ & \times \left(C_{BS} \left(\frac{B^{2}}{S_{0}}, K\right) - C_{BS} \left(\frac{B^{2}}{S_{0}}, B\right) - (B - K)e^{-rT} \Phi(d_{2}(B, S_{0}))\right) \\ & - \left(\frac{B}{S_{0}}\right)^{2v/\sigma^{2}} \left(\left(\frac{-B}{S_{0}}\right)^{2} \delta_{BS} \left(\frac{B^{2}}{S_{0}}, K\right) + \left(\frac{B}{S_{0}}\right)^{2} \delta_{BS} \left(\frac{B^{2}}{S_{0}}, B\right) \\ & + \left(\frac{B - K}{\sigma S_{0} \sqrt{T}}\right) e^{-rT} \Phi(d_{2}(B, S_{0}))); \end{split}$$

$$\begin{split} \delta_{DOC} = & \Phi \left(\frac{\log \frac{S_0}{K} + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}} \right) - \left(\frac{B}{S_0} \right)^{r/\sigma^2 - 1} \\ & \times \left(-\frac{B}{S_0}^2 \Phi \left(\frac{\log \frac{B^2}{S_0 K} + \upsilon T}{\sigma \sqrt{T}} + \sigma \sqrt{T} \right) - \frac{2\upsilon C_{BS}(B^2/S_0, K)}{(S_0 \sigma^2)} \right) \end{split}$$

$$\gamma_{DOC} = \frac{\phi(d_2)}{S_0 \sigma \sqrt{T}} - \left(\frac{B}{S_0}\right)^{2v/\sigma^2} \left(\frac{4v^2 + 2v\sigma^2}{S_0^2 \sigma^4} C_{BS}(B^2/S_0, K) + \gamma_{bs} - \frac{4v\delta_{bs}}{S_0 \sigma^2}\right)$$

$$\nu_{DOC} = S_0 \phi \left(\frac{\log(\frac{S_0}{K}) + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}} \right) \sqrt{T} - \left(\frac{B}{S_0} \right)^{\frac{2v}{\sigma^2}} \left(\nu_{bs} - \frac{4rC_{bs}(\frac{B^2}{S_0}, K)\log(\frac{B}{S_0})}{\sigma^3} \right)$$

B CODE

B Code

All our code is available on our GitHub repository: github.com/tjespel/barrier-and-look-back-options.

C FIGURES iv

C Figures

Figure 4: **European Call Option**. A graphical analysis of the error of the Greeks depending on the number of simulations. We notice that there is a significant increase above 1000 simulations in all cases. This is very clear on our vega which tends to have a very high error variance below 1000 simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

C FIGURES v

Figure 5: **European Call Option - Time**. A graphical analysis of the error of the Greeks depending on the number of simulations. We notice that there is a significant increase above 1000 simulations in all cases. This is very clear on our vega which tends to have a very high error variance below 1000 simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

C FIGURES vi

Figure 6: **Barrier Option**. A graphical analysis of the error of the Greeks depending on the number of simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

C FIGURES vii

Figure 7: **Look-back Option**. A graphical analysis of the error of the Greeks depending on the number of simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

C FIGURES viii

Figure 8: **Look-back Option - Time**. A graphical analysis of the error of the Greeks depending on the number of simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

C FIGURES ix

Figure 9: **LookBack Option**. A graphical analysis of the error of the Greeks depending on the number of simulations. In order to generate these graphs, we have donne one thousand similations for each value, at every power of 10.

D APP USER GUIDE

D App User Guide

App User Guide

This user guide is written for the users of the console interface of our program.

Table of Contents

- Features
- Installation
 - Building the Project
 - Importing the Package
- Usage
 - Main Principles
 - Working with the European option
 - Changing Parameters
 - Price
 - Greeks
 - Working with the Barrier Option
 - Changing Parameters
 - Price
 - Greeks
 - Working with the Look-back Option
 - Changing Parameters
 - Price
 - Greeks
 - Switching Random Generation
 - Troubleshooting
 - Closing the Application

Features

- Compute the European call option, the barrier option and the look-back price
- Compute the European call option, the barrier option and the look-back option greeks:
 - delta
 - gamma
 - vega
- Provide statistical informations on the random variables.

Installation

This app only works on Windows NT systems. We recommend using Windows 7 or any more recent Windows distribution.

Make sure you have the following files.

```
BarrierLookBackOptions.exe
```

Usage

Main Principles

To open the app, double-click on the BarrierLookBackOptions.exe file. A black window should appear.

You can type your instructions instructions directly in the window.

```
C:\windows\system32\cmd.exe

Furope Call option
St = 100
K = 100
r = 0.05
sigma = 0.4
T = 1
t = 0
M = 100000
```

Working with the European option

The European call option is the default product. However, if you have to switch back to this product, enter the following command.

```
Europe_Call_option
```

The parameters are displayed on start-up. Here are the equivalences in plain language.

Abbreviation	Plain language	Description
St	Initial stock value	The value of the stock at the initial time of the simulation.
К	Strike	The value above which the call will allow one to make profits.
r	Interest rate	The rate the bank will pay one for leaving money in the bank account.
sigma	Volatility	Volatility is one of the main measures for the simulation of the evolution of the stock price in the Black-Scholes model. It is usually givent in percentage. In this porgram, type 0.04 for 4%.
T	Final simulation time / Maturity	The time at which the simulation stop. It is also the time at which the owner of the option will choose either to take or reject the contract.
t	Initial simulation time	The time at which St is recorded.
М	Number of Monte- Carlo simulations	The number of iterations in the Monte-Carlo method.

Changing parameters

To change the parameters, just type the abbreviation equated to the new value. If you want to change multiple parameters, you can simply type a coma between them.

Here is an example.

This command will simulatneously change St the initial stock value to 120 units and K the value of the strike to 80 units.

You can change as many parameters as you want. You can display at any time the current parameters using the following command.

show

Price

In order to get the price, please type the following command.

price

Additional details such as the methods used, the error and the computation time are provided.

Greeks

You can ask for the following Greeks: delta, gamma, vega.

delta
gamma
vega

Additional details such as the methods used, the error and the computation time are provided.

Working with the Barrier option

To use the barrier option, enter the following command.

Barrier_option

The parameters are displayed on start-up. Here are the equivalences in plain language.

Abbreviation	Plain language	Description
St	Initial stock value	The value of the stock at the initial time of the simulation.
К	Strike	The value above which the call will allow one to make profits.
r	Interest rate	The rate the bank will pay one for leaving money in the bank account.
sigma	Volatility	Volatility is one of the main measures for the simulation of the evolution of the stock price in the Black-Scholes model. It is usually givent in percentage. In this porgram, type 0.04 for 4%.
T	Final simulation time / Maturity	The time at which the simulation stop. It is also the time at which the owner of the option will choose either to take or reject the contract.
t	Initial simulation time	The time at which St is recorded.
L	Lower barrier	The value iof the lower barrier.
U	Upper barrier <i>beta</i>	The value of the upper barrier. <i>Beta:</i> Note that theses values are yet experimental, as the development was not focused on upper barriers.
М	Number of Monte- Carlo simulations	The number of iterations in the Monte-Carlo method.

Changing parameters

To change the parameters, just type the abbreviation equated to the new value. If you want to change multiple parameters, you can simply type a coma between them.

Here is an example.

```
St=120,K=80
```

This command will simulatneously change St the initial stock value to 120 units and K the value of the strike to 80 units.

You can change as many parameters as you want. You can display at any time the current parameters using the following command.

show

Price

In order to get the price, please type the following command.

```
price
```

Additional details such as the methods used, the error and the computation time are provided.

Greeks

You can ask for the following Greeks: delta, gamma, vega.

delta
gamma
vega

Additional details such as the methods used, the error and the computation time are provided.

Working with the Look-back option

To use the look-back option, enter the following command.

Lookback_option

The parameters of the Look-back option displayed when switching to this product. Here are the equivalences in plain language.

Abbreviation	Plain language	Description
St	Initial stock value	The value of the stock at the initial time of the simulation.
К	Strike	The value above which the call will allow one to make profits.
r	Interest rate	The rate the bank will pay one for leaving money in the bank account.
sigma	Volatility	Volatility is one of the main measures for the simulation of the evolution of the stock price in the Black-Scholes model. It is usually givent in percentage. In this porgram, type 0.04 for 4%.
Т	Final simulation time / Maturity	The time at which the simulation stop. It is also the time at which the owner of the option will choose either to take or reject the contract.
t	Initial simulation time	The time at which St is recorded.
М	Number of Monte- Carlo simulations	The number of iterations in the Monte-Carlo method.

Changing parameters

To change the parameters, just type the abbreviation equated to the new value. If you want to change multiple parameters, you can simply type a coma between them.

Here is an example.

```
St=120,K=80
```

This command will simulatneously change St the initial stock value to 120 units and K the value of the strike to 80 units.

You can change as many parameters as you want. You can display at any time the current parameters using the following command.

show

Price

In order to get the price, please type the following command.

price

Additional details such as the methods used, the error and the computation time are provided.

Greeks

You can ask for the look-back option delta, gamma, vega.

delta

gamma

vega

Additional details such as the methods used, the error and the computation time are provided.

Switching Random Generation

The generation method of the random variables is a key challenge, and the performance can vary depending on the computer used. The use has the opportunity to choose between two (uniform) random number generation methods.

To select the linear congruential method, type the following command. This one is used by default.

```
linear_congruential
```

Some computers are more efficient using one of the system built-in functions, such as mt19937. To switch to this method, type the following command.

```
mt19937
```

Troubleshooting

At any time, you can type the following command in the terminal. A list of the instructions available will appear.

help

```
Europe Call option
St = 100
K = 100
r = 0.05
sigma = 0.4
T = 1
t = 0
M = 100000
help
Europe_Call_option
Barrier_option
show
quit
```

You can display at any time the current parameters using the following command.

show

To switch betxween different products, please type directly the name of the product. As an example, to switch to the barrier option, simply type the following instruction.

Barrier_ption

Closing the application

You can either type the following command,

quit

or simply close the window.

E Package Manual

Package User Manual

This package allows you to perform various computations on European call options, barrier options and look-back options in the C++ language.

Table of Contents

- Features
- Installation
 - Building the Project
 - Importing the Package
- Usage
 - Random Numbers Generation
 - European Call Option
 - Initialising the European Call Option
 - Greeks: Delta, Gamma, Vega
 - Barrier Option
 - Initialising the Barrier Option
 - o Greeks: Delta, Gamma, Vega
 - Look-back Option
 - Price
 - o Greeks: Delta, Gamma, Vega

Features

- Compute the European call option, the barrier option and the look-back price
- Compute the European call option, the barrier option and the look-back option greeks:
 - delta
 - gamma
 - vega
- Provide statistical informations

Installation

Make sure you have downloaded all the files in the /libs folder if you plan to use the library, or that you have downloaded the /src folder if you plan to compile with the headers.

Building the project

The current repository comes with precompiled libraries in the /lib folder. However, if you edit the functions in the code, or simply prefer to import the header, we have also included a Makefile for your convenience.

Most users will skip this part to go directly to importing the package.

In order to compile and run the project, you can use the following command in the /src folder.

```
make
./run
```

In case of an issue, run the following command.

```
make clean
```

Another cause of issue is the absence of the directory /src/bin . In this case, you can create it manually using the following command.

```
mkdir bin
```

Importing the package

Importing with headers - easy way

You can type your functions in the main.cpp file in the project. Once you are done, run the following commands.

```
make clean; make
./run
```

Importing with headers

You can import directly all our functions by importing the following header.

To do this, place yourself in the same repository as the one where the rest of the source files are.

#include "barrierlookbackoptions.h"

To build your project, which must include a main function, you can use the following commands.

g++ -o myproject myproject.cpp random_normal.cpp european_option.cpp barrier_option
./myproject

Do not forget to build in the same folder as the one the files are. You must always write andom_normal.cpp european_option.cpp barrier_option.cpp lookback_option.cpp after the C++ file of your project.

Importing via shared libraries

Linux

We recommend using the libBarrierLookBackOptions.so for the Linux users.

Windows NT

We recommend using the BarrierLookBackOptions.dll for the Windows NT users.

MacOS

We recommend using the BarrierLookBackOptions.dylib for the macOS users.

Usage

Random numbers generation

In order to generate a sample of numbers drawn from normal distribution, a separate class 'random_normal' was implemented. **Note that if you use either the European call option,** the barrier option or the look-back option, the generation of random samples is already done automatically.

You can specify parameters of the normal distribution from which numbers are to be drawn. In this declaration 'name' can be arbitrary, 'm' and 'v' correspond to mean and variance respectively. By default, standard normal distribution will be created:

```
random_normal name_1(m, v);
random_normal name_2();  // same as: random_normal name_2(0,1)
```

Now the method *generate* can be used with an integer argument 'n', to draw n numbers from distributions specified:

```
name_2.generate(n);
```

After n numbers have been drawn, you can access i-th number by using square brackets [], for instance:

```
double d = name_2[i];
```

You can also generate a single random number from standard normal distribution N(0,1) simply using global function:

```
get_random(); // the result is long double
```

Finally, you can compute the cdf and pdf of the standard normal distribution by using following functions:

```
normal_cdf(d);  // input/output are double types
normal_pdf(d);  // input/output are double types
```

European call option

Initialising the European call option

Before you use any of the functions of the package, you must create a european_option object to interact with. This can be done using the following method. You will need the following parameters:

- S_t0 (double) the value of the underlying stock at time t0. Default is 100.
- strike (double) the value of the strike of the European option. Default is 100.
- interest_rate (double) the decimal value of the interest rate. For an interest rate of

15%, enter 0.15. Default is 0.05.

- volatility (double) the decimal value of the volatility of the underlying stock. For an volatility of 15%, enter 0.15. Default is 0.40.
- time_maturity_T (double) the time of maturity of the call. Default value is 1 .0.
- initial_time_t0 (double) the initial time at which S_t0 was recorded. Default value is 0.0.
- number_iterations_approximation (int) the number of iterations for the approximation methods. The default value is 10,000. Note than the larger this number is, the slower but more accurate computations are. Industry standards are 100,000.

```
european_option call(S_t0, strike, interest_rate, volatility,
    time_maturity_T, time_initial_t, number_iterations_approximation);
```

You can access most of the program's functionalities by accessing the functions as follows my_european_call_option.the_function_i_use().

Price

The price is computed using the Monte Carlo method with the number of iterations specified when initialising the european_call_option class. Recall that the value is 10,000 iterations by default.

```
double call.price();
```

You can however specify any other number of iterations by specifying an int number in the parameters as follows.

```
double call.price(100000);
```

Greeks

Delta

In order to compute the call option delta, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double call.delta();
```

You can also specify the method you want to use.

- To use the pathwise estimates method, enter the argument "pw".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double call.delta("pw");
double call.delta("lr");
```

Gamma

In order to compute the call option gamma, you can use the following method. By default (with any string input or no input at all), the method used is *pathwise estimates - likelihood ratios*.

```
double call.gamma();
```

You can also specify the method you want to use.

- To use the likelihood ratios pathwise estimates method, enter the argument "lrpw".
- To use the likelihood ratios likelihood ratios method, enter the argument "lrlr".
- To use the *pathwise estimates likelihood ratios* method, enter the argument "pwlr" or alternatively do not enter any argument.

```
double call.gamma("lrpw");
double call.gamma("lrlr");
double call.gamma("pwlr");
```

Vega

In order to compute the call option vega, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double call.vega();
```

You can also specify the method you want to use.

- To use the pathwise estimates method, enter the argument "pw".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double call.vega("pw");
double call.vega("lr");
```

Barrier option

Initialising the barrier option

The barrier_option object takes the same arguments as the european_option plus the value of the barrier.

You will need the following parameters:

- barrier_value (double) the value of the barrier.
- S_t0 (double) the value of the underlying stock at time t0. Default is 100.
- strike (double) the value of the strike of the European option. Default is 100.
- interest_rate (double) the decimal value of the interest rate. For an interest rate of 15%, enter 0.15. Default is 0.05.
- volatility (double) the decimal value of the volatility of the underlying stock. For an volatility of 15%, enter 0.15. Default is 0.40.
- time_maturity_T (double) the time of maturity of the call. Default value is 1 .0.
- initial_time_t0 (double) the initial time at which S_t0 was recorded. Default value is 0.0.
- number_iterations_approximation (int) the number of iterations for the approximation methods. The default value is 10,000. Note than the larger this number is, the slower but more accurate computations are. Industry standards are 100,000.

```
barrier_option boption(barrier_value, S_t0, strike, interest_rate,
  volatility, time_maturity_T, time_initial_t,
  number_iterations_approximation);
```

You can access most of the program's functionalities by accessing the functions as follows my_barrier_option.the_function_i_use().

Price

The price is computed using the Monte Carlo method with the number of iterations specified

when initialising the barrier_option class. Recall that the value is 10,000 iterations by default.

```
double boption.price();
```

Greeks

Delta

In order to compute the barrier option delta, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.delta();
```

You can alsospecify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.delta("th");
double boption.delta("lr");
```

Gamma

In order to compute the barrier option gamma, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.gamma();
```

You can also specify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.gamma("th");
double boption.gamma("lr");
```

Vega

In order to compute the barrier option vega, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.vega();
```

You can also specify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.vega("th");
double boption.vega("lr");
```

Gamma

In order to compute the barrier option gamma, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.gamma();
```

You can also specify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.gamma("th");
double boption.gamma("lr");
```

Vega

In order to compute the barrier option vega, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.vega();
```

You can also specify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the likelihood ratios method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.vega("th");
double boption.vega("lr");
```

Look-back option

The lookback_option object takes the same arguments as the european_option plus the value of the barrier.

You will need the following parameters:

- min_or_max_observed (double) the maximum or minimum observed. Default is 150.
- S_t0 (double) the value of the underlying stock at time t0. Default is 100.
- strike (double) the value of the strike of the European option. Default is 100.
- interest_rate (double) the decimal value of the interest rate. For an interest rate of 15%, enter 0.15. Default is 0.05.
- volatility (double) the decimal value of the volatility of the underlying stock. For an volatility of 15%, enter 0.15. Default is 0.40.
- time_maturity_T (double) the time of maturity of the call. Default value is 1 .0.
- initial_time_t0 (double) the initial time at which S_t0 was recorded. Default value is 0.0.
- number_iterations_approximation (int) the number of iterations for the approximation methods. The default value is 10,000. Note than the larger this number is, the slower but more accurate computations are. Industry standards are 100,000.

```
lookback_option lboption(min_or_max_observed, S_t0, strike,
  interest_rate, volatility, time_maturity_T,
  time_initial_t, number_iterations_approximation);
```

You can access most of the program's functionalities by accessing the functions as follows my_lookback_option.the_function_i_use().

Price

The price is computed using the Monte Carlo method with the number of iterations specified when initialising the lookback_option class. Recall that the value is 10,000 iterations by default.

```
double lboption.price();
```

Greeks

Delta

In order to compute the barrier option delta, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.delta();
```

You can also specify the method you want to use.

- To use the theoretical value, enter the argument "th".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.delta("th");
double boption.delta("lr");
```

Gamma

In order to compute the barrier option gamma, you can use the following method. By default (with any string input or no input at all), the method used is *likelihood ratios*.

```
double boption.gamma();
```

You can also specify the method you want to use.

- To use the pathwise derivatives method, enter the argument "pw".
- To use the *likelihood ratios* method, enter the argument "lr" or alternatively do not enter any argument.

```
double boption.gamma("pw");
double boption.gamma("lr");
```

Vega

In order to compute the barrier option vega, you can use the following method.

```
double lboption.vega();
```

Gamma

In order to compute the barrier option gamma, you can use the following method.

```
double lboption.gamma();
```

Vega

In order to compute the barrier option vega, you can use the following method.

```
double lboption.vega();
```