電子システム工学基礎実験 報告書

		グ	ルー	プ:			A								
実験題目							電流。	と磁場	,						
報告者	第1_	班		学生	番号	2	112100	1	氏	:名 _		浅	井 雅史	[-	
	メール	アドレ	/ス				b	11210	01@	edu.k	it.ac.j	jp			
	共同	司実験	者	学生	番号	2	1121002		氏名	, I	Ž	美岡 馬			
				学生	- 番号	2	1121007		氏名	<u> </u>	ĺ	尹藤 ナ	大智		
				学生	番号	2	1121008		氏名		ŧ	中上 美	羽陽		
				学生	番号 -				氏名	<u></u>					
実験実施日	2022	年	11	月	24	日	天候	曇り	温	且度	17	$^{\circ}\! \mathbb{C}$	湿度	51	%
報告書提出	(第1	回目)	2	2022	年	11	月	30	 	\Rightarrow	受理	里/	要再	提出	_
	(第2	回目)			年		 月		_ F	\Rightarrow	受理	里/	要再	提出	
報告書受理日	(最終)			年		_ 月 _		_ _ _	1					
報告書提出者	音の自己チ	エック楫	引(でき	ていれ	ゖばロに	チェッ	クせよ)								
☑実験結果は示されているか? ☑考察は十分になされているか? ☑レポートとしての体裁は適切か?							図表の書き方・まとめ方は適切か?図演習問題はできているか?								

[注意]

・自己チェック欄が未記入のレポートは内容を見ずに返却する・自己チェック欄と内容に相違があるものは、その程度に応じて減点する

[報告書に対する教員の所見]	[所見に対する報告者の回答]
□図表の体裁に不備がある	
(
□実験結果のまとめ方が適切でない	
(
口結果に対する考察が不足している	
(
□演習問題が解答されていない	
(
ロレポートとしての体裁が整っていない	
(
裏面に続く	裏面に続く

1 目的

ソレノイドを用いて電流と磁場 \vec{H} の関係を理解すると共に、それらの測定原理およびその方法を習得する.

2 原理

2.1 ソレノイドによる磁場

図 1 のような半径 a, 長さ b の円筒ソレノイドによって中心軸上 (r=0) の P 点に作られる B_z は、単位長さあたりの巻数を n、ソレノイドに流れる電流を I とすると、

$$B_z = \frac{\mu_0 nI}{2} (\cos \theta_2 - \cos \theta_1)$$

であるから、ソレノイドのそう巻き数を N(=nb)、左側から P 点までの距離を z とすると、

$$\cos \theta_1 = \frac{z - b}{\sqrt{a^2 + (z - b)^2}}$$
, $\cos \theta_2 = \frac{z}{\sqrt{a^2 + z^2}}$

であるから,

$$B_z = \frac{\mu_0 NI}{2} \left\{ \frac{z}{\sqrt{a^2 + z^2}} + \frac{b - z}{\sqrt{a^2 + (z - b)^2}} \right\}$$

となる.

図1 有限長ソレノイド

2.2 磁気プローブ

巻数 N が 1 巻のコイルに鎖交する全磁束 Φ が時間変化すると、コイルの両端に、

$$V_{c0} = -\frac{d\phi}{dt}$$

の誘導電圧が現れる.このコイルの大きさが \vec{B} の空間変動に比べて十分小さければ,コイルの断面積 S 上で $|\vec{B}|$ が一定とみなすことができる.多くの場合,N の値は (≥ 2) であり,この時の全鎖交磁束は,

$$\phi \simeq NBS$$

であるから,

$$V_{c0} = -\frac{d(NBS)}{dt} = -NS\frac{dB}{dt}$$

と書ける.この式の右辺は B の時間微分の形になっているので,B を求めるためには両辺を時間積分すれば良い.つまりコイル電圧 $V_{c0}(t)$ を時間積分することにより,

$$B = -\frac{1}{NS} \int_0^t V_{c0}(t)dt$$

として B の値を得ることができる. この方法を磁気プローブによる磁束密度測定法という.

2.3 ロゴスキーコイルを用いた大電流測定

アンペールの周回積分の法則より、任意の閉ループに沿った B の線積分はそのループと鎖交する電流 i の値を与え、ループの形状によらない.このことから、断面積 S、全巻き数 N、長さが l のロゴスキーコイルが i を取り囲む形で置かれていると、

$$\mu_0 i = \oint \vec{B} \cdot \vec{dl}$$

という式が成り立つ. よって i(t) の作る磁束の時間変化によりロゴスキーコイルの両端に現れる誘導電圧 $V_e(t)$ の関係は,

$$i = -\frac{l}{\mu_0 NS} \int_0^t V_e(t) dt$$

となる. また、電流路とロゴスキーコイルの相互インダクタンスMが既知の場合、 V_e は、

$$V_e = M \frac{dl}{dt}$$

なので,

$$i = \int_0^t \frac{1}{M} V_e(t) dt \simeq \frac{RC}{M} V_c$$

参考文献

[1]