Základy chémie

nekovové prvky

Látkové vlastnosti nekovových prvkov

- Väčšina sú za bežných podmienok plynné látky všetky vzácne plyny, fluór, chlór, kyslík, dusík, a vodík
- Kvapalný je bróm
- Ostatné sú tuhé látky
- Dvojatómové molekuly sú v pevnom, kvapalnom aj tuhom stave H₂, N₂, O₂, všetky halogény
- Molekulovú štruktúru majú aj niektoré modifikácie prvkov
 O₃, P₄, S₈, Se₈
- Polymérnu štruktúru Se, Te, P, C
- Vrstevnatú štruktúru P a C
- Skeletálnu s kovalentnou väzbou C, Si, B

Význam nekovových biogénnych prvkov

O (kyslík) – jediný prvok, ktorý môžu mikroorganizmy, rastliny aj živočíchy prijímať v podobe molekúl O₂.

Jeho reakcie s inými prvkami tvoria základný zdroj energie pre všetky životné procesy

Zdrojom kyslíka je atmosféra

C (uhlík) – základný prvok bunkových, tkanivových aj orgánových štruktúr organizmov

Tvorí aj zlúčeniny, ktorých premenou sa získava energia Zdrojom uhlíka pre živú prírodu je CO₂.

Uniká z pôdy, vôd a živých organizmov do ovzdušia – spätne sa asimiluje fotosyntézou

Význam nekovových biogénnych prvkov

H (vodík) – v organizmoch ako súčasť vody, anorganických a organických molekúl

Pre život má význam vodík vo vode a v organických zlúčeninách

Prenos vodíka z organických zlúčenín na kyslík = princíp biologických oxidácií = získavanie energie

N (dusík) – súčasť organických molekúl (proteíny, nukleové kyseliny) a pod.

N₂ asimulujú a uvoľňujú len niektoré baktérie a riasy = tvoria podstatu jeho kolobehu

Význam nekovových biogénnych prvkov

P (fosfór) – je súčasťou nukleových kyselín, fosfolipidov a fosforečnanov

Makroergické fosfáty – zabezpečujú príjem a výdaj energie pri metabolických reakciách

S (síra) – v organizme prevažne v proteínoch

F, CI, Br, I (halogény) – v organizme v podobe aniónov

UHLÍK

Výskyt:

ako elementárny

modifikácie

grafit, diamant (v prírode)

fullerén, karbín, grafén (v laboratóriu)

V zlúčeninách

- uhličitany CaCO₃ vápenec CaMg(CO₃)₂ dolomit
- CO₂
- organické látky uhlie, ropa
- všetky živé organizmy

Stabilnou formou uhlíka pri bežných podmienkach je grafit. V roku 1955 sa podarila prvýkrát premena grafitu na diamant pri teplote 2000 – 3000 K a tlaku 5 – 10 GPa.

Amorfný uhlík (sadze, drevené uhlie) je v skutočnosti mikrokryštalický grafit.

Hmotnosť diamantu sa udáva v karátoch 1 karát = 0,2 g (5 karátov = 1 g)

Všetky modifikácie uhlíka zhoria na vzduchu na oxid uhličitý (diamant zhorí pri teplote 1400 ° C).

Uhlík – väzbové možnosti

- ₆C: 1s², 2s², 2p_x¹, 2p_y¹
- Uhlík je vo svojich zlúčeninách maximálne a prevažne štvorväzbový
- Viaže sa v zlúčeninách kovalentnými väzbami
- Nevytvára komplexné zlúčeniny, kde by bol centrálnym atómom
- Je prítomný v ligandoch CO, CN-
- V anorganických zlúčeninách má spravidla oxidačný stav IV (CCI₄, CO₂)
- V organických zlúčeninách sa vyskytuje v intervale IV až
 -IV

Zlúčeniny uhlíka

Karbidy – sú zlúčeniny uhlíka s prvkami, ktoré majú menšiu elektronegativitu ako uhlík: CaC₂ - acatylid vápenatý
SiC - (carborundum) tvrdosťou sa blíži diamantu, používa sa pri brúsení.

Halogenidy – CX_4 , stabilita klesá od CF_4 ku CI_4 CF_4 – plyn CCI_4 – tetrachlórmetán, organické
rozpúšťadlo CBr_4 a CI_4 – tuhé látky

OZÓNOVÁ DIERA

Chlór obsahujúce radikály (CI, CIO a ich analógy obsahujúce bróm) sú najreaktívnejšie zo všetkých stratosferických kontaminantov, ktoré katalyzujú deštrukciu ozónu.

pri reakcii sa odčerpáva atómový kyslík z atmosféry, a tým sa zabraňuje tvorbe, resp. regenerácii nového ozónu

Tvorba ozónu:
$$O_2 \longrightarrow 2 O \bullet$$
 $O_2 + O \bullet \longrightarrow O_3$

Kyslíkaté zlúčeniny

CO – oxid uhoľnatý – plynná, bezfarebná látka bez zápachu, vo vode takmer nerozpustná vzniká pri spaľovaní uhlíka a jeho zlúčenín za obmedzeného prístupu kyslíka. Má redukčné účinky, čo sa využíva v metalurgii

$$\begin{aligned} \text{Fe}_2\text{O}_3 + 3\text{CO} &\rightarrow 2\text{Fe} + 3\text{CO}_2 \\ \text{CuO} + \text{CO} &\rightarrow \text{Cu} + \text{CO}_2 \end{aligned}$$

Komplex CO s hemoglobínom sa volá karbonylhemoglobín.

$$CO + Cl_2 \rightarrow COCl_2$$
 fosgén (chlorid karbonylu)

Fosgén je vysoko toxický. Bol použitý ako bojový otravný plyn.

CO₂ – oxid uhličitý

je bezfarebný plyn, ktorý je zložkou atmosféry 0.03%. Pri teplote – 56 °C tuhne na kyprú látku podobnú snehu (suchý ľad). Tuhý oxid uhličitý intenzívne sublimuje, čím sa ďalej ochladzuje až do teploty -78,5 °C. Pod názvom "suchý ľad" sa používa ako chladiaci prostriedok.

Zmes suchého l'adu a acetónu alebo metanolu sa používa ako chladiaca zmes.

Oxid uhličitý vzniká spaľovaním uhlíka (koksu, uhlia)

$$O_2(g) + C(s) \rightarrow CO_2(g)$$

ako konečný produkt spaľovania zlúčenín uhlíka, ako produkt mnohých biologických procesov (dýchania, kvasenia cukru na etanol a i.)

 CO_2 – málo rozpustný vo vode = vznik H_2CO_3 dobre sa rozpúšťa vo vodných roztokoch hydroxidov alkalických kovov: $2KOH + CO_2 \rightarrow K_2CO_3 + H_2O$ $KOH + CO_2 \rightarrow KHCO_3$

H₂CO₃ je nestála látka, známa len v zriedenom roztoku:

$$H_2CO_3 + H_2O \leftrightarrow H_3O^+ + HCO_3^-$$

 $HCO_3^- + H_2O \leftrightarrow H_3O^+ + CO_3^{2-}$

Uhličitany a hydrogénuhličitany alkalických kovov napr. NaHCO₃, K₂CO₃ sú tuhé vo vode rozpustné látky

Uhličitany ostatných prvkov napr. MgCO₃, CaCO₃, BaCO₃, FeCO₃ sú tuhé vo vode nerozpustné látky

Vodné roztoky uhličitanov sú zásadité:

Napr.
$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$$

 $CO_3^{2-} + H_2O \rightarrow HCO_3^{-} + OH^{-}$

Uhličitany aj hydrogénuhličitany sa účinkom silných kyselín úplne rozkladajú: $FeCO_3(s) + 2HCI \rightarrow CO_2(g) + H_2O(I) + FeCI_2$ (aq)

Využitie:

NaHCO₃ – súčasť šumivých nápojov sóda bicarbóna, jedlá sóda

NH₄HCO₃ – súčasť kypriaceho prášku – jelenia soľ

MgCO₃ – súčasť zubných pást, plnivo pri výrobe papiera, v medicíne ako súčasť zásypov

CaCO₃ – súčasť zubných pást a čistiacich prostriedkov

Prírodný CaCO₃ sa využíva na výrobu vápna:

CaCO₃ → CO₂ + CaO pálené vápno

CaO + H₂O → Ca(OH)₂ hasené vápno

Kyanidy- soli HCN - kyanovodík - je prudko jedovatý,

KCN kyanid draselný

NaCN kyanid sodný

 CN^{-} ión vo vode silno hydrolyzuje = roztoky sú zásadité $CN^{-} + H_2O \rightarrow HCN + OH^{-}$

HCN - slabá kyselina – okyslením vodných roztokov kyanidov prchá = nebezpečné = s kyanidmi možno pracovať v zásaditom prostredí

Kyanidy sa likvidujú ich oxidáciou na kyanatany (NCO⁻)

CS₂ - sírouhlík

CO(NH₂)₂ – močovina, produkt rozkladu aminokyselín v živoč. organizme

Vodík, kyslík, voda a peroxid vodíka

Vodík - 1s1

- V prírode známe tri izotopy:

Prócium ¹₁H, deutérium ²₁H (D), trícium ³₁H (T)

- V zlúčeninách je kovalentne viazaný
- S alkalickými kovmi a kovmi alkalických zemín vytvára hydridy s čiastkovým záporným nábojom na H
- Ako H⁺ je akceptorom elektrónového páru
 (protolytické reakcie: H⁺ + NH₃ → NH₄⁺)
- Ako H⁻ je donor elektrónového páru (Hydridokomplexy: [BH₄]⁻)
- Vo všetkých skupenstvách vystupuje ako H₂
- Vo vode sa rozpúšťa len nepatrne

- je v 1. skupine PSP
- má elektrónovú konfiguráciu 1s¹
- je nekov, je najľahší plyn, 14-krát ľahší ako vzduch, s ktorým vytvára traskavý plyn.
- podobnosť so 7. skup. tvorba molekúl H₂
 H H
 - v molekule H₂ je nepolárna kovalentná väzba
- špecifické správanie v dôsledku osobitosti elekr. konfigurácie (1.sk., 7.sk)
- elektronegativita atómu vodíka ma strednú hodnotu (2,1), je približne zhodná s elektronegativitou B a C (takže väzby B-H, C-H, Si-H sú málo polárne)

Chemické vlastnosti

vodík sa zlučuje priamo s mnohými prvkami.
 Prudko sa zlučuje s kyslíkom a halogénmi.

$$2 H_2 + O_2 \rightarrow 2H_2O$$

Zmes vodíka a kyslíka pri určitom pomere je silne výbušná – *traskavý plyn* (pri iskre alebo zahriatí), z toho dôvodu sa vodík uplatňuje ako palivo (napr. v raketových motoroch).

 vodík má redukčné vlastnosti – pôsobí ako redukovadlo, redukuje oxidy, halogenidy, sulfidy

PbO +
$$H_2 \rightarrow Pb + H_2O$$

2AgCl + $H_2 \rightarrow 2Ag + 2HCl$
 $Ag_2S + H_2 \rightarrow 2Ag + H_2S$

Atómový vodík (monovodík H•)

 Atómový vodík vzniká rozštiepením molekúl vodíka dodaním potrebnej energie

$$H_2(g) \to 2H(g)$$
 $\Delta H = 4318 \text{ kJ mol}^{-1}$

účinkom vysokej teploty, elektrického výboja

Jeho doba existencie je krátka.

Atómový vodík je reaktívnejší než molekulový.

Atómový vodík sa tvorí v prvom stupni redukcie H^I v roztokoch:

2 HCl + Zn
$$\rightarrow$$
 H₂ + ZnCl₂

Taký "vodík v stave zrodu" (in statu nascendi) je silným redukovadlom.

Zlúčeniny

Anorganické zlúčeniny:

- hydridy: NaH, NH₃, H₂S
- zlúčeniny s kyslíkom H₂O, H₂O₂
- hydroxidy NaOH, KOH, Ca(OH)₂
- kyseliny: HCI, H₂SO₄, H₂CO₃
- hydrogénsoli: NaHCO₃, Ca(HCO₃)₂

Organické zlúčeniny:

Výroba vodíka

 Reakciou vodnej pary s rozžeraveným koksom

$$H_2O + C \rightarrow CO + H_2$$
 (vodný plyn)
 $CO + H_2O \rightarrow CO_2 + H_2$

Elektrolýzou vody

Využitie H₂

- Pri výrobe amoniaku a HCI
- Pri syntéze acyklických alkoholov
- Pri hydrogenácii rastlinných tukov
- Pri hydrogenácii uhlia (syntetického benzínu)
- O₂-H₂ plameň má cca 3000 C = pri zváraní a rezaní kovov
- Izotop trícia na značkovanie
- ako raketové palivo
- v súčasnosti prebieha intenzívny výskum v automobilovom priemysle z hľadiska jeho využitia ako paliva.

KYSLÍK

Kyslík je najrozšírenejší prvok v zemskej kôre. Vyskytuje sa elementárny vo vzduchu (21 obj.%), vo vode a v mnohých anorg. a organických zlúčeninách. Tvorí polovicu z hmotnosti litosféry, atmosféry a hydrosféry

Kyslík je jediným chemickým prvkom, ktorý môžu priamo v elementárnej forme prijímať mikroorganizmy, rastliny, živočíchy i ľudia.

Prírodný kyslík je zmesou troch izotopov:

¹⁶O, ¹⁷O, ¹⁸O

Dve modifikácie:

Molekulový kyslík vplyvom elektrického výboja alebo ultrafialového žiarenia sa mení na atómový kyslík

Atómový kyslík sa môže zlúčiť s molekulovým za vzniku ozónu

•0 +
$$O_2 \rightarrow O_3$$

Ozón je veľmi silné oxidačné činidlo, dráždi sliznice a ničí mikroorganizmy. Vo vyššej koncentrácii je to nervový jed.

Obe modifikácie existujú vo všetkých skupenstvách

Kyslík

Vo vode sa rozpúšťa málo, zvyšovanie pH rozpúšťanie zvyšuje:

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

fyziologický proces redukcie O₂ počas oxidačných procesov organických zlúčenín, ktorého produktom je voda

Ďalšie metabolity O_2 v organizme:

$$O_2 + e^- \rightarrow O_2^-$$

 $O_2^- + e^- + 2H^+ \rightarrow H_2O_2$
 $H_2O_2 + e^- + H^+ \rightarrow H_2O + OH$
 $OH + e^- + H^+ \rightarrow H_2O$

$$O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$$

 $H_2O_2 + 2e^- + 2H^+ \rightarrow 2 H_2O$

Pre organizmus je dôležitá redukcia kyslíka na O^{-II} (na vodu):

$$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$$

Produktom neúplnej redukcie kyslíka je aj superoxidový anión $O_2^{-\bullet}$, ktorého rozklad je katalyzovaný metaloenzýmom superoxiddismutázou (obsahujúcou Cu and Zn).

Redukcia kyslíka môže prebiehať v štádiách:

$$O_2 + e^- \longrightarrow O_2^-$$

 $O_2^{-\bullet} + e^- \longrightarrow O_2^{2-}$ $O_2^{2-} + 2H^+ \leftrightarrows H_2O_2$

Úlohou metaloenzýmov **katalázy a peroxidázy** (obsahujúcich železo) je záchrana živých systémov od nahromadenia nebezpečnej koncentrácie peroxidu vodíka, ktorý je produktom čiastočnej redukcie kyslíka.

Fyzikálne vlastnosti vody

- Hustota vody sa s rastúcou teplotou nemení lineárne maximálnu hustotu má pri 3,96 °C = ľad pláva
- Nezvykle veľká tepelná kapacita = akumulácia tepelnej energie v moriach a oceánoch = optimálna cirkulácia vody v prírode
- Veľká hodnota povrchového napätia = veľká kapilárna vzlínavosť vody = umožňuje "prúdenie" z koreňov rastlín do kmeňov, vetiev až listov
- Nezvyčajne veľkú výparnú entalpiu = umožňuje život v odlišných klimatických podmienkach
- Je amfoterné rozpúšťadlo môže prijímať aj odovzdávať protóny – autoprotolýza vody

Voda v organizme má tieto úlohy:

- je rozpúšťadlom a dopravným prostriedkom živín a odpadových látok
- prispieva k udržaniu koloidného stavu živej hmoty a správneho napätia v bunke
- umožňuje rozvádzanie tepelnej energie
- má význam chemický. Ako živina je zdrojom vodíka a kyslíka. Je východiskovou látkou pre fotosyntézu.

Význam vody ako účastníka životných pochodov je ďalekosiahly, hlavne preto, že poskytuje vodík pri asimilačných procesoch pre výstavbu energeticky bohatých organických zlúčenín.

Kyslík z nej uvoľnený je dôležitý pre oxidáciu týchto látok. Voda je aj súčasťou aktívnych centier niektorých metaloenzýmov.

Peroxid vodíka H₂O₂

je bezfarebná, sirupovitá kvapalina, ktorá sa ľahko rozkladá

$$2 H_2 O_2 \rightarrow O_2 + H_2 O$$

Komerčný 30 % roztok H₂O₂ sa expeduje vo fľašiach z umelej hmoty, pretože rozklad peroxidu vodíka urýchľujú aj stopy alkalických kovov, ktoré sa ako katióny vylúhujú zo skla.

Peroxid vodíka je dôležitá priemyselná chemikália, ktorá sa používa na bielenie textílií a papiera, na dezinfekciu a oxidáciu rôznych chemických odpadov, na anorganické syntézy.

V zdravotníctve sa používa 3 % vodný roztok H₂O₂ ako dezinfekčný prostriedok.

Vo vode sa správa ako veľmi slabá kyselina:

$$H_2O_2 + H_2O \rightarrow H_3O^+ + HO_2^-$$

Oxidy

lónové oxidy: tvoria ich alkalické kovy a kovy alkalických zemín, napr. Na₂O, CaO
Sú zásadotvorné, búrlivo reagujú s
vodou a tvoria hydroxidy.
CaO + H₂O → Ca(OH)₂

Molekulové oxidy: tvoria prevažne nekovy, napr. CO_2 , SO_2 , SO_3 , ale aj s niektorými kovmi vo vysokých oxidačných číslach, napr. Mn_2O_7 . Oxidy tejto skupina sú väčšinou kyselinotvorné $SO_2+H_2O \rightarrow H_2SO_3$

Oxidy s nekonečnou atómovou štruktúrou:

napr. SiO₂. Prevažná časť tejto skupiny s vodou nereaguje.

Niektoré ako napr. ZnO, Al_2O_3 reagujú so silnými kyselinami aj hydroxidmi, to značí, že majú amfotérny charakter.

Oxidy podvojné: obsahujú dva druhy atómov kovu Napr. CaTiO₃, Fe₃O₄.

Kyslé dažde

 Kyslé dažde vznikajú dôsledkom silného znečistenia vzdušia. Medzi tieto vzdušné polutanty patria predovšetkým:

- oxid síričitý SO₂, vznikajúci v elektrárňach, v priemysle a spaľovaním fosilných palív (uhlie obsahuje 3% síry).
- oxidy dusíka NO_x produkované automobilovou dopravou a priemyslom.

 Bežná dažďová voda má pH 5,0 až 5,6, pretože vo vzduchu sa nachádza oxid uhličitý, ktorý spôsobuje toto zníženie pH:

$$CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq)$$

Za kyslý dážď sa považuje dažďová voda s pH nižším ako 5,5.

Vzdušné polutanty s atmosferickými zrážkami - s ďažďom produkujú kyseliny, ktoré vytvárajú kyslé dažde.

$$\mathbf{SO_2} + \mathbf{H_2O} \rightarrow \mathbf{H_2SO_3}$$
 kyselina siričitá

V atmosfére oxid dusnatý NO môže reagovať s kyslíkom, pričom vzniká oxid dusičitý NO₂

$$NO + O_2 \rightarrow NO_2$$

$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

SÍRA S

Síra je typický nekov. Je žltej farby. Kryštalická síra má molekulovú štruktúru, nerozpúšťa sa vo vode, ale rozpúšťa sa v nepolárnych rozpúšťadlách. Je pomerne reaktívna, po zahriatí reaguje s väčšinou prvkov.

Dve základné modifikácie (jednoklonná a kosoštvorcová) zložené z molekúl S₈

Výskyt:

- elementárna
- v zlúčeninách:

```
sulfidy - pyrit FeS<sub>2</sub> (mačacie zlato),
chalkopyrit CuFeS<sub>2</sub>,
galenit PbS, sfalerit ZnS
sírany – sadrovec CaSO<sub>4</sub>.2H<sub>2</sub>O,
Glauberova soľ Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O
```

 nachádza sa tiež v zemnom plyne, sopečných plynoch a uhlí. Uhlie obsahuje vyše 2% síry, jeho spaľovaním (najmä v tepelných elektrárňach) sa dostáva do atmosféry SO₂.

Zlúčeniny:

H₂S – sulfán (sírovodík) je bezfarebný, nepríjemne zapáchajúci a jedovatý plyn. Pripravuje sa zo sulfidov pôsobením silných kyselín:

FeS + 2HCl
$$\rightarrow$$
 H₂S + FeCl₂

Vo vode sa sulfán dobre rozpúšťa a chová sa ako slabá kyselina:

$$H_2S + H_2O \leftrightarrow H_3O^+ + HS^-$$

 $HS^- + H_2O \leftrightarrow H_3O^+ + S^{2-}$

Sulfidy väčšiny kovov sú vo vode nerozpustné a intenzívne sfarbené (ZnS, CdS, CuS, Ag₂S)

Kyslikaté zlúčeniny síry

 SO_2 - oxid siričitý je bezfarebný, zapáchajúci, dusivý jedovatý plyn. Vzniká pri horení síry, pri pražení sulfidov $4 \text{ FeS}_2 + 11\text{H}_2\text{O} \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$

SO₂ rozkladá chlorofyl, zelené rastliny sa vplyvom SO₂ odfarbujú.

SO₃ – oxid sírový. Vyrába sa katalytickou oxidáciou SO₂

$$\begin{array}{c} \textbf{400-500 °C} \\ \textbf{2 SO}_2 + \textbf{O}_2 & \rightarrow \textbf{2SO}_3 \\ \textbf{V}_2\textbf{O}_5 \end{array}$$

H₂SO₄ - kyselina sírová H₂SO₃ - kyselina síričitá

Sírany - CuSO₄.5H₂O modrá skalica FeSO₄.7H₂O zelená skalica ZnSO₄.7H₂O biela skalica CaSO₄.1/2H₂O sádra CaSO₄.2H₂O sádrovec (jemnozrná odroda - alabaster)

BaSO₄ baryt

SÍRA biologický význam

- Rastliny síru asimilujú len v podobe síranových aniónov SO42-
- Rastliny však síru využívajú až po jej úplnej redukcii na sulfidové anióny S2-
- U ľudí sa anorganické sírany menia na organické sírne aminokyseliny
- Organická síra sa u človeka a živočíchov látkovou premenou mení na sírany, estery kyseliny sírovej a v malom množstve na síru, ktorá sa vylučuje močom

Dusík

- Len N₂ modifikácia
- Je inertný ako molekula N₂
- Nereaguje s vodou, kyselinami, hydroxidmi
- Atómový dusík veľmi reaktívny

DUSÍK

Môže sa vyskytovať v 9 oxidačných číslach:

```
od –III, -II, -I, O, I, II, III, IV, V NH_3 \quad \text{amoniak} \qquad \text{(-III)} \\ N_2 \qquad \qquad \text{(0)} \\ N_2O \quad \text{oxid dusný} \qquad \text{(I)} \\ NO \quad \text{oxid dusnatý} \qquad \text{(II)} \\ HNO_2 \quad \text{kyselina dusitá} \qquad \text{(III)} \\ NO_2 \quad \text{oxid dusičitý} \qquad \text{(IV)} \\ HNO_3 \quad \text{kyselina dusičná} \qquad \text{(V)}
```

Dusík väzbové možnosti

Výskyt:

- vo vzduchu 78 obj. %
- v dusičnanoch, NaNO₃ čílsky liadok
- v organických látkach (aminokyseliny, bielkoviny, nukleové kyseliny)

Výroba:

Destiláciou skvapalneného vzduchu.

Priemyselne sa touto destiláciou získa 6 plynov: N₂, O₂, Ar, Ne, Kr, Xe

NH₃ amoniak = čpavok, dráždivý plyn (oči, dýchacie cesty)

- Je konečným produktom metabolizmu aminokyselín a bielkovín obsahujúcich dusík, vylučuje sa obličkami, časť sa zneškodňuje tvorbou močoviny: $NH_3 + CO_2 \rightarrow CO(NH_2)_2$
- vo vode sa rozpúšťa dobre vzniká NH₄OH (25%NH₃)
- NH3 čiastočne reaguje s vodou protolytickou reakciou:

$$H_2O + NH_3 \leftrightarrow NH_4^+ + OH^-$$

Zvyšok je hydratovaný

amónne soli - NH₄Cl, (NH₄)₂SO₄

Oxidy:

N₂O oxid dusný:

má narkotizačné účinky (rajský plyn), používa sa ako výplňový plyn v šľahačoch.

NO oxid dusnatý:

Oxid dusnatý je toxický!

Oxid dusnatý sa pri laboratórnej teplote oxiduje vzdušným kyslíkom na NO₂

$$2NO(g) + O_2(g) \rightarrow NO_2(g)$$

Oxidy NO_x (NO a NO₂) sú atmosferické polutanty produkované výfukmi zo spaľovacích motorov.

NO₂ je toxický, hnedočervený plyn. S vodou reaguje za tvorby kyseliny dusičnej.

HNO₃ kyselina dusičná:

vyrába sa z amoniaku v prítomnosti katalyzátora (Pt)

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

 $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$
 $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}$

Kyselina dusičná je za normálnych podmienok bezfarebná kvapalina.

Účinkom svetla a tepla sa čiastočne rozkladá

$$4 \text{ HNO}_3 \rightarrow 4 \text{NO}_2 + \text{O}_2 + 2 \text{H}_2 \text{O}$$

v dôsledku čoho sa sfarbuje do žlta až do hneda od rozpusteného NO₂.

Soli:

```
KNO_3 \ (liadok \ draseln\acute{y}), \\ NH_4NO_3 \ (liadok \ am\acute{o}nny) \\ NaNO_3 \ (liadok \ sodn\acute{y}) \\ Použitie - ako \ hnojiv\acute{a}, \\ konzervačn\acute{a} \ l\acute{a}tka \ (KNO_3 + NaNO_2 + NaCl + cukor) \\ dymovnice
```

Lúčavka kráľovská (aqua regia): rozpúšťa zlato a platinu

 $3HNO_3 + HCl \rightarrow NOCl + Cl_2 + 2H_2O$

Kolobeh dusíka:

V biosfére je N_2 konečným produktom odbúravania dusíkatých organických látok.

Hlavným zdrojom dusíkatých látok v pôde sú mikroorganizmy fixujúce dusík, z ktorých najznámenjšie žijú v symbióze na koreňoch bôbovitých rastlín.

Fixáciu N_2 katalyzuje enzým nitrogenáza, ktorá obsahuje MoFe proteín (vo svojej štruktúre obsahuje molybdén a železo).

Kolobeh dusíka

Kolobeh dusíka

biologická fixáciacia dusíka:

$$N_2 + 8H^+ + 6e^- \xrightarrow{\text{nitrogenáza}} 2NH_4^+$$

- nitrifikácia:

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$

- denitrifikácia:

$$2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$$