CLAIM AMENDMENTS

Listing of Claims:

- 1-14. (Cancelled)
- 15. (Currently Amended) A method for treating a patient suffering from chronic inflammation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 N
 R^2
 R^1
(II)

or a physiologically compatible salt thereof, in which

- means a monocyclic or bicyclic C₆₋₁₂ aryl group optionally substituted with up to three of the following substituents, independently of one another selected from: F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R^{4'}, C(NR⁴)NH₂, C(NR⁴)NHR^{4'}, C(NR⁴)NR⁴R^{4'}, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOOH, XCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴, XNR⁴R^{4'}, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R^{4'}, XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,[[‡]]
- means a monocyclic or bicyclic C₆₋₁₀ aryl group optionally substituted with up to three of the following substituents, independently of one another selected from:

 F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R^{4'}, C(NR⁴)NH₂, C(NR⁴)NHR^{4'}, C(NR⁴)NR⁴R^{4'}, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOOH, XCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

$$\begin{split} XSOR^4, XSO_2R^4, SO_2NH_2, SO_2NHR^4, SO_2NR^4R^{4'}, NO_2, XNH_2, XNHR^4, \\ XNR^4R^{4'}, XNHSO_2R^4, XN(SO_2R^4)(SO_2R^{4'}), XNR^4SO_2R^{4'}, XNHCOR^4, \\ XNHCOOR^4, XNHCONHR^4, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R^4,[[<math>\doteqdot$$
]]

R³ stands for one or two substituents which are each independently of one another selected from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,[[;]]

 R^4 and R^4 , independently of one another, mean $C_{1\text{-}4}$ perfluoroalkyl, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkinyl, $C_{3\text{-}7}$ cycloalkyl, ($C_{1\text{-}3}$ alkyl- $C_{3\text{-}7}$ cycloalkyl), $C_{1\text{-}3}$ alkyl- $C_{6\text{-}10}$ aryl, $C_{1\text{-}3}$ alkyl-5 to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S and O, $C_{6\text{-}10}$ aryl, or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S and O atoms,

wherein the C_{6-10} aryl and heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring optionally has an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 R^5 and $R^{5'}$, independently of one another, mean hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl,

wherein in each case a carbon atom is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl, C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring optionally has an N or O ring member and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O,

wherein ring nitrogens optionally are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S, and O, wherein the mentioned alkyl, alkenyl and alkinyl groups are optionally substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls, wherein all previously mentioned alkyl and cycloalkyl radicals are optionally substituted with up to two substituents selected from CF_3 , C_2F_5 , C_3F_5 , or optionally carry an annelated methanediylbisoxy, or ethane-1,2-diylbisoxy group, or

- R^5 and R^5 together with the nitrogen atom form a 5-to 7-membered group, which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl,
- means C₁₋₁₀ alkanediyl, C₂₋₁₀ alkenediyl, C₂₋₁₀ alkinediyl, (C₀₋₅ alkanediyl-C₃₋₇ cycloalkanediyl-C₀₋₅ alkanediyl), (C₀₋₅ alkanediyl), or (C₀₋₅ alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein the aryl and heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl,

wherein in the mentioned aliphatic groups, one or two carbon atoms are each optionally replaced by O, NH, NR⁴, NCOR⁴, or NSO₂R⁴,

and wherein alkyl or cycloalkyl groups are optionally substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R^{4'}, NHCOR⁴, NHCOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,

B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵,

- C(NOR⁵)R^{5'}, C(NO(COR⁵))R^{5'}, COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵), or tetrazolyl, each bonded to a carbon atom of group A, or the entire group Y-A-B is N(SO₂R⁴)(SO₂R^{4'}) or NHSO₂R⁴,
- X means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂, or CH₂CH(CH₃), and
- Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴.
- 16. (Currently Amended) A method according to claim 15, wherein
- means a monocyclic or bicyclic aryl group optionally substituted with up to three of the following substituents, independently of one another selected from:

 F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN,

 COOH, XCOOR⁴, XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH,

 XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R^{4'}, of and R⁴.
- 17. (Currently Amended) A method according to claim 15, wherein,
- means a monocyclic or bicyclic aryl group optionally substituted with up to three of the following substituents, independently of one another selected from:

 F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

 XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XCOOH, XCOOR⁴,

 XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

 XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴,

 XNR⁴R^{4'}, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R^{4'}, XNHCOR⁴,

 XNHCOOR⁴, XNHCONHR⁴, OF and R⁴.
- 18. (Previously Presented) A method according to claim 15, wherein
- stands for one or two substituents, which independently of one another, each mean:

 hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

 XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'},

XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴, XNR⁴R^{4'}, XNHSO₂R⁴, XNR⁴SO₂R^{4'}, XN(SO₂R⁴)(SO₂R^{4'}), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴.

- 19. (Previously Presented) A method according to claim 15, wherein R⁴ and R⁴, independently of one another, mean CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkinyl, C₃₋₆ cycloalkyl, (C₁₋₃ alkyl-C₃₋₆ cycloalkyl), C₁₋₃ alkylaryl, C₁₋₃ alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 heteroatoms_selected from N, S and O, wherein the aryl and heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl.
- 20. (Previously Presented) A method according to claim 15, wherein R⁵ and R^{5'}, independently of one another, are optionally C₁₋₆ alkyl wherein a carbon atom is optionally replaced by O, NH, N C₁₋₃ alkyl, N C₁₋₃ alkanoyl, or C₃₋₇ cycloalkyl-C₀₋₃ alkyl, wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein the mentioned C₁₋₆ alkyl group is optionally substituted with one of the previously mentioned cycloalkyls or a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O, wherein all previously mentioned alkyl and cycloalkyl groups are optionally substituted with up to two substituents selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅,

- or R^5 and $R^{5'}$ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl.
- 21. (Previously Presented) A method according to claim 15, wherein
- means C₁₋₁₀ alkanediyl, C₂₋₁₀ alkenediyl, C₂₋₁₀ alkinediyl, (C₀₋₅ alkanediyl-C₃₋₇ cycloalkanediyl-C₀₋₅ alkanediyl), or (C₀₋₅ alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein when a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein in aliphatic groups one or two carbon atoms are optionally replaced by O, NH, N C₁₋₃ alkyl, N C₁₋₃ alkanoyl, or NSO₂ C₁₋₃ alkyl, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C₁₋₃ alkyl, O C₁₋₃ alkanoyl, =O, NH₂, NH C₁₋₃ alkyl, N (C₁₋₃ alkyl), NH C₁₋₃ alkyl, NH SO₂ C₁₋₃ alkyl, SH, and S C₁₋₃ alkyl.
- 22. (Previously Presented) A method according to claim 15, wherein
- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group A.
- 23. (Previously Presented) A method according to claim 15, wherein
- X means a bond or CH_2 .
- 24. (Previously Presented) A method according to claim 15, wherein
- Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.

- 25. (Cancelled)
- 26. (Previously Presented) A method according to claim 15, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 27. (Cancelled)
- 28. (Cancelled)
- 29. (Currently Amended) A method according to claim 15, wherein
- is a monocyclic or bicyclic aryl group optionally substituted with up to three of the following substituents, independently of one another selected from:

 F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN,

 COOH, XCOOR⁴, XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH,

 XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R^{4'}, and R⁴[[5]];
- means a monocyclic or bicyclic aryl group optionally substituted with up to three of the following substituents, independently of one another selected from:

 F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

 XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XCOOH, XCOOR⁴,

 XCONH₂, XCONR⁴R^{4'}, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

 XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴,

 XNR⁴R^{4'}, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R^{4'}), XNR⁴SO₂R^{4'}, XNHCOR⁴,

 XNHCOOR⁴, XNHCONHR⁴, and R⁴[[₁]];
- is one or two substituents, which independently of one another, each mean:

 hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

 XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XSR⁴,

 XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴, XNR⁴R^{4'},

 $XNHSO_2R^4$, $XNR^4SO_2R^{4'}$, $XN(SO_2R^4)(SO_2R^{4'})$, $XNHCOR^4$, $XNHCONHR^4$, or R^4 ;

- R^4 and R^4 , independently of one another, mean CF_3 , C_2F_5 , C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkinyl, C_{3-6} cycloalkyl, (C_{1-3} alkyl- C_{3-6} cycloalkyl), C_{1-3} alkylaryl, C_{1-3} alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 heteroatoms selected from N, S and O, wherein the aryl and heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH_3 , C_2H_5 , NO_2 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 or optionally carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl;
- R^5 and R^5 ', independently of one another, are $C_{1\text{-}6}$ alkyl wherein a carbon atom is optionally replaced by O, NH, N $C_{1\text{-}3}$ alkyl, N $C_{1\text{-}3}$ alkanoyl, or $C_{3\text{-}7}$ cycloalkyl- $C_{0\text{-}3}$ alkyl, wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with $C_{1\text{-}3}$ alkyl or $C_{1\text{-}3}$ alkanoyl, wherein the mentioned $C_{1\text{-}6}$ alkyl group is optionally substituted with one of the previously mentioned cycloalkyls or a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O,

wherein all previously mentioned alkyl and cycloalkyl groups are optionally substituted with up to two substituents selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups are optionally substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅,

- or R^5 and $R^{5'}$ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl;
- A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, (C_{0-5} alkanediyl- C_{3-7}

- cycloalkanediyl-C₀₋₅ alkanediyl), or (C₀₋₅ alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein when a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, and wherein a 5-membered cycloalkyl ring optionally has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring optionally has one or two ring members selected from N and O, wherein ring nitrogens optionally are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein in aliphatic groups one or two carbon atoms are optionally replaced by O, NH, N C₁₋₃ alkyl, N C₁₋₃ alkanoyl, or NSO₂ C₁₋₃ alkyl, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C₁₋₃ alkyl, O C₁₋₃ alkanoyl, =O, NH₂, NH C₁₋₃ alkyl, N (C₁₋₃ alkyl)₂, NH C₁₋₃ alkanoyl, N (C₁₋₃ alkyl) (C₁₋₃ alkanoyl), NHCOO C₁₋₃ alkyl, NHCONH C₁₋₃ alkyl, NHSO₂ C₁₋₃ alkyl, SH, and S C₁₋₃ alkyl;
- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group A;
- X means a bond or CH₂; and
- Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 30. (Previously Presented) A method according to claim 15, wherein
 - (a) in R¹, R² said aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl; and
 - (b) in R⁴, R⁵ and R⁵, said aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl, and said heteroaryl group are substituted or unsubstituted pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl.
- 31. (Cancelled)

- 32. (Previously Presented) A method according to claim 15, wherein
- R^1 is a monocyclic or bicyclic C_{6-12} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R^{4'}, C(NR⁴)NH₂, C(NR⁴)NHR^{4'}, C(NR⁴)NR⁴R^{4'}, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONH₂, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴, XNR⁴R^{4'}, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R^{4'}, XNR⁴SO₂R^{4'}, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

- R^2 is a monocyclic or bicyclic C_{6-10} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:
 - F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;
- is one or two substituents which are independently of one another selected from: hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

R⁴ and R⁴, independently of one another, are each C₁₋₄ perfluoroalkyl, C₁₋₆ alkyl, C₂₋₆

- alkenyl, C₂₋₆ alkinyl, C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₆₋₁₀ aryl, or C₆₋₁₀ aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅,
- R^5 and $R^{5'}$, independently of one another, are each C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl, C_{3-7} cycloalkyl- C_{0-3} alkyl, or C_{6-10} aryl;
- is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or $(C_{0.5}$ alkanediyl- C_{3-7} cycloalkanediyl- $C_{0.5}$ alkanediyl), wherein in the alkanediyl, alkenediyl, and alkinediyl groups a carbon atom or two carbon atoms are optionally replaced by O, NH, NC_{1-3} alkyl, or NC_{1-3} alkanoyl, and wherein alkanediyl and cycloalkanediyl groups are optionally substituted with up to two substituents selected from =O, OH, OC_{1-3} alkyl, NHC_{1-3} alkyl, NHC_{1-3} alkanoyl, $N(C_{1-3}$ alkyl)₂, and $N(C_{1-3}$ alkyl) $(C_{1-3}$ alkanoyl); and
- B is COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR^{5'}), in each case bonded to a carbon atom of group A, or the entire group Y-A-B is N(SO₂R⁴)(SO₂R^{4'}) or NHSO₂R⁴.
- 33. (Currently Amended) A method according to claim 15, wherein said patient is suffering from neuro inflammation neuroinflammation.
- 34. (Previously Presented) A method according to claim 15, wherein said patient is suffering from a stroke.
- 35. (Previously Presented) A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.

- 36. (Previously Presented) A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 37. (Currently Amended) A method according to claim 15, wherein said patient is suffering from neurohal neuronal dysfunction or degeneration.
- 38. (Currently Amended) A method according to claim 15, wherein said patient is suffering from neurohal Alzheimer's disease.
- 39. (Cancelled)
- 40. (Previously Presented) A method for treating a patient suffering from a disease associated with microglia activation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 N
 R^2
 N
 R^1

or a physiologically compatible salt thereof, in which

 R^1 means a monocyclic or bicyclic C_{6-12} aryl group, wherein when said aryl group is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴,

. XNR^4R^4 , $XNHSO_2R^4$, $XN(SO_2R^4)(SO_2R^4)$, $XNR^4SO_2R^4$, $XNHCOR^4$, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴, wherein when two of said substituents for the aryl group are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl; R^2 means a monocyclic or bicyclic C₆₋₁₀ aryl group, wherein said aryl-group is optionally substituted with up to three of the following substituents, independently of one another selected from: F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R^{4′}, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR^4R^4 , $XNHSO_2R^4$, $XN(SO_2R^4)(SO_2R^4)$, $XNR^4SO_2R^4$, $XNHCOR^4$, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴, wherein when two of said substituents for the aryl group are in ortho position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane 1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ stands for one or two substituents which are each independently of one another selected from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two substituents R³ are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane 1,2 diylbisoxy, propane 1,3 diyl, or butane 1,4 diyl;

- R^4 and $R^{4'}$, independently of one another, mean $C_{1\cdot4}$ perfluoroalkyl, $C_{1\cdot6}$ alkyl, $C_{2\cdot6}$ alkenyl, $C_{2\cdot6}$ alkinyl, $C_{3\cdot7}$ cycloalkyl, ($C_{1\cdot3}$ alkyl- $C_{3\cdot7}$ cycloalkyl), $C_{1\cdot3}$ alkyl- $C_{6\cdot10}$ aryl, or $C_{6\cdot10}$ aryl, wherein the $C_{6\cdot10}$ aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , or optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group,
- R⁵ and R⁵, independently of one another, mean hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, wherein in each case a carbon atom is optionally replaced by O, S, SO, SO₂, NH, N C₁₋₃ alkyl or N C₁₋₃ alkanoyl, C₃₋₇ cycloalkyl-C₀₋₃ alkyl, or C₆₋₁₀ aryl, wherein the mentioned alkyl, alkenyl and alkinyl groups are optionally substituted with one of the previously mentioned cycloalkyls or aryls, wherein all previously mentioned alkyl and cycloalkyl radicals are optionally substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH2, NH C₁₋₃ alkyl, NH C₁₋₃ alkanoyl, N (C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅ or optionally carry an annelated methanediylbisoxy, or ethane-1,2-diylbisoxy group,
- A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, $(C_{0-5}$ alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), or $(C_{0-5}$ alkanediylarylene- C_{0-5} alkanediyl), wherein the aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , wherein in the mentioned aliphatic groups, one or two carbon atoms are each optionally replaced by O, NH, NR⁴, NCOR⁴, or NSO₂R⁴,

- and wherein alkyl or cycloalkyl groups are optionally substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R^{4'}, NHCOR⁴, NHCOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,
- means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵,

 C(NOR⁵)R^{5'}, C(NO(COR⁵))R^{5'}, COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵,

 CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'},

 PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, each bonded to a carbon atom of group A,

 or the entire group Y-A-B is N(SO₂R⁴)(SO₂R^{4'}) or NHSO₂R⁴,
- X means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂, or CH₂CH(CH₃), and
- Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴.
- 41. (Cancelled)
- 42. (Currently Amended) A method for treating a patient suffering from a disease associated with chronic inflammation according to claim 15, comprising administering to said patient an effective amount of a benzimidazole compound of formula II wherein all heterocyclic groups are selected from pyridinyl, pyridyl, thienyl, imidazol, indonyl, furyl, pyrrolidin, morpholin, piperidin, and piperazine.
- 43. (New Claim) A method for treating a patient according to claim 33, wherein said patient is suffering from AIDS dementia, amyotrophic lateral sclerosis, Creuzfeldt-Jacob disease, Down's syndrome, diffuse Lewy body's disease, Huntington's disease, leukoencephalopathy, multiple sclerosis, Parkinson's disease, Pick's disease, Alzheimer's disease, stroke, temporary lobe epilepsy, or tumors.
- 43. (New Claim) A method according to claim 43, wherein said patient is suffering from multiple sclerosis.