李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

```
_______ mod = modifier_ob.
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
"Irror_mod.use_y = False
lrror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
mirror_mod.use_y = True
mirror mod.use z = False
 _operation == "MIRROR_Z"
 Mrror mod.use_x = False
 #rror_mod.use_y = False
 lrror_mod.use_z = True
  election at the end -add
  ob.select= 1
  er ob.select=1
   eneral Guidance
  ata.objects[one.name].sel
```

Hung-yi Lee 李宏毅

x mirror to the selector

ypes.Operator):

x mirror to the selector

ject.mirror_mirror_x"

ror x"

ntext):

xt.active_object is not

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Speech Recognition

x: ***

 \hat{y} : phoneme

Image Recognition

 \hat{y} : soup

Speaker Recognition

x:

 \hat{y} : John (speaker)

Machine Translation

x: 痛みを知れ

 \hat{y} : 了解痛苦吧

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Training:

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Use $y = f_{\theta^*}(x)$ to label the testing data

$$\{y^{N+1}, y^{N+2}, \dots, y^{N+M}\}$$
 Upload to Kaggle

Model Bias

• The model is too simple.

 $f_{\theta^1}(x)$ $y = f_{\theta}(x)$ $f_{\theta^2}(x)$ $f_{\theta^*}(x)$ too small ... $f^*(x)$ small loss

find a needle in a haystack ...

... but there is no needle

 Solution: redesign your model to make it more flexible

More features
$$y = b + wx_1$$
Deep Learning
(more neurons, layers)
$$y = b + \sum_{i=1}^{56} w_i x_j$$

$$y = b + \sum_{i=1}^{56} w_i x_j$$

Optimization Issue

• Large loss not always imply model bias. There is another possibility ...

Model Bias

find a needle in a haystack ...

... but there is no needle

Which one???

Optimization Issue

A needle is in a haystack ...

... Just cannot find it.

Model Bias v.s. Optimization Issue

Gaining the insights from comparison

Optimization Issue

- Gaining the insights from comparison
- Start from shallower networks (or other models), which are easier to optimize.
- If deeper networks do not obtain smaller loss on training data, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

 Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$

$$f(x) = \begin{cases} \hat{y}^i & \exists x^i = x \\ random & otherwise \end{cases}$$
 Less than useless ...

This function obtains zero training loss, but large testing loss.

- Training data
- Testing data

Data augmentation (you can do that in HWs)

 χ

- Real data distribution (not observable)
 - Training data
 - Testing data

- Real data distribution (not observable)
 - Training data
 - Testing data

- Less parameters, sharing parameters
- Less features
- Early stopping
- Regularization
- **Dropout**

- Training data
- Testing data

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

The extreme example again

It is possible that $f_{56789}(x)$ happens to get good performance on public testing set.

So you select $f_{56789}(x)$ Random on private testing set

Homework

public

private

Training Set

Testing Set

Testing Set

Why?

Model 1 \longrightarrow mse = 0.9

Model 2 \longrightarrow mse = 0.7

Model 3 \longrightarrow mse = 0.5

Pick this one!

mse > 0.5

May be poor ...

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/ ine usually beats corpora.

This explains why machine usually beats human on benchmark corpora. ©

RANKED 3XX IN PRIVATE LEADERBOARD

Cross Validation

N-fold Cross Validation

Let's predict no. of views of 2/26!

Mismatch

 Your training and testing data have different distributions. Be aware of how data is generated.

Most HWs do not have this problem, except HW11

Training Data

Simply increasing the training data will not help.

Testing Data

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习 Auto-encoder 生成式对抗网络

自注意力机

学习率

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]