CS446: Machine Learning

Fall 2014

Problem Set 5 Solutions

Handed Out: October 28th, 2014

Handed In: November 06th, 2014

1. [SVM - 50 points]

- (a) (1) An easy solution will be $\mathbf{w} = (-1, 0)$ and $\theta = 0$.
 - (2) $\mathbf{w} = (-0.5, 0.25)$ and $\theta = 0$.
 - (3) Assume $\mathbf{w}^* = (w_1, w_2), \theta^*$ is the solution. We can directly find it as the largest margin hyperplane by geometry. The closest positive and negative examples are examples 1 and 6. The largest margin plane should be the perpendicular bisector. The midpoint of the two is (0.4, 0.8), and the slope of the segment connecting the two is (1.6-0)/(-1.2-2) = -0.5, so the slope of the perpendicular bisector is 2, i.e. $w_1 = -2w_2$. (0.4, 0.8) is on it then we know θ^* is 0.

By the constraints $y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + \theta) \ge 1$, $i \in \{1, 6\}$, we can get $\mathbf{w}^* = (-0.5, 0.25)$.

- (b) (1) $I = \{1, 6\}$
 - (2) $\alpha = \{0.15625, 0.15625\}.$ We can get this easily from $\mathbf{w}^* = \alpha_1 y^{(1)} \mathbf{x}^{(1)} + \alpha_2 y^{(6)} \mathbf{x}^{(6)}$
 - (3) Objective function value: $\frac{1}{2}||\mathbf{w}^*||^2 = 0.15625$.
- (c) C determines the tradeoff between the model complexity (here, the norm of \mathbf{w}) and the training loss (here, the hinge loss from all examples). When $C = \infty$, we minimize the training loss, and obtain the max-margin hyperplane. In this case, typically, a small number of examples will be support vectors. When C is very small, we minimize the model complexity, and obtain an hyperplane that has a very small norm. In this case, most examples will be support vectors because their hinge loss will be positive. When C = 0, we will get $\mathbf{w} = \mathbf{0}$. When C has a moderate value (C = 1), we penalize both the model complexity and the training loss. In this case, typically, the number of support vectors will be more than the number of support vectors in the max-margin hyperplane. This is desirable in practice because we want to avoid overfitting.

2. [Kernels - 15 points]

(a) In the dual representation, the weight vector can be presented as a collection of "important" examples M on which the Perceptron makes mistakes. We predict the label for a new example $\vec{\mathbf{x}}$ using the following equation:

DualPrediction $(M, \vec{\mathbf{x}})$

return
$$Th_{\theta}\left(\sum_{(\vec{\mathbf{x}}_m, y_m) \in M} y_m \vec{\mathbf{x}}^T \vec{\mathbf{x}}_m\right)$$

The training algorithm is as follows:

```
M \leftarrow \emptyset

for (\vec{\mathbf{x}}, y) \in S do

if y \not\equiv \text{DUALPREDICTION}(M, \vec{\mathbf{x}}) then

M \leftarrow M \cup (\vec{\mathbf{x}}, y)

end if

end for
```

(b) From the lecture notes, we know that a function $K(\mathbf{x}, \mathbf{z})$ is a valid kernel if it corresponds to an inner product in some (perhaps infinite dimensional) feature space.

Given that we know that K_1 and K_2 are both valid kernel functions, there exists two functions ϕ_1 and ϕ_2 such that

$$K_{1}(\vec{\mathbf{x}}, \vec{\mathbf{z}}) = \phi_{1}(\vec{\mathbf{x}})^{T} \phi_{1}(\vec{\mathbf{z}})$$
and $K_{2}(\vec{\mathbf{x}}, \vec{\mathbf{z}}) = \phi_{2}(\vec{\mathbf{x}})^{T} \phi_{2}(\vec{\mathbf{z}})$
Define $\phi(\vec{\mathbf{x}}) = \left[\sqrt{\alpha}\phi_{1}(\vec{\mathbf{x}}) \quad \sqrt{\beta}\phi_{2}(\vec{\mathbf{x}})\right]$
It follows that $K(\vec{\mathbf{x}}, \vec{\mathbf{z}}) = \phi(\vec{\mathbf{x}})^{T} \phi(\vec{\mathbf{z}}) = \alpha K_{1}(\vec{\mathbf{x}}, \vec{\mathbf{z}}) + \beta K_{2}(\vec{\mathbf{x}}, \vec{\mathbf{z}})$

Therefore, K is a valid kernel function.

(c) The easiest way prove that K is a valid kernel function is to use the result from the previous question. This result easily generalizes from a sum of two kernels to a sum of any number of kernels. Now, it remains to be shown that $(\vec{\mathbf{x}}^T\vec{\mathbf{z}})^3$, $(\vec{\mathbf{x}}^T\vec{\mathbf{z}})^2$, and $\vec{\mathbf{x}}^T\vec{\mathbf{z}}$ are valid kernel functions. The last one is trivial.

To show that $(\vec{\mathbf{x}}^T\vec{\mathbf{z}})^3$ is a valid kernel, we can show that it is a dot product.

$$(\vec{\mathbf{x}}^T \vec{\mathbf{z}})^3 = x_1^3 z_1^3 + 3x_1^2 x_2 z_1^2 z_2 + 3x_1 x_2^2 z_1 z_2^2 + x_1^3 z_1^3$$

= $\phi(\vec{\mathbf{x}})^T \phi(\vec{\mathbf{z}})$

where $\phi(\vec{\mathbf{x}})$ is defined as

$$\phi(\vec{\mathbf{x}}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2 x_2 \\ \sqrt{3}x_1 x_2^2 \\ x_2^3 \end{bmatrix}$$

The proof that $(\vec{\mathbf{x}}^T\vec{\mathbf{z}})^2$ is a kernel is very similar and is left as an exercise.

3. [Boosting - 30 points]

(a) We note that $D_0(i) = 0.1$ for all ten examples. Looking at the given data, we see that the weak learners (rules of thumb) with lowest errors are : $x_1 \equiv [x > 5]$ and

		Hypothesis 1				Hypothesis 2			
i	Label	D_0	$x_1 \equiv$	$x_2 \equiv$	$h_1 \equiv$	D_1	$x_1 \equiv$	$x_2 \equiv$	$h_2 \equiv$
			[x > 5]	[y > 6]	[x>5]		[x > 8]	y>8	y>8
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	-1	0.1	-1	+1	-1	0.0625	-1	+1	+1
2	-1	0.1	-1	-1	-1	0.0625	-1	-1	-1
3	+1	0.1	+1	+1	+1	0.0625	-1	-1	-1
4	-1	0.1	-1	-1	-1	0.0625	-1	-1	-1
5	-1	0.1	-1	+1	-1	0.0625	-1	+1	+1
6	+1	0.1	+1	+1	+1	0.0625	-1	-1	-1
7	+1	0.1	+1	+1	+1	0.0625	+1	+1	+1
8	-1	0.1	-1	-1	-1	0.0625	-1	-1	-1
9	+1	0.1	-1	+1	-1	0.25	-1	+1	+1
10	-1	0.1	+1	+1	+1	0.25	-1	-1	-1

Table 1: Table for Boosting results

$$x_2 \equiv [y > 6].$$

$$\epsilon_{x_1} = \text{ [weighted sum of mistakes if } h = x_1] = \frac{2}{10} = 0.2$$

$$\epsilon_{x_2} = \text{ [weighted sum of mistakes if } h = x_2] = \frac{3}{10} = 0.3$$

$$\therefore \alpha_0 = \frac{1}{2} \log_2 \frac{1 - \epsilon}{\epsilon} = \frac{1}{2} \log_2 \frac{0.8}{0.2} = 1$$

Hence, the first weak learner is $h_0 = x_1$. Also see Table 1.

(b) Using α_0 to compute the new distribution, we get:

$$D_{t+1}(i) = \begin{cases} \frac{1}{Z_0} D_0(i) 2^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ \frac{1}{Z_0} D_0(i) 2^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

$$\therefore D_1(i) = \begin{cases} \frac{1}{20Z_0} & \text{if } h_0(x_i) = y_i \\ \frac{1}{5Z_0} & \text{if } h_0(x_i) \neq y_i \end{cases}$$

To calculate Z_0 ,

$$\frac{8}{20Z_0} + \frac{2}{5Z_0} = 1 \implies Z_0 = \frac{4}{5}$$

$$\therefore D_1(i) = \begin{cases} \frac{1}{16} = 0.0625 & \text{if } h_0(x_i) = y_i \\ \frac{1}{4} = 0.25 & \text{if } h_0(x_i) \neq y_i \end{cases}$$

The new weak learners (rules of thumb) for this new distribution D_1 are

$$x_1 \equiv [x > 8] \text{ and } x_2 \equiv [y > 8].$$

$$\epsilon_{x_1} = [\text{weighted sum of mistakes if } h_1 = x_1] = \frac{1}{4} + \frac{2}{16} = \frac{3}{8}$$

$$\epsilon_{x_2} = [\text{weighted sum of mistakes if } h_1 = x_2] = \frac{4}{16} = \frac{1}{4}$$

$$\alpha_1 = \frac{1}{2}\log_2\frac{1-\epsilon}{\epsilon} = \frac{1}{2}\log_2\frac{3/4}{1/4} = \frac{1}{2}\log_2(3) = 0.79$$

(c) The final hypothesis produced by AdaBoost is

$$H(x) = sgn(1[x > 5] + 0.79[y > 8])$$

If we use natural logarithms, the final hypothesis is just a scaled equivalent:

$$H(x) = sgn(0.695[x > 5] + 0.549[y > 8])$$

In this case, the $D_1(i)$ s should be computed with base e rather than base 2, and you can check the final values and other calculations don't change.

4. [Probability - 5 points]

- (a) i. Let X be a random variable to denote number of children in a family.
 - Town A: Since every family has exactly one child (a uniform distribution), the expected value of number of children, E[X] = 1.
 - Town B: The expected value of number of children is given as

$$E[X] = \sum_{i} i \cdot \Pr(X = i)$$
$$= 1 \times \frac{1}{2} + 2 \times \left(\frac{1}{2}\right)^{2} + \dots$$

Notice that this is the same as finding the expected value of a geometric series with ratio $\lambda=0.5$. We can show that the expected value of geometric series with parameter λ is $\frac{1}{\lambda}$. Hence, the expected number of children in a family in town B, $E[X]=\frac{1}{0.5}=2$.

This is, in fact, also easy to compute, if you don't know the formula by heart. There are multiple ways to prove it, and is left as an exercise.

- ii. Let X be number of boy children and Y be number of girl children in a town.
 - Town A: Let there be m families in town A. Since it is equally likely to have a boy child or a girl child, and each family has only one child, $E[X] = E[Y] = \frac{m}{2}$, and the boy to girl ratio is E[X] : E[Y] = 1 : 1.

• Town B: Let there be n families in town B. Since each family stops having children when a boy child is born and not earlier, there is a boy child in every family. So, E[X] = n.

Let us compute E[Y], the expected number of girl children in town B:

$$E[Y] = n \left[\sum_{i} i \cdot \Pr(Y = i) \right]$$

$$= n \left[0 \times \frac{1}{2} + 1 \times \left(\frac{1}{2} \right)^{2} + \dots \right]$$

$$= n \quad \text{(proof is easy and is left as an exercise)}$$

So, we see that for town B, E[X] = E[Y] = n. Hence the boy to girl ratio in town B is also E[X] : E[Y] = 1 : 1.