- u가 v의 Dominator이면서 v가 u의 Dominator일 수 없다. v를 통하는 어떠한 단순 경로는 u를 거치는데, 이 경로를 u에서 자르면 v를 거치지 않고 u를 도달하는 경로를 찾을 수 있기 때문이다. 대우 명제에 따라서, $u \leq v$ 이면서 $v \leq u$ 이기 위해서는 u = v여야 한다.
- u가 v의 Dominator이면서 v가 w의 Dominator이면, u는 w의 Dominator이다. 즉, $u \le v$ 이면서 $v \le w$ 이면 $u \le w$ 이다.
- $u \neq v$ 일 때, u가 v의 Dominator이거나 v가 u의 Dominator이다. s에서 x를 지나는 모든 경로는 u와 v를 모두 포함한다. 둘이 Dominator 관계가 아니라면, u다음에 v를 지나는 경로 P_1 과 v 다음에 u를 지나는 경로 P_2 가 존재한다. 이들을 적당히 잘라서 u를 지나지 않는 경로 s-x를 찾을 수 있다. 고로 가정에 모순이다.

Total ordering에서는 최댓값이 유일하게 존재한다. 이 최댓값은 v의 Immediate Dominator와 일대일 대응한다.

Definition 3. s가 아닌 모든 정점 v에 대해서, (idom(v), v)를 이은 간선 집합으로 이루어진 그래프를 Dominator Tree라고 한다.

Theorem 2. Dominator Tree는 s를 루트로 하는 트리이다.

Proof. Dominator 관계는 Total ordering이기 때문에 사이클이 없다. 사이클이 없고 |E| = |V| - 1인 그래프는 트리이다. s를 루트로 할 시, idom(v)는 v의 부모가 된다. 고로 기분이 좋다. □