Performance Evaluation of Three-way Catalyst (TWC) Coated Sintered Metal Fiber Media for Engine After-treatment Application

Qisheng Ou¹, Yuejin Li², and David Y. H. Pui¹

¹Particle Technology Laboratory, University of Minnesota ²BASF Corporation

Presented at 51st CFR Review Meeting, Minneapolis, MN May 5th, 2017

Introduction - GDI engine & PM regulations

- Gasoline direct injection (GDI) engine:
 - Improved fuel economy
 - Less CO₂ emission
 - Lightweighting smaller engine for same power
- GDI engine leads to higher PM emission:
 - Fuel impingement onto piston surface or cylinder walls
 - Uneven mixing of fuel and air
 - Overfueling during accelerations

	2013 2	014	2015	2016	2017	2018	2019	2020	2021	2025
	LEV2 Diesel/Gasoline(DI): PM 10 mg/mile		LEV3			LEV3				LEV3
					Die	esel/Gasoline	All: PM	All %: PM		
	PIVI 10 IIIg/I	me	PIVI 6 n	ng/mile		РІМ З п	ng/mile		3 mg/mile	1 mg/mile
	Euro5		Eur	o6b		Eur	о6с		Euro7	?
***	Diesel:		esel:			Diesel/Ga	soline(DI):			
****	PM 5.0 mg/km	PM 4	4.5 mg/km PN 6*10¹¹#/kn		#/km	1 4.5 mg/km	DN 6*10 ¹¹ ;	#/km		
	Gasoline (DI)		soline (DI):	4.0		T 4.5 mg/km	r 10 10 ,	7) KIII		
	PM 5.0 mg/km	PM 4	.5 mg/km	PN 6*10 ¹² i	#/km				. Vattauah at	

Introduction - metallic GPFs?

 Conventional ceramic wall flow filters used for diesel particulate filter (DPF) has a suboptimal tradeoff between filtration efficiency and backpressure.

 Metallic Gasoline Particulate Filter (GPF) prototype manufactured by Shengda Filtration Technique Co., LTD shows good filtration efficiency and low backpressure.

Introduction - TWC converters

• Three-way catalytic converters (TWC) have been widely used in vehicle emission control systems for decades, to convert carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx).

(http://images.cars.com/original/srvc-gloss/1415725879171.png)

 TWC converter can be potentially combined with a GPF, to reduce the space, cost, and backpressure of an exhaust after-treatment system.

Metal fiber media samples

\	Media #	Fiber diameter [µm]	Porosity []	Thickness ⁻ [mm]	Wash-coating loading* [g/in ³]						
						Method A	Method B	Method C			
					Level 1	Level 2	Level 3	Level 1	Level 1		
\	1	12	0.8	8.0	1.29	2.08	3.66	1.29	1.21		
	2	12	0.7	0.6	1.40	2.21	3.88	1.46	1.27		
	3	12	0.7	0.4	1.21	1.90	3.80	1.21	1.13		
	4	12	0.6	0.3	1.56	2.32	3.99	1.24	1.30		
	5	8	0.8	0.4	1.46	1.98	4.00	1.25	1.17		
	6	8	0.7	0.2	1.86	2.10	3.96	1.70	1.21		

^{*:} average value of 2 coated samples, details in appendix

Notation:

Media 2

University of Minnesota

Test setup

Flow resistance

- Flow resistance of coated samples increases with coating levels for all 6 media grades.
- Flow resistance at level 1 among three coating methods (A, B, & C) are close, with largest difference less than 25%.

Soot removal - fractional efficiency (I)

Soot removal - fractional efficiency (II)

Soot removal - Distribution weighted efficiency

• Number and mass weighted efficiencies are determined by assuming a GDI soot distribution at CMD=80 nm and σ_q =1.7, with a mass-mobility exponent of 2.3.

$$\overline{Eff_N} = \frac{\int Eff(D_p)N_p(D_p)d\log(D_p)}{\int N_p(D_p)d\log(D_p)}$$

$$\overline{Eff_{M}} = \frac{\int Eff(D_{p})\rho_{eff}(D_{p})\frac{\pi}{6}(D_{p})^{3}N_{p}(D_{p})d\log(D_{p})}{\int \rho_{eff}(D_{p})\frac{\pi}{6}(D_{p})^{3}N_{p}(D_{p})d\log(D_{p})}$$

Soot removal - Figure of Merit (FOM)

 Flow resistance – filtration efficiency tradeoff is quantified using media Figure of Merit, with higher value preferred.

$$FOM_N = -\ln\left(1 - \overline{Eff_N}\right) / \Delta P$$

$$FOM_M = -\ln\left(1 - \overline{Eff_M}\right) / \Delta P$$

- FOMs decrease with coating level (amount) for all media grade.
- At coating level 1, coating method C seems to have slightly (less than 30%) higher FOMs than method A & B.

SEMs of the coated samples

Discussions

For conventional ceramic wall substrate, two major coating patterns exist:
 on-the-wall and in-the-wall.

(SAE 2007-01-0041)

- Coating pattern on metal fiber media is similar to the in-the-wall coating pattern on wall substrate, which tends to introduce less pressure penalty than the on-the-wall pattern.
 Coated media has reasonably low backpressure similar to wall-flow counterpart, although direct comparison data is not available.
 - Total ΔP increase on wall-flow substrate at moderate coating level in reference: 7-25%.
 - Estimated contribution of media ΔP on total ΔP: 10-20%.
 - Estimated media ΔP increase: 28-225%.
 - Measured media ΔP increase for metal fiber media at coating level 1 in current study: 14-94%.

Summary

- Three-way catalyst wash coating is successfully applied onto sintered metal fiber filter media for potential application on catalyzed GPFs.
- Filtration performance of the coated 1" disk samples were evaluated using soot particles generated from a home-made diffusion flame burner.
- Backpressure of coated samples increases with increasing wash-coating levels.
 At coating level 1 (more realistic by estimation), the backpressure increases by 14 to 94% from the uncoated samples.
- Filtration efficiency of coated samples slightly decreases at small sizes (diffusion-dominated) while slightly increases at larger sizes (interception-dominated). The change of distribution integrated efficiency is within 6% for all cases.
- SEMs indicate wash coating stays inside media, coating on metal fiber surface, but with bridging especially at fiber intersections.
- TWC conversion efficiency will be evaluated to better compare to coated media performance to its wall-flow substrate counterpart.

Appendix

Sample # _			Solidity change* Sample # ـ			coating ding	ing change*		Wash-coating loading		Solidity change*
	g/in³	wt.%	[%]		g/in ³	wt.%	[%]		g/in³	wt.%	[%]
1-1-1A	1.29	4.45	2.6	2-1-1A	1.46	4.19	3.0	3-1-1A	1.29	3.18	2.6
1-1-2A	1.29	4.50	2.6	2-1-2A	1.35	4.22	2.7	3-1-2A	1.13	3.17	2.3
1-2-1A	2.02	7.17	4.1	2-2-1A	2.21	6.47	4.5	3-2-1A	1.70	4.75	3.5
1-2-2A	2.14	7.02	4.4	2-2-2A	2.21	6.89	4.5	3-2-2A	2.10	5.34	4.3
1-3-1A	3.60	11.98	7.3	2-3-1A	3.88	10.96	7.9	3-3-1A	3.56	8.91	7.2
1-3-2A	3.72	13.41	7.6	2-3-2A	3.88	11.69	7.9	3-3-2A	4.04	11.01	8.2
1-1-1B	1.29	4.47	2.6	2-1-1B	1.40	4.45	2.8	3-1-1B	1.13	3.00	2.3
1-1-2B	1.29	4.61	2.6	2-1-2B	1.51	4.31	3.1	3-1-2B	1.29	3.24	2.6
1-1-1C	1.21	3.79	2.5	2-1-1C	1.46	4.25	3.0	3-1-1C	1.21	3.44	2.5
1-1-2C	1.21	4.22	2.5	2-1-2C	1.08	4.49	2.2	3-1-2C	1.05	2.56	2.1
	Wash-coating										
Sample #		_	Solidity	Sample #		coating ding	Solidity	Sample #		coating ding	Solidity
Sample # _		coating ding wt.%	Solidity _ change* [%]	Sample # _		coating ding wt.%	Solidity change* [%]	Sample # _		coating ding wt.%	Solidity _ change* [%]
Sample # _ 4-1-1A	load	ding	_ change*	Sample # _ 5-1-1A	loa	ding	_ change*	Sample # ₋ 6-1-1	load	ding	_ change*
	load g/in ³	ding wt.%	_ change* [%]		loa g/in ³	ding wt.%	_ change* [%]	·	load g/in ³	ding wt.%	_ change* [%]
4-1-1A	g/in ³	wt.% 2.94	_ change* [%] 3.3	5-1-1A	g/in ³	wt.% 5.95	_ change* [%] 3.3	6-1-1	g/in ³	wt.% 4.11	_ change* [%] 3.9
4-1-1A 4-1-2A	g/in ³ 1.62 1.51	wt.% 2.94 2.75	_ change* [%] 3.3 3.1	5-1-1A 5-1-2A	g/in ³ 1.62 1.37	wt.% 5.95 4.91	change* [%] 3.3 2.8	6-1-1 6-1-2	g/in ³ 1.94 1.78	wt.% 4.11 3.93	_ change* [%] 3.9 3.6
4-1-1A 4-1-2A 4-2-1A	g/in ³ 1.62 1.51 2.26	wt.% 2.94 2.75 4.05	_ change* [%] 3.3 3.1 4.6	5-1-1A 5-1-2A 5-2-1A	g/in ³ 1.62 1.37 2.02	wt.% 5.95 4.91 7.08	change* [%] 3.3 2.8 4.1	6-1-1 6-1-2 6-2-1	g/in ³ 1.94 1.78 2.10	wt.% 4.11 3.93 4.83	_ change* [%] 3.9 3.6 4.3
4-1-1A 4-1-2A 4-2-1A 4-2-2A	g/in ³ 1.62 1.51 2.26 2.37	wt.% 2.94 2.75 4.05 4.22	change* [%] 3.3 3.1 4.6 4.8	5-1-1A 5-1-2A 5-2-1A 5-2-2A	g/in ³ 1.62 1.37 2.02 1.94	wt.% 5.95 4.91 7.08 7.45	change* [%] 3.3 2.8 4.1 3.9	6-1-1 6-1-2 6-2-1 6-2-2	g/in ³ 1.94 1.78 2.10 2.10	wt.% 4.11 3.93 4.83 4.61	_ change* [%] 3.9 3.6 4.3 4.3
4-1-1A 4-1-2A 4-2-1A 4-2-2A 4-3-1A	g/in ³ 1.62 1.51 2.26 2.37 3.34	wt.% 2.94 2.75 4.05 4.22 6.86	change* [%] 3.3 3.1 4.6 4.8 6.8	5-1-1A 5-1-2A 5-2-1A 5-2-2A 5-3-1A	g/in ³ 1.62 1.37 2.02 1.94 3.72	5.95 4.91 7.08 7.45 13.14	2.8 4.1 3.9 7.6	6-1-1 6-1-2 6-2-1 6-2-2 6-3-1	g/in ³ 1.94 1.78 2.10 2.10 3.56	wt.% 4.11 3.93 4.83 4.61 7.97	_ change* [%] 3.9 3.6 4.3 4.3 7.2
4-1-1A 4-1-2A 4-2-1A 4-2-2A 4-3-1A 4-3-2A	g/in ³ 1.62 1.51 2.26 2.37 3.34 4.64	wt.% 2.94 2.75 4.05 4.22 6.86 8.43	change* [%] 3.3 3.1 4.6 4.8 6.8 9.4	5-1-1A 5-1-2A 5-2-1A 5-2-2A 5-3-1A 5-3-2A	g/in ³ 1.62 1.37 2.02 1.94 3.72 3.80	wt.% 5.95 4.91 7.08 7.45 13.14 13.95	2.8 4.1 3.9 7.6 7.7	6-1-1 6-1-2 6-2-1 6-2-2 6-3-1 6-3-2	g/in ³ 1.94 1.78 2.10 2.10 3.56 4.37	wt.% 4.11 3.93 4.83 4.61 7.97 9.78	_ change* [%] 3.9 3.6 4.3 4.3 7.2 8.9
4-1-1A 4-1-2A 4-2-1A 4-2-2A 4-3-1A 4-3-2A 4-1-1B	g/in ³ 1.62 1.51 2.26 2.37 3.34 4.64 1.19	wt.% 2.94 2.75 4.05 4.22 6.86 8.43 2.32	change* [%] 3.3 3.1 4.6 4.8 6.8 9.4 2.4	5-1-1A 5-1-2A 5-2-1A 5-2-2A 5-3-1A 5-3-2A 5-1-1B	g/in ³ 1.62 1.37 2.02 1.94 3.72 3.80 1.21	wt.% 5.95 4.91 7.08 7.45 13.14 13.95 4.87	change* [%] 3.3 2.8 4.1 3.9 7.6 7.7 2.5	6-1-1 6-1-2 6-2-1 6-2-2 6-3-1 6-3-2 6-1-1B	g/in ³ 1.94 1.78 2.10 2.10 3.56 4.37 1.46	wt.% 4.11 3.93 4.83 4.61 7.97 9.78 3.19	change* [%] 3.9 3.6 4.3 4.3 7.2 8.9 3.0

^{*:} assuming wash-coating density of 3 g/cc

Backup: Flow resistance

