

Vishay Siliconix

P-Channel 30 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 °C to +125 °C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- · Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer
to the appropriate datasheet of the same number for guaranteed specification limits.

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.9	-	٧
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -4.2 \text{ A}$	0.040	0.037	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -3.2 \text{ A}$	0.061	0.062	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_D = -4.2 \text{ A}$	9	10	S
Diode Forward Voltage	V _{SD}	I _S = -3.3 A	-0.85	-0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = -15 V, V _{GS} = 0 V, f = 1 MHz	585	590	pF
Output Capacitance	C _{oss}		114	115	
Reverse Transfer Capacitance	C _{rss}		87	93	
Total Gate Charge	Qg	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -4.2 \text{ A}$	13	13.6	nC
		V _{DS} = -15 V, V _{GS} = -4.5 V, I _D = -4.2 A	6.4	7	
Gate-Source Charge	Q_{gs}		2.3	2.3	
Gate-Drain Charge	Q_{gd}		3.2	3.2	

Notes

- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25 \, ^{\circ}\text{C}$, unless otherwise noted)

Note

• Dots and squares represent measured data.

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA $T_J = 25~^{\circ}\text{C}$, unless otherwise noted

Note

• Dots and squares represent measured data. Copyright: Vishay Intertechnology, Inc.