Basic Electronic Circuits (IEC-103)

Lecture-07

Feedback

Basic Block Diagram

$$X_{i} = X_{s} - X_{f} = X_{s} - \beta X_{o}$$

$$X_{i} = X_{s} - X_{f} = X_{s} - \beta X_{o}$$

But
$$X_0 = AX_i$$

$$X_{i} = X_{s} - X_{f} = X_{s} - \beta X_{o}$$

But
$$X_0 = AX_i$$

$$\therefore \frac{X_o}{A} = X_s - \beta X_o$$

$$X_{i} = X_{s} - X_{f} = X_{s} - \beta X_{o}$$

But $X_0 = AX_i$

$$\therefore \frac{X_o}{A} = X_s - \beta X_o$$

Rearranging

$$X_{i} = X_{s} - X_{f} = X_{s} - \beta X_{o}$$

But $X_0 = AX_i$

$$\therefore \frac{X_o}{A} = X_s - \beta X_o$$

Rearranging

$$\left(\frac{1}{A} + \beta\right) X_{o} = X_{S}$$

Closed loop gain is
$$A_f = \frac{X_0}{X_s}$$

Closed loop gain is
$$A_f = \frac{X_0}{X_s}$$

$$A_f \equiv \frac{x_o}{x_s} = \frac{A}{1 + A\beta} \approx \frac{1}{\beta}$$
 (for very large A)

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

If we use amplifier with negative feedback

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

If we use amplifier with negative feedback

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$A_f(s) = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_H(1 + \beta A_0)}}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{0f} = \frac{A_0}{(1 + \beta A_0)}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{0f} = \frac{A_0}{(1 + \beta A_0)}$$

The cut-off frequency is increased by a factor (1+ ${
m A}_0eta$)

Effect of Negative Feedback on Operational Amplifiers

	VOLTAGE GAIN	INPUT Z	OUTPUT Z	BANDWIDTH
Without negative feedback	A_{ol} is too high for linear amplifier applications	Relatively high	Relatively low	Relatively narrow (because the gain is so high)
With negative feedback	A_{cl} is set to desired value by the feedback circuit	Can be increased or reduced to a desired value depending on type of circuit	Can be reduced to a desired value	Significantly wider

Amplifiers can be classified in to 4 types depending on input and output.

■ Voltage Amplifier (Voltage-Voltage)

- □ Voltage Amplifier (Voltage-Voltage)
- ☐ Transconductance Amplifier (Voltage-Current)

- □ Voltage Amplifier (Voltage-Voltage)
- ☐ Transconductance Amplifier (Voltage-Current)
- ☐ Transresistance Amplifier (Current-Voltage)

- □ Voltage Amplifier (Voltage-Voltage)
- ☐ Transconductance Amplifier (Voltage-Current)
- ☐ Transresistance Amplifier (Current-Voltage)
- ☐ Current Amplifier (Current-Current)

Ideal Voltage Amplifier

Ideal Voltage Amplifier

$$\frac{v_{\rm L}}{v_{\rm s}} = A_{\rm v}$$

- lacksquare Any signal source has finite source resistance R_s .
- \Box The amplifier is often asked to drive current in to a load of finite impedance R_L (Ex: $8~\Omega$ speaker).
- ☐ The controlled source is a voltage controlled voltage source (VCVS).
- \square A_v = Open Circuit Voltage Gain can be found by applying a voltage source with R_s = 0 and measuring the open circuit output (no load or $R_I = \infty$).
- ☐ Why are input and output impedance important?

- lacksquare Only voltage V_{in} is amplified to A_vV_{in} .
- $\begin{tabular}{lll} \hline \square Since R_s and R_{in} form a voltage divider that \\ & determines V_{in}, R_{in} should be as large as possible \\ & for maximum voltage. \\ \end{tabular}$
- $\begin{tabular}{ll} \hline \square & Since R_L and R_{out} form a voltage divider that \\ & determines V_{out}, R_{out} should be as small as possible \\ & for maximum output voltage. \\ \end{tabular}$

$$\frac{v_L}{v_s} = \frac{A_v R_i R_L}{(R_s + R_i)(R_o + R_L)}$$

$$\frac{v_L}{v_s} = \frac{A_v R_i R_L}{(R_s + R_i)(R_o + R_L)}$$

$$\frac{v_L}{v_s} = A_v$$
 if $R_i = \infty$, $R_o = 0$

Ideal Transconductance Amplifier

Ideal Transconductance Amplifier

$$\frac{i_L}{v_s} = G_m$$

Practical Transconductance Amplifier

Practical Transconductance Amplifier

$$\frac{i_L}{v_s} = \frac{G_m R_i R_o}{(R_s + R_i)(R_o + R_L)}$$

Practical Transconductance Amplifier

$$\frac{i_L}{v_s} = \frac{G_m R_i R_o}{(R_s + R_i)(R_o + R_L)}$$

$$\frac{i_L}{v_s} = G_m$$
 if $R_i = \infty$, $R_o = \infty$

Ideal Transresistance Amplifier

Ideal Transresistance Amplifier

$$\frac{v_L}{i_s} = R_m$$

Practical Transresistance Amplifier

Practical Transresistance Amplifier

$$\frac{v_L}{i_s} = \frac{R_m R_s R_L}{(R_s + R_i)(R_o + R_L)}$$

Practical Transresistance Amplifier

$$\frac{v_L}{i_s} = \frac{R_m R_s R_L}{(R_s + R_i)(R_o + R_L)}$$

$$\frac{v_L}{i_s} = R_m$$
if $R_i = 0$, $R_o = 0$

Ideal Current Amplifier

Ideal Current Amplifier

$$\frac{i_L}{i_s} = A_i$$

$$\frac{i_L}{i_s} = \frac{A_i R_s R_o}{(R_s + R_i)(R_o + R_L)}$$

$$\frac{i_L}{i_s} = \frac{A_i R_s R_o}{(R_s + R_i)(R_o + R_L)}$$

$$rac{i_L}{i_s} = A_i$$
 if $R_i = 0$, $R_o = \infty$

- lacksquare Only current i_{in} is amplified to $A_i i_{in}$.
- \square Since R_s and R_{in} form a current divider that determines i_{in} , R_{in} should be as small as possible for maximum current.

Ideal Amplifiers

Type of Amplifier	Gain Expression	Ideal Input Impedance	Ideal Output Impedance
Voltage	A _v = V _o /V _s Voltage Gain (dimensionless)	Z _i = ∞	$Z_0 = 0$
Transconductance	G _m = I _o /V _s Transconductance (Siemens)	$Z_i = \infty$	$Z_o = \infty$
Transresistance	R _m = V _o /I _s Transresistance (Ohms)	$Z_i = 0$	$Z_0 = 0$
Current	A _i = I _o /I _s Current Gain (dimensionless)	$Z_i = 0$	$Z_o = \infty$

Feedback Topologies

Basic Block Diagram

Basic Block Diagram

Basic Block Diagram

Types of Mixers

Series Mixer

Shunt Mixer

Types of Samplers

Shunt Sampler

Series Sampler

Types of Amplifiers based on Feedback Topology

Series-Shunt	Series (voltage) mixing, Shunt (voltage) sampling	V-V	Voltage Amplifier
Shunt-Series	Shunt (current) mixing, Series (current) sampling	1-1	Current Amplifier
Series-Series	Series (voltage) mixing, Series (current) sampling	V-I	Transconductance Amplifier
Shunt-Shunt	Shunt (current) mixing, Shunt (voltage) sampling	I-V	Transresistance Amplifier

Series-Shunt Amplifier

Series-Shunt Amplifier

Series-Shunt Amplifier

Equivalent Circuit

$$R_{if} \equiv \frac{V_s}{I_i} = \frac{V_s}{\left(\frac{V_i}{R_i}\right)} = R_i \left(\frac{V_s}{V_i}\right) = R_i \left(\frac{V_i + V_f}{V_i}\right) = R_i \left(\frac{V_i + \beta A V_i}{V_i}\right)$$

$$R_{if} \equiv \frac{V_s}{I_i} = \frac{V_s}{\left(\frac{V_i}{R_i}\right)} = R_i \left(\frac{V_s}{V_i}\right) = R_i \left(\frac{V_i + V_f}{V_i}\right) = R_i \left(\frac{V_i + \beta A V_i}{V_i}\right)$$

$$\Rightarrow R_{if} = R_i (1 + A\beta)$$

$$R_{if} \equiv \frac{V_s}{I_i} = \frac{V_s}{\left(\frac{V_i}{R_i}\right)} = R_i \left(\frac{V_s}{V_i}\right) = R_i \left(\frac{V_i + V_f}{V_i}\right) = R_i \left(\frac{V_i + \beta A V_i}{V_i}\right)$$

$$\Rightarrow R_{if} = R_i (1 + A\beta)$$

$$Z_{if}(s) = Z_{if}(s) [1 + A(s)\beta(s)]$$

Input Impedance (R_{if})

$$R_{if} \equiv \frac{V_s}{I_i} = \frac{V_s}{\left(\frac{V_i}{R_i}\right)} = R_i \left(\frac{V_s}{V_i}\right) = R_i \left(\frac{V_i + V_f}{V_i}\right) = R_i \left(\frac{V_i + \beta A V_i}{V_i}\right)$$

$$\Rightarrow R_{if} = R_i (1 + A\beta)$$

$$Z_{if}(s) = Z_{if}(s) [1 + A(s)\beta(s)]$$

True for all series mixing cases.

Output Impedance (R_{of})

Output Impedance (R_{of})

$$R_{of} \equiv \frac{V_{t}}{I} \Longrightarrow I = \frac{V_{t} - AV_{i}}{R_{o}}$$

Output Impedance (R_{of})

$$R_{of} \equiv \frac{V_t}{I} \Longrightarrow I = \frac{V_t - AV_i}{R_o}$$

Disable source input $(V_s = 0)$

Output Impedance (R_{of})

$$R_{of} \equiv \frac{V_{t}}{I} \Longrightarrow I = \frac{V_{t} - AV_{i}}{R_{o}}$$

Disable source input $(V_s = 0)$

$$V_i = -V_f = -\beta V_o = -\beta V_t$$

Output Impedance (R_{of})

$$R_{of} \equiv \frac{V_{t}}{I} \Longrightarrow I = \frac{V_{t} - AV_{i}}{R_{o}}$$

Disable source input $(V_s = 0)$

$$V_i = -V_f = -\beta V_o = -\beta V_t$$

$$I = \frac{V_t - AV_i}{R_o} = \frac{V_t + A\beta\beta_t}{R_o} = \frac{V_t(1 + A\beta)}{R_o}$$

$$I = \frac{V_t(1 + A\beta)}{R_o} \Rightarrow \frac{V_t}{I} = R_{of} = \frac{R_o}{(1 + A\beta)}$$

$$I = \frac{V_t(1 + A\beta)}{R_o} \Rightarrow \frac{V_t}{I} = R_{of} = \frac{R_o}{(1 + A\beta)}$$

Output Impedance (R_{of})

$$I = \frac{V_t(1+A\beta)}{R_o} \Rightarrow \frac{V_t}{I} = R_{of} = \frac{R_o}{(1+A\beta)}$$

Output Impedance (R_{of})

$$R_{of} = \frac{R_o}{1 + A\beta}$$
 or, more generally, $Z_{of}(s) = \frac{Z_o(s)}{1 + A(s)\beta(s)}$

$$I = \frac{V_t(1 + A\beta)}{R_o} \Longrightarrow \frac{V_t}{I} = R_{of} = \frac{R_o}{(1 + A\beta)}$$

Output Impedance (R_{of})

$$R_{of} = \frac{R_o}{1 + A\beta}$$
 or, more generally, $Z_{of}(s) = \frac{Z_o(s)}{1 + A(s)\beta(s)}$

True for all shunt sampling cases.

Closed Loop Gain (A_f)

$$A_f = \frac{A}{1 + A\beta}$$

Series-Shunt Amplifier

Series-Series Amplifier

Series-Series Amplifier

Series-Series Amplifier

Shunt-Series Amplifier

Shunt-Series Amplifier

Shunt-Series Amplifier

Feedback Relations

	Gain	Input Resistance	Output Resistance
Without feedback	A	$R_{\rm i}$	$R_{ m o}$
Series-shunt A (V/V) β (V/V)	$A_{\rm f} = \frac{A}{1 + \beta A}$	$R_{\rm if} = R_{\rm i}(1 + \beta A)$	$R_{\rm of} = \frac{R_{\rm o}}{1 + \beta A}$
Series-series A (A/V or ℧)	$A_{\rm f} = \frac{A}{1 + \beta A}$	$R_{\rm if} = R_{\rm i}(1 + \beta A)$	$R_{\rm of} = R_{\rm o}(1 + \beta A)$
β (V/A or $Ω$) Shunt-shunt A (V/A or $Ω$) $β$ (A/V or $𝔞$)	$A_{\rm f} = \frac{A}{1 + \beta A}$	$R_{\rm if} = \frac{R_{\rm i}}{1 + \beta A}$	$R_{\rm of} = \frac{R_{\rm o}}{1 + \beta A}$
Shunt-series $A (A/A)$ $\beta (A/A)$	$A_{\rm f} = \frac{A}{1 + \beta A}$	$R_{\rm if} = \frac{R_{\rm i}}{1 + \beta A}$	$R_{\rm of} = R_{\rm o}(1 + \beta A)$

Examples

