Tema#1: Mecânica

Bartolomeu Joaquim Ubisse

Instituto Superior de Ciências de Saúde (ISCISA)

(Aulas preparadas para estudantes de Anatomia Patológica)

13 de Junho de 2021

Porque estudar Mecânica no curso de Saúde?

Mecânica

É o ramo da Física que se dedica ao estudo do movimento dos corpos.

Quando os músculos do corpo humano exercem forças, podem mudar o estado de movimento de um corpo e também podem causar deformações.

Flexão e extensão[Silverthorn,2017]

Rotação

Qual é a importância de se conhecer o movimento dos membros do nosso corpo?

GRANDEZAS FÍSICAS. OPERAÇÕES SOBRE VECTORES

Grandezas físicas (escalares e vectoriais).

Qualquer propriedade mensurável de um fenómeno, corpo e/ou substância é uma grandeza.

Existem diferentes maneiras de representar vectores dependendo da comodidade de cada autor. Nas nossas sessões usaremos uma **letra minúscula com uma seta em cima**, por ex., \vec{a} .

Componentes de vector, módulo e vectores unitários.

As componentes de vector são as suas projecções ao longo dos eixos do sistema de coordenadas.

 \vec{i}, \vec{j} e \vec{k} são vectores unitários e $|\vec{a}|$ chama-se módulo do \vec{a} .

Operação sobre vectores

Adição e subtração

A adição e subtração de vectores pode-se efectuar mediante dois métodos: Analítico e geométrico.

Analítico

Dados dois vectores \vec{a} e \vec{b} de forma analítica, o vector soma $\vec{c} = \vec{a} + \vec{b}$ é dado por:

$$\vec{c} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} + (a_z + b_z)\vec{k}$$
 (1)

e o vector diferença $\vec{d} = \vec{a} - \vec{b}$ é dado por:

$$\vec{d} = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} + (a_z - b_z)\vec{k}$$
 (2)

Geométrico

Sejam dados dois vectores \vec{a} e \vec{b} , o vector soma \vec{c} e o vector diferença \vec{d} são expressos conforme se ilustra nos diagramas ii) e iii) respectivamente.

Produto Escalar

O produto escalar de \vec{a} e \vec{b} , $(\vec{a} \cdot \vec{b})$, é um número definido por:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \tag{3}$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Comparando as duas expressões, conclui-se que:

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\vec{a}||\vec{b}|}$$

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$

$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$$

$$\vec{a} \cdot \vec{b} = 0$$
 - condição de perpendicularidade

(4)

Produto vectorial

O produto vectorial de \vec{a} e \vec{b} , $(\vec{a} \times \vec{b})$, é um terceiro vector \vec{c} definido por:

$$\vec{c} = \vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \sin \vartheta \cdot \hat{\mathbf{n}}$$
 (5)

Onde, $\hat{\bf n}$ - vector unitário \perp ao plano formado por \vec{a} e \vec{b} ; ϑ - $\acute{\bf e}$ o menor ângulo entre \vec{a} e \vec{b} .

 $\vec{a} \times \vec{b} = 0$ - condição de paralelismo

$$\vec{a} imes \vec{b} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \end{array} \right|$$

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x) \vec{k}$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad ; \qquad \vec{j} \times \vec{i} = -\vec{k}$$

$$\vec{j} \times \vec{k} = \vec{i} \qquad ; \qquad \vec{k} \times \vec{j} = -\vec{i}$$

$$\vec{k} \times \vec{i} = \vec{j} \qquad ; \qquad \vec{i} \times \vec{k} = -\vec{j}$$

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0$$

Produto misto

O produto misto (escalar-vectorial) é um escalar cujo módulo equivale ao volume do paralelepípedo formado na base dos três vectores:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b}) \tag{7}$$

Produto duplo

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot (\vec{a} \cdot \vec{b})$$
 (8)

CINEMÁTICA DE UM PONTO MATERIAL

Cinemática de um ponto material

A cinemática dedica-se ao estudo do movimento dos corpos sem considerar as suas causas.

Quando um corpo muda da sua posição com o decorrer do tempo diz se que este está em movimento e, caso contrário, está em repouso.

As equações paramétricas do ponto P são:

$$x = x(t)$$

$$y = y(t)$$

$$z = z(t)$$

Assim, o vector posição é:

$$\vec{r}(t) = x\vec{i} + y\vec{j} + z\vec{k} \tag{9}$$

Trajectória: é o conjunto das sucessivas posições do corpo que se move no decorrer do tempo. Assim, a equação da trajectória obtém-se eliminando o tempo (t) nas equações paramétricas.

$$F(x, y, z) = 0$$

Velocidades instantânea e média

O conhecimento da variação da posição do corpo com o decorrer do tempo consegue-se atraves da velocidade. De notar-se que a trajectória do corpo pode variar ao longo do tempo e a velocidade é em cada instante tangente à trajectória.

Por várias razões, podemos estar interessados em conhecer a velocidade em cada instante do movimento do corpo, deste modo a velocidade em causa é denominada **instantânea**:

$$\vec{v}(t) = \frac{d\vec{r}}{dt} \tag{10}$$

Assim, conjugando (9) com (10) resulta:

$$\vec{v}(t) = \frac{dx(t)}{dt}\vec{i} + \frac{dy(t)}{dt}\vec{j} + \frac{dz(t)}{dt}\vec{k} = v_x(t)\vec{i} + v_y(t)\vec{j} + v_z(t)\vec{k}$$
 (11)

Por outro lado, podemos estar interessados em saber qual foi a velocidade do corpo ao se deslocar da posição **A** até à posição **B**. Para tal, teremos que saber o espaço percorrido pelo corpo e o tempo gasto durante esse percurso. Neste caso, a velocidade em causa chama-se **velocidade média** e pode ser escalar ou vectorial.

Velocidade média escalar

Vector velocidade média

$$v_{med} = \frac{\Delta s}{dt}$$

$$\vec{v}_{med} = \frac{\Delta \vec{r}}{dt}$$

Aceleração

É a taxa de variação da velocidade do corpo ao longo do tempo.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} \tag{12}$$

onde, $\Delta \vec{v}$ é a variação da velocidade nos intantes t e $t + \Delta t$. No instante t a velocidade é \vec{v} e no instante $t + \Delta t$ é $\vec{v} + \Delta \vec{v}$.

Reparem que $\frac{\Delta \vec{v}}{\Delta t}$ é vector aceleração média do corpo no intervalo de tempo Δt .

Assim, o vector aceleração média é:

$$\vec{a}_{med} = \frac{\vec{v}_B - \vec{v}_A}{t_B - t_A} \tag{13}$$

Um facto importante a registar é que sempre que se falar de movimento de uma corpo, este possui uma **velocidade** e o seu movimento segue uma dada **trajectória**¹.

Tendo em consideração à trajectria seguida, tem-se:

- Movimento em trajectória rectilínea;
- Movimento em trajectória curvelínea;
- Movimento em trajectória circular.

17/33

¹É claro que existe também movimento de um corpo entorno do seu eixo próprio, porém, se destacarmos um ponto na superfície do corpo poderemos perceber que a trajectória é circular.

Movimento rectilíneo

- Movimento rectilíneo uniforme (MRU) $\vec{v} = const.$ $x(t) = x_0 + vt$
- Movimento rectilíneo uniformemente variado (ou Movimento rectilíneo com aceleração constante) $\vec{a} = const.$

$$x(t) = x_o + v_o t \pm \frac{1}{2}at^2$$

$$v(t) = v_o \pm at$$

$$v^2 = v_o^2 \pm 2aS$$

O sinal (-) é quando \vec{a} tem sentido oposto ao do movimento.

Movimento em trajectória curvelínea

A velocidade de um corpo em movimento pode variar quer em sua magnitude, quer em sua direcção ou quer em ambos (módulo e direcção).

Para o movimento curvelíneo, geralmente a velocidade varia quer o módulo quer o sentido.

Movimento no plano XOY com aceleração constante

$$\vec{v} = \vec{v}_o + \vec{a}t$$

$$\vec{r} = \vec{r}_o + \vec{v}_o t + \frac{1}{2} \vec{a} t^2$$

$$\vec{v}_o = v_{ox} \vec{i} + v_{oy} \vec{j}$$

$$\vec{r} = x \vec{i} + y \vec{j}$$

• Movimento curvelíneo $\rho \neq const. \land a \neq const.$

$$\vec{v} = v \vec{u}_T$$

$$\vec{a} = \frac{dv}{dt} \vec{u}_T + \frac{v^2}{\rho} \vec{u}_N$$

$$\vec{a} = a_T \vec{u}_T + a_N \vec{u}_N$$

$$a = \sqrt{a_T^2 + a_N^2}$$

• Movimento Circular $\rho = const.$ $(\rho = R)$

$$a_N \equiv a_c = \frac{v^2}{R} \tag{14}$$

$$dI = Rd\theta \Rightarrow v = r\omega$$

$$\omega = \frac{d\theta}{dt}$$

$$\alpha = \frac{d\omega}{dt}$$

$$\theta(t) = \theta_o + \omega_o t + 0.5\alpha t^2 \qquad (15)$$

Se $\omega = const.$ estamos perante um movimento circular uniforme. Neste caso, o movimento é periódico.

$$\omega = \frac{2\pi}{T} = 2\pi f \tag{16}$$

DINÂMICA DE UM PONTO MATERIAL

Dinâmica de um ponto material

A dinâmica dedica-se ao estudo do movimento dos corpos e as suas causas. A causa do movimento é sempre uma **força** que, numa linguagem coloquial, é entendida como um empurrão ou um puxão exercido sobre objectos.

No corpo humano, o que exerce forças são os músculos.

Quando a força é exercida sobre um corpo, dois fenómenos podem ocorrer sobre esse corpo, a saber:

- Mudança do seu estado de movimento;
- Deformação.

Dinâmica de um ponto material

A descrição precisa e consistente da dinâmica dos corpos e/ou sistema dos corpos é feita baseando-se em um conjunto de **leis** tendo em consideração à grandeza das velocidades envolvidas e ao tamanho dos corpos em consideração. Porém, para a nossa consideração, as velocidades são muito pequenas se comparadas com a velocidade da luz no vácuo e os corpos tem dimensões superiores que as dos átomos. Assim, recorremos às leis fundamentais da mecânica clássica - **As leis de Newton**.

Primeira lei de Newton (lei da inércia)

Se a resultante das forças que actuam sobre um corpo é nula, o corpo permanece em repouso se inicialmente estava em repouso ou em movimento rectilíneo uniforme se inicialmente estava em movimento.

$$\sum_{i=0}^{n} \vec{F_i} = 0 \qquad (17)$$

Dinâmica de um ponto material - Leis de Newton

2ª lei de Newton (Lei Fundamental da Dinâmica)

Um corpo sob atuação de uma força move-se de tal forma que a taxa de variação temporária da sua quantidade de movimento se iguale à essa força.

$$\vec{F} = \frac{d\vec{p}}{dt} \Longrightarrow \vec{F} = m\vec{a} \tag{18}$$

onde, $\vec{p}=m\vec{v}$ é a quantidade de movimento do corpo (também chamado de momento linear), \vec{F} é a força resultante que actua sobre o corpo e m é a massa do corpo.

A massa é uma propriedade intrínseca dos corpos. Nós só temos a sensação física da sua presença quando tentamos acelerar um corpo aplicando uma força. Deste modo, embora não tenha uma definição coloquial, pode-se entender a massa como uma quantidade que determina a aceleração de um corpo sob acção de uma força.

Dinâmica de um ponto material - Leis de Newton

3ª lei de Newton (Lei de acção e reacção)

Quando dois corpos interagem, as forças que cada corpo exerce sobre o outro são iguais em módulo e têm sentidos opostos.

$$\vec{F_1} = -\vec{F_2} \Longrightarrow \left| \vec{F_1} \right| = \left| \vec{F_2} \right|$$
 (19)

Conjungando (18) e (19) tem:

$$\frac{m_1}{m_2} = \frac{a_2}{a_1} \tag{20}$$

e

$$\frac{d(\vec{p}_1 + \vec{p}_2)}{dt} = 0 \Longrightarrow \vec{p}_1 + \vec{p}_2 = constante. \tag{21}$$

Força de gravitacional

A força gravitacional $(\vec{F_g})$ é uma força de atracção que um corpo exerce sobre um outro (ex. terra - lua). Porém, na nossa discussão estaremo-nos referindo à força com que a Terra atrai os corpos para o seu centro.

$$\vec{F}_g = m\vec{g} \tag{22}$$

onde, \vec{g} é aceleração de gravidade $(g = 9.82 m/s^2)$

Peso

O peso P de um corpo é o módulo da força necessária para impedir que o corpo caia livremente, medida em relação ao solo.

Considerando que a força que faria com que o carpo caisse livremente é a de gravidade, então, o peso de um corpo é igual ao módulo da força graviacional que age sobre esse corpo.

$$p = mg (23)$$

Força Normal Quando um corpo exerce uma força sobre uma superície, a superfície (ainda que aparentemente rígida) se deforma e empura o corpo com uma

força normal \vec{F}_N que é perpendicular

Força de atrito

à mesma superfície.

A força de atrito é aquela que age sobre duas superfícies em contacto e sob movimento relativo. Esta força tem sentido contrário ao do movimento e depende fundamentalmente do grau de acabamento das superfícies em contacto e da sua natureza. No que concerne aos orgãos humanos, depende do grau de rugosidade das superfícies em contacto.

Existe dois tipos de força de atrito, a saber:

- Força de atrito estático;
- Força de atrito cinético.

Força de atrito estático

Se o corpo não se move, a força de atrito estático $\vec{f_s}$ e a componente de \vec{F} paralela à superície se equilibram.

A força de atrito estático acima do qual o corpo começa a se mover denomina-se força de atrito estático máximo e é expresso por:

$$f_{s,max} = \mu_s F_N \tag{24}$$

onde, μ_{s} é o coeficiente de atrito estático e é adimensional $(\mu_{s} < 1.0)$

Força de atrito cinético

Se o corpo começa a deslizar sobre a superície, o módulo da força de atrito diminui rapidamente para um valor dado por:

$$f_k = \mu_k F_N \tag{25}$$

onde, μ_k é o coeficiente de atrito cinético e é adimensional $(\mu_k < 1.0)$

Tabela 1: Coeficientes de atrito estático e cinético de alguns materiais [OKUNO, E. & FRATIN, L.,2014]

Materiais	μ_{s}	μ_{k}	
Vidro com vidro	0.94	0.40	_
Madeira com madeira	0.25 - 0.50	0.20	
Osso com osso com líquido sinovial no corpo	0.01	0.003	
humano			30

Força de tração /compressão

A força de tração é aquela que é aplicada a um corpo numa direcção perpendicular à superfície e com sentido para o exterior do corpo. Para o nosso curso, estas forças são exercidas por fibras musculares, tendões, ligamentos e nos ossos. No geral, estas forças ocorrem nos cabos e barras ideais (com massas disprezíveis).

o Força Elástica (F_e)

A força elástica visa a repor a posição inicial do corpo quando este é sujeito à forças de tração ou compressão. Esta força é também designada de restauradora e tem origem nas forças intermoleculares que mantém as moléculas e/ou átomos unidos.

Lei de Hooke

A lei de Hooke demonstra que existe uma relação linear entre força aplicada e deformação de um objeto sólido.

$$\vec{F}_e = -k\Delta \vec{x} \tag{26}$$

onde, k é a constante elástica e Δx é a elongação.

Módulo de Young

O módulo de Young (E) é uma propriedade mecânica com base no qual mede-se a rigidez de um sólido.

$$E = -\frac{\sigma}{\epsilon} \tag{27}$$

onde, σ é a tensão (também chamado de stress) ($\sigma = F/A$) em N/m^2 no SI e ϵ é a deformação relativa do corpo (strain) ($\epsilon = \frac{\Delta L}{L}$), isto é, mudança no comprimento dividido pelo comprimento original.

Substituindo as expressões de *stress* e de *strain* e isolando-se a força tem-se:

$$F = \frac{EA}{L}\Delta L \tag{28}$$

Comparando-se (28) e (26) verifica-se que k = EA/L