Application of Information Theory, Lecture 2 Joint & Conditional Entropy, Mutual Information Handout Mode

Iftach Haitner

Tel Aviv University.

Nov 4, 2014

Part I

Joint and Conditional Entropy

Joint entropy

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

Example:

X	0	1
0	$\frac{1}{4}$	1 4
1	$\frac{1}{2}$	0

$$H(X, Y) = -\frac{1}{2} \log \frac{1}{\frac{1}{2}} - \frac{1}{4} \log \frac{1}{\frac{1}{4}} - \frac{1}{4} \log \frac{1}{\frac{1}{4}}$$
$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = 1\frac{1}{2}$$

Joint entropy, cont.

▶ The joint entropy of $(X_1, ..., X_n) \sim p$, is

$$H(X_1,\ldots,X_n)=-\sum_{x_1,\ldots,x_n}p(x_1,\ldots,x_n)\log p(x_1,\ldots,x_n)$$

Conditional entropy

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- ▶ Measures the uncertainty in *Y* given *X*.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p_X(x) \cdot H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p_X(x) \sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log p_{Y|X}(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y|X}(y|x)$$

$$= -\sum_{(X, Y)} \log p_{Y|X}(Y|X)$$

$$= -\sum_{Z = p_{Y|X}(Y|X)} \log Z$$

Conditional entropy, cont.

Example

XY	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	1 2	0

What is H(Y|X) and H(X|Y)?

$$H(Y|X) = \mathop{\mathbb{E}}_{x \leftarrow X} H(Y|X = x)$$

$$= \frac{1}{2} H(Y|X = 0) + \frac{1}{2} H(Y|X = 1)$$

$$= \frac{1}{2} H(\frac{1}{2}, \frac{1}{2}) + \frac{1}{2} H(1, 0) = \frac{1}{2}.$$

$$H(X|Y) = \mathop{\mathbb{E}}_{y \leftarrow Y} H(X|Y = y)$$

$$= \frac{3}{4} H(X|Y = 0) + \frac{1}{4} H(X|Y = 1)$$

$$= \frac{3}{4} H(\frac{1}{3}, \frac{2}{3}) + \frac{1}{4} H(1, 0) = 0.6887 \neq H(Y|X).$$

Relating mutual entropy to conditional entropy

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|Y)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$

Non-negativity is immediate. We prove upperbound later.

- \vdash H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$
- ▶ Note that H(Y|X = x) might be larger than H(Y) for some $x \in \text{Supp}(X)$.
- ► Chain rule (proved next). H(X, Y) = H(X) + H(Y|X)
- ► Intuitively, uncertainty in (X, Y) is the uncertainty in X plus the uncertainty in Y given X.
- ► H(Y|X) = H(X, Y) H(X) is as an alternative definition for H(Y|X).

Chain rule (for the entropy function)

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Proof immediately follow by the grouping axiom:

X			
	<i>P</i> _{1,1}		$P_{1,n}$
	:	:	÷
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} \rho_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

- ▶ Another proof. Let $(X, Y) \sim p$.
- $\implies \log p(x,y) = \log p_X(x) + \log p_{Y|X}(x|y)$
- \implies E log $p(X, Y) = E log p_X(X) + E log p_{Y|X}(Y|X)$
- \implies H(X, Y) = H(X) + H(Y|X).

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x \in X} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x \in \mathcal{P}} p(x, y) \log \frac{p_X(x)}{p(x, y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$ $\leq \sum_{y} p_{Y}(y) \log \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x,y)}$ $= \sum_{y} p_Y(y) \log \frac{1}{p_Y(y)} = H(Y).$

$H(Y|X) \leq H(Y)$ cont.

Assume X and Y are independent (i.e., $p(x, y) = p_X(x) \cdot p_Y(y)$ for any x, y)

$$\implies p_{Y|X} = p_Y$$

$$\implies$$
 $H(Y|X) = H(Y)$

Other inequalities

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathsf{E}} H(X \mid Y,Z)$$

$$= \underset{Y \mid Z \mid Y}{\mathsf{E}} H(X \mid Y,Z)$$

$$= \underset{Y \mid Z \mid Y}{\mathsf{E}} H((X \mid Y) \mid Z)$$

$$\leq \underset{Y \mid Z \mid Y}{\mathsf{E}} H(X \mid Y)$$

$$= \underset{Y}{\mathsf{E}} H(X \mid Y)$$

$$= H(X \mid Y).$$

Chain rule (for the entropy function), general case

Claim 2

For rvs $X_1, ..., X_k$, it holds that $H(X_1, ..., X_k) = H(X_i) + H(X_2|X_1) + ... + H(X_k|X_1, ..., X_{k-1})$.

Proof: ?

- Extremely useful property!
- Analogously to the two variables case, it also holds that:
- $H(X_i) \leq H(X_1, \ldots, X_k) \leq \sum_i H(X_i)$
- $H(X_1,\ldots,X_K|Y) \leq \sum_i H(X_i|Y)$

Examples

- ▶ (from last class) Let $X_1, ..., X_n$ be Boolean iid with $X_i \sim (\frac{1}{3}, \frac{2}{3})$. Compute $H(X_1, ..., X_n)$
- ► As above, but under the condition that $\bigoplus_i X_i = 0$?
 - Via chain rule?
 - Via mapping?

Applications

Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|.

Prove that $E K < n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, \dots, X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

$$= H(K) + EK$$

$$\geq EK$$

- Interpretation
- Positive results

Applications cont.

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- ▶ Let X be a uniform random permutation of [n] and let Y₁,..., Y_t be the answers A gets when sorting X.
- ► X is determined by Y_1, \ldots, Y_t . Namely, $X = f(Y_1, \ldots, Y_t)$ for some function f.
- $H(X) = \log n!$

>

$$H(X) = H(f(Y_1, ..., Y_n))$$

$$\leq H(Y_1, ..., Y_n)$$

$$\leq \sum_i H(Y_i)$$

$$= t$$

 $\implies t > \log n! = \Theta(n \log n)$

Concavity of entropy function

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

Proof:

- Let Y over $\{0,1\}$ be 1 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- $H(\tau_{\lambda}) = H(X) \ge H(X \mid Y) = \lambda H(p) + (1 \lambda)H(q)$

We are now certain that we drew the graph of the (two-dimensional) entropy function right...

Part II

Mutual Information

Mutual information

► I(X; Y) — the "information" that X gives on Y

•

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$
- ► I(X; f(X)) = H(f(X)) (and smaller then H(X) is f is non-injective)
- ▶ $I(X; Y, Z) \ge I(X; Y), I(X; Z)$ (since $H(X \mid Y, Z) \le H(X \mid Y), H(X \mid Z)$)
- ► I(X; Y|Z) := H(Y|Z) H(Y|X, Z)
- I(X; Y|Z) = I(Y; X|Z) (since I(X'; Y') = I(Y'; X'))

Numerical example

Example

X	0	1
0	1 4	$\frac{1}{4}$
1	1 2	0

$$I(X; Y) = H(X) - H(X|Y)$$

$$= 1 - \frac{3}{4} \cdot h(\frac{1}{3})$$

$$= I(Y; X)$$

$$= H(Y) - H(Y|X)$$

$$= h(\frac{1}{4}) - \frac{1}{2}h(\frac{1}{2})$$

Chain rule for mutual information

Claim 4 (Chain rule for mutual information)

For rvs $X_1, ..., X_k, Y$, it holds that $I(X_1, ..., X_k | Y) = I(X|Y) + I(X_2; Y|X_1) + ... + I(X_k; Y|X_1, ..., X_{k-1})$.

Proof: ? HW

Examples

Let X_1, \ldots, X_n be iid with $X_i \sim (p, 1 - p)$, under the condition that $\bigoplus_i x_i = 0$.

Compute $I(X_1, ..., X_{n-1}; X_n)$.

By chain rule

$$I(X_1,...,X_{n-1};X_n) = H(X_1;X_n) + H(X_2;X_n|X_1) + ... + H(X_{n-1};X_n|X_1,...,X_{n-2}) = 0 + 0 + ... + 1 = 1.$$

► Let *T* and *F* be the top and front side, respectively, of a 6-sided fair dice. Compute *I*(*T*; *F*).

$$I(T; F) = H(T) - H(T|F)$$

= log 6 - log 4
= log 3 - 1.

Part III

Data processing

Data processing Inequality

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

If
$$X \to Y \to Z$$
, then $I(X; Y) \ge I(X; Z)$.

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y) = 0

$$I(X; Z|Y) = H(Z|Y) - H(Z|Y, X)$$

$$= \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) - \mathop{\mathbb{E}}_{Y, X} H(p_{Z|Y=y, X=x})$$

$$= \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) - \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) = 0.$$

▶ Since $I(X; Y|Z) \ge 0$, we conclude $I(X; Y) \ge I(X; Z)$.

Fano's Inequality

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

For any rvs X and Y, and any (even random) g, it holds that

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(X)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

- ▶ The inequality can be weekend to $1 + P_e \log |\mathcal{X}| \ge H(X|Y)$
- Note that $P_e = 0$ implies that H(X|Y) = 0
- We call \hat{X} the estimator for X.

Proving Fano's inequality

Let X and Y be rvs, let $\hat{X} = g(Y)$ and $P_e = \Pr \left[\hat{X} \neq X \right]$.

$$\blacktriangleright \text{ Let } E = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(E, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(E|X, \hat{X})}_{=0}$$

$$= \underbrace{H(E|\hat{X})}_{\leq H(E) = h(P_e)} + \underbrace{H(X|E, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

- ▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$
- ► Since $X \to Y \to \hat{X}$, it holds that $I(X; Y) \ge I(X; \hat{X})$ $\implies H(X|\hat{X}) \ge H(X|Y)$