Design and implementation of a face detection and location technique to crop faces from human images DB

Michal Szabo Aleix Granero Mol

Contents

Introduction

Viola-Jones Algorithm

- Haar Features
- Integral Image
- AdaBoost
- Cascade

Results

Conclusions

Introduction

Images database

Cropped faces database

Viola-Jones Algorithm

 The Viola-Jones object detection framework is an object detection framework which was proposed in 2001 by Paul Viola and Michael Jones.

Haar Features

• Difference of the sum of pixels of areas inside the rectangle

Integral Image

 Represents the cumulative sum of a corresponding input pixel with all pixels above and left of the input pixel

$$= d-c-b-a = 12$$

Intensity Map

Detection

Intensity Map

Detection

Training our own Haar features

- Dataset:
 - 2429 face images
 - 4547 non-face images
 - All images already in grayscale with size 19x19 pixels
- Calculate Haar feature values
- AdaBoost

Face Images

Non-Face Images

Types of Haar features

AdaBoost

1.Step: Sorting

fval	sign
2	1
4	1
-1	1
1	-1
-3	-1
-5	-1

Sorting

fval	sign
4	1
2	1
1	-1
-1	1
-3	-1
-5	-1

2.Step: Threshold

fval	sign
4	1
2	1
1	-1
-1	1
-3	-1
-5	-1

	(4+2)/2 =	3
	1.5	
>	0	
>	-2	
>	-4	

Gini impurity

Gini impurity for a leaf = $1 - (the probability of face)^2 - (the probability of no face)^2$

P:

$$= 1 - \left(\frac{1}{1+0}\right)^{2} - \left(\frac{0}{1+0}\right)^{2}$$

$$= 1 - \left(\frac{2}{2+3}\right)^{2} - \left(\frac{3}{2+3}\right)^{2}$$

$$= 1 - 0.16 - 0.36$$

$$= 0$$

$$= 0.48$$

Total Gini impurity = weighted average if Gini impurities for the leaves

$$= \left(\frac{1}{1+5}\right) \cdot 0 + \left(\frac{5}{1+5}\right) \cdot 0.48 = 0 + 0.4 = \mathbf{0.4}$$

Determining threshold

fval	sign
4	1
2	1
1	-1
-1	1
-3	-1
-5	-1

3. Step: Calculating New Sample weights

fval	sign	weight
4	1	1/6
2	1	1/6
1	-1	1/6
-1	1	1/6
-3	-1	1/6
-5	-1	1/6

Amount of say
$$=\frac{1}{2}\log\left(\frac{1-\text{Total error}}{\text{Total error}}\right) = \frac{1}{2}\log\left(\frac{1-1/6}{1/6}\right) = 0.805$$

New Sample
$$=$$
 Sample weight $\times e$ Amount of say

$$=\frac{1}{6} \cdot e^{0.805} = \mathbf{0.373}$$

Calculating New Sample weights

fval	sign	weight
4	1	0.166
2	1	0.166
1	-1	0.166
-1	1	0.373
-3	-1	0.166
-5	-1	0.166
		1.206

$$\times \frac{1}{1.206}$$

fval	sign	weight
4	1	0.138
2	1	0.138
1	-1	0.138
-1	1	0.309
-3	-1	0.138
-5	-1	0.138
		1

4. Step: New feature values

fval	sign	weight	csum
4	1	0.138	0.138
2	1	0.138	0.276
1	-1	0.138	0.415
-1	1	0.309	0.723
-3	-1	0.138	0.862
-5	-1	0.138	1

Random number between 0-1
0.1067
0.5265
0.7749
0.3998
0.8173
0.6032

fval	sign
4	1
-1	1
-3	-1
2	1
-3	-1
-1	1

5.Step: Repeat

fval	sign
4	1
-1	1
-3	-1
2	1
-3	-1
-1	1

Repeat for a number of iterations

Results from AdaBoost (50 itr)

Final Results

Applied Haar features

Image database

Final results

Final results

Comparison of results

Things we tried

- Optimizing the initial size of the Haar feature
- Different combinations of Haar features
- Changing threshold
- Cascade
- Calculating other types of Haar features using AdaBoost

We want to try:

 To apply exactly the features obtained from AdaBoost with their calculated threshold

Conclusions

- It's HARD and it takes a lot of time to try different features manually.
- Threshold is very important and is different for each type and size of Haar feature.
- Almost impossible to get the perfect cascade of classifiers that works on complicated images manually.

STUDY MACHINE LEARNING

%% Thank you for attention

% If you have any questions
% don't hesitate to ask