NCLASSIFIED	HIGHER O SYMMETRI CENTER D NSMC/TR-	RDER I C REFR AHLGRE 85-67	ONOSPH ACTING N VA	ERIC C MEDIU S D LE	ORRECT M(U) N VINE E	TIONS IAYAL ET AL.	FOR A SURFAC MAR 8	SPHERI E WEAF 5 F/G 2	CALLY ONS 20/14	1/: NL	L
=											
		EMS Vilia									

MICROCOPY

CHART

HIGHER ORDER IONOSPHERIC CORRECTIONS FOR A SPHERICALLY SYMMETRIC REFRACTING MEDIUM

RY SUSAN D. LOVINE L. RALPH GIBSON STRATEGIC SYSTEMS DEPARTMENT

MARCH 1985

Approved for public release; distribution unlimited

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
NSWC TR 85-67 AD-171661	390
4 TIT_E (and Subtrile)	5 TYPE OF REPORT & PERIOD COVERED
HIGHER ORDEP IONOSPHERIC CORRECTIONS FOR	Final
A SPHERICALLY SYMMETRIC REFRACTING MEDIUM	6 PERFORMING ORG REPORT NUMBER
7 AUTHOR/O	B CONTRACT OR GRANT NUMBER(1)
Susan D. LeVine L. Ralph Gibson	
L. Kaipii Cheson	
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS
Naval Surface Weapons Center (K13)	
Dahlgren, VA 22448-5000	MIPR
11 CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
Defense Mapping Agency	March 1985
Washington, DC 20305	13 NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS (i) different from Controlling Office)	30 15 SECURITY CLASS (of this report)
14 MONITORING AGENCY NAME & ADDRESS IN MINITORING CONTROLLING CONT	13 SECORT V CERSS IIII MIR ROMAN
	UNCLASSIFIED
	154 DECLASSIFICATION DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)	<u> </u>
17 DISTRIBUTION STATEMENT tof the abstract entered in Block 20, if different from Rep.	orn
	APR 1 4 1986
IN SUPPLEMENTARY NOTES	74 11 2 1 1000
* **	A
19 KEY WORDS (Continue on reverse side it necessary and identity by block number)	
satellite tracking	
electromagnetic wave	
refraction effects	
refracting medium	
20. ABSTRACT it ontinue on reserve, ide it necessars and identity by bank numbers	
Closed-form calculations for the second- and third-orden Single- and dual-frequency data from a NAVSAT orbit if the magnitude of the corrections to the phase path and	s used in the model to determine
station positions.	in a minery (//
	(see back)

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(20)

CONTRACTOR CONTRACT CONTRACTOR CONTRACTOR

The sum of the second- and third-order corrections to the observed range difference varied from 0.05 cm to 1.6 m for single-frequency data and from 0.09 cm to 30 cm for dual-frequency data, depending on station location and satellite zenith angle.

S N 0102-LF-014-6601

UNCLASSIFIED

FOREWORD

This report presents the results of a study to determine the magnitude of the secondand third-order ionospheric corrections to an electromagnetic wave propagating through a spherically symmetric refracting medium. The results show that both the second- and thirdorder correction terms must be included in a study of higher order ionospheric effects, contrary to previous reports that the second-order term is negligible. This report was reviewed by Dr. Jeffrey N. Blanton, Head, Space Flight Sciences Branch.

PROPERTY SECTIONS CONTRACT STANDARD STANDARDS

Released by:

THOMAS A. CLARE, Head Strategic Systems Department

()

CONTENTS

	Page
INTRODUCTION	1
SECOND-ORDER CORRECTION	2
THIRD-ORDER CORRECTION	7
SINGLE-FREQUENCY DOPPLER DATA	7
DUAL-FREQUENCY DOPPLER DATA	9
NUMERICAL ANALYSIS	10
CORRECTIONS TO THE PHASE PATH	12
CORRECTIONS TO THE RANGE DIFFERENCE	16
CONCLUSIONS	19
APPENDIX DUAL-FREQUENCY RANGE DIFFERENCE	A -1
DISTRIBUTION	(1)

INTRODUCTION

The phase path, L_{ρ} , is the curved path that an electromagnetic wave follows when traveling from a satellite to a receiving station. The path is curved due to refraction effects of the Earth's ionosphere.

An expansion for the phase path length takes the form

$$L_0 = \rho + L_1 + L_2 + L_3 + \cdots$$

where ρ is the vacuum slant range from the station to satellite and L_1 , L_2 , L_3 , \cdots first-, second-, third-, etc. order corrections to the phase path. By assuming the refracting medium to be spherically symmetric, a closed-form integral can be derived for L_{ρ} and subsequently for L_1 , L_2 , L_3 , etc. The closed-form integral expressions have been derived by Gibson¹ for the first-, second-, and third-order corrections and are dependent on the vacuum zenith angle and the index of refraction model used.

The first-order correction is given by 1

$$L_1 = 1/2 \int \frac{(n^2(r) - 1)rdr}{\sqrt{r^2 - k^2}}$$
 (1)

where the constant k is

THE REPORT OF THE PARTIES AND THE PARTIES AND

$$k = r_0 \sin z$$

with r_0 the distance from the center of the Earth to the station and z the vacuum zenith angle. N(r) is the index of refraction of the ionosphere or plasma:

¹L. R. Gibson, Some Expansions for an Electromagnetic Wave Propagating Through a Spherically Symmetric Refracting Medium, Naval Surface Weapons Center Technical Report NSWC/D1_TR-3344_Dablaten, VA_June, 1975.

$$n^2(r) - 1 = -\frac{\omega_p^2(r)}{\omega^2}$$
 (2)

where $\omega_p(r)$ is the plasma frequency and²

$$\omega_{\rm p}^2 \ (r) = \frac{4\pi e^2}{m} \ N(r)$$
 (3)

N(r) is the electron density in electrons/cm³, e the electronic charge in stateoulombs, m the mass of the electron in grams, and ω the signal frequency in radians/s.

Substitution of Equation 2 into Equation 1 shows that the first-order correction goes as $1/\omega^2$:

$$L_1 = -1/2 \int \frac{\omega_p^2(r) r dr}{\omega^2 \sqrt{r^2 - k^2}}$$
 (4)

SECOND-ORDER CORRECTION

The second-order correction to the phase path length accounts for the effect of the Earth's magnetic field on the ionosphere.

The index of refraction of a plasma in an external magnetic field is:2

$$n^{2}(r) - 1 = \frac{-\omega_{p}^{2}(r)}{\omega(\omega + \omega_{p}(r))}$$
 (5)

where $\omega_{\rm B}({\bf r})$ is the frequency of precession of a charged particle in a magnetic field:

$$\omega_{\rm B}({\rm r}) = \frac{{\rm eB(r)}}{{\rm mc}} \tag{6}$$

²J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., New York, NY, 1975

In Equation 6, e and m are as defined previously, c is the speed of light in cm/s, and B(r) is the component of the Earth's magnetic field in the direction of signal propagation. From Equation 5 it can be seen that electromagnetic waves of different polarizations propagate differently.

To obtain the expression for the second-order correction, expand Equation 5:

$$n^{2}(r) = 1 - \left(\frac{\omega_{p}^{2}(r)}{\omega^{2}}\right) \left[1 \pm \frac{\omega_{B}(r)}{\omega}\right]^{-1}$$

$$\left[1 \pm \frac{\omega_{B}(r)}{\omega}\right]^{-1} = 1 \mp \omega_{B}/\omega + \omega_{B}^{2}/\omega^{2} \mp \omega_{B}^{3}/\omega^{3} + \cdots$$

$$n^{2}(r) - 1 = \frac{-\omega_{p}^{2}(r)}{\omega^{2}} \pm \frac{\omega_{p}^{2}(r) \omega_{B}(r)}{\omega^{3}} - \frac{\omega_{p}^{2}(r) \omega_{B}^{2}(r)}{\omega^{4}}$$

The last expression substituted into Equation 1 modifies the first-order correction:

$$\overline{L}_{1} = 1/2 \left[\int \frac{-\omega_{p}^{2}(\mathbf{r}) \operatorname{rdr}}{\omega^{2} \sqrt{\mathbf{r}^{2} - \mathbf{k}^{2}}} \pm \int \frac{\omega_{p}^{2}(\mathbf{r}) \omega_{B}(\mathbf{r}) \operatorname{rdr}}{\omega^{3} \sqrt{\mathbf{r}^{2} - \mathbf{k}^{2}}} - \int \frac{\omega_{p}^{2}(\mathbf{r}) \omega_{B}^{2}(\mathbf{r})}{\omega^{4}} \frac{\operatorname{rdr}}{\sqrt{\mathbf{r}^{2} - \mathbf{k}^{2}}} \right]$$

$$(7)$$

The first term in the expansion is just the first-order correction, L_1 , as given previously in Equation 4: the second term, which goes as $1/\omega^3$, is called the second-order correction, L_2 ; and the third term, which goes as $1/\omega^4$, is a part of the third-order correction and will be discussed later. Note that the second-order correction is the first-order correction multiplied by the precession frequency and divided by the oscillator frequency:

$$L_2 = \frac{\omega_B}{\omega} \cdot L_1 \tag{8}$$

To determine the magnitude of L_2 , it is necessary to find ω_B .

To find the precession frequency, an expression for B(r) is needed in the direction of signal propagation, $\hat{\rho}$ (Figure 1).

FIGURE 1. DIRECTION OF SIGNAL PROPAGATION

Given the Earth-fixed coordinates of the satellite (x_s, y_s, z_s) and station (x_o, y_o, z_o) , $\vec{\rho}$ can be defined by

$$\vec{\rho} = (x_s - x_o) \hat{x} + (y_s - y_o) \hat{y} + (z_s - z_o) \hat{z}$$

The magnetic field of the earth can be represented in geodetic coordinates as

$$\vec{B} = B_r \hat{r} + B_\theta \hat{\theta} + B_\phi \hat{\phi}$$

where B_r , B_{θ} , B_{ϕ} are also known as B_{down} , B_{north} , and B_{east} , respectively.

Therefore

$$B_{\rho} = \vec{B} \cdot \hat{\rho}$$

is the component of \vec{B} in the direction of signal propagation. The resulting expression for B_{ρ} is

$$B_{\rho} = \frac{1}{|\vec{\rho}|} \left[B_{r} \left\{ (x_{s} - x_{o}) \cos \theta \cos \phi + (y_{s} - y_{o}) \cos \theta \sin \phi + (z_{s} - z_{o}) \sin \theta \right\} \right.$$

$$+ B_{\theta} \left[-(x_{s} - x_{o}) \sin \theta \cos \phi - (y_{s} - y_{o}) \sin \theta \sin \phi + (z_{s} - z_{o}) \cos \theta \right]$$

$$+ B_{\phi} \left[-(x_{s} - x_{o}) \sin \phi + (y_{s} - y_{o}) \cos \phi \right]$$

Also required before evaluation of Equation 8 can begin is a model for the electron density profile, N(r), in Equation 3.

The ionosphere is composed of several distinct regions in which the functional form of N(r) varies from one region to the next. Therefore, it is necessary to separate the integral in Equation 8 into a series of integrals over the different ionospheric regions:

$$L_{2} = \frac{2\pi e^{2} \omega_{b}}{m\omega^{3}} \left[\int \frac{N_{E}(r) r dr}{\sqrt{r^{2}-k^{2}}} + \int \frac{N_{F_{1}}(r) r dr}{\sqrt{r^{2}-k^{2}}} + \int \frac{N_{F_{21}}(r) r dr}{\sqrt{r^{2}-k^{2}}} + \int \frac{N_{F_{21}}(r) r dr}{\sqrt{r^{2}-k^{2}}} + \int \frac{N_{F_{22}}(r) r dr}{\sqrt{r^{2}-k^{2}}} + \int \frac{N_{F_{23}}(r) r dr}{\sqrt{r^{2}-k^{2}}}$$

For the numerical analysis performed later in this report, the functional forms for the corresponding N(r)'s were taken from the Applied Research Laboratories (ARL) ionospheric model (Figure 2).³

R. Clynch and R. A. Altenburg, Ionospheric Residual Range Fror Model, Applied Research Laboratories Technical Report ARL TR 79-9, Austin. IN, March 1979.

FIGURE 2. VERTICAL ELECTRON-DENSITY PROFILE

THIRD-ORDER CORRECTION

The closed-form integral expression for the third-order correction, neglecting magnetic field effects is:1

$$\overline{L}_{3} = -1/8 \left\{ \int \frac{(n^{2}(r) - 1)^{2} r^{3} dr}{(r^{2} - k^{2})^{3/2}} - k^{2} \left[\int \frac{(n^{2}(r) - 1) r dr}{(r^{2} - k^{2})^{3/2}} \right]^{2} / \int \frac{r dr}{(r^{2} - k^{2})^{3/2}} \right\}$$

To include the magnetic field interaction, the third term in Equation 7 must be added to the above. Substituting for $n^2(r) - 1$ and adding the magnetic field interaction term leads to the following expression for the third-order correction:

$$L_{3} = -1/8 \left\{ \int \frac{\omega_{p}^{4}(r) r^{3} dr}{\omega^{4} (r^{2} - k^{2})^{3/2}} - \frac{k^{2}}{\omega^{4}} \left[\int \frac{\omega_{p}^{2}(r) r dr}{(r^{2} - k^{2})^{3/2}} \right]^{2} / \int \frac{r dr}{(r^{2} - k^{2})^{3/2}} \right\}$$

$$-1/2 \int \frac{\omega_{p}^{2}(r) \omega_{B}^{2}(r) r dr}{\omega^{4} \sqrt{r^{2} - k^{2}}}$$
(9)

The third-order correction goes as $1.\omega^4$. As before, each integral in Equation 9 must be separated into a series of integrals over the different layers of the ionosphere.

SINGLE-FREQUENCY DOPPLER DATA

For satellites emitting a single frequency, f_T , the first-, second-, and third-order ionospheric corrections can be determined directly from Equations 4, 8, and 9. Factoring out the transmitter frequency gives the following convenient form for the phase path:

$$L_{\rho} = \rho + \frac{1}{f_{T}^{2}} L_{1} + \frac{1}{f_{T}^{3}} L_{2} + \frac{1}{f_{T}^{4}} L_{3}$$

For Doppler data, the time derivative of the phase path is needed to calculate the received frequency, f_ϵ

$$\mathbf{f}_{\mathbf{r}} = (1 - \mathbf{\hat{L}}_{p})\mathbf{c})\mathbf{f}_{\mathbf{r}} \tag{10}$$

where

$$\vec{\mathbf{l}}_{p} = \vec{p} + \frac{1}{t_{\perp}^{2}} \vec{\mathbf{l}}_{1} + \frac{1}{t_{\perp}^{3}} \vec{\mathbf{l}}_{2} + \frac{1}{t_{\perp}^{4}} \vec{\mathbf{l}}_{3}$$

Expanding Equation 10 gives

$$f_r = f_T - \frac{f_T \rho}{c} - \frac{1}{cf_T} \dot{L}_1 - \frac{1}{cf_T^2} \dot{L}_2 - \frac{1}{cf_T^3} \dot{L}_3$$

The signal received by a station, f_r , combines with a station transmitter of frequency, f_s , to get beat frequency:

$$\frac{dN}{dt} = f_s - f_r$$

where N is the number of beats.

$$f_s - f_r = f_s - f_T + \frac{f_T \dot{\rho}}{c} + \frac{1}{cf_T} \dot{L}_1 + \frac{1}{cf_T^2} \dot{L}_2 + \frac{1}{cf_T^3} \dot{L}_3$$

Define $\Delta f = f_s - f_T$

$$\frac{dN}{dt} = \Delta f + \frac{f_T}{c} \frac{d\rho}{dt} + \frac{1}{cf_T} \frac{dL_1}{dt} + \frac{1}{cf_T^2} \frac{dL_2}{dt} + \frac{1}{cf_T^3} \frac{dL_3}{dt}$$

$$N = \Delta f \Delta t + \frac{f_{T} \Delta \rho}{c} + \frac{1}{cf_{T}} \Delta L_{1} + \frac{1}{cf_{T}^{2}} \Delta L_{2} + \frac{1}{cf_{T}^{3}} \Delta L_{3}$$

Solving for the range difference, $\Delta \rho$, gives

$$\Delta \rho = \frac{c}{f_{T}} \left(N - \Delta f \Delta t \right) - \underbrace{\left(\frac{1}{f_{T}^{2}} \right) \Delta L_{1}}_{\Delta \rho_{0} + \delta} - \underbrace{\left(\frac{1}{f_{T}^{3}} \right) \Delta L_{2}}_{\Delta \rho_{2}} - \underbrace{\left(\frac{1}{f_{T}^{4}} \right) \Delta L_{3}}_{\Delta \rho_{3}}$$

$$(11)$$

The first term in Equation 11, $\Delta \rho_{obs}$, represents the observed uncorrected value for the range difference. The correction terms are given by $\Delta \rho_1$, $\Delta \rho_2$, and $\Delta \rho_3$.

DUAL-FREQUENCY DOPPLER DATA

Most satellites emit two signals at different frequencies, f_{T_1} and f_{T_2} , to eliminate the first-order correction.

$$\int_{\Gamma_{1}} f_{\Gamma_{1}} = f_{\Gamma_{1}} - \frac{f_{\Gamma_{1}} \rho}{c} - \frac{1}{cf_{\Gamma_{1}}} \dot{L}_{1} - \frac{1}{cf_{\Gamma_{1}}^{2}} \dot{L}_{2} - \frac{1}{cf_{\Gamma_{1}}^{3}} \dot{L}_{3}$$
(12)

$$f_{r_2} = f_{T_2} - f_{T_2} \frac{\dot{\rho}}{c} - \frac{1}{cf_{T_2}} \dot{L}_1 - \frac{1}{cf_{T_2}^2} \dot{L}_2 - \frac{1}{cf_{T_2}^3} \dot{L}_3$$
(13)

Assume $f_{T_1} < f_{T_2}$ and define $\lambda = f_{T_1}/f_{T_2}$.

Subtracting λ times Equation 12 from Equation 13 gives

$$f_{r_{2}} - \lambda f_{r_{1}} = (f_{T_{2}} - \lambda f_{T_{1}}) - (f_{T_{2}} - \lambda f_{T_{1}}) \frac{\rho}{c} - \left(\frac{1}{f_{T_{2}}} - \frac{\lambda}{f_{T_{1}}}\right) \frac{\dot{L}_{1}}{c}$$
$$-\left(\frac{1}{f_{T_{2}}^{2}} - \frac{\lambda}{f_{T_{1}}^{2}}\right) \frac{\dot{L}_{2}}{c} - \left(\frac{1}{f_{T_{2}}^{3}} - \frac{\lambda}{f_{T_{1}}^{3}}\right) \frac{\dot{L}_{3}}{c}$$

Substituting for λ gives

$$f_{r_2} - \frac{f_{T_1} f_{r_1}}{f_{T_2}} = (f_{T_2} - f_{T_1}^2 / f_{T_2}) - (f_{T_2} - \frac{f_{T_1}^2}{f_{T_2}}) \rho / c$$

$$- \left(\frac{1}{f_{T_2}^2} - \frac{1}{f_{T_1} f_{T_2}} \right) \frac{\dot{L}_2}{c} - \left(\frac{1}{f_{T_2}^3} - \frac{1}{f_{T_1}^2 f_{T_2}} \right) \frac{\dot{L}_3}{c}$$

Define
$$f_{T_e} = f_{T_2} - f_{T_1}^2 / f_{T_2}$$

Then the frequency received by the station is

$$f_{r_e} = f_{r_2} - \lambda f_{r_1} = f_{T_e} (1 - \dot{\rho}/c) - \left(\frac{1}{f_{T_2}^2} - \frac{1}{f_{T_1} f_{T_2}}\right) \frac{\dot{L}_2}{c}$$

$$-\left(\frac{1}{f_{T_{2}}^{3}}-\frac{1}{f_{T_{1}}^{2}}\frac{1}{f_{T_{2}}}\right)\frac{\dot{L}_{3}}{c}$$

To determine the range difference for dual-frequency data, the same analysis as for the single-frequency case is followed. The result (see the appendix) is given below:

$$\Delta \rho = \underbrace{\frac{c}{f_{T_e}} \left(N - \Delta f \Delta t\right) + \underbrace{\frac{1}{(f_{T_1} + f_{T_2}) (f_{T_1} f_{T_2})}}_{\Delta \rho_2} \Delta L_2 + \underbrace{\frac{1}{f_{T_1}^2 f_{T_2}^2} \cdot \Delta L_3}_{\Delta \rho_3}$$

NUMERICAL ANALYSIS

A numerical analysis was performed to determine the magnitude of the second- and third-order corrections to the phase path and also to the range difference.

A FORTRAN program was written to perform the calculations and interfaced with another program that contained the ARL model. The combined program uses the Earth-fixed coordinates of the satellite and the given station position to determine the slant range, ρ , at given time intervals for a pass over the station. The various ionospheric parameters needed by the ARL model, along with the magnetic field components, are evaluated at the point on ρ that is 350 km above the Earth. This particular height was chosen after numerical integrations showed it to give the best average fit for the parameters along ρ . A simplified flowchart of the combined program is given in Figure 3.

A NAVSAT orbit provided the data for the analysis. Results were obtained for three stations:

- 1. Near the North Pole
- 2. Mid-latitude
- 3. Near the equator

THE PROPERTY ASSESSED SECTIONS DESIGNATE SECTIONS

FIGURE 3. COMBINED PROGRAM FLOWCHART

Station Number	Location
118	Thule, Greenland
30280	Santiago, Chile
30121	Quito, Ecuador

For the analysis, a relatively high sunspot number of 137 was assumed. For the single-frequency case, the frequency was taken to be 150 MHz; for the dual-frequency case, the assigned frequencies were 150 and 400 MHz.

CORRECTIONS TO THE PHASE PATH

For single-frequency data, the sum of the second- and third-order corrections to the phase path varied from -24 cm to -10 m, depending on station location and satellite zenith angle. For two frequencies the sum of the corrections is less, varying from -2.5 cm to -1.3 m.

THE PERSON OF THE PROPERTY OF THE PERSON OF

The second-order correction was found to be much larger than the third-order correction for many points along the pass. This was especially evident for station 118 (Thule, Greenland) where, for small satellite zenith angles, the second-order correction was nearly 27 times larger than the third-order correction for the single-frequency case and almost 20 times larger for the dual-frequency case. This is not unexpected since the magnetic field contribution to the precession frequency along ρ is larger here.

For the single-frequency case at station 30280 (mid-latitude), the second-order correction was approximately 5 times larger than the third-order correction for many points along the pass, decreasing to 1.5 times as large at other points, and becoming 3.7 times less at one point. The dual-frequency case showed the second- and third-order corrections to be about equal in magnitude at many points along the pass, with the second-order correction becoming approximately 3.5 times larger than the third-order correction at other points, and 5 times less at one point along the pass.

The results for station 30121 (equator) showed the second-order correction to be from 3.5 to 10.5 times larger than the third-order correction for most points along the pass and approximately 3 times less at one point for the single-frequency case. For two frequencies, the second-order varied from 2.5 to 7.6 times larger and approximately 4 times less at one point.

Tables 1 through 3 give a complete listing of the results for the phase path corrections.

TABLE 1. PHASE PATH CORRECTIONS, STATION 118

	Sir	ngle Frequency		Dual Fre	equency
Zenith Angle	L_1 (m)	L ₂ (m)	L ₃ (m)	L_2 (m)	L ₃ (m)
83.81	-556.5431	-1.5854	-0.2581	-0.1621	-0.0363
79.36	-537.8851	-1.7190	-0.2290	-0.1758	-0.0322
74.03	-552.5074	-2.0435	-0.2312	-0.2090	-0.0325
67.34	-514.4646	-2.2670	-0.1976	-0.2318	-0.0278
58.50	-444.0260	-2.3880	-0.1548	-0.2442	-0.0218
46.26	-369.1418	-2.4530	-0.1208	-0.2509	-0.0170
29.34	-308.2193	-2.4730	-0.0999	-0.2530	-0.0140
13.07	-279.5940	-2.4470	-0.0908	-0.2503	-0.0128
25.42	-292.3383	-2.3550	-0.0915	-0.2409	-0.0129
43.47	-337.6948	-2.2080	-0.1022	-0.2259	-0.0144
56.78	-399.6440	-2.0367	-0.1242	-0.2083	-0.0175
66.32	-470.9486	-1.8750	-0.1609	~0.1918	-0.0226
73.45	-538.8791	-1.7042	-0.2111	-0.1743	-0.0297
79.07	-594.6678	-1.5250	0.2710	-0.1559	-0.0381
83.72	-634.7061	-1.3470	-0.3304	-0.1378	-0.0465

TABLE 2. PHASE PATH CORRECTIONS, STATION 30280

	Si	ingle Frequenc	y	Dual Fre	quency
Zenith Angle	L ₁ (m)	L ₂ (m)	L ₃ (m)	L ₂ (m)	L ₃ (m)
82.65	-971.2966	-4.3526	-1.0043	-0.4452	-0.1412
78.37	-1027.0405	-4.5764	-1.0634	-0.4680	-0.1495
73.41	-1044.3015	-4.6496	-1.0451	-0.4755	-0.1470
67.49	-1016.6601	-4.5264	-0.9639	-0.4629	-0.1355
60.20	-953.4671	-4.2193	-0.8585	-0.4315	-0.1207
50.94	-874.2020	-3.7739	-0.7564	-0.3860	-0.1064
38.97	-793.8011	-3.1973	-0.6733	-0.3270	-0.0947
23.99	-734.1684	-2.5000	-0.6260	-0.2556	-0.0880
10.47	-725.5116	-1.6963	-0.6399	-0.1735	-0.0900
19.62	-788.6913	-0.7774	-0.7458	-0.0795	-0.1048
35.38	-934.0459	-0.2675	-0.9817	-0.0274	-0.1381
48.42	-1148.6793	-1.4604	-1.3891	-0.1494	-0.1953
58.52	-1413.5384	- 2.7990	-2.0193	-0.2862	-0.2840
66.41	-1698.1758	-4.2300	-2.8959	-0.4326	-0.4072
72.75	-1946.6436	-5.5975	-3.8845	-0.5725	-0.5463
78.01	-2068.1360	-6.5857	-4.5026	-0.6735	-0.6332
82.52	-1967.8629	-6.7961	-4.1003	-0.6951	-0.5766

TABLE 3. PHASE PATH CORRECTIONS, STATION 30121

	Sir	ngle Frequency	,	Dual Freq	uency
Zenith Angle	L ₁ (m)	L ₂ (m)	L ₃ (m)	L ₂ (m)	L ₃ (m)
83.97	-1040.172	-6.0897	-1.1466	-0.6228	-0.1612
79.31	-911.7480	-5.2910	-0.8206	-0.5411	-0.1154
73.71	-779.4886	-4.4729	-0.5646	-0.4575	-0.0794
66.70	-654.9483	-3.6845	-0.3920	-0.3768	-0.0551
57.54	-544.7377	-2.9351	-0.2804	-0.3002	-0.0394
45.23	-451.9222	-2.1968	-0.2089	-0.2247	-0.0294
29.65	-386.7652	-1.4543	-0.1673	-0.1987	-0.0235
18.93	-368.6050	-0.7083	-0.1562	-0.0724	-0.0220
29.14	-403.8287	-0.0628	-0.1791	-0.6425 x 10 ⁻²	-0.0252
44.21	-485.389	-0.8599	-0.2386	-0.0879	-0.0336
56.13	-596.9806	-1.6775	-0.3366	-0.1716	-0.0473
65.03	-722.1351	-2.4898	-0.4784	-0.2546	-0.0673
71.86	-859.1412	-3.3015	-0.6814	-0.3377	-0.0958
77.33	-1018.9937	-4.167	-0.9980	-0.4261	-0.1403
81.90	-1226.4705	-5.2009	-1.546	-0.5319	-0.2174

CORRECTIONS TO THE RANGE DIFFERENCE

The second- and third-order range difference corrections were determined by taking the difference in the phase path corrections at two successive points along the pass. The sum of the second- and third-order range difference corrections varied from as little as 0.05 cm to -1.6 m for the single-frequency case and from 0.09 cm to approximately 30 cm for dual-frequency data. Tables 4 through 6 give the corrections to the range difference for the three stations.

TABLE 4. RANGE DIFFERENCE RESULTS, STATION 118

Zenith Angles for						
Which Difference	Sin	gle Freque	ncy	Dual Frequency		
was Computed	Δho_1 (m)	$\Delta \rho_2$ (m)	$\Delta \rho_3(\mathbf{m})$	$\Delta \rho_2$ (m)	$\Delta \rho_3$ (m)	
un 01 - 70 n/	19.6590	0.1227	0.0201	0.0127	0.4004 10-	
83.81, 79.36	18.6580	-0.1337	0.0291	-0.0137	0.4094 x 10 ⁻	
79.36, 74.03	-14.6222	-0.3244	0.2180×10^{-2}	-0.0332	-0.3066 x 10 ⁻	
74.03, 67.34	38.0428	-0.2234	0.0336	-0.0228	0.4724×10^{-3}	
67.34, 58.50	70.4386	-0.1212	0.0428	-0.0124	0.6020 x 10 ⁻	
58.50, 46.26	74.8842	-0.0651	0.0339	-0.6662×10^{-2}	0.4772 x 10 ⁻	
46.26, 29.34	60.9225	-0.0205	0.0210	-0.2101×10^{-2}	0.2956 x 10 ⁻¹	
29.34, 13.07	28.6253	0.0259	0.9014×10^{-2}	0.2651×10^{-2}	0.1267 x 10 ⁻	
13.07, 25.43	-12.7442	0.0925	-0.6906×10^{-3}	0.9464×10^{-2}	-0.9713 x 10	
25.43, 43.47	-45.3565	0.1470	-0.0106	0.01503	-0.1496 x 10	
43.47. 56.78	-61.9492	0.1717	-0.0221	0.0176	-0.3102 x 10	
56.78, 66.32	-71.3046	0.1615	-0.0367	0.0165	-0.5159 x 10	
66.32, 73.45	-67.9305	0.1710	-0.0501	0.0175	-0.7050 x 10 ⁻	
73.45, 79.07	-55.7087	0.1796	-0.0599	0.0184	-0.8423 x 10 ⁻	
79.07, 83.72	-40.0383	0.1772	-0.0594	0.0181	-0.8358 x 10 ⁻¹	

TABLE 5. RANGE DIFFERENCE RESULTS, STATION 30280

Zenith Angles						
for Which Difference	Single Frequency			Dual Frequency		
was Computed	$\Delta \rho_1$ (m)	$\Delta \rho_2$ (m)	$\Delta \rho_3$ (m)	$\Delta \rho_2$ (m)	$\Delta \rho_3$ (m)	
82.65, 78.37	- 55.7439	-0.2238	-0.0591	-0.0229	-0.8314×10^{-2}	
78.37, 73.41	- 17.2610	-0.0732	0.0183	-0.7489×10^{-2}	0.2577×10^{-2}	
73.41, 67.49	27.6414	0.1232	0.0812	0.0126	0.0114	
67.49, 60.20	63.1930	0.3071	0.1054	0.0314	0.0148	
60.20, 50.94	79.2651	0.4454	0.1021	0.0456	0.0144	
50.94, 38.97	80.4009	0.5766	0.0831	0.0590	0.0117	
38.97, 23.99	59.6327	0.6977	0.0473	0.0714	0.6650×10^{-2}	
23.99, 10.47	8.6568	0.8033	-0.0139	0.0822	-0.1958×10^{-2}	
10.47, 19.62	- 63.1797	0.9189	-0.1058	0.0940	-0.0149	
19.62, 35.38	-145.3545	0.5098	-0.2360	0.0521	-0.0332	
35.38, 48.42	-214.6334	-1.193	-0.4073	-0.1220	-0.0573	
48.42, 58.52	-264.8591	-1.338	-0.6302	-0.1369	-0.0886	
58.52, 66.41	-284.6374	-1.4315	-0.8766	-0.1464	-0.1233	
66.41, 72.75	-248.4678	-1.3675	-0.9886	-0.1399	-0.1390	
72.75, 78.01	-121.4924	-0.9882	-0.6181	-0.1011	-0.0869	
78.01, 82.52	100.2731	-0.2103	0.4023	-0.0215	0.0566	

TABLE 6. RANGE DIFFERENCE RESULTS, STATION 30121

Zenith Angles					
for Which Differe	ence Single	Single Frequency			l Frequency
was Computed	$\Delta \rho_1$ (m)	$\Delta \rho_2$ (m)	$\Delta \rho_3$ (m)	$\Delta \rho_2$ (m)	$\Delta \rho_3$ (m)
83.97, 79.31	128.4244	0.7987	0.3259	0.0817	0.0458
79.31, 73.71	132.2593	0.8181	0.2560	0.0837	0.0360
73.71, 66.70	124.5403	0.7884	0.1727	0.0806	0.0243
66.70, 57.54	110.2106	0.7494	0.1116	0.0766	0.0157
57.54, 45.23	92.8155	0.7383	0.0715	0.0755	0.0101
45.23, 29.65	65.1570	0.7426	0.0416	0.0759	0.5844×10^{-2}
29.65, 18.93	18.1603	0.7460	0.0111	0.0763	0.1564×10^{-2}
18.93, 29.14	- 35.2238	0.6455	-0.0229	0.0660	-0.3222×10^{-2}
29.14, 44.21	- 81.5605	-0.7971	-0.0595	-0.0815	-0.8364×10^{-2}
44.21, 56.13	-111.5914	-0.8175	-0.0980	-0.0836	-0.0138
56.13, 65.03	-125.1545	-0.8124	-0.1417	-0.0831	-0.0199
65.03, 71.86	-137.0061	-0.8117	-0.2030	-0.0830	-0.0285
71.86, 77.33	-159.8525	-0.8651	-0.3166	-0.0885	-0.0445
77.33, 81.90	-207.4769	-1.0343	-0.5477	-0.1057	-0.0770

CONCLUSIONS

As a result of this study, the authors have concluded that when considering higher order ionospheric effects, both second and third order must be considered: neither one can be neglected.

In the near future the authors are planning to merge their coding for the ionosphere model with a new orbit determination program (OMNIS) that is currently being developed by the Space and Surface Systems Division at NSWC. With this coding included, one will have the option of computing higher order effects if desired. Also in the rare case when a satellite loses one of its signals, the model can be used to calculate a first-order ionospheric correction.

A technical report fully describing the model and range corrections will be published in the near future.

APPENDIX

DUAL-FREQUENCY RANGE DIFFERENCE

$$\begin{cases} f_{r_1} = f_{T_1} - \frac{f_{T_1} \dot{\rho}}{c} - \frac{1}{cf_{T_1}} \dot{L}_1 - \frac{1}{cf_{T_1}^2} \dot{L}_2 - \frac{1}{cf_{T_1}^3} \dot{L}_3 \\ f_{r_2} = f_{T_2} - \frac{f_{T_2} \dot{\rho}}{c} - \frac{1}{cf_{T_2}} \dot{L}_1 - \frac{1}{cf_{T_2}^2} \dot{L}_2 - \frac{1}{cf_{T_2}^3} \dot{L}_3 \end{cases}$$

Define
$$\lambda = f_{T_1}/f_{T_2}$$

$$f_{T_2} - \lambda f_{T_1} = \left(f_{T_2} - f_{T_1}^2/f_{T_2}\right) - \left(f_{T_2} - f_{T_1}^2/f_{T_2}\right) \dot{\rho}/c$$

$$- \left(\frac{1}{f_{T_2}^2} - \frac{1}{f_{T_1}f_{T_2}}\right) \frac{\dot{L}_2}{c} - \left(\frac{1}{f_{T_2}^3} - \frac{1}{f_{T_1}^2f_{T_2}}\right) \frac{\dot{L}_3}{c}$$

Define
$$f_{r_e} = (f_{r_2} - \lambda f_{r_1})$$
 $f_{T_e} = (f_{T_2} - f_{T_1}^2/f_{T_2}) = \frac{f_{T_2}^2 - f_{T_1}^2}{f_{T_2}}$

$$f_{r_e} = f_{T_e} (1 - \dot{\rho}/c) - \left(\frac{1}{f_{T_2}^2} - \frac{1}{f_{T_1} f_{T_2}}\right) - \frac{\dot{L}_2}{c} - \left(\frac{1}{f_{T_2}^3} - \frac{1}{f_{T_1}^2}\right) \frac{\dot{L}_3}{c}$$

Define $\Delta f = f_s - f_{T_p}$

$$\frac{dN}{dt} = f_{s} - f_{T_{e}} = \Delta f + f_{T_{e}} \frac{\dot{\rho}}{c} + \left(\frac{1}{f_{T_{2}}^{2}} - \frac{1}{f_{T_{1}} f_{T_{2}}}\right) \frac{\dot{L}_{2}}{c} + \left(\frac{1}{f_{T_{2}}^{3}} - \frac{1}{f_{T_{1}}^{2} f_{T_{2}}}\right) \frac{\dot{L}_{3}}{c}$$

$$N = \Delta f \Delta t + \frac{f_{T_{e}} \Delta \rho}{c} + \left(\frac{1}{f_{T_{2}}^{2}} - \frac{1}{f_{T_{1}} f_{T_{2}}}\right) \frac{\Delta L_{2}}{c} + \left(\frac{1}{f_{T_{2}}^{3}} - \frac{1}{f_{T_{1}}^{2} f_{T_{2}}}\right) \frac{\Delta L_{3}}{c}$$

$$\frac{c}{f_{t_{e}}} \left(N - \Delta f \Delta t\right) - \frac{1}{f_{T_{e}}} \left(\frac{1}{f_{T_{2}}^{2}} - \frac{1}{f_{T_{1}} f_{T_{2}}}\right) \Delta L_{2} - \frac{1}{f_{T_{e}}} \left(\frac{1}{f_{T_{2}}^{3}} - \frac{1}{f_{T_{1}}^{2} f_{T_{2}}}\right) \Delta L_{3} = \Delta \rho$$

 ΔL_2 coefficient:

$$\frac{1}{f_{T_e}} \left(\frac{1}{f_{T_2}^2} - \frac{1}{f_{T_1} f_{T_2}} \right) = - \frac{1}{(f_{T_1} + f_{T_2})(f_{T_1} f_{T_2})}$$

 ΔL_3 coefficient:

$$\frac{1}{f_{T_e}} \quad \left(\frac{1}{f_{T_2}^3} \quad - \frac{1}{f_{T_2}^2 f_{T_2}}\right) = - \frac{1}{f_{T_1}^2 f_{T_2}^2}$$

Therefore

$$\Delta \rho = \frac{c}{f_{T_e}} (N - \Delta f \Delta t) + \frac{1}{(f_{T_1} + f_{T_2})(f_{T_1} f_{T_2})} \cdot \Delta L_2 + \frac{1}{(f_{T_1}^2 f_{T_2}^2)} \cdot \Delta L_3$$

DISTRIBUTION

	Copies	C	opies
Library of Congress ATTN: Gift and Exchange Division Washington, DC 20540	4	Office of Naval Research Physical Sciences Division 800 N. Quincy St. Arlington, VA 22217	2
National Aeronautics and Space Admin. Scientific & Technical Library Code NHS 22, Rm. BA39 600 Independence Ave., SW Washington, DC 20546	2	Air Force Geophysics Laboratory Hanscom Field Bedford, MA 01731 U.S. Geological Survey	2
Defense Mapping Agency U.S. Naval Observatory Washington, DC 20305 Defense Mapping Agency	3	ATTN: Paul Needham Reston, VA 22091 National Oceanic & Atmospheric Admin. National Ocean Survey	2
Hydrographic/Topographic Center ATTN: Robert Ziegler Washington, DC 20315	10	ATTN: Dr. John Bossler Dr. William Strange Dr. Larry Hothem Rockville, MD 20850	1 1 1 2
Defense Mapping Agency Aerospace Cent ATTN: Dr. Robert Ballew St. Louis, MO 63118 NAVELEX Commander, Space and Naval Warfare Systems Command Washington, DC 20363-5100 Naval Research Laboratory ATTN: Mr. Al Bartholomew Washington, DC 20375	8 8 3 4	Goddard Space Flight Center ATTN: Dr. David Smith Mr. James Marsh Dr. Joseph Siry Greenbelt, MD 20771 Jet Propulsion Laboratory ATTN: Dr. William Melbourne Pasadena, CA 91103	1 1 2 2
Naval Oceanographic Office Bay St. Louis, MS 39522	2		

DISTRIBUTION (Continued)

	Copies		Copies
The Ohio State University		Naval Space Surveillance System	
Dept. of Geodetic Sciences		Dahlgren, VA 22448	2
1958 Neil Ave.		-	
ATTN: Dr. Richard Rapp	1	Headquarters Space Division (AFSC)	
Dr. Ivan Mueller	1	Los Angeles Air Force Station	
Dr. Urho Uotila	1	Box 92960 Worldway Postal Center	
Columbus, OH 43210		Los Angeles, CA 90009	1
The University of Texas at Austin		Physical Sciences Laboratory	
ATTN: Dr. Byron Tapley	1	New Mexico State University	
Austin, TX 78712	2	Box 3 - PSL	
		ATTN: Dan Martin	3
Applied Research Laboratory		Las Cruces, NM 88003	
University of Texas			
ATTN: Dr. Arnold Tucker	1	Department of Physics	
Dr. George Born	1	Ohio University	
Dr. Bob Schultz	1	ATTN: Dr. James Dilley	3
Austin, TX 78712	4	Athens, OH 45701	
Institute for Laboratory Astrophysics		Charles Stark Draper Lab., Inc.	
University of Colorado		ATTN: Paul J. Cefola	1
ATTN: Dr. Peter Bender	1	Cambridge, MA 01776	
Boulder, CO 80309			
		Department of Physics	
U.S. Naval Observatory		Eastern Illinois University	
ATTN: W. L. Klepczynski	1	ATTN: Dr. William Butler	1
D. D. McCarthy	1	Dr. P. Scott Smith	1
Washington, DC 20360		Charleston, IL 61920	4
Massachusetts Institute of Technology		Naval Space Command	
ATTN: Peter Morgan	1	Dahlgren, VA 22448	5
Cambridge, MA 02139			
		National Geodetic Survey	
Defense Mapping School		Gravity, Astronomy & Satellite Branch	า
Ft. Belvoir, VA 22060	3	ATTN: William E. Carter	1
		Clyde Goad	1
U. S. Navy Astronautics Group		Rockville, MD 20052	
Point Mugu, CA 93041	2		

DISTRIBUTION (Continued)

Copies

Applied Physics Laboratory	
Johns Hopkins University	
Johns Hopkins Road	
ATTN: Harold Black	1
Vincent Pisacane	2
Laurel, MD 20707	
E OID M	
E-OIR Measurements, Inc.	
P. O. Box 3348	
College Station	
ATTN: J. R. Moulton	1
Pat Chappell	1
Fredericksburg, VA 22402	
Internal Distribution	
E31 (GIDEP)	1
E211 (Green)	1
E231	10
F14	4
K10	1
K12	10
K13	40
K14	5

EMED

5-86 DT [