EGM0004

Sistemas Não Lineares

Prof. Josenalde Barbosa de Oliveira – UFRN

Programa de Pós-Graduação em Engenharia Mecatrônica

24T12 (60h) (13:00-14:40h) - 22.08.2022 : 21.12.2022

Teorema de instabilidade de Cetaev

Teorema 8: Teorema de instabilidade de Cetaev

O estado de equilíbrio $x^* = 0$ de $\dot{x} = f(x)$ é INSTÁVEL se as seguintes condições são satisfeitas:

- a) $\exists V(x)$ continuamente diferenciável
- b) \exists um conjunto fechado (que inclui suas fronteiras) Ω contendo a origem em seu interior
- c) \exists um conjunto aberto Ω_1 tal que $\Omega_1 \subset \Omega$ e a origem $\in \varphi \Omega_1$
- d) $V(x) > 0, \forall x \in \Omega_1$ $V(x) = 0, \forall x \in \varphi \Omega_1$ V(x) limitada em Ω
- e) $\dot{V}(x) > 0, \forall x \in \Omega_1$

Permite-se concluir que a origem é instável

La Salle local e global

Exemplo:

$$\begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_1 \\ \Omega = \{(x_1, x_2) | x_1^2 + x_2^2 \leq 1\} \\ \Omega_1 = \{(x_1, x_2) | x_1^2 + x_2^2 < 1, x_1 > 0, x_2 > 0\} \end{array} \qquad \begin{array}{l} \Omega_1 \subset \Omega \\ 0 \in \varphi \Omega_1 \\ V(x) = x_1 x_2 \text{ continuamente diferenciável} \end{array}$$

Em
$$\Omega_1$$
, $x_1 > 0$, $x_2 > 0 \Longrightarrow V(x) > 0$
Em $\varphi \Omega_1$ $(x_1 = 0 \text{ e/ou } x_2 = 0)$ $V(x) = 0$
Em $\Omega \Longrightarrow -1 \le V(x) \le 1$ limitada

$$\dot{V} = \dot{x_1}x_2 + x_1\dot{x_2} = x_2^2 + x_1^2 > 0, \forall x \in \Omega_1, \text{ logo, origem instável}$$

La Salle local e global

Exemplo:

$$\dot{x}_1 = 2x_1 + x_2 + x_1^2
\dot{x}_2 = x_1 - x_2 + x_1 x_2$$

$$\Omega = \{(x_1, x_2) | x_1^2 + x_2^2 \le 1\}
\Omega_1 = \{(x_1, x_2) | x_1^2 + x_2^2 < 1, x_1 > 0, x_2 > 0\}$$

$$\Omega_1 \subset \Omega
0 \in \varphi \Omega_1$$

$$V(x) = x_1 x_2 \text{ continuamente diferenciável}$$

Em
$$\Omega_1$$
, $x_1 > 0$, $x_2 > 0 \Longrightarrow V(x) > 0$
Em $\varphi \Omega_1$ $(x_1 = 0 \text{ e/ou } x_2 = 0)$ $V(x) = 0$
Em $\Omega \Longrightarrow -1 \le V(x) \le 1$ limitada

$$\dot{V} = \dot{x_1}x_2 + x_1\dot{x_2} = x_1^2 + x_2^2 + 2x_1^2x_2 + x_1x_2 > 0$$
, $\forall x \in \Omega_1$, logo, origem instável

Resumindo...

V(x)	$\dot{V}(x)$	Características de $x^* = 0$
> 0 > 0 > 0	$ \leq 0 $ $ < 0 $	estável ou assint. estável (La Salle), podendo ser global assint. estável. Se $V\to\infty$ quando $ x \to\infty$ é global
> 0	> 0	instável
> 0 OR < 0	> 0 XOR < 0 = 0	instável estável (sistemas conservativos)
> 0 > 0 > 0	≥ 0 > 0 OR < 0	indefinida (não se conclui) indefinida

Quando se demonstra a estabilidade da origem, V(x) é denominada função de Lyapunov. Antes V(x) é uma candidata à Função de Lyapunov. Os resultados obtidos pela teoria de Lyapunov são SUFICIENTES para a estabilidade de $x^*=0$.