CS245 Assignment 2

Nissan Pow

May 18, 2006

1. (3 points)

```
\neg(p \land (\neg(\neg r \land (s \lor p)) \Rightarrow \neg(\neg p \Rightarrow q)))
\neg(p \land (\neg\neg(\neg r \land (s \lor p)) \lor \neg(\neg\neg p \lor q)))
                                                                                        (Implication \times 2)
\neg (p \land ((\neg r \land (s \lor p)) \lor \neg (p \lor q)))
                                                                                        (Double Negation \times 2)
\neg (p \wedge ((\neg r \wedge (s \vee p)) \vee (\neg p \wedge \neg q)))
                                                                                        (De Morgan)
\neg p \vee \neg ((\neg r \wedge (s \vee p)) \vee (\neg p \wedge \neg q))
                                                                                        (De Morgan)
\neg p \lor (\neg(\neg r \land (s \lor p)) \land \neg(\neg p \land \neg q))
                                                                                        (De Morgan)
\neg p \lor ((\neg \neg r \lor \neg (s \lor p)) \land (\neg \neg p \lor \neg \neg q))
                                                                                        (De Morgan \times 2)
\neg p \lor ((r \lor \neg(s \lor p)) \land (p \lor q))
                                                                                        (Double Negation \times 3)
                                                                                        (De Morgan)
\neg p \lor ((r \lor (\neg s \land \neg p)) \land (p \lor q))
(\neg p \lor (r \lor (\neg s \land \neg p))) \land (\neg p \lor (p \lor q))
                                                                                        (Distributivity)
(\neg p \lor ((r \lor \neg s) \land (r \lor \neg p))) \land (\neg p \lor (p \lor q))
                                                                                        (Distributivity)
(\neg p \lor (r \lor \neg s)) \land (\neg p \lor (r \lor \neg p)) \land (\neg p \lor (p \lor q))
                                                                                        (Distributivity)
(\neg p \lor (r \lor \neg s)) \land (\neg p \lor (\neg p \lor r)) \land (\neg p \lor (p \lor q))
                                                                                        (Commutativity)
((\neg p \lor r) \lor \neg s) \land ((\neg p \lor \neg p) \lor r) \land ((\neg p \lor p) \lor q)
                                                                                        (Associativity \times 3)
((\neg p \lor r) \lor \neg s) \land (\neg p \lor r) \land ((\neg p \lor p) \lor q)
                                                                                        (Idempotence)
((\neg p \lor r) \lor \neg s) \land (\neg p \lor r) \land (true \lor q)
                                                                                         (Excluded Middle)
((\neg p \lor r) \lor \neg s) \land (\neg p \lor r) \land true)
                                                                                        (Simplification I)
                                                                                        (Simplification II)
(\neg p \lor r) \land true
                                                                                        (Simplification I)
(\neg p \lor r)
```

2. (10 points)

(a) Fragment #1	(b) Fragment #2
P1: $(\neg a \lor b) \land (\neg a \land \neg b)$	P1: $\neg(a \land \neg b) \land (\neg a \land \neg b)$
P2: $(\neg a \lor b) \land \neg (\neg a \land \neg b) \land b$	P2: $\neg(a \land \neg b) \land \neg(\neg a \land \neg b)$
P3: $(\neg a \lor b) \land \neg (\neg a \land \neg b) \land \neg b$	P3: false
P4: $\neg(\neg a \lor b)$	P4: $(a \land \neg b)$
P5: $\neg a \lor b \lor (a \land \neg b)$	P5: true

(c) RTS: Fragment #1 and Fragment #2 have the same behaviour.

```
P1_{1}: (\neg a \lor b) \land (\neg a \land \neg b)
\neg (a \land \neg b) \land (\neg a \land \neg b) \quad \text{(De Morgan)}
\equiv P1_{2}
P2_{1}: (\neg a \lor b) \land \neg (\neg a \land \neg b) \land b
(\neg a \lor b) \land (\neg \neg a \lor \neg \neg b) \land b \quad \text{(De Morgan)}
```

 $\begin{array}{lll} (\neg a \vee b) \wedge (\neg \neg a \vee \neg \neg b) \wedge b & \text{(De Morgan)} \\ (\neg a \vee b) \wedge (a \vee b) \wedge b & \text{(Double Negation } \times 2) \\ (\neg a \vee b) \wedge b & \text{(Simplification II)} \\ b & \text{(Simplification II)} \\ \end{array}$

$$P2_{2}: \\ \neg(a \land \neg b) \land \neg(\neg a \land \neg b) \\ (\neg a \lor \neg \neg b) \land (\neg \neg a \lor \neg \neg b) \\ (\neg a \lor b) \land (a \lor b) \\ (b \lor \neg a) \land (b \lor a) \\ b \lor (\neg a \land a) \\ b \lor false \\ b \end{cases}$$

$$(De Morgan ×2)$$

$$(Double Negation ×2)$$

$$(Commutativity ×2)$$

$$(Distributivity)$$

$$(Contradiction)$$

$$(Distributivity)$$

$$(Contradiction)$$

$$(Distributivity)$$

$$(Contradiction)$$

$$(Distributivity)$$

$$(Contradiction)$$

Therefore $P2_1 \equiv P2_2$

```
P3_1:
  (\neg a \lor b) \land \neg (\neg a \land \neg b) \land \neg b
  (\neg a \lor b) \land (\neg \neg a \lor \neg \neg b) \land \neg b
                                                    (De Morgan)
  (\neg a \lor b) \land (a \lor b) \land \neg b
                                                    (Double Negation \times 2)
  (b \lor \neg a) \land (b \lor a) \land \neg b
                                                    (Commutativity \times 2)
  (b \lor (\neg a \land a)) \land \neg b
                                                    (Distributivity)
  (b \lor false) \land \neg b
                                                    (Contradiction)
  b \wedge \neg b
                                                    (Simplification I)
  false
                                                    (Contradiction)
  \equiv P3_2
```

```
\begin{array}{ll} P4_1 \colon & \neg (\neg a \vee b) \\ (\neg \neg a \wedge \neg b) & (\text{De Morgan}) \\ (a \wedge \neg b) & (\text{Double Negation}) \\ \equiv P4_2 \\ \\ P5_1 \colon & \neg a \vee b \vee (a \wedge \neg b) \\ \neg a \vee \neg \neg b \vee (a \wedge \neg b) & (\text{Double Negation}) \\ \neg (a \wedge \neg b) \vee (a \wedge \neg b) & (\text{De Morgan}) \\ true & (\text{Excluded Middle}) \\ \equiv P5_2 \end{array}
```

3. (12 points)

(a)

1	$p \vee \neg q$	Premise
2	$\neg r \Rightarrow \neg \neg q$	Premise
3	$r \Rightarrow \neg s$	Premise
4	$\neg \neg s$	Premise
5	s	$4, \neg E$
6	$ \neg p$	Assumption
7	$\neg q$	$1,6,\vee _E$
8	$-\neg r$	$2,7,\Rightarrow_\!$
9	$\mid \; \mid \; r$	8, ¬_E
10	$\neg s$	$9, 3, \Rightarrow E$
11	$\int false$	5, 10, ¬₋E
12	$\neg \neg p$	6-11, ¬_I
13	p	12, Æ

(b)

$$\begin{array}{c|cccc} 1 & & (p \lor q) \Rightarrow r & & \text{Premise} \\ 2 & & q & & \text{Assumption} \\ 3 & & p \lor q & 2, \lor I \\ 4 & & r & 1, 3, \Rightarrow E \\ 5 & q \Rightarrow r & 2\text{-}4, \Rightarrow I \\ \end{array}$$

(c)

(d)

р	q	r	s	$\neg p \Rightarrow q$	$\neg r \Rightarrow s$	$\neg q \lor s$	$p \lor r$
F	Т	F	Т	Τ	Τ	Τ	F

In the truth table above, all the premises are true but the conclusion is false. Thus the argument is invalid.

(e)

1	$\neg p \Rightarrow q$	Premise
2	$\neg r \Rightarrow s$	Premise
3	$\neg q \lor \neg s$	Premise
4	$\neg (p \lor r)$	Assumption
5	p	Assumption
6	$p \lor r$	$5, \vee I$
7	false	$4,6,\neg_E$
8	$ \mid \neg p $	5-7, ¬⅃
9	q	$1,8,\Rightarrow _\mathrm{E}$
10	$ \mid \ \mid \ $	Assumption
11	$\int false$	$9, 10, \neg_{-}E$
12	$ \mid \neg \neg q $	10-11, ¬_I
13	$\neg s$	$3,12,\vee _E$
14	$\neg \neg r$	$2,13,\Rightarrow _\mathrm{E}$
15	r	14, ¬₋E
16	$p \lor r$	$15, \vee J$
17	false	$4, 16, \neg_{-}E$
18	$\neg\neg(p\vee r)$	4-17, ¬_I
19	$(p \lor r)$	18, ¬₋E