Experimento 10 Máquina de Estados

Grupo D1 Alexandre Augusto, 15/0056940 Gabriel de Castro Dias, 21/1055432

¹Dep. Ciência da Computação – Universidade de Brasília (UnB) CIC0231 - Laboratório de Circuitos Lógicos 12 de março de 2023

150056940@aluno.unb.br, 211055432@aluno.unb.br

Abstract. This report describe the implementation of a experiment with State Machine that contains the behavior of a Traffic Light to Cars and Pedestrians.

Resumo. Este relatório descreve a implementação de um experimento com Máquinas de Estado que contém o comportamento de um semáforo para Carros e Pedestres.

1. Introdução

Uma máquina de estados se fundamenta em direcionar o funcionamento de um sistema usufruindo de um número finito de estados, sendo cada estado, um momento relevante e distinto do sistema. Tal máquina, para que funcione corretamente, deve possuir necessariamente um estado inicial para que sua sequência de execução seja obedecida e não existam estados fantasmas, isto é, estados sem uso mas que sejam possíveis de existir.

Além disso, existem máquinas de estado que seguem o modelo de Mealy, em que sua saída depende tanto de seu estado atual quanto seu estado anterior. Já a máquina de Moore depende exclusivamente de seu estado atual.

1.1. Objetivos

Este laboratório tem como objetivo desenvolver uma máquina de estados que possua os seguintes estados

Tabela 1. Tabela da máquina de estados

Sinal	Sinal Pedestre	Tempo (s)
Verde	Vermelho	6
Amarelo	Vermelho	1
Vermelho	Verde	4
Vermelho	Vermelho piscando	5
Amarelo piscando	Apagado	Indefinido

1.2. Materiais

Neste experimento foram utilizados os seguintes materiais e equipamentos:

- Software Quartus-II v13.0 SP1
- Kit de desenvolvimento FPGA DE2 ou DE2-70 Intel
- Pendrive
- Protoboard externa
- LEDs de 5mm: 2 Vermelhos, 2 Verdes e 1 Amarelo
- 5 resistores 470 Ohms 1/4 Watts
- 6 Fios com conectores macho-fêmea

2. Procedimentos e Resultados

2.1. Semáforos de Pedestres e Carros

Para criar o sistema proposto pelo experimento, foi necessário primeiro compreender quais estados existem. Desta forma, para facilitar a gestão de tempo, decidimos criar um estado para cada segundo, isto é, se o sinal está vermelho por 6 segundos, teremos 6 estados diferentes. Portanto, teremos ao total 18 estados neste sistema.

Devido à complexidade do sistema, decidimos implementar usando VHDL, portanto aproveitamos a implementação do exercício da árvore de natal para criar o semáforo. Desta forma, foram alterados os estados para seguirem o esquema abaixo.

Tabela 2. Tabela da máquina de estados

Estado	Α	Vermelho	Amarelo	Verde	VermelhoP	VerdeP	Próximo estado
VerdeVermP1	0	0	0	1	1	0	VerdeVermP2
VerdeVermP2	0	0	0	1	1	0	VerdeVermP3
VerdeVermP3	0	0	0	1	1	0	VerdeVermP4
VerdeVermP4	0	0	0	1	1	0	VerdeVermP5
VerdeVermP5	0	0	0	1	1	0	VerdeVermP6
VerdeVermP6	0	0	0	1	1	0	AmareloVermP1
AmareloVermP1	0	0	1	0	1	0	VermVerdeP1
VermVerdeP1	0	1	0	0	0	1	VermVerdeP2
VermVerdeP2	0	1	0	0	0	1	VermVerdeP3
VermVerdeP3	0	1	0	0	0	1	VermVerdeP4
VermVerdeP4	0	1	0	0	0	1	VermVermP1
VermVermP1	0	1	0	0	1	0	VermOffP2
VermOffP2	0	1	0	0	0	0	VermVermP1P3
VermVermP1P3	0	1	0	0	1	0	VermOffP4
VermOffP4	0	1	0	0	0	0	VermVermP1P5
VermVermP1	0	1	0	0	1	0	VerdeVermP1
AmareloOffP	1	1	0	0	0	1	OffOffP
OffOffP	1	1	0	0	0	1	AmareloOffP

Além disso, toda vez em que houvesse a entrada A = 1, necessariamente o sistema iria para o estado AmareloOffP e alternou-se com OffOffP. Ocultou-se na tabela para evitar confusão e uma tabela maior do que a que já se encontra. Desta forma, declarou-se todos os estados e suas saídas em VHDL seguindo o padrão definido na imagem abaixo.

Figura 1. Padrão do projeto

E, após a implementação e transferidos os dados à placa, foi obtido o sistema que é possível ver no seguinte vídeo.

3. Conclusões

É possível elaborar comportamentos complexos ao fazer uso adequado de máquinas de estado. Com isso, torna-se possível automatizar processos que demandam muito tempo e pouco esforço mental e que permitem que o esforço humano possa ser usado em tarefas mais interessantes. Desta forma, foi possível desenvolver a habilidade de se lidar com máquinas de estado ao criar um semáforo que simula o comportamento próximo ao de semáforos encontrados na vida real.

4. Bibliografia

Pedroni, V., Eletrônica Digital Moderna e VHDL, Campus, 2010

Tocci, R. J. e Widmer, N. S, Sistemas digitais: princípios e aplicações, LTC, 2010

Auto-Avaliação

- 1. V 2. V
- 3. V
- 4. F
- 5. F
- 6. V
- 7. V
- 8. V
- 9. F
- 10. F
- 11. V