Salem Sets Avoiding Rough Configurations

Jacob Denson

October 26, 2019

Recall that a set $X \subset \mathbf{R}^d$ is a *Salem set* of dimension s if it has Hausdorff dimension s, and for every $\varepsilon > 0$, there exists a probability measure μ_{ε} supported on X such that for all $\xi \in \mathbf{R}^d$,

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^{s-\varepsilon} |\widehat{\mu_{\varepsilon}}(\xi)| < \infty.$$

Our goal in these notes is to obtain, for each set $Z \subset \mathbf{R}^{dn}$ with Minkowski dimension s, a Salem set $X \subset \mathbf{R}^d$ with dimension

$$\frac{nd-s}{s}$$
,

such that for each set of n distinct elements $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We hope that we can rely on the random selection approach of our paper on rough configurations to obtain such a result.

1 Concentration Inequalities

Define a convex function $\psi_2: [0, \infty) \to [0, \infty)$ by $\psi_2(t) = e^{t^2} - 1$, and a corresponding Orlicz norm on the family of scalar valued random variables X over a probability space by setting

$$||X||_{\psi_2(L)} = \inf \{ A \in (0, \infty) : \mathbf{E}(\psi_2(|X|/A)) \le 1 \}.$$

The family of random variables $\psi_2(L)$ are known as subgaussian random variables. Here are some important properties:

• (Gaussian Tails): If $||X||_{\psi_2(L)} \le A$, then for each $t \ge 0$,

$$P(|X| \ge t) \le 10 \exp(-t^2/10A^2).$$

• (Bounded Variables are Subgaussian): For any random X,

$$||X||_{\psi_2(L)} \le 10||X||_{L^{\infty}}.$$

• (Union Bound) If X_1, \ldots, X_N are random variables, then

$$||X_1 + \dots + X_N||_{\psi_2(L)} \le ||X_1||_{\psi_2(L)} + \dots + ||X_N||_{\psi_2(L)}.$$

• (Hoeffding's Inequality): If X_1, \ldots, X_N are independent random variables, then

$$||X_1 + \dots + X_N||_{\psi_2(L)} \le 10 \left(||X_1||_{\psi_2(L)}^2 + \dots + ||X_N||_{\psi_2(L)}^2 \right)^{1/2}.$$

The Orlicz norm is a convenient notation to summarize calculations involving the principle of concentration of measure. Roughly speaking, we can think of a random variable X with $||X||_{\psi_2(L)} \leq A$ as essentially always lying in the interval [-A, A], very rarely deviating outside this interval.

2 A Family of Cubes

Fix sequences of integers $\{K_m: m \geq 1\}$ and $\{M_m: m \geq 1\}$, and set $N_m = K_m M_m$. We then define two sequences of real numbers $\{l_m: m \geq 0\}$ and $\{r_m: m \geq 0\}$, by

$$l_m = \frac{1}{N_1 \dots N_m}$$
 and $r_m = \frac{1}{N_1 \dots N_{m-1} M_m}$.

For each $m, d \ge 0$, we define two collections of strings

$$\Sigma_m^d = \mathbf{Z}^d \times [M_1]^d \times [K_1]^d \times \dots \times [M_m]^d \times [K_m]^d$$

and

$$\Pi_m^d = \mathbf{Z}^d \times [M_1]^d \times [K_1]^d \times \dots \times [K_{m-1}]^d \times [M_m]^d.$$

For each string $i \in \Sigma_m^d$, we define a vector $a_i \in (l_m \mathbf{Z})^d$ by setting

$$a_i = i_0 + \sum_{k=1}^{m} i_{2k-1} \cdot r_k + i_{2k} \cdot l_k$$

Then each string $i \in \Sigma_m^d$ can be identified with the sidelength l_m cube

$$Q_i = \prod_{j=1}^d \left[a_{ij}, a_{ij} + l_m \right].$$

centered at a_i . Similarly, for each string $i \in \Pi_m^d$, we define a vector $a \in (r_m \mathbf{Z})^d$ by setting, for each $1 \le j \le d$,

$$a_i = i_0 + \left(\sum_{k=1}^{m-1} i_{2k-1} \cdot r_k + i_{2k} \cdot l_k\right) + i_{2m-1} \cdot r_m,$$

and then define a sidelength r_m cube

$$R_i = \prod_{j=1}^d \left[a_{ij}, a_{ij} + r_m \right].$$

We let $\mathcal{Q}_m^d = \{Q_i : i \in \Sigma_m^d\}$, and $\mathcal{R}_m^d = \{R_i : i \in \Pi_m^d\}$. Here are some important properties of this collection of cubes:

- For each m, \mathcal{Q}_m^d and \mathcal{R}_m^d are covers of \mathbf{R}^d .
- If $Q_1, Q_2 \in \bigcup_{m=0}^{\infty} \mathcal{Q}_m^d$, then either Q_1 and Q_2 have disjoint interiors, or one cube is contained in the other. Similarly, if $R_1, R_2 \in \bigcup_{m=1}^{\infty} \mathcal{R}_m^d$, then either R_1 and R_2 have disjoint interiors, or one cube is contained in the other.
- For each cube $Q \in \mathcal{Q}_m$, there is a unique cube $Q^* \in \mathcal{R}_m$ with $Q \subset Q^*$. We refer to Q^* as the parent cube of Q. Similarly, if $R \in \mathcal{R}_m$, there is a unique cube in $R^* \in \mathcal{Q}_{m-1}$ with $R \subset R^*$, and we refer to R^* as the parent cube of R.

We say a set $E \subset \mathbf{R}^d$ is \mathcal{Q}_m discretized if it is a union of cubes in \mathcal{Q}_m^d , and we then let $\mathcal{Q}_m(E) = \{Q \in \mathcal{Q}_m^d : Q \subset E\}$. Similarly, we say a set $E \subset \mathbf{R}^d$ is \mathcal{R}_m discretized if it is a union of cubes in \mathcal{R}_m^d , and we then let $\mathcal{R}_m(E) = \{R \in \mathcal{R}_m^d : R \subset E\}$. We set $\Sigma_m(E) = \{i \in \Sigma_m^d : Q_i \in \mathcal{Q}_m(E)\}$, and $\Pi_m(E) = \{i \in \Pi_m^d : R_i \in \mathcal{R}_m(E)\}$. We say a cube $Q_1 \times \cdots \times Q_n \in \mathcal{Q}_m^{dn}$ is strongly non diagonal if there does not exist two distinct indices i, j, and a third index $k \in \Pi_m^d$, such that $R_k \cap Q_i, R_k \cap Q_j \neq \emptyset$.

3 A Family of Mollifiers

We now consider a family of mollifiers, which we will use to smooth out the Fourier transform of the measures we study.

Lemma 1. There exists a non-negative, C^{∞} function ψ supported on $[-1,1]^d$ such that

$$\int_{\mathbf{R}^d} \psi(x) \, dx = 1,\tag{1}$$

and for each $x \in \mathbf{R}^d$,

$$\sum_{n \in \mathbf{Z}^d} \psi(x+n) = 1. \tag{2}$$

Proof. Let α be a non-negative, C^{∞} function compactly supported on [0,1], such that $\alpha(1/2+x) = \alpha(1/2-x)$ for all $x \in \mathbf{R}$, $\alpha(x) = 1$ for $x \in [1/3,2/3]$, and $0 \le \alpha(x) \le 1$ for all $x \in \mathbf{R}$. Then define β to be the non-negative, C^{∞} function supported on [-1/3,1/3] defined for $x \in [-1/3,1/3]$ by

$$\beta(x) = 1 - \alpha(|x|).$$

Symmetry considerations imply that $\int \alpha(x) + \beta(x) = 1$, and for each $x \in \mathbb{R}$,

$$\sum_{m \in \mathbf{Z}} \alpha(x+m) + \beta(x+m) = 1.$$
 (3)

If we set

$$\psi_0(x) = \alpha(x) + \beta(x),$$

then ψ_0 satisfies the required constraints, at least in the one dimensional case. In general, define

$$\psi(x_1,\ldots,x_d)=\psi_0(x_1)\ldots\psi_0(x_d).$$

Fix some choice of ψ given by Lemma 1. Since ψ is C^{∞} and compactly supported, then for each $t \in [0, \infty)$, we conclude

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^t |\widehat{\psi}(\xi)| < \infty. \tag{4}$$

Now we rescale the mollifier. For each m > 0, we let

$$\psi_m(x) = l_m^{-d} \psi(l_m \cdot x).$$

Then ψ_m is supported on $[-l_m, l_m]^d$. Equation (1) implies that for each $x \in \mathbf{R}^d$,

$$\int_{\mathbf{R}^d} \psi_m = 1. \tag{5}$$

Equation (2) implies

$$\sum_{n \in \mathbf{Z}^d} \psi(x + l_m \cdot n) = l_m^{-d}. \tag{6}$$

An important property of the rescaling in the frequency domain is that for each $\xi \in \mathbf{R}^d$,

$$\widehat{\psi_m}(\xi) = \widehat{\psi}(l_m \xi),\tag{7}$$

In particular, (7) implies that for each $t \ge 0$,

$$\sup_{|\xi| \in \mathbf{R}^d} |\widehat{\psi_m}(\xi)| |\xi|^t = l_m^{-t} \sup_{|\xi| \in \mathbf{R}^d} |\widehat{\psi}(\xi)| |\xi|^t.$$
(8)

Thus, uniformly in m, $\widehat{\psi}_m$ decays sharply outside of the box $[-l_m^{-1}, l_m^{-1}]^d$, a manifestation of the Heisenberg uncertainty principle.

4 Discrete Lemma

We now consider a discrete form of the Fourier bound argument, which we can apply iteratively to obtain a Salem set avoiding configurations.

Lemma 2. Fix $s \in [1, dn)$ and $\varepsilon \in [0, (dn - s)/2)$. Let $T \subset [0, 1]^d$ be a non-empty, Q_m discretized set, and let μ_T be a smooth probability measure compactly supported on T, together with a constant $A \ge 1$ such that for each $m \in \mathbb{Z}^d$,

$$|\widehat{\mu_T}(m)| \le A \cdot |m|^{a\varepsilon - \frac{dn-s}{2n}}.$$

where

$$a = \frac{3d + 2dn - 2s}{dn}.$$

Let $B \subset \mathbf{R}^{dn}$ be a non-empty, \mathcal{Q}_{m+1} discretized set such that

$$\#(\mathcal{Q}_{m+1}(B)) \le (1/l_{m+1})^{s+\varepsilon}. \tag{9}$$

Then there exists a large constant $C(\mu_T, n, d, s, \varepsilon)$, such that if

$$K_{m+1}, M_{m+1} \ge C(\mu_T, n, d, s, \varepsilon),$$
 (10)

and

$$M_{m+1}^{\frac{s}{dn-s}+c\varepsilon} \le K_{m+1} \le 2M_{m+1}^{\frac{s}{dn-s}+c\varepsilon},\tag{11}$$

where

$$c = \frac{6dn}{(dn - s)^2},$$

then there exists a Q_{m+1} discretized set $S \subset T$ together with a smooth probability measure supported on S such that

(A) For any strongly non-diagonal cube

$$Q = Q_1 \times \cdots \times Q_n \in \mathcal{Q}_{m+1}(B),$$

there exists i such that $Q_i \notin \mathcal{Q}_{m+1}(S)$.

(B) For any $m \in \mathbf{Z}^d$,

$$|\widehat{\mu}(m)| \le (1 + M_{m+1}^{-1/2})[A + 10^d M_{m+1}^{-\varepsilon}]|m|^{c\varepsilon - \frac{dn - s}{2n}}.$$

Proof of Lemma 2. First, we describe the construction of the set S, and the measure μ_S . For each $i \in \Pi^d_{m+1}$, let j_i be a random integer vector chosen from $[K_{m+1}]^d$, such that the family $\{j_i : i \in \Pi^d_{m+1}\}$ is independent. Then it is certainly true for any $j \in [K_{m+1}]^d$ that

$$\mathbf{P}(j_i = j) = K_{m+1}^{-d}. (12)$$

We define a measure ν_S such that, for each $x \in \mathbf{R}^d$,

$$d\nu_S(x) = r_{m+1}^d \sum_{i \in \Pi_{m+1}^d} \psi_{m+1}(x - a_{ij_i}) d\mu_T(x).$$

We then normalize, defining

$$\mu_S = \frac{\nu_S}{\nu_S(\mathbf{R}^d)}.$$

If we set

$$S = \bigcup \{ Q \in \mathcal{Q}_{m+1}^d : \mu_S(Q) > 0 \},$$

then S is \mathcal{Q}_{m+1} discretized, μ_S is supported on S, and $S \subset T$. Our goal is to show, with non-zero probability, some choice of $\{j_i\}$ yields a set S satisfying Properties (A) and (B) of the Lemma.

In our calculations, it will help us to decompose the measure ν_S into components roughly supported on sidelength r_{m+1}^d cubes. For each $i \in \Pi_{m+1}(T)$, define a measure ν_i such that for each $x \in \mathbf{R}^d$,

$$d\nu_i(x) = r_{m+1}^d \psi_{m+1}(x - a_{ij_i}) d\mu_T(x).$$

Then $\nu_S = \sum_{i \in \Pi^d_{m+1}(T)} \nu_i$. We shall split the proof of the statement into several, more managable lemmas.

Lemma 3. If

$$M_{m+1} \ge \left(3^d \sqrt{d} \cdot l_m \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^d)}\right)^2, \tag{13}$$

then almost surely, $|\nu(\mathbf{R}^d) - 1| \le M_{m+1}^{-1/2}$.

Proof. If $j_0, j_1 \in [K_{m+1}]^d$, then

$$|a_{ij_0} - a_{ij_1}| = |j_0 - j_1| \cdot l_{m+1} \le (\sqrt{d}K_{m+1}) \cdot l_{m+1} = \sqrt{d} \cdot r_{m+1},$$

which, together with (5), implies

$$\left| r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij_{0}}) \mu_{T}(x) - r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij_{1}}) \mu_{T}(x) \right|$$

$$\leq r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x) \left| \mu_{T}(x + a_{ij_{0}}) - \mu_{T}(x + a_{ij_{1}}) \right|$$

$$\leq \sqrt{d} \cdot r_{m+1}^{d+1} \cdot \|\nabla \mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})} \int_{\mathbf{R}^{d}} \psi_{m+1}(x) = \sqrt{d} \cdot r_{m+1}^{d+1} \cdot \|\nabla \mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})}.$$

$$(14)$$

Thus (14) implies that almost surely, for each i,

$$|\nu_i(\mathbf{R}^d) - \mathbf{E}(\nu_i(\mathbf{R}^d))| \le \sqrt{d} \cdot r_{m+1}^{d+1} \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^d)}. \tag{15}$$

Furthermore, (6) implies

$$\sum_{i \in \Pi_{m+1}^{d}} \mathbf{E}(\nu_{i}(\mathbf{R}^{d})) = r_{m+1}^{d} \sum_{(i,j) \in \Sigma_{m+1}^{d}} \mathbf{P}(j_{i} = j) \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij}) \mu_{T}(x) dx$$

$$= \frac{r_{m+1}^{d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} \left(\sum_{(i,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a_{ij}) \right) \mu_{T}(x) dx \qquad (16)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} = 1.$$

For all but at most $3^d \cdot r_{m+1}^{-d}$ indices i, $\nu_i = 0$ almost surely. Thus we can apply the triangle inequality together with (15) and (16) to conclude that almost surely,

$$|\nu_{S}(\mathbf{R}^{d}) - 1| = \| \sum_{i \in \Pi_{m+1}^{d}} \left[\nu_{i}(\mathbf{R}^{d}) - \mathbf{E}(\nu_{i}(\mathbf{R}^{d})) \right] \|_{L^{\infty}}$$

$$\leq \sum_{i \in \Pi_{m+1}^{d}} \| \nu_{i}(\mathbf{R}^{d}) - \mathbf{E}(\nu_{i}(\mathbf{R}^{d})) \|_{L^{\infty}}$$

$$\leq 3^{d} \sqrt{d} \cdot r_{m+1}^{-d} r_{m+1}^{d+1} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})}$$

$$= 3^{d} \sqrt{d} \cdot r_{m+1} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})}$$

$$= \frac{3^{d} \sqrt{d} \cdot l_{m} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})}}{M_{m+1}}.$$

$$(17)$$

Thus (17) and (13) imply that almost surely, $|\nu_S(\mathbf{R}^d) - 1| \le M_{m+1}^{-1/2}$.

Lemma 4. If

$$M_{m+1} \ge \left(10 \cdot 3^{dn} \cdot l_m^{-(s+\varepsilon)}\right)^{1/\varepsilon},\tag{18}$$

then

 $P(S \text{ does not satisfies Property } (A)) \le 1/10.$

Proof. For any cube $Q_{ij} \in \Sigma_{m+1}^d$, there are at most 3^d pairs $(i_0, j_0) \in \Sigma_{m+1}^d$ such that $Q_{i_0j_0} \cap Q_{ij} \neq \emptyset$, and so a union bound together with (12) gives

$$\mathbf{P}(Q_{ij} \in \mathcal{Q}_{m+1}(S)) \le \sum_{Q_{i_0j_0} \cap Q_{ij} \neq \emptyset} \mathbf{P}(j_{i'} = j') \le 3^d K_{m+1}^{-d}.$$
 (19)

Without loss of generality, removing cubes from B if necessary, we may assume all cubes in B are strongly non-diagonal. Let $Q = Q_{i_1j_1} \times \cdots \times Q_{i_nj_n} \in \mathcal{Q}_{m+1}(B)$

be such a cube. Since Q is strongly diagonal, the events $\{Q_{i_k j_k} \in S\}$ are independent from one another, which together with (19) implies that

$$\mathbf{P}(Q \in \mathcal{Q}_{m+1}(S^n)) = \mathbf{P}(Q_{i_1j_1} \in S) \dots \mathbf{P}(Q_{i_nj_n} \in S) \le 3^{dn} K_{m+1}^{-dn}.$$
 (20)

Taking expectations over all cubes in B, and applying (9) and (20) gives

$$\mathbf{E}(\#(\mathcal{Q}_{m+1}(B) \cap \mathcal{Q}_{m+1}(S^{n}))) \leq \#(\mathcal{Q}_{m+1}(B)) \cdot (3^{dn} K_{m+1}^{-dn})$$

$$\leq l_{m+1}^{-(s+\varepsilon)} (3^{dn} K_{m+1}^{-dn})$$

$$= 3^{dn} l_{m}^{-(s+\varepsilon)} \frac{M_{m+1}^{s+\varepsilon}}{K_{m+1}^{dn-s-\varepsilon}}.$$
(21)

Since $\varepsilon \leq (dn - s)/2$, we conclude

$$(dn - s - \varepsilon) \left(\frac{s}{dn - s} + c\varepsilon \right) = s + \varepsilon \left(c(dn - s - \varepsilon) - \frac{s}{dn - s} \right)$$

$$\ge s + \varepsilon \left(\frac{c(dn - s)}{2} - \frac{s}{dn - s} \right)$$

$$= s + \varepsilon \frac{3dn - s}{dn - s} \ge s + 2\varepsilon.$$

Applying (11) together with this bound, we conclude that

$$K_{m+1}^{dn-s-\varepsilon} \ge M_{m+1}^{(dn-s-\varepsilon)\left(\frac{s}{dn-s}+c\varepsilon\right)} \ge M_{m+1}^{s+2\varepsilon}$$
.

Combined with (18), we conclude that

$$\frac{3^{dn} l_m^{-(s+\varepsilon)} M_{m+1}^{s+\varepsilon}}{K_{m+1}^{dn-s-\varepsilon}} \le \frac{3^{dn} l_m^{-(s+\varepsilon)}}{M_{m+1}^{\varepsilon}} \le 1/10.$$
 (22)

We can then apply Markov's inequality with (21) and (22) to conclude

$$\mathbf{P}(\mathcal{Q}_{k+1}(B) \cap \mathcal{Q}_{k+1}(S^n) \neq \emptyset) = \mathbf{P}(\#(\mathcal{Q}_{k+1}(B) \cap \mathcal{Q}_{k+1}(S^n)) \geq 1)$$

$$\leq \mathbf{E}(\#(\mathcal{Q}_{m+1}(B) \cap \mathcal{Q}_{m+1}(S^n)))$$

$$\leq 1/10.$$

Lemma 5. Set $D = \{m \in \mathbf{Z}^d : |m| \le 10l_{m+1}^{-1}\}$. Then if

$$K_{m+1} \le M_{m+1}^{\frac{2dn}{dn-s}},\tag{23}$$

and

$$M_{m+1} \ge \exp\left(\frac{10^7(3dn-s)d^2}{dn-s}\right),$$
 (24)

then

$$\mathbf{P}\left(\|\widehat{\nu_T} - \widehat{\mu_T}\|_{L^{\infty}(D)} \ge r_{m+1}^{d/2} \log(M_{m+1})\right) \le 1/10$$

Proof. For each $i \in \Pi_{m+1}^d$, and $m \in \mathbb{Z}$, define $X_{im} = \widehat{\nu_i}(m) - \widehat{\mathbf{E}(\nu_i)}(m)$. Applying (2) gives

$$\sum_{i \in \Pi_{m+1}^{d}} \widehat{\mathbf{E}(\nu_{i})}(m) = \sum_{i \in \Pi_{m+1}^{d}} l_{m+1}^{d} \sum_{j \in [K_{m+1}]^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} \psi_{m+1}(x - a_{ij}) d\mu_{T}(x)
= \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} d\mu_{T}(x) = \widehat{\mu_{T}}(m).$$
(25)

For each i and m, the standard (L^1, L^{∞}) bound on the Fourier transform, combined with (15), shows

$$||X_{im}||_{\psi_{2}(L)} \leq 10||X_{im}||_{L^{\infty}}$$

$$\leq 10[||\nu_{i}(\mathbf{R}^{d})||_{L^{\infty}} + \mathbf{E}(\nu_{i})(\mathbf{R}^{d})]$$

$$\leq 10^{2} (\mathbf{E}(\nu_{i})(\mathbf{R}^{d}) + r_{m+1}^{d+1} ||\nabla \mu_{T}||_{L^{\infty}(\mathbf{R}^{d})}).$$
(26)

For a fixed m, the family of random variables $\{X_{im}\}$ are independent. Furthermore, $\sum X_{im} = \widehat{\nu}(m) - \widehat{\mathbf{E}(\nu)}(m)$. Equations (6) and (12) imply that

$$\mathbf{E}(\widehat{\nu}_{S}(m)) = \frac{r_{m+1}^{d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} \left(\sum_{(i,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a_{ij}) \right) d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} \widehat{\mu}_{T}(m) = \widehat{\mu}_{T}(m).$$
(27)

Hoeffding's inequality, together with (26) and (27), imply that

$$\|\widehat{\nu}(m) - \widehat{\mu_T}(m)\|_{\psi_2(L)} \le 10^3 \sqrt{d} \left(\left(\sum \mathbf{E}(\nu_i) (\mathbf{R}^d)^2 \right)^{1/2} + r_{m+1}^{d/2+1} \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)} \right).$$
 (28)

Equation (5) shows

$$\mathbf{E}(\nu_i)(\mathbf{R}^d) = l_{m+1}^d \sum_{j \in [K_{m+1}]^d} \int \psi_{m+1}(x - a_{ij}) d\mu_T(x)$$

$$\leq r_{m+1}^d \|\mu_T\|_{L^{\infty}(\mathbf{R}^d)}.$$
(29)

Combining (28) and (29) gives

$$\|\widehat{\nu}(m) - \widehat{\mu_T}(m)\|_{\psi_2(L)} \le 10^3 \sqrt{d} \left[\|\mu_T\|_{L^{\infty}(\mathbf{R}^d)} + \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)} \right] r_{m+1}^{d/2}. \tag{30}$$

We can then apply a union bound over $D = \{m \in \mathbf{Z}^d : |m| \le 10l_{m+1}^{-1}\}$, which has cardinality at most $10^{d+1}l_{m+1}^{-d}$, together with (30) to conclude that

$$\mathbf{P}\left(\|\widehat{\nu} - \widehat{\mu_{T}}\|_{L^{\infty}(D)} \ge r_{m+1}^{d/2} \log(M_{m+1})\right) \\
\le 10^{d+2} \cdot l_{m+1}^{-d} \exp\left(-\frac{\log(M_{m+1})^2}{10^7 d}\right) \\
= 10^{d+2} l_{m}^{-d} \exp\left(d \log(M_{m+1} K_{m+1}) - \frac{\log(M_{m+1})^2}{10^7 d}\right).$$
(31)

Combined with (23) and (24), (31) implies

$$\mathbf{P}\left(\|\widehat{\nu} - \widehat{\mu_T}\|_{L^{\infty}(D)} \ge r_{m+1}^{d/2} \log(M_{m+1})\right) \le 1/10.$$
 (32)

Thus $\widehat{\nu}$ and $\widehat{\mu_T}$ are highly likely to differ only by a neglible amount over small frequencies.

Lemma 6. If

$$M_{m+1}^d K_{m+1}^d \ge A(d+1+s/2)2^{1+d+s/2}l_m^d,$$
 (33)

$$K_{m+1}^d M_{m+1}^d \ge \frac{l_m^d 8^d A (d+1+s/2)}{1+s/2},$$
 (34)

and

$$K_{m+1}^d M_{m+1}^d \ge l_m^d 2^{3d+s/2+1} B(d+s/2+1),$$
 (35)

then almost surely, if $|m| \ge 10l_{m+1}^{-1}$,

$$|\widehat{\nu_T}(m)| \le \frac{1}{2|\eta|^{s/2}}.$$

Proof. Define a random measure

$$\alpha = r_{m+1}^d \sum_{\substack{i \in \Pi_{m+1}^d \\ d(a_i, T) \le 2r_{m+1}^{-1}}} \delta_{a_{ij_i}}.$$

Then $\nu_S = (\alpha * \psi_{m+1})\mu_T$. Thus we have $\widehat{\nu_S} = (\widehat{\alpha} \cdot \widehat{\psi_{m+1}}) * \widehat{\mu_T}$. Since μ_T is compactly supported, we can define, for each t > 0,

$$A(t) = \sup |\widehat{\mu_T}(\xi)| |\xi|^t < \infty.$$

In light of (7), if we define, for each t > 0,

$$B(t) = \sup |\widehat{\psi}(\xi)| |\xi|^t,$$

then

$$\sup |\widehat{\psi_{m+1}}(\xi)||\xi|^t = l_{m+1}^{-t}B(t).$$

The measure α is the sum of at most $2^d r_{m+1}^{-d}$ delta functions, scaled by r_{m+1}^d , so $\|\widehat{\alpha}\|_{L^{\infty}(\mathbf{R}^d)} \leq \alpha(\mathbf{R}^d) \leq 2^d$. Thus

$$|\widehat{\nu}_S(\eta)| \le 2^d \int |\widehat{\mu}_T(\eta - \xi)| |\widehat{\psi}_{m+1}(\xi)| d\xi.$$
 (36)

If $|\xi| \le |\eta|/2$, $|\eta - \xi| \ge |\eta|/2$, so for all t > 0, and since (5) implies $\|\widehat{\psi}_{m+1}\|_{L^{\infty}(\mathbf{R}^d)} \le 1$, we find

$$\int_{0 \le |\xi| \le |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| \, d\xi \le \frac{A(t)2^{t-d}}{|\eta|^{t-d}}. \tag{37}$$

Set t = d + 1 + s/2. Equation (37), together with (33), implies

$$\int_{0 \le |\xi| \le |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{A(d+1+s/2)2^{1+s/2}|\eta|^{-1}}{|\eta|^{s/2}} \\
\le \frac{A(d+1+s/2)2^{1+s/2}l_{m+1}}{|\eta|^{s/2}} \\
\le \frac{1}{10 \cdot 2^d} \frac{1}{|\eta|^{s/2}}.$$
(38)

Conversely, if $|\xi| \ge 2|\eta|$, then $|\eta - \xi| \ge |\xi|/2$, so for each t > d,

$$\int_{|\xi| \ge 2|\eta|} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi}_{m+1}(\xi)| d\xi \le \int_{|\xi| \ge 2|\eta|} \frac{A(t)2^t}{|\xi|^t} \\
\le 2^d \int_{2|\eta|}^{\infty} r^{d-1-t} A(t) 2^t \\
\le \frac{4^d A(t)}{t - d} |\eta|^{d-t}.$$
(39)

Set t = d + 1 + s/2. Equation (34), applied to (39), allows us to conclude

$$\int_{|\xi| \ge 2|\eta|} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi}_{m+1}(\xi)| \, d\xi \le \frac{1}{10 \cdot 2^d} \frac{1}{|\eta|^{s/2}}. \tag{40}$$

Finally, if t > 0, we use the fact that $\|\widehat{\mu_T}\|_{L^{\infty}(\mathbf{R}^d)} \le 1$ to conclude that

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{2^{d+t}B(t)}{|\eta|^{t-d}}.$$
 (41)

Set t = d + s/2 + 1. Then (41) and (35) imply

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{1}{10 \cdot 2^d} \frac{1}{|\xi|^{s/2}}.$$
 (42)

Summing up (38), (40), and (42), we conclude from (36) that if $|\eta| \ge 10l_{m+1}^{-1}$, then

$$|\widehat{\nu}_S(\eta)| \le \frac{1}{2|\eta|^{s/2}}.\tag{43}$$

Proof of Lemma 2, Continued. Let us now put all our calculations together. In light of Lemma 4 and Lemma 5, there exists some choice of j_i for each i, and a resultant non-random pair (ν_S, S) such that S satisfies Property (A) of the Lemma, and for any $m \in \mathbf{Z}^d$ with $|m| \leq 10l_{m+1}^{-1}$,

$$|\widehat{\nu}_S(m) - \widehat{\mu}_T(m)| \le r_{m+1}^{d/2} \log(M_{m+1}). \tag{44}$$

Now

$$r_{m+1}^{d/2}\log(M_{m+1}) = \left(l_{m+1}^{a\varepsilon - \frac{dn-s}{2n}} \cdot r_{m+1}^{d/2}\log(M_{m+1})\right) l_{m+1}^{\frac{dn-s}{2n} - a\varepsilon}.$$

Equation (11) implies

$$l_{m+1}^{a\varepsilon - \frac{dn-s}{2n}} \cdot r_{m+1}^{d/2} \log(M_{m+1})$$

$$= \frac{l_m^{a\varepsilon - \frac{dn-s}{2n} + d/2} \log(M_{m+1}) K_{m+1}^{\frac{dn-s}{2n} - a\varepsilon}}{M_{m+1}^{a\varepsilon + \frac{s}{2n}}}$$

$$\leq \left[l_m^{a\varepsilon - \frac{dn-s}{2n} + d/2} 2^{\frac{dn-s}{2n} - a\varepsilon} \right] \log(M_{m+1}) M_{m+1}^{(\frac{s}{dn-s} + c\varepsilon)(\frac{dn-s}{2n} - a\varepsilon) - a\varepsilon - \frac{s}{2n}}.$$

Now

$$\left(\frac{s}{dn-s} + c\varepsilon\right) \left(\frac{dn-s}{2n} - a\varepsilon\right) - a\varepsilon \le \left[\frac{(dn-s)c}{2n} - \left(\frac{s}{dn-s} + 1\right)a\right]\varepsilon$$

$$= \left[\frac{d(3-na)}{(dn-s)}\right]\varepsilon$$

$$\le -2\varepsilon.$$

Thus, if we assume that

$$A(l_m) \le X^{\varepsilon} / \log(X) \tag{45}$$

then we conclude

$$r_{m+1}^{d/2} \log(M_{m+1}) \leq \left[l_m^{a\varepsilon - \frac{dn-s}{2n} + d/2} 2^{\frac{dn-s}{2n} - a\varepsilon} \log(M_{m+1}) M_{m+1}^{-\varepsilon} \right] M_{m+1}^{-\varepsilon} l_{m+1}^{\frac{dn-s}{2n} - a\varepsilon}$$

$$\leq M_{m+1}^{-\varepsilon} l_{m+1}^{\frac{dn-s}{2n} - a\varepsilon}$$

Thus we conclude that if $|m| \leq 10l_{m+1}^{-1}$,

$$\begin{aligned} |\widehat{\nu}_{S}(m)| &\leq |\widehat{\nu}_{S}(m) - \widehat{\mu}_{T}(m)| + |\widehat{\mu}_{T}(m)| \\ &\leq r_{m+1}^{d/2} \log(M_{m+1}) + A|m|^{c\varepsilon - \frac{dn-s}{2n}} \\ &\leq l_{m+1}^{-\frac{dn-s}{2n} - c\varepsilon + \varepsilon} + A|m|^{c\varepsilon - \frac{dn-s}{2n}} \\ &\leq [A + 10^{d} M_{m+1}^{-\varepsilon}]|m|^{c\varepsilon - \frac{dn-s}{2n}}. \end{aligned}$$

Since $|\widehat{\nu}_S(m)| \leq |m|^{-\frac{dn-s}{2n}} \leq |m|^{c\varepsilon - \frac{dn-s}{2n}}$ holds automatically for $|m| \geq 10l_{m+1}^{-1}$, we conclude that for all $m \in \mathbf{Z}^d$,

$$|\widehat{\nu_S(m)}| \le (A + 10^d M_{m+1}^{-\varepsilon}) |m|^{c\varepsilon - \frac{dn-s}{2n}}.$$

Applying Lemma 3, we conclude that for all $m \in \mathbf{Z}^d$,

$$|\widehat{\mu_S(m)}| \le \frac{A + 10^d M_{m+1}^{-\varepsilon}}{1 - M_{m+1}^{-1/2}} |m|^{c\varepsilon - \frac{dn-s}{2n}} \\ \le (1 + M_{m+1}^{-1/2}) [A + 10^d M_{m+1}^{-\varepsilon}] |m|^{c\varepsilon - \frac{dn-s}{2n}}.$$

5 Construction of the Salem Set

Let us now construct our configuration avoiding set. First, we fix some preliminary parameters. Write $Z \subset \bigcup_{i=1}^{\infty} Z_i$, where Z_i has lower Minkowski dimension at most s for each i. Then choose an infinite sequence $\{i_m : m \geq 1\}$ which repeats every positive integer infinitely many times. Also, choose an arbitrary, decreasing sequence $\{\varepsilon_m : m \geq 1\}$, with $\varepsilon_m < (dn - s)/2$ for each m.

We choose our parameters $\{M_m\}$ and $\{K_k\}$ inductively. First, set $X_0 = [0,1]^d$, and μ_0 an arbitrary smooth probability measure supported on X_0 . At the m'th step of our construction, we have found a set X_{m-1} and a measure μ_{m-1} . We then choose K_m and M_m such that

$$K_m, M_m \ge C(\mu_{m-1}, n, d, s, \varepsilon_m),$$

such that

$$M_m^{\frac{s}{dn-s}+c\varepsilon_m} \le K_m \le 2M_m^{\frac{s}{dn-s}+c\varepsilon},$$

and such that the set Z_{i_m} is covered by at most $l_m^{-(s+\varepsilon_m)}$ cubes in \mathcal{Q}_m , the union of which, we define to be equal to B_m . We can then apply Lemma 2 with $\varepsilon = \varepsilon_m$, $T = X_{m-1}$, $\mu_T = \mu_{m-1}$, and $B = B_m$. This produces a \mathcal{Q}_{m+1} discretized set $S \subset T$, and a measure μ_S supported on S. We define $X_m = S$, and $\mu_m = \mu_S$.

The preceding paragraph recursively generates an infinite sequence $\{X_m\}$. We set $X = \bigcap X_m$, and pick an arbitrary measure μ , and some subsequence μ_{i_k} , such that $\mu_{i_k} \to \mu$ weakly. It then follows from pointwise convergence of the Fourier transform that for each $m \in \mathbf{Z}^d$, and each $\varepsilon > 0$,

$$\sup_{m \in \mathbf{Z}^d} |\widehat{\mu}(m)| |m|^{\frac{dn-s}{2n} - \varepsilon} \leq \limsup_{i \to \infty} \sup_{m \in \mathbf{Z}^d} |\widehat{\mu}_i(m)| |m|^{\frac{dn-s}{2n} - \varepsilon}.$$

Fix $\varepsilon > 0$. For each m, define

$$A_{m,\varepsilon} = \sup |\widehat{\mu_M}(m)| |m|^{\frac{dn-s}{2n}-\varepsilon}.$$

Since each measure μ_M is smooth, all these quantities are finite. Since $\varepsilon_m \to 0$, there is M such that if $m \ge M$, then $a\varepsilon_m \le \varepsilon$. Property (B) of Lemma (2) implies that for each $m \ge M$,

$$A_{m+1,\varepsilon} \le (1 + M_{m+1}^{-1/2})(A_{m,\varepsilon} + 10^d M_{m+1}^{-\varepsilon_{m+1}}).$$

If the sequence $\{M_m\}$ increases rapidly enough, this recursive relationship guarantees that $\sup_{m\to\infty}A_{m,\varepsilon}<\infty$. Thus, for each $\varepsilon>0$,

$$|\widehat{\mu}(m)| \lesssim_{\varepsilon} |m|^{\varepsilon - \frac{dn-s}{2n}}.$$