비정형 빅데이터 분석의 응용과 실습

Week-04. Audio Data

텍스트는 String 이미지는 Matrix 비디오는 연속된 이미지 오디오는...?

소리의 구성성분 먼저 자연계에서의 소리란?

• 소리의 3요소

• 주파수 : 음의 높낮이, Hz

• 진동수가 높은 음을 고음

• 진동수가 낮은 음을 저음

• 돌고래: 초음파

• 호랑이: 저주파

• **진폭** : 음의 세기, dB

파형 : 음색

심리량(subjective quantity)			
소리 크기 (loudness)	소리 높낮이 (pitch)	음색 (timbre)	
***	*	*	
**	***	**	
*	*	***	
*	*	**	
*	*	*	
	소리 크기 (loudness) *** **	소리 크기 소리 높낮이 (pitch) *** ** ** ** ** ** ** ** **	

소리의 3요소

^{*} KISTI의 과학향기, 호랑이 울음 소리에 기가 죽는 이유는? <한겨례> 2006-03-10 17:35

오디오의 표현방법

오디오 데이터를 컴퓨터가 이해할 수 있도록 하려면?

- 방법 1
 - 시간-세기 그래프
- 방법 2
 - 주파수 그래프
- 방법 3
 - 주파수의 강도와-시간 그래프

오디오 데이터 오디오를 벡터로 벡터를 오디오로

오디오 포맷의 종류

자주 사용하는 포맷

- mp3
 - MPEG Layer 3 오디오 파일. 오늘날 가장 널리 쓰이는 오디오 파일 포맷
- webm
 - HTML5 비디오 용으로 제작 된 로열티없는 형식

wav

- 윈도 PC에서 주로 쓰이는 표준 오디오 파일 컨테이너
- 보통 비압축 방식의 CD급 품질 오디오 파일을 저장하기 위해 사용
- 비압축 방식이므로 필연적으로 파일의 크기가 클 수밖에 없다

그렇다면 음성인식은 어떤 원리로..?

텐서플로우 음성인식 챌린지!

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge

챌린지 소개

문제와 데이터

- Task 타입
 - 지도학습-분류문제
- 데이터셋
 - 오디오 파일: WAV format
 - 훈련데이터
 - 라벨링 된 데이터: 64,727개
 - 라벨링 안된 데이터: 158,538
 - Lable의 갯수 : 31개
 - 맞춰야 하는 클래스 :12개

Right	Eight	Cat	Tree	Bed	Нарру
2367	2352	1733	1733	1713	1742
No	Wow	Nine	Left	Stop	Three
2375	1745	2364	2353	2380	2356
Bird	Zero	Seven	Up	Marvin	Two
1731	2376	2377	2375	1746	2373
Six	Yes	On	Five	Off	Four
2369	2377	2367	2357	2357	2372
Dog	One	Down	Go	Sheila	House
1746	2370	2359	2372	1734	1750
Back	Background_noise				
	6				

Table 1: The number of training audio files per class

전처리 과정

오디오를 Matrix로

- 아직까지도 오디오 표현(Representation)에 대한 정답은 없는 상태
- Waveplot
 - 진폭(Amplitude)를 시간순으로 나열
- STFT(Short-time Fourier-Transform)
 - Amplitude로만 표현을 하면 Speech를 표현하지 못한다는 관점에 서 많이 사용
 - 같은 진폭의 발화는 다 같은 소리인가?
 - 푸리에 변환을 작은 시간 단위로 쪼개서 진행
 - 주파수와 시간을 동시에 표현할 수 있다는 점이 장점

어디서 많이 본것 같지않나요?

모델 선정 후보 1. CNN

- 같은 단어를 말해도 시작점이 다르다
- 같은 단어도 화자의 속도가 다르다

모델 선정 후보 2. RNN

• 결국에 음성도 시계열 데이터기 때문에, RNN을 쓰는게 가장 적합하다

성능평가

누가 가장 잘 했을까?

성능평가

속도와 정확도의 Trade-Off

- BI-LSTM이 가장 좋은 성능을 보이지만, 훈련시간이 CNN에 비해 10배가 넘게 걸리기 때문에 CNN으로 진행
 - 그 중에서 잘 알려진, Resnet으로 진행

	FNN	CNN	RNN	LSTM	BILSTM
Training Acc. (%)	58	87	80	82	85
Kaggle Acc. (%)	48.7	65.2	58.5	63.7	65.7
# of Epochs	34	6	161	165	175
Training Time (hours)	1.5	1.6	14	15	17.7

Table 3: Result of candidate models

모델최적화만으로진행

전처리는 나중에 다시!

78%의 정확도!

submission_resnet.csv
3 days ago by Jungwon Seo
RESNET no background

처음부터다시점검

전처리는 잘 되었나?

- Silence에 해당하는 데이터셋이 뽑히지 않았다.
- 데이터셋의 균형을 맞추자
 - 데이터 Augmentation을 통해서

Original

Different hop/window

	Imbalanced Dataset	Balanced Dataset
Down	4576	5731
Go	7093	6425
Left	5921	7752
No	9015	6805
Off	5907	6541
On	10443	7125
Right	6136	5551
Stop	6036	6314
Up	15450	8999
Yes	5562	5071
Unknown	82399	84645
Silence	0 ????	7579

성능평가 다시확인!!

• 0.001~0.002의 실망스러운 증가

submission_resnet.csv 2 days ago by Jungwon Seo RESNET over traiining	0.79278	0.78125	
submission_resnet.csv 2 days ago by Jungwon Seo resnet 18 with balanced data	0.78855	0.78234	

더 많은 데이터

데이터를 더 확보하자!

• 새로운 데이터 강화 방법이 나왔다던데..?

SpecAugment: A New Data Augmentation Method for Automatic Speech Recognition

Monday, April 22, 2019

Posted by Daniel S. Park, Al Resident and William Chan, Research Scientist

최종결과

과연!

• 뭔가 다른 문제가 있던 것 같다

submission_resnet_new5.csv a few seconds ago by Jungwon Seo	0.78714	0.77549	
PLEASE			

과제리뷰

이 과제를 하면서의 실수

- 딥러닝에 너무 신이난 나머지, 훈련만 열심히 시켰다.
- 전처리에 더 집중을 했어야 했다.
- 무작위 식으로 계속 하이퍼 파라미터만 바꿔가며 테스트 하지 말았어야 했다.
- 기본적인 EDA 부터 제대로 다시 했어야 했다.

E.O.D