Supplement 2

Arithmetic Functions and Dirichlet Convolution

A real (or complex) valued function defined on IN is called arithmetical.

The Möbius Function M(n)

The Möbius function µ is defined as follows:

$$\mu(n) = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } n \text{ is not squarefree} \end{cases}$$
 $(-1)^{k}$ if n is the product of k distinct primes.

Note: $\mu(n)=0 \Leftrightarrow n$ has a square Bector >1.

The Höbius function arises in many different places in number theory.

One of its fundamental properties is the following "orthogonality" relation:

Theorem 1: If
$$n \ge 1$$
, then $\sum \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$

Proof: Clearly true for n=1. For n>1, write n=pl... Pr. In the some End of n which are products of distinct primes. Thus

$$\sum_{k=1}^{\infty} \mu(d) = \mu(1) + \mu(p_1) + \dots + \mu(p_k) + \mu(p_1 p_2) + \dots + \mu(p_k p_k) + \dots + \mu(p_k$$

Dirichlet Convolution: If f and g are two arithmetical functions, we define their Dirichlet convolution to be the arithmetical function $f*g(n) := \sum_{d \in \mathcal{A}} f(d) g(\frac{n}{d})$.

Theorem 2: For any arithmetical functions f, g, h we have

f*g = g*f (commutative) (f*g)*h = f*(g*h) (associative)

Proof: We first note that the definition of freg can be re-expressed

 $f*g(n) = \sum_{ab=n} f(a)g(b)$

from which commutativity follows mimediately. To prove associativity we let A=g*h and note that

 $f * A(n) = \sum f(a) A(d) = \sum f(a) \sum g(b) h(e) = \sum f(a) g(b) h(e)$ $ad = n \qquad ad = n \qquad be = d \qquad abc = n$

and similarly, if B=f*9 then

B*h(n)= Zif(a)g(b)h(e). II

abe=n

We now introduce an identity element for this moltiplication by defining $S(n) := \lfloor \frac{1}{n} \rfloor = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } n>1 \end{cases}$.

Theorem 3: For any arithmetical function f $8 \times f = f \times S = f$

Proof: $f \times S(n) = \sum_{d \mid n} f(d) S(\frac{n}{d}) = \sum_{d \mid n} f(d) \lfloor \frac{d}{n} \rfloor = f(n)$

Möbius Inversion

Theorem 1 (Restatement) $1*\mu = \mu*1 = 8$ where 1(n):=1 for all $n \in \mathbb{N}$.

The following fundamental result follows immediately from Theorems 1,283.

Corollary 1: (Möbius Inversion Farmula)

$$F(n) = \sum f(a) \iff f(n) = \sum \mu(a) F(\frac{n}{d})$$
.

Proof: Since $\mu * 1 * f = S * f = f$ it follows that $F = 1 * f \Leftrightarrow \mu * F = f$.

Examples

1.
$$\log n = \sum_{d \mid n} \Lambda(d) \iff \Lambda(n) = \sum_{d \mid n} \mu(d) \log \left(\frac{n}{d}\right)$$

$$= -\sum_{d \mid n} \mu(d) \log_{d} d.$$
Lemma 2.1.
$$\left(\text{Since } \sum_{d \mid n} \mu(d) = 8 \ 8 \log_{d} 1 = 0.\right)$$

2.
$$n = \sum_{d \mid n} \varphi(d) \iff \varphi(n) = \sum_{d \mid n} \mu(d) \frac{n}{d}$$

$$= \frac{1}{2} \operatorname{dln}$$

$$= \frac{1}{2$$

Multiplicative Functions

An arithmetical function f is called <u>multiplicative</u> if $f(1) \neq 0$ and f(mn) = f(m)f(n) whenever (m,n) = 1.

A multiplicative function f is called completely multiplicative if we also have f(mn) = f(m)f(n) for all $m, n \in IN$.

The following properties are easily verified:

- · If f is moltiplicative, then f(1)=1
- · f multiplicative $\Leftrightarrow f(\tilde{T}_{P_i}^{K_i}) = \tilde{T}_{j=1}^{K_i} f(P_i^{K_i})$
- · If f is multiplicative, then for all primes P; and Ij ∈ IN.

f completely multiplicative $\iff f(p^{\ell}) = f(p)^{\ell}$

for all primes p and le IN.

Examples

- 1. The identity function S(n) = Lin is completely multiplicative.
- 2. The Möbius function is multiplicative, but not completely

 (Easy)

 (Easy)

 ((1)=0, but $\mu(2)\mu(2)=1$.
- 3. The Euler Phi function is multiplicative, but not completely

 (Not so easy!)

 (Not so easy!)

The Euler Phi Function

Recall that the <u>Euler Phi Function</u> $q(n) = |(\frac{Z}{nZ})^{\times}| = \#\{1 \leq m \leq n : (m,n) = 1\}$.

The multiplicativity of q is closely related to

The Chinese Remainder Theorem

If Mi,..., Mx ∈ N are pairwise coprime and bi,..., bx ∈ Z, then the system X ≡ b; mod M; 1 ≤ j ∈ k

has exactly one solution modulo $n=m_1\cdots m_k$. In particular, if $n=p_1^{\ell_1}\cdots p_k^{\ell_k}$ then $\left(\mathbb{Z}/n\mathbb{Z}\right)^X \cong \left(\mathbb{Z}/n\mathbb{Z}\right)^X \times \cdots \times \left(\mathbb{Z}/n\mathbb{Z}\right)^X$.

* Since $Q(n) = |(Z/nZ)^*|$ it follows immediately that Q is multiplicative.

Theorem 4: For n > 1, $q(n) = n T(1-\frac{1}{p})$.

Proof: Since the only numbers $1 \le m \le p^\ell$ not coprime to p^ℓ are the multiples of p, we see that $p(p^\ell) = p^\ell - p^{\ell-\ell} = p^\ell(1-\frac{\ell}{p})$. \square

Corollary 2:

 $\varphi(n) = \sum_{d} \mu(d) \frac{n}{d}$ and hence by Höbius inversion $\sum_{d} \varphi(d) = n$

Proof: Clear for n=1 (empty products are assigned the value 1).

If $n=p_1^{l_1} \cdots p_n^{l_n} > 1$, then $\prod (1-\frac{1}{p}) = \prod (1-\frac{1}{p^2}) = \sum \frac{\mu(d)}{d}$ pln j=1 (*) din

Exercise (): Verify (*).

divisor Ronchau

Let gEN.

¿ How many numbers I = n = x are relatively prime to q?

Since

it follows that

Since

$$\sum_{\substack{n \text{dl} \\ \text{dl}}} \frac{\mu(d)}{d} = \prod_{\substack{n \text{pl} \\ \text{pl}}} (1 - \frac{1}{p}) = \frac{q(n)}{n}$$

it follows that

$$\{1 \le n \le x : (n,q) = 1\} = \frac{x \cdot q(q)}{q} + O(T(q))$$
.