Longest Common Extensions via Fingerprinting

Philip Bille Inge Li Gørtz Jesper Kristensen

Technical University of Denmark DTU Informatics

LATA, March 9, 2012

Contents

Introduction

The LCE Problem

Existing Results

The $\operatorname{DIRECTCOMP}$ algorithm The $\operatorname{SUFFIXNCA}$ and LCPRMQ Algorithms Practical results

The FINGERPRINT_k Algorithm

Data Structure
Query
Practical Results
Cache Optimization

Summary

The LCE Problem

```
LCE value LCE_s(i,j) is the length of the longest common prefix of the two suffixes of a string s starting at index i and j
```

LCE problem Efficiently query multiple LCE values on a static string s and varying pairs (i,j)

Example:

```
input: s = abbababba, (i, j) = (4, 6)

suffix i = ababba

suffix j = abba

longest common prefix (i, j) = ab

LCE_s(i, j) = 2
```

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

1 match

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

1 match

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Result

$$LCE_s(4,6) = 2$$

$$egin{array}{ll} {\sf Space} & O(1) + |s| \ {\sf Query} & O({\it LCE}(i,j)) = O(n) \ {\sf Average query} & O(1) \ \end{array}$$

For a string length n and alphabet size σ , the average LCE value over all n^{σ} strings and n^2 query pairs is O(1).

References

L. Ilie, G. Navarro, and L. Tinta. The longest common extension problem revisited and applications to approximate string searching. *J. Disc. Alg.*, 8(4):418-428, 2010.

Existing Algorithms: SUFFIXNCA and LCPRMQ

Two algorithms with best known bounds:

> Space O(n)Query O(1)

Average query O(1)

References

J. Fischer, and V. Heun. Theoretical and Practical Improvements on the RMQ-Problem, with Applications to LCA and LCE. In *Proc. 17th CPM*, pages 36-48, 2006.

D. Harel, R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. *SIAM J. Comput.*, 13(2):338-355, 1984.

Existing Algorithms: Practical Results

Query times of DIRECTCOMP and LCPRMQ by string length

The FINGERPRINT_k Algorithm: Data Structure

- For a string s[1..n], the t-length fingerprints $F_t[1..n]$ are natural numbers, such that $F_t[i] = F_t[j]$ if and only if s[i..i+t-1] = s[j..j+t-1].
- ▶ k levels, $1 \le k \le \lceil \log n \rceil$
- ▶ For each level, $\ell = 0..k 1$:
 - $\qquad t_{\ell} = \Theta(n^{\ell/k}), t_0 = 1$
 - $\blacktriangleright H_{\ell} = F_{t_{\ell}}$

Space $O(k \cdot n)$

The FINGERPRINT_k Algorithm: Query

- 1. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} , increment ℓ by one, and repeat this step unless and $\ell=k-1$.
- 2. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} and repeat this step.
- 3. Stop and return v when $\ell=0$, otherwise decrement ℓ by one and go to step two.

$$LCE(3,12)=9$$

Query
$$O(k \cdot n^{1/k})$$

Average query $O(1)$

The FINGERPRINT_k Algorithm

```
1 \leq k \leq \lceil \log n \rceil Space O(k \cdot n) Query O(k \cdot n^{1/k}) Average query O(1) k = 1 \quad k = 2 \quad k = \lceil \log n \rceil Space O(n) \quad O(n) \quad O(n \log n) Query O(n) \quad O(\sqrt{n}) \quad O(\log n) Average query O(1) \quad O(1) \quad O(1)
```

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂, FINGERPRINT₃, FINGERPRINT_{$\lceil \log n \rceil$} and LCPRMQ by string length

Cache Optimization of FINGERPRINT_k

- Original:
 - ▶ Data structure: $H_{\ell}[i] = F_{t_{\ell}}[i]$
 - ► Size: $|H_{\ell}| = n$ ► I/O: $O(k \cdot n^{1/k})$
- ► Cache optimized:
 - ▶ Data structure:

$$H_{\ell}[((i-1) \mod t_{\ell}) \cdot \lceil n/t_{\ell} \rceil + \lfloor (i-1)/t_{\ell} \rfloor + 1] = F_{t_{\ell}}[i]$$

- ▶ Size: $|H_{\ell}| = n + t_{\ell}$
- $I/O: O(k \cdot \left(\frac{n^{1/k}}{B} + 1\right))$
 - ▶ Best when k is small $\implies n^{1/k}$ is large.

Cache Optimization, Practical Results

Is I/O optimization good in practice?

- Pro: better cache efficiency
 - ▶ Best for small k, no change for $k = \lceil \log n \rceil$
- Con: Calculating memory addresses is more complicated
 - $((i-1) \mod t_\ell) \cdot \lceil n/t_\ell \rceil + \lfloor (i-1)/t_\ell \rfloor + 1 \text{ vs. } i$

Cache Optimization, Practical Results

Query times of FINGERPRINT₂ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

Cache Optimization, Practical Results

Query times of FINGERPRINT₃ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

Summary

	DIRECT- Comp	LCPRMQ / SUFFIXNCA	Fingerprint _k
Space	O(1)	O(n)	$O(k \cdot n)$
Query	O(n)	O(1)	$O(k \cdot n^{1/k})$
Average query	O(1)	O(1)	O(1)
$Query\ I/O$	$O\left(\frac{n}{B}\right)$	O(1)	$O\left(k\cdot\left(\frac{n^{1/k}}{B}+1\right)\right)$

- ▶ In practice, the FINGERPRINT_k algorithm is...
 - \blacktriangleright ...almost as good as DIRECTCOMP and significantly better than LCPRMQ in average case
 - \blacktriangleright ...significantly better than DIRECTCOMP but worse than LCPRMQ in worst case
- ▶ Cache optimization of FINGERPRINT_k improves query times at k = 2 and worsens query times at $k \ge 3$