MSc Business Analytics 2020/21 Optimisation and Decision Models Wolfram Wiesemann

Nonlinear Programming Exercises

- (1) Consider the following multivariate linear regression problem: We are given m observations $(x_{11}, ..., x_{1n}; y_1), ..., (x_{m1}, ..., x_{mn}; y_m)$ where $x_{i1}, ..., x_{in}$ are the values of the n explanatory variables and y_i is the value of the response variable of the i-th observation, respectively, where i = 1, ..., m. We wish to find the slopes $b_1, ..., b_n$ as well as the intercept b_0 that minimise the sum of squared errors between the responses y_i and the regression line $b_0 + b_1 x_{i1} + ... + b_n x_{in}$, where the sum is taken over i = 1, ..., m.
 - (a) Write down the problem as a nonlinear optimisation problem.
 - (b) Is your problem from part (1) convex? Justify your response!
 - (c) How can you incorporate the following additional constraints:
 - Each of the slopes $b_1, ..., b_n$ should be between -10 and 10.
 - The slope b₁ needs to be at least twice as big as the slope b₂.
 - The slopes b₃ and b₄ must be the same.
 - The slope b_5 must either be ≤ 1 or ≥ 2 .
 - The sum of all absolute values of the slopes $|b_1|, ..., |b_n|$ must be 10 or less.
 - At most 5 of the slopes $b_1, ..., b_n$ should be nonzero.

For each constraint, argue whether your optimisation problem remains convex!

(2) Which of the following optimisation problems is convex?

(a) minimise $1/x_1 + 1/x_2 + 1 x_3 |$ subject to $\max \{ x_1 + x_2, x_1 - x_3 \} >= 2$ $x_1, x_2 >= 0, x_3 \text{ unrestricted}$

(b) maximise $x_1 - x_2^2$ subject to $(2x_1 - x_2)^2 \le x_1$ $|x_1| \le 2$

(c) maximise $3x_1 - 2x_2 + 5^2$ subject to $x_1 + x_2 \le 2$ $x_2 >= x_1$ $x_1, x_2 >= 0$

(d) minimise x_1 (Brainteaser!) subject to $x_1 x_2 >= 2$ $x_2 >= 4$