Master in Artificial Intelligence

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Advanced Human Language Technologies Statistical Models of Language

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)
- Maximum Entropy Modeling
- Log-Linear Models

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

- Statistical Models for NLP
- Why modeling
- Maximum Likelihood Estimation (MLE)
- Maximum Entropy Modeling
- Log-Linear Models

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
 - Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

We model to make predictions

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Statistical Models for NLP
- Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Prediction Models & Similarity Models

Statistical Models for NLP Prediction &

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Prediction Models: Oriented to predict probabilities of future events, knowing past and present.
- Similarity Models: Oriented to compute similarities between objects (may be used to predict, EBL).

Similarity Models

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Objects represented as feature-vectors, feature-sets, distribution-vectors. ...
- Used to group objects (clustering, data analysis, pattern discovery, ...)
- If classified objects are available, similarity may be used as a prediction (example-based ML techniques).
- Example: Document representation
 - Documents are represented as vectors in a high dimensional \mathbb{R}^n space.
 - Dimensions are word forms, lemmas, NEs, n-grams, ...
 - Values may be either binary or real-valued (count, frequency, ...)
 - Vector-space algebra and metrics can be used

Prediction Models

- Estimation: Using data to infer information about distributions
 - Parametric / non-parametric estimation
 - Finding good estimators: MLE, MEE, ...
 - Explicit / implicit models
- Classification: Predictions based on past behaviour
 - Predict most likely target given classification features (implies independence assumptions!)
 - Granularity of equivalence classes (bins): discrimination power vs. statistical reliability
- In general, ML models estimate (i.e. learn) conditional probability distributions P(target|features)
- Many NLP tasks require a posterior search step to find the best combination of predictions.

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Prediction Models

Example: Noisy Channel Model (Shannon 48)

NLP Applications

Appl.	Input	Output	p(i)	p(o i)	
MT	L word	M word	p(L)	Translation	
	sequence	sequence		model	
OCR	Actual text	Text with	prob. of	model of	
		mistakes	language text	OCR errors	
PoS	PoS tags	word	prob. of PoS	p(w t)	
tagging	sequence	sequence	sequence		
Speech	word	speech	prob. of word	acoustic	
recog.	sequence	signal	sequence	model	

Given 0, we want to find the most likely i

$$\underset{i}{\mathsf{argmax}}\,\mathsf{P}(\mathbf{i}\,|\,\mathbf{o}) = \underset{i}{\mathsf{argmax}}\,\mathsf{P}(\mathbf{o},\mathbf{i}) = \underset{i}{\mathsf{argmax}}\,\mathsf{P}(\mathbf{i})\mathsf{P}(\mathbf{o}\,|\,\mathbf{i})$$

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

Choose the alternative that maximizes the probability of the observed outcome.

$$\bar{\mu}_n$$
 is a MLE for E(X)
 s_n^2 is a MLE for σ^2

Zipf's Laws. Data sparseness. Smoothing techniques.

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
					0.08	0.03	0	0.40
on	0.06	0.25	0.10	0.15	0	0	0.04	0.60
total	0.10	0.35	0.25	0.15	0.08	0.03	0.04	1.0

Statistical Models for NLP Prediction & Similarity Models

Maximum Likelihood Estimation

Maximum Entropy Modeling

(MLE)

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = 0.6;$$

$$p((\mathsf{en} \lor \grave{\mathsf{a}}) \land \mathsf{in}) = 0.4; \quad \mathsf{p}(\mathsf{in}) = 0.5$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
(in	0.02	0.20	0.20	0.02	0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total			.6					1.0

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)
- Maximum Entropy Modeling
- Log-Linear Models

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Working Example: N-gram models

Predict the next element in a sequence (e.g. next character, next word, next PoS, next stock value, ...), given the history of previous elements:

$$P(w_n \mid w_1 \dots w_{n-1})$$

Markov assumption: Only local context (of size n-1) is taken into account. $P(w_i \mid w_{i-n+1} \dots w_{i-1})$

• bigrams, trigrams, four-grams (n = 2, 3, 4). Sue swallowed the large green <?>

Parameter estimation (number of equivalence classes)

Parameter reduction: stemming, semantic classes, PoS, ...

Model	Parameters
bigram	$20,000^2 = 4 \times 10^8$
trigram	$20,000^3 = 8 \times 10^{12}$
four-gram	$20,000^4 = 1.6 \times 10^{17}$

Language model sizes for a 20,000 words vocabulary

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

N-gram model estimation

Estimate the **probability** of the **target feature** based on **observed data**. The **prediction** task can be reduced to **having** good **estimations** of the **n**-gram distribution:

$$P(w_n \mid w_1 \dots w_{n-1}) = \frac{P(w_1 \dots w_n)}{P(w_1 \dots w_{n-1})}$$

MLE (Maximum Likelihood Estimation)

$$P_{MLE}(w_1...w_n) = \frac{C(w_1...w_n)}{N} P_{MLE}(w_n \mid w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}$$

- No probability mass for unseen events
- Data sparseness, Zipf's Law
- Unsuitable for NLP (widely used, though)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

Brief Parenthesis: Zipf's Laws

Zipf's Laws (1929)

- Word frequency is inversely proportional to its rank (speaker/hearer minimum effort) $f \sim 1/r$
- Number of senses is proportional to frequency root $m \sim \sqrt{f}$
- Frequency of intervals between repetitions is inversely proportional to the length of the interval $\overline{F} \sim 1/\overline{I}$
- Frequency based approaches are hard, since most words are rare
 - Most common 5% words account for about 50% of a text
 - 90% least common words account for less than 10% of the text
 - Almost half of the words in a text occurr only once

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)
- Smoothing & Estimator Combination

Maximum Entropy Modeling

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Notation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

- C($w_1 \dots w_n$): Observed occurrence count for n-gram $w_1 \dots w_n$.
- N: Number of observed n-gram occurrences

$$N = \sum_{w_1 \dots w_n} C(w_1 \dots w_n)$$

- $Arr N_k$: Number of classes (n-grams) observed k times.
- B: Number of equivalence classes or bins (number of potentially observable n-grams).

Smoothing 1 - Adding Counts

■ Laplace's Law (adding one)

Statistical

$$P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{N + B}$$

■ For large values of B too much probability mass is assigned to unseen events

Lidstone's Law

$$P_{LID}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + \lambda}{N + B\lambda}$$

- Usually $\lambda = 0.5$, Expected Likelihood Estimation.
- Equivalent to linear interpolation between MLE and uniform prior, with $\mu = N/(N + B\lambda)$,

$$P_{LID}(w_1...w_n) = \mu \frac{C(w_1...w_n)}{N} + (1-\mu)\frac{1}{B}$$

Models for NI P

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

Smoothing 2 - Discounting Counts

Absolute Discounting

$$P_{ABS}(w_1 \dots w_n) = \left\{ \begin{array}{ll} \frac{C(w_1 \dots w_n) - \delta}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \\ \frac{(B - N_0)\delta/N_0}{N} & \text{otherwise} \end{array} \right.$$

Linear Discounting

$$P_{LIN}(w_1 \dots w_n) = \left\{ \begin{array}{ll} (1-\alpha) \frac{C(w_1 \dots w_n)}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \\ \alpha/N_0 & \text{otherwise} \end{array} \right.$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Smoothing &

Estimator Combination Maximum Entropy Modeling

Combining Estimators

Simple Linear Interpolation

$$\begin{split} P_{LI}(w_n \mid w_{n-2}, w_{n-1}) &= \lambda_1 P_1(w_n) \\ &+ \lambda_2 P_2(w_n \mid w_{n-1}) \\ &+ \lambda_3 P_3(w_n \mid w_{n-2}, w_{n-1}) \end{split}$$

Backing-off

$$P_{BO}(w_i \mid h) = \left\{ \begin{array}{ll} (1 - \alpha_h) \frac{C(h, w_i)}{C(h)} & \text{if } C(h, w_i) > k \\ \delta_{h'} P_{BO}(w_i \mid h') & \text{otherwise} \end{array} \right.$$

(where
$$h = w_{i-n+1} \dots w_{i-1}$$
, $h' = w_{i-n+2} \dots w_{i-1}$)
Different options to determine α_h and $\delta_{h'}$ (e.g. $\alpha_h = \delta_{h'}$ $\forall h$)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Smoothing &

Estimator Combination Maximum Entropy

Modeling Log-Linear

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
 - 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
 - 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

MEM Overview

- Maximum Entropy: alternative estimation technique.
- Able to deal with different kinds of evidence
- ME principle:
 - Do not assume anything about non-observed events.
 - Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.
- Example:

p(x, y)	0	1		p(x,y)				p(x, y)			
a b	?	?		а	0.5	0.1		а	0.3	0.2	
b	?	?		b	0.1	0.3		b	0.3	0.2	
total	0.6		1.0	total	0.6		1.0	total	0.6		1.0
					'						'
Obse	rvat	ion	S	One po	ssibl	e n(x	. 11)	Max Fr	tron	v n(x	cu)

Overview

Log-Linear

Models

Statistical Models for NI P

Maximum Likelihood

Estimation (MLE)

Maximum Entropy Modeling

ME Modeling

- Observed facts are constraints for the desired model p.
- Constraints take the form of feature functions:

$$f_i: \epsilon \to \{0, 1\}$$

■ The desired model p must satisfy the constraints: The expectation predicted by model p for any feature f_i must match the observed expectation for f_i i.e.:

$$\begin{array}{rcl} E_{\mathfrak{p}}(f_{\mathfrak{i}}) & = & E_{\widetilde{\mathfrak{p}}}(f_{\mathfrak{i}}) & \forall \mathfrak{i} \\ \sum_{x \in \varepsilon} p(x) f_{\mathfrak{i}}(x) & = & \sum_{x \in \varepsilon} \widetilde{\mathfrak{p}}(x) f_{\mathfrak{i}}(x) & \forall \mathfrak{i} \end{array}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

Example

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models ■ Example:

$$\epsilon = \{\alpha, b\} \times \{0, 1\} \qquad \begin{array}{c|cccc} p(x, y) & 0 & 1 \\ \hline a & ? & ? \\ \hline b & ? & ? \\ \hline total & 0.6 & 1.0 \end{array}$$

- Observed fact: p(a, 0) + p(b, 0) = 0.6
- Encoded as a constraint: $E_p(f_1) = 0.6$ where:

$$\label{eq:energy} \bullet \ E_p(f_1) = \sum_{(x,y) \in \{\alpha,b\} \times \{0,1\}} p(x,y) f_1(x,y)$$

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Building ME Models

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
 - 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Probability Model

There is an infinite set P of probability models consistent with observations:

$$P = \{p \mid E_p(f_i) = E_{\widetilde{p}}(f_i), \ \forall i\}$$

Maximum entropy model

$$\begin{split} p^* &= \underset{p \in P}{\mathsf{argmax}} \, \mathsf{H}(p) \\ &= \underset{p \in P}{\mathsf{argmax}} \left(-\sum_{x \in \epsilon} p(x) \log p(x) \right) \end{split}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Conditional Probability Model

■ For NLP applications, we are usually interested in conditional distributions P(Y|X), thus, the ME model is

$$p^* = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(p) = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(Y \,|\, X)$$

where:

$$\begin{split} H(Y \mid X) &= \sum_{x \in X} p(x) H(Y \mid X = x) \\ &= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y \mid x) \log p(y \mid x) \\ &= -\sum_{x \in X, y \in Y} p(x, y) \log p(y \mid x) \\ &= -\sum_{x \in X, y \in Y} p(x, y) \log \frac{p(x, y)}{p(x)} \end{split}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Parameter Estimation

Example: Maximum entropy model for translating in to French

No constraints

P(x)	dans	en	à	au-cours-de	pendant	
	0.2	0.2	0.2	0.2	0.2	
total						1.0

■ With constraint p(dans) + p(en) = 0.3

P(x)	dans	en	à	au-cours-de	pendant	
	0.15	0.15	0.233	0.233	0.233	
total	0.	.3				1.0

■ With constraints

$$p(dans) + p(en) = 0.3;$$
 $p(en) + p(a) = 0.5$

...Not so easy !

Statistical Models for

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter estimation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum
Entropy
Modeling
Building ME Models

Log-Linear Models Exponential models

$$p(y\mid x) = \frac{1}{Z(x)} \prod_{j=1}^k \alpha_j^{f_j(x,y)} \quad \alpha_j > 0, \quad Z(x) = \sum_y \prod_{i=1}^k \alpha_i^{f_i(x,y)}$$

■ Can also be formuled as

$$p(y \mid x) = \frac{1}{\mathsf{Z}(x)} \exp \left(\sum_{j=1}^k \lambda_j f_j(x,y) \right) \tag{i.e. } \lambda_i = \ln \alpha_i)$$

- Each model parameter weights the influence of a feature.
- Optimal parameters can be computed with:
 - Generalized Iterative Scaling (GIS) [Darroch & Ratcliff 72]
 - Improved Iterative Scaling (IIS) [Della Pietra et al. 96]
 - Limited Memory BFGS (LM-BFGS) [Malouf 03]

Example: Text Categorization

Probabilistic model over $W \times C$ (Words \times Categories). A document is a set of words: $d = (w_1, w_2 \dots w_N)$. Each combination $w, c \in W \times C$ is a feature:

$$f_{w,c}(d,c') = \begin{cases} \frac{N(w,d)}{N(d)} & \text{if } c = c' \\ 0 & \text{otherwise} \end{cases}$$

■ Disambiguation: Select class with highest $P(c \mid d)$

$$P(c \mid d) = \frac{1}{Z(d)} \exp(\sum_{i} \lambda_{i} f_{i}(d, c))$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum

Entropy Modeling Building ME Models

MEM Summary

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum
Entropy
Modeling
Building ME Models

Log-Linear Models

Advantages

- Teoretically well founded
- Enables combination of random context features
- Better probabilistic models than MLE (no smoothing needed)
- General approach (features, events and classes)
- Disadvantages
 - Implicit probabilistic model (joint or conditional probability distribution obtained from model parameters).

ME Models are a particular case of Log-Linear models

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- 1 Statistical Models for NLF
 - Why modeling
 - Prediction & Similarity Models
 - 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models
- 4 Log-Linear Models

Log-Linear Models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$

where

- f(x, y) is a feature vector representing x and y
- w are the parameters of the model
- $\mathbf{w} \cdot \mathbf{f}(x, y)$ is a score for x and y
- $Z(x) = \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$ is a normalizer (sums over all possible values y for x); it's sometimes called the *partition function*

Features, Indicator Features

• f(x, y) is a vector of d features representing x and y

$$(\mathbf{f}_{1}(x,y),...,\mathbf{f}_{j}(x,y),...,\mathbf{f}_{d}(x,y))$$

- What's in a feature $f_i(x, y)$?
 - \blacksquare Anything we can compute using x and y
 - Anything that is informative for (or against) x belonging to class y
 - Indicator features: binary-valued features looking at a single simple property

$$\begin{split} \mathbf{f}_j(c,b) = \left\{ \begin{array}{ll} 1 & \text{if prefix}(c) = & \textit{Mr} \text{ and } b = & \text{no} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_k(c,b) = \left\{ \begin{array}{ll} 1 & \text{if uppercase}(\mathsf{next}(c)) \text{ and } b = & \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Statistical Models for NLP Maximum

Likelihood Estimation (MLE) Maximum

Entropy Modeling

Features, Parameters, Inner Products

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{\mathbf{u}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$

- $\mathbf{f}(x,y) \in \mathbb{R}^d$ is a feature vector with d features
- $\mathbf{w} \in \mathbb{R}^d$ is a parameter vector, with d parameters
- Inner products (a.k.a. dot products)

$$\mathbf{w} \cdot \mathbf{f}(x, y) = \sum_{i=1}^{d} \mathbf{w}_i \ \mathbf{f}_i(x, y)$$

Log-linear Models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{\mathbf{u}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$

where

- f(x, y) is a feature vector representing x and y
 - \blacksquare Arbitrary features of x and y are allowed
 - They are provided for the application in turn
- w are the parameters of the model
- Two problems:
 - How to make predictions using P(y | x)
 - How to estimate the parameters w?

Log-linear Models: Name

Let's take the log of the conditional probability:

$$\begin{split} \log \mathsf{P}(y \mid x; \mathbf{w}) &= \log \frac{\exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right)}{\sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right)} \\ &= \mathbf{w} \cdot \mathbf{f}(x, y) - \log \sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right) \\ &= \left[\mathbf{w} \cdot \mathbf{f}(x, y) \right] - \log \mathsf{Z}(x) \end{split}$$

- Partition function: $Z(x) = \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$
- $\log Z(x)$ is a constant for a fixed x
- In the log space, computations are linear

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Making Predictions

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

```
\begin{aligned} \mathsf{best}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{P}(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}
```

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Making Predictions

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \text{best}(x) &= \underset{y \in \{1, \dots, L\}}{\text{argmax}} \; P(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\text{argmax}} \; \frac{\text{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{Z(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\text{argmax}} \; \text{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\text{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}$$

- Predictions only require simple inner products (linear)
- No need to exponentiate!

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Computing Probabilities

$$\mathsf{P}(y\mid x;\mathbf{w}) = \frac{\mathsf{exp}\left(\mathbf{w}\cdot\mathbf{f}(x,y)\right)}{\mathsf{Z}(x)}$$

- Sometimes we will be interested in computing $P(y \mid x)$
 - It can be used as a measure of confidence, e.g.

$$\begin{array}{l} \texttt{P(yes} \mid c) = \texttt{0.51} \textit{ versus} \\ \texttt{P(yes} \mid c) = \texttt{0.99} \end{array}$$

■ We need to compute:

$$Z(x) = \sum_{y = \{1, \dots, L\}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$$

■ Fast as long as L is not too large

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-linear Models

■ How to estimate model parameters w given a training set:

$$\left\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\right\}$$

Let's define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w})$$

- $L(\mathbf{w})$ measures how well \mathbf{w} explains the data. A good value for \mathbf{w} will give a high value for $P(y^{(k)}|x^{(k)};\mathbf{w})$ for all $k=1\ldots m$.
- We want w that maximizes L(w)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-Linear Models

- We pose it as an optimization problem
- Find:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^d} L(\mathbf{w})$$

where

- But low-frequency features may end up having large weights (i.e. overfitting)
- We need a <u>regularization</u> factor that penalizes solutions with a large norm (similar to norm-minimization in SVM):

$$L'(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

■ where \(\) is a parameter to control the trade-off between fitting the data and model complexity. Tuned experimentally.

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-Linear Models

So we want to find:

$$\begin{split} \mathbf{w}^* &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \, L'(\mathbf{w}) \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \left(\frac{1}{m} \sum_{k=1}^m \log \mathsf{P}(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2 \right) \end{split}$$

- In general there is no analytical solution to this optimization
- ... but it is a convex function ⇒ We use iterative techniques, i.e. gradient-based optimization
- Very fast algorithms exist (e.g. LBFGS)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-Linear Models : Gradient step

- Initialize $\mathbf{w} = \mathbf{0}$
- Repeat
 - Compute gradient $\delta = (\delta_1, \dots, \delta_d)$, where:

$$\delta_j = \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} \quad \forall j = 1 \dots d$$

■ Compute step size

$$\beta^* = \underset{\beta \in \mathbb{R}}{\mathsf{argmax}} \, \mathsf{L}'(\mathbf{w} + \beta \delta)$$

■ Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \boldsymbol{\beta}^* \boldsymbol{\delta}$$

lacksquare until convergence $(\|\delta\|<arepsilon)$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Computing the Gradient

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$$\begin{split} \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} &= \frac{1}{m} \sum_{k=1}^m \mathbf{f}_j(\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(k)}) \\ &- \sum_{k=1}^m \sum_{\boldsymbol{y} \in \{1, \dots, L\}} P(\boldsymbol{y} | \boldsymbol{x}^{(k)}; \mathbf{w}) \ \mathbf{f}_j(\boldsymbol{x}^{(k)}, \boldsymbol{y}) \\ &- \lambda \mathbf{w}_j \end{split}$$

- First term: observed mean feature value
- Second term: expected feature value under current w
- In the optimal, observed = expected

Maximum log-likelihood log-linear models correspond to Maximum Entropy models

MEM Overview

ME Models are the **dual formulation** of **Log-Linear models**.

- Maximum Entropy: alternative estimation technique.
- Able to deal with different kinds of evidence
- ME principle:

Statistical

Models for

Maximum

Likelihood Estimation

Log-Linear Models

> Maximum Entropy Models

(MLE)

- Do not assume anything about non-observed events.
- Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.
- Example:

	p(x, y)	0	1		p(x, y)	0	1		p(x, y)	0	1	
	a	?	?		а	0.5	0.1		а	0.3	0.2	
	b	?	?		b	0.1	0.3		b	0.3	0.2	
	total	0.6		1.0	total	0.6		1.0	total	0.6		1.0
								•				
Observations			S	One po	ssible	e p(x	c, y)	Max.Ei	Entropy $p(x, y)$			

ME Modeling

- Observed facts are constraints for the desired model p.
- Constraints take the form of feature functions:

$$f_{i}:\epsilon\rightarrow\{0,1\}$$

The desired model p must satisfy the constraints:
The expectation predicted by model p for any feature fi must match the observed expectation for fi i.e.:

$$\begin{array}{rcl} E_p(f_i) & = & E_{\widetilde{p}}(f_i) & \forall i \\ \sum_{x \in \varepsilon} p(x) f_i(x) & = & \sum_{x \in \varepsilon} \widetilde{p}(x) f_i(x) & \forall i \end{array}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Probability Model

■ There is an infinite set P of probability models consistent with observations:

$$P = \{p \mid E_p(f_i) = E_{\widetilde{p}}(f_i), \ \forall i\}$$

Maximum entropy model

$$\begin{array}{rcl} p^* & = & \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(p) \\ \\ & = & \mathop{\mathsf{argmax}}_{p \in P} \left(-\sum_{x \in \epsilon} \mathsf{p}(x) \log \mathsf{p}(x) \right) \end{array}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Conditional Probability Model

■ For NLP applications, we are usually interested in conditional distributions P(Y|X), thus, the ME model is

$$p^* = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(p) = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(\mathsf{Y} \mid \mathsf{X})$$

where:

$$H(Y \mid X) = \sum_{x \in X} p(x)H(Y \mid X = x)$$

$$= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y \mid x) \log p(y \mid x)$$

$$= -\sum_{x \in X, y \in Y} p(x, y) \log p(y \mid x)$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Parameter Estimation

Example: Maximum entropy model for translating in to French

No constraints

P(x)	dans en		à	au-cours-de	pendant	
	0.2	0.2	0.2	0.2	0.2	
total						1.0

■ With constraint p(dans) + p(en) = 0.3

P(x)	dans	en	à	au-cours-de	pendant	
	0.15	0.15	0.233	0.233	0.233	
total	0.3					1.0

With constraints

$$p(dans) + p(en) = 0.3;$$
 $p(en) + p(a) = 0.5$

...Not so easy !

Statistical Models for

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Parameter estimation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Maximum Entropy

 ME models are exponential models, same as log-linear models

$$\begin{split} p(y\mid x) &= \frac{1}{Z(x)} \exp\left(\sum_{j=1}^k \lambda_j f_j(x,y)\right) \\ &\text{where } Z(x) = \sum_{y'} \exp\left(\sum_{j=1}^k \lambda_j f_j(x,y')\right) \end{split}$$

- Each model parameter weights the influence of a feature.
- Same convex optimization algorithms are used (e.g. LM-BFGS [Malouf 03])

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models Examples

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Example: Text Categorization

■ Probabilistic model over $W \times C$ (Words \times Categories). A document is a set of words: $d = (w_1, w_2 \dots w_N)$. Each combination $w, c \in W \times C$ is a feature:

$$f_{w,c}(d,c') = \begin{cases} \frac{N(w,d)}{N(d)} & \text{if } c = c' \\ 0 & \text{otherwise} \end{cases}$$

Disambiguation: Select class with highest $P(c \mid d)$

$$P(c \mid d) = \frac{1}{Z(d)} \exp(\sum_{i} \lambda_{i} f_{i}(d, c))$$

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Log-Linear Models Examples

Example: Identifying Sentence Boundaries

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

Goal: given a text, identify tokens that end a sentence

- Candidate characters: . ! ?
- Candidate tokens: tokens containing candidate characters
- Given a candidate token in a context decide whether it ends a sentence or not

Example: Sentence Boundaries

Candidate: punctuation sign + context
c = < sign, prefix, suffix, previous, next >

Assume access to annotated data:

b	sign	prefix	suffix	prev	next
no		D	C.	Washington,	The
yes		D.C		Washington,	The
no		Mr		2010.	Wayne

- Let's take a probabilistic approach:
 - P(yes | c): conditional probability of c being end of sentence
 - $P(no \mid c)$: conditional probability of c not being e.o.s.
 - Obviously, P(yes | c) + P(no | c) = 1
 - Predict yes if P(yes | c) > 0.5
- How to model P(yes | c) and P(no | c)?

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Example system: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

- Candidate: punctuation sign + context
 c = < sign, prefix, suffix, previous, next >
- **Goal**: estimate P(yes | c) and P(no | c)
- Feature templates:
 - The prefix
 - 2 The suffix
 - 3 The word previous
 - 4 The word next
 - 5 Whether prefix or suffix are in ABBREVIATIONS
 - ABBREVIATIONS: list of all training tokens that contain a
 and are not sentence boundaries
 - 6 Whether previous or next are in ABBREVIATIONS
- Actual features are generated by applying each template to each training example

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Example system: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Feature Templates

- 1 The prefix
- 2 The suffix
- 3 The word previous
- 4 The word next
- 5 Whether prefix or suffix are in Abbreviations
- 6 Whether previous or next are in Abbreviations

< b=no punc=. pref=Mr suff= prev=2010. next=Wayne >

Generated Features

$$\begin{split} \mathbf{f}_1(c,b) = & \left\{ \begin{array}{ll} 1 & \text{if pref}(c) = \texttt{Mr} \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. & \mathbf{f}_4(c,b) = \left\{ \begin{array}{ll} 1 & \text{if next}(c) = \texttt{Wayne} \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_2(c,b) = & \left\{ \begin{array}{ll} 1 & \text{if suff}(c) = \texttt{NULL} \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. & \mathbf{f}_5(c,b) = \left\{ \begin{array}{ll} 1 & \text{if (abbr(pref}(c)) or abbr(suff(c)))} \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_3(c,b) = & \left\{ \begin{array}{ll} 1 & \text{if prev}(c) = 2010. \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. & \mathbf{f}_6(c,b) = \left\{ \begin{array}{ll} 1 & \text{if (abbr(prev}(c)) or abbr(next(c)))} \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Example System: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

	training sentences
Statistical Models for	500
NLP	1000
Maximum Likelihood	2000
Estimation	4000
(MLE)	0000

Maximum

Entropy

Modeling

Log-Linear Models 500 96.5% 1000 97.3% 2000 97.3% 4000 97.6% 8000 97.6% 16000 97.8% 39441 98.0%

test accuracy

■ Corpus: Wall Street Journal, English