회귀

목차

- 선형회귀(Linear regression)
- 다항회귀(Polynomial regression)
- 서포트벡터 회귀(Support vector regression)
- 의사결정나무 회귀(Decision tree regression)
- 신경망 회귀(Neural Network regression)

선형회귀(Linear regression)

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i \quad , \ \varepsilon_i \sim \mathbb{N}(0, \sigma^2)$$

- 가정
- 모형의 형태에 대한 가정
- 선형성

- 독립성
- 등분산성
- 정규성

선형회귀(Linear regression)

- 선형성 가정 위배
- 로그 변환

- ◎ 등분산성 가정 위배
 - 가중최소제곱법(WLS) 적용
 - 로그 변환
 - 멱변환

✓ 최소제곱법(OLS)

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

✓ 가중최소제곱법(WLS)

$$\sum_{i=1}^{n} w_i (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2 \qquad w_i : 분산에 반비례한 가중치 w_i = \frac{1}{\sigma_i^2}$$

다항회귀(Polynomial regression)

$$Y_i = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \varepsilon_i$$

✓ 스플라인 회귀

스플라인: 고정된 점들 사이를 부드럽게 보간하는 방법

매듭: 스플라인 구간을 구분하는 값

• 실선: 스플라인 회귀

• 점선: 평활 곡선

• 회귀식

$$y = f(x) = \langle w, x \rangle + b = \sum_{j=1}^{M} w_j x_j + b, y, b \in \mathbb{R}, x, w \in \mathbb{R}^M$$

$$f(x) = \begin{bmatrix} w \\ b \end{bmatrix}^T \begin{bmatrix} x \\ 1 \end{bmatrix} = w^T x + b \quad x, w \in \mathbb{R}^{M+1}$$

M: 회귀식 차수

회귀식 주변의 가장 좁은 폭의 튜브를 찾는 것이 최적화 문제

$$\min_{w} \frac{1}{2} \|w\|^2$$

||w|| : 회귀식에 대한 법선 벡터 크기

$$y = f(x) = \langle w, x \rangle + b = \sum_{j=1}^{M} w_j x_j + b, y, b \in \mathbb{R}, x, w \in \mathbb{R}^M$$
$$f(x) = \begin{bmatrix} w \\ b \end{bmatrix}^T \begin{bmatrix} x \\ 1 \end{bmatrix} = w^T x + b \quad x, w \in \mathbb{R}^{M+1}$$

✓ 손실함수

• 선형

$$L_{\varepsilon}(y, f(x, w)) = \begin{cases} 0 & |y - f(x, w)| \le \varepsilon; \\ |y - f(x, w)| - \varepsilon & otherwise, \end{cases}$$

• 2차

$$L_{\varepsilon}(y, f(x, w)) = \begin{cases} 0 & |y - f(x, w)| \le \varepsilon; \\ (|y - f(x, w)| - \varepsilon)^{2} & otherwise, \end{cases}$$

Huber

$$L(y, f(x,w)) = \begin{cases} c|y - f(x,w)| - \frac{c^2}{2} & |y - f(x,w)| > c \\ \frac{1}{2}|y - f(x,w)|^2 & |y - f(x,w)| \le c \end{cases}$$

• 최적화 문제

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \varepsilon_i + \varepsilon_i^*$$

• 라그랑지안

$$\mathcal{L}(w, \xi^*, \xi, \lambda, \lambda^*, \alpha, \alpha^*) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i + \xi_i^* + \sum_{i=1}^N \alpha_i^* (y_i - w^T x_i - \varepsilon - \xi_i^*) + \sum_{i=1}^N \alpha_i (-y_i + w^T x_i - \varepsilon - \xi_i) - \sum_{i=1}^N \lambda_i \xi_i + \lambda_i^* \xi_i^*$$

의사결정나무 회귀(Decision Tree regression)

평균제곱오차(MSE)를 최소화하는 방향으로 모델 설계

- 규제 항목(sklearn 0.19 기준)
- max_depth
- min_samples_split: 분할되기 위해 노드가 가져야 할 최소 샘플 수
- min_samples_leaf: 리프 노드가 가지고 있어야 할 최소 샘플 수
- min_weight_fraction_leaf: min_sample_leaf와 동일하지만
 가중치 부여된 전체 샘플 수에서의 비율
- max_leaf_nodes: 리프 노드의 최대 수
- max_features: 각 노드에서 분할에 사용할 특성 최대 수
- min_impurity_decrease: 분할 대상이 되기 위해 필요한 최소한의 불순도

신경망 회귀

하이퍼파라미터	값
입력 뉴런 수	예측변수 개수
출력 뉴런 수	1
은닉층의 활성화 함수	ReLU(또는 SELU)
출력층의 활성화함수	없음 (출력이 양수) ReLU/ softplus (출력 범위 제한) logistic/ tanh
손실함수	MSE (이상치 존재 시) MAE/ Huber

신경망 회귀

- ✓ 활성화함수
 - SELU
 - RELU

$$f(x) = \begin{cases} x(x \ge 0) \\ 0(x < 0) \end{cases} \qquad f'(x) = \begin{cases} 1 & (x \ge 0) \\ 0 & (x < 0) \end{cases}$$

- ELU

$$f(\alpha, x) = \begin{cases} x & (x > 0) \\ \alpha(e^x - 1)(x \le 0) \end{cases} \quad f'(\alpha, x) = \begin{cases} 1 & (x > 0) \\ f(\alpha, x) + \alpha(x \le 0) \end{cases}$$

- SELU

신경망 회귀

✓ 손실함수

• 평균절대오차(MAE, Mean Absolute Error)

$$MAE = MAE = \frac{1}{n}\sum_{i=1}^{n}|x_i - x|$$

Huber

$$L_{H}(\gamma, \delta) = \begin{cases} \frac{1}{2} (y - f(x))^{2} & \text{if } |y - f(x)| \leq \delta \\ \delta |y - f(x)| - \frac{\delta^{2}}{2} & \text{otherwise} \end{cases}$$

정리

