Esercitazione 7 del 30/10/2020

1) In un recipiente sono contenuti 100 g di una miscela di Ar, O_2 e C_2H_6 (metano). La miscela esercita alla temperatura di 45°C una pressione di 6.78 atm. Sapendo che la composizione in peso della miscela è Ar= 49% O_2 = 27% e C_2H_6 = 24%, calcolare la composizione percentuale in volume della miscela e le pressioni parziali dei tre gas espresse in torr. Nello stesso recipiente, 75g della miscela vengono riscaldati a 300°C, tutto l'ossigeno reagisce con C_2H_6 secondo la reazione: C_2H_6 (g)+ O_2 (g) --> CO_2 (g)+ H_2O (g).

Calcolare la pressione totale nel recipiente a fine reazione.2) Un campione di CO₂ incognito alla pressione di 1.474 atm ed alla temperatura di 47°C vengono raffreddati a -15°C. Calcolare la pressione del gas al termine del processo di raffreddamento.

- 3) In un recipiente sono presenti dal volume di 3.75 L vengono inseriti 1.56 L di acqua liquida e 1.76 g di gas metano (CH₄) e 1.04 g di O2 alla temperatura di 89 °C. Sapendo che tensione di vapore dell'acqua a quella temperatura è 355.1 mmHg, determinare la pressione totale all'interno del recipiente.
- 4) Determinare quale tipo di legame chimico unisce gli atomi nei composti e quale tipo di forza intermolecolare si instaura tra le seguenti specie: NaBr, HF, HI, Li, etanolo (CH3CH2OH). Sono gassosi, liquidi o solidi a temperatura e pressione ambiente (25°C e 1 atm)?
- 5) Disporre in ordine crescente di temperatura di ebollizione le i composti F₂, I₂, NH₃, NaBr, spiegando il motivo.
- 6) Assegnare il corretto valore di Teb alle seguenti sostanze alla pressione di 1 atm (pressione atmosferica), spiegando il motivo:

188°C, 115°C, 80°C, 69°C, -76°C.

Benzene, Piridina, Glicole propilenico, Tetrafluoroetilene, n-esano.