

planetmath.org

Math for the people, by the people.

proof of angle sum identities

Canonical name ProofOfAngleSumIdentities

Date of creation 2013-05-28 14:35:29 Last modified on 2013-05-28 14:35:29

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 15

Author rspuzio (6075)

Entry type Proof
Classification msc 43-00
Classification msc 51-00
Classification msc 42-00
Classification msc 33B10

We will derive the angle sum identities for the various trigonometric functions here. We begin by deriving the identity for the sine by means of a geometric argument and then obtain the remaining identities by algebraic manipulation.

Theorem 1.

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

Proof. Let us make the restrictions $0^{\circ} < x < 90^{\circ}$ and $0^{\circ} < y < 90^{\circ}$ for the time being. Then we may draw a triangle ABC such that $\angle CAB = x$ and $\angle ABF = y$:

Since the angles of a triangle add up to 180° , we must have $\angle BCA = 180^{\circ} - x - y$, so we have $\sin(\angle BCA) = \sin(180^{\circ} - x - y) = \sin(x + y)$.

We now draw perpendiculars two different ways in order to derive ratios. First, we drop a perpendicular AD from C to AB:

Since ACD and BCD are right triangles we have, by definition,

$$\cot(\angle CAB) = \overline{AD}/\overline{CD}$$
 $\cot(\angle ABC) = \overline{BD}/\overline{CD}$ $\sin(\angle CAB) = \overline{CD}/\overline{AC}$.

Second, we draw a perpendicular AE form A to BC. Depending on whether $x + y < 90^{\circ}$ or $x + y < 90^{\circ}$ the point E will or will not lie between

B and C, as illustrated below. (There is also the case $x+y=90^{\circ}$, but it is trivial.)

Either way, ABE and ACE are right triangles, and we have, by definition,

$$\sin(\angle BCA) = \overline{AE}/\overline{AC}$$
 $\sin(\angle ABC) = \overline{AE}/\overline{AB}$.

Combining these ratios, we find that

$$\sin(\angle BCA)/\sin(\angle ABC) = \overline{AB}/\overline{AC}.$$

To finish deriving the sum identity, we manipulate the ratios derived above algebraically and use the fact that $\overline{AD} + \overline{BD} = \overline{AB}$:

$$\sin(x+y) = \sin(\angle BCA) = \overline{AB} \sin(\angle ABC)/\overline{AC}$$

$$= (\overline{AD} + \overline{BD}) \sin(\angle ABC)/\overline{AC}$$

$$= \overline{CD} \left(\cot(\angle CAB) + \cot(\angle ABC)\right)/\sin(\angle ABC)\overline{AC}$$

$$= \sin(\angle CAB) \sin(\angle ABC) \left(\frac{\cos(\angle CAB)}{\sin(\angle CAB)} + \frac{\cos(\angle ABC)}{\sin(\angle ABC)}\right)$$

$$= \sin(\angle CAB) \cos(\angle ABC) + \cos(\angle CAB) \sin(\angle ABC)$$

$$= \sin(x) \cos(y) + \cos(x) \sin(y)$$

To lift the restriction on the range of x and y, we use the identities for complements and negatives of angles. \Box

Entry under construction