## Association of Hours Studied to Exam Grade

Six students enrolled in a reading section of organic chemistry are preparing for their first exam. How are the hours each student studied and their exam grade associated?

### Scatterplot

A Scatterplot of exam grade by hours studied variables shows the relationship on the same observation, in this case, student.



Figure 1: A scatterplot of Hours Studied v Exam Grade shows a possible linear relationship

#### Covariance

The Covariance, a measure of strength of the association between any two variables X and Y, denoted Cov(X,Y) is calculated by first multiplying the deviations from their means,  $Dev_{\bar{x}}$  and  $Dev_{\bar{y}}$ , then summing over all observations and dividing by N, the number of observations. This is very similar to the population variance calculation, and the

|                    | examgrade | studyhours |
|--------------------|-----------|------------|
| Min.               | 57.0      | 1.0        |
| 1st Qu.            | 64.2      | 2.0        |
| Median             | 71.5      | 2.5        |
| Mean               | 72.2      | 3.2        |
| 3rd Qu.            | 80.2      | 4.5        |
| Max.               | 88.0      | 6.0        |
| Sum Sq Deviation   | 686.6     | 18.6       |
| Variance           | 114.4     | 3.1        |
| Standard Deviation | 10.7      | 1.8        |

Table 1: Summary Statistics Hours Studied and Grades

|         | Exam<br>Grade    | Hours<br>Studied | Dev <sub>x</sub> hours | Dev <sub>y</sub> grade |
|---------|------------------|------------------|------------------------|------------------------|
| A       | 82               | 6                | 9.8                    | 2.8                    |
| В       | 63               | 2                | -9.2                   | -1.2                   |
| C       | 57               | 1                | -15.2                  | -2.2                   |
| D       | 88               | 5                | 15.8                   | 1.8                    |
| E       | 68               | 3                | -4.2                   | -0.2                   |
| F       | 75               | 2                | 2.8                    | -1.2                   |
| Total   | 433.0            | 19.0             | 0.0                    | 0.0                    |
| Total/N | $\bar{x} = 10.7$ | $\bar{y} = 1.8$  | 0.0                    | 0.0                    |

variance can be thought of as the covariance of a variable with itself ie. Var(X) = Cov(X, X).

$$Cov(X,Y) = \frac{\sum_{i=1}^{N} Dev_{\bar{x}} Dev_{\bar{y}}}{N}$$

The Covariance of Hours Studied with Exam Grade is 16.3 "Hours x Grade". These units make very little sense. We cannot compare covariances among variables in a data set if the units are different.

#### Linear Correlation

A standardized Covariance is the Linear Correlation, calculated by dividing each Covariance by the Standard Deviations of each of the variables:

$$Corr(X,Y) = \frac{Cov(Y,X)}{(StdDev(X)StdDev(Y))}$$

The Correlation of Hours Studied with Exam Grade is 0.84631 with no units, so the correlations of multiple pairs of variables can be compared.

Correlations are always between -1 and 1, and are a quantification of the linear relationship between two variables. A correlation of zero

|   | Exam<br>Grade | Hours<br>Studied | $(Dev_{\bar{x}})^2$ | $(Dev_{\bar{y}})^2$ | Dev <sub>x</sub> Dev <sub>y</sub> hour | rsgrade |
|---|---------------|------------------|---------------------|---------------------|----------------------------------------|---------|
| A | 82.0          | 6.0              | 96.0                | 7.8                 | 27.4                                   |         |
| В | 63.0          | 2.0              | 84.6                | 1.4                 | 11.0                                   |         |
| C | 57.0          | 1.0              | 231.0               | 4.8                 | 33.4                                   |         |
| D | 88.0          | 5.0              | 249.6               | 3.2                 | 28.4                                   |         |
| E | 68.o          | 3.0              | 17.6                | 0.0                 | 0.8                                    |         |
| F | 75.0          | 2.0              | 7.8                 | 1.4                 | -3.4                                   |         |
|   |               | Total            | 686.6               | 18.6                | 97.6                                   |         |
|   |               | Total/N          | Var(X) =            | Var(Y) =            | Cov(X,Y) =                             |         |
|   |               |                  | 114.4               | 3.1                 | 16.3                                   |         |
|   |               | StdDev           | $\sqrt{Var(X)}$     | $=\sqrt{Var(Y)}$    |                                        |         |
|   |               |                  | 72.2                | 3.2                 |                                        |         |

means that there is linear relationship between two variables, although there may be a non-linear relationship. A correlation of 1 or -1 is indicates a perfect positive or negative linear relationship. Corr(X, X) = 1always.

Correlation does not imply Causation! Even if two variables have a high or perfect correlation, there is not necessarily causation. Causation means X depends on Y or Y depends on X.

The Squared value of the correlation, 71.6%, called the Coefficient of Determination, and noted as  $R^2$  is a measure of the "shared variance" of two variable, and the complement 28.4% is the proportion of variance not explained by the association.

# Simple Linear Regression

When a linear correlation exists between two variables, we can explore causation using a Simple Linear Regression, also called Ordinary Least Squares (OLS), regressing a dependent variable, denoted Y, on an independent variable, denoted *X* as a line with the form:

$$Y = \alpha + \beta X + \epsilon \hat{Y} = \alpha + \beta X$$

This is very similar to the traditional algebra formula y = mx + b with slope m and y-intercept b. In this case, the slope is  $\beta$ .

$$\beta = \frac{Cov(X,Y)}{Var(X)} = Corr(X,Y) \frac{StdDev(Y)}{StdDev(X)}$$



Figure 2: Green regression line with prediction error, as noted in red on the chart

Regressing exam grade on hours studied

$$\beta = \frac{16.3}{114.4} = 0.14$$

The linear regression always goes through the point  $(\bar{x}, \bar{y})$ , so returning to algebra, any point plus the slope determines the line:

$$\alpha = \bar{y} - \beta \bar{x}$$

 $\hat{\alpha} = -6.91$  for our regression.

So,

$$\hat{y} = -6.91 + 0.14\bar{x}$$

The predicted value for any  $y_i$  is  $\hat{y}_i$ , and the prediction error is  $\hat{\epsilon}_i =$  $y_i - \hat{y_i}$ .

Some properties of the Simple Linear Regression:

- $\Sigma_{i=1}^N \hat{\epsilon}_i = 0$
- $\sum_{i=1}^{N} x_i \hat{\epsilon}_i = 0$
- The predicted values  $\hat{y_i}$  minimize the sum of the squared prediction errors,  $\Sigma_{i=1}^{N} \hat{\epsilon}_{i}^{2}$ , often referred to as Sum Squared Errors, or SSE.
- The regression equation is valid to predict  $\hat{y}$  values in the range of X, that is, on the interval (min(X), max(X)), and any prediction will be in the range of (min(Y),max(Y))