Les séries entières

1 Rayon de convergence

Définition 1.1. On appelle série entière de la variable complexe z toute série de fonctions de la forme $\sum a_n z^n$, où (a_n) est une suite réelle ou complexe, appelée suite des coefficients.

Comme pour les séries de fonctions, dans le cas de convergence, nous notons S sa fonction somme définie par:

$$S(f) = \sum_{n=0}^{+\infty} a_n z^n.$$

Exemple 1.2.
$$\sum_{n\geq 0} nz^n$$
, $\sum_{n\geq 1} \frac{z^n}{n}$, $\sum_{n\geq 0} \frac{1}{1+n^2}$, $\sum_{n\geq 1} \frac{n^2+in}{e^n} z^{2n}$.

Proposition 1.3. Lemme d'Abel Soit $\sum a_n z^n$ une série entière. S'il existe $z_0 \in \mathbb{C}^*$ tel que la suite $(a^n z_0^n)$ soit bornée, alors la série entière $\sum a_n z^n$ converge absolument sur $D(0,|z_0|)$ et normalement sur $\overline{D}(0,r)$ avec $0 < r < |z_0| \ où \ D(0, |z_0|) = \{z \in \mathbb{C} \ / \ |z| < |z_0|\} \ et \ \overline{D}(0, r) = \{z \in D/|z| \le r\}.$

Démonstration. Soit K un majorant de la suite $(|a_n z_0^n|)_n$.

• Si $|z| < |z_0|$ alors

$$|a_n z^n| = |a_n z_0^n| |\frac{z}{z_0}|^n \le K |\frac{z}{z_0}|^n$$

puisque | $\frac{z}{z_0}$ |< 1, alors la série $\sum |\frac{z}{z_0}|^n$ converge . Donc la série entière $\sum_{n\geq 0} a_n z^n$ est absolument convergente D(0,| z_0 |)

• Soit r > 0 tel que $r < |z_0|$. Si $|z| \le r$, alors $|a_n z^n| \le |a_n| r^n$, puisque la série $\sum |a_n| r^n$ converge. Alors la série $\sum a_n z^n$ converge normalement sur $\overline{D}(0,r)$.

L'ensemble des réels $r \ge 0$ tels que la suite $(a_n r^n)_n$ soit bornée est non vide, puisqu'il contient 0. Il admet une borne supérieure R, éventuellement infinie.

Définition 1.4. On appelle rayon de convergence d'une série entière $\sum a_n z^n$, l'élément $R \in \overline{\mathbb{R}_+} = [0, +\infty[\cup \{+\infty\}$ défini par:

$$R = \sup\{r \ge 0 / (a_n r^n) \text{ bornée }\}.$$

Proposition 1.5. Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

- 1. la série entière $\sum a_n z^n$ converge absolument sur D(0,R).
- 2. la série entière $\sum a_n z^n$ converge normalement sur $\overline{D}(0,r)$ pour tout 0 < r < R.
- 3. si $R \in [0, +\infty[$, la série entière $\sum a_n z^n$ est divergente pour |z| > R.

Remarque 1.6. Dans le cas où |z|=R avec $R\neq\{0,+\infty\}$, le comportement de la série entière n'est pas prévisible.

Exemples 1.7.

- 1. $\sum_{n\geq 0} z^n$ a pour rayon de convergence R=1 et $\sum_{n\geq 0} z^n$ diverge pour |z|=1.
- 2. le rayon de convergence de la série entière $\sum_{n>1} \frac{z^n}{n}$ est R=1 mais $\sum \frac{z^n}{n}$ diverge en z=1 et converge pour tout z tel que |z| = 1 et $z \neq 1$.
- 3. la série entière $\sum_{n>0}\frac{z^n}{n^2}$ a pour rayon de convergence R=1.
- 4. $\sum n!z^n$.

Pour tout |z| > 0, on a $\lim_{n \to +\infty} n! |z|^n = +\infty$.

Donc $(n!z^n)$ n'est pas bornée, ce qui implique que R=0.

5. $\sum_{n>0} \frac{z^n}{n!}$. Pour tout z la suite $(\frac{z^n}{n!})$ est bornée.

Remarque 1.8. lorsque l'où envisage une variable réelle x, le disque de convergence est l'intervalle]-R,R[. La série $\sum a_n x^n$ converge absolument pour |x| < R. Si $R < +\infty$, La série diverge pour |x| > R et pour |x| = R, On ne peut rien dire.

Proposition 1.9. (Règle de d'Alembert)

Soit $\sum a_n z^n$ une série entière. Si $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = l \in [0,+\infty[\cup\{+\infty\}. \ Alors \ le \ rayon \ de \ convergence \ de$ $\sum a_n z^n \ est \ R = \frac{1}{l} \ où \frac{1}{0} = \infty \ et \ \frac{1}{\infty} = 0.$

Exemples 1.10.

$$\begin{aligned} 1. \ \ & \sum \frac{n^2 - n + 3}{2n^3 + n + \pi} z^n. \\ & \frac{(n+1)^2 - n - 1 + 3}{2(n+1)^3 + n + 1 + \pi}. \frac{2n^3 + n + \pi}{n^2 - n + 3} = \frac{n^2 + n + 3}{2n^3 + 6n^2 + 7n + 3 + \pi}. \frac{2n^3 + n + \pi}{n^2 - n + 3} = \frac{1 + \frac{1}{n} + \frac{3}{n^2}}{2 + \frac{6}{n} + \frac{7}{n^2} + \frac{3 + \pi}{n^3}}. \frac{2 + \frac{1}{n^2} + \frac{\pi}{n^3}}{1 - \frac{1}{n} + \frac{3}{n^2}}. \\ & \lim \left| \frac{a_{n+1}}{a_{n+1}} \right| = 1. \end{aligned}$$

D'où le rayon de convergence de la série $\sum \frac{n^2-n+3}{2n^3+n+\Pi}z^n$ est R=1.

2.
$$\sum \frac{z^n}{(2n)!}.$$
 Posons $a_n =$

Alors
$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \frac{(2n)!}{(2n+2)!} = \frac{1}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} 0.$$

2. $\sum \frac{z^n}{(2n)!}.$ Posons $a_n = \frac{1}{(2n)!}.$ Alors $\left| \frac{a_{n+1}}{a_n} \right| = \frac{(2n)!}{(2n+2)!} = \frac{1}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} 0.$ Donc le rayon de convergence de la série $\sum \frac{z^n}{(2n)!}$ est $R=+\infty$.

Définition 1.11. soit (U_n) une suite réelle. On appelle limite supérieure (resp. limite inférieure) de cette suite la plus grande (resp. le plus petite) de ses valeurs d'adhérences dans $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$.

On utilise les notations $\limsup U_n$ et $\liminf U_n$.

Proposition 1.12. (Formule de Hadamarde) Soit $\sum a_n z^n$ une série entière . si $\limsup |a_n|^{\frac{1}{n}} = l$. Alors le rayon de convergence de la série $\sum a_n z^n$ est $R = \frac{1}{l}$.

Exemple 1.13. $\sum 2^{n}z^{2n}$.

$$a_n = \left\{ \begin{array}{ll} 2^{\frac{n}{2}}, & \text{si n est pair.} \\ 0, & \text{si n est impair.} \end{array} \right.$$

Donc

$$\mid a_n \mid^{\frac{1}{n}} = \begin{cases} \sqrt{2}, & \text{si n est pair.} \\ 0, & \text{si n est impair.} \end{cases}$$

On déduit que $\lim_{n\to+\infty} \sup |a_n|^{\frac{1}{n}} = \sqrt{2}$ Donc le rayon de convergence de la série $\sum 2^n z^{2n}$ est $R = \frac{1}{\sqrt{2}}$.

Exercice 1. Déterminer le rayon de convergence des séries entières suivantes: $\sum \frac{z^{3n}}{n!}$, $\sum \frac{(1+i)^n}{n!} z^{2n}$.

Corollaire 1.14. Soit $\sum a^n z^n$ une série entière si $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = l$ avec $l\in[0,+\infty]$, alors le rayon de convergence de $\sum a^n z^n$ est $R = \frac{1}{l}$.

Exemples 1.15. $\sum \frac{1}{n^n} z^n$.

 $\lim |a_n|^{\frac{1}{n}} = \lim \frac{1}{n} = 0$. Donc le rayon de convergence de la série $\sum \frac{1}{n^n} z^n$ est $R = +\infty$.

Proposition 1.16. Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b .

- 1. $\sum a_n z^n$ et $\sum |a_n| z^n$ ont même rayon de convergence.
- 2. $|a_n| \le |b_n| \Rightarrow R_a \ge R_b$.
- 3. $|a_n| \sim |b_n| quandn \mapsto +\infty \Rightarrow R_a = R_b$.
- 4. Pour tout $\alpha \in \mathbb{R}$, les deux séries entières $\sum a_n z^n$ et $\sum n^{\alpha} a_n z^n$ ont le même rayon de convergence.

2

$\mathbf{2}$ Opération sur les séries entières

Définition 2.1. Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entiers et $\alpha \in C$ On définit

- 1. la série somme: $\sum a_n z^n + \sum b_n z^n = \sum (a_n + b_n) z^n$.
- 2. la série produit de $\sum a_n z^n$ par α : $\alpha(\sum a_n z^n) = \sum (\alpha a_n) z^n$.
- 3. : la série produit: $(\sum a_n z^n)(\sum b_n z^n) = \sum c_n z^n$ avec $c_n = \sum_{i+j=n} a_i b_j = \sum_{i=0}^n a_i b_{n-i}$.

Proposition 2.2. Soient $\sum a_n z^n \sum b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b .

1. le rayon de convergence R_{a+b} de la somme vérifie $R_{a+b} \ge \min\{R_a, R_b\}$. Si $R_a \neq R_b$, alors $R_{a+b} = min\{R_a, R_b\}$. De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < min\{R_a, R_b\}$

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n>0}^{+\infty} a_n z^n + \sum_{n>0}^{+\infty} b_n z^n.$$

- 2. le rayon de convergence ne change pas si on multiplie la série $\sum a_n z^n$ par un scalaire $\alpha \neq 0$. De plus , si $|z| < R_a$ on a: $\alpha \sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} (\alpha a_n) z^n$.
- 3. le rayon de convergence R_{ab} du produit vérifie $R_{ab} \ge \min\{R_a, R_b\}$. De plus si $|z| < \min\{R_a, R_b\}$, On a:

$$\left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right) = \sum_{n=0}^{+\infty} c_n z^n.$$

Remarque 2.3.

- Dans (1) et (3), on peut avoir $R > max\{R_a, R_b\}$.
- lorsque $R_a = R_b$ on peut avoir $R_{a+b} = R_a or R_{a+b} > R_a$

Exemples 2.4.

- 1. (a) $\sum z^n$ et $\sum nz^n$ sont de rayon de convergence 1 et leur série entière somme $\sum (1+n)z^n$ est de rayon
 - (b) $\sum z^n$ et $\sum (2^{-n}-1)z^n$ sont de rayon 1 mais leur série somme $\sum (2^{-n})z^n$ est de rayon 2.
 - (c) $\sum z^n$ et $-\sum z^n$ sont de rayon 1 et leur série somme $\sum az^n$ est de rayon ∞ .
- 2. $\sum a_n z^n$ avec

$$a_n = \begin{cases} 2, & \text{si n } = 0. \\ 2^n, & \text{si n } \ge 1. \end{cases}$$

 $\sum b_n z^n$ avec

$$b_n = \begin{cases} -1, & \text{si n } =0.\\ 1, & \text{si n } \geq 1. \end{cases}$$

On a $|a_n|^{\frac{1}{n}} \rightarrow 2$ et $|b_n|^{\frac{1}{n}} \rightarrow 1$.

Donc $R_a = \frac{1}{2}$ et $R_b = 1$.

 $C_n = \sum_{i=0}^n a_i b_{n-i} = a_0 b_n + \sum_{i=1}^n -1 a_i b_{n-1} + a_n b_0 = 2 + \sum_{k=1}^n -1 2^k - 2^n = 2 + 2(2^{n-1} - 1) - 2^n = 0.$ Donc le rayon de convergence de la série produit est $R = +\infty$.

3 Propriétés de la fonction somme.

Théorème 3.1. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0, la somme S de la série $\sum a_n z^n$

3

est une fonction continue sur D(0,R). En particulier la fonction $S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur]-R,R[.

Théorème 3.2. Soit $\sum a_n z^n$ une série entière de rayon de convergence $R \in]0, +\infty[$. s'il existe $z_0 \in C$ vérifiant $|z_0| = R$ tel que la série $\sum a_n z^n$ converge, alors $\lim_{t \to 1^-} S(tz_0) = (z_0)$

Exercice 2. Pour $x \in \mathbb{R}$, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$

1. Déterminer le domaine de définition de la fonction f.

2. Étudier la continuité de la fonction f.

Théorème 3.3. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. La fonction $S: x \mapsto \sum_{n=0}^{+\infty} a_n z^n$ et de classe C^1 sur J-R,R[et $\forall x \in]-R,R[$, $S'(x)=(\sum_{n=1}^{+\infty} x_n z^n)'=\sum_{n=0}^{+\infty} na_n x^{n-1}=\sum_{n=0}^{+} \infty(n+1)a_{n+1}x^n$. De plus la série entière $\sum_{n\geq 0} (n+1)a_{n+1}z^n$ a même rayon de convergence que $\sum_{n\geq 0} a_n z^n$.

Exemple 3.4. Soit $a \neq 0$. On considère la série entière $\sum (\frac{t}{a})^n$.

 $\sum (\frac{t}{a})^n$ est une série géométrique, elle converge ssi |t| < |a|.

Donc le rayon de convergence de $\sum (\frac{t}{a})^n$ est R = |a|.

Alors la fonction $S: x \mapsto \sum_{n=0}^{+\infty} \sum_{n$

Donc $\frac{a}{(a-x)^2} = \frac{1}{a} \sum_{n=0}^{+\infty} (n+1) (\frac{x}{a})^n$. c-a-d $\frac{1}{(a-x)^2} = \frac{1}{a^2} \sum_{n=0}^{+\infty} (n+1) (\frac{x}{a})^n$.

Théorème 3.5. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors la fonction $S :\mapsto$ $\sum_{n=0}^{+} \infty \sum a_n x^n$ et de classe C^{∞} sur]-R,R[et on a

$$\forall x \in]-R, R[, \forall p \in \mathbb{N}^*, S^{(p)}(x) = (\sum_{n=0}^{+\infty} a_n x^n)^{(p)}$$

$$= \sum_{n=p}^{+\infty} n(n-1) \dots (n-p+1) a_n x^{n-p}$$

$$= \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} a_n x^{n-p}$$

$$= \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+1) a_{n+p} x^n$$

$$= \sum_{n=0}^{+\infty} \frac{(n+p)!}{n!} a_{n+p} x^n.$$

De plus, les séries dérivées ont même rayon de convergence que la série $\sum a_n z^n$.

Corollaire 3.6. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors

$$\forall n \in \mathbb{N}, a_n = \frac{S^{(n)}(0)}{n!} \ et \ \forall x \in]-R, R[, S(x) = \sum_{n=0}^{+\infty} \frac{S^{(n)}(0)}{n!} x^n$$

Théorème 3.7. Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0. Alors la fonction $S:\mapsto$ $\sum_{n=0}^{+\infty} \sum a_n x^n$ est intégrable sur tout segment $[a,b] \subset]-R,R[$, de plus on a

$$\int_{a}^{b} (\sum_{n=0}^{+\infty} a_{n} x^{n}) dx = \sum_{n=0}^{+\infty} a_{n} (\int_{a}^{b} x^{n} dx).$$

Corollaire 3.8. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. La fonction $S : \mapsto \sum_{n=0}^{+\infty} \sum a_n x^n$ admet pour primitive dans]-R,R[les fonctions F_c définies par :

$$F_c(x) = c + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$
 avec $c \in \mathbb{R}$

Fonction développable en série entière 4

Étant donné une fonction f d'une variable réelle (ou complexe) définie sur un voisinage V de 0, existe-t-il une série entière de rayon de convergence R>0 dont la somme soit égale à la fonction f sur $]-R,R[\cap V]$ (ou $D(0,R)\cap V$)? si c'est le cas, on dit que f est développable en série entière en 0, ou au voisinage de 0.

Proposition 4.1. Si f est une fonction développable en série entière, le développement $f(a) = \sum_{n=0}^{+\infty} a_n z^n$ est

De plus, si f est pair (reps. impaire), alors $a_{2n+1} = 0$ (reps. $a_{2n} = 0$) pour tout $n \in \mathbb{N}$.

Démonstration.

1.
$$a_0 = f(0)$$
.
$$f(z) - \sum_{n=0}^n -1 a_k z^k = a_n z^n \Rightarrow a_n = \lim_{z \to 0} \frac{1}{z^n} (f(s) - \sum_{n=0}^n -1 a_k z^k).$$
 D'où l'unicité des coefficients a_n .

$$festpair \Rightarrow f(-z) = f(z).$$

$$\Rightarrow \sum_{n=0}^{+\infty} a_n (-z)^n = \sum_{n=0}^{+\infty} a_n z^n$$

$$\Rightarrow -a_{2n+1} = a_{2n+1} \text{ pour tout } n \in \mathbb{N}$$

$$\Rightarrow 2a_{2n+1} = 0 \text{ pour tout } n \in \mathbb{N}.$$

Proposition 4.2. Soit f une fonction développable en série entière. Alors

- 1. f est de classe C^{∞} au voisinage de 0.
- 2. son développement en série entière coincide avec la série de Taylor $\sum a_n x^n$ $(a_n = \frac{f^n(0)}{n!})$.
- 3. ses fonction dérivées successives sont également développables en série entière (avec le même rayon de convergence).

Remarque 4.3. Une fonction de classe C^{∞} au voisinage de 0 n'est pas nécessairement développable en série entière.

$$f(x) = e^{\frac{-1}{x^2}}$$
 si $x \neq 0$ et $f(0) = 0$.

Par récurrence on peut montrer qu'il existe un polynôme P_n de degré 2n-2 tel que $f^{(n)}(x)=\frac{P_n(x)}{x^{3n}}e^{\frac{-1}{x^2}}$ si $x\neq 0$ et $n\geq 0$.

On en déduit que f est indéfiniment dérivable en 0 et $f^{(n)}(0) = 0$ pour tout $n \ge 0$.

La série de Maclaurin de f est donc la série nulle qui ne peut pas être égale à f(x) sur un voisinage de 0 puisque $f(x) \neq 0$ si $x \neq 0$.

Donc f n'est pas développable en série entière.

Remarque 4.4. Soit I un intervalle ouvert contient 0 et $f \in C^{\infty}[R, R]$.

Même si f est développable en série entière en 0, la série de Taylor associée n'est pas forcement convergente en tout point de I (le rayon de convergence intervient). Ainsi $f(x) = \frac{1}{3-x}$ est de classe C^{∞} sur $]-\infty,3[$, mais l'égalité $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{3^{n+1}}$ n'est vraie que pour $x \in]-3,3[$.

Théorème 4.5. Une fonction f est développable en série entière en 0 s'il existe r > 0 tel que

- i) f est de classe C^{∞} sur]-r,r[.
- $ii) \ \forall x \in]-r, r[. \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt \to 0 (n \to +\infty).$