

딥러닝임문

Deep Learning Primer

서지혜 교수 서울과학기술대학교•경영대학 jihae@seoultech.ac.kr

개요

Overview

The second of the contract of

SEOUL**TECH**

기계학습이란?

지도학습에서 사용하는 기계학습 알고리즘

SEOUL**TECH**

인공신경망

6

데이터에 대한 이해

Data, Data, Data

데이터 관련용어정리

<u>특징(feature)</u> 변수(variable) 속성(attribute) 필드(field)

평균 공부 시간 (1주일)	평균 수면 시간 (1일)	학점 (4.5 만점)		N
13	7.5	3.1		
4	6	2.45	•••	
19	6	4.12	5	•••
7	8	1.9		
15	7.5	2.29	3	•••
4 -	- 7	1.7		
11	7	4.32	•••	•••
10	4	3.53	****	

행(row)

관측치(observation) 인스턴스(instance) 레코드(record)

N 개 열(특징, 변수) = N 차원 관측치 = ₩ 차원 공간 상의 한 점

판다스로 독립변수와 종속변수 분리

독립변수 종속변수

평균 공부 시간 (1주일)	평균 수면 시간 (1일)	학점 (4.5 만점)
13	7.5	3.1
4	6	2.45
19	6	4.12
7 - 7	8	1.9
15	7.5	2.29
4	7	1.7
11	7	4.32
10	4	3.53

```
# 독립변수와 종속변수를 분리한다.
X = df[['평균공부시간(1주일)', '평균수면시간(1일)']]
y = df[[' \Rightarrow A(4.5 \cup A)']]
```

실습을 통한 기계학습/ 딥러닝 이해

(Deep) Learning by Doing for Dummies

지도학습에서의 기계학습/딥러닝 절차

		10
평균 공부 시간 (1주일)	평균 수면 시간 (1일)	학점 (4.5 만점)
13	7.5	3.1
4	6	2.45
19	6	4.12
7	8	1.9
15	7.5	2.29
4	7	1.7
11	7	4.32
10	4	3.53

1. 데이터 준비

지도학습에 사용하는 데이터 분리하기

호구인문제

Lab Exercises

순차적 모델(Sequential API)

기능적 모델(Functional API)

사용자 정의 모델(Custom Model)

성적 예측

1. 데이터 준비

import pandas

--- 데이터를 가져온다.

```
# --- 학습 데이터, 검증 데이터, 평가 데이터로 나눈다.

from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(df, test_size=0.1)
train_df, valid_df = train_test_split(train_df, test_size=0.2)
```

```
# --- 독립변수와 종속변수를 분리한다.

cols = ['평균공부시간(1주일)', '평균수면시간(1일)', '학점(4.5만점)']
# 학습 데이터

X_train, y_train = train_df[cols[:-1]], train_df[cols[-1:]]
# 검정 데이터

X_valid, y_valid = valid_df[cols[:-1]], valid_df[cols[-1:]]
# 평가 데이터

X_test, y_test = test_df[cols[:-1]], test_df[cols[-1:]]
```

2. 모델 구축

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense
inputs = Input(shape=(2,))
output = Dense(1)(inputs)
model = Model(inputs, output)
```

```
# 모델 학습 과정을 정의한다.

from tensorflow.keras.losses import MeanSquaredError
model.compile(loss=MeanSquaredError())
```

3. 모델 학습(fit)

```
model.fit(X_train, y_train,
     validation_data=(X_valid, y_valid),
     epochs=1000)
```

4. 모델 완성

```
# 학습한 모델을 평가한다.
model.evaluate(X_test, y_test)
```

```
# 학습한 모델을 저장한다.
model.save('모델이름')
```

5. 모델 활용

일주일 평균 10시간을 공부하고 하루 평균 7시간을 잔다면 내 성적은? print(model.predict([[10, 7]])

모델 학습에 대한 이해 : Loss

l_loss: 215.9012
l_loss: 194.5170
l_loss: 174.3265
l_loss: 155.5755
l_loss: 138.3329
a

평균: 0

퍼셉트론과 신경망 학습

평균공부시간(1주일)	평균수면시간(1일)	예측 학점
9.0	7.0	3.60
0.0	6.5	2.98
8.0	7.0	4.28
3.0	5.0	3.50
6.0	6.0	2.93

$$y = w_1X_1 + w_2X_2 + b$$

만약 데이터가 독립변수가 5개이고 종속변수가 2개라고 가정한다면 모델을 어떻게 만들어야 할까?

... 원-핫 인코딩(one-hot encoding)

정리:회귀분석

- 평균 제곱 오차(mean squared error, MSE)
 - ◎ 회귀 문제에서 자주 사용하는 손실 함수
 - [참고] 분류 문제에서 사용하는 손실 함수와 다름
 - https://en.wikipedia.org/wiki/Mean_squared_error
- 평균 절대 오차(mean absolute error, MAE)
 - 및 많이 사용하는 회귀 지표
 - [참고] 분류 문제에서 사용하는 평가 지표와 다름
 - https://en.wikipedia.org/wiki/Mean_absolute_error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- 정규화
 - ◉ 수치 입력 데이터의 특징(열, 변수)이 여러 가지 범위를 가질 때 동일한 범위가 되도록 각 특징의 스케일을 독립적으로 조정해야 함
- 과적합
 - 학습 데이터가 많지 않다면 과적합을 피하기 위해 은닉층의 개수가 적은 소규모 네트워크를 선택하는 방법이 좋음
 - 조기 종료(Early stopping)은 과적합을 방지하기 위한 좋은 방법

분류문제

Lab Exercises

교회귀 문제와 분류 문제

종속 변수 성적(GAP) 주택 가격 주식 가격 매출 금액

연속형 회귀 regression

종속 변수 성적('A', 'B', 'C', 'D') 합격 여부 꽃의 품종 사물의 종류

분류 classification

붓꽃 품종 분류 SEOULTECH


```
from tensorflow.keras.losses
                                  import CategoricalCrossentropy
inputs = Input(shape=(4,))
outputs = Dense(3, activation=softmax)(inputs)
model = Model(inputs, outputs)
model.compile(loss=CategoricalCrossentropy())
```

```
# 꽃받침 길이가 5.8cm, 꽃받침 폭이 2.7cm,
# 꽃잎 길이가 3.9cm, 꽃잎 폭이 1.2 cm인
# 붓꽃의 품종은?
y = model.predict([[5.8, 2.7, 3.9, 1.2]])
```

SEOULTECH

활성화 함수

활성화 함수

 $Y_1 = f(w_{11}X_1 + w_{21}X_2 + w_{31}X_3 + w_{41}X_4 + b)$

activation function

- ♪ 회귀 모델: 항등(identify) 함수
- ▶ 분류 모델
 - ₩ 다중 분류: 소프트맥스(softmax) 함수
 - ᠉ 이진 분류: 시그모이드(sigmoid) 함수

회귀 모델

model.compile(loss=MeanSquaredError())

분류 모델

model.compile(loss=CategoricalCrossentropy())

다중 분류 문제 (원-핫 인코딩)

model.compile(loss=SparseCategoricalCrossentropy())

다중 분류 문제

model.compile(loss=BinaryCrossentropy())

이진 분류 문제

문제 유형에 따른 활성화 함수와 손실 함수

문제 유형	출력층 활성화 함수	오차 함수
회귀	항등 함수	제곱오차 (MeanSquaredError)
이진 분류	시그모이드(또는 로지스틱 함수) (sigmoid)	교차엔트로피 (BinaryCrossentropy)
다중 분류	소프트맥스 함수 (softmax)	교차엔트로피 (SparseCategoricalCrossentropy)
다중 분류 (one-hot-encoding)	소프트맥스 함수 (softmax)	교차엔트로피 (CategoricalCrossentropy)

Lab Exercises

딥러닝 모델


```
from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense from tensorflow.keras.activations import relu, softmax inputs = Input(shape=(64,)) buddens = Dense(32,aattivationsoftmakinputs) modeln = Medee(36pattivationsoftmakinputs) finden)

modeln = Medee(35pattivationsoftmakinputs)

modeln = Medee(35pattivationsoftmakinputs)
```


코드 구현 예시

```
from tensorflow.keras.models
from tensorflow.keras.layers import Input, Flatten, Dense
from tensorflow.keras.activations import relu, softmax

inputs = Input(shape=(28, 28))
flatten = Flatten()(inputs)
hidden = Dense(32, activation=relu)(flatten)
outputs =Dense(10, activation=softmax)(hidden)
model = Model(inputs, outputs)
model.summary()
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28, 28)]	0
flatten_1 (Flatten)	(None, 784)	0
dense_1 (Dense)	(None, 32)	25120
dense_2 (Dense)	(None, 10)	330

Total params: 25,450 Trainable params: 25,450

Non-trainable params: 0

SEOULTECH
SCOUL NATIONAL UNIVERSITY OF SCIENCE & TRICHIPOLOGY

수고하셨습니다

