

JOAO VIVAS CISALPINO

CONTROLE DE VELOCIDADE EM IMPRESSORAS 3D UTILIZANDO O PRINCÍPIO DE FEEDFORWARD PARA OTIMIZAR A VELOCIDADE E QUALIDADE DE IMPRESSÃO.

LAVRAS - MG

JOAO VIVAS CISALPINO

CONTROLE DE VELOCIDADE EM IMPRESSORAS 3D UTILIZANDO O PRINCÍPIO DE FEEDFORWARD PARA OTIMIZAR A VELOCIDADE E QUALIDADE DE IMPRESSÃO.

Monografia apresentada à Universidade Federal de Lavras, como parte das exigências Curso de Engenharia Mecânica, para a obtenção do título de Bacharel.

Prof. Dr. Wander Gustavo Rocha Vieira
Orientador

LAVRAS - MG

Ficha catalográfica elaborada pela Coordenadoria de Processos Técnicos da Biblioteca Universitária da UFLA

Cisalpino, Joao Vivas Cisalpino

CONTROLE DE VELOCIDADE EM IMPRESSORAS 3D UTILIZANDO O PRINCÍPIO DE FEEDFORWARD PARA OTIMIZAR A VELOCIDADE E QUALIDADE DE IMPRESSÃO. / Joao Vivas Cisalpino. 1^a ed. rev., atual. e ampl. – Lavras : UFLA, 2023.

23 p.: il.

Trabalho de conclusão de curso(Graduação)—Universidade Federal de Lavras, 2023.

Orientador: Prof. Dr. Wander Gustavo Rocha Vieira. Bibliografia.

1. TCC

JOAO VIVAS CISALPINO

CONTROLE DE VELOCIDADE EM IMPRESSORAS 3D UTILIZANDO O PRINCÍPIO DE FEEDFORWARD PARA OTIMIZAR A VELOCIDADE E QUALIDADE DE IMPRESSÃO.

Monografia apresentada à Universidade Federal de Lavras, como parte das exigências Curso de Engenharia Mecânica, para a obtenção do título de Bacharel.

APROVADO em Data da defesa 2023.

Ainda não definido UFLA? Ainda não definido UFLA? Ainda não definido 3 BELMIS

> Prof. Dr. Wander Gustavo Rocha Vieira Orientador

AGRADECIMENTOS

Agradecimentos

RESUMO

Palavras-chave: Palavras chave

ABSTRACT

Keywords: Keywords

LISTA DE FIGURAS

Figura 2.1 – teste	2
--------------------	---

LISTA DE TABELAS

Tabela 3.1 – tabela de teste

SUMÁRIO

1	INTRODUÇÃO	11
2	REFERENCIAL TEÓRICO	12
2.1	Manufatura Aditiva	12
2.1.1	Fused Deposition Modeling	13
2.2	Geração de comando	13
2.2.1	Look ahead	13
2.2.2	Curvas de velocidade	14
2.3	Controle e Otimização	14
2.3.1	Espaço de Estados	14
2.3.2	Integradores numéricos	14
2.3.2.1	Euller	14
2.3.2.2	Runge Kutta	14
2.3.3	Feedforward	14
2.3.4	Objective Function Otimization	15
2.4	Aplicações de Controle Impressora 3D	15
2.4.1	Input Shaper	15
2.4.2	B-spline	15
2.4.3	Robust Filter	15
3	METODOLOGIA	16
3.1	Materiais	16
3.2	Dados base e cofigurações	16
3.3	Modelagem dinâmica de uma impressora 3D	16
3.3.1	Espaço de estados	16
3.4	Geração de Comando	16
3.4.1	Leitura Gcode	16
3.4.2	Curva rapezoidal de velocidade	17
3.4.3	Interpolação	19
3.5	Runge Kutta	19
3.6	Função fmincon	19
3.6.1	Restrições lineares	19
3.6.2	Restrições não lineares	20

3.6.3	Cofiguração da Fmincon	20
4	RESULTADOS E DISCUSSÃO	21
4.1	Geração de Comando	21
4.2	Simulação Base	21
4.3	Otimização Fmincon	21
4.4	Performance Computacional	21
5	CONCLUSÃO	22
	REFERÊNCIAS	23

1 INTRODUÇÃO

texto

Entretanto, uma das grandes limitações da impressão 3D, principalmente do tipo Fused Deposition Modeling, é o tempo de impressão, que ainda limita muitoo tamanho de peças impressas em um tempo razoável, geralmente sendo necessário reduzir muito a resolução da impressão.

Existe hoje, dentro da academia e das comunidades maker, uma busca por impressoras capazes de imprimir cada vez mais rápido mantendo a qualidade de impressão. Além da
possível diminuição do tempo de impressão, além disso a capacidade de imprimir velozmente
acaba proporcionando uma capacidade de aumentar a qualidade de impressão proporcional à
diferença entre a velocidade máxima e a velocidade de impressão.

Portanto, vê-se relevante à procura por técnicas que permitem capacidades superiores de qualidade e velocidade de impressão, que flexibilizam a tecnologia e aumentam a capacidade da utilização comercial viável da tecnologia.

2 REFERENCIAL TEÓRICO

2.1 Manufatura Aditiva

O princípio básico por trás da manufatura aditiva (MA) é a capacidade de fabricar um modelo tridimensional diretamente, sem a necessidade de um planejamento do processo, a partir de um modelo tridimensional digital normalmente criado a partir de Computer Aided Design (CAD). Uma das características principais da MA é a rapidez na qual é possível criar protótipo diretamente de modelos digitais, por conta disso, em um contexto de desenvolvimento de produto, o termo prototipagem rápida era utilizado. Entretanto, conforme a MA foi se aperfeiçoando era perceptível a capacidade dessas tecnologias não só se aterem à produção de protótipos, mas também de peças utilizadas em produtos finais. Além disso, o termo não considerava o princípio básico que unia essas tecnologias e assim o termo manufatura aditiva foi apresentado e adotado pela American Society for Testing and Materials (ASTM) GIBSON *et al.* (2015).

Incorpar com exemplos de manufatura aditiva

Figura 2.1 – teste

Fonte: Elaborada pelo autor.

2.1 figura

2.1.1 Fused Deposition Modeling

Fused Deposition Modeling (FDM) ou Fused Filament Fabrication (FFF) é uma tecnologia categorizada como MA onde um filamento de material é forçado dentro de uma câmara através, geralmente, de rolos dentados onde em uma região específica esse material é liquefeito. Por conta da pressão criada pelo filamento adentrando a câmara, ainda no estado sólido como um pistão, o material liquefeito é extrudado através de um bocal, comumente fabricado de bronze. Então, o filamento liquefeito é depositado em uma plataforma de forma a percorrer a trajetória desejada utilizando mecanismos movidos de forma controlada, geralmente por motores de passos. O processo é repetido camada por camada, de forma que elas estejam apoiadas por camadas anteriores e a primeira camada continue fixa na plataforma ou cama, até que o processo finalize (TURNER et al., 2014) (TURNER; STRONG; GOLD, 2014).

O trabalho de (VYAVAHARE *et al.*, 2020) apresenta algumas características sobre o desenvolvimento científico sobre FDM ao longo dos anos, tendo como base 211 artigos diferentes de 1994 a 2020. É apresentado um grande salto no número de artigos publicados no tema em anos recentes (2015 a 2018) (Figura 1), com 56% dos temas trabalhados em torno da otimização de parâmetros de impressão, acompanhado de 17% de trabalhos relacionados a aplicações utilizando o processo FDM (Figura 2).

2.2 Geração de comando

A geração de comando é o processo que coordena a ativação dos atuadores, motores, dentre outros componentes de uma impressora. Ele recebe como base uma série de comandos que precisam ser interpretados e interpolados. Esse processo é responsável pelo controle de velocidade, aceleração dentre outras atividades que variam no tempo. O desenvolvimento científico nesta área aplicado a impressoras 3D FDM se deu em tempos recentes, sendo sua aplicação majoritária relacionada às máquinas de Controle Numérico Computadorizado (CNC).

2.2.1 Look ahead

No processo de impressão 3D são fornecidos para a impressora uma sequência de pontos no espaço e limitações de velocidade entre os mesmos. A velocidade nos pontos é compartilhada entre trajetos em sequência, o que torna considerá-los independentemente ineficiente,

introduzindo aceleração e desaceleração desnecessária impactando negativamente no tempo de impressão e na qualidade da peça impressa. O algoritmo Look Ahead procura manter o máximo de velocidade possível entre movimentos distintos, evitando acelerações e desacelerações desnecessárias, apesar de ser necessário um pré-processamento desses pontos que introduzem um custo computacional maior (YU et al. 2020) (YU et al., 2020).

Velocidade de cruzamento equações

2.2.2 Curvas de velocidade

Trapezoidal, S shape, etc equações

2.3 Controle e Otimização

texto

2.3.1 Espaço de Estados

texto

equações

2.3.2 Integradores numéricos

texto

2.3.2.1 Euller

texto equações

2.3.2.2 Runge Kutta

texto equações

2.3.3 Feedforward

Dentre os métodos de controle em aplicações FDM o Feedforward é o mais eficiênte dada as limitações de custo em impressoras 3D comuns e é capaz de ter um impacto maior

em sistemas conhecidos e sensíveis ao erro, onde buscam corrigir o erro antes que ele aconteça (RAMANI et al. 2020; DUAN et al. 2018) || (RAMANI; EDOIMIOYA; OKWUDIRE, 2020)(DUAN; YOON; OKWUDIRE, 2018).

texto

2.3.4 Objective Function Otimization

texto

2.4 Aplicações de Controle Impressora 3D

2.4.1 Input Shaper

Conhecendo a trajetória desejada e conhecendo características do sistema é possível computar os comandos fornecidos para calcular uma série de comandos, levando em consideração as características do sistema para que o comando de referência seja modificado de forma à trajetória final ser o mais próximo possível do comando de referência. Entretanto, ao invés de computar todo o comando de referência, é possível obter um comando modificado em tempo real através de um filtro. Uma das abordagens desse tipo de filtro de comando é o Input Shaper, onde variados Shapers são construídos levando em consideração diferentes objetivos e restrições (SINGHOSE, 1997). Essa abordagem vem sendo utilizada na comunidade Maker depois da patente ter perdido o vigor, e tem aprimorado a área como um todo, empurrando os limites anteriores de velocidade e precisão.

2.4.2 B-spline

texo

2.4.3 Robust Filter

texto

3 METODOLOGIA

3.1 Materiais

3.2 Dados base e cofigurações

aceleração máxima desvio de junção delta tempo kx ky bx by mx my

3.3 Modelagem dinâmica de uma impressora 3D

Para a modelagem dinâmica dos eixos X e Y da impressora 3D, é considerado que os eixos são completamente independentes, a flexibilidade da correia é aproximada utilizando um conjunto mola amortecedor e a transmissão de movimento e torque dos motores é considerada como ideal e não será abordada. Assim duas posições de estudo surgem para cada eixo, uma delas representa a posição ideal e desejada pelo usuário (X1) e a segunda é a posição real considerando as forças inerciais e a flexibilidade introduzida pela correia (X2) como na Figura 4.

3.3.1 Espaço de estados

Organizando as equações de movimento dos eixos x e y da impressora em espaço de estados em forma matricial, sendo Dx, Vx, Ax, Dy, Vy, Ay as variáveis referentes à posição, velocidade e aceleração das massas x e y e as variáveis Dxb, Vxb, Axb, Dyb, Vyb, Ayb referentes a base, relacionadas relacionadas pela equação:

equação

Na função não linear as igualdades são calculadas em cada ponto, sendo os de índice "i"o ponto atual e "n"o próximo ponto.

3.4 Geração de Comando

3.4.1 Leitura Gcode

Foi considerado no mapeamento do Gcode apenas comandos G1, extraindo as informações dos eixos X, Y e do *feedrate* (F). Com base nesses valores uma matriz 3 por n é criada, n sendo o número de comandos lidos.

3.4.2 Curva rapezoidal de velocidade

Para a construção da curva de velocidade trapezoidal a partir da matriz de posições e *feedrate* é necessário o calculo das direções dos movimentos a serem realizados.

As direções são representadas por vetores unitários calculados a partir do vetor deslocamento dividido pelo mesmo vetor normalizado. Sendo o vetor deslocamento obtido pela diferença entre dois vetores de posição sequenciais.

$$dir_{vector} = \frac{v}{norm(v)} \tag{3.1}$$

Essas direções são utilizadas para o cálculo das velocidades pelo *look ahead*, considerando os valores de desvio de junta como 0.1 e aceleração maxima de $5000mm/s^2$

$$\alpha = 2 * asin\left(\frac{norm(dir_1 + dir_2)}{2}\right)$$
(3.2)

$$div = \frac{1 - \sin\left(\frac{\alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \tag{3.3}$$

$$R = \frac{jun_d isv}{div} \tag{3.4}$$

$$v_j un = \sqrt{acc_m ax * R} \tag{3.5}$$

Calculamos então a velocidade de junção baseada no angulo das direções do movimento e nos parâmetros da aceleração máxima e desvio máximo de junção.

A partir dessa matriz de posições e, agora também velocidades, utilizamos a função responsável por gerar a curva trapezoidal de velocidades.

Essa função separa o deslocamento total do movimento em 3 ou 2 fases de aceleração constante. É utilizado a equação x para o cálculo da velocidade pico

$$v_p = \sqrt{\frac{(v_i^2 + v_f^2)}{2} + acc * des_{tot}}$$
 (3.6)

$$des_{segment} = \frac{(v_f^2 - v_i^2)}{(2 * acc_{segment})}$$
(3.7)

$$des_{middle} = des_{total} - (des_{up} + des_{down})$$
(3.8)

$$dt_{segment} = \frac{(v_f - v_i)}{acc_{segment}} \tag{3.9}$$

$$dt_d = \frac{des_d}{v_d} \tag{3.10}$$

$$\Delta vel = v_f - v_i \tag{3.11}$$

$$v_0 = init_{value} + v_0$$

$$v_k = v_k + v_{k-1}$$
(3.12)

$$N_{steps} = \left\lceil \frac{\Delta t_i}{\Delta t_{step_{size}}} - 1 \right\rceil \tag{3.13}$$

$$\Delta t_{last_{step}} = \Delta t_i - \Delta t_{step_{size}} * N_{steps}$$
(3.14)

$$\Delta des_i = \Delta v_i * \Delta t_i + \frac{acc_{segment} * \Delta t_i^2}{2}$$
(3.15)

Matrizes de exemplo

A partir da comparação da velocidade pico com a velocidade desejada pelo *feedrate*. Caso a velocidade de pico for maior do que a velocidade desejada, temos 3 fases de deslocamento que são calculadas pelas equações x,x e x Caso a velocidade de pico seja igual ou menor do que a velocidade desejada, teremos 2 fases de deslocamento que são calculadas a partir das equações x e x.

Como resultado da função, obtemos uma nova matriz esta contendo informações sobre o a variação da posição, do tempo, da velocidade e sobre a aceleração e direção de deslocamento no ponto.

A partir dessa matriz, utilizamos a função de interpolação para dividir cada intervalo dessa matriz em intervalos menores baseados em uma configuração de passo de interpolação, no caso baseado em passos de tempo. Assim criando-se uma nova matriz dos dados interpolados.

A partir dos vetores de direção e da função acumuladora que se consite em acumular os valores de um vetor. Obtemos uma matriz de posições, velocidades e tempo.

3.4.3 Interpolação

3.5 Runge Kutta

Para o calculo da estimativa da respota do sistema, utilizamos a função Runge Kutta Primeiramente calculamos os valores de k1,k2,k3 e k4, calculamos a média da derivada do vetor de variaveis e por fim o calculo do vetor x.

3.6 Função fmincon

Como o modelo matemático a ser otimizado é multivariável e possuindo restrições nãolineares, a função FMINCON do ambiente do MATLAB é utilizada para otimizar as variações de velocidade de forma a diminuir o erro de trajetória associado às flexibilidades do sistema que causam perturbações e vibrações indesejadas. É uma função baseada em gradientes que busca por todos os mínimos locais de uma região que satisfaz outras restrições estipuladas (AL-BAGHDADI; BAHAROM; SULAIMAN, 2021). Ela utiliza um conjunto de restrições superiores e inferiores para cada ponto e otimiza a função considerando as restrições estabelecidas pela função não linear, utilizando as equações de movimento para encontrar a resolução da EDO de maneira e otimizar os parâmetros utilizando o algoritmo sqp, com o objetivo de minimizar a seguinte função:

eq

Sendo Dmx e Dmy os vetores com os pontos de deslocamento calculados e Dmex e Dmey os vetores de deslocamento desejados, ou seja, a trajetória requerida para a impressão.

3.6.1 Restrições lineares

As matrizes de upper bound e lowerbound foram construidas com as seguites considerações:

considerações

3.6.2 Restrições não lineares

Como restrições não lineares foi implementada uma função que compara o resultado do Runge Kutta com o vetor posição da fmincon.

3.6.3 Cofiguração da Fmincon

Foi utilizado as seguintes configurações da função fmincon:

configurações

optimoptions(@fmincon, 'TolFun', 0.000000001, 'MaxIter', 100000, ... 'MaxFunEvals', 700000, 'Display', 'iter', ... 'DiffMinChange', 0.0001, 'Algorithm', 'interior-point', 'StepTolerance', 1e-12);

adas

Equações

In line equations x = 3

Full line equations

$$y = x + 3$$

Referenceble equation

$$x + 1 = 6 + 7 \tag{3.16}$$

Tabela 3.1 – tabela de teste

teste	teste2	teste3
1	2	3
4	5	x+1

- 4 RESULTADOS E DISCUSSÃO
- 4.1 Geração de Comando
- 4.2 Simulação Base
- 4.3 Otimização Fmincon
- 4.4 Performance Computacional

5 CONCLUSÃO

O presente trabalho não conseguiu alcançar seus objetivos de maneira completa dada a limitação da implementação nos limites de aceleração. Entretanto, os resultados obtidos mostram o potencial da técnica iterativa de otimização, necessitando de uma execução melhor para ser capaz de atuar de forma completa. Outra dificuldade da técnica é o tempo de processamento, onde não é possível realizar o processamento em real-time sendo necessário utilizá-lo em conjunto com um pré processamento do Gcode.

REFERÊNCIAS

ALBAGHDADI, A. M.; BAHAROM, M. B.; SULAIMAN, S. A. bin. Parameter design optimization of the crank-rocker engine using the fmincon function in matlab. In: IOP PUBLISHING. **IOP Conference Series: Materials Science and Engineering**. [S.l.], 2021. v. 1088, n. 1, p. 012072.

DUAN, M.; YOON, D.; OKWUDIRE, C. E. A limited-preview filtered b-spline approach to tracking control—with application to vibration-induced error compensation of a 3d printer. **Mechatronics**, Elsevier, v. 56, p. 287–296, 2018.

GIBSON, I. *et al.* Applications for additive manufacture. **Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing**, Springer, p. 451–474, 2015.

RAMANI, K. S.; EDOIMIOYA, N.; OKWUDIRE, C. E. A robust filtered basis functions approach for feedforward tracking control—with application to a vibration-prone 3-d printer. **IEEE/ASME Transactions on Mechatronics**, IEEE, v. 25, n. 5, p. 2556–2564, 2020.

SINGHOSE, W. E. Command generation for flexible systems. Tese (Doutorado) — Massachusetts Institute of Technology, 1997.

TURNER, B. N.; STRONG, R.; GOLD, S. A. A review of melt extrusion additive manufacturing processes: I. process design and modeling. **Rapid prototyping journal**, Emerald Group Publishing Limited, v. 20, n. 3, p. 192–204, 2014.

VYAVAHARE, S. *et al.* Fused deposition modelling: a review. **Rapid Prototyping Journal**, Emerald Publishing Limited, v. 26, n. 1, p. 176–201, 2020.

YU, K. *et al.* Application of the five-phase s-curve velocity model on fdm three-dimensional printer. In: IEEE. **2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC)**. [S.1.], 2020. p. 1365–1371.