1 Mengen

1.1 Grundlegendes

Was ist eine Menge?

Eine Menge ist eine Zusammenfassung unterscheidbarer Objekte zu einer Gesamtheit. Die Reihenfolge der Elemente ist unrelevant. Jedes Element ist einzigartig. Seien A und B Elemente, dann gilt:

$$A = B \Leftrightarrow \{A, B\} = \{A\} \tag{1}$$

$$A \neq B \Leftrightarrow \{A, B\} \neq \{A\} \tag{2}$$

D.h. gleiche Elemente werden in Mengen nur einmal gezählt. 2 Mengen sind genau dann gleich, wenn sie die selben Elemente enthalten.

Besondere Mengen

Die Menge, die keine Elemente enthält, wird als die leere Menge bezeichnet, das Symbol hierfür ist: $\{\}$ oder \emptyset .

Die *Potenzmenge* ist die Vereinigung aller Teilmengen einer Menge. Sie wird mit P(A) oder 2^A bezeichnet. Jede Potenzmenge enthält die leere Menge als Element.

Def.:
$$P(A) := \{U|U \subseteq A\}$$

Beispiel:
$$A = \{1, 2, 3\} \Rightarrow 2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, A\}$$

1.2 Mächtigkeit von Mengen

Für endliche (abzählbare) Mengen ist die Mächtigkeit gleichzusetzen mit der Anzahl der Elemente einer Menge. Für unendliche (nicht abzählbare) Mengen müssen andere Definitionen getroffen werden, um deren Mächtigkeit zu beschreiben.

Man schreibt: |A| oder #A

Es gilt: $|2^A| = 2^{|A|}$

Gleichmächtigkeit

Seien A und B zwei beliebige Mengen. Dann heißt A gleichmächtig zur Menge B, wenn eine Bijektion $(f:A\to B)$ gebildet werden kann. Das bedeutet, dass eine Vorschrift existiert, welches jedem Element der Menge A genau ein Element der Menge B zuordnet. Dabei werden alle Elemente der Menge B einmal erfasst. Diese Vorschrift ist umkehrbar.

Man schreibt: #A = #B bzw. |A| = |B|

Beispiele: $\#\mathbb{N} = \#\mathbb{Z} = \#\mathbb{Q}$

Erläuterung zu $\#\mathbb{N} = \#\mathbb{Z}$: Der Einwand, dass die natürlichen Zahlen doch 'offensichtlich' (von der 0 abgesehen) doppelt so viele seien müssten, wie die ganzen Zahlen zählt bei diesen unendlichen Mengen nicht! Stattdessen sollte man an die Definition der Gleichmächtigkeit denken: 2 Mengen sind dann gleich, wenn man eine eineindeutige(bijektive) Abbildung finden kann.

Hier ein Beispiel für eine solche Abbildung:

 $0 \rightarrow 0$

 $1 \rightarrow 1$

 $3 \rightarrow 2$

 $5 \rightarrow 3$

 $2 \rightarrow -1$

 $4 \rightarrow -2$

 $6 \rightarrow -3$

Es werden also die 0 auf die 0, die ungeraden Zahlen auf die positiven Zahlen und die geraden Zahlen auf die negativen Zahlen abgebildet. Dies ist aufgrund der Unendlichkeit der beiden Mengen ohne Probleme möglich.

Auch für die rationalen Zahlen lässt sich ein solches Schema für eine Bijektion finden. Hierauf geht ein Wikipedia-Artikel näher ein:

http://de.wikipedia.org/wiki/Cantors_erstes_Diagonalargument

Und auch bei der Frage, warum die reellen Zahlen nicht abzählbar sind, hilft Wikipedia:

http://de.wikipedia.org/wiki/Cantors_zweites_Diagonalargument

1.3 Abbildungen

1.3.1 Definition

Seien A und B zwei Mengen. Dann ist eine Abbildung ein eindeutige Vorschrift, die jedem Element aus A genau ein Element aus B zuordnet. Ein andere Bezeichnung für Abbildung ist Funktion.

1.3.2 Beispiel

Sei $f: A \longrightarrow B$ eine Abbildungsvorschrift. Dann ist:

$$ker(f) := \{(a,c) \in A \times A \mid f(a) = f(c)\}$$

eine Menge, der sogenannte Kern von f.

D.h. die Abbildung erzeugt sämtliche Paare von Elementen aus A, die den selben Funktionswert besitzen. ¹

¹Ich hoffe das stimmt auch, korrigiert mich hier bitte wenn ich das falsch verstanden habe!

(b) injektive Abbildung

(c) bijektive Abbildungen

1.3.3 Typen von Abbildungen

Seinen A und B zwei Mengen und $f:A\longrightarrow B$ eine Abbildungsvorschrift. Dann gibt es 3 besondere Typen von Abbildungen:

surjektive Abbildung alle Elemente von B mindestens einmal erfassen

injektive Abbildungen alle Elemente von A erhalten unterschiedliche Elemente aus B

bijektive Abbildungen surjektiv und injektiv zu gleich: alle A erhalten genau ein B und alle B werden getroffen. Dies impliziert die Umkehrbarkeit der Funktion. Eine Sonderform der bijektiven Abbildung ist die *Identität*. Dabei wird jedes Element sich selbst zugeordnet.

1.3.4 Mächtigkeit einer Abbildung

Seien A und B Mengen. Dann bezeichne B^A oder Map(A,B) die Menge aller Abbildungen von A nach B.

Satz: Für A, B endliche Mengen gilt:

$$|B^A| = |B|^{|A|}$$