

KATch

A Fast Symbolic Verifier for NetKAT

Mark Moeller, Jules Jacobs, Nate Foster, Alexandra Silva (Cornell), Olivier Savary Belanger, David Darais, Cole Schlesinger (Galois), Steffen Smolka (Google)

The Control Plane and Network Defense Agents

Control Plane

- Computes routing tables
- Ensures network connectivity
- Enforces network policies

Network Defense Agents

- Detects and responds to network attacks
- Example: Security breach containment
- Example: DDoS mitigation
- Action space?
- Modify routing tables?

Neural and Symbolic AI

Neural Strengths

- General pattern recognition
- Learns from experience
- Adaptability to new situations
- Ideal when explicit programming is difficult

Symbolic Strengths

- Domain specific reasoning
- Guarantees correctness
- Verifiable and explainable
- Ideal when strict compliance with rules is required

Neural+Symbolic AI in Network Defense: Idea

Neural

- Utilizes deep learning for real-time attack detection and response
- Adapts to evolving network threats
- Modifies routing tables dynamically
- Example: Detecting and rerouting traffic to mitigate DDoS attacks
- Example: Detecting and isolating compromised hosts

Symbolic

- Computes consequences of routing changes
- Ensures correctness of routing tables
- Verifies adherence to network policies and security rules
- Example: Validating routing paths for security compliance
- Example: Verifying reachability of critical network services

NetKAT: Symbolic Network Reasoning

NetKAT: network specification language for SDN

- Network topology
- Routing tables
- Network-wide policies

Verification of network policies

- Security properties, e.g. slice isolation
- Operational properties, e.g. reachability
- Verified in a common framework

Problem: NetKAT verification is slow Not suitable for real-time network defense

KATch

A Fast Symbolic Verifier for NetKAT

KATch

A new NetKAT verifier that is

- **Fast:** $1000 \times$ faster
- Symbolic: explains verification failures
- Scalable: handles larger networks

Full Reachability

Detailed comparison: (un)reachability and slice isolation

Name	Size	Reachability		Unreachability		Slicing		Min
	(atoms)	KATch	Frenetic	KATch	Frenetic	KATch	Frenetic	Speedup
Layer42	135	0.00	0.04	0.00	0.04	0.01	0.07	7×
Compuserv	539	0.01	0.36	0.01	0.38	0.01	0.85	36×
Airtel	785	0.01	0.83	0.01	0.84	0.02	2.08	83×
Belnet	1388	0.01	3.17	0.01	3.16	0.04	7.99	200×
Shentel	1865	0.02	4.01	0.02	4.00	0.04	9.80	200×
Arpa	1964	0.01	4.32	0.02	4.32	0.05	10.99	216×
Sanet	4100	0.04	23.46	0.03	25.23	0.12	62.70	522×
Uunet	5456	0.04	81.54	0.04	81.92	0.15	204.85	1366×
Missouri	9680	0.11	161.28	0.10	165.85	0.27	519.46	1658×
Telcove	10720	0.09	464.15	0.08	465.27	0.28	1274.24	4551×
Deltacom	27092	0.31	2392.56	0.30	2523.03	0.75	7069.54	7718×
Cogentco	79682	0.97	22581.39	0.88	23300.87	1.78	53066.82	23280×

Synthetic combinatorial benchmarks

Conclusion

NetKAT verification can be fast

Can we combine neural and symbolic AI?