CSL7480 Cryptography

16 Jan 2023

Lecture 6: Cryptography

Lecturer: Somitra Sanadhya Scribe: Harshita Kalani (B20CS019)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Recap

6.1.1 PRG (Pseudorandom generator)

Let l() be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input $s \in \{0,1\}^n$ algorithm G outputs a string of length l(n).

We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that l(n) > n.
- 2. (Pseudorandomness:) For all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$|Pr[D(r) = 1] - Pr[D(G(s)) = 1]| < negl(n)$$

where r is chosen uniformly at random from $\{0,1\}^{l(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

6.1.2 Some facts:

- We do not know how to unequivocally prove the existence of pseudorandom generators.
- Nevertheless, we still believe in them.
- We base this belief in part upon the fact that they exist if one-way functions do.

6.1.3 Condition for pseudo randomness

• Probability of Randomess - pseudo randomness $< \epsilon(n)$

$$|Pr[r \leftarrow \{0,1\}^{l(n)}] - Pr[s \leftarrow \{0,1\}^n]| < \epsilon(n)$$

6.1.4 Significance of negligible functions in Cryptography

if an attack succeeds in violating a security condition only with negligible probability, and the attack is repeated a polynomial number of times, the success probability of the overall attack still remains negligible.

6.2 Eavesdropping Security

Let π be the encryption scheme/cipher where,

$$\pi = (KeyGen, Enc, Dec)$$

- We construct a fixed-length encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.
- This scheme is very similar to the one-time pad, except a pseudorandom string is used as the "pad" rather than a random string.

6.2.1 The Encryption scheme

Let G be a pseudorandom generator with expansion factor l. Define a private-key encryption scheme for messages of length l as follows:

- Gen: On input 1^n , choose $k \in \{0,1\}^n$ uniformly at random and output it as the key.
- Enc: On input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{l(n)}$, output the ciphertext $c := G(k) \oplus m$
- Dec: On input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{l(n)}$, output the plaintext message $m := G(k) \oplus c$

6.2.2 Adversary and the Challenger

The experiment is defined for any private-key encryption scheme $\pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter:

- The adversary A is given 1^n , and outputs a pair of message $m_0, m_1 \in M$ of the same length.
- A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow 0, 1$ is chosen. A challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- A outputs a bit b'.
- The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. If the output is 1 we say that A succeeded.

Theorem:

Let G be a pseudorandom generator, then the encryption scheme defined above is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof:

Adversarial indistinguishability: An encryption scheme $\pi = (Gen, Enc, Dec)$ had indistinguishable encryption in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$Pr[Priv_{Keav}\pi(n) = 1] \le \frac{1}{2} + negl(n)$$

Let π denote the encryption scheme.

We show that if there exists a probabilistic polynomial-time adversary A for which the adversarial indistinguishability does not hold, then we can construct a probabilistic polynomial-time algorithm that distinguishes the output G from a truly random one.

Let A be a probabilistic polynomial-time adversary. We use A to construct the following distinguisher D for the pseudorandom generator G.

Distinguisher D: D is given as input $w \in \{0,1\}^{l(n)}$

- Run $A(1^n)$ to obtain a pair of messages $m_0, m_1 \in \{0, 1\}^{l(n)}$
- Choose a random bit $b \leftarrow \{0,1\}$. Set $c := wm_b$.
- Give c to A and obtain output b'. Output 1 if b' = b, and output 0 otherwise.

6.2.3 Limitations of current security definition

- Assumes adversary observes just one ciphertext.
- What if adversary observes two ciphertexts?

$$c_1 = Enc_s(m_1) = G(s) \oplus m_1$$

$$c_2 = Enc_s(m_2) = G(s) \oplus m_2$$

6.3 Multiple message Eavesdropping Security

- We have assumed that the adversary receives only a single ciphertext
- In reality, communicating parties send multiple ciphertexts and an eavesdropper will see many of these.
- Some form of security upgrade is required.

6.3.1 The multiple message eavesdropping experiment

The experiment is defined for any private-key encryption scheme $\pi = (Gen, Enc, Dec)$, an adversary A, and a security parameter n:

• The adversary A is given 1^n , and outputs a pairs of vectors of messages $M_0 = (m_{0,1}, ..., m_{0,t})$ and $M_1 = (m_{1,1}, ..., m_{1,t})$ with

$$|m_{0,i}| = |m_{1,i}|$$

for all i.

- A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. For all i, the ciphertext $c_i Enc_k(m_b,i)$ is computed and the vector of ciphertexts $C = (c_1,...,c_t)$ given to A.
- A outputs a bit b'.
- The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

6.3.2 Multiple vs Single Encryptions

If Π has indistinguishable multiple encryptions in the presence of an eavesdropper then Π also has indistinguishable encryptions in the presence of an eavesdropper.

Question: Are the definitions equivalent?

Answer: No, indistinguishable multiple encryptions is a strictly stronger security notion.

Example:

$$Enc_s(m) = G(s) \oplus m$$

$$Dec_s(m) = G(s) \oplus c$$

References

- cs.wellesley.edu
- cs.purdue.edu
- Wikipedia for negligible functions