Assignment 3

WSU PhD Economic Math Bootcamp 2016

Problem 1. If $f(x, y) = \frac{xy}{x^2 + y^2}$, does $\lim_{(x,y) \to (0,0)} f(x, y)$ exist?

Problem 2. For the function $f(x, y) = 3xy^4 + x^3y^4$; find the partial derivatives f_{xxy} and f_{yyy} .

Problem 3. For $w = \frac{x}{y+2z}$ find the partial derivatives $\frac{\partial^3 w}{\partial z \partial y \partial x}$ and $\frac{\partial^3 w}{\partial x^2 \partial y}$.

Problem 4. Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (x = 1, y = 1, z = 3).

Problem 5. Find the equation of the tangent plane to the surface $z = \sqrt{xy}$ at the point (1, 1, 1).

Problem 6. Show that $f(x, y) = xe^{xy}$ is differentiable at the point (1,0). (Hint: use properties of the partial derivatives to make an argument)

Problem 7. Suppose that u is a differentiable function of the n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the m variables $t_1, t_2, ..., t_m$.

- (i) Express the value of $\frac{\partial u}{\partial t_i}$.
- (ii) Assume the partial derivative is evaluated for vectors $\mathbf{x}_0 \in \mathbb{R}^n$ and $\mathbf{t}_0 \in \mathbb{R}^m$. Express the partial derivative in part (i) as the dot-product of two vectors and identify and discuss what those vectors are.
- (iii) Note that f maps $\mathbb{R}^n \to \mathbb{R}$ and $\mathbf{x} = (x_1(\mathbf{t}), \dots x_n(\mathbf{t}))$, as a function of \mathbf{t} maps \mathbb{R}^m into \mathbb{R}^n . Hence, considering f as a composition it is a map from \mathbb{R}^m into \mathbb{R} . As a function \mathbf{t} express the gradient of f denoted ∇f . (The LaTeXcode for ∇ is \nabla)

Problem 8. Consider the following equation F(x, y) = 0, $\forall x, y$. We might be interested (*in the future you will be wink, wink, nudge, nudge, know what I mean?*) in knowing if and when there is some function $f : \mathbb{R} \to \mathbb{R}$ that implicitly defines y in terms of x for the equation F(x, y) = 0 such that we can re-express the equation as F(x, f(x)) = 0.

- (i) Use the chain rule to differentiate both sides of equation F(x, y(x)) = 0.
- (ii) Under what conditions on the partial derivatives can we solve the result of (i) for dy/dx?
- (iii) Solve for dy/dx.

Problem 9. Find y' if $x^3 + y^3 - 6xy = 0$.

Problem 10. For a function f(x, y), when is the directional derivative of f at (x_0, y_0) the same as the partial derivatives of f at (x_0, y_0) ?

Problem 11. Given the function $f(\mathbf{x})$ for all $x \in \mathbb{R}^n$ under what conditions will $\nabla f(\mathbf{c}) \cdot \mathbf{h}$ be the directional derivative of f in the direction of \mathbf{h} ?

Problem 12. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined as z = f(p,q,r). Derive the total differential about the point $\mathbf{c} \in \mathbb{R}^3$ and show that the gradient ∇f evaluated at \mathbf{c} is a linear functional of the form $\mathbf{a} \cdot \mathbf{x}$ over the set \mathbb{R}^3 . What about when ∇f isn't evaluated at a given point? Is it still a mapping $\mathbb{R}^3 \mapsto \mathbb{R}$?

Problem 13. Consider three functions f_1 , f_2 , f_3 such that for each i = 1, 2, 3, $f_i : \mathbb{R}^3 \to \mathbb{R}$.

$$z_1 = f_1(p,q,r)$$

 $z_2 = f_2(p,q,r)$
 $z_3 = f_3(p,q,r)$

Can you derive the total differential for this "system" of functions at a point $\mathbf{c} \in \mathbb{R}^3$?

Problem 14. Let $C = \mathbb{R}^n$ be the space of consumption bundles and u:

 $C \to \mathbb{R}$ be a continuously differentiable utility function representing a rational preference relation \geq . If $u_0 \in \mathbb{R}$ we define $L = \{\mathbf{x} \in C : u(\mathbf{x}) = u_0\}$ as an *indifference curve* (level set). Let $\mathbf{r}(t) = \mathbf{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$ such that $\forall t, \mathbf{r}(t) \in L$. This means that for all $t, \mathbf{r}(t)$ is a point on the indifference curve u_0 . Furthermore we call $\mathbf{r}'(t) = (dx_1/dt, \dots dx_n/dt)$ evaluated at some t_0 the *tangent vector* to the curve at the point t_0 .

Show that for any point $\mathbf{x}_0 \in L$, the gradient ∇u at \mathbf{x}_0 and the tangent vector of the indifference curve at \mathbf{x}_0 are orthogonal, i.e, $\nabla u(\mathbf{x}_0) \cdot \mathbf{r}'(t_0) = 0$ where $\mathbf{r}(t_0) = \mathbf{x}_0$.

Problem 15. Consider the production function $F(K, L) = K^{\alpha}L^{\beta}$ and the profit maximization problem

$$\max_{KL} \pi(K, L) = pF(K, L) - wL - rK$$

- (i) Find the Jacobian matrix of the profit function $\pi(K, L)$.
- (ii) Find the critical points of the profit function $\pi(K, L)$.

- (iii) Find the Hessian matrix of the profit function $\pi(K, L)$.
- (iv) Find the determinate of the Hessian matrix from part (iii).
- (v) If the determinate of the Hessian matrix were evaluated at the critical points from part (ii), what would the value of the determinate tell you about those critical points?