№1 Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi: V_1 \longrightarrow V_2$ и $dimV_1 = n$. Тогда $dim\ Ker\varphi + dim\ Im\varphi = n = dimV_1$.

№2 Дайте определения собственного вектора и собственного значения линейного оператора.

Число λ называется собственным числом линейного оператора $\varphi:V\longrightarrow V$, если существует вектор $v\neq 0$ такой, что $\varphi(v)=\lambda v$. При этом вектор v называется собственным вектором оператора φ .

№3 Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Для произвольной квадратной матрицы A многочлен вида $\chi_A(\lambda) = det(A - \lambda E)$ называется характеристическим многочленом, а уравнение $\chi_A(\lambda) = 0$ называется характеристическим уравнением матрицы A.

№4 Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

<u>Примечание</u> Здесь немного «отсебятины», потому что переписывал с грубой формулы. Следующие условия эквивалентны:

- 1. λ собственное значение линейного оператора A.
- 2. $|A \lambda E| = 0$ (т.е. $\chi_A(\lambda) = 0$ или λ является корнем характеристического многочлена A).

№5 Дайте определение собственного подпространства.

Собственным подпространством, отвечающим собственному значению λ_i оператора A называется множество:

$$V_{\lambda_i} = \{ x \in V \mid Ax = \lambda_i x \}$$

№6 Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраической кратностью собственного значения называют его кратность как корня характеристического уравнения.

<u>Пример</u> $\chi_A(\lambda) = (\lambda - 5)^3 (\lambda - 6)^2 (\lambda + 3)$: алгебраическая кратность собственного значения $\lambda = 5$ равна

Геометрической кратностью собственного значения называют размерность собственного подпространства V_{λ_i} .

Геометрическая кратность собственного значения всегда положительна и не превосходит его алгебраической кратности.

№7 Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям?

Пусть $\lambda_1, \ldots, \lambda_k$ - различные собственные значения линейного оператора A ($\forall i \neq j \ \lambda_i \neq \lambda_j$), а v_1, \ldots, v_k - соответствующие им собственные вектора. Тогда вектора $v_1, \ldots v_k$ линейно независимы.

№8 Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора A является диагональной в данном базисе \iff все вектора этого базиса являются собственными векторами данного линейного оператора.

№9 Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрица линейного оператора диагонализируема \iff для любого его собственного значения геометрическая кратность равна алгебраической кратности.

№10 Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

Жорданова клетка размера $m \times m$ соответствующего собственного значения λ_i - матрица вида:

$$J_m(\lambda_i) = \underbrace{\begin{pmatrix} \lambda_i & 1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_i & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_i \end{pmatrix}}_{m}$$

Жорданова нормальная форма матрицы линейного оператора - блочно-диагональная матрица с Жордановыми клетками на диагонали.

$$J = \begin{pmatrix} J_{m_1}(\lambda_1) & \cdots & \cdots & 0 \\ 0 & J_{m_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & J_{m_s}(\lambda_s) \end{pmatrix}$$

 $\underline{\text{Теорема}}$ Любая матрица $A \in M_n(\mathbb{F})$ приводится заменой базиса к Жордановой нормальной форме над алгебраически замкнутым полем.