Алгоритмы и модели вычислений.

Задание 2: Арифметические операции и линейные рекуррентные последовательности

Сергей Володин, 272 гр. задано 2014.02.20

Упражнение 3

Определим
$$A_d \stackrel{\text{def}}{=} \left| \begin{array}{ccccc} c_1 & c_2 & \dots & c_{d-1} & c_d \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & & \dots & & \\ 0 & 0 & \dots & 1 & 0 \end{array} \right|$$
 Докажем по индукции $P(d) \stackrel{\text{def}}{=} \left[\det(A_d - \lambda E) \right]$

Докажем по индукции $P(d) \stackrel{\text{def}}{=} \left[\det(A_d - \lambda E) = (-1)^d (\lambda^d - c_1 \lambda^{d-1} - c_2 \lambda^{d-2} - \dots - c_{d-1} \lambda - c_d) \right]$

1. База.
$$d = 3 \Rightarrow \det(A_3 - \lambda E) = \begin{vmatrix} (c_1 - \lambda) & c_2 & c_3 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{vmatrix} = c_1 \lambda^2 - \lambda^3 + c_3 + c_2 \lambda = (-1)^3 (\lambda^3 - c_1 \lambda^2 - c_2 \lambda - c_3) \Rightarrow P(3) \blacksquare$$

$$\stackrel{P(d-1)}{=} -\lambda (-1)^{d-1} (\lambda^{d-1} - c_1 \lambda^{d-2} - \ldots - c_{d-2} \lambda - c_{d-1}) - (-1)^d c_d = (-1)^d (\lambda^d - c_1 \lambda^{d-1} - \ldots - c_{d-1} \lambda - c_d).$$
 Получаем $\underline{P(d)}$

(каноническое) Задача 6

 $T(n) = 7T(\frac{n}{2}) + f(n), f(n) = O(n^2)$. Дерево рекурсии:

(каноническое) Задача 7

Вход: точки $\{x_i, y_i\}_{i=1}^n$.

Алгоритм: считаем массив расстояний $r_i \stackrel{\text{\tiny def}}{=} \sqrt{x_i^2 + y_i^2}$ (можно r_i^2). Ищем медиану r_m в массиве за O(n)

Ответ: $r_m (r_{m+1}?)$.