BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

JANUARY, 1940.

Catalysts for synthesis of liquid hydrocarbons from carbon monoxide and hydrogen. VI, VII.
—See B., 1939, 1208.

Production of isobutane from normal butane.
—See B., 1939, 1209.

Catalytic oxidation of olefinic hydrocarbons.—See B., 1939, 1208.

Relations of "oxygen and peroxide effect" and of hypochlorous acid addition to the structures of unsaturated organic compounds. MICHAEL (J. Org. Chem., 1939, 4, 519—530).— Designating the vibratory or co-vol. of an atom as a sphere, the primary phase of a chemical reaction, i.e., polymol. formation, may be represented by contact of these spheres and further reaction by segmentation increasing with the conversion of the free chemical into bound chemical energy. The "oxygen-peroxide" effect functions catalytically; in agreement, the first phase in the abnormal reaction may be conceived as a polymol. of O or peroxide at its oxygens and the saturated carbons of the substance. According to the principle of partition the polymol. formation of isobutene with the O2 mol. may proceed in three directions: (1) by bilateral contact between the O and the unsaturated C atoms; (2) by unilateral union at the terminal unsaturated C (Winstein and Lucas, A., 1938, II, 224); and (3) at the intermediate, relatively positive, unsaturated C. Diagrams are given. The O in (1) should not noticeably alter the affinity relationships of the unsaturated C atoms for the components of HBr and, therefore, the course of the addition. In (2) the O accentuate the difference between the affinities of the unsaturated C for the components of the addendum; therefore, whether the union proceeds by $\alpha\beta$ or $\alpha\delta$ addition the tert. bromide should result. Polymol. (3) is the single intermol. structure that can lead to abnormal addition and only when the difference between the affinity relations of the unsaturated carbons of the compound for the components of HBr is overcome by the added negative influence of the oxygens. If the latter influence is greater, then the a- may become relatively negative to the β -C and, in thus reversing the affinity relations, O₂ and peroxides may cause a corresponding reversal in the mode of addition. If the negative influence of the O₂ or peroxide is insufficient to alter noticeably the positive-negative relationship of the unsaturated C, no reversal effect is apparent as exemplified in the alkene and unsaturated acid series. However, by increasing the oxidant influence of the catalyst, e.g., using hypohalous acid, abnormal additions can be brought about that cannot be effected either by O2 or by a peroxide. H. W.

Solvent and peroxide effect in the addition of hydrogen bromide to trimethylethylene. A. MICHAEL and N. WEINER (J. Org. Chem., 1939, 4, 531-541).—Ascaridole (I) causes the formation of abnormal" CHMePrBr from CMe2:CHMe (II) and HBr, the extent of the effect increasing with the concn. of (I). Contrary to Kharasch, therefore (cf. A., 1939, II, 530), abnormal addition is not limited to Δ^a -alkenes. In CS_2 , pentane, and EtOAc at -78° , HBr and (II) give the (normal) CMe₂EtBr whereas in Et₂O at -78° they yield the abnormal bromide in considerable proportion which increases with rise in temp. It is reduced only slightly by the presence of "antioxidant "NHPh₂ but to a large extent by quinol (III). Under the above conditions, (II) and HCl or HI yield only the tert.-amyl halides. AcOH induces the formation of a small proportion of the abnormal sec. bromide; the amount, not affected by the presence of (I), is reduced slightly by NHPh2 and completely by (III). In COMe₂ the addition yields only the tert. bromide, as it does also in the presence of (I). At -78° MeOH and EtOH effect a small % of the abnormal addition, which decreases with rise of temp. In these solvents (I) causes a large proportion of the abnormal addition at -78° but its effect falls off with rise in temp. and at 20° it has no measurable influence on the normal course of the reaction. The chemical mechanism for the peroxide effect, advanced by Kharasch, is not applicable to explain the above results of certain solvents in causing the abnormal addition or to interpret the sp. combined effect of solvent and peroxide. In the abnormal addition to (II) the relations between solvent effect and peroxide effect vary decidedly when used separately and together. The abnormal effect of solvents on the addition of HBr to (II) is sp., depending on their chemical character. In certain solvents (I) exercises a marked effect on the course of the addition whilst in other solvents it remains inert. The influence of NHPh₂ as "antioxidant" depends on the nature of the solvent and it may be practically ineffective in reducing the abnormal addition which is usually suppressed by (III); in some solvents, however, this effect is only partial and dependent on the temp. The relationships differ to a considerable extent from those observed in the corresponding reactions with Δ^a -alkenes. An explanation of the abnormal addition of HBr to (II) by solvent influence is advanced, based on the primary formation of double mols. of HBr and solvent. These then unite, in accordance with the partition principle, with the relatively more positive unsaturated C of the alkene and reversal occurs when the formed, unsaturated C-solvent-HBr grouping functions as relatively negative to the

terminal, formerly relatively negative, unsaturated C. A corresponding chemical change is believed to take place in the addition reversal by peroxide effect.

Influence of the nature of the substituent on the velocity of catalytic hydrogenation of certain tri-substituted ethylenes, in presence of platinum. B. A. KAZANSKI and G. T. TATEVOSJAN (J. Gen. Chem. Russ., 1939, 9, 1458—1464).—The velocity of hydrogenation of substituted ethylenes (at 18°/760 mm.) falls in the order CEt₂:CHMe > CPhMe:CHMe > CPh₂:CHMe > CPh₂:CHMe > CPh₂:CHMe > R. T.

Condensation of olefines and paraffins by means of sulphuric acid. H. I. WATERMAN, J. J. LEENDERTSE, and R. HESSELINK (Rec. trav. chim., 1939, **58**, 1040—1047; cf. Brich et al., B., 1938, 1007).—isoPentane, b.p. 28—29° (1 part), and "trimethylethene" (mainly CHMe2:CHMe), b.p. 35— 36° (3 parts), added to 98% H_2SO_4 at $0-9^{\circ}$, after 22-40 min. give a good yield of saturated hydrocarbons of higher mol. wt. Use of the sp. refraction method of Vlugter et al. (B., 1935, 836) shows that cyclic compounds are almost completely absent. Thus the main reaction is condensation of paraffins and olefines, followed by decomp. into paraffins and olefines with different nos. of C atoms, which react further. H₂SO₄ has some destructive action, as some CHMe, is formed, but the catalyst can be used several times without decrease in activity. Reactants in proportions 1:1 give a less saturated product and a lower yield (loc. cit.).

Hydrogenation of substituted acetylenes with Raney nickel. K. N. CAMPBELL and M. J. O'CONNOR (J. Amer. Chem. Soc., 1939, 61, 2897—2900). Hydrogenation of substituted acetylenes in abs. MeOH in presence of Raney Ni can always be interrupted so as to yield readily the derived ethylenes, but the rate of hydrogenation shows a break after absorption of 2 H which is more distinct in the order, (CPh), > (;CAlk)₂ > CAlk;CAlk' > CPh;CH, CPh;CMe (no break). Continued hydrogenation yields pure saturated hydrocarbons, except in the case of C₂Ph₂ which gives only isostilbene. The following are incidentally prepared: ethyl-, b.p. 87°/99 mm., n-propyl-, b.p. 104.5°/97 mm., and n-butyl-, b.p. 113°/61 mm., -isoamylacetylene; Δ^δ-octene, b.p. 127°/746 mm.; Δ^γ-nonene, b.p. 147.4°/740 mm.; \(\Delta'\)-decene, b.p. 169.6°/746 η -methyl- Δ^{γ} -octene, b.p. $140.7^{\circ}/746$ mm.; 0-methyl- Δ^{δ} -nonene, b.p. $163\cdot2^{\circ}/746$ mm.; Δ^{ϵ} -undecene, b.p. 191·2°/750 mm.

Halogenation of hydrocarbons. Chlorination of olefines containing an unsaturated tert. carbon atom. J. Burgin, W. Engs, H. P. A. Groll, and G. Hearne (Ind. Eng. Chem., 1939, 31, 1413—1419; cf. A., 1939, II, 529).—Cl₂ and CMc₂:CH₂ give, as primary products, CH₂:CHMe·CH₂Cl (I), CMe₂:CHCl, and CMe₂Cl·CH₂Cl, side-reactions being CMe₂:CH₂ + HCl \rightarrow Bu²Cl, (I) + Cl₂ \rightarrow CHCl:CMe·CH₂Cl (II) and CH₂:C(CH₂Cl)₂ (III), and (I) + HCl \rightarrow CMe₂Cl·CH₂Cl. If the contact time is reduced by mixing Cl₂ and CMe₂:CH₂ (a 1:1.5 mol. mixture is most effective) in a jet and passing the

are obtained (I) 87, CMe₂:CHCl 3, Bu⁷Cl 1, CMe₂Cl·CH₂Cl 6, (II) + (III) 2, and trichlorides 1 mol.-%. The ratio, (I): CMe₂: CHCl, is unaffected by change of conditions. Illumination, but not rise in temp. (cf. Kondakov, J. Russ. Phys. Chem. Soc., 1885, 17, 290), presence of liquid, surface, pressure (up to 50 lb. per sq. in.), or presence of H_2O , O_2 , or N_2 increases the proportion of addition of Cl_2 . Reaction is slow in the vapour phase, even at 150° for pure reactants, but light, presence of liquid (impurities, reactant, or products), or catalytically active surface accelerates the vapour reaction. Chlorination is exothermic (probably ~26 kg.-cal. per mol.) and use of liquid CMe2:CH2 helps to control the plant-scale reaction by virtue of its latent heat of vaporisation. Addition of HCl to CMe2:CH2 or (I) vapour is slow even in presence of light. Contrary to Kondakov (loc. cit.), (I), but not CMe2:CHCl, is readily hydrolysed to $Pr^{\beta}CHO$, the case of hydrolysis at 100° being (I), Bu^rCl > CMe₂Cl·CH₂Cl, (II), (III) > CMe₂:CHCl. "tert.-Amylene" (CMe₂:CHMe + CMeEt:CH₂) and Cl₂ give more additive products, viz., $(CH_2:CMe\cdot CHMeCl + CHMe:CMe\cdot CH_2Cl)$ (tautomerides giving always a ~3:2 mixture) 80, CMe₂EtCl 3, (CMe₂:CMeCl + CMeEt:CHCl) 3, di- 10 and trichlorides 4%. These products are less stable than those from CMe2:CH2 and, on a small scale, rise in temp. must be avoided by using capillary reaction tubes. Physical consts. of the products are given.

mixture into a large reaction vessel (apparatus

described), the side-reactions are reduced and there

R. S. C. Peroxide effect in the addition of reagents to unsaturated substances. XXII. Addition of hydrogen bromide to trimethylethylene, styrene, crotonic acid, and ethyl crotonate. C. WALLING. M. S. Kharasch, and F. R. Mayo (J. Amer. Chem: Soc., 1939, **61**, 2693—2696; cf. A., 1939, II, 530).-In absence of air and presence of quinol or NHPh₂, HBr adds to CMe₂:CHMe alone or in C₅H₁₂ to give mainly CMe₂EtBr. However, in C₅H₁₂ in presence of lauroyl peroxide (I), 64% of CHMePr^BBr is formed. In PhNO₂ 100% and in pure EtBr 60% of CMe₂EtBr is formed even in presence of (I). Smith's failure (A., 1938, II, 258) to obtain CHMePr^βBr may have been due to its ready isomerisation by acid. Similarly, CHPh:CH2 gives CHPhMeBr alone or in C5H12 in presence of NHPh₂, gives 80% of CH₂Ph·CH₂Br in presence of peroxides in C₅H₁₂, but only 7% of the latter product in presence of peroxides without a solvent. CHMe:CH·CO₂H and CHMe:CH·CO₂Et give β-Br-derivatives under all conditions tried.

Manufacture of carbon tetrachloride.—See B., 1939, 1209.

Interaction of δ -halogeno- $\Delta^{\alpha\beta}$ -butadienes with Grignard reagents.—See B., 1939, 1210.

Allylic rearrangements. IX. Isolation and rearrangement of primary and sec. pentenyl, hexenyl, and heptenyl bromides. W. G. Young, L. Richards, and J. Azorlosa (J. Amer. Chem. Soc., 1939, 61, 3070—3074; A., 1939, II, 132).—Interaction of the corresponding CHR.CH.CH.2OH with 48% HBr-95% H₂SO₄ and fractionation of the

product at 1—5 mm. gives 80—90% of Δ^{β} -n-butenyl, b.p. 49°/93 mm., -pentenyl, b.p. 43·5°/30 mm., -hexenyl, b.p. 28°/9 mm., and -heptenyl bromide, b.p. 32°/3 mm., with small amounts of γ -bromo- Δ^{α} -n-butene, b.p. 31°/93 mm., -pentene, b.p. 30·5°/30 mm., -hexene, b.p. 22°/9 mm., and -heptene (impure), b.p. 23—25°/3 mm. The bromides are equilibrated at higher temp. The ease of equilibration is $C_4 > C_6 > C_5 > C_7$. The % of primary bromide in the equilibrium mixture is C_4 85·5, C_5 80·1, C_6 85·8, and C_7 ~89. Purity and composition (of mixtures) are determined by n, the results agreeing with those of ozonolysis, but not of Raman spectroscopy.

Utilisation of aliphatic nitro-compounds. Preparation of amines and oximes. K. Johnson [with E. F. Degering] (J. Amer. Chem. Soc., 1939, 61, 3194—3195).—Fe-HCl or H₂-Raney Ni in MeOH or EtOH at 45—50°/6—110 atm. reduces aliphatic NO₂-compounds to the derived amines in excellent yield. Zn dust in AcOH gives the oximes, which by subsequent hydrolysis give 43% of the aldehyde; some reduction to amine also occurs. R. S. C.

Loss of optical activity in the reaction of optically active erythro- and threo-y-bromobutan-β-ols with hydrobromic acid. STEIN and H. J. LUCAS (J. Amer. Chem. Soc., 1939, 61, 2845—2848).—When boiled with Ac₂O-CCl₄ in presence of brucine, dl-erythro- γ -bromobutan- β -ol gives (+)-erythro- γ -bromobutan- β -ol (I) and (-)erythro-γ-bromo-β-acetoxybutane (II), and dl-threo- γ -bromobutan- β -ol gives (—)-threo- γ -bromobutan- β -ol (III) and (-)-three- γ -brome- β -acetoxybutane (IV). Some stereomutation occurs in both cases and resolution is incomplete. (I) gives a (+)-trans-oxide, and (III) gives a meso-cis-oxide. (CHMcBr)₂ prepared from (I), (II), (III), or (IV) is inactive, thus supporting the reaction mechanism previously (A., 1939, II, 401) proposed. Other mechanisms are discussed and rejected. R. S. C.

Manufacture of esters of $\Delta^{\alpha\gamma}$ -butadien- β -ol.—Sec B., 1939, 1211.

Polarisations and related data of optically active and racemic β -octanol. J. B. M. Coppock and F. R. Goss (J.C.S., 1939, 1789—1792).—Determinations of d, ϵ , mol. and partial polarisation in C_6H_6 of d-, l-, and dl- β -octanol (I) reveal no difference between the active and the racemic forms. These results are in agreement with the view that dl- β -octanol is simply a racemic mixture. The hygroscopic nature of the carbinol leads to anomalous results for the moist material and the need for careful exclusion of H_2O in the measurements described is emphasised. The apparent dipole moment of (I) in C_6H_6 is l-66, and various vals. of $[\alpha]_0^{\infty}$ at different $\lambda\lambda$ for the d- and l- β -octanol are recorded. J. D. R.

Preparation of higher tertiary alcohols. V. V. Korschak (J. Gen. Chem. Russ., 1939, 9, 1470—1472).—Cetyl bromide, Et stearate (I), and Mg in Et₂O afford dotriacontane and diheradecylheptadecylcarbinol, m.p. 45—46°. PhBr and (I) similarly yield diphenylheptadecylcarbinol, m.p. 51—52°, readily eliminating H₂O when distilled in vac., with produc-

tion of aa-diphenyl-3-heptadecylethylene, b.p. 228—230°/10 mm., m.p. -6° (dibromide, m.p. 34°). PhBr, stearone, and Mg in $(C_5H_{11})_2O$ yield phenyldiheptadecylcarbinol, m.p. 46-47°, which with HBr gives phenyldiheptadecylmethyl bromide, m.p. 70-71°.

Oxidation of $\alpha\beta$ -glycols or $\alpha\beta\gamma$ -polyalcohols by lead tetra acetate in aqueous solution. E. BAER, J. M. GROSHEINTZ, and H. O. L. FISCHER (J. Amer. Chem. Soc., 1939, 61, 2607—2609).—Oxidations are effected in excellent yield by adding Pb(OAc)₄ in AcOH to the glycol in H₂O; the products are the same as are obtained in anhyd. solvents, unless αβεζ-Diisohydrolysis occurs after oxidation. propylidene-d-mannitol thus yields 98.8% d-OH-CH2-CH(OH)-CHO, hydrolysis occurring during pptn. of the Pb by N-H₂SO₄. By subsequent oxidation with Br d-(-)-glyceric acid is prepared in 76% yield. Pinacol gives 95% of COMe2. Me quinate consumes 2 Pb(OAc)4, giving HCO2H and (CHO·CH₂)₂C(OH)·CO₂Me, which is oxidised by Br to citric acid, isolated in 86% yield.

Formation of complex ethers and of acraldehyde during distillation of glycerol.—Sec B., 1939, 1209.

Sulphonation reactions with sulphuryl chloride. M. S. Kharasch and (Miss) A. T. Reid (J. Amer. Chem. Soc., 1939, **61**, 3089-3092).— C_5H_5N and quinoline derivatives in light catalyse sulphonation of aliphatic hydrocarbons by SO₂Cl₂ (best added gradually so as to reduce the excess temporarily present) and depress the chlorination (cf. A., 1939, II, 497). Compounds of mercaptan, sulphide, or selenide type are less effective, anthraquinonesulphonic acids still less so. SO2 and peroxides are quite ineffective. No sulphonation occurs in the dark. $SO_2 + Cl_2$ is ineffective and rise in temp. decreases the efficiency of SO₂Cl₂ by causing its dissociation. Many experiments are recorded with cyclohexane, but the reaction is general. Nuclei of aromatic compounds are unaffected. PhMe does not react, but PhEt gives some acid and PhBuv gives fair yields of CPhMe2 CH2 SO3H. Since SO2Cl2 sulphonates the nucleus of C₆H₆ derivatives in presence of AlCl₃, the above reactions occur by a free radical mechanism, involving SO₂Cl (cf. loc. cit.).

Formation of bis-β-diethylaminoethyl sulphide. E. S. Cook and C. W. Kreke (J. Amer. Chem. Soc., 1939, 61, 2971—2972).—
Br·[CH₂]₂·NEt₂,HBr (prep. from OH·[CH₂]₂·NEt₂, 66% HBr, and a trace of Br at 135°) and aq. NaHS at 55° give di-β-diethylaminoethyl sulphide dihydrobromide, m.p. 237·3—237·8° (corr.) [corresponding dihydrochloride, m.p. 245·5—247·5° (corr.)].

Acetylene polysulphones. X. Vinyl chloride polysulphone. C. S. Marvel and L. H. Dunlap. XI. Compound, C₁₀H₁₆O₂S, from Δ^α-pentinene polysulphone. Other acetylene polysulphones. XII. Synthesis of 3:4- and 2:5-di-n-propyltetrahydrothiophen 1:1-dioxides. C. S. Marvel and W. W. Williams (J. Amer. Chem. Soc., 1939, 61, 2709—2710, 2710—2714, 2714—2716).—X. Vinyl chloride polysulphone and 20% NaOH at 100° give

MeCHO (cf. A., 1938, II, 305) and the Cl is removed, but the S remains in org. combination. The sulphone thus $[\cdot SO_2 \cdot CHCl \cdot CH_2 \cdot CHCl \cdot CH_2 \cdot]_n$. Hydrolysis gives CHO·CH₂·CH(OH)·SO₂Na and thence MeCHO and CHO·CH₂·SO₂Na (polymerises). Pyrolysis in dioxan or treatment with liquid NH3 causes complex reactions involving loss of Cl and S.

XI. Pyrolysis of the polysulphone from Δ^a -pentinene in dioxan produces an equilibrium mixture, the sole cryst. product of which is the substance, $C_{10}H_{16}O_2S$ (A., 1936, 1487). This is an $\alpha\beta$ -unsaturated sulphone, since it adds CHNa(CO₂Et)₂ in C₆H₆, giving a substance, $C_{17}H_{28}O_6S$, m.p. 104.5— 105° , and is reduced by Zn–AcOH to a H_2 -derivative, m.p. 49—50°. H_2 -PtO₂-Pt-black gives an isomeric H_2 derivative, m.p. 56.5—57°, unaffected by Zn-AcOH. Attempts to add reagents to other acetylene polysulphones led to cleavage. C2H2 gives no polysulphone. X-Ray diffraction patterns of fibres from Δ^{α} -pentinene, -hexinene, -lieptinene, -noninene, and -pentadecinene polysulphones are unusually welldefined.

XII. CHPra(CO₂Et)₂, CHPraBr·CO₂Et, and Na in xylene give 59% of Et_3 octane- $\delta\delta\varepsilon$ -tricarboxylate, b.p. 182—183°/1 mm., hydrolysed by hot 40% KOH to an acid, which at room temp. gives CO₂ and cis-, m.p. 115—117°, and impure trans-(CHPra·CO₂H)₂. Et_2 ester, b.p. 86—87°/<1 mm., thereof is hydrogenated (Cu chromite; dioxan; 260°/300 atm.) to 3:4-di-n-propyltetrahydrofuran (54·2%), b.p. 40—42°/<1 mm., and a little $\delta\delta$ -di(hydroxymethyl)-n-octane, b.p. $103^{\circ}/<1$ mm. The mixed products are converted by HBr-AcOH at 125° (later 128— 154°) into $\delta\delta$ -di-(bromoethyl)-n-octane, b.p. 94°/~1 mm., which with Na₂S-EtOH gives 3:4-di-n-propyltetrahydrothiophen, b.p. $65-66^{\circ}/1$ mm. $(1:1-dioxide, m.p. 57-59.5^{\circ})$. (!Ĉ·MgBr)₂ and Pr°CHO in Et₂O give \(\Delta'-n-decineneδη-diol, b.p. 113—114°/1 mm., hydrogenated (Raney Ni; a little EtOH; 75°/298 atm.) to n-decane-δη-diol, m.p. 79—80°, the dibromide (prep. by HBr at 45—60°), b.p. 106-109°/1 mm., from which affords 2:5di-n-propyltetrahydrothiophen, b.p. 74—75°/1 mm. $(1:1-dioxide, b.p. 123-125^{\circ}/1 \text{ mm.})$. SO_2 has a refractive const. 8.7.

Identification of propionic acid in presence of acetic and butyric acids. L. Musicant and F. J. Kaszuba (J. Amer. Chem. Soc., 1939, 61, 2974— 2976).—Propionyl derivatives are identified in presence of Ac and butyryl derivatives by hydrolysing, neutralising, evaporating, distilling the residue with H₃PO₄, and identifying EtCO₂H in the distillate microscopically as Hg^I salt. Formates in moderate amount interfere. R. S. C.

Structure of vinyl polymerides. IV. Polymerides of methyl α-halogenoacrylates. C. S. MARVEL and J. C. COWAN. V. Reactions of the polymerides of methyl vinyl ketone. C. S. MAR-VEL and C. L. LEVESQUE (J. Amer. Chem. Soc., 1939, **61**, 3156—3160, 3234; cf. A., 1939, II, 404).— IV. Me α-chloro- (I), b.p. 57—59°/55 mm., and α-bromo-acrylate (II), b.p. 72·5—74°/78 mm., prepared from CH2Hal·CHHal·CO2Me by quinoline, polymerise when kept or, more rapidly, when warmed (35°) with Bz₂O₂, to glassy or solid polymerides of

average mol. wt. \sim 11,500 (by η in dioxan), shown to be $[{}^{\bullet}CH_2 {}^{\bullet}CHal(CO_2Me) {}^{\bullet}CHal(CO_2Me) {}^{\bullet}CH_2 {}^{\bullet}]_x$ by reactions of the halogen. A sample of (I) which had polymerised very slowly was insol. and thus had a much higher mol. wt. Polymerised (I) or (II) liberates I from KI, the rate of reaction for polymerised (II) being comparable with that for $(CHBr \cdot CO_2Et)_2$ and \gg that for $CH_2(CHBr \cdot CO_2Et)_2$ Et_2 $\gamma \varepsilon$ -dibromo-n-heptane- $\gamma \varepsilon$ -dicarboxylate (III). Zn eliminates 97% of HBr from both polymerides and heat causes loss of Br at a lower temp. than for (III) (this gives EtBr when distilled in vac.). Quinoline removes ~1 HBr from polymerised (II). KI gives [•CH₂•C(CO₂Me):C(CO₂Me)•CH₂•]_n, which, since it is insol., has many C.C replaced by cross-linkings although it reduces KMnO₄. Some cross-linking also occurs with Zn. Aq. NaOH hydrolyses both polymerides to an acid

 $[\cdot CH_2 \cdot C(OH)(CO_2H) \cdot C(OH)(CO_2H) \cdot CH_2 \cdot]_x$, which reduces HIO4 in ~48 hr. (proof of OH·C·C·OH) and HIO₃. Treatment of CH₂[CH(CO₂Et)₂]₂ with NaOEt-EtI, hydrolysis by KOH-(CH₂·OH)₂, and decarboxylation by boiling, dil. HCl gives CH₂(CH₂·CO₂H)₂, the acid chloride of which with dry Br at 70° gives a product, converted by abs. EtOH and subsequent distillation into the lactone, b.p. 134-138°/3 mm., of γ-bromo-ε-hydroxy-ε-carbethoxy-n-heptane-γ-carboxylic acid. HBr-abs. EtOH then gives (III). Structures are supported by absorption spectra.

V. The head-to-tail structure (A., 1938, II, 126) of the polymeride of COMe CH:CH, is confirmed by con-

$$\begin{bmatrix} \cdot \text{CH}_2 \\ \text{Me} \\ \\ \text{N} \end{bmatrix}$$

version of the polyketoxime by boiling HCl-EtOH into the polypyridine derivative (IV), containing ~13.5% of ketone (cf. Flory, A., 1939, II, 401). NaOCl polymeride to the acid, [•CH₂•CH(CO₂H)•]_x.

R. S. C. Antioxidants and the autoxidation of fats. [VIII.] Auto-oxidation of oleic acid, methyl oleate, oleyl alcohol, and $cis-\Delta'$ -octadecene. F. E. DEATHERAGE and H. A. MATTILL (Ind. Eng. Chem., 1939, **31**, 1425—1431; cf. B., 1937, 57).— When O_2 is passed through oleic acid, $cis-\Delta'$ -octadecene, Me or Bu oleate, or oleyl alcohol (apparatus described) at 75°, the products include $\rm H_2O$ (25% of the $\rm O_2$ consumed), peroxides (mostly volatile), peracids, small amounts of aldehydes (mostly further oxidised), acids, alcohols, esters, and epoxides [identified by hydrolysis by AcOH at 100° to the (OH)₂compounds]. The rate of oxidation and consumption of O_2 (2.83—1.55 O_2 per C.C destroyed) decrease in the order of reactants named. Oxidation includes, inter alia, $\cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{CH} : \text{CHR} \rightarrow \cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{CH} \cdot \text{CHR} \rightarrow$

 $\begin{array}{ccc} \cdot \text{CH:CH:CH:CH:CHR} \rightarrow \cdot \text{CH:CH:CH:CHR} \rightarrow \\ 0 - 0 & 0 - 0 & 0 - 0 \end{array}$ ·ÇH·ÇH·CHO + RCHO. R. S. C.

Synthetic glycerides of unsaturated fatty acids. I. Mono- and tri-linolein. H. C. BLACK and C. A. Overley (J. Amer. Chem. Soc., 1939, 61, 3051—3052).—The relatively stable acid chloride

(prep. by $SOCl_2$), m.p. $59\cdot5-60^\circ$, of the solid linoleic acid tetrabromide with αβ-isopropylideneglycerol (1·03) or glycerol (0·32) and quinoline (1·03 mol.) in $CHCl_3$ gives mono-, m.p. $101\cdot5-102^\circ$, and tri-θιλμ-tetrabromostearin, m.p. $81-81\cdot5^\circ$, debrominated by Zn in dry EtOH (not other conditions) to mono-, m.p. $14-15^\circ$, and tri-linolein, m.p. -5° to -4° , respectively. Rebromination gives 1:1 mixtures of cryst. and oily tetrabromoglycerides. R. S. C.

Rotatory power of zinc lactate. W. D. Maclay, R. M. Hann, and C. S. Hudson (J. Amer. Chem. Soc., 1939, 61, 3234—3235).—A correction (cf. A., 1939, II, 408). W. R. A.

Acetylation of lactic esters by keten. H. V. Claborn and L. T. Smith (J. Amer. Chem. Soc., 1939, **61**, 2727—2728).—Alkyl lactates are smoothly acetylated by keten in presence of a drop of $\rm H_2SO_4$. Me, b.p. 68—73°/14 mm., Et, b.p. 73—76°/11 mm., Bu², b.p. 94—97°/8 mm., Bu^β , b.p. 90—92°/9 mm., 205°/763—765 mm., Pr^a , b.p. 77—79°/7 mm., 196°/763—765 mm., n-, b.p. 101—103°/8 mm., 227°/763—765 mm., and iso-amyl, b.p. 107—110°/12 mm., 222°/763—765 mm., CH_2Ph , b.p. 145—148°/7 mm., and β-acetoxyethyl α-acetoxypropionate, b.p. 141—145°/10 mm., 265°/763—765 mm., are described.

R. S. C. tert.-Butyl esters of aliphatic dibasic acids. H. J. BACKER and J. D. H. HOMAN (Rec. trav. chim., 1939, 58, 1048—1061).—The corresponding acid chloride in C_6H_6 or $CHCl_3$, $Bu^{\gamma}OH$, and (a) C_5H_5N or (b) $NPhMe_2$, afford: Bu^{γ}_2 oxalate (a) (I), m.p. $70.5-71^{\circ}$ (crystallographic properties), malonate (b), m.p. -7° , b.p. $93^{\circ}/10$ mm. (cf. A., 1939, II, 5; m.p. -14°), succinate (b), m.p. 36° , b.p. $115^{\circ}/14$ mm., glutarate (a), m.p. -10° to -11° , b.p. $125.5^{\circ}/13$ mm., adipate (a), m.p. 32.5° , b.p. $134^{\circ}/10$ mm. (cryst. properties), mindate (b), m.p. 15° b.p. $148^{\circ}/11$ mm. properties), pimelate (b), m.p. -15°, b.p. 148°/11 mm., 125°/3 mm., suberate (a), m.p. 29°, b.p. 160°/11 mm., 134°/3 mm., azelate (a), m.p. -18°, b.p. 174°/13 mm., 145°/3 mm., and sebacate (a), m.p. 18°, b.p. 185°/13 mm., 154°/3 mm., respectively. The "oscillation" in m.p. is specially marked. Partial hydrolysis of the respective Buy ester by KOH-EtOH gives the corresponding $K B u^{\gamma}$ malonate, succinate, glutarate, and adipate, respectively, purified through the Buy H ester. (I) and KOH-EtOH gives mainly KEtC2O4, but aq. KOH-Bu OH affords K Bu oxalate. A. T. P.

Isotopic exchange reactions between deuterium oxide and cis- and trans-glutaconic acids. E. M. Evans, H. N. Rydon, and H. V. A. Briscoe (J.C.S., 1939, 1673—1679).—The partition of D and H between cis- and trans-glutaconic acids and 10% and 92% D₂O in presence of 1.05 mol. of NaOH is studied by heating the acid with D₂O, and determining the D in the water of combustion of the Ag salt by a micro-flotation method. The results show that three H are concerned in the tautomerism, and an estimate is made of the mobility of the tautomeric system. A special mechanism involving H-bond formation is advanced to explain the observed greater velocity of isotopic exchange in the case of the cisacid.

J. D. R.

Constitution of arabic acid. II. Degraded arabic acid. F. SMITH (J.C.S., 1939, 1724—1738; cf. A., 1939, II, 298).—Repeated methylation of degraded arabic acid with Me₂SO₄-NaOH in COMe₂ gives a methylated degraded arabic acid, equiv. 830, which with MeI-Ag₂O yields a Me ester, hydrolysed by MeOH-HCl to a mixture from which the following are isolated: 2:3:4-trimethyl- α -methylglucuronoside (I) (3 mols.), 2: 4-dimethyl-β- (II), m.p. 165—166°, and -α-methylgalactopyranoside (III), m.p. 105°, [α]_p¹⁸ +142° in $H_2\ddot{O}$ (α and β together, $\ddot{3}$ mols.), $2:\ddot{3}:\ddot{4}$ trimethyl- ($\overline{1V}$) (5 mols.) and 2:3:4:6-tetramethylmethylgalactoside (V) (1 mol.). The repeating unit of degraded arabic acid consists of 9 residues of galactose and 3 residues of glucuronic acid, and the identification of the methylated derivatives shows that 1:6- and 1:3-glycosidic links are present in the acids, and that the sugar units, all of which have pyranose rings, are joined in a branched-chain type structure, probably having four terminal residues. The structure of (I) is proved as follows: on heating with MeOH-HCl, the Me ester of (I) is formed, which with MeOH–NH₃ gives 2:3:4-trimethylmethylglucuronoside amide, m.p. 183°, $[\alpha]_D^{20}$ +137·5° in H₂O, identical with that formed by the same method from esterified methylated glucuronolactone. 2:3:4-Trimethyl-β-methylglucuronoside, esterified with CH₂N₂ in Et₂O and treated with MeOH-NH₃, yields an amide, m.p. 193°, $[\alpha]_D^{20}$ -47° in H₂O. When heated with N-H₂SO₄, (I) yields 2:3:4-trimethylglucuronic acid, which when oxidised with Br-H2O followed by esterification (HCl-MeOH) gives $2:\overline{3}:4$ -trimethylsaccharolactone Me ester, identical with that formed by oxidation of 2:3:4-trimethyl-β-1:6-anhydroglucose with HNO_3 . Oxidation of the Me ester of (I) with HNO₃ (d 1.42) yields Me l-(+)-threodimethoxysuccinate and methyl-i-xylotrimethoxyglutarate (isolated as the amides). The structure of (IV) is proved by its hydrolysis by N-H₂SO₄ to 2:3:4-trimethylgalactose monohydrate (VI), which is oxidised by Br-H₂O to 2:3:4-trimethylgalactonic acid (amide, m.p. $\tilde{1}65^{\circ}$, $[\alpha]_{D}^{18}$ +32° in $H_{2}O$ and by HNO_{3} (d 1·42) to βγδ-trimethylmucic acid [diamide, m.p. 273° (decomp.); monoamide Me_1 ester, m.p. 156° [α]_D¹⁸ $+34^{\circ}$ in H_2O ; bismethylamide monohydrate, m.p. 205° , [α]_D¹⁶ $+7.5^{\circ}$ in H_2O]. α -Methylgalactopyranoside in C_5H_5N with CPh₃Cl yields 6-triphenylmethyl- α -methylgalacto-pyranoside (a glass), $[\alpha]_{\rm p}^{18} + 30^{\circ}$ in COMe₂, which when repeatedly methylated (Me₂SO₄-NaOH-COMe₂) yields 6 -triphenylmethyl-2:3:4-trimethyl- α -methylgalactoside (a glass), $[\alpha]_{D}^{18}$ +44° in CHCl₃, hydrolysed (HCl in Et₂O and then N-H₂SO₄) to (VI). The structure of (V) is proved by its hydrolysis $(N-H_2SO_4)$ into 2:3:4:6tetramethylgalactopyranose. The structure of (II) is proved by methylation (MeI-Ag₂O) to 2:3:4:6tetramethyl-β-methylgalactoside, and by its hydrolysis (N-H₂SO₄) to 2:4-dimethylgalactose monohydrate (VII), m.p. 103° , $[\alpha]_{D}^{18} + 122^{\circ} \rightarrow +85.6^{\circ}$ (equilibrium val.) in H₂O. The structure of (III) is proved as follows; hydrolysis with N-H₂SO₄ yields (VII); with NH₂Ph, (VII) gives 2:4-galactoseanilide, m.p. 216°; with NHPh·NH₂, 4-methylgalactosephenylosazone, m.p. 150°, is formed, which on long keeping is converted ${
m into}\,\, ext{4-methylanhydrogalactosephenylosazone}, \, {
m m.p.}\,\, 158^{\circ}$ (decomp.). Oxidation of (VII) with Br in H O gives

M. H. M. A.

2:4-dimethyl- δ -galactonolactone, m.p. 113° [α] $_{\rm p}^{15}$ +162·2° \rightarrow +52·6° (equilibrium val.) in H₂O (phenylhydrazide, m.p. 183°; amide, m.p. 167° [a]_p¹⁸ +59° in H₂O). Oxidation of (VII) with HNO₃ followed by esterification with MeOH-HCl gives the Me ester of ay-(VIII), m.p. 111°, $[\alpha]_{D}^{14}$ dimethylmuco- $\beta \varepsilon$ -lactone $+122^{\circ}$ in $H_2O \rightarrow +83.5^{\circ}$ in 14 days (mutarotation still incomplete), which with MeOH-NH₃ gives the diamide, m.p. 229° $[\alpha]_D$ +30°, and with NH₂Me-MeOH, the bismethylamide, m.p. 214°, $[\alpha]_D^{15} + 27^\circ$ in H₂O, of αγ-dimethylmucic acid. Methylation of (VIII) (MeI-Ag₂O) gives Me αβγδ-tetramethylmucate and the Me ester lactone of aby-trimethylmucic acid, m.p. 63—64°, $[\alpha]_{\rm b}^{18}$ +85° in H₂O, which with NH₃-MeOH gives the *diamide*, m.p. 225° (decomp.), and with NH₂Me-MeOH the *bismethylamide*, m.p. 232° (decomp.) comp.), $[\alpha]_{D}^{17} + 23^{\circ}$ in $H_{2}O$, of $\alpha\gamma\delta$ -trimethylmucic acid. J. D. R.

Oxidation of aldehydes. I. Combustion zones of butaldehyde, isobutaldehyde, propaldehyde, acetaldehyde, glyoxal, and acraldehyde. D. M. NEWITT, L. M. BAXT, and V. V. KELKAR. II. Products of their combustion. D. M. NEWITT and L. M. BAXT (J.C.S., 1939, 1703-1710, 1711-1720).—I. The combustion zones of PrCHO, Pr^βCHO, EtCHO, MeCHO, (CHO)2, and CH2.CH CHO have been mapped out over a wide range of temp. and pressure. Comparison of the combustion diagrams indicates that the order of reactivity of the saturated aldehydes with respect to O depends on the composition of the reacting medium and on its temp, and pressure. Presence of a side-chain increases the resistance of the aldehyde to attack by O and presence of a double linking alters the character of the combustion in such a way as to suggest that the processes occurring at low temp. result in the slower building up of the crit. concn. of the particular species responsible for cool-flame inflammation. The existence of three pressure limits of normal ignition has been observed in the case of saturated aldehydes.

II. During oxidation of EtCHO and MeCHO the initial product is a relatively stable peroxide (I), which is found at all stages prior to cool-flame inflammation or normal ignition, and decomposes to a second peroxide and an alcohol; in aq. solution, (I) changes into a per-acid. The incidence of cool flames and normal ignition is shown to be conditioned by the presence of (I) in crit. concn. There is no evidence that peracids or acids are formed in an excess aldehyde-O₂ medium during reaction, except at low temp. At low temp. some stepwise oxidation of aldehydes takes place, to give lower members of the scries.

J. D. R. Preparation of $\alpha\beta$ -unsaturated aldehydes.—See B., 1939, 1212.

Preparation of d- and l-ribosidodihydroxy-acetone tetra-acetates with an ortho-ester structure. C. W. Klingensmith and W. L. Evans (J. Amer. Chem. Soc., 1939, 61, 3012—3015).—d- (I), $[\alpha]_{b}^{15}$ —56° in CHCl₃, or l-ribose tetra-acetate (II), m.p. 109-5— 110° , $[\alpha]_{b}^{25}$ +56° in CHCl₃, gives acetobromo-d-, $[\alpha]_{b}^{35}$ —223·9° in CHCl₃, and -l-ribose, m.p. 94·5—95·5°, $[\alpha]_{b}^{35}$ +224·8° in CHCl₃, which with OAc·CH₂·CO·CH₂·OH and I in C₆H₆ give diacetyl-d-

(III), $[\alpha]_D^{25} - 11 \cdot 6^{\circ}$ in CHCl₃, and -l-ribose-1: 2-ortho-3'-acetoxyacetonyl acetate, m.p. 97—98°, $[\alpha]_D^{25} + 11 \cdot 6^{\circ}$ in CHCl₃, respectively, unstable to HCl and liberating >4 mols. of AeOH with alkali owing to liberation and decomp. of CO(CH₂·OH)₂. Equal amounts of (I) and

(II), when crystallised together, give dl-ribose tetraacetate, m.p. 90.5°, and yield (above reaction) the dl-form, m.p. 124.5—125°, of (III). M.p. are corr.

Preparation of β -glucose. W. RASMUSSEN (Dansk Tidsskr. Farm., 1939, 13, 273—279).— α -Glucose is converted into β -glucose (I) by treatment (10% solution) with aq. Ca(HCO₃)₂ for 24 hr. at room temp. The solution is then brought to $p_{\rm H}$ 7.4 by heating to 40°, and after adding an equal vol. of COMe₂, is neutralised with H₂SO₄ and kept at 40° for 2 hr. The product on evaporation is entirely (I).

Action of titanium tetrachloride on benzyl-glucopyranoside tetra-acetates. E. V. PIEL and C. B. PURVES (J. Amer. Chem. Soc., 1939, 61, 2978—2979).—Acetobromoglucose (prep. described), $\mathrm{CH_2Ph\cdot OH}$, and $\mathrm{Ag_2O}$ in $\mathrm{Et_2O}$ give β -benzylglucopyranoside tetra-acetate, $[\alpha]$ —53·2° in $\mathrm{CHCl_3}$, which with $\mathrm{TiCl_4}$ in boiling $\mathrm{CHCl_3}$ gives an equilibrium mixture, whence α -benzylglucopyranoside tetra-acetate is isolated in 60% over-all yield. R. S. C.

Ketone sugar series. IX. Validity of Hudson's rules of isorotation in the l-sorbose series. β-Ethylsorboside and its tetra-acetate. E. Pacsu (J. Amer. Chem. Soc., 2669—2674; cf. A., 1937, II, 400).—Hudson's rules of isorotation hold for *l*-sorbose derivatives if the a_x consts. are applied separately to the α - and β -derivatives. A numerical factor, F, is introduced into the equations for [M] and it is suggested that F is contributed by varying ring-configurations of the two series. Only one trans- and one cis-form of hexopyranoses can exist, owing to steric hindrance by CH₂·OH and other groups. α-Sorbose tetra-acetate (1) and HCl in dry Et₂O give the syrupy acetochlorosorbose, which with abs. EtOH-Ag₂O affords a mixture, containing much ortho-ester; hydrolysis by hot, very dil. HCl converts the ortho-ester into (I), removal of which leaves β-ethylsorboside tetra-acetate, m.p. 86°, $[\alpha]_D^{20}$ +82·7° in CHCl₃, hydrolysed by NaOMe-MeOH to β-ethylsorboside, a syrup, $[\alpha]_{\rm p}^{20} + 31^{\circ}$ in $\rm H_2O$. The pyranoside structure of α -methyl- and β -ethyl-sorboside is proved by production of 1 mol. of HCO_2H by HIO_4 .

Ketone sugar series. X. Synthesis of a disaccharide, 1-β-glucosidofructose; structure of turanose and melezitose. E. Pacsu, E. J. Winson, jun., and L. Graf (J. Amer. Chem. Soc., 1939, 61, 2675—2679).—Synthesis of the 1-β-isomeride and consideration of known reactions prove that turanose (I) is 3-α-glucosidofructopyranose. It follows that melezitose is the corresponding sucrose derivative.

Correct names for numerous derivatives described earlier are recorded. 2:3-4:5-Diisopropylidene-βfructopyranose in CHCl₃, when treated first with Ag₂O-CaSO₄ and then with I and acetobromoglucose at 55-60°, gives 1-tetra-acetyl-β-glucosido-2:3-4:5diisopropylidene-β-fructopyranose, m.p. 162—163°, [α]²⁰_D -32.9° in CHCl₃, converted by hot NaOMe-MeOH into 1-β-glucosido-2: 3-4: 5-diisopropylidene-β-fructopyranose, m.p. 174—175°, $[\alpha]_{D}^{20}$ —45.6° in H₂O. 5% AcOH at 100° then yields 1- β -glucosidofructopyranose, +2H₂O, m.p. 132—135°, [α]^{β}, [α] $^{\beta}$, -59·2° in H₂O, which reduces Fehling's solution but differs from (I) in being unaffected by yeast, not mutarotating in H_2O , and giving glucosazone only on rather long heating or in presence of an excess of AcOH. 3-α-Glucosido-βmethylfructopyranoside is obtained having m.p. $173-174^{\circ}$, $[\alpha]_{D}^{20} + 3.6^{\circ}$ in CHCl₃.

Relations between rotatory power and structure in the sugar group. XXXIV. Possibility of different conformations of the pyranoid ring. C. S. Hudson (J. Amer. Chem. Soc., 1939, 61, 2972; cf. A., 1939, II, 408).—The views of Pacsu (preceding abstracts) are borne out by earlier results of Hudson.

R. S. C.

Labiose, a new trisaccharide of the type of trehalose. S. M. Strepkov (J. Gen. Chem. Russ., 1939, 9, 1489—1492).—The tubers of Eremostachys labiosa contain a non-reducing triose, termed labiose, $+3H_2O$ (I), m.p. $126-128^{\circ}$, $\lceil \alpha \rceil_D^{20} +136 \cdot 7^{\circ}$ in H_2O (hexa-acetate, m.p. 88° , $\lceil \alpha \rceil_D^{20} +122 \cdot 5^{\circ}$ in CHCl₃). (I) is hydrolysed by HCl or invertase, with production of 1 mol. of galactose and 2 mols. of fructose. Emulsin does not attack (I). R. T.

p-Nitrophenyl-α-glucoside, m.p. 210°, [α]_D²⁰ +215° in H₂O.—See A., 1939, III, 1097.

Hexyl- and ethylhexyl-cellulose. Synthesis of (I) hexylcellulose, (II) ethylhexylcellulose. N. N. IZNATRSKAJA (J. Appl. Chem. Russ., 1939, 12, 1050—1056, 1057—1059).—I. Mercerised cellulose, aq. NaOH, and $n\text{-}\mathrm{C}_6\mathrm{H}_{13}\mathrm{Cl}$ heated at 125°/4 atm. for 16 hr. yield mono- and di-hexylcellulose. $(n\text{-}\mathrm{C}_6\mathrm{H}_{13})_2\mathrm{O}$ is a by-product.

II. Ethylhexylcellulose (I) is prepared similarly, by adding EtCl to the reaction mixture. Films produced from (I) combine strength with resistivity to the action of H_2O .

Bromoacetylcholine chloride, m.p. 138°, and the choline bromide ester of betaine bromide, decomp. 300°.—See A., 1939, III, 1096.

Amino-derivatives of pentaerylthritol. IV. Tri(aminomethyl)hydroxymethylmethane. M. Beyaert and F. Govaert (Proc. K. Akad. Wetensch. Amsterdam, 1939, 42, 776—789; cf. A., 1939, II, 534).—OH·CH₂·C(CH₂Br)₃ (I) (cf. ibid., 474) when heated with EtOH saturated with NH₃ at 125° for 20 hr. under pressure affords a product which with KOH followed by fractional distillation gives αγ-οxido-ββ-di(aminomethyl)propane monohydrate (II), b.p. 121—122°/15 mm. [hydrochloride, m.p. 234°; picrate, m.p. 237° (decomp.); oxalate, m.p. 154° (decomp.)] (converted by hot conc. HBr into αγ-diamino-β-bromomethyl-β-hydroxymethylpropane), and an inseparable mixture, b.p. ~200°/0·001 mm. B** (A., II.)

(I) remains unchanged when dissolved in liquid NH₃ and with boiling EtOH-KOH/0·5 hr. affords αγ-oxido-ββ-di(bromomethyl)propane (III), b.p. 119/18 mm., which with liquid NH₃ at room temp. or aq. EtOH-NH₃ at 0° gives the dihydrobromide (IV), m.p. 224°, of anhyd. (II). (IV) with the theoretical amount of aq. KOH or with Ag₂O gives (II). (IV) with aq. NH₃ at 200°/12 hr. under pressure gives tri(aminomethyl)hydroxymethylmethane, m.p. 121° [hydrobromide, m.p. 302° (decomp.); tetra-acetate, m.p. 58°; nitrate, m.p. 239° (decomp.); sulphate, m.p. 288°; oxalate, m.p. 172° (decomp.)] [also obtained similarly from (III) or (II)].

Amino-derivatives of pentaerythritol. V. Aminomethyltri(hydroxymethyl)methane. F. Govaert and M. Beyaert (Proc. K. Akad. Wetensch. Amsterdam, 1939, 42, 790—797; cf. preceding abstract).—Pentaerythritol monobromohydrin (I) (cf. A., 1939, II, 199) with the theoretical amount of boiling EtOH-KOH gives αγ-oxido-ββ-di(hydroxymethyl)propane (II), m.p. 84° (diacetate, b.p. 146°/12 mm.), converted by H halides into the halogen analogues of (I) and by H₂O at 150°/20 hr. (sealed tube) into pentaerythritol. (II) with aq. NH₃ at 200°/24 hr. under pressure gives aminomethyltri(hydroxymethyl)methane, m.p. 207° (tetra-acetate, b.p. 173°/0·4 mm.; oxalate, m.p. 206°; picrate, m.p. 98°), isolated through the carbamate, decomp. at 149°.

Carbamates of α -amino-acid esters and their polycondensation. M. Frankel, O. Neufeld, and E. Katchalski (Nature, 1939, 144, 832—833; cf. A., 1939, II, 535).—On passing CO₂ through wellcooled α-NH₂-acid esters, alone or in Et₂O, cryst. products, CO₂R'·CHR·NH·CO₂H, are produced. The "carbamates" of the Et esters of glycine, phenylglycine, and alanine thus prepared show different degrees of stability at low temp. At room temp. they decompose rapidly, giving off CO₂. The new compounds assist in the poly-condensation of NH2acids, since the tendency to condense is enhanced by the introduction of the readily-cleavable CO·O-group. On keeping for several weeks, glycine Et ester "carbamate" yields a mixture which contains, inter alia, glycine peptide esters of much higher chain length. Alanine Et ester " carbamate " yields a product which gives the biuret reaction, and from which tetra-alanine Et ester has been isolated.

Oxidation of d(+)-proline by d-amino-acid oxidase. H. A. Krebs (Enzymologia, 1939, 7, 53—57).—The oxidase (d-amino-acid deaminase) oxidises d(+)-proline to δ -amino-acketovaleric acid, isolated as 2:4-dinitrophenylhydrazone, m.p. 223° [hydrochloride, m.p. 233—242° (decomp.); sulphate]. The oxidation of d(-)-ornithine to the same aminoketo-acid proceeds at one fortieth and that of dl-pyrroline-2-carboxylie acid (double linking at 3:4) at 0.05 of the rate. The oxidation of l(-)-proline by kidney possibly follows the same route as does that of d(+)-proline, the primary product being probably δ -amino- α -ketovaleric acid. Relationships between NH₂-acids of the ornithine group and those connected with proline are indicated. The general equation for the action of the oxidase is R·CH₂(NHR')·CO₂H +

 $0.5O_2 = R \cdot CO \cdot CO_2H + NHR'$. In the case of proline there is only one product containing R and R'.

New synthesis of cystine. J. L. Wood and V. DU VIGNEAUD (J. Biol. Chem., 1939, 131, 267—271).— With a view to the introduction of isotopic atoms, cystine is synthesised from simple materials. CH₂Ph·SH and polyoxymethylene with anhyd. HCl and $CaCl_2$ (cf. Böhme, A., 1936, 1092) give CH_2Ph CH_2Cl sulphide, b.p. $102^\circ/2$ mm., which does not condenso successfully with $CHNa(CO_2Et)_2$, but with o-C₆H₄(CO)₂N·CNa(CO₂Et)₂ gives Et₂ phthalimido-S-benzylthiolmethylmalonate, m.p. S1—S2° (all m.p. corr.), converted in aq. EtOH containing dioxan by 5N-NaOH at 70°, followed by heating with cone. HCl and neutralisation by aq. NH₃, into S-benzyl-dl-cysteine, m.p. 215—216° (Ac derivative, m.p. 158°, identical with that prepared from l-cystine as starting material). This with Na in liquid NH₃ followed by NH₄Cl, extraction with Et₂O, neutralisation, and atm. oxidation (FeCl₃) gives a mixture of meso- and dl-cystine, separable by methods previously described (A., 1933, 89, 1149). The introduction of isotopic atoms is discussed. E. W. W.

Asterubin, $C_5H_{13}O_3N_3S$, from starfish.—See A., 1939, III, 1062.

Alkylation of α-sulphonylamides. A. Pomerantz and R. Connor (J. Amer. Chem. Soc., 1939, 61, 3139—3145).—RSO₂·CH₂·CO·NH₂ is incompletely alkylated by NaOEt and an alkyl halide in EtoH, but in C₆H₆ or PhMe alkylation is complete (most rapid with R₂SO₄), occurring mainly in the CH₂ but also on the N. Only one alkyl can be introduced into the CH₂. Thus are obtained Bu^αSO₂·CHEt·CO·NH₂, m.p. 124—125°, α-n-butane-α'-sulphonyl-n-hexoamide, m.p. 110·5—111° (corr.), α-p-toluenesulphonyl-n-hexoamide, m.p. 165·5—166°, and -β-phenylpropionamide, m.p. 203—204° (corr.), α-n-butane-α'-sulphonyl-n-butyrethylamide (I), m.p. 64·5—65° (corr.), and α-n-butane-α'-sulphonylacetethylamide (II), m.p. 72°. SBu^α·CH₂·CO·NH₂ (III) and NaOEt in PhMe give a N-Na derivative [a side-reaction also occurs, as acidification regenerates only part of the (III)], which with Et₂SO₄ gives the N-Et derivative, converted by H₂O₂ into (II). CH₂Cl·CO₂Na and Bu^αSNa in H₂O give SBu^α·CH₂·CO₂H, b.p. 125—130°/5—6 mm., oxidised by 30% H₂O₂ to n-butane-α'-sulphonylacetic acid, m.p. 67·5—68·5° (corr.), the acid chloride of which yields (II). The structure of (I) is proved by hydrolysis etc.

Redistribution reaction. I. Random intermolecular exchange of organic radicals. G. Calingaert and H. A. Beatty. II. Analysis of metal alkyl mixtures. Confirmation of random distribution. G. Calingaert, H. A. Beatty, and H. R. Neal. III. Determination of a material balance. G. Calingaert and H. Soroos (J. Amer. Chem. Soc., 1939, 61, 2784—2754, 2755—2758, 2758—2760).—I. Reactions in which compounds of similar type are equilibrated with fission and reformation of covalent linkings are termed "redistribution reactions." Equilibration of metal alkyls, in which both the metal and alkyl may be different, is effected by many catalysts, e.g., metal halides and

metal alkyl halides, usually in hexane or decahydronaphthalene at 80°. No decomp. occurs; equilibrium is attained from either end. The products are formed in proportions strictly determined by the laws of probability and no notable energy changes occur. Evidence in favour of such random distribution of products is provided by the systems PbEt₄-PbMe₄, PbMeEt₃-PbMe₃Et, SnEt₄-SnMe₄, and SnMe₄-PbEt₄.

II. Analysis of mixed metal alkyls is described. Details are given proving random distribution of the products from the systems PbMe₄-PbEt₄, SnMe₄-SnEt₄, C₂H₄Cl₂-C₂H₄Br₂, SiEt₄-SiPr₄, HgMe₂-HgEt₂,

and MeOAc-Pr^aCO₂Et.

III. By exactly determining the Pb in the various products, it is shown that no decomp. occurs when PbMe₄ and PbEt₄ are equilibrated to mixed Pb alkyls by AlCl₃. 1.5% of the Pb was recovered as PbAlk₃Cl and a trace as PbCl₂. R. S. C.

Reaction between dimagnesium acetylenyl dibromide and carbonyl compounds. J. S. Salkind and S. M. Labuzov (J. Gen. Chem. Russ., 1939, 9, 1525—1532).—The velocity of reaction of (CMgBr:)₂ with aldehydes (MeCHO, EtCHO, PrCHO, PhCHO) is with ketones (COMe₂, COMeEt, COMePr, COEt₂, COPhMe, COPh₂), and falls with increasing mol. wt. of the compounds. In no case did the reaction proceed to conclusion, owing to occlusion of the reagent by reaction products.

R. T.

Optical activity dependent on the planar arrangement of the valencies of the 4-co-ordinated palladous atom. A. G. LIDSTONE and W.H. Mills (J.C.S., 1939, 1754—1759).—isoButylenediamine (improved prep.) and K2PdCl4 in H2O yield isobutylenediaminodichloropalladium, decomp. ~300° which with mesostilbenediamine (I) and KI in H₂O dl-isobutylenediaminemesostilbenediaminopalladous iodide, m.p. 242° (decomp.) [monohydrate (II)]; when treated with Ag_2CO_3 and d(-)diacetyltartaric anhydride, followed by fractional crystallisation from aq. EtOH, d- (III) and l-isobutylenediaminemesostilbenediaminopalladous d(-)diacetyltartrate dihydrate (IV), $[M]_{5461}^{16}$ —111° in H_2O , are formed. [M] varies somewhat with concn. From (IV) by successive treatment with KI and AgNO₃ the nitrate, $[M]_{5461}^{15}$ -50.4° in H₂O, is formed; it is racemised only slowly by H₂O at 57°. (III) has $[M]_{5401}^{15} +110^{\circ}$ and is converted by KI-AgNO₃ into the *nitrate*, $[M]_{5461}^{15} + 50.5^{\circ}$. When treated with dil. HCl, (II) yields PdCl₂ and (I). r-Stilbenediamine with dil. AcOH gives di-stilbenediamine diacetate monohydrate, m.p. 131-132°, which when resolved through the H d-tartrate gives l-stilbenediamine (V). Both (I) and (V) are configurationally stable to boiling with dil. HCl for 16 hr. By the method described above, isobutylenediamino-l-stilbenediaminopalladous iodide is prepared, and converted by AgNO₃ into the *nitrate*, $[M]_{5401}^{15}$ -624° , $[M]_{5893}^{16}$ -497° , which is decomposed by KI-HCl into (V). The stability of the optical activity of the nitrates shows that the 4-covalent Pd must have a planar configuration of its valencies, since a regular tetrahedral arrangement would give a symmetrical configuration for the complex cation. J. D. R.

Synthesis of some monosubstituted homologues of cyclopentane having a normal side-

 $p\text{-}C_6H_4(NH_2)_2$.

A. F. PLATE (Compt. rend. Acad. Sci. U.R.S.S., 1939, **24**, 257—262; cf. A., 1937, II, 236). $n-C_5H_{11}$ ·MgBr (I) and cyclopentanone give n-amylcyclopentan-I-ol, dehydrated by aq. $\rm H_2C_2O_4$ to namyl- Δ^1 -cyclopentene (II), b.p. 177—179°/743 mm. (cf. Rinkes, A., 1938, II, 142). cycloPentenyl chloride (III) and (I) give n-amyl-Δ²-cyclopentene (IV), b.p. 173·5—175·2°/747 mm. (method: von Braun et al., A., 1937, II, 404). Hydrogenation (Pd-black-EtOH) of (II) or (IV) at room temp. gives n-amyleyclopentane, b.p. 178—179°/752 mm. 1-n-Hexylcyclopentan-1-ol (modified prep.; cf. Zelinski et al., A., 1933, 1150), b.p. $85-86^{\circ}/4$ mm., is dehydrated by aq. $H_2C_2O_4$ to n-hexyl- Δ^1 -cyclopentene (\overline{V}), b.p. $202-20\overline{4}\cdot\overline{5}^{\circ}/743$ mm., and some dodecane. (III) and n-C₆H₁₃·MgBr give n-hexyl- Δ^2 -cyclopentene, b.p. 1968—1988°/761 mm., reduced (Pd-black) in the cold [as also is (V)] to n-hexylcyclopentane, b.p. $201\cdot1-202\cdot2^{\circ}/742$ mm. n-Heptylcyclopentan-1-ol, b.p. $91-92^{\circ}/3$ mm., is readily dehydrated (I_2) to n-heptyl- Δ^1 -cyclopentene, b.p. 218—220°/762 mm., which is hydrogenated (Pdblack) at room temp. to n-heptyleyclopentane, b.p. 222·1—224°/741 mm. Physical consts. are recorded. A. T. P.

Contact conversion of the six-membered into the five-membered ring. N. D. Zelinski and J. A. Arbusov (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 794-798).—When passed several times over Al₂O₃ (containing SiO₂) or once over SiO₂ gel at 450°, cyclohexene (I) is largely converted into methylcyclopentene. The product is hydrogenated (H₂-Pt-C; 150°) and then dehydrogenated (Pt-C; 300°), the C_6H_6 [derived from unchanged (I)] is removed by 5% oleum, and the residue identified as methylcyclopentane (A) by its physical consts. Passage of (A) in H₂ over platinised SiO₂ gel at 250° gives mixed paraffins, C_6H_{14} . 1-Methyl- Δ^3 -cyclohexene (II) similarly gives dimethylcyclopentenes, converted as above into dimethylcyclopentanes, b.p. 92—95°/755 mm., and paraffins, C_7H_{16} , b.p. 86—93°/761 mm. cycloHexane (III) and cyclopentene (IV) are unaffected by Al₂O₃ or SiO₂ gel at 450°, and it is thus only the cyclohexene ring which is isomerised. When passed in CO_2 over Cr_2O_3 at 450°, (I) gives H_2 , C_6H_6 , and a little cyclohexane. PhMe and a little methylcyclohexane are similarly obtained from (II), but (IV) and, unless the Cr₂O₃ is previously heated in H₂ at 450°, (III) are unaffected thereby. Ř. S. C.

Isomerisation of cyclohexane under high pressure of hydrogen. S. Ando (J. Soc. Chem. Ind. Japan, 1939, 42; 322—324B).—cycloHexane and H₂ passed over Mo₂S₃ at 200 atm. yield, at 380° 35%, and at 410° 80%, of methylcyclopentane. CH₄ and unsaturated hydrocarbons are not formed.

J. D. R. Separation of the isomeric 1:4-dibromodinitrobenzenes and their reactions with p-phenylenediamine. C. J. Sunde, G. Johnson, and C. F. Kade (J. Org. Chem., 1939, 4, 548—554).—p-C₆H₄Br₂ is nitrated (method: Jackson and Calhane, A., 1903, i, 159) and the product is poured on to ice and crystallised from AcOH, thereby giving 1:4:2:3-C₆H₂Br₂(NO₂)₂ (I), m.p. 159—160°. The filtrate from (I) is pptd. by H₂O and the ppt. is-crystallised

from dioxan, whereby $1:4:2:5-C_6H_2Br_2(NO_2)_2$ (II), m.p. 126—127°, is isolated. The residues from (II) are crystallised from EtOH or CS₂, giving 1:4:2:6- $C_6H_2Br_2(NO_2)_2$ (III), m.p. $119-120^\circ$. KNO₂ in boiling aq. EtOH followed by 12N-HCl converts (III) into 1:4:2:6-OH·C₆H₂Br(NO₂)₂, m.p. 74—75°. p-C₆H₄(NH₂)₂ and (I) in boiling MeOH containing KI, K₂CO₃, and Cu-bronze give 3:6-dibromo-2-nitro-anisole, m.p. 82·5—83°, in 5% yield, also obtained in the absence of $p cdot C_6H_4(NH_2)_2$. (I) is transformed by an excess of $p cdot C_6H_4(NH_2)_2$ in presence of K_2CO_3 , KI, and Cu-bronze into 3:6-dibromo-2-nitro-4'-aminodiphenylamine, m.p. 146—147°. p-C₆H₄(NH₂)₂ and (II) in boiling EtOH containing NaOAc afford 4-bromo-2: 5-dinitro-4'-aminodiphenylamine (IV), m.p. 180—181° (Ac derivative, m.p. 227—228°). Treatment of (IV) with p-C₆H₄(NH₂)₂, Cu-bronze, KI, and anhyd. K₂CO₃ in boiling EtOH and of the product with an excess of Ac₂O at 100° gives the Ac₄ derivative of the Bandrowski base, m.p. 293-294°. 4-Bromo-2:5-dinitro-4'-acetamidodiphenylamine with $p\text{-C}_{6}\text{H}_{4}(\text{NH}_{2})_{2}$ gives the compound, $\text{C}_{20}\text{H}_{18}\text{O}_{3}\text{N}_{5}\text{Br}$, m.p. 245—246°. (III), $p\text{-C}_{6}\text{H}_{4}(\text{NH}_{2})_{2}$, and NaOAc in boiling EtOH yield 4-bromo-2: 6-dinitro-4'-aminodiphenylamine (V), m.p. 193-194°, the Ac derivative, m.p. 271-272°, of which does not react with p- $C_6H_4(NH_2)_2$ in EtOH. With (III) and p- $C_6H_4(NH_2)_2$ in the mol. ratio 2:1 the product is NN'-di-4-bromo-2:6-dinitrophenyl-p-phenylenediamine (VI), m.p. 276—277°, also obtained from (V) and (III). 1:4:2:6- $_{\rm G}$ H₂ClBr(NO₂)₂ and excess of $_{\rm P}$ -C $_{\rm G}$ H₄(NH₂)₂ in EtOH containing NaOAc yield (V), and (VI) is obtained by means of (V) or by use of a deficiency of

Peroxide effect in the addition of reagents to unsaturated compounds. XXIII. Reaction of \mathbf{with} hydrogen sulphites. KHARASCH, R. T. E. SCHENCK, and F. R. MAYO (J. Amer. Chem. Soc., 1939, 61, 3092—3098; cf. A., 1940, II, 2).—Styrene with $NaHSO_2$, $KHSO_3$, or $NHRR'R''SO_3$ gives mainly (50—80%) β -hydroxy- β -phenylethane-sulphonic acid (I) (Na salt) with less $\mathrm{CH_2Ph\cdot CH_2\cdot SO_3H}$ (II) (Na and Ba, $+H_2O$, salts) and CHPh:CH·SO₃H (III) (cf. A., 1939, II, 1). PCl₅, followed by NH₃, converts (I) into CHPh:CH·SO₂·NH₂; (I) is isolated by fractionating the K or Na salts. The amounts of products formed from ammonium sulphites are independent of R (except for NPhMe2) and are mainly determined by $p_{\rm H}$. High O_2 pressure increases speed of reaction and favours formation of (III) by ammonium salts, but is without effect on amount of (III) formed by $NaHSO_3$ or $KHSO_3$ or of (I) formed by any salts. [HSO₃]' does not affect the yields. Replacing O₂ by NO₂' or HS₂O₈' leads to more (I) and (II) and no (III), but NO₃' does not cause reaction. (I), (II), and (III) are not interconvertible by acid, alkali, or NaHSO₃-O₂ [converts (III) into β-phenylethane- $\alpha\alpha$ -disulphonic acid (Na_2 salt, $+2H_2O$)], and are thus primary products. Reaction occurs thus: $HSO_3' + oxidant \rightarrow HSO_3 + [oxidant]^-;$ $HSO_3 + CHPh:CH_2 \rightarrow CHPh:CH_2:SO_3H$ (IV), followed by (a) (IV) + $HSO_3 \rightarrow (II) + SO_3'$, (b) (IV) + $oxidant \rightarrow [oxidant]^- + [CHR:CH_2:SO_3H]^+ \rightarrow (+OH')$ (I), (c) (IV) + $O_2 \rightarrow$ (III) + HO_2 , or (d) HSO_3 + oxidant

 \rightarrow SO₃ + [oxidant]⁻ + H⁺. Mixtures of (II) and (III) are analysed by titrating with KMnO₄, to which (II) is indifferent. NH₂Ph·NH₃ β-phenylethane-αβ-disulphonate (prep. from CHPhBr·CH₂Br), m.p. 187—188° (decomp.), and -αα-disulphonate, m.p. 195—200° (decomp.; rapid heating), and β-hydroxy-β-phenylethane-α-sulphonate, m.p. 180—181° (decomp.), are described. COPh·CH₂·SO₃H is unaffected by HSO₃'-O₂. R. S. C.

Allenes. I. Preparation of α -phenyl- $\Delta^{\alpha\beta}$ butadiene. F. Acree, jun., and F. B. LA FORGE (J. Org. Chem., 1939, 4, 569—574).—Gradual addition of α-chlorocrotonaldehyde in Et₂O to a solution of MgPhBr in Et₂O cooled in ice and salt yields β-chloro- α -phenyl- Δ^{β} -bulen- α -ol, b.p. $122-124^{\circ}/0.5-1$ mm., m.p. 50-51°, also obtained by dehalogenation of ββγ-triehloro-α-phenylbutan-α-ol by Zn dust in boiling EtOH. This is converted by HCl in C₆H₆ or by SOCl₂ into dichloro-α-phenylbutene, b.p. 100°/7 mm. (probable mixture of isomerides), which is dehalogenated (Zn dust in EtOH) to α -phenyl- $\Delta^{\alpha\beta}$ -butadiene (I), b.p. 44-47°/0.5-1.0 mm., which rapidly becomes yellow and viscous when exposed to air. PhBua is obtained by the hydrogenation (PtO₂ in EtOH) of (I). Combination does not occur between (I) and maleic anhydride or α-naphthaquinone. ββγ-Trichlorobutanol is converted by MgPhBr into ββγ-trichloro-α-phenylbutan-α-ol, b.p. 140—145°/0.5 mm., m.p. 53°, which is transformed by PCl_5 into $\alpha\beta\beta\gamma$ tetrachloro-a-phenylbutane, b.p. 122—125°/0·5—1 mm., m.p. 54-55°, dehalogenated by Zn dust in boiling EtOH to (I). (I) is oxidised by KMnO₄ to BzOH and AcOH.

Diarylmethane derivatives. VII. Properties of the diphenylmethyl radical. W. T. Nauta and D. Mulder (Rec. trav. chim., 1939, 58, 1070—1080). —CHPh₂Cl and mol. Ag in C₆H₆ in a vac. give (no coloration) 100% of (CHPh₂)₂ (I). In O₂ or NO (pale yellow) at atm. pressure, only 2—8% of (I) is isolated; the CHPh₂ radicals are removed by O₂ and afford, through a peroxide [probably (CHPh₂)₂O₂], (CHPh₂)₂O, m.p. 107—108°, COPh₂, CHPh₂·OH, and (?) CH₂Ph₂. Mechanisms are discussed. Frequent production of (I) in many reactions (with CHPh₂X) is attributed to the formation of CHPh₂·. A. T. P.

Preparation of di-o-tolylmethyl chloride. E. B. Reid (J. Amer. Chem. Soc., 1939, 61, 3238).— (o- C_6H_4Me)₂CH·OH (prep. from the ketone by 2% Na-Hg), m.p. 120·5—121·5° (lit. 119—119·5°), and aq. HCl- C_6H_6 give 90% of di-o-tolylmethyl chloride, m.p. 70—71°. R. S. C.

Contact transformations of benzdicyclononene. N. V. Elagina and N. D. Zelinski (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 799—800).—Hydrogenation (Pd-C, first at 250° and then at 220°) of benzdicyclononene (Cook et al., A., 1936, 321) gives much dicyclohexylmethane, converted by Pt-C at 300° into fluorene.

R. S. C.

Diene syntheses. S. Gontscharov (Inst. Chem. Tech. Ukrain. Acad. Sci., 1937, 3—83).—A review of known diene syntheses is given, and the possibilities of further applications of the reaction are discussed.

Synthesis of 9:10-dialkylanthracenes. W. E. BACHMANN and J. M. CHEMERDA (J. Org. Chem., 1939, 4, 583—587).—Anthrone is converted by Na and abs. EtOH followed by MeI into methylanthrone, which when dissolved in PhMe and added to MgMeI in Et₂O at 0° yields 9:10-dimethylanthracene (I), m.p. 180·5—181°, in 15—20% yield. 9:10-Dibenzylanthracene, m.p. 243—245°, is obtained similarly. Addition of anthraquinone (II) in Et₂O to MgMeI in the same solvent affords 9:10-dihydroxy-9:10-dimethyl-9:10-dihydroanthracene (III), m.p. 185-195° [since (II) dissolves sparingly in Et₂O it is necessary, in order to avoid undue bulk of solution, to place (I) in an extraction thimble so placed that the extract falls into the MgMeI-Et₂O]. transformed by C₆H₆-MeOH containing a few drops of H_2SO_4 into 9:10-dimethoxy-9:10-dimethyl-9:10dihydroanthracene, which with 2 equivs. of Na gives NaOMe and (I). Similarly, (II) and MgEtI afford 9:10-dihydroxy-9:10-diethyl-9:10-dihydroanthracene, m.p. 169-171° after softening, transformed into the 9:10-Me₂ ether, m.p. 179-180.5°, and thence into 9:10-diethylanthracene, m.p. 146—147°, in 95% yield; the picrate, m.p. 128—129°, is somewhat unstable and cannot be recrystallised without decomp. 2-Methylanthraquinone and MgMeI give 9:10-dihydroxy - 2:9:10 - trimethyl - 9:10 - dihydroanthracene. m.p. 112-130°, which retains solvent of crystallisation very tenaciously and is analysed as the Me, ether, m.p. 181·5—182·5°; this is converted by Na in C_6H_6 – Et_2O into 2:9:10-trimethylanthracene, two forms, m.p. 95– 96° and 100– 101° , respectively. (picrate, m.p. 162– $162\cdot5^\circ$). If >2 equivs. of Na are used in the reaction the hydrocarbon which is formed reacts with the Na to give a deeply coloured $9:10-Na_2$ compound. With exactly 2 equivs. of Na only the diol Me₂ ether enters into the reaction.

Synthesis of 2-methylphenanthrene from lmenthone. R. M. ORCUTT and M. T. BOGERT (J. Org. Chem., 1939, 4, 543—547).—When methyl-lphenylethylcyclohexan-1-ols are cyclodehydrated, Me attached to C₍₃₎ of the cyclohexane nucleus cause the cyclisation to occur on C₍₆₎ of the same nucleus even when a Pr^{β} group is attached to this atom. Gradual addition of l-menthone in Et_2O to a solution of Ph·[CH₂]₂·MgBr affords 1-phenylethyl-3-methyl-6-isopropyleyelohexanol, b.p. 167-169°/2 mm., which is dehydrated by PhNCO at room temp. to 1-phenylethyl-5-methyl-2-isopropyl- Δ^1 -cyclohexene, b.p. $145^{\circ}/4$ mm., highly unsaturated to Br in CCl, or KMnO, in COMe₂ and not cyclised by cold 90% H₂SO₄. Conc. H₂SO₄ converts it into 2-methyl-12-isopropyl-1:2:3:4:9:10:11:12-octahydrophenanthrene (I), b.p. 123—127°/2 mm., which is indifferent towards Br in cold CCl₄ or KMnO₄ in COMe₂. It is dehydrogenated by Se at 345—365° to 2-methylphenanthrene, m.p. 56° [picrate, m.p. 117·5—118·5° (corr.)]. (I) is oxidised by CrO₃ in boiling AcOH to 2:methyl-12-isopropyl - 1:2:3:4:11:12 - hexahydrophenanthra quinone (II), m.p. 151° (corr.) [quinoxaline derivative, $C_{24}H_{26}N_2$, m.p. 121° (corr.)], the colour of which is immediately discharged by Na₂S₂O₄. (II) is converted by cold aq. NaOH into 9-hydroxy-2-methyl-11-iso $propyl-1:\bar{2}:3:4:10:11$ - hexahydrofluorene - 9 - carb-

R. T.

compounds.

oxylic acid, m.p. 210—212° (corr.; decomp.), and is oxidised in boiling AcOH to 4-methyl-1-isopropyl-1:2:3:4:5:6-hexahydrodiphenyl-2:2'-dicarboxylic acid, m.p. 194—198° (corr.), with formation of a yellow anhydride.

H. W.

Phenanthrene derivatives. IV. 9:10-cyclo-Penteno- and -hexeno-phenanthrene. C. K. Bradsher (J. Amer. Chem. Soc., 1939, 61, 3131—3132; cf. A., 1939, II, 499).—o- C_6H_4Ph -MgI and cyclopentanone give a carbinol, dehydrated by KHSO₄ at 160° to 2- Δ^1 -cyclopentenyldiphenyl, b.p. 150—159°/5 mm. With o- CO_2H - C_6H_4 - CO_3H in Et₂O this gives a crude epoxide, cyclised by 34% HBr-AcOH (1:1) to 9:10-cyclopentenophenanthrene, m.p. 150—151° [picrate, m.p. 164—165° (lit. 161·5—162°)], possibly by way of 2-2'-diphenylylcyclopentanone. 2- Δ^1 -cycloHexenyldiphenyl, b.p. 183—193°/23 mm. (similarly prepared in 29% yield by using cyclohexanone), gives similarly 30% of 9:10-cyclohexenophenanthrene, m.p. 122—123° (lit. 120—121°).

Thiocyano-derivatives of aniline and o-toluidine.—See B., 1939, 1213.

Reductive alkylation of aromatic primary amines. II. W. S. EMERSON and W. D. ROBB (J. Amer. Chem. Soc., 1939, 61, 3145—3146; cf. A., 1938, II, 439).—Hydrogenating NH₂Ar and RCHO in EtOH in presence of Raney Ni and NaOAc gives α -C₁₀H₇·NHEt (88%), β -C₁₀H₇·NHR (R = Et, Bu°, or CH₂Ph, 50—64%), p-C₆H₄Me·NHR (R = Et or Bu°, 50—64%), N·n-butyl- (80%), b.p. 155—167°/8 mm. (hydrochloride, m.p. 151—152°), and N-benzyl- α -naphthylamine (24%) (Bz derivative, m.p. 103—104°), N·ethyl- (51%), b.p. 135—140°/20 mm. (p-C₆H₄Br·SO₂ derivative, m.p. 113—114°), and N-n-butyl-p-anisidine (65%), b.p. 142—145°/6 mm. (hydrochloride, m.p. 187·5—188°). 19% of p-C₆H₄Me·NBu°₂ and 25% of p-OMe·C₆H₄·NBu°₂ are also obtained. R. S. C.

New colour reaction for diarylamines. E. M. MEADE (J.C.S., 1939, 1808).—NHAr₂ and MgMeI in PhOMe, with BzCl, give a red colour. 1% of NHPh₂ in NPh₂Me is easily detected. 4'-Methoxy-4-methylor 4:4'-dimethoxy-diphenylamine, phenyl- α - and o- or p-anisyl- β -naphthylamine give the test, but N-substituted NHPh₂, NH₂Ph, NHPhMe, NPhMe₂, NHPh·CH₂Ph, or p-OMe·C₆H₄·NH₂ do not.

Manufacture of pure sulphanilamide.—See B., 1939, 1293.

Organic salts of sulphanilamide and sulphanilylsulphanildimethylamide. A. Mossini (Boll. Chim. farm., 1939, 78, 429—431).—Sulphanilamide in EtOH gives a camphorsulphonate, m.p. 175°. Sulphanilylsulphanildimethylamide (I) similarly gives a camphorsulphonate, m.p. 195°. With phenylquinolinecarboxylic acid in EtOH, (I) gives products, m.p. 188° and 205°. F. O. H.

Action of nitrous acid on dimethylaniline-p-sulphonic acid in sulphuric acid. (MISS) A. M. M. DAVIDSON and T. H. READE (J.C.S., 1939, 1701—1703).—p-NMe₂·C₆H₄·SO₃H (1 mol.) and HNO₂ (4 mols.) in H_2SO_4 (0·5—5N.) at 14° give mainly 3-nitro-

4-dimethylaminobenzenesulphonic acid (I) (anilide, m.p. 182°), and some $p\text{-NO}_2\cdot C_6H_4\cdot NMe_2$ (II) and $p\text{-NO}_2\cdot C_6H_4\cdot NMe\cdot NO$ (III) (with liberation of CH_2O) (cf. Michler et al., A., 1882, 175). Yields of (I) and (III) increase, and of (II) decrease, with increase in concn. of H_2SO_4 ; (II) is converted into (III). $3:4:1\text{-NO}_2\cdot C_6H_3\cdot Cl\cdot SO_3H$ refluxed with Cu-aq. $NHMe_2\text{-EtOH}$ gives (I). Solubility of (I) in H_2SO_4 (0.5 to 5N.) at 14° is recorded.

Diamidine derivatives.—See B., 1939, 1293.

Manufacture of solid diazonium salts.—See B., 1939, 1213.

chlorides with esters and nitriles. W. E. HANBY

Decomposition reactions of aromatic diazo-

VII. Reactions of diazonium

and W. A. Waters (J.C.S., 1939, 1792—1795; cf. A., 1938, II, 342).—Decomp. of solid ArN₂Cl under esters and nitriles with or without metals affords ArH + ArCl, but mainly tar. Decrease in activity is noted with ascending homologous series of esters. $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Cl}\cdot\mathrm{N}_2\mathrm{Cl}$ (I), CaCO₃, and MeOAc, EtOAc, or PrOAc give PhCl and $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Cl}_2$, but C₅H₁₁·OAc gives no simple product. Decomp. of PhN₂Cl in C₅H₁₁·OAc, EtCO₂Pr, or MeOBz does not begin below 100° and is then uncontrollable; in MeOAc with Zn or Sb, ZnCl₂ or $SbCl_3 + (p \cdot C_6H_4Cl)_3SbCl_2$, respectively, are formed. $C_5H_{11} \cdot OAc - Sb$ do not react, and EtOAc-Te react slowly. (I) or PhN₂Cl and MeOAc, EtOAc, PrOAc, MeOBz, or HCO₂Pr give MeCHO (also formed in reactions with MeCN), but when the ArN₂Cl is freed from Et₂O (used for pptn. and washing), no aldehyde is obtained from MeOAc, and traces only from HCO₂Pr and EtCO₂Pr; EtOAc gives MeCHO. (I)-PrOAc afford a little EtCHO. PhN₂Cl and Bu₂O, (C₅H₁₁)₂O, or MeOAc-Bu₂O give no RCHO. Formation of MeCHO by dehydrogenation of Et₂O by a free radical is discussed (cf. Evans et al., A., 1939, II, 251). Decomp. of ArN_2Cl in $RCN + CaCO_3$ at 40° gives small amounts of ArH, ArCl, NHAcAr, and COArMe; the two last reactions are distinctive of

RCN, and suggest addition to CN of free radicals.

PhN₂Cl, o- and p-C₆H₄Me·N₂Cl, (I), and 4:1:2-and 5:1:2-C₆H₃ClMe·N₂Cl are investigated. EtCN is less reactive than MeCN; PhN₂Cl thus affords

only C₆H₆ + PhCl, and CH₂Ph·CN gives no simple product. All the reactions support the view that some decomp. of ArN₂Cl to neutral radicals can occur.

A. T. P. Decomposition reactions of aromatic diazo-VIII. The diazocyanides. compounds. STEPHENSON and W. A. WATERS (J.C.S., 1939, 1796-1804).—The thermally stable anti-diazocyanides (A), ArN:N·CN, are converted photochemically in EtOH or COMe2 into the isomeric, reactive, syn-diazocyanides (B) (cf. Hartley, A., 1938, II, 272). Pptn. of AgCN occurs when (A) in EtOH-AgNO₃ are exposed to light (not in the dark); eventually all the (A)decomposes to a colourless solution of a diazonium salt. With pure (A) alone, the photochemical change reaches an equilibrium val., overwhelmingly in favour of (A)(only a faint turbidity with AgNO₃). Solutions of (A) in EtOH or COMe₂ in closed vessels exposed to light for several days darken and give the same

products as those from thermal decomp, of the corresponding (B). There is little action in the dark. Cu has no direct effect on (A) in $COMe_2$ $(N_2$ is evolved in daylight; decomp. of *p*-chlorobenzene-*anti*-diazocyanide is examined). Under non-ionising solvents, there is no evolution of N₂ and (A) can be recovered unchanged even after exposure to light. In nonionising solvents (CCl4 convenient) quant. isomerisation of (B) to (A) occurs even in absence of light (cf. Le Fèvre et al., A., 1938, II, 229). The dry solids do not isomerise in the dark. The differing behaviour of (B) in ionising and non-ionising solvents is due to the fact that (B) exist in EtOH in tautomeric equilibrium with the unstable diazonium cyanide (cf. Hantzsch, A., 1900, i, 567). Freshly prepared solutions of (B) in dil. EtOH with AgNO3 give (rapidly) AgCN and a sol. colourless diazonium nitrate. Acidified (HNO₃) solutions of (B) are very stable and even after a time give quant, yields of AgCN and the filtrate couples instantly; a neutral solution of (B) in aq. EtOH decomposes quickly owing to hydrolysis and self-coupling, and does not give quant. pptn. of AgCN; the filtrate does not couple appreciably. The following are prepared: p-chloro- (I) and -bromobenzene-syn- (II); o-chlorobenzene-syn- (III), m.p. 49°, and -anti-, m.p. 78°; 4-chloro-o-toluene-syn- (IV), m.p. 49°, and -anti-, m.p. 68°; 5-chloro-o-toluene-syn-(V), m.p. 60°, and -anti-diazocyanide, m.p. 75°. Decomp. of (B) in CCl₄ is initiated by Cu (not by Ag, Hg, Fe, Pb, or Zn) and gives N₂, HCN, and 10—20% of ArCl: thus, (I) gives $p\text{-}C_6H_4Cl_2$; (III) gives $o\text{-}C_6H_4Cl_2 + o\text{-}C_6H_4Cl\text{-}CN$; (II) affords $p\text{-}C_6H_4Cl\text{-}Br$; (IV) gives $1:4:2-C_6H_3$ MeCl·CN (trace) and 1:2:4- $C_6H_3MeCl_2$; (V) affords $1:2:5-C_6H_3MeCl_2$. In dry $C_6H_6 + Cu$, (B) gives HCN, N_2 , and ArPh: (I) affords $p \cdot C_6H_4$ PhC!; (III) gives $o \cdot C_6H_4$ Cl·CN and $o-C_6H_4PhCl$; (II) gives $p-C_6H_4Br\cdot CN$ and p-C₆H₄PhBr; (IV) and (V) give traces of nitrile. Ag or Zn gives no reaction. Fe affords a trace of p-C₆H₄PhCl from (I). In EtOH alone, (B) give HCN + MeCHO and some ArH; in EtOH + Cu, small amounts of the respective ArCN are also formed. Hg, Sb, or Zn gives no reaction. In COMe2 or MeOAc, (B) give HCN and some (A). In COMe₂ + Cu, no free HCN is formed; (III) gives PhCI + o-C₆H₄Cl·CN, and (IV) affords p-C₆H₄MeCl + 1:4:2-C₆H₃MeCl CN. Hg, Sb, Zn, or Ag does not effect decomp. In dry Et₂O + Cu, (B) give MeCHO, HCN, and ArH: from (III), PhCl + o.C₆H₄Cl·CN; from (II), PhBr + p-C₆H₄Br-CN; from (IV), p-C₆H₄MeCl (11), PhBr + p-C₆H₄Dr CN, from (V), + 1:4:2-C₆H₃MeCl·CN; and from (V), m-C₆H₄MeCl + 1:5:2-C₆H₃MeCl·CN. (I) in cyclo-hexane gives p-C₆H₄Cl·CN. The Cu appears to be attacked only in CCl₄. Total % and N content of tar (not polyazo-compound) obtained as main product in decomp. of (B) is recorded, as also is % of diazogroup evolved as N_2 . The theory of Hantzsch *et al.* (A., 1895, i, 348) is disputed. It appears that the radicals formed by decomp. of (B) react with vicinal solvent mols. and thus may have a free existence.

A. T. P. Constitution of diazoamino-compounds. A. Mangini (J.S.C.I., 1939, 58, 327—330).—The view of Dwyer (A., 1938, II, 483; cf. A., 1939, II, 543) that isomerism in nitrodiazoamino-compounds is due to

normal and aci- (quinonoid) forms is incompatible with the author's results (A., 1934, 68; 1935, 969; 1937, II, 454), in which isomerism is observed in m-NO₂-compounds. Any isomerism in this group is regarded as geometrical, but Dwyer's "aci-compounds" (loc. cit.) may be NH₄ salts. E. W. W.

Nitrosation of *m*-halogenophenols and their conversion into benzoquinonemonoximes. H. H. Hodson and D. E. Nicholson (J.C.S., 1939, 1808; cf. A., 1930, 910).—*m*-C₆H₄Hal·OH (I) (Cl or Br) and aq. NaNO₂-50% aq. AcOH at <20° give good yields of 4:3:1-NO·C₆H₃Hal·OH. (I) (Cl, Br, or I) in AcOH with NaNO₂-conc. H₂SO₄ (previously heated to 70°) at <20°, then at 0°, give the respective *m*-halogeno-*p*-benzoquinoneoxime (cf. A., 1934, 181).

Bromination of p-diphenylyl acetate. S. E. HAZLET and H. A. KORNBERG (J. Amer. Chem. Soc., 1939, 61, 3037—3039).—Substitution of p-diphenylyl benzoate and benzenesulphonate (A., 1937, II, 332; 1939, II, 369) is governed by steric hindrance, since the acetate, m.p. 87—88°, with Br (1 mol. at 100° or 2 mols. at 110°) gives 2-bromo-, m.p. 74—75° (also obtained from 4:2:1-C₆H₃PhBr OH and Ac₂O-NaOAc at 100°), or 2:6-dibromo-4-diphenylyl acetate, m.p. 81—83° (also obtained from 4:2:6:1-C₆H₂PhBr₂·OH by boiling Ac₂O-NaOAc). 4'-Bromo-4-diphenylyl acetate, m.p. 128—129°, is obtained by boiling the phenol with Ac₂O-NaOAc. R. S. C.

Synthesis of ααα-triphenyl-β-o-anisylethane. H. A. Iddles, K. S. French, and E. F. Mellon (J. Amer. Chem. Soc., 1939, 61, 3192—3194).—o-OMe·C₆H₄·CH₂·OH (prep. by electrolytic reduction of o-OMe·C₆H₄·CO₂H), b.p. 120—122°/12 mm., and conc. HCl-Et₂O give the chloride (I), b.p. 111—113°/14 mm., the Mg derivative of which with CPh₃Cl in boiling Et₂O-C₆H₆ gives ααα-triphenyl-β-o-anisylethane, m.p. 140—142°, obtained also from (I) by CPh₃Na in Et₂O and not identical with the methylation product, new m.p. 162—163°, derived from the rearranged o-cresol-CPh₃·OH compound (cf. Schorigin, A., 1927, 54; 1925, i, 1404; Boyd et al., A., 1928, 516).

Odour of alkoxydiphenyls. C. M. Brewster and I. J. Putnan, jun. (J. Amer. Chem. Soc., 1939, 61, 3083—3085).—The odour of o- or p-C₈H₄Ph·OH is not much affected by etherification, but the o- have stronger odours than have the p-ethers. Heating the appropriate phenol and alkyl halide with NaOH in COMe₂ give o-diphenylyl Pr^a , b.p. 303°, Me, b.p. 288° (lit. 274°), Et, m.p. 34°, Pr^{β} , b.p. 315—317° (slight decomp.), allyl, b.p. 312° (darkens ~280°), and (slowly) CH_2Ph ether, b.p. 324° (slight decomp.), and p-diphenylyl Et, m.p. 76°, Me, m.p. 90°, Pr^a , m.p. 76—77°, Pr^{β} , m.p. 73°, allyl, m.p. 86—87°, Bu^a , m.p. 74—75°, and CH_2Ph ether, m.p. 136°. R. S. C.

Rearrangement of phenyl allyl ethers. IV. Examination of the pyrolysis product of phenyl allyl ether for evidence of *p*-rearrangement. W. M. LAUER and R. M. LEEKLEY (J. Amer. Chem. Soc., 1939, 61, 3042—3043).—Pyrolysis of CH₂:CH·CH₂·OPh gives only o-allylphenol [also obtained by decarboxylating

3:4:1-CH₂·CH·CH₂·C₆H₃(OH)·CO₂H by a trace of Cu in boiling quinoline], since isomerisation by MeOH–KOH and subsequent ozonisation in EtOAc affords only o-OH·C₆H₄·CHO. 1% of p- can be detected in o-OH·C₆H₄·CHO by removing the latter from Et₂O as Cu salt.

Vitamin-E. XIX. Alkenylation of phenol with δ -chloro- and δ -bromo- Δ^{β} -hexene. arrangement of the phenyl ether. L. I. SMITH, H. E. UNGNADE, W. M. LAUER, and R. M. LEEKLEY (J. Amer. Chem. Soc., 1939, 61, 3079—3083).— CHMe.CH.CHEtX (X = Cl or Br; prep. from the alcohol by dry HCl-anhyd. Na₂SO₄ or 40% HBr, respectively), PhOH, and K₂CO₃ in COMe₂ give mixed ethers (with MgMeI show 0.9 active H by cleavage), mono- (A) and di-alkenylphonols (B), the amount of (B) being large if even 1 mol. of halide is (A) give mixed chromans and aryloxyacetic acids; small amounts of o-, m.p. 110-110.5°, and p- α -ethyl- Δ^{β} -butenylphenoxyacetic acid, m.p. 95·2—96°, are isolated. These acids with O₃ give MeCHO with a little CH₂O and are hydrogenated (PtO₂; dry Et₂O) to o- (I), m.p. 75—76°, and p- α -ethyl-nebutylphenoxyacetic acid (II), m.p. 82—83°, which are synthesized. The condensation thus given has a synthesized. synthesised. The condensation thus gives a complex mixture containing small amounts of o- and p-OH·C₆H₄·CHEt·CH:CHMe. The Grignard reagent from o-C₆H₄Br·OMe (prep. from o-NO₂·C₆H₄·OMe by H₂-Raney Ni at 100°/80 atm. in EtOH, followed by a Sandmeyer reaction) and COEtPra (prep. from PraCHO and MgEtBr and subsequent oxidation by Na₂Cr₂O₇-H₂SO₄) give a carbinol, converted by distillation at 1 atm. with 2 drops of H₂SO₄ into o-hexenylanisoles, which with H₂-PtO₂ in MeOH at 3 atm. give o-α-ethyl-n-butylanisole, b.p. 104—105°/9 mm., and thence (HI-AcOH-Ac₂O) o-α-ethyl-n-butylphenol, b.p. 109—111°/10 mm., and (I): p-OMe·C₆H₄·MgBr and COEtPr^a in Et₂O give similarly p-hexenyl- and p- α -ethyl-n-butyl-anisole, b.p. 125—125·5°/15 mm., p- α -ethyl-n-butylphenol, b.p. 134—145°/14 mm., and (II). (B) shows vitamin-Eactivity (50-mg. doses); other products were inactive. R. S. C.

Diarylmethane derivatives. VI. Occurrence of the di-p-anisylmethyl radical. W. T. NAUTA and D. MULDER (Rec. trav. chim., 1939, 58, 1062—1069; cf. A., 1939, II, 306).—CHCl(C₆H₄·OMe-p)₂ and mol. Ag in C₆H₆ and CO₂ give a transient red colour; the resulting colourless solution yields [CH(C₆H₄·OMe-p)₂]₂ (I) (100%), indicating that the radical CH(C₆H₄·OMe-p)₂ is completely dimerised. In presence of O₂, the initial red colour becomes orange-yellow to pale-brown; CO(C₆H₄·OMe-p)₂ (II) (main product), p-OMe·C₆H₄·CHO, and (?) p-OH·C₆H₄·OMe, are isolable. In an atm. of NO, some (II) and (I) are formed. (I) does not absorb O₂ in C₆H₆ at room temp., and there is no visible colour change when it is heated (alone or in xylene).

Synthesis of 1:4-dimethylphenanthrenes structurally related to morphol. J. T. CASSADAY and M. T. BOGERT (J. Amer. Chem. Soc., 1939, 61, 3055—3057; cf. A., 1939, II, 503).—2:3:4:1-NO₂·C₆H₂(OMe)₂·CHO and 2:5:1-C₆H₃Me₂·CH₂·CO₂K

A. T. P.

(I) in Ac₂O at 105—110° give 2-nitro-3: 4-dimethoxy-α-p-xylylcinnamic acid, m.p. 205·5—206·5°.
2:3:4:1-NO₂·C₆H₂(OMe)(OAc)·CHO and (I) in Ac₂O give 2-nitro-4-acetoxy-3-methoxy-α-p-xylylcinnamic acid, m.p. 211—214°. FeSO₄-aq. NH₃ then gives 2-amino-3: 4-dimethoxy-, m.p. 110—113° (hydrochloride), and 2-amino-4-hydroxy-3-methoxy-α-p-xylylcinnamic acid, m.p. 203—204°, cyclised (Pschorr) to 5:6-dimethoxy-, m.p. 180·5—181·5°, and 6-hydroxy-5methoxy-1:4-dimethylphenanthrene-10-carboxylic acid (acetate, m.p. 170·5—171·5°), distillation of which with Cu powder at 25 mm. yields 5:6-dimethoxy-, m.p. 73·5—74°, and 6-hydroxy-5-methoxy-1:4-dimethylphenanthrene, m.p. 136·5—137°, respectively. The OMe of the phenanthrene derivatives resists hydrolysis. M.p. are corr.

Alkaloids of plants of the Papaveraceæ family. IV. Alkaloids of Roemeria refracta, D.C. Structure of roemerine and synthesis of 2:3methylenedioxyphenanthrene. R. A. Konova-LOVA, S. JUNUSOV, and A. P. ORÉKHOV (J. Gen. Chem. Russ., 1939, 9, 1507—1511; cf. A., 1939, II, 565).— 6-Nitropiperonal, CH₂Ph·CO₂Na, and Ac₂O (100°; 24 hr.) yield 6-nitro-3: 4-methylenedioxy-α-phenylcinnamic acid, m.p. 199-200°, reduced by FeSO₄ in aq. NH3 (40 min. at 80°) to 6-amino-3: 4-methylenedioxy-\alpha-phenylcinnamic acid, m.p. 207-208°. Successive diazotisation and treatment with Cu powder at room temp. then gives 2:3-methylenedioxyphenanthrene-9-carboxylic acid, m.p. 255—256°, decarboxylated (Cu-Cr₂O₃ catalyst in quinoline; 1 hr. at the b.p.) to 2:3-methylenedioxyphenanthrene, m.p. $99-100^{\circ}$ (picrate, m.p. $149-150^{\circ}$; Br_2 -derivative, m.p. $228-229^{\circ}$). This is not identical with the product obtained from roemerine, the CH_2O_2 : of which cannot therefore be in positions 2:3 or 6:7.

Application of the Pschorr reaction to p-xylylene-2:5-di-(6'-aminoveratrylideneacetic acid). Synthesis of 9:10-dimethyl-1:2:5:6-di-(3':4'dimethoxybenz)anthracene. J. T. Cassaday and M. T. BOGERT (J. Amer. Chem. Soc., 1939, 61, 3058— 3061).—6:3:4:1-NO₂·C₆H₂(OMe)₂·CHO and 1:4:2:5-C₆H₂Me₂(CH₂·CO₂H)₂ in Ac₂O give p-xylylene-2:5-di-(6'-nitroveratrylideneacetic acid), decomp. >300°, reduced by $FeSO_4$ -aq. NH_3 to the $(NH_2)_2$ -acid (I), decomp. >300°, which, when diazotised (solution in aq. K_2CO_3 -NaNO₂ run into $5N-H_2SO_4$) and treated with Cu powder at 0-5°, gives p-xylylene-2:5-di-(6'-hydroxyveratrylideneacetic acid), decomp. $245-255^{\circ}$. When heated at $>360^{\circ}/3$ mm., this gives 2:5-di-2'-hydroxy-4':5'-dimethoxystyryl-p-xylene, decomp. 55-60°, unstable in presence of H₂O. When H_2SO_4 and then pure iso- C_5H_{11} ·O·NO are added to (I) in dioxan and the resulting solution is poured into aq. NaH_2PO_2 containing Cu powder at 45-55° and then warmed to 80°, 59% of 9:10-dimethyl-1:2:5:6-di-(3':4'-dimethoxybenz) anthracene-4:8-dicarboxylic acid, decomp. 315-317° (corr.), is obtained; other conditions fail. Heating with basic Cu carbonate in quinaldine at 250° then gives 9:10-dimethyl-1:2:5:6-di-(3':4'-dimethoxybenz) anthracene, 137—138° (corr.); most attempts to hydrolyse the OMe gave dark products, but those obtained by HBr

A. T. P.

or HI gave with Ac_2O a little of the $3':4':3'':4''-(OAc)_4$ -derivative, decomp. $300-350^\circ$. R. S. C.

Hydrogen bonding by S-H. VII. Aryl mercaptans. M. J. Copley, C. S. Marvel, and E. Ginsberg (J. Amer. Chem. Soc., 1939, 61, 3161—3162; cf. A., 1939, I, 518).—Absence of heat changes on mixing shows that $n\text{-}C_7H_{15}$ 'SH forms no compound with NMe₂Ac, Et₂O, COMe₂, or C₆H₆. PhSH forms a 1:1 compound with NMe₂Ac, Et₂O, or COMe₂ due to a H \leftarrow N or H \leftarrow O linking. Such linkings are formed whenever a covalent H linking is sufficiently labilised. Comparison of the b.p. of MeSH, Me₂S, PhSH, and PhSMe shows absence of association of the mercaptans, confirming the view that there is little tendency towards formation of S \rightarrow H linkings.

Manufacture of 4:4'-diaminodiphenylsulphoxides.—See B., 1939, 1213.

Sulphonation with sulphites. IV. Oxidation of sodium sulphite in presence of β -naphtholsulphonic acids. S. V. Bogdanov (J. Gen. Chem. Russ., 1939, 9, 1145—1147).—Aq. Na β -naphthol4-or -7-sulphonate or -3:6-disulphonate heated at 85° with Na₂SO₃ and MnO₂ yields, respectively, Na β -naphthol-1:4-or-1:7-di-or-1:3:6-tri-sulphonate. R. T.

d- and l-α-Phenylallyl alcohols and their reactions. D. I. Duveen and J. Kenyon (J.C.S., 1939, 1697—1701; cf. A., 1937, II, 146; 1939, II, 45). Partly an account of work previously reviewed (A., 1938, II, 275). dl-α-Phenylallyl alcohol (I) and o-C₆H₄(CO)₂O in C₅H₅N at 50° give the dl-H phthalate (II), m.p. 73—74° (cf. Kamai, A., 1931, 1393), which (II), m.p. $73-74^{\circ}$ (cf. Kamai, A., 1931, 1393), which affords the quinidine salts, m.p. $161-163^{\circ}$ (decomp.), $[\alpha]_{5893} + 106 \cdot 8^{\circ}$ in CHCl₃, and m.p. 124° (decomp.), $[\alpha]_{5893} + 128 \cdot 9^{\circ}$ in CHCl₃, of the d- (III), $[\alpha]_{5893} - 42 \cdot 3^{\circ}$ in CS₂, and 1-H phthalate (IV), $[\alpha]_{5893} - 14^{\circ}$ in EtOH, $+42 \cdot 6^{\circ}$ in CS₂ (other vals. of α given), respectively, and thence by aq. KOH-EtOH d-, b.p. $107^{\circ}/16$ mm., $[\alpha]_{5893} + 12 \cdot 1^{\circ}$ in CS₂, and $1 \cdot \alpha$ -phenylallyl alcohol (V), b.p. $106^{\circ}/16$ mm., $\alpha_{5893}^{18} - 20 \cdot 08^{\circ}$ (l, 2), respectively. (IV) in a closed vessel after 4 months gives cinnamyl H phthalate m p after 4 months gives cinnamyl H phthalate, m.p. 95—97° (lit. 88—89°), but (II) appears to be permanently stable. (V) and $Ac_2O-C_5H_5N$ at room temp. overnight, then at 40° for $\bar{1}$ hr., give l- α -phenylallyl acetate, b.p. 111°/16 mm. (I) similarly, or (Ĭ)– Ac_2O at 100° (bath) for 3 hr., gives dl- α -phenylallyl acetate, b.p. 114°/19 mm. (no conversion into cinnamy) acetate occurs). (I) and K-MeI-Et2O give dl-aphenylallyl Me ether (VI), b.p. 85°/18 mm. Comparison of the reactivities of (I) and some of its esters with those of a-phenyl-y-methylallyl alcohol and its corresponding esters (loc. cit.; cf. Burton, A., 1928, 880) shows that the latter undergo anionotropic changes far more readily than the former; the greater reactivity is ascribed to the influence of the \(\gamma \)-Me. The stability of (I) to dil. H₂SO₄ is confirmed (cf. Burton et al., A., 1928, 634). (II) or (IV) in anhyd. MeOH, distilled slowly, gives $o \cdot C_6H_4(CO_2H)_2$ and (VI). (III) in MeOH in a closed vessel at room temp. for 3 weeks gives mainly the d-H phthalate of almost unchanged α , and a little (VI). (IV) in EtOH gradually (33 months) gives $o\text{-}\mathrm{C_6H_4(CO_2H)_2}$ and $\alpha\text{-phenylallyl}$ Et ether, b.p. 90—95°/20 mm. (III) and anhyd. $\rm HCO_2H$ in $\rm CS_2$ quickly give $\rm o\text{-}C_6H_4(\rm CO_2H)_2$, partly racemised H phthalate, and cinnamyl formate, new m.p. 6°, b.p. 132—139°/18 mm. (IV)–AcOH at 100° (bath) afford some $\rm o\text{-}C_6H_4(\rm CO_2H)_2$ and cinnamyl acetate.

Decomposition reactions of aromatic diazocompounds. IX. Oxidation mechanisms. W. A. Waters (J.C.S., 1939, 1805—1807).—Benzene-diazoacetate, $CaCO_3$, and cyclohexene (I) gradually give some Δ^2 -cyclohexenyl acetate, also formed from PhN_2Cl and (I) in aq. $COMe_2$ -NaOAc- $CuCl_2$ (cf. Meerwein et al., A., 1939, II, 262). PhN_2Cl and (I)- $COMe_2$ - $CaCO_3$ at 60° give some Δ^2 -cyclohexenyl chloride. Analogous substitution of reactive CH_2 occurs when (I) is oxidised by atm. O_2 -Os, SeO_2 -AcOH, or $Pb(OAc)_4$ -AcOH. All these reactions may have a common mechanism in which neutral radicals are involved.

Colour reactions of benzaldehyde with sterols and steroids imposed on concentrated sulphuric acid. I. Scherrer (Helv. Chim. Acta, 1939, 22, 1329—1340).—The colour reactions of the following compounds with PhCHO + conc. H₂SO₄ and with conc. H₂SO₄ alone are tabulated: cholesterol, ergosterol, sitosterol, stigmasterol, cholic, glycocholic, and 3-acetoxycholenic acids, calciferol, deoxycorticosterone acetate, androstane- $3c:17c_{-}, -3c:17t_{-}, -3t:17c_{-},$ and -3t:17t-diols, androsterone, cis- and transisoandrosterone, dihydro-c- and -t-testosterone, androstane-3: 17-dione, Δ^4 -androstene-3: 17-dione, cis- and trans-dehydroandrosterone, testosterone, cis- and trans-testosterone, methyltestosterone, Δ^5 -androstene-3t:17c- and -3t:17t-diol, Δ^5 -17-methylandrostene-3t:17?-diol, progesterone, pregnenolone acetate, β and α-œstradiol, œstrone, equilin, and œstrin.

Configuration of the $C_{(3)}$ hydroxyl group in steroIs precipitable by digitonin. K. GANA-PATHI (Current Sci., 1939, 8, 360-361).—The nonprecipitability of the 2:3-dihydroxycholestane (I) of Marker et al. (A., 1939, II, 368) with digitonin is regarded as due to the epi (a) configuration of OH at $C_{(3)}$. The trans-configuration of the OH of (I) is regarded as established since oxidation of the cyclic double linking with H_2O_2 (in absence of OsO_4) and hydrolysis of the cyclic oxide yield the same transglycol, e.g., prep. of 3:5:6-trihydroxycholestane, m.p. 231°, from cholesterol. Further, if the OH are cis (with OH at $C_{(3)}$ of the epi-form), by analogy with the behaviour of cis-2: 3-dihydroxy-trans-decahydronaphthalene (ibid., 420), the compound should isomerise on treatment with Ac₂O; this has not been observed.

Colour reactions of sterols and steroids; their importance for the investigation of constitutional problems and hormonal action. G. Woker and I. Antener (Helv. Chim. Acta, 1939, 22, 1309— 1328).—The transformation of the two CH·OH groups of the androstane-3:17-diols into CO and the presence of a single CO in the absence of OH in the ring system (e.g., cholestanone, progesterone) is accompanied by the inhibition of the colour reaction with conc. H₂SO₄ and the more or less pronounced weakening of the furfuraldehyde (I)-H₂SO₄ reaction. The entry of a double linking into the steroid skeleton so restores the colour character that the reaction with H₂SO₄ alone becomes positive (Δ^4 -androstene-3:17-dione). This feature is further enhanced when one or both CO groups are reduced. The position of OH is important and pronounced action of cis-trans isomerism and other constitutive factors is observed. Replacement of H at C₍₁₇₎ by Me causes a darkening of the colour. Comparison of the reactions of compounds of the testosterone and dehydroandrosterone groups shows that it is not immaterial in which ring the double linking is located. It appears probable that the introduction of a double linking into the bile acids causes a more pronounced action with (I) + H₂SO₄ and with H₂SO₄ alone; it certainly causes a change in the nature of the colour. The immediate action of pregnenolone or its acetate proves the marked influence of the presence of a double linking in the sterol ring system; the auxochromic action of OH at $C_{(3)}$ is also obvious.

Œstradiol 17-acylates.—See B., 1939, 1295.

Rearrangement of phenyl allyl ethers. III. Synthesis of α -o-anisylpropionic acid. W. M. LAUER and L. I. HANSEN. V. Isomeric ethyl $p-\alpha$ - and $-\gamma$ -propylallyloxybenzoates. W. M. LAUER and R. M. LEEKLEY. VI. Isomeric ethyl p- α - and - γ -ethylallyloxybenzoates. W. M. LAUER and H. E. Ungnade (J. Amer. Chem. Soc., 1939, 61, 3039—3041, 3043—3047, 3047—3049; cf. A., 1936, 1244).—III. o-OMe·C₆H₄·CH₂·CN (prep. from the chloride by aq. KCN in COMe₂) and boiling KOH–EtOH–H₂O give the acid, m.p. 123—124°, the Et ester of which with NaOEt and Et₂C₂O₄ in EtOH give an ester, converted by distillation into CO and Et₂ o-anisylmalonate, b.p. 162—164°/4·5 mm. NaOEt-EtOH, followed by MeI, this gives Et_2 oanisylmethylmalonate, m.p. 42-43°, b.p. 150-151°/ 2.6 mm., hydrolysed to the malonic acid, m.p. 148.5— 149° (decomp.), which in boiling xylene gives α -oanisylpropionic acid (I), m.p. 101—102° (cf. loc. cit.). Et₂ o-anisylethylmalonate, m.p. 66—67°, α-o-anisylbutyric acid, m.p. 56—57°, b.p. 165—166°/10 mm., Et p-anisylacetate, b.p. 148—150°/14·5 mm., Et₂ p-anisyl-, b.p. 161—162°/3 mm., and p-anisylmethylmalorete, b. 160°/18.5° mm. (derival acid mid-p-anisylanethylmalorete). malonate, b.p. 160—161°/3·5 mm. (derived acid, m.p. 149·5—150°), and α-p-anisylpropionic acid, m.p. 56— 57°, are also prepared. Catalytic hydrogenation of o-OMe·C₆H₄·CMe·CH·CO₂Me is difficult, but reduction of the derived acid by Na-Hg in aq. NaOH yields β-o-anisyl-n-butyric acid, m.p. 49—50°, b.p. 172°/9 mm., the Et ester, b.p. 153—154°/9 mm., of which with MgPhBr gives an oily carbinol, dehydrated by

boiling Ac₂O to an oily ethylene derivative, which is oxidised by CrO₃ to (I).

V. Some expected abnormal rearrangements are demonstrated (cf. Hurd *et al.*, A., 1939, II, 137). $p\text{-OH}\cdot C_6H_4\cdot CO_2\text{Et}$ (II), $CH_2\cdot CH\cdot CHPr^aCl$, and K_2CO_3 in boiling COMe₂ give mixed esters, hydrolysed to p-γ- (III), m.p. 138—139°, and p-α-propylallyloxy-benzoic acid (IV), dimorphic, m.p. 35—38° and 76—58° (IV), dimorphic m.p. 35—38° and 76—58° (IV), When boiled at 40 mm 77° (with O₃ yields CH₂O). When boiled at 40 mm. (b.p. rises from 220° to 246°), the Et ester, b.p. 95-97°/0.5 mm., of (IV) gives the normal rearrangement product, viz., Et 4-hydroxy-3-Δ^β-n-hexenylbenzoate, m.p. 75—76·5°, which with NaOMe and Me₂SO₄ in boiling MeOH gives 4-methoxy-3-Δ^β-n-hexenylbenzoic acid, m.p. 107—108° [with O₃ gives Pr^aCHO; unaffected by Hg(OAc)₂; hydrogenated (Pd-CaCO₃) to 4-methoxy-3-n-hexylbenzoic acid, m.p. 113·5—114°], and with 669/ KOH at 155—150° gives 4 hydrogen 3 and with 66% KOH at 155—150° gives 4-hydroxy-3-Δ^a-n-hexenylbenzoic acid, m.p. 134—135° [gives a ppt. with $Hg(OAc)_2$]. The Et ester (V), b.p. $115-116^{\circ}/0.2$ mm., of (III) is obtained from (II) by CHPra: CH-CH, Cl and K₂CO₃ in boiling COMe₂ and is hydrolysed by 25% KOH-MeOH to (III), m.p. 139·5—140·5°, which is reduced to p-n-hexyloxybenzoic acid, m.p. 105.5—107°, obtained also from (II) by NaOEt and n-C₆H₁₃Br and subsequent hydrolysis. When boiled at 40 mm. (b.p. rises from 213° to 241°), (V) gives mixed esters (A) (O₃ gives CH₂O and EtCHO), converted by NaOEt-Me₂SO₄ into 4-methoxy-3-α-propylallyl- (VI), m.p. $142\cdot5$ — $143\cdot5^{\circ}$, and 4-methoxy-3- α -methyl- Δ^{β} -n-pentenyl-benzoic acid (VII), m.p. 113— 114° , both without action on Hg(OAc)₂. (VII) is derived from the abnormal rearrangement product. Ozonolysis of (VII) gives EtCHO and hydrogenation gives 4-methoxy-3-α-methyl-n-amylbenzoic acid, m.p. 125—126°. (VI) gives similarly CH₂O and 4-methoxy-3-α-ethyl-nbutylbenzoic acid, m.p. 145—146°, respectively. Alkaline hydrolysis of (A) gives 4-hydroxy-3- α -propylallylbenzoic acid, m.p. 133-134°; the more sol. isomeride could not be isolated.

VI. Two further cases of abnormal rearrangement are reported. CH₂:CH·CHEtCl, (II), and K₂CO₃ in COMe₂ give esters, hydrolysed to p-α· (VIII), m.p. 108—109° (O₃ gives CH₂O), and p-γ-ethylallyloxybenzoic acid (IX), m.p. 156·5—157·5° (157—158°). The Et ester (prep. from the Ag salt) of (VIII) at 200—236°/40 mm. gives a product, m.p. 101—102° [with 8·6% of CH₂:CH·CH:CHMe (X)], converted as above into 4-methoxy-3-Δ^β-n-pentenylbenzoic acid, m.p. 117—117·5°, unaffected by Hg(OAc)₂ and with O₃ in EtBr at 0° giving EtCHO. The Et ester, f.p. 34·1°, b.p. 108—109°/0·1 mm., obtained from (II) by CHEt:CH·CH₂Cl and K₂CO₃ in COMe₂ and hydrolysed to (IX), is pyrolysed at 195—233°/40 mm. to mixed phenols [and 13·3% of (X)], which yield 4-methoxy-3-α-ethylallylbenzoic acid, m.p. 164·5—165·5° (with O₃ gives CH₂O), and the impure α-methyl-Δ^β-butenyl isomeride (with O₃ gives MeCHO and CH₂O). With H₂-PtO₂ in MeOH,(IX)gives p-n-C₅H₁₁·O·C₆H₄·CO₂H, m.p. 123—124°, and with O₃ in EtBr-EtOAc gives EtCHO. CHMe:CH·CHMeCl, (II), and K₂CO₃ in COMe₂ give Et p-αγ-dimethylallyloxybenzoate, b.p. 108—114°/0·1 mm. (corresponding acid, m.p. 131—132°; O₃ gives MeCHO), pyrolysed at 208—223°/40 mm. to (X) (58·5%), p-OH·C₆H₄·CO₂H, and mixed

esters, yielding mixed OMe-acids, which with O_3 give MeCHO and a little CH_2O . R. S. C.

Ozonisation of cinnamic acid, sodium cinnamate, ethyl cinnamate, and styrene. E. Briner and A. Gelbert (Helv. Chim. Acta, 1939, 22, 1483—1490).—Quant. ozonisation of CHPh:CH·CO₂H in MeOH gives a normal ozonide which suffers normal scission into BzOH and CHO·CO₂H. CHPh:CH·CO₂Et in CCl₄ is normally ozonised and fission gives mainly PhCHO and EtHC₂O₄ with some BzOH and CHO·CO₂Et. As is frequently the case, in H₂O CHPh:CH·CO₂Na gives much CO₂, indicating extensive decomp. of the ozonide. CHPh:CH₂ in CCl₄ yields a normal ozonide which affords PhCHO and HCO₂H. Polymerised styrene is ozonised with increasing difficulty as its degree of polymerisation increases.

Ethers of p-hydroxybenzoic acid as derivatives for identification of alkyl halides. W. M. Lauer, P. A. Sanders, R. M. Leekley, and H. E. Ungnade (J. Amer. Chem. Soc., 1939, 61, 3050).— Alkyl halides are identified by interaction with p-OH·C₆H₄·CO₂Et and NaOEt in EtOH and subsequent hydrolysis (KOH-EtOH) to p-OR·C₆H₄·CO₂H. Allylic rearrangements occur in some cases. M.p. of 25 such ethers are listed. p-iso Butoxybenzoic acid melts at 140—141°. R. S. C.

3-Hydroxy- Δ^5 -ætiocholenic acid and derivatives.—See B., 1939, 1294.

cycloHexenyl-, cyclohexylidene-, and 1-hydroxycyclohexyl-acetaldehyde.—See B., 1939, 1212.

Alleged geometrical isomerism in certain anils, and dipole moment of phenanthridine.—See A., 1939, I, 598.

Functional aptitude of the methyl group. V. Nitro- and dinitro-toluenes. L. CHARDONNENS and P. Heinrich (Helv. Chim. Acta, 1939, 22, 1471-1482).— $o-C_6H_4$ Me·NO₂ and $1:2:3-C_6H_3$ Me(NO₂)₂ do not appear to condense with p-NMe₂·C₆H₄·NO (I), PhCHO, or p-NMe₂·C₆H₄·CHO (II), whereas poor yields of condensation products are derived from p-C₆H₄Me·NO₂. 1:2:4-C₆H₃Mc(NO₂)₂ (III) is the most reactive of the dinitrotoluenes. $p - C_6H_4Me \cdot NO_2$ and (I) in boiling EtOH containing anhyd. Na₂CO₃ give p-nitrobenzald-p'-dimethylaminoanil, m.p. 219° in 1.5% yield. With PhCHO and (II) in presence of piperidine at 175—185° p-C₆H₄Me·NO₂ affords p-nitrostilbene, m.p. 155·5°, and 4-nitro-4'-dimethyl-aminostilbene, m.p. 250°, in 3·5% and 22% yield, respectively. (III), (I), and anhyd. Na₂CO₃ in boiling EtOH yield a mixture of 2:4-dinitrobenzald-4'-dimethylaminoanil, m.p. 209—210°, and the corresponding nitrone (IV), m.p. 194°. In boiling EtOH containing Na₂CO₃ in presence or absence of (I), (IV) is mainly transformed into 2: 4-dinitrobenz-4'-dimethylaminoanilide, m.p. 238° (decomp.). 2:6-Dinitro-4'dimethylaminostilbene, m.p. 139°, is obtained in 55% yield from $1:2:6-C_6H_3Me(NO_2)_2$ (V), (II), and piperidine at $150-160^\circ$. 2:6-Dinitrobenzald-4'-dipiperidine at 150—160°. 2:6-Dinitrobenzald-4'-di-methylaminoanil, m.p. 150°, is formed in ~1% yield from (I), (V), and anhyd. Na₂CO₃ in boiling EtOH. The following appear new: 2:5-dinitrostilbene, m.p. 149.5° [dibromide, m.p. 220—222° (decomp.)]; 2:5dinitro-4'-dimethylaminostilbene, m.p. 168°; 3:4-dinitrobenzald-4'-dimethylaminoanil, m.p. 186—188° (accompanied by an unidentified substance, m.p. 220°), hydrolysed (15% HCl) to 3:4-dinitrobenzaldehyde, m.p. 62.5° (phenylhydrazone, m.p. 184—186°).

Synthesis of substances related to the sterols. XXVIII. (SIR) R. ROBINSON and J. M. C. THOMPson (J.C.S., 1939, 1739—1742; cf. Chuang et al., A., 1939, II, 326).— $1-C_{10}H_7\cdot[CH_2]_3\cdot COCl$ and Et_2 sodioacetylsuccinate or Et₂ sodio-α-acetylglutarate (I) give products hydrolysed by aq. KOH-EtOH at room temp., then 2n-NaOH at 100° (bath), to γ-keto-ζ-1naphthylheptoic acid, m.p. 123—124° [purified through the Me ester (II), b.p. 193—198°/0.4 mm.; semicarbazone, sinters with decomp. at ~170°], or δ-ketoη-1-naphthyloctoic acid, m.p. 66-67° [Me ester (III), b.p. 200-205°/0.4 mm.; semicarbazone, sinters at $\sim 148^{\circ}$], respectively. The use of 1-C₁₀H₇·[CH₂]₂·CHMe·COCl in the above reactions gives no keto-acid (cf. Chuang, loc. cit.). (II) and NaOEt (EtOH-free) in Et₂O at room temp. (20 hr.) and then at the b.p. give a syrup, converted by P_2O_5 in boiling moist C₆H₆ into 3'-keto-3: 4-dihydro-1: 2cyclopentenophenanthrene, new m.p. 212-213°. (III) and NaOEt in $\mathrm{Et_2O}$ similarly give 2- β -1'-naphthylethylcyclohexane-1:3-dione, m.p. 199-200°, converted by P_2O_5 in very damp C_6H_6 [as also is (III) directly] into 3-keto-1:2:3:4:5:6-hexahydrochrysene, m.p. 154--156° [2:4-dinitrophenylhydrazone, m.p. 284° (decomp.)]. γ -m-Anisylbutyryl chloride and (I) in C₆H₆-Et₂O, and hydrolysis of the product with aq. KOH-EtOH, leads to .Me δ-keto-η-m-anisyloctoate, b.p. 182—188°/0·25 mm. (42% yield; cf. A., 1936, 989). γ-6-Methoxy-3: 4-dihydro-1-naphthylbutyric acid, m.p. 79° (cf. A., 1937, II, 196; Chuang et al., ibid., 294), and S give γ-6-methoxy-1-naphthylbutyric acid. Its chloride and (I) afford a product, hydrolysed by aq. KOH-EtOH at room temp., then 2N-NaOH at 100° (bath), to an acid, methylated (CH₂N₂) to Me δ -keto- η -(6'-methoxy-1'-naphthyl)octoate, which with NaOEt gives 2-\beta-6'-methoxy-1'naphthylethylcyclohexane-1: 3-dione, m.p. 170—172°. The latter and P_2O_5 in very damp C_6H_6 give 3-keto-10methoxy-1:2:3:4:5:6-hexahydrochrysene, m.p. 177—178° [2:4-dinitrophenylhydrazone, m.p. 284° (decomp.), is crimson, characteristic of αβ-unsaturated ketones] [3 H₂ absorbed (AcOH-Adams' PtO₂) to give a (?)methoxyoctahydrochrysene], converted by Na in boiling EtOH into 3-hydroxy-10-methoxy(or ethoxy)-I:2:3:4:5:6:15:16-octahydrochrysene [p-nitrobenzoate, m.p. 218—219° (softens from 214°)].

Steroids. II. Isolation of a new androstan-3(β)-ol-?-one and of allopregnan-3(β)-ol-20-one from the urine of pregnant mares. R. D. H. Heard and A. F. McKay (J. Biol. Chem., 1939, 131, 371—379).—The non-phenolic neutral extract of the urine of pregnant mares is shaken with 70% EtOH (I) and light petroleum. The product from (I) gives with Girard's reagent P (A., 1936, 1397) in AcOH, followed by hydrolysis, a ketonic fraction, and this, through the K phthalates, a OH-ketonic fraction, which is distilled, yielding fractions of b.p. <115°, 115—140°, and 140—195° (II) (all air-bath temp./~0.01 mm.).

Purification of (II) through the digitonide and the benzoate, m.p. 206—208°, gives androstan-3(β)-ol-?-one (III), m.p. 187—187·5°, [α] $_{\rm b}^{\rm 24}$ —160° in dioxan [oxime, m.p. 194—195° (decomp.)], oxidised to the 3:?-diketone, m.p. 157—158°, which is reduced (Zn-Hg in HCl) to androstane (with no evidence of the formation of an androstanol; cf. Reichstein, A., 1936, 1382). With the Zimmermann reagent, (III) slowly develops a feebly reddish-brown colour: the CO is probably in the 6-, 7-, or 12-position. Another OH-ketonic fraction, b.p. 170—210°/0·01 mm., yielded allopregnan-3(β)-ol-20-one (cf. Marker et al., A., 1938, II, 369).

Sterols. LXXV. Cholesterol derivatives. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, **61**, 3022—3024).— H_2 - PtO_2 at $25^{\circ}/3$ atm. reduces 7-ketocholesteryl chloride in Et₂O to 7-ketocholestyl chloride, m.p. 136-138° (cf. A., 1937, II, 250) (oxime, m.p. $152-154^{\circ}$). 7-Keto- $\Delta^{5:6}$ -cholesten- $3(\beta)\text{-yl}$ acetate in $\mathrm{Et_2O}$ with $\mathrm{H_2\text{-}PtO_2}$ gives the acetate (I), m.p. 147—148°, of 7-ketocholestan-3(β)-ol, double m.p. $128-130^{\circ}$ and $157-159^{\circ}$ (oxime, m.p. $232-233^{\circ}$), but with H_2 -PtO₂ in AcOH gives an oily acetate, hydrolysed to cholestane- $3(\beta)$: $7(\alpha)$ -diol, m.p. 164-166°, which is also obtained from (I) by $Al(OPr^{\beta})_3$ $Pr^{\beta}OH$, and with CrO_3 gives cholestane-3:7-dione, m.p. 186—187°. 7-Hydroxycholesteryl chloride and Na-C₅H₁₁·OH give $\Delta^{5:6}$ -cholesten-7-ol, m.p. 105— 106° (benzoate, m.p. 145--147°), which with H₂-PtO₂ in abs. EtOH-Et₂O gives cholestan-7-ol and when treated successively with Br, CrO₃, and Zn dust gives $\Delta^{5:6}$ -cholesten-7-one, m.p. 125—126°. SeO₂ in C₆H₆-98% AcOH (cf. A., 1938, II, 276) oxidises cholesteryl acetate to 4-hydroxycholesteryl acetate, dimorphic, m.p. 163—165° and 189—191°.

Steroid ketones.—See B., 1939, 1293, 1294, 1295.

Reaction between dihydroanthracene and benzoquinone. E. I. PROKOPETZ and A. V. PAVLENKO (J. Gen. Chem. Russ., 1939, 9, 1468—1469).—9:10-Dihydroanthracene (I) and p-benzoquinone (II) at the b.p. yield anthracene (III) and quinol (IV). (II) and (IV) yield quinhydrone (V). (II1) and (II) or (V) afford a condensation product. R. T.

Constitution and synthesis of vitamin- K_1 . D. W. MacCorquodale, L. C. Cheney, S. B. Bink-Ley, W. F. Holcomb, R. W. McKee, S. A. Thayer, and E. A. Doisey (J. Biol. Chem., 1939, 131, 357—370).—Largely an account of work already reported (A., 1939, II, 433, 513). 2:3-C₁₀H₆Me₂ gives 2-methyl-3-bromomethylnaphthalene, m.p. 104—105°, which through the nitrile gives 2-methyl-3-naphthylacetic acid, m.p. 200—201°, oxidised (CrO₃) to 2-methyl-1:4-naphthaquinonyl-3-acetic acid (loc. cit.).

E. W. W. Nor-α-phylloquinone (norvitamin- K_1) and similar compounds. P. Karrer, A. Geiger, A. Rüegger, and H. Salomon (Helv. Chim. Acta, 1939, 22, 1513—1516).—2-C₁₀H₇·[CH₂]₂·MgBr and ζκξ-trimethylpentadecan-β-one (I) give 2-γ-hydroxy-γηλοtetramethylhexadecylnaphthalene (II), converted into the—corresponding chloride, which with C₅H₅N affolder χ-γηλο-tetramethyl-Δβ-hexadecenylnaphthalene. Through brominated, oxidised, and debrominated

with partial reduction by Zn dust to 1:4-dihydroxy-2- $\gamma\eta\lambda_0$ -tetramethyl - Δ^{β} -hexadecenylnaphthalene, which is oxidised to nor- α -phylloquinone (III). The position of the double linking appears assured by the violet colour with NaOEt although the possibility of non-homogeneity is not excluded. The absorption spectrum of (III) is very closely similar to that of phylloquinone. A modified method consists in the condensation of 2-C₁₀H₇·C:CNa with (I) to 2- γ -hydroxy- $\gamma\eta\lambda_0$ -tetramethyl- Δ^{α} -hexadecinylnaphthalene, which is reduced to (II). Another method consists in the direct condensation of 2:1:4-C₁₀H₅Me(OH)₂ with dihydrophytyl bromide in presence of a catalyst and oxidation of the condensation product. H. W.

Naphthaquinones of the vitamin- K_1 type of structure. L. F. Fieser, W. P. Campbell, E. M. FRY, and M. D. GATES, jun. (J. Amer. Chem. Soc., 1939, 61, 3216-3222).—A detailed account and extension of work already reported (A., 1939, II, 513). The following is new. 2-Methyl-1: 4-naphthaquinone (prep. from 2-C₁₀H₇Me in 29% yield by CrO₃-AcOH at $<20^{\circ}$ and then $>50-60^{\circ}$), m.p. $105-106^{\circ}$, is reduced by SnCl₂-HCl-EtOH or Na₂S₂O₄-EtOH to 2:1:4- $C_{10}H_5Me(OH)_2$ (I) (diacetate, m.p. 112.5— 113° ; dibenzoate, m.p. 180—180.5°), which with CH₂PhBr-K₂CO₃-COMe₂-N₂ gives the $(CH_2Ph)_2$ (72%), m.p. 74·5—75°, and CH_2Ph ether, m.p. 159—160° after darkening, or in air 3-benzyl-2-methyl-1: 4-naphthaquinone (II), m.p. 107.5-108°. With isoprene or CH₂Ph·OH and anhyd. H₂C₂O₄ in dioxan at 180°, (I) gives oily 2-methyl-3- γ -methyl- Δ^{β} -n-butenyl-1:4naphthaquinone (reduced to the quinol diacetate, m.p. 104.5—105.5°) or (II), respectively, but this type of condensation sometimes fails. 2-Ethyl-1: 4-naphthaquinone (prep. from β-C₁₀H₇·COMe by Zn-Hg-HCl-MeOH-C6H6 and subsequently CrO3) gives the quinol, m.p. 144—145° (decomp.; softens at 140°) (diacetate, m.p. 104—105°; dibenzoate, m.p. 164—165°), and 3cinnamyl-2-ethyl-1: 4-naphthaquinone, m.p. 118·5° (quinol diacetate, m.p. 123·5—124·5°). Naphthaquinone oxide, m.p. 134·5—135·5° (lit. 136°), 2-methyl- (III), m.p. 95·5—96·5° (lit. 102°), 2:6- (IV), m.p. 97—98°, and 2:7-dimethyl-1:4-naphthaquinone oxide, m.p. 91-92°, are described. MgMeCl converts (III) into an oil, which with boiling HCl-EtOH gives a substance, C₁₂H₁₃O₂Cl, m.p. 141·5—142°. The bromohydrin, obtained from (IV) by MgBr₂, with NaOAc in boiling AcOH gives 3-bromo-2:6-dimethyl-1:4-naphthaquinone, m.p. 114—114·5°. Although 2 - methyl - 3 - $\beta \gamma$ - dimethyl - Δ^{β} - n - but enyl - 1 : 4 - naphthaquinone is converted by reductive acetylation in C₅H₅N into the quinol diacetate, Zn-Ac₂O-NaOAc gives the substance, m.p. 73-73.5° (loc. cit.), of tocopherol type.

Products obtained by saturating Δ^3 -carene with hydrogen chloride. V. N. Krestinski and S. Malevskaja (J. Appl. Chem. Russ., 1939, 12, 878—885).— Δ^3 -Carene and HCl give the mono- and dihydrochlorides of dipentene and sylvestrene, showing that HCl has a greater affinity for the $[CH_2]_3$ ring than for the ethylenic linking. R. T.

Dicyclic structures prohibiting the Walden inversion. Replacement reactions of 1-substituted 1-apocamphanes. P. D. BARTLETT and

L. H. Knox (J. Amer. Chem. Soc., 1939, 61, 3184— 3192).—Reactions of dicyclic compounds are described which cannot occur with Walden inversion because the C in question is "caged in" so as to be inaccessible to attack in the rear and because the cyclic structure prevents change of configuration. account for the low reactivities of the chloride and alcohol described below, it is suggested that reactions involving a >C' ion occur only when the three remaining valencies are coplanar. dl-Ketopinic acid, prepared in 38.4-42.7% yield from dl-camphor-10sulphonyl chloride by Na₂CO₃-KMnO₄, is reduced by the Wolff-Kishner or, more conveniently, Clemmensen-Martin method to apocamphane-1-carboxylic acid, m.p. 217—218°, the chloride of which gives the amide (92·1%), m.p. 185°, converted by NaOMe-MeOH-Br into the urethane (60·2%), m.p. 93—94°, and thence by KOH-aq. MeOH into 1-aminocamphane (I), m.p. 175° (sealed tube) (hydrochloride, discolours at 235—240°, m.p. >320°). The Ac derivative, m.p. 132°, thereof is more slowly hydrolysed by KOH-aq. EtOH than is NHBu^γAc or Bu^γCO·NH₂. NaNO₂-H₂SO₄ (excess) converts (I) in conc., aq. solution into apocamphan-1-ol (II) (66.6%), m.p. 161—162° (sealed tube). The p-toluenesulphonate, m.p. 93°, of (II) does not react with NaI-COMe₂. Replacement of the OH by Cl fails by most methods. SOCl₂ and (II) give a sulphite, m.p. 95—98°. HBr gas in Et₂O gives an unstable additive compound, C₁₈H₃₃O₂Br, m.p. 83-84°, and PCl₅ in light petroleum (b.p. 20-40°) gives a compound, $C_{18}H_{33}O_2Cl$, m.p. variable, 157° to 168°. The Bz derivative, m.p. 112°, of (I) and PCl_5 give a tar. NOCl and (I) in Et₂O at -10° give N₂ and 45% of 1-chloroapocamphane, m.p. 154—156°, hydrolysis of which by 30% KOH in hot 80% EtOH or hot AgNO₃-EtOH is exceedingly slow or negligible; it gives no Mg derivative. Bornyl chloride reacts readily with hot AgNO₃-EtOH. CEt₂Bu^γ·OH, b.p. 118—119·6°/ 160 mm., and dry HCl at 0° readily give γ-chloro-ββdimethyl-γ-ethyl-n-pentane, b.p. 53—54°/6 mm., 80·6— 81°/150 mm., which reacts readily with 80% EtOH at 25° , as do also Bu $^{\gamma}$ Cl and CMe $_2$ EtCl.

Triterpenes. LI. Transformation of betulin into lupeol. L. Ruzicka and M. Brenner (Helv. Chim. Acta, 1939, 22, 1523—1528).—Oxidation of betulin monoacetate with CrO₃ in AcOH followed by treatment of the product with C_5H_5N and $(\cdot CH_2 \cdot CO)_2O$ gives acetylbetulinaldehyde, m.p. 199—200° (vac.) on block preheated to 160° and then very slowly heated, $[\alpha]_D + 30.3^{\circ}$ (all $[\alpha]$ in CHCl₃), which is converted by NH₂·CO·NH·NH₂,AcOH into the semicarbazone (I), m.p. between 270° and 280° (vac.) according to the rate of heating, and an unidentified compound, m.p. 291—294° on block preheated to 210°. Na in EtOH at 180° converts (I) into deoxybetulin (II), m.p. 212.5-214.5°, [α]_b +27.2°, the identity of which with lupeol is further established by the prep. of the benzoate, m.p. $268-271^{\circ}$, $[\alpha]_{\rm b}+60.9^{\circ}$, and acetate, m.p. $215-217^{\circ}$, $[\alpha]_{\rm b}+40.7^{\circ}$ in CHCl₃. (II) is oxidised by Kiliani's mixture to deoxybetulone [lupeone], m.p. $168-170.5^{\circ}$, $[\alpha]_{\rm b}+60.8^{\circ}$ [oxime, m.p. $268-273^{\circ}$ (decomp.)]. All m.p. are corr. The lupeol type can therefore be added to the three fundamental types of triterpenes, viz., squalene and α- and β-amyrin. H. W.

Saponins and sapogenins. XIV. So-called pyridazines of steroid diones. C. R. Noller (J. Amer. Chem. Soc., 1939, 61, 2976—2977).—The so-called "pyridazines" from chlorogenin and cholestane-3: 6-dione are multimol. (cryoscopy in C_6H_6), the mol. wt. of different preps. varying widely in spite of similar m.p. (cf. Marker et al., A., 1939, II, 261, 277).

Lactonisation of dihydro-l-abietic and -l-pimaric acids. E. E. Fleck and S. Palkin (J. Amer. Chem. Soc., 1939, **61**, 3197—3199).—The lactone, m.p. 127—129° (structure suggested), is obtained from dihydro-l-pimaric acid, m.p. 144—146°, $[\alpha]_D^{20} + 35^\circ$, or dihydroabietic acid, $[\alpha]_D + 108^\circ$. With 10% KOH–Bu°OH, or with 88% KOH at 200°, it gives hydroxytetrahydroabietic acid, m.p. 164—165° (evolution of H₂O and lactonisation), the *Me* ester, m.p. 50—51°, $[\alpha]_D^{20} + 21^\circ$ in abs. EtOH, b.p. 175—180°/2 mm., of which is stable to KMnO₄ in COMe₂ or aq. alkali, but gives no acetate or benzoate, even warm AcOH readily converting it into the lactone. R. S. C.

N. L. DRAKE and J. K. WOLFE (J. Amer. Chem. Soc.,

V.

Friedonic acid.

Cerin and friedelin.

1939, **61**, 3074—3078).—Friedonic acid (I), prepared (modified method; cf. A., 1936, 1386) by oxidation of friedelin (II), was accompanied, in one experiment only, by an isomeride-A, m.p. 126-127°, into which (I) is partly converted by NaOEt-EtOH at room temp. -A is unaffected by cold alkali, with NaOMe-Me₂SO₄ in boiling MeOH gives Me friedonate (III), m.p. 157— 158° [obtained also from (I) similarly or by CH₂N₂ or from Na friedonate by MeI], and consumes 3.0 mols. of MgMeI, giving 0.58 CH₄. (I) and (III) consume 4.15 and 3.0 mols. of MgMeI, giving 1.57 and 0.52CH₄, respectively. The structure of -A is unknown, except that the enolisable CO of (III) persists. The CO of (I) is confirmed by an absorption max. $(\log \in 1.55)$ at 2900 A. (absence of C:C·CO). At 250° in N₂, (I) gives 1 mol. each of CO₂, H₂O, and norfriedelene (IV), $C_{29}H_{48}$, m.p. 228·5—230°, unsaturated $[C(NO_2)_4]$ (consumes 1 BzO_2H), the reaction being >CO·C·C·C·CH₂·CO₂H \rightarrow C< $\stackrel{C\cdot C}{C\cdot C}$ ·CO₂H \rightarrow C< $\stackrel{C\cdot C}{C\cdot C}$ H₂-PtO₂ reduces (IV) in Et₂O-EtOAc to norfriedelane, C₂₉H₅₀, m.p. 220—221°, saturated. KMnO₄-AcOH and (IV) give norfriedenic acid, C₂₉H₄₈O₃, m.p. 215— 217° [oxime, m.p. 270·5—273°; Me ester, m.p. 166—167° (oxime, m.p. 193—195°; 2:4-dinitrophenylhydrazone, m.p. 233—234°)], reduced by Na-PraOH to norfriedelolactone (loc. cit.). Boiling SOCl₂ converts (I) into a non-cryst, acid chloride, reduced by $\rm H_2-Pd-BaSO_4$ in xylene at 150° to norfriedelanylform-aldehyde (V), $\rm C_{30}H_{50}O$, m.p. 222—225° [oxime, m.p. 255—259°; 2:4-dinitrophenylhydrazone, m.p. 312—314° $C \stackrel{\text{C:C-CHO}}{\leftarrow} \rightarrow C \stackrel{\text{CH-CH-CHO}}{\leftarrow} \cdot$ CrO_3 -AeOH 100° oxidises (V) to norfriedelanylformic acid, $\rm C_{30}H_{50}O_2$, m.p. 307—308° (Me ester, m.p. 230—231.5°). It is concluded that (I) is an ε -CO-acid, of which the CO is highly hindered and that (II) contains $C < CH \cdot CO - CH_2$. R. S. C.

Breakdown products of lignin. P. A. Bobrov and L. A. Kolotova (Compt. rend. Acad. Sci. U.R.S.S.,

R. E.

R. S. C.

1939, 24, 49—51; cf. A., 1938, III, 452).—Reduction of the OH-acids produced by the neutral oxidation of lignin yields AcOH, PrCO₂H, OH·CH₂·CO₂H, and hexoic acid. Alkaline oxidation of lignin yields in addition to the OH-acids a white substance, C₈H₈O₄, which gradually darkens through yellow to black, and when dry distilled gives a distinct reaction for furan. D. F. R.

Lignin and related compounds. XLVI. Action of ozone on isolated lignins. R. M. Dorland, W. L. Hawkins, and H. Hibbert (J. Amer. Chem. Soc., 1939, 61, 2698—2701; cf. A., 1939, II, 516).—Ozonisation of birch HCO₂H-lignin progressively decreases the OMe content and increases the solubility in NaHSO₃. Alkaline cleavage of the ozonised, sulphonated material gives ~1% of vanillin and acetovanillone. Similar treatment of the AcOH-lignin gives 2·7% of the products. R. S. C.

Pigment of the seed-husks of Andropogon sorgum, Brot. A. V. Zacharova (J. Appl. Chem. Russ., 1939, 12, 1039—1044).—The husks contain Et₂O-sol. 2-2, EtOAc-sol. 2-9, and EtOH-sol. substances 2·1%. The Et₂O-sol. fraction contains a red substance, C₁₉H₃₄O₂, m.p. 81—84°, which when heated at 200—225° with KOH yields pyrogallol (I), and other products, not identified. The EtOAc fraction yielded a substance, C₁₆H₁₆O₆, decomp. 300°, from which protocatechuic acid (II), BzOH, (I), and a ketone, m.p. 56—57° (semicarbazone, m.p. 155—156°), were obtained by fusion with KOH. The product isolated from the EtOH fraction melted at 117·5—119°, and gave (I), (II), BzOH, and an aldehyde by fusion with KOH. It is concluded that the husks contain a no. of related pigments, which form lakes with Cu, Ni, Zn, Fe, and Al.

Osage orange pigments. II. Isolation of a new pigment, pomiferin. M. L. Wolfrom, F. L. BENTON, A. S. GREGORY, W. W. HESS, J. E. MAHAN, and P. W. Morgan (J. Amer. Chem. Soc., 1939, 61, 2832—2836).—Osajin (I), extracted from the osage orange, is accompanied by pomiferin (II), C₂₅H₂₄O₆, m.p. 200.5°, with which it was, in part, previously (A., 1938, II, 239) confused. The diacetate of (I) has m.p. 164°. (II) gives a di-p-toluenesulphonate, m.p. 148° [previously ascribed to the (I) series], diacetate (prep. by Ac₂O-C₅H₅N at 0°), m.p. 134·5° (green FeCl₃ colour), triacetate (prep. by boiling Ac₂O-NaOAc), m.p. 154°, Me_2 (prep. by Me_2SO_4 -KOH-MeOH at 0° to room temp.), m.p. 132° (acetate, m.p. 128—129°), and Me_3 ether (prep. by hot Me_2SO_4 -50% KOH-COMe₂), m.p. 139.5°, and has an absorption max. at 2750 A. The absorption max. of (I) is at 2730 A. Hot H₂SO₄-AcOH isomerises (I) and (II) to isoosajin, m.p. 285° (decomp.; block), and isopomiferin, m.p. 265° (decomp.; block), having absorptions of the coordinate of the coordi tion max. at 2660 and 2680 A., respectively.

Phænicopterin from flamingo fat.—See A., 1939, III, 1062.

Reaction of tetrahydrofuran and 2:5-dimethyltetrahydrofuran with acyl halides. J. B. CLOKE and F. J. PILGRIM (J. Amer. Chem. Soc., 1939, 61, 2667—2669).—Prep. of furan from furoic acid and a little CuO in quinoline at 225° and thence of tetra-

hydrofuran (I) by H_2 -Raney Ni at 55—100 atm. is described. When boiled with AcCl, (I) gives 42—50% of Cl·[CH₂]₄·OAc (II), b.p. 90—91°/20 mm., with considerable amounts of δ - δ '-chlorobutoxybutyl acetate, b.p. 165—167°/24 mm., and a little δ - δ '- δ '-chlorobutoxybutoxybutyl acetate, b.p. 175—178°/10 mm. Addition of a trace of ZnCl₂ leads to 76% of (II), but addition of AlCl₃ leads to very little (II). Use of other acyl halides affords δ -chlorobutyl propionate, b.p. $101\cdot5$ — $102\cdot5$ °/20 mm., n-butyrate, b.p. $112\cdot5$ — $113\cdot5$ °/20 mm., and benzoate, b.p. 140— $142\cdot5$ °/4 mm., and impure δ -bromobutyl acetate, b.p. $89\cdot5$ —92°/15 mm., and benzoate, b.p. 155—157°/9 mm. 2:5-Dimethyltetrahydrofuran (prep. described), b.p. 89—91°, AcCl, and a little ZnCl₂ gives ε -chloro- β -acetoxy-n-hexane, b.p. 94—95°/20 mm., but AcBr gives a mixture. With HCl-MeOH at 40°, (II) gives 80% of Cl·[CH₂]₄·OH.

sec.-2-Furfurylamines. J. E. Zanetti and J. T. Bashour (J. Amer. Chem. Soc., 1939, 61, 3133—3134).—2-Furfuryl bromide (1 mol.), the appropriate amine, and KOH in Et₂O give 50—65% of N-2-furfurylmethyl-, b.p. 149—149·3°/761 mm., ~50—57°/16·5—18 mm. (hydrochloride, m.p. 144—146°), -ethyl-, b.p. 165—167°/761 mm., 63—65°/17—18 mm. (hydrochloride, m.p. 127—128°), -n-butyl-, b.p. 198—200°/768 mm., 92—95°/16—18 mm. (hydrochloride, m.p. 189—191°), and -n-amyl-amine, b.p. 214—216°/756 mm., 108—111°/16—18 mm. (hydrochloride, m.p. 185—188°), and N-2-furfurylaniline, b.p. 109—110°/0·5 mm. [hydrochloride, m.p. 150—151° (decomp.)], with varying amounts of (?) tert. amines. R. S. C.

LUTZ and C. J. KIBLER (J. Amer. Chem. Soc., 1939,

 $\alpha\delta$ -Diphenyl- β -mesityl- $\alpha\delta$ -diketones.

61, 3007—3010).—A β -mesityl group in $(CH_2Bz)_2$ increases the case of furan formation to such an extent that the mesityl-diketone cannot be isolated. The furan formed is not sterically hindered. Addition of (CHBz:)2 to Mg mesityl bromide (3 mols.) in Et2O gives the dienolate, ${\rm OMgBr\cdot CPh\cdot CH\cdot C(C_6H_2Me_3)\cdot CPh\cdot OMgBr},$ converted by dil. HCl into 2:5-diphenyl-3-mesitylfuran (I) (65%; sole product, even in presence of I), m.p. 157.5—158°, which with conc. HNO₃-AcOH at 10° gives $\operatorname{cis-\alpha\delta-diketo-\alpha\delta-diphenyl-\beta-mesityl-\Delta^{\beta}-butene}$ (II) (90%), m.p. 98.5—99°, stable to light in EtOH or CHCl₃-I. Zn dust in AcOH, Na₂S₂O₄-70% EtOH, or H_2 -PtO₂ in 70% EtOH reduces (II) to (I). HCl-AcOH at room temp. converts (II) into 4-chloro-2:5diphenyl-3-mesitylfuran, m.p. $102.5-103.5^{\circ}$, also obtained in poor yield from (I) by PCl_5 at 100° or 120° , reduced by Zn dust-AcOH to (I), and oxidised (AcOH-HNO₃) to $\operatorname{cis-}\gamma$ -chloro- $\alpha\delta$ -diketo- $\alpha\delta$ -diphenyl- β mesityl-Δ^β-butene, m.p. 127·5—128°. HBr-AcOH and (II) at room temp. or PBr₅ and (I) at room temp. give 65% of 4-bromo-2: 5-diphenyl-3-mesitylfuran, m.p. 126—127°, also obtained from (II) by PBr₅ at 0° and converted by HNO₃–AcOH into cis- γ -bromo- $\alpha\delta$ -diketo- $\alpha\delta$ -diphenyl- β -mesityl- Δ^{β} -butene (95% yield), m.p. 103—104·5°, unstable in light [Zn–AcOH gives (I)]. Ac₂O and a little H₂SO₄ convert (II) into 4-acetoxy-2:5diphenyl-3-mesitylfuran, m.p. 124·5—126·5°. M.p.

arc corr.

β-Phenyl- α δ-dimesityl- α δ-diketones. R. Lutz and C. J. Kibler (J. Amer. Chem. Soc., 1939, **61**, 3010—3012).—2:4:6- $C_6H_2Me_3\cdot CO\cdot CH_2\cdot CHPh\cdot CO\cdot C_6H_2Me_3-2:4:6$ (I) is not eyelised by Ac₂O-H₂SO₄, but with HI (d 1.7) at 145-150° or, better, when boiled for 30 hr. with AcOH containing a little H₂O and saturated with HCl gives 3-phenyl-2: 5-dimesitylfuran, m.p. $104-105.5^{\circ}$, converted by HNO₃-AcOH at 10° into the (? 4-)NO₂-derivative, m.p. $164-165^{\circ}$. When (2:4:6-164)C₆H₂Me₃·CO·CH:)₂ is added to MgPhBr (3 mols.) in Et₂O and the product is then treated with I or p- $O.C_{\epsilon}H_{\epsilon}O$ in EtOH, 46% of $\alpha\delta$ -diketo- β -phenyl- $\alpha\delta$ dimesityl- Δ^{β} -butene (II), m.p. 109—110°, is formed, proving that prep. of (I) (Lutz et al., A., 1934, 895) proceeds by way of the dienolate. Zn-dust-AcOH reduces (II) to (I). Attempts to prepare an acetoxyfuran from (II) failed. M.p. are corr.

Derivatives of coumaran. VI. Reduction of **1**-acetobenzfuran and its derivatives. R. L. SHRINER and J. ANDERSON (J. Amer. Chem. Soc., 1939, **61**, 2705—2708; ef. A., 1939, II, 518).—1-Acetobenzfuran (I) with H₂-PtO₂-Pt in abs. EtOH at 2—3 atm. gives 1-α-hydroxyethylbenzfuran (II), m.p. 41° (Stoermer et al., A., 1903, i, 846, m.p. 37°), b.p. $147^{\circ}/19$ mm. [phenylurethane, m.p. $102-103^{\circ}$ (loc. cit., 126°)]. With H_2 -Raney Ni in EtOH at 2-3atm., (I) or (II) gives 1-α-hydroxyethylcoumaran (III), b.p. 145°/20 mm. [phenylurethane, m.p. 115— 116° (loc. cit., 73°)]. In presence of Pt-C, hydrogenation gives mixtures of (II), (III), and the corresponding Et compounds. Hydrogenation of (I) thus occurs primarily by 1:2-addition. With a large excess of Na-Hg, (I) gives 1-acetylcoumaran [semicarbazone, m.p. 168—169° (lit. 192°)], obtained also from (III) by CrO_3 . ω -Bromo-1-acetobenzfuran [prep. from (I) described], m.p. 90—91°, and NaOAc in HCl-EtOH-H₂O give ω-acetoxy-1-acetobenzfuran, m.p. 86—87°, reduction of which by H₂-catalysts or Na-Hg-AcOH results in cleavage to AcOH and (I) or its reduction products. However, COPh·CH₂·OAc and H₂-PtO₂ in EtOH at 2—3 atm. give mainly α-phenylethylene glycol β-acetate, b.p. 136—137°/1 mm., with only small amounts of AcOH and CHPhMe OH. R. S. C.

Vitamin-E. XVIII. Condensation of phenols and quinols with allylic alcohols, allylic halides, and conjugated dienes. L. E. SMITH, H. E. UNG-NADE, J. R. STEVENS, and C. C. CHRISTMAN (J. Amer. Chem. Soc., 1939, 61, 2615—2618; cf. A., 1939, II, 518).—Condensation of substituted allyl alcohols with phenols and quinols does not always proceed by way of the dienes, as the latter sometimes give different products. Reaction mechanisms are suggested. $2:3:5:1:4\cdot C_6HMe_3(OH)_2(I), CH_3\cdot CH\cdot CH_3\cdot OH,$ and $ZnCl_2$ in C_6H_6 at 200° give 4-hydroxy-1:3:5:6tetramethylcoumaran, also obtained from CH₂:CH·CH₂Cl and (I) at 150°. Similarly, CH₂:CH·CHMe·OH, (I), and ZnCl₂ in C₆H₆ at 200° 4-hydroxy-1:2:3:5:6-pentamethylcoumaran, m.p. 119·5—120·5°, also obtained from CHMe:CH·CH₂Cl and (I) at 150°; CH₂:CH·CHEt·OH, first at 150° and then at 200°, gives 4-hydroxy-1:3:5:6-tetramethyl-2-ethylcoumaran, m.p. 88-89°. However, geraniol, first at 150° and then at 200°,

gives (?) impure 6-hydroxy-2:5:7:8-tetramethyl-2-isohexylchroman, b.p. 110—115° (liquid)/10-6 mm. (colour reactions of a 6-hydroxychroman). An oil, probably chiefly the trimethylallylcoumaran, is obtained from 2:6:1:4-C₆H₂Me₂(OH)₂ with CH₂:CH·CH₂·OH and ZnCl₂ in C₆H₆ at 200° or CH₂:CH·CH₂Br at 150°. Phytol, (I), and ZnCl₂ in boiling AcOH–N₂ give a-tocopherol (absorption spectrum). CH₂(CH:CH₂)₂, (I), ZnCl₂, and H₂SO₄ (I drop) in boiling AcOH give 6-hydroxy-5:7:8-trimethyl-2-ethylchroman, m.p. 115—116°. R. S. C.

Dibenzfuran. XIII. Orientation and substituted amines. H. GILMAN, P. T. PARKER, J. C. Baille, and G. E. Brown (J. Amer. Chem. Soc., 1939, 61, 2836—2845; cf. A., 1939, II, 440).—The rules of orientation previously postulated are borne out by the following reactions. 4-Bromo-1-methoxydibenzfuran (I) [prep. from 1-methoxydibenzfuran (II) by Br-AcOH], m.p. 97-97.5°, gives by Grignard reactions 1-methoxydibenzfuran-4-carboxylic acid (III), m.p. 279—280° (decomp.), and 1-methoxy-4-β-hydroxyethŷldibenzfuran, m.p. 96—96.5°, b.p. 195—206°/2 mm., and thence (HBr) 1-methoxy-4-β-bromo-, m.p. 91—91·5°, and (NHEt₂) 1-methoxy-4-β-diethylaminoethyldibenzfuran [hydrochloride, m.p. 187° (decomp.)]. AcCl-AlCl₃ converts (II) in CS₂ into 4-acetyl-1-methoxydibenzfuran, m.p. 134—134.5° [oxidised by alkaline KMnO₄ to (III)], the oxime, m.p. 176—177.5°, of which with PCl₅ in C₆H₆ gives 4-acetamido-1-methoxy-, m.p. 222—223°, and thence 4-amino-1-methoxy-, m.p. 103—104°, 3-nitro-4-acetamido-1-methoxyoxy-, m.p. 244°, and 3-nitro-4-amino-1-methoxy-dibenzfuran (IV), m.p. 206-207°. Addition of (IV) in C_5H_5N to $NaNO_2$ in $H_2SO_4-H_2O$ (2:1) at 5—10°, followed by CO(NH₂)₂ and heating with EtOH, gives 35% of 3-nitro-1-methoxydibenzfuran, m.p. 185—186°, hydrogenated (Raney Ni; EtOH; room temp./4 atm.) to 3-amino-1-methoxydibenzfuran, m.p. 127— 127.5°. 2-Aminodibenzfuran (V) and NH₂·CO·NH·NH₂ in EtOH at room temp. give 2-dibenzfurylcarbamide, m.p. >325° (softens at 215—220°; tube), melts and resolidifies at 222—223°

(block). Li 1-dibenzfuryl (prep. by LiBu^a) and N₂-Br vapour give 40.5% of 1-bromodibenzfuran, m.p. 70—71°, converted by fuming HNO₃ into its 7- NO_2 derivative (VI), m.p. 205°. Fuming HNO₃ converts 1-iododibenzfuran in AcOH into its 7-NO2-derivative, m.p. 224°, reduced by H₂-Pd in abs. EtOH at 15 lb. to 2-nitrodibenzfuran (32%); when similarly reduced, (VI) gives (V). Me dibenzfuran-1-carboxylate, AcCl, and AlCl₃ in boiling CS₂ give Me 6-acetyldibenzfuran-1-carboxylate, m.p. 174—175°, the derived acid, m.p. 262-265°, from which with Cu-bronze in quinoline at 235—240° gives 3-acetyldibenzfuran. 2-Nitrodibenzfuran, AcCl, and $AlCl_3$ in PhNO₂ (not CS₂) give 2-nitro-6-acetyldibenzfuran, m.p. 212—213°, hydrogenated (Raney Ni; abs. EtOH; 100°/45 lb.) to 2-amino-6-acetyldibenzfuran, m.p. 158—159° [Ac derivative (prep. by Ae₂O in AcOH-H₂O), m.p. 203° (oxime, m.p. 203°), converted (diazo-reaction) into 3-acetyldibenzfuran], and oxidised by CrO₃-AcOH [not KMnO₄], Br, Na₂Cr₂O₇-H₂SO₄, or Ca(OCl)₂ to 7-nitrodibenzfuran-3-carboxylic acid, decomp. 300° after softening at 295°. Dibenzfuran-2-carboxylic acid (prep. by a Grignard reaction from the 2-Brcompound) and MeOH-HCl give the Me ester, converted by HNO₃ (conc. + fuming) into Me 6-nitrodibenzfuran-2-carboxylate (34.8%), m.p. 235—236° (corresponding acid, m.p. >330°, decarboxylated by Cu in hot quinoline to 3-nitrodibenzfuran), and some (?) 3-NO₂-ester, m.p. 202—203°. Addition of Br-AcOH to 2-aminodibenzfuran and NH4CNS in 95% AcOH at 1—3° gives 2-amino-3-thiocyanodibenzfuran, m.p. 175° (resolidifies), converted by HCl in hot EtOH into 2-aminodibenzthiazolo-2': 3'-4: 5-thiazole (2-aminobenzfur[2:3-f]benzthiazole), m.p. $268-269^{\circ}$ (hydrochloride, decomp. >300°). Dibenzfuran, AcCl, and AlCl₃ in CS₂ (less well, PhNO₂) give 46—57% of the 3-Ac derivative (VII) (oxime, m.p. 139—140°; NO_2 -derivative, m.p. 290°), and 8% of the 3:6-Ac₂ derivative (VIII) [obtained rather better by Ac₂O or, best (32%), from (VII) by AcCl-AlCl₃-CS₂], m.p. 160° (lit. 140°). Oxidation of (VIII) gives dibenzfuran-3:6-dicarboxylie acid, obtained in poor yield from the 3:6-Br₂-compound (IX) by Mg, followed by CO₂, or better, by LiBu^a, followed by CO₂ (CaPhI-CO₂ leads to 3:6-dibromodibenzfuran-1:8-dicarboxylic acid). Ca(OCl)₂ oxidises (VII) to the 3-carboxylic acid, m.p. 247—248°. AcCl-AlCl₃ converts (IX) in CS2 into 3:6-dibromo-2-acetyldibenzfuran, m.p. 157—157·5°, the structure of which is proved by removing the Br by H2-Pd-CaCO3 and then oxidising by alkaline KMnO₄ to dibenzfuran-2-carboxylic acid. Me dibenzfuran-3-carboxylate (prep. from the acid by HCl-MeOH), m.p. 73—74°, gives a 7-NO₂-derivative, m.p. 239—240°. AcCl-AlCl₃-CS₂ converts 3bromodibenzfuran into 3-bromo-6-acetyldibenzfuran, b.p. 205°/4 mm., oxidised by Ca(OCl)₂ to 6-bromodibenzfuran-3-carboxylic acid (X), m.p. 328°, debrominated by H₂-Pd-CaCO₃ to dibenzfuran-3-carboxylic acid. Et dibenzfuran-3-carboxylate (prep. from the acid by SOCl₂, followed by abs. EtOH), m.p. 54°, and Br-AcOH give mainly (28%) the 6-Br-ester, m.p. 130°, and thence by conc. HCl-AcOH (X). (d 1.5) and (I) in AcOH at 90—95° give 4-bromo-2nitro-1-methoxydibenzfuran, m.p. 160—161°, hydrogenated (Pd-CaCO₃) to 2-amino-1-methoxydibenzfuran and reduced by SnCl₂-HCl to 4-bromo-2-amino-1-methoxydibenzfuran, m.p. 135—136° (Ac derivative, mp. 178—179°). γ-Keto-γ-3-dibenzfuryl-n-butyric acid [prep. from dibenzfuran by (CH₂·CO)₂O and AlCl₃ in PhNO₂-C₂H₂Cl₄ at 0—5°] is reduced (Zn-Hg-HCl-H₂O-PhMe) to γ-3-dibenzfuryl-n-butyric acid, cyclised by 88% H₂SO₄ to 1'-keto-1': 2': 3': 4'-tetrahydronaphtha-7': 6'-1: 2-benzfuran (7-keto-1) 7:8:9:10-tetrahydrobenzo[b]naphtho[2:3-d]furan) (XI), m.p. 137°, the oxime, m.p. 212-213°, of which is reduced by 2% Na-Hg in abs. EtOH (kept acid by AcOH) at 55—60° to the 1'-NH₂-compound (hydrochloride, m.p. 266—267°). NHMe₂,HCl, (CH₂O)₃, and (XI) in boiling C₅H₁₁·OH give 2'-dimethylaminomethyl-1'-keto-1': 2': 3': 4'-tetrahydronaphtha-7': 6'-1:2-benzfuran hydrochloride (14·3%), m.p. 185—186°. 3-Acetyldibenzfuran (XII) and HCO₂NH₄ in AcOH (etc.) give 2-α-aminoethyldibenzfuran hydrochloride, m.p. 222-223°. 3-a-Hydroxyethyldibenzfuran (prep. from Mg 3-dibenzfuryl bromide and MeCHO) and dry HBr give the bromide and thence (NHEt₂) 3-α-diethylaminodibenzfuran hydrobromide,

hygroscopic, and *picrate*, m.p. 173—174°. NHMe₂,HCl and (CH₂O)₃ in boiling, abs. EtOH convert (XII) into 3-β-dimethylaminopropionyldibenzfuran, m.p. 88—89° (hydrochloride, m.p. 194—195°).2-Aminodibenzfuran (XIII) and $p-C_6H_4Me-SO_3Et$ at 175—185° afford 2-ethylaminodibenzfuran (XIV), m.p. 69—70° [hydrochloride, m.p. 228—229°; NO-derivative, m.p. 136—137°, reduced by SnCl₂-HCl to (XIV)]. The Ac derivative of (XIII) and HNO₃ (d 1·5) in AcOH at 85—90° give 3-nitro-2-acetamidodibenzfuran, m.p. 196°, which with SnCl₂-HCl in AcOH yields 2-methyldibenzfuro-2': 3'-4: 5-glyoxaline, new m.p. (hydrochloride, new m.p. >335°). 3-Nitro-4-acetamido-1-methoxydibenzfuran gives similarly 1'-methoxy-2-methyldibenzfuro-3': 4'-4: 5-glyoxaline, 222—222·5° [hydrochloride, m.p. 306—307° (decomp.)]. 7-Acetamido-3-acetyldibenzfuran and HNO₃ (d 1.5) in AcOH at 100° give the 6- NO_2 -derivative, m.p. 270—271°, and thence by H_2 -Raney Ni in EtOH at 7'-acetyl-2-methyldibenzfuro-2':3'-4:5-100°/45 lb. glyoxaline, m.p. 298° [hydrochloride, m.p. ~325° (decomp.)]. Li 1-dibenzfuryl and isoquinoline in Et₂O at $0-5^{\circ}$ give 1-1'-dibenzfurylisoquinoline (11.3%), m.p. 137—138° (hydrochloride, hydrolysed in H₂O). Dibenzfuran-1-carboxylic acid (XV) and SOCl₂ give the chloride, which with CH_2N_2 in Et_2O yields 1-dibenzfuryl CHN_2 ketone, m.p. 72—75°. When this is treated in dioxan at 100° with conc., aq. NH3 and then with AgNO₃, it yields 1-dibenzfurylacetamide, m.p. 211—212°, hydrolysed to 1-dibenzfurylacetic acid, m.p. 213·5—214·5°, the acid chloride of which in $\begin{array}{ll} Et_2O & with & 3:4:1\text{-}(OMe)_2C_6H_3\text{-}CO\text{-}CH_2\text{-}NH_2 & gives \\ \alpha\text{-}1'\text{-}dibenz fury lacetamido\text{-}3:4\text{-}dimethoxy acetophenone,} \end{array}$ m.p. 186—187°. The acid chloride of (XV) similarly gives a-dibenzfuryl-1'-carboxylamido-3: 4-dimethoxyacetophenone, m.p. 178-179°.

Dibenzfuran. XIV. Diazo-coupling 1-, 2-, and 3-hydroxy-compounds. H. Geman and M. W. Van Ess. XV. 1:4- and 1:4:8-Derivatives. H. Geman and L. C. Cheney (J. Amer. Chem. Soc., 1939, 61, 3146—3148, 3149—3156).—XIV. 3-, 2-, and 1-Hydroxydibenzfuran and PhN₂Cl in aq. KOH give 3-hydroxy-4-, m.p. 165·5—166°, 2-hydroxy-3-, m.p. 177—178°, and 1-hydroxy-4-benzene-azodibenzfuran, m.p. 174—175°, respectively, which indicates lability of the ethylenic linkings. Structures are proved by reduction (SnCl₂-HCl-AcOH) to the unstable aminohydroxydibenzfurans and conversion of the hydrobromides thereof by aq. NaNO₂-CuSO₄, followed by CuBr-HBr, into the known bromohydroxydibenzfurans.

XV. 1-Hydroxy-8-methoxydibenzfuran (I) with HBr (d 1·49) in AcOH gives 1:8-dihydroxydibenzfuran (II), new m.p. 200—202° (Ac₂ derivative, m.p. 177°), and with Me₂SO₄-60% KOH gives 1:8-dimethoxydibenzfuran (III), m.p. 128—129° (picrate, m.p. 161—162°), which with AcCl-AlCl₃ in PhNO₂ gives 60% of 4-acetyl-1:8-dimethoxydibenzfuran, m.p. 178·5—179·5°. The oxime, m.p. 203—204°, thereof is converted by PCl₅ in C₆H₆ into 4-acetamido-, m.p. 244—245°, and thence (HCl-EtOH) into 4-amino-1:8-dimethoxydibenzfuran (IV), m.p. 162—162·5°. PhN₂Cl couples with (I) in dil., aq. KOH to give 1-hydroxy-4-benzeneazo-8-methoxydibenzfuran, m.p. 175°,

converted by Me_2SO_4 -KOH- $COMe_2$ into 4-benzeneazo- $1:8\text{-}dimethoxydibenz furan, m.p. 170°, and thence $(SnCl_2-HCl-AcOH)$ into (IV). Addition of AlCl_3$ (1.1 mol.) to 1-methoxydibenzfuran (V) (1 mol.) and COCl₂ (0.55 mol.) in PhNO₂ gives di-1-methoxy-4-dibenzfuryl diketone (34.6%), m.p. 239°, and ketone (18%), m.p. 234°, with some 1-methoxydibenzfuran-4-carboxylic acid (VI), m.p. 276—277°. With CH₂Cl·COCl and AlCl₃ in PhNO₂, (V) gives 4-chloro-acetyl-1-methoxydibenzfuran, m.p. 165—166°, and with CO₂Et·COCl-AlCl₃ in PhNO₂ gives Et 1-methoxydibenzfuran-4-glyoxylate, m.p. 113°, hydrolysed to the acid, m.p. 187° [semicarbazone, m.p. 211·5—212° (decomp.)], which with alkaline KMnO₄ gives (VI). $(\mathrm{COCl})_2$, AlCl_3 , and (III) in PhNO_2 give di-1:8dimethoxydibenzfuryl diketone (60.7%), m.p. >300°, and ketone (10.4%), m.p. 254—255°, with some 1:8dimethoxydibenzfuran-4-carboxylic acid (VII), m.p. 297—298° (Me ester, m.p. 163°). 2-Hydroxy-1methoxydibenzfuran (VIII) yields (HBr-AcOH) 1:2dihydroxydibenzfuran, m.p. 164—164-5° (Ac₂ derivative, m.p. 104—105°), and (Me₂SO₄-10% NaOH) 1:2-dimethoxydibenzfuran (IX), m.p. 60—61°. AcCl-AlCl₃ in PhNO₂ converts (IX) into 4-acetyl-1:2-dimethoxydibenzfuran (IX) into 4-acetyl-1:2 methoxydibenzfuran, m.p. 90.5-91° (some demethylation occurs), the oxime, m.p. 156-157°, of which with PCl₅ in C₆H₆ gives 4-acetamido-, m.p. 196— 196.5°, and thence 4-amino-1:2-(KOH–EtOH) dimethoxy dibenz furan (X), m.p. $162.5-163^{\circ}$. Bromo-1: 2-dimethoxydibenzfuran (XI) [prep. from (IX) by Br-AcOH], m.p. 108°, with CuBr-aq. NH₃ at 220—230 gives (X). With Br in AcOH, (III) gives 4-bromo-, m.p. 152°, or 4:5-dibromo-1:8-dimethoxydibenzfuran (XII), m.p. 167-168°, and (II) gives 4:5-dibromo-1:8-dihydroxydibenzfuran, m.p. 239— 240° [converted into (XII) by Me₂SO₄], but (I) gives (? 2:4-)dibromo-1-hydroxy-8-methoxy-, m.p. 177—178°, and thence (? 2:4-)dibromo-1:8-dimethoxy-dibenzfuran, m.p. 173.5—174°. Br-AcOH converts (VIII) into 4-bromo-2-hydroxy-1-methoxydibenzfuran (54·6%), m.p. 161—162° (and an isomeride), also obtained (NaNO₂-H₂SO₄; CuSO₄) from 4-bromo-2-amino-1-methoxydibenzfuran and converted by Me₂SO₄-10% NaOH into (XI). 1-Bromo-8-methoxydibenzfuran with HI (d 1.67) gives 19% of 1-bromo-8-hydroxydibenzfuran, m.p. 138—139°, and with CuBr-aq. NH₃, first at 100° and then at 215°, gives 1-amino-8-methoxydibenzfuran (51%), m.p. 109° [hydrochloride, m.p. 235—236° (decomp.)], and thence (HBr-AcOH) 1-amino-8hydroxydibenzfuran, m.p. 191·5—192·5° [hydrochloride, m.p. 265-266° (decomp.)]. NaHSO₃, aq. NH₃, and (II) at 185—195° give I: 8 diaminodibenzfuran, m.p. [dihydrochloride, m.p. 297—298° (decomp.); picrate, m.p. 213° (decomp.); Ac₂ derivative, m.p. 297—298° (lit. 322·5—323·5°)]. PhN₂Cl and (II) in aq. KOH give the impure 2:4:5-(PhN₂)₃-derivative approach to the control of t ative, m.p. 228° (decomp.), methylated in COMe₂ to 2:4:5-tribenzeneazò-1:8-dimethoxydibenzfuran, m.p. 190—191°. (VII) is obtained from the 4-Ac compound by I-KI-NaOH-dioxan and from the 4-Brcompound by the Grignard reaction; with SOCl, it gives the acid chloride, m.p. 147-150°, which with NO·NMe·CO₂Et in dioxan gives 1:8-dimethoxy-4-dibenzfuryl CH_2N_2 ketone, m.p. 151° (gas), converted by $AgNO_3$ -NH $_3$ -H $_2$ O-dioxan at 100° into 1:8-

dimethoxy-1-dibenzfurylacetamide, m.p. 210—211°, and thence by NaOH–H₂O–EtOH into 1 : 8-dimethoxy-1-dibenzfurylacetic acid, m.p. 205·5—206·5°. Diazotisation and SnCl₂-reduction of the 2-NH₂-compound affords 2-hydrazinodibenzfuran, m.p. 174—175° (lit. 152°) [hydrochloride, m.p. 242—243° (decomp.) (lit. 225°)]. Na–EtOH reduces 1-aminodibenzfuran in N₂ to 1-amino-5 : 6 : 7 : 8-tetrahydrodibenzfuran, an oil [hydrochloride, m.p. 228° (decomp.; darkens at 214°)], which gives no carbonate and by diazotisation and coupling with β -C₁₀H₇·OH gives a red dye, m.p. 199—201°. R. S. C.

Chromones of the naphthalene series. I. Transformation of o-aroyloxyacetoarones into o-hydroxydiarylmethanes. II. Synthesis linear naphthaflavone (6:7-benzoflavone). V. V. VIRKAR and T. S. WHEELER (J.C.S., 1939, 1679— 1681, 1681—1683).—I. Na causes the rearrangement of o-aroyloxyacctoarones into the corresponding ohydroxydiaroylmethanes, which can be cyclised to the chromones. The following are described: 1-1'-, m.p. 135°, and 1-2'-naphthoyloxy-, m.p. 113—114°, and 1-3'-methoxy-2'-naphthoyloxy-2-acetonaphthone, 119°; 1-hydroxy-2: 1'-dinaphthoylmethane, m.p. 142°, cyclised to 2-1'-naphthyl-7:8-benzochromone, m.p. 1-hydroxydi-2-naphthoylmethane, m.p. 164°, cyclised (HBr) to 2-2'-naphthyl-7:8-benzochromone, 190—191°; 1-hydroxy-3'-methoxy-2: 2'-dinaphthoylmethane, m.p. 163°, cyclised to 2-(3'-methoxy-2'-naphthyl)-, m.p. 204—205°, and 2-(3'-hydroxy-2'naphthyl)-7: 8-benzochromone, m.p. >300° (Ac derivative, m.p. 180—181°). A similar method is applied to the synthesis of some 2-naphthylbenzochromones.

II. Benzoyl-2-methoxy-3-naphthoylmethane, m.p. 98°, is prepared from Na, COPhMe, and 2:3- $OMe \cdot C_{10}H_6 \cdot CO_2Me$; o-anisoyl-2-methoxy-3- (I), m.p. 120—122°, and -3-methoxydi-2-naphthoyl-, m.p. 160°, di-(1-methoxy-2-naphthoyl)-, m.p. 122°, and $\bar{2}:2'$ -dimethoxy-1: 2'-dinaphthoyl-methane, m.p. 163°, are obtained. Bromo-o-anisoyl-2-methoxy-3naphthoylmethane, m.p. 152°, is formed by bromination of (I). Cyclisation can be effected with HBr-AcOH or HI-Ac₂O: 6:7-benzoflavone, m.p. 171-172°; 2'-methoxy-, m.p. 165°, -hydroxy-, m.p. 256— 257°, and -acetoxy-6: 7-benzoflavone, m.p. 136—138°. These compounds with NaOEt give 2:3-OH·C₁₀H₆·COMe and 2:3-OH·C₁₀H₆·CO₂H. The following are similarly prepared: 2-2'-naphthyl-6:7-, m.p. 193°, 2-(1'-methoxy-, m.p. 151—152°, 2-(1'hydroxy-, m.p. >280°, and 2-(1'-acetoxy-2'-naphthyl)-7:8-, m.p. 174°, and 2-(2'-methoxy-, m.p. 197°, 2-(2'-hydroxy-, m.p. 283—285°, and 2-(2'-acetoxy-1'naphthyl)-6: 7-benzochromone, m.p. 148-150° [the latter compounds may be 2-(3'-methoxy-2'-naphthyl)-

Monoalkyldioxans. R. K. Summerbell and R. R. Umhoefer (J. Amer. Chem. Soc., 1939, 61, 3016—3019).—Adding freshly prepared chlorodioxan (I) to MgRX (excess; whether or not treated with ZnCl₂ or CdCl₂) in Et₂O gives 2-methyl-, b.p. 109—110°/746·5 mm., 2-ethyl- (II), b.p. 132·5—133°/750 mm., 2-n-propyl-, b.p. 155·6—157·1° (corr.)/746 mm., 2-n-butyl-, b.p. 178—179° (corr.)/735 mm., and 2-allyl-dioxan (III), b.p. 156—158°/747·6 mm. If the (I)

5:6-benzochromones].

F. R. S.

contains dioxen, MgBu°Br (ZnCl₂ present) or MgEtBr gives also some 2-dioxanyl-3-n-butyl-, m.p. 101—102°, or -3-ethyl-dioxan, m.p. 97·5°, respectively. (CH₂·OH)₂ is formed by boiling (III) with Na, but other analogous compounds are stable. The solubility in H₂O decreases and the unpleasantness of the odour increases with increase in mol. wt. of the alkyl. The alkyldioxans do not add pieric acid or quinol.

Cl·[CH₂]₂·O·CHMeCl (prep. from paraldehyde, Cl·[CH₂]₂·OH, and HCl at 0°) and Br at 0° give β -chloroethyl $\alpha\beta$ -dibromoethyl ether, b.p. $108^{\circ}/12$ mm., converted by MgEtBr into β -chloroethyl α -bromomethyl-n-propyl ether, b.p. $92-93^{\circ}/12$ mm., which with 10% KOH at $200-205^{\circ}$ gives 17% of (II). 2:3-Dichlorodioxan (2 mols.), Mg (3·4 atoms), and I (0·4 atom) in Et₂O give 49% of dioxen, b.p. $93-95^{\circ}$. R. S. C.

Dioxadiene. R. K. Summerbell and R. R. Umhoefer (J. Amer. Chem. Soc., 1939, 61, 3020—3022).—2:3:5:6-Tetrachlorodioxan (I), Mg, and MgI₂ in boiling Bu²₂O (not Et₂O) give dioxadiene, b.p. 75°/746 mm., insol. in H₂O, which with Br-CCl₄ at 0° gives the 2:3-dibromide (no HBr liberated), m.p. 58°, with Cl₂ gives (I), with HCl-CCl₄ gives 2:5-dichlorodioxan (also obtained by chlorinating dioxan), m.p. 118—119°, and polymerises to a solid, m.p. >250°, when kept. Other methods of prep. failed. R. S. C.

Reaction of a thiophen derivative with maleic anhydride. D. B. CLAPP (J. Amer. Chem. Soc., 1939, 61, 2733—2735).—2:3-4:5-Di-1':8'-naphthylenethiophen (I), m.p. 285·5—286° (corr.), and (:CH·CO)₂O at 225° give an adduct, which spontaneously loses H₂S and yields 3:4-5:6-di-1':8'-naphthylenephthalic anhydride, decomp. ~385°. Stilbene and (I) at 310—320° similarly give H₂S and 1:2-diphenyl-3:4-5:6-di-1':8'-naphthylenebenzene, m.p. 290—291° (corr.). Cl₂ and Br give dissociable adducts with (I). R. S. C.

β-Phenylfurylethylamine and analogous derivatives of thiophen and pyrrole. (SIR) R. ROBINson and W. M. Todd (J.C.S., 1939, 1743—1747).-Et β -2-(5-phenylpyrryl)propionate, m.p. 103°, with N_2H_4 gives β -2-(5-phenylpyrryl)-propionhydrazide, m.p. 137°, which with NaNO2 affords the ethylamine hydrochloride, m.p. 225°. 4:7-Diketo-7-phenylheptoic acid (Et ester, m.p. 23—25°), P_2O_5 , and C_6H_6 yield β-2-(5-phenylfuryl)-propionic acid, m.p. 116°, the Et ester, b.p. $165-167^{\circ}/2-3$ mm., m.p. $20-21^{\circ}$, of which with N_2H_4 affords the *-propionhydrazide*, m.p. 110°, converted through Me β-2-(5-phenylfuryl)ethylcarbamate, m.p. 59—60°, into \(\beta \cdot 2 - (5-phenylfuryl) - \text{ethylamine hydrochloride, m.p. 205—206° (picrate, m.p. 200°; \(Bz, \text{m.p. 121°, and } Ac \text{derivatives, m.p. 75°}\). 72°). A similar series of reactions with Me 4:7-di-keto-7-phenylheptoate, b.p. 197°/2 mm., m.p. 41°, and P_2S_5 gives Me β -2-(5-phenylthienyl)propionate (+0.5H₂O), m.p. 75° [acid (+0.5H₂O), m.p. 148°], β -2-(5-phenylthienyl) propionhydrazide, m.p. 151°, Me β-2-(5-phenylthienyl)-ethylcarbamate, m.p. 100°, and the ethylamine hydrochloride, m.p. 266° (picrate, m.p. 217°; Bz, m.p. 141°, and Ac derivatives, m.p. 128°). Furfurylidene-p-methoxyacetophenone, m.p. 79°, with HCl-EtOH affords 4:7-diketo-7-p-methoxyphenylheptoic acid, m.p. 119°, and this yields \$-2-(5-p-

methoxyphenylpyrryl)-propionic acid, m.p. 170—171° (Et ester, m.p. 103°), and -propionhydrazide, m.p. 169°, which could not be converted into the amine. β-2-(5-p-Methoxyphenylfuryl)propionic acid, m.p. 141° (Et ester, b.p. $189-195^{\circ}/2$ mm., m.p. 52°), gives the hydrazide, m.p. 136°, -ethylamine hydrochloride, m.p. 240°, and Me β -2-(5-p-methoxyphenylfuryl)ethylcarbanate, m.p. 89°. Me 4:7-diketo-7-p-methoxyphenylheptoate, b.p. 248°/3 mm., m.p. 48°, forms with P_2S_5 β -2-(5-p-methoxyphenylthienyl) propionic acid, 178° (Me ester, m.p. 94°), hydrazide, m.p. 112°, ethylamine hydrochloride, m.p. 283° (Ac derivative, m.p. 145°), and Me p-2-(5-p-methoxyphenylthienyl)ethylcarbamate, m.p. 112°. 4:7-Diketo-octoic acid and P_2O_5 yield β -2-(5-methylfuryl)propionic acid, m.p. 54—55°, which with EtOH-H₂SO₄ gives a mixed product, containing Et β -2-(5-methylfuryl)propionate, b.p. $97^{\circ}/2$ —3 mm. With CH₂N₂ Me β -2-(5-methylfuryl) furyl)propionate, b.p. 83°/2—3 mm., and Me 4:7diketo-octoate, b.p. 140°/4 mm., are obtained. β-2-(5-Phenyltetrahydrofuryl)ethylamine hydrochloride, m.p. 122°, is prepared by reduction (Pd-C-H₂) of the corresponding phenylfuryl compound.

Action of p-tolylthiocarbimide on ethyl acetonedicarboxylate. D. E. WORRALL (J. Amer. Chem. Soc., 1939, 61, 2966—2969).—Addition of powdered Na (1 atom) in Et₂O, followed by p-C₆H₄Me·NSC (1 mol.), to CO(CH₂·CO₂Et)₂ (I) gives $^{\circ}2: 4$ -diketo-6-thio-1-p-tolylpiperidine-5-carboxylate (II), m.p. 174—175° (decomp.), sol. in Na₂CO₃ and pptd. therefrom by HCl but not by AcOH (blue-green ppt. with FcCl₃). AcOH only slowly decomposes (II), more rapidly if NHPh NH₂ is added. Hot KOH-EtOH hydrolyses and decarboxylates (II), yielding 2:4-diketo-6-thio-1-p-tolylpiperidine, m.p. 158—159° (decomp.). MeI and (II) in warm EtOH give Et 2:4diketo-6-methylthiol-1-p-tolyl-1:2:3:4-tetrahydropyridine-5-carboxylate (III), m.p. indefinite, >250° (decomp.) (Na salt), stable to AcOH or AcOH-NHPh·NH2. Br-AcOH and (II) at 100° give the 3-Br-derivative, m.p. 238—239°, also sol. in Na₂CO₃. (II) similarly gives its 3-Br-derivative, m.p. 165.5— 166.5°. With Me₂SO₄-NaOH, (II) gives Et 6-methylthiol-4-methoxy-1-p-tolyl-2-pyridone-5-carboxylate, m.p. 166°, insol. in NaOH and stable to Br. With 2 Na and 2 mols. of p-C₆H₄Me·NSC, (I) gives Et 2:4-diketo-6-thio-1-p-tolylpiperidine-3-thioform-p-toluidide-5-carboxylate (IV), m.p. 182-184° (decomp.), sol. in alkali, fairly stable to AcOH, converted by MeI in boiling EtOH into Et 2:4-diketo-6-methylthiol-1-ptolyl-1:2:3:4-tetrahydropyridine-3-thioform-p-toluidide-5-carboxylate (V), m.p. 151—152°, sol. in Na₂CO₃, stable to AcOH, and converted by boiling KOH-EtOH into the corresponding 5-carboxylic acid, m.p. 232—233° (decomp.). Boiling KOH-EtOH converts (IV) into 2:4-diketo-6-methylthiol-1-p-tolyl-1:2:3:4tetrahydropyridine-5-thioform-p-toluidide, m.p. 205—208°, sol. in Na₂CO₃, reactive to Br. The Na derivative of (V) with MeI in aq. EtOH at 100° (tube) gives 6-methylthiol-4-methoxy-1-p-tolyl-2-pyridone-3-thio-form-p-toluidide, m.p. 153°, insol. in alkali, stable to Br. Me₂SO₄-NaOH converts (IV) into Me₂ 6-methylthiol-4-methoxy-1-p-tolyl-2-pyridone-3:5-dicarboxylate, m.p. 177-178°, and p-C₆H₄Me NHMe. Br and (IV) in AcOH at 100° give HBr and $Et\ 2:4$ -diketo-6-thio-1-p-tolyl-3-5'-methyl-1'-benzthiazolylpiperidine-5-carboxylate, m.p. $>300^\circ$ (evolves $\rm H_2S$ readily with NHPh·NH₂-AcOH), sol. in alkali, hydrolysed rapidly by cold, aq. NH₃ to the 5-carboxylic acid, m.p. 260—261° (decomp.; gas), and converted by Me1-EtOH-NH₃ into $Et\ 2:4$ -diketo-6-methylthiol-1-p-tolyl-3-5'-methyl-1'-benzthiazolyl-1:2:3:4-tetrahydropyridine-5-carboxylate, m.p. 282—283° (decomp.), stable to Br or NHPh·NH₂ but hydrolysed by aq. NH₃. R. S. C.

β-Arylaminoacrylic esters. II. Use of β-arylaminoacrylic esters for synthesis of N-aryl substituted pyridonecarboxylic acids. M. V. Rubtzov (J. Gen. Chem. Russ., 1939, 9, 1517—1524). —The reaction 2NHR·CH·CH·CO₂Et \Rightarrow

NR(CH:CH·CO₂Et)₂ \rightarrow NR $\stackrel{\text{CH:C(CO_2H)}}{\text{CH}}$ CO is of general application. β -C₁₀H₇·NH₂ in AcOH and OH·CH:CH·CO₂Et give Et β -(2-naphthylamino)acrylate, m.p. 134·5—135°, which, heated in vac. at 125—130° for 9 hr., and then hydrolysed (MeOH–KOH), yields two forms (probably syn- and anti-) of 1- β -naphthyl-4-pyridone-3-carboxylic acid, m.p. 306—307° and 252—253° (decomp.). The following are prepared analogously: Et β -anilino-, m.p. 105—106°, and Et β -(6-quinolylamino)-acrylate, m.p. 155—156°, Et_2 β -(6-quinolylamino)diacrylate, m.p. 127—128°, 1-phenyl-, m.p. 265—266° (chloride, m.p. 107—108°), and 1-(6′-quinolyl)-4-pyridone-3-carboxylic acid, m.p. 353—355° (decomp.) (chloride, m.p. 262—263°; Et ester, m.p. 116—117°; diethylamide, m.p. 155—156°). R. T.

Synthesis in the 1:2:3:4-tetrahydroquinoline series. W. S. EMERSON and J. W. DAVIS (J. Amer. Chem. Soc., 1939, 61, 2830—2832).—2:8-[zincichloride, m.p. 270° (decomp.)] and 2:6-dimethylquinoline (picrate, new m.p. 186-187°; zincichloride, m.p. 211·5—213°; methiodide, new m.p. 239—240°) are reduced by Sn-HCl to 2:8- (I), b.p. 250—255° [picrate, m.p. 159·5—160°; zincichloride, m.p. 270° (decomp.); Bz derivative, m.p. 118·5—120°], and 2:6-dimethyl-1:2:3:4-tetrahydroquinoline (II), b.p. $147-149^{\circ}/24$ mm. (Bz derivative, m.p. $104-105^{\circ}$; picrate, m.p. 165—169°, unstable; zincichloride, m.p. 187—195°). With Mel at room temp. (I) gives 1:2:8-trimethyl-1:2:3:4-tetrahydroquinoline, $130^\circ/21$ mm. (hydriodide, m.p. $154\cdot5-155\cdot5^\circ$; picrate, m.p. $177-178^\circ$; zincichloride, m.p. $213-214^\circ$; hydriodide, m.p iodide, m.p. 155-157°). Mel reacts more violently with (II), yielding the $1:2:6-Me_3$ compound, b.p. 145°/20 mm. (hydriodide, m.p. 187.5-188.5°; picrate, m.p. 141—142°). R. S. C.

Use of alkoxy-ketones in the synthesis of quinolines by the Pfitzinger reaction. L. B. Cross [with H. R. Henze] (J. Amer. Chem. Soc., 1939, 61, 2730—2733).—COMe·CH₂·OEt (prep. in 65% yield from OEt·CH₂·CN and MgMel), b.p. 34—36°/28 mm., isatin, and 33% KOH at 100° give 44% of 3-ethoxy-2-methylquinoline-4-carboxylic acid (I), m.p. 243° (decomp.), which at 250° gives CO₂ and 3-ethoxy-2-methylquinoline (II), m.p. 68—69°, b.p. 140—141°/2—3 mm. With conc. HCl at 150°, (I) gives 3-hydroxy-2-methylquinoline-4-carboxylic acid, m.p. 242—244° (decomp.), and (II) gives similarly 3-hydroxy-2-methylquinoline (III), darkens at ~250°,

m.p. 260° [picrate, m.p. 192—194° (lit. 191°)], also obtained from (II) by HI-red P at 150°. $o\text{-}\mathrm{C_6H_4(CO)_2O}$ at 200° converts (III) or (I) into the phthalone, m.p. 264—266°, of (III). COEt·CH₂·OEt, 5-methylisatin, and 33% KOH at 100° give 3-ethoxy-6-methyl-2-ethylcinchonic acid, m.p. 222° (decomp.). 3-Ethoxy-2-ethylcinchonic acid (IV), m.p. 199—201° (decomp.), 3-ethoxy-2-ethylquinoline (V), m.p. 58·5°, b.p. 138—140°/3—4 mm. (hydriodide, m.p. 190—197°), and 3-hydroxy-2-ethylquinoline (VI), m.p. 206—208° (decomp.), are also prepared. HI-red P at 125° converts (IV) into 3-hydroxy-2-ethylcinchonic acid, m.p. 208—209° (decomp.), but at 150° some (V) is also formed. Sn-HCl reduces (VI) to 2-ethyl-1:2:3:4-tetrahydroquinoline, b.p. 125—127°/7 mm. (picrate, m.p. 143—145°). M.p. are corr.

Nitrogen compounds in petroleum distillates. XV. Countercurrent acid extraction of kero bases. Isolation of 2:4-dimethyl-8-n-propylquinoline. W. N. Axe and J. R. BAILEY. XVI. Use of multiple acid extraction in isolation of 2:3:4-trimethyl-8-ethylquinoline. R. A. GLENN and J. R. BAILEY. XVII. Use of multiple acid extraction in isolation of 2:3:4-trimethyl-8-npropylquinoline. L. M. Schenck and J. R. Bailey (J. Amer. Chem. Soc., 1939, **61**, 2609—2612, 2612— 2613, 2613—2615; ef. A., 1939, II, 342).—XV. Countercurrent extraction (described) of aromatic petroleum bases (best previously fractionated by decomp. of the sulphites) (b.p. 292—293°) by HCl and subsequent purification by way of the picrates and zincichlorides yields 2:3-dimethyl-8-ethyl-, 2:3-dimethyl-8-n-propyl-, and 2:4-dimethyl-8-n-propyl-quinoline (I), b.p. 298°/747 mm. (zincichloride, m.p. $225-226^{\circ}$; phthalone, m.p. 198—199°). With $\rm K_2Cr_2O_7-H_2SO_4$, (I) gives 2:4 dimethylquinoline-8carboxylic acid, decarboxylated by soda-lime distillation to 2:4-dimethylquinoline. The structure of (I) is finally proved by synthesis from o-C $_6$ H $_4$ Pr a ·NH $_2$ and CH2Ac COMe. Countercurrent acid extraction of other fractions of bases is described.

XVI. Multiple acid extraction and subsequent countercurrent acid extraction of a basic fraction, b.p. 305—315°, yields 2:3:4-trimethyl-8-ethylquinoline, m.p. 52·5—53°, b.p. 320° [picrate, m.p. 216°; phthalone, m.p. 253°; nitrate, m.p. 159·5—160° (decomp.); H sulphate, m.p. 245—246°; hydrochloride, m.p. 203—204°], oxidised to 2:3:4-trimethylquinoline-8-carboxylic acid (II) and synthesised by condensing CHMeAc·COMe with o-C₆H₄Et·NH₂ and cyclising by H₂SO₄ the anil formed.

XVIII. Cumulative and countercurrent extraction of the aromatic bases, b.p. 320—330°, give 2:3:4-trimethyl-8-n-propylquinoline, m.p. 69—70°, b.p. 330° [nitrate, m.p. 160·1° (decomp.); picrate, m.p. 211—211·5°; H sulphate, m.p. 230·5—231°; hygroscopic hydrochloride, m.p. 221—222°], obtained also in smaller yield from transformer oil, oxidised to (II), and synthesised (two steps) in ~90% yield from o-C₆H₄Pr°·NH₂ and CHMeAc·COMe. R. S. C.

Synthesis of substituted quinolines and 5:6-benzquinolines. R. G. GOULD, jun., and W. A. JACOBS (J. Amer. Chem. Soc., 1939, 61, 2890—2895). —2:4-NH₂·C₁₀H₆·CO₂H and CH₂Ac·CO₂Et in MeOH

at room temp. give Et β-4-carboxy-2-naphthylaminocrotonate, m.p. 157—158°, cyclised by addition to kerosene at 250—265° in N₂ to 4-hydroxy-2-methyl-5:6-benzquinoline-7-carboxylic acid (I), m.p. >360° [hydrochloride; Me, m.p. 295—296° (decomp.), and Et ester, m.p. 295—297°]. Et β-3-naphthostyryl-minester. aminocrotonate [prep. from 3-aminonaphthostyril (II) and CH₂Ac·CO₂Et in boiling EtOH], m.p. 180—182°, is similarly cyclised to 4-hydroxy-6-methylnaphtho-styrilo-3': 4'-2: 3-pyridine, m.p. > 360° (hydrochloride) CHAc(CO₂Et)₂ and NH₂Ph at room temp. give NH₂Ac and NHPh·CMe:C(CO₂Et)₂ (not purified), cyclised to 4-hydroxy-2-methylquinoline-3-carboxylate, 104—107° [corresponding acid, new m.p. 245—247° (decomp.)]. (II) and CHAc(CO₂Et)₂ give slowly 3-α-carbethoxyacetoacetamidonaphthostyril, m.p. 268— 270° (decomp.). Cyclisation of NHPh·CH:C(CO₂Et)₂ gives 4-hydroxyquinoline-3-carboxylic acid, new m.p. 267—268°. 1:4-NH₂·C₁₀H₆·COMe and OEt·CH: $C(CO_2Et)_2$ (III) at 100° give Et_2 4-carbomethoxy-1-naphthylaminomethylenemalonate, m.p. 89— 90°, cyclised to a Me₁ ester, hydrolysis of which gives 4-hydroxy-5: 6-benzquinoline-3: 7-dicarboxylic m.p. 360°, reduced by Zn-Hg in AcOH to 4-keto-1:2:3:4 - tetrahydronaphthostyrilo - 3':4' - 1:2-pyr idine-5-carboxylic acid, m.p. >350°. Boiling (II) and (III) in EtOH gives Et₂ 3-carbostyrilaminomethyl-enemalonate, m.p. 231—232°, cyclised to an ester, yielding by NaOH 4-hydroxycarbostyril-3': 4'-2: 3pyridine-5-carboxylic acid, m.p. >360°. CCl₄, (I), a little Cu powder and EtOH in boiling 50% aq. KOH give 4-hydroxy-2-methyl-5: 6-benzquinoline-3: 7-carboxylic acid, m.p. $>360^{\circ}$ [Me₁ (prep. by HCl-MeOH), m.p. 290—295° (decomp.) (hydrochloride), and Me₂ ester (prep. in poor yield by MeOH-H₂SO₄), m.p. 239—240°; Me ether Me_2 ester (prep. by CH_2N_2), m.p. 142—144°], converted by HNO_3 (\bar{d} 1.58) into mixed (NO₂)₁-derivatives, which with Fe(OH)₂ give 4hydroxy - 2 - methylnaphthostyrilo - 4': 3'-5: 6-pyridine - 3carboxylic acid (IV), m.p. >360°, and x-amino-4hydroxy - 2 - methyl - 5: 6-benzquinoline - 3: 7-dicarboxylic acid, m.p. $> 360^{\circ}$. $2:4\text{-NH}_2\cdot\text{C}_{10}\text{H}_6\cdot\text{CO}_2\text{Me}$, AcCO₂H, and MeCHO in boiling EtOH give 7-carbomethoxy-2methyl-5: 6-benzquinoline-4-carboxylic acid, m.p. 265— 266° (decomp.), hydrolysed to the 4:7-dicarboxylic acid, m.p. 298—299° (decomp.), and oxidised by SeO₂ in C₅H₅N to 7-carbomethoxy-5:6-benzquinoline-2:4dicarboxylic acid, +C₅H₅N, m.p. 199—200° (decomp.) [yields 5:6-benzquinoline-2:4:7-tricarboxylic acid, m.p. 285—286° (decomp.)]. Similarly (II) gives 2methylnaphthostyrilo-4': 3'-5: 6-pyridine-4-carboxylicacid, m.p. 240—242° (decomp.). β -C₁₀H₇·NH₂ and epichlorohydrin give 3-hydroxy-1:2:3:4-tetrahydro-5: 6-benzquinoline, m.p. 82—83° (hydrochloride).

isoQuinoline derivatives.—See B., 1939, 1295.

Acridine derivatives.—See B., 1939, 1295.

Phenanthridine derivatives.—See B., 1939, 1216.

Benzanthrones.—See B., 1939, 1215.

Substituted dialuric and hydurilic acids. C. M. Marberg and D. W. Stanger (J. Amer. Chem. Soc., 1939, 61, 2736—2737).—5-isoAmylbarbituric acid and H₂O₂ give 5-isoamyldialuric acid, +2H₂O,

m.p. $179.5 - 180^{\circ}$ (5-Bz derivative, m.p. $210.5 - 216^{\circ}$; hydrolysed by NaOH to isoamyltartronic acid), also obtained with some 5:5'-diisoamylhydurilic acid, $+2\mathrm{H}_2\mathrm{O}$, m.p. 290° (decomp.), by $\mathrm{KMnO_4-H_2SO_4}$.

5-Alkylbarbituric acid-5-acetanilides. III. p-Ethoxy-derivatives. J. A. Timm (J. Amer. Chem. Soc., 1939, 61, 2962; cf. A., 1936, 1390).—p-OEt· $\mathbb{C}_6\mathbb{H}_4$ ·NH·CO·CH₂Cl (1), the appropriate alkylbarbituric acid (1), NaOAc (1·5), and NaI (0·25 mol.) in boiling 70% EtOH give 5-ethyl-, m.p. 194—205° (all m.p. with decomp.), 5-isopropyl-, m.p. 210—215°, 5-n-, m.p. 231—232°, and 5-iso-butyl-, m.p. 217—219°, 5-isoamyl-, m.p. 219—220°, and 5-allyl-, m.p. 215—218°, -barbituric acid-5-acet-p-phenetidide. R. S. C.

Preparation and cyclisation of monoacylethylenediamines. II. S. R. ASPINALL (J. Amer. Chem. Soc., 1939, 61, 3195—3197; cf. A., 1939, II, 247).—Interaction of RCO₂Et with (CH₂·NH₂)₂ to give glyoxaline derivatives in ~75% yield is general, but the ease of interaction of the esters and of dehydration of the monoacylamides depends on the branching of R. The following are described. n-Hexo- (picrate, m.p. 93°; hydrochloride, m.p. 141°; phenylureido-derivative, m.p. 171°), α-ethyl-n-butyryl-, b.p. 113°/7 mm. [picrate, m.p. 123°; hydrochloride, m.p. 133°; phenylureido-derivative, dimorphic, m.p. 179° (corr.) (sinters at 150°) and 150° (corr.; rapid heating)], and phenylacet-β'-aminoethylamide (picrate, m.p. 133°; hydrochloride, m.p. 142°; phenylureidoderivative, m.p. 191°). 2-n-Amyl-, m.p. 54° (lit. 38·8°), b.p. 108°/7 mm. [picrate, m.p. 127° (lit. 128°)], 2-α-ethyl-n-propyl-, m.p. 86°, b.p. 97°/9 mm. (picrate, m.p. 106°; hydrochloride, m.p. 245°; phenylureidoderivative, m.p. 133°), 2-δ-methyl-α-isoamyl-n-hexyl-, m.p. 103°, b.p. 123°/6 mm. [picrate, m.p. 125°; phenylureido-derivative, m.p. 82°; platinichloride, m.p. (decomp.) variable], 2-benzyl-, m.p. 68°, b.p. 134°/ 6 mm. (picrate, m.p. 149°; hydrochloride, m.p. 174°), and 2-benzhydryl-, m.p. 137° (picrate, m.p. 185°), -4:5-dihydroglyoxaline.

Derivatives of piperazine. XVIII. Synthesis of substituted piperazines and the hydrolysis of amines. J. P. BAIN and C. B. POLLARD (J. Amer. Chem. Soc., 1939, **61**, 2704—2705).—Passing (CH₂)₂O into cyclohexylamine (I) in MeOH gives cyclohexyll-βhydroxyethyl-, b.p. 118°/10 mm., and cyclohexyldi-(βhydroxyethyl)-amine, b.p. 175°/10 mm. When either product is heated with (I), H₂, and Cu chromite at $\overline{250}$ —270°/34 atm. in dioxan, it yields 20% of 1:4dicyclohexylpiperazine, m.p. 118° (dihydrobromide), with cyclohexanol and a substance, b.p. 109-110°/ 10 mm. Propylene oxide with NH₂Ph or p-C₆H₄Me·NH₂ in dioxan at 170° gives NN-di-(βhydroxy-n-propyl)-aniline, b.p. 184—185°/10 mm., and -p-toluidine, m.p. 112°, respectively, which with (I), Cu chromite, and H₂ in dioxan yield 4-phenyl-, b.p. 205—210°/2 mm. (dihydrobromide), and 4-p-tolyl-1-cyclohexyl-2: 6-dimethylpiperazine, b.p. 175—230°/ 5 mm. (monohydrobromide), respectively. With $\rm H_2-Cu$ chromite in dioxan at 260—270°/34 atm., (I) gives 20% of cyclohexanol; cyclohexyldiethylamine (prepared from (I) by Et₂SO₄], b.p. 68.5—69°/10 mm., similarly gives 33% of cyclohexanol or, at 1 atm.,

much cyclohexylethylamine (NO-derivative, b.p. 127—128·5°/12·5 mm.). R. S. C.

Elimination of the acidic group from dithiocarboxylic acids. H. Wuyts and J. van Vaeren-BERGH (Bull. Soc. chim. Belg., 1939, 48, 329-339). $-RCS_2H$ (R = Ph, p. or o-tolyl, or α -C₁₀H₇) and $o-C_6H_4(NH_2)_2$ in Et₂O give 55—72% of 2-arylbenziminazole, but some of the acid decomposes to RH and CS₂, which latter product reacts with the amine to give 2-thiolbenziminazole. Other amines do not this decomp. $p \cdot C_6 H_4 Me \cdot CS_2 H$ $C_6H_4(NH_2)_2$ in Et_2O gives m- $\vec{NH_2} \cdot \vec{C_6} \vec{H_4} \cdot \vec{NH} \cdot \vec{CS} \cdot \vec{C_6} \vec{H_4} \vec{Me} \cdot p$, with $p \cdot \vec{NMe_2} \cdot \vec{C_6} \vec{H_4} \cdot \vec{NH_2}$ in Et, O gives N-p-dithiotoluoyl-N'N'-dimethyl-p-phenylenediamine, m.p. 151°, and the anil, m.p. 145°, with $m\text{-NO}_2\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}\mathrm{NH}_2$ or $\mathrm{NH}_2\mathrm{Ph}$ (no solvent) gives pdithiotolu-m-nitroanilide, m.p. 154°, and -anilide, m.p. 144°, and with benzidine (I) in abs. EtOH gives impure p-NH₂·C₆H₄·C₆H₄·(p₋)NH·CS·C₆H₄Me-p and the dianil, m.p. 232°, or in Et₂O gives p-NH₂·C₆H₄·C₆H₄·NCS (II) (nearly 85%), m.p. 187° [also prepared from (I) and CS₂ in EtOH], a little [·CS·NH(p₋)·C₆H₄·C₆H₄·NH₂·p]₂ (III), m.p. 200°, and PhMe (68%). α-C₁₀H₇·CS₂H and (I) in boiling C₆H₆ give C₁₀H₈ (57%), (II) (62·5%), and (III) (28%). 2-α-Naphthyl-benziminazale heated rapidly malts at 271° benziminazole, heated rapidly, melts at 271°

Heterocyclic compounds containing nitrogen. XLV. Nitrosation of primary amines. aminoisophthalaldehyde. III.) 4:5:6-Triaminoisophthalaldehyde and its condensations. P. Ruggli and H. Frey (Helv. Chim. Acta, 1939, 22, 1403—1412; ef. A., 1939, II, 428).—The diazotisation of 4 : 6-diamino isophthalaldehyde (I) by $NO \cdot SO_4H$ is qualitatively established by coupling with β -C₁₀H₇·OH. (I) is transformed by NaNO₂ and conc. HCl at -10° to -15° into 5-nitroso-4: 6-diaminoisophthalaldehyde (II), which softens and decomposes at $\sim 260-273^{\circ}$. Attempts to acetylate the NH₂ of (II) or to condense the CHO with CH₂(CO₂Et)₂ or CH₂Ac·CO₂Et do not give useful results. Prolonged boiling with Ac₂O or alkaline reagents causes decomp. With p_{-} $C_6H_4Me\cdot NH_2$ in AcOH (II) gives the corresponding ditolil, copper-red or black-violet crystals. (II) is reduced by SnCl₂ and conc. HCl to 4:5:6-triaminoisophthalaldehyde (III), m.p. 200.5° (decomp.), obtained less readily by use of Raney Ni. (III) is insensitive to acids and has very feeble basic proper-With FeCl, it affords a dark violet colour which passes into a brown, amorphous ppt. (III) is readily converted into 4:6-diamino-5-acetamidoisophthalaldehyde, m.p. 293° after becoming red at 285°, but more drastic acetylation does not lead to welldefined products. (III) is transformed by PhCHO $\hat{4}: 6 ext{-}diamino ext{-}5 ext{-}benzylideneamino} ext{isophthalalde-}$ hyde, m.p. 156° (decomp.) after softening at 154°;

$$\Pr(N) = \Pr(N) =$$

it gives a normal dioxime which darkens when heated and becomes soft at ~254°. COPhMe and KOH-MeOH convert (III) at 100° into 9-amino-2:7-diphenylbenzodipyridine (IV), red

needles, m.p. 224—225°, which by prolonged contact with the mother-liquor are transformed into pale

yellow needles, m.p. 266° (decomp.). CH₂Ac·CO₂Et and NaOH–MeOH in EtOH convert (III) into Et_2 9-amino-2: 7-dimethylbenzodipyridine-3: 6-dicarboxylate (V), m.p. 160° [Ac derivative, m.p. 234° (blackening) after softening at 220°], and a substance, C₁₄H₁₇O₄N₃, m.p. 201·5°. (V) is hydrolysed by alkali to the dicarboxylic acid, m.p. 318° (decomp.), which appears to be decarboxylated at 350—400° to 9-amino-2: 7-dimethylbenzodipyridine. Diazotisation of (V) gives the triazolium hydroxide (VI), m.p.

195° (decomp.). (III) condenses with benzil to the quinoxaline derivative (VII), m.p. 288—289° (decomp.).

Heterocyclic compounds containing nitrogen. 4:6-Diaminoisophthalaldehyde. Ruggli and H. Frey (Helv. Chim. Acta, 1939, 22, 1413-1427).—Et₂ 2:7-dimethylbenzodipyridine-3:6dicarboxylate is hydrolysed and then decarboxylated by Cu powder in quinoline at 160-230° to 2:7- $\operatorname{dimethyl}$ benzodipyridine (I); the yields are < those obtained by the action of conc. HCl on the ester at 130° but the process is safer. Me_2 benzodipyridine-2:7-dicarboxylate, m.p. 272° (decomp.) after becoming green at 240°, is obtained by the action of MeI on the Ag_2 salt in boiling MeOH. Benzodipyridine (II) affords a monoperchlorate, m.p. 268° after incipient decomp. at 245°, and a monomethiodide, decomp. >200°. Reduction of (II) by Na in boiling amyl alcohol gives octahydrobenzodipyridine, m.p. 111.5° (Ruggli and Staub, A., 1936, 866) [(NO)₂-, m.p. 179° (decomp.), and Ac₂, m.p. 143°, derivatives]. similar conditions (I) affords 2:7-dimethyloctahydrobenzodipyridine, b.p. $\sim 210^{\circ}/12$ mm. [hydrochloride; diperchlorate, m.p. $285-286^{\circ}$ (decomp.); $(NO)_2$ derivative, m.p. 164.5°, and (?) a stereoisomeride, m.p. 151.5—152°]. (I) with p-NMe₂·C₆H₄·CHO in presence of piperidine at 170-175° gives 2:7-di-p-dimethylaminostyrylbenzodipyridine, which darkens at ~340°. With o-C₆H₄(CO)₂O and ZnCl₂ (I) gives a dark brown, amorphous product whereas with o-C₆H₄(CO₂Et)₂ and Na it gives the *compound* (III). The attempted

$$C_6H_4 < CO > CH - CO > CH - CO > CH_4$$

condensation of (I) with isoquinoline, CPhCl₃, and ZnCl₂ gives a small amount of an unidentified violet dye whilst the methiodide of (I) gives a sparingly sol. black compound with CH₂O and alkali. A brown amorphous powder results from (I) and 2-chloroquinoline. 4:6-Diaminoisophthalaldehyde (IV) and CH₂Ac·CO₂Et containing piperidine at 170° yield 7-amino-6-formyl-3-acetylcarbostyril, characterised by its Ac derivative, decomp. 320—340°. (IV) is converted by CHO·CHNa·CO₂Et in EtOH at 30° into Et₂ diaminoisophthalaldiformylacetate, m.p. 250° (decomp.) after softening at 230°, which gives the CO: reaction

with $(NO_2)_2C_6H_3$ ·NH·NH₂, and Na₂ benzodipyridine-3:6-dicarboxylate identified by decarboxylation to (II). With boiling cyclohexanone containing a little piperidine (IV) yields 2:3-6:7-ditetramethylenebenzodipyridine, m.p. 251° after darkening (dipicrate, decomp. 195°). With CH₂Ph·CN and 30% NaOH in boiling EtOH (IV) gives a compound, $C_{24}H_{18}N_4$, m.p. 301° [Ac₄ derivative, m.p. 238·5—239·5° (much decomp.)], the structure of which is not established. It is hydrolysed by conc. HCl at 140—150° to an acid, $C_{24}H_{16}O_2N_2$ or $C_{24}H_{18}O_3N_2$, m.p. 364°, which gives a Na salt and an Ac derivative, m.p. 365°. CH₂Ph·CO₂Na, 4:6-dinitroisophthalddehyde, Ac₂O, and ZnCl₂ at 80° afford Me₂ 4:6-dinitroisophthaldiphenylacetate, m.p. 152·5—153·5°.

Cyclic methyleneimines. II. Hydrolysis of quaternary compounds and preparation of aliphatic secondary amines. R. BLUNDELL and J. GRAYMORE (J.C.S., 1939, 1787—1789).—NN'N''-Trimethyltrimethylenetriamine (I) combines readily with n-alkyl iodides to give quaternary compounds, although when the reaction is slow the product is admixed with di-iodides of the base. NN'N"-Trimethyltrimethylenetriamine ethiodide, m.p. 72° (decomp.), is hydrolysed (NaOH), after removal of CH₂O, to NH₂Me and NHMeEt. Similarly the n-propiodide, m.p. 105° (decomp.), gives on hydrolysis NHMePra, which with 1:2:4-C₆H₃Cl(NO₂)₂ forms 2:4-dinitrophenylmethyl-n-propylamine, m.p. 72—73°, and with CH₂O affords methylenebismethyl-n-propylamine, b.p. 170-171°. The n-butiodide, m.p. 123-125° comp.), yields NMe, Bu (hydrochloride, m.p. 183—185°; picrate, m.p. 99·5—100·5°) and NHMeBua (hydrochloride, m.p. 171°; 2:4-dinitrophenyl derivative, m.p. 81°). (I) forms a di-iodide, m.p. 162°, and an additive product with NaI. F. R. S.

Constitution of purine nucleosides. IX. Crotonoside. R. FALCONER, J. M. GULLAND, and L. F. STORY (J.C.S., 1939, 1784—1787).—Crotonoside (I), the nucleoside of the seeds of Croton tightum, L., is a d-riboside of isoguanine. The ultra-violet spectra of the deaminated (I) are identical with those of authentic xanthosine, and comparison of the spectra with those of 9-methylisoguanine (II) and guanosine confirms that (I) is a 9-substituted derivative, that it is not identical with guanosine, and that its aglycone is isoguanine. 2-Chloro-6-amino-9-methylpurine, prepared from the 2:6-Cl₂-compound and NH₃, with Na-EtOH gives the OEt-compound, m.p. 252—254° (decomp.), converted by PH₄I into (II). F. R. S.

Structure of yeast ribonucleic acid, guanineuridylic acid. R. S. TIPSON and P. A. LEVENE (Chem. and Ind., 1939, 1010).—The authors' results are misinterpreted by Gulland et al. (A., 1939, II, 346), whose conclusions are experimentally unjustified.

Porphyrins. II. Structure of the porphin ring system. P. Rothemund (J. Amer. Chem. Soc., 1939, 61, 2912—2915).—Pyrrole and CH₂O in MeOH-C₅H₅N at 140—150° give porphin (HCl no. 3·3) and isoporphin, decomp. >250° (HCl no. 0·5) (Mg, Cu, and Fe complexes) (cf. A., 1936, 740), absorption of the latter in Et₂O being ~100 A. further to the red. Isomerism is of the type (A)–(B)

(R = H), but it is not known which formula applies to which isomeride. HCl nos. (0.5-15.7) for porphins and 0.075-16.8 for isoporphins) are listed for similar

pairs of isomerides [R = Me, Pr, Bu^c, Bu^{β}, Ph, 3:4:1-OMe·C₆H₄(OH), o- and m-OH·C₆H₄, and p-OMe·C₆H₄], obtained from RCHO and pyrrole. R. S. C.

Morpholinoalkyl ethers.—See B., 1939, 1216. Derivatives of thiolmethylamine. A. Binz

and L. H. Pence (J. Amer. Chem. Soc., 1939, 61, 3134—3139).—When H_2S is passed into 1-hydroxymethylpiperidine (prep. from piperidine, 37% aq. CH₂O, and anhyd. K_2 CO₃) at $\hat{0}^\circ$, di-1-piperidinomethyl sulphide (I), m.p. $48\cdot5-50\cdot5^\circ$ [dihydrochloride, $+H_2$ O, m.p. $171-175^\circ$ (decomp.)], is obtained. If cooling is omitted, 1-thiolmethylpiperidine (II), m.p. $12\cdot5-15^\circ$ (hydrochloride, $+0\cdot5H_2$ O, m.p. 195—205°), is obtained exothermally, probably by way of (I). 4-Hydroxymethylmorpholine (similarly prepared from I mol. each of morpholine and CH₂O) at 0° gives di-4-morpholinomethyl sulphide, m.p. $105-108^{\circ}$, and 4-morpholinomethyl thiolmethyl sulphide, $+0.5\text{H}_2\text{O}$, amorphous, m.p. $72-82^{\circ}$; at 55° in presence of conc. HCl (not in its absence) there are formed 4-thiolmethylmorpholine (III), m.p. 86— 88°, and αη-di-4-morpholino-βδζ-trithia-n-heptane, S(CH₂·S·CH₂·N<[CH₂]₂>O)₂, amorphous, m.p. \sim 77–84°, the latter being the main product if an excess of CH₂O is used and being probably produced from (OH·CH₂)₂S. Formation of the polymeric compounds is more pronounced with NH([CH₂]₂·OH)₂, for, after condensation with CH₂O at 0°, H₂S gives an amorphous substance, (OH·[CH₂]₂)₂N·[CH₂·S·]₇H, m.p. $\sim 224-226^{\circ}$ (melts if immersed in a bath at 170°, resolidifies, remelts at 218—228°), but use of an excess of CH₂O and passing H₂S at 65° gives a substance (N: S 1: 14.4), m.p. 230-233°. At 150-170°/4 mm. (II) gives dipiperidinomethane and an amorphous substance (S 58.4%), m.p. 228—231°. With dil. HCl at 90°, (II) gives (CH₂S)₃. With HgCl₂-EtOH, (II) or (III) gives Hg di(thiolmethyl) ether, Hg<CH₂·S>0, decomp. 95—105° (with H₂S in H₂O gives HgS immediately), probably by way of Hg(S·CH₂·OH)₂. With Cu(OAc)₂-EtOH, (II) or (III) gives Cu methylene dimercaptide, Cu CH₂>S, decomp. 105-110° [with aq. Na₂S (not H₂S) gives CuSj, probably by way of $Cu(S \cdot CH_2 \cdot OH)_2$ and $O < CH_2 \cdot S > Cu$. (I) and (II) in H_2O are toxic to paramecia and Daphnia. Most of the above S compounds, when injected intravenously, are highly toxic to mice.

Triphendioxazines. H. E. FIERZ-DAVID, J. BRASSEL, and F. PROBST (Helv. Chim. Acta, 1939, 22, 1348—1358).—Gradual addition of o-NH₂·C₆H₄·OMe to chloranil and anhyd. NaOAc in o-C₆H₄Cl₂ and subsequent boiling of the mixture gives 2:5-dichloro-3:6-di-o-anisidino-p-benzoquinone (I), converted by

anhyd. AlCl₃ in dry C_bH_bN at 80—90° into 9:10-dichloro-triphendioxazine (II) (no distinct m.p.). This is also obtained when (I) is replaced by the NHPh- or o-phenetidino-derivative. With the

latter or with (I) condensation can be effected with PhNO₂ in presence or absence of FeCl₃. With the NHPh-derivatives only traces of (II) are obtained by this method. With BzCl or p-C₆H₄Me·SO₂Cl in PhNO₂ the yields are satisfactory if not quant. 3:7:9:10-Tetrachlorotriphendioxazine and 9:10-dichloro-2:6-dinitrotriphendioxazine are obtained similarly; the latter substance is also derived from 5: 1: 2-NO₂·C₆H₃(OH)·NH₂. It is reduced by Na₂S₂O₄ and alkali to the diaminodihydro-compound, oxidised by H₂O₂ to 9:10-dichloro-2:6-diaminotri-phendioxazine. 9:10-Dichloro-3:7-dinitro- and -3:7diamino-triphendioxazine areobtained similarly. 9:10-Dichloro-1:3:5:7-tetranitrotriphendioxazine is obtained by the action of conc. H₂SO₄ on the diarylquinone from choranil and picramic acid. 9:10-Dichloro-2:6-dibenzamido-3: $\bar{7}$ -dimethyltriphendioxazine is obtained by boiling the condensation product of chloranil and 4-benzamido-2-methoxy-5-methylaniline with BzCl in PhNO₂. 9:10-Dichloro-3:7-diethoxy- and -3:7-dimethoxy-triphendioxazine are described. The

condensation product from chloranil and β - $C_{10}H_7$ · NH_2 is readily cyclised to 9:10-dichloro-2:3-5:6-dibenzotriphendioxazine (III). Chloranil, α - $C_{10}H_7$ · NH_2 , and an-

hyd. NaOAc in boiling EtOH afford 3:6-dichloro-2:5-di-1'-naphthylamino-1:4-benzoquinone, which passes in boiling PhNO₂ into 9:10-dichloro-3:4-7:8-dibenzotriphendioxazine. The following are described: 9:10-dichloro-2:6-dibenzeneazo-3:4-7:8-dibenzotriphendioxazine by condensing chloranil with 4:1-PhN₂·C₁₀H₆·NH₂ in EtOH and eyelisation of the product with p-C₆H₄Me·SO₂Cl in PhNO₂; 9-chloro-2:6:10-trianilinotriphendioxazine from (II) and NH₂Ph,HCl in boiling NH₂Ph; 9:10-dichloro-2:6-dianilinotriphendioxazine, by treating the condensation product of chloranil and "1-amino-2-methoxy-diphenylamine" in o-C₆H₄Cl₂ with AlCl₃ in C₅H₅N.

Ox- and thi-azoles (anthraquinone series).— See B., 1939, 1219.

spiroDithiohydantoins.—See B., 1939, 1216.

Cyanine dyes.—See B., 1939, 1220, 1297.

Erythrophleum alkaloids. I. Cassaine, a crystalline alkaloid from the bark of Erythrophleum guineense (G. Don). G. Dalma (Helv.

Chim. Acta, 1939, **22**, 1497—1512).—The powdered bark of E. guineense, obtained from the Congo mouth forests, is moistened with 10% NH₃ and exhaustively extracted with Et₂O, thereby giving cassaine (I), $C_{24}H_{39}O_4N$, m.p. $142\cdot5^\circ$, $[\alpha]_D^{20}$ -111° in 95% EtOH, -103° in abs. EtOH, -117° in 0·1n-HCl, which is best isolated through the H sulphate (+2 H_2O), m.p. ~29° (decomp.). (I) can be sharply titrated with iodoeosin, Me-red, or bromophenol-blue as indicator. The hydrochloride (+1 $\rm H_2O$) has m.p. 212—213° (vac.). The formation of cassaine acetate, m.p. 123-124°, and cassaine oxime, m.p. 123—125°, establishes the nature of 2 O. (I) is hydrolysed by boiling N-HCl to cassaic acid (II), $C_{20}H_{30}O_4$, m.p. 203° , $[\alpha]_D^{20} - 126.3^{\circ}$ in 95%EtOH, and a base (identified by Faltis and Holzinger (A., 1939, II, 459) as NMe₂·[CH₂]₂·OH}. Alkaline hydrolysis of (I) affords allocassaic acid, m.p. 222— 224°, $[\alpha]_D^{22} + 81.8^{\circ}$ in 95% EtOH. Me cassaate, m.p. 189—190°, gives an acetate, m.p. 189—191° (semicarbazone, m.p. 246-247°). Oxidation of (II) by CrO₃ in AcOH at 35° yields dehydrocassaic acid (III), m.p. 238—239°, $[\alpha]_D^{20}$ —164·5° in 95% EtOH [Me ester, m.p. 129—130°, and its dioxime, m.p. 130—132°, and disemicarbazone, m.p. 290° (decomp.)]. Attempted reduction (Clemmensen) of (III) causes extensive decomp. (I) could not be isolated from a sample of E. guineense from the Central Congo, which contained ~0.5% of an amorphous base very similar to Harnack's and technical erythrophleine. A third sample of bark from the mouth of the Congo appeared to be derived from a different sub-species and contained $\sim 0.1\%$ of alkaloid of which $\sim 10\%$ was (I). H. W.

Erythrophleum alkaloids. II. Carbon skeleton and position of the double linking in cassaic acid. L. RUZICKA and G. DALMA (Helv. Chim. Acta, 1939, 22, 1516—1523).—The absorption spectrum shows that the double linking is in the aß position to CO₂H in cassaic acid (I), cassaine (II), and Me₂ diketocassenate. The presence of a double linking αβ to CO is unlikely. (For the OH- and CO-free, saturated parent acid of (I) the name "cassanic acid " is proposed.) alloCassaic acid does not show the band characteristic of αβ-unsaturated acids and the unsaturated linking is probably displaced to the βy-position during alkaline hydrolysis; the characteristic CO band is present. Dihydroxycassanic acid (III) does not show any absorption between 2000 and 3400 A., confirming the reduction of the erstwhile CO and saturation of the double linking. Hydrogenation of (II) (PtO2 in AcOH or Raney Ni in EtOH) gives dihydrocassaine, m.p. 115—116°, $[\alpha]_D^{20}$ 0°±2° in 95% EtOH, $-6.5^{\circ}\pm 1^{\circ}$ in 0.1n-HCl, converted by KOH-EtOH into hydroxyketocassanic acid, m.p. 253—255°, $[\alpha]_{D}^{20}$ $0\pm2^{\circ}$ in 95% EtOH, $-5^{\circ}\pm1^{\circ}$ in $0\cdot1$ N-NaOH, also obtained by hydrogenation of (I). It is reduced by Na and EtOH to (III), m.p. $262-265^{\circ}$, $[\alpha]_{D}^{20}$ $-7^{\circ}\pm1^{\circ}$ in 0·ln-NaOH (Me ester, m.p. 172—174°). Dehydrogenation of (III) by Se in an open vessel at 340° affords 1:7:8-trimethylphenanthrene (IV), m.p. 142—143° [picrate, m.p. 133—135°; additive compound with $C_6H_3(NO_2)_3$, m.p. 192—193°]. The similar action in a sealed tube at 340° leads to (IV) and (?) the non cryst. 1:7:8-trimethyltetrahydrophenanthrene (V), characterised by its compound

with $C_6H_3(NO_2)_3$, m.p. 85—88°. (IV) is transformed into (III). All m.p. are corr. H. W.

V. Constitution of Erythrina alkaloids. erythramine. K. Folkers and F. Koniuszy (J. Amer. Chem. Soc., 1939, 61, 3053—3055).—Erythramine (I) (hydriodide, m.p. 249°, $[\alpha]_D + 220^\circ$) (A., 1939, II, 349) contains 1 OMe and CH_2O_2 , but no CMe, NAlk, or OH (indifferent to Ac₂O and BzCl). The N is tert., as Mel-MeOH gives a methiodide, m.p. 96—98°, $[\alpha]_D^{28} + 176^\circ$ in H_2O . H_2 -PtO₂ in very dil. HCl at 2 atm. converts (I) (not its hydriodide in $\rm H_2O)$ into a tert. H_2 -derivative, m.p. 89—90° [hydriodide, +solvent, m.p. 214—215° (decomp.), $\alpha_{\rm D}$ 0 in H₂O; hydrobromide, +H₂O (retained at 140°/2 mm.), m.p. 240°; methiodide, +0.5H₂O, m.p. 160— 161°]. The N is thus common to two rings. (I) is probably tetracyclic. (I) has curare-action (frog) at 7 mg. of hydrobromide per kg., the methiodide and H₂-derivative being one fifth and one thirtieth, respectively, as active. R. S. C.

Structure of monocrotaline, the alkaloid in Crotalaria spectabilis and C. retusa. I. R. ADAMS and E. F. ROGERS. II. Monocrotic acid obtained by alakline hydrolysis of the alkaloid. R. Adams, E. F. Rogers, and F. J. Sprules. III. Monocrotalic acid. R. Adams, E. F. Rogers, and R. S. Long (J. Amer. Chem. Soc., 1939, 61, 2815— 2819, 2819—2821, 2822—2824).—I. Monocrotaline (isolation from C. spectabilis and C. retusa seeds described), new formula $C_{16}H_{23}O_{6}N$, m.p. $197-198^{\circ}$ (decomp.), $[\alpha]_{D}^{26}-54\cdot7^{\circ}$ to $-55\cdot7^{\circ}$ in CHCl₃ [hydrochloride, m.p. 184° (decomp.), $[\alpha]_{D}^{28}-38\cdot4^{\circ}$ in $H_{2}O$; methiodide, +3MeOH, m.p. 205° (decomp.), $[\alpha]_{D}^{28}$ (anhyd.) +23.4° in MeOH], resembles the Senecio alkaloids. With boiling, aq. Ba(OH)₂ it gives retronecine and monocrotic acid (I), C₇H₁₂O₃, b.p. 145—146°/18 mm., α 0 (p-bromophenacyl ester, m.p. 78°). With H₂-PtO₂ at 2—3 atm. in AcOH it gives retronecanol, m.p. $95-96^{\circ}$, $[\alpha]_{D}^{28}-91\cdot 1^{\circ}$ in EtOH [hydrochloride, m.p. 210° (decomp.); methiodide, m.p. 193° (decomp.), $[\alpha]_D^{27}$ -52.8° in MeOH; picrate, m.p. 210°], and monocrotalic acid (II), C₈H₁₂O₅, m.p. 181— 182°, $[\alpha]_D^{38}$ -5·33° in H_2O . (II) is a lactonic acid, converted by boiling 10% NaOH into (I) and CO_2 . M.p. are corr.

II. With CH₂N₂ or H₂SO₄-MeOH, monocrotic acid (I) gives a Me ester, b.p. 94—96°/18 mm. (2:4-dinitrophenylhydrazone, m.p. 95—96°). With I-NaOH, (I) gives CHI₃, and with NaOBr gives dl- and meso-(CHMe·CO₂H)₂. At 240—250° (I) gives αβγ-tri-methylangelicalactone (III), b.p. 121°/20 mm. (positive tests with Tollens' and Legal's reagents), hydrolysed to (I) by 10% KOH-EtOH and hydrogenated (Raney Ni; Et₂O; 120°/133 atm.) to αβ-dimethyl-γvalerolactone, b.p. 106-107°/20 mm., obtained also by hydrogenating (I). It is concluded that (I) is

 $\alpha\beta$ -dimethyl-lævulic acid.

III. Monocrotalic acid (II) is shown to be yhydroxy- α -carboxy- $\alpha\beta$ -dimethyl- γ -valerolactone. CH₂N₂ (not MeOH-acid; proof of tert.-CO₂H) it gives a Me ester, m.p. 79—80°, $[\alpha]_D^{30}$ —16·24° in abs. EtOH (1 active H), which at 200—210° gives (II) and Me anhydromonocrotalate [α -carbomethoxy- $\alpha\beta\gamma$ -trimethylangelicalactone] (IV), b.p. 115—116°/3 mm., hydrolysed to (III), which is also obtained with CO₂ and H₂O from (II) at 200°. Hydrogenation (Raney Ni; Et₂O; 125°/167 atm.) of (IV) gives α-carbomethoxy- $\alpha\beta$ -dimethylvalerolactone, b.p. 115—117°/1 mm., $[\alpha]_D^{29}$ +5.60° (homogeneous), hydrolysed to the lactonic acid, m.p. $131-132^{\circ}$, $[\alpha]_{D}^{30} + 3.80^{\circ}$ in abs. EtOH (p-bromophenacyl ester, m.p. 142—143°, $[\alpha]_{\rm D}^{30}$ —3·89° in COMe₂). M.p. are corr.

Calycanthine. IV. Structural formula. R. H. F. MANSKE and L. MARION (Canad. J. Res.,

 CH_2 CH_2 В NMe CH C ČH ÇH2 NH G D. CH NH ČH ČH \mathbf{E} CH2CH, $\overset{\circ}{\text{CH}}_{2} \quad (A.)$

1939, **17**, **B**, 293—301).—The structure (A) is assigned to calycanthine (I) since it is converted into N-methyltryptamine by comparatively mild treatment, it gives quinoline when treated with P and HI, it is degraded by Se to norharman, calycanine (II), methyl- and 3-ethyl-indole, and lepidine, it does not contain CMe, and it gives NH3 when distilled with Pd in N2. Additional support for the introduction of the fourth N as in ring G is that benzoylation easily severs the N·C linking from rings B to G. Benzoylation benzoyl-N-methyltryptyields amine (III) and an amorphous

29

acid, m.p. 170-174°, which contains N and one or more Bz groups and gives an amphoteric substance when debenzoylated and quinoline (IV) when heated with Se. It is probably a largely hydrogenated 5(?)-aminoquinoline-3: 4-dicarboxylic acid in which the N are lactamised or benzoylated. When treated with Se (III) does not yield (IV). is recovered unchanged after treatment with Na and Bu OH so that most double linkings must be presumed to form part of aromatic rings. When oxidised by Gadamer's method (I) loses 2 H, which can be readily re-added by reduction; since the product so obtained is identical with (I) no stereoisomeric change appears to be involved and the 2 H concerned are probably removed from the two CH₂ of ring c. (II) is probably C₁₆H₁₀N₂ although the mol. wt. agrees with the doubled formula. It does not give Ehrlich's reaction. Possible formulæ are discussed. (I) has also been isolated from Calycanthus occidentalis, Hook. et Arn., and from C. glaucus, Willd (C. fertilis, Walt.). The constitution assigned to (I) by Barger et al. (A., 1939, II, 291) is adversely criticised. H. W.

Constitution of solasonine (solanine-s). L. H. Briggs (Nature, 1939, 144, 247—248).—Additional analyses of solasonine (I) and solasodine (II) agree with the formulæ $C_{45}H_{73}O_{16}N$ and $C_{27}H_{43}O_{2}N$, respectively. A cryst. Ac₁ derivative, m.p. 195°, of (II) has been isolated. (II) yields quaternary salts by simple addition [methiodide, m.p. 286° (decomp.); ethiodide, m.p. 284° (decomp.)]. NMe is absent. It adds H and Br. A constitutional formula is suggested. (II) is probably a OH-derivative of solanidine (III). (II) and (III) give a series of colour reactions with psubstituted aldehydes and AcOH-H₂SO₄.

[With R. C. Bell.] Purapurine from the fruit of

Solanum aviculare, but not the alkaloid from S. auriculatum, is identical with (I). L. S. T.

Di-p-aminophenylarsinic acid. G. GILTA (Bull. Soc. chim. Belg., 1939, 48, 444—446).—p-NH₂·C₆H₄·AsO₃H₂ (I) (80 g.) and NH₂Ph (500 g.) at 220° give (p-NH₂·C₆H₄)₂AsO₂H (crystallography described), from which unchanged (I) is removed by dissolution in aq. NaOAc. R. S. C.

Intramolecular substitution as a means of comparing activating and deactivating effects. (MISS) J. D. C. Mole and E. E. Turner (J.C.S., 1939, 1720—1724).—The measurement of rates of ringclosure of substituted o-phenoxyphenyldichloroarsines into 10-chlorophenoxarsines shows that the "internal" electrophilic reagent places activated and deactivated centres in aromatic systems in the same order as that given by an external reagent such as HNO₃. following are described: 2-nitro-2'-methyl-, m.p. 39—40°, -3′: 5′-dimethyl-, m.p. 63—64°, -2′: 5′-dimethyl-, b.p. 234—235°/44 mm., -2′: 4′-dimethyl-, m.p. 61—62°, and -4′-methoxy-, m.p. 75—76-5°, 2-amino-3′: 5′-dimethyl-, m.p. 56—57°, -2′: 5′-dimethyl-, b.p. 213—214°/44 mm., -2': 4'-dimethyl-, m.p. 64— 65°, and -4'-methoxy-diphenyl ether, b.p. 212-213°/ 21 mm.; 2-o-, m.p. 184—185°, and 2-m-tolyloxy-, m.p. 193—194°, 2-(3':5'-dimethylphenoxy)-, m.p. 178—179°, 2':5'-, m.p. 177·5—178°, and 2':4'-dimethyl-, m.p. 185°, 2-p-anisoyloxy-, m.p. 188— 189°, and 2-p-bromophenoxy-phenyl-arsinic acid, m.p. 183—184°; 2-o-, m.p. 73—74°, 2-m-, and 2-p-tolyloxy-, m.p. 73°, 2-(2':5'-, m.p. 71·5—73°, 2-(2':5'-, m.p. 70—71·5°, and 2-(2':4'-dimethylphenoxy)-, m.p. 52·5—54°, 2-p-anisyloxy-, m.p. 63—64°, and 2-p-bromophenoxy-phenyldichloroarsine, m.p. 76-77°; 10-chloro-4-, m.p. 90—91°, and -3-methyl-, m.p. 140—141° (also prepared from 2-amino-5-methyldiphenyl ether, b.p. $213-214^{\circ}/55$ mm.), -1:3-, m.p. $138-139^{\circ}$, -1:4-, m.p. 146—147°, and -2:4-dimethyl-, m.p. 130—131°, -2-methoxy-, m.p. 108-109°, and -2-bromo-phenoxarsine, m.p. 172-173°.

Co-ordination complexes of the mercuric ion with cyclohexene. H. J. Lucas, F. R. Hepner, and S. Winstein (J. Amer. Chem. Soc., 1939, 61, 3102—3106).—It is shown, mainly by distribution between CCl₄ and Hg(NO₃)₂-KNO₃-H₂O (method modified from that of Winstein et al., A., 1938, II, 224), that cyclohexene rapidly undergoes reversible co-ordination to yield complexes X,Hg⁺⁺ and X,Hg(OH)⁺. These complexes are typical of org. intermediates, the existence of which is often assumed but not demonstrable, and they are of importance in mercuration reactions.

R. S. C.

Fluorinated aromatic mercurials. M. F. W. Dunker and E. B. Starkey (J. Amer. Chem. Soc., 1939, 61, 3005—3007).—NO₂·C₆H₄·NH₂ with HNO₂-HBF₄ gives NO₂·C₆H₄·N₂·BF₄ (o- 92, m- 92, p- 100%), yielding by thermal decomp. in sand C₆H₄F·NO₂ (o- 13, m- 43, p- 58%), which are reduced (Sn-HCl) to C₆H₄F·NH₂ (o- 70, m- 89, p- 75%; 100% of p-compound formed by H₂-Pd-C in 95% EtOH). This then yields C₆H₄F·N₂·BF₄ (o- 70, m- 98, p- 86%) and thence (SnCl₂-HgCl₂) o- (I) (24%), m.p. 159—160° (corr.), m- (28%), m.p. 250—251° (corr.) (lit. 243°), and p-C₆H₄F·HgCl (24%), m.p. 293—294°

(decomp.; corr.) (lit. 291°). PhF and $\mathrm{Hg}(\mathrm{OAc})_2$ in boiling AcOH give 11% of (I). $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{F}\text{-}\mathrm{OH}$ (prep. from $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{F}\text{-}\mathrm{NH}_2$ or by AlCl_3 from $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{F}\text{-}\mathrm{OEt}$), $\mathrm{Hg}(\mathrm{OAc})_2$, and a little AcOH in $\mathrm{H}_2\mathrm{O}$ at room temp. give much 5-fluoro-2-hydroxyphenylmercuriacetate, m.p. $193-194^\circ$ (decomp.), and a little impure dimercurial. $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{F}\text{-}\mathrm{CO}_2\mathrm{H}$ (from $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{MeF}$ in 58% yield by KMnO_4) gives a poor yield of 4-fluoro-2-chloromercuribenzoic acid (II), m.p. $240-241^\circ$ (decomp. from 230°). 4-Fluoro-3-aminobenzoic acid, (prep. in 98%, yield from the NO_2 -acid by H_2 -Pd), m.p. $182-183^\circ$ (decomp.) [hydrochloride, m.p. $240-243^\circ$ (decomp. from 215°); Ac derivative, m.p. $245-246^\circ$ (decomp.; rapid heating), 200° (decomp.; slow heating)], gives a diazonium borofluoride, decomp. 185° , and thence a little (II).

R. S. C. Mercuri-derivatives of acids.—See B., 1939, 1295.

Preparation of seleno-o- and -m-cresol. D. G. Foster (J. Amer. Chem. Soc., 1939, 61, 2972—2973). — C_6H_4 Me·MgHal and Se in H_2 (not air) give o-, b.p. 99°/25 mm., and m-selenocresol, b.p. 89°/16 mm. (Cu salts), oxidised by HNO3 to o-, m.p. 123—125°, and m-tolylselenious acid, m.p. 118—119°. R. S. C.

Simplified procedure for isolation of lysine from protein hydrolysates. E. E. RICE (J. Biol. Chem., 1939, **131**, 1—4).—The method, which involves direct pptn. of the lysine as picrate, is described. After hydrolysis of the protein with dil. H₂SO₄ and removal of the latter with Ba(OH)₂, the liquid is conc. and, after removal of the insol. NH₂-acids, excess of picric acid is added. The process greatly reduces the time required for isolation of lysine and eliminates the electrolysis which is an essential part of the method of Cox et al. (A., 1929, 686). The yield and quality of lysine monohydrochloride prepared by the process are as high as those obtained after electrolysis. Histidine can be separated as a by-product in the method, which can be used with hydrolysates that have been neutralised with Ca(OH)₂ instead of Ba(OH)₂.

Thiol groups in proteins. Effect on ovalbumin of various salts of guanidine.—See A., 1939, III, 1095.

Interaction of casein with aqueous solutions of aniline and pyridine. A. J. Korolev and V. A. Vilenski (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 266—269; cf. A., 1936, 1199).—Results are discussed in terms of solvation.

A. T. P.

Determination of carbon-oxygen equivalence and empirical formula by iodic acid oxidation. B. E. Christensen and J. F. Facer (J. Amer. Chem. Soc., 1939, 61, 3001—3005).—10—20 mg. of an org. substance are oxidised by $\mathrm{KIO_4}$ – $\mathrm{H_2SO_4}$ at $190\pm5^\circ$ (or $>200^\circ$, if necessary). The $\mathrm{O_2}$ consumed is determined from the residual $\mathrm{HIO_4}$ (a blank is essential). The $\mathrm{CO_2}$ is absorbed in $\mathrm{Ba}(\mathrm{OH})_2$ and determined by titration. Thence the empirical formula is calc. Apparatus and technique of all operations are detailed. The effect of N, halogen, and S was not investigated.

R. S. C. Elementary micro-analysis. A. F. RICHTER (Časop. Českoslov. Lék., 1937, 17, 288—294).—Friedrich's method (cf. A., 1935, 1515) is recommended for elementary micro-analysis especially

where analyses are made only periodically. Various absorption reagents have been tested and sources of error are stated. Fe and P if present in an org. mol. in the ratio 1:1 can be determined precisely. The loss of traces of C depending on the nature of the ash is confirmed. Check determinations using new means of absorption lower the final error. F. R.

Determination of halogens in organic material. O. Tomfček and K. Peták (Časop. Českoslov. Lék., 1937, 17, 309—326).—New methods (use of Ca and Li metals; oxidation in alkaline medium) and modified known methods for the determination of halogens in org. matter are examined, and those convenient for certain groups of compounds or general use are discussed. Decomp. by Na and K are good general methods but the best is catalytic hydrogenation with Pd completed by simultaneous reduction with N₂H₄,H₂SO₄.

F. R.

Micro-iodometric determination of nitrogen. S. M. STREPKOV (Ann. Chim. Analyt., 1939, 21, [iii], 257—260).—The determination is based on the reaction $2NH_4$ + 2OH' + 3OBr' = 3Br' + $5H_2O$ + N₂, and iodometric titration of the excess of NaOBr. The sample (0·1—2·5 mg. of N) is heated with 1 c.c. of conc. H₂SO₄, and H₂O₂ is added at intervals until conversion of N into (NH₄)₂SO₄ is complete. The H₂SO₄ solution is diluted accurately to 25 c.c., and 10 c.c. are treated with 3 c.c. of 0·1n-KBrO₃ and 1 c.c. of 10% aq. KBr. After shaking to liberate Br completely, 3-3.2 c.c. of 5N-NaOH are added, when the above reaction takes place. The excess of OBr' is determined by addition of 1 c.c. of 10% KI, 3-3.5 c.c. of 5N-HCl, and titration with 0.01N-Na₂S₂O₃ after keeping for 20 min. Test data for glycine, NH₂Ph, OH·C₆H₄·NO₂, tyrosine, and the roots of Bibersteinia multifida are recorded.

Titrimetric determination of organic substances by chromic oxidation. Use of stable nitro-chromic solutions. H. CORDEBARD (J. Pharm. Chim., 1939, [viii], 30, 263—272).—A solution of $K_2Cr_2O_7$ in conc. HNO3 is stable and readily oxidises a wide range of compounds at room temp., at 100°, or at its b.p. (122°). Cyclic compounds are oxidised with difficulty and AcOH does not lose CO_2 . Cu, NO2, and NO2′ can be determined. After brief contact of a solution containing EtOH with standard $K_2Cr_2O_7$ —conc. HNO3, followed by treatment with KI, the I liberated (Na2S2O3 titration) is a measure of the EtOH content. EtOH is determined similarly in presence of CHCl3 or camphor. It must be first freed from oxidisable substances. J. L. D.

Microchemical technique. III. Semi-micropreparation and purification of organic substances. G. F. WRIGHT (Canad. J. Res., 1939, 17, B, 302—307).—The apparatus described is designed for (1) evaporating liquid from a microscope slide without undue spreading, (2) the delivery of drops of clean reagents, (3) crystallisation in a side-arm test-tube modified so as to eliminate contamination of the stopper when the liquid is decanted through the side-arm, (4) filtration by a Pyrex filter with sealed-in porcelain disc, and (5) distillation by a modification of the method of Benedetti-Pichler and Schneider.

Determination of the branched isomerides in mixtures of paraffin hydrocarbons. U. von Weber (Angew. Chem., 1939, 52, 607—610).—A distillation apparatus with a column 4.2 m. long and filled with Raschig rings 4 mm. long and 4 mm. in diameter is described, which permits the separation of oils into the *n*-paraffins and fractions of intermediate b.p., containing all the branched isomerides. To determine the degree of branching in a mixture of paraffins, the latter is separated into fractions which distil over between temp. $5^{\circ} >$ the b.p. of the successive *n*-paraffins. The total wt. (G_n) , mean mol. wt. (M_n) , and b.p. (T_n) of each fraction are then determined to the successive (M_n) , and (M_n) , and (Mmined. By assuming that Raoult's law holds for the mixtures and that the b.p. of the *n*-hydrocarbon (T_0) is lowered by 7° for each branch in the chain, it is shown that the degree of branching in each fraction (Z_n) is given by $(T_0 - T_n)/7.0$, and the total degree of branching in the mixture is given by $\Sigma Z_n \times$ $(G_n/M_n) \times \Sigma M_n/\Sigma G_n$.

Rapid determination of halogen in hydrocarbons substituted by chlorine and fluorine. W. D. TREADWELL and M. ZÜRCHER (Helv. Chim. Acta, 1939, 22, 1371—1380).—Determination of halogen in CCl₂F₂ by decomp. with an excess of air in contact with red-hot CaO is inconvenient. Treatment of CCl₂F₂ with Na in liquid NH₃ followed by decomp. of excess of Na by NH₄NO₃ enables Cl' to be determined argentometrically but the determination of F' by FeCl₃ with electrometric measurement of the endpoint is impeded by the presence of a small amount of NaNO₂ formed during the decomp. of NH₄NO₃ and by a flattening of the titration curve by the NH₄ salt present. Combustion of hydrocarbons containing Cl and F in a H₂ flame containing a 100-fold excess of H₂ causes almost complete conversion of halogen into H halide. To obviate all loss, so much H₂O vapour is supplied to the flame that the acid solutions obtained by condensation of the products of combustion are $\sim 0 \cdot ln$. Traces of free Cl_2 are formed in the flame (from the amount of which it is attempted to calculate the energy of activation of the Deacon reaction). A special burner is described. Condensation of the reaction products is simply effected by allowing the flame to burn in a small cavern in a lump of pure icc. Alternatively, the products are brought in contact with a cooled glass tube, and SiO₂ is removed prior to the determination of F' in the condensate, or the flame is allowed to burn inside a steam-heated bell and the products are drawn through a sintered glass plate into dil. alkali.

Determination of ethyl alcohol in presence of methyl alcohol, isopropyl alcohol, and acetone. E. J. Boorman (Analyst, 1939, 64, 791—794).—When the sample is treated with an excess of HgSO₄–K₂Cr₂O₇ reagent, COMe₂ is pptd., Pr^βOH is oxidised to COMe₂ and pptd., MeOH is oxidised to CO₂ and H₂O, and EtOH is oxidised to AcOH. The AcOH is distilled in steam and titrated. The HgCr₂O₇ compounds are highly explosive when dry.

Polarographic method in organic chemistry. I. Electro-reduction of peroxides.—See A., 1939, I, 624. Identification and determination of hexoses in polysaccharides.—See A., 1940, III, 84.

Determination of nitrogen as ammonia in monosubstituted carbamides, carbamates, allophanates, and semicarbazones. S. Rovira (Compt. rend., 1939, 209, 754—757; cf. A., 1939, II, 526).—When the compounds (listed) are boiled with 20% KOH-glycerol for up to 2 hr., all or a const. fraction of the contained N is converted into NH₃; the error is (usually) small. The method can be adapted as a micro-method.

J. L. D.

Azides as reagents for the identification of organic compounds. XV. 2:6-Dinitro-p-toluazide as reagent for identification of amines. P. P. T. Sah (Rec. trav. chim., 1939, 58, 1008—1012; cf. A., 1939, II, 398).—2:6-Dinitro-p-tolylcarbamyl ci. A., 1959, 11, 398).—2:0-Dinuro-p-tolycarbamyl derivatives of the following are described: NH₂Ph, m.p. 221°; o-, m.p. 231°, m-, m.p. 220°, and p- C_6H_4 Me·NH₂, m.p. 233° (decomp.); 1:3:4- C_6H_3 Me₂·NH₂, m.p. 233—234° (decomp.); p- C_6H_4 Ph·NH₂, m.p. 233°; α -, m.p. 260° (decomp.), and β - $C_{10}H_7$ ·NH₂, m.p. 253—254° (decomp.); o-, m.p. 254° (decomp.), m-, m.p. 239—240°, and p- C_6H_4 Cl·NH₂, m.p. 242—243°; o-, m.p. 257° (decomp.), m-, m.p. 235° and m-Cl-H-Br·NH, m.p. 232—233° m-, m.p. 235°, and p-C₆H₄Br·NH₂, m.p. 232—233° (decomp.); o-, m.p. 264—265° (decomp.), m-, m.p. 246—247° (decomp.), and p-C₆H₄I·NH₂, m.p. 260—261° (decomp.); o-, m.p. 258—260°, m-, m.p. 278—279°, and p-NO₂·C₆H₄·NH₂, m.p. 245° (decomp.); 3-chloro-, m.p. 237—238° (decomp.), -bromo-, m.p. 246° (decomp.), and -iodo-4-, m.p. 246° (decomp.); 6-chloro-, m.p. 270—271° (decomp.), -bromo-, m.p. 259° (decomp.), and -iodo-3-, m.p. 281—282° (decomp.); and 5-chloro-, m.p. 228-229°, -bromo-, m.p. 240°, and -iodo-2-aminotoluene, m.p. 254-255° m.p. 240°, and -1000-2-aminotoluene, m.p. 254—255 (decomp.); 4:1:2-, m.p. 286—287° (decomp.), 4:1:3-, m.p. 198°, 3:1:6-, m.p. 279—280° (decomp.), 3:1:4-, m.p. 234—235° (decomp.), 2:1:3-, m.p. 252—253° (decomp.), 2:1:4-, m.p. 256—257° (decomp.), and 2:1:5-NH₂·C₆H₃Me·NO₂, m.p. 247—248° (decomp.); o-, m.p. 164° (decomp.), and p.NH₂·C₆H₄·OH, m.p. 239° (decomp.); o-, m.p. 182—201—202° and m.NH₂·C₆H₄·OH, m.p. 230° (decomp.); o-, m.p. $\frac{1}{2}$ 183° , and p-NH₂·C₆H₄·OMe, m.p. $201-202^{\circ}$; o-, m.p. 223° (decomp.), and p-NH₂·C₆H₄·OEt, m.p. 211—212°; o-, m.p. 204—205° (decomp.), m-, m.p. 209°, and p-NH₂·C₆H₄·CO₂Et, m.p. 258° (decomp.); NHPh₂, m.p. amine, m.p. 201°. M.p. are corr. A. T. P.

Azides as reagents for the identification of organic compounds. XVI. m-Nitrobenzazide as reagent for identification of phenols. P. P. T. Sah and T. F. Woo (Rec. trav. chim., 1939, 58, 1013—1017).—m-Nitrophenylurethanes of the following are prepared: PhOH, m.p. $125-126^{\circ}$; o-, m.p. $129-130^{\circ}$, m-, m.p. 109° , and p-C₆H₄Me·OH, m.p. 141° ; 1:2:4-, m.p. $130-131^{\circ}$, 1:4:5-, m.p. 129° , and 1:3:4-C₆H₃Me₂·OH, m.p. $118-119^{\circ}$; α -, m.p. 144° , and β -C₁₀H₇·OH, m.p. $152-153^{\circ}$; o-, m.p. 116° , m-, m.p. $117-118^{\circ}$, and p-C₆H₄Cl·OH, m.p. 139° ; o-, m.p. $135-136^{\circ}$, m-, m.p. $132-133^{\circ}$, and p-C₆H₄Br·OH, m.p. $139-140^{\circ}$; o-, m.p. 143° , m-, m.p. 164° , and p-C₆H₄I·OH, m.p. $152-153^{\circ}$; 2:4:1-C₆H₃Cl₂·OH, m.p. 154° , and -C₆H₃Br₂·OH, m.p. 136°

(decomp.); $2:4:6:1-C_6H_2Cl_3\cdot OH$, m.p. $169-170^\circ$, and $-C_6H_2Br_3\cdot OH$, m.p. 201° ; Me, m.p. 125° , Et, m.p. 217° , and benzyl salicylate, m.p. $117-118^\circ$; o-, m.p. $142-143^\circ$; m-, m.p. 97° , and p-OMe· $C_6H_4\cdot OH$, m.p. $131-132^\circ$; o-, m.p. $142-143^\circ$, m-, m.p. $163-164^\circ$, and p-NO₂· $C_6H_4\cdot OH$, m.p. $197-198^\circ$; thymol, m.p. 113° ; isothymol, m.p. 97° . M.p. are corr.

Determination of constitutional groups of humic acids. II. R. R. Galle and A. G. Nikolaev (J. Appl. Chem. Russ., 1939, 12, 923—933).— The material is hydrolysed, and the product treated with CH₂N₂; the sum of CO₂H and phenolic OH groups is then determined. A second portion of the hydrolysis product is methylated with Me₂SO₄, and the sum of CO₂H, phenolic, and alcoholic OH groups is determined.

R. T.

Photometric determination of tryptophan, tyrosine, di-iodotyrosine, and thyroxine. E. Brand and B. Kassell (J. Biol. Chem., 1939, 131, 489—501).—A photometric determination of tryptophan (I), tyrosine (II), di-iodotyrosine (III), and thyroxine (IV), based on the procedure developed by Lugg (A., 1937, III, 447; 1938, III, 546) from the Folin-Ciocalteu method (A., 1927, 892), is described. Standard vals. for the extinction coeffs. (Pulfrich refractometer) of (I) and (II) are given as well as correction factors for protein hydrolysates. (III) and (IV) give no Millon reaction before or after hydrolysis with alkali, but during hydrolysis with alkaline stannite both compounds yield reactive phenols. (III) and (IV) are determined indirectly from the total I and from the extra chromogenic material formed after hydrolysis with alkaline stannite. Representative results are given for cryst. egg-albumin, cattle fibrin, and several thyroid preps. The vals, for the (IV) content of thyroid preps. exceed those obtained by the method of Leland and Foster but are < those by the Harington method. The method has been applied to the determination of (IV) in technical thyroid preps. H. W.

Determination of uric acid.—See A., 1940, III, 84.

Identification of cocaine. New colour reaction. M. Pesez (J. Pharm. Chim., 1939, [viii], **30**, 200—206).—When cocaine (1—5 mg.) is added to H_2SO_4 (13—15 drops; d 1·84) containing conc. HNO_3 (2 drops) and heated at 100° for 5—10 min., cooled, and diluted with H_2O (1 c.c.), a yellow colour develops. If this liquid is shaken with COMe, and NaOH, the COMe, is coloured sky-blue, changing to violet and then red. Delcaine, alypine, and eucaine give similar reactions. The test applied to atropine, homatropine, hyoscyamine, duboisine, and scopolamine gives a red-violet colour. C₆H₆ and N-phenylmethylethylmalonylcarbamide also give an intense blue colour. The literature is reviewed. J. L. D.

Microchemical identification of brucine and strychnine with alkali iodide and chlorate. Applications. G. Denigès (Bull. Trav. Soc. Pharm. Bordeaux, 1937, 75, 5—9; Chem. Zentr., 1937, i, 3191).—KI and NaClO₃ give characteristic cryst. ppts. with strychnine and brucine in dil. AcOH.

A. J. E. W.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

FEBRUARY, 1940.

Cracking of olefines, diolefines, and cyclic unsaturated hydrocarbons.—See A., 1940, I, 76.

Kinetics of slow oxidation of ethylene.—See A., 1940, I, 76.

Hydrogenation of Δ^a -heptene and n-heptane under pressure. A. F. NIKOLAEV and P. V. Putschkov (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 345—346).—Considerable amounts of isoheptanes (A) are formed when n-C $_7$ H $_{16}$ is heated with H $_2$ -Mo $_2$ S $_3$ at 400°/140 atm. or when Δ^a -n-heptene is hydrogenated in presence of Mo $_2$ S $_3$ at 400°/250 atm. (A) contain tert. C, since much of the derived NO $_2$ -compounds is insol. in KOH. R. S. C.

Catalytic oxidation of straight-chain olefines with hydrogen peroxide. W. Treibs (Brennstoff-Chem., 1939, 20, 358—360).—Oxidation of Δ^a -octene, Δ^a -decene, undecene, etc. by H_2O_2 in COMe₂ or MeOH at 25—35° gives $\alpha\beta$ -unsaturated alcohols, α -glycols, aldehydes, osones, and monocarboxylic acids. Some of these undergo further oxidation; the reactions involved are briefly discussed.

Production of alkyl chlorides from alkyl ethers.—See B., 1940, 21.

Macromolecular compounds. CCXXXI. Polyvinyl chlorides. H. STAUDINGER and J. SCHNEIDERS (Annalen, 1939, 541, 151—195).—The prep., fractionation, methods of analysis, and chemical behaviour of polyvinyl chlorides are described. Data relating to osmotic pressure, f.p., and viscosity measurements are recorded and discussed. An account is given of chlorinated polyvinyl chlorides, oxygenated degradation products, and mixed polymerisates of vinyl chloride and vinyl acetate.

F. L. U. Mechanism of hydrolysis of $\alpha\gamma$ -dimethylallyl chloride.—See A., 1940, I, 30.

Action of hydrogen chloride on dimethyl- and methylethyl-bromoethinylcarbinol. A. I. Zacharova (J. Gen. Chem. Russ., 1938, 8, 1224—1229).— OH·CMe₂·C:CBr and HCl in presence of CuCl and NH₄Cl (8 hr. at room temp.) afford γ-chloro-α-bromo-γ-methyl-Δ^α-butinene, b.p. 48°/22 mm., and αγ-di-chloro-α-bromo-γ-methyl-Δ^α-butene, b.p. 72—74°/22 mm. OH·CMeEt·C:CBr and HCl similarly yield γ-chloro-α-bromo-γ-methyl-Δ^α-pentinene, b.p. 65—66°/18 mm.

Aliphatic chloro-derivatives. XIV. Additive power of ethylenic linkings at quaternary carbon atoms. D. V. TISCHTSCHENKO (J. Gen. Chem. Russ., 1938, 8, 1232—1246).—Certain previously

published work (cf. A., 1939, II, 530) has been revised; the reaction between CHMe CMe₂ (I) and Cl₂ in presence of NaHCO₃ is now shown to involve the following reactions: (10-15%) CHMeCl·CMe₂Cl \leftarrow (I) \rightarrow CH₂:CMe·CHMeCl (II) (70—80%); (30%) CH₂Cl·CMeCl·CHMeCl \leftarrow (II) \rightarrow CH₂:C(CH₂Cl)·CHMeCl (III) (65%); (6%) CMeCl:C(CH₂Cl)₂ \leftarrow (III) \rightarrow CHMeCl·CCl(CH₂Cl)₂ (90%). A no. of other ethylenic compounds reacted as follows: (CMe₂:)₂ \rightarrow CH₂Cl·CMe:CMe₂ (90%); (60%) CHMe:CEt·CEt₂Cl CH_2Cl*CMe_CMe_2 (90%); (60%) CHMe.CEC*CEt_2Cl \leftarrow (CEt_2:)₂ \rightarrow (CEt_2Cl)₂ (40%); (68%) CH_2:CMe·CHCl₂ \leftarrow CHC!:CMe₂ \rightarrow CH₂Cl·CMe₂Cl (32%); (10%) CMe₂Cl·CMeCl₂ \leftarrow CMe₂:CMeCl \rightarrow CH₂:CMe·CMeCl₂ (80%); (45%) CHMeCl·CMeCl₂ \leftarrow CHMe:CMeCl \rightarrow CH₂:CCl·CHMeCl (55%); CH₂Cl·CCl:CHMe \rightarrow CH₂Cl·CCl₂·CHMeCl (100%). It is concluded that an anomalous Lvov reaction may be expected in the case of compounds with a quaternary Catom under certain definite conditions of polarisation of the ethylenic linking, depending on the nature of the substituents. Elimination of HCl in the Lvov reaction takes place under conditions of steric hindrance of approach of Cl to the positive centre of the org. ion by the substituents of the quaternary C atom, as a result of which Cl' reacts with a H atom of one of these substituents. The following appear to be new: δ -chloro- $\delta \gamma$ -diethyl- Δ^{β} hexene, b.p. 70-72°/10 mm., γγ-dichloro-β-methyl-Δ^apropylene, b.p. 108-112°, isomerising at the b.p. to $\alpha \gamma$ -dichloro- β -methyl- Δ^a -propylene, b.p. 131—131-5°, $\gamma \gamma$ -dichloro- β -methyl- Δ^{α} -butylene, b.p. isomerising at the b.p. to $\alpha\gamma$ -dichloro- β -methyl- Δ^{α} -butylene, b.p. 151—153°, γ -chloro- β -chloromethyl- Δ^{α} -butylene, b.p. 39—40°/7 mm., $\alpha\beta\gamma$ -trichloro- β -methyl-butane, b.p. 65—65·5°/11 mm. R. T.

Purification and criteria of purity of organic physico-chemical standards. L. Gillo (Ann. Chim., 1939, [xi], 12, 281—347).—The methods of purification and the possibility of preservation in a state of purity, and the degree of purity attainable, have been studied for MeOH, C₆H₆, and CHCl₃. In addition to chemical tests the methods used for determination of impurities included differential ebulliometry and the determination of the velocity of crystallisation. The most important impurities in MeOH are COMe₂ and H₂O. COMe₂ is not easily eliminated by distillation and must be chemically removed. After one distillation over Na, [H₂O] is ~0.003%, after a second distillation reduced to >0.0005%. The product contained $<10^{-4}\%$ of COMe2 and CH2O, and is easily maintained in a state of purity if adequate precautions are taken against contamination with H₂O from the atm. or from the walls of glass vessels. CHCl3, washed with H2O and twice distilled from P_2O_5 , contains $\sim 3 \times 10^{-4}\%$ of $COCl_2$ and HCl which cannot be diminished by further treatment and increases on keeping in presence of even a little air, although in complete absence of air the increase in impurity is only slight. Highly purified specimens (treated successively with H_2SO_4 , H_2O , Na_2CO_3 , and P_2O_5 , and then fractionated in an atm. of dry H_2) sometimes decompose spontaneously, liberating $COCl_2$. In the course of the decomp. the presence of a substance containing active O can be detected: it is less volatile than CHCl₃ and may be a peroxide, CO_2Cl_2 . C_6H_6 is easily dehydrated by distillation. A technical specimen free from C_4H_4S , after distillation, freezing out, and redistillation, contained <0.001% of H_2O . F. J. G.

Preparation of αγ-di-iodoisopropyl alcohol. G. LUSIGNANI (Boll. Chim. farm., 1939, 78, 557—558).—The prep. of OH·CH(CH₂I)₂ is improved. OH·CH(CH₂Cl)₂, from glycerol and HCl-AcOH at 100—110°, is heated with NaI at 130—140° (bath), with stirring, under reflux.

E. W. W.

Synthesis of acetylene γ-glycols. A. Babajan, B. Akopjan, and R. Giull-Kevchjan (J. Gen. Chem. Russ., 1939, 9, 1631—1632).—C₂H₂ is passed into Et₂O-COMe₂ mixture containing KOH, at 9—10° (1—3 hr.). H₂O is added, with cooling, after 24 hr., and the Et₂O layer is separated and distilled; the residue consists chiefly of (OH·CMc₂·C²)₂. COMeEt similarly affords (OH·CMeEt·C²)₂, and cyclohexanone gives di-(1-hydroxycyclohexyl)acetylene. R. T.

Methods and apparatus used at the Bureau of Physicochemical Standards. XI. Purification and criteria of purity of organic standards. L. Gillo (Bull. Soc. chim. Belg., 1939, 48, 341—443).—The history, reactions, stability, methods of purification, and characterisation of Et₂O, EtOH, EtOAc, and CS₂ are given. W. R. A.

Syntheses of polyvinyl acetal.—See B., 1940, 19.

Decomposition of alkyl peroxides.—See A., 1940, I, 76.

Male hormone. XI. Activator of the male hormone. A. Ogata and I. Kawakami (J. Pharm. Soc. Japan, 1939, 59, 126—127).—Trimethylene glycol monopalmitate, m.p. 42·0—43·5°, is derived from Ag palmitate and trimethylene bromohydrin at 100°. COMe·CH₂CI and Na palmitate at 130—150° yield acetol palmitate, m.p. 50·5° (oxime, m.p. 55·5—56°). The activating power of ethylene glycol dipalmitate on male sex hormone greatly exceeds that of the monopalmitate. H. W.

Alkyl- and amyl-substituted silicic acid esters. IV. Hydrolysis and anhydrisation of alkyltriethoxysilanes. K. A. Andrianov (J. Gen. Chem. Russ., 1938, 8, 1255—1263).—Hydrolysis of SiR(OEt)₃ (R = Et, Bu⁸) results in production of OH·SiR(OEt)₂, followed by its condensation, with elimination of H_2O , to yield products of the type $SiR(OEt)_2$ ·[O·SiR(OEt)₂]_x·O·SiR(OEt)₂. The no. A of Si atoms in such products is given by A = n/(n-m), where n is the conen. of SiR(OEt)₃, and m is the [H₂O] of the reaction mixture. R. T.

Production of aliphatic anhydrides.—See B., 1940, 21.

Action of bromine on sodium ethoxide. L. N. PARFENTEEV and M. M. ABRAMOV (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 761—762).—NaOEt and Br in dry Et₂O at 0°, then at 100° (bath), give a 58% yield of EtOAc.

A. T. P.

Kinetics of thermal decomposition of ethyl formate.—See A., 1940, I, 28.

Esterase activity of benzoylcarbinol. C. LENTI (Arch. Sci. biol., Napoli, 1939, 25, 254—260).—Contrary to Langenbeck (A., 1936, 69, 514), benzoylcarbinol does not catalyse the hydrolysis of methyl butyrate (at 20° and 50°).

S. O.

Long-chain acids. I. Extension of the isoprene rule. P. C. MITTER and P. N. BAGCHI (J. Indian Chem. Soc., 1939, 16, 402—404).—The isoprene rule is extended to explain the formation of some 12- and 16-C acids occurring in nature. Formation of mono- and di-basic long-chain aliphatic acids can be explained by assuming addition of H₂O at a conjugated double linking at one end of the chain, partial or complete hydrogenation and removal of the side-chain Me by oxidation, and partial or complete oxidation of the terminal groups; e.g., the relation of farnesol to sabininic acid is discussed. A. T. P.

Derivatives of ketonic aliphatic acids. GODFRIN (J. Pharm. Chim., 1939, [viii], 30, 321— 326).—CHAcR·CO₂Et (R = Me, Et, Pr^{a} , or Pr^{β}) in $H_{2}SO_{4}$ at -5° to -10° with an equimol. amount of NO·HSO₄ affords CR(:N·OH)·CO₂Et, which with aq. NH, CO.NH.NH, HCl or NH, CS.NH.NH, HCl give the semicarbazones (I) and thiosemicarbazones (II) of the corresponding substituted pyruvic acids. The following are prepared: Et β -methyl-, m.p. 105°, -ethyl-, m.p. 99°, -propyl-, m.p. 118°, and -isopropylpyruvate thiosemicarbazone, m.p. 150°. (I) with dil. NaOH at 100°/3 hr. (or at room temp./48 hr.) gives sulphoxytriazines (III) which yield Cu derivatives. The following are prepared: 5-keto-3-thiol-6-ethylm.p. 165°, -propyl-, m.p. 149°, -butyl-, m.p. 143°, and -isobutyl-1:2:4-triazine, m.p. 182°. (II) are not cyclised under similar conditions. When (III) are oxidised with NaOBr, the corresponding dihydroxytriazines are formed. The following are prepared; 3:5-dihydroxy-6-ethyl-, m.p. 152°, -butyl-, m.p. 135°, and -isobutyl-1: 2: 4-triazine, m.p. 185°. J. L. D.

Action of periodic acid on pyruvic, acetic, and propionic acid. P. FLEURY and R. Boisson (J. Pharm. Chim., 1939, [viii], 30, 307—316; cf. A., 1939, II, 532).—0·1n-AcCO₂H (I) (1 c.c.) is completely oxidised with the utilisation of 1 O by 0.1N-HIO₄ (5 c.c.) at 100° in 0.5 hr. Oxidation proceeds more slowly as the amount of (I) is increased, or at a lower temp. CO₂ formed is determined after aspiration into 0.2N-NaOH, and AcOH by titration of the reaction mixture free from CO₂, or of its steam-distillate. AcOH is identified by steam-distilling the reaction mixture and converting the product into its Ca salt, which when heated gives COMe2. 0-1n-HIO4 (5 c.c.), 0·1×-AcOH (2 c.c.), and H₂O (3 c.c.) when heated at 100° in a sealed tube do not react. EtCO₂H is similarly unaffected. J. L. D.

Colour reaction of maleic anhydride, p-benzoquinone, and their partly-substituted derivatives. A Schönberg and A. F. A. Ismail (Nature, 1939, 144, 910).—At room temp., a trace of maleic anhydride (I) gives an orange-red colour with a solution of PPh₃ in CHCl₃ or C₆H₆. Mono- but not di-substituted derivatives of (I) react similarly. p-Benzoquinone and derivatives in which some, but not all, of the H are substituted also give the colour. Anthraquinone, phenanthraquinone, 2:3-dichloronaphthaquinone, and 2:6-dimethylpyrone give no coloration.

L. S. T.

Electrolysis of the salts of dibasic organic acids (succinic, glutaric, pyrotartaric, and ethylmalonic acids) with nitrates. F. FIGHTER and E. BLOCH (Helv. Chim. Acta, 1939, 22, 1529—1540).—Electrolysis of mixtures of KNO₃ and K₂ succinate yields (CH₂·NO₃)₂ and (CH₂·CH₂·NO₃)₂, but no alkyl nitrates. Similarly the three isomeric salts C₃H₅(CO₂K)₂ yield glycol dinitrates but no alkyl nitrates when electrolysed with KNO₃. It is inferred that C₂H₄ derivatives are not the intermediate products in the formation of alkyl nitrates by electrolysis of mixtures of the K salts of fatty acids with KNO₃, but that these are formed by interaction of alcohols and HNO₃ at the anode.

J. W. S.

Isomerisation of ethyl citrate to ketipate. S. N. NAUMOV and L. S. DEDUSENKO (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 24, 4 pp.).—Et₃ citrate yields (CO·CH₂·CO₂Et)₂ when treated with NaOEt in EtOH or Et₂O; the reaction does not proceed in presence of Na alone. R. T.

Colorimetric determination of vitamin-C.—See A., 1940, III, 53.

Structure of alginic acid. I. E. L. HIRST, J. K. N. Jones, and (Miss) W. O. Jones (J.C.S., 1939, 1880—1885).—A detailed account of work already reported (A., 1939, II, 405). The following data are new. Trimethylmethylmannuronide Me ester, b.p. (bath) $147^{\circ}/0.002$ mm., $[\alpha]_{20}^{20} +60.0^{\circ}$ in H_2O ; trimethylmannuronic acid, a syrup, $[\alpha]_{20}^{20} +36.4^{\circ}$ in H_2O ; 2:3-dimethylmethyl-d-mannuronide Me ester, b.p. (bath) $180^{\circ}/0.005$ mm., $[\alpha]_{20}^{20} +59^{\circ}$ in H_2O ; 2:3-dimethyl-d-mannuronic, a syrup, $[\alpha]_{20}^{20} +30^{\circ}$ in MeOH, $+33^{\circ}$ (const.) in 2% HCl-MeOH, and -d-mannosaccharic acid, a syrup, $[\alpha]_{20}^{20} +16^{\circ}$ in H_2O , -7.5° in alkali.

Manufacture of hydroxy-aldehydes and -ket-ones.—See B., 1940, 22.

Reaction of keten with alcohols. I. P. TZUKER-VANIK and I. A. JERMOLENKO (Bull. Univ. Asie Centr. 1937, No. 22, 215—220).—Keten reacts rapidly and quantitatively with p-anisidine and with primary and sec. alcohols, and more slowly with tert. alcohols. With glycerol addition of a catalyst (H₂SO₄) is necessary. Keten does not react with the C.C group.

Catalytic preparation of acetone by dehydrogenation of isopropyl alcohol.—See B., 1940, 19.

Reaction of sodamide with non-enolising carbonylic compounds. L. C. FREIDLIN and A. I. LEBEDEVA (J. Gen. Chem. Russ., 1939, 9, 1589—

1597).—Ketones react in the vapour phase with NaNH₂, as follows: $CORR' + 2NaNH_2 \rightarrow RH + R'H + NaHCN_2 + NaOH (R = R' = Bu''; R = Ph, R' = CPh_3; R = R' = p \cdot C_6H_4 \cdot NMe_2$). Fenchone reacts similarly, to give 1-methyl-3-isopropyl-cyclopentanc. The following reactions are described: (at 215°) $Me_2C_2O_4 + 6NaNH_2 \rightarrow 2NaHCN_2 + 2NaOH + H_2 + 2NaOMe + 2NH_3$; (at 140°) $CO(NH_2)_2 + 2NaNH_2 \rightarrow NaHCN_2 + NaOH + 2NH_3$; (at 235°) $CO(NHPh)_2 + 2NaNH_2 \rightarrow NaHCN_2 + NaOH + 2NH_2Ph$; (at 156°) $Fe(CO)_5 + 10NaNH_2 \rightarrow 5NaHCN_2 + 5NaOH + 5H_2 + Fe$. R. T.

Thermal decomposition of diacetyl.—See A., 1940, I, 77.

Identification and determination of hexoses in polysaccharides and glycoproteins by the carbazole method.—See A., 1940, III, 84.

Oxidation of glucosone (2-ketoglucose) by hypoiodite.—See A., 1940, I, 77.

3:4-Dimethylgalactose. J. S. D. BACON and D. J. BELL (J.C.S., 1939, 1869—1871).—3:4-iso-Propylidene- β -methylgalactoside and pure N_2O_5 in CHCl₃ give the 2:6-dinitrate, m.p. 79°, $[\alpha]_D^{23}$ +40·0° in CHCl₃ (and some β-methylgalactoside 2:3:4:6tetranitrate, m.p. 114—115°, $[\alpha]_D^{19.5}$ —12.4° in CHCl₃, $[\alpha]_{D}^{22.5} = 7.1^{\circ}$ in EtOH, also obtained from β -methylgalactoside), which with N-HCl (5 ml.) in boiling COMe₂ (110 ml.) gives β -methylgalactoside 2:6-dinitrate, m.p. 110—111°, $[\alpha]_D^{23} + 15 \cdot 2^\circ$ in EtOH. MeI and a little COMe₂ at 45° then give (repeated treatment) 3:4-dimethyl-β-methylgalactoside 2:6-dinitrate (I), m.p. $75-76^{\circ}$, $[\alpha]_{D}^{n}$ -13.3° in CHCl₃, but in one experiment a Me₁ ether dinitrate, m.p. 114—115°, was obtained. With boiling ~10% NaOH-EtOH-H₂O, (I) yields 3: 4-dimethyl-β-methylgalactoside, m.p. $102-103^{\circ}$, $[\alpha]_{D}^{20}-9\cdot1^{\circ}$ in CHCl₃, hydrolysed by boiling N-HCl to 3:4-dimethyl- β -galactose (II), m.p. 164- 166° , $[\alpha]_{D}^{20} + 95^{\circ} \rightarrow +116.5 - 117.1^{\circ}$ in $H_{2}O$ in 16-20 hr. The structure of (II) is proved by its mutarotation, method of formation, conversion into 2:3:4:6-tetramethylgalactoseanilide, and oxidation (Br) to 3:4-dimethylgalactono- δ -lactone, $[\alpha]_D^{21} + 89.0^\circ$ $\rightarrow +7.0^{\circ}$ in H₂O in 5240 min., and thence into the amide, m.p. 172-174°, which gives the Weerman

Agar-agar. II. Isolation of derivatives of 3:6-anhydro-l-galactose from agar. Synthesis of their enantiomorphs. I. A. FORBES and E. G. V. Percival (J.C.S., 1939, 1844—1849; cf. A., 1937, II, 445).—Mainly a detailed account of work already reported (A., 1939, II, 142; cf. ibid., 99). The Me lævulate obtained from methylated agar by 6% H₂SO₄ originates in the anhydrogalactosides and is The anhydro-ring probably not evidence of ketoses. exists as such in agar. The Selivanov reaction is not sp. for ketoses. The following data appear new. The Selivanov reaction is β-Methyl-d-galactoside 6-p-toluenesulphonate triacetate, a glass, $[\alpha]_D^{20}$ —3° in CHCl₃; 3:6-anhydro- β -methyld-galactoside, $[\alpha]_D^{20}$ —114° in H₂O; 2:4-dimethyl3:6-anhydro-d-galactoseanilide, m.p. 118°, $[\alpha]_D^{20}$ $+100^{\circ} \rightarrow +56^{\circ}$ in 1 day in EtOH; Me 2: 4-dimethyl-3: 6-anhydro-d- and -l-galactonate, m.p. 49-50°, 48-49°, $[\alpha]_D^{22} + 63^\circ$, -64° in H_2O , $+73^\circ$, -72.5° in CHCl₂,

respectively; 2:4-dimethyl-3:6-anhydro-d-and-l-galactonamide, m.p. 150° , 151° , $[\alpha]_D^{20}$ +75°, -74° in H_2O , respectively. R. S. C.

2:3:4-Trimethylmannose. W. N. HAWORTH, E. L. HIRST, F. ISHERWOOD, and J. K. N. JONES (J.C.S., 1939, 1878—1880).—The Tl derivative of α-methyl-d-mannoside 6-CPh₃ ether (cf. Watters et al., A., 1939, II, 407), m.p. 100° , $[\alpha]_{D}^{20} + 20^{\circ}$ in CHCl₃, and boiling MeI give 6-triphenylmethyl-2:3:4-trimethyl-α-methyl-d-mannoside, m.p. (crude) 106— 110°, $[\alpha]_D^{20} + 33^\circ$ in CHCl₃, hydrolysed by addition of H₂O to its solution in boiling AcOH to 2:3:4-trimethyl-α-methyl-d-mannoside, b.p. (bath) 150°/0.005 mm., $[\alpha]_D^{20} + 38^\circ$ in N-HCl. 2N-HCl at 90° then gives 2:3:4-trimethyl-d-mannose (I), $[\alpha]_{D}^{20}+2^{\circ}$ in $H_{2}O$, oxidised by Br to 2:3:4-trimethyl-d-mannolactone, $+ \rm{H}_2\rm{O}, \, \rm{m.p.} \, 73^{\circ}, \, [\alpha]_D^{20} + 138^{\circ} \rightarrow +81^{\circ} \, \rm{in} \, \, \rm{H}_2\rm{O} \, \, \rm{in} \, \, 95 \, \, hr.$ [readily gives the amide, m.p. 143°, $[\alpha]_D^{20}$ +5° in H₂O (negative Weerman test)], and by HNO₃ (d 1·42) to 2:3:4-trimethyl-d-mannosaccharic acid (II), m.p. 228° (decomp.), $[\alpha]_{D}^{20} - 17^{\circ}$ in MeOH, -14° in H₂O (positive Weerman test)]. (I) and (II) differ from the substances previously so named (Haworth et al., A., 1935, 477; 1937, II, 277).

β-Methylfructofuranoside. H. H. SCHLUBACH and H. E. Bartels (Annalen, 1939, **541**, 76—85).— β-Methylfructofuranoside (I), $[\alpha]_n - 49.95^\circ$, $[\alpha]_{5461} - 58.92^\circ$ in H₂O, prepared essentially by Morgan's method (A., 1927, 749; 1928, 1214), undergoes almost quant. hydrolysis by invertase (II). Contrary to Morgan, α- and β-methylfructosidediphosphoric acids (Ba salts, $[\alpha]_D + 8.5^\circ$ and -8.75° , respectively) are dephosphorylated by kidney-phosphatase and are practically unaffected by (II). Hydrolysis (N-H₂SO₄) of (I) (half-period 52.5 min.) occurs less readily than for the α-isomeride (half-period 34 min.). H. B.

Emulsin. XL. Glucosides of isethionic acid and its ethyl ester. B. HELFERICH and H. LUTZ-MANN (Annalen, 1939, 541, 1-16).—Ag isethionate, m.p. 110° (from the acid and Ag₂CO₃), and acetobromoglucose in C₆H₆ at 50°, followed by Ag₂CO₃ at room temp. in the dark, give a COMe₂-sol. Ag salt converted by EtI into Et tetra-acetyl-β-d-glucosidoisethionate (I), m.p. 125° , $[\alpha]_{D}^{19}$ -15.4° in CHCl₃, hydrolysed (Zemplén) to Et β-d-glucosidoisethionate (II), m.p. 89°, $\left[\alpha\right]_{D}^{21}$ $-24\cdot1^{\circ}$ in $H_{2}O$. β -d- β -Chloroethylglucoside (III), m.p. 67—68° (slight previous sintering), [\alpha]_0^{19} -29.2° in H₂O, is obtained from its tetra-acetate (IV), new m.p. 119—120° (improved prep.; cf. Coles et al., A., 1938, II, 261). β -d- β -Bromoethylglucoside (V), m.p. 74—75° (slight previous sintering); $[\alpha]_{\rm p}^{19}$ –26·1° in H₂O, and its tetra-acetate, m.p. 118°, $[\alpha]_{\rm p}^{19}$ –12·3° in CHCl₃, are described. β-d-β-Iodoethylglucoside (VI), m.p. 120—121°, -25.3° in H_2O [tetra-acetate, m.p. 100—101°, α] α -11.9° in CHCl₃, from (IV) and $\overline{\text{COMe}}_{2}$ -NaI at 100° (sealed tube)], with aq. Na₂SO₃ (1 mol.) at 60° gives Na β-d-glucosidoisethionate (+H₂O) (VII), m.p. (anhyd.) $130-131^{\circ}$ (slight previous sintering), $[\alpha]_{b}^{18}$ $-32\cdot 9^{\circ}$ in $H_{2}O$, which on successive acetylation (AcOH-Ac₂O-C₅H₅N), acidification (COMe₂-MeOHconc. H₂SO₄), and esterification (CHMeN₂) affords (I). Aq. solutions of (II) undergo hydrolysis (slow at room temp.; rapid at 100°) to the free acid, $[\alpha]_{\rm p}^{16}$ -34.4° in H₂O (not isolable), which is remarkably stable to acids and does not reduce Fehling's solution. The glucoside linking in (II) is very sensitive to alkali; 0.01n-NaOH (0.2 mol.) at ~20°/5 hr. and 0.05n-NaOH (1 mol.) at ~19°/7 hr. cause fission of 47 and 100%, respectively, of glucose. The above β-d-glucosido-compounds are all hydrolysed by emulsin; the rates are (VI) > (V) > (III) > (II) > (VII). M.p. are corr. H. B.

Composition of the polysaccharide of firmly bound lipins of leprosy bacillus.—See A., 1940, III, 170.

Pectic substances. IV. Citrus araban. G. H. BEAVEN, E. L. HIRST, and J. K. N. JONES (J.C.S., 1939, 1865—1868; cf. A., 1939, II, 203).—Purified commercial citrus pectin contains Me pectate ~78, araban (I) ~7%, galactan, and smaller amounts of other substances, including hesperidin. (I), isolated by boiling with 70% EtOH and purified by pptn. from EtOH by COMe2 and finally by acetylation, is identical with that from other sources (loc. cit.), differences in $[\alpha]$ being due to impurities. It is similarly hydrolysed and is converted by the action, of MeI on the Tl derivative at 45° into a Me derivative, which with boiling 2% HCl-MeOH gives an equimol. mixture of 2:3:5-trimethyl-l-arabofuranose, 2:3-dimethyl- and 3-methyl-l-arabinose (identified by $[\alpha]$ and conversion into the lactones and amides). All the arabinose units are furanose and probably have the α-configuration. All pectins consist essentially of pectic acid, usually as Me ester, with araban, galactan, and other materials. (I) cannot be derived from pectic acid by decarboxylation of galacturonic residues.

Polysaccharides. XXXVIII. Constitution of glycogen from fish liver and fish muscle. W. N. HAWORTH, E. L. HIRST, and F. SMITH (J.C.S., 1939; 1914—1922).—Glycogens obtained from fish liver (dogfish, haddock, and hake) and muscle (dogfish) give acetates and thence Me ethers, end-group assay of which shows in all cases 12 glucose residues for each repeating unit. The amount of dimethylmethylglucoside isolated may depend partly on the degree of methylation, but is never < that of the Me ether. The repeating units are thus joined by primary valencies from a reducing end of a chain to an OH not on C₍₁₎ or C₍₄₎ to form macro-mols. which from their non-reducing character and osmotic pressure contain 3000-5000 residues per mol. All the glycogens except that from haddock liver were insol. in H₂O, but became sol. therein when dissolved in AcOH or mineral acid and pptd. by EtOH; reversion (during 4 months) to the insol. form is inexplicable.

R. S. C. Polysaccharides. XXXIII. Methylation of cellulose in air and in nitrogen. W. N. Haworth, E. L. Hirst, L. N. Owen, S. Peat, and (in part) F. J. Averill. XXXIV. Methylation of cellulose in an inert atmosphere. W. N. Haworth, R. E. Montana, and S. Peat (J.C.S., 1939, 1885—1898, 1899—1901; cf. A., 1939, II, 495).—XXXIII. COMe₂-insol. cellulose triacetate (prep. from cotton linters described) swells in dioxan or dioxan—COMe₂ to a viscous solution, which is readily methylated at

55°. This and the COMe₂-sol. acetate (Ac 30%), cotton slivers and linters are methylated by Me₂SO₄–NaOH in air and N₂ at varying temp. (15—60°) for a varying no. of treatments. Each product is used for determination of the no. of glucose units per mol. by a modified end-group assay, osmotic pressure in CHCl₃, and by η in CHCl₃ and, sometimes, m-cresol. This no. varies widely; results by osmotic pressure are < those by end-group assay.

XXXIV. Methylation of cotton slivers is heterogeneous and not reproducible. After 30 treatments 7% was insol. in CHCl₃ and thus contained <40% of OMe. Methylation involves progressive diminution of particle size, tending to a min. of ~200 glucose units after 25—30 treatments. A sample methylated 15 times had as average 450 glucose units per mol. as determined osmometrically, but ₹700 as determined by end-group assay. R. S. C.

XXXV. Hydrocellulose. Polysaccharides. H. C. CARRINGTON, W. N. HAWORTH, E. L. HIRST, M. STACEY. XXXVI. Hydrocellulose. W. N. HAWORTH, S. PEAT, and W. J. WILSON (J.C.S., 1939, 1901—1904, 1904—1908).—XXXV. Hydrocellulose (I), a friable powder of which 30% is sol. in aq. NaOH, is converted into mixed acetates and thence into mixed Me derivatives (OMe 45%). no. of glucose units per mol. is then 70 by end-group assay, 95 by I no., or 54 by η in m-cresol. (I) is probably a product of simple hydrolytic degradation of cellulose.

XXXVI. Fibrous hydrocellulose (Cu no. 2.6) is separated mechanically into fibre (Cu no. 1.7) and powder (Cu no. 5.4), gives only glucose (91% from the fibre, 92% from the powder) when hydrolysed, contains no enolic OH, CO2H (CH2N2), or uronic acid groups, and with Me₂SO₄-30% aq. NaOH-dioxan gives mixed ethers, the main fraction (70%; OMe 45.5%) of which is shown by end-group assay to contain (average) 120 glucose units per mol. The fibre gives a main ether fraction (60%), containing 200 (by end-group assay) or 70 (by I no.) units per mol. The fibre and powder give Ac derivatives (Ac 43—44.5%), containing, according to η in m-cresol, 98 and 65 (73 by I no.) units per mol., respectively. The relative solubilities in 0.25 and 2.5N-NaOH are cellulose < fibre < powder hydrocellulose < dextrin (18 units) < dextrin (12 units). Hydrocelluloses vary mainly or only in chain-length, with which the solubility in alkali varies inversely. R. S. C.

Polysaccharides. XXXVII. Oxycellulose. G. L. GOODMAN, W. N. HAWORTH, and S. PEAT (J.C.S., 1939, 1908—1914).—Fibrous oxycellulose (I) prepared by means of 0.25n-KMnO₄ has Cu no. 14, contains uronic acid residues (~1.5% CO₂ by direct and conductiometric titration, determination of furfuraldehyde and of CO₂ liberated by boiling acid), and is only slowly acetylated to a product (Ac 43.7%), $[\alpha]_{\rm p}^{20}$ -21° in CHCl₂, containing 60-70 glucose units per mol. (η in m-cresol). Extraction with 0.25N-NaOH gives approx. equal parts of sol. (II) and insol. material (III). (III) has Cu no. 0.27, contains no uronic acid groups, gives readily a heterogeneous acetate and a Me derivative, separable by fractional pptn. into portions having (end-group assay) 110, 92,

and 55 glucose units per mol., the main fraction (60%)having 90 units per mol. During these assays excellent yields of 2:3:6-tri- and tetra-methylglucose arc obtained. Thus, (III) resembles hydrocellulose in nature and the peculiarities of (I) are due to the (II). Isolation of (II) is impracticable, as dissolution in NaOH [3% Ba(OH)₂ in air or N₂ gives similar results] causes decomp. to HCO₂H (5%), AcOH, and acids identified by methylation as d-lactic acid (characterised as d-OMe·CHMe·CO·NH₂), $C_3H_5(OH)_2$ ·CO₂H, and $C_5H_7(OH)_4$ ·CO₂H [gives a lactone ether, $C_6H_7O_2(OMe)_2$, $[\alpha]_D^{20} + 64\cdot4^\circ$ (and thence an acid, $[\alpha]_D - 7\cdot5^\circ \rightarrow +32\cdot4^\circ$ in 25 hr.), and an ester, $C_5H_7(OMe)_4$ ·CO₂Me (derived acid, $[\alpha]_D - 4\cdot8^\circ$)]. Decomp. of (II) by acid thus resembles that of a monosaccharide. The uronic acid groups of (II) are decomposed also by acid, cold 72% H₂SO₄ giving an aldobionic acid (Ba salt, $[\alpha]_D + 61.7^\circ$) and subsequent boiling with 1% H_2SO_4 giving 81% of (glucose + α -methylglucoside) [90% in all isolated similarly from (III)]. Approx. half the (III) is dissolved by cold 2.5N-NaOH, but decomp. is general as the sol. fraction (which is homogeneous) has 35 (end-group assay) or 33 (η) and the insol. 60 (by η of the acetate in mcresol) units per mol. Formation of oxycellulose thus involves oxidation of some CH₂ OH to CO₂H and much fragmentation of the chain to give alkalisol. oligosaccharides (max. chain-length 30—35 units) R. S. C. of high reducing power.

Synthesis of choline esters. Dimorphism of higher analogues. M. Loury (Compt. rend., 1939, 209, 682—684).—Choline esters are obtained with the base hydrochloride by interaction of R·COCl with NMe₂·[CH₂]₂·OH (2 mols.) in dry Et₂O at 0° or as their hydrochlorides (which are subsequently treated with KOH-EtOH or Ag₂O) when 1 mol. of base is used. β-Dimethylaminoethyl palmitate, b.p. 187°/3 mm., laurate, b.p. 155°/3 mm., and stearate, b.p. 205°/3 mm., m.p. 25°, are described. Some of the compounds are obtained in dimorphic forms.

J. L. D. Partition of acetamido-Amino-acids. I. acids between immiscible solvents. II. Separation of amino-acids by means of their N-acetyl derivatives. III. Isolation of hydroxyaminoacids from protein hydrolysates. IV. Methyl ethers of some N-acetyl-hydroxyamino-acids. R. L. M. SYNGE (Biochem. J., 1939, 33, 1913—1917, 1918—1923, 1924—1930, 1931—1934):—I. A list of the partition coeffs. of some NH acids between CHCl₃ and H₂O, EtOAc, and H₂O, and showing the effect of temp. on the coeff. of acetyl-d-leucine between H₂O and CHCl₃, is given. The following have been prepared: acetyl-dl-α-aminobutyric acid, m.p. 129—131°; -1-hydroxyproline; -d(-)-isoleucine, m.p. 150—151°, $[\alpha]_{D}^{21}$ —11·5° in $H_{2}O$; -d(+)-leucine, m.p. 186—188°, $[\alpha]_{D}^{22}$ +23·2 in EtOH; -d-norleucine, m.p. 112—114°, $[\alpha]_{D}^{23}$ —0·2° in EtOH; N-acetyl-dl-serine; acetyl-l-valine, m.p. 157—158°, $[\alpha]_D^{20} + 5.8°$ in EtOH.

II. A complex mixture of NH₂-acids is acetylated by Ac₂O and NaOH at 0°. After neutralisation with H₂SO₄ the conc. mixture is extracted with CHCl₃, the aq. phase is evaporated, the residue extracted with EtOH, and the NH₂-acid mixture re-acetylated.

This is repeated a third time and three CHCl₃-sol. fractions are obtained. Extract I contains neither

arginine nor serine.

III. The prep. of N-acetyl-O-benzoyl-dl-serine, m.p. $192-194^{\circ}$, and -l-hydroxyproline, m.p. $185-186^{\circ}$, $[\alpha]_{0}^{50}$ $-42\cdot9^{\circ}$ in EtOH, is described. These compounds can be debenzoylated by 0·1n-NaOH at room temp., and deacetylated by boiling n-H₂SO₄. These properties form the basis of a method of isolation of a hydroxy-amino-acid fraction from hydrolysates of fibrin, wool, and gelatin.

IV. The prep. of the following N-acetyl-O-methyl-hydroxyamino-acids is described and the partition coeffs. between CHCl₃ and H₂O are given: -l-tyrosine Me ester, m.p. $106-107^{\circ}$, $[\alpha]_{20}^{120} + 26\cdot3^{\circ}$ in EtOH; -l-tyrosine, m.p. $150-151^{\circ}$, $[\alpha]_{20}^{120} + 67\cdot6^{\circ}$ in EtOH; -l-hydroxyproline Me ester, m.p. $76-77^{\circ}$; $[\alpha]_{20}^{18} - 81\cdot0^{\circ}$ in EtOH; -l-hydroxyproline, m.p. $152-153^{\circ}$, $[\alpha]_{20}^{20} - 104\cdot3^{\circ}$ in EtOH; -dl-serine Me ester, m.p. $70-71^{\circ}$; -dl-serine, m.p. $108-109^{\circ}$; -dl-allothreonine, m.p. 151° . The properties of these derivatives might be made the basis of a fractionation of hydroxyamino-acids in protein hydrolysates. P. G. M.

Methionine. IV. Colour reaction of methionine. J. J. Kolb and G. Toennies (J. Biol. Chem., 1939, 131, 401—407).—Methionine (I) and CuCl₂ in conc. HCl give a mol. compound $[(I) + HCl + CuCl_2]$ the colour of which closely resembles that of I-KI solutions, varying from dark brown to pale yellow according to concn. Reaction is not observed with cysteine, cystine, homocysteine thiolactone, or methionine sulphoxide. A definite but weak colour is obtained with S-methylcysteine. S-Benzyl- and Smethyl-cysteine give a faint colour whereas the reaction of djenkolic acid is almost and that of Scarboxymethyl- and S-phenyl-cysteine entirely negative: Bua2S, CS(NH2)2, methyl- and benzyl-isothiocarbamide, thioacetanilide, thiophen, Ph2S, (CH2Ph)2S, and thiamine are inactive whereas homomethionine, hexomethionine, ethionine, and homodjenkolic acid are as active as (I). The faintly positive action of SEt CH₂·CO₂H shows that the NH₂-acid structure is not essential for the reaction. The available evidence suggests that the reaction is one of org. sulphide S, the adjoining groups of which satisfy certain conditions. All compounds which give the reaction in full intensity have the group •[CH₂]₂·S·CH₂• in common but the chromogenic val. of this structure is not independent of the nature of the attached groups. Solubility in H₂O is also essential. (I) is the only natural NH₂-acid which gives a definite response to the HCl-CuCl₂ reaction. This is not inhibited by carbohydrates (glucose, sucrose, starch) or alkaloids (brucine, cinchonidine, or quinine) but various proteins give a distinct, positive response. The sensitivity of the test is relatively low owing to unavoidable interference with the colour by the reagent itself. Qual. observations are best made by slowly bringing particles of the solid in contact with the reagent. The chlorides of Fe, Co, or Ni do not show an analogous activity and solutions of $CuCl_2$ in cone. H_2SO_4 , $H_3\breve{P}O_4$, or AcOH produce no colour with (I). H. W.

Dithiocarbamates of metals of group VI. L. MALATESTA (Gazzetta, 1939, 69, 752—762; cf. A.,

1939, II, 404).—CrCl₃ and NH₃MeCl in CS₂ with NaOMe or NaOEt give Cr tris-N-methyl-, no m.p., and -ethyl-dithiocarbamate. Cr tris-N-isobutyl-, m.p. 220-222° (decomp.), and -NN-diethyl-dithiocarbamate, m.p. $\sim 250^{\circ}$ (decomp.), are obtained from the corresponding Na dithiocarbamate, and Cr tris-NN-di-nbutyldithiocarbamate, m.p. 119—120°, from CrCl₃ and NHBu^a₂ in CS₂. Aq. NR₂·CS₂Na (I) and Na₂MoO₄ (II) slowly acidified with HCl give molybdenyl bis-NNdimethyl-, -diethyl- (III), and -di-n-butyl-dithiocarbamate. C_5H_5N and (III), or (I), (II), and SO_2 or (best) $Na_2S_2O_4$ give the salt (NEt₂·CS₂)₄Mo₂O₃, which with acids gives the salts ($NEt_2 CS_2$)₄ $Mo_2O_2(XOH)_2$ (X = CHO, Ac, or EtCO), and on long boiling the product, $(NEt_2 \cdot CS_2)_2Mo_2O_3(OH)_2$ $(3C_5H_5N$ compound, slowly converted into a C_5H_5N compound). $UO_2(NO_3)_2$ and NEt₂·CS₂Na etc. give uranyl bis-NN-diethyldithiocarbamate, and corresponding bis-NN- Pr^{α}_{2} , and $-Bu^{\alpha}_{2}$, and bis-N-Et and $-Bu^{\beta}$ compounds. Similar derivatives of W are not obtained.

Mechanism of urea formation.—See A., 1940, III, 40.

β-Alkylthiosemicarbazides. E. Cattelain (Compt. rend., 1939, 209, 799—801).—Alkylhydrazines and KCNS give the corresponding thiocyanates which are isomerised at 140—165° to β-alkylthiosemicarbazides. The following are described: thiocyanates of mono-methyl- and -benzylhydrazine (oils); β-methyl-, m.p. 183—184°, and -benzyl-thiosemicarbazide, m.p. 155°; benzaldehyde β-methyl-, m.p. 174°, and -benzyl-, m.p. 215·5°, anisaldehyde β-methyl-, m.p. 192°, and -benzyl-, m.p. 175°, and p-methoxyhydratropaldehyde β-methyl-, m.p. 100°, and -benzyl-thiosemicarbazone, m.p. 195°.

J. L. D.

Racemisation of optically active co-ordination compounds. Application of Arrhenius equation.—See A., 1940, I, 77.

Co-ordinated copper compounds with propylenediamine. P. Neogi and K. L. Mandol (J. Indian Chem. Soc., 1939, 16, 433—436).—C₃H₆(NH₂)₂ with Cu^{**} salts gives bispropylenediamine-cupric bromide, iodide, sulphate, nitrate, tartrate, sulphonate, and chloride; the last is converted by Ag₂O into the hydroxide and this by nitrocamphor into the nitronate. F. R. G.

Metallo-organic tin derivatives. S. N. Naumov and Z. M. Manuilkin (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 31, 12 pp.).—SnCl₄ and MgMeI in Et₂O are heated at the b.p. for 5 hr., the Et₂O is distilled off, and the residue is heated at 120—140° for 8 hr., to yield SnMe₄. This with I in Et₂O gives SnMe₃I, which with MgEtI gives SnMe₃Et. A succession of such reactions affords SnMeEtPrI, attempts at resolution of which into optical antipodes were unsuccessful.

Co-ordination compounds of αγ-diaminoiso-propanol. J. G. Breckenbridge and J. W. R. Hodeins (Canad. J. Res., 1939, 17, B, 331—335).— When OH·CH(CH₂·NH₂)₂ (= dap) co-ordinates with Co^{**} salts it gives, by spontaneous oxidation, redderivatives Co(dap)₂ of Co^{***} identical with those prepared directly from the Co^{***} salts (Mann, A., 1928,

157). On drying over P_2O_5 at 100° the products from both sources lose $2H_2O$ to give $Co[OH \cdot C(CH_2 \cdot NH_2)_2]^\circ$ in which the $OH \cdot C(CH_2 \cdot NH_2)_2$ is a tridentate group. The crystals are monoclinic with $a:b:c=1\cdot 134:1:0\cdot 861$, $\beta=110^\circ$ 27', and combine the forms $a\{100\}$, $b\{010\}$, $c\{001\}$, $m\{110\}$, $q\{\bar{1}11\}$. Some of the crystals are twinned on $a\{100\}$. Cu'' gives crystals $CuX_2(dap)_2$ [X = Cl, decomp. 181° ; = Br; = NO_3 , decomp. 160° after softening at $0\cdot 5^\circ$), which do not lose water at 100° with P_2O_5 . AgNO₃ forms unstable white needles of Ag(dap) NO_3 , $0\cdot 5H_2O$ and NC_3 a microcryst. product NC_3 , NC_3 , NC_3 the empirical formula of which changes on recrystallisation.

trans-cis Isomerisation of cobaltic complexes.
—Seo A., 1940, I, 30.

Complexes formed by molybdic acid in aqueous solution.—See A., 1940, I, 80.

Kinetics of cracking of hydrocarbons under pressure. II, III.—See A., 1940, I, 29.

Polymerisation of cyclopentadiene and α-dicyclopentadiene. Explosive decomposition of cyclopentadiene.—See A., 1940, I, 29.

Hydrogenation of cyclohexene with copper catalysts.—Seo A., 1940, I, 33.

Physical properties and chemical constitution. Methylcyclohexane. Multiplanar struc-IV. ture of the methylcyclohexane ring. D. M. COWAN, G. H. JEFFERY, and A. I. VOGEL (J.C.S., 1939, 1862—1865; cf. A., 1938, II, 436).—Methylcyclohexanes-A are impure B'-form, into which they pass when kept or distilled over Na. B' is stable when kept; its parachor is 281.4. Zn-Hg-HCl-AcOH reduces 2- (I), 3- (II), b.p. 169°/756 mm., or 4-methylcyclohexanone (III) to mixtures (containing methylcyclohexenes), hydrogenation (PtO2) of which gives only B'. Wolff-Kishner reduction of the semicarbazones of (I) and (III) gives the B-form, which passes when kept into B', but the semicarbazone of (II) gives an unstable hydrocarbon, which may contain some of a third form. Although B is not always obtained by the methods given, it is considered to be a definite steric isomeride of B'.

Halogenation. XXI. Direct replacement of aromatic sulphonic groups by chlorine and bromine atoms. P. S. VARMA, N. B. PAREKH, and V. K. Subramanium (J. Indian Chem. Soc., 1939, 16, 460—462).—About 50 sulphonic acids and their Na salts, when heated strongly over a naked flame with Cu₂Cl₂ or Cu₂Br₂, yield the corresponding Cl- or Br-derivatives. F. R. G.

Kinetics of reaction of *m*-chloronitrobenzene with aqueous ammonia in presence of cupric chloride.—See A., 1940, I, 31.

Electrolytic nitration of aromatic hydrocarbons. I. Nitration of xylene in methyl alcohol. II. Nitration of benzene and toluene in methyl alcohol. III. Nitration of xylene, toluene, and benzene in aqueous medium. I. A. ATANASIU and C. Belcot (Bull. Acad. Sci. Roumaine, 1937—8, 19, 28—36, 101—105, 106—108).—I. The electrolyte is a mixture of m-xylene (I) (30.6%), HNO₃ (d1.48, 30.4%), C* (A., II.)

and MeOH (39%). The nitration process of (I) consists in an electrolytic concn. of HNO_3 at the anode followed by a simple chemical action between HNO_3 and (I). Stirring inhibits the local accumulation of HNO_3 and hence the nitration process. The change is confined to the production of a $(NO_2)_1$ -derivative, which is the main product of the reaction; oxidation products insol. in H_2O and small amounts of oxidation products sol. in H_2O and EtOH are also formed. The best results are obtained by use of graphite electrodes and of a diaphragm which diminishes the amounts of byproducts to a min. The most suitable temp. is $4O_2$ -45° with c.d. 0.1 amp. per sq. cm. for each 10 c.c. of electrolyte.

II. Under like conditions, the electrolytic nitration of PhMe is very similar to that of (I). The change proceeds only to the formation of $C_6H_4Me\cdot NO_2$, which is the main product. Oxidation causes the formation of substances sol. and insol. in H_2O and $H_2O-EtOH$ with picric acid (II); the amounts exceed those formed when (I) is used. Use of a porous diaphragm greatly increases the yield of $C_6H_4Me\cdot NO_2$ and greatly diminishes that of the oxidation products. C_6H_6 is nitrated to only a very small extent and the main change is an oxidation leading chiefly to insol. oxidised products with some sol. compounds and (II). Electrochemical nitration therefore depends on the chemical nature of the substrate as well as on the

conditions of electrolysis.

III. Electrolysis of a well-stirred suspension of (I) in $\mathrm{HNO_3}$ (d 1.2) with Pt on graphite electrodes preferably at 60° gives a $(\mathrm{NO_2})_1$ -derivative in much smaller yield than that obtained in a homogeneous medium (see above) so that the process has no practical significance. The yields of C₆H₄Me·NO₂ are very small and only traces of PhNO, are produced. The quantities of oxidation products are very small in all cases. Without agitation and with the hydrocarbon forming a thin layer above the acid on the electrodes dipping into both liquids preferably at 40—50° the yields of NO₂-compound of (I), PhMe, or C₆H₆ are inferior to those obtained with stirring probably because there is only slight contact between hydrocarbon and acid which operates only in the immediate anodic layer. There is no evidence of the formation of PhNO₂. The amounts of oxidation products are very small. H. W.

Analysis of benzyl chloride.—See B., 1940, 19.

Isomerisation of allene hydrocarbons in presence of silicates. VII. Phenylallene. J. M. Slobodin (J. Gen. Chem. Russ., 1938, 8, 1220—1223).—CHPh:CH-CH₂·OH and HBr yield a bromohydrin, which when heated with KOH at 150—175°/100 mm. gives a mixture of CHPh:C:CH₂ (64%) and CPh:CMe (36%).

Fission of tetra-arylmethanes by liquid alloys of potassium and sodium. P. P. Schorigin and I. V. Matschinskaja (J. Gen. Chem. Russ., 1939, 9, 1546—1558).—p-CHPh₂·C₆H₄·CPh₃ (I) or CPh₄ does not decompose in boiling EtOBz or decahydronaphthalene, nor do they react with Na in liquid NH₃. With 5:1 K-Na in Et₂O at room temp. (I) decomposes, yielding benzyl- Δ^2 - or - Δ^3 -cyclohexane (II), b.p. 140—141°/38 mm., and triphenylcyclohexenylmethane m.p.

168.5—169.5°. Under similar conditions CPh_4 yields (II), $CHPh_3$, CH_2Ph_2 , and C_6H_6 . Probable reaction schemes are presented. R. T.

Catalytic transformations of the dimeride of $\Delta^{1:3}$ -cyclohexadiene. E. V. ALEXEEVSKI (J. Gen. Chem. Russ., 1939, 9, 1586—1588).—The dimeride is hydrogenated (Pt-black; 24 hr. at room temp.) to 1:4-endoethylenedecahydronaphthalene, b.p. $101\cdot9^\circ/7\cdot5$ mm. Dehydrogenation with Pd at $320-380^\circ$ gives a product, $C_{12}H_{14}$, m.p. $62\cdot5^\circ$, of undetermined structure. The dimeride when heated with floridin at $300-320^\circ$ yields polymerides readily oxidised by atm. O_2 . R. T.

Molecular dissymmetry due to symmetrically placed hydrogen and deuterium. The α -pentadeuterophenylbenzylamine problem. G. R. Clemo and G. A. Swan (J.C.S., 1939, 1960—1961).— Repetition of the work described (A., 1936, 977) on the resolution of α -pentadeuterophenylbenzylamine gives an inactive base (cf. Adams et al., A., 1938, II, 271). The C_6D_6 now used had m.p. 5·5°. J. D. R.

Optical rotatory powers of 4-substituted benzhydrylamines. G. R. CLEMO, C. GARDNER, and R. RAPER (J.C.S., 1939, 1958—I960).—Contrary to Cohen et al. (A., 1915, i, 661), 4-methylbenzhydrylamine (I) could not be resolved through its d-bromocamphorsulphonate, m.p. 228° (lit. 208°), $[\alpha]_{D} + 57.5^{\circ}$. CH₂Br·CO₂Et and (I) in EtOH-K₂CO₃ yield Et N-4-methylbenzhydrylaminoacetate, b.p. 185—195°/ 1 mm., hydrolysed by EtOH-KOH to the acid, m.p. 185°, which when treated successively with SOCl, and NH₃ gives a *substance*, C₁₆H₁₅ON, m.p. 207°, probably 4-keto-1-*p*-tolyl - 1:2:3:4 - tetrahydro*iso*quinoline. p-C₆H₄Br COPh and HCO·NH₂ at 170—180°/18 hr. yield form-4-bromobenzhydrylamide, m.p. 127—128° hydrolysed (HCl-EtOH) to dl-4-bromobenzhydrylamine, b.p. 155-160°/1 mm. (Ac derivative, m.p. 153°), which with d-tartaric acid yields 1-4-bromobenzhydrylamine d-tartrate (II), m.p. 205° , $[\alpha]_{D}$ +7.2° in EtOH, from which is obtained l-4-bromobenzhydrylamine, b.p. $155-160^{\circ}/1$ mm., $[\alpha]_{D}$ $-7\cdot1^{\circ}$, $[\alpha]_{5461}$ -12.8° , $[\alpha]_{4358}$ -24.6° in EtOH (Ac derivative, m.p. 183°). The base recovered from the motherliquors from the crystallisation of (II) yields with l-tartaric acid d-4-bromobenzhydrylamine l-tartrate, m.p. 205°, $[\alpha]_D - 6.8^\circ$ in H_2O , from which the d-base, $[\alpha]_{\rm p}$ +10·2° in EtOH (Ac derivative, m.p. 183°), is recovered. By similar reactions is formed dl-4-chlorobenzhydrylamine, b.p. 146°/1 mm. (formyl, m.p. 124°, and Ac derivative, m.p. 130—131°), which is resolved via the 1-base d-tartrate, m.p. 199°, $[\alpha]_D$ +9.8° in H₂O, and d-base 1-tartrate, m.p. 199°, $[\alpha]_D$ -9.86° in H_2O , into d-, b.p. $146^{\circ}/1$ mm., $[\alpha]_D + 10.8^{\circ}$ in EtOH (Ac derivative, m.p. 169°), and l-4-chlorobenzhydrylamine, b.p. 145—150°/1 mm., $[\alpha]_D$ —10.9°, [α]₅₇₉₀ -12.9° , [α]₅₄₆₁ -14.6° , [α]₄₃₅₈ -25.2° in EtOH (Ac derivative, m.p. 169°). From p-C₆H₄I·COPh is formed dl-4-iodobenzhydrylamine, b.p. 173—176°/1 mm. (formyl, m.p. 143°, and Ac derivative, m.p. 170°), resolved via the 1-base d-tartrate, m.p. 206°, $[\alpha]_{\rm p}$ +3.58° in H₂O, and d-base 1-tartrate, m.p. 205°, $[\alpha]_{\rm p}$ -3.8° in H₂O, into l-, $[\alpha]_{\rm p}$ -10.6°, $[\alpha]_{\rm 5790}$ -12.2°, $[\alpha]_{\rm 5461}$ -13.7°, $[\alpha]_{\rm 4358}$ -23.9° in EtOH (Ac derivative, m.p. 195—196°), and d-4-iodobenzhydrylamine, $[\alpha]_D$ +10-6° in EtOH (Ac derivative, m.p. 195°).

Auto-oxidation of aromatic amines.—See A., 1940, 1, 35.

Rearrangement of N-chloroacetanilide in chlorobenzene solution.—See A., 1940, I, 32.

2:4:6-Trichloro-5-nitro-m-toluidine and derivatives. E. Bureš and A. Spitniková (Časop. Českoslov. Lék., 1937, 17, 189—195).—2:4:6-Trichloroacet-m-toluidide is easily nitrated to the 5- NO_2 -derivative, m.p. 207°, hydrolysed to 2:4:6-trichloro-5-nitro-m-toluidine (I), m.p. 171° (Ac_2 , m.p. 141°, Bz, N- Me_2 , m.p. 158°, and N-Et, m.p. 170°, derivatives). (I) is converted into 2:4:6-trichloro-3-nitrotoluene, m.p. 54° (also obtained by nitration of 1:2:4:6- C_6H_2 MeCl₃) (reduced to the 3- NH_2 -derivative, m.p. 85°), and 2:4:6-trichloro-3-bromo-, m.p. 168°, and -3-iodo-5-nitrotoluene, m.p. 130°. Introduction of NO₂ into the 1:2:4:6:3- C_6 HMeCl₃·NH₂ mol. increases its stability and resistance to chemical agents. F. R.

3:5-Dibromo- and 3:5:6-tribromo-p-xylidine and derivatives. E. Bureš and F. Meškan (Casop. Ceskoslov. Lék., 1937, 17, 149—160).— Bromination of p-xylidine in EtOH out of sunlight gives 3:5-dibromo-p-2-xylidine, m.p. 67— 68° (Ac_2 , m.p. 56°, and Bz, m.p. 192°, derivatives), which is converted (diazo-methods) into 2:6-dibromo-, m.p. 36°, 2-chloro-3:5-dibromo-, m.p. 85°, and 2:3:5tribromo-p-xylene, 3:5-dibromo-p-2-xylenol, m.p. 82° (Me ether, m.p. 39—40°; Hg and Bi salts), and 2:4-dibromo-3:6-dimethylbenzonitrile, m.p. 97°. 2-Acetamido-p-xylene and Br in AcOH give the 3:5:6- Br_3 -derivative, m.p. 256°, hydrolysed to 3:5:6-tribromo-p-2-xylidine, m.p. 195—197°, whence 2:3:6-tribromo-, m.p. 83°, 2-chloro-3:5:6-tribromo-, m.p. 179°, tetrabromo-, m.p. 106°, and 3:5:6-tribromo-2iodo-p-xylene, m.p. 67°, and 3:5:6-tribromo-p-2-xylenol, m.p. 177°. Progressive bromination of p-xylidine increases the stability of the mol. F. R.

Hydrolysis of substituted benzenesulphonanilides. IV. Solubility of sulphonanilides in water and hydrochloric acid. R. L. Shriner, J. D. OPPENLANDER, and R. S. SCHREIBER (J. Org. Chem., 1939, 4, 588—591; cf. A., 1934, 288, 996). Study of the solubilities of benzene- and p-toluenesulphonanilide and their Me, Et, Pra, and Bua derivatives in H₂O and HCl of const. b.p. shows that the solubility of each series in either solvent decreases as the size of the alkyl group increases and that the ratio of the solubility in aq. HCl to that in H₂O is >1 and rises to a max. val. and then decreases. The increase in the solubility of ArSO₂·NPhAlk in aq. HCl may be one of the reasons why they are hydrolysed by acids more rapidly than ArSO, NHPh. Benzenesulphonmethylanilide has b.p. 187—189°/2 mm., m.p. 37-38°. Benzenesulphon-n-butylanilide, b.p. 182—184°/1 mm., m.p. 33°, is new.

Kinetics of the reaction of p-chloroaniline, 1-chloronaphthalene, and sodium 1-chloronaphthalene-4-sulphonate with aqueous am-

monia in presence of cuprous chloride.—See A., 1940, I, 31.

Mechanism of catalytic phenylation and its inhibition by iron.—See B., 1940, 19.

Nitrones. V. Action of potassium cyanide on carbamylnitrones. VI. Synthesis of benzylidenecarbamides. V. Bellavita and (Signa.) N. CAGNOLI (Gazzetta, 1939, 69, 583—594, 602—608).— V. The appropriate ArCHO with KCNO, NH, OH, HCl, and H₂O give N-carbamyl-p-chloro-, decomp. 132— 135°, -p-dimethylamino-, decomp. 164—165°, and -4-hydroxy-3-ethoxy-benzylidene-, decomp. 139—140°, and -resorcylidene-nitrone, decomp. 132—135°. Nitrones of type CHR.NO·CO·NH2 with KCN in MeOH or EtOH give the following (m.p. of Ac and -Bz derivatives indicated in parentheses): benzylidene.* (Bz, 103°), cinnamylidene-*, m.p. 75-77° (Bz, 123°), cuminylidene-*, m.p. 110° (Bz, 125°) [from N-carbamylcuminylidenenitrone, decomp. 143-145° (cf. Conduché, A., 1908, i, 154)], o-*, m.p. 103° (Ac, 111°; Ac₂, 70°; Bz, 123°), and m-nitrobenzylidene-*, m.p. 123.5° [Ac (Ac₂ ?), 131°; Bz, 175°], p-chlorobenzylidene-*, m.p. 112° (Ac, 73°; Bz, 147°), salicylidene-*, b.p. 125°/25 mm. (Bz, 118°), anisylidene-*, m.p. 66— 67° (Ac, 51°; Bz, 110°), p-dimethylaminobenzylidene-*, m.p. 147° (Ac, 108°; Bz, 152°), piperonylidene-*, m.p. 113·5° (Ac, 108—109°; Bz, 167°), 4-hydroxy-3-ethoxy-benzylidene-*, oily (ON-Bz₂, 141°), and furfurylidene-carbamide,* m.p. 132—133° (Bz, 135°).

VI. KCNS, NH₂OH,HCl, and ArCHO do not give

VI. KCNS, NH₂OH,HCl, and ArCHO do not give arylidene-thiocarbamylnitrones or thiocarbamides, but -carbamides. The compounds marked * above are obtained in this way, as are p-nitrobenzylidene-, m.p. 131° (Ac, 128°; Bz, 196°), resorcylidene-, m.p. 198° (Ac, 77°; Bz, 152°), and vanillylidene-carbamide, m.p. 122° (Ac, 103—104°; Bz, 152°). E. W. W.

Raschig process for preparation of phenol.—See B., 1940, 19.

Iodination of halogenated phenols. P. S. VARMA and (MISS) K. M. YASHODA (J. Indian Chem. Soc., 1939, 16, 477—478).—Iodination (cf. Datta and Prosad, A., 1917, i, 332) by I-KI in aq. NH₃ of p-C₆H₄Cl·OH, 1:3:4-C₆H₃MeBr·OH, and 1:5:2-C₆H₃MeBr·OH yields respectively 4:2:1-C₆H₂ClI·OH (acetate, m.p. 57°) or 4:2:6:1-C₆H₂ClI₂·OH (acetate, m.p. 128°), 3-bromo-5-iodo-p-cresol, m.p. 46° (benzoate, m.p. 115°), and 5-bromo-3-iodo-o-cresol, m.p. 49° (acetate, m.p. 40°; benzoate,

Iodination of organic compounds in presence of oxidising agents. T. D. Aldoschin and V. S. Tschalichjan (J. Gen. Chem. Russ., 1939, 9, 748—752).—From a study of the iodination of various phenols at 20° with KI + various oxidising agents it is concluded that the most suitable oxidising agents are chloramine-T and CaOCl₂ in acid, and CaOCl₂ in neutral, media. V. A. P.

m.p. 85°).

Simple formation of o-nitrosophenol from benzene and hydroxylamine by atmospheric oxidation. Preparation of o-nitrosophenol and nitrosocresol from benzene and toluene by oxidation with hydrogen peroxide. O. BAUDISCH (Naturwiss., 1939, 27, 768—769).—When Cu(NO₃)₂

(0.66 g.) and NH₂OH,HCl (2 g.) in H₂O (200 c.c.) containing guanidine carbonate (I) (0.2 g.) ($p_{\rm H}$ thereby rises from 1.9 to 2.2) are shaken in air with C_6H_6 (20 c.c.), o-NO· C_6H_4 ·OH (II) is formed and isolated by extraction with light petroleum after acidification. (II) affords two red Cu derivatives, one insol., the other sol, in light petroleum. With Cu(OAc)₂ [for Cu(NO₃)₂], no (I) is necessary as the $p_{\rm H}$ is 3.78. Autoxidation proceeds at $p_{\rm H}$ 2.2—4; at >4, yellow and brown by-products are formed. PhMe is not similarly converted into a nitrosocresol (III). C_6H_6 and PhMe are converted by H_2O_2 in presence of aq. Cu(NO₃)₂ or Cu(OAc)₂ and NH₂OH,HCl into (II) and (III), respectively.

Simple formation of nitrosophenols from phenols. O. Baudisch and S. H. Smith (Naturwiss., 1939, 27, 769).—PhOH (1 g.), Cu(OAc)₂ or Cu(NO₃)₂ (2 g.), and NH₂OH,HCl (0·7 g.) in H₂O (100 c.c.) with perhydrol (2 c.c.) for several days at 0° afford a complex salt of o-NO·C₆H₄·OH which is isolated (15—20% yield) after acidifying. Ni(OAc)₂ or Ni(NO₃)₂ gives only small yields. p-Cresol similarly yields nitroso-p-cresol, m.p. 58·5—59°; o- and m-cresol yield similar coloured complexes.

Action of carbon monoxide-hydrogen mixtures on cresol under pressure. W. Krönic (Brennstoff-Chem., 1939, 20, 355—356).—When m-cresol is passed with CO + $\rm H_2$ over a MeOH-forming catalyst, e.g., ZnO-Mn₂O₃, at 500°/200 atm. part is reduced to the corresponding hydrocarbon but a large proportion is methylated to (probably) $\rm C_0H_2Me_3\cdot OH$. A. B. M.

Action of nitrous acid on certain halogenated substitution products of 2:5-, 3:4-, and 3:5dimethylphenol. L. C. RAIFORD and D. W. Kaiser (J. Org. Chem., 1939, 4, 555-568).- $2:5:3:4:6:1-C_6Me_2Br_3$ OH is converted by NaNO₂ in AcOH-dioxan at $7-10^{\circ}$ into 3:6-dibromo-4nitro-2:5-dimethylphenol, m.p. 152—153° (decomp.) (Me ether, m.p. 85-86°; acetate, m.p. 114-115°), which is oxidised (fuming HNO₃ at 0°—room temp.) to 3:6-dibromo-p-xyloquinone, m.p. 185—186°, and reduced by SnCl₂ and HCl to 3:6-dibromo-4-amino-2:5-dimethylphenol, m.p. 187—188° (decomp.) [hydrochloride, decomp. $\sim 225^{\circ}$; ON- Ac_2 , m.p. $237-238^{\circ}$; N-Ac, m.p. $230-231^{\circ}$ (decomp.), ON- Bz_2 , m.p. $>275^{\circ}$, N-Bz, m.p. 221—222°, N-benzoyl-O-acetyl, m.p. 244-245°, and O-benzoyl-N-acetyl, m.p. 250-251°, derivatives]. Rapid addition of conc. HNO3 in AcOH to $3:4:1\cdot C_6H_3Me_2\cdot OH$ in AcOH cooled by tap H_2O gives 8% of the $(NO_2)_2$ -derivative, m.p. $126-127^\circ$, and 38% of $6:3:4:1-NO_2\cdot C_6H_2Me_2\cdot OH$. The latter compound is converted by Br in AcOH containing Fe powder at 100°, by Br in CS₂ containing AlBr₃ at room temp., or by Br without solvent into 2-bromo-6nitro-3: 4-dimethylphenol, m.p. 74—75°. This is reduced by SnCl₂ and HCl to 2-bromo-6-amino-3: 4dimethylphenol, m.p. 103—104° (hydrochloride, decomp. $\sim 260^{\circ}$; ON-Ac₂ derivative, m.p. 199—200°), into which a second Br could not be introduced. 3:4:1- $C_6H_3Me_2$ OH is transformed by Br into 3:4:2:5:6:1C₆Me₂Br₃·OH, m.p. 173—174°, converted by NaNO₂ and AcOH into 2:5-dibromo-6-nitro-3:4-dimethyl-

phenol, m.p. 168-169° (decomp.) (Me ether, m.p. 100—101°). This is reduced by SnCl, and HCl to 2:5-dibromo-6-amino-3:4-dimethylphenol, 130—131° (hydrochloride, decomp. ~230°; ON-Ac₂, m.p. 217—218°, N-Ac, m.p. 181—182°, ON-Bz₂, m.p. 207—208°, N-Bz, m.p. 227—228°, N-benzoyl-O-acetyl, m.p. 209—210°, derivatives). 2:3:5:1-NO, C6H6Me, OH and Br in AcOH at 100° afford $4:\overline{6}$ -dibromo-2-nitro-3:5-dimethylphenol, 160—161° (Me ether, m.p. 99—100°), which is reduced 4:6-dibromo-2-amino-3:5-dimethylphenol, 141—142° [hydrochloride, decomp. ~241°; ON-Ac2, m.p. 244—245° (decomp.), N-Ac, m.p. 190—191°, ON-Bz, m.p. 178—179°, N-Bz, m.p. 224—225° (decomp.), and N-benzoyl-O-acetyl, m.p. 175—176°, derivatives]. Chlorination of 3:5:1-C₆H₃Me₂·OH in hot CCl₄ gives $3:5:2:4:6:1-C_6Me_2Cl_3\cdot OH$ (I), m.p. 177—178°, in 87% yield, oxidised by fuming $\overline{\text{HNO}_3}$ to 2:6-dichloro-m-xyloquinone, m.p. 177—178°. This is reduced by $\overline{\text{NH}_2\text{OH}}$ in aq. EtOH at 100° to 2:6-dichloro-m-xyloquinhydrone, m.p. 177— 178°, or by a larger proportion of NH₂OH (better by SnCl₂) to 2:6-dichloro-m-xyloquinol, m.p. 225—226°. Gradual addition of NaNO2 to (I) in glacial AcOH at room temp. gives the mol. compound, C₂₄H₂₀O₄Cl₈, orange crystals which become yellow at 118—119° and melt slowly to a yellow liquid at 133—164°. Further evidence has been obtained to support the view that, in general, only one benzoyl-acetyl derivative can be prepared from an o-NH2-phenol regardless of the order of introduction of the acyl radicals. H. W.

Structure of the dimeric forms of o-isopropenylphenols. W. Baker and D. M. Besly (Nature, 1939, 144, 865).—The properties of these compounds can be explained satisfactorily if they are regarded as derivatives of flavan. L. S. T.

Steric hindered halogen addition by triaryl phosphites. L. Anschütz, H. Kraft, and K. Schmidt (Annalen, 1939, 542, 14—28).—Tri-αnaphthyl, m.p. 91°, and tri-β-naphthyl phosphite, m.p. 94°, afford the respective dichlorides and dibromides, which are hydrolysed to the corresponding phosphates, but tri-(2:4-dibromo-1-naphthyl), m.p. ~289° (darkening), and tri-(1:6-dibromo-2-naphthyl) phosphite (I), m.p. ~245° (darkening), do not. The failure to add halogen is ascribed to the size of the aromatic group (rather than the electronegative character of the o-Br) since tri-9-anthranyl phosphite (II), decomp. 182— 190°, does not give a dihalide (some nuclear substitution occurs). The dichloride of (I) exists and is obtained (crude) from 1:6:2-C₁₀H₅Br₂·OH and PCl₅ at 140—150° in CO₂; it is hydrolysed (boiling H₂O) to tri-(1:6-dibromo-2-naphthyl) phosphate, m.p. 200— 201° (decomp.). The dichloride of (II) is similarly produced from anthrone (Barnett et al., J.C.S., 1923, **123**, 2006) or anthranol and is hydrolysed to tri-9anthranyl phosphate (III). 1-C₁₀H₇·MgBr and PCl₃ $tri-\alpha$ -naphthylphosphine (IV), m.p. (compounds with 1CHCl3, m.p. 262°, and 0.5CCl4); its dibromide and dichloride [isolable only as compounds with 1CHCl_3 , m.p. 160° (decomp.), or 0.5CCl_4] are hydrolysed (dil. NaOH) to the hydrate of (α -C₁₀H₇)₃PO (V). Tri-9-anthranylphosphine could not be prepared from Mg 9-anthranyl bromide and PCl₃ or from anthracene, PCl₃, and AlCl₃ in CS₂. The above phosphites (prep. from the appropriate phenol and PCl₃), (III), (IV), and (V) show fluorescence in ultra-violet light. H. B.

Alkylation of phenol and anisole by the Friedel-Crafts reaction. I. P. TZUKERVANIK and N. D. TAMBOVTZEVA (Bull. Univ. Asie Centr., 1937, No. 22, 221—225).—PhOMe, $iso\cdot C_5H_{11}Cl$, and AlCl₃ in ligroin (4 hr. at 100°) yield isoamyl-, b.p. 120—122°/11 mm., and diisoamyl-anisole, b.p. 137—140°/11 mm.; isobutylanisole, b.p. 126—127°/16 mm., is obtained similarly with Bu⁸Cl. With PhOH the reactions are: PhOH + AlCl₃ \rightarrow AlCl₂·OPh (+RCl) \rightarrow PhOR (+RCl) \rightarrow C₆H₄R·OR (+HCl) \rightarrow C₆H₄R·OH (R = Bu^a, CH₂Bu^β). The following were thus prepared: p-butylphenol, b.p. 129—130°/11 mm., butylphenyl Bu ether, b.p. 144—147°/11 mm. With $iso\cdot C_5H_{11}$ Cl a mixture of $iso\cdot$ and tert-amyl derivatives was obtained.

Sulphonates of higher alkyl phenolic ethers. G. S. HARTLEY (J.C.S., 1939, 1828—1834).—Improved preps. of the following ethers are given; Ph cetyl (I), m.p. 42°, p- (II), m.p. 42·5°, m- (III), m.p. 35°, and o-tolyl cetyl (IV), m.p. 21·5°, o- (V) (an oil) and p-tolyl dodecyl (VI), m.p. 23·5°, pyrocatechol (VII), m.p. 23·5°, resorcinol (VIII), m.p. 27.5° 37.5°, and quinol dioctyl (IX), m.p. 56°, resorcinol dihexyl (X), m.p. 12.5°, dioctyl (XI), m.p. 37.5, hexyl octyl (XII), m.p. 15°, hexyl decyl (XIII), m.p. 27°, Bu dodecyl (XIV), m.p. 29.5°, Et tetradecyl (XV), m.p. 30·5°, octyl decyl (XVI), m.p. 31°, hexyl dodecyl (XVII), m.p. 34°, Bu tetradecyl (XVIII), m.p. 34°, Et hexadecyl (XIX), m.p. 37·5°, didodecyl (XX), m.p. 60°, and dihexadecyl (XXI), m.p. 71·5°. Sulphonation of ethers with a free p-position (where reaction probably occurs) is carried out with conc. H_2SO_4 at 70°, and of ethers with no free p-position (probable o-substitution) with ClSO₃H in CHCl₃. Free sulphonic acids from (I)—(IV) and disulphonic acids from (VIII) (hexahydrate) and (XVII) (dihydrate) are obtained. The K salts of monosulphonates of (I)—(IX), (XIII)—(XIX), and of resorcinol octyl dodecyl and Bu hexadecyl ethers, and of the disulphonates of (XI), (XVII), (XX), and (XXI) are described, and methods of purification of the sulphonic acids and their salts, all of which are surface-active, are detailed.

Hydrolysis or alcoholysis of resorcinol ether sulphonic acids. G. S. Hartley (J.C.S., 1939, 1834—1836).—The mono- and di-sulphonic acids of $m\text{-}C_6H_4(0\text{-}C_3H_{17}\text{-}n)_2$ (I) are rapidly hydrolysed by EtOH, PraOH, and OH·[CH₂]2·OEt (II) to (I); the rate of hydrolysis is reduced by H_2O in the solvent, but is little affected by mineral acid except when H_2O is present. Hydrolysis also occurs in dioxan and COMeEt, if 5% of H_2O is present. It is suggested that the SO₃H group is undissociated and can then react with any OH group. 6% of Ph cetyl ether is obtained from its 4-sulphonic acid and (II)-HCl; ether hydrolysis also occurs.

Synthesis of myristicin. V. M. TRIKOJUS and D. E. WHITE (Nature, 1939, 144, 1016).—Allylation of pyrogallol 1-Me ether gives a good yield of two

liquid monoallyl ethers [(I) and (II); 3:5-dinitrobenzoates, m.p. II1—I12°, and 134°, respectively]. Pyrolysis of (I), probably the 1-Me 2-allyl ether, gives 4:5-dihydroxy-3-methoxy-1-allylbenzene, which with $\mathrm{CH_2I_2} + \mathrm{anhyd.}$ $\mathrm{K_2CO_3}$ in $\mathrm{COMe_2}$ gives myristicin, b.p. $95-97^\circ/0.2$ mm. (30%) yield) [Br₂-derivative dibromide (III), m.p. $127-128^\circ$], whence isomyristicin, m.p. 43.5° (Br₂-derivative dibromide, m.p. 158.5°). Pyrolysis of (II) gives a mixture which, on methylenation and bromination, yields mainly (III).

Synthesis of 5:2':4'-trimethoxy-3:6:3'-trimethyldiphenyl ether. S. Shibata (J. Pharm. Soc. Japan, 1939, 59, 111—113).—1:2:6- C_6H_3 Me(OMe)₂ with Br in AcOH yields 3-bromo-2:6-dimethoxytoluene, b.p. 106— $107^{\circ}/5.5$ mm., which with 3:2:5:1-OMe· C_6H_2 Me₂·OK (prep. in MeOH) and Cu at 180— 230° gives 5:2':4'-trimethoxy-3:6:3'-trimethyldiphenyl ether, m.p. 110° , identical with the decarboxylation product of hypoparellic acid Me₂ ether. J. D. R.

" $\alpha\alpha'$ -Dinaphthyl," a by-product in the preparation of perylene. B. N. Lundin (J. Gen. Chem. Russ., 1939, 9, 682—683).—The by-product m.p. 154°, obtained by Scharvin *et al.* (A., 1929, 1181) in the prep. of perylene and stated to be " $\alpha\alpha'$ -dinaphthyl," is now shown to be 1:1'-dinaphthylene 2:2'-oxide.

Preparation of diethylmetanilic acid and diethyl-m-aminophenol.—See B., 1940, 20.

Pinacolin rearrangement of 1:2-dimethylcyclohexane- and -cyclopentane-1: 2-diols. H. MEERWEIN (Annalen, 1939, 542, 123—129).—Oxidation $(KMnO_4 + MgSO_4)$ in aq. EtOH) of 1:2dimethyl-Δ¹-cyclohexene gives a mixture, b.p. 80— 82°/1 mm., of cis-1: 2-dimethylcyclohexane-1: 2-diol (I), b.p. 102—103°/10 mm., m.p. 49·5—50°, and βη-diketo-octane (II), m.p. 44°. (I) and (II) are not separable by distillation or (completely) by crystallisation; (II) is removed as its disemicarbazone, m.p. 222—222.5°. Dehydration of (II) with hot 20% H_2SO_4 affords 2-acetyl-1-methyl- Δ^1 -cyclopentene (III). Contrary to Bartlett et al. (A., 1937, II, 288), dehydration (2% H_2SO_4 at 150—160°) of (I) gives 1-acetyl-1-methylcyclopentane, b.p. $50\cdot2-50\cdot9^\circ/11$ mm. [oxidised (NaOBr) to 1-methylcyclopentane-1-carboxylic acid], and not 2:2-dimethylcyclohexanone [the compound described as this by Bartlett may be impure (III)]. Contrary to Bartlett et al. (A., 1938, II, 487), the difference in behaviour of cis- and trans-1: 2-dimethylcyclopentane-1: 2-diol is one of degree rather than kind; 2:2-dimethylcyclopentanone is obtained in 7 and 22% yield from the trans-diol with boiling 30% H₂SO₄ and conc. H₂SO₄ (at -10°), respectively. 1:2-Epoxy-1:2-dimethylcyclopentane has b.p. 120—122°/atm. pressure (Bartlett gives $120-122^{\circ}/20 \text{ mm.}$).

Iodoso-compounds as oxidation agents. R. CRIEGEE and H. BEUCKER (Annalen, 1939, 541, 218—238).—The velocity of the reaction between anethole (I) and aryl iododiacetates, $ArI(OAc)_2(A)$, in AcOH at 20° falls in the order Ar = p-tolyl, m-4-xylyl, m-tolyl, o-tolyl, Ph, m-NO₂·C₆H₄·, p-PhSO₂·C₆H₄·, p-NO₂·C₆H₄·; the bimol. coeffs. gradually decrease with time in all cases and are all of the same order [as is

that for $Pb(OAc)_4$]. CHCl:CHI(OAc)₂ resembles (A; Ar = Ph or m-NO₂·C₆H₄·). cycloPentadiene with (A; Ar = Ph, m-4-xylyl, p-NO₂·C₆H₄·) in AcOH at 30° gives 52-73% of diacetoxycyclopentenes; the cyclopentancdiols obtained by subsequent hydrolysis (N-KOH) and reduction (H2, Pt-black, EtOH) are shown [by oxidative fission of the 1:2-isomeride (II) (43-60%) present] to contain 40-57% of (cis + trans-)1:3-diol (III), b.p. 85-93°/l mm. (bis-phenylcarbamates, m.p. 143° and 173°). The production of (III) shows preliminary 1:4 addition of 2 OAc to the conjugated system; such addition also occurs with Pb(OAc) in AcOH (43%) and $\rm C_6H_6$ (19% of total product) (cf. A., 1930, 1278). (II) consists of cis- (41-59%) and trans-forms (59-41%). Fission of αβ-glycols by PhI(OAc)₂ occurs much more slowly than with $Pb(OAc)_4$ (A., 1933, 1272); reaction is bimol. and the velocity coeffs. at 20° (k_{20}) are: cis- (115) and trans- (1·21) -7:8-dihydroxy-7:8-diphenylacenaphthene; isohydrobenzoin (IV) (0·28); cis- (0.073) and trans- (0.0084) -9:10-hydroxy-9:10diphenyl-9: 10-dihydrophenanthrene; cis-decahydronaphthalene-9: 10-diol (0.0004); cis- (0.0008)and trans- (very small) -cyclohexane-1: 2-diol. Reaction probably proceeds through a cyclic intermediate, > C·O> IPh. With (IV) and various (A), the varying rates are (with few exceptions) in the reverse order for (I) (above). There is no simple relationship between velocity of oxidation of (IV) by PhI($0\cdot COR)_2$ in C_6H_6 and the strength of RCO_2H (R = Mc, CH₂Cl, CHCl₂, CCl₃) (k_{20} 2·0, 9·4, 10·4, and 8·3, respectively). $H_2C_2O_4$ is oxidised by (A) in AcOH; the possible relationship between ease of oxidation and the basic character of (A) in AcOH is discussed. In some respects, e.g., non-formation of inorg. products, (A) are better oxidation agents than Pb(OAc)₄. PhCHO is obtained in 88% yield from $OH \cdot CHPh \cdot CO_2H$ and PhIO in $H_2O + C_6H_6$. Ph iododi-(chloroacetate), decomp. 116°, and -(dichloroacetate), decomp. 112°, are new; the di(trichloroacetate) could not be isolated.

Photometric determination of cestrogens. I. Modified Kober reaction for determining total cestrogens in a mixture of estrogenic steroids. II. New colour reaction for estriol. C. Bachman (J. Biol. Chem., 1939, 131, 455—462, 463—468).—I. The total content of a mixture of estrone, a-estradiol, and estriol can be determined using a modification of Kober's reaction (A., 1931, 1195).

II. A stable violet-pink colour produced by heating estriol at 150° with $p\text{-OH}\cdot\text{C}_6\text{H}_4\cdot\text{SO}_3\text{Na}$ in H_3PO_4 is used to determine estriol in the presence of estrone. E. M. W.

Constitution of dehydroergopinacone. T. Ando (Bull. Chem. Soc. Japan, 1939, 14, 482—486).—

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Dehydroergopinacone (I) with $Ac_2O-C_5H_5N$ yields the diacetate, m.p. 195—196.5° [opaque; clear at 200.5° (corr.) (decomp.)], $[\alpha]_D^{32}$ —242° in CHCl₃, also formed from dehydroergosteryl acetate by irradiation

with sunlight in EtOH-eosin and CO2, which is not

dehydrogenated by $\mathrm{Hg}(\mathrm{OAc})_2$. The absorption spectrum of (I) in $\mathrm{C_6H_{14}}$ shows a max. at 275 m μ ., indicating that (I) has the annexed structure.

J. D. R.

Derivatives of cyclopentane. R. B. ROTHSTEIN and M. Rothstein (Compt. rend., 1939, 209, 761— 762; cf. A., 1935, 474; 1936, 54).—cycloPentene [prep. (method: Fourneau et al., A., 1922, i, 639) in quant. yield from cyclopentanol] and NH₂·CO·NHCl in aq. AcOH give 60-70% of trans-2-chlorocyclopentanol, b.p. 81-82°/15 mm., which with aq. NaOH at room temp. affords epoxycyclopentane (I), b.p. 100—101°. The 2-hydroxycyclopentylalkylacetic acids obtained (cf. loc. cit.) from (I) and CNaAlk(CO2Et)2 are dehydrated to odoriferous lactones [2-keto-3-alkyl-4:5trimethylenetetrahydrofurans (A)] only at high temp. The following (A) are described: and $\angle 1$ atm. alkyl = Et, b.p. $128^{\circ}/14$ mm., Pr^{a} , b.p. $141^{\circ}/14$ mm., Bu^{α} , b.p. $154^{\circ}/16$ mm., Bu^{β} , b.p. $148^{\circ}/15$ nun., and isoamyl, b.p. 163°/15 mm.

Dihalogen-substituted α-amino-α-p-hydroxyphenylacetic acid.—See B., 1940, 86.

Study by means of the isotopes of nitrogen and hydrogen of the $[in \ vivo]$ inversion of d- α amino-y-phenylbutyric acid and the acetylation of *l*-α-amino-γ-phenylbutyric acid. V. DU Vig-NEAUD, (MISS) M. COHN, G. B. BROWN, O. J. IRISH, R. Schoenheimer, and D. Rittenberg (J. Biol. Chem., 1939, 131, 273-296).—In this inversion almost all the original N is shown, by use of ¹⁵N, to be replaced by new N. CHPh:CH·CO·CO₂H hydrogenated in 50% EtOH in presence of Pd and NH3 containing 1.98 at.-% excess of 15N (cf. Schoenheimer et al., A., 1939, II, 144) gives dl-α-amino-γ-phenylbutyric acid (I) (containing 1.97 at.-% excess of ¹⁵N), of which the carbobenzyloxy-derivative, m.p. 112°, is resolved by d- and l-phenylethylamine, giving the d-phenylethylamine salt, $[\alpha]_D^{20}$ +19.4° in EtOH, of carbobenzyloxy-l-aminophenylbutyric acid, hydrolysed and reduced to l-(+)- α -amino- γ -phenylbutyric acid (II), $[\alpha]_D^{32}$ +48.4° in N-HCl (containing 1.79 at.-% excess of 15N), and the 1-phenylethylamine salt, [a]21 -19.3° , of the carbobenzyloxy-derivative of d-(-)- α -amino- γ -phenylbutyric acid (III), $[\alpha]_D^{22}$ (containing 1.77 at.-% excess of N) (cf. Rittenberg et al., A., 1939, II, 235).

Rats fed with a fluid diet and 350 mg. per day of (I), (II), or (III) were also in certain experiments injected subcutaneously with D_2O , and fed sufficient D_2O to maintain its conen. in body fluids at $\sim 2.5\%$. Those fed with (I) (1.97 at.-% excess of ¹⁵N) excreted l-(+)- α -acetamido- γ -phenylbutyric acid (IV) (cf. du Vigneaud et al., A. 1938, II, 98) containing ~ 1 at.-% excess of ¹⁵N; i.e., $\sim 50\%$ of the N in (IV) is original N of (I). Those fed with (II), (A) having $[\alpha]_D^2 + 48.4^\circ$, and containing 1.79 at.-% excess of ¹⁵N, excreted (IV) containing ~ 1.45 at.-% excess of ¹⁵N, excreted (IV) containing ~ 1.45 at.-% excess of ¹⁵N, excreted (IV) and S1.4% respectively of the N of (IV) is original N of (II). Those fed with (III), (C) having $[\alpha]_D^{25} - 44.2^\circ$, and containing 1.92 at.-% excess of ¹⁵N, and (D) having $[\alpha]_D^{22} - 48.2^\circ$, and containing 1.77 at.-% excess of ¹⁵N, excreted (IV) containing 0.225 and 0.11 at.-% excess of ¹⁵N; i.e., only 11.7 and

6.3% of the N is original N of (III). [Material in (A) and (C) resolved through brucine, in (B) and (D) by new method described above.] In experiments (B) and (D), D₂O was also administered, and the resulting (IV) was hydrolysed to an acid containing 1 atom of D per mol. In an experiment in which (II) (no 15 N) and D₂O were fed, (IV) was excreted containing ~ 3.6 D per mol., hydrolysed to an acid (V) containing ~ 1 D per mol., which was degraded by chloramine-T to CH₂Ph·CH₂·CHO containing ~ 0.17 D per mol., showing that the D in (V) is in the α -position. Rats fed with d-(—)- α -acetamido- γ -phenylbutyric acid (VI) (no 15 N) and D₂O excrete (VI) containing no D.

It is suggested that (II) and (III) are dehydrogenated to NH:CR·CO₂H (VII) (R = CH₂Ph·CH₂), and this is converted either by AcCO₂H (VIII) into CO₂H·CR:N·CMe(OH)·CO₂H and thus into CO₂H·CHR·NHAc (IV), or by hydrolysis into R·CO·CO₂H and NH₃ (at which stage ¹⁵N will be lost), and back into (VII) (cf. Braunstein et al., A., 1937, II, 448; III, 210) and thus into (IV). If dehydrogenation of (III) is much more rapid than that of (II) (cf. Krebs, A., 1935, 1014), (VII) may be formed faster than (VIII) is available, so that hydrolysis will predominate. An alternative hypothesis, based on a qual. inability of (III) to be directly acetylated or to partake in transamination (cf. Braunstein, loc. cit.), is also considered.

Condensation of aldehydes with amides. IV. m-Hydroxybenzaldehyde. R. K. Mehra and K. C. PANDYA. V. p-Hydroxybenzaldehyde. M. MANZUR and K. C. PANDYA. VI. Condensation of o., m-, and p-methoxybenzaldehydes. R. K. Mehra and K. C. Pandya (Proc. Indian Acad. Sci., 1939, **10**, **A**, 279—281, 282—284, 285—288; cf. A., 1938, II, 363).—IV. m-OH·C₆H₄·CHO condenses with the requisite amide to m-hydroxybenzylidene-propionamide, m.p. 210°, -benzamide, m.p. 205°, and -phenylacetamide, m.p. 190°. Condensation occurs readily even in the absence of a condensing agent; a trace of C5H5N or lutidines (I) does not materially increase the yield and appears to cause some resinification. Attempted condensations of NH₂Ac at 50° to 130° in absence of a condensing agent or in presence of C₅H₅N or (I) cause much resinification and some aldehyde remains unchanged. A product could not be isolated from HCO-NH2

V. p-OH·C₆H₄·CHO is condensed with the appropriate amide at 130—140° for 4—5 hr. in presence or absence of org. bases such as C₅H₅N or piperidine, giving good yields (60—92%) of p-hydroxybenzylideneacetamide, decomp. 340° (decomp.), -formamide, decomp.216°,-propionamide, decomp.195°,-benzamide, becomes dark red at 190°, decomp. ~215°, and -phenylacetamide, m.p. >340°. They all decolorise Baeyer's reagent instantly and give a dark red colour with conc. H₂SO₄. With cone. HCl they yield a pink colour which becomes deep rose on warming or keeping. They are decomposed by strong mineral acids with liberation of the original aldehyde.

VI. With o-, m-, or p-OMe·C₆H₄·CHO and HCO·NH₂ little or no condensation product is obtained at various temp. and in the presence or absence of an

org. base. The other amides all give substituted benzylidenediamides in 37% to 57% yield which is not considerably improved by the addition of a little org. base. The following are described: o-methoxy-benzylidenebis-acetamide, m.p. 223°, -propionamide, m.p. 196—197°, -benzamide, m.p. 233°, and -phenylacetamide, m.p. 206°, -propionamide, m.p. 201°, -benzamide, m.p. 201—202°, and -phenylacetamide, m.p. 201—202°, and -phenylacetamide, m.p. 181—182°; p-methoxybenzylidenebis-acetamide, m.p. 230—231°, -propionamide, m.p. 228°, -benzamide, m.p. 223—224°, and -phenylacetamide, m.p. 243°.

3:5-Di-iodo-4-hydroxyhippuric acid and derivatives.—See B., 1940, 87.

Preparation of diethyl cyclobutane-1:1-dicarboxylate by Kishner's method. B. A. KAZANSKI (J. Gen. Chem. Russ., 1939, 9, 1568).—The low yield of $\operatorname{Et_2}$ cyclobutanedicarboxylate (I) reported by Venus-Danilova (A., 1938, II, 393) following Kishner's instructions (A., 1905, i, 786) is ascribed to a misprint in Kishner's paper; using 1 g.-mol. of $\operatorname{Cl}^{\cdot}[\operatorname{CH_2}]_3$ ·Br per g.-mol. of $\operatorname{CH_2}(\operatorname{CO_2Et})_2$ the yield of (I) is 50%, as obtained by Kishner. R. T.

Synthesis of phenanthrene derivatives. A. Schönberg and F. L. Warren (J.C.S., 1939, 1838—1841; cf. A., 1939, II, 152).—o-C₆H₄Ph·COCl [from the acid and (COCl)₂ in C₆H₆ at 30°] and CH₂N₂ in Et₂O yield ω -diazo-o-phenylacetophenone, m.p. 106°, which, in dioxan, with Ag₂O in aq. Na₂S₂O₃ gives o-diphenylylacetic acid, m.p. 116°, converted by AcOH-Ac₂O-ZnCl₂ into 9-phenanthryl acetate; hydrolysis (KOH-EtOH) then gives 9-hydroxy-phenanthrene. Et o-diphenylylacetate and Et₂C₂O₄ with KOEt in EtOH-Et₂O yield crude Et α -keto- β -2-diphenylylsuccinate, which with H₂SO₄ at 100° gives phenanthrene-9:10-dicarboxylic anhydride.

Abnormal osmotic effects with chain molecules. II. Synthesis and cryoscopic behaviour of polydepsides. F. Klages, F. Kircher, and J. Fessler (Annalen, 1939, 541, 17—53; cf. A., 1935, 1355).—a-Trimethyl-\(\theta\)-diacetyldi-(I), m.p.218° (chloride,

acetyltetra- (III), m.p. 235°, -gallic acid (for nomenclature cf. annexed formula for digallic acid) are prepared by condensation (COMe₂ and aq. NaOH) of the appropriate acid chloride with 3:5-diacetylgallic acid. Quinol di(trimethylgallate) (IV), m.p. 224°, di(triacetylgallate) (V), m.p. 250°, and di-(α-trimethyl-β-diacetyldigallate) (VII), m.p. 248°, and phloroglucinol tri(trimethylgallate) (VII), m.p. 180°, tri(triacetylgallate) (VIII), m.p. 210°, tri-(α-trimethyl-β-diacetyldigallate) (IX), softens 150—175°, and tri-(penta-acetyldigallate) (X), softens 150—175° (penta-acetyldigalloyl chloride, m.p. 173°), are obtained in an analogous way. All except (IX) and (X) are cryst. The cryoscopic behaviour of the compounds in dioxan, AcOH, and CHBr₃ has been investigated over the concn. range 0·025—1%. In dioxan (I), (VII),

(VIII), and (X) behave normally, whilst the others give f.p. depressions > those calc. from the formulæ. The deviation is greatest at low concus., and in the case of (VI) amounts to 5 times the theoretical val. In AcOH only (I), (VII), and (VIII) are normal. In CHBr₃ all the substances give normal vals. The anomalies, which depend on the mol. form rather than on the chemical nature of the solute, are generally associated with a straight chain of at least 3 rings; branched mols. [(VII)—(X)] give abnormal results only when the branches themselves contain a 3-ring chain. (II), (III), (IV), (V), and (VI) in dioxan, and (II), (III), and (V) in AcOH, behave osmotically as though the ring units constituting the mols. were independent mols. The observed behaviour of CHBr₃ supports the suggestion previously put forward, that anomalies are found only in solvents having a mol. wt. < that of the ring unit concerned. Possible explanations are F. L. U. discussed.

Ellagic tannins.—See A., 1940, III, 175.

Aldehydes and hydroxy-aldehydes of the polymethylene series. VIII. Isomeric transformations of cyclobutanealdehyde. E. D. Venus-Danilova (J. Gen. Chem. Russ., 1938, 8, 1179—1191).—cycloButanealdehyde (I) with H₂SO₄ on pumice at 130—135° yields cyclopentanone (II). (I) or (II) and Br in CS₂ give a Br-derivative (not isolated), converted by heating with an aq. suspension of BaCO₃ into 2-hydroxycyclopentanone, b.p. 104—108°/25 mm. (pnitrophenylhydrazone, m.p. 157—158°), which with semicarbazide yields 3-keto-5:6-trimethylene-2:3:4:5-tetrahydro-1:2:4-triazine, decomp. 194°.

Autoxidation of benzaldehyde in presence of 7:8-diphenylacenaphthylene. G. WITTIG and K. Henkel (Annalen, 1939, 542, 130—144).—7:8-Diphenylacenaphthylene (I), m.p. 161—162° [prep. (cf. A., 1931, 1415) from cis- (II) or trans- (III) -7:8dihydroxy-7:8-diphenylacenaphthene and NaI in COMe, saturated with HCl], is stable to light and air in non-polar solvents and [unlike didiphenyleneethylene (A., 1939, II, 22)] is very stable to O_2 in polar solvents (dioxan). When shaken with O2 in presence of PhCHO and CCl₄, (I) is autoxidised to (eis-)7:8dihydroxy-7:8-diphenylacenaphthene CHPh. ether (IV), m.p. 249—249·5⁵; autoxidation of the PhCHO is thereby retarded to a degree approx. ∞ concn. of (I). Autoxidation of PhČHO in CCl4 in absence or presence of (I) is accelerated by light to approx. the same extent in each case. Autoxidation of PhCHO in CCl₄ is also retarded by (II), (III), (IV), or $C_{10}H_8$. It is unlikely that BzO₂H is produced in the reaction or that an intermediate such as COPh·O·O·CHPh·OH or CHPh $<_{-0}^{0\cdot0}>$ CPh \cdot OH is formed (from BzO₂H and PhCHO) (cf. below). The active agent is considered to be the peroxide CHPh $<_{0-}^{0-}$ (cf. loc. cit.). All experiments are carried out at 20°.

Successive treatment of cis- or trans-(I) with LiMe (in Et₂O and N₂) and CHPhCl₂ (at 100° in sealed tube) and of (II) or (III) with CKPhMe₂ and CHPhCl₂ gives 1:8-C₁₀H₆Bz₂ (V) in each case. BzO₂H (1 mol.) has no action on (I) in CHCl₃ at 0°/3 days; a large

excess in CHCl₃ at 25° affords (V), which is also produced from (I) (1 mol.), BzO_2H (10 mols.), and PhCHO (10 mols.) in CHCl₃ and N_2 at 25°. Stilbene and α -chlorostilbene ozonides have no action on (I). (IV), which is also obtained from (II) or (III) and PhCHO-HCl, is hydrolysed (AcOH-HCl) to PhCHO and 7:7-diphenylacenaphthen-8-one. H. B.

Characterisation of opianic acid. A. S. TSCHERNISCHEV (J. Gen. Chem. Russ., 1938, 8, 1254).—Certain data referring to the solubility of opianic acid (I) in $\rm H_2O$ and org. solvents, given in Beilstein's Lexicon, are corr. In EtOH, (I) gradually yields a ψ -Et ester. R. T.

γ-Substituted resorcinol derivatives. II. Synthesis of 3-aldehydoresacetophenone, 3-acetyl-β-resorcylaldehyde, and 2:3:6-trihydroxyacetophenone. K. Nakazawa (J. Pharm. Soc. Japan, 1939, 59, 107—110; cf. A., 1939, II, 427).—1:2:4-C₆H₃Ac(OH)₂ and $AlCl_3$ -Zn(CN)₂-Et₂O, with HCl give 3-aldehydo-2:4-dihydroxyacetophenone, m.p. 106—107° [monoxime, m.p. 222°; dioxime, m.p. 226° (decomp.)], oxidised by H_2O_2 in N-NaOH to gallacetophenone. Similarly, 1:2:6-C₆H₃Ac(OH)₂ yields 3-aldehydo-2:6-dihydroxyacetophenone, m.p. 100° (monoxime, m.p. 171°; dioxime, m.p. 179°), oxidised to 2:3:6-trihydroxyacetophenone (triacetate, m.p. 96°; tribenzoate, m.p. 186°).

Cobalt salts of glyoximes. V. L. CAMBI and L. MALATESTA (Gazzetta, 1939, 69, 547-561; cf. A., 1936, 825).—a-Diphenylglyoxime (I) with CoBr. in EtOH, exposed to the air, followed by conc. HBr, gives a salt $[Co(RH)_2Br_2]H(II)[RH_2 = (OH\cdot N:CPh)_2],$ converted by hot KOAc-EtOH into the hydrate, $[Co(RH)_2(OH)_2]H (+H_2O)$. With $Co(OAc)_2$ in $COMe_2$, $[Co^{II}(RH)_2]$ gives ${f the}$ compounds $[\text{Co}^{\text{III}}(\text{RH})_2\text{OH}]$ (converted into anhydro- $_{
m the}$ compound, [CoR₂H]). A NH(CH₂Ph)₂ salt derived from (II) in which Br is partly replaced by OH is obtained. a-Phenylglyoxime (III) in EtOH with aq. HBr at 60—70°, followed by CoBr, slowly added, with passage of air, gives the salt [Co(R'H)₂Br₂]H (IV) $(R'H_2 = OH \cdot N : CPh \cdot CH : N \cdot OH)$. $NH(CH_2Ph)_2$ (=M), (IV) gives the compound $[Co(R'H)_2BrM]$. (IV) with KOAc-EtOH, washed with H₂O, gives the hydrate [Co(R'H)₆(OH)₆]H. With CoBr, in EtOH at 50-60°, (III) gives a product regarded as $[Br_2Co^{III}(R'H)_2]Co^{II}[(R'H)_2Co^{III}Br(OH)]$ (V) (+6EtOH). This with EtOH-NH₃ yields the compound $[\text{Co}_3\text{R}'_4(\text{NH}_3)_4(\text{HBr})_2]$ (+4H₂O), which with aq. AcOH-HBr gives the bromide [Co(R'H)₂(NH₃)₂]Br (corresponding nitrate, perchlorate, persulphate, and H phosphate prepared). In boiling H_2O , (V) gives the compound $[Co(R'H)_2Br(OH)]H$. In boiling C_5H_5N (=M'), (V) gives the compounds [Co(R'H), M'Br] (VI), and $[\text{Co}(R'H)_2M'Br]\text{CoBr}_2$ [which in H₂O gives (VI)]. In hot KOAc-EtOH, (V) gives the compound $[Co_3(R'H)_4(OH)_4],4H_2O$. EtOH, (III) and Co(OAc)₂ give the compound [Co^{II}R₂']. α-Benzoylmethylglyoxime and CoBr₂-EtOH, exposed to air, with conc. HBr give compounds, $[\text{Co}_2(\text{R''H})_4\text{Br}_3(\text{OH})]\text{H}_2(\text{VII}) \text{ and } [\text{Co}(\text{R''H})_2\text{Br}(\text{OH})]\text{H}$ $(R''H_0 = OH \cdot N \cdot CMe \cdot CBz \cdot N \cdot OH)$. In boiling H_0O , (VII) gives a hydrate (Co: N = 1:3). The magnetic susceptibility of these compounds is determined, and

the structure of compounds of the Co^{II} and Co^{III} series is discussed. E. W. W.

Action of oxalyl chloride on phenolic ethers. P. C. MITTER and H. MUKHERJEE (J. Indian Chem. Soc., 1939, 16, 393—395).—(COCl)₂ (I) and PhOMe-AlCl₃–CS₂ give 4:4'-dimethoxybenzil, oxidised by $\rm H_2O_2$ –AcOH at 70—80° to p-OMe·C₆H₄·CO₂H. o-C₆H₄Me·OMe and (I) similarly give 4:4'-dimethoxy-3:3'-dimethyl-benzil, m.p. 174°, converted by NaOH at 180° into the -benzilic acid, m.p. 145—147°, or oxidised to 4:3:1-OMe·C₆H₃Me·CO₂H. (I) and m-or p-C₆H₄Me·OMe give only (?) 6- or 5-methylsalicylic acid, respectively. o-C₆H₄(OMe)₂ gives 3:4:1-C₆H₃(OH)₂·CO₂H. (I) and m-C₆H₄(OMe)₂ or 1:2:3-C₆H₃(OMe)₃ give no pure product and p-C₆H₄(OMe)₂ does not react.

Biochemical preparation of inosose.—See A., 1940, III, 75.

Catalysed condensation reactions. M. P. Masina (J. Gen. Chem. Russ., 1939, 8, 1264—1271). — cycloHexanol passed over 13:87 Co–Th catalyst at 380° or over 7:3 Ni–Th catalyst at 380—450° yields chiefly 2-cyclohexylidenecyclohexanone. This is also obtained similarly from cyclohexanone (I) or (I)–cyclohexane (II) mixtures, but not from (II) alone. The most active catalysts are obtained by pptn. from nitrate solutions with $\rm K_2CO_3$. R. T.

Synthesis of cyclopentanone-2:5-dicarboxylic ester. S. N. Naumov and L. P. Danilevski (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 29, 4 pp.).—Et₃ butane- $\alpha\alpha$ 8-tricarboxylate and NaOEt in EtOH (5 hr. at 40°, then 5 hr. at the b.p.) yield Et_2 cyclopentanone-2:5-dicarboxylate, b.p. $165-166^\circ/13$ mm. [semicarbazone, m.p. 200—201° (decomp.); ? phenylhydrazone, m.p. 79°].

Quinonemethides. K. Fries and E. Brandes (Annalen, 1939, 542, 48—77).—All attempts to obtain 4-methylene- $\Delta^{2:5}$ -cyclohexadienone (quinonemethide) have proved unsuccessful. 4-Hydroxy-3:5-dimethylbenzyl bromide (I), m.p. 103—105° (decomp.) [Ac derivative (II), m.p. 68—69°], from the alcohol and HBr in C6H6 at 50°, could not be obtained pure. When treated with various solvents (MeOH, EtOH, H₂O, or aq. COMe₂ at room temp.) or reagents (NaOH, NaOEt, SnCl2-AcOH), 2 mols. of (I) eliminate CH₂Br₂ and give 4:4'-dihydroxy-3:5:3':5'-tetramethyldiphenylmethane (III). The diacetate of (III) is similarly obtained from (II) and Cu powder in indifferent solvents, Zn dust-HCl-COMe₂, and Zn dust, anhyd. NaOAc, or AgOAc in Ac.O. Mesitol is formed from (I), but not from (III), by distillation with Zn dust. Aq. NaOAc (2 mols.) and (I) (1 mol.; in C_6H_6) give 4-(4'-hydroxy-3':5'dimethylbenzylidene)-2: 6-dimethyl- $\Delta^{2:5}$ -cyclohexadienone (IV), m.p. 172-173°, the violet 3:5:3':5'tetramethylstilbene-4: 4'-quinone (V), $+0.25H_2O$, m.p. 215° (from CHCl₃), m.p. (anhyd. from C_5H_5N) 330° (brown and then black at 220-230°), and 4:4'dihydroxy-3:5:3':5'-tetramethyldibenzyl, m.p. 166— 167° (diacetate, m.p. 150—151°); the formation of (III) [and thence (IV)] and 2:6-dimethyl-4-methylene- $\Delta^{2:5}$ -cyclohexadienone (undergoes dimerisation; acts as a dehydrogenating agent) is postulated. Reduction

(Zn dust, AcOH) of (V) affords 4:4'-dihydroxy-3:5:3':5'-tetramethylstilbene, m.p. $239-240^{\circ}$ (diacetate, m.p. 237-238°), which is oxidised (HNO₃-EtOH) to (V). Impure αβ-dibromo-4: 4'-dihydroxy-3:5:3':5'-tetramethyldibenzyl, m.p. 176° (decomp.) [from (V) and HBr in C_6H_6], is converted by H_2O (slowly) or dil. NaOH (rapidly) into (V). Reduction (Zn dust, AcOH) of (IV) gives (III); with aq. COMe, and AcOH, (IV) affords 4:4'-dihydroxy-3:5:3':5'tetramethyldiphenyl-carbinol, m.p. 156—158° (decomp.) [triacetate (VI), m.p. 139—140°, also from (IV) and Ac₂O-conc. H₂SO₄], and -carbinyl acetate, m.p. 155-160° (decomp.), respectively. AcOH-HBr converts (IV) into a deep violet compound, C₁₇H₁₉O₂Br,H₂O, m.p. 245—248° (decomp.) (structure discussed), which with $Ac_2O-H_2SO_4$ yields (VI).

4 - Bromo - 2:4:6-trimethyl - $\Delta^{2:5}$ -cyclohexadienone (VII) [from AcOH-Br and mesitol in aq. AcOH-NaOAc at -3°] rearranges rapidly to (I). Treatment of a freshly prepared solution of (VII) with H₂O gives an oil which when distilled (vac.) undergoes partial decomp.; mesitol, (III), and a ? dihydroxytetra-methyldibenzyl, m.p. 153° (purified through its diacetate, m.p. 133°), are isolated from the distillate. 3:4:5-Tribromo-2:4:6-trimethyl- $\Delta^{2:5}$ -cyclohexadienone, m.p. 80-84° (decomp.) [from dibromomesitol; as for (VII)] (rearranges slowly at room temp. and rapidly when heated to 4:3:5:2:6:1- $OH \cdot C_6 Me_2 Br_2 \cdot CH_2 Br$), and $NH_2 Ph$ in EtOH + NaOAcat 0-20° afford the 3:5-dibromo-4-anilino-derivative, m.p. 136°, which is rearranged by AcOH-conc. HCl 3:5-dibromo-4'-amino-2:4:6-trimethyldiphenyl ether, m.p. (hydrochloride, m.p. 298°; Ac derivative, m.p. 233°).

[With F. Struffmann.] 2-Hydroxy-3:5-dimethylbenzyl bromide, m.p. 73° (from the alcohol and HBr in $C_6H_6 + CaCl_2$), resembles the chloride (A., 1907, i, 613). 2:3:5:1-OAc· C_6H_2 Me₂· CH_2 Cl, b.p. 151°/15 mm., m.p. 30°, and Cu powder in boiling C_6H_6 give the diacetate, m.p. 125°, of 2:2'-dihydroxy-3:5:3':5'-tetramethyldibenzyl (VIII), m.p. 167°. Oxidation

 $\mathrm{Br_4\text{-}derivative}$ (X) (loc. cit.) of (VIII) similarly yields $4:6:4':6'\text{-}tetrabromo-2'\text{-}keto-2}:1'\text{-}oxido-$ 3:5:3':5'-tetramethyl-1':2'-dihydrodibenzyl m.p. 168° [reduced to (X)], and not a quinonemethide (cf. loc. cit.; Pummerer et al., A., 1919, i, 439). EtOH-NHPh·NH₂ and -NH₂Ph with (XI) give the corresponding 4:6:6'-tribromo-4'-phenylhydrazino-, m.p. 193° (Ac₂ derivative, m.p. 221°), and -4'-anilinoderivative, m.p. 206° (decomp.), respectively. 3:5-Di(bromomethyl)-p-cresol in Et₂O with 2n-Na₂CO₃ affords a trimeride, m.p. 167°, of 4-methyl-2-bromomethyl-6-methylene- $\Delta^{2:4}$ -cyclohexadienone, whilst 2:6-dibromo-3:5-di(bromomethyl)-p-cresol in Et₂O with 10% aq. NaOAc gives 4:6:4':6'-tetrabromo-2'keto-2: 1'-oxido-5: 5'-dimethyl-3: 3'-di(bromomethyl)-1': 2'-dihydrodibenzyl (XII), m.p. 194°. Energetic reduction (Zn dust, AcOH-conc. HCl) of (XII) yields (X), whilst AcOH-HBr at 115—120° (sealed tube) converts it into 4:6:4':6'-tetrabromo-2:2'-dihydroxy-5:5'-dimethyl-3:3'-di(bromomethyl)dibenzyl, m.p. 228° (diacetate, m.p. 290°), which with boiling MeOH gives the 3:3'-di(methoxymethyl) derivative, m.p. 191°. Mesitol is most conveniently prepared by reduction (Zn dust, COMe₂-conc. HCl) of the acetate, m.p. 108°, of 3:5-di(chloromethyl)-p-cresol. H. B.

cycloHexane-1:2-dione. S. N. Naumova and O. A. Volodina (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 20, 8 pp.).—Et $_2$ 2:3-diketocyclohexane-1:4-dicarboxylate and 10% $\rm H_2SO_4$ (4—7 hr. at the b.p.) yield cyclohexane-1:2-dione (I), b.p. 75—76°/9 mm., m.p. 33—34°, rapidly changing to a glassy substance when exposed to air and light, and this product yields crystals of a hydrate, $\rm C_6H_8O_2,0.5H_2O$, m.p. 128°, after long keeping. (I) is not identical with Wallach's "diosphenol" (A., 1924, i, 862); it does not yield adipic acid when oxidised, nor does it give the osazone and phenylurethane described by Wallach. The hydrate, m.p. 128°, yields adipic acid when oxidised with KMnO₄.

Action of bromine on cyclohexane-1: 4-dione and its homologues. S. N. Naumov and Z. I. Emmanullova (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 15, 7 pp.).—Bromination of cyclohexane-1: 4-dione or its 2:5-Me₂ derivative in presence or absence of $\rm H_2O$, $\rm C_5H_5N$, or NaHCO₃, at 0° or at room temp., did not yield Br-derivatives, but only tarry products. A mixture, m.p. 94—100°, of Br₂-derivatives of undetermined structure was obtained from Et₂ 2:5-diketo-1:4-dimethylcyclohexane-1:4-dicarboxylate.

Action of sodium ethoxide on 2:3-diketocyclopentane-1:4-dicarboxylic ester. S. N. Naumov and S. L. Gusinskaja (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 23, 10 pp.).—Et₂ 2:3-diketocyclopentane-1:4-dicarboxylate (I) is recovered unchanged after treatment with NaOEt in EtOH. (I) (in EtOH-NaOEt) with MeI gives Et₂ 2:3-diketo-1-methylcyclopentane-1:4-dicarboxylate, b.p. 189—190°/12—14 mm. [Na salt (II), m.p. 172°; phenylhydrazone, m.p. 170—170·5°], also not reacting with NaOEt in EtOH. A C₆H₆ suspension of (II) with MeI yields a substance, b.p. 190°/15 mm., isomeric with the Me₂ derivative of (I), but not reacting with CO group reagents. R. T.

(A) Condensation of adipic and oxalic esters. S. N. Naumov and L. S. Dedusenko. (B) Condensation product, C₁₆H₂₀O₉, of adipic with oxalic ester. S. N. Naumov and Z. I. Emmanultova. (C) Mutual transformations of 2:3-diketocyclohexane-1:4-dicarboxylic ester and 2-hydroxycyclopentane-1:2:3-tricarboxylic ester. S. N. Naumov and L. S. Dedusenko (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 16, 8 pp.; No. 18, 5 pp.; No. 22, 10 pp.).—(A) Et₂ adipate and Et₂C₂O₄ in EtOH-NaOEt at 40° yield Et₂ 2:3-diketocyclohexane-1:4-dicarboxylate (II), Et₃ Δ¹-cyclopentene-1:2:3-tricarboxylate (II), Et cyclopentanone-2-carboxylate, and Et₃ oxaloadipate.

(B) In presence of excess of $\rm Et_2C_2O_4$, and at 75—85°, a dicyclic substance, $\rm C_{16}H_{20}O_9$, m.p. 117°, is obtained, in addition to the above four products. This

substance is hydrolysed by H_2O at room temp. to $H_2C_2O_4$, EtOH, and a substance, m.p. 155°, whilst with 5% aq. Na_2CO_3 the product is (II); with o- $C_6H_4(NH_2)_2$ it gives a "dihydroxyquinoxaline" and Et 2-hydroxycyclopentane-1:2:3-tricarboxylate (III).

(0) The reaction (I) → (III) takes place when (I) is treated with NaOEt in EtOH; (III) is converted into (I) by Na and NaOEt in absence of EtOH. Under these conditions the reaction (III) → (II) does not take place. R. T.

Action of bromine on 2:3-diketocyclohexane-1:4-dicarboxylic ester. S. N. Naumov and V. V. Lavrenova (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 19, 6 pp.).—Et₂ 2:3-diketocyclohexane-1:4-dicarboxylate and Br in CHCl₃ yield Et_2 1-bromo-, m.p. 51—52°, and Et_2 1:4-dibromo-2:3-diketocyclohexane-1:4-dicarboxylate, m.p. 84—86°; these eliminate HBr and Br₂, respectively, when heated at 100° in vac., to yield 2:3:1:4-(OH)₂C₆H₂(CO₂Et)₂ in both cases. R. T.

Transformation of 2:3-diketocyclohexane-1:4-dicarboxylic ester when exposed to sunlight. S. N. NAUMOV and M. A. ZAKUTSKAJA (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 21, 13 pp.).— Exposure of Et₂ 2:3-diketocyclohexane-1:4-dicarboxylate (I) to sunlight leads to formation of various products, including a dimeride, m.p. 78—80°, readily regenerating (I) when dissolved in EtOH, H₂O, aq. Na₂CO₃, or aq. KOH, and a dimeride, m.p. 125—126°, not dissociating in EtOH, H₂O, or aq. Na₂CO₃, nor reacting with PhNCO, NHPh·NH₂, NH₂OH, or semicarbazide, but hydrolysed by 25% H₂SO₄ to two acids, C₁₄H₁₄O₇, m.p. 197—198°, and C₁₄H₁₆O₈, m.p. 174—175°, of undetermined structure. R. T.

(A) 2:3-Diketo-1-methylcyclohexane-1:4-dicarboxylic ester. S. N. Naumov and R. J. Daniuschevskaja. (B) 2:3-Diketo-1:4-dimethylcyclohexane-1:4-dicarboxylic ester. S. N. Naumov and N. S. Volkenschtein (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 25, 4 pp.; No. 26, 6 pp.).—(A) The Na salt of Et₂ 2:3-diketocyclohexane-1:4-dicarboxylate in C_6H_6 and MeI yield Et_2 2:3-diketo-1-methylcyclohexane-1:4-dicarboxylate (I), b.p. 183°/11 mm., m.p. 49—50° [oxime, m.p. 46—48°; compound with o- C_6H_4 (NH₂)₂, m.p. 88°].

(B) The Na salt of (I) does not yield the expected 1:4-Me₂ derivative when treated with Me₂SO₄ or MeI, under various conditions. This failure is related to isomerisation of (I) to a non-ketonic form in presence of NaOEt.

R. T.

Product of reaction of succinylsuccinic with orthoformic ester. S. N. Naumov and C. E. Feigelman (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 30, 6 pp.).—Et₂ succinylsuccinate and CH(OEt)₃ in Ac₂O (3 hr. at the b.p.) yield Et₂ 2:5-diketo-1:4-di(diethoxymethyl)cyclohexane-1:4-dicarboxylate, m.p. 84—89° (bispyrazolone from NHPh·NH₂, m.p. 165°).

Condensation of pimelic with oxalic ester. S. N. NAUMOV and A. N. PERMINOVA (Acta Univ. Asia Media, 1937, [vi], No. 28, 10 pp.).—Et₂C₂O₄ and Et₂ pimelate in NaOEt-EtOH yield Et₂ 2:3-diketo-oycloheptane-1:4-dicarboxylate, m.p. 70—71° [phenyl-

hydrazone, m.p. 189—190°; compound with o- $C_6H_4(NH_2)_2$, m.p. 142°], and Et_3 a-oxalopimelate, b.p. 194—197°/18 mm.; the yield of the latter falls, and of the former rises, as the reaction temp. is raised from 20° to 115°.

Diphensuccindene series. XVI. Derivatives of Δ^{10} -diphensuccindene-9:12-dione. K. Brand and H. W. Stephan (Annalen, 1939, 542, 29—34).—10-Bromodiphensuccindane-9:12-dione (I) (A., 1937, II, 24) with NH₂OH,HCl or NHPh·NH₂,HCl in EtOH + a little conc. HCl gives the dioxime, m.p. 273—273·5° (decomp.), or bisphenylhydrazone, m.p. 242° (decomp.), respectively, of Δ^{10} -diphensuccindene-9:12-dione [bis-p-nitrophenylhydrazone, m.p. 305·5°, from (I) and p-NO₂·C₆H₄·NH·NH₂ in boiling PhNO₂]; the compound, C₃₁H₁₆O₃ (loc. cit.), is not produced.

Steroid ketones.—See B., 1940, 86, 87.

Sterols. XVIII. Δ^5 -Androsten-17-ol-7-one. S. Kuwada and K. Tutihasi (J. Pharm. Soc. Japan, 1939, 59, 115—117).—trans-Dehydroandrosterone in Et₂O with CaCO₃ and SOCl₂ yields 3-chloroandrosten-17-one, m.p. 154°, reduced by Na—EtOH to Δ^5 -androsten-17-ol (I). Oxidation of the acetate of (I) with CrO₃ in AcOH yields 17-acetoxy- Δ^5 -androsten-7-one (II), m.p. 212—213° (oxime, decomp. 128—131°), which is hydrolysed by KOH—MeOH to Δ^5 -androsten-17-ol-7-one, m.p. 143—144°. (II) appears to have slight physiological activity. J. D. R.

Mol. compound (1:1), m.p. 191—192·5°, of cholesterol and urane-3(β):11-diol. 3-Deoxy-11-ketoequilenin (?), $C_{18}H_{16}O_2$, m.p. 212—214° [semicarbazone, m.p. 255—260° (decomp.)]. Trione, $C_{21}H_{30}O_3$, m.p. 127—129° (disemicarbazone, +0·5 H_2O , m.p. >300°).—See A., 1940, III, 32.

Reaction of benzoquinone dibromide with ketones. S. N. Naumov and Z. N. Nazarova (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 14, 3 pp.).—Benzoquinone dibromide (I) reacts with certain ketones (COMe₂, COMeEt, COEt₂, COMePr, COPhMe, cyclohexanone), to yield quinol and α-bromo-ketones. CH₂Ac·CO₂Et does not react with (I). Addition of Br to C.C is observed in the case of CHPh.CH·COMe.

Behaviour of halogen atoms (A) of p-benzo-quinone di- and tetra-bromides. S. N. Naumov and E. V. Leontieva, (B) of dichloride and di-bromide of toluquinone. S. N. Naumov and L. A. Bogoljubova (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 12, 5 pp.; No. 13, 7 pp.).—(A) p-Benzoquinone dibromide (I) in EtOH and aq. KI react as follows: (I) + 2KI \rightarrow benzoquinone (II) + 2KBr + 2I. In presence of H_2 SO₄ the further reaction (II) $+ H_2$ SO₄ + 2KI \rightarrow quinol $+ K_2$ SO₄ + 2I takes place. p-Benzoquinone tetrabromide reacts analogously, with liberation of 4 or 6 atoms of I, in neutral and acid solution, respectively.

(B) Toluquinone dibromide reacts analogously to (I) with KI. Elimination of HCl (1 mol.) from toluquinone dichloride occurs under the same conditions, so that only 1 or 2 atoms of I are liberated, in neutral

or acid solution, respectively, with production of 50 or 100%, respectively, of 1:4:2:5-C₈H₂MeCl(OH)₂.

Kinetics of reaction of 2-chloroanthraquinone with aqueous ammonia.—See A., 1940, I, 31.

Semiquinone formation by anthraquinone and simple derivatives. A. Geare and J. T. Lemon (Trans. Faraday Soc., 1938, 34, 1409—1427).—Redox titrations of aq. or aq. C_5H_5N solutions of anthraquinone, Na anthraquinone-2-sulphonate, 1-mono-and 1:4-di-benzamidoanthraquinone, and Caledon Red BN show that in every case oxidation occurs in two stages with the formation of a semiquinone as a sol. intermediate compound. Semiquinone formation is promoted by addition of org. solvents and by the presence of NHBz and naphthacridone groups.

F. L. U. Products of condensation of cyclones with p-benzoquinone and α -naphthaguinone. E. A. Arbuzov, V. S. Abramov, and J. B. Devjatov (J. Gen. Chem. Russ., 1939, 9, 1559-1563).—Cyclone and acceptione do not react with p-benzoquinone (I) or α -naphthaquinone (II). Phencyclone (III) and (II) in PhNO₂ (4 hr. at 100°, or 12 hr. at room temp.) 1:4-endocarbonyl-1:4-diphenyl-2:3-(oo'-diyield phenylene)-11:12-dihydroanthraquinone, m.p. 265— 267°, converted by boiling with PhNO₂ for 6 hr. into 1:4-diphenyl-2:3-(00'-diphenylene)anthraquinone, m.p. 359°. With (I), (III) yields similarly 5:8-endocarbonyl-5: 8-diphenyl-6: 7-(oo'-diphenylene)-9: 10-dihydro-1: 4-naphthaquinone (IV), m.p. 194°, and 5:8diphenyl-6: 7-(00'-diphenylene)-1: 4-naphthaquinone, m.p. 405-408°; (IV) condenses further with (III), to give 1:4:5:8-diendocarbonyl-1:4:5:8-tetraphenyl-2:3:6:7-di-(oo'-diphenylene)-11:12:13:14-tetrahydroanthraquinone, m.p. 310°, and 1:4:5; 8-tetraphenyl-2: 3:6:7-di-(00'-diphenylene)anthraquinone, m.p. 460-461°.

Thujone series. VIII. Syntheses of isothujone. P. C. Guha and A. Kuppusami (J. Indian Inst. Sci., 1939, 22, A, 249—254).—Successive additions of CHPrβAc·CO₂Et and CH₂Br·CO₂Et to NaOEt in EtOH give Et β-carbethoxy-β-isopropyllævulate, b.p. 57°/20 mm., transformed by Zn and CHMeBr·CO₂Et in dry C₆H₆ into Et₂ γ-hydroxy-β-carbethoxy-γδ-dimethyl-β-isopropyladipate (I), b.p. 102—103°/25 mm., and an unidentified compound, b.p. 168°/23 mm. (I) does not give a definite product when acted on by mol. Na in boiling C₆H₆ whereas in xylene at 160° it is slowly transformed into 3-hydroxy-2:3-dimethyl-4-isopropyleyclopentanone, m.p. 63—64°. This is dehydrated by P₂O₅ in boiling C₆H₆ to isothujone, b.p. 224—228° (oxime, m.p. 117°).

Addition of magnesium iodide to camphor and terpene derivatives. S. T. Bowden and T. F. Watkins (J.C.S., 1939, 1961).—MgI₂ in Et₂O forms additive compounds with camphor, 5C₁₀H₁₆O,2MgI₂,Et₂O, m.p. 108°, congealed, then m.p. 176°; carvone, 2C₁₀H₁₄O,MgI₂,Et₂O, m.p. 85°, congealed, then m.p. 125°; and santonin, 2C₁₅H₁₈O₃,MgI₂, decomp. 175°. F. R. S.

Camphane series. V. Synthesis of Manasse's ketonic acid, $C_{10}H_{16}O_3$, from camphorquinone:

2:2:3 - trimethyl cyclohexan - 4 - one carboxylic P. C. GUHA and D. D. GUPTA (J. Indian Inst. Sci., 1939, 22, A, 255—262).—Et₂ α-cyanoglutarate, obtained by successive additions of CN·CH₂·CO₂Et and CHMeBr·CO₂Et to KOEt in EtOH, is condensed with CMe₂:C(CO₂Et)₂ and the product is treated with MeI, thereby giving Et₂ γ-cyano-αγ-dicarbethoxyαββ-trimethylpimelate, b.p. 160-190°/10 mm. This is hydrolysed, decarboxylated, and esterified to Et. γ -carbethoxy- $\alpha\beta\beta$ -trimethylpimelate (I), b.p. 118—122°/ 14 mm., which is hydrolysed (KOH-EtOH) to the acid, m.p. 61-62°. (I) with mol. Na in xylene at room temp, and then at 120-130° is cyclised to a product which could not be distilled but is hydrolysed and decarboxylated to a pasty acid from which, after esterification, Et 2:2:3-trimethyleyclohexan-4-onecarboxylate, b.p. 115-119°/7 mm., is obtained; the acid, m.p. 69-70°, derived therefrom is identical with Manasse's CO-acid.

Difference in odour of d-, l-, and dl-derivatives of amino- and bisamino-methylenecamphors. B. K. Singh and A. B. Lal (Nature, 1939, 144, 910—911).—The order of intensity of odour in the isomerides of 5- and 3-nitro-o-toluidino-2:5- and -2:3-toluylenebisaminomethylenecamphor is l>dl>d. The 3-NO₂- have a stronger odour than the 5-NO₂-compounds. L. S. T.

Addition reactions to conjugated systems. Caryophyllene and maleic anhydride. N. F. GOODWAY and T. F. WEST (J.C.S., 1939, 1853—1855). -Contrary to the indication of the tests proposed by Sandermann and by Fieser, the absorption spectrum of the mixture of sesquiterpenes known as caryophyllene shows the absence of any appreciable The carvoquantity of a conjugated isomeride. phyllene-maleic anhydride adduct with MeOH-HCl gives a Me₂ ester, b.p. 180—183°/3 mm., and not a monoalkyl lactonic ester of the type derived from the normal adducts of α-phellandrene and dicyclohexenyl. This result throws doubt on the suggestion put forward by Rydon (A., 1939, II, 272). F. R. S.:

Constituents of Didymocarpus pedicellata. III. Isolation of a sesquiterpene and two polyterpene products and examination of the fatty matter. S. Warsi and S. Siddigui (J. Indian Chem. Soc., 1939, 16, 423—426).—The essential oil fraction from D. pedicellata (A., 1938, II, 196) yields didymocarpene, b.p. 136—137°/3 mm., 147—148°/12 mm., [α] $_{0}^{30}$ — 3·7° in 1% EtOH (nitrosobisnitrosite, m.p. 132—134°), a doubly unsaturated sesquiterpene. The heavier essential oil and non-volatile fatty residue contains didymocarpol, ($C_{10}H_{20}O$)₅, m.p. 76°, a saturated polyterpene, and didymocarpenol, $C_{25}H_{42}O$, m.p. 137°. The saturated acids formed by saponification are palmitic, behenic, lignoceric, and stearic (I). Free (I) is present in pedicin leaves. F. R. G.

O-Acetyl derivative, m.p. 282—284° (decomp.), of quinovic acid.—See A., 1940, III, 83.

Preparation and reactions of karanjin. N. V. S. RAO, J. VEERABHADRARAO, and T. D. SESHADRI (Proc. Indian Acad. Sci., 1939, 10, A, 65—70).—Treatment of the oil from the seeds of *Pongamia glabra* with H₂SO₄-H₂O (2:1) gives K₂SO₄.

Extraction of the oil with hot EtOH (apparatus described) affords karanjin (I), m.p. 158—159°, in 0.9% yield. Hydrolysis of (I) by EtOH-KOH gives mainly C-acetylkaranjol with a little karanjic acid (II). Molten KOH causes extensive decomp. and only BzOH can be isolated. KOH in H₂O-EtOH (3:2) gives a good yield of (II) with a little BzOH. (I) is slowly transformed by Hg(OAc)₂ in boiling, anhyd. MeOH into diacetoxymercurikaranjin. H. W.

Chemistry of *Æsculus* saponin and its structure. E. Bureš and F. Volák (Časop. Českoslov. Lék., 1937, 17, 21—27, 41—50).—The saponin (I) obtained by pptn. with Et₂O or freezing from an EtOH extract of the seeds of the chestnut has a non-sugar-like basic structure, common to all the $\operatorname{\textit{\textit{Esculus}}}$ saponins, the m.p. of which lie between the limits 174—206°. Attempted acetylation gives a hydrolysis product forming an osazone, m.p. 128-129°. The prosapogenin (II) is obtained by hydrolysing (I) as rhombic crystals, m.p. 228°, but cannot be assumed to be a chemical individual as its prep. cannot be repeated. Heating (I) or (II) for 100 hr. in 6% H₂SO₄-EtOH gives æscigenin (III) separated as its K salt and forming an OAc-derivative, $C_{35}H_{54}O_3(OAc)_4$, and phenylhydrazone, $C_{35}H_{58}O_4(N\cdot NHPh)_3$. (III) is therefore $C_{35}H_{54}(CO)_3(OH)_4$, mol. wt. 590.46 (cryoscopic val. 612).

Specificity and relationship between chemical structure and vitamin-E activity.—See A., 1940, III, 54.

Action of magnesium alkyl halides on coumarin and related compounds. Synthesis of 2:2-dialkyl-1:2-benzpyrans. R. L. Shriner and A. G. Sharp (J. Org. Chem., 1939, 4, 575—582).— A series of 2:2-dialkyl-1:2-benzpyrans has been prepared by the action of Mg alkyl halides on coumarin (I). The structure of these compounds has been demonstrated by means of their physical consts., ozonolysis to o-OH·C₆H₄·CHO, and hydrogenation to 2:2-dimethylchroman. Evidence is adduced in favour of the view that formation of these 2:2dialkyl-1: 2-benzpyrans probably involves the production of an intermediate co-ordination compound in which the alkyl group undergoes an ay shift. Subsequent reaction with a second mol. of the Grignard reagent produces the dialkylbenzpyran. Gradual addition of an Et₂O solution of (I) to the Mg alkyl halide in Et₂O gives the following 2:2-dialkyl-1:2benzpyrans: Me₂ (II), b.p. 79—80°/2·5 mm.; Et₂, b.p. 99—100°/2·8 mm.; Pr^a₂, b.p. 118—120°/2·8 mm.; di-n-amyl-, b.p. $156-158^{\circ}/3$ mm.; di-n-hexyl-, b.p. $174-176^{\circ}/3$ mm.; di-n-heptyl-, b.p. 192—193°/3 mm. A clear solution of (II) turns red when kept, reduces KMnO4, decolorises Br, and is stable towards EtOH-alkali. Cold conc. H₂SO₄ gives a dark red colour and causes polymerisation, also caused by ${\rm FeCl_3}$ in solution in ${\rm Et_2O}$ or AcOH saturated with HCl. Boiling AcOH does not cause isomerisation.

o-OH·C₆H₄·CH·CHAc and MgMeI yield δ-o-hydroxy-phenylpentan-β-one, m.p. 127—129° (decomp.) (semicarbazone, m.p. 155—155·5°), which passes at its m.p. into 2:4-dimethyl-1:2-benzpyran, b.p. 79—80°/3

mm.; this is ozonised in $\mathrm{CCl_4}$ and then converted by Zn dust and $\mathrm{H_2O}$ into $o\text{-}\mathrm{OH}\text{-}\mathrm{C_6H_4}\text{-}\mathrm{COMe}$. Interaction of trans-o-hydroxycinnamic acid with MgMeI leads to $o\text{-}\mathrm{OH}\text{-}\mathrm{C_6H_4}\text{-}\mathrm{CH}\text{-}\mathrm{CHAe}$. H. W.

Synthesis of coumarins from o-hydroxyaryl alkyl ketones. II. Formation of o-coumaric acids from o-hydroxyaldehydes. D. Chakra-VARTI and B. MAJUMDAR (J. Indian Chem. Soc., 1939, **16**, 389—392; cf. A., 1938, II, 334).—o-OMe·C₆H₄·CHO or $2:4:1-(OMe)_2C_6H_3\cdot CHO$ and $CH_2Br\cdot CO_2Et$ (I) Zn-C₆H₆ at 100° (bath) give Et β-hydroxy-β-2methoxy-, b.p. $150-154^{\circ}/10 \text{ mm.}$, or -2:4-dimethoxyphenylpropionate, b.p. 180—184°/8 mm., respectively, dehydrated by SOCl₂-C₅H₅N-Et₂O to *Et 2-methoxy*-trans-cinnamate, b.p. 150°/8 mm., or Et 2:4-dimethoxytrans-cinnamate, b.p. 180—184°/8 mm. which with KOH-EtOH give 2-methoxy-, m.p. 182° (identical with that from o-coumaric acid by methylation and hydrolysis), or 2:4-dimethoxy-trans-cinnamic acid, m.p. 184°, respectively. The transesters do not form coumarins. o-OMe·C₆H₄·CHO and Zn-CHBrMe·CO₂Et (II) afford Et β-hydroxy-β-2methoxyphenylisobutyrate, b.p. 155°/4 mm., and thence Et trans-2-methoxy-a-methylcinnamate, b.p. $150-155^{\circ}/4$ mm., and the trans-acid, m.p. 102° . (I) and 2:5:1-OMe·C₆H₃Cl·CHO give Et β-hydroxyβ-5-chloro-2-methoxyphenylpropionate, b.p. 185°/4 mm., dehydrated to Et trans-5-chloro-2-methoxycinnamate, b.p. 170°/6 mm., which gives the transacid, m.p. 191°, also obtained from 5-chloro-o-coumaric acid. 1:2:4-C₆H₃Ac(OMe)₂ (III) and (II)-Zn, after vac. distillation, give Et 2:4-dimethoxy-αβ-dimethylcinnamate, b.p. 180–182°/6 mm., converted by H_2SO_4 in the cold or by HI (d 1.7) at 140° into 7-methoxy- or -hydroxy-3: 4-dimethylcoumarin, respectively. (I) and (III)-Zn give Et 2:4-dimethoxy-β-methylcinnamate, b.p. 174°/6 mm., but ring-closure was not effected.

5-hydroxy-8-methoxyflavone Synthesis | of (primetin monomethyl ether). W. BAKER, N. C. Brown, and (in part) J. A. Scott (J.C.S., 1939, 1922-1927).—2:6- $(OH)_2C_6H_3$ COMe is oxidised $(K_2S_2O_8)$ to the $2:3:6-(OH)_3$ -compound, decomp. $>230^{\circ}$ (Ac₃ derivative, m.p. 155°), and with CH₂PhCl in COMe₂ gives a mixture of 2-hydroxy-6-benzyloxy- (I), m.p. $109-110^{\circ}$, and 2:6-dibenzyloxy-acetophenone, m.p. $71\cdot5^{\circ}$. Oxidation of (I) with $K_2S_2O_8$ affords 2:5-dihydroxy-6-benzyloxyacetophenone, m.p. which is methylated (Me_2SO_4) to the $2:5-(OMe)_2$ compound, m.p. 74° , debenzylated to 2-hydroxy-3:6dimethoxyacetophenone, m.p. 61°. This compound is benzoylated to the 2-O·CH₂Ph-derivative, m.p. 119°, which with NaNH₂-PhMe yields 2-hydroxy-3:6dimethoxydibenzoylmethane, 165°, cyclised m.p. (NaOAc-AcOH) to 5:8-dimethoxyflavone, m.p. 144— 145°; this is demethylated with AlCl₃ in Et₂O to 5-hydroxy-8-methoxyflavone (primetin Me ether), m.p. 209-210°, identical with a natural specimen, further confirmed by the identity of the Ac derivative, m.p. 175—176°. Further demethylation to primetin has not been accomplished.

Attempts have been made to synthesise 6:8-dihydroxyflavone. Oxidation $(K_2S_2O_8)$ of 2-hydroxy-3-methoxyacetophenone gives 2:5-dihydroxy-3-

methoxyacetophenone, m.p. 172° (Ac₂ derivative, m.p. 127°), in poor yield. 2:5-(OH)(OMe)C₆H₃·COMe is oxidised (K₂S₂O₈) to a mixture of 2:3-dihydroxy-5-methoxyacetophenone (II), m.p. 120°, and 2:2′-dihydroxy-5:5′-dimethoxy-3:3′-diacetyldiphenyl, m.p. 202°. The Me derivative of (II) with BzCl affords 2-benzoyloxy-3:5-dimethoxyacetophenone, m.p. 142°, which with NaNH₂-PhMe is not converted into the dibenzoylmethane. o-Vanillin is oxidised (K₂S₂O₈) to a mixture of 4:4′-dihydroxy-3:3′-dimethoxydiphenyl-5:5′-dialdehyde, m.p. 210°, and 2:5-dihydroxy-3-methoxybenzaldehyde, m.p. 143°, which is methylated (Me₂SO₄) to the 2:3:5-(OMe)₃-derivative, m.p. 63° (lit. 71°). Oxidation (KMnO₄) and esterification of the aldehyde gives Me 2:3:5-trimethoxybenzaate, b.p. 178—180°/20 mm., which with COMePh-Na yields 2:3:5-trimethoxydibenzoylmethane, m.p. 82°, which has not been cyclised.

Rottlerin. II. H. BROCKMANN and K. MAIER (Annalen, 1939, 541, 53—75).—A more detailed account of work previously reviewed (A., 1939, II, 334). isoRottlerin (I) (improved prep.; cf. A., 1938,

$$\begin{array}{c} \text{OH} \\ \text{Me} \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \\ \text{OH} \\ \\ \text{OH} \\ \\ \text{COMe}_2 \\ \\ \text{CH}_2 \\ \\ \text{COOH CH} \\ \\ \text{(I.)} \\ \end{array}$$

II, 334) is isomerised by treatment with K₂CO₃ in COMe₂ (and acidification of the resulting solution) to ψ-rottlerin (II), m.p. 193—194° [penta-acetate, m.p. 176—177·5° (previous sintering)], which resembles rottlerin, is reconverted by boiling AcOH into (I), and [unlike (I)] gives PhCHO with boiling 2n-NaOH. Reactions in-

dicate that (II) is the enolic form of (I). Dihydroisorottlerin (III) and dihydro-ψ-rottlerin (IV), m.p. 206— 207° or 215—216° (penta-acetate, m.p. 181—182.5°), are similarly interconvertible. Reduction (H₂, Pdblack, COMe₂) of (II), (IV), or (I) (in presence of K₂CO₃) gives tetrahydro-ψ-rottlerin (V), m.p. 225— 226°, also obtained in smaller yield from (III) (using PtO_2); (V) is somtimes obtained from (I) in absence of The compounds, m.p. 209° and 225—228°, of Bakshi et al. (A., 1939, II, 275) are probably (III) and (V), respectively. Methylation of (I) with Me₂SO₄ in COMe₂ + K₂CO₃ affords ψ -rottlerin Me₅ ether (VI), m.p. 135—136° (cf. Narang et al., A., 1938, II, 66), reduced (H₂, Pd-black, C_5H_5N , COMe₂) to a H_2 -derivative (VII), m.p. 123—124°. An isomeric $di\tilde{h}ydro-\psi$ -rottlerin Me_5 ether (VIII), m.p. 134°, is obtained by methylation [as for (I)] of (III). Tetra-hydro- ψ -rottlerin Me_5 ether, m.p. 98°, is formed (with some Me_4 ether, m.p. 154—156°) by methylation of (V) and (solely) reduction (Pd) of (VI), (VII), or (VIII). Rottlerin Me_5 ether is reduced to its H_2 -derivative, m.p. 86—87°, which does not give PhCHO when ozonised [(II), (IV), (VI), and (VIII) similarly afford 0.58, 0.79, 0.76, and 0.88 mol. of PhCHO, respectively]. Prolonged interaction of diazoaminobenzene and (II) in COMe₂ gives (?) benzeneazo-ψrottlerin, decomp. from 265°, and the same benzeneazomethylphloroacetophenone (IX) as is obtained from rottlerin; (IX) is similarly produced from (IV), (V), and tetrahydrorottlerin. Tetrahydro- ψ -rottlerone, (?) $C_{21}H_{24}O_4$, m.p. 179° (sinters 170—171°) [from (V) and 2n-NaOH at <65°], is methylated (Me₂SO₄– K_2CO_3 -COMe₂) to a Me₂ ether, m.p. 87—89°. Absorption spectra of many of the above compounds are given. H. B.

Rottlerin. IV. Derivatives of isorottlerin. R. S. JALOTA, K. S. NARANG, and J. N. RAY (J. Indian Chem. Soc., 1939, 16, 405-409; cf. A., 1938, II, 108, 455).—isoRottlerin (I) (cf. Brockmann et al.. A., 1938, II, 334) is identical with the colouring matter, m.p. 181° (ibid., 66). Separation of rottlerin (II) and (I) is best effected chromatographically. (II) and 90% aq. EtOH-HCl ($d \cdot 1.15$) give (I). (I) and Me₂SO₄-KHCO₃-COMe₂ at 100° (bath) give isorottlerin Me₄ or Me₅ ether (III), new m.p. 135—138° [piperonylidene derivative, m.p. 147°; NaNO₂-AcOH at 30° give the nitrosite, m.p. 194—197° (decomp.), unchanged on attempted catalytic reduction, and on heating alone or with alkali gives PhCHO], oxidised by 30% H₂O₂-MeOH-aq. NaOH at 50° to the ether oxide, m.p. 120-122°, which when heated at > m.p. gives PhCHO. Reduction of (I) (Adams' PtO₂-EtOAc or Pd-C) gives dihydroisorottlerin (IV), m.p. 209°; similarly, once cryst. (I) gives (IV) and a substance, (?) C22H24O6, m.p. 225—228°. (Ill), or the Me ether of (IV), and Zn-AcOH afford a substance, m.p. 162—164°. Rottlerin Me, ether similarly gives a substance, m.p. 184° (softens from 179°), unchanged on attempted reduction (Adams' catalyst), or acetylation (Ac,O-C₅H₅N), or oxidation (alkaline H₂O₂). The constitution of (II) suggested by Brockmann et al. (loc. cit.) or McGookin et al. (A., 1938, II, 199) is doubted.

Thiophen series. XLIX. Constitution of indophenines. W. Steinkoff and W. Hanske (Annalen, 1939, 541, 238—260).—α-Indophenines, i.e., those derived from thiophens with free H at positions 2 and 5, are proved to have structures of type (A) (cf. Schlenk et al., A., 1923, i, 1235). Mg 2-thienyl iodide (I) and isatin in C₆H₆ give 3-2'
thienyldioxindole, m.p. 208—208-5°

thienylatoxinatie, m.p. 208—208-5 (blue melt) (ON-Bz₂ derivative, m.p. 159°), which with anhyd. ZnCl₂ at 180° affords isatin-thiophen-indophenine (A., 1932, 752). Et

5-bromo-3-2'-thienyldioxindole-1-acetate, m.p. 125° [from (I) and Et 5-bromoisatin-l-acetate in Et₂O], is converted by AcOH-conc. H₂SO₄ at 55—60°/ 10 min. into 5-bromo-1-carbethoxymethylisatin-thiophen-indophenine (loc. cit.); 5-bromo-3-2'-thienyl-, m.p. 217.5° (decomp.), and 3-2'-thienyl-1-methyldioxindole, m.p. 127.5—129° (blue melt), from (I) and 5-bromo- and 1-methyl-isatin, respectively, similarly transformed into indophenines. The product, b.p. 146—151°/3 mm., from CO(CO₂Et)₂ and (I) must contain 2-C4H3S·C(OH)(CO2Et)2 since short treatment with conc. H₂SO₄ gives mesoxophenine (II) [Et mesoxalate-thiophen-indophenine] (Schlenk, loc. cit.), which is hydrolysed (MeOH-KOH-dioxan) to glyoxylic acid-thiophen-indophenine (K_2 salt). Reduction (Zn dust, AcOH) of (II) affords Et₄ 2:2'dithienyl-5: 5'-di(malonate), m.p. 111 5—112 5°, hydrolysed (EtOH-KOH in absence of air) to 2:2'-di-

thienyl-5:5'-di(acetic acid), m.p. 217° (darkens at 210°) (Me, ester, m.p. 75.5—77°), which is decarboxylated (Cu powder in a vac.) to the known 5:5'dimethyl-2: 2'-dithienyl. Accordingly, (II) is A with Ph = $R = CO_0Et$. Et α -hydroxy- α -2'-thienylphenylacetate, b.p. 136°/0·3 mm., m.p. 59·5—60·5° [from (I) and BzCO₂Et], is converted by conc. H₂SO₄ (5 min. at room temp.) into Et phenylglyoxylate-thiophenindophenine (III) (A, R = CO₂Et), m.p. 208° [corresponding acid (IV) (A, $R = CO_2H$), m.p. $208-210^\circ$ (decomp.) $(K_2 \text{ salt})$, also obtained directly from BzCO₂Et, thiophen, and conc. H₂SO₄ in cold light petroleum. Reduction (Zn dust, AcOH) of (III) gives Et₂ 2 : 2'-dithienyl-5 : 5'-di-(α-phenylacetate), m.p. $95-96.5^{\circ}$; the corresponding acid, m.p. $70-85^{\circ}$ (decomp.) [from (IV), Zn dust, and aq. NH₃-NH₄Cl], loses CO₂ at 250° and affords 5:5°-dibenzyl-2:2°dithienyl (V), m.p. 96.5—97.5°, which is also obtained when (IV) is heated in a vac. (? reduction of part of the mol. at the expense of another part). When a solution of (IV) in 2n-NH $_3$ is kept until the original red colour disappears, 5:5'-dibenzoyl-2:2'-dithienyl (VI), m.p. $250-252^{\circ}$ (3:3'- Br_2 -derivative, m.p. $195-197^{\circ}$), separates; (VI) is synthesised from 2:2'-dithienyl, BzCl, and TiCl4 in C6H6. A possible intermediate in the production of (VI) from (IV) is the compound (A, R = OH). The Mg derivative from (I) and Bz₂ with Et₂O-CH₂N₂ + aq. NH₄Cl gives ms-2'-thienylbenzoin Me ether, m.p. 71—72°, converted by AcOH-conc. H₂SO₄ at 45—50° into benzilthiophen-indophenine (VII) (A, R = Bz), m.p. 223°; thiophen, Bz, and conc. H,SO, in cold CHCl, afford ms-di-2'-thienyldeoxybenzoin, m.p. 103.5—104°. Reduction (Zn dust, AcOH) of (VII) yields 5:5'didesyl-2: 2'-dithienyl, m.p. 219.5—220.5° (blue melt), which is cleaved by EtOH-NaOEt in H, to (V) and

2-Benzyl- and 2:5-dibenzyl-thiophen, b.p. 220—222°/12 mm., are obtained from thiophen, CH₂Ph·OH, and ZnCl₂. 5-Iodo-2-benzylthiophen, m.p. 55—57° (from the 5-ClHg-derivative and aq. KI-I at 50°), and Cu powder at 185—210° in N₂ give (V). ms-2-Thienylacetoin, b.p. 82°/1 mm. [from (I) and Ac₂], with conc. H₂SO₄ affords an unstable indophenine.

Isatin-thiophen-indophenine (A, with CPhR = C_6H_4 >NH), (VII), and 2:3-diketo-4:5-benzfuranthiophen-indophenine (VIII), m.p. >300° (from components in AcOH-conc. H_2SO_4 at 55°), are all blue; compounds, e.g., (II), (III), (IV), derived from RCO·CO₂R' are red or bluish-violet. Fission of (VIII) by alkali thus gives a red solution of the ohydroxyphenylglyoxylic acid derivative. β-Indophenines, i.e., those from thiophens with free H at positions 2 and 3, are now considered (cf. A., 1932, 752) to be of type (B). ms-5'-Methyl-2'-thienylbenzoin, m.p. 78—79° (from Mg 5-methyl-2-thienyl iodide and Bz₂), affords an unstable indophenine whilst ms-5'-bromo-2'thienylbenzoin, m.p. 99.5-100.5° (violet melt), is converted into an indophenine with difficulty. 2-Iodo-

3-thiotolen-5-carboxylic acid, m.p. 172—173°, is prepared (Grignard method) from the 2:5-I₂-derivative.

Thiophen series. L. Derivatives of 3:4dibromothiophen-2:5-dialdehyde and macrocyclic compounds. W. STEINKOPF, R. LEITS-MANN, A. H. MÜLLER, and H. WILHELM (Annalen, 1939, **541**, 260—282; cf. A., 1938, II, 154).—Comparison of the colours of various derivatives of 3:4dibromothiophen-2:5-dialdehyde (I) [dianil, m.p. 245° (rapid heating); di-o-hydroxyanil, m.p. 214° (decomp.); di-p-acetamidoanil, decomp. $>300^{\circ}$] with those of p-C₆H₄(CHO)₂ (dianil, m.p. 159°; di-o-hydroxyanil, m.p. 215°; di-p-acetamidoanil, m.p. 320—322°) and (in some cases) m-C₆H₄(CHO)₂, shows that the conjugated double linkings of the thiophen ring exert a bathochromic effect (cf. A., 1937, II, 163). 2-Methylquinoline and (I) in boiling Ac₂O give 3:4-dibromo-2:5-di- $(\beta-2'$ -quinolylvinyl)thiophen, m.p. 247—249° (dihydrochloride); m-, m.p. 180°, and p-, m.p. 243°, -di-(β-2'-quinolylvinyl)benzene are 3: 4-Dibromothiophen-2: 5-disimilarly prepared. acrylic acid, m.p. >350° [chloride (by SOCl₂), m.p. 172° (decomp.)], is obtained from (I), Ac₂O, and NaOAc at 170—175°. 5:5'-Dimethyl-2:2'-dithienyl, m.p. 67° (prep. from 5-iodo-2-thiotolen and Cu powder), and Br in CS_2 give the $3:4:3':4'-Br_4$ -derivative, m.p. 255°, which with Br at ~70° (irradiated in absence of affords 3:4:3':4'-tetrabromo-5:5'-di-(bromomethyl)-2: 2'-dithienyl, m.p. 210°, in 11—15% yield; the $3:4:3':4'-Cl_4$ -derivative, m.p. 201° (prep. with Cl₂-AcOH), with Cl₂ in boiling CCl₄ and $\overline{3}:4:3':4'$ -tetrachloro- $\overline{5}:5'$ - $\overline{di}(dichloro$ methyl)-2:2'-dithienyl, m.p. 119-120°, which is converted by aq. $Ca(OH)_2 + CaCO_3$ into 3:4:3':4'-tetrachloro-2:2'-dithienyl-5:5'-dialdehyde, m.p. 179°. This affords [as for (I)] 3:4:3':4'-tetrachloro-5:5'-di-(β -2''-quinolylvinyl)-2:2'-dithienyl, m.p. 284° , and with N₂H₄,H₂O in AcOH yields the dark red, insol., infusible azine (A). The following di-imines, m.p. >400° unless stated otherwise, are prepared from (I) or $C_6H_4(CHO)_2$ and the appropriate diamines: bis - (3:4 - dibromo - 2:5 - thioxylidene) - ethylenediamine $(B, R = [CH_2]_2), -o-phenylenediamine (B, R = o-phenylenediamine)$ C₆H₄), decomp. 262° (sinters 230°) [accompanied by 3:4-dibromo-2:5-di-(2'-benziminazolyl)thiophen, m.p.

 $N \cdot C_6 Me_4 \cdot N = CH \cdot C_6 H_4 \cdot CH$ $CH \cdot C_6 H_4 \cdot CH : N \cdot C_6 Me_4 \cdot N$ (C.)

385°], -m-phenylenediamine, -2:2'-diaminodiphenyl (B, R = oo'-diphenylene), viscous \sim 230° (softens \sim 220°), -benzidine (II) (B, R = pp'-diphenylene), and -4:4'-diaminodiphenylmethane (B, R =

·C₆H₄·CH₂·C₆H₄·); bis - p - xylylidene - ethylenediamine, -diaminodurene (C), and -4: 4'-diaminodiphenylmethane; bis-m-xylylidene-diaminodurene and -benzidine. p-C₆H₄(CHO)₂ and o-C₆H₄(NH₂)₂ in AcOH give p-di-(2'-benziminazolyl)benzene, decomp. >300°. A little

3:4-dibromothiophen-2:5-dialdehydedi-p-p'-amino-phenylanil [3:4-dibromo-2:5-thioxylidenebisbenzidine] (III), m.p. >450°, is formed with (II); (III) and (I)

in EtOBz-AcOH afford (II).

NPhMe₂, (I), and ZnCl₂ at 110—120° give 3:4-

dibromo - 2 : 5-di - (pp'-tetramethyldiaminobenzhydryl) - thiophen, m.p. 246°, oxidised (MnO₂, dil. H_2SO_4) to the dicarbinol, m.p. ~180—185° (previous sintering), which with EtOH-conc. H_2SO_4 in C_6H_6 affords the dye, $C_{38}H_{40}N_4Br_2S(HSO_4)_2$ [dibromothiophen-blue]. Similarly, m- and p- $C_6H_4(CHO)_2$ yield 1:3-, m.p. 147—149°, and 1:4-, m.p. 244—245° (decomp.), -di-(pp'-tetramethyldiaminobenzhydryl)benzenes, whence the dicarbinols, m.p. 135—140° (previous sintering) and 160—165°, respectively; the dyes, $C_{40}H_{44}N_4(HSO_4)_2$, give bluish-green solutions. 3:4:5-Tribromothiophen-2-aldehyde, NPhMe₂, and ZnCl₂ at 110—120° afford 3:4:5-tribromo-2-pp'-tetramethyldiaminobenzhydrylthiophen, m.p. 159—160°, whence tribromothiophen-green, $C_{21}H_{20}N_2Br_3S(HSO_4)_2$.

Preparation of 2:5-dimethylpyrrole from the corresponding monocarboxylic ester. N. M. Timoschavskaja (J. Gen. Chem. Russ., 1939, 9, 766).—2:5-Dimethylpyrrole is obtained (60—70% yield) by heating a mixture of Et 2:5-dimethylpyrrolecarboxylate with NaOH at 100—120°. Similarly 2:4-dimethylpyrrole (35% yield) is obtained from Et 2:4-dimethylpyrrole-3:5-dicarboxylate, and 1:2:5-trimethylpyrrole (20% yield) from Et 1:2:5-trimethylpyrrolecarboxylate. V. A. P.

Pyridine series. I, II. Synthesis of 2-methyl-4-ethylpyridine. I. R. H. SIDDIQUI. II. R. H. SIDDIQUI and A. Q. KHAN (J. Indian Chem. Soc., 1939, **16**, 410—414, 415—418).—CH₂Ac·CO₂Et, EtCHO, and piperidine at 0°, then heated with NH₃ (d 0.88) at 100°, give Et₂ 2:6-dimethyl-4-ethyl-1:4-dihydropyridine-3: 5-dicarboxylate (I), m.p. 112° (cf. Engelmann, A., 1886, 258), oxidised by NO₂ fumes in Et₂O (better) or I-EtOH to Et₂ 2:6-dimethyl-4-ethylpyridine-3: 5-dicarboxylate, b.p. 135—140°/0·5 mm. (picrate, +H₂O, m.p. 116°). (I) and KOH-EtOH give the K salt, which on distillation with soda-lime gives 2:6-dimethyl-4-ethylpyridine (hydrochloride, m.p. 97°; picrate, new m.p. 121°), which with PhCHO –ZnCl₂ at 140°, then 180—185° [Ac₂O in place of ZnCl₂ gives (II) + (III) only], gives 2:6-distyryl-4ethylpyridine (II), m.p. 85° [hydrochloride, m.p. 271— 272° (decomp.); platinichloride, m.p. 263° (decomp.); aurichloride, m.p. 200°; picrate, m.p. 255°], and 2-styryl-6-methyl-4-ethylpyridine (III), b.p. 205°/2 mm. [hydrochloride, m.p. 208°; hydriodide, m.p. 203°; platinichloride, m.p. 243°; aurichloride, m.p. 145°; picrate, m.p. 232—233° (sublimes at 90° in vac.)], and (?) α-phenyl-β-6-(2-methyl-4-ethyl)pyridylethyl alcohol [hydrochloride, m.p. 175°; platinichloride, m.p. 125° (softens at 85°); picrate]. (II) is unchanged with PhCHO-Ac₂O at 100° (bath). (III) and KMnO₄-COMe₂ give BzOH and 6-methyl-4-ethylpyridine-2-carboxylic acid, decarboxylated (trace of Cu) to 2-methyl-4-ethylpyridine (picrate, $+0.5H_2O$, m.p. 142°).

Long-chain alkyl derivatives of 2-aminopyridine. T. M. SHARP (J.C.S., 1939, 1855—1857).—

2-Aminopyridine and the alkyl halide (10—14 C) in boiling cymene give a mixture of 1-alkyl derivatives of 2-pyridoneimine, strong, unstable bases formed in greater proportion, and 2-alkylaminopyridines, weaker, The following are described: 2stable bases. decylaminopyridine, m.p. 51-52°; 1-decyl-2-pyridoneimine sulphate, m.p. 246° (decomp.); 2-undecylamino-pyridine, m.p. 60—61°; 1-undecyl-2-pyridoneimine oxalate, efferv. 205°; 2-dodecylaminopyridine, m.p. 60°; 1-dodecyl-2-pyridoneimine sulphate, m.p. 255° (decomp.); 2-tridecylaminopyridine, m.p. 65-66°; 1-tridecyl-2-pyridoneimine sulphate, m.p. ~265°; 2tetradecylaminopyridine, m.p. 69°; 1-tetradecyl-2-pyridoneimine sulphate, m.p. ~260° (this substance obtained alone in presence of NaNH2); and 1benzyl-2-pyridoneimine sulphate, m.p. 261° (decomp.). Deamination of the corresponding imine affords 1dodecyl-2-pyridone picrate, m.p. 96-97°.

F. R. S. Salts of 2:6-diaminopyridine.—See B., 1940, 87.

Transformation of indolyl methyl ketones into indole homologues. II. C. Alberti (Gazzetta, 1939, **69**, 568—583; cf. A., 1937, II, 387).—3-Methyl-2-indolyl Me ketone (I) and NaOMe or NaOEt at 210-220° give an amorphous product. With N₂H₄,H₂O in boiling EtOH, 3-indolyl Me ketone (II) gives its ketazine (III), m.p. 280—282° (decomp.). Under similar conditions, 2-methyl-3-indolyl Me ketone (IV) gives its ketazine (V), m.p. 263—265°. gives its hydrazone (VI), m.p. 142-144°, with the ketazine (VII), m.p. 234—236°, into which (VI) is converted when heated, or treated with I in EtOH. With NaOMe-EtOH at 180-200°, (III) gives 3ethylindole (VIII), with a compound (IX), C₁₀H₁₁N₃ or $C_{10}H_{13}N_3$, m.p. 120—121°. With N_2H_4 , H_2O —EtOH at 100°, followed by NaOEt–EtOH at 180— 200°, (II) gives (VIII) and (IX). At 180—200°, (V) [or (IV) and N_2H_4 , H_2O] and NaOEt-EtOH give 2-methyl-3-ethylindole, and a compound, C₁₁H₁₃N₃, m.p. 162—163°. With NaOEt-EtOH at 170—180°, (VI) or (VII) [or (I) and N_2H_4 , H_2O] gives 3-methyl-2ethylindole. E. W. W.

Synthesis of nitrogen ring compounds. XVIII. 4th Group. Synthesis of condensed nitrogen ring systems. III. Synthesis of octahydropyridocoline. S. Sugasawa and N. Lee (J. Pharm. Soc. Japan, 1939, 59, 113—115).—Catalytic reduction of Et γ -2-pyridylbutyrate yields Et γ -2-piperidylbutyrate, b.p. 114°/4 mm., converted at 200° into 4-keto-octahydropyridocoline, b.p. 118°/0·3 mm., which with K₂S and P₂S₅ in xylene yields 4-thioketo-octahydropyridocoline, b.p. 162°/0·3 mm., m.p. 162°. Reduction of this in EtOH at a Pb cathode yields octahydropyridocoline. J. D. R.

Compounds of iodine trichloride with pyridine, quinoline, and trimethylamine. E. V. Zappi and M. Fernandez (Anal. Asoc. Quím. Argentina, 1939, 27, 102—126).—The compounds formed by bases with ICl, ICl₃, and I are readily interconverted. The following are new: C_5H_5N , ICl_3 , m.p. 195—196° (decomp.), prepared by the anhyd. addition of ICl₃ to C_5H_5N or Cl₂ to C_5H_5N , I_2 or C_5H_5N , ICl; C_9H_7N , ICl_3 , m.p. 152—160° (decomp.) [hydrochloride, m.p. 185°

(decomp.)]; NMe_3, ICl_3 , m.p. 177° (decomp.). A reaction with NEt₃ could not be established nor could compounds with ICl₂ be prepared. F. R. G.

Transformations of Bz-hydroxyquinoline derivatives. II. I. M. Kogan and T. A. Sosnovski (J. Appl. Chem. Russ., 1939, 12, 1147—1153; cf. A., 1931, 1306).—Diazotisation of 5-amino-6-hydroxyquinoline-8-sulphonic acid (I) yields 5-diazo-6-hydroxyquinoline-8-sulphonic acid (II) (NH₄ salt; compounds with β-C₁₀H₇·OH and with Ac·[CH₂]₂·CO₂Et), reduced by SnCl₂ to 5-hydrazino-6-hydroxyquinoline-8-sulphonic acid. (I) and 20% HNO₃ at 50° yield (II).

Complexes of polynitro-compounds. Compounds of polynitro-substances with derivatives of carbostyril etc. A. Kent, D. McNeil, and R. M. COWPER (J.C.S., 1939, 1858—1862).—Me₁ derivatives of carbostyril and of NPh(CH₂Ph), and some other derivatives of the former have been examined with reference to their capacity to afford cryst., termol. (1:2) compounds. Some exceptions have been observed, including a cryst. 2:3 product from s-C₆H₃(NO₂)₃ (X) and dibenzyl-m-toluidine but 13 substances afford 16 new examples of ternary complexes with X or with pieric acid (Y). compounds prepared include some "salt-like" types with carbostyrils and with 2-quinolones for which a "H-bond" is suggested. The following compounds are described: carbostyril, XA_2 , m.p. 178°, and AY, m.p. 132°; thiocarbostyril, XA', m.p. 163—165°, and YA', m.p. 145°; dihydrocarbostyril, XB_2 , m.p. 137—138°; 3-methylcarbostyril, XC_2 , m.p. incongruent, and YC_2 , m.p. incongruent; 4-methylcarbostyril, XD_2 , m.p. $226-227^{\circ}$, and DY, m.p. $164-165^{\circ}$; 4-methyl-2-thiocarbostyril, XD_2' , m.p. $190-192^{\circ}$, and YD_2' , m.p. $193-195^{\circ}$; 5-methylcarbostyril, XE_2 , m.p. $222-223^{\circ}$, and EY, m.p. $156-157^{\circ}$; 6-methylcarbostyril, FY, m.p. $171-172^{\circ}$; 6-methyl 2-thiocarbostyril, FY, m.p. $150-161^{\circ}$ 6-methyl-2-thiocarbostyril, XF_2 , m.p. 159—161°, and compound with Y (?), m.p. 140—142°; 7-methylcarbostyril, XG_2 , m.p. 203—204°, and GY, m.p. 163° ; 8-methylcarbostyril, XH_2 , m.p. 181° and HY, m.p. 128—129°; 4:6-dimethylcarbostyril, XL_2 , m.p. incongruent, and LY, m.p. 188° ; 4:7dimethylcarbostyril, XM_2 , m.p. 213—214°, and MY, m.p. 189—191°; 4 : 8-dimethylcarbostyril, XN_2 , m.p. 199—200°, and NY, m.p. 192—194°; 1-methyl-2-quinolone, XP, m.p. 77—79°, and PY, m.p. 128— 129°; 1-methyl-2-thioquinolone, XP_2 ′, m.p. 98—99°, and YP_2 ′, m.p. 104°; 1:6-dimethyl-2-quinolone, QY, m.p. 150°; 1:7-dimethyl-2-quinolone, XR, m.p. 106—107°, and RY, m.p. 132°; 1:8-dimethyl-2-quinolone, SY, m.p. 134°; 2-methyl-2-quinolone, SY, m.p. 134°; 2-methyl-2-quinolone, SY, m.p. 134°; 2-methyl-2-quinolone, SY, m.p. 134°; 2-methyl-2-quinolone, SY, m.p. 150°; 170°; 2-methyl-2-quinolone, SY, m.p. 150°; 2-methyl-2-qu m.p. 89—90°, and UY, m.p. 170—171°; 2-methylthioquinoline, XU', m.p. 99—100°, and U'Y, m.p. $183-184^{\circ}$; 2-methoxy-6-methylquinoline, XV, m.p. 72—73°, and VY, m.p. 181—182°; 2-methylthio-6-methylquinoline picrate, m.p. 196—197°; 2-methylthio-1-methylquinolinium picrate, m.p. 175°; 2-chloro-7-methylquinoline, m.p. 81° (picrate, m.p. 113—114°); 3-methylquinoline oxide hydrochloride, m.p. 192— 194° (picrate, m.p. incongruent); 6-methylquinoline oxide hydrochloride, m.p. 172—173° (picrate, m.p. 174—175°); 5-, m.p. 222—223°, and 7-methylcarbostyril, m.p. $192-193^{\circ}$; 1:7-dimethyl-2-quinolone, m.p. $107-108^{\circ}$; 1:6-dimethyl-2-thioquinolone, m.p. 137° ; dibenzyl-0-toluidine picrate, m.p. $120-121^{\circ}$; $m\cdot C_6H_4Me\cdot N(CH_2Ph)_2+X$ (3:2), m.p. $71-72^{\circ}$; dibenzyl-m-toluidine picrate, m.p. $126-127^{\circ}$; $p\cdot C_6H_4Me\cdot N(CH_2Ph)_2+X$, m.p. $62-64^{\circ}$; dibenzyl-p-toluidine picrate, m.p. $174-175^{\circ}$; 1-thiocoumarin picrate, m.p. 148° ; trans-o-aminocinnamic acid +X complex, m.p. 131° ; 2-thiocoumarin +X complex, m.p. 87° ; and $1:2:4:5\cdot C_6H_2Me(NO_2)_3$ and $CH_2(C_6H_4\cdot NH_2\cdot p)_2$ complex, m.p. $92-93^{\circ}$. F. R. S.

Quinoline derivatives. IV. (SIGNA.) L. MONTI and (SIGNA.) G. FERRARI DI CAPORCIANO (Gazzetta, 1939, 69, 745—749).—2-Hydroxy-6-methoxy-4-methylquinolino (A., 1932, 402) in AcOH with nitrous fumes gives its $5\text{-}NO_2$ -, m.p. 278—280° (decomp.; sinters 260°), reduced (FeSO₄–NH₃, or, better, Zn–AcOH) to the $5\text{-}NH_2$ -derivative, m.p. 270—272° (hydrochloride, m.p. 240—242°; picrate, m.p. 198—200°; Ac derivative, m.p. 260—262°; p-dimethylaminobenzylidene derivative, m.p. 260—262°; 2-quinolylmethylene derivative, decomp. 220—222°). E. W. W.

Derivatives of 3-nitro-4-hydroxyquinoline. II. Synthesis of 3-nitro-4:6-dihydroxyquinoline. M. Colonna (Gazzetta, 1939, 69, 684—688).—2:5:1-NH₂·C₆H₃(OH)·CO₂H in conc. HCl with KO·N·CH·CH₂·NO₂ gives 2- β -nitroethylideneamino-5-hydroxybenzoic acid, m.p. 218° (decomp.), which with boiling KOAc-Ac₂O yields 3-nitro-4:6-dihydroxyquinoline, decomp. ~320° (darkening from 280°) (Me₂ ether, m.p. 254°), reduced by Sn-HCl to the 3-NH₂-compound, m.p. 312—313° (decomp.; darkens ~300°), of which the Ac derivative (darkens ~300°) with EtI-K₂CO₃-EtOH gives 3-acetamido-4:6-diethoxyquinoline, m.p. ~100° (from H₂O), 175° (anhyd.).

Action of chlorine on carbazole. J. S. SALKIND and M. E. Momarenko (J. Appl. Chem. Russ., 1939, 12, 1134—1136).—Carbazole in CCl₄ and Cl₂ yield tetrachloro-, m.p. 223—224°, and octachloro-carbazole.

Attempts to prepare optically active tervalent nitrogen compounds. I. Syntheses of 1:9-phenylenecarbazole and derivatives. (MISS) H. G. DUNLOP and S. H. TUCKER (J.C.S., 1939, 1945—1956).—The theory is put forward that, in 1:9-phenylenecarbazole and its derivatives, if the whole mol. is planar, the N bonds are strained, but that this condition is partly relieved if the N adopts a position outside the plane of the C₆ rings. In such a structure the replacement by any atom or group of any H, other than that attached to the central C₆ nucleus, and p to the N, will give rise to an asymmetric mol., the asymmetry of which is conditioned by the non-planar orientation of the N^{III} bonds.

9-(2'-Nitrophenyl)carbazole (improved yield) is reduced (SnCl₂-HCl-AcOH) to the 9-2'-NH₂-compound, m.p. 119—121°, which is deaminated (NaNO₂-H₂SO₄-AcOH) to 1:9-phenylene-

carbazole (I), m.p. $^{1}36.5-138.5^{\circ}$ (picrate, m.p. $^{1}65-169^{\circ}$; s- $^{1}C_{6}H_{3}(NO_{2})_{3}$ compound, m.p. $^{1}92-194^{\circ}$). 9-Phenylcarbazole, m.p. $^{9}1-93^{\circ}$, prepared

from carbazole (II), PhI, and K₂CO₃-Cu, forms picrate, m.p. 126—129°, and s-C₆H₃(NO₂)₃ compound, m.p. 132—134°. Similar condensation with (II) and 4-chloro-3-nitrotoluene gives 9-(2'nitro-4'-methylphenyl)carbazole, m.p. 104-106°, reduced to the $2'-NH_2$ -compound, m.p. 117—119°, which is deaminated to 1: 9-(4'-methylphenylene)carbazole, m.p. 109—111° [picrate, m.p. 145—150°; phenyl)carbazole, m.p. 134—136°, similarly prepared, is reduced to the NH_2 -compound, m.p. $84-86^{\circ}$ which could not be converted into the corresponding phenylenecarbazole. Reduction of 9-(2'-nitro-4'aminophenyl)carbazole with Na₂S-EtOH affords the 9-2'-nitro-4'-amino-compound, m.p. 164—166° (Ac derivative, m.p. 261—263°), and with SnCl₂-HCl-AcOH, the $2': 4'-(NH_2)_2$ -compound, m.p. 128—130° (Ac_2 derivative, m.p. $230-235^\circ$; 4'-Ac derivative, m.p. 235—245°), is obtained; these substances could not be cyclised. Condensation of (II) with 4-chloro-, 4-bromo-, or 4-iodo-3-nitroacetophenone, m.p. 112-115°, does not take place. 4-Chloro-3-nitrobenzonitrile and (II) condense to 9-(2'-nitro-4'-cyanophenyl)carbazole, m.p. 172—174°, reduced to the -2'-NH₂-compound, m.p. 186—188°, cyclised and hydrolysed to 1:9-phenylenecarbazole-4'-carboxylic acid, m.p. 340°, in quantity insufficient for its resolution. p-C₆H₄I·CO₂Et and (II) yield Et 9-phenylcarbazole-4-carboxylate, m.p. 97—100°, hydrolysed to the acid, m.p. 215—219°. PhCl, (II), and CCl₃·CN give 3-trichloroacetylcarbazole, m.p. 206-208° (Ac derivative, m.p. 120—125°), hydrolysed to carbazole-3-carboxylic acid. The Et ester of this acid and o-C₆H₄Cl·NO₂ afford Et 9-(2'-nitrophenyl)carbazole-3-carboxylate, m.p. 120—122°, reduced to the 2'- NH_2 -compound, m.p. 140—142°, which is cyclised and hydrolysed to 1:9-phenylenecarbazole-3-carboxylic acid, m.p. 305°, a symmetrical substance. PhCl, (II), and CCl₃·CN with AlCl₃ give carbazole-3: 6-dicarb-oxylic acid, m.p. >360°, the Et ester of which with $o-C_6H_4Cl\cdot NO_2$ yields Et 9-(2-nitrophenyl)carbazole-3:6 -dicarboxylate, m.p. 202—203°, reduced to the $2\text{-}NH_2\text{-}\text{compound},$ m.p. 175—177°. This is cyclised to Et 1:9-phenylenecarbazole-3:6-dicarboxylate, m.p. 185—187°, hydrolysed to the acid, m.p. $>360^{\circ}$, which gives salts with alkaloids which dissociate on attempted crystallisation. Et 9-phenylcarbazole-3: 6dicarboxylate has m.p. 139-141°. Bromination of (I) gives successively 3(?)-bromo-, m.p. 205-210°, and 3:6(?)-dibromo-1:9-phenylenecarbazole, 202-209°. HNO₃ and I with (I) afford iodotrinitro-1: 9-phenylenecarbazole, m.p. $>340^{\circ}$. F. R. S.

m-Derivatives of acridine. X. Preparation of 2-chloro-7-methoxy-5-(8-diethylamino-α-methylbutyl)aminoacridine. N. S. Drozdov (J. Gen. Chem. Russ., 1938, 8, 1192—1193).—5-Chloro-4'-methoxydiphenylamine-2-carboxyl chloride and NH₂·CHMe·[CH₂]₃·NEt₂ in C_6H_6 are heated for 30 min. at the b.p., POCl₃ is added, and boiling is continued for 7 hr., when 2-chloro-7-methoxy-5-(δ-diethylamino-α-methylbutyl)aminoacridine is obtained in 81% yield. R. T.

meso-Derivatives of acridine. XIV. Alkylated 5-chloroacridines. N. S. Drozdov (J. Gen. Chem. Russ., 1939, 9, 1456—1457).—10-Methylacridone and SO_2Cl_2 in $C_2H_4Cl_2$ yield a Cl-derivative, which with NH₂Ph affords 9-anilino-10-methylacridone, new m.p. 246—250°. 5-Chloro-3-methylacridine and p- C_6H_4 Me· SO_3 Me (I) (1 hr. at 130°) give 3:10-dimethylacridone. 2:5-Dichloro-7-methoxyacridone and (I) (50 min. at 130°) yield unstable 2:5-dichloro-7-methoxy-10-methylacridine 10-p-toluenesulphonate, which readily decomposes into 2-chloro-7-methoxy-10-methylacridone and p- C_6H_4 Me· SO_2 Cl. R. T.

Derivatives of acridine-5-aldehyde. (Signa.) L. Monti (Gazzetta, 1939, 69, 749—752).—This aldehyde (I) with COPhMe in 15% NaOH or in EtOH (and sec. base) gives 5-(phenacylidenemethyl)acridine, m.p. 212—214°. In EtOH (NHMe₂), 5-(2'-hydroxy-4'-methoxy-, m.p. 196—198°, and 5-(2'-hydroxy-3': 4'-dimethoxy-phenacylidenemethyl)acridine, m.p. 238—240°, are similarly prepared. In vaseline at 150° (bath), (I) (or its NaHSO₃ compound) and p-NH₂·C₆H₄·SO₂·NH₂ give 5-(p-amidosulphonylanilomethyl)acridine, m.p. 248—250°. E. W. W.

Reaction of sodium nitroprusside with hydantoin. G. TRAVAGLI (Annali Chim. Appl., 1939, 29, 479—481).—Hydantoin with Na nitroprusside in dil. aq. NaOH at 0° affords a complex,

Na₃[(CN)₅Fe·NO·CH<CO-NH], hydrolysis of which gives parabanic acid and NH₂OH; the mother-liquor on keeping yields Na₃[Fe(CN)₅H₂O],H₂O.

Thiobarbituric acids.—See B., 1940, 87.

Reactions of pyrazolone derivatives. G. Losco (Gazzetta, 1939, 69, 639—646).—Methenylbis-4-(1phenyl-3-methyl-5-pyrazolone) (I) with aq. NH_2OH in dioxan gives 1-phenyl-3-methyl-5-pyrazolone (II) and the oxime (III), m.p. 170-174° (decomp.), of its -4-aldehyde, from which (III) is also prepared. At 170—175°, (III) gives bis-(5-keto-1-phenyl-3-methyl-4-pyrazole), (I), and the 4-CN derivative (IV) (cf. A., 1938, II, 505) of (II). With MeI-MeOH at 130-135°, (IV) gives 4-cyano-1-phenyl-2: 3-dimethyl-5isopyrazolone, m.p. 224—225°, which in boiling conc. HCl yields 1-phenyl-2: 3-dimethyl-5-isopyrazolone-4carboxylamide, m.p. 241-243°, and, on prolonged boiling, antipyrine (V). With HCO NHPh at 140-150° (but not with other anilides), (II) gives (I), and 3-methyl- and 1: 3-diphenyl-5-pyrazolone react similarly. With HCO·NH₂ and HCO·NH·NHPh, (II) also gives (I). (V) does not react in this way.

Pyrazolones [photographic colour developers].—See B., 1940, 89.

Transformation of isooxazole-3-carboxylic acids into pyrazole derivatives. [I.] II. S. Cusmano (Gazzetta, 1939, 69, 594—601, 621—628).—I. 5-Phenylisooxazole-3-carboxylic acid heated with NHPh NH₂ gives 5-amino-1: 3-diphenylpyrazole (cf. Justoni et al., A., 1938, II, 206), probably by way of CH₂Bz-CN and its hydrazone.

II. 5-p-Nitrophenylisooxazole-3-carboxylic acid similarly gives 5-amino-1-phenyl-3-p-nitrophenylpyr-

azole (I), m.p. 185° (Ac derivative, m.p. 210°; CHPh: derivative, m.p. 175°), which with AcOH-NHO₂ gives a product separated by 5% KOH-EtOH into the 4-oximino-derivative (5-imino-4-oximino-1-phenyl-3-pnitrophenylpyrazoline), decomp. ~290° (converted by conc. HCl into a substance, $C_{15}H_{10}O_4N_4$, m.p. 209°), of (I) in its imine form, and a substance, $C_{30}H_{21}O_4N_9$, m.p. 310°.

Action of methyl iodide on Schiff's bases of phenylmethylpyrazole-aldehyde and benzaldehyde. M. Passerini and G. Losco (Gazzetta, 1939, 69, 658—664).—Di-p-phenetylformamidine and 5keto-1-phenyl-3-methylpyrazole heated in EtOH give 5-keto-1-phenyl-3-methyl-4-p-phenetyliminomethylpyrazole (I), m.p. 144-146°, which with MeI at 100-105° gives its 2-methiodide, m.p. 210-212° (decomp.), hydrolysed by 8% KOH to 5-keto-1-phenyl-2: 3-dimethylpyrazole-4-aldehyde, m.p. 216—217° (phenylhydrazone, m.p. 190—192°; oxime, m.p. 220—221°; semicarbazone, decomp. 204-208°). At 120-130° (I) and MeI give a product, m.p. 190°, hydrolysed by dil. NaOH to p-phenetyltrimethylammonium iodide (II), decomp. 230—235° (corresponding nitrate, m.p. $175-176^{\circ}$). p-OEt·C₆H₄·N:CHPh and MeI at 120-130° give a product which in boiling H₂O gives (II). p-C₆H₄Me-N:CHPh similarly yields p-tolyltrimethylammonium iodide (sublimes).

Reaction between allantoin and phenylhydrazine. E. CIMA (Gazzetta, 1939, 69, 664—667).—Allantoin and NHPh·NH₂ at 190—200° evolve NH₃, giving a compound, C₂₀H₂₃O₂N₇, m.p. 163°, of diphenylcarbazide and phenylsemicarbazide, and 1:3-dianilino-5-ketotetrahydroglyoxaline [or possibly 4-anilino-5(or 6)-keto-1-phenylhexahydro-1:2:4-triazine], m.p. 173—175°, with, under certain conditions, an isomeride, m.p. 125°, of the last, into which this is converted when heated.

E. W. W.

Pyrrole-indole group. Series II. XXVI. Dehydrogenation by means of sulphur: 3:3'-di-indolyl from indole. B. Oddo and (Signa.) L. Raffa (Gazzetta, 1939, 69, 562—568).—Indole and S at 115—125° (sealed tube) give α-3:3'-di-indolyl (I) (cf. Gabriel et al., A., 1923, i, 706) [benzeneazoderivative, m.p. 162—165° (softens 158°)]. At higher temp. S compounds are formed. With NaNO₂-AcOH, (I) gives a compound, C₁₆H₁₀O₂, m.p. 270° (decomp. from 245°). (I) forms with difficulty a dipicrate, m.p. 189° (explosive decomp.).

Reactions with armyl nitrite. IV. T. AJELLO (Gazzetta, 1939, 69, 646—658).—2-Methylindole and C_5H_{11} ·O·NO (I) give under certain conditions a small amount of a cryst. product, decomp. 222° (explosive). 2-Phenylindole with (I) in $E_{t_2}O$ gives the 3-oximino-(II) and in boiling C_6H_6 the 3-NO₂-derivatives (III); with (I) in C_6H_6 , (II) gives (III). In Et_2O , (I) converts 1-hydroxy-2-phenylindole into 2-phenylisatogen (IV), and 3:3'-diketo-2:2'-diphenyl-1:1'-di-indolyl (V), m.p. 225°. [The same product was regarded by Angeli et al. (A., 1907, i, 153) as 3-hydroxy-2-phenylindole, but this was shown by Kalb et al. (A., 1912, i, 726) to have different properties.] Al-KOH, or better aq. NH₂OH in EtOH, reduces (V) to 3:3'-dihydroxy-2:2'-diphenyl-1:1'-di-indolyl (VI), m.p.

180—182° (cf. Kalb, loc. cit.) (Bz derivative, m.p. 238°). (I) converts (VI) into (V); with (I) in Et₂O, (V) slowly gives (IV). In AcOH, 30% $\rm H_2O_2$ oxidises (VI) to 2-phenylindolone. E. W. W.

Condensation of isatin and urea. E. Bureš and J. Hadáček (Časop. Českoslov. Lék., 1937, 17, 252—257).—Isatin and CO(NH₂)₂ condense to form a pink glass, m.p. 199—200°, with odour of bitter almonds. Hexagonal prisms are obtained by crystallisation, mol. wt. 239, mean N content 24·62%, forming metallic salts containing 26·12% Ag, 19·66% Hg, 4·68% Bi, 63·13% Pb. Bromination gives yelloworange plates (Br 35·68%, N 7·16%), m.p. 245—246°. F. R.

Triazolium salts. IV. Reduction of benztri-

azolium salts. F. Krollpfeiffer, W. Graulich, and A. Rosenberg (Annalen, 1939, 542, 1-13).-Reduction (Na₂S₂O₄, aq. NaOH; method: A., 1935, 359) of 1:2-dimethyl-1:2:3-benztriazolium methosulphate (I) gives approx. equal amounts of o-NHMe·C6H4·N.NMe (II) and a compound, C8H11N3 110—111°/1 mm., which is not o-NHMe·C₆H₄·NH·N:CH₂ but may be o-NH₂·C₆H₄·NMe·N.CH₂. Reduction Na₂S₂O₄ in boiling 2N-NaOAc affords Reduction of (I) with o-NH₂·C₆H₄·NHMe and NH₂Me. The violet hydrochloride from (II) and Et₂O-HCl rearranges rapidly to a colourless salt, presumably o-CH₂:N·NH·C₆H₄·NHMe,HCl (together with a little of a *substance*, ? $C_{18}H_{16}N_6$, decomp. 275°), attempted purification of which results in fission to NH_4Cl and 1-methylbenziminazole (IV). Boiling 2n-HCl similarly converts (II) into (IV). The Ac derivative, m.p. 193—194°, of (II) is reduced (Zn dust, EtOH-AcOH) to 1:2-dimethylbenziminazole; boiling 2n-HCl also gives (IV). Attempted thermal rearrangement of (II) was unsuccessful; boiling 2% EtOH-NaOEt affords a little of a compound, C₈H₉N₃, decomp. ~120° (according to rate of heating) [picrate, decomp. 135—136°; Ac derivative, m.p. 120—121° (accompanied by a substance, decomp. ~310°)]. The hydrochloride from (III) with boiling EtOH also gives (IV) and NH₄Cl; the picrate of (IV) is obtained directly from (III) and MeOH-picric acid. The Ac. (V), m.p. $135-136^{\circ}$, and Ac_1 derivative, m.p. $92-93^{\circ}$ [from (V) and EtOH + 2n-NaOH], of (III) are both converted by boiling 2n-HCl into (IV), some 3-methyl-5:6-benz-1:2:4-triazine, m.p. 95—96° (cf. Bischler, A., 1890, 148), and resinous material. 1:3-Dimethyl-1:2:3-benztriazolium methosulphate, m.p. 97—98° [from 1-methylbenztriazole and Me₂SO₄; a little (I) is also formed], is reduced (Zn dust, 2n-HCl) to o- $C_6H_4(NHMe)_2$ (VI); $Na_2S_2O_4$ -aq. NaOAc is without action but $Na_2S_2O_4$ -aq. NaOH gives α -omethylaminophenyl-α-methylhydrazine (VII), b.p. 142-143°/14 mm., which with PhCHO-AcOH and AcoO 2-phenyl-1: 3-dimethyland 2-hydroxy-1:2:3-trimethyl-2:3-dihydrobenziminazole, respect-Short treatment of (VII) with boiling 2n-HCI gives 2:3-di(methylamino)-5:10-dimethylphenazonium dichloride (+2H₂O), m.p. 190—195° (according to rate of heating) [also obtained (method: Fischer, A., 1904, i, 349) by oxidation (FeCl₃) of (VI); the

intermediate dihydrophenazine is oxidised by 1 mol. of (VII), whereby (VI) and NH₄Cl are produced.

Constitution of yeast-rihonucleic acid. III. Nature of the phosphatase-resistant group. J. M. Gulland and (Miss) E. M. Jackson (J.C.S., 1939, 1842—1844; cf. A., 1938, III, 1051).—Dephosphorylation of yeast-ribonucleic acid with mixed bone-phosphomonoesterase and Russell's viper venom gives in the nucleotide fraction adenine and a nucleotide, C₉H₁₄O₈N₃P, possibly isomeric with cytidylic acid, together with guanine, guanosine, and uridine. Sweet-almond emulsin effects only 75% dephosphorylation and examination of the products suggests that the course of the reaction is the same.

F. R. S.

Constitution of nitrosopyrrole-black. II. G. Illari (Gazzetta, 1939, 69, 668—674; cf. A., 1939, II, 285).—The 2"-pyrrolinyl ether of 3-oximino-2-

phenylpyrrole in boiling AcOH slowly gives a "black" (I), C₃₆H₂₄O₅N₆, no m.p., stable to 10% KOH in H₂O or EtOH,

oxidised by $K_2Cr_2O_7-H_2SO_4$ to o- $C\bar{O}_2H$ - C_6H_4 ·NHBz (II) and $H_2C_2O_4$, by H_2O_2 in 5% KOH to a sol. K_2 salt of the *compound*, $C_{36}H_{24}O_7N_6$, and by KOH-KMnO₄ to (II). The annexed structure is proposed for (I).

Chlorophyll. XCII. Synthesis of rhodoporphyrin-γ-carboxylic anhydride; synthetic rhodins and verdins. H. FISCHER and C. G. Sohröder (Annalen, 1939, 541, 196—202).—Mesoverdin ester II (cf. A., 1939, II, 230) is oxidised (KMnO₄-COMe₂ at 0°) to the green rhodoporphyrinγ-carboxylic anhydride, m.p. 250—251° (previous sintering), identical with that [m.p. 260° (sinters at 250°)] obtained from phæoporphyrin-a₅. Mesoporphyrin XIII (2:3:5:8-tetramethyl-1:4-diethylporphin-6: 7-dipropionic acid) is converted (oleum) into mesorhodin XIII (Me ester, m.p. 275°) and thence by NH₂·CO·NH·NH₂,HCl into mesoverdin XIII (Me ester, m.p. 241°). Similarly, mesoporphyrin II Me2 ester (Me₂ 1:3:5:7-tetramethyl-4:8-diethylporphin-2: 6-dipropionate) gives, as sole product, mesorhodin Me₁ ester II, m.p. 240° (previous sintering), and thence a verdin, C₃₅H₃₆O₃N₄, m.p. 222—223° (previous sintering), not identical with mesoverdin ester I or II. Synthetic mesoporphyrin IX gives rise to the same verdins (loc. cit.) as are obtained from the natural product; the last is thus considered to be homogeneous. The rhodin from 1:3:5:7-tetramethyl-2: 4-diethyl-6: γ-ethyleneporphin-8-propionic acid (the deoxophylloerythrin of A., 1935, 1134; prep. of which also gives an isomeric phylloerythrin) has m.p. 274°.

Carboxyl and amino-groups of bilirubin. W. L. DULIÈRE (Bull. Soc. Chim. biol., 1939, 21, 1181—1184).—The salt obtained from bilirubin (I) and CaCl₂ in aq. medium contains 5·1% of Ca, but 9·05% in MeOH-EtOH medium. Treatment of (I) with HNO₂ indicates that the NH₂-N content is 3·78% at first but, after ~12 hr., reaches 7%. These

results, which indicate that (I) is $C_{58}H_{54}N_2(NH_2)_6(CO_2H)_6$, are explained by supposing that in aq. media part of the acidity due to CO_2H is neutralised by 1.5 N present as free NH_2 and that in alcohol this is blocked. W. McC.

Phthalocyanines and related compounds. XV. Tetrabenztriazaporphin: its preparation from phthalonitrile and a proof of its structure. P. A. BARRETT, R. P. LINSTEAD, and G. A. P. TUEY. Preliminary X-ray investigation. J. M. ROBERTSON. XVI. Halogenation of phthalocyanines. P. A. BARRETT, E. F. BRADBROOK, C. E. DENT, and R. P. LINSTEAD (J.C.S., 1939, 1809—1820, 1820—1828).—XV. Phthalonitrile and MgMeI condense in cold Et₂O, and when the solvent is removed and the residue heated with a little H₂O, Mg tetrabenztriazaporphin is obtained. After removal of Mg by acid

CH NH N N HN (I.)

tetrabenztriazaporphin (I), $C_{33}H_{19}N_7$, is isolated in plates or needles. The homogeneity of the substance has been established by absorption spectra measurements and the formula (I) indicates a resonance hybrid. (I) forms Cu, Zn, Mg, and Fe^{II} derivatives of the type $C_{33}H_{17}N_7$ Metal^{II}; Cu—monochlorotetrabenztriazaporphin is also obtained from (I) and $CuCl_2$.

Oxidation of (I) with $\text{Ce}_2(\text{SO}_4)_2$ proceeds quantitatively according to $\text{C}_{33}\text{H}_{19}\text{N}_7 + 50 + 5\text{H}_2\text{O} = 4\text{C}_8\text{H}_5\text{O}_2\text{N} + \text{CO}_2 + 3\text{NH}_3$. X-Ray investigation of (I) indicates that a centre of symmetry is present, which is probably due to the fact that the mols. display a statistical centre of symmetry in the crystal. Phthalonitrile and LiMe in varying proportions give mixtures containing some (I) and the diaza-compound and phthalocyanine (II); with LiBu°, a mixture of (I) and (II) is obtained. With excess of LiMe in cyclohexanol at 200°, 3-amino-1:1-dimethylisoindole, m.p. 144° (picrate, m.p. 255°), is isolated. The mechanism of the formation of (I) is discussed.

XVI. Under mild conditions, (II) reacts with free halogens to yield additive compounds (octabromide; chlorides), which can be hydrolysed to (II). At high temp. and in the presence of catalysts, the benzene rings are substituted (bromo-, 3- and 4-tetrachloro-, 3:6- and 4:5-octachloro-, and dodecachloro-phthalocyanines). The orientation of the products has been determined by degradation and measurement of absorption spectra. Other halogenating agents, e.g., SO₂Cl₂, SOCl₂, behave similarly, giving substitution products only. The most highly halogenated substances contain 12 to 13 atoms of halogen and are bright green. Metallic derivatives can also be obtained; the properties are recorded.

isoOxazolecarboxylamides.—See B., 1940, 87.

isoBenzoxazoles. III. W. BORSCHE and W. SCRIBA (Annalen, 1939, 541, 283—292; cf. A., 1939, II, 454).—2-Alkylisobenzoxazoles are obtained from o-C₆H₄Br·CAlk,N·OH and aq. MeOH-KOH at 110—150° (cf. Meisenheimer et al., A., 1926, 405). The oxime, m.p. 129°, of o-C₆H₄Br·COMe [prep. from

o-C₆H₄Br·CN (I) and MgMeI (3 mols.)] thus gives 2-methylisobenzoxazole; the oxime, b.p. 164—172°/ 16 mm., of o-C₆H₄Br·COEt [from (I) and MgEtBr; 2:4-dinitrophenylhydrazone, m.p. 115—116°] affords impure 2-ethylisobenzoxazole; the oxime, m.p. 116°, of o-C₆H₄Br·CO·CH₂Ph, b.p. 206—208°/15 mm. [from (I) and CH₂Ph·MgCl; 2:4-dinitrophenylhydrazone, m.p. 149°], yields 2-benzylisobenzoxazole, m.p. 87°; the oxime (II), m.p. 131—132° (cf. Claus, A., 1892, 1200), of 2-bromo-5-methylacetophenone (III), b.p. 132—136°/15 mm. (2:4-dinitrophenylhydrazone, m.p. 170°), gives 2:4-dimethylisobenzoxazole. The results with (II) differ from those of Claus (loc. cit.). whose oxime may be a stereoisomeride of (II) or 2:5:1-C₆H₃MeBr·CMe:N·OH. Gradual addition of Sn powder to a well-shaken, cooled mixture of 1:4:3-C₆H₃MeBr·NO₂, oleum, and graphite powder affords 1:4:3-C₆H₃MeBr·NH₂, converted into 4-bromo-m-tolunitrile, m.p. 65°, which with MgMeI gives (III). MgPr^{\beta}Br and MgBu^{\beta}Br do not react with (I). o-C₆H₄Br·CO₂Me and MgMeI (1.2 mols.) yield o-bromophenyldimethylcarbinol, b.p. 128—130°/16 mm. o-C₆H₄Cl·CN and MgMeI afford o-C₆H₄Cl·COMe [2:4-dinitrophenylhydrazone, m.p. 206°; semicarbazone, m.p. 178—179° (lit. 159—160°)]. o-C₆H₄Br styryl ketone, b.p. 234—238°/14 mm. (2:4-dinitrophenyl-hydrazone, m.p. 236—237°), does not react with NH₂OH. 5-Nitro-1-phenyl-3-methylisoindazole, 131—132° (from 5:2:1-NO, C₆H₂Br·COMe 131—132° (from 5:2:1-NO₂·C₆H₃Br·COMe and NHPh·NH₂,HCl in MeOH at 150°), is reduced $(H_2, Pd-C, MeOH)$ to the 5- NH_2 -compound, m.p. 127—128° (Bz derivative, m.p. 160—161°) (together with some ? azoxy-compound, m.p. 336°), which is deaminated (iso-C₅H₁₁·O·NO in MeOH-HCl followed by H₃PO₂) to 1-phenyl-3-methylisoindazole, m.p. 73—74°. H. B.

Structure of o-dinitrosobenzenes. G. Tappi and (Signa.) A. Demorra (Gazzetta, 1939, 69, 708—713).—The benzfurazan oxide formula (A) for "dinitrosobenzene" (cf. Green et al., J.C.S., 1912, 101,

N O 2452) is confirmed. Benzfurazan and its 3- and 4-Me derivatives produce abnormally low depression of the m.p. of benzfurazan 1-oxide (I) and of its 6- (II) and 4-Me derivative (III), as do (II) and (III) of the m.p. of (I), thus showing formation of solid solutions and hence furazan structure in (I), (II), and (III). E. W. W.

Derivatives of 3:3'-dipyridyl and of 3:3'-dipyridylene oxide. G. Jacini and (Signa.) A. Salini (Gazzetta, 1939, 69, 717—721).—4:5-Dihydroxy-2:7- [not -2:6- (cf. A., 1939, II, 286)] -dimethyll:8-phenanthroline with KMnO₄ in 2% KOH gives 4:4'-dihydroxy-6:6'-dimethyl-3:3'-dipyridyl-2:2'-dicarboxylic acid (I), m.p. <350°. In conc. H₂SO₄ this gives the anhydride, m.p. 330° (decomp.), from which the monoamide, m.p. 290° (decomp.), and monophenylhydrazide, m.p. 310° (decomp.), of (I) are prepared. When heated with powdered glass, (I) gives 6:6'-dimethyl-3:3'-dipyridyl-4:4'-ene oxide [2:2'-dimethyl-3:6-diazadibenzfuran], m.p. 156°.

Dioximes. CXXIV. G. TAPPI and U. DI VAJO (Gazzetta, 1939, 69, 615—620).—The dipole moments

of derivatives of glyoxime peroxide (I) in C_6H_6 are determined, and compared with those of 1:2:5-oxadiazoles, and with vals. calc. for oxides of the latter and the (lower) vals. calc. for 1:2:3:6-dioxadiazines. It is concluded that the Me_2 , Me Et, and probably the Ph_2 derivatives of (I) are dioxadiazines, as are the Me Ph and Me p-OMe· C_6H_4 derivatives, m.p. 62° and 79° , respectively. The Me Ph and Me p-OMe· C_6H_4 derivatives, m.p. 96° and 99° , respectively, are considered to be oxadiazole oxides, in agreement with previous views. E. W. W.

Thiazolidines.—See B., 1940, 88.

Preparation of 6-chlorophenylenethiazthionium compounds, and their stability. M. K. Bezzubetz and V. A. Ignatiuk-Maistrenko (J. Appl. Chem. Russ., 1939, 12, 1137—1142).—p-C₆H₄Cl·NH₂ and S₂Cl₂ in AcOH, heated at 20—65° for 12 hr., give 6-chlorophenylenethiazthionium chloride (I) in 60% yield; in other solvents (C₆H₆, CCl₄, ligroin) the yields are much smaller. Both (I) and its corresponding base are very unstable, rapidly decomp. in presence of light and air. The base is obtained pure by extracting the crude product with Et₂O, followed by recrystallisation from CCl₄.

R. T.

Cyanine dyes.—See B., 1940, 89.

Chemical study of Ammothamnus Lehmanii, Bge. I. G. V. Lazurievski and A. S. Sadikov (Bull. Univ. Asie Centr., 1937, No. 22, 171—176).—
Two alkaloids, sophocarpine and ammothamnine, C₁₆H₂₇O₃N₂, m.p. 204—205° (picrate, m.p. 207—208°; hydriodide, m.p. 188—189°), have been isolated from the plant. In addition, the roots contain 8%, and the rest of the plant 3%, of a red substantive dye for silk, wool, and leather.

R. T.

Synthesis of isomerides of hydroquinine. I. (5-Ethyl-2-quinuclidyl)-(6-methoxy-8-quinolyl)carbinol. M. V. RUBTZOV (J. Gen. Chem. Russ., 1939, 9, 1493—1506).—8-Cyano-6-methoxyquinoline is hydrolysed (65% H₂SO₄, at the b.p.) to 6-methoxy-quinoline-8-carboxylic acid, m.p. 196—197° [sulphate, $+3H_{\circ}O$, m.p. $243-245^{\circ}$ (decomp.)], the Et ester, m.p. 64.5—65.5°, of which is added to the Et ester of benzoylhomocincholoipon in an Et₂O-EtOH solution of NaOEt. The solvent is distilled off, and the residue, heated for 4 hr. at 80°, yields 6-methoxy-8-quinolyl β-(1-benzoyl-3-ethyl-4-piperidyl)-α-carboethoxyethyl ketone, m.p. 54-56°, which is hydrolysed (50% H₃PO₄; 4 hr. at the b.p.) to 6-methoxy-8-quinolyl β-(3-ethyl-4-piperidylethyl ketone (isohydroquinotoxine) (I), an oil [platinichloride, chars at 220—240°, decomp. 282—285°; dihydrobromide, m.p. 193—194° (decomp.); picrate, an oil; dipicrate, m.p. $\sim 100^{\circ}$]. (I) is brominated (Br in HBr, at 80°), and the product is shaken with aq. Na₂CO₃ and C₆H₆, when 6-methoxy-8-quinolyl 5-ethyl-2-quinuclidyl ketone (isohydroquininone) (II), m.p. $153-154^{\circ}$, $[\alpha]_{D}^{22}+51\cdot7^{\circ}$ in CHCl₃, [dipicrate, m.p. $172-173^{\circ}$; dipicrolonate, m.p. 203-205° (decomp.)], is isolated from the C_6H_6 layer. (II) is hydrogenated (Pd-black) to (probably) α-(6methoxy - 8 - quinolyl) - \gamma - (3' - methylpiperidyl) propanol (isohydrotoxinol), an oil [hydrochloride of 1'-NOderivative, m.p. 140° (decomp.)]. With Al(OPr $^{\beta}$)₃ in Pr^βOH (18 hr. at 90—95°) (II) gives (6-methoxy-8-quinolyl)-(5-ethyl-2-quinuclidyl)carbinol (isohydroquinine) (III) in three diastereoisomeric forms: (i), m.p. $177.5-178^{\circ}$, $[\alpha]_{20}^{20}+135.9^{\circ}$ in EtOH, (ii), a glass, $[\alpha]_{20}^{20}+52.0^{\circ}$ in EtOH (picrolonate, m.p. 199—200°), and (iii), a glass, $[\alpha]_{20}^{20}+65.4^{\circ}$ in EtOH (picrolonate, m.p. 154—155°). The isomerides of (III) have no antimalarial action, but retain the anæsthetic action of hydroquinine. (II) is highly toxic. R, T.

Strychnine compound of Bordeaux B (strychnine azorubrate). D. B. Dott (Pharm. J., 1939, 143, 527; cf. A., 1939, II, 41).—A modified method for extracting the strychnine is described.

A. T. P. Strychnine and brucine. Alkaline degradation. I. Strychnine. II. Brucine. R. H. Siddler (J. Indian Chem. Soc., 1939, 16, 396—398; 399—401).—I. Strychnine (structure discussed) and KOH-H₂O (3:1) distilled from a Cu flask give a compound, C₈H₁₁N (I) [picrate, m.p. 141—142°, is identical with that, m.p. 143—144°, of Clemo (A., 1937, II, 38)], and a little of a substance (picrate, m.p. 195—196°). (I) is not 2-methyl-4-ethylpyridine.

II. Brueine and KOH similarly give (I), and compounds (?) C_7H_9N (picrate, m.p. 143—144°), and (?) $C_{11}H_{11}N$ or $C_{11}H_{13}N$ [picrate, m.p. 172° (softens at 163—168°)].

Argentine plants. I. Hypaphorine from Erythrina cristagalli. V. Deulofeu, E. Hug, and P. Mazzocco (J.C.S., 1939, 1841—1842).—Hypaphorine (tryptophan betaine) [flavianate, m.p. 235° (decomp.)] has been isolated from the seeds.

F. R. S.

Tetrandrine picrate.—See A., 1940, III, 84.

Alkaloids from Rauwolfia serpentina. S. Siddigui (J. Indian Chem. Soc., 1939, 16, 421—422).—Roots and root-bark of R. serpentina from the Dun valley give alkaloids allied to the ajmaline series (cf. A., 1935, 636). isoAjmaline (I), m.p. 264—266°, an isomeride, neoajmaline, m.p. 205—207° [convertible into (I) at 270° or by KOH-EtOH], alkaloids, m.p. 220° and 234°, and traces of ajmalinine and serpentinine are isolated. The yellow oxidation bases of the plant from the Bihar district (loc. cit.) are not formed in the milder conditions of the Dun valley.

A. T. P.

Nitration of diphenyliodonium nitrate. R. B, Sandin, F. T. McClure, and F. Irwin (J. Amer. Chem. Soc., 1939, 61, 3061—3063).—Ph₂I·NO₃ is treated with HNO₃-H₂SO₄ at 0°—room temp. and then converted by KI into $(NO_2 \cdot C_6 H_4)_2$ I·I, which is decomposed by heat into $C_6 H_4$ I·NO₂. \iff 18·5% of p-nitration (cf. Challenger et al., A., 1934, 1118) is indicated by thermal analysis of the product. 10% of p-C₆H₄I·NO₂ is isolated. Pyrolysis of (m-NO₂·C₆H₄)₂I·I gives no p-C₆H₄I·NO₂. R, S. C.

Dissociation in alcohols of compounds of the type R·HgPh, where R is an acid residue. M. M. KOTON (J. Gen. Chem. Russ., 1939, 9, 1622—1625).—The compounds R·CO₂HgPh decompose when heated with alcohols at 125—175°, as follows: R·CO₂HgPh

 $\begin{array}{l} \rightarrow \text{HgPh}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} + \text{R·CO}_2'; \quad 2\text{R·CO}_2' + \text{EtOH} \rightarrow 2\text{R·CO}_2\text{H} \\ + \text{MeCHO}; \quad 2\text{HgPh}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} + \text{EtOH} \rightarrow 2\text{Hg} + 2\text{C}_6\text{H}_6 + \\ \text{MeCHO}; \quad \text{R·CO}_2\text{H} + \text{EtOH} \rightarrow \text{R·CO}_2\text{Et} + \text{H}_2\text{O}. \\ \text{The velocity of the reactions in different solvents} \\ \text{falls in the order } iso \cdot \text{C}_5\text{H}_{11} \cdot \text{OH} > \text{EtOH} > \text{MeOH}, \\ \text{and for different R in the order R} = \text{H} > o \cdot \text{OH·C}_6\text{H}_4^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \\ > \text{OH·CHMe·CH}_2 \cdot > \text{OH·CHMe·} > \text{Me} > \text{Et} > \text{Pr} \\ > \text{C}_5\text{H}_{11} > \text{C}_{17}\text{H}_{35} > \text{Ph}. \\ \text{R. T.} \end{array}$

Mercury derivatives of aromatic acids and heterocyclic compounds.—See B., 1940, 88.

Synthesis of condensed selenophens by the action of acetylene on selenium. S. UMEZAWA (Bull. Chem. Soc. Japan, 1939, 14, 363—373; cf. A., 1936, 871).—If the fractions of higher b.p. obtained from the product of the action of purified C₂H₂ on Se are preserved isoselenophthen (I),

CH C:CH Se, m.p. 123—124.5° (picrate, m.p. 163—165°), slowly separates. (I) is converted by Br in well-cooled CS2 into an intermediate, yellow additive product and ultimately into isotetrabromoselenophthen, C₆Br₄Se₂, m.p. 247.5° (corr.). Conc. or fuming HNO₃ oxidises (I) violently but the requisite amount of fuming HNO3 transforms (I) in well-cooled Ac2O into nitroisoselenophthen, m.p. 108-109.5°, which can be preserved in a coloured desiccator. Cone. H2SO4 decomposes (I) but converts it in presence of Ac₂O into isoselenophthendisulphonic acid [Ba (+3H₂O) and K (+1.5H₂O) salts; disulphonyl chloride, decomp. 234—236°]. The residues obtained from the isolation of (I) give fractions, b.p. 93-100°/14 mm. and 100-113°/14 mm., which, after removal of selenonaphthen and C₁₀H₈ as picrates, afford "cis" selenophthen (II), CH CH-C-Se-CH, b.p. 90—93°/14 mm. This gives an amorphous product with aq. Hg(OAc), and appears to be transformed by HgCl₂ in aq. EtOH into "cis"-selenophthen mercurichloride. (II) is converted by an excess of Br in CS₂ at 0° into tetrabromo" cis "-

selenonaphthen, m.p. 271—272° (decomp.). "trans". Selenophthen, CH CH·C—Se CH, m.p. 51—51·5°, gives a picrate, m.p. 154—155·5°, and a Br₄-derivative, m.p. 252·5—253° (decomp.). Selenonaphthen (III), CH·CH·C·CH CH, m.p. 50—51° (corr.), is isolated from the products of the action of C₂H₂ on Se by means of its picrate, m.p. 156—157° (corr.). o-Aminocinnamie acid is converted by diazotisation and treatment with KCNSe into o-selenocyanocinnamic acid, m.p. 171—173° (decomp.); this is transformed by KOH into o-selenolcinnamic acid, oxidised by K₃Fe(CN)₆ to (III). H. W.

Colloid-chemical properties of thermolysed gelatin.—See A., 1940, I, 71.

Biological aspects of protein chemistry. M. BERGMANN (J. Mount Sinai Hospital, 1939, 6, 171; Comm. Sci. Pract. Brewing, 1939, No. 7, 21—32).—A lecture, the subjects critically discussed including: the composition and magnitude of the protein mol., with special reference to structural regularity; the peptide linkage and the attack thereon by protein-

ases; enzymic synthesis of peptide linkages, including specificity and thermodynamic considerations.

I. A. P.

Hydrolysis of gelatin by enzymes and by heating under pressure.—See A., 1940, III, 163.

Reaction between kephalin and hæmoglobins.—See A., 1940, III, 43.

Compounds between phosphatides and basic proteins.—See A., 1940, III, 43.

Identification of the halogen in organic [and inorganic] halogen compounds. D. W. WILSON and C. L. WILSON (J.C.S., 1939, 1956—1958).—A drop of inorg. halide solution or of solution from an org. Na micro-fusion is acidified with HNO3, treated with AgNO3, and evaporated. AgCl is roughly separated by dissolution in very dil., aq. NH3 and AgBr by dissolution in aq. NH3 (d 0.880), and each is crystallised from aq. NH3 (d 0.880). Residual AgI is crystallised as (?) pyridinium salt from C5H5N. The crystals are identified microscopically. Limits are: one halogen alone 1, Cl' 1 in presence of Br' 10, Br' 1 in presence of Cl' or Br' 50 μ g. R. S. C.

Semimicro-Kjeldahl distillation apparatus.—See A., 1940, I, 84.

Submicro-determination of total and aminonitrogen, amides, peptides, and adenylic acid.— See A., 1940, III, 176.

Determination of organic sulphur in gases. S. Doldi (Annali Chim. Appl., 1939, 29, 542—550).

—The method is based on hydrogenation (Pt at 800—850°) of org. S to H₂S, absorption in 10% CdCl₂ in dil. HCl, and iodometric titration.

F. O. H.

Semi-micro-analytical determination of methoxyl groups in organic compounds. E. B. LISLE (Analyst, 1939, 64, 876—877).—OMe is liberated as MeI by HI at 130°. The vapour is passed over a test paper steeped in a solution of $PdCl_2$ and C_5H_5N . The intensity of the brown colour developed on the test paper is compared with standard papers previously prepared. E. C. B. S.

Pyridine phthalisation. S. Sabetay (Ann. Chim. Analyt., 1939, [iii], 21, 289—290).—Accurate results are obtained by the method described previously (A., 1938, II, 77) only when the procedure laid down is strictly followed. Data recorded for CH₂Ph·OH show that the hydrolysis of the o-C₆H₄(CO)₂O is completed by warming for 1 min., that the vol. of H₂O added is crit., and that prolonged heating (>1 min.) must be avoided. Details of procedure for the analysis of alcohols are given. L. S. T.

Determination of paraldehyde. D. J. T. Bagnall, A. Smith and A. R. Tankard (Analyst, 1939, 64, 857—861).—Paracetaldehyde is determined by conversion into MeCHO, which on distillation into NH₂OH,HCl forms the oxime and liberates HCl,

which is titrated with NaOH. A procedure in cases of poisoning is recommended. E. C. B. S.

[Determination of] sulphanilamide. E. M. HOSHALL (J. Assoc. Off. Agric. Chem., 1939, 22, 748—757).—Several published methods for the determination of sulphanilamide were critically examined and new methods evolved. Direct bromination was unsatisfactory. Indirect bromination (KBr-KBrO₃) (studied collaboratively) gives slightly high results, apparently owing to the formation of a sulphondibromoamide (I) from which Br is not completely liberated on acidification (HCl). Prep. (by HOBr) and analyses of (I) and its Ac derivative give low Determination of the SO₂·NH₂ group by hydrolysis [75% (vol.) H₂SO₄] and distillation of the free NH₃ from alkaline solution was collaboratively studied and found to give more accurate results. It is recommended that the latter be adopted as a tentative method and that indirect bromination be adopted as an alternative tentative method.

Determination of salicylic acid by ferric chloride. G. Illari (Annali Chim. Appl., 1939, 29, 490—500).—The extents to which H₃BO₃, H₃PO₄, AcOH, H₂C₂O₄, tartaric, and citric acid, and various Na and K phosphates, oxalates, tartrates, and citrates interfere with the photometric determination of salicylic acid by FeCl₃ (0.5% in 0.01n-HCl) were determined. The results are discussed with respect to the probable reactions of FeCl₃ with the above substances.

F. O. H.

Rapid determination of nicotine. A. Verda and E. Herzfeld (Z. anal. Chem., 1939, 118, 9—13).

—The sample (5—20 g.) is mixed with 2 g. of MgO, 30 g. of NaCl, and 100 c.c. of H₂O and steam-distilled (300 c.c.) on to 3 g. of gum arabic. After filtration, a dilution series is prepared, each dilution being treated with a silicotungstic acid reagent, which gives an opalescence with nicotine (I). The opalescences are compared (cf. A., 1939, III, 98) with a standard series, the limiting val. of which corresponds with 0.31 mg. of (I).

L. S. T.

Herapathite reaction on aristoquin. M. Wage-NAR (Pharm. Weekblad, 1939, 76, 1544—1545).— The appearance of the micro-cryst. ppt. when KI-I is added to an acid solution of aristoquin (quinine carbonate) is considerably delayed by the presence of some impurity. The addition of COMe₂ facilitates the reaction. S. C.

Analysis of protein by means of deuterium-containing amino-acids. H. H. Ussing (Nature, 1939, 144, 977).—NH₂-acid containing D in the C·H position is mixed with the hydrolysed protein, and then NH₂-acid is isolated from the mixture by the usual methods. From the D content of the NH₂-acid isolated the proportion in which the "heavy" NH₂-acid added is diluted by the NH₂-acid originating from the protein is calc.

L. S. T.

Polarographic micro-determination of cystine in protein hydrolysates.—See A., 1940, III, 176.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

MARCH, 1940.

Formation of methane from carbon monoxidehydrogen mixtures in contact with low-temperature coke.—See B., 1940, 113.

Induced pyrolysis of methane.—See B., 1940, 113.

Reaction of hydrogen and deuterium atoms with propane.—See A., 1940, 1, 120.

Catalytic cracking of aliphatic hydrocarbons. G. Eglov, J. C. Morrell, C. L. Thomas, and H. S. Bloch (J. Amer. Chem. Soc., 1939, 61, 3571—3580).— Mixed n-C₄H₈ are isomerised in presence of activated Al₂O₃-SiO₂ at 385—600°, with some polymerisation and cracking; at 450—600° an apparent equilibrium mixture containing 24·1±1·5% of CH₂:CMe₂ is formed. n-C₅H₁₀ at 400° (this and other reactions with the above catalyst) undergoes similar reactions, which give 50% of isopentenes. n-Octenes at 375—400° suffer isomerisation, followed by cracking, the products containing much n- and iso-C₄H₈. Cetene at 300—450° behaves similarly, but the branched-chain olefines are more readily cracked. Catalytic cracking of n-C₈H₁₆ is 7—8 times as fast as is thermal cracking, gives more C₅—C₇ products, and is effective at 525—570°. Cetane is catalytically cracked at 500°, giving 1 mol. of C₃—C₅ products per mol. of cetane; n- and iso-products are formed. R. S. C.

Stability of polymorphous forms of normal hydrocarbons with long stretched chains and their derivatives. T. Schoon (Ber., 1939, 72, [B], 1821—1827; cf. A., 1938, I, 348).—Röntgenographic investigation of the transition mechanism shows that the rhombic form of $C_{30}H_{62}$ is the practically stable modification. The monoclinic, high-temp. form (ε_{2} -form) of stearic acid is probably completely stable since in this variety the units contain an abs. min. of free energy.

H. W.

Peroxide effect in the addition of reagents to unsaturated compounds. XXIV. Addition of hydrogen iodide to propylene, α-bromopropylene, allyl chloride, and allyl bromide. M. S. Kharasch, J. A. Norton, and F. R. Mayo (J. Amer. Chem. Soc., 1940, 62, 81—86; cf. A., 1940, II, 9).—Contrary to Ingold et al. (A., 1931, 1391), CH₂.CHMe and HI give only Pr^βI, whether or not air, H₂O, peroxides, antioxidants, or solvents are present. I, peroxides (which liberate I), or HgI₂ accelerate the reaction, probably by addition to give CHMeI·CH₂I and reduction thereof by HI. In some solvents, a little high-boiling material (? C₆H₁₃I) is formed. Suppression by HI of the peroxide-catalysed "abnormal" addition of HBr is due to destruction of the peroxide. CH₂·CH·CH₂Br and HI under all conditions give CHMeI·CH₂Br; the reaction is auto-

catalytic, as some I is liberated and up to 30% of Pr^β halides are formed; I (or peroxides) catalyses the addition, probably owing to formation and reduction of CH₂I·CHI·CH₂Br; in the simple reaction, the I is probably first obtained by formation of CH₂·CH·CH₂I. In accordance with these views, CH₂·CH·CH₂Cl, which has much less tendency to form the iodide, gives 90—100% of CHMeI·CH₂Cl, b.p. 66·2°/50 mm., I and H₂O being catalysts. Various proportions of HI and CHMe·CHBr with or without peroxides give CHEtBrI, b.p. 61·3°/20 mm., and CHMeI·CH₂Br.

Organo-alkali compounds. XV. Controlled 1:2 and 1:4 polymerisation of butadiene. ZIEGLER, H. GRIMM, and R. WILLER (Annalen, 1939, **542**, 90—122).—An extension of previous work (Part XI; A., 1934, 864). Butadiene (I) (1.5-2.5 mols.) and LiBu (1 mol.) in Et₂O at 25-30° give (after decomp. with H_2O) octenes, dodecadienes (A), b.p. $74-90^{\circ}/9$ mm. [max. yield ($34\cdot4\%$) with $1\cdot75$ mols. of (I)], and products of higher b.p. Fractionation of (A) affords 75-80% of ε -vinyl- Δ^{β} -decene, b.p. $79-81^{\circ}/11$ mm. [odd) (CrO_3-ACOH) to α -n-production of $(34\cdot4\%)$ affords $(34\cdot4\%)$ of $(34\cdot4\%)$ affords $(34\cdot4\%)$ and $(34\cdot4\%)$ affords $(34\cdot4\%)$ affords (amylsuccinic acid], and 20-25% of $\Delta^{\beta\zeta}$ -dodecadiene, b.p. 90-92°/12 mm., which are reduced (H2, Pd-BaSO₄, EtOAc) to ε-ethyl-n-decane (II), b.p. 94.7°/ 20 mm., and $n\text{-}C_{12}H_{26}$ (III), b.p. $104\cdot6^{\circ}/20$ mm., m.p. $-10\cdot1^{\circ}$, respectively, thus proving the occurrence of 1:2 and 1:4 addition in the initial reaction. Quant. separation of (II) and (III) is best effected with a modified Podbielniak column (described). With (I) (1.5 mols.) and LiBu (1 mol.) in C₆H₆ at 100—115°, reaction occurs mainly by 1:4 addition; subsequent reduction of the octene-freed product affords a mixture of n-paraffins [(III), $C_{16}H_{34}$, $C_{20}H_{42}$, $C_{24}H_{50}$, and $C_{28}H_{58}$ are isolated]. At -50° in Et₂O 1:2 addition is the predominant reaction; (II), ε_{η} -diethyldodecane, b.p. 135—136°/17 mm., and ent-triethyltetradecane, b.p. 167—171°/17 mm., are similarly isolable. Analogous 1:2 and 1:4 addition also occurs with (I) and CKPhMe₂ (IV) at low and high temp., respectively; reduction of the appropriate fraction thus affords β-phenyl-β-methyl-δ-ethyloctane, b.p. 149°/20 mm. [synthesised from CHEtBu CH2I and (IV) in Et2O], and β-phenyl-β-methyldecane, b.p. 160°/20 mm. [also from \hat{n} -C₈ \check{H}_{17} Br and (IV)], respectively. The mode of addition is not influenced to any appreciable extent by other reaction conditions [e.g., solvent; rate of addition of (I)]; temp. is the decisive factor. In confirmation of the above results oxidation (O₃ followed by CrO_3 in AcOH) of the product from LiBu (1 mol.) and (I) (7 mols.) in methylcyclohexane at 150° gives $\sim 60\%$ of the calc. amount of pure $(CH_2 \cdot CO_2H)_2$, none of which is similarly obtained from the product from (I) and (IV) at -80°. Passage of a mixture of $EtCO_2H$ (2 mols.) and $n-C_5H_{11}\cdot CO_2H$ (1 mol.) over ThO₂-pumice at 400° affords COEt₂, $CO(C_5H_{11}-n)_2$, and $COEt \cdot C_5H_{11}-n$ (V) (major product). The carbinol, b.p. 112°/I3 mm., from (V) and MgBuCl is dehydrated (conc. H₃PO₄ at 90—100°/vac.) and then reduced (H₂, Raney Ni, 160°) to (II).

Condensations by sodium. XV. Reactions of disodium compounds with ethylidene and methylene chlorides. A. A. Morton and J. T. MASSENGALE. XVI. Formation of decane in the Wurtz reaction. A. A. MORTON and G. M. RICHARD-SON. XVIII. Possible conversion of sodium amyl into disodium amylidene. A. A. Morton and G. M. RICHARDSON (J. Amer. Chem. Soc., 1940, **62**, 120—123, 123—126, 129—131; cf. A., 1938, II, 409).—XV. CHBuaNa2 and CHMeCl2 in light petroleum (b.p. <45°) give 13% of CHMe.CHBua, in agreement with the amount (17%) of CHBuaNa₂ predicted by formation of CHBu^a(CO₂H)₂ by CO₂. Some CHPhNa₂ is also formed when Na, PhMe, and PhCl react in light petroleum; Mc₂SO₄ and MeI show presence of 46 and 43% (yields of PhEt) of CH₂PhNa; CO₂ indicates ~15% of other Na derivatives; CII₂Cl₂ and CHMeCl₂ give CH₂:CHPh and CHPh:CHMe, respectively, although yields are <4%. The styrenes are not formed by way of Ph·[CH₂]₂·Cl, which is ineffective in this reaction. CH2PhNa, produced by PhCl, is less reactive than when produced by C₅H₁₁Cl, probably because of the higher temp. (85°) needed. CH₂PhCl or CHPhCl₂ does not produce Na derivatives. Br [CH₂]₅·Br and CHPhCl₂ afford no evidence of Na₂ compounds.

XVI. The products formed from C₅H₁₁Cl and varying amounts of Na are determined. C₅H₁₁Na and C₅H₁₀Na₂ are formed quantitatively after addition of only a little $C_5H_{11}Cl$ to Na. C_5H_{12} is formed only by interaction of $C_5H_{11}Na$ with $C_5H_{11}Cl$ and not by dimerisation of free radicals. Simultaneous formation of olefines and alkanes is doubtful evidence of the existence of free radicals, since dimerisation is energetically much more probable than disproportionation. Free radicals may, however, account for some

of the side-reactions in Wurtz syntheses.

XVIII. More $C_5H_{10}Na_2$ is formed at 42° than at 0°, a free radical mechanism being probable. $C_5H_{11}Na$ is quantitatively removed by an excess of C_6H_6 , but $C_5H_{10}Na_2$ does not react with C_6H_6 . Small amounts of C_6H_6 react only to the extent of $\sim 50\%$ with an excess of C₅H₁₁Na, although Ph₂ reacts quantitatively.

Catalytic hydration of acetylene and some alkylacetylenes. R. E. Sohaad and V. N. Ipatiev (J. Amer. Chem. Soc., 1940, **62**, 178—180).—Passage of C_2H_2 and H_2O with or without C_2H_4 or C_2H_4 – N_2 over a solid H_3PO_4 catalyst at $260-300^\circ/1$ atm. gives MeCHO. At $150-204^\circ$ CH₂:CHMe and H_2O gives COMe₂; Δ^a - C_4H_{10} gives similarly COMeEt, Δ^a - or Δ^β - C_5H_{10} gives COMePr^a, Δ^a - C_6H_{12} gives COMeBu^a, and Δ^a - C_7H_{14} gives COPr^a₂. Some (?) Δ^β - C_4H_{10} accompanies the COMeEt. This and the formation of COPra indicate that isomerisation accompanies or precedes hydration. In all cases condensation products are also formed. R. S. C.

Photochemical formation of trichlorobromomethane from chloroform and bromine.—See A., 1940, I, 124.

Action of fluorine on organic compounds. VI. Vapour-phase reaction between ethane and fluorine in progressively varying proportions. J. D. Calfee, N. Fukuhara, and L. A. Bigelow (J. Amer. Chem. Soc., 1939, **61**, 3552—3554; cf. A., 1938, II, 131).—Passage of C_2H_6 and F_2 over C_1 gauze (cf. Calfee et al., A., 1937, II, 479) gives CF_4 and C_2F_6 . Azeotropic mixtures, $\sim 2:1$ $C_2H_6-C_2F_6$, b.p. -92° , and $\sim 6:1:1$ $C_2H_6-C_2F_6-SiF_4$, b.p. -92° , realso obtained. CH_1 and CH_2 give an azeotropic are also obtained. C_2H_6 and $\check{C}H\check{F}_3$ give an azeotropic mixture, b.p. -96° .

Halogenation of hydrocarbons. Substitution of chlorine and bromine into straight-chain olefines.—See B., 1940, 114.

Structure of vinyl polymerides. VI. Polyvinyl halides. C. S. MARVEL, J. H. SAMPLE, and M. F. Roy. VII. Polyacrylyl chloride. C. S. MARVEL and C. L. LEVESQUE (J. Amer. Chem. Soc., 1939, **61**, 3241—3244, 3244—3246; cf. A., 1940, II, 4).—VI. Polyvinyl halides are shown $[\cdot CH_2 \cdot CHHal \cdot CH_2 \cdot CHHal \cdot]_x$ (cf. A., 1930, 1402). The chloride (I) in dioxan loses only a little Cl to Zn, giving an insol., cross-linked product, but in very dil. solution loses 84—87% of its Cl, giving a product (II), sol. in dioxan, probably of the type, ·CH₂·CH·CH₂·C

A., 1939, II, 401). The bromide (III) similarly loses 85.9% of the Br. Ozonisation and subsequent hydrolysis and oxidation of (II) gives no (CH₂·CO₂H)₂, obtained thus from polybutadiene. HNO3 is without effect on (II), and Cl₂ causes addition and substitution. I is not liberated from KI in peroxide-free dioxan by (I) or (III). In "cellosolve," (I) loses HCl to KOH, giving an insol., reddish-brown polymeride, (?) [·CH:CH·]_n (n is very large). The absorption spectrum of (I) resembles that of CH₂(CHMcCl)₂, but not that of CHMeCl CHEtCl.

VII. CH₂:CH·CH₂·COCl in POCl₃ or SOCl₂ is polymerised to a pale yellow solid by ultra-violet light and in POCl₃ also by Bz₂O₂. The photo-polymerised

product is entirely (or nearly so)

 $\cdot CH_2 \cdot CH(COCl) \cdot CH(COCl) \cdot CH_2 \cdot]_r$, because with Br in POCl₃ it gives 30% of a bromide, the Me ester from which liberates 40% of I from KI in dioxan and thus contains mainly units of type \cdot CBr(CO₂Me)·CBr(CO₂Me)·. Polymerised methyl-

acrylyl chloride does not react with Br. Photochemistry of di-iodoacetylene and tetraiodoethylene.—See A., 1940, I, 124.

Synthesis of methyl alcohol from carbon dioxide and hydrogen.—See B., 1940, 114.

Preparation of pure n-octyl alcohol.—See B., 1940, 114.

Aldehyde-nitroparaffin condensations. B. M. Vanderbilt and H. B. Hass (Ind. Eng. Chem., 1940, 32, 34—38).—The conditions for the prep. of a NO₂alcohol from a NO₂-paraffin and an aldehyde are described and discussed. The following are prepared in

EtOH with NaOH as catalyst by the general reaction $CHRR' \cdot NO_2 + R''CHO \longrightarrow NO_2 \cdot CRR' \cdot CHR'' \cdot OH :$ β-nitropropanol, b.p. 99°/10 mm., γ -nitrobutan-β-ol, b.p. 92°/10 mm. (acetate, b.p. 103°/10 mm.), β-nitrohexan-y-ol, b.p. 108°/10 mm., β-nitrobutanol, b.p. 105°/10 mm. (acetate, b.p. 103°/10 mm.), y-nitropentan-β-ol, b.p. 100°/10 mm., γ-nitroheptan-δ-ol, b.p. 115°/10 mm., β-nitro-β-methylpropanol, m.p. 89·5—90°, γ-nitro-γ-methylbutan-β-ol, b.p. 90°/10 mm., β-nitro-β-methylhexan-γ-ol, b.p. 109°/10 mm., β-nitropentanol, b.p. 117°/10 mm., γ-nitrohexan-β-ol, b.p. 112°/10 mm., ε-nitro-octan-δ-ol, b.p. 124°/10 mm., β-nitro-β-methylbutanol, b.p. 98°/10 mm. (acetate, b.p. 109°/10 mm.), γ-nitro-γ-methylpentan-β-ol, b.p. 100° 10 mm., γ -nitro- γ -methylheptan- δ -ol, b.p. 119°/10 mm., β -nitro- γ -methylbutanol, b.p. 111°/10 mm., γ -nitro- δ -methylpentan- β -ol, b.p. 96—98°/10 mm., γ-nitro-β-methylpentan-δ-ol, b.p. 111°/10 mm. (stereoisomeride, b.p. 121°/10 mm., m.p. 53°). Interaction of the appropriate NO₂-paraffin with CH₂O (2 mols.) yields the following: $\bar{\beta}$ -nitro- β -methylpropane- $\alpha \gamma$ -diol, m.p. 149—150°, β-nitro-β-ethylpropane-αγ-diol, m.p. 56° (diacetate, b.p. 157°/10 mm.), β-nitro-β-propylpropane-αγ-diol, m.p. 81—81·5°, and β-nitro-β-iso-propylpropane-αγ-diol, m.p. 87—88°. Hydrogen ation (Raney Ni) of the nitroglycols yields β-amino-βmethyl-, m.p. 108—109°, -β-ethyl-, m.p. 37·5—38·5° -β-propyl-, m.p. 58°, and -β-isopropyl-propane-αγ-diol, m.p. 74°. The potential industrial importance of the NO₂-alcohols and the NH₂-alcohols is stressed.

Kinetics of polyesterification. Effects of mol. wt. and viscosity on reaction rate.—See A., 1940, I, 120.

3-Nitrophthalates of ethylene and diethylene glycol monoethers. A. J. Veraguth and H. Diehl (J. Amer. Chem. Soc., 1940, 62, 233).—The Me, Et, Bu, and Ph ethers of (CH₂·OH)₂ are identified by conversion by $3:1:2\text{-NO}_2\cdot\text{C}_6\text{H}_3(\text{CO})_2\text{O}$ at $\Rightarrow 150^\circ$ (in PhMe, if necessary) into the H 3-nitrophthalates, m.p. $128\cdot4-129^\circ$, (anhyd.) $118-118\cdot6^\circ$ or $(+\text{H}_2\text{O})$ $94\cdot2-94\cdot5^\circ$, $121-120\cdot6^\circ$ (?), and $112-113^\circ$, respectively. Diethylene glycol Me ether H 3-nitrophthalate has m.p. $(+\text{H}_2\text{O})$ 87—90° and (anhyd.) $91\cdot4-92\cdot2^\circ$, but the corresponding Et and Bu ether esters and the ethylene glycol CII₂Ph ether ester are oils.

R. S. C. Production of $\beta\gamma$ -butylene glycol by fermentation.—See A., 1940, III, 168.

Alkyl peroxides. XII. Ethylidene diperoxide. XIII. Tripropylidene triperoxide. A. RIECHE and R. MEISTER (Ber., 1939, 72, [B], 1933—1938, 1938—1940).—XII. $\rm H_2O_2$ and MeCHO (1:1) are converted by $\rm P_2O_5$ in $\rm Et_2O$ at 0° essentially into dimeric butylene ozonide, $\rm O< CHMe \cdot O_2 \cdot CHMe \cdot O_3 \cdot$

agents. It is not appreciably affected by prolonged contact with warm $\rm H_2O$ or with 25% $\rm H_3PO_4$ at 100°. Its oxidising action is very small. Iodometric determination in EtOH indicates 2.7% active O (theory 26.7%) whilst TiCl₃ indicates only 1%. The 6-membered ring appears very stable to chemical reagents and, when divided, more prone to intramol. evolution of $\rm O_2$ than to formation of AcOH.

XIII. Prolonged treatment with P_2O_5 of an equimol. mixture of H_2O_2 and EtCHO in Et_2O at 0—5° gives, after removal of Et_2O and warming in a vac., the liquid, very explosive tripropylidene triperoxide (II), CHEt $<_{O_2}^{O_2}$ ·CHEt $>_{O_2}$, the constitution of which is supported by the at. refraction and the parachor. It is not so resistant as (I) to hydrolysis but a complete conversion into EtCHO and H_2O_2 appears impossible. The iodometric method shows only about half of the expected H_2O_2 . Under the influence of alkali about 75% of (IV) is transformed into EtCO₂H. H. W.

Hydrogen exchange reactions of esters in relation to reactivity in condensation reactions.—See A., 1940, 1, 121.

Mechanism of ester hydrolysis and ester formation. O. Mumm (Ber., 1939, 72, [B], 1874—1878).—The following schemes are advanced for the alkaline and acid hydrolysis:

The inverse scheme is representative of ester formation. Confirmation is found in the behaviour of carboxylic esters of pyridonemethide during alkaline hydrolysis and of ethylallyl ethers of Me o-hydroxytoluate.

H. W.

Recognition of carboxylic acids as ureides with aid of carbodi-imides. V F. ZETZSCHE and A. Fredrich (Ber., 1939, 72, [B], 1735—1740; ef. A., 1939, II, 467).—Under the conditions used for the production of ureides from aromatic carbodiimides (use of Et₂O, C₆H₆, COMe₂, light petroleum, or cyclohexane as solvent or without solvent at room temp.) carbodicyclohexylimide (I) gives almost exclusively anhydrides, particularly with fatty acids. By the use of higher temp, and of C₅H₅N or alcohols as solvents the ureide production becomes in some eases the main reaction. Benzoyl-, m.p. 160—161°, stearyl-, m.p. 73—75°, and butyryl-, m.p. 144—145°, -dicyclohexylcarbamide are described. The displacement of the anhydride to the ureide formation in alcohols and bases inhibits an approx. quant. prep. of esters and substituted amides from carboxylic acid (1 mol.) and (I) (1 mol.) in presence of alcohols or amines. The sparing solubility of dicyclohexylcarbamide permits a ready detection of free carboxylic acids in acid anhydrides. (I) can also be applied to the almost complete removal of acids from anhydrides.

Catalyst for production of acetic acid from acetylene.—See B., 1940, 114.

Preparation of acetyl bromide. T. M. Burton and E. F. Degering (J. Amer. Chem. Soc., 1940, 62, 227).—Addition of 99.5% AcOH to PBr₃ (prepared in 99.5% yield by adding Br to red P) gives 71.4—73.4% of AcBr, much HBr being evolved. Addition of PBr₃ to boiling Ac₂O (excess) gives 81.7% of AcBr with evolution of HBr.

R. S. C.

Thermal decomposition of acetyl iodide.—See A., 1940, I, 120.

Chlorination of butyl trichloroacetates. H. M. WADDLE and H. ADKINS (J. Amer. Chem. Soc., 1939, 61, 3361—3364).—Passage of Cl_2 (2 mols.) into $CCl_3 \cdot CO_2 Bu^a$ (510 g.), b.p. 100—101°/24 mm., illuminated by a W lamp, gives β - (158—175), b.p. 94— 96°/5 mm., and δ-chloro-n-butyl (93), b.p. 113—116°/ 5 mm., and xx-dichloro-n-butyl trichloroacetate (50 g.), b.p. $127-131^{\circ}/5$ mm. $CCl_3 \cdot CO_2 Bu^{\beta}$ (510 g.), b.p. 93— $94^{\circ}/24$ mm., gives similarly β - (I) (118—122), b.p. $80-81^{\circ}/5$ mm., and γ -chloroisobutyl (139), b.p. 98-99°/5 mm., and xx-dichloroisobutyl trichloroacetate (41—56 g.), b.p. 101—105°/5 mm. CCl₃·CO₂Bu-sec. (508 g.), b.p. 88—89°/19 mm., gives β -chloro- α -methyl-n-propyl (II) (137—144), b.p. 83—84°/5 mm., α -chloromethyl-n-propyl (or, less probably, γ -chloro- α -methyln-propyl) trichloroacetate (21—37 g.), b.p. 108—110°/5 mm. By hydrolysis with 10% NaOH at <35° are obtained β- (III), b.p. 74—76°/25 mm. (phenylurethane, m.p. $52.5-53.5^{\circ}$), and δ -chloro-n-butan- α -ol, b.p. $72-75^{\circ}/10$ mm. (phenylurethane, m.p. $54-55^{\circ}$), γ-chloroisobutyl alcohol, b.p. 76—78°/21 mm. (phenylurethane, m.p. 63·5—64°), (? α-)chloro-n-butan-β-ol, b.p. 56°/12 mm. (phenylurethane, m.p. 78·5—79°), and xx-dichloro-n-butan-\alpha-ol, b.p. 87-93°/6 mm., but (I) gives Pr^gCHO and (II) gives only a little (CHMe:)₂. Structures are assigned from physical consts. and by conversion of (III) into CHEtCl·CH₂Cl, b.p. 127°, by $SOCl_2-C_5H_5N$.

Preparation of tricaprylin. E. B. Hershberg (J. Amer. Chem. Soc., 1939, 61, 3587—3588).—Simultaneous addition of purified $n\text{-}\mathrm{C}_7\mathrm{H}_{15}$ COCl (kept in excess) and aq. NaOH or KOH to glycerol at -5° to 0° gives 84—89% of trioctoin, f.p. 9·8—10·1°, b.p. 233—233·5°/1 mm. R. S. C.

Transformations of organic compounds in the solid state (compounds with long chains). II. n-Tricosanoic acid. R. Kohlhass and C. Stüber (Ber., 1939, 72, [B], 1962—1969).—Two modifications of n-tricosanoic acid crystallise from COMe₂ as a mixture of which the relative proportions are not determined. Both modifications have the rhomboid form with distinct angles. The β -form is partly unstable and passes at 59·3° into the α -form (I), which separates from the molten material. (I) supports the theory of von Schoon (A., 1938, I, 348) of the formation of polymorphous modifications in aliphatic compounds with long chains. H. W.

Preparation of $\alpha\beta$ -diglycerides of fatty acids. B. F. Daubert and C. G. King (J. Amer. Chem. Soc., 1939, 61, 3328—3330).—Na α -glyceroxide and CH₂Ph·O·COCl in C₆H₆ give α -carbobenzyloxyglycerol, an oil, which with n-C₁₅H₃₁·COCl in quinoline at

room temp. gives α -carbobenzyloxyglyceryl $\alpha'\beta$ -dipalmitate, m.p. 71°, reduced by H_2 -Pd-black in abs. EtOH at 2 atm. to PhMe and $\alpha\beta$ -dipalmitin (I), m.p. 64°. Similarly are obtained α -carbobenzyloxyglyceryl $\alpha'\beta$ -dimyristate, m.p. 67—68°, and -dibenzoate, dimyristin, m.p. 59°, and, with difficulty, glyceryl $\alpha\beta$ -dibenzoate (II), m.p. 98° (p-bromobenzoate, m.p. 107°). Migration of acyl occurs when (I), but not (II), is kept in 0.025—0.1N-HCl- or -NH₃-EtOH. Solubilities of these and some other esters are recorded.

Preparation of pure stearic acid. J. P. Kass and L. S. Keyser (J. Amer. Chem. Soc., 1940, 62, 230).—Pure stearic acid, m.p. 69·6—70·2° (corr.), is readily prepared by hydrogenating (PtO₂) pure elaidic, α- or β-elæostearic, or linoleic acid in AcOH at room temp./3 atm.

R. S. C.

Ricinus communis. I. Oxidation of ricinoleic acid. St. E. Brady (J. Amer. Chem. Soc., 1939, 61, 3464—3467).—Ricinoleic acid, m.p. ~5°, and its Et ester, b.p. 193—194°/2 mm. (acetate, b.p. 196°/2—3 mm.), of theoretical I val. are prepared from castor oil. With KMnO₄ in COMe₂, the ester gives hexoic, heptoic, octoic, β-hydroxynonoic, azelaic, suberic, and an acid, m.p. 96°. With KMnO₄–KOH in H₂O, the acid gives approx. equal amounts of the trihydroxystearic acids, m.p. (I) 110° and (II) 141°, but ricinelaidic acid gives much more (I) than (II). HIO₄ oxidises (I) and (II) to β-hydroxynonaldehyde and aldehydoazelaic acid. R. S. C.

ψ-Elæostearic acid. J. P. Kass and G. O. Burr (J. Amer. Chem. Soc., 1939, 61, 3292—3294).—
ψ-Elæostearic acid, m.p. 77—79° (uncorr.) (Me ester, m.p. 41°), is prepared by heating linseed oil fatty acids with KOH, best in BuOH or (CH₂·OH)₂. It is hydrogenated (PtO₂; AcOH) at 3 atm. to stearic acid and with KMnO₄ in COMe₂ gives sebacic acid, H₂C₂O₄, and PrCO₂H. It is thus Δth-octadecatrienoic acid. It readily forms a tetrabromide, m.p. 104—104·5°, but the hexabromide, m.p. 152·5°, is smoothly obtained only in ultra-violet light. With maleic anhydride in N₂ at 145°, it gives a mixed adduct, sinters at 75°, m.p. 77°, clear at 82°, and is thus the trans-transtrans- or trans-cis-trans-compound. The absorption spectrum accords with the triple conjugation.

R. S. C. Ether-like compounds. VI. Constitutive factors in the acid hydrolysis of esters of aliphatic carboxylic acids. E. J. SALMI (Ber., 1939, **72**, [B], 1767—1777; cf. A., 1939, II, 316).—The acid hydrolysis $\mathrm{CH_2(OEt)_2}$, of CHMe(OEt)₂, OEt·CH₂·OAc has been studied. The characteristics of the normal ester hydrolysis of esters appear to be the temp. coeff. of the rate of hydrolysis and an almost const. influence of the alcohol component on the rate of hydrolysis. With ether-like hydrolysing esters, acetal-like compounds and normal esters the ratio k_{35} : k_{25} is ~ 4 , ~ 3.2 , and 2.5—2.3, respectively. The const. action of the alcohol component is established by observations of the rate of hydrolysis of a series of Me, Et, and Pr^{\beta} esters of fatty acids and their derivatives. An anomalous behaviour appears to be shown by esters of which the acidic components are either the first homologues of different acid series

 $(HCO_2H; H_2C_2O_4)$ or have strongly negative substituents in the α position (CH₂Cl·CO₂H; CHCl₂·CO₂H). Carbonic esters are also abnormal. A distant substituent has only a very weakened influence on the rate of hydrolysis. O at $C_{(a)}$ appears to act not as an actual substituent but as a prolongation of the chain. At C₍₆₎ it diminishes considerably the rate of hydrolysis, OH and OAlk having almost the same effect. It appears that the position of a substituent is much more important in the influence on the rate of hydrolysis than is its individual character. y position the negativing substituent can be altered without greatly influencing the rate of hydrolysis; the latter is almost unchanged by entry of a substituent at C(8). Branching of the chain is not of importance unless it occurs in vicinal positions to CO₂H on the acyl or alkyl side. Branching in the chain of the alkyl of α-alkoxy-groups has no profound influence. A double linking on the acyl side has a distinct influence only if in the $\alpha\beta$ position. If several substituents are present in the acyl group it appears possible that their influence is exerted almost independently of one another.

Cleavage of unsaturated fatty acids. C. Y. HSING and K. J. CHANG (J. Amer. Chem. Soc., 1939, 61, 3589).—0ι-Dihydroxyoctadecanoic acid (from oleic acid) and Pb(OAc)₄ in AcOH give 85% (as semicarbazone) each of n-C₈H₁₇·CHO and CO₂H·[CH₂]₇·CHO (I). θικ -Trihydroxyoctadecanoic acid (from ricinoleic acid, m.p. I11—I12°) gives similarly ~90% of the semicarbazone of (I) and a product, m.p. 112—I13°. R. S. C.

Pyrolysis of diglycollic anhydride. C. D. Hurd and H. G. Glass (J. Amer. Chem. Soc., 1939, 61, 3490—3491).—At 450° diglycollic anhydride (prep. from diglycollic acid described) gives 71% of (CH·CO)₂O, much CO, and smaller amounts of CO₂, H₂, and unsaturated gases. In a run at 500° 4% of keten was isolated. R. S. C.

Condensations brought about by bases. VII. Acylation of ethyl isobutyrylisobutyrate. Cyclisation of a βδ-diketo-ester by sodium triphenylmethyl. B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1939, 61, 3567—3570; cf. A., 1939, II, 262).—COPr^β·CMe₂·CO₂Et (I) is formed in 55% yield by adding CPh₃Na to Pr^βCO₂Et in Et₂O or in 72% yield from CMe₂Br·CO₂Et and Mg in Et₂O. In the former prep., (I) is obtained as its enolate, since addition of Pr^βCOCl to the crude reaction mixture gives 42% of Et βδ-diketo-ααγγε-pentamethyl-n-heptoate (II), b.p. 137—138° (corr.)/15 mm., whereas Pr^βCOCl does not react with isolated (II) unless CPh₃Na is previously added. Adding CPh₃Na and then AcCl to (I) in Et₂O gives 52% of Et βδ-diketo-ααγγ-tetramethyl-n-hexoate (III), b.p. 122—124° (corr.)/15 mm. NaOEt is useless for these condensations. NaOEt cleaves (II) to Pr^βCO₂Et, but CPh₃Na in Et₂O leads to hexamethylphloroglucinol. Only oils are obtained from (III) by either reagent. R. S. C.

Gradual decomposition by oxidation of fatty acids into their next lower homologues. H. Mendel and J. Coops (Rec. trav. chim., 1939, 58, 1133—1143).—Fatty acids are converted into the

α-Br- and then α-OH-acid, which is oxidised [air + Pb(OAc)₄], through the aldehyde, to the lower homologous acid (yield \sim 84%). Thus, palmitic acid gives successively α-bromopalmityl bromide, Me α-bromo-, α-acetoxy-, and α-hydroxy-palmitate, and α-hydroxy-palmitic acid, converted by air and Pb(OAc)₄ in C_0H_6 into Me·[CH₂]₁₃·CO₂H. Similarly, stearic acid gives α-Br- and then α-OH-acid, m.p. 91°, oxidised (at 50°) to margaric acid, m.p. 60·86°. A. T. P.

Oil from seeds of Ongokea klaineana, Pierre. A. CASTILLE (Annalen, 1939, 543, 104—110; cf. Steger et al., B., 1937, 1080; Boekenoogen, ibid., 1233).—The oil, extracted with COMe₂ and Et₂O, has d_4^{20} 0.9826, n_D^{20} 1.5079, sap. val. 191.4, Ac val. 67, I val. (Wijs; $\frac{1}{2}$ hr.) 143, CNS val. (24 hr.) 64, Margosches val. (1 hr.) 187, acid val. 3.8, and contains 3.27% of unsaponifiable matter (A); it gives hexoic, octoic, lauric, palmitic, stearic, arachidic, oleic (trace), and erythrogenic acid (II), C₁₈H₂₆O₂, m.p. 39.5° (separated as Et₂O-sol. Pb salt). Catalytic reduction (Pt-black or PtO₂) of (II) affords (I). Ozonolysis of the Et ester of (II) gives CH2O, H2C2O4, adipic acid (III), and Et H azelate; (II) is, therefore, octadec- Δ^{n} -ene- $\Delta^{\theta\xi}$ - or $\Delta^{0\kappa}$ -di-inenoic acid. Irradiation of (II) in a high vac. or O₂-free atm. affords a red substance (composition unchanged) which is insol. in the usual neutral, acidic, or alkaline solvents. Oxidation (KMnO₄) of (II) (as Na salt) yields cyanogenic acid, C₁₇H₂₉(OH)₂·CO₂H, m.p. 92°, which when irradiated in absence of air turns blue [this gives a colourless EtOH-solution which deposits a red compound (composition unchanged), now insol.]. (A) contains an alcohol, m.p. 328° (acetate, m.p. 192.5°), phytosterol, stigmasterol, and deca- Δ^a -ene- Δ^{μ} - or $-\Delta^{\mu}$ -di-inene (IV), b.p. $209^{\circ}/763$ mm. [Hg compound, oxidised (O₃) to $\mathrm{CH_2O}$, $\mathrm{HCO_2H}$, $\mathrm{H_2C_2O_4}$, and $\mathrm{(III)}$], which is reduced to $n-C_{10}H_{22}$. (IV) may arise from (II).

Diketen: a new industrial chemical. A. B. Boese (Ind. Eng. Chem., 1940, 32, 16—22).—The historical development of diketen, CH₂:CCC_OCO (I), and its structural formula are discussed, and the known reactions are reviewed with emphasis on the potential industrial application of many products (e.g., $CH_2Ac \cdot CO_2Et$, $CH_2Ac \cdot CO \cdot NHPh$, etc.). The following new applications of (I) are described. OEt· $[CH_2]_2$ ·OH and (I) with PhSO₃H yield β -ethoxyethyl acetoacetate, b.p. 93-94°/3 mm., in 84% yield. (CH2·NH2)2 in H2O with (I) gives NN'-diacetoacetylethylenediamine, m.p. $168-169^{\circ}$, in 72% yield. o-Toldine in $C_2H_4Cl_2$ with (I) gives a 93% yield of NN'-diacetoacetyl-o-tolidine, m.p. 206—207° SO₃H·C₆H₄·NH·NH₂ and (I) in H₂O yield 80% of 1-sulphophenyl-3-methyl-5-pyrazolone. C₆H₆ with (I) and AlCl₃ gives CH₂B₂Ac in 73% yield. (I) is polymerised by tert. bases in inert solvents to dehydroacetic acid, and is depolymerised by pyrolysis at 550— 600° to keten. The potential industrial importance of keten as an acetylating agent and as a synthetic

Electrolytic dissociation of dicarboxylic acids in water and in aqueous alkali chloride solutions.
—See A., 1940, I, 116.

agent is stressed, and many examples are given.

Action of diazonium salts with ascorbic acid; general reaction of dienols. R. Weidenhagen and H. Wegner [with K. H. Lung and L. Nordström] (Ber., 1939, 72, [B], 2010—2020).—Ascorbic acid (I) and p-C₆H₄Me·N₂·SO₄H in H₂O at room temp. rapidly give p-tolythydrazido-oxalyt-1-threonolactone (II),

 $CH_{2} < CH(OH) > CH \cdot O \cdot CO \cdot CO \cdot NH \cdot NH \cdot C_{6}H_{4}Me, m.p.$ 175—176° (decomp.), $[\alpha]_D^{20}$ +59·1° in EtOH, hydrolysed by gently boiling H₂O to oxal-p-tolylhydrazide (III), m.p. 153° (decomp.), and l-threonic acid, identified as the phenylhydrazide, m.p. 158°, $[\alpha]_{\rm p}^{20}$ +57.2° in EtOH, and as dibenzoyl-1-threonolactone, m.p. 114°, $[\alpha]_D^{20} + 174.4^\circ$ in EtOH. Fission of (II) by NHPh·NH₂ in EtOH leads to oxalphenyltolyldihydrazide, m.p. 252—253° (decomp.). (I) and the requisite diazotised amine afford phenylhydrazido-, m.p. $155-157^{\circ}$ (decomp.), $[\alpha]_{D}^{20}$ +63.8° in EtOH, and 2:5-dichlorophenylhydrazido-, m.p. 110° (decomp.), $[\alpha]_{D}^{20}$ +84.4° in EtOH, -oxalyl-1-threonolactone. In a similar manner isoascorbic acid yields p-tolylhydrazido-oxalyl-d-erythronolactone, m.p. 117° (decomp.), $[\alpha]_D^{20}$ -62.8° in EtOH, hydrolysed by boiling H_2O to to (III) and d-erythronolactone, m.p. $104-105^{\circ}$, $[\alpha]_{D}^{20}$ $-73\cdot2^{\circ}$ in H_2O . Hydroxytetronic acid affords p-tolylhydrazido-oxalylglycollic acid, m.p. 184—185° (decomp.), which is hydrolysed to (III) and glycollic acid. Reductic acid yields β-ketoglutar-p-tolylhydrazide, m.p. 157° (decomp.) [semicarbazone, m.p. 207° Reductone and diazotised 2:5:1- $C_6H_3Cl_2\cdot NH_2$ give glyoxyl-2: 5-dichlorophenylhydrazide (hydrate), m.p. 125—126° [phenylhydrazone, m.p. 223° (decomp.)].

Catalyst for production of acetaldehyde from acetylene.—See B., 1940, 114.

Chain length and chain-ending processes in acetaldehyde decomposition.—See A., 1940, I, 120.

Crotonaldehyde condensation. Reaction of crotonaldehyde with formamide. H. L. Du Mont and W. Schmidt (Ber., 1939, 72, [B], 2029—2035).—Crotonaldehyde (I), HCO·NH₂, and NaHCO₃ at 100° give a resin, C₁₄H₁₇O₃N, converted by p-C₆H₄Me·SO₂Cl and C₅H₅N into a compound, C₂₁H₂₃O₅NS, and by p-C₆H₄Br·NH·NH₂ into the substance, C₂₈H₃₄O₄N₃Br. (I), HCO·NH₂, CuCO₃, and U₃O₃ in dioxan at 100° give a resin with 5·38% N. Gradual addition of (I) to HCO·NH₂ containing anhyd. ZnCl₂ at 100° gives NH₂·CO₂NH₄, a little aldehydocollidine (II), and, after treatment of the products sol. and insol. in H₂O with HCl, the hydrochlorides, C₁₅H₂₄O₃N₂Cl₂ and C₁₀H₁₅ONCl (whence the base, C₁₀H₁₅ON). (I), HCO·NH₂, and anhyd. AlCl₃ at 75° give small amounts of (II) a resin (III) with 6·95% N which is sol. in H₂O and an insol. resin which with p-C₆H₄Mc·SO₂Cl gives the compound, (C₈H₁₂ON)₉SO₂·C₆H₄Me; from another resin fraction

(C₈H₁₂ON)₉SO₂·C₆H₄Me; from another resin fraction a compound, C₁₄H₂₄O₂N₂Br₂, is obtained by Br-EtOH. A portion of (III) which cannot be pptd. from H₂O by NaOH yields to CHCl₃ a substance, C₂₀H₂₈O₂N₃. Aq. NH₃ and (I) at 100° afford the material, C₈H₁₂ON. HCO·NH₂, (I), and CdCl₂ in dioxan at 100° yield the

material, C₁₂H₁₇ON. HCO·NH₂, (I), and piperidine give a resin free from N and insol. in HCl. H. W.

Hydroxyaldehydes. III. Preparation of δmethoxyvaleraldehyde. R. Pummerer and M. SCHÖNAMSGRUBER (Ber., 1939, 72, [B], 1834—1843). —Successive treatment of CH₂(CH₂·OH)₂ with Na and Mel affords γ-methoxypropan-α-ol (I), b.p. 150—150-5°/738 mm., 76—78°/18 mm., which is converted by anthropying 2 conformal children in the converted by a converte by anthraquinone-2-carboxyl chloride into γ -methoxypropyl anthraquinone-2-carboxylate, m.p. 132° (corr.). PBr_3 and C_5H_5N convert (I) into γ -methoxypropyl bromide (II), b.p. 29-30°/15 mm., 129·5-131°/736 mm., which is transformed by C₆H₄(CO)₂NK at 190° into trimethylenediphthalimide, m.p. 202° (corr.). Mg allyl bromide and (II) in Et₂O give a brominated product which after treatment with boiling C₅H₅N yields α -methoxy- Δ ϵ -hexene, b.p. 124 $^{\circ}$ /742 mm., which is ozonised in AcOH at 0 $^{\circ}$ and then reduced by Zn dust to δ -methoxyvaleraldehyde (III), b.p. $59^{\circ}/14.5$ mm. [Me_2 acetal (IV), b.p. $77-78^{\circ}/15$ mm.], which immediately gives all the typical aldehyde reactions and almost certainly is present in the open form. Attempted purification of (III) through the H sulphite appears to be accompanied by an aldol condensation (due to conc. alkali used) leading to δ-methoxy-α-ωmethoxypentenylvaleraldehyde, b.p. 152°/14 mm. (decomp.). Treatment of (III) or (IV) with boiling 2n-H₂SO₄ under N₂ leads to very slight increase in acidity and gives unchanged material, aldol, and compounds of higher b.p. which have not been investigated. OH·[CH2]5·OH (V) is oxidised by cold, alkaline KMnO₄ to glutaric acid in 80% yield. Gradual addition of (V) to PCl₅ in CCl₄ affords $\text{Cl}\cdot[\text{CH}_2]_5\cdot\text{Cl}$, b.p. 76—78°/21 mm., which is converted into the corresponding dinitrile and thence into pimelic acid, m.p. 104° (corr.). The diurethane of (V) has m.p. 176° (corr.). Pentane-αε-diyl dianthraquinone-2-carboxylate, m.p. 218.5° (corr.), is described. (V) is transformed by Na and MeI into ε -methoxy $pentan-\alpha-ol$ (VI), b.p. $95^{\circ}/17$ mm., $98.5^{\circ}/20$ mm., which does not yield a cryst. urethane or H phthalate but gives 2-methoxypentan- α -yl anthraquinone-2-carboxylate, m.p. 88° (corr.). (VI) is oxidised by K₂Cr₂O₇ and H₂SO₄ to (III).

Keten and its dimeride. C. D. Hurd and A. S. Roe (J. Amer. Chem. Soc., 1939, 61, 3355—3359).—
In presence of a trace of H₂SO₄ or p-C₆H₄Me·SO₃H, keten and PhOH, Bu'OH, or CMe₂Et·OH at room temp. give ~90% of the derived acetate. With CH₂O, acraldehyde, crotonaldehyde, or HCO₂Me at 20° or -80°, keten gives polymeric oils, probably (RCO·OAc)_x, in which R is unsaturated. Keten and anhyd. HCO₂H give formic acetic anhydride, b.p. 33—33·5°, which with NH₂Ph gives readily and only NHPh·CHO, thus establishing the order of electronattraction, Ph>Me>H, from the fission of asymmetric acid anhydrides. PbEt₄ does not react with keten. The keten dimeride (I) is a resonance hybrid of COMe·CH·CO and β-crotonolactone. Its redetermined parachor is 188·0. It is 23% enolised (MgPr^βBr; C₃H₈ and only a trace of C₃H₆ formed). It is depolymerised at 650°, but much gas is also formed. With PhCHO and KOAc, it gives CHPh·CH·COMe and CO₂ by way of

OH·CHPh·C(COMe).CO and CHPh.C(COMe)·CO₂H. With PbEt₄ it gives an unstable, yellow solid.

R. S. C.

Hydrogenation of a higher ketone with catalysts consisting mainly of copper, cobalt, and cerium under atmospheric pressure. K. Kino and S. Kato (J. Soc. Chem. Ind. Japan, 1939, 42, 3628).—A higher ketone, prepared from commercial stearic acid, gave the corresponding sec. alcohol with H₂ in 8 hr. at 150°/atm. pressure in presence of Cu-Co, Co-Ni, and Ni-Ca, whereas Cu, Cu-Zn, Cu-Ag, Cu-Cr, Cu-Ce, Cu-Ca, Co, Ce, and Ni-KOH were unsuitable.

T. F. W.

Preparation of a higher secondary alcohol from a higher ketone by hydrogenation under pressures of 5 and 20 atmospheres. K. Kino and S. Kato (J. Soc. Chem. Ind. Japan, 1939, 42, 363B).— A higher ketone, prepared from commercial stearic acid, gave the corresponding sec. alcohol with H₂ at 150°/5 atm. in presence of Co-Ni, Cu-Co, and Ni-Ca. Under 20 atm. Co-Zn, Cu-Co, Cu-Ce, Co-Ni, Co-Cu, and Ni-Ca were effective. T. F. W.

Hydrogenation of $\alpha \gamma$ -diketones to ketols. P. S. STUTSMAN and H. ADKINS (J. Amer. Chem. Soc., 1939, **61**, 3303—3306).—Hydrogenation of COR·CH₂·COMe in MeOH using 0·9—1·0 H₂ at 100°/100—200 atm. in presence of Raney Ni gives the following yields of COR·CH₂·CHMe·OH (A): R = Me 35, Et 51, Pr^{α} 58, Pr^{β} 50, Bu^{α} 66, Bu^{β} 49, CHMeEt 64% (cf. Sprague, A., 1935, 198). Yields are approx. the same in Et₂O, dioxan, or EtOH, but are 4-20% higher using 1 mol. of H₂ diluted with N₂. The structure of (A) is determined by distilling with H₂C₂O₄ and reducing the olefine by H₂-Raney Ni at 30—40°/100 atm. to CORPra, identified by solid derivatives. No OH·CHR·CH₂·COMe is formed. Further hydrogenation (Ni) at 100—125°/100 atm. in MeOH gives OH·CHR·CH₂·CHMe·OH (R = Et 92, $Pr^{\alpha} = Bu^{\alpha}$ 94, CHMeEt 80%). 27% of fission of COPh CHEt COMe (cf. loc. cit.) to PhCHO and COMePra occurs during hydrogenation and is due to hydrogenolysis and not to disproportionation of the ketol, since COBu^γ·CH₂·CHMe·OH is stable in Et₂O at 60° in presence of Raney Ni. The following are described. n-Hexan-γ-on-ε-ol, b.p. 75—78°/12 mm.; n-pentan-β-on-δ-ol, b.p. 93—95°/43 mm.; n-heptanδ-on-β-ol, b.p. $101^{\circ}/24$ mm.; β-methyl-n-hexan-γ-on-ε-ol, b.p. 72— $73^{\circ}/9$ mm.; n-octan-δ-on-β-ol, b.p. $91^{\circ}/8$ mm.; ζ-methyl-n-heptan-δ-on-β-ol, b.p. 86°/9 mm. (phenylhydrazone, m.p. III—II3°); ββ-dimethyl-n-hexan-yon-ε-ol, b.p. 72—74°/10 mm.; ε-methyl-n-heptan-δon- β -ol, b.p. 113—114°/36 mm.; Δ^{δ} -n-hexen- γ -one, b.p. 136—139°/740 mm. (2:4-dinitrophenylhydrazone, m.p. $164-165^{\circ}$); β -methyl- Δ^{δ} -n-hexen- γ -one, b.p. $147-148\cdot 5^{\circ}/739$ mm. (2:4-dinitrophenylhydrazone, m.p. 140—141°); Δβ-n-hepten-δ-one, b.p. 156—162°/ 740 mm. (2:4-dinitrophenylhydrazone, m.p. 142-143°); Δ^{β} -n-octen- δ -one, b.p. 178°/740 mm. (2:4-dinitrophenylhydrazone, m.p. 108—109°); ζ -methyl-, b.p. 168—170°/741 mm. (2: 4-dinitrophenylhydrazone, m.p. $101-101.5^{\circ}$), and ε -methyl- Δ^{β} -n-hepten- δ -one, b.p. $170^{\circ}/741$ mm.; $\beta\beta$ -dimethyl- Δ^{δ} -n-hexen- γ -one, b.p. 153—154°/740 mm. (2:4-dinitrophenylhydrazone, m.p. $135-135\cdot5^{\circ}$); γ -methyl-n-heptan- δ -one, b.p. 152—154°/740 mm. (semicarbazone, m.p. 106—107°); n-heptane-βδ-diol, b.p. 107—108°/8 mm. (bisphenylurethane, m.p. 101—101·5°); n-octane-βδ-diol, b.p. 117—118°/8 mm. (bisphenylurethane, m.p. 126—127°); ε-methyl-n-heptane-βδ-diol, b.p. 111—112°/8 mm. (bisphenylurethane, m.p. 129—130°); ε-methyl-n-hexane-, m.p. 134—135°, and ζ-methyl-n-heptane-, m.p. 143—143·5°, -βδ-diol bisphenylurethane.

化环烷基 经收值 海

Oxidation of aldoses by hypoiodite. V. K. Myrbäck (Svensk Kem. Tidskr., 1939, 51, 206—217; cf. A., 1939, I, 615).—With pure aldose solutions there is no advantage in using alkali carbonate solutions and some sugars cannot be determined in this way. A method is proposed in which the oxidation always goes to completion. If the glucose is mixed with ketoses, sucrose, or similar compounds the methods of Auerbach and Bodländer and others may be used unless appreciable quantities of substances which react with I are present. Traces of COMe₂ can completely invalidate the results.

T. H. G.

Oxidation of glucosides by lead tetra-acetate in aqueous solution. J. M. GROSHEINTZ (J. Amer. Chem. Soc., 1939, 61, 3379—3381; cf. A., 1940, II, 3).—Oxidation of α- and β-methyl-l-arabinopyranoside by aq. Pb(OAc)₄ proceeds exactly as with HIO₄ (Jackson et al., A., 1937, II, 325), except that the HCO₂H formed is further oxidised to CO₂, consuming a third mol. of oxidant. R. S. C.

M. R. Synthesis of 5:6-dimethylglucose. SALMON and G. POWELL (J. Amer. Chem. Soc., 1939, 3507—3510).—Diisopropylideneglucose CH,Ph·O·CH,Cl with Na in Et,O at room temp. or KOH in boiling Et₂O give 3-benzyloxymethyldiiso-propylideneglucose, b.p. 157—160°/0·15 mm., hydrolysed by ~90% AcOH to 3-benzyloxymethylmonoisopropylideneglucose, an oil [di(phenylurethane), m.p. 148-148.5°], which with Me₂SO₄-NaOH (twice) gives 5:6-dimethyl-3-benzyloxymethylisopropylideneglucose, b.p. 155—163°/0·12 mm. Na-EtOH then gives 5:6-dimethylisopropylideneglucose, m.p. 56-56.5°, $[\alpha]_D^{30} = 12.8^{\circ}$ in H_2O (phenylurethane, m.p. 88—89°; NN'-diphenylallophanate, m.p. 241—242°) (with PhMe and MeOH), hydrolysed by N-HCl at 80° to 5:6-dimethylglucose (I), hygroscopic, $[\alpha]_D^{32}$ +4.0±0.3° in H₂O [p-bromophenylosazone, m.p. 155.5— 156° (decomp.)], which reduces Fehling's solution or KMnO₄ in the cold and gives Schiff's reaction. The structure of (I) is proved by oxidation (HIO₄; Br) to dimethylglyceric acid (p-phenyl-, m.p. 62·5—63°, and p-bromo-phenacyl ester, m.p. 66.5-67°). M.p. R. S. C. are corr.

Emulsin. XLII. Fission of *d*-xylosides, *l*-xylosides, and *dl*-xylosides by sweet almond emulsin. B. Helferich, E. Günther, and W. W. Pigman (Ber., 1939, 72, [B], 1953—1959).—*l*-Xylose is converted by anhyd. NaOAc and Ac₂O at 100° into β -d-xylopyranose tetra-acetate, m.p. 123—125°, [α]²⁵ +25·3° in CHCl₃, which is converted into phenol- β -l-xylopyranoside triacetate, m.p. 143—145°, [α]²⁵ +50·7° in CHCl₃, de-acetylated (Zemplén) to phenol- β -l-xylopyranoside (I), m.p. 178—180°, [α]²⁶ +49·5° in H₂O, which slowly reduces boiling Fehling's solution.

Phenol- β -d-xylopyranoside (II) is hydrolysed by sweet almond emulsin, by which (I) is scarcely affected by prolonged action at high conen. Admixture of equal amounts of (I) and (II) affords phenol-βdl-xylopyranoside, m.p. 187° (corr.), which, in solution, behaves towards emulsin as a mixture of (I) and (II). Protocatechualdehyde - 4 - β - d - glucopyranoside tetra-acetate, acetobromo-l-xylose, and NaOH in aq. COMe₂ at room temp. afford protocatechualdehyde-4β-d-glucoside-3-β-l-xyloside hepta-acetate, m.p. 148— 150°, $[\alpha]_D^{21} + 9.4$ ° in CHCl₃, deacetylated (NaOMe in MeOH) to protocatechualdehyde-4-β-d-glucoside-3-β-lxyloside (III), m.p. 235—237°, $[\alpha]_{D}^{20}$ —32.7° in $H_{2}O$. $Protocatechualdehyde-4-\beta-d-glucoside-3-\beta-d-xyloside(IV)$ (+EtOH), softens at ~72°, solvent-free, m.p. 128— 130°, $[\alpha]_{\rm D}^{20}$ —89.8° in H₂O, and its hepta-acetate, m.p. 147—149°, $[\alpha]_{\rm D}^{20}$ —69.9° in CHCl₃, are described. Hydrolysis of (IV) by emulsin occurs at about the same rate as that of other protocatechualdehydediglycosides, both d-glucose and β -d-xylose being eliminated. Hydrolysis of (III) proceeds much less readily; possibly β -l-xylose engages the vicinal glucose much more completely than does its enantiomorph so that the enzyme approaches with greater difficulty. With the highly active enzyme the complete removal of glucose from (III) has been effected.

Substitution reactions of oxygen atoms between glucose, fructose, and water. T. TITANI and K. Goto (Proc. Imp. Acad. Tokyo, 1939, 15, 298—299).—The interchange of $^{18}{\rm O}$ between ${\rm H_2}^{18}{\rm O}$, glucose, and fructose is determined by measurements of the d of the aq. solvent before and after substitution. Each sugar has one easily exchangeable O, and a mechanism is proposed involving opening the lactone ring by addition of ${\rm H_2}^{18}{\rm O}$ followed by ring closure by fission of ${\rm H_2}{\rm O}$. J. D. R.

Synthesis of oligosaccharides in the mannose series. D. D. REYNOLDS and W. L. EVANS (J. Amer. Chem. Soc., 1940, **92**, 66—69).—β-d-Mannose 6-CPh₃ ether 1:2:3:4-tetra-acetate (prepared in improved yield by shaking mannose and CPh3Cl in C_5H_5N at 50° and then with Ac_2O at room temp.), m.p. 204—206°, and HBr-AcOH at 0° give rapidly β- \bar{d} -mannose 1:2:3:4-tetra-acetate, m.p. 135·5— 136.5°, which with acetobromogentiobiose (I), I, Ag_2O , and drierite in $CHCl_3$ give 6- β -gentiobiosido- β -dmannose hendeca-acetate, m.p. $122-123^{\circ}$, $[\alpha]_D^{26}-21.02^{\circ}$ in CHCl₃, and, in one experiment, Et gentiobiose heptaacetate (II), m.p. 158—159°, $[\alpha]_D^{26}$ —23.06° in CHCl₃, also obtained from (I) and EtOH as above. α -d-Mannose 6-CPh₃ ether 1:2:3:4-tetra-acetate (prep. described), m.p. $123-124^\circ$, $[\alpha]_D +73.5^\circ$ in CHCl₃, and HBr-AcOH give α -d-mannose 1:2:3:4-tetraacetate, converted by acetobromoglucose etc. into $6-\beta-d$ -glucosido-α-d-mannose octa-acetate, +26.01° in CHCl₃. Hudson's rules are valid for 6but not for 4-linked mannose derivatives and for (II). M.p. are corr.

Reduction products of d-glucoheptulose. F. L. HUMOLLER, S. J. KUMAN, and F. H. SNYDER (J. Amer. Chem. Soc., 1939, 61, 3370—3374).—d-Glucoheptulose (improved prep.) and Na-Hg give β-d-and α-glucoheptitol (I). (I) was previously termed

 α -d-glucoheptitoI (Khouvine et al., A., 1933, 373), as it is isolated with $[\alpha]_D + 2.04^\circ$ in H_2O due to an impurity; its nature is proved by its yielding pure (I) when heated with 10% H_2SO_4 , giving only the hepta-acetate and (CPh₃)₂ ether of (I), and by studies of solubility. R. S. C.

Partly methylated disaccharides. II. Malt-K. Hess and W. Gramberg (Ber., 1939, 22, [B], 1898—1908; cf. A., 1937, II, 276).—Benzylideneβ-benzylmaltoside is best methylated in small portions and with a large excess of Ag₂O to benzylidene-2:3:6:8:9-pentamethyl- β -benzylmaltoside, m.p. 140°, hydrolysed by 0.004n-HCl-MeOH to 2:3:6:8:9-pentamethyl- β -benzylmaltoside m.p. $109.5 - 110.5^{\circ}$, $[\alpha]_{D}^{20} + 35.3^{\circ}$ in MeOH, $+49.9^{\circ}$ in $CHCl_3$, $+40.2^{\circ}$ in $COMe_2$; more conc. acid causes fission of the maltose union. This is converted by $Ac_2O-C_5H_5N$ at 20° into its 10:12-diacetate, m.p. $85^{2}-86^{\circ}$, $[\alpha]_{D}^{20}+29.5^{\circ}$ in MeOH, $+40.9^{\circ}$ in CHCl₃, $+41.5^{\circ}$ in C_6H_6 , and by $BzCl-C_5H_5N$ at 115° into its 10:12-dibenzoate, m.p. 146.5° , $[\alpha]_D^{20}+51.7^{\circ}$ in C_6H_6 , $+68.8^{\circ}$ in $CHCl_3$, $+48.5^{\circ}$ in $COMe_2$. (I) and CPh_3Cl afford 12-triphenylmethyl-2:3:6:8:9-pentamethylβ-benzylmaltoside (II) (purified by sublimation in a vac.), m.p. 70—80°, $[\alpha]_D^{20}+39\cdot2^\circ$ in MeOH, $+35\cdot5^\circ$ in CHCl₃, +33.6° in C₆H₆, reconverted by HCl-AcOH into (I). (II) is esterified by CH₂Ph·COCl-C₅H₅N and is transformed by BzCl-C₅H₅N into 12-triphenylmethyl-2:3:6:8:9-pentamethyl- β -benzylmaltoside 10benzoate (III), m.p. (indef.), 70—80°, $[\alpha]_D^{20}$ +42·7° in MeOH, +52·3° in CHCl₃, +31·9° in C₆H₆, converted by NaOMe in boiling MeOH into (I). Attempts to bring (II) into reaction with p-C₆H₄Me·SO₂Cl were unsuccessful. HCl-AcOH converts (III)2:3:6:8:9-pentamethyl- β -benzylmaltoside oate, which with Ag₂O-MeI affords non-cryst. 2:3:6:8:9:10-hexamethyl- β -benzylmaltoside benzoate (III), $[\alpha]_D^{20}$ +31.8° in MeOH, +39.5° in CHCl₃, +22·2° in C₆H₆. Successive treatments with NaOMe-MeOH at 60° and warm 5% HCl transform (III) into 2:3:6-trimethylbenzylglucoside 2:3:4-trimethylglucose, $[\alpha]_{D}^{20} + 59.7^{\circ}$ in MeOH, $+62.4^{\circ}$ in H₂O. H. W.

Partly methylated disaccharides. III. Cellobiose. K. Hess and H. L. Kwang (Ber., 1939, 72, [B], 1906-1908).-12-Triphenylmethyl-2:3:6:8:9pentamethyl- β -benzylcellobioside, a liquid, $[\alpha]_D^{20}$ —17.74° in COMe₂, -36.21° in C₆H₆, -25.99° in CHCl₃, -16.74° in MeOH, obtained from benzylidene- β benzylcellobioside and MeI-Ag₂O, does not react with $p-C_6H_4Me\cdot SO_2Cl$ but is transformed by BzCl in C_5H_5N at 100° into 12-triphenylmethyl-2:3:6:8:9pentamethyl-β-benzylcellobioside 10-benzoate, a glass, $[\alpha]_D^{20}$ $-18\cdot3^\circ$ in $OMe_2,~-19\cdot9^\circ$ in $C_6H_6,~-13\cdot2^\circ$ in $CHCl_3,~-17\cdot4^\circ$ in MeOH. This is hydrolysed by HCl-AcOH at 10° to non-cryst. 2:3:6:8:9-pentamethyl- β -benzylcellobioside 12-benzoate, $[\alpha]_{D}^{20}$ —28.9° in COMe₂, $-41\cdot1^{\circ}$ in C₆H₆, $-35\cdot2^{\circ}$ in CHCl₃, $-32\cdot4^{\circ}$ in MeOH, which with Ag₂O-MeI at $\sim60^{\circ}$ affords 2:3:6:8:9:10-hexamethyl- β -benzylcellobioside benzoate (I), $[\alpha]_0^{20}$ —39° in COMe₂, —42° in C₆H₆, —30·2° in CHCl₃, —33·8° in MeOH. (I) is hydrolysed by NaOMe–MeOH followed by 5% HCl to 2:3:4trimethylglucose and trimethyl-\beta-benzylglucoside.

2:3:6:8:9-Pentamethyl- β -benzylcellobioside 10:12-dibenzoate has $[\alpha]_D^{20}$ —27.7° in COMe₂, —47.7° in C_6H_6 , —31.5° in CHCl₃, —34.2° in MeOH. H. W.

Preparation of N-glycosides of aniline and substituted anilines. F. WEYGAND (Ber., 1939, 72, [B], 1663—1667; cf. Kuhn and Weygand, A., 1937, II, 233).—A mixture of sugar (1 mol.), amine $(1\cdot1-1\cdot4 \text{ mols.})$, and H_2O (2·4 mols.) when heated at 100° with good stirring becomes homogeneous after 2—15 min. according to the components used. short further heating a solvent suitable for crystallisation is added and the mixture is allowed to cool, whereby the glycoside separates in 44—99% yield. Further purification is usually unnecessary. The products are stable in the absence of acid vapours and are best preserved in the presence of a small amount of gaseous NH₃. The following are described: aniline-, m.p. 140° (tetra-acetate, m.p. 149°), o-toluidine-, m.p. 97—98°, p-toluidine-, m.p. 112—113° (tetra-acetate, m.p. 143—144°), and p-phenetidine-, m.p. 115—116° (tetra-acetate, m.p. 132°), -d-glucoside; aniline-, m.p. 144°, p-toluidine-, m.p. 154—155°, $[\alpha]_D^{22}$ —49.5° to +10.5° in aq. EtOH, and p-phentidine-, m.p. 140°, -d-galactoside; aniline-, m.p. $180-181^{\circ}$ (decomp.), and p-toluidine-, m.p. $183-184^{\circ}$, -d-mannoside; aniline-, m.p. $140-141^{\circ}$, and p-toluidine-, m.p. $124-125^{\circ}$, $[\alpha]_{0}^{20}-41.5^{\circ}$ in C₅H₅N, -d-xyloside.

Constitution of polyoses of wood. E. Huse-MANN (Naturwiss., 1939, 27, 595).—Osmotic measurements show that in xylans from wheat straw and beechwood, mannan from spruce, arabogalactan from larch, and cellulose from beech, the degrees of polymerisation of the pentose (xylose, arabinose) and hexose (mannose, galactose) units are approx. 150, 160, 220 and <1500, respectively. The particles which produce osmotic pressure are mols. (90% of the xylan mols. are of the same size), not mol. aggregates, and they retain their degree of polymerisation when converted into acyl derivatives. Measurements of $\eta_{\rm sp.}$ of solutions of the polymerides show that the mols. of mannan and the xylans form long straight chains whilst those of arabogalactan form chains with many branches. W. McC.

Macromolecular compounds. CCXXVII. Cellulose. LIII. Normal and faulty celluloses. H. STAUDINGER and A. W. SOHN (Ber., 1939, 72, [B], 1709—1717).—Nitration of a series of cellulose types, chiefly of technical origin, leads to products of mean degree of polymerisation exceeding that of the initial material. Polymeric analogous compounds are obtained from cellulose (I) which has been repptd. from Schweitzer's solution. It is considered that normal (I) mols, consist of an unbroken chain of glucose residues with ester-like union at the end of the normal chains. These linkings are disrupted by dissolution in Schweitzer's reagent and in these solutions only the chains of the normal (I) mol. are dissolved. When treated with HNO₃ the ester linkings remain intact and hence the degree of polymerisation of the nitrate exceeds that of (I). Ester-like linkings between individual thread mols. can be established in many ways, e.g., by boiling (COCl)2, and the nitrates of such "oxalylcelluloses" are more complex than those of the initial (I). Treatment with oxidising agents causes oxidative degradation and the glucose residues of the (I) chain undergo chemical change. The no. of CO₂H in oxycellulose exceeds that in (I) and CO is also present. Such oxidative attack can lead to the alteration of a glucose residue in such a manner that a carbonic ester is formed. These products are readily hydrolysed by alkali or NH₃ with production of "faulty celluloses." The linkings are stable towards nitrating acid so that polymeric-analogous nitrates do not appear to be produced. "Faulty celluloses" therefore contain interspersed foreign groups and the ester group no. = mean degree of polymerisation of the nitrates in COMe₂/mean degree of polymerisation of the cellulose in Schweitzer's reagent —1. The importance of the ester group no, for the behaviour of textiles is discussed. H. W.

Unesterified (A) primary, (B) secondary, hydroxyl [groups] in acetone-soluble cellulose. (A) F. B. CRAMER and C. B. PURVES. (B) F. B. CRAMER, R. C. HOCKETT, and C. B. PURVES (J. Amer. Chem. Soc., 1939, **61**, 3458—3462, 3463—3464).— (A) Interaction of commercial, COMe₂-sol. cellulose acetate (0.56—0.67 free OH per glucose unit) with p-C₆H₄Me·SO₂Cl in C₅H₅N at 20° is at first rapid and then slow, passing through a max. due to very slow replacement of RSO₂ by Cl. Hydrolysis of the product caused decomp. or loss of RSO₂, but NaI-COMe₂ leads to replacement of 0.197 RSO₂ by I, indicating that 35% of the OH are primary. This figure is a min., as some OH are not accounted for. C5H5N,HCl in C5H5N at 100° causes replacement of 0.24 RSO₂ by Cl, indicating that 43% of the OH are primary (cf. Sakurada et al., A., 1935, 201). If the p-C₆H₄Me·SO₂ derivative is isolated after the rapid reaction is ended, the product contained 0.19 RSO₂, of which 84—90% are primary (NaI). It follows that the COMe2-sol. acetate prepared by partial hydrolysis of the triacetate contains much free primary and sec. OH, hut that in the COMe2-insol. product of similar Ac content, prepared by direct, partial acetylation, the primary OH are preferentially acetylated. The 6-position of the I in iodocellulose (unstable to the usual reagents) is confirmed by conversion by a Zn-Cu couple in AcOH at 100° into a deoxycellulose acetate, which, when distilled with aq. acid, gives methylfurfuraldehyde and with 2% HCl-MeOH etc. gives isorhamnose (isolated as tetraacetate). All, except the degraded, products have unchanged mol. wt. (η) .

(B) Cellulose acetate containing 0.67 free OH per glucose unit should contain 1 OH·CH·CH·OH in 20—32 glucose units, if the distribution of free OH is purely random. This is not the case in such a commercial COMe₂-sol. acetate, for oxidation by Pb(OAc)₄ in 50% CHCl₃-AcOH indicates one free glycol unit in 100—150 glucose units. Cellulose triacetate is stable to Pb(OAc)₄. R. S. C.

Preparation of primary amines. A. Galat and (Miss) G. Elion (J. Amer. Chem. Soc., 1939, 61, 3585—3586).—Good yields of primary amines are obtained by adding 1 mol. of RCI or RBr to NaI and

 $(CH_2)_6N_4$ (1 mol. each) in hot 95% EtOH and keeping the mixture at room temp. for up to several weeks.

β-Aminobutane, di-sec.-butylamine, n-butyl-sec.-butylamine, and their preparation in optically active state. (MLLE.) A. FLEURY-LARSON-NEAU (Bull. Soc. chim., 1939, [v], 6, 1576—1582).— Hydrogenation (Ni or, better, Raney Ni + NH₃-MeOH) of COMeEt gives CHMeEt·NH₂ (I) and some (CHMeEt)₂NH (II) (cf. Mignonac, A., 1921, i, 165). (I) affords, through the d- and l-H tartrates (r-tartaric acid reduces amount of l-acid necessary), d- (III), $[\alpha]_{\rm p} + 7\cdot 4^{\circ}$ in H₂O, and l-sec.-butylamine, $[\alpha]_{\rm p} - 5\cdot 0^{\circ}$ in H₂O (cf. Thomé, A., 1903, i, 321), respectively. (I) and CHMeEtBr or BuBr in EtOH give (II) or NHBu·CHMeEt (IV) (picrate, m.p. 105°), respectively; (III) similarly gives d-(II), $[\alpha]_{\rm p} + 23\cdot 6^{\circ}$, or d-(IV), $[\alpha]_{\rm p} + 16\cdot 1^{\circ}$, respectively. A. T. P.

Complex thioarsenates.—See A., 1940, I, 128.

Complex phosphodecatung states.—See A., 1940, I, 127.

Aliphatic polyamines. X. J. YAN ALPHEN (Rec. trav. chim., 1940, 59, 31—40; cf. A., 1939, II, 301).— $(CH_2 \cdot NH_2)_2$, H_2O (I) and $\alpha \zeta$ -dibromohexane (II) in EtOH-KOH give mainly αζ-di-(β-aminoethylamino)hexane (III), b.p. 212°/25 mm. (tetrapicrate, m.p. 213°; tetranitrate, +H₂O; tetraphenyl-carbamyl, m.p. ~216°, and *thiocarbamyl* derivative, +2EtOH, m.p. $\sim 125-135^{\circ}$), some $\alpha\pi$ -di-(β -aminoethylamino)ηκ: 10-diaza-hexadecane, m.p. 32°, b.p. 314-323°/ 23 mm. (hexaphenyl-carbamyl, m.p. 100—120°, and -thiocarbamyl derivative, m.p. ~ 90 —120°), and some higher amines, together with a little 1-(β -aminoethyl)-1-azacycloheptane, b.p. 212° [picrate, m.p. 200°; phenyl-carbamyl (picrate, m.p. 183°) and -thiocarbamyl derivative, m.p. 93°], obtained in better yield from very dil. EtOH solutions of (I) + (II) after 3 months. Only straight-chain non-cyclic amines are formed; thus NH₂ reacts much more quickly than NH. (III) and CS₂-EtOH give a thiocarbamate, converted at 140° into αζ-di-1'-(2'-thiotetrahydroiminazolo)hexane, m.p. 216°. αζ-Di-(β-benzylaminoethylamino)hexane (tetrahydrochloride, decomp. 255°) and PhCHO give $\alpha \zeta$ -di-1'-'(2' - phenyl-3' - benzyltetrahydroiminazolo)hexane, m.p. 128°.

N-Acetylphenyl- α -d-glucosaminide, m.p. 241—243°, $[\alpha]_{\rm p}$ +203° in H $_2$ O, +233° in EtOH.—See A., 1940, III, 164.

Synthesis of α-amino-acids by means of alkylacetoacetic esters. I. V. V. FEOFILAKTOV (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 755—758; cf. A., 1939, II, 364).—PhN₂·OK and CHRAc·CO₂Et (I) in the cold give probably NPh:N·CRAc·CO₂Et, hydrolysed by aq. EtOH-alkali to NHPh·N·CR·CO₂H (II), which is reduced by Zn-EtOH-HCl at 0° to NH₂·CHR·CO₂H. Thus, (I) (R = CHMeEt) affords (II) (R=CHMeEt), reduced to a mixture of isoleucine, m.p. 286°, and alloisoleucine, m.p. 275—276° (all m.p. in sealed tubes). (I) (R = Bu^β) gives the phenylhydrazone, forms, m.p. 114° and 144°, of Bu^βCO·CO₂H, converted into leucine, m.p. 292—293°.

[With E. V. VINOGRADOVA.] (I) $(R = CH_2Ph)$ affords phenylalanine (Cu salt, $+2H_2O$).

[With V. N. ZAITZEVA.] (I) (R = Me) gives (II) (R = Me) and thence alanine. A. T. P.

Synthesis of amino-acids from benzamido-malonic ester. E. P. Painter (J. Amer. Chem. Soc., 1940, 62, 232—233).—NHBz·CH(CO₂Et)₂ (simplified prep.) and RI in abs. EtOH give products, hydrolysed to α-NH₂-aeids by const.-boiling HCl or HBr. Glycine (85% yield), norleucine, OPh·[CH₂]₂·CH(NH₂)·CO₂H, and

OH·[CH₂]₂·CH(NH₂)·CO₂H (as lactone) are thus prepared. Attempts to prepare β - and γ -halogeno- α -amino-acids gave impure products (cf. Redemann et al., A., 1939, II, 495). R. S. C.

Mercury compounds as catalysts of the synthesis of aspartic acid from fumaric acid and ammonia. T. Enkvist [with, in part, L. Laasonen] (Ber., 1939, 72, [B], 1927—1932).—The addition of NII₃ to fumaric acid (I) is followed by observing the increase in NH2-N [determination by Van Slyke's nitrite process after removal of NH₄-N by evaporation with Ca(OH)₂] or the diminution in KMnO₄ (NH₂-N process) or by CoSO₄, Ni(NO₃)₂, [Co(NH₃)₄CO₃]₂SO₄, CuSO₄, CdCl₂, PdCl₂; H₂PtCl₆, Pb(NO₃)₂, MnCl₂, or KHCO₃ (KMnO₄ process). HgO, HgCl₂, and HgSO₄ cause marked acceleration. A distinct but less marked action is exerted by AgNO₃. Addition of piperidine, NHEt₂, C₅H₅N, or CN·CH₂·CO·NH₂ does not enhance the action of HgCl₂. Replacement of NH₃ by (NH₄)₂CO₃ diminishes the yield of aspartic acid. Hg salts accelerate only in the measure in which they pass into HgII salts. NaOH in presence or absence of HgII salts has a restrictive influence. HgCl2, MnCl2, or I in absence of ascorbic acid does not influence the rate of addition of NH₃ to maleic acid. The catalytic action appears due to the formation of an unstable complex from (I) and the Hg salt. H. W.

Polymeric products from amino-acids. Y. Go and H. Tani (Bull. Chem. Soc. Japan, 1939, 14, 510—516).—l-Alanine in N-NaOH with $ClCO_2$ Me yields carbomethoxy-1-alanine (a syrup), which with $SOCl_2$ yields 1-alaninecarboxylic anhydride, m.p. 92° (decomp.). Similarly from l-leucine are prepared carbomethoxy-1-leucine, m.p. 52°, and 1-leucinecarboxylic anhydride, m.p. 77—78° (decomp.). Polymerisation of glycinecarboxylic anhydride in H_2O vapour or in C_5H_5 N at 100° yields polyglycines (mol. wt. 1044—5775) which are unattacked by enzymes and show identical X-ray diagrams. The X-ray diagrams of polyleucine, polyalanine, and polyglycylalanine (which are prepared as for polyglycine) are discussed; the last-named appears to be a mixture of polyglycine, polyalanine, and the true interpolymeride.

Organic syntheses with sulphuryl chloride. W. W. BINKLEY [with E. F. DEGERING] (J. Amer. Chem. Soc., 1939, 61, 3250—3251).—SO₂Cl₂ (1 mol.) and NHR₂ (1 mol.), first at 0° and then boiling, or, less well, SO₂Cl₂ and NHR₂,HCl give di-methyl-, b.p. 66°/10 mm., -ethyl- (I), b.p. 69°/5 mm., -n-propyl-, b.p. 83·5°/4 mm., and -n-butyl-aminosulphonyl

 $\mathbf{H}.\mathbf{W}$

chloride, b.p. 95—96°/3 mm., converted by boiling MeOH into the corresponding Me sulphonates, m.p. -, 80°, 135°, and 117°, respectively, also obtained from ClSO₃Me (2 mols.) and NHR₂,HCl (1 mol.) at 100°. NaOR-ROH and (I) in Et₂O give Et, b.p. 86°/5 mm., Pra, b.p. 80·5°/3 mm., and Bua diethylaminosulphonate, b.p. 73·5°/2·25 mm., also obtained in small yields from ClSO₃R and NHEt₂. R. S. C.

Synthesis and properties of isocysteine and isocystine. A. Schöberl and H. Braun (Annalen, 1939, **542**, 274—291; cf. Gabriel, A., 1907, i, 625; 1908, i, 181).—β-Phthalimidopropionic acid, m.p. 150—151° [from β -alanine and o-C₆H₄(CO)₂O at 160°] and Br-red P give the α-Br-derivative, m.p. 169—171° [Me ester, m.p. 103—104° (lit. 52—53°)], hydrolysed (48% HBr) to α-bromo-β-aminopropionic acid [hydrobromide (I), m.p. 188—189°; Me ester hydrochloride, m.p. 123—125° (decomp.)]. isoSerine [from CH₂Cl·CH(OH)·CO₂H and aq. NH₃ at 100° (autoclave)] similarly affords β-phthalimido-α-hydroxypropionic acid (II), m.p. 196—197° (corr.); the Me ester (III), m.p. $106-108^{\circ}$ (corr.) [O-acetate, m.p. $135-137^{\circ}$ (corr.)], of (II) and PCl₅ in boiling C₆H₆ give ~50% of Me α -chloro- β -phthalimidopropionate, m.p. 119—120° (corr.), hydrolysed (20% HCl) to α-chloroβ-aminopropionic acid hydrochloride (IV), m.p. 134— 135°. The monophosphoric acid ester, m.p. 188— 189° (corr.), of (II) is obtained (after decomp. with H₂O) as a by-product from (III) and PCl₅ in CHCl₃. (I) or (IV), neutralised with N-NaOH, and Na₂S₂ in N₂ at room temp. give a product which is reduced (Sn, aq. HCl) to isocysteine (V) (hydrochloride, m.p. 137—139°) (purified through the mercaptide). Oxidation (I-H₂O) of (V) affords isocystine (VI), m.p. 185° (decomp.) (hydriodide, m.p. 189—191°).

Hydrolytic fission (mechanism: A., 1939, II, 204) of the S·S linking occurs much more readily with (VI) than with cystine or $(S \cdot CH_2 \cdot CO_2H)_2$. With H_2O or $N \cdot H_2SO_4$ at $100^\circ/12$ hr., (VI) give H_2S (46.4 or 34.1%, respectively) and (V) (17.5 or 25.7%, respectively); with $N \cdot NaOH$ at 100° (not at 50°) NH_3 (32.3%) is produced. (V) and (VI) can be determined colorimetrically with phosphotungstic acid (cf. A., 1938, II, 211) or polarographically (cf. Brdicka, A., 1933, 681).

Constitution of peptides. II. Raman spectra and structure of amides.—See A., 1940, I, 96.

Organic catalysts for removal of carbon monoxide from formamide. II. Catalysts with alcoholic hydroxyl as active group. T. Enkvist [with H. Merikoski and P. Tikkanen] (Ber., 1939, 72, [B], 1717—1723; cf. A., 1939, II, 249).—Substances with primary and sec. alcoholic OH [C(CH₂OH)₄, inositol, quercitol accelerate the removal of CO from HCO·NH₂ if alkali is present whereas no such action is observed with tert. alcohols (CPh3·OH; pinacol) even in the presence of alkali. Common aliphatic (n-undecyl, sec.-octyl) or alicyclic (cyclohexanol) monohydric alcohols are not catalysts. Aromatic rings under certain conditions (cinnamyl and benzyl alcohol), NH₂-N (di- and tri-ethanolamine, choline and its chloride), and CO2Na (OH·CH2·CO2Na) have feeble activating effect. CO₂Et, CO·NH₂, and particularly CO·NHAr and similar groups have a more pronounced

Several alcoholic OH in the same mol. are mutually helpful; this is less marked with dihydric compounds (glycol and its derivatives), more marked with tri- to hexa-hydric alcohols such as glycerol, erythritol, quercitol, C(CH₂·OH)₄, mannitol, duleitol, sorbitol, and inositol, all of which have about the same effect pro OH. ·CHO and ·CO· are very restrictive. There is no catalytic action with glucose, fructose, galactose, lactose, or maltose and only slight action of helicin. Ethereal O or bridge O in glycosides or disaccharides appears indifferent or activating. A marked catalytic effect is produced by α -methyl-dglucoside and salicin and, very definitely, by sucrose PhOH and pyrogallol in presence of Na₂CO₃ and HCO NH₂ at 140° give a great evolution of gas. It is probable that (I) and phenols in presence of alkali could be used advantageously as catalysts in the technical prep. of HCO NH₂ from CO and NH₃.

Glycidamides $[\alpha\beta$ -oxidopropionamides] with hypnotic properties. Claisen-Darzen reaction. E. FOURNEAU and J. R. BILLETER (Bull. Soc. chim., 1939, [v], **6**, 1616—1625; cf. A., 1934, 396).—Me hexyl ketone and CH2ClCO2Et-Et2O-Na (better than NaNH₂ or NaOEt) give Et αβ-oxido-β-methyl-nnonoate, b.p. 119°/0.9 mm. Et αβ-oxido-β-methylhexoate (I) and NH2Me do not react at 100°, but at 140° give α -methylamino- β -hydroxy- β -methyl-n-hexomethylamide, m.p. 119° (hydrochloride, m.p. 198°). (I) and NHMe₂-aq. MeOH at 150° give CHEt:CMe·CH₂·NMe₂, b.p. 76°/30 mm. (methiodide, m.p. >300°). Glycidamides and HBr-Et₂O act

Complex salts of thiocarhamide with lead and thallium. C. MAHR [with H. OHLE] (Annalen, 1939, **542**, 44–48).— $CS(NH_2)_2$ and conc. aq. $Pb(ClO_4)_2$ containing 20% $HClO_4$ give the complex, $Pb(ClO_4)_2$, $6CS(NH_2)_2$. The complexes,

abnormally to give ethylenic products.

 $\mathrm{Pb}(\mathrm{ClO_3})_2,6\mathrm{CS}(\mathrm{NH_2})_2$ (prep. in neutral solution), $\mathrm{TlClO_4},4\mathrm{CS}(\mathrm{NH_2})_2$, and $\mathrm{TlClO_3},4\mathrm{CS}(\mathrm{NH_2})_2$ (using TlOAc and $\mathrm{NaClO_3}$), are described. H. B.

α-Alkanesulphonylamides. A. Pomerantz and R. Connor (J. Amer. Chem. Soc., 1939, 61, 3386— 3388; cf. A., 1938, II, 86).—CHRBr·CO·NH₂,·R'SH, and NaOEt-EtOH, first at 0° and then at room temp., give SPr^a·CH₂·CO·NH₂, SBu^a·CH₂·CO·NH₂, ethylthiolacetamide, m.p. 50·5—51° (lit. 44°), α-ethyl-, m.p. 65—65·5°, α-n-propyl-, m.p. 56·5—57°, and α-n-butylthiolpropionamide, m.p. 60·5—61·5°, α-ethyl-, m.p. 100·5—101°, α-n-propyl-, m.p. 78—78·5°, and α-n-butylthiolpropionamide, m.p. 65·65·5° α-ethyl-, m.p. butyl-thiolbutyramide, m.p. 65-65.5°, a-ethyl-, m.p. 93·5—94°, α-n-propyl-, m.p. 95—95·5°, and α-nbutyl-thiolisobutyramide, m.p. 107.5—108°, a-ethyl-, m.p. 101·5—102°, α-n-propyl-, m.p. 98·5—99°, and α-n-butyl-n-valeramide, m.p. 64·5—65°, α-ethyl-, m.p. 111—111·5°, α-n-propyl-, m.p. 98·5—99°, and α-nbutyl-thiolisovaleramide, m.p. 75-75.5°, a-ethyl-, m.p. 84·5—85°, α-n-propyl-, m.p. 100·5—101°, and α-n-butyl-thiol-n-hexoamide, m.p. 86·5—87°. H₂O₂—AcOH—Ac₂O, first at 0° and then at room temp., then yield $Bu^{\alpha}SO_{2}\cdot CHR\cdot CO\cdot NH_{2}$ (R = H, Et, and Bu^{α}), ethane-, m.p. 98.5-99°, and propane-a-sulphonylacetamide, m.p. 104—104·5°, a-ethane-, m.p. 126—126·5°, α-propane-α'-, m.p. 122—122·5°, and α-butane-α'-sul-

phonylpropionamide, m.p. 114—114.5°, a-ethane-, m.p. 168—168.5°, and α-propane-α'-n-butyramide, m.p. 137—137·5°, α-ethane-, m.p. 92·5—93°, impure α-propane-α'-, m.p. 99·5—100·5°, and α-butane-α'-sulphonylisobutyramide, m.p. 77·5—78°, α-ethane-, m.p. 117·5— 118°, α -propane- α' -, m.p. 125—125·5°, and α -nbutane-a'-sulphonyl-n-valeramide, m.p. 125—125.5°, α-ethane-, m.p. 122—123·5°, α-propane-α'-, m.p. 116— 117°, and a-n-butane-a'-sulphonylisovaleramide, m.p. 126·5—127°, α-ethane-, m.p. 112—112·5°, and α-propane-a'-sulphonyl-n-hexoamide, $119-119.5^{\circ}$. m.p. Bu^aSH, CH₂:CMe·CO·NH₂, and a little piperidine in boiling EtOH give β-n-butylthiolisobutyramide, m.p. $54.5-55^{\circ}$. M.p. are corr.

Optical activity of α -bromopropionitrile. K. L. Berry and J. M. Sturtevant (J. Amer. Chem. Soc., 1939, 61, 3583—3584).—According to Kirkwood's theory, CHMcBr·CN should have very low $[\alpha]$, since each substituent has cylindrical symmetry parallel to the valency linking. When prepared from $(67\cdot1\% l-+32\cdot9\% l$) CHMeBr·CO₂H by conversion into the amide and dehydration by P₂O₅, CHMeBr·CN has $[\alpha]_D^{25}$ —5·25°, indicating (in absence of racemisation during synthesis) $[\alpha]_D^{25}$ —15·33° for the pure l-compound. Possible causes of the discrepancy are briefly discussed.

Manufacture of α -cyano- $\alpha\gamma$ -butadiene.—See B., 1940, 191.

Unsaturated arsinocarboxylic acids. H. J. Backer and R. P. van Oosten (Rec. trav. chim., 1940, 59, 41—63).—CH₂:CBr·CO₂K and K₃AsO₃ give α -arsinoacrylic acid (I), CH₂:C(AsO₃H₂)·CO₂H, m.p. 160° (decomp.) (cryst. data) [Pb and Ba (+12H₂O) salts; NH₂Ph salt, decomp. ~148°; di-strychnine (+6H₂O), decomp. ~250°, and -quinine salt (+6H₂O) decomp. ~155°]. K₃AsO₃ and α -bromo-crotonic (more readily) or -isocrotonic acid give α -arsinocrotonic acid, m.p. 158—160° (one form only) [di-strychnine, (+5H₂O), decomp. ~237°, and -quinine (+6H₂O) salts]. β -Chloro-crotonic or -isocrotonic acid (reacts more readily) gives the tribasic β -arsinocrotonic acid (II), m.p. 151—152° (decomp.) [Ba (+8H₂O), Ba H (+3H₂O), and Ag salts; NH₂Ph salt, m.p. 140—141° (decomp.)]. (I) and the respective pinacol in EtOH give dipinacol-

CH₂CO₂H>C·As(COCMe₂), m.p. 173—174°, and dicyclopentanonepinacol-α-arsinoacrylic acid, m.p. 208—210°, respectively (cf. Englund, A., 1929, 945). (I) and o-C₆H₄(OH)₂—AcOH give dipyrocatechol-α-arsinoacrylic acid, m.p. 168—170°. (II) and SO₂ in HCl (+KI) at 40° give β-dichloroarsenocrotonic acid, AsCl₂·CMe·CH·CO₂H, m.p. 88·5—89·5°, reconverted by H₂O₂ into (II). (I) and HCl give trans-β-chloroacrylic acid. (II) gives pinacol-, m.p. ~198—200°, dicyclo-pentanone-, m.p. 162—162·5°, and -hexanone-pinacol-, m.p. 233—234° (decomp.) (cryst. data), dipyrocatechol-, m.p. 175—176°, and d-tartaric-β-arsinocrotonic acid, decomp. ~240°. (II) and H₂SO₄—NaH₂PO₂ at 0° afford β-arsenodicrotonic acid, (CO₂H·CH·CMeAs·)₂, decomp. ~193°. Vals. of dissociation consts. of arsino-acids are recorded. Speeds of reaction of α-halogeno-crotonic and -isocrotonic acids and K₃AsO₃ are examined in detail. A. T. P.

Preparation of Grignard reagents from magnesium amalgams. E. G. Rochow (J. Amer. Chem. Soc., 1939, 61, 3591).—Addition of a 0·1n. solution of MgMeCl and then of MeBr to 0·1, 0·5, or 1% Mg-Hg in purified N₂ and boiling for several hr. gives increases of 0, 4·1, and 25·3%, respectively, in the MgMeHal content and some MgMe₂ (formed from MgHal₂ and MgMeHal).

R. S. C.

Stereoisomerides of dichlorodiamminoethylenediaminocobaltic ion.—See A., 1940, I, 129.

Redistribution reaction. IV. Interchange between lead triethyl chloride and radioactive lead tetraethyl. G. Calingaert, H. A. Beatty, and L. Hess (J. Amer. Chem. Soc., 1939, 61, 3300—3301; cf. A., 1940, II, 8).—When PbEt₄ containing Ra-D and inactive PbEt₃Cl are kept in $C_6H_6-N_2$, equilibrium is reached in <1 day at room temp., approx. equal amounts of Ra-E being found in each component. Interchange of Et and Cl is thus very rapid, the PbEt₃Cl being the catalyst as well as a reactant. R. S. C.

Lead tetraethyl: manufacture and uses.—See B., 1940, 114.

Investigation of spiropentane with cathoderay interferences. F. Rogowski (Ber., 1939, 72, [B], 2021—2026).—Observations of electron deflexions show that the hydrocarbon C₅H₈ obtained by the action of Zn dust and EtOH on the tetrabromide of pentaerythritol (Gustavson, A., 1896, i, 669; Zelinski, A., 1913, i, 254) is a spiran $\overset{\text{CH}_2}{\text{CH}_2} > \overset{\text{C}}{\text{CH}_2}$ in which the two rings are composed of similar triangles placed at an angle of 90° to one another and having one point in common. The distance of the external from the central C is 1.54 A. The H atoms appear to be arranged in pairs at the external C atoms with C—H distances of 108 A. and to stand with the C at an angle of 109° 28' so that the plane formed by them and the C cuts the C triangle at right angles. A more precise location of the H is not possible by the method used.

Chlorinations with sulphuryl chloride. II. Peroxide-catalysed reaction of sulphuryl chloride with ethylenic compounds. M. S. Kharasch and H. C. Brown (J. Amer. Chem. Soc., 1939, 61, 3432—3434; cf. A., 1939, II, 497).—Addition of 2 Cl to olefines by SO_2Cl_2 is catalysed by peroxides, the reaction being: $R_2O_2 \rightarrow R^*$; $R^* + SO_2Cl_2 \rightarrow RCl + SO_2Cl$; $SO_2Cl \rightarrow SO_2 + Cl^*$; $Cl^* + > CCC \rightarrow CCCC \rightarrow CCCC$ >CCl·C<; >CCl·C<+ >SO₂Cl₂ $\rightarrow >$ CCl·CCl<+ >SO₂Cl. cycloHexene, if freshly distilled, reacts moderately with SO₂Cl₂ and only after an induction period, giving the 1:2-Cl₂-derivative; reaction is accelerated, and the induction period eliminated, by adding a little aged cyclohexene, PhCHO, or ascaridole, or by passing in dry air. CH2:CH-CH2Cl [gives CHCl(CH₂Cl)₂] behaves similarly. Pure (CHCl:)₂ does not react, but in presence of Bz₂O₂ (0.002 mol.) gives 85% of (CHCl₂)₂. (CCl₂.)₂ similarly, but slowly, gives C₂Cl₆. Stilbene, best in presence of a peroxide, gives 45% of $\alpha\alpha'$ - and 33% of $\beta\beta'$ -dichloride. (CPh2)2 reacts in presence of peroxides or peroxidecontaining (not peroxide-free) AcOH (cf. Norris et al., A., 1911, i, 31). Reaction of unsaturated acids and anhydrides is complex. R. S. C.

Interaction of benzene with methylcyclobutene and methylenecyclobutane in the presence of sulphuric acid. V. N. IPATIEV and H. PINES (J. Amer. Chem. Soc., 1939, 61, 3374—3376).—A mixture of methylcyclobutene and methylenecyclobutane with C₆H₆ and 96% H₂SO₄ at 0—10° gives 1-phenyl-1-methylcyclobutane (I) (40%), b.p. 69°/8 mm., 209·6°/760 mm. [p-NHAc-, m.p. 144°, and 2′: 4′-(NHAc)₂-derivative, m.p. 202°], p-di-1′-methylcyclobutylbenzene (II), m.p. 34°, b.p. 123—125°/6 mm. (and a small amount of isomerides; total yield 49%), and tri-(methylcyclobutyl)benzenes (11%), b.p. 155—182°/8 mm. 2% KMnO₄ at 100° and dil. HNO₃ at 135° do not affect (II), but HNO₃ at 160° gives p-C₆H₄(CO₂H)₂. With H₂ and Ni–kieselguhr in n-C₅H₁₂ at 65°/100 mm., (I) gives 1-cyclohexyl-1-methylcyclobutane, b.p. 72—73°/9 mm., 201·5°/760 mm. (converted by Pt–Al₂O₃ at 250° into a 1:1 mixture of CHPhMePr^a and CPhMe₂Et), but at 125° gives amylcyclohexane.

Preparation and physical data of monoalkylbenzenes. A. W. Schmidt, G. Hoff, and V. Schoeller (Ber., 1939, 72, [B], 1893—1897).—The requisite ketone is obtained by the gradual addition of AlCl₃ to a solution of the necessary acid chloride in C₆H₆. Reduction of this by Clemmensen's method is unsatisfactory but reliable results are obtained by the Kishner-Wolff process. The following alkylbenzenes have been obtained: propyl-, b.p. 47—49°/11 mm.; butyl-, b.p. 66—68°/12 mm.; amyl-, b.p. 87°/12 mm.; hexyl-, b.p. 97·5—101°/12 mm.; heptyl-, b.p. 116—118°/12 mm.; octyl-, b.p. 131—134°/12 mm.; dodecyl-, b.p. 183—185°/12 mm.; tetradecyl-, b.p. 153°/0·5 mm.; hexadecyl-, b.p. 171°/0·1 mm. Vals. for d²⁴₄°, n²⁰₇°, and η are recorded. H. W.

Preparation of pure hydrocarbons for testing the physical methods in use for examination of hydrocarbon mixtures. I. H. I. WATERMAN, J. J. LEENDERTSE, and D. W. VAN KREVELEN. II. H. I. WATERMAN, J. J. LEENDERTSE, and J. F. SIRKS (J. Inst. Petroleum, 1939, 25, 801—808, 809—812: cf. B., 1939, 458).—I. In order to test the accuracy of the \(\eta \)-mol. wt. method for determining the elementary composition of saturated hydrocarbon mixtures, $C_8H_{17}Ph$ was prepared from $n-C_8H_{17}Cl$ and PhBr by the Würtz-Fittig reaction, and was then hydrogenated (150 kg. per sq. cm. initial pressure, 10% Ni catalyst, Ni on kieselguhr, temp. ~200°) to yield n-octylcyclohexane (I) and C₁₆H₃₄. C₁₈H₃₇Cl and PhBr were similarly caused to yield octadecylcyclohexanc and $C_{36}H_{74}$. n, d, and several other consts. are recorded. The results indicate that for the compounds considered the no. of rings per mol. may be derived from the n with an accuracy of ≤ 0.2 ring per mol.

II. It was considered possible that in the high-temp, hydrogenation prep. of (I) undesirable structural changes may have occurred. The hydrocarbon was therefore synthesised by condensation (Na at 60—130°) of cyclohexyl iodide and n-C₁₈H₃₇Cl. The resultant hydrocarbon was identical with that pre-

pared previously, thus indicating that the hydrogenation method does not produce undesirable changes.

T. C. G. T.

Nickel as catalyst for the hydrogenation of aromatic halogen compounds. C. F. Winans (J. Amer. Chem. Soc., 1939, 61, 3564—3565).—In presence of Raney Ni (best 5% of the wt. of reagent), many aromatic halogenonitro-compounds are hydrogenated at $125-150^{\circ}/20-100$ atm. to halogenoamines in excellent yield. PhCl could not be hydrogenated to chlorocyclohexane, as the Cl is removed at the necessary temp. CH₂PhCl gives some CH₂Ph₂. CHMe:CHCl, CHPh:CHCl, (CHCl:)₂, and (CCl₂:)₂ resist reduction. p-C₆H₄Cl·NO₂, p-C₆H₄Br·NO₂, and o-C₆H₄I·NO₂ (I) give 97, 83, and 23%, respectively, of halogenoaniline, NH₂Ph being the main product from (I). 1:2:4-C₆H₃Cl(NO₂)₂ gives 91% of m-C₆H₄(NH₂)₂ even at <40°, but 2:5:1-C₆H₃Cl₂·NO₂ gives 97% of 2:5:1-C₆H₃Cl₂·NH₂, and 2:5:1-C₆H₃Cl₂·N:CHPh gives 91% of 2:5:1-C₆H₃Cl₂·NH·CH₂Ph. p-C₆H₄Cl·CN gives p-C₆H₄Cl·CH₂·NH₂ 64 and NH(CH₂·C₆H₄Cl-p)₂ 21%. R. S. C.

Excitation of chain polymerisation by free radicals.—See A., 1940, I, 120.

Vinyl polymerides. VIII. Polystyrene and its derivatives. C. S. Marvel and N. S. Moon (J. Amer. Chem. Soc., 1940, 62, 45—49; cf. A., 1940, II, 62).—o-Bromophenylmethylcarbinol (I) [prep. from o-C₆H₄Br CHO and MgMeCl (not MgMeI)], b.p. 108·5°/6·5 mm., KHSO₄, and a little quinol at 155—160°/21—30 mm. give 33% of o-bromostyrene, b.p. 65°/4 mm., polymerised at 160° or, better, 175° alone or, best, with 0.2% of Bz_2O_2 at 140—150° to a product (II), mol. wt. (η) 24,000. Na, best in boiling xylene (but not Zn in dioxan or Cu in PhNO₂), removes the Br from (II) without pptn. of a cross-linked polymeride or change in η ; nevertheless, ring-closure has not occurred, as no phenanthrene derivatives are obtained by Se or oxidation; reaction is probably replacement of Br by Na, particularly as carbonation gives a little acidic material. Poly-m- and -p-bromostyrene, moreover, react similarly with Na. It is thus probable that polystyrene and its derivatives are $[\cdot CHPh \cdot CH_2 \cdot]_n$. It was impossible to polymerise CH₂:CPhCl (III), α-acetoxystyrene [prep. by adding CHPhMeBr to AcCl to give β-bromo-α-phenylethyl acetate (91%), b.p. 105-107°/3 mm., and heating this with quinoline at 145—155° (34% yield)], b.p. 87·5—89·5°/3 mm. (dibromide, m.p. 93·5—94·5°), CH₂:CPh·OMe, CHPh:CHBr, or CHPh:CH·OAc. Poly-β-nitrostyrene is insol. SO₂Cl₂ converse (I) into o-bromo-\alpha-chloroethylbenzene, b.p. 63—65°/2 mm., stable to quinoline. BF₃ converts (III) into R. S. C. $s \cdot C_6 H_3 Ph_3$.

Action of bromine on olefines. W. Bocke-Müller and R. Janssen (Annalen, 1939, 542, 166—184; cf. A., 1939, II, 96).—Contrary to Pfeiffer et al. (A., 1928, 633; 1931, 340), the coloured substances formed from Br and, e.g., CH₂.CAr₂ (Ar should not be p-NMe₂·C₆H₄· since this results in the production of a meriquinonoid salt) are mol. compounds (A) and not carbenium salts (B). Formation of (A) is not connected with either addition of Br to the double linking or substitution. (A) are much more stable,

and in some cases are only formed, at low temp.; the reversible formation of (A) is often readily demonstrated by alternate cooling and warming (~room temp.) of solutions (CCl₄, CH₂Cl₂) of the components. Analogous compounds are obtained with IBr but not with I. Production of (A) (dark green to violet) from the following is demonstrated: ($(CPh_2)_2$, tetra-p-bromophenyl-, $\alpha\beta$ -diphenyl- $\alpha\beta$ -di-p-chlorophenyl-, m.p.179° (I) and 205° (II), $\alpha\beta$ -diphenyl- $\alpha\beta$ -di-p-diphenylyl-, m.p. 218° (III) and 254° (IV), αβ-di-p-chlorophenyl-αβ-di-p-bromophenyl- (V), m.p. 232°, and β-bromoαα-di-p-diphenylyl-ethylene (VI) [but not from the ββ-Br₂-derivative (VII)]. Proof of the non-production of (B) is afforded by the recovery of unchanged (III) and (IV), i.e., cis- and trans-forms, after treatment with Br in CH₂Cl₂ at -78° in red light (dark-room lamp); traces of Br-containing material are also produced. Conversely, decomp. of the carbenium perchlorate from either (III) or (IV) and HClO₄- Ac_2O with H_2O gives the same mixture of (III) and (IV) in each case. Interconversion of (III) and (IV) occurs when solutions in CCl₄-Br are cooled to -78° owing to the production of HBr; this adds at low temp, and subsequent warming causes elimination of HBr and isomerisation. Rearrangement can also occur during bromination (cf. Price et al., A., 1939, II, 48); thus, (I) (probably cis) and (II) (trans) give (V) (probably trans) but no other isomeride. Bromination of tetrahydronaphthalene in CCl₄ at room temp. in diffused daylight is retarded by (III), (IV), $(:CPh_2)_2$, $(:CCl_2)_2$, or $CHMe:CH\cdot CO_2H$. (I) and (II) are obtained from $p\cdot C_6H_4Cl\cdot CPhCl_2$ and

(I) and (II) are obtained from $p ext{-}C_6H_4\text{Cl-CPhCl}_2$ and Cu powder in boiling C_6H_6 ; these with excess of Br (no solvent or in PhNO₂ + I at 70—100°) afford (V). (I) and (II) are recovered almost unchanged from solutions in $CH_2\text{Cl}_2$ — or CCl_4 —Br [kept at -78° and then even recovered at room terms (vec.)]

then evaporated at room temp. (vac.)]. $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Br}\cdot\mathrm{COCl}$, PhCl, and AlCl₃ give 4-chloro-4'-bromobenzophenone (VIII), m.p. 150°, the dichloride, m.p. 62—63° (prep. by PCl₅ in $\mathrm{C}_6\mathrm{H}_6$), of which with Cu powder in $\mathrm{C}_6\mathrm{H}_6$ affords (V). Oxidation (CrO₃, AcOH) of (V) yields $\alpha\beta$ -di-p-chlorophenyl- $\alpha\beta$ -di-p-bromophenylethylene oxide, m.p. 257°, or (VIII). ($p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Ph})_2\mathrm{C:CH}_2$ (1 mol.) and Br (1 mol.) in $\mathrm{CH}_2\mathrm{Cl}_2$ at -10° give (after evaporation at $<0^\circ$) the dibromide, which when heated in CCl₄ affords (VI) [similarly yields its dibromide, m.p. 70—80°, and thence (VII)].

Condensations by sodium. XVII. Formation of triphenylene. A. A. Morton, J. T. Massengale, and G. M. Richardson (J. Amer. Chem. Soc., 1940, 62, 126—129; cf. A., 1940, II, 62).—Small yields of $o \cdot C_6H_4Ph_2$, triphenylene (I), and $(o \cdot C_6H_4Ph)_2$ are obtained when PhCl, Na, and PhMe react. $C_5H_{11}Na$ under certain conditions, but never NaPh, metallates $o \cdot C_6H_4Ph_2$ and Ph_2 , but no (I) is produced. As judged by absence of $C_6H_4Cl \cdot CO_2H$ after carbonation, no C_6H_4ClNa is formed from PhCl by NaPh or $C_5H_{11}Na$. Although (I) may be formed from Ph radicals, this is not so for Ph_2 , since Ph_2 , produced from $Ph_3 \cdot N_2Ph_2$, yields no Ph_2 . R. S. C.

Interaction of bromine with anthracene in dioxan. C. C. PRICE and C. WEAVER (J. Amer. Chem. Soc., 1939, 61, 3360—3361).—Anthracene and

Br in dry dioxan give only 9:10-dibromoanthracene. In presence of a trace of atm. H₂O there are formed successively 9-bromo-10-anthrone and anthraquinone with evolution of much HBr, HOBr being the effective reagent (cf. Price, A., 1936, 1498).

R. S. C. Aromatic hydrocarbons. XXIII. Melting with zinc dust; new method of reducing organic compounds. E. CLAR (Ber., 1939, 72, [B], 1645-1649).—Quimones and their derivatives are rapidly reduced by Zn dust (I) in molten NaCl ZnCl₂ at 200—290°. NaCl lowers the m.p. of the ZnCl₂ which removes the oxide layer from (I). Slight humidity in ZnCl₂ is advisable since it facilitates the evolution of H₂. The course of the reaction can usually be followed by the change in colour of the mixture. The yield of spectroscopically pure material frequently reaches 90%. Bimol. products are formed to some extent and may amount to 25% if dry ZnCl2 in absence of NaCl is used. Aromatically combined ether-O is not removed. The following examples are cited: CH_2Ph_2 and CPh_2CPh_2 from $COPh_2$; anthracene and 9:9'-dianthryl from anthraquinone; phenanthrene and 9:9'-diphenanthrylene 10:10'-oxide, m.p. 299°, from phenanthraquinone; strongly carcinogenic 3:4:8:9-dibenzpyrene, m.p. 308° (vac.), from 3:4:8:9-dibenzpyrene-5:10-quinone;3:4:9:10dibenzpyrene, m.p. 280°, from 3:4:9:10-dibenzpyrene-5:8-quinone; anthanthrene, m.p. 261° (vac.), from anthanthrone; violanthrene from violanthrone; isoviolanthrene from isoviolanthrone; anthrazine from indanthrene.

Photochemical dehydrogenation of 7-dehydrocholestene. A. Tominaga (Bull. Chem. Soc. Japan, 1939, 14, 486—489).—7-Dehydrocholestene when irradiated (sunlight) in EtOH- C_6H_6 -eosin and CO₂ yields a bimol. substance, $C_{54}H_{86}$, m.p. 269—270° (corr.; decomp.) [α] $^{30}_{1}$ +260° in CHCl $_{3}$. It is considered that photochemical dehydrogenation of ergosterol and related compounds does not involve $C_{(3)}$. J. D. R.

Photo-oxidisable diphenylanthracenes cyclic substituent at positions 1:2. L. VELLUZ (Bull. Soc. chim., 1939, [v], 6, 1541—1548; cf. A., 1936, 1499).—1: 2-Benzanthraquinone and MgPhBr $(500\% \text{ of Mg at } 30\text{---}40^{\circ}) \text{ give } 9:10\text{-dihydroxy-}9:10\text{--}$ diphenyl-9:10-dihydro-1:2-benzanthracene, new m.p. 249° (cf. Clar, A., 1930, 334). Irradiation in CS₂ of 9:10-diphenyl-1:2-benzanthracene (I), new m.p. 196°, gives the photo-oxide, decomp. at 130° to O2 and (I). o-1-Tetrahydronaphthoylbenzoic acid is cyclised by 25% oleum to 1':2':3':4'-tetrahydro-2:3-, m.p. 211°, and -1:2-benzanthraquinone, m.p. 136° (block) (separation described). The latter and MgPhBr at room temp. give 9:10-dihydroxy-9:10-diphenyl-9:10:1':2':3':4'-hexahydro-1:2-benz-anthrene, m.p. (anhyd.) 222° or (+ $C_6\Pi_6$) 122° (cf. Cook *et al.*, A., 1936, 1247), reduced by KI-AcOH to isomeric 9:10-diphenyl-1':2':3':4'-tetrahydro-1:2benzanthracenes, m.p. 224° and 298°, respectively; both give impure photo-oxides, which lose O2 at A. T. P. 130—135°.

Polycyclic aromatic hydrocarbons. XXI. G. M. BADGER, J. W. COOK, and F. GOULDEN (J.C.S.,

1940, 16—18).—6-Methyl-I: 2-benzanthraquinone and MgMcI give 9:10-dimethoxy-6:9:10-trimethyl-9:10dihydro-1: 2-benzanthracene, m.p. 232—233·5° [9:10- $(OH)_2$ -compound, m.p. $151-152^{\circ}$], which with Na affords 6:9:10-trimethyl-1:2-benzanthracene, m.p. 157—158° (picrate, m.p. 145—146°). 1 : 2- $C_{10}H_6(CO)_2O$ and Mg 3-bromo-o-xylene (I) yield 2-(2': 3'-dimethylbenzoyl)-1-naphthoic acid, m.p. 168—169° (acetoxylactone, m.p. 189—191°), which with BzCl forms 5:6-dimethyl-1:2-benzanthraquinone; MgMeI gives 9:10-dihydroxy-5:6:9:10-tetramethyl-9:10-dihydro-1:2-benzanthracene, m.p. 217—219°, the $9:10-(OMe)_2$ -derivative, m.p. $229-230^\circ$, of which with Na yields 5:6:9:10-tetramethyl-1:2-benzanthracene, m.p. $132-133^{\circ}$ (picrate, m.p. $120-121^{\circ}$). o-C₆H₄(CO)₂O and (I) afford 2-(2':3'-dimethylbenzoyl)benzoic acid, m.p. 126-127°, which with BzCl gives 1:2-dimethylanthraquinone, reduced to 1:2-dimethylanthracene, m.p. 85.5—86°. The quinone and MgMeI in C_6H_6 -Et₂O give 9:10-dihydroxy-1:2:9:10tetramethyl-9:10-dihydroanthracene, m.p. 162-163°, the $9:10-(OMe)_2$ -derivative, m.p. $140-141.5^{\circ}$, of which could not be demethoxylated. F. R. S.

Action of acid clay on sterols. VIII. Action of acid clay on cholesterol. T. KAWASAKI and Z. Yamamura (J. Pharm. Soc. Japan, 1939, 59, 144-152; cf. A., 1939, II, 363).—Acid clay in boiling C₆H₆ converts cholesterol into a hydrocarbon (I), $C_{54}H_{88}$, m.p. 328·7° (decomp.; corr.), $[\alpha]_D$ —2·4° in CHCl₃, or, sometimes, isomeric hydrocarbons, m.p. 281.9° or 348.4°. (I) contains 2—3 ethylenic linkings (Bz₂O₂), with Br gives a substance, m.p. 140—200° (decomp.), is stable to H_2 -PtO₂ in $(iso-C_5H_{11})_2O$, $Na-C_5H_{11}OH$, and CrO_3 , and with boiling HNO_3 (d 1·4) gives a (?) $C_6H_2Me(CO_2H)_3$, m.p. $\sim 230^\circ$ (Me_x ester, m.p. 127°). (I) resembles the isomeric hydrocarbons, m.p. $> 300^\circ$, of Windaus (A., 1906, i, 174), and (new m.p. $3\overline{0}1\cdot3^{\circ}$) of Müller (A., 1933, 820). Distillation of the residues after separation of (I) at 0.5 mm. gives an oil, whence 3-cyclohexylcholestane is obtained by hydrogenation; the final residue when distilled at R. S. C. 0.05 mm. yields 3-phenylcholestene.

Aromatic hydrocarbons. XXIV. Hexacene, a green, simple hydrocarbon. E. CLAR (Ber., 1939, 72, [B], 1817—1821).—7:15-Dihydroxyhexacene-5:16:8:13-diquinone (I), red-brown needles

which become blue without melting at
$$>300^{\circ}$$
, is obtained from 1:5-
 $C_{10}H_6(OH)_2$ and o-
 $C_6H_4(CO)_2O$ either in presence of $AlCl_3$ -NaCl at 210° or in $C_2H_2Cl_4$ containing $AlCl_3$ at 130°. It is best purified through the

taining AlCl₃ at 130°. It is best purified through the Na salt. (I), NaCl, ZnCl₂, and Zn dust at 210—280° afford 5:16- or 6:15-dihydrohexacene, m.p. 357—358° (vac.), which is dehydrogenated by Cu powder at 301—320°/vac. to hexacene, gradual decomp. >300°, which is very sparingly sol. in org. media; the green solutions are extremely sensitive to air and light and are immediately decolorised by maleic anhydride.

H. W.

Anomalous halides. V. Anomalous halides of anthanthrene and attempted preparation of $E(A, \pi)$

monohalides of peri-naphthindenone. K. Brass and E. Clar (Ber., 1939, 72, [B], 1882—1884).— Anthanthrene (I) and I in boiling C_6H_6 afford a triiodide, softens at 150° and melts slowly and with decomp. up to 250°. (I) and Br in C_6H_6 at 30° give a dark brown ppt. which rapidly passes into an orange-yellow product which contains (I) but no active Br. peri-Naphthindenone (II), like benzanthrone, gives dark-coloured compounds (III) with Br and I which contain active halogen and probably consist of 1 mol. of (II) with 1 atom of Br or I. (III) lose halogen when washed with C_6H_6 . The formation of anomalous halides appears to demand a compact arrangement of the C_6H_6 nuclei; this, however, is not the only requirement. H. W.

Hydrogenation of aldehydes in presence of ammonia. C. F. Winans (J. Amer. Chem. Soc., 1939, 61, 3566—3567).—In accordance with theory, hydrogenation (Raney Ni) in EtOH at 40—75° of a 2:1 mixture of RCHO (R = Ph, o-tolyl, o-C₆H₄Cl, or furfuryl) and NH₃ gives mainly NH(CH₂R)₂, of a 3:2 mixture gives equal amounts of NH₂·CH₂R and NH(CH₂R)₂, and of a 1:1 mixture gives mainly NH₂·CH₂R. Equally as expected, replacement of 3 mols. of RCHO and 2 mols. of NH₃ in the above mixtures by 1 mol. of preformed CHR(N:CHR)₂ gives similar results, confirming the reversibility of the synthesis of these compounds. The synthesis fails owing to aldol condensation if RCHO has a H on C_(a). R. S. C.

Sympathomimetics. Preparation of N-substituted β-phenylisopropylamines. A. Novelli (Anal. Asoc. Quím. Argentina, 1939, 27, 169—171).— Following a method previously recorded (A., 1939, II, 143) the following were prepared: β-methylamino-, m.p. 133—135°, β-ethylamino-, m.p. 145—146°, β-n-butylamino-, m.p. 168—169°, β-n-amylamino-, m.p. 186—187°, β-dimethylamino-, m.p. 156—158°, β-diethylamino-, m.p. 160—161°, and β-piperidino-, m.p. 206—208°, -α-phenylpropane hydrochlorides.

F. R. G. Addition of N-halogenoamides to olefines. M. S. KHARASCH and H. M. PRIESTLEY (J. Amer. Chem. Soc., 1939, **61**, 3425—3432).—RSO₂·NR'Br adds to CHR''.CH₂ to give RSO₂·NR'·CH₂·CHR''Br (A) (cf. "normal" addition to olefines), but RSO₂·NBr₂ reacts to give RSO₂·NH·CHR"·CH₂Br (B) (cf. "abnormal" addition) and C₂H₂R"Br. The structure of the structure ture of (A) is proved by removing HBr by quinoline or NaOEt-EtOH and then hydrogenating (Pd-BaSO₄) and hydrolysing (HCl; 150°), the final product, $R'' \cdot [CH_2]_2 \cdot NHR'$, being also obtained from (\bar{A}) in one step by $Na-C_5H_{11}$ OH. Hydrolysis of (B) gives ethyleneimine derivatives, the fission of which is investigated. Other N-Br-derivatives do not add to olefines. CHPh:CH₂ with PhSO₂·NMeBr gives α -bromo- β -benzenesulphonmethylamido- α -phenylethane (I), a syrup, and with p-C₆H₄Me·SO₂·NMeBr gives α -bromo- β -p-toluenesulphonmethylamido- α -phenylethane (II), m.p. 67° (Br readily removed by AgNO₃), converted by NaOAc into the α -OAc-compound, m.p. 94°, hydrolysed to the oily OH-derivative, which with Na-C₅H₁₁·ŌH gives β-hydroxy-β-phenylethylmethylamine, m.p. 78°. Boiling quinoline very rapidly or

NaOEt-EtOH more slowly converts (II) into β-ptoluenesulphonmethylamidostyrene, m.p. 106-107°, reduced by H₂-Pd-BaSO₄ in MeOH to a syrup, which with conc. HCl at 150° gives Ph·[CH₂]₂·NHMe (III) (hydrochloride, new m.p. 162°; mercurichloride, new m.p. 174°; oxalate, new m.p. 186°; carbamide derivative, new m.p. 143°), also obtained from (II) by $Na-C_5H_{11}\cdot OH$. Fe-HCl reduces (I) to a syrup, which by hydrolysis gives (III). Similar reactions lead to α-bromo-β-benzene-, a syrup, and α-bromo-β-p-toluenesulphonbenzylamido-α-phenylethane, m.p. 99°, toluenesulphonbenzylamidostyrene, m.p. 122°, toluenesulphonbenzylamidoethylbenzene, m.p. 105° (and thence Ph·[CH₂]₂·NH·CH₂Ph), benzene-, m.p. 95°, and p-toluene-sulphonmethyl-\beta-bromoisobutylamide CMe₂:CH₂ and RSO₂·NMeBr), m.p. 93°, tolueneω-sulphonmethyl-β-bromoisobutylamide, m.p. 123°, αor γ -benzenesulphonmethylamido- β -methylpropene, an oil (by reduction and hydrolysis gives NHMcBuβ), α- or γ -toluene-ω-sulphonmethylamido-β-methylpropene, m.p. 60°, toluenc-ω-sulphonmethylisobutylamide, m.p. 83°, α-chloro-α-bromo-β-benzene-, m.p. 90°, and -β-p-toluene-sulphonmethylamidoethane (from CH₂:CHCl), m.p. 90°, β-p-toluenesulphonmethylamido-vinyl chloride, m.p. 91°, β-bromo-α-p-toluenesulphonmethylamidopropane, m.p. 92°, α- and γ-p-toluene-sulphonmethylamidopropene, m.p. 54—56°, and an oil (or vice versa), and p-toluenesulphonmethyl-n-propylamide, m.p. 40° (hydrolysed to NHMePra). p-C₆H₄Me·SO₂·NBr₂ and CHPh:CH₂ in warm CHCl₃ give β -bromo- α -phenyl- α -p-toluenesulphonamidoethane (IV), m.p. 167° (Br stable to AgNO₃ and NaOAc-AcOH). Similarly are obtained β-bromo-α-p-toluenesulphonamido-a-p-anisyl-, m.p. 167°, and -a-3: 4-methylenedioxyphenyl-propane, m.p. 153°. Hot NaOH-EtOH-H₂O converts (IV) into N-p-toluenesulphonylstyreneimine (V), m.p. 95°, stable to KMnO₄ (the olefines named above reduce KMnO₄), which with cold, aq. HHal gives a-chloro-, m.p. 95°, a-bromo- (VI), m.p. 111°, and α-iodo-β-p-toluenesulphonamidoethylbenzene, m.p. The N-Br-derivative of (VI) with CHPh:CH, gives α -bromo- β -p-toluenesulphon- β' -bromo- α' -phenylethylamidoethylbenzene, m.p. 158°. Hydrogenation (Pd-BaSO₄; MeOH) of (V) gives p-C₆H₄Me·SO₂·NH·[CH₂]₂·Ph (VII), m.p. 67° (lit. 65—66°), hydrolysed to Ph·[CH₂]₂·NH₂, which is obtained directly from (V) by Na CH OH The WPdirectly from (V) by Na-C₅H₁₁·OH. The N-Br-derivative of (VII) with CHPh.CH₂ gives α -bromo- β -ptoluenesulphon-β'-phenylethylamidoethylbenzene, 97°. In hot H_2O , (V) gives p-toluenesulphon- β hydroxy-β-phenylethylamide, m.p. 113°, hydrolysed to OH·CHPh·CH₂·NH₂ (VIII) (picrate, m.p. 158°) by Na- C_5H_{11} OH. With hot RCO₂H, (V) gives β -p $toluenesul phonamido-\alpha-trichloroacetoxy-,$ m.p. [hydrolysed to (VIII)], $-\alpha$ -crotonoxy-, m.p. 85° [hydrolysed to (VIII)], and -a-acetoxy-ethylbenzene, m.p. 105° [obtained also from (VI) by NaOAc-AcOH]. Cold H₂SO₄-EtOH or a little CCl₃·CO₂H in boiling EtOH converts (V) into β-p-toluenesulphonamido-α-ethoxyethylbenzene, m.p. 106°.

Action of nitrosyl chloride on monobromomalonamides. M. P. Shah and V. B. Thosar (J. Indian Chem. Soc., 1939, 16,556).—CHBr(CO·NH·C₆H₄Me-p)₂ or CHBr(CO·NH·CH₂Ph)₂ in C₆H₆ with NOCl at 0°

yields respectively chlorobromomalon-p-toluidide, m.p. 135°, or -benzylamide, m.p. 153°. F. R. G.

Oxidation of heteronuclear-substituted polybromodiphenyls. F. H. CASE (J. Amer. Chem.

Soc., 1939, 61, 3487—3490).—Oxidation of polybromodiphenyls by CrO₃ in 75% AcOH and isolation of the bromobenzoic acids formed (given in brackets below) indicates the following order of decreasing radical stability to oxidation: 4-bromo-> 3:5-dibromo->2:5-dibromo-,3-bromo->2-bromo->2:4:6-tribromo-phenyl. 4:3-NH₂·C₆H₃Br·C₆H₄Br-ogives (diazo-reaction) 2:3'-dibromodiphenyl, $165-168^{\circ}/3$ mm. [gives $m-C_6H_4Br\cdot CO_2H$] o-NH₂·C₆H₄·C₆H₄Br-m yields by the usual reactions successively 3:5:3'-tribromo-2-aminodiphenyl, m.p. $111-112^{\circ}$ (Ac derivative, m.p. $185-186^{\circ}$), and 3:3':5'-tribromodiphenyl; m.p. $112-113^{\circ}$ [gives $3:5:1-C_6H_3Br_2\cdot C\bar{O}_2H$ (II)]. $4:3:5\text{-NH}_2\cdot C_6H_2\text{Br}_2\cdot C_6H_4\text{Br}-p$ yields $3:5:4'\text{-}tri\text{-}bromodiphenyl},$ m.p. $102\text{--}103^\circ$ (cf. Bellavita, A., 1938, II, 9) [gives $p\text{-}C_6H_4Br\text{-}CO_2H$ (III)]. m-NHAc· \mathbb{C}_6H_4 · \mathbb{C}_6H_4 Br-p gives successively 2:4'-di-bromo-5-acetamido-, m.p. 163—164°, 2:4'-dibromo-5amino-, m.p. 91—92° (yields o-C₆H₄Br·C₆H₄Br-p), and 2:5:4'-tribromo-diphenyl, m.p. 77—78° (cf. idem, A., 1935, 1488) [gives (III) and $2:5:1-C_6H_3Br_2\cdot CO_2H$ (IV)]. o-NH₂·C₆H₄·C₆H₄·Br-m gives 3-bromo-2'-acet-amidodiphenyl, m.p. 93—94°, and thence 3:3'-dibromo-6-acetamido-, m.p. 145—146°, the derived amine [gives $(m-C_6H_4Br)_2$], and 2:5:3'-tribromo-diphenyl, b.p. $213-216^\circ/6$ mm. [gives (I) and (IV)]. o-C₆H₄Br·C₆H₄·NHAc-m gives 2:2'-dibromo-5-acetamido-, m.p. 142°, and thence 2:5:2'-tribromo-diphenyl, m.p. 77—78° [gives (IV)]. p-C₆H₄Br·C₆H₄·NHAc-m gives 2:4:6:4'-tetrabromo-3-acetamido-, m.p. 260—261°, 2:4:6:4'-tetrabromo-3-amino-, m.p. 93—94° (lit. 104°), and 2:4:6:4'tetrabromo-diphenyl, m.p. 105—106° [gives (III)]. Oxidation of 1:2:4:6-C₆H₂PhBr₃ (prep. from PhI, 2:4:6:1-C₆H₂Br₃I, and Cu powder at ISO° and later 200°), m.p. 65—66°, gives also some (III), presumably owing to formation of free Br during the reaction. 3-Nitrobenzidine gives only a monourethane, m.p. 167—168°, which affords 5-bromo-3-nitrobenzidineurethane, m.p. 167—168°, and thence the free base, and 1:5:3-C₆H₃PhBr NO₂, m.p. 71—72°. 5-Bromo-3-aminodiphenyl. m.p. 89—90° (Ac derivative, m.p. 142—143°), is also described.

Sulphanilamide derivatives. II. Arylidene derivatives of N^1 -substituted sulphanilamides. H. G. KOLLOFF and J. H. HUNTER (J. Amer. Chem. Soc., 1940, **62**, 158—160; cf. A., 1938, II, 228).— In general, transformation of p-NH₂·C₆H₄·SO₂·NHR (A) into p-R'CH:N·C₆H₄·SO₂·NHR decreases the antistreptococcal and -pneumococcal activity and the toxicity. The following are prepared from (A) and RCHO (no solvent); owing to instability and ease of hydrolysis, care is needed during recrystallisation. N^4 -Benzylidene-, m.p. 176° , -p-anisylidene-, m.p. 192—193°, and -p-dimethylaminobenzylidene-sulphonamide, m.p. 226—227°. Benzylidene-, m.p. 175— 175.5°, p-anisylidene-, m.p. 166°, and p-dimethylaminobenzylidene-sulphanilanilide, m.p. 231°. Benzylidene-, m.p. 192°, p-anisylidene-, m.p. 213.5°, and p-dimethylaminobenzylidene-sulphanil - p - nitroanilide, m.p. 231°. 2-Benzylidene-, m.p. 245—246°, 2-p-anisylidene-, m.p. 212—212·5°, and 2-p-dimethylaminobenzylidene-sulphanilamidopyridine, m.p. 238·2—240°.

R. S. C.

sec. Amines from nitro-compounds. W. S. EMERSON and H. W. MOHRMAN (J. Amer. Chem. Soc., 1940, **62**, 69—70).—Hydrogenation at 40 lb. of ArNO₂ and an aliphatic or aromatic aldehyde in EtOH in presence of Raney Ni and NaOAc gives 31-96% of NHArR, in which (a) Ar = Ph, R = Me, Et, Bu^a , $n-C_5H_{11}$, $n-C_7H_{15}$, or CH_2Ph , (b) $Ar = p-OMe\cdot C_6H_4$, α -C₁₀H₇, or p-tolyl, $R = Bu^{\alpha}$, (c) $Ar = \alpha$ -C₁₀H₇, R = n-C₅H₁₁, and (d) Ar = p-tolyl, R = n-C₇H₁₅. Except when Ar = p-tolyl, no tert. amines are p-Bromobenzenesulphon-N-butyl-p-anisidide, m.p. 72—73°, p-chlorobenz-N-n-butyl-, m.p. 242—243°, p-bromobenz-N-n-amyl-\alpha-naphthylamide, 226—227°, p-bromobenzenesulphon-N-n-heptyl-p-toluidide, m.p. 52—52.5°, NN-di-n-butyl- (53% formed), new b.p. 295—296° (picrate, m.p. 186—187°), and NN-di-n-heptyl-p-toluidine (34% formed), b.p. 175— 200°/2.5 mm. (hydrochloride, m.p. 136°), are incidentally described.

Additive compounds of dicyclohexylamine [etc.]. C. F. Winans (J. Amer. Chem. Soc., 1939, 61, 3591—3592).—1:1 additive compounds (m.p. below) are formed when dicyclohexylamine is mixed in, e.g., petroleum ether with cyclohexanol (I), m.p. 47—48°, 4-tert.-butyl-, m.p. 75—76°, and 2-methyl-cyclohexanol, m.p. 59—60°, cyclohexane-1:2-, m.p. 64—66°, -1:3-(II), m.p. 64—66°, and -1:4-diol, m.p. 90—91°, 2-cyclohexylcyclohexanol, m.p. 43—45°, Ph·[CH₂]₂·OH, OH·CHMe·CH₂·CH₂·OH, and CH₂Ph·OH, m.p. < room temp. Similar compounds, m.p. < room temp., are obtained from NH(CH₂Ph)₂ or cyclohexylamine with (I) and from piperidine and (II). R. S. C.

Arylaminonaphthalenesulphonic acids.—See B., 1940, 117.

Condensation products of m-dialkylaminobenzaldehydes with compounds containing reactive methylene groups. W. Cocker and D. G. 1940,(J.C.S., 57-59).—1:2:4-C₆H₃Me(NO₂)₂, m-NMe₂·C₆H₄·CHO, and piperidine (I) at 100° (bath) give 2:4-dinitro-3'-dimethylaminostilbene, m.p. 205°, and similar condensations afford 2:4-dinitro-3'-diethyl-, m.p. 153°, -dipropyl-, m.p. 132°, and -dibenzyl-aminostilbene, m.p. 163°. With p-NO₂·C₆H₄·CH₂·CN, the following are obtained: 3-dimethyl-, m.p. 162·5°, 3-diethyl-, m.p. 136°, 3-dipropyl-, m.p. 108°, and 3-diallyl-amino-α-p-nitrophenyl-cinnamonitrile, m.p. 82°. p-NO₂·C₆H₄·CH₂·CO₂H gives 3-dimethylamino-a-p-nitrophenylcinnamic acid, m.p. 215.5°, which with (I) at 140—145° affords 4-nitro-3'-dimethylaminostilbene, m.p. 145—145.5°; similarly prepared are 3-diethyl-, m.p. 173°, and 3-diacid, propyl-amino-a-p-nitrophenylcinnamic 180.5°, and 4-nitro-3'-diethyl-, m.p. 97°, and -dipropylaminostilbene, m.p. 79°. Using (I) as condensing agent the following are obtained: 1-phenyl-4-m-dimethylaminobenzylidene-5-pyrazolone, m.p. 117°; 2-m-dimethyl-, m.p. 237°, 2-m-diethyl-, m.p. 208°, and 2-m-dipropyl-aminostyrylpyridine methiodide, m.p.

192°; 2-m-dimethylaminostyrylquinoline methiodide, m.p. 261°; 2-m-dimethylaminostyrylthiazole methiodide, m.p. 218°; and 2-m-dimethyl-, m.p. 205°, and 1-m-diethyl-aminostyrylbenzthiazole methiodide, m.p. 188°. Many of these substances give dyes on acetate silk but their light-fastness is poor. F. R. S.

Conjugation of amino-acids with carbimides of the anthracene and 1:2-benzanthracene series. L. F. Fieser and H. J. Creech (J. Amer. Chem. Soc., 1939, **61**, 3502—3506).—2-Aminoanthracene, m.p. 243·5—244·5° [245—245·5° (vac.); lit. 236—237°, 238° (uncorr.)], and COCl₂ in boiling PhMe-C₆H₆ give 2-carbimidoanthracene, m.p. 207.5 208°, and thence Me, m.p. 231—231.5°, and Et2-anthrylcarbamate, m.p. 216—216·5°, N-2-anthryl-N'-β-hydroxyethyl-, m.p. $\sim 350^{\circ}$ (darkens at 310°), N-2-anthryl-, m.p. >360°, and s-di-2-anthryl-carb-amide, m.p. >340°, and (by condensing with the NH_2 -acid in aq. dioxan at p_H 8.5 at 40°) N-2-anthryl-N'-carboxymethyl-, darkens at 250°, m.p. ~310° (decomp.; vac.), and -N'-ε-carboxy-n-amyl-carbamide, darkens at 260°, m.p. 285—286° (vac.). 1:2-Benzanthracene (modified prep.) gives 25-45% of the 10-NO_2 - and thence 77% of the 10-NH_2 -compound, m.p. $175\cdot5-176^\circ$ [176-176\cdot5^\circ (vac.)], which yields the 10-carbimido-derivative, m.p. 144-144.5° [in C₅H₅N at room temp. gives a polymeride, m.p. 305-307° (vac.)], and thence Me, m.p. 227— $227 \cdot 5$ °, and Et 1: 2-benzanthryl-10-carbamate, m.p. 204— $204 \cdot 5$ °, N-1: 2-benzanthryl-10-N'- β -hydroxyethyl-, darkens at 240°, m.p. 247—248° (vac.), and s-di-1: 2-dibenzanthryl-10-N'- β -hydroxyethyl-, darkens at β -10. anthryl-10-carbanide, amorphous, m.p. >330°, 1:2benzanthryl-10-carbamide, m.p. 334—336° (decomp.; vac.), N-1:2-benzanthryl-10-N'-carboxymethyl-, amorphous, darkens at 230—240°, m.p. ~270—275° (decomp.) (Et ester, m.p. 245—245.5°), and -N'- ϵ -carboxy-n-amyl-carbamide, darkens at 200°, m.p. 265— 267°. Similarly are obtained 1:2:5:6-dibenzanthryl-9-carbanide, m.p. 360—363° (decomp.; vac.), N-1:2:5:6-dibenzanthryl-9-N'-carboxymethyl-, darkens at 270°, m.p. ~300° (decomp.), and -N'-E-carboxy-n-amyl-carbamide, yellow at ~250°, m.p. ~305° 3-carbimido-1: 2-benzanthracene, m.p. $163-163\cdot5^{\circ}$ (polymerises in C_5H_5N at 25°), Me m.p. $203\cdot5-204^{\circ}$, and Et 1: 2-benzanthryl-3-carbamate, m.p. 211.5— 212°, N-1 : 2-benzanthryl-3-N'-β-hydroxyethylcarbamide, m.p. 343—345° (vac.), 1:2-benzanthryl-3-carbamide, m.p. >350°, s-di-1: 2-benzanthryl-3-carbamide, m.p. $>350^{\circ}$, N-1: 2-benzanthryl-3-N'-carboxymethyl-, m.p. ~310° (decomp.; vac.), and -N'-\(\varepsilon\)-carboxy-n-amyl-carbamide, darkens at 230°, m.p. 295—297°. 3-Amilia 1: 2-benzanthracene has m.p. 211—212° [213·5—214° (vac.)]. s-Di-9-anthranylcarbamide has m.p. >360°. M.p. $<275^{\circ}$ are corr.

Identification of organic acids by the use of p-chlorobenzyl-\$\psi\$-thiuronium chloride. B. T. Dewex and R. B. Sperry (J. Amer. Chem. Soc., 1939, 61, 3251—3252).—p-Chlorobenzyl-\$\psi\$-thiuronium chloride [prep. from p-C₆H₄Cl·CH₂Cl and CS(NH₂)₂ in boiling EtOH], m.p. 197°, and RCO₂Na (or K) (neutral) in aq. EtOH give the acetate, m.p. 140°, butyrate, m.p. 139°, hexoate, m.p. 143°, formate, m.p. 148°, mono-, m.p. 158°, and tri-chloroacetate, m.p. 148°, oleate, m.p. 131°, oxalate, m.p. 194°, palmitate, m.p. 146°, pro-

pionate, m.p. 143°, succinate, m.p. 167°, valerate, m.p. 142°, benzenesulphonate, m.p. 184°, benzoate, m.p. 155°, o-, m.p. 165°, m-, m.p. 161°, and p-bromo-, m.p. 172°, o-, m.p. 159°, m-, m.p. 157°, and p-chloro-, m.p. 173°, o-, m.p. 162°, m-, m.p. 154°, and p-iodo-benzoate, m.p. 177°, cinnamate, m.p. 167°, phthalate, m.p. 166°, salicylate, m.p. 162°, sulphosalicylate, m.p. 181°, o-, m.p. 150°, m-, m.p. 151°, and p-toluate, m.p. 161°, and p-toluenesulphonate, m.p. 193°, best recrystallised from dioxan.

R. S. C.

Alkamine esters of disubstituted methylcarbamic acids. J. J. Donleavy and J. English, jun. (J. Amer. Chem. Soc., 1940, 62, 218—219).—CHPh₂·NCO (prepared from CHPh₂Br and AgNCO in boiling Et₂O or, in situ, from CHPh₂·COCl and NaN₃ in COMe₂ at 0°), b.p. 148°/4 mm., with the appropriate NH₂-alcohol in boiling Et₂O gives β-diethylaminoethyl, m.p. 179°, γ-diethylamino-n-propyl, m.p. 183°, β-dibutylaminoethyl, m.p. 136°, and β-piperidinoethyl, m.p. 119°, diphenylmethylcarbamate hydrochloride. CHPhMeBr and AgNCO give similarly CHPhMe·NCO, b.p. 96°/18 mm., and thence β-diethylaminoethyl, b.p. 178°/5 mm., and γ-diethylamino-n-propyl α-phenylethylcarbamate, b.p. 164°/3 mm. Pr^βBr yields similarly β-diethylaminoethyl isopropylcarbamate, b.p. 123—125°/5 mm. (hydrochloride, m.p. 114°). The carbamates are powerful, but irritating, local anæsthetics.

Feeding experiments on white rats with 4'-amino-2:3'-dimethylazoxybenzene. N. NAGAO (Proc. Imp. Acad. Tokyo, 1939, 15, 321—325).—4'-Acetamido-2:3'-dimethylazoxybenzene, m.p. 149—150° (from the azo-compound and H₂O₂ in aq. AcOH), is hydrolysed (EtOH-conc. HCl) to 4'-amino-2:3'-dimethylazoxybenzene (I), m.p. 92—93°). When fed to white rats over periods of 200—250 days, (I) causes hypertrophy of the liver, proliferation of the epithelia of the bile duct, and formation of thromboses in the veins of the liver.

J. D. R.

Preparation of m-halogenophenols. H. H. H. HODGSON (J. Amer. Chem. Soc., 1940, 62, 230).—Concerning priority (A., 1923, i, 1005). R. S. C.

Rearrangement of the triphenylmethyl ethers of o-cresol and brominated o-cresols. H. A. Iddles, W. H. Miller, and W. H. Powers (J. Amer. Chem. Soc., 1940, 62, 71—73).—Condensation of o-cresol and CPh₃·OH by H₂SO₄ is shown to yield 5:1:2-CPh₃·C₆H₃Me·OH (I) (cf. A., 1940, II, 12). 1:3:2-C₆H₃MeBr·OH (II), CPh₃·OH, and H₂SO₄ in AcOH give 55% of 3-bromo-5-triphenylmethyl-o-cresol (III), m.p. 149—151°, which is also obtained from (I) by Br and a little Fe in CCl₄ and is methylated (Me₂SO₄-NaOH) to 5:1:3:2-CPh₃·C₆H₂MeBr·OMe, also obtained by brominating the condensation product from o-C₆H₄Me·OMe and CPh₃·OH (cf. loc. cit.). 1:5:2-C₆H₃MeBr·OH (IV), CPh₃·OH, and H₂SO₄-AcOH give 6·75% of 5-bromo-3-triphenylmethyl-o-cresol, m.p. 208—209°, but 1:3:5:2-C₆H₂MeBr₂·OH (V) (prep. from o-cresol by Br-CCl₄), m.p. 56·5—57·5°, gives no analogous product. Attempts to prepare the ether from (II) and CPh₃Cl give only (III), whereas (V) does not react and (IV) gives 48·7% of

5-bromo-o-tolyl CPh₃ ether, m.p. 113·5—114°, stable to HCl or ZnCl₂ in AcOH-H₂SO₄. R. S. C.

Chloro- and bromo-hydroxyalkyldiphenyls.—See B., 1940, 117.

Isomerisation during distillation with zinc dust. A. LÜTTRINGHAUS and G. VON SÄÄF (Ber., 1939, 72, [B], 2026—2028).—Distillation of 2:6:1-C₆H₃Ph₂·OH with Zn dust yields p-C₆H₄Ph₂, m.p. 207°, further identified by conversion into the 4':4"-(NO₂)₂-derivative, m.p. 273°. With Zn dust in ZnCl₂-NaCl at 280—340° there is scarcely any action apart from formation of small amounts of resin. H. W.

Cyclialkylation of aromatic compounds by the Friedel-Crafts reaction. H. A. Bruson and J. W. Kroeger (J. Amer. Chem. Soc., 1940, 62, 36—44).—The term "cyclialkylation" is applied to a reaction whereby an alkylene group is attached at two points to an aromatic nucleus with formation of a new ring. Numerous examples are provided. AlCl₃, H₂SO₄, or BF₃ is usually needed as catalyst. The products sometimes vary according to the catalyst or conditions. Structures of products are assigned by analogy without rigid proof. βε-Dimethyl- Δ^{γ} -hexinene- $\beta \epsilon$ -diol, m.p. 94—95°, obtained in 98% yield by adding COMe₂ (5·25) to CaC₂ (1·75) and KOH (3.5 mols.) in C_6H_6 at 21—24°, is hydrogenated (Raney Ni) in H_2O or EtOH at $60-85^\circ/7$ atm. to $\beta \epsilon$ -dimethyl-n-hexane- $\beta \epsilon$ -diol (I) (95—99%), m.p. (+6H₂O) 38° or (anhyd.) 88—89°, which (a) with saturated, aq. HCl at room temp. gives the $\beta \varepsilon$ -dichloride (II), m.p. 63—64°, or (b), when distilled with 3% of NH₂Ph,HBr, gives 2:2:5:5-tetramethyltetrahydrofuran (III), b.p. 112—114°/768 mm., and a little β s-dimethyl- $\Delta^{\beta\delta}$ -hexadiene. β s-Dimethyl-Δ^{ac}-hexadiene (IV), b.p. 114·5°/763 mm., is obtained from 2 mols. of CH₂:CMe·CH₂Cl and 1 Mg. PhOH, (II), and a little AlCl₃ in light petroleum (b.p. 90—100°), first at room temp. and then at 100°, give 80% of 5:5:8:8-tetramethyl-5:6:7:8-tetrahydro-2naphthol (V), m.p. 145-145.2°, and a little 2:2-dimethyl-4-isopropyl-6: 7- $\alpha\alpha\delta\delta$ -tetramethylmethylene-3: 4dihydrochroman (VI), m.p. 240-241°. PhOH with (a) (I) and AlCl₃ (large amount) in petroleum naphtha at 85—90°, (b) (III) and AlCl₃ (large amount) in petroleum ether, first at room temp. and then at 100°, or (c) (IV) and a little AlCl₃ in petroleum ether, first at 0°, then at 25°, and finally at 50°, also give (V). Oxidation of (V) by KMnO₄ to (CH₂·CMe₂·CO₂H)₂, m.p. 190-193°, proves absence of rearrangement. 5:5:8:8-Tetramethyl-5:6:7:8-tetrahydro-2-naphthyloxyacetic acid, m.p. 164—165°, and the Et ether, b.p. $132^{\circ}/5$ mm. (NO₂-derivative, m.p. 106—108°), of (\overline{V}) are obtained from (V) by the usual methods and by condensing (AlCl₃) (II) with OPh·CH₂·CO₂H in (CH₂Cl)₂ at room temp. or PhOEt, respectively. In presence of HCl, aq. CH₂O and (V) give 1:1'-methylenedi-5:5:8:8-tetramethyl-5:6:7:8-tetrahydro-2naphthol, m.p. 232°. The appropriate phenol or ether with (II) and AlCl₃ (details as for PhOH) gives 3:5:5:8:8-, m.p. $125\cdot5$ —126°, and 4:5:5:8:8pentamethyl-, m.p. 134-135°, 1:3:5:5:8:8-hexamethyl- (VII), m.p. 164.5°, unstable in air, 3-phenyl-5:5:8:8-tetramethyl-, m.p. 98°, 3-cyclohexyl-5:5:8:8tetramethyl-, m.p. 109—110°, 3-chloro-5:5:8:8-tetramethyl-, m.p. 103·5—104°, and 4-β-β'-chloroethoxyethoxy-5:5:8:8-tetramethyl-, isomerides, m.p. 107-108° and 71—75°, -5:6:7:8-tetrahydro-2-naphthol and 6:7-dihydroxy-1:1:4:4-tetramethyl-1:2:3:4tetrahydronaphthalene, m.p. 182—183°. However, diphenylene oxide, (II), and a little AlCl₃ give 2:3ααδδ-tetramethyltetramethylene-, b.p. 170-240°/4 mm., and 2:3-6:7-di-ααδδ-tetramethyltetramethylene-diphenylene oxide, m.p. 201—202°. p-Cresol, (II), and a little AlCl₃ (as for PhOH) give 4-methyl-1: 2-diisopropyl-1: 2-dihydrocoumarone (VIII), b.p. 107—108°/1 mm. (minty odour), 2:2:6-(or 4:4:6)-trimethyl-4(or 2)-isopropyl-3:4-dihydrochroman, m.p. 100-101°, and a small amount of a dicyclialkylated compound (IX), C₂₃H₂₆O, m.p. 193— 195°. 77% H₂SO₄, successively at 10°, 35°, room temp., and 85—95°, causes condensation of PhOH and (I) to 5-hydroxy-1: 1-dimethyl-3-isopropylhydrindene (X), m.p. 97—98° (oxyacetic acid, m.p. 112—113°; unchanged by AlCl₃ or CH₂O; with KMnO₄ gives no identifiable acid), probably by rearrangement of the intermediate radical, $p\text{-OH·C}_6H_4\text{-CMe}_2\text{-}[\text{CH}_2]_2\text{-CMe}_2$ to $p\text{-OH·C}_6H_4\text{-CMe}_2\text{-CH}_2\text{-CHPr}^B$; similarly, (I) and $2:6:1\text{-C}_6H_3\text{Me}_2\text{-OH}$ with $A\text{ICl}_3$ or 77% $H_2\text{SO}_4$ give (VII) or a compound, $C_{16}H_{24}O$, b.p. $156^\circ/6$ mm., respectively. With BF₃ at 90° in place of AlCl₃, p-cresol and (IV) give (IX) and a little (VIII), but with BF₃ at 0° PhOH and (IV) give (V), (VI), and (X). (OH·CPh₂·CH₂)₂ with PhOH or o-C₆H₄Cl·OH gives (AlCl₃) mainly (CPh₂·CH)₂, but with o-cresol and AlCl₃ (large amount) in boiling petroleum ether (b.p. 30—60°) gives much 4:4:8:8-tetraphenyl-3methyl-5:6:7:8-tetrahydro-2-naphthol, m.p. 330— 332°, with a little (CPh₂·CH)₂. 1:4-Dichlorocyclohexane, PhOH, and a little AlCl₃ [as with (II)] give (?) 5: 8-endoethylene-5: 6: 7: 8-tetrahydro-2-naphthol, m.p. 124—127°. Neither AlCl₃ nor BF₃ causes cyclialkylation of thiophenols by (II) or (IV), the sole products being $(CH_2 \cdot CMe_2 \cdot SAr)_2$. Thus are obtained $\beta\epsilon$ -di-phenyl-, m.p. $79-80^\circ$, -o-, m.p. $75-76^\circ$, -m-, m.p. 105° , and -p-tolyl-, m.p. $128-129^\circ$, -thiol- β s-dimethyl-n-hexane. In presence of much AlCl₃, C_6H_6 and (II), first at $>30^\circ$ and then boiling, give 61% of 1:1:4:4-tetramethyl-1:2:3:4-tetrahydronaphthalene, b.p. 82—84°/3 mm., 248°/760 mm., but in presence of only a little $AlCl_3$ give mainly 1:1:4:4:5:5:8:8-octamethyl-1:2:3:4:5:6:7:8octahydroanthracene, m.p. 221—222° (NO₂-derivative, m.p. 259—261°). PhMe, $o-C_6H_4$ MeCl, 1:2:3:4tetrahydronaphthalene, and hydrindene undergo only monocyclialkylation, yielding 1:1:4:4:6-pentamethyl-, b.p. 95°/4 mm., and 7-chloro-1:1:4:4:6 $pentamethy \bar{l}$ -1:2:3:4-tetrahydronaphthalene, $104-105^{\circ}$, 1:1:4:4-tetramethyl-1:2:3:4:5:6:7:8octahydroanthracene, m.p. 90—91°, and 5:5:8:8 $tetramethyl-5:6:7:8-tetrahydro-\beta-naphthindane, m.p.$ 93—94°, respectively, but $C_{10}H_8$ gives 1:1:4:4:7:7:10:10-octamethyl-1:2:3:4:7:8:9:10octahydronaphthacene, m.p. 319-320°. Thiophen, (II), and SnCl₄ in petroleum ether, first at room temp. and then boiling, give 3:3:6:6-tetramethyl-3:4:5:6tetrahydrothionaphthen, b.p. 94°/6 mm. R. S. C.

Propionylation of naphthols in pyridine. A. Léman (Compt. rend., 1940, 210, 78—80; cf. A.,

1938, II, 274).— α - and β -C₁₀H₇·OH (0·01 mol.) and 1:7-C₁₀H₆(OH)₂ (0·005 mol.) are propionylated completely at 35° in 15 min. with a mixture (5 c.c.) of equal vols. of C₅H₅N and (EtCO)₂O. After hydrolysis of excess of (EtCO)₂O with H₂O (50 c.c.) at 100°/15 min., the EtCO₂H is titrated with N-KOH. Even in presence of H₂O (50 c.c.), the C₁₀H₇·OH react nearly quantitatively. 1:7:3-C₁₀H₅(OH)₂·SO₃H partly reacts (18·2%) at 100°/1 hr. J. L. D.

Mills-Nixon effect. W. C. LOTHROP (J. Amer. Chem. Soc., 1940, 62, 132—133).—The Mills-Nixon effect (fixation of linkings) is only qual, in the case of hydrindene. Coupling of 5-hydroxy-6-methylhydrindene (I) with $p\text{-NO}_2\cdot C_6H_4\cdot N_2\cdot HSO_4$ is decreased by increasing amounts of NaOH. Quant. experiments at p_H 7·5 and 11·3 and in 10% NaOH show that (I), 5-hydroxy-4:7-dimethylhydrindene, and 6-hydroxy-5:8-dimethyl-1:2:3:4-tetrahydronaphthalene resemble m-4-xylenol rather than β- $C_{10}H_7\cdot OH$. 5-Allyloxy-6-methylhydrindene, b.p. 95—97°/3 mm., in NPhMe₂ at 245° gives 86% of 5-hydroxy-6-methyl-4-allylhydrindene, m.p. 43—45°. 5-Allyloxy-4:7-dimethylhydrindene, b.p. 107—108°/2 mm., gives similarly at 280° 75% of 5-hydroxy-4:7-dimethyl-6-allylhydrindene, m.p. 66—67°. R. S. C.

Æstrogenic substances produced during demethylation of anethole. N. R. CAMPBELL, E. C. Dodds, and W. Lawson (Proc. Roy. Soc., 1940, B, **128**, 253—262; cf. A., 1939, II, 312).—Partly a more detailed account of work previously reviewed (A., 1939, III, 264). Demethylation (EtOH-KOH at 200°; whereby H₂ is produced) of anethole (I), remethylation (Me₂SO₄) of the product, removal of re-formed (I) by steam-distillation, and subsequent fractionation give fractions, b.p. up to 150°/0·15— 0.2 mm. (A) and $160-170^{\circ}/0.15-0.2$ mm. (B). Demethylation (EtOH-KOH) of (A) affords phenols containing p-C₆H₄Pr^a·OH (3:5-dinitrobenzoate, m.p. 118°). Oxidation (KMnO₄, COMe₂) of (B) gives anisic acid and p-OMe·C₆H₄·CHEt·COMe(II) which arise from the $\alpha\gamma$ -dianisyl- β -methyl- Δ^{α} -pentene present; $\gamma\delta$ -dianisylhexane (III), m.p. 144° [converted by EtOH-KOH at 200° into $\gamma\delta$ -di-p-hydroxyphenylhexane (IV), m.p. 184—185°], and crude (V) (below) [whence (VI)] are isolated from the material resistant to oxidation. The yield of (IV) is 0.01-0.02% of the (I) initially used. isoAnethole (Goodall et al., A., 1931, 85) is demethylated (EtOH-KOH at 200°) to $\alpha \gamma$ -di-p-hydroxyphenyl- β -methyl- Δ^{α} -pentene, b.p. $184-185^{\circ}/0.15$ mm. (purified through the diacetate, b.p. 282—289°/ 25 mm.), and reduced (H₂, Pd, COMe₂) to αγ-dianisylβ-methylpentane (V), b.p. 167°/0·08—0·09 mm., which is demethylated (EtOH-KOH at 170°) to ay-di-phydroxyphenyl- β -methylpentane (VI), m.p. 128°. p-OMe· C_6H_4 · CH_2 ·COMe and Al + HgCl₂ in C_6H_6 (first in absence and then in presence of H_2O) give addianisyl- $\beta\gamma$ -dimethylbutane- $\beta\gamma$ -diol, m.p. 135°, dehydrated (Ac₂O-AcCl) to $\alpha\delta$ -dianisyl- $\beta\gamma$ -dimethyl- $\Delta^{\alpha\gamma}$ -butadiene, m.p. 163-164°, which is reduced (H₂, Pd, COMe₂) to the -butane, m.p. 82-83°; this is demethylated [AcOH-HI (d 1.94) at 140°] to αδ-di-phydroxyphenyl-βγ-dimethylbutane, m.p. 151—152°. α-Anisylpropyl p-methoxystyryl ketone, m.p. 76° [from (II) and p-OMc·C₆H₄·CHO in EtOH-NaOEt (trace)], is similarly reduced to $\alpha\delta$ -dianisylhexan- γ -one, m.p. 69°, which with Zn-Hg-AeOH-fuming HCl gives $\alpha\delta$ -dianisylhexane, m.p. 53°, demethylated [boiling HI (d 1·7) in N₂] to $\alpha\delta$ -di-p-hydroxyphenylhexane, m.p. 98°. $\alpha\zeta$ -Dianisylhexane- $\alpha\zeta$ -dione, m.p. 146° (from adipyl chloride, PhOMe, and AlCl₃ in CS₂), is reduced (Clemmensen) to $\alpha\zeta$ -dianisylhexane, m.p. 71° (cf. van der Zanden, A., 1938, II, 181), which is demethylated to $\alpha\zeta$ -di-p-hydroxyphenylhexane, m.p. 143—144°. The product from anisaldazine and MgEtBr with Et₂O-HCl gives (III) and thence (IV).

Vitamin-E. XX. Preparation of o-xyloquinol. O. H. EMERSON and L. I. SMITH (J. Amer. Chem. Soc., 1940, 62, 141—142; cf. A., 1940, II, 13).—A 21% over-all yield of o-xyloquinone is obtained from o-xylene by way of the 3-NO₂- (85% yield) and 3-NH₂-derivative (75%). Reduction (Zn dust, aq. AcOH) then gives the quinol (95%). R. S. C.

Laccol. G. Bertrand, H. J. Backer, and N. H. Haack (Bull. Soc. chim., 1939, [v], 6, 1670—1676; cf. A., 1933, 947; 1938, II, 183).—Mg hexadecyl bromide and 2:3:1-(OMe)₂C₆H₃·CHO give C₃₂H₆₆, m.p. 68—70°, and 2:3-dimethoxyphenyl-n-hexadecyl-carbinol, m.p. 55—56°, converted by KHSO₄ at 210° into 2:3-dimethyl-n-Δ^a-heptadecenylbenzene, m.p. 47—47·5°, which is reduced (H₂-Pt-black-AcOH) to 2:3-dimethoxy-n-heptadecylbenzene, m.p. 44·5—45°, identical with the dimethyltetrahydrolaccol of Majima (A., 1922, i, 262). Demethylation by HI (d 1·7)-AcOH with a little red P + PhOH then gives 2:3-dihydroxy-n-heptadecylbenzene, m.p. 63—64° (diacetate, m.p. 57·8—58·3°), identical with tetrahydrolaccol. Laccol is thus 2:3:1-(OH)₂C₆H₃·C₁₇H₃₁ (ef. loc. cit.).

Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. I. R. Adams, M. Hunt, and J. H. Clark (J. Amer. Chem. Soc., 1940, 62, 196—200).—The high-boiling, physiologically active red oil, extracted by EtoH from the female tops of Minnesota wild hemp (Cannabis sativa; marihuana), contains ~33% of cannabidiol (I), $C_{21}H_{300(32)}O_2$, b.p. $187-190^{\circ}/2$ mm., $[\alpha]_{25}^{28}-119^{\circ}$ in 95% EtoH [di-m-nitrobenzene-sulphonate, m.p. $119-120^{\circ}$ (corr.); Me_2 ether, b.p. $175-177^{\circ}/3$ mm., $[\alpha]_{25}^{28}-133^{\circ}$ in 95% EtoH, obtained with difficulty; ? Me_1 ether, b.p. $177-179^{\circ}/2$ mm., $[\alpha]_{25}^{26}-118^{\circ}$ in 95% EtoH], isolated as di-3:5-dinitrobenzoate, m.p. $106-107^{\circ}$ (corr.), $[\alpha]_{27}^{27}-76^{\circ}$ in COMe₂, and oxidised by KMnO₄-NaHCO₃ in 50% aq. COMe₂ to n-hexoic acid. Colour reactions are described. (I) may be 2:3-dihydroxy-5'-methyl-5-n-amyl-2'-isopropenyl-3':4':5':6'-tetrahydrodiphenyl.

Vitamin-K-active derivatives of 2-methyl-1: 4-naphthaquinol. S. Ansbacher, E. Fernholz, and M. A. Dolliver (J. Amer. Chem. Soc., 1940, 62, 155—158).—Prep. and the vitamin-K activity (1 unit given in parentheses below in µg.) of the following are described. 2-Methyl-1: 4-naphthaquinol diacetate (1), dipropionate (1), m.p. 74—75°, dibenzoate (1), m.p. 179°, di-n- (1·25), m.p. 52—53°, and disobutyrate (5), m.p. 73—74°, di-n- (1·25), m.p. 40—41°, b.p. 210°/1 mm., and diso-valerate (3), b.p. 185°/1 mm., and Me₂ ether (5), m.p. 48—49° (lit. 23—24°).

Anthraquinone has -K activity (1 unit = \sim 2 mg.). These results and some aspects of the biological technique are discussed. R. S. C.

Water-soluble antihæmorrhagic esters. L. F. Fieser and E. M. Fry (J. Amer. Chem. Soc., 1940, 62, 228—229).—The K_2 disulphate of dihydrovitamin- K_1 (i.e., the quinol) (I) and Na_2 2:3-dimethyl-1:4-naphthaquinol disulphate, $+2\mathrm{H}_2\mathrm{O}$, prepared by CISO₃H–C₅H₅N–CCl₄, have no -K activity in 0.5 mg. doses, but Na_2 2-methyl-1:4-naphthaquinol disulphate, $+2\mathrm{H}_2\mathrm{O}$, is active in 2 µg. doses and fairly successful clinically on intravenous injection. The diphosphoric acid (prepared by POCl_3 –C₅H₅N) of (I) is active in 25 (not 10) µg. doses. Na_4 2-methyl-1:4-naphthaquinol diphosphate, $+2\mathrm{H}_2\mathrm{O}$, is also prepared. R. S. C.

Diacetate, m.p. $53 \cdot 5 - 54 \cdot 5^{\circ}$, of dihydrovitamin- K_2 .—See A., 1940, III, 146.

Mechanism of the acid-catalysed dimerisation of anethole.—See A., 1940, I, 122.

Mode of reaction of organo-metallic compounds. IV. Rearrangement of diaryl ethers to o-arylphenols. A. Lüttringhaus and G. von Sääf (Annalen, 1939, **542**, 241—258; cf. A., 1938, II, 406; 1939, II, 109).—Ph₂O and NaPh in C₆H₆ at 50—72°/3—12 hr. give (after decomp. with MeOH and H₂O) PhOH, o-C₆H₄Ph·OH (I) (main product), 2:6-diphenylphenol (II), b.p. 215—220°/11 mm., m.p. 101° (Me, m.p. 42°, and Ph ether, m.p. 119°), 2-phenoxydiphenyl (III), b.p. 200—201°/14 mm., m.p. 49·5°, and di-o-diphenylyl ether (IV), m.p. 116°; little Ph₂ is produced. The intermediate formation of o-C₆H₄Na·OPh (V) is proved by treatment of the product from Ph₂O and NaPh in C₆H₆ at 6°/3 hr. with CO₂, whereby 10% of o-OPh·C₆H₄·CO₂H is obtained. NaPh and (III) in C_6H_6 at room temp./3 hr. and then at 64°/6 hr. afford (I), (II), and (IV) but no PhOH. Possible reaction mechanisms are discussed; it is considered that (II) and (I) (as Na salts) arise by intramol. rearrangement of 3:1:2-C₆H₃NaPh·OPh and (V), respectively. o-C₆H₄Ph·OK and PhBr or o-C₆H₄PhI and KOPh with Cu powder at 210—220° give (III), which with conc. HNO3 in AcOH at 100° (bath) affords a NO_2 -derivative, m.p. 149°, differing from 2-p-nitrophenoxydiphenyl, m.p. 87.5° (from o-C₆H₄Ph·OK and p-C₆H₄Br·NO₂). m-C₆H₄PhI and KOPh or p-C₆H₄Ph·OK and PhBr give 3-, b.p. 196—200°/14 mm., m.p. 14—16°, or 4-phenoxy-diphenyl, b.p. 222°/14 mm., m.p. 68°, respectively. o-C₆H₄PhI and o-C₆H₄Ph·OK afford (IV). 4-Nitro-2:6-diphenylphenol, m.p. 136° [from CO(CH₂Ph)₂ and NO₂·CNa(CHO)₂ in aq. EtOH–NaOH], is reduced (SnCl₂, Et₂O-HCl) to the NH₂-derivative, m.p. (crude) 146—148°, which is deaminated (diazo-method) to (II).

Amines related to 2:5-dimethoxyphenylethylamine. I. R. Baltzly and J. S. Buck (J. Amer. Chem. Soc., 1940, 62, 161-164).— $2:5:1-(OMe)_2C_6H_3\cdot[CH_2]_2\cdot NH_2$ (hydrochloride, m.p. 139°), 36% aq. CH_2O , and a little HCO_2H at 125° (method A) give β -2:5-dimethoxyphenylethyldimethylamine, b.p. $159^\circ/22$ mm. (hydrochloride, m.p. 148° ; methochloride, m.p. $184-185^\circ$). $2:5:1-(OMe)_2C_6H_3\cdot COMe$,

CH₂Br·CO₂Et, and Zn-Cu give Et β-2:5-dimethoxyphenylcrotonate, b.p. 140—143°/1 mm. (derived acid, m.p. 113·5°), reduced (H_2-PtO_2) to the ester, yielding β -2:5-dimethoxyphenyl-n-butyric acid, m.p. 79°. With dry NH₃ at 220—230° this gives the amide, m.p. 121°, and thence (NaOCl; 45% yield) β -2:5-dimethoxyphenyl-n-propylamine, b.p. $114^{\circ}/1$ mm. (hydrochloride, m.p. $149-150^{\circ}$), which yields β -2:5dimethoxyphenyl-n-propyl-methyl- (I) (hydrochloride, m.p. 146°; hydriodide, m.p. 131°), and -dimethylamine [best prepared from (I) by method A] [hydrochloride, m.p. $182-183^{\circ}$; methochloride, m.p. $(+H_2O)$ 92° and (anhyd.) $159-161^{\circ}$ (decomp.); methiodido, m.p. 139°]. The Et ester of 2:5-dimethoxybenzylidenemalonic acid, m.p. 183° (decomp.) [lit. 188° (decomp.)], is hydrogenated and then hydrolysed to 2:5-dimethoxybenzylmalonic acid, m.p. 156.5° (de-2:5-Dimethoxybenzylmethylmalonic m.p. 143° (decomp.), at 150° gives β -2:5-dimethoxyphenylisobutyric acid, m.p. 59.5°, the amide (II), m.p. 99°, of which is also obtained in poor yield by condensing 2:5:1-(OMe)₂C₆H₃·CHO, CHMeBr·CO₂Et, and Zn, dehydrating by POCl₃, hydrogenating, saponifying, etc. By a Hofmann reaction in aq. dioxan, (II) gives β-2:5-dimethoxyphenylisopropylamine, b.p. 137—140°/3 mm. [hydrochloride, m.p. 117.5°; hydriodide, m.p. 138°; also obtained by hydrogenation of 2:5:1-(OMe)₂C₆H₃·CH:CMe·NO₂], and thence (Decker and method \hat{A}) $\beta - \hat{2} : 5$ -dimethoxyphenylisopropyl-methyl- (hydrochloride, m.p. 98.5°), and -dimethyl-amine, b.p. 118-121°/0.5 mm. (hydrochloride, m.p. 138—139°; methiodide, m.p. 142°; hygroscopic methochloride, m.p. 203°). M.p. are corr. R. S. C.

Dissociable organic oxides. Oxidation of 9:10-dihydroxy- and -dimethoxy-anthracene; influence of light. C. Dufraisse and R. Priou (Bull. Soc. chim., 1939, [v], 6, 1649—1656; cf. A., 1935, 1233; 1937, II, 145).—9:10-Dihydroxyanthracene (as Na₂ salt) and O₂ in the dark give only anthraquinone (I) (confirms result of Manchot, A., 1901, ii, 93). 9:10-Dimethoxyanthracene, insolated in CS₂, quickly gives a photo-oxide, m.p. 144—145° (block), transformed rapidly into (I) by heat or HI. Theoretical aspects are discussed. A. T. P.

p-Aralkylaminophenols.—See B., 1940, 118.

Hydrogenation of acetophenone to cyclohexylmethylcarbinol in the presence of solvent. V. N. IPATIEV and B. B. CORSON (J. Amer. Chem. Soc., 1939, 61, 3292).—With H_2 (100 kg./sq. cm.)—Ni–kieselguhr in iso-C₅ H_{12} at 100°, COPhMe gives 70% of cyclohexylmethylcarbinol (I), b.p. 189·4—189·8°/761 mm., and 20% of PhEt; at 75° it gives 92% of a \sim 1:1 mixture of (I) and CHPhMe·OH (II) and 8% of PhEt. With reduced Cu at 225° and no solvent, it gives 95% of PhEt, and in cyclohexane at 100° gives PhEt, (I), and (II).

[Isomerisations of xanthophylls.] L. Zechmeister, L. von Cholnory, and A. Polgär (Ber., 1939, 72 [B], 2039—2040; cf. A., 1939, II, 473).—A consideration of the authors' results in relationship to those of Strain (Carnegie Inst. Washington, Publ. 490).

H. W.

Diene synthesis. XI. Diene synthesis with vinyl esters and halogenated ethylenes. Simple route to the norcamphor series. K. ALDER and H. F. Rickert (Annalen, 1939, **543**, 1—27; cf. A., 1938, II, 488; 1939, II, 60).—cycloPentadiene (I) and CH₂:CH·OAc at 185—190° give (mainly) Δ^5 -dehydronorbornyl acetate (II), b.p. 73-77°/14 mm., and some 1:4.5:8-diendomethylene- Δ^6 -octahydro- β naphthyl acetate (III), b.p. $140-145^{\circ}/14$ mm.; (II) is hydrolysed (MeOH-KOH) to Δ^5 -dehydronorborneol (IV), m.p. 108—109° (adduct, C₁₃H₁₅ON₃, m.p. 147—148°, with PhN₃). Reduction (H₂, Pt, AcOH) of (II) affords the acetate, b.p. 81—83°/12 mm., of α -norborneol (V), m.p. $149-150^{\circ}$ (cf. A., 1935, 219; Komppa et al., A., 1934, 1105) [also obtained by similar reduction of (IV); H phthalate, m.p. 109—110°; 3:5-dinitrobenzoate, m.p. 123° (compound, m.p. 139—140°, with α-C₁₀H₇·NH₂)]; (V) is oxidised to norcamphor. The H phthalate, m.p. 80—81° (cf. Komppa, 102—103°), and 3:5-dinitrobenzoate, m.p. 105° (compound, m.p. 126°, with α-C₁₀H₇·NH₂), of β-norborneol are described. Oxidation (K₂Cr₂O₇, dil. H₂SO₄, AcOH) of (IV) gives Δ⁵-dehydronorcamphor, f.p. $0-2^{\circ}$ (semicarbazone, m.p. $207-208^{\circ}$; adduct, $C_{13}H_{13}ON_3$, m.p. $140-141^{\circ}$, with PhN₃). The above production of (V) indicates that the OAc of (II) has the endo-configuration. Reduction (H₂, PtO₂, AcOH) and subsequent hydrolysis of (III) affords 1:4-5:8diendomethylenedecahydro-β-naphthol, m.p. 90—92° (acetate, b.p. 147-149°/12 mm.), which is not sterically homogeneous since it yields phenylcarbamates, m.p. 118° and 120—121°; it is oxidised to the 2-CO-derivative (A., 1939, II, 14). HCO₂·CH:CH₂ and (I) at 180-190° give dehydronorbornyl formate, b.p. 80°/20 mm., and impure diendomethyleneoctahydro-β-naphthyl formate, b.p. 130—140°/20 mm. CH₂:CH·OAc with (CH₂:CH·)₂, (CH₂:CMe·)₂, and $\Delta^{1:3}$ -cyclohexadiene at 180° affords the acetates of Δ^3 -cyclohexenol, 3:4-dimethyl- Δ^3 -cyclohexenol (phenylcarbamate, m.p. 112°), and 2:5-endoethylene- Δ^3 cyclohexenol (phenylcarbamate, m.p. 125°), respectively; anthracene [in xylene at 220—230° (autoclave)] gives 9:10-endoacetoxyethylene-9:10-dihydroanthracene, m.p. 100-101°, hydrolysed (25% MeOH-KOH) to the OH-derivative, m.p. 140—142°.

CH₂:CHCl and (I) at 170—180° yield a dehydronorbornyl chloride (VI), b.p. $46-47^{\circ}/12$ mm. (adduct, $C_{13}H_{14}N_3Cl$, m.p. $113-116^{\circ}$, with PhN₃), and 2-chloro - 1:4-5:8 - diendomethylene - Δ^6 - octahydronaphthalene, b.p. 128-130 (?)/12 mm. (adduct, $C_{18}H_{20}N_3Cl$, m.p. 195° , with PhN₃). Reduction (H₂, Pd-CaCO₃, EtOAc) of (VI) gives norbornyl chloride, b.p. $50-52^{\circ}/11$ mm. (Komppa et al., loc. cit.) (the Mg derivative of which with CO₂ affords 2:5-endomethylenehexahydrobenzoic acid, b.p. $128-130^{\circ}/12$ mm.), reduced (Na, EtOH) to norbornylane and converted by boiling quinoline into norbornylene. (:CHCl)₂ reacts more slowly with (I) at $180-190^{\circ}$ and gives 1:2-dichloro-3:6-endomethylene- Δ^4 -cyclohexene, b.p. $70-76^{\circ}/11$ mm. (adduct, $C_{13}H_{13}N_3Cl_2$, decomp. 148° , with PhN₃), and 2:3-dichloro-1:4-5:8-diendomethylene- Δ^6 -octahydronaphthalene, b.p. $140-150^{\circ}/11$ mm. [adduct, $C_{18}H_{19}N_3Cl_2$, m.p. 210° (decomp.), with PhN₃]. CHCl:CCl₂ and (I) at $175-185^{\circ}$ afford a 1:2 adduct, b.p. $158-160^{\circ}/11$ mm.

(adduct, $C_{18}H_{18}N_3Cl_3$, m.p. 225—226°, with PhN_3). The diene synthesis has now been shown to occur with all types (classified) of olefines; there are considerable differences in the rates of addition.

Olefine peroxides. R. CRIEGEE, H. PILZ, and H. FLYGARE (Ber., 1939, 72, [B], 1799—1804; cf. A., 1937, II, 59; Hock et al., A., 1938, II, 360).— The purest samples of cyclohexene peroxide (I) are obtained by shaking the hydrocarbon with O₂ for a relatively short time in a SiO₂ flask irradiated by ultra-violet light at 35° and immediate working up of the product. The best specimens have b.p. 51°/0.3 mm. but it is unlikely that they are quite homogen-

The constitution (A) for (I) is O₂H supported by the following arguments. (I) is smoothly reduced to cyclohexenol (II). Acids transform (I) mainly into a mixture of stereoisomeric cyclohexanetriols obtained by hydration of a cyclohexenol oxide formed by O displacement. Cone. alkalis transform (I) into (II) by

reduction and into a mixture of acids (mainly αhydroxyadipic acid) by oxidation; by-products are also formed. The presence of a double linking in (I) is established by the absorption of 2 Br when (I) is titrated with aq. KBr-KBrO₃ or treated with Br in AcOH or CCl₄. With MgMeI, (I) evolves ~90% of the calc. vol. of CH₄. Pb(OAc)₄ reacts vigorously with cold (I); this change is studied in detail with tetrallydronaphthalene peroxide. It occurs only when O₂H is present [ascaridole is unattacked by Pb(OAc)₄] and appears suited to the determination of O_2H . The physical consts. of (I) are in agreement with (\bar{A}) . A contrary argument is found in the formation of greater or smaller amounts of trans-cyclohexanediol. adipic acid, and cyclopentenealdehyde in the second and third of the above changes. cyclo Pentene peroxide, b.p. 35°/0.01 mm., is prepared similarly; it is reduced to Δ²-cyclopentenol, b.p. 140°/747 mm. (phenylurethane, m.p. 121.5°). 1-Methylcyclohexene peroxide, b.p. 47—51°/0.01 mm., similarly yields 2methyl-Δ²-cyclohexenol (phenylurethane, m.p. 204·5°). α-Pinenc is very slowly autoxidised. Co oleate causes rapid absorption of O_2 but accelerates decomp. as well as formation of the peroxide. Olefines with terminal double linking react still more slowly; camphene and Δ^a -n-heptene absorb only a few c.c. in 24 hr. 1-Ethoxycyclohexene absorbs O₂ avidly but the primary peroxide appears to lose EtOH so that a homogeneous product cannot be obtained.

Peroxide of cymene. A. VON REBAY and H. FETTBACK (Ber., 1939, 72, [B], 1643—1645).—Prolonged passage of O₂ through cymene at 60° gives the liquid cymene peroxide, C₁₀H₁₄O₂, best isolated through the Na salt obtained with 35% NaOH. It begins to decompose at 100° with weak evolution of gas and formation of a yellow colour and passes at 220° into a dark red oil. It immediately causes the typical red luminescence when added to Mg phthalocyanine in boiling PhCl and this persists for a considerable time. It liberates I from warm, acid KI solution. Its characteristic odour disappears rapidly when it is boiled with (preferably alkaline) H2O and is re-

placed by that of cuminaldehyde, identified as its semicarbazone and by conversion into cumic acid.

Synthesis of compounds related to the antirachitic vitamins. II. J. B. ALDERSLEY, G. N. BURKHARDT, A. E. GILLAM, and N. C. HINDLEY (J.C.S., 1940, 10—16; cf. A., 1938, II, 234).— Quinitol monoacetate, m.p. 68—72°, b.p. 136—137°/ 15 mm., prepared by hydrolysis (KOH-EtOH) of the diacetate, is oxidised (H2CrO4-AcOH) (as is quinitol by CrO_3 -Ac₂O) to 4-acetoxycyclohexanone, b.p. 112-114°/11 mm., 235°/760 mm., hydrolysed (NaOH) to the *OH*-compound (I), b.p. 83—85°/0.6 mm., and with PhCHO-AcOH-HCl forming 4-acetoxy-2:6-dibenzylidenecyclohexanone, m.p. 165°. cycloHexylideneacetaldehyde [prep. from 1-allylcyclohexanol (3:5-dinitrobenzoate, m.p. $101-103^{\circ}$)] and (I) in 0.086n-NaOH and N₂ give a mixture containing chiefly 5-hydroxy-2-keto-αβ-dicyclohexylidene-ethane (II), m.p. 65—69°, the acetate, m.p. 80—82° (2: 4-dinitrophenylhydrazone, m.p. 187—189°), of which with CH₂Br·CO₂Et and Zn in C₆H₆ and N₂ yields a product, converted by successive hydrolysis (MeOH-KOH), dehydration (Ac₂O), hydrolysis, and decarboxylation into a hydroxytriene (III), $\tilde{C}_{15}\dot{H}_{22}O$ (unstable phenylurethane, m.p. 123—132°), which appears to be a mixture of isomerides and is also prepared from (II) and MgMeI (excess); the predominant isomeride is considered to be α-cyclohexylidene-β-5-hydroxy-2methyl- Δ^2 -cyclohexenylidene-ethane. There is a considerable difference between the absorption max. of calciferol and (III).

Reduction [Al(OPr^{β})₃, $Pr^{\beta}OH$] of (II) gives a compound, $C_{14}H_{20}O$, m.p. 81—83°, presumably α -cyclohexylidene- β -3-hydroxy- Δ^5 -cyclohexenylidene-ethane. F. R. S.

6-Benzoyloxyhydrind-1-ol. M. Miyasaka (J. Pharm. Soc. Japan, 1939, 59, 119—121).—6-Hydroxyhydrind-1-one (I) is reduced by Na and EtOH to 6- $\hbar y droxy hydrind$ -1-ol, m.p. 121°, in poor yield. (I) is therefore transformed by BzCl and C_5H_5N into 6benzoyloxyhydrind-1-one, m.p. 141°, which is reduced catalytically to 6-benzoyloxyhydrind-1-ol, m.p. 111°. This has no activity in the Allen-Doisy test even with a max. injection of 99 µg. It may therefore be considered that the five-membered ring constituting part of the estrone nucleus does not participate in estrogenic activity and that estrone does not decompose in the body with formation of a hydrindene derivative.

Reaction between 2:3-dimethyl-1:4-naphthaquinone and magnesium phenyl bromide. II. (Miss) H. M. Crawford (J. Amer. Chem. Soc., 1939, 61, 3310—3314).—The compounds, m.p. 203—204° and 208—209°, obtained (A., 1935, 1501) by addition of 2 MgPhBr to 2:3-dimethyl-1:4-naphthaquinone 1:4-dihydroxy-1:4-diphenyl-2:3-dimethyl-1:4-dihydronaphthalene (II) and 1:4-dihydroxy-1:2diphenyl-2: 3-dimethyl-1: 2-dihydronaphthalene (III), respectively. Both have 2 active H (MgMeI). (II) is also obtained from (I) (20%) or 1-hydroxy-4-keto-1phenyl-2: 3-dimethyl-1: 4-dihydronaphthalene (IV) (50% yield) by 2 LiPh. Boiling CrO₃-AcOH (not KMnO₄ and less well K₂Cr₂O₇) with (II) gives o- $C_6H_4(COPh)_2$, proving the structure. 1-Keto-2:4-

diphenyl-2: 3-dimethyl-1: 2-dihydronaphthalenem.p. 124°, is obtained (once only) by recrystallising the double compound of (I) and (II) and quantitatively by dehydrating (II) with HCl-MeOH or ZnCl₂-HCl-C₆H₆, its structure (and the rearrangement) being proved by its oxidation by K₂Cr₂O₇-AcOH to COPhMe and o-C₆H₄Bz·CO₂H. With MgPhBr or LiPh, (V) gives a metallic compound, decomposed by H₂O to $\overline{1}$ -hydroxy - 1:2:4 - triphenyl - 2:3 - $\overline{d}imethyl$ - $1:\overline{2}$ - di hydronaphthalene (VI), m.p. 164—174°, or by acid to 1:1:4-triphenyl-3-methyl-2-methylene - 1:2-dihydronaphthalene (VII), m.p. 189—190° [also obtained by ZnCl₂-HCl-C₆H₆ from (VI); adds Br]. (VII) is stable to COMe2-KMnO4 at room temp. and with K₂Cr₂O₇-AcOH gives only a little BzOH and an oil, but with O₃ in CHCl₃ or CCl₄ gives mainly 2-keto-1:1:4-triphenyl-3-methyl-1:2-dihydronaphthalene (VIII), m.p. 228°, and CH₂O. Oxidation of (VIII) to αα-diphenylhomophthalic acid (Me ester, m.p. 192—193°) and its interaction with MgMeI to regenerate (VII) prove the structure of (VI), (VII), and (VIII). (III) is obtained also from (IV) by MgPhBr, is oxidised (K₂Cr₂O₇-AcOH) to COPh₂ and o-C₆H₄Bz·CO₂H (proof of structure), is dehydrated by PBr₃ in CHBr₃ at 100°, C_6H_8 –ZnCl₂–HCl, or hot I–AcOH (not 20% H_2 SO₄ or Ac₂O–NaOAc) to 4-keto-1:1-diphenyl-2:3-dimethyl-1:4-dihydronaphthalene (cf. loc. cit.), m.p. 183°. This gives no CO-derivatives, is stable to $K_2Cr_2O_7$ —and CrO_3 —AcOH, $KMnO_4$ —KOH, 30% H_2O_2 , O_3 , and Br; with Zn—AcOH it gives a small amount of a substance, C₂₄H₂₂O, m.p. 142—143°, and a hydrocarbon, m.p. 176—177°; it adds 1 MgMeI and contains no active H; with MgPhBr or LiPh it gives a metallic compound, decomposed by aq. NH₄Cl to 4-hydroxy - 1:1:4-triphenyl - 2:3-dimethyl - 1:4-dihydronaphthalene (IX), m.p. 154°, or by acid to (VII) [also obtained by dehydrating (IX) by melting or by ZnCl₂-HCl-C₆H₆]. (IX) shows 1 active H, is stable to KMnO₄, and with O₃ gives (VIII), probably by way of (VII). Many of the above-mentioned oxidations give also small amounts of a hydrocarbon, C₃₀H₄₂, m.p. 235°, converted by O₃ into an oil.

Amines related to 2:5-dimethoxyphenylethylamine. II. R. BALTZLY and J. S. BUCK (J. Amer. Chem. Soc., 1940, 62, 164—167).—Et β-2:5dimethoxyphenylpropionate, b.p. 164-167°/1 mm.. obtained in 80% yield by the Reformatzky reaction, gives the hydrazide, m.p. 161.5°, and thence (Curtius) 5-2': 5'-dimethoxyphenyloxazolid-2-one, m.p. 107°, and (cold, conc. HCl) β-hydroxy-β-2: 5-dimethoxyphenylethylamine (III) (as hydrochloride, m.p. 158.5°). $2:5:I-(OMe)_2C_6H_3\cdot CO\cdot CH_2Br$ (IV) and $(CH_2)_6N_4$ give ω-amino-2: 5-dimethoxyacetophenone hydrobromide, m.p. 195° (decomp.), reduced (H₂-PtO₂) to (III). NHMe·CH₂Ph and (IV) in Et₂O give 2:5-dimethoxy-phenacylbenzylmethylamine (V) (as hydrochloride, m.p. 167·5°), reduced (H₂-PtO₂ in EtOH) to PhMe and β -hydroxy- β -2: 5-dimethoxyphenylethylmethylamine hydrochloride, m.p. 151.5°. MgMeI and (\check{V}) with subsequent hydrogenation give β -hydroxy- β -2:5dimethoxyphenyl-n-propylmethylamine hydrochloride,m.p. 158—159°. Crude Et β -hydroxy- β -2: 5-dimethoxyphenyl-n-butyrate [prepared] from(OMe)₂C₆H₃·COMe, CH₂Br·CO₂Et, and Zn-Cu; de-

rived acid, m.p. 121—122°] gives the hydrazide, m.p. 112°, and thence (as above) 5-2': 5'-dimethoxyphenyl-5-methyloxazolid-2-one, m.p. 159°, and β-hydroxy-β-2:5-dimethoxyphenyl-n-propylamine hydrochloride, m.p. 174°. 1:4:2-(OMe)₂C₆H₃·MgBr and NMe, CH, CN give ω-dimethylamino-2: 5-dimethoxyacetophenone (VI), the hydrochloride, m.p. 171° (decomp.), of which is hydrogenated (PtO₂) in EtOH to β -hydroxy- β -2: 5-dimethoxyphenylethyldimethylamine hydrochloride, m.p. 155° (corresponding methochloride, m.p. 185—186°). MgMeI converts (VI) into β-hydroxy-β-2: 5-dimethoxyphenyl-n-propyldimethylamine (hydrochloride, m.p. 176.5°; methochloride, m.p. 213.5°). α-Oximino-2: 5-dimethoxypropiophenone, m.p. 97-98°, and H₂-Pd-C in abs. EtOH-HCl give β-hydroxy- $\beta\text{-}2:5\text{-}dim\bar{e}thoxy phenyl is opropylamine \quad hydrochloride,}$ m.p. 175—176° (decomp.). 2:5:1-(OMe)₂C₆H₃·CO·CHMeBr (prep. from COArEt by Br in CHCl₃) and NH₂Me in abs. Et₂O at 0° give a salt, converted into α-methylamino-2:5-dimethoxypropiophenone hydrochloride, m.p. 172-173° (decomp.), hydrogenation of which yields β-hydroxy-β-2:5-dimethoxyphenylisopropylmethylamine hydrochloride, m.p. 170°; NHMe, gives similarly a-dimethylamino-2:5-dimethoxypropiophenone hydrochloride, m.p. 154—156° (decomp.), and β-hydroxy-β-2:5-dimethoxyphenylisopropyldimethylamine [hydrochloride, m.p. 198° (decomp.); methochloride, m.p. 221—223° (decomp.)]. M.p. are corr.

Action of sodium nitrite on Michler's hydrol in hydrochloric acid. A. C. Hutchison and T. H. Reade (J.C.S., 1940, 93—96).—NaNO₂ (4 mols.) and (p-NMe₂·C₆H₄)₂CH·OH (1 mol.) in excess of 4·8n-HCl at 0° give p-NO₂·C₆H₄·NMe·NO, p-NO·NMe·C₆H₄·CHO, p-NO₂·C₆H₄·NMe₂, p-NO·C₆H₄·NMe₂, and 3:4:1-NO₂·C₆H₃(NMe₂)·CHO, with CH₂O and NO. In 1·2n-HCl the reaction is the same but the relative amounts of the products are altered. Equations are put forward to interpret schematically the course of the reaction. F. R. S.

Dark reaction following photolysis of malachite-green leucocyanide.—See A., 1940, I, 124.

Synthesis in the steroid series. E. Dane (Angew. Chem., 1939, 52, 655—659).—A review.

Catalytic hydrogenation of 5:6-dibromides of sterols. J. DÉCOMBE and J. RABINOWITCH (Bull. Soc. chim., 1939, [v], 6, 1510—1522).—Hydrogenation (Pt-aq. Et₂O) at normal temp. and pressure is used in attempts to prove the structure of dihalogeno-compounds (cf. Vavon et al., A., 1938, II, 323). Efficiency of catalyst is quickly impaired with Cl-, which are less reactive than the corresponding Br-compounds. Addition of halogen to the double linking of cholestene affords four possible stereoisomerides. β-Cholestene dibromide (I), m.p. 106°, is converted partly into the α-form (II), new m.p. 148°, by AgNO₃, KOAc, Zn(OAc)₂, or NaOH in EtOH, or by prolonged boiling in EtOH. Irradiation (140 hr.) of (I) in light petroleum gives a little (II) and 50% of γ -dibromide (III), m.p. 116—117°, [α] —40·1° to +38·6° (in CHCl₃; 10 days) (cf. Mauthner, A., 1906, i, 663), probably intermediate in the conversion of (I) into (II). (I) and (III) on hydrogenation lose 2 Br, and their structures cannot be determined. Cholestene dichloride, new m.p. $121-122^{\circ}$, and (II) are not hydrogenated. Cholesterol dibromide (IV) (best method of prep.: Windaus, A., 1906, i, 174), $[\alpha]_{578}$ —50° in CHCl₃, or dichloride (V), m.p. $136-137^{\circ}$, and CrO₃-AcOH at 55° give $\Delta^{5:6}$ -cholestenone dibromide (VI), $[\alpha]_{578}$ —55·8° in CHCl₃, or dichloride (VII), m.p. $110-111^{\circ}$ (block), softens 108° (slow heating), $[\alpha]_{578}$ —30° in CHCl₃, respectively. (IV) or (VI) loses 2 Br (the latter with migration of double linking to 4:5) and gives cholesterol or cholestenone, respectively. Hydrogenation of (V) or (VII) causes successive replacement of Cl [in the case of (VII), CO is reduced first] to give (?) 6-chlorocholestanols, m.p. $136-137^{\circ}$, $[\alpha]_{587}$ — $16\cdot6^{\circ}$ in CHCl₃ (also $+1H_2O$, m.p. 120° and then $126-128^{\circ}$) (cf. de Fazi et al., Å., 1932, 510), and (less readily formed) m.p. 94° , $[\alpha]_{578}$ — $16\cdot6^{\circ}$ in CHCl₃, respectively, and finally in either case, β -cholestanol. Structural formulæ are discussed.

Fission of cholesterol oxide. J. HATTORI (J. Pharm. Soc. Japan, 1939, 59, 129—131).—Cholesteryl acetate and $\rm H_2O_2$ give 5-hydroxy-3:6-diacetoxycholestane (I) and 3:5:6-triacetoxycholestane (II), m.p. 148—149·5°, also obtained from (I) by Ac₂O-HCl. MeOH-KOH hydrolyses (II) to 3:6-dihydroxy-5-acetoxycholestane (III), m.p. ~170°, which with MeOH-H₂SO₄ gives 3:6-dihydroxy-5-methoxycholestane (IV), m.p. 203—204° (diacetate, m.p. 113—114°). Cleavage of α- or β-cholesterol oxide acetate by AcOH yields (I). With MeOH-H₂SO₄ the α-oxide gives 3:5-dihydroxy-6-methoxycholestane, m.p. 151—152·5° (3-acetate, m.p. 139·5—140·5°), and the β-oxide gives (IV). CrO₃ oxidises (III) to 5-acetoxycholestane-3:6-dione, m.p. 165·5—167°, whence KOH-MeOH yields Δ^4 -cholestene-3:6-dione. R. S. C.

7-Dehydroepicholesterol. A. WINDAUS and J. NAGGATZ (Annalen, 1939, 542, 204-218).—epi-Cholesteryl acetate (Ruzicka et al., A., 1937, II, 65) is oxidised (CrO₃-AcOH) to (impure) 7-ketoepicholesteryl acetate (I), m.p. 119° (absorption max. at 234 mμ.), and (probably) a 5-hydroxy-6-keto-3-acetoxy-Δ³-cholestene (II), m.p. 163°. Hydrolysis (1% MeOH-NaOH) of (II) gives Δ⁴-cholestene-3:6-dione [monophenylhydrazone, m.p. 272°; disemicarbazone, also obtained directly from (II)], which is also formed by adsorption of (II) on Al₂O₃. Freshly ignited Al₂O₃ converts (I) into $\Delta^{s:5}$ -cholestadien-7-one; incomplete purification is effected with Al₂O₃ which has been kept in air for 2 weeks. Reduction [Al(OPr $^{\beta}$)₃, Pr $^{\beta}$ OH] of (I) and subsequent hydrolysis (MeOH-KOH) gives α -, m.p. 172—176°, $[\alpha]_{D}^{18}$ +38·1°, and β -, m.p. 173°, $[\alpha]_{D}^{18}$ +9·1°, -7-hydroxyepicholesterol which differ in the steric arrangement at $C_{(7)}$ and are purified through their diacetates, m.p. 165° , $[\alpha]_{\rm b}^{19}$ +20·2°, and m.p. 145° , $[\alpha]_{\rm b}^{19}$ +70·2°, respectively (separated by fractional adsorption on Al_2O_3). Decomp. of the α -dibenzoate, m.p. 154° , $[\alpha]_{\rm b}^{19}$ +93·7°, at 200° affords $A_{\rm b}^{3:5:7}$ -cholestatrione (III), but the $A_{\rm c}$ -dibenzoate $\Delta^{3:5:7}$ -cholestatriene (III), but the β -dibenzoate, noncryst., m.p. 70—80°, $[\alpha]_{\rm b}^{18}$ +10.7°, at 195°/high vac. or, less well, in boiling NPhMe2 gives a little (III) and (mainly) the benzoate, m.p. $118-119^{\circ}$, $[\alpha]_{D}^{20}+48.5^{\circ}$, of 7-dehydroepicholesterol (IV), m.p. $124-126^{\circ}$, $[\alpha]_{D}^{20}$ -70.5° (acetate, m.p. 114–115°, $[\alpha]_{D}^{20}$ –35°) [spectrum similar to that of 7-dehydrocholesterol (V)]. Changes in absorption spectra show that decomp. of ergosterol and (IV) during irradiation (Hg light) occurs in the same way at the same rate. The product obtained by irradiation (Mg arc) of (V) is about 10 times as active as that similarly formed from (IV). $[\alpha]$ are in CHCl₃.

Dehydrocholestenone and its hydrogenation with aluminium isopropoxide. A. WINDAUS and O. Kaufmann (Annalen, 1939, 542, 218—224).—7-Dehydrocholesterol is oxidised [Al(OBu $^{\gamma}$)₃, COMe₂, C₆H₆] to dehydrocholestenone (I), m.p. 88°, [α]_D¹⁷ +34° in CHCl₃ [semicarbazone, m.p. 240° (decomp.)], which may be the $\Delta^{4:5-7:8}$ or $\Delta^{4:5-8:14}$ derivative. Reduction [Al(OPr $^{\beta}$)₃, Pr $^{\beta}$ OH] of (I) gives a mixture of 35·25, 48·75, 14·75, and 1·25%, respectively, of allodehydrocholesterol (+xH₂O) (II), m.p. 115—116°, $[\alpha]_{\rm D}^{22}$ +10° in CHCl₃ (acetate, m.p. 109°, $[\alpha]_{\rm D}^{20}$ -56° in CHCl₃; 3:5-dinitrobenzoate, double m.p. 154° and 180—185°, $[\alpha]_{D}^{22}$ —78.5° in CHCl₃), allodehydroepicholesterol (III), m.p. 93—94°, $[\alpha]_{\rm p}^{2i}$ +80° in CHCl₃ (acetate, m.p. 96°, $[\alpha]_D^{20}$ +126·3° in CHCl₃; 3:5-dinitrobenzoate, double m.p. 150° and 180—185°, $[\alpha]_{D}^{22}$ +159° in CHCl₃), 7-dehydrocholesterol (IV), and 7-dehydroepicholesterol (V). (II) + (IV) are pptd. by digitonin. (II) and (III) are separated from (IV) and (V), respectively, by adsorption on silicic acid and fractional elution. The amounts of (IV) and (V) are determined spectrophotometrically.

Preparation of $\Delta^{4:6}$ -cholestadien-3(β)-ol. V. A. Petrow (J.C.S., 1940, 66—67).—Reduction of $\Delta^{4:6}$ -cholestadien-3-one (I) (2:4-dinitrophenylhydrazone, m.p. 231—233°) with Al(OPr $^{\beta}$)₃ in Pr $^{\beta}$ OH gives an additive complex, m.p. 113°, of $\Delta^{4:6}$ -cholestadien-3(β)-ol (II), m.p. 126—127°, [α] $^{20}_{-}$ —38·0° in CHCl $_{3}$, and its epimeride, from which (II) is pptd. as digitonide. The acetate of (II) has m.p. 78—79°, [α] $^{20}_{-}$ —71·6° in CHCl $_{3}$. Oxidation of (II) with Al(OBu $^{\gamma}$)₃ in COMe $_{2}$ -C $_{6}$ H $_{6}$ yields (I). The (II) of Dane et al. (A., 1937, II, 417) was largely contaminated with cholesterol. F. R. S.

Deoxycholamine. W. T. CALDWELL (J. Amer. Chem. Soc., 1939, 61, 3584—3585).—Deoxycholhydrazide gives an azide, which by decomp. in aq. AcOH at 45—60°, followed by warming with KOH-EtOH, gives deoxycholamine, +MeOH, m.p. (MeOH-free) 157—158° (hydrochloride, sinters at 300°, m.p. 306°), which may be a stereoisomeride of that described by Vanghelovici (A., 1939, II, 546).

R. S. C.

Sterols. LXXXI. Conversion of sarsasapogenin into pregnane- $3(\alpha):20(\alpha)$ -diol. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1939, 61, 3592—3593).—Heating with Ac₂O at 200° and subsequent hydrolysis converts sarsasapogenin into ψ -sarsasapogenin, m.p. 171—173°, oxidised by CrO₃-AcOH to an unsaturated diketone, C₂₁H₃₀O₂, m.p. 201—203°, which is reduced by Na-EtOH to pregnane-3(α): 20(α)-diol. This is the best source of hormones of this series. R. S. C.

 $\Delta^{5:16}$ -Pregnadiene-3:20-diol. A. BUTENANDT and J. SCHMIDT-THOMÉ (Ber., 1939, 72, [B], 1960—1962).— Δ^{5} -Pregnene-3:17:20-triol 3:20-diacetate is converted by POCl₃ in boiling C_5H_5N into $\Delta^{5:16}$ -

pregnadiene-3: 20-diol 3: 20-diacetate (I), m.p. 121°, which is hydrolysed (NaOH-aq. MeOH) to $\Delta^{5:16}$ -pregnadiene-3: 20-diol (II), m.p. 168—170°, re-converted by $\mathrm{Ac_2O-C_5H_5N}$ at room temp. into (I). Hydrogenation (PtO₂ in AcOH) of (II) gives allopregnane-3(β): 20(β)-diol, m.p. 193° (acetate, m.p. 138°), oxidised (CrO₃ in AcOH) to allopregnane-3: 20-dione. (II) is devoid of androgenic activity.

Sterols. LXXVII. Oxidation of pregnane- $3:4:20(\alpha)$ -triol and of coprostane-3:4-diol. R. E. MARKER, E. L. WITTLE, L. PLAMBECK, jun., E. ROHRMANN, J. KRUEGER, and P. R. ULSHAFER (J. Amer. Chem. Soc., 1939, **61**, 3317—3320).—The point of cleavage of ring A of sterols depends on the substituent at $C_{(17)}$. CrO_3 attacks mainly the 2:3-linking of coprostanone (cf. Gardner *et al.*, A., 1914, i, 169). H₂-PtO₂-EtOH-Et₂O at 3 atm. reduces 4:20-diacetoxypregnan-3-one (I), m.p. 250° , 4:20-diacetoxypregnan-3-ol, m.p. indefinite, hydrolysed by KOH-EtOH to pregnane-3:4:20(a)-triol (II), m.p. 184° [no digitonide; triacetate, m.p. 181°, obtainable also by reduction of (I) by Al(OPr^{\beta})₃-Pr^{\beta}OH and subsequent acetylation], and oxidised by CrO₃ in 95% AcOH at 25° to a 3:4-diacid (III), $C_{21}H_{32}O_5$, m.p. 216° (oxime, m.p. 238°). This acid differs from the 2:3-diacid, m.p. 281° (Me_2 ester, m.p. 87°), obtained (Butenandt, A., 1930, 633, m.p. 270°) by oxidation of pregnanedione. Pb(OAc)₄, followed by H_2O_2 , oxidises (II) to an acid, $C_{21}H_{34}O_5$, m.p. 231°, converted into (III) by CrO₃. 4-Bromocoprostanone and KOAc-AcOH give 4-acetoxycoprostanone, m.p. 149°, which with H₂-PtO₂-EtOH-Et₂O at 3 atm., followed by KOH-EtOH, gives coprostane-3:4-diol, m.p. 185—188° (? and an isomeride), oxidised by CrO_3 -AcOH at room temp. to a 3:4oxidised by CrO_3 -AcOH at room dicarboxylic acid, $C_{27}H_{46}O_4$, m.p. 217° (Me_2 ester, R. S. C.

Ketones. I. Condensation of ketones with cyanoacetic acid. M. M. Schemjakin and D. M. TRACHTENBERG (Compt. rend. Acad. Sci. U.R.S.S., 1939, **24**, 763—767).—cyclo-Pentanone or -hexanone and CN·CH₂·CO₂H (I) + excess of piperidine at 100—105° for 2 hr. give cyclo-pentenyl- or -hexenylacetonitrile, respectively. COMe2 or COMeEt similarly, at 110—115°, gives CMe₂:CH·CN or α-Hydrindone (II) CMeEt.CH.CN, respectively. affords 3-indenylacetonitrile, m.p. 68—70° [that, m.p. 18°, described by Ingold et al. (J.C.S., 1919, 115, 143) is probably an isomeride]; oxidation (KMnO₄) gives no (II). The catalyst is probably the piperidine salt of (I). COPhMe or COPh, and (I) do not react as above. A. T. P.

Asymmetric reduction of β -methylcinnamic acid by d-glucose in presence of Raney nickel. T. D. Stewart and D. Lipkin (J. Amer. Chem. Soc., 1939,61,3297—3300).—Reduction of CPhMe. CH·CO₂H by glucose in aq. KOH in presence of Raney Ni is up to 0.5% asymmetric, [α]₅₄₆₁ of the product varying from $+0.31^{\circ}$ to -0.42° according to the conditions. The reaction mechanism is discussed. R. S. C.

Preparation and asymmetric reduction of β-methylcinnamic acid. D. LIPKIN and T. D. STEWART (J. Amer. Chem. Soc., 1939, 61, 3295—

3296).—Hydrogenation (PtO₂; EtOH) of the hydrocinchonine salts of CPhMe.CH·CO₂H and α -C₁₀H₇·CPh.CH·CO₂H (improved preps.) causes partial asymmetric formation of the saturated acids (cf. Erlenmeyer, A., 1930, 1433).

R. S. C.

Restricted rotation in arylolefines. I. Preparation and resolution of β -chloro- β -3-bromo-2:4:6-trimethylphenyl- α -methylacrylic R. Adams and M. W. Miller (J. Amer. Chem. Soc., 1940, **62**, 53-56).—The structure of bromopropiomesitylene (I), b.p. $127-129^{\circ}/3$ mm., prepared from $1:3:5:2-C_6H_2Me_3Br$, (EtCO)₂O, and AlCl₃ in CS₂, is proved by fission by boiling syrupy H₃PO₄ and nitration of the product to give 1:3:5:2:4:6- $C_6Me_3Br(NO_2)_2$, m.p. 199.5—201.5° (lit. 189—190°). MgEtBr in Et₂O converts (I) into the MgBr derivative of the enolic form, carbonated to give α -3-bromo-2:4:6-trimethylbenzoylpropionic acid, m.p. 123—124° (decomp.), in 51% yield. With PCl_5 - $POCl_3$ at 100° (bath) this gives β -chloro- β -3-bromo-2:4:6trimethylphenyl-a-methylacrylic acid (II) (53%), m.p. 157—158°. Quinine in abs. EtOH resolves this into the d- and l-acids, m.p. 155—156°, $[\alpha]_D^{20}$ +69.4°, -54° in abs. EtOH, respectively (quinine salts, cryst., $[\alpha]_{D}^{20}$ -46.8° in abs. EtOH, and an oil, respectively). Br converts the d-, l-, and dl-acids into the same β -chloro- β -3: 5-dibromo-2: 4: 6-trimethylphenyl-a-methylacrylic acid, m.p. 228-229°, but $CISO_3H$ at -10° gives β -chloro- β -3-bromo-5-chlorosulphonyl-2:4:6-trimethylphenyl- α -methylacrylic acid, m.p. 183—184°, $[\alpha]_{\rm b}^{20}$ —8.6°, m.p. 183—184°, $[\alpha]_{\rm b}^{20}$ +10.0° in C_6H_6 , and m.p. 188—189°, α 0, respectively. M.p. are corr.

Synthesis of phenylalanine from benzylmalonic and benzylcyanoacetic esters through the phenylhydrazone of phenylpyruvic acid. V. Feofilaktov and E. Vinogradova (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 759—760).—CH₂Ph·CH(CO₂Et)₂ and PhN₂·OK at 0° afford (probably) Et benzeneazobenzylmalonate, converted by aq. EtOH-alkali into NHPh·N·C(CH₂Ph)·CO₂H (60%), also obtained (30%) similarly from Et benzylcyanoacetate. A. T. P.

Preparation of monoalkylaminoalkyl aminobenzoates. S. D. GOLDBERG, W. F. RINGK, and P. E. Spoerri (J. Amer. Chem. Soc., 1939, 61, 3562-3564).—CH₂Cl·CMe₂·OH and NH₂R (excess) in boiling ${\rm H_2O}$ or 95% EtOH give ~52% of β-methyl-, b.p. 142—143° (picrate, m.p. 137—138°), -ethyl-, b.p. 152—153° (picrate, m.p. 132—133°), -n-, b.p. 169— 171° (picrate, m.p. 128—129°), and -iso-propyl-, b.p. 158—160° (picrate, m.p. 166—167°), -n-, b.p. 186— 187° (picrate, m.p. 121.5—122.5°), and -iso-butyl-, b.p. 180—181° (picrate, m.p. 138—139°), -n-, b.p. 205—208° (picrate, m.p. 109—110°), and -iso-amyl-, b.p. 202—204° (picrate, m.p. 145—146°), -aminotert.-butyl alcohol. $\mathrm{CH_2Cl\cdot CEt_2\cdot OH}$ gives similarly γ-n-, b.p. 216-220° (picrate, m.p. 127-128°), and γiso-butylaminomethyl-n-pentan- γ -ol, b.p. 214—216° (picrate, m.p. 130·5—131·5°). p-NO₂·C₆H₄·COCl in aq. NaOH at 30—40° then yields β -n-propyl-, m.p. 108—109°, β-n-, m.p. 87—88°, and -iso-butyl-, m.p. 130—131°, β-n-, m.p. 107—109°, and -iso-amyl-, m.p. 112-113°, -amino-tert.-butyl p-nitrobenzoate and γ -p-nitrobenzoyloxy- γ -isobutylaminomethyl-npentane, reduced by Sn-HCl to the corresponding p-aminobenzoates, m.p. 123—124° (sulphate, m.p. 138—140° or 150—153°), 116—119° (sulphate, +H₂O), 83·5—84·5° (sulphate, m.p. 142—143°, 158·5—159·5°), 93—95° [sulphate (I), +H₂O, m.p. 163—166°, and anhyd.], an oil (sulphate, m.p. 146—148°), and 122—123° (sulphate, m.p. 131—133°), respectively. The hydrochlorides are oils. The sulphates are too toxic for use by injection, but (I) is a useful surface anæsthetic (rabbit's cornea). R. S. C.

Synthesis of alkamine esters of alkylthiolbenzoic acids. J. J. Donleavy and J. English, jun. (J. Amer. Chem. Soc., 1940, 62, 220—221).— Interaction of CO₂H·C₆H₄·N₂Cl with K ethylxanthate and Na₂CO₃ (0.5 mol.) at 70° and subsequent treatment with NaOH-R₂SO₄ or -RHal in boiling 70% EtOH gives SR·C₆H₄·CO₂H, which with PCl₅ yields the acid chloride and thence in C₅H₅N (2 mols.) the The following are thus prepared, m.p. in parentheses being those of the hydrochlorides: mmethyl-, m.p. 129° (chloride, b.p. 123°/8 mm.), o-, m.p. 134° (chloride, b.p. 133°/3 mm.), m-, +H₂O, m.p. 98° (chloride, b.p. 127°/3 mm.), and p-ethyl-, m.p. 145° (chloride, b.p. 118°/mm.), o-, m.p. 121° (chloride, b.p. 145°/3 mm.), and m-n-propyl-, m.p. 104° (chloride, b.p. 138°/3 mm.), o-, m.p. 98° (chloride, b.p. 151°/3 mm.), and m-n-butyl-, m.p. 103° (chloride, b.p. 147°/3 mm.), -thiolbenzoic acid; β-diethylaminoethyl m-methyl-, b.p. 185°/5 mm. (153°), o-, b.p. 158°/3 mm. (128°), m-, b.p. 163°/2 mm. (135°), and p-ethyl-, b.p. 160°/3 mm. (166°), o-, b.p. 176°/3 mm. (123°), and m-n-propyl-, b.p. 172°/2 mm. (110°), o-, b.p. 180°/2 mm. (117°), and m-n-butyl-, b.p. 200°/4 mm. (110°), -thiolbenzoate; γ -diethylamino-n-propyl m-methyl-, b.p. $190^{\circ}/4$ mm. (149°) , o., b.p. $184^{\circ}/3$ mm. (121°) , m-, b.p. 170°/3 mm. (125°), and p-ethyl-, b.p. 185°/3 mm. (138°), o-, b.p. 182°/3 mm. (87°), and m-n-propyl-, b.p. 183°/3 mm. (94°), o-, b.p. 193°/2 mm. (96°), and m-n-butyl-, b.p. 194°/3 mm. (96°), -thiolbenzoate; β-piperidinoethyl o-, b.p. 197°/3 mm. (134°), and m-ethyl-, b.p. 173°/3 mm. (139°), o-, b.p. 190°/3 mm. (128°), and m-n-propyl-, b.p. 182°/3 mm. (116°), o-, b.p. 198°/2 mm. (120°), and m-n-butyl-, b.p. 198°/3 mm. (114°), -thiolbenzoate; β-dibutylaminocthyl o-ethyl-, b.p. 187°/3 mm. (116°), o-n-propyl-, b.p. 208°/3 mm. (93°), and o-n-butyl-, b.p. 193°/3 mm. (107°), -thiolbenzoate. The esters are local anæsthetics (rabbit's cornea) of low toxicity.

Synthesis of aromatic amino-carboxylic acids. A. I. Kizber (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 440).—Aromatic amines with Na₂CO₃ or NaHCO₃ at 200° yield, e.g., 2:1-NH₂·C₁₀H₆·CO₂H, 1-amino-anthraquinone-2-carboxylic acid (and the 2:1-isomeride); use of K₂CO₃ or KHCO₃ leads to the formation of other isomerides.

F. R. G.

Thujane series. X. Total synthesis of thujone. Synthesis of an isomeride (2-carboxy-2-isopropylcyclopropylacetic acid) of α-thujadicarboxylic acid. P. C. Guha and M. S. Muthanna (J. Indian Inst. Sci., 1939, 22, A, 278—282).— Umbellularic anhydride (cf. A., 1939, II, 66) with a well cooled solution of NaOEt in EtOH affords Et 2-carboxy-1-isopropylcyclopropane-1-carboxylate, b.p.

136—138°/5 mm., the acid chloride of which with ${\rm CH_2N_2}$ in dry ${\rm Et_2O}$ gives an oil, decomp. when heated, converted by ${\rm Ag_2O}$ in warm EtOH followed by dil. aq. ${\rm Na_2CO_3}$ into umbellularic acid and 2-carboxy-2-iso-propyleyclopropylacetic acid (I), m.p. 80—81°. The m.p. of (I) is depressed by admixture with β -iso-propyladipic acid, m.p. 80—81°. J. L. D.

Pinane group. VI. Attempts to synthesise pinonic acid, nopinone, and verbenone. P. C. GUHA and P. L. N. RAO (J. Indian Inst. Sci., 1939, 22, A, 317—325).—Et trans-3-carboxy-2: 2-dimethylcyclobutylacetate previously described (cf. A., 1938, II, 412) is a mixture containing trans-3-carbethoxy-2:2-dimethylcyclobutylacetic acid (I) [amide (II), m.p. 97°]. The chloride of (I) with $p-NO_2 \cdot C_6H_4 \cdot NH_2$ in C₅H₅N gives the p-nitroanilide, m.p. 129—130° hydrolysis of which [or (II)] gives pinic acid or (I). MgMeI and (I) at $0^{\circ}/2$ hr. and then at the b.p./0.5 hr., followed by esterification, give Et, pinate and Et trans-2: 2-dimethyl-3- α -hydroxyisopropylcyclobutylacetate (III), b.p. 130—135°/5 mm. [corresponding acid (IV) and amide were obtained as gums]. With excess (3.5 mols.) of MgMeI, (III) (80% yield) together with a small amount of trans-2: 2-dimethyl-1-a-hydroxyiso $propyl-3-\beta-hydroxy$ isobutyleyelobutane (?) (V), b.p. 110—120°/5 mm., is formed (cf. Grandperrin, A., 1936, 1113). KHSO₄ and (IV) or (III) at 180—200°/1 hr. give a neutral substance, C₂₂H₃₈O₅, b.p. 104— 106°/3 mm., 145—147°/14 mm., which absorbs Br and is oxidised by KMnO₄ to H₂C₂O₄ and a gum. Equimol. amounts of Et cis-pinonate and MgMeI [as for (I)] afford unchanged material, cis-2: 2-dimethyl-1-α-hydroxyisopropyl-3-isobutenyleyelobutane (?), b.p. 105—108°/6 mm., probably cis-(V), cis-(IV), and a lactone, b.p. 121—122°/4 mm. Norpinic semialdehyde with CH₂(CO₂H)₂, piperidine, and C₅H₅N at 100°/24 hr. gives a gum, esterification of which yields $Et \beta$ -3-carbethoxy-2: 2-dimethyleyelobutylacrylate, b.p. $123-125^{\circ}/3.5$ mm., which yields no cryst. substance when oxidised with KMnO₄ and is reduced (PtO₂-H₂/2·5 atm.) in EtOH to Et β -3-carbethoxy-2:2dimethyleyclobutylpropionate (VI), b.p. 130—132°/4 mm. [corresponding acid (VII), m.p. 55-60°]. The Dieckmann reaction applied to (VI) or pyrolysis of the Pb salt of (VII) gives no nopinone. Norpinyl chloride and ZnMeI (cf. A., 1938, II, 412) afford 1:3diacetyl-2: 2-dimethylcyclobutane, m.p. 104° [disemicarbazone, m.p. 233° (decomp.)], which does not give verbenone with NaOEt.

Thujane series. XI. Synthesis of an isomeride (1-isobutylcyclopropane-1: 2-dicarboxylic acid) of α-thujadicarboxylic acid. P. C. Guha and M. S. Nande (J. Indian Inst. Sci., 1939, 22, A, 283—285).—Et α-bromoisohexoate with CHNa(CO₂Et)₂ in boiling EtOH/7 hr. gives Et α-carbethoxy-α'-isobutylsuccinate, b.p. 175—176°/19 mm., which with Br in CCl₄ (first at 70°, then at the b.p.) gives the α-Br-derivative, b.p. 175°/5 mm., converted by boiling NPhEt₂/8 hr. into Et α-carbethoxy-α'-isobutylfumarate (I), b.p. 112—115°/2 mm. Prolonged contact of (I) with CH₂N₂ in Et₂O at 0° gives Et₃ 1-isobutylcyclopropane-I: 2: 2-tricarboxylate, b.p. 108—109°/2 mm., hydrolysed [boiling dil.

HCl (1:1)/8 hr.] to 1-isobutyleyelopropane-1:2dicarboxylic acid, m.p. 98—99°. J. L. D.

Addition of aliphatic diazo-compounds to conjugated doubly linked systems. Action of diazomethane and ethyl diazoacetate on cyclopentaand cyclohexa-dienes and their derivatives. P.C. Guha and G. D. Hazra (J. Indian Inst. Sci., 1939, **22**, **A**, 263—274).—cycloPentadiene (I), $\Delta^{1:3}$ - (II), and 2:3-dimethyl- $\Delta^{1:3}$ -cyclohexadiene (cantharene) (III) do not react with CH₂N₂ (1 mol.) at 0° or room temp. even in presence of MeOH. CHN2 CO2Et (IV) and (I) (I mol.) at 0°/7 days yield a product which explodes at room temp.; in presence of Cu-bronze, reaction occurs at room temp. to give an unworkable product. (II), (IV), and Cu-bronze at 100° (bath)/6 hr. give Et norcarenecarboxylate, b.p. 84°/2.5 mm. [corresponding acid, m.p. 82.5° (anilide, m.p. 195-196°)], reduced (PtO₂-MeOH-H₂) to Et norcaranecarboxylate, b.p. 112-114°/19 mm. (corresponding acid, m.p. 97°, the Ba salt of which when heated with ZnO gives norcarane, b.p. 111—112°) (cf. Ebel et al, A., 1929, 312). 1:2-Dimethyl- Δ^1 -cyclohexene with Br-CHCl₃ at 0° gives the dibromide, m.p. 150°, converted by heating with quinoline into (III). (III) and (IV) at 70° in presence of Cu-bronze give Et dimethylnorcarenecarboxylate, b.p. 91—95°/2·5 mm., which reacts with Brown of the colorises KMnO₄, and is hydrolysed (5% EtOH-KOH at room temp.) to small amounts of acids, m.p. 140° and 282°, the former sol. and the latter insol. in C_6H_6 . p- $C_6H_4(CO_2Me)_2$ with H_2 (3 atm.)/1.5 hr., PtO_2 , and AcOH at room temp. affords Me₂ hexahydroterephthalate, b.p. 132—133°/2 mm., hydrolysed (boiling 8% HCl/6 hr.) to cis- (V) and trans-hexahydro-terephthalic acid. (V) when heated with >2 equivs. of SOCl₂ gives the dichloride, which with Br at 150°/4 hr., followed by MeOH, affords a mixture (A) of Me₂ cis-, m.p. 68°, and trans-1:4-dibromohexahydroterephthalate, m.p. 150°. 50% EtOH-KOH converts (A) at room temp./48 hr. into 2:3-dihydroterephthalic acid [Me, ester (VI), m.p. 85°]. with CH₂N₂ in Et₂O at 0°/2 days affords Me₂ 1:4endomethylene-1:2:3:4-tetrahydroterephthalate, b.p. 132—134°/3 mm., hydrolysed (boiling 10% HCl/12 hr.) to the acid, m.p. 255°, which is oxidised (3% KMnO₄ at 0°/12 hr.) to cyclopentane-1:1:3:3tetracarboxylic acid, m.p. 188°.

Aldehydo-acids and aldo-enol-lactones. IV. Specific transformation of certain aldehydoacids and γ -aldo-enol-lactones in alkali medium. M. M. Schemjakin (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 768—772).—The truxinic acid (I), m.p. 195—196° (A., 1939, II, 422) (mono-chloride, m.p. 150°, and -anilide, m.p. 241°), is isomerised by conc. HCl at 180—190° to an acid (II), m.p. 245° [chloride, m.p. 144°; MeOH-H₂SO₄ give a *Me* ester (III), m.p. 133°]. (I) and (II) are the two hitherto unknown truxinic acids (structures given). MeOH- $\rm H_2SO_4$ and (I) give a Me_2 ester, m.p. 183°, isomerised at 260° (1 hr.) to a mixture of (III) and an ester, m.p. 105— 107°, hydrolysed to (II) and β-truxinic acid, m.p. 211°, respectively. The Me₂ ester, m.p. 196° (m.p. 198—199°; loc. cit.), of (I) is unchanged at 260°.

Diene syntheses. XIV. Preparation of alicyclic malonic, cyanoacetic, and acetoacetic esters. K. Alder and H. F. RICKERT (Ber., 1939, 72, [B], 1983—1992).—Addition of (CH₂:CH·)₂ to CHMe:C(CO₂Et)₂ (I) at 170—180° gives crude Et₂ 2-methyl- Δ^4 -cyclohexene-1: 1-dicarboxylate, hydrogenated (PtO₂ in EtOAc) to the saturated ester, which is hydrolysed to 2-methylcyclohexane-1:1dicarboxylic acid, m.p. 155—156°. Under similar conditions $(CH_2\cdot CMe\cdot)_2$ (II) affords Et_2 3:4:6-trimethyl- Δ^3 -cyclohexene-1:1-dicarboxylate, b.p. 147— 149°/11 mm., and cyclopentadiene gives Et_2 6-methyl-2:5-endomethylene- Δ^3 -cyclohexene-1:1-dicarboxylate,

b.p. 138—139°/11 mm., converted by PhN_3 CH₂ CHMe into the hydrotriazole (III), m.p. 158—159°. CH (III.) (III.) (III.) at 180° yield Et₂

6-phenyl-3: 4-dimethyl- Δ^3 -cyclohexene-1: 1-dicarboxylate b.p. 156—158°/0·1 mm., m.p. 58°; the acid, m.p. 190°, is decarboxylated at 210° to a mixture of trans-, m.p. 157—158°, and cis-, m.p. 151°, -6-phenyl-3:4dimethyl- Δ^3 -tetrahydrobenzoic acid. CHPr $^{\beta}$:C(CO₂Et)₂ and (II) at 170—180° givo Et_2 3:4-dimethyl-6-isopropyl- Δ^3 -cyclohexene-1:1-dicarboxylate, b.p. 155— $157^{\circ}/11 \text{ mm.}$, in good yield. At $180^{\circ} \text{ CHEt.C}(\text{CO}_2\text{Et})_2$ and (II) yield Et_2 3: 4-dimethyl-6-ethyl- Δ^3 -cyclohexene-1: 1-dicarboxylate, b.p. 149—150°/11 mm. Et_2 6-methyl-2: 5-endoethylene- Δ^3 -cyclohexene-1:1-dicarboxylate, b.p. 155—156°/11 mm., is obtained from (I) and $\Delta^{1:3}$ -cyclohexadiene at 190—200°.

CHMe:C(CN)·CO₂Et and (II) at 170—180° give Et 1cyano-3: 4: 6-trimethyl- Δ^3 -cyclohexene-1-carboxylate, b.p. 146—149°/11 mm., whilst 1:1-dicyano-6-phenyl-3:4-dimethyl- \triangle^3 -cyclohexene, b.p. $155-156^\circ/2$ mm., m.p. 81—82°, is derived from CHPh:C(CN)₂ and (II) at 185—195°. CHMe:CAc·CO₂Et and (CH₂:CH·)₂ at 170—180 (12 hr.) give Et 1-acetyl-6-methyl- Δ^3 -cyclohexene-1-carboxylate, b.p. 126—128°/11 mm., rapidly hydrogenated in EtOAc to the saturated ester, b.p. $127-129^{\circ}/11 \text{ mm.}$; (II) at $170-180^{\circ}$ affords Et 1acetyl-3:4:6-trimethyl- Δ^3 -cyclohexene-1-carboxylate, b.p. 139—141°/12 mm. Et 6-ethoxy-1-acetyl-3:4 $dimethyl-\Delta^3$ -cyclohexene-1-carboxylate, b.p. 153—155°/ 12 mm. (solidifies when kept), is derived from (II) and OEt CH: CAc CO₂Et at 170—180°. [:C(CO₂Et)₂]₂ and (II) yield Et_4 4:5-dimethyl- Δ^4 -cyclohexene-1:1:2:2-tetracarboxylate, b.p. 151—153°/0·1 mm., whereas (CH₂·CH·)₂ gives Et_4 Δ^4 -cyclohexene-1:1:2:2-tetracarboxylate, b.p. 149—151°/0·1 mm. This is readily hydrogenated (PtO₂ in AcOH) to Et_4 cyclohexane-1:1:2:2-tetracarboxylate, b.p. 190—192°/11 mm., which is hydrolysed and decarboxylated by alkali to cis- and by acid to trans-hexahydrophthalic

Reactions of anils. III. New type of Diels-Alder reaction. H. R. SNYDER, R. B. HASBROUCK, and J. F. RICHARDSON. IV. Reactions of benzylidene- and cinnamylidene-aniline with methyl acetylenedicarboxylate. H. R. SNYDER, H. COHEN, and W. J. TAPP (J. Amer. Chem. Soc., 1939, 61, 3558—3560, 3560—3561).—III. In absence of H₂O, CHPh:CH·CH:NPh and (:CH·CO)₂O (I) in Et₂O give $\langle 2\%$ of maleanilic acid (cf. Bergmann, A., 1939, II, 36). β -Ethyl- Δ^{β} -hexenylideneaniline (prep. from NH₂Ph and the aldehyde at 100°), b.p. 127—128°/2 mm., and (I) in dry C₆H₆ give 75—80% of 2-phenyl-5:7-diethyl-2-aza[2, 3, 1]dicyclo- Δ^{6} -octen-3-one-8-carboxylic acid (II), m.p. 145—146°, reaction involving CHEt·CH——CO

CHEt·CH—CO CH CH·CO₂H | CH·CEt·CH·NHPh, addition, and further rearrangement. (II) is stable to acid or alkaline hydrolysis and

to Na-Hg. With H_2 -PtO₂ in abs. EtOH at 3 atm., it gives the H_2 -derivative, anhyd., m.p. 177°, and $+H_2O$, decomp. 120—130°, m.p. 177° (amide, m.p. 187—188°), also stable to hydrolysis. Vigorous hydrolysis (conc. KOH) of (II) gives, by loss of NH₂Ph and HCO₂H, 3:5-diethylbenzoic acid, m.p. 133°, oxidised by KMnO₄-K₂CO₂ to s-C₆H₂(CO₂H)₂.

133°, oxidised by KMnO₄-K₂CO₃ to s-C₆H₃(CO₂H)₃. IV. CHPh.NPh and (C·CO₂Me)₂ (III) in abs. Et₂O give a small amount of Me₂ α-anilo-α'-benzylidene-succinate, m.p. 192—193°, sol. in alkali, formed by addition of NH₂Ph to (III), subsequent isomerisation, and further condensation with PhCHO. Its structure is proved by synthesis from PhCHO and NH₂Ph or CHPh.NPh with CO₂Me·CO·CH₂·CO₂Me.

CHPh:CH:NPh and (III) in petroleum ether give two isomeric substances, $\rm C_{27}H_{25}O_8N$, m.p. 166—167° and 309—310°. R. S. C.

Mechanism of the reaction between phthalic anhydride and an aminodiol. M. M. Sprung (J. Amer. Chem. Soc., 1939, 61, 3381—3385).—In accordance with theory, NH₂·CMe₂·CH₂·OH and adipic acid give a thermoplastic, linear-polymeric product, and NH₂·CMe(CH₂·OH)₂ (I) with succinic, adipic, malcic, or sebacic acid gives cross-linked, insol., infusible resins after 65—75% reaction. However, (I) and o-C₆H₄(CO₂H)₂ or o-C₆H₄(CO)₂O give 100% reaction to a brittle resin without gel-formation; this reaction consists of three stages. At 135—145°

g-CO₂H·C₂H··CO·NH·CMe(CH₂·OH)₂ is the main pro-

o-CO₂H·C₆H₄·CO·NH·CMe(CH₂·OH)₂ is the main product. Further reaction at 150—200° gives as main product (50%) the *substance* (II),

o-C₆H₄<CO₂·CH₂<CMe·CH₂·OH, m.p. 90·5—91°, b.p. 207—220°/6 mm., 172—178°/5 × 10⁻⁵ mm. Finally, an excess of o-C₆H₄(CO)₂O at 150—220° gives mainly (50%) products, C₁₂H₁₁O₃N (III), m.p. 160·5° [mono-, o-C₆H₄<CO₂·CH₂<m.p. 146—147°, and semi-picrate, m.p. 225—226° (decomp.); hydrolysed by Na–EtOH to (I) and o-

is formed by dehydration of

o-C₆H₄<CO₂-CH₂>CMe·CH₂·OH, the enolic form of (II), the existence of which is shown by interaction of (II) with >1 mol. of Ac₂O and formation of a Bz₂ derivative, m.p. 121·5°. The structure of (IV) is unknown; Na–EtOH gives a little o-C₆H₄(CO₂H)₂ and a substance, m.p. 227–228° (decomp.). o-C₆H₄(CO)₂O and (II) give a substance (N 3·7%), m.p. 155–165°, and a little (III). Small amounts of resinous, linear polymerides are also formed in these condensations. R. S. C.

Reaction of 3:5-dinitrobenzoic acid with alkali. II. The main product of the reaction, 3: 3'-dinitroazoxybenzene-5: 5'-dicarboxylic acid. A. Bolliger and F. Reuter (J. Proc. Roy. Soc. New South Wales, 1939, 73, 74—81; cf. A., 1939, II, 478).—3:5:1- $(NO_2)_2C_6H_3$ · CO_2H in ~ 0.33 N-NaOH is treated with 10—11N-NaOH for 3—4 hr. at room temp., thus giving 3:3'-dinitroazoxybenzene-5:5'-dicarboxylic acid (I), m.p. 288° [Me (II), m.p. 137°, and Et, (III), m.p. 116°, ester], in 48% yield. Reduction of (I) with SnCl₂-conc. HCl or SnCl₂-AcOH-HCl gives yellow, amorphous or micro-cryst. products of high m.p. which could not be further purified or identified. Better results are not obtained by use of TiCl₃, Na₂S₂O₄, or (NH₄)₂S although in some cases a mdiamine appears to be formed. The Wallach transformation of (I) by the action of hot, conc. H₂SO₄ could be effected only in traces, if at all. (I) can be recryst. from boiling HNO₃ (d 1 4) but the prolonged action of the boiling acid ($d \cdot 1.48$) leads to 3:5:5'trinitroazoxybenzene-3'-carboxylic acid (IV), m.p. 216° $(NH_4 \text{ salt})$, which forms colourless to dark red solutions in alkali hydroxide according to the concn. used. (I), (II), and (IV) with COMe2 and other Me ketones in the Janowski reaction give colours similar to those obtained with m-C₆H₄(NO_2)₂ and 3:5:1-(NO_2)₂C₆H₃·CO₂H. 3:3'-Dinitro- and 2-nitro-azoxybenzene also give positive results whereas with azoxybenzene, azoxyanisole, azoxybenzene-4'-carboxylic and -3:3'-dicarboxylic acid the results are negative. In azoxy-compounds the presence of at least 1 NO. is conditional for this colour reaction.

Preparation of mellitic acid.—See B., 1940, 114. Compounds of the ætiocholanic acid series.—

Compounds of the ætiocholanic acid series.— See B., 1940, 172.

Isomerides of 3:5:6-trihydroxycholanic acid. J. Hattori (J. Pharm. Soc. Japan, 1939, 59, 131—132).—" β - and γ -Trihydroxycholanic acid" (A., 1939, II, 425) are 3:6-dihydroxy-5-methoxy- and 3:5-dihydroxy-6-methoxy-cholanic acid, respectively. The prefix should be omitted in the α -series. The same changes apply to derivatives of the acids.

R. S. C. Quinovic acid. VIII. W. SCHMITT and H. WIELAND (Annalen, 1939, 542, 258—273; cf. A., 1939, II, 425).—Structure (A) is now assigned to novic

acid; the isomeric hydroxyketo-acids, $C_{30}H_{42}O_6$ (A., 1936, 849), derived by oxidation have $C_{(9)}$ OH and $C_{(11)}$ O and differ in the steric arrangement at $C_{(9)}$. Novaquinone (I) [monoimine, m.p. 217°, from (I) and 2n-NH₃ in EtOH] is considered to be (B). Oxidation of (I) with stabilised H_2O_2 in EtOH–KOH results in fission between $C_{(11)}$ and $C_{(12)}$ to give the dilactonic

dicarboxylic acid, $C_{30}H_{42}O_8$ (II) (loc. cit.) [anhydride, m.p. 260° (decomp.)]; use of pure H_2O_2 in EtOH–KOH results in ~50% each of (II) and dihydronovaquinone (III) whilst H_2O_2 -dioxan at 100° affords (III) only. Short treatment of the Me_2 ester of (II) with warm N-MeOH–KOH causes fission of the $C_{(9)}$ – $C_{(15)}$ lactone group; the resulting product with Et_2O – CH_2N_2 gives a Me_3 ester, $C_{33}H_{50}O_9$ (IV), m.p. 180° (falls when kept in air and light), which does not contain OH (Zerevitinov). (IV) (or its intermediate) has undergone ring-chain tautomerism with fission of ring B between $C_{(9)}$ and $C_{(10)}$ to a CO-derivative; (IV) thus becomes (C, R = Me). Hydrolysis (N-MeOH–KOH) of (IV) yields the Me_2 H ester (C, R = H), m.p. 183°, which with conc. H_2SO_4 in CO_2 at 35° gives CO and the trans-Me H_2 ester (V) (as D), $C_{30}H_{46}O_8$,

decomp. 240—250° according to rate of heating (the Me_3 ester has m.p. 179°). The anhydride, m.p. 185°, from (V) at 250°, is hydrolysed (MeOH–KOH) to and also obtained from the cis-Me H_2 ester (as D), m.p. 190—200° (decomp.), whence the Me₃ ester, m.p. 186°. Reduction (Zn dust, AeOH) of (IV) affords a compound, ? $C_{33}H_{52}O_8$, m.p. 238° [no colour with $C(NO_2)_4$ or conc. H_2SO_4], which may be as C with $CO = CH_2$. The structures of some of the yellow oxidation products (A., 1932, 954) of quinovic acid are discussed.

Treatment of (III) with $\text{Et}_2\text{O-CH}_2\text{N}_2$ causes rearrangement [·C(OH)·C(OH)· \rightarrow ·CO·CH(OH)·] to the α -ketol, $\text{C}_{30}\text{H}_{42}\text{O}_6$, m.p. 242° (decomp.), oxidised (CrO₃-AcOH at 100°) to (I). Me₂SO₄ and (III) in 4N-NaOH at 50° give a compound, $\text{C}_{30}\text{H}_{41}\text{O}_5$ ·OMe, m.p. 192°.

Constitution of acid sapogenins. XV. Hederagenin and oleanolic acid. Z. KITASATO [with M. SINKAI] (Acta Phytochim., 1939, 11, 1—25; cf. A., 1937, II, 462; 1939, II, 30).—Oleanolic acid and hederagenin are now considered to be (I) with R = Me and CH₂·OH, respectively (cf. also Ruzicka et al., A., 1938, II, 447; 1939, II, 29; Haworth, Ann. Repts., 1937, 34, 338). Oleanintricarboxylic acid (II) and CrO₃-AcOH, followed by CH₂N₂, give the monolactone,

m.p. 227°, of Me_2 keto-olean intricarboxylate. The Me_3 ester of (II) is oxidised to Me_3 keto-olean intri-

carboxylate, m.p. 182°. Me ketodihydroacetyloleanolate (cf. Ruzicka et al., A., 1937, II, 382) or hydroxyacetyloleanololactone, or Me acetyloleanolate, and CrO₃-H₂SO₄-AcOH give the diketo-oleanololactone (III), m.p. 286°. Me ketoacetyloleanolate is oxidised to the hydroxydiketo-oleanololactone, C₃₂H₄₆O₇, m.p. 286° (decomp.) (cf. Ruzicka et al., A., 1939, II, 220). The Me ester of ketodiacetylhederaginin and CrO₃-H₂SO₄-AcOH give a hydroxydiketolactone, C₃₄H₄₈O₉, m.p. 274°. The Me ester of diacetylhederaginin is oxidised to a diketo-acid, $C_{30}H_{46}O_7$, m.p. 257° [Me ester, $+0.5H_2O$, m.p. 210° (diacetate, m.p. 229— 230°)], and (after acetylation) a substance, C₃₄H₄₈O₈, m.p. 285°. Me dehydroacetyloleanolate (A., 1936, $12\bar{6}1$) similarly gives a hydroxytricarboxylic acid (Meester, $C_{34}H_{50}O_9$, m.p. 256°) (formula given). Keto-acetyloleanolactone (A., 1936, 1261) and Br-AeOH give the bromolactone, $C_{32}H_{47}O_5$ Br, m.p. >300° (cf. A., 1932, 1035), converted by Zn-AcOH into ketodihydroacetyloleanolic acid, m.p. >300°, or by KOH-MeOH into a neutral substance, $C_{30}H_{46}O_5$, m.p. 265° (Ac derivative, m.p. 232°). Ketoacetyloleanolic acid (IV) and Br-AcOH give a bromolactone, $C_{32}H_{47}O_4Br$, m.p. $240-\overline{2}45^\circ$ (decomp.), reduced by Zn-AcOH to a mixture of (IV) and a keto-acid [Me, ester, $C_{32}H_{52}O_5$, m.p. 250° (decomp.), m.p. 272°, $[\alpha]_D^{28\cdot5}$ —39.0° in CHCl₃]. ψ -Ketoacetyloleanolic acid (V)

(cf. A., 1934, 1223) gives a bromolactone, C₃₂H₄₅O₅Br, m.p. 256—257° (decomp.), converted by Zn-AcOH into (V) or by KOH-MeOH into ψ-keto-oleanolic acid. ψ-Ketohederagenin (VI) gives a bromolactone, C₃₀H₄₅O₅Br, m.p. 247° (decomp.), converted by Zn-AcOH into (VI). The monolactone (VII) of Me₄ oleanolpentacarboxylate is converted by 5% KOH-MeOH into the iso-form (VIII), m.p. 198—200°. Thermal decomp. of oleanintricarboxylic acid (loc. cit.)

$$\begin{array}{c|c} & & & & & & & \\ H & & & & & & \\ MeO_2C & & & & & \\ MeO_2C & H & & & & \\ MeO_2C & H & & & \\ (VII.) & & & & \\ \end{array}$$

is considered to involve loss of the CO₂H between rings D and E and production of a double linking in ring D

Absorption spectra of diketodehydro- and ψ -keto-diacetylhederagenin esters are examined. A. T. P.

Saponins. XIV. Oxidation of oleanonic acid with nitric acid. S. Kuwada and K. Takeda (J. Pharm. Soc. Japan, 1939, 59, 121—124).—Oleanonic acid, m.p. 166° (decomp.), [a]15 +102·6° in CHCl3 (oxime, decomp. 290°; semicarbazone, decomp. 271°; Me ester, m.p. 184—185°), is converted by fuming HNO3 and AcOH into nitro-oleanoltricarboxylic acid (I) (A), decomp. 244°, [a]15 +130·8° in abs. EtOH [anhydride, decomp. 230°; Me3 ester (II), decomp. 178°, [a]15 +90·3° in CHCl3]. (I) is unchanged by boiling 10% KOH-MeOH whereas (II) is transformed by a Dieckmann reaction into the Me ester (III), decomp. 234—235°, [a]16 +193·7° in CHCl3 (oxime, m.p. 150°). Fuming HNO3 and AcOH transform (III) into nitro-oleanintricarboxylic acid (A, with CO2H for CH2·CO2H),

decomp. 225—226°, the Me_3 ester, decomp. 206—207°, $[\alpha]_D^{19} + 105.8^{\circ}$ in CHCl₃, of which is not converted by

$$HO_2C$$
 HO_2C
 NO_2
 HO_2C
 HO_2C
 MeO_2C

boiling 10% KOH-MeOH into a ketonic substance. M.p. are corr. H. W.

Formation of amino-aldimine complexes by hydrogenation of amino-nitriles in presence of nickel. M. Delépine and K. A. Jensen (Bull. Soc. chim., 1939, [v], 6, 1663—1670; cf. A., 1938, II, 247).—4-Amino-5-cyano-2-ethylpyrimidine and H₂ (Raney Ni + NiCl₂ in aq. NH_3 -EtOH) give [after hydrolysis (aq. AcOH)] the corresponding 5-aldehyde (I), m.p. 164° [oxime, volatilises without melting; 2:4-dinitrophenylhydrazone, m.p. 290° (decomp.)], and 5-aminomethyl derivative [dipicrate, m.p. 240° (decomp.)], and a complex (II), (C₇H₉N₄)₂Ni,4H₂O. (I) and Ni-aq. NH₃-EtOH give (II). A similar hydrogenation of o-N H_2 - C_6H_4 -CN gives o-NH₂·C₆H₄·CH₂·NH₂, a complex, C₁₄H₁₄N₄Ni (as isolated by Pfeiffer *et al.*, A., 1938, II, 62), and a complex imine; both complexes are obtained from o-NH₂·C₆H₄·CHO. Hydrogenation of o-OH·C₆H₄·CN (in MeOH) or o-OH·C₆H₄·CHO gives a similar complex. Structural formulæ of complexes are discussed. A. T. P.

Colour of dyes.—See A., 1940, I, 56.

Reactions of anils. II. Addition of methyl ketones to benzylideneaniline in presence of boron fluoride. H. R. SNYDER, H. A. KORNBERG, and J. R. ROMIG (J. Amer. Chem. Soc., 1939, 61, 3556—3558; cf. A., 1938, II, 444).—CHPh:NPh and BF₃ give a 1:1 co-ordination compound, m.p. 135—145°, which with COMeR readily gives β-anilino-β-phenylethyl Me (I), m.p. 88—89°, Et, m.p. 120—121°, Buβ, m.p. 80—81°, n-amyl, m.p. 78—79°, β-phenylethyl, m.p. 98—99·5°, Buγ (II), m.p. 148—149°, and β-methyl-n-butyl ketone, m.p. 72—73°, Ph β-anilino-β-phenylethyl ketone, m.p. 166—167° (lit. 173°), and 2-β-anilino-β-phenylethylcyclopentanone, m.p. 163—164°. CH₂(CO₂Et)₂ gives a little of an additive compound, m.p. 98—99°. Numerous other compounds do not react with the complex or give oils. The condensation is not reversible, as (I) and (II) are stable in COMeBuγ and COMe₂, respectively. (I) is not obtained from CHPh:CH·COMe and NH₂Ph.

Rates of reaction of cyclopropyl ketimines with water. J. B. Cloke (J. Amer. Chem. Soc., 1940, 62, 117—119; cf. A., 1929, 703).—cycloPropyl Et ketimine hydrochloride (I) (prepared from cyclopropyl cyanide by interaction successively with MgEtBr, liquid NH₃, and HCl in Et₂O in absence of H₂O), m.p. 95—97° (shrinks 70—80°) (98·5—100·5°; bath preheated to 87°), is hydrolysed more readily than is C_3H_5 ·CPh:NH,HCl (both hydrolyses are retarded by HCl), but less readily than is the free base. Thus, (I)

probably exists largely as CHMe:C(C₃H₅)·NH₂,HCl in aq. solution. Measurement of the rates of hydrolysis is described in detail. R. S. C.

Thujane series. IX. Synthesis of umbellulonic acid. P. C. Guha and M. S. Muthanna (J. Indian Inst. Sci., 1939, 22, A, 275—277; cf. Tutin, J.C.S., 1906, 89, 1113).—Umbellularic anhydride (cf. Rydon, A., 1936, 993) with MgMeI in boiling $C_6H_6/1$ hr. affords umbellulonic acid, b.p. $190-191^\circ/50$ mm. [oxime, m.p. $145-146^\circ$; semicarbazone, m.p. $169-170^\circ$ (cf. A., 1938, II, 336)], oxidised (NaOBr) to umbellularic acid. J. L. D.

Keten in the Friedel-Crafts reaction. I. Direct acetylation of aromatic hydrocarbons with keten. J. W. Williams and J. M. Osborn (J. Amer. Chem. Soc., 1939, 61, 3438—3439).—Gradual addition of AlCl₃ (1·5 mols.) to pure keten (excess) and C_6H_6 (1·1 mols.) in CS_2 at 0° gives $32\cdot7\%$ of COPhMe. Similarly are obtained α - $C_{10}H_7$ ·COMe $(34\cdot8\%)$ (2:4-dinitrophenylhydrazone, m.p. 259°), β -tetrahydronaphthyl Me ketone $(19\cdot6\%)$ (2:4-dinitrophenylhydrazone, m.p. 236°), and (at 30°). p- C_6H_4 Ph·COMe $(23\cdot4\%)$. R. S. C.

Relative oxidation potentials of ketones. Cox and H. Adkins (J. Amer. Chem. Soc., 1939, 61, 3364-3370).—CORR' and CHR"R".OH, in which one radical is aryl, are equilibrated by $Al(OBu^{\gamma})_3$ in PhMe at 100° and the amounts of aromatic ketone determined polarographically. Reaction in each direction gives the same result usually after 150-200 hr., but this does not represent equilibrium because of a side-reaction, $3CHR_2 \cdot OH + Al(OBu^{\gamma})_3 \rightarrow$ $3COR_2 + 3C_4H_{10} + Al(OH)_3$, which at 100° leads in 132 hr. to the following yields of ketone: COPh₂ 4, COPhEt 5.5, COPhPr^a 1, COPhPr^β 2.4, COPhBu^a 1.2, and COPh C₅H₁₁-n 4.3%. True equilibrium is obtained by starting with approx. equilibrated amounts of both ketones and both alcohols and allowing reaction to proceed for a shorter time. COPh₂ is usually taken as one component, but, with one exception, results are concordant also with other The oxidising power (relative vals. given) of the following ketones increases in the order quoted: COPr^{\beta_2}, COBu^{\alpha_2}, COPr^{\alpha_2}, COBu^{\beta_2}, COEt₂, COPhBu^{\gamma}, COPhPr^{\alpha}, COPhBu^{\alpha}, COPhEt, COPhPr^{\beta}, COPh₂, and cyclohexanone. Vals. for COBu^β₂ are uncertain owing to its slow reaction and for *cyclo*hexanone owing to self-condensation.

Nitrones. V. Certain acyldiphenylmethanes and the dyes therefrom. F. KRÖHNKE (Ber., 1939, **72**, [B], 1731—1735).—Benzoyltetramethyldiaminodiphenylmethane (I), m.p. 168°, is obtained from CHBz(OH)₂ and NPhMe₂ in AcOH at 100° phenacylpyridinium bromide, PhNO, NPhMe₂ in EtOH at 20°, or, as hydrobromide, m.p. 227—228° (decomp.), from benzoyl-N-phenylnitrone, C₅H₅N, HBr, and NPhMe₂ at 20°. (I) is oxidised by PbO₂ and HCl at 2° to the dye, isolated as the zincichloride and the perchlorate, which when basified with NH_3 affords the carbinol base, $C_{24}H_{26}O_2N_2$, m.p. 153-154°. (I) gives an oxime, m.p. 160° (softens at 158°), which is oxidised by PbO₂ to a blue dye but does not appear to yield a phenylhydrazone. MeI in MeOH converts (I) at 100° into the dimethiodide, transformed by NaClO₄ into the diperchlorate, m.p. 281° (decomp.). The following -tetramethyldiaminodiphenylmethanes are described: p-toluoyl-, m.p. 125° (hydrobromide, m.p. 228—229°); 2-naphthoyl-; p-chlorobenzoyl-, m.p. 148°; trimethylacetyl-, m.p. 158—159°. Acetyltetramethyldiaminodiphenylthiophen has m.p. 168—169°. H. W.

Condensations brought about by bases. VIII. Conversion of ethyl a-benzoylisobutyrate into ethyl benzoate and isobutyrylisobutyrate in presence of sodium ethoxide and triphenylmethane. Reversibility of the Claisen type of condensation. C. R. HAUSER and B. E. HUDSON, jun. (J. Amer. Chem. Soc., 1940, **62**, 62—66).— CMe₂Bz·CO₂Et is converted by NaOEt and CHPh₃ (not in absence of CHPh₃) in Et₂O at room temp. (5 days) into EtOBz and Pr^{\$}CO·CMe₂·CO₂Et (cf. A., 1938, II, 143), the latter product being present in the enolic form since treating the crude product with Pr^{\$}COCl gives 32% of Pr^{\$}ČO·CMe₂·CO·CMe₂·CO₂Et. NaOEt in dry Et₂O converts CMe₂Ac·CO₂Et into Pr⁶CO₂Et, CH₂Ac·CO·CMe₂·CO₂Et, and EtOAc. The reactions are explained on the basis of the reversibility of the Claisen condensation.

Friedel-Crafts syntheses with tricarballylyl chloride and α -phenyltricarballylyl chloride. W. Borsche and H. Schmidt (Ber., 1939, 72, [B], 1827—1833).—Tricarballylic acid is readily obtained by hydrogenation (Pd-C in H₂O) of aconitic acid if pure materials are used. Tricarballylyl chloride (I), C_6H_6 , and $AlCl_3$ afford α -phenacyl- $\gamma\gamma$ -diphenyl- γ butyrolactone (II), m.p. 137—138° (oxime, m.p. 203- 205° ; 2:4-dinitrophenylhydrazone, m.p. $219-221^{\circ}$; Br-derivative, ? CHBrBz·CH $<_{\text{CO}}^{\text{CH}_2\text{-CPh}_2}$, m.p. 141— 142°), and β-phenacyl-γγ-diphenyl-γ-butyrolactone, m.p. 108-110° (2:4-dinitrophenylhydrazone, m.p. 159-161°). The structure of (II) follows from its ready $3-keto-6-phenyl-4-\beta-hydroxy-\beta\beta-di$ conversion into phenylethyl-2:3:4:5-tetrahydropyridazine, m.p. 195— 196°. Reaction between (I) and PhMe is more complex and appears to be governed by uncontrollable factors. Under apparently identical conditions the following substances have been isolated in different experiments: α -tolacyl- $\gamma\gamma$ -ditolyl- γ -butyrolactone, m.p. 133—134° (2:4-dinitrophenylhydrazone, m.p. 187— 189°), converted by N₂H₄,H₂O in boiling EtOH into 3-keto-6-tolyl-4- β -hydroxy- $\beta\beta$ -ditolylethyl-2:3:4:5-tetrahydropyridazine, m.p. 201—202°; dimethylanthracene, m.p. \sim 220°; (?) β -tolacyl- $\gamma\gamma$ -ditolyl- γ -butyrolactone 2:4-dinitrophenylhydrazone, m.p. 165—167°; ditolacylacetic acid, m.p. 163—166°, isolated as its 2:4-dinitrophenylhydrazone, m.p. 208—210°; ditolyl-γ-butyrolactone-α-, m.p. 190-192°, and -β-, m.p. 116-117°, -acetic acid. The sole cryst. product from (I) and m-xylene is a substance, $C_{30}H_{32}O_3$, m.p. 174—176°, probably xylacyldixylylbutyrolactone; it does not appear to react with 2:4- $(NO_2)_2C_6H_3$ NH·NH₂. Et₃ α -phenyltricarballylate,

 $(NO_2)_2C_6H_3\cdot NH\cdot NH_2$. Et₃ α -phenyltricarballylate, b.p. $212^\circ/12$ mm., is conveniently obtained from Et₂ maleate and $CH_2Ph\cdot CO_2Et$. α -Phenyltricarballylyl chloride, $AlCl_3$, and C_6H_6 yield a lactonic acid, $C_{24}H_{20}O_4$, m.p. $230-233^\circ$, which does not give a $2\cdot 4$ -dinitrophenylhydrazone. H.W.

Addition of methoxyamine to αβ-unsaturated ketones. Rearrangement [of the products] to β-methoxyamino-ketones. A. H. BLATT (J. Amer. Chem. Soc., 1939, 61, 3494—3499).—NH₂·OMe ("methoxyamine") gives oxime Me ethers of aldehydes or reactive ketones, but the hydrochloride reacts similarly with any CO-compound. NH₂·OMe adds to CHAr:CH·COAr (A) in hot or cold EtOH by 1:4 addition to give good yields of

OMe·NH·CHAr·CH₂·COAr (B) and often

OMe·N(CHAr·CH₂·COAr)₂ (C). This addition is reversed by distilling (B) (except at 1 mm.) or by heating (B) with PhCHO in EtOH [gives CHPh:N·OMe and (A)]. Ac derivatives of (B), prepared by cold or warm Ac₂O, regenerate (A) when heated alone or treated with cold NaOMe-MeOH. Salts of (B) are readily hydrolysed by cold H₂O, but in EtOH give (A) and its oxime Me ether. Structures are proved by oxidation of the hydrochloride of (B) (Ar = Ph) by HOCl to dibenzoylmethanemono-oxime Me ether, m.p. 114—115°, obtained also with some dioxime Me₂ ether, m.p. 57·5—58·5°, from CH₂Bz₂ by NH₂·OMe,HCl in EtOH and by addition of NH₂·OMe to CPh:C·COPh in MeOH (the primary product,

OMe·NH·CPh.CH·COPh, rearranges spontaneously). With 2n-NaOMe at \sim 60° (later room temp.), (B) loses MeOH and rearranges to CHAr:C(NH₂)·COAr (D), readily hydrolysed to α-diketones. The following are described. β -Methoxyamino- β -phenylpropiophenone, m.p. 54-55° (Ac derivative, m.p. 95·4-95·5° hydrochloride, m.p. 133—134°). β-Methoxyamino-βphenyl-p-methylpropiophenone, m.p. 43-44° (Ac derivative, m.p. 118—119°). p-Chloro-, m.p. 51—52° (Ac derivative, m.p. 142—143°), p-methoxy-, m.p. 52—53° (Ac derivative, m.p. 115—116°), and p-bromo-βmethoxyamino-β-phenylpropiophenone, m.p. 66—67° (Ac derivative, m.p. 157—158°). β-Methoxyamino-βp'-chloro-, m.p. 67—68° (Ac derivative, m.p. 91—92°), and -β-p'-bromo-phenylpropiophenone, m.p. 52-53° (Ac derivative, m.p. $91-92^{\circ}$). β -Acetmethoxyamido- β -p-anisylpropiophenone, m.p. $130-131^{\circ}$. N-Methoxydi(- γ -keto- $\alpha\gamma$ -diphenyl-, m.p. $178-179^{\circ}$, - γ -phenylα-p-tolyl-, m.p. 185—186°, and -α-phenyl-γ-p-anisyl-, m.p. $183-184^{\circ}$, -propyl)amine. Ph (D; Ar = Ph), m.p. $100-101^{\circ}$, p-tolyl, m.p. $92-93^{\circ}$, and p-chloro-, m.p. 81—82°, and p-bromo-phenyl α-aminostyryl ketone, m.p. 103-104°. Ph p'-chloro-, m.p. 88-89°, and p'-bromo-α-aminostyryl ketone, m.p. 114—115°.

Use of hydrogen fluoride in acylations and cyclisations. L. F. Fieser and E. B. Hershberg (J. Amer. Chem. Soc., 1940, 62, 49—53).—Except in the case of acenaphthene (I) (A., 1939, II, 325), HF offers few advantages for acylation of aromatic hydrocarbons. 3-Acetoperinaphthane, b.p. 170—175°/2 mm. (nomenclature: A., 1939, II, 356) [unstable picrate: C₆H₃(NO₂)₃ compound, m.p. 114—114·5°], is obtained in 71% yield from perinaphthane, Ac₂O or AcOH, and HF in a little Et₂O. Its structure is proved by oxidation by Na₂Cr₂O₇ in AcOH at 75—90° to 4:1:8-C₁₀H₅Ac(CO)₂O, m.p. 193—195° (lit. 189°, 191—192°), and by KOCl to 3-perinaphthoic acid, m.p. 188·4—189°. Hydrindene and HF with AcOH give 73% of 5-aceto- (oxidised to hydrindene-5-carboxylic acid, new m.p. 179·5—181·5°), with BzCl

(1 mol.) give 75% of 5-benzoyl-, and with α - $\dot{C}_{10}H_7$: $\dot{CO}_2\dot{H}$ give 90% of 5- α -naphthoyl-hydrindene, m.p. 71—72° (pyrolysis gives tars). At 100°/4 atm. in a steel vessel, (I), Ac₂O, and HF give 37% of 1-acetoacenaphthene. 1-Acenaphthoyl chloride is converted by $H_2-2\%$ Pd-BaSO₄ and a little quinoline-S in xylene at 150-160° into 1-acenaphthaldehyde (72%), m.p. 99.5—100.5° (purified as NaHSO₃ compound). β-C₁₀H₇·CHO is similarly prepared in 84% yield. Reaction at > room temp. effects also other condensations. Thus, at 50—60° C₁₀H₈, Ac₂O, and HF give 1- and 2-C₁₀H₇·COMe, containing more than usual of the 2-compound, and phenanthrene (II) at 50—55° gives 3- and some 2-acetophenanthrene. Heating (II), CHMe:CH·CO₂H, and HF at 3 atm. gives mixed ketomethylcyclopen III open III. CP. H. b.p. $215-225^{\circ}/2$ mm. $o-\beta-C_{10}H_{7}\cdot CO\cdot C_{6}H_{4}\cdot CO_{2}H$, m.p. (+0.5C₆H₆) 129—131° and then ("anhyd.") 166—167° (lit. 168°), Zn dust and a trace of CuSO₄ in boiling, aq. NaOH give o-β-C₁₀H₇·CH₂·C₆H₄·CO₂H, m.p. 134—136° or, after resolidification, 139.5—140° (lit. 136—137°), which with HF followed by MgMcCl at room temp. affords 14% of 9-methyl- or with HF and then CH₂:CH·CH₂·MgBr gives 35% of 9-allyl-1:2-benzanthracene, m.p. 115—116°. 1:7-C₁₀H₆MeBr [isolated as C₆H₃(NO₂)₃ compound, m.p. 92·5—93°] gives 8:2-C₁₀H₆Me·CO·C₆H₄·CO₂H-o (76%) and thence 8:2-C₁₀H₆Me·CH₂·C₆H₄·CO₂H (60%) (cf. A., 1938, II, 91), which with HF at room temp. gives 1'-methyl-2: 3-benz-10-anthrone (III), m.p. 175—176° (slow heating) or 171° (immediate), oxidised by CrO₃-AcOH to 1'-methyl-2: 3-benzanthraquinone, m.p. 227—229°, resistant to Na₂S₂O₄. An excess of MgMeCl converts (III) into 10:1'-dimethyl-2:3benzanthracene [1:6-dimethylnaphthacene], dimorphic, m.p. $138-139^{\circ}$ and (unstable) 133° [isolated by chromatography; picrate, m.p. $164-165^{\circ}$; $C_6H_3(NO_2)_3$ compound, m.p. 166.5—167.5°], the structure of which is confirmed by its absorption spectrum [BOWEN]. R. S. C. M.p. are corr.

Sulochrin, a mycelial constituent of Oospora sulphurea-ochracea. H. NISHIKAWA (Acta Phytochim., 1939, **11**, 167—185; cf. A., 1937, III, 99).— Mycelium extracts afford sulochrin (I), m.p. 262°, almost certainly Me 2:6:4'-trihydroxy-6'-methoxy-4methylbenzophenone-2'-carboxylate (triacetate, m.p. 164°), converted by short treatment with cone. H₂SO₄ at room temp. into p-orsellinic acid, m.p. 176° (decomp.), and Me 3-hydroxy-5-methoxybenzoate, new m.p. 97° (KOH-MeOH gives the acid, m.p. 203°). The latter and KOH + \tilde{a} little H_2O at $>200^\circ$ give 3:5:1-(OH) $_2$ C $_6$ H $_3$ ·CO $_2$ H. (I) and CH $_2$ N $_2$ -COMe $_2$ -Et $_2$ O give Me 6-hydroxy-2 : 4' : 6'-trimethoxy-4-methylbenzophenone-2'-carboxylate (dimethylsulochrin) (II), m.p. 158° (acetate, m.p. 157°), converted by H₂SO₄ into 3-hydroxy-5-methoxy-p-toluic acid, new m.p. 176°, and $3:5:1\text{-}(OMe)_2C_6H_3\text{-}CO_2Me.$ (I) and KOH + a little H_2O at $\sim\!250^\circ$ give $2:6:4':6'\text{-}tetrahydroxy-4-methyl-}$ benzophenone-2'-carboxylic acid (anhyd., +1H₂O, and $+1\text{Et}_2\text{O}$), darkens and decomp. $\sim 285-290^\circ$, methylated (CH₂N₂) to (II). Boiling 10% or 1% KOH-MeOH converts (I) into 3:8-dihydroxy-6-methylxanthone-1-carboxylic acid, m.p. 295° (decomp.) (cf. A., 1936, 1247) [diacetate, m.p. 207° (Me ester, m.p.

124°)], or its Me ester, m.p. 266° (also from the acid), respectively, both converted by $\mathrm{CH_2N_2}$ in $\mathrm{Et_2O-EtOH}$ into Me 8-hydroxy-3-methoxy-6-methylxanthone-1-carboxylate, m.p. 188° (acetate, m.p. 207°; free acid, m.p. 262°), converted by prolonged treatment with $\mathrm{COMe_2-Et_2O-CH_2N_2}$ into (III) (below). Boiling 0.5% KOH-MeOH and (II) give Me 3:8-dimethoxy-6-methylxanthone-1-carboxylate (III), m.p. \sim 250° [free acid (IV), m.p. 272°], and 6-hydroxy-2:4':6'-trimethoxy-4-methylbenzophenone-2'-carboxylic acid (V), m.p. 230°. (II) and 10% aq.- or MeOH-KOH give (IV) or (IV) + (V), respectively. A. T. P.

Preparation of substituted cyclopentanones. II. H. A. WEIDLICH and M. MEYER-DELIUS (Ber., 1939, **72**, [B], 1941—1949; cf. A., 1939, II, 480).— Gradual addition of Br in CCI4 to well-cooled 2:6-C₁₀H₆Ac ·OMe in CCl₄ causes the separation of an orangecoloured additive product, transformed by NaHCO₃ into 5-bromo-6-methoxy-2-bromoacetylnaphthalene (I), m.p. 132-135°, which yields 5-bromo-6-methoxy-2-naphthacylpyridinium bromide, decomp. 243°; the best results are obtained with a 25% excess of Br. Brominations under varied conditions in CHCl₃ from which additive compounds do not separate give 5-bromo-, m.p. 126°, and 5:7-dibromo-, m.p. 143—146°, -6-methoxy-2-acetylnaphthalene (which contain Br in the nucleus since they do not react with C₅H₅N), and 5-bromo-6-methoxy-2-dibromoacetylnaphthalene, m.p. 164-165°, converted by protracted heating with C_5H_5N into methylenedipyridinium bromide, m.p. 255—258°. Gradual addition of (I) to COEt·CHNa·CO₂Et in Et₂O gives Et γ-keto-α $propionyl-\gamma-5-bromo-6-methoxy-2-naphthylbutyrate$ (II), m.p. $100-101^{\circ}$, with a compound, $C_{46(45)}H_{39(37)}O_{9}Br_{3}$, m.p. $208-210^{\circ}$; in one instance Et β -keto- $\alpha\alpha$ -di-5bromo-6-methoxy-2-naphthacylvalerate, m.p. 187—188° was isolated. (II) is transformed by boiling 2% into 3-5'-bromo-6'-methoxy-2'-naphthyl-2methyl-Δ²-cyclopentenone (III), m.p. 175—177°, occasionally accompanied by 3-hydroxy-3-5'-bromo-6'methoxy-2'-naphthyl-2-methylcyclopentanone, 150—151°; if the alkaline treatment is insufficiently prolonged the product contains unchanged ester which passes during distillation into Et 5-5'-bromo-6'-methoxy-2'-naphthyl-2-ethylfuran-3-carboxylate, m.p. 108—110° (acid, m.p. 249°). Hydrogenation (PdO on CaCO, in EtOH containing KOH) of (III) rapidly gives 3-6'-methoxy-2'-naphthyl-2-methyl- Δ^2 -cyclopentenone (IV), m.p. 113—116° [semicarbazone, m.p. 269° (decomp.)], which with more H₂ gives also trans-3-6'-methoxy-2'-naphthyl-2-methylcyclopentanone (V), m.p. 81—83° [semicarbazone, m.p. 236—237° comp.)]. In EtOH-EtOAc containing PdO, (III) absorbs 2 H2 with production of a little initial material, cis-3-6'-methoxy-2' - naphthyl - 2 - methylcyclopentanone (VI), m.p. 119—121° [semicarbazone, m.p. 239—240° cis-3-6'-methoxy-2'-naphthyl-2-(decomp.)], and methylcyclopentane, m.p. 70° (picrate, m.p. 89°). (IV) is hydrogenated (PdO in EtOH) to almost equal amounts of (V) and (VI); with PdO in EtOH containing alkali (V) is the sole product. (V) is reduced (Clemmensen) to trans-3-6'-methoxy-2'-naphthyl-2methylcyclopentane, b.p. 110°/0·2 mm., m.p. 52—54° H. W. (picrate, m.p. 112°).

Preparation and pyrolysis of cyclohexanone. C. D. HURD, H. GREENGARD, and A. S. ROE (J. Amer. Chem. Soc., 1939, 61, 3359—3360).—cyclo-Hexanone, prepared in 60% yield by passing cyclohexanol over Cu chromite-pumice at 290—310°, gives no keten in a keten lamp. When passed over porcelain at 700—725°, it gives H₂O, cyclohexadiene, C₂H₄, CO, and some H₂ and CH₄. When boiled for 5 days, it gives 16% of cyclohexylidenecyclohexanone. R. S. C.

Spiro-compounds. I. Preparation of cyclopentanespirocyclopentanone and cyclohexanespirocycloheptanone. M. Qudrat-i-Khuda and A. K. RAY. II. Synthesis of cyclopentanespirocyclopentanone. M. Qudrat-i-Khuda and A. MUKERJEE (J. Indian Chem. Soc., 1939, 16, 525-531, 532—535).—I. cycloPentanone reduced with HgCl₂ and Mg or, better, Al in C₆H₆ yields 2-cyclopentylidenecyclopentanone together with hydroxy-1-cyclopentyl, m.p. 109°, which with 20% H_2SO_4 gives cyclopentanes pirocyclohexan-2-one (CHPh: derivative, m.p. 75°), oxidised (HNO₃) to γ -1-carboxy-1-cyclopentylbutyric acid (I), m.p. 92°, the Et ester, b.p. 140—142°/6 mm., of which with EtOH-NaOEt affords Et cyclopentanespirocyclopentan-2-one-3-carboxylate (II), b.p. 127°/5 mm., hydrolysed (10% HCl) to cyclopentanespirocyclopentan-2-one (III), b.p. 115°/ 32 mm. (semicarbazone, m.p. 214°; CHPh. derivative, m.p. 64°). Di-1-hydroxy-1-cyclohexyl similarly yields cyclohexanespirocycloheptan-2-one, b.p. 120°/8 mm. (semicarbazone, m.p. 216-217°; CHPh: derivative, m.p. 123°), accompanied by much di- Δ^1 -cyclohexene. cycloHeptylidenecycloheptanone with CN·CHNa·CO·NH₂ yields a compound, C₁₃H₁₈O₂N₂,

II. Reduction of the anhydride of 1-carboxy-1-cyclopentylacetic acid yields the lactone, b.p. 154°/40 mm., of 1-β-hydroxyethylcyclopentane-1-carboxylic acid, which with PBr₅ followed by EtOH gives Et 1-β-bromoethylcyclopentane-1-carboxylate, b.p. 118°/5 mm. This with CHNa(CO₂Et)₂ provides Et γ-1-carbethoxy-1-cyclopentylpropane-αα-dicarboxylate, b.p. 154°/6 mm., hydrolysed to (I) (dianilide, m.p. 163°), converted (as above) through (II) into (III), which is also obtained by heating (I) with Ba(OH)₂ and Fe powder. F. R. G.

m.p. 215—216°.

Stereoisomeric fuchsones. W. Bockemüller and R. Geier (Annalen, 1939, 542, 185—203).— Fuchsones of type (A) exist in cis- and trans-forms.

CArAr' 4-Methoxy-3-methyldiphenyl-α-naphthylcarbinol, m.p. 131·5° [from 4:3:1-OMe·C₆H₃Me·COPh and 1-C₁₀H₇·MgBr (I) in Et₂O], and HCl in C₆H₆ give the chloride, two forms, m.p. 102—104° (slight decomp.) and ~155° (previous sintering and darkening); these eliminate MeCl at 110—130° (or in boiling PhCl) and 150—200°, respectively, and afford 4-(phenyl-α-naphthylmethylene)-2-methyl-Δ^{2:5}-cyclohexadienone (II), m.p. 185—186°. Phenyl-α-naphthyl-4-methoxy-α-naphthylcarbinol, m.p. 224° [from 1:4-OMe·C₁₀H₆·COPh and (I)], with AcOH-HCl-AcCl at 100° (sealed tube) gives the chloride, m.p. 192° (decomp.), which at 200°/20 min. yields a substance, m.p. 217° (not the expected

fuchsone; cf. below). Hydrolysis (aq. NaOH) of the product from o-cresol and p-C₆H₄Cl·CPhCl₂ at room temp./4 days affords 4-chloro-4'-hydroxy-3'-methyltriphenylcarbinol, m.p. 112—113° (previous sintering) (4'-acetate, m.p. 124—125°), dehydrated in boiling PhCl to 4-p-chlorobenzhydrylidene-2-methyl-Δ^{2:5}-cyclohexadienone, m.p. $133-134^{\circ}$. o-Cresol and 1-C₁₀H₇·CPhCl₂ (III) at $50-90^{\circ}$ (occasionally better results obtained at room temp.—50°) give directly (II) and a labile isomeride, m.p. 156—157° (bath preheated to 155°) [subsequently resolidifying to (II)]; these forms are not polymorphs. α-C₁₀H₂·OH and (III) in C₆H₆ at room temp./2 days similarly yield (cf. above) 1-keto-4-(phenyl- α -naphthylmethylene)-1:4dihydronaphthalene, forms, m.p. 197—198° (red melt) and 165° (preheated bath), resolidifying with m.p. 197—198°; a substance, decomp. >200°, is also 197—198°; a substance, decomp. >200°, is also formed. $p\text{-}\mathrm{C_6H_4Ph}\text{-}\mathrm{CPhCl_2}$ and $\alpha\text{-}\mathrm{C_{10}H_7}\text{-}\mathrm{OH}$ in $\mathrm{C_6H_6}$ at 80° afford isomeric forms of 1-keto-4-(phenyl-pdiphenylylmethylene)-1: 4-dihydronaphthalene, $165-172^{\circ}$ and $161-164^{\circ}$; both are reduced (\hat{Zn} dust-AcOH or H_2 , Pd-BaSO₄, EtOAc) to phenyl-pdiphenylyl-4-hydroxy-α-naphthylmethane, m.p. 145— 146°. Mesomerism is of little account in structures of type (A).

Condensation of acenaphthenequinone with monohydric phenols. Cyclic pinacones and products of reduction and of auto-oxidation. H. Bogdan (Bull. Acad. Sci. Roumaine, 1938, 20, 26—27).—Acenaphthenequinone with o- and m-cresol, o- and p-xylenol, thymol, and α-C₁₀H₇·OH gives (cf. A., 1939, II, 20, 25) 8-keto-7:7-diarylacenaphthenes (A); p-cresol, m-xylenol, and β-C₁₀H₇·OH afford 7:8-dihydroxy-7:8-diarylacenaphthenes which with conc. H₂SO₄ yield anhydroderivatives (xanthenes). Reduction (Zn, alkali) of (A) gives the 8-OH-derivatives which undergo autoxidation to coloured products (act as indicators). J. L. D.

αβ-Diacylethylene glycols. R. C. Fuson, C. H. MCBURNEY, and W. E. HOLLAND (J. Amer. Chem. Soc., 1939, **61**, 3246—3249).—Formation of $[RCO \cdot CH(OH) \cdot]_2$ from $RCO \cdot CHO$ by $Mg + Mgl_2$ (Gomberg et al., A., 1927, 245) is a general reaction, but the yield depends on the ratio of Et,O to C,H, used as solvent and on the reaction time. Dibromomesitylglyoxal (prep. in 41.5% yield from 2:4:6:3:5:1-C₆Me₃Br₂·COMe by SeO₂ in wet dioxan), b.p. 157°/4 mm. or, +H₂O, m.p. 100—102° (semicarbazone, m.p. 238—241°; phenylhydrazone, m.p. 183—184.5°), with 10% NaOH gives 3:5dibromomesitylglycollic acid, m.p. 184—185°, and with $Mg + Mgl_2$ in $Et_2O-C_6H_6$ (17:25) gives 27% of $\alpha\delta$ diketo- $\alpha\delta$ -di-3:5-dibromomesitybutane- $\beta\gamma$ -diol, 229—232°. iso Durylglyoxal (prep. in 72% yield from acetoisodurene by SeO₂), b.p. 123—127°/8 mm. or, +H₂O, m.p. 86—87° (semicarbazone, m.p. 207—208°; phenylhydrazone, m.p. 118—119°), gives similarly iso-durylglycollic acid, m.p. 171.5—172° (lit. 156°), and αδ-diketo-αδ-diisodurylbutane-βγ-diol, m.p. 160—161°. The appropriate glyoxals similarly give αδ-diketo-αδdi-2: 4: 6-triethylphenylbutane-βγ-diol, m.p. 104—105° (corr.), and [Bu^rCO·CH(OH)·]₂. BzCHO gives diastereoisomeric forms, m.p. 126—127.5° (corr.) [diacetate, m.p. $168-169^{\circ}$ (corr.)] and $118-119^{\circ}$ (corr.), of $\alpha\delta$ -diketo- $\alpha\delta$ -diphenylbutane- $\beta\gamma$ -diol; the yield is 55% in 2:3 but only 2% in 1:2 Et₂O-C₆H₆. When heated with Mg + MgI₂ for 15 min., mesitylglyoxal gives $\alpha\delta$ -diketo- $\alpha\delta$ -dimesitylbutane- $\beta\gamma$ -diol (I), but after 1 hr. some dimesitoylformoin (II) is also obtained. $2:4:6\text{-C}_6\text{H}_2\text{Me}_3\text{-CO}\text{-COPh}$ and Mg + MgI₂ give C₆H₂Me₃·CO·CHPh·OH. (I) gives a CMe₂: ether, m.p. $117-118^{\circ}$, is oxidised by CuSO₄-C₅H₅N to $(2:4:6\text{-C}_6\text{H}_2\text{Me}_3\text{-CO})_2$, by SeO₂ in wet dioxan to CO(CO·C₆H₂Me₃·2·4·6)₂ (in both cases probably by way of the tetraketone), and by Pb(OAc)₄ in CHCl₃ to mesitylglyoxal [phenylhydrazone, m.p. $136-137\cdot5^{\circ}$ (corr.) (lit. $145-146^{\circ}$)], and with EtOH-NHPh·NH₂ at 100° gives a compound, C₂₈H₂₈O₂N₂, m.p. $128-129^{\circ}$ (corr.). With H₂C₂O₄,2H₂O at 160° , cone. H₂SO₄ at 0° , or NaOEt at room temp., (I) gives 2:4:6-C₆H₂Me₃·CO·CH:C(OH)·CO·C₆H₂Me₃-2·4·6 (III). Attempts to prepare tetra-acyl derivatives of (I) failed; MgEtBr (4 mols.), followed by AcCl, gives (II); boiling BzCl gives the benzoate of (III); boiling Ac₉O-NaOAc gives an oil.

Triketohydrindyl- (ninhydryl-) and alloxanyl-carbamides and their constitutions. M. Polonovski, P. Gonnard, and (Mlle.) G. Glotz (Bull. Soc. chim., 1939, [v], 6, 1557—1576).—Triketohydrindene hydrate (ninhydrin) and the respective NH₂·CO·NRR' in H₂O at 100° (bath) give ninhydrylmethyl-, m.p. 230°, -dimethyl-, m.p. ~260° (decomp.), and -phenyl-carbamide, m.p. 105° (decomp.), but no reaction is obtained with CO(NHR)₂. Ninhydryl-carbamide is probably C₆H₄ CO COH

Contrary to Biltz et al. (A., 1912, i, 589; 1921, i, 616), 5-carbamido-5-hydroxybarbituric acids are probably formed from alloxan (I); the 5-phenyl-, decomp. ~180—185°, and 5-N'N'-dimethyl-carbamido-(II) -derivative, decomp. ~180—181° (red at 150°), can be prepared. In EtOH, H_2O , or 0-ln-HCl, (I) and (II) are probably mainly in the keto-form; at $p_{\rm II}$ >7, (II) probably undergoes fission to (I) and NH_2 ·CO·NMe₂. The absorption spectra of the above and allied compounds are compared with those of barbituric acid and its 5-NO₂-derivative, uric and ψ -uric acid, uramil, aminouramil,

 NH_2 ·CO·NH·CH $_2$ ·CO·CN, and CO < NH·CO $_{NH}$ ·CH $_2$ ·C·NH $_2$.

A. T. P.

Steroid ketones.—See B., 1940, 172.

Molecular rearrangements in sterols. IV. Structure of *i*-cholestanone. K. Ladenburg, P. N. Charravorty, and E. S. Wallis (J. Amer. Chem. Soc., 1939, **61**, 3483—3487; cf. A., 1938, II, 137).—The following experiments support the presence of a cyclopropane ring in *i*-cholesterol. Its stability depends on the state of oxidation of $C_{(6)}$. *i*-Cholestanone (I), m.p. 96° [prep. from the oxime, m.p. 143—144° (lit. 122—123°)], suffers ring-fission with H_2SO_4 —AcOH, giving β -3-hydroxycholestan-6-one (oxime, m.p. 194—195°, of the acetate), and with 34% HBr and AcOH at room temp. gives α -3-bromocholestan-6-one, m.p. 123°, converted by boiling quinoline in N_2 into Δ^4 -cholesten-6-one, m.p. 104—105°

(oxime, m.p. 184—185°). KOBr oxidises (I) to α_1 -i-cholestane 6:7-diacid (II), m.p. 232—233°, $[\alpha]_D^{25}+18^\circ$ in abs. COMe₂. β -3-Chlorocholestane 6:7-diacid, m.p. 243°, and NaOEt-EtOH at 120° give β_2 -i-cholestane 6:7-diacid (III), m.p. 230—231°, $[\alpha]_D^{24}+55^\circ$ in abs. COMc₂; α -3-chlorocholestane 6:7-diacid gives similarly α_2 -i-cholestane 6:7-diacid (IV), m.p. 265°, $[\alpha]_D^{25}+46^\circ$ in dioxan.

(II.) H
$$CO_2H$$
 CO_2H CO_2H (III. CO_2H CO_2H

Transformations of brominated derivatives of cholesterol. VI. Constitution of $\Delta^{1:2-4:5}$ -cholestadien-3-one. H. H. Inhoffen and Huang-Minlon (Ber., 1939, 72, [B], 1686—1687; cf. A., 1938, II, 413).—Hydrogenation (Pd sponge in Et_2O) of the ketocarboxylic acid, $C_{26}H_{42}O_3$, obtained by the ozonisation of $\Delta^{1:2-4:5}$ -cholestadien-3-one (I) (derived from 2:4-dibromocholestanone and C_5H_5N) gives the acid, $C_{26}H_{44}O_3$, m.p. 153—154° (oxime, m.p. 189—190°), identical with that obtained by Windaus (A., 1906, i, 579) and by Dorée et al. (J.C.S., 1908, 93, 1330) from cholestenone. The non-cryst. neutral ozonisation product of (I) gives a semicarbazone, $C_{24}H_{42}ON_3$, m.p. 224—225° (decomp.). H. W.

3-Hydroxyandrostene methyl ketimine.—See B., 1940, 172.

Sterols. LXXXVI. Deoxotestosterone its conversion into testosterone. R. E. MARKER, E. L. WITTLE, and B. F. TULLAR (J. Amer. Chem. Soc., 1940, **62**, 223—226).—Oxidation of $\Delta^{5:6}$ -cholestene dibromide by CrO₃-AcOH at 48-50° and subsequent debromination yields $\Delta^{5:6}$ -androsten-17-one, m.p. 105—107° (isolated as semicarbazone, m.p. 285— 287°), which with Na-Pr^aOH gives $\Delta^{5:6}$ -androsten-17-ol (I), m.p. 163—165° (acetate, m.p. 133—135°). Conversion into the hydrochloride by HCl-CHCl₃ at 0° and refluxing thereof with KOAc-EtOH partly isomerises (I) to $\Delta^{4:5}$ -androsten-17-ol (II), m.p. 146— 149° [separated from (I) as its acetate (III), m.p. 97—100°; does not depress the m.p. of (I)], oxidised by CrO_3 -AcOH (protection as dibromide) to $\Delta^{4:5}$ androsten-17-one, m.p. 78-80°. Oxidation of (III) by CrO₃-AcOH at 50°, separation of the ketones by Girard's reagent, hydrolysis thereof by warm HCl-EtOH, and distillation at 0.01 mm, yields testosterone. If impure (III) is used, some 7-keto-Δ^{5:6}-androsten-17-yl acetate, m.p. 215—217°, is obtained. This yields 7-keto-Δ^{5:6}-androsten-17-ol, m.p. 141·5—142·5° (2:4-dinitrophenylhydrazone, m.p. 230—232°). CrO₃-AcOH at 35—45° oxidises (II) to androstenedionc.

R. S. C. Sterols. LXXXII. Œstrane derivatives. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1940, 62, 73—75).—Contrary to Butenandt (A., 1930, 1480), hydrogenation (PtO₂) of æstrone in abs. EtOH at room temp./3 atm. gives 90% of α-æstradiol

(I), m.p. 173—175°. Œstrane-3:17-dione [obtained with non-cryst. œstranolones (A) from œstrane-3:17(α)-diol and CrO₃], forms, m.p. 144—146° and 179—180°, and Br-HBr-AcOH give a Br-derivative, m.p. 170—172°, converted by boiling C₅H₅N into (? $\Delta^{4:5}$)-æstrene-3:17-dione, m.p. 146—148°. Hydrogenation (PtO₂) of (A) in HCl-MeOH at 25°/2 atm. gives œstran-17(α)-ol (II), identical with the product obtained also from œstrone. The 17-acetate of (I), prepared from the diacetate by K₂CO₃-MeOH at 20°, with H₂-PtO₂ in EtOH-AcOH at 10 lb. gives a product, which by oxidation and hydrolysis yields an æstran-17-ol-3-one, m.p. 102—104° (reacts with Br, but yields no nortestosterone) and (II). R. S. C.

Sterols. LXXVI. Oxidation and reduction products of equilenin. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 3314— 3317).—Hydrogenation (PtO₂) of equilenin in abs. EtOH-Et₂O at 25°/3 atm. gives α-dihydroequilenin, further hydrogenation of which in HCl-EtOH gives $\Delta^{5:10-6:7-8:9}$ -estratrien-17(α)-ol (I) (A., 1937, II, 250) (proof of α -OH), which is oxidised by CrO₃-AcOH at 25° to $\Delta^{5:10-6:7-8:9}$ -æstratrien-17-one, m.p. 107—109° [oxime, m.p. 203—205° (decomp.)]. The diketone (II), $C_{18}H_{16}O_2$, of Marker et al. (A., 1940, III, 32) is probably 11-keto-3-deoxyequilenin; with H_2 -PtO₂-HCl-EtOH it gives (I), with H_2 -PtO₂-abs. EtOH-Et₂O gives the (?) 11:17-diol, $C_{18}H_{20}O_2$, m.p. 209— 212°, with Zn-HCl-EtOH gives a C₁₈H₁₈O, m.p. 156—158°, and with Zn-Hg-HCl-gives deoxueguilenin, C₁₈H₂₀, m.p. 73—75°. EtOH gives deoxyequilenin, $C_{18}H_{20}$, m.p. 73—75°. Equilenin acetate and CrO_3 -80% AcOH at 25° give 11-ketoequilenin acetate, m.p. 195—197° [semicarbazone, m.p. 238—241° (decomp.)], whence it is probable that the natural precursor of (II) has no 11-CO. Hydrogenation (PtO₂) of equilenin-3-oxyacetic acid, m.p. 233-236° (Me, m.p. 180-182°, and ? Et ester, m.p. 141·5—143°), in HCl-EtOH gives (I).

R. S. C. Preparation and properties of $3(\alpha)$: 11-dihydroxy-12-ketocholanic acid. B. B. Longwell and O. WINTERSTEINER (J. Amer. Chem. Soc., 1940, 62, 200—203).—Some of the following experiments contradict results of Marker et al. (A., 1938, II, 329). When 3-hydroxy-12-ketocholanic acid, m.p. $162-163^{\circ}$ (acetate, m.p. 197—198°), is boiled in Ac₂O-AcOH and then treated with Br-AcOH at 50—60°, it gives 11-bromo-12-keto-3(α)-acetoxycholanic acid (I), amorphous, m.p. 159° (decomp.), hydrolysed by 20% KOH-MeOH to $3(\alpha):11$ -dihydroxy-12-ketocholanic acid (II), m.p. 205°, $[\alpha]_D^{27} + 67 \cdot 1^\circ$ in 95% EtOH [Me ester, m.p. 157° (H succinate, m.p. 194—196°); diformate, m.p. 146-148°]. With Ac₂O-C₅H₅N, (II) gives the gummy diacetate, but with boiling Ac2O gives mainly (?) an anhydride (III), C₅₂H₇₆O₁₀, m.p. 268° [hydrolysed to (II)]; boiling 33% AcOH converts (III) into the 3-acetate (+ 0.5H₂O), m.p. 106°, of (II). With NaOAc in AcOH at 185—190°, (I) gives 12-keto-3(α)-acetoxy-Δ9:11-cholenic acid, m.p. 201°. (II) gives no CO-derivatives and with N₂H₄-NaOEt-EtOH at 197—200° suffers dehydration as well as reduction, yielding a substance, $\check{C}_{24}H_{38}O_3$, $+0.5H_2O$, m.p. $162-163^\circ$ [H succinate, m.p. 227° (decomp.)].

Experimental connexion of the vegetable heart poisons with the estrone group. A. BUTENANDT and T. F. GALLAGHER (Ber., 1939, 72, [B], 1866—1869).—Strophanthidin, m.p. 176°, is converted into the acid (I), which is dehydrated by boiling 0·ln-HCl-EtOH to the anhydrodicarboxylic acid, $C_{20}H_{28}O_6$, decomp. 260° after softening and darkening at 250° according to rate of heating, $[\alpha]_D^{23} + 122^\circ$ in EtOH (Me_2 ester, m.p. 150°, $[\alpha]_D^{22} + 108^\circ$ in abs. EtOH).

This is hydrogenated to the saturated acid, $C_{20}H_{30}O_6$, decomp. 255—256°, $[\alpha]_{1}^{16}+35^{\circ}$ in abs. EtOH $[Me_2]$ ester, m.p. 164—165° (decomp.)], which is oxidised (CrO₃ in AcOH) to the ketodicarboxylic acid (II), $C_{20}H_{28}O_6$, m.p. 193—194° (decomp.). (II) is transformed by HCl in boiling MeOH into $3 \cdot keto \cdot \Delta^4 \cdot astrene-17 \cdot carboxylic$ acid (III), m.p. 186°, $[\alpha]_{1}^{23}+83^{\circ}$ in abs. EtOH.

Sterols. LXXIX. Oxidation products of dihydrosarsasapogenin. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1939, 61, 3477—3479).—Dihydrosarsasapogenin diacetate and CrO₃-AcOH at 90—95° give a syrup, hydrolysed to the lactone, C₂₂H₃₄O₃, the keto-acid (I), C₂₂H₃₄O₄, and the acid, C₁₇H₂₈O(CO₂H)₂. Me anhydrotetrahydrosarsasapogenoate acetate and CrO₃-AcOH at 55—60° (later 80°) give a mixture, hydrolysed to anhydrosarsasapogenoic acid, (I), and 3-hydroxyætiobilianic acid. These reactions support the authors' formulæ (A., 1939, II, 276, 510).

Sterols. LXXXIII. Oxidation products of sarsasapogenin. The C_{22} -lactone. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1940, **62**, 76—78).—The C₂₂-lactone (I), m.p. 199- 200° , from sarsasapogenin with HI and H_3PO_4 gives gums, and with CrO₃-AcOH at 50-55° gives an acid, $C_{20}H_{30}O_2(CO_2H)_2$, m.p. 285—288° (decomp.) (Me₂ ester, m.p. 170-171.5°) (cf. Simpson et al., A., 1935, 864), also obtained from sarsasapogenone by HNO₃ (d 1.5) in AcOH at 90°. CrO₃-AcOH at 90° oxidises the acetate of (I) to a product, hydrolysed to a COacid (II), $C_{22}H_{34}O_4$, m.p. $285-287^\circ$ (decomp.) [Me ester acetate, m.p. $198-199\cdot 5^\circ$; oxime, m.p. $206-208^\circ$ (decomp.)]. MgPhBr in Et₂O converts (I) into a carbinol, which by successive acetylation, oxidation (CrO₃), and hydrolysis yields the known (? 3-hydroxyretiobilianic) acid, $C_{19}H_{30}O_5$, m.p. 218—220°. Hydrogenation of (II) in EtOH-HCl gives (I) [m.p. 186— 188°; polymorphism (cf. A., 1939, II, 322)], oxidised (CrO₃) to the 3-CO-lactone, m.p. 184—185°, which with H₂-PtO₂ in 98% EtOH at 3 atm. affords an epilactone, C₂₂H₃₄O₃, m.p. 198—200° (acetate, m.p. R. S. C. 159—160°).

Steroids and related compounds. V. Steroid diosphenols. V. A. Petrow and W. W. Starling (J.C.S., 1940, 60—65).— $cis-\Delta^5$ -Cholestene-3: 4-diol dibromide is oxidised (H₂CrO₄ in aq. AcOH + C₆H₆ at

room temp.) and debrominated (Na1) to Δ^5 -cholestene-3:4-dione, form A (I), (+0.5H₂O), m.p. 135-136°, $[\alpha]_D^{22}$ +30.5°, acetylated to 4-acetoxy- $\Delta^{4:6}$ -cholestadien-3-one, and oxidised (H₂O₂, aq. EtOH-KOH) to Diels' acid. $cis-\Delta^5$ -Cholestene-3: 4-diol is acotylated $(Ac_2O-C_5H_5N)$ to cis-3-acetoxy- Δ^5 -cholesten-4-ol, m.p. 193—194°, $[\alpha]_D^{23}$ —64·5°, which is oxidised (H₂CrO₄—aq. AcOH + C₆H₆) to 3-acetoxycholestan-4-one 5: 6-oxide (II), m.p. 173—174°, $[\alpha]_D^{20}$ +3·8° (corresponding 3-benzoyloxy-compound, m.p. 185—186°, $[\alpha]_D^{22}$ +6·4°). Boiling AcOH-NaOAc or EtOH-C₆H₆-conc. HCl converts (II) into Δ^5 -cholestene-3: 4-dione, form B (III), m.p. 162—163°, $[z]_{2}^{22}$ +57·3°, also obtained from (I) and warm AcOH-conc. HCl. (I) and (III) yield the same quinoxaline, m.p. 175° (different conditions necessary), and mono-2: 4-dinitrophenylhydrazone, m.p. 255°. (I) is labile and the change to the stable form (III) is non-reversible. (I) is the diketo-modification and (III) is $\Delta^{2:5}$ -cholestadien-3-ol-4-one; (III) is evidently identical with the substance obtained by debromination of 5:6:4:4'-tetrabromocholestan-3-one (Butenandt et al., A., 1936, 1512).

cis-3-Acetoxy- Δ^5 -cholesten-4-ol dibromide, m.p. 115°, is oxidised to 3-acetoxy- Δ^5 -cholesten-4-one, m.p. 123—124°, $[\alpha]_{20}^{20}$ —76·7° (whence 3: 4-diacetoxy- $\Delta^{3:5}$ -cholestadiene, m.p. 128°), which is converted by EtOH-conc. HCl into cholestane-3: 4-dione, m.p. 149—150°, $[\alpha]_{18}^{18}$ +79·7° (cf. Butenandt et al., A., 1937, II, 63). Only one form of this ketone has been obtained; it yields a quinoxaline derivative, m.p. 208—209°, a mono-2: 4-dinitrophenylhydrazone, m.p. 252—253°, an enol acetate, m.p. 102—103°, $[\alpha]_{18}^{18}$ +92·5°; and is oxidised to cholestane-C₃ $[C_4$ -diacid (dihydro-Diels' acid). NaOEt in Et₂O-EtOH and (II) give $\Delta^{2:5}$ -cholestadien-3-ol-4-onyl-6: 6'- $(\Delta^{4':6'}$ -cholestadien-4'-ol-3'-one), m.p. 239—240°, $[\alpha]_{20}^{20}$ +23·7° [mono-2: 4-dinitrophenylhydrazone, m.p. 248° (decomp.); diacetate, m.p. 205—206°, $[\alpha]_{20}^{20}$ —52·4°]. 4-Acetoxy- $\Delta^{4:6}$ -cholestadien-3-one, m.p. 161—162°, is obtained from (II) and Ac₂O-NaOAc. All rotations are in CHCl₃. M.p. are corr.

Sterols. LXXXIV. Progesterone from hyodeoxycholic acid. R. E. MARKER and J. KRUEGER (J. Amer. Chem. Soc., 1940, 62, 79—81).—6-Ketocholestanol and H₂-PtO₂ in MeOH at 3 atm. give cholestane-3: 6-diol, m.p. 190° [stereoisomeric with that described by Windaus (A., 1917, i, 265)], the diacetate, m.p. 138°, of which KOH-MeOH at 200° or boiling NaWCO MacH and a little Work. 20° or boiling NaHCO₃-MeOH and a little H₂O gives the 6-monoacetate, oxidised by CrO₃ in AcOH at room temp. to 6-acetoxycholestan-3-one, m.p. 101°. Boiling 2% KOH-MeOH then gives 6-hydroxycholestan-3-one, m.p. 190°, which, when distilled with KHSO₄, yields cholestenone. Me hyodeoxycholate, m.p. 86°, is converted by way of the diphenylcarbinol into norhyodeoxycholic acid, m.p. 198° (Me ester, +C₆H₆, m.p. 95°), and thence similarly into the diphenylcarbinol, $C_{35}H_{45}O_3$, m.p. 222°, and bisnorhyodeoxycholic acid, m.p. 240°. The Me ester (CH_2N_2) , m.p. 146°, thereof with MgPhBr etc. yields an alcohol, the acetate of which in boiling AcOH followed by O3 in CHCl3 gives 3:6-diacetoxyatiocholanyl Me ketone, m.p. 100°. Halfhydrolysis, oxidation, hydrolysis, and dehydration as described above then gives progesterone. R. S. C.

Action of lead tetra-acetate on ketones of the pregnane series. II. G. EHRHART, H. RUSCHIG, and W. Aumüller (Ber., 1939, 72, [B], 2035—2039; cf. A., 1939, II, 327; Reichstein et al., A., 1939, II, 552).—Progesterone (I), like pregnenolone acetate, is attacked by Pb(OAc)₄ at C₍₂₁₎; instead of or simultaneously with this action an OAc group can be introduced into the ring structure. (I) is converted by Pb(OAc)4 in AcOH at 75-85° into a non-cryst. product (II) from the solution of which in EtOH diacetoxyprogesterone, m.p. 198°, $[\alpha]_{D}^{20}$ +164.6° $\pm 2^{\circ}$ in EtOH, separates. It is hydrolysed (KHCO₃ in aq. MeOH) to dihydroxyprogesterone, m.p. 184°, which is oxidised (HIO4 in aq. MeOH at room temp.) to (2?)-hydroxy-3-ketoætiocholenic acid, m.p. 254°. Hydrolysis of (II) gives a crude hydroxyprogesterone, m.p. ~134° after softening at 115°, which when dissolved in Et₂O and shaken with NaOH yields an unidentified substance, m.p. 191—192°. Chromatographic treatment of the neutral solution gives hydroxyprogesterones, m.p. 185°, $[\alpha]_D^{20}$ +186° $\pm 10^{\circ}$ in EtOH (acetate, m.p. 198°), and m.p. 184°, $[\alpha]_D^{20}$ + 40° \pm 10° in EtOH.

Halogeno- and amino-alkoxy-p-benzoquinones.—See B., 1940, 118.

Synthesis of vitamin- K_1 . L. F. FIESER [and, in part, M. D. GATES] (J. Amer. Chem. Soc., 1939, 61, 3467—3475).—Partly a detailed account of work already reported (A., 1939, II, 513). Isolation of vitamin-K₁ from lucerne concentrates is greatly simplified by using the quinol form. Phthiocol is isolated after application of the Dam-Karrer reaction to $-K_1$. 2:6-Dimethyl-3-phytyl-1:4-naphthaquinol diacetate has m.p. 55-56.5°. 2-Ethyl-3-phytyl-1:4naphthaquinone, which is synthesised, differs from $-K_1$ in solubility, and in having no -K-activity at 160 μ g. The min. dose of $-K_1$ is 2 μ g. 2:6-Dimethyl-3-phytyl-1: 4-naphthaquinone (absorption max. at 247, 256.5, 264.5, 271, and 331 m μ .) is inactive in 50-µg. doses. A 25- but not a 5-µg. dose of 2methyl-3-geranyl-1: 4-naphthaquinone is effective. The great, but varying, activity of 2-methyl-1:4naphthaquinone may be due to its use for synthesis of R. S. C. -K in the body.

Ultra-violet absorption of vitamin- K_1 , - K_2 , and related compounds.—See A., 1940, III, 146.

Diene synthesis of 2:3-dialkyl-1:4-naphthaquinones related to vitamin-K. L. F. FIESER and (Miss) C. W. Wieghard (J. Amer. Chem. Soc., 1940, **62**, 153—155).—CMe₂:CH·COMe (I) and MgMeCl in hot Et₂O give CMe₂:CH·CMe:CH₂, which, when boiled with α-naphthaquinone (II), gives 1:1:3trimethyl - 1:4:11:12 - tetrahydroanthraquinone, m.p. 119°. Isomerisation by hot KOH-EtOH and subsequent oxidation by air then gives 1:1:3-trimethyl-1: 4-dihydroanthraquinone, m.p. 129—129.5° (Diels et al., A., 1929, 1303, m.p. 162°). MgBu'Cl gives similarly CMe₂.CH·CBu·.CH₂, b.p. 58—59°/32 mm., 1:1-dimethyl-3-tert.-butyl-1:4:11:12-tetra-(13%), m.p. 142—143°, and -1:4-di-hydroanthraquinone (III), m.p. 102—103°. Similar syntheses using MgEtBr failed, probably owing to the initial product of interaction with (I) undergoing dehydration

in two directions. Myrcene and (II) in boiling dioxan give $2-\delta$ -methyl $-\Delta^{\gamma}$ -n-pentenyl -1:4:11:12-tetrahydroanthraquinone (64%), m.p. $61-61\cdot3^{\circ}$ (lit. 58— $58\cdot5^{\circ}$), converted by $Ac_2O-C_5H_5N$ into 9:10-diacetoxy-2-8-methyl- Δ^{γ} -n-pentenyl-1: 4-dihydroanthracene, m.p. 121-122°; treatment with MgMeCl in Et₂O (later boiling C₆H₆) and oxidation by Ag₂O-Na₂SO₄ in C₆H₆ then give 2-8-methyl- Δ^{γ} -n-pentenyl-1: 4-dihydroanthra-quinone (IV), m.p. 89-8—90-8°. In 400- and 50-µg. doses, respectively, (III) and (IV) have no vitamin-Kactivity. M.p. are corr.

1:2-2-o-Aminophenylanthraquinone and phthaloylcarbazole. P. H. GROGGINS (Ind. Eng. 1940, 32, 98).—2-o-Chlorophenylanthraquinone with aq. NH₃-PhNO₂-Cu catalyst yields (cf. A., 1930, 1186) 1:2-phthaloylcarbazole, m.p. 255°, and little 2-o-aminophenylanthraquinone.

Essential oil from rhizome of Acorus calamus. I. Isolation and examination of calamol. M. QUDRAT-I-KHUDA, A. MUKHERJEE, and S. K. GHOSH (J. Indian Chem. Soc., 1939, **16**, 583—588).—Steamdistillation of the rhizome of A. calamus gives 7.9% of oil consisting mainly of a trimethoxyallylbenzene derivative, calamol (I), $C_{12}H_{16}O_3$, b.p. 153—154°/5 mm., [R_L]_D 61.9, giving with ÉtŐH-KOH isocalamol (II), b.p. $133^{\circ}/2$ mm., $[R_L]_{\rm D}$ 61.85. (I) gives with Br $\rm C_{12}H_{14}O_3Br_4$ (impure), with $\rm H_2-PdCl_2$, dihydrocalamol, $C_{12}^{12}H_{18}^{14}O_3$, b.p. $124^{\circ}/2$ mm., $[R_L]_{\rm D}$ 61·1, with AlCl₃ a phenol, $C_{11}H_{14}O_3$, b.p. $115^{\circ}/2$ mm., with HI an impure product, which gives a Bz₃ derivative, C₃₀H₂₂O₆, m.p. 96°. Oxidation of (I) and (II) with cold KMnO₄ in aq. NaOH gives calamonic acid, C₆H₂(OMe)₃·CO₂H, m.p. 143°, which gives with HI a trihydroxybenzoic acid, $C_7H_6O_5$, m.p. 97°.

Complex metallic salts of semicarbazone and oxime of 8-oximinaminomenthone. M. Bram-BILLA (Annali Chim. Appl., 1939, 29, 513—523).— Pulegonehydroxylamine, m.p. 143° (cf. Beckmann and Pleissner, A., 1891, 936), with HNO2 gives 8-oximinaminomenthone (pulegonenitrosohydroxylamine) {semicarbazone (I), m.p. 165° (Na salt, m.p. 235°; K salt, m.p. 75°, then 110°; NH₄ salt, m.p. 154—156°); oxime (II), m.p. 76° (Na salt, m.p. 219°, [+4H₂O, m.p. 64·5°], K salt, m.p. 267° [decomp.]; NH_4 salt, m.p. $\sim 80^{\circ}$). Pptn. reactions of (I) and (II) with aq. salts of Cu, Ni, Cd, Mn, Zn, Fe, Hg, Co, Pb, Al, and Cr and solubilities of the complexes in H₂O, EtOH, and Et₂O are tabulated. The pptn. of Cu and Cd by (I) and (II) is quant. The structure of the metallic complexes is discussed. F. O. H.

Constitution of two new terpenes, menogene and menogerene $(C_{10}H_{16}$ and $C_{10}H_{14})$. Mechanism of cyclisation of citronellal and citral. R. Horiuchi, H. Otsuki, and O. Okuda (Bull. Chem. Soc. Japan, 1939, 14, 501-507).—Citronellal and 50% $\rm H_2SO_4$ give menogene (I), $\rm C_{10}H_{16}$, b.p. 184—186°/764·5 mm., [α] $_{\rm D}^{17}$ +49·11° (nitrosite, m.p. 154·5— 155°), reduced by H₂-PdO to p-menthane, and converted by maleic anhydride into the adduct, m.p. 205—208° (dibromide, m.p. 282—285°). When heated with Na, (I) yields $COMe_2$. (I) is probably $\Delta^{2:4(8)}$ -pmenthadiene, and is formed from citronellal via 3hydroxy- $\Delta^{8(9)}$ -p-menthene and 3:8-dihydroxy-p-

menthane. Distillation of the product from citral and $20\% H_2SO_4$ yields $COMe_2$, 1-methyl- $\Delta^{1:5}$ -cyclohexadiene, b.p. 110—111°, p-cymene, (I), and menogerene (II), $C_{10}H_{14}$, b.p.180—181°. (II) affords a dibromide, m.p. 114.5—115°, and when distilled after long keeping or when treated with $20\% H_2SO_4$ yields (I). With H_2 -Pd it gives p-menthane and dl- α -phellandrene. (II) is therefore probably $\Delta^{1:5:4(8)}$ -p-menthatriene, and citral cyclises to (II) through 3-hydroxy- $\Delta^{1:8(9)}$ -p-menthadiene and 1:3:8-trihydroxy-p-menthane.

Pinane group. VII. Total synthesis of verbenone. Total synthesis of α - and β -pinene. P. C. Guha and P. L. N. Rao (J. Indian Inst. Sci., 1939, **22**, **A**, 326—330).—Verbanone (I) and SeO₂ in boiling 96% EtOH for 12 hr. give verbenone (II); since (I) has been synthesised (cf. Komppa et al., A., 1937, II, 252) and (II) has been converted into α pinene (III) (cf. Blumann et al., A., 1921, i, 426; Ruzicka et al., A., 1924, i, 755), a total synthesis of (III) has been accomplished. Verbenene, free from (III), gives (III) when reduced with Na in EtOH. (III) with KMnO₄ gives pinonic acid, isolated as the semicarbazone (cf. Blumann et al., loc. cit.).

Camphorone and pulegenone. Hydrogenation products and their structure. IV. Hydrogenation in presence of metallic catalysts. V. cisand trans-Dihydrocamphorones. VI. Hydrogenation of dihydrocamphorones; conversion of trans- into cis-ketone. VII. Dehydration of dihydrocamphorols; structure of corresponding ketone. R. CALAS (Bull. Soc. chim., 1939, [v], 6, 1485—1493, 1493—1498, 1499—1505, 1505— 1510; cf. A., 1939, II, 483).—IV, V. Hydrogenation (Pt) (6 min. for I mol. H₂) of camphorone (I) or pulegenone (II) (more slowly) affords in AcOH, or, more rapidly in EtOH, respectively, cis- (III), b.p. 70°/14 mm. (oxime, new m.p. 76—77°; carbanilideoxime, m.p. 142°), or trans- (IV) -dihydrocamphorone, b.p. 70°/14 mm. (oxime, b.p. 117°/16 mm.; carbanilideoxime, m.p. 139°), respectively, purified through the respective semicarbazone, m.p. 198° or 209° (cf. A., 1938, II, 100). Hydrogenation of (I) and (II), using Pt-Fe (Faillebin, A., 1926, 50) in EtOAc, gives (IV), with no further hydrogenation (cf. Pt). (IV) oximates more quickly. Physical consts. are recorded. The literature of dihydrocamphorones is clarified.

VI, VII. (III) or (IV) (more readily) and Na in aq. Et₂O-NaHCO₃ or EtOH give cis- + trans-dihydro-camphorols of the cis-ketone (H phthalates, m.p. 114° and 84°, respectively); either is dehydrated by o-C₆H₄(CO)₂O at 130—140° to 1-methyl-3-isopropyl-Δ¹-cyclopentene, b.p. 138—139°/757 mm. (nitrosochloride, m.p. 119°; nitrolpiperidide, m.p. 161°). Enolisation probably precedes reduction; cnolisation (MgPr^{\$Br}) of (III) or (IV) gives 17—18% of enol. After decomp. of the Mg compound, (III) only is recovered from (III), but (IV) gives (IV) + 15% of (III), i.e., enol form gives cis-ketone. Mechanisms of hydrogenation and other theoretical aspects are A. T. P. discussed.

ω-Camphor series. I. Synthesis of 2-ketoapocamphane-1-acetic acid. T. HASSELSTROM and

B. L. HAMPTON (J. Amer. Chem. Soc., 1939, 61, 3445-3448).—The oxime, new m.p. 160-161°, of ω-benzoylborneol (new m.p. 86—87°) with PCl₅ in Et₂O gives 2-hydroxyapocamphane-1-acetanilide (I) (28·2%), m.p. 176·5—177·5°, camphenecarboxyanilide (II) (10.1%), m.p. 154.5—155.5° (formed by Meerwein-Wagner retropinacolin rearrangement of the intermediate 2-chloroapocamphane-1-acetanilide), and small amounts of PhCN and the lactone (III), m.p. 201.5—202.5°, of 2-hydroxyapocamphane-1-acetic acid. With boiling 20% KOH-ÉtOH, (I) gives (III) (60% yield) (and NH₂Ph), converted (KOH-KMnO₄) into 2-ketoapocamphane-1-acetic acid (84.4%), m.p. 92-93°, the semicarbazone, m.p. 199-200°, of which with NaOEt–EtOH at 170—180° yields apocamphane-1-acetic acid, m.p. 77—78°. PCl₅ in Et₂O converts (I) into (II). Hydrolysis of (II) by boiling 20% KOH-EtOH gives camphenecarboxylic acid (23·2%), m.p. 126—127° (and NH₂Ph), oxidised by KMnO₄ to camphenilone, which is obtained also directly from (II) by KOH-KMnO₄.

cycloPentadiene series. II. α - and β -Camphylic acids and their decarboxylation products. 1:5:5-Trimethyl- $\Delta^{1:3}$ -cyclopentadiene. K. Alder and W. Windemuth (Annalen, 1939, 543, 28—40).—Fusion of sulphocamphylic acid with NaOH at $\Rightarrow 210-215^{\circ}$ gives di- β -camphylic acid (I) (+AcOH), m.p. 234° (not the α -compound;

Me Me Me in p. 234° (not the α-compound; of. Perkin, J.C.S., 1903, 83, 862), and (primarily) β-cambel fillation of the material after tillation of (I), at 12 mm. affords (II), but at atm. pressure α-camphylic acid (III) is the sole product: (III) exists by isomerication of (II).

the sole product; (III) arises by isomerisation of (II). Depolymerisation of (I) by distillation at atm. pressure gives (III), but the Me_2 ester, m.p. 64° (prep. by $\text{Et}_2\text{O-CH}_2\text{N}_2$, of (I) at $220-230^\circ$ (bath)/350 mm. affords Me β-camphylate (IV) [the adduct, m.p. 132— 133° (see below), of (IV) and (:CH·CO)₂O (V) is obtained if depolymerisation is effected in $C_6H_6 + (V)$ at 220°]. Distillation of a mixture of the Ca salts of (II) and (III) with soda-lime gives the hydrocarbon, C_8H_{12} (VI), b.p. 133—135°, of Damsky (A., 1888, 293), which is not identical with 1:5:5-trimethyl-Δ^{1:3}-cyclopentadiene, b.p. 99—105° [structure proved (cf. below) by diene syntheses; obtained by decarboxylation of (II) or (III) with Cu chromite in quinoline and N₂ at 235—240°]. Diene reactions prove that (VI) is a trimethylcyclopentadiene; its formation must involve migration of Me.

Diene synthesis. XII. Formation of compounds of the camphor and epicamphor group by diene synthesis. Diene syntheses of 1:5:5-trimethyl- $\Delta^{1:3}$ -cyclopentadiene and β -camphylic acid with vinyl acetate. K. Alder and E. Windemuth (Annalen, 1939, 543, 41—56).—1:5:5-Trimethyl- $\Delta^{1:3}$ -cyclopentadiene (I) and CH₂-CH-OAc (II) at 235—240° give a mixture (A), b.p. 92—94°/12 mm., of dehydrobornyl and dehydroepibornyl acetate (major product); reduction (H₂, PtO₂, AcOH) and subsequent hydrolysis (20% MeOH-KOH) of (A) affords dl-borneol (III), m.p. 204°, and dl-epiborneol

(IV), m.p. $175-176^\circ$, separable through their respective 3:5-dinitrobenzoates, m.p. $154-155^\circ$ and 105° . Oxidation (CrO₃, AcOH) of (III) gives dl-camphor [semicarbazone, new m.p. 242° (decomp.; rapid heating)], reduced (Wolff-Kishner) to camphane (V); dl-epicamphor [semicarbazone, m.p. 235° (decomp.)] is similarly obtained from (IV) and reduced to (V). The above reactions prove the structure of (I). The trimethylcyclopentadiene, C_8H_{12} (see above), and (II) at $170-180^\circ$ afford the acetate, b.p. $203-212^\circ$, of a trimethyl-2:5-endomethylene- Δ^3 -cyclohexenol; reduction and subsequent hydrolysis gives the -cyclohexanol, m.p. $98-99^\circ$ (phenylcarbamate, m.p. III—112°), oxidised ($K_2Cr_2O_7$ dil. H_2SO_4 , AcOH) to the -cyclohexanone (semicarbazone, m.p. 222°). Me β -camphylate and (II) at 230° give a mixture (B), b.p. $142-146^\circ$ /12 mm., of Mc 4- and 5-acetoxy-6-methyl-3:6-endoisopropylidene- Δ^1 -cyclohexene-1-

CH CH·OH (hydrolysis of OAc) and CrO₃-AcOH (at room temp.) affords the mixed CO-esters, which yield a semicarbazone, m.p. 230—231° (decomp.); this with EtOH-NaOEt at 200—205° gives dl-bornylene-2-carboxylic acid, an

oil, oxidised by HNO₃ (\$\delta\$ 1.27) to \$dt\$-camphoric acid. Hydrolysis (25% MeOH-KOH) of (\$B\$) affords a \$OH\$-acid, m.p. 159°, a \$OH\$-lactone, m.p. 206° [probably (VI); \$phenylcarbamate\$, m.p. 177°] [oxidised to a ketone (semicarbazone, m.p. 237°)], and much oily material.

H. B.

Diene synthesis. XIII. Diene syntheses of 1:5:5-trimethyl- $\Delta^{1:3}$ -cyclopentadiene and α and β-camphylic acids with maleic anhydride and acetylenedicarboxylic acid. K. ALDER and E. WINDEMUTH (Annalen, 1939, 543, 56-78).-1:5:5-Trimethyl- $\Delta^{1:3}$ -cyclopentadiene (I)(:CH·CO)₂O in Et₂O give endocis-3-methyl-3: 6-endoisopropylidene-Δ4-letrahydrophthalic anhydride, m.p. 137°; the free acid, m.p. 173° (decomp.) [with Br in aq. Na₂CO₃ affords a bromolactonemonocarboxylic acid, C₁₂H₁₅O₄Br, m.p. 208° (Me ester, m.p. 130°), and a little of an ? isomeride, m.p. 215°], is reduced (H₂, PtO₂, AcOH) to endocis-3-methyl-3: 6-endoisopropylidenehexahydrophthalic acid, m.p. 173° (decomp.) (anhydride, m.p. 171°), which is rearranged by boiling MeOH-NaOMe to the trans-acid, m.p. 236-237°. (C·CO₂Me)₂ and (I) in Et₂O at 90—100° give Me₂ 3 - methyl - 3: 6 - endoisopropylidene - 3: 6 - dihydrophthalate, b.p. 142—143°/12 mm., reduced (H₂, colloidal Pd, MeOH) to the Me₂ ester, b.p. 143—144° 12 mm., of 3-methyl-3: 6-endoisopropylidene- Δ^1 -tetrahydrophthalic acid (II), m.p. 172° (anhydride, m.p. 115—116°). The adduct from (I) and (:C·CO₂H)₂ in Et₂O at 120—130° is reduced (H₂, colloidal Pd, Na salt in H₂O) to (II), which is oxidised (43% HNO₃ at 120—130°) to dl-camphoric acid. The trimethylcyclopentadiene, C_8H_{12} (III) (see above), and (:CH·CO)₂O in Et₂O give a trimethyl-3:6-endomethylene- Δ^4 -tetrahydrophthalic anhydride, m.p. 95—96° [free acid, m.p. 158—159°, with Br-aq. Na₂CO₃ affords bromolactonemonocarboxylic acid,

 $C_{12}H_{15}O_4Br$, m.p. 193—194° (decomp.) (Me ester, m.p. 133—134°)], reduced (H₂, PtO₂, AcOH) to the -hexahydrophthalic anhydride (IV), m.p. 185—186°, and oxidised (KMnO₄) to a dilactonic ether, $C_{12}H_{14}O_5$, m.p. 235—236° (cf. A., 1936, 1250). The adduct, m.p. 175—176°, from (III) and ($:C\cdot CO_2H$)₂ in Et₂O is reduced (Pd; as above) to a trimethyl-3:6-endomethylene- Δ^1 -tetrahydrophthalic acid (V), m.p. 178—179° (anhydride, m.p. 61—62°), further reduced (H₂, PtO₂, AcOH) to (IV) (as acid). The Et₂ ester, b.p. 182—183°/17 mm., of (V) is obtained by reduction (H₂, colloidal Pd, MeOH) of the adduct, b.p. 174—175°/20 mm., from (III) and ($:C\cdot CO_2Et$)₂ at 260—280°.

Me α-camphylate (VI) and (:CH-CO)₂O in boiling C_6H_6 give endocis-6-carbomethoxy-3-methyl-3: 6-endoisopropylidene-Δ⁴-tetrahydrophthalic anhydride, m.p. 115° [corresponding acid, m.p. 195°, converted by Br in H₂O into a bromolactonemonocarboxylic acid, $C_{14}H_{17}O_6Br$, m.p. 185° (*Me* ester, m.p. 172°)], reduced $(H_2, PtO_2, AcOH)$ to the -hexahydrophthalic anhydride, m.p. $94-95^{\circ}$. (${\rm CCO_2Me}$)₂ and (VI) in Et₂O at 110—115° afford Me_3 4-methyl-1: 4-endoisopropylidene-1:4-dihydrobenzene-1:2:3-tricarboxylate, m.p. 72°, reduced (H₂, Pd-CaCO₃, EtOH) to the Δ^2 -tetrahydro-derivative, m.p. $45-46^\circ$; this is hydrolysed (20% MeOH–KOH) to a Me H_2 ester, m.p. 204°, differing from the isomeric 1-Me H_2 ester, m.p. 210° (anhydride, m.p. 119°), obtained by reduction (Pd colloid) of the adduct (as Na salt) from (VI) and (${\rm :C \cdot CO_2 H})_2$. Me β -camphylate and (${\rm :CH \cdot CO})_2$ O in ${\rm C_6 H_6}$ at 120° give endocis-4-carbomethoxy-3-methyl-3:6-endoisopropylidene- Δ^4 -tetrahydrophthalic anhydride, m.p. 132-133° [corresponding acid, m.p. 165°, whence a non-homogeneous bromolactonic acid, C₁₄H₁₇O₆Br, m.p. 219° (decomp.), and material, m.p. 230°], which could not be reduced (H₂, PtO₂, AcOH) and, like all the Δ^4 -derivatives (above), does not add PhN₃.

Constituents of the herb Gratiola officinalis. I. K. MAURER, K. MEIER, and G. REIFF (Ber., 1939, **72**, [B], 1870—1873; cf. Retzlaff, A., 1903, i, 107).— Percolation of G. officinalis with Et₂O at room temp., evaporation of the extract to dryness, and extraction of the residue with light petroleum gives gratiolon (I), $C_{30}H_{48}O_3$, m.p. $311-312^\circ$ (block), $[\alpha]_D^{22}+5\cdot7^\circ$ in C_5H_5N . (I) contains CO_2H since it is converted by CH_2N_2 in Et_2O into the Me ester, m.p. 220° , $[\alpha]_D^{22}$ +50° in CHCl₂, which is hydrolysed with difficulty and hence contains CO₂Me united to tert. C. Gratiolon Me ester acetate has m.p. 197°. (I) and NaOAc in boiling Ac₂O afford gratiolon acetate, m.p. 268°, [α]¹⁹_p +20.4° in CHCl₃. (I) contains one double linking since it gives a yellow colour with C(NO2)4 in CHCl3 and absorbs O from BzO₂H in CHCl₃-MeOH. Bromination in MeOH-CCl₄ of (I) affords gratiolonbromolactone (II), C₃₀H₄₇O₃Br, m.p. 257°, feebly dextrorotatory in dioxan, which does not give a colour with C(NO₂)₄; it is re-converted into (I) by Zn dust in boiling COMe₂. The acetate has m.p. 186°, $[\alpha]_D^{21} + 12.5$ ° in CHCl₃. Hydrolysis of (I) gives a halogen-free compound, m.p. 239° (decomp.), which has not been investigated further. (II) is oxidised (CrO₃ in AcOH) at room temp. to the Br-ketone, m.p. 232° (oxime, $C_{30}H_{46}O_3NBr$, m.p. 188°, $[\alpha]_D^{21} = 5.5$ ° in CHCl₃). (I) appears to be a new member of the triterpene group. H. W.

Constituents of Lindera strychnifolia, Vill., root. III. H. KONDO and K. TAKEDA (J. Pharm. Soc., Japan, 1939, 59, 162—168).—Extraction of the root, best with Et₂O, gives linderan (I) (0.11%), m.p. 187° (decomp.), linderen (II) (0·14%), linderen (= l-borneol) (0·1%), esters, b.p. $100-145^{\circ}/5$ mm. (0·46%), and a fraction, b.p. $145-170^{\circ}/5$ mm. (0.37%). The formula of (I) is uncertain; $K_2Cr_2O_7$ and KOH-EtOH give indefinite substances; Hg(OAc)2 (equiv. to 2 H) gives an oily acid and a neutral substance, m.p. 197°; O₃ gives CH₂O and MeCHO; H₂-Pd-C gives 55% of a neutral and 45% of an acidic substance, the latter being the sole product from H_2 -PtO₂. (I) thus contains a furan ring. (II) is $C_{15}H_{18}O_2$ or $C_{16}H_{20}O_2$, has $[a]_D$ $-15\cdot14^\circ$, gives a maleic anhydride adduct, is stable to KOH-EtOH or CO-reagents and, nearly so, to Hg(OAc)₂; O₃ gives CU-reagents and, nearly so, to $\mathrm{Hg}(\mathrm{OAc})_2$; $\mathrm{O_3}$ gives $\mathrm{CH_2O}$ and two acids; $\mathrm{CrO_3}$ gives an acid, $\mathrm{C_{14}H_{18}O_5}$, decomp. 192—195°, and four neutral substances, $\mathrm{C_{15}H_{18}O_4}$, m.p. 140°, $\mathrm{C_{15}H_{16}O_2}$, m.p. 108°, m.p. \sim 62°, and decomp. \sim 195—200°; dehydrogenation by Pdasbestos at 250—300° gives an azulene, $\mathrm{C_{15}H_{16}}$, $+0.66\mathrm{H_2O}$, m.p. 105—106° (picrate, decomp. 136°; styphnate, decomp. 134°); $\mathrm{H_2-PtO_2}$ gives substances, $\mathrm{C_{15}H_{26}O}$, b.p. 130—135°/5 mm., $[\alpha]_{23}^{23}$ —53.07°, and $\mathrm{C_{15}H_{24(26)}O_2}$, m.p. 118—119°, $[\alpha]_{2}^{21.5}$ —34.78° (1 active H; acetate, m.p. 77—79°, prepared by AcCl; benzoate. H; acetate, m.p. 77-79°, prepared by AcCl; benzoate, m.p. 169—170°; Ac₂O gives an isomeric alcohol, m.p. 77~79°).

Colouring matters of Penicillium carminoviolaceum, Biourge. Production of ergosterol by the mould. H. G. HIND (Biochem. J., 1940, 34, 67—72).—The mycelium of this mould when grown on an inorg. medium containing glycerol (or carbohydrate) as source of C contains two pigments, carviolin, C₁₆H₁₂O₆, m.p. 286° (triacetate, m.p. 210°; Me₃ ether, m.p. 186°; tribenzoate, m.p. 240°; leucocarviolin penta-acetate, m.p. 247°), and carviolacin, C₂₀H₁₆O₇, m.p. 243° (decomp.) (acetate, m.p. 230°; Me₃ ether, m.p. 214—215°), together with ergosterol. The two pigments are both Me₁ ethers and are probably complex hydroxyanthraquinones. Distillation of carviolacin with Zn in H₂ yields 2-methylanthracene.

Saponins and sterols. XIII. Ursolic acid. K. Fujii and S. Osumi (J. Pharm. Soc., 1939, 59, 142-143).— α -Ursolic acid (I), m.p. $284-285^{\circ}$, contains $\sim 10^{\circ}$ /6 of uvaol (II), $C_{30}H_{50}O_2$, m.p. 233° (diacetate, m.p. $157-159^{\circ}$), and, when pure, melts at $291-292^{\circ}$ and gives only the Me ester (III), m.p. 172° . A 1:1 mixture of (II) and (III) melts sharply at $231-233^{\circ}$, and the substance, m.p. 230° , thought previously to be another Me ester of (I), was a mixture of (II) and (III).

Sterols. LXXX. Reactions of chlorogenin. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 3479—3482).—Chlorogenone is identical with the diketone obtained from diosgenin. Chlorogenin resembles tigogenin more closely than it does sarsasapogenin. It is unchanged by HCl-EtOH or Zn-Hg-EtOH-HCl. Hydrogenation (PtO₂)

in AcOH at 70°/3 atm. gives dihydrochlorogenin, m.p. 233—235° (tri-3:5-dinitrobenzoate, m.p. 210—212°), stable to Br or SeO₂, oxidised by ${\rm CrO_3}$ —AcOH at room temp. to (?) 3:6-dehydroanhydrotetrahydrochlorogenoic acid, ${\rm C_{27}H_{40}O_5}$, m.p. 202—204° [disemicarbazone, m.p. 240° (decomp.); Me_1 ester, m.p. 156·5—158°]. Chlorogenin diacetate with Br and a trace of HBr in AcOH gives bromochlorogenin diacetate, m.p. 200° (slight decomp.), and with ${\rm CrO_3}$ —AcOH at 90—95° gives chlorogenin lactone diacetate, m.p. 247—250°, and thence chlorogenin lactone, ${\rm C_{22}H_{34}O_4}$, m.p. 250—251·5° (dibenzoate, m.p. 278—280°), further oxidised at 25° to a diketo-lactone, ${\rm C_{22}H_{30}O_4}$, m.p. 243—245°. Deoxychlorogenin and ${\rm H_2}$ —PtO₂ in AcOH at 25°/3 atm. give dihydrodeoxytigogenin.

Sterols. LXXXV. Oxidation of sarsasapogenin acetate with potassium permanganate. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1940, **62**, 222—223).—KMnO₄ oxidises sarsasapogenin acetate in aq. AcOH at 20° or 50—70° to products, which by hydrolysis yield sarsasapogenin lactone, the CO-acid, $C_{22}H_{34}O_{2}$, and sarsasapogenic aicd. No oxidation occurs in Na₂CO₃-aq. C_5H_5N at 70° or in boiling C_5H_5N . Sarsasapogenin lactone acetate is stable to KMnO₄ in aq. AcOH. Oxidation thus probably occurs by two independent routes.

Constituents of resins. XIV. Crystalline constituents of Cryptomeria resin. II. G. Fukui and T. Chikamori (J. Pharm. Soc. Japan, 1939, 59, 158—162).—Substance A (ibid., 1937, 57, 92) is a phenolic ketone (I), $C_{20}H_{28}O_2$, m.p. 283—284° (decomp.), $[\sigma]_{D}^{18} + 34 \cdot 3^{\circ}$ in $C_{5}H_{5}N$ {Me ether (II), m.p. 137° , $[\alpha]_{D}^{12} + 31 \cdot 4^{\circ}$ [oxime, decomp. 166° (acetate, m.p. $166-107^{\circ}$); (N·OH)₂-derivative, decomp. 180° ; semicarbazone, decomp. 254°]; benzoate, m.p. 186° , $[\alpha]_{D}^{124} + 29 \cdot 6^{\circ}$; acetate, m.p. 165° , $[\alpha]_{D}^{17} + 26 \cdot 7^{\circ}$; oxime, decomp. $176 \cdot 5^{\circ}$; semicarbazone, decomp. 246°), sol. in $\Rightarrow 5^{\circ}$ % NaOH. Clemmensen or Wolff-Kishner reduction of (II) gives an oil, b.p. $165-170^{\circ}/0 \cdot 5$ mm., dehydrogenated by Se at $280-320^{\circ}$ to (? 8-) methoxyretene (III). Hinokiol and (I) have an absorption max. at 3500 A. and are isomeric cyclic ketones; both substances and (II) give the CHI₃ reaction, but this is due to the Pr^{β} . R. S. C.

Constituents of Didymocarpus pedicellata. IV. Isolation of two new colouring matters and their relationship to pedicin. S. Warsi and S. Siddigui (J. Indian Chem. Soc., 1939, 16, 519—524).—Extraction of D. pedicellata leaves with ligroin and Et₂O yields \$\psi\$-isopedicin, C₁₈H₁₈O₆, m.p. 126°, also obtained from pedicin and HCl in EtOH or from isopedicin on keeping. Pedicin, C₃₇H₃₆O₁₁, m.p. 190° was also obtained and this with HNO₃ in AcOH gives a substance, m.p. 164—166°. F. R. G.

Lignin. XXV. Model experiments on the lignin question. K. Freudenberg, H. Richtzenhain, E. Flickinger, and K. Engler (Ber., 1939, 72, [B], 1805—1809).—The view is expressed that the main bulk of pine lignin (24% out of 27% present in wood) is pre-formed in the wood by physiological union and condensation from phenylpropane units and exists as a product of high mol. wt.; only

a small proportion can be present in a simple form. At least 90% of pine lignin is immediately insol. in alkali and org. media, does not contain phenolic OH, and gives veratric (I) and isohemipinic (II) acid when treated with alkali and then methylated and oxidised. The formation of (II) is most characteristic of pine lignin. a-Ethoxypropiovanillone is scarcely affected by the treatment used in preparing lignin by the cuproxam process. The corresponding carbinol gives a brown amorphous product resembling lignin in appearance but sol. in alkali and in org. media; after methylation it affords (I) but not (II). Coniferaldehyde or the corresponding ethylene oxide (as glucoside) behaves similarly. The bulk of the lignin is therefore pre-formed in the wood and not produced by chemical reagents during its isolation or by post-mortal ageing in the wood. H. W. mortal ageing in the wood.

Lignin. XXVI. Stilbene derivative from sulphite liquor. H. RICHTZENHAIN and C. VON HOFE (Ber., 1939, **72**, [B], 1890—1892).—Treatment of pine wood sulphite liquor with alkali under pressure gives 4:4'-dihydroxy-3:3'-dimethoxystilbene m.p. 212-213°. The yield varies greatly and under the most favourable conditions attains 1% of the lignin; in other cases only traces are formed. Since (I) is not present before the treatment with alkali it is assumed to be formed during this treatment from some component of the liquor which, however, is not vanillin simultaneously produced. (I) is converted by NaOH-Me₂SO₄ into 3:3':4:4'-tetra-methoxystilbene (II), m.p. 153°, and by C₅H₅N-Ac₂O into 4:4'-diacetoxy-3:3'-dimethoxystilbene, m.p. 226°; this is reduced (Pd-BaSO₄ in AcOH) to 4:4[†]-diacet-oxy-3:3'-dimethoxydibenzyl, m.p. 140—141°, which is hydrolysed to 4:4'-dihydroxy-3:3'-dimethoxy-dibenzyl, m.p. 158°. Syntheses of (I) from tristhiovanillin and of (II) from thioveratraldehyde are recorded. Oxidation (KMnO₄ in aq. COMe₂) of (II) yields veratric acid.

Enzymic degradation of polymeric hydrocarbons. III. Behaviour of lime wood toward ethylenediamine-copper oxide solution and enzymic degradation of the main fractions. T. PLOETZ (Ber., 1939, 72, [B], 1885—1889).—Treatment of the wood (I) of *Tilia tomentosa*, which has been extracted with EtOH-C₆H₆, with (CH₂·NH₂)₂-Cu(OH)₂ gives a residue (II) (61%). Acidification of the extract gives 12.7% as ppt. (III). (I) and (II) have almost the same elementary composition but (I) contains cellulose 45.5%, pentoses 26.1%, and lignin 18% whereas the corresponding data for (II) are 60.5, 8.67, and 20.53%. Lignins obtained from (I) and (II) differ in composition (III) is a yellow, non-homogeneous powder which gives 26·14% of lignin with H₂SO₄. (III) consists of lignin and a methoxylated compound which does not pass into Klason's lignin. (II) and (III) are free from N. (I) is very resistant to an enzyme prep. from Helix pomatia containing cellulase, lichenase, and cellobiase; after 8 days only 14% has been dissolved and 35% of the sugars consists of pentoses. (II) is likewise very resistant and after very protracted action only 18.6% of the material passes into solution; this comprises the whole of the pentoses contained in (II).

(III) is relatively easily degraded. Pentoses constitute 70% of the dissolved sugar. H. W.

Constituents of derris root. III. T. M. MEIJER (Rec. trav. chim., 1939, 58, 1119—1123; cf. A., 1939, II, 484).—Derride and KOH-EtOH give 3-hydroxy-coumarone-4-carboxylic acid, m.p. 214° (decomp.). Derridenone and H_2O_2 -aq. KOH give furan-2: 3-dicarboxylic acid, m.p. 224—225° (decomp.), and a substance, m.p. 151—152°. Dehydroderride and KMnO₄-COMe₂ give rissic acid and 2:4:5:1-OH·C₆H₃(OMe)₂·CO₂H. A. T. P.

Reaction between quinones and metallic enolates. X. Trimethyl[benzo]quinone and enolates of β -diketones. XI. Duroquinone and the enolates of cyanoacetic ester and of β -diketones. L. I. SMITH and E. W. KAISER (J. Amer. Chem. Soc., 1940, **62**, 133—138, 138—140).—X. Addition of trimethyl-p-benzoquinone (I) in EtOH to CH₂Ac₂ and NaOEt-EtOH at 0°-room temp. gives a 72% γ -3:6-dihydroxy-2:4:5-trimethylphenylacetylacetone (II), m.p. 129-130° [with NHPh·NH₂ gives a product, m.p. 205—206° (decomp.)], converted by HCl-EtOH into 4-hydroxy-1:3:5:6-tetramethylcoumarone (III), m.p. 138—139° (acetate, m.p. 91—92°). Ac₂O and a drop of H₂SO₄ at room temp. convert (II) exothermally into a mixture consisting mainly of 3:6-diacetoxy-2:4:5-trimethylphenylacetone, m.p. 135·5—136° [oxime, m.p. 172— 175° (decomp.)], cyclised by hot HCl or by NaOH at room temp. to (III). Addition of (II) to (Pr^{\beta}CO)₂O $-H_2SO_4$ (trace) (room temp.) or $(CH_2CI\cdot CO)_2O$ (45-50°) causes acylation of the 3-OH and migration of an Ac from the diketone portion of the mol. to the neighbouring 6-OH; the products are thus 6acetoxy-3-isobutyroxy-, m.p. 127·5—128°, and -3-chloroacetoxy-, m.p. 162—163°, -2:4:5-trimethyl-phenylacetone, respectively; the migration occurs by intermediate formation of a 1-hydroxydihydrobenz-furan. COMe·CH₂·COPr^{\$\beta\$}, (I), and NaOEt–EtOH give $\gamma - 3 : 6$ -dihydroxy-2 : 4:5-trimethylphenyl- ε -methyln-hexane-βδ-dione (81%), m.p. 131.5—132.5° [with NHPh·NH₂ gives a product, m.p. 167° (decomp.)], converted by Ac2O and a drop of H2SO4 into a mixcontaining 3-acetoxy-6-isobutyroxy-2:4:5-trimethylphenylacetone, m.p. 114—115·5° [oxime, m.p. 165—170° (decomp.)], by hot, conc. HCl into (III), and by hot, conc. HCl-EtOH into (probably) a mixture of (III) and 4-hydroxy-3:5:6-trimethyl-1isopropylcoumarone. With CH₂Ac·COPr^a, (I) gives (NaOEt-EtOH) an oil, with COMe CH, COPh gives a trace of a solid, m.p. 110-120°, and does not react with CH₂Bz₂. Under certain conditions, (I) and CHNaAc·CO₂Et in EtOH give 4-hydroxy-2-acetyl-3:5:6-trimethylcoumaranone, m.p. 126.5—128° (gives no ether or oxime), converted by distillation in steam into (III) and 4-hydroxy-3:5:6-trimethylcoumaranone (cf. A., 1936, 732).

XI. The driving force in the formation of heterocyclic O compounds from duroquinone (IV) and ester enolates is elimination of EtOH in the ring-closure. The earlier stages postulated are reversible and attempts to add CH₂Ac₂ under various conditions failed. The Na derivative of CN·CH₂·CO₂Me and (IV) in boiling C₆H₆ (7 days) give 6-hydroxy-3-cyano-5: 7:8-

trimethylcoumarin, m.p. 261.5— 263° (acetate, m.p. 227— 228°), stable to H_2O_2 but hydrolysed by 81% H_2SO_4 at 100° to 6-hydroxy-3-carbamyl-5:7:8-trimethylcoumarin, m.p. 288— 290° (decomp.; tube), 302° (decomp.; block) (? Ac_2 derivative, m.p. 243— 244.5°), resistant to further hydrolysis, the structure of which is proved by synthesis from the corresponding acid by way of the acid chloride. R. S. C.

Constitution of usnic acid.
Y. ASAHINA (Proc. Imp. Acad.
Tokyo, 1939, 15, 311—314).—
CO The reactions and degradations of usnic acid and its derivatives are discussed, and the annexed structure is proposed as most fully explaining the known properties of usnic acid.

J. D. R.

Syntheses of chroman derivatives with the ring system of α -tocopherol. II. W. John and P. Gunther. III. Introduction of a side-chain into hydroxytetramethylchroman. W. and M. Schmeil (Ber., 1939, 72, [B], 1649—1653, 1653—1656).—II. Trimethylquinol (I) is converted into 3:6-dimethoxy-2:4:5-trimethylbenzaldehyde, which with aq. NaOH and 70% COMe₂ at 15—20° yields 3:6-dimethoxy-2:4:5-trimethylbenzylidene-acetone (II), m.p. 61—62°, with some tetramethoxyhexamethyldibenzylideneacetone, m.p. 188°. (I) is hydrogenated (Pd sponge in EtOH) to 3:6-dimethoxy-2:4:5-trimethylbenzylacetone (III), m.p. 76°, which when treated successively with MgMeI in Et₂O and HBr (d 1.49) in boiling AcOH yields 6-hydroxy-2:2:5:7:8-pentamethylchroman, m.p. The process appears unsuitable for the introduction of long side-chains at $C_{(2)}$. Mg dodecyl bromide and (III) readily give the corresponding carbinol, with which ring-closure could not be achieved satisfactorily by HBr or HI in AcOH, AlCl₃, or AlBr₃ in C₆H₆, or by KI, red P, and H₃PO₄. HBr in boiling AcOH deetherifies (III) but reduction occurs simultaneously with production of 6-hydroxy-2:5:7:8-tetramethylchroman, m.p. 145°. (I) is transformed by $\rm Et_2SO_4$ and NaOH in EtOH into the $\it Et_2$ ether, m.p. 34° (etherification with EtI gives a halogenated material, m.p. 82°), which is converted into 3:6-diethoxy-2:4:5-trimethylbenzaldehyde, m.p. 100.5°; the dihydroxy-, m.p. 149°, and monohydroxymonoethoxy-, m.p. 99°, -aldehydes are formed as by-products.

III. 6-Hydroxy-2:5:7:8-tetramethylchroman is oxidised by FeCl₃ or, preferably, by AgOAc in boiling MeOH to 3:4:6-trimethyl-1-γ-hydroxybutyl-p-benzo-quinone, m.p. 79°, which is reduced by alkaline Na₂S₂O₄ to the corresponding quinol, m.p. 138°, and is oxidised by CrO₃ in AcOH at room temp.—30° to 3:4:6-trimethyl-1-γ-ketobutyl-p-benzoquinone (IV), m.p. 56°. This is converted by Zn dust in AcOH at 100° into 3:4:6-trimethyl-1-γ-ketobutylquinol, m.p. 122°, or by reductive acetylation into the corresponding diacetate (V), m.p. 94°. The corresponding dibenzoate (VI), m.p. 93°, is almost quantitatively oxidised by CrO₃ in AcOH at 30° to the benzoate, m.p. 143°, of (IV). Gradual addition of (IV) in Et₂O to a boiling solution of MgMeI in Et₂Q affords 6-hydroxy-2:2:5:7:8-pentamethylchroman, m.p. 93°. Analo-

gously Mg dodecyl bromide gives 6-hydroxy-2:5:7:8-tetramethyl-2-dodecylchroman, isolated as the allophanate, m.p. 180°. The Grignard compounds and (V) or (VI) give very sparingly sol., additive compounds which have not been investigated. H. W.

Vitamin-E. XXI. Dealkylation of hydroquinone ethers related to the tocopherols. L. I. SMITH, H. E. UNGNADE, and W. B. IRWIN. XXII. Reaction between Grignard reagents and coumarins and hydrocoumarins. L. I. SMITH and P. M. Ruoff (J. Amer. Chem. Soc., 1940, 62, 142— 144, 145—148).—XXI. 3:6:2:4:5:1-(OMe)₂C₆Me₃·[CH₂]₂·COMe and MgMeI give β -3: 6-dimethoxy-2: 4: 5-trimethylphenylethyldimethylcarbinol (I), an oil [3:5-dinitrobenzoate (II), m.p. 148—148·5°], demethylated by treatment with MgMeI-Et₂O and subsequent heating at 180° to the 3:6-(OH)₂-compound, which is reversibly oxidised by air to the p-quinone (III) and gives an oily triacetate, converted by hot HNO3-EtOH into the red chroman-o-quinone. 6-Hydroxy-2:2:5:7:8pentamethylchroman and AgÖAc-MeOH give the quinone (III), an oil (lit. m.p. 62°), which by cautious

reductive methylation yields (I), identified as (II). XXII. When treated with MgEtBr in Et₂O, coumarin suffers ring-fission, giving α -o-hydroxyphenyl- γ -ethyl- Δ^{α} -n-pentan- γ -ol, m.p. 67—68°, which with H₂-PtO₂ in EtOH gives the saturated alcohol (also obtained from dihydrocoumarin by MgEtBr) and, when boiled in AcOH and distilled, gives 2:2-diethyl- Δ^{3} -chromene, b.p. 125— $126^{\circ}/14$ mm., and other products. α -o-Hydroxyphenyl- γ -methyl- Δ^{α} -n-butan- γ -ol (prep. from coumarin), m.p. 53— 55° , α -o-hydroxyphenyl- γ -n-butyl-n-heptan- γ -ol (prep. from dihydrocoumarin), m.p. 67— $68\cdot5^{\circ}$, 2:2-dimethyl-, b.p. 96— $97^{\circ}/15$ mm., and 2:2-di-n-butyl- Δ^{3} -chromene, b.p. 164— $165^{\circ}/15$ mm., and 2:2-di-n-butylchroman, b.p. 165— $168^{\circ}/8$ mm., are similarly prepared.

R. S. C. Structure of the red oxidation products of tocopherols and related substances. L. I. SMITH, W. B. IRWIN, and H. E. UNGNADE (Science, 1939, 90, 334—335).—The red cryst. compound, m.p. 109—110°, obtained by the action of AgNO₃ or HNO₃ on 6-hydroxy-2:2:5:7:8-pentamethylchroman, is CMe:CMe·C·O·CMe₂ (I), i.e., an o- and not a p-quinone. o-C₆H₄(NH₂)₂ and (I) give a phenazine, m.p. 151—152°. The condensation products of o-xyloquinol and isoprene give (I) with AgNO₃ or HNO₃. The red o-quinone, and its phenazine, from α-tocopherol are oils. 5-Hydroxycoumarans and related substances and o-C₆H₄(OH)₂ form red o-quinones in the Furter-Meyer reaction (A., 1939, III, 404).

Geometrical inversion in the acids derived from the coumarins. VII. Behaviour of acetylcoumaric acids. P. S. RAO, V. D. N. SASTRI, and T. R. SESHADRI (Proc. Indian Acad. Sci., 1939, 10, A, 267—274).—Acetylcoumaric acid (I), m.p. 154—155°, is best obtained by treating coumaric acid with Ac₂O and anhyd. NaOAc at 100°; at higher temp. the yields are less. Similarly prepared are acetyl-4-methyl- (II), m.p. 155°, and acetyl-5-nitro- (III),

m.p. 217°, -coumaric acid, acetylpsoralic (IV), m.p. 180—181°, and acetylisopsoralic acid (V), m.p. 210— 211°. (I) is little affected by exposure to sunlight for 48 hr. but is completely transformed after 200 hr. into coumarin (VI). With (II) 80—85% inversion is produced in 200 hr. (III) gives 5% of 6-nitrocoumarin after 24 hr. and undergoes complete conversion after 200 hr. (IV) and (V) do not afford psoralene or isopsoralene after 24 hr. In all experiments small amounts of amorphous, sparingly sol., complex products are formed probably owing to polymerisation. (I) is transformed at ~200° into (VI), CO₂, AcOH, and resinous matter from which a definite compound could not be isolated. At 210° behaves similarly. At 255° (III) affords 6-nitro-coumarin in 75% yield. (IV) and (V) at 230° and 240° suffer ~75% and ~80% conversion, respect-ively. (I) is transformed by HgCl₂ in boiling EtOH or H₂O into coumarin Hg^{II} chloride, m.p. 164°, converted by boiling dil. HCl into (VI). When similarly treated (II), (III), (IV), and (V) afford the corresponding coumarins in nearly theoretical yield.

Condensation of chalkones with flavanones. B. N. Kaplash, R. C. Shaw, and T. S. Wheeler (Current Sci., 1939, 8, 512).—Ph styryl ketone, 2-phenyl-2:3-dihydro-1:4-benzopyrone, and 30% NaOH or NaNH₂ or Na give 2-phenyl-3-phenacylbenzyl-2:3-dihydro-1:4-benzopyrone. J. L. D.

Demethylation of wogonin. S. Hattori (Ber., 1939, 72, [B], 1914—1917; cf. A., 1931, 493: Shah et al., A., 1938, II, 334).—When wogonin (I) (5:7-dihydroxy-8-methoxyflavone) is heated for \Rightarrow 5 min. with gently boiling HI (d 1·7; 15—20 parts) or at 130—135° for 30 min. the main product is 5:7:8-trihydroxyflavone (II). This is also obtained by short, gentle boiling of (I) with Ac₂O–HI (d 1·7). If (I) is heated at 145—150° or 150—155° with HI (d 1·7)—Ac₂O in the same ratio the product is 5:6:7-trihydroxyflavone (III). HI alone behaves similarly but attempts to isomerise (II) to (III) by boiling HI with or without Ac₂O were unsuccessful. Under mild conditions demethylation is possible without ring-fission and subsequent re-formation of the pyrone ring in a reverse direction. H. W.

Orobol. C. CHARAUX and J. RABATÉ (Bull. Soc. Chim. biol., 1939, 21, 1330—1333).—Orobol is 5:7:3':4'-tetrahydroxyisoflavone since boiling aq. 30% KOH gives phloroglucinol and α-homoprotocatechuic acid.

P. G. M.

Preparation of substituted xanthones. A. Lespagnol, J. Bertrand, and J. Dupas (Bull. Socchim., 1939, [v], 6, 1625—1629).—o-OH·C₆H₄·CO₂H or o-cresotic acid and thymol-Ac₂O afford xanthone or 1:5-dimethylxanthone, m.p. 165° (1:4:1':4'-tetramethyldixanthylcarbamide), respectively, and not 1-methyl- and 1:5-dimethyl-4-isopropylxanthene (loc. cit.). Thymol and o-C₆H₄Cl·CO₂H-MeOH at 100° (bath), then with Cu at 150°, then 200°, give thymylsalicylic acid, m.p. 98°, converted by H₂SO₄ at 100° (bath) into 1-methyl-4-isopropylxanthone, m.p. 89°; reduction (Na-Hg) gives the xanthhydrol, m.p. ~85°, converted into 1:1'-dimethyl-4:4'-diisopropyl-dixanthylcarbamide, m.p. 243°. A. T. P.

Attempted synthesis of morphenol. A. Burger and S. Avakian (J. Amer. Chem. Soc., 1940, 62, 226—227).—1-Methoxydibenzfuran-4-carboxylic acid and SOCl₂ give the acid chloride, m.p. 162·5—163·5°, and thence 1-methoxy-4-dibenzfuryl CHN₂ ketone, m.p. 150—151° (decomp.), (aq. NH₃-dioxan), 1-methoxy-4-dibenzfuryl-acetamide, m.p. 203°, and -acetic acid (I), m.p. 223—224°. Attempted ring-closure of (I) to morphenol by various reagents failed. R. S. C.

Fission of heterocyclic compounds of coal tar. O. Kruber (Ber., 1939, 72, [B], 1878).—The statement of Weissgerber and Seidler (A., 1927, 1198) that diphenylene oxide is stable to KOH at 300° is erroneous.

H. W.

1:2-diphenyldihydroisobenz-Synthesis of furans, 1:2-diphenylisobenzfurans, and o-dibenzoylbenzene derivatives from the diene addition products to dibenzoylethylene. R. Adams and M. H. Gold (J. Amer. Chem. Soc., 1940, 62, 56-61).—The reactions described below render readily accessible by novel methods o-C₆H₄(COAr)₂, a variety of 1:2-diarylisobenzfurans and their H₂derivatives, and various C₁₀H₈ derivatives. transor cis-(:CHBz)₂ and (·CH:CHMe)₂ in boiling, abs. EtOH give 4:5-dibenzoyl-1:2-dimethyl- Δ^1 -cyclohexene (I), m.p. 111—111.5° [dibromide, m.p. 170—171° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 226— 228° (decomp.)], and a little 1:2-diphenyl-4:5-dimethyl-3: 6-dihydroisobenzfuran (II), m.p. 225—226°, fluorescent in solution, obtained in 99% yield from (I) by a little syrupy H₃PO₄ in boiling Ac₂O. Br and NaOAc in AcOH convert (II) into 4:5-dibenzoyl-oxylene (III), m.p. 143-144°, oxidised by alkaline KMnO₄ in aq. C₅H₅N to 4:5-dibenzoyl-o-toluic acid, m.p. 196—197°. 1:2-Diphenyl-4:5-dimethylisobenzfuran (IV), m.p. 187—188°, is obtained in 97% yield from (III) by Zn dust (activated by dil. HCl) in NaOH-95% EtOH or, less well, by converting (II) into 4:5-dibromo-1:2-diphenyl-4:5-dimethyl-3:4:5:6tetrahydroisobenzfuran, m.p. 155—156° (decomp.), by Br-CHCl₃ and boiling this with NaOAc in Ac₂O-AcOH. (:CH·CO)₂O (V) and (IV) in C₆H₆ give 1:4oxido-1:4-diphenyl-6:7-dimethyl-1:2:3:4-tetrahydronaphthalene-2: 3-dicarboxylic anhydride, m.p. 254-255° (decomp.; sealed tube), converted by boiling with HCl-MeOH and subsequently NaOH-EtOH into 1:4-diphenyl-6:7-dimethylnaphthalene - 2:3-dicarb oxylic anhydride, m.p. 324—325°, which with cone. H₂SO₄ at room temp. gives 1:2:3:4-dibenzoylene-G-H₂Control 6:7-dimethylnaphthalene (VI), m.p.

 $\begin{array}{c} \text{C}_{6}\text{H}_{4}\text{-}o \\ \text{CO} \\$

111·5—112° (dibromide, m.p. 148—149°), 1:2-diphenyl-3:6-dihydroisobenzfuran, m.p. 120—121°, 4:5-dibromo-1:2-diphenyl-3:4:5:6-tetrahydroisobenzfuran, m.p. 150—151° (decomp.), unstable,

o- $C_6H_4(COPh)_2$, m.p. 145—146° (lit. 145° to 149°), and 1:2-diphenylisobenzfuran, m.p. 125—126° (lit. 125°, 120—125°); addition of (V) to the furans of this series gives unstable products. cycloPentadiene and

trans-(:CHBz)₂ in C₆H₆ give 4:5-dibenzoyl-3:6-endomethylene- Δ^1 -cyclohexene, m.p. 78—79°, in which the Bz are trans; cis-(:CHBz)₂ gives an isomeric adduct, m.p. 160—161°; neither product yields a furan. M.p. are corr.

Azetidine derivatives. I. 3-Hydroxy-2: 4-di-keto-3-arylazetidines. J. L. RIEBSOMER, H. BURKETT, T. HODGSON, and F. SENOUR (J. Amer. Chem. Soc., 1939, 61, 3491—3493).—OH·CAr(CO₂Et)₂ with NaOEt-CO(NH₂)₂ or NH₃ in EtOH at 115—120° gives 6—38% of 3-hydroxy-2: 4-diketo-3-phenyl-, m.p. 107·5—108°, -p-tolyl-, m.p. 131°, -p-ethylphenyl-, m.p. 105—106°, -2: 5-dimethylphenyl-, m.p. 135—136°, -mesityl-, m.p. 151—152°, and -p-sec.-butylphenyl-, m.p. 89—90°, -azetidine [-trimethyleneimine] (cf. A., 1938, II, 278), which have no hypnotic activity (rabbits) but are rather toxic. Structures are proved by hydrolysis (20% NaOH; gives NH₃) and decarb oxylation (HCl) to the appropriate OH·CHAr·CO₂H.

Preparation of amines. E. J. Schwoegler and H. ADKINS (J. Amer. Chem. Soc., 1939, 61, 3499— 3502).—Favourable conditions are detailed for condensing ROH (R = Et, Pr^a, Pr^β, Bu^a, n-C₆H₁₃, cyclohexyl, CMeEtBu^a, and n-C₁₂H₃₅) with n- $C_5H_{11}\cdot NH_2$, piperidine, $Ph\cdot [CH_2]_2\cdot NH_2$, and/or $CHMeBu^{\beta}\cdot NH_2$. By hydrogenating (Raney Ni) mixtures of the appropriate aldehyde or ketone with liquid NH₃ in MeOH at, usually, 150°/150 atm. are obtained CHMeBu^β·NH₂ 65, CHPhMe·NH₂ 64, CHPh₂·NH₂ 19, CHMeBu^γ·NH₂ 51, CHBu^α₂·NH₂ 72, CHPr^β₂·NH₂ 48, CH₂Ph·NH₂ 48, n-C₇H₁₅·NH₂ 59, and furfurylamine 60%. (CH₂·COMe)₂ gives 59% of 2:5-dimethylpyrrole and 28% of 2:5-dimethylpyrroletine, 113—118° (hydrochloride, m.p. 201—202°), but CH₂Ac₂ gives quantitatively NH₂Ac. Formation of sec. amines during hydrogenation of nitriles is suppressed by excess of NH_3 . Thus, hydrogenation (Raney Ni) of Bu^aCN and n-C₆H₁₃·CN (0·4—0·7 mol.) in liquid NH₃ (0.9—1.6 mol.) at 125° gives 90—95% of primary and <5% of sec. amine. The following are described, m.p. in parentheses being those of the hydrochlorides. 1-β-Ethyl-n-hexylpiperidine, b.p. 141°/42 mm. (162—163°). β-Phenylethyl-n-, b.p. 102°/16 mm. (218°), and -iso-propyl-, b.p. 112°/21 mm. (163—164°), -ethyl-, b.p. 85°/8 mm., and -n-butyl-amine, b.p. 113.5°/6 mm. N-Ethyl-, b.p. 136° (195°), N-n-, b.p. 155° [247° (decomp.)], and N-iso-propyl-, b.p. 146° (167-167.5°), and N-cyclohexyl-, b.p. 118°/30 mm. (phenylurethane, m.p. 110°), -n-amylamine. γ-Ethyl-, b.p. 136° (144—145°), -n-, b.p. 162° (139°), and -iso-propyl-, b.p. 146° (158·5°), -n-butyl-, b.p. 179° (149—150°), -dodecyl-, b.p. 170—172°/12 mm. (124·5—125°), and cyclohexyl-, b.p. $106^{\circ}/21$ mm. $(198-199^{\circ})$, -aminoisohexane. γ -Aminoisohexane, b.p. $108-109^{\circ}$ (139.5°) . γ-Amino-βδ-, b.p. 129° (196°), and -ββ-dimethyl-n-pentane, b.p. 102° [296—297° (sublimes)]. 1-iso-Propylpiperidine picrate, m.p. 153°.

Aliphatic polyamines. IX. J. VAN ALPHEN (Rec. trav. chim., 1939, 58, 1105—1108; cf. A., 1937, II, 520).—Br [CH₂]₄·Br and (CH₂·NH₂)₂,H₂O give 1- β -aminoethylpyrrolidine (I), b.p. 166—167° [picrate, decomp. 219°; phenyl-carbamyl (picrate, m.p. 193°)

and -thiocarbamyl derivative, m.p. 95°]. Its CHPh: derivative, b.p. 176°/17 mm., and Na-EtOH give 1-β-benzylaminoethylpyrrolidine, b.p. 172°/20 mm. (picrate, m.p. ~147°; phenylthiocarbamyl derivative, m.p. 133°).

Oxidative fission of the polyhydroxy sidechains in the sugar condensation products of ethyl acetoacetate and o-phenylenediamine. MÜLER and I. VARGA (Ber., 1939, 72, [B], 1993— 1999).—d-Mannose, finely-divided ZnCl₂, CH, Ac CO, Et, and EtOH at 100° rapidly yield Et 2-methyl-5-d-arabotetrahydroxybutylfuran - 3-carboxylate (I), m.p. 147° , $[\alpha]_{D}^{24}$ $-17\cdot 9^{\circ}$ in MeOH (Ac_4 , m.p. 84° , and Bz_4 , m.p. $107-110^{\circ}$, $[\alpha]_{D}^{24}$ $-9\cdot 5^{\circ}$ in CHCl₃, derivatives), which does not reduce hot Felling's solution but immediately decolorises Br in H₂O or $CHCl_3$ or neutral $KMnO_4$. It is not obtained when dfructose is used; d-galactose does not condense in this direction. Oxidation of (I) by Pb(OAc)4 in AcOH-C₆H₆ yields OH·CH₂·CHO, d-glyceraldehyde, and Et 5-aldehydo-2-methylfuran-3-carboxylate (II), m.p. 56°, $[\alpha]_{\rm p} \pm 0^{\circ}$ (additive compound with NaHSO₃; phenylhydrazone, m.p. 100°; semicarbazone, m.p. 223°; dimedon compound, m.p. 183—184°). (II) is oxidised and hydrolysed by Ag₂O and NaOH in boiling $\rm H_2O$ to 2-methylfuran-3:5-dicarboxylic acid, m.p. 272—274°, decarboxylated above its m.p. to 2-methylfuran-3-carboxylic acid. Et 2-methyl-5d-arabotetrahydroxybutylpyrrole-3-carboxylate, m.p. 148—150°, $[\alpha]_D^{24}$ —24·1° in MeOH, from glucosamine hydrochloride, Na₂CO₃, and CH₂Ac·CO₂Et in aq. COMe₂, is oxidised by Pb(OAc)₄ in C₆H₆ finally at ~35° to Et 5-aldehydo-2-methylpyrrole-3-carboxylate, m.p. $132-133^{\circ}$ [α]_D $\pm 0^{\circ}$ (semicarbazone, m.p. 251°). 2-d-araboTetrahydroxybutylquinoxaline is similarly oxidised to quinoxaline-2-aldehyde, m.p. 108° (phenylhydrazone, m.p. 231°; semicarbazone, m.p. 251°) oxidised to quinoxaline-2-carboxylic acid, m.p. 212° (decomp.).

Syntheses of pyridinium ethanols. III. Further observations. Physiological action of pyridiniumethanols. F. Kröhnke [with A. Schulze] (Ber., 1939, **72**, [B], 2000—2009; cf. A., 1935, 1131).— Benzylpyridinium bromide and furfuraldehyde in EtOH containing NaOH at 0° give β-hydroxy-αphenyl-β-2-furylethylpyridinium bromide, m.p. 201— 202° (decomp.) (corresponding perchlorate, m.p. 108-109°), which becomes successively yellow, greenishbrown, and dark green in conc. HBr and affords a dark brown "picryl chloride reaction." β-Hydroxyβ-2-furylethylpyridinium bromide, m.p. between 183° and 215° greatly dependent on the mode of heating, and the corresponding perchlorate, m.p. 151—152° are obtained similarly. Enolbetaines condense with aldehydes in the absence of alkali. Phenacylpyridinium bromide (I) and m-NO₂·C₆H₄·CHO give an additive compound (1:2), m.p. <130°, which separates into its components when shaken with H₂O and $\mathrm{Et_2O}$. The corresponding compound (1:2) from phenacylpyridinium chloride and m-NO₂·C₆H₄·CHO is formed only in the presence of NHEt2, which also facilitates the formation of β-hydroxy-β-m-nitrophenylethylpyridinium bromide from its components. The yield of β -hydroxy- β -m-hydroxyphenylethylpyridin-

ium bromide, m.p. 268°, from its components is greatly increased by the addition of NaBr. β-Hydroxy-βphenylethyl-α-vinylpyridinium bromide, m.p. 215° (Ac derivative, m.p. 157—158°; corresponding per-chlorate, m.p. 153°), is most simply obtained by warming allyl bromide and C5H5N in EtOH, cooling to 0° and adding PhCHO and 10n-NaOH. β-Hydroxy - β - m - hydroxyphenyl - α - vinylethylpyridinium bromide has m.p. (indef.) 195° (slight decomp.) or, after recrystallisation from 8.8n-HBr, m.p. 236° (decomp.); the perchlorate has m.p. 170°. Allylpyridinium bromide with the requisite aldehyde affords β-hydroxy-β-o-hydroxyphenyl-, m.p. 159—160° after softening, - β -m-nitrophenyl-, m.p. 163—165°, - β -p-nitrophenyl-, m.p. 203° (decomp.), and - β -m-chlorophenyl-, m.p. 200—201°, - α -vinylethylpyridinium β - Hydroxy - $\alpha\beta$ - diphenylethylpyridinium bromide.bromide gives an acetate, m.p. 225° after softening, (also +3H₂O). The following -ethylpyridinium bromides are described: α-m-nitrophenyl-β-o-nitrophenyl-, m.p. 212°; β-hydroxy-α-phenyl-β-0-chlorophenyl-, m.p. 242°; β-hydroxy-β-m-nitrophenyl-α-methyl-, m.p. 212—214°; β-hydroxy-β-p-phenoxyphenyl-, m.p. 98—100°; β-hydroxy-β-m-bromophenyl-, m.p. 232—233° after softening. CH₂Ph-CHO and (\overline{I}) give the known bromide (II) (loc. cit.), the mother-liquors of which give the picrate, m.p. 173.5°, of the diatereoisomeric form. The picrate, m.p. 108—113°, and the per-chlorate dihydrate, m.p. 81—82°, corresponding with (II) have been prepared. CH₂Ph·CH(OH)·CH₂Cl and boiling C_5H_5N yield β -hydroxy- β -benzylethylpyridinium chloride, m.p. 142—143° (corresponding picrate, m.p. 161—162°). 3-Bromo-N-phenacylpyridinium bromide and the requisite aldehyde afford the following -3-bromopyridinium bromides:N-γγγ-trichloro-βhydroxypropyl-, m.p. 215° (decomp.); β-hydroxy-β-m-nitrophenylethyl-, m.p. 261° (decomp.); β-hydroxy- β -phenylethyl-, m.p. 206—208°. m-Nitrophenacylphenyldimethylammonium enolbetaine and PhCHO in EtOH give $\alpha\beta$ -oxido- β -m-nitrobenzoyl- α -phenylethane, m.p. 199°. αβ-Oxido-β-m-nitrobenzoyl-α-m-nitrophenylethane, m.p. 185°, and αβ-oxido-β-p-bromobenzoyl- α -m-nitrophenylethane, m.p. 131°, are described. The physiological action is discussed.

Reactivity of bromine atoms in brominated pyridines; formation of 6-bromo-1-methyl-2-pyridone from 2:6-dibromo-1-methylpyridinium salts. J. P. Wibaut, B. W. Speekman, and H. M. van Wagtendonk (Rec. trav. chim., 1939, 58, 1100—1104; cf. Decker et al., A., 1911, i, 1023).—2:6-Dibromo-pyridine (I) and excess of Me₂SO₄ at 100° (bath) give the -pyridinium methosulphate [KI gives the iodide (II), m.p. 170° (decomp.), also obtained from (I) and MeI at 100°], converted by 10% aq. NaOH at room temp. into 6-bromo-1-methyl-2-pyridone (III), m.p. 105—105.5°. (II) similarly gives (III) and a substance, m.p. 177—178°. (III) and PBr₃ + PBr₅ at 190° give (I). The reaction mechanism is discussed.

Reactivity of bromine atoms in brominated pyridines. Formation of 4-bromo-2:6-diamino-pyridine by action of ammonia on 2:4:6-tri-bromopyridine. J. P. WIBAUT, A. F. BICKEL, and L. BRANDON (Rec. trav. chim., 1939, 58, 1124—

1126).—2:4:6-Tribromopyridine with excess of aq. NH₂ (d 0.9) at 200° or with anhyd. liquid NH₃ (I) at $\sim 130^{\circ}$ (~ 90 atm.) gives 4-bromo-2: 6-diaminopyridine (II), m.p. 126°; with (I), a little dibromo-aminopyridine, m.p. 155—158°, is also obtained. (II) is reduced (H₂-Ni; EtOH + a little aq. NaOH) to 2:6-diaminopyridine.

Synthesis of vitamin- B_6 . II. S. A. HARRIS and K. Folkers (J. Amer. Chem. Soc., 1939, 61, 3307—3310).—Variations and an improvement in the synthesis of vitamin- B_6 hydrochloride (I) (A., 1939, II, 340) are described. Hydrogenation (PtO₂) of the corresponding 5-NO₂-compound in EtOH or AcOH gives 5-amino-3-cyano-6-methyl-4-ethoxymethyl-2-pyridone, m.p. 250—255° (decomp.) [Ac, m.p. 260° (obtained best by effecting reduction in Ac₂O), and $NN-Ac_2$ derivative, m.p. 176° (obtained by an excess of boiling Ac₂O)], converted by PCl₅-POCl₃ at 30° 6-chloro-3-amino-5-cyano-2-methyl-4-ethoxymethylpyridine (II) (16.5%) (Ac derivative, m.p. 134—136°). Hydrogenation (Pd-C-PtO₂) of the Ac_2 derivative, m.p. 90-92°, of (II) in AcOH-NaOAc gives 3-diacetylamino-2-methyl-5-aminomethyl-4ethoxymethylpyridine [picrate, m.p. $190-191^{\circ}$ (36.4%)], hydrolysed by boiling 15% HCl to 3amino-2-methyl-5-aminomethyl-4-ethoxymethylpyridine (III), $+\mathrm{H}_2\mathrm{O}$, m.p. 127—129° (anhyd. dihydrochloride, m.p. 204—205°), which is best converted into (I) by hydrolysis by 2.5n-HCl at 175to 3-amino-2-methyl-5-aminomethyl-4-hydroxymethylpyridine dihydrochloride (IV), m.p. 235-237°, and a subsequent diazo-reaction. Alternatively, (III) is converted by boiling 48% HBr into 3-amino-2methyl-4-bromomethyl-5-aminomethylpyridine dihydrobromide, m.p. 260-265° (decomp.), and thence (hot H₂O; AgCl) into (IV) and thence (I). 3-Hydroxy-2methyl-5-hydroxymethyl-4-ethoxymethylpyridine hydrochloride (V), new m.p. 135—136°, with 2.5n-HCl at 155—160° gives (I) (83%) or with conc. HCl at 132° gives 3-hydroxy-2-methyl-4:5-di(chloromethyl)pyridine hydrochloride, m.p. 206°, which with hot H₂O gives (I). The original prep. of (I) (loc. cit.) gives also a little 3-hydroxy-2-methyl-4:5-epoxydimethylpyridine hydrochloride, m.p. 239—240°, obtained also from (I) or (V) by 50% H₂SO₄ at 100°; this is stable to 2.5n-HCl at 175°, but with boiling 48% HBr gives 3-hydroxy-2-methyl-4: 5-di(bromomethyl)pyridine hydrobromide, new m.p. 228.5°. R. S. C.

Naphthyridine derivatives. III. Constitution of dihydroxyquinopyrin. Alcoholysis of quinolinimide. E. Ochiai and I. Irai (J. Pharm. Soc. Japan, 1939, **59**, 152—155; cf. A., 1939, II, 452).— The ester, decomp. 219—220° (acetate, m.p. 224°), of Fels (A., 1904, I, 617) is identical with Me 1:4dihydroxy-2: 5-naphthyridine-3-earboxylate of Ochiai et al. (loc. cit.). Quinolinimide, CH2Br·CO2Et, and KOH in boiling EtOH give 3-carbethoxypyridine-2carboxylamide, m.p. 98° (also obtained as a by-product of the reaction of K quinolinimide and CH2Br CO2Et), the structure of which is shown by conversion by NaOBr into 2-aminonicotinic acid, decomp. 295— 296°. R. S. C.

Reduction of organic halogeno-compounds. XIV. Reduction of 2-γγγ-trichloro-β-hydroxy-

propylpyridine. K. Brand and K. Reuter (Ber., 1939, **72**, [B], 1668—1678; cf. A., 1939, II, 307).-Reduction of 2-γγγ-trichloro-β-hydroxypropylpyridine (I) with Zn and 10% H₂SO₄ and treatment of the product with 20% Na₂CO₃ gives 2-γγ-dichloro-β-hydroxypropylpyridine (II), m.p. 96° (hydrochloride, m.p. 107°; aurichloride, m.p. 138—139°; platinichloride, m.p. 202°; picrate, m.p. 102—103°). If the mixture is basified with 30% NaOH the product is indolizine (III), m.p. 75°, mixed with much resin. Electrolytic reduction of (I) at a Pb cathode with somewhat > the calc. quantity of electricity and somewhat > the calc. quantity of electricity and c.d. 2.3 amp. per sq. dm. gives (II) in ~50% yield; with more electricity the yield of (II) diminishes owing to the formation of a viscous oil whilst with a higher c.d. (III) is obtained in small amount. With Zn-Hg and the corresponding quantity of electricity the main product is (II); prolonged action followed by treatment of the cathode liquid with NaOAc affords compounds which give voluminous ppts. with pieric and pierolonic acid but from which a homogeneous material could not be isolated. With Cu in presence of ZnCl, and c.d. 2.4 the main product is very pure (II), the same result being obtained at 100° and with a large excess of current. With c.d 6 the production of (III) is not observed but the catholyte contains 2-propenylpyridine (IV) isolated as the picrate, m.p. 166-167°. (II) is also obtained in good yield by reduction of (I) at a Cu gauze cathode coated with Cd with c.d. 2.3; (III) and probably (IV) are also formed; similar results are obtained with c.d. 5.7 except that the yield of (II) is greatly diminished by the formation of resin. chemical reduction of (I) is therefore similar to that of βββ-trichloro-αα-diarylethanes, only 1 Cl being smoothly and readily removed. (I) is scarcely affected by Pb(OAc)₄, Br-KOH, or fuming HNO₃ containing V_2O_5 at 100°. KMnO₄ oxidises (I) to CHCl₃ and pyridine-2-carboxylic acid possibly with intermediate production of $2-\gamma\gamma\gamma$ -trichloro- β -ketopropylyridine. 1- Methyl-2-γγγ-trichloro-β-hydroxypropylpyridinium methosulphate, m.p. 146° (corresponding methiodide, m.p. 186—187°), is similarly oxidised by KMnO₄.

Triboluminescence of substituted pyridines. K. Kokeguti (J. Pharm. Soc. Japan, 1939, **59**, 134—135).—2: 4-Distyrylpyridine (prep. from 2: 4dimethylpyridine, PhCHO, and a little ZnCl₂ at 240°), m.p. 174° (hydrochloride, m.p. ~100°; picrate, m.p. 234°; perchlorate, m.p. 229—230°), and 2:6-diphenylacetylenylpyridine show strong triboluminescence, though less than does 2:6-distyrylpyridine. 2-Styrylpyridine shows weak triboluminescence, 2phenyl-4:6-distyryl- and 2:4:6-tristyryl-pyrimidine show none.

Exchange of hydrogen atoms between pyrrole [and] indole, and its methyl derivatives and water. VI, VII.—See A., 1940, I, 122.

Ethanolamines of the oxindole series. R. B. Crawford and H. G. LINDWALL (J. Amer. Chem. Soc., 1940, **62**, 171—173).—Condensation of the appropriate isatin derivative with MeNO₂ by a little NHEt₂ in abs. EtOH at -15° gives 5-nitro-3-hydroxy-3-nitromethyloxindole, m.p. 145-147°, and its 1-Me,

m.p. 153°, and 1-Et derivative, m.p. 134—135°, and Me 3-hydroxy-3-nitromethyloxindole-7-carboxylate, m.p. 159—161·5°, and its 1-Me, m.p. 138—139°, and 1-Et derivative, m.p. 96—97·5°. Reduction by mossy Sn and HCl at <60° then gives 5-amino-3-hydroxy-3-aminomethyloxindole [dihydrochloride, m.p. >300°; picrate, m.p. 198° (decomp.); Bz₂, m.p. 249—251°, ($CO_2Et)_2$ -, m.p. 154°, and ($NH_2\cdot CO)_2$ derivative, chars] and its 1-Me [dihydrochloride, m.p. 170—173°; picrate, m.p. 201—203° (decomp.); Bz₂, m.p. 249—251°, ($CO_2Et)_2$ -, m.p. 171—172°, and ($NH_2\cdot CO)_2$ derivative, m.p. 213—214°] and 1-Et derivative [dihydrochloride, +2H₂O, m.p. 137—137·5°; picrate, m.p. 179—180°; Bz₂, m.p. 227—227·5°, ($CO_2Et)_2$ -, m.p. 183°, and ($NH_2\cdot CO)_2$ derivative, m.p. 224—225°], and 3-hydroxy-3-aminomethyloxindole-7-carboxylic acid (hydrochloride, m.p. 187—188°; Bz, m.p. 240—241°, CO_2Et -, m.p. 217—218°, and $NH_2\cdot CO$ derivative, m.p. 218—219°). R. S. C.

Compounds of sulphates of bivalent heavy metals with quinoline.—See A., 1940, I, 125.

Action of selenium on indoles, quinoline, and their hydrogenated derivatives. S. Fujise and K. Tiba (Bull. Chem. Soc. Japan, 1939, 14, 478—482).—trans-6-Methyldecahydroquinoline with Se at 280—290° gives 6-methylquinoline (I) and its 5:6:7:8-H₂-derivative. Octahydro-2-methylindole hydrobromide and Se at 310—335° yield PhPr and 2-methylindole (II). Quinoline, (I), and (II) are unchanged when heated with Se at 310—320°, but indole yields H₂Se and a substance, m.p. 192—195°. J. D. R.

Sulphides and sulphones of pyridine and quinoline. A. R. Surrey and H. G. Lindwall (J. Amer. Chem. Soc., 1940, 62, 173—174).—2-Chloro-5-nitropyridine or 5-chloro-8- or 8-chloro-5-nitroquinoline and saturated, aq. Na₂S in boiling EtOH gives di-5-nitro-2-pyridyl sulphide (I), m.p. 136—137°, di-8-nitro-5-, m.p. 280—281°, and di-5-nitro-8-quinolyl sulphide (II), m.p. 288·5—290°, respectively. Oxidation of (I) by K₂Cr₂O₇ in aq. H₂SO₄ or of (II) by CrO₃ in AcOH gives di-5-nitro-2-pyridyl sulphone (III), m.p. 218·5—220·5°, and di-5-nitro-8-quinolyl sulphone, m.p. 260° (decomp. from 245°), respectively. With SnCl₂ (1 mol.) and HCl (I) and (III) give di-5-amino-2-pyridyl sulphide (IV), m.p. 130—131·5° (Ac₂ derivative, m.p. 265—266·5°), and sulphone, m.p. 238—239° (Ac₂ derivative, m.p. 276—278°), respectively, but with an excess of SnCl₂ (III) gives (IV). R. S. C.

Electron-sharing ability of organic radicals. X. α -Substituted tetrahydroquinolines. W. Oldham and I. B. Johns (J. Amer. Chem. Soc., 1939, 61, 3289—3291; cf. A., 1938, II, 300).—2-Ethylquinoline, prepared from quinoline by MgEtBr at 155°, and Na-EtOH give the 1:2:3:4-H₄-derivative, b.p. 110—113°/5 mm. (picrate, m.p. 119—120°). Quinaldine with NaNH₂, followed by Pr^aBr, gives 2-n-butylquinoline, b.p. 145—146°/11 mm. (picrate, m.p. 163—164°), reduced by Na-EtOH to the 1:2:3:4-H₄-derivative, b.p. 138°/6 mm. (p- $C_6H_4Br\cdot SO_2$ derivative, m.p. 160—160·5°). LiAr and quinoline give the 2-aryldihydroquinolines, converted by distilling with Zn dust or heating with PhNO₂ into the 2-arylquinolines. 2-Phenyl-, m.p. 82·5° (picrate, m.p.

 $188.5-189^{\circ}$; $p\text{-C}_6\text{H}_4\text{Br}\cdot\text{SO}_2$ derivative, m.p. 190— 191°), 2-p-, m.p. 83° (pierate, m.p. 198·7°), and 2-o-tolyl-, m.p. 76—76·2°, b.p. 197°/4 mm. (pierate, m.p. 176°), and 2-mesityl-quinoline, m.p. 69-69.5°, b.p. 200°/4 mm. (picrate, m.p. 216.5°), with Na-EtOH give 2-phenyl-, b.p. 196°/8 mm. (picrate, m.p. 129°; p-C₆H₄Br·SO₂ derivative, m.p. $201-202^{\circ}$; obtained by H₂-Pt-ZrO₂, whereas H₂-PtO₂ gives 2-cyclohexyldecahydroquinoline), 2-p-, b.p. 210°/14 mm. (picrate, m.p. 134—134·5°), and 2-o-tolyl-, m.p. 69·5°, b.p. 200—202°/6 mm., and 2-mesityl-1:2:3:4-tetrahydroquinoline, b.p. 218°/6 mm. Dissociation consts. of the above-mentioned tetrahydroquinolines, of the 2-Me and 2-Et analogues, and of 1:2:3:4tetrahydroquinoline in MeOH are correlated with electron-sharing ability of the substituent as for the corresponding pyrrolidines (Goodhue et al., A., 1934, 844; Kirchner, Diss., 1939). R. S. C.

Ammines containing 8-hydroxyquinoline and 5:7-dibromo-8-hydroxyquinoline.—See A., 1940, I, 129.

Spectrometry of complex salts of 8-hydroxy-quinoline-5-sulphonic acid.—See A., 1940, I, 126.

Preparation of py-aminoquinolines and derivatives. R. R. Renshaw and H. L. Friedman (J. Amer. Chem. Soc., 1939, 61, 3320—3322).—3-Aminoquinoline is obtained in 21% yield by condensing o-NH₂·C₆H₄·CHO and metazonic acid to 3-nitroquinoline and then reducing by SnCl2-HCl, but is best prepared by treating quinoline with S and Br to give the 3-Br-derivative (50%), b.p. $158-162^{\circ}/24$ mm., which is then condensed (73% yield) with conc. aq. NH₃ and CuSO₄ at 160°. 3-Acetamidoquinoline with HNO₃-AcOH gives the nitrate, m.p. 195.5° (decomp.), but with fuming HNO₃-H₂SO₄ gives (?4-)nitro-3-acetamidoquinoline, m.p. 205-206°, hydrolysed by KOH-EtOH to (?4-)nitro-3-amino-quinoline, m.p. 189—189.5°, which could not be reduced and, when diazotised and then boiled in EtOH, gives (? 4-)nitro-3-ethoxyquinoline, m.p. 113— 114°. Quinoline-2: 4-dicarboxylic acid (a) in boiling PhNO₂ gives cinchonic acid (90%) and thence the 4-acid chloride hydrochloride, Me ester, b.p. 136— 140°/4 mm., amide, m.p. 179—181°, and 4-amine, m.p. $(+H_2O)$ 69° or (anhyd.) 154—156° (Ac derivative, m.p. $177 = 178^{\circ}$), and (b) affords the diacid chloride, Me_2 , m.p. 131° , and Et_2 ester, m.p. $74 = 75 \cdot 5^{\circ}$, dianilide, m.p. $285 = 286^{\circ}$, and dianile, m.p. $275 \cdot 5 = 286^{\circ}$, and dianile, m.p. $277 \cdot 5 = 286^{\circ}$, and dianile, m.p. $277 \cdot 5 = 286^{\circ}$, and dianile, m.p. $285 = 286^{\circ}$, and dianile, d279.5°, 2:4-diaminoquinoline, m.p. 197—198.5° (lit. 188—190°) [picrate, m.p. 283° (decomp.)], 4-carbethoxyquinoline-2-carboxylamide, m.p. 226—227.5°, and thence 2-aminocinchonic acid, m.p. 362° (decomp.), converted (diazo-reaction) into the 2-OH-acid or (soda-lime fusion) into 2-aminoquinoline. R. S. C.

Coupling reactions of aminoquinolines with benzenediazonium chloride. Orientation in the quinoline ring. R. R. Renshaw, H. L. Friedman, and F. J. Gajewski (J. Amer. Chem. Soc., 1939, 61, 3322—3326).—Coupling of aminoquinolines with-diazo-compounds is almost always in accord with the static Erlenmeyer arrangement of ethylenic linkings, but its occurrence often depends on the conditions. In NaOAc-dil. AcOH or, less well, dil. HCl, the

appropriate aminoquinoline and PhN₂Cl give 6amino-5-, m.p. 247— 249° (hydrochloride, $+3H_2O$, m.p. 250—255°), 5-amino-8-, m.p. 191—194° (lit. 209—211°) (hydrochloride, m.p. 225—227°) (with, in HCl, some 6-PhN₂-compound), 8-amino-5-, m.p. 133° (hydrochloride, m.p. 221—223°, hydrolysed in H₂O), and 7-amino-8-, m.p. 170-173° (hydrochloride, m.p. 210—211°), -benzeneazoquinoline. In aq. MeOH or abs. EtOH, 2-aminoquinoline gives 2-benzenediazoaminoquinoline, m.p. 165—166.5°, but it does not react in aq. AcOH-NaOAc. In aq. AcOH-NaOAc or aq. MeOH, 3-aminoquinoline gives 3-benzenediazo-aminoquinoline, m.p. 156—157° (decomp.) or 177— 178° (decomp.), in abs. EtOH gives 3-amino-4-benzeneazoquinoline, m.p. 198—201° (hydrochloride, m.p. 228— 230°), but does not react in aq. HCl. 4-Aminoquinoline does not couple; with p-NO₂·C₆H₄·N₂Cl in abs. EtOH it gives a red compound, rapidly decomp. 2:4-Diaminoquinoline does not to yield PhNO₂. couple in aq. HCl or abs. EtOH, and in aq. NaOAc-AcOH, aq. MeOH, or AcOH gives 4-amino-2-benzenediazoaminoquinoline, m.p. 247.5—248.5°; 4-amino-2p-nitrobenzenediazoaminoquinoline, m.p. 315·5—316·5° (hydrochloride, m.p. 323—325°), is similarly obtained in AcOH. The structure of the PhN₂-compounds is proved by reduction (SnCl₂). The following are described, m.p. in brackets being those of the quinoxalines formed with phenanthraquinone: 5:6-, m.p. 135° (lit. 95°, 145°) [294—295° (lit. 287—288°)], 5:8-, m.p. 163°, 7:8-, m.p. 95—97° [314°], and 3:4diaminoquinoline, m.p. $176-177^{\circ}$ [280-281°] (Ac_2 derivative, m.p. $229-229.5^{\circ}$; obtained also from 3-bromo-4-aminoquinoline by 26% aq. NH₃ and CuSO₄ at 155—160°).

Sulphanilyl derivatives of pyridine and quinoline amines. R. Winterbottom (J. Amer. Chem. Soc., 1940, 62, 160—161).—2-, m.p. 190—191° [226—227°], and 3-sulphanilamidopyridine, m.p. 248—251° (decomp.) [272—275° (decomp.)], 2-amino-5-sulphanilamidopyridine, m.p. 210—211° [Ac_2 derivative, m.p. 288—291° (decomp.)], 3-, m.p. 185—186° (decomp.) [250—253° (decomp.)], 5-, m.p. 228—230° [256—258°], 6-, m.p. 202—204° [Ac derivative, m.p. 285—287° (hydrochloride, m.p. 238—240°)], and 8-sulphanilamidoquinoline, m.p. 194—195° [193—194°], are prepared. M.p. in brackets are those of the Ac derivatives. 7-Nitroquinoline, prepared (Skraup) from $m\text{-NO}_2\cdot\text{C}_6\text{H}_4\cdot\text{NH}_2$, but not by nitration with LiNO3-Ac2O or (OH)3N(OAc)2, has m.p. 74—74-5°. Aminoquinolines are best prepared from the NO2-compounds by Raney Ni-H2. M.p. are corr. R.S.C.

Syntheses of heterocyclic derivatives of sulphanilamide. K. TSUDA, Z. ITIKAWA, and D. So (J. Pharm. Soc. Japan, 1939, 59, 155—158).—Condensation of p-NHAc·C₆H₄·SO₂Cl and the appropriate amine by NaHCO₃ in boiling COMe₂ and subsequent hydrolysis by 15% HCl (or HCl-MeOH) gives 2-sulphanilamido-pyridine, m.p. 189° (acetate, m.p. 227°), -quinoline, m.p. 195° (acetate, m.p. 241°), and -4-methylthiazole, m.p. 241°, 6-sulphanilamido-2-methyl-, m.p. 222°, and 2-amino-6-sulphanilamido-pyridine, m.p. 208° (acetate, m.p. 243°). R. S. C.

Synthesis of 4-aminohydrocarbostyril and its derivatives. T. SASAKI and H. UEDA (Proc. Imp. G (A., II.)

Tokyo, 1939, **15**, 315—320).—β-(o-Nitrophenyl)alanine (I) in NaOH with ClCO2Me yields o $nitro-\beta$ -carbomethoxyaminohydrocinnamic acid, m.p. 165—166°, which is reduced (aq. NH₃-FeSO₄) to 4carbomethoxyaminohydrocarbostyril ($+0.5H_2O$), m.p. 127—129° (decomp.), converted by heating with aq. NaOH into carbostyril (II). With Ac₂O-NaOH (I) yields N-acetyl-β-(o-nitrophenyl)alanine, m.p. 177°, reduced (aq. NH₃-FeSO₄) to 4-acetamidohydrocarbostyril, m.p. 233—234°. With CH2Cl·COCl and NaOH, (I) yields N-chloroacetyl-β-(o-nitrophenyl)alanine, m.p. 178°, which with aq. NH₃ at 100° (sealed tube) yields N-glycyl-β-(o-nitrophenyl)alanine, (+1·5H₂O), m.p. 230° (decomp.) after sintering at 140—150°; this, when reduced (FeSO₄-aq. NH₃) yields, as sulphate (III), m.p. 220° (decomp.), 4-glycylaminohydrocarbostyril, m.p. 147°. With BzCl and NaOH, (II) yields 4-hippurylaminohydrocarbostyril, m.p. 227°. With BzCl-NaOH, (I) yields β-benzamido-o-nitrohydrocinnamic acid, m.p. 233°, which is reduced to 4-benzamidohydrocarbostyril, m.p. 220-221°, hydrolysed by HCl into (II). (I) and ClCO₂CH₂Ph in NaOH give o-nitro-βcarbobenzyloxyaminohydrocinnamic acid, m.p. 152°, reduced (Pd-H₂ in EtOH) to (II).

Polymerisation processes caused by pyridine. III. Intermediates in the polymerisation of p-benzoquinone. O. DIELS and H. PREISS (Annalen, 1939, 543, 94—103; cf. A., 1937, II, 353).—A

 $\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$

solution of p-benzoquinone (I) in C_5H_5N (prep. at 0°—room temp.) gradually deposits the betaine (II) (A, R = p-OH· C_6H_4 ·O·; R' = H), m.p. 217° (decomp.), which when heated in various solvents $[e.g., C_5H_5N; HCO_2H-PhNO_2;$

MeCN (repeated crystallisation necessary; one treatment only gives N-containing material)] affords trimeric (I), i.e., 2:5-di-p-hydroxyphenoxybenzoquinone (III) (compound, m.p. $250-255^{\circ}$, with xC_5H_5N). The diacetate of (III) is obtained from (II) and boiling Ac₂O-conc. H₂SO₄. 2-Methylpyridine (IV) and (I) similarly give a betaine [+1 mol. of (IV)] (A, $R = p \cdot OH \cdot C_6H_4 \cdot O \cdot$; R' = Me), m.p. 187° (decomp.), which resembles (II); a 1:2 compound, decomp. 245° (blackens at 240°), of (III) and (IV) is described. The results with quinoline (V) and (I) are variable; a betaine could not be isolated but (III) and/or the compound, p-C₆H₄(OH)₂,2C₉H₇N (Baeyer et al., A., 1902, i, 355) are formed. Prolonged interaction of thymoquinone and (I) affords a compound, C₁₅H₁₃O₄N, blackens at 205°. N-2': 5'-Dihydroxyphenylquinolinium chloride, m.p. 274—275°, is obtained by concn. of a mixture of (I), (V), and $CHCl_3 + conc.$ HCl.N-2': 5'-Dihydroxyphenyl-2-methylpyridinium chloride and aq. Na_2CO_3 give the betaine (+1.5 H_2O) (A, $R = H, R' = Me), m.p. 217^{\circ}$ (after loss of H_2O at $160-170^{\circ}$).

Heterocyclic compounds. X. Synthesis of substituted 1:2:3:4-tetrahydroacridones. W. Bukhsh and R. D. Desai (Proc. Indian Acad. Sci., 1939, 10, A, 262—266).—p-C₆H₄Br NH₂ and Et cyclohexan-2-one-1-carboxylate in presence of a little conc. HCl at room temp. give Et 2-p-bromoanilino-Δ¹-cyclohexene-1-carboxylate, m.p. 77—78°, which does

not give a colour with FeCl₃ and passes at 240—250° 7-bromo-1:2:3:4-tetrahydroacridone, >350°. Similar transformations are Et 2-o-anisidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 79-80°, into 5methoxy-1:2:3:4-tetrahydroacridone, m.p. 279°, Et 2-p-anisidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 71—72°, into 7-methoxy-1:2:3:4-tetrahydro-acridone, m.p. 285—286°, Et 2-o-toluidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 265—260°, Et 2-o-toluidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 265—260°, Et 2-o-toluidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 265°, Et 2-o-toluidinohexene-1-carboxylate, m.p. 84—85°, into 5-methyl-1:2:3:4-tetrahydroacridone, m.p. 355—358°, and Et p-phenetidino- Δ^1 -cyclohexene-1-carboxylate, m.p. 88°, into 7-ethoxy-1:2:3:4-tetrahydroacridone, m.p. >350°. 2-Methylcyclohexanone and o-NH₂·C₆H₄·CO₂H at 120° yield 1-o-carboxyanilino-6methyl-\$\Delta^1\$-cyclohexene, m.p. 130°, which passes at 220° into 4-methyl-1:2:3:4-tetrahydroacridone, m.p. 1-o-Carboxyanilino-4-methyl- Δ^1 -cyclohexene, m.p. 143°, from 4-methylcyclohexanone, gives 3methyl-1:2:3:4-tetrahydroacridone, m.p. >350°. trans-2-Ketodecahydronaphthalenc yields 2-o-carboxyanilino- Δ^{1} (or 2)-transoctahydronaphthalene, 164—165° (also monohydrate, m.p. 82°), which gives $\Delta^{1 \text{ (or 2)}}$ -octahydronaphthacridone, m.p. >350°. H. W.

Diene syntheses. XXXIII. Acridine and methyl acetylenedicarboxylate. O. Diels and W. E. THIELE (Annalen, 1939, 543, 79-94). Acridine (I) and (CCO2Me)2 (II) in cold MeOH give a 1:1:1 adduct (Me₂ 5:10-dihydroacridine-5:10-αβ-maleate methohydroxide) (III), red, m.p. 104° [converted by hot conc. HCl into 10-methylacridinium] chloride (+3H₂O), m.p. 122° (decomp.)], together with a little of a yellow isomeride, m.p. 118°. In dioxan. (I) and (II) afford the adduct (IV), red, m.p. 164—165°, (decomp.)]. Air slowly converts (III) (alone or in MeOH) (IV.) (IV.) into Me_2 10-acridonylmaleate (VI), orange, m.p. 143° (rapid), 161° (slow heating) [hydrolysed to a dicarboxylic acid, $C_{17}H_{11}O_5N$, m.p. 255° (decomp.)], also obtained from (V) and hot C₅H₅N or from (I), (II), and MeOH-H₂O₂. In Et₂O, (I) and (II) give (IV), (V), and (VI). Hydrolysis (aq. MeOH-KOH) of (III) affords a substance, C₁₆H₁₁O₃N, m.p. $241-242^{\circ}$. The 1:1:1 adduct, m.p. $\sim 71^{\circ}$, from (I), (II), and EtOH when crystallised from MeOH yields (III); it is also converted [more rapidly than (III)] by air into (VI). Boiling MeOH-H₂O₂ transforms (III) into (VI) and a little of the diacridine (VII), m.p. 265—266°. Reduction (Zn dust, MeOH, conc. HCl) of (V) or (VI) gives a compound, C₃₈H₃₄O₈N₂, m.p. 260° (decomp.) [probably (VII) with $CO_2Me \cdot CH_2 \cdot CH(CO_2Me)$ for $CO_2Me \cdot CH \cdot C(CO_2Me)$. Cold conc. H₂SO₄ rearranges (IV) by migration of the cold cone. H_2SO_4 rearranges (17) by infiguration of the side-chain to $C_{(1)}$ and subsequent ring formation, to Me_4 1': 4'-dihydro-1:2-benzacridine 1': 2': 3': 4'-tetra-carboxylate, m.p. 189—190°. Hot HCO_2H converts (IV) into a Me_4 ester, $C_{17}H_9(CO_2Me)_4$, m.p. 159—160°, probably a quinolizine. N_2H_4, H_2O and (IV) in MeCN give a compound, $C_{21}H_{21}O_4N_9, 1.5H_2O$; isoquinoline and p-O.C₆ H_4 :O (careful fusion) afford compounds, $C_{36}H_{31}O_8N_3$, m.p. 205°, and $C_{31}H_{25}O_{10}N$,

$$\begin{pmatrix} C_6H_4 & & & NH \cdot CO_2Et \\ N \cdot CO_2Et & & & CO_2Et \\ N \cdot CO_2Et & & & C_6H_4 \\ N \cdot CO_2Me & & & C \cdot CO_2Me \\ CH \cdot CO_2Me & & & CO_2Et \cdot N & C \cdot CO_2Me \\ (VII.) & & & CO_2Me \\ \end{pmatrix}$$

m.p. 232° (decomp.), respectively. C_5H_5N and (:CH·CO)₂O (at $100-125^{\circ}$ or in boiling PhMe) form 1:1 adducts, m.p. 123° and 259° (decomp.), respectively, with (IV) whilst (:N·CO₂Et)₂ in boiling PhMe gives the compound (VIII), m.p. $203-204^{\circ}$. Structures are suggested for many of the above compounds.

Anthraquinoneacridines.—See B., 1940, 119.

Benzanthrone-acridone.—See B., 1940, 120.

cycloTetramethylenepyrazolone. H. Ruikoff (Ber., 1939, 72, [B], 1978—1982; cf. A., 1937, II, 307).—Treatment of Et cyclohexanonecarboxylate (I) with the requisite substituted hydrazine in cold dioxan appears to give immediately 1-o-, m.p. 184°, 1-m-, m.p. 149 5°, and 1-p-tolyl-, m.p. 203°, 1-p-nitrophenyl-, m.p. 236°, and 1- β -naphthyl-, m.p. 180°, -3:4-cyclotetramethylenepyrazol-5-one. With α -C₁₀H₇:NH·NH₂ a comparatively stable hydrazone appears to result; it passes when recrystallised into 1-α-naphthyl-3:4cyclotetramethylenepyrazol-5-one, m.p. 237°. 2:4- $(NO_2)_2C_6H_3\cdot NH\cdot NH_2$ yields exclusively Et cyclohexanonecarboxylate-2:4-dinitrophenylhydrazone, m.p. 156°, which is unchanged at 160°. The action of halogens on derivatives of 3:4-cyclotetramethylenepyrazol-5-one gives unstable dihalides which readily give monosubstituted derivatives with loss of halogen acid in presence of H₂O. 4-Bromo-3: 4-cyclotetramethylenepyrazol-5-one, m.p. 133°, 4-bromo-1-phenyl-(II), m.p. 85°, -1-p-tolyl-, m.p. 94°, -3:4-cyclotetramethylenepyrazol-5-one, and 4-bromo-1-phenyl-2-methyl- $\Delta^{6'}$ -tetrahydro-[1': 2'-benzo-3: 4-pyrazol-5-one], m.p. 138°, are described. Chlorination in AcOH affords 4-chloro-3: 4-cyclotetramethylenepyrazol-5-one, 112°. 4-Chloro-1-phenyl-, m.p. 70°, and 3: 4-dichloro-1-phenyl-2-methyl-, m.p. 183° (decomp.), -3: 4-cyclotetramethylenepyrazol-5-one have been obtained. (II) is converted by NH₃ or NHEt₂ in boiling MeOH into the compound, $C_{26}H_{26}O_2N_4$, m.p. 174° (decomp.), in 20—25% yield. This compound is also obtained when (I) is treated with Br and then distilled and the resulting Et cyclohexenecarboxylate is treated with NHPh·NH₂ in EtOH.

αω-Amino-alcohols. I. 1-Phenyl-4-ω-hydroxyalkylpiperazines from αω-chlorohydrins. Derivatives of piperazine. XVII. G. W. ANDERSON and C. B. POLLARD (J. Amer. Chem. Soc., 1939, 61, 3439—3440; cf. A., 1939, II, 182).—1-Phenylpiperazine (2 mols.) and Cl-[CH₂]_n·OH (1 mol.) at 100° give 1-phenyl-4-8-hydroxy-n-butyl-, m.p. 59—60° (91—92°),

-e-hydroxy-n-amyl-, m.p. $74-75^{\circ}$ ($100-101\cdot5^{\circ}$), - ζ -hydroxy-n-hexyl-, m.p. $65\cdot5-67^{\circ}$ ($91\cdot5-93^{\circ}$), - η -hydroxy-n-heptyl-, m.p. $75\cdot5-76\cdot5^{\circ}$ ($96\cdot5-97^{\circ}$), - θ -hydroxy-n-octyl-, m.p. (anhyd.) $57-58\cdot5^{\circ}$ and ($+H_2O$) $80-82^{\circ}$ ($99\cdot5-100\cdot5^{\circ}$), -1-hydroxy-n-nonyl-, m.p. $80-80\cdot5^{\circ}$ ($94-95^{\circ}$), and - κ -hydroxy-n-decyl-piperazine, m.p. $67-68^{\circ}$ ($95-96^{\circ}$), m.p. in parentheses being those of the phenylurethanes. ζ -Chloro-n-hexyl-, m.p. $49-50^{\circ}$, and κ -chloro-n-decyl- α -naphthylurethane, m.p. $63-64^{\circ}$, and 1-chloro-n-nonylphenylurethane, new m.p. $70-70\cdot5^{\circ}$, are reported. M.p. are corr.

R. S. C. Pyrimidines. Synthesis from uracil of pyrimidines related structurally to thiamine. (Miss) D. Riehl and T. B. Johnson (Rec. trav. chim., 1940, 59, 87—95).—Uracil and N-hydroxymethylbenzamide or -phthalimide with H₂SO₄ at room temp. give 5-benzamido-, m.p. 209—211° (decomp.), or -phthalimido-methyluracil (I), m.p. 254—255° (benzoylor phthaloyl-thyminylamine), respectively, hydrolysed by boiling HCl to uracil. Neither is recommended as useful for synthesis of reduced pyrimidines related to thiamine. (I) and Br-H₂O give 5-bromo-4hydroxy-5-phthalimidomethylhydrouracil, m.p. 278— 282° (depends on rate of heating), also hydrolysed to uracil. (I) is decomposed by POCl_a, but a little reacts to give 2: 6-dichloro-5-, readily decomposed to 2(?6)chloro-6(? 2) - hydroxy - 5 - phthalimidomethylpyrimidine, m.p. 150—155°; some ethoxymethylphthalimide is also obtained.

Action of formamide on benzoin derivatives. Formation of diarylglyoxalines and tetra-arylpyrazines. A. Novelli (Anal. Asoc. Quim. Argentina, 1939, 27, 161—168).—Anisoin with HCO₂H and (NH₄)₂CO₃ yields 4:5-di-(p-methoxyphenyl)glyoxaline, m.p. 183—184°, and 2:3:5:6-tetra-(p-methoxyphenyl)pyrazine, m.p. 282—283°. Similarly benzanisoin gives 4(or 5)-phenyl-5(or 4)-(p-methoxyphenyl)glyoxaline, m.p. 214—215°, and 2:5-tetra-(p-methoxyphenyl)pyrazine, m.p. 183—184°, whilst p-toluoin yields 4:5-di-(p-tolyl)glyoxaline, m.p. 275—276°, and 2:3:5:6-tetra-(p-tolyl)pyrazine, m.p. 295—296°. Furoin gives only decomp. products. The mechanism of the reaction is discussed.

Laboratory experiments in organic chemistry. II—IV. Preparation of lysidine, 2:3-dihydro-5:6-diphenylpyrazine, and 2:3-diphenylpyrazine. L. H. AMUNDSEN (J. Chem. Educ., 1939, 16, 566—567; cf. A., 1937, II, 232). L. S. T.

Seven-membered heterocyclic ring compounds from o-phenylenediamine and acetylacetone derivatives. S. B. Vaisman (Trans. Inst. Chem. Charkov Univ., 1938, 4, No. 13, 157—174).— o-C₆H₄(NH₂)₂ and CHMeAc₂ in AcOH-EtOH yield a colourless base, m.p. 86°, giving a red hydrochloride: o-C₆H₄<N:CMe>CHMe (+ HCl) > [o-C₆H₄<NH:CMe>

cis-Indigotin. II. G. Heller (Ber., 1939, 72, [B], 1858—1860; cf. A., 1936, 615).—cis-Indigotin (I) is obtained by dissolving indigo powder (II) in NaOH-Na₂S₂O₄ at room temp., filtering the diluted solution, and shaking the cold filtrate with air; the product is collected, washed, and dried in a vac. over H₂SO₄. trans-Indigotin (III) is obtained from the above solution and air at 100°. Dioxan is scarcely coloured by (III) whereas (I) gives a distinct blue solution; the colour begins to fade after ~2 min. A similar but less pronounced behaviour is observed in CCl₃·CO₂H or AcOH-conc. H₂SO₄ (87·5:12·5). Solid (I) appears to pass into (III) within 24 hr. The prep. of indigo-oxime from (II) is described.

Colour of 4-hydroxy-2-thio-3-aryl-1:2:3:4tetrahydroquinazoline. L. Manolescu-Pavlescu (Bull. Acad. Sci. Roumaine, 1938, 20, 28—29).— Derivatives of 2-thio-3-aryl-1:2:3:4-tetrahydroquinazoline (I) or their Hg halide salts (II) give coloured derivatives similar to the 2-keto-analogues, which indicates that the bathochromic effects of CO and S·HgX are similar. When (II) are heated in solution quinones result. Derivatives of 4-hydroxy-2-thio-3-aryl-1:2:3:4-tetrahydroquinazoline the corresponding 2-keto-compounds give red and yellow Hg halide salts, respectively. The bathochromic effect of S is > that of O and in either series the effect of I>Br>Cl. 4-Ethoxy-2-thio-3-phenyl-1:2:3:4-tetrahydroquinazoline with AgNO₃ gives a colourless complex salt which with H halides forms a colourless and a coloured salt. The 3-o- and -p-tolyl analogues of (I) and AgNO₃ give yellow compounds. S and SH have positive auxochromic effects.

J. L. D. Conversion of chlorophyll into phæophytin. G. Mackinney and M. A. Joslyn (J. Amer. Chem. Soc., 1940, 62, 231—232).—Removal of Mg from chlorophyll-a by acid is 7—9 times as fast as from -b (cf. A., 1938, II, 296) and is a first-order reaction with respect to acid and (probably) chlorophyll.

Chlorophyll. XCIII. γ -Formylpyrroporphyrin. H. FISCHER and E. STIER (Annalen, 1939, 542, 224-240).—It has not been possible to convert the γ -Me of phylloporphyrin into CH₂·CO₂H. Phylloporphyrin Me ester (I) is oxidised [I in AcOH-NaOAc at 100° (bath); product treated with Et₂O-CH₂N₂] to γformylpyrroporphyrin Me ester (II), m.p. 244° (Cu salt, m.p. $\bar{2}03^{\circ}$), also obtained (no details) from γ formylpyrrochlorin Me ester (A., 1937, II, 470). The oxime, m.p. 277°, of (II) with boiling Ac₂O + NaOAc gives γ-cyanopyrroporphyrin Me ester, m.p. 261°, whilst (II) and boiling 30% MeOH-KOH afford pyrroporphyrin (III). Reduction (H₂-PtO₂ in dioxan for 4 days) of (II) (as Zn salt) gives, after removal of Zn with 18% HCl, γ-hydroxymethylpyrroporphyrin Me ester, m.p. 236°. The unstable cyanohydrin from (II) and anhyd. HCN in C₅H₅N + anhyd. Na₂CO₃ is converted by MeOH-HCl into a complex mixture of porphyrins. Me₂ pyrroporphyrin-γ-glyoxylate (IV), m.p. 248°, obtained by oxidation (I-AcOH-NaOAc) of isochloroporphyrin- e_4 Me₂ ester [= γ -carbomethoxymethylpyrroporphyrin] (V), is reduced [as for (II) or by H₂-Pd-BaSO₄ in HCO₂H at 65°] to Me₂ pyrroporphyrin- γ -glycollate, m.p. 278°. Boiling 30% MeOH–KOH in N₂ converts (IV), but not (V), into (III). Reduction (H₂, Pd, HCO₂H, 65°) of (II) gives (I); phæoporphyrin- a_5 Me₂ ester and its 10-OAc-derivative (VI) similarly (at 55—60°) afford some deoxophæoporphyrin- a_5 Me₂ ester, m.p. 289°, and its 10-OAc-derivative, respectively, but in cold HCO₂H (VI) appears to give 9-hydroxydeoxo-10-acetoxyphæoporphyrin- a_5 (VII) (cf. A., 1935, 362). The Fe complex salt of pyrroporphyrin- γ -glycollic acid and SnBr₄ in CHCl₂·OEt give a small amount of a porphyrin nearly identical with (VII).

Magnetic properties of ethylcarbimideferrohæmogobin and iminazole-ferrihæmoglobin.— See A., 1940, 1, 15.

Constitution of the prosthetic group of cytochrome-c. K. Zeile and H. Meyer (Naturwiss., 1939, 27, 596—597).—The compound of HBr with protoporphyrin (I) fused with l-cysteine Me₄ ester hydrochloride yields the compound, $C_{44}H_{56}O_8N_6S_2$, $[\alpha]_D$ +27° in 0·1% HCl, also obtained (+1H₂O), $[\alpha]_D$ -172° in 0·1% HCl, by hydrolysing cytochrome-c in 2×10^{-5} m. solution, methylating, and fractionating; the absorption spectra are identical. Hence the prosthetic group of cytochrome-c is a compound of (I) with 2 mols. of cysteine. The complex Fe salt of the compound yields, on reduction (neutral) without addition of N base, a hæmochromogen having chief absorption bands in the same positions as those of cytochrome-c. In the hæmochromogen the 6 co-ordinate linkings of the Fe are united to the N of the ham mol. and to those of the cysteine-NH₂ in the side-chains. The N of the cysteine-NH, takes part thus in hæmochromogen production only with hæm W. McC. present in the same mol.

Phthalocyaninesulphonyl chlorides.—See B., 1940, 122.

Ionisation constants and hydrolytic degradations of cyameluric and hydromelonic acids. C. R. Redemann and H. J. Lucas (J. Amer. Chem. Soc., 1939, 61, 3420—4325).—The formulæ of Pauling et al. (A., 1938, I, 122) for hydromelonic (I) and cyameluric acid (II) are supported. Electrometric titration (glass electrode) of the K salt by HCl shows (I) to be a much stronger acid than (II). K melonate and boiling 6N-HNO₃ give 72.5% of cyanuric acid (III), some further hydrolysis also occurring; alkaline hydrolysis gives 2.24 NH₃ for each CO₂ liberated, the reaction thus being $K_3C_9N_{13} + 6KOH + 6H_2O \rightarrow K_3C_6H_3N_7 + 6NH_3 + 3K_2CO_3$. Conc. HNO₃ hydrolyses (II) to (III) in 93.5% yield. Prep. of the substances named and of melon and Na cyamelurate, $+5.5H_2O$, is described.

Reaction between hydrogen selenide, formaldehyde, and sec. amines. A. H. BINZ, F. E. REINHART, and H. C. WINTER (J. Amer. Chem. Soc., 1940, 62, 7—8).—1-Hydroxymethylpiperidine (prep. described) or 4-hydroxymethylmorpholine and H₂Se in dry Et₂O-N₂ give di-1-piperidino-, m.p. 67°, and di-4-morpholino-methyl selenide (I), m.p. 136—138°, respectively, both stable in air when solid and in EtOH or C₆H₆ in absence of air, but unstable in H₂O, and toxic to rats. (I) is best prepared by saturating

aq. morpholine with $\rm H_2Se$ and pouring the solution into aq. $\rm CH_2O$. $98\cdot1\,\%$ of the Se is pptd. when (I) is aërated in 80% EtOH at 40°. Aq. $\rm H_2O_2$ gives a stable, colloidal solution of Se. R. S. C.

αω-Amino-alcohols. II. Morpholino-alcohols. Derivatives of morpholine. II. G. W. ANDER-SON and C. B. POLLARD (J. Amer. Chem. Soc., 1939, 61, 3440—3441; cf. A., 1938, II, 71).—Morpholine, $\text{Cl}\cdot[\text{CH}_2]_n\cdot\text{OH}$, and Cu chromite in dioxan at 235— $270^{\circ}/100$ atm. give 4- δ -hydroxy-n-butyl-, b.p. 116.5— 117°/5 mm. (phenylurethane, m.p. 86—87°), 4-\(\varepsilon\) hydroxy-n-amyl-, b.p. 133—133·5°/5 mm. (phenylurethane, m.p. 55·5-57°), 4-ζ-hydroxy-n-hexyl-, b.p. $146-147^{\circ}/5$ mm. (α -naphthylurethane, m.p. 71-72°), $4-\eta-hydroxy-n-heptyl-$, b.p. $155\cdot 5-158^{\circ}/5$ mm. (phenylurethane, m.p. 71—72°), $4-\theta-hydroxy-n-octyl-$, b.p. 164—164·2°/5 mm. (α-naphthylurethane, m.p. 73-74°), 4-i-hydroxy-n-nonyl-, b.p. 173—173.5°/5 mm. (α -naphthylurethane, m.p. 54—56°), and 4- κ -hydroxyn-decyl-, b.p. 164—165°/2 mm. (a-naphthylurethane, m.p. 66·5—67·5°), -morpholine with αδ-n-butylene-, m.p. 51·5—52·5°, b.p. 147·5—148·5°/5 mm., αε-n-amylene-, b.p. 161—162°/5 mm., αζ-n-hexylene-, m.p. 35·5—38·5°, b.p. 169·5—171°/5 mm., αη-heptylene-, b.p. $183-184^{\circ}/5$ mm., $\alpha 0$ -n-octylene-, double m.p. 46·5—47·5° and 48°, b.p. 191·5—193·5°/5 mm., αι-nnonylene-, b.p. 203·5—204°/5 mm., and ακ-n-decylene-, double m.p. 48-49° and 50·5-51·5°, b.p. 187-189°/ 2 mm., -4: 4'-dimorpholine, respectively. M.p. of the urethanes are corr.

[Substitution of thiazole.] J. P. WIBAUT (Ber., 1939, 72, [B], 1708; cf. Ochiai and Nagasawa, A., 1939, II, 455).—The resemblance between thiazole and C_5H_5N has been noted previously by Wibaut et al. (A., 1932, 522, 1260; 1934, 309; 1937, II, 350). Ochiai's statement that thiazole derivatives cannot be halogenated if the $C_{(2)}$ position is unoccupied is not valid. Bromination occurs at $C_{(2)}$ but a high temp. is necessary. At lower temp. additive products resembling perbromides result. This is also the case with C_5H_5N .

H. W.

2-Sulphanilamidothiazole: a new chemotherapeutic agent. W. A. Lott and F. H. Bergeim (J. Amer. Chem. Soc., 1939, 61, 3593—3594).—2-Sulphanilamidothiazole ["sulphathiazole"], m.p. 197—197.5° (uncorr.), 202—202.5° (corr.) [Na salt, m.p. 256—256.5° (uncorr.), 264.5—265° (corr.); hydrochloride, m.p. 193—197° (uncorr.)] (cf. Fosbinder et al., A., 1939, II, 525), is less acidic than is "sulphapyridine." Both compounds can be determined by Marshall's method (A., 1938, III, 972). They can be distinguished by formation of purple and brown Cu salts, respectively. R. S. C.

Benzthiazyl alkyl sulphides.—See B., 1940, 119.

Semiquinone radicals of the thiazines. L. MICHAELIS, M. P. SCHUBERT, and S. GRANICK (J. Amer. Chem. Soc., 1940, 62, 204—211).—Thionine gives a semiquinone radical as intermediate between the dye and the leuco-compound. Only a few % of this exists in the $p_{\rm H}$ range of normal buffers, but in conc. acid (10—26N-H₂SO₄) it is identified by the reductive titration curve, its yellow colour, and characteristic absorption (strong bands at 440 and

496, weaker bands at 476, 460, and 510 mμ.). Methylene-blue forms a similar radical, which, however, requires even more conc. acid for stability. The radical owes its stability to equiv. resonance (of the same type as is shown by Wurster radicals), which can develop only after addition of two protons. The radical, as an intermediate stage in the reduction of the dye, accounts for the reversibility of the reduction and the catalytic effect of the dyes in biological reactions.

R. S. C.

Cyanine types.—See B., 1940, 121.

Tobacco alkaloids. XVI. 1-Methylpyrrolidine, a new tobacco alkaloid. Constitution of isonicoteine. E. Späth and S. Biniecki (Ber., 1939, 72, [B], 1809—1815).—The readily volatile tobacco bases are treated with p-C₆H₄Me·SO₂Cl for the removal of primary and sec. bases; the residual tert. bases are liquefied by strong cooling and then warmed to room temp., whereby NMe3 is mainly evolved. In the residual bases the presence of 1methylpyrrolidine is established by the isolation of its hydrochloride, trinitro-m-tolyloxide, picrate, and aurichloride. The isonicoteine of Noga (A., 1915, i, 711) is identified as 2:3'-dipyridyl, which is very hygroscopic. A mixture of l-anabasine (I) and lupinine (II) can be isolated by distillation from the alkaloid mixture from Anabasis aphylla, L.; from it (I) can be isolated as the picrate which is relatively sparingly sol. in H₂O, in which the picrate of (II) is sol.

Alkaloids of the fruit of Orixa japonica, Thunb. T. Obata (J. Pharm. Soc. Japan, 1939, 59, 136—138).—Extraction of this fruit with MeOH yields kokusagin, m.p. 192—193° (pierate, m.p. 157°), and skimmiamine, m.p. 177° (pierate, decomp. 189—190°) (cf. Asahina et al., A., 1930, 1454). Mel at 100° converts the latter alkaloid into a product, $C_{12}H_7O_2N(OMe)_2$, m.p. 187°, converted by HI-Ac₂O into a substance, m.p. >315°, or by KMnO₄ in warm COMe₂ into an aldehyde, $C_{10}H_4O_2N(OMe)_3$, decomp. 241° (phenylhydrazone, decomp. 195°), and an acid, $C_{10}H_4O_3N(OMe)_3$, decomp. 250° (obtained also by further oxidation of the aldehyde). Boiling, conc. HCl converts the acid into CO_2 and a substance, $C_9H_5O_2N(OMe)_2$, m.p. 248°. R. S. C.

Lupine. XIV. Isolation of anagyrine from Lupinus laxiflorus, var. silvicola, C. P. Smith. J. F. Couch (J. Amer. Chem. Soc., 1939, 61, 3327—3328; cf. A., 1939, II, 456).—This plant contains 0.7-1.0% of alkaloids, mainly anagyrine, $[\alpha]_{2}^{25}-168^{\circ}$ in EtOH [hydrochloride, m.p. (+3H₂O) 235—236°, (+0.5H₂O) 284.5—285.5° (corr.), (anhyd.) 295—297°, $[\alpha]_{2}^{25}$ (+0.5H₂O) -124.2° in H₂O; perchlorate; aurichloride, m.p. 167—168°; picrate, m.p. 169.5°; methiodide, m.p. 262—263° (corr.)], but no cytisine, methylcytisine, or sparteine. R. S. C.

Complete conversion of l-ecgonine methyl ester into l-cocaine. A. W. K. DE JONG (Rec. trav. chim., 1940, 59, 27—30).—l-Ecgonine Me ester, BzCl, and dry Na₂CO₃ or CaO or CaO + Ca(OH)₂ in Et₂O, CHCl₃, or best in anhyd. C₆H₆ (10 hr.) give complete conversion into l-cocaine. A. T. P.

Alkaloids of Roemeria refracta, D.C. Constitution of roemerine and synthesis of 2:3methylenedioxyphenanthrene. IV. of Papaveraceæ family. R. Konovalova. S. JUNUSSOV, and A. P. OREKHOV (Bull. Soc. chim., 1939, [v], 6, 1479—1485; cf. A., 1939, II, 565).—6-Nitropiperonal and CH₂Ph·CO₂H-Ac₂O at 100° (bath) give 6-nitro-3: 4-methylenedioxy- α -phenylcinnamic acid, m.p. 199—200°, reduced by FeSO₄-aq. NH₃ at 80° then 100° , to the $6-NH_2$ -derivative, m.p. $207-208^{\circ}$, which is converted by diazotisation, followed by Cu, into 2: 3-methylenedioxyphenanthrene-9-carboxylic acid, m.p. 255—256°, decarboxylated (Cu chromitequinoline) to 2:3-methylenedioxyphenanthrene (I), m.p. 99-100° (picrate, m.p. 149-150°; dibromide, m.p. 228-229°), not identical with the isomeride from roemerine (loc. cit.). (I) is hydrolysed by HCl (d 1·18) at $140-150^{\circ}$ to the 2:3-(OH)₂-derivative, methylated (CH₂N₂) to 2:3-dimethoxyphenanthrene, m.p. 131—132° (dibromide, m.p. 159—160°). The isolation of *l*-ephedrine and $d-\psi$ -ephedrine from the plant is confirmed (loc. cit.).

Alkaloids of the morphine group. I. Synthesis of aminocodide. E. Ochiai and S. Yoshida (J. Pharm. Soc. Japan, 1939, 59, 127—128).—Bromocodide is converted by NH₃-EtOH at 100° into the non-cryst. aminocodide (Ac derivative, decomp. 117°; carbamido-compound, m.p. 238—240°).

Dissociation constants and titration exponents of less common alkaloids.—See A., 1940, Ī, 73.

Modified Bart reaction. G. O. DOAK (J. Amer. Chem. Soc., 1940, 62, 167—168).—Addition of saturated aq. NaNO₂ (1 mol.; starch–KI) and then CuBr to the amine, H_2SO_4 , and $AsCl_3$ in abs. EtOH gives the following yields of $C_6H_4R\cdot AsO_3H_2$: R=p.57 and $m\cdot SO_2\cdot NH_2$ [melts at 218—219° (slow heating from 215°), resolidifies forming an anhydride of indefinite m.p.] 58, $m\cdot NO_2$ 54, and $m\cdot CO_2H$ 76, and $2:1:4\cdot NO_2\cdot C_6H_3Me\cdot AsO_3H_2$ 76%, the respective yields by the ordinary Bart procedure being 25, 0, 28, 36.6, and 15.5%. R. S. C.

Preparation of phenylarsinoxides. I. Monosubstituted derivatives. G. O. Doak, H. Eagle, and H. G. Steinman (J. Amer. Chem. Soc., 1940, 62, 168—170).—p- and o-NO₂·C₆H₄·AsO₃H₂ with SO₂-KI give p- and o-nitrophenylarsinoxide (Na₂ salt, +2H₂O), respectively, but the m-acid gives m-nitrophenylarsinoxide hydrate (not readily dehydrated). Reduction of m-NH₂·C₆H₄·AsO₃H₂ in conc. HCl gives the dichloroarsine, converted by NH₃ into m-aminophenylarsinoxide, softens at 62° (corr.). m-, +2H₂O, and o-hydroxy-, m- and o-chloro-, softens at 208° (corr.), o-sulpho- (Na salt), and o-iodo-phenylarsinoxide, softens at 263°, m.p. 267°, and o-sulphophenylarsinic acid (Na₂ salt, +H₂O) are also described. R. S. C.

Condensation of arsenic chloride with dialkyl aromatic amines. P. S. Varma, K. S. V. Raman, and (Miss) K. M. Yashoda (J. Indian Chem. Soc., 1939, 16, 515—518).—NPhMeEt and AsCl₃ give pmethylethylaminophenylarsinoxide, m.p. 74—75° (sulphide, m.p. 157°; chloride hydrochloride, m.p. 99°; bromide hydrochloride, m.p. 143°; iodide hydrochloride,

decomp. readily; arsinic acid, m.p. >250°), and trip-methylethylaminophenylarsine, m.p. 206°. Similarly a- $C_{10}H_7$ ·NMe₂ yields 1-dimethylaminonaphthyl-4-arsinoxide, m.p. 98—100° (sulphide, m.p. 144°; chloride hydrochloride, m.p. 110—112°; bromide hydrochloride; iodide hydrochloride, m.p. 119—120°), and tri-(1-dimethylaminonaphthyl)-4-arsine, m.p. 148°; m- C_6H_4 Me·NMe₂ yields 4-dimethylamino-2-methylphenylarsinoxide, m.p. 108° (sulphide, m.p. 137°; arsinic acid, m.p. >250°), and tri-4-dimethylamino-2-methylphenylarsine, m.p. 98°; p- C_6H_4 Me·NMe₂ yields 2-dimethylamino-5-methylphenylarsinoxide, m.p. 63—65° (sulphide, m.p. 68°; arsinic acid, m.p. >250°).

Synthesis of organobismuth compounds. H. Gilman and A. C. Svigoon (J. Amer. Chem. Soc., 1939, 61, 3586).—(ArN₂Cl)₃,BiCl₃ complexes (e.g., Ar = p- C_6H_4Me) and Cu powder in cold COMe₂ give BiAr₃. R. S. C.

Hydrolysis of gelatin by enzymes and by heating under pressure.—See A., 1940, III, 163.

Proteins in liquid ammonia. V. Reaction of sodium in liquid ammonia with peptones and related substances. C. O. MILLER and R. G. ROBERTS (J. Amer. Chem. Soc., 1939, 61, 3554—3556; cf. A., 1936, 492).—When Na is added to peptones (I) in liquid NH₃, evolution of H₂ becomes rapid only after a definite amount of Na has been added and reaches a max., not altered by addition of further Na. (I) thus differ from proteins (II) or NH2acids (III). Diketopiperazines (IV) liberate no H₂ and greatly decrease the amount liberated from (II), possibly by complex-formation. (I) are more acidic (to Na) than are (II) or (III). Silk-(I), when digested with H₂SO₄, have min. acidity after 2—3 days; after 10 days they behave as (III); (IV) may be present in quantity on the second and third days. (I) in liquid NH₃ probably contain more (IV) than do (II). (II) probably owe their acidity to juxtaposition of NH and aryl by ring-crumpling.

Quantitative absorption spectrophotometry.—See A., 1940, I, 133.

Stability of colour produced by Nessler's reagent.—See A., 1940, III, 176.

Modified Beilstein test for halogens in organic compounds. D. F. HAYMAN (Ind. Eng. Chem. [Anal.], 1939, 11, 470).—The compound is burned under a red-hot monel metal tube; halogen is indicated by a green-blue flare as the decomp. products touch the tube. The test is negative with certain types of pyrimidines, pyridines, and hydroxyquinolines which give a strongly positive Beilstein test.

J. D. R. Behaviour of the SMe group during the methoxyl determination. F. Arndt, L. Loewe, and M. Ozansov (Ber., 1939, 72, [B], 1860—1863).—SMe of methionine is somewhat more slowly hydrolysed than OMe with HI. $p \cdot C_6H_4$ Me·SMe is only very slowly attacked and $p \cdot C_6H_4$ Me·SH, if formed, undergoes extensive decomp. Still greater difficulty is experienced with AcSMe and S-methylisothiocarbamide sulphate. Complete similarity to OMe is shown by SMe in thiourazole Me ether and its

4-Ph derivative. Dithiourazole Me₂ ether slowly suffers complete hydrolysis but this is not the case with iminothiotriazolethiol Me ether. H. W.

Determination of organic peroxides. H. A. Liebhafsky and W. H. Sharkey (J. Amer. Chem. Soc., 1940, 62, 190—192).—The sample is added to a mixture of glacial AcOH, NaHCO₃, KI, and Na₂S₂O₃, kept in the dark for 5 min., and the I then titrated. When KI₃ solution is added to excess of Na₂S₂O₃ in glacial AcOH, the colour fades at a measurable rate. Bz peroxides and the peroxides in Bu a ₂O are equally reactive towards iodide in AcOH, and slightly less reactive than H₂O₂ in AcOH. H₂O retards all three reactions. W. R. A.

Determination of furfuraldehyde in furfuraldehyde-furfuryl alcohol solution. A. P. Dunlor and F. Trimble (Ind. Eng. Chem. [Anal.], 1939, 11, 602—603).—A modification of the NaHSO₃-I method is described. S. M.

Electrometric determination of thiolbenzthiazole. P. G. Spacu (Bull. Acad. Sci. Roumaine, 1939, 22, 142—145).—The sample in 76—80% aq. COMe2 is titrated potentiometrically with 0·1n-AgNO3. A considerable rise in potential occurs at the equivalence point. It is advisable to keep the solution for 2—5 min. when near the end-point before reading the potential.

J. W. S.

Precipitation of alkaloids by cuprous chloride. J. J. L. Zwikker and A. Kruysse (Pharm. Weekblad, 1940, 77, 18—22).—Aconitine, apomorphine, berberine, brucine, cevadine, cinchonidine, cinchonine, cocaine, codeine, caffeine, cotarnine, dionine, emetine, heroine, hydrastine, quinine, narceine, narcotine, papaverine, strychnine, thebaine, theophylline, veratrine, yohimbine, and $CH_2)_6N_4$ (1:50,000) give cryst. ppts. (1:1000) when treated with 0.25 vol. (4 vols. for cinchona alkaloids) of a reagent consisting of cryst. CuCl₂ (200), Na_2SO_3 ,7 H_2O (250 mg.), and 2n-HCl (2 c.c.) in H₂O (10 c.c.). No ppt. is formed with adrenaline, atropine, colchicine, coniine, cytisine, ephedrine, homatropine, morphine, nicotine, novocaine, eserine, pilocarpine, piperine, scopolamine, solanine, sparteine, tropine, NHPhAc, antipyrine, pyramidone, tyrosine, CO(NH₂)₂, or urethane. The ppts. disappear when the mixtures are exposed to air.

Two precipitation reactions of organic arsenic compounds. M. Péronnet and R. H. Rémy (J. Pharm. Chim., 1939, [viii], 30, 353—364).—10% EtOH and 10% aq. EtOH solutions of many org. As^{III} and As^V compounds (or saturated solutions of the less sol. compounds) are treated with 1 drop of a saturated COMe₂ or aq. solution of H₂S, or with a Hg(NO₃)₂ reagent, and the ppts. observed. In EtOH, only p-NO₂·C₆H₄·AsCl₂ and p-C₆H₄(AsO)₂ yield ppts. with the H₂S reagent, whereas in aq. EtOH all the chloroarsines and arsine oxides gave ppts.; p-nitrophenarsazine chloride, AsPh₂O·OH, and ArAsO₃H₂ do not react. The Hg(NO₃)₂ reagent reacts better with EtOH solutions; the configurations As(Alk)₂ and As(Alk)₃ are not pptd. The reactions with various As compounds are tabulated and their sensitivity is discussed.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

APRIL, 1940.

Applications of selenium dioxide to the oxidation of organic compounds. Y. MAYOR (Chim. et Ind., 1940, 43, 188—194).—A review.

Potential use of hydrogen fluoride in organic chemical processes. J. H. Simons (Ind. Eng. Chem., 1940, **32**, 178—183).—A review. R. S. C.

Nitric oxide-inhibited decomposition of n-butane.—See A., 1940, I, 167.

Decomposition and formation of organic peroxides.—See A., 1940, I, 168.

Oxidation of olefines derived from paraffins to fatty acids.—See B., 1940, 263.

1:4 addition. IV. Nitrogen and tetroxide and isobutylene. V. Nitrogen tetroxide and tetramethylethylene. A. MICHAEL and G. H. CARLSON (J. Org. Chem., 1940, 5, 1—13, 14—23).—IV. In Et₂O there is no separation of the di- $(\alpha-\beta-nitrosonitric ester)$ of isobutane (I) (NO₂·O·CMe₂·CH₂·NO)₂ from the additive product derived from isobutene (II) and N2O4. Without solvent liquid (II) affords the di-(nitric ester) (III) in 7-12% yield; in light petroleum the yields vary more widely (0-13%) with similar experimental conditions. The course of the reaction does not vary appreciably with moderate changes in low temp.; the yields of (III) are 12% at -12° and 7.4% at -80°. N₂O₄ with (II) forms mainly gaseous products which have not been examined since extensive oxidation has occurred. Those formed in light petroleum decompose readily and cannot be separated into component parts. The liquid product formed in Et₂O is relatively stable and can be distilled under low pressure. The product obtained in light petroleum is transformed by NaSPh into a mixture of NaNO₃, NaNO₂, and an org. product which is oxidised to α-nitro-β-phenylsulphonylisobutane. Although the thio-ether corresponding with this sulphone is probably formed from αβ-dinitroisobutane (IV), this compound could not be isolated nor could the corresponding diamine be obtained by catalytic reduction of the crude or the distilled additive product formed in the light petroleum. NH₂Bu^β is formed by catalytic reduction of the crude and the distilled additive product; this is probably formed mainly from nitroisobutene (V) and from (IV) through a series of reactions which also yield $\mathrm{NHBu}^{\beta}_{2}$ (VI). NH_{3} and β -hydroxyisobutylamine appear in practically equimol. proportion on reduction of the distilled blue oil; these products are probably derived from (I). Based on the yields of reduction products, (V) and (I) represent 5—12% and 16—23% respectively of the crude, additive product (VII). Assuming that the isolated (VI) is formed from (IV), the latter constitutes at least 12% of (VII). The following appear new: α -nitro- β -phenylsulphonylisobutane, m.p. $89-90^{\circ}$; toluenesulphonyldisobutylamide, m.p. $110-111^{\circ}$; isobutylamine p-nitrobenzoate, m.p. $117-128^{\circ}$; β -hydroxyisobutylamine p-nitrobenzoate, m.p. $137-138^{\circ}$; diisobutylamine camphorsulphonate, m.p. 185° ; α -nitroso- β -phenylthiolisobutane, m.p. $86-87^{\circ}$.

V. The action of N_2O_4 on CMe₂:CMe₂ gives practically const. yields (19.6—22%) of $\beta\gamma$ -dinitro- $\beta\gamma$ -dimethylbutane (VIII) in Et₂O; addition of gaseous N,O4 to the alkene without solvent or in light petroleum gives only low yields of (VIII). β -Nitro- $\beta\gamma$ -dimethylbutan- γ -yl nitrate (IX) appears to be formed in variable amount under all the experimental conditions examined. In the absence of solvent and under strong oxidative conditions its yield is considerable. It readily unites with (VIII) to a double compound (X) in which all (VIII) is incorporated under the oxidising action of excess of N2O4. Accordingly (VIII) is isolated only under conditions tending to depress the oxidising action of N₂O₄ and the yield of (IX). The composition of (X) is deduced from the analytical data and from the relative amounts of the basic products [NH₃; NH₂·CMe₂·CMe₂·OH; (CH₂·NMe₂)₂] obtained by catalytic reduction. It is possible that N2O4 may oxidise CMe2 CMe2 to the corresponding oxide and then convert the latter into (IX). It is more probable that (IX) is formed by oxidation of the corresponding nitroso-nitric ester produced primarily by direct addition of N₂O₄ to the alkene. With the latter in excess and Et,O as diluent, the yield of (VIII) is ~20%. This result in conjunction with the merging of (VIII) into (X) when an excess of N₂O₄ is used and the composition of (X) indicates that the crude reaction product, formed with approx. molar amounts of reactants, consists mainly of (VIII) and β-nitroso-βγ-dimethylbutan-y-yl nitrate and that the latter ester under the oxidising action of N_2O_4 is converted into (IX), which combines with (VIII) to yield (X). The results confirm those of Demjanov *et al.* (A., 1909, i, 754). In agreement, the occurrence of the dinitrite of Schmidt (Å., 1903, i, 597) is not observed. Tetramethylethylenediamine di-p-nitrobenzoate, m.p. 213-214°, and β-amino-βγ-dimethylbutan-γ-yl p-nitrobenzoate, m.p. 139°, appear new.

Hydrolysis and alcoholysis. W. HÜCKEL (Annalen, 1939, 540, 274—284; cf. A., 1939, II, 147; Ingold *et al.*, A., 1937, II, 363).—Substitution of Cl by OH during hydrolysis of *e.g.*, Bu^{γ}Cl, CH_{γ}PhCl, and CH_{γ}:CH·CH_{γ}Cl, is considered to involve addition of H_{γ}O:R-Cl + HOH \rightarrow R-Cl:H-O-H; the C·Cl link-

H* (A., II.)

113

ing is thereby polarised and facilitates separation of a hydrated Cl⁻. The incomplete electron shell in $SiCl_4$, PCl_5 , or $BiCl_3$ allows the formation of H>0: $SiCl_4$ etc. (R' = H or Alk; in the latter case, elimination of HCl or R'Cl can occur). Hydrolysis of PCl_3 does not occur until H and OH have been added (cf. NCl_3 where $H:NCl_3$ cannot add OH). RSO_2Cl give $RSO_2Cl:HOH$ and thence RSO_2 and Cl:HOH but RCOCl undergo addition at the double linking. True substitution (type S_N2 ; Ingold) occurs only with difficultly hydrolysable chlorides. H. B.

Preparation of trimethylene bromide. Y. F. Chi and G. C. Liu (J. Chem. Eng. China, 1938, 5, 82).

—The prep. from HBr and CH₂.CH·CH₂Br is described.

F. R. G.

Synthesis of $\gamma\gamma$ -dimethylpentan- β -ol. Y. F. CHI and C. H. SZA (J. Chem. Eng. China, 1938, 5, 62—64).—The Grignard compound from CMe₂EtBr and MeCHO yield $\gamma\gamma$ -dimethylpentan- β -ol, b.p. 152—157° (phthalate, m.p. 128—129°; H phthalate, m.p. 180—182°). F. R. G.

Reduction of tagetone to tagetol. T. G. H. Jones (Univ. Queensland Papers, 1939, 1, No. 11, 2 pp.).—Tagetone (A., 1926, 72) gives, by Ponndorf reduction, tagetol, $C_{10}H_{18}O$, b.p. 55°/3 mm. (acetate, b.p. 65°/3 mm.).

Pyrolysis of higher fatty alcohols. H. Gault, L. Palfray, and P. T. Hsu (Compt. rend., 1939, 209, 999—1000).—Dodecanol with N_2 (100 kg. pressure) in the presence of Raney Ni (cf. A., 1936, 446) gives undecane (I), CO_2 , and CH_4 , which indicates that the reaction is one of pyrolysis. The yield of (I) increases with temp., time, and pressure of gas. At atm. pressure, besides (I), small amounts of lauraldehyde are formed, probably as an intermediate product in the reaction. J. L. D.

Synthesis of isopropyl ether. VII. Dehydration of isopropyl alcohol into isopropyl ether in the atmosphere of propylene under pressure, and supplementary experiments. M. Katuno (J. Soc. Chem. Ind. Japan, 1939, 42, 422—424B; cf. A., 1938, II, 256).—The reactions between $Pr^{\beta}OH$ and H_2SO_4 are: $Pr^{\beta}OH + H_2SO_4 \rightleftharpoons Pr^{\beta}O \cdot SO_3H$ (I) $+ H_2O$; $Pr^{\beta}OH + (I) \rightleftharpoons Pr^{\beta}_2O + H_2SO_4$; (I) $\rightleftharpoons C_3H_6 + H_2SO_4$. It is shown that if $Pr^{\beta}OH$ and H_2SO_4 are heated in an agitating autoclave the third reaction can be almost completely prevented by the presence of added C_3H_6 under sufficient pressure. The yield of Pr^{β}_2O reaches 62% of the theoretical. Increase in the proportion of H_2SO_4 beyond a certain val. decreases the yield of Pr^{β}_2O . H. W.

Tertiary oxonium salts. II. H. MEERWEIN, E. BATTENBERG, H. GOLD, E. PFEIL, and G. WILLFANG (J. pr. Chem., 1939, [ii], 154, 83—156; cf. A., 1937, II, 46).—Numerous compounds, [R₃O]⁺X⁻, are prepared and proved to be true salts; they act as potent sources of R ions and thus take part in many characteristic reactions. Prep. of [Et₃O]BF₄, m.p. 92° (closed tube), from *epichlorohydrin* (I) and BF₃,Et₂O in Et₂O is improved to give a quant. yield. Use of BF₃,Pr^a₂O in Pr^a₂O gives only 30% of *tri*-n-

propyloxonium borofluoride, m.p. $73-74^{\circ}$ (decomp.), the reaction being: (I) $+4BF_3$, $R_2O + 2R_2O \rightarrow 3[R_3O]BF_4 + B\{O \cdot CH(CH_2Cl) \cdot CH_2 \cdot OR\}_3$. Etherates of SbCl₅, FeCl₃, and AlCl₃ also give oxonium salts, reacting with (I) and, often, $(CH_2)_2O$ according to the equation (A) $(CH_2)_2O + 2MCl_n$, $R_2O \rightarrow [R_3O]MCl_{n+1} + OR \cdot [CH_2]_2 \cdot OMCl_{n-1}$. The salts are pptd. during the reaction; the alkoxychlorides are recovered from the mother-liquors. Thus are obtained trimethyloxonium antimonihexachloride (95.5%), m.p. 158° (decomp.; sinters at 156°), and triethyloxonium antimonihexachloride (II) (95%) [prep. from (I) or $(CH_2)_2O$], m.p. $135-137^{\circ}$ (decomp.), aluminitetrachloride (82%), m.p. 72° (decomp.), and ferritetrachloride (100%), m.p. 74° (decomp.), Sb β -chloro- β '-ethoxyisopropoxytetrachloride, SbCl β -OcCH(CH-Cl)-CH-OEt (III) m.p. 91° and 4l

SbCl₄·O·ČH(CH₂Cl)·CH₂·OEt (III), m.p. 91°, and Al, m.p. (crude) 114—115°, and Fe β-chloro-β'-ethoxyiso-propagation of the propagation of th

propoxydichloride, m.p. (crude) 103—105°. SbCl₄·O·[CH₂]₂·OEt and SbCl₄·O·CH(CH₂Cl)·CH₂·OMe are obtained only as oils, their structures being proved by hydrolysis by neutral, aq. Seignette salt-KOH to OH·[CH₂]₂·OEt and γ-chloro-α-methoxy-npropan-β-ol, b.p. 170—174° [rapidly converted by cold 0.1n-NaOH into (I)], respectively; the structure of the cryst. Sb and Al alkoxyhalides is similarly proved by hydrolysis to OH·CH(ČH₂Cl)·CH₂·OEt (IV) b.p. 178—184°/760 mm., 71—73°/13 mm. BF₃,R₂O (R = Me or Et) and MeF at room temp. give trimethyl-, m.p. 148° (decomp.) (cautious heating regenerates BF₃,Me₂O and MeF), and methyldiethyloxonium borofluoride, m.p. 99-100° (decomp.) (cf. Similarly SbCl₅, Et₂O (prep. at -80°), m.p. 88°, and EtCl at room temp. (I week) give (II). Attempts to add (a) MeCl or EtCl to etherates of AlCl₃, FeCl₃, BCl₃, and SnCl₄, and (b) SbCl₅, Et₂O to CH₂Cl·OMe (gives CH₂O and MeCl), CH₂PhCl (gives HCl and tars), or AcCl (gives EtOAc and EtCl), failed. It follows that addition of AlkCl plays no part in reaction (A), the mechanism of which is elucidated mainly by analogous reactions in the N-series. BF₃,C₅H₅N with (CH₂)₂O or (I) at 0° gives the betaines, C₅H₅N·[CH₂]₂·O·BF₃ (V), m.p. 131—132°, and C₅H₅N·CH₂·CH(CH₂Cl)·O·BF₃, m.p. 164—165°, respectively; BF₃,NMe₃ and (CH₂)₂O, first at 40—45° and then at 65—70°, give the betaine,

The salt structure of these products is proved by solubility in MeNO₂, liquid SO₂, and H₂O (to give initially neutral solutions), insolubility in most org. solvents, and by conversion of (V) by aq. NaHgI₃ into 1-β-hydroxy-ethylpyridinium mercuritri-iodide, m.p. 39°, and by NaHgCl₃ into [C₅H₅N·CH₂·CH₂·OH]Cl,6HgCl₂. Similarly SbCl₅,Et₂O with (I) or (CH₂)₂O in Et₂O at

—80° gives the betaines, SbCl₅·O·CH(CH₂Cl)·CH₂·ÖEt₂ (VI), decomp. 58°, and SbCl₅·O·[CH₂]₂·ÖEt₂ (VI), decomp. 58°. These salts are very unstable; in moist air they give the appropriate glycol Et ether and EtOH; in absence of H₂O at room temp. to 90° they give quantitatively EtCl with (III) and Sb β-ethoxyethoxytetrachloride (VIII), m.p. 106°, respectively. The EtCl thus formed is set free as Et⁺ and Cl⁻, and

it is this fission which leads to formation of [R₃O]X. In confirmation of this, it is shown that SbCl₅,Et₂O with (VI) or (VII) in Et₂O gives quantitatively [Et₃O]SbCl₆ with (III) or (VIII), respectively; these reactions are rapid although all the reagents and products are insol. in Et₂O. BF₃,Me₂O and (I) in Et₂O at -80° give the betaine,

 $BF_3 \cdot O \cdot CH(CH_2Cl) \cdot CH_2 \cdot OMc_2$, $+Me_2O$, m.p. 75—80° (decomp.), which very rapidly decomposes to BF3 and an oil. BF₃, Et₂O and (I) at -80° give a similar betaine, which with a second mol. of BF₃, Et₂O gives [Et₃O]BF₄ and OEt·CH₂·CH(CH₂Cl)·O·BF₂; the BF₂ ester is not isolated, as it disproportionates at once to 2 BF₃ and $\{OEt \cdot CH_2 \cdot CH(CH_2Cl) \cdot O \cdot \}_3 B$ (IX), b.p. 146—151°/0.05 mm. Decomp. of the last-mentioned betaine in Et₂O at room temp. gives [Et₃O]BF₄, BF₃,Et₂O, and the BF₃ compound of (IV), with small amounts of (IX) and y-chloropropylene glycol Et₂ ether (X), b.p. $72-73^{\circ}/14$ mm. Reaction (A) thus occurs by formation of a betaine and reaction thereof with a second mol. of inorg. halide etherate; these two steps are often manifested by physical changes in the reaction mixture.

Various other inorg, halides do not give simple oxonium salts. SnCl₄ and (I) in Et₂O give the cryst., double betaine, SnCl₄{·O·CH(CH₂Cl)·CH₂·OEt₂}₂, which is very unstable, giving by hydrolysis EtOH,

which is very unstable, giving by hydrolysis EtOH, (IV), and (X), or by decomp. at room temp. (a) $2\text{EtCl} + \text{SnCl}_2\{\cdot O \cdot \text{CH}(\text{CH}_2\text{Cl}) \cdot \text{CH}_2 \cdot \text{OEt}\}_2$, (b) by interaction with 2 Et₂O, $2(X) + \text{SnCl}_4, 2\text{Et}_2\text{O}$, and (c) a small amount of the cryst. compound,

(CH₂Cl)₂CH·O·SnCl₃, hydrolysed mainly to

OH·CH(CH₂Cl)₂, b.p. 69—71°/13 mm. (identified as phenylurethane, m.p. 73—74°). BeCl₂,Et₂O, an oil, and (I) in Et₂O give Be ββ′-dichloroisopropoxychloride, (CH₂Cl)₂CH·O·BeCl, +Et₂O, m.p. 114·5—115°, the structure of which is shown by removal of 1 Cl by AgNO₃-dil. HNO₃, 2 Cl by 2n-NaOH (gives epichlorohydrin), and 3 Cl by boiling 0·5n-KOH-BuOH; hydrolysis gives OH·CH(CH₂Cl)₂. BeCl₂ and (CH₂)₂O in Et₂O similarly give Be β-chloroethoxychloride, +Et₂O (not lost even at 200°), m.p. 199—200°. BiCl₃ and (I) in Et₂O or C₆H₆ give Bi ββ′-dichloroisopropoxydichloride, m.p. 145—150° (decomp.) [hydrolysed to OH·CH(CH₂Cl)₂]. These three products are formed by the reaction: $CHR' > O + MCl_n, R_2O > CH_2 > O + MCl_n, R_2O > CH_2 > O + MCl_n, R_2O > CH_2 > O + MCl_n, R_2O >$

CH₂Cl·CHR'·O·MCl_{n-1} +R₂O (R' = H or CH₂Cl). ZnCl₂, BCl₃, AlBr₃, TiCl₄, and SbCl₃ react in the main similarly; the products from ZnCl₂ and BCl₃ are insol. oils, those from the remainder are sol., but in all cases hydrolysis to OH·CH(CH₂Cl)₂ proves the nature of the reaction [AlBr₃ gives a product, hydrolysed to CH₂Cl·CH(OH)·CH₂Br]; about 30% of (IV) is also formed by hydrolysis, so that the reaction, (I) + MCl_nEt₂O \rightarrow OEt·CH₂·CH(CH₂Cl)·O·MCl_{n-1} + EtCl, also occurs. SiF₄ forms no etherate, is insol. in Et₂O, and does not react with (I).

The salt character of the oxonium compounds is proved by solubility in liquid SO₂ and MeNO₂, sometimes (less so) in PhNO₂, CH₂Cl₂, or CHMeCl₂, insolubility in other org. solvents, particularly Et₂O, and by their conductivity in liquid SO₂, which is intermediate between that of KI and NMe₄I and

approx. equal to that of $\operatorname{SEt_3BF_4}$. The conductivity of $[\operatorname{Me_3O}]\operatorname{BF_4}$ is < that of $[\operatorname{Et_3O}]\operatorname{BF_4}$ owing to different degrees of solvation. The outstanding property of the salts is their power of alkylation by transference of $\operatorname{Alk^+}$. Thermal decomp. gives RCl and $\operatorname{R_2O}$. A reversible reaction, $[\operatorname{R_3O}]^+ + \operatorname{R'_2O}$ $\operatorname{R_2O} + [\operatorname{RR'_2O}]^+$, is realised by using an excess of either ether or otherwise suitable conditions. Thus, $[\operatorname{Et_3O}]\operatorname{BF_4}$ is completely (92%) converted into $[\operatorname{Me_3O}]\operatorname{BF_4}$, m.p. 143°, by $\operatorname{Me_2O}$ in 5 days at room temp., the conversion being favoured by the lower solubility of the latter salt. This reaction occurs also with cyclic ethers and can be brought nearly to completion by removing the liberated lower ether in vac.; thus are obtained pentamethylene-ethyloxonium borofluoride (XI). $[\operatorname{Et}\cdot\operatorname{O}]^{[\operatorname{CH_2}]_2}$ CH₂ $[\operatorname{BF}]$. (from

borofluoride (XI), $\left[\text{Et}\cdot\text{O} < \left[\text{CH}_2\right]_2 > \text{CH}_2\right]\text{BF}_4$ (from pyran and $\left[\text{Et}_3\text{O}\right]\text{BF}_4$), m.p. 45°, hygroscopic, tetramethylene-ethyl- (XII), m.p. 132° (decomp.), $\alpha\alpha'$ -dimethyltetramethylene-ethyl- (XIII),

 $\rm Et^{\bullet}O < \stackrel{CHMe^{\bullet}CH_2}{CHMe^{\bullet}CH_2}
m SbCl_6$, m.p. 142° (decomp.), and pentamethylene-ethyl-, m.p. 154—155° (decomp.). -oxonium antimonihexachloride, and the salt [from dioxan in $(CH_2Cl)_2$, $\left[O \leftarrow \left[\begin{array}{c} [CH_2]_2 \\ [CH_2]_2 \end{array} \right] > O \cdot Et \right] SbCl_6$, m.p. 156° (decomp.). (A similar interchange accounts for formation of [Me₃O]BF₄ as sole product from BF₃,Me₂O and Pr^aF.) No reaction, however, occurs between [Et₃O] salts and $Pr_{2}^{\beta}O$ or cineole, in spite of the high basicity of these ethers evidenced by solubility in H₂O and HCl; this is ascribed to steric hindrance around the O; in the case of (XIII), hindrance is reduced by ring-formation. Crowding around the O similarly accounts for AlkaO salts being less stable than are AlkaS salts; this difference disappears when Alk is replaced by the smaller H, so that ethers, but not sulphides, form salts of the type, [R₂HO]X, with acids. The tendency to lose Alk⁺ leads to ready hydrolysis of [R₃O]BF₄ by H₂O to R₂O, HBF₄, and ROH, this reaction being in effect alkylation of H₂O or OH-. [Et₃O]FeCl₄ behaves similarly. However, [Et₃O]AlCl₄ in H₂O gives Et₂O, AlCl₃, and EtCl; hydrolysis to EtOH occurs only in 2n-NaOH; the difference is due to instability of AlCl₄ in H₂O, which leads to immediate decomp. of the salt to [Et₃O]Cl and hydrolysis products of AlCl₃; the EtCl is derived by the secondary decomp. of [R₃O]SbCl₆ occupies an intermediate $[Et_3O]Cl.$ position, dil. alkali giving both RCl and ROH. Hydrolysis of (XII) by 2n-NaOH takes both possible routes, viz., formation of varying amounts of (a) EtOH and tetrahydrofuran, and (b) OEt·[CH₂]₄·OH (XIV), b.p. $87^{\circ}/19.5$ mm.; some $di-\delta-ethoxy-n-butyl$ ether, b.p. 140°/18.5 mm., is also formed by interaction of (XIV) with unchanged (XII). (b) is the counterpart (at room temp.) of Hofmann fission of NR₄·OH. Hydrolysis of [R₃O]BF₄ by H₂O is not instantaneous and is followed by (a) the increasing conductivity due to liberated HBF₄ (which decomposes relatively slowly) and (b) pptn. of unchanged salt by NaHgI₃. The two methods give similar results, e.g., in 0.0528n. solution at 18° decomp. times are R = Me 8, Et 80, $Pr^a 120$, and (XI) 220 min.; these figures represent the relative ease of

removal of Alk⁺. By treating [Et₃O]BF₄ with 1 equiv. of NaOH, measuring the rate of increase of conductivity, and extrapolating to zero time, $[\text{Et}_3\text{O}]\text{OH}$ is shown to have Δ_{∞} ~200 at 20°, indicating a strength as base comparable with that of NEt₄·OH (211·5 at 25°) and SEt₃·OH (215·8 at 25°). By virtue of this temporary stability in H₂O, double decomp. of oxonium and inorg. salts (or acids) leads to new oxonium salts. E.g., [Me₃O]BF₄ and 10% aq. trimethyloxonium give aurichloride, [Me₃O]AuCl₄, m.p. 133° (decomp.), and the following salts are similarly prepared (those marked * are not described in detail): [Et₃O]AuCl₄, m.p. 92° (decomp.), $[Et_3O]_2PtCl_6$, decomp. $>120^\circ$, $[Et_3O]\bar{S}bCl_6$ (cf. above), $[Et_3O]_2SnCl_6$, unstable at room temp., m.p. indefinite, $[Et_3O]BI_4$ (obtained by NaBiI₄ at <0°), bright red, $[Et_3O]B_2I_7$ (obtained by NaBiI₄ at 0°), dark red (loses EtI at room temp. or rapidly at 60°), [Et₃O]Bi₂Cl₇ (from NaBiCl₄), m.p. 84° (decomp.), [Et₃O]HgI₃, cryst. (at room temp. or rapidly at 50— 60° gives Et,O and EtI), [Et,O]HgCl, $[Et_3O]_2H_2Fe(CN)_6$, $+2H_2O$ [from acidified Na₄Fe(CN)₆], unstable, the aurichloride and mercuritriiodide* from (XI), [Me₃O]₂PtCl₆*, [Me₃O]₂SbCl₆*, [Me₃O]Bi₂I₇*, [Me₃O]HgI₃*, and [Me₂EtO]AuCl₄*. HHgCl₃, HHgBr₃, and HCdI₃ give insol., but unstable, ppts. HClO₄ and H₂SnCl₆ give no salts. Reinecke's salt gives esters in place of oxonium salts. stability of these salts varies widely. That of the mercuritri-iodides parallels the rates of hydrolysis reported above. Addition of [R₃O]BF₄ to aq. NaX causes (if [R₃O]X is sol.) (a) hydrolysis as described above and (b) alkylation of the anion, thus: $[R_3O]^+$ + $X^- \rightarrow R_2O + RX$; determination of the amount of acid liberated by hydrolysis shows the following % of reaction (b): F a trace, Cl 12, Br 23, I 53, CNS 64, CN 55. Alkylation of X is largely dependent on the polarisability of the anion (CN- behaving abnormally owing to alkalinity of aq. cyanides). This factor and steric conditions around the O largely determine the stability of oxonium salts. stability series for anions, SbCl₆ > BF₄ > FeCl₄ > AlCl₄ > SnCl₆, holds for all onium salts. Thealkylating action of oxonium salts on other org. compounds (cf. loc. cit.) is very powerful. [Et₃O]BF₄ with Et₂SO, m.p. 13—14° (lit. 5—6°, 15°), b.p. 90°/15 mm., gives ethoxy diethyl sulphonium borofluoride, $[Et_2S \cdot OEt]BF_4$; the corresponding antimonihexachloride is obtained from [Et₃O]SbCl₆; both products NMe₃O in CH₂Cl₂ similarly gives are unstable. ethoxytrimethylammoniumborofluoride, [NMe₃·OEt]BF₄, and antimonihexachloride. CO(NH₂)₂ and [Et₃O]BF₄ (no solvent) give the salt, $[(NH_2)_2C\cdot OEt]BF_4$ (or similar mesomeric form), m.p. 184-185° (decomp.), converted by cold, conc. NaOH into NH₂·C(:NH)·OEt. NH₂Ac gives similarly the salt, [NH:CMe·OEt]BF₄. [Et₃O]AlCl₄ and PhCN give a salt, [CPh:NEt]AlCl₄, which with a further mol. of PhCN gives CPhCl:NEt (recognised by hydrolysis to NHEtBz) and the *compound, PhCN, AlCl₃, m.p. 96—98°. Alkylation of other nitriles, saturated and unsaturated ketones is mentioned. The following observations are also recorded. A compound, B(O·[CH₂]₂·Cl)₃,2BF₃, is obtained; it loses all the BF₃ readily and does not give a borofluoride; B(OPh)₃ behaves similarly. The

stability of salts, [R₂HO]X, generally parallels that of [R₃O]X, but [R₂HO]BF₄ and [R₂HO]SbCl₆ are unexpectedly unobtainable. BF₃ compounds are readily analysed by pptn. of PbClF by PbCl₂, but BF₄ salts react too slowly with PbCl₂ and are best determined by nitron. R. S. C.

Preparation, properties, and thiocyanogen absorption of triolein and trilinolein. D. H. WHEELER, R. W. RIEMENSCHNEIDER, and C. E. SANDO (J. Biol. Chem., 1940, 132, 687-699).—Oleic acid (>0.1% of saturated acids and linoleic acid), glycerol, and 1% of p-C₆H₄Me·SO₃H at 125° in N₂ evolve H₂O and give triolein (I), which is purified by mol. distillation. Cooling and warming curves show that (I) exists in 3 forms: form I, stable, m.p. 4.7— 5.0° ; form II, m.p. $\sim -12^{\circ}$; and form III, m.p. $\sim -32^{\circ}$. Linoleic acid similarly gives trilinolein (II), which gives form I, stable, m.p. $-13\cdot1^{\circ}$ to $-12\cdot8^{\circ}$, and form II, m.p. $\sim -43^{\circ}$. CNS vals. for (I) and (II) at 20-23° are determined after various periods; the best reaction time for determinations, especially in mixtures of (I) and (II), is 4 hr. With Br in cold Et₂O, (II) gives a mixed product, with a 9.1% yield of cryst. Br-compounds, m.p. 80-81° and 81-

Synthesis of phosphoric esters. I. P. Brigh and H. MÜLLER (Ber., 1939, 72, [B], 2121—2130).— (OPh), POCl (I) is best obtained by heating equal parts by wt. of PhOH and POCl₃ slowly to 180° and then, after subsidence of the first marked evolution of HCl, to 225° and subsequently for a short time at 260°. It is separated from simultaneously formed (OPh)POCl₂ by fractional distillation and has b.p. 191—194°/12 mm. It is converted by cold 2N-NaOH into (OPh)₂PO·OH, which suffers hydrogenating fission (PtO₂ in AcOH) to H₃PO₄ and cyclohexane. Gradual addition of (I) to αβ-isopropylideneglycerol in C₅H₅N or quinoline at 0° and then at room temp. yields Ph, $\alpha\beta$ -isopropylidene- α' -glyceryl phosphate, which does not crystallise and cannot be distilled unchanged in a high vac. It undergoes hydrogenating fission to αglycerylphosphoric acid (II) (isolated as the Ba salt); more simply it is hydrolysed to (II), COMe2, and PhOH by the prolonged action of aq. AcOH at 40-45°. Similarly, \aa'-benzylideneglycerol, m.p. 84°, is converted into Ph₂ αα'-benzylidene-β-glyceryl phosphate, m.p. 72·5°, which is hydrolysed by 65% AcOH at $45-50^{\circ}$ to β-glycerylphosphoric acid [Ba (+1H₂O) salt]; hydrogenation gives only a small amount of the latter compound since the Ph residues appear to be eliminated whereas the CHPh: residue is mainly hydrogenated. 2:3-4:5-Diisopropylidenefructose is transformed into Ph_2 2:3-4:5-diisopropylidene-fructose 1-phosphate, m.p. 52·5°, $[\alpha]_D^{20}$ —29·1° in COMe₂, catalytically hydrogenated to 2:3-4:5dissopropylidenefructose-1-phosphoric acid, isolated as the Ba salt $(+3H_2O)$. Ph_2 1:2-4:5-disopropylidenefructose 3-phosphate (III), m.p. 71—72° $[\alpha]_D^{16}$ -124.9° in COMe₂, is slowly converted by 70% AcOH at room temp. into Ph_2 1:2-isopropylidene-fructose 3-phosphate, m.p. 136°, $[\alpha]_0^{\circ 1}$ -84.5° (c = 2.792) or -96.4° (c = 2.133) in COMe₂, which is very stable towards further action of AcOH and is reconverted by CuSO₄-COMe₂ into (III). Hydro-

genating fission leads to 1:2-isopropylidenefructose-3-phosphoric acid [Ba (+2H₂O) salt], hydrolysed by 0.1n-H₂SO₄ to COMe₂ and fructose-3-phosphoric acid. 2:3-isoPropylidenefructofuranose affords Ph_4 2:3isopropylidenefructofuranose diphosphate, $C_{33}H_{34}O_{12}P_2$, m.p. 120.5° , $[\alpha]_{0}^{10}$ $+12.4^{\circ}$ in COMe₂, which is stable towards 65% AcOH at room temp. and at 40° and, when hydrogenated, gives mainly a fructosemonophosphoric acid which can contain only a very small proportion of diphosphoric acid. Fructofuranose 1:6-dibenzoate is transformed by PhCHO and ZnCl₂ into 2:3(or 2:4)-benzylidenefructofuranose 1:6-dibenzoate, dimorphous, m.p. 85° (from C₆H₆) or 102—103° (from MeOH or AcOH by addition of H_2O), $[\alpha]_D + 26$ ° to +28° in COMe₂. This is hydrogenated (PtO₂) in MeOH containing H₃PO₄ to a substance, C₂₇H₄₂O₈, m.p. 82°, which is without action on Fehling's solution, and (Pd-BaSO₄) in MeOH containing H₃PO₄ to a substance, taining H₃PO₄ to fructose 1:6-dibenzoate.

Isolation and properties of R-diphosphoglyceric acid. E. NEGELEIN and H. BRÖMEL (Biochem. Z., 1939, 303, 132—144; cf. A., 1939, III, 788).—The labile glyceric acid diphosphate, probably PO₃H₂·O·CH₂·CH(OH)·CO₂PO₃H₂ (*R*-acid) (I), now named *R*-diphosphoglyceric acid, is obtained in 57% yield by the interaction of β-phosphoglyceraldehyde (II), inorg. PO4", a small amount of diphosphopyridine nucleotide, MeCHO, and the cryst. proteins of the carbohydrate-oxidising enzyme and MeCHO reductase at $p_{\rm H}$ 7.6. The $p_{\rm H}$ of the mixture is adjusted to 2.1 with ${\rm H_2SO_4}$ and the H salt of (I) is pptd. by adding 10 vols. of COMe₂. The ppt., dissolved in H₂O and treated with neutralised solution of strychnine hydrochloride, yields the tetrastrychnine salt of (I). (I) has an absorption band at 215 mu. It is detected and determined by adding excess of dihydropyridine nucleotide (III) to a solution of (I) free from inorg. PO₄" and measuring the decrease in ultra-violet light absorption resulting from the oxidation of an equiv. amount of the nucleotide. In neutral aq. solution at 38° (I) spontaneously decomposes at the rate of 2.6% per min. thus: (I) + $H_2O = 3$ -phosphoglyceric acid $+ H_3PO_4$. (I) contains an asymmetric C ($[\alpha]$ very small) since the phosphoglyceric acid produced in the spontaneous decomp has $[\alpha]_0^{20}$ —675° in 8% NH₄ molybdate solution. The reactions involved in the production of (I) are: (II) + $PO_4^{\prime\prime\prime}$ + pyridine nucleotide (IV) = (I) + (III) and (III) + $MeCHO \Longrightarrow (IV) + EtOH$, the first reaction being catalysed by the carbohydrateoxidising enzyme and the second by MeCHO reductase. W. McC.

Action of thionyl chloride and thionyl bromide on pentaerythritol. F. Govaert and M. Hauseus (Natuurwetensch. Tijds., 1939, 21, 215—217).—Pentaerythritol disulphite, m.p. 151°, is formed by interaction of C(CH₂·OH)₄ and SOCl₂ or SOBr₂ alone or in presence of a tert. base. SOBr₂ and the appropriate alcohol gives the corresponding bromide (yield given in parentheses): isoamyl (80), sec.octyl (73), Bu⁷ (55), and CH₂Ph (70%). S. C.

Action of Nessler's reagent on dichloroethyl sulphide (Yperite) and β -chlorovinylchloro-

arsines (Lewisite) in aqueous medium. J. Delga (J. Pharm. Chim., 1940, [ix], 1, 5—8).— Presence of (Cl·[CH $_2$] $_2$) $_2$ S (I) or of Lewisite (II) in H $_2$ O hinders the use of Nessler's reagent for NH $_3$, (I) giving a white ppt. [not formed by (OH·[CH $_2$] $_2$) $_2$ S], and (II), in increasingly conc. solutions, in turn a greenish-yellow colour, an orange-yellow or maroon colour, a grey ppt., and a white ppt. turning grey. The use of these reactions for detecting (I) and (II) is suggested. E. W. W.

Reaction between $\beta\beta'$ -dichlorodiethyl sulphide (mustard gas) and bleaching powder. A. G. Lipscombe (Analyst, 1940, 65, 100).—Dry CaOCl₂ does not appear to react with mustard gas, but on addition of a few drops of H_2O a violent reaction takes place. E. C. B. S.

Thiodiglycol. Unit process and operations involved in its synthesis from ethylene oxide and hydrogen sulphide. D. F. Othmer and D. Q. Kern (Ind. Eng. Chem., 1940, 32, 160—169).—The change, $2(CH_2)_2O + H_2S \rightarrow S([CH_2]_2 \cdot OH)_2$, occurs in the liquid reaction product only, is a third-order reaction, and gives >99% yield. Admission of the gases and withdrawal of the product from the reaction vessel may be continuous. R. S. C.

Sulphur studies. XV. Synthesis of alkanesulphonic acids and certain derivatives. P. H. LATIMER and R. W. Bost (J. Org. Chem., 1940, 5, 24-28).—The alkyl halide (I) and aq. $(NH_4)_2SO_3$ are heated on the steam-bath for 3-4 hr. at a temp. just below the refluxing point of (I), after which the mixture is gently refluxed for 30-40 hr. The mixture is diluted and boiled with Ba(OH)₂ until NH₃ is no longer evolved. BaSO₃ is removed and excess of $Ba(OH)_2$ is pptd. by CO_2 . The dry mixture of Ba halide and Ba methane- (II), ethane- (III), and npropane- (IV) -sulphonate is continuously extracted with abs. EtOH to remove the halide and finally crystallised from 80% EtOH. Ba n-butane- (V), n-pentane- (VI), n-hexane- (VII), and n-heptane-(VIII) -sulphonates separate from the filtrate on concn. and are purified from the last traces of halide by fractional crystallisation from distilled H₂O. (II)— (VIII) are transformed into the corresponding phenylhydrazonium salts, m.p. 193—194° (decomp.), $182 \cdot 8^{\circ}, 204 \cdot 5^{\circ}$ (decomp.), $114 - 115^{\circ}, 108 - 108 \cdot 2^{\circ}, 101 - 101 \cdot 6^{\circ}$, and $100 - 100 \cdot 5^{\circ}$, respectively. (II)—(VI) yield the corresponding p-toluidides, m.p. 102.0—102.7°, 80.0—80.5°, 67.0—67.8°, 74.2—75.2°, and 48.4—49.4°, and p-phenetidides, m.p. 126.5—127.4°, $80.4 - 81^{\circ}$, $101.0 - 101.5^{\circ}$, $78.2 - 79.0^{\circ}$, and $69.0 - 70.0^{\circ}$, respectively. o-Benzyloxyphenyl, m.p. 92—93°, and β-naphthyl, m.p. 103.5—104.5°, methanesulphonate are described. The n-alkanesulphonyl-p-phenetidides and -p-toluidides afford no protection to mice infected with pneumococcus type I, type II, Puerto Rican strain, influenza virus, or staphylococcus. Methanesulphonyl-p-toluidide shows antipyretic action which is not const. between rats and rabbits.

Formic acid as a solvent for ozonisation investigations. R. M. DORLAND and H. HIBBERT (Canad. J. Res., 1940, 18, B, 30—34).—Comparison of the actions of O₃ on maleic acid (I), vanillin (II),

and veratraldehyde (III), in HCO_2H (IV) and in EtOAc (V), shows that in (IV), (I) affords $CHO\cdot CO_2H$ whilst (II) and (III) are unchanged, whereas in (V), (I) affords mainly $H_2C_2O_4$, (II) vanillic acid, and (III) veratric acid. The effect of (IV) in protecting CHO is noteworthy. F. J. G.

Physical properties of aliphatic acid anhydrides.—See A., 1940, I, 149.

Electrolysis [of sodium acetate, potassium hexoate, and potassium ethyl malonate] in the glow discharge.—See A., 1940, I, 169.

Addition of hydrogen bromide to non-terminal double bonds. The isopropylidene group. Crotonic acid. D. C. GRIMSHAW, J. B. GUY, and J. C. SMITH (J.C.S., 1940, 68-71).—Addition of HBr to CHMe:CH·CO2H in C6H6 even under the most favourable peroxidic conditions with Bz₂O₂, BzO₂H, or ascaridole gave only CEtBr·CO₂H. Et₂ α-acetylbrassylate hydrolysed with KOH in EtOH yields μ-ketotetradecoic acid, m.p. 75° (Et ester, b.p. 153°/0·5 mm., m.p. 36°), which with MgMeI gives μ-hydroxyμ-methyltetradecoic acid, m.p. 61°. CMe₂·CH·[CH₂]₁₅·Me is shown to contain the CMe₂. group by ozonolysis to Me·[CH₂]₁₅·CO₂H, whilst addition of HBr gives solely β-bromo-β-methylnonadecane (I), m.p. 19.4°, also prepared from C₁₇H₃₅·CMe₂·OH and HBr. C₁₇H₃₅I in PhMe reacts with CHNa(CO₂Et)₂ to give Et₂ heptadecylmalonate, b.p. 198—202°/0·4 mm., m.p. 20° and 32—33°, which with MeI yields Et_2 methylheptadecylmalonate, b.p. $195-197^{\circ}/0.5$ mm., m.p. 11° and 25° , hydrolysed with aq. KOH to methylheptadecylmalonic acid, m.p. 100—101°; this loses CO_2 on heating to give α methylnonadecoic acid, m.p. 57.5°, f.p. 56.4°, the Et ester, b.p. 170°/0·12 mm., of which is reduced with Na in EtOH to β -methylnonadecan- α -ol, b.p. $167^{\circ}/0.2$ mm., m.p. 39-40°. This compound with HBr at I30-I50° or with PBr₅ gives α-bromo- β -methylnonadecane (II), m.p. 14·1° and 16·5°, f.p. 14·0°. M.p. are

Polarographic study of pentenoic acids. V. Zambotti (Arch. Sci. biol., Napoli, 1940, 26, 80—88).—There appears to be no polarographic difference in the properties of the double linking in the $\alpha\beta$, $\beta\gamma$, or $\gamma\delta$ positions in the *n*-pentenoic acids. The biological activity of the $\alpha\beta$ double linking must be referred not to the substrate but to the influence of enzymes.

F. R. G.

recorded for mixtures of (I) and (II).

Racemisation of carboxylic esters by sodium ethoxide and its bearing on Claisen's condensation. J. Kenyon and D. P. Young (J.C.S., 1940, 216—218).—(+)-CHMeEt·CO₂Et, b.p. 35°/16 mm., $\alpha_{5401}^{20} + 1.92^{\circ}$ (l, 0.5), and (—)-CHEtBu·CO₂Et, b.p. 90—91°/25 mm., $\alpha_{5461}^{20} - 2.92^{\circ}$ (l, 2) (dl-acid partly resolved by cinchonidine), are readily racemised by conc. EtOH-NaOEt (1 mol.), as is (—)-CHPhMe·CO₂Me, b.p. 109—110°/20 mm., $\alpha_{5401}^{20} - 20.34^{\circ}$ (l, 0.5), by MeOH-KOMe, indicating that formation of a sodio-derivative occurs in appreciable quantity and involves release of a proton from the α -C. Mechanisms postulating initial formation of Na[CHR·CO₂Et] (or modifications thereof) in Claisen's condensation are thus supported. H. B.

Isomeride of ricinoleic acid in fatty oil from seeds of *Vernonia anthelmintica*.—See A., 1940, III, 273.

Traumatic (Δ^{α} -decene- $\alpha\omega$ -dicarboxylic) acid. —See A., 1940, III, 271.

Deuterium compounds. Optically active sodium ammonium dideuterotartrate. H. Erlenmeyer and O. Bitterlin (Helv. Chim. Acta, 1940, 23, 207—209).—Crystallisation of $CO_2Na\cdot CD(OH)\cdot CD(OH)\cdot CO_2NH_4$, $+4H_2O$, from H_2O at $<27^\circ$ gives the d-salt, $[\alpha]_D^{20}$ (anhyd.) $+31\cdot48^\circ$ to $+31\cdot69^\circ\pm3^\circ$ in H_2O , which shows a definite effect of D on $[\alpha]$. R. S. C.

Determination of ascorbic acid.—See A., 1940, III, 236.

Constitution of arabic acid. III. Isolation of methyl heptamethylaldobionate from methylated degraded arabic acid. IV. Formation of 3-galactosidogalactose by hydrolysis of degraded arabic acid. J. Jackson and F. Smith (J.C.S., 1940, 74—78, 79—82).—III. Hydrolysis of the methylated Ba salt of degraded arabic acid (cf. A., 1940, II, 5) with 14n-H₂SO₄ yields a hexamethylaldobionic acid, which with 1% HCl in MeOH yields the α -form of the Me ester of hexamethyl-6- β -glucuronosidomethylgalactoside, and this when boiled with gives 2:3:4-trimethylmethyl-MeOHgalactoside and -glucuronoside, indicating that each side-chain in (I) consists of a terminal glucuronic acid group which is linked through at least one galactose (II) residue with the main (II) chain.

IV. A tentative structure proposed for (I) consists of twelve pyranose units (one terminal) and three terminal glucuronic acid residues. Both 1:3- and 1:6-glycosidic unions are involved, the presence of the former being shown by prolonged autohydrolysis of (I), which gives 3-galactosidogalactose, isolated by methylation as its Me₈ derivative, which was hydrolysed to 2:3:4:6-tetramethyl- and 2:4:6-trimethyl-galactose. F. R. G.

Decomposition of thionyldiacetic acid in acid aqueous solution.—See A., 1940, I, 167.

Action of nitrous acid on formaldehyde. H. M. Halliday and T. H. Reade (J.C.S., 1940, 142—143).—Contrary to Vanino $et\ al.$ (A., 1913, ii, 241), CH₂O is practically unaffected by HNO₂ (method: $loc.\ cit.$); the gaseous products are NO (94%; formed by thermal decomp. of HNO₂) and N₂ (6%; origin obscure).

High-temperature photolysis of acetaldehyde.—See A., 1940, I, 170.

Preparation of aliphatic aldehydes by catalytic dehydrogenation of alcohols in the liquid phase in the presence of reduced nickel. A. Halasz (Compt. rend., 1939, 209, 1000—1003; cf. A., 1939, II, 376).—Lauryl alcohol (I) with 5% of its wt. of reduced Ni at 250°/2 hr. gives lauraldehyde (II) (20%), unchanged (I) (59%), and decomp. products of (I). Heating for shorter periods increases (I) and decreases (II), whereas heating for a longer period diminishes (I) and (II), the diminution in (II) being ∞ the duration of heating. Increase in temp. favours

both the formation of (II) and the decomp. of (I). Moderate decrease in pressure is without effect on the reaction. n-Saturated C_{11} , C_{12} , C_{14} , C_{16} , and C_{18} aldehydes are isolated as their semicarbazones, m.p. 101° , $102 \cdot 5^{\circ}$, $106 \cdot 5^{\circ}$, 107° , and 107° , respectively.

J. L. D. Raman effect and problems of constitution. XIV. Methyl vinyl ketone.—See A., 1940, I, 146.

Stable and labile semicarbazones from methyl n-amyl ketone. W. S. Rapson and R. G. Shuttleworth (J.C.S., 1940, 99).—Prep. of Me n-amyl ketone semicarbazone in aq. EtoH gives a labile form (I), m.p. 96—97°, which changes when left in the dark or in EtoH to the stable form (II), m.p. 121—123°. Inoculation of the solutions of (I) with (II) did not aid in separation of (II). (II) could not be converted into (I) by ultra-violet light. COMeBu^a and COMe·C₆H₁₃-n do not give labile semicarbazones.

F. R. G. Keto-alcohols. I. α -Hydroxyketones. LINNELL and I. ROUSHDI (Quart. J. Pharm., 1939, 13, 252—259).—A series of α-OH-ketones has been prepared for pharmacological examination as analogues of deoxycorticosterone. The following have been prepared by interaction of ZnRI with chloroacetoxyisobutyryl chloride and hydrolysis of the isolated cycloacetal with HCl-AcOH: CH₂Cl Pr^a ketone (I), b.p. 58-59°/17 mm. (semicarbazone, m.p. $209-210^{\circ}$); $CH_2Cl\ Bu^a\ ketone\ (II)$, b.p. $94-95^{\circ}/50$ mm. (semicarbazone, m.p. 230—231°); CH₂Cl n-amyl ketone (III), b.p. 118—120°/50 mm. (semicarbazone, m.p. 240—241°). After refluxing with KOAc-EtOH followed by BaCO₃-H₂O, (I), (II), and (III) yield respectively n-butyryl-, b.p. 45°/12 mm. [2:4-dinitro-phenylosazone, m.p. 234—236° (decomp.)], n-valeryl-, b.p. 97—99°/40 mm. [2:4-dinitrophenylosazone, m.p. 223—225° (decomp.)], and n-hexoyl-carbinol, b.p. 95—98°/15 mm. [2:4-dinitrophenylosazone, m.p. 245– 246° (decomp.)], all of which reduce Fehling's solution and NH_3 -AgNO₃ in the cold. Hexahydrobenzoyl chloride with CH_2N_2 gave an oil which evolved N_2 with H₂SO₄ in dioxan yielding hexahydrobenzoyl-carbinol, b.p. 95°/4 mm. [2:4-dinitrophenylhydrazone, m.p. 180—181° (decomp.)]:-

Action of sodium borate on glucose and xylose. M. Murgier and M. E. Darmois (Atti X Congr. Internaz. Chim., 1938, II, 737—742).— Measurements of [α] of solutions of glucose (I) and xylose (II) containing NaBO₂ show that the compounds $C_6H_{12}O_6$,2NaBO₂ and $C_5H_{10}O_5$,NaBO₂ are formed. (I) is probably combined in the α -furan form whilst (II) combines in the ordinary α -form. HBO₂ does not form compounds with these sugars.

Structure of γ -sugars. II. Stability of γ -fructose and heat of activation of its conversion into normal fructose. III. Preparation of 3:4:6-trimethylfructose. F. Hartley and W. H. Linnell (Quart. J. Pharm., 1939, 12, 230—251, 743—752; cf. A., 1939, II, 142).—II. Polarimetric studies of the hydrolysis of sucrose by invertase at $p_{\rm H}$ 4-64, interrupting the hydrolysis, and completing the mutarotation of products with aq. NH₃ enable the rate of change of α of liberated fructose to be calc.

Postulation of a unimol. reaction for the conversion of γ -fructose (I) into equilibrium fructose by an acidbase catalysis mechanism based on the furanose formula for (I) is shown to be invalid. The mechanism of the conversion is shown to be (I) $\rightarrow \beta$ -fructose (II) $\rightarrow \alpha + \beta$ -fructose. The half-life periods for (I) are 7-5 min. at 15° and 3 min at 25° and E for (I) \rightarrow (II) is 15,920 g.-cal. per g.

III. Trimethylfructose (III), obtained by hydrolysis of methylated inulin and purified through its methylfructoside and subsequent hydrolysis, gives an anhyd. phenylosazone, m.p. 134·5° (lit. 138°), identical with that of 3:4:6-trimethylglucose (IV). The hydrated phenylosazones of (III) and (IV) on recrystallisation from aq. EtOH have m.p. 88—89° and 85° (lit. 81—82°), respectively, each being raised to 134·5° after heating at 100°/2 mm. for 6 hr. An improved method of prep. of β-chloroglucosyl 3:4:6-triacetate 2-trichloroacetate is described. F. H.

Fructose anhydrides. XXII. Secalin. H. H. Schlubach and C. Bandmann (Annalen, 1939, 540, 285—297).—Secalin (I), M (in H_2O) 780—847, $[\alpha]_D$ —37·6° in H_2O , is isolated by the customary procedure from unripe rye stalks and purified by fractional pptn. from its conc. aq. solution with EtOH. Acetylation (Ac₂O in aq. 90% C_5H_5N at room temp.) gives the acetate (II) (44·8% Ac), $[\alpha]_D$ +3·0° in CHCl₃, hydrolysed (Zemplèn) to (I), M 650—685, which thus differs from graminin (A., 1935, 69). Hydrolysis (N- H_2SO_4 at 20°; half-period 225 min.) of (I) affords fructose. Me₂SO₄–30% NaOH and (II) in COMe₂ and N₂ followed by MeI-Ag₂O give methylsecalin (46% OMe), $[\alpha]_D$ —45° in CHCl₃, which is converted by successive treatment with aq. EtOH- $H_2C_2O_4$, 0·25% HCl, and 0·25% MeOH-HCl into methylfructosides (A). Fractional distillation of the product from (A) and β - $C_{10}H_7$ -COCl in C_5H_5N at 85° and then at 100°, affords tetramethylmethylfructoside, trimethylmethyl-

fructoside β -naphthoate, b.p. $145^{\circ}/0.0001$ mm., and dimethylmethylfructoside di- β -naphthoate (residue); suitable hydrolysis then gives 1:3:4:6tetra-, (probably) 1:3:4tri-, m.p. 75° , $[\alpha]_{D}$ (in MeOH) $-8:3^{\circ} \rightarrow -26:0^{\circ}$, (in CHCl₃) $+11:7^{\circ} \rightarrow$

(in CHCl₃) +11·7° \rightarrow +18·7°, and a di-methylfructose, [α]_D (in MeOH) -14·6° \rightarrow -21·2°, -7·6° in CHCl₃ [probably identical with that obtained from sinistrin (A., 1936, 1096) and triticin (A., 1937, II, 369)], respectively, in the ratio 1:2:1, thus showing that (I) has the constitution (B) (H and OH omitted).

Epimeric alcohols of the cyclohexane series. III. Glucoside formation. D. T. C. GILLESPIE, A. K. Macbeth, and J. A. Mills (J.C.S., 1940, 243—245).—Contrary to Miescher et al. (A., 1938, II, 174), glucoside formation cannot be applied as a criterion of trans-configuration; both cis- and trans-forms of alcohols of the cyclohexane series react with acetobromoglucose (I). The following are obtained from the appropriate alcohol, (I), and dry Ag₂O in Et₂O:

l-menthyl-, m.p. $129\cdot5^{\circ}$, $[\alpha]_{\rm D} - 90\cdot3^{\circ}$, d-neomenthyl-, m.p. $144\cdot5^{\circ}$, $[\alpha]_{\rm D} + 3\cdot3^{\circ}$, dl-isomenthyl-, m.p. $103-105^{\circ}$, dl-neoisomenthyl-, m.p. $128-130^{\circ}$, cis-, m.p. 102° , $[\alpha]_{\rm D}^{24} - 32\cdot8^{\circ}$, and trans-dihydrocryptyl-, m.p. $107\cdot5^{\circ}$, $[\alpha]_{\rm D}^{24} - 25\cdot8^{\circ}$, cis-, m.p. 105° , $[\alpha]_{\rm D}^{24} - 38\cdot9^{\circ}$, and trans-l-3-methylcyclohexyl-, m.p. 103° , $[\alpha]_{\rm D}^{24} - 31\cdot5^{\circ}$, cis-, m.p. $72-73^{\circ}$, $[\alpha]_{\rm D}^{20} - 23\cdot4^{\circ}$, and trans-4-methylcyclohexylcarbinyl-, m.p. 113° , $[\alpha]_{\rm D}^{20} - 28\cdot6^{\circ}$, cis-, m.p. $103-104^{\circ}$, $[\alpha]_{\rm D}^{16} - 25\cdot8^{\circ}$, and trans-4-isopropylcyclohexylcarbinyl-, m.p. 112° , $[\alpha]_{\rm D}^{16} - 26\cdot9^{\circ}$, and cis- (II), m.p. $106\cdot5^{\circ}$, $[\alpha]_{\rm D}^{120} - 90\cdot7^{\circ}$, and trans-1-cryptyl-, m.p. $99-99\cdot5^{\circ}$, $[\alpha]_{\rm D}^{10} - 80\cdot6^{\circ}$, -d-glucoside tetra-acetates. Ponndorf reduction of l-cryptone, reaction of the resulting l-cryptol with (I), and subsequent fractionation (aq. EtOH) gives (II). $[\alpha]$ are in EtOH.

XXXIX. Polysaccharides. Constitution of levans formed by bacterial action. R. R. LYNE, S. Peat, and M. Stacey (J.C.S., 1940, 237—241).— The polysaccharides produced (cf. Cooper et al., A., 1935, 1419) from sucrose by B. megaterium, Bact. pruni (Phytomonas pruni), and Bact. prunicola (P. prunicola) are polyfructoses of the levan type; they are purified by repeated pptn. from aq. solution by MeOH and have $[\alpha]_D^{20} - 40^{\circ}$, -45° , and -40° in H_2O , respectively. They are methylated (method: Challinor et al., A., 1934, 760) to apparently identical methyl-levans (OMe 44.6, 44.8, and 44.5%, respectively), which give (method: loc. cit.) 1:3:4:6-tetramethyl-(10-12%)and 1:3:4-trimethyl-methylfructofuranoside, indicating that each levan consists of a chain of 10—12 contiguous fructofuranose units mutually linked through positions 2 and 6 (for structure, cf. loc. cit.); differences in physical properties are probably due to varying degrees of aggregation of the repeating unit. Anomalies in the $[\alpha]$ of levan acetates are due to incomplete acetylation (dependent on the amount of H₂O present in the reaction mixture); the more highly acetylated products show an increasing +-rotation.

Starch. K. FREUDENBERG, E. SCHAAF, G. DUMPERT, and T. PLOETZ (Naturwiss., 1939, 27, 850—853).—The space formulæ of α - and β -dextrin are discussed.

H. W.

Phosphorylation of the degradation products of starch. H. Vogel (Ber., 1939, 72, [B], 2052-2053).—isoTrihexosan (I) is much less sol. in hot than in cold C_5H_5N . (I) which has separated from hot C₅H₅N contains no residue of glycerol and dissolves as freely in H₂O as (I). The individuality of (I) is thus confirmed. (I) is transformed by POCl₃ in C_5H_5N at -10° into the compound (II), $C_6H_{11}O_8P$, decomp. ~150°, which contains 1 mol. of H_3PO_4 to each $C_6H_{10}O_5$ residue. It is almost insol. in cold H_2O , but swells in hot H₂O to a viscous jelly without passing into solution. It loses PO₄ completely when heated with the 8-fold amount of glycerol at 210°; the product (II) is hydrolysed by dil. H₂SO₄ to a product which strongly reduces Fehling's solution but does not give an osazone. Trihexosan gives a compound similar to (II). Isolable products are not afforded by tetra- or di-β-glucosan, β-glucosan, maltosan, lactosan, tetraglucosan, and more highly polymerised derivatives of glucosan.

Formation and decomposition of glycogen-protein complex.—See A., 1940, III, 221.

Reduction of fatty acid amides under high pressure. I. S. Ueno and S. Tarase (J. Soc. Chem. Ind. Japan, 1939, 42, 409—410b).—Reduction of laur-, myrist-, and palmit-amide in dioxan containing CuO + Cr_2O_3 + BaO at temp. ranging from 240° to 310° and max. pressure 310 atm. proceeds: $\text{R} \cdot \text{CO} \cdot \text{NH}_2 + 3\text{H} = \text{CH}_2\text{R} \cdot \text{NH}_2 + \text{H}_2\text{O}$ and $2\text{CH}_2\text{R} \cdot \text{NH}_2 = \text{NH}_2 + (\text{CH}_2\text{R})_2\text{NH}$. Since the second reaction is more rapid than the first the product is mainly sec. amine but contains a little primary amine. Didodecylamine, m.p. 51—53°, ditetradecylamine, m.p. 56—58°, and dicetylamine, m.p. 64—65°, are described.

Cyclic structure of glucosaminides. A. Neuberger (J.C.S., 1940, 29—32).—The pyranoside structure of the α - and β -methylglycosides of glucosamine and its N-Ac derivative is proved by methylation of N-acetyl- α -methylglucosaminide with Me₂SO₄ and aq. NaOH, to its 3:4:6-Me₃ derivative, which was hydrolysed to 3:4:6-trimethylglucosamine hydrochloride (N-Bz derivative, m.p. 213°; [α]₀ +124° in moist C₅H₅N to +105°/48 hr.), oxidised by 1-C₁₀H₇·SO₂·NHCl (2 equivs.) to 2:3:5-trimethyld-arabofuranose and by 3 equivs. to an imino-acid lactone, C₉H₁₅O₅N, m.p. 86·5°, [α]₀ —40° in CHCl₃.

Nature of the carbohydrate residue in ovo-I. Glucosamine constituent. mucoid. STACEY and J. M. WOOLLEY (J.C.S., 1940, 184—191). —Ovomucoid (I) (prep. from coagulated egg-white by extraction with H_2O , $[\alpha]_D^{20} - 57^{\circ}$ in H_2O , is freed from the polypeptide constituent by hydrolysis with boiling aq. 10% $Ba(OH)_2$ (containing some EtOH and a little C_5H_{11} ·OH) in N_2 (cf. Fraenkel *et al.*, A., 1927, 862). The resulting carbohydrate residue (A), $[\alpha]_D^{21} \pm 0^\circ$ in H_2O , contains 5.5% total N (4.9 as NH₂-N) and is non-reducing; considerable deacetylation (cf. below) occurs during treatment with Ba(OH)₂. H_2SO_4 at $100^{\circ}/70$ hr. partly hydrolyses (A) and gives glucosamine, mannose, and a little galactose (identified as mucic acid) (cf. Hewitt, A., 1938, III, 949). C_5H_5N at 70° (few min.) and then at $15^\circ/24$ hr. (vigorous shaking) converts (A) into a product (B) (O-Ac 29%), $[\alpha]_{\rm p}^{21}$ -20° in H₂O (in which it is readily sol.), hydrolysed [10% Ba(OH)₂ at 95°/l hr.] to a N-Ac compound (Ac 11.5%), $[\alpha]_p \pm 0^\circ$ in H₂O. Attempts to methylate (I) and (A) with Me₂SO₄ + NaOH result in almost complete destruction of the polysaccharide but, under controlled conditions, (B) with Me₂SO₄-aq. NaOH-CCl₄, followed by Me₂SO₄-NaOH-COMe₂ and finally MeI-Ag₂O, gives a N-acetyl methyl derivative (II) (Ac 9.7, OMe 31.5%), $[\alpha]_D \pm 0^\circ$ in H₂O. Hydrolysis (2% MeOH-HCl for 48 hr.) of (II) affords 2-acetamido-3:4:6-trimethyl-α-methylglucoside (III), m.p. 149° , $[\alpha]_D^{20} + 120^{\circ}$ in CHCl₃ (~10%), syrupy 3:4:6-trimethyl- α -methylglucosaminide [30%; acetylated (Ac₂O-MeOH) to (III)], partly methylated hexoses (C) (10%), and a syrup (D) Thus, ₹40% of (II) is built up of methyl- $(\sim 50\%)$. ated glucosamine residues; <10% of these are "endgroups" joined by glucosidic linkings to the rest of the mol. whilst ₹30% are joined through either the $\mathrm{NH_2}$ -groups or, more probably, glucosidic linkings. Mcthylation (MeI-Ag₂O) of (C), subsequent hydrolysis ($2\mathrm{N-H_2SO_4}$), and treatment with $\mathrm{EtOH-NH_2Ph}$ gives an approx. 4:1 mixture of tetramethyl-mannose-and -galactose-anilide. Methylation (MeI-Ag₂O) of (D) affords a light brown powder which appears to be a compound of AgI with glucosamine derivatives; a similar compound is obtainable from (III), MeI, and Ag₂O (cf. Irvine et al., J.C.S., 1912, 101, 1128). Methylation [as for (B)] of (I) also affords (II), indicating that (I) contains NHAc-groups (cf. above) and that the 2-acetamidoglucose residues are end-groups joined by glucosidic linkings to the rest of the mol.

Racemisation of amino-acids and depeptides on acetylation with keten. W. M. Cahill and I. F. Burton (J. Biol. Chem., 1940, 132, 161—169).— Acetylation of an NH_2 -acid by keten in the presence of free alkali yields the optically active Ac derivative, but if free AcOH is allowed to develop racemisation occurs. When acetylated under such racemising conditions glycyl-l(-)-leucine yields a completely racemised derivative, whilst l(-)-leucylglycine yields a product with max. optical activity. This may be made the basis of a method for identifying terminal NH_2 -acids in peptides. P. G. M.

n-Nitrobenzoyl, m.p. 134°, and α-bromo-m-nitrobenzoyl, m.p. 125°, derivatives of deutero- δ -aminovaleric acid. dl-Deutero-ornithine.—See A., 1940, III, 237.

Behaviour of some uramido-acids in the nitrous acid method for the determination of amino-nitrogen. A. G. Gornall and A. Hunter (Biochem. J., 1940, 34, 192—197).—The rate of liberation of N_2 and the vol. liberated after $2\frac{1}{2}$ hr. at 25° in the reaction between 14 uramido-acids and HNO₂ (Van Slyke) is determined. ω -, α - with unbranched C chains, and α -uramido-acids with branched chains liberated 0·66—0·78, 1·25—1·42, and 1·98—2·00 atoms of N respectively with the exception of α -uramido-propionic (0·70) and -isohexoic acid (1·54 atoms of N).

isoCarbamides and isoureides. V. Addition of dihydric and substituted alcohols to cyanamide. S. Basterfield, F. B. S. Rodman, and J. W. Tomecko (Canad. J. Res., 1939, 17, B, 390-398; cf. A., 1930, 200).—Interaction of CN·NH₂ and HCl with CH₂:CH·CH₂·OH yields, as hydrochloride (an oil), allylisocarbamide (an oil) (salicylate, m.p. 126°; benzoate, m.p. 148°), which with CH₂Ac·CO₂Et (I) yields 2-allyloxy-4-methyluracil, m.p. 164°, and with CH₂(CO₂Me)₂ (II) gives allylisocarbanide 2-allyloxybarbiturate, m.p. 149—150°, which is hydrolysed (dil. HCl) to 2-allyloxybarbituric acid, m.p. 171°. Similarly are obtained cyclohexylisocarbamide, m.p. 77-78° (hydrochloride, m.p. 168°; salicylate, m.p. 153°), 2-cyclohexyloxy-4-methyluracil, m.p. 110°, cyclohexylisocarbamide 2-cyclohexyloxybarbiturate, 190°, and 2-cyclohexyloxybarbituric acid, m.p. 240°. Benzylisocarbamide with (I) yields a substance, $C_{20}H_{20}N_4O_2$, m.p. 153°, hydrolysed by HCl to 2-benzyloxy-4-methyluracil, m.p. 160°. Interaction of m-NO2·C6H4·CH2·OH with HCl and CN·NH2 in Cl·[CH₂]₂·OH yields, as hydrochloride, m-nitrobenzyl-H** (A., II.)

isocarbamide (salicylate, m.p. 137°). Phenylethylisocarbamide (salicylate, m.p. 158°) with (I) gives 2-phenylethoxy-4-methyluracil, m.p. 178°. Interaction $(\mathring{\mathrm{CH}}_{2}\cdot \mathring{\mathrm{OH}})_{2}$ and $\mathring{\mathrm{CN}}\cdot \mathring{\mathrm{NH}}_{2}$ in $\mathring{\mathrm{Cl}}\cdot [\mathring{\mathrm{CH}}_{2}]_{2}\cdot \mathring{\mathrm{OH}}$ with HCl gives, as hydrochloride, β-hydroxyethylisocarbamide, m.p. 158—159° (salicylate, m.p. 141·5°; benzoate, m.p. 134°). From OEt·[CH₂]₂·OH is obtained β-ethoxyethylisocarbamide (an oil) (salicylate, m.p. 101—102°), converted into 2-(β-ethoxyethoxy)-4-methyluracil, m.p. 121°, β-ethoxyethylisocarbamide 2-(β-ethoxyethoxy)barbiturate, m.p. 158—159°, and 2-(βethoxyethoxy)barbituric acid, m.p. 138°. NH2·[CH2]2·OH and CN·NH, in Cl·[CH,], OH with HCl yield, after several months at 40°, β -aminoethylisocarbamide dihydrochloride, an oil (disalicylate, m.p. 141.5°; dibenzoate, m.p. 123°). From $OH \cdot [CH_2]_2 \cdot OAc$ is obtained β -acetoxyethylisocarbamide (salicylate, m.p. 138°; benzoate, m.p. 129°), and from OH·CH₂·CO₂Et, carbethoxymethylisocarbamide hydrochloride, which with KOH in Et₂O gives carboxymethylisocarbamide (salicylate, m.p. 136°; benzoate, m.p. 124°). Resorcinol and CN-NH_2 interact slowly in $\text{Cl-[CH}_2]_2$ -OH with HCl to yield m-hydroxyphenylisocarbamide hydrochloride (salicylate, m.p. 138.5°; benzoate, m.p. 128°). J. D. R.

Reactions of carbonyl cyanide.—See A., 1940, I, 171.

Reaction of atomic hydrogen with azomethane.
—See A., 1940, I, 165.

Action of Grignard reagents on heavy-metal salts. III. Mixed Grignard reagents and silver bromide. L. Joseph and J. H. GARDNER (J. Org. Chem., 1940, 5, 61—67; cf. A., 1930, 76; 1938, II, 53).—Some unsymmetrical product is formed when AgBr is added to a solution of MgPhBr and Mg alkyl bromide except when alkyl is Bu^γ. If the alkyl radicals are placed in order of decreasing electronegativity according to Kharasch they are also in order of decreasing yield of alkylbenzenes with the exception of Me and Et, of which the position is doubtful, and of increasing yield of Ph, (with exception of Me and Bu^{γ}). A similar regularity is observed in the case of CH₂Ph·MgCl and the same series of Mg alkyl halides. The yields of alkali benzyl increase and those of Ph₂ decrease as the series is descended except in the case of Bu'. This is to be expected since the CH₂Ph radical is less electronegative than any of the alkyls except Bu^γ. There is no regularity in the yields of dialkyls. The course of the reaction is probably determined by the relative electronegativities of the radicals involved, even when these include Ph and alkyls, in spite of the great difference in the stability of the corresponding Ag compounds. The great influence on the reaction of the nature of the halogen of the Grignard reagent (unpublished work) indicates that the electronegativity of the radicals is not the only significant factor. It is, however, probable that the effect of the halogen atom is confined to the initial stage of the reaction, that is the formation of the org. Ag compounds, whereas the electronegativity of the radicals determines the relative stability of the org. Ag compounds. Since it is possible to obtain quite large yields of the products formed by the coupling of radicals derived from org. Ag compounds of such greatly differing stability as AgPh and AgBu^a, it seems reasonable to believe that the decomp. of a relatively stable org. Ag compound is promoted by the presence of a less stable compound undergoing decomp. If this is so, the change probably involves an interaction of 2 mols. of org. Ag compound, either the same or different. This is in agreement with the demonstration that free radicals are not involved. H. W.

Effect of alkyl iodides on the decomposition of cyclohexane. L. I. Berenz and A. V. Frost (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 883—885).—cycloHexane (I) vapour containing AlkI was passed at atm. pressure through a SiO₂ tube at $580-600^{\circ}$ (duration of heating \sim 11 sec.). The effect of the added iodides on the decomp. of (I) followed the sequence MeI $> Pr^{a}I > Pr^{b}I > EtI$, unsaturated gases being evolved. I alone had a considerably smaller effect; Na introduced into the vapour catalysed the decomp. of (I), the effect in presence of MeI being additive. J. L. D.

Allenes. II. Preparation of α -cyclohexyl- $\Delta^{\beta\gamma}$ pentadiene. F. Acree, jun., and F. B. LA Forge $\overline{\text{(J. Org. Chem., 1940, 5, 48-53)}}$.—The action of α chlorocrotonaldehyde on Mg hexahydrobenzyl iodide (I) affords γ -chloro- β -hydroxy- α -cyclohexyl- Δ^{β} -pentene (II), b.p. 130—135°/9 mm., m.p. 39—40°, which does not give a cryst. phenylurethane. It is reduced (H-Pd-CaCO $_3$ in KOH-EtOH) to α -cyclohexylpentan-β-ol, b.p. 112—114°/9 mm. PCl₅ and (II) in cold light petroleum yield βy-dichloro-α-cyclohexyl- Δ^{γ} -pentene, b.p. 131—133°/9 mm., which is converted by Zn dust in boiling EtOH into α -cyclohexyl- $\Delta^{\beta\gamma}$ -pentadiene (III), b.p. 82—85°/12 mm., which is relatively stable and does not appear to react with freshly prepared maleic anhydride. Hydrogenation (PtO, in EtOH) of (III) affords n-amylcyclohexane, b.p. 200-205°/atm. pressure. Ozonisation of (III) in CCl₄ followed by decomp. of the ozonide by H₂O yields MeCHO (dimethone derivative, m.p. 138— 140°), cyclohexylacetaldehyde (semicarbazone, m.p. 157—159°), and cyclohexylacetic acid (IV) (amide, m.p. 169°). Oxidation (KMnO₄ in COMe₂) of (III) gives AcOH and (IV). ββγ-Trichlorobutanal is reduced by (I) to ββγ-trichlorobutan-α-ol, b.p. 97— 98°/18 mm., m.p. 58—59°.

Magneto-chemical investigation of organic substances. XVII. True carbon diradical with "para" placed "free valencies." E. MÜLLER and H. Neuhoff (Ber., 1939, 72, [B], 2063—2075).— 3:5-Dichloro-4-iodobenzophenone, m.p. 156° (corr.), formed by successive action of HNO₂ and KI on the 4-NH₂-compound, is converted by Cu powder at 280° into 2:6:2':6-tetrachloro-4:4'-dibenzoyldiphenyl (I), m.p. 243° (corr.), which with a small excess of LiPh in C_6H_6 at room temp. yields 2:6:2':6-tetrachloro-4:4'-di(hydroxybenzhydryl)diphenyl (II), m.p. 271° (corr.). The presence of 2 active H in (II) is established by use of MgMeI in diisoamyl ether, anisole being an unsuitable solvent for tert. carbinols. If excess of LiPh is used or the temp. is allowed to rise a compound, C₅₀H₃₆O₂Cl₂, results by a Wurtz-Fittig synthesis. (II) is not affected by HCl in Et₂O and does not react satisfactorily with AcCl in C, H, but is transformed by pure SOCl, in boiling CaHa into 2:6:2':6'-tetrachloro-4:4'-di(chlorobenzhydryl)diphenyl, m.p. 256° (corr.), which is readily converted by Hg in C_6H_6 under N_2 at room temp. 2:6:2':6'-tetrachloro-4:4'-bisbenzhydryldiphenul (III), m.p. 178° (corr.). The radical nature of (III) is established by its paramagnetism, measurements showing that in 2.3% solution $\sim 17\%$ at room temp. and $\sim 28\%$ at 80° is present as diradical. The orange colour of solutions of (III) is changed by short contact with air into a pale yellow-green but returns and can be again discharged until (III) is completely transformed into the peroxide. The absorption spectrum of (II) is related to that of 3:5:1-C₆H₃Cl₆Bz in the same manner as that of dimesityl to mesitylene and of 2:4:6:2':4':6'-hexachlorodiphenyl to 1:3:5-C₆H₃Cl₃, thus establishing atropisomerism and differing from the relationship of COPh₂ to $(C_6H_4Bz-p)_2$. 3:5-Dichloro-4-iodotoluene, m.p. 54° (corr.), from the 4-NH₂-compound, is transformed by Cu powder at 280° into 2:6:2':6'-tetrachloro-4:4'dimethyldiphenyl, m.p. 167° (corr.), which is converted by oxidation (CrO₃ in boiling AcOH) followed by esterification (CH₂N₂) into Me_2 2:6:2':6'-tetra-chlorodiphenyl-4:4'-dicarboxylate, m.p. 116° (corr.); this with LiPh affords (II). In chemical and physical behaviour (III) appears as a doubled CPh₃. Each half of the mol. behaves as if the other half were not present. The union between the CPh₃ systems is closed to π electrons. The absence of co-planar position of the C₆H₆ nuclei in (III) makes impossible a coupling by an electron pair of the second type and therefore the diradical form is the stable system for such a substance with non-planar arrangement of The author's views of the state of union of C in normal quinonoid hydrocarbons and, in general, in a C.C linking are confirmed. Reaction does not take place through a "valency tautomeric" diradical form but the electromeric, diamagnetic limit arrangements $>C:C<\longleftrightarrow>C-C<\longleftrightarrow>C-C<(\uparrow\downarrow)$ represent the actual reaction formulæ. The hypotheses of "valency tautomerism" should be abandoned

Reactions in which diarylmethyl radicals can be detected. W. T. Nauta, P. J. Wuis, and D. Mulder (Chem. Weekblad, 1940, 37, 96—99).—The products of the action of O₂ on diarylmethyls are reviewed. Free radicals are not obtained when the aryl groups are unsubstituted. When both orthopositions are substituted the diarylmethyl has similar properties to CPh₃. Diarylethanes containing 2 ortho and a para-substituent are also dissociated in solution.

S. C.

in favour of the conception of mesomerism in the case of the C.C linking and corresponding systems.

Rate of dissociation of penta-arylethanes. W. E. Bachmann and G. Osborn (J. Org. Chem., 1940, 5, 29—39; cf. A., 1936, 1497).—The rate of absorption of I is measured by adding a weighed sample of the penta-arylethane to a measured vol. of a solution of I in o-C₆H₄Cl₂, PhBr, xylene, or 1-C₁₀H₇Br (C₂H₄Br₂, PhOMe, and PhCN are unsuitable) containing EtOH and C₅H₅N; the products are the triphenylmethyl Et ether and the diphenylmethyl-

pyridinium halide. After a given interval at const. temp. between 70° and 100° the mixture is quickly cooled, treated with an excess of standard Na₂S₂O₃, and back-titrated with standard I. In agreement with the results obtained on O absorption (loc. cit.) the rate-controlling step is a reaction of the first order corresponding with the unimol. process of dissociation. The energy of activation is 27.1 kg.-cal., in good agreement with the val. 27.6 kg.-cal. by the O method. Determinations of the rate const. and half-life periods of compounds CPh₃·CHPhR show that 9-phenanthryl, 1-C₁₀H₂, and 2-fluoryl groups are most effective in promoting a rapid dissociation, the p-diphenylyl and $p\text{-}\mathrm{C}_6\mathrm{H}_4$. OMo groups have an intermediate effect, whilst the $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}$ and Ph groups are least effective. CPh₃Na and phenyl-2-fluorylmethyl chloride give αααβ-tetraphenyl-β-2-fluorylethane, m.p. 152—162° in air and 164—168° in N₂ to an orange-coloured liquid. It is cleaved by HI to CHPh₃ and 2-benzylfluorene. 9-Benzoylphenanthrene is reduced by $Al(\tilde{O}Pr^{\beta})_3$ and $Pr^{\beta}OH$ to phenyl-9-phenanthrylcarbinol, m.p. 139— 140°, which is converted by HCl in dry C₆H₆ containing anhyd. CaCl₂ into phenyl-9-phenanthrylmethyl chloride (I), m.p. 114—116°, and by AcBr into the corresponding bromide, m.p. 115—116°. CPh₃Na and (I) in C_6H_6 give $\alpha\alpha\alpha\beta$ -tetraphenyl- β -9-phenanthryl-ethane, m.p. 176—188° in air and 190—193° in N_2 to a orange-red liquid, the constitution of which is established by cleavage (HI) to CHPh₃ and 9-benzylphenanthrene.

1:5-Dimethylnaphthalene in coal tar.—See B., 1940, 259.

Trimethylnaphthalenes in coal tar.—See B., 1940, 259.

Ionene. Arno Müller (J. pr. Chem., 1939, [ii], 154, 82).—The colour reaction with p-NMe₂·C₆H₄·CHO and 10% H₃PO₄ (A., 1939, II, 78) is given by β - but not by pure α -ionene, which are thus 1:1:6-trimethyl-1:2:3:4- and -1:2:3:9-tetrahydronaphthalene, respectively. R. S. C.

Action of nitric acid on anthracene. I. Action of nitric acid on anthracene in organic solvents, particularly acetic acid. II. Influence of various addenda on the action of nitric acid on anthracene in acetic acid. III. Mechanism of occurrence of 2:7-dinitroanthraquinone. R. Oda (J. Soc. Chem. Ind. Japan, 1939, **42**, 414—417B, 417— 418B, 418—421B).—I. Fuming HNO₃ (d 1.45) is added at room temp. to finely-divided anthracene (I) suspended in AcOH (~94%), if necessary with addition of H₂O. (I) dissolves completely and the filtered solution is then boiled under reflux for $\frac{1}{2}$ —1 hr. thus completely oxidised and partly nitrated. mixture of anthraquinone (II) and 2:7-dinitroanthraquinone (III) is filtered and analysed by reduction with Na₂S and separation into (II) and 2:7-diaminoanthraquinone (IV) by treatment with H_3PO_4 (d 1.7) at ~150°. The proportion of (III) greatly increases with increasing H₂O content of AcOH and attains 50% with the mixture $H_2O:AcOH::3:8$ vol., after which it remains const. In complete absence of H₂O (AcOH-Ac₂O-HNO₃) there is no formation of

(III). Treatment of (I) with boiling HNO₃-H₂O scarcely produces (III) if only a little HNO3 is used. With H_2O-HNO_3 (d 1.4)::5:1 (vol.), (III) is formed in considerable amount but is very non-uniform, probably by reason of the heterogeneous nature of the change. In AcOH there is no nitration at 50°, the product being pure (II). In the product formed at 70° (III) is present in small amount whilst at 70— 80° both oxidation and nitration occur. Nitration in COMe₂, even if much H₂O is present, gives only (II) but the yield is small and much COMe, is required for the dissolution of (I). A mixture of (II) and (III) is obtained in EtOH but the reduced product is brown in colour and cannot be satisfactorily analysed by H_3PO_4 . In C_6H_6 or $PhNO_2$ only (II) is formed but the yields are bad.

II. $\mathrm{HNO_2}$ is without influence on the course of the reaction of $\mathrm{HNO_3}$ on (I) in AcOH. In presence of $\mathrm{H_2O_2}$ or other oxidising agent (aq. $\mathrm{KMnO_4}$, $\mathrm{CrO_3}$) the product is exclusively (II). MeOH, EtOH , $(\mathrm{CH_2}\text{-}\mathrm{OH})_2$, and glycerol have the same action as $\mathrm{H_2O}$. $\mathrm{Cu}(\mathrm{NO_3})_2$ can replace fuming $\mathrm{HNO_3}$ for nitrating. It appears that $\mathrm{HNO_3}$ has a definite nitrating action on the intermediate product from (I). An unsuccessful attempt is described to halogenate this product by the addition of Br to the filtrate from the action of $\mathrm{HNO_3}$ on (I) in aq. AcOH at $\sim 50^\circ$; the product

is (II).

III. Nitration in AcOH alone proceeds in two directions whereas in aq. AcOH only nitroanthrone (V) is formed from which (II) is derived. production of (III) in aq. AcOH must depend either on the peculiar behaviour of (V) or of HNO₃ in the binary mixture. (V) is in equilibrium with nitroanthranol (VI), which is the more reactive form. Since there is no evidence that the equilibrium $(V) \rightleftharpoons$ (VI) is essentially different in aq. AcOH and AcOH it is more likely that the differences are due to variation in the behaviour of HNO₃. In this connexion experiments with PhCHO, CH₂Ph·OH, COPhBz, CHPh₂·OH, and CH₂Ph₂ show that the oxidising power of HNO₃ in aq. AcOH is appreciably less than that in AcOH as is also the nitrating power. Thus benzanthrone is readily nitrated in AcOH but not in aq. AcOH. Since (VI) is a phenol it should be nitrated even in aq. AcOH. It is concluded that HNO₃ in aq. AcOH has a very slow oxidising and moderately powerful nitrating action on (VI) but that in AcOH it is very powerfully oxidising so that conversion into (II) is complete before nitration commences. Bromo- and 9-methyl-anthracene are not nitrated.

Photopolymerisation of anthracene.—See A., 1940, I, 153.

Aromatic hydrocarbons. XXVI. Proposed nomenclature of condensed ring systems. E. CLAR (Ber., 1939, 72, [B], 2137—2139).—For hydrocarbons, like anthracene, formed by the linear compounding of C₆H₆ nuclei it is proposed to use the suffix -acene with a prefix indicating the no. of rings, e.g., triacene (anthracene), tetr-, pent-, hex-, heptacene. Compounds related to phenanthrene receive the suffix -phene. This is used solely for hydrocarbons which are obtained by alternate addition of

C₆H₆ nuclei to two neighbouring sides of the middle

nucleus and are therefore as evenly distributed as possible. Thus (I) is hexaphene. Phenes which have a more uneven distribution of C₆H₆ nuclei around the central nucleus require the addition of Roman numerals in parentheses showing

how many nuclei are on each side of the middle nucleus. Thus (II) is hexaphene (I—IV). According to this system a large no. of aromatic hydrocarbons

receive short names with use of a min. of figures; their derivatives are named in the usual manner. Thus (III) is 3:4-benzpentaphene. H. W.

Diphensuccindene series. XVIII. 9:12-Dip-diphenylyl- $\Delta^{9:11}$ -diphensuccindadiene. K. Brand and H. W. Stephan (Ber., 1939, 72, [B], 2175—2180).—p-C₆H₄Ph·NO₂ is reduced (NaSH) and the amine is converted through the diazo-derivative into p-C₆H₄PhI. The Grignard compound from this with diphensuccindane-9:12-dione gives 9:12-di-p-diphenylyldiphensuccindane-9:12-diol, m.p. 249—250°, readily dehydrated by 90% HCO₂H in AcOH to 9:12-di-p-diphenylyl- $\Delta^{9:11}$ -diphensuccindadiene (I), C₆H₄Ph·C=C₆G₆H₄-o m.p. 367—368°, which 0-C₆H₄·C:C·C₆H₄Ph' m.p. 367—368°, which

when crystallised and in solution shows a similar colour to cryst. 9:12-diphenyl- $\Delta^{g:11}$ -diphensuccindadiene and its solutions. (I) is very slowly oxidised (CrO₃ in AcOH at room temp.) to 2:2'-di-p-phenylbenzoylbenzil, m.p. 235°, and 2-p-phenylbenzoylbenzoic acid, m.p. 230—231°.

Polynuclear hydrocarbons and their derivatives. XXV. Condensation products of anthrone with chloral. E. Clar (Ber., 1939, 72, [B], 2134—2136).—Chloral (I) and anthrone in boiling AcOH give HCl, αβ-di-9:9'-anthroxylidene-ethane (II), m.p. 292°, and dihydrodianthrone (III). Reaction proceeds more rapidly in presence of ZnCl₂ but the ratio (II): (III) remains unchanged. The best results are obtained with SnCl₂ containing a trace of

Cu(OAc)₂. The reducing action of SnCl₂ entirely suppresses the production of (III), and (II) is produced in good yield. If the condensation is effected in EtOH containing piperidine only (III) is produced, (I) acting as an oxidising agent. A similar result is obtained in conc. H₂SO₄. Gradual addition of BzCl to (II)

in boiling PhNO₂ containing a trace of I leads to aceanthrono-2': 1': 1: 2-aceanthrone (IV); AcCl, CH₂Cl-COCl, or o-C₆H₄(COCl)₂ can replace BzCl and

PhNO₂ can be omitted if an acid chloride of high b.p. is used. Fusion of (IV) with NaCl, somewhat moist ZnCl₂, and Zn dust at 220° and subsequently at 280° gives aceanthreno-2': 1'-1: 2-aceanthrene (V), m.p. 349° (decomp.).

Polynuclear hydrocarbons. XXVII. Benzologues of pentaphene and their derivatives. E. Clar, F. John, and R. Avenarius (Ber., 1939, 72, [B], 2139—2147).—p-C₆H₄(COCl)₂ 2-C₁₀H₇Me, and AlCl₃ in CS₂give 1:4-di-2-methyl-1-naphthoylbenzene (1), m.p. 245—247°, whilst m-C₆H₄(COCl)₂ under similar conditions gives 1:3-di-2-methyl-1-naphthoylbenzene (II), m.p. 185°. When (I) or (II) is gently boiled until H₂O and oily matter cease to be evolved the products are the pale yellow 3:4-9:10-(III), m.p. 398—399°, and, probably the somewhat impure, red 1:2:8:9-, m.p. (indef.) 365—370°, -dibenzopentaphene. Oxid-

ation of (III) with CrO3 in hot AcOH affords 3:4:9:10-dibenzopentaphene-5:14-8:13-diquinone, converted by N_2H_4,H_2O in boiling C_5H_5N into 1: 2-diaza-2: 1-3: 4-dinaphtho-1'': 2''-9: 10-pyrene-5:8-quinone (IV). It appears that the constitution of reaction products cannot be deduced when pyrolytic methods of formation are involved since illdefined isomerisations frequently occur. The pyrolysis of (I) and (II) probably marks the limit of applicability of the method in its present form. As the no. of rings in the initial material increases the of fission products becomes more pronounced and the yields of complex substances are diminished. Under defined conditions p-C₆H₄(COCl)₂, 2-C₁₀H₇Me, and AlCl₃ in CS₂ yield p-2-methyl-1-naphthoylbenzoic acid, m.p. 196°. The similarly prepared p-2: 4-dimethylbenzoylbenzoic acid, m.p. 187° is converted by SOCl₂ followed by 2-C₁₀H₇Mc and AlCl₃ in CS₂ into 1-2': 4'-dimethylbenzoyl-4-2"methyl-1"-naphthoylbenzene, b.p. 350°/20 mm., m.p. 113.5°, which is pyrolysed to 11-methyl-3: 4-benzopentaphene (V), m.p. 315—316°, and 2-methylanthracene. (V) is oxidised to the corresponding diquinone, which with N_2H_4 , H_2O in boiling C_5H_5N yields 1:2-diaza-5'-methyl-1': 2':3:4-benzo-1'': 2'': 9: 10-naphthopyrene-5: 8-quinone.

Syntheses of substances with spasmolytic action. II. F. Kulz and K. W. Rosenmund [with E. Kayser, O. Schwarzhaupt, and H. Sommer] (Ber., 1939, 72, [B], 2161—2167; cf. A., 1939, II, 107).—The spasmolytic action of (CH₂Ph·CH₂)₂NH (I) is increased by alkylation of the C₆H₆ nucleus; N-alkylation causes first a diminution but subsequently an increase in physiological action with increasing magnitude of the alkyl group, and also improves the solubility of the product without introducing undesired reactions. Lengthening of the

side-chains causes increase in activity in comparison with (I), which is very greatly enhanced by Nethylation. Max. activity appears to be reached in (Ph (CH₂]₃)₂NEt. Hydrogenation of p-C₆H₄Me·[CH₂]₂·NH₂ (II) and CH₂Ph·CHO in EtOH β-phenylethyl-β'-p-tolylethylamine chloride, m.p. 258°). (II) is converted by Pd–BaSO₄ in H_2 at 180–190° into di- β -p-tolylethylamine (hydrochloride, 270°). Ph·[CH]2·Cl and the requisite sec.-phenylethylalkylamines give the hydrochlorides, m.p. 160°, 137·5°, 154°, 142°, 82°, and 68°, respectively, of di(phenylethyl)-methyl-, -ethyl-, -propyl-, -butyl-, -n-amyl-, and -n-hexyl-amine. Catalytic reduction of the product from $Ph\cdot [CH_2]_3\cdot NH_2$ and $Ph\cdot [CH_2]_2\cdot CHO$ gives di-γ-phenylpropylamine, b.p. $215^{\circ}/12$ mm. (hydrochloride, m.p. 200—201°). Ph·[CH₂]₃·Cl, KOH, and NH₂Et in H₂O at 120° yield γ-phenylpropylethylamine, b.p. 115—118°/14 mm. (hydrochloride, m.p. 152°), and di-γ-phenylpropylethylamine, b.p. 165—168°/0·3 mm. (non-cryst. hydrochloride; perchlorate, m.p. 70°; reineckate, m.p. 155—156°). Ph·[CH₂]₄·NH₂, b.p. 111—112°/12 mm., by Hofmann degradation of Ph·[CH₂]₄·CO·NH₂, and Ph·[CH₂]₄·Cl with anhyd. Na₂CO₃ in EtOH at 120° give di-8-phenylbutylamine, b.p. 221—224°/6 mm. (hydrochloride, m.p. 179°). δ-Phenylbutylethylamine, b.p. 129—131°/15 mm. (hydrochloride, m.p. 147°), and di-8-phenylbutylamine, b.p. 215—216°/3·5 mm. (noncryst. hydrochloride; perchlorate, m.p. 88°), are described. Di-β-p-anisylethylamine, HCO₂H, CH₂O at 120—130° give di- β -p-anisylethylmethylamine (hydrochloride, m.p. 194°). γ -Phenylpropyl- β -3: 4-dimethoxyphenylisopropylethylamine, $195-198^{\circ}/0.6$ mm., gives a hydrochloride, m.p. 127— 128° (m.p. appears variable). Catalytic reduction of a mol. mixture of CH2Ph·NH2 and Ph·[CH2]2·CHO gives benzyl- γ -phenylpropylamine (hydrochloride, m.p. 187—188°). Benzyl- γ -phenylpropylethylamine has b.p. 183°/11 mm. Catalytic reduction of Ph·[CH2]4·NH2 and PhCHO in EtOH yields benzylδ-phenylbutylamine (hydrochloride, m.p. 196°); the N-Et derivative has b.p. 168°/0.6 mm. (hydrochloride, m.p. 117°). Ph·[CH₂] $_4$ ·NH₂ and Ph·[CH₂] $_2$ ·Cl yield β -phenylethyl- δ -phenylbutylamine, b.p. 198°/l·8 mm. (hydrochloride, m.p. 193°; N-Et derivative, b.p. 177°/1 mm., and its non-cryst. hydrochloride). γ-Phenylpropyl-δ-phenylbutylamine, b.p. 193°/0·5 mm. (hydrochloride, m.p. 180°), gives the N-Et derivative, b.p. 195—196°/2·5 mm. (perchlorate, m.p. 76°). β -p-Anisylethyl- γ -phenylpropylamine, b.p. 215—217°/3·2 mm. (hydrochloride, m.p. 257°), and β-p-anisylethyl-γ-phenylpropylethylamine, b.p. 205— 207°/2 mm. (perchlorate, m.p. 96°), are described.

Hydration of stearanilide. B. A. Toms (Nature, 1940, 145, 227).—An EtOH solution of stearanilide (I), m.p. 93°, with a large excess of cold H₂O gives a gelatinous ppt. which becomes granular on keeping. Drying in a vac. over fused CaCl₂ for 10 days yields a white powder (A), decomp. 88—89°. (A) loses 79·1—79·8 wt.-% when dried to const. wt. at 55—90° for 3·5—14 hr.; the residue melts at 93°.

L. S. T.
Action of nitrous acid on p-nitrodimethylaniline in hydrochloric acid. H. M. HALLIDAY

and T. H. Reade (J.C.S., 1940, 138—141).—The reactions involved when a Me of $p\text{-NO}_2\cdot C_6H_4\cdot NMc_2$ (I) is replaced by NO during treatment with NaNO₂ in 5n-HCl and N₂ at 17° are: $2p\text{-NO}_2\cdot C_6H_4\cdot NMe_2$,HCl (II) + 3HNO₂ \rightarrow $2p\text{-NO}_2\cdot C_6H_4\cdot NHMe$,HCl (III) + 2CH₂O + 3NO + H₂O + (H; not liberated; probably converts some NO into N₂); (III) + HNO₂ \rightarrow $p\text{-NO}_2\cdot C_6H_4\cdot NMe\cdot NO$ (IV) + HCl + H₂O; CH₂O + 2HNO₂ \rightarrow 2NO + CO₂ (little) and H₂O-sol. org. substances (m.p. 55° and 95—100°). The highest yield of (IV) is obtained with 5·5 mols. of NaNO₂ to 1 mol. of (I). Max. yield of CH₂O is by use of 2 mols. of NaNO₂; larger amounts of NaNO₂ give rapidly decreasing amounts of CH₂O. 1 mol. of CH₂O is decomposed by 2·2 mols. of NaNO₂ in 5n-HCl and N₂ at 15° to NO (+ a little N₂). It is probable that the HCl performs some function other than liberation of HNO₂ from NaNO₂.

Additive reactions of unilaterally positivised systems. R. Wizinger (J. pr. Chem., 1939, [ii], 154, 1-39).—Examination of the behaviour of cyclic and acyclic ethylenes, derivatives of C₆H₆, aldehydes, ketones, carboxylic esters, lactones, acid amides, pyrone, coumarins, pyridones, quinolones, the corresponding CS-derivatives and imides, azocompounds, and many others shows that every unsaturated system is able to form non-ionoidionoid additive products if the one atom of the unsaturated group is sufficiently positivised. stability of the additive products increases with increase of the positive nature. If the latter is very strongly marked, the systems have the character of ansolvo bases and can even add metallic salts with the formation of complex compounds. If the nonionoid adding atom is attached to H and the positivisation is only moderately marked, the non-ionoidionoid additive product undergoes spontaneous decomp. with elimination of acid and production of a substitution product. All such systems have therefore an aromatic character.

Action of chlorine on arylthiocarbimides and reactions of arylisocyanodichlorides. Dyson and T. Harrington (J.C.S., 1940, 191—194). —PhNCS and Cl_2 in CHCl_3 (no cooling) give initially the dithiazole, $\text{NPh} < \text{CCl}_2 - \text{S}$ (I), which is hydrolysed (EtOH) to bis(phenylthiocarbimide) oxide, m.p. 118°, and converted by 1 Cl₂ into NPh:C(SCl)·NPh·CCl₂·SCl (II) and by 3 Cl₂ into NPh:CCl₂ (cf. Helmers, A., 1887, 581). Similarly, RNCS ($\mathring{R}=m$ - or p-tolyl; p-C₆H₄Br) give bis-m-tolyl, m.p. 128°, -p-tolyl, m.p. 139°, and -p-bromophenyl-thiocarbimide oxide, respectively; no oxide is obtained when R = o-tolyl, o-, m-, or p-NO₂·C₆H₄. PhNCS and more Cl₂ in CHCl₃ give a product which with boiling 40% aq. NaOH gives 1-anilinobenz-thiazole, m.p. 159° (picrate, m.p. 221°), also obtained from CS(NHPh)₂ and Br in boiling CHCl₃, reducing the product with SO₂, and finally treating with hot 2N-NaOH. PhNCS and Cl, in NPh. CCl, (solvent) give NPh:CCl₂, b.p. 209—211° (cf. Sell et al., A., 1875, 269). Similarly prepared (in $\dot{\text{CS}}_2$) are: p-bromophenyl, b.p. 122—124°/15 mm., p-anisyl-, b.p. 155—160°/15 mm., o-, b.p. 125—130°/15 mm., m-, b.p. 130°/10 mm.,

and p-tolyl-, b.p. 121—124°/20 mm., and (in CHCl₃) m-, m.p. 68° , b.p. $165-170^{\circ}/15$ mm. and p-nitrophenyl-isocyanodichloride, m.p. 80°. The o-NO₂·C₆H₄ derivative is not obtained similarly; the product decomposes explosively at 100° . NR:CCl₂ (R = Ph; o-, m-, or p-tolyl; $p\text{-}C_6H_4Br$; $m\text{-}NO_2\text{-}C_6H_4$) and AcOH in C_6H_6 give CO(NHR)₂ (isolated) + AcCl, and thence NHRAc. PhNCO is not formed as intermediate (cf. RHAc. mediate (ef. Sell et al., loc. cit.). $m-C_6H_4Me$ ·N:CCl₂ gives an intermediate compound, m.p. NPh.CCl₂ and NH₂Ph-C₆H₆ give triphenylguanidine hydrochloride. Similarly prepared (m.p. of corresponding *hydrochloride* in parentheses) are: phenyldio-, m.p. 100° (205°), -m-, m.p. 93° (206°), and -p-tolyl-, m.p. 109° (222—223°), phenyl-, oil (257—262°), and p-tolyl-di-p-bromophenyl-, m.p. 178° (262—266°), diphenyl-p-tolyl-, m.p. 128° (230°), tri-o-, m.p. 129° (213—215°), -m-, m.p. 107° (221°), and -p-toly1-, m.p. 125° (231°), o-, m.p. 87° (205—208°), and m-tolyldi-ptolyl-, m.p. 105° (218°), tri-p-bromophenyl-, m.p. 126° $[270-27\hat{6}^{\circ} (decomp.)], p$ -bromophenyldi-p-tolyl-, m.p. 123° (251°), *m*-nitrophenyldi-*m*-, m.p. 139° (218—225°), and -*p*-tolyl-guanidine, m.p. 179° (201— 205°). A. T. P.

Octahydro-dinaphthyline and -naphthidine. G. D. Parkes and G. N. Walton (J.C.S., 1940, 201—202).—Azonaphthalene and Zn dust in boiling EtOH-KOH (2 hr.), then added to cold aq. HCl (24 hr.), give dinaphthyline and naphthidine, converted by Na-C₅H₁₁·OH into ar-octahydrodinaphthyline (I), m.p. 213° (could not be acetylated or benzoylated; bis-NN'-phenylcarbamyl derivative, m.p. 168°), and ar-octahydronaphthidine, m.p. 50° (Ac₂ derivative, m.p. 317°), respectively. A suspension of (I) (in a little EtOH added to H₂O) and Me₂SO₄-K₂CO₃ at 100° (bath) give tetramethyl-ar-octahydrodinaphthyline (II), m.p. 154°. Prepared similarly is tetramethyldinaphthyline (III), m.p. 212° (methylation must be in alkali medium), reduced by Na-C₅H₁₁·OH to (II). Quaternary salts could not be obtained from (II) or (III) but tetramethylnaphthidine and MeI give hexamethylnaphthidineammonium di-iodide, m.p. 220° (decomp.).

Chemotherapy of azobenzenesulphonchloroamide series. II. m- and p-Derivatives. STERN and A. TAUB (J. Amer. Pharm. Assoc., 1939, 28, 1032—1036).—m-NH₂·C₆H₄·SO₂·NH₂ and PhNO in AcOH at 80-90°, followed by boiling 0.1n-NaOH, afford azobenzene-m-sulphonamide, m.p. 168—169°, converted by NaOCl in aq. 2% NaOH into Na azobenzene-m-sulphonchloroamide $(+2H_2O)$ (I). $NO_2 \cdot C_6H_4 \cdot SO_3K$ is reduced (Zn dust, aq. KOH, >90°) and the colourless solution (hydrazo-compound?) allowed to oxidise spontaneously to K azobenzene-3:3'-disulphonate; the method of Mahrenholtz et al. (A., 1880, 804) leads to K azoxybenzene-3:3'-disulphonate. Azobenzene-3:3'- and -4:4'-disulphonamide with NaOCl-aq. NaOH yield Na2 azo- \hat{b} enzene-3:3'- (II) and -4:4'-di(sulphonchloroamide)(III) (each $+4H_2O$). (I), (II), (III), and Na azobenzene-p-sulphonehloroamide have bactericidal activity (against S. aureus) comparable with that of chloramine T. F. O. H.

Replacement of diazo-group by hydrogen. H. H. Hodgson and E. Marsden (J.C.S., 1940, 207—208).—NH₂R, diazotised in HCl or H_2SO_4 , is added to aq. $1:5\cdot C_{10}H_6(SO_3H)_2$ or $2:1\cdot OH\cdot C_{10}H_6\cdot SO_3H$, and the stabilised diazonium salt is dried at $30-40^\circ$ and decomposed by Zn dust (Cu is slower) in EtOH (COMe₂ gives lower yields) at room temp. The decomp. appears to be a simple exchange of H from one SO_3H . The method is general; excellent yields are obtained from NH₂Ph, o-, m-, and p-C₆H₄R·NH₂ (R = Me, OMe, NO₂), m-C₆H₄(NH₂)₂, 1:2:4-C₆H₃Me(NH₂)₂, p-OH·C₆H₄·NH₂, benzidine, α - and β -C₁₀H₇·NH₂, and many NO₂·C₁₀H₆·NH₂ and nitroaminodinaphthyls.

Diphenyl series. V. Preparation of asymmetrical diaryl derivatives. H. H. Hodgson and E. Marsden (J.C.S., 1940, 208—211).— RN_2Cl (R = Ph, o-, m-, and $p-C_6H_4\cdot NO_2$, 1- and $2-C_{10}H_7$, etc.) is converted by $1-C_{10}H_7-SO_3H$, $1:5-C_{10}H_6(SO_3H)_2$, or ZnCl₂ into the stabilised diazonium salt, which is decomposed in PhNO₂ (generally best), C₆H₆ (good), PhMe (practically unsuccessful), or C₁₀H₈ (ineffective), with, best, NaOAc in Ac₂O or AcOH, or EtOH-KOH, anhyd. Na₂CO₃, K₂CO₃, NaOH, or KOH, at 0—5° and finally at 80°. Details of yields of Ph₂ derivative are recorded. Na₂CO₃ is better than NaOH or KOH. In C₆H₆, EtOH-KOH is better than NaOH or KOH. The generalisation of Grieve et al. (A., 1935, 78) that a group invariably enters an aromatic nucleus PhR in the p- and/or o-positions with respect to R is confirmed and extended to NO₂·C₆H₄· groups. Reactions in molten 1-C₁₀H₇·NO₂ give poor yields of products containing azo-compounds. Some Cl-derivative is formed when using ZnCl₂. 3:4'-Dinitrodiphenyl, m.p. 137°, and 1-nitro-4-phenylnaphthalene, m.p. 151°, are new.

Diazoamino-compounds. F. DWYER and J. C. EARL (Chem. and Ind., 1940, 136).—A reply to Mangini (cf. A., 1940, II, 12); it is suggested that his diazoamino-salts are contaminated with derivatives of PhN₂·C₆H₄·NH·N₂Ph. E. W. W.

Steric effect of the nitro-group on the orientation of a third substituent in *m*-nitrophenol. D. R. Mehta and P. R. Ayyar (J. Univ. Bombay, 1939, 8, Part 3, 176—183).—*m*-NO₂·C₆H₄·OH (I) with CH₂O yields the *CH*₂: ether, m.p. 77°, of (probably) 6-nitro-2-hydroxybenzyl alcohol, oxidised (CrO₃, AcOH) to (probably) 6-nitrosalicylic acid (II), m.p. 166—167°. Hg(OAc)₂ and (I) in boiling EtOH yield 2(or 4 or 6)-acetoxymercuri-3-nitrophenol, m.p. 207—208°, which with NaCl gives the *ClHg*-derivative, m.p. 179—181°, and this with Br in aq. KBr yields 3:2:4:6:1-NO₂·C₆HBr₃·OH. It is concluded that OH is the primary directive group in (I). The Reimer-Tiemann reaction with (I) gives a little 6:2:1-NO₂·C₆H₃(OH)·CHO oxidised to ? (II). F. R. G.

Free radicals and radical stability. VII. Influence of the phenoxyl group on stability of ketylic derivatives. Preparation of carbon monoxide from carbonates. S. T. Bowden and T. John (J.C.S., 1940, 213—216).—The reaction $Ph_2CO_3 + 2Na = 2NaOPh + CO$ gives (in xylene; stirring at 110°) $\sim 80\%$ yield of CO sufficiently dry

to demonstrate the catalytic effect of moisture on combustion. Absence of colour in the reaction, and the fact that Et₂CO₃ similarly gives CO and NaOEt, suggests simple scission of Ph₂CO₃. If the reaction involves the ketyl mechanism, the ketyl system must either be colourless or be readily changed into a colourless intermediate which loses NaOPh. It is possible that the reaction gives ONa CNa(OPh)₂ and thence NaOPh and CO directly. Formation of CPh₃·ONa from Et₂CO₃-PhCl-Na (Morton et al., A., 1932, 157) is explained on the ketyl mechanism basis.

A. T. P. Esters of sulphurous, chlorosulphinic, and chlorosulphonic acids. II. W. GERRARD (J.C.S., 1940, 218-230; cf. A., 1939, II, 97).—Mechanisms of replacement of OH by Cl using SOCl₂, SO₂Cl₂, COCl₂, PCl₃, or POCl₃, in absence or presence of tert. bases or their hydrochlorides, are examined. comp. of OPh·SOCl by a tert. base or its hydrochloride occurs by different mechanisms and differs fundamentally from that of aliphatic chlorosulphinates by the same reagents. SOCl₂ (0.5 mol.), PhOH (1 mol.), and C_5H_5N or quinoline (C_9H_7N) (1 mol.) in Et₂O at -5° give Ph₂SO₃ and C₅H₅N,HCl or C₉H₇N,HCl, respectively. Ph₂SO₃ and SOCl₂ (excess) give OPh·SOCl (10% yield) (cf. Carré *et al.*, A., 1933, 48), which, with HCO₂H at room temp., gives HCO₂Ph (84% yield) or with \bar{l} -menthol-Et₂O-C₅H₅N at -5°, gives C₅H₅N,HCl and Ph menthyl sulphite, b.p. 156— $160^{\circ}/2$ —3 mm., $\alpha_{D}^{20} + 10.61^{\circ} (l = 1)$. OPh-SOCl and C₅H₅N or C₉H₇N, with or without Et₂O, do not react at room temp., but at 122° react explosively to give a substance free from N or Cl. OPh SOCl is decomposed vigorously at 98° or 108° respectively by C_5H_5N , HCl or C_9H_7N , HCl; it reacts explosively with NPhMe, at 16°, but slowly with NPhMe, HCl at 50°. Bu^a chlorosulphinate (I) and C₅H₅N or C₉H₇N at 0—10° give Bu^aCl, SO₂, and, after treatment with dil. H₂SO₄ or aq. NaHCO₃, solutions containing butyl-pyridinium or -quinolinium ion [n-butylquinolinium platinichloride has m.p. 223—224° (decomp.)], respectively. Et α-chlorosulphinoxypropionate (II) and C₅H₅N C₉H₇N give CHMeCl·CO₂Et (III), SO₂, and some pyridinium or α-carbethoxyethylquinolinium (platinichloride, m.p. 170—171°), respectively. and C₉H₇N-Et₂O react similarly. OEt·SOCl and C₉H₇N-Et₂O at -10° give ethylquinolinium chlorosulphinate. OPra-SOCl gives (?) C₉H₇N(Pra)SO₂Cl and quinolinium sulphite. Me or Bu^a give solids, and Bu^β or n-amyl chlorosulphinates afford oils. OAlk SOCl and NPhMe₂-Et₂O at < room temp. give oils. (II) and NPhMe2, in presence or absence of Et2O, give (III), α -carbethoxyethyl sulphite (IV), a purple solid, and a substance, m.p. $120-124^{\circ}$. (I) similarly gives SO₂, Bu^aCl, and Bu^a₂SO₃. (II) and C₉H₇N,HČl or NPhMe₂,HCl at 60° or 97°, respectively, give excellent yields of (III); SO2 is steadily evolved, and there is quant. recovery of the hydrochloride; (I) reacts similarly. Et lactate (2 mols.) and C₅H₅N, C₉H₇N, or NPhMe₂ (2 mols.) with SOCl₂ (1 mol.) at -10° give the respective base hydrochloride (100%) and (IV) (90% yield) (cf. Ritchie, A., 1935, 1223). Similarly, Bu^aOH gives Bu^a₂SO₃. (I) and *l*-menthol-C₅H₅N-Et₂O give a quant. yield of C₅H₅N,HCl, and 1-menthyl $\bar{B}u^a$ sulphite, b.p. 98—99°/1 mm. (II) and

Bu^aOH similarly afford α-carbethoxyethyl Bu^a sulphite, b.p. 141—142°/19 mm. β-Octanol (1 mol.), SOCl₂ (0.5 mol.), C_5H_5N (1 mol.), and Et_2O , even at -10° , give ~100% yield of C5H5N,HCl and β-octyl sulphite. β-Octanol and SOCl₂-Et₂O (CO₂) give β-octyl chlorosulphinate (cf. Kenyon et al., A., 1930, 598). Et mandelate (V), SOCl₂, and C₅H₅N-Et₂O at -10° give C₅H₅N,HCl and, after further treatment with C₅H₅N, solution affording a-carbethoxybenzylpyridinium ferrocyanide and CHPhCl·CO₂Et (VI). (V) and excess of SOCl₂ in Et₂O (CO₂) at -10° to 16° give $\alpha\text{-}carbethoxybenzyl$ chlorosulphinate, whence (VI). CHPhMe·OH and SOCl_2-Et_2O at 16° give $\alpha\text{-}phenylethyl$ chlorosulphinate, which with C_5H_5N-Et_2O at -10° gives SO₂, HCl, and CHPhMeCl (VII). CHPhMe OH and SOCl₂-C₅H₅N-Et₂O at -10° afford (VII) and C₅H₅N,HCl. Pr^βÖH and SOCl₂ (CO₂) at -5° , then at room temp., give $OPr^{\beta} \cdot SOCl$ (VIII), b.p. 55°/40 mm., which with HCO₂H at room temp., then at 70°, gives SO_2 , HCl, and HCO_2Pr^{β} , or with C_5H_5N at -10° gives SO_2 and $Pr^{\beta}Cl$. (VIII) and C₅H₅N-Et₂O give an oil which affords isopropylpyridinium ferrocyanide. sec.-Bu chlorosulphinate. b.p. $55-60^{\circ}/30-35$ mm., and $C_5H_5N-Et_2O$ give an oil which affords sec.-butylpyridinium ferrocyanide. Et lactate and SO₂Cl₂ or (IV) and dry Cl₂ give Et α-chlorosulphonoxypropionate, b.p. 90—92°/2 mm., converted by C₅H₅N or C₉H₇N in Et₂O at -10° into (III) and C₅H₅N,SO₃ or quinoline-sulphur trioxide, respectively. Ph chlorosulphonate does not react with C₅H₅N or C₉H₇N, with or without Bu^aOH, in the cold; NPhMe2 reacts to give an oil. Et lactate (1 mol.) and $CO\overline{Cl}_2$ (0.5 mol.) in PhMe- C_5H_5N (1 mol.) at -10° give immediately C₅H₅N,HCl and α-carbethoxyethyl carbonate, b.p. 110-110.5°/l mm. (90% yield) (cf. Ritchie, loc. cit.). The action of COCl₂ on a OH-compound in presence of C₅H₅N is analogous to that of SOCl₂. PCl₃ (0.33 mol.), C₅H₅N (1 mol.), and Bu^aOH, β-octanol, or (V) (1 mol.) in Et₂O give almost quant. yields of C₅H₅N,HCl (slower pptn. using POCl₃). A general theory to account for results of other workers is submitted.

Condensation of α -substituted acetoacetates with phenols. II. Use of various condensing agents with ethyl α -acetoglutarate. N. M. Shah (J. Univ. Bombay, 1939, 8, Part 3, 205—207; cf. A., 1938, II, 502).—There is no especial influence of different condensing agents on the reaction between $m\text{-}C_6H_4(\mathrm{OH})_2$ (I) or $1:3:5\text{-}C_6H_3\mathrm{Me}(\mathrm{OH})_2$ with Et α -acetoglutarate (II), except that AlCl₃ is notably efficient for (I). Condensation does not occur with (II) and $1:2:3\text{-}C_6H_3(\mathrm{OH})_3$ (P_2O_5), α - $C_{10}H_7\text{-}\mathrm{OH}$ ($H_3\mathrm{PO}_4$), β - $C_{10}H_7\text{-}\mathrm{OH}$ (P_2O_5 or AlCl₃), or m- and p-cresol (all agents). F. R. G.

Bromine ion as brominating agent.—See A., 1940, I, 166.

New adrenal base. J. J. PFIFFNER and H. B. NORTH (J. Biol. Chem., 1940, 132, 461—462).—
Adrenodiamine, a phenolic base, C₁₂H₁₂O₂N₂, m.p. 219—221° (decomp.) [dihydrochloride, m.p. 215—216° (decomp.; sinters ~195°)], has been isolated from ox adrenals. It couples with p-NO₂·C₆H₄·N₂Cl, shows absorption max. at 231, 271, and 300 mµ., and yields an O-Ac₁ derivative, m.p. 176—177° (decomp.), and a

Me₂ ether, m.p. 132—133° (decomp.). It has no pressor or oxytocic activity. M.p. are uncorr. (Berl block). P. G. M.

Synthesis of 4-hydroxymethyl-2-α-hydroxyethylanisole and its derivatives. M. Anglade (Compt. rend., 1940, 210, 52—54).—Saturation of a mixture of p-OMe·C₆H₄·CH₂CI (I) (cf. Quelet et al., A., 1936, 1504), (MeCHO)₃, conc. HCl, and H₃PO₄ with dry HCl followed by treatment with H₂O and then MeOH-NaOMe gives p-methoxymethylanisole, b.p. 107-108°/15 mm., unchanged (I), and 4-methoxymethyl-2-α-methoxyethylanisole (II) (18%), b.p. 144-145°/15 mm. p-Ethoxyethylanisole, b.p. 119—120°/ 18 mm., and 4-ethoxymethyl-2-α-ethoxyethylanisole, b.p. 157—158°/18 mm., are prepared similarly. (II) with AcCl in dry light petroleum containing ZnCl, gives 4-chloromethyl-2-\(\alpha\)-chloroethylanisole, converted by NaOAc and then hydrolysis (40% EtOH-KOH at 100°) into 4-hydroxymethyl-2-\(\alpha\)-hydroxymethyl-12-\(\alpha\)-hydroxyethylanisole (26%), m.p. 126° (phenylcarbamate, m.p. 142—143°), which is converted by warm KMnO₄ into 4:1:3- $OMe \cdot C_6H_3(CO_9H)_9$.

Formation of ketyls by action of potassium on benzpinacol. T. John and S. T. Bowden (J.C.S., 1940, 251—252).—Benzpinacol (I) or an equimol. mixture of CHPh₂·OH and COPh₂ behave similarly with K in xylene (N₂). The blue ketyl is formed, and on raising the temp. H₂ is evolved; colour changes are similar in either case. Hydrolysis of the mixture yields CHPh₂·OH and COPh₂. Reaction with COPh₂ alone is slow. It is indicated that the H of OH in (I) is directly replaced by metal to form the K and K₂ derivative, and the latter is partly dissociated into the unimol. ketyl (cf. Bachmann, A., 1933, 505; Doescher et al., A., 1934, 1158) and is then reduced to CHPh₂·OK. (I) reacts quickly in the cold with CPh₃·OH to form the ketyl system and CPh₃·OH. Formation of CPh₃·OH from (I), PhBr, and Na depends on the formation of ketyls.

Fission of digitonides. W. Bergmann (J. Biol. Chem., 1940, 132, 471—472; cf. Schoenheimer et al., A., 1933, 500).—The digitonide is dissolved in 10—20 parts of dry C_5H_5N , kept at 70—100° for 1 hr., and evaporated to dryness in a vac. The residue is extracted with dry Et_2O and the extracts are evaporated, leaving the sterol (yield >90%). Treatment of the Et_2O -insol. residue with 90% EtOH and a further C_5H_5N treatment of undissolved digitonide raises the yield of recovered sterol (e.g., cholesterol) to 95—98%.

Constitution of cholesterol. XVII. Isomerisation of cholesterol by hydrochloric acid. R. DE FAZI and F. PIRRONE (Gazzetta, 1940, 70, 18—26).— Cholesterol (I) in Et₂O-EtOH (all anhyd.) with HCl gives a cholesterol hydrochloride (II), m.p. 126—127°, $[\alpha]_{15}^{15}$ —19·31° to —19·75° in C₆H₆ (cf. A., 1933, 710), which is shown by microscopic examination at the m.p. to consist of mixed crystals of two isomerides. After many crystallisations from EtOH, (II) gives a product, m.p. 128—129°, $[\alpha]_{15}^{125}$ +7·21° to +7·81°. Possible structures, and products obtainable by loss of HCl, are discussed. In EtOH with NaOAc, (II) gives (I), an isocholesterol (III), m.p. 141—143° (cf.

A., 1938, II, 321), allocholesterol of m.p. 131—132° (IV), and Windaus' allocholesterol, m.p. 116—117° [consisting of mixed crystals of (I) and (IV)]. (III) consists of mixed crystals of (I) and an epicholesterol (V), m.p. 141—141·5°, $[\alpha]_D^{2i}$ —33·33° (acetate, m.p. 99—101°; Br_2 -derivative, m.p. 103—104°). With AgNO₃ in EtOH, or with KOH-EtOH, (II) gives (I); with boiling Ac₂O, the acetate of (I); with NH₃-EtOH, or with C₅H₅N, (II) gives (III) With AcCl in C₅H₅N, (II) gives the chlorocholestanyl acetate, m.p. 148—150°, obtained by Wieland from (I), AcCl, and AlCl₃ (cf. A., 1931, 1412). E. W. W.

Constituents of the adrenal cortex and related XXXII. Three stereoisomeric substances. allopregnane- $3(\beta)$: 17: 20-triols. H. Reich, M. SUTTER, and T. REICHSTEIN (Helv. Chim. Acta, 1940, 23, 170—180; cf. A., 1939, II, 317).—alloPregnane- $3(\beta): 17(\alpha)$ -diol monoacetate and $POCl_3-C_5H_5N$ at 135° give $3(\beta)$ -acetoxy- Δ^{17} -allopregnene, m.p. 120—121·5° (hydrolysed to the alcohol, m.p. 136—137°) which with OsO₄ in Et₂O followed by aq. EtOH-NaOH and CH₂O gives a mixture, separated by acetylation, crystallisation, and chromatography into substance J and an isomeric allopregnane- $3(\beta):17:20$ triol, m.p. $212-214^{\circ}$ after sintering at $\sim 205^{\circ}$, $[\alpha]_{\mathbf{p}}^{21}$ -16.7 ± 2° in abs. EtOH [diacetate, m.p. 135-136° (corr.), $[\alpha]_D^{21} - 18.2 \pm 1^\circ$ in COMe₂; oxidised by HIO₄ to t-androsterone, with small amounts of substance O_{i} a triol, $C_{21}H_{36}O_3$, m.p. 240—241°, $[\alpha]_D^{21}$ —28·5±2° in abs. EtOH [diacetate, m.p. 160—161° (corr.), $[\alpha]_D^{20.5}$ -60.9±2° in COMe2; with HIO4 gives an oil and with CrO_3 an acid, $C_{21}H_{32}O_4$, m.p. 1195 — 197°], and a compound, $C_{21}H_{32}O_2$, m.p. 197— 199° (acetate, m.p. 207— 209° ; CrO_3 gives a neutral substance, $\text{C}_{19}\text{H}_{28}\text{\^O}_2$, m.p. 231—233°, and a small amount of an acid, m.p.

Synthesis of $\beta\beta$ -di-p-anisylpropionic acid. V. A. Vyas and K. V. Bokil (Rasāyanam, 1939, 1, 195—197).—Di-p-anisylmethyl chloride, m.p. 93—94°, and CHNa(CO₂Et)₂ in C₆H₆ give an ester, hydrolysed by KOH-EtOH to di-p-anisylmethylmalonic acid, m.p. 182—183°, converted at 190° into $\beta\beta$ -di-p-anisylpropionic acid, m.p. 141—142°. A. T. P.

Synthesis of β -methoxy- β -phenyl- α -methyl-propionic acid. Y. F. Chi, C. C. Lueng, and W. Y. Yu (J. Chem. Eng. China, 1938, 5, 79—81).— CHMeBz·CO₂H is reduced (H₂, PtO₂, EtOAc, 80—90°) to Et β -hydroxy-, m.p. 120—121°, b.p. 120—125°/6·5 mm. (acid, m.p. 116—118°), the Na derivative of which in EtOH with MeI gives two forms of Et β -methoxy- β -phenyl- α -methylpropionate, b.p. 104—106°/27 mm., and m.p. 122—123° (free acid, m.p. 121—123° and 120·5—122·5°, respectively).

New products from the condensation of anisole with acetonedicarboxylic acid. I. $\beta\beta$ -Dip-anisylbutyric acid. V. A. Vyas and K. V. Bokil (Rasayanam, 1939, 1, 198—200).—CO(CH₂·CO₂H)₂, PhOMe, and H₂SO₄ (~80 vol.-%) at room temp. give $\beta\beta$ -di-p-anisylgutaric acid, an acid, m.p. 90—91°, and $\beta\beta$ -di-p-anisylbutyric acid (I), m.p. 166—167° (Br₂-derivative, m.p. 83°); (I) heated with CaO gives $\beta\beta$ -di-p-anisylethylene. CH₂Ac·CO₂Et or p-methoxy-

 $\beta\text{-methylcinnamic}$ acid, PhOMe, and 80% $\mathrm{H_2SO_4}$ give (I). A. T. P.

 β -Phenyl- β -9-anthronylpropionic acids and their derivatives. P. E. GAGNON and R. HUDON (Trans. Roy. Soc. Canada, 1939, [iii], 33, III, 37—46; ef. A., 1935, 212).—p-NO₂·C₆H₄·CH:C(CO₂Et)₂ and anthrone (piperidine as catalyst) give Et_2 β -p-nitrophenyl-β-9-anthronylethane-αα-dicarboxylate, converted $(AcOH-H_{2}SO_{4})$ into β -p-nitrophenyl- β -9-anthronylpropionic acid (I) (Ca salt: amide, m.p. 225-227°; anilide, m.p. $\sim 110^\circ$; Me, m.p. $202-203^\circ$, and Et ester, m.p. $137-138^\circ$) [oxidised by KOH-KMnO₄ at 100° (bath) to $p\text{-NO}_2\text{-}\text{C}_6\text{H}_4\text{-}\text{CO}_2\text{H}$ and anthraquinone (II)], the chloride (III), m.p. 170—175°, of which with AlCl₃ in C_6H_6 gives a-benzoyl- β -p-nitrophenyl- β -9-anthronylethane, m.p. 170—172° (oxime, m.p. 187— 188°). α-Benzoyl-β-m-nitrophenyl-β-9-anthronylethane, m.p. 174—176° (oxime, m.p. 189—190°) (cf. loc. cit.), is prepared similarly. With AlCl₃ in CS₂, (III) gives, after pouring on to ice and steam-distilling the product, (I) and a trace of orange-yellow substance. With conc. H₂SO₄, (I) gives no hydrindone or benzanthrone. β-Phenyl-β-9-anthronylpropionic acid (A., 1933, 949) is oxidised by KOH-KMnO₄ at room temp. β -phenyl- β -9-hydroxy-9-anthronylpropionic [converted by heating, or by CaCl₂ in C₆H₆, into the corresponding lactone, m.p. 213-215°, which is slowly oxidised (KOH-KMnO₄ at 100°) to (II) and BzOH].

Arylation of oils and fats. III. Synthesis of tolylstearic acid, methyl tolylstearate, and tolylstearo-p-xenylamide. W. Kimura and J. Tsurugi (J. Soc. Chem. Ind. Japan, 1939, 42, 390—391B).—Camellia oil with AlCl₃ and PhMe in CS₂ yields mixed tolylstearic acids, purified through the Me esters, from which a p-xenylamide, m.p. 86.5°, is isolable as the main product.

J. D. R.

Condensation of ethyl acetoacetate with phenols and phenolic ethers. I. Synthesis of p-methoxy- and p-ethoxy- β -methylcinnamic acids. D. B. Limaye (Rasāyanam, 1939, 1, 186).—CH₂Ac·CO₂Et and PhOMe or PhOEt with H₂SO₄ give low yields of p-methoxy- or -ethoxy- β -methylcinnamic acid, respectively; an acid, C₁₈H₂₀O₄, m.p. 163—164°, is also obtained from PhOMe. A. T. P.

Nitrocinnamoyl derivatives. M. Fren and A. Solza (R.C. Atti Accad. Lincei, 1939, [vi], 29, 691—695).—Et p-nitrocinnamate with N₂H₄,H₂O in EtOH gives β-hydrazino-β-nitrophenylpropionhydrazide, m.p. 147°, converted by conc. HCl into the hydrochloride (I), m.p. 196—198°, of p-nitrocinnamhydrazide; attempts to isolate the latter give only polymerides. With the appropriate aldehydes in EtOH-NaOH (until neutral), (I) gives anisaldehyde-, m.p. 174°, piperonal-, m.p. 217°, and vanillin-p-nitrocinnamoylhydrazone, m.p. 240°. With NaNO₂ in H₂O under Et₂O, (I) gives p-nitrocinnamozide, m.p. 123°. Di-o-, m.p. 301°, and -m-nitrocinnamoylhydrazine, m.p. 302°, are prepared from the appropriate acyl chlorides, in EtOH.

Tautomerism of phenylbutenoic acids. N. L. Phalnikar and K. S. Nargund (J. Univ. Bombay, 1939, 8, Part 3, 184—189).—Deoxybenzoin (I),

CH₂Br·CO₂Et, and Zn in C₆H₆ yield the Et ester (II), m.p. 60°, of β-hydroxy-βγ-diphenylbutyric acid, m.p. 126—127°, which with Ac₂O gives βγ-diphenyl-Δ°-butenoic acid (III), m.p. 114° [ozonolysis product, (I); anilide, m.p. 135°; p-toluidide, m.p. 156°; Ag salt; Et ester, b.p. $210^{\circ}/10$ mm.]. (II) in C_6H_6 with P_2O_5 yields the Et ester, b.p. $210-215^{\circ}/12$ mm., of $\beta\gamma$ diphenyl- Δ^{β} -butenoic acid (IV), m.p. 173° (Ag salt; anilide, m.p. 172°; p-toluidide, m.p. 160-161°). The equilibrium between (III) and (IV) by the Kon-Linstead-Wright bromometric method occurs at 17% of (III) with a mobility of 0.89. β -Hydroxy- $\alpha\beta$ diphenylbutyric acid, m.p. 192° (lit. 182°) (Ag salt; Et ester, b.p. $130^{\circ}/10$ mm.), with Ac_2O yields $\alpha\beta$ diphenyl- Δ^{α} -butenoic acid, m.p. 160° (Ag salt; anilide, m.p. 148°), which could not be converted into the Δ^{β} -isomeride and this could not be prepared in any other way.

Interaction of sulphuryl chloride with arylamides of aromatic acids. III. G. V. Jadhav and D. R. Sukhatankar (J. Univ. Bombay, 1939, 8, Part 3, 170—172; cf. A., 1939, II, 263).—Chlorination of m- and p-NO₂·C₆H₄·CO·NH·C₆H₄R' with SO₂Cl₂ is effected under (usually) drastic conditions; the mol. is deactivated by the NO₂. The following were prepared: m-nitrobenz-p'-chloroanilide, m.p. 175°, -o'-toluidide, m.p. 154°, -5'-chloro-o'-toluidide, m.p. 183°, and -3'-chloro-p'-toluidide, m.p. 173°; p-nitrobenz-p'-chloroanilide, m.p. 219°, -5'-chloro-o'-toluidide, m.p. 210°, and -3'-chloro-p'-toluidide, m.p. 158°. Constitutions are proved by hydrolysis or synthesis.

Dehydration product of chloral-3:5-dichlorosalicylamide. N. W. Hirwe and K. N. Rana (J. Univ. Bombay, 1939, 8, Part 3, 243—246).—Chloral-3:5-dichlorosalicylamide (I) dehydrated with

Cl CH·CCl₃

conc. H₂SO₄ (or Ac₂O in aq. NaOH) yields 6:8-dichloro-2-trichloromethylbenzometoxazone (II), m.p. 176—177° (Ac derivative, m.p. 123—125°), which with conc. aq. NH₃ gives 3:5-

dichlorosalicyl-βββ-trichloro-α-aminoethylamide m.p. $125-127^{\circ}$ (Ac_2 derivative, m.p. $207-208^{\circ}$; hydrochloride; sulphate); this with HNO₂ yields (I). F. R. G.

Characterisation of carboxylic acids as amides with the aid of carbodi-imides. VI. Characterisation of aromatic carboxylic acids as ureides [acyldiarylcarbamides]. F. Zetzsche and G. Röttger (Ber., 1939, 72, [B], 2095—2098).— The basic ureides of o-acids have the palest colours and are followed successively by those of the m-In relationship to the parent p-acids. NBzAr·CO·NHAr (I), o-substitution has invariably a distinct hypsochromic effect. The m-compounds resemble (I) whereas the colour of the p-compounds is often remarkably deepened. The pyridinecarboxylic acids, as examples of heterocyclic acids, fall exactly into line with the C₆H₆ series since the ring-N behaves as a substituent. Owing to the incompletely aromatic degree of saturation of the furan and thiophen ring systems, the 2-carboxylic acids differ considerably from pyridine-2-carboxylic acid. The hypsochromic action of o-substitution is also obvious in poly-substitution. Carbodi-pdimethylaminophenylimide with the following acids gives the appropriate aroyldi-p-dimethylaminophenylcarbamide: o-, m.p. 151°, and m-, m.p. 137.5°, -toluic; o-, m.p. 158°, softens at 156°, and m-, m.p. 136° -anisic; o-, m.p. 149°, softens at 148°, m-, m.p. 138°, softens at 135°, and p-, decomp. 215°, softens at 162°, -chlorobenzoic; o-, m.p. 153—155°, m-, m.p. 139—141°, and p-, decomp. 210°, softens at 168° -bromobenzoic; o-, m.p. 158°, m-, m.p. 133°, and p-, m.p. 218—220°, -iodobenzoic; o-, m.p. 212— 215° , \hat{m} -, m.p. 144°, and p-, m.p. 226° after softening at 221°, -cyanobenzoic; pyridine-4-carboxylic, m.p. 195°, softens at 145°; 2-methylpyridine-3-carboxylic, m.p. 140°; veratric, m.p. 195°, softens at 141°; penta-chlorobenzoic, decomp. 160°; pentachlorocinnamic, m.p. 215°, softens at 175°.

Components of bark of Rhammus japonica. IV. Nucleus of α -sorigenin. Z. Nikuni and H. Hayashi (J. Agric. Chem. Soc. Japan, 1939, 15, 1179—1182; cf. A., 1939, II, 264).—Oxidation of dimethyl- α -sorigenin with alkaline KMnO₄ yields a trimethoxynaphthalene-2:3-dicarboxylic acid, m.p. 258—261° (anhydride, m.p. 263—264°), and distillation of diacetyl- α -sorigenin with Zn in H₂ yields 2:3-C₁₀H₆Me₂. α -Sorigenin must be a derivative of the lactone of 3-hydroxymethyl-2-naphthoic acid.

Reactivity of the methylene group in β-arylglutaconic esters. I. D. B. LIMAYE and V. M. Bhave (Rasāyanam, 1939, 1, 177—180; cf. A., 1931, 1934, 890).— Et_2 β -p-anisylglutaconate (I), b.p. 195-200°/5 mm., and EtOH-free NaOEt in Et₂O give the Na derivative, which with MeI affords $Et_2^ \beta$ -p-anisyl- α -methylglutaconate, whence the free acid, m.p. 145° (decomp.). Its anhydride, m.p. 108°, and Ac₂O-NaOAc at 100° (bath) give β-p-anisylα-methylglutaconylacetic acid, m.p. 125°. (I) and PhCHO in EtOH-NaOEt give β-p-anisyl-α-benzylideneglutaconic acid, m.p. 229° (Et H, m.p. 155°, and Et_2 ester, b.p. $225^{\circ}/5$ mm.; anhydride, m.p. 132° , gives no colour with FeCl₃). Et₂ β-6-methoxy-m-tolylglutaconate, b.p. 200—205°/5 mm., affords β -6-methoxy-*m*-tolyl- α -benzylideneglutaconic m.p. 210° (Et H ester, m.p. 102°). β-4-Methoxy-mtolyl-α-benzylideneglutaconic acid has m.p. 190° (cf. A., 1935, 343). $\text{Et}_2\text{C}_2\text{O}_4$, (I), and EtOH-free NaOEt in Et₂O give a substance, m.p. 125°.

Condensation of acetonedicarboxylic acid with phenols and phenolic ethers. III. 4:6-Dimethoxy-m-phenylenebis- β -glutaconic acid. V. M. Bhave and D. B. Limaye (Rasāyanam, 1939, 1, 180—182; cf. A., 1931, 1055; 1935, 343).—CO(CH₂·CO₂H)₂, m-C₆H₄(OMe)₂, and conc. H₂SO₄ at <5° give 4:6-dimethoxy-m-phenylenebis- β -glutaconic acid, m.p. 218° (decomp.), oxidised by aq. KMnO₄-Na₂CO₃ to a mixture (A) of an acid, m.p. 220°, and 4:6:1:3-(OMe)₂C₆H₂(CO₂H)₂, m.p. 266° (decomp.); the latter only is formed from (A) and H₂O₂-AcOH. A. T. P.

Norcamphoric acid. H. GAULT and L. DALTROFF (Compt. rend., 1939, 209, 997—999; cf. A., 1938, II, 444).—Et cyclopentanone-2-carboxylate (I) with

CH₂O in presence of K_2CO_3 gives a mixture (A) of (I) with Et 2-hydroxymethylcyclopentanone-2-carboxylate, inseparable by distillation or extraction with alkali. Acetylation of (A) and distillation affords Et 2-acetoxy- Δ^1 -cyclopentene-1-carboxylate, b.p. $130^\circ/17$ mm., and Et 2-acetoxymethylcyclopentanone-2-carboxylate (II), b.p. $160^\circ/17$ mm. Hydrolysis (KOH) of (II) gives (by ring fission and recyclisation) cyclopentane-1: 3-dicarboxylic (norcamphoric) acid, m.p. 121° . J. L. D.

Synthesis of aa-dimethyltricarballylic and α -1-carboxy*cyclo*pentylsuccinic and α -1-carboxy-3-methylcyclopentylsuccinic acids. R. D. DESAI and G. S. SAHARIYA (J. Univ. Bombay, 1939, 8, Part 3, 235—238).—cycloPentanone cyanohydrin with CN·CHNa·CO₂Et in EtOH followed (after 48 hr. at room temp.) by CH₂Br·CO₂Et (Chatterjee, A., 1937, II, 377) leads to 1-carboxycyclopentylsuccinic acid, new m.p. 165° (decomp.) (anil-anilide, m.p. 156°, and p-tolil-p-toluidide, m.p. 189—190°). Prepared similarly were Et_2 α -cyano- α -1-cyano-3-methylcyclopentylsuccinate, b.p. 205°/12 mm., hydrolysed to 1-carboxy-3-methyleyelopentylsuccinic acid, m.p. 144° (p-tolil-p-toluidide, m.p. 167° with previous sintering), and $\dot{E}t_2$ $\beta\gamma$ -dicyano- γ -methylbutanc- $\alpha\beta$ -dicarboxylate, b.p. 176— $178^{\circ}/5$ mm., hydrolysed to αα-dimethyltricarballylic acid, new m.p. 160° (anil-anilide, m.p. 140°; p-tolil-p-toluidide, m.p. 170°).

Methylation of ethyl methylcyclohexylidenecyanoacetates and reduction of ethyl 2-methylcyclohexylidenecyanoacetate. R. D. Desai and G. S. Sahariya (J. Univ. Bombay, 1939, 8, Part 3, 239—242).—Methylation of the appropriate methylcyclohexylidenecyanoacetate \mathbf{with} EtOH-NaOEt leads to $Et \alpha$ -cyano- α -4-, b.p. 152— $154^{\circ}/12$ mm., Et \alpha-cyano-\alpha-3-, b.p. $146-147^{\circ}/12$ mm., and $Et \quad \alpha\text{-}cyano\text{-}\alpha\text{-}2\text{-}methyl\text{-}\Delta^1\text{-}cyclohexenyl\text{-}}$ propionate, b.p. 144-145°/12 mm., which with MeOH-NaOMe give respectively α-4-methyl-, b.p. $106^{\circ}/12 \text{ mm.}, \alpha-3-methyl^{-}, \text{ b.p. } 107-108^{\circ}/12 \text{ mm.},$ and α-2-methyl-cyclohexylidenepropionitrile, b.p. 110°/ 12 mm. The main product of the reduction of Et 2-methylcyclohexylidenecyanoacetate with Al-Hg in moist Et₂O is Et 2-methylcyclohexylcyanoacetate, b.p. 135—136°/12 mm., hydrolysed (KOH in EtOH) to 2-methylcyclohexylmalonic acid, m.p. 154°.

Manufacture of aromatic dinitriles.—See B., 1940, 191.

Constitution of bile acids. G. GIACOMELLO (Gazzetta, 1939, 69, 790—801).—The complex, m.p. 186·5—188°, of deoxycholic (I) with palmitic acid was prepared by crystallisation of the 8:1 mol. mixture from EtOH; the complex of (I) with cerotic acid was similarly prepared. Fourier analysis applied to the Patterson projection of X-ray reflexions from these complexes indicates the spatial configuration of (I) (cf. A., 1938, I, 440; 1939, II, 371). The bearing of the results on the constitution of bile acids in general is discussed.

Acylation of aldoximes. III. Configuration of diphenylcarbamyl and picryl ether derivatives

prepared from syn-aldoximes. G. Vermillion, A. E. RAINSFORD, and C. R. HAUSER. IV. Benzoylation of syn- and anti-aldoximes. G. VERMILLION, E. JORDAN, and C. R. HAUSER (J. Org. Chem., 1940, 5, 68—74; 75—79).—III. The NPh₂·CO derivatives obtained by Brady et al. (A., 1926, 69) from the Na salts of syn-aldoximes (I) and NPh₂·COCl in CHCl₃ may also be obtained in warm KOH-EtOH; formation of nitrile can be avoided by performing the reaction at a low temp. Under the same conditions anti-aldoximes (II) give nitrile directly. It is probable that (I) and NPh₂ COCl give the corresponding syn-derivatives, which are slowly transformed by warm alkali into nitrile, whereas (II) give the corresponding anti-derivatives, which are immediately decomposed. Inversion of configuration does not therefore take place during the action of NPh₂·COCl on (I). Reactions of a pair of geometrically isomeric acyl aldoximes differ only in degree, not in kind; whilst anti-isomerides probably always eliminate HO,CR' to form nitrile much more readily than the syn-isomerides, certain of the latter also, under certain conditions, may give mainly nitrile. Also in both cases hydrolysis to the corresponding oxime may The NPh CO derivatives are regarded as examples of acyl syn-aldoximes which undergo hydrolysis only with great difficulty; consequently, the elimination reaction predominates on heating with alkali. Attempts to hydrolyse these derivatives with hot or cold alkali or NH₃-EtOH give only traces of aldoxime. The picryl ether derivatives of oximes appear very difficult to hydrolyse but that of syn-3: 4-CH₂O₂:C₆H₃·CH:N·OH (III) undergoes some hydrolysis in presence of alkali at room temp. or below, giving (III). Under the same conditions the isomeric anti-compound is recovered almost unchanged. Although the yield of (III) is low, its formation supports the view that the derivative has the synconfiguration. The C₅H₅N-NH₂Bu^a test is not applicable compounds. anti-3:4to these CH₂O₂:C₆H₃·CH:N·OH and anti-p-OMe·C₆H₄·CH:N·OH are relatively stable towards $C_5H_5N-NH_2Bu^a$, KOH-EtOH, and NH_3 -EtOH.

IV. The benzoylation of syn- and anti-3: 4-CH₂O₂:C₆H₃·CH:N·OH and -p-OMe·C₆H₄·CH:N·OH and anti-m-NO₂·C₆H₄·CH:N·OH has been studied with the following results. anti-Aldoximes (IV) with BzCl in presence of aq. alkali give Bz derivatives of the syn-forms, but in presence of alkali in aq. dioxan (solution or emulsion) they give nitriles. With BzCl in C₅H₅N, (IV) give largely or entirely nitriles; in presence of NEt₃ nitrile is obtained. syn-Aldoximes (V) with BzCl in C₅H₅N give partly or entirely nitriles but, in presence of NEt₃, give entirely Bz derivatives of (V). It is concluded that although changes of configuration may occur under certain

Preparation of α-alkyl- and α-acyl-phenylhydrazones, and α-alkylphenylhydrazines. P. Grammaticakis (Compt. rend., 1939, 209, 994—997). —CHPh:N·NHPh with NaNH₂ in Et₂O or C₆H₆ gives CHPh:N·NNaPh (I) which with MeI gives benzaldehydephenylmethylhydrazone (II), b.p. 212—213°/15

conditions, no such change occurs when either (IV) or (V) are benzoylated in a sufficiently basic solution.

mm., m.p. 104°, hydrolysed (HCl) to PhCHO, NH₂·NPhMe, and a small amount of CHPh(C₆H₄·NHMe)₂ formed by decomp. of (II) to PhCHO and NHPhMe followed by interaction of these compounds. (II) with MgMel gives acetophenoneimine, b.p. 93°/12 mm. (phenylcarbamyl derivative, m.p. 160°), and NHPhMe. Similarly (I) with EtI, Bu^βI, and CH₂PhCl gives benzaldehydephenyl-ethyl-, b.p. 214°/14 mm., m.p. 50°, -isobutyl-, b.p. 219—220°/13 mm., and -benzyl-hydrazone, m.p. 111°, respectively, hydrolysed to PhCHO and NPhAlk·NH₂. (I) with BzCl and AcCl gives benzaldehyde-benzoyl-, m.p. 123°, and -acetyl-phenylhydrazone, m.p. 122°, which when hydrolysed do not yield the appropriate acylphenylhydrazines.

J. L. D.

Associating effect of the hydrogen atom. V. Nitroarylhydrazones. L. Hunter and J. MARRIOTT (J.C.S., 1940, 166—170; cf. A., 1939, II, 214).—Cryoscopic measurements of the mol. wts. of NO₂-substituted arythydrazones over a range of concn. provide direct evidence of H-bond association. There are thus two kinds of H-bond association: (i) homogeneous, between typical associating groups of the same kind, as in phenols, oximes, amides; (ii) heterogeneous, between electron-donor -acceptor groups of different kinds, e.g., ·NO2····HO·, ·NO2····HNAr·N: (A). A high degree of mol. association occurs in nitroarylhydrazones whenever NO2 and NHAr N: in separate mols. are free to unite by means of a H bond, viz., (A). CHPh:N·NHPh is weakly associated. Substitution of NO₂ in either Ph nucleus, e.g., o-, m-, or $p\text{-NO}_2\cdot C_6H_4\cdot CH:N\cdot NHPh$ (much less associated in $C_{10}H_8$ than in p- $C_6H_4Br_2$ owing to compound formation with $C_{10}H_8$; p- $C_6H_4Br_2$ is generally used) or CHPh.N·NH· C_6H_4 ·NO₂-p (in $C_{10}H_8$), causes a high degree of association. CHPh:N·NH·C₆H₄·NO₂-o in which intramol. H bondcan occur is unassociated. o-, m-, and $p-NO_2\cdot C_6H_4\cdot CH:N\cdot NRPh$ (R = Me or Ph) are all unassociated. m-NO₂·C₆H₄·CMe:N·NHPh is associated, but m-nitroacetophenonediphenylhydrazone, m.p. 105°, is unassociated. Association is checked with CPhMe:N·NRPh (R = H or Ph). In $C_{10}H_8$ solution, o-OH· C_6H_4 ·CH:N·NH· C_6H_4 ·NO₂-o is unassociated; both H of OH and NH are chelated. The p-NO₂-isomeride is associated (as A). Other substituted arythydrazones are investigated. clusions as to mol. association are based not on abs. vals. of the association factor, but on the slope of the association-conen. curves; a steep curve indicates a high, and a flat or gently-sloped curve a low, degree of association. F.p. systems showing compound formation are:

 $C_{10}H_8-p\cdot NO_2\cdot C_6H_4\cdot CH:N\cdot NHPh$ (I), unstable 1:1 compound, m.p. 123°, eutectic point for mixtures rich in $C_{10}H_8$ at 77°, and eutectic arrest for mixtures rich in (I) at 113°; $C_{10}H_8-m\cdot NO_2\cdot C_6H_4\cdot CH:N\cdot NHPh$, unstable 1:1 compound, m.p. 85°, eutectic point (40%) by wt. of $C_{10}H_8$) at 67°. CHPh:N·NPhMe has m.p. 106° (lit. 102°).

1:2:2-Trimethylcyclopentane-1:3-dialdehyde, "camphoceandialdehyde." F. Häfliger (Helv. Chim. Acta, 1940, 23, 90—92).—Camphor glycol and Pb(OAc)₄ in C_6H_6 -AcOH at 35—40° give

63% of 1:2:2-trimethylcyclopentane-1:3-dialdehyde, m.p. ~97°, b.p. 120—122°/12 mm., $[\alpha]_D^{20}$ +95·13° in C_6H_6 [disemicarbazone, m.p. 230° (decomp.); di-pnitrophenylhydrazone, m.p. 239°]. R. S. C.

Synthesis of 2-acylresorcinols by the "Nidhon '' process. VI. 2-n-Valeryl- and -m-toluoylresorcinol. V. K. BHAGWAT and R. Y. SHAHANE (Rasāyanam, 1939, 1, 191—194; cf. Limaye, A., 1934, 298).—n-Valeryl chloride and 4-methylumbclliferone at 90-130° give the n-valerate, m.p. 77°, converted by AlCl₃ at 165° into 8-n-valeryl-4methylumbelliferone (I), m.p. 106° (benzoate, m.p. 113°), and this with 20% aq. NaOH in H₂ affords 2-n-valerylresorcinol (II), m.p. 85° [with CH₂Ac·CO₂Et and H₂SO₄ gives (I); diacetate; Me₂ ether, b.p. 172—175°/15 mm.]. The mother-liquors from (I) gave material, which with boiling 20% aq. NaOH in H₂ affords some (II), 6-n-valeryl-4-methylumbelliferone, m.p. 157° (acetate, m.p. 153°), and 2:4-dihydroxy-5n-valeryl-β-methylcinnamic acid, m.p. 146°. 4-Methylumbelliferone in-toluate, m.p. 146°, and AlCl₃ at 160-165° give 8-m-toluoyl-4-methylumbelliferone, m.p. 233° (acetate, m.p. 163°; benzoate, m.p. 157°; Me ether, m.p. 184°), and thence 2-m-toluoylresorcinol, m.p. 145° (dibenzoate, m.p. 101° ; Me_2 ether, m.p. 103°). m-Toluic acid, m-C₈ $H_4(OH)_2$, and $ZnCl_2$ at 140° give 4-m-toluoylresorcinol (III), m.p. 168° (diacetate, m.p. 73°), which does not condense with CH₂Ac CO₂Et-H₂SO₄. (III) and Ac₂O-NaOAc at 160—165° afford, after hydrolysis with N-NaOH of its acetate (IV), m.p. 114°, 4-m-tolylumbelliferone, m.p. 223°. (IV) and AlCl₃ at 140—145° give 8-acetyl-4-m-tolylumbelliferone, m.p. 132°, hydrolysed (NaOH) to 2:6:1- $(OH)_{2}C_{6}H_{3}\cdot COMe$ and $m\cdot C_{6}H_{4}Me\cdot COMe$.

y-Substitution in the resorcinol nucleus. V. Gattermann reaction with 4-acylresorcinols. H. A. Shah and R. C. Shah (J.C.S., 1940, 245—247; cf. A., 1939, II, 373).—Respropiophenone, Zn(CN)₂, and KCl in EtOAc followed by AlCl3-HCl-Et2O give 2: 4-dihydroxy-3-aldehydopropiophenone 140—141° [2:4-dinitrophenylhydrazone, m.p. 265— 267° (decomp.)]. 2-Methylresorcinol (II) and EtCN-HCl-ZnCl₂-Et₂O give 2:4-dihydroxy-3-methylpropio-phenone, m.p. 128—130°, reduced (Clementeen) to 2-methyl-4-propylresorcinol (III), m.p. 102-103°, obtained also by Clemmensen reduction of (I). CH₂Ac·CO₂Et and (III) in 80% H₂SO₄ give 7-hydroxy-4:8-dimethyl-6-propylcoumarin, 160—162°. m.p.CH₂Ac·CO₂Et (+piperidine) or CN·CH₂·CO₂H (+20%) aq. NaOH) and (I) give 5-hydroxy-3-acetyl-6-propionylcoumarin, m.p. 188—190°, or 5-hydroxy-6-propionylcoumarin-3-carboxylic acid, m.p. 185—186° (decomp.), respectively. Resbutyrophenone similarly 2: 4-dihydroxy-3-aldehydobutyrophenone (IV), 42—43° [semicarbazone, m.p. 242—245° (decomp.)]. (II), as above, affords 2: 4-dihydroxy-3-methylbutyrophenone, m.p. 155-157°, reduced (Clemmensen), as is (IV), to 2-methyl-4-butylresorcinol, m.p. 74—76°. (IV) and CN·CH₂·CO₂H give 5-hydroxy-6-butyrylcoumarin-3-carboxylic acid, m.p. 198—200° (decomp.). $2:4:1-(OH)_2C_6H_3\cdot COPh$ gives 2:4-dihydroxy-3-aldehydobenzophenone (V), m.p. 117—118° [2:4-dinitrophenylhydrazone, m.p. 228—230° (decomp.)], reduced (Clemmensen) to 4-benzyl-2-methylresorcinol, m.p.

96—98°, also obtained similarly from 2:4:3:1- $(OH)_2C_6H_2Me\cdot COPh$ (cf. Jones *et al.*, A., 1932, 852). (V) and CN·CH₂·CO₂H give 5-hydroxy-6-benzoylcoumarin-3-carboxylic acid, m.p. 244° (decomp.). $2:4:1-(OH)_2C_6H_3\cdot CO\cdot CH_2Ph$ gives 2:4-dihydroxy-3aldehydophenyl benzyl ketone (VI), m.p. 110.5—112° [2:4-dinitrophenylhydrazone, m.p. 252—253° (decomp.); semicarbazone, m.p. 248—249° (decomp.)]. (II) and CH₂Ph·CN-ZnCl₂-HCl-Et₂O give 2:6-di-hydroxy-m-tolyl benzyl ketone, m.p. 157—159°, reduced (Clemmensen), as is (VI), to 4-β-phenylethyl-2-methylresorcinol, m.p. 115-116° (di-p-nitrobenzoate, m.p. 140—142°). (VI) and CN·CH₂·CO₂H, CH₂(CO₂Et), (+piperidine), or $CH_2Ac \cdot CO_2Et$ give 5-hydroxy-6phenylacetylcoumarin-3-carboxylic acid, m.p. 215-217° (decomp.), its Et ester, m.p. 200—201°, or 5-hydroxy-6-phenylacetyl-3-acetylcoumarin, m.p. 198-200°, respectively.

(A) Condensation of p-anisylsuccinic anhydride with anisole and tolyl methyl ethers. DALAL, K. V. BOKIL, and K. S. NARGUND. (B) Condensation of p-anisylsuccinic anhydride with the methyl ethers of pyrocatechol, resorcinol, and quinol. G. S. SAVKAR, K. V. BOKIL, and K. S. NARGUND. (C) Condensation of succinic hydride with the methyl ethers of orcinol and pyrogallol. G. A. Dalal, K. V. Bokil, and K. S. NARGUND (J. Univ. Bombay, 1939, 8, Part 3, 190-197, 198—202, 203—204).—(A) Condensation (AlCl₃) of PhOMe with p-anisylsuccinic anhydride (I) gives γ-keto-αγ-di-p-anisylbutyric acid (II), m.p. 163° salt; Me, m.p. 98°, and Et ester, m.p. 85°), the yield in C₂H₂Cl₄ (a little of a substance, m.p. 83°, also formed) is > in PhNO₂ > in CS₂. p-Anisyl p-methoxystyryl ketone and Br in CS2 give the dibromide (III), m.p. 150° (slight decomp.), which with EtOH-KCN and subsequent hydrolysis gives (II). Similarly o-C₆H₄Me·OMe and (I) yield γ -keto- α -p-anisyl- γ -6-methoxy-m-tolylbutyric acid (IV), m.p. 170° (Ag salt; Me, m.p. 98° , and Et ester, m.p. 82°), the effect of solvents being similar. Methylation (Me₂SO₄, 10% NaOH) of $3:1:4-C_6H_3$ MeAc·OH gives 4-methoxy-3methylacetophenone, b.p. 260-265°, from which 6-methoxy-m-tolyl p-methoxystyryl ketone, an oil, and its dibromide, m.p. 121°, were prepared as for (III) but did not react with KCN. 1:3:6-C₆H₃MeBr·OH gives by methylation 3-bromo-6-methoxytoluene, b.p. 110—115°/10 mm., which with Mg and Et₂O (Grignard) followed by (I) yields (IV). m-C₆H₄Me·OMe and (I) give γ-keto-α-p-anisyl-γ-5-methoxy-o-tolylbutyric acid (V), m.p. 148° (Ag salt; Me ester, b.p. 210—215°/8 mm.), the effect of solvents on the yield being similar. $2:1:4-C_6H_3MeAc\cdotOMe$ and $p-OMe\cdot C_6H_4\cdot CHO$ (VI) in EtOH with NaOH yield 5-methoxy-o-tolyl p-methoxystyryl ketone, m.p. 147°, the dibromide, m.p. 160°, of which with EtOH-KCN gives (V). p-C₆H₄Me·OMe in a similar way provides γ-keto-α-p-anisyl-γ-4-methoxy-m-tolylbutyric acid (VII), m.p. 168° (Me, b.p. 250°/18 mm., and Et ester, m.p. 95°). Methylation of 5:1:2-C₆H₃MeAc·OH yields 2-methoxy-5-methylacetophenone, b.p. 254°, 120°/8 mm., which does not give a chalkone with (VI). (VII) was synthesised from (I) and the Grignard reagent from 1:3:4-C₆H₃MeBr·OMe. Pyrylium derivatives are formed

from (II), (IV), (V), and (VII) with o-OH·C₆H₄·CHO in MeOH–HCl.

(B) Guaiacol does not react, but o-C₆H₄(OMe)₂ and y-keto-α-p-anisyl-y-3: 4-dimethoxyphenylbutyric acid (VIII), m.p. 188° (Ag salt; semicarbazone, m.p. 176°; Me, m.p. 138°, and Et ester, m.p. 88°); the dibromide, m.p. 138°, of 3:4-dimethoxyphenyl p-methoxystyryl ketone with KCN and subsequent hydrolysis yields (VIII). $m-C_6H_4(OMe)_2$ gives γ -keto- α -p-anisyl- γ -2: 4-dimethoxyphenylbutyric acid (IX), m.p. 201° (Ag salt; Me, m.p. 107°, and Et ester, m.p. 112°; semicarbazone, m.p. 211°). In this case the yield in CS_2 is > in $PhNO_2 >$ in $C_2H_2Cl_4$. 1:2:4- $C_6H_3Ac(OMe)_2$ and (VI) in EtOH with NaOH give 2:4-dimethoxyphenyl p-methoxystyryl ketone, m.p. 86°, the dibromide, m.p. 118°, of which with KCN affords no cryst. product. (I) with the Grignard reagent from $4:1:3-C_6H_3I(OMe)_2$ gives (IX). $m-OMe\cdot C_6H_4\cdot OH$ γ -keto- α -p-anisyl- γ -2-hydroxy-4-methoxyphenylbutyric acid, m.p. 169° (Ag salt; Me, m.p. 92°, and Et ester, m.p. 111°; semicarbazone, m.p. 157°), the yield in $C_2H_2Cl_4$ is > in $PhNO_2 >$ in CS_2 ; on methylation it yields (IX). $p\text{-}OMe\cdot C_6H_4\cdot OH$ does not react, but $p\text{-}\dot{C_6}H_4(OMe)_2$ gives $\gamma\text{-}keto\text{-}\alpha\text{-}p\text{-}anisyl\text{-}}\gamma\text{-}2:5\text{-}dimethoxyphenylbutyric}$ acid (X), m.p. 168° (Me, m.p. 102°, and Et ester, m.p. 75°; semicarbazone, m.p. 126°). The yield in PhNO₂ is > in $C_2H_2Cl_4$; no reaction occurs in CS₂. 1:2:5-C₆H₃Ac(OMe)₂ and (VI) in EtOH with NaOH yield 2:5-dimethoxyphenyl p-methoxystyryl ketone, m.p. 99°, the dibromide, m.p. 112°, of which with KCN and subsequent hydrolysis gives (X).

(c) 1:3:5-C₆H₃Me(OMe)₂ with (CH₂·CO)₂O and AlCl₃ (cf. A., 1937, II, 500) yields γ-keto-γ-2:4-dimethoxy-6-methylphenylbutyric acid (XI), m.p. 120° (Me, b.p. 160°/16 mm., and Et ester, b.p. 170°/20 mm.). 3:1:5-OH·C₆H₃Me·OMe gives γ-keto-γ-4-hydroxy-2-methoxy-6-methylphenylbutyric acid, m.p. 145° (Ag salt), which is methylated to (XI). 1:2:3-C₆H₃(OMe)₃ gives γ-keto-γ-2-hydroxy-3:4-dimethoxyphenylbutyric acid (Me, m.p. 110°, and Et ester, m.p. 58°; semicarbazone, m.p. 185°). The yields in CS₂, PhNO₂, and C₂H₂Cl₄ are recorded. F. R. G.

β-Arylglutaconic acids. V. $\alpha \gamma$ -C-Diacetylation of β-arylglutaconic anhydrides: method of synthesis of diphenyl derivatives. G. R. GOGTE (J. Univ. Bombay, 1939, 8, Part 3, 208-219).—β-p-Anisylglutaconic anhydride with NaOAc and Ac_2O yields an $\alpha\gamma$ - Ac_2 derivative, m.p. 108° (compound, $C_{22}H_{21}O_6N$, m.p. 144° , with NH_2Ph), which with aq. HCl gives p-OMe· C_6H_4 ·CMe·CH $_2$ or p-OMe·C₆H₄·C<CH-CO_{CH}:CMe>O, and with 10% NaOH gives 3'-hydroxy-4-methoxy-5'-methyldiphenyl (I), m.p. 118° (benzoate, m.p. 120°), together with its-2'-carboxylic acid (II), m.p. 182° (decomp.), which with boiling dil. HCl gives (I). 3-p-Anisyl-5-methyl- Δ^5 -cyclohexenone is oxidised by aq. EtOH-FeCl₃ to (I). (II) heated at 200°/40 mm. gives the ester, m.p. 119°, of (I) with Similarly β-2-methoxy-5-methylphenylglutaconic anhydride yields its $\alpha \gamma - A c_2$ derivative, m.p. 168°, which with boiling conc. HCl gives β-acetonyl-2methoxy-5-methylcinnamic acid, and with 10% NaOH 3'-hydroxy-2-methoxy-5:5'-dimethyldiphenyl gives

(III), m.p. 85° (acetate, b.p. $181-185^{\circ}/6$ mm.), together with its -2'-carboxylic acid (IV), m.p. 213° (decomp.) [acetate, m.p. 161° ; ester, m.p. 127° , with (III)], and -6'-carboxylic acid (V), m.p. 192° (decomp.). (IV) with conc. H_2SO_4 gives the lactone, m.p. 194° (acetate, m.p. 163°), of 2:3'-dihydroxy-5:5'-dimethyldiphenyl-2'-carboxylic acid together with 1-hydroxy-5-methoxy-3:8-dimethylfluorenone, m.p. 168° (acetate, m.p. 191°). Similarly (V) gives 3-hydroxy-5-methoxy-1:8-dimethylfluorenone, m.p. 264° (acetate, m.p. 172°). β -4-Methoxy-3-methylphenylglutaconic anhydride similarly gives an $\alpha\gamma$ - Ac_2 derivative, m.p. 158° (decomp.), which with 10% NaOH gives 3'-hydroxy-4-methoxy-5:5'-dimethyldiphenyl, m.p. 69° , and its -2'-carboxylic acid, m.p. 172° (decomp.).

Attempted synthetic preparation of anti-rachitic vitamins. IV. Preparation of 4-hydroxycyclohexanone. K. Dimroth (Ber., 1939, 72, [B], 2043—2051).—Partial hydrolysis of quinitol diacetate (cis + trans) with NaOEt-EtOH gives a mixture of cis- and trans-diols and their mono- and diacetates which are inseparable by fractional distillation but can be extracted with various solvents, leading thus to trans-(I), m.p. 72-73°, and cis-(II), an oil, -4-hydroxyevelohexyl acetate, which closely resembles (I) in its properties. (I) and (II) give 3:5dinitrobenzoates (III) and (IV), m.p. 145-146° and 119—122°, respectively. (III) is hydrolysed by 2n-H₂SO₄-EtOH at 100° to trans-4-hydroxycyclohexyl 3: 5-dinitrobenzoate, m.p. 150—151°, and thence by KOH-MeOH to trans-cyclohexane-1: 4-diol whilst (IV) gives the corresponding eis-3:5-dinitrobenzoate, m.p. 118-121°, and thence cis-cyclohexane-I:4diol. trans-4-Hydroxyeyclohexyl benzoate has m.p. 86-87°. Oxidation of a mixture of (I) and (II) in C₆H₆ by CrO₃ in aq. AcOH at 75—80° gives a mixture (A) of unchanged material and 4-acetoxycyclohexanone (V), b.p. $117-119^{\circ}/12$ mm. (? 3:5-dinitrophenylhydrazone, m.p. 184.5°). (V) gives a semicarbazone, m.p. 185-186°, from which it is not smoothly regenerated by $H_2C_2O_4$ or H_2SO_4 by reason of the susceptibility of OAc. The best method of separating (V) from (A) is by decomp. of the H sulphite by dil. H₂SO₄ under Et₂O but the yields of the cryst. salt are not satisfactory. (V) is hydrolysed by 2n-H₂SO₄ at 100° to 4-hydroxycyclohexanone, b.p. 128—131°/ 12.5 mm. (? 3:5-dinitrophenylhydrazone, m.p. 151°). Quinol is readily converted by AcCl in well-cooled C₅H₅N into the monoacetate, b.p. 160—162°/11 mm., m.p. 62—63°.

2:3-Diphenyl- Δ^2 -cyclopentenone. W. Borsche and A. Klein (Ber., 1939, 72, [B], 2082).—Cyclisation of Et α -phenacyl- γ -phenylacetoacetate by warm 2% NaOH affords 2:3-diphenyl- Δ^2 -cyclopentenone, b.p. 185—190°/1 mm., m.p. 95°, in \sim 80% yield. It gives a 2:4-dinitrophenylhydrazone, m.p. 226°, a 5-CHPh., m.p. 158°, and 5-p-anisylidene, m.p. 159°, derivative. H. W.

Naphthylacrylic acids and their derivatives. II. Ring-closure. A. Banchetti (Gazzetta, 1939, 69, 809—816).— β -2-Naphthylcrotonic acid of m.p. 170° (I) or 142° (II) (A., 1939, II, 423) with H₂SO₄ gives sulphonic acids, without ring-closure; (I) is little

affected by P_2O_5 . The acid chloride from (I) with AlCl₃ gives amorphous products. The Et ester with P_2O_5 in C_6H_6 gives $2\cdot C_{10}H_7Ac$ (III); in xylene, products, m.p. $260-264^\circ$, and $\sim 170^\circ$, are formed. β -2-Naphthylbutyryl chloride with AlCl₃ gives 3-methyl-5: 6-benzo-1-hydrindone, m.p. $73-73\cdot 5^\circ$ [semicarbazone, m.p. $203-205^\circ$ (block) (decomp. to a product, m.p. $\neq 220^\circ$); oxime not obtained]. A byproduct of the prep. of (I) from (III) is a compound, ? $(C_7H_6O)_3$ (formation of which is difficult to explain), m.p. $103-104^\circ$, whilst the crude Reformatsky product from (III) contains a substance, $C_{26}H_{18}O$, m.p. $208-210^\circ$. E. W. W.

3: 3-Diphenyl-1-hydrindone and 3: 3-diphenylindane-1: 2-dione. Synthesis of o-benzhydrylbenzoylformic acid. P. E. GAGNON, R. HUDON, I. Cantin, and J. Ganas (Trans. Roy. Soc. Canada, 1939, [iii], 33, III, 47—58).—3: 3-Diphenyl-I-hydrindone (I) (A., 1930, 90) with boiling aq. KOH-KMnO4 gives diphenylphthalide (II). With HNO_3 (d 1.2), (I) gives a mixture (III) [containing (II)] which in C_6H_6 with NH_3 deposits the NH_3 compound, $C_{21}^{\circ}H_{17}^{\circ}O_5N_3$, m.p. $170-171^{\circ}$ (decomp., evolving NH₃), of 2:2-dinitro-3:3-diphenyl-1-hydrindone, m.p. 190—192° (decomp.), liberated by Ac₂O. When heated at 160° under reduced pressure, (III) gives 3:3diphenylindane-1:2-dione (IV) (cf. Schönberg et al., A., 1937, II, 248) (mono-oxime, m.p. 100—110°, -hydrazone, m.p. 163—164°, -phenylhydrazone, m.p. 186—188°, -p-nitrophenylhydrazone, m.p. 238—240°). With PCl₅ and PBr₅, (IV) gives 1:1-dichloro-, m.p. 134—135°, and 1:1-dibromo-3:3-diphenyl-2-hydrindone, m.p. 110-115° (structure deduced from nonidentity with the known 2:2:3:3:1-compound). With $o-C_6H_4(NH_2)_2$, (IV) gives 2-o-aminoanilo-3:3diphenyl-1-hydrindone, m.p. 241—242°. When heated with AcOH for 10 hr., (III) gives (II) and (IV). (IV) is converted by boiling conc. aq. KOH [if the solution is then saturated with CO2, any (II) present is pptd.] into o-benzhydrylbenzoylformic acid (V), m.p. $224-226^{\circ}$ (N_2H_4 salt, m.p. $\sim 205^{\circ}$, of hydrazone). The Ag salt of (V) gives the Me ester, m.p. $93-94^{\circ}$, also obtained via the acid chloride; the last with conc. aq. NH₃ followed by EtOH gives the Et ester, m.p. 69-70°, not the amide. KOH-H₂O₂ oxidises (V) to o-CHPh₂·C₆H₄·CO₂H. E. W. W.

Diphensuccindene series. XVII. Δ^{10} -Diphensuccindene-9:12-dione. K. Brand and H. W. Stephan (Ber., 1939, 72, [B], 2168—2175; cf. A., 1937, II, 24).—Evidence is adduced in favour of the constitution (A) for the red compound (I),

$$(A.) \begin{array}{c} CO \\ CO \\ CO \\ CO \\ CO \end{array} \begin{array}{c} CO \\ Ph \end{array} \begin{array}{c} (B.) \\ Ph \end{array}$$

 $C_{31}H_{16}O_3$, obtained (*loc. cit.*) by dehydrogenation of diphensuccindane-9:12-dione by SeO₂. (I) is

smoothly oxidised by ${\rm CrO_3}$ in AeOH to products of unknown constitution. Gradual addition of (I) to hot, 10% KOH–EtOH gives a neutral substance, ${\rm C_{31}H_{18}O_4}$, m.p. 312—313·5° (converted by the protracted action of KOH–EtOH into a compound sol. in Na₂CO₃), and a dicarboxylic acid (II), ${\rm C_{31}H_{18(20)}O_5}$, m.p. 343—344° (Me_2 ester, m.p. 216°). (II) is decarboxylated in boiling quinoline containing Cu powder to 5:6-diphenylchrysofluorenone (B), m.p. 247·5—248·5°, which is transformed by molten KOH at 320—330° into a (?) mixture, m.p. 238—243°, of 1:2:3-triphenylnaphthalene-4- and -4′-carboxylic acids, decarboxylated (Cu powder in boiling quinoline) to 1:2:3- ${\rm C_{10}H_5Ph_3}$, m.p. 152—153·5°. H. W.

Estrogens with oxygen in ring B. II. Δ^6 -iso-Equilin from 7-hydroxycestrone. W. H. Pearl-MAN and O. WINTERSTEINER (J. Biol. Chem., 1940, 132, 605—612).—A new isomeride of equilin is prepared. Dehydration of 7-hydroxyœstrone by heating with Al_2O_3 is not successful. Its 3-benzoate (A., 1939, II, 511) with PCl₅-CaCO₃-CHCl₃ gives 7chloroæstrone 3-benzoate, m.p. 247—248° (decomp.) (all m.p. corr.), which with NaI in C₅H₅N at 100° for 40 hr. gives, after hydrolysis, Δ^6 -isoequilin (I), m.p. $265-266^{\circ}$, $[\alpha]_{\rm p}^{24}+150^{\circ}$ in dioxan (acetate, m.p. 140-141°; benzoate, m.p. 202°), hydrogenated (Pd-black in EtOH) to estrone (II), without any equilenin. $C_{(8)}$ in the 7-substituted estrogens has thus the same configuration as in natural steroids. (I) has about ¹/₃ of the physiological activity of (II). The absorption of (1) shows max. at 263 ($\epsilon = 7500$) and 306 m μ . ($\epsilon = 2500$). The spectra etc. do not agree with those of Inhoffen's isoequilin (A., 1937, II, 147) or of Girard's hippulin (A., 1932, 546). "Compound 3" (Hirschmann et al., A., 1938, III, 299) has an absorption spectrum not completely resembling that of (I), but resembling that of 14-epi- Δ^{9-11} -8-hydroxyequilin (Hirschmann et al., A., 1939, II, 76).

E. W. W. 17-β-Hydroxyprogesterone. J. J. Peiffner and H. B. North (J. Biol. Chem., 1940, 132, 459— 460).—17-β-Hydroxyprogesterone, m.p. 212—215° (Berl block; uncorr.), $[\alpha]_D^{27} + 102 \pm 3^\circ$ in CHCl₃, an isomeride of deoxycorticosterone, has been isolated from ox adrenals. It shows an absorption max. at 240 mµ., yields a dioxime, m.p. 250—251° (decomp.; sinters $\sim 240^{\circ}$), and a disemicarbazone, m.p. $> 360^{\circ}$ (darkens 240°, sinters 280—290°), and is unaffected by Ac_2O- C₅H₅N at room temp. Oxidation with CrO₃ in AcOH at room temp. yields Δ^4 -androstene-3:17-dione. exhibits no progestational or cortical hormone activity, but has a male hormone activity comparable with that of androsterone. P. G. M.

Constituents of the adrenal cortex and related substances. XXXI. Diazoprogesterone. T. Reichstein and J. von Euw (Helv. Chim. Acta, 1940, 23, 136—138; cf. A., 1939, II, 553).—21-Diazo- Δ^5 -pregnen-3-ol-20-one and Al(OBu $^{\gamma}$)₃ in C₆H₆-COMe₂, boiling or at room temp. (20 days), give 21-diazoprogesterone, m.p. 182—184° (corr.; decomp.), converted by HCl in dry Et₂O into 21-chloroprogesterone, m.p. 201—204° (corr.) [also obtained from 21-chloropregnenolone by Al(OBu $^{\gamma}$)₃ in C₆H₆-COMe₂

at room temp. (20 days)], and by boiling AcOH into deoxycorticosterone acetate, m.p. 158—159° (corr.).
R. S. C.

Zwitter-ion structures in unsaturated carbonyl compounds.—See A., 1940, I, 148.

Action of nitrosylsulphuric acid on m-fluorophenol. A new red o-quinoneimine. H. H. Hodgson and D. E. Nicholson (J.C.S., 1940, 205 cf. A., 1939, II, 512; 1940, II, 12). m-C₆H₄F·OH (I) and NO·SO₄H in AcOH at 0—25° give (probably) the red 4:2'-difluoro-4'-hydroxy-obenzoquinone-I-anil (II), m.p. >300°, and a little green 3-fluoro-4-nitrosophenol (or 3-fluorobenzoquinone-4-oxime), m.p. 158° [oxidised by K₃Fe(CN)₆ to 4:3:1-NO₂·C₆H₃F·OH]. (I) is probably nitrosated in position 4 and in small degree nitrated in position 6, followed by rapid condensation of the NO-compound (or quinoneoxime) with (I) to give (II). Boiling aq. KMnO₄-H₂SO₄ and (II) give an odour of a pbenzoquinone; Zn-AcOH give a colourless leucocompound, reoxidised by air or FeCl₃ to (II). (II) or mm-difluoro-o-indophenol (III) and Zn dust in Ac₂O-NaOAc give 4:2'-difluoro-2:4'- or difluoro-2: 2'-diacetoxy-N-acetyldiphenylamine, 175°, respectively. (II) or (III) and NH₂Ph-AcOH give 4: 2'-difluoro-4'-, m.p. 200°, or 4: 4'-difluoro-2'hydroxy-o-benzoquinonedianil, m.p. 175°, respectively. A. T. P.

Examination and determination of 2-methyl-1:4-naphthaquinone. J. L. PINDER and J. H. SINGER (Analyst, 1940, 65, 7—12).—Volumetric determination is carried out by titration with TiCl₃ in CO₂ using K indigodisulphonate or phenosafranine as internal oxidation-reduction indicator. The colour reaction between CN·CH₂·CO₂Et and quinones in aq. NH₃-EtOH (Craven, A., 1931, 972) was studied and successfully applied to the colorimetric determination of 0·4—0·8 mg. and to EtOH extracts of tablets, pills, and ampoules. Spectrographic absorption data and control tests for ash, m.p., loss on drying in vac., and Cr content are given. E. C. B. S.

Biochemistry of micro-organisms. LXIV. (4:5:7-trihydroxyanthraquinone-2carboxylic) acid and ω -hydroxyemodin (4:5:7trihydroxy-2-hydroxymethylanthraquinone) metabolic products of a strain of Penicillium cyclopium, Westling. W. K. Anslow, J. Breen, and H. Raistrick (Biochem. J., 1940, 34, 159— 168).—The mycelium of a strain of P. cyclopium, grown on a Raulin-Thom solution at 20-21° in daylight, when extracted with Et₂O + 2n-HCl gives emodic acid, m.p. 364-365° (decomp.) (smokes ~350°) [Me ester, m.p. 268—270° (triacetate, m.p. $188-189^{\circ}$)], and 4:5:7-trihydroxy-2-hydroxymethylanthraquinone (I), m.p. 288° [tetra-acetate (II), m.p. 190—191°; 7-Me ether, m.p. 229—231° (prep. by Mel in MeOH-NaOMe; insol. in cold 2% aq. Na₂CO₃)], separated through their polyacetates. (I) is sol. in cold N-Na₂CO₃ but insol. in cold 2% aq. NaHCO₃. Reduction of (I) with red P and HI $(\bar{d} \ 1 \cdot \bar{7})$ in boiling AcOH and subsequent oxidation (CrO₃, aq. AcOH, 60°) of the resulting anthranol, decomp. 255—258° $(darkens 250-255^{\circ})$, affords Frangula-emodin [4:5:7trihydroxy-2-methylanthraquinone] (III). Oxidation (CrO₃, aq. AcOH, 65—70°) of (II) or the triacetate of (III) gives triacetylemodic acid. The compound, $\rm C_{15}H_{10}O_6$, m.p. 273°, of Posternak (A., 1939, III, 872) is (I).

Preparation of 1:3-dihalogeno-2-methylaminoanthraquinones.—See B., 1940, 192.

Vat dyes of the flavanthrone series. III. MAKI and S. KITAMURA (J. Soc. Chem. Ind. Japan, 1939, 42, 410—412B).—2-Bromo-3-aminoanthraquinone (I) (3 g.) is gradually added to SbCl₅ (8.5 g.) in PhNO₂ (50 g.) at 20°; the mixture is kept for ~18 hr. with exclusion of moisture, then heated as rapidly as possible to 210° and kept at this temp, for 15—20 min. The ppt. is removed at $\sim 140^{\circ}$, washed with PhNO₂ at $\sim 100^{\circ}$ and then with EtOH, after which it is boiled with 10% HCl, thus giving 3:3'-dibromoflavanthone (II) in 33·1% yield. (II) gives a violet-blue vat with alkaline Na₂S₂O₄ at 55—60° from which cotton is dyed in brilliant yellow-orange shades. It is not identical with indanthrene-yellow If the time of condensation has been shortened the filtrates from (II) contain almost homogeneous 3:3'-dibromoindanthrone (III). If the change has been prolonged a yellow-green substance, probably 3-bromo-3'-(3''-bromo-2''-anthraquinonylamino)indanthrone, accompanies (II). A 1:1:1 compound (IV) of (I), SbCl₅, and PhNO₂ is described. C₆H₄Cl₂ is used as solvent, no (II) and only traces of (III) are formed. A compound analogous to (IV) is not observed.

Walden inversion. IV. Mode of reaction of phosphorus pentachloride. W. HÜCKEL and H.

PIETRZOK (Annalen, 1939, **540**, 250—274; cf. A., 1939, II, 120).—l-Menthol (I) (=ROH) (\sim l mol.) in C_5H_5N (best 4 mols.) and PCl_5 (\sim l mol. in cold light petroleum) give a poor yield of almost homogeneous d-neomenthyl chloride [3t-chloro-1c-methyl-4t-isopropylcyclohexane] (II), b.p. $40-41^{\circ}/0.01$ mm., $[\alpha]_{D}^{20}$ +44·72°, with much trimenthyl orthophosphate, m.p. 84°, and Cl-containing phosphates. Reaction is considered to involve [C₅H₅N·PCl₄]⁺Cl⁻ (in this and similar formulæ: denotes a lone pair of electrons) or [(C₅H₅N:)₂PCl₄]⁺Cl⁻; OH is then substituted by Cl⁻ with complete Walden inversion (cf. A., 1939, II, 147). Interaction between (I) and [C₅H₅N:PCl₄] can also $\begin{bmatrix} \mathrm{R} \\ \mathrm{H} > \mathrm{O:P(Cl_4):NC_5H_5} \end{bmatrix}^+ \ \rightarrow \ [\mathrm{C_5H_5NH}]^+ +$ RO:PCl₄ (with C_5H_5N gives [RO:P(Cl₃):NC₅H₅]⁺Cl⁻). With unpurified PCl₅ in cold light petroleum, (I) affords mixtures (A), $[\alpha]_b^{20}$ –25° to –30°, of (II) and much l-menthyl chloride [3c-chloro-1c-methyl-4c-isopropylcyclohexane] (III); use of pure PCl₅ (also in Et₂O, CCl₄, and CHCl₃) gives mixtures of (II) (increased amount) and (III). With PCl₅ containing increasing amounts of FeCl₃ (or AlCl₃), chlorides of increasing lævorotatory power are formed; a 1:1:1 mixture of (I), PCl₅, and FeCl₃ in light petroleum gives practically pure (III), α_D -37.3°, and a little menthene. In this case interaction is considered to occur thus: $[PCl_4]^+[FeCl_4]^- + ROH \rightarrow \begin{bmatrix} R \\ H \end{bmatrix} O : PCl_4 \end{bmatrix}^+[FeCl_4]^- \rightarrow$ $RCl + POCl_3 + H^* + [FeCl_4]^-$; no inversion occurs and there is no conversion (by FeCl₃ or PCl₅-FeCl₃) of

(II) into (III). Formation of (II) and (III) is not concerned with the HCl liberated during the reactions; (I) is unaffected by dry HCl in Et₂O or C_6H_6 at room temp./8 weeks. Conc. HCl and (I) at 100° (sealed tube) give a mixture of (II) (25) and (III) (75%). The reaction between (I) and PBr₅ is similarly influenced by AlBr₃ (e.g., $\frac{1}{15}$ mol. leads to a bromide, b.p. $44-46^{\circ}/0.005$ mm., [α] $^{20}_{15}-20.14^{\circ}$); pure PBr₅ affords a bromide, [α] $^{20}_{15}-3.93^{\circ}$ to $+7.67^{\circ}$, and some dibromomenthane, b.p. $80^{\circ}/0.008$ mm. [probably from menthone which arises by oxidation of (I)].

Quinoline at 190—200° or, less well, NH₂Ph at 160—170° with (A) gives approx. pure (III) and a mixture of trans- Δ^2 - (IV) (15—18%) and active (V) (0—25%) and r- Δ^3 -menthene (60—82%); (IV) and (V) are little affected and completely racemised, respectively, by EtOH-C₆H₄Me·SO₃H. The physical consts. of (II) and (III) are in accordance with the von Auwers-Skita rule. The reactions of (I) with those (lit.) of d- β -octanol and PCl₅ are compared.

l-Borneol and PCl₅ + FeCl₃ give (method: Wallach, A., 1886, 70) *iso*bornyl chloride (VI) (largely racemised) formed by way of camphene hydrochloride (VII); in Et₂O a 3:1 mixture of (VI) and (VII) is produced. Pure PCl₅ similarly gives a 1:2 mixture of (VI) and (VII).

Contact isomerisation of menthene. N. D. Zelinski and J. A. Arbusov (Compt. rend. Acad. Sci. U.R.S.S., 1939, 24, 542—544; cf. A., 1940, II, 9).— Δ^3 -p-Menthene (I) passes in presence of SiO₂ gel at 375° mainly into an unsaturated material (II) which is hydrogenated (Pt–C at 170°) and then dehydrogenated (Pd–C at 300°) and treated with fuming $\rm H_2SO_4$ to remove p-cymene. The product is a mixture of pentamethylene hydrocarbons $\rm C_{10}H_{20}$ formed by hydrogenation of cyclopentene hydrocarbons, $\rm C_{10}H_{18}$, which are the immediate product of the contact isomerisation of (I). Repeated passage of (II) over Pt–SiO₂ gel at 300° followed by treatment of the condensate with fuming $\rm H_2SO_4$ leads to a mixture of isomeric decanes.

Tricyclal. P. Lipp and H. Braucker (Ber., 1939, 72, [B], 2079—2081; cf. Jagelki, A., 1899, i, 627).—Reduction of ω -nitrocamphene by Zn dust and AcOH at 70° affords two alcohols, two aldehydes, and a N compound volatile with steam. The main product is tricyclal, which is identified through the semicarbazone, m.p. 212—212-5° (corr.; decomp.) when slowly heated, and by oxidation to tricyclenic acid, m.p. 150—151°.

Optically pure l- α -phellandrene. N. C. Hancox and T. G. H. Jones (Univ. Queensland Papers, 1939, 1, No. 14, 2 pp.).—l- α -Phellandrene (I) prepared by fractional distillation at 1—2 mm. in the presence of traces of quinol had d_2^{20} 0.8324, n_2^{20} 1.4724, $[\alpha]_2^{20}$ —177.4°, diene val. ~186.3. A linear relationship was found between $[\alpha]_D$ and the (I) content, calc. from the diene val., for a no. of samples when optically inactive diluents were present. T. F. W.

Phenolic behaviour of buchu-camphor and its derivatives. (SIGNA.) C. STRANEO (Gazzetta, 1940, 70, 27—37).—Buchu-camphor (I) with Me₂SO₄ in aq. KOH gives its Me ether (II), which with NH₂OH,HCl

gives in presence of NaHCO3 a NH2OH derivative, m.p. 106-108°, and in presence of KOH an oxime, m.p. 128-131°, with a substance, m.p. 159-161°, b.p. $130-140^{\circ}/0.1$ mm. With $NH_2 \cdot CO \cdot NH \cdot NH_2$, (II) yields two isomeric *pyrazoline* derivatives, $C_{12}H_{21}O_2N_3$, m.p. $193-194^{\circ}$ and $189-192^{\circ}$ (mixed m.p. depressed). With Br in Et₂O, (II) gives an unstable product, yielding a small amount of bromobuchu-camphor, and 2:3-dihydroxycymene and its 2-Me ether, m.p. 45-47°. With H₂ (Pd), (II) gives dihydrobuchu-camphor Me ether (III), b.p. 222—224° [oxime, m.p. 120—121°; semicarbazone, m.p. 197—198° (decomp.)]. With HBr OR in Et₂O, (III) gives menthone; prolonged OH action of HBr, followed by 10% KOH, gives Δ^1 -menthen-3-one (?), b.p. (impure) $209-220^{\circ}$ (semicarbazone, m.p. 146-(semicarbazone, m.p. 151°), and some hydroxythymoquinone. Formula (A) is proposed for (II) (R = Me), derived

E. W. W. Formation of mixed crystals or molecular compounds from binary systems of keto-derivatives of camphor.—See A., 1940, I, 164.

from (I) in a form of structure (A) (R = H).

Camphorquinone and diazomethane. H. Rupe and F. Häflinger (Helv. Chim. Acta, 1940, 23, 139—143).—Camphorquinone and $\mathrm{CH_2N_2}$ in $\mathrm{C_6H_6}$ containing a little MeOH, first at 0° and then at room temp., give a ketone (I), $\mathrm{C_{11}H_{15}O}$ ·OMe, m.p. 55—56°, b.p. 145°/12 mm. (perchlorate, m.p. 90°; oxime, m.p. ~195°), and a liquid mixture, which with 10% HCl at 100° yields an acid (II), $\mathrm{C_{11}H_{16}O_2}$, m.p. ~220° [phenylurethane, m.p. 91°; Br-derivative, m.p. 191°, reduced to (II) by Zn dust in AcOH]. Hot 20% $\mathrm{H_2SO_4}$ converts (I) into (II) and MeOH. MeOH- $\mathrm{H_2SO_4}$ converts (II) into (I), which is also obtained from the Ag salt of (II) by MeI. $\mathrm{CrO_3}$ in aq. AcOH at room temp. oxidises (II) to camphoric acid; $\mathrm{H_2-Ni}$ at 70°/120 atm. reduces it to isoborneol; Na-EtOH reduced it to camphor glycol.

Autoxidation of trans-π-aldehydocamphor. Influence of other ketocamphors. M. ISHIDATE and H. KAWAHATA (Proc. Imp. Acad. Tokyo, 1939, 15, 353—356).—2 mols. of 10-ketocamphor entirely stop autoxidation of trans-π-aldehydocamphor (I) in a 0·1M-phosphate buffer (p_Π 7), probably by complex formation; smaller amounts have less effect. p-Ketocamphor (up to 4 mols.) has much less effect. o-Ketocamphor is remarkably effective, 0·0025 mol. causing almost complete inhibition. Fe^{**} increases and KCN greatly decreases autoxidation. CuSO₄ in fairly large amount is inhibitory. These results parallel effects on other activities of (I). R. S. C.

Peroxidase action of π -aldehydocamphor. M. Ishidate and F. Shishido (Proc. Imp. Acad. Tokyo, 1939, 15, 357—358).—Addition of a little trans- or cis- π -aldehydocamphor to $\sim 0.1\%$ o-aminophthal-hydrazide and 0.03% H₂O₂ in 1% Na₂CO₃ causes prolonged, blue chemiluminescence. KCN, Na₂S, NH₂OH, N₂H₄, o- and 10- (but not 6- or p-)ketocamphor (1 mol.) inhibit this reaction. 10-Ketocamphor, various aldehydes, and perisoketopinic acid do not cause chemiluminescence. R. S. C.

Optical superposition. H. Rupe and F. Häflin-GER (Helv. Chim. Acta, 1940, 23, 53—90).—When a d-, l-, or dl-terpene acid is esterified with a d-, l-, or dl-terpene alcohol, the rules of optical superposition hold unless both components are unsaturated, but the numerical contribution of one component may vary according to the nature of the second. In some cases the effect is overlaid by partial resolution of a dl-component by an active component; this is proved by hydrolysis in cases marked * below. Rotatory dispersion (measured) has usually little effect. [a] below are $[\alpha]_D^{20}$ in $C_6\dot{H}_6$. The following are prepared (esters by way of the acid chloride). dl- β -Camphorylpropionic acid (from Et camphorylidenepropionate by H₂-Ni), m.p. 85° [p-toluidide, m.p. 80° (d-acid ptoluidide, m.p. 113°)]. dl-Camphorylidene-, m.p. 143° [p-toluidide, m.p. 216° (d-acid p-toluidide, m.p. 215°)], and dl-camphoryl-acetic acid, m.p. 115° [p-toluidide, m.p. 140° (d-acid p-toluidide, m.p. 165°)]. Camphorylidenepropionic acid gives no terpene esters. d-, m.p. 143° , [α] +87.08°, l-, m.p. 133° , [α] -90.03°, and dl-hydroxymethylenecamphor d-camphorylpropionate, m.p. 139° , $[\alpha] = 0.90^{\circ}$; \bar{d} -, m.p. $128^{\bar{o}}$, $[\alpha] + 87.00^{\circ}$, and 1-hydroxymethylenecamphor dl-camphorylpropionate, m.p. 126° , $[\alpha] - 87.48^{\circ}$. d-, m.p. 90° , $[\alpha] + 29.44^{\circ}$, l-, m.p. 113° , $[\alpha] - 2.46^{\circ}$, and dl-camphorylcarbinol dcamphorylpropionate, m.p. 94°, [a] +11·20°; d-, m.p. 94°, [a] +15·33°, and 1-camphorylcarbinol dl-camphorylpropionate, m.p. 96°, $[\alpha]$ —15·22°; d- β -camphorylcarbinol d-camphorylpropionate, m.p. 103°, $[\alpha]$ +51.03°. dl-Camphorylideneacetyl chloride, b.p. $140-142^{\circ}/13$ mm. d-, m.p. 145° , $[\alpha] +233.57^{\circ}$, 1-, m.p. 121°, [a] +1.68°, and dl-hydroxymethylenecamphor d-camphorylideneacetate, m.p. 143° $+124.05^{\circ}$; d-, m.p. 146°, [a] $+94.21^{\circ}$, and l-hydroxymethylenecamphor dl-camphorylideneacetate, m.p 146°, $[\alpha] -91.93^{\circ}$. d-, m.p. 102° , $[\alpha] +127.04^{\circ}$, $\hat{1}$ -, m.p. 90°, [α] +87.58°, and dl-camphorylcarbinol d-camphorylideneacetate, m.p. 92°, [a] +114·20°; d., m.p. 90°, $[\alpha] + 19.01°$, and l-camphorylcarbinol dl-camphorylideneacetate,* m.p. 91°, $[\alpha]$ —23·16°. d-, m.p. 75°, and dl-camphorylacetyl chloride, an oil, b.p. 152—154°/12 mm. d-, an oil, $[\alpha]$ +124·50°, l-, m.p. 111°, $[\alpha]$ —55:30° and dl hadroment the language of the state of the st $[\alpha]$ -55·30°, and dl-hydroxymethylenecamphor dcamphorylacetate,* m.p. 120° , [α] $-20\cdot02^{\circ}$; d-hydroxymethylenecamphor dl-camphorylacetate,* m.p. 101° , $[\alpha] + 62.99^{\circ}$. d-, +MeOH, m.p. 58°, $[\alpha] + 38.76^{\circ}$, l-, [a] +5.82°, and dl-camphorylcarbinol d-camphorylacetate, $[\alpha] + 25.74^{\circ}$, d-, $[\alpha] + 24.38^{\circ}$, and l-camphoryl-carbinol dl-camphorylacetate, $[\alpha] - 20.92^{\circ}$ (four lastnamed esters are oils). The following properties refer to the main products of hydrogenation (Pd) of the unsaturated esters named: d-hydroxymethylenecamphor d-, m.p. 104°, $[\alpha]$ +51·35°, and $d\tilde{l}$ -camphorylpropionate, m.p. 101°, $[\alpha]$ +50·01°, d-, m.p. 140°, $[\alpha]$ +102·08°, and dl-camphorylideneacetate, m.p. 145°, $[\alpha]$ +75·98°, and d-camphorylacetate, an oil, $[\alpha]$ +85·44°; *l*-hydroxymethylenecamphor *d*camphorylpropionate, m.p. 51° , [α] -37.92° , d-camphorylideneacetate, an oil, $[\alpha]$ -12.76° , and d-camphorylacetate, m.p. 74°, $[\alpha]$ -22.16° ; dl-hydroxymethylenecamphor d-camphorylpropionate, 102°, $[\alpha] + 47.20$ °, and d-camphorylideneacetate, m.p. 146°, $[\alpha] + 87.70$ °; d-, m.p. 150°, $[\alpha] + 75.58$ °, l-, an oil, $[\alpha]$ +9.81°, and dl-camphorylearbinol d-cam-

phorylideneacetate, m.p. 142° , $[\alpha] + 66 \cdot 61^{\circ}$; d-camphorylcarbinol dl-camphorylideneacetate, m.p. 144° , $[\alpha] + 71 \cdot 43^{\circ}$. R. S. C.

Diterpenes. XXXVIII. Position of the ethylenic linking in d-pimaric acid. L. Ruzicka and L. STERNBACH (Helv. Chim. Acta, 1940, 23, 124— 131; cf. A., 1939, II, 220).—Reactions of Me dihydro-d-pimarate (I) render it probable that pimaric acid contains an ethylenic linking in position 7:8. $o\text{-CO}_2\text{H}\text{-}\text{C}_6\text{H}_4\text{-}\text{CO}_3\text{H}$ (II) and (I) in $\text{Et}_2\text{O}\text{-}\text{CHCl}_3$ give an oxide (III), converted by MgMeI (which adds to the CO₂Me and partly to the O-ring) in boiling Et₂O into a mixture, which with Se at 330-345° gives pimanthrene (IV) and 1:7:8-trimethylphenanthrene (V). HCl in dry Et₂O converts (III) into Me 8chloroisodihydro-d-pimarate, m.p. 122—125°, which by interaction with MgMeI (reaction with CO.Me and partly with Cl) and subsequent Se-dehydrogenation gives (IV) and (V). Similar reactions with the dibromide of (I) give 30% of (V). Me d-pimarate and (II) or BzO₂H react only slowly in Et₂O, but in CHCl₃ 1.7—1.8 O are absorbed in 3 days. A solid mono-oxide is obtained, but dehydration accompanies all its transformations.

Tripertenes. LII. Transformation of α-boswellic acid into β-amyrin. L. Ruzicka and W. Wirz. LIII. Conversion of hederagenin into a transformation product of α-boswellic acid. L. RUZICKA and A. MARXER (Helv. Chim. Acta, 1940, 23, 132—135, 144—152; ef. A., 1940, II, 18).—LII. Acetyl-α-boswellic acid and SOCl, at room temp. give the chloride, m.p. 195—196°, converted by H₂-Pd-BaSO₄ in PhMe into the aldehyde, m.p. 203-206° (vac.) after sintering (semicarbazone, m.p. 203-205°), the hydrazone, m.p. 207-209°, of which with NaOEt-EtOH at 200° gives β-amyrin. α-Boswellic acid (I) and CrO₃–AcOH at 55–60° give an $\alpha\beta$ -unsaturated diketone (II), C₂₉H₄₆O₂, m.p. 222–225°, [α]₀ +7·6° in CHCl₃ (absorption max. at 2520 A. (log ϵ 3·1)], also obtained from nor-β-amyrin (see below).

LIII. Diacetylhederagenin and hot SOCl₂ give the acid chloride, m.p. 174°, reduced (Rosenmund) to diacetylhederaldehyde, m.p. 108—109°, the semicarbazone, m.p. 210—212°, of which with NaOEtEtOH at 190—200° gives hederadiol, m.p. 259—261°, sublimes at 220°/0.01 mm., $[\alpha]_D$ +86.8° in CHCl₃ (dibenzoate, m.p. 186—188°, $[\alpha]_D$ +128° in CHCl₃; diacetate, an oil; CrO₃ gives a mixture), and nor- β -amyrin, C₂₉H₄₈O, m.p. 223—225°, $[\alpha]_D$ +118.2° in CHCl₃ (acetate, m.p. 198°, $[\alpha]_D$ +113.5° in CHCl₃), oxidised by CrO₃ to (II) (probably a mixture of isomerides), m.p. 218—220°, $[\alpha]$ +8.0° in CHCl₃, obtained also from (I). Interrelations of the triterpenes are briefly reviewed. R. S. C.

Triterpene group. VI. Oxidation of β -amyrin benzoate. New route to the thio-compound, $C_{30}H_{44}OS$. J. C. E. Simpson (J.C.S., 1940, 230—237).—The oxidation of β -amyrin benzoate (I) is shown to be considerably more complex than would appear from the work of Beynon et al. (A., 1938, II, 416) and in consequence cannot be regarded as comparable with oxidations of certain derivatives of β -boswellic acid, which give rise to single products in high yield (Simpson et al., ibid., 500). Hence the

criticism of Spring (Chem. and Ind., 1938, 1108) is no longer justifiable (cf. Ruzicka et al., A., 1939, II, 330). The experimental conditions for oxidation of (I), which lead to pure β -amyrenonyl benzoate (II), m.p. $261 \cdot 5 - 262 \cdot 5^{\circ}$, $[\alpha]_{\rm D}^{22} + 96^{\circ}$, appear to be highly crit. From the mother-liquors, there can be isolated a neutral residue, hydrolysed and acetylated to an acetate, $C_{32}H_{50}O_4$, m.p. $322-324^{\circ}$, $[\alpha]_{\rm D}^{18}-110^{\circ}$, which is hydrolysed (KOH–EtOH) to an alcohol, $C_{30}H_{48}O_3$, m.p. $284-285^{\circ}$; the acid fraction yields a compound, $C_{37}H_{50}O_4$, m.p. $293-294^{\circ}$, and a Me ester, m.p. $228-229^{\circ}$, $[\alpha]_{\rm D}^{24}+16\cdot7^{\circ}$, in greater amount.

β-Amyranonol and BzCl in C_5H_5N give β-amyranonyl benzoate (III), m.p. $260 \cdot 5 - 261 \cdot 5^\circ$, $[\alpha]_D^{22} + 7 \cdot 3^\circ$. Hydrolysis of dehydro-β-amyrenyl acetate with KOH–EtOH affords dehydro-β-amyrenol, m.p. $209 - 211^\circ$, which is benzoylated to the -amyrenyl benzoate (IV), m.p. $238 - 239^\circ$, $[\alpha]_D^{22} + 219^\circ$, and oxidised (CrO₃–AcOH) to β-amyradienone (V), m.p. $170 - 171^\circ$, $[\alpha]_D^{22} + 108^\circ$ [oxime, m.p. $268 \cdot 5 - 270^\circ$ (efferv.)]. S has no action on (II) and (III) but with (IV), the thio-compound (VI), $C_{30}H_{44}OS$, obtained from β-amyrin, can be isolated. It is shown, by a comparison of the properties of (V) with those of certain compounds derived from (VI), that the chromophoric group in (VI) and its derivatives cannot consist of a system of two conjugated double linkings. All rotations are in CHCl₃.

Lignin. XXVII. Fission of ether linkings with hydrogen sulphite and thiolacetic acid. Models for the chemistry of lignin. H. RICHTZEN-HAIN (Ber., 1939, **72**, [B], 2152—2160).—CH₂Ph guaiacyl ether is not affected by prolonged heating with SH·CH₂·CO₂H (I) and HCl or with aq. NaHSO₃ at 135°. With $\tilde{\rm H}_2{\rm SO}_3$ at 135° it affords ${\rm CH}_2{\rm Ph}\cdot{\rm OH}$ and guaiacol (II). p-Nitrobenzyl guaiacyl ether, m.p. 76°, from (II), p-NO₂·C₆H₄·CH₂Cl, and NaOMe in in MeOH, is converted by aq. NaHSO₃ (1.4% NaOH; 4% SO₂) at 135° into $p\text{-NO}_2\cdot\text{C}_6\text{H}_4\cdot\text{CH}_2\cdot\text{SO}_3\text{H}$ [β- $C_{10}H_7\cdot NH_2$ salt, m.p. 207—208° (decomp.)], small amounts of which with much unchanged material are obtained by the action of 4% SO₂ at 135° for 48 hr. p-Methoxybenzyl guaiacyl ether, m.p. 97°, is little affected by (I)-HCl at 100° for 9 hr.; with aq. NaHSO3 at 130° it gives Na anisylsulphonate [corresponding $\beta - C_{10}H_7 \cdot NH_2$ salt, m.p. 261° (decomp.)], also obtained with H₂SO₃. The most marked similarity with the mode of reaction of lignin is shown by phenylmethylcarbinyl guaiacyl ether, b.p. 128—130°/0·1 mm. (from o-OMe·C₆H₄·ONa and CHPhMeCl at 130°). After 24 hr. with aq. NaHSO₃ at 135° it is decomposed to the extent of ~33% into (II) and CHPhMe·SO₃H (β-C₁₀H₇·NH₂ salt, m.p. 198—200°). Fission occurs also with H₂SO₃. With (I) and HCl there is partial fission to phenylethyl-a-thiolacetic acid, identified by oxidation (KSO₄) to the corresponding sulphinacetic acid, m.p. 115-116°. With MeOH-HCl it yields phenylmethylcarbinyl Me ether, b.p. 80°/12 mm. This fission is entirely comparable with the formation of methanol-lignin. It is therefore established that those components of lignin which are not condensed to furan or pyran rings suffer fission with NaHSO₃, (I), or HCl-MeOH as previously assumed. oOMe·C₆H₄·ONa in C₆H₆ and cinnamyl bromide at 100° yield cinnamylguaiacol, m.p. 51-52° (acetate, m.p. 88°), with guaiacyl cinnamyl ether, m.p. 76-77°; the former is cyclised by prolonged boiling with anhyd. HCO₂H into 8-methoxyflavan (III), m.p. 130-132°. Attempted fission with (I) leaves flavan and (III) untouched whilst partial resinification unaccompanied by production of sulphonic acids is caused by NaHSO₃ or SO₂. Examination of flavanone shows that the presence of CO in a ring containing O facilitates fission since NaHSO₃ or SO₂ gives β-o-hydroxy-benzoyl-α-phenylethyl-α-sulphonic acid [Na, Ba, Pb, and β-C₁₀H₇·NH₂, m.p. 191-192° (decomp.), salts], which couples with diazonium salts. Fission does not take place with (I).

Celastrol. II. O. GISVOLD (J. Amer. Pharm. Assoc., 1940, 29, 12—14; cf. A., 1939, II, 484).—Re-examination of celastrol gives the formula $C_{22}H_{30}O_3$. One OH can be methylated by CH_2N_2 and the two remaining O appear to be present as an o-quinone.

Isomerisation of zeaxanthin and physalien. L. ZECHMEISTER, L. VON CHOLNOKY and A. POLGAR (Ber., 1939, 72, [B], 1678—1685).—Zeaxanthin, obtained from the berries of Lycium halimifolium, has m.p. 205° (block), $[\alpha]_{0}$ -40° to -42.5° in CHCl₃. If its freshly prepared solution in C₆H₆ is boiled for 30 min. under a reflux condenser or kept at room temp. with I for 30 min. $[\alpha]_{0}$ becomes positive owing to the formation of neozeaxanthin A, m.p. ~106° (corr.), $[\alpha]_c$ +113° in CHCl₃. Neozeaxanthin B appears sometimes dextro- and sometimes lavorotatory but the small val. of α_0 does not permit certain measurement. Neozeaxanthins A and B are so closely similar that they can only be distinguished in solution by the polarimeter; the spectroscope is useless. Their difference from natural zeaxanthin is established by marked spectroscopic and chromatographic differences; the latter are not observable in an Al₂O₃ column, which has a too powerful action. Dextrorotatory zeaxanthin preps. have never been observed but it is not yet possible to bring it finally into the steric series of the polyene alcohols. Physalien has $[\alpha]_{c}$ -45° in CHCl₃, -31° in C₆H₆. It is readily reversibly isomerised, thereby producing a single pigment, neophysalien, $[\alpha]_c$ —21° to —22° in CHCl₃, which could not be caused to crystallise. In the chromatogram it lies immediately below the natural material. It appears that the process of isomerisation can be elucidated only by physical methods. All carotenoids which have been investigated give isomerides of greater solubility, lower m.p., and more pronounced absorption in the region of shorter λ . In the column the epiphasic (or partly hypophasic) free polyenes, β- and α-carotene, lycopene, cryptoxanthin, physalien, natural and synthetic capsanthin and capsorubin dipalmitate, and carotenone give isomerides which are somewhat more feebly adsorbed than the natural product. The pronouncedly hypophasic carotenoids with at least two free OH [zeaxanthin, lutein (xanthophyll), taraxanthin, capsanthin, and capsorubin] are converted into pigments with much superior adsorptive power. All the phenomena do not appear explicable by the migration of double linkings and the assumption of cis-trans-isomerisation seems more promising.

Influence of acyl group in position 3 on reactions of chromones. II. Action of aluminium 7-benzoyloxy-3-acetyl-2-methylchromone. G. R. Kelkar and D. B. Limaye (Rasāyanam, 1939, 1, 183—185; cf. A., 1936, 854; 1937, II, 254).—7-Benzoyloxy-3-acetyl-2-methyl-chromone, m.p. 167°, and AlCl₃ at 160—170° give 7-hydroxy-3-aeetyl-2-methylchromone (Ac inhibits migration). 7-Benzoyloxy-2-methylchromone, Fries m.p. 125°, is transformed by AlCl₃ into 7-hydroxy-8(6)benzoyl-2-methylchromone, m.p. 205°. 7-Acetoxy- or 7-benzoyloxy-2: 3-dimethylchromone, m.p. 146°, and AlCl₃ afford 7-hydroxy-8-acetyl-, m.p. 215° (7-OMederivative, m.p. 130°) (converted by N-NaOH into 2:4-dihydroxy-3-acetylbenzoic acid), or -benzoyl-2:3-dimethylchromone, m.p. 208°, respectively.

Monohydroxycoumarins. H. Böhme (Ber., 1939, 72, [B], 2130—2133).—8-Methoxycoumarin is demethylated by AlBr, in boiling C_6H_6 to 8-hydroxycoumarin, m.p. 160°, from which it is re-formed by CH_2N_2 in Et_2O . 8-Acetoxycoumarin has m.p. 131°. 2:6:1-(OH) $_2C_6H_3$ ·CHO, NaOAc, and Ac $_2O$ at 150—160° and subsequently at 175—180° afford 5-acetoxycoumarin, m.p. 84°, hydrolysed by boiling 25% H_2SO_4 to 5-hydroxycoumarin, m.p. 229° (Me ether, m.p. 75—77° after softening at 70°).

Synthesis in the furocoumarin group. Angular and linear furocoumarins. VI. D. Limaye, R. H. Munje, G. S. Shenolikar, and S. S. TATWALKAR. VII. V. K. BHAGWAT and R. Y. Shahane (Rasāyanam, 1939, 1, 187—189, 190; cf. A., 1937, II, 258).—VI, VII. The following are described: 8-acetyl-, m.p. 200° (Et ester, m.p. 108°); 6-, m.p. 241° (Et ester, m.p. 163°), and 8-propionyl-, m.p. 208° (Et ester, m.p. 85°); o-, m.p. 206° (Et ester, m.p. 145°), m-, m.p. 190° (Et ester, m.p. 128°), and p-toluoyl-, m.p. 188° (Et ester, m.p. $1\overline{3}0^{\circ}$); 6-, m.p. 222—224° (Et ester, m.p. 164°), and 8-n-butyryl-, m.p. 160° (Et ester, m.p. 86°); 6-, m.p. 203° (Et ester, m.p. 149°), and 8-n-valeryl-7-carboxymethoxy-4-methylcoumarin, m.p. 136° (Et ester); 8-benzoyl-7carboxymethoxy-4-phenylcoumarin, m.p. 203° (Et ester, m.p. 122°). Derived from these are: 4'-phenyl-3methyl-, m.p. 153°, 3-ethyl-4'-methyl-, m.p. 137°, 3-o-, m.p. 165°, -m-, m.p. 190°, and -p-tolyl-4'-methyl-, m.p. 175°, 3-n-propyl-, m.p. 85°, and -butyl-4'-methyl-, m.p. 89°, and 3:4'-diphenyl-7':8'-furocoumarin, m.p. 154°; 3-ethyl-, m.p. 177°, -n-propyl-, m.p. 175°, and -butyl-4'-methyl-6': 7'-furocoumarin, m.p. 158°.

Synthesis in the coumarin-γ-pyrone group. III. Synthesis of 4:2'-dimethyl-8-ethyl-6:7-γ-and 4:4'-dimethyl-8-ethyl-6:7-α-pyronocoumarin. D. B. Limaye and (Miss) I. Ghate (Rasāyanam, 1939, 1, 169—176; cf. A., 1938, II, 250).—2-Ethylresorcinol and CH₂Ac·CO₂Et-H₂SO₄ give 4-methyl-8-ethylumbelliferone (I), m.p. 224° [acetate (II), m.p. 104°; benzoate, m.p. 147—149°]; its Me ether, m.p. 133°, and N-NaOH give 2-hydroxy-4-methoxy-3-ethyl-β-methylcinnamic acid, m.p. 104—105°

(decomp.), reconverted readily into the above ether. (II) and AlCl₃ at 160—165° afford 6-acetyl-4-methyl-8ethylumbelliferone (III), m.p. 166° (semicarbazone, m.p. >270°; acetate, m.p. 105°), hydrolysed by N-NaOH to 5-acetyl-2: 4-dihydroxy-3-ethyl- β -methylcinnamic acid (IV), m.p. 133° (decomp.) [H₂SO₄ gives (III)], and β -(5'-acetyl-2': 4'-dihydroxy-3'-ethylphenyl)propulene, m.p. 70° [also by heating (IV) at > m.p.]. (III) and NaOAc-Ac₂O at 160—170° give 3'-acetyl-4:2'-dimethyl-8-ethyl- $6:7-\gamma$ - (V), m.p. 225° (no CHPh: derivative is formed), and 4:4'-dimethyl-8ethyl-6: 7-α-pyronocoumarin (VI), m.p. 285°. (V) and 4-methyl-8-ethylumbelliferone-6-carbgive oxylic acid (VII), m.p. 275° (decomp.) [decarboxylated to (I)], 4:2'-dimethyl-8-ethyl-6:7- γ -pyronocoumarin, m.p. 208° (VIII) (CHPh: derivative, m.p. 174—175°) [also from (IX) and H₂SO₄], and β-6-(7-hydroxy-2methyl-8-ethylbenzo-γ-pyrono)-β-methylacrylic acid (IX), m.p. 205° (decomp.) (+H₂O or anhyd.) [also from (VIII) and NaOH]. (IX) is hydrolysed to (IV). (IX) at 210° gives β-6-(7-hydroxy-2-methyl-8-ethylbenzo-γpyrono)propylene, m.p. 144-146° (Me ether, m.p. (VI) and N-NaOH give β-6-(7-hydroxy-4methyl-8-ethylbenzo-α-pyrono)-β-methylacrylic acid, m.p. 171° [gives (VI) with H₂SO₄], 2-ethylresorcinol, and a compound, m.p. 220—225°. (VII) and aq. NaOH give a substance, m.p. 130° (decomp.), then solidified and m.p. 235° (decomp.), decarboxylated to β -(2: 4-dihydroxy-3-ethyl-5-carboxyphenyl)propylene, m.p. 241- 242° (decomp.). A. T. P.

Natural coumarins. L. Constitution of nodakenin from Peucedanum decursivum, Maxim. E. Späth and E. Tyray (Ber., 1939, 72, [B], 2089—2092; cf. Arima, A., 1927, 599; Späth and Kainrath, A., 1936, 1387).—Cautious oxidation of nodakenetin (I) yields COMe₂, thus establishing the constitution CH:CH·CH·CH:CH·CH₂>CH·CMe₂·OH. Nodakenin CO-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CH:CH-O-O-CH·CMe₂·OH. Nodakenin detara acetate (II) has m.p. 195—196°. (I) does not react with acetobromoglucose in Et₂O containing Ag₂CO₃ or in org. bases. (I), β-d-glucose pentaacetate, and a trace of p-C₆H₄Me·SO₃H at 125—130° yield a small amount of (II), hydrolysed to nodakenin, m.p. 221·5—222° (vac.), [a]₀¹³ +57·7° in H₂O.

H. W.

Natural coumarins. LI. Synthesis of xanthyletin. E. Späth and R. Hillel (Ber., 1939, 72, [B], 2093—2094).—Repetition of previous work (A., 1939, II, 335) by an improved method shows that xanthyletin is formed in minor amount (with seselin) by the action of umbelliferone on β-methyl-Δγ-butin-β-ol.

H. W. Constitution of rottlerin. J. N. RAY, K. S. NARANG, and B. S. Roy (Current Sci., 1939, 8, 558).—Rottlerin Me ether (A., 1938, II, 66) has α +5·75° (2% in CHCl₃). An as-C atom is not present in the formula of McGookin et al. (A., 1939, II, 559). It is maintained, in opposition to these authors, that an acidic substance is formed in the conversion of tetrahydrorottlerin into octahydrorottlerone. W. O. K.

Valency angle studies. V. Stereochemistry of the sulphone group. A. LÜTTRINGHAUS and K. BUCHHOLZ (Ber., 1939, 72, [B], 2057—2062; cf. A., 1939, 1, 337).—X-Ray observations have assigned the

val. 112.4±1.5° to the angle at the S atom of the strain-free ether $S < \stackrel{C_6H_4 \cdot O}{C_6H_4 \cdot O} > [CH_2]_{10}$ and therefrom comparative ring-closure experiments show the angle $110\pm3^{\circ}$ for CH₂ in CH₂(C₆H₄·OH)₂. A similar comparative determination from the yield curves is impossible for SO₂ by reason of the differing rate of etherification of OH in the sulphone. It is here necessary to estimate the angle from the minimal bridge length necessary for successful ring-closure. Since success is reached with (CH₂)₅ the angle at SO₂ is deduced geometrically to be ~75°. The tetrahedral arrangement of the four substituents of SO, is therefore greatly distorted. The validity of the calculation is discussed and the highest possible val. is considered to be 90°. Gradual addition of 3.32n-KOH-EtOH to a boiling solution of Br·[CH₂]₁₀·Br and $SO_2(C_6H_4 \cdot OH - p)_2$ in EtOH affords $4:4' \cdot dihydroxy$ diphenyl sulphone κ -bromodecyl ether (I), which is noncryst. and cannot be distilled without decomp.; it is purified by treatment with Claisen alkali. ζ -bromohexyl, ε -bromoamyl, and γ -bromopropyl (II) ethers are obtained analogously. Gradual addition of (I) in amyl alcohol to a boiling suspension of K₂CO₃ in the same solvent leads to 4:4'-dihydroxydiphenyl sulphone decamethylene ether, $SO_2 < \frac{C_6H_4\cdot O}{C_6H_4\cdot O} > [CH_2]_{10}$, m.p. 144.5°, in 24.4% yield. Analogously obtained are the hexamethylene ether, m.p. 155° (yield 10%), and pentamethylene ether, m.p. 202° (yield 5.7%). Similar experiments with (II) give polymerised products and no evidence of intramol. ring-closure.

Production of glutamine by amination of pyrrolidonecarboxylic acid. N. LICHTENSTEIN (Enzymologia, 1939, 7, 383).—Pyrrolidonecarboxylic acid (5 g.), obtained by heating glutamic acid for ~30 min. at 180—185°, yields 0.4 g. of glutamine when left for 4 days in 10 parts of 25% aq. NH₃.

W. McC. Pyrrolines. A. Sonn [with E. Neumann and E. Brehmer] (Ber., 1939, 72, [B], 2150—2151).— Reduction of Ph γ -nitroisobutyl ketone (obtained by the condensation of crotonyl bromide and MeNO₂) with Fe powder in AcOH yields 2-phenyl-4-methyl- Δ^2 -pyrroline, b.p. 124°/12 mm. (picrate, m.p. 192°), also obtained by the action of Zn dust and HCl on 2-phenyl-4-methylpyrrole. H. W.

Synthesis of 1-methyl-2:6-di(dicarbethoxymethylene)piperidine. Y. F. Chi, C. C. Kuan, C. Liu, and G. C. Lu (J. Chem. Eng. China, 1938, 5, 65—66).—Et₂ βζ-diketo-αη-dicarbethoxyazelate with NH₂Me in EtOH at 140—150° yields 1-methyl-2:6-di(dicarbethoxymethylene)piperidine, b.p. 139—142°/I mm., and a N-free compound, b.p. 82—85°/1 mm.
F. R. G.

Complex compounds of platinum and complex amines.—See A., 1940, I, 172.

Deutero-2-pyridone.—See A., 1940, III, 237.

Separation of β -picoline, γ -picoline, and 2:6-lutidine from their mixture. A. G. Lidstone (J.C.S., 1940, 241—243).—The bases are converted into oxalates and these are crystallised from EtOH. γ -Picoline oxalate, m.p. 137—138°, is readily obtained

(base: acid, 4:5); β -picoline oxalate, m.p. 119— 121° , separates somewhat less readily (base: acid, 2:3). 2:6-Lutidine remains in the original mother-liquor and is separated as the mercurichloride from dil. HCl. F. R. S.

Nicotinic acid and its amide. V. H. MIKKELSEN (Arch. Pharm. Chemi, 1939, No. 18, 20 pp.).—Published preps. of nicotinamide (I) are reviewed and improvements in detail given. (I) has m.p. 130—132° (corr.), lower vals. being due to the presence of nicotinic acid (up to 4% in commercial preps.), which can be removed by treating the solution in COMe2 with Ca silicate. The solubilities of (I) in H2O, EtOH, Et2O, glycerol, COMe2, and C6H6 have been determined. (I) is readily hydrolysed by 2N- but not by 0·1N-HCl or 0·001N-NaOH at 120° and solutions may thus be sterilised safely. (I) has $K_A = 10^{-12.9}$ and $K_B = 10^{-10.9}$. M. H. M. A.

Pyridine sulphonamides.—See B., 1940, 244.

Synthesis of adermin. S. Morii and K. Makino (Enzymologia, 1939, 7, 385—386; cf. Kuhn et al., A., 1939, II, 487).—OMe·CH₂·CO₂Et and COMe₂ in presence of Na give OMe·CH₂·CO·CH₂·COMe, which with CN·CH₂·CO·NH₂ in presence of piperidine yields 2-hydroxy-3-cyano-6-methyl-4-methoxymethylpyridine, m.p. 226°. This, with HNO₃ in Ac₂O, yields the corresponding 5-NO2-compound, m.p. 210°, which with PCl₅ in PhCl gives 2-chloro-5-nitro-3-cyano-6methyl-4-methoxymethylpyridine (I), m.p. 70-73°. (I) with H₂-PtO₂ or H₂-Pd-C gives the hydrochloride 5-amino-6-methyl-3-aminomethyl-4-methoxymethylpyridine, m.p. 147°, which is converted by NaNO₂ into adermin 4-Me ether. The 4-Et ether, m.p. 134°, is obtained by way of 2-hydroxy-, m.p. 210°, 5-nitro-2-hydroxy-, m.p. 157°, 2-chloro-5-nitro-, m.p. 45°, and 2-chloro-5-amino-, m.p. 146°, -3-cyano-6-methyl-4ethoxymethylpyridine, and the hydrochloride, m.p. 126°, of 5-amino-6-methyl-3-aminomethyl-4-ethoxymethylpyridine (picrate, m.p. 188°). No preparative details are given.

isoQuinoline series. IV. Syntheses of benzoisoquinolones. Preparation of isoquinolines from naphthalene derivatives. B. B. Dey and S. Rajagopalan (Arch. Pharm., 1939, 277, 359—374; cf. A., 1939, II, 388).—2:1-OMe·C₁₀H₆·CH:N·OH and 4·5% Na-Hg in EtOH give β-C₁₀H₇·OMe and 2-methoxy-1-naphthylmethylamine, NH₂·CH₂Ar, sinters at 40°, m.p. 41—42° [Ac (I), m.p. 172°, and Bz derivative, m.p. 155°; picrate, m.p. 215° (decomp.)]. β-C₁₀H₇·OH and (CH₂)₆N₄ in AcOH at 100° give 2:1-OH·C₁₀H₆·CHO and 2-hydroxy-1-naphthylmethylamine, NH₂·CH₂Ar, m.p. 135—138° {N-Ac, m.p. 160° [Me ether = (I)], ON-Ac₂, m.p. 171—172°, and -Bz₂ derivative, m.p. 212°}. Prep. of 4-keto-7-methoxy-1-phenyl-3:4-dihydro-5:6-benzoisoquinoline from 1:4-OMe·C₁₀H₆·CO·CH₂·NHBz, and of 4-keto-1-methyl-3:4-dihydro-5:6- and -7:8-benzoisoquinoline from α-and β-C₁₀H₇·CO·CH₂·NHAc, respectively, by POCl₃ in

xylene is announced without details. Known methods

of preparing benzoisoquinolines are reviewed. Other

methods failed.

R. S. C.

Nitrogen ring derivatives of anthraquinone etc.—See B., 1940, 119, 120.

5-Alkyl-5-α-sec.-butoxyethylhydantoins. R. J. Speer and H. R. Henze (J. Amer. Chem. Soc., 1939, **61**, 3376—3377).—COR·CHMe·O·CHMeEt, KCN, and (NH₄)₂CO₃ in 50% EtOH at 55—60° give 22—41% of 5-methyl-, m.p. 203—204°, 5-ethyl-, m.p. 190°, 5-n-, m.p. 205—206°, and 5-iso-propyl-, m.p. 196—197°, 5-n-, m.p. 204—205°, 5-iso-, m.p. 192°, and 5-sec.-butyl-, m.p. 189—190°, 5-n-, m.p. 178°, and 5-iso-amyl-, m.p. 177°, -5-α-sec.-butoxyethylhydantoin. M.p. are corr. R. S. C.

Pyridine and piperazine derivatives of sulphanilamide. W. O. KERMACK and W. TEBRICH 1940,202—206).—2-Aminopyridine $3:4:1-NO_2\cdot C_6H_3(NHAc)\cdot SO_2Cl$ in dry C_5H_5N give 2 - (3'-nitro-4'-acetamidobenzene sulphonamido) pyridine,m.p. 270°, hydrolysed to the $-4'-NH_2$ -compound, m.p. 232°, which with NaOH forms the -4'-OH-derivative, m.p. 234°; this compound is reduced (Na₂S₂O₄) to the 2-(3'-NH₂-derivative, m.p. 211°. Piperazine and $p\text{-NHAc}\cdot C_6H_4\cdot SO_2Cl$ (I) afford 1:4-di-(p-acetamidobenzenesulphonyl)piperazine, m.p. 324°, hydrolysed (KOH) to the p- NH_2 -compound, m.p. 331—332°. Et piperazine-1-carboxylate and (I) yield Et 4-(pacetamidobenzenesulphonyl)piperazine - 1 - carboxylate, m.p. 132°, hydrolysed (KOH) to the p-NH₂-compound (II), m.p. 170°, and further hydrolysed (KOH) to 1-p-aminobenzenesulphonylpiperazine, m.p. 204°. dry C₅H₅N (I) and (II) give Et 4-(p-acetamidobenzenesulphonamidobenzene sulphonyl) piperazine - 1 - carboxyl ate, m.p. 194°.

1-Phenyl-3-methyl-4-acetylvinyl-5-pyrazolone and 5-acetylvinyl-2-thio-2:4:6-triketohexahydropyrimidine.—See B., 1940, 194.

Pyrimidines. Molecular rearrangement of 2:6-dimethoxy-4-methyl-5-n-propylpyrimidine. Y. F. CHI, S. S. WEI, and M. S. LIANG (J. Amer. Chem. Soc., 1939, 61, 3377—3379).—4-Methyl-5-npropylthiouracil in CH₂Cl·CO₂H-H₂O gives 4-methyl-5-n-propyluracil (I), m.p. 246—247°, which with POCl₃ at 120—130° gives 2:6-dichloro-4-methyl-5-n-propyluracil-line 2:20° dichloro-4-methyl-5-n-propyluracil-line 2:20° dichloro-2:20° dichloro-2:20° dichloro-2:20° dichloro-2:20° dichloro-2:2 propylpyrimidine, m.p. 31-33°, b.p. 149°/20.8 mm., converted by NaOMe-MeOH into 2:6-dimethoxy-4methyl-5-n-propylpyrimidine (II), b.p. 135—140°/ 19·5 mm. With NaOEt-Me₂SO₄-EtOH or Me₂SO₄aq. NaOH, (I) gives 1:4-dimethyl-5-n-propyluracil, m.p. 193·5—194°. At 260—280° (II) gives 1:3:4trimethyl-5-n-propyluracil, m.p. 74-75°, but with MeI at 50—60° rearrangement stops half-way, yielding 2-keto-6-methoxy-3: 4-dimethyl-5-n-propylpyrimidine (III), cryst., b.p. 180—182°/4·5 mm., hydrolysed by hot, dil. HCl to 3:4-dimethyl-5-n-propyluracil, m.p. 148—150°, also obtained from (III) at 330— 350° . 2:6-Diethoxy-4-methyl-5-n-propylpyrimidine, b.p. 145—148°/18 mm., is prepared.

1:1'-Dithiol-3:3'-bisisoindolenylidene.—See B., 1940, 192.

Reduction of 1:2:3-benztriazole and its 1-methyl derivatives by sodium in liquid ammonia. N. O. CAPPEL and W. C. FERNELIUS (J. Org. Chem., 1940, 5, 40—47).—1:2:3-Benztriazole (I) and Na in liquid NH₃ form equimol. amounts of

the Na salts (II) of (I) and its H_2 -derivative (III). Active H $(NH_4^+ + e^-)$ reduces the former but not the latter salts to $o \cdot C_6H_4(NH_2)_2$ (IV) $[Bz_2]$ derivative, m.p. $152.8-153.8^{\circ}$; $(SO_2Ph)_2$ compound, m.p. 156-157°]. A solution of Na in liquid NH3 does not react with 1- (V) or 2- (VI) -methylbenztriazole, with (II), or with (III). Active H (NH₄⁺ + e⁻) reduces (VI) to (IV) and (V) to o-NH₂·C₆H₄·NHMe. H₂ generated by the action of K on liquid NH₃ in presence of Fe is relatively ineffective in reducing the K derivative of (I) to (IV). It has been shown previously that organo-metallic compounds are first formed in liquid NH₃ and are solvolysed, giving rise to the hydrogenated product. It is now evident that active H may also play an important rôle and that the effects of the two mechanisms may be separately evaluated, at least for the benztriazoles. The question is one of relative ease of addition of electrons and of H atoms. The triazole nucleus is stable towards electrons but is broken down by H atoms. If it is required to obtain only the reduction product due to the electron and not to active H and an initial excess of Na is desirable for the sake of rapidity and completeness, the excess of metal may be destroyed by $NaNO_3$ (probable reaction, $NaNO_3 + 3Na + NH_3 \rightarrow$ Na₂NO₂ + NaOH + NaNO₂) provided that the Na₂NO₂ is decomposed by NH₄ salts before evaporation of NH₃. Complications due to the use of H₂O, NH₄ salts, or ammonolysis catalysts are thus avoided.

Induced oxidation in the autoxidation of xanthine.—See A., 1940, I, 168.

LXXXIX. Chlorophyll. Vinyl-, hydroxyethyl-, and oxo-phylloporphyrin. H. FISCHER and S. F. MacDonald. XC. 2-α-Hydroxymesoisochlorin e_4 dimethyl ester and vinylisochloroporphyrin e₄. H. Fischer and J. M. Ortiz-Velez. XCI. iso- and neo-purpurins. H. FISCHER and M. STRELL (Annalen, 1939, 540, 211—223, 224—232, 232—249).—LXXXIX. Short treatment of chlorin e (I) with boiling quinoline in N₂ gives phyllochlorin (II) [identical with the pyrochlorin e of Conant et al. (A., 1931, 368)], vinylphylloporphyrin [1 : 3 : 5 : 8 : γ pentamethyl - 4 - ethyl - 7 - β - carboxyethyl - 2 - vinyl porphin] (III) (Me ester, m.p. 238°), and phylloporphyrin (IV); Conant's method of decarboxylation affords (II) and (III). Chloroporphyrin e_3 (A., 1930, 482) [from (I) and boiling HCO2H] and pyrochloroporphyrin (Conant) are mixtures of (III) and (IV). Reduction (H₂, Pd, COMe₂) of (III) gives (IV). Conversion of CH:CH₂ into COMe occurs when (II) (also undergoes dehydrogenation at $C_{(7)}$ and $C_{(8)}$) or (III) (as Me esters) are treated with air in AcOH-HI for 2—3 weeks; subsequent treatment with CH_2N_2 affords oxophylloporphyrin Me ester (V), m.p. 257° (272° after Kofler-Hilbck) [Cu salt, m.p. 278° (corr.); oxime, m.p. 290° (corr.; decomp.)], reduced (boiling conc. EtOH-KOH; followed by $\mathrm{CH_2N_2}$) to 2- α -hydroxyethyl-2-de-ethylphylloporphyrin Me ester (VI), m.p. 209-210°, which is oxidised (KMnO₄, C_5H_5N) to (V). When a solution of (VI) in AcOH is evaporated to dryness and the residue kept at 100° (bath) for several hr. some (III) is produced; AcOH-HBr (1 week) followed by aq. NaOAc converts (III) (as ester) into (VI). The change (VI) \Rightarrow (V) can also be effected with AcOH-HI.

XC. isoChlorin e₄ Me₂ ester (I) (hæmin) (ef. A., 1935, 1382) adds HBr (in AcOH) to the CH:CH₂; subsequent hydrolysis (15% HCl at room temp.) and esterification (CH₂N₂) gives 2-α-hydroxymesoisochlorin e₄ Me₂ ester, m.p. 170° [at 180°/10 min. in a high vac. affords (I)], oxidised (KMnO₄, C₅H₅N) to 2-acetylisochlorin Me₂ ester, m.p. 243°. Vinylisochloroporphyrin e₄ Me₂ ester, m.p. 224° (hæmin, m.p. 278°; Cu salt, m.p. 221°), is obtained from (I) and Fe powder in 80% HCO₂H at ~100°. A little pyrophæophorbide a results from isochlorin e₄ and P₂O₅ + sand at 100° (bath). Mesoisochlorin e₄ Me₂ ester (hæmin, m.p. 223°; Cu salt, m.p. 125°) and Br-AcOH-CHCl₃ followed by COMe₂ give a compound, C₃₅H₄₁O₄N₄Br₂, m.p. 171° (Cu salt, m.p. 133°).

XCI. Dihydroxychlorin e_6 (cf. A., 1937, II. 470) with O_2 in boiling C_5H_5N gives the non-cryst dihydroxypurpurin 5 (I) and dihydroxy- γ -hydroxymethylrhodochlorin lactone, m.p. 180° (cf. loc. cit.). Application of the neopurpurin reaction (A) (A., 1939, II, 288) [short treatment with cold PrOH-KOH in $Et_2O-C_5H_5N$ followed by re-esterification (CH_2N_2)] to (I) (as Me_2 ester) affords the dextrorotatory dihydroxyneopurpurin 4, m.p. 191°. Neopurpurin 4 Me_2 ester (II) (Cu salt, m.p. 245°) is reduced (H_2 , Pd, dioxan) to mesoneopurpurin 4 Me_2 ester, m.p. 202°, also obtained (A) from mesopurpurin 5 Me_2 ester. Purpurin 5 Me_2 ester (III) in C_5H_5N with MeOH-Ba(OH)₂ gives the unstable chlorin 5, $C_{33}H_{34}O_5N_4$ (IV)

(B, R = H), m.p. $>300^{\circ}$ (cf. A., 1939, II, 287), which with $\rm Et_2O-CH_2N_2$ affords (III) and with AcOH-HI yields chloroporphyrin e_5 lactone (V); (IV) does not give (A). Short treatment (1 min.) of (III)with cold 5% MeOH-KOH gives isopurpurin 5 Me2 ester (VI) (C, R = H), m.p. 210° , converted by warm MeOH-KOH into (II) (free acid) and (IV), by AcOH-HI into (V), and unaffected by O2 in C5H5N; (VI) is considered to be an intermediate in the prep. (A) of (II) from (III). Successive treatment of (VI) with boiling 20% MeOH-KOH (1—2 min.) and $\mathrm{CH_2N_2}$ affords 2-vinylchloroporphyrin e_5 Me ester, m.p. $> 300^{\circ}$, and 2-vinylrhodoporphyrin, whilst reduction (H₂, Pd, dioxan) gives mesoisopurpurin 5 Me₂ ester, m.p. 183°. Dihydroxyisopurpurin 5 is obtained [as for (VI)] from (I) (Me₂ ester), whilst purpurin 7 Me₃ ester similarly affords (after esterification) isopurpurin 7 Me_3 ester (C, R = CO_2Me), m.p. 270°, converted (A) into an unstable chlorin 7 (B, $R = CO_2H$) and by AcOH-HI into phæoporphyrin a_7 Me₂ ester. The OH of (B) or (C) could not be acetylated or benzoylated. 10-Acetoxymethylphæophorbide a undergoes methanolysis with anhyd. Na₂CO₃ in MeOH-C₅H₅N to (probably) rhodochlorin Me ester; with MeOH- $\mathrm{CH_2N_2}$ some chlorin e_7 lactone may be formed.

H. B. Structural interpretation of the acidity of groups associated with the hæms of hæmoglobin and derivatives.—See A., 1940, III, 343.

Phthalocyanine sulphochloride.—See B., 1940, 122.

Formation of "skatole-red" from normal human urine.—See A., 1940, III, 224.

isoOxazole group. VIII. Sulphonic derivatives. IX. isoOxazolesulphonic acids. A. QUILICO and R. JUSTONI (Gazzetta, 1940, 70, 3—11, 11—18).—VIII. 5- (I) (87%) and 3-methylisooxazole (II) (13%) with CISO₃H at 100° for 24 hr. give some 5-methylisooxazole-4-sulphonyl chloride (III), m.p. 23°, stable to cold H₂O, and, after treatment with PbCO₃, (III) and the Pb salt of the -4-sulphonic acid [Na (IV), Ca, and Ba salts; anilide (V), m.p. 64°]. (II) is recovered unchanged, but with CISO₃H at 120—125° gives 3-methylisooxazole-4-sulphonyl chloride, an oil, stable to H₂O, and the -4-sulphonic acid [Na salt (+2H₂O) (VI); Ca and Pb salts; anilide, m.p. 62·5°]. Reference is made to products from 3:5-dimethylisooxazole (VII) (see below).

IX. With 30% NaOH, (IV) gives NH₃ and Na₂ α-sulphonylacetoacetate (+H₂O), hydrolysed by 20% HCl and BaCl₂ to BaSO₄, CO₂, and COMe₂. With 10% KOH, followed by diazotised p-NO₂·C₆H₄·NH₂, (V) gives p-NO₂·C₆H₄·N₂·CHAc·CN. When boiled with excess of NH₂Ph, (III) gives β-anilo-α-(anilido-sulphonyl)-n-butyronitrile, m.p. 159—160°. With 30% NaOH, (VI) gives SO₃Na·CH₂·CO₂Na, NaOAc, and NH₃. (VII) is sulphonated to 3:5-dimethyliso-oxazole-4-sulphonyl chloride, m.p. 34°, and to the -4-sulphonic acid, m.p. ~50° [Na salt (+H₂O); amide, m.p. 166—167°; anilide, m.p. 122°].

Chalkones: production of isooxazoles from some chalkone derivatives. R. B. Shenoi, R. C. Shah, and T. S. Wheeler (J.C.S., 1940, 247—251).— The action of NH₂OH in presence of alkali on a chalkone dibromide R·CO·CHBr·CHBrR' provides an unambiguous synthesis of the resulting isooxazole, $CR \leqslant_{N-O}^{CH:CR'}$ (I), and the reaction can therefore be employed to determine which of the two possible isooxazoles, (I) or $CR \ll_{O-N}^{CH \cdot CR'}$ (II), is obtained from the related dibenzoylmethane, R·CO·CH₂·CO·R' (III), and NH₂OH. No simple relation can be traced between the substituents in (III) and the structure of the preferred isooxazole. Examples of (III) which give type (I): $R = p \cdot C_6 H_4$ OMe, R' = Ph; R = Ph, R' = $\begin{array}{lll} \text{Sype}(1): & \text{R} - p \cdot C_6 H_4 \text{ One, } R - 2 \Pi, & \text{R} - 2 \Pi, \\ 3: & \text{4-CH}_2 O_2 \cdot C_6 H_2 \text{Br} & (6); & \text{R} = p \cdot C_6 H_4 \text{Me, } R' = P \text{h}; \\ \text{R} = p \cdot C_6 H_4 \text{Me, } R' = p \cdot C_6 H_4 \cdot \text{OMe}; & \text{R} = o \cdot C_6 H_4 \cdot \text{OH}, \\ R' = \text{Ph}; & \text{R} = \text{Ph, } R_2 = 3: 4 \cdot \text{CH}_2 O_2 \cdot C_6 H_3; & \text{R} = p \cdot C_6 H_4 \text{Me, } R' = 3: 4 \cdot \text{CH}_2 O_2 \cdot C_6 H_3; & \text{R} = p \cdot C_6 H_1 \text{Me, } R' = 3: 4 \cdot \text{CH}_2 O_2 \cdot C_6 H_3; & \text{R} = p \cdot C_6 H_1 \text{Me, } R' = 3: 4 \cdot \text{CH}_2 O_2 \cdot C_6 H_3; & \text{R} = p \cdot C_6 H_1 \text{Me, } R' = 3: 4 \cdot \text{CH}_2 O_2 \cdot C_6 H_3; & \text{R} = p \cdot C_6 H_1 \text{Me, } R' = R' = P \text{h}. \end{array}$ CH_2O_2 $C_6H_2Br(6)$; R = Me, R' = Ph. Examples of (III) which give type (II): R = Ph, R' = p- C_6H_4 -OMe; R = Ph, R' = p- C_6H_4 Me; $R = \beta$ - $C_{10}H_7$, R' = Ph; $R = p \cdot C_6 H_4 \cdot OMe$, $R' = p \cdot C_6 H_4 Me$; $R' = p \cdot C_6 H_4 Me$; $R' = p \cdot C_6 H_4 Me$

p-C₆H₄Ph, R' = Ph; R = p-C₆H₄·CH:CH, R' = Ph; R = Ph, $R' = p \cdot C_6H_4 \cdot NO_2$; R = Ph, R' = Me. The following substances are new: p-anisyl p-methylstyryl, m.p. 126°, and β-naphthyl styryl ketone, m.p. 106° o-hydroxyphenyl αβ-dibromo-β-phenylethyl, m.p. 192°, p-anisyl αβ-dibromo-β-p-tolylethyl, m.p. 169°, p-anisyl α-bromo-p-methylstyryl, m.p. 129°, β-naphthyl αβ-dibromo-β-phenylethyl, m.p. 173°, and β-naphthyl α-bromostyryl ketone, m.p. 116°; p-anisoyl-p-toluoyl-, m.p. 104°, and benzoyl-β-naphthoyl-methane, m.p. 99°; 3-p-anisyl-5-p-tolyl-, m.p. 148°, 5-p-anisyl-3-p-tolyl-, m.p. 130°, 5-phenyl-3-o-hydroxyphenyl-, m.p. 231°, 3-phenyl-5-(3': 4'-methylenedioxyphenyl)-, m.p. 3-phenyl-5-(6'-bromo-3': 4'-methylenedioxy-130°. phenyl)-, m.p. 157° , 5-phenyl-3-(6'-bromo-3': 4'-methylenedioxyphenyl)-, m.p. 179°, 3-phenyl-5-β-naphthyl-, m.p. 160°, and 5-phenyl-3-β-naphthyl-isooxazole, m.p. 152°.

Analogues of ephedrine and adrenaline containing the morpholine nucleus and their esters. N. RUBIN and A. R. DAY (J. Org. Chem., 1940, 5, 54-60).—Amended instructions are given for prep. of CH₂BzBr, CHBzMeBr. OH·C6H4·CO·CH2Cl and $\bar{}$ from PhOMe $(OH)_2C_6H_3\cdot CO\cdot CH_2Cl$ from $o\cdot C_6H_4(OH)_2$. An excess of morpholine (I) and CH2Ph CH2Br give morpholine hydrobromide and, after treatment with HCl, 4-βphenylethylmorpholine hydrochloride, m.p. ω-Morpholinoacetophenone hydrochloride (II), m.p. 222-223° (corr.; decomp.), is obtained sinilarly or from equiv. amounts of (I) and CH₂BzBr in boiling EtOH containing a slight excess of anhyd. K₂CO₃. α-Morpholinopropiophenone hydrochloride, m.p. 224° (corr.; decomp.), p-hydroxy-ω-morpholino-acetophenone, m.p. 201—201·7° (corr.) [hydrochloride, m.p. 242—243° (corr.; decomp.)], and 3:4-dihydroxyω-morpholinoacetophenone, m.p. 207° (corr.; decomp.) [hydrochloride, decomp. 224—225° (corr.)], are described. Reduction (10% Pd-C in EtOH) of the requisite ketone affords the following: β-morpholino-αphenylethanol, m.p. 80·9—81·3° (corr.) [hydrochloride (III), m.p. 188—188·7° (corr.)]; β-morpholino-αphenylpropanol, m.p. 73-73.5° (corr.) [hydrochloride (IV), m.p. 235° (corr.)]; β-morpholino-α-p-hydroxyphenylethanol hydrochloride, m.p. 178° (corr.; decomp.); β-morpholino-α-3: 4-dîhydroxyphenylethanol hydrochloride, decomp. 250° (corr.). The benzoate, m.p. 173·5—175° (corr.), and *cinnamate*, m.p. 220— 221° (corr.), of (III) and the benzoate, m.p. 210-211° (corr.), of (IV) are described. (II), KCN, and (NH₄)₂CO₃ in 50% EtOH at 55-65° afford 5-phenyl-5morpholinomethylhydantoin, m.p. 204—204·5° (corr.) [hyrochloride, m.p. 206° (corr.; decomp.)]. The other ketones do not yield hydantoins by this method.

Oxazines.—See B., 1940, 30.

Ethyl a-keto- δ -2-benzoxazolyl- Δ^{γ} -pentenoate. W. DOELLER (Ber., 1939, 72, [B], 2148—2150).— Gradual addition of crotonyl chloride to o-NH₂·C₆H₄·OH in abs. Et₂O at room temp. gives o-crotonamidophenol, m.p. 133—135°, transformed by distillation with P₂O₅ into 2-methyl- (I), m.p. 68—70°, and 2- Δ^{α} -propenyl- (II), b.p. 121—123°/vac., -benzoxazole. (II) is obtained more simply and in

better yield by heating o-NH₂·C₆H₄·OH with crotonic anhydride at 150° and subsequent distillation under atm. pressure. (II) condenses readily with $\text{Et}_2\text{C}_2\text{O}_4$ in presence of K-Et₂O-EtOH at 0° to Et α -keto- δ -2-benzoxazolyl- Δ^{γ} -pentenoate, m.p. 146— 148° . It follows therefore that Me when separated from the heterocyclic nucleus by 'CH:CH· has the same activity as in (I).

Structural chemistry. I. The Ni" specific group. H. Erlenmeyer and H. Ueberwasser (Helv. Chim. Acta, 1940, 23, 197—206).— CH₂Br·CO·CMe:N·OH with CS(NH₂), in hot COMe, gives 2-amino-4-thiazolyl Me ketoxime, m.p. 194°, and with HCS NH₂ in Et₂O-COMe₂ gives 4-thiazolyl Me ketoxime (I), m.p. 153—154°, hydrolysed by NaHSO₃-AcOH to 4-acetylthiazole, m.p. 56°. Bromination of COPh COMe gives an oil, which with HCS·NH₂ in Et₂O yields 4-benzoylthiazole, m.p. 49.5°, the oxime of which exists in forms (II), m.p. 104—105° and (III) 174—175°. COMe·CPh:N·OH gives a Br-derivative, m.p. 143°, converted by HCS NH₂ into (III). Ni does not form a complex with (I), (II), or (III), for which failure an electronic explanation is offered.

Benzthiazyl sulphides.—See B., 1940, 30.

Benzthiazyl alkyl sulphides.—See B., 1940, 119.

Cyanine types.—See B., 1940, 121.

2-Methyl-1-benzthiazolonemethide and 1:3:3-trimethyl-2-indolinonemethide usually designated "Fischer's base." O. Mumm, H. Hinz, and J. Diederichsen (Ber., 1939, 72, [B], 2107—2120).—1:3:3-Trimethyl-2-indolinonemethide (I),

 $\rm C_6H_4 < \frac{\rm CMe_2}{\rm NMe} > \rm C:CH_2$, b.p. 248°/760 mm., 119°/12 mm., is unimol. as vapour or in freezing $\rm C_6H_6$. Methylbenzthiazole is converted by Me₂SO₄ into the methosulphate, m.p. 135°, transformed by NaOH in 71% yield into 2-methyl-1-benzthiazolonemethide (II), m.p. 167° (picrate, m.p. 121—122°), now shown to be bimol. and hence

 $C_6H_4 < S_{NMe} > C < CH_2 > C < NMe > C_6H_4$. The similarity of (I) to the pyridonemethides is shown by the formation of adducts, $C_{13}H_{15}NS_2$, $C_{19}H_{20}N_2S$, and $C_{19}N_{20}ON_2$, m.p. 171°, 158°, and 135°, respectively, with CS_2 , PhNCS, and PhNCO whilst (II) gives the adduct $C_{10}H_9NS_3$ with CS_2 . MgEtBr and (I) afford 1:2:3:3-tetramethyl-2-ethylindolenine, b.p. 89—90°/0.6 mm. (picrate, m.p. 166°). (I) and CNBr in EtOH at room temp. give the substance, $C_{13}H_{15}N_2Br$, m.p. 107-108°, converted by conc. HCl at 120° into the compound, $C_6H_4 < CMe_2 > C < CH_2Cl$ (picrate, m.p.

compound, $C_6H_4 < N(MeCl) > C \cdot CH_2Cl$ (picrate, m.p. $134-135^{\circ}$). (I) is hydrogenated (PtO₂ in AcOH) to 1:2:3:3-tetramethyl-1:2:3:4:5:6:7-heptahydroindole, b.p. $90^{\circ}/16$ mm. (picrate, m.p. 177°). Freshly prepared (I) in EtOH is slowly converted by moist O_2 into the amine oxide, which could not be distilled without decomp. When heated at $150^{\circ}/12$ mm. 83% of it is volatilised as (I), identified as the picrate, m.p. 148° , and perchlorate, m.p. 195° , whilst the residue is converted into an isomeride (III),

H.W.

 $C_6H_4 \negthinspace < \negthinspace \begin{smallmatrix} \mathrm{CMe_2} \\ \mathrm{NMe} \end{smallmatrix} \negthinspace > \negthinspace C \negthinspace < \negthinspace \begin{smallmatrix} \mathrm{CH(OH)} \\ \mathrm{CH(OH)} \end{smallmatrix} \negthinspace > \negthinspace C \negthinspace < \negthinspace \begin{smallmatrix} \mathrm{CMe_2} \\ \mathrm{NMe} \end{smallmatrix} \negthinspace > \negthinspace C_6H_4,$ 83°. (III) is obtained in 50% yield if the oxide is warmed at 134°/atm. pressure for some hr. previous to distillation and also by the action of 3% H₂O₂ on a solution of (I) in C₆H₆ at 30°. The re-formation of (I) from the oxide is not accompanied by the liberation of O₂ since no gas is evolved when it is heated at 200— 260°/vac. whereby, however, $_{
m the}$ substance, ${\rm C_6H_4} < {\rm CMe_2 \atop NMe} > {\rm C} < {\rm CH_2 \atop CO^-} > {\rm C} < {\rm CMe_2 \atop NMe} > {\rm C_6H_4}, \ {\rm m.p.} \ 225 -$ 227°, is produced. Dry (II) is not affected by dry O₂ but with the moist gas autoxidation yields the compound,

 $C_6H_4 < S_{NMe} > C(CH_2 \cdot OH) \cdot CH_2 \cdot C(OH) < S_{NMe} > C_6H_4$, m.p. 171°. The corresponding Me_2 ether, m.p. 162°, is obtained by autoxidation of (II) in abs. MeOH.

Lycoris alkaloids. XIV. Constitution lycorine. VI. H. KONDO and H. KATSURA (Ber., 1939, **72**, [B], 2083—2088).—Dihydrolycorine (I) is converted by excess of MeI into the methiodide, decomp. 282-283°, which with AgCl gives the noncryst. methochloride (corresponding platinichloride, m.p. 288°) not reduced by 5% Na-Hg-H₂O. With Ac₂O and anhyd. NaOAc at 100° (I) yields diacetyldihydrolycorine, m.p. 175°, transformed by BrCN in C₆H₆ at 100° into the bromocyanide (II), m.p. 176°. (II) is not hydrogenated in presence of Pd-CaCO₃, Pd-C, or Pt-C on EtOH. It is converted by hot N-KOH-EtOH into the neutral cyanodihydrolycorine anhydride (II), C₁₆H₁₈O₄N·CN, m.p. 217°, also (+1EtOH) m.p. 182° (Ac derivative, m.p. 236°), which does not react with C(NO₂)₄ or KMnO₄, and a syrup which when further treated with N-KOH or 30% H₂SO₄ gives dihydronorlycorine anhydride, $C_{16}H_{18}O_4$:NH, m.p. 198°, also (+1 H_2O) m.p. 204° (Ac derivative, m.p. 167—168°), which gives Liebermann's nitroso-reaction. Oxidation (CrO₃ in AcOH) of (II) at 45° yields ketodihydronorlicorinone anhydride, decomp. 341° (monoxime, decomp. 293—295°), which does not react with FeCl₃, PhCHO, or diazonium compounds. It is converted by Me₂SO₄ and NaOH into the Me derivative, m.p. 258°, which is not sol. in NaOH, is free from OMe, and gives a monoxime, decomp. 266—268°. H. W.

Dihydroergotocine.—See B., 1940, 173.

Colchicine and related compounds. I. Structure of colchicine. A. COHEN, J. W. COOK, and (MISS) E. M. F. ROE. II. Synthesis of a simple analogue of N-acetylcolchinol methyl ether. J. W. COOK and L. L. ENGEL (J.C.S., 1940, 194—197, 198—200).—I. Colchinol Me ether and HNO₂ give a carbinol, C₁₉H₂₂O₅, m.p. 115·5—116·5° (p-phenylbenzoate, m.p. 146—147°), which in some preps. is contaminated with a by-product, m.p. 133—134°.

CH₂

The carbinol does not react with a carbinol does not react with a product of the contaminated with a product of the carbinol does not react with a carbinol does not react with a product of the carbinol does not react with a carbinol does not re

o-C₆H₄(CO)₂O in boiling C₆H₆ but at 180°, a *H phthalate*, m.p. 143—144°, is obtained. From ultra-violet absorption measurements the substance is not a phenanthrene derivative. It is suggested that the ring B of colchic-

ine (Windaus, A., 1924, i, 1089) may be seven-membered, leading to the structure (I) for the carbinol.

II. 3:4:5:1-(OMe) $_3$ C $_6$ H $_2$ ·CHO (II) (anil, m.p. 89—90°) and CH $_2$ Ph·CO $_2$ Na in Ac $_2$ O give α -phenyl- β -(3:4:5-trimethoxyphenyl)acrylic acid, m.p. 186-187° (p-phenylphenacyl ester, m.p. 123·5-124·5°), which is hydrogenated (Pd-C) to the corresponding propionic acid, b.p. 215-219°/0.5 mm. (p-phenylphenacyl ester, m.p. 94-95°), also obtained by hydrolysis of α-cyano-α-phenyl-β-(3:4:5-trimethoxy-phenyl)ethylene, m.p. 77—79° [from CH₂Ph·CO·CN Na p-anisylacetate and (II) in Ac₂O and (II)]. α -p-anisyl- β -(3:4:5-trimethoxyphenyl)acrylic acid, m.p. 207—208° (Et ester, m.p. 84—85°; p-phenyl-phenacyl ester, m.p. 169—170°), 3:4:5:4'-tetramethoxystilbene, b.p. 159·5—160·5°, and the anhydride of anisyltrimethoxyphenylacrylic acid, m.p. 143-144°. Hydrogenation (PtO2) of the acrylic acid yields α -p-anisyl- β -(3:4:5-trimethoxyphenyl)propionic acid, m.p. 95·5—96·5° (p-phenylphenacyl ester, m.p. 94-95°). p-Anisylacetonitrile and (II) in EtOH-NaOH give α -cyano- α -p-anisyl- β -(3:4:5-trimethoxyphenyl)ethylene, m.p. $114-115^{\circ}$, which on reduction (H_2 -PtO₂) affords a mixture of the -ethane, m.p. 96.5-97.5°, and β -p-anisyl- γ -(3:4:5-trimethoxyphenyl)propylamine (p- C_6H_4 · SO_2 derivative, m.p. 135—136°; β - $C_{10}H_7$ - SO_2 derivative, m.p. 129·5—131°), isolated as the N-Ac compound, m.p. 124.5—125.56; this substance may have a structural relationship to a colchicine degradation product. F. R. S.

Cinchona alkaloids. XXXI. Characterisation and preparation of epiquinine and epiquinidine. P. RABE and H. HÖTER (J. pr. Chem., 1939, [ii], **154**, 66—72; cf. A., 1939, II, 187).—The mixture obtained from quinine or quinidine by KOH-C₅H₁₁·OH at 142° is separated by removing the quinine as sulphate, then the quinidine as H d-tartrate, and next separating from H₂O a compound (I), epiquinine,epiquinidine, H_2SO_4 , $^2+6H_2O_5$ (47.5%), sinters at $\sim 100^\circ$, m.p. $101-103^\circ$, decomp. $\sim 115^\circ$, $[\alpha]_1^{20}+38.5^\circ$ in H_2O_5 With NH₄CNS in EtOH, (I) gives epiquinidine (68% yield), m.p. 113° [hydro-bromide, +H₂O, m.p. 240° (slow heating; later decomp.)], as thiocyanate, m.p. 193°, $[\alpha]_D^{20}$ +44.5° in H₂O; the residual bases yield epiquinine (77%) (thiocyanate, an oil) as hydrobromide, +3H₂O, m.p. 71—77° (decomp. at $\sim 108^{\circ}$), $[\alpha]_{\rm p}^{20} + 32.9^{\circ}$ in H_2O . R. S. C.

Strychnos alkaloids. CVIII. Catalytic hydrogenation of dibromohydroxynucine and related C₁₇ compounds. H. Leuchs and H. L. Louis (Ber., 1939, 72, [B], 2076—2079).—The salt C₁₇H₂₀O₃N₂Br₂,HBr rapidly absorbs 4 H and then, more slowly, an additional 0·8 H, giving 3-bromo-2-hydroxydihydronucine, m.p. 252° (vac.; decomp.) after much darkening at 225—240° (hydrobromide, C₁₇H₂₃O₃N₂Br,HBr, [α]₀²⁰ +43·3°/d; methiodide, decomp. ~265° after becoming brown at 255°), also obtained by hydrogenation of 3-bromo-2-hydroxynucine. Similarly the methobromide, C₁₇H₂₀O₃N₂Br₂MeBr, is hydrogenated (PtO₂ in H₂O)

to the compound, $C_{17}H_{23}O_3N_2Br$, MeBr, m.p. >300° after becoming black at 240° (corresponding methoperchlorate). Under similar conditions nucine gives

only dihydronucine, isolated as the *perchlorate*, $C_{17}H_{24}O_2N_2$, $1.5HClO_4$, and 2-hydroxynucine affords 2-hydroxydihydronucine, m.p. $188-190^{\circ}$ (decomp.).

Solasodine. III. H. ROCHELMEYER [in part, with H. CHEN] (Arch. Pharm., 1939, 277, 329—339; cf. A., 1937, II, 356).—Solasodine (I) is identical with solancarpidine and is shown to contain the 3-hydroxy-10-methyl- Δ^5 -polyhydro*cyclo*pentanophenanthrene nucleus (OH and Me cis). After prep. from Solanum xanthocarpum it is obtained anhyd. from dry $COMe_2$ or EtOAc and then has the formula, $C_{27}H_{43}O_2N$ (cf. lit.), m.p. 197—198°, and $[\alpha]_D^{20} = 92.4^{\circ}$ in $C_6 \tilde{H}_6$, contains 2 active H (MgMeI), gives sterol colour reactions, with BzCl- or $Ac_2O-C_5H_5N$ gives a monobenzoate, m.p. 216—217°, or -acetate, m.p. 193— 194° [with hot 1% KOH-MeOH regenerates (I)] (neither ester gives a digitonide), respectively, is quantitatively pptd. by digitonin, is hydrogenated (PtO₂, AcOH; 2 H₂) to a substance, m.p. 286·5—288° (block), [α]₁₈ -4·94° in CHCl₃ (digitonide), is oxidised by Al(OBu^{γ})₃ in COMe₂ to the Δ^4 -ketone, $C_{2\gamma}H_{41}O_2N$, m.p. 184—185°, [α] 0 [no digitonide; absorption max. at 232 (log ϵ 4·18) and 270—280 m μ . (ϵ low)], and is dehydrated by Al₂O₃ to a mixture of diencs, which, when repeatedly crystallised or when heated with HCl-MeOH, gives the $\Delta^{3:5}$ -diene, solanosodine (II), m.p. 174—175°, [α]_D¹⁷—195° in CHCl₃. (II) is obtained also in small amount during the prep. of (I), gives the Rosenheim reaction, and has an absorption max. at 234 m μ . (log ϵ 4·34). R. S. C.

Solatubin. IV. H. Rochelmeyer [in part, with C. S. Shah and E. Geyer] (Arch. Pharm., 1939, 277, 340—355; ef. A., 1938, II, 151).—α-Cholesterol oxide and SO₂ in hot, aq. EtOH give cholestanetriol, m.p. 236° (best method of prep.; diacetate, m.p. 165—167°). Solatubenyl acetate (I) and BzO₂H in CHCl₃ give a poor yield of the N-oxide, m.p. 263— 265° (decomp.), reconverted into (I) by SO₂. Solatubin (II) is rapidly hydrogenated (PtO₂) in AcOH, but (I) is much more resistant, even in presence of much PtO_2 . Al $(OPr^{\beta})_3$ or Al $(OBu^{\gamma})_3$ in $COMe_2$ C_6H_6 oxidises (II) to Δ^4 -solutubenone (III), m.p. 216° [absorption max. at 236 m μ . (ϵ 17,000)], stable to HCl-EtOH, reduced by Zn-Hg-HCl-AcOH to Δ^4 solatubene, $C_{27}H_{43}N$ (~30% yield), m.p. 164°, $[\alpha]_D^{20}$ +32·4° in C_6H_6 , by Na- C_5H_{11} ·OH to solatubanol, and by Na-EtOH to Δ^4 -solatubenol. One product of the reduction of (III) by Al(OPr^{β})₃ (loc. \hat{cit} .) is Δ^4 trans-solatubenol, $C_{27}H_{43}ON$, m.p. 169—170°, $[\alpha]_D^{19}$ +116.4° in CHCl₃ (no digitonide; Rosenheim reaction), converted by Al(OBu^γ)₃–COMe₂–C₆H₆ into trans-solatubanone, C₂₇H₄₃ON, m.p. 214° (corr.), $[\alpha]_{\rm p}^{19}$ +48·9° in C₆H₆ [no digitonide; semicarbazone, m.p. 237°; absorption max. at 275 m μ . (log ϵ 1.65)]. This is reduced by H2-PtO2 in AcOH at 60-70° to solatubanol, but in presence of a little HBr to transsolatubanol, $C_{27}H_{45}ON$, m.p. 192°, $[\alpha]_{D}^{19} + 20.65^{\circ}$ in CHCl₃ (no digitonide). The solatubadiene obtained from (II) by Al_2O_3 is the $\Delta^{3:5}$ -diene [absorption max. at 228 (ϵ 23,900) and 234 m μ . (ϵ 24,400)]. The $\Delta^{2:4}$. diene, m.p. 178°, $[\alpha]_{D}^{18} + 139^{\circ}$ in $C_{6}H_{6}$ [absorption max. at 265 and 275 m μ . (ϵ 6700)], is obtained from Δ^4 cis-solatubenyl benzoate by NPhMe₂ at 200—230°,

by aq. (30% yield) or alcoholic (1% yield) acid. Solatubin acetate is similarly dehydrated by acid hydrolysis, but neither acid nor alkali causes dehydration of cholesteryl acetate.

R. S. C.

Benziminazolearsinic acids etc.—See B., 1940, 173.

Mercuriphenyl 3-nitrophthalate, naphthalate, and dinitrophthalate.—See B., 1940, 173.

Micro-determination of carbon by the wet method. E. F. Degering and T. Z. Ball (Ind. Eng. Chem. [Anal.], 1940, 12, 124—125).—The sample is oxidised with CrO_3 in H_2SO_4 and the vol. of CO_2 evolved is measured with a Hg dilatometer. Apparatus and procedure are detailed. J. D. R.

Apparatus for determining total carbon.—See A., 1940, III, 274.

Qualitative test for oxygen in organic compounds. D. Davidson (Ind. Eng. Chem. [Anal.], 1940, 12, 40—41).—The test for O in compounds free from N and S is based on the solubility of Fe^{III} hexathiocyanatoferriate ("thiocyanate") in O derivatives and insolubility in hydrocarbons and their halogen derivatives. Test paper is prepared by impregnating filter-paper with a solution of FeCl₃ and KCNS in MeOH. The paper is stirred with the test substance, if liquid (if solid, with a solution in a hydrocarbon or halogenated hydrocarbon), and the presence of O is indicated by development of a red colour in the liquid. Only substances free from N and S may be used.

Direct determination of oxygen in organic substances etc.—See A., 1940, I, 173.

Rapid micro-Kjeldahl method. A. Keys (J. Biol. Chem., 1940, 132, 181—187).—The micro-apparatus described yields results of accuracy comparable with those obtained by the ordinary Kjeldahl method. N can be determined in $0\cdot 1$ — $0\cdot 2$ c.c. of serum. The distillation is effected under slightly reduced pressure. P. G. M.

Determination of sulphur in organic compounds. E. W. D. HUFFMAN (Ind. Eng. Chem. [Anal.], 1940, 12, 53—58).—Apparatus and detailed procedure are described for the determination of S in compounds containing no elements other than C, H, O, N, and S. The oxides of S formed in the combustion react with Ag pellets, with quant. formation of Ag₂SO₄, which is determined by electrodeposition as Ag from dil. aq. Pr⁸OH solution. C and H vals. may be obtained simultaneously.

Determination of iron in iron salts of organic acids containing phosphorus. C. F. BICKFORD, A. E. JURIST, and W. G. CHRISTIANSEN (J. Amer. Pharm. Assoc., 1939, 28, 1028—1029).—Org. matter is destroyed by digestion with Π_2SO_4 — Π_2O_2 and Fe is pptd. by Π_2S —aq. Π_3 ; the ppt. is converted into Fe(OH)3, ignited, and weighed. The method is applicable in some instances (e.g., Fe adenylate) without removal of org. matter. F. O. H.

Wijs iodine values for conjugated double bonds. Influence of sample-reagent ratio. W. C. Forbes and H. A. Neville (Ind. Eng. Chem.

[Anal.], 1940, 12, 72—74).—I vals. obtained (Wijs) for substances with conjugated double linkings are strongly influenced by the excess amount of the reagent, and data are given to show this effect for $\Delta^{0\times}$ -linoleic acid, tung oil, and dehydrated castor oil. Excess of reagent is of only slight importance for isolated systems, e.g., $\Delta^{0\lambda}$ -linoleic acid, $\Delta^{0\lambda}$ -linolenic acid, and raw castor oil. To obtain comparable I vals. with substances containing conjugated double linkings, it is suggested that the ratio of vol. of reagent to wt. of sample be kept const. and a test for conjugated double linkings is suggested by determination of the I val. at varying ratios of reagent: sample. J. D. R.

Analytical procedures employing Karl Fischer reagent. II. Determination of alcoholic hydroxyl. W. M. D. BRYANT, J. MITCHELL, jun., and D. M. SMITH. III. Determination of organic acids. J MITCHELL, jun., D. M. SMITH, and W. M. D. BRYANT (J. Amer. Chem. Soc., 1940, 62, 1-3, 4-6; cf. A., 1939, I, 577).—A quant. method for the determination of OH-compounds, applicable to aliphatic and alicyclic alcohols, including branchedchain types and OH-acids, and aromatic alcohols which have OH attached to an aliphatic side-chain, depends on the determination of \bar{H}_2O , liberated by interaction of the OH-compound with AcOH, by titration with the Karl Fischer reagent. Data are recorded for 25 compounds, and aq. EtOH solutions of various concns. have also been analysed. Aliphatic alcohols can be analysed by this procedure, but phenols do not esterify completely under the general working conditions. The procedure for the approx. determination of aliphatic in presence of aromatic alcohols is based on the use of more dil. catalyst solutions. Aldehydes, ketones, acetals, ketals, and amines interfere.

III. A method, based on the complete esterification and subsequent titration of the liberated H₂O by Karl Fischer reagent, is quant. for the determination of carboxylic acids. The method is applicable to aliphatic acids, including branched-chain and OH-substituted types, and aromatic acids having the CO₂H attached to an aliphatic side-chain. Analytical data are recorded for 18 acids. Changes in the conen. of catalyst solution affect the esterification considerably. A method for the determination of aliphatic in presence of aromatic acids is based on the large differences in esterification rates. tert.-Alcohols, H₂SO₄, and anhydrides interfere. W. R. A.

Determination of formaldehyde. II. Ammonia method. A. Foschini and M. Talenti (Z. anal. Chem., 1939, 118, 94—97; cf. A., 1939, II, 463).—Details of procedure and apparatus for determining CH₂O by adding an excess of 2N-NH₃, shaking, and allowing time for (CH₂)₆N₄ to form, and distilling the excess of NH₃ into N-H₂SO₄ under reduced pressure, are given. The results agree with those obtained by the H₂O₂ method (loc. cit.), but are > those given by the indirect titration of NH₃.

L. S. T. Determination of acetone. M. W. Green (J. Amer. Pharm. Assoc., 1940, 29, 33—35).—The

method of pptn. as Hg complex and the oxime method do not give accurate or reproducible results. The CHI₃ method (U.S.P. XI) gives uniform but high (by 0.18-0.55% for 0.02 g. of COMe₂) vals., probably owing to a secondary reaction in which formate is produced. F. O. H.

Potentiometric titration of glucose with alkaline tartrate solutions of copper, including Fehling's solution. H. T. S. BRITTON and L. PHILLIPS (Analyst, 1940, 65, 18—24).—Although the oxidation follows no definite stoicheiometric reaction, completion occurs when the Cu" ions are removed, and this is indicated by a rapid diminution in the potential recorded at a Pt electrode immersed in the solution. The ratio of CuO to glucose is only slightly affected by changes in the conen. of tartrate, but is markedly dependent on the $p_{\rm H}$ of the solution and the conen. of the glucose. The val. of methylene-blue as an internal indicator (cf. J.S.C.I., 1923, 42, 32T) is confirmed.

Determination of glucose and fructose in presence of pentoses.—See A., 1940, III, 370.

Effect of iodine and mercury on aminonitrogen values with nitrous acid. A. B. Ken-DRICK and M. E. HANKE (J. Biol. Chem., 1940, 132, 739—751; cf. A., 1937, III, 108).—The results of Dunn et al. (A., 1938, II, 125) are not confirmed. With glycine, addition of I' gives a correct val. for NH₂-N, either manometrically or volumetrically (Hg present or absent), and the effect of I' is therefore not through a HgI₂ complex; Hg(OAc)₂ lowers the NH₂-N val. to theoretical, and Hg to 103% theoretical. With cystine, added I' gives a normal val. volumetrically; $\mathrm{Hg(OAc)_2}$ and Hg cause increases from 108% to 140% theoretical. With glycylglycine and glutathione, added I' somewhat improves the val. Both I' and Hg(OAc), reduce the amount of CO, evolved in the glycine analysis, and increase that from cystine. Mechanisms are discussed. When KI is used in these analyses, it is best added with NaNO₂, not with AcOH. E. W. W.

p-Dimethylaminobenzaldehyde method for determination of tryptophan compared with glyoxylic acid method. J. L. D. Shaw and W. D. Macfarlane (J. Biol. Chem., 1940, 132, 387—392).—
The p-NMe₂·C₆H₄·CHO method gives high results owing to the formation of coloured compounds with substances other than tryptophan. The CHO·CO₂H method is more reliable.

P. G. M.

Analytical behaviour of the group 'CS'NH'.—See A., 1940, I, 174.

Colorimetric determination of quinine.—See A., 1940, III, 275.

Reineckate and silicotung state of narcotine; determination of narcotine. P. Duquénois and M. Eller (Bull. Soc. chim., 1939, [v], 6, 1582—1586; cf. A., 1939, II, 398).—Narcotine hydrochloride in aq. HCl affords the reineckate, [Cr(NH₃)₂(SCN)₄],C₂₂H₂₃O₇N, and silicotung state,

 $\tilde{S}iO_2$, $12\tilde{W}O_3$, $2H_2\tilde{O}$, $4\tilde{C}_{22}\tilde{H}_{23}O_7\tilde{N}$ (or $+7H_2O$). The latter is better for determining narcotine. A. T. P.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

MAY, 1940.

Calculation of the number of stereoisomerides in carbon chain compounds. G. E. K. Branch and T. L. Hill (J. Org. Chem., 1940, 5, 86—99).—The method is applicable to straight- and branched-chain compounds containing asymmetric C atoms and/or double linkings (geometrical isomerism). The no. of optically inactive forms can also be calc.

H. B. Physical properties of $\beta\beta\gamma$ -trimethylpentane.

—See A., 1940, I, 154.

Isomerisation of hydrocarbons. IV. Isomeric butanes and their equilibrium mixtures. B. Moldavski and T. Nizovkina (J. Gen. Chem. Russ., 1939, 9, 1652—1660).—The sole reaction taking place when $n\cdot C_4H_{10}$ is heated at 70—110° in presence of AlCl₃ is: $n\cdot C_4H_{10} \rightleftarrows iso\cdot C_4H_{10}$; at equilibrium the ratio $K_p = [iso\cdot C_4H_{10}]/[C_4H_{10}] = 611/T - 1\cdot 204$. At higher temp. cracking, with production of CH₄ and C_3H_8 , takes place. R. T.

Manufacture of *iso*butane from *n*-butane.—See B., 1940, 190.

Catalytic dehydrogenation.—See B., 1940, 190.

Catalytic hydrogenation of trisubstituted ethylenes.—See A., 1940, I, 225.

Preparation and structure of polybutenes of high mol. wt. R. M. Thomas, W. J. Sparks, P. K. FROLICH, M. OTTO, and M. MUELLER-CUNRADI (J. Amer. Chem. Soc., 1940, 62, 276—280).—The following summary of results, partly described in patents, is illustrated with graphs but few experimental de-The rate of polymerisation of isobutenes (I) by acidic catalysts is independent of temp., but the mol. wt. increases with decreasing temp., e.g., from 10,000 at \sim 25° to 220,000 at -105°. The characteristic nature of the reaction is shown by occurrence of an induction period at the b.p. but not at -80° when BF3 is the catalyst. Impurities, including n-C₄H₈ or higher olefines, reduce the mol. wt. of the product. Inert diluents moderate the reaction; with increasing amounts of diluent, the mol. wt. of the product rises to a sharp max. The amount of catalyst must usually exceed some crit. val. >90%. Products are probably [·C·CMe₂·]_n, containing a terminal ethylenic linking. Decomp. at 350° of a product having mol. wt. $\sim 20,000$ gives 50% of C₄- and 20% of C₈-compounds, including much CH₂:CMe·CH₂Bu^{\(\nu\)} (I) and possibly some CHBu^{\(\nu\)}:CMe₂. (I) is stable at 350° and polymerisation may thus be not entirely homogeneous.

R. S. C.
Isomerisation of unsaturated hydrocarbons in contact with oxides of metals. II. Isomer-

isation of diallyl in presence of chromic oxide. R. J. Levina and P. J. Kiriuschov (J. Gen. Chem. Russ., 1939, 9, 1834—1840; cf. A., 1937, II, 331).— (CHMe:CH)₂ is obtained in 70—74% yield when diallyl is passed over Cr_2O_3 at $225-250^\circ$. R. T.

Catalytic hydrogenation polymerisation of acetylene.—See B., 1940, 190.

Preparation of methyl chloride from methyl sulphate and aluminium chloride. A. A. Schamschurin (J. Gen. Chem. Russ., 1939, 9, 2207—2208).—The reaction $3\text{Me}_2\text{SO}_4 + 2\text{AlCl}_3 \rightarrow \text{Al}_2(\text{SO}_4)_3 + 6\text{MeCl}$ takes place at room temp. R. T.

Reaction of alkyl halides with hydrogen halides and decomposition of methyl bromide. H. P. Meissner and H. J. Schumacher (Z. physikal. Chem., 1940, 185, 435—446).—The thermal decomp. of MeBr and the reactions of MeBr and McCl with HBr and HI have been studied. Decomp. of MeBr begins at 400—500°, according to the origin of the sample, presumably owing to the presence of traces of catalytically-active impurities. The volatile products are $\mathrm{CH_4}$ and HBr, with some $\mathrm{H_2}$ at lower temp.; liquid Br-compounds and C are also formed. The reaction is homogeneous, and is retarded by the products. Below the temp. of their decomp., MeBr and McCl do not react with HBr. McCl and HI react at 325° according to McCl + 2HI = $\mathrm{CH_4} + \mathrm{I_2} + \mathrm{HCl}$; the reaction is heterogeneous. The reaction between McBr and HI is very complicated. F. J. G.

Action of fluorine on organic compounds. VII. Vapour-phase fluorination of ethyl chloride. J. D. Calfee, N. Fukuhara, De W. S. Young, and L. A. Bigelow (J. Amer. Chem. Soc., 1940, 62, 267—269).—Passage of EtCl and F₂ over Cu gauze at 900° (cf. A., 1940, II, 62) gives CF₄, CClF₃, CF₃·CClF₂ (I), CCl₂·CF₂, m.p. —116°, b.p. 0° (lit. 15°), CH₂Cl·CH₂F (II), and higher-boiling products. Increasing the ratio F: EtCl from 1:1 to 2:1 decreases the amount of (II) in the products from 70 to 10% and increases the amount of (I) from a trace to 10%. Dilution with N₂ decreases the amount of the first four products named. Chlorination is brought about by ClF. Analysis of stable org. gases containing F and Cl is improved.

R. S. C.

Action of fluorine on simple aliphatic chlorinated hydrocarbons. W. T. Miller (J. Amer. Chem. Soc., 1940, 62, 341—344).—Nearly pure F_2 (A., 1936, 1350) and CHCl₃ at 0° give CCl₃F and a little C_2Cl_6 . C_2HCl_5 at $90\pm3^\circ$ gives C_2Cl_5F , C_2Cl_8 , and some (CCl₂F)₂, C_2Cl_4 , and decachlorobutane, m.p. 80—81°. (CHCl₂)₂ at $50\pm2^\circ$ gives CH₂Cl·CCl₂F with smaller amounts of (CCl₂F)₂, C_2HCl_3 , and C_2HCl_5 . C_2Cl_4 at

0° gives mainly (CCl₂F)₂, C₂Cl₅F, and octachloro (? αδ)-difluorobutane, m.p. 4—5°, b.p. $152 \cdot 5^{\circ}/20$ mm.; in C₂Cl₃F₃ much less CCl₅F is formed and a trace of C₂Cl₆ is also obtained. C₂HCl₃ at 0° gives CCl₂F·CHClF, C₂Cl₃F, mixed C₂HCl₄F, a hexachlorobutane, m.p. 9·5—11°, b.p. $122-125 \cdot 5^{\circ}/25$ mm., an octachlorobutane, m.p. 75—76°, and (:CClF)₂, b.p. $31-32^{\circ}$; in C₂Cl₃F₃ a hexachlorodifluorobutane, m.p. $55-56^{\circ}$, and other products are obtained. F₂ is almost insol. in these reactants, and reaction occurs in the vapour phase. This and the formation of ClF account for the "dimeride addition" products and other peculiarities differentiating fluorination from other halogenations. R. S. C.

Autoxidation of halogen-substituted ethylenes. E. Prileshaeva and N. Prileshaev (J. Gen. Chem. Russ., 1939, 9, 1766—1773).—Oxidation of CHX:CX2 or C_2X_4 (X = Cl, Br) by AcO_2H consists of the reactions: $C_2HX_5 \leftarrow (+X_2)$ CHX:CX2 $(+O) \Rightarrow$ CHX:CO $+X_2$; $CO_2 + CO + HX \leftarrow (+O_2)$ CHX:CO $(+X_2) \Rightarrow$ CHX2·CO2H + HX; $C_2X_6 \leftarrow (+X_2)$ C_2X_4 $(+2O) \Rightarrow$ CO:CO $(+O_2) \Rightarrow$ 2CO2; C_2X_4 $(+O) \Rightarrow$ CX2·CO2H + HX.

Allylic rearrangements. X. Reproducibility of standard methods for preparation of butenyl bromide mixtures. W. G. Young and K. Nozaki (J. Amer. Chem. Soc., 1940, 62, 311—313).—Previous results (A., 1937, II, 480; 1938, II, 214) are duplicated, except for two which are explained and corr. HBr in AcOH and a trace of Bz₂O₂ at 15° equilibrates CHMe:CH·CH₂Br and CH₂:CHMeBr to a mixture, having the n expected from the resonance process; at room temp. in absence of Bz₂O₂ addition of HBr predominates. R. S. C.

Chlorination of hexinene in reactive solvents. II. R. O. Norris and G. F. Hennion (J. Amer. Chem. Soc., 1940, 62, 449—450; cf. A., 1939, II, 400).—The yields of cis- and trans-CBu°Cl:CHCl, CBu°Cl:CCl₂ (I), CBu°Cl₂·CH₂Cl, and CBu°Cl₂·CCl₃ obtained from CBu°:CH and Cl₂ in 35% aq. HCl, 30% aq. H₂SO₄ or H₃PO₄, and 22% HCl-MeOH are reported. (I) was previously reported as CBu°Cl₂·CH₂Cl. R. S. C.

Preparation of aliphatic nitrohydrocarbons. H. C. DE MAUNY (Bull. Soc. chim., 1940, [v], 7, 133—139).—MeNO₂ and heptaldehyde are condensed in MeOH containing KOH and the resulting salt is pptd. by NaOMe in MeOH; after filtration and desiccation it is decomposed with o-OH·C₆H₄·CO₂H in Et₂O, thereby giving α -nitro-octan- β -ol, b.p. $135^{\circ}/10$ mm., in 95% yield. This is dehydrated by Ac₂O at 100° and finally at 120° (less advantageously by ZnCl₂) to α -nitro- Δ^{α} -octene, b.p. 118°/10 mm. (yield 80%), which is selectively hydrogenated (PtO₂ in COMe₂) to α -nitro-octane, b.p. $120^{\circ}/30$ mm., m.p. Under similar conditions lauraldehyde yields successively α-nitrodecan-β-ol, m.p. 32—33°, α-nitro- Δ^{α} -decene, b.p. 156°/1.5 mm., and α -nitrodecane, m.p. 70°. By use of EtNO₂ and PraNO₂ in place of MeNO₂ it is possible to prepare β - and γ -NO₂-compounds.

Synthesis of dinitroparaffins. L. W. Seigle and H. B. Hass (J. Org. Chem., 1940, 5, 100—105).

—NO₂·CRR'·CR"R"'·NO₂ are obtained from [CRR'·NO₂]Na and NO₂·CR"R"Hal, but similar derivatives are not formed when primary NO₂-compounds are used. Thus, Pr^βNO₂ (I) (in aq. EtOH–NaOH) with CMe₂Cl·NO₂, b.p. 131° (corr.)/760 mm., CMe₂Br·NO₂ (II), b.p. 150—152° (corr.)/760 mm., and (crude) CMe₂I·NO₂ gives 6 (~9 when dry Na salt in abs. EtOH is used), 29, and 43%, respectively, of βγ-dinitro-βγ-dimethylbutane (III), m.p. 208·4—209°, also obtained (14%) from (I), (II), and NaHCO₃ (20% excess) in boiling 80% EtOH. γδ-Dinitro-γδ-dimethylhexane, m.p. 78° [from CHMeEt·NO₂ (IV) and CMeEtBr·NO₂, b.p. 171° (corr.)/760 mm. (16%), or (crude) CMeEtI·NO₂ (34%)], βγ-dinitro-βγ-dimethylpentane, m.p. 88—88·6° [~8% from (IV) and (II); a little (III) is also formed], and 1-nitro-1-α-nitroiso-propylcyclohexane, m.p. 140—141° [19% from nitrocyclohexane and (II)], are similarly prepared. The above NO₂·CRR'Hal, CHMeBr·NO₂, b.p. 146—152° (corr.)/760 mm., and CHEtBr·NO₂, b.p. 159—164° (corr.)/760 mm., are prepared from the appropriate NO₂-compound (in aq. NaOH) and halogen.

Reactions of ferric chloride with methyl alcohol and methyl acetate and benzoate. II. M. T. Dangjan (J. Gen. Chem. Russ., 1939, 9, 1907—1910; cf. A., 1939, II, 253).—Anhyd. FeCl₃ and MeOH, MeOAc, or MeOBz yield cryst. compounds, which decompose when heated, yielding MeCl. The reactions are: MeOH + FeCl₃ > MeOH, FeCl₃ (I) > MeCl + FeCl₂·OH; (I) > FeMeCl₂ + HOCl (subsidiary reaction); R·CO₂Me + FeCl₃ > MeCl + R·CO₂FeCl₂. The double salts are completely dissociated in presence of H₂O.

Conjugated systems. VIII. Reaction of βchloro- $\Delta^{\alpha\gamma}$ -butadiene with hypobromous acid, and the synthesis of chlorovinylethylene oxide. A. A. Petrov (J. Gen. Chem. Russ., 1939, 9, 2232— 2243).—Chloroprene and HOBr yield β -chloro- δ -bromo- Δ^a -buten- γ -ol (I), b.p. 77—77.5°/10 mm. (acetate, b.p. 83°/10 mm.), which with Br in CHCl₃ gives β-chloro-αβδ-tribromobutan-γ-ol, m.p. 69·5—71° (acetate, m.p. 72—73°), oxidised by Na₂Cr₂O₇ in AcOH to βchloro- $\alpha\beta\delta$ -tribromobutan- γ -one, b.p. $134^{\circ}/10$ mm. (I) and KOH at 130° give chloroprene oxide (II), b.p. $109.4-109.6^{\circ}/750$ mm., which with 2% H_2SO_4 yields γ -chloro- Δ^{γ} -butene- $\alpha\beta$ -diol, b.p. $108.5^{\circ}/10$ mm. diacetate, b.p. 103.5°/10 mm.), and this with Br in CHCl₃ gives γ-chloro-γδ-dibromobutane-αβ-diol, m.p. 112·5—114°. (II) and conc. HCl give βγ-dichloro-Δ^abuten-δ-ol, b.p. 72—73°/10 mm. (acetate, b.p. 81°/10 mm.), whilst with conc. HBr the product is β-chloro- γ -bromo- Δ^{α} -buten- δ -ol, b.p. 85—86°/10 mm. (acetate. b.p. $92.5 - 93.5^{\circ}/10$ mm.), converted by Br in CHCl₃ into β-chloro-βyδ-tribromobutanol, b.p. 156—156·5°/10 mm.

β-Ethylenic alcohols. O. KIUN-Houo (Ann. Chim., 1940, [xi], 13, 175—241).—Addition of the requisite aldehyde or ketone to CH_2 : $CH \cdot CH_2 \cdot MgBr$ (I) under specified conditions gives Δ^{ν} -buten-α-ol, b.p. 114°, Δ^{δ} -penten-β-ol, b.p. 115°, Δ^{ϵ} -hexen- γ -ol, b.p. 130° and β-methyl- Δ^{δ} -penten-β-ol, b.p. 120° (vals. of d and n also recorded). (I) and acraldehyde or

crotonaldehyde afford respectively $\Delta^{a\epsilon}$ -heptadien-8-ol, b.p. 150—151°, and $\Delta^{a\epsilon}$ -hexadien- γ -ol, b.p. 130—131°. CHMe:CH·CH₂·MgBr is obtained in very dil. solution and in presence of a large excess of Mg and reacts with R·CHO, giving γ-methyl- Δ^a -penten-δ-ol, b.p. 125—126°, γ-methyl- Δ^a -hexen-δ-ol, b.p. 140—141°, γ-methyl- Δ^a -hepten-δ-ol, b.p. 55—56°/14 mm. (tetrabromide, m.p. 126°), and δ-phenyl-γ-methyl- Δ^a -buten-δ-ol, b.p. 122—123°/14 mm. Attempts to prepare CHPh:CH·CH₂·MgBr were fruitless but the corresponding obloride and McCHO afford a phenyl Δ^a menten δ general McCHO afford a phenyl Δ^a menten δ

ing chloride and MeCHO afford γ-phenyl-Δ^a-penten-δol, b.p. 122—123°/14 mm. Dehydration of β-ethylenic alcohols always takes place with mediocre yields whatever method is employed and cannot be regarded as a method for preparing dienes or trienes. With Al₂O₃ at 300—330⁵ about 40% of alcohol is recovered unchanged, about 6% is transformed into a mixture of hydrocarbons and about 50% is ruptured into propylene and aldehyde : OH·CHR·CH₂·CH:CH₂ \rightarrow OH·CHMe·CH₂·CH:CHMe $RCHO + CHMe: CH_2$. behaves similarly, at any rate qualitatively. A tert. alcohol OH·CMe₂·CH₂·CH:CH₂ is dehydrated under these conditions to a conjugated diene whilst αβdiethylenic alcohols suffer simultaneous dehydration to trienes and scission; CH₂Ph·CH₂·OH CH₂Ph·CHMe·OH are dehydrated to CHPh:CH₂ and CHPh.CHMe, respectively. The xanthate method leads in all cases to apparently complex mixtures of diethylenic hydrocarbons in very small yield. The gaseous alcohols are slowly dehydrated without scission by NaHSO₄ at 175° but the hydrocarbon appears to be a mixture in which conjugated dienes predominate without being exclusive. αβ'-Ethylenic alcohols yield doubly conjugated trienes without scission. CH2:CH•CHPh•CHMe•OH and

OH-CHPh-CHMe-CH:CH₂ (particularly the latter) in the liquid phase are readily dehydrated by KHSO₄. Linear β-ethylenic alcohols are dehydrogenated by Cu at 300° to saturated ketones, H becoming attached to the double linking. Some formation of α -ethylenic ketone by migration of the double linking appears probable. The amount of H_2 evolved is always small in comparison with the quantity of ketone produced. An a-ethylenic ketone is obtained exclusively from CH₂:CH·[CH₂]₂·OH CH₂:CH·CH:C(OH)·CH:CH₂. yields PraCHO and crotonaldehyde and rather more H₂ is liberated than is the case with sec. alcohols. The behaviour of β-ethylenic alcohols resembles closely that of the α -compounds but the syntheses have purely academic interest. KOH-EtOH does not isomerise β - to α -ethylenic alcohols but with the alcohol CH2:CH·CHPh·CHMe·OH it causes a wandering of the double linking towards the nucleus with scission, proved by the isolation of CHPh:CHMe. OH of β -ethylenic alcohols is not as mobile as that of the saturated alcohols but αβ-diethylenic alcohols are as easily etherified by hydracids (or PBr₃) as αethylenic alcohols. In the case of CH,:CH·CH,·CH(OH)·CH:CH, reaction

conjugated alcohol, Δ^{88} -hexadien- α -ol, b.p. 77—78°/14 mm. β -Ethylenic alcohols add Br in CCl₄, usually giving non-cryst. bromohydrins which are difficult to purify; $\alpha\beta\epsilon\zeta$ -tetrabromohexan- γ -ol, however, has m.p. 86°. $\alpha\beta$ -Dibromopentan- δ -ol is transformed by anhyd. KOH in Et₂O into 4-bromo-2-methyltetrahydrofuran, b.p. 47°/14 mm., in moderate yield. When heated with finely-divided KOH it passes into 2-methyl-2:5-dihydrofuran, b.p. 74—76°/atm. pressure. 4-Bromo-2-ethyltetrahydrofuran, b.p. 65—66°/14 mm., is converted by the successive action of Mg and MeCHO into 2-ethyl-4-vinyltetrahydrofuran, b.p. 125—127°/760 mm., and 2:2'-diethyldi-3-tetrahydrofuryl, (CHEt·CH₂>CH)₂, b.p. 136—138°/14 mm. Raman spectra of the alcohols are recorded. H. W.

Action of sulphuric acid on tert.-dienols. S. Zonis (J. Gen. Chem. Russ., 1939, 9, 2191—2195).— OH·CMe₂·Ci·C·CH·CH₂ is hydrogenated (Pd catalyst) to ε -methyl- $\Delta^{a\gamma}$ -hexadien- ε -ol, b.p. 50—51°/12 mm. COMePra, Mg, and CBr·C·CH·CH₂ in Et₂O give ε -methyl- Δ^{γ} -octin- Δ^{a} -en- ε -ol, b.p. 65—66°/5 mm., hydrogenated as above to ε -methyl- $\Delta^{a\gamma}$ -octadien- ε -ol, b.p. 78—80°/12 mm. The dienols with H₂SO₄ (8—20 hr. at 100°) yield 1:1-dimethyl-, b.p. 108—111°, and 1-methyl-1-propyl- Δ^{2} -4-cyclopentadiene, b.p. 78—82°/55 mm. R. T.

l-Citronellol. J. DŒUVRE (Bull. Soc. chim., 1940, [v], 7, 139—144).—An extended account of work already reported (A., 1939, II, 355). H. W.

(A) Synthesis and dehydration of di-sec. and di-tert. glycols of the $C_nH_{2n+2}O_2$ series. A. D. Petrov and P. S. Sanin. (B) Dehydration over alumina of tert. alcohols of the C_nH_{2n+1} OH series. A. D. Petrov [with V. V. Vlasov, E. I. STANKEVITSCH, E. E. TICHONOVA, and S. M. Kom-LEV]. (C) Synthesis of sec. alcohols, and their dehydration over alumina. A. D. Petrov [with I. G. SUMIN, Z. A. MEEROVITSCH, K. N. KUDRINA, and G. N. TICHONOVA (J. Gen. Chem. Russ., 1939, 9, 2129—2137, 2138—2143, 2144—2147).—(A) $MgBu^{\beta}Br$ and Et₂ adipate (I) yield βλ-dimethyldodecane-δι-diol (II), m.p. 52° (diurethane, m.p. 153°). βη-Dimethyloctane-βη-diol [from (I) and MgMeI], βι-dimethyloctane-βι-diol, m.p. 62° (from Et₂ suberate and MgMeI), γμ-dimethyltetradecane-γμ-diol, m.p. 72.5° (from Et₂ sebacate and MgEtBr), ε0-di-n-butyldodecane-ef-diol, m.p. 103° (from Et₂ succinate and MgBu^aBr), єк-di-n-butyltetradecane-єк-diol, m.p. 91° [from (I) and MgBu^aBr], εξ-di-n-butyloctadecane-εξdiol, m.p. 69° (from Et₂ sebacate and MgBu^aBr), and $\eta\pi$ -di-n-hexyldocosane- $\eta\pi$ -diol, m.p. 48° (from Et₂ sebacate and C₆H₁₃ MgBr), are obtained similarly. The di-tert.-glycols are dehydrated by heating for 2—3 hr. with anhyd. $H_2C_2O_4$ at 150—180°, and yield, respectively, myrcene, $\beta \eta$ -dimethyl- $\Delta^{\beta\zeta}$ -octadiene, b.p. $156-158\cdot5^{\circ}$, $\beta\iota$ -dimethyl- $\Delta^{\theta\theta}$ -decadiene, b.p. $77-79^{\circ}/3$ mm., $\gamma\mu$ -dimethyl- $\Delta^{\gamma\lambda}$ -tetradecadiene, b.p. 171·5—172°/6 mm., $\epsilon 0$ -di-n-butyl- $\Delta^{\epsilon\eta}$ -dodecadiene, b.p. 168— 170°/7 mm., εκ-di-n-butyl- $\Delta^{\epsilon i}$ -tetradecadiene, b.p. 201—202°/10 mm., and $\varepsilon \xi$ -di-n-butyl- Δ^{ev} -octadecadiene, b.p. 231—232°/9 mm.

(B) $COMe \cdot C_6H_{13} - n$ and $CH_2 \cdot CH \cdot CH_2 \cdot MgBr$ in Et_2O give δ -methyl- Δ °-decen- δ -ol, b.p. 143-145°/82 mm.,

which when passed over Al_2O_3 at 290—300° yields chiefly δ -methyl- $\Delta^{a\delta}$ -decadiene, b.p. 120—122°/74 mm., octane no. 84. The following alcohols and dienes are prepared similarly: $\beta\zeta\theta$ -trimethyl- Δ^{β} -nonen- ζ -ol, b.p. 93—94°/5 mm., and $\Delta^{\beta\zeta}$ -nonadiene, b.p. 78—80°/12—13 mm., $\beta\zeta\eta$ -trimethyl- Δ^{β} -tridecen- ζ -ol, b.p. 149—151°/5 mm., and $\Delta^{\beta\zeta}$ -tridecadiene, b.p. 115—117°/3 mm., cetene no. 28, $\beta\varepsilon\eta$ -trimethyl- Δ^{γ} -octen- ε -ol, b.p. 75—77·5°/3 mm., and $\Delta^{\gamma\zeta}$ -octadiene, b.p. 56—58°/3 mm.

(c) The following alcohols are synthesised by the Grignard reaction from the appropriate aldehydes, and when dehydrated over Al_2O_3 at $360-400^\circ$ yield the corresponding olefines: $\beta\epsilon\epsilon$ -trimethylheptan- δ -ol, b.p. $95-97^\circ/25$ mm., yielding $\beta\epsilon\epsilon$ -trimethylheptan- δ -ol, b.p. $145-147^\circ$, $\beta\zeta$ -dimethylheptan- γ -ol, b.p. $110-120^\circ/200$ mm., and $\beta\zeta$ -dimethylheptan- γ -ol, b.p. $120-130^\circ$, β -methyldecan- δ -ol, b.p. $155-165^\circ/90$ mm., and $-\Delta^\delta$ -decene, b.p. $74^\circ/4$ mm., $\epsilon\epsilon$ -dimethylheptan- γ -ol, giving $\epsilon\epsilon$ -dimethyl- Δ^γ -heptene, b.p. $120-128^\circ/753$ mm. The results of this and the preceding studies indicate that dehydration of alcohols containing primary or sec. radicals is effected between the C to which OH is attached and the neighbouring atom attached to the radical of the highest mol. wt.

Catalytic dehydration of amylene glycols. E. Beati and G. Mattei (Annali Chim. Appl., 1940, 30, 21—28).—Passage of pentane-αβ-diol over kaolin (I), basic Al sulphate (II) or phosphate (III) at 300—400° yields mainly BuCHO, the catalysts being of decreasing efficiency in the order given; with (III), small amounts of pentadiene are produced. With (I) or (II), pentane-αβ-diol yields methyltetrahydrofuran; with (III), Δαγ-pentadiene (IV) is preferentially formed. With (I) or (II), pentane-αz-diol gives tetrahydropyran; with (III), (IV) is the principal product. Butane-αγ-diol with (II) affords PrCHO (approx. 20% yield) and butylene and butadiene products. The mechanism of the changes is discussed. F. O. H.

Chemistry of naturally occurring monoanhydrohexitols. II. Synthetic tetramethylstyracitol. W. Freudenberg and J. T. Sheehan (J. Amer. Chem. Soc., 1940, **62**, 558—560; ef. A., 1937, II, 439).—Hydrogenation (Raney Ni) of tetramethylgluco-d-pyranose in aq. EtOH at 135°/85 atm. gives αγδε-tetramethylsorbitol (I), b.p. 145° (bath)/2 mm., $\lceil \alpha \rceil_{\rm p}^{23} + 10.3^{\circ}$ in EtOH, $+4.7^{\circ}$ in CHCl₃, converted by 13% H₂SO₄ at 140°/vac. into tetramethyl-αε-anhydrosorbitol, b.p. 115° (bath)/2 mm., $[\alpha]_D^{23}$ -36·2° (-36·5°) (no solvent), identical with tetramethylstyracitol, prepared from styracitol (II). This reverses the constitution assigned to (II) (loc. cit.). Methylation of (I) or sorbitol gives hexamethylsorbitol, b.p. 100° (bath)/1.5 mm., $[\alpha]_D^{24} + 1.97^{\circ}$ (no solvent). Tetramethylmannose gives similarly tetra-, b.p. 150° (bath)/2 mm., $[\alpha]_D^{21} + 20.7^{\circ}$ in EtOH, $+17.5^{\circ}$ in CHCl₃, and hexa-methylmannitol, b.p. 97° (bath)/2 mm., $[\alpha]_p^{22} + 12.53^{\circ} (12.46^{\circ})$ (no solvent) (also obtained from mannitol), and tetramethyl-az-anhydromannitol, b.p. 95° (bath)/2 mm., $[\alpha]_D^{22} + 30.6$ ° (no solvent), which is not identical with tetramethylpolygalitol, b.p. 80° (bath)/2 mm., $[\alpha]_D^{23} + 67.67^{\circ}$ (no solvent) (cf. loc. cit.). R. S. C.

Reactions of free radicals with organic compounds containing atoms with unshared electron pairs. F. O. RICE, W. D. WALTERS, and P. M. RUOFF (J. Chem. Physics, 1940, 8, 259—262).— In the thermal decomp. of MeOEt at 448° and 473° and in the promoted decomp. of MeOEt by (NMe:)₂ at 297° and 300° no trace of Me₂O was found. No NH₂Me was produced by the thermal decomp. of NH₂Pr^a at 650°/10 mm. These results indicate either that the reactions Me + ROR' \rightarrow ROMe + R' and Me + NH₂R \rightarrow NH₂Me + R do not occur or that ROMe and NH₂Me are formed and immediately redissociated into the original components.

W. R. A. Chlorine-induced decomposition of diethyl ether [and of acetaldehyde]. H. P. Meissner and H. J. SCHUMACHER (Z. physikal. Chem., 1940, 185, 447—464).—The decomp. of Et₂O at 400° under the influence of Cl₂ has been studied. All the free Cl₂ disappears instantaneously, but the decomp. continues. The same is true of a decomp. of MeCHO induced by Cl₂. Moreover, the products of either decomp. are able to induce the decomp. of fresh portions of Et_2O . The first, very rapid, stages are $\text{Et}_2\text{O} + \text{Cl}_2 = \text{MeCHO} + \text{EtCl} + \text{HCl} \text{ and MeCHO} + \text{Cl}_2 = \text{MeCl} + \text{HCl} + \text{CO}$. At the same time small amounts of a substance are formed which catalyses the decomp. of the excess of Et₂O, MeCHO, and EtCl. This catalyst is volatile between -140° and -110° , but no known substance which might be present and is volatile in this range has the observed catalytic power.

Interaction of di-β-chloroethyl ether with ethylenediamine. M. E. Hultquist and E. H. Northey (J. Amer. Chem. Soc., 1940, 62, 447—448).—(Cl·[CH₂]₂)O with an excess of (CH₂·NH₂)₂ gives 4-β-aminomorpholine (58%) with some ethylenedi-4-morpholine, m.p. 70—73°, b.p. 164—166°/30 mm. (dihydrochloride, decomp. and sublimes at >250°), and (NH₂·[CH₂]₂·NH·[CH₂]₂)₂O, b.p. 200—203°/30 mm. (tetrahydrochloride, m.p. 185—187°). R. S. C.

Preparation of $\alpha\gamma$ -epoxides. R. Lespieau (Bull. Soc. chim., 1940, [v], 7, 254—258).—Cl·[CH₂]₂·CHO (prep. from CH₂·CH·CHO described) is transformed by MgEtBr into Cl·[CH₂]₂·CHEt·OH, the acetate, b.p. 81°/13 mm., of which is converted by KOH at 140—170° into $\alpha\gamma$ -oxido-n-pentane, b.p. 88·5—89°/748 mm. Treatment of CHMe·CH·CHO with HCl gives trimeric β -chlorobutaldehyde, b.p. 192°/14 mm.; under specified conditions a partly monomeric form is obtained, which is transformed by MgEtBr into β -chloro-n-heptan- δ -ol, b.p. 75°/15 mm. The corresponding acetate, b.p. 83—84°/11 mm., is converted by KOH mainly into Δ^{β} -hepten- δ -ol, b.p. 133—135°, which freely absorbs Br.

Preparation of ethers of chlorohydrins. I. V. A. Skljarov (J. Gen. Chem. Russ., 1939, 9, 2121—2125).—Ph·SO₂·NCl₂ reacts with alcohol-olefine mixtures: Ph·SO₂·NCl₂ + 2ROH \rightarrow Ph·SO₂·NH₂ + 2ROCl; ROCl + CH₂·CR'₂ \rightarrow CH₂Cl·CR'₂·OR (R' = H, R = Me, Et, Pr, b.p. 119—120°, Bu, b.p. 139—141°; R' = Me, R = Me, b.p. 117—119°, Ei, b.p. 125—126°, Pr^a , b.p. 137°, Pr^β , b.p. 150—151°, Bu^a , b.p. 160°). With CH₂·CHMe the isomeric ethers

CH₂Cl·CHMe·OR (R = Me, Et, Pr^a , b.p. 129—130°) and CHMeCl·CH₂·OR (R = Me, Et, Pr^a) are obtained.

Synthesis of β -bromo-ethers by the bromo-amide method. I. Reaction of alcohols with benzenesulphondibromoamide in presence of olefines. M. V. Lichoscherstov, R. A. Archangelskaja, and T. V. Schalaeva (J. Gen. Chem. Russ., 1939, 9, 2085—2096).—(CHMe.)2 in ROH at -15° and Ph·SO2·NBr2 give ethers CHMeBr·CHMe·OR (R = Me, b.p. 64—65°/55 mm.; R = Et, b.p. 72—73°/25 mm.; R = Bu^{a} , b.p. 86·5—88°/25 mm.; R = Bu^{β} , b.p. 82·5—83°/25 mm.; R = isoamyl, b.p. 97—98·5°/25 mm.). CH2·CHEt in EtOH similarly yields a mixture of CH2·Br·CHEt·OEt and CHEtBr·CH2·OEt. Two diastereoisomerides of β -bromo- γ -benzenesulphonamidobutane, m.p. 86·5° and 108°, are obtained as by-products of the reaction; they are converted by KOH into trans-, m.p. 77°, and cis-dimethyl-N-benzenesulphonylethyleneimine.

Catalytic action of toluene-p-sulphonic acid in the reaction of acetals with pentaerythritol. V. G. MCHITARIAN (J. Gen. Chem. Russ., 1939, 9, 1923—1925).—The following substances were obtained by condensing pentaerythritol with acetals, in presence of traces of p-C₆H₄Me·SO₃H: pentaerythritol di-n-butaldehyde acetal, m.p. 50—60·5°, diisovaleraldehyde acetal, m.p. 110—112°, dichloroacetal, m.p. 91·8°, and dicyclohexanone ketal. R. T.

Synthesis of α - and β -glycerophosphoric acid. Y. Obata (J. Agric. Chem. Soc. Japan, 1940, 16, 175—180).— $\alpha\beta$ -isoPropylideneglycerol is converted by POCl₃ followed by hydrolysis and treatment with Ba(OH)₂ into Ba α -glycerophosphate, whilst Ba β -glycerophosphate is similarly obtained from $\alpha\gamma$ -benzylideneglycerol. The separation of the two acids and formation of the insol. double Ba salt with Ba(NO₃)₂ in the case of the β -acid (Karrer et al., A., 1926, 384) is confirmed.

Thiomethylene radical. II. Behaviour with chlorine and water. S. W. Lee and G. Dougherty (J. Org. Chem., 1940, 5, 81—85).—RSO₂Cl are obtained in good yield from $\mathrm{CH_2(SR)_2}$ (I) (R = Et, Bu°, $n\text{-}\mathrm{C_5H_{11}}$, $\mathrm{CH_2Ph}$), $\mathrm{R_2S}$ (R = Bu°, $\mathrm{CH_2Ph}$), or $\mathrm{R_2S_2}$ (R = Et, $n\text{-}\mathrm{C_5H_{11}}$, $\mathrm{CH_2Ph}$) with excess of $\mathrm{Cl_2}$ in aq. AcOH (sometimes saturated with HCl) at room temp. Similarly, $\mathrm{CMe_2(SEt)_2}$ gives $\mathrm{EtSO_2Cl}$ and $\mathrm{Cl\text{-}derivatives}$ of $\mathrm{COMe_2}$; $\mathrm{Bu^2_2SO}$ affords $\mathrm{Bu^aSO_2Cl}$; $\mathrm{Bu_2SO_2}$ and sulphonal are unaffected. Fission may occur after oxidation to the sulphoxide. The reaction with (I) is: $\mathrm{CH_2(SR)_2} + \mathrm{6Cl_2} + \mathrm{5H_2O} \rightarrow \mathrm{2RSO_2Cl} + \mathrm{CH_2O} + 10\mathrm{HCl}$; intermediate stages appear to be: $\mathrm{CH_2(SR)_2} + \mathrm{Cl_2} + \mathrm{H_2O} \rightarrow \mathrm{R_2S_2} + \mathrm{CH_2O} + \mathrm{2HCl}$ and $\mathrm{R_2S_2} + \mathrm{2Cl_2} + \mathrm{2H_2O} \rightarrow \mathrm{R_2S_2O_2} + \mathrm{4HCl}$ (proved for the $\mathrm{CH_2Ph}$ compound). Trithian reacts thus: $\mathrm{(CH_2S)_3} + \mathrm{7Cl_2} + \mathrm{5H_2O} \rightarrow \mathrm{2CH_2Cl\cdot SO_2Cl} + \mathrm{CH_2O} + 10\mathrm{HCl} + \mathrm{S}$.

Synthesis of sodium tetradecanedisulphonate. G. C. H. Stone (J. Amer. Chem. Soc., 1940, 62, 571—572).—Tetradecamethylene dibromide (prep. from the glycol by HBr), b.p. 172—175°/2—3 mm., and K Et xanthate in boiling EtOH give a liquid dixanthate,

converted by Br- H_2O etc. into Na_2 tetradecane- $\alpha\xi$ -disulphonate. R. S. C.

Fluorination. Antimony fluoride as a fluorinating agent. S. A. Voznesenski (J. Gen. Chem. Russ., 1939, 9, 2148—2152).—SbF₃ in C_6H_6 added to AcCl gives AcF in 30% yield. BzF is obtained similarly in 77% yield, with some C_6H_4 Bz·COF as a by-product. R. T.

Preparation of esters. VII. N. M. Abramova and B. N. Dolgov (J. Gen. Chem. Russ., 1939, 9, 1976—1982).—MeCHO- H_2 mixtures are passed over Cu-U or Cu-Al catalyst at 275°; the product consists of EtOAc 62, EtOH 36, MeCHO 1·2, and AcOH 0·4%; EtOH- H_2 mixtures give a condensate containing EtOAc 33 and MeCHO 30% in these conditions. The yield of AcOH and MeCHO falls, and of EtOAc and EtOH rises, with increasing $[H_2]$ of the vapour. Similar results are obtained with PrCHO. The method is probably general. R. T.

Synthesis of acetates of higher aclohols by their catalytic dehydration.—See B., 1940, 264.

Reaction of halogenoamides with acids in presence of olefines. I. Synthesis of esters of chlorohydrins of isomeric butenes. II. Reaction of benzenesulphondibromoamide with acids in presence of Δ^{β} -butene. M. V. Lichoscherstov and A. A. Petrov (J. Gen. Chem. Russ., 1939, 9, 2000—2008, 2012—2016).—I. (CHMe:)2 (I), org. acids, and PhSO2·NCl2 (II) in Et2O react at -5° as follows: (II) + RCO2H \Rightarrow PhSO2·NHCl (III) +R·CO2Cl (IV); (III)+(I) \Rightarrow Cl·[CHMe]2·NH·SO2Ph; (IV)+(I) \Rightarrow R·CO2·[CHMe]2·Cl (R=H, b.p. 147—149°; R=Me, b.p. 161—165°; R=CH2Cl, b.p. 212—214°; R=CCl3, b.p. 124·5°/3 mm.). CH2·CMe2, org. acids, and NH2·CO·NCl2 (24 hr. at room temp.) give CH2·CMe·CH2Cl and R·CO2·CMe2·CH2Cl (R=H, b.p. 144·5—146°; R=Me, b.p. 153—154·5°; R=CH2Cl, b.p. 102—105°/30 mm.; R=CCl3, b.p. 117—119°/30 mm.).

II. (I), org. acids, and PhSO₂·NBr₂ in Et₂O at -15° react as follows: PhSO₂·NBr₂ + 2(I) + $2\text{R}\cdot\text{CO}_2\text{H} \rightarrow 2\text{R}\cdot\text{CO}_2\cdot\text{[CHMe]}_2\cdot\text{Br} + \text{PhSO}_2\cdot\text{NH}_2\cdot\text{[R} = H, \text{b.p. } 53\cdot5-56^{\circ}; \text{ R} = Me, \text{b.p. } 62\cdot5-64\cdot5^{\circ}; \text{R} = CH_2Cl, \text{b.p. } 106\cdot5-107^{\circ}; \text{ R} = CCl_3, \text{ b.p. } 117-117\cdot5^{\circ}; \text{ R} = Pr, \text{b.p. } 88-89^{\circ}; \text{ R} = Bu^{\beta}, \text{ b.p. } 95\cdot5-97^{\circ} \text{ (all b.p. at } 10 \text{ mm.)}. \text{R. T.}$

Use of mercuric acetate in organic preparations. II. Use as an oxidising agent. N.V.S. RAO and T. R. SESHADRI (Proc. Indian Acad. Sci., 1940, 11, A, 23—27; cf. A., 1939, II, 496).—The progress of oxidation reactions using $Hg(OAc)_2$ as oxidising agent cannot be followed by weighing the amount of HgOAc pptd. from time to time since there are complications due to the oxidation of the solvent induced by the presence of the substance to be oxidised. Most compounds containing >CH·OH produce HgOAc in MeOH. Convenient methods for the prep. of pure benzil, quinhydrone, and HgOAc are described. W. R. A.

Relationships between polyvinyl acetates and alcohols. W. H. McDowell and W. O. Kenyon (J. Amer. Chem. Soc., 1940, 62, 415—417).—Hydrolysis of polyvinyl acetates (mol. wt. 16,500—69,200),

prepared in the laboratory, gives alcohols of lower mol. wt., no further change occurring on reacetylation or (one example only) on repeating the cycle. With commercial samples (mol. wt. 6900—73,700) degradation occurs mainly during reacetylation and very little during hydrolysis. Degradation may be due to rupture of unstable linkings, possibly including O derived from the peroxide catalyst. R. S. C.

Cleavage of unsaturated fatty acids. D. PRICE and R. GRIFFITH (J. Amer. Chem. Soc., 1940, 62, 450—451).—The work of Hsing and Chang (A., 1940, II, 65) was anticipated by Nunn et al. (A., 1935, 54) and others.

R. S. C.

Introduction of substituted vinyl groups. Rearrangement involving migration of an allyl group in a three-carbon system. A. C. COPE and (Miss) E. M. Hardy (J. Amer. Chem. Soc., 1939, 62, 441-444; cf. adjoining abstract). CMeEt:C(CN)·CO₂Et (I), CH₂:CH·CH₂Br, and NaOEt-EtOH give Et α -cyano- β -methyl- α -allyl- Δ^{β} -n-pentenoate (II) (34%), b.p. 94.5—96°/1 mm. The structure of (II) is proved by hydrogenation (Pd-C; EtOH) to Et α -cyano- β -methyl- α -n-propyl-n-valerate (III), b.p. 122.5—123.5°/11 mm., and conversion thereof by CO(NH₂)₂-NaOEt-EtOH etc. into 5-n-propyl-5-sec.butylbarbituric acid, m.p. 135—137°. (III) is also obtained by hydrogenating (Pd-C; EtOH; 1—2 atm.) (I) to CHMeEt·CH(CN)·CO₂Et, b.p. 105—106°/ 11 mm., and condensing this with PraBr-NaOEt-EtOH. Heating at 150—160° (4 hr.) or 260° (20 min.) rearranges (II) to Et α-cyano-β-methyl-γ-allyl- Δ^{a} -n-pentenoate, b.p. 147—148°/16 mm., the structure of which is proved by the exaltation (+1.53) of $[M]_{\rm p}$, cleavage by conc., aq. NH₃ at room temp. to CN·CH₂·CO·NH₂ and COEt·CH₂·CH:CH₂ (IV), b.p. 137—138° (semicarbazone, m.p. 84—85°; 2:4-dinitrophenylhydrazone, m.p. 41—42°), and synthesis from (IV), CN·CH₂·CO₂Ēt, and NH₄OAc in C₆H₆-AcOH. Compounds in which the allyl of (II) is replaced by Me, Pr, or Bu do not rearrange. cyclic rearrangement mechanism is probable.

Manufacture of higher fatty acid chlorides.— See B., 1940, 191.

Selective hydrogenation under reduced pressure of olive oil and its fatty acids. R. Escourrou and P. Sauary (Bull. Soc. chim., 1940, [v], 7, 180—184).—Hydrogenation (Raney Ni) of olive oil and of the fatty acids therefrom at 180° (and 95°) shows marked selectivity if the pressure is sufficiently low. H. W.

Petroselic acid. G. PIGULEVSKI and N. SIMONOVA (J. Gen. Chem. Russ., 1939, 9, 1928—1932).—Petroselic acid (I) and $\rm H_2SO_4$ (20 hr. at 0°) yield ζ -hydroxystearic acid, m.p. $\rm 81\cdot5-82^\circ$ (Ba, m.p. $\rm 155^\circ$, and Ca, m.p. $\rm 130-131^\circ$, salts; Et ester, m.p. $\rm 37\cdot5^\circ$). HBr and a solution of (I) in AcOH, at room temp., yield ζ -bromostearic acid, m.p. $\rm 49\cdot5-50\cdot5^\circ$, which when treated with KOH in EtOH gives the elaidic form of (I), from which the oxide of Δ -octadecenoic acid is obtained by oxidation with $\rm AcO_2H$. R. T.

Alkaloids of *Heliotropium lasiocarpum*. Structure of heliotropic acid. G. P. Menschikov

(J. Gen. Chem. Russ., 1939, 9, 1851—1855).—Heliotropic acid (I) heated with PbO₂ in 5% $\rm H_3PO_4$ yields α -methoxyethyl Pr^{β} ketone, b.p. 144—146°, $[\alpha]_{\rm b}$ +22·5° (semicarbazone, m.p. 146—147°; oxime, b.p. 108·5—109·5°/16 mm.), which with MgPhBr gives β -methoxy- γ -phenyl- δ -methylpentan- γ -ol, b.p. 112—113°/11 mm., $[\alpha]_{\rm b}$ +17·5°, oxidised by CrO₃ to COPhPr $^{\beta}$. (I) is therefore β -methoxy- δ -methylpentan- γ -ol- γ -carboxylic acid. R. T.

Copolymerisation of maleic polyesters.—See B., 1940, 223.

Introduction of substituted vinyl groups. Primary α -alkenylalkylmalonic esters. A. COPE, W. H. HARTUNG, E. M. HANCOCK, and F. S. Crossley (J. Amer. Chem. Soc., 1940, **62**, 314—316; cf. A., L/39, II, 48).—Prep. of CHR:CH·CR'(CO₂Et)₂ (A) from CHR:CH·CNa(CO₂Et)₂ and R'Br or R'I fails if R = H, but succeeds when R = alkyl if (A) is added to NaOEt-EtOH at -5° to -10° , treated with R'Hal, and immediately heated to the b.p. increase (max. 95%) as R increases in mol. wt. The following are described. Et_2 α -n-, b.p. 138—140°/20 α -iso-propyl- Δ^{β} -n-butene- $\alpha\alpha$ -dicarboxylate, andb.p. $135-135\cdot 5^{\circ}/19$ mm., Et_2 α -propenyl-n-pentane- $\alpha\alpha$ dicarboxylate, b.p. $148-151^{\circ}/20$ mm., Et_2 α -ethyl-, b.p. $134-135^{\circ}/18$ mm., α -n-, b.p. $142-145^{\circ}/19$ mm., and α -iso-propyl-, b.p. $141-143^{\circ}/19$ mm., α -allyl-, b.p. $144-145^{\circ}/17$ mm., α -n-, b.p. $152-156^{\circ}/19$ mm., and α -sec.-butyl-, b.p. $159-160^{\circ}/28$ mm., and $\alpha\delta$ -dimethyl-, b.p. $119-122^{\circ}/9$ mm., Δ^{β} -n-pentene- $\alpha\alpha$ -dimethylcarboxylate. Et₂ γ -methyl- α -ethyl- Δ^{β} -butene- $\alpha\alpha$ -dicarboxylate, b.p. $140-141^{\circ}/24$ mm. Et₂ α -ethyl-, b.p. 154—157°/27 mm., α-n-, b.p. 161—163°/26 mm., and α-iso-propyl-, b.p. 160—163°/28 mm., Δβ-n-hexene-ααdicarboxylate. Et₂ δ -methyl- α -ethyl-, b.p. 141—142°/19 mm., $-\alpha$ -n-, b.p. 154— $156^{\circ}/26$ mm., and $-\alpha$ -iso-propyl-, b.p. $152-153\cdot5^{\circ}/26$ mm., $-\Delta^{\beta}$ -n-pentene- $\alpha\alpha$ -dicarboxylate. Et_2 α -methyl-, b.p. $164-166^{\circ}/27$ mm., and α -ethyl- Δ^{β} -n-heptene- $\alpha\alpha$ -dicarboxylate, b.p. 168---R. S. C. 169.5°/28 mm.

mesoMethyltetradecylsuccinic acid. M. Asano and T. Azumi (J. Pharm. Soc. Japan, 1939, 59, 214—216).—CHMe($\rm CO_2Et)_2$, NaOEt, and Et α-bromopalmitate in EtOH at 130—140° give Et₃ heptadecane-βγγ-tricarboxylate, b.p. 220—230°/4 mm., hydrolysed to the tricarboxylic acid, decomp. 127°, which is decarboxylated at 130—140° to anti-α-methyl-α'-tetradecylsuccinic acid, m.p. 98—101°, isomeric with the acid of Asano et al. (A., 1935, 65).

Formation of boro-diol complexes. Y. Tsuzuki and Y. Kimura (Bull. Chem. Soc. Japan, 1940, 15, 27—31; cf. A., 1938, I, 354).—H₃BO₃ does not react with Et₂ d-tartrate, but BO₂' forms a l-cyclic boro-diol complex, formation of which increases with increasing [BO₂'] and with decreasing temp.

Condensation of ethylene oxides with malonic ester. K. G. PACKENDORFF (Compt. rend. Acad. Sci. U.R.S.S., 1939, 25, 387—391).—Excess of (CH₂)₂O and CH₂(CO₂Et)₂ with piperidine or NHMe₂ at room temp. for 10 days give αε-dihydroxypentane-γγ-dicarboxylolactone, m.p. 110° (85% yield) (cf. bis-γ-butyro-

153

lactone- $\alpha\alpha$ -spiran of Leuchs *et al.*, A., 1912, i, 714). At 80—120° yields are less. A. T. P.

Action of halogen halides on $\alpha\varepsilon$ -dihydroxy-pentane- $\gamma\gamma$ -dicarboxylodilactone. K. G. Packen-Dorff (Compt. rend. Acad. Sci. U.R.S.S., 1939, 25, 392—393; cf. preceding abstract).—The dilactone and HCl at 140°, or refluxing with HBr or HI, give α -(β' -chloro-, b.p. 156—157°/28 mm., -bromo-, b.p. 168—169°/25 mm., or -iodo-ethyl)butyrolactone, b.p. 178—180°/25 mm., 154°/5 mm., respectively.

Syntheses and properties of compounds of the type $CH_2[CH(COR)_2]_2$ (R = OEt or Me). M. RENARD (Bull. Acad. roy. Belg., 1939, [v], 25, 401— 415).—Et₄ methylenedimalonate [Et₄ propane- $\alpha\alpha\gamma\gamma$ tetracarboxylate] (I), b.p. 195°/8 mm., m.p. -30°, is obtained from CH₂Cl OMe and CHNa(CO₂Et)₂ followed by very slow distillation of the product, the reactions being CH₂Cl·OMe + CHNa(CO₂Et)₂ > $\begin{array}{ll} \text{OMe-CH}_2\text{-CH(CO}_2\text{Et)}_2 & \text{(II)} \;; & \text{(II)} + \text{CH}_2\text{(CO}_2\text{Et)}_2 \rightarrow \\ \text{(I)} + \text{MeOH.} & \text{Alternatively, CH}_2\text{(CO}_2\text{Et)}_2 \; \text{is brought} \end{array}$ into reaction with Mg activated by I and CH2Br2 and the product is treated with CH₂Cl·OMe. Rapid distillation of the product obtained from CHNaAc CO₂Et and CH₂Cl·OMe leads mainly to Et β-methoxymethoxycrotonate, whereas by slow distillation Et₂ methylenediacetoacetate, b.p. 182-183°/13 mm., is obtained in 64% yield; resinous products are frequently formed if the Cu derivative is used. CH₂Ac₂ is converted into its dry Na derivative, which is transformed by ${\rm CH_2Cl}$ OMe in dry ${\rm Et_2O}$ into methylenediacetylacetone (III), b.p. $160-165^\circ/10$ mm.; this passes slowly when kept, more rapidly when treated with 10% H₂SO₄, into diacetyl-m-cresol, m.p. 109— 110°, also obtained with Cu₂O when (III) is treated with $Cu(OAc)_2$. Vals. of n and d are recorded. reactions may be represented: NaR + $CH_2Cl\cdot OMe \rightarrow$ $CH_2R \cdot OMe (III) + NaCl and (IV) + HR \rightarrow CH_2R_2 +$ MeOH (V). The second change is easily realised separately, but for its incidence in this system it is necessary that NaR should be converted into HR. This is possible since CH₂Cl·OMe contains HCl and on distillation gives a mixture of max. b.p. containing rather more free HCl than is necessary to convert half the NaR present into HR and NaCl. A part of the metallic derivative is therefore converted into HR and the remainder reacts normally with CH2Cl·OMe to give the ·CH₂·OMe derivative. If the starting point is the Na derivative the change (V) proceeds slowly and the amount of $\mathrm{CH_2R_2}$ produced is then a function of the rate of distillation, whereas if the Cu compound is used the CuCl formed has a catalytic action whereby all the ·CH₂·OMe compound is converted into CH₂R₂. In confirmation it is observed that the yield of CH₂R·OMe is never >50% of that theoretically possible and that when the Cu derivative of RH is used it is impossible to isolate CH₂R·OMe.

Ferritartrates. E. POULENC-FERRAND (Compt. rend., 1940, 210, 299—301; cf. Pariselle *et al.*, A., 1934, 252).—Na₂CO₃ or K₂CO₃ ppts. alkali ferritartrates when added to a solution of N-FeCl₃ and N-tartaric acid (H₂X) at room temp. The ochre ppt. (I) first formed ($p_{\rm H} < 3$) gradually dissolves when more carbonate is added and then a brick-red ppt. (II) is

obtained $(p_{\rm H} < 8)$. (I) is ${\rm H_4[Fe_4X_3(OH)_4],10H_2O}$ and (II) is ${\rm K_4(or~Na_4)[Fe_4X_3(OH)_4]}$. The following are prepared ${\rm [R = Fe_4X_3(OH)_4]:~Na_2H_2R}$; ${\rm K_2H_2R}$; ${\rm Na_3HR}$; ${\rm K_3HR}$; ${\rm Na_4R}$; ${\rm K_4R}$. The compounds decompose below 100° and in light. J. L. D.

dl-Threonic acid from γ -hydroxycrotonic acid. J. W. E. GLATTFELD and E. C. LEE (J. Amer. Chem. Soc., 1940, 62, 354—356).—The preps., CH₂:CH·CHO \rightarrow CH₂:CH·CH(OH)·CN \rightarrow CH₂:CH·CH(OH)·CO₂Et (61%) \rightarrow CH₂Br·CH:CH·CO₂Et (51%) \rightarrow OH·CH₂·CH:CH·CO₂H (I) (27·8%) (cf. Kirrmann et al., A., 1932, 600) are modified. AgClO₄-OsO₄ in H₂O converts (I) into dl-threonic acid in 48% (4·1% over-all) yield. R. S. C.

Production of ascorbic acid.—See B., 1940, 244.

Dehydroascorbic acid.—See A., 1940, III, 324.

Isolation of keturonic acids. II. L. T. Crews, J. P. Hart, and M. R. Everett (J. Amer. Chem. Soc., 1940, **62**, 491—493).—The following are isolated (method: A., 1939, II, 405): brucine l-xylo-, $+H_2O$, m.p. 147—148° (decomp.), $[\alpha]_D^{25}$ —29·5° in H_2O , l-arabo-, $+2H_2O$, m.p. 160—161°, $[\alpha]_D^{25}$ —13° in H_2O , and d-chito-keturonate, $+1\cdot5H_2O$, m.p. 177—178°, $[\alpha]_D^{25}$ —50·5° in H_2O . β -Glucosan gives an anhydride, keto- β -glucosan, $C_6H_8O_5$, $+0\cdot5H_2O$, m.p. 181—182° (decomp.), $[\alpha]_D^{25}$ —62° in H_2O , slowly hydrolysed by hot $0\cdot6$ N- H_2SO_4 . A nomenclature for dicarbonyl sugars is suggested. R. S. C.

Detoxication. V. Preparation of d-glucurone from ammonium menthylglucuronate. R. T. Williams (Biochem. J., 1940, 34, 272—275).—NH₄ menthylglucuronate isolated from the urine of rabbits fed with dl-menthol is converted into the free acid, which is hydrolysed by boiling 0-4N-H₂SO₄. 39—40 g. of glucurone are obtained from 100 g. of menthol administered. Glucuronic acid 2:4-dinitrophenylhydrazide has m.p. 205° (decomp.).

So-called artificial humic acids. I. UBALDINI and C. SINIRAMED (Atti X Congr. Internaz. Chim., 1938, III, 682—689).—Sucrose or glucose in conc. HCl gives products (I) resembling humic acids (cf. Plunguian et al., A., 1935, 623). Similar products (II) are obtained from o-, m-, and p-C₆H₄(OH)₂ and pyrogallol with K₂S₂O₈ (cf. Eller et al., A., 1920, i, 733). (II) are sol. in dil. alkali, but (I) are sol. only to a very small extent. The C content of (I) is > that of (II). The total acidity of (I) is < that of humic acids (III) from lignite or peat < that of (II). Content of CO₂H and phenolic OH is also recorded. (I) and (II) do not very closely resemble either (III) (which always contain N) or one another.

Structure of pectin substances. T. K. Gaponenko (J. Gen. Chem. Russ., 1939, 9, 1752—1754).—Polygalacturonic acid from sugar beet has a polymerisation coeff. of 165; that of its NO₂-derivative is 75.

R. T.

Catalytic action of vanadium oxides in conversion of methyl alcohol into formaldehyde.—See B., 1940, 190.

Free radicals in the pyrolysis of acetaldehyde. M. Burton, J. E. Ricci, and Y. W. Davis (J. Amer. Chem. Soc., 1940, 62, 265—267).—The formation of free alkyl radicals in low concn. from the pyrolysis of MeCHO at 500° has been demonstrated by their power of transporting Ra-D (Pb) mirrors, using a modification of the apparatus of Leighton and Mortensen (A., 1936, 573).

W. R. A.

Manufacture of α-chloro-β-alkoxybutalde-hydes.—See B., 1940, 191.

Anomalies in the $\alpha\beta$ -unsaturated aldehyde and ketone series. V. I. Esafov (J. Gen. Chem. Russ., 1939, 9, 1841—1845).—Polemical (cf. Tschelincev, A., 1936, 996). R. T.

Improved apparatus for the laboratory preparation of keten and butadiene. J. W. WILLIAMS and C. D. HURD (J. Org. Chem., 1940, 5, 122—125).— A lamp (containing an electrically-heated, coiled "Chromel A" filament) capable of converting COMe2 into keten (0.45 mol. per hr.) and cyclohexene into (CH₂:CH)₂ (0.28 mol. per hr.) is described.

Oxidation of organic compounds with selenium dioxide. VI. Oxidation of ketones in alcoholic solutions. N. N. Melnikov and M. S. Rokitzkaja (J. Gen. Chem. Russ., 1939, 9, 1808—1812).—The velocity of oxidation of ketones by SeO₂ in alcoholic solutions at 30° varies as follows: COMe₂ > COMeEt > COMePr; MeOH < EtoH < Bu⁶OH < Bu⁶OH > iso-C₅H₁₁·OH; aq. alcohols > anhyd. alcohols. R. T.

Preparation of aliphatic α -ketols from magnesium organic compounds and furfuraldehyde. V. I. Kuznetzov (J. Gen. Chem. Russ., 1939, 9, 2263—2268).—Furfuraldehyde and MgRI in boiling xylene yield compounds OH·CHR·CO·CH₂·CH·CHR [R=Et, b.p. 77—79°/6 mm.; R=Pr², b.p. 128—130°/6 mm. (oxime, m.p. 62—63°); R=Buβ, b.p. 156—158°/5 mm.; R=iso- C_5H_{11} , b.p. 173—175°/6 mm. (oxime, m.p. 106°)], with furyl-ethyl-, -propyl-,-isobutyl-, b.p. 92—94°/5 mm., or -isoamyl-carbinol.

R. T. αδ-Dibromo-αδ-dipivalylbutane [δη-dibromo- γ 0-diketo-ββιι-tetramethyl-n-decane]. R. C. Fu-SON and J. W. ROBINSON, jun. (J. Amer. Chem. Soc., 1940, **62**, 358—360).—(CH₂·CH₂·COCl)₂ (0·136 mol.) and MgBu^vCl (0·3 mol., optimum) in Et₂O at 0° give γ θ-diketo-ββιι-tetramethyl-n-decane (I) (25%), m.p. $\bar{52}$ — (di-2:4-dinitrophenylhydrazone, m.p. 251— 252°), with $\sim\!\!20\%$ of s-keto- $\zeta\zeta$ -dimethyl-n-octoic acid, m.p. 45—47°, b.p. 151—153°/2 mm. (formed by incomplete reaction), and the impure diol (II), (CH₂·CH₂·CHBu^γ·OH)₂, b.p. 119—124°/3·5 mm. An excess of MgBu'Cl gives only an oily reduction product [(II) and/or the derived OH-ketone], from which CrO₃ yields only a little (I). Br-CCl₄ converts (I) into the $\delta \eta$ -Br₂-derivative (III), m.p. 119.5—120°, the structure of which is shown by cleavage of its pyridinium salt by alkali to $\ddot{\text{BurCO}_2\text{H.}}$ $\ddot{\text{NHEt}_2}$ in boiling C_6H_6 converts (III) into $\gamma\theta$ -diketo-ββιιtelramethyl- $\triangle^{\delta\zeta}$ -decadiene (21%), m.p. 145—146° (di-2:4-dinitrophenylhydrazone, m.p. 280—282°), which

does not react with (CH·CO),O, is reduced by $Na_2S_2O_4$ to a substance, m.p. 70—72°, or by H_2 – Ni to (I), and with MgPhBr gives Raney $(CHPh \cdot CH_2 \cdot COBu^{\gamma})_2$. NaCN and (II) in boiling γθ-diketo-δη-dicyano-ββιι-tetra-EtOH-EtOAc give methyl-n-decane (IV), m.p. 92—93°, and a liquid cyanocyclobutane or cyanopyran derivative, b.p. 163—168°/6 mm. (2:4-dinitrophenylhydrazone, m.p. 225—227°; oximes, m.p. 183—185° and 146—148°). (IV) liberates 2 CH₄ from MgMeI, but alkylation and ring-closure could not be effected. Hydrolysis of (IV) is difficult, NaOH having no effect and conc. HCl at 140—150° yielding γθ-dichloro-ββu-tetramethyl-n-decane-δη-dicarboxylamide, m.p. 198—200°

Photochemical reactions in the o-nitrobenzylidene acetal series. XIII. o-Nitrobenzylidenexylose and -cyclohexane-1: 2-diol. XIV. Constitution of the di-o-nitrobenzylidene acetals of glucose, galactose, and mannose and of their products of photochemical isomerisation. XV. Attempted syntheses of disaccharides. Tanasescu and M. Ionescu (Bull. Soc. chim, 1940, [v], 7, 77—83, 84—90, 90—94).—XIII (cf. A., 46). Condensation of xylose with o-NO₂·C₆H₄·CHO in presence of P_2O_5 at 40—45° gives 1:2-3:5-di-o-nitrobenzylidenexylose, m.p. 110—115° (probably a mixture of isomerides), rapidly converted by insolation in CHCl₃ into 1:2-o-nitrobenzylidenexylose 3-o-nitrosobenzoate, m.p. 130—135°. This is converted by NH₂Ph in glacial AcOH at 100° into 1:2-o-nitrobenzylidenexylose o-benzeneazobenzoate, m.p. 160-165° after softening, and by BzCl in C_5H_5N into 1:2-o-nitrobenzylidenexylose 5-benzoate 3-o-nitrosobenzoate, m.p. 85—90°. cycloHexane-1:2diol and o-NO₂·C₆H₄·CHO under the influence of P₂O₅ or, preferably, of H₂SO₄ (1:1 vol.) yield o-nitro-benzylidenecyclohexane-1:2-diol (probably a trans derivative), m.p. 104—105°. This is isomerised by insolation to 2-hydroxycyclohexyl o-nitrosobenzoate, m.p. 145—146° (violent decomp.), which gives green solutions and is converted into 2-hydroxycyclohexyl o-benzeneazobenzoate and 2-benzoyloxycyclohexyl o-nitrosobenzoate, m.p. 138—142° to a green liquid.

XIV (cf. A., 1936, 593, 1234). Unsuccessful attempts are described to identify the sugar residue of di-o-nitrobenzylidene-glucose (I), -galactose (II), and -mannose (III) and of the identical product (IV) obtained by insolation of them. The products of the hydrolysis of (I) by HCl and Pr^aOH are o-NO₂·C₆H₄·CHO and minute amounts of a (?) sugar, m.p. 75—77°, which yields a *phenylhydrazone*, m.p. 120-130° (which does not correspond with any known hexosehydrazone), and an osazone, m.p. 195—198°, which could not be identified. (II) and (III) give different products when hydrolysed but the course of the reaction appears similar. Attempts to oxidise (I), (II), or (III) with conc. HNO₃ lead only to hydrolysis with production of o-NO2 C6H4 CHO or o-NO2 C6H4 CO2H according to the duration of the reaction and probable destruction of the sugar component. Since basic acetals are more readily hydrolysed than NO₂-acetals, unsuccessful attempts have been made to condense glucose with

p-NMe₂·C₆H₄·CHO. (I) and Na₂S₂O₄ in boiling

COMe₂-EtOH give a product, m.p. 138—142°, probably a mixture of unchanged (I) and its reduction products. Na₂S in boiling EtOH transforms (I) into a substance giving a phenylhydrazone, m.p. 155—165°; (II) and (III) behave similarly. Reduction could not be effected with Zn dust in EtOH or by H₂ (PtO₂ or spongy Pd in MeOH, EtOAc, or AcOH). Attempted hydrolysis of (IV) gives only ill-defined products. According to conditions (IV) and HNO₃ give very small amounts of an acid, m.p. 130—135°, or a nonacidic compound, m.p. 148—150°, which could not be identified. The same substances result from (IV) whether produced from (I), (II), or (III). Reduction of (IV) with Na₂S gives a material which yields a hydrazone, m.p. 130—140°, which could not be identified.

XV. Attempted condensation of (I), (II), or (III) with acetobromoglucose (V) in presence of Ag₂O gives unchanged material whereas in presence of Hg(OAc)₂ these materials are accompanied by r-trehalose octaacetate (VI), m.p. 130° [formed by autocondensation of (V)], deacetylated (NaOMe in MeOH) to r-trehalose, m.p. 90°, decomp. 110°, which does not reduce Fehling's solution. If (IV) is treated with Ag_2O in boiling CHCl₃ or dioxan, a substance (VII), m.p. 175°, results. This is also formed by use of Hg(OAc)2 in boiling dioxan; if (V) is added it is accompanied by (VI). (VII) contains an o-NO₂·C₆H₄·CH group since it is transformed by insolation in CHCl₃ into an isomeride, m.p. 180—182°. o-Nitrobenzylidenepentaerythrityl o-nitrobenzoate and 2-hydroxycyclohexyl onitrobenzoate are converted by Ag_2O or $Hg(OAc)_2$ into unidentified compounds. H. W. unidentified compounds.

Constitution of verbascose, a new pentasaccharide. S. MURAKAMI (Proc. Imp. Acad. Tokyo, 1940, 16, 12—14; cf. Bourquelot et al., A., 1910, i, 817).—The fresh roots of Verbascum thapsus are extracted with hot 95% EtOH and the extract is treated successively with Pb(OAc)₂ and Ba(OH)₂. The Ba compound of verbascose is decomposed by The Ba compound of verbascose is decomposed by CO_2 and the liberated (I) is purified by pptn. from H_2O by EtOH. (I), m.p. 253° , $[\alpha]_D^{20} + 170 \cdot 2^\circ$, is $C_{30}H_{52}O_{28}$. It gives the compounds, $C_{30}H_{35}O_{26}Ac_{17}$, m.p. 132° , $[\alpha]_D^{30} + 130 \cdot 4^\circ$, $C_{30}H_{35}O_{26}Bz_{17}$, m.p. 132° , $[\alpha]_D^{30} + 141 \cdot 1^\circ$, and $C_{30}H_{35}O_{29}(OMe)_{17}$, a syrup, $[\alpha]_D^{30} + 123 \cdot 6^\circ$. Hydrolysis of (I) by 20%, AcOH gives fractions (II) (I mal) and a taterage (III) may 240° , and fructose (II) (1 mol.) and a tetraose (III), m.p. 240°, and by dil. H₂SO₄ yields (II) (1 mol.), glucose (ÎV) (1 mol.), and galactose (3 mols.). Fructosephenylosazone can be isolated after hydrolysis of (I) with yeast- or takainvertase and galactosephenylmethylhydrazone after hydrolysis with emulsin. The sequence of glycosidic linkings in the mol. of (I) is therefore galactosidogalactosido-galactosido-glucosido-fructose. haustive methylation (Me₂SO₄ and NaOH) of (I) followed by hydrolysis and distillation gives a tetramethylmonose fraction from which 2:3:4:6-tetramethylgalactopyranose (V) is obtained and characterised as the anilide and 1:3:4:6-tetramethylfructofuranose. Further methylation of the trimethylmonose fraction by MeI and Ag₂O gives (V) and 2:3:4:6-tetramethylglucopyranose. The eryst. Me₃ derivative and CPh₃Cl afford 6-triphenylmethyl-2:3:4-trimethylglucose, $[\alpha]_D^6$ +30.9°. (III) is

oxidised by Br to a mixture of acids from which after exhaustive methylation, hydrolysis, and distillation $\alpha\beta\delta\epsilon$ -tetramethyl-d-gluconic acid is derived, thus showing that the galactose residue is attached to $C_{(4)}$ of (IV). Methylation of (III) followed by hydrolysis and distillation gives a tetramethylmonose fraction and 2:3:4-trimethylgalactopyranose. (I) is therefore (A).

Thermal dissociation of some glucosides. Z. Jerzmanowska (Atti X Congr. Internaz. Chim., 1938, III, 212).—Certain glucosides [e.g., quercitrin (I), hyperin, or phloridzin (II)] when acetylated and heated in vac. dissociate into acetylated aglucone and unsaturated anhydro-sugar. Thus (I) gives 2-hydroxyrhamnal triacetate, m.p. 74°. The products from (II) both undergo further change. E. W. W.

Centaurea scabiosa, L. C. Charaux and J. Rabaté (J. Pharm. Chim., 1940, [ix], 1, 155—162).— Boiling $\rm H_2O$ extracts from the leaves scutellaroside, m.p. ~205°, ~230° (block), [α]_b = 138° in $\rm H_2O$ - $\rm C_5H_5N$ (+2 $\rm H_2O$, [α]_b = -128° in $\rm C_5H_5N$ - $\rm H_2O$). It gives a green colour with FeCl₃ in EtOH; an alkaline solution is rapidly oxidised and hydrolysis (boiling AcOH-10% $\rm H_2SO_4$) gives glycuronic acid and scutellarol, m.p. 345—350° (Ac derivative, m.p. 253°), which when fused with KOH affords 1:3:5- $\rm C_6H_3(OH)_3$ and $p\text{-}OH\text{-}C_6H_4\text{-}CO_2H$. J. L. D.

Lespedin, a dirhamnoside of campherol. S. HATTORI and M. HASEGAWA (Proc. Imp. Acad. Tokyo, 1940, **16**, 9—11).—Lespedin (I) (A; R =R'' = rhamnose residue; R' = R''' = H), C₂₇H₃₀O₁₃,from Lespeza crytobotrya, forms pale yellow needles or plates, m.p. 234° (+3.5H₂O). In EtOH it gives a violet-brown colour with FeCl₃. It is hydrolysed by boiling, dil. mineral acids to campherol (1 mol.) and lrhamnose (II) (2 mols.). (I) separates from H₂O in thin prisms, m.p. 193° (indef.); since the m.p. is unchanged after 3 hr. at 110°, (I) is probably dimorphous. Its identity with campheritrin from the leaves of Indigofera arrecta is doubtful. (I) is transformed by CH₂N₂ in MeOH into the Me ether (A; R = R'' = rhamnose residue;R' = H: Me), m.p. 236°, which gives a violet-brown colour with FeCl₃ and is hydrolysed to campherol Me ether. The two mols. of (II) are not therefore present as a disaccharide but independently united at 3 and 7.

Treatment of (I) with a large excess of CH_2N_2 affords the Me_2 ether (A; R = R'' = rhamnose residue; R' = R''' = Me), m.p. 173°, which

does not develop a colour with FeCl₃ and is hydrolysed to campherol Me₂ ether, which gives a brownviolet reaction with FeCl₃. Methylation of (I) with MeI and K₂CO₃ in COMe₂ gives the yellow K salt of a methylated derivative, converted by dil. HCl into a new glucoside which contains only I mol. of (II) and OH additional to those originally present and causative of the violet colour with FeCl₃. The constitution assigned to (I) is supported by its absorption spectrum. H. W.

Structure of eisenin.—See A., 1940, III, 367.

Acetolysis of methylated starch. S. Peat and J. Whetstone (J.C.S., 1940, 276—280).—A new method of determining the chain length of starch is described. Trimethylstarch (obtained by exhaustive methylation of potato starch) reacts completely with AcBr in CHCl₃ at 20° in 10 hr. If after a shorter time the mixture is poured on to ice, and the mixed bromohydrins are converted by MeOH into methylglucosides, mixtures of mono-, di-, and tri-saccharides arc formed, separable by fractional distillation. After 20 min., the whole of the end group has been removed as tetramethylmethylglucoside (I) companied in the monosaccharide fraction by 2:3:6trimethyl- (11) and by some dimethyl-methylglucoside The disaccharide fraction (and similarly the tri- and higher fractions) is hydrolysed by MeOH-HCl to (II) and some (III), without (I). The only trimethylmethylglucoside found is (II). After 5 min. only, the whole of the end group is found in (I), in an amount corresponding with a chain length of 27 glucose E. W. W.

Inulin and its mol. wt. S. Bezzi (Atti X Congr. Internaz. Chim., 1938, 111, 39—46).—In H_2O , inulin, $(C_6H_{10}O_5)_n$ (purification modified), shows cryoscopically a mol. wt. of 3764 (n=23). By isothermal distillation at 20° (cf. Ulmann, A., 1934, 987), a mol. wt. of 7777 (n=48) is found. This is of the same order as that deduced chemically (cf. Haworth et al., A., 1932, 1117), showing that inulin in H_2O is in mol. dispersion. Results obtained by Brintzinger et al. (A., 1932, 836) by dialysis are unreliable owing to the thread-like character of the mol. (cf. Staudinger et al., A., 1936, 146). Vals. of K_m obtained viscosimetrically are of the anticipated order of magnitude. E. W. W.

Natural depolymerisation products of inulin. S. M. Strepkov (J. Gen. Chem. Russ., 1939, 9, 1990—1999).—A new, non-reducing trifructoside, polygontin, sintering at $207-208^{\circ}$, $[\alpha]_{\rm b} -53\cdot3^{\circ}$ in ${\rm H_2O}$ (Ac_{11} derivative, m.p. $84-85^{\circ}$, $[\alpha]_{\rm b} -38\cdot37^{\circ}$ in CHCl₃), is isolated from Polygonatum sewerzowii roots. It is readily hydrolysed by 1% HCl, but not by invertase, emulsin, or diastase. Allium sewerzowii bulbs yield a non-reducing difructoside, alliuminoside, m.p. $92-93^{\circ}$, $[\alpha]_{\rm b}^{18}-23\cdot8^{\circ}$ in ${\rm H_2O}$, not hydrolysed by

invertase. Eremerus sogdianus roots contain a reducing α -difructoside, sogdianose, m.p. 84—85°, $[\alpha]_D^{20}$ —16·4° in H₂O (osazone, m.p. 198—199°), hydrolysed by 1% HCl or invertase, but not by cmulsin.

Structure of hemicellulose B.—See A., 1940, III, 368.

Glyceryl derivatives of cellulose. S. N. Danilov, M. E. Dinkin, N. I. Orlova, and A. A. Rabinkov (J. Gen. Chem. Russ., 1939, 9, 1674—1681).— Alkali-cellulose and epichlorohydrin yield insol. $\alpha\gamma$ -di-ethers of glycerol, the nitrates and acetates of which are prepared. The OH·CH(CH₂·C·)· bridges of these ethers may connect two C of the same or of different $C_6H_{10}O_5$ units. Sol. mono-ethers are obtained with glycide. R. T.

Reaction of ethylenediamine with carbon disulphide: $\alpha\beta$ -dithiocarbimidoethane. A. J. Jakubovitsch and V. A. Klimova (J. Gen. Chem. Russ., 1939, **9**, 1777—1782).— $(CH_2\cdot NH_2)_2$ and CS_2 in aq. NaOH (2 hr. at 50°) yield ethylenebisdithiocarbamic acid $[Na_2 \text{ salt}, +6H_2O \text{ (I)}]$, which readily eliminates CS_2 when heated, giving ethylenethioureide. (I) in H_2O and $ClCO_2Et$ at $5-10^\circ$ afford the substance, $(CH_2 \cdot NH \cdot CS_2 \cdot CO_2Et)_2$, m.p. $S5 \cdot 5^{\circ}$ (decomp.), which when heated in vac. yields αβ-dithiocarbimidoethane, b.p. $151 \cdot 5 - 152^{\circ}/15$ mm., $140^{\circ}/10$ mm., and this with NH₂Ph in Et₂O gives αβ-di(phenylthiocarbamido)ethane, $(NHPh \cdot CS \cdot NH \cdot CH_2)_2$, m.p. 171—172°. CS_2 and $(CH_2 \cdot NH_2)_2$ in EtOH yield the internal salt $\stackrel{S}{\longrightarrow} \stackrel{CS}{\longrightarrow} NH$, the Na salt of which when treated with ClCO₂Et gives the substance $CO_2Et\cdot NH\cdot [CH_2]_2\cdot NH\cdot CS_2\cdot CO_2Et$, m.p. $58-59^{\circ}$ (de-

Higher ammoniates of complex compounds.—See A., 1940, I, 230.

Structure of amine oxides. I. N-Oxides and NN'-dioxides of tertiary amines. M. Polonovski [with P. Boulanger and H. Taghavi] (Atti X Congr. Internaz. Chim., 1938, III, 303—306).—(CH₂·NMe₂)₂ (I) gives an N-oxide, C₆H₁₆ON₂,4H₂O (dihydrochloride, m.p. 160°; dihydrobromide, m.p. 192°; dipicrate, m.p. 148°). Similarly NMe₂·[CH₂]₃·NMe₂ (II) gives an N-oxide (+H₂O₂) (hydrochloride, m.p. 179°; picrate, m.p. 168°). Both these are monobasic to Me-orange. In non-formation of an NN'-dioxide, sparteine (III) resembles (I) and (II), and this property is thus no indication of asymmetry in (III).

Esters of choline and its homologues. I. S. I. Lurie and Z. I. Fedorova (J. Gen. Chem. Russ., 1939, 9, 2075—2080).—Esters of dialkylcholine or its homologues when treated with alkyl halides yield the following quaternary NH₄ salts: γ-dimethylaminopropyl 2-phenylquinoline-4-carboxylate methochloride, m.p. 195—196°, and methiodide, m.p. 182—184°; γ-diethylaminopropyl 2-phenylquinoline-4-carboxylate ethobromide, m.p. 207—208°; β-dimethylaminoethyl 2-phenylquinoline-4-carboxylate methiodide; β-dimethylaminoethyl 2-butoxyquinoline-4-carboxylate methobromide, m.p. 133—135°; γ-dimethylaminopropyl 2-butoxyquincline-4-carboxylate methochloride, m.p. 128

—130°; γ-diethylaminopropyl 2-butoxyquinoline-4-carboxylate ethobromide, m.p. 165—166°; triethyl-β-paminobenzoylethylammonium bromide, m.p. 159—161°; trimethyl-β-salicylethylammonium bromide, m.p. 177—178°; trimethyl-γ-salicylpropylammonium chloride, m.p. 140—142°; triethyl-γ-salicylpropylammonium bromide, m.p. 141—143°. These salts have a physiological action similar to that of choline. R. T.

Synthesis and determination of the lipotropic activity of the betaine hydrochlorides of alserine, all-threonine, and al-allothreonine. H. E. Carter and D. B. Melville (J. Biol. Chem., 1940, 133, 109—116).—Methylation of the NH₂-acid by KOH-MeOH and hydrolysis of the product by HCl gives dl-serine- (I), m.p. 198—199°, dl-allothreonine- (II), m.p. 166—168°, and dl-threonine-betaine hydrochloride (III), m.p. 162—164°. Hydrolysis of (II) and (III) with NaOH gives MeCHO and betaine. (I), (II), and (III) do not prevent the development of a fatty liver in rats fed on a high-fat, low-protein diet. J. D. R.

Synthesis of β-hydroxyvaline and α-methylamino-β-hydroxy-n-butyric acid. M. A. Prokofiev and M. M. Botvinnik (Compt. rend. Acad. Sci. U.R.S.S., 1939, 25, 488—492).—CMe₂:CH·CO₂H and Hg(OAc)₂ in MeOH, best (73%) at 18°, give β-methoxy-α-anhydromercuriisovaleric acid,

OMe·CMe₂·CH $\stackrel{\text{Hg}}{\stackrel{\text{CO}}}}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}}{\stackrel{\text{CO}}}}{\stackrel{\text{CO}}}}{\stackrel{CO}}}}}}}}}}}}}}}}}}}}, until nutil nut$

Hydroxylysine. D. D. Van Slyke, A. Hiller, D. A. MacFadyen, A. B. Hastings, and F. W. Klemperer (J. Biol. Chem., 1940, 133, 287—288).— The $(NH_2)_2$ -acid (I) from gelatin (cf. A., 1938, III, 757) on electrometric micro-titration shows three buffer groups with pK' vals. of 2·20, 8·70, and 9·50 (lysine shows 2·20, 8·90, and 10·28). Oxidation with HIO₄ at $p_{\rm H}$ 8—12 gives 1 mol. each of NH_3 and CH_2O . From this, with the evidence previously presented (loc. cit.), it is suggested that (I) is α s-diamino- δ -hydroxy- or $\alpha\delta$ -diamino- ε -hydroxy-hexoic acid.

J. D. R. Alkaline hydrolysis of acetylated dipeptides.—See A., 1940, I, 223.

Sulphonium reactions of methionine and their metabolic significance.—See A., 1940, III, 327.

Condensation of N-halogenoamides with aliphatic sulphides. I. V. G. Petrov (J. Gen. Chem. Russ., 1939, 9, 1635-1641).—NHAcCl and sulphides in anhyd. COMe₂ do not yield the expected sulphinimines. The reaction is $R_2S + NHAcCl \rightarrow R_2SO + 2NH_2Ac$,HCl. With chloramine-B or -T in CHCl₃, COMe₂, or aq. EtOH the reactions are: $R_2S + R'\cdot SO_2\cdot NHCl \rightarrow R_2S\cdot N\cdot SO_2R'$ (R' = Ph, $R = Pr^\beta$, m.p. 98°; $R = Bu^a$, m.p. 65°; R = isoamyl, m.p. 87—88°; $R' = p\cdot C_6H_4Me$, $R = Pr^\beta$, m.p. 101—102; R = isoamyl, m.p. 112°).

Action of hydrazine hydrate on derivatives of organic acids. M. Freri (Atti X Congr. Internaz. Chim., 1938, III, 150—154).—The ester or chloride of dimethylaerylic acid with N₂H₄,H₂O (I) gives only resins. Me angelate and (I) in boiling EtOH give dimethylpyrazolone. Tiglyl chloride and (I) in MeOH yield tiglindihydrazide, m.p. 182—183°. Me tiglate (II) in two experiments gave a small quantity of a substance, m.p. 245°; otherwise (II) or the amide gives only resins. Et p-nitrocinnamate and (I) in EtOH give a product, m.p. 147°, containing 2N₂H₄, converted by conc. HCl into a product, m.p. 198°, and into p-nitrocinnamhydrazide hydrochloride, m.p. 203°. With anisaldehyde, vanillin, and piperonal, (I) in EtOH gives compounds, C₁₇H₁₅O₄N₃, m.p. 198°, C₁₇H₁₅O₃N₃, m.p. 180°, and C₁₇H₁₃O₃N₃, m.p. 217°, respectively. Et ethoxycinnamate and (I) in EtOH give a compound, C₁₃H₂₉O₂N₂ (sic), m.p. 156°.

Citracononitrile. G. Duez (Bull. Acad. roy. Belg., 1939, [v], 25, 646—653).—Mesacononitrile (I) is not isomerised by exposure to ultra-violet light in the liquid or gaseous state or in C_6H_6 . In COMe₂ citracononitrile (II), b.p. $106.5-107^{\circ}/10$ mm., m.p. $12.8-13.5^{\circ}$, and an additive product (III) of COMe₂ and (I) or (II) result. The removal of (I) from this mixture is readily effected by fractional distillation whereas (II) and (III) appear to give an azeotropic mixture, b.p. $105-106^{\circ}/10$ mm., which is separated into its components by fractional crystallisation. There is little difference in d but much difference in b.p. and m.p. between (II) and mesacononitrile. The difference in mol. refraction is almost identical with that observed between fumaro- and maleo-nitrile.

Attempted preparation of $\alpha\beta$ -oxido- α -ethylpropionitrile. G. JNOFF (Bull. Acad. roy. Belg., 1939, [v], **25**, 632-645).—Addition of HOCl to CH₂:CEt·CN at 0° comparatively rapidly yields (?) α-chloro-α-chloromethylbutyronitrile, b.p. $37^{\circ}/10$ mm., $\alpha\beta$ -oxido- α -methylbutyronitrile, 142.2—142.6°/755 mm. [identical with that obtained by Gerbaux (unpublished work) from angelonitrile and converted by NaOH into αβ-dihydroxy-α-methylbutyronitrile, m.p. 106·1—106·7°], and β-chloro-αhydroxy-α-methylbutyronitrile, b.p. 99·5—100·5°/10 mm. CH₂Cl·COEt and KCN readily yield α-hydroxyα-chloromethylbutyronitrile, b.p. 104.6—104.8°/10 mm., hydrolysed by fuming HCl at 100° to α-hydroxy-αchloromethyl-n-butyric acid, m.p. 85·6—86·4°. Gradual addition of aq. KCN to CH₂Cl·COEt gives a volatile fraction which possibly contains some epoxynitrile and (?) γ-keto-α-propionylhexonitrile, m.p. 29-30° (semicarbazone, m.p. 214-216°), also obtained by the action of KCN on CH2Cl·CEt(OH)·CN. Almost quant. removal of HCN can be effected by 0.1N-AgNO₃ from OH·CMeEt·CN, CHMeCl·CMe(OH)·CN, b.p. 101° or 94° , or $OH \cdot CEt(CH_2Cl) \cdot CN$ whereas $\geq 2\%$ of the HCl is removed.

Action of ethyl and phenyl azides on furning sulphuric acid. K. W. Sherk, A. G. Houpt, and A. W. Browne (J. Amer. Chem. Soc., 1940, 62, 329—331).—When dry PhN₃ vapour is passed slowly into fuming H₂SO₄ at room temp. N₂ is evolved and the

H₂SO₄ becomes maroon colour. After all the gas has been evolved the solution is added to vigorously stirred, ice-cold Et₂O when a bulky, rose-coloured ppt. (I), which is very hygroscopic and becomes blue and sticky on exposure to air, is deposited. It is sol. in H₂O, from which there separate needles, sol. in dil. NaOH, re-pptd. by acid, and giving analysis of $4:1:2-NH_2\cdot C_6H_3(OH)\cdot SO_3H, H_2O$ (II). (I) chars without melting, yields an aq. solution which gives a positive PhOH test, does not liberate I from acidified KI, but gives a ppt. of BaSO₄ with BaCl₂ and HCl. Analysis and other data indicate that (I) is mainly phenylaminomonopersulphuric-m-sulphonic acid which, on hydrolysis, yields (II). Dry EtN₃ vapour passed into fuming H₂SO₄ gives products which are hydrolysed to MeCHO, CH₂O, NH₃, and NH₂Me. MeCHO and CH₂O are separated by adding excess of conc. aq. NH₃, which converts CH₂O into (CH₂)₆N₄ and MeCHO into aldehyde-ammonia, and subsequent distillation. The absence of NHEt·OH indicates that ethylamino- \mathbf{not} \mathbf{first} formed. monopersulphuric acid is Mechanisms for the reactions are advanced.

W. R. A. Action of diazomethane on zinc chloride [in ether]. G. CARONNA and B. SANSONE (Atti X Congr. Internaz. Chim., 1938, III, 77—81).—ZnCl₂ in Et₂O reacts rapidly with CH_2N_2 , forming ZnO, N_2 , n- C_4H_{10} , and $(CH_2Cl)_2$ (identified by conversion by Ag_2O-H_2O into glycol and thence into $H_2C_2O_4$), by way, it is suggested, of an intermediate compound, E. W. W. $Zn(CH_2Cl)_2$.

Reaction of silicon tetrachloride with esters. J. N. Volnov (J. Gen. Chem. Russ., 1939, **9**, 2269-2282).—SiCl₄ and EtOAc (4 days at the b.p.) yield Si(OAc)₄ (I), EtCl, SiCl₂(OEt)₂, and AcCl. PraOAc the products are (I) and PrCl. BuBOAc gives (I) and AcCl, CH₂Bu^β·OAc gives AcCl and dichlorodiisoamyloxymonosilan, b.p. 108—110°, CH₂Ph·OAc affords AcCl, CH₂PhCl, and SiO₂, Ph·[CH₂]₂·OAc yields AcCl, Ph·[CH₂]₂·Cl, and SiO₂, PhOAc gives AcCl, SiCl₃·OPh, SiCl₂(OPh)₂, SiCl(OPh)₃, and Si(OPh)₄, and p-C₆H₄Me·OAc yields AcCl and Si(O·C₆H₄Me-p)₄.

Electrolysis of higher aliphatic organomagnesium halides in diethyl ether. W. V. EVANS, D. Braithwaite, and E. Field (J. Amer. Chem. Soc., 1940, 62, 534—536).—The amount of R₂ formed by electrolysis of MgRHal in Et₂O increases with the mol. wt. of R and the straightness of the chain. MgBu^aBr gives $\sim 100\%$ (>85%) of Bu^a₂. MgBu^βBr gives $\sim 96\%$ of Bu^β₂. CHMeEt MgBr gives $\sim 100\%$ of (CHMeEt)₂. MgBu^γBr gives mainly iso-C₄H₈ and -C₄H₁₀. n-C₆H₁₃ MgBr gives $\sim 100\%$ (>82.5%) of $n\text{-}C_{12}H_{26}$.

Organo-aluminium compounds. I. Preparation. A. V. Grosse and J. M. Mavity (J. Org. Chem., 1940, 5, 106—121).—The reaction, 2Al + $3RX \rightarrow AlRX_2 + AlR_2X$, is successfully applied to MeCl, EtCl, MeBr, EtBr, MeI, EtI, PraI, PhI, and p-C₆H₄MeI; the RX is added, with stirring, to Al (preferably turnings) in presence of N2 and a catalyst [I; Al halide; Al alkyl or aryl halide; little Et₂O (for Arl; generally avoided)]. Satisfactory separation of AlMeCl, and AlMe, Cl is effected by a single vac.

fractionation (Podbielniak), but disproportionation (during distillation) occurs with AlMeBr₂ and AlMeI₂ (very marked), viz., $2\text{AlMeX}_2 \rightarrow \text{AlMe}_2X + \text{AlX}_3$. The following are thus prepared: AlMeCl_2 , m.p. $72 \cdot 7^\circ$, b.p. $97 - 101^\circ / 100$ mm.; AlMe_2Cl , b.p. $83 - 84^\circ / 200$ mm.; AlMe_2Br_2 , m.p. 79° ; AlMe_2Br_3 , b.p. $74 - 773^\circ / 50$ 74—77°/50 mm., solidifies when cooled in solid CO_2 ; $AlMe_2I$, b.p. 109—110·5°/50 mm.; $AlPr^aI_2$, m.p. 3— The above reaction is unsuccessful with other Pr halides and with several Bu and amyl halides, owing to a vigorous decomp. reaction involving formation of saturated hydrocarbon of the same C content as the halide used, some Al halide, and some gummy material; this reaction also occurs sometimes (but can be controlled) with EtCl and PraI. Difficultly separable mixtures of AlRX₂ and AlR₂X are treated with AlX₃ to give AlRX₂, and with AlR₃ to yield AlR₂X. The following are thus prepared (unless stated otherwise): AlEtCl₂, b.p. 114.5—115.5°/50 mm., m.p. 32° ; AlEt₂Cl, b.p. $125-126^{\circ}/50$ mm.; AlEtBr₂, b.p. $120-122\cdot 5^{\circ}/10$ mm., m.p. $23\cdot 5-24\cdot 4^{\circ}$; $AlMeI_2$, m.p. 68—71° (softens at 63°); AlEtI₂, m.p. 39—40°; AlEt₂I, from AlEt₃ and AlI₃; AlPhCl₂, m.p. 94—95°, from AlPh₃ and AlCl₃; impure AlPhBr₂, m.p. 73·5—87° (mostly liquid at 80°), from AlPh₃ and AlBr₃; $AlPhI_2$, m.p. $106-110^{\circ}$ (?); p- $C_6H_4Me\cdot AlI_2$, m.p. $140-145^{\circ}$ (partly from 111°). EtBr and 7:3Al-Mg alloy (A) with a little I in N_2 at 120—140° (after initial reaction is over) give nearly pure $AlEt_2Br$, b.p. 75°/2 mm., and (pure) 147—148°/50 mm. (obtained during treatment of AlEtBr₂ + AlEt₂Br with Na), which with Na at 105—110° and then at 200—210° affords AlEt₃, b.p. 128-130°/50 mm.; the reaction $3AlEt_2Br + 3Na \rightarrow 2AlEt_3 + 3NaBr + Al.$ Successive treatment of AlMeCl₂ + AlMe₂Cl with Na and Na-K alloy gives AlMe₃, b.p. 125—126°/755 mm. Al Pr^a_2I , b.p. 153—156° $/4\cdot 2$ —4·7 mm., is obtained from Pr^aI and (A). Al(OMe)₃ (1 mol.) and AlMe₃ (2 mols.) at 100—135° give $AlMe_2\cdot OMe$, b.p. 87—88°/10 mm., m.p. 30—33°; with 0·5 mol. of AlMe₃ the nonvolatile, infusible $AlMe(OMe)_2$ results. $AlEt_2 \cdot OEt$, b.p. $108-109^{\circ}/10 \text{ mm.}$, m.p. $2.5-4.5^{\circ}$, and $AlEt(OEt)_{2}$, b.p. 137°/0·1 mm., are similarly prepared.

Decomposition of organic mercury compounds HgRBr in alcohols. M. M. Koton and F. S. Florinski (J. Gen. Chem. Russ., 1939, 9, 2196— 2199).—When the compounds HgRBr (R = Et, Pr^α, Bu^α, Ph, α-C₁₀H₇) are heated with the alcohols CH₂R'·OH (R' = Me, Pr^{β}, Bu^{β}), the following reactions take place: 2HgRBr \rightleftharpoons 2R + 2HgBr'; CH₂R'·OH \rightarrow R'·CHO + 2H; 2R + 2H \rightarrow 2RH; $2R + 2H \rightarrow 2RH$; $2HgBr \rightarrow 2HgBr; 2R' \cdot CHO \rightarrow CH_{2}R' \cdot CO_{2}R'$

Organo-metallic compounds. V. Formation of crystalline compounds of the type R(SnMe₂O)₃OR,SnMe₂X₂ in alcoholic solution. VI. Thermal decomposition of tin triethyl hydroxide. VII. Effect of solvents on formation of SnMe₃Cl,SnMe₃·OH,H₂O, and SnMe₃Cl,[SnMe₃·OH]₂. T. HARADA (Sci. Papers Inst. Phys. Chem. Res. Japan, 1939, 36, 497—500, 501—503, 504—509; cf. A., 1939, II, 251).—V.

The compounds previously described as

SnR₃X,SnR₃·OH,H₂O are now shown $R(SnMe_2O)_3OR,SnMe_2X_2$ (I) (R = alkyl, X = Br or I). The following compounds are described: R = Et $\dot{X} = I$, m.p. $214-218^{\circ}$; R = Et, X = Br, m.p. $210-215^{\circ}$; R = Pr, X = I, m.p. $230-235^{\circ}$; R = Bu, X = I, m.p. $200-209^{\circ}$. The mol. wt. of Et(SnMe₂O)₃OEt,SnMe₂I₂ in C₁₀H₈ approaches that of a mixture of SnMe₂I₂,H(SnMe₂O)₃·OH and EtOH as the concn. of solute increases. (I) are easily hydrolysed by H₂O.

VI. When SnEt₃·OH is heated in a sealed tube at 200-220°/5 hr. C₂H₆ and SnEt₂O are formed (cf. loc. cit.). (SnEt₃)₂O is stable under these conditions, but at 270°/5 hr. gives SnEt₂O, SnEt₂, SnO, and an

unidentified gas.

VII. Equimol. amounts of SnMe₃·OH (II) and SnMe₃Cl in moist C_6H_6 give SnMe₃Cl,SnMe₃·OH, H_2 O (III), m.p. 81—95° (decomp.) (ef. Kraus *et al.*, A., 1925, i, 1254). With 2 mols. of (II) SnMe₃Cl,(SnMe₃·OH)₂ (IV), m.p. 85—91° (decomp.), is formed; when recrystallised from H₂O this gives (III) with Ag₂O in EtOH gives (I), loses H₂O when dried over CaCl₂ or heated with CHCl₃, and mol. wt. determinations in C₁₀H₈ indicate that the compound dissociates into H₂O, (SnMe₃)₂O, and SnMe₃Cl. When (IV) is heated with CHCl₃, no H₂O is formed.

Lead compounds with polynuclear cations.— See A., 1940, 1, 229.

Separation of optical antipodes [d-] and l-]Cr en₃Cl₃].—See A., 1940, I, 229.

Catalytic hydrogenation of compounds having several double linkings. II. Hydrogenation of dimethylfulvene. B. A. KAZANSKI and G. T. TATEVOSJAN (J. Gen. Chem. Russ., 1939, 9, 2248— 2255).—Dimethylfulvene is hydrogenated (Pd or Pt) to a product containing isopropylcyclopentane 8, isopropylidenecyclopentane 20, and isopropyl- Δ^1 cyclopentene (I) 60%. Et cyclopentanecarboxylate and MgMeI yield cyclopentyldimethylcarbinol, b.p. 77-78°/13 mm., from which (I) is obtained by dehydration with anhyd. H₂C₂O₄.

Highly arylated compounds. IX. Highly arylated fulvenes. W. DILTHEY and P. HUCHTE-MANN (J. pr. Chem., 1940, [ii], 154, 238—265; cf. A., II, 84).—2:3:4:5-Tetraphenyl- $\Delta^{2:4}$ -cyclopentadienone (tetracyclone) (I) and MgMeBr afford $\hat{2}: 3: 4: 5$ -tetraphenyl-1-methyl- $\Delta^{2:4}$ -cyclopentadienol (II), m.p. 195°, converted by boiling HCl-AcOH (or H₂SO₄-AcOH, P₂O₅-C₆H₆, or KHSO₄) into 2:3:4:5-tetraphenylfulvene (III), m.p. 211—212° [Br-CHCl₃ give a Br₂-adduct, m.p. 147—148°; Cl₂-Et₂O give a Cl₄-adduct, m.p. 149° (formulæ suggested); p-NO·C₆H₄·NMe₂ in C₅H₅N (with or without EtOH) and piperidine at room temp. give the corresponding anil, m.p. $217-218^{\circ}$], also obtained from $2:\overline{3}:4:\overline{5}$ tetraphenyl-Δ²:4-cyclopentadiene (IV) and CH₂O-KOMe-MeOH. (II) and cold HCl-AcOH give I-chloro-2:3:4:5-tetraphenyl-1-methyl- $\Delta^{2:4}$ -cyclopentadiene, m.p. 166—167° (indef.), decomposed by heat into (III). (III) and boiling $H_2\hat{O}_2$ -KOH-dioxan give 1:6-oxido-2:3:4:5-tetraphenylfulvene, m.p. 227°. (I) and MgEtBr give 2:3:4:5-tetraphenyl-1-ethyl- $\Delta^{2:4}$ -cyclopentadienol, m.p. 188°, converted by HCl-AcOH into 2:3:4:5-tetraphenul-6methylfulvene, m.p. 194---195°. (I) and CH₂Ph·MgCl 2:3:4:5-tetraphenyl-1-benzyl- $\tilde{\Delta}^{2:4}$ -cyclopentadienol, m.p. 156—157° (cf. Löwenbein et al., A., 1926, 171), converted by HCl or KHSO₄ in AcOH into 2:3:4:5:6-pentaphenylfulvenc, m.p. 200-201° (loc. cit., m.p. 204°), also prepared from (IV) and PhCHO-KOMe-MeOH. (IV) and p-OMe·CoH4·CHO or p-NMe₂·C₆H₄·CHO similarly give 6-p-anisyl-, m.p. 197—198°, and p-dimethylaminophenyl-2:3:4:5-tetraphenylfulvene, m.p. 207—210° (not sharp), respectively. 2:4:5-Triphenyl- $\Delta^{2:4}$ -cyclopentadiene (V) and CH₂O or PhCHO in KOMe-MeOH afford 2:4:5-triphenyl-, m.p. 148°, and 2:4:5:6-tetraphenyl-fulvene, m.p. 156°, respectively. (V) or (IV) and CCl₂Ph₂ at 190—195° give 2:4:5:6:6:6-penta-, m.p. 181° , and 2:3:4:5:6:6-hexa-phenyl-fulvene, m.p. 301— 302° , respectively. 2:5-Diphenyl-3:4-(oo'-diphenylene)- $\Delta^{2:4}$ -cyclopentadienone (VI) and MgMeBr give 2:5-diphenyl-3:4-

PhHOMe $\mathbf{P}\mathbf{h}$ (VII.)

 $(oo' - diphenylene) - 1 - methyl - \Delta^{2:4}$ cyclopentadien-1-ol (VII), 231—232°, converted by HCl-AcOH into 2:5-diphenyl-3:4-(oo'-diphenylene)fulvene, m.p. 239—240°. (VI) and MgEtBr or CH2Ph MgCl give 2:5-diphenyl-3:4-(00'-diphenyl-(VII.) ene)-1-ethyl-, m.p. 195° (previous sintering), and -benzyl- $\Delta^{2:4}$ -cyclopentadienol, m.p. 271

-272°, respectively. 2:5-Diphenyl-3:4-(1:8-naphthylene)-Δ^{2:4}-cyclopentadienone and MgMeI, MgEtBr, or CH₂Ph·MgCl, respectively, give 2:5-diphenyl-3:4-(1:8-naphthylene)-1-methyl-(VIII), m.p. 197° (decomp.), -1-ethyl-, m.p. 146°, and -I-benzyl- $\Delta^{2:4}$ cyclopentadien-1-ol, m.p. 234-235°, respectively. (VIII) and HCl-AcOH give 2:5-diphenyl-3:4-(1:8naphthylene) fulvene, m.p. 225—226°. The relation between colour and constitution of the compounds is examined. A. T. P.

Isomerisation of polymethylene hydrocarbons in presence of aluminium chloride. IV. Isomerisation of n-butylcyclopentane. Turova-Polak and A. F. Koschelev (J. Gen. Chem. Russ., 1939, 9, 2179—2183).—n-Butyleyclopentane, b.p. 156·2—156·8° (from cyclopentanone and MgBu°Br), with AlCl₃ at 160—165° yields cyclohexane 80, cyclopentane 13.7, and paraffin hydrocarbons 6.3%. The cyclohexane fraction consists chiefly of hexahydro-

Hydrogenation of cyclohexene under pressure. A. F. NIKOLAEVA and P. V. PUTSCHKOV (J. Gen. Chem. Russ., 1939, 9, 2153—2155).—cycloHexene is hydrogenated (MoS₂ catalyst, at 400°/140 atm.) to cyclohexane, with methylcyclopentane as by-product.

Cyclic systems with a triple linking. III. Attempted introduction of a triple linking into a substituted six-membered ring. N. A. DOMNIN (J. Gen. Chem. Russ., 1939, 9, 1983—1989).—4-Methylcyclohexanone and PCl₅ (4 hr. at 50°) yield 4-chloro-1-methyl- Δ^3 -cyclohexene (I), b.p. 50— 53° / 16 mm., which with Br in CHCl3 gives 4-chloro-3: 4dibromo-1-methylcyclohexane, b.p. 110—120°/4 mm.; this with 20% KOH in EtOH yields a mixture of products, of which (I), 4-chloro-5-ethoxy-, and 3:4-dibromo-1-methyl- Δ^3 -cyclohexene (II), b.p. 94—95°/4 mm., were identified. (II) heated with Na in Et₂O yields resinous polymerides; the expected cyclohexinene was not obtained. R. T.

Thermal polymerisation of gaseous styrene.—See A., 1940, I, 221.

Isomerisation of allylbenzene.—See A., 1940, I, 225.

Action of aluminium chloride on aromatic hydrocarbons. II. 1:3-Dimethyl-4-propylbenzenes. (Miss) D. Nightingale and B. Carton, jun. (J. Amer. Chem. Soc., 1940, 62, 280—283; cf. A., 1939, II, 102).—1:3:4-C₆H₃Me₂·COEt and Zn-Hg-HCl or m-xylene (I), cyclopropane, and AlCl₃ at 0—5° (later 15°) give 4-n-propyl-m-xylene (II), b.p. 95°/23 mm. [(NHAc)₂-derivative, m.p. 284°]. Pr^BOH, (I), and H₂SO₄ at 0°—room temp. give 4-isopropyl-mxylene (III), b.p. 77°/13 mm. [(NHAc)2-derivative, m.p. 292°]. 5-isoPropyl-m-xylene (IV), b.p. 83— $85^{\circ}/17$ mm. [$(NHAc)_2$ -derivative, m.p. 295°], is obtained from (I) by Pr^{\$Cl-} (48%) or Pr^{aCl-}AlCl₃ (46%) at room temp. or HCO₂Pr^a. 5-n-Propyl-m-xylene, b.p. 92—93° (90—91°)/18 mm. [(NHAc)₂-derivative, m.p. 239°], is obtained from COMePr^a, COMe₂, and H₂SO₄ at 0—10° or from mesitylene, EtI, and Na. With AlCl₃ at 85—90° (incompletely at 55°) (II) or (III) gives (IV). This renders doubtful results of Baddeley *et al.* (A., 1935, 612) and Heise et al. (A., 1892, 1309). R. S. C.

Identification of organic compounds. Chlorosulphonic acid as a reagent for the identification of aryl halides. E. H. HUNTRESS and F. H. CARTEN (J. Amer. Chem. Soc., 1940, 62, 511— 514).—Addition of aryl halides or polyhalides, alone or in CHCl₃, to an excess of ClSO₃H, usually at 0°, gives in 28 cases ArSO₂Cl (usually 60—90%), converted quantitatively by conc., aq. NH₃ into ArSO₂·NH₂. In absence of CHCl₃, sulphones are thus obtained from PhF, PhI, o-C₆H₄Cl₂, or o-C₆H₄Br₂ (at 50°), and in some cases sulphones are by-products. p-C₆H₄I₂ gives 2:3:5:6-tetrachloro-1:4-di-iodobenzene, m.p. 210—211°, and 1:2:4:5-C₆H₂Cl₄ gives C₆Cl₆. The reaction failed in 10 cases. 1:2:3-, 1:2:4-, and s-C₆H₃Cl₃ are identified by conversion by $\mathrm{HNO_3}$ (d 1.49) into the $\mathrm{NO_2}$ - or by boiling $\mathrm{HNO_3}$ - $\mathrm{H_2SO_4}$ into the $(\mathrm{NO_2})_2$ -derivatives. The following are new, orientations being assigned by analogy: (p- $C_6H_4F)_2$, m.p. 97—98°, (p- $C_6H_4I)_2$, m.p. 201—202°, (3:4- $C_6H_3Cl_2$)₂, m.p. 175—176°, and (3:4- $C_6H_3Br_2$)₂, m.p. 176—177°, sulphone; 5-chloro-1:3-dinitro-4:6-, m.p. 136—138°, and -2:6-dianilino-benzene, m.p. 182°, prepared from $C_6HCl_3(NO_2)_2$.

Reactivity of the methyl group. VI. Halogenonitrotoluenes. L. Chardonnens and P. Heinrich (Helv. Chim. Acta, 1940, 23, 292—302).— Halogen in a suitable position can activate or increase the reactivity of Me. 1:2:4-C₆H₃MeCl·NO₂ and p-NO·C₆H₄·NMe₂ in boiling EtOH containing anhyd. Na₂CO₃ give 2-chloro-4-nitrobenzaldehyde-4'-dimethylaminoanil (I), m.p. 191°, and very small amounts of an unidentified brown compound (II), m.p. 303—304°. (I) is also obtained in minimal amount when condensation occurs in presence of KOH, but the main

products are trans-2:2'-dichloro-4:4'-dinitrostilbene and 4:4'-tetramethyldiaminoazoxybenzene formed from the individual reactants. Analogously, p-NO·C₆H₄·NEt₂ yields 2-chloro-4-nitrobenzaldehyde-4'-diethylaminoanil (III), m.p. 154—156°, with a little (II). (I) or (III) is transformed by 12% HCl in CHCl₃ into 4:2:1-NO₂·C₆H₃Cl·CHO, m.p. 74° (phenylhydrazone, m.p. 154°; 2:4-dinitrophenylhydrazone, decomp. 247°; semicarbazone, decomp. 234°). 1:2:4-C₆H₃MeCl·NO₂ and PhCHO in presence of a considerable proportion of piperidine at 170—180° give 2-chloro-4-nitrostilbene, m.p. 111—112° (dibromide, m.p. 172°). Analogously, p-NMe₂·C₆H₄·CHO yields 2-chloro-4-nitro-4'-dimethylaminostilbene, m.p. 193°. Under like conditions 1:2:4-C₆H₃MeBr·NO₂ affords 2-bromo-4-nitrostilbene, m.p. 123° (dibromide, m.p. 194°), and 4'-dimethylaminostilbene, m.p. 196°. 2-Iodo-4-nitro-stilbene, m.p. 152°, and -4'-dimethylaminostilbene, m.p. 201°, are described. p-NMe₂·C₆H₄·CHO gives 4-chloro-, m.p. 151°, and 6-chloro-, m.p. 108·5°, -2-nitro-4'-dimethylaminostilbene. H. W.

3: 4-Dinitrotoluene. A. Mangini (Atti X Congr. Internaz. Chim., 1938, III, 243—248).—A review (cf. A., 1939, II, 13, 102). E. W. W.

Preparation of substituted diphenyldiacetylenes. J. S. Salkind and B. M. Fundiler (J. Gen. Chem. Russ., 1939, 9, 1725—1728).—When substituted acetylenes are heated at 55—60° with CuCl and NH₄Cl in dil. HCl, the reaction is $2C_6H_4R \cdot C:CH \rightarrow (C_6H_4R \cdot C:C)_2$ (R = p-Me, H, p-Cl, p-Br, and p-NO₂). The following are thus obtained: di-(p-chloro-, m.p. 258°, -bromo-, m.p. 263—264°, and -nitro-phenyl)di-acetylene, m.p. 285—286°.

Seleniated benzyl derivatives. G. Speroni and B. Simi (Atti X Congr. Internaz. Chim., 1938, III, 358—363).—Se in conc. Na₂S shaken with o-NO₂·C₆H₄·CH₂Cl in Et₂O gives a substance, C₇₀H₆₀N₂₀S₄Se₆ (I), orange-yellow, m.p. $103 \cdot 5^{\circ}$; a yellow form is also obtained, from solvents, and is converted into the orange-yellow below the m.p. (I) is also obtained from (o-NO₂·C₆H₄·CH₂·Se)₂ (A) and (o-NO₂·C₆H₄·CH₂·S)₂ (B) in C₆H₆, and is apparently 3A,2B. Thermal analysis of mixtures of A and B indicates compound-formation. Using 5:2:1-NO₂·C₆H₃Cl·CH₂Cl and Se in Na₂S, a compound, C₇₀H₅₀O₂₀N₁₀S₄Se₆Cl₁₀, m.p. $165 \cdot 5^{\circ}$, is obtained. E. W. W.

Rates of reaction of p-alkylbenzhydryl chlorides with ethyl alcohol.—See A., 1940, I, 222.

Hydroaromatic hydrocarbons of the naphthalene and tetrahydronaphthalene series, with cyclopentane as substituent. E. S. Pokrovskaja and R. J. Suschtschik (J. Gen. Chem. Russ., 1939, 9, 2291—2301).—C₁₀H₈ heated with cyclopentene and AlCl₃ yields mixtures of isomeric mono-, di-, tri-, tetra-, m.p. 135—136°, and penta-cyclopentylnaphthalene, m.p. 176—177°. Mixtures of isomeric mono-, di-, tri-, and tetra-cyclopentyltetrahydronaphthalenes are obtained analogously. Mono- and di-cyclopentyldecahydronaphthalene (isomerides) were obtained by hydrogenation (Pt-C) of the corresponding tetrahydronaphthalenes.

Naphthalene derivatives. I. Action of chlorates on naphthalenemonosulphonic acids. V. V. Kozlov and D. G. Talibov (J. Gen. Chem. Russ., 1939, 9, 1827—1833).—1- $C_{10}H_7$:SO₃H and KClO₃ in aq. HCl at 20° yield 5:1- and 8:1- $C_{10}H_6$ Cl₂SO₃H. At 50—60°, 1:5-, 1:6-, and 1:8- $C_{10}H_6$ Cl₂ are obtained, whilst at 100° the products are 1:5-, 1:6-, 1:7-, and 1:8- $C_{10}H_6$ Cl₂. 1:6- and 1:7- $C_{10}H_6$ Cl₂ undergo oxidation in these conditions, to yield 6-chloro-1:4-naphthaquinone, m.p. 106—107°. The products obtained similarly with 2- $C_{10}H_7$:SO₃H are 5:2- and 8:2- $C_{10}H_6$ Cl:SO₃H at 20—50°, and 2:6-, 1:6-, and 1:7- $C_{10}H_6$ Cl₂ at 100°. R. T.

Polycyclic homologues of naphthalene and tetrahydronaphthalene. E. S. Pokrovskaja and T. G. ŠTEPANTZEVA (J. Gen. Chem. Russ., 1939, 9, 1953—1960).—cycloHexene in CS_2 and $C_{10}H_8$ condense in presence of AlCl₃ to a mixture of mono-, di-, tri-, m.p. 121—122°, and 2:3:6:7-tetra-cyclohexylnaphthalene, m.p. 269°. Two isomeric dicyclohexylnaphthalenes were isolated, one of m.p. 150-151°, and the other an oil, b.p. $203-206^{\circ}/3$ mm., f.p. 3° . former was dehydrogenated (Pt-C at 310°) to a diphenylnaphthalene, m.p. 230°. Tetrahydronaphthalene, condensed similarly, yields mono- (I), b.p. 147- $149^{\circ}/3$ mm., f.p. -2° , and di-cyclohexyltetrahydronaphthalene, b.p. $198-203^{\circ}/3$ mm., f.p. -4° . (I) was hydrogenated (Pt, at 170—180°) to a mixture of α- and β-cyclohexyldecahydronaphthalene. Solubilities of the above products in lævulic and pyruvic acid are given.

Passage from the diphenyl to the fluorene system: preparation of 2:6-, 2:7-, and 3:5-dimethylfluorene. B. Longo (Atti X Congr. Internaz. Chim., 1938, III, 239—240).—By Mascarelli's method, in which $2':2\text{-NO}_2\cdot C_6H_4\cdot C_6H_4$ Me is converted, through the $2'\text{-NH}_2$ - and $2'\text{-OH}\cdot N_2\text{-compounds}$, into fluorene, 2'-nitro-2:5:4'-, -2:4:4'-, and -2:5:6'-trimethyldiphenyl are converted respectively into 2:6-, m.p. 66— 67° , 2:7-, m.p. 114— 115° , and 3:5-dimethylfluorene, m.p. 81— 82° .

E. W. W. New route to 9-alkyl- and 9-aryl-anthracenes. C. K. Bradsher (J. Amer. Chem. Soc., 1940, 62, 486—488).—A general synthesis is described. o-C₆H₄Cl·CH₂Ph (prep. in 81% yield from o-C₆H₄Cl·CHPh·OH by red P-I-AcOH-H₂O), b.p. 144°/5 mm., and CuCN at 250° give 54% of o-CN·C₆H₄·CH₂Ph, b:p. 160—164°/4 mm., and thence by MgMeI in Et₂O, later boiling C₆H₆, 72% of o-benzylacetophenone, m.p. 49—50°. Boiling 34% aq. HBr-AcOH (1:1) then gives (4 days) 80% of 9-methylanthracene, m.p. 80—81°. Simi-

methylanthracene, m.p. 80—81°. Similarly are prepared o-benzyl-propiophenone, b.p. 156°/3 mm. (unstable phenylhydrazone, m.p. 97—98°), and -benzophenone, m.p. 50—52°, b.p. 199—200°/3 mm., 9-ethyl- (69%), m.p. 58—59°, and 9-phenyl-anthracene (75%), m.p. 154—155°. Cyclisation probably

occurs by way of the enolic form (annexed), the conjugation labilising the nuclear H and the slow rate of enolisation accounting for the necessary long period of reaction.

R. S. C.

Diterpenes. XXXIX. 6-Ethylretene. L. RUZICKA and S. KAUFMANN (Helv. Chim. Acta, 1940, 23, 288—291).—Me 6-acetyldehydroabietate (I), m.p. 132—133°, is reduced (Clemmensen) to Me 6-ethyldehydroabietate, m.p. $94\cdot5-95^{\circ}$, $[\alpha]_{\rm D}+60^{\circ}\pm0.6^{\circ}$ in CHCl₃, which is converted by Se at 320—330° into 6-ethylretene (II), m.p. $80-80\cdot5^{\circ}$ [picrate, m.p. $148-149^{\circ}$; additive product, m.p. $169\cdot5-170\cdot5^{\circ}$, with $C_6H_3({\rm NO}_2)_3$]. This is only sed by CrO₃ in AcOH to 6-ethylretenequinone, m.p. $198-198\cdot5^{\circ}$ (quinoxaline derivative, $C_{26}H_{24}{\rm N}_2$, m.p. $174-175\cdot5^{\circ}$). (II) is also obtained by the action of Se on (I).

Benzpyrenes from 6-alkyl- or 6-aryl-benz-anthrones. (Signa.) E. Ghigi (Atti X Congr. Internaz. Chim., 1938, III, 178—182).—6-n-Propyl-benzanthrone (I) is unchanged by NaOH-MeOH, or by P_2O_5 at 165°. With AlCl₃ at 165° it gives benzanthrone; with POCl₃, an amorphous product (II), m.p. 250—260°, is formed. With Zn-AcOH, (I) gives a product, m.p. ~130°, which with POCl₃ also gives (II). Distillation of (I) from Zn gives 1:2-benzpyrene (cf. Cook, A., 1933, 601), oxidised by CrO₃-AcOH to a substance, m.p. 225°. E. W. W.

Photo-oxides of carcinogenic hydrocarbons. C. B. Allsoff (Nature, 1940, 145, 303; cf. A., 1939, II, 413).—Irradiation of 3:4-benzpyrene (I) in C_6H_6 with the 2536 A. Hg resonance line, followed by evaporation of the C_6H_6 , yields a coloured residue which, on extraction with H_2O or dil. NaHCO3, gives a colourless solution possessing a characteristic absorption spectrum. The spectrum indicates that a labile photo-oxidation product can be prepared from (I). Addition of the extract to chick heart tissue cultures produces a high % of abnormal mitotic cells. Irradiation of C_6H_6 under similar conditions yields a small oily residue which dissolves in H_2O to a yellow solution having a well-defined absorption band at 2760 A.

L. S. T. o-Halide synthesis of 10-methyl-9: 1'-methyl-ene-1: 2-benzanthracene. L. F. Fieser and J. Cason [with, in part, E. M. Gross] (J. Amer. Chem. Soc., 1940, 62, 432—436).—Acenaphthene and 85—90% Pb₃O₄ in AcOH [reacts as Pb(OAc)₄] at 60—70° gives 7-acenaphthenyl acetate, hydrolysed by boiling KOH-MeOH-H₂O to 7-acenaphthenol (70·5—74% overall yield), m.p. 144·5—145·5° (lit. 146°, 148°). CrO₃—AcOH at 28—32° then gives 7-acenaphthenone (I) (65%), m.p. 121—121·5°, converted by o-

 C_6H_4Cl -MgBr in $Et_2O-C_6H_6$ into 7-o-chlorophenyl-7-acenaphthenol (15—20%), m.p. (crude) 216—218° (decomp.); dehydration of the crude product by boiling AcOH and purification by adsorption on activated Al_2O_3 and "supercel" gives 33—36% [calc. from (I)] of 7-o-chlorophenylacenaphthylene (II), m.p.

OAc (IV.)

104—104·4°. With $\rm H_2$ –PtO₂ in AcOH–Et₂O, this gives 7-o-chlorophenylacenaphthene, m.p. 81—82°, b.p. 190—192°/2 mm., which with CuCN and a little MeCN in C₅H₅N at 243—245°/800 lb. (N₂) yields 7-o-cyanophenylacenaphthene (87%), m.p. 79·7—80·5°, hydrolysed by KOH in

boiling, aq. EtOH (250 hr.) (higher temp. causes decomp.) to 7-o-acenaphthylbenzoic acid (III), m.p. 195—

к (а., п.)

195.5°; hydrolysis for 100 hr. gives the amide, m.p. 182—182.8°. Ac₂O-AcOH and a little ZnCl₂ cyclise (II) to 10-acetoxy-9: 1'-methylene-1: 2-benzanthracene (IV) (83%), softens at 171°, m.p. 175—179°, converted by Zn-alkali into 9: 1'-methylene-1: 2-benzanthracene (V) (51.5%). With HF at room temp., (III) gives an anthrone (difficult to purify), which with MgMeCl in Et₂O gives 43—54% of 9: 1'-methylene-1: 2-benz-10-anthranol, m.p. 160—164° (decomp.) [with Zn-alkali gives 35% of (V), but is decomposed during other reactions], with only 1.1—1.9% of 10-methyl-9: 1'-methylene-1: 2-benzanthracene, m.p. 181—181.4° [C₆H₃(NO₂)₃ derivative, m.p. 182.5—183.2°]. M.p. are corr.

Steroids and sex hormones. LXI. Synthesis of 1-methylchrysene. L. Ruzicka and R. Markus (Helv. Chim. Acta, 1940, 23, 385—388).—Gradual addition of Ph·[CH₂]₂·MgBr to 5-keto-1-methyl-5:6:7:8-tetrahydronaphthalene in Et₂O and dehydration of the product in presence of I at 150° yields 5- β -phenylethyl-1-methyl-7:8-dihydronaphthalene, b.p. 149—150°/0·1 mm., dehydrogenated (Pd-C at 280—320°) to 5- β -phenylethyl-1-methylnaphthalene, b.p. 145°/0·1 mm. This is cyclised by AlCl₃ in CS₂ to 1-methylchrysene, m.p. 254—255° [additive compound, m.p. 174—176°, with C₆H₃(NO₂)₃], in very poor yield. All m.p. are corr.

Detection and determination of benzedrine.—See B., 1940, 323.

Behaviour of the amino-group in solid-liquid systems with organic components.—See A., 1940, I, 215.

Exchange reaction of nuclear hydrogen of aniline hydrochloride.—See A., 1940, I, 222.

Formation of chloroaniline during reduction of nitrobenzene. G. R. ROBERTSON and R. A. Evans (J. Org. Chem., 1940, 5, 142—145).—The approx. yields of C₆H₄Cl·NH₂ (I) obtained during reduction of PhNO₂ with the following metals (slight excess; moss or turnings except where stated) in conc. HCl are: Fe 0; Sn 3; Sn (rotated rod) 7.5; Zn 26-27; Zn (rotated rod) 9.5-11.5 (3 at 25°); <math>Zn-Sn (9:1) 23; Zn-Sn (1:9) 6·7; Zn-Cu $(1\cdot2\%)$ 4; Cd 23—24; Al, Ca, Mg, no reduction; Mg (cooled in solid CO₂) 62—66%. The amount of (I) apparently varies directly with the rate of the wasteful reaction of the metal with the acid to give H₂, indicating that either a zone of neutral solution is maintained at the surface of a more active metal (thus hindering complete reduction of the NO₂-group) or that the excessive output of H₂ drives away the PhNO₂ before it is completely reduced. Incompletely reduced mols. are then rearranged to (I). H. B.

p-Cymene. IV. Mononitration of 2-amino-p-cymene. Preparation of 3-amino-p-cymene and p-cymylenediamine. T. F. Doumani and K. A. Kobe (J. Amer. Chem. Soc., 1940, 62, 562—565).—2-Formanido-p-cymene, m.p. 108·8—109·4°, and H₂SO₄-HNO₃ at 0° give a mixture, separated by hydrolysis (30% NaOH) and distillation at 1 mm. into 3- (I) (70%), b.p. 142·9°/5 mm. [Ac, m.p. 167·6—167·8°, HCO, softens at 128°, m.p. 139·6—140°, and Bz derivative, m.p. 193·4—193·8°; previ-

ously (Wheeler et al., A., 1928, 54) considered to be (II)], and 5-nitro-2-amino-p-cymene (II) (30%), m.p. $66.6 - 67.6^{\circ}$ (Ac, m.p. $142.8 - 143.2^{\circ}$, HCO, m.p. $101.6 - 102.2^{\circ}$, and Bz derivative, m.p. $139.0 - 139.4^{\circ}$). Nitration of $1:4:2.C_0H_2$ MePr $^{\beta}$ NH₂,H₂SO₄ gives ~60% of (I) and 40% of (II), and that of its Ac derivative (later hydrolysis) gives 52% of (I) and 48% of (II). Structures are proved as follows. Zn dust-EtOH-30% NaOH reduces (I) to o-cymylenediamine, m.p. $95.0-95.8^{\circ}$ (Ac₂ derivative, m.p. $235.1-235.3^{\circ}$), which yields 2:7-dimethyl-4-isopropylbenziminazole, m.p. 179·5—179·9°, 2:3-diphenyl-5methyl-8-isopropylquinoxaline, m.p. 136·7—137·3°, and 6-methyl-9-isopropyl-1:2:3:4-dibenzphenazine, m.p. $181\cdot2-181\cdot4^{\circ}$. Reduction of (II) gives p-cynylenediamine, m.p. 50.0—50.5° (Ac_2 derivative, m.p. 262.0— 262·2°), oxidised by FeCl₃ to thymoquinone. 3-Nitro-p-cymene, b.p. 116·7°/10 mm., is obtained in \sim 52% yield from (I), (II), or the crude mixture thereof, and is reduced by Fe-HCl to 3-amino-pcymene, b.p. $105.7^{\circ}/10$ mm., $240.2^{\circ}/760$ mm. (*HCO* derivative, m.p. 106·2—106·6°), which by diazotisation yields thymol. M.p. are corr.

Complex salts of cobalt III with dimethylglyoxime [and aromatic amines]. A. Ablov (Bull. Soc. chim., 1940, [v], 7, 151—164).—Passage of air through a solution of $CoCl_2,6H_2O$ (1 mol.), dimethylglyoxime (I) (2 mols.), and NH_2Ph (2 mols.) in EtOH at room temp. gives the non-electrolyte $[Co(DH)_2RCl]_2H_2O$ $[DH_2 = (CMe:N\cdot OH)_2$ and $DH = OH\cdot N:CMe\cdot CMe:NO\cdot$; $R = NH_2Ph$]; the corresponding bromide $(+2H_2O)$, iodide $(+0.5H_2O)$, and thiocyanate are obtained if $CoCl_2$ is replaced by $Co(NO_3)_2,6H_2O + NaBr$, + KI, and + NH_4CNS , respectively. By suitably altering the base similar Cl-derivatives are analogously obtained in which

Cl-derivatives are analogously obtained in which R = o- or p- (+ H₂O) -C₆H₄Me·NH₂, p-C₆H₄Br·NH₂, o-, m- and p- C_6H_4Cl - NH_2 , m- and p- NH_2 - C_6H_4 - NO_2 (both $+2H_2O$), and p- NH_2 - C_6H_4 - CO_2Me ; analogous Br- and I-compounds where R is $m\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\text{-}\mathrm{NH}_2$ and $p\text{-NO}_2\text{-C}_6H_4\text{-NH}_2$ (+ 3 and 1H₂O, respectively) are described. In the case of sufficiently strong bases salts $X[Co(DH)_2R_2]$ result if ≤ 3 mols. of base are used. Chlorides are described in which R = NH2Ph $(+4\mathrm{H}_2\mathrm{O})$, $m\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\text{-}\mathrm{NH}_2$ [also corresponding bromide, iodide, and nitrate $(+2\mathrm{H}_2\mathrm{O})$], $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Cl}\text{-}\mathrm{NH}_2$ [also corresponding bromide and nitrate $(+\mathrm{H}_2\mathrm{O})$], $p\text{-}\mathrm{Corresponding}$ $C_6H_4Br\cdot NH_2$ [also corresponding nitrate (+ H_2O)], $m - C_6H_4Cl \cdot NH_2$ [also bromide and nitrate (+H₂O)], $o\text{-}\mathrm{C_6H_4Cl}\cdot\mathrm{NH_2}, m\text{-}\mathrm{NO_2}\cdot\mathrm{C_6H_4}\cdot\mathrm{NH_2}$ (also bromide), p-NH₂·C₆H₄·CO₂Me (bromide only), and o-OMe·C₆H₄·NĤ₂ (also iodide). The less powerful bases give these salts only if used in large excess and pure compounds cannot always be obtained. $p\text{-NO}_2 \cdot C_6 H_4 \cdot NH_2$ gives only the non-electrolyte type whereas the very weak o-NO₂·C₆H₄·NH₂ cannot be introduced into the complex. If air is passed into the mixture of this base, (I), and CoCl₂ the product is Feigl's green chloride, also obtained in the absence of base. The complex, $[Co(DH_2)(DH)I_2]$, is described. H. W.

Nitrosoacylarylamines. II. Action of nitrous fumes on acylarylamines. J. W. HAWORTH and D. H. HEY [with E. C. BUTTERWORTH] (J.C.S., 1940, 361—369; cf. A., 1938, II, 92).—The action of

nitrous fumes on acylarylamines in AcOH (or AcOH-Ac₂O) at 10° shows that they may be divided into four classes, viz., those which (A) give N-NO-derivatives which react with C_6H_6 , e.g., $NO\cdot NR\cdot COR' + C_6H_6 \rightarrow RPh + N_2 + R'CO_2H$; (B) give NO-derivatives not reacting with C_6H_6 , (C) react but do not give NO-derivatives, and (D) do not react. Examples of class (A) (m.p. of NO-derivative in brackets) are: HCO·NHPh [m.p. 45—46° (decomp.)], EtCO·NHPh [m.p. 52° (decomp.)], ω-chloro- [m.p. 65° (decomp.)], and -bromo-acetanilide [m.p. 54-55° (decomp.)], acet-p-anisidide [m.p. 83-84° (decomp.)], -p-phenetidide [m.p. 60° (decomp.)], -α- [m.p. 57° (decomp.)] and -β-naphthalide [m.p. 80° (decomp.)] (cf. A., 1935, 828). p-C₆H₄(NHAc)₂ and (C₆H₄·NHAc-p)₂ give (NO)₂-compounds which with C₆H₆ give p-terphenyl and p-ter- + p-quater-phenyl, respectively. Dinitrososuccindianilide detonates at 111°. Me2 succinate and $m\text{-}C_6\text{H}_4\text{Cl}\cdot\text{NH}_2$ give 3:3'-dichlorosuccindianilide, m.p. $225-226^\circ$ [stable $(NO)_2$ -compound, m.p. 105-106° (decomp.)], and N-m-chlorophenylsuccinimide, m.p. 119—120°. CO(NHPh)₂ (I) gives a NO-compound, m.p. 105° (cf. Ryan et al., A., 1923, i, 380) [also prepared from NH:C(NHPh)2, probably through (I)], converted by C_6H_6 into Ph₂ and PhNCO. 4:4'-Dimethyl-, 3:3'- and 4:4'-dichloro-diphenylcarbamide give NO-compounds, m.p. 92° (decomp.), 106° (decomp.), and 118° (decomp.), respectively. In class (B) are o-C₆H₄Cl·NHAc [NO-derivative, m.p. 59° (decomp.)], $4:2:6:1-NO_2 \cdot C_6 H_2 \cdot Cl_2 \cdot NHAc$ [m.p. 100° (decomp.)], and phenylurethane [m.p. 60-61° (decomp.)]; with C₆H₆, the NO-derivatives regenerate the acylarylamine. Nitroso-1-acetamido-2-methylanthraquinone, m.p. 106° (decomp.), is converted by C_6H_6 into 6:7-phthalylindazole. Class (C):4-dimethylamino-4'-acetamidoazobenzene gives meony minino-a-accumindo azobenzene gives p-NO₂·C₆H₄·NMe₂, whilst NHPhBz or p-C₆H₄Me·NHBz affords ArN₂·NO₃, and m-C₆H₄(NHAc)₂ gives m-NHAc·C₆H₄·N₂·NO₃, converted by H₂O into m-NHAc·C₆H₄·OH. Class (D): p-NO₂·C₆H₄·NHAc, m-and p-NO₂·C₆H₄·NHBz, PhSO₂·NHPh, p-CH Ma·SO·NHPh $C_6H_4Me \cdot \hat{S}O_2 \cdot NHPh$, $(CO \cdot NHPh)_2$, $NHPh \cdot CO \cdot CO_2H$, 3:3'-dichloro-oxanilide, 3-chloro-oxanilic acid, 3:3'and 4:4'-dinitrodiphenylcarbamide, and 1- and 2p-Benzamidoacetanilide, acetamidoanthraquinone. m.p. 230°, and nitrous fumes in Ac₂O-AcOH give p-benzamidonitrosoacetanilide, m.p. 116° (decomp.), converted by C₆H₆ at 70° into 4-benzamidodiphenyl. Results of the above and allied reactions are discussed. A. T. P.

Nitrosoacylarylamines. III. New method of preparation. H. France, I. M. Heilbron, and D. H. Hey (J.C.S., 1940, 369—371; cf. preceding abstract).—NHArAc and NOCl in AcOH(or AcOH–Ac₂O)–KOAc + P_2O_5 usually give NArAc·NO in better yield and shorter time than does the nitrous fumes method. Thus NPhAc·NO, o-, m-, and p-NO₂·C₆H₄·NAc·NO, m.p. 72° (decomp. 75°) (not obtained with nitrous fumes) [converted by C₆H₆ into ~60% of o-, m-, and p-C₆H₄Ph·NO₂, respectively], are prepared. 2:4:1-(NO₂)₂C₆H₃·NHAc gives an oily NO-compound converted into 2:4-dinitrodiphenyl (10% yield). NHPhBz and p-NO₂·C₆H₄·NHBz give NO-compounds, decomp. 83° and 90°, respectively.

m- and p-C₆H₄(NHAc)₂ give (NO)₂-compounds, an oil and decomp. 124°, respectively, and thence m- or p-terphenyl, respectively. 3-Acetamidodiphenyl gives a NO-derivative, m.p. 78° (decomp.) (cf. A., 1939, II, 473), which with C_6H_6 at 20° affords m-terphenyl. 4:1:2-NHAc· C_6H_3 (CO₂Et)₂ gives a NO-compound (an oil), and thence 4:1:2- C_6H_3 Ph(CO₂Et)₂ (cf. A., 1938, II, 492). o-NHAc· C_6H_4 ·CO₂Et and 2:1:4-OMe· C_6H_3 (NHAc)₂ give NO-compounds (oils). (CO·NHPh)₂, 2:4:6:1-(NO₂)₃ C_6H_2 ·NHAc, and 2:5:1:4-(OEt)₂ C_6H_2 (NHAc)₂ are unchanged. NHPhAc, NOCl, and KOAc + P_2O_5 in C_6H_6 at 5—30° give Ph₂ (40% yield) directly. A. T. P.

Condensation of butaldehyde and aniline. M. S. Kharasch, I. Richlin, and F. R. Mayo (J. Amer. Chem. Soc., 1940, 62, 494-497).—NH₂Ph and PraCHO give up to 78% of the dimeride (I), m.p. 92.5°, of CHPra:NPh, but in presence of a trace of org. acid give γ -anilomethyl- $\bar{\Delta}^{\gamma}$ -n-heptene (II), b.p. 146-148°/Ĭ5 mm. (II) is obtained when (I) is treated with an org. acid or kept in air (not in vac.). The structure of (II) is shown by prep. from NH₂Ph and CHPra:CEt·CHO (III), by conversion into NHPhBz and NHPhAc by BzCl and AcCl, respectively, and into the 2:4-dinitrophenylhydrazone and semicarbazone of (III) by the appropriate reagents, and by cryoscopy (CHPh₃; C₆H₆). This confirms the structure, NPh:CH·CHEt·CHPra·NHPh, for (I), which is substantiated by hydrogenation (Raney Ni; 1 H₂; 100 atm.) to δ-anilino-γ-anilinomethyl-n-heptane, b.p. $240-245^{\circ}/20$ mm. $(Ac_2 \text{ derivative, m.p. } 131^{\circ};$ dihydrochloride). In CHPh₃ (Rast), (I) is directly but it is 40-50% dissociated in camphor. 3-Ethyloride (AC) is 40-50% dissociated in camphor. 3-Ethyloride (AC) is 40-50% dissociated in camphor. 2-n-propylquinoline (IV), b.p. $182-184^{\circ}/23$ mm. [methiodide, m.p. 160—165° (lit. 172°); hydriodide, m.p. 171—172°], is obtained by the action of 12n-HCl on (a) PraCHO and NH2Ph [NHPhBua and ? H2- and H_4 -derivatives of (IV) also formed], (b) (I), (c) NH₂Ph and (III), or (d) (II) [by dissociation into (III) and NH₂Ph and addition thereof to give NHPh·CHPr^α·CHEt·CHO]. N-Phenyl-N'-α-naphthyl-

N-n-butylcarbamide has m.p. 277°. R. Ś. C.

Action of aromatic amines on 2-iodo-5-nitrostyrene. D. E. Worrall and F. Benington (J. Amer. Chem. Soc., 1940, 62, 493—494).—
o-C₆H₄I·CHO, MeNO₂, and NEt₃ give 65—70% of o-iodo-β-nitrostyrene, m.p. 113—114° (with KMnO₄ gives 5:2:1-NO₂·C₆H₃I·CO₂H), converted by fuming HNO₃ into 2-iodo-5:β-dinitrostyrene (I), m.p. 145—146°, and by bromination followed by nitration into x-bromo-2-iodo-y:β-dinitrostyrene, m.p. 136—137°. Org. bases add very readily to (I), yielding α-nitro-β-anilino-, m.p. 115—116° (decomp. here and below), -o-, m.p. 168—170°, -m-, m.p. 113—114°, and -p-toluidino-, m.p. 130—132°, -o-, m.p. 146—148°, -m-, m.p. 140—142°, and -p-anisidino-, m.p. 123—124°, -phenylhydrazino-, m.p. 142—144°, -β-naphthyl-hydrazino-, m.p. 143—144°, -hydroxylamino-, m.p. 103—105°, and -semicarbazido-, m.p. 187—188°, -β-2-iodo-5-nitrophenylethane. NH₃-C₆H₆ and (I) give di-(β-nitro-α-2-iodo-5-nitrophenylethyl)amine, m.p. 113—114° (decomp.).

Relative reactivities of organometallic compounds. XXVIII. Halogen-metal interconver-

sion with m- and p-bromodimethylanilines. H. Gilman and I. Banner (J. Amer. Chem. Soc., 1940, **62**, 344—345).—m- (prep. by Me₂SO₄-aq. KOH in 54% yield) and p-C₆H₄Br·NMe₂ with LiBu^a in Et₂O + N₂ undergo only exchange of Br for Li, yielding after carbonation NMe₂·C₆H₄·CO₂H (m- 26%; p- 41%). Prep. of o-C₆H₄Br·NMe₂ in 70% yield by Me₂SO₄-KOH is described. R. S. C.

Nuclear alkylation of aromatic bases. IV. Action of n-dodecyl alcohol on α - and β -naphthylamine hydrochlorides. E. C. Butterworth and D. H. Hey (J.C.S., 1940, 388—390; cf. A., 1937, II, 57).—n- $C_{12}H_{25}$ -OH (I) (3 mols.) and β - $C_{10}H_{7}$ -NH $_2$,HCl (1 mol.) at 220° (open vessel) or 240—260° (autoclave) give NH($C_{12}H_{25}$) $_2$ (II), ($C_{12}H_{25}$) $_2$ O (III), Δ^{α} -dodecene (IV), β - $C_{10}H_{7}$ -OH, NH($C_{10}H_{7}$ - β) $_2$, and N-dodecyl- β -naphthylamine (V), m.p. 41·5—43·5° (more formed in open vessel). Similarly, (I) and α - $C_{10}H_{7}$ -NH $_2$,HCl at 240—260° (autoclave) give α - $C_{10}H_{7}$ -OH, (II), (III), (IV), and a tar. (III) and (IV) are formed from (I) + dry HCl at 250°, but action of heat on (V) may give some (IV). No nuclear alkylation is detected; the ease with which higher aliphatic alcohols lose H_2 O renders them unsuitable for use in the Hofmann–Martius reaction.

Action of formaldehyde on sulphanilic acid. H. E. FIERZ-DAVID and L. BLAGNEY (Helv. Chim. Acta, 1940, 23, 213—218).—CH₂O and $p\text{-NH}_2\text{-}C_6H_4\text{-}SO_3H$ (I) at 50° give $p\text{-NMe}_2\cdot\mathring{C}_6H_4\cdot\mathring{SO}_3H$ (II) [isolated as the Na salt $(+4H_2O)$ (III) in $\sim 10-15\%$ yield] and an unidentified compound which gives a sparingly sol. Pb salt and regenerates (I) when treated with dil. HCl. The yield of (III) is not improved by increase in the amount of CH₂O or by addition of HCO₂H. At 100° (II) gradually disappears with formation of an approx. equiv. amount of H₂SO₄. (III) is also obtained from (I), Me₂SO₄, and NaOH. (III) is transformed by NaNO, and HCl into 2-nitro-4-dimethylaminobenzenesulphonic acid, identical with that obtained from $2:4:1-NO_2\cdot C_6H_3Cl\cdot SO_3Na$ and NHMe₂. Addition of CH₂O to a solution of (I) and NPhMe₂ in H₂O leads to N-p-dimethylaminobenzylsulphanilic acid, converted by NPhMe₂ at 100° into CH₂(C₆H₄·NMe₂-p)₂.

Sulphanilamide derivatives. VI. Substituted N¹-aliphatic sulphanilamides. M. L. Cross-LEY, E. H. NORTHEY, and M. E. HULTQUIST (J. Amer. Chem. Soc., 1940, **62**, 532—534).—By standard methods are obtained: sulphanil-n-octyl-, m.p. 114— 119.5°, -n-dodecyl-, m.p. 118—124°, -n-octadecyl-, m.p. 127—130°, -Δ'-n-octadecenyl-, m.p. 118—122·5°, -difurfuryl-, m.p. 134—136·5°, -methyl-β-hydroxyethyl-, m.p. 124·5—126·3°, and -β-sulphanilamidoethyl-β'-hydroxyethyl-, m.p. 163—164·5°, -amide; αβ-di(sulphanilamido)-, m.p. 229·4—231·2°, and αβ-di(sulphanilamido)-, m.p. 229·4·2°, and αβ-di(sulphanilamido)-, m.p. 229·4·2°, and αβ-di(sulphanilamido)-, m.p. 229·4·2°, and αβ-di(sulphanilamido)-, and αβ-di(sulphanilamido)-, and αβ-di(sulphanilamido)-, an anilylsulphanilamido)-ethane, m.p. >118° (decomp.); $N'N'-di-(\beta-sulphanilamidoethyl)sulphanilamide$ hydrochloride, m.p. 241·5—244°; sulphanil-β-hydroxy-, m.p. 154—155·8°, and -ββ'-dihydroxy-tert.-butylamide, m.p. 131·8—134°; αγ-disulphanilamidopropan-β-ol, m.p. 184·2—186·5°; N-β-sulphonamidoethylmorpholine, m.p. 98—100·4°; Et sulphanilamidoacetate, m.p. 90.4—92°; Bu°, N-sulphanilylglutamate hydrochloride, m.p. $138\cdot4$ — $141\cdot6^\circ$. p-Nitrobenzenesulphon- β -hydroxyethylamide, m.p. 126— 127° , and $C_{11}H_{23}\cdot COCl-C_5H_5N$ at 90— 100° give the dodecyl ester, m.p. 72— $73\cdot5^\circ$, reduced by Fe–HCl in PhMe– H_2O to β -sulphanilamidoethyl dodecoate, m.p. $63\cdot4$ — $64\cdot8^\circ$. The amides are not or only slightly antistreptococcal.

Conversion of sulphanilamide into p-hydroxylaminobenzenesulphonamide by ultra-violet irradiation. L. E. Shinn, E. R. Main, and R. R. Mellon (Proc. Soc. Exp. Biol. Med., 1939, 42, 736—738).—On adding Ac₂O to a mixture of these two substances the free amine is acetylated and prevented from undergoing diazotisation, so that the OH-NH-derivative alone gives the usual colour reaction (cf. Rosenthal and Bauer, A., 1940, III, 242). 6% of sulphanilamide is converted by 2 min. irradiation.

V. J. W. *p*-Aminobenzenesulphonamide derivatives. N. S. Drozdov and V. I. Stavrovskaja (J. Gen. Chem. Russ., 1939, 9, 1642—1646).—The appropriate base with p-NHAc·C₆H₄·SO₂Cl (I) yields $p\text{-}acetamidobenzenesulphon\text{-}(\delta\text{-}diethylamino\text{-}\alpha\text{-}methyl\text{-}$ butyl)-, -(γ -piperidino- β -hydroxypropyl)-, and -(γ -diethylamino- β -hydroxypropyl)-amide, all oils, hydrolysed (conc. HCl) to the corresponding p- NH_2 -eompounds, m.p. 198—200° (II), 151—152°, and an oil. (I) and (II) are condensed further to p-(p'-acetamidobenzene sulphonamido) benzene sulphon - (δ - die thylamino - α -methylbutyl)amide, an oil. $p-NH_2\cdot C_6H_4\cdot SO_2\cdot NH_2$ and (II) with NEt₂·[CH₂]₃·Cl (14 hr. at 130—140°) give p-γ-diethylaminopropylaminobenzenesulphon-amide, an oil, and -δ-diethylamino-α-methylbutylamide, respectively. (II) in aq. HCl diazotised and coupled with β -C₁₀H₇·OH or H-acid yields respectively p-(2'-hydroxy-1'-naphthalene)-, m.p. 158°, and (as Na₂ salt) p-(8'-amino-1'-hydroxy-3': 6'-disulpho-2'-naphthalene) - azobenzenesulphon - (δ - diethylamino - α - methyl butyl)amide.

Fluorine and chlorine derivatives of sulphanilamidobenzenesulphonic acids. C. M. SUTER and A. W. WESTON (J. Amer. Chem. Soc., 1940, 62, 604—606).—p-C₆H₄F·NHAc (I) and 100% H₂SO₄ at 170—180° [p-C₆H₄F·NH₂ (II) is unchanged] give 4-fluoro-aniline-2-sulphonic acid (64%), decomp. >310°, converted by aq. Br into 2:6-dibromo-4-fluoroaniline, m.p. 63—64°, which is also obtained from (II) by Br. 1:4:2-NH₂·C₆H₄Cl·SO₃H, decomp. >325°, is similarly obtained and gives similarly 4:2:6:1-C₆H₂ClBr₂·NH₂. 15% oleum converts (I) at 130—145° into 4-fluoroaniline-3-sulphonic acid (63%), decomp. >310° (Br₂-derivative).
3:4:1-SO₂H·C₂H₂Cl·NH₂. (similarly obtained), de-

 $3:4:1\text{-}\mathrm{SO_3H^{\circ}C_6H_3Cl^{\circ}NH_2}$ (similarly obtained), decomp. $>\!310^{\circ}$, gives a Br_2 -derivative, decomp. $>\!310^{\circ}$. Standard methods yield sulphanil-p-fluoro-, m.p. $163-164^{\circ}$, -4'-fluoro-2'-sulpho-, decomp. 285° , -4'-fluoro-3'-sulpho-, +H $_2$ O, decomp. 260° , -4'-chloro-2'-sulpho-, +H $_2$ O, decomp. 300° , and -4'-fluoro-3'-sulpho-, decomp. 310° , -anilide. R. S. C.

Preparation and resolution of r- $\alpha\beta$ -diphenylethylenediamine (stilbenediamine). I. Lifschitz and J. G. Bos (Rec. trav. chim., 1940, 59, 173—183; of. Feist *et al.*, A., 1894, i, 196; 1896, i, 258).—1-Acetyl-2:4:5-triphenyl-4:5-dihydrogly-

oxaline and boiling aq. HCl give β -benzamido- α -acetamido- $\alpha\beta$ -diphenylethane, m.p. 251°, converted by conc. HCl–EtOH into r-(CHPh·NH₂)₂, b.p. 115°/5 mm., m.p. 83° (lit. 90—92°) [anlyd. dihydrochloride, m.p. 248° (decomp.) (cf. lit.); platinichloride, decomp. 225°], resolved through the l-base d-tartrate (+2H₂O), $[\alpha]_{\rm b}$ -11° in H₂O, and d-base d-tartrate, $[\alpha]_{\rm b}$ +44° in H₂O, into the l- (I), $[\alpha]_{\rm b}$ -87° in Et₂O, and d-base, $[\alpha]_{\rm b}$ +86° in Et₂O, respectively. (I) gives the disalicylidene derivative, m.p. 152°, $[M]_{\rm b}$ +417° in MeOH (cf. Pfeiffer et al., A., 1938, II, 281).

Behaviour of azo-compounds in solid-liquid systems in relation to the structure of the azo-group.—See A., 1940, I, 215.

Reactions of aliphatic diazo-compounds. I. E. Jolles (Atti X Congr. Internaz. Chim., 1938, III, 220—225).—Mainly an account of work previously abstracted (A., 1938, II, 482). CH_2N_2 reacts vigorously with NPh:NBz, giving a compound, $\text{C}_{14}\text{H}_{12}\text{ON}_2$, m.p. 168°, which is probably β -benzoyl- α -phenyl- $\alpha\beta$ -methylenehydrazine. The compound from $p\text{-C}_6\text{H}_4\text{Me·N}_2\text{-CO·NH}_2$ and CH_2N_2 has m.p. 111·5° (cf. loc. cit.).

Relation between absorption spectra and chemical constitution of dyes. XV. Influence of sulphonic acid groups in aminoazo-dyes. W. R. Brode and D. R. EBERHART (J. Org. Chem., 1940, 5, 157—164).—Spectrophotometric study of 48 azo-dyes (as Na salts), obtained by coupling PhN₂Cl and $\dot{SO}_3\dot{H}\cdot C_6H_4\cdot N_2Cl$ with $\alpha\text{-}$ and $\beta\text{-}C_{10}\dot{H}_7\cdot NH_2$ and their (SO₃H)₁-derivatives, leads to the following conclusions. Introduction of SO₃H has a definite effect on the absorption spectra, the nature being dependent on the position of both SO₃H and N:N (with respect to the NH_2 -group). SO_3H in the $C_{10}H_7$ group usually produces a hypsochromic effect [max. for dyes from 1:2-NH₂·C₁₀H₆·SO₃H (I)]; only dyes 1:8-NH₂·C₁₀H₆·SO₃Hare bathochromic. SO₃H in the Ph group produces a bathochromic effect (p > m > o, except when the second component is a derivative of β -C₁₀H₇·NH₂, when the order is o > p> m). Change of solvent from neutral to acid causes a nearly complete reversal of frequency trend for dyes of type $1:4\text{-NH}_2\cdot C_{10}H_6\cdot N:NPh$ but not for those of type 1:2- (II) or $2:1\text{-NH}_2\cdot C_{10}H_6\cdot N:NPh$. For the diazo-component, the frequency trend is reversed with change of solvent. The greatest decrease in frequency occurs with dyes from (I) (as second component) and from PhN₂Cl. Intensity of absorption follows the same general trends as frequency; the max. intensity is produced by 8-substitution in the $C_{10}H_7$ and psubstitution in the Ph. Dyes derived from (II) exhibit absorption curves in neutral solution in which the frequencies of the 3 principal max. are 2, 3, and 4 times that of a fundamental frequency of 310-330 fresnels.

Catalytic hydrogenation of alicyclic ketazines. II. Effect of ring-closure on velocity of hydrogenation of ketazines. V. I. EGOROVA (J. Gen. Chem. Russ., 1939, 9, 1647—1651).—cycloHexyl Me ketone and N₂H₄,H₂O heated for 20 hr. at the b.p. yield the azine, m.p. 55—56·5°. The rate of hydrogen-

ation (Pt catalyst) of this is > of the azine of COMe·C₆H₁₃-n; the products are s-di-(α -cyclohexylethyl)-, b.p. 223°/210 mm., and s-di-(α -methyheptyl)-hydrazine, b.p. 166°/8 mm. (dihydrochlorides), respectively. R. T.

General method of preparation of α - and β alkylphenylhydrazines. Ρ. GRAMMATICAKIS (Compt. rend., 1940, 210, 303—305; cf., A., 1939, II, 415; 1940, II, 131).—CHO·NPh·NH·CHO (I) with NaNH₂ in an inert solvent gives the Na derivative which with an alkyl halide, sulphate, or arylsulphonate in xylene at 140-150°, followed by hydrolysis with cold conc. HCl, gives a β-alkylphenylhydrazine (II) (alkyl = Me, Et, CH₂Ph, CHPhEt). Other diacyl analogues or organo-Mg derivatives of (I) react similarly. β-Acylphenylhydrazines give mixtures of α-alkylphenylhydrazine (III) and (II). NHPh·NH·CH₂R (R = Ph, C₆H₄Me, C₆H₄·OMe) are easily oxidised to NHPh·N:CHR, which are hydrolysed to RCHO. NNaPh·NH₂ (1 mol.) with alkyl halide or sulphate (1 mol.) in boiling (2—5 hr.) C_6H_6 or Et_2O gives (III) (alkyl = Me, Et, Pr^{β} , CH_2Ph).

Associating effect of the hydrogen atom. VI. Acid hydrazides. H. T. Hayes and L. Hunter (J.C.S., 1940, 332—336; cf. A., 1937, I, 513).—Mol. wt. determinations in C₁₀H₈, and experiments on solubility, show that the acid hydrazides,

R·CO·NH·NHR' (I) and R·CO·NR''·NHR' (II) are associated. Association is due to H-bond formation between O of the acyl and, primarily, H of the adjacent NH (to a much smaller extent with H of the second NH). NHAc·NHPh (III) and NHAc·NPhAc are highly associated (steep association—conen. curve), but NPhAc·NH₂ is almost non-associated. Progressive substitution of (III) supports the view that H of ·NHPh may take part in H-bond formation;

NHAc·NRPh (R = Me or Ph) gives a diminution in slope of curve, more marked with NHPh·NRAc (R = Me or Ph), and greatest with NPhMe·NAcMe. Mol. association of (I) is mainly by chain polymerides (cyclic are unlikely). Type (I) are sol. in H₂O and electron-donor solvents, but only sparingly in hydrocarbons; (II) are insol. in H₂O, but sol. in hydrocarbons. An explanation of the tautomerism R·CO·NH·NHR ⇒ OH·CR·N·NHR is suggested. Acet-αβ-di-o-tolyl-, m.p. 107°, -p-tolyl-, m.p. 120°, and -p-chlorophenyl-hydrazide, m.p. 145°, αβ-diacetyl-phenyl-o-tolylhydrazine, m.p. 91° (method: Smith et al., J.C.S., 1908, 93, 1249), and acet-β-phenyl-α-p-tolylhydrazide, m.p. 140° (identical with the product of Jacobson et al., A., 1899, 276) [reduced by Fe-AcOH to NH₂Ph and p-C₆H₄Me·NHAc], are described.

Chemical constitution and reactivity. I. Effect of isomerism on the reactivity of diazoand related azo-compounds. M. L. Crossley (Atti X Congr. Internaz. Chim., 1938, III, 99—110).— $C_6H_4Me\cdot N_2Cl$, which have the regular order of stability p>o>m, and $C_6H_4Cl\cdot N_2Cl$ (order of stability o>p>m) give, with $2:3:6\cdot OH\cdot C_{10}H_5(SO_3Na)_2$, azodyes of an order of fastness m>o>p. It is suggested that the reactivity of any compound depends on the rate at which an "inactive" gives an

"active" phase. $\mathrm{CO_2H} \cdot \mathrm{C_6H_4} \cdot \mathrm{N_2Cl}$ and $\mathrm{SO_3H} \cdot \mathrm{C_6H_4} \cdot \mathrm{N_2Cl}$ show regular order of stability but $\mathrm{NO_2} \cdot \mathrm{C_6H_4} \cdot \mathrm{N_2Cl}$ show o > m > p. E. W. W.

Reaction of diazo-compounds with primary amines containing salt-forming groups. I. Tautomeric triazens. II. General mechanism of the reaction. A. P. Erschov and J. S. Joffe (J. Gen. Chem. Russ., 1939, 9, 2211—2218, 2219—2231).—I. Substituted diazoaminobenzenes tautomerise in the following way in acid solution:

NR:N·NHR' (a) \Longrightarrow NHR·N:NR' (b). The following diazoaminobenzene derivatives are described (figures in parentheses are % of b form present in aq. solution): 2- (32), 3- (18), and 4-chloro-3'-sulpho- (25), 2:5:2'-trichloro-5'-sulpho- (19), 2:5-dichloro-2'- (59), -3'- (78), and -4'-carboxy- (67), 2:5-dichloro-2'- (46), -3'- (58), and -4'-sulpho- (50), 3'- (1) and -4'-sulpho-4-methyl- (1), 2:5-dichloro-2':5'- (9) and -3':5'-disulpho- (23·5), 2:5-dichloro-2'-carboxy-4'- (12) and -5'-sulpho- (40), 2:5-dichloro-2'-sulpho-4'- (20) and -5'-carboxy- (18). The sulpho-derivatives are as Na or, occasionally, K salts.

II. The following diazoaminobenzene derivatives are described: 2'-carboxy-4'- and -5'-sulpho-4-methyl-, 4-nitro-3'- and -4'-sulpho-, 4-nitro-2'-carboxy-4'- sulpho-. In general, substituted diazobenzenes react with substituted arylamines in alkaline solution thus: NR:N·OH (I) + NH₂R' \rightarrow NR:N·NHR' (II) \rightleftharpoons NHR·N:NR' (III); (II) + (I) \rightleftharpoons (NR:N)₂NR'; (III) + (I) \rightleftharpoons NR:N·NR·N:NR' \rightleftharpoons NR:N·NHR + NR':N·OH [R = 2:5-C₆H₃Cl₂, R' = o-, m-, and p-C₆H₄·SO₃H or -C₆H₄·CO₂H, 2:4-, 2:5-, 3:6-, and 4:6-C₆H₃(CO₂H)·SO₃H, 2:5-C₆H₃(SO₃H)₂; R = p-C₆H₄Me, R' = m- and p-C₆H₄·SO₃H, 2:4- and 2:5-C₆H₃(CO₂H)·SO₃H; R = p-C₆H₄·NO₂, R' = m-C₆H₄·SO₃H, 2:4- and 2:5-C₆H₃(CO₂H)·SO₃H]. In aq. HCl solution the reactions are: (II) + HCl \rightleftharpoons RN₂Cl + NH₂R'; (III) + HCl \rightleftharpoons R'N₂Cl + NH₂R; RN₂Cl + NH₂R; \rightleftharpoons NR:N·NHR + HCl; R'N₂Cl + NH₂R; \rightleftharpoons NR:N·NHR' + HCl. R. T.

Hydrogen fluoride as a condensing agent. IX. Reactions of di- and tri-isobutene with phenol. J. H. SIMONS and S. ARCHER (J. Amer. Chem. Soc., 1940, 62, 451; cf. A., 1939, II, 428).—With a little 70% HF at 0°, PhOH and dissobutene give p-tert.-octylphenol, but with much HF in CCl₄ give p-C₆H₄Bu $^{\gamma}$ -OH. "Triisobutene" gives only p-C₆H₄Bu $^{\gamma}$ -OH. R. S. C.

4-Nitroso- and 4-amino-thymol. W. T. Sumerford and W. H. Hartung (J. Amer. Pharm. Assoc., 1940, 29, 65—69).—Tautomeric change of 4-nitrosothymol (I) (OH = 1) to thymoquinoneoxime can be effected by 0.15% aq. $Ca(OH)_2$ or 20% aq. Na_2CO_3 ; 20% aq. $NaHCO_3$ is without effect. Hydrolysis of (I) with 7% HCl in presence of $COMe_2$ affords thymoquinone in 36% yield. (I) with H_2 and Pd—C or PtO_2 in EtOH—HCl (<1 equiv.) is quantitatively reduced to 4-aminothymol (II), which when diazotised and then added to agitated boiling H_2O affords thymoquinol in 43% yield. Colour changes during the oxidation of (II) are discussed. F. O. H.

Ditolyl series. VIII. A. ANGELETTI (Atti X Congr. Internaz. Chim., 1938, III, 26—31).—2-

Chloro-2'-amino-6: 6'-dimethyldiphenyl (I) (A., 1932, 942) diazotised in HCl and heated at $\Rightarrow 90^{\circ}$ (or treated with Cu₂Cl₂-HCl) gives 2:2'-dichloro-6: 6'-dimethyldiphenyl, m.p. 119°. Similarly, in HBr, 2-bromo-2'-amino- (II) gives 2:2'-dibromo-6: 6'-dimethyldiphenyl. In H₂SO₄, (I) and (II), diazotised and heated, readily give 2-chloro-2'-hydroxy-, m.p. 65—66°, and 2-bromo-2'-hydroxy-6: 6'-dimethyldiphenyl, m.p. 91—92°. 2-Iodo-2'-amino- similarly gives 2-iodo-2'-hydroxy-6: 6'-dimethyldiphenyl, m.p. 58°. E. W. W.

Differentiation of phenols. I. Metallic derivatives of nitrosophenols. G. Travagli (Atti X Congr. Internaz. Chim., 1938, III, 372—375).—Certain phenols, e.g., α - and β -C₁₀H₇·OH, resorcinol (I), and phloroglucinol, give a characteristic ppt. with HNO₂ and a Co^{II} salt. (I) gives the compound, (C₆H₄O₃N)₃Co (structure suggested). E. W. W.

Aromatic stabilised ethylenic linkings. Mills-Nixon problem. R. T. Arnold and R. L. Evans (J. Amer. Chem. Soc., 1940, 62, 556—558).—The following pK indicate that the ethylenic linkings are not stabilised by co-ordination: $o\text{-NO}_2\cdot C_6H_4\cdot OH 8\cdot 20$ (29°); $5:1:2:4\text{-NO}_2\cdot C_6H_2\text{Me}_2\cdot OH 8\cdot 81$ (28°), $8\cdot 90$ (37°); $6\text{-nitro-}5\text{-hydroxyhydrindene} 8\cdot 96$ (37°); 7-nitro-6-hydroxy-1:2:3:4-tetrahydronaphthalene ($Me\ ether,\ \text{m.p.}\ 50-51\cdot 5^\circ$) $9\cdot 05\ (37^\circ);\ 3:1:4\cdot 8\cdot 57$ (28°) and $4:1:3\text{-NO}_2\cdot C_6H_3\text{Me}\cdot OH 8\cdot 43$ (28°).

Steric hindrance in ketone-naphthol condensations. Condensations of naphthols with cyclohexanone. J. B. NIEDERL, V. NIEDERL, and J. CHARNEY (J. Amer. Chem. Soc., 1940, **62**, 322-323).—Condensation of ketones with naphthols parallels that with phenols (cf. A., 1939, II, 416). mol. each of cyclohexanone (I) and α-C₁₀H₇·OH with HCl at <30° give 80% of 1-4'-hydroxy-1'-naphthyl-Δ1cyclohexene (II), m.p. 80°, but at 100° give 50% of 1:1-di-4'-hydroxy-1'-naphthyleyelohexane, m.p. 233° (dibenzoate, m.p. 223°). The acetate, m.p. 94°, of (II) gives a dibromide (20%), m.p. 147°, titration of which with 0.01n-NaOH shows an equiv. wt. equal to half the mol. wt. owing to hydrolysis of Br. β -C₁₀H₇·OH, (I), and HCl in AcOH at <30° give 20% of 1:2-tetramethylene-3: 4- or -4: 5-benzcoumarone, m.p. 66-68°.

Synthesis of 6-hydroxy-3:4-benzpyrene and 8-isopropyl-1: 2-benzanthracene from 9:10-dihydrophenanthrene. L. F. Fieser and W. S. JOHNSON (J. Amer. Chem. Soc., 1940, **62**, 575—577).— 6-Keto-3:4:5:6-tetrahydrochrysene (I), CH₂Br·CO₂Me, and activated [conc. H₂SO₄-HNO₃ (trace); 100°] Zn in C₆H₆ give mixed acids [and much (I) recovered], which by esterification (HCl-MeOH), dehydration (distillation in vac.), and dehydrogenation (S; less well, Pd-C) give chrysene-6-acetic acid (II), m.p. 207-208°, and a small amount of a hydrocarbon. With HF, (II) gives 6-hydroxy-3: 4-benzpyrene (57%), m.p. 195—196° (decomp.); no intermediate ketone could be found. $\gamma - 9:10$ -Dihydro-2-phenanthrylbutyric acid and HF give 8-keto-3:4:5:6:7:8hexahydro-1:2-benzanthracene (89.5%), which with MgPr^{\$}Br and subsequent dehydration and dehydrogenation (S; 205-250°) gives 8-isopropyl-1:2benzanthracene, m.p. 97—98° (picrate, m.p. 155.5—156.5°). M.p. are corr. R. S. C.

Exploration of methods for preparing stilbene derivatives. W. H. LINNELL and V. R. SHARMA (Quart. J. Pharm., 1939, **12**, 263—270).—Attempts have been made to prepare 4:4'-dihydroxy-αβdiethylstilbene by removal of S from (? polymeric) p-OH·C₆H₄·CSEt or of N from the azine of p-OH·C₆H₄·COEt. p-OMe·C₆H₄·COEt and H₂S in dry EtOH-HCl give a cryst. compound (I), C₃₀H₃₆O₃S₂, m.p. 162°, which with Cu powder in boiling (CH₂·OH)₂ yields a substance (II), $C_{40}H_{48}O_4S_2$, m.p. 115—116°. Cyclic structures are assigned to (I) and (II). p-Hydroxy- (III) and p-methoxy- (IV) -propiophenonehydrazone when heated in vac. yield the respective azines, m.p. 167-168°, and 132-133° (V), which do not lose N when heated alone or with Mg or Li. (III) could not be oxidised by HgO in dry Et₂O; (IV) and HgO in light petroleum give a product converted by SO_2 -Et₂O and then boiling H₂O into (V). p-OAc·C₆H₄·COEt does not give a pinacol with Mg and I in Et₂O-C₆H₆. F. H.

αω-Di-p-hydroxyphenylalkanes. E.M. RICHARDson and E. E. Reid (J. Amer. Chem. Soc., 1940, 62, 413—415).—Lower members of the series $[CH_2]_n(C_6H_4\cdot OH-p)_2$ are bactericidal, but are too insol. for use. Partition coeffs. and regularities in m.p. are recorded. Anisoin gives (Clemmensen-Martin) $(p-OMe-C_6H_4-CH_2)_2$, m.p. 125.5—127°, and thence $(p-OH\cdot C_6H_4\cdot CH_2)_2$, m.p. 198—199°. $p-OMe\cdot C_6H_4\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot OMe\cdot p$ (prep. from p-OMe·C₆H₄·CHO and p-OMe·C₆H₄·COMe), m.p. 100— 101° , gives (Adams) $\alpha \gamma - di$ -p-anisyl-, m.p. 45— 46° , and thence $\alpha \gamma$ -di-p-hydroxyphenyl-propane, m.p. 107—108°. $p\text{-OMe}\cdot C_6H_4\cdot [CH_2]_3\cdot CO_2H$ [prep. from PhOMe and (CH₂·CO)₂O by way of the CO-acid] and SOCl₂ give the chloride, which with PhOMe gives a ketone, reduced (crude) to $\alpha \delta - di$ -p-anisyl-n-butane, m.p. 78—79°, which yields αδ-di-p-hydroxyphenyl-n-butane, m.p. 158—159°. $(p\text{-OMe-C}_6\text{H}_4\text{-CH.CH})_2\text{CO}$ yields successively $(p \cdot \text{OMe} \cdot \text{C}_6\text{H}_4 \cdot [\text{CH}_2]_2)_2\text{CO}$, m.p. $55 - 55 \cdot 2^\circ$, $[\text{CH}_2]_5(\text{C}_6\text{H}_4 \cdot \text{OMe} \cdot p)_2$, and the derived $(\text{OH})_2 \cdot \text{compound}$, m.p. $104 - 105^\circ$. $\alpha \zeta \cdot Di \cdot p \cdot anisyl \cdot n \cdot hexane \cdot \alpha \zeta \cdot di \cdot n \cdot di \cdot$ dione [prep. from $[CH_2]_4(COCl)_2$, PhOMe, and AlCl₃ in CS_2], m.p. 145—146°, gives $\alpha\zeta$ -di-p-anisyl-, m.p. 70— 71°, and thence $\alpha \zeta$ -di-p-hydroxyphenyl-n-hexane, m.p. 144·5—145·5°; ακ-di-p-anisyl-n-decane-ακ-dione, m.p. 119—119.5°, $\alpha \kappa \cdot di$ -p-anisyl-, m.p. 69—70°, and $\alpha \kappa \cdot di$ p-hydroxyphenyl-n-decane, m.p. 138·5—139·5°, are similarly prepared.

Molecular rearrangements involving optically active radicals. VII. Rearrangement of optically active phenyl alkyl ethers. W. I. GILBERT and E. S. Wallis (J. Org. Chem., 1940, 5, 184—191).— Mesitol (I) (from $C_6H_2Me_3\cdot SO_3H$ by fusion with KOH or, better, by cooling "Remington phenols") and sec.-BuBr in EtOH-NaOEt give dl-mesityl sec.-Bu ether (II), b.p. 72—73°/1 mm., decomp. when heated at atm. pressure; the corresponding d- (III), $[\alpha]_{1}^{22}$ +6·97°, and l- (IV), $[\alpha]_{2}^{20}$ —3·94°, -ethers are similarly prepared from (I) and sec.-BuBr, $[\alpha]_{2}^{20}$ —23·12° (cf. lit.) and $[\alpha]_{2}^{22}$ +12·71°, respectively (obtained from sec.-BuOH, $[\alpha]_{2}^{24}$ +11·67° and $[\alpha]_{2}^{20}$ —10·84°, respectively). Rearrangement of (II) with ZnCl₂ in AcOH

at 115° in presence of p-cresol gives 3-sec.-butyl-p-cresol (V) (small yield), C_4H_8 , (I), sec.-BuOAc, and unchanged materials. With conc. H_2SO_4 for $ZnCl_2$, a better yield of (V) results; (III) and (IV) similarly give dl-(V). The following reactions occur: (i) (II), (III), or (IV) \rightarrow (I) $+ C_4H_8$; (ii) formation of p- C_6H_4 Me·OBu-sec. (VI) from p-cresol and C_4H_8 ; (iii) rearrangement of (VI) to (V). Further evidence of intramol. reaction is obtained by treatment of PhOPr $^\beta$ + (VI) with AcOH-conc. H_2SO_4 , when only o- C_6H_4 Pr $^\beta$ ·OH and (V) are produced. An intermol. mechanism cannot be used to explain retention of optical activity in the experiments previously described (A., 1934, 1097).

Migration and elimination of halogen from aromatic halogeno-compounds under the influence of catalysts. H. MEERWEIN, P. HOFMANN, and F. Schill (J. pr. Chem., 1940, [ii], 59, 266—283). $-1:2:4-C_6H_3I(OMe)_2$ (I) and BF_3,Et_2O at room temp. give $1:5:2:4-C_6H_2I_2(OMe)_2$ (II) and m-C₆H₄(OMe)₂ (III). A similar reaction is observed using HCl, TiCl₄, or AlCl₃ in Et₂O, chlorocymenesulphonic acid in AcOH, P₂O₅-C₆H₆ (slowly) at room temp., or HCO₂H at 96°. The reaction is reversible; (II) and (III) with CCl₃·CO₂H at 120° or, much less well, HCO₂H at 90—95° give (I). Migration of I is intermol. since (I) and PhOMe with CCl₃·CO₂H at 120° give (III) and $o + p \cdot C_6 H_4 I \cdot OMe$; similarly (I)–PhOH-BF₃-CHCl₃ at room temp. give $o \cdot C_6 H_4 I \cdot OH$. $1:2:4-C_6H_3Br(OMe)_2$ and BF_3+BF_3,Et_2O give $1:5:2:4-C_6H_2Br_2(OMe)_2$ and (III). $1:2:4-C_6H_2Br_2(OMe)_2$ 2:4:5-trimethoxybenzene (IV), m.p. 70—71°, converted by BF₃,Et₂O, CCl₃ CO₂H-CCl₄, or HCO₂H at 75°, or in boiling decahydronaphthalene alone, into 2:4:5:2':4':5'-hexamethoxydiphenyl (V). (IV) and $Br-CCl_4$ give $1:2:4:5-C_6H_2Br(OMe)_3$, but Cl_2-CCl_4 give (V). Iodination of PhOMe or (III) could not be effected with (IV). Theoretical aspects are discussed; migration involves positive halogen.

Etherification and hydrolysis [of ethers] of nitrophenols. A. OLIVERIO (Atti X Congr. Internaz. Chim., 1938, III, 258—263).—Boiling 10% KOH (24 hr.) hydrolyses o- and p-nitro-anisole and -phenetole only partly; the m-compounds are unchanged. Contrary to Cardwell et al. (J.C.S., 1915, **107**, 256), 6-nitrohomoveratrole (I) is readily hydrolysed (with 2% KOH, 20% hydrolysis in 4 hr.). With boiling EtOH containing some aq. KOH, (I) gives 2:1:4:5- $NO_2 \cdot C_6H_2Me(OEt)_2$ (II). 4-Nitroverstrole (III) and EtOH give 3:3'-dimethoxy-4:4'-diethoxyazoxy-With EtOH and some aq. NaOH, (III) gives $4:2:1-NO_2\cdot C_6H_3(OMe)\cdot OEt$ (IV). In MeOH with aq. NaOH (best in sealed tube), the reactions are reversible, (II) and (IV) giving (I) and (III), respectively. Other examples of similar substitution reactions are given. E. W. W.

Chloroalkylation of phenolic ethers. I. Synthesis of methoxystyrenes. II. Syntheses of vinylanisole and of derivatives of methoxy- α -hydroxyethylbenzene. R. Quelet (Bull. Soc.

chim., 1940, [v], 7, 196—205, 205—215).—I. A mixture of PhOMc, (MeCHO)₃, and conc. HCl is saturated with HCl at ~5°, giving the very unstable OMe·C₆H₄·CHMeCl (I), which is transformed by C_5H_5N at ~115° into p-vinylanisole, b.p. $94^{\circ}/17$ mm., m.p. 2° (with a small proportion of the o-compound), which rapidly polymerises at room temp., and $\alpha\alpha$ -dianisylethane, b.p. 203—204°/10 mm., m.p. 72°, formed from (I) and unchanged PhOMe. The similar condensation with EtCHO is more difficult and is best effected in presence of H₃PO₄; the products are converted by C₅H₅N into anethole (with a small proportion of o-OMe·C₆H₄·CH:CHMe) and αα-dianisylpropane, b.p. 197—200°/9 mm., m.p. 44°. Pr^aCHO more readily leads to $p-\Delta^a$ -butenylanisole, b.p. 127°/16 mm., m.p. 19.5° (dibromide, m.p. 75— 76°).

II. o-C₆H₄Me·OMc is converted by HCl and (MeCHO)₃ at 5—10° followed by C₅H₅N into 4methoxy-3-methylstyrene, b.p. 105°/16 mm. (unstable dibromide), and $\alpha\alpha-4:4'$ -dimethoxy-3:3'-dimethyldiphenylethane; the crude, intermediate Cl-compound is transformed by NaOAc in AcOH into α-acetoxy-α-6methoxy-m-tolylethane, b.p. 135—136°/10 mm., and by NaOMe or NaOEt into α-methoxy-, b.p. 116- $117^{\circ}/16$ mm., or α -ethoxy-, b.p. $124-125^{\circ}/16$ mm., -α-6-methoxy-m-tolylethane, respectively. Similarly, m-C₆H₄Me·OMe affords 4-methoxy-2-methylstyrene, b.p. $107^{\circ}/16$ mm.; the very unstable intermediate chloride yields α -acetoxy-, b.p. $128-129^{\circ}/8$ mm. (partial decomp.), α -methoxy-, b.p. $120^{\circ}/16$ mm., and α -ethoxy-, b.p. $128-129^{\circ}/17$ mm., $-\alpha$ -5-methoxyo-tolylethane. p-C₆H₄Me·OMe gives 2-methoxy-5methylstyrene, b.p. 108°/17 mm. (dibromide, m.p. 61°), and α -acetoxy-, b.p. 130—131°/10 mm., α methoxy-, b.p. 113°/16 mm., m.p. 43.5°, and a-ethoxy-, b.p. 119°/18 mm., -\alpha-4-methoxy-m-tolylethane. 4-Methoxy-2-methyl-5-isopropylstyrene, b.p. 122—123°/ 12 mm., 4-methoxy-2-methyl-5-isopropyl-α-methoxy-, b.p. 139—140°/16 mm., and -α-ethoxy-, b.p. 132— 133°/10 mm., -ethylbenzene are described.

Preparation of αβ-dichloroethylanisole; transition to α - and β -chloromethoxystyrenes. R. QUELET and J. ALLARD (Bull. Soc. chim., 1940, [v], 7, 215—227).—In part, a more extended account of work already reported (A., 1939, II, 59). αβ-Dichloro- α -p-anisylethane is converted by KCN in aq. EtOH at 95° into 4:4'-dimethoxystilbene and β-chloro-α-ethoxy-α-p-anisylethane, b.p. 147°/16 mm., pyrolysed to EtOH and β -chloro- α -p-anisylethylene, b.p. 133—138°/16 mm., m.p. 32°, and transformed by NaOEt in ÉtOH at 100° into α-ethoxy-α-p-anisylethylene, b.p. 135-137°/16 mm., which is hydrogenated (Adams) to α -ethoxy- α -p-anisylethane, b.p. $114-115^{\circ}/16$ mm. o- and $p-C_6H_4$ Me OMe and 3:6:1-C₆H₃MePr^{\$}OMe give very poor yields of the corresponding $\alpha\beta$ -dichlorides, which are preferably obtained by addition of Cl_2 to the requisite methoxy-styrenes. These compounds when treated with NaOEt or $\text{C}_5\text{H}_5\text{N}$ give the following: α -, b.p. 145— 150°/18 mm., and β -, b.p. 155—158°/18 mm., -chloroα-6-methoxy-m-tolylethylene; α-, b.p. 135—137°/16 mm., and β-, b.p. 143-145°/16 mm., -chloro-α-4methoxy-m-tolylethylene; α -, b.p. 158—160°/16 mm.,

and β-, b.p. 155—160°/16 mm., -chloro-α-5-methoxy-4-isopropyl-o-tolylethylene. H. W.

Steric hindrance in ketone-phenol condensations. Condensation of guaiacol with cyclic ketones. J. B. NIEDERL, V. NIEDERL, and J. Grumer (J. Amer. Chem. Soc., 1940, 62, 320—322). -As anticipated (cf. A., 1939, II, 416), condensation of guaiacol (I) (1 mol.) with cyclohexanone, 4- or 3methylcyclohexanone (0.5 mol.) by HCl in AcOH at room temp. gives 1:1-di-4'-hydroxy-3'-methoxyphenyl-cyclohexane (31%) (II), m.p. 174° (phenylurethane, m.p. 153°; diacetate, m.p. 157°; dibenzoate, m.p. 168°), -4- (10%), m.p. 165° (phenylurethane, m.p. 192°; diacetate, m.p. 136°; dibenzoate, m.p. 162°), or -3-methyl-cyclohexane (27%), m.p. 149° (phenylurethane, m.p. 187°; diacetate, m.p. 118°; dibenzoate, m.p. 171°), respectively, but with 2-methylcyclohexanone (1 mol.) gives 1-4'-hydroxy-3'-methoxyphenyl-2-methyl- Δ^1 -cyclohexene ($\sim 20\%$), an oil (oxyacetic acid derivative, m.p. 73°), with $\sim 30\%$ of its polymeride. With 48% HBr or HI (d 1.7), (II) gives (I) or o-C₆H₄(OH)₂, respectively. R. S. C.

Nitration of 6- and 7-methoxyacet-2-naphthalide. D. H. HEY and S. E. LAWTON (J.C.S., 1940, 384-387). $-7:2-OMe\cdot C_{10}H_6\cdot NHAc$ and HNO_3 (d 1.42) in AcOH give 1- (I), m.p. 160°, and 8-nitro-7-methoxyacet-2-naphthalide (II), m.p. 229—230°. (I) and KOH-EtOH give 1:7:2-NO₂·C₁₀H₅(OMe)·NH₂ [Ac₂ derivative, m.p. 166°, also from (I)-Ac₂O[C] Fischer et al., A., 1916, i, 718). (II) and NH_3 -EtOH at 160°, then 200°, give $1:2:7-NO_2 \cdot C_{10}H_5(NH_2)_2$, reduced by Sn-HCl-EtOH to $1:2:7-C_{10}H_5(NH_2)_3$, converted by benzil in aq. EtOH into 3'-amino-2: 3diphenyl-5: 6-benzquinoxaline, m.p. 215°. OMe·C₁₀H₆·NHAc similarly affords Ī- (III), m.p. 157°, and 5-nitro-6-methoxyacet-2-naphthalide (IV), m.p. 208-209°. (III) and KOH-EtOH give 1-nitro-6methoxy-2-naphthylamine, m.p. 149—150°, also prepared from 1:2:6-NO₂·C₁₀H₅(OMe)₂ and NH₃–EtOH at 160°, then at 200°. (I) or (III) and nitrous fumes give N-NO-derivatives, m.p. 71° (decomp.) and 89° (decomp.), respectively, which in C_6H_6 do not evolve N2, and regenerate (I) or (III), respectively. (II) and (IV) give normal NO-derivatives, m.p. 85° (decomp.) and 91° (decomp.), respectively, which with C₆H₆ give 8-nitro-7-, m.p. 128°, and 5-nitro-6-methoxy-2-phenylnaphthalene, m.p. 178°, respectively, also obtained from 2:7- or 2:6- $C_{10}H_6$ Ph-OMe, respectively, and HNO₃ (d 1·42) in AcOH. A. T. P.

Tin derivative of dithiopyrocatechol. H. P. Brown and J. A. Austin (J. Amer. Chem. Soc., 1940, 62, 673).—The red solid, supposed (Guha et al., A., 1926, 398) to be o-SH·C₆H₄·SO₃H, is Sn bisdithiopyrocatechol (I) and is also obtained from o-C₆H₄(SH)₂ (II) by SnCl₄ or SnCl₂ + air (in absence of air ? Sn^{II} dithiopyrocatechol is obtained) and as impurity in the prep. of (II) from o-C₆H₄(SO₂Cl)₂ by Sn-HCl. Conc. HCl converts (I) into (II), but subsequent addition of H₂O to the mixture regenerates (I). Similarly Sb, Zn, Fe^{III}, Pb, and Tl salts are formed from (II). R. S. C.

Hydrogen fluoride as a condensing agent. X. Rearrangements. J. H. Simons, S. Archer, and

D. I. Randall (J. Amer. Chem. Soc., 1940, **62**, 485—486).—PhBu^{γ} and PhOH in HF at 0° partly exchange Bu^{γ}, giving C₆H₆ and p-C₆H₄Bu^{γ}·OH (10%). CPh₂·N·OH in AcOH—HF at 0° give 72% of NHPhBz. PhOAc and HF in C₅H₁₂ at 100° (not at 0°) give a poor yield of p-OH·C₆H₄·COMe. PhSO₃·C₆H₄Me-p and HF in ligroin at 100° give 10% of Ph 4-hydroxy-m-tolyl sulphone, m.p. 137—138°, also obtained by condensing PhSO₂Cl and p-C₆H₄Me·OMe by AlCl₃ in CS₂ to Ph 4-methoxy-m-tolyl sulphone, m.p. 137—138°, and hydrolysing this by AlCl₃ at 140—150°.

R. S. C. Electrochemical method of introducing the thiocyano-radical into organic compounds. N. N. Melnikov, S. I. Skljarenko, and E. M. Tscherkasova (J. Gen. Chem. Russ., 1939, 9, 1819—1824).-When a current of 0.02 amp. per sq. cm. is passed through a system consisting of anolyte of org. compound + NH₄CNS in aq. EtOH and catholyte of 5% aq. NH4CNS, CNS-compounds are obtained. Thus, PhOH gives $p\text{-OH}\cdot C_6H_4\cdot CNS$, o- or m-cresol gives 1:2:5- or (?) 1:3:5-C₆H₃Me(OH)·CNS, thymol affords $3:1:4:6-OH\cdot C_6H_2MePr^{\beta}\cdot CNS$, carvacrol yields 4-thiocyano-2-methyl-5-isopropylphenol, m.p. 73.5—74.5°, 8-hydroxyquinoline gives 4-thiocyano-8hydroxyquinoline, o- or m-toluidine gives, respectively, 5-thiocyano-oand thiocyano-m-toluidine, NHPhEt yields p-thiocyano-N-ethylaniline, m.p. 57— 58°. 3-Thiocyano-p-cresol is very unstable, readily undergoing conversion into $C_6H_4Me < S > CO$.

Sulphonation by means of sulphites. V. Formation of β -naphtholsulphonic acids. S. V. Bogdanov [with O. J. Novoshilova] (J. Gen. Chem. Russ., 1939, 9, 1846—1850).—At 85° the ratio Na₂SO₄: Na₂S₂O₆ = 2:1 when 0·5m·Na₂SO₃ is heated for 30 min. with MnO₂. In presence of β -naphtholsulphonic acids the oxidation is greatly accelerated; the yield of Na₂SO₄ rises in presence of acids not undergoing sulphonation [2:1:6-OH·C₁₀H₅(SO₃H)₂ and 2:1:3:6-OH·C₁₀H₄(SO₃H)₃], and falls with acids undergoing further sulphonation in these conditions [2:4-, 2:6-, and 2:7-OH·C₁₀H₆·SO₃H and 2:3:6-OH·C₁₀H₅(SO₃H)₂]. The yields of Na₂SO₄ + sulphonic acid and of Na₂S₂O₆ are const. in all cases, amounting to 76—79 and 21—24%, respectively. The ratio Na₂S₂O₆: sulphonic acid is variable.

Condensation of phenylacetylene with methyl propyl ketone. N. M. Malenok (J. Gen. Chem. Russ., 1939, 9, 1947—1952).—CPh:CH and COMePr condense (Grignard reaction) to α -phenyl- γ -methyl- Δ^{α} -hexinen- γ -ol, b.p. 116—116·5°/2 mm., which eliminates H₂O when boiled with Ac₂O, yielding α -phenyl- γ -methyl- Δ^{α} -hexin- Δ^{γ} -ene, b.p. 87·5—88°/1·5 mm. This with AcO₂H gives α -phenyl- γ -methyl- Δ^{α} -hexinene- γ 8-diol, m.p. 75°, together with its γ -acetate, b.p. 143·5—144·5°/1·5 mm. R. T.

Dehydration of tertiary alcohols containing the cyclohexane ring. W. A. Mosher (J. Amer. Chem. Soc., 1940, 62, 552—554).—The direction of loss of H₂O is determined by heating with I, continuously distilling off the H₂O and olefine formed, ozonising

the latter product, and determining the CH₂O, MeCHO, or COMe₂. 1-Methyl-, 1-ethyl-, and 1-isopropyl-cyclohexanol and cyclohexyldimethylcarbinol give only 1-methyl-, >99% of 1-ethyl-, and $\sim95\%$ of 1-isopropyl-cyclohexene, and about 50% each of isopropylidene- and isopropenyl-cyclohexane, respectively. R. S. C.

Epimeric alcohols of the cyclohexane series. IV. Parachor as a criterion for cis-transisomerism. D. T. C. GILLESPIE, A. K. MACBETH, and J. A. Mills (J.C.S., 1940, 280—282).—Parachors of 10 pairs of geometrical isomerides of the cyclohexane series are measured. With the exception of the menthones and menthyl acetates, the transisomeride shows the higher val.; the magnitude of the difference depends probably more on the chemical nature of the compound than on the relative size of substituent groups. Vals. are recorded for l- and dl-iso-menthone (cf. Read et al., A., 1927, 772), l-, dl-neo-, dl-iso-, and dl-neoiso-menthyl acetates; cisand trans-p-menthane, -4-methyl- and -isopropylcyclohexylcarbinol (small differences in val.), -dihydrocryptol, -l-3-methylcyclohexanol, -hexahydrocuminic ester, and -dihydrocryptyl acetate. Prep. of some of the compounds is described.

Pyrenium compounds. XXXV. Oxidation of ketones with hydrogen peroxide. W. DILTHEY, M. INCKEL, and H. STEPHAN (J. pr. Chem., 1940, [ii], 59, 219—237; cf. A., 1939, II, 224).—cyclo-Hexanone added to 30% $\text{H}_2\text{O}_2 + 96\%$ H_2SO_4 in Ac_2O at $>20^\circ$ gives the peroxide, $(C_6H_{10}<_{O}^{O})_2$, m.p. 132—133° (cf. Stoll et al., A., 1930, 602); excess of H₂SO₄ in place of Ac₂O affords polymerised ε-hydroxyhexoic acid (derived hydrazide, m.p. 117°) (cf. van Natta et al., A., 1934, 392). Similarly prepared are the dimeric 4-, m.p. 71—72°, and 2-methylcyclo-hexanone peroxide, m.p. 106—107°, and cyclopentanone peroxide, trimeric, m.p. 172° (decomp.), and dimeric, m.p. 105° (cf. Milas et al., A., 1939, II, 503) (excess of H₂SO₄ gives δ-hydroxyvaleric acid). 3-Methylcyclopentanone and CO(CH2Ph)2 afford peroxides in small yield. COMe2 and COPhMe give dimeric peroxides, m.p. 132° (cf. Baeyer et al., A., 1900, i, 328) and new m.p. 185—186°, respectively. The dimeric peroxides, m.p. 102—103°, and m.p. 47—48°, of CH₂Ph·CH₂·COMe and COPr^a₂, respectively, are prepared. COMeEt and COBu⁵₂ give explosive oils (mainly trimeric, with some dimeric peroxide); COEt2 and COMePr give no stable peroxide. COPh2 affords PhOBz, formed probably by rearrangement of peroxide (cf. dimeric peroxide, Marvel et al., A., 1938, II, 327). p-OMe·C₆H₄·CHO or o-OH·C6H4·CHO gives decomp. products only, and o- or $m\text{-NO}_2 \cdot C_6 H_4 \cdot \text{CHO}$ affords o- or $m\text{-NO}_2 \cdot C_6 H_4 \cdot \text{CO}_2 H$, respectively. No peroxide is obtained from menthone; mechanisms of oxidation are discussed (cf. Baeyer, A., 1900, i, 132): ε-hydroxy-βζ-dimethyloctoic acid lactone or Et ester (loc. cit.) and MgPhBr give αα-diphenyl-γη-dimethyloctaneαζ-diol, m.p. 91°. d-isoMenthone gives no peroxide.

A. T. P. Enediols. III. αβ-Dimesitylacetylene glycol. R. C. Fuson, C. H. McKeever, and J. Corse (J.

Amer. Chem. Soc., 1940, **62**, 600—602).—Mg + MgI₂ converts MCOCl (here and below M = mesityl) or (MCO)₂ in Et₂O-C₆H₆-N₂ into $\alpha\beta$ -dihydroxy- $\alpha\beta$ -dimesitylethylene (I) (cf. A., 1939, II, 260), also obtained by hydrogenating (MCO)₂ in MeOH or light petroleum. The diol gives diacetates, m.p. 218° and 164—165°, and dibenzoates, m.p. 235° (cf. Thompson, A., 1939, II, 316) and 188·5—189·5°, the proportions in which they are formed varying according to the method of prep. and solvent (for hydrogenation). Ketonisation to OH·CHM·COM is effected by HCl in boiling MeOH, and conversion into (MCO)₂ by air or oxidising agents. R. S. C.

Constitution of conduritol and cyclohexanetetraols. G. Dangschat and H. O. L. Fischer (Naturwiss., 1939, 27, 756—757; cf. A., 1937, II, 382).—Conduritol (I) (cf. Kubler, A., 1909, i, 40)

HOH HOH CMe₂: ether, m.p. 100—101°, the diacetate, m.p. 79°, of which with neutral KMnO₄ gives 1:2:4:5-tetrahydroxy-3: 6-diacetoxycyclohexane 4:5-CMe₂: ether (II). (II) and Pb(OAc)₄-C₆H₆, then EtCO₃H, give (after hydrolysis) music acid. The tetra constate

and Pb(OAc)₄-C₅H₆, then EtCO₃H, give (after hydrolysis) mucic acid. The tetra-acetate, b.p. 165°/0·6 mm., of (I) is converted by KMnO₄ into 1:2-dihydroxy-3:4:5:6-tetra-acetoxycyclohexane (III), and thence by Pb(OAc)₄ into tetra-acetylmucic dialdehyde, which is oxidised (EtCO₃H) and hydrolysed to mucic acid. Acetylation of (II), mild hydrolysis (loss of CMe₂:), and oxidation [Pb(OAe)₄] gives tetra-acetylallomucic dialdehyde, decomp. 164°, converted by EtCO₃H into tetra-acetylallomucic acid, decomp. 228°, and thence into allomucic acid. (III) is hydrolysed to muconositol (IV), decomp. 285—290°, and (II) affords alloinositol (V), decomp. 270—275° (cf. Posternak, A., 1936, 1376). (I) and H₂-Pd

give the H_2 -derivative, m.p. 204° [CMe₂: ether, m.p. 80°, best prepared by reduction of the CMe₂: ether of (I)]. 3:4:5-Trihydroxycyclohexanone 4:5-CMe₂: ether (A., 1932, 849) is reduced by H_2 -Ni or Al(OPr^{β})₃ to (after removal of CMe₂:) isomeric [as (VI) and (VII)] cyclohexane-1: 3:4:5-tetraols, m.p. 208°, [α]_D $-8\cdot3$ ° in H_2 O, and m.p. 151°, [α]_D $-61\cdot0$ ° in H_2 O, respectively.

Reduction of α-amino-esters to alkamines in presence of Raney nickel. G. OVAKIMIAN, M. KUNA, and P. A. LEVENE (J. Amer. Chem. Soc., 1940, 62, 676—677).—Hydrogenation (Raney Ni; cf. de Benneville et al., A., 1940, II, 186) of l-leucine ester and l-NHPh·CH₂·CO₂Et (I) gives \$\pm440\$ and 60%,

respectively, of l- β -aminoisohexyl and l- β -anilinoethyl alcohol, $[\alpha]_D^{25}$ +1.9° and -5.61° in MeOH, respectively. Under other conditions (I) yields β -hydroxy- α -cyclohexylethylamine. With these and other NH₂-esters formation of piperazines or sec.-amines occurs under certain conditions. R. S. C.

Ephedrine. III. Di-β-methylamino-α-hydroxypropylbenzenes. S. D. Wilson and C. T. Chang (J. Amer. Chem. Soc., 1940, 62, 287—288; cf. A., 1935, 209).—p-C₆H₄(COEt)₂ and Br in AcOH at 100° give the αα'-Br₂-compound, m.p. 109—110°, and thence (NH₂Me; C₆H₆; room temp. etc.) p-di-α-methylaminopropionylbenzene dihydrochloride, decomp. >320°, reduced by H₂-PtO₂ in 95% EtOH to p-di-β-methylamino-α-hydroxy-n-propylbenzene dihydrochloride, m.p. 285—287° (corresponding sulphate, decomp. >320°, mandelate, m.p. 214°, and tartrate, m.p. 167—168°; free base, amorphous). m-C₆H₄(COEt)₂ [prep. from m-C₆H₄(CO·NEt₂)₂ by MgEtBr improved to give 35—40% yield] gives similarly oily m-C₆H₄[CH(OH)·CHMe·NHMe]₂,2HCl; other salts and intermediates are also oils, but the free base is an amorphous solid. R. S. C.

Diphenylmethane series. L. Mascarelli and M. Pirona (Atti X Congr. Internaz. Chim., 1938, III, 249—250).—The prep. of $o\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\text{-}\mathrm{CH}_2\mathrm{Ph}$ (I) is improved; $o\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\mathrm{Bz}$ is reduced to $o\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\text{-}\mathrm{CH}\mathrm{Ph}\text{-}\mathrm{OH}$, and this (Clemmensen) to (I). $o\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Me}\text{-}\mathrm{Mg}\mathrm{Br}$ and $o\text{-}\mathrm{NO}_2\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}\mathrm{CHO}$, give 2-nitro-2-methylbenzhydrol, m.p. 93—96°. E. W. W.

Constitution of cholesterol. Reactions with di- and tri-chloroacetic acids. F. Pirrone (Atti X Congr. Internaz. Chim., 1938, III, 283—289).— Cholesterol (I) with $CCl_3 \cdot CO_2H$ at room temp. is unchanged (cf. Montignie, A., 1929, 1292), but at 100° it gives cholesteryl trichloroacetate, m.p. 148—149° (Br_1 -derivative, m.p. 78—81°), hydrolysed to (I). At 140°, amorphous products are obtained. In C_6H_6 , some isocholesterol is formed. With $CHCl_2 \cdot CO_2H$ at 140° or in C_6H_6 , (I) gives cholesteryl dichloroacetate, m.p. 107—107·5° (dibromide, m.p. 55—57°), hydrolysed to (I).

Constitution of cholesterol. Oxidation by peracetic acid. F. Pirrone (Atti X Congr. Internaz. Chim., 1938, III, 290; cf. A., 1939, II, 504). —Cholesterol and AcO₂H give a cholestanetriol diacetate, m.p. 164—165°, a cholestanetriol, m.p. 217—218°, and a hydroxycholestanol, m.p. 121—122°.

Isomerisation of cholesterol α -oxide. M. I. USCHAKOV and O. S. MADAEVA (J. Gen. Chem. Russ., 1939, 9, 1690—1692).—Cholesterol α -oxide (I) and MgI₂ in boiling C₆H₆ gradually yield cholesterol. With MgBr₂ in Et₂O (5 hr. at 100°), (I) affords a substance, C₂₇H₄₄O, m.p. $105\cdot5$ — $106\cdot2$ °. When a solution of (I) in dioxan is heated with $2\text{N-H}_2\text{SO}_4$ (24 hr. at the b.p.), cholestane-3:5:6-triol is obtained.

Brassicasterol. II. Degradation by ozone. E. Fernholz and H. E. Stavely (J. Amer. Chem. Soc., 1940, 62, 428—430).—O₃ converts brassicasteryl acetate (as dibromide) in CHCl₃ into (after debromination) β-3-hydroxybisnorcholenic acid; the

acetate and O_3 in AcOH give partly racemised CHMePr 8 ·CHO (semicarbazone, m.p. 119°, $[\alpha]_{2}^{23}$ — $39\cdot4\pm2^\circ$ in EtOH). Brassicasterol is thus $C_{28}H_{46}O$ (cf. A., 1939, II, 112) and is probably 7:8-dihydroergosterol. Brassicasteryl acetate 22:23-dibromide (prep. from the tetrabromide by NaI), m.p. 236—238°, and ergostanyl 3:5-dinitrobenzoate, m.p. 202—203°, $[\alpha]_{2}^{24}+14^\circ$ in CHCl₃, are described. R. S. C.

Sterols. LXXXIX. Reactions of ψ -sarsasapogenin. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1940, 62, 521-525).—The following and known reactions support the view that ψ -sarsasapogenin (I) contains the grouping ·CMe:C(OH)·[CH₂]₂·CHMe·CH₂·OH (= R) and its H_2 derivative (II) contains the grouping CMe CR CH in which the side-chain is reduced. (I) is very readily oxidised by SeO₂ and reacts with Br. Neither (I) nor its acetate (III) reacts with semicarbazide. CrO₃ in ~90% AcOH at 100° oxidises (III) to 3-acetoxyætiobilianic acid (IV) and a small amount of a neutral substance, hydrolysed to an acid, C₂₂H₃₄O₄, m.p. 284-287°, but at room temp. (1 hr.) some 3(β)-acetoxy- $\Delta^{16:17}$ -pregnen-20-one (\overline{V}), m.p. 144—146° [semicarbazone, m.p. 250—252°; further oxidised to (IV) by CrO₃ at room temp. (16 hr.)], is also obtained. KOH-EtOH hydrolyses (V) to $\Delta^{16:17}$ pregnen-3(β)-ol-20-one, +EtOH, m.p. 207—209° [semicarbazone, m.p. 240° (decomp.)], oxidised by CrO₃ in 90% AcOH at room temp. to $\Delta^{16:17}$ -pregnene-3:20-dione (VI). (V) is reduced by Na-EtOH to pregnene-3(β): 20(α)-diol, or by H₂-PtO₂ at 3 atm. in abs. EtOH to an oil, yielding with CrO₃ either pregnane-3: 20-dione or $3(\beta)$ -acetoxypregnan-20-one. Hydrogenation (PtO₂; 3 atm.; AcOH, EtOH, or EtOH-HCl) and subsequent hydrolysis (KOH-EtOH) converts (I) into (II), m.p. 168—170° (di-p-nitrobenzoate, m.p. 196—197.5°; stable to SeO₂; absorbs Br slowly), the diacetate, m.p. 95—97° [obtained also by reduction of (III)], of which with CrO_3 -AcOH at 90° gives (IV) and at room temp. also (V). CrO_3 in AcOH at 15-18° oxidises (II) to (VI) and a $(CO)_2$ -acid, $C_{27}H_{42}O_4$, m.p. 233—236° [disemicarb-azone, m.p. 209° (decomp.); Me ester, m.p. 85— 87°], further oxidised at 25° to (VI). R. S. C.

LXXXVIII. Sterols. Pregnanediols from sarsasapogenin. R. E. MARKER and E. ROHR-MANN (J. Amer. Chem. Soc., 1940, 62, 518—520).— Sarsasapogenin acetate $_{
m with}$ Ac₂O, (EtCO)₂O, $(CH_2 \cdot CO)_2O$ $(Pr^{\alpha}CO)_{2}O$ or, less well, o-C₆H₄(ČO)₂O] at 195—200° gives [after hydrolysis (EtOH–KOH)] \sim 70% of ψ -sarsasapogenin (I) (cf. A., 1940, II, 84) (di-p-nitrobenzoate, m.p. 156.5— 159°) and the C_{22} OH-lactone. CrO_3 in 80% AcOH at room temp. converts (I) into $\Delta^{16:17}$ -pregnene-3: 20dione (50-70%), m.p. 200-202° (lit. 196°) [disemicarbazone, m.p. 310° (decomp.); with some 3-ketoætiobilianic acid], reduced by Na-EtOH to pregnane- $3(\alpha): 20(\alpha)$ -diol, by H_2 -PtO₂ at 3 atm. in abs. EtOH to pregnane- $3(\alpha):20(\beta)$ -, $-3(\beta):20(\beta)$ -, and $-3(\bar{\beta})$: 20(α)-diols, and by H₂-Pd-BaSO₄ in abs. EtOH to pregnane-3: 20-dione [disemicarbazone, m.p. 244° decomp.)]. The presence of Me at $C_{(21)}$ and of OH at $C_{(3)}$ in sarsasapogenin and tigogenin is thus proved. R. S. C.

Sterols. XC. Oxidation products of sarsasapogenin. Pregnane-3:16:20-triol. R. E. Marker, E. Rohrmann, H. M. Crooks, E. L. Wittle, E. M. Jones, and D. L. Turner (J. Amer. Chem. Soc., 1940, 62, 525—527).—Sarsasapogenin acetate, $K_2S_2O_8$, and a little H_2SO_4 in boiling 90% AcOH give an ester 'CMe·CHR'—CH2 CH·OAc (R = CHMe·O·CO·[CH2]2·CHMe·CH2·OAc), hydrolysed by KOH-EtOH to pregnane-3(β):16:20-triol (20—40%), m.p. 223—226° (tribenzoate, m.p. 185—187°; triacetate, m.p. 108—111°), which with CrO₃ in 90% AcOH at room temp. gives an oil, reduced by Na-EtOH to pregnane-3(α):20(α)-diol. epiSarsasapogenin acetate gives similarly pregnane-3(α):16:20-triol, m.p. 206—207° (tribenzoate, m.p. 153—155°), and acids. R. S. C.

p-cycloHexylphenoxyacetic acid and its derivatives. D. Bodroux and A. Chatenet (Bull. Soc. chim., 1940, [v], 7, 191—195).—An account of work previously reviewed (A., 1938, II, 409). H. W.

Condensations brought about by bases. IX. Relationship between the Claisen and Perkin types of condensations. C. R. Hauser and D. S. Breslow (J. Amer. Chem. Soc., 1940, 62, 593—597; cf. A., 1940, II, 91).—The mechanisms of the Claisen and Perkin condensations are discussed. Pr⁸CO₂Et (I), PhCHO, and NaOEt in Et₂O give only CH₂Ph·OH (II) and BzOH (cf. Müller et al., A., 1935, 344). OH·CHPh·CMe₂·CO₂Et (modified prep.), m.p. 38·5—39°, with NaOEt-Et₂O gives (I) and PhCHO [whence (II) and BzOH], and with CNaPh₃ gives (cf. A., 1939, II, 262) PhCHO [as (II) and BzOH] and Pr⁸CO·CMe₂·CO₂Et. R. S. C.

Alkaline decomposition of substituted ali-

phatic β-hydroxy-acids. [IV.] α-Alkyl-acids. D. Ivanov (Atti X Congr. Internaz. Chim., 1938, III, 209—212).—Esters of type OH·CR'₂·CHR·CO₂Et, viz., OH·CPh₂·CHEt·CO₂Et,

CH₂Ph·CPh(OH)·CHEt·CO₂Et, and
OH·CPhEt·CHEt·CO₂Et, when heated with alkali (cf. A., 1933, 807) give 90—99% of the theoretical yield of the ketone COR'₂. β-Hydroxy-β-phenyl-αα-dimethylvaleric acid, m.p. 101·5°, does not undergo this reaction, nor do the acids OH·CHPh·CHEt·CO₂H, OH·CHPh·CMe₂·CO₂H, or OH·[CMe₂]₂·CO₂H, or the esters OH·CHMe·CMe₂·CO₂Et,
OH·CHPr^β·CHMe·CO₂Et, OH·CMe₂·CHMe·CO₂Et,
OH·CMe₂·CHEt·CO₂Et, or OH·CPr₂·CMe₂·CO₂Et.

Separation of cis- and trans-acids of the acrylic series. [Nitrocinnamic acids.] M. A. VERCILLO (Atti X Congr. Internaz. Chim., 1938, III, 375—379).—Separation of cis- and trans-isomerides of o-, m-, and p-nitrocinnamic acids by formation of Me esters, or by partial salt-formation using Li₂CO₃ (half theoretical quantity), is not very successful. Better results are obtained by fractional pptn. of the acids by AcOH or HCl from solutions of their Li salts; the trans-isomerides are the first pptd.

E. W. W.

Synthesis of polycyclic compounds. II. Reformatsky reaction with 9-methyl-1:2-benzanthrone-10. B. M. Michailov and N. G. Tschernova (J. Gen. Chem. Russ., 1939, 9, 2171—2172).—9-Methyl-1:2-benzanthrone-10, $CH_2Br\cdot CO_2Et$, and Zn-Cu in C_6H_6 yield 9-methyl-1:2-benz-10-anthranylacetic acid, m.p. 200—227° (decomp.) [Et ester, m.p. 81·6—83°; amide, m.p. 270—272° (decomp.)], converted into 9:10-dimethyl-1:2-benzanthracene by heating at the m.p., or with $SnCl_2$. R. T.

Synthesis of 3:5-difluoro- and 5-iodo-3-fluorodl-tyrosine. J. English, jun., J. F. MEAD, and C. NIEMANN (J. Amer. Chem. Soc., 1940, **62**, 350— 354).—o-C₆H₄F·OMe (I) (prep. in 30·8% yield from o-OMe C₆H₄·NH₂ by way of the diazonium fluoroborate), b.p. 69—70°/26 mm., gives (cf. Schiemann and Miau, A., 1933, 1156) successively 4:2:1-NO₂·C₆H₃F·OMe (39—40%), m.p. 104·5°, (by SnCl₂—101) 4:3:1-OMe·C₆H₃F·NH₂ (65—75%), m.p. 82°, (diazo-reaction) 2-fluoro-4-cyanoanisole (46%), m.p. 96.5°, b.p. 96—98°/l·5 mm., (by $SnCl_2$ –HCl– Et_2 O) 4:3:1-OMe·C₆H₃F·CHO (II) (63%), m.p. 29—30°, b.p. 93°/4.5 mm. [obtained less well from (I) by $Zn(CN)_2$ -AlCl₃-HCl-C₆H₆ at 40—50°], 2-phenyl-4-3'-fluoro-4'-methoxybenzylideneoxazol-5-one, 207° (corr.), and 3-fluoro-dl-tyrosine (49%), decomp. 275-278° (rapid heating). I-KI in SN-aq. NH3 then gives 5-iodo-3-fluoro-dl-tyrosine (47%), m.p. 192° (decomp.). Ac₂O-AlCl₃ in CS₂ converts (I) into 3fluoro-4-methoxyacetophenone (70-80%), m.p. 92° $\{5\text{-NO}_2\text{-derivative (III) [prep. by HNO}_3\ (d\ 1\cdot 5)\ in H_2SO_4\ at\ -10^\circ],\ b.p.\ 144-147^\circ/4\ mm.\ [phenyl-]$ hydrazone, m.p. 160-161° (decomp.)]}, oxidised by KMnO₄-KOH at 80° to 4:3:1-OMe·C₆H₃F·CO₂H (IV) (70%), m.p. 208—210°. With H₂SO₄-HNO₃ $(d \ 1.5) \ at -10^{\circ} (II)$ gives its $5-NO_2$ -derivative (V) (55%), m.p. 57—58° (oxime, m.p. 138—139°). HNO₃ (d 1.5) and (IV) at -5° to 0° give 3-fluoro-5-nitro-p-anisic acid (57%), m.p. 166° [also obtained from (III) or (V) by KMnO₄ at 100°], the Me ester, m.p. 50°, b.p. 128—131°/3 mm., of which is hydrogenated (PtO₂) in MeOH to Me 3-fluoro-5-amino-p-anisoate (90%), m.p. 55°. Distillation of the derived diazonium fluoroborate and subsequent hydrolysis gives 3:5-difluoro-p-anisic acid (VI) (28%), m.p. 162°, the crude acid chloride, m.p. 15-20°, of which is hydrogenated (Pd-BaSO₄; xylene; quinoline-S) to 4:3:5:1-OMe·C₆H₂F₂·CHO, a liquid, which yields 52% of 2-phenyl-4-3': 5'-difluoro-4'-methoxybenzylideneoxazol-5-one, m.p. 165—169° (decomp.), and thence NaOH-EtOH) 3:5-difluoro- α -benzamido-4methoxycinnamic acid, m.p. 200—201°, or (by red P-HI-Ac₂O) 3:5-difluoro-dl-tyrosine (62%), m.p. 263—265° (decomp.). Hydrogenation (PtO₂-FeCl₂; EtOH; 3-4 atm.) of (V) gives 3-fluoro-5-amino-4methoxybenzyl alcohol, m.p. 55°, b.p. 141°/2 mm. [also obtained from (V) by Al(OPr^β)₃-Pr^βOH], which gives no diazonium fluoroborate. 3-Fluoro-5amino-4-methoxyacetophenone [prep. by hydrogenation of (III)], b.p. 138°/2·5 mm. (hydrochloride, decomp. 160—175°), also gives no diazonium fluoroborate. (VI) could not be obtained from the 3:5tetrazonium fluoroborate of 3:5:4:1- $(NH_2)_2C_6H_2(OMe)\cdot CO_2Me$. 4-Nitro-2:6-diaminophenol, m.p. 169° (decomp.), obtained (45%) from pieric acid by $\rm H_2S-NH_3-H_2O$ at 75°, gives the Ac_2 derivative, m.p. 235° (decomp.), and thence 4-nitro-2:6-diaminoanisole, m.p. 180—181° (Ac_2 derivative, m.p. 211°); the derived tetrazonium fluoroborate decomposes explosively. Decomp. of $5:3:2:1-NO_2\cdot C_6H_2F(OMe)\cdot N_2\cdot BF_4$ gives only 10% of 2:6-difluoro-4-nitroanisole, m.p. 35°. R. S. C.

Photochemical inter-reactions of oxalyl chloride and phosgene with cyclohexane. M. S. Kharasch and H. C. Brown (J. Amer. Chem. Soc., 1940, 62, 454).—Photolysis (W lamp) of (COCl)₂ or COCl₂ in cyclohexane gives cyclohexane carboxyl chloride with HCl + CO or HCl, respectively, indicating decomp. of (COCl)₂ into CO·COCl + Cl (or 2COCl) and of COCl₂ into COCl + Cl. R. S. C.

Molecular compounds in binary systems: benzoic acid and nitro-, hydroxy-, and aminobenzoic acids.—See A., 1940, I, 215.

Azlactones. II. Azlactone formation glacial and in aqueous acetic acid and preparation of a-benzamidocrotonic acid azlactone II. H. E. CARTER and C. M. STEVENS (J. Biol. Chem., 1940, **133**, 117—128; cf. A., 1939, II, 423).—N-Benzoyl-O-methyl-dl-allothreonine (I) with Ac₂O yields α-benzamidocrotonic acid azlactone II (II), m.p. 144—145°, converted by C₅H₅N into the isomeric azlactone I (III), m.p. 95—96° (loc. cit.). Hydrolysis (0.5N-HCl) of (II) yields α-benzamidocrotonic acid II, m.p. 195—198° (ÍV); acid I (loc. cit) has m.p. 193—195° (V). With aq. AcOH-NaOAc, (I) or (V) yields a mixture of (II) and (III), also obtained in much lower yield in absence of NaOAc. In AcOH with a little Ac₂O, the rate of azlactonisation is greatly increased by NaOAc. The rate of azlactonisation of benzoyll-p-methoxyphenylalanine (VI) in AcOH is increased by additions of NaOAc or Ac₂O; (VI) is thereby racemised [and also by Ac₂O and by the azlactones of benzoyl-dl-p-methoxyphenylalanine (anilide, m.p. 207 -209°), $-d\bar{l}$ -phenylalanine, and -dl-alanine in AcOH]. It is suggested that the racemisation of an acylated amino-acid by excess of Ac₂O in either aq. AcOH or AcOH depends on the formation of azlactone as an intermediate. NaOAc increases the rate of racemisation by increasing the rate of azlactonisation. (II) and (III) are cis-trans isomerides. J. D. R.

Mechanism of benzoyloxylation of ethylenes by the iodine-silver benzoate complex. C. Prévost (Atti X Congr. Internaz. Chim., 1938, III, 318— 324).—A review (cf. A., 1934, 989; 1935, 728; 1937, II, 289; etc.). The formation of OBz·CHR·CHR'·OBz from CHR:CHR' and Ag(OBz)₂Hal is considered to involve the intermediate compound OBz·CHR·CHR'Hal, which under certain conditions

Auto-metalation with sodium m-tolyl. H. Gilman and H. A. Pacevitz (J. Amer. Chem. Soc., 1940, 62, 673—674).—m-C₆H₄MeCl and Na in light petroleum at 35—40° followed by solid CO₂ give m-C₆H₄Me·CO₂H, but, if the mixture is boiled, only \sim 5% of CH₂Ph·CO₂H (similarly formed from p-C₆H₄MeCl in 65% yield) is obtained. R. S. C.

may be isolated.

E. W. W.

Composition and structure of chromium compounds of azo-dyes from salicylic acid. K. Brass and F. Wirnitzer (Atti X Congr. Internaz. Chim., 1938, III, 46—57).—2-Chloro-4'-hydroxyazobenzene-3'-carboxylic acid gives (cf. A., 1936, 65) a Cr lake, $C_{39}H_{21}O_9N_6Cl_3Cr_2$, $3H_2O$, which is an exception to the composition rule previously found, in that ${\rm Cr}:{\rm dye}:{\rm H_2O}=2:3:3.$ The complex contains < the theoretical Cl, which has apparently been partly replaced by OH. The lake, C₄₂H₃₃O₁₂N₆Cr,3H₂O, from 4-hydroxy-2'-methoxyazobenzene-3-carboxylic acid has $Cr: dye: H_2O =$ 1:3:3, and differs from compounds previously described (e.g., in its solubility in org. solvents); it is regarded as a CrIII salt, but contains < the theoretical OMe (apparently also partly replaced). compound, $C_{51}H_{30}O_{18}N_6S_3Cr_2$, from 2-4'-hydroxy-3'-carboxybenzeneazonaphthalene-6-sulphonic contains Cr : dye = 2 : 3; one Cr atom is regarded as linked ionically through ('CO₂')₃, the other in part through hydroxylic O, and in part co-ordinately through CO. With the azo-dye from $(p-NH_2\cdot C_6H_4)_2S$ and salicylic acid (2 mols.), a CrIII salt, $C_{78}H_{48}O_{18}N_6S_3Cr_2,4H_2O$, in which $Cr:dye:H_2O=2:3:4$, is obtained. Azosalicylic acid gives a compound, $C_{14}H_7O_6N_2Cr_,2H_2O$, in which the ratio is 1:1:2; with liquid NH₃ this gives a compound $+2H_2O_,2NH_3$. 5:2:1-NPh.N·C₆H₃(OH)·CO₂H gives a Co lake, $C_{26}H_1O_6N_4Co_,2H_2O$, of normal (1:2:2) metal: dye: H_2O ratio. 4:4'-Dihydroxystilbene-3:3'-dicarboxylic acid gives a Cr product of uncertain composition. The lakes are decomposed by boiling AcOH-NaOAc.

Optical activation of acids and a new resolution process depending on it. M. M. Jamison and E. E. TURNER (J.C.S., 1940, 264—276; cf. A., 1938, 490).—4:6:4'-Tribromo-N-benzoyldiphenylamine-2-carboxylic acid (I) and nor-d-\psi-ephedrine in CHCl₃ afford two addition curves (loc. cit.), the "initial curve" representing rotations taken as soon as possible after mixing, and the "final curve" showing rotations after mutarotation is complete. (I) and cinchonidine, activation increases rapidly with increase in acid: base ratio. The use of acids of moderate optical stability, solutions of which can be made more quickly than those of (I), allows "initial curves" to be made. Phenylbenzimino-2-carbomethoxy-6-methylphenyl ether, m.p. 93°, isomerises at 260° to the Me ester, m.p. 106-107°, of N-benzoyl-6methyldiphenylamine-2-carboxylic acid, m.p. 195—196° (previous softening); with the acid and nor-d-ψephedrine in CHCl₃ mutarotation occurs when acid: base ratio is 0.5:1 (rotation becomes less positive); at 1:1 the amount of change increases, at 1.25:1 it is small, and at 2:1 extensive mutarotation occurs in the opposite sense, the positive rotation of the solution increasing. A similar result is obtained with cinchonidine in CHCl3-EtOH (40:1), the most generally used solvent (A). The equilibrium base-dacid = base-l-acid is apparently displaced in one direction at low acid: base ratios, and in the other direction at high ratios. N-o-Tolylbenzimino-2'carbomethoxy-6-methylphenyl ether, m.p. 96-97°, at 290° gives the Me ester, m.p. 145°, of N-benzoyl-

2:6'-dimethyldiphenylamine-2'-carboxylic acid, m.p. 184° (previous softening) (also +1EtOH), which, however, solvated readily; mutarotation occurred with all the acid: base ratios used. N-Phenylbenzimino-4: 6-dichloro-2-carbomethoxyphenyl ether, m.p. 112—113°, isomerises at 220° to the Me ester, m.p. 117—119°, of 4:6-dichloro-N-benzoyldiphenylamine-2carboxylic acid (II), m.p. 216—217° (softens from 209°); with nor-d-ψ-ephedrine in CHCl₃, activation begins at small acid: base ratios and increases steadily with addition of acid. With cinchonidine at acid: base ratios, e.g., 1:1, dextromutarotation occurs, whilst at, e.g., 3:1, levomutarotation occurs. Subsequent evaporation of the equilibrated solution at low temp., dissolution of the residual glass in C₅H₅N at -20°, and addition of this to cold dil. HCl gives an active acid (d or l respectively). (II) is so optically stable as to allow determination of the rate of racemisation of the d- and l-acid in (A) at 15° (vals. are given). Velocity coeffs. for equilibration of (II) and cinchonidine in (A) at different acid: base ratios, are determined. o-C₆H₄Cl·NHBz (prep.) gives (method: A., 1938, ${
m II}$, ${
m 59})$ o - chlorophenylbenzimino - 2' - carbomethoxy - 6' methylphenyl ether, m.p. 85—86°, converted at 260— 270° into the Me ester, m.p. 168-169°, of 2-chloro-Nbenzoyl-6'-methyldiphenylamine-2'-carboxylic acid (III), 2 forms, m.p. 197—198° (varies with rate of heating). With einchonidine and (III), no mutarotation is detected at acid: base ratios 0.5:1 or 1:1; at higher ratios there is slight activation. With brucine, there is much mutarotation at 0.5:1, increasing at 1:1; at higher ratios it decreased but was of the same sign, showing that the base-d-acid is more stable than the base-l-acid. Addition of Et₂O to equiv. amounts of brucine and (III) in EtOH causes a secondorder asymmetric transformation (loc. cit.), and almost all the salt crystallises as the brucine 1-salt, $[\alpha]_{5461}^{20}$ -383° in (A), converted by HCO₂H-HCl into the partly racemised l-acid. With (III) and quinidine in (A) activation is greatest at ratio 1:1, but the speed of activation is increased with increased proportion of acid (mechanism discussed). Equilibration of (III)-quinidine mixtures is faster than the acid racemisation at the acid: base ratio of 1.5:1. The rate of racemisation of (III) in (A) in presence of 0.5 or 1 mol. of quinoline or 1 mol. of papaverine is > that for free acid; vals. are given. Theoretical aspects are discussed. N-Benzenesulphonyl-8-nitro-1-naphthylglycine (Mills et al., A., 1928, 748) and brucine in warm MeOH give the brucine dl-salt. The brucine l-salt in C_5H_5N at -20° , added to dil. HCl, gives the l-acid. The addition curve for the dlacid and brucine in CHCl₃ shows that the mutarotational effects are small. Mutarotation of a 1:1 mixture of acid: cinchonidine in pure CHCl3 is pronounced; the equilibrium composition is cinchonidine d-, 38%, and l-salt, 62%; mutarotation is less in (A). Extraction of the respective equilibrated mixtures with dil. HCl gives solutions which from 1:1 and 2:1 acid: base mixtures are l-, and from 4:1, d-rotatory, and from 3:1, inactive. Activation in EtOH is \ll in (A).

Action of bromine on vanillin, isovanillin, and their derivatives; modification of the directive

influence of hydroxyl in these compounds. L. C. Raiford and M. F. Ravely (J. Org. Chem., 1940, 5, 204—211).—Bromination of vanillin (I), vanillicaeid (II) and its Me ester (III), b.p. 140-141°/4 mm., m.p. 63—64° [from (II) and MeOH-HCl], vanillonitrile, and 4-nitroguaiacol (OH = 1) gives the 5-Br-derivative in each case; the O-acetates of (I)—(III) (no reaction with those of last two) afford 6-Br-derivatives. Bromination (method: et al., A., 1930, 1602) of isovanillin (IV) gives 33% of 2-bromoisovanillin [O-acetate, m.p. 82-84°; oxime, m.p. 174—176°, converted by pure Ac₂O into the acetate, m.p. 108—109·5°, of 2-bromoisovanillonitrile (V), m.p. 171—172·5°; 2-bromoisovanillic acid has m.p. 216·5—218°] and 55% of 6-bromoisovanillin [O-acetate, m.p. 106—107°; oxime, m.p. 224—226°, whence 6-bromoisovanillonitrile (VI), m.p. 162—163·5° (acetate, m.p. 165—167°)]. 5-Bromoisovanillin could not be prepared. O-Acetylisovanillin (VII), m.p. 88— 89° (lit. 64° and 88°) [from (IV) (in aq. KOH) and Et₂O-Ac₂O at ~0°], gives (method: Pschorr et al., A., 1903, i, 175) the 5-NO₂-derivative, m.p. 119— 120.5° (loc. cit., 113°), reduced [Fe(OH)₂, aq. NH₃] to the NH₂-compound (not isolable in pure form). The oxime, m.p. 143—144°, of (IV) with Ac₂O affords isovanillonitrile, m.p. 130—132° (lit. 124°) (as acetate, m.p. 116-117°), brominated to (V) (32%) and (VI) (15%). Bromination of isovanillic acid gives 13% of the 6-Br-derivative ($+0.5H_2O$), m.p. $166.5-168.5^{\circ}$. Attempts to brominate (VII) were unsuccessful; with Br in AcOH-NaOAc-I (catalyst) at 100° (bath) O-acetylisovanillic acid (VIII), m.p. 216—218° (lit. 206—207°), is formed. Br (50% excess) and (VIII) in AcOH-NaOAc at 100° (bath)/8-10 hr. afford \sim 12% of 2:5:1-OMe·C₆H₃Br·OAc by replacement of CO₂H with Br. 3-Acetoxy-4-methoxybenzylidene diacetate, m.p. 118—119° [from (IV) and Ac₂O-conc. H₂SO₄], does not react with Br. Me 5-bromovanillate, m.p. 152—152·5°, is obtained from (III) and Br (slightly >1 equiv.) in AcOH-NaOAc-I; Me O-acetylvanillate, m.p. 75.5—76° [from (III) and Ac₂O-H₂SO₄], similarly gives 30% of its 6-Br-derivative, m.p. 95—95·5°, hydrolysed (KOH) to 6-bromovanillic acid, m.p. 190-191°. The above results show that acylation of OH suppresses its directive influence and that OAlk tends to direct more strongly to p than o.

5-Nitro- α -p-dimethylaminobenzylidene- and 5amino- α -p-dimethylaminobenzyl-phthalide. R. L. SHRINER and L. S. KEYSER (J. Org. Chem., 1940, 5, 200—203).—5-Nitrophthalide (I), m.p. 145° (Borsche et al., A., 1934, 652), does not undergo the Mannich reaction (with CH₂O and NHEt₂). p-NMe₂·C₆H₄·CHO, (I), and a little piperidine at 185—190°/1 hr. give 85% of 5-nitro- α -p-dimethylaminobenzylidenephthalide (II), 3 polymorphic forms, m.p. (Köfler) 283—284°, which is pptd. from its solution in 10% HCl by H2O and dyes wool a bright rust colour (fast to washing and ultra-violet light). Reduction (H₂ at ~2000 lb., Raney Ni, dioxan, 90° or H₂, PtO₂, 50% H₂SO₄, 3 atm.) of (II) affords 5-amino-α-p-dimethylamino-benzylidenephthalide, m.p. 259—262° (Ac derivative, m.p. 287°), and then (fresh catalysts) 5-amino-α-pdimethylaminobenzylphthalide, m.p. 204.5° (Ac derivative, m.p. 210°). H. B.

(A) Action of succinic and phthalic anhydrides. and of o-phthalaldehydic acid on Schiff's bases. A. Ludwig and R. I. Georgescu. (B) Action of benzoic, propionic, and hexoic anhydrides on the azomethine bridge. A. Ludwig and S. (c) Azomethine bridge. R. I. Georgescu (Bul. Chim. Soc. Române, 1938, 39, 41-63, 87-100, 115—126).—(A) $(CH_2 \cdot CO)_2 O$ (I) reacts with Schiff's bases (in anhyd. solvents such as PhMe or $CHCl_3$, or in the fused state) as follows: (I) + $CHPh:NR \rightarrow NHR\cdot CO\cdot [CH_2]_2\cdot CO_2H + PhCHO [R =$ Ph, o-, m-, and $p-C_6\overline{H}_4\cdot CO_2H$, and 1:2:4- $C_6H_3(OH)\cdot CO_2Me$]. N-2-Hydroxy-4-carbomethoxy phenylsuccinamic acid and 2-hydroxy-4'-carbomethoxybenzylideneaniline (II) have m.p. 181—182° and 92— 93°, respectively. (I) and p-NH₂·C₆H₄·CO₂Et afford N-p-carbethoxyphenylsuccinamic acid, m.p. 161°. o $C_6H_4(CO)_2O$ (III) reacts similarly to (I) in solution, yielding substances of the general formula o-CO₂H·C₆H₄·CO·NHR [R = Ph, o-, m-, and p- $C_6H_4 \cdot CO_2H$, 1:2:4- $C_6H_3(OH) \cdot CO_2Me$, p- $C_6H_4 \cdot CO_2Et$]; in absence of a solvent, the products are phthalimides, o-C₆H₄<CO>NR [R = Ph, o-, m-, and p-C₆H₄·CO₂H, $1:2:4-C_6H_3(OH)\cdot CO_2Me$]. N-p-Carbethoxy- and N-2hydroxy-4-carbomethoxy-phenylphthalamic acids have m.p. 174—175° and 229°, respectively; N-2-hydroxy-4-carbomethoxyphenylphthalimide has m.p. 229°. The products obtained with piperonylidene-p-toluidine are piperonal and N-p-tolylphthalimide. o-CHO·C₆H₄·CO₂H (IV) fused with CHPh:NPh, m-CO₂H·C₆H₄·N·CHPh, and (II) gives the anil, m-carboxyanil (V), m.p. 241—242°, and 2-hydroxy-4-carbomethoxyanil (VI), m.p. 240—241°, respectively, (V) and (VI) are formulated as (IV);

o-C₆H₄<CO $\xrightarrow{\text{CO}}$ O (A).

(B) Acid anhydrides react with substituted benzylideneanilines as follows: CHPh:NR + (R'CO)₂O \Rightarrow CHPh(O·COR')·NR·COR' (+H₂O) \Rightarrow NHPh·COR' + R'CO₂H + PhCHO (R' = Ph, R = Ph, o-, m-, and p-C₆H₄·CO₂H, α -Cl₁₀H₇, p-C₆H₄·OEt, p-C₆H₄·NO₂; R' = Et or n-C₃H₁₁, R = Ph, p-C₆H₄·NO₂, p-C₆H₄·OEt).

(c) The reactions (above) with (I), (III), and (IV) are extended to $R = p\text{-NO}_2 \cdot C_6H_4$ and $p\text{-OEt} \cdot C_6H_4$. The p-nitroanil, m.p. 243°, and p-ethoxyanil, m.p. 175°, of (IV) are formulated as (A). R. T.

Synthesis of phenanthrene derivatives. I. Phenanthrene-9: 10-dicarboxylic anhydride and -9-carboxylic acid. T. A. Geissman and R. W. Tess (J. Amer. Chem. Soc., 1940, 62, 514—516; cf. Schönberg et al., A., 1940, II, 45).—o-C₆H₄Ph·CH₂·CN (prep. starting from o-C₆H₄Ph·CN described; cf. von Braun et al., A., 1929, 561) and H₂SO₄-EtOH give Et o-diphenylylacetate, b.p. 180—185°/15 mm., which with Et₂C₂O₄ and KOEt in Et₂O-EtOH gives o-C₆H₄Ph·CH(CO₂Et)·CO·CO₂Et, an oil, converted by 48% HBr into phenanthrene-9-carboxylic acid (67%) and -9: 10-dicarboxylic anhydride (13%), m.p. 310—315° (lit. 312°, 322°). R. S. C.

Sterols. XCIV. Persulphate oxidation of allopregnane derivatives. R. E. MARKER, E. ROHRMANN, E. L. WITTLE, H. M. CROOKS, jun., and

E. M. Jones (J. Amer. Chem. Soc., 1940, **62**, 650—651).—alloPregnan-20-one, $K_2S_2O_8$, and H_2SO_4 in boiling 90% AcOH give ætioallocholanic acid, m.p. 228—230° (Mc ester, m.p. 141—143°; cf. Tscheschc, A., 1935, 342), and inseparable mixed carbinols, $C_{19}H_{32}O$, m.p. 110—142°. alloPregnan-3(β)-ol-20-one gives similarly 3(β)-hydroxyætioallocholanic acid and mixed carbinols, converted by CrO_3 into androstanedione. R. S. C.

Sterols. XCI. Oxidation of 3:6-diacetoxycholestane. R. E. Marker, J. Krueger, J. R. Adams, jun., and E. M. Jones (J. Amer. Chem. Soc., 1940, **62**, 645—646).—Cholestane-3: 6-diol (A., 1940, II, 96), m.p. 191°, is prepared by hydrogenation (PtO₂) of 6-hydroxycholestanone in 95% EtOH at 3 atm. or of 6-ketocholestanol in AcOH. acetate and CrO₃ in AcOH at 90° give allohyodeoxycholic acid, m.p. 280° [Me ester (I), m.p. 179° (lit. 181°)], and 6-hydroxyisoandrosterone (II), m.p. 205°, isolated as diacetate semicarbazone, m.p. 222°, which gives (II) by hydrolysis first with boiling H₂SO₄-EtOH-H₂O and then with 2% KOH-MeOH. Bisnorhyodeoxycholic acid and CrO₃-AcOH at 12-15° give 3:6-diketobisnorcholanic acid, m.p. 185° (Me ester, m.p. 170°), which with boiling HCI-AcOH gives 3:6-diketobisnorallocholanic acid, m.p. 244° (Me ester, m.p. 211°), hydrogenated (PtO₂; AcOH; 3 atm.) to bisnorallohyodeoxycholic acid, m.p. 259° [Me ester, m.p. 233°; diacetate (+0.5MeOH), m.p. 115° (Me ester, m.p. 135°)]. Me allohyodeoxycholate with MgPhBr, followed by acetylation, dehydration, and oxidation (CrO₃), gives norallohyodeoxycholic acid, m.p. 225°.

Preparation and degradation of lithocholic acid. W. M. Hoehn and H. L. Mason (J. Amer. Chem. Soc., 1940, 62, 569-570).—Me deoxycholate, BzCl, and C₅H₅N in C₆H₆ at 5° give Me 12-hydroxy-3-benzoyloxycholanate, +0.5Et₂O, m.p. 78—80° (gas) (or with 2 mols. of BzCl the dibenzoate, m.p. 145— 146°), oxidised by CrO₃-AcOH at 15° (later 0°) to Me 12-keto-3-benzoyloxycholanate, m.p. 94—95°, the semicarbazone, m.p. 160—162°, of which with NaOEt-EtOH at ~200° gives lithocholic acid, m.p. 183—185°, $[\alpha]_{D}^{25}$ +34°, $[\alpha]_{5461}^{25}$ +39°, also obtained from Me 7:12-diketo-3-benzoyloxycholanate disemicarbazone by NaOMe-MeOH at $174\pm5^{\circ}$. Ætiolithocholic acid, m.p. 270—272°, and CrO₃-AcOH at 15° give dehydroætiolithocholic acid (4-Br-derivative, m.p. 190—192°). $\alpha\alpha$ -Diphenyl- β -3-acetoxybisnor-eholanyl-, m.p. 158—160°, $[\alpha]_{6461}^{25}$ +75·5° in CHCl₃, and - β -3-acetoxypregnanyl-ethylene, m.p. 150—152°, $[\alpha]_{6461}^{25}$ +140±3° in CHCl₃, ? $\alpha\alpha$ -diphenyl- β -3-acetoxypregnanyl-ethylene, m.p. 150–152°, $[\alpha]_{6461}^{25}$ +140±3° in CHCl₃, ? $\alpha\alpha$ -diphenyl- β -3-acetoxypregnanyl-ethylene, m.p. 150–160°, $[\alpha]_{6461}^{25}$ oxyætiocholanyl- $\Delta^{\dot{a}}$ -propene, m.p. $158-160^{\circ}$, $[\alpha]_{5461}^{26}$ $+398 \pm 2^{\circ}$ in CHCl₃, pregnan-3(α)-ol-20-one, m.p. $148-149^{\circ}$, $[\alpha]_{5461}^{25} +129\pm 3^{\circ}$ in EtOH (21-CHPh: derivative, m.p. $228-230^{\circ}$, $[\alpha]_{5461}^{25} +181\pm 3^{\circ}$ in EtOH), and 3-acetoxyætiocholanic acid, m.p. $226-230^{\circ}$ 229°, $[\alpha]_{5461}^{25}$ +86·4±3° in EtOH, are described. The following corrections in nomenclature are recorded (cf. A., 1938, II, 329): diphenyl-3:12-diacetoxybisnor- for diphenyl-3:12-diacetoxynor-cholanylethylene; diphenyl-3: 12-diacetoxypregnanyl- for diphenyl-3:12-diacetoxybisnorcholanyl-ethylene; ? ααdiphenyl-β-3: 12-diacetoxyαtiocholanyl- Δ^a -propene for diphenyl-3: 12-diacetoxyternorcholanylethylene.

Ru S. C.

Carboxylic acids of the *cyclo*pentanopolyhydrophenanthrene series.—See B., 1940, 324.

Synthesis of vitamin-A. P. Karrer and A. Rüegger (Helv. Chim. Acta, 1940, 23, 284—287).— A series (A) of different polyenes results from the condensation of β -ionylideneacetaldehyde and β -methylcrotonaldehyde in presence of piperidine. The main product gives a blue colour with SbCl₃ but appears to differ spectrographically and chromatographically from vitamin-A (I); it is, however, too impure to be diagnosed. The possibility that (I) is present with other polyenes in (A) is not excluded.

Aromatic acetals. R. Justoni (Atti X Congr. Internaz. Chim., 1938, III, 226—229).—PhCHO (I) and CH₂Ph·OH (II) are boiled together until H₂O no longer distils, and unchanged (I) and (II) are removed by distillation at 15—20 mm.; the syrupy residue consists of PhCHO dibenzyl acetal (III), m.p. 30—31°, purified through dissolution in EtOH and addition of H₂O. PhCHO di- β -phenylethyl acetal, m.p. 28—29°, is prepared similarly. CHPh:CH·CHO dibenzyl and di- β -phenylethyl acetal are not obtained cryst. The acetals are stable at 90—100°, but on keeping in air slowly decompose. They are readily hydrolysed by dil. acids, or by Ac₂O or BzCl. When heated, (III) gives (I) and PhMe.

αβ-Unsaturated aldehydes of the pregnene series. H. Reich (Helv. Chim. Acta, 1940, 23, 219—224).—21-Bromo-3-acetoxy- $\Delta^{5:17}$ -pregnadiene and anhyd. C_5H_5N at room temp. give the pyridinium bromide, m.p. 216—217° (corr.), which is converted by p-NO· C_6H_4 ·NMe₂ and NaOH into the corresponding nitrone, m.p. ~170° (with probably the OH-compound, m.p. 133—135°). This is transformed by 2N-HCl into 3-acetoxy- $\Delta^{5:17}$ -pregnadien-21-al, m.p. 183—186°. Similarly, 21-bromo- $\Delta^{4:17}$ -pregnadien-3-one yields successively the pyridinium bromide (I), m.p. 213—214° (corr.; decomp.), the nitrone, m.p. 152—155° (corr.) after softening at 148°, and 3-keto- $\Delta^{4:17}$ -pregnadien-21-al, m.p. 147—152° (corr.). Thermal decomp. of (I) appears to yield somewhat impure $\Delta^{4:16:20}$ -pregnatrien-3-one. H. W.

Ionones and hydrones. A. GIACALONE (Atti X Congr. Internaz. Chim., 1938, 3, 186—189; cf. A., 1937, II, 502).—β-Ionone (I) and MeI in boiling EtOH–NaOEt give methyl-β-ionone, b.p. 111—115°/4·5 mm. [p-bromo-, m.p. 129—130° (softens 123°), and 2:4-dinitro-phenylhydrazone, m.p. 114—115° (sinters 110°)]. (I) and EtI in EtOH–NaOEt give ethyl-β-ionone, b.p. 121—123°/6·5 mm. [p-bromo-, m.p. 123°, and 2:4-dinitro-phenylhydrazone, m.p. 127—128° (sinters 125°)]. E. W. W.

Reaction of aliphatic esters with benzene in presence of aluminium chloride. D. N. Kursanov and R. R. Zelvin (J. Gen. Chem. Russ., 1939, 9, 2173—2178).—EtOAc in C₆H₆ and AlCl₃, at the b.p., yield PhEt and p-C₆H₄Et-COMe. PraOAc similarly yields PhPra, PhPra, and p-n-propylphenyl Me ketone, b.p. 75—80°/70 mm. (semicarbazone, m.p.

187·3—188·5°); Bu°OAc gives PhBu° and p-n-butyl-phenyl Me ketone, b.p. 148—152°/19 mm. (semi-carbazone, m.p. 189·5—190·5°); HCO₂Et affords PhEt, C₆H₄Et₂, and C₆H₃Et₃. EtOAc and AlCl₃ yield a complex compound, which decomposes at 70° in presence of AlCl₃. The reaction is represented: R·CO₂R' + AlCl₃ \rightarrow R·CO₂AlCl₂ + R'Cl; R'Cl + C₆H₆ \rightarrow PhR' + HCl; R·CO₂AlCl₂ + PhR' \rightarrow COR·C₆H₄R' + AlOCl + HCl. R. T.

Action of heat on bromonitro-compounds. C. F. H. Allen and C. V. Wilson (J. Org. Chem., 1940, 5, 146—156).—Equiv. amounts of CHPh:CH•COAr and CH₂Ph•NO₂ in (usually) MeOH-NaOMe followed by MeOH-AcOH give p-chlorophenyl, stereoisomeric forms, m.p. 171° and 116°, p-bromophenyl, forms, m.p. 180° and 125°, p-diphenylyl, m.p. 180°, and 2-methyl-5-isopropylphenyl, m.p. 147°, γ-nitro-βγ-diphenylpropyl ketone. These with Br in MeOH-NaOMe (slightly >1 equiv.) afford the γ -Br-derivatives; p-chlorophenyl, m.p. 126°, p-bromophenyl, m.p. 157°, and 2-methyl-5-isopropylphenyl, m.p. 138°, γ-bromo-γ-nitro-βγ-diphenyl-propyl ketones are new. Pyrolysis of NO₂·CPhBr·CHPh·CH₂·COAr (either form) at 180—200°/15—20 min. gives N oxides and 4-bromo-2:3-diphenyl-5-arylfuran, probably by way COPh·CHPh·CH₂·COAr which is then brominated at $C_{(a)}$ and so yields the furan (cf. A., 1930, 217). 4-Bromo-2:3:5-triphenyl-, m.p. 129°, -2:3-diphenyl-5-p-bromophenyl-, m.p. 157°, and -2:3-diphenyl-5-p-diphenylyl-furan, m.p. 193°, are new. Pyrolysis of NO₂·CHPh·CHPh·CH₂·COPh affords CHPh·CH·COPh oxides + PhCHO(from $CH_{\bullet}Ph\cdot NO_{\bullet}$). CHPh:CBr·NO₂ at 190—200° gives (mainly) CPhBr:CHBr (I), a little BzOH, and a considerable C residue; it is considered that the intermediate radical CHPh:C < rearranges to CPh:CH which then adds Br to form (I). β-Bromo-β-nitro-αα-diphenylethylene, m.p. 91° (from CPh.:CH-NO2 and Br in CHCl₃), heated to 300° (bath) affords CPh₂:CBr₂; transitory existence of the radical CPh₂:C < is postulated. p-C₆H₄Ph·CPh:CH₂ and dry nitrous fumes in CCl₄ at $<0^{\circ}$ give β -nitro- α -phenyl- α -p-diphenylyl-ethyl alcohol, m.p. 136°, and gummy material, which is dehydrated (AcCl) to β -nitro- α -phenyl- α -p-diphenylylethylene, forms m.p. 134° and 114°, oxidised (KMnO₄, COMe₂) to p-C₆H₄Ph-COPh. CHMeBr·NO₂ undergoes some decomp. during distillation. Other examples (lit.) of thermal decomp. of compounds containing >CBr·NO₂ are discussed.

Relation between chain-length and orientation in acylation of phenol. A. W. Ralston and S. T. Bauer (J. Org. Chem., 1940, 5, 165—170).—The ratio of o- (I) to p-OH- C_6H_4 -COR (II) obtained from PhOH, RCOCl ($\dot{R}=C_7H_{15}$, $C_{11}H_{23}$, $C_{13}H_{27}$, $C_{15}H_{31}$, and $C_{17}H_{35}$), and AlCl₃ in C_2H_2 Cl₄ at ~55—60° decreases with increase in size of R. The yields of (I) are 50, 32·6, 31·9, 25·4, and 27·8, and those of (II) are 12, 24·6, 36·7, 28·5, and 28%, respectively; (I) and (II) are separated by the method of Baltzly et al. (A., 1933, 1287). The following are described: o-hydroxyphenyl heptyl, b.p. 97—99°/1 mm. (140—141°), undecyl, m.p. 44—45·5° (92—93°), tridecyl, m.p. 52—55° (92—92·5°), pentadecyl, m.p. 54—56°

(94—95°), and heptadecyl ketone, m.p. 64—66° (96—97°); p-hydroxyphenyl heptyl, m.p. 62·5—63·5° (176—178°), undecyl, m.p. 71—72° (150—151°), tridecyl, m.p. 78—80° (142—143°), pentadecyl, m.p. 84·5—85° (141—142°), and heptadecyl ketone, m.p. 87—89° (139·5—140°); temp. in parentheses are the m.p. of the 2 : 4-dinitrophenylhydrazones. (II) are identified by oxidation (HNO₃) of their Me ethers to anisic acid.

Constitution and synthesis of conglomerone. F. N. Lahey and T. G. H. Jones (Univ. Queensland Paper, 1939, 1, No. 12, 4 pp.).—Conglomerone [2:4:6-trimethoxyisobutyrophenone] (I), isolated from E. conglomerata oil (Proc. Roy. Soc. Queensland, 1938, 10) had m.p. $62-62\cdot5^{\circ}$ (2:4-dinitrophenylhydrazone, m.p. 164°). With Beckmann's CrO₃ mixture (I) gave 2:6-dimethoxy-p-benzoquinone, and with NaOH–EtOH at 160° (I) gave $Pr^{\beta}CO_{2}H$, an unidentified neutral product, and a phenol giving, with Me₂SO₄, $1:3:5\text{-C}_{6}H_{3}(\text{OMe})_{3}$. $Pr^{\beta}COCl$, $1:3:5\text{-C}_{6}H_{3}(\text{OMe})_{3}$, and $FeCl_{3}$ in CS₂ give (I). T. F. W.

Addition reactions of phenyl vinyl ketone. VI. Diene synthesis. C. F. H. ALLEN, A. C. Bell, A. Bell, and J. van Allan (J. Amer. Chem. Soc., 1940, **62**, 656—664; cf. A., 1935, 1124).— (CPh:CH₂)₂ and COPh·CH:CH₂ (I) {prep. $in\ situ\ from\ COPh\cdot[CH₂]₂·Cl (or, less well, COPh·[CH₂]₂·NAlk₂,HCl)$ and NaOAc in boiling xylene give (60 hr.) 4-benzoyl-1: 2-diphenyl- Δ^1 -cyclohexene, m.p. 83° (2: 4-dinitrophenylhydrazone, m.p. 203°), dehydrogenated by Br- $CHCl_3$ to $3:4:1-C_6H_3Ph_2\cdot COPh$ (cf. A., 1933, 1164) (2:4-dinitrophenylhydrazone, m.p. 248°), which with $NaNH_2$ in cymene gives $o-C_6H_4Ph_2$ and 3:4:1- $C_6H_3Ph_2\cdot CO_2H$. (CHPh:CH)₂ adds (I) less readily to give a syrup, b.p. $250-255^\circ/4-5$ mm., which with S at 200° gives 2:5-diphenylbenzophenone, m.p. converted by NaNH₂ into p-C₆H₄Ph₂. (CMe:CH₂)₂ and (I) give 4-benzoyl-1:2-dimethyl- Δ^{1} cyclohexeñe, b.p. 163-165°/6 mm. (2:4-dinitrophenylhydrazone, m.p. 152°; dibromide, m.p. 132°), dehydrogenated by S at 190—230° to 3:4:1- $C_6H_3Me_2\cdot COPh$ (2: 4-dinitrophenylhydrazone, m.p.252°). CHPh:CH:CHMe and (I) give 4- or 5benzoyl-3-phenyl-6-methyl- Δ^1 -cyclohexene, m.p. 61°, b.p. 157—159°/1 mm. (dibromide, m.p. 125°). cyclo-Pentadiene gives 3-benzoyl-1: 4-endomethylene-Δ⁵-cyclohexene, b.p. 122—124°/3 mm. (semicarbazone, m.p. 178—180°). Isoprene and (I) in PhMe at 100° give a product containing 4-benzoyl-1-methyl- Δ^{1} cyclohexene, b.p. $120-122^{\circ}/2$ mm. (2:4-dinitrophenylhydrazone, m.p. 137°). Phellandrene in EtOH gives a mixture, and cyclohexadiene gives only (in EtOH) COPh [CH₂]₂·OEt. 10-Methylene-9-anthrone (II) and (I) in PhNO₂ at 180—190° give 3-benzoyl-benzanthrone (III), m.p. 192°, also obtained from benzanthrone-3-carboxyl chloride, C₆H₆, and AlCl₃ at 70°. CrO₃-AcOH-H₂O, first at room temp. and then boiling, oxidises (III) to Ph 1-anthraquinonyl diketone (IV), m.p. 174°, converted by Na₂O₂-H₂O at 70° into anthraquinone-1-carboxylic acid. AlCl₃-NaCl and (III) at 180-200° give 4:5:9:10-dibenzpyrene-3:8-quinone. Tetraphenylcyclopentadienone and (I) in boiling PhMe or, less well, alone at 130° give 1:4-endoketo-3-benzoyl-1:4:5:6-tetraphenyl- Δ^5 -cyclohexene, m.p. 210° (decomp.), converted by pyrolysis (215°) into 2:3:4:5-tetraphenyl-2:5-or -1:6-dihydrobenzophenone (V), forms, m.p. 177° and 158—159° (latter obtained by carrying out the addition in boiling $C_6H_3Cl_3$; former in PhNO₂ or by pyrolysis). Br, KMnO₄-COMe₂, or S (240—250°) and (V) give 2:3:4:5-tetraphenylbenzophenone, m.p. 190°, converted by NaNH₂ in p-cymene into 1:2:3:4- C_6H_2 Ph₄. 2:5-Diphenyl-3:4-1':8'-naphthylenecyclopentadienone and (I) in PhMe give the substance (VI), m.p. 189—190°, which readily, e.g., in hot AcOH, loses CO to give 2:5-diphenyl-3:4-1':8'-naphthylenebenzophenone, m.p. 194—195°.

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline \\ C & & & \\ \hline \\ C & & \\ CPh & \\ \hline \\ CO & \\ \hline \\ CPh & \\ \hline \\ CPh & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ \hline \\ CO & \\ \hline \\ CH & \\ CH & \\ \hline \\ CH & \\ CH$$

 $2:5 ext{-Diphenyl-}3:4 ext{-}oo' ext{-diphenylene} cyclopenta dienone$ with (I) gives the substance (VII), m.p. 273°, but with COPh·CH:CH·NMe₂ gives a product, C₃₈H₂₄O₂, m.p. 312—315°. (CPh:CH₂)₂ and COPh·CH:CH·CO₂Me at 165° (52%) or in boiling xylene (20% yield) give $Me\ 2$ -benzoyl-4:5-diphenyl- Δ^4 -tetrahydrobenzoate, m.p. 147° [Br₂-derivative, m.p. 183° (decomp.), formed in warm CHCl3], converted by S at 230°, followed by hot KOH-EtOH, into 4:5:2:1-C₆H₂Ph₂Bz·CO₂H. Et sorbate and (I) give mixed esters (\bar{A}) , hydrolysed stereoisomeric 2-benzoyl-4-methyl- Δ^5 -tetrahydrobenzoic acids, of which one form, m.p. 162-163°, is obtained pure. Dehydrogenation, hydrolysis, and ring-closure (20% oleum) converts (A) into 2-methylanthraquinone. Tetraphenylcyclopentadienone and COPh CH: CHPh in boiling C₆H₃Cl₃ give (cf. A., 1934, 1102) C₆Ph₅·COPh, m.p. 338° (uncorr.), 341° (corr.), whence NaNH₂ yields C₆HPh₅. trans-(:CH·COPh)₂ and (II) in C₆H₃Cl₃ and PhNO₂ give 2:3-dibenzoylbenzanthrone, dimorphic, m.p. 286° and 208°, oxidised by CrO₃ to (IV). Mono- and di-meric (I) are isolated. Furan, sylvan, and 2:5-dimethylfuran do not add (I).

Preparation of optically active semicarbazides, and a resolution of benzoin. A. J. Little, J. M'LEAN, and F. J. WILSON (J.C.S., 1940, 336-338; cf. A., 1928, 1247).—r- α -Phenylpropylamine (I) and l-malic acid in EtOH give the d-amine l-H malate, m.p. 169° , $[\alpha]_{D}^{13.5}$ -11.68° in $H_{2}O$, and thence by 50% aq. KOH, d- α -phenylpropylamine (II), b.p. $204-206^{\circ}$, $[\alpha]_{D}^{17} + 20.\overline{15}^{\circ}$ (cf. Billon, A., 1927, 879); the *l*-amine (III), $[\alpha]_b^{17} - 19.85^\circ$, is purified through the d-*H* tartrate, m.p. 179°, $[\alpha]_b^{14} + 22.65^\circ$ in H₂O. (I), (II), or (III) and CMe₂:N·NH·CO·NH₂ in xylene give acetone-r-, m.p. 110°, -d-, m.p. 92°, and -l-δ-(a-phenylpropyl)semicarbazone, m.p. 92°, and thence by N-HCl, r-, m.p. 135°, d- (I \vec{V}), m.p. 165°, [α]³ +67.5° in H₂O, and 1-δ-(α-phenylpropyl)semicarbazide hydrochloride (V), m.p. 165° , $[\alpha]_{\rm D}^{13}$ -67.3° in $\rm H_2O$, respectively. r-Benzoin and (IV) in $\rm C_5H_5N$ at room temp. (1 week) give d-benzoin-d- δ -(α -phenylpropyl)semicarbazone (VI), m.p. 166° , $[\alpha]_{D}^{12.7}$ -126.0° in EtOH, hydrolysed by aq. EtOH-H₂SO₄ at 100° (bath) to d-benzoin, m.p. $133-134^{\circ}$, $[\alpha]_{\rm p}^{10}+118\cdot1^{\circ}$

in COMe2. Hydrolysis of the mother-liquor from (VI) gives *l*-benzoin, m.p. 133—134°, $[\alpha]_{D}^{11}$ —116·6° in COMe2, almost optically pure. r-Benzoin and (V) in C₅H₅N give 1-benzoin-1-δ-(α-phenylpropyl)semicarbazone, m.p. 166°, $[\alpha]_D^{12.5} + 127.1^\circ$ in EtOH, and thence pure l-benzoin. In unsuccessful attempts to resolve r-camphor, the following are prepared: r-camphor-r-, m.p. 137°, and -l- (VII), m.p. 104° , $[\alpha]_{b}^{4} + 61 \cdot 1^{\circ}$ in EtOH, d-camphor-d-, m.p. 118° , $[\alpha]_{D}^{14}$ -93.6° in EtOH, and 1-camphor-d-\delta-(\alpha-phenylpropyl)semicarbazone, m.p. 120° , $[\alpha]_{D}^{14^{\circ}}$ $-38^{\circ}8^{\circ}$ in EtOH [equal amounts of the last two compounds from aq. EtOH give a compound, m.p. 104° , resembling (VII), but having $[\alpha]_{b}^{15}$ — 61.6° in EtOH]; r-camphor-r-, m.p. 144° (from r-camphorsemicarbazone and r- α -phenylethylamine at 180°), d-camphor-l-(VIII), m.p. 112°, $[\alpha]_{b}^{15}$ +41·3° in EtOH, l-camphor-l-(IX), m.p. 112°, $[\alpha]_{b}^{15}$ +102·4° in EtOH, and r-camphor-1-δ-(α-phenylethyl)semicarbazone, m.p. 122—123°, $[\alpha]_D^{15} + 68.9^{\circ}$ in EtOH [also from (VIII) + (IX) in EtOH]. r-2-Imino-5-methylthiazolidine and d-camphor-10-sulphonic acid in EtOH give the d-camphorsulphonate (X), m.p. $182-184^{\circ}$, $[\alpha]_{D}^{15}$ -19.63° in H₂O, of the *l*-base, and thence by aq. KOH and dil. HCl, 1-2-imino-5-methylthiazolidine hydrochloride, m.p. 175°, $[\alpha]_D^{14.5}$ -76.5° in H_2O . The crude d-base, from the mother-liquors from (X), and l-camphor-10sulphonic acid in EtOH give the d-base l-camphorsulphonate, m.p. $182-184^{\circ}$, $[\alpha]_{D}^{15}+20\cdot 1^{\circ}$ in $H_{2}O$, and thence d-2-imino-5-methylthiazolidine hydrochloride, m.p. 172—173°, $[\alpha]_{D}^{14.5}$ +77.5° in H₂O. 3-Methylcyclohexanone does not give a suitable product with δ -(α -phenylethyl)semicarbazide.

Mechanism of the reaction between arylamines and benzoins. R. M. Cowper and T. S. Stevens (J.C.S., 1940, 347—349).—Ph p-methoxybenzyl ketone (prep. given) and Br in Et₂O (+ a trace of AlCl₃) give the α-Br-derivative, converted by NH₂Ph at 100° (bath) into Ph α -anilino-p-methoxybenzyl ketone (I), m.p. 135—136°. Similarly prepared are Ph α-p-toluidino- (II), m.p. 119—120°, and α-methylanilino-p-methoxybenzyl ketone (III), m.p. 118—119°; p-anisyl α-anilino-, m.p. 144—145° (IV), α-p-toluidino-, m.p. 142—143°, and α-methylanilino-benzyl ketone, m.p. 160—161°. Benzanisoin (V), NH₂Ph or p-C_cH₄Me·NH₂, and P₂O₅ at 100° (bath) give (I) (NHAr attached to C of original CO) or (II), respectively, but NHPhMe gives no reaction at <170°. Similarly p-OMe·C₆H₄·CHBz·OH gives (IV). (V) and SOCl₂ give a syrup, converted by NH₂Ph into (IV). (I) and Me₂SO₄-C₆H₆-Na₂CO₃ give (III) (best method of prep.). (I) or (IV) and Zn dust in 20% H₂SO₄ at 100° (bath) give Ph p-methoxybenzyl or p-anisyl benzyl ketone, respectively. The initial point of attack by NH₂Ph on benzoin is the CO group and NPh:CPh·CHPh·OH, first formed, spontaneously gives NHPh·CIIPhBz.

A. T. P.

Bis-p-carboxyphenylhydrazone, decomp. 318—320°, of p-tolylglyoxal, and compound, m.p. 172—175°, from p-tolacyl alcohol and p-carboxyphenylhydrazine.—See A., 1940, III, 346.

Keto-cyclol tautomerism of αζ-diketones. αδ-Dibromo-αδ-dibenzoylbutane [βε-dibromo-αζ-diketo- α ζ-diphenyl-n-hexane]. T. Y. Kao (J. Amer. Chem. Soc., 1940, **62**, 356—358).—(CH₂·CHBr·COPh)₂ (I) reacts mainly as 2:5-dibromo-5-benzoyl-1-phenyl-cyclopentanol. Analogous reactions are reviewed. With "mol." Ag in boiling COMe₂, (I) gives 37% of 1:2-epoxy-5-benzoyl-1-phenylcyclopentane (II) and 13% of cis-1:2-dibenzoylcyclobutane. With NHEt₂ in C₆H₆, (I) gives 5-bromo-1:2-epoxy-5-benzoyl-1-phenylcyclopentane (III) (59%), obtained also in poor yield by NaCN or NaOAc and in 64% yield by CHNa(CO₂Et)₂ in C₆H₆-EtOH. With Zn dust and NaI in boiling COMe₂, (III) gives a poor yield of (II).

αβδ-Trimesityl αδ-diketones and related compounds, including the stereoisomeric mono- and di-enols. R. E. Lutz and C. J. Kibler (J. Amer. Chem. Soc., 1940, **62**, 360—372).—αβδ-Trimesityl-nbutane-αδ-dione (I) and various of its mono- and dienolic forms are prepared. Structures assigned are based on the easier enolisation of CH₂·COM (here and below M = mesityl) compared with CHM·COM, on the more ready ketonisation of CH:CM·OH, and on the relative ease of cyclisation. The results are consistent with the view that furan formation involves addition of an enolic OH to γ -CO followed by loss of a mol. of H_oO (cf. A., 1939, II, 429). Addition of (:CH·COM)₂ (II) to MgMBr (4 equivs.) in Et₂O at 20° gives the Mg monoenolate-A (III), which with dil. HCl gives the diketone (I), m.p. 147—147.5° (Br gives no cryst. product). With MgMeI in (iso-C₅H₁₁)₂O at room temp., (I) gives 1 CH₄. Formation

 $\begin{array}{ccc} \text{MgBr} \cdot \text{O} \cdot \text{C} \cdot \text{M} & \text{M} \cdot \text{C} \cdot \text{O} \cdot \text{MgBr} \\ \text{COM} \cdot \text{CHM} \cdot \text{C} \cdot \text{H} & \text{COM} \cdot \text{CHM} \cdot \text{C} \cdot \text{H} \\ & \text{(III.)} & \text{(VII.)} \end{array}$

of (III) as above is indicated by interaction with Br- or I-EtOH to give COM·CHM·CH(Hal)·COM (A-isomerides; cf. below), by failure to undergo oxidation when hydrolysed in presence of I or p-O:C₆H₄:O to (VI) (below), and by further enolisation as described below. HCl in boiling AcOH containing a little H_2O or, less well, HI (d $1.\overline{7}$) at $160-170^\circ$, or HI-red P-I in boiling AcOH, but not Ac₂O-H₂SO₄, converts (I) into 2:3:5-trimesitylfuran (IV), m.p. 106.5° [amorphous Br_{4} -, m.p. $120-150^{\circ}$, and (? 4-)-NO₂-derivative, m.p. 206.5—207°, obtained by HNO₃-AcOH without oxidation occurring]. Decomp. of (III) [prep. from (I) by 2 MgMBr] by I-EtOH at 0—10° gives 74—79% of γ-iodo-αβδ-trimesityl-n-butane-αδ-dione-A (V), m.p. 213° (decomp.) [with small amounts of the B-isomeride (cf. below)], reduced to (I) by KI-AcOH at room temp., Zn dust in boiling AcOH, NaHSO3 in boiling EtOH, or H2-PtO2 in EtOAc, and converted by KOH (not NaOAc) in boiling EtOH into $\alpha\beta\delta$ -trimesityl- Δ^{β} -butene- $\alpha\delta$ -dione (VI) (90%), m.p. 142-144°, which does not give a furan by Ac₂O-H₂SO₄. With an excess of MgRHal (R = Ph, Et, or Me) at room temp., (I) gives the Mg monoenolate-B (VII), which with I-EtOH at -60° gives γ -iodo- $\alpha\beta\delta$ -trimesityl-n-butane- $\alpha\delta$ -dione-B, m.p. 178° (reaction at -10° to -15° gives also some A-isomeride), converted by NaHSO₃ into (I) and by KOH into (VI) and giving (I) after short or (I) (VI) after longer reaction with MgEtBr at 20° (MgPhBr causes complete dienolisation). Interaction of (III)–MgEtBr (2 equivs.)–Et₂O at 0° with Br–EtOH at 20° gives mainly γ -bromo-αβδ-trimesityl-n-butane-αδ-dione-A, m.p. 192·5—193·5°; at —60° (VII) gives similarly an isomeric Br-diketone-B, m.p. 230—231°; other conditions yield mixtures. Both Br-diketones are converted by MgEtBr, followed by I–EtOH, into (V), by reduction into (I), and by KOH into (VI). Interaction of (V) with MgPhBr (3—4 equivs.) in Et₂O at 20° is the best source of (III). The free enols corresponding with (III) and (VII) kctonise as soon as formed. Boiling (II) and MgMBr in Pr $^{\beta}_2$ O–N₂ for 2 hr. or (IX) (below) and MgPhBr in Et₂O for 0·5 hr. give the dienolate-A (VIII), converted by I–EtOH into (VI), by boiling AcOH into (I), or by boiling AcOH in absence of Mg salts into

 $\begin{array}{cccc} \text{MgBr} \cdot \text{O} \cdot \text{C} \cdot \text{M} & \\ \text{M} \cdot \text{C} \cdot \text{C} \cdot \text{H} & \text{M} \cdot \text{C} \cdot \text{CH}_2 \cdot \text{COM} & \text{M} \cdot \text{CH} \cdot \text{CH} \cdot \text{CM} \cdot \text{OH} \\ \text{MgBr} \cdot \text{O} \cdot \text{C} \cdot \text{M} & \text{OH} \cdot \text{C} \cdot \text{M} & \text{OH} \cdot \text{C} \cdot \text{M} \\ \text{(VIII.)} & \text{(IX.)} & \text{(X.)} \end{array}$

the α -monoenol-A, α -hydroxy- $\alpha\beta\delta$ -trimesityl- Δ^{α} -buten- δ -one (IX), anhyd., m.p. 131—131·5°, and $+xH_2O$, double m.p. 95—100° (effervescence) and 130°, also obtained (60% yield) from (VI) by Zn dust in boiling AcOH. (IX) gives no colour with FeCl₃, does not react with Br-EtOH or CH_2N_2 , reacts readily with 1 MgMeI or MgPhBr (for reaction with 2 MgPhBr cf. above), with red P-I-AcOH gives (IV), and with boiling KOH-95% EtOH gives (I). When (VIII) in Et₂O is treated at 0° with 80% EtOH containing 10% of AcOH and then with H_2O , the free dienol, $\alpha\beta\delta$ -trimesityl- $\Delta^{\alpha\gamma}$ -butadiene- $\alpha\delta$ -diol (X), m.p. 72—73°, is obtained. This is oxidised, when solid, by air to (VI), yields with MgMeI 1·89 CH_4 , and is rearranged to (I) by hot HCl-AcOH. Enclisation of (III) by hot MgPhBr-Et₂O (30 min.) or interaction of (V) with hot MgPhBr-Et₂O (5 min.) gives the dienolate-B (XI), which differs from (VIII) by being sol. in Et₂O.

 $\begin{array}{ccc} MgBr \cdot O \cdot C \cdot M & & & \\ M \cdot C \cdot C \cdot H & & M \cdot C \cdot CH_2 \cdot COM \\ M \cdot C \cdot O \cdot MgBr & & M \cdot C \cdot OH \end{array}$

I-EtOH converts (XI) into (VI), and boiling AcOH gives (IV); cold, dil. AcOH gives the oily α -monoenol-B (XII), the precursor of (IV) in the preceding reaction. The possibility of formation of a Mg dienolate-C is discussed. M.p. are corr. R. S. C.

Condensations of cyclanones. R. Poggi (Atti X Congr. Internaz. Chim., 1938, III, 298—302, and Gazzetta, 1940, 70, 265—269).—p-C₆H₄Me·CHO (I) and 4-methylcyclohexanone in 4% aq. KOH give 2-p-tolylidene- (II), m.p. 67—68° (softens 65°) {semicarbazone, m.p. 212—213° (decomp.); oxime, m.p. 108—112° (softens 105°) [Bz derivative, m.p. 115° (softens 112°)]}, with some 2:6-di-p-tolylidene-4-methylcyclohexanone, m.p. 135° (softens 131°), also obtained from (I) and (II). The two products are separated (from EtOH solution) with great difficulty. 6-Benzylidene-, m.p. 98—100° (softens 95°), and 6-p-anisylidene-2-p-tolylidene-4-methylcyclohexanone, m.p. 137—139° (softens 135°), are prepared from (II) and the appropriate aldehyde. E. W. W.

Alicyclic compounds. V. Syntheses of β keto-amines from 2-, 3-, and 4-methylcyclohexanone. F. Pirrone (Atti X Congr. Internaz. Chim., 1938, III, 276—282).—2-Methylcyclohexanone with PhCHO (I) and NH₂Ph (II) gives its 6-CHPh: derivative (III), and 2-methyl-2-α-anilinobenzylcyclohexanone, m.p. 118.5° (oxime, m.p. 208.5°; semicarbazone, m.p. 192°; picrate, m.p. 114—115°), which with NaOH and CHCl₃ gives PhNC odour, and with hot dil. acids gives some (III). 3-Methylcyclo-hexanone with (I) and NH₃-EtOH (IV) gives its 6-CHPh: derivative, new m.p. 47—49°, and with (I) and (II) gives this and 3-methyl-6(or 2)-\alpha-anilinobenzylcyclohexanone, m.p. 164—165° [oxime, m.p. 185—186° (impure); semicarbazone, m.p. 185°], with a small amount of the -2(or 6)-α-anilinobenzyl isomeride, m.p. 125—126°. 4-Methylcyclohexanone with (I) and (IV) gives its 2:6-(CHPh.)2 derivative, and with (I) and (II) gives this and 4-methyl-2-α-anilinobenzylcyclohexanone, m.p. 151—152° [oxime, m.p. 167—168° (impure)]. E. W. W.

Cyclanic polyalcohols. H. Gault [with J. Steckl and J. Skoda] (Atti X. Congr. Internaz. Chim., 1938, III, 162—167).—An account of work already published (A., 1938, II, 411, 444). The byproduct, m.p. 155° , obtained with hydroxymethylcyclohexanones from CH₂O and cyclohexanone, is now formulated as $C_{14}H_{22}O_3$ (cf. loc. cit., 444).

Structure of fluorene. E. Bergmann and T. Berlin (J. Amer. Chem. Soc., 1940, 62, 316—317).— Lability of the ethylenic linkings of fluorene (Lothrop, A., 1939, II, 502) is confirmed. 2-Acetoxy-fluorene (I) and -fluorenone are converted by AlCl₃ in PhNO₂ at 80° into 2-hydroxy-1-acetyl-fluorene, m.p. 159°, and -fluorenone (II), m.p. 206°, respectively. At 115° (I) gives a compound, ?C₁₅H₁₂O₃, m.p. 249°. N₂H₄,H₂O and (II) in hot EtOH give a pyridazine (III) (R = Me), m.p. 197° (decomp.); a similar com-

m.p. 197° (decomp.); a similar compound (R = Ph), m.p. 181°, is obtained from 1-benzoylfluorenone.

2-Allyloxyfluorenone, m.p. 84—85°, when heated at 200° and then distilled at 0.05 mm., gives a mol. compound, m.p. 125—126°, of 2-hydroxy
1- and -3-allylfluorenone, reduced [H₂-Pd(OH)₂;

1- and -3-allylfluorenone, reduced [H₂-Pd(OH)₂; boiling PrOH] to a separable mixture of 2-hydroxy-1- and -3-n-propylfluorenone, m.p. 202° and 155°, respectively or vice versa. R. S. C.

Action of acetic anhydride on acenaphthenone. (SIGNA.) E. GHIGI (Atti X Congr. Internaz. Chim., 1938, III, 168—178).—The substance, m.p. 117° (A., 1938, II, 327), obtained by hydrolysis of 8-acetoxy-7-acetyl- is 8-hydroxy-7-acetyl-acenaphthylene (I) (benzoate, m.p. 148—149°). PhN₂Cl with (I) gives acenaphthenequinonemonophenylhydrazone. With NaOH-MeOH-Me₂SO₄, (I) gives only its Na salt, m.p. 260°; it is unaltered by EtBr or PhNCO. (I) gives a phenylhydrazone, m.p. 196—198°, an oxime, m.p. 201—203°, and a semicarbazone, m.p. 235—236° (decomp.). With Na₂Cr₂O₇-AcOH, (I) gives 1:8-C₁₀H₆(CO)₂O, also obtained using NaOH-H₂O₂, or, with a substance, m.p. 215°, using KMnO₄-NaOH. When distilled with Zn, (I) gives acenaphthene; with

quinoline and Cu, some acenaphthenone and resins are formed; with 20% NaOH (I) gives bisacenaphthylidenone, also obtained when MeOH-HCl is used.

β-Diketones. A. Banchetti (Gazzetta, 1940, 70, 134—144).—An attempt is made to prepare 3-methyl-5:6-benzo-indone. 2-C₁₀H₇Ac (I) and EtOAc with Na or NaNH₂ give 2-naphthoylacetone (II), m.p. 81·5—82·5°, which with NHPh·NH₂ gives a pyrazolone. With 82% H₂SO₄ at 60—65°, (II) does not cyclise; prolonged heating at 70° gives H₂O-sol. (sulphonated?) products. Using 89% H₃PO₄, only (I) is isolated. 10% NaOH yields (I) and β-C₁₀H₇·CO₂H, also obtained by KMnO₄ oxidation. EtOBz and (I) give ω-2-naphthoylacetophenone (III), m.p. 101—102°, similarly unchanged by H₂SO₄. 1-C₁₀H₇Ac and Na in EtOAc give impure 1-naphthoylacetone (IV), b.p. 205—210°/20 mm., which is converted by NaOH and by KMnO₄ into α-C₁₀H₇·CO₂H and by 82% H₂SO₄ at 60—65° into 1:8-C₁₀H₆ CMe CH (cf. Criegee et al.,

A., 1933, 1272). (II) and (III) are found by Hieber's method to be 97—100% enol in the solid state, and (IV) to be 92% enol. Directions of enolisation and condensation are discussed. E. W. W.

Synthesis of polycyclic compounds. I. 1':2':3':4'-Tetrahydro -1:2-benzanthrone -9. N. G. TSCHERNOVA and B. M. MICHAILOV (J. Gen. Chem. Russ., 1939, 9, 2168—2170).—6-o-Carboxybenzyl-1':2':3':4'-tetrahydronaphthalene with ZnCl_2 at $180^\circ/45$ min. yields chiefly 2:3-tetramethyleneanthranol, together with 1':2':3':4'-tetrahydro-1:2-benzanthrone-9, m.p. 109—109- 7° ; the latter and MgMel give 9-methyl-1':2':3':4'-tetrahydro-1:2-benzanthracene, m.p. $122\cdot6$ — $124\cdot2^\circ$ (picrate, m.p. $125\cdot5$ — $126\cdot2^\circ$). R. T.

Steroid ketones.—See B., 1940, 324,325.

LXXXVII. Cholesterol and sitosterol derivatives. R. E. MARKER and E. ROHR-MANN (J. Amer. Chem. Soc., 1940, 62, 516—517).— KMnO₄ in AcOH-H₂O (proportions detailed for each case) at room temp. or 55° converts cholesterol into cholestan-5-ol-3: 6-dione (I), m.p. 248—251° (probably that obtained by CrO₃ following alkaline KMnO₄), cholesteryl acetate into 3-acetoxycholestan-5-ol-6-one, m.p. 231—233° (oxime, m.p. 204—206°), neocholestene into cholestane-2: 3-dicarboxylic acid (II), m.p. 193—195°, cholestan-3(β)-ol into (II) and cholestanone (sole product at room temp.), sitosterol into a OH-diketone, $C_{29}H_{48}O_3$, m.p. 240°, and sitosteryl acetate into a CO-diol acetate, $C_{31}H_{52}O_4$, m.p. 251°. KHSO₄ at 150—180° dehydrates (I) to $\Delta^{4:5}$ -cholestene-3:6dione, m.p. 121—123°. Sitosteryl chloride and CrO₃-AcOH at 55° give 7-keto- (III), m.p. 155-156°, reduced by Al(OPr⁶)₃-Pr⁶OH to 7-hydroxy-sitosteryl chloride, m.p. 138—139°; (III) and KOH in boiling 90% EtOH give 7-ketositosterylene, m.p. 106—107°. $\rm H_2\text{--}PtO_2$ at 3 atm. in $\rm Et_2O$ reduces (III) to 7-ketositostyl chloride, m.p. 128—129°, stable to $\rm CrO_3$ at 60° and further hydrogenated in AcOH to sitostyl chloride. R. S. C.

Partial synthesis of corticosterone. I. P. N. Chakravorty and E. S. Wallis (J. Amer. Chem.

Soc., 1940, 62, 318—320).—3-Hydroxy-12-ketocholanic acid (I) (Me ester, m.p. 143°), readily obtained by oxidation of deoxycholic acid (Kaziro et al., A., 1937, II, 500), gives an acetate, m.p. 197°, which with Br-HBr-AcOH at 70° and then at room temp. gives a gummy 11-Br-derivative. NaOEt-EtOH (not NaOAc-AcOH) converts this into 3-hydroxy-12-keto- $\Delta^{9:11}$ -cholenic acid (II) (30%), m.p. 172—173° (absorption max. at 2425 A.), but Zn-AcOH affords (I). The readily formed, crude semicarbazone, m.p. 221°, of (II) with NaOEt-EtOH at 180° gives α -3-hydroxy- $\Delta^{9:11}$ -cholenic acid, m.p. 183—184°, $[\alpha]_{25}^{25}$ +27·0° in abs. EtOH, with a small amount of the β -epimeride. R. S. C.

Steroids. XXIV. $\Delta^{4:6}$ -3-Ketones of the androstane and pregnane series. A. Wettstein [with, in part, H. FREY] (Helv. Chim. Acta, 1940, **23**, 388—399).— Δ^5 -Androstene-3t: 17t-diol 17-monobenzoate (I) and p-benzoquinone (II) are mixed with PhMe, part of which is removed in a vac. The residual solution when boiled for $\frac{3}{4}$ hr. with Al(OBu^{γ})₃ gives 6-dehydrotestosterone benzoate (III), m.p. 257— 260°, hydrolysed to 6-dehydrotestosterone, m.p. 209— 211° (acetate, m.p. 143—144°). Similarly, Δ5-pregnen-3-ol-2-one affords 6-dehydroprogesterone, m.p. 147-148°, $[\alpha]_{18}^{18}$ +149·5° in EtOH, and Δ^{5} -21-acetoxypregnen-3-ol-20-one yields 6-dehydrodeoxycorticosterone acetate, m.p. 115—116°, $[\alpha]_D^{18}$ +151.5° in Δ^5 -Androsten-17t-ol-3-one benzoate, 178—181°, obtained in >60% yield by successive bromination, oxidation, and debromination of (I), is converted by (II) and Al(OBu^γ)₃ into (III) and is partly oxidised by (II) alone. Oxidation of 3-androstane-3t: 17t-diol 17-hexahydrobenzoate with (II) and Al(OBu^γ)₃ leads to a gelatinous product, hydrolysed to dihydrotestosterone, m.p. 179—181°. Reaction does not consist in dehydrogenation of OH at C(3) followed by displacement of the original double linking and dehydrogenating introduction of a new double linking, since (III) is not obtained by treating testosterone benzoate with (II) and $Al(OBu^{\gamma})_3$ or with (II) alone. The introduction of the second double linking must occur at latest in the Δ^5 -3-ketone stage. M.p. are corr. H. W.

Preparation of 17-methyltestosterone from dehydroandrosterone. A. D. TSCHINAEVA, M. I. USCHAKOV, and A. T. MARTSCHEVSKI (J. Gen. Chem. Russ., 1939, 9, 1865—1867).—Oxidation (Oppenauer) of 17-methylandrostene-3:17-diol gives 17-methyltestosterone in 40% yield. The product is best purified by chromatographic adsorption on Al_2O_3 . R. T.

Oxidation of cholesteryl acetate dibromide to trans-dehydroandrosterone, and conversion of the latter into methyltestosterone. G. I. Kip-rianov and B. E. Frenkel (J. Gen. Chem. Russ., 1939, 9, 1682—1686).—Optimum conditions for oxidation (CrO₃) of cholesteryl acetate dibromide (I) by Butenandt's method (A., 1936, 77) are: (I) 36 g., AcOH 1600 ml., H₂O 40 ml., H₂SO₄ 11·2 ml., and NH₄VO₃ 1 g. (4 hr. at 50°); the yield of trans-dehydroandrosterone (II) (as semicarbazone) is 4%. (II), which need not be purified, is converted into 17-methylandrostene-3:17-diol (whence 17-methyl-

testosterone) by Ruzicka's method (*ibid.*, 76), using a tenfold excess of MgMeI. R. T.

Steroids. XXV. Homologues of the testicular hormone. II. 20-Norprogesterone. K. MIESCHER, F. HUNZIKER, and A. WETTSTEIN (Helv. Chim. Acta, 1940, 23, 400—404).—Δ⁴-Pregnene-20α: 21-diol-3-one is oxidised by HIO in ac dioyan

 20α : 21-diol-3-one is oxidised by HIO₄ in aq. dioxan at room temp. to Δ^4 -17-aldehydoandrosten-3-one [20-norprogesterone] (I), m.p. 151—153°, $[\alpha]_{1}^{19}$ +158·5° in dioxan (disemicarbazone, decomp.

296°), slowly oxidised by air in AcOH at $\sim 80^{\circ}$ to Δ^4 -3-ketoætiocholenic acid, m.p. 256—260°. M.p. are corr. (vac.).

Estrogens with oxygen in ring B. III. 6-Keto-α-cestradiol. B. Longwell and O. Wintersteiner (J. Biol. Chem., 1940, 133, 219—229).—The ketonic fraction (isolated by Girard reagent T) obtained by oxidation [CrO₃ (\equiv 4·5 O) in AcOH at 23—24°] of α-cestradiol diacetate contains 6-keto-α-cestradiol (I), m.p. 281—283° (slight decomp.), $[\alpha]_2^{23}$ +4·2° in EtOH, [semicarbazone, m.p. 280—310° (decomp.)],

OAc Ö CO₂H (A.)

and its diacetate, m.p. 173—
175°. From the acidic oxidOAc ation products is isolated a ketodiacetoxy-acid, $C_{21}H_{24}O_{7}$,
m.p. 144—145°, probably
(A), converted by $Ac_{2}O$ NaOAc into an enol-lactone, $C_{21}H_{22}O_{6}$, m.p. 152—153°.

The estrogenic potency of (I) is a quarter of that of estradiol. M.p. are corr. J. D. R.

Preparation of Δ^5 -pregnene-3:17-diol-20-one Δ^5 -17-acetylenylandrostene-3:17-diol. H. E. STAVELY (J. Amer. Chem. Soc., 1940, 62, 489— 491).—17 - Acetylenyl - Δ^5 - androstene - 3:17 - diol, NH₂Ph, HgO (or, better, HgCl₂), and BF₃,Et₂O at room temp. (1 week) give 20-anilo- Δ^5 -pregnene-3: 17-diol (I), m.p. 148°, $[\alpha]_b^{23} - 196 \pm 2^\circ$ in CHCl₃ (cf. Goldberg *et al.*, A., 1939, II, 552) (3-acetate, m.p. 232—234°, $[\alpha]_b^{24} - 176 \pm 2^\circ$ in CHCl₃), which in aq. MeOH is equilibrated with Δ^5 -pregnene-3: 17-diol-20one (II), sinters at 158°, m.p. 161—163° (3-acetate oxime, m.p. 254—256°). Bromination, CrO_3 -AcOH (first at room temp. and then at 45°), and then Zn dust converts the 3-acetate, m.p. $196-198^{\circ}$, $[\alpha]_{D}^{23}$ -61±1.5° in CHCl₃, of (II) into 3-acetoxydehydroandrosterone (isolated as semicarbazone), and 3% KOMe-MeOH hydrolyses and rearranges it to 4:10dihydroxy-3-keto-4: 2a:12a-trimethyl- Δ^8 -hexadecahydrochrysene (Ruzicka et al., A., 1939, II, 76, 327), Δ^5 -chrysopregnene-3:17-diol-18-one. now termed Only members of the $3(\alpha)$ series undergo this rearrangement. Acid hydrolysis of (I) causes a different R. S. C. rearrangement.

Steroids and sex hormones. LIX. Constitution of the hexadecahydrochrysene derivatives formerly known as "neopregnene compounds." L. Ruzicka and H. F. Meldahl (Helv. Chim. Acta, 1940, 23, 364—375; cf. A., 1939, II, 218, 327; Miescher et al., ibid., 166).—Compounds of the neopregnene series are constituted in accordance

with (I) and the α -OH-ketones (from which they are derived) obtained by hydration of 17-hydroxy-17-

$$\begin{array}{c|c} Me & Me & Me & OH \\ Me & Me & OH & OH \\ \hline (I.) & C & D & O & (II.) \\ \end{array}$$

acetylenyl derivatives of the androstane and androstene series have probably the structure (II). The saturated compounds of the two series are therefore derivatives of perhydrochrysene and the neopregnene compounds are hexadecahydrochrysene derivatives. It is proposed to designate compounds formed by ring-enlargement with the prefix "homo" and the letter indicating the ring which has suffered enlargement. Ring contraction is indicated by the prefix "nor." Thus (III), (IV), and (V) are named respectively p-homoandrostane, A-homoandrostane, and

A-nor-D-homoandrostane. Hydrogenation (PtO₂ in AcOH) of Δ^5 -3-trans-acetoxy-17a-methyl-D-homoandrosten-17-one (neopregnenolone acetate) (VI) affords 3-trans-acetoxy-17a-methyl-D-homoandrostan-17-one (VII), m.p. 174—175°, hydrolysed by K₂CO₃ in boiling MeOH-H₂O to the 3-hydroxy-compound, m.p. 222—224°, which is oxidised by CrO₃ in AcOH to 17a-methyl-D-homoandrostane-3:17-dione, m.p. 200—202°; the corresponding hydrazone, decomp. >320°, is transformed by Na and N₂H₄,H₂O in amyl alcohol at 200° into 17a-methyl-D-homoandrostane, m.p. 108—109°, [α]_D -3° \pm 1° in dioxan. isoAmyl formate, (VII), and NaOEt in Et₂O yield 3-trans-hydroxy-17a-methyl-16-hydroxymethylene-D-homoandrostan-17-one,

m.p. $168-170^{\circ}$, oxidised by CrO₃ in AcOH at room temp. to the ketodicarboxylic acid (VIII), m.p. $219-220^{\circ}$ [Me₂ ester, m.p. $124-126^{\circ}$; anhydride, m.p. $188-191^{\circ}$, which passes at $200^{\circ}/50$ mm. into an (impure) substance, C₂₀H₃₀O₂, m.p. $124-127^{\circ}$]. Absorption (PtO₂ in AcOH) of 2 H₂ by (VI) and subsequent hydrolysis with K₂CO₃ leads to 3-trans-17-dihydroxy-17a-methyl-p-homoandrostane, m.p. $180-200^{\circ}$ (probably a mixture of isomerides) (diacetate, m.p. $186-187^{\circ}$), dehydrogenated (Se at $345-350^{\circ}$) to 1-methylchrysene, m.p. $253-254^{\circ}$ [additive compound with C₆H₃(NO₂)₃, m.p. $174-175^{\circ}$]. All m.p. are corr. (vac.).

Steroids and sex hormones. LX. Transformation of cyanohydrins of the androstane series into ketones of the perhydrochrysene

series. M. W. GOLDBERG and R. MONNIER (Helv. Chim. Acta, 1940, 23, 376—384).—A method for the enlargement of ring D of androstane derivatives is described. trans-Dehydroandrosterone cyanohydrin is hydrogenated (PtO₂ in AcOH at 70°) to 3-trans-17dihydroxy-17-aminomethylandrostane (I), m.p. 222-225°, $[\alpha]_D^{20}$ —16.5° \pm 1° in N-AcOH (Ac_3 derivative, m.p. 166°). More advantageously (I) is obtained by reduction of trans-dehydroandrosterone cyanohydrin 3-monoacetate to the corresponding acetoxy-acetate (II), m.p. $\sim 235^{\circ}$ (decomp.), which is then hydrolysed. Analogously androsterone cyanohydrin is converted into 3-epi-17-dihydroxy-17-aminomethylandrostane (III), m.p. 204—206°, $[\alpha]_D^{20} + 4.5^{\circ} \pm 1.0^{\circ}$ in N-AcOH (Ac_2 derivative, m.p. 207—208°). Treatment of the acetate of (I) with NaNO₂ and aq. AcOH leads to 3-trans-hydroxy-**D**-homoandrostan-17a-one (IV), m.p. 193—195°, $[\alpha]_{D}^{20}$ —66·5° \pm 1° in MeOH [semi-carbazone, m.p. 252—254°; Ac derivative, m.p. 124— 125°, also obtained from (II) and HNO₂]. acetate of (III) is similarly transformed into 3-epihydroxy-D-homoandrostan-17a-one, m.p. 203—205°, $[\alpha]_{D}^{20}$ $-35.5^{\circ}\pm1.5^{\circ}$ in MeOH (semicarbazone, m.p. 233—235°; Ac derivative, m.p. 150-151°, $-21\cdot7$ ° ±1 ° in MeOH). (IV), is converted (IV), is converted MgMel in Et₂O-C₆H₆ into 3-trans-17a-dihydroxy-17amethyl-D-homoandrostane, which after treatment with Girard's reagent T is dehydrogenated (Se at 350°) to 1-methylchrysene, m.p. 253-254° [additive compound, m.p. $173-175^{\circ}$, with $C_6H_3(NO_2)_3$]. All m.p. are corr.

Synthesis of substituted 1:4-naphthaquinones. C. F. Koelsch and D. J. Byers (J. Amer. Chem. Soc., 1940, **62**, 560-562).— $o-C_6H_4(CO_2Et)_2$, Na, and Pr^aCO₂Et give 2-ethylindane-1: 3-dione, m.p. 53—55° (lit. 55.5°), b.p. 135—140°/7 mm., which with CH₂Br CO₂Et and KOH-EtOH gives Et 1:3diketo-2-ethyl-2-indanylacetate, m.p. 77-78.5°, converted by NaOEt-EtOH-H₂ into 3-carbethoxy-2-ethyl-1:4-naphthaquinol, m.p. $1\bar{1}0.5$ — 111° . With $Cr\tilde{O}_3$ — AcOH this gives 3-carbethoxy-2-ethyl-1: 4-naphthaquinone, m.p. 47.5—48°, with O₂ in NaOH-EtOH at 50° gives 3-hydroxy-2-ethyl-1: 4-naphthaquinone, and with a little EtOH in boiling aq. NaOH and H₂ gives 2-ethyl-1:4-naphthaquinone. Similarly are obtained 2-methyl-, 2-n-propyl-, m.p. 48-49.5° 50.5°), and 2-n-butyl-indane-1: 3-dione, m.p. 35° (lit. 33°), b.p. $155-160^{\circ}/1$ mm., Et 1:3-diketo-2-methyl-, m.p. 91—92° (lit. 161—162°), -2-n-propyl-, an oil, and -2-n-butyl-2-indanylacetate, an oil, 3-carbethoxy-2methyl-, m.p. 100—101°, -2-n-propyl-, m.p. 125—126.5°, and -2-n-butyl-1:4-naphthaquinol, m.p. 98.5— 100°, 3-carbethoxy-2-methyl-, m.p. 99-100°, and 3hydroxy-2-n-butyl-1: 4-naphthaquinone, m.p. 100— 101° (lit. 101—101·5°). R. S. C.

Vitamin-K activity of naphthaquinones. E. Fernholz, S. Ansbacher, and H. B. MacPhillamy (J. Amer. Chem. Soc., 1940, **62**, 430—432).—The vitamin-K activity of numerous alkyl-1:4-naphthaquinones is recorded. The 2-Me derivative is the most active. $n \cdot C_{15}H_{31} \cdot COCl$, tetrahydronaphthalene, and AlCl₃ in CS₂ give 5:6:7:8-tetrahydro-2-naphthyl $n \cdot C_{15}H_{31}$ ketone, m.p. 44—45°, reduced (Clemmensen-Mikeska) to 2-n-hexadecyl-5:6:7:8-tetrahydro-

naphthalene, b.p. $210-215^{\circ}/\sim 1$ mm., which with S at $200-210^{\circ}$ gives 2-n-hexadecylnaphthalene, m.p. $45-46^{\circ}$. CrO₃-AcOH then gives 2-n-hexadecyl-1: 4-naphthaquinone, m.p. $80-81^{\circ}$. 2-n-Octadecyl-1: 4-naphthaquinone, m.p. $84-85^{\circ}$, 3-methyl-5: 6: 7: 8-tetrahydro-2-naphthyl $C_{17}H_{35}$ ketone, m.p. $64-65^{\circ}$, 2-methyl-3-n-octadecyl-5: 6: 7: 8-tetrahydronaphthalene, m.p. $47-48^{\circ}$, and -1: 4-naphthaquinone, m.p. $95-97^{\circ}$, are also prepared. R. S. C.

General method of preparing 2-methyl-3-alkylnaphthaquinones. Constitution and vitamin-K activity. P. KARRER and A. EPPRECHT [with, in part, H. KÖNIG] (Helv. Chim. Acta, 1940, 23, 272—283).—Gradual addition of AcCl and 2methyl-5:6:7:8-tetrahydronaphthalene in CS₂ to $AlCl_3$ in CS_2 affords 3-aeetyl-2-methyl-5: 6:7:8-tetrahydronaphthalene, b.p. 156—157°/11 mm., reduced (Clemmensen) to $\bar{2}$ -methyl-3-ethyl-5:6:7:8-tetrahydronaphthalene, b.p. 127—128°/11 mm., which is dehydrogenated (S at 210—220°) to 2:3-C₁₀H₆MeEt (I). This is oxidised (CrO₃ in AcOH) to 2-methyl-3-ethyl-1: 4-naphthaquinone, m.p. 73° (some 5:8quinone appears to be formed simultaneously). 3-Acetyl-2-methylnaphthalene, b.p. 164°/11 mm., is converted by successive treatment with PCl₅ and KOH-EtOH at 125° into 2-methyl-3-acetylenylnaphthalene, m.p. 81°, hydrogenated to (I). 3-Stearyl-2-methyl-5:6:7:8-tetrahydronaphthalene, m.p. 64°, is reduced (Clemmensen) to 2-methyl-3-octadecyl-5:6:7:8-tetrahydronaphthalene, m.p. 64°; this is dehydrogenated to 2-methyl-3-octadecylnaphthalene (impure), which is oxidised to 2-methyl-3-octadecyl 1:4-naphthaquinone, highest observed m.p. 100°, the purity of which is established by potentiometric titration with Na₂ dithionite. $\zeta \kappa \xi$ -Trimethylpentadecan- β -one, CH₂Br·CO₂Et, and Zn-Cu in PhMe at 100—115° give Et β-hydroxy-βζκζ-tetramethylhexadecoate, b.p. $179^{\circ}/0.4$ mm., which is converted by successive treatment with PBr₃ and KOH-EtOH into phytenic acid, b.p. 174°/ 0.4 mm., readily hydrogenated (Pt) to phytanic acid. The latter (obtained by oxidation of dihydrophytol by CrO₃-KHSO₄ in 80% AcOH) is converted (SOCl₂) into the chloride, which is condensed to 3-phytanyl-2methyl-5:6:7:8-tetrahydronaphthalene, b.p. 217—220°/ 0.04 mm. This gives 2-methyl-3-dihydrophytyl-5:6:7:8-tetrahydronaphthalene, dehydrogenated to 2-methyl-3-dihydrophytylnaphthalene, b.p. 212°/0.015 mm., oxidised to non-cryst. 2-methyl-3-dihydrophytyl-1:4-naphthaquinone possessing the same absorption spectrum as phylloquinone (vitamin- K_1).

It is suggested that vitamin- K_2 is a 2-methyl-1: 4-naphthaquinone with a squalene or similar complex residue at $C_{(2)}$.

H. W.

Synthesis of vitamin- K_1 .—See A., 1940, III, 325.

Synthesis of condensed ring compounds. II. Reaction of $\Delta^{a\gamma\epsilon}$ -hexatriene with 1:4-naphthaquinone. L. W. Butz, E. W. J. Butz, and A. M. Gaddis (J. Org. Chem., 1940, 5, 171—183).— $\Delta^{a\epsilon}$ -Hexadien- γ -ol (prep. from CH₂·CH·CH₂·MgBr and CH₂·CH·CHO detailed) is dehydrated [o-C₆H₄(CO)₂O and a little quinol at 130—200°] to $\Delta^{a\gamma\epsilon}$ -hexatriene (I), b.p. 80—82°/757 mm., which may contain ~30% of $\Delta^{1:3}$ -cyclohexadiene (II) [this may arise from (I) or

by cyclodehydration of a rearrangement product such as $\Delta^{\beta\delta}$ -hexadien- α -ol]. 1:4-Naphthaquinone and (I) in EtOH at 50°/6 hr. (sealed tube) thus give 27% of the 1:4-endoethylenetetrahydroanthraquinone (III), m.p. 134—136° [Diels et al., A., 1929, 1303; prep. from (II); oxidised (air in EtOH-KOH) to 1:4endoethylene-1: 4-dihydroanthraquinone (IV), decomp. 187-188° (rapid heating) to anthraquinone and C_2H_4 (cf. loc. cit.)], and 70% of (probably) cis-+ trans-1-vinyl-cis-1:4:4a:9a-tetrahydroanthraquinone (V), an oil, which is oxidised (air in EtOH-KOH at 30°) to 1-vinylanthraquinone (VI), m.p. 163—164°. Ozonolysis of (VI) in AcOH, fission by boiling aq. AcOH, and oxidation (CrO₃, aq. AcOH) of the resulting product, m.p. 167—169° (partly), gives anthraquinone-1-(partly), gives anthraquinone-1carboxylic acid. Reduction (H₂, Pd-black, AcOH) of (VI) and oxidation (CrO₃) of the H₄-derivative affords 1-ethylanthraquinone. No conversion of (V) into (III) occurs in EtOH at 50—55°/14 days. When (V) is heated at $200-236^{\circ}/2.5$ mm. for 1 hr., 10% of (?) 9:10-dihydroxy-1:4-endocthyleno-1:4-dihydroanthracene, decomp. 147—150° [oxidised (EtOH-FeCl₃) to (IV)], 50% of (?) 1-vinyl-1: 4-dihydro-anthraquinone, m.p. 97—99° [oxidised (air in EtOH– KOH) to (VI)], and an oil are obtained. M.p. are

Biochemistry of the lower fungi. III. Pigment of Penicillium citreo-roseum, Dierckx. T. Posternak and J. P. Jacob (Helv. Chim. Acta, 1940, 23, 237—242).—The isolation of citreorosein (I), $C_{15}H_{10}O_6$, m.p. 273—275° (decomp.) when slowly heated, is described. It contains 4 OH (Ac_4 , m.p. 187—188°, Bz_4 , m.p. 206—208° and 223° after resolidification, and Me_4 , m.p. 187—188°, derivatives). It does not afford AcOH when oxidised (Kuhn and Roth). When distilled with Zn dust it gives 2-methylanthracene. (I) is sol. in solutions of alkali carbonates, gives a salt with 1 mol. of C_5H_5N , does not dye mordanted cotton, and very closely resembles emodin in absorption spectrum. (I) is therefore a 4:5:7-trihydroxy-2-hydroxymethylanthraquinone. (Cf. A., 1940, II, 135.)

I. Pyrolysis of pinene. Pyronenes. Formulæ of pyronenes. G. DUPONT and R. DULOU (Atti X Congr. Internaz. Chim., 1938, III, 123—129, 129—139).—I. Pyrolysis of d-pinene (I) in a Cu tube at 350° gives a product shown by Raman spectra to contain, with limonene and allocymene, isomeric α - (II), b.p. $43^{\circ}/11$ mm., $[\alpha]_{D} +17.18^{\circ}$, and β-pyronene (III), b.p. $48-50^{\circ}/8$ mm., $[\alpha]_{D}+4.52^{\circ}$, which are identified as 1:1:2:3-tetramethylcyclohexadienes, formed by rupture of the 4-carbon ring of (I). The Raman spectra of the tetrahydro-α- and -βpyronenes obtained (Pt-H₂) from (II) and (III) are identical with those of H2-derivatives of cyclogeraniolenes obtained by Escourrou's method (cf. A., 1926, 1238), or by cyclising dihydromyrcene, geraniolene, or linalolene.

II. The following reactions show that (II) and (III) are 1:5:5:6- and 1:2:6:6-tetramethyl-Δ¹:³-cyclo-hexadiene, respectively. Diels-Alder condensation with (*C·CO₂Me)₂, followed by thermal decomp. of the product, gives, from (II), CHMe.CMe₂ [with some CMe₂·CH₂ probably derived from (III)] and 3:1:2-

 $C_0H_3Me(CO_2H)_2$, and, from (III), $CMe_2\cdot CH_2$ and $3:4:1:2\cdot C_0H_2Me_2(CO_2H)_2$. Naphthaquinone condenses with (II) to a compound, m.p. $123-124^\circ$, dehydrogenated and pyrolysed in presence of litharge to give 1-methylanthraquinone (and CHMe: CMe_2). Similarly (III) gives a naphthaquinone additive compound, m.p. $95-96^\circ$, which on atm. oxidation of its EtOH solution, and pyrolysis, gives 1:2-dimethylanthraquinone (and $CMe_2\cdot CH_2$). With $CH_2\cdot CH\cdot CHO$, (III) gives a 50% yield of 1:2:2-trimethyl-1:4- α -methylvinylenecyclohexane-5(or 6)-aldehyde [(IV) or (V)], b.p. $123^\circ/15$ mm. (semi-

carbazone, m.p. 209—210°). (II) gives only 10% of an aldehyde (semicarbazone, m.p. ~204—205°). With maleic anhydride, (II) gives, after hydrolysis, 1:2:3:3-tetramethyl-1:4-vinylenecyclohexane-5:6-dicarboxylic acid, m.p. 195°, whilst (III) gives 1:2:2-trimethyl-1:4-α-methylvinylenecyclohexane-5:6-dicarboxylic anhydride, m.p. 154°. Hydrogenation of (II), using Raney Ni, gives a mixture of three, and that of (III) a mixture of two, tetramethylcyclohexenes, characterised by their Raman spectra. E. W. W.

Preparation of borneol glucuronide. H. K. MURER and L. A. CRANDALL, jun. (J. Amer. Chem. Soc., 1940, 62, 674—675).—The prep. is improved.

Homologues of the camphor group. Partial synthesis of 4-methylcamphor. NAMETKIN and A. P. STUKOV (J. Gen. Chem. Russ., 1939, 9, 2081—2084).—4-Methylcamphoric anhydride, distilled from an Al-Ni catalyst at 220°, yields 4-methylcampholide, m.p. 193—194°, which does not react with KCN or with HBr in AcOH, and therefore cannot serve for the synthesis of 4-methylcamphor (I) by Komppa's method (A., 1909, i, 110). The same applies to 4-methylcamphor-3-carboxylic acid, m.p. $134-134\cdot 5^{\circ}$ (*Et* ester, b.p. $145\cdot 5-146^{\circ}/9$ mm.), prepared by passing CO₂ into a C₆H₆ solution of (I) and NaNH₂. 3-Aldehydo-4-methylcamphor in N-NaOH and NH₂OH, heated at 100°, yield 3-cyano-4methylcamphor, m.p. 163—164°, which is heated with 50% KOH (6—8 hr. at the b.p.). The Ca salt of 4-methylhomocamphoric acid, m.p. 167—168°, so produced gives (I) when heated under reflux.

Diterpenes. XL. Isomeric tetrahydroxyabietic acids and their functional transformation products. L. Ruzicka and L. Sternbach (Helv. Chim. Acta, 1940, 23, 333—341; cf. A., 1938, II, 287).—Chlorotrihydroxyabietic acid (I) is converted by a

$$\begin{array}{c|c} CO_2H & CO_2H \\ \hline Cl & OH \\ \hline OH & OH \\ \hline \end{array}$$

small excess of NaOH into a product (II), m.p. $\sim 125-130^{\circ}$, $[\alpha]_D -53\cdot 1^{\circ} \pm 0\cdot 5^{\circ}$ in CHCl₃, which is

separated by COMe₂ into γ -tetrahydroxyabietic acid (III), m.p. 130° to 150° according to the rate of heating, $\lceil \alpha \rceil_D -29 \cdot 5^{\circ} \pm 0 \cdot 4^{\circ}$ to $-61 \cdot 5^{\circ} \pm 0 \cdot 4^{\circ}$ in MeOH in three weeks, and oxidodihydroxyabietic acid (IV), m.p. 130—150°, $\lceil \alpha \rceil_D -52 \cdot 3^{\circ} \pm 1^{\circ}$ in MeOH. (III) is transformed by HCl into (I) and α -tetrahydroxyabietic acid (V). (IV) is very unstable; it yields a highly chlorinated product with dil. HCl and is slowly transformed by boiling COMe₂-2N-H₂SO₄ into (V), m.p. 249—250°, $\lceil \alpha \rceil_D -39 \cdot 8^{\circ}$. Boiling PhMe converts (I)

CO OH OH OH (VI.)

into tetrahydroxyabietolactone (VI), m.p. $>330^{\circ}$, $[\alpha]_{\rm b}$ $-77^{\circ}\pm 1.5^{\circ}$ in CHCl₃, which does not react with HCl or boiling COMc₂-2N-H₂SO₄, is unaffected by NH₂OH,

unaffected by NH₂OH,
NH₂·CO·NH·NH₂, or CH₂N₂, is not
hydrogenated (PtO₂), is indifferent
to boiling 0·5n-KOH-EtOH, but is

hydrolysed by 35% KOH at 160° to (V). Slow evaporation of a very dil. solution of (IV) in COMe₂ gives β -tetrahydroxyabietic acid, m.p. 151° (softening at 127°) (m.p. depends greatly on rate of heating), $[\alpha]_{\rm p}$ $-67\cdot7^{\circ}$ $\pm0.4^{\circ}$ in MeOH ($c=2\cdot5$) (Me ester, m.p. 70—100°), which is not transformed into a halogenated product by cold HCl but yields (V) with boiling dil. $\rm H_2SO_4$. Oxidation of (V) with Pb(OAc)₄ in AcOH or KIO₄ in MeOH–2N-H₂SO₄ gives ketotrihydroxyabietic acid, m.p. 204—205°, $[\alpha]_{\rm p}$ +7·0° $\pm0.4^{\circ}$ (as Na salt in H₂O), identical with the "isomeric tetrahydroxyabietic acid" (loc. cit.). All m.p. are corr.

Diterpenes. XLI. Degradation of dihydroxyabietic acid and of oxidodihydroxyabietic acid. L. Ruzicka and L. Sternbach (Helv. Chim. Acta, 1940, 23, 341—355).—Dihydroxyabietic acid (I) [reasons are advanced for its formulation as in (I)] (Me ester, m.p. 106—107°) is oxidised by o-CO₂H·C₆H₄·CO₃H to α-tetrahydroxyabietic acid. (I) is oxidised by Pb(OAc)₄ (1 mol.) in AcOH to the amorphous ketoaldehydic acid [(II), R = CHO], characterised by the cryst. dioxime, m.p. 188·5—189·5° (block preheated to 182°), and the dicarboxylic acid (III) [(II), R = CO₂H], m.p. 212—212·5° [oxime, m.p. 227—229° after becoming yellow at 217° (block preheated to 213°)]. (II) is converted by alkali hydroxide into the dieneketonic acid (IV), m.p. 188—

$$CO_2H$$
 CO_2H
 OR
 CO
 CO
 CO

189° [monoxime, m.p. 235° (decomp.)], the absorption spectrum of which indicates the proximity of two conjugated double linkings to CO. Catalytic hydrogenation leads to the corresponding saturated acid (V), analysed as the oxime, m.p. 215—216°, and semicarbazone, m.p. 219—220°. Incomplete hydrogenation yields the H_2 -acid (oxime, m.p. 197—198°). Reduction (Clemmensen) of (V) gives an amorphous acid, characterised as the Me ester, b.p. 150—160°/0·1 mm.), which does not appear to yield aromatic products

when dehydrogenated. The $\alpha\beta$ -unsaturated nature of (III) is proved by the absorption spectrum. Useful

$$CO_2H$$
 CO_2H
 CHO
 CHO
 CO

results are not secured by the oxidation of (III) with $\rm H_2O_2$ and $\rm OsO_4$, $\rm Br-NaOH$, or $\rm O_3$ in AcOH. Boiling quinoline transforms (III) into a diketomonocarboxylic acid, $\rm C_{20}H_{28}O_4$, m.p. 176°, which gives an orange-yellow colour with conc. $\rm H_2SO_4$ or $\rm C(NO_2)_4$ and an intense violet-brown colour with FeCl₃ in EtOH. Oxidodehydroxyabietic acid is oxidised by Pb(OAc)₄ to the cryst. oxidoketoaldehydic acid (VI), m.p. 132—134° [dioxime, m.p. 195·5—197° (block preheated to 191°)], also obtained by the successive action of o-CO₂H·C₆H₄·CO₃H and Pb(OAc)₄ on (I). (VI) is oxidised by o-CO₂H·C₆H₄·CO₃H to the oxidoketodicarboxylic acid (VII), $\rm C_{20}H_{30}O_6$, m.p. 156—158°, which does not give cryst. products with Br-

$$\begin{array}{c|c} CO-O & CO_2H \\ \hline CO & CO_2H \\ \hline CO_2H & CH-OH \\ \hline CO & CO_2H \\ \hline \end{array}$$

NaOH. HCl transforms (VII) into a (?) chloroketo-lactonic acid (VIII), m.p. 117—121°, re-converted into (VII) by KOH-EtOH. The course of the reaction of MeOH at 100° or MeOH-dil. $\rm H_2SO_4$ at room temp. on (VII) is less obvious; in each case an amorphous product $\rm C_{20}H_{30}O_6$ results which after treatment with NH₂OH gives a substance, $\rm C_{20}H_{30}O_6$, m.p. 184·5—185°, which cannot at present be formulated. Warm alkali hydroxide transforms (VI) into an isomeric acid, possibly (IX), m.p. 190—192·5° (block preheated to 184°) which is monobasic and proved by its absorption spectrum to contain CO and to be devoid of the αβ-unsaturated CO group. It is converted by o- $\rm CO_2H\cdot C_6H_4\cdot CO_3H$ into a compound, $\rm C_{20}H_{32}O_7$, m.p. 171—172° (block preheated to 168°). All m.p. are corr.

Diterpenes. XLII. Dehydrogenation of the oxidation products of abietic acid to 7-hydroxy-1-methylphenanthrene and 6-hydroxy-1:5-dimethylnaphthalene. Synthesis of 7-hydroxy-1:5- and -1:6-dimethylnaphthalene. L. Ruzicka and L. Sternbach [with S. Kaufmann, E. Fried-LANDER, A. GROB, H. KIRCHENSTEINER, and H. VON Sprecher] (Helv. Chim. Acta, 1940, 23, 355—363).— Dehydrogenation of dihydroxy- (I), chlorotrihydroxy-, α-tetrahydroxy-, or oxidodihydroxy-abietic acid by Se or Pd-C at 330—340° yields 7-hydroxy-1-methylphenanthrene, m.p. 190—191° (acetate, m.p. 137— 138°), thus establishing the presence of OH at C₍₇₎ in (I). As subsidiary action the elimination of Pr^{β} is Similar dehydrogenation (Se) of ketotrihydroxyabietic acid gives $1:5:6-C_{10}H_5Me_2\cdot OH$, m.p. 162—163° (benzoate, m.p. 151—151.5°), and a dimethylnaphthol, m.p. 99—100°.

y-4-Methoxy-2-methylphenylbutyric acid is converted by P₂O₅ in boiling C₆H₆ into 1-keto-7-methoxy-5-methyl-1:2:3:4-tetrahydronaphthalene, b.p. 137°/ 0.01 mm., m.p. 57—57.5°, which with MgMeI affords 7-methoxy-1:5-dimethyl-3:4-dihydronaphthalene, b.p. 150—152°/12 mm.; this is dehydrogenated by Se at 340° or, preferably, by Pd-C at 320° to 7-methoxy-1:5-dimethylnaphthalene, m.p. 86—86·5°, demethylated (boiling AcOH-48% HBr) to 7-hydroxy-1:5-dimethylnaphthalene, m.p. 151·5—152·5°. 1:2:5-OMe C₆H₃MeAc is methylated (Me₂SO₄) to 3-methoxy-4-methylacetophenone, b.p. 127—130°/12 mm., which is condensed with CH₂Br CO₂Et and Zn in C₆H₅ to Et 3-methoxy- β : 4-dimethylcinnamate, b.p. 132—138°/ 0.6 mm. This with Na-EtOH-PhOH is reduced to γ -m-methoxy-p-tolylbutan- α -ol, b.p. 100—102°/0·1 mm., which is transformed successively into the corresponding chloride, b.p. $112-118^{\circ}/0.6$ mm., iodide, b.p. 124—125°/0·5 mm., nitrile, b.p. 122—125°/0·2 mm., and γ-m-methoxy-p-tolylvaleric acid, b.p. 138°/0.2 mm., m.p. $61.5-62.5^{\circ}$. This is cyclised by boiling 85% H_2SO_4 to 1-keto-6-methoxy-4:7-dimethyl-1:2:3:4tetrahydronaphthalene, m.p. 107—108°, which is reduced to 6-methoxy-4:7-dimethyl-1:2:3:4-tetrahydronaphthalene, b.p. 130—135°/12 mm. dehydrogenated (Se at 330°) to 6-methoxy-4:7dimethylnaphthalene, m.p. 70.5-71° (picrate, m.p. 143°), demethylated to 7-hydroxy-1:6-dimethylnaphthalene, m.p. 94—95°.

Sterols. XCII. Preparation of neotigogenin from sarsasapogenin. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1940, 62, 647—648).—Dibromosarsasapogenone and boiling C_5H_5N give a pyridinium salt, m.p. 235° (decomp.), and bromo- $\Delta^{4:5}$ -dehydrosarsasapogenone, m.p. 185—188° (decomp.), reduced by Na-EtOH to neotigogenin (I), m.p. 198—200° (diacetate, m.p. 173—175°; derived neotigenone, m.p. 207—210°; cf. A., 1939, II, 517). It follows that the side-chain of (I) is of the sarsasapogenin type, but that the side-chain of tigogenin, chlorogenin, diosgenin, and probably of gitogenin and digitogenin is of the isosarsasapogenin type. R. S. C.

Sterols. XCIII. epi- ψ -Sarsasapogenin, ψ -sarsasapogenone, and ψ -chlorogenin. R. E. Mar-KER, E. ROHRMANN, and E. M. JONES (J. Amer. Chem. Soc., 1940, 62, 648—649).—epiSarsasapogenin [prep. from sarsasapogenone (I) by Na-EtOH], m.p. 205—207°, gives an acetate, m.p. 191—193°, which with Ac₂O at 200°, followed by hot KOH-EtOH, gives epi-\(\psi\)-sarsasapogenin, m.p. 211—213°, hydrogenated (PtO₂; AcOH; 3 atm.) to a H_2 -derivative, m.p. 135—137° (di-p-nitrobenzoate, m.p. 207—209°), and oxidised by \hat{CrO}_3 -AcOH at room temp. to $\Delta^{16:17}$. pregnene-3: 20-dione (II) and acids. Ac₂O and (I) give ψ-sarsasapogenone, m.p. 165—166° [semicarbazone, m.p. 215—216° (decomp.)], oxidised (CrO₃) to (II). isoSarsasapogenin acetate and Ac₂O etc. yield ψsarsasapogenin, but dihydrosarsasapogenin is unchanged. Chlorogenin with Ac₂O etc. gives \(\psi\)-chlorogenin, m.p. 268—270°, reduced by H_2 -PtO₂-EtOH-AcOH at 3 atm. to a H_2 -derivative, m.p. 269—272° (triacetate, m.p. 149—152°). R. S. C.

Constituents of *Helenium* species. III. Ester nature of tenulin. E. P. CLARK (J. Amer. Chem.

Soc., 1940, **62**, 597—600; cf. A., 1939, II, 435).— Tenulin (I) contains OH, CO, OAc, and C.C. H_2O_2 in NaOH–COMe₂– H_2O oxidises (I) or isotenulin (II) to tenulinic acid (III), $C_{15}H_{20}O_7$, m.p. $343-344^\circ$ {Ac derivative (IV), $+0.5H_2O$, m.p. 243° ($234-235^\circ$) [Me ester, m.p. 259—260°, hydrolysed by NaOH to (III)]; Me ester, m.p. 208°}, but KMnO₄–COMe₂– H_2O gives (IV). Cone. H_2SO_4 and (II) at 90° give AcOH and deacetylisotenulin, $C_{15}H_{20}O_4$, m.p. 255° , previously obtained as a by-product in the prep. of (II) and converted into (II) by $Ac_2O-C_5H_5N$. Dihydroisotenulin and conc. H_2SO_4 similarly give deacetyldihydroisotenulin, m.p. 203°, also obtained by hot 10% NaOH. Distillation of (I) gives pyrotenulin, $C_{13}H_{16}O_3$, m.p. $235-236^\circ$. The Ac in (I) or (IV) is very firmly held, being only partly removed by the standard analytical technique. R. S. C.

Osage orange pigments. III. Fractionation and oxidation. M. L. WOLFROM and A. S. GREGORY (J. Amer. Chem. Soc., 1940, 62, 651—652; cf. A., 1940, II, 9).—Fractional crystallisation and the mixed m.p. diagram indicate that *Maclura pomifera* contains approx. equal amounts of osajin (*Me₂ ether*, m.p. 118.5°) and pomiferin, oxidised by H₂O₂-KOH-COMe₂ to anisic and veratric acids, respectively.

Cannabidiol and cannabol, constituents of Cannabis indica resin. A. Jacob and A. R. Todd (Nature, 1940, 145, 350; cf. A., 1939, II, 121).—The resin distilled from Egyptian hashish yields cannabinol p-nitrobenzoate and a second ester (I) of lower m.p. with p-NO₂·C₆H₄·COCl in C₅H₅N. Hydrolysis of (I) gives cannabidiol (II) (Adams et al., A., 1940, II, 80). Acylation of certain fractions of Indian hashish with azobenzene-4-carboxyl chloride gives a cryst. ester, m.p. 117—118°, which, on alkaline hydrolysis, yields a resinous phenol, cannabol.

L. S. T.

Active principles of leguminous fish-poison plants. IV. Isolation of malaccol from Derris malaccensis. S. H. Harper (J.C.S., 1940, 309— 314).—From *D. malaccensis* (Kinta type) there has been isolated 1-malaccol (I), $C_{20}H_{16}O_7$, prisms, m.p. 225°, solidifying to needles, m.p. 244°, $[\alpha]_D^{18} + 190^\circ$ in CHC. CHCl₃, $[\alpha]_D$ +67° in C₆H₆ (oxime, decomp. 240°) (cf. Meyer et al., A., 1939, II, 176). Racemisation of (I) with NaOAc-EtOH gives dl-malaccol (II), m.p. 244° (oxime, decomp. 270°), identical with the second form of (I). Hydrogenation (H_2-PtO_2) of (I) affords tetrahydromalaccol, m.p. 222° (Ac_3 derivative, m.p. 195°). Both (I) and (II) with NaOAc followed by I-EtOH yield an I-compound, reduced (Zn-AcOH) to dehydromalaccol, m.p. 257°, but by short treatment with NaOAc (I) gives a substance, m.p. 257° (Ac derivative, m.p. 227°), not identical with the previous compound. The constitution of these substances is discussed and (I) is considered to be 15-hydroxyelliptone.

Loco weeds. I. Isolation of α- and β-earleine from Astragalus earlei. D. C. Pease and R. C. Elderfield (J. Org. Chem., 1940, 5, 192—197).— The conc. 70% EtOH-extract of the dried weed is diluted with H₂O, the solution treated with basic Pb acetate, and the resulting solution freed from Pb

(by H₂S) and evaporated at 40°/vac.; extraction of the resin with EtOH at 55°, concn. of the solution after removal of cryst. d-pinitol (cf. A., 1940, III, 462), dilution with H₂O, and treatment of the EtOH-freed solution with phosphotungstic acid gives a ppt., which on decomp. with Ba(OH)₂ in aq. COMe₂ and subsequent treatment with picric acid affords a mixture of picrates separated chromatographically (Al₂O₃) into the tripicrates, m.p. 184° (some decomp.) and 247°, respectively, of α -earleine (I), $(C_{16}H_{37}O_7N_3)_x$ [trihydrobromide, m.p. 225° (with partial sublimation); tristyphnate, m.p. 186—188° (decomp.)], and β -earleine (II), $(C_{16}H_{37}O_4N_3)_x$, m.p. \sim 187° (decomp.) [tristyphnate, m.p. 209° (decomp.) (sinters >180°); hygroscopic hydrobromide, m.p. 296° (decomp.) (slow), 304° (decomp.) (rapid heating)]. Formulæ for (I) and (II), which are both very hygroscopic, are derived from analyses of derivatives. Both (I) and (II) are optically inactive, resemble quaternary $\mathrm{NH_4}$ hydroxides, contain CHMe OH (CHI3 test; nonreaction with CO reagents) and <1 NH₂ (aliphatic), and do not appear to be toxic to cats.

Astaxanthin and its H palmitate, m.p. 115°.—See A., 1940, III, 368.

Fungus pigments. IV. Constitution of lactaroviolin. H. WILLSTAEDT (Atti X Congr. Internaz. Chim., 1938, III, 390—397).—Substances lying below lactaroviolin (I) in the ehromotographic separation of products from Lactarius deliciosus, L. (A., 1935, 495; 1936, 858), are eluted with MeOH and again chromatographed with Al₂O₃; between residual (I) and lactarazulene is a zone containing green verdazulene, C₁₅H₁₆ (II), m.p. 90°, believed to be the first green hydrocarbon to be found naturally. (I) combines with reagent P of Girard et al. (A., 1936, 1397), to a product easily decomposed by dil. acid, and gives a 2:4-dinitrophenylhydrazone, m.p. $\angle 260^{\circ}$, and a condensation *product*, m.p. 228°, with 1:3-dimethylbarbituric acid. It also condenses with CO₂H·CHMe·CH₂·CO₂H and β-C₁₀H₇·NH₂, and thus its O is presumably aldehydic. E. W. W.

Attempted partial asymmetric synthesis. D. Duveen and J. Kenyon (Bull. Soc. chim., 1940, [v], 7, 165—180).—(—)-2-Furylmethylcarbinol is hydrogenated (Raney Ni in Et₂O at 70—80°/~10 atm. for 10 hr.) to (+)-2-tetrahydrofurylmethylcarbinol (I), b.p. 68°/17 mm., α_{5461}^{17} +4·43° (l=0.5) (other vals. quoted), in which OH could not be replaced by Cl by means of SOCl₂ or PCl₃ in presence or absence of C_5H_5N or by means of COCl₂, thus necessitating the abandonment of the attempt to achieve an asymmetric synthesis by the production of $CH_2 \cdot CH_2$ —CHEt. dl-2-Tetrahydrofurylmethylcarbinol (II) gives two H phthalates, m.p. 70—72° (III) and 62—63° respectively, the former of which appears to be readily resolvable by brucine in COMe₂. (II) and Ac₂O in C_6H_5N at 100° afford the acetate, b.p. 97°/25 mm. (I), α_{5893} +3·31°, and $C_6H_4(CO)_2O$ in C_5H_5N at 50° yield (III) and the H phthalate, m.p. 67—68°, $[\alpha]_{5461}^{18}$ +27·51° in CHCl₃.

Condensation of furan derivatives. XI. Dienic ketones (aliphatic and furanic), and their

condensation. V. V. TSCHELINCEV and G. I. KUZNETZOVA. XII. Polyenic ketones (aliphatic and furanic) and their condensation. V. V. TSCHELINCEV and V. I. KUZNETZOV (J. Gen. Chem. Russ., 1939, 9, 1858—1864, 1901—1906).—XI. CHMe:CH·CHO (I), COMe₂, and aq. NaOH yield chiefly COMe·CH·CH·CH·CHMe (II), together with a higher ketone, unidentified, and resinous polymerides of (II). With COMeEt the chief product is Me β-Δβδ-hexadienyl ketone, b.p. 82°/12 mm., together with higher ketones and polymerides. Furylacraldehyde (III) and COMe₂ or COMeEt similarly afford α-2-furyl-, b.p. 172°/16 mm., m.p. 36°, or α-2-furyl-δ-methyl-Δαγ-hexadien-ε-one, b.p. 186°/20 mm.

XII. 1:3 mixtures of (I) and COMe₂ or COMeEt

XII. 1:3 mixtures of (1) and COMe₂ or COMeEt yield, in addition to the above dienones, $\Delta^{\beta\delta\eta}$ -undecatetraen-ζ-one, b.p. 178—182°/16 mm., and its ε-Me derivative, b.p. 139—143°/8 mm., respectively. (III) similarly affords α-di-2-furyl- $\Delta^{\alpha\gamma}$ -nonatetraen-ε-one. The above dienones and tetraenones readily polymerise with Na, and yield hard films when exposed to the air.

Hydrogenation of coumarin and related compounds. P. L. DE BENNEVILLE and R. CONNOR (J. Amer. Chem. Soc., 1940, 62, 283—287).—A pressure drop in hydrogenation of coumarin (I) alone or in EtOH in presence of Cu chromite at 140—160°/100— 200 atm. (this pressure also below) indicates formation of dihydrocoumarin (II), but at 250° o- $OH \cdot C_6H_4 \cdot [CH_2]_3 \cdot OH$ (III), b.p. $159 - 161^{\circ}/5$ mm. [benzoate, m.p. $96 \cdot 5 - 99 \cdot 5^{\circ}$ (lit. $99 - 100^{\circ}$)], is obtained in $83 - 90^{\circ}$ (in With H_2 -Raney Ni in H_2 -Raney Ni in Et₂O at 100°, (I) gives 90% of (II), which is an intermediate in other hydrogenations. In presence of Raney Ni at 200° in methylcyclohexane (IV) or EtOH up to 50-55% of octahydrocoumarin (V), b.p. 144—146°/16 mm. (lit. 145°/10 mm.), is obtained with 10-15% of hexahydrochroman (VI), b.p. 186-187°/ 760 mm., but on longer hydrogenation at 250° (VI) is the main product (up to 35%); polymerised material is also obtained in these reactions. Hydrogenation of (V) at 250° in presence of Raney Ni in (IV) gives only (VI), but in presence of Cu chromite gives γ -2hydroxy-1-cyclohexyl- (VII) (50%), b.p. 185—186°/35 mm., and γ -cyclohexyl-propyl alcohol (11%), b.p. 105—106°/10 mm. (α-naphthylurethane, m.p. 82—83°) (also obtained from Ph·[CH₂]₃·OH by H₂-Ni in EtOH at 220°). Ni-hydrogenation of (III) in EtOH at 240° gives 40% of (VI) and 37% of (VII). Chroman is best (87%) obtained by treating (III) with PBr₃ in C₆H₆, first at 5° and then boiling; when hydrogenated (Ni; 250°; EtOH), it gives 41% of (VI). Some β-cyclohexylpropionic acid may be formed during Ni-hydrogenation; its Et ester is isolated from reactions in EtOH, but may have been formed by alcoholysis of (II). The mechanism of the hydrogenations of (I) is discussed. R. S. C.

Vitamin-E. VII. Homologues of α-tocopherol. (Miss) A. Jacob, F. K. Sutcliffe, and A. R. Todd (J.C.S., 1940, 327—332).—Benzoylation of toluquinol gives a mixture of toluquinol dibenzoate, m.p. 122°, and 2-hydroxy-5-benzoyloxytoluene, m.p. 113—114°, which condenses with phytol (I) in decalin with ZnCl₂ to 6-hydroxy-2:8-dimethyl-2-(4':8':12'-

trimethyltridecyl)chroman, obtained by removal of Bz and chromatographic purification. Similar condensation of $p\text{-OH}\cdot C_6H_4\cdot OBz$ with (I) is difficult and after hydrolysis the main product is an oil, $C_{26}H_{46}O_3$, which with Zn-HBr-AcOH gives 6-hydroxy-2-methyl-2-(4':8':12'-trimethyltridecyl)chroman, characterised as the acetate, b.p. 190—195° (bath temp.)/10⁻² mm. Condensation of $2:1:4\text{-}C_{10}H_5\text{Me}(OH)_2$ with (I) affords an oil which apparently consists largely of quinones related to vitamin-K. Earlier observations (cf. A., 1939, II, 274) on the high degree of activity shown by m-xylotocopherol have been confirmed (cf. Karrer et al., A., 1939, II, 557). F. R. S.

Flavones derived from hydroxyphloroglucinol. G. Bargellini (Atti X Congr. Internaz. Chim., 1938, III, 32).—2:1:3:4:6-OH· C_6 HAc(OMe)₃, obtained from 1:2:3:5- C_6 H₂(OMe)₄ and AcCl-AlCl₃, with anisaldehyde gives 2-hydroxy-3:4:6:4'-tetramethoxychalkone (I), which when warmed with dil. HCl in EtOH gives 5:7:8:4'-tetramethoxyflavanone (= Me₄ ether of cartamidin). With SeO₂ in C_5 H₁₁·OH, (I) gives 5:7:8:4'-tetramethoxyflavone, m.p. 207—208° (= Me₄ ether of isoscutellarein). With H₂O₂ in alkaline EtOH, (I) gives 3:5:7:8:4'-pentahydroxyflavone (herbacetin) (cf. Goldsworthy et al., A., 1938, II, 110).

Directed ring-closure in the synthesis of chromans and coumarans from o-allylphenols. C. D. HURD and W. A. HOFFMAN (J. Org. Chem., 1940, 5, 212—222).—Several o-allylphenyl acetates (A) are converted by HBr in CCl₄ at room temp. (sealed tube) in presence of (i) quinol, i.e., under peroxide-free conditions, into 1-methylcoumarans, and (ii) air or peroxide (ascaridole; Bz_2O_2) into chromans. The reactions are presumably controlled by the direction of addition of HBr to (A), viz., formation of (i) o-OAc·C₆H₄·CH₂·CHMeBr, (ii) o-OAc·C₆H₄·[CH₂]₃Br. o-Allylphenol (I) itself acts as an anti-oxidant and gives 1-methylcoumaran (II) under all the conditions. Prep. of (A) from the phenols (usually obtained by pyrolysis of the application) propriate aryl allyl ethers in CO_2) is usually effected with keten in presence of a little conc. H₂SO₄ (cf. A., 1940, II, 66); o-allylphenyl (III), b.p. 110—110-5°/11 mm., 3-allyl-p-tolyl (IV), b.p. 126—128°/16 mm., 3-allyl-o-tolyl (V), b.p. 127°/14 mm., 4-bromo-2-allylphenyl (VI), b.p. 154—155°/18 mm., and o-crotyl-phenyl acetate, (VII) b.p. 132°/15 mm., are thus obtained. o-β-Mcthylallylphenyl acetate (VIII), b.p. 122—123°/15 mm., is prepared using Ac₂O; keten gives 1:1-dimethylcounaran also. Prep. of the following compounds is described: (II) or chroman from (III); I:4-dimethylcoumaran or (mainly) 6methylchroman from (IV); 1:6-dimethylcoumaran or 8-methylchroman from (V); 4-bromo-1-methylcoumaran or 6-bromochroman from (VI). o-y-Methyl- Δ^{β} -butenylphenyl acetate (IX), b.p. 134—135°/ 12 mm., (VII), and (VIII) afford 2:2-dimethyl-(X), 2-methyl-, and 3-methyl-chroman, b.p. 102— 104°/15 mm., respectively, under all the conditions used. o-Crotylphenol, b.p. $117-118^{\circ}/13$ mm., and o- γ -methyl- Δ^{β} -butenylphenol (XI), b.p. $120-122^{\circ}/12$ mm., are obtained from NaOPh and CHMe:CH-CH2Br and CMe₂:CH·CH₂Br, respectively, in C₆H₆. Keten $\rm H_2SO_4$ and (XI) give (IX) and (X). A little (II) is formed from (I) and ascaridole at $100^\circ/2$ days. H. B.

XVI. Two-stage metallation Dibenzfuran. of 3-bromodibenzfuran. H. GILMAN, W. LANG-HAM, and H. B. WILLIS. XVII. Interaction of bromo-ethers with lithium n-butyl. H. GILMAN, J. Swislowsky, and G. E. Brown. XVIII. Isomeric metallation products of phenols and their methyl ethers. H. GILMAN, H. B. WILLIS, T. H. COOK, F. J. WEBB, and R. N. MEALS (J. Amer. Chem. Soc., 1940, **62**, 346—348, 348—350; 667—669).— XVI. The two-stage nature of metallation of 3bromodibenzfuran (I) (A., 1939, II, 276) by LiBu^a in Et₂O is confirmed. After boiling for 6 hr. and subsequent action of CO2, equimol. amounts of reactants give only 3-bromodibenzfuran-1-carboxylic acid, but after 3 hr. give 87.3% of dibenzfuran-3-carboxylic acid [Me ester, m.p. 82—83° (lit. 73—74°)], also obtained (64% yield) from 1 mol. of (I) and 3 mols. of LiBu^a in Et₂O-C₆H₆ after heating at 50° for 6 hr. Similarly, 1 mol. each of $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Br}\text{-}\mathrm{OMe}$ (II) and LiBu° at 34° give after 20 hr. $p\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}\mathrm{CO}_2\mathrm{H}$ (III) (10%) and 2:5:1-OMe·C₆H₃Br·CO₂H (IV) $(10\%; 22-28\% \text{ at } 50^\circ); 2 \text{ mols. of (II) and 1 mol. of LiBu° in <math>C_6H_6$ at 50° give after 1—10 hr. 47—52% of (IV) or 45% after 20 hr., or in Et₂O at room temp. 52% of (III) after 10 min. Similar results are reported for $p \cdot C_6H_4I \cdot OMe$, $o \cdot C_6H_4Br \cdot OH$, and $o \cdot C_6H_4Br \cdot NH_2$.

XVII. Interchange of Br and Li occurs when LiBu^a reacts with 4-bromo-3-methoxy-, 4-bromo-1-methoxy-, 2-bromo-3-methoxy-, 8-bromo-1-methoxy-, 4-bromo-1:2-dimethoxy-, 4-bromo-1:8-dimethoxy-, 4:5-dibromo-2:6-dimethoxy-, or 2:7-dibromo-3:6-dimethoxy-dibenzfuran, m.p. 260—261°, in boiling C_6H_6 or C_6H_6 —Et₂O, the derived carboxylic acids being obtained after treatment with CO_2 . The following appear new. Me 1-methoxydibenzfuran-4-carboxylate, m.p. 125°. 1:2-Dimethoxydibenzfuran-1-carboxylic acid, m.p. 236° (Me ester, m.p. 78°), also obtained from 4-acetyl-1:2-dimethoxydibenzfuran by KMnO₄. 3:6-Dimethoxydibenzfuran-2:7-dicarboxylic acid, m.p. 290° (decomp.) (Me₂ ester, m.p. 183—184°).

XVIII. Interaction of 3-hydroxydibenzfuran with LiBu^a in Et₂O-C₆H₆ and subsequent action of CO₂ gives $21\cdot5\%$ of 3-hydroxydibenzfuran-4-carboxylic acid. 1-Hydroxydibenzfuran gives similarly only the 8-carboxylic acid. $(4\cdot4\%)$. 1-Methoxydibenzfuran gives 1-methoxydibenzfuran-2- $(5\cdot3\%)$, m.p. $182-183^\circ$ (also obtained from the 2-Ac derivative by KMnO₄), and -8-carboxylic acid $(9\cdot2\%)$, m.p. $240-242^\circ$. m-C₆H₄(OH)₂ gives 2:6:1- $(31\cdot1\%)$ and some 2:4:1-C₆H₃(OH)₂·CO₂H, but m-C₆H₄(OMe)₂ gives only (55%) 2:6:1-C₆H₃(OMe)₂·CO₂H with a little CO[C₆H₃(OMe)₂·2:6]₂. R. S. C.

[Attempted] synthesis of 1:9-benzxanthen. (Signa.) E. Ghigi (Atti X Congr. Internaz. Chim., 1938, III, 183—186).—The synthesis of this compound (cf. Kruber, A., 1937, II, 385) is attempted. Xanthone (I) is unaltered by glycerol and 82% H₂SO₄ at 120°. Under similar conditions, xanthhydrol gives (I), as do 9-isoamylxanthhydrol and its perchlorate (cf. Conant et al., A., 1926, 158). E. W. W.

spiroChromans. J. B. NIEDERL and R. H. NAGEL (J. Amer. Chem. Soc., 1940, 62, 324—325).—

Condensation of COMe₂ (3 mols.) with m-C₆H₄Et·OH (2 mols.) by HCl at 40° gives the dimeride, b.p. 200—207°/12 mm., of 3-ethyl-6-isopropenylphenol, con-

$$\begin{array}{c|c} Et & Et \\ \hline -O & O - \\ \hline CMe_2 \cdot CH_2 & CH_2 \cdot CMe_2 \\ \hline (I.) & \end{array}$$

Verted by a little H_2SO_4 in boiling 95% EtOH into 4:4:4':4'-tetramethyl-7: 7'-diethylbis-2:2'-spirochroman (I), dimorphic, m.p. 114° and 146° [(NO_2)4-derivative,

m.p. 246—248°], obtained in one step by condensing with H₂SO₄ at 25°, and directly from phorone and COMe₂ with HCl at 25°. R. S. C.

Addition of hydroxy-compounds to acetylenic alcohols. J. F. Froning and G. F. Hennion (J. Amer. Chem. Soc., 1940, 62, 653—655).—C₂Na₂ and COMe₂ in liquid NH₃ at -50° give 88% of OH·CMe₂·C:CH (I). Use of <1 mol. of C₂Na₂ and keeping the mixture for 1 week before hydrolysis gives up to 45% of (OH·CMe₂·C:)₂ (II). With MeOH and a little HgO, BF₃,Et₂O, and CCl₃·CO₂H at 45—55°, (I) gives 80% of γγ-dimethoxy-β-methyl-n-butan-β-ol (III), b.p. 81°/50 mm., and 4·4% of 2:5-dimethoxy-2:3:3:5:6:6-hexamethyldioxan (IV), m.p. 107° [also obtained by boiling (III) in MeOH with a trace of acid]. Hot, dil. acid converts (III) or (IV) into COMe·CMe₂·OH. With AcOH and the above catalyst (A), (I) gives COMe·CMe₂·OAc. With MeOH or AcOH and (A), (II) gives 2:2:5:5-tetramethyl-furan-3-one (V), probably by way of OH·CMe₂·C(OR)₂·CH₂·CMe₂·OH and the ketal of (V).

furan-3-one (V), probably by way of $OH\cdot CMe_2\cdot C(OR)_2\cdot CH_2\cdot CMe_2\cdot OH$ and the ketal of (V). When heated with a little $p\cdot C_6H_4$ Me·SO $_3H$ at 150—180°, (III) gives 1:3:3:4:6:6-hexamethyl-2:5:7-trioxadicyclo[2, 2, 1]heptane (VI), b.p. 165°/750 mm., $81-82^\circ/50$ mm. (structure proved by the parachor; cf. Scheibler et al., A., 1922, i, 1108), and 2-methoxy-2:3:3:6:6-pentamethyl-5-methylenedioxan, b.p. $110-112^\circ/50$ mm. [reversibly converted into (IV) by acid-MeOH].

Substitution products of thiopheno-2': 3'-3: 2-thiophen. F. Challenger and G. M. Gibson (J.C.S., 1940, 305—309).—Thiopheno-2': 3'-3: 2-thiophen (I) and PrCl in CS₂ with SnCl₄ give thiophthienyl Et ketone, m.p. 92—94° (2: 4-dinitrophenylhydrazone, m.p. 251—252°). Mercuration (NaOAc-HgCl₂) of (I) in 70% EtOH affords monochloromercurithiophthen, which with PrCl yields the Et ketone, and with AcCl the corresponding Me ketone (phenylhydrazone, m.p. 165·5—166°). Oxidation with either I-NaOH or K₃Fe(CN)₆ of the Et or Me ketone gives thiophthen-carboxylic acid, m.p. 220—220·5° (p-nitrobenzyl ester, m.p. 151·5—152°; anilide, m.p. 172—174°; Me ester, m.p. 96·5—97°), also obtained from (I) and MgEtBr; excess of MgEtBr with (I) yields thiophthendicarboxylic acid (Me₂ ester, m.p. 238·5—239·5°). Thiophen and MgEtBr give only thiophen-2-carboxylic acid. F. R. S.

Catalytic transformations of heterocyclic compounds. XIV. Transformation of oxygencontaining five-membered ring systems into nitrogen- and sulphur-containing rings. J. K. Juriev, C. M. Minatschev, and K. A. Samurskaja (J. Gen. Chem. Russ., 1939, 9, 1710—1716).—α-Hydroxy-δ-thiolbutane (I) is very rapidly converted

by treatment with H_2SO_4 into thiophen, also obtained by passing $H_2S-\delta$ -chloro-n-butanol (II) mixture over Al_2O_3 at 400°. It is concluded that (I) is an intermediate in the production of thiophen from H_2S and tetrahydrofuran (Al_2O_3 catalyst, at 400°). (II) and NH_3 similarly yield pyrrolidine, probably via δ -amino-n-butanol. R. T.

Transformation of tetrabromopyrrole. P. Pratesi (Atti X Congr. Internaz. Chim., 1938, III, 312).—Ag₂O or AgOAc converts tetrabromopyrrole into a blue product, oxidised to dibromomaleimide.

Molecular association of pyrrole aldehydes. P. Pratesi and V. Berti (Atti X Congr. Internaz. Chim., 1938, III, 313—317).—2:4-Dimethyl- and 2:4-dimethyl-3-ethyl-pyrrole-5-aldehyde are shown cryoscopically to be dimeric in C_6H_6 , except in very dil. solution. 1-Methylpyrrole-2-aldehyde, which, unlike other pyrrole-aldehydes, is normally aldehydic, is unassociated in C_6H_6 . E. W. W.

Oximinopyrroles. IX. X. Transformation products of oximinopyrrole. T. AJELLO (Atti X Congr. Internaz. Chim., 1938, III, 7—14, 15—21). -IX. The formation of oximinopyrrole-black, $(C_4H_3ON_2)_x$ (I), from Na oximinopyrrole (II) and CO_2 (cf. Angeli et al., A., 1917, i, 413) is not immediate. A brown product, (C₄H₃ON)_x (III), is first obtained; the filtrate, which with further CO₂ gives (I), on extraction with Et₂O yields maleimide mono-oxime (IV), new m.p. 210-212° (decomp.) (cf. Cusmano, A., 1918, i, 77) (Bz derivative, m.p. 245°; Me ether, m.p. 170°). Resistant to dil. KOH or KOH-EtOH, (IV) with 50% KOH gives NH3 and a white substance; with mineral acids it forms NH₃, NH₂OH, and fumaric acid. With H₂SO₄, (II) gives NO, (III), (IV), and NH₃, but not (I); when the solution is heated, a black, $(C_4H_3O_2N)_x$ (V), is obtained, with (IV). With H_2SO_4 , (I) gives (IV) and a variable product of composition intermediate between (I) and (V).

X. With NH₂OH,HCl (VI), (II) gives maleimide dioxime (VIII), m.p. 256°; with NH₂·NH·CO·NH₂,HCl (VII), either (II) or (IV) gives a mixture of maleimide semicarbazone (IX), m.p. 230°, and maleimide oxime semicarbazone (X), m.p. 295°. With (VI), both (IX) and (X) give (VIII); with (VII), (VIII) gives (X). These compounds with acid yield fumaric acid. The possibility that (IV) might be 3-oximinomethylisooxazole is considered and rejected. E. W. W.

Organic catalysts. XVIII. Synthesis of polyenealdehydes as an example of main-valency catalysis. W. Langenbeck [with O. Gödde and L. Weschkyl (Atti X Congr. Internaz. Chim., 1938, III, 230—238).—Piperidine (I) is not an ideal catalyst for the formation of polyene-aldehydes, since it takes part in other reactions. CHMe:CH·CHO (II) and (I) give αγ-dipiperidino-Δα-butene or α-piperidinobutadiene (III). (III) reacts with MeCHO, oven at 0°, giving a product which with AcOH-Ac₂O (IV) gives CHMe:CH·CH:CH·CHO. From (III) and (II), (IV) liberates no octatrienal (V), the only aldehyde formed being o-C₆H₄Me·CHO, presumably by way of CHMe:CH·CH(C₅H₁₀N)·CH₂·CH:CH·CHO and 4-piperidino-6-methyl-Δ¹-cyclohexen-1-al. Mechanisms, inincluding that of the formation of (V) from (I) and

(II), are discussed. For the formation of non-cyclic products only, a catalyst is needed that is lost from the intermediate faster than this can cyclise.

E. W. W. Reactivity of bromine atoms in brominated pyridines. Formation of 6-bromo-2-hydroxypyridine by acid hydrolysis of 2:6-dibromopyridine. J. B. WIBAUT, P. W. HAAYMAN, and J. VAN DIJK (Rec. trav. chim., 1940, 59, 202—206).—2:6-Dibromopyridine and 70% H₂SO₄, 60% AcOH or HCO₂H, or (best) 80% H₃PO₄, at 160°, give 6-bromo-2-hydroxypyridine; the use of aq. NaOH-C₅H₅N causes decomp. (cf. A., 1936, 481). The results of Seide *et al.* (A., 1936, 1264) on aminopyridines are confirmed.

Sulphanilamide derivatives. V. Constitution and properties of 2-sulphanilamidopyridine. M. L. Crossley, E. H. Northey, and M. E. Hultquist (J. Amer. Chem. Soc., 1940, 62, 372—374; cf. A., 1939, II, 542).—Conversion of 2-aminopyridine (I), m.p. 57—58° (f.p. 57·9°), by p-NHAc·C₆H₄·SO₂Cl, m.p. 148·5—149·5°, in anhyd. dioxan at 95° into 2-N4-acetylsulphanilamidopyridine, m.p. 226·6—228·1° (tube; softens at 225·2°), 230·5° (block; immediate), 229° (block; heating from room temp.), and thence by boiling aq. NaOH into 2-sulphanilamidopyridine (II), m.p. 190·9—191·5° (tube; shrinks at 190·4°), 192·8° (block), is described. The conventional structure of (II) is indicated by hydrolysis by boiling 36% HCl (not 50% NaOH) to (I) and p-NH₂·C₆H₄·SO₃H and by the p_H (10—11) of its Na salt in H₂O. Oxidation and anaërobic decompoccur when (II) is melted. R. S. C.

Pyridines of sulphanilamide type.—See B., 1940, 244.

Nitrosoacylarylamines. IV. Action of some nitrosoacylarylamines on pyridine. J. W. HAWORTH, I. M. HEILBRON, and D. H. HEY (J.C.S., 1940, 372—374).—NPhAc·NO and C_5H_5N at room temp., followed by fractionation of the respective picrates, give a mixture of 2-, 3-, and 4-phenylpyridine in ~60% yield (theoretical aspects are discussed). p-NHBz·C₆H₄·NAc·NO and C₅H₅N at 80° give a mixture of p-benzamidophenylpyridines, m.p. 204—214°. 2-Acetamidopyridine (I) or its methiodide or methosulphate could not be nitrosated; (I) and nitrous fumes in AcOH-Ac2O give the -pyridinium nitrate. p-C₈H₄(NAc·NO)₂ and C₅H₅N at 40— 50° give p-C₆ $\hat{H}_4(NHAc)_2$ and a mixture, m.p. 123— 126°, of 2- and 4-p-acetamidophenylpyridines, hydrolysed by HCl to 2-, m.p. 228-230°, and 4'-p-aminophenylpyridine, m.p. 97—98°.

Selenium oxychloro-compounds of pyridine, pyridinium chloride, and related substances.—See A., 1940, I, 229.

Arylpyridines. I. Phenylpyridines and nitrophenylpyridines. J. W. HAWORTH, I. M. HELBRON, and D. H. HEY. II. Some substituted phenylpyridines. E. C. BUTTERWORTH, I. M. HELBRON, and D. H. HEY. III. Anisyland nitroanisyl-pyridines. J. W. HAWORTH, I. M. HELBRON, and D. H. HEY (J.C.S., 1939, 349—355, 355—358, 358—361).—I. The slow addition of an aq.

solution of a diazonium salt to an excess of C₅H₅N (temp. ~20° to 70° according to amine used) gives a mixture of arylpyridines (20-80% yield), which can be separated by appropriate treatment. PhN₂Cl at 30° affords a mixture of 2-, 3-, and 4-phenylpyridines (40% yield) separated through the picrates, the 2-isomeride predominating. p-NO₂·C₆H₄·N₂Cl at 40° yields a mixture (70% yield) of 2-, 3- (picrate, m.p. 220°), and 4-nitrophenylpyridine (picrate, m.p. 228-229°) and 2:6-di-p-nitrophenylpyridine, m.p. 293°. m-NO₂·C₆H₄·N₂Cl at 40° gives a mixture of 2- (picrate, m.p. 157°), 3-, m.p. $101-102^{\circ}$ (picrate, m.p. $200-201^{\circ}$), and 4-m-nitrophenylpyridine (picrate, m.p. 250°). Similarly o-NO₂·C₆H₄·N₂Cl at 40° affords 2- (picrate, m.p. 151—152°), 3- (picrate, m.p. 182— 183°), and 4-o-nitrophenylpyridine (picrate, m.p. 206-207°). The constitution of the compounds has been established by reduction of NO2 and elimination of NH₂ to known compounds. Suggestions are put forward with regard to the reaction mechanism.

II. In this series only two isomerides have been isolated, the major product being the 2-derivative; the second constituent is regarded as the 4-isomeride. From the appropriate diazonium chloride the following have been isolated: 4-, m.p. 70-71° (picrate, m.p. 225-227°), and 2-p-chlorophenylpyridine, m.p. 52-53° (picrate, m.p. 169-170°; also obtained from α -4-aminophenylpyridine); 129—131° 4-, m.p. (picrate, m.p. 213—214°), and 2-p-bromophenylpyridine, m.p. 62° (picrate, m.p. 168°; also obtained synthetically); 2- and 4-p-phenetylpyridine, m.p. 100—101° (picrate, m.p. 199—200°); and 2-p-carboxyphenylpyridine, m.p. 232° (Me ester, m.p. 90°; also obtained by hydrolysis of 2-p-cyanophenylpyridine, m.p. 97-98°: presence of 4-compound shown by decarboxylation to 4-phenylpyridine). 2-p-Iodophenylpyridine, m.p. 85—86°, is described.

III. o-OMe·C₆H₄·N₂Cl at 70—80° gives 2- (I) (picrate, m.p. 155—156°), 3- (picrate, m.p. 182°; synthesised from 4-o-aminophenylpyridine), and 4-o-anisylpyridine (picrate, m.p. 205°). (I) is oxidised (KMnO₄) to picolinic acid and nitrated (fuming HNO₃) to 2-5′-nitro-2′-methoxyphenylpyridine, m.p. 126—127°, also prepared from diazotised 4-nitro-o-anisidine and C₅H₅N. Diazotised 5-nitro-o-anisidine and C₅H₅N gives a mixture of 2-, m.p. 132—133° (picrate, m.p. 163—164°), and 4-4′-nitro-2′-methoxyphenylpyridine, m.p. 115° (picrate, m.p. 215—216°). Similarly diazotised p-anisidine affords 2-, m.p. 49—50° (picrate, m.p. 191—192°; nitrated to the -3′-NO₂-derivative, m.p. 85—86°), and 4-4′-methoxyphenylpyridine, myridine, m.p. 95° (picrate, m.p. 205—206°). m-Anisidine forms 2- (picrate, m.p. 154—155°) and 4-3′-methoxyphenylpyridine (picrate, m.p. 203—204°).

Structural problems in the indole group. IV. Alternative method for determining the structure of nitro-compounds. S. G. P. Plant and W. D. Whitaker (J.C.S., 1940, 283—286).—4(or 6)-Nitro-8-acetyldihydropentindole (A., 1936, 1124) in AcOH with HNO₃ gives 6:10-dinitro-9-hydroxy-8-acetyltetrahydropentindole, m.p. 215° (decomp.), which with KOH affords γ -4-nitro-2-acetamidobenzoylbutyric acid, m.p. 165°, oxidised (KMnO₄) to 4:2:1-NO₂·C₆H₃(NHAc)·CO₂H (I); the original compound

is thus the 6-derivative. 5-Chloro-4(or 6)-nitro-8acetyldihydropentindole (A., 1931, 1165) similarly 5-chloro-6:10-dinitro-9-hydroxy-8-acetyltetrahydropentindole, m.p. 198° (decomp.), degraded (KOH) to γ -5-chloro-4-nitro-2-acetamidobenzoylbutyric acid, m.p. 133°, which is oxidised (KMnO₄) to 5-chloro-4-nitro-2-acetamidobenzoic acid, m.p. 250° (decomp.), also obtained by oxidation of the corresponding -toluene; the 4(or 6) compound is thus the 6-derivative. Me 5-chloro-4-nitroanthranilate, m.p. 140°, is prepared from the corresponding acid and HCl-MeOH. The 2-chloro-5-nitrophenylhydrazone of COMeEt with AcOH-HCl gives 7-chloro-4-nitro-2:3-dimethylindole, m.p. 218°, reduced (Sn-HCl) to 4-amino-2: 3-dimethylindole, m.p. 163°; the reduction product of 4(or 6)-nitro-2: 3-dimethylindole (A., 1933, 1057) was a gum. Nitration of 4(or 6)-nitro-1-acetyl-2:3-dimethylindole affords 3:6-dinitro-2-hydroxy-1acetyl-2: 3-dimethyl-2: 3-dihydroindole, m.p. 198° (decomp.), degraded and oxidised to (I), indicating identity of the original substance with the 6-deriv-1-Acetyl-2: 3-dimethylindole gives nitration 2: 3-dihydroxy-1-acetyl-2: 3-dimethyl-2: 3dihydroindole, m.p. 132-134°, in addition to the 6-NO₂-derivative previously isolated. *cyclo*Pentanone-2-chloro-5-nitrophenylhydrazone, m.p. with H₂SO₄, yields 7-chloro-4-nitrodihydropentindole, m.p. 251°. F. R. S.

Gramicidin, $C_{74}H_{106}O_{14}N_{14}$, m.p. 228—230°, $[\alpha]_{2}^{25}$ +5°, graminic acid, $C_{44}H_{63}O_{11}N_{9}$, m.p. 232—234°, $[\alpha]_{2}^{25}$ —115°, and gramidinic acid, m.p. 230°, $[\alpha]_{2}^{25}$ —100° (all in 95% EtOH).—See A., 1940, III, 352.

Reaction of tetrahydroquinoline with α -oxides. V. I. Koroleva (J. Gen. Chem. Russ., 1939, 9, 2200—2202).—1:2:3:4-Tetrahydroquinoline and (CH₂)₂O (6—8 hr. at 60—70°) or propylene oxide (12 hr. at 70°) yield N- β -hydroxyethyl-, b.p. 292—293° (picrate, m.p. 75°) or N- β -hydroxypropyl-1:2:3:4-tetrahydroquinoline, b.p. 165—170°/10 mm. (picrate, m.p. 95°).

3-Methyl-3: 4-di- and -1:2:3:4-tetra-hydroisoquinolines. W. S. Ide and J. S. Buck (J. Amer. Chem. Soc., 1940, **62**, 425—428).—3:4-Methylenedioxy-, m.p. 200°, and 3:4-dimethoxy-α-methylcinnamic acids cis-, m.p. 144°, and trans-form, m.p. 232°, are obtained by condensing ArCHO and EtCO₂Et by "at." Na and hydrolysing the product or by treating ArCHO with CHMeBr CO₂Et and Zn in C₆H₆ and dehydrating (POCl₃) and hydrolysing the product. β-3: 4-Dimethoxy-, m.p. 109°, and β-3: 4-methylenedioxy-phenylisobutyramide (prep. from the NH4 salt at 220° or from the acid chloride), m.p. 122°, with NaOCl give $CH_2Ar \cdot CHMe \cdot NH_2$, $Ar = 3 : 4 \cdot (OMe)_2C_6H_3$, b.p. $154^{\circ}/9$ mm., or $3:4-(\bar{C}H_2O_2)C_6H_3$, b.p. 143-145°/11 mm. (hydrochloride, new m.p. 183—185°). The following are obtained by conventional reactions starting with Bischler-Napieralski condensation of CH₂Ar·CHMe·NH·CHO. 6:7-Dimethoxy-, m.p. 189°, -methylenedioxy-, m.p. 198°, and -dihydroxy-, m.p. 297° , -3-methyl-3:4- $\overline{d}ihydroisoquinoline\ hydrochloride$. 6:7-Dimethoxy-, new m.p. 245°, -methylenedioxy-, m.p. 238°, and -dihydroxy-, m.p. 270°, -3-methyl-1:2:3:4-tetrahydroisoguinoline hydrochloride. 6:7Dimethoxy-, m.p. 125—128° (corresponding iodide, m.p. 156°), -methylenedioxy-, m.p. 212° (corresponding iodide, m.p. 213°), and -dihydroxy-, m.p. 199°, -2:3-dimethyl-3:4-dihydroisoquinolininium chloride. 6:7-Dimethoxy-, m.p. 100° (hydrochloride, m.p. 232°), -methylenedioxy-, new m.p. 88° (hydrochloride, new m.p. 228—229°), and -dihydroxy- (hydrochloride, m.p. 266°) -2:3-dimethyl-1:2:3:4-tetrahydroisoquinoline. 6:7-Dimethoxy-, m.p. 239° (corresponding iodide, m.p. 232°), -methylenedioxy-, m.p. 248—250° (corresponding iodide, m.p. 242°), and -dihydroxy-, m.p. 258°, -2:2:3-trimethyl-1:2:3:4-tetrahydroisoquinolinium chloride. M.p. are corr. R. S. C.

Organolithium compounds of pyridine and quinoline. H. GILMAN and S. M. SPATZ (J. Amer. Chem. Soc., 1940, 62, 446).—3-Bromoquinoline reacts readily with LiBu^a in Et₂O at -35° ; the product, with CO₂, gives 52% of quinoline-3-carboxylic acid. 3-Bromopyridine similarly gives 70% of nicotinic acid. o-C₆H₄Br·CO₂H gives 31% of o-C₆H₄(CO₂H)₂.

Reaction of elimination of hydrogen bromide from aliphatic dibromides. II. A. M. Berkenheim and T. F. Dankova (J. Gen. Chem. Russ., 1939, 9, 1801—1807).— $\alpha\delta$ -Dibromopentane (I) and quinoline at 170—175° give piperylene in 4—5% yield; an additive product is also formed, and this with NaOH gives $\alpha\delta$ -di-(2-keto-N-quinolino)pentane, m.p. 130—136° (decomp.). (I) and NPhMe₂ react at 175—180° as follows: (I) + NPhMe₂ \rightarrow C₅H₉Br + NPhMe₂,HBr (II); (II) \rightarrow NHPhMe + MeBr; NHPhMe,HBr \rightarrow NH₂Ph + MeBr; NHPhMe,HBr \rightarrow NH₂Ph + MeBr; NH₂Ph + (I) \rightarrow 1-phenyl-2-methylpyrrolidine. (I) and KOH in EtOH give piperylene in 9—10% yield, but the chief product is the unsaturated ether, C₅H₉·OEt, together with the saturated ether $\alpha\delta$ -C₅H₁₀(OEt)₂. With KOH–EtOH the monobromide C₅H₉Br gives piperylene in 60%, and C₅H₉·OEt in 17%, yield. R. T.

Inner complex salts of 8-hydroxyquinoline-5-sulphonic acid.—See A., 1940, I, 230.

Anti-malarials of the 8-aminoalkylamino-6-methoxyquinoline series. A. A. Beer (J. Gen. Chem. Russ., 1939, 9, 2158—2161).—8-Amino-6-methoxyquinoline, condensed with N-ω-halogenoalkylphthalimide, yields 8-phthalimidomethyl- (hydrobromide, m.p. 207—209°), 8-β-phthalimidoethyl-, 8-γ-phthalimidopropyl-, m.p. 102—103° (hydrochloride, m.p. 200—201°), 8-δ-phthalimidobutyl-, and 8-ε-phthalimidoamyl-amino-6-methoxyquinoline, m.p. 115—116° (hydriodide, m.p. 156—157·5°). These products, boiled with N₂H₄ in EtOH, yield 8-aminomethyl- (I), m.p. 279—280° (dihydrochloride, H₂O, m.p. 179—180°), 8-β-aminoethyl-, 8-γ-aminopropyl-(II) (dihydrochloride, m.p. 251—252°, +H₂O, m.p. 235—238°), 8-δ-aminobutyl- (dihydrochloride, +H₂O, m.p. 182—183°), and 8-ε-aminoamyl-amino-6-methoxyquinoline (dihydrochloride, +H₂O, m.p. 156—157°). (I) has no anti-malarial action; of the remaining substances (II) is the most active. R. T.

Quinoline compounds as basic substances for preparation of medicinal products. VIII. Anæsthetics of the cinchonamide series. O. J. Magidson, M. V. Fedotova, and V. V. Zverev (J.

Gen. Chem. Russ., 1939, 9, 2097—2103).—2-Chlorocinchonyl chloride and NH₂·CHMe·[CH₂]₃·NEt₂ in Et₂O yield the δ -diethylamino- α -methylbutylamide of 2-chlorocinchonic acid, m.p. 91—93°, which when heated (3 hr. at the b.p.) with various alkoxides (NaOR in ROH) yields the corresponding 2-OR-derivatives [R = Me, b.p. 220—224°/1·5—2 mm., T.I. = 1·25; R = Et, b.p. 218—222°/2—2·5 mm., T.I. = 0·75; R = Pr⁸, b.p. 220°/1—1·5 mm., T.I. = 3; R = Bu^a, b.p. 222—228°/1·5—2 mm., T.I. = 1·2; R = n-octyl, m.p. 80—81°, T.I. = 3 (T.I. = therapeutic index = 100 × min. lethal/min. effective dose)]. The δ -diethylaminobutylamide of 2-chlorocinchonic acid, m.p. 45—48°, yields similarly the following 2-OR-compounds: R = Et, m.p. 62—63°, T.I. = 0·3; R = Bu^a (Percaine), T.I. = 12·5. The γ -diethylamino- β -hydroxypropylamide of 2-chlorocinchonic acid, an oil, similarly gives the following 2-OR-compounds: R = Me, m.p. 75—76°, T.I. = 14; R = Et, m.p. 85—86°, T.I. = 3; R = Bu^a, m.p. 53—54°, T.I. = 6.

Alkaloid-like compounds from brasilin and hæmatoxylin. P. Pfeiffer, J. Breitbach, and W. Scholl (J. pr. Chem., 1940, [ii], 154, 157—208).— Trimethylbrasilonol and NH₂OH,HCl-EtOH, or the corresponding oximes (cf. A., 1933, 832), are converted $_{
m by}$ NaOH into 6:7-dimethoxy-1-(2'-hydroxy-4'methoxyphenyl)-3-methyl-isoquinoline 2-oxide, m.p. 243° [hydrochloride, m.p. ~131° (decomp.); Bz derivative, m.p. 176°; (2'-)Me ether (hydrochloride, m.p. 110— $11\overline{5}^{\circ}$; picrate, m.p. 180—185°)], reduced by SO₂ or Zn-AcOH to the corresponding -isoquinoline, m.p. 188—189° [picrate, m.p. 224—225°; methiodide (+1·33H₂O), m.p. 227—228°; (2'-)Me ether, m.p. 110° (picrate, m.p. 212—215°, with previous softening; methiodide, m.p. 160°)]. Tetramethylhæmatoxylonol affords the oxime, m.p. 223° (previous sintering), converted by NaOH-EtOH at 100° (bath) into 6:7dimethoxy-1-(2'-hydroxy-3':4'-dimethoxyphenyl)-3methyl-isoquinoline 2-oxide (I), m.p. 220° (stable) (a form, m.p. 191—192°, is converted, by keeping in closed vessels, into the stable form) [Me₂SO₄-C₆H₆, then aq. KI, gives the *methiodide*, m.p. 206—208° (sinters at 170°, decomp. 210°); *picrate*, m.p. 216—217°], reduced in AcOH by Zn or SO₂ to the corresponding -isoquinoline (II), m.p. 174° [hydrochloride, m.p. 230—250° (decomp.); picrate, m.p. 210° (previous sintering); Ac derivative, m.p. ~86—88° (picrate, m.p. 202—203°; methiodide, +H₂O, m.p. 118° (sinters at 115°; decomp. 120—128°)]. (II)—Me₂SO₄-C₆H₆ give the methosulphate, m.p. 168—170°, converted by aq. KI into the methiodide (III), m.p. 230—231°, also prepared from (II)-MeI-CHCl₃. (II)-Me₂SO₄-aq. NaOH give the Me ether, 6:7-dimethoxy-1- $(2^7:3^7:4^7$ trimethoxyphenyl)-3-methylisoquinoline (IV), 129—130° [picrate, m.p. 185—186° (sinters from 165°)]; its methiodide, m.p. 227—228°, is obtained, together with (IV), from (II)-Mel-aq. NaOH-MeOH, or from (I)-MeI-NaOH. (II) and Na-EtOH afford 6:7-dimethoxy-1-(2'-hydroxy-3':4'-dimethoxyphenyl)-3methyltetrahydroisoquinoline (V), m.p. 181—184° [picrate, +H₂O, m.p. 175—178°, decomp. 195—196° (2 forms)]. (III)-AgCl-aq. MeOH give the methochloride, converted by Sn-HCl into the N-Me derivative [picrate, m.p. 190° (previous sintering)] of

(V). (II) and aq. KMnO₄-NaOH give metahemipinic acid, m.p. 179—180° (N-ethylimide, m.p. 228°). (II) and HNO₃ (d 1.25) give 6:7-dimethoxy-3methylisoquinoline-1-carboxylic acid [picrate, +MeOH] or +H₂O, m.p. 240° (decomp.) (sinters at 230°); Me ester (picrate, m.p. 212°, sinters at 205°, decomp. at 216°)]. β -Acetamido- α -3 : 4-dimethoxyphenylpropana-ol (cf. Buckner *et al.*, A., 1935, 972) and 2n-H₂SO₄ at 100° (bath) give the β-NH₂-compound (VI), new m.p. 128—129°, which with dimethyl-β-resorcylyl chloride, m.p. 54—56° (amide, m.p. 132°; anilide, m.p. 141°), affords β -(2: 4-dimethoxybenzamido)- α -(3:4-dimethoxyphenyl)propan-α-ol, converted $POCl_3$ -PhMe into 7:8-dimethoxy-1-(2':4'-dimethoxyphenyl)-3-methylisoquinoline, m.p. 144—145° isomeride, m.p. 110°, above) (chromatographic analysis) [picrate, m.p. 232—235°; Me₂SO₄ in C₆H₆ gives the methosulphate, m.p. 239°, converted by KI into the methiodide, m.p. 217—219° (decomp.); Na-EtOH give the H_4 -derivative (picrate, m.p. $203-205^{\circ}$ sinters at 190°]. $4:2:1-OMe\cdot C_6H_3(OH)\cdot CO_2H$ and NHMe₂-C₆H₆-Et₂O-ClCO₂Et at room temp. give 2carbethoxyhydroxy-4-methoxybenzoic acid, m.p. 111° (anilide, m.p. 215°); its chloride and (VI) give β- $(4 - methoxy - 2 - carbethoxyhydroxybenzamido) - \alpha - (3 : 4$ dimethoxyphenyl)propan-a-ol, converted by POCl3-PhMe into 7:8-dimethoxy-1-(2'-hydroxy-4'-methoxyphenyl)-3-methylisoquinoline [picrate, sinters at 265°, decomp. 272—275° (cf. isomeride, m.p. 224—225°, above)]. $2:3:4:1-C_6H_2(OMe)_3\cdot COC1$ and (VI) give β -(2:3:4-trimethoxybenzamido)- α -(3:4-dimethoxyphenyl)propan-α-ol, m.p. 127—128°, converted into 7: 8-dimethoxy-1-(2':3':4'-trimethoxyphenyl)-3-methylisoquinoline, m.p. 110—112° (cf. above isomeride) [picrate, m.p. 183—184°; methosulphate, m.p. 225–227°; methicdide, m.p. 226—227° (decomp.)].

Indoles. VII. Stereochemistry of tervalent nitrogen. F. Lions and E. Ritchie (J. Proc. Roy. Soc. New South Wales, 1939, 73, 125—149; cf. A., 1939, II, 449).—Attempts are described to prepare compounds in the mol. of which a N atom is common to two ring structures which are at the same time plane and co-planar. Hexahydrocarbazole (I) and ClCO, Et at 100° in absence of moisture give 9carbethoxyhexahydrocarbazole, b.p. 200—202°/Ž0 mm. Contrary to Manjunath (A., 1927, 978), 9-nitrosohexahydrocarbazole could not be obtained cryst. 8:9-1':2'-cycloHexylenetetrahydrocarbazole m.p. 77° [Manjunath (loc. cit.) records m.p. 83°]. o- C_6H_4 Me·NH·NH $_2$ (prep. described) and cyclohexanone (I) in warm EtOH give the very unstable cyclohexanone-o-tolylhydrazone, m.p. 59—60°, readily cyclised in boiling glacial AcOH to 8-methyl-1:2:3:4tetrahydrocarbazole, m.p. 98° [picrate, m.p. 136° (decomp.)]. 8-Methyl-1:2:3:4:10:11-hexahydrocarbazole, b.p. 177°/28 mm. [picrate, m.p. 159—160° (decomp.)], is converted by NaNO2 and AcOH into 9-nitroso-8-methylhexahydrocarbazole, m.p. 68°, which with Zn dust and AcOH containing (II) gives 8methyltetrahydrocarbazole. Reduction of nitrosoindoline with Zn dust and glacial AcOH containing affords 8:9-dimethylene-1:2:3:4-tetrahydrocarbazole, m.p. 154° [picrate, m.p. 141° (decomp.)], whereas in presence of AcCO₂H or AcCO₂Et the sole isolable product is a small amount of the initial material. (I) is transformed by CH₂Br·CO₂Et at 100° into Et hexahydrocarbazole-9-acetate, b.p. 204—206°/20 mm., which is not cyclised by conc. H₂SO₄ at room temp. or at 100°, by being preheated at 100° and dropped into liquid paraffin at 280°, or by being heated at 300°. It is hydrolysed by boiling KOH-EtOH to 9-methylhexahydrocarbazole (III), b.p. 163°/26 mm. [picrate, m.p. 146—147° (decomp.); methiodide, m.p. 195°]. (I) and CHBr(CO₂Et)₂ at 100° yield Et₂ hexahydrocarbazole-9-malonate, b.p. 190—193°/2 mm., which does not appear to be cyclised at 280°; it is converted by KOH-EtOH into (III) and the unstable hexahydrocarbazole-9-malonic acid, m.p. Glyoxal H sulphite and (I) in boiling aq. EtOH slowly yield 9-hexahydrocarbazolylacetyl-9'-hexahydrocarbazole, m.p. 221—222°. 9-Phenacylhexahydrocarbazole, m.p. 112°, from (I) and CH₂BzBr in boiling EtOH, is unchanged by conc. H₂SO₄ at room temp., gives tarry products and unchanged material with conc. H₂SO₄ at 100°, yields tar and unchanged material when boiled with cumene containing ZnCl2, and is unaffected by P2O5 in boiling xylene; at 180° it is converted into tar. Phenacylaniline and (I) at 180— 190° afford 2-phenylindole, m.p. 186° (picrate, m.p. 139°), obtained similarly in the absence of (I). 8-Nitrotetrahydrocarbazole is reduced by Sn, conc. HCl, and EtOH at 100° to 8-amino-1:2:3:4:10:11 $hexahydrocarbazole, {\rm m.p.~159} \color{red} \color{blue} -160^{\rm o} \; ({\rm decomp.}) \; [\, picrate, \,$ m.p. 172-173° (decomp.)], which is reasonably stable when solid but is rapidly oxidised in solution. It is converted by boiling abs. HCO₂H or Ac₂O into the formyl, m.p. 192° , and Ac_2 , m.p. 201° , derivatives, no basic compounds being found in the mother-liquors.

Even under mild conditions it forms tarry products with benzoin with which in glacial AcOH it yields the substance (IV), m.p. 159°. (I) is slowly transformed by boiling Cl·[CH₂]₃·Br into 8:9-trimethylenehexahydrocarbazole, b.p. 149—151°/2 mm. [picrate, m.p. 144°/decemb): stanhate m.p. 160°

(decomp.); styphnate, m.p. 160° (decomp.); methiodide, m.p. 156°]. Boiling CH₂(CO₂Et)₂ and (I) give 9-carbethoxyacetylhexahydrocarbazole, m.p. 78°, which is sol. in dil. NaOH but does not give a colour with FeCl₃. At 270° it evolves EtOAc and gives (I) and substances, (?) C₁₈H₁₅ON, m.p. 168° and 186° respectively. At 200° (I) and CH₂(CO₂Et)₂ yield malonyldihexahydrocarbazole, m.p. 185°. 6-Methyl-1:2:3:4-tetrahydrocarbazole, m.p. 144° (picrate, m.p. 147°) (improved prep. from cyclohexanone-p-tolylhydrazone), is reduced by Sn and conc. HCl in EtOH at 100° to 6-methyl-

conc. HCl in EtOH at 100° to 6-methyl-1:2:3:4:10:11-hexahydrocarbazole, b.p. 179°/26 mm. [picrate, m.p. 165°; 9-Ac derivative (V), m.p. 95°], which, contrary to Manjunath (loc. cit.), could not be caused to solidify. Cautious addition of KNO₃ to an ice-cold solution of (V) in conc. H₂SO₄ gives (probably) 8-nitro- (VI), m.p. 159°, whereas addition of (V) to fuming HNO₃ (d 1·5) at 0—5° (leads to (probably) 5:8-dinitro-, m.p. 200°, -9-acetyl-6-methyl-hexahydrocarbazole. (VI) is hydrolysed to 8-nitro-6-methylhexahydrocarbazole, b.p. 210—212°/2 mm. [picrate, m.p. 160—161° (decomp.)]. Pyrolysis of 9-nitroso-, 9-nitroso-8-methyl-, and 9-nitroso-6-methyl-

hexahydrocarbazole gives mixtures of the corresponding N-free hexa- and tetra-hydrocarbazoles.

Heterocyclic local anæsthetics. Carbazole, dibenzfuran, and dibenzthiophen derivatives. R. R. BURTNER and G. LEHMANN (J. Amer. Chem. Soc., 1940, **62**, 527—532).—Carbazole-3-carboxylic acid (I), Bu $^{\circ}_{2}$ SO $_{4}$, and aq. NaOH in COMe $_{2}$ give 9-n-butylcarbazole-3-carboxylic acid, m.p. 157°. 2-Acetylcarbazole, R_2SO_4 , and NaOH in COMe₂-H₂O give 2-acetyl-9-ethyl-, m.p. 97°, and -n-butyl-carbazole, m.p. 74·5—75°, converted by fusion with KOH into 9-ethyl-, m.p. 248°, and 9-n-butyl-carbazole-2-carboxylic acid, m.p. 198°, not obtained from carbazole-2-carboxylic acid (II) by R₂SO₄. HNO₃-AcOH at 80—85°, followed by NaOH-EtOH-H₂O, converts (II) into 6-nitrocarbazole-2-carboxylic acid, m.p. 338° (? decomp.), decarboxylated by Cu-bronze in crude picolines to 3-nitrocarbazole. Heating cyclohexanone and p-NH₂·NH·C₆H₄·CO₂H at 100° and then with 10% H₂SO₄ at 100° gives 5:6:7:8-tetrahydro-carbazole-3-carboxylic acid, m.p. 279°. With hot OH·[CH₂]_n·Cl (n = 2 or 3) and ĤCl, (II) gives β -chloroethyl, m.p. 141°, and y-chloropropyl carbazole-3-carboxylate, m.p. 129° . p-OPh· C_6H_4 ·CHO, Ac_2O , and NaOAc yield (boiling) β-p-phenoxyphenylacrylic acid, m.p. 135° (chloride, b.p. 225°/18 mm.). γ-Chloropropyl dibenzfuran-3-carboxylate, m.p. 85°, is prepared as above. These intermediates and other appropriate acids give by standard methods the following, m.p. in parentheses being those of hydrochlorides: β-diethylaminoethyl carbazole-2-, m.p. 127°, -3- (m.p. 195°), and -1- (an oil), 9-ethylcarbazole-2- (III) (m.p. 174°) and -3- (m.p. 204°), 9-n-butylcarbazole-2- (an oil) and -3-(sulphate, a glass), 6-nitrocarbazole-2- (IV) (m.p. 225—227°), 8-aminocarbazole-2- [by Fe-reduction of (IV)], m.p. 146—147°, 5:6:7:8-tetrahydrocarbazole-3- (m.p. 234°), dibenzfuran-3- (m.p. 185°), -2- (m.p. 221°), and -1- (m.p. 210°), 7-aminodibenzfuran-3- (m.p. 255°), dibenzthiophen-3- (m.p. 219°) and -1- (m.p. 213°), Ph₂ ether-4- (m.p. 136°), and Ph₂ sulphide 4- (m.p. 127°) sulphide-4- (m.p. 137°) -carboxylate; γ-diethylamino-n-propyl carbazole-3- (m.p. 169°) and dibenzfuran-3-carboxylate (m.p. 185°); β-di-n-butylaminoethyl carbazole-3-carboxylate (m.p. 187°); β-diisobutyl- (m.p. 212°) and β-di-n-amyl-aminoethyl dibenzfuran-3-carboxylate (m.p. 160°); β-diethylaminoethyl β -2-dibenzfuryl- (m.p. 185°) and p-phenoxyphenyl-acrylate (m.p. 129—130°). The anaesthetic activity (rabbits' cornea) and toxicity (mice) of the NR₂-esters are recorded and discussed. (III) is the most effective, three times as potent and one fifth as toxic as cocaine. All are irritant to the cornea and when injected subcutaneously (man). R. S. C.

Naphthaguinacridone. V. S. Jakuschevski (J. Gen. Chem. Russ., 1939, 9, 1877—1879).—1:4-

dyes animal fibres orange in acid solutions, and dyes cotton indigo-blue (alkaline $Na_2S_2O_4$).

(I), which

Polycyclic compounds. I. Anthrapyridoneacridone. A. M. Lukin and P. M. Aronovitsch (J. Gen. Chem. Russ., 1939, 9, 1774—1776).—

1 - Acetanilidoanthraquinone - 2 carboxylic acid, boiled with 0.8% NaOH for 10 hr., yields Nphenyl - 1 : 9 - anthrapyridone - 2 carboxylic acid, m.p. >300° (decomp.), which gives anthrapyrid-

when treated with ClSO₃H at 40°. (I) yields a violet vat with alkaline NaHSO₃.

Alkaline hydrolysis of condensation products of hydantoin with aldehydes. H. R. Henze, W. R. WHITNEY, and (MISS) M. A. EPPRIGHT (J. Amer. Chem. Soc., 1940, 62, 565-568).—Anisylidenehydantoin with 5% aq. NaOH at 80—90° gives $p\text{-}\mathrm{C_6H_4Me}$ -OMe (I) and $\mathrm{H_2C_2O_4}$, also obtained with p-OMe·C₆H₄·CO₂Me and a trace of p-OMe·C₆H₄·CHO by aq. $Ba(OH)_2$ at $120-135^\circ$. 2-Phenyl-4-p-anisyloxazolone and 40% NaOH at 110—115° give (I) and $p\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}\mathrm{CO}\text{-}\mathrm{CO}_2\mathrm{H}$, converted by aq. Ba(OH)₂ into (I) and H₂C₂O₄. o-Chlorobenzylidenehydantoin, m.p. 275°, with Ba(OH)₂ gives o-C₆H₄MeCl, and with HI-AcOH gives o-chlorobenzylhydantoin, m.p. 240°, hydrolysed by Ba(OH)₂ to o-chlorophenylalanine, m.p. 260—261° (hydrochloride, m.p. 255—256°). m-Nitrobenzylidenehydantoin, m.p. 277°, with Ba(OH)₂ gives m-C₆H₄Me·NO₂ and H₂C₂O₄, and with Sn-HCl at 120° gives m-aminobenzylhydantoin hydrochloride, m.p. 270°, hydrolysed by Ba(OH)₂ to m-aminophenylalanine (dihydrochloride, m.p. 225°). Furfurylidenehydantoin and Ba(OH)₂ give 2-methylfuran and $H_2C_2O_4$. M.p. are corr.

isoPropylbarbital, m.p. 116.7— 117.1° , and isobutylbarbital, m.p. 109.6—110.3°.—See A., 1940, 111, 329.

N-Derivatives of imidazole (glyoxaline). S. I. LURIE, M. G. KULESCHOVA, and N. K. KOT-SCHETKOV (J. Gen. Chem. Russ., 1939, 9, 1933-1938).—The Ag salt (I) of glyoxaline with 5-chloro-8-nitro-3-alkoxyacridines, in tetrahydronaphthalene solution at the b.p., yields 8-nitro-5-N-glyoxalinyl-3ethoxy-, m.p. 268—269° (decomp.), or -3-methoxy-acridine, m.p. 226—227°. β-Bromoethylphthalimide acridine, m.p. 226—227°. β-Bromoethylphthalimide and (I) in xylene afford N-β-glyoxalinylethylphthalimide, which with N₂H₄ in EtOH (3 hr. at the b.p.) gives β -N-glyoxalinylethylamine [dihydrochloride (II), m.p. 216—218°]; γ-N-glyoxalinylpropylamine, m.p. 117—119° [dihydrochloride (III), m.p. 230—232°], is prepared similarly. 5:8-Dichloro-2-methoxyacridine and (II) or (III) in PhOH (3-4 hr. at 150-160°) yield 8-chloro-3-methoxy-5-(β-N-glyoxalinylethylamino)-, m.p. 181—182°, or -5-(γ-N-glyoxalinylpropylamino)acridine hydrochloride, m.p. 170—172°.

p-NHAc·C₆H₄·SO₂Cl (IV) and (I) in EtOH (1 hr. at the b.p.) give N-acetsulphanilylglyoxaline, m.p. 166— 167°, which yields glyoxaline, sulphanilic acid, and AcOH when hydrolysed (15% HCl or H₂SO₄). (IV) and (II) in aq. COMe₂ give the β-N-glyoxalinylethylamide of acetsulphanilic acid, m.p. 227—228°, hydrolysed (boiling 15% HCl) to sulphanil-(β-N-glyoxalinylethyl)amide, m.p. 156—157°.

Pyrrole series. IV. Dipyrrylmethene which is a true intermediate in its own formation. J. H. Paden, A. H. Corwin, and W. A. Bailey, jun. (J. Amer. Chem. Soc., 1940, 62, 418—424; cf. A., 1937, II, 522).—The relative rates of reaction show that the usual dipyrrylmethene synthesis proceeds by way of the di- to the tri-pyrrylmethene, which then reverts to the dipyrrylmethene by fission. The intermediate steps are realised in typical cases. R. S. C.

Thioide, additive compound of piperazine and carbon disulphide. R. Charonnat (Atti X Congr. Internaz. Chim., 1938, III, 65—73).—Thioide, $(C_5H_{10}N_2S_2)_x$ (I) (cf. Schmidt et al., A., 1892, 210: Herz, A., 1897, i, 488), from piperazine and CS_2 in EtOH, gives Na, K, and Ag salts, and salts of heavy metals; it also forms a picrate, and a periodide which is slowly converted into a yellow substance, $C_8H_{12}N_3S_4$. AcOH and dil. HCl decompose (I), which exhibits oxidation-reduction properties. A formula is proposed for (I).

Pyrazine series. II. Preparation and properties of aminopyrazine. S. A. Hall and P. E. Spoerri (J. Amer. Chem. Soc., 1940, 62, 664—665; ef. A., 1938, II, 158).—Pyrazine-2: 3-dicarboxylic acid at 210°/3—4 mm. gives pyrazine-3-carboxylic acid, m.p. 225° (decomp.), and thence the Me ester, m.p. 59° (lit. 62°), amide, m.p. 189° (lit. 188°), and 2-aminopyrazine, m.p. 117—118° (lit. 110—117°) (Ac derivative, m.p. 133°). Na pyrazinecarbamate, decomp. 257—275°, is isolated as intermediate.

4:6-Dihydroxy-2-methyl-5-alkylpyrimidines. L. P. Ferris, jun., and A. R. Ronzio (J. Amer. Chem. Soc., 1940, 62, 606—607).—NH:CMe·NH₂,HCl (2·5 mols.), CHR(CO₂Et)₂ (R = H or alkyl) (1 mol.), and NaOEt (slightly >2·5 atoms) in EtOH at room temp. give 4:6-dihydroxy-2-methyl- (absorption max. at 2600 A.) and -2:5-dimethyl-pyrimidine, 4:6-dihydroxy-2-methyl-5-n-propyl-, -5-n-butyl-, and -5-n-amyl-pyrimidine, sublime at 260—350°. R. S. C.

Selenopyrimidines.—See B., 1940, 246.

Reactions of amidines as ammono-carboxylic acids or esters. E. C. WAGNER (J. Org. Chem., 1940, 5, 133—141).—The view that amidines are ammono-carboxylic acids or esters is established by the production, usually in good yield, of (i) benziminazoles from $o-C_6H_4(NH_2)_2$ and NHAr-CH:NAr (A) (as with HCO₂H) or NHAr CMe NAr (B) (as with AcOH), (ii) quinazolines from o-NH₂·C₆H₄·CH₂·NHAr or o-NH₂·C₆H₄·CO·NHR and (A) [as with HCO₂H or CH(OEt)₃], (iii) perimidine, m.p. $\sim 238^{\circ}$ (picrate, decomp. $\sim 249-250^{\circ}$), from 1:8-C₁₀H₆(NH₂)₂ and NHPh-CH:NPh (I) at 160°, and (iv) 1-methylbenzoxazole from o-NH₂·C₆H₄·OH and NHPh·CMe:NPh (II) at 190—195°. The reactions with (A) and (B) involve elimination of NH_2Ar (2 mols.). Thus, $o-C_6H_4(NH_2)_2$ (1 mol.) with ~ 1.5 mols. of (A) (Ar = Ph, p-tolyl) at ~125° or phenyl-o-tolylacetamidine at 180° gives benziminazole or 2-methylbenziminazole, respectively. 3-p-Tolyl-6-methyl- (III), 6-chloro-3-p-chlorophenyl-(IV), and 6-bromo-3-p-bromophenyl-3: 4-dihydroquinazoline are formed in 20—39% yield from 2:5:1- $NH_2 \cdot C_6H_3R \cdot CH_2 \cdot NH \cdot C_6H_4R \cdot p$ (R = Me, Cl, and Br,

respectively) and excess of 90% HCO₂H at 100° (bath), and in 48—78% yield with (I); (IV) is also obtained (69%) using (A) (Ar = p-C₆H₄Cl). The experiments with (A) were carried out at $130-140^{\circ}$ in presence of the amine hydrochloride (probably not necessary). Similar formation of quinazolines could not be effected with (II). $o\text{-NH}_2\text{-}C_6H_4\text{-}CO\text{-}NHPh$ with boiling HCO_2H or $CH(OEt)_3$ or with (A) (Ar = Ph, p-C₆H₄Cl) at 130—160° gives 4-keto-3-phenyl-3: 4-dihydroquinazoline, m.p. 139° (corr.) [picrate, m.p. 180.6° (corr.)]; with (II) no quinazoline is isolable. 4-Keto-3:4dihydroquinazoline [picrate, m.p. 204° (orange to yellow at 180—190°)] is similarly obtained from o- $NH_2 \cdot C_6H_4 \cdot CO \cdot NH_2$ and (A) (Ar = p-tolyl). Conversion 3-p-tolyl-6-methyl-1:2:3:4-tetrahydroquinazoline into (III) can be effected with (I) at 190—200° instead of with HCO₂H (cf. A., 1937, II, 520). The compound, m.p. 230-232°, obtained (Rackmann, A., 1910, i, 896) from phenyldiguanide and HCO₂Et-EtOH is also produced using (I) at $\sim 145^{\circ}$. 1:8- $C_{10}H_6(NH_2)_2$ is prepared by reduction $(H_2/30)$ lb., Raney Ni, dioxan), which is slow and incomplete, of $1:8-C_{10}H_6(NO_2)_2$; a dark-blue by-product is also

Synthesis of pyracridone derivatives. M. I. Kabatschnik (J. Gen. Chem. Russ., 1939, 9, 1734—1738).—2:6-Diaminopyridine and o-C₆H₄Cl·CO₂Na, heated at 170° for 2 hr. in presence of Cu-bronze and KI, yield o-6'-amino-2'-pyridylaminobenzoic acid (hydrochloride, m.p. 253—254°; sulphate, decomp. at 170°), which with conc. H₂SO₄ gives 2-aminopyracridone-action of boiling 10% NaOH. It is converted via the diazo-compound into 2:5-dihydroxy-pyracridine, m.p. 373—374°, from which 2:5-dichloropyracridine, m.p. 249·5—251°, is obtained by the action of POCl₃.

Phenylation of execephoryonines.

Phenylation of oxacarbocyanines. A. T. Troschtschenko (J. Gen. Chem. Russ., 1939, 9, 1661—1665).—CH(OEt)₃ in C_5H_5N and the methiodide of 4-, m.p. 217—218°, or 6-phenyl-1-methylbenzoxazole, m.p. 178—180°, yield 4:4'-, m.p. 235—239°, or 6:6'-diphenyl-2:2'-dimethyloxacarbocyanine iodide, m.p. 243—245°. The above methiodides, when heated with NHPh-CH:CBr-CHO and NaOAe in Ac₂O (3 min. at the b.p.), yield 10-bromo-4:4'-, m.p. 190—191° (decomp.), or 10-bromo-6:6'-diphenyl-2:2'-dimethyloxadicarbocyanine iodide, m.p. 243—245°. R. T.

Attempts to find new antimalarials. XVI. Synthesis of some derivatives of 4-carboline and 5:6-benz-4-carboline. W. O. Kermack and W. Tebrich (J.C.S., 1940, 314—318).—3-Chloro-1-methyl-4-carboline methosulphate in molten PhOH with β-diethylaminoethylamine (I), followed by NaOH and then salicylic acid, gives 3-β-diethylaminoethylamino-1:4-dimethylcarbolinium disalicylate (+2H₂O), m.p. 189°; 3-γ-diethylaminopropylamino-1:4-dimethylcarbolinium disalicylate, m.p. 152°, is similarly prepared from the 1:4-Me₂ compound and NEt₂·[CH₂]₃·NH₂. 3-Keto-3:4-dihydro-5:6-benz-4-carboline with POCl₃-PCl₅ affords 3-chloro-5:6-benz-4-carboline, m.p. 182°, which with (I) followed by EtOH-HBr yields 3-β-diethylaminoethylamino-5:6-benz-4-carboline di-

hydrobromide, m.p. 270°. 3-Chloro-1-methyl-5:6benz-4-carboline, m.p. 145°, similarly obtained from the Me derivative, with (I) and EtOH-HCl forms 3-βdiethylaminoethylamino-1-methyl-5 : 6-benz-4-carboline $\label{eq:chinese} \textit{dihydrochloride} \quad (+\text{H}_2\text{O}), \quad \text{m.p.} \quad 261^\circ. \quad \text{3-Keto-5}: 6\text{-}$ benz-4-carboline with excess of POCl₃-PCl₅ gives 3:10-dichloro-5:6-benz-4-carboline (II), m.p. 250°. Condensation of p-C₆H₄Cl·NH·NH $_2$ with o-nitrophenylpyruvic acid and cyclisation affords 6-chloro-3o-nitrophenylindole-2-carboxylic acid, m.p. 303° (decomp.), reduced and cyclised (Zn-AcOH) to 10chloro-3-keto-3: 4-dihydro-5: 6-benz-4-carboline, m.p. 337°, which with PCl₅-POCl₃ forms (II). AcCO₂H and p-methoxyphenylmethylhydrazine give hydrazone, cyclised (HCl) to 5-methoxy-1-methylindole-2-carboxylic acid, m.p. 216°, the acid chloride of which with aminoacetal yields 5-methoxy-1-methylindole-2carboxydiethylacetalylamide, m.p. 104°. With HCl-EtOH this is converted into 3-keto-10-methoxy-1methyl-3: 4-dihydro-4-carboline, m.p. 263°, which with POCl₃ and 1 mol. of PCl₅ gives 3-chloro-10-methoxy-1methyl-4-carboline hydrochloride, m.p. 185°, but with excess of PCl₅, 3:(9:11)?-trichloro-10-methoxy-1methyl-4-carboline, m.p. 214°, is obtained.

New example of dehydrogenating action of thionyl chloride. A. Corbellini (Atti X Congr. Internaz. Chim., 1938, III, 82—89).—The action of SOCl₂ on cis-o-(4:5:1':2'-naphthopyrazolyl)cinnamic acid (A., 1939, II, 88, 391, 454) is redescribed. E. W. W.

1: 1'-Dithiol-3: 3'-bisisoindolenylidene.—See B., 1940, 192.

Alkyl derivatives of as-sulphoxytriazines [5-keto-3-thion-2:3:4:5-tetrahydro-1:2:4-triazine]. E. Cattelain (Compt. rend., 1940, 210, 301—303; cf. A., 1939, II, 452).—CH₂Ph·CO·CO₂H with β -alkylthiosemicarbazide (cf. A., 1940, II, 38) gives the β -alkylthiosemicarbazone, which when dissolved in cold NaOH, and then treated with acid, gives 6-benzyl-2-alkylsulphoxytriazine, sol. in Na₂CO₃ and NaHCO₃. The following are prepared: phenylpyruvic acid β -methyl-, m.p. ~250° (decomp.) (sublimes at 230—240°), and -benzyl-thiosemicarbazone, m.p. 174°; 6-benzyl-2-methyl-, m.p. 153·5°, and -2-benzyl-sulphoxytriazine, m.p. 123°.

Exchange of hydrogen for deuterium in sparingly soluble substances. A. Loebenstein (Helv. Chim. Acta, 1940, 23, 243—244).—An apparatus is described which operates under diminished pressure and permits the continuous extraction of uric acid (I) with a limited amount of D₂O. (I) contains four replaceable H. 4N-DCl appears to give similar results. H. W.

Isolation of cyclic peptides from yeast. N. SADIKOVA (Compt. rend. Acad. Sci. U.R.S.S., 1939, 25, 598—600).—When baker's yeast (30 kg.) is heated in 2% aq. Na_2CO_3 to 210° during 3 hr. and then chilled, there are obtained 10 g. of a cyclopeptide, $C_{23}H_{42}O_4N_4$, m.p. $286-287^\circ$, α 0, hydrolysis of which with 37% HCl at 100° gives isoleucine, leucine, and isovaline (2:1:1 mol.). R. S. C.

Action of methylthiocarbimide on ethyl acetonedicarboxylate. D. E. Worrall (J. Amer.

Chem. Soc., 1940, **62**, 675).—CO(CHNa·CO₂Et)₂ and MeNCS (2 mols.) give Et 2:4-diketo-6-thiopiperidine-3-thioform-methylamide-5-carboxylate, m.p. 98° (6-S-Me derivative, m.p. 110°) (and a small amount of a substance, C₁₈H₁₄O₅N₄S₄,·m.p. 235—236°), converted by Br into the dispiran, m.p. 180°,

R. S. C.

Preparation of ferric mesoporphyrin chloride. T. H. Davies (J. Amer. Chem. Soc., 1940, 62, 447).—Fe^{III} mesoporphyrin chloride is best obtained from Fe^{III} protoporphyrin chloride by hydrogenation (Pd-C) in KOH-MeOH-H₂O and subsequent aëration in AcOH-NaCl at 90°. R. S. C.

Action of substitution products of carboxylic hydroxyl on methylenepyrazoles. G. Perroncito (Atti X Congr. Internaz. Chim., 1938, III, 267—276).—1-Phenyl-3-methylpyrazol-5-onc (I) (hydrochloride, prepared in boiling PhMe) and $\mathrm{CH_2(CO_2Et)_2}$ at 190° give, with a red product, m.p. 170°, $\alpha\alpha$ -bis-(5-keto-1-phenyl-3-methyl-4-pyrazolyl)ethyl ether (CMeR₂·OEt, where R = pyrazolyl group), m.p. 281°. With (CH₂·CO₂Et)₂, (I) gives $\gamma\gamma$ -bis-(5-keto-1-phenyl-3-methyl-4-pyrazolyl)butyrolactone. With NH₂·CHO, (I) gives, at 150—160°, methenylbis-(1-phenyl-3-methylpyrazol-5-one) (cf. A., 1937, II, 307), and, at 200°, "1:7-diphenyl-3:5-dimethylpyridinediazole" [bis-(1'-phenyl-3'-

phenylpyrazolo-4': 5')-3:2:5:6-pyridine], m.p. (+NH₂·CHO) 175°, is obtained, with methenylbis-1:3-diphenylpyrazol-5-one (III), from 1:3-diphenylpyrazol-5-one (IV). With (CO·NH₂)₂, (I) and (IV) give (II) and (III) respectively. E. W. W.

isoOxazole chemistry. A. Quilico (Atti X Congr. Internaz. Chim., 1938, III, 324—345).—A review. E. W. W.

Transformation of isooxazole-3-carboxylic acids into pyrazole derivatives. III. S. Cusmano (Gazzetta, 1940, 70, 86—89; cf. A., 1940, II, 55).—5-Methylisooxazole-3-carboxylic acid heated with NHPh·NH₂ gives 5-amino-1-phenyl-3-methylpyrazole. E. W. W.

Oximinopyrroles. XIII. Behaviour with hydroxylamine hydrochloride. T. AJELLO and S. CUSMANO (Gazzetta, 1940, 70, 127—134).—3-Oximino-2:5-diphenylpyrrole heated with aq. NH₂OH,HCl (I) in MeOH gives, first, αδ-diphenylbutane-αβδ-trione trioxime (II), m.p. 215° (decomp.) [Bz₃ derivative, m.p. 195° (decomp.)], and then the oxime (III), of 3-benzoyl-5-phenylisooxazole (IV), and 3-phenyl-4-phenacyl-1:2:5-oxadiazole (V) (A., 1938, II, 262). With conc. HCl in MeOH at the b.p., (II) gives (III), followed by (IV). With (I) in MeOH at the b.p., (II) gives (III), and (III) gives (V). 3-Oximino-5-phenyl-2-methylpyrrole heated with (I) in MeOH gives α-phenyl-n-pentane-αγδ-trione trioxime, m.p. 205°, and 3-acetyl-5-phenylisooxazole oxime

(with no oxadiazole). 3-Oximino-2:5-dimethylpyrrole and (I) give n-hexane- $\beta\gamma\varepsilon$ -trione trioxime, m.p. 168° (Bz_3 derivative, m.p. 180°), which is hydrolysed to the oxime of 3-acetyl-5-methylisooxazole (VI), and to (VI). E. W. W.

New syntheses of isooxazolepolycarboxylic acids. II. III. isoOxazoletricarboxylic acid. L. Panizzi (Gazzetta, 1940, 70, 89—94, 119—126).—II. CHPh:CH·CCI:N·OH and CO_2 Et·CHNa·CO· CO_2 Et (I) in MeOH give, after addition of alkali, the Et_2 ester (II), b.p. $185^{\circ}/2$ —3 mm., of 3-styrylisooxazole-4:5-dicarboxylic acid (III), m.p. 204— 205° (decomp.) (Na₂, K H, Ag₂, Ba, and Pb salts; Me₂ ester, m.p. 82— $82\cdot5^{\circ}$; dichloride; diamide, m.p. 219— 220° ; dianilide, m.p. 235— 236°), to which (II) is hydrolysed, by way of 4-carbethoxy-3-styrylisooxazole-5-carboxylic acid, m.p. 156— 157° .

III. The Na₂ salt of (III) with KMnO₄ gives BzOH, some PhCHO, and isooxazole-3: 4:5-tricarboxylic acid (IV) (+4H₂O), m.p. (anhyd.) 165—166° (Pb, Ba, and Ag salts). Aq. (IV) (which is unstable) with KCl gives the KH_2 salt, decomp. ~124°.

KCl gives the K H_2 salt, decomp. ~124°. $CO_2Et \cdot CCl:N \cdot OH$ and (I) in EtOH, or, better, MeOH, give (with some 3:4-dicarbethoxy-1:2:5-oxadiazole 2-oxide) the Et_3 ester (V), b.p. 165—166°/2—4 mm., of (IV), to which (V) is hydrolysed. In boiling dil. H_2SO_4 , (IV) gives CO_2 , NH_3 , and $AcCO_2H$ (mechanism discussed). E. W. W.

Intramolecular ionisation. R. WIZINGER and H. Wenning (Helv. Chim. Acta, 1940, 23, 247-271).—It is shown that all transitions are possible from pyrans which are not ionised under any conditions to spirains (compounded from spiran and betaine) which exist only in the intramol. ionoid form. Apparently intramol, ionisation may occur with all cyclic compounds which contain a sufficiently positivised C attached to an atom which can pass into the negative ionoid state. It can therefore be expected among lactones, lactams, cyclic thio-ethers, and suitably substituted cyclic amines of which there are several examples in the literature. Condensation of CPh₂:CH₂ with 2:1-OH·C₁₀H₆·CHO in HCl-AcOH yields diphenylnaphthopyran, m.p. 197°, which has little tendency to add acid and gives an unstable blue colour in AcOH-H₂SO₄; it does not give a colour reaction in boiling Ph₂O. The positivising action of $OMe \cdot C_6H_4$ is manifest since $(OMe \cdot C_6H_4)_2C:CH_2$ and o-OH·C₆H₄·CHO yield o-hydroxystyryldianisylcarbenium perchlorate, decomp. 144°, which only acquires normal intensity in the presence of acid and is converted by H₂O into dianisylbenzopyran which could not be obtained cryst. 9:10-Dimethylacridinium methosulphate and 2:1-OH·C₁₀H₆·CHO in boiling AcOH yield, after addition of HClO₄, 9-2'-hydroxybenzostyryl-10-methylacridinium perchlorate, decomp. 280°, which with NH₃ in boiling EtOH affords the

$$\begin{array}{c} \text{NMe} & \begin{array}{c} \text{C}_{6}\text{H}_{4} \\ \text{C}_{6}\text{H}_{4} \\ \text{(I.)} \end{array} \\ \end{array} \begin{array}{c} \text{colourless 10-methyl-acridino - 2'-naphtho-pyrylospiran (I), m.p.} \\ 233^{\circ} \text{ after becoming blue at 231°, which} \\ \end{array}$$

gives distinctly blue solutions in boiling EtOH and C_6H_6 and particularly marked effects in boiling $1:2:4\text{-}C_6H_3Cl_3$; when the solutions are

cooled the colour disappears. 10-Methylacridinobenzopyrylospiran, m.p. 220—221°, is colourless in all indifferent solvents below 250°; with HClO4 it gives 2'-hydroxystyryl-10-methyl-9-acridinium decomp. 252°. 1:3:3-Trimethyl-2the orange perchlorate,methyleneindoline and 2:1-OH·C₁₀H₆·CHO in boiling MeOH yield 1:3:3-trimethylindolino- β -naphthopyrylospiran, m.p. 183°, which in cold solvents gives pale reddish-violet solutions becoming more intense when warmed and pale again when cooled; addition of H₂O to the solution in cold C₅H₅N or MeOH intensifies the colour. It gives a deep red solution in AcOH from which HClO₄ ppts. the corresponding per-chlorate, m.p. 198—199°. 1:3:3-Trimethylindoleno-benzopyrylospiran, m.p. 208°, similarly derived from o-OH·C₆H₄·CHO, is colourless in most boiling solvents but violet in boiling Ph₂O; the colourless solution in boiling C₅H₅N becomes faintly violet on addition of H₂O. It gives a yellow solution in AcOH from which a yellow perchlorate, m.p. 248—249°, separates. More decided intramol, ionisation is shown by the spirans from 5-methoxy-1:3:3-trimethyl-2-methyl- $5-Methoxy-1:3:3-trimethylindolino-\beta$ naphthopyrylospiran forms colourless crystals, m.p. 151° to a violet-red melt after becoming red at 145°. The cold solutions are more or less red-violet according to the nature of the solvent and pronounced darkening occurs on heating. It gives a red acetate, which passes into the corresponding perchlorate. 5-Methoxy-1:3:3trimethylindolinobenzopyrylospiran, m.p. 122°, forms violet solutions which become red on addition of H₂O and, if very dil., orange-yellow on further addition of H₂O owing to production of a hydrate form. The presence of OMe appears to favour intramol. ionisation. 8'-Methoxy-10-methylacridinobenzopyrylospiran, m.p. 159° (corresponding perchlorate, m.p. 210°), is violet in boiling Ph₂O. 8'-Methoxy-1:3:3-trimethylindolinobenzopyrylospiran, m.p. 122°, is violet in boiling Ph₂O, blue in EtOH, COMe₂, or C₅H₅N, becoming blue-red on addition of much H₂O. 5:8'-Dimethoxy-1:3:3-trimethylindolinobenzopyrylospiran forms colourless crystals, m.p. 151° to an intensely blue liquid. 1-Ethylbenzthiazolium iodide and 2:1-OH·C₁₀H₆·CHO in boiling EtOH containing piperidine give the iodide, which passes into the perchlorate,

 $\begin{bmatrix} C_6 H_4 < NEt \end{bmatrix} C \cdot CH : CH \cdot C_{10} H_6 \cdot OH \end{bmatrix}^{\dagger} ClO_4^{-}, \qquad \text{m.p.}$

S C-CH:CH

249°, which with NH₃ yields 1-ethylbenzthiazolino - β - naphthopyrylospirain (II), m.p. 186°. Its solutions in indifferent anhyd. solvents are

intensely violet. 1-Ethylbenzselenazolium iodide and 2:1-OH·C₁₀H₆·CHO give a similar iodide and perchlorate, m.p. 203°, which yield 1-ethylbenzselenazolino-2-naphthopyrylospirain, m.p. 183°, and 1-methylquinaldinium methosulphate affords an iodide and perchlorate, m.p. 266°, and 1-methylquinolino-2-naphthopyrylospirain, m.p. 233°. 4:6-Diphenyl-2-methylpyryliumsulphoacetateand2:1-OH·C₁₀H₆·CHO in boiling AcOH followed by HClO₄ yield 4:6-diphenyl-2-2'-hydroxybenzostyrylpyrylium perchlorate, m.p. 236°, converted by warm NH₂Ph into the corre-

sponding 1-phenylpyridinium salt, which with alkali yields 1:4:6-triphenylpyridino-2-naphthopyrylo-spirain, m.p. 267°. The hydroxyl forms are very readily produced from the last-named two spirains.

2:2-Dimethylthiazolidine-5-carboxylic acid, m.p. 165—168°, $[\alpha]_D$ —75·2° to 0° in H_2O in 35·5 hr.—See A., 1940, III, 315.

Action of bromine on thioamides. D. E. Worrall and A. W. Phillips (J. Amer. Chem. Soc., 1940, 62, 424—425).—NPh.C(SH)·CH(CO₂Et)₂ and Br in AcOH give Et_2 1-benzthiazolylmalonate, m.p. 138—139°, which forms a salt with KOH–EtOH, liberates CH₄ from MgMel, and with hot, conc. HCl gives 1-methylbenzthiazole. CH₂Ac₂ and NPh.CS give γ -1-benzthiazolylacetylacetone, m.p. 155°. R. S. C.

Reaction of some acylbenzisothiazolones with acetic anhydride and potassium acetate. McClelland, M. J. Rose, and (in part) R. G. Bart-LETT (J.C.S., 1940, 323—327).—1-Propionylbenziso-thiazolone, m.p. 144°, prepared from benzisothiazolone and $(EtCO)_2O$, with KOAc and Ac_2O gives 3-hydroxy-2acetyl-, 3-acetoxy-, 3-acetamido-, and 3-propionamido-1-thionaphthen, m.p. 115° (2-Br-derivative, m.p. 156°; also prepared by propionylation of 3-amino-1-thionaphthen), and 3-hydroxy-2-acetylcarbamyl-1-thionaphthen (I), m.p. 204° (3-Ac derivative, m.p. 130° ; also prepared from 2-carboxyphenylthiolacetamide, m.p. 210°, and Ac₂O). 1-Chloroacetylbenzisothiazolone; m.p. 171°, with KOAe and Ac₂O, at 70°, gives 1-acetylbenzisothiazolone, at 95°, (I), and at 115°, 3-hydroxy-2-acetyl- and 3-acetamido-1-thionaphthen: this confirms that the displacement of the I-substituent takes place in the benzisothiazolone stage. The behaviour of the Bz compound is similar to that of the EtCO derivative. 1. Phenylacetylbenzisothiazolone, m.p. 137°, gives 3-hydroxy-2-acetyl-1-thionaphthen, (I), and 3-phenylacetamido-1-thionaphthen, m.p. 76°. The total or partial displacement of the 1-substituent by Ac in the acyl derivatives is in contrast to the behaviour of the 1-alkyl- or 1-aryl-benzisothiazolones. $2\text{-}Nitro\text{-}3\text{-}benzamido\text{-}1\text{-}thionaphthen},$ m.p. $180^\circ,$ and $3\text{-}hydroxy\text{-}2\text{-}carbamyl\text{-}1\text{-}thionaphthen},$ m.p. $208^\circ,$ are also described. F. R. S.

Benz-oxazoles and -thiazoles.—See B., 1940, 267.

Isomorphous relationships of organic compounds of analogous constitution. N. M. Cullinane and W. T. Rees (Trans. Faraday Soc., 1940. 36, 507—514; cf. A., 1938, II, 118).—M.p.—and f.p.—composition curves have been determined for binary mixtures containing phenoxazine (I), phenthiazine (II), diphenylene dioxide (III), phenoxthionine (IV), and thianthren (V). (I)—(IV), (I)—(V), (II)—(III), and (III)—(IV) give simple eutectics at 50°, (I) 10 mol.—%; 118°, (V) 45 mol.—%; 108-5°, (II) 16 mol.—%; and 46-5°, (IV) 78 mol.—%, respectively. (II)—(IV) and carbazole—(III) give complete series of mixed crystals with no max. or min. f.p. (I)—(II), (I)—(III), and (II)—(V) each give an incomplete series of mixed crystals with a eutectic. These and other data are discussed from the point of view of mol. shape, and the results indicate that analogously con-

stituted derivatives of elements of similar type form solid solutions, provided that their configurations are also alike.

F. L. U.

[Condensation of] arylthiocarbimides and ethyl acetonedicarboxylate. D. E. WORRALL (J. Amer. Chem. Soc., 1940, 62, 578).—Addition of CO(CH₂·CO₂Et)₂ and then of ArNCS (1 mol. each) to Na (2 atoms) in Et₂O gives Et 2:4-diketo-6-thio-1 - phenylpiperidine - 3 - thioformanilide - 5 - carboxylate, m.p. 188—189° (decomp.), -1-m-tolylpiperidine-3-thioform-m-toluidide-5-carboxylate, m.p. 125—126° (decomp.), -1-p-anisylpiperidine-3-thioform-p-anisidide-5carboxylate, m.p. 162—163° (decomp.), -1-p-phenetylpiperidine-3-thioform-p-phenetidide-5-carboxylate, m.p. 195—197° (decomp.), and -1-p-bromophenylpiperidine-3-thioform-p-bromoanilide-5-carboxylate, m.p. 179-181° (decomp.), converted by MeI in EtOH into the 6-methylthiol compounds, m.p. 148—149°, 137—138°, 152-153°, 114-115°, and 152°, respectively, and by Br into 1-2': 4'-diketo-6'-thio-5'-carbethoxy-1'-phenyl-3'-piperidyl-, -1'-m-tolyl-3'-piperidyl-4- or -6-methyl-, -1'-p-anisyl-3'-piperidyl-5-methoxy-, -1'-phenetyl-3'piperidyl-5-ethoxy-, and -1'-p-bromophenyl-3'-piperidyl-5-bromo-thiazole, respectively, m.p. very high (cf. A., 1940, 11, 23).

Preparation of 2':3'-pyridino-3:4-benzthiazole (quinthiazole). H. Erlenmeyer and H. Ueberwaser (Helv. Chim. Acta, 1940, 23, 328—332).—Addition of $o\text{-NO}_2\cdot C_6H_4\cdot NH_2$ in CHCl3 to a boiling solution of CSCl2 in the same solvent yields $o\cdot NO_2\cdot C_6H_4\cdot NCS$, m.p. 72°, which is converted by NH3-EtOH into $o\cdot NO_2\cdot C_6H_4\cdot NH\cdot CS\cdot NH_2$, m.p. 136°. This is transformed by Br in CHCl3 into 3-nitro-1-aminobenzthiazole, m.p. 254° [lit. m.p. 232° (decomp.)], which is dissolved in H3PO4 (d 1·7) and treated at +5° with HNO3 (d 1·4) followed at -15° to -13° by conc. aq. NaNO2; the diazonium solution treated with conc. HCl and Cu gives 1-chloro-3-nitrobenzthiazole, m.p. 169—170°. In this compound Cl is very mobile but unexpectedly is not removed by hydrogenation (Raney Ni in $C_6H_6-H_2O$), the

product being 1-chloro-3-aminobenz-thiazole, m.p. 87—89° (yield 74%).

This is transformed by red P and HI (d 1·7)-aq. AcOH into 3-aminobenzthiazole, m.p. 94°, which with As₂O₅, glycerol, and conc. H₂SO₄ affords 2:3'-pyridino-3:4-benzthiazole (quinthiazole) (I), m.p. 158°, which does not appear to give a hydrate.

H. W.

Heterocyclic thioindigotin dyes. I. Synthesis of bis-(5:6-quinolino-oxythiophen)indigotin. S. Maruyama (Bull. Inst. Phys. Chem. Res. Japan, 1939, 18, 1165—1177).—6-Carboxyquinoline-5-diazonium chloride (I) condenses directly, or through the 5-Cl-compound, with thioglycollic acid to give 6-carboxyquinoline-5-thioglycollic acid (II) in poor yield. (I) with Na₂S₂ gives bis-(6-carboxy-5-quinolyl) disulphide and 6-carboxy-5-quinolyl sulphide; the former is not reduced with $K_2S_2O_4$. (I) is converted through the thiocyanate with H_2S -NaOH, or through the Et 5-thiolthioncarboxylate with NaOH, into 5-thiolquinoline-6-carboxylic acid, which is converted

(III),

into (II) and thence with O2-hot AcOH into bis-(5:6quinolino-oxythiophen)indigotin, m.p. 400—410°

Two degradation products of hæmocyanin. M. FLORKIN and C. TOUSSAINT (Compt. rend. Soc. Biol., 1939, 132, 45-47).—Conant's derivative (A., 1930, 1304) gives a green coloration with orcinol which is not given by that of Schmitz (A., 1931, 497) and is due to the presence of a S compound H. G. R. $(C_7H_{15}O_5N_2S_2).$

Structure of amine oxides. II. Tautomerism of geneserine. M. Polonovski (Atti X Congr. Internaz. Chim., 1938, III, 306—311).— Geneserine (I), although the N-oxide of eserine, has reducing properties that this lacks; e.g., (I) reduces methylene-blue (action inhibited by strong acids or their salts). It is suggested that (I) is a tautomeride of N-oxide (A) and hydroxylamine (B) forms, of the annexed partial structures.

$$\begin{array}{c|c} \hline \text{CMe} \\ \hline \text{CH}_2 \\ \hline \text{MeN} & \text{NMe}(\text{OH})_2 \\ \hline \text{(A.)} & \hline \text{NMe} & \text{NMe} \cdot \text{OH} \\ \hline \text{(B.)} & \hline \text{CH}_2 \\ \hline \text{CH} \cdot \text{OH} & \text{CH}_2 \\ \hline \text{CH} \cdot \text{CH}_2 \\ \hline \text{CH}_2 \\ \hline \text{CH} \cdot \text{CH}_2 \\ \hline \text{CH}_2 \\ \hline$$

With SO_2 , (A) gives eserine sulphate, and (B) a sulphaminic acid.

Alkaloids of the Papaveraceæ family. V. Alkaloids of Roemeria refracta, D.C. Structure of roemerine. S. Junusov, R. A. Konovalova, and A. P. ORÉKHOV (J. Gen. Chem. Russ., 1939, 9, 1868—1876, and Bull. Soc. chim., 1940, [v], 7, 70— 77; cf. A., 1939, II, 565; 1940, II, 111).—Roemerine (I) is demethylenated when heated with phloroglucinol and HCl (6 hr. at 140-150°) giving nor-roemerine, m.p. 162—164° {hydrochloride, m.p. 210—220°; Me₂ ether, m.p. 165—166°

[hydrochloride, m.p. 242— 243°; methiodide (II), m.p. 164—167°]. (II), heated with KOH in McOH, CH_2 (A.)ĊH yields 5:6-dimethoxy - 8-NMe vinylphenanthrene CH_2 m.p. $86-87^{\circ}$, together with dimethylde-N-methyl- CH_2 nor-roemerine, an oil, $[\alpha]_{D}$

+13.55° in EtOH, the methiodide, m.p. 278°, of which gives (III) when treated with KOH-MeOH. (III) is oxidised (KMnO₄) to 3:4-dimethoxyphenanthrene-1-carboxylic acid, m.p. 212-213°. (I) is therefore (A). R. T.

Aconitum alkaloids. I. Alkaloids of Aconitum talassicum. R. Konovalova and A. ORÉKHOV [with A. FILINA] (Bull. Soc. chim., 1940, [v], 7, 95—105).—The dried roots of A. talassicum, moistened with 10% NH3 and extracted with boiling (CH₂Cl)₂, give a mixture of alkaloids (1.5% of the wt. of plant) from which by fractional pptn. of the perchlorates etc. the following bases are isolated: talatisine (I), $C_{20}H_{29}O_3N$, m.p. $246-246.5^{\circ}$ (decomp.), $[\alpha]_p$ $+37.7^{\circ}$ in abs. EtOH [hydrochloride, m.p. 256—257°; picrate, m.p. 257—260° (decomp.); perchlorate, m.p. 220° (decomp.); hydriodide, m.p. 265—266° (decomp.)], which contains 3 OH since it yields a triacetate, m.p. 211—212° [perchlorate, m.p. 165—166°; methiodide, m.p. 253—254° (decomp.)], hydrolysed to (I) and is converted by SOCl₂ into talatisine trichloride, $C_{20}H_{26}NCl_3,~m.p.~175-176^{\circ},~[\alpha]_{\rm p}~+8.6^{\circ}~in~MeOH:~talatisamine~(II),~C_{22}H_{25}O_4N,~m.p.~144-146^{\circ},~[\alpha]_{\rm p}$ ±0° (hygroscopic hydrochloride, m.p. 195—196), which gave no picrate, picrolonate, or perchlorate, does not unite with MeI, and does not give cryst. compounds with Ac₂O or BzCl; talatisidine (III), m.p. 220—221°, $[\alpha]_{\rm D}$ -20.0° in COMe₂ [perchlorate, m.p. 218—220°; hydrochloride, m.p. 186—189°; picrate, m.p. 161— 164° (decomp.)]; isotalatisidine (IV), $C_{23}H_{37}O_5N$, m.p. 139—140°, which gave no cryst. salts. Comparison of the formulæ of (I), (II), (III), and (IV) suggests that they are derived from the same fundamental nucleus C₁₉H₂₈NH or C₁₉H₂₉N although the presence of certain substituents is yet unproven. This same nucleus appears to be present in aconitine, mesaconitine, hypaconitine, pseudaconitine, indaconitine, bitetraconitine, and lappaconitine.

H. W. Alkaloids of Girgensohnia diptera, Bge., Chenopodiaceæ family. N. K. Juraschevski and S. I. STEPANOV J. Gen. Chem. Russ., 1939, 9, 2203— 2206).—The air-dry plant contains 1.25% of alkaloids, from which N-methylpiperidine and dipterine, $C_{11}H_{14}N_2$, m.p. $87-88^{\circ}$ [α] 0 (hydrochloride, m.p. $177-178^{\circ}$; picrate, m.p. $189-190^{\circ}$; platinochloride, m.p. 167—169°; picrolonate, m.p. 242—243°), were isolated.

Lupine. XV. Alkaloids of Lupinus sericeus, Pursh. J. F. Couch (J. Amer. Chem. Soc., 1940, 62, 554—556; cf. A., 1940, II, 111).—This plant (whole) yields spathulatine (I) and nonalupine (II), $C_{15}H_{24}ON_2$, m.p. $(+2H_2O)$ 91·5—92·5°, (anhyd.) 235° (softens at 219°), b.p. 260—270°/18 mm. [aurichloride, m.p. 177·5—178° (decomp.); picrate, m.p. 185—186°]. The formula (A., 1925, i, 61) of (I) (compound, B,3KI, 200). m.p. 260—261°) is confirmed. (I) contains $3 N \rightarrow 0$ groups and with SO₂ gives an oil; with boiling 10% HCl it gives an oily isomeride, $C_{15}H_{24}N_2$ (perchlorate, m.p. 216-217°; picrate, m.p. 214-216°), of spartyrine, probably by hydrolysis and subsequent ringclosure. Mineral acids do not give salts with (II), which contains no $N\rightarrow 0$ (unaffected by SO_2) and with cold, aq. KMnO₄ gives oxynonalupine, $C_{15}H_{24}O_3N_2$, m.p. $168\cdot5-170\cdot5^\circ$ (aurichloride, m.p. $238-239^\circ$), unaffected by SO₂.

Alkaloids of Sedum acre, L. D. G. KOLES-NIKOV and A. G. SCHVARTZMAN (J. Gen. Chem. Russ., 1939, 9, 2156—2157).—The air-dry plant contained 0.3% of alkaloids, including sedamine, $C_{17}H_{24}O_2N$, m.p. 86—87°, $[\alpha]_D^{20}$ —56.75° in MeOH. Sedamine contains one NMe and one OH.

alkaloids. VII. Isolation Erythrina characterisation of new alkaloids, erythraline and erythratine. K. Folkers and F. Koniuszy (J. Amer. Chem. Soc., 1940, **62**, 436—441; cf. A., 1940, II, 29).—Crystallisation of the hydriodides of the crude alkaloids from seeds of E. glauca, Willd., yields erythraline (I), $C_{18}H_{19}O_3N$, m.p. $106-107^{\circ}$, $[\alpha]_D^{27} + 211 \cdot 8^{\circ}$ in abs. EtOH [hydriodide, m.p. 252—253° (decomp.), $[\alpha]_D^{23} + 177^{\circ}$ in H_2O ; hydrobromide, m.p. 243°, $[\alpha]_D^{27} + 216 \cdot 6^{\circ}$ in H_2O], with smaller amounts of erythramine (II) and erythratine (III), $C_{18}H_{21}O_4N$, $+0.5H_2O$ (retained at $140^{\circ}/0.1$ mm.), m.p. $170-170.5^{\circ}$, $\lceil \alpha \rceil_{15}^{15} + 144.9^{\circ}$ in abs. EtOH (best isolated from EtOH as free base; hydriodide, m.p. $242-242.5^{\circ}$, $\lceil \alpha \rceil_{15}^{15-28} + 109.0^{\circ}$ in H_2O ; hydrobromide, m.p. 241° , $\lceil \alpha \rceil_{15}^{15} + 158.7^{\circ}$ in H_2O). (I) is isolated also from 5 other Erythrina species. Hypaphorine is isolated from 5 Erythrina species, and it and (I) exist also in 2 further species. The curare-like activity (frogs) of (I) and (II) is the same (dose = 7-8 mg. per kg.), but that of (III) is one tenth as great. R. S. C.

Erythrophleum alkaloids. I. Erythrophleine. B. K. BLOUNT, H. T. OPENSHAW, and A. R. Todd (J.C.S., 1940, 286—290).—Erythrophleine (I) (amorphous), from the bark of E. guineense, G. Don., is probably $C_{24}H_{39}O_5N$. Hydrolysis (boiling N/3-H₂SO₄) of (I) gives erythrophleic acid (II), $C_{21}H_{32}O_5$, m.p. 218°, $[\alpha]_D^{20}$ —40° in CHCl₃, and NMe₂·[CH₂]₂·OH (picrate, m.p. 148°; N-methyl-N- β -hydroxyethyl-N'- α naphthylthiocarbamide, m.p. 125°). Me erythrophleate, amorphous, forms a 2:4-dinitrophenylhydrazone, m.p. 219°. (II) contains CO, OH, and OMe; since it also contains one double bond, probably $\alpha\beta$ to CO_2H , it must have three rings. Se-dehydrogenation of (II) affords 1:7:8-trimethylphenanthrene and a *substance*, $C_{19}H_{16}Se$, m.p. $161-162^{\circ}$. Possibly (II) is diterpenoid and (I) is its β -methylaminoethyl ester. F. R. S.

Alkaloids of *Fritillaria sewerzowii*. S. Junusov, R. Konovalova, and A. Orekhov (J. Gen. Chem. Russ., 1939, 9, 1911—1914).—The air-dry tubers of this Central Asiatic plant contained 0.9% of alkaloids. A new alkaloid, alginine, $C_{23}H_{39}O_3N$, m.p. $271-272^\circ$, $[\alpha]_p+108\cdot 5^\circ$ in EtOH (hydrochloride, m.p. $323-325^\circ$; methiodide, m.p. $310-311^\circ$), was isolated; it contains a ternary N, and three OH.

Alkaloids of white hellebore. IV. Veratramine, a new alkaloid of white hellebore (Veratrum grandiflorum, Loes., fil.). K. SAITO (Bull. Chem. Soc. Japan, 1940, 15, 22—27; cf. A., 1936, 870).—The "resinous matters" (loc. cit.) are dissolved in EtOH and treated with 2n-Ca(OAc)2, thus causing separation of Ca chelidonate, which is removed. Addition of NH₃ to the filtrate liberates the alkaloids, which are converted into their sulphates by 2N-Na₂SO₄ in 0.5N-AcOH. These are decomposed by Na₂CO₃ in boiling EtOH and jervine is separated as the hydrochloride, which dissolves sparingly in EtOH. The mother-liquors contain veratramine (I), which is separated as the sulphate. $C_{26}H_{35}O_2N, H_2O$, has m.p. $209.5-210.5^{\circ}$, $[\alpha]_{b}^{19}$ -70° in MeOH (for anhyd. material). It dissolves sparingly in dil. acids and gives a hydrochloride, m.p. 310°, and a picrate, m.p. 217.5—218°. The presence of a double linking is established by Wijs' method and by hydrogenation (PtO₂ in glacial AcOH) to dehydroveratramine, m.p. 197-198°. (I) does not contain NMe, OMe, or :O₂CH₂. It behaves as a sec. amine. When treated with Na₂CO₃ and MeI it yields methylveratramine methiodide, m.p. 268° (corresponding methochloride, m.p. 277°). (I) is transformed by boiling Ac₂O into a neutral Ac_2 derivative (III), m.p. $205.5-206^{\circ}$, which is hydrolysed (KOH-EtOH) to a compound, m.p. $179-180^{\circ}$, $[\alpha]_{0}^{19}+7^{\circ}$, from which (II) is re-formed by Ac₂O. (I) is unchanged by KOH–EtOH. (I) is insol. in aq. NH₃, Na₂CO₃, or NaOH, does not give a colour with FeCl₃, and does not react with CH₂N₂; it therefore does not contain a phenolic OH. It does not react with NH₂OH or NH₂·CO·NH·NH₂. One of the two O is therefore present in an alcoholic OH and the other appears to be in an indifferent bridge.

Phytochemistry of the bark of Tabernaemontana coronaria. A. N. Ratnagiriswaran and K. Venkatachalam (Quart. J. Pharm., 1939, 12, 174—181).—The EtOH extract of the bark of the stem and root of T. coronaria yields fatty matter giving palmitic, cerotic, and oleic acids on saponification, a cryst. resin alcohol, $C_{17}H_{32}O_4$, m.p. $180-181^\circ$, $[\alpha]_5^{28}+87\cdot2^\circ$ in C_6H_6 ($c=0\cdot69$), $+82\cdot87^\circ$ in CHCl₃ ($c=2\cdot24$), caoutchouc, resins, sugars, KNO₃, KCl, and two alkaloids tabernaemontanine (I), $C_{20}H_{26}O_3N_2$, m.p. $208-210^\circ$ after sintering at 203° , and coronarine (II), $C_{44}H_{56}O_6N_4,2\cdot5H_2O$, m.p. $196-198^\circ$ after sintering at 183° . (I) and (II) are pharmacologically active, showing a definite slowing of the rate and an increase in the amplitude of the beats when applied to a frog's heart in situ. (II) gives a green fluorescence when dissolved in EtOH, Et₂O, or CHCl₃. Colour reactions of (I) and (II) are described. 17 kg. of bark yield $0\cdot05$ g. of alkaloids. F. H.

2(3)-Nitrophenylene-1: 4-diarsinic acid. A. J. Berlin (J. Gen. Chem. Russ., 1939, 9, 1856—1857).—
3-Nitro-4-aminophenylarsinic acid is diazotised, and Na₃AsO₃ and CuSO₄ are added. The solution is filtered after 24 hr., and aq. NaHSO₃ is added, followed by H₂SO₄, and the solution is heated until evolution of SO₂ ceases. The dried ppt. of 2-nitrophenylene-1: 4-diarsenious oxide (I), m.p. 340° (decomp.), suspended in CHCl₃, is saturated with HCl, so giving 2-nitrophenylene-1: 4-dichloroarsine, 2:1:4-NO₂-C.H.(AsCl.), m.p. 73° readily converted into

 $NO_2 \cdot C_6 H_3 (AsCl_2)_2$, m.p. 73° , readily converted into pure (I) by the action of NH_3 in $COMe_2$. Cl_2 passed through a suspension of (I) in H_2O , gives 2-nitrophenylene-1: 4-diarsinic acid.

Conversion of bismuth aryl halides into bismuth triaryl compounds. H. GILMAN and H. L. Yablunky (J. Amer. Chem. Soc., 1940, 62, 665—666).—BiAr₂Cl and BiAr₃Cl₂ are best converted into BiAr₃ by N₂H₄,H₂O in EtOH. R. S. C.

Action of Grignard reagents on heavy-metal salts. IV. Mechanism of the reaction with silver bromide. E. A. BICKLEY [with J. H. GARDNER] (J. Org. Chem., 1940, 5, 126—132; cf. A., 1940, II, 121).—Decomp. of, e.g., Ag aryls occurs by a bimol, reaction not involving free radicals. The unimportance of solvent is shown by decomp. of a mixture of Ag p-tolyl and p-anisyl at 100° ; treatment of the resulting product with HI (const. b.p.) gives 4:4'-dimethyl-, 4:4'-dihydroxy-, and 4-hydroxy-4'methyl-diphenyl, indicating that all possible coupling products are formed. Furthermore, decomp. of AgPh in CCl₄, PhCl, or PhNO₂ affords only Ph₂. The relative velocities of the reactions between various Grignard reagents and AgBr are determined indirectly by reaction between pairs of MgRHal and half the amount of AgBr theoretically required to react with them; the amount of each radical coupled is found by

isolating the reaction products. The following order is thus found: MgPhI < MgPhBr < MgBu^aBr < MgBu^aCl < MgBu^aI. The results obtained in experiments in which AgBr is present in excess thus become understandable. Thus, with MgPhHal and MgBu^aHal, the largest yield of PhBu^a is obtained when Hal = Br in each case, i.e., reaction velocities with AgBr most nearly equal. The amounts of (CHMeEt)₂, CH₂Ph·CHMeEt, and (CH₂Ph)₂ obtained from CH₂Ph·MgCl (0·5 mol.), CHMeEt·MgHal (Cl, Br, I) (0·5 mol.), and AgBr (1 mol.) are determined. The following side reactions are shown to occur: (i) AgBu^a + MgI₂ \Rightarrow Bu^aI + Ag + MgI; ? (ii) 2AgPh + MgI₂ \Rightarrow PhI + MgPhI + 2Ag; no evidence of similar reactions is noted with other halides. H. B.

Germicidal mercury derivatives of pyridine. M. W. SWANEY, M. J. SKEETERS, and R. N. SHREVE (Ind. Eng. Chem., 1940, **32**, 360—363).—Interaction of $Hg(OAc)_2$, C_5H_5N , and $H_2O(1:8:8 \text{ mols.})$ at 155° for 2.5 hr. yields 3-pyridylmercuric acetate (I), m.p. 178° [chloride (II), m.p. 280°; nitrate (III), explodes 308-309°]. Absence of H₂O, or a longer reaction period, causes lower yields of (I) and formation of polymercurated compounds. Similarly are prepared 2-amino- (IV), m.p. 197·5°, and 2-methyl-5-pyridyl-mercuric chloride (V). Growth of Staphylococcus aureus is prevented by (II) at 0.5 p.p.m., by (I) and (III) at 0.6 p.p.m., by (IV) at 1.6 p.p.m., and by (V) at 2.5 p.p.m. Growth of B. coli is prevented by (II) at 1.8 p.p.m., and by (I) and (III) at 2.5 p.p.m. The lethal dose of (II) for rats and mice is 53 mg. per kg. body-wt. and of (I) and (III), 17-18 mg. J. D. R.

Reaction of lead tetraphenyl and bismuth triphenyl with monocarboxylic acids. I. Action of formic and acetic acid on PbPh₄ and BiPh₃. M. M. Koton (J. Gen. Chem. Russ., 1939, 9, 2283—2286).—PbPh₄ and R·CO₂H (R = H, Me), heated at 50—150°, yield C_6H_6 and $(R \cdot CO_2)_2PbPh_2$; under these conditions BiPh₃ gives C_6H_6 and $(R \cdot CO_2)_3Bi$. PbPh₄ or BiPh₃ and HCO₂H at 175—200° give C_6H_6 , CO, CO₂, and Pb or Bi. R. T.

Models of protein molecules. D. L. TALMUD (Compt. rend. Acad. Sci. U.R.S.S., 1939, 25, 484—487).—A polypeptide, built up of NH₂-acids of the same configuration, has the side chains all on one side of the main chain. By mutual interaction of the side chains, this results in a "ring chain" unit of mol. wt. 693—744, which is the fundamental unit of proteins. These units can unite by loss of H₂O from NR:CR:OH and NHR:COR and thus form more complex structures. Such models best account for the properties of proteins. R. S. C.

Action of benzyl alcohol on peptides and proteins. J. Overhoff (Atti X Congr. Internaz. Chim., 1938, III, 263—267).—Glycine and alanine with CH₂Ph·OH (I) at 200° undergo partial decomp. to NH₃ and CO₂. Glycine anhydride crystallises unchanged from (I). When the NH₂-group is protected, CH₂Ph esters are readily formed: e.g., hippuric acid heated with (I) gives its CH₂Ph ester (II), m.p. 91°. Aspartic acid is unchanged. Glutamic acid gives benzyl pyrrolidonecarboxylate, b.p. 205°/0·2 mm.

Benzoylglycylglycine gives its CH_2Ph ester and (II). Peptide linkings are broken by hot (I). With (I) at 210°, gelatin gives $NH_3 = 2\%$ of the total N and a solution from which Et_2O ppts. an amorphous product (III) (13·7% N; weak biuret reaction). (III) must consist largely of CH_2Ph esters. It is feebly acid; the product benzoylated in C_5H_5N is fairly strongly acid. After hydrolysis by dil. KOH, and acidification, the Bu*OH extract of the evaporate, when treated with $H_2O + Ag_2O$, gives proline. Casein is also sol. in (I).

Intramolecular folding of polypeptide chains in relation to protein structure. H. Neurath (J. Physical Chem., 1940, 44, 296—305).—The space requirements and orientation of NH₂-acid residues in fully extended, folded, and cyclised polypeptide chains are discussed. The structures of fully extended chains can account almost quantitatively for observed film areas and properties of protein monolayers. The introduction of NH₂-acid residues into folded chains is impossible except in certain cases, e.g., glycine and alanine, unless unreasonable distortion of bond angles is assumed. Similarly cyclised chains do not permit the introduction of any side-chains.

Standardisation of organic combustion furnaces. E. Cattelain and R. Gros (Ann. Chim. Analyt., 1940, [iii], 22, 68—69).—The chief conditions to which the parts of French combustion apparatus ought to conform are laid down.

L. S. T.

Ash in organic compounds. Determination by micro-technique with automatic combustion. A. R. Norton, G. L. Royer, and R. Koegel (Ind. Eng. Chem. [Anal.], 1940, 12, 121—123).—An automatic electric micro-furnace in which two samples (~100—150 mg.) can be ashed in a stream of O₂ either simultaneously or individually is described. Comparative data with the muffle macro-method show that the micro-method is quicker and more accurate.

Direct [semi-micro-|determination of oxygen in organic substances. M. Schütze (Z. anal. Chem., 1939, 118, 245—258).—The org. compound is decomposed by heat, and the products are led in N₂ over C at 1000°, whereby all the O, combined or free, is converted into CO, which is then oxidised to CO₂ at room temp. by a patent prep. the basis of which is \tilde{I}_2O_5 , or by I_2O_5 at 160° as described previously (B., 1940, 356). The CO₂ is absorbed in a Pregl tube with a special filling. The specially filled oxidation tube lasts for ~80 analyses. N, S, and halogens do not interfere with the method, and there is no difficulty in analysing liquids. Metal salts that give oxides or carbonates stable at 1000°, e.g., NaOBz, yield low results, but compounds with the metal in SO₃H give correct results for O. Full details of apparatus and procedure are recorded.

Micro-analytical adaptation of the direct determination of oxygen in organic substances. W. Zimmermann (Z. anal. Chem., 1939, 118, 258—263).

—Details for the conversion of Schütze's semi-micromethod (see above) into an automatic micro-method are given. Test data are recorded. L. S. T.

Determination of halogens, particularly of iodine, in organic compounds by means of the bomb calorimeter. B. Longo (Atti X Congr. Internaz. Chim., 1938, III, 427—428).—Compounds difficult to oxidise with HNO₃ are heated in a bomb calorimeter under a pressure of 20—30 atm. of O₂, and after reduction of iodates formed with N₂H₄,H₂SO₄, an aliquot part of the product is used for the volumetric determination of total halogen. A second portion is treated by Gooch's method to eliminate I, and Cl and Br are determined. A third part can be used for the separate determination of Br and Cl. The method has been applied to a large no. of aliphatic and aromatic compounds. J. W. S.

Furnace for micro-Carius determination.—See A., 1940, I, 233.

Determining the composition of mixtures by thermal analysis.—See A., 1940, I, 230.

Determination of vitamin-A and carotene.—See A., 1940, III, 321.

Determination of arginine with flavianic acid. H. B. VICKERY (J. Biol. Chem., 1940, 132, 325—342).—Acid protein hydrolysates are boiled with C, filtered, and 4—5 mols. of flavianic acid are added (as solid) at room temp. On keeping for 4 days in the cold arginine diflavianate separates. It is washed with saturated aq. arginine monoflavianate, suspended in hot H₂O, and 5N-aq. NH₃ is added just to effect dissolution. To the boiling solution N-H₂SO₄ is added, sufficient to neutralise the 5N-NH₃ used; the arginine monoflavianate crystallises, and is collected, washed with EtOH, dried, and weighed. Multiplying by the factor 0.3566 gives the wt. of arginine. Results for some representative proteins are given, and are somewhat > those given by the Ag pptn. method.

P. G. M.

Effect of dipolar substituents rich or poor in residual valencies on addition reactions of phenol derivatives with pyridine and esters and amides of pyridine-2- and -3-carboxylic acid. R. Labes (Arch. exp. Path. Pharm., 1938, 190, 421— 451).—The pptg. power of phenols for C_5H_5N , Et picolinate and nicotinate is increased by the phenol substituent in proportion as the solubility in H₂O is decreased. As C₅H₅N substituent the CO₂Et group is most active in position 3. The ester group decreases the basicity in the C₅H₅N partner. The greatest deviation from the H2O-solubility rule of the phenol substituents are shown by NH2 CO, OH, and NO2 groups, which are rich in residual valency. The introduction of the $\rm NH_2$ CO group into the $\rm C_5H_5N$ partner also profoundly modifies the effect. these groups rich in residual valencies the position of the substituents in both partners has a strong influence on the result.

Determination of acetylsulphapyridine.—See A., 1940, III, 435.

Colorimetric determination of hippuric acid. G. Deniges (Compt. rend., 1939, 209, 972—974).— Hippuric acid (I) (0.05%; 5 c.c.) with NaOBr (2 c.c.) (cf. A., 1889, 139) at 100° (bath) 20 min. gives a red ppt. which when extracted with a known vol. of

CHCl₃ or Et₂O yields a red solution, the depth of colour being compared with that given by a standard solution of (I). 0.02% (I) (5 c.c.) gives a perceptible colour. BzOH does not interfere. NaOCl gives a similar, though less sensitive, reaction. J. L. D.

Comparison of colorimetric methods for the determination of nicotinic acid. W. R. ASHFORD and R. H. CLARK (Trans. Roy. Soc. Canada, 1939, [iii], **33**, III, 29—32).—The method of Karrer *et al*. (A., 1938, II, 302; III, 1026) as modified by Vilter et al. (A., 1938, III, 919) is quite unreliable for determining nicotinic acid (I). The colour fades rapidly, many other compounds interfere, and Et₂O used to remove the excess of 1:2:4-C₆H₃Cl(NO₂)₂ also removes some of its product with (I). In the method of Swaminathan (B., 1938, 974), results are affected by $p_{\rm H}$ (best 6.5—7.0), and piperidine, pyrrole, quinoline (II), 2-methylquinoline (III), C₅H₅N (IV), and furfuraldehyde (V) interfere. The colour produced fades more rapidly in cone. than in dil. solutions, Extraction of the coloured complex by iso-C₅H₁₁·OH is not practicable. The use of Pb(OAc)2 to remove protein is unsatisfactory, some (I) being adsorbed. The best method is that of Bandier et al. (A., 1939, II, 196), with which, however, (II)—(V) interfere.

Application of electrodialysis to isolation of alkaloids. I. From certain raw materials and their pharmaceutical products. II. In toxicological analysis for strychnine. P. Oficialski (Wiad. Farm., 1939, 66, 145—148, 161—165).— The alkaloids of Strychnos seeds, einchona bark, and sarsaparilla root are quantitatively isolated from suspensions of the material in aq. AcOH by electrodialysis; the same procedure is applicable to determination of strychnine in animal organs. The method does not give satisfactory results in the cases of morphine, cocaine, atropine, and ergot alkaloids, owing to oxidation and/or hydrolysis. R. T.

Kjeldahl determination of nitrogen in some alkaloids in presence of complex mercury, copper, and selenium catalysts. I. General. II. Experimental results. B. Drevon and Roussin (J. Pharm. Chim., 1940, [ix], 1, 18—24, 24—31).—I. A review of the literature (cf. Poe et al., A., 1935, 876, etc.).

II. A catalyst of ${\rm HgO} + {\rm CuSO_4, 5H_2O} + {\rm Na_2SeO_3}$ added to the ${\rm H_2SO_4}$ in the Kjeldahl determination of N in various alkaloids, using apparatus similar to that of Guillaume (A., 1927, 887) and Polonovski *et al.* (A., 1935, 1436), has no advantage over previous methods. That of Fleury *et al.* (A., 1924, ii, 273; 1925, ii, 66) remains the most satisfactory with morphine.

Determination of histidine. R. J. BLOCK (J. Biol. Chem., 1940, 133, 67—69).—Histidine (I) in protein hydrolysates is determined by pptn. as Ag salt at $p_{\rm H}$ 7·4, followed by fission of the Ag salt with $\rm H_2SO_4$, removal of Ag with $\rm H_2S$, and pptn. of (I) as an insol. salt with nitranilic acid. J. D. R.

Salting out of amino-acids from protein hydrolysates. Isolation of *l*-phenylalanine.—Sec A., 1940, III, 421.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

JUNE, 1940.

Elimination and metathetical reactions and the electronic theory of rearrangements. C. R. Hauser (J. Amer. Chem. Soc., 1940, **62**, 933—941).— Eliminations, metatheses, and rearrangements of org. compounds containing OH or halogen are discussed. Those effected by electron acceptors (acids, heavymetal salts) occur according to Whitmore's views, except that all the postulated steps may be simultaneous. Eliminations effected by bases occur by removal of H as proton, release of X (= halogen or OH) with a complete octet of electrons, and stabilisation of the mol. With strong bases (type I reactions) removal of H occurs before the other steps, but with weak bases (type II reactions) all three steps may be simultaneous. In a three-atom system stabilisation occurs by rearrangement to unsaturated products or by dimerisation, but in a two- or four-atom system unsaturated compounds are produced without rearrangement. Exchange reactions may occur as well as elimination, the anionic reagent attacking the C at the face most removed from X. Reactions of COcompounds and their hydrates with bases are discussed in detail. R. S. C.

Bromination of propane. A. GUYER and A. RUFER (Helv. Chim. Acta, 1940, 23, 533—541).— Thermal bromination of C₃H₈ is a chain reaction since it is decelerated by air, has an induction period, and the rate is altered by a change in the ratio of vol. to surface. The primary reaction is dissociation of Br followed by $C_3H_8 + Br \rightarrow C_3H_7 + HBr$, $C_3H_7 + Br_2 \rightarrow PrBr + Br$, $C_3H_8 + Br \rightarrow C_3H_7 + HBr$. Under all circumstances very large amounts of Pr^βBr are produced probably by the reactions, PraBr = $CHMe:CH_2 + HBr \Longrightarrow Pr^{\beta}Br.$ The formation of CH₂(CH₂Br)₂ and CMe₂Br₂ is probably due to further direct substitution whereas CH₂Br·CHMeBr probably arises by addition of Br to CHMe.CH2. Higher and unsaturated bromides are also produced. Increase in temp. increases the proportion of Pr^aBr but only slightly augments the amount of polybromides. Unsaturated compounds are markedly increased, particularly with high [Br]. Formation of polybrominated propancs increases greatly with [Br]; this has little influence on the unsaturated compounds, formation of which is mainly a function of temp., and scarcely affects the ratio of Pr^aBr to Pr^βBr. With diminishing time of reaction the relative amounts of polybromides and unsaturated compounds are diminished. The bromides of Fe, Cu, Tl, or Zn on pumice favour the production of greater or smaller amounts of polybromide probably by accelerating the decomp. of PraBrinto CHMe.CH2. The formation of unsaturated bromides is not greatly influenced by

N* (A., II.)

the catalysts which favour the production of tri- and tetra-bromides.

isoButane from normal butane.—See B., 1940, 343.

Catalytic alkylation of isobutane with gaseous olefines.—See B., 1940, 341.

Catalytic polymerisation of olefines.—See B., 1940, 343.

Separation of the isomeric hexenes by batch fractionation. A. Rose (J. Amer. Chem. Soc., 1940, 62, 793—795).—≼400 theoretical plates are required for sharp fractionation of isomeric hexenes of similar b.p.

Attempted separation of isomeric hexenes by fractional distillation. F. C. Whitmore, M. R. FENSKE, D. QUIGGLE, H. BERNSTEIN, T. P. CARNEY, S. Lawroski, A. H. Popkin, R. B. Wagner, W. R. WHEELER, and J. S. WHITAKER (J. Amer. Chem. Soc., 1940, **62**, 795—800).—The Podbielniak-Simons-Taylor column has an efficiency of ~15 theoretical plates and is ineffective for separation of hexene mixtures with b.p. ranges 1.5° or 2.7° (ef. Rose, preceding abstract). The work of Goldwasser et al. (A., 1939, I, 478, 479; II, 401) is erroneous.

Hydrogenation of octenes.—See B., 1940, 343.

Formation of $\alpha\beta$ -dichloroethane from ethylene and hypochlorous acid.—See A., 1940, I, 260.

Preparation of as-tetrachlorodifluoroethane. W. T. MILLER (J. Amer. Chem. Soc., 1940, **62**, 993).— CCl₂F·CClF₂ and AlCl₃ at 100° (5 hr.) give CCl₃·CClF₂ and small amounts of C₂Cl₆ (more on longer heating).

Removal of substituents from vinyl polymerides. F. T. Wall (J. Amer. Chem. Soc., 1940, 62, 803-806).—The fraction of Cl remaining in mixed vinyl chloride-vinyl acetate polymerides after treatment with Zn can be predicted using formulæ which are derived by statistical methods.

Nitration of ethane.—See B., 1940, 341.

Synthesis of *iso* propyl alcohol from propylene. I—III. M. KATUNO (J. Soc. Chem. Ind. Japan, 1940, 43, 5—8 $_{\rm B}$, 8—11 $_{\rm B}$, 11—14 $_{\rm B}$).—I. ${\rm Pr}^{\beta}{\rm HSO}_4$ is rapidly hydrolysed in H_2SO_4 without formation of Pr^{β}_2O or C_3H_6 if the conen. of acid is >40%; the Pr^BOH is quantitatively obtained by distillation if the amount of H₂O used is that required for hydrolysis and formation of the azeotropic mixture. Absorption of C₃H₆ is best effected by 87% H₂SO₄, but is improved by use of 68% acid and a little Ag₂SO₄, which accelerates absorption.

II. Apparatus for the reactions $2C_3H_6 + H_2SO_4 \rightarrow Pr^{\beta}_2SO_4 \rightarrow 2Pr^{\beta}OH + H_2SO_4$ is described. The reaction mechanism is discussed.

III. Hydrolysis of $Pr^{\beta}_{2}SO_{4}$ is investigated. Formation of $Pr^{\beta}HSO_{4}$ is rapid in $H_{2}O$, but further

hydrolysis to Pr^{\$OH} requires H⁺ or OH'.

R. S. C.

Physical constants of pentan-γ-ol. F. C. Whitmore and J. D. Surmatis (J. Amer. Chem. Soc., 1940, 62, 995).—EtCHO (prepared from Pr^aOH by Cu-dehydrogenation), b.p. 48·0°/736 mm., and MgEtCl-Et₂O give 60% of CHEt₂·OH, b.p. 114·4°/740 mm. Commercial (Sharples) CHEt₂·OH yielded 27% of the pure alcohol. R. S. C.

Electrochemical oxidation of *n*-hexanol. W. R. Lowstuter and A. Lowy (Trans. Electrochem. Soc., 1939, 77, Preprint 21, 263—270).—*n*-C₆H₁₃·OH (I), oxidised electrochemically, yields *n*-C₅H₁₁·CO₂H (II), *n*-C₅H₁₁·CO₂C₆H₁₃, and small amounts of CO₂, CO, and a residue of high b.p. Max. current efficiency of 59·9%, calc. only as oxidation to (II), is obtained with an electrolytically prepared PbO₂ anode in 9% (I) in 5% H₂SO₄ at 12°, using a c.d. of l·l amp. per sq. dm. D. F. R.

Preparation of unsaturated higher alcohols. IV. S. Komori (J. Soc. Chem. Ind. Japan, 1940, 43, 34—35B; cf. A., 1939, II, 491).—Hydrogenation of unsaturated esters to unsaturated higher alcohols is well effected in presence of Cd chromite at 335°. X-Ray diagrams show that the catalyst does not contain CdO or Cr₂O₃. Co chromite may also be used, but Cd vanadate, tungstate, or molybdate is less satisfactory.

R. S. C.

Phenolic sugar alcohols.—See B., 1940, 343.

Keten acetals. IV. Polymerides of keten diethyl acetal. P. R. Johnson, H. M. Barnes, and S. M. McElvain (J. Amer. Chem. Soc., 1940, 62, 964—972; cf. A., 1938, II, 427).— $CH_2:C(OEt)_2$ (I) is stable in new Pyrex glass at 190—240° (6 hr.), in new soft glass in diffuse light at room temp., or in old glass washed with aq. alkali or in presence of KOBu^γ. Polymerisation occurs in acid-washed glass. Bz₂O₂ is without effect, but the following relative efficiency of catalysis is reported: AlCl₃ > FeCl₃ > ZnCl₂ > CdCl₂ > CoCl₂ > NiCl₂ > BaCl₂, HgCl₂, CaCl₂, the stability of the polymerides varying. CdCl₂ (0·06%) gives a wax, containing 45% of (I) and a white, solid polymeride (II), stable at 200° and to boiling 10% NaOH. Dil. acid at room temp. converts (II) into a red oil; boiling dil. acid gives a reddish-black glass (III) and CO₂. Little EtOH is lost in formation of (II), but more is lost during acid hydrolysis. is sol. in, but unchanged by, aq. alkali. The amount of CO2 evolved, analysis of (III), and KMnO4 oxidation of (III) to CO₂ (80%) and AcOH indicate that (II) is about (OEt)₂CMe·[CH₂·C(OEt)₂]₂₁·CH₂·C(OEt)₃ and (III) about COMe·[CH:C(OH)₂]₂₁·Me. The insolution of EtoH) bility indicates cross-linking (intermol. loss of EtOH) in (II), but this cannot be extensive owing to the high OEt content. 10% H₂SO₄ and (III) at 200° give only traces of COMe₂ and AcOH but 5% NaOH gives larger amounts thereof and a reddish-black substance (IV) (structure proposed), which on repeated hydrogenation (Raney Ni; 225°/200 atm.; 1% NaOH)

gives a colourless solid (12%) with EtOH, AcOH, and a red oil. Polymerisation of (I) by 0.36% of CdCl₂ is exothermic and gives 13% of unstable dimeride, b.p. 61—62°/0.5 mm., probably

(OEt)₂CMe·CH:C(OEt)₂ (with 5% H₂SO₄ gives COMc₂ and with HCl-EtOH gives CH₂Ac·CO₂Et), 20% of a trimeride (V), CMc(OEt)₃, EtOH, and a solid similar

to (II). (V) may be

(OÈt)₂CMe·CH₂·C(OEt)₂·CH:C(OEt)₂, but is isolated after distillation as (?) 1:1:3:3:5:5-hexaethoxy-cyclohexane (VI), b.p. 91—92°/0·1 mm., with some EtOH. With 5% H₂SO₄, (VI) gives a little s-C₆H₃(OEt)₃ [not formed from (V)]. A trace of acid in boiling 95% EtOH converts (VI) into CH₂Ac·CO·CH₂·CO₂Et. Absence of head-to-head

CH₂Ac·CO·CH₂·CO₂Et. Absence of head-to-head polymerisation is confirmed by absence of (CH₂·CO₂H)₂ when (IV) is oxidised with HNO₃ and is due to the strength of the anionoid centre in (I). CHHal:C(OEt)₂ and CHal₂·C(OEt)₂ are stable to light, CdCl₂, and Bz₂O₂. BF₃ or BF₃,Et₂O converts CHHal:C(OEt)₂ slowly into a red oil. R. S. C.

Kinetics of decarboxylation in solution.—See A., 1940, 1, 260.

Mechanism of polymerisation of vinyl acetate and methyl vinyl ketone.—See A., 1940, I, 263.

Chlorinations with sulphuryl chloride. III.

(a) Peroxide-catalysed chlorination of aliphatic acids and acid chlorides. (b) Photochemical sulphonation of aliphatic acids. M. S. Kharasch and H. C. Brown (J. Amer. Chem. Soc., 1940, 62, 925—929; cf. A., 1940, II, 72).—In absence of catalysts and in the dark, boiling aliphatic acids and acid chlorides do not react with SO₂Cl₂. In presence of peroxides (Bz₂O₂) chlorination occurs nearly quantitatively (except for AcOH or AcCl), preferentially at a C remote from the CO. Dilution with CCl₄ is advisable for the acids. Thus EtCO₂H gives Cl·[CH₂]₂·CO₂H (55%) and CIIMeCl·CO₂H (45%). EtCOCl gives Cl·[CH₂]₂·COCl (60%) and CHMeCl·COCl (40%). Pr^{\$\textit{PCO}\$}COCl (60%) and CMe₂Cl·CHMe·CO₂H (85%) and CMe₂Cl·CO₂H (15%). Pr^{\$\textit{PCO}\$}COCl (20%). Pr^{\$\textit{PCO}\$}COLH (20%), and CHEtCl·CO₂H (45%), CHMeCl·CH₂·CO₂H (45%), and CHEtCl·CO₂H (10%). Pr^{\$\textit{PCO}\$}COCl gives Cl·[CH₂]₃·COCl (30%), CHMeCl·CH₂·COCl (55%), and CHEtCl·COCl (15%).

CH₂Cl·CHMe·CO₂H (85%) and CMe₂Cl·CO₂H (15%). Pr^βCOCl gives CH₂Cl·CHMe·COCl (80%) and CMe₂Cl·COCl (20%). Pr^αCO₂H gives Cl·[CH₂]₃·CO₂H (45%), CHMeCl·CH₂·CO₂H (45%), and CHEtCl·CO₂H (10%). Pr^αCOCl gives Cl·[CH₂]₃·COCl (30%), CHMeCl·CH₂·COCl (55%), and CHEtCl·COCl (15%). Bu^αCO₂H gives β-chloro-αα-dimethylpropionic acid, m.p. 40—42°, b.p. 126—129°/30 mm. (amide, m.p. 108—109°), and Bu^αCOCl gives the corresponding chloride, b.p. 85—86°/60 mm. AcOH gives ≯50% of CH₂Cl·CO₂H, but AcCl does not react even in boiling PhCl. I catalyses reaction of EtCOCl at 70°, but only CHMeCl·COCl, formed by dissociation of SO₂Cl₂ into SO₂ and Cl₂, is obtained. In light and absence of catalysts sulphonation occurs, mainly at C_(β). Boiling EtCO₂H and SO₂Cl₂, when irradiated, give 37% of SO₃H·[CH₂]₂·CO₂H, + 0·5H₂O (or more) (Ba salt, +5H₂O; anhydride, m.p. 76—77°); Pr^αCO₂H and Bu^βCO₂H are also sulphonated (no details), but AcOH does not react. Sulphonation of cyclohexane by SO₂Cl₂ in light is catalysed (5% yield) by AcOH. R. S. C.

Purification of fatty esters of high mol. wt. L. O. Buxton and R. Kapp (J. Amer. Chem. Soc.,

1940, 62, 986).—These esters are purified by dissolution in $(CH_2Cl)_2$, neutralisation by 38% KOH (amount determined by titration), filtration, and distillation.

Hydrolysis of fats and fatty acid esters.—See A., 1940, I, 260.

Mechanism of pyrolysis of castor oil. S. Ishikawa, T. Tosimitu, A. Miyata, J. Araki, and R. Someno (Sci. Rep. Tokyo Bunrika Daigaku, 1939, 3, 273—285).—Pyrolysis of castor oil (I) in presence of SiO₂ or sea-sand (better than borax-pumice) at $480-500^{\circ}$ gives $n\text{-}\mathrm{C}_6\mathrm{H}_{13}\text{\cdot}\mathrm{CHO}$ and $C\mathrm{H}_2\text{:}\mathrm{CH}\text{\cdot}[\mathrm{CH}_2]_7\text{\cdot}\mathrm{CO}_2\mathrm{H}$ (II) with small amounts of $n\text{-}\mathrm{C}_6\mathrm{H}_{13}\text{\cdot}\mathrm{CH}\text{\cdot}\mathrm{C}(\mathrm{C}_5\mathrm{H}_{11}\text{-}n)\text{\cdot}\mathrm{CHO}$ (2:4-dinitrophenylhydrazone, m.p. 128°), the corresponding alcohol, $n\text{-}\mathrm{C}_6\mathrm{H}_{13}\text{\cdot}\mathrm{CO}_2\mathrm{H}$, and $n\text{-}\mathrm{C}_7\mathrm{H}_{15}\text{\cdot}\mathrm{OH}$. Addition of metal oxides, except possibly $\mathrm{Mo}_2\mathrm{O}_5$, to the SiO₂ does not improve the yield. The structure of (II) is confirmed by oxidation with KMnO₄ and O₃. (II) does not rearrange to CHMe·CH·[CH₂]_6·CO₂H. Citronellal at 420° gives only a little Δ³:8-p-menthadicne and l-menthol gives only a little Δ³:8-p-menthene. Oleic acid gives no aldehyde. Pyrolysis of (I) follows conjugation of the OH with C·C. R. S. C.

Fatty acids. V. Preparation of methyl ricinoleate and ricinoleic acid by fractional crystallisation. J. B. Brown and N. D. Green (J. Amer. Chem. Soc., 1940, 62, 738—740; cf. A., 1939, II, 4).—Crystallisation of Me ricinoleate (prep. from castor oil described) from COMe₂ at $\sim -50^{\circ}$ gives a 99·5%-pure ester, m.p. -4° or $-4\cdot5^{\circ}$, $[\alpha]_{5}^{33}$ $+7\cdot41^{\circ}$ or $[\alpha]_{2}^{27}$ $+5\cdot19^{\circ}$ in COMe₂. Hydrolysis and subsequent low-temp. crystallisation gives a 95·6%-pure acid, m.p. $5\cdot5^{\circ}$, $[\alpha]_{5}^{30}$ $+7\cdot15^{\circ}$ in COMe₂. R. S. C.

Chlorinated oils. T. Matsumoto and S. Iwai (J. Soc. Chem. Ind. Japan, 1940, 43, 16—18B).—Addition of Cl₂ to linseed, sardine, or olive oil in CCl₄ occurs mainly at one ethylenic linking. Some evolution of HCl occurs and in this decomp. colloid formation, evidenced by increase in η , occurs.

R. S. C. Structure of pantothenic acid. R. J. WILLIAMS and R. T. Major (Science, 1940, 91, 246).—The cryst. lactone, $C_6H_{10}O_3$, m.p. 91—92° (from Ba pantothenate concentrates), is α-hydroxy-ββ-dimethyly-butyrolactone. Condensation with β-alanine gives physiologically-active pantothenic acid. L. S. T.

Calythrone. A. R. Penfold and J. L. Simonsen (J.C.S., 1940, 412—415).—The essential oil from Calythrix tetragona when extracted with aq. NaOH gives the Na salt, m.p. (+xH₂O) 110—111°, (anhyd.) 196°, of calythrone (I), CO—OCH·COBuβ, b.p. 142°/14 mm. (Cu derivative, m.p. 208—210°), which is oxidised by aq. NaOH–NaOBr to CHBr₃, BuβCO₂H, dimethylmaleic anhydride (II), and a Br₂-acid, probably CHBr₂·CO·CMe·CMe·CO₂H, m.p. 129°. (I) has β-diketonic properties, due to the opening of the lactone ring; its dioxime anhydride, m.p. 135°, is considered to be CO

CMe·CMe

CH·COBuβ. (II) has pseudoketonic properties, giving a semicarbazone, m.p. 238° (when rapidly heated, 248°), and a p-

nitro-, m.p. 214°, and a 2:4-dinitro-phenylhydrazone, decomp. 253—255°. These are sol. in aq. Na_2CO_3 , and are therefore $CO \longrightarrow C$:NR, rather than $CO \longrightarrow NR$ CO. (II) is reduced catalytically to meso- and by Clemmensen reagent to dl-s-dimethylsuccinic acid, and is oxidised to $AcCO_2H$. With p- C_6H_4Ph ·CO· CH_2Br and aq. KOH, followed by MeOH, (II) gives p-phenylphenacyl Me dimethylmaleate, m.p. 95°.

Long-chain acids. II. Aleuritic acid. P. C. MITTER and P. C. DUTTA (J. Indian Chem. Soc., 1939, 16, 673—676).—OPh·[CH₂]₅·Br and CH₂Ac·CO₂Et (2 mol.) with Na–EtOH give Et ω-phenoxypentamethyleneacetoacetate, b.p. 180°/3 mm., which with Na–Et₂O and COCl·[CH₂]₈·CO₂Et affords after hydrolysis (EtOH–KOH) o-phenoxy-ι-ketopalmitic acid, m.p. 89° (Et ester, b.p. 252°/2 mm., m.p. 50°). This with HBr–AcOH gives o-bromo-ι-ketopalmitic acid, m.p. 69°, in poor yield, which with AcOH–KOAc, followed by esterification (EtOH–HCl), yields Et o-acetoxy-ι-ketopalmitate, b.p. 219—220°/3 mm., m.p. 54—55°, which could not be satisfactorily reduced.

Dialkyl adipates. R. A. Feagan, jun., and J. E. Copenhaver (J. Amer. Chem. Soc., 1940, 62, 869—870).—The following are prepared from ROH and the acid at 150—155° or acid chloride at slightly > room temp.: di-n-amyl, m.p. -14°, -hexyl, m.p. -9° to -7°, -heptyl, m.p. 3·8—4·5°, -octyl, m.p. 9·5—9·8°, -nonyl, m.p. 21·6° (lit. 17—18·5°), -decyl, m.p. 27·4°, -undecyl, m.p. 34·7°, -dodecyl, m.p. 39·3°, -tridecyl, m.p. 45·9°, -tetradecyl, m.p. 49·4°, -pentadecyl, m.p. 55°, -hexadecyl, m.p. 57·3° (lit. 53°), -heptadecyl, m.p. 61·8°, -octadecyl, m.p. 63·4°, -nonadecyl, m.p. 66·7°, and -eicosyl, m.p. 65·2°, adipate. There is only slight alternation in m.p., which are corr. R. S. C.

Polarimetric study of action of heat on crystalline *l*-malic acid. R. Descamps (Bull. Soc. chim. Belg., 1940, 49, 1—20).—[α] of specimens of cryst. *l*-malic acid (I) heated at 85° to 120° increases with the time of heating, the curves being usually S-shaped and tending to an upper limit for temp. $<100^{\circ}$, whilst those for temp. $>100^{\circ}$ show a max. The rotatory dispersion ($\lambda\lambda$ 5893—4358), which is anomalous in solutions of the unchanged substance, becomes less so as the heating proceeds. The products, as in the case of aq. solutions (cf. A., 1939, II, 468), are fumaric acid and one or more optically active dehydration products. Here also the Darmois rule is applicable.

Optical activity and chemical structure in tartaric acid. X. Influence of substituent and solvent effect. Y. TSUZUKI (Bull. Chem. Soc. Japan, 1940, 15, 55—59).—Data on $[M]_D^{20}$ for compounds CHR<0·CH·CO₂Et (A) in C₆H₆, EtOH, and cyclohexane (I) are given. The lævorotation diminishes as the parachor of R increases, in accordance with the rule found (A., 1939, I, 357) for compounds A with CR'R" for CHR, and the sequence of solvent effects is also the same, viz., C₆H₆ > EtOH > (I).

The following are described: Et_2 d-butylidenedioxy-succinate (R = Pra), b.p. $160^{\circ}/15$ mm., $[\alpha]_{D}^{20}$ -55·80°; Et_2 d-isobutylidenedioxysuccinate (R = Prb), b.p. $160^{\circ}/20$ mm., $[\alpha]_{D}^{20}$ -54·17°; Et_2 d-heptylidenedioxy-succinate, b.p. $190^{\circ}/16$ mm., $[\alpha]_{D}^{20}$ -41·76°. Vals. of $[\alpha]_{D}^{20}$ in C₆H₆, EtOH, and (I) are also recorded.

F. J. G.

Improved preparation of *DL*-threonic and
-erythronic acids. J. W. E. GLATTFELD and E.
RIETZ (J. Amer. Chem. Soc., 1940, 62, 974—977).—
CH₂:CH·CH₂·CN and Br in Bu^νOH and light petroleum
give the dibromide, converted by NaOEt-EtOH into
CH₂Br·CH:CH·CN (55%), b.p. 80—85°/12 mm. The
dibromide, prepared from CH₂·CH·CH₂·CO₂Et (I) by
Br in Bu^νOH, with NaOEt at 0° gives 60% of
CH₂Br·CH:CH·CO₂Et (II). CH₂Cl·CH:CH·CO₂Et,
similarly prepared in 65% yield, is hydrolysed and
oxidised (OsO₄-BaClO₃) to *DL*-threonic acid (59%).
At <35° (I) similarly gives β-hydroxybutyrolactone
(35%), which with P₂O₅ in dioxan gives isocrotonolactone (53%) and thence *DL*-erythronolactone
(45%).
R. S. C.

Preparation of alkali bismuth saccharates. G. O. DOAK (J. Amer. Pharm. Assoc., 1940, 29, 108—111).—The following were prepared by interaction of Bi(OH)₃ with saccharic acid and the appropriate alkali in H₂O: K_2 di- (I), Na di-, Na K di- and K_2 tri-bismuthylsaccharate. (I) with 10% HCl affords dibismuthylsaccharic acid. (I) is more stable in H₂O or serum than the corresponding tartrate or gluconate.

F. O. H. Manufacture of formaldehyde.—See B., 1940, 343.

Aldehydic perfumes. III. Synthesis of β-hydroxynonaldehyde. S. Ishikawa and T. Sakurai (Sci. Rep. Tokyo Bunrika Daigaku, 1939, 3, 287—289; cf. A., 1939, II, 406).—The aldehyde [2:4-dinitrophenylhydrazone, m.p. 124-6° (corr.)] is prepared from castor oil by oxidation by KMnO₄ to θικ-trihydroxystearic acid, m.p. 122—123°, and thence by Pb₃O₄-Ac₂O-AcOH.

R. S. C.

Biochemical preparation of aliphatic ketones.—See A., 1940, III, 540.

Thermal decomposition of diacetyl.—See A., 1940, I, 259.

Reducing powers of various sugars with alkaline copper citrate reagent. H. S. ISBELL, W. W. PIGMAN, and H. L. FRUSH (J. Res. Nat. Bur. Stand., 1940, 24, 241-246).—Scales' method (A., 1919, ii, 435), modified by increasing the time of boiling to 6 min., is convenient for determining reducing sugars. Sugars with OH at C₍₃₎ trans to OH at C₄ and C₅ have the highest reducing power, whilst those with OH at C₍₃₎ or C₍₄₎ in the *cis* position have a lower reducing power. The configuration of OH at C₍₂₎ does not greatly affect the reducing power. When the glycosidic linkage of a disaccharide is at C₍₃₎ the mol. reducing power is < that of the corresponding monosaccharide, but if the linking is at $C_{(4)}$ or $C_{(6)}$ the reducing power is slightly > that of the monosaccharide. Under the conditions used the presence of BaBr₂ (6.5%) decreases the reducing val. by $\sim 4\%$. J. W. S.

 α - and β -Methyl lyxosides, mannosides, gulosides, and heptosides of like configuration. H.S. ISBELL and H. L. FRUSH (J. Res. Nat. Bur. Stand., 1940, **24**, 125—151; cf. A., 1937, II, 177).—d-Lyxose refluxed with HCl-MeOH affords α-methyl- (I), m.p. 108° (cf. Phelps et al., A., 1926, 501) [CaCl₂ compound (+2H₂O), $[\alpha]_{D}^{20}$ +31·3° in H₂O], and β -methyl-dlyxopyranoside, m.p. 118°, $[\alpha]_{D}^{20}$ –128·1° in H₂O (triacetate, m.p. 88–89°, $[\alpha]_{D}^{20}$ –109·5° in CHCl₃); the latter and HIO₄ give a substance, $[\alpha]_D^{20}$ -125.5° [cf. product from (I), Maclay et al., A., 1938, II, 430]. β-Methyl-d-mannopyranoside tetra-acetate and Ba(OMe)₂-MeOH, followed by Pr^βOH, yield β-methyld-mannopyranoside Pr^{\$\beta\$} alcoholate, m.p. 74—75° $[\alpha]_D^{20}$ -53.3° in H_2O , stable in presence of Pr^BOH vapour; Pr^{\beta}OH is lost at 105° in vac.; 70% of the $Pr^{\beta}OH$ is lost at 77° in O_2 . α -Methyl-d- α -galaheptopyranoside is prepared, identical with the compound named as the β -form (cf. Hann et al., A., 1936, 193); nomenclatures are discussed. d- α -Galaheptose hydrate and Me₂SO₄-NaOH, then Ac₂O, give β-methyld-α-galaheptopyranoside penta-acetate, m.p. 171—173°, [\alpha]_{D}^{20} +77.6° in CHCl₃, converted by Ba(OMe)₂-MeOH into β -methyl-d- α -galaheptopyranoside. d- α -Glucoheptose and HCl–MeOH give β - (CaCl₂ compound, +2H₂O, $[\alpha]_{\rm D}^{20}$ -56·1° in H₂O) and α -methyl-d- α glucoheptopyranoside, m.p. $106-107^{\circ}$, $[\alpha]_{D}^{20}+111\cdot 5^{\circ}$ in $H_{2}O$ (penta-acetate, m.p. $174-175^{\circ}$, $[\alpha]_{D}^{20}+107\cdot 4^{\circ}$ in CHCl₃; cf. product, m.p. 169°, of Haworth et al., A., 1932, 46), the latter being isolated by decomp. of its $CaCl_2$ compound $(+H_2O)$, $[\alpha]_D^{20}$ $+69\cdot1^{\circ}$ in H_2O . d-β-Galaheptose and HCl-MeOH give α-methyl-d-β-galaheptopyranoside, m.p. 154—155°, [α]_D²⁰ —108° in H₂O (cf. Hann et al., A., 1937, II, 178). Photomicrographs of the new glycosides are shown. The configurations of all asymmetric C in the pyranose ring affect the rate of hydrolysis. There is no fixed relationship between the configuration of the glycosidic C and the relative rates for hydrolysis of the αand β-modifications. Aldopyranosides having transconfigurations for $C_{(1)}$ and $C_{(3)}$ are hydrolysed more slowly than the corresponding cis-forms. Mol. rotations of the methylglycopyranosides are compared and there is support for classifying the methyl-lyxopyranosides in the d-mannose rather than the lgulose series.

Use of the benzyl radical in syntheses of methylated sugars. I. 4:6-Dimethylglucose. D. J. Bell and J. Lorber (J.C.S., 1940, 453—455).—The prep. of 4: 6-dimethylglucose (I) (A., 1937, II, 484) is easily effected by converting the 2:3-diacetate of 4: 6-benzylidene-α-methylglucoside (II) (Mathers et al., A., 1933, 938) by KOH and CH2PhCl in xylene at 95—100° into the 2: 3- $(CH_2Ph)_2$ derivative (III), m.p. 93°, $[\alpha]_D^{20}$ -31·2° (all rotations in CHCl₃), of (II). Aq. HCl in boiling COMe₂ hydrolyses (III) to 2:3-dibenzyl- α -methylglucoside, m.p. 75—76°, [α]_D¹⁸ +18·8°. When methylated by Purdie's reagents, either directly or after treatment with Mc2SO4-NaOH in this gives 2:3-dibenzyl- $\overline{4}:6$ -dimethyl- α methylglucoside, b.p. 215-220° (bath)/0.03 mm., $[\alpha]_D^{18} + 32.9^\circ$, which is debenzylated by Na in EtOH to 4:6-dimethyl- α -methylglucoside, b.p. 160° (bath)/ 0.5 mm. This [which with p-C₆H₄Me·SO₂Cl in C₅H₅N

gives its 2:3-di-p-toluenesulphonate, new m.p. 113° (cf. Mather et al., A., 1933, 1037)] is hydrolysed by N-HCl at 100° to (I).

E. W. W.

Cleavage of the carbon chain of β -glucosan by periodic acid. E. L. Jackson and C. S. Hudson (J. Amer. Chem. Soc., 1940, **62**, 958—961).—β-Glucosan (I) consumes 2 HIO₄, giving HCO₂H (1 mol.) and L'-oxy-D-methylenediglycollic dialdehyde, $[M]_{D}$ -15.0°, $Sr<_{O\cdot CO}^{O\cdot CO}$ oxidised by Br-SrCO₃ to Sr L'-oxy-Dmethylenediglycollate (II) (45%), HÇ- $+5H_2O$, $+H_2O$, $[\alpha]_D^{20} +36.9^\circ$ in H_2O , ĊH₂ and anhyd., with smaller amounts (II.)of SrC_2O_4 and Sr *D*-glycerate. The accepted structure of (I) is thus confirmed. (I) is stable to 2.5n-HCl.

Glucofuranosides and thioglucofuranosides. VII. Crystalline alkylfuranosides and dimethyl acetal of d-mannose. A. Scattergood and E. Pacsu (J. Amer. Chem. Soc., 1940, 62, 903—910; cf. A., 1939, II, 407).—60% of α-methyl-d-mannofuranoside (I) is obtained from mannose Et₂ mercaptal (II) by HgCl₂-MeOH, Hg being a permissible reagent for removal of excess of HgCl₂ in this and other cases. In this and other preps. of (I) the mother-liquors contain β-methyl-d-mannofuranoside (III), m.p. 47°, $[\alpha]_D^{20}$ -12.6° in H_2O , isolated as $CaCl_2$ compound, $+3H_2O$, $[\alpha]_D^{20}$ -58.5° in H_2O , and recovered therefrom by Ag₂C₂O₄. CaCl₂ influences the α of (III). The tetra-acetate, m.p. 61—62°, of (I) has $[\alpha]_D^{20}$ -108.8° in CHCl₃, $+120.3^{\circ}$ in cis- and $+105.3^{\circ}$ in trans-(CHCl:)2. The mercaptal method gives also α-ethyl-, m.p. 90°, $[\alpha]_D^{20} + 105 \cdot 0^\circ$, α-n-, m.p. 96°, $[\alpha]_D^{20} + 96 \cdot 0^\circ$, and α-iso-propyl-d-mannofuranoside, m.p. 96·7°, $[\alpha]_D^{20} + 96 \cdot 7^\circ$ (all in H₂O). The penta-acetate of (II) with HgCl₂-MeOH gives a penta-acetate, hydrolysed by NaOMe-MeOH to mannose Me_2 acetal, m.p. 101°, $[\alpha]_D^{20} + 0.6^\circ$ in H_2O , stable in H₂O or alkali but converted in 0.05% HCl first into (I) and (III) $(k \ 0.024)$ and then into d-mannose $(k \ 0.024)$ 0.00118). Introduction of the F term (A., 1940, II, 6) (= -4475) accounts for the [M] of the mannose derivatives. Fischer-Hirschfelder models are used to prove the contention (loc. cit.) that only one cis- and one trans-form of aldohexopyranoses are possible; the cis-form is unstable by repulsion. F must be due to the orientation about the C-O linkings of all the OH, probably owing to H linkings.

Monothioacetals of galactose. M. L. Wolfrom and D. I. Weisblat (J. Amer. Chem. Soc., 1940, 62, 878—880).—d-Galactose Et₂ mercaptal penta-acetate and POCl₃ in boiling AcCl give aldehydo-1-chloro-1-ethylthiol-d-galactose penta-acetate, m.p. 111—113°, $[\alpha]_D^{22}$ —27° in CHCl₃, unstable, which with CaSO₄ and Ag₂CO₃ in MeOH or EtOH gives d-galactose Me_2 , m.p. 119—120°, $[\alpha]_D^{22}$ +42·5° in CHCl₃, and Et_2 monothioacetal penta-acetate, m.p. 104—105°, $[\alpha]_D^{22}$ +50° in CHCl₃, hydrolysed by cold NaOMe-MeOH to d-galactose Me_2 , m.p. 146—147°, $[\alpha]_D^{22}$ +50° in H₂O, and Et_2 monothioacetal, m.p. 155—156°, $[\alpha]_D^{22}$ +53° in H₂O, respectively, stable to hot Fehling's solution unless previously hydrolysed by acid (gives RSH). \mathbb{N}^{**} (A., II.)

d-Galactose Me₂ acetal penta-acetate and AcCl at 0° give aldehydo-1-chloro-1-methoxy-d-galactose penta-acetate, m.p. 155—156°, $[\alpha]_D^{22}$ —38° \rightarrow +15° in 24 hr. in CHCl₃, —53° \rightarrow —42·5° in 10 hr. in C₆H₆.

Walden inversion in the altrose series. G. J. ROBERTSON and W. WHITEHEAD (J.C.S., 1940, 319-323).—4: 6-Benzylidene-2: 3-anhydro- α -methylalloside (I) with boiling aq. KOH gives 4:6-benzylideneα-methylaltroside (II) (cf. A., 1935, 1225), which with $p\text{-}\mathrm{C_6H_4Me}\text{-}\mathrm{SO_2Cl-}\mathrm{C_5H_5N}$ gives its 2:3-di-p-toluene-sulphonate (III), m.p. 170—175°, [a]_b^{15} +46.9° in CHCl_a. With NaOMe-MeOH, this gives a quant. yield of 4: 6-benzylidene-2: 3-anhydro-α-methylmannoside (IV), identical with that obtained from 4:6benzylidene-α-methylglucoside 2-p-toluenesulplionate (V) (loc. cit.). Thus hydrolysis of (III), like that of (V), involves Walden inversion at C₍₃₎. Hydrolysis of (IV) by aq. KOH gives a quant. yield of (II). 50% Aq. N_2H_4 , H_2O at $110-120^\circ$ opens the (CH₂)₂O rings of (IV) and of (I) in 12 and 30 hr., respectively. The product from (IV) is 4:6-benzylidene-3-hydrazino- α -methylaltroside, m.p. 196°, $[\alpha]_5^{17}$ +53.7° in C_5H_5N , since with conc. HCl at room temp. it gives pyrazolyl-5-α-glycerol hydrochloride. The isomeride, from (I), is therefore 4:6-benzylidene-2-hydrazino- α -methylaltroside, m.p. 144°, $[\alpha]_D^{15} + 67.96^\circ$ in CHCl₃. The 3:6-anhydro-ring in altrose is formed from 2-methyl-α-methylaltroside 3-p-toluenesulphonate (VI), m.p. 118°, $[\alpha]_D^{15} + 88.1^\circ$ in CHCl₃, obtained by hydrolysing its 2:3-CHPh: derivative (loc. cit.) by dil. HCl in COMe₂ on the water-bath to const. rotation. The 4:6- Bz_2 derivative, m.p. 113°, $[\alpha]_D^{10} + 94.69^\circ$ in CHCl₃, of (VI) is hydrolysed by boiling MeOH– NaOMe to a dark product which after acidification gives 2-methyl-3: 6-anhydro- α -methylaltroside (VII), m.p. 107—108°, $[\alpha]_D^{14}$ +105·1° in CHCl₃. Under milder conditions, e.g., at room temp., (VI) only is obtained. Under no conditions is the theoretically possible 3:4-anhydro-compound obtained. 2n-KOH at 100°, or 10% NaOMe-MeOH, (VII) is stable; with boiling 5% HCl, (VII) gives, with decomp., 2-methyl-3:6-anhydroaltrose, a syrup, $[\alpha]_b^{16} + 81 \cdot 27^\circ$ in CHCl₃, $+106 \cdot 3^\circ$ in H₂O. Methylation of (VII) by the Purdie reagents gives the fully methylated 2:4-dimethyl-3:6-anhydro-α-methylaltroside, a syrup, [α]_b¹⁰ +69·04° in CHCl₃. A further unsuccessful attempt to obtain a 3:4-anhydro-compound was made. With CPh₃Cl in C₅H₅N at 100°, (VI) gives its 6-CPh₃ derivative (VIII) [4-acetate (IX), m.p. 165°, $[\alpha]_D^{15} + 72.4^{\circ}$ in CHCl₃], in the form of a glass containing (VI). Alkaline hydrolysis of (IX) does not give a 3: 4-anhydro-ring: mild agents give (VIII), while more powerful cause resinification. Apparently a Walden inversion from trans- to cis-formation is necessary before the 3:4-ring can be obtained. E. W. W.

Ring-structure of *D*-altrosan. N. K. RICHT-OH-CH MYER and C. S. HUDSON (J. Amer. Chem. Soc., 1940, 62, 961—964).—

D-Altrosan consumes 2 HIO₄, giving HCO₂H (1 mol.) and an aldehyde, oxidised to *L'*-oxy-*D*-methylenediglycollic acid, and thus is (I). Manufacture of fructose. I. Decomposition of fructose with acid. I. Determination of reaction constant at high temperature. K. Fujino and Y. Arao (Rept. Inst. Sci. Res. Manchoukuo, 1940, 4, 17—24).—At 120° and in presence of acid, decomp. of fructose (I) increases with increase in time of heating, concn. of (I), and vol. of acid used. The rate of change, which is > that of glucose, is greatest at the beginning of the reaction.

Structure of difructose anhydride III (difructofuranose 1:2':2:3'-anhydride). E. McDonald and R. F. Jackson (J. Res. Nat. Bur. Stand., 1940, 24, 181—204; cf. Haworth et al., A., 1932, 724).—Difructose anhydride I (difructofuranose 1:2':2:1'-anhydride) or III (the 1:2':2:3'anhydride) (A) and Me₂SO₄-aq. NaOH at 70°, then MeI-Ag₂O, afford 3:4:6:3':4':6'-hexamethyldifructofuranose 1:2':2:1'-anhydride, b.p. $170-175^{\circ}/0.01$ mm., $[\alpha]_{D}^{20}+23\cdot7^{\circ}$ in CHCl₃, and 3:4:6:1':4':6'-hexamethyldifructofuranose 1:2':2:3'-anhydride, b.p. $161-165^{\circ}/0.417$ mm., $[\alpha]_D^{20}$ +157.9° in CHCl₃, respectively. The latter compound is hydrolysed by 0.8n-HCl at 95° to 3:4:6- (I) and 1:4:6-trimethylfructofuranose; oxidation (HNO₃) gives monobasic acids and thence esters, which are oxidised by acid BaMn₂O₈ to trimethylarabonolactone, derived from (I). (A) and CPh₃Cl-C₅H₅N at 80°, then at room temp., give 6:1':6'-tri(triphenylmethyl)difructofuranose $1:\bar{2}':2:3'$ anhydride, m.p. 127°, $[\alpha]_D + 64\cdot2^\circ$ in CHCl₃, converted by $Ac_2O-C_5H_5N$ at 100° (bath) into its triacetate, $[\alpha]_D + 65\cdot2^\circ$ in CHCl₃, which is methylated by Me_2SO_4 aq. NaOH-COMe₂ to 6:1':6'-tri(triphenylmethyl)-3:4:4'-trimethyldifructofuranose 1:2':2:3'-anhydride, $[\alpha]_D^{24} + 70.2^{\circ}$ in CHCl₃. CPh₃ is removed from the latter by HBr-CHCl₃ at 0° and the anhydride formed is hydrolysed by 0.8N-HBr at 94° to partly methylated fructoses; these afford fructosides which are hydrolysed by 0.1n-HCl at 60° to 3:4-dimethyland 4-methyl-fructose, $[\alpha]_D^{26}$ —87.5° at equilibrium (glucosazone, m.p. 156°). Methyl-3: 4-dimethyl-fructoside and HNO₃ (d 1.42) at 65—95° give the dibasic 3: 4-dimethyl-lactol acid, also derived from 1:3:4-trimethylfructose (cf. Hibbert et al., A., 1931, 827). The CPh₃ groups (see above) are substituents of the three primary OH. (A) is composed of two furanoid fructose residues, with two O bridges connecting C(1) and C(2) of one fructose residue with $C_{(2)}$ and $C_{(3)}$ of the other. Its great stability is due to the presence of a dioxan ring serving as connecting link between the two fructose groups. 6:6'-Ditriphenylmethyldifructofuranose 1:2':2:1'-anhydride, m.p. 195°, $[\alpha]_D^{22} + 20.35^\circ$ in CHCl₃, and Ac₂O at 110° yield the 3:4:3':4'-tetra-acetate (II), m.p. 194°, $[\alpha]_D^{20} + 21.06^\circ$ in CHCl₃, converted by Me₂SO₄–COMe₂–aq. NaOH into the (CPh₃)₂ Me₄ derivative, and thence by 0.8n-HBr at 95° into a substance which with HCl-MeOH affords fructosides, hydrolysed by 0.1N-HCl at 60° to 3:4-dimethylfructose, $[\alpha]_D^{20}$ -60.66° in H₂O. The latter is also obtained from triphenylmethyldimethylinulin, but is contaminated with 4-methylfructose. (II) and HBr-AcOH at 0—5° give difructofuranose 1:2':2:1'-anhydride 3:4:3':4'-tetra-acetate, m.p. 173°, $[\alpha]_D^{20}$ -9.9° in

CHCl₃, methylated by Purdie's reagents to the 6:6'- Me_2 derivative, m.p. 127—128°, $[\alpha]_D + 10.8^\circ$ in CHCl₃, which is hydrolysed by 0.8N-HCl at 95° and the residue converted into fructosides which give 6-methylfructose (osazone, m.p. 183—184°). A mechanism is suggested by which the difructose anhydrides are formed during hydrolysis of inulin. Hexamethyldifructose anhydride II has m.p. 73°, b.p. 169—170°/0.43 mm., $[\alpha]_D^{20}$ —28·2° in CHCl₃. Constitutions of the disaccharides prepared by Schlubach et al. (A., 1933, 938) are ill-defined.

Fission of methylglucosides of synthetic sugars by sweet almond emulsin.—See A., 1940, III, 535.

Synthesis of glycol glucosides. S. Karjala and K. P. LINK (J. Amer. Chem. Soc., 1940, 62, 917— 920).—(CH₂·OH)₂, acetobromoglucose (modified prep.; 86% yield), and ${\rm Ag_2CO_3}$, later in ${\rm C_6H_6}$, give ethylene glycol β -d-glucoside tetra-acetate, m.p. 105—106° lit. 101—103° (corr.)], $[\alpha]_{\rm B}^{23}$ —26·3° in ${\rm H_2O}$, hydrolysed to the free glucoside, dimorphic, m.p. 117.5—118° and 136—137°, respectively, $[\alpha]_D^{23}$ —28.5° in H_2O , and converted by further similar reactions into ethylene glycol bis-β-d-glucoside octa-acetate, m.p. 169—170° (corr.) (lit. $170-171^{\circ}$), $[\alpha]_{D}^{23} -31.76^{\circ}$ in CHCl₃. Similar reactions give diethylene glycol β -d-glucoside, m.p. 116.5—118°, $[\alpha]_D^{23}$ —22.4° in H_2O [tetra-acetate, m.p. 92—93° (corr.), $[\alpha]_{\rm D}^{24}$ —27·62° in H₂O], and bis-β-d-glucoside octa-acetate, m.p. 125·5—126·5°, $[\alpha]_{\rm D}^{22}$ -23.5° in CHCl₃ (gives an oil when hydrolysed), propylene glycol β -d-glucoside, m.p. 136—138°, $[\alpha]_D^{22}$ —25.5° in H_2O (tetra-acetate, m.p. 99—101°, $[\alpha]_D^{20}$ -6.8° in CHCl₃), triethylene glycol β -d-glucoside tetra-acetate, an oil, methoxyethyl β -d-glucoside, m.p. 139—140°, $[\alpha]_D^{23}$ —26·0° in H_2O (tetra-acetate, m.p. 65—67°, $[\alpha]_D^{\frac{5}{23}}$ —19.5° in CHCl₃), trimethylene glycol β-d-glucoside tetra-acetate, m.p. 97—98°, $[\alpha]_D^{26}$ -17.3° in CHCl₃, and bis- β -d-glucoside octa-acetate, m.p. 171-172°, $[\alpha]_D^{26}$ -15.8° in CHCl₃.

Scilliroside. A. Stoll and J. Renz (Compt. rend., 1940, 210, 508—509).—Alcoholic extracts (details given) of the dry powdered bulbs of red squill contain scilliroside, C₃₂H₄₆O₁₂,0.5H₂O, m.p. 168—170° (corr.; decomp.), [\alpha]_D^{20} —59° in MeOH [tetraacetate, m.p. 199° (corr.), [\alpha]_D^{20} —49° in MeOH], which gives the Liebermann test, but neither the Legal nor Baljet test, and contains 1 Ac and a lactone ring. Hydrolysis (acid) liberates glucose but no cryst. aglucone. Spectrographic measurements indicate that its skeleton is a perhydrocyclopentanophenanthrene together with a 6-atom lactone ring containing 2 double linkings (cf. Wieland et al., A., 1936, 1252). Scilliroside acts like scillaren-A on the frog heart and is a powerful convulsant drug for rodents.

Oleocyanin, C₂₇H₃₁O₁₅Cl.—See A., 1940, III, 462.

African arrow poison plants. I. Adenium somalense, Balf. fil. M. HARTMANN and E. Schlittler (Helv. Chim. Acta, 1940, 23, 548—558).—The dried roots are percolated with 70% MeOH and, after treatment with basic Pb acetate, the percolate is

treated with MeOH and CHCl₃. The portion sol. in

Me

CHCl₃ gives somalin

(T)

Me CHCl₃ gives somatin (I), m.p. 197—198° $\operatorname{CHCl_3}$ gives somatin (I), m.p. 197—198° CHCO or $(+0.5\mathrm{H}_2\mathrm{O})$ sintering at 133—136°, $[\alpha]_0^{19}+9.5^\circ$ in EtOH. It gives a strongly positive Legal reaction and a dark blue Keller–Kiliani reaction

in AcOH. It is hydrolysed to digitoxigenin (characterised by its acetate and by conversion into Me isodigitoxigenate) and cymarose. Pharmacologically (I) is more closely related to strophanthin than to digitoxin.

Viscosities of arabogalactan solutions. H. S. OWENS (J. Amer. Chem. Soc., 1940, **62**, 930—932).— Prep. of arabogalactan (87.7% anhydrogalactose) from Western larch heartwood is described. η of 6—10% aq. solutions at 20°, 40°, and 60° is best expressed by Kunitz's equation (A., 1936, 1005) and indicates a spherical mol. in solution and a mol. wt. <2208, *i.e.*, $[C_5H_8O_4\cdot(C_6H_{10}O_5)_6]_2$. R. S. C.

Constitution of banana starch. E. G. E. HAW-KINS, J. K. N. JONES, and G. T. YOUNG (J.C.S., 1940, 390—394).—Banana starch (I) resembles potato starch (II) in physical properties. It is hydrolysed normally by acid, giving only glucose. It is more resistant than (II) both to acetylation (either with Cl₂ and SO₂ catalysts, or using $Ac_2O-C_5H_5N$) and to methylation. The methylated product (III), whether prepared directly or via the acetate, has mol. wt. ~200,000 (based on η ; cf. Hirst et al., A., 1939, II, 359, 495), and on fractionation and hydrolysis gives 2:3:4:6tetramethyl- (IV), 2:3:6-trimethyl-, and dimethylglucose only. The proportion of (IV) corresponds with a repeating unit of ~ 24 (22—26) glucose residues. Heated with 1% H₂C₂O₄ in MeOH-H₂O, (III) resembles rice starch (V) (loc. cit., 495) in disaggregating smoothly to products of lower mol. wt. but unchanged chain length. The mol. structure in (I) and in (V) is thus essentially identical, both having glycosidic linkings. Methylated inulin, with 1:6-fructofuranoside linkings, is hydrolysed ~7 times as rapidly as (III).E. W. W.

Recrystallisation of cellulose and its derivatives. G. Gentola (Atti X Congr. Internaz. Chim., 1938, IV, 117—123).—The crystallinity of regenerated cellulose (I) depends on the concn. of the solution, the nature of the solvent and precipitant, the temp. and rate of coagulation, and the mechanical stresses involved. The general theory, which is exemplified by observations on regeneration of cellulose nitrate (N 13·2%), assumes that (I) and its derivatives in solution do not retain a strictly rectilinear configuration. F. O. H.

Mechanism of degradation of cellulose. S. M. Kaji and K. Venkataraman (Current Sci., 1940, 9, 66—67).—A series of oxycelluloses (I) and hydrocelluloses (II) have been prepared by treating cellulose (III) with acids, oxidising agents, and ultra-violet light, and also by submitting (III) to singeing processes, heat-treatments, and mildew attack. Whilst four types of (I) have been distinguished, (II) seems to be of a single chemical type; correlations with the

Haworth formula for (III) are suggested. Three possible series of reactions, after the fission of the 1:4-glucosidic linkings, are outlined in the degradation of (III) with the formation from (I) of (a) a dialdehyde, (b) a dicarboxylic acid, (c) a β-ketonic aldehyde or acid.

W. R. A.

Trimethylamine oxide in different varieties of flesh and fish. IV. Mode of formation of formaldehyde from trimethylamine oxide. Y. HAT-TORI (J. Pharm. Soc. Japan, 1940, 60, 30—33).— NMe₃O is heated at 180° in a rapid current of moist air and the product is treated with dil. HCl. The solution when cautiously evaporated at a low temp. leaves very hygroscopic, colourless needles converted into dimethyl- and methoxydimethyl-ammonium platinichloride, m.p. 168°. The substance is stable in strongly acid (HCl) solution but not in dil. acid; the free base passes when gently heated into NHMe, and CH₂O. In absence of H₂O elimination of CH₂O from NMe₃O does not take place. Keeping of NMe₃,2H₂O over conc. H₂SO₄ at 10—12 mm. until const. in wt. leads to hydroxytrimethylammonium hydroxide (I), NMe₃(OH)₂, m.p. 201°, in which one OH is basic and the other is non-basic. (I) yields an acetate, OH·NMe₃·OAc, m.p. 49°, (non. cryst. Ac derivative), picrate, m.p. 202°, benzoate, m.p. 72°, (non-cryst. Bz derivative), benzoyloxytrimethylammonium picrate, m.p. 270°, hydroxytrimethylammonium-phenylurethane, m.p. 273°, acetoxytrimethylammoniumphenylurethane, m.p. 274°, and trimethylammonium picrate phenylurethane, m.p. 221.5°. The conversion of NMe₃O into CH₂O occurs through (I), which passes when heated into H_2O and NMe_2OMe (volatile). This is stable towards heat when dry but reacts with H₂O at a low temp. giving OH·NHMe₂·OMe, which breaks down into NHMe2, H2O, and CH2O.

Derivatives of diethylenetriamine [di-(β -amino-ethyl)amine]. P. Job and J. Brigando (Compt. rend., 1940, 210, 438—440; cf. A., 1927, 546).— Pentamminocobaltic chloride when warmed with NH(CH₂·CH₂·NH₂)₂ (= etn) gives (Co etn₂)Cl₃ from which all Cl is pptd. by AgNO₃ (cf. A., 1938, I, 403). Equimol. amounts of etn and CuSO₄ in H₂O give Cu₃etn₄; when the constituents react in varying proportions the equilibrium const. (k) is \sim 1·5 \times 10⁻¹³ at room temp. A similar complex Ag salt is [Ag etn₂]⁺, k being 1·07 \times 10⁻⁸ at 22°. etn acts as a tervalent radical in the Co and Cu salts and is univalent in the Ag salt.

J. L. D.

Amino-sugars. II. Action of dilute alkali on N-acylglucosamines. T. White (J.C.S., 1940, 428—437).—The view that N-acylglucosamines, after treatment with hot dil. alkali, give a red-purple coloration with Ehrlich's reagent, through formation of heterocyclic derivatives (by loss of H_2O), is confirmed. N-Acetylglucosamine (I) [improved prep. from glucosamine hydrochloride (II) and Ac_2O -AgOAc-MeOH] is stable to dil. alkali at room temp., but at the b.p. the change into a chromophoric product, now regarded as 2-methyl-4:5:2':1'-gluco-pyrano- Δ^2 -oxazoline (III), m.p. 70—75°, may be followed colorimetrically (cf. Morgan et al., A., 1934, 910). (III) (prep. under various conditions de-

scribed) is hygroscopic and amorphous, and gives the Ehrlich test. It has [α]_D¹⁸ +30⁵ in MeOH or H₂O (shows no mutarotation), is oxidised by Br in H₂O to glucosamine hydrobromide, and is hydrolysed by boiling 0.02n-MeOH-HCl to (I). With Me₂SO₄-NaOH, (III) gives N-acetylmethyl-3:4:6-trimethylglucosaminide (IV) (cf. Cutler et al., A., 1938, II, 46); with MeI-Ag₂O-MeOH it is incompletely methyl- $Ac_2O-C_5II_5N$ converts (III) into its 3':4':6'triacetate, a hygroscopic glass, $[\alpha]_{D}^{18}$ +36.7° in CHCl₃. This is also obtained, m.p. 70° , $[\alpha]_{D}^{18} + 54^{\circ}$ in CHCl₃, from 1-bromo-N-acetylglucosamine 3:4:6-triacetate (Moggridge et al., A., 1938, II, 266) with aq. NaOAc at 65° (mechanism of ring-formation suggested). With $Me_2SO_4-CCl_4$ in 60% NaOH at $75-100^\circ$, (I) gives (IV), steam-hydrolysed by 4N-HCl to 3:4:6-trimethylglucosamine hydrochloride, which with Ac₂O-AgOAc-MeOH gives N-acetyl-3:4:6-trimethylglucosamine, m.p. 234°, $[\alpha]_D^{18}$ +75° \Rightarrow +44·8° in H₂O. This with 0·02N-Ba(OH)₂ at 100° (bath) gives 2 anothyl 4:5° 20′ × 12′ (20′ × 4′ × 6′ × 12′ 2-methyl-4:5-2':1'-(3':4':6'-trimethylglucopyrano)- Δ^2 -oxazoline, a syrup, giving the Ehrlich test. N- α -Bromo- (V) with 0·1n-NaOH at 100° (15 min.) gives N-α-hydroxy-propionylglucosamine (VI), m.p. 217°, $[\alpha]_{D}^{18} + 69 \cdot 1^{\circ} \rightarrow 66 \cdot 2^{\circ}$ in $H_{2}O$. With 0.05n-NaOH or -Ba(OH)₂ at 100°, (V) gives 3-keto-2-methyl-5:6-Fig. (OII)₂ at 100°, (V) gives 3-keto-2-methyl-3°. 0-2′: 1′-glucopyrano-3: 4:5:6-tetrahydro-1: 4-oxazine (VII), m.p. 140—145°, [α]_b⁸ +194° in H₂O, giving the Ehrlich test. In 13% aq. NaOH, (VII) gives (VI). With boiling 1% MeOII–HCl, (VII) yields (II). Methylation of (VII) by MeI–Ag₂O gives a syrup. With Ac₂O–C₅H₅N, (VII) forms its 3′: 4′: 6′-triggettete amorphous [α]¹⁸ + 32·1° in CHCl With $Ac_2U-U_5\Pi_5IN$, (122) acetate, amorphous, $[\alpha]_b^{18}+32\cdot 1^\circ$ in $CHCl_3$. E. W. W.

Oxidation of aldoses by hypoiodite. Glucosamine and N-acetylglucosamine. Myrbäck (Svensk Kem. Tidskr., 1940, **52**, 21—30; cf. A., 1940, II, 67).—Glucosamine (I) and its hydrochloride (II) can be determined as accurately as glucose by Bertrand's method. The change does not occur stoicheiometrically but the calculation of Cu to (I) is effected with the help of an empirical graph. In presence of NaOH (I) consumes much more I from OI' than corresponds with the production of glucosamic acid (III), the amount increasing with [NaOH]. In presence of Na₂CO₃ or NaHCO₃ utilisation of 4 I occurs rapidly but the subsequent action is very slow. Br-H₂O oxidises (I) or (II) normally to (III), thus suggesting a betaine structure for (I). view is confirmed by the observation that N-acetylglucosamine (IV), m.p. 204° , $[\alpha]_{D} + 70.5^{\circ}$ to $+41.3^{\circ}$ in H₂O (which is so slowly hydrolysed by alkali that betaine formation is excluded under the experimental conditions), behaves towards OI' as a normal aldose. Exchange of OH at C₍₂₎ for NHAc has only a small influence on the rate of oxidation whereas the epimeric mannose is much more slowly oxidised. The behaviour of (IV) towards Fehling's solution depends greatly on experimental conditions.

Compound, $C_{21}H_{44}O_{12}N_6SSe_2$, decomp. 263—265°, from grain.—See A., 1940, III, 461.

Complex compounds of diguanide with bivalent metals. I. Copper diguanidines. P. Rây and P. N. BAGCHI (J. Indian Chem. Soc., 1939,

16, 617—620).— Cu^{II} bisdiguanide dihydrate when heated to 110° for 14 hr. gives Cu^{II} bisdiguanidine. Co-ordination with diguanide confers stability on many unstable simple Cu salts. Cu^{II} bisdiguanidinium chloride (+2H₂O), bromide (+2H₂O), iodide (+3H₂O), fluoride (+4H₂O), nitrite (+H₂O), carbonate (+4H₂O), sulphite (+4H₂O), thiosulphate (+3H₂O), thiocyanate, dithionate (+2H₂O), chromate (+3H₂O), and hypophosphite (+2H₂O) are described. F. R. S.

Production of amidines and their derivatives.—See B., 1940, 344.

Complex compounds of diguanide with tervalent metals. VI. Cobaltic trisdiguanidines. P. Rây and N. K. Dutt. VII. Cobaltic trisphenyldiguanidines. P. Rây and H. P. BHATTACHARYA (J. Indian Chem. Soc., 1939, **16**, 621—628, 629— 633).—VI. Co combines with diguanide to form complex compounds similar to the corresponding Cr compounds (cf. A., 1938, II, 435): Compounds (cf. A., 1938, II, 435): Compounds $dihydrate, cobaltic\ trisdiguanidine,\ cobaltic\ trisdiguanid$ inium chloride, fluoride, bromide, iodide, thiocyanate, chlorate, perchlorate, borofluoride, nitrate, nitrite, chloroformate, carbonate, sulphate (+7H₂O), selenate (+7H₂O), chloroselenate, hydroxo-sulphite, sulphite $(+7H_2^{-}O)$, chlorothiosulphate $(+2.5H_2O)$, thiosulphate, chlorochromate, chromate $(+3H_2O),$ perchromate $(+4H_2O)$, chlorophosphate, phosphate $(+6\tilde{H_2}O)$, hydrosulphide and -polysulphide, iodate, chloroiodate $(+H_2O)$, periodate (+3H₂O), oxalate, and camphorsulphonate.

VII. Co^{III} trisphenyldiguanide forms a trihydrate, m.p. ~200° (decomp.), and dihydrate melts with decomp.; both are dehydrated to Co^{III} trisphenyldiguanidine, similar to the corresponding Cr compound. Co^{III} trisphenyldiguanidinium chloride (+2·5H₂O), bromide (+H₂O), iodide (+H₂O), sulphate (+10H₂O), nitrate (+0·5H₂O), nitrite (+0·5H₂O), carbonate (+2H₂O), thiosulphate (+7H₂O), thiocyanate (+3H₂O), dithionate (+2H₂O), and chromate (+2H₂O) are also described. F. R. S.

Aliphatic arsinic acids. Arsenation of mono-, di-, and tri-chloroacetic and mono- and di-bromo-malonic acids. A. R. Marquez (Rev. Fac. Cienc. Quím. La Plata, 1939, 14, 217—228).—The yield of arsinoacetic acid (I) from $\mathrm{CH_2Cl}\cdot\mathrm{CO_2H}$ (1 mol.) and $\mathrm{Na_3AsO_3}$ (x mols.) increases with x and reaches 100% when x=2. The effect of varying the [NaOH] and time of reaction has been studied. The solubility of (I) in $\mathrm{H_2O}$ is recorded between 0° (0%) and 40° (98·5%). Reduction of (I) with $\mathrm{NaH_2PO_2}$ in aq. $\mathrm{H_2SO_4}$ yields arsenoacetic acid (NH_4 salt). The As in these acids is determined by the I liberated from KI in HCl.

X-Ray studies of mercury alkylthiol chlorides. A. Johannson (Arkiv Kemi, Min., Geol., 1939, 13, A, No. 14, 11 pp.).—SR·CH₂·CO₂H are converted by 0·01m-H₂O₂ into RSO·CH₂·CO₂H, and thence by aq. HgCl₂ at 100° into HgCl·SR, CHO·CO₂H, and HCl. Thus are obtained Hg Me, m.p. >230°, Et, m.p. >230°, Pr^a, m.p. 182—183°, Pr^β, m.p. >230°, Bu^a, m.p. 175—176°, Bu^β, sinters at 215—220°, and CHMeEt chloride, m.p. 188—189°. HgBu^γCl, decomp. when heated, is obtained by working at room temp. throughout, since at 100° it decomposes mainly to

CH₂*CMe₂, HgS, and HCl. X-Ray consts. etc. are recorded for the products and may be used for identification. R. S. C.

Mechanism of Walden inversion in reactions leading to formation of the carbonato-diethylene-diaminecobaltic ion.—See A., 1940, I, 266.

Co-ordinational stability of ethylene hydrocarbons. (Miss) A. Gelman (Ann. Sect. Platine, 1939, No. 16, 35—39).—The stability of complexes of the type $\mathrm{NH_4[PtCl_3,R]}$ falls in the order R = $\mathrm{CO} > \mathrm{CH_2.CHPh} > \mathrm{C_2H_4} > \mathrm{CH_2.CHMe} = \mathrm{CH_2.CHEt.}$ R. T.

Compounds of platinum salts with ethylenic hydrocarbons.—See A., 1940, I, 267.

Compounds of platinum and iridium salts with acetonitrile.—See A., 1940, I, 267.

Ethylene compounds of platinum nitrochlorides.—See A., 1940, I, 267.

Low-temperature dehydrogenations. II. R. T. Arnold, C. Collins, and W. Zenk (J. Amer. Chem. Soc., 1940, **62**, 983—984).—Chloranil in boiling xylene converts 1-p-diphenylyl-, 1-p-diphenylyl-2-methyl-, 1- α - and 1- β -naphthyl-, and 1- σ -tolyl- Δ 1- σ 2-cyclohexene into the derived aromatic compounds in 47, 72, 67, 72, and 72% yield, respectively (cf. A., 1939, II, 362).

Attempt to synthesise a substituted cyclooctatetraene. S. WAWZONEK (J. Amer. Chem. Soc., 1940, 745—749).—3:4:7:8-Dibenz- $\Delta^{3:7}$ -cycloocta-62, diene-1: 5-dione (I) reacts as an aliphatic $\alpha \varepsilon$ -diketone. (CHPh·CO₂H)₂ is prepared from the dinitrile by boiling $H_2SO_4-H_2\ddot{O}-\ddot{A}cO\ddot{H}$ (2:2:1). Diphensuccindane-9:12-dione with PCl₅ and later AcOH gives 9:12dichloro- $\Delta^{9:11}$ -diphensuccindadiene (II) (cf. A., 1922, and 9:9:12:12-tetrachloro- Δ^{10} -diphensuccindene (III), $o\text{-}C_6H_4 < \frac{CCl_2 \cdot C}{C \cdot CCl_2} > C_6H_4 \cdot o$, m.p. 178—179°, converted by Zn dust in boiling AcOH into (II). With 12% O₃ in EtOH at -40°, (III) gives the ozonide, m.p. 191—193° (decomp.), converted by H₂-5% Pd-BaSO₄ at 2·3 atm. in EtOAc into (I), m.p. 203·5—204·5° [dioxime, m.p. 240—243° (decomp.); (CHPh.)₂ derivative, m.p. 244—246°], difficultly sol. in aq., but readily sol. in alcoholic, alkali to give a yellow solution becoming (reversibly) orange when heated. No colour is formed by (I) in PhN₂Cl-EtOH-alkali. With hot PCl₅, (I) gives the dichlorodiphosphinic acid,

o-C₆H₄<CCl(PO₃H₂)·CH₂>C₆H₄-o, and with isatin and 20% KOH gives the *substance* (IV), m.p. 297° (gas). With Me₂SO₄ and 20% KOH in MeOH, (I) gives the Me₂ ether (V), m.p. 143—144°, unchanged by Br, but

hydrolysed to (I) by HBr-AcOH. In the Grignard machine, (I) shows only 1 CO and 1 active H. With

MgMeI in boiling $\rm Et_2O-C_6H_6$, (I) gives the compound (VI), m.p. 213—215°, and with boiling $\rm NH_3-H_2O-EtOH$ gives the substance (VII; R = H), m.p. 167° (gas), converted by HNO₃ or above the m.p. into (I).

With NH₂·CO·NH·NH₂,HCl–Na₂CO₃–EtOH–H₂O, (I) gives the substance (VII; R = NH·CO·NH₂), m.p. 210° (decomp.), converted by heat alone or with KOH into Δ^{10} -diphensuccindene and diphensuccindane. Zn–Hg–HCl–AcOH–H₂O or 20% KOH–Zn dust–EtOH reduces (I) to the glycol,

o- C_6H_4 < CH_2 ·C(OH)· CH_2 </sub> > C_6H_4 -o, m.p. 148·5—149°, which with H_2SO_4 — or HI–AcOH gives a yellow substance, m.p. >350°, and with Pb(OAc)₄ in C_6H_6 at 50° re-forms (I). Boiling Ac_2O –KOAc converts (I) into the acetate (VIII), m.p. 138—139°, of the monoenol, hydrolysed by alkali to (I) and oxidised by CrO_3 –AcOH at 50—60° to

o- $\text{CO}_2^{\circ}\text{H}\cdot\text{C}_6\text{H}_4\cdot\text{CH}_2\cdot\text{CO}\cdot\text{C}_6\text{H}_4\cdot\text{CO}_2\text{H-o}$. With Br-AcOH, (VIII) gives a Br-acetate, m.p. 219—223° (gas), unchanged by KOAc-AcOH but converted by Br-CHCl₃ into a crude Br_2 -derivative diacetate, m.p. 173—178° (gas), which with NH_3 -EtOH-H₂O gives 3:4:7:8-dibenz- $\Delta^{3:7}$ -cyclooctadiene-1:2:5-trione,

give the diacetate, m.p. 150—151°, which yields a Br-derivative diacetate, m.p. 225—229°, obtained also from (VIII) by H₂SO₄-AcOH and unaffected by KOAc-AcOH or Br. R. S. C.

Oxidation of cyclic compounds by hydrogen peroxide catalysed by pervanadic acid. W. Treibs (Angew. Chem., 1939, 52, 698—700).—A review. R. S. C.

Condensation of esters with aromatic hydrocarbons by means of aluminium chloride. J. F. Norris and P. Arthur, jun. (J. Amer. Chem. Soc., 1940, 62, 874—877; cf. A., 1939, II, 372).—MeOAc and AlCl₃ give a 1:1 additive compound, m.p. 60°, which at 143° (rapidly at 170°) gives MeCl (0·7 mol.), at 184—200° gives HCl (0·38 mol.) and a residue, ? AlCl₂·OAc (I). EtOAc gives a similar compound, which gives EtCl (0·67 mol.) and (I). With C₆H₆ (2 mols.) and AlCl₃ (1·2 mols.), (I) (1 mol.) gives 42% of COPhMe. The liquid compound from Bu^aOAc gives 5% of Bu^aCl and 1·26 mols. of HCl with much C₄H₈. HCO₂Me,AlCl₃, decomp. 110°, gives MeCl (88%) at 143°, followed by CO and HCl at 185°; the residue gives no PhCHO. HCO₂Et behaves similarly.

EtOAc, C_6H_6 , and AlCl₃ (2 mols. required in this and similar reactions) at room temp. give PhEt (12·3%) and $m\text{-}C_6H_4\text{Et}_2$ (51·3%); longer treatment gives also a little $s\text{-}C_6H_3\text{Et}_3$. HCO₂Et gives the same products, but the yield of $s\text{-}C_6H_3\text{Et}_3$ can be raised to 50·5%. HCO₂Me at 60—80° gives PhMe, m-xylene, and $s\text{-}C_6H_3\text{Me}_3$, the yields varying according to the ratio C_6H_6 : HCO₂Me, but being very low at room temp. At 100° PhMe, MeOAc, and AlCl₃ give mainly 2:4:1- $C_6H_3\text{Me}_2\text{-}\text{COMe}$ with some $p\text{-}C_6H_4\text{Mc}\text{-}\text{COMe}$, m-xylene, and $s\text{-}C_6H_3\text{Me}_3$. MeOAc or EtOAc and C_6H_6 at 60—80° give similar results. 2:4-, m.p. 174·2—175·2°, 2:5-, m.p. 174·2—175·2° (corr.), and 3:4-dimethylacetophenone-2:4-dinitrophenylhydrazone, m.p. 255·2—255·8° (corr.), 2:4-, m.p. 154·6—154·8°, and 2:5-dimethylacetophenone-p-nitrophenylhydrazone, m.p. 159·8—160·1° (corr.), are described.

R. S. C.

Sulphonation and nitration reactions promoted by boron trifluoride.—See B., 1940, 342.

Production of pure hydrocarbons of the benzene series by distillation.—See B., 1940, 343.

Chain polymerisation of styrene.—See A., 1940, I, 259.

Constituents of some Indian essential oils. **XXVII.** Synthesis of dl- α -curcumene. F. D. CARTER, J. L. SIMONSEN, and H. O. WILLIAMS (J.C.S., 1940, 451-453).—The *Et* ester, b.p. $157^{\circ}/19$ mm., of dl-y-p-tolyl-n-valeric acid (improved prep.) and Na-EtOH give δ-p-tolyl-n-amyl alcohol, b.p. $151^{\circ}/16$ mm. $(3:5-dinitrobenzoate, m.p. 80-81^{\circ}),$ which is converted (NaCN-I) through the chloride, b.p. 141°/17 mm., into δ-p-tolyl-n-hexoic acid (I), b.p. 197°/20 mm. [Me (II), b.p. 167°/17 mm., and p-phenacyl esters, m.p. 70°]. Condensation (AlCl₃) of PhMe and glutaric anhydride affords a mixture of αγ-di-p-toluoylpropane, m.p. 110° (bis-2:4-dinitro-phenylhydrazone, m.p. 257°), and γ-p-toluoyl-n-butyric acid, m.p. 148—149° (semicarbazone, decomp. 218°), the Me ester, b.p. $192-194^{\circ}/18$ mm., of which with MgMeI yields δ -p-tolyl- Δ^{γ} -hexenoic acid, m.p. 80—81°. This acid is reduced (Pd-H₂) to (I), which could not be resolved owing to the instability of the alkaloidal salts. MgMeI and (II) give dl- β -hydroxy- ζ -p-tolyl- β -methylheptane, b.p. 164°/17 mm. (xenylurethane, m.p 84—85°), which with KHSO₄ is dehydrated to dl- α curcumene, b.p. 134°/16 mm. (nitrosate, decomp. 114°), identical with the natural hydrocarbon (cf. Simonsen F. R. S. et al., A., 1939, II, 516).

Magnesium pentamethylphenyl bromide. H. CLEMENT (Ann. Chim., 1940, [xi], 13, 243—316; cf. A., 1939, II, 60).—Methylation of xylene by AlCl₃ and MeCl at 95° is a series of successive, not simultaneous, reactions so that it is possible to fix the most suitable durations (based on g. of HCl evolved) for the prep. of each derivative either in the best yield or for the readiest purification. C₆Me₅Br and Mg give C₆Me₅·MgBr if an alkyl halide is also present and this reacts normally with CO₂, CH₂O, MeCHO, and COMe₂. With CH(OEt)₃ it affords pentamethylbenzaldehyde, m.p. 130·5° (oxime), and with PhCHO it yields pentamethylbenzhydrol, m.p. 107·5°: Abnormal reactions occur with EtOAc which gives penta-

methylacetophenone, m.p. 150—151°, and BzCl which yields pentamethylbenzophenone, m.p. 125° (semicarbazone, m.p. 170°), which is also obtained from EtOBz. A principal abnormal and a secondary normal reaction are given with HCO₂Et and AcCl.

New isomeride of trinitrotoluene. M. MILONE and A. MASSA (Gazzetta, 1940, 70, 196—201).—in-Nitrophenyldinitromethane (I), m.p. 124—125° (K, Ag, Ba, and Pb salts, deflagrating when heated; NH₄ salt), is obtained from CHPh(NO₂)₂ in HNO₃ (d 1.52) at room or higher temp. HNO₃ (d 1.4) has no action alone or in EtOH or AcOH; H₂SO₄-HNO₃ gives p-NO₂·C₆H₄·CO₂H. (I) is hydrolysed to m-NO₂·C₆H₄·CO₂H. In explosive properties (I) resembles 1:2:4:6-C₆H₂Me(NO₂)₃. The explosive power, and sensitiveness as detonators, of (I) and its salts are examined by the methods of Trauzl and of Berta. The compounds are inferior as detonators to those in common use. E. W. W.

3:4'-Dinitrodiphenyl. W. A. WATERS (J.C.S., 1940, 474).—The product (I), m.p. 137°, obtained by Hodgson et al. (A., 1940, II, 126°) from diazotised m-NO₂·C₀H₄·NH₂ and PhNO₂, is not 3:4'-dinitrodiphenyl (cf. Scarborough et al., A., 1927, 236), which has m.p. 189°. (I) is presumably a mixture.

E. W. W. Halogenation of as-diphenylethane. F. E. Sheibley and C. F. Prutton (J. Amer. Chem. Soc., 1940, 62, 840—841).—Cl₂ converts CHPh₂Me in quartz in light at 100—150° into a yellow liquid, which, when distilled, gives CHPh₂Me, (CHPh:)₃, and αα-dichloro-ββ-diphenylethylene (I), m.p. 79—80° (corr.). The mechanism is: CHPh₂Me \rightarrow CPh₂MeCl (rate-determining step) \rightarrow CPh₂:CH₂ \rightarrow CPh₂Cl·CH₂Cl \rightarrow CPh₂:CHCl \rightarrow CPh₂Cl·CHCl₂ \rightarrow (I). The (CHPh:)₂ is formed from the CPh₂:CHCl. Bromination and distillation give only small amounts of (CHPh:)₂ and (CPh₂:CH)₂. (I) is hydrolysed completely (to CHPh₂:CO₂H) only by KOH–MeOH at 150°. With PhOH at 225°, (I) gives benzilic aldehyde Ph₂ acetal, m.p. 111·5—112° (corr.). At 700° in SiO₂, CHPh₂Me gives C₆H₆, PhMe, and CHPh:CH₂.

Octadeca- (per-)chloroquaterphenyl. Preparation of deca- (per-)chlorodiphenyl. J. B. Wibaut, J. Overhoff, and K. Gratama (Rec. trav. chim., 1940, 59, 298—302).—Commercial pentachlorodiphenyl and Cl_2 , first at 100° and then with FeCl₃ and I at 200—300°, give $(\text{C}_6\text{Cl}_5)_2$ (I) (75%), m.p. 309° (corr.). 4-4′-Diphenylyldiphenyl [quaterphenyl] with SbCl₅, first at 220° and then at 270°, gives the Cl_{18} -derivative, m.p. 364—365° (corr.), sublimes at 340°/0·5 mm., the mol. wt. of which is determined by cryoscopy in (I) $(k=36\cdot0)$. R. S. C.

Stereochemistry. XXI. Diastereoisomeric phenyl β-carboxyethyl sulphoxides. B. Holmberg (Arkiv Kemi, Min., Geol., 1939, 13, A, No. 15, 8 pp.).—The appropriate active SPh·CH₂·CO₂H and H₂O₂ yield mixed isomerides, separated into d, d- and l, l-, m.p. 139—140° (decomp.), [M]₁₅¹⁷ +397·8°, -397·1°, d, l- and l, d-Ph β-carboxyethyl sulphoxide, PhSO·CH₂·CO₂H, m.p. 149—149·5° (decomp.), [M]₁₅¹⁷ +64·3°, -64·5° in abs. EtOH, the stereochemical prefixes referring to the C and S, respectively. Mix-

ture of the appropriate isomerides gives two inactive acids, m.p. 137—138°. Hot alkali racemises the C, but not the S.

R. S. C.

α- and β-Phenylthiolethanesulphonic acid and the corresponding sulphones. I. Hedlund (Arkiv Kemi, Min., Geol., 1939, 13, A, No. 12, 14 pp.). —PhSNa and CH₂Br·CH₂·SO₃Na in H₂O give β-phenylthiolethanesulphonic acid, +2H₂O, m.p. 48·5—49° (corr.) (Cu, +4H₂O, Zn, +4H₂O, Ca, and Cd salts), isolated as Na salt, +H₂O. The Ba salt, +2H₂O, is converted by BaMnO₄-CO₂ in H₂O into Ph β-sulphoethyl sulphone, +2H₂O (Ba salt, +H₂O), which is hydrolysed by aq. Ba(OH)₂ at 100° mainly to PhSO₂H and OH·[CH₂]₂·SO₃H, although some SO₂ is also evolved. β-(MeCSH)₃ (prep. modified to give 88% yield) and Cl₂ in H₂O give 35—45% of CHMeCl·SO₂Cl, and thence CHMeCl·SO₃Na, which with PhSNa in H₂O at 160° gives α-phenylthiolethanesulphonic acid (I), m.p. (+H₂O) 91·5—92°, (+2H₂O) 70—75° (Na, +H₂O, Cu, and sol. Ba, +H₂O, salts; loses SO₂ when kept over P₂O₅). Resolution of (II), best by brucine, gives the Ba, +3H₂O, [M]₅₄₀₁ +289·1°, and brucine salt, [M]₅₄₀₁ +289·8° to -290° in H₂O, of the l-acid. BaMnO₄ yields dl-, m.p. 74—75°, d- (Ba salt, [M]₅₄₀₁ +34·7°), and l-Ph α-sulphoethyl sulphone (II) (Ba salt, [M]₅₄₀₁ -36·3°). (I) is racemised by NaOH and more slowly by HCl at 100°. (II) is very rapidly racemised by alkali, but is stable to acid. R. S. C.

Oxidation of tetrahydronaphthalene in condensed phase.—See A., 1940, I, 259.

Synthesis of 2-phenylnaphthalenes. D. H. HEY and S. E. LAWTON (J.C.S., 1940, 374—383).— 2-C₁₀H₇Ph (I) is readily obtained in quantity from 2-C₁₀H₇·NAc·NO (II) and C₆H₆ (cf. Haworth et al., A., 1940, II, 162). The optimum conditions for the prep. of (II) from C₁₀H₇·NHAc and nitrous fumes or NOCl in Ac₂O-AcOH are described. The yield of (I) is >25—30%, but the method is cheap. CrO₃ oxidises (I) to 2-phenyl-1:4-naphthaquinone (III). With HNO₃ (d 1.42) in AcOH, (I) gives 1-nitro- (IV), m.p. 127°, with some 1:5(?)-dinitro-2-phenylnaphthalene, m.p. 187—188°; under more drastic conditions, inseparable mixtures are formed. The constitution of (IV) is established by synthesis from diazotised 1:2-NO₂·C₁₀H₆·NH₂. With hot SnCl₂-HCl-EtOH, (IV) gives 4-chloro-2-phenyl-1-naphthylamine, m.p. 79° (Ac derivative, m.p. 213°); with Fe in boiling AcOH, (IV) gives 2-phenyl-1-naphthylamine (V), m.p. 104° [Ac derivative (VI), m.p. 234°], converted by diazotisation in HCl and Cu₂(CN)₂, into 1-chloro-2-phenylnaphthalene, m.p. 82°. Attempted nitrosatation of 1:2-NO₂·C₁₀H₆·NHAc was unsuccessful. With HNO_3 (d 1.45) in AcOH at 40°, (VI) gives the Acderivative (VII), m.p. 230°, of 4-nitro-2-phenyl-1naphthylamine (VIII), m.p. 155°, obtained from (VII) by hydrolysis. With SnCl₂-HCl-EtOH, (VIII) gives 2-phenylnaphthylene-1:4-diamine, m.p. 100—101° (Ac_2 derivative, m.p. 320°), oxidised by boiling 5% ag. CrO_3 to (III). With PhNO₂, (II) gives a mixture of 2-o- (IX), m.p. 101°, and 2-p-nitrophenylnaphthalene (X), m.p. 174°, separable only by vac.-sublimation or steam-distillation. With CrO₃-AcOH on the steam-

bath, these yield respectively 2-o-, m.p. 164°, and 2-p-nitrophenyl-1: 4-naphthaquinone, m.p. 223—224°. With excess of CrO_3 in boiling AcOH, (X) gives p- $NO_2 \cdot C_6H_4 \cdot CO_2H$. $SnCl_2-HCl$ reduces (IX) to 2-oaminophenylnaphthalene (Ac derivative, m.p. 204— 205°) (identical with the product of Hofmann degradation of a-chrysenamide), and (X) to 2-p-amino-phenylnaphthalene, m.p. 99° (Ac derivative, m.p. 206°). With HNO_3 (d 1.5) in AcOH at 60—70°, (IX) gives 1-nitro-2-o-nitrophenylnaphthalene, m.p. 189°; at 60— 70° with excess of HNO₃, (X) gives a mixture containing $(NO_2)_3$ -derivatives (probably 1:5:4'- and 1:8:4'-) of (I). The Ac derivatives of 5:2-, 6:2-, and $8: 2\text{-NO}_2 \cdot C_{10}H_6 \cdot NH_2$ (prep. from phthaloyl-2naphthylamine improved by hydrolysing the nitrated product with HCl continuously added to boiling EtOH) are converted by nitrous fumes in AcOH-AcoO into 5-, m.p. 84° (decomp.), 6-, and 8-nitronitrosoaceto-2-naphthalide, both m.p. 86° (decomp.), and these by C_6H_6 into 5- (XI), m.p. 89°, 6- (XII), m.p. 146°, and 8-nitro-2-phenylnaphthalene (XIII), m.p. 69°. With Fe-HCl, (XI) gives 6-phenyl-1-naphthylamine, m.p. 142—143° (Ac derivative, m.p. 131°), and (XIII) gives 7-phenyl-1-naphthylamine, m.p. 94° (Ac derivative, m.p. 203°). With SnCl₂-HCl, (XII) gives 6phenyl-2-naphthylamine (XIV), m.p. 132° (Ac derivative, m.p. 199°). 2:7-C₁₀H₆(NH₂)₂, acetylated and treated in AcOH-Ac₂O with nitrous fumes, gives 2:7-dinitrosoidacetalidonaphthalene, m.p. 79° (decomp.), which with $C_6\hat{H}_6$ yields 2:7-diphenylnaphthalene, m.p. 143°. The Ac_2 derivative, m.p. 334—335°, of $2:6\text{-}\mathrm{C}_{10}\mathrm{H}_6(\mathrm{NH}_2)_2$ could not be nitrosated. With Br-AcOH, (I) gives 1-bromo-2-phenylnaphthalene, m.p. 66°, also obtained from (V) (Sandmeyer). $6:2-C_{10}H_6Br\cdot NHAc$ gives a NO-derivative, meyer). 0:2-C₁₀H₆Dr'NHAC gives a No-derivative, m.p. 82° (decomp.), which in C₆H₆ yields 6-bromo-2-phenylnaphthalene, m.p. 132°, also obtained from (XIV) (Sandmeyer). 1:2-C₁₀H₆Br·OH is nitrated by HNO₃ (d 1·42) in AcOH to 1:6:2-(NO₂)₂C₁₀H₅·OH. 6:2-OMe·C₁₀H₆·NHAc gives a NO-derivative, m.p. 82° (decomp.), which in C₆H₆ yields 6-methoxy-, m.p. 148°, hydrolysed by HI-AcOH to 6-hydroxy-2-mbenylnaphthalene, m.p. 175— AcOH to 6-hydroxy-2-phenylnaphthalene, m.p. 175— 176°. 7:2-OMc·C₁₀H₆·NHAc gives a NO-derivative, m.p. 85° (decomp.), yielding 7-methoxy-, m.p. 80°, and thence 7-hydroxy-2-phenylnaphthalene, m.p. 156°. With boiling Ac_2O , 7:2-OMe· $C_{10}H_6$ ·N H_2 gives diacetyl-7-methoxy-2-naphthylamine, m.p. 129°. E. W. W.

Reactions in sunlight. IV. E. OLIVERI-MANDALA and E. DELEO (Gazzetta, 1940, 70, 186—190; cf. A., 1939, II, 316).—Acenaphthene in COMe₂ in sunlight (at Messina) for 22 months gives acenaphthenone. Fluorene in COMe₂ in sunlight for 8 months gives fluorenone. E. W. W.

9-Methyl-3: 4-benzfluorene. L. F. FIESER and L. M. Joshel (J. Amer. Chem. Soc., 1940, 62, 957—958).—1:2:3- $C_{10}H_5Ph(CO)_2O$ and AlCl₃ in boiling C_6H_6 give 99% (HF gives much less) of 3:4-benzfluorenone-1-carboxylic acid and thence (basic Cu carbonate; 310—320°) 84% of 3:4-benzfluorenone. MgMeCl in $Et_2O-C_6H_6$ then gives 9-methyl-3:4-benzfluoren-9-ol (84%), m.p. 117·8—118·6°, which, when dehydrated in boiling AcOH, gives a polymeride, $(C_{18}H_{12})_x$, darkens at ~200°, m.p. 275—280°, but is

converted by boiling in AcOH and then hydrogenating (PtO₂) in AcOH into 9-methyl-3: 4-benzfluorene, m.p. 80·8—82° (picrate, m.p. 128—128·5°), and a little polymeride. M.p. are corr. R. S. C.

Polycyclic aromatic hydrocarbons. XXII. C. L. Hewett. XXIII. J. W. Cook and (Mrs.) A. M. Robinson (J.C.S., 1940, 293—303, 303—304).— XXII. Carcinogenic activity, regarded as inherent in 3:4-benzphenanthrene derivatives (cf. A., 1938, II, 132, 438), especially when further substituted in the 1- and 2-positions, is observed in 1-methyl-3:4benzphenanthrene (I), m.p. 77—78°, b.p. 210° (bath)/ 0.4 mm. [picrate (II), m.p. 112.5—113.5°], and in 2-isopropyl-3: 4-benzphenanthrene (III), m.p. 91.5— 92.5° (picrate, m.p. 116—117°), and is shared by the analogous 1:2-dimethylchrysene (IV), m.p. 127—128° (for prep. see below). In the prep. of (I), 3:4benz-l-phenanthroic acid (loc. cit.) gives, via the chloride, the anilide, m.p. 215—216°, which with PCl₅ in C₂H₂Cl₄, followed by SnCl₂-HCl-Et₂O and hydrolysis, gives 3:4-benz-1-phenanthraldehyde, m.p. 81—82°, the semicarbazone, m.p. 220—222°, of which is heated with NaOEt at 180°, and the distilled product, b.p. 200-210°/0.4 mm., converted into (II), which in C_6H_6 passed through Al_2O_3 gives (I).

In the prep. of (III), $1:2-C_{10}H_6Br$ CHO, which is obtained in good yield (cf. Mayer et al., A., 1922, i, 740) from 1:2-C₁₀H₆Br·CH₂Br and (CH₂)₆N₄ in boiling AcOH, with CH₂Ph·CO₂Na-Ac₂O on the water bath gives α -phenyl- β -2-(1-bromonaphthyl)acrylic acid, m.p. 211—212°, which with KOH at 260° forms 3:4benz-2-phenanthroic acid, m.p. 236—237° (Na salt). With MeOH-HCl this forms its Me ester, m.p. 76— 77°, converted by MgMeI-Et₂O, followed by NH₄Cl and ice, into 3:4-benz-2-phenanthryldimethylcarbinol, m.p. 139—140°, which with $C_6H_3(NO_2)_3$ ·OH in boiling EtOH gives the picrate (V), m.p. 113-113-5°, of 2-isopropenyl-3: 4-benzphenanthrene, isolated from (V) in C_6H_6 by Al_2O_3 , and hydrogenated (Pd-EtOH) to (III). Prep. of 1:2-dihydro-3:4-benz-1-phen-anthroic acid (VI), m.p. 140.5— 141.5° , is not very satisfactory. 1:2- C_{10} HBr·OAc and NaOEt-Et₂O-Et₂O₄ give, after 16 hr. at room temp. and 2 hr. at the b.p. followed by treatment with dil. H₂SO₄ and heating of the ethereal extract at 200-210°/20 mm., Et 1-bromo-2-naphthylmalonate, b.p. 187—189°/0·3 mm., of which the Na derivative with CH, PhCl-EtOH, followed by boiling with KOH-EtOH, gives, after decarboxylation of the dibasic acid, α -2-(1bromonaphthyl)-β-propionic acid (VII), m.p. 131— 132° (isolated through the Me ester, in the fraction of b.p. 210—220°/0.4 mm.). Attempted ring-closure of (VII) by KOH in quinoline at 250—260° for 2 hr. gives α -phenyl- β -2-(1-bromonaphthyl)ethane, b.p. $210^{\circ}/0.3$ With KOH at 260° for 15 min., (VII) gives, after fractionation of the esterified product and hydrolysis of the fractions, mainly β -phenyl- α -2-(1hydroxynaphthyl)propionic acid, m.p. 146·5—147·5°, with small amounts of (VI) and of 3:4-benz-lphenanthroic acid.

The prep. of (IV) is effected by two routes. (i) $2:1\text{-}\mathrm{C}_{10}\mathrm{H}_6\mathrm{Me}\cdot\mathrm{CH}_2\mathrm{Cl}$ with Zn and aq. EtOH (waterbath) gives [with as- $(2:2'\text{-}dimethyl\text{-}1:1'\text{-}dinaphthyl)\text{-}ethane, m.p. 177—178°] <math>1:2\text{-}\mathrm{C}_{10}\mathrm{H}_6\mathrm{Me}_2$ (VIII), which

with Br in CS₂ gives 4-bromo-1: 2-dimethylnaphthalene (IX), m.p. 39-40°, b.p. 190-195°/14 mm., isolated through the picrate, m.p. 108-109°. The constitution of (IX) is established by treating the Grignard derivative (X) with Me_2SO_4 and obtaining 1:2:4- $\text{C}_{10}\text{H}_5\text{Me}_3$. With $(\text{CH}_2)_2\text{O}$, (X) gives β -(3:4-dimethyl-1-naphthyl)ethyl alcohol, m.p. 65°, b.p. $150-152^\circ/0.3$ mm., of which the chloride, m.p. 44-45°, b.p. 140-145°/0.3 mm., with Mg and 2-methylcyclohexane in Et₂O gives, after treatment with ice and NH₄Cl, a carbinol, b.p. (impure) 195—200°/0.5 mm., dehydrated (P₂O₅) to a gum which resinifies when heated with Se. Chloromethylation of (VIII) by paraformaldehyde and HCl in AcOH at room temp. for 16 hr. (better than at 60° for 20 hr.) gives 3:4-dimethyl-1-chloromethylnaphthalene (XI), m.p. 70—71° (converted by Zn and aq. EtOH to $1:2:4-C_{10}H_5Me_3$), with 3:4:3':4'-1'tetramethyl-1: 1'-dinaphthylmethane, m.p. 174—175°. With aq. KCN in boiling EtOH, (XI) gives, after hydrolysis, a large proportion of a neutral substance, and 3:4-dimethyl-I-naphthylacetic acid, m.p. 181-182°, of which the pure nitrile, m.p. 66.5—67.5° b.p. 160-170°/0.5 mm., is obtained from (XI) and Cu₂(CN)₂ in CH₂Ph·CN at 160—170° and at 220°, and of which the Na salt with o-NO2 C6H4 CHO and Ac₂O at 130° (7 hr.) gives α -(3: 4-dimethyl-1-naphthyl)-0-nitrocinnamic acid, m.p. 213—214° (NH₄ salt), reduced by ${\rm FeSO_4-NH_3}$ to the o-amino-acid, m.p. $226-227^\circ$ (K salt). The last with ${\rm H_2SO_4-NaNO_2}$ and Cu powder, followed by heating at 70°, gives 1:2-dimethylchyrsene-7-carboxylic acid, m.p. 234—235°. This is decarboxylated by Cu powder in boiling quinoline to a product which, when distilled over Na at 200°/0.5 mm., gives (IV), oxidised by Na₂Cr₂O₂-AcOH to a quinone-like substance, m.p. 157—159°. (ii) Chrysaquinone with MgMeI and Et₂O, followed by ice and NH₄Cl, gives 1:2-dihydroxy-1:2dimethyl-1: 2-dihydrochrysene (XII), m.p. 154—155°. This heated with HI-AcOH gives a bimol. product, C₄₀H₃₂ (?), m.p. 258—260°, also obtained from (XII) and aq. HI-P at 175—180°. (XII) is unchanged by HCl-CHCl₃, and in AcOH with mineral acids or I is resinified. With HCl in cooled MeOH, (XII) gives 1:2-dimethylchrysene 1:2-oxide (XIII), m.p. 155-156°, which with HI in AcOH gives an I-compound, m.p. 115°, reduced by Zn-EtOH to With H_2 -Pt in AcOH at 60-70°, (XIII) gives (IV), in poor yield. With H₂-Pd in COMe₂, (XIII) gives a quant. yield of 1:2-dihydro-1:2dimethylchrysene, m.p. 104-104 5°, readily dehydrogenated to (IV).

In an attempt to synthesise 1:2:3:4-tetramethylphenanthrene, the corresponding -anthracene was obtained. $2\text{-}C_{10}\text{H}_7\text{Pr}^a$ with Br in CHCl₃ gives $2\text{-}\alpha$ -bromopropionylnaphthalene, m.p. $81\text{--}82^\circ$, which with CMeNa(CO₂Et)₂ in C₆H₆ (first in freezing mixture, eventually boiling) gives, after hydrolysis, decarboxylation at $190\text{--}200^\circ$, Me esterification, and hydrolysis, $\beta\text{-}2\text{-naphthoyl-}\alpha\beta\text{-}dimethylpropionic}$ acid, m.p. $147\cdot5\text{--}148\cdot5^\circ$. The Me ester, m.p. $79\cdot5\text{--}80^\circ$, b.p. $180\text{--}187^\circ/1$ mm., in C₆H₆ with MgMeI-Et₂O gives, after hydrolysis and acidification, $\gamma\text{-}2\text{-naphthyl-}\alpha\beta\gamma\text{-}trimethylbutyrolactone}$, m.p. $131\text{--}131\cdot5^\circ$. This when boiled with Zn, aq. HCl, and PhMe gives $\gamma\text{-}2\text{-naphthyl-}\alpha\beta\gamma\text{-}trimethylbutyric}$ acid, m.p. $124\cdot5\text{--}125\cdot5^\circ$ (Na

salt), which with 80% (vol.) H_2SO_4 (water-bath) yields 4-keto-1:2:3-trimethyl-1:2:3:4-tetrahydrophenanthrene, m.p. 190°/0.8 mm. The carbinol arising from the last and MgMeI, when dehydrated and heated with Pd, gives a mixture which cannot be purified. 1:2:3:4-Tetramethylnaphthalene (XIV), $106.5-107.5^{\circ}$ (picrate, m.p. 182–183°), is obtained by chloromethylation of $2:3\cdot \mathrm{C_{10}H_6Me_2}$ to 2:3-dimethyl-1-chloromethylnaphthalene, m.p. 86–87°, quant.reduction by $Pd-H_2$ in $COMe_2$ to $1:2:3-C_{10}H_5Me_3$, new m.p. 27-28°, and chloromethylation to 2:3:4trimethyl-1-chloromethylnaphthalene, m.p. 94—95°, which is hydrogenated to (XIV). In aq. HNO₃ at 175—180° (7 hr.), (XIV) gives a product converted to the con through Ag salts and MeI into Me₆ mellitate. With succinic anhydride and AlCl₃ in PhNO₂, (XIV) yields α -(1:2:3:4-tetramethyl-6-naphthoyl) propionic m.p. 196-197°, reduced by Zn-Hg in aq. HCl and PhOMe at the b.p. to γ -1: 2: 3: 4-tetramethylnaphthylbutyric acid, m.p. 153.5—154.5°, which with 80% (vol.) H_2SO_4 (steam-bath) gives 5-keto-1:2:3:4tetramethyl-5:6:7:8-tetrahydroanthracene, m.p. 178— 179°. The semicarbazone, m.p. >270°, of the last with NaOMe at 180° gives 1:2:3:4-tetramethyl-5:6:7:8-tetrahydroanthracene, m.p. 127·5—128°, b.p. 180-185°/0.5 mm. This with Pt at 320-330° gives 1:2:3:4-tetramethylanthracene (XV), m.p. $135\cdot 5$ — 136.5°, b.p. (crude) 200—220°/0.4 mm. (picrate, m.p. 165—166°). The structure of (XV) as an anthracene is shown by its reaction with maleic anhydride to an adduct (acid, dehydrated in xylene to the anhydride, C₂₂H₂₀O₃, decomp. 270—290°), which when sublimed at 300°/5 mm. regenerates (XV). With Na₂Cr₂O₇-AcOH, (XV) gives 1:2:3:4-tetramethylanthraquinone, m.p. 232—233°, shown to have a p-structure by its forming a vat dye with Zn-NaOH in dioxan (but not without the solvent), and by giving no reaction with $o - C_6 H_4 (NH_2)_2$.

XXIII. Carcinogenic activity in 5-alkyl-1: 2-benzanthracenes decreases as the alkyl chain is lengthened. 5-Keto-5:6:7:8-tetrahydro-1:2-benzanthracene with Grignard derivatives of alkyl bromides in Et₂O and C₆H₆, followed by ice and NH₄Cl, gives tert. carbinols, which when dehydrated by picric acid in EtOH yield picrates of 5-alkyl-7:8-dihydro-, dehydrogenated by Pt-black at 300-310° for 24 hr. to 5-alkyl-1: 2-benzanthracenes, which are purified through their picrates. The following are described (m.p. of picrates given in parentheses): 5-ethyl-, m.p. 109—110° (159—160°), 5-n-butyl-, m.p. 69—70° (124—125°), 5-n-amyl-, m.p. 59—60° (90—91°), 5-n-hexyl-, m.p. 47—48° (86—87°), and 5-n-heptyl-7:8-dihydro-1:2-benzanthracene (XVI), m.p. 53-54° [80° (dipicrate)], and 5-n-butyl-, m.p. 81° (116—117°), 5-n-amyl- (XVII), m.p. 93° (85—86°), 5-n-hexyl- (XVIII), m.p. 72—73° (90—91°), and 5-n-heptyl- 1: 2-benzanthracene, m.p. 68° (82—83°). A by-product, $C_{25}H_{18}$ (XIX) (structure suggested), m.p. 116:5—117·5°, is formed in the dehydrogenation of (XVII) With a CH (NO.) (XVIII) (XVIII) and (XVI). With s-C₆H₃(NO₂)₃, (XVII), (XVIII), and (XIX) form complexes, m.p. 112—113°, 116—117°, and 159—160°, respectively.

Synthesis of 2-methyl-3: 4-benzphenanthrene. M. S. Newman and L. M. Joshel (J. Amer. N*** (A., II.)

Chem. Soc., 1940, **62**, 972—974).—CHPh₂·CHO, CN·CH₂·CO₂Et, and NHEt₂, first at room temp. and then at 100°, give after hydrolysis (H₂SO₄-AcOH-H₂O) and decarboxylation (200°) β-benzhydrylglutaric acid (I), m.p. 177·6—178·2° (Me₂ ester, m.p. $73.4-74.2^{\circ}$, b.p. $\sim 180^{\circ}/2$ mm.), converted by HF at room temp. into 4-keto-1-phenyl-1:2:3:4-tetrahydro-2-naphthylacetic acid (89%), m.p. 115·4—116·2° [also obtained from the anhydride of (I) by AlCl₂ in (CHCl₂)₂], which is reduced (Martin-Clemmensen) to 1-phenyl-1:2:3:4-tetrahydro-2-naphthylacetic acid, m.p. 140·2—140·8° (lit. 138—139°). MgMeCl in Et₂O-C₆H₆ and dehydrogenation by Pd-C at 290-320° then gives 2-methyl-3: 4-benzphenanthrene, m.p. 70·4—71° (lit. 69·5—70°) (*picrate*, m.p. 141·8—143·2°). 2-Keto-1:2:9:10:11:12-hexahydro-3:4-benzphenanthrene and MgEtBr in C₆H₆ give an alcohol, which after dehydration by I and dehydrogenation by S at 230° gives 2-ethyl-3: 4-benzphenanthrene, m.p. $50.4 - 51.2^{\circ}$ [picrate, m.p. $78.4 - 80^{\circ}$; $s-C_6H_3(NO_2)_3$ compound, m.p. 105·6—106·6°-]. M.p. are corr.

Synthesis of 1-methylchrysene and related compounds. M. S. NEWMAN (J. Amer. Chem. Soc., 1940, **62**, 870—874).—Prep. of Ph·[CH₂]₂·CHPh·CN and 1-keto-1:2:3:4-tetrahydronaphthalene (I) is improved. Interaction of (I) with CHMeBr·CO₂Et-Zn-I, dehydration (I; 230°), and then hydrolysis (boiling KOH-EtOH) of the product gives α-2-phenyl- $3:4 ext{-}dihydro ext{-}1 ext{-}naphthylpropionic acid, m.p. }210\cdot2 ext{-}$ 210.6° (with a little $Et \alpha-1-hydroxy-2-phenyl-1:2:3:4$ tetrahydro-1-naphthylpropionate, m.p. 90.4— 91.4°) reduced by H₂-Cu-Ba chromite in dioxan at 200°/127 atm. to α -1-phenyl-1:2:3:4-tetrahydro-1-naphthylacetic acid, m.p. 143—148° (147·6—148·8°). PCl₅— C₆H₆ and then AlCl₃-C₆H₆ at room temp. and later give 2-keto-1-methyl-1:2:7:8: $\hat{1}a$:7a-hexahydrochrysene (II), which by reduction $[Al(OPr^{\beta})_3 -$ Pr^BOH], dehydration (I; 230°), and dehydrogenation (S; $240-250^{\circ}$) gives 1-methylchrysene (III) (36%), m.p. $117 \cdot 2 - 117 \cdot 8^{\circ}$ [picrate, m.p. $142 \cdot 6 - 143^{\circ}$; s- $C_6H_3(NO_2)_3$ compound, m.p. $172 \cdot 6 - 173 \cdot 6^{\circ}$]. Treatment of (II) with MgMeBr-Et₂O-C₆H₆, heating at 220°/vac., and dehydrogenation (S; 230—240°) gives 1:2-dimethylchrysene, dimorphic, m.p. 128.6—129.8° [picrate, m.p. $134.4-135.4^{\circ}$ (decomp.); $s-C_6H_3(NO_2)_3$ compound, m.p. 158·6—159·4°], and some (III). Reactions starting from (I) and CHEtBr CO₂Et give α-2-phenyl-3: 4-dihydro-1-naphthyl-n-butyric acid, m.p. 156—159° (with 15% of Praco₂Et), and 1-ethylchrysene, m.p. 91·4—92·4° [picrate, m.p. 99·2—100·6°; $s-C_6H_3(NO_2)_3$ compound, m.p. $125\cdot2-125\cdot8^{\circ}$], intermediates being oils. 2-Methylchrysene is slightly carcinogenic. M.p. are corr.

Physiologically active amines. III. sec. and tert. β-Phenylpropylamines and β-phenyliso-propylamines. E. H. Woodruff, J. P. Lambooy, and W. E. Burt (J. Amer. Chem. Soc., 1940, 62, 922—924; cf. A., 1938, II, 271).—The following are prepared by (a) heating CHPh.NR with R'I to give CHPh.NRR'I and then hydrolysing with hot MeOH or EtOH, or (b) hydrogenating (Raney Ni; 3 atm.; EtOH) RCHO-NH₂R'-NaOAc or CHR.NR' (CH₂O gives NR'Me₂, but other aldehydes give mixed sec.

R. S. C.

and tert. amines). Figures in brackets are m.p. of the hydrochlorides. β-Phenyl-, b.p. 78—80°/6 mm. [135—136°], β-o-, b.p. 100—102°/6 mm. [137—138°], β-m-, b.p. $135-137^{\circ}/18$ mm. $[142-143^{\circ}]$, and β-panisyl-isopropylmethylamine, b.p. 117—119°/8 mm. [178·5—179·5°], β-phenyl-, b.p. 96—98°/18 mm. [148—159°], β-ο-, b.p. 115—117°/8 mm. [199—200°], and β -p-anisyl-propylmethylamine, b.p. $127-128^{\circ}/8$ mm. [$166.5 - 167.5^{\circ}$], β -o-, b.p. $104^{\circ}/6$ mm. [$158 - 159^{\circ}$], β -m-, b.p. $140^{\circ}/17$ mm. [$123 - 124^{\circ}$], and β -panisylisopropylethylamine, b.p. 137°/9 mm. [156— 157°], β-phenyl-, b.p. 127°/30 mm. [159—160°], and β-p-anisyl-propylethylamine, b.p. 137°/9 mm. [156— 157°], β-phenyl-, b.p. 100°/12 mm. [159—161°], β-o-, b.p. 125°/10 mm. [157—158°], β-m-, b.p. 132°/10 mm. [134—135°], and β-p-anisyl-isopropyldimethylamine, b.p. 137°/13 mm. [161—162°], β-m-, b.p. 130°/12 mm. [175—176°], and \beta-p-anisylpropyldimethylamine, b.p. 129°/11 mm. [198—199°], methylephedrine, m.p. 86·5—87·5° [190—191°], β-phenyl-, b.p. 178°/13 mm. [198—199°], β-ο-, b.p. 194°/9 mm. [130—131°], and β-m-anisyl-isopropylbenzylamine, b.p. 196°/10 mm. [143—144°], β-o-, b.p. 197°/10 mm. [dimorphic, m.p. $146-147^{\circ}$ and $161-162^{\circ}$], β -m-, b.p. $181^{\circ}/10$ mm. [148—149°], and \beta-p-anisylpropylbenzylamine, b.p. 209—212°/13 mm. [154°].

Preparation and properties of 6-halogenocarvacrylamines from p-cymene. R. W. Bost and G. C. KYKER (J. Amer. Chem. Soc., 1940, 62, 913—917).—Addition of 6:1:4:2-NO₂·C₆H₂MePr^β·N₂Cl to CuCl–HCl at 0° and heating at 60° gives 2-chloro-6-nitro-p-cymene (Me = 1) (I) (77.5%), b.p. $132-133^{\circ}/2$ mm., and some 2-nitro-6hydroxy-(?5-)6'-nitrocarvacrylazo-p-cymene, m.p. 186— 187°. Mossy Sn, conc. HCl, and EtOH reduce (I) to 6-chlorocarvacrylamine (II), b.p. 134—136°/1 mm. [hydrochloride, softens at 210-220°, m.p. 225-226° (decomp.); hydrobromide, m.p. 231—232°; nitrate, m.p. 153°; oxalate, m.p. 155°; di-, m.p. 92—93°, and tri-chloroacetate, m.p. 157°; 2:4:6-tri-, m.p. 161°, and 3:5-di-nitrobenzoate, m.p. 133—134°; picrate, m.p. 151°; H sulphate, m.p. 166°; benzene-, m.p. 184°, and p-toluene-sulphonate, m.p. 193—194°; Ac, m.p. 117—118°, Bz, m.p. 139°, 3:5-dinitrobenzoyl, m.p. 197—198°, $PhSO_2$, m.p. 117.5°, $p\cdot C_6H_4Me\cdot SO_2$, m.p. $115 \cdot 5^{\circ}$, p. $C_6H_4Br \cdot SO_2$, m.p. $131 \cdot 5^{\circ}$, m. $NO_2 \cdot C_6H_4 \cdot SO_2$, m.p. $129 \cdot 5^{\circ}$, and picryl derivative, m.p. 150·5—151·5°], which yields 6-chloro-2-carbamidop-cymene, m.p. 180—182° (decomp.; slow heating), 185—187° (decomp.; preheated to 160°), and as hydrochloride with aq. NaNO2 at 0° gives 6:6'dichloro-2: 2'-diazoamino-p-cymene, m.p. 110°. azotisation of (II) and coupling gives azo-dyes, (m.p. as given) with β -C₁₀H₇·OH, m.p. 202°, PhOH, m.p. 192—193°, m-C₆H₄(OH)₂, m.p. 233°, phloroglucinol, m.p. 278°, and 1:8:3:6-(OH)₂C₁₀H₄(SO₃H)₂, m.p. >300°. 6-*Bromo*-, m.p. 213—214° (decomp.), and 6iodo-carvacrylamine hydrochloride, m.p. 244—245° (decomp.), are prepared as for (II).

Action of amines on 9-bromo-2-nitrofluorene. New and very sensitive colour reaction for pyridine. A. Novelli (Rev. Fac. Cienc. Quím. La Plata, 1939, 14, 137—140).—9-Bromo-2-nitrofluorene (I) with NHEt₂ in EtOH gives 2:2'-dinitro-

bisdiphenylene-ethylene, but the appropriate $\rm NH_2Ar$ affords 2-nitro-9-phenyl-, m.p. 164° , -9-p-tolyl-, m.p. $146-147^\circ$, -9-p-nitrophenyl-, m.p. $222-224^\circ$ (decomp.), and -9-2'-fluorenyl-fluorenylamine, m.p. $186-187^\circ$. (I) heated with $\rm C_5H_5N$ or its derivatives and then diluted with $\rm H_2O$ and EtOH or COMe₂, with subsequent addition of aq. $\rm NH_3$, gives an intense blue colour.

F. R. G.
Constitution of sulphon-amides and -anilides.
A. Baroni (R.C. Atti Accad. Ital., 1939, [vii], 1, 46—49).—The parachors of 21 sulphon-amides and -anilides show that these have normal structures at 200°. In solution irregular deviations in [P] are observed.

E. W. W.

Derivatives of sulphanilamide.—See B., 1940, 403, 404.

Sulphonamide derivatives of arylcarbamides. E. H. Cox (J. Amer. Chem. Soc., 1940, 62, 743—744).—NHAr·CO·NH₂ (A) and ClSO₃H at 0—10° give NH₂·CO·NH·C₆H₄·SO₂Cl etc. (difficult to purify). NHAr·CO·NHAc [prep. from (A) by AcCl-C₅H₅N at —10°, then 30°] and ClSO₃H at 50° give NHAc·CO·NH·C₆H₄·SO₂Cl etc. The chloride is converted by 28% NH₃ or 30% NHEt₂ at 100° into the amide. Thus are obtained p-N'-acetylcarbamidobenzene-, m.p. 192—193°, -o-, m.p. 197—199°, and -m-toluene-sulphonyl chloride, m.p. 199—201°, p-carbamido-benzene-, m.p. 206—207° (Ac derivative, m.p. 246—247°), -o-, m.p. 223—225° (Ac derivative, m.p. 231—233°), and -m-toluene-sulphonamide, m.p. 209—210° (Ac derivative, m.p. 226—227°), p-carbamidobenzene-, m.p. 148—149°, -o-, m.p. 165—167°, and -m-toluene-sulphondiethylamide, m.p. 147—148°.

Action of amines on semicarbazones. A. B. Crawford (J. Roy. Tech. Coll., 1940, 4, 607—616).

—CMe₂:N·NH·CO·NH₂ and p-NH₂·C₆H₄·N₂Ph (I) at 160° give NH₃, p-isopropylidenesemicarbazidoazobenzene (II) (12—15%), m.p. 210°, and (NMe₂)₂ with some (NH·CO·NH₂)₂. HCl in hot, aq. EtOH hydrolyses (II) to p-8-semicarbazidoazobenzene (III), p-NH₂·NH·CO·NH·C₆H₄·N₂Ph, m.p. 237° (decomp.; red at ~210°) [hydrochloride, m.p. ~209° (decomp.), colour variable; CHPh: derivative, m.p. 217—218°]. Absorption spectra of (I) and (III) in EtOH and aq. HCl are in part correlated with structure.

R. S. C. Metallic complexes of o-substituted azo-dyes. J. L. Boyle, W. M. Cumming, and A. B. Steven (J. Roy. Tech. Coll., 1940, 4, 617—632).—o-NH₂, o-CO₂H, and o-OAlk can take part in metal-lake formation of azo-dyes. The following lakes are prepared from pure intermediates. 1Cu:1dye compounds with p-C₆H₄R·NH₂ \rightarrow β -C₁₀H₇·OH (R = NO₂ or SO₃H), NH₂Ph \rightarrow 6:2-SO₃H·C₁₀H₆·OH, 2:5:1-OH·C₆H₃(NO₂)·NH₂ \rightarrow β -C₁₀H₇·OH (I), 2:5:1-OH·C₆H₃(NO₂)·NH₂ \rightarrow 5:1-SO₃H·C₁₀H₆·OH (II), and o-C₆H₄R·NH₂ \rightarrow β -C₁₀H₇·OH (R = OMe or CO₂H); 1Cu:2(1:2-PhN₂·C₁₀H₆·OH); 4Cu:3[5:2:1-SO₃H·C₆H₃(OH)·NH₂ \rightarrow β -C₁₀H₇·OH]; 3Cu:2dye compounds with 2:5:1-OH·C₆H₃(NO₂)·NH₂ \rightarrow 6:2-SO₃H·C₁₀H₆·OH (III), 4:1:2:6-SO₃H·C₆H₂Me(NH₂)₂ \rightarrow m-C₆H₄(NH₂)₂ (IV), and 4:1:2-NO₂·C₆H₃(OH)·NH₂ \rightarrow 4:1:3-

 $\begin{array}{llll} SO_{3}H \cdot C_{6}H_{3}(NH_{2})_{2} & (V) ; & 2Cu: 1[\textit{o-CO}_{2}H \cdot C_{0}H_{4} \cdot NH_{2} \rightarrow \\ 2: 3: 6 \cdot OH \cdot C_{10}H_{5}(SO_{3}H)_{2}]; & 1Cr: 1 dye & compounds \\ with & 5: 2: 1 \cdot SO_{3}H \cdot C_{6}H_{3}(OH) \cdot NH_{2} \rightarrow & \beta \cdot C_{10}H_{7} \cdot OH, \\ \textit{o-CO}_{2}H \cdot C_{6}H_{4} \cdot NH_{2} \rightarrow & \beta \cdot C_{10}H_{7} \cdot OH, \\ \textit{o-CO}_{2}H \cdot C_{6}H_{4} \cdot NH_{2} \rightarrow & \beta \cdot C_{10}H_{7} \cdot OH, \\ \textit{o-CO}_{2}H \cdot C_{6}H_{4} \cdot NH_{2} \rightarrow & \alpha \cdot (V); & 2Cr: 3 dye \\ compounds & with (I), (II), (IV), \\ and & \textit{o-OMe-}C_{6}H_{4} \cdot NH_{2} \rightarrow & \beta \cdot C_{10}H_{7} \cdot OH; & 4Cr: 3(III). & Formulæ are ascribed. \end{array}$

Aromatic aminohydrazines.—See B., 1940, 345.

Nuclear methylation of phenol. T. Kennedy (Chem. and Ind., 1940, 297).—4:1:3:5-OH·C₆H₂Me(CH₂·OH)₂, prepared from *p*-cresol by CH₂O in aq. alkali, is hydrogenated (Cu chromite; dioxan) to mesitol, similarly obtained starting from a commercial mixed cresol.

R. S. C.

Deepening of colour of sodium nitrophenoxide solutions with elevation of temperature. T. L. Davis and J. L. Richmond (J. Amer. Chem. Soc., 1940, 62, 756—761).—The thermotropic colour intensification and its retardation by $\mathrm{Na_2CO_3}$ are similar for aq. o-, m-, and p-NO₂·C₆H₄·ONa, the m-compound being somewhat less affected. The Na salts may be formed by addition of NaOH to give CH:CH·C(OH)₂ CH:CH·C(NO·ONa

(and its p-analogue) and $CH(OH)\cdot C(OH):CH$ C:NO·ONa. The colour is due to resonance of the ions.

R. S. C. Syntheses of stilbene derivatives. I. New synthesis of trans-4:4'-dihydroxy- $\alpha\beta$ -diethylstilbene. S. Kuwada and Y. Sasagawa (J. Pharm. Soc. Japan, 1940, 60, 27-29; cf. Dodds et al., A., 1939, II, 312).—Anisoin is converted by MgEtBr into αβ-dianisylbutane-αβ-diol, m.p. $113\cdot 5^\circ$, transformed by short treatment with warm 50% H_2SO_4 into αβdianisylbutan- α -one (I), b.p. 198—199°/1 mm. (oxime, m.p. 111°), whereas conc. H_2SO_4 yields much resinous matter. (I) and MgEtBr give a material from which a homogeneous cryst. product could not be extracted but which is dehydrated by PBr₃ in CHCl₃ to 4:4'dimethoxy-αβ-diethylstilbene, m.p. 123—124°. This is demethylated (Späth) to trans-4: 4'-dihydroxy-αβdiethylstilbene, m.p. 168.5°, the absorption curve of which is closely similar to that of trans-αβ-dimethylstilbene. H. W.

Structure of cannahidiol. II. Absorption spectra compared with those of various dihydric phenols. R. Adams, C. K. Cain, and H. Wolff. III. Reduction and cleavage. R. Adams, M. Hunt, and J. H. Clark (J. Amer. Chem. Soc., 1940, 62, 732—734, 735—737; cf. A., 1940, II, 80).—II. Comparison of absorption spectra of o- and m-C₆H₄(OR)₂, 4:1:2- and 5:1:3-C₆H₃Me(OR)₂, 4:1:2- and 5:1:3-n-C₅H₁₁·C₆H₂(OR)₂ (R = H or Me), cannabidiol (I) and its Me₂ ether indicates a resorcinol structure for (I). 4-n-Amylpyrocatechol Me₂ ether, b.p. 124—126°/4—5 mm., is prepared from the phenol by Me₂SO₄ and 10% NaOH-EtOH.

the phenol by Me_2SO_4 and 10% NaOH-EtOH. III. (I) is probably 4- or 2-dihydro-3'-p-cymyl-5-n-amylresorcinol (Me = 1'). Hydrogenation (PtO₂; 2—3 atm.; AcOH) of (I) gives tetrahydrocannabidiol, b.p. $188-190^\circ/2\cdot5$ mm., oxidised by $KMnO_4$ in $COMe_2$ to p-menthane-3-carboxylic acid (Me = 1) [anilide, m.p. $152-152\cdot5^\circ$ (corr.) (lit. $148\cdot5^\circ$)]. De-

hydrogenation of (I) gives oils, probably containing a Ph₂ derivative. In C_5H_5N ,HCl at $210-230^\circ$ (much less well, NH₂·SO₃H), (I) gives p-cymene and olivetol, b.p. (anhyd.) 170—175°/2 mm., m.p. (+H₂O) 41° [bis-3:5-dinitrobenzoate, m.p. 127—128° (corr.)].

Claisen rearrangement. II. Kinetic study of rearrangement of 2:6-dimethylphenyl allyl ether in diphenyl ether solution. D. S. TARBELL and J. F. Kincaid (J. Amer. Chem. Soc., 1940, 62, 728—731; cf. A., 1940, I, 30).—m-2-Xylenol and CH, CH CH, Br with hot NaOEt-EtOH give 85 and 15% or with Na in C_6H_6 give 55 and 45% of the allylether (I), b.p. 67—68°/2 mm., and 2:6-dimethyl-4-allylphenol (II), b.p. $90.5-91.4^\circ/2$ mm. (phenylurethane, m.p. 141-142.5°, obtained by PhNCO and dry HCl), respectively. At 171.6° in absence of air (I) gives 95% of (II) and 5% of a polymeride. In Ph₂O at 185.8° , 171.6° , or 156.9° , or alone at 171.6° or 185.8°, the rearrangement is of the first order, in agreement with findings that 10% of NPhMe₂ in Ph₀O increases the velocity by only ~15% (thus excluding a prototropic change as the slow step) and that 1 or 2% of AcOH increases it by 28 or 42%, respectively. k increases as the reaction proceeds with the more conc. solutions. The entropy of activation is $-10\cdot1$ e.u. at $171\cdot6^{\circ}$, comparison of which with that for $p\text{-C}_6\text{H}_4\text{Me}\cdot\text{O}\cdot\text{CH}_2\cdot\text{CH}\cdot\text{CH}_2$ ($-9\cdot5$ under comparable conditions) indicates that rearrangement to the o- and p-positions has the same slow This is difficult to reconcile with chemical evidence for the cyclic mechanism, which also on Fisher-Hirschfelder models is impossible for the p-migration.

N-Substituted aminophenols.—See B., 1940, 345.

Alkylation of o-hydroxyazo-compounds and anomalous reduction of the ethers obtained. (Signa.) E. Ghici (Gazzetta, 1940, 70, 202—211, and Helv. Chim. Acta, 1940, 23, 428—430).—The view of Fierz-David et al. (A., 1938, II, 317) that the OH of o-hydroxyazo-compounds cannot be alkylated is incorrect. $2:1\text{-OH}\cdot\bar{C}_{10}H_6\cdot N:NPh$ (I) is converted into the Me ether (II) (cf. Charrier et al., A., 1912, i, 812), which with Na₂S₂O₄ and NaOH in boiling EtOH gives 2-anilino-1-naphthylamine (III), m.p. 136— 137°, converted by AcOH–NaNO₂ into 3-phenyl-αβ-naphthatriazole (cf. Charrier *et al.*, A., 1926, 848). PhCHO converts (III) into diphenylnaphthiminazole. With PhN₂Cl, (III) gives tarry products. With Et₂SO₄ in boiling 30% NaOH, (I) gives its Et ether, m.p. 79°, converted by Na₂S₂O₄ into (III). No definite products are obtained from (II) and Zn-AcOH. The acetate of (I) is reduced by Na₂S₂O₄ $1: 2-NH_2\cdot C_{10}H_6\cdot OH.$ $4: 1: 3-OH\cdot C_6H_3Me\cdot N_2Ph$ with Me₂SO₄-NaOH gives its Me ether, m.p. 53-54° reduced by Na₂S₂O₄ to 6-methoxy-3-methylhydrazo-benzene, m.p. 91—92° (Ac₁ derivative, m.p. 124— 125°), which with boiling 10% H₂SO₄ gives 5-methoxy-2-methylbenzidine, m.p. 86—87° [sulphate, m.p. ~300°; Ac_4 derivative, m.p. $188-189^{\circ}$].

[Interaction of] styrene and organic disulphides [in presence of] iodine. B. Holmberg (Arkiv Kemi, Min., Geol., 1939, 13, B, No. 14, 6 pp.).—

R₂S₂ and CHPh:CH₂ (I) in presence of a little I (in C₆H₆ or other solvent, if solid) give αβ-di-methyl-(II), b.p. 149—150°/10 mm., -ethyl-, b.p. 163—164°/11 mm., -(carbethoxyethyl)-, b.p. 210—212°/3 mm., and -phenyl-, m.p. 57—58°, -thiolethylbenzene, SR·CHPh·CH₂·SR. Analogous condensations with other unsaturated components and of (I) with tetra-and tri-thioglycollic acid, (CO₂H·CH₂·S)₂S (prep. from SH·CH₂·CO₂H by SCl₂), m.p. 122—124°, failed. Perhydrol and (II) in COMe₂ give the derived disulphoxide, forms, m.p. 122—124° (clear at 126°) and 130—131°.

Derivatives of 4: 4'-diaminodiphenyl sulphide.—See B., 1940, 345.

Synthesis of sulphur-containing chemotherapeutic products. I. p-Nitrophenyl p-aminophenyl sulphoxide and sulphone. J. O. Gabel and F. L. Grinberg. II. p-Nitrophenyl p-acetamidophenyl sulphide. J. O. Gabel and A. L. Schpanion (J. Appl. Chem. Russ., 1939, 12, 1481—1484, 1485—1489).—I. 4-Nitro-4'-acetamidodiphenyl sulphide (I) in AcOH and H₂O₂ (24 hr. at room temp., then 30 min. at 100°) give the sulphoxide (II), m.p. 210—211°, in 90% yield; when the final heating is prolonged to 3—3·5 hr. the product is the sulphone (III), m.p. 219—220° (yield 90—96%). (II) and (III) are hydrolysed (boiling 18% HCl) to 4-nitro-4'-aminodiphenyl sulphoxide, m.p. 132—134°, and sulphone, m.p. 167—169°, respectively.

II. Na₂S and p-C₆H₄Cl·NO₂ in EtOH (at the b.p.) yield a mixture of (p-NO₂·C₆H₄)₂S and p-NO₂·C₆H₄·S·C₆H₄·NH₂-p. p-NHAc·C₆H₄·SO₂Cl is

 $p\text{-NO}_2\cdot \text{C}_6\text{H}_4\cdot \text{S}\cdot \text{C}_6\text{H}_4\cdot \text{NH}_2\cdot p$. $p\text{-NHAc}\cdot \text{C}_6\text{H}_4\cdot \text{SO}_2\text{Cl}$ is reduced (Zn and aq. EtOH–HCl at 0° until evolution of H₂ ceases, then 25 min. at 100°) to $p\text{-NHAc}\cdot \text{C}_6\text{H}_4\cdot \text{SH}$, which with $p\text{-C}_6\text{H}_4\text{Cl}\cdot \text{NO}_2$ in EtOH–NaOH gives (I) in good yield. R. T.

Reversibility of the rearrangement of o-hydroxysulphones. R. R. Coats and D. T. Gibson (J.C.S., 1940, 442-446).—Rearrangement (A) of o-hydroxysulphones to sulphino-ethers (cf. McClement et al., A., 1937, II, 337) is reversible; the reverse change is much slower, but roughly of the same order. o-Nitrophenyl 1-sulphino-2-naphthyl ether, m.p. 116°, in aq. NaOAc at 50° for 5 hr. is converted (almost quant.) into o-nitrophenyl 2-hydroxy-1naphthyl sulphone, m.p. 180-181° (2 forms) (cf. Levy et al., A., 1932, 156); the conversion occurs in aq. COMe₂ and partly even in dry Et₂O-ligroin. 4'-Chloro-2-nitro-3': 5'-dimethyl-, new m.p. 131°, 2-nitro-4': 6'-dimethyl-, m.p. 153° (lit. 129°), 2-nitro-4'-methyl-, new m.p. 134°, and 6'-chloro-2-nitro-4'-methyl-, new m.p. 154°, and 6'-chloro-2-nitro-4'-methyl-, new m.p. 150°, and 6'-chloro-2-nitro-4'-methyl-, new m.p. 150°, and 6'-chloro-2-nitro-4'-methyl-, new m.p. 170°, and 6'-chloro-2-nitro-1'-methyl-, new m.p. 170°, and 6'-chloro-2-nitro-1'-methyl-new m.p. 170°, methyl-2'-sulphinodiphenyl ether, m.p. 170°, re-5'-chloro-2-nitro-2'-hydroxy-4': 6'-diarrange to methyl-, 2-nitro-2'-hydroxy-3': 5'-dimethyl-, 2-nitro-2'-hydroxy-5'-methyl-, and 3'-chloro-2-nitro-2'hydroxy-5'-methyl-diphenyl sulphone respectively; the times for attaining equilibrium at the most favourable p_{H} in \sim N./150 solution at $50\pm2^{\circ}$ are 5, 250, 400, and 450 hr., respectively. Conversion of 2:4-dinitrophenyl 3-sulphino-p-tolyl ether, m.p. 140° (decomp.) (lit. 117—118°), into 2: 4-dinitro-2'-hydroxy-5'-methyldiphenyl sulphone is rapid (2 hr.). Interconversion in either direction is facilitated by the positive character of the C atom o to NO₂ and attached

to SO₂ (in the sulphone). The rate of conversion of 2-nitro-4'-hydroxy-2'-sulphinodiphenyl ether (monohydrate, 2 forms, m.p. 98°; not dehydrated by P₂O₅; cf. Kent et al., A., 1934, 647) could not be determined, owing to the solubility of 2-nitro-2':5'-dihydroxydiphenyl sulphone. Although o-nitrophenyl β-hydroxyethyl sulphone almost instantaneously gives β-o-nitrophenoxyethanesulphinic acid, new m.p. 124°, and 2-nitro-2'-hydroxy-5'-methoxydiphenyl sulphone affords 2-nitro-4'-methoxy-2'-sulphinodiphenyl ether, new m.p. 128°, no reverse reaction was obtained in either case. Theoretical aspects are discussed. The conversion medium may be NaOAc, HCO₂Na, or aq. COMe₂. The relative strengths of PhSO₂H and o- and p-C₆H₄Me-SO₂H are given. Rearrangement (A) occurs even in aq. NH₃, where co-ordination is impossible (cf. Heppenstall et al., A., 1938, II, 320).

Condensation of phenol and ethylene oxide. R. A. Smith (J. Amer. Chem. Soc., 1940, 62, 994).— OH·[CH₂]₂·OPh, b.p. $165^{\circ}/80$ mm., is best (94%) prepared from PhOH and (CH₂)₂O in H₂ at $200^{\circ}/2500$ lb. R. S. C.

Decomposition of chlorosulphinic esters. M. P. Balfe and J. Kenyon (J.C.S., 1940, 463—464; cf. A., 1930, 598).—Aspects of the decomp. of semi-aromatic chlorosulphinates are reviewed (cf. Gerrard, A., 1940, II, 127). In presence of Cl', derived either from the hydrochloride of tert. bases or by formation of the unstable intermediate additive compound, the chloride RCl is formed with inversion of configuration. In absence of tert. base, the chloride is formed with retention of configuration, probably by the intramol. mechanism suggested by Hughes et al. (A., 1937, II, 363).

A. T. P.

Formation of phenol-formaldehyde resins. I. Condensation of guaiacol and formaldehyde. H. von Euler, E. Adler, and D. Friedmann (Arkiv Kemi, Min., Geol., 1939, 13, B, No. 12, 7 pp.).—Guaiacol (I) (2·2 mols.), 40% aq. CH_2O (1 mol.), and a little HCl at 100° give (? 4 : 4'-) (II), m.p. 107—108°, and (? 4 : 2'-)dihydroxy-3 : 3'-dimethoxydiphenylmethane, m.p. 119—120°. 40% CH_2O (2 mols.), (I) (1 mol.), and 10% NaOH (1 mol.) at room temp. give a mixture of alcohols, probably 1 : 2 : 4- $OH\cdot C_6H_3(OMe)\cdot CH_2\cdot OH$ and 1 : 4 : 6 : 2- $OH\cdot C_6H_2(CH_2\cdot OH)_2\cdot OMe$, and a little [4 : 3 : 5 : 1- $OH\cdot C_6H_2(OMe)(CH_2\cdot OH)_2\cdot CH_2$, m.p. 148—149° (lit. 146·5—147°) [also obtained from (II) by CH_2O (2 mols.) and NaOH (2 mols.) at 40—50°]. R. S. C.

Steric course of dimerising reductions. N. A. Sörensen, J. Stene, and E. Samuelsen (Annalen, 1940, 543, 132—142).—Reduction (method: Kuhn et al., A., 1928, 281) of CHPh:CH·CHO gives approx. equal amounts of meso- (I), m.p. 156° (dibenzoate, m.p. 173—174°), and r-hydrocinnamoin (II), m.p. 107·5° (corr.); the reaction mixture is freed from (I) and the residual syrup treated with BzCl in C₅H₅N at 0°, whereby the dibenzoate (III), m.p. 165·5° (corr.), of (II) is formed. Hydrolysis (EtOH-NaOH) of (III) affords (II) whilst oxidation (O₃ in AcOH) gives PhCHO (1·6 mols.) and r-dibenzoyltartaric acid (+2H₂O), m.p. 112—114° resolidifying at 116—120° with m.p. 168—170°, m.p. (anhyd.) 174—175° (cf.

lit.) [anhydride, m.p. 175—177° (corr.)]. Contrary to Thiele (A., 1899, i, 616; cf. Farmer et al., A., 1928, 151), distillation of (I) at atm. pressure gives p-C₆H₄Ph₂; reaction is considered to occur thus: (I) \rightarrow [2 CHPh:CH·CH·OH \leftrightarrow 2 OH·CH:CH·CHPh] \rightarrow CHPh:CH·CH(OH)·CHPh·CH:CH·OH \rightarrow p-C₆H₄Ph₂. Dimerising reductions of CHR:CH·CHO with Zn, Zn-Cu, Al-Hg, VSO₄, etc. are considered to give CHR:CH·CH·OH, which can dimerise (to the glycol) or rearrange (cf. above).

Ring-enlargement in the hydroaromatic series. Experiments with 3:3:5-trimethylcyclohexylmethylamine (dihydroisophorylmethylamine). H. BARBIER (Helv. Chim. Acta, 1940, 23, 519—524).—isoPhorone is scarcely affected by CH₂Cl·CO₂Et and NaOMe whereas dihydroisophorone (I) yields $Et\ 3:3:5$ -trimethylcyclohexylglycidate, b.p. $105^{\circ}/4$ mm., in 70% yield. This is converted by hydrolysis followed by distillation of the acid under diminished pressure into 3:3:5-trimethyleyclohexanealdehyde, b.p. 53°/4 mm., 201° (corr.)/730 mm. (semicarbazone, m.p. 132°). The corresponding oxime, b.p. 98°/4 mm., is dehydrated by boiling Ac₂O to the nitrile, b.p. 73°/4 mm., 226° (corr.)/730 mm., which is reduced (Na in boiling EtOH) to 3:3:5-trimethyl-cyclohexylmethylamine, b.p. 58°/4 mm., 202° (corr.)/728 mm. (hydrochloride, m.p. 245—250°). This is deaminated (NaNO₂ in dil. AcOH) to 1:1:3-trimethylcycloheptene, b.p. 38°/4 mm., 152° (corr.)/732 mm., 1:3:3:5-tetramethylcyclohexanol, b.p. 65°/4 mm., 185°(corr.)/729 mm., m.p. 82° [also obtained from (I) and MgMeI and dehydrated by C₆H₄Me·SO₃H to tetramethylcyclohexene, b.p. 149.5° (corr.)/721 mm.], and a mixture of trimethylcycloheptanols which is oxidised and treated with NH₂·CO·NH·NH₂, thus leading to a homogeneous $3:\overline{5}:\overline{5}$ - or $3:\overline{3}:\overline{5}$ -trimethyleycloheptanone, b.p. $62^{\circ}/4$ mm. (semicarbazone, m.p. 174°), also obtained directly from (I) and CH_2N_2 .

Ring-enlargement in the hydroaromatic series. Experiments with 2:2:6-trimethylcyclohexylmethylamine (dihydrocyclogeranylmethylamine). H. Barbier (Helv. Chim. Acta, 1940, 23, 524—532).—cycloGernanonitrile is reduced (Raney Ni in PhMe at 110°/30—50 atm.) to a mixture of 2:2:6-trimethylcyclohexylmethylamines (I), b.p. 62°/4 mm., 212.5° (corr.)/732 mm. [hydrochloride; mercurichloride, m.p. 215°; platinichloride, m.p. 287° (decomp.)], and (II), b.p. 210.2° (corr.)/724 mm. [hydrochloride; mercurichloride, m.p. 161°; platinichloride, m.p. 265° (decomp.)], and (?) di(dihydrocyclogeranyl)amine, b.p. 160°/4 mm. Deamination of (I) leads to 1:1:4-trimethyl- Δ^3 -cycloheptene (III), b.p. $35^{\circ}/4$ mm., 165.5° (corr.)/732 mm., 2:2:6-trimethylcyclohexylmethyl alcohol (IV), b.p. 81°/4 mm. (allophanate, m.p. 172°), and a mixture of trimethylcycloheptanols (V). (IV) is characterised by successive conversions into dihydrocyclocitral, b.p. $62^{\circ}/4$ mm. (semicarbazone, m.p. 185°), and dihydrocyclogeranic acid, m.p. 82°. (II) yields a cyclocitronellol, b.p. 85°/4 mm. (allophanate, m.p. 132°). (V) is oxidised to a mixture from which is obtained 2:2:6- or 3:3:7-trimethyleycloheptanone, b.p. 58°/4 mm., 207°/733 mm. (semicarbazone, m.p. 190-192°); this is transformed by CH₂Cl·CO₂Et and NaOMe in C₆H₆ into the glycidic ester, b.p. $115^{\circ}/4$ mm., which gives 2:2:6- or 3:3:7-trimethylcycloheptanealdehyde, b.p. 65— $67^{\circ}/4$ mm. (semicarbazone, m.p. 121°). 2:5:5-Trimethyl- Δ^2 -cycloheptenone, b.p. 66— $68^{\circ}/4$ mm. (semicarbazone, m.p. 195— 196°), obtained by the action of SeO₂ on (III), gives a glycidic ester, b.p. $124^{\circ}/4$ mm., which is transformed into (probably) 2:5:5-trimethyl- Δ^2 -cycloheptenealdehyde, b.p. $72^{\circ}/4$ mm. (semicarbazone, m.p. 194°). H. W.

Reduction of 7-hydroxy-4-keto-1:2:3:4tetrahydrophenanthrene with sodium and amyl alcohol. M. MIYASAKA (J. Pharm. Soc. Japan, 1939, **59**, 278—282).— γ -(6-Methoxy-2-naphthyl)-butyric acid, m.p. 135°, and $P_2O_5-C_6H_6$ give 4-keto-7methoxy-1:2:3:4-tetrahydrophenanthrene, m.p. 56° (semicarbazone, m.p. 235°), converted by AlCl₃ or AlBr₃ in C₆H₆ into the 7-hydroxy-4-keto-compound (I), m.p. 188° (benzoate, m.p. 155°), which with Na- $C_5\bar{H}_{11}$ ·OH gives (probably) trans-, m.p. 189°, and cis-4:7-dihydroxy - 1:2:3:4:9:10:11:12-octahydrophenanthrene, m.p. 177° (7-benzoate, m.p. 111° ; 3:5dinitrobenzoate, m.p. 198°). (I) and H_2 (PtO₂ in AcOH) give 2-hydroxy-1:2:3:4:5:6:7:8-octahydrophenanthrene (3:5-dinitrobenzoate, m.p. 157°). 4-Hydroxy-7-methoxy-1:2:3:4-tetrahydro-, m.p. 117° (acetate, m.p. 105°), and -1:2:3:4:9:10:11:12octahydro-, m.p. 107°, and 2-hydroxy-5:6:7:8-tetrahydro-phenanthrene, m.p. 132° (picrate, m.p. 183°), are prepared.

Preparation of amino-alcohols.—See B., 1940, 345.

Speculation regarding the ring structure of sterols and related substances. (SIR) R. ROBINSON (J.C.S., 1940, 509—510).—It is doubtful whether the isoprene hypothesis can be applied to sterols. It is more probable that two identical progenitors (cf. A) together with a component introducing a side-chain combine to form different members of the

group. It is suggested that group (A)
may originate from tyrosine (I) or a
protein containing (I) residues. [(By E.
Walker.) The unfavourable effect of
(I) on formation of ergosterol by yeast

is noted.] CH₂O (or its equiv.) may be the methylating agent. C-methylation and group migration are discussed and a structural scheme is suggested. It is possible to postulate the formation of the precursor suggested by Marker (A., 1938, II, 415). A. T. P.

Steroid alcohols.—See B., 1940, 405.

Hydrolysis of dicholesteryl ether by acid clay. T. Kawasaki (J. Pharm. Soc. Japan, 1939, 59, 268—270; cf. A., 1940, II, 75).—Dehydration of cholesterol (I) by acid clay to dicholesteryl ether (II) is never complete, since (II) is similarly converted in C_6H_6 or CCl_4 into $\sim\!8\%$ of (I). Yoder's conclusion (A., 1937, II, 16) that cholesterylenesulphonic acid is formed from (I) and floridin is erroneous. A. T. P.

Photochemical process in the formation of photopyrocalciferols. A. WINDAUS, K. DIMROTH, and W. Breywisch (Annalen, 1940, **543**, 240—247).—Photoisopyrocalciferol (I) is oxidised (CrO₃, AcOH, 0°—room temp.) to photoisopyrocalciferone, m.p. 79—

80°, [α]¹⁹ $_{\rm D}$ -116° in CHCl₃ [semicarbazone, m.p. \sim 210° (decomp.)], which, like photopyrocalciferone, m.p. 91°, $[\alpha]_D^{18} + 197^\circ$ in CHCl₃ (semicarbazone, decomp. $\sim 210^\circ$), does not show absorption characteristic of an abunsaturated ketone. Photopyrocalciferol (II) and (I) cannot, therefore, contain a 4:5 double linking. Ergosteryl acetate, photoisopyrocalciferyl acetate (III), and the isobutyrate of (II) consume 3, 2, and 2 atoms of O, respectively, when titrated with BzO₂H in CHCl₃. Reduction (H₂, Pd-black, EtOAc) of (III) affords a H₄-derivative, an oil; hydrolysis followed by oxidation gives the corresponding ketone (semi-carbazone, m.p. 197°). A tetrahydrophotocalciferol can be similarly obtained. These results indicate that (I) and (II) contain 2 double linkings (1 in sidechain, 1 in ring B). During the formation of (I) and (II) from pyrocalciferol, the second nuclear double linking is probably converted into a bridge (e.g., between $C_{(5)}$ and $C_{(8)}$ or $C_{(9)}$ (cf. A., 1937, II, 376).

Steroids and sex hormones. LXII. $\Delta^{5:17}$ -3trans - Hydroxy - 17a - methyl - D-homoandrosta diene and its transformation products. L. RUZICKA and H. F. MELDAHL (Helv. Chim. Acta, 1940, **23**, 513—518).—The conversion of Δ^5 -17acetylenylandrostene-3:17-diol diacetate into Δ^5 -3:17a - diacetoxy - 17a - methyl - D - homoandrosten - 17 one (I), m.p. $191-193^{\circ}$, by $HgO + SnCl_4$, $SiCl_4$, or $HgO + FeCl_3$ in $AcOH-Ac_2O$ is described. K_2CO_3 in boiling aq. MeOH hydrolyses (I) to the $(OH)_2$ -compound, m.p. 273—275°, converted by N_2H_4,H_2O in C_5H_{11} ·ONa at 200° into Δ^5 :17-3-trans-hydroxy-17amethyl-D-homoandrostadiene (II), m.p. 162-164°, the acetate, m.p. 121—122°, of which is reduced (H₂, PtO₂, AcOH) to 3-trans-acetoxy-17a-methyl-D-homoandrostane, m.p. 128—129°, hydrolysed to the alcohol, m.p. 161—163°. (II) is oxidised by $Al(OBu^{\gamma})_3$ in boiling $COMe_2-C_6H_6$ to $\Delta^{4:17}$ -17a-methyl-D-homoandrostadien-3-one, m.p. 156—158°, reduced (H₂, PtO₂, AcOH) to 17a-methyl-D-homoandrostan-3-one, m.p. 181—182°, and thence to 17a-methyl-D-homoandrostane, m.p. $107-109^{\circ}$, $[\alpha]_{D}$ $2^{\circ}\pm2^{\circ}$ in dioxan. All m.p. are corr. (vac.).

Sterols. XX. Homogeneity of bessisterol and properties of its double linkings. S. Kuwada and S. Yosiki (J. Pharm. Soc. Japan, 1939, 59, 282—284; cf. A., 1939, II, 431).—Bessisterol (I) fused with p-NPh:N·C₆H₄·COCl gives an ester, m.p. 237·5—239·5°. (I) affords a 3:5-dinitrobenzoate, two forms, m.p. 202·5—205·5° and 199·5—204·5°, hydrolysed by KOH-EtOH to (I), m.p. 175°, $[\alpha]_{b}^{23}$ —13·5° (acetate, m.p. 185°; benzoate, m.p. 202°). Hydrogenation of (I) gives bessistaenol, m.p. 113—115·5° (3:5-dinitrobenzoate, m.p. 206—209°; acetate, m.p. 115·5—117·5°). (I) is homogeneous. M.p. are corr.

A. T. P. Sterols. XXI. Constitution of bessisterol. S. Kuwada and S. Yosiki (J. Pharm. Soc. Japan, 1940, 60, 25—27).—Bessisterol (I) is oxidised by Al(OPh)₃ without change in the double linking to bessistenone (II), m.p. 180—181° (semicarbazone, decomp. 279·5°; oxime, decomp. 257°), the absorption spectrum of which in hexane has max. at 240 and 280—290 mµ. Hydrogenation (PtO₂ in EtOAc)

of (II) gives bessistaenol (III), m.p. 113.5—115.5°. Reduction (Meerwein-Ponndorf) of (II) gives substances (IV), m.p. 209-211.5°, and (V), m.p. 175° both of which are pptd. by digitonin from EtOH. (IV) is identical with the compound obtained by heating (I) with NaOEt in a sealed tube. (V) has the same composition, $C_{29}H_{48}O,0.5H_2O$, as (I) but differs somewhat from it in absorption spectrum and [a]; its 3:5-dinitrobenzoate and acetate are identical with those of (I). (III) is oxidised by a modified Oppenauer method to bessistaenone (VI), m.p. 116.5-120.5° (oxime, m.p. 186°; semicarbazone, decomp. 245.5°), which re-forms (III) when catalytically reduced. Its absorption curve has a max. at 280 mμ. It appears that Me at C₍₁₀₎ and OH at C₍₃₎ in (I) have the same steric arrangement as in cholesterol. Spectroscopic evidence negatives the presence of αβ-unsaturated CO in (II) and (VI) and appears to indicate the existence of a simple CO. If the readily reduced double linking in (I) is not in the neighbourhood of OH it must occupy a position quite different from that assumed previously in order to avoid conjugation. All m.p. are corr.

Sterols. XIX. Sterol from Coix seeds. S. Kunada and S. Yosiki (J. Pharm. Soc. Japan, 1939, 59, 203—204).—Extraction of the seeds of Coix lacryma-jobi, L. (var. Frumentacea, Makino), with Et₂O removes a fatty oil which when hydrolysed gives a sterol fraction which cannot be purified by the customary methods. It is therefore converted into the 3:5-dinitrobenzoate, m.p. 215-216° (corr.), $[\alpha]_D^{28}$ -7.3° in CHCl₃, which is hydrolysed to a sterol (I), $C_{29}H_{50}O$, m.p. 138.5° (corr.), $[\alpha]_{D}^{30}$ -19.5, the absorption spectrum of which shows max. at 280 and 287 $m\mu$. (I) gives an acetate, m.p. 125° (corr.), [α]₃₀ $-37\cdot2^{\circ}$ in CHCl₃, and a benzoate, m.p. 147—149° (corr.), [α]₃ $-14\cdot7^{\circ}$ in CHCl₃. (I) absorbs 2 H₂ (PtO₂ in EtOAc) but the H₂-derivative, m.p. 140·5—142·5°, [α]₂ $+23\cdot5^{\circ}$ [which very obstinately retains 0·25H₂O; it does not give a colour with CONO) in CHCl or with $\Delta \alpha$ O in core H SO 1 only $C(NO_2)_4$ in $CHCl_3$ or with Ac_2O in conc. H_2SO_4], only could be isolated. Evidence is afforded in favour of the view that (I) is very closely related to β -sitosterol and possibly contains a small proportion of a-sitosterol.

Sterols. XCVI. alloPregnanediols from tigogenin. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1940, **62**, 898—900).— ψ -Tigogenin, m.p. 193—196° (prep. from tigogenin by Ac₂O at 195— 200° and subsequent hydrolysis), and CrO₃-AcOH at 25—28° give $\Delta^{16:17}$ -allopregnene-3:20-dione, m.p. 210—212°, reduced by Na–EtOH to allopregnane- $3(\beta)$: $20(\alpha)$ -diol and by H_2 -PtO₂ in AcOH at 3 atm. (I).allopregnane- $3(\beta):20(\beta)$ -diol ψ-Tigogenin acetate and CrO₃-AcOH at 28° give a product which is reduced (H₂, PtO₂, AcOH) and then hydrolysed or oxidised (followed by hydrolysis) to (I) or allopregnane-3(β)-ol-20-one, respectively. The β-configuration of the C₍₃₎·OH is thus confirmed. R. S. C

Lateral metallation of phenyl methyl sulphide. H. GILMAN and F. J. WEBB (J. Amer. Chem. Soc., 1940, 62, 987—988).—PhSMe and LiBu^a in Et₂O give after interaction with CO₂ 35·2—43·5% of SPh·CH₂·CO₂H, but PhOMe gives 32·4% of o-OMe· C_6H_4 · CO_2H and 5·37% of $CO(C_6H_4$ ·OMe- $o)_2$. PhSEt gives o-SEt· C_6H_4 · CO_2H . R. S. C.

Experiments on the synthesis of 1:2-dimethylcyclohexylacetic acid. F. C. Copp and J. L. Simon-SEN (J.C.S., 1940, 415—418; cf. A., 1939, II, 117).— 2:3-Dimethylcyclohexanone (improved prep.) and NaNH₂-C₆H₆ (in N₂), then CH₂Br·CO₂Et, afford Et 6-keto-1: 2- and Et 2-keto-3: 4-dimethylcyclohexylacetate, b.p. 144°/16 mm., separated by condensing the former with Et₂C₂O₄ in EtOH-NaOEt at 0°; the resultant product, b.p. 160—180°/16 mm., and 10% aq. H₂SO₄ give keto-acids which afford an α-, m.p. 197—198°, and β-semicarbazone, decomp. 192° (softens at 187°), hydrolysed (dil. H_2SO_4) to α -6-keto-1: 2-dimethyleyclohexylacetic acid, m.p. 107°, and a gum, respectively. 2-Methylcyclohexanone, NaNH₂-Et₂O (in N₂), and CH₂Br·CO₂Et afford a product, b.p. 130— 145°/16 mm., converted by Et₂C₂O₄ into Et 6-keto-5-carbethoxy-2-methylcyclohexylacetate, b.p. 170—190°/ 20 mm., which is hydrolysed by 10% aq. H₂SO₄ to 2-keto-1-methyleyclohexylacetic acid, m.p. 77—78° (semicarbazone, decomp. 182°). Its Et ester (I), b.p. 142°/19 mm., HCO₂C₅H₁₁-iso, and Na in Et₂O give the hydroxymethylene derivative (semicarbazone, m.p. 151°). (I) and MeMgI afford an oil, hydrolysed by KOH-MeOH to the lactone, m.p. 73°, of 6-hydroxy-1:2-dimethylcyclohexylacetic acid, which is converted by Zn-Hg in HCl into one of the theoretically possible forms of dl-1: 2-dimethylcyclohexylacetic acid (II), b.p. 153°/16 mm.; its p-phenylphenacyl ester (III), m.p. 61—62°, on admixture with the d-ester (IV) from hydroxyeremophilone benzoate or with (V) (below) has m.p. $62-64^{\circ}$. (II) is resolved partly through the *cinchonidine* salt, m.p. 141—142° [α]₅₄₆₁ -95° in CHCl₃, into the l-acid [p-phenylphenacyl ester (V), m.p. $65-67^{\circ}$, [α]₅₄₆₁ -6° in EtOAc]; the latter mixed with (IV) in Et₂O affords a product, m.p. 62-63° [unchanged by (III)]. Acidification of the solution from the cinchonidine salt gives the d-acid (p-phenylphenacyl ester, m.p. $62-65^{\circ}$, [α]₅₄₆₁ +8 $^{\circ}$ in EtOAc). In eremophilone and hydroxyeremophilone, the Me groups occupy the 1:10-positions; the ketones are not isoprene derivatives. A. T. P.

Resolution of dl- Δ^2 -cyclogeranic acid. D. J. Bennett, G. R. Ramage, and J. L. Simonsen (J.C.S., 1940, 418—419).—dl- Δ^2 -cyclogeranic acid is resolved by the half-mol. method. The cinchonine salt, m.p. 204—206° (sinters at 183°), $[\alpha]_{5461}$ — $15\cdot4$ ° in CHCl₃, gives the l-acid, m.p. 104°, $[\alpha]_{5461}$ — $395\cdot7$ ° in EtOH; the acid, $[\alpha]_{5461}$ +200° in EtOH, from the more sol. salt is converted into the cinchonidine salt, m.p. 157—158°, $[\alpha]_{5461}$ + $81\cdot1$ ° in CHCl₃, and thence into the d-acid, m.p. 104°, $[\alpha]_{5461}$ + $395\cdot7$ ° in EtOH. Neither acid is identical with the acid, $C_{10}H_{16}O_2$, m.p. 83° (cf. A., 1939, Π , 514).

Steric series. XXIII. Configuration of the tertiary carbon atom. III. K. FREUDENBERG, H. MEISENHEIMER, J. T. LANE, and E. PLANKENHORN (Annalen, 1940, 543, 162—171; cf. A., 1933, 502; 1934, 757).—In order to determine the mesoid or racemoid character of a compound, OH·CHR·CHR·X, containing 2 asymmetric centres (configuration of

* known, that of † unknown), it is necessary that R and R' should be joined in a ring and that the cis or trans relationship of OH and X be known. Subsequent destruction of centre * (e.g., CH·OH >>

 CH_2) allows the configuration of centre † to be determined. These principles are applied to dihydroshikimic acid (A) (configuration of $\mathrm{C}_{(3)}$ as in glucodesonic acid) (cf. Fischer et al., A., 1937, II, 382), which is cleaved between $\mathrm{C}_{(4)}$ and $\mathrm{C}_{(5)}$ (after protection of $\mathrm{C}_{(3)}$ •OH as

 $C_{(3)}$ ·OMe), leading to

 $CO_2Me \cdot \dot{C}H(OMe) \cdot CH_2 \cdot \dot{C}H(CO_2Me) \cdot CH_2 \cdot CO_2Me$ This is converted by fuming HI at 180° into (probably) non-homogeneous d(+)- β -carboxyadipic acid, m.p. ~116°, $[\alpha]_D^{20} + 12.6°$ (max.) in COMe₂ (crystallisation from EtOAc gives some dl-acid, m.p. 122—123°). 4:5-isoPropylideneshikimic acid (I), MeI, and Ag₂O in COMe₂ afford Me 3-methyl-4:5-isopropylidene-shikimate, b.p. $108-112^{\circ}/0.4$ mm., $[\alpha]_{D}^{20}$ -51.5° in EtOH, hydrolysed [30% AcOH at 100° (bath) followed by aq. Ba(OH)₂ at 50°] to 3-methylshikimic acid, m.p. 122—123°, $[\alpha]_D^{20}$ —190° in H_2O , which is reduced (H_2, Pd, H_2O) to 3-methyldihydroshikimic acid (II), m.p. 124.5° , $[\alpha]_{\nu}^{20}$ —22° in H_2O (*Me* ester, $[\alpha]_{\nu}^{20}$ —12° in EtOH). HI (*d* 1.7) at 50—55° converts (II) into (A), whilst oxidation [Pb(OAc)₄-AcOH followed by aq. K_2CO_3 – $KMnO_4$] gives β-carboxy-δ-methoxyadipic acid [Me_3 ester (= B), b.p. 116° (bath)/0·1 mm., [α] $_2^{po}$ +51·2° in COMe₂; triamide, m.p. 186°, [α] $_2^{po}$ +22·5° in HOl Figure of (H) with Ph(OA) $+33.5^{\circ}$ in H_2O]. Fission of (H) with $Pb(OAc)_4$, conversion of the resultant dialdehyde into the dioxime, and dehydration to the dinitrile also affords, less well, a route to (B). Hydrolysis [aq. Ba(OH)₂] of Et αβ-dicyanobutane-δ-carboxylate (Leuchs et al., A., 1909, i, 361) affords dl- β -carboxyadipic acid, resolved by brucine into the l-, m.p. 105—107°, $[\alpha]_{\rm D}^{20}$ —15·5°, and d-acid, $[\alpha]_{\rm D}$ +15·5° in COMe₂ (cf. above).

A little known reaction for benzoic acid. N. Schoorl (Pharm. Weekblad, 1940, 77, 425—427; cf. Guerbet, A., 1920, ii, 517).—The sample is evaporated to dryness—with HNO₃ (d 1·50), the residue dissolved in NaOH and reduced with 10% SnCl₂ and 4n·HCl. Sn is pptd. from the cold acid solution with Al, NaNO₂ is added, and the diazotised m-NH₂·C₂·H₂·CO₂·H coupled with β-C₂·H₂·OH in aq.

 $\mathrm{NH_2 \cdot C_6H_4 \cdot CO_2H}$ coupled with $\beta \cdot \mathrm{C_{10}H_7 \cdot OH}$ in aq. $\mathrm{NH_3}$. The red azo-dyc is also obtained from cinnamic acid; o- and $p\text{-}\mathrm{OH \cdot C_6H_4 \cdot CO_2H}$ interfere. The reaction is sensitive to $0 \cdot 1$ mg. of BzOH. S. C.

Reactivity of atoms and groups in organic compounds. XX. Effect of substituents on the relative reactivities of the hydroxyl group in derivatives of benzoic acid. J. F. Norris and A. E. Bearse (J. Amer. Chem. Soc., 1940, 62, 953—956; cf. A., 1939, II, 369).—The rate of formation of chlorides from BzOH and its derivatives with SOCl₂ shows that reactivity of the OH is inversely related to the reactivity of the acidic H. Thus the increasing activation by substitution is $2:6\cdot(OMe)_2 > p\cdotOMe > 2:4:6\cdot Me_3 > 2:4:6\cdot Et_3 > o\cdotOMe > p > m > o\cdot Me > H > o > m\cdot Cl > 2:6\cdot Cl_2 > 2\cdot ehloro-6-nitro > o > m\cdot NO_2$. NN-Dimethylcyclohexylamine and

 C_5H_5N catalyse the reaction, particularly with osubstituted derivatives. R. S. C.

Alkanolamines. VIII. Reaction of ethanolamines with p-nitrobenzoic acid. M. Meltsner, D. Greenfield, and H. Rosenzweig (J. Amer. Chem. Soc., 1940, 62, 991—992).—Mono- (I), di- (II), or tri-ethanolamine (1 mol.) with p-NO₂·C₆H₄·CO₂H (III) (1 mol.) at 100° gives the salts, m.p. 168°, 138°, and 116°, respectively. 1 mol. each of (I) and (III) under reflux give some p-NH₂·C₆H₄·CO₂H (IV) and di(ethanolamine) p-azoxybenzoate, m.p. 130°. (II) (4 mols.) and (III) (1 mol.) at 180° give (IV). R. S. C.

Ferrisalicylic complexes. G. ILLARI (Annali Chim. Appl., 1940, 30, 65—72).—Salicylic acid with FeCl₃ gives a violet-coloured complex, C₆H₄(O·FeCl₂)·CO₂H, and, in presence of NaHCO₃, a violet-coloured complex C₆H₄[O·Fe(OH)₂]·CO₂H; the structures of these complexes are discussed (cf. A., 1931, 1022). In presence of 0·01n·HCl, a more intensely coloured complex, C₆H₄(O·FeCl₂)·CO₂FeCl₂, is formed.

4:5-Dimethylacetylsalicylic acid. L. Birkofer (Z. physiol. Chem., 1939, 261, 87—92).— $1:2:4\text{-}\mathrm{C}_6\mathrm{H}_3\mathrm{Me}_2\text{-}\mathrm{ONa}$ and CO_2 at $170^\circ/35$ atm. give $4:5\text{-}dimethylsalicylic}$ acid, m.p. 200° [Ac derivative (I), m.p. 122° or 112°; Na salt; Me, m.p. 33° (Ac derivative, m.p. 74—75°), and Ph ester, m.p. 85°]. (I) is extremely analgesic (rabbits, monkeys, humans), as bactericidal as aspirin, and less toxic orally (rabbits) and no more toxic intravenously (mice). R. S. C.

Chloralamides. Reaction \mathbf{of} phosphorus pentachloride on choral-chlorosalicylamides and their methyl ethers, and the reactivity of the chlorine atom. N. W. Hirwe and K. N. Rana (J. Indian Chem. Soc., 1939, 16, 677—680).—2:5:1- $OMe \cdot C_6H_3Cl \cdot CO \cdot NH \cdot CH(OH) \cdot CCl_3$ (I) and PCl_5 give α-chlorochloral-5-chloro-2-methoxybenzamide, m.p. 144— 145°, which with H₂O regenerates (I) and with the appropriate reagent gives a-methoxy-, a-ethoxy-, m.p. 137—138°, α-anilino-, m.p. 152—153°, ο-, m.p. 148—149°, m-, m.p. 153—154°, and p-toluidino-, m.p. 169—170°, α-phenoxy-, m.p. 194—195°, and αbenzoyloxy-chloral-5-chloro-2-methoxybenzamide, 133—135°. α-Chloro-, m.p. 89—91°, α-methoxy-, αanilino-, m.p. 147—148°, a-phenoxy-, m.p. 125—126°, o-, m.p. 153-154°, m-, m.p. 146-147°, and ptoluidino - chloral - 3:5 - dichloro - 2 - methoxybenzamide, m.p. 145—146°, are similarly prepared.

Metalation of alcohols and amines. H. GIL-MAN, G. E. BROWN, F. J. WEBB, and S. M. SPATZ (J. Amer. Chem. Soc., 1940, 62, 977—979).—CH₂Ph·OH and LiBu^α (~2 mols.) in Et₂O give after reaction with CO₂ 8·7% of phthalide + o·CO₂H·C₆H₄·CH₂·OH. CH₂Ph·OMe gives similarly o·CO₂H·C₆H₄·CH₂·OMe. CHPh₂·OH gives 18·6% of α-phenylphthalide. CPh₃·OH, best in presence of Cu-bronze, gives 4·85% of the lactone of triphenylcarbinol-2: 2'-dicarboxylic acid. NH₂Ph gives 4·2% of o·NH₂·C₆H₄·CO₂H (I). NHPh₂ gives 10·9—14·7% of o·NHPh·C₆H₄·CO₂H. NHPhBu^α gives 2% of N·n-butylanthranilic acid, m.p. 80—81°, also obtained from (I) by Bu^αBr-K₂CO₃. NPh₃ gives (Cu-bronze) mixed acids. Piperidine gives an oil.

polycyclic Synthesis of growth-inhibitory compounds. II. G. M. BADGER and J. W. Cook (J.C.S., 1940, 409—412; cf. A., 1939, II, 315).—1:2-Benzanthracene and $Br-CS_2$ yield the 10-Br- (I), m.p. $147\cdot5-148\cdot5^{\circ}$ (picrate, m.p. $155\cdot5-156\cdot5^{\circ}$), converted by $\mathrm{Cu_2(CN)_2}$ in $\mathrm{CH_2Ph\cdot CN}$ at $190-200^{\circ}$ followed by hot aq. HCl, into the 10-CN-derivative, m.p. $187\cdot5-188\cdot5^{\circ}$ (corr.) (cf. Fieser et al., A., 1938, II, 493); the latter does not react with MeMgI and is not reduced by H₂-Pt or Zn-Hg in HCl-AcOH. It is hydrolysed by $\overline{\text{KOH-MeOH}}$, but not by H_2SO_4 -AcOH, to 1:2-benz-10-anthramide, m.p. 218-220° Mg 1: 2-benz-10-anthranyl bromide [from (I), EtBr, and Mg in $\text{Et}_2\text{O}-\text{C}_6\text{H}_6$] and $(\text{CH}_2)_2\text{O}$ give 10- β hydroxyethyl-1: 2-benzanthracene, m.p. 181.5—182.5°. 1: 2-Benz-10-anthraldehyde (II) and ice-cold KMnO₄-COMe₂ yield 1:2-benz-10-anthroic acid (cf. Dansi, A., 1937, II, 285). 1:2-Benzanthracene, COCl·CO₂Et, and AlCl₃ in PhNO₂ at 0°, then at room temp., give 1: 2-benzanthranyl-10-glyoxylic acid, m.p. 175—176·5° (decomp.), reduced by Na-Hg in dil. NaOH to αhydroxy-1: 2-benzanthranyl-10-acetic acid, m.p. 187— 191°, or by red P and HI (d 1.7) in AcOH to 1:2benzanthranyl-10-acetic acid (III), m.p. 270—274° 10-Chloromethyl-1: 2-benz-(previous sintering). anthracene and KCN-aq. $COMe_2$ or $Cu_2(CN)_2$ - $CH_2Ph\cdot CN$ at $180-190^\circ$ followed by C_6H_6 -conc. HCl afford 10-cyanomethyl-1: 2-benzanthracene, m.p. 177—178°, hydrolysed by 15% KOH-EtOH to (III). (II) and ${\rm CH_2N_2}$ in MeOH–Et₂O give (?) 1:2-benzanthranyl-10-acetaldehyde, m.p. 146—147° [s-C₆H₃(NO₂)₃ complex, m.p. 149—150°; picrate, m.p. 138·5—139·5°], oxidised by Na₂Cr₂O₂-AcOH to 1:2-benzanthraquinone. Methyl-1: 2-benzanthracene (IV) and Br-CS₂ afford a 10-Br-derivative, m.p. 122—123°, converted by Cu₂(CN)₂ in CH₂Ph·CN at 190—200° into 10-cyano-9methyl-1: 2-benzanthracene, m.p. $151\cdot 5-152^{\circ}$. HCO·NPhMe, (IV), and POCl₃ in $o\text{-}C_6H_4Cl_2$ at 100° (bath) yield 9-methyl-1: 2-benz-10-anthraldehyde, m.p. 6-Methyl-1: 2-benzanthracene (\bar{V}) 111·5—112·5°. and Br-CS₂ afford the 10-Br-derivative, m.p. 138-139° (oxidised by Na₂Cr₂O₇-AcOH to 6-methyl-1:2benzanthraquinone), converted into 10-cyano-6-methyl-1:2-benzanthracene, m.p. 203·5—204·5°. paraformaldehyde in HCl-AcOH at 60° give a CH₂Cl compound, converted by KOAc-AcOH into 6 - methyl -10 - acetoxymethyl - 1:2 - benzanthracene, m.p. 168.5— 169.5°, and thence by aq. EtOH-NaOH into the $10\text{-}OH\text{-}CH_2$ compound, decomp. 220—230° (previous sintering). Tests [by A. Haddow] show that of the benzanthracenes 10-substituted examined, 1:2-benz-10-anthraldehyde and Na 1:2-benz-10anthroate (H₂O-sol.) produce a characteristic inhibition of growth, of moderate intensity; a definite effect is also noted with 10-cyano- and 10-cyano-6-methyl-1:2-benzanthracene. Introduction of OH and CO₂H groups is attended by marked loss of growthinhibitory activity. Tests for carcinogenic activity are recorded. A. T. P.

Optical study and synthesis of unsymmetrical phthaleins and their derivatives. L. C. Kin (Ann. Chim., 1940, [xi], 13, 317—399).—Attempts to obtain methoxylated o-benzoylbenzoic acids by use of AlCl₃ under the customary conditions generally

give poor yields of impure products owing to elimination of Me but good results are secured by the use of PhNO₂ as solvent at <5°. Thus are obtained o-C₆H₄Bz·CO₂H (Me ester has m.p. 52°); 2-p-OMe·C₆H₄·CO·C₆H₄·CO₂H (I), m.p. 145°, of which only one Me ester, m.p. 82°, could be isolated; o-4′hydroxy-, m.p. 187—188°, and o-4'-methoxy-2'-methyl-5'-isopropylbenzoylbenzoic acid, m.p. 155—156°; o-2:4-, m.p. 164°, and o-3:4-dimethoxybenzoylbenzoic acid, m.p. 234°. By condensation of the requisite acid chloride with the necessary phenol or phenolic ether the following are obtained: α -phenylα-p-anisylphthalide, m.p. 115°, also obtained with p-OMe· C_6H_4 ·CO· C_6H_4 Bz, m.p. 134° (diazine, m.p. 161°), from (I) and MgPhBr; α-phenyl-α-p-hydroxyphenylphthalide, m.p. 171°; lactonic Me, m.p. 128°, and Me₂, m.p. 103°, ether of phenolphthalein; lactonic Me₂ ether, m.p. 122°, of phenolthymol phthalein; α-p-hydroxyphenyl-α-4'-methoxy-2'-methyl-5'-isopropylphenylphthalide, m.p. 195—200° after softening at 160°; lactonic Me, ether, m.p. 177°, of thymolphthalein; phenolresorcinolphthalein Me3 ether, m.p. 230°; phenolpyrocatecholphthalein Me₃ ether, m.p. 98°; phenolquinolphthalein Me₃ ether, m.p. 176°; thymolpyrocatecholphthalein Me₃ ether, m.p. 158°; thymolresorcinolphthalein Me₃ ether, m.p. 168°; phenylpyrocatechol-, new m.p. 170—171°, phenylquinol-, m.p. 248°, methylthymolpyrocatechol-, m.p. 230°, methylthymolresorcinol-, m.p. 210-211°, phenolthymol-, m.p. 276°, phenolresorcinol-, m.p. 205°, phenolpyrocatechol- (triacetate, m.p. 148°), phenolquinol-, m.p. 240—245° (decomp.) after softening at 220°, thymolpyrocatechol-, m.p. 284°, and thymolresorcinol-, m.p. 284°, and thymolresorcinol-, m.p. 284—285°, -phthalein. Reduction of the requisite phthalein with Zn dust and NaOH leads to the following -phthalins: phenylpyrocatechol-, m.p. 159°; phenolthymol-, m.p. 209°; phenolresorcinol-, m.p. 288—290°. 1:4-Di-p-hydroxybenzoylbenzene has m.p. 225°. Spectroscopic evidence proves that oaroylbenzoic acids in solution are ketones and not OH-lactones. Phenolphthalein is not diketonic but quinonoid in alkaline solution. The intense coloration of the phthaleins is developed only if they contain at least two phenolic OH which may be present in the same aromatic nucleus. All the phthaleins contain the no. of active H required by their customary formulæ and Oddo's modifications are unnecessary. The stability of the different possible forms of the phthaleins varies with solvent, temp., $p_{\rm H}$, and the structure of the rest of the mol. The presence of two phenolic OH attached to the same aromatic nucleus causes a more or less ready scission of the mol. in alkaline solution and the dihydric phenol is invariably liberated. The introduction of phenolic OH into the mol. of a phthalein has a profound influence on the colour in alkaline solution, and the position of OH relative to the other chromphores is also important. When the quinonoid grouping can be developed in two nuclei of a phthalein mol., a mixture of isomerides always appears to result. H. W.

Addition compounds of phthaleins and metallic salts. G. Sachs and L. Ryffel-Neumann (J. Amer. Chem. Soc., 1940, **62**, 993—994).—The follow-

ing additive compounds are prepared: phenolphthalein, SnCl₄, +PhNO₂, m.p. 78—79°, +PhOMe, or +PhCN; phenolphthalein Me₂ ether (A) gives A,SnCl₄, m.p. 128°, 2A,SnCl₄, and A,SbCl₅; 3:6-dimethylfluoran (X) gives X,SnCl₄, X,SnCl₄,PhOMe, 2X,3SnCl₄,2PhOMe, m.p. 139° (decomp.), X,SbCl₅, m.p. 203°, and X,SbCl₅,HCl,AcOH, m.p. 203°; 2fluorescein,SnCl₄; fluorescein Me₂ ether,SnCl₄.

Preparation of aurintricarboxylic acid. D. A. HOLADAY (J. Amer. Chem. Soc., 1940, 62, 989).— Prep. of the acid (97% pure) from $\mathrm{CH_2[C_6H_3(OH) \cdot CO_2H]_2}$ $o\text{-}OH\text{-}C_6H_4\text{-}CO_2H$, R. S. C. $NaNO_2-H_2SO_4$ is improved.

Total synthesis of a non-benzenoid steroid. L. W. Butz, A. M. Gaddis, E. W. J. Butz, and

O·CO ĊO (I.)

R. E. Davis (J. Amer. Chem. Soc., 1940, **62**, 995—996).— α - Δ ¹-cyclo-Hexenyl - β - Δ^1 - cyclopentenyl acetylene and (CH·CO)2O (1 mol.) at 130° give \(\Delta^{8(14):9}\)-steradiene-6:7:11:12-tetracarboxylic dianhydride (I), m.p. 249—251° (corr.; decomp.), converted by Pd-C in low yield into 1:2-cyclopentenophenanthrene, m.p. 132—133° (corr.). R. S. C.

Bile acids. LVII. M. SCHENCK (Z. physiol. Chem., 1939, **261**, 273—277).—The keto-oximinohydroxamic acid, $C_{24}H_{36}O_8N_2$ (cf. A., 1935, 213), and KMnO₄ give cilianic (? by way of bilianic) acid and ~ 0.3 equiv. of $(N_2 + N_2O)$.

Saponins and sterols. XV. Dry distillation of ursolic acid with selenium, and its constitution. K. Fujh and S. Oosumi (J. Pharm. Soc. Japan, 1939, 59, 264—268).—Ursolic acid (I) with

Se at 330— $350^{\circ}/36$ hr. gives sapotalene, 1:2:3:4- $C_6H_2Me_4$, 2:7- $C_{10}H_6Me_2$, 1:2:5:6- $C_{10}H_4Me_4$, and $2:7\text{-}\mathrm{C}_{\mathbf{10}}\mathrm{H}_{\mathbf{6}}\mathrm{Me}_{\mathbf{2},\mathbf{7}}$ $1:5:6:2-C_{10}H_4Me_3$ OH (cf. Drake et al., A., 1936, 1386; Ruzicka et al., A., 1937, II, 202). The appended structure for (I) (R or R' =CO₂H or Me) indicates a skeleton structure similar to

that of oleanolic acid. (I) and ZnCl₂-AcOH give ursylenic acid, m.p. 265° (corr.).

Saponins. XV. Constitution of nitro-compounds of the oleanolic acid series. I. S. Kuwada and K. Takeda (J. Pharm. Soc. Japan, 1939, **59**, 294—298).—Me₃ nitro-oleanoltricarboxylate (A., 1940, II, 89) (structure modified) with Zn-AcOH

at 100° yields the Me_2 ester lactone [(I); $R = CH_2 \cdot CO_2Me$, m.p. 229—232°, $[\alpha]_D^{24} + 98.5$ °, which with boiling 10% MeOH-KOH gives a mixture of a diketolactone Me ester (II), decomp. 315—318°, $[\alpha]_{1}^{18}$ -37·7° (monoxime, decomp. 266—266·5°), and a diketo-monocarboxylic acid (III), decomp. 359—361°, $[\alpha]_{1}^{19}$ +73·4°. The nitro-

[7], 1 $^{$

fords (III). Me₃ nitro-oleanintricarboxylate (loc. cit.) with boiling Zn-AcOH yields the Me_2 ester lactone, [(I); R = CO₂Me], m.p. 237—240°, [α]₁₈ +97·7°. M.p. etc. are corr. J. D. R.

Aldehydic perfumes. IV. Synthesis of \$\alpha\$-vanillylidene- and \$\alpha\$-salicylidene-\$n\$-heptaldehyde. S. Ishikawa and T. Sakurai (Sci. Rep. Tokyo Bunrika Daigaku, 1939, 3, 291—292).— Vanillin or \$o\$-OH·C_6H_4·CHO\$ with \$n\$-C_6H_{13}·CHO\$ and NaOH in \$\sim50\%\$ EtOH give \$\alpha\$-vanillylidene- (21%), b.p. 119°/2 mm. [2:4-dinitrophenylhydrazone, m.p. 130·5° (corr.; block)], or \$\alpha\$-salicylidene-\$n\$-heptaldehyde (36·7%), b.p. 124°/3·5 mm. [2:4-dinitrophenylhydrazone, m.p. 128·6° (corr.; block)], respectively.

Thermal decomposition of gaseous benz-aldehyde.—See A., 1940, I, 259.

Nitration of 1-naphthaldehyde. P. Ruggli and E. Burckhardt (Helv. Chim. Acta, 1940, 23, 441—445).—1- $C_{10}H_7$ -CHO is converted by HNO₃ (d 1-52) at —15° mainly into $(NO_2)_2$ -derivatives but by HNO₃ (d 1-47) at —5° to 0° into a mixture not separable from one another by crystallisation. It is therefore converted into the separable anils, m.p. 114—115° and 83—84°, of 8-nitro-1-naphthaldehyde, m.p. 123—124°, and 5:1-NO₂- $C_{10}H_6$ -CHO, m.p. 136—137°, respectively, which are oxidised to 8:1- and 5:1-NO₂- $C_{10}H_6$ -CO₂H, m.p. 236—237°, respectively.

Nitration of 2-naphthol-1-aldehyde. P. Ruggli and E. Burckhardt (Helv. Chim. Acta, 1940, 23, 445—449).—2:1-OH· $C_{10}H_6$ ·CHO, m.p. 84° (prep. from β - $C_{10}H_7$ ·OH and HCO·NH2 described), is converted by HNO3 (d 1·47) at —5° to 0° into 6-nitro-2-naphthol-1-aldehyde, m.p. 239°, transformed by Me2SO4—KOH—MeOH into the Me ether (I), m.p. 174°, preferably obtained by nitration of 2:1-OMe· $C_{10}H_6$ ·CHO. (I) is oxidised (KMnO4–KOH) to 6-nitro-2-methoxy-1-naphthoic acid, m.p. 187—188°, decarboxylated (Cu powder in quinoline at 170°) to 6:2-NO2· $C_{10}H_6$ ·OMe. H. W.

Disubstituted aminoacetones containing two dissimilar substituents. J. W. Magee [with H. R. Henze] (J. Amer. Chem. Soc., 1940, 62, 910—912).—COMe·CH₂Br (1 mol.) with NHRR' (2 mols.) in Et₂O or NHRR' (1 mol.) and aq. Na₂CO₃ gives (figures in parentheses are m.p. of the semicarbazones) N-methyl-, b.p. 110·7°/3 mm. (158°), -ethyl-, b.p. 123·5°/3 mm. (140°), and -benzyl-anilinoacetone, b.p. 187·9°/4·5 mm. (141°), N-methyl-, b.p. 129·5°/16 mm.

(132°), -ethyl-, b.p. 113·8°/3 mm. (135°), -n-propyl-, b.p. 130°/6 mm. (125°), and -n-butyl-benzylamino-acetone, b.p. 147·5°/8 mm. (113°), N-o-, b.p. 137·3°/10 mm. (134°), and -p-methylbenzylmethylaminoacetone, b.p. 132·3°/9 mm. (133°), and -cyclohexylmethylaminoacetone, b.p. 93·2°/4 mm. (171°). N-cyclo-Hexylmethylamine is prepared by hydrogenating (Raney Ni) NHPhMe at 200°/233 atm. NHR·CH₂Ar are prepared by heating ArCHO and NH₂R at 100°, removing the H₂O formed, and hydrogenating the residue at 75°/133 atm. Temp. are corr. n, d, and parachors are recorded. R. S. C.

Condensation of methylzingerone. T. Kobayashi and T. Iwasaki (Sci. Rep. Tôhoku, 1940, 28, 297—303).—Methylzingerone (β -3:4-dimethoxyphenylethyl Me ketone) (cf. Nomura, A., 1917, i, 570) and HCl in AcOH or EtOH at room temp./5 days give 1:3:5-tri-(β -3':4'-dimethoxyphenylethyl)benzene, m.p. 144—145°, oxidised by aq. KMnO₄ at 100° (bath) to 1:3:5-C₆H₃(CO₂H)₃ and 3:4:1-(OMe)₂C₆H₃·CO₂H. A. T. P.

Hexahydroacetomesitylene. E. P. Kohler, T. L. JACOBS, and H. M. SONNICHSEN (J. Amer. Chem. Soc., 1940, **62**, 785—793).—The CO of hexahydroacetomesitylene is slightly less hindered than that of acetomesitylene. Hydrogenation [Raney Ni, activated by $(NH_4)_2PtCl_6$; $250^{\circ}/240$ atm.; H_2O of Na mesitylenecarboxylate gives mixed hexahydromesitylenecarboxylic (2:4:6-trimethylcyclohexane-1carboxylic) acids, yielding an amide (I), m.p. 230°, and a mixed amide (II), m.p. 167°, containing (I). $NaNO_2$ -AcOH and (I) give an *acid*, m.p. 86—87°; (II) gives a small amount of an acid (?impure), m.p. 114—117° (sinters at 100°). MgMeCl converts (I) into 2:4:6-trimethylhexahydrobenzonitrile, b.p. 66- $71^{\circ}/3$ mm. 2:4:6-Trimethylcyclohexane-1-carboxyl chloride (III) (prep. by SOCl₂) and boiling MeOH give the Me ester, b.p. 90—96°/14 mm., which with MgMeCl gives a small amount of 1:3:5-trimethyl-2isopropenyleyclohexane (IV), b.p. 70·8—71·2°/10 mm. MgMeCl and (III) in Et₂O-C₆H₆ give hexahydroacetomesitylene (V) (70%), b.p. 86—87°/9 mm. (obtained also in 55% yield by ZnMeCl), hexahydromesityldimethylcarbinol (VI) (16%), m.p. 67-69°, b.p. 106°/ 10 mm., and (IV) (5.5%). (V) reacts only slowly with MgRHal. MgMeI and (VI) give 1.12 mols. of CH₄. PhNCO dehydrates (V1), yielding Oct. AcCl, Ac₂O, or NaOBr gives (IV). With HCl-EtOH, (VI) gives an unstable chloride, b.p. 94·6—97·1°/9 isolated. Br and (IV) in CCl₄ afford a product, which soon gives HBr and inter alia 1:3:5-trimethyl-2- β bromo- α -methylvinylcyclohexane, m.p. 41—42°. 2 : 4 : 6 : 1-C₆H₂Me₃ COCl and MgMeCl give 90% of

bromb-a-methylethyletyletonexatue, m.p. 41-42. $2:4:6:1-C_6H_2Me_3$ ·COCl and MgMeCl give 90% of acetomesitylene and $\Rightarrow 1-2\%$ of the alcohol. Na-CMe₂Et·OH reduces (V) to hexahydromesitylmethylcarbinol, b.p. $94-99\cdot5^\circ/8$ mm. (phenylurethane, m.p. $132-134^\circ$). NaOBr and (V) give slowly dibromoacetohexahydromesitylene, m.p. $63-65^\circ$, and only a trace of acid. Condensation of (V) with aldehydes is difficult, but by use of NaNH₂-C₆H₆ the CHPh: derivative (VII), m.p. $<0^\circ$, b.p. $148^\circ/0.5$ mm., is obtained; this gives a dibromide, m.p. $211-212^\circ$ (slight decomp.), which with hot KOH-MeOH gives

90% of $\alpha\gamma$ -diketo- γ -hexahydromesityl- α -phenylpropane, m.p. 197—199°. Hydrogenation (PtO₂) of (VII) gives β -phenylpropiohexahydromesitylene, b.p. 180—182°/8 mm. MgPhBr converts (VII) into $\beta\beta$ -diphenylpropiohexahydromesitylene, m.p. 78—80°, which gives enol peroxides, m.p. 86—87° (VIII) (main product) and 119—121°. Hydrogenation (PtO₂) of (VIII) gives a substance, $C_{24}H_{30}O_2$, m.p. 86—87°, and thermal decomp. gives mainly a hydrocarbon, m.p. 200—205°. R. S. C.

Carbon suboxide in the Friedel-Crafts reaction. I. J. H. BILLMAN, G. E. TRIPP, and R. V. CASH (J. Amer. Chem. Soc., 1940, 62, 770—771).— C_3O_2 (prep. described), C_6H_6 , and AlCl₃ at \sim 4° and then at the b.p. give a little COPhMe (formed by way of COPh·CH₂·CO₂H) and much polymeric C_3O_2 . R. S. C.

Chloromethylation of aryl ketones. R. C. Fuson and C. H. McKeever (J. Amer. Chem. Soc., 1940, 62, 784—785).—The appropriate ketone, paraformaldehyde, and conc. HCl at 25—85° give 2:4-dimethyl-5-, m.p. 68·5—69°, and 2:4:6-triethyl-3-chloromethylacetophenone, m.p. 57—58°, 3-chloromethyl-aceto-, m.p. 74·5—75·5°, -propio-, m.p. 75—76°, -isobutyro-, b.p. 140°/2 mm., -pivalyl-, m.p. 54—55°, and -benzoyl-, m.p. 90—91°, -mesitylene, and 3-chloromethylacetoisodurene, m.p. 88·5—90°. Pivalylmesitylene has b.p. 97—97·5°/2·5 mm. R. S. C.

IV. C-Alkylresorcinols. Nuclear methylation of 4-acylresorcinols. H. A. Shah and R. C. Shah (J. Indian Chem. Soc., 1940, 17, 32—36; cf. A., 1939, II, 373).—Respropiophenone, MeI, and MeOH-KOH afford 2-hydroxy-4-methoxy-3-methylpropiophenone (I), m.p. 78—79°, demethylated by AlCl₃ at 135—140° or Ac₂O–HI (d 1·7) at 130—140° to 2: 4-dihydroxy-3-methylpropiophenone, m.p. 128-130°, also obtained from $\hat{2}: \hat{1}: \hat{3}\text{-}C_6H_3Me(OH)_2$ (II) and EtCN (Hoesch). (I) and Ac₂O-NaOAc at 175-7-methoxy-2:3:8-trimethylchromone afford $(+H_2O)$, m.p. 69—70°, hydrolysed by boiling 5% aq. NaOH to (I) and 2:3:4:1-OH·C₆H₂Me(OMe)·CO₂H. Resbutyrophenone similarly gives 2-hydroxy-4methoxy-3-methylbutyrophenone (III), m.p. 82-84°, and thence the $2:4-(OH)_2$ -compound, m.p. $155-157^\circ$ [also from (II) and PrCN], and 7-methoxy-2:8dimethyl-3-ethylchromone, m.p. $43-45^{\circ}$, hydrolysed to (III) and $2:4:3:1-(\mathrm{OMe})_2\mathrm{C}_6\mathrm{H}_2\mathrm{Me}\cdot\mathrm{CO}_2\mathrm{H}$. 2:4-Dihydroxyphenyl benzyl ketone affords 2-hydroxy-4methoxy-3-methylphenyl benzyl ketone, m.p. 110—111°, and thence the $2:4-(OH)_2$ -compound, m.p. 157— 159° [also from (II) and CH₂Ph·CN], and 7-methoxy-2:8-dimethylisoflavone, m.p. 140—142°. hydroxybenzophenone and MeI-MeOH-KOH give 2hydroxy-4-methoxy-3-methylbenzophenone, m.p. 125° (cf. Jones et al., A., 1932, 852), which affords the 2: 4-(OH)₂-compound and 7-methoxy-4-phenyl-8-methylcoumarin, m.p. 94—95°.

Structure and synthesis of bæckeol. G. R. RAMAGE and W. J. I. STOWE (J.C.S., 1940, 425—426; cf. A., 1939, II, 110).—1:2:4:6- $C_6H_2Me(OH)_3$ and $Pr^{\beta}CN$ with $ZnCl_2-HCl-Et_2O$ at room temp. give 2:4:6-trihydroxy-3-methylisobutyrophenone, m.p. $160-161^{\circ}$ (+H₂O) or $161-162^{\circ}$ (anhyd.), converted

by CH_2N_2 – Et_2O into its 4:6- Me_2 ether, m.p. 102— 103° (acetate, m.p. 73°), identical with bæckeol.

Acetylation of α-bromo-ketones and their derivatives. R. P. Barnes and V. J. Tulane (J. Amer. Chem. Soc., 1940, 62, 894—896).—Fused KOAc in boiling Ac₂O is a powerful acetylating agent. It converts CHPhBr·CO·COPh (I) or CHBrBz₂ (II) into αβ-diacetoxy-α-benzoyl-β-phenylethylene (III), m.p. 133°, and CHPhBzBr (IV), benzoin or its acetate (V) into (CPh·OAc)₂ (VI). KOAc-AcOH has no effect on (I), (II), or (V), converts (IV) into (V), and hydrolyses (III) to CHBz₂·OAc. In cold, conc. H₂SO₄, (III) gives the oily, unstable di-enol, OH·CPh:C(OH)·COPh, which in air yields CO(COPh)₂. Boiling AcOH hydrolyses (VI) to (V); alkali or conc. H₂SO₄ gives benzoin. Metathesis of Br for Ac precedes further acetylation. R. S. C.

Elimination of methyl from o-methoxyacetophenone and action of potassium hydrogen carbonate on resacetophenone and its derivatives. K. Okazaki (J. Pharm. Soc. Japan, 1939, 59, 190— 193).—5 - Methoxy - 6 - acetyl - 2 - methylcoumarone - 1carboxylic acid is converted by NH, Ph, HI and NH, Ph at 95° into 5-hydroxy-6-acetyl-2-methylcoumarone, m.p. 112°. p-OH·C₆H₄·CH₂·CN is acetylated to pacetoxyphenylacetonitrile, m.p. 49-50°, transformed (Fries) into 4-hydroxy-3-acetylphenylacetonitrile (I), m.p. 106° (semicarbazone, m.p. 218—219°). converted by MeI-K₂CO₃ in boiling COMe₂ into the 4-OMe-compound, m.p. 85—86°, which is demethylated to (I) by NH₂Ph,HI and NH₂Ph at 95°. 1:2:3:4- $C_6H_2Ac(OMe)_3$ is similarly converted into $2:1:3:4-OH\cdot C_6H_2Ac(OMe)_2$, m.p. 83° . $2:6:4:1-(OMe)_2C_6H_2Me\cdot CO_2Me$, $AlCl_3$, and AcCl yield Me 3hydroxy-5-dimethoxy-2-acetyl-p-toluate, m.p. methylated to the $3:5-(OMe)_2$ -compound (II), m.p. 92° (semicarbazone, decomp. 215°). β-Orcinol and MeCN afford 3:6-dimethylresacetophenone, m.p. 153°, methylated to the Me_2 ether (III), b.p. 115—118°/3 mm. (semicarbazone, decomp. 206.5°). (II) and (III) give only traces of phenolic compounds when treated with NH2Ph, HI and NH2Ph. The Fries transformation of orcinol diacetate leads to 2:6-diacetylorcinol, m.p. 97° (semicarbazone, decomp. 215°), with a minor quantity of isoorcacetophenone, both of which are converted by KHCO₃ in a sealed tube at 180—190° into p-orsellinic acid. Under similar conditions resacetophenone is converted into 6-hydroxy-9-methylfluorone, decomp. 238° (oximino-compound, m.p. 200°), converted by NaOAc and boiling Ac₂O into 3:6-diacetoxyxanthone, m.p. 205°.

Stereochemistry of monocyclic rings. I. Interconversion of methylcyclohexane into methylcycloheptane ring and synthesis of 4-methylcycloheptanone. M. Qudrat-i-Khuda and S. K. Ghosh (J. Indian Chem. Soc., 1940, 17, 19—31).—4-Methylcyclohexanone (I) and aq. NaHSO₃-SO₂ yield the H sulphite compound, converted by aq. KCN at 0° into 1-cyano-4-methylcyclohexanol (II), b.p. 65—68°/5 mm., also prepared, but less pure, from (I) and liquid HCN (+NPhMe₂). (II) and SOCl₂ in C₅H₅N, but better in dry C₆H₆, afford 1-cyano-4-methyl-Δ1-cyclohexane (III), b.p. 98—100°/5

mm., hydrolysed by boiling cone. HCl to 4-methyl- Δ^{1} cyclohexene-1-carboxylic acid, m.p. 132—133°, or by conc. H₂SO₄ at room temp. to the corresponding amide, m.p. 140°. (III) and Na-C₅H₁₁·OH at 160— 170° afford 4-methylcyclohexylmethylamine (IV), b.p. 85—98°/34—35 mm. [Bz derivative, m.p. 93°; hydrochloride, m.p. 248—250° (decomp.; shrinks from 220°); platinichloride, m.p. 248° (decomp.)], and probably di-4-methylcyclohexylmethylamine, b.p. 155— 165°/30—35 mm. (IV) and aq. NaNO₂-AcOH at 100° (bath) give (?) 4-methylcyclohexylcarbinol, 1methyl- Δ^4 -cycloheptene, b.p. 69—70°/38 mm. (oxidised by aq. KMnO₄ to γ-methylpimelic acid, m.p. 56°), and 4-methylcycloheptanol, b.p. 105—106°/39—40 mm. (purified through the *H phthalate*, m.p. 95—97°); the latter and CrO₃-AcOH at room temp. for 10 days afford 4-methylcycloheptanone (A) [semicarbazones, m.p. 159° (V) (mainly), and m.p. 124°]. Et α -cyano- β -methylsuccinate, b.p. $148-150^{\circ}/4$ mm. (improved prep.), is converted by boiling conc. HCl into β methylsuccinic acid, the Et ester, b.p. 106°/11 mm., of which with Na-EtOH at 140° (bath) affords βmethylbutane-αδ-diol, b.p. 120—122°/8 mm., converted by HBr at 140—145° (bath) into αδ-dibromo-βmethylbutane (VI), b.p. 125-128°/55 mm. This with $CHNa(CO_2Et)_2-C_6H_6$ affords Et_9 3-methyleyclopentane-1:1-dicarboxylate, b.p. 120—122°/9—10 mm., and thence (aq. KOH-EtOH) the -dicarboxylic acid, m.p. 117—118° (decomp.) (Ag salt). The latter at 185— 190° yields the -1-carboxylic acid, b.p. 92—94°/7— 8 mm. (Ag salt). (VI) and KCN-EtOH afford β-methyladiponitrile, b.p. 138—140°/30 mm., converted by HCl into β-methyladipic acid [Et ester (VII), b.p. 130—132°/14 mm.], also obtained from 4-methylcyclohexanol and aq. KMnO₄ at 100° (bath). (VII) and Na-EtOH give γ-methylhexane-αζ-diol, b.p. 158- $160^{\circ}/15$ mm., whence (as above) $\alpha \zeta$ -dibromo- γ -methylhexane, b.p. 145—148°/55—60 mm., γ-methylsuberonitrile, b.p. 160—164°/20 mm., and γ -methylsuberic acid, m.p. 146°. Its Ca salt and Fe, distilled in dry N_2 , at 300—350° afford (A), b.p. 105—110°/45— 50 mm. [semicarbazone (V)], also obtained from (I) and CH₂N₂.

3-Methyl-2-hexyl- Δ^2 -cyclopentenone. L. J. Briusova and S. Kore (J. Appl. Chem. Russ., 1939, 12, 1457—1461).—Heptaldehyde is reduced (Raney Ni in EtOH, at 55°) to heptanol (98% yield). Mg heptyl bromide with lævulic acid yields γ -methyl- γ -undecolactone, b.p. 140—140·5°/3 mm., which when heated with H_3PO_4 gives 3-methyl-2-hexyl- Δ^2 -cyclopentenone. R. T.

Polymethylbenzenes. XXV. Reaction between dimethylacrylic acid and the trimethylbenzenes. L. I. SMITH and W. W. PRICHARD (J. Amer. Chem. Soc., 1940, 62, 771—777; cf. A., 1939, II, 306).—CMe₂:CH·CO₂H (I), ψ-cumene (II), and AlCl₃ at -10° give β-3:4:5-trimethylphenylisovaleric acid (III) (50—60%), m.p. 111— 112° (Me ester, b.p. 130— $130 \cdot 5^{\circ}$ /6 mm.), with some durene and other acids, rearrangement occurring. (III) is sole product from 1:2:3-C₆H₃Me₃ (IV), (I), and AlCl₃ at -10° . Oxidation of (III) by KMnO₄ in aq. KOH gives only α-3:4:5-tricarboxyphenylisobutyric acid, m.p. 192— 194° (Me_x ester, an oil). 1:2:4:5-C₆H₃Me₃·COMe

and MgMeI in Et₂O-N₂ give an oily carbinol; the derived (HCl-light petroleum) chloride is condensed with CHNa(CO₂Et)₂, hydrolysed to the dicarboxylic acid, m.p. 143.5—148.5° (decomp.), and then decarboxylated at 160° to yield β-2:4:5-trimethylphenylisovaleric acid, m.p. 79—81°, which is partly isomerised to (III) by AlCl₃. CMe₂:CH·COCl (V), (IV), and AlCl₃ at -10° give 2:3:4-trimethyl-β-isopropylideneacetophenone, b.p. 138-139°/6 mm., oxidised by KMnO₄ to 1:2:3:4-C₆H₂(CO₂H)₄ and cyclised by AlCl₃-HCl in CS₂ to 3:3:5:6:7-pentamethylhydrindone, m.p. 103·5—104° (oxime, m.p. 196—196·5°), which is obtained in 99% yield from (III) by conc. H₂SO₄ at room temp. (II), (V), and AlCl₃ in CS_2 give 2:4:5-trimethyl- β -isopropylideneacetophenone (VI), b.p. $131-131\cdot5^\circ/6$ mm., oxidised to 1:2:4:5- $C_6H_2(CO_2H)_4$ and cyclised to 3:3:4:5:7-pentamethylhydrindone, m.p. $54-55\cdot5^\circ$. Addition of Br to (I), conversion by PCl₅-C₆H₆ into the Br₂-chloride, b.p. 77—82° (some decomp.)/5 mm., and condensation with (II) by AlCl₃-CS₂ gives αβ-dibromo-2:4:5-trimethylisovalerophenone, m.p. 74-76°, also obtained from (VI) by Br-Et₂O, and cyclised by AlCl₃ to 2bromo-3:3:4:5:7-pentamethylhydrindone, 102—104°. p-Xylene, (I), and AlCl₃ at 0° give mainly (? 2:5-)dimethylphenylisovaleric acid, m.p. 108—110°, cvclised to (? 3:3:4:7-)tetramethylhydrindone, m.p. $52-53^\circ$. s-C₆H₃Me₃ gives similarly a β-dimethylphenylisovaleric acid, m.p. $110-111^\circ$, cyclised to a tetramethylhydrindone, m.p. $62-63^\circ$. Mesityl oxide with (II) and AlCl₃ at 0° gives 1:1:3:4:5:7-hexamethylindene, m.p. 87.5—88.5°, but with PhOH, ψ -cumenol, or p-C₆H₄Br·OH in conc. H₂SO₄ or H₂SO₄-AcOH at 0°, p-C₆H₄Cl·OH-AlCl₃, \tilde{p} -C₆H₄Cl·OMe-PhNO₂-AlCl₃, or p-C₆H₄(OMe)₂-AlCl₃-CS₂ gives no identifiable product. o-OH·C₆H₄·CO₂Mc and MgMeI–Et₂O give a carbinol, m.p. 43—44°, converted by HCl and CaSO₄ in C₆H₆ into a halogen-free substance, m.p. 95—96°.

3:3:5:6:7-Pentamethylhydrindone and 4:4:5:6:8-pentamethylhydrocarbostyril. L. I. Smith and W. W. Prichard (J. Amer. Chem. Soc., 1940, 62, 778—780).—Beckmann rearrangement (PCl5-POCl3) of 3:3:5:6:7-pentamethylhydrindoxime gives only mixtures. $3:3:5:6:7\text{-Pentamethylhydrindone gives (NaNO3-H2SO4-CHCl3; -5°) mainly the <math display="inline">4\text{-}NO_2\text{-}$, m.p. 94--94-5°, and thence (Zn dust-AcOH) the $4\text{-}NH_2\text{-}$, double m.p. 84° and 101--102°, and (NaNO2-10% $H_2\text{SO}_4$; CuSO4) the 4-OH-derivative, m.p. 183--185° (oxime, m.p. 183--185°, with PCl5-POCl3 gives an amorphous solid). $1:2:4:5\text{-}C_6H_2\text{Me}_3\text{-NH}_2$ and CMe2-CH-COCl in hot C_6H_6 give the amide, m.p. $107\cdot5\text{--}108°$, cyclised by AlCl3 at 100° to 4:4:5:6:8-pentamethylhydrocarbostyril, m.p. 209--210°, which resists hydrolysis by Ba(OH)2 at 150--250°. R. S. C.

Synthesis of 1-keto-2:3-dimethylnaphthindene. E. F. Arcangeli (R. C. Atti Accad. Ital., 1939, [vii], 1, 55—59).—2- $C_{10}H_7Ac$ (I) and CHMeBr·CO₂Et with Zn in C_6H_6 give, after treatment with H_2SO_4 , (I) and Et β -hydroxy- β -2-naphthyl- α -methyl-n-butyrate, b.p. 275—280°/62 mm., which when heated with P_2O_5 for 2 hr. gives 1-keto-2:3-dimethyl- α (or - β)-naphthindene (II), m.p. 129·5—130°, b.p.

229—230°/34 mm. With conc. $\rm H_2SO_4$, crude (II) gives (I). E. W. W.

xv(m)

Preparation of substituted ketimines. R. Cantarel (Compt. rend., 1940, 210, 403—405).— COPh₂ vapour with NH₃ in presence of ThO₂ at 380° gives CPh₂.NH (I), b.p. 160°/13 mm. Many aldehydes and ketones in EtOH saturated with NH₃ containing Ni at 70° (under 8—9 kg. per sq. cm. H₂ pressure) give the corresponding amines in high yield, but COPh₂ gives only traces of CHPh₂·OH and CHPh₂·NH₂; the latter is formed quantitatively by reducing (I) (H₂). Equimol. amounts of (I) and primary amines give NH₃ and the appropriate imine. The following are new: benzhydrylidene-β-phenylethylamine, m.p. 35°, and cyclohexylamine, m.p. 49°. CPh₂·N·CHPh₂ with H₂-catalyst gives dibenzhydrylamine (~100%), m.p. 143°.

Steroid ketones.—See B., 1940, 404, 405.

Sterols. XCVII. Sarsasapogenin. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1940, 62, 900—902).—Sarsasapogenin acetate with MgEtBr in Et₂O-C₆H₆ gives a diol, C₂₉H₅₀O₃, m.p. 159—161·5° [diacetate (I), m.p. 87·5—89°], and with MgMeI gives a diol, C₂₈H₄₈O₃, m.p. 179—181·5° (dip-nitrobenzoate, m.p. 192—194°). CrO₃ in ~90% AcOH at 90° oxidises (I) to a product, hydrolysed (NaOH) to 3-hydroxyætiobilianic acid. The Me₂ ester thereof with aq. MeOH-NaOH (1 mol.) gives the Me_1 ester, m.p. $211-213^\circ$, the acetate, m.p. $181\cdot 5-$ 183.5°, of which gives an oily chloride, converted by ${
m CH_2N_2}$ into a diazo-ketone, ${
m C_{23}H_{33}O_5N_2}$, m.p. 159—160° (decomp.). ${
m Ag_2O}$ in EtOH at 70—80° then gives an oil, which by hydrolysis, acetylation, heating (250°), and hydrolysis gives ætiocholan-3(β)-ol-17-one (II), form, m.p. 117—119°. Identity of (II) with the product of Ruzicka et al. (form, m.p. 151—152°, A., 1934, 1221) is proved by prep. of the semicarbazone, m.p. 241-242.5° (decomp.), and reduction by Na- $C_5\bar{H}_{11}$ OH to etiocholane $3(\alpha):17(\alpha)$ -diol (III). Partial hydrolysis (MeOH–KOH) of the diacetate of (III) followed by oxidation (CrO₃) and hydrolysis gives (mainly) atiocholan-17-ol-3-one, m.p. 139—141°, which with Br-HBr-AcOH affords a product converted by boiling C₅H₅N into testosterone.

Sterols. XCV. Acid isomerisation of ψ-sapogenins to sapogenins. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1940, 62, 896—898).—Clemmensen reduction of ψ-sarsasapogenone gives deoxysarsasapogenin. HCl-EtOH at 25° converts ψ-sarsasapogenin, ψ-tigogenin, and ψ-chlorogenin into sarsasapogenin, tigogenin, and chlorogenin, respectively, but has no effect on dihydro-ψ-sarsasapogenin. The naturally occurring saponin glucosides may be derived from the ψ-forms or the ketodiol form, e.g., CH-CH₂-CH·OH (R = CHMe·CO·CH₂·CH₂·CHMe·CH₂·OH). R. S. C.

Total synthesis of the sex hormone, equilenin, and its stereoisomerides. W. E. BACHMANN, W. Cole, and A. L. Wilds (J. Amer. Chem. Soc., 1940, 62, 824—839).—Equilenin (I) and three stereoisomerides thereof are synthesised. Results already reported (A., 1939, II, 261) are amplified, the following

being new. Prep. of 6:1-OMe C₁₀H₆·NH₂ (from the Ac derivative), $6: \text{I-OMe-C}_{10}\text{H}_{6}\cdot [\text{CH}_{2}]_{2}\cdot \text{OH} [76-84\%]$ from 1:6-C₁₀H₆I·OMe, EtBr, Mg, and (CH₂)₂O in Et₂O-C₆H₆], 6:1-OMe·C₁₀H₆·[CH₂]₂·Br (I) (by PBr₃-C₆H₆), 6:1-OMe·C₁₀H₆·[CH₂]₃·CO₂H (II) [75—89%] from (I), CH₂(CO₂Et)₂, NaOEt, etc.], and 1-keto-7methoxy-1:2:3:4-tetrahydrophenanthrene [90—95% from (II) by $SOCl_2-C_5H_5N-Et_2O$, followed by $SnCl_4-C_6H_6$] is modified. $Me_2C_2O_4$, (III), and NaOMe in C_6H_6 give Me 1-keto-7-methoxy-1:2:3:4tetrahydrophenanthrene-2-glyoxylate, m.p. 138—140° (Pyrex) or 134—135° (soda glass), converted at 180°, best when mixed with powdered glass, into Me $1 - \text{keto} - 7 - \text{methoxy} - I : 2 : \overline{3} : 4 - \text{tetrahydrophenanthr}$ ene-2-carboxylate, double m.p. 110—111° (nearly completely) and 125-126.5°, and thence by MeI-NaOMe-MeOH into the 2-Me derivative (IV), m.p. 84.5—85°. Hydrolysis of (IV) by aq. MeOH-KOH affords 1-keto-7-methoxy- (V), m.p. 109—110°, which with 42% HBr gives 7-hydroxy-1-keto-2-methyl-1:2:3:4-tetrahydrophenanthrene, m.p. $193-196^{\circ}$ (air), 195·5—197·5° (after resolidification, 197— 197.5°; vac.). With Zn, I, and CH₂Br·CO₂Me in C₆H₆-Et₂O, (IV) gives Me 1-hydroxy-2-carbomethoxy-7-methoxy-2-methyl-1:2:3:4-tetrahydrophenanthryl-1-acetate (85—90%), m.p. 125—125.5° [hydrolysed by alkali to (V)], which with SOCl2-C5H5N (with or without C₆H₆), followed by KOH-MeOH, gives the anhydride (VI), m.p. 233—234°, of syn-2-carboxy-7-methoxy-2-methyl-1:2:3:4-tetrahydro-1-phenanthrylideneacetic acid and the anti-acid (VII), m.p. $216-217^{\circ}$ (gas) (Me_2 ester, m.p. $113.5-114^{\circ}$). Na-Hg in aq. KOH then gives α- (VIII) (45%), m.p. 231—232°, and β-2-carboxy-7-methoxy-2-methyl-1:2:3:4-tetrahydrophenanthryl-1-acetic acid (55%), m.p. $(+xC_6H_6) \sim 145^\circ$ or 150° , (anhyd.)213—214°, obtained similarly in 33 and 43% yield, respectively, from (VI) or in 44—47 and 40—43% yield, respectively, without isolation of the unsaturated compounds. The Me_2 ester, m.p. $114-115.5^{\circ}$, of (IX) is hydrolysed by N-NaOH (I mol.) in hot MeOH to the 2-carbomethoxy-1-acetic acid, m.p. 211— 212°, converted (Arndt-Eistert) into Me β-2-carbomethoxy-7 - methoxy-2 - methyl-1:2:3:4 - tetrahydro phenanthryl-1-propionate, m.p. 101—102°. Cyclisation by NaOMe in C_6H_6 – N_2 then yields 97% of 16-carbomethoxy-dl-equilenin Me ether, m.p. 181-182° (vac.; after softening), converted by boiling $HCl-AcOH-H_2O-N_2$ into dl-equilenin (X), m.p. 276—278° (vac.) [once 287—288° (vac.), sometimes 265°] [benzoate, m.p. 248·5—249·5° (vac.); acetate, m.p. 153—154° (159·5—160° after resolidification; vac.)], and its Me ether, m.p. 185—186·5° (vac.) [converted by MgMeI, followed by KHSO₄ at 160— 170°, into 7-methoxy-3': 3'-dimethyl-1: 2-cyclopentenophenanthrene (XI)]. Esterification of (X) in dioxan-C₅H₅N-N₂ and crystallisation gives d-equilenin 1-menthoxyacetate (XII), m.p. 174-174.5°, [a]_D³⁰ $+18^{\circ}$ in C_6H_6 , hydrolysed to d-equilenin, which is proved to be identical with the natural product by means of 6 derivatives [s-C₆H₃(NO₂)₃ compound, m.p. 206—207° (corr.)], absorption spectrum, and physiological action. l-Equilenin, m.p. 250-251° (vac.), 258—259° (vac.; corr.), $[\alpha]_D^{30}$ —85° in dioxan [dmenthoxyacetate (XIII), m.p. 174·5—175° (vac.), [\alpha]_{D}^{30}

 -16° in C_6H_6], is obtained similarly from (X) or the residues from (XII) (after hydrolysis). A 1:1 mixture of (XII) and (XIII) has m.p. 151-152° (vac.). By similar methods (VIII) gives Me 2-carbomethoxy-7 - methoxy - 1:2:3:4 - tetrahydrophenanthryl - 1 - acetate, dimorphic, m.p. 86—89° and 126—126.5°, the 2-carbomethoxy-1-acetic acid (XIV), m.p. ~110—112° (gas) and then 137—138°, a-2-carboxy-7-methoxy-2-methyl-1:2:3:4-tetrahydrophenanthryl-1-propionic acid, m.p. 89—89·5°, 16-carbomethoxy-dl-isoequilenin Me ether, m.p. 149—149·5° (air), 152·5—153·5° (vac.), dl-isoequilenin Me ether, m.p. 127—127·5° (vac.), 130-130.5° (vac.) after resolidification [gives (XI) in 3% yield], and dl-isoequilenin, m.p. 223—224° (vac.) [acetate, m.p. 159—160° (vac.); s- $C_0H_3(NO_2)_3$ compound, m.p. 186—187° (vac.)]. (XIV) gives 1menthyl $1-\alpha-2$ -carbomethoxy-7-methoxy-2-methyl-1:2:3:4-tetrahydrophenanthryl-1-acetate (XV), m.p. $139\cdot3-139\cdot8^{\circ}$, $[\alpha]_{D}^{39}-152^{\circ}$ in $C_{6}H_{6}$, converted into the Me_{2} ester, m.p. $110-110\cdot3^{\circ}$, $[\alpha]_{D}^{39}-151^{\circ}$ in $C_{6}H_{6}$, and Me H ester, m.p. 130° , $159-160^{\circ}$ after resolidification, of the l-acid and thence into Me_2 $1-\alpha-2$ -carbomethoxy - 7 - methoxy - 2 - methyl - 1 : 2 : 3 : $\bar{4}$ - tetrahydrophenanthryl-1-propionate, m.p. 103—103·5°, 16-carbomethoxy-d-isoequilenin, m.p. 147-150°, and d-isoequilenin, m.p. 257-258° (vac.), 265-266° (vac.; corr.), $[\alpha]_D^{29} + 147^\circ$ in dioxan, $+173^\circ$ in abs. EtOH [Me ether, m.p. $118.5 - 119.5^\circ$; acetate, dimorphic, m.p. $146 - 147^\circ$ (vac.) $(149 - 149.5^\circ)$ and $127 - 128^\circ$, $[\alpha]_D^{24} + 137 \pm 7^{\circ}, +129 \cdot 4^{\circ}$ in abs. EtOH], identical with 14-epiequilenin (Hirschmann et al., A., 1939, II, 76). Hydrolysis (KOH-MeOH) of the residues after separation of (XV) and methylation (CH₂N₂) gives Me dl-, m.p. 125.5— 126° , and d- α -2-carbomethoxy-7methoxy-2-methyl-1: 2:3:4-tetrahydrophenanthryl-1-acetate, m.p. $108-109^{\circ}$ or $110-110.5^{\circ}$, Me $d-\alpha-2-10.5^{\circ}$ carbomethoxy-7-methoxy-2-methyl-1: 2:3:4-tetrahydrophenanthryl-1-propionate, m.p. 103-103.5°, $[\alpha]_{\rm p}^{29}$ +122°, and l-isoequilenin, dimorphic, m.p. 272— 273° (vac.) and $257-258^{\circ}$ (vac.), $[\alpha]_{D}^{28}-147^{\circ}$ in dioxan, -162° in abs. EtOH. Estrogenic units are d-30 and l-equilenin 400, d- and l-isoequilenin >500 μg.

Hydroxyquinones. I. Synthesis of dyes of the polyporic acid series. M. Asano and Y. KAMEDA (J. Pharm. Soc. Japan, 1939, 59, 291— 293).—p-C₆H₄Me·N₂Cl with NaOAc and p-benzoquinone (I) in EtOH at <5° yields 2-mono- (II), m.p. 137—139°, 2:3:5-tri-p-tolyl-p-benzoquinone, and197—199°. 2-Phenyl-p-benzoquinone m.p. PhMe or (II) and C₆H₆ with AlCl₃ yield 2-phenyl-5-ptolylbenzoquinone, m.p. 171—173°, reduced (Zn-AcOH) to 2-phenyl-5-p-tolylquinol, m.p. 151—153°, the 3:6-Br₂-derivative, m.p. 195—197° (prep. in CHCl₃), of which is hydrolysed by 10% MeOH-KOH to 3:6-dihydroxy-2-phenyl-5-p-tolylbenzoquinone, m.p. 246—248°. p-OMe·C₆H₄·N₂Cl and (I) similarly give 2-anisyl-p-benzoquinone, m.p. 112—113°, which with C₆H₆ and AlCl₃ yields 2-phenyl-5-p-anisylbenzoquinone, (III), m.p. 177—183° (corresponding quinol, m.p. 157—158°). With NH₂Et in EtOH, (III) in EtOAc yields 3:6-di(ethylamino)-2-phenyl-5-anisylbenzoquinone, m.p. 256°, which is hydrolysed by 50% H₂SO₄ to $\verb|`3:6-dihydroxy-2-phenyl-5-anisylbenzoquin one,|\\$ 261—263°.

Constitution and synthesis of embelin. ASANO and K. YAMAGUTI (J. Pharm. Soc. Japan, 1940, **60**, 34—38, and Proc. Imp. Acad. Tokyo, 1940, 16, 36—38).—Contrary to Hasan et al. (A., 1931, 1158) embelin (I) is 3:6-dihydroxy-2-undecyl-p-benzoquinone (II), and not the dodecyl derivative (III). In this series identification by the method of mixed m.p. is untrustworthy and the identity of (I) with synthetic (II) is established by the Debye-Scherrer diagrams. $3:4:5-(OMe)_3C_6H_2\cdot CO\cdot CH_2\cdot CO_2Et$ is condensed with $C_{10}H_{21}I$ and NaOEt in EtOH to Etα-3:4:5-trimethoxybenzoyl-laurate, m.p. 46°, which does not give a colour with FeCl3 in EtOH and is converted by boiling 1% KOH-EtOH into 3:4:5trimethoxylaurophenone, m.p. 65° (p-nitrophenyl-hydrazone, m.p. 96°). This is reduced by Na-boiling C_5H_{11} ·OH to 3:5-dimethoxydodecylbenzene, b.p. 165°/ 0.3 mm. (demethylated to 3:5-dihydroxydodecylbenzene, m.p. 81°), which is oxidised (Na₂Cr₂O₇ in AcOH at 85—90°) to 6-methoxy-2-dodecyl-p-benzo-quinone (IV), m.p. 74°. NH₂Me in EtOH at 0° transforms (IV) into 3:6-di(methylamino)-2-dodecyl-pbenzoquinone, m.p. 147°, which is converted by 50% H₂SO₄ at 100° into 3(or 6)-methylamino-6(or 3)-hydroxy-2-dodecyl-p-benzoquinone, m.p. 163-164°; this with boiling 50% H_2SO_4 -AcOH yields (III), m.p. 142° (dibenzoate, m.p. 96-96.5°), which does not depress the m.p. of (I), from which it differs in Debye-Scherrer diagram. Reductive acetylation of (III) affords 2:3:5:6-tetra-acetoxydodecylbenzene, m.p. 120°. Tridecoic acid, m.p. 39.5° (p-toluidide, m.p. 87.5—88°), is obtained by oxidation of (III) with H₂O₂ and dil. KOH. $3:4:5-(OMe)_3C_6H_2\cdot CO\cdot CH_2\cdot CO_2Et$ and $C_9H_{19}I$ afford Et \alpha-3:4:5-trimethoxybenzoylundecoate, m.p. 39-40°, and thence successively 3:4:5-trimethoxyundecophenone, m.p. 51-52°, 3:5-dimethoxyundecylbenzene, b.p. 170°/1 mm. (3:5-dihydroxyundecylbenzene, m.p. 69-71°), 6-methoxy-, m.p. 78-79°, and 3:6-di(methylamino)-, m.p. 147—148°, -2-undecyl-pbenzoquinone, and (II), m.p. 143-144° (dibenzoate, m.p. 97°). 2:3:5:6-Tetra-acetoxyundecylbenzene has m.p. 124°.

2-Acetoxymethyl-1: 4-naphthaquinone, m.p. 110°, and -naphthalene, m.p. 61°; 2-methylnaphthaquinone monoxime, m.p. 165°.—See A., 1940, III, 431.

Compounds having antihæmorrhagic activity. L. F. Fieser, M. Tishler, and W. L. Sampson (J. Amer. Chem. Soc., 1940, 62, 996).—Application of the vitamin- K_1 synthesis (A., 1940, II, 96) gives 2-geranyl-, 2-farnesyl, and 2-phytyl-1: 4-naphthaquinone (I) [all have -K-activity, (I) fully at 50 µg.], 2:3:5-trimethyl-6-phytylbenzoquinone, an oil (no -K-activity; quinol diacetate, m.p. 56°; with SnCl₂-AcOH-HCl gives α -tocopherol), 2-methyl-3-phytyl-5:8-dihydro-1:4-naphthaquinone (active at 5—6 µg.). - K_1 gives the $\beta\gamma$ -H₂-derivative (active at 6 µg.; quinol diacetate, m.p. 57—58°) and $\beta\gamma$:5:6:7:8-H₆-derivative (slightly active; quinol diacetate, m.p. 53°). 2-Methyl-5:8-dihydro-1:4-naphthaquinol and the adduct from toluquinone and (CH₂-CH)₂ are active at 8-µg. doses. A by-product in the synthesis of K_1 is a ketone, $C_{31}H_{48}O_2$ (absorption max. at 253 and 300 mµ.; 2:4-dinitrophenylhydrazone, m.p. 107—

108°; 1 active H), active at 50 μ g., which is reduced by Al(OPr $^{\beta}$)₃ to a diol, (?) $C_{31}H_{52}O_2$, and by pyrolysis gives a little K_1 . The isomeric naphthotocopherol (absorption max. at 246 and 320 m μ .; p-nitrobenzoate, m.p. 84—85°) is active at 3×10^{-4} -g. doses and gives on oxidation a OH-quinone. 2-Methyl-3-farnesyl-1: 4-naphthaquinone is less active than K_1 . R. S. C.

Action of nitric acid on anthracene. IV. [Nitroanthraquinones.] R. Oda (J. Soc. Chem. Ind. Japan, 1940, 43, 14—15B).—2:7-Dinitro- (I) is separated from 2-nitro-anthraquinone by dissolution in NaOH-COMe₂, but cannot be recovered therefrom. Hot, aq. Na₂SO₃, best with C_5H_5N , converts (I) into the 2-NH·SO₃Na derivative. When a mixture of (I) and anthraquinone is boiled in NH₂Ph for 10 min. and then cooled, both solids separate, but, if boiling is continued for 3—4 hr. (also in p-C₆H₄Me·NH₂ containing a little C_5H_5N), the (I) remains in solution as a mol. compound and is recovered by HCl.

R. S. C. **1-A**mino-**2-**methylanthraquinone in relation to

phthaloylation and Schiff's base. G. B. CRIPPA (Atti X Congr. Internaz. Chim., 1938, IV, 842—850).—Largely an account of work previously abstracted (A., 1939, II, 181, 379). Condensation of 1-amino-2-anilomethylanthraquinone with COPhMe affords a substance,

m.p. 130—135°, probably (I). F. O. H.

1:3:8-Trihydroxyanthraquinone. W. K. Anslow, J. Breen, and H. Raistrick (J.C.S., 1940, 427—428).—Emodic acid (see A., 1940, II, 135) is decarboxylated by quinoline—Cu chromite at 225—230° in O₂-free N₂ to 1:3:8-trihydroxyanthraquinone, new m.p. 287—288°, purified through its triacetate, new m.p. 194—195°. Methylation (Me₂SO₄—COMe₂-2n-NaOH) gives 1:3:8-trimethoxyanthraquinone, m.p. 195—196°. A. T. P.

Constitution of carviolin, a colouring matter of Penicillium carmino-violaceum, Biourge. H. G. Hind (Biochem. J., 1940, 34, 577—579).—Demethylation of carviolin (I) (A., 1940, II, 99) with HBr-AcOH yields a Br_1 -compound, $C_{15}H_9O_5Br$, m.p. 248°, which with aq. AcOH-AgOAc gives demethylcarviolin, $C_{15}H_{10}O_6$, m.p. 278—280°. Methylation of (I) yields a Me₃ ether, m.p. 186°, identical with whydroxyemodin Me₄ ether, indicating that (I) is an w-hydroxyemodin Me₁ ether. Successive oxidation (Pb₃O₄ in conc. H_2SO_4) and reduction (SO₂- H_2O) of (I) gives a compound showing the absorption bands of a 1:4:5:8-tetrahydroxyanthraquinone.

P. G. M. Elimination reactions and their steric course. W. Hückel, W. Tappe, and G. Legutke (Annalen, 1940, 543, 191—230; cf. A., 1939, II, 147).—l-Menthyl p-toluenesulphonate (I) and EtOH–NaOEt afford (cf. A., 1939, II, 120) trans- Δ^2 -menthene (II), b.p. $55\cdot5^{\circ}/16$ mm., which has $\alpha_{\rm D}+107^{\circ}$, $[\alpha]_{20}^{20}+132\cdot1^{\circ}$ (cf. Read et al, A., 1939, II, 79), when carefully fractionated (over Na; reduced pressure in N₂). The oxide, b.p. 83—84°/17 mm., from (II) and BzO₂H in CHCl₃, is converted by 5% HClO₄ into the very

viscous menthanediol, $[\alpha]_{D}^{20}$ +33° in EtOH, which is oxidised (cold aq. KMnO₄ + K_2 CO₃) to a lactonic acid, $C_{10}H_{16}O_4$, m.p. 192° (sinters 182°), and noncryst material. Δ^3 -Menthene (III) is rapidly racemised by boiling EtOH-p-C₆H₄Me·SO₃H whilst (II) is similarly little affected; (III) is also oxidised much more rapidly than (II) by BzO₂H (cf. Meerwein et al., A., 1926, 722). These methods are applied to the determination of the amount of (II) in admixture with (III). Thus, l-menthyl chloride (IV) and NaOEt give a little (II) [not obtained wholly free from unchanged (IV)]; (I) and EtOH in presence and absence of CaCO₃ afford mixtures, $\alpha + 78^{\circ}$ and $+35^{\circ}$, respectively, each containing 32% of (II). The amounts of (II) in the mixtures obtained from d-neomenthyl chloride and EtOH-NaOEt, d-neomenthylamine (V) and HNO₂, lmenthyl xanthate (thermal decomp.), and d-neomenthyl xanthate (prep. described; decomp. at 185—220°) are ~25, 20, 28, and 80%, respectively. Some inactive menthan-4-ol (VI) is also formed from (V) and HNO₂; the intermediate d-neomenthyl ion presumably rearranges to the tert.-4-menthyl ion which then adds OH⁻ [to give (VI)] or eliminates H[•] [forming inactive (III)]. Racemisation of (III) by EtOHp-C₆H₄Me·SO₃H probably occurs owing to the formation of (VI) (as ester). The possible production of the *l*-menthyl ion from (I) in EtOH, and subsequent loss of H to give (II) and (III) is discussed. The reaction between (IV) and NaOEt is considered to be of the following type: OEt⁻ + H·CR₂·CR₂Cl (H and Cl in trans position) \rightarrow OEt⁻ H·····CR₂·CR₂·····Cl⁻ \rightarrow

EtOH + $CR_2 \cdot CR_2$ + Cl^- ; Tschugaev's xanthate method is held to be strictly analogous, SMe⁻ reacting as OEt⁻. The formation of menthenes and octahydronaphthalenes from (i) menthyl and decahydronaphthyl esters, respectively, in EtOH or EtOH + $CaCO_3$, and (ii) the corresponding amines and HNO₂, is of type E 1 (Hughes et al., A., 1937, I, 467). Elimination reactions of type E 2 (cf. loc. cit.; Hanhart et al., A., 1927, 650) are: (i) the above esters with NaOAlk, (ii) exhaustive methylations (above amines), and (iii)

thermal decomp. of the xanthates.

The p-toluenesulphonate, m.p. 72°, of trans-decahydro-α-naphthol, m.p. 49°, with boiling EtOH–NaOH gives 90% of trans-Δ1:2-octahydronaphthalene (VII) and 10% of the $\Delta^{1:9}$ -isomeride (VIII). The ptoluenesulphonate, m.p. 98°, of trans-decahydro-α-naphthol, m.p. 63°, similarly affords (VII), whilst the p-toluenesulphonate, m.p. 96°, of cis-decahydro-anaphthol, m.p. 93°, yields (VIII). Thermal decomp. of the corresponding xanthates gives approx. 4:1, 1:4, and 9:1 mixtures, respectively, of (VII) and (VIII). $trans-\Delta^2$ -Octahydronaphthalene, b.p. $62^{\circ}/22$ mm., new m.p. -14° [oxidised (alkaline KMnO₄) to trans-cyclohexane-1: 2-diacetic acid, is obtained from the p-toluenesulphonates, m.p. 110° and 66°, of transdecahydro- β -naphthol, m.p. 53° and 75°, respectively, with EtOH–NaOEt or $Pr^{\beta}OH$ –NaOPr $^{\beta}$. In many of these reactions with NaOAlk a little free decahydronaphthol and alkyl ether are also formed (cf. following abstract). Borneol p-toluenesulphonate with EtOH-NaOEt gives mainly borneol. Ozonolysis of menthenes of $\alpha+78^{\circ}$ to $+104^{\circ}$ in AcOH at 0° affords mainly active "hydroxymenthylic acid" (semicarbazone, m.p. 153°, $[\alpha]_{\rm D}^{\rm B1}$ +4.6° \rightarrow +8° in 10% Na₂CO₃). An

inactive semicarbazone, m.p. 163°, is obtained from menthenes of $\alpha \sim 30^{\circ}$. H. B.

Walden inversion. V. Walden inversion in the formation of ethers. W. HÜCKEL and H. PTETRZOK (Annalen, 1940, 543, 230—239; cf. A., 1940, II, 135).—l-Menthyl chloride (I) and boiling $EtOH + CaCO_3$ give some menthene but no menthyl Et ether; with $MeOH + CaCO_3$ at $180-190^{\circ}$ (autoclave)/65 hr., a 27:73 mixture of trans- Δ^2 - and Δ^3 -menthene and a smaller amount of a 2:3 mixture of l-menthyl and d-neomenthyl Me ether are formed. No ether is obtained from (I) and EtOH-NaOEt but *l*-menthyl *p*-toluenesulphonate gives (cf. A., 1939, II, 120) small amounts of l-menthol and d-neomenthyl Et ether, b.p. 83—84°/14 mm., $\alpha_{\rm D}$ +26.05°. Borneol, $\alpha_{\rm p}$ +4.6°, yields an inactive p-toluenesulphonate, m.p. 80.5°, which with boiling EtOH + CaCO₃ affords camphene and a smaller amount of camphene hydrate Et ether, b.p. 86—89°/14 mm. The decahydro-β-naphthyl Et, b.p. 112°/15 mm., and Prβ ethers, b.p. 114°/15 mm., obtained (cf. A., 1940, II, 227) with $trans-\Delta^2$ -octahydronaphthalene from the p-toluene-sulphonate of trans-decahydro- β -naphthol, m.p. 53°, are both cleaved by NaEt to trans-decallydro-βnaphthol, m.p. 75°, showing that complete Walden inversion has occurred in their formation. Reaction mechanisms are discussed.

Fenchene series. X. Isomerisation of α -fenchene: G. Komppa and G. A. Nyman (Annalen, 1940, 543, 111—118; cf. A., 1938, II, 371).—Short treatment (7—15 min.) of α -fenchene (I) (dl-form used at its b.p.) with KHSO₄ gives β - (II) and γ -fenchene (III); the formation of little or no (I) from fenchyl alcohol and KHSO₄ (or other acidic reagents) is thus partly due to the foregoing isomerisation. Dehydration of 2-methyl- α -fenchocamphorol by distillation affords (I) but KHSO₄ at 150—160° (short time) gives (II) and (III). Contrary to Wallach (A., 1899, i, 65), active (II) ("D-d-fenchene"), which contains a variable amount of (III), is not converted by EtOH-H₂SO₄ into pure l-(I) ("D-l-fenchene"); 2n-H₂SO₄ or KHSO₄ in boiling EtOH gives l-(I), l-methylsantene, and isofenchol Et ether. Structures are proved by oxidation [except for (III) which gives an adduct with PhN₃].

Bornyl chloride and its isomerides. I. V. I. LIUBOMILOV, B. N. RUTOVSKI, and T. V. SCHEREME-TEVA (J. Gen. Chem. Russ., 1939, 9, 2067—2074).— The velocity of hydrolysis of bornyl chloride (with KOPh at $200-210^{\circ}$) is \gg that of the liquid chlorides obtained by saturation of d-pinene with HCl. Fractionation of the mixture of hydrocarbons obtained by heating the mixture of monochlorides with KOPh gives camphene, limonene, dipentene, isomeric fenchenes, and a new dicyclic terpene, $C_{10}H_{16}$, b.p. 157.8—158.5°/750 mm., $[\alpha]_0$ —7.87°, the acetate of which is hydrolysed to an alcohol, C₁₀H₁₇·OH, b.p. 86— 88°/10 mm. (phenylurethane, m.p. 88-89°). This is oxidised (CrO₃) to a ketone [oxime, m.p. 132·5—133°; semicarbazone, m.p. 217-219° (decomp.)]. With HCl it gives a solid hydrochloride, which rapidly liquefies at room temp.

Lupanetriol and its oxidation. E. R. H. Jones and R. J. Heakins (J.C.S., 1940, 456—457).— Lupeol and OsO_4 in Et_2O , followed by decomp. (Na₂SO₃) of the Os complex, give lupanetriol, $C_{30}H_{52}O_3$, m.p. 278—284° (decomp.), $[\alpha]_{50}^{20} + 2 \cdot 1$ ° in C_5H_5N (diacetate, m.p. 174°, $[\alpha]_{50}^{20} + 4 \cdot 5$ ° in CHCl₃), which is oxidised by Pb(OAc)₄ to norlupanonol, m.p. 230°, identical with the oxidation product (CrO₃) of lupenyl acetate. This proves the presence of an exocyclic CH₂ in lupeol and betulin. F. R. S.

Paprika colouring matter. XI. Isomerisation phenomena. L. Zechmeister and L. von Сноцоку (Annalen, 1940, 543, 248—257; cf. A., 1937, II, 384).—When a solution of chromatographically homogeneous capsanthin (I) in C₆H₆ is kept at $\sim 20^{\circ}$, some isomerisation of (I) to neocapsanthins A, B, and C occurs; the amounts (determined colorimetrically after chromatographic separation), in the order quoted, after 7 and 13 days are in the ratio 92:8:0:0 and 62:16:15:7, respectively. neocapsanthins are similarly more labile; A in C_6H_6 at room temp./15 days gives a 54:46 mixture of (I) and A, whilst B affords a 50:38:12 mixture of (1), A, and B. Isomerisation occurs much more readily in boiling C₆H₆; equilibrium mixtures containing \sim 80 and \sim 65% of (I) are formed from (I) and A, respectively, after 30-45 min. Similar isomerisation of (I) is effected still more rapidly by 1% of I in C₆H₆ at ~20°. The neocapsanthins are more sol., less cryst., and show absorption at shorter λ ; (I), A, B, and C have $[\alpha]_0$ (in C_6H_6) $0\pm 5-10^{\circ}$, $+89^{\circ}$, $+21\pm 5^{\circ}$, and $+27\pm 10^{\circ}$, respectively. Acylation of the OH groups of (I) causes a marked change in the tendency for isomerisation and adsorption. Capsanthin dipalmitate (II), new m.p. 95° (corr.), resembles physalien (A., 1940, II, 138); it is converted in boiling light petroleum (b.p. 70°) into $\sim 35\%$ (equilibrium) of the oily neocapsanthin dipalmitates-I and II. The same equilibrium mixture is also formed with I and also when a mixture of the dipalmitates-I and -II is used. Capsorubin, $[\alpha]_0 \pm 0^\circ$ in C_6H_6 , resembles (I) and gives neocapsorubins A and B, $[\alpha]_{\text{o}} = -134^{\circ}$ and -69° in C_6H_6 , respectively, whilst its dipalmitate affords neocapsorubin dipalmitates-I and -II.

Carotenoids of purple bacteria. V. Rhodoviolascene. P. Karrer and H. Koenig (Helv. Chim. Acta, 1940, 23, 460—468; cf. A., 1936, 248, 340, 1561; 1938, II, 277).—Oxidation of rhodoviolascene (I) with KMnO₄ yields bixindialdehyde and an incompletely identified dialdehyde which is free from OMe; a revision of the formula suggested tentatively for (I) is therefore essential. H. W.

Constituents of Nephromopsis strackeyi, f. ectocarpitma, Hue. III. M. Asano and M. Taniguti (J. Pharm. Soc. Japan, 1939, 59, 216; cf. A., 1935, 863; 1939, II, 97).—Chromotography (Al₂O₃) of acid B (loc. cit.) results in the isolation of l-protolichesteric acid, m.p. $103-106^{\circ}$, $[\alpha]_{10}^{10}-12\cdot 4^{\circ}$, converted by CH_2N_2 into the pyrazoline derivative, $C_{21}H_{36}O_4N_2$, m.p. $60-61^{\circ}$, $[\alpha]_{12}^{112}-288\cdot 2^{\circ}$. H. W.

Constituents of "senso." X. Isomeric anhydrogamabufotalins. H. Kondo and S. Ohno

(J. Pharm. Soc. Japan, 1939, **59**, 186—189; cf. A., 1939, II, 438).—The action of 5% H_2SO_4 —EtOH on gamabufotalin (I) gives a compound, $C_{24}H_{32}O_4$, H_2O , m.p. 125— 127° (decomp.), which passes at 110° /high vac. into anhydrogamabufotalin (II) of m.p. 204° .

$$\begin{array}{c|c} H & R \\ \hline \\ OH & \\ \hline \end{array} \begin{bmatrix} R = C & C & C \\ \hline \\ CH \cdot O \\ \end{bmatrix} \\ CO \end{array}$$

Dry HCl in EtOH–Et₂O converts (I) into anhydrogamabufotalin (III) of m.p. 260°, with small amounts of a chlorinated material. Cone. H₂SO₄ and (I) at room temp. give a non-cryst. product from which (II) and (III) can be extracted. (II) yields a non-cryst. acetate but a cryst. (mono-)p-nitrobenzoate. The amorphous acetate and p-nitrobenzoate of (III)

and p-nitrobenzoate of (III) are diacyl compounds. Isomerisation of (II) to (III) is therefore accompanied by the formation of a new sec. OH. The spectra of (II) and (III) show a max. absorption at 290—300 mµ. so that the unsaturated δ-

lactone has remained intact. Catalytic hydrogenation of (II) and (III) results in the absorption of ~4 H₂ with production of the corresponding acids, $C_{24}H_{40}O_4$, m.p. 210—212° [from (II)] and m.p. 199—201° [from (III)], which are isomeric with dihydroxycholanic acid. The neutral compounds which are obtained with the acids and their acyl derivatives are non-cryst. but the p-nitrobenzoate derived from (II) is a diacyl and that from (III) is a monoacyl derivative. It is very probable that (II) has an oxide ring between a tert. and a sec. OH of the sterol nucleus and that during conversion into (III) with opening of the oxide ring the elimination of the tert. OH takes place as 1 H₂O. (II) and its hydrogenation product do not contain a double linking in the sterol nucleus and can give only monoacyl derivatives. The position and configuration of the OH on the sterol nucleus is not clearly defined. Since cinobufagin and bufotalin acetate after hydrolysis give only monoacyl derivatives, the products of their hydrolysis probably contain an oxide ring.

Configurations of the $C_{(2)}$ and $C_{(3)}$ hydroxyl groups in gitogenin and digitogenin. K. Ganapathi (Current Sci., 1940, 9, 18—19; cf. A., 1940, II, 14; Noller, A., 1939, II, 546; Marker et al., ibid., 548).—Assuming the pptn. with digitonin to have the same significance for the steroid sapogenins as for the sterois (Noller), it is to be concluded that OH at $C_{(3)}$ in gitogenin (I) and digitonin (II) is of the β -configuration, i.e., cis to Me at $C_{(10)}$. By the other OH at $C_{(2)}$ occupying the two possible positions cis and trans with reference to Me at $C_{(10)}$ two forms are possible in which the two OH (which are cis to each other in both forms) are unsymmetrical or symmetrical respectively about the plane of the C atoms 2, 3, 5, and 9. (These two forms correspond with

those of B and A respectively of 2:3-dihydroxy-trans-decahydronaphthalene.) By analogy with the above from B, the sapogenins would be expected to isomerise to the trans-form on treatment with acid if these OH possessed the unsymmetrical configuration. Since this has not been observed it is concluded that in (I) and (II) the OH at C₍₃₎ and C₍₂₎ (which are in cis positions to each other) are cis and trans respectively with respect to Me at C₍₁₀₎.

Saponins and sterols. XIV. Anhydro-compounds of ursolic acid. K. Fujii and S. Oosumi (J. Pharm. Soc. Japan, 1939, 59, 237—239; cf. A., 1940, II, 99).—The "chloride" obtained from ursolic acid by PCl₅ is reduced by Zn dust in AcOH to a neutral substance. Me ursolate (I) and PCl₅ give a non-cryst. product, reduced by Zn dust-AcOH to the anhydro-ester, Me ursylenate, C₃₁H₄₈O₂, m.p. 163—165°, isomerised by Zn-Hg-HCl-AcOH to Me isoursylenate, m.p. 164—167°, and hydrolysed by NaOH-KOH-EtOH-H₂O (1:2:16:4) at 145—150° to ursylenic acid (II), m.p. 266—268° (unchanged by Zn-Hg-HCl-AcOH). Me oleanolate, (I), and the Me ester of sanguisorbigenin are similarly hydrolysed. H₂-Pd-C reduces (II) to ursenic acid, C₃₀H₄₈O₂, m.p. 203—205° (Me ester, m.p. 138—140°). R. S. C.

Pachymic acid, a new constituent of "Bukuryo" (Poria cocos, Wolf.). I. S. Nakanishi, M. Yamamoto, and H. Ikeda (J. Pharm. Soc. Japan, 1939, 59, 273—276).—An ether extract of "Bukuryo" (P. cocos = Pachyma Hoelen, Rumph; a Chino-Japanese drug) gives pachymic acid, C₃₀H₄₄O₅, m.p. 300° (acetate, m.p. 225°; Me ester, m.p. 175°, and its acetate, m.p. 155°), monobasic and containing one lactone group, one double linking, and one OH.

Hydroxylation of furan ring. Y. Obata (J. Agric. Chem. Soc. Japan, 1940, 16, 187—191).— Pyromucic acid tetrabromide with moist Ag₂O gives an acidic substance which easily decomposes into H₂C₂O₄ and a resin. Oxidation with KMnO₄ gives 2 mols. of H₂C₂O₄. Since oxidation with Pb(OAc)₄ yields CHO·CO₂H it is concluded the substance contains the grouping CO₂H·CH(OH)·CH(OH)·.

Reduction of a mixture of benzaldehyde and crotonaldehyde. Z. C. GLACET (Compt. rend., 1940, 210, 479—480).—PhCHO and CHMe:CH·CHO with Mg-AcOH give 5-hydroxy-2-phenyl-3-methyl- or 3-hydroxy-2-phenyl-5-methyl-2:3:4:5-tetrahydrofuran (I), b.p. 105—108°/0·5 mm. [Ac derivative (II), b.p. 112°/0·6 mm.]. (II) when heated at 150—175°/40 mm. pressure, or (I) when dehydrated with CuSO₄ (poor yield), gives 2-phenyl-3-methyl-2:3-dihydro- or 2-phenyl-5-methyl-4:5-dihydro-furan, b.p. 99—100°/13 mm. J. L. D.

Bromination of pyromucic acid. Y. Obata (J. Agric. Chem. Soc. Japan, 1940, 16, 184—186).—Pyromucic acid with Br vapour or with Br in Et₂O at 0° gives only δ-bromopyromucic acid; with dry Br below 0° it yields pyromucic acid tetrabromide, m.p. 159·5—160° (decomp.).

J. N. A.

Reaction of bromine with furfuraldehyde and related compounds. E. E. HUGHES and S. F.

Acree (J. Res. Nat. Bur. Stand., 1940, 24, 175—180). —The mechanism of the reaction of Br in aq. solution with equimols. of furfuraldehyde (I), methylfurfuraldehyde (II), or furoic acid (III) is discussed. With (I) and (III) there is no decrease in acidity at any time during the reaction, but with (II), >2 equivs. of acid (methylfuroic or other acid) are formed per mol. of Br consumed. Equimols. of (I) and Br in H₂O at 0° give a compound which affords a (?) bisphenylhydrazone, m.p. 155°, of a hydroxy- or ketodihydrofurfuraldehyde; the reaction consists in addition of 2 OH to a positive double linking and formation of 2 equivs. of HBr. With the addition of minor side reactions, (II) and (III) behave similarly to (I). A. T. P.

2-Furfurylpropylamine and di-2-furfuryl tert. amines. J. E. Zanetti and J. T. Bashour (J. Amer. Chem. Soc., 1940, 62, 742—743).—Addition of the appropriate furfurylalkylamine to 2-furfuryl bromide in Et₂O with some cooling gives ~80% of di-2-furfuryl-methyl-, b.p. $100-102^{\circ}/5$ mm. ($153-154^{\circ}$), -ethyl-, b.p. $109-110^{\circ}/5$ mm. ($149-151^{\circ}$), -n-propyl-, b.p. $115-117^{\circ}/5$ mm. ($147-148^{\circ}$), -n-butyl-, b.p. $126-128^{\circ}/5$ mm. ($105-106^{\circ}$), and -n-amyl-, b.p. $137-139^{\circ}/5$ mm. ($103-105^{\circ}$), -amine and NN-di-2-furfurylaniline, m.p. $31-32^{\circ}$, b.p. $163-167^{\circ}/5$ mm. ($137-141^{\circ}$), figures in parentheses being m.p. of the hydrochlorides. 2-Furfuryl-n-propylamine, b.p. 80—81°/20 mm. (hydrochloride, m.p. $138-140^{\circ}$), is prepared (method: A., 1940, II, 19). R. S. C.

Lichen pigments of the pulvic acid series. VI. Synthesis of atromentic acid. M. Asano and S. Huziwara (J. Pharm. Soc. Japan, 1939, 59, 284—286; cf. A., 1935, 1238).—pp'-Dimethoxydiphenylketipinodinitrile (I) and HI (d 1·7) in AcOH give atromentic acid (II), converted by Ac₂O-H₂SO₄ into the Ac₂ derivative, m.p. 270—271°, of the lactone (cf. Kögl et al., A., 1928, 1250, 1251). (I) and 60% H₂SO₄-AcOH give pp'-dimethoxypulvic anhydride (III), m.p. 266—268°, and some corresponding acid, m.p. 212°; the latter is also obtained from the Et ester, m.p. 160° [from (I)-H₂SO₄-EtOH]. (III) and HI-AcOH give (II).

Lichen pigments of the pulvic acid series. VII. Reduction of vulpic acid. M. Asano and Y. Arata (J. Pharm. Soc. Japan, 1939, **59**, 286— 290; cf. A., 1935, 1238).—Vulpic acid (I) and Na-Hg (CO₂) afford Me dihydrocornicularate, m.p. 67°, and dihydro- (II), m.p. 194-196° (benzoate, m.p. 138—139°), and isodihydro-vulpic acid (III), m.p. 123—127°. Boiling aq. Ba(OH)₂ and (II) or (III) give dihydropulvic acid (IV), m.p. 208—210°, converted by Ac₂O into cornicularlactone carboxylic acid, m.p. 218—219° [Me ester (V), m.p. 170—172°]. Distillation of (IV) at 210°/6 mm. gives cornicularlactone (VI), m.p. 136— $136 \cdot 5^{\circ}$. (V) and Na-Hg (CO₂) give a H₂-derivative [boiling aq. Ba(OH)₂ gives phenylsuccinic acid] and Me αδ-diphenyladipate, m.p. 139-142° (acid, m.p. 247—250°). With Na–Hg ($\dot{\rm CO}_2$) (VI) gives αδ-diphenylvalerolactone and with Zn–AcOH dihydro-cornicularlactone and -cornicularic acid. Vulpic acid absorbs H_2 (Pd-C) slowly to give (II). Pulvinone and Na-Hg (CO₂) give dihydropulvinone,

m.p. 215—219° (benzoate, m.p. 140—141°) (cf. Claisen et al., A., 1895, i, 373).

A. T. P.

α-Tocopherolquinone. P. Karrer and A. Geiger (Helv. Chim. Acta, 1940, 23, 455—459).—
Homogeneous α-tocopherolquinone (I) is readily obtained by oxidation of dl-α-tocopherol with AuCl₃ whereas repeated treatment is necessary if FeCl₃ is used. The use of AgNO₃ leads to a non-homogeneous product. (I) in 25-mg. doses is physiologically inactive.

H. W.

Nitration β -3:4:5-trimethylphenylisoof valeric acid and its methyl ester. I. Formation of 5-nitro-4:4:6:7:8-pentamethyldihydrocoumarin. L. I. SMITH and W. W. PRICHARD (J. Amer. Chem. Soc., 1940, **62**, 780—784).—3:4:5- $C_6H_2Mc_3\cdot CMc_2\cdot CH_2\cdot CO_2Mc$ and $KNO_3-H_2SO_4-CHCl_3$ at -15° to 5° give 53% of 5-nitro-4:4:6:7:8pentamethyldihydrocoumarin (I), m.p. 152·5—153° [also obtained in 20% yield from the corresponding acid by HNO₃ (d 1.6)], and 45% of a *substance*, $C_{15}H_{20}O_6N_2$, m.p. 125—125.5°. (I) yields (granulated Zn–AcOH– H_2O) the 5- NH_2 -derivative (II), m.p. 125—125.5°, which, pptd. from dil. NaOH by acid, gives 5-hydroxy-4:4:6:7:8-pentamethylhydrocarbostyril, m.p. 193-194° (does not couple; acetate, m.p. 207—208°). By diazo-reactions (II) gives 5-iodo-, m.p. 131·5—132·5° (loses I to boiling 20% KOH), 5-hydroxy-4:4:6:7:8-pentamethyldihydrocoumarin, m.p. 207-208° (Me ether, m.p. 132-132.5°, resists further methylation, benzoylation, and fission by 20% KOH).

Pyrone series. Attempted oxidation of chromanones with selenium dioxide. I. D. CHAKRA-VARTI and J. DUTTA (J. Indian Chem. Soc., 1939, 16, 639—644).—Condensation of the appropriate phenol with Cl·[CH₂]₂·CO₂H in KOH gives the phenoxypropionic acid, cyclised in C₆H₆ with P₂O₅. The following are described: β-(p-chloro-, m.p. 138—139°, β-(o-chloro-, m.p. 108—109°, β-(p-nitro-, m.p. 118—119°, β-(o-nitro-, m.p. 121—122°, β-(o-methyl-, m.p. 94—95°, and β-(p-methyl-phenoxy)-, m.p. 146°, and β -(2)-naphthoxy-, m.p. $144-145^{\circ}$, and β -(1)naphthoxy-propionic acid, m.p. 147-148°; 6-chloro-, m.p. 106° (3-veratrylidene derivative, m.p. 151-152°), 8-chloro-, m.p. 65° (3-veratrylidene derivative, m.p. 110—111°), 6-nitro-, m.p. 176—177° (3-veratrylidene derivative, m.p. 190-191°), 8-nitro-, m.p. 126-127° (3-veratrylidene derivative, m.p. 179-180°), β-naphtha-, b.p. 185—187°/9 mm. [semicarbazone, m.p. 227° (decomp.)], α-naphtha-, m.p. 104° (3-veratrylidene derivative, m.p. 169—170°), 8-methyl-, 125— 130°/9 mm. [semicarbazone, m.p. 230—231° (decomp.)], and 6-methyl-chromanone, b.p. 118—126°/6 mm. (3veratrylidene derivative, m.p. 131-132°). The chromanones are not oxidised with SeO2 to chromones, although the flavanones and chalkones are oxidised with SeO₂ to the flavones. 5-Chloro-2hydroxy-3': 4'-dimethoxychalkone, m.p. 174°, is oxidised to 6-chloro-3': 4'-dimethoxyflavone, m.p. 194°, and the 3-chloro-chalkone, m.p. 163—164°, similarly affords the 8-chloro-flavone, m.p. 110° (decomp.). 3-Nitro-2-hydroxy-3': 4'-dimethoxy-5-methylchalkone, m.p. 175°, yields 8-nitro-3': 4'-dimethoxy-6-methylflavone, m.p. 244—245° (decomp.).

Syntheses of 5:6- and 5:8-dihydroxyflavone and constitution of primetin. Z. Horn (J. Pharm. Soc. Japan, 1939, **59**, 209—214).—Primetin is shown to be 5: 8-dihydroxyflavone (I). 1: 2: 6-C₆H₃Ac(OH)₂ is converted by CH_2N_2 in Et_2O into 2-hydroxy-6methoxyacetophenone, b.p. $141^{\circ}/16.5$ mm., m.p. $57-58^{\circ}$, which with alkaline $K_2S_2O_8$ and then HCl at 100° gives 2:5-dihydroxy-6-methoxyacetophenone (II), b.p. 155—160°/5·5 mm., m.p. $91\cdot5$ — $92\cdot5$ ° (Ac_2 , m.p. $66\cdot5$ — $67\cdot5$ °, and Bz_2 , m.p. $153\cdot5$ — $154\cdot5$ °, derivatives). Bz₂O, NaOBz, and (II) at 175—185° afford 6-hydroxy-5-methoxyflavone, m.p. 183.5—185° (Ac derivative, m.p. $136-137^{\circ}$), which is demethylated (AlCl₃ in PhNO₂ at 100° or by 20% HCl or HI) to 5:6dihydroxyflavone (III), m.p. 189—191° (Ac₂ derivative, m.p. 165—166.5°). Alternatively (II) is completely methylated to 2:5:6-trimethoxyacetophenone (IV), b.p. 163.5°/11 mm., which is condensed with EtOBz and Na and then hydrolysed by HI to (III). (IV) is partly demethylated by NH2Ph,HI and NH2Ph at $120-130^{\circ}$ to 6-hydroxy-2:5-dimethoxyacetophenone, b.p. $136^{\circ}/2$ mm., m.p. $61\cdot 5-62\cdot 5^{\circ}$, transformed by BzCl and C_5H_5N into the benzoate, m.p. $120-121^{\circ}$, which with NaNH₂ in dry PhMe at 100° gives 6hydroxy-2: 5-dimethoxy- ω -benzoylacetophenone, 167—168°. This with NaOAc and glacial AcOH, or conc. H₂SO₄ at 100°, gives 5 : 8-dimethoxyflavone, m.p. 145.5—146.5°, which is unaffected by boiling 20% HCl but is partly demethylated by AlCl₃ in boiling CS₂ to 5-hydroxy-8-methoxyflavone, m.p. 210° (acetate, m.p. 176°), which does not depress the m.p. of the Me ether of (I).

Flavones, flavanones, and flavonols derived from hydroxyquinol. G. BARGELLINI and G. B. MARINI-BETTOLO (Gazzetta, 1940, 70, 170—178).— $1:2:4:5-C_6H_2Ac(OMe)_3$ with boiling conc. HCl gives $2:1:4:5-OH \cdot C_6H_2Ae(OMe)_2$ (I). With PhCHO in EtOH-KOH, followed by CO_2 , (I) gives 2-hydroxy-4:5-dimethoxychalkone (II), m.p. 98°, and, especially when the amount of KOH and the temp. are increased, 6:7-dimethoxyflavanone (III), m.p. 170—171°, also obtained by heating (II) in dil. HCl-EtOH. When heated with dil. KOH and treated with CO₂, (II) gives 6:7-dimethoxyflavone. With H_2O_2 in EtOH-KOH, (II) or (III) yields 6:7-dimethoxyflavonol, m.p. 198°, which with HI gives a red product. With anisaldehyde, (I) similarly gives 2-hydroxy-4:5:4'-trimethoxy-chalkone (cf. Bargellini et al., A., 1911, i, 855) and 6:7:4'-trimethoxyflavanone, m.p. 154°. SeO₂ in C_5H_{11} ·OH oxidises (IV) to 6:7:4'-trimethoxyflavone, whilst H2O2 yields 6:7:4'-trimethoxyflavonol, m.p. 230°, with (in presence of excess of H_2O_2) 2:4:5:1- $OH \cdot C_0H_2(OMe)_2 \cdot CO_2H$. With veratraldehyde, (I) gives, by similar methods, 2-hydroxy-4:5:3':4'tetramethoxychalkone, m.p. 152°, and 6:7:3':4'-tetramethoxy-flavanone, m.p. 161°, -flavone, m.p. 219°, and -flavonol, m.p. 228°, and with piperonal, 2hydroxy - 4: 5-dimethoxy - 3': 4'-methylenedioxychalkone, m.p. 189°, and 6:7-dimethoxy-3':4'-methylenedioxyflavanone, m.p. 176°, -flavone, m.p. 250°, and -flavonol, m.p. 258°. E. W. W.

Synthesis of derivatives of diphenylene dioxide. XV. α -Keto- (or -hydroxy-) β -(or - γ -)morpholylalkyldiphenylene dioxides. M.

Tomita (J. Pharm. Soc. Japan, 1939, **59**, 205—206; cf. A., 1939, II, 442).—Treatment of 2:6-di-β-halogeno-α-ketoethyldiphenylene dioxide with morpholine gives 2:6-di-α-keto-β-morpholinoethyldiphenylene dioxide, m.p. 195° (hydrochloride, m.p. >300°), reduced (Na-Hg or H₂-PtO₂) to 2:6-di-α-hydroxy-β-morpholinoethyldiphenylene dioxide, m.p. 202°. The following are obtained analogously: 3:7-dimethyl-2:6-di-α-keto-, m.p. 171° (hydrochloride, m.p. >300°), and -α-hydroxy-, m.p. 242°, -β-morpholinoethyldiphenylene dioxide; 2:6-di-α-keto-, m.p. 176° (hydrochloride, m.p. >280°), and -α-hydroxy-, m.p. 199°, -γ-morpholinopropyldiphenylene dioxide; 2:6-di-α-keto-, m.p. 184° (hydrochloride, m.p. >280°), and -α-hydroxy-, m.p. 220—232°, -β-morpholinopropyldiphenylene dioxide. The properties of these compounds are similar to those of the piperidino-derivatives (loc. cit.). H. W.

Photolysis of rhodamine. E. Baur (Atti X Congr. Internaz. Chim., 1938, 4, 417).—Anaërobic irradiation of rhodamine (I)-3B, -3G, or -6G adsorbed on colophony (II) sol affords CH₂O. The non-Etesterified forms of (I) [e.g., (I)G] do not yield CH₂O. The effect is independent of the nature of the alkyl group. (I)G gives CH₂O when (II) is replaced by MeOH, PrOH, and other alcohols, probably owing to ester formation during irradiation. F. O. H.

Proof of structure of 6-chloro-8-chloromethyl-1:3-benzdioxan by oxidation. C. A. Buehler, B. C. Bass, R. B. Darling, and M. E. Lubs (J. Amer. Chem. Soc., 1940, 62, 890—894).—Passage of HCl into p-C₆H₄Cl·OH in 40% CH₂O-conc. HCl-H₂SO₄ at 40° gives 6-chloro-8-chloromethyl-1:3-benzdioxan (I), m.p. 103°, which with CrO₃-AcOH gives

6-chloro-8-chloromethyl-1: 3-benzdioxan-4-one (II), m.p. 181—182°, hydrolysed by NaOH to 5-chloro-2hydroxy-3-hydroxymethylbenzoic acid (III), 166.5—167° (purple FeCl₃ colour). KMnO₄ oxidises (I) in boiling AcOH-H₂O to 6-chloro-8-aldehydo-1:3benzdioxan-4-one (IV), m.p. indefinite (reduces Tollens' reagent), 5-chloro-2-hydroxy-3-aldehydobenzoic acid (V), +H₂O, m.p. 217-221°, 5-chloro-2-hydroxyisophthalic acid (VI), $+\rm H_2O$, m.p. 238—240° (red FeCl₃ colour; Et_2 ester, m.p. 50—51°), and small amounts of (II) and 6-chloro-8-aldehydo-1:3-benzdioxan (VII), m.p. 138—138·5° (phenylhydrazone, m.p. 152.5—155°). (V) and (VI) are formed by oxidation of (IV), which is formed by way of (II) and (VII). The dioxanone ring of (IV) is easily ruptured: titration with alkali gives (V), NH₂OH,HCl and 10% NaOH give the oxime, m.p. 199.5—200.5°, of (V), and H₂-Raney Ni in EtOAc at 2.5 atm. gives (III). a-OH·C₆H₄·CO₂H, CHCl₃, and aq. NaOH at 80° give 3:2:1-CHO·C₆H₃(OH)·CO₂H, converted by Cl₂ in AcOH into an annyd. form, m.p. 226°, of (V), which with KMnO₄ in AcOH-H₂O gives an annyd. form, m.p. $245-2\overline{4}6^{\circ}$, of (VI).

Forsythin as isomeride of phillyrin (philyroside). Its constitution. T. Kaku, H. Ri, and

N. Hara (J. Pharm. Soc. Japan, 1939, 59, 248—255).—Forsythin exists in α -, m.p. 154—155°, and β -forms, m.p. 184—185°, $[\alpha]_{\rm D}$ (both) +64·6° (63·9°) in C₅H₅N, +48·4° (48·5°) in EtOH, of which the former is identical with phillyrin. CH₂N₂ or Me₂SO₄ converts forsythegenol into *epi*pinoresinol Me₂ ether [(NO₂)₂-derivatives, (i) m.p. 230°, $[\alpha]_{\rm D}$ +119·7°, (ii) forms, m.p. 161—162° (unstable) and 180°, $[\alpha]_{\rm D}$ +147·4°]. The glucosides are probably

 $\begin{array}{c} \text{O·Ch}_2\text{·CH} & \text{O·Ch}_2\text{·CH} \\ \text{O·CH}_2\text{·CH} & \text{CH·Ch}_3\text{(OMe)-3} \\ 3: 4\text{-(OMe)}_2\text{C}_6\text{H}_3\text{·CH} & \text{CH·CH}_2\text{·O} & \text{R. S. C.} \end{array}$

Derivatives of 4-phenylpentamethylene oxide and sulphide.—See B., 1940, 346.

Oxidation of thiophen-sulphur by calcium hypochlorite solutions.—See A., 1940, I, 268.

Thiophen series. LI. Atophan-like derivatives of dithienyl and diphenyl. W. STEINKOPF and H. J. von Petersdorff (Annalen, 1940, 543, 119—128; cf. A., 1939, II, 443).—Isatin (I), p-C₆H₄Ph·COMe, and 28% KOH with a little EtOH at 110° (bath) give 2-p-diphenylylquinoline-4-carboxylic acid, m.p. 289—290°, decarboxylated (soda-lime) to 2p-diphenylylquinoline, m.p. 175—177°. (C₆H₄·COMep)₂ and (I) similarly give 4:4'-di-(4''-carboxy-2''-quinolyl)diphenyl, m.p. >320°, whence 4:4'-di-2''-quinolyldiphenyl, m.p. 314—315°. 2:2'-Dithienyl, AcCl, and TiCl₄ in C_6H_6 at 100° (bath) afford 5-acetyl-, m.p. 114·5—115·5°, and 5:5'-diacetyl-2:2'dithienyl, m.p. 231-232°, converted (as above) into 5-mono-, m.p. 237—238°, and 5:5'-di-(4''-carboxy-2''-quinolyl)-2:2'-dithienyl, amorphous (Me_2 ester, m.p. 271—273°), respectively, whence 5-mono-, m.p. 142—143°, and 5:5'-di-(2''-quinolyl)-2:2'-dithienyl, m.p. 243—244°, respectively. 3:3'-Diacetyl-5:5'-dimethyl-2:2'-dithienyl, m.p. 109—111° (from the Me₂ derivative, AcCl, and AlCl₃ in CS₂), gives 3:3'-di-(4''-1)carboxy - 2'' - quinolyl) - 5:5' - dimethyl - 2:2' - dithienyl, hygroscopic, m.p. 209° (decomp.), +AcOH, m.p. 222—224°. 2:5:2':5'-Tetramethyl-3:3'-dithienyl, AcCl, and $TiCl_4$ in C_6H_6 afford the 4:4'- Ac_2 derivative, m.p. 90—91°; 2-phenylthiophen similarly yields 5phenyl-2-acetothienone, m.p. 115—118°, whence 5-phenyl-2-4'-carboxy-2'-quinolylthiophen, m.p. 230— Acetylthiophthen and (I) give 2(or 3)-4'carboxy-2'-quinolylthiophthen, m.p. 260—262° (blackening), whence 2(or 3)-2'-quinolylthiophthen, m.p. 214— 215°. Many of the compounds show luminescence in Hg light.

Thiophen series. LII. Derivatives 3-bromo- and 2:3-dibromo-thiophen. W. Stein-KOPF and, in part, H. J. von Petersdorff (Annalen, 1940, **543**, 128—132).—3-Bromothiophen (I), b.p. 154—160° [from 2:3-dibromothiophen (II), EtBr, and Mg in Et₂O and subsequent hydrolysis], with Hg(OAc)₂ in AcOH at 50—55° and the b.p. gives the 2:5-di- and 2:4:5-tri-acetoxymercuri-derivatives, respectively, converted (usual method) into 3-bromo-2:5-di-iodo- (III), m.p. 55—56°, and -2:4:5-triiodo-thiophen, m.p. 156—157°, respectively. excess of Br rapidly converts (III) into tetrabromothiophen. 3-Bromothiophen-2-sulphonic acid (amide, m.p. 163—164°) is formed from (I) and cold ClSO₃H. 2:3-Dibromo-5-iodothiophen, m.p. $58-58\cdot5^{\circ}$ [from (II), HgO, and I in C_6H_6], with Cu-bronze at 240° affords 4:5:4':5'-tetrabromo-2:2'-dithienyl, m.p. 181° (with Br gives hexabromo-2:2'-dithienyl). The di-, tri-, and tetra-chloro-2:2'-dithienyl of Eberhard et al. (A., 1894, i, 117; 1896, i, 16) are the 5:5'-, 3:5:5'-, and 3:5:3':5'-derivatives, respectively.

Some reactions of Δ^{β} - γ -lactones. E. Walton (J.C.S., 1940, 438—442).—The statement of Lukeš et al. (A., 1929, 824) that lactones of type CH₂·CO \rightarrow O (A) with amines give not pyrrolidones of type CH₂·CH₂ \rightarrow R'·OH, but open-chain amides,

NHR·CO·[CH₂]₂·COR', is incorrect. Their "lævulanilide" obtained from Δ^{β} -angelical actore (I) (A; R' = Me) and NH_2Ph at 180°, is identical with 2hydroxy-1-phenyl-2-methyl-5-pyrrolidonc (II) (loc. cit.), which with Br-H₂O gives the corresponding 1-pbromophenyl compound, m.p. 159—161° (decomp.), also obtained from (I) and $p\text{-}C_6H_4Br\text{-}NH_2$ (III). Succinanil with MgMeI in C₆H₆ also gives (II) (mixed m.p.). γ -Phenyl- Δ^{β} -crotonolactone (IV) (A; R' = Ph) with conc. aq. NH₃ gives 2-hydroxy-2-phenyl-5-pyrrolidone (V), and with 33% aq. NH₂Mc, NH₂Et, and NH₂Pr^a gives 2-hydroxy-2-phenyl-1-methyl- (VI), m.p. 130—135° (decomp.) [also obtained from succinethylimide (VII) (cf. Lukeš et al., A., 1928, 897)], -1-ethyl-, m.p. 85—87°, and -1-n-propyl-5-pyrrolidone, m.p. 85—86°. These products (in the formation of which there are colour changes from green through blue, violet, and red, to yellow) are all amphoteric, dissolving in 6N-HCl and in 2N-NaOH. In the latter, (V) is decomposed, but (VI) may be refluxed unchanged for 5 min., and its homologues are also stable; the compounds are, however, hydrolysed by aq. HCl or EtOH–HCl to CH₂Bz·CH₂·ČO₂H and NH₂R. With boiling NH₂Ph, (IV) gives 2hydroxy-1: 2-diphenyl-5-pyrrolidone, m.p. 148—149°, which with Br-H₂O forms 2-hydroxy-2-phenyl-1-pbromophenyl-5-pyrrolidone, m.p. 166°, also obtained from (III) and (IV). p-C₆H₄Me·CO·[CH₂]₂·CO₂H and Ac₂O at 100° give γ -p-tolyl- Δ^{β} -crotonolactone (VIII), m.p. 111°, which with conc. aq. NH₃ at 100° gives 2hydroxy-2-p-tolyl-5-pyrrolidone, m.p. 165—167° (decomp.), previously regarded as an open-chain amide. With 33% aq. NH₂Me, (VIII) gives 2-hydroxy-2-p-tolyl-1-methyl-5-pyrrolidone, m.p. (+0.5H₂O) 92—93°, (anhyd.) 132—140° (decomp.), also obtained from (VII) and p-C₆H₄Me MgBr in C₆H₆. $p\text{-}C_6H_4Br\text{-}CO\text{-}[CH_2]_2\text{-}CO_2H$ with Ac_2O at 100° gives γ p-bromophenyl- Δ^{B} -crotonolactone, m.p. (impure) 115— 130° (decomp.), which with warm aq. NH₃ and with 33% aq. NH₂Me gives respectively 2-hydroxy-2-p-bromophenyl-5-pyrrolidone, m.p. 169—171° (decomp.), and -1-methyl-5-pyrrolidone, m.p. 145—148° (decomp.) [also obtained from (VII) and $p\text{-}C_6H_4\text{Br}\cdot\text{MgBr}]$. Similarly $\gamma\text{-}p\text{-}anisyl\text{-}}\Delta^{\beta}\text{-}crotonolactone, m.p. 110—111°$ (obtained as before) gives 2-hydroxy-2-p-anisyl-5pyrrolidone, m.p. 133—135°, and -1-methyl-5-pyrrolidone, m.p. 88—92° [not obtained from (VII)]. The above pyrrolidones are hydrolysed by HCl as before. Attempts to confirm the presence of OH in (VI) were unsuccessful, there being no reaction with Me₂SO₄, Ac₂O, or PhNCO, and AcCl causing elimination of H₂O to give an unsaturated product. E. W. W.

Derivatives of substituted succinic acids. IV. Action of alkaline sodium hypobromite on some α -alkyl- α' -arylsuccinamides. J. A. McRae and (Miss) N. A. McGinnis (Canad. J. Res., 1940, 18, B, 90-95).—The NH₄ salt of phenylmethylsuccinic acid when heated at 180° gives α-phenyl-α'-methylsuccinimide, m.p. 109°, which with NH_3 -EtOH affords the amide, m.p. 224—225°. This amide with NaOBr is converted into 6-phenyl-5-methyldihydrouracil, m.p. 192—195° (lit. 185°), not identical with the corresponding 5-phenyl-6-methyl compound (I), m.p. 224°. β -Amino- α -phenylbutyric acid, m.p. 248°, prepared from Me α -phenylcrotonate and NH₂OH, with KCNO yields β-ureido-α-phenylbutyric acid, which when heated is converted into (I). β-Cyano-β-phenylα-n-hexylpropionic acid, m.p. 166°, obtained from heptylidenephenylacetonitrile and KCN, is difficult to hydrolyse and the succinic acid is directly converted into α-phenyl-α'-n-hexylsuccin-imide, m.p. 52°, by heating the NH₄ salt, and thence with NH₃-EtOH into the -amide, m.p. 233° (decomp.). This amide with NaOBr gives β-phenylureido-α-n-hexylpropionic acid, m.p. 144—145° (decomp.). α-Phenyl-α'-benzyl-succin-imide, m.p. 131°, is converted (NH₃-EtOH) with difficulty into the amide, m.p. 216°, which with NaOBr has given a substance, m.p. 219°, which could not be characterised. F. R. S.

Identification of organic compounds. Piperidyl derivatives of aromatic halogenonitrocompounds. (MISS) M. K. SEIKEL (J. Amer. Chem. Soc., 1940, **62**, 750—756; cf. A., 1940, II, 160).— Conditions are defined for conversion of aromatic halogenonitro-compounds into piperidino-derivatives. The following compounds are described, the piperidino-group being inserted, unless otherwise stated, by replacement of halogen. 1-Chloro-2: 4-dinitro-5-, m.p. 114—114·5° (lit., 117—118°, 119°), 1:3-dibromo-2:4-dinitro-5-, m.p. 129—129-5°, 1-chloro-4-nitro-3- $[\text{from } 1:3:4\text{-}C_6H_3\text{Cl}(\text{NO}_2)_2 \ (\text{I}) \ \text{or } \text{-}C_6H_3\text{Cl}_2\text{-}\text{NO}_2 \ (\text{II}),$ $1:2:3:5:C_6H_2\text{Cl}(\text{NO}_2)_3$ or $-C_6H_2\text{Cl}_2(\text{NO}_2)_2$], m.p. $125:5^\circ$, 1:3-dichloro-5-mitro-(?)2- [from $1:3:2:5:C_6H_2\text{Cl}_2(\text{NO}_2)_2$], m.p. 86:5— $87:5^\circ$, 1:3-dichloro-5-mitro-4-, m.p. 57— 58° , 1-chloro-2:3-dintro-4- [from 1:4:2:3-C H Cl (NO)] m.p. 91— 92° 1 chloro 1:4:2:3- $C_6H_2Cl_2(NO_2)_2$], m.p. 91—92°, 1-chloro-2:5-dinitro-4-, m.p. 71·5—72·5°, 1:2-dichloro-4-nitro-3-, m.p. 73—74°, 1:3-dichloro-4-nitro-5-, m.p. 65°, 1:3-dichloro-4-nitro-5-, m.p. 74°, 1:3-dichloro-4-nitro-5-, m.p. 96°, and 42°, 1: 2-dichloro-3: 5-dinitro-6-, m.p. 95—96°, and 1: 3-dibromo-4-nitro-5-, m.p. 70—71°, -1'-piperidinobenzene; 1-nitro-2:5- [from (I) or (II)], m.p. 77.5— 1-chloro-3-nitro-4: 6from 1:2:4:5 $C_6H_2Cl_2(NO_2)_2$ or $-C_6H_2Cl_3\cdot NO_2$], m.p. $103\cdot 5-104^\circ$ and $(+\text{ piperidine}) \sim 125^\circ$, 1:2-dinitro-3:5-, m.p. $173-173\cdot 5^\circ$, 1:2-dinitro-3:6-, m.p. $167-167\cdot 5^\circ$, 11:2-dinitro-11:2chloro-3-nitro-2:6-, m.p. 93·5—94°, 1-chloro-4-nitro-3:5-, m.p. 88·5—89·5°, 1-chloro-3:5-dinitro-2:6-, m.p. 188·5—189°, 1-chloro-3:5-dinitro-2:4-, forms, m.p. 142·5—143° and (stable) 146·5—147·5°, 1-chloro-2:6-dinitro-3:5-, m.p. 190°, 1-bromo-4-nitro-3:5-, m.p. 87·5—88°, and 1-bromo-2: 4-dinitro-3: 5-, m.p. 224—225°, -dipiperidinobenzene; 1-o-, m.p. 38— 39° (hydrochloride, m.p. 210.5—212°), and 1-m-nitrobenzylpiperidine, m.p. 10—13° (hydrochloride, m.p.

 $202 \cdot 5 - 205^{\circ}).$ s-C₆H₃(NO₂)₃ and piperidine give an unstable additive compound, m.p. $60 - 62^{\circ}$ (decomp. $110 - 120^{\circ}).$ $1:3:5 \cdot \text{C}_6\text{H}_3\text{Cl}(\text{NO}_2)_2$ dissolves, forming an additive compound, which is not isolated. $1:3:5 \cdot \text{C}_6\text{H}_3\text{Cl}_2 \cdot \text{NO}_2, \ 1:2:6 \cdot \text{and} \ 1:4:2 \cdot \text{C}_6\text{H}_3\text{MeCl} \cdot \text{NO}_2$ do not react. R. S. C.

Quinuclidine derivatives.—See B., 1940, 406.

Oxalates of ammonium-pyridine platinum compounds.—See A., 1940, I, 267.

 N^1N^4 -Nicotinoyl derivatives of sulphanilamide. T. C. Daniels and H. Iwamoto (J. Amer. Chem. Soc., 1940, **62**, 741—742).— N^4 -Nicotinoyl- (I), m.p. 257—258° (N^1 -Ac derivative, m.p. 255—256°), and thence N^1N^4 -dinicotinoyl-sulphanilamide, forms, m.p. 222° and 248°, are prepared from p-NH₂·C₆H₄·SO₂·NH₂ by nicotinoyl chloride in C₅H₅N at 100° or from nicotinanilide by ClSO₃H (first at <15° and then at 60°) etc. (nomenclature: A., 1938, II, 439). The pharmacological properties of (I) are promising.

Pyridine sulphanilamides.—See B., 1940, 405.

Phenylpyridines.—See B., 1940, 346.

Mechanism of formation of indoxyl in vivo from o-nitrobenzene derivatives.—See A., 1940, III, 519.

β-Indolylacetic acids.—See B., 1940, 346.

Syntheses in the indole series. I. Synthesis of indolyl-3-glyoxylic acid and of r-3-indolylglycine. J. W. Baker (J.C.S., 1940, 458-460).-Mg indolyl iodide and CO₂Me COCl give Me indolyl-3-glyoxylate (I), m.p. 224°, which contains a prototropic pentad system, yielding an Ac derivative, m.p. 130°, and a xenylurethane, shrinking at 167° to a clear liquid at 200°, of the enolic form. Hydrolysis (NaOH) of (I) affords the acid, m.p. 216° (decomp.), also obtained either by hydrolysis or treatment with HNO₂ of the *amide*, m.p. 252° (slight decomp.). Methylation (MeOH-Na-MeI) of (I) gives Me 1methylindolyl-3-glyoxylate, m.p. 82.5°, and reduction (Al-Hg) yields Me indolyl-3-glycollate, m.p. 82.5°. Oximation of (I) affords oxime-A, m.p. 174°, and -B, m.p. 143°; the former is reduced (Al-Hg in Et₂O) to Me α-aminoindolyl-3-acetate, m.p. 118°, which is hydrolysed (NaOH) to r-3-indolylglycine, m.p. 221° (decomp.).

Amanita toxins. V. Constitution of phalloidine. H. Wieland and B. Witkop (Annalen, 1940, 543, 171—183).—Phalloidine (I), $C_{30}H_{39}O_{9}N_{7}S$ (cf. Lynen et al., A., 1938, II, 66; method of isolation modified), $[\alpha]_{\rm B}$ +62·3° in EtOH, is hydrolysed by 30%, H_2SO_4 in CO_2 at 100° (bath) to *l*-cysteine (isolated partly as cystine owing to subsequent autoxidation), *l*-alanine, *l*-hydroxyproline b, m.p. 241° (decomp.), $[\alpha]_{\rm B}^{20}$ -57·4° in H_2O (Leuchs et al., A., 1920, i, 85), and 1-hydroxytryptophan [\$\alpha\$-amino-\$\beta\$-2-keto-2:3-di-hydro-3-indolylpropionic acid] (II), m.p. 249—253° (decomp.), $[\alpha]_{\rm B}^{20}$ +39·2° in N-NaOH. Quant. results indicate that (I) is the hexapeptide derived by loss of 6H₂O [(I) does not contain free NH₂ or CO₂H] from 1, 2, 2, and 1 mol., respectively, of the above NH₂-

acids. Hydrolysis of (II) by short treatment with hot aq. $Ba(OH)_2$ gives (probably) o- $NH_2 \cdot C_6H_4 \cdot CH(CO_2H) \cdot CH_2 \cdot CH(NH_2) \cdot CO_2H$ (couples with $\beta \cdot C_{10}H_7 \cdot OH$); (II) gives the Folin-Denis but not the Hopkins-Cole reaction. H. B.

Synthesis of nitrogen ring compounds. XIX. Synthesis of isoquinolines having N-hetero-ring in 1-position. S. Sugasawa, K. Sakurai, M. Fuji-SAWA, and N. SUGIMOTO (J. Pharm. Soc. Japan, 1940, 60, 39—42).—Et quinaldinate and 3:4- $(CH_2O_2)C_6H_3\cdot CH_2\cdot CHMe\cdot NH_2$ at $\sim 220^\circ$ give quinaldin- β -3:4-methylenedioxyphenyl- α -methylethylamide, m.p. 125°, cyclised by POCl₃ in hot PhMe to 6:7methylenedioxy-1-2'-quinolyl-3-methyl-3: 4-dihydroiso-quinoline, m.p. 143°. The corresponding dimethiodide is transformed into the methochloride, which is catalytically reduced to 6:7-methylenedioxy-1-2'-1'methyl - 1':2':3':4' - tetrahydroquinolyl - 2:3 - di methyl-1:2:3:4-tetrahydroisoquinoline, characterised as the dipicrate, m.p. 214—215°. Quinaldin-β-3:4-methylenedioxyphenylethylamide, m.p. 108°, is similarly cyclised to 6:7-methylenedioxy-1-2'-quinolyl-3: 4-dihydroisoquinoline, m.p. 121°, which gives only resinous products with C₂H₄Br₂. Catalytic reduction of 6:7-dimethoxy-1-3'-pyridyl-3:4-dihydroisoquinoline dimethochloride gives the non-cryst. 6:7dimethoxy-1-1'-methyl-3'-piperidyl-2-methyl-1:2:3:4-tetrahydroisoquinoline (dipicrate, decomp. 207.5°; platinichloride, decomp. 224°). β-Nicotinhomoveratrylamide is catalytically reduced to 1methyl-3-piperidylhomoveratrylamide, m.p. ~95° (picrate, decomp. 230°), cyclised by POCl₃ in dry PhMe to non-cryst. 6:7-dimethoxy-1-1'-methyl-3'piperidyl-3: 4-dihydroisoquinoline (dipicrolonate, decomp. 243°). Chloroacet- β -methoxy- β -3: 4-methylenedioxyphenyl-a-methylethylamidc, b.p. 179°/3.5 mm., from the amine and CH₂Cl COCl in COMe₂ at 0°, is transformed by piperidine in C₆H₆ into piperidinoacetβ-methoxy-β-3: 4-methylenedioxyphenyl-α-methylethyl-amide (methiodide, decomp. 197—198°), cyclised by POCl₃ in boiling PhMe to 6:7-methylenedioxy-1piperidinomethyl-3-methylisoquinoline, m.p. 140° H. W. (methiodide, decomp. $201-202^{\circ}$).

Hydrogenation under pressure of 6-hydroxy-quinoline and its derivatives. K. MIYAKI and H. KATAOKA (J. Pharm. Soc. Japan, 1939, 59, 222—224).—6-Hydroxyquinoline is hydrogenated (20% Ni-kieselgulur in abs. EtOH) at 140°/80—100 atm. (initial pressure) to the 1:2:3:4-tetrahydride, m.p. 160°, whereas at 180° the product is the decahydride, separated into a solid, m.p. 185°, and a liquid, b.p. 93—98°/0·005 mm., portion. 6-Acetoxyquinoline in cyclohexane at 140° yields the tetrahydride, b.p. 130—140°/0·01 mm. 6-Acetoxy-1-benzoyl- in abs. EtOH at 250° is converted into 6-hydroxy-1-hexahydrobenzoyl-1:2:3:4-tetrahydroquinoline, m.p. 210°, whilst 6-methoxy-1-hexahydrobenzoyl-1:2:3:4-tetrahydroquinoline, m.p. 75—76°, is obtained from the corresponding Bz derivative.

5:5-Dimethylhydantoins containing a NRR' substituent. H. R. Henze and J. W. Magee (J. Amer. Chem. Soc., 1940, 62, 912—913).—COMe·CH₂·NRR', KCN, and (NH₄)₂CO₃ in 50% EtOH at 55—65° give 68—92% yields of 5-methyl-5-N-

methyl-, m.p. 190°, -ethyl-, m.p. 171°, and -benzyl-anilinomethylhydantoin, m.p. 213°, 5-methyl-5-N-benzyl-N-methyl-, m.p. 204°, -ethyl-, m.p. 165°, -n-propyl-, m.p. 157°, and -n-butyl-aminomethylhydantoin, m.p. 169°, 5-methyl-5-N-o-, m.p. 177°, and -p-methyl-benzyl-N-methylaminomethylhydantoin, m.p. 178°, and 5-methyl-5-N-cyclohexyl-N-methylaminomethylhydantoin, m.p. 199°. M.p. are corr. R. S. C.

Colour in relation to chemical constitution of the organic salts and metallic derivatives of oximinodiphenylthiohydantoin. S. Dutt and B. M. S. Agarwal (Proc. Indian Acad. Sci., 1940, 11, A, 96—105).—Protracted action of NaNO₂ on 1:3-diphenylthiohydantoin in AcOH at room temp. gives unchanged material, an unidentified yellow substance, m.p. 245°, and oximino-1:3-diphenylthiohydantoin (I), m.p. 174°. (I) is bright yellow when solid or in solution in non-hydroxylic org. media but gives an intense crimson colour on addition of alkali or org. bases, thus resembling violuric acid. The change is attributed to the conversion of the oximino-ketonic into the nitroso-enolic form: CS

CS

NPh·C·NO

NPh·C·OH. (I) gives salts with NH2Me, m.p. 120°, NHMe2, m.p. 148°, NMe3, m.p. 152°, NH2Et, m.p. 156°, NHEt2, m.p. 179°, NEt3, m.p. 87°, NH2Bu^{β}, m.p. 167°, C₅H₅N, m.p. 139°, piperidine, m.p. 158°, nicotine, m.p. 132°; the K, m.p. 167°, Na, m.p. 188°, and NH_4 , m.p. 112°, salts are described.

Dicyclic heterocyclic compounds with a heteroatom common to both cycles. V. Prelog (Arh. Kemiju, 1939, **12**, 97—105).—A review. R. T.

Polarisation in heterocyclic rings with aromatic character. IV. Polarisation in the glyoxaline ring. E. Ochiai and M. Sibata (J. Pharm. Soc. Japan, 1939, 59, 256—260; cf. A., 1939, II, 451). -2:4-Dimethylglyoxaline, PhCHO, and $ZnCl_2$ at 180—185° give 2-styryl-4-methylglyoxaline, decomp. 147—148° (picrate, decomp. 248°). 2-Styryl-1:1:4trimethylglyoxalinium iodide, m.p. 248.5° (corresponding picrate, m.p. 166.5°), is obtained from 1:1:2:4tetramethylglyoxalinium iodide, hygroscopic (corresponding picrate, m.p. 126.5°), by PhCHO and a little piperidine at 150—165°, but 2-styryl-3: 4-dimethyl-thiazolinium iodide, m.p. 227° (corresponding picrate, m.p. 163.5°), is obtained at 100°. 2:4-Diphenylglyoxaline and aq. CH₂O at 140—160° give 2:4-diphenyl-5-hydroxymethylglyoxaline (I), decomp. 179°, and 5:5'-methylenedi-(2:4-diphenylglyoxaline) (II), $+1.5\mathrm{H}_2\mathrm{O}$, m.p. 256° (dipicrate, decomp. 212°). In boiling decahydronaphthalene (I) gives (II) and CH₂O. Hydrogenation of 5-nitro-4-methylglyoxaline in acid gives the unstable 5-NH₂-compound (CHPh: derivative, m.p. 216°), but hydrogenation in presence of $\mathrm{CH_2(COMe)_2}$ gives 4:4':6'-trimethylglyoxalino- 1:5-1':2'-pyrimidine, $+\mathrm{H_2O}$, m.p. $80\cdot5$ — 82° (picrate, decomp. 201°). These condensations are anticipated from considerations of resonance. R. S. C.

Indigo. V. Benziminazole derivative isomeric with indigo. J. VAN ALPHEN (Rec. trav. chim., 1940, 59, 289—297; cf. A., 1939, II, 285).—2-Methylbenziminazole (I) (phthalate, m.p. 190°)

with o-C₆H₄(CO)₂O (II) at 200° gives 2-1': 3'-diketo-2'-hydrindylidenebenziminazole, m.p. >350° (nitrate, m.p. 184°), also obtained by boiling (I) with an excess of o-C₆H₄(CO₂H)₂. Heating (I) with isatin (III) or acenaphthenequinone gives 3-2'-benziminazolyl-methyleneindoxyl, m.p. >350°, and 7-keto-8-2'-benziminazolylmethylene-7:8-dihydroacenaphthene, m.p. 295°. 2-Ethyl- (phthalate, m.p. 197°) and 2-benzyl-benziminazole (IV) (phthalate, m.p. 177°) do not condense with (II), but (IV) and (III) at 180° give 3-α-2'-benziminazolylbenzylideneindoxyl, +EtOH, m.p. 264°.

Benzoyl derivatives of indigotin. V. H. DE DIESBACH, O. JACOBI, and C. TADDEI (Helv. Chim. Acta, 1940, 23, 469—484; cf. A., 1937, II, 78, 120).— Indigotin (I) is converted by hot BzCl into the substance (II) (Dessoulavy, Diss., Neuchâtel, 1909),

which is transformed by boiling NH₂Ph into o-NHBz· C_6H_4 ·CONHPh, m.p. 280°, 2:3-diphenylquinazolone, m.p. 159°, the quinoline derivative [(III), R = H], m.p. 255—256°, and a mixture of bases which gives a Bz_2 derivative, $C_{41}H_{27(29)}O_3N_3$, m.p. ~300°, hydrolysed (conc. H_2SO_4) to a mixture of bases, $C_{27}H_{19(21)}ON_3$. This when diazotised and coupled with β - $C_{10}H_7$ -OH gives a dye, $C_{37}H_{26(24)}O_2N_4$, m.p. 215—255°. When the diazo-solution is kept it yields a ppt., $C_{27}H_{20}O_3N_2$, m.p. $>300^\circ$, the motherliquors from which contain a stable diazo-salt which couples with $\beta\text{-C}_{10}\text{H}_{7}\text{-OH}$ to the product, $\text{C}_{37}\text{H}_{26(24)}\text{O}_{3}\text{N}_{4},$ m.p. 276°. The mixed bases and their derivatives are resistant to alkali at 400° and are either indifferent to oxidising agents or yield only o-C₆H₄(CO₂H)₂. Similar products are not formed from other primary aromatic amines. (II) and boiling $p\text{-}\mathrm{C_6H_4Me\cdot NH_2}$ give a mixture separated by boiling EtOH-NaOEt into a compound (III), R = Me], m.p. 264°, and an acid, C₂₃H₁₈O₂N₂, H₂O, m.p. 210°, re-cyclised by heat or by solvents of high b.p. to the compound, $C_{23}H_{16}ON_2$, m.p. 263°. (II) and boiling $p\text{-C}_6\text{H}_4\text{Cl-NH}_2$ yield the quinoline derivative [(III), R = Cl], m.p. 293°, which loses Cl and suffers profound decomp. with alkali at 400°. m-C₆H₄Me•NH₂ and (II) afford benzoylanthranil-m-toluidide, m.p. 224°, which passes at 330° into 2-phenyl-3-m-tolyl-4-quinazolone, m.p. 139°. Similarly (II) and β-C₁₀H₁·NH₂ at 200° afford benzoylanthranil-β-naphthalide, m.p. 258°, which passes at 300° into 2-phenyl-3-2'-naphthyl-4-quinazolone, m.p. 184°. (II) appears

sometimes unchanged by boiling $o\text{-}C_6H_4\text{Me}\cdot\text{NH}_2$ sometimes converted into ill-defined compounds; α-C₁₀H₇·NH₂ behaves similarly. Boiling as-m-xylidine and (II) give a compound, $C_{24}H_{16}ON_2$, m.p. 278°, and 2-phenyl-3-2': 4'-dimethylphenyl-4-quinazolone,

 130° (picrate, m.p. 202°). (II) passes slowly at $\sim 250^{\circ}$ into BzCl and Ciba-yellow. (I) and o-C₆H₄Cl·COCl yield a mixture, m.p. 258°, converted by conc. H₂SO₄ into Höchst yellow U and a further similar dye with an additional Cl in the Ph nucleus. (I) and $2:4:6:1-C_6H_2Cl_3\cdot COCl$ give dichlorinated Höchst yellow U (IV), m.p. $>300^{\circ}$.

1:1'-Di(methylthiol)-3:3'-bisisoindolenylidene.—See B., 1940, 349.

Constitution of yeast ribonucleic acid. Guanineuridylic acid. J. M. GULLAND (Chem. and Ind., 1940, 321—324).—A reply to Tipson et al. (A., 1940, II, 27) concerning the entity of guanineuridylic acid.

Chlorophyll. XCV. Partial syntheses in the chlorin and purpurin series. H. FISCHER and M. STRELL (Annalen, 1940, 543, 143-161).-Purpurin 3 (= γ -formylpyrrochlorin) Me ester (I) (A., 1937, II, 470) with AcOH-HI at 70°, and subsequent reoxidation of the leuco-compound, gives γ-formylpyrroporphyrin Me ester, m.p. 246° (cf. A., 1940, II, 109); reduction with H₂-Pd in COMe₂ affords mesopurpurin 3 Me ester, m.p. 155°. When (1) is shaken with a very large excess of 30% MeOH-KOH, γ -formyl-2-vinylpyrroporphyrin [Me ester, m.p. 208° (cryst. oxime)] is formed; short treatment with boiling conc. MeOH-KOH gives 2-vinylpyrroporphyrin. The amorphous oxime, m.p. 145°, of (I) is dehydrated by boiling $Ac_2O + anhyd$. K_2CO_3 (? NaOAc) to γ -cyanopyrrochlorin Me ester (II) (A, R = CN, R' = H), m.p. 205°,

$$\begin{array}{c|c}
N & & & & & \\
Me & & & & & \\
H & H & & & & \\
\end{array}$$

$$\begin{array}{c|c}
N & & & & \\
CR & & & & \\
R' & & & & \\
\end{array}$$

converted (HI) into pyrroporphyrin and γ -cyanopyrroporphyrin (III). The CN of (II) could not be pyrroporphyrin (III). The CN of (II) could not be hydrolysed; boiling 20% MeOH-KOH for 1 hr. affords (III). Catalytic reduction of (II) in AcOH gives first (30 hr.) the meso-compound and then decomp. products. Purpurin 7 Me₃ ester (IV), NH₂Et, and anhyd. K₂CO₃ in C₅H₅N for 4 days (shaking) give a complex mixture of chlorins (a compound, m.p. 201°, is extracted by 10% HCl after treatment with Et₂O-CH₂N₂); purpurin 5 Me₂ ester (V) reacts similarly but (I) is largely unchanged. CH₂(CN)₂ and (I) in C_5H_5N at 100° (bath) yield γ - $\beta'\beta'$ -dicyanovinyl-pyrrochlorin Me ester [A, R = CH:C(CN)₂, R' = H], m.p. 222°, decomposed by AcOH-HI. $CH_2(CN)_2$, (V), and anhyd. Na₂CO₃ in C₅H₅N at room temp./2 days give the compound, $C_{38}H_{38}O_4N_6$ [A, R = CH:C(CN)₂, R' = CO₂H (note hydrolysis)], m.p. >320°, converted by hot C₅H₅N into a compound resembling (spectrum) rhodochlorin, by MeOH-KOH into vinylrhodoporphyrin, and by AcOH-HI into a substance similar (spectrum) to chloroporphyrin e₅ Me₁ ester (VI); the neopurpurin reaction (A., 1939, II, 288; cf. A., 1940, II, 141) is negative. An extremely light-sensitive substance (extraction no. 22) is obtained from (IV), $\mathrm{CH_2(CN)_2}$, and $\mathrm{NH_2Et}$ in dioxan at 100° (bath). Anhyd. HCN and (V) in $\mathrm{CHCl_3-C_5H_5N}$ + anhyd. $\mathrm{K_2CO_3}$ give, after 5—6 days at room temp, and extraction of the Et₂O solution

with 21% HCl (whereby hydrolysis of the original 6-CO₂Me may occur), the lactonic *nitrile* (as B), $C_{35}H_{35}O_4N_5$, m.p. $>300^\circ$, converted by AcOH-HI

into first a substance resembling (VI), and then rhodoporphyrin. Mesopurpurin 5 and HCN react similarly. The cyanohydrin, $C_{34}H_{37}O_3N_5$, which eliminates HCN when heated, from (I) in C_5H_5N+ anhyd. K_2CO_3 , is hydro-

lysed (MeOH-HCl at room temp.) to ? Me₂ pyrrochlorin-γ-glycollate (A, R = OH·CH·CO₂Me; R' = H), m.p. 243° (can be benzoylated; free acid is unstable and loses HCO₂H when reduced to the mesoderivative), ? Me pyrrochlorin-γ-glycollamide, m.p. 215°, and γ-formylpyrroporphyrin. HCN and (IV) do not react.

XCVI. Chlorophyll. Total synthesis of phæoporphyrin a₅. H. FISCHER, E. ŠTIER, and W. KANNGIESSER. XČVII. Synthesis of deoxophylloerythrin derivatives, an isomesoporphyrin, and an isorhodin. H. FISCHER and W. KANNGIESSER (Annalen, 1940, **543**, 258—270, 271—287).—XCVI. γ-Formylpyrroporphyrin Me ester cyanohydrin (I) is converted by MeOH-HCl-SO₂ at 40°/48 hr. into Me₂ pyrroporphyrin-γ-glycollate (II), new m.p. 281°, and some (impure) Me₂ pyrroporplyrin-γ-glyoxylate (III) (cf. A., 1940, II, 109). Pyrroporphyrin-yglycollic acid (IV) with 2n-HCl at 70° gives γ-formylpyrroporphyrin (V) whilst isochloroporphyrin e_4 is similarly unaffected. Hydrolysis (conc. HCl at room temp.) of (I) and subsequent esterification (Et₂O-CH₂N₂) affords pyrroporphyrin- γ -glycollamide Me ester (VI), red, m.p. 252° (? 254°), and violet, m.p. 251°, forms (Zn salt, m.p. 319°), which is unaffected by C₅H₁₁·O·NO in COMe₂-2N-HCl at 0°—room temp. Boiling 2N-HCl converts (IV) into pyrroporphyrin but at 100° (bath), (IV) and (VI) give (V). Reduction [II₂, Pd-black, HCO₂H, 100° (bath)] of (VI), atm. reoxidation of the product, and esterification (CH_2N_2) affords pyrroporphyrin- γ -acetamide Me ester (VII), m.p. 318°, which loses NH₃ at 320° (bath) and yields phylloerythrin. Successive hydrolysis (15% HCl at 45°/48 hr.) and esterification (CH₂N₂) of (VII) gives isochloroporphyrin e_4 Me₂ ester (VIII). These results coupled with previous work (A., 1936, 1272) constitute a total synthesis of phæoporphyrin a_5 . Oxidation (KMnO₄, COMe₂, C₅H₅N) of (II) yields (III) whilst reduction (H₂, Pd, HCO₂H, 90—95°; subsequent atm. reoxidation) of (III) affords (VIII) and a little (II).

XCVII. Oxidation (KMnO₄, C_5H_5N , room temp./3—4 days) of free phylloporphyrin gives pyrroporphyrin- γ -carboxylic acid (Me_2 ester, m.p. 242—244°), (V), and γ -hydroxymethylpyrroporphyrin. γ -Carbamylpyrroporphyrin Me ester, m.p. 287°, is obtained by successive hydrolysis (conc. H_2SO_4 at 70°) and esterification (MeOH-HCl) of the γ -CN-derivative. γ -Formylpyrroporphyrin Me ester (IX) and MeNO₂ in C_5H_5N -NHEt₂ afford γ -β'-nitrovinylpyrroporphyrin Me ester (+1 mol. of MeNO₂), m.p. 271°. γ -β'-Cyano-β'-carbomethoxyvinylpyrroporphyrin Me ester, m.p. 240° [from (IX) and CN-CH₂-CO₂Me in C_5H_5N + piperidine], when fused with (CH₂-CO₂H)₂

at 210°/3 min. yields 9-cyano-9-carbomethoxydeoxophylloerythrin Me ester (A, R = $\rm CO_2Me$), m.p. 246°, converted by 50% $\rm H_2SO_4$ at room temp./2 days followed by $\rm Et_2O-CH_2N_2$ into 9-cyanodeoxophylloerythrin Me ester (A, R = H), m.p. 270°. γ - β '-

$$\begin{array}{c} \text{NH} & \text{N} \\ \text{Me}^{\frac{1}{8}-7} [\text{CH}_2]_2 \cdot \text{CO}_2 \text{Me} & \text{CH}_2 & \frac{1}{6} & \frac{1}{6} \text{Me} \\ & & \text{(A.)} & \text{CR} \cdot \text{CN} \end{array}$$

Cyano- β' -carbethoxyvinylpyrroporphyrin Me ester (X) and CHN₂·CO₂Et at 100° (bath) give a compound, C₄₁H₄₅O₆N₅, m.p. 205—208°, which probably contains a cyclopropane ring. Reduction (H₂, PtO₂, dioxan) of (X) (as Zn salt), decomp. of the product (in Et₂O) with 20% HCl, and subsequent esterification (CH₂N₂) affords γ - β' -cyano- β' -carbethoxyethylpyrroporphyrin Me ester, m.p. 238°, which is dehydrogenated to (X) in AcOH at 100° (bath)/3 hr., and is hydrolysed [20%

 $\frac{11^{\circ}_{\text{CH}_{2}}}{10^{\circ}_{\text{CH}_{2}}\cdot \overset{\circ}{\text{CO}}} \underbrace{\int_{5-\frac{1}{2}}^{N}}_{\text{Me}}$

HCl at 100° (bath)] to γ-β'-carboxyethylpyrroporphyrin (XI) (Me₂ ester, m.p. 202°). Dehydration of (XI) with H₂SO₄-oleum (cf. A., 1928, 1383) gives pyrroporphyrin-6:γ-propan-9-one [isomesorhodin] (XII) (as B) (Me

Н. В.

ester, m.p. >325°, blackens ~248°) and isomesoverdin [better obtained from (XII) in AcOH at 50°, whereby loss of 2 H between C₍₁₀₎ and C₍₁₁₎ occurs], both of which form oximes (spectroscopic evidence).

Derivatives of cyameluric acid. Probable structures of melam, melem, and melon. C. E. REDEMANN and H. J. Lucas (J. Amer. Chem. Soc., 1940, 62, 842—846).—The Pauling–Sturdivant formula (cf. A., 1940, II, 110) for cyameluric acid (I) is confirmed by reactions which are often analogous to those of cyanuric acid. (I) gives salts, CuNH₄(C₆O₃N₇),NH₃ and Hg₃(C₆O₃N₇)₂. The K₃ salt (dried at 150°) and PCl₅ at 100°, later 139°, give cyameluryl trichloride (II) (93%), C₆N₇Cl₃, also obtained from (I) and PCl₅ at 218°. The anhyd. Na₃ salt and CH₂PhCl at 156° give tri-N-benzyl cyamelurate, m.p. 283—284° (corr.), hydrolysed by 6N-KOH to CH₂Ph·NH₂. With CH₂Ph·OH, (II) gives CH₂PhCl and (I). CH₂N₂ and (I) give Me, C₆H₂O₃N₇Me, and on further treatment Me₃ cyamelurate, C₆O₃N₇Me₃, +1·5H₂O. With 15N-NH₃, NH₃-Et₂O, or liquid NH₃, (II) gives mixtures. Probably melam is [3:5-C₃N₃(NH₂)₂]₂NH, melem is C₆H₇(NH₂)₃, and melon is a large, planar, cyclic polymeride with C·N·C· linkings. R. S. C.

Wing-pigments of butterflies. V. Degradation of deiminoleucopterin. H. WIELAND and A. TARTTER (Annalen, 1940, 543, 287—292).—The material pptd. by $\rm Et_2O$ from the solution obtained from deiminoleucopterin (A., 1933, 1310) and $\rm Cl_2$ in MeOH at $\sim\!\!0^\circ$, when crystallised from $\rm H_2O$, gives deiminoleucopterin glycol Me_1 ether,

C₂₂H₂₆O₁₉N₁₂,3H₂O, darkens ~150°, no decomp. up to 260°; the main reaction product (Et₂O-sol.; yield increased by less rigorous cooling) is Me 5-methoxy-

uramil-7-oxalate,

CO<NH·CO>C(OMc)·NH·CO·CO $_2$ Me, m.p. 195°, which is hydrolysed (boiling 3n-HCl) to MeOH (2 mols.) and 1 mol. each of NH $_3$, H $_2$ C $_2$ O $_4$, and alloxan.

αβ-Di-4-morpholinoethane.—See B., 1940, 347.

Absorption spectra of N-substituted auramine dyes. G. Breuer and J. Schnitzer (J.C.S., 1940, 461—463).—The absorption spectra of auramine, N-phenyl-, N- α -naphthyl-, N- β -naphthyl-, and N-2-anthryl-auramine, their hydrochlorides and picrates (except that of N-2-anthrylauramine) are recorded over the range 2500—5500 A. A. J. M.

Polarisation in heterocyclic rings with aromatic character. V. Substitution of aromatic hetero-rings with directly united phenyl chain. E. OCHIAI, Y. TUNODA, I. NAKAYAMA, and G. MASUDA (J. Pharm. Soc. Japan, 1939, 59, 228—235). —4-Phenyl-5-methylthiazole, b.p. 110—111°/2 mm. (hydrobromide, m.p. 197°; picrate, m.p. 124—125°), from HCS·NH₂ and α-bromopropiophenone, is converted by HNO₃-H₂SO₄ at 0° into 4-p-nitrophenyl-5-methylthiazole, m.p. 98°, in 90% yield; it is oxidised by KMnO₄ to p-NO₂·C₆H₄·CO₂H and hydrogenated to 4-p-aminophenyl-5-methylthiazole, m.p. 80° (acetate, m.p. 144°). Under similar conditions 4-phenylthiazole affords 4-p-nitrophenylthiazole, m.p. 180° (96% yield), reduced to 4-p-aminophenylthiazole, m.p. 99° (acetate, m.p. 165°). 4:5-Diphenyl-2-methylthiazole, m.p. 51— 52° , yields 4:5-di-p-nitrophenyl-2-methylthiazole, m.p. 183° . Regardless of the type of thiazole, NO_2 always enters the p-position in the C_6H_6 nucleus and is not influenced by the position of the nucleus. Nitration of 2:5-diphenylpyrazine yields two isomeric 2:5-dinitrophenylpyrazines, m.p. 172—173° and decomp. 292°, respectively; since they are resistant to oxidation their constitution has not been established but they are not identical with 2:5di-m-nitrophenylpyrazine, m.p. 249°, obtained from 2-Phenyl-4: 6-dim-nitro- ω -aminoacetophenone, methylpyrimidine (I) reacts only slowly with HNO₃- H_2SO_4 at 0°, giving a small amount of a $(NO_2)_1$ compound, m.p. 155-156°; this is catalytically reduced to the $(NH_2)_1$ -derivative, m.p. 88—90° (picrate, decomp. 199—200°; acetate, m.p. 130—132°), which gives a $(OH)_1$ -compound, m.p. $125-127^\circ$, not identical with 2-p-hydroxyphenyl-4: 6-dimethylpyrimidine. Fuming HNO₃ in AcOH transforms (I) into a compound, C₂₄H₁₈O₂N₆, m.p. 167—170°. 2-Phenyl-4: 6-distyrylpyrimidine, from (I), PhCHO, and ZnCl₂ at 150°, has m.p. 158·5—159°. H. W.

Sulphur derivatives of pyridine. (Synthesis of 2:3-pyridothiochromanone.) M. Colonna (Gazzetta, 1940, 70, 154—159).—5-Nitro-2-pyridylthiolacetic acid, m.p. 105° [obtained from 5-nitro-2-thiolpyridine (I), KOH, and CH₂Cl·CO₂K on the waterbath, or better from 2-chloro-5-nitropyridine and SH·CH₂·CO₂H and NaHCO₃ in EtOH at the b.p.], with cone. H₂SO₄ at 150—180° gives a thioindigo derivative, not isolated. β-(5-Nitro-2-pyridyl)thiolpropionic acid, m.p. 125° [obtained from a neutralised mixture of (I) and Cl·[CH₂]₂·CO₂H heated at 100° for 3 hr.], with PCl₅ followed by AlCl₃ in C₆H₆ at the b.p. gives 5'-nitropyrido-2': 3'-3: 2-thiochromanone, m.p.

107°. 5:5'-Dinitro-2:2'-dipyridyl sulphide with $K_2Cr_2O_7$ - H_2SO_4 in AcOH gives the corresponding sulphone, in.p. 185—187°. E. W. W.

Cyanine dyes.—See B., 1940, 406, 408.

Polarisation in heterocyclic rings with aromatic character. VIII. Polarisation in the benzene ring. E. Ochiai and T. Nishizawa (J. Pharm. Soc. Japan, 1940, 60, 43—48).—The activity of C₍₂₎ in thiazole towards nucleophilic reagents is paralleled by that of C₍₁₎ in benzthiazole (I). NaNH₂ and (I) in decahydronaphthalene at 140° afford (mainly) 1-aminobenzthiazole, m.p. 130° (monoacetate, m.p. 187°; hydrochloride, decomp. 235—236°; picrate, m.p. 265°), 2:2'-diaminodiphenyl disulphide, m.p. 93° (Ac_2 derivative, m.p. 169°), and a compound, m.p. 194°, possibly a dibenzthiazolyl or dibenzthiazole, which does not yield a picrate. 1-Methylbenzthiazole (II) condenses with PhCHO and ZnCl₂ at 160— 170° to 1-styrylbenzthiazole, m.p. 111—112°, reduced (Pd-C in EtOH) to 1-\u03b3-phenylethylbenzthiazole, b.p. 180° (bath)/0.5 mm., m.p. 62°. 1-Aminobenzthiazole (III) and CH2BzBr in EtOH at 100° afford $benzthiazolo-1': 2'-2: 1-4-phenylgly oxaline\ hydrobrom$ ide, m.p. 263° (corresponding base, m.p. 100°). and (II) readily give the product, $\mathrm{CH}_{\bullet}\mathrm{BzBr}_{-}$ C₁₆H₁₄ONBrS, m.p. 233°, which with NaHCO₃ yields a very unstable material which passes into a red, amorphous mass; this gives the red diazo-reaction and a bluish-violet Ehrlich test. A uniform product is likewise not obtained from (II) and CH₂AcCl. Picryl chloride and (III) yield 1-picramidobenzthiazole, m.p. 205°, which in boiling PhNO₂ evolves nitrous fumes and gives benzthiazolo-1': 2'-2: 1-4: 6-dinitrobenziminazole, m.p. 243°. (I), from o-NH₂·C₆H₄·SH and HCO₂H in presence of a little H₃BO₃, gives a picrate, m.p. 168°, and perchlorate, m.p. 135°. (II), obtained as above but by use of Ac₂O, affords a picrate, m.p. 153.5°. (III), m.p. 130° (hydrochloride, decomp. 236°; acetate, m.p. 187°), is obtained by bromination of NHPh·CS·NH₂ or by catalytic reduction (Pd-C in AcOH) of o-NO₂·C₆H₄·CNS

H. W. Preparation of quinine iodo-hydriodide. S. N. NAUMOV and C. B. MEDINSKI (Acta Univ. Asiæ Mediæ, 1937, [vi], No. 32, 1—6).—20 g. of KI in 100 ml. of H₂O are added to a solution of quinine sulphate 5, H₂SO₄ 5, and Fe(NH₄)₂(SO₄)₂,12H₂O 30 g. in 800 ml. of H₂O, and the product is twice recryst. from 1% H₂SO₄ in 85% EtOH. R. T.

Alkaloids of Stemona tuberosa, Loureiro. II. Tuberostemonine. H. Kondo, K. Suzuki, and M. Satomi. IV. Stemonidine. K. Suzuki (J. Pharm. Soc. Japan, 1939, 59, 177—186).—II. Tuberostemonine (I) has been obtained as the cryst. hydrobromide, m.p. 120° (decomp.), aurichloride, and perchlorate, m.p. 242° (decomp.), from which the cryst. base, $C_{22}H_{33}O_4N$ (not $C_{19}H_{29}O_4N$), m.p. 86—88° [or, +1MeOH, m.p. 65—88° (decomp.)], is isolated. (I) is a non-phenolic, tert. base devoid of OMe, NMe, or active H. It contains a lactone group but does not react with NH₂OH or $p\text{-NO}_2\text{-}C_6H_4\text{-}NH\text{-}NH_2$. It yields a methiodide (+1H₂O), m.p. 236—238° (decomp.), methochloride, (+2H₂O), m.p. 172°, methylmethosulphate, m.p. 253° (decomp.), and a methylauri-

chloride (+H₂O), m.p. 140° after softening at 125°. (I) is not affected by Ac₂O in CO₂ but under the customary conditions it is converted into a neutral, amorphous substance which gives Ehrlich's pyrrole reaction in the cold. (I) is unaffected by boiling 30% H₂SO₄ or by HCl-EtOH. The function of 2 O in (I) is not elucidated. Dry distillation of (I) with Zn dust gives vapours which turn a pine shaving moistened with HCl red; this reaction is not given by the base itself. Oxidation with Ag₂O leads to a neutral compound, C₂₂H₂₉O₄N, m.p. 1785, which contains a lactone group and gives Ehrlich's pyrrole (I) therefore contains a pyrrolidine ring which is dehydrogenated to a pyrrole ring. Attempts to obtain an additive product with maleic anhydride were unsuccessful. Possibly (I) is identical with the alkaloid, $C_{22}H_{33}O_4N$, m.p. 86—87°, from Stemona sessilifolia (Schild, A., 1936, 350) although (I) cannot be catalytically hydrogenated (PtO₂ in EtOII) and does not give a cryst. dehydrogenated product when treated with I or MeI according to Schild.

IV. Stemonidine (II) is a tert. base since it does not react with Zerevitinov's reagent or Ae_2O and does not give Liebermann's reaction. Complete analysis of the compound, m.p. 248°, shows it to be the methiodide. Of the 5 O of (II) two are present in a lactone and one in a OMe group; the function of the remaining two is unknown. Distillation of (II) with Zn dust gives a pyrrole derivative which is readily hydrogenated (Pd-C in AcOH) to a liquid base; probably the pyrrole nucleus is not preformed in (II). I or MeI converts (II) into the hydriodide or methiodide; dehydrogenation does not appear to take place. Oxidation of (II) by $KMnO_4$ (=3 O) in $COMe_2$ gives a base characterised by a methiodide, $C_{19}H_{29}O_5N,MeI$, m.p. 235°. Aq. $KMnO_4$ (=7.9 O)

in H_2O at 60° gives a quaternary base (aurichloride, $C_{19}H_{29}O_5NMeAuCl_4$, m.p. 158°). When oxidised by KMnO₄ (=13·5 O) in dil. H_2SO_4 at 10° (II) yields a neutral substance (III) G H_2SO_4 G H_3 G H_4 G $H_$ neutral substance (III), $C_{16}H_{23}O_5N$, m.p. 208°, $[\alpha]_D = 58 \cdot 3^\circ$, and a compound (IV), $C_{11}H_{17}O_4N$, m.p. 202° , $[\alpha]_{\mu}$ = $24\cdot17^{\circ}$ (semicarbazone, m.p. 258°). (III) contains a lactone group and OMe but is not a pyrrole derivative and does not react with CO: reagents. (IV) contains OMe but is not a lactone; it strongly reduces ammoniacal Ag solution but does not give the pyrrole reaction. 25% HCl-AcOH and EtOH saturated with HCl are without action on (II). Dehydrogenation of (II) by 40% Pd-asbestos at 260-290° gives a non-cryst. dehydro-base (which contains OMe and a lactone group, gives the diazo-reaction, and yields an oxime and a methiodide, C17H23O4N,MeI, decomp. 227—228°), a neutral pyrrole derivative which gives the pine shaving and Ehrlich reaction, and an (impure) acid which gives a dark green colour with FeCl₃.

Alkaloids of fumariaceous plants. XXIV. Corydalis ochotensis, Turcz. XXV. Corydalis pallida, Pers. R. H. F. Manske (Canad. J. Res., 1940, 18, B, 75—79, 80—83).—XXIV. The following substances have been isolated: protopine (I), cryptocavine, ochotensine, aurotensine, ochotensimine (methiodide, decomp. 225°, [a]22 +49·2° in MeOH, identical with Me ether methiodide of ochotensine;

dihydromethine, $C_{23}H_{27}O_4N$, m.p. 92°), alkaloid F 49, $C_{19}H_{23}O_4N$, m.p. 228° (decomp.), fumaric acid, and maltol (?).

XXV. Capaurine, d- and dl-tetrahydropalmitine, (I), capauridine, capaurimine (F 50), $C_{20}H_{23}O_5N$, m.p. 212° , [α] $_2^{p4}$ -287 $^\circ$ in CHCl $_3$ (phenolic; one OH and three OMe), and alkaloid F 51, $C_{20}H_{23}O_4N$, m.p. 171 $^\circ$ (one OH and three OMe), have been isolated. Methylation of capaurimine gives capaurine O-Me ether, the dl-form of which is identical with capauridine O-Me ether, and alkaloid F 51 similarly affords dl-tetrahydropalmatine, not identical with the known dl-bases of the same formula. F. R. S.

Rech. (1) yields a carbonate, $C_{24}H_{41}ON_3, 2H_2CO_3, 4\cdot 5H_2O$, m.p. $>360^\circ$, dihydrochloride, m.p. 349° (decomp.), dihydriodide, m.p. 331° , picrate, m.p. 254° (decomp.) after blackening at 251° , platinichloride, m.p. 292° , and methiodide, m.p. 258° (decomp.) after changing colour at 242° . (I) is transformed by HNO₂ into N₂O and monohydroxyconessine (II), m.p. 200° , $[\alpha]_0^{20} + 11\cdot 5^\circ$ in EtOH, also produced from (I) and CH_2O-HCO_2H at 100° . (I) and Br (=2 atoms) appear to yield a Br-derivative. (III) is converted by Br into a product, decomp. 232° after shrinking at 200° , which is transformed by prolonged heating with EtOH or H_2O into monohydroxyconessine dihydrobromide. H. W.

Constitution of matrine. XXII. Gen-alkaloids of matrine and d-lupanine. E. Ochiai, Y. Ito, and M. Maruyama (J. Pharm. Soc. Japan, 1939, 59, 270—273; cf. A., 1939, II, 460).—N-isoAmylpiperidine or 2-methylindolizidine and 3% H₂O₂-COMe₂ give oxides, m.p. 135° (+0·75H₂O) (picrate, m.p. 117°), and an oil (picrate, m.p. 164°), respectively, but N-isoamylpiperidone, treated similarly, is unchanged. d-Lupanine (I) and 3% H₂O₂ give a monoxide (dipicrate, m.p. 189°; perchlorate, m.p. 247°; aurichloride, m.p. 216°; methiodide, m.p. 137°) [cf. matrine (II)]. (I) and PCl₅-K₂S in xylene give d-thiol-lupanine, m.p. 102° (picrate, m.p. 225°), but (II) is unchanged by similar treatment. The lactam ring of (I) is not broken by KOH-EtOH, but (II) is hydrolysed.

Menispermaceæ alkaloids (formerly, alkaloids of Sinomenium and Cocculus). L. Alkaloids of Stephania Sasakii, Hayata. I. M. Tomita (J. Pharm. Soc. Japan, 1939, 59, 207—208; cf. Kondo et al., A., 1939, II, 459).—The following are obtained from the roots of S. Sasakii: (a) a cryst. base, decomp. 103° (as C_6H_6 adduct), which agrees in chemical reactions and physical consts. with cepharanthine and is degraded (Hofmann) to cepharanthine-α- and -β-methine; (b) a base (I), $C_{38}H_{40}O_7N_2$, m.p. 115— 117° , [α] $_{10}^{20}$ —57·4° in CHCl $_{10}$ [hydrochlorule (+2H $_{2}$ O), m.p. 222—225° (decomp.)],

which is insol. in aq. NH₃, alkali carbonate or hydroxide and contains 40Me. The methiodide, m.p. 220°, is transformed by hot alkali hydroxide into the methine base, $C_{40}H_{44}O_7N_2$, H_2O , m.p. $110-114^\circ$, [α] $\pm 0^\circ$; (c) a phenolic base (II), $C_{36}H_{36}O_7N_2$, m.p. 210° , [α]²⁰ $-36\cdot7^\circ$ in CHCl₃ (hydrochloride, m.p. 264°), which contains 2 OMe and is converted by CH₂N₂ into a Me_2 ether, m.p. $160-165^\circ$, with 4 OMe which differs from (I). (I) and (II) are very similar chemically, particularly in their colour reactions. H. W.

Organic arsenicals.—See B., 1940, 404, 406.

Gallium triphenyl. H. GILMAN and R. G. JONES (J. Amer. Chem. Soc., 1940, 62, 980—982).—Ga triphenyl (prep. in 82% yield from HgPh₂ and Ga in N₂ at 130°), m.p. 166°, is moderately reactive. With PhCHO in boiling C₆H₆ it gives 70% of CHPh₂·OH. With COPh·CH:CHPh it gives 85% of COPh·CH₂·CHPh₂. With BzCl in C₆H₆ it gives 79% and in light petroleum 68·4% (as oxime) of COPh₂ (cf. TlPh₃, which gives only TlPh₂Cl). It does not react with COPh₂ (3 mols.) in boiling xylene, but an excess of GaPh₃ gives 35% of CHPh₃. With CH₂PhCl it gives an oil containing CH₂Ph₂ (yields 9% of COPh₂). It does not react with PhCN. It gives no colour with Michler's ketone in C₆H₆, unless it is present in excess; it probably forms a complex with the NMe₂.

Reaction of mercuric acetate with p-phenetidine and p-anisidine. M. RAGNO (Annali Chim. Appl., 1940, 30, 72—78).—p-Phenetidine with Hg(OAc)₂ in AcOH-EtOH yields an adduct, OEt·C₆H₄·NH₂,Hg(OAc)₂, m.p. 137°; similarly treated, p-anisidine yields 3-acetomercuri-p-anisidine-N-mercuriacetate acetate, m.p. 148—149° (decomp.), which with aq. KI affords 3-mercuri-p-anisidine iodide and, with aq. KBr, the corresponding bromide (I), m.p. 165°. The structure of the compounds is indicated by bromination of (I) to 3:5-dibromoanisidine.

[Preparation of] organic mercury derivatives of basic triphenylmethane dyes. L. Chalkley (Science, 1940, 91, 300; cf. A., 1925, i, 1108; 1929, 1322).—Derivatives of the basic dye are mercurated, and then converted into the dye, e.g., 4:4'-bisdimethylaminotriphenylacetonitrile is readily mercurated, and the mercurated nitrile converted into the corresponding Hg malachite-green by means of a photochemical reaction. The Hg in this compound is relatively stable to (NH₄)₂S which, in presence of aq. NH₃, gives an org. Hg^{II} sulphide. L. S. T.

Mercuration of cholesterol. R. H. Levin and M. A. Spielman (J. Amer. Chem. Soc., 1940, 62, 920—921).—The product, m.p. 200—205°, obtained (Merz, A., 1926, 723) from cholesterol by Hg(OAc)₂—AcOH, is the 6-HgCl-derivative, since the derived 6-iodocholesterol, m.p. 156—158° (benzoate, m.p. 214—215°), is hydrolysed by CuCl₂–NaHCO₃–H₂O at 225° (not by milder reagents) into 6-ketocholestanol (3:5-dinitrobenzoate, m.p. 226—228°), isolated as benzoate. R. S. C.

Hydroxyquinolines. IV. Mercurated derivatives of 8-hydroxyquinoline. F. Pirrone (R. C. Atti Accad. Ital., 1939, [vii], 1, 50—54).—8-Hydroxy-

quinoline (I) heated in AeOH with $\mathrm{Hg}(\mathrm{OAc})_2$ (II) gives its ?-acetatomercuri-derivative, m.p. $\pm 360^\circ$, which with HCl gives a compound, $\mathrm{C_9H_6ONHgCl}$, m.p. 205°, and with aq. NH₃ a compound, $\mathrm{C_9H_7O_2NHg}$. In H₂O, (I) and excess of (II) give 8-hydroxy-??-bisacetatomercuriquinoline. If the AcOH formed is progressively neutralised by NaOH, the Na derivative of the ???-trisacetatomercuri-derivative is obtained. E. W. W.

Chemical structure in the protein series. A. Weidinger (Collegium, 1940, 1—37).—A review.

Melanins, their chemistry and significance. W. L. C. VEER (Chem. Weekblad, 1940, 37, 214—222).—A review. S. C.

Effect of denaturing agents on myosin. I. Sulphydryl [thiol] groups as determined by porphyrindin titration. J. P. Greenstein and J. T. Edsall. II. Viscosity and double refraction of flow. J. T. Edsall and J. W. Mehl (J. Biol. Chem., 1940, 133, 397—408, 409—429).— Amplification of previous work (A., 1939, III, 869). The porphyrindin titration and the significance of η for solutions of large, very asymmetrical mols. are discussed. The chemical and physical effects are uncorrelated. Methionine + cysteine account for 95% of the S of myosin. R. S. C.

Number of peptide linkages in insulin.—See A., 1940, III, 498.

Gas-volumetric semi-micro-determination of carbon. Wet method for aliphatic and cyclic compounds. E. Berl and W. Koerber (Ind. Eng. Chem. [Anal.], 1940, 12, 245—246).—The sample is oxidised with $\rm H_2CrO_4$ and a Hg catalyst, and the $\rm CO_2$ evolved is measured in a gas burette. J. D. R.

Determination of chlorine, bromine, and iodine in organic compounds by hydrogenation. A. SLOOFF (Rec. trav. chim., 1940, 59, 259—283).—Cl, Br, and/or I in org. compounds are determined by heating the compound in H_2 , passing the vapours over Ni foil at 800°, absorbing the HHal in solid Na₂CO₃, and (after destruction of NaCN and NaCNS, if necessary) titrating the Na halide formed. In 31 cases the error is <0.4%. Published data are used to show by calculation that decomp. of HCl and HBr in excess of H_2 is negligible and that at 800° there is 2% of dissociation of HI, which, however, is reduced to <1% (considered negligible) by cooling to 700°.

Determination of elements in organic substances. L. Rosenthaler (Pharm. Acta Helv., 1939, 14, 215—216; cf. A., 1937, II, 358).—Cl and Br are liberated from many org. compounds by treatment with saturated aq. KMnO₄ and H₂SO₄. Cl may be detected with m-C₆H₃Me(NH₂)₂ (forms at first drops, then needles, and finally aggregates; Br does not react) and Br with fluorescein paper. Numerous compounds which liberate H₂S by the action of nascent H are described. In some cases, e.g., EtSO₃Na, cystine, cysteine, a positive reaction [with Pb(OAc)₂] is obtained but no H₂S is evolved. The liberation of CO₂ by the action of H₂SO₄ on org. substances is also discussed. E. H. S.

Determination of organic nitrogen. J. Cartiaux (Ann. Chim. Analyt., 1940, [iii], 22, 92).—N is converted into $\mathrm{NH_4}^+$ by treatment of the sample with 5 c.c. of conc. $\mathrm{H_2SO_4}$ and two to four 10—20-c.c. portions of $\mathrm{H_2O_2}$ in the manner described. The method gives better results than the usual $\mathrm{H_2SO_4}$ + Hg attack, and is particularly suitable for leather, wool, tobacco, and vegetable products. L. S. T.

Electrolytic method of oxidising arsenic and phosphorus for their determination in organic compounds. C. B. Di Capua (Atti X Congr. Internaz. Chim., 1938, III, 401—406).—The compound is dissolved in 70% H₂SO₄ and the solution introduced into a sintered glass crucible dipping into 70% H₂SO₄. The solution is then electrolysed using a Pt wire anode immersed in the crucible and a Pt foil cathode in the outer vessel. The H₃AsO₄ and H₃PO₄ produced are subsequently pptd. as MgNH₄AsO₄ and MgNH₄PO₄, respectively.

J. W. S.

Identification of paraffins. Analysis of paraffinic mixtures by means of Raman spectra. A. V. Grosse, E. J. Rosenbaum, and H. F. Jacobson (Ind. Eng. Chem. [Anal.], 1940, **12**, 191—194).— The sample is freed from aromatic and ethylenic constituents, carefully fractionated, and the Raman spectra of the individual narrow cuts are photographed. For qual. analysis this spectrum is matched with the characteristic lines of pure isomerides known to be present in the mixture. Quant. analysis is carried out, with an accuracy of 5-10%, by visual estimation of the relative intensities of the Raman The method has been applied to the isomeric pentanes, hexanes, and heptanes, and to mixtures prepared by the addition of olefines to paraffins in presence of AlCl₃. J. D. R.

Colorimetric determination of primary mononitroparaffins. E. W. Scott and J. F. Treon (Ind. Eng. Chem. [Anal.], 1940, 12, 189—190).—A sample of aq. EtNO₂ is treated with NaOH, acidified (HCl), and aq. FeCl₃ added. The red colour produced is compared colorimetrically with a standard solution of similar conen. The method succeeds with PrNO₂ and BuNO₂, but with Pr^{\$\beta\$}NO₂ and Bu\$\$\$\text{Polog}\$ and Bu\$\$\$\text{NO}_2\$ but with Pr\$\$\$\text{NO}_2\$ and Bu\$\$\$\text{NO}_2\$ no colour is produced.

Oxidation with dichromate and its microanalytical applications. I. General principles. II. Micro-determination of ethyl alcohol. L. Thivolle and G. Sonntag (Bull. Soc. Chim. biol., 1939, 21, 1353—1368, 1369—1380).—I. Oxidisable substances are determined in strongly acid medium by adding a 2—3 c.c. excess of ~ 0.1 n-K₂Cr₂O₇ and a few drops of 0.1% diphenylbenzidine in 70% H₂SO₄ and titrating with 0.002n-K₄Fe(CN)₆ until the colour vanishes.

II (cf. Nicloux et al., A., 1935, 116; 1936, 535; 1937, II, 317). EtOH is oxidised in the cold with excess of $\rm K_2Cr_2O_7$ in HNO₃ and the excess is titrated as above. The error is >0.5% when the amount of EtOH is 1—3 mg. or 1—2% when it is <0.5 mg.

W. McC. Rapid qualitative test for alcoholic hydroxyl group. Use of nitrato- and perchlorato-

cerate anions as test reagents. F. R. Duke and G. F. Smith (Ind. Eng. Chem. [Anal.], 1940, 12, 201—203).—The test substance in H₂O is treated with a solution of (NH₄)₂Ce(NO₃)₆ (I) in aq. HNO₃ or H₂Ce(ClO₄)₆ (II) in aq. HClO₄. A red colour indicates an alcohol. With substances insol. in H₂O a solution in dioxan is employed and (II) cannot be used because of reduction of the reagent. Acids, aldehydes, ketones, esters, and hydrocarbons do not interfere. Amines, amine hydrochlorides, substances with chromophoric groups, readily oxidisable substances, and phenols interfere. Aq. solutions of 2—4% BuOH give positive tests with (I) and 1—2% with (II).

Hydroxamic acids in qualitative organic analysis. D. Davidson (J. Chem. Educ., 1940, 17, 81—84).—Tests involving the formation of hydroxamic acids are described for alcohols, ethers, aldehydes, esters, carboxylic and sulphonic acids, phenols, oximes, NO₂-compounds, amides, acid chlorides, and anhydrides.

L. S. T.

Detection of organic compounds. L. ROSEN-THALER (Pharm. Acta Helv., 1939, 14, 218—221).— (a) MeOH does not react with HNO_3 (65%) at room temp. (differentiation of MeOH and EtOH). The reaction depending on the formation of a blue colour from glycerol with K2Cr2O7 and HNO3 is not sp.; many other alcohols and sugars react similarly. (c) For the identification of phenols the colour of the melt and the alkali solution of the reaction product with o-sulphobenzoic anhydride is a very sensitive test. 15 examples are given. (d) By the use of Na alizarinsulphonate as indicator, the formation of H ions by the action of neutral Hg salt solutions on HCN can be detected in 1 µg. of HCN per c.c. An improvement on the Vortmann method is given. The sample is heated with aq. NaOH and FeSO₄, the mixture is filtered, acidified, NaNO₂ is added, and, after warming and cooling, aq. NH_3 and $(NH_4)_2S$ are added (nitroprusside reaction). (e) Characteristic light brown, ball-shaped masses are formed when a solution of the ophylline in aq. NH₃ is treated with solid TlOAc. (f) The blue colour formed from aromatic o-(OH)₂-compounds and K₂CO₃ and FeSO₄ is discussed. Ascorbic and dihydroxymaleic acids react similarly but the reaction mixture is decolorised by HCl. (g) The oxidation of many org. compounds by Fe₂(SO₄)₃ is detected by the reaction of the Fc" formed (after addition of H3PO4) with $(CMe: N\cdot OH)_2$ and aq. NH_3 . 2.5 c.c. of a solution containing I ug. of pyrocatechol give a positive reaction.

Detection of small amounts of mustard gas. A. S. Jousma (Pharm. Weekblad, 1940, 77, 246—249).—Mustard gas (I) is adsorbed on a granule of active C, which is then heated (below redness) in a stream of H₂ washed with KMnO₄ solution to remove H₂S, and the gas is passed over a red-hot Pt wire and through a paper containing Pb(OAc)₂, on which a brown or black stain is produced. The method is very sensitive and will detect (I) in C which has been exposed to the vapour for only 5 sec. S. C.

Analytical procedures employing Karl Fischer reagent. IV. Determination of acid anhydrides.

D. M. SMITH, W. M. D. BRYANT, and J. MITCHELL, jun. (J. Amer. Chem. Soc., 1940, 62, 608—609; cf. A., 1940, II, 146).—A procedure for the determination of carboxylic anhydrides (described) depends on the complete hydrolysis of the anhydride to acid in presence of excess of H₂O, and subsequent titration of the residual H₂O with Karl Fischer reagent. The method is best suited for acyclic aliphatic anhydrides. Analytical data are recorded for ten anhydrides.

W. R. A. Potentiometric determination of glucose with potassium ferricyanide in sodium carbonate solution. H. T. S. Britton and L. Phillips (Analyst, 1940, 65, 149—152).—K₃Fc(CN)₆ in ~0.4M. aq. Na₂CO₃ can be titrated potentiometrically with glucose solution at 92—94°. The inflexion in the potential curve extends over 0.4—0.5 v. 1 mol. of glucose requires 5.9 mols. of K₃Fe(CN)₆ for oxidation. J. W. S.

Micro-determination of glucose, free and conjugated glucuronic acid. I. Determination of free and conjugated glucuronic acid in presence of glucose in aqueous solution. S. KAKINUMA (J. Pharm. Soc. Japan, 1939, 59, 244—246).—This is effected by the method of Ogata et al. (ibid., 1929, 49, 541) after first removing the glucose (>1%) by yeast.

R. S. C. Objective microphotometry. Photometric analysis of picrates of organic bases. P. Krumholz and E. Krumholz (Natuurwetensch. Tijds., 1940, 22, 27—28).—The picrate of a base or of a hydrocarbon (e.g., anthracene) is heated with 0-2NNaOH in 80% EtOH and the Na picrate determined microphotometrically. The error is ~0.5%. S. C.

Determination of primary, secondary, and tertiary amines and ammonia present together. K. G. Mizutsch and A. J. Savtschenko (Prom. Org. Chim., 1940, 7, 24—25).—The mixture of hydrochlorides is dissolved in 30 ml. of H₂O, and 25 ml. of EtOH are added, followed by 3 g. of NaNO₂,Co(NO₂)₂ in 50 ml. of H₂O at 0°. The ppt. of NH₄ cobaltinitrite is collected after 15 min., washed with EtOH, and NH₃ determined in the usual way. Primary amines are determined as the difference between total NH₂-N as found by Van Slyke's method and NH₃-N. tert. Amine is determined by Kjeldahl distillation after treating the solution with excess of HNO₂ (2 hr. at 15—20°). sec. Amines are given by difference between total N and NH₃-, NH₂-, and tert. amine-N.

Colorimetric micro-determination of arginine and ofmono-substituted derivatives of guanidine. Application to protein hydrolysates. C. Dumazert and R. Poggi (Bull. Soc. Chim. biol., 1939, 21, 1381—1388; cf. Jean, A., 1934, 672).—EtOH-glycerol mixture is added, after addition of aq. NaOH, α -C₁₀H₇·OH, and NaOBr, and the arginine in 2 c.c. of protein hydrolysate is determined by a modification of Weber's method (A., 1930, 755). The error is $\pm 2\%$. A colorimeter or step photometer is used. Since the reaction is not usually affected by the nature of the substituent when one NH₂ only of guanidine is substituted, methylguanidine, agmatine, octopine, synthalin (I), and arcaine (II) are

determined in the same way, (I) and (II) yielding colour intensity double that given by equiv. amounts of the other substances.

W. McC.

Azides as reagents for the identification of organic compounds. XVII. p-Nitrobenzazide and p-nitrophenylcarbimide as reagents for identification of amines. P. P. T. Sah (Rec. trav. chim., 1940, 59, 231—237; cf. A., 1940, II, 32).—p-Nitrobenzazide or p-NO₂·C₆H₄·NCO in PhMe afford new N-aryl-N'-p-nitrophenylcarbamides from the following: o-, m.p. 201°, m-, m.p. 205° (decomp.), and lowing: o-, m.p. 201°, m-, m.p. 205° (decomp.), and p-C₆H₄Mc·NH₂, m.p. 259°; m-xylidine, m.p. 215°; o-NO₂·C₆H₄·NH₂, m.p. 256°; o-C₆H₄Cl·NH₂, m.p. 233°; o-C₆H₄Br·NH₂, m.p. 228°; o-, m.p. 224°, m-, m.p. 272°, and p-C₆H₄·NH₂, m.p. 288°; o-, m.p. 212°, and p-OH·C₆H₄·NH₂, m.p. 235° (decomp.); o-, m.p. 191°, and p-OMe·C₆H₄·NH₂, m.p. 229° (decomp.); o-, m.p. 178—179°, and p-OEt·C₆H₄·NH₂, m.p. 202° (decomp.); o-, m.p. 178—179°, and p-OEt·C₆H₄·NH₂, m.p. 236°; p-C₆H₄Ph·NH₂, m.p. 235—236°; o-, m.p. 186°, m-, m.p. 195—196° and p-NH₂·C.H··CO.Et. m.p. 254—255°. 195—196°, and $p\text{-NH}_2\text{-C}_6\text{H}_4\text{-CO}_2\text{Et}$, m.p. 254—255°; 2:1:4-, m.p. 260° (decomp.), 3:1:4-, darkens at 245°, chars and decomp. at 260°, 4:1:2-, m.p. 261— 245°, chars and decomp. av 200°, 1:1:2, m.p. 262°, 3:1:2, m.p. 278° (decomp.), 5:1:2, m.p. 246—247°, 4:1:3-, m.p. 263—264°, and 6:1:3-NO₂·C₆H₃Me·NH₂, m.p. 283—284°; 1:3:4-, m.p. 209—210°, 1:5:2-, m.p. 264°, and 1:6:3-C₆H₃MeCl·NH₂, m.p. 246°; 1:3:4-, m.p. 204—205° 1:5:2 m.p. 268—260° and 1:6:3-1:5:2, m.p. 268-269°, and1:6:3-m.p. 295—296°; NH₂Bz, m.p. 260°; NHPhMe, m.p. 123°; NHPhAc, m.p. 254—255°; cyclohexylamine, m.p. 169—170°. M.p. are corr. A. T. P.

Azides as reagents for the identification of XVIII. compounds. o-Nitrobenzazide as reagent for identification of phenols. P. P. T. San and W. YIN (Rec. trav. chim., 1940, 59, 238—245; cf. A., 1940, II, 32).—o-Nitrobenz-hydrazide, m.p. 119°, affords the -azide, decomp. ~44°. which gives o-nitrophenylurethanes (generally of lower m.p. than the m- and p-isomerides) from the following phenols in ligroin, NPhMe2 being an effective catalyst for the o-substituted compounds: PhOH, m.p. 96—98°; o-, m.p. 113—114°, m-, m.p. 85—86°, and p-cresol, m.p. 97—98°; 1:2:4-, m.p. and p-cresol, m.p. 97—98°; 1:2:4-, m.p. 117—119°, 1:4:5-, m.p. 90—91°, and 1:3:4-xylenol, m.p. 99—101°; o-, m.p. 124°, m-, m.p. 158°, xyrenor, in.p. 99—101; o-, m.p. 124°, m-, m.p. 158°, and $p\text{-NO}_2\text{-}C_6\text{H}_4\text{-}O\text{H}$, m.p. 175°; o-, m.p. 109—110°, m-, m.p. 96—97°, and $p\text{-}C_6\text{H}_4\text{Cl}\text{-}O\text{H}$, m.p. 126—127°; o-, m.p. 122°, m-, m.p. 91—92°, and $p\text{-}C_6\text{H}_4\text{Br}\text{-}O\text{H}$, m.p. 129—130°; o-, m.p. 150—151°, m-, m.p. 98—100°, and $p\text{-}C_6\text{H}_4\text{I}\text{-}O\text{H}$, m.p. 133—135°; 2:4:1- $C_6\text{H}_3\text{Cl}_2\text{-}O\text{H}$, m.p. 123°, and $-C_6\text{H}_3\text{Br}_2\text{-}O\text{H}$, m.p. 121—122°; 2:4:6:1- $C_6\text{H}_2\text{Cl}_3\text{-}O\text{H}$, m.p. 153—155°, and $-C_6\text{H}_3\text{Br}_2\text{-}O\text{H}$, m.p. 172—174°; o-, m.p. 126 and $-C_6H_2Br_3\cdot OH$, m.p. $172-174^\circ$; o-, m.p. 136-138°, m-, m.p. 99—100°, and p-OMe·C₆H₄·OH, m.p. 156°; α-, m.p. 130°, and β- $C_{10}H_7$ ·OH, m.p. 143°. M.p.

Determination of phenols by means of benzoic anhydride. A. Leman (Bull. Soc. chim., 1940, [v], 7, 105—113; cf. A., 1939, II, 196).—The sample is heated for 1 hr. at 100° with a solution of Bz_2O in anhyd. C_5H_5N (100 g. in 100 c.c.); H_2O is added and

the heating is continued with frequent shaking for a further hr. after which the mixture is cooled and titrated with N-KOH (phenolphthalein). coloured samples a spot test on phenolphthalein paper is used. In confirmation the ester is separated from the neutralised solution and washed with H₂O, which is added to the solution; this is then treated with a measured vol. of N-H₂SO₄ and back-titrated with N-KOH. A blank test is necessary. As with acetylation in C₅H₅N, benzoylation of phenols is quant. and is somewhat more precise but less rapid. ment with o-C₆H₄(CO)₂O in C₅H₅N is almost without effect on phenols or naphthols. In their mixtures with primary alcohols it is therefore possible to determine total OH by Bz₂O and primary alcoholic OH by o-C₆H₄(CO)₂O-C₅H₅N. Amended m.p. are cited for the following benzoates: Ph, m.p. 69·1°; o-, m.p. 17°, m-, m.p. 53·6°, and p-, m.p. 70°, -tolyl; p-xylenyl, m.p. 59.5°; thymyl, m.p. 31.2°; dibenzoates of o-, m.p. $85 \cdot 1^{\circ}$ and p-C₆H₄(OH)₂, m.p. $202 \cdot 5^{\circ}$.

Identification of organic compounds. III. Chlorosulphonic acid as a reagent for characterisation of aromatic ethers. E. H. Huntress and F. H. Carten (J. Amer. Chem. Soc., 1940, 62, 603—604).—The following are prepared (method; A., 1940, II, 160). p-Methoxy-, m.p. 110—111°, p-ethoxy-, m.p. 149—150°, p-n-propoxy-, m.p. 116—117°, p-n-butoxy-, m.p. 103—104°, 4-methoxy-3-methyl-, m.p. 137°, 4-methoxy-2-methyl-, m.p. 129—130°, 2-methoxy-5-methyl-, m.p. 182°, 4-ethoxy-3-methyl-, m.p. 148—149°, 4-ethoxy-2-methyl-, m.p. 110—111°, 2-ethoxy-5-methyl-, m.p. 138—138·5°, 2-n-propoxy-4-methyl-, m.p. 126—127°, 4-n-butoxy-5-methyl-, m.p. 95—96°, 3:4-, m.p. 135—136°, 2:4-, m.p. 166—167°, and 2:5-dimethoxy-, m.p. 148°, 3:4-, m.p. 162—163°, 2:4-, m.p. 184—185°, and 2:5-diethoxy-, m.p. 154—155°, 2:3:4-trimethoxy-, m.p. 123—124°, 3-chloro-4-methoxy-, m.p. 150—151° (lit. 154°), 3-bromo-4-methoxy-, m.p. 139—140°, 5-bromo-2-methoxy-, m.p. 144—175°, 3-chloro-4-ethoxy-, m.p. 132—133°, 5-chloro-2-ethoxy-, m.p. 134—135°, 5-bromo-2-ethoxy-, m.p. 134—135°, 3-bromo-4-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 130—131°, 5-chloro-2-ethoxy-, m.p. 130—131°, 5-chloro-2-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 130—131°, 5-chloro-2-ethoxy-, m.p. 130—131°, 5-chloro-2-ethoxy-, m.p. 134—135°, 3-bromo-2-ethoxy-, m.p. 130—151° (lit. 155°), -naphthalenesulphonamide: Ph₂ ether 4:4'-disulphonamide, m.p. 159°; αβ-diphenoxyethane-, m.p. 228—229°, and αγ-diphenoxypropane-, m.p. 244—245°, -4:4'-disulphonamide. R. S. C.

Potentiometric titration of quinol, p-aminophenol, and p-methylaminophenol with complex chlorides of quadrivalent iridium. S. G. Bogdanov and S. E. Krasikov (Ann. Sect. Platine, 1939, No. 16, 77—80).—Quinol, p-NH₂·C₆H₄·OH, and p-NHMe·C₆H₄·OH are titrated with 0·01n-K₂IrCl₆ or -(NH₄)₂IrCl₆.

Separation and determination of isomeric menthols. R. T. Hall, J. H. Holcomb, jun., and D. B. Griffin (Ind. Eng. Chem. [Anal.], 1940, 12, 187—188).—From a mixture of *l*-menthol, *d*-neo-

menthol (I), and *d-iso*menthol (II), (I) is separated by fractional distillation followed by acetylation and hydrolysis of the recryst. acetate, and (II) by fractional distillation and crystallisation. Total menthol in mixtures is determined by acetylation and determination of the sap. val. of the acetate using KOH in (CH₂·OH)₂. Use of (CH₂·OH)₂ in place of EtOH greatly reduces the time of saponification.

J. D. R.

Cantharides. I. Titration of cantharidin. B. P. Hecht and L. M. Parks (J. Amer. Pharm. Assoc., 1940, 29, 71—77).—Purified cantharidin (I), m.p. $214-214\cdot5^{\circ}$ (uncorr.), cannot be titrated quantitatively in presence of EtOH; in this respect, it resembles $C_6H_4(CO)_2O$ and Bz_2O . Titration of (I) and other anhydrides is effected by adding $0\cdot5\text{N-KOH}$ in EtOH, removing EtOH, and back-titrating with $0\cdot1\text{N-HCl}$. Cantharidic acid has dissociation const. 5×10^{-9} , whilst the degree of hydrolysis of $0\cdot005\text{M-K}$ cantharidate in H_2O at 25° is $2\cdot28\%$.

Diliturates of physiologically important bases. C. E. REDEMANN and C. NIEMANN (J. Amer. Chem. Soc., 1940, 62, 590—593).—Properties of 5-nitrobarbiturates of 71 org. bases are recorded. The salts of lower aliphatic amines, proteinogenic amines, and some NH₂-acids are very sparingly sol. and are excellent for quant. separation from some mixtures. The bases are readily recovered by double decomp., which also serves best for formation of the salts. The Mg (0·1 mmol. per l.), Ba, Sr, Ca, Cu, and K (separation from Na) salts are very slightly sol.

Reactions of diethylbarbituric acid and pyrazolone derivatives with silver proteinate, silver nitrate, and ferric chloride. V. ZANOTTI (Boll. Chim. farm., 1940, 79, 117—120).—Colour reactions are described.

F. O. H.

Action of a copper-iodine reagent on alkaloids. Precipitation and colour reactions. M. Péronnet and J. Guénin (J. Pharm. Chim., 1940, [ix], 1, 142—147).—Aq. solutions of many alkaloids, but not glucosides or barbiturates, give ppts. when treated with a $\mathrm{Cu_2I_2}$ reagent, which is more sensitive than I-KI. Ppts. obtained with sparteine, quinine, and cocaine contain Cu; they are readily hydrolysed and decompose at 60°. The ppt. obtained with eserine dissolves in aq. NH3 with violet-red colour. Ephedrine and adrenaline give violet and red colours, respectively.

Action of heat on hæmoglobin and reversible stages in coagulation of proteins.—See A., 1940, III, 380.

Colour reaction of phenarsazine chloride J. Delga (J. Pharm. Chim., 1940, [ix], 1, 73—76).— Phenarsazine chloride (I) or oxide with the $\operatorname{AgNO_3}$ reagent (10% aq. $\operatorname{AgNO_3}$: AcOH = 1:1) (5 c.c.) at $100^{\circ}/10$ min. gives a yellow or orange colour depending on the conen. 0.04 mg. can be detected. Many other As derivatives do not give the reaction. (I) ni $\operatorname{H_2O}$ (1 in 125,000) is detected similarly. J. L. D.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

JULY, 1940

Relative velocity of chloroalkylation of olefines.—See A., 1940, I, 260.

Grignard syntheses of halogen derivatives of ethylenic alcohols. G. I. Schtukin (J. Gen. Chem. Russ., 1940, 10, 77—81).—CH₂AcCl and CH₂·CH·CH₂·MgBr in Et₂O at -10° afford α -chloro- β -methyl- Δ^{δ} -penten- β -ol, b.p. 159°, which with KCN in EtOH gives α -cyano- β -methyl- Δ^{δ} -penten- β -ol, b.p. 112°/17 mm. The following are obtained similarly: α -chloro- β -chloromethyl- Δ^{δ} -penten- β -ol, b.p. 82·5°/14 mm., from CO(CH₂Cl)₂, γ -bromo- β -methyl- δ -allyl- Δ^{ξ} -hepten- δ -ol, b.p. 115—116°/18 mm., from CHPr $^{\beta}$ Br·CO₂Et, and α -bromo- β -phenyl- Δ^{δ} -penten- β -ol, decomp. at the b.p., from COPh·CH₂Br. R. T.

Preparation of esters in presence of magnesium chloride. P. A. Petiunin (J. Gen. Chem. Russ., 1940, 10, 35—38).—Esters are obtained in 60—70% yield from aliphatic acid—alcohol mixtures in presence of anhyd. MgCl₂ (2 hr. at the b.p.). In these conditions BzOH gives only 20—27% yields of ester. R. T.

Direct esterification of higher fatty acids with glycerol. I. Formation of mono- and diglycerides, and their separation. S. KAWAI and H. Nobori (J. Soc. Chem. Ind. Japan, 1940, 43, 59B).—Esterification was almost complete in 3 hr. with 1 mol. of fatty acid [lauric (I), stearic (II), oleic (III)] to 0.8-1.4 mol. of glycerol at $230-240^{\circ}$; prolonged heating (15-20 hr.) was necessary at 170-180°. Glycerides from (I) and (III) were mainly mono- and di- with a small amount of tri-glyceride. Those from (II) were mainly tri- and di- with a small amount of mono-glyceride. Glycerides obtained by prolonged heating at 170-180° contained less monoand di-glyceride than those obtained at 230—240° for 3 hr. 85% EtOH was used to separate glycerides of (I) and (II) but 80% EtOH was more effective for those of (III).

Lactic esters: preparation and properties. L. T. Smith and H. V. Claborn (Ind. Eng. Chem., 1940, 32, 692—694).—The prep. of lower alkyl lactates (cf. Bogin et al., B., 1934, 637) is improved by using a large excess of alcohol, and removing this and $\rm H_2O$ at low temp. in vac. (column). Na or Ca lactate, the alcohol, and a slight excess of $\rm H_2SO_4$ are used, for $\rm Bu^a$ to lauryl esters, with $\rm C_6H_6$ or PhMe to remove $\rm H_2O$. For higher esters, lactic acid without $\rm H_2SO_4$ is used. The following are apparently new: isoamyl, b.p. 82°/7 mm., n-hexyl, b.p. 75°/2 mm., $\rm \beta$ -ethoxy-butyl, b.p. $\rm 104^\circ/12$ mm., and -hexyl, b.p. $\rm 112^\circ/3^\circ-6$ mm., lauryl, b.p. $\rm 150-153^\circ/4$ mm., and phenylethyl lactate, b.p. $\rm 124^\circ/4$ mm. These with keten (cf. A., 1940, II, 5) give n-hexyl, b.p. $\rm 135^\circ/17$ mm.,

β-ethyl-butyl, b.p. 127°/14 mm., and -hexyl, b.p. 145°/13 mm., lauryl, b.p. 165°/4 mm., and phenylethyl α-acetoxypropionate, b.p. 139°/4 mm. The prep. of glycol monolactate, b.p. 140°/10 mm., and of glycerol monolactate, is described. Stearyl lactate has b.p. 180° (decomp.)/2 mm.

E. W. W.

Action of sodium alkoxides on ethyl s-diethoxysuccinate. I. Isomerisation of ethyl d-s-diethoxysuccinate into ethyl as-diethoxysuccinate. S. Fukunaga (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1940, 37, 137—142).— d-[CH(OEt)·CO₂Et]₂, b.p. 156—157°/26 mm., with warm NaOEt-EtOH gives Et as-diethoxysuccinate, b.p. 147—148°/25 mm., nearly quantitatively, hydrolysed (warm EtOH-NaOH) to the acid (Ca, $+H_2O$, and Ba, $+H_2O$, salts), which when heated (waterbath) alone, or with dil. HCl, or when kept in vac. gives CO₂H·CO·CH₂·CO₂H. J. L. D.

Determination of dehydroascorbic acid.—See A., 1940, III, 515.

Reaction of ortho-esters with aldehydes. H. W. Post (J. Org. Chem., 1940, 5, 244—249).—Comparative data on the yields of acetals obtained by the interaction of an aldehyde with an aliphatic orthoester in presence of a little H₂SO₄ as catalyst show that polymerised aldehydes do not so react. The highest yields are obtained from PhCHO followed by MeCHO and EtCHO. CH(OEt)₃, CH(OPh)₃, and CH(OBu)₃ are decreasingly effective. CMe(OEt)₃ does not behave similarly. Aldehydes such as CHPh:CH·CHO and CHMe:CH·CHO polymerise under these conditions without perceptible further reaction. MeCHO yields the corresponding dithioacetals with HCO·SEt and HCO·SPr. H. W.

Gattermann synthesis of aldehydes. A. G. MISTRETTA and F. F. NORD (Nature, 1940, 145, 387).—Yields obtained with C₆H₆, PhMe, PhEt, cumene, etc. as solvents in this synthesis, using AlCl₃, NaCN, and dry HCl, give an indication of a rule connecting solvent and yield. L. S. T.

Preparation of semicarbazones by functional exchange. B. Angla (Ann. Chim. Analyt., 1940, [iii], 22, 10—15).—Semicarbazones are obtained from CMe₂:N·NH·CO·NH₂ and the requisite aldehyde or ketone generally in aq. EtOH containing AcOH but frequently in neutral medium if COMe₂ is removed by evaporation or by passage of CO₂ in the cold. The application of the method to the semicarbazones of heptaldehyde, cinnamaldehyde, citronellal, furfuraldehyde, COMe·C₉H₁₉, and menthone is described.

Action of phosphate on hexoses. IV. Formation of lactaldehyde concurrently with acetol.

R. Goto (Bull. Chem. Soc. Japan, 1940, 15, 103—106).—In the distillation of acidified K phosphate with glucose (I) (Nodzu et al., A., 1938, II, 172), some OH·CHMe·CHO (II) is formed. The equilibrium acetol (III) (shifted to the left, at least in the phosphate system) makes it uncertain whether (II) or (III) is the precursor in the cleavage of (I) to ΛcCO_2H .

E. W. W.

Characterisation of carbohydrates. I. Oxidation of aldoses by hypoiodite in methanol. II. Identification of seven aldomonosaccharides as benziminazole derivatives. S. Moore and K. P. Link (J. Biol. Chem., 1940, 133, 293-311).—Aldohexoses and -pentoses are converted into the aldonic acids by I-KOH in MeOH free from COMe₂ but containing a little H₂O at ~40°. When cold, nearly pure K salts are pptd. in the following yields: from glucose 92, galactose 85, arabinose 83, mannose 30, xylose 8, lyxose and rhamnose 0%. Addition of BaI₂,2H₂O in MeOH ppts. the residual acid quantitatively as crude Ba salt. These salts are condensed separately with o-C₆H₄(NH₂)₂ by HCl-H₃PO₄ at 135° (with HCl-ZnCl₂ at 180° for xylose), giving 60—80% yields of benziminazoles, which, if sol., are pptd. as Cu derivatives and recovered therefrom by H.S. These in conjunction with their derivatives are better suited than are osazones etc. for characterisation of the sugars. Benziminazoles are reported (if new, the sugar is italicised) from l-arabinose, m.p. 235° (decomp.), $[\alpha] +49.5^{\circ}$ (hydrochloride, m.p. 230°; comp.), $[\alpha]$ +49·5° (hydrochloride, m.p. 230°; picrate, m.p. 158°), d-galactose, m.p. 245° (decomp.), $[\alpha]$ +43·3° (+44·4° in HCl) [hydrochloride, m.p. 202—204°; picrate, m.p. 217° (decomp.)], d-glucose, m.p. 215°, $[\alpha]$ +9·6° (+9·4° in HCl) [hydrochloride, m.p. 180°; picrate, 203° (decomp.)], d-lyxose, m.p. 189°, $[\alpha]$ -12·8° (hydrochloride, m.p. 191°; picrate, m.p. 95—99°), d-mannose, m.p. 227° (decomp.), $[\alpha]$ -22·0° [hydrochloride, m.p. 101—150°; picrate, m.p. 205° (decomp.)], $[-rhamnose, m.p. 207°, [\alpha]$ +27·4° (hydrochloride, m.p. 173—175°: picrate, m.p. +27.4° (hydrochloride, m.p. 173—175°; picrate, m.p. 168°), and d-xylose, m.p. 224°, $[\alpha]$ +64·8° (hydrochloride, m.p. 200—202°; picrute, m.p. 191°). $[\alpha]$ are $[\alpha]_D^{p_2}$ in 5% aq. citric acid. Fructose gives only a little of the d-arabinose derivative.

Properties of 3:6-anhydrogalactose. W. N. HAWORTH, J. JACKSON, and F. SMITH (J.C.S., 1940, 620—632).—3:6-Anhydromethylgalactopyranosides and their methylation products are prepared. The stable 5-membered anhydro-ring is probably responsible for some of the peculiar properties of 3:6-anhydrogalactose and its derivatives. The 6-p-toluenesulphonate, new m.p. 188°, $[\alpha]_{\rm I}^{\rm IJ}$ +118° in ${\rm C_5H_5N}$ (cf. Ohle et al., A., 1933, 492), of α -methyl-

galactopyranoside (di-p-toluenesulphonate, m.p. 148°, $[\alpha]_b^{16} + 68^\circ$ in C_5H_5N) with N-NaOH in EtOH at 60° followed by neutralisation with CO_2 gives 3:6-anhydro- α -methylgalactopyranoside (I) (loc. cit.).

With $MeI-Ag_2O-COMe_2$, (I) gives liquid 2: 4-dimethyl-3: 6-anhydro-α-methylgalactopyranoside (II), b.p. 90° (bath)/0·01 mm., $[\alpha]_{\rm b}^{15}$ +99° in Et₂O, which on keeping slowly changes (incompletely) into the β -form (III), m.p. 83°, $[\alpha]_{\rm b}^{18}$ -77° in H₂O, -87° in CHCl₃. This $\alpha \rightarrow \beta$ change, also effected by dry HCl, by HBr, by HCl in EtOH or Et₂O (cf. A., 1939, II, 99) or in MeOH, apparently does not involve intermediate formation of a free reducing group. X-Ray examination shows (III), and ebulliometry (II) and (III), to be monomeric. The enantiomorph of (III) has been obtained by Hands et al. (A., 1939, II, 50) and by Percival et al. (ibid., 142).] The structure of (III) is established (cf. Percival et al., loc. cit.) by its prep. from Ag₂O-MeI and 3: 6-anhydro-β-methylgalactopyranoside (IV), m.p. 119°, $[\alpha]_{D}^{18}$ -115° in H₂O. (IV) is obtained either (a) by conversion of galactose 6-p-toluenesulphonate, through its tetra-acetate, m.p. 107° , $[\alpha]_D$ $+42^{\circ}$ in CHCl₃ (cf. Ohle et al., loc. cit.), into \(\alpha\)-acetobromogalactose 6-p-toluenesulphonate, m.p. 149° (decomp.), $[\alpha]_{11}^{20}+165^{\circ}$ in CHCl₃, which (Ag₂CO₃) gives β -methylgalactoside 2:3:4-triacetate 6-p-toluenesulphonate, $[\alpha]_b^{18} \sim +2.5^\circ$ in CHCl₃, which gives (Na–MeOH) β-methylgalactopyranoside 6-p-toluenesulphonate, m.p. 137° , $[\alpha]_b \sim -3.5^\circ$ in C_5H_5N , converted by N-NaOH-EtOH into (IV); or (b) from β -methylgalactoside 6-bromohydrin triacetate (Schlubach et al., A., 1932, 369), which with Na-MeOH gives β-methylgalactoside 6-bromohydrin, m.p. (+dioxan) 106° (sinters at 75°), $[\alpha]_{D}^{20}$ +11° in H₂O, converted by N-NaOH at 80° into (IV).

With dil. acid, (II) and (III) are easily hydrolysed. With $0\cdot1\text{N-H}_2\text{SO}_4$ at 100° , (II) and (less rapidly) (III) give aldehydo-2: 4-dimethyl-3: 6-anhydrogalactose (V), m.p. 112° [in one prep. only, from (III)], b.p. 150° (bath)/0·03 mm., $[\alpha]_b^{16} + 24^\circ$ in H_2O . (V), which has the usual aldehydic properties, with NH_2Ph in boiling EtOH, gives its anilide, m.p. 123° , $[\alpha]_b^{18} \rightarrow +56^\circ$ in EtOH. Aq. Br oxidises (V) (in the presence of basic PbCO₃, followed by H_2S and Ag_2O) to 3:6-anhydrogalactonic acid (VI), m.p. 152° , $[\alpha]_b^{16} +66^\circ$ [which with CH_2N_2 yields its Me ester (VII), m.p. 51° , $[\alpha]_b^{16} +67^\circ$ in H_2O (cf. Forbes et al., A., 1940, II, 35)], or (after treatment with Ag_2O and H_2S , and distillation) to a mixture of (VI) and the corresponding lactone (VIII), b.p. $140-150^\circ$ (bath)/0·01 mm., $[\alpha]_b^{14} +4^\circ$ (const.) in H_2O . Slow evaporation in air of a solution of (VIII) gives (VI) of m.p. 152° , $[\alpha]_b^{15}-66^\circ$ in H_2O . With MeOH-NH₃ at -5° , (VII) or (VIII) gives the amide, m.p. 151° , $[\alpha]_b^{17} +81^\circ$ in H_2O . (VI) heated above its m.p. (4 hr.) and distilled gives some

(VIII). The stability of the 3:6-anhydro-ring is shown by the prep. of (VI) from (II) and HNO_3 ($d \cdot 1.42$) at 50—80°.

With excess of 0.5—1% MeOH-HCl at room temp., (II) and (somewhat less readily) (III) both give the relatively strainless 2:4-dimethyl-3:6-anhydrogalact-

ose Me_2 acetal (IX), m.p. 36°, b.p. 95° (bath)/0.02 mm., $[\alpha]_{\rm p}^{18} + 36^{\circ}$ in H_2O [purified through the p-nitrobenzoate (X), b.p. 215° (bath)/0.03 mm.]. With gaseous HCl or HBr, (IX) rapidly yields (III). Similarly, (I) or (IV) with MeOH-HCl, followed by Ag₂CO₃, gives 3:6-anhydrogalactose Me₂ acetal (XI), $[\alpha]_{\rm D}^{18}$ +36.5° in H₂O [2:4:5-tri-p-nitrobenzoate (XII), m.p. 112°]. The open-chain structures are assigned to (IX) and (XI) because of the formation of (X) and (XII), and of the hydrolysis of (IX) and (XI) by 0.1N-H₂SO₄ respectively to (V) and to aldehydo-3:6anhydrogalactose (XIII), a glass, $[\alpha]_D +24^{\circ}$ in H_2O . This is also obtained from (I) or (IV) and 0·1n-H₂SO₄. (IX) is directly converted by HCl or HBr in air into (III) with the elimination of 1 Me. Both (IX) and (XI) on methylation (Ag₂O-MeI, MeOH-HCl, Ag₂CO₃) 2:4:5-trimethyl-3:6-anhydrogalactose acetal (XIV), b.p. 120° (bath)/0.03 mm., $[\alpha]_{D}^{12}$ +41.0° in H₂O. Hydrolysis (0.01n-H₂SO₄ at 100°) of (XIV) yields 2:4:5-trimethylaldehydo-3:6-anhydrogalactose (XV), b.p. 105° (bath)/0.02 mm., $[\alpha]_{\rm D}^{19}$ +41° in $\rm H_2O$. With aq. Br, (XV) gives 2:4:5-trimethyl-3:6-anhydrogalactonic acid (XVI), $[\alpha]_D^{17}+64^\circ$ (brucine salt, m.p. 114° , $[\alpha]_D \sim -3^\circ$ in H_2O). With $Et_2O-CH_2N_2$, (XVI) gives its Me ester, b.p. 115° (bath)/0 03 mm., $[\alpha]_{\rm p}^{17} + 67^{\circ}$ in $\rm H_2O$, also obtained by complete methylation of the Me ester, b.p. $160-170^{\circ}$ (bath)/0.03 mm., $[\alpha]_D + 38^\circ$ in H_2O , of 3:6-anhydrogalactonic acid, $[\alpha]_D^{20} + 33^\circ$ in H_2O , prepared by Br oxidation of (XIII). The above reactions are discussed in relation to the cyclic and dicyclic ring systems involved, and to the stability of these. E. W. W.

Crystalline β' -chloroethyl- β -d-glucoside. J. Compton (Contr. Boyce Thompson Inst., 1939, 11, 21—23).— β' -Chloroethyl- β -d-glucoside tetra-acetate (I) (slightly modified prep.; cf. Jackson, A., 1938, II, 174) with Ba(OMe)₂ in MeOH for 20 hr. at 5°, followed by the calc. amount of H_2SO_4 , gives (slowly from EtOAc) cryst. β' -chloroethyl- β -d-glucoside (II), m.p. 70—71°, $[\alpha]_2^{\mathbb{P}^2}$ —29·0° in H_2O , reacetylated in C_5H_5N to (I). With Raney Ni in EtOH containing aq. NaOH, and H_2 at 3 atm., followed by CO_2 and acetylation of the product, (II) gives ethyl- β -d-glucoside tetra-acetate. E. W. W.

Synthesis of o-chlorophenol- β -d-glucoside. L. P. Miller (Contr. Boyce Thomson Inst., 1939, 11, 25—27).—By the method of Helferich et al. (A., 1933, 379), o-C₆H₄Cl·OH (I), glucose penta-acetate, and p-C₆H₄Me·SO₃H at 115—125° give [after removing (I) in H₂O in vac. at $<30^{\circ}$] the tetra-acetate (II), m.p. $150 \cdot 5$ — 151° (corr.), $[\alpha]_{20}^{123}$ — $44 \cdot 6^{\circ}$ in CHCl₃, of o-chlorophenol- β -d-glucoside (III), m.p. 171— $171 \cdot 5^{\circ}$, $[\alpha]_{20}^{123}$ — $65 \cdot 3^{\circ}$ in EtOH. Ba(OMe)₂-MeOH converts (II) into (III), which with Ac₂O-C₅H₅N gives (II). Emulsin hydrolyses (III), liberating (I). The product from gladiolus corms (cf. Miller, A., 1938, III, 966) and (I) gives on acetylation a product of m.p. \gg m.p. of (II).

Acetolysis of carrageen mucilage. T. DILLON and P. O'COLLA (Nature, 1940, 145, 749).—Acetylation (AcOH and Ac₂O; catalyst, SO₂ and Cl₂) of the mucilage and removal of Ac yields two polymeric carbohydrates, (C₆H₁₀O₅)_n, probably galactans, one O* (A., II.)

sol. in cold and the other in hot H_2O . The latter gives a wine-red colour with I. L. S. T.

Methylation of chondrosamine hydrochloride. P. A. Levene (J. Biol. Chem., 1940, 133, 767).—On methylation of chondrosamine penta-acetate with Mc₂SO₄, the methylpyranoside is formed.

E. M. W. Amino-acid and peptide esters of choline as possible analogues of the oxytocic hormone of the posterior lobe of the pituitary gland. I. J. M. Gulland, M. W. Partridge, and S. S. Randall (J.C.S., 1940, 419—425).—Choline chloride (I) and glycyl chloride hydrochloride in vac. at 100° (4 hr.) give, via the platinichloride, m.p. 238°, glycylcholine chloride hydrochloride, m.p. 241—242° (cf. Dudley, J.C.S., 1921, 119, 1259) (flavianate, rufianate, and picrolonate). With glycylglycyl chloride hydrochloride, (I) similarly gives, via the picrolonate, glycylglycylcholine chloride hydrochloride $(+3H_2O)$, m.p. 128—130°. $NEt_2\cdot[CH_2]_2\cdot OBz$ and MeI in C_6H_6 give methyldiethyl-β-benzoyloxyethylammonium iodide, m.p. 128° (corresponding chloride, m.p. 129°). Lauryl chloride (II) and NEt₂·[CH₂]₂·OH (III) in CHCl₃ give, after washing with NaHCO₃, β-diethylaminoethyl laurate, b.p. 194°/12 mm. (hydrochloride, m.p. 109°), which with MeI gives methyldiethyl-β-lauryloxyethylammonium iodide, m.p. 70°. $NMe_2 \cdot [CH_2]_2 \cdot OBz$ (hydrochloride, new m.p. 151°) with MeI gives benzoylcholine iodide, m.p. 243—244° (decomp.), converted by AgCl in EtOH into the chloride, new m.p. 206-207° (decomp.) (cf. Fourneau et al., A., 1914, i, 938). NMe₂·[CH₂]₂·OH (IV) and (II) give β-dimethylamino-ethyl laurate, b.p. 193—194°/13 mm. (hydrochloride, m.p. 143—144°), which with MeI gives laurylcholine iodide, m.p. 161—162° (corresponding chloride, m.p. 54°). This has some oxytocic activity (tested by contraction of the isolated uterus of the virgin guinea-pig) at a dilution of 1/200,000, but larger doses appear to be toxic. PCl₅ and (S·CH₂·CO₂H)₂ (V) in Et₂O at <0° give dithioglycollyl chloride, an unstable oil, which with (IV) in CHCl₃ at 0° forms di-(β-dimethylaminoethyl) dithioglycollate, an oil [also obtained from (IV) and (V) with HCl in $C_2H_2Cl_4$], converted by MeI in C₆H₆ into the dimethiodide (dithioglycollyl- $(S \cdot CH_2 \cdot CO_2 \cdot [CH_2]_2 \cdot NMe_3I)_2$ iodide),choline156—157°. The chloride of carbobenzyloxylglycine (VI) and (III) in CHCl₃ give the β-diethylaminoethyl ester (VII) of (VI). The methiodide of (VII) with PH₄I in AcOH with HCl (10 hr.) gives an iodide hydriodide, converted into methyldiethyl-β-glycyloxyethylammonium dirufianate, m.p. 259-260° (decomp.; darkening from 230—235°). Carbobenzyloxycystinyl chloride (VIII) and (IV) give an oily ester, converted by MeI in C₆H₆ into di-(β-diethylaminoethyl)carbobenzyloxycystine dimethiodide, $[S \cdot CH_2 \cdot CH(NH \cdot CO_2CH_2Ph) \cdot CO_2 \cdot [CH_2]_2 \cdot NEt_2MeI]_2$

 $(+5H_2O)$, deliquescent, m.p. 67—77° (evolves gas at \sim 92°; chars at 150°). With OH·[CH₂]₂·Br and C₅H₅N, (VIII) in CHCl₃, first at room temp. and then at the b.p. (2 min.), gives β-bromoethylcarbobenzyloxycystine (IX), [S·CH₂·CH(NH·CO₂·CH₂Ph)·CO₂·[CH₂]₂·Br]₂, m.p.

86—88°, which with NHMe₂ in C_6H_6 at 60° yields β -dimethylaminoethylcarbobenzyloxycystine (X), an oil,

which forms a dimethiodide (carbobenzyloxycystinylcholine iodide) (XI), m.p. 140-142°, also obtained from the β-iodoethyl analogue of (IX) with NMe₃ in C_6H_6 [(IX) with NMe₃ gives the dibromide, m.p. ~235°], or, m.p. (+2H₂O) 70—79° (sinters 64°; chars at 150°), from (IV) and (VIII) in CHCl₃ at 0°, followed by treatment with aq. NH4HCO3, and action of MeI on the resulting (X). PH4I and (XI) in COMe2 with HCl at 40° give cysteylcholine iodide hydriodide (XII), m.p. 83—85° (decomp.) (sinters 74—75°; chars at 150°), which in EtOH with O2 forms cystinylcholine iodide hydriodide (XIII), a glass. (XII) and (XIII) have slight oxytocic activity. Carbobenzyloxyphenylalanyl chloride with (IV) in Et₂O, followed by treatment with NH₄HCO₃, gives β-dimethylaminoethylcarbobenzyloxyphenylalanine, an oil, which with Mel gives the methiodide (carbobenzyloxyphenylalanylcholine iodide), m.p. 59-62° (sinters 45-48°; evolves gas at 169°; chars at 190°), which with PH4I in COMe₂ (under H₂) gives phenylalanylcholine iodide hydriodide, m.p. 80—83° (evolving gas) (sinters 40— 50°; chars at 200°), which with AgCl forms the chloride hydrochloride. Both these are very deli-E. W. W. quescent.

Partial racemisation of glutamic acid in boiling hydrochloric acid solutions. L. E. Arnow and J. C. Opsahl (J. Biol. Chem., 1940, 133, 765—766).—The extent of racemisation of l(+)-glutamic acid caused by boiling HCl is sufficient to account for the results of Johnson (A., 1940, III, 424) but not those of Kögl et al. (A., 1939, III, 489). E. M. W.

Preparation of d(-)-glutamic acid from dl-glutamic acid by enzymic resolution. J. S. Fruton, G. W. Irving, jun., and M. Bergmann (J. Biol. Chem., 1940, 133, 703—705).—By the action of NH₂Ph on carbobenzyloxy-dl-glutamic acid in the presence of papain—cysteine, only the l-NH₂-acid forms an anilide. Pure d(-)-glutamic acid can be obtained from the filtrate by hydrogenation and recrystallisation of the hydrochloride. E. M. W.

Reactions of some high-mol. wt. fatty acid derivatives. M. R. McCorkle (Iowa State Coll. J. Sci., 1939, 14, 64—66).—For thioamides cf. Ralston et al. (A., 1939, II, 204). β-Imino-α-n-decylmyristonitrile, b.p. 230-235°/3 mm. (from lauronitrile and NPhEtLi), is hydrolysed by EtOH-HCl to β -keto- α -ndecylmyristonitrile, m.p. 44—45°, and by conc. H₂SO₄ to β-keto-α-n-decylmyristamide, m.p. 114—115°, which yields laurone with EtOH-KOH. Similarly stearonitrile yields β -imino-, m.p. $54-55^{\circ}$, and β -keto- α -n-hexadecylarachidonitrile, m.p. $68-69^{\circ}$, and β -keto- α -nhexadecylarachidonamide, m.p. 114—115°, hydrolysed to stearone. Fries rearrangement of p-diphenylyl stearate, m.p. 73—74°, yields 2-hydroxy-5-phenyl-, m.p. 63—64° [Me ether (also prepared from 2:5:1-OMe·C₆H₄Ph·MgBr and stearonitrile), m.p. 53—54°], and p-p'-hydroxyphenyl-stearophenone, m.p. 141—142°, the Me ether, m.p. 116-117° (also prepared from $p-C_6H_4Ph\cdot OMe$, stearoyl chloride, and $AlCl_3$), of which is oxidised to $p-C_6H_4(CO_2H)_2$. Stearonitrile yields with β-C₁₀H₇·MgBr, β-stearoylnaphthalene, m.p. 65— 66°, with p-C₆H₄PhLi, p-phenylstearophenone (I), m.p. 108—109°, and with MgMeBr, β-keto-n-nonacosane, m.p. 55-56°. Stearoyl chloride with Ph₂ and with

Ph₂O yields (I) and p-phenoxystearophenone (II), m.p. 62-63°, respectively. Sulphonation of (I) yields 4-sulpho-4'-stearoyldiphenyl, m.p. 142-145°, oxidised to 4-sulphodiphenyl-4'-carboxylic acid (p-toluidine salt, m.p. 288—289°) (also obtained by sulphonating p-C₆H₄Ph·CO₂H), which on fusion with KOH yields 4:4′-OH·C₆H₄·C₆H₄·CO₂H. (I) with ClSO₃H yields a trisulphonic acid, oxidised to $4:4'-SO_3H\cdot C_6H_4\cdot C_6H_4\cdot CO_2H$. Sulphonation of (II) yields p-p'-stearoyl-, m.p. 95—98°, oxidised (dil. HNO₃) to p-p'-carboxy-phenoxybenzenesulphonic acid (p-toluidine salt, m.p. 266—267°), which on fusion with KOH gives $p\text{-OH}\cdot C_6H_4\cdot CO_2H$. Hydrogenation (Adkin's Cu-Cr₂O₃ catalyst) of lauro- and stearo-nitriles yields di-n-dodecyl-, m.p. 52—53°, and -octadecyl-amine, m.p. 73-74°, respectively, which when heated with the corresponding chlorides (from the alcohols and SOCl₂) yield tri-n-dodecyl- (hydrochloride, m.p. 78—79°) and -octadecyl-amine, m.p. 54—55° (hydrochloride, m.p. 96—97°). Laurone and stearone are prepared by heating the acids with Fe powder. Reduction (Na + BuOH) of myristone and stearone yields (C₁₃H₂₇)₂CH·OH and (C₁₇H₃₅)₂CH·OH. Attempts to synthesise [(C₁₇H₃₅)₂CH]₂ from σ-iodopentatriacontane, m.p. $43.5-45^{\circ}$, failed, but reduction of the latter yields $n\text{-}C_{35}H_{72}$. $n\text{-}Octadecanol}$ with HBr-conc. H_2SO_4 gives the bromide (87%). $C_{12}H_{25}$ MgBr with CuCl₂ gives 22% of n-C₂₄H₅₀, and with laurone yields μ -n-dodecyltricosan- μ -ol, b.p. 270—275°/2 mm. C₁₈H₃₇·MgBr (or the chloride, prepared in 64% yield) with stearone yields σ-n-octadecylpentatriacontan-σ-ol (III), m.p. 58—59°. The iodide, m.p. 29—32°, from (III) with Na gives an unsaturated mixture, m.p. $40-42^{\circ}$, and is reduced (Zn + HCl in AcOH) to σ-n-octadecylpentatriacontane, m.p. 45—46°. hydration (p-C₆H₄Me·SO₃H) of (III) gives a mixture of olefines, m.p. 42-44°. The prep. and reactions of these compounds showed no differences from lower members of the series.

Structure of additive products of metal halides and unsaturated compounds. R. C. Freidlina and A. N. Nesmejanov (Compt. rend. Acad. Sci. U.R.S.S., 1940, 26, 60—64).— $\mathrm{Hg}(\mathrm{C_2H_2})\mathrm{Cl_2}$ (I) (from $\mathrm{HgCl_2}$ and $\mathrm{C_2H_2}$ in dil. HCl) or $\mathrm{Hg}(\mathrm{C_2H_2})\mathrm{2Cl_2}$ (II) [from (I) and NH₃ in $\mathrm{CHCl_3}$] yields with $\mathrm{SnPh_2Cl_2}$, in neutral solution, HgPhcl , and in alkaline solution, $\mathrm{HgPh_3}$, with $\mathrm{CH_2N_2}$, $\mathrm{Hg}(\mathrm{CH_2Cl})\mathrm{Cl}$, and with $\mathrm{PPh_3}$, $\mathrm{Hg}(\mathrm{PPh_3})\mathrm{_2Cl_2}$, $\mathrm{C_2H_2}$ being eliminated in each case, but with I in $\mathrm{Et_2O}$, $\mathrm{CHCl:CHI}$ and HgClI are obtained. From these reactions and spectroscopic evidence it is suggested that (I) and (II) are resonance hybrids $\mathrm{CHCl:CH\cdot HgCl} \longleftrightarrow \mathrm{Hg}(\mathrm{C_2H_2})\mathrm{Cl_2}$ and $\mathrm{(CHCl:CH)_2Hg} \longleftrightarrow \mathrm{Hg}(\mathrm{C_2H_2})\mathrm{_2Cl_2}$. A. Li.

Action of organomagnesium compounds on trialkoxychlorosilanes. M. N. Kalinin (Compt. rend. Acad. Sci. U.R.S.S., 1940, 26, 365—369).—SiCl₄ with EtOH, Bu^BOH, and iso-C₅H₁₁·OH in C₆H₆ at 0°, then at 50—60°, yields respectively SiCl(OEt)₃, chlorotri-isobutoxy-, b.p. 229—231°, and -isoamyloxysilane, b.p. 143—146°/12 mm. With MgEtBr and MgPhBr these yield respectively tri-ethoxy-, -isobutoxy-, b.p. 101—103°/8 mm., and -isoamyloxy-ethylsilane, b.p. 151—154°/17 mm., and tri-ethoxy-, -isobutoxy-, b.p. 154—157°/10 mm., and -isoamyloxy-

phenylsilane, b.p. 194—197°/18 mm. The physical properties of these compounds are tabulated.

A. Lı.

Application of Meyer's reaction to lead. M. Lesbre (Compt. rend., 1940, 210, 535—536; cf. A., 1935, 611).—RI (R = Me, Et, Pra, Prb, Bua, CH₂Ph, allyl) reacts slowly with a solution of 3PbO,H₂O in aq. NaOH (0·15 g.-mol. of Pb. per l.), giving the alkylplumbonic acid, RPb(OH)₃ or RPbO₂H (I); traces of I catalyse the reaction. (I) is pptd. from the acidified solution by addition of aq. NH₃, and purified by repptn. from HBr solution with dil. KOH. The (I) are sol. in dil. acids and conc. alkalis, but insol. in aq. NH₃ and dil. alkalis; pyrolysis in a sealed tube gives PbO, H₂O, and ROH, CH₂Ph·Pb(OH)₃ also affording Pb(CH₂Ph)₄. The metallic plumbonates are very unstable and readily hydrolysed.

A. J. E. W. Hydroxylamine-tbiocarbamide platinum compounds.—See A., 1940, I, 267.

Dehydrogenation and irreversible catalysis of 1-vinyl- Δ^3 -cyclohexene. S. R. Sergienko (Compt. rend. Acad. Sci. U.R.S.S., 1940. 26, 73—75; cf. A., 1939, II, 205).—With Cr₂O₃ at 400°, 1-vinyl- Δ^3 -cyclohexene (I) yields PhEt (99%) with a trace of styrene. Pd-C, but not Pt-black, catalyses the irreversible reaction: (I) (3 mols.) \rightarrow 2PhEt + C₆H₁₁Et.

Fluorescence and oxidation in conjugated ring systems. J. Weiss (Nature, 1940, 145, 744—745).—The essential conditions in these systems for fluorescence, which is due to highly mobile electrons, and the analogy to a metal of the structure and chemical reactivity of conjugated ring systems are discussed. The structures of hydrocarbon peroxides and of graphitic oxide are considered, and a mechanism for the action of carcinogenic hydrocarbons is suggested.

L. S. T.

Structure of aromatic compounds. II. CAMPBELL, W. ANDERSON, and J. GILMORE (J.C.S., 1940, 446—451; cf. A., 1937, II, 407).—Polycyclic aromatic compounds are considered as resonance hybrids, the properties of which are explained by the non-equivalence of C-C linkings. This accounts for previous results (cf. also Lindner et al., A., 1939, II, 448; Sandin et al., ibid., 541). As before, the halogen reactivity is measured by the piperidine method (Le Fèvre et al., A., 1927, 653). The reactivity of 9-bromo-10-nitrophenanthrene and the non-reactivity of 3-bromo-4-nitroacenaphthene agree with the view that reactivity depends on a C:C or conjugated system. o-, m-, and p-C₆H₄Cl·CHO and MeNO₂ with aq. NaOH give o- (I), m.p. 47°, m- (II), m.p. 48—49°, and p-chloro-ω-nitrostyrene (III), m.p. 113—114°. o-C₆H₄Br·CHO (IV) (2: 4-dinitrophenylhydrazone, m.p. 199—200°) with MeNO₂ gives o-bromo-ω-nitrostyrene (V), m.p. 86°. Of (I)—(III) and (V), only (II) is non-reactive. Attempts to prepare 2:1- and 4:1- $C_6H_4Br\cdot C(NO_2)$: CHPh were unsuccessful. $CH_2Ph\cdot NO_2$, NH₂Me, HCl, Na₂CO₃, EtOH, and (IV) when heated give a diphenyl-o-bromophenylisooxazole, m.p. 135° p-C₆H₄Br·CHO similarly gives an isomeride, m.p. 175° (180°) after sublimation). The prep. of 1:4- $C_6H_4Ph \cdot NO_2$ is improved. $3:1:4-NO_2 \cdot C_6H_3Ph \cdot NH_2$ yields 4-bromo-3-nitrodiphenyl, m.p. $41-42^{\circ}$. $1:5:2-C_6H_3$ PhBr·NH₂ yields 5-bromo-2-nitrodiphenyl (?), m.p., 230°. The non-reactivity of 2-bromo-4'-, 4-bromo-4'-, and 4-bromo-2'-nitrodiphenyl, and of 2-bromo-7-nitrofiuorene shows that the influence of NO₂ is not transmitted from one ring to another. The slight reactivity of 4-bromo-5-nitrohydrindene, new m.p. \sim 20°, is confirmed. Reactivity of derivatives of fluorene (VI) suggests that (VI) has the structure (A), but it is probably a resonance hybrid of (A) and (B).

$$(A.) \qquad CH_2 \qquad (B.)$$

3-Nitro-2-amino- yields 2-bromo-3-nitro-fluorene, m.p. 120—121°. Attempts to prepare 1:2-substituted derivatives of (VI) are unsuccessful. 7-Bromo-2aminofluorene (VII) with $p-C_6H_4Me\cdot SO_2Cl$ (VIII) and C₅H₅N yields 7-bromo-, m.p. 211°, which with Br-CHCl3 gives 3:7-dibromo-2-p-toluenesulphonamidofluorene (IX), m.p. 203°. 2-Amino- also yields on toluenesulnhonamido-fluorene, m.p. 157—158°, 2-p-toluenesulphonamido-fluorene, m.p. 157—158°, which is brominated to (IX). On hydrolysis, (IX) gives 3:7-dibromo-2-aminofluorene, m.p. 135°, from which 3:7-dibromofluorene, m.p. 129°, is obtained. This is oxidised by Na₂Cr₂O₇-AcOH to 3:7-dibromo-fluorenone, m.p. 200°. With Ac₂O in boiling C₁₀H₁₂, (VII) gives its Ac derivative, m.p. 229-231°, brominated to 3:7-dibromo-2-acetamidofluorene, m.p. 272°. The pronounced reactivity of 3-bromo-2-nitroacenaphthene suggests that the acenaphthene nucleus has a resonance structure like that of C₁₀H₈. 1-Nitrowith boiling AcOH-Br gives 4(?)-bromo-1-nitro-acenaphthene, m.p. 157°. Presence of Me decreases reactivity of bromonitrotoluenes. $C_6H_3McBr\cdot NH_2$ yields 3-bromo-4-nitrotoluene, m.p. $36-37^{\circ}$. Bromination of 1:4:2':1'

 $\begin{array}{llll} C_6H_3Me \cdot SO_2 \cdot NH \cdot C_6H_4Me & (in \ an \ attempt \ to \ obtain \\ 1:3:2 \cdot C_6H_3MeBr \cdot NO_2) & gives & 5\text{-}bromo \cdot 2\text{-}p\text{-}toluene-\\ sulphonamidotoluene, m.p. 136°, also obtained from \\ (VIII) \ and \ 1:5:2 \cdot C_6H_3MeBr \cdot NH_2. & E. W. W. \end{array}$

Isomerisation accompanying alkylation. II. Alkylation of benzene with olefines, naphthenes, alcohols, and alkyl halides. V. N. IPATIEV, H. PINES, and L. Schmerling (J. Org. Chem., 1940, 5, 253—263; cf. A., 1938, II, 130).—The alkylation of C₆H₆ with olefines, alcohols, and naphthenes in the presence of H₂SO₄ leads to the formation of alkylbenzenes different from those obtained when the reactions are catalysed by AlCl₃. In presence of H_0SO_4, Δ^a -pentene gives a mixture of β - and γ -phenylpentane, and CH₂:CHPr^{\$\beta\$} affords tert.-amylbenzene. Isomerisation does not occur in presence of AlCl₃; CH2:CHPr^β gives CHPhMePr^β. Pr^aOH and C₆H₆ give PhPr^{\$} in presence of H₂SO₄ and PhPr^a in presence of AlCl₃. cycloPropane (I) gives exclusively PhPra in presence of AlCl₃ but H₂SO₄ induces isomerisation if the temp. is sufficiently high; thus at 65° (I) and C₆H₆ afford PhPr^β. Alkyl halides with C₆H₆ and AlCl₃ give a mixture of isomerides; even at 35° much PhPr^a results from Pr^aCl and C₆H₆. The mechanism of the alkylations is discussed.

Association of the nitrotoluenes. W. Huckel and M. von Schalscha-Ehrenfeld (J. pr. Chem.,

1940, [ii], **154**, 57—65).—The apparent mol. wts. (M) of o-, m-, and p-nitrotoluenes, 1- $C_{10}H_7$ · NO_2 , transβ-decalol (I), and α-fenchol (II) have been determined cryoscopically and ebullioscopically in C_6H_6 and in cyclohexane (III). For the nitrotoluenes, M increases almost equally with increasing conen., but the increase in C_6H_6 is \gg in (III). It is inferred that the dipole moments do not determine the degree of association of these compounds. (II) shows similar association to isoborneol, the M increasing with increasing conen. in both solvents, whereas the M of (I) increases with increasing conen. in (III) but not in C_6H_6 .

J. W. S.

Catalytic dehydrogenation of ethylbenzene. S. R. Sergienko (Compt. rend. Acad. Sci. U.R.S.S., 1940, 26, 69—72; cf. A., 1939, II, 205).—The dehydrogenation (Cr₂O₃) of PhEt to styrene begins at 425°, reaching 25—30% at 525°. At 525° some 1-ethylphenanthrene and PhMe are formed. A. Li.

Friedel and Crafts reaction. II. Condensation of o- and m-dichlorobenzene with chloroform and carbon tetrachloride. S. D. Wilson and Y. Y. Cheng (J. Org. Chem., 1940, 5, 223—226; cf. A., 1936, 976).—AlCl₃ is added to a mixture of CHCl₃ and o-C₆H₄Cl₂ and the mixture is heated at 55—60° for 8 hr., thereby giving (probably) 3:4:3':4':3'':4''-hexachlorotriphenylmethane, m.p. $160\cdot5$ — 162° , in 15% yield. Similarly $m\text{-C}_6\text{H}_4\text{Cl}_2$ at 60— 65° for 12—14 hr. affords 2:4:2':4':2'':4''-hexachlorotriphenylmethane, m.p. 227— $228\cdot5^\circ$, in 18% yield. CCl₄ and o-C₆H₄Cl₂ give (probably) 3:4:3':4'-tetrachlorobenzophenone chloride, hydrolysed by hot, 95% EtOH to 3:4:3':4'-tetrachlorobenzophenone, m.p. 141— 142° . 2:4:2':4'-Tetrachlorobenzophenone dichloride, m.p. 139— $140\cdot5^\circ$, is derived in 60% yield from $m\text{-C}_6\text{H}_4\text{Cl}_2$. H. W.

Organic selenium derivatives. V. Reaction products of selenium in [aqueous] sodium sulphide with benzyl derivatives. G. Speroni and G. Mannelli (Gazzetta, 1940, 70, 246—253).— Se in conc. Na₂S with C₆H₄X·CH₂Cl gives a product (cf. A., 1940, II, 160) which is a solid solution of a disulphide in a diselenide (cf. Fromm et al., A., 1913, i, 1323), as is shown by comparing the m.p. with that of mixtures of these. Products from CH, PhCl, $p\text{-NO}_2\text{-}C_6H_4\text{-}CH_2Cl$, and o- (I) and p-C₆H₄Cl·CH₂Cl (II) are examined. With Se in aq. $\hat{N}a_2\hat{S}e_2$, (I) and (II) give respectively di-o-, m.p. 105.5° , and di-p-chlorobenzyl disclenide, m.p. 82° . Di-p-bromobenzyl diselenide, m.p. 106°, is prepared similarly. With Na₂Se in COMe₂, o-NO₂·C₆ \hat{H}_4 ·CH₂Cl di-o-nitrobenzyldiselenide,m.p. 103·5°. $\overline{\text{K}}_2\text{SSeO}_3$ and $5:2:1\text{-NO}_2\text{-}\text{C}_6\text{H}_3\text{Cl-CH}_2\text{Cl}$ (III) give K 2-chloro-5-nitrobenzylseleniosulphate. This with I-KI, or on heating with dil. HCl, gives di-2-chloro-5nitrobenzyl diselenide, m.p. 171.5°, also obtained from (III) and aq. Na₂Se. E. W. W.

Synthesis of dialkylphenanthrenes. 3:5-Dimethyl-, 5-methyl-2-ethyl-, and 5-methyl-3-ethyl-phenanthrene. Abnormal selenium dehydrogenation of strophanthidin. E. E. Lewis and R. C. Elderfield (J. Org. Chem., 1940, 5, 290—299).—If strophanthidin and Se are heated very

rapidly in N_2 at 340° and then kept at 340—360° for 32 hr. small amounts of a hydrocarbon (I), $C_{17}H_{16}$ or $C_{16}H_{14}$, m.p. 131—132°, are obtained, not identical with the product of Elderfield et al. (A., 1934, 657, 1359). (I) gives a *picrate*, m.p. 142—144°, an additive compound, m.p. $168.5 - 170.5^{\circ}$, with $s \cdot C_6H_3(NO_2)_3$, and a quinone, $C_{17}H_{14}O_2$ or $C_{16}H_{12}O_2$, m.p. $207 - 208^{\circ}$. $p \cdot C_6H_4Me \cdot CH_2 \cdot CO_2K$, $2:3:1-NO_2 \cdot C_6H_3Me \cdot CHO$, and Ac_2O at $105 - 110^{\circ}$ yield 2-nitro-3-methyl-α-p-tolylcinnamic acid, m.p. 250·5— 251.5° , reduced (FeSO₄-aq. NH₃) to the $2-NH_2$ compound, m.p. 176.5—177.5°; this is transformed by diazotisation and treatment with Na₂S₂O₄ into 3:5-dimethyl-10-phenanthroic acid, m.p. 216—217°, which is decarboxylated (basic Cu carbonate in quinoline at 240—260°) to 3:5-dimethylphenanthrene (II), m.p. 53·5—54·5° (picrate, m.p. 139—139·5°; styphnate, m.p. 124—125°; 3:5-dimethylphenanthraquinone, m.p. 124·5—125·5°, and the corresponding quinoxaline, $C_{22}H_{16}N_2$, m.p. 173—173·5°). m-Allylethylbenzene, b.p. $88^{\circ}/18$ mm., from m-C₆H₄BrEt and CH₂:CH·CH₂Br, is oxidised (cold, dil. KMnO₄) to m-C₆H₄Et·CH₂·CO₂H, m.p. 62—63°, which is condensed with $2:3:6-NO_2\cdot C_6H_3Me\cdot CHO$ to 2-nitroα-m-ethylphenyl-3-methylcinnamic acid, m.p. 144·5— 145.5°. The corresponding NH_2 -acid is cyclised to 5-methyl-2-ethyl-10-phenanthroic acid, m.p. 171·5-172.5°, which gives 5-methyl-2-ethylphenanthrene (III) [additive compounds, m.p. $111-112^{\circ}$ and $49-50^{\circ}$ respectively with s-C₆H₃(NO₂)₃ and 1:2:4:6- $C_6H_2Me(NO_2)_2$; unstable picrate, m.p. 101—102°], from which a cryst. quinone or quinoxaline could not be derived. p-C₆H₄EtBr, b.p. 86·88°/15 mm., is converted into p-allylethylbenzene, b.p. 94—95°/23 mm., and thence into p-C₆H₄Et·CH₂·CO₂H, m.p. 88— 89°. This gives 2-nitro-, m.p. 182·5-184·5°, 2-amino-, m.p. 167—168°, -a-p'-ethylphenyl-3-methylcinnamic acid and 5-methyl-3-ethyl-10-phenanthroic acid, m.p. 186—187°, which is decarboxylated to 5-methyl-3ethylphenanthrene (IV) [additive compounds, m.p. $124-125^{\circ}$ and $74-76^{\circ}$, with $s-C_6H_3(NO_2)_3$ and $1:2:4:6-C_6H_2Me(NO_2)_3$; picrate, m.p. 111°]. (I) is not identical with (II), (III), or (IV). The preparation of the prepara 2-bromo-5-methyl-, m.p. 122—123°, and 3-bromo-6-methyl-, m.p. 93·5—94·5°, -phenylacetic acid is described. The latter acid is transformed into 2-nitro- α -2'-bromo-5'-methylphenyl-3-methylcinnamic acid, m.p. 190—191°, reduced to the 2- NH_2 -acid, which could not be satisfactorily cyclised.

Preparation of cholesterilene and various cholestadienes. R. L. Van Peursem (Iowa State Coll. J. Sci., 1939, 14, 101—102).—The properties of cholesterilene and $\Delta^{3:5}$ -cholestadiene are described again (cf. A., 1939, II, 105). Either of these with $\mathrm{Cr}_2\mathrm{O}_3$ yields Δ^4 -cholestene-3:6-dione (identified as monophenylhydrazone). $\Delta^{4:6}$ -Cholestadiene differs from 7-dehydrocholestene isomeride (Eck et al., ibid., 539).

Derivatives of naphthyl- and tetrahydronaphthyl-oxamic acids, and preparation of 4-nitro-α-naphthylamine. S. I. Sergievskaja (J. Gen. Chem. Russ., 1940, 10, 55—64).— NHPh·CO·CO₂Et and HNO₃ (d 1·53) yield Et 2: 4dinitro-oxanilate, m.p. 142—143°. Et α-naphthyl-

oxamate (I) and HNO_3 (d 1.4) (1 hr. at 15—20°) afford Et 4-nitro-α-naphthyloxamate, m.p. 158—159°, converted by heating at 70° with 10% NaOH into $4:1-NO_2\cdot C_{10}H_6\cdot NH_2$; some $2-NO_2$ -derivative is also formed in this reaction. (I) and Br in C₂H₄Cl₂ (1.5 hr. at room temp.) yield Et 4-bromo-α-naphthyloxam-ate, m.p. 135—136°, which gives 4-bromo-α-naphthyloxamic acid, m.p. 180° (decomp.), with boiling 10% NaOH, and 4:1-C₁₀H₆Br·NH₂ with boiling 60% KOH. The following are prepared analogously: 1-bromo-β-naphthyloxamic acid, m.p. 156—157° (Et ester, m.p. 97°), and Et 1-nitro-β-naphthyloxamate, m.p. 135—137° (small amounts of 6- and 8-NO₂derivatives, not isolated, are produced simultaneously). 5:6:7:8-Tetrahydro-α-naphthylamine and Et₂C₂O₄ (4 hr. at the b.p.) yield Et 5:6:7:8-tetrahydro- α naphthyloxamate (II), m.p. 83.5-84°, together with di-(5:6:7:8-tetrahydro- α -naphthyl)oxamide, 258°. (II) is hydrolysed (10% NaOH at 100°) to 5:6:7:8-tetrahydro- α -naphthyloxamic acid, $156-157^{\circ}$ [amide, m.p. $218-219^{\circ}$; $4\text{-}Br\text{-}derivative}$, m.p. $180-181^{\circ}$ (decomp.) (Et ester, m.p. $135-136^{\circ}$); $4\text{-}NO_2$ -derivative, m.p. $163-164^{\circ}$]. 5:6:7:8-Tetrahydro- β - $naphthyloxamic\ acid,\ m.p.\ 158°\ (decomp.)$ (Et ester, m.p. 81—82°; amide, m.p. 198—199°), is prepared analogously.

Derivatives of sulphonamides.—See B., 1940, 494.

 N^4 - Diethylaminoalkyl - N^1 - dialkylsulphanil -[p-diethylaminoalkylaminobenzenesulphondialkylamides] and related compounds. J. Walker (J.C.S., 1940, 686--692). $p\text{-NHAc}\cdot C_6H_4\cdot SO_2Cl$ (I) and NHMe₂-COMe₂-Et₂O give p-NHAc·C₆H₄·SO₂·NMe₂ (II), new m.p. 145—146° (solvated from aq. EtOH, m.p. 106—107°) (cf. Ganapati, A., 1939, II, 107), hydrolysed to p-NH₂·C₆H₄·SO₂·NMe₂ (III), new m.p. 169—170°. (II) and K in xylene at 140—150° (bath) give a K derivative, converted by NEt₂·[CH₂]₂·Cl into an oil, b.p. $\sim 195^{\circ}/0.05$ mm., and p-N- β -diethylaminoethylacetamidobenzenesulphondimethylamide, b.p. 210°/0.05 mm., hydrolysed by 16% HCl to p-β-diethylaminoethylaminobenzenesulphondimethylamide, b.p. 195°/0.08 mm. (hydrochloride, m.p. 159—160°), also obtained in small yield from (III) and NEt₂·[CH₂]₂·Cl,HCl at 145—150°. (I) and piperidine in COMe₂ afford p-acetamidobenzenesulphonpiperidide, new m.p. 150°, converted through the K salt into the Ac derivative of p- β -diethylaminoethylaminobenzenesulphonpiperidide (hydrochloride, m.p. 201—203°). \hat{p} -NHAc·C₆H₄·SO₂·NEt₂ (IV) (a gum from the monohydrate at 100°) is converted as above into p-NEt₂·[CH₂]₂·NH·C₆H₄·SO₂·NEt₂ (hydrochloride, p-NH₂·C₆H₄·SO₂·NEt₂. 138—139°) \mathbf{and} NEt2·[CH2]3·Cl and (IV) similarly afford p-NEt₂·[CH₂]₃·NH·C₆H₄·SO₂·NEt₂ (dihydrochloride, m.p. 180—181°). NAcPhEt or HCO·NPhEt and ClSO₃H, followed by aq. NH₃, give p-N-acetyl-, m.p. $126-127^{\circ}$ (+H₂O, lost at ~102°) (low yield), or p-N-formyl-ethylaminobenzenesulphonamide, m.p. 188—189° (64% yield), respectively. The latter is hydrolysed by 16% HCl to p-ethylaminobenzene-sulphonamide, m.p. 134—135.5°. (I) and NH₂Et— COMe₂-Et₂O afford p-acetamidobenzenesulphonethylamide, m.p. 153—155°, less readily obtained (impure) from p-NHAc·C₆H₄·SO₂·NH₂ and 95% EtOH–KOH–EtI. HCO·NNaPh and NEt₂·[CH₂]₂·Cl in C₆H₆ give N-β-diethylaminoethylformanilide (V), b.p. 143—144°/0·1 mm., converted by 22% HCl into N-β-diethylaminoethylaniline, b.p. 152—153°/18 mm. [Ac derivative (VI), b.p. 118—120°/0·1 mm.]. (V) or (VI) is unchanged by ClSO₃H. HCO·NNaPh and γ-bromopropylphthahmide at 100° (bath) afford N-γ-phthalimidopropylformanilide, m.p. 126°, converted by ClSO₃H into N-γ-(o-carboxybenzamido)propylaniline-(?)p-sulphonic acid, m.p. 250—253°. 2-Acetamidonaphthalene-6-sulphonamide, m.p. 246—247° (intermediate chloride best obtained from

2:6-NHAe· $C_{10}H_6$ ·SO₃Na and ClSO₃H), is hydrolysed by 16% HCl to the 2- NH_2 -derivative, m.p. 233·5—235°. Antimalarial tests are recorded. Some of the above compounds are inactive in *Pl. relictum* infection of canaries.

A. T. P.

Chemotherapy of bacterial infections. II. Synthesis of sulphanilamide derivatives and relation of chemical constitution to chemotherapeutic action. K. Ganapathi (Proc. Indian Acad. Sci., 1940, 11, A, 298—311).—p-Vanillylideneaminobenzenesulphonamide, m.p. 198-199° $p-NH_2\cdot C_6H_4\cdot SO_2\cdot NH_2$ (I) and vanillin in EtOH], is reduced by Zn-AcOH to p-4'-hydroxy-3'-methoxybenzylaminobenzenesulphonamide, m.p. 167°. Phenylalanine and p-NHAc·C₆H₄·SO₂Cl (II) in 2·5N-NaOH afford, after hydrolysis (dil. HCl) of the Ac derivative, m.p. 205—206°, N-sulphanilylphenylalanine, m.p. 196— 197° (decomp.). dl-Taurine affords N-sulphanilyltaurine. 1:3:6- or 2:5:7-NH₂·C₁₀H₅(SO₃H)₂ gives 1-sulphanilamidonaphthalene-3: 6- or 2-sulphanilamidonaphthalene-5:7-disulphonic acid, respectively. 1and 2-Sulphanilamido-8-naphthol-3:6-disulphanic acid are prepared. 6-Aminoquinoline and (II) in C₅H₅N give (after hydrolysis) 6-sulphanilamidoquinoline, m.p. 201° (cf. Bobrański, A., 1939, II, 179). (I) and PhNCS in EtOH afford p-phenylthiocarbamidobenzene-sulphonamide, m.p. 189°. 4:4'-Diaminodiphenyl sulphone and CH₂·CH·CH₂·NCS in EtOH give 4:4'di(allylthiocarbamido)diphenyl sulphone, m.p. 183°. Sulphanil-p-aminoanilide appears to have m.p. 137— 138° or 155° (cf. lit.). (II) and $o\text{-NO}_2\text{-}C_6H_4\text{-}NH_2$ in C₅H₅N-COMe₂ yield sulphanil-o-nitroanilide, m.p. 167°. 2-Chloroquinoline-3-carboxylic acid and (I) at 165—170° afford N⁴-(3-carboxy-2-quinolyl)sulphanil-amide, m.p. >280°. 2:8-Diaminoaeridine and (II) in C₅H₅N-COMe₂-H₂O give (after hydrolysis with NaOH) 2:8-di(sulphanilamido)acridine (III). Similarly prepared is 2-p'-N1-sulphanilamidobenz-236—238°. enesulphonamidopyridine -(IV), m.p. 2-Aminothiazole affords 2-sulphanilamidothiazole, m.p. 197—198° (improved prep.) (cf. Fosbinder et al., A., 1939, II, 525). The protective action of the latter and (III) in streptococcal and pneumococcal infections in mice is noted; (IV) has little effect. 4-Amino-uracil or -thiouracil (V) and diazotised (I) in aq. NaOH afford 4-amino-5-benzeneazo-uracil- or -thiouracil-4'-sulphonamide, respectively. Diazotised 2-sulphanilamidopyridine and (V) or $m-C_6H_4(NH_2)_2$ afford analogous dyes. Cholesteryl chloride does not react with (I). The relation between activity and chemical constitution is discussed. A. T. P.

Reduction of dinitroveratrole with sodium sulphide. B. K. NANDI (Current Sci., 1940, 9, 118—119).—1:2:4:5- $C_6H_2(OMe)_2(NO_2)_2$ with aq. EtOH–Na₂S yields 1:2:4:5- $C_6H_2(OMe)_2(NH_2)_2$ and the Na salt, m.p. 194°, of 5-nitro-4-hydroxylaminoveratrole, m.p. 110°.

Manufacture of benzidine.—See B., 1940, 430.

Copper lakes of azo-dyes. Further types. W. F. Beech and H. D. K. Drew (J.C.S., 1940, 608—612; cf. A., 1938, II, 180).—1-2'-Hydroxy-5'sulphobenzeneazo-β-naphthol (2 mols.) and aq. CuCl₂,2H₂O (3 mols.) give a Cu complex dodecahydrate [probably (I)] (the NH_4 salt, $+8H_2O$, has 2 NH_3

co-ordinated outer Cu atoms). Both azo-N are in the anti-form in both dye residues. This is the first case where both N of an azo-group are coordinated to metallic atoms at the same time, i.e., are co-ordinatively saturated. 2 Cu of (I) are each singly ionised and co-

metal

azo-

have

In

ordinated with 3 other atoms. 1-2'-Hydroxy-5'sulphobenzeneazo-β-naphthol-6-sulphonic acid and CuCl₂,2H₂O in aq. EtOH afford the Cu complex This is the (II), +5.5 or $6H_2O$, sol. in H_2O .

rotated to bring the OH on opposite sides of the azochain; the simple Cu lakes from dyes free from SO₃H have 2 OH on the same side of the azo-chain (loc. cit.). The Cu derivative, C₁₇H₁₀O₃N₂Cu,Cu(OH)₂, of benzeneazo-β-naphthol-2'-carboxylic acid (loc. cit.) is probably the cupri-hydroxide complex (formula given). Both types of lake can thus be prepared from the same azo-dye under different conditions of acidity. 2-2'-Carboxybenzeneazo - α - naphthol - 4 - sulphonic acid and aq. $CuCl_2, 2H_2O$ yield a Cu complex dihydrate, $C_{17}H_{10}O_6N_2SCu, 2H_2O$ (1 Cu:1 azo-dye residue). Formation of the NH_4 salt, $+4H_2O$, involves change of structure involving removal of one third of its azo-dye residues and co-ordination with NH3 (formula suggested); left in air for 2 weeks, it loses ~4 H₂O + 2 NH₃. 2-Benzeneazo-α-naphthol-4-sulphonic acid and aq. CuCl₂ afford the simple Cu salt, +8H₂O. Action of aq. NH₃ on the Cu salt, +8H₂O, from 1-3'-sulphobenzeneazo-β-naphthol causes the Cu to wander to the inner complex to give an NH_{4} salt of a cupri-hydroxide complex with loss of 1 dye residue.

1-2'-Hydroxy- or -carboxy-benzeneazo-β-naphthylamine yields anhyd. Cu complexes, $C_{16}H_{11}ON_3Cu$ (C_5H_5N derivative; base co-ordinated to Cu) or $C_{17}H_{11}O_2N_3Cu$ (III) [C_5H_5N derivative in moist air gives the monohydrate of (III)], respectively. The azo-dyes are able to adjust their configurations to conform with the structural requirements of substituents in the nuclei and with the valency of the lake-forming metal. A. T. P.

Structure of aluminium lakes of azo-dyes and of alizarin. W. F. BEECH and H. D. K. DREW (J.C.S., 1940, 603—607; cf. A., 1939, II, 309).—As in case of Cr, no definite lakes of Al with o-monohydroxyazo-dyes are isolable; if formed they are unstable. oo'-Dihydroxyazo-compounds give lakes similar in structure to those of Cr^{III}, but much less stable to mineral and org. acids. 1-o-Hydroxybenzeneazo-β-naphthol (I) and AlCl₃,6H₂O in 96% EtOH give the aluminichloride pentahydrate (II), C₁₆H₂₀O₇N₂ClAl, and a little of a complex, probably [Al($C_{16}H_{10}O_2N_2$)₂]H,2H₂O. The aq. solution of (II) contains Cl'. At 150°, 5 H₂O and part of the Cl (as HCl) are lost. (II) and aq. NH₃ or K₂CrO₄, or (I)-AlCl₃,6H₂O-NaOH-96% EtOH afford the oxide tetrahydrate, $C_{32}H_{28}O_9N_4Al_2$, insol. in H_2O ; 3 H_2O are lost at 120° to give probably the anhyd. hydroxide. 1-2'-Hydroxy-5'-sulphobenzeneazo-β-naphthol Al₂(SO₄)₃,18H₂O in aq. NaOH (+ a little EtOH) give the alumini-sulphonate octahydrate (III) (NH4 salt hexahydrate), sol. in H₂O; at 180° it loses ~7.5 H₂O

and becomes almost insol. in H₂O; aq. HCl yields 2'-Hydroxy-4'-sulphonaphthaleneazo-dye. 1': 4-azo-1-phenyl-3-methylpyrazol-5-one and AlCl₃,6H₂O give the alumini-sulphonate hexahydrate, $C_{20}H_{25}O_{11}N_4SCl$ (NH₄ salt pentahydrate); it loses 5 H₂O at 180° but regains 2 H₂O in moist air. No pure Al lake is obtained from o-carboxybenzeneazoβ-naphthol or benzeneazosalicylic acid, although there is evidence of formation of lakes containing 1 Al: 1 dye residue. Alizarin and AlCl₃,6H₂O-NaOH in EtOH afford a substance, C₂₈H₁₉O₁₇Al₅,13H₂O (formula suggested), converted by dil. aq. NH₃ into an insol. substance and a red lake, C14H21O12NAl2, or by aq. NH₃ (d 0.88) into NH_4 Al alizarate dihydrate [probably (IV)]; it loses ~ 3 H₂O + 1 NH₃ at 170°; aq. HCl regenerates alizarin. Alizarin and CaCO3 in boiling H_2O give Ca alizarate dihydrate. structure of Turkey-red Al-Ca lake is discussed.

Method of diazotisation.—See B., 1940, 430.

Manufacture of stable diazo-salts.—See B., 1940, 430.

Azo-group as a chelating group. IV. Con-(Miss) \mathbf{of} stitution arylazobisoximes. ELKINS and L. HUNTER (J.C.S., 1940, 653—655; cf. A., 1938, II, 483).—Support for Bamberger's hydroxytriazen structure for the arylazobisoximes is provided by the prep. of co-ordinated Cu^{II}, Ni, Co^{II}, and Fe^{III} complexes of type A $\begin{bmatrix} N = NAr \\ NX \cdot O \end{bmatrix}_n M (X = CR_2: N \cdot O \cdot CR_2). Thus, benzene-azobisacetoxime gives <math>Cu^{II}$, m.p. 175—178°, Ni, m.p. 166° (dipyridino-com-compounds. o-Tolueneazobisacetoxime, m.p. 78—82° yields Cu^{II} , m.p. 131°, Ni, m.p. 143°, Co^{II} , m.p. 128°, and Fe^{III} , m.p. 125°, compounds. p-Tolueneazobis-acetoxime, m.p. 143°, affords Cu^{II} (anlyd), m.p. 181°; monohydrate, m.p. 180°), Ni, m.p. 174° (dipyridino-compound loses 2 C_5H_5N at \sim 110°), and Fe^{III} , m.p. 136—137°, compounds. Benzeneazobismethylethylketoxime, m.p. $92-93^{\circ}$, yields Cu^{II} , m.p. 106° , Ni, m.p. 101° (dipyridino-compound, m.p. 80°), Co^{II} ($+2\text{H}_2\text{O}$), m.p. $115-118^{\circ}$, and Fe^{III} , m.p. $88-90^{\circ}$, compounds. m-Tolueneazobismethylethylketoxime, m.p. 50-51° (from m-C₆H₄Me·N₂Cl and COMeEt in alkali), yields Cu^{II} (+H₂O), m.p. 86—88° (anhyd., m.p. 103— 105°), Ni, m.p. 80—82°, Co^{II} , m.p. 80—85°, and Fe^{III} , m.p. $\sim 50^{\circ}$, compounds. Benzeneazobisbenzaldoxime, new m.p. 132—134°, gives Cu^{II}, m.p. 187° Ni, m.p. 168° (dipyridino-compound, m.p. 150—155°), Co^{II}, m.p. 80—85°, and Fe^{III} (impure), m.p. 110° (softens at 80°), compounds. There is only memory of Co^{III}, compounds. tary formation of Co^{III} complexes. The complexes are decomposed by mineral acids but are stable to boiling aq. or alcoholic alkali. A. T. P.

Apparatus for continuous automatic measurement of evolved gas.—See A., 1940, I, 302.

Ethers of phenylmethylcarbinol and its homologues.—See B., 1940, 431.

Resolution of β -naphthylmethylcarbinol. T. A. COLLYER and J. Kenyon (J.C.S., 1940, 676—679). dl-β-C₁₀H₂·CHMe·OH (Lund, A., 1937, II, 364) affords a H phthalate (I), m.p. 125°, and thence the cinchonidine salt, m.p. 167° (decomp.), $[\alpha]_{5893} -41.0^{\circ}$ in CHCl₃, of d- β -naphthylmethylcarbinyl H phthalate (II), m.p. 101—102°. Decomp. of the mother-liquors and conversion into the strychnine salt, m.p. 200-202°, $[\alpha]_{5893}$ —45·3° in CHCl₃, affords l- β -naphthylmethylcarbinyl H phthalate (III), m.p. 101—102°. Hydrolysis (aq. EtOH–NaOH) of (II) and (III) gives d-, m.p. 71—72° (formate, m.p. 62—64°, $[\alpha]_{5893} + 10 \cdot 5$ ° in EtOH; acetate, m.p. 36—37°, $[\alpha]_{5893} + 124 \cdot 2$ ° in EtOH), and l- β - C_{10} H $_7$ ·CHMe·OH (IV), m.p. 71—72° (benzoate, m.p. 62—64°, $[\alpha]_{5893} - 53 \cdot 4$ ° in EtOH), respectively. Both are optically pure. Vals. of $[\alpha]_{5893}$ compared with those of the corresponding deriv are compared with those of the corresponding derivatives of α-C₁₀H₇·CHMe·OH (cf. Pickard et al., J.C.S., 1914, 105, 2644). Both l- α - and l- β -derivatives of C₁₀H₈ are configuratively similar and optical behaviour of both series of compounds is dominated by $C_{10}H_7$. (III) and AcOH-NaOAc at 100° (bath) for ~40 hr. afford (I) + (III) and the acetate (activity 6.5%without inversion of configuration) of (IV); after ~ 20 hr. the l+dl-acetate, $[\alpha]_{5461}-8.8^{\circ}$ in EtOH, and H phthalate, $[\alpha]_{5461}+27^{\circ}$ in EtOH, are recovered. (III) and anhyd. HCO₂H rapidly afford o-C₆H₄(CO₂H)₂ and dl-β-naphthylmethylcarbinyl formate, m.p. 55—56°. A. T. P.

Hydrogenation of wood. H. P. GODARD, J. L. McCarthy, and H. Hibbert (J. Amer. Chem. Soc., 1940, 62, 988).—Hydrogenation (3·2 H₂ per 100 g.; Cu chromite; dioxan; 250—280°/333—400 atm.) of resin- and fat-free maple and spruce wood meal gives 60—70% and 35—40% (calc. on total lignin), respectively, of 4-n-propylcyclohexan-ol + -1: 2-diol with oils of higher b.p.

R. S. C.

Biochemistry of micro-organisms. (A) Chlorine metabolism by moulds. (B) Caldariomycin, $C_5H_8O_2Cl_2$, a metabolic product of Caldariomyces fumago, Woronichin. P. W. CLUTTERBUCK, S. L. MUKHOPADHYAY, A. E. OXFORD, and H. RAISTRICK (Biochem. J., 1940, 34, 664-677). —A quant, survey of the Cl metabolism of 139 species or strains of moulds grown on Czapek-Dox 5% glucose solution containing 0.5 g. of KCl per l. as sole source of Cl shows that extensive conversion of inorg. chloride into org. metabolic products containing Cl is of rather rare occurrence although with a no. of species this conversion is by no means negligible. Under these conditions C. fumago affords fumaric acid and caldariomycin (I), m.p. 121° , $[\alpha]_{5461}^{20}$ +59·2° in H_2O , which is probably 2:2-dichlorocyclopentane-1:3diol. It does not contain OMe or Me as side-chain. The Cl atoms are very labile since they are completely removed when it is kept overnight in cold 0·In-NaOH. It does not contain CO or CHO but since it has two active H (Zerevitinov) the probable presence of two actual or potential OH is indicated although no satisfactory derivatives proving the presence of these groups could be obtained. It is oxidised by CrO₃ to succinic acid, thus establishing the presence of :C·CH₂·CH₂·C:. It is reduced (H₂, Pd-C, H₂O) to cyclopentanone. OH·C·C·OH cannot be present since it is not attacked by HIO₄. It is very stable to heat and does not lose H₂O or HCl at a moderate temp. Above 180° it gives H₂O, HCl, black resinous products, and two isomeric ketones, C_5H_5OCl , which yield dinitrophenylhydrazones, m.p. 226° (decomp.) and 238° (decomp.); the former is also obtained from the products of hydrolysis of caldariomycin by boiling 2N-H₂SO₄. It does not contain ·CH₂·CO· since it gives no ketonic reactions. This group is formed by treatment with dil. alkali hydroxide since the solution then gives a ppt. with Brady's reagent. Further, (I) does not immediately give Callow's modification of the Zimmermann reaction for active CH, although an alkaline solution after some time quickly gives an intense reaction. Finally, the reduction of cold Fehling's solution by (I) is apparent only after a considerable lag period during which a reducing substance is presumably formed.

Action of ephedrine on halogenated organic compounds.—See B., 1940, 493.

Reaction between dibenzyl disulphide and sulphuryl chloride. G. H. Elliott and J. B. Speakman (J.C.S., 1940, 641—649).—(CH₂Ph·S)₂ (I) and SO₂Cl₂ in H₂O-free Et₂O or C₆H₆ at 37—39° afford CH₂PhCl and SO₂, with some S (not formed with excess of SO₂Cl₂). In undried Et₂O, reaction is slow

at room temp, but at the b.p. similar fission may occur; (I) is partly oxidised to $CH_2Ph \cdot SO_2 \cdot S \cdot CH_2Ph$ (II), the yield of which decreases with excess of SO₂Cl₂ since at 37—39° (II) and SO₂Cl₂ (excess) give CH₂PhCl (mainly), CH₂Ph·SO₂Cl, and SO₂. Fission of (I) without conversion into (II) may occur. Dibenzyl disulphone could not be prepared, but di-ptolyl disulphone is unchanged with SO₂Cl₂ in C₆H₆ at 58—60°, although the corresponding disulphide with SO_2Cl_2 in Et_2O affords $p\text{-}C_6H_4ClMe$. Mechanisms of reactions are discussed. H_2O may facilitate the action of SO_2Cl_2 on wool by swelling the fibres. Disulphide bond breakdown occurs; SO_2Cl_2 , like Cl₂, renders wool unshrinkable probably by rupture of the cystine linkages between the peptide chains of the fibres. SOCl₂, unsuitable for making wool unshrinkable, has no significant action on (I) or (II) at 37—39°. A. T. P.

Separated auxo-enoid systems. X. Colour

phenomena of nitrocinnamoyl derivatives of arylamines. E. A. Smirnov (J. Gen. Chem. Russ., 1940, 10, 43—54).— $C_6H_4R\cdot CH:CH\cdot COCl$ and $NH_2\cdot C_6H_4R'$ give the following $C_6H_4R\cdot CH:CH\cdot CO\cdot NH\cdot C_6H_4R'$: R=H:R'=m-, m.p. 115° , and p-OMe, m.p. 149° ; R'=m-, m.p. 218° , and p-OH, m.p. 213° ; R'=m-, m.p. $183\cdot 5^\circ$, and p- NMe_2 , m.p. $173\cdot 5^\circ$; $R=m\cdot NO_2:R'=H$, m.p. $199\cdot 5^\circ$; R'=m-, m.p. 174° , and p-OMe, m.p. $192\cdot 5^\circ$; R'=m-, m.p. $275\cdot 5^\circ$, and p-OH, m.p. $258\cdot 5^\circ$ (N-Me derivative, m.p. 213°); R'=m-, m.p. $194\cdot 5^\circ$, and p- NMe_2 , m.p. 222° ; $R=p\cdot NO_2:R'=H$, m.p. $208\cdot 5^\circ$; R'=m-, m.p. 178° , and p-OMe, m.p. $215\cdot 5^\circ$; R'=m-, m.p. $24\cdot 5^\circ$, and p-OH, m.p. 279° (N-Me derivative, m.p. 226°); R'=m-, m.p. $224\cdot 5^\circ$, and p- NMe_2 , m.p. $238\cdot 5^\circ$. The intensity of coloration (yellow to dark red) of the compounds rises in the order $R=H< m\cdot NO_2< p\cdot NO_2$, and $R'=H< m\cdot NMe_2< p\cdot NMe_2$. R. T.

Constitution of dihydroxy-homophthalic and

-terephthalic acid derived from triethyl orcinoltricarboxylate. Y. Asahina and H. Nogami

(Proc. Imp. Acad. Tokyo, 1940, 16, 119-121).-

3:5-Dihydroxy-2-carboxyphenylacetic acid is con-

verted by CH₂N₂ into the Me₂ ester, m.p. 77°, which with MeI and K₂CO₃ in COMe₂ affords Me 3:5-dimethoxy-2-carbomethoxyphenylacetate, m.p. 72— 73°, hydrolysed (KOH-EtOH) to 3:5-dimethoxy-2carbomethoxyphenylacetic acid, m.p. 147.5°. The corresponding chloride is condensed with CHNaAc·CO₂Et and the product is transformed by NH_3 into Et γ -3: 5-dimethoxy-2-carbomethoxyphenylacetoacetate (I), m.p. 115°, which is converted by restrained action of KOH into 3:5-dimethoxy-2carbomethoxybenzyl Me ketone, m.p. 100.5°, and thence by cone. H₂SO₄ into the corresponding acid, m.p. 139—140°, which is not readily lactonised. Successive treatments of (I) with Bul and EtOH-NaOEt, KOH-EtOH, and conc. H₂SO₄ or KOH-EtOH give a product, m.p. 137°, quite distinct from olivetonic acid Me, ether, m.p. 93°. Jerdan's orientation (J.C.S., 1899, 75, 808) of the orcinoldicarboxylic acids must therefore be reversed. Et 3:5-dihydroxy-4-carboxy-2-carbethoxyphenylacetate has been con-

verted into 6:8-dimethoxy-3-methylisocoumarin and 3:5-dihydroxy-2-carbethoxyphenylacetic acid into olivetonic acid or olivetonide Me₂ ether. H. W.

Naphthalene series. II. Synthesis of transdecahydronaphthalene - trans - 2 - carboxylic- 3 - acetic acid. N. A. Chaudhry, R. D. Desai, and G. S. Sahariya (Proc. Indian Acad. Sci., 1940, 11, A, 145—148).—trans-2-Ketodecahydronaphthalene gives the cyanohydrin, b.p. 113°/6 mm., dehydrated by SOCl₂-C₅H₅N at 0°—room temp. to trans-2-cyano-Δ²-octahydronaphthalene, b.p. 145°/6 mm. [oxidised by KMnO₄ to cyclohexane-1:2-diacetic acid (I)]. Boiling conc. HCl then gives trans-Δ²-octahydronaphthalene-2-carboxylic acid, m.p. 146° [oxidised to (I)], which with CN·CHNa·CO₂Et-EtOH at, successively, 0°, room temp., and the b.p. gives an ester, hydrolysed to trans-decahydronaphthalene-trans-2-carboxylic-3-acetic acid, m.p. 214—215°, and an impure acid, m.p. 160—180°. R. S. C.

Mechanism of aromatic side-chain reactions with special reference to polar effects of substituents.—See A., 1940, I, 295.

Naphthalene series. I. Properties of 2acetyl-1-naphthol. Synthesis \mathbf{of} 2-ethyl-1naphthol. M. Akram, R. D. Desai, and A. Kamal. III. Properties of 4-acetyl-1-naphthol. Preparation of 4-ethyl-1-naphthol. IV. Preparation and properties of 2:4-diacetyl- and 2-acetyl-4-propionyl-1-naphthol. M. AKRAM and R. D. DESAI (Proc. Indian Acad. Sci., 1940, 11, A, 139—144, 149—155, 156—161).—I. Some $(4:1-OH\cdot C_{10}H_6)_2$, m.p. 300°, and $1:1'-dihydroxy\cdot 2:2'-dinaphthyl oxide, m.p. 183—184°, accompany (method:$ Clemo et al., J.C.S., 1931, 1265) 2:1-C₁₀H₆Ac•OH (I) $C_{24}H_{18}O_4$, m.p. $>300^{\circ}$. 2:4:1- $C_{10}H_5AcBr\cdot OH$, Ac₂O, and NaOAc at 180—185° give 6-bromo-3-acetyl-2-methyl-1: 4-α-naphthapyrone, m.p. 206—207°, hydrolysed by 10% NaOH to 1:4:2-OH·C₁₀H₅Br·ČO₂H (II). Br and (I) in CHCl₃ give 4-bromo-2-bromoacetyl-1-naphthol, m.p. 150°, hydrolysed by NaOEt in boiling EtOH to 4-bromo-2-hydroxyacetyl-1-naphthol, m.p. 136—137°, and 4-bromo-α-naphthacoumaranone, m.p. 274°. 4-Bromo-2-dibromoacetyl-1-naphthol (similarly prepared), m.p. 199°, and NaOEt-EtOH give (II) and a neutral substance, m.p. 250°.

a neutron detectable, m.p. 250 t $4:2:1-NO_2 \cdot C_{10}H_5$ Ac·ÔH and NaOAc-Ac₂O at $100-140^{\circ}$ give 6-nitro-3-acetyl-2-methyl-1: $4-\alpha$ -naphthapyrone, m.p. $242-243^{\circ}$, hydrolysed by hot 10% NaOH to $4:1:2-NO_2 \cdot C_{10}H_5$ (OH)·CO₂H. Zn-Hg-HCl reduces (I) to $2:1-C_{10}H_6$ Et·OH, m.p. 70° (lit. 68°) [picrate, m.p. 123° (lit. 118°); Me ether, b.p. $136^{\circ}/6$ mm. (picrate, m.p. 80°); $4-NO_2$ -, m.p. 88° , and PhN_2 -derivative, m.p. 189° ; with Br gives $2-\beta$ -bromoethyl-1-naphthol, m.p. 90° (with alkali gives a substance, m.p. 280° after sintering)], and 2-ethyl-1:2:3:4-tetrahydro-1-naphthol, b.p. $108^{\circ}/8$ mm.

III. $4:1\text{-}\mathrm{C}_{10}\mathrm{H}_6\mathrm{Ac\cdot OH}$ (III), m.p. $199-200^\circ$ (acetate, m.p. $83-84^\circ$; Me ether, m.p. $71-72^\circ$; picrate, m.p. $160-161^\circ$; semicarbazone, m.p. 200° ; oxime, m.p. 250°), with a little (I) is best obtained from $\alpha\text{-}\mathrm{C}_{10}\mathrm{H}_7\text{-}\mathrm{OH}$ by AcCl and ZnCl₂ in PhNO₂ at

room temp. With ZnCl₂ and boiling EtCO₂H it gives $1:2\text{-OH}\cdot C_{10}H_6\cdot COEt$. With Br-CHCl₃ it gives 2-bromo-4-acetyl-, m.p. $134\text{--}135^\circ$, -4-bromoacetyl-, m.p. 140° [with warm EtOH gives (colour changes) a substance, m.p. $178\text{--}180^\circ$; with boiling 10% NaOH gives the 4-hydroxyacetyl derivative, m.p. $93\text{--}94^\circ$], and -4-dibromoacetyl-1-naphthol, m.p. 116° (with 10% NaOH gives 3-bromo-4-hydroxy-1-naphthoic acid, m.p. 208°). With NaOBr it gives $4:1\text{-OH}\cdot C_{10}H_6\cdot CO_2H$, which in boiling H_2O or above the m.p. gives α -C₁₀H₇·OH and with Br-CHCl₃ gives $4:1\text{-C}_{10}H_6\text{Br}\cdot OH$. With HNO₃ (d $1\cdot5$) in AcOH it gives 2-nitro-4-acetyl-1-naphthol (IV), m.p. 145° , $2:1\text{-NO}_2\cdot C_{10}H_6\cdot OH$, and $2:4:1\text{-(NO}_2)_2C_{10}H_5\cdot OH$ [also obtained from (IV)]. With Zn-Hg-HCl it gives $4:1\text{-C}_{10}H_6\text{Et}\cdot OH$, m.p. 42° , b.p. $160\text{--}161^\circ/7$ mm. [with PhN₂Cl gives 2-benzeneazo-4-ethyl-1-naphthol, m.p. $>300^\circ$, and (? eis- and trans-)forms, m.p. I11—112° and $180\text{--}181^\circ$, of 4-ethyl-1:2-naphthaquinone-2-phenylhydrazone], and 4-ethyl-1:2:3:4-tetrahydro-1-naphthol, b.p. $110\text{--}111^\circ/10$ mm.

IV. AcCl-AlCl₃ in PhNO₂ converts (I) or (III) into 2:4-diacetyl-1-naphthol (V), m.p. 141°, which yields (methods as above) 2-acetyl-4-bromoacetyl-, m.p. 164—165°, 2-acetyl-4-hydroxyacetyl-, m.p. 130°, and 2-bromoacetyl-4-dibromoacetyl- (VI), m.p. 136°, -1-naphthol. Boiling 10% NaOH converts (VI) into α-naphthacoumaranone-4-carboxylic acid, m.p. 207—209°. With HNO₃ (d 1·5) (1 mol.) in AcOH, (V) gives 4:2:1- and 2:4:1-NO₂-C₁-H₂-Ac·OH and

2:4:1-NO₂·C₁₀H₅Ac·OH and 2:4:1-(NO₂)₂C₁₀H₅·OH, obtained also with a polynitro-compound, m.p. 215°, by use of 2 mols. of HNO₃. With ZnCl₂ in boiling AcOH or EtCO₂H, (V) gives 2:1-C₁₀H₆R·OH (R = Ac or EtCO, respectively), and with NaOAc-Ac₂O at 180—190° gives 3:6-diacetyl-2-methyl-1:4- α -naphthapyrone, m.p. 170—171°, hydrolysed by boiling 10% NaOH to 1-hydroxy-4-acetyl-2-naphthoic acid, m.p. 216° [decomp. to (III)]. With EtCOCl and ZnCl₂ in PhNO₂, (I) gives 2-acetyl-4-propionyl-1-naphthol, m.p. 131°, the Br-derivative, m.p. 141°, of which loses its Br to hot 5% NaOH, with ZnCl₂-AcOH gives (I), with ZnCl₂-EtCO₂H gives 1:2-OH·C₁₀H₆·COEt, and with HNO₃ (1 mol.) gives 4:2:1-NO₂·C₁₀H₅Ac·OH with a little 2:1-NO₂·C₁₀H₆·OH and 2:4:1-(NO₂)₂C₁₀H₅·OH.

Preparation and properties of α- and β-naphthylglyoxal. L. N. Goldbey and I. J. Postovski (J. Gen. Chem. Russ., 1940, 10, 39—42).—1- or 2- $C_{10}H_7$ ·COMe with SeO₂ in 80% AcOH (1 hr. at the b.p.) yields α- (I), an oil ($+H_2O$, m.p. 82°; osazone, m.p. 105°), or β-naphthylglyoxal (II) [$+H_2O$, m.p. 110° (lit. 98°); osazone, m.p. 134°], respectively. (I) and (II) with o- C_6H_4 (NH₂)₂ yield the corresponding quinoxalines, m.p. 114° and 137°, respectively. (II) and CH₂O in aq. NH₃ [Cu(OAc)₂ catalyst] afford 4-β-naphthylglyoxaline, m.p. 168°. (I) and (II) give an intense green coloration when heated with 2-aminopyridine. R. T.

Derivatives of 2-phenylcyclohexanone. J. C. Bardhan (Chem. and Ind., 1940, 369).— CPhNa($\rm CO_2Et)_2$ and $\rm CH_2Ac\cdot CH_2\cdot NMcEt_2I$ give Et δ -keto- α -carbethoxy- α -phenylhexoate, b.p. $182^{\circ}/6$

mm., hydrolysed and decarboxylated to δ-keto-αphenylhexoic acid, b.p. $180^{\circ}/4$ mm., $185^{\circ}/6$ mm. [semicarbazone, m.p. $161-162^{\circ}$; Me ester, b.p. $149^{\circ}/5$ mm. (semicarbazone, m.p. 151—152°)]. The Et ester, b.p. 160°/9 mm. (semicarbazone, m.p. 119—120°), condenses with CN·CH₂·CO₂Et (piperidine) Et, α -cyano- ϵ -phenyl- β -methyl- Δ^{α} -pentene- $\alpha\epsilon$ -dicarboxylate, b.p. 212°/7 mm., which when treated with KCN and then hydrolysed and esterified yields Et₃ α-phenyl-δ-methylpentane-αδε-tricarboxylate, 208°/7 mm. This is subjected to the Dieckmann reaction and the resulting β-CO-ester is condensed with CH₂Cl·CH₂·CO₂Et; the crude product is hydrolysed (cone. HCl) and purified through Et β-2-keto-4carbethoxy - 1 - phenyl - 4 - methylcyclohexylpropionate. Similarly $p\text{-OMe}\cdot C_6H_4\cdot CH(CO_2Et)_2$ affords successively Et $\delta\cdot$ keto- $\alpha\cdot$ carbethoxy- $\alpha\cdot$ anisylhexoate, b.p. 202°/6 mm., δ-keto-α-anisylhexoic acid, b.p. 200°/5 mm. (Et ester, b.p. 180°/8 mm.), Et₂ α-cyano-εanisyl- β -methyl- Δ^{α} -pentene- α e-dicarboxylate, 230°/6 mm., Et $_3$ α -anisyl- δ -methylpentane- $\alpha\delta\epsilon$ -tricarboxylate, b.p. 228°/6 mm., and Et β -2-keto-4-carbethoxy-I-anisyl-4-methylcyclohexylpropionate, b.p. $221^{\circ}/5$ mm.

Synthesis of β-phenylnaphthalene derivatives. M. Weizmann, E. Bergmann, and E. Bograchov (Chem. and Ind., 1940, 402—403; cf. Hey et al., A., 1940, II, 168, 188).—Ph₂, (CH₂·CO)₂O, and AlCl₃ in PhNO₂ yield γ-keto-γ-p-diphenylylbutyric acid, m.p. 183°, reduced (Clemmensen-Martin; A., 1936, 1249) to γ-p-diphenylylbutyric acid (I), m.p. 118° (no 2-substituted product isolated), and a product, m.p. 328°. SOCl₂ followed by AlCl₃ in PhNO₂ converts (I) into 1-keto-7-phenyl-1:2:3:4-tetrahydronaphthalene, m.p. 70°, reduced as above and then dehydrogenated (Se) to 2-C₁₀H₇Ph.

A. Li.

Production of polycyclic aromatic types through the cyclodehydration of unsaturated ketones. W. S. RAPSON and R. G. SHUTTLEWORTH (J.C.S., 1940, 636-641).-1-Keto-1:2:3:4-tetrahydronaphthalene (I) (cf. Hartmann et al., A., 1933, 61) and PhCHO in 4% KOH-EtOH yield the 2-CHPh: derivative, m.p. 105°, b.p. 210—212°/2 mm., converted by P₂O₅ in xylene into 3:4-benzfluorene. 1-Keto-2-o-tolylidene-1:2:3:4-tetrahydronaphthalene, m.p. 68°, b.p. 213°/2 mm., affords (similarly or by NaNH₂) 8-methyl-3: 4-benzfluorene, m.p. 104—105°, b.p. 203°/2 mm., purified through the picrate, m.p. 127—128°, and oxidised by Na₂Cr₂O₇-AcOH to the -benzfluorenone, m.p. 139·5—140·5°. cycloHexanone and o-C₆H₄Me·CHO in 4% aq. KOH give 2-otolylidene-, m.p. 66-67°, b.p. 151-154°/4 mm., and 2:6-di-o-tolylidene-cyclohexanone, m.p. (main product in KOH-EtOH); neither the former nor o-tolylideneacetophenone is dehydrated by P₂O₅ or NaNH₂. (I), $2:4:6:1-C_6H_2Me_3$ ·CHO, and 4% KOH–EtOH afford 1-keto-2-(2':4':6'-trimethylbenzylidene)-1:2:3:4-tetrahydronaphthalene, m.p. $92-92.5^{\circ}$ dehydrated by P_2O_5 in xylene to three $\bar{d}ihydro-5:7$ dimethyl-1: 2-benzanthracene, m.p. 146—147° (picrate, m.p. 190—191°), m.p. 114°, and m.p. 115.5— 116.5° (picrate, m.p. 165°); one may be the $3:4-H_{2}$ derivative. (II) and Se afford 5:7-dimethyl-1:2-

benzanthracene, m.p. $120-121^{\circ}$. $2-(2':4':6'-Tri-120-121)^{\circ}$. methylbenzylidene)-a-hydrindone, m.p. 93.5—94.5°, could not be dehydrated. Tetrahydro-o-toluonitrile (III) and 95% H_3PO_4 (better than H_2SO_4) at 120 afford 6-methyl- Δ^1 -cyclohexenecarboxylic acid (IV), m.p. 105.5° (not identical with that of Mazza et al., A., 1927, 665), oxidised (O₃ followed by 0·1n-aq. KMnO₄ in CO₂) to α-methyladipic acid. Boiling aq. KOH-EtOH (9 days) and (III) give an acid amide, m.p. 128°, and (IV), but after 1 day yield an amide, m.p. 146°, and a (?) polymerised amide, m.p. >300°. The anilide, m.p. 106.5—107.5°, of (IV) is converted by PCl₅-PhMe at 100° (bath), then SnCl₂-HCl-Et₂O, into 6-methyl- Δ^1 -cyclohexenealdehyde, b.p. $66-68^\circ/10$ mm. (semicarbazone, m.p. 207—209°; 2:4-dinitrophenylhydrazone, m.p. 179°), converted by $AgNO_3-NH_3$ into (IV). cycloHexanone, CHMe.CH·CHO (V), and 1% aq. KOH in EtOH at <30° give a resin and probably crotonylidenecyclo-hexanone [semicarbazone, m.p. 191° (sinters at 187°)]; the total product and H₂ (Pd-SrCO₃) in MeOH at 1.5—2 atm. afford cyclohexanol, 2-n-butylcyclohexanol, and a mixture, C₁₀H_xO₂. cycloPentanone and (V) yield a product, (C₄H₆O)_n, probably a polynomial from (V) meride from (V). Less alkali affords less resin and gives a product, b.p. 115—135°/10 mm.; the latter yields a semicarbazone, m.p. 215-216° (decomp.), probably from crotonylidenecyclopentanone. Hydrogenation of the products affords 2-n-butylcyclopentanone (VI) (semicarbazone, m.p. $185-186^{\circ}$) and a mixture, $C_9H_{16}O_2$. α -n-Butyladipic acid, m.p. $59\cdot5^{\circ}$ (prepared from Et 5-n-butylcyclopentanone-2-carboxylate), on distillation with a little BaO, affords (VI). (V), COMe2, and 1% aq. KOH (cold) yield crotonylideneacetone (semicarbazone, m.p. 164-166°); the total product was hydrogenated to Me n-amyl ketone and a product, $C_7H_{14 \text{ or } 16}O_2$ (2 reactive H). ably the ketones react with (V) at the double linking and also at the CO group.

Dehydrogenation. V. S. C. SEN-GUPTA. (J. Indian Chem. Soc., 1940, 17, 101—106; cf. A., 1939, 538).—cycloPentane-I-carboxylic-1-acetic hydride (I), $C_{10}H_8$, and AlCl₃ in PhNO₂ give γ -keto- γ - α - (II), m.p. 140—141° (Me ester, m.p. 69—70°; oxidised by NaOBr to α-C₁₀H₇·CO₂H), and -β-naphthylαα-tetramethylenebutyric acid, m.p. 190—191° (Me ester, m.p. 109—110°; with NaOBr gives β -C₁₀H₇·CO₂H). Zn-Hg-HCl reduces (II) to 1- β -1'naphthylethyleyelopentane-1-carboxylic acid, $108-109^{\circ}$, cyclised by $H_2SO_4-H_2O$ (3:1 vol.) at 100° to 1-keto-1:2:3:4-tetrahydrophenanthrene-2:2spirocyclopentane, b.p. 215°/6 mm. Clemmensen reduction then gives 1:2:3:4-tetrahydrophenanthrene-2: 2-spirocyclopentane, b.p. 190—195°/8 mm., which with Se at 300—320° and later 340— 190—195°/8 350° gives chrysene. $1-C_{10}H_{7}Me$ and (I) give only γ -keto- γ -4-methyl-1-naphthyl- $\alpha\alpha$ -tetramethylenebutyric acid, m.p. 176—177° (with NaOCl gives 4:1- $C_{10}H_6Me \cdot CO_2H$), the Me ester, m.p. 56—57°, of which (but not the free acid) is reduced to Me 1-β-4'-methyll'-naphthylethylcyclopentane-1-carboxylate, 230—235°/5 mm. The derived acid, m.p. 112°, gives (as above) 1-keto-9-methyl-, m.p. 97°, and thence 9 - methyl - 1:2:3:4 - tetrahydrophenanthrene - 2:2 -

spirocyclopentane, m.p. 69—70°, which with Se gives 3-methyl-1: 2-benzanthracene. R. S. C.

Structure of ethanolysis products of spruce and maple wood. L. BRICKMAN, J. J. PYLE, W. L. HAWKINS, and H. HIBBERT (J. Amer. Chem. Soc., 1940, 62, 986).—The "aldehyde fraction" obtained by ethanolysis of maple and spruce wood contains 4-hydroxy-3:5-dimethoxyphenyl and guaiacyl Me diketone and not the isomeric aroylacetaldehydes (cf. A., 1939, II, 516).

R. S. C.

Sterol group. XL. Bromination of 7-ketocholesteryl acetate. H. Jackson and E. R. H. Jones (J.C.S., 1940, 659—663; cf. A., 1938, II, 497). -7-Ketocholesteryl acetate (I) and Br (excess) in AcOH afford 5: 6-dibromo-7-ketocholestanyl acetate (II), m.p. 146—147° (decomp.), converted by KI-COMe₂ into (I), or by KOAe-AcOH into an impure unsaturated bromo-ketone. Boiling NPhMe₂ and (II) afford 7-keto-Δ3:5-cholestadiene, also obtained from (I) and HBr-AcOH. (I) and Br-HBr-AcOH yield 3:4:6-tribromo-7-keto- Δ^5 -cholestene (III), decomp. $\sim 143^\circ$, which loses HBr by ${\rm AgNO_3-C_5H_5N}$ or KOAc-AcOH at 100°, or NPhMe2 (less readily), to give 4:6dibromo-7-keto- $\Delta^{3:5}$ -cholestadiene, 189—190°. m.p. (III) and KI-COMe₂ afford 6-bromo-7-keto-Δ^{3:5}-cholestadiene, m.p. 117°, unchanged by NPhMe₂, or C₅H₅N, or Zn dust in MeOH or AcOH. 6:6'-Dibromo-7-ketocholestanyl acetate or 7-bromo-6-ketocholestanyl acetate and boiling NPhMe, afford 7- or 6-ketocholestanyl acetate, respectively. The effect of substituent Br on light absorption of steryl ketones is discussed. A. T. P.

Hydroxy-ketones of the cyclopentanopoly-hydrophenanthrene series.—See B., 1940, 495.

Physiologically active oxidation product of ergosterol. A. F. von Christiani (Mikrochem., 1940, 28, 183—185).—Cholesterol and Pracocl in C_5H_5N give a cholesteryl butyrate (I) which is biologically inactive (cf. A., 1939, III, 598). This is due to oxidation of ergosterol (II), present as impurity, to a product (III) which deactivates the (I). Passage of O_2 into ergosterol in EtOH-hæmatoporphyrin and

$$\begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{H}_2\text{C} \quad \text{CMe-CHR} \\ \text{OH-HC} \quad \text{CO} \\ \text{CH}_2 \\ \text{CH}_2 \quad \text{CH-CO}_2\text{H} \end{array}$$

light gives, inter alia, (III) as an acidic oil, probably having the annexed structure. Girard's reagent P separates (III) into an unreactive cis- (IV)

(physiologically active at 10⁻⁹ g. per c.c.) and reactive trans-form (V) (physiologically much less active), transformed into one another by irradiation by Ra. Light changes (V) into (IV). At 180°/vac. (IV) gives (V). The known corresponding aldehyde (A., 1933, 500; 1939, II, 261) is oxidised to (III) by Ag₂O.

α- and β-7-Hydroxy-3-ketocholanic acid. S. MIYAZI and H. ISAKA (J. Biochem. Japan, 1939, 30, 297—302).—Chenodeoxycholic acid with C₅H₅N-Ac₂O at room temp. yields diacetylchenodeoxycholic acid, m.p. 230° (Me ester, m.p. 128°), and with abs. HCO₂H at 100° (bath) gives diformylchenodeoxycholic

acid, new m.p. 184° (Me ester, m.p. 56—86°), which, with 0·5n-NaOH at room temp. for 4 hr., affords α -3-hydroxy-7-formylcholanic acid, m.p. 147—149°, oxidised (AcOH–CrO₃) to the 3-CO-acid, m.p. 188—189°, hydrolysed (5% KOH in EtOH) to α -7-hydroxy-3-ketocholanic acid, m.p. 96°. Diformylursodeoxycholic acid (Iwasaki, A., 1937, II, 20), similarly yields β -3-hydroxy-, m.p. 135°, and β -3-keto-7-formylcholanic acid, m.p. 126—129°, and β -7-hydroxy-3-ketocholanic acid, m.p. 115—117°.

Manufacture of progesterone.—See B., 1940, 495.

Preparation of antihæmorrhagic compounds.
—See A., 1940, III, 516.

Substituted anthraquinones and aroylbenzoic acids.—See B., 1940, 431.

Detoxication. VII. Biological reduction of l-menthone to d-neomenthol and of d-isomenthone to d-isomenthal in the rabbit. Conjugation of d-neomenthal with glucuronic acid. R. T. WILLIAMS (Biochem. J., 1940, 34, 690—697).— About 30-40% of l-menthone administered to rabbits is excreted as OH-derivatives conjugated with glucuronic acid (I); a part of the menthone mol. is therefore reduced at the CO group. d-isoMenthone is also reduced in the rabbit to \hat{d} -isomenthol (II), isolated as the glucuronide. 67-68% of d-neomenthol fed to rabbits is excreted in the urine combined with glucuronic acid; this figure is of the same order as those found for d-menthol and (II). A method is described, using a Shaffer-Hartmann reagent, for the determination of conjugated (I) in 1 ml. of urine after feeding menthol derivatives. d-Neomenthylglucuronide, m.p. 146° , $[\alpha]_{2}^{22}$ -14.6° in EtOH, NH_4 d-neomenthylglucuronate, $[\alpha]_{\rm D}$ -6.9° in $H_2{\rm O}$ or $(+1H_2{\rm O})$ $[\alpha]_{\rm D}$ -5.9° in $H_2{\rm O}$, and d-neomenthylglucuronate, $[\alpha]_{\rm D}^{22}$ $+22.6^{\circ}$ in CHCl₂, are new.

Condensation products from "a-terpinene" and the carenes with maleic anhydride. N. F. Goodway and T. F. West (J.C.S., 1940, 702—703).— The terpene mixture obtained by dehydration of terpineol with a solution of $\rm H_2C_2O_4$ has been separated into five fractions, the first four of which with maleic anhydride give acids of m.p. 124—131°, and not 158° (cf. Diels et al., A., 1938, II, 330). The hydrocarbon formulated by Diels is Δ^4 - and not Δ^3 -carene.

F. R. S. Syntheses in the camphane series. V. Synthesis of diethyl [1, 2, 2]dicycloheptanedionedicarboxylate from diethyl cyclopentanone-2:5-dicarboxylate. P. C. Guha and G. D. Hazra (J. Indian Chem. Soc., 1940, 17, 107—110; cf. A., 1938, II, 13).—The Na₁ derivative of Et₂ cyclopentan-1-one-2:5-dicarboxylate (improved prep.) and CH₂Br·CO₂Et in C₆H₆, first at room temp. and then at the b.p., give cis- and trans-forms, (I), b.p. 145—160° (145—202°)/3 mm., and (II), b.p. 202—208°/3 mm. or vice versa, of Et₃ cyclopentan-1-one-2:5-dicarboxylate-2-acetate. When distilled, (I) slowly gives (II). Hydrolysis of (I) or (II) by 18% HCl gives Et cyclopentan-1-one-2-acetate. With Na in boiling C₆H₆, (II) gives Et₂

1-keto-3: 6-endoketocyclohexane-2: 3-dicarboxylate (decomp. when distilled), which with boiling 18% HCl yields by decarboxylation 1-keto-3: 6-endoketocyclohexane-3-carboxylic acid, $+\mathrm{H}_2\mathrm{O}$, m.p. 212° [Me ester, m.p. 129° (semicarbazone, m.p. $209-210^\circ$); reduced (Clemmensen) to an acid, m.p. 118°], and a viscous acid, $\mathrm{C}_7\mathrm{H}_{10}\mathrm{O}_3$ (semicarbazone, m.p. 192°).

Dependence of optical rotatory power on chemical constitution. XVII. Nitro- and carboxy-aryl derivatives of stereoisomeric methylenecamphors. B. K. SINGH and T. P. BARAT (J. Indian Chem. Soc., 1940, 17, 1—18; cf. A., 1938, II, 149).—Many vals. of $[\alpha]$ in CHCl₃, C₆H₆, MeOH, EtOH, COMe2, and C5H5N of the following compounds determined: o-nitroanilinomethylene-d-, m.p. 157—158°, $[\alpha]_D^{35} + 288 \cdot 5^\circ$, -l-, m.p. 158°, $[\alpha]_D^{35} - 288 \cdot 0^\circ$, and -dl-camphor, m.p. 150°; m-nitroanilinomethylene-d-, new m.p. 181°, $[\alpha]_D^{35} + 249 \cdot 6^\circ$ (cf. Rupe et al., A., 1920, i, 327), -l-, m.p. 180—181°, $[\alpha]_D^{35} - 248 \cdot 0^\circ$, $[\alpha]_D^{35} - 248 \cdot$ and dl-camphor, m.p. 167-168°; p-nitroanilinomethylene-d-, m.p. $154-155^{\circ}$, $[\alpha]_{D}^{35}+331\cdot 2^{\circ}$ (cf. Pope et al., J.C.S., 1909, 95, 171; Rupe et al.), -l-, m.p. 154—155°, $[\alpha]_{D}^{155}$ —388·1° in MeOH, and -dl-camphor, m.p. 167—168°; o-carboxyanilinomethylene-d-, m.p. 166—167°, $[\alpha]_{D}^{35}$ +309·4°, -l-, m.p. 167—168°, $[\alpha]_{D}^{35}$ —309·7°, and -dl-camphor, m.p. 113° (cf. Rupe et al.); m-carboxyanilinomethylene-d-, m.p. 219—221°, $[\alpha]_{D}^{35}$ +310·9° in MeOH, -l-, m.p. 219—221°, $[\alpha]_{D}^{35}$ —311·2° in MeOH, and -dl-camphor, m.p. 215—217°; p-carboxyanilinomethylene-d-, m.p. 280—283°, $[\alpha]_{D}^{35}$ +335·0° in $C_{5}H_{5}N$, -l-, m.p. 280—282°, $[\alpha]_{D}^{35}$ —334·1° in $C_{5}H_{5}N$, and -dl-camphor, m.p. 283—285° (all above vals. of α are in $C_{5}H_{6}$ unless stated otherwise). Relation et al., J.C.S., 1909, 95, 171; Rupe et al.), -l-, m.p. α are in C₆H₆ unless stated otherwise). Relation between rotatory power (R) and chemical constitution or solvent used follows no definite plan. The sequence of R of the isomerides of nitroanilino-derivatives is in general p > o > unsubstituted > m in all solvents; with carboxy-derivatives, the order in C_5H_5N is unsubstituted > p > o > m. Vals. of R of corresponding d- and \bar{l} -forms in all solvents are equal and opposite. The compounds obey the simple dispersion law, $[\alpha] = K(\lambda^2 - \lambda_0^2)$.

Dependence of optical rotatory power on chemical constitution. XVI. Bromo- and iodoaryl derivatives of stereoisomeric methylenecamphors. B. K. SINGH and B. BHADURI (Proc. Indian Acad. Sci., 1939, 10, A, 359—380).—The optical rotatory powers of o- (I), m.p., l and d, 88— 89°, dl, 95—96°; m- (II), m.p., l and d, α -form, 162—163°, β-form, 111—113°; dl, 175—176°, and p-bromo-, m.p., l and d, 186—187°; dl, 186—187°, m-, m.p., l and d, 185—186°; dl, 182—183°, and p-iodo- (III), m.p., l and d, 185—186°; dl, 193—195°, -anilinomethylenecamphor in CHCl₃, COMe₂, C₆H₆, EtOH, MeOH, and C₅H₅N have been measured. d- and l-(II) exist in two interconvertible dimorphic forms with identical rotatory dispersion, m.p. 162— 163° by slow crystallisation and m.p. 111—113° by rapid crystallisation from MeOH. m-Bromoanilinomethylene-dl-camphor exists in only one form. o-Iodoanilinomethylenecamphor could not be got solid. The effect of chemical constitution on the rotation is discussed. The rotatory power decreases in the order

of dielectric const. of the solvents, MeOH > EtOH > $\rm COMe_2 > C_5H_5N > \rm CHCl_3 > C_6H_6$. For position isomerides the sequence of rotatory power is no halogen > p > m > o in EtOH, COMe₂, and $\rm C_5H_5N$, and no halogen > o > m > p in CHCl₃ and $\rm C_6H_6$. The racemic forms of (I), (II), and (III) are true dl compounds. W. R. A.

Pongamol, new crystalline compound from pongamia oil. S. Rangaswami and T. R. Seshadri (Current Sci., 1940, 9, 179).—The isolation from pongamia oil of pongamol, $C_{17}H_{11}O_3$ ·OMe, m.p. 128—129°, a phenol which on reduction (Mg + HCl) yields a red anthocyanin, on oxidation or hydrolysis yields BzOH, and gives a p-nitrobenzoyl derivative, is described.

A. Li.

Chemical constituents of lichens found in T. J. Ireland. Lecanora gangaleoides. II. NOLAN and J. KEANE (Sci. Proc. Roy. Dublin Soc., 1940, 22, 199—209; cf. A., 1935, 550).—L. gangaleoides contains gangaleoidin (I), atranorin and chloratranorin (ratio 1:4), d-arabitol, endococcin (II), rhodophyscin (III) (acetate), and a substance, $C_{26}H_{21}O_{10}Cl_3$ (?) (containing OMe?), m.p. 231—233° (Me ether, m.p. 143— 144°), which gives a light purple colour with FeCl₃ and pale yellow with H_2SO_4 ; the presence of H_2O -sol. ester or lactone was not confirmed. (II) yields (III) when boiled with AcOH. (III), which contains no OMe, gives no ppt. with o-C₆H₁(NH₂)₂ in AcOH, and the resulting solution fails to give the colour reactions of (III). (I) is a lactone, $C_{16}H_7O_4Cl_2(OH)(OMe)_2$ (Me ether, m.p. 181°). MeOH-KOH opens the ring, giving a Me ester [Me₁ ether, m.p. 186—187°, obtained by hydrolysing the Me ether of (I); Me, ether (IV) (CH₂N₂), m.p. 141—142°], which when distilled under reduced pressure gives an isomeride, m.p. 184—185°. (I) with MeOH-KOH followed by H₂O yields substances, $C_{16}H_{10}O_6Cl_2(OMe)_2$, $+H_2O$, m.p. 197—198°, and $+2H_2O$, m.p. 161°, either of which with CH_2N_2 yields (IV). Hydrolysis (MeOH–KOH) of (IV) yields an acid, $C_{14}H_7OCl_2(CO_2H)_2(OMe)_3$, H_2O , m.p. 216—217°, which when heated alone or in HCO_2H gives an acid, $C_{14}H_8OCl_2(CO_2H)(OMe)_3$ (V), m.p. 138—139° (Me ester, m.p. 79—80°), when heated in glycerol at 220—225° for 5 hr. gives a phenol Č₁₄H₉OCl₂(OH)(OMe)₂ (VI), m.p. 165—166° (Me ether, m.p. 112-113°), and when vac.-distilled gives (V), (VI), and a neutral substance (? a xanthone), $C_{15}H_7O_2Cl_2(OMe)_3$, m.p. 212—213°. It is concluded that (I) is a derivative of $C_6H_4 < \stackrel{CO \cdot O}{\bigcirc} > C_6H_4$, having as substituents 2 Me, 2 Cl, OH, OMe, and CO₂Me.

Constituents of higher fungi. I. Triterpene acids of *Polyporus betulinus*. Fr. L. C. Cross, C. G. Eliot, I. M. Heilbron, and E. R. H. Jones (J.C.S., 1940, 632—636).—Extraction of the fresh minced fungus by cold EtOH gives, after saponification, a mixture of sterols containing ergosterol and *polyporenic acid A*, $C_{30}H_{48}O_4$ or $C_{31}H_{50}O_4$, m.p. 194°, $[\alpha]_{20}^{20}$ +69° in C_5H_5N , which forms a *Me* ester, m.p. 142°, $[\alpha]_{20}^{20}$ +77° in CHCl₃ (acetate, m.p. 112°, $[\alpha]_{20}^{20}$ +88° in CHCl₃). Further extraction with COMe₂ and Et₂O under reflux affords *polyporenic acid B*, $C_{30}H_{48}O_4$, m.p. 300—310° (decomp.) (after drying in vac., m.p. 275—

280°) (Me ester, m.p. 160°), and C, m.p. 270—275° (Me ester, m.p. 192—193°), the latter in small amount. Acids A and B appear to be isomeric, and both contain two OH and two ethylenic linkages. Acid C may be identical with gypsogenin. F. R. S.

Resin acids. II. Structure of abietic acid. V. Krestinski, A. Novak, and N. Komschilov (J. Appl. Chem. Russ., 1939, 12, 1514—1528).—The isomeride (I) of abietic acid, m.p. 170—172°, is ozonised, and the diozonide is decomposed with H₂O at 100°, yielding a mixture of products, of which the following acids were identified: 1:3-dimethyl-2 $carboxymethyl-3-(\delta-keto-\epsilon-methyl-\alpha-carboxymethylhexyl)$ cyclohexane-1-carboxylic acid, 2-(1'-carboxy-1': 3'-dimethyl - 2' - carboxymethyl - 3' - cyclohexyl) - 4 - isopropyl cyclohexanone-4: 5-ozonide, and 1: 3-dimethyl-2-carboxymethyl-3 - ($\beta\delta$ - diketo- ϵ -methyl - α -formylmethylhexyl)-cyclohexane-1-carboxylic acid. The isomeride (II) of m.p. 188-190° similarly yields 1:3-dimethyl-2-carboxymethyl-3-(αδ-dicarboxy-ε-methylhexyl)cyclohexane-1carboxylic acid, m.p. 209-213°, 1:3-dimethyl-2-carboxymethyl-3- $(\gamma \delta - dihydroxy - \alpha \delta - dicarboxy - \varepsilon - methylhexyl)$ cyclohexane-1-carboxylic acid (oxidised by KMnO₄ to 1: 3-dimethyl-3-carboxymethyl- and -3-dicarboxymethylcyclohexane-1: 2-dicarboxylic acid), 1: 3-dimethyl-2formulmethyl-3-(α -formyl- δ -carboxy- ϵ -methyl--3- $(\alpha\delta$ -dicarboxy- ε -methyl-hexyl)cyclohexane-1-carboxylic acid. The production of these acids is explicable on the assumption that the structures of (I) and (II) are:

(I.)
$$CO_2H$$
 CO_2H (II.)

Miro resin. II. Resin acids. C. W. Brandt and L. G. Neubauer (J.C.S., 1940, 683—686).— Extraction of miro resin with 4% NaOH, followed by saturation with CO₂, yields miropinic acid (I) (85%), C₂₀H₃₀O₂, m.p. 160°, [α]_b¹⁶ —103·6° in 1·1 EtOH—CHCl₃, and isomiropinic acid (II), m.p. 284°, [α]_b¹⁷ +21·2° in dioxan. (I) forms a Me ester, b.p. 148°/0·3 mm., and is hydrogenated (Pd–C) in EtOAc to α-, m.p. 176°, [α]_b¹⁸ —10·5° in EtOH, and β-dihydro-acids, m.p. 115°, [α]_b¹⁸ +23·2° in EtOH. Further hydrogenation in AcOH of the H₂-acids gives respectively α-, m.p. 170°, [α]_b¹⁸ +15·2° in EtOH, and β-tetrahydro-miropinic acids, m.p. 170°, [α]_b¹⁸ +30·5° in EtOH, along with γ-dihydromiropinic acid, m.p. 113°, [α]_b¹⁸ +46·2° in EtOH, in both cases. Se-dehydrogenation of (I) yields pimanthrene. Hydrogenation (PtO₂) in AcOH of (II) affords a resin, b.p. 200°/0·3 mm. (II) is also obtained by isomerisation of (I) with MeOH—HCI.

Colouring matters of the Chinese drug ta-chi, Euphorbia pikinenis, Rupr. J. H. Chu (Chinese J. Physiol., 1940, 15, 151—157).—Extraction of the dried root skin with light petroleum gives euphorbia A, C₁₆H₁₀O₅, m.p. 217° [Ba salt, +1H₂O and anhyd.; semicarbazone, m.p. 287° (decomp.)], converted by Ac₂O and anhyd. NaOAc at 140° into a compound C₁₅H₈O₅, m.p. 192°, euphorbia B, C₁₅H₈O₅ (+0.5CHCl₃),

m.p. 224°, converted by Ac_2O into a compound, $C_{14}H_{11}O_6$, m.p. 176°, and euphorbia C, m.p. 283°. The presence of a glucoside, $C_{37}H_{58}O_{12}$, could not be confirmed.

Acetyl content of marinobufagin, arenobufagin, and acetylmarinobufagin. V. Deulofeu, E. Duprat, and R. Labriola (Nature, 1940, 145, 671).—Marinobufagin has a volatile acid content <1%; this excludes Ac and EtCO from its constitution. Jensen's formula, $C_{24}H_{32}O_5$, is confirmed. Acetylmarinobufagin ($\sim18\%$ Ac) probably has 2 Ac. A compound, $C_{24}H_{32}O_6$, m.p. 231—233°, Ac <1%, has been isolated from the crude venom of Bufo arenarum. L. S. T.

Sapogenins. VII. Structure of quillaic acid and its relation to echinocystic acid. D. F. ELLIOTT, G. A. R. KON, and H. R. SOPER (J.C.S., 1940, 612—617; cf. A., 1939, II, 436).—The second OH of quillaic acid (I), which is not part of the group CH(OH) CMe CHO, is attached to a C immediately adjacent to the quaternary C carrying CO₂H, as in echinocystic acid (II) (cf. White et al., A., 1939, II, 333). The following reactions suggest that (I) and (II) may be related in the same way as gypsogenin and oleanolic acid. The C₃₀ acid (loc. cit.) and Kiliani's solution give small amounts of diketolactone (III), acid A_1 (probably $C_{27}H_{40}O_6$) and A_2 , a ketohydroxy-acid, $C_{29}H_{44}O_6$, and acid B, $C_{31}H_{48}O_7$ (loc. cit.). The latter, crystallised from aq. MeOH, yields the (?) hydrate (IV), m.p. ~170—180°, which sublimes in high vac. to an unsaturated acid, $C_{29}H_{42}O_5$, corresponding with loss of \sim AcOH + H₂O. (IV) and CH₂N₂ afford the Me ester, m.p. 210° [2:4dinitrophenylhydrazone, m.p. 283° (decomp.)], of acid B, which is decomposed by MeOH-KOH to (IV). (III) and Zn-Hg in HCl-AcOH (cf. Jacobs et al., A., 1926, 1250) yield the keto-lactone (V), m.p. 293—295°. Me quillaate and Cu-bronze at 270°, or Beckmann's

solution in aq. AcOH at 10°, afford the diketo-ester (VI), $C_{30}H_{44}O_4$, m.p. 193°, $[\alpha]_D$ +8·9° in CHCl₃, converted by 5% KOH-EtOH into the diketone (VII), m.p. 197° or m.p. 185° to an opaque liquid which clears at 210°; probably a mixture of stereoisomerides is formed. (VI) and Zn-Hg in AcOH-HCl (method: Reichstein, A., 1937, II, 449, or Jacobs et al., loc. cit.) afford the keto-ester, m.p. 178° (formula given), $[\alpha]_D$ +5·2° in CHCl₃, hydrolysed to a monoketone, $C_{28}H_{44}O$, m.p. 185—187° [CO is no longer inert; 2:4-dinitrophenylhydrazone, m.p. 268° (decomp.)]. Attempts to reduce (Clemmensen) quillaic acid yielded the diacetyl-lactone, which is reduced by Zn-Hg in AcOH-HCl (cf. Jacobs et al., loc. cit.) to an isomeride, m.p. 272—274°. Me quillaate (VIII) is reduced

similarly to an impure (?) deoxy-ester. (VIII) and $\mathrm{NH_2\cdot NH\cdot CO\cdot NH_2, HCl}$ in NaOAc-MeOH at room temp. afford a semicarbazone, sintering at 186°, m.p. 200—220°, converted by Na-EtOH at 160—170° into deoxyquillaic acid (IX), m.p. 302° (previous sintering), $[\alpha]_{\mathrm{D}}$ +34° in EtOH. Its Me ester, m.p. 209—210°, is oxidised (method: White et al., loc. cit.) to the diketo-ester, $\mathrm{C_{31}H_{46}O_4}$, m.p. 152—153° (oxime, m.p. 246—247°). (IX) and its derivatives are probably not identical with, but very similar to, (II) and its derivatives. A. T. P.

Sapogenins. VIII. The sapogenin of fuller's herb. G. A. R. Kon and H. R. Soper (J.C.S., 1940, 617—620).—Saporubin, the saponin of fuller's herb (Saponaria officinalis, L.), is hydrolysed by aq. HCl to gypsogenin (I), m.p. 269—270° (previous sintering) [semicarbazone, m.p. 270—272° (decomp.)], also obtained directly from the root (method: Karrer et al., A., 1924, i, 1091). (I) is purified by hydrolysing the acetate (II), m.p. 188—189° (sinters at 173°), $[\alpha]_{\rm b}$ +79° in CHCl₃ (Me ester, m.p. 191°, $[\alpha]_{\rm b}$ +80° in CHCl₃), with N-KOH at room temp. to the K salt, thence by dil. HCl to (I), which is sublimed in high vac. at 180°. (II) affords the Br-lactone, m.p. ~180° (decomp.), and isoacetylgypsogeninolactone, m.p. 330—332° (cf. Ruzicka et al., A., 1937, II, 201); the latter and CrO₃-AcOH-H₂SO₄ yield the corresponding acid, and thence the *lactone*, C₃₀H₄₆O₅,H₂O, m.p. 353—355°, of gypsogenic acid (CH₂N₂ affords the *Me* ester, m.p. 344—345°, of the anhyd. acid). Further oxidation with Kiliani's solution in AcOH affords a monobasic ketonic acid (III), C29H44O5, m.p. ~270—280° (Me ester, m.p. 191—192°; 2:4-dinitrophenylhydrazone, m.p. 246-247°), and hedragone lactone, m.p. 298—301°, clearing at 304° (decomp.) [bromide, m.p. 283° (cf. Kitasato et al., A., 1934, 1223); 2:4-dinitrophenylhydrazone, m.p. 274—276° (decomp.)]. An impure specimen of (I) has probably been obtained from S. rubra by von Schulz (cf. A., 1898, i, 204). It is concluded that githagenin from corncockle (cf. Wedekind et al., A., 1930, 1324) is identical with (I); githagonolic acid is probably identical with gypsogenic acid. The formation of githagic acid from githagenin is analogous to the formation of (III) (formulæ given). It appears that (I) is a characteristic constituent of saponins in the Caryophyllaceæ. A. T. P.

Anomalous Friedel-Crafts reactions. J. A. V. Turck (Iowa State Coll. J. Sci., 1939, 14, 98—100).— Alkylation of Et 5-bromo-2-furoate is described again (cf. Gilman and Turck, A., 1939, II, 147, 172). >1 equiv. of AlCl₃ is required for these reactions, and no results are obtained using PhNO₂, PhCl, or petroleum as solvent. A. Li.

Pyrones and related compounds. I. Formation and structure of 2:6-dihydroxy- γ -pyrone. R. Kaushal (J. Indian Chem. Soc., 1940, 17, 138—143).—Acid-free $CO(CH_2 \cdot CO_2 H)_2$ (I) (p-nitrophenylhydrazone, m.p. 153°) and Ac_2O at $<20^\circ$ give acetone-dicarboxylic anhydride (II), m.p. 136—137° (decomp.) (cf. Willstätter et al., A., 1921, i, 92), but at 30° give 2:6-dihydroxy- γ -pyrone (III), m.p. 94°. Warm Ac_2O converts (II) into (III). (III) gives a p-nitrophenyl-

hydrazone, m.p. 215° [(II) does not react], and a $\mathrm{HgCl_2}$ compound, m.p. 235°, and is unchanged by hot $\mathrm{H_2O}$ or EtOH or cold alkali. Hot alkali decomposes (III). $\mathrm{H_2O}$ or EtOH converts (II) into the acid or Et H ester, respectively. With a trace of HCl or $\mathrm{H_2SO_4}$, (III) gives (I). With $\mathrm{PCl_5}$ (2 mols.) at 100° , (III) gives 2:6-dichloro-y-pyrone, m.p. 78—80° (hydrochloride, m.p. 105°). With NaOEt-EtOH, (III) gives a Na_2 salt, which with boiling EtI-EtOH gives 2:6-diethoxy-y-pyrone, b.p. 65—70° [HgCl₂ compound, m.p. 265° (decomp.)], and with ArCOCl-C₆H₆ yields the di-3:5-dinitrobenzoate, m.p. 90°. PhNCO and (III) give only CO(NHPh)₂. AcCl or Ac₂O with a trace of $\mathrm{H_2SO_4}$ converts (III) into dehydroacetocarboxylic acid. With NH₃-MeOH at 0°, (II) gives the $(NH_4)_2$ salt, +MeOH, sinters at 92°, m.p. 97°, of 2:6-dihydroxy-4-pyridone. R. S. C.

Anti-sterility factors (vitamin-E). VII. Red oxidation products of the tocopherols. and W. EMTE (Z. physiol. Chem., 1939, 261, 24—34; cf. A., 1939, II, 175).—α- [absorption max. 270 mμ. $(\epsilon < 6800)$] and β -tocopherol-red are obtained from the respective tocopherol by AgNO₃ in boiling EtOH, are reversibly reduced to colourless quinols by H₂-Pdblack, and are stable to acid but decomposed by alkali (rate of destruction depends on the solvent). The α-compound gives an oily quinol diacetate [absorption max. 278 m μ . (ε 1300)]. Chroman-red 141 (\bar{I}) [prep. by HNO₃, Ag₂SO₄, or H₂SO₄; AgOAc gives only the quinone, m.p. 79° (best method of prep.); absorption max. 272 mµ. (\$ 5200)] and chroman-red 109 behave similarly; the respective quinol diacetates have m.p. 82° [absorption max. 282 mμ. (ε 2100)] and 92°. Prep. of (I) by HNO₃ gives also a little (?) 7-hydroxy-2:6dimethylchroman-5: 8-quinone, m.p. 145° {absorption max. 294 mμ. (ε 22,400); quinol diacetate, m.p. 116° [absorption max. 280 m μ . (ε 630)]}, but too long oxidation gives a product, C₁₂H₁₄O₃, m.p. 129°. These reactions support formulæ previously suggested, but the red substances are bimol., although the quinol diacetates are unimol.

Synthesis of coumarins from o-hydroxyaryl alkyl ketones. D. CHARRAVARTI and N. DUTTA (J. Indian Chem. Soc., 1940, 17, 65—71; cf. A., 1940, II, 50).—When there is an alkyl substituent in the β-position of the expected cinnamic ester, the coumarin is invariably formed, irrespective of the presence of any α-substituent. Thus 4-alkyl- and 3:4-dialkyl-coumarins are synthesised readily from the respective o-hydroxyaryl alkyl ketones; the presence of halogen or alkyl in the C₆H₆ nucleus of the ketone has little effect. $2:5:1-OH\cdot C_6H_3Cl\cdot COMe$ and MeI-NaOEt give 5-chloro-2-methoxyacetophenone, b.p. 135°/6 mm., converted by CH₂Br·CO₂Et-Zn wool in C_6H_6 into a OH-ester, and by $SOCl_2-C_5H_5N-Et_2O$ into Et 5-chloro-2-methoxy- β -methylcinnamate, b.p. 155°/5 mm., and thence by H₂SO₄ at room temp. or HI (d 1.7) at 140° into 6-chloro-4methylcoumarin, m.p. 184°. The following aceto- and propio-phenones are prepared from the corresponding Ac and EtCO derivatives of the phenols by AlCla at 130—140° (it is not essential to convert the OHesters into the unsaturated esters before forming coumarins): 5-bromo-2-methoxy- (I), b.p. $165^{\circ}/12$

mm., 2-methoxy-3-methyl- (II), b.p. 120°/3 mm., and -5-methyl-acetopaenone (III), b.p. 110°/6 5-chloro-2-methoxy-3-methyl- (IV), b.p. 139°/8 mm., and 3-chloro-2-methoxy-5-methyl-propiophenone (V), b.p. 140°/8 mm.; 5-chloro-2-methoxy-3-methyl- (VI), b.p. 136°/8 mm., and -4-methyl- (VII), m.p. 81°, and 3-chloro-2-methoxy-5-methyl-acetophenone (VIII), b.p. 124°/4 mm. From (I): Et 5-bromo-2-methoxy- β methyl-, b.p. 180°/8 mm., and -αβ-dimethyl-cinnamate, b.p. 169-170°/10 mm. (from CHBrMe CO₂Et), respectively; from (II): Et 2-methoxy-3: β-dimethylcinnamate, b.p. 140—142°/9 mm.; from (III): Et 2-methoxy-5: β-dimethylcinnamate, b.p. 160°/12 mm., and Et β -hydroxy- $\alpha\beta$ -dimethyl- β -(2-methoxy-5methyl)phenylpropionate, b.p. 140—145°/8 mm.; from Et 5-chloro-2-methoxy-3: α -dimethyl- β -ethylcinnamate, b.p. 164°/6 mm.; from (V): Et 3-chloro-2methoxy-5: α -dimethyl- β -ethylcinnamate, b.p. $160^{\circ}/8$ mm.; from (VI): Et 5-chloro-2-methoxy-3: β -dimethyl-, b.p. 163°/5 mm., and -αβ-dimethyl-cinnamate, b.p. 165°/17 mm.; from (VII): Et 5-chloro-2-methoxy-4: β-dimethyl-, b.p. 160°/5 mm., and -αβ-dimethylcinnamate, b.p. 160°/3 mm.; from (VIII): Et 3-chloro-2-methoxy-5: β -dimethyl-, 160°/6 b.p. mm., and -αβ-dimethyl-cinnamate, b.p. 170°/9 mm. From the above are prepared: 6-bromo-4-methyl-, m.p. 187° , and 3:4-dimethyl, m.p. 169° ; 4:8-dimethyl-, m.p. 114°, and 4:6-dimethyl-, m.p. 150° (cf. A., 1937, II, 160); 3:4:6-trimethyl-, m.p. 170° (cf. A., 1932, 519); 6-chloro-3:8-dimethyl-4-ethyl-, m.p. 126°; 8-chloro-3:6-dimethyl-4-ethyl-, m.p. 120°; 6-chloro-4:8-dimethyl-, m.p. 155°, and -3:4:8-trimethyl-, new m.p. 114°; 6-chloro-4:7-dimethyl-, m.p. 213°, and -3:4:7-trimethyl-, new m.p. 167°; 8-chloro-4: 6-dimethyl-, m.p. 148°, and -3:4:6-trimethyl-coumarin, m.p. 153°, respectively.

Pechmann condensation of methyl β-resorcylate with some β-ketonic esters. S. M. Sethna and R. C. Shah (J. Indian Chem. Soc., 1940, 17, 37—40; cf. A., 1938, II, 452).—Me β-resorcylate and Et α -chloro- or α -benzoyl-acetoacetate, or $\rm CO(CH_2 \cdot CO_2Et)_2,$ with 80% $\rm H_2SO_4,$ afford Me 3-chloro-7-hydroxy-4-methyl-, m.p. 218—220° [acetate, m.p. 169—170°; Me ether, m.p. 218—219°; 10% aq. NaOH gives the carboxylic acid (I), m.p. 265—267° (decomp.)], or Me 7-hydroxy-4-phenyl-coumarin-6-carboxylate, m.p. 200—201° (acetate, m.p. 160—161°), + the -carboxylic acid (II), m.p. 285°, or Et 7-hydroxy-6carbomethoxycoumarin-4-acetate (III), m.p. 194—196° (acetate, m.p. 148—149°), + the -acetic acid (IV), m.p. 184—186° (decomp.), respectively. (I) or (II) is decarboxylated with H₂O at 180—190° to 3-chloro-7hydroxy-4-methyl-, new m.p. 240°, or 7-hydroxy-4phenyl-coumarin, m.p. 242-244°, respectively; (IV) at its m.p. until effervescence ceases gives Me 7-hydroxy-4-methylcoumarin-6-carboxylate. (III) and 5% aq. NaOH at 100° (bath) afford 7-hydroxy-4-methylcoumarin-6-carboxylic acid, m.p. 285°. The 4-CO₂Me in the resorcinol nucleus has little retarding influence on the Pechmann condensation. A. T. P.

Kostanecki acylation of orcacetophenone. S. M. Sethna and R. C. Shah (Current Sci., 1940, 9, 117—118).—A preliminary note.

γ-Substituted resorcinol derivatives. III. Synthesis of 5:6-dimethoxyflavone. K. Nakazawa (J. Pharm. Soc. Japan, 1939, 59, 194—196).— 1:2:6-C₆H₃Ac(OH)₂, MeI, and K₂CO₃ in COMe₂ yield 6-hydroxy-2-methoxyacetophenone, m.p. $58\cdot5^\circ$, converted by oxidation by K₂S₂O₈ in alkaline solution and subsequent boiling with dil. H₂SO₄ into 3:6-dihydroxy-2-methoxyacetophenone, m.p. 91° . This is transformed by BzCl in C₅H₅N into the dibenzoate, m.p. 154° , which is converted by NaNH₂ in PhMe into 6-hydroxy-3-benzoyloxy-2-methoxydibenzoylmethane, m.p. $152\cdot5^\circ$. The diketone is cyclised by conc. H₂SO₄ to 6-hydroxy-5-methoxyflavone, m.p. 185° , methylated (K₂CO₃ and MeI in COMe₂) to 5:6-dimethoxyflavone, m.p. 199° .

Derivatives of 1-, 4-, 6-, and 9-substituted dibenzfurans. J. Swislowsky (Iowa State Coll. J. Sci., 1939, **14**, 92—94).—1-Aminodibenzfuran is obtained in 55% yield from the 1-carboxylic acid by a modification of Bywater's method, and in 45% yield from 1-hydroxydibenzfuran by a Bucherer reaction. Nitration of its Ac derivative yields, in Ac₂O at -10°, 2-nitro-1-acetamidodibenzfuran (Gilman et al., A., 1939, II, 276), and in glacial AcOH, the Ac derivative, (I), m.p. 216°, of 4-nitro-1-amino-, m.p. 219—220°, converted by diazotisation and reduction with EtOH into 4-nitro-dibenzfuran, m.p. 120—121°. Catalytic reduction of (I) gives the Ac_1 derivative, m.p. 202°, of 1:4-diaminodibenzfuran, m.p. 86-87° (dihydrochloride, m.p. $322-323^{\circ}$), the Ac_2 derivative, m.p. 307-308°, of which is also prepared from 4-bromo-1-acetamidodibenzfuran. Nitration of (I) and of 2-nitro-1-acetamidodibenzfuran gives 4:7(?)-, m.p. 288°, and 2:6(?)-dinitro-1-acetamidodibenzfuran, m.p. 277—278°, respectively. 1-Bromodibenzfuran with LiNEt₂ and LiNMe₂ in Et₂O yields respectively 1-diethyl-, m.p. 68-69°, and -dimethyl-aminodibenzfuran, m.p. 98—99°, and with LiBu followed by CO, for 10—25 min. (cf. Gilman et al., A., 1939, II, 441) gives the 1-carboxylic acid, bis-1-dibenzfuryl ketone, and a small quantity of tris-1-dibenzfurylcarbinol, m.p. 274—275°, also synthesised from 1-carbomethoxydibenzfuran and Li 1-dibenzfuryl. 3-Acetoxydibenzfuran, m.p. 115-116°, undergoes Fries rearrangement to 3-hydroxy-2-acetyl-, m.p. 168—169° (Me ether, m.p. 113—114°, oxidised to the 3-carboxylic acid), and some 3-hydroxy-4-acetyl-dibenzfuran (Me ether, m.p. 121—122°). 3:6-Dihydroxydibenzfuran (from the Br₂-compound), m.p. 242—243° (Ac₂ derivative, m.p. 150—151°), yields a Me₂ ether (II), m.p. 88—89° (picrate, m.p. 117—118°), which on mild hydrolysis gives 3-hydroxy-6-methoxydibenzfuran, m.p. 90—91° (Ac derivative, m.p. 110°). Bromination of (II) yields 4:5(?)-, m.p. 196—197°, and 2:7(?)-dibromo-3:6dimethoxydibenzfuran, m.p. 260—261°. The former with LiBu in C_6H_6 followed by CO_2 gives the 4:5(?)dicarboxylic acid, m.p. $271-272^{\circ}$ [Me₂ ester (CH₂N₂), m.p. 129-130°], also obtained from (II) by direct metalation and carbonation. The latter similarly yields the 2:7(?)-dicarboxylic acid, m.p. 290° [Me₂] ester (MeOH-HCl), m.p. 183-184°], together with some BzOH, formed by the action of LiBu and CO2 on C₆H₆. (II) with (COCl)₂ and AlCl₃ yields a *lactone* (quinoxaline derivative, m.p. 323—325°), probably

4'-methoxybenzfurano-(1':2':4:5)- or 4'-methoxybenzfurano-(2':1':3:4)-1:2-diketo-1:2-dihydrobenzfuran, which with CH₂N₂ gives Me 3: 6-dimethoxy-2(or 4)-dibenzfurylglyoxylate, m.p. 206—207°. Bromination of 3:6-dihydroxydibenzfuran yields the 4:5(?)- Br_2 -compound, m.p. 201—202° (Ac_2 derivative, m.p. 173.5—174°), the Me₂ ether of which (identical with that m.p. 196—197° described above) can be converted into the Me_2 ether, m.p. 106—107°, of 4:5(?)dimethyl-3:6-dihydroxydibenzfuran, m.p. $168-169^{\circ}$. Attempts to convert this into 4:5-dimethyldibenzfuran via the 3:6-(NH₂)₂-compound were unsuccessful. 3:6-Diaminodibenzfuran (from the Br₂-compound) has m.p. $212-213^{\circ}$ [picrate, m.p. 278° (decomp.)]; the Ac_2 derivative, m.p. $299-300^{\circ}$, on bromination yields 2-bromo-3:6-diacetamido-, m.p. 259—260°, hydrolysed and deaminated to 2-bromo-By the Bucherer reaction, 1:2dibenzfuran. dihydroxydibenzfuran yields the hydrochloride, m.p. 275° (darkening at 200°), of 2-amino-1-hydroxydibenzfuran (?) (Ac_2 derivative, m.p. 209—210), whilst 4-bromo-3-hydroxy- yields only 3-amino-dibenzfuran. (? 5:5)-dibromo-2:2'-dihydroxydiphenyl Diels and Bibergeil (A., 1902, i, 219) gives a Me_2 ether, m.p. 128—129°, and a Ac_2 derivative, m.p. 105—106°.

Cannabis indica. II. Isolation of cannabidiol from Egyptian hashish. Structure of cannabinol. (MISS) A. JACOB and A. R. TODD (J.C.S., 1940, 649—653; cf. A., 1940, II, 185).—Approx. equal amounts of cannabidiol (I), $C_{21}H_{30}O_2$, b.p. 160—180°/0·003 mm., $[\alpha]_5^{18}$ —126·6° in EtOH, and cannabinol (II) (probably A; cf. Cahn, A., 1932, 747) are

obtained by distilling the resin from Egyptian hashish. They are purified through their respective p-nitrobenzoates, m.p. $\sim 70-80^{\circ}$, and $159-160^{\circ}$. (I) has probably the structure assigned to it by Adams et~al.

(A., 1940, II, 80); its di-3:5-dinitrobenzoate, m.p. $106-107^{\circ}$, $[\alpha]_{\rm b}^{13}-76\cdot2^{\circ}$, is identical with that obtained by Adams (from Minnesota wild hemp), and is hydrolysed to (I) by KOH-MeOH in N₂ or by liquid NH₃. No physiologically active material is isolable from the above resin by alkali extraction. (I) and (II) are inactive in the Gayer test in rabbits. From resin of Indian origin, no (I) has been isolated. (Cf. A., 1940, II, 215.)

Furano-compounds. I. Synthesis of 3'-methylor-ethyl-5:6:4':5'-furocoumarin. H. A. Shah and R. C. Shah (J. Indian Chem. Soc., 1940, 17, 41—44; cf. A., 1939, II, 373).—5-Hydroxy-6-acetylcoumarin-3-carboxylic acid refluxed with H₂SO₄-EtOH gives the Et ester, converted by CH₂Br-CO₂Et-K₂CO₃-COMe₂ into Et 3-carbethoxy-5-carbethoxymethoxy-6-acetylcoumarin, m.p. 113—115°, hydrolysed by 4% aq. NaOH to 5-carboxymethoxy-6-acetylcoumarin-3-carboxylic acid, m.p. 189—191° (decomp.), which with Ac₂O-NaOAc affords 3'-methyl-5:6:4':5'-furocoumarin-3-carboxylic acid, m.p. 226—228°, and thence (quinoline-Cu-bronze) 3'-methyl-5:6:4':5'-furocoumarin, m.p. 138—140°. Similarly, 5-hydroxy-6-propionylcoumarin-3-carboxylic acid yields the Et

ester, m.p. 152—154°, and thence Et 3-carbethoxy-5-carbethoxymethoxy-6-propionylcoumarin, m.p. 103—105°, 5-carboxymethoxy-6-propionylcoumarin-3-carboxylic acid, m.p. 194—196°, 3'-ethyl-5:6:4':5'-furocoumarin-3-carboxylic acid, m.p. 157—158°, and 3'-ethyl-5:6:4':5'-furocoumarin, m.p. 150—152°.

A. T. P.

Constitution of rottlerin. J. N. Ray (Current Sci., 1940, 9, 80).—Contrary to previous observation (A., 1940, II, 139), rottlerin is optically inactive in CHCl₃. Extraction of Kamala (I) with cold Et₂O and adsorption of the extract on Al₂O₃ gives a zone containing isorottlerin (II). Contrary to Robertson et al. (A., 1939, II, 559) (II) is not formed during the extraction of (I) by hot PhMc. H. W.

Mol. wt. of the methyl ether of tetrahydrorottlerone. J. N. RAY, K. S. NARANG, and B. S. Roy (Current Sci., 1940, 9, 136—137).—The mol. wt. of the Me₂ ether of hydrogenated rottlerone, m.p. 101.5° , is 369.5-372 in C_6H_6 , corresponding with $C_{20}H_{20}O_2(\text{OMe})_2$ contrary to the val. obtained, and the diphenylmethane structure proposed, by McGookin et al. (A., 1939, I, 559). F. R. G.

Pentamethylene oxides and sulphides.—See B., 1940, 346.

Thioxanthones.—See B., 1940, 433.

Catalytic transformations of heterocyclic compounds. XV. Permanence of activity of the catalyst in the reactions of conversion of furanidin into pyrrolidine or thiophan. J. K. Juriev and V. A. Tronova (J. Gen. Chem. Russ., 1940, 10, 31—34).—Optimum conditions for conducting the reactions (Al₂O₃ catalyst): tetramethylene oxide (I) + NH₃ \rightarrow pyrrolidine; (I) + H₂S \rightarrow tetramethylene sulphide; furan + H₂S \rightarrow thiophen, are described; the optimum temp. is 400°, in all cases. The catalyst does not suffer inactivation. R. T.

Physiologically-active stimulants in foods and their detection. W. DIEMAIR (Atti X. Congr. Internaz. Chim., 1938, IV, 497—517).—See A., 1940, III, 592. Na-Benzoylhistidine Me ester (I) (Gerngross, A., 1921, i, 57) coupled with PhN₂Cl (accompanied by spontaneous de-esterification) yields 2:5-dibenzeneazo- N^{α} -benzoylhistidine, m.p. 145.5° (Me ester, m.p. 217°), whilst coupling with p-NO₂·C₆H₄·N₂Cl 2:5-di-p-nitrobenzeneazo-Na-benzoylhistidine, m.p. 161—162°; N^a-benzoylhistamine with PhN₂Cl yields only 5-benzeneazo-Na-benzoylhistamine, m.p. 186.5° (decomp.). Glyoxaline with NO₂·C₆H₄·N₂Cl gives 2-p-nitrobenzeneazoglyoxaline, m.p. 248°. With I (I) yields 2-iodo-Na-benzoylhistidine Me ester, m.p. 189° (all m.p. uncorr.). The bearing of the formation and properties of these derivatives on the Pauly diazoreaction is discussed. F. O. H.

3 : 3-Dimethylthiolindoline.—See B., 1940, 383. β-Indolylacetic acids.—See B., 1940, 346.

Coli-tryptophan-indole reaction. III. Essential structural conditions for the enzymic degradation of tryptophan to indole. J. W. Baker and F. C. Happold (Biochem. J., 1940, 34, 657—663).—The breakdown of tryptophans to indoles by E. coli appears to require, inter alia, a free CO₂H, an un-

substituted α-NH₂, and a β-C capable of oxidative attack. The following appear new: l-p-nitrobenzoyl-tryptophan, m.p. 121° (decomp.) after softening at 114° (possibly +1EtOH); Me l-α-methylamino-β-3-indolylpropionate hydriodide, m.p. 192°; 3-indolyl-acetamide, m.p. 150—151°, by heating NH₄ 3-indolyl-acetate with (NH₄)₂CO₃ at 200—210°; indole-3-aldehydesemicarbazone, m.p. 220° (decomp.). It is doubtful if l-tryptophan reacts simply with CH₂O.

Phenylpyridines.—See B., 1940, 346.

Benzacridones.—See B., 1940, 433.

Carcinogenic compounds. I. Synthesis of 9-azacholanthrene and of certain meso-alkyl derivatives of 1:2- and 3:4-benzacridine. I. J. Postovski and B. N. Lundin (J. Gen. Chem. Russ., 1940, 10, 71—76).—m-NH₂·C₆H₄·[CH₂]₂·CO₂H and α-C₁₀H₇·OH heated with ZnCl₂ (5 hr. at 280—290°) yield 9-azacholanthrene, m.p. 187—188° [picrate, m.p. 222—224° (decomp.)]. α-C₁₀H₇·NHPh and AcOH or EtCO₂H heated with ZnCl₂ (14 hr. at 230—240°), afford 5-methyl-, m.p. 126° [hydrochloride, m.p. 253°; picrate, m.p. 231° (decomp.)], or 5-ethyl-1:2-benzacridine, m.p. 123° [hydrochloride, m.p. 250°; picrate, m.p. 227° (decomp.)]. 5-Methyl-, m.p. 144° [hydrochloride, m.p. 266°; picrate, m.p. 239° (decomp.)], and 5-ethyl-3:4-benzacridine, m.p. 139°, are prepared similarly from β-C₁₀H₇·NHPh. R. T.

Stabilised diazo-complexes with piperazine and other bases. P. J. Drumm, W. F. O'Connor, and J. Reilly (Sci. Proc. Roy. Dublin Soc., 1940, 22, 223—227).—Diazonium salts with piperazine and with NHMe·OH give stable complexes which reproduce the diazonium salts in 55—98% yield when heated to 45° with 80% H₂SO₄. Bis·3·, m.p. 160·5° [reduced (Zn + EtOH-AcOH) to NN'-diaminopiperazine], and -4-chloro-6-methyl-, m.p. 184°, and -2:5-dichloro-benzeneazopiperazine, m.p. 146°, and 3·, m.p. 76°, and 4-chloro-6-methyl-, m.p. 84°, and 2:5-dichloro-benzeneazo-β-methylhydroxylamine, m.p. 112°, are described.

Bisisoindolenylidenes.—See B., 1940, 349, 434.

Reaction of unsaturated halogen compounds of the types $CR_2:CX_2$ and $NR:CX_2$ with azides. I. Reaction of phenylcarbylamine chloride with sodium azide. P. S. Pelkis and C. S. Dunaevskaja (Mem. Inst. Chem. Ukrain. Acad. Sci., 1940, 6, 163—180).—NPh:CCl₂ and NaN₃ in COMe₂ (at the b.p.) yield 5-azido-1-phenyl-1:2:3:4-tetrazole.

Magnetochemical investigations. XXXV. Heavy-metal complexes of phthalocyanine. H. Senff and W. Klemm (J. pr. Chem., 1940, [ii], 154, 73—81).—The magnetic susceptibilities of the phthalocyanine complexes of Ni, Co, Fe, and Mn indicate a transition from penetration to normal complex in this series. In the V complex the metal is quadrivalent. The C₅H₅N and quinoline compounds of the Fe complex are diamagnetic. J. W. S.

Acylamidomorpholines.—See B., 1940, 431.

Biogenesis of vitamin-B₁. C. R. HARINGTON and R. C. G. MOGGRIDGE (Biochem. J., 1940, 34,

685—689).—The action of pressed top yeast on α-amino-β-(4-methylthiazole-5)-propionic acid (I) and sucrose in $\rm H_2O$ gives 4-methyl-5- β -hydroxyethyl-thiazole [picrate, m.p. 162° ; picrolonate, m.p. 184° (decomp.); p-nitrobenzoate, m.p. 125°] and $\tilde{d}(-)$ - α amino- β -(4-methylthiazole-5)-propionic acid, $[\alpha]_D$ -9.0° in N-H₂SO₄, which appears homogeneous and gives a strongly positive ninhydrin reaction. The Me ester hydrochloride, m.p. 187° (decomp.), does not appear to react with NHEt₂, ClCO₂CH₂Ph, or AcCl. 4-Methylthiazole-5-aldehyde and acetylglycine yield CH-Š N·CMe C·CH:C CO-Ŏ N=CMe, azlactone, 157.5°, converted by NaOMe-MeOH into Me α-acet $amido-\beta-(4-methylthiazole-5)-acrylate,$ m.p. α -Acetamido- β -(4-ethylthiazole-5)-propionic acid has m.p. 191°. Attempts to condense 4-amino-2-methyl-5-bromomethylpyrimidine hydrobromide (II) with (I) were unsuccessful. α-Acetamido-β-(4-methylthiazole-5)-propionic acid and (II) at 160° afford the acid, decomp. 260°, hydrolysed by HBr to the NH_2 -acid [tripicrate, m.p. 164° (decomp.); tribromide, m.p. 233° (decomp.)].

Synthesis of heterocyclic derivatives of sulphanilamide. K. Ganapathi and B. K. Nandi (Current Sci., 1940, 9, 67—68).—5-Amino- and 2:8-diamino-aeridine, 2-sulphanilamidopyridine, and 2-aminothiazole are condensed with $p\text{-NHAc-C}_6H_4\cdot SO_2Cl$ in COMe₂ or C_5H_5N and the products are hydrolysed (2·5n-NaOH or 4—5n-HCl) to 5-sulphanilamido- and 2:8-disulphanilamido-aeridine, 2-p-sulphanilamidobenzenesulphanamidopyridine, and 2-sulphanilamidothiazole respectively.

Heterocyclic and other derivatives of sulphanilamide. B. K. Nandi and K. Ganapathi (Current Sci., 1940, 9, 177; cf. preceding abstract).—Condensation of p-NHAc·C₆H₄·SO₂Cl with the appropriate NH₂-compounds in COMe₂ or C₅H₅N, followed by hydrolysis with NaOH or HCl, yields 2-N'-sulphanilamido-4-methylthiazole, -4-phenylthiazole, -anthraquinone, and -5-hydroxy-1:3:4-thiodiazine. A. Lt.

Strychnine and brucine. III. Derivatives of dinitrostrychnic acid. R. H. Siddiqui (Proc. Indian Acad. Sci., 1940, 11, A, 268—281).—Dinitrostrychnic acid nitrate (I) (the dinitrostrychnine hydrate nitrate of Tafel, A., 1898, i, 706) and MeOH-H₂SO₄ afford, through the sulphate (+MeOH) of (II), Me dinitrostrychnate (II), m.p. 210—211° (decomp.) (+MeOH, lost at 110° in vac.) [hydriodide, +MeOH (not lost at 140°), m.p. 245—246° (decomp.); hydrochloride, +H₂O, m.p. 245-247° (decomp.); picrate, chars at 275°; methiodide (III), +H₂O, m.p. 240— 242° (decomp.) (shrinks at 215°)]. (III) and AgOH afford N(b)-methyldinitrostrychnic betaine, m.p. >310° [picrate, m.p. 276—277° (decomp.) (browns at 265°)]. (II) refluxed with piperidine affords dinitrostrychnic acid (IV), $+1.5 H_2O$. Et, m.p. 226° (decomp.) [sulphate, +1.5 EtOH; hydrochloride, $+\text{H}_2O$, m.p. 230° (decomp.) (softens at 190°); picrate], and Prdinitrostrychnate, m.p. 246—247° (decomp.) [sulphate, m.p. 210°; hydrochloride, +H₂O, m.p. 230° (decomp.); picrate, chars from 254°], are prepared. (II) and SnCl₂-HCl or Zn-HCl afford diaminostrychnine (V), new m.p. 287° (decomp.), also obtained from (IV). (II) and N₂H₄,H₂O in Bu°OH give dinitrostrychnic acid hydrazide (dihydrochloride, $+H_2O$; picrate; sulphate; perchlorate), converted by $NaNO_2$ -AcOH at 7° and then boiling EtOH into a substance, $C_{21}H_{22}O_6N_4$, $+0.5H_2O$, m.p. 265° (softens at 175°, froths at 198°) (hydrochloride, +0.5H₂O), a substance, $C_{21}H_{23}O_6N_5,H_2O, \text{ m.p. } >320^{\circ} \text{ [(?) amide of (IV)]}$ (hydrochloride), and a substance, C21H22O6N4,H2O, decomp. from 240° [(?) aldehyde related to (IV)] (hydrochloride, +H₂O). (IV) and aq. KOH yield an (?) isomeride (VI) [hydrochloride, $C_{21}H_{22}O_7N_4$, HCl; Me ester (VII), m.p. 165° (decomp.), then, after recrystallisation, 209°; cf. (II)]. (I) or (VI) and Ac₂O-NaOAe at 100° afford (after MeOH) (VII) and a base, decomp. from 235—248° (softens at 233°), probably α-dinitrostrychnine, converted by Bu^αOH-H₂O into (?) (IV), reduced to (V). (I) and HNO₃ (d 1·42) afford H₂C₂O₄, pieric acid, dinitrostrycholdicarboxylic acid (cf. Ashley et al., A., 1930, 625), an acid, $C_8H_6O_7N_2$, m.p. 182° (softens at 175°), two acids, m.p. 230—235° and 195°, respectively, and a K salt, m.p. 220°. The structure of strychnine is discussed. A. T. P.

Strychnine and brucine. IV. isoStrychnic acid. R. H. Siddigui (J. Indian Chem. Soc., 1940, 17, 152—156; cf. preceding abstract).—isoStrychnic acid (I), $C_{21}H_{24}O_3N_2$, m.p. 240° (A., 1907, 1208; 231°), contains 1 mol. of H_2O of crystallisation, of which 0.5 mol. is lost at $1\bar{3}5^{\circ}$ /vac., gives a hydrochloride, $+\mathrm{H}_2\mathrm{O}$, m.p. $190-195^{\circ}$ (decomp.), picrate, m.p. 187-189° (decomp. from 130°), and by Ac₂O at $10\bar{0}^{\circ}$ an O-Ac derivative, $+2\mathrm{H}_{2}\mathrm{O}$ (lost at $100^{\circ}/\mathrm{vac.}$), m.p. 195—196° (decomp.) [hydrochloride, m.p. 225-226°; picrate, m.p. 184° (decomp.)], and with BzCl-C₅H₅N gives BzOH and isostrychnine. It is unaffected by hot 5—10% HNO₃, with 20% HNO₃ gives an amorphous powder, but with boiling 50% HNO₃ gives dinitroisostrychnic acid, C₂₁H₂₂O₇N₄, +1·5H₂O, m.p. >325° (hydrochloride; sulphate; resists reduction), and an amorphous acid, m.p. 260-271°. The structure of (I) is discussed.

Strychnine and brucine. V. Derivatives of dinitroisostrychnic acid. R. H. Siddle I. Indian Chem. Soc., 1940, 17, 233—238).—The Me ester, m.p. 225° (softens at 218°) [sulphate, chars at 280—290°; hydrochloride, softens at 194° and chars at 225—235°; picrate, m.p. 259° (decomp.)], of dinitroisostrychnic acid (I) with MeI in CHCl₃ yields the methiodide, m.p. 276—280° (decomp.), which with Ag₂O gives the betaine, m.p. $\pm 325^{\circ}$ (picrate, decomp. 259°). The Et ester, m.p. 195° (softening at 192°) [sulphate, decomp. 250° (frothing at 150°); hydrochloride, decomp. 247°; picrate, m.p. 261° (decomp.)], of (I) is not affected by piperidine, and yields, with HNO₂, the nitrite, m.p. 198—199°, with Br in CHCl₃, a Br-derivative, m.p. 180°, and with N₂H₄,H₂O in BuOH, a mixture of the hydrazide (+0·25H₂O), m.p. $\pm 280^{\circ}$, with two substances, C₂₁H₂₃O₆N₅,H₂O, m.p. 221° [picrate, m.p. 225—235° (frothing)], and C₂₁H₂₃O₅N₅,0·25H₂O, m.p. 160° (frothing) [picrate,

m.p. 225—235° (frothing at 178°)]. The Pr ester of (I) has m.p. 118—122° [sulphate, m.p. 247—248° (decomp.); hydrochloride, m.p. 225° (frothing); picrate, m.p. 241—244° (decomp.)].

A. Li.

Alkaloids of fumariaceous plants. XXVI. Corydalis claviculata (L.), DC. XXVII. A new alkaloid, cheilanthifoline, and its constitution. R. H. F. MANSKE (Canad. J. Res., 1940, 18, B, 97—99, 100—102).—XXVI. C. claviculata (L.), DC., contains cularine (I), suggesting the lack of any close relationship to C. lutea and ochroleuca (cf. A., 1939, II, 395). Protopine, partly racemised l-stylopine, and a phenolic base or mixture of bases, alkaloid F52, methylated to (I), are also present.

XXVII. Cheilanthifoline (alkaloid F13) (II), m.p. 184° , $[\alpha]_{D}^{20}$ -311° in MeOH, obtained from C. cheilantheifolia, and in smaller amounts from C. scouleri and C. siberica (A., 1937, II, 265), has the structure (A; R = H). With CH_2N_2 in MeOH (II) gives sinactine (III) (A; R = Me). With $CHMeN_2$ in MeOH-Et₂O, (II) gives its O-Et ether, m.p. 144° , which is oxidised by $KMnO_4$ -Na₂CO₃ to 1-keto-6-methoxy-7-ethoxy-1: 2: 3: 4-tetrahydroisoquinol-

ine (cf. Gadamer et al., A., 1928, 310) and 4-methoxy-5-ethoxyphthalic acid. The identity of alkaloid F36 from Fumaria officinalis (A., 1939, II, 190) with partly racemic (III) is con-E. W. W.

Salts of rubradinine. P. Denis (Bull. Acad. roy. Belg., 1939, [v], 25, 177—182; cf. A., 1937, II, 266).—Rubradinine contains 1 OMe and its formula is therefore C₂₃H₂₅O₃N₂·OMe. The non-cryst. hydrochloride, sulphate, C₂₄H₂₈O₄N₂,H₂SO₄,5H₂O, m.p. 245° (block), per-rhenate, platinichloride, aurichloride, and mercurichloride are described. H. W.

Synthesis of lipophilic chemotherapeuticals.

4-Alkylaminoazobenzene-4'-arsonic acids. S. Adler, L. Haskelberg, and F. Bergmann (J.C.S., 1940, 576—578).—A series of dyes, $R \cdot N H \cdot C_6 H_4 \cdot N \cdot N \cdot C_6 H_4 \cdot As O_3 H_2, \quad has \quad been \quad prepared$ by coupling diazotised p-arsanilic acid with a solution of the substituted NH₂Ph, usually in AcOH. The lower members of the series are very toxic, the higher ones show a definite decrease in toxicity. following are described: sec.-butyl-, b.p. 225°/759 mm., sec.-butylcarbinyl-, b.p. $236^{\circ}/758$ mm., β -methylamyl-, b.p. $138^{\circ}/22$ mm., dodecyl-, b.p. $140^{\circ}/0.2$ mm., tetradecyl-, b.p. $180^{\circ}/4$ mm., and octadecylaniline, b.p. 196°/0.6 mm., and 4-dimethyl-, m.p. 310° (decomp.), -ethyl-, m.p. 276° (decomp.), -n-propyl-, m.p. 286° (decomp.), -n-butyl-, -isobutyl-, m.p. 303° (decomp.), -sec.-butyl- (+EtOH), -n-amyl-, -sec.-butylcarbinyl-, m.p. 245° (decomp.), -n-hexyl-, m.p. 270° (decomp.), -β-methylamyl-, m.p. 265° (decomp.), -n-heptyl-, -n-dodecyl-, -n-tetradecyl-, -n-octadecyl-, -cyclohexyl-, m.p. 292° (decomp.), -benzyl-, m.p. 340° (decomp.), and -cholesteryl-aminoazobenzene-4'-arsinic acid, m.p. 237° (decomp.).

Mercuration of some simple derivatives of

y-pyrone. J. R. Files and F. Challenger (J.C.S., 1940, 663—670).— γ -Pyrone with $Hg(OAc)_2$ in H_2O AcOH at 100° followed by HCl gives dichloromercuriγ-pyrone. Dimethylpyrone with HgCl₂ and NaOAc affords a trichloromercuri-derivative. Meconic acid, NaOAc, and HgCl₂ yield hydroxymercuricomenic anhydride, CO₂, and Hg₂Cl₂; the pure anhydride is obtained by using HgO. This substance and HCl give chloromercuricomenic acid, which with Br affords 2-bromocomenic acid. Mercuration of comenic acid with Hg(OAc)₂ or HgCl₂ and NaOAc leads to the Pyromeconic acid and HgCl₂ with anhydride. NaHCO₃-glycerol give the anhydride of hydroxymercuripyromeconic acid, which with HCl forms monochloromercuripyromeconic acid (I); the acid with HgCl, and NaOAe yields oxymercurichlorochloromercuripyromeconic acid, which with HCl affords $dich loromer curipy rome conic \ \ acid.$ With (I) and I, iodopyromeconic acid, with I in position 2, is obtained. Kojic acid with HgCl-NaOAc or NaHCO₃glycerol gives hydroxymercurikojic anhydride, which with Me forms chloromercurikojic acid; treatment with Na₂S and Nal results in elimination of Hg. Almost all these mercurated products are amorphous, insol., infusible solids. F. R. S.

Organo-mercury compounds derived from quinine and cinchonine. N. V. S. RAO and T. R. Seshadri (Proc. Indian Acad. Sci., 1940, **11**, **A**, 289— 297).—Quinine (I) (1 mol.) and HgCl₂ (1 mol.) in cold EtOH afford quinine-monomercuri chloride (II), m.p. ~140—170°; 2 or more mols. of HgCl₂ give the -dimercuri chloride (III), m.p. ~130—160°. (I) in H₂O, +HCl until just acid, and cold aq. HgCl₂ (1 or 2 mols.) afford the monohydrochloride monomercuri chloride (IV), m.p. 204° (chars); in hot aq. HCl, the dihydrochloride monomercuri chloride (V), m.p. 255° (decomp.), is formed. (V) and cold 10% aq. NaOH give (IV). (II), (III), or (IV) and boiling dil. HCl give (V). Hg is retained in solution as stable complex ions, probably of type K⁺(HgCl₃)' or K₂⁺⁺(HgCl₄)'', when (IV) or (V) is boiled with aq. KOH. (I) and aq. Hg(OAc)₂-AcOH-aq. NaOH afford α-hydroxymercuri-β-hydroxydihydroquinine, $+2H_2O$, decomp. 115° (freshly prepared) or 166° (dried in air), converted by AcOH into α-acetoxymercuri-β-hydroxydihydroquinine acetate (VI), $+2H_2O$. affords, as above, a momomercuri, m.p. 172° (decomp.) and dimercuri chloride (from 3 mols. of HgCl₂), m.p. 155—172°, a mono-, m.p. 120—166°, and di-hydrochloride monomercuri chloride, m.p. ~95—128° (decomp.) ($+3H_2O$, lost at 100°), and α -hydroxymercuri- β -hydroxydihydrocinchonine, $+\mathrm{H}_2\mathrm{O}$, m.p. 235° (turns brown at 212°) (acetate). Formulæ are proposed for (II), (V), and (VI). A. T. P.

Organometallic compounds of group VIII elements. M. LICHTENWALTER (Iowa State Coll. J. Sci., 1939, 14, 57—59; cf. Gilman et al., A., 1939, II, 53, 253).—Of the group VIII metals, only Pt could be made to yield organometallic compounds. Fe, Co, and Ni do not combine directly with org. halides. MgPhI with Fe, Co, or Ni halides (except FeF₃) in Et₂O-C₆H₆ gives the metal and Ph₂ in 100% yield. FeCl₂ or FeI₂ with α-C₁₀H₇·MgBr or α-C₁₀H₇Li yields some (1-C₁₀H₇)₂; addition of CH₂PhBr before hydrolysis

gives no ketone. FeI₂ slowly yields Ph₂ with ZnPhCl, and a mixture of C₂H₄, C₂H₆, and C₄H₁₀ with ZnEtI. PbEt₄ rapidly reduces FeCl₃ to FeCl₂. FeI₂ (with or without Fe powder) with Pb(C₆H₄·OMe-p)₃ in Et₂O-C₆H₆ ppts. PbI₂ and Pb(C₆H₄·OMe-p)₄; hydrolysis of the solution gives chiefly PbI₂(C₆H₄·OMe-p)₂. PtCl₄ with MgPhI gives an amorphous mixture of Ph-Pt compounds containing 30—40% of Pt. PtCl₂ with MgMeI gives an amorphous substance analysing correctly for PtMe₂I₂, and with α-C₁₀H₇·MgBr gives Pt di-α-naphthyl, in presence of which (as of PtCl₄) BzBr and m-xylene give a 70—80% yield of 2:4:1-C₆H₃Me₂·COPh. Anhyd. PtCl₄ with MgMeI yields PtMe₃I (40%), together with a trace of PtMe₃, and compounds having compositions corresponding with PtMeI₅, PtMe₃I, and PtMeI₃. A. Li.

Organometallic radicals. J. C. Baille (Iowa State Coll. J. Sci., 1939, 14, 8—10).—Some Pb triaryls are described again (cf. Gilman and Bailie, A., 1939, II, 233). Pb tri-p-phenetylbenzyl [from PbNa(C_6H_4 ·OEt-p)₃ and CH_2 PhCl] has m.p. 76—77°. When R = Ph, $p \cdot tolyl$, $p \cdot C_6H_4 \cdot OMe$, $p \cdot C_6H_4 \cdot OEt$, $2\dot{P}b\dot{R}_3 + \dot{M}g\dot{l}_2 + \dot{M}g \rightarrow P\dot{b}\dot{R}_4 + \dot{P}b +$ 2MgRI, probably with the intermediate formation of PbR₃·MgI; the o-substituted Pb triaryls with MgI₂ and Mg yield PbR₃I, whilst PbPh₄ and Pb(C_6H_4Me-p)₃ do not react. $PbPh_3$ or $Pb(C_6H_4Me-p)_3$ with MgI_2 alone yields PbR_3I . PbR_3Na (R = aryl or alkyl) with NH_4X in liquid NH_3 yields PbR_3 and Pb, the colour changes indicating that the reaction is probably $PbR_3Na \rightarrow PbR_3H \rightarrow PbR_2 + RH; 3PbR_2 \rightarrow 2PbR_3$ + Pb. PbPh₃Cl, PbPh₃Br, or PbPh₃I with CPh₃·MgCl affords Pb triphenyltriphenylmethyl (?) (I), m.p. 196— 197°, which in C_6H_6 dissociates appreciably, and is slowly oxidised to PbPh₃ and $(CPh_3)_2O_2$. The following reactions of (I) are recorded: thermal decomp. in xylene gives PbPh₄ and Pb; the reaction with HCl + I is inconclusive, but dry HCl yields, in CHCl₃, CPh₃·OH, and in light petroleum (b.p. 60—66°), PbPh₂Cl₂; I in CHCl₃ gives PbI₂ and a trace of PbPh₃1; Na in liquid NH₃ gives a mixture of CPh₃Na and PbPh₃Na, which yields with NH₄Br, CIIPh₃ and PbPh₃, and with CH₂PhCl, CPh₃·CH₂Ph and PbPh₃·CH₂Ph. (I) could not be prepared by mixing CPh₃ and PbPh₃. Sn triphenyllriphenylmethyl, m.p. 272—273° (decomp.) (from SnPh₃Cl and CPh₃ MgCl), does not dissociate in C₆H₆. Na followed by NH₄Br in liquid NH₃ it yields CHPh₃ and SnPh₃; the comparatively slow reaction with HCl to give Sn diphenyltriphenylmethyl chloride, m.p. 210°, shows that the C-Sn bond is more stable than the C-Pb. PbI(C₆H₄·OMe-o)₃ and CPl₁₃·MgCl yield tri-o-anisyltriphenylmethyl, m.p. 145—146°. CPh3·MgCl with PbCl2 in C6H6-Et2O gives CPh3 and Pb.

Acridine derivatives. V. Aurothiol- and argentothiol-acridines. S. J. Das-Gupta (J. Indian Chem. Soc., 1940, 47, 244—246).—5-Thiolacridines exist in two forms (? thio-ketonic and -enolic), one form yielding the other when dissolved in alkali and repptd. by acid. 7-Methoxy-5-thiolacridine, m.p. 231—232° (from the 5-chloroacridine and K xanthate in PhOH), in EtOH yields, with SO₂ followed by KAuBr₄, the 5-aurothiolacridine, m.p. 219—220°

(decomp.), with KAuBr₄ followed by SO₂, bis-7-methoxy-5-acridylthiolgold bromide, m.p. 222—223°, and with NaOH followed by AgNO₃, 7-methoxy-5-argentothiolacridine, m.p. 261° (decomp.). The corresponding compounds from 2-chloro-7-methoxy-5-thiolacridine, m.p. 245°, have m.p. 247—248° (decomp.), 254—255° (decomp.), and 290° (decomp.), respectively.

Structure of proteins. A. Olsen (Tids. Kjemi, 1940, 20, 45—52).—A review. M. H. M. A.

Cyclol hypothesis. D. Wrinch (Nature, 1940, 145, 669—670).—Experiments cited as evidence against the hypothesis are accommodated with it.

L. S. T. Number and range of dissociation of ionogenic groups and the dissociation curve of proteins. I. LICHTENSTEIN (Biochem. Z., 1939, 303, 13—31).— Acid- and base-binding capacities of gelatin, deaminated gelatin, and cryst. egg-albumin have been determined between $p_{\rm H}$ 1.5 and 12.5 in $\rm H_2O$, in 80% EtOH, and in 1% CH₂O, and the curves obtained are compared with those derived from data on the constituent NH₂-acids and on the proportions of these in the respective proteins. The dissociation range of all single groups, and the no. of NH₂ and glyoxaline groups (corresponding respectively with the lysine and histidine content of gelatin), are in agreement with available analytical data, but the no. of free CO₂H is approx, twice that to be expected from the accepted content of dibasic NH2-acids. A discrepancy also exists with regard to guanidino-groups cale. on the basis of the arginine content. Correct isoelectric points can be cale, from dissociation ranges and nos, of groups derived from the titration curves, but not F. L. U. from analytical data.

Simplified micro-determination of carbon and hydrogen in organic compounds. I. Combustion of compounds containing carbon, hydrogen, and oxygen. II. (Frln.) A. Dombrowski (Mikrochem., 1940, 28, 125—135, 136—140).—I. Org. substances are burnt in O₂ in a shortened Pregl combustion tube using only Cu gauze therein. Shortened absorption tubes are more convenient.

II. With the above-mentioned apparatus, N oxides are absorbed in a tube, containing p-NH₂·C₆H₄·N₂Ph and aq. H₃BO₃-K₂Cr₂O₇, placed between the H₂O-and CO₂-absorption tubes. S and halogen are absorbed by Ag (followed by CuO, PbCrO₄, and finally Ag).

R. S. C.

Systematic qualitative organic micro-analysis.
—See A., 1940, 1, 301.

Semi-micro-Dumas method for difficult compounds. A. R. Ronzio (Ind. Eng. Chem. [Anal.], 1940, 12, 303—304).—The method previously described (A., 1936, 578) is modified by using pptd. MnO_2 in the combustion tube, which burns CH_4 quantitatively to CO_2 . A special nitrometer is described.

J. D. R.

Bomb determination of organic chlorine by lime-fusion method. W. M. MacNevin and W. H. Baxley (Ind. Eng. Chem. [Anal.], 1940, 12, 299—300).—A suitable bomb is described. The use of a sealed metal tube makes the process available

for volatile liquids, and is quicker than the Carius method. Procedure is detailed. J. D. R.

Determination of organic iodine by the micromethod of Leipert. A. Bonot (Bull. Soc. Chim. biol., 1940, 22, 108—111).—Conditions to be observed for the determination of 0·1—1 mg. of I are described.

Determination of methylpropene by a modified Denigès reagent. A. Newton and E. J. Buckler (Ind. Eng. Chem. [Anal.], 1940, 12, 251—254).—The normal determination of $CMc_2:CH_2$ by the Denigès reagent $[Hg(NO_3)_2-HNO_3]$ is complicated by the solubility of the ppt. in HNO_3 and by changes in its wt. and composition on washing with H_2O . Use of a neutralised reagent and determination of the Hg in the ppt. (not the wt. of the ppt.), which is const. under the conditions of determination $[7Hg = CMc_2:CH_2]$, gives an accurate and rapid determination. C_2H_4 , C_3H_6 , $\Delta^{\alpha\gamma}$ -butadiene, Δ^{α} - and Δ^{β} -butene, and β -methyl- Δ^{β} -butene do not interfere. Apparatus and procedure are detailed. J. D. R.

Equivalent weights of salts of organic acids. Micro-determination by electrodialysis. K. H. DITTMER and R. G. GUSTAVSON (Ind. Eng. Chem. [Anal.], 1940, 12, 297—299).—The aq. salt solution is electrodialysed through a sintered glass membrane, the metal forming an amalgam with the Hg cathode and thence combining with a known excess of standard $\rm H_2SO_4$ in the cathode vessel. Titration of the cathode acid after electrodialysis gives the equiv. wt. of the acid. Apparatus and procedure are detailed, and methods are described for prep. of sintered glass membranes. The error is >3%. J. D. R.

Quantitative analysis by isotope dilution, with application to the determination of amino-acids and fatty acids. D. RITTENBERG and G. L. FOSTER (J. Biol. Chem., 1940, 133, 737—744).—Palmitic acid (I) (e.g.) of known isotope content is added to the mixture to be analysed, and a small sample of the pure acid is isolated from the mixture. The (I) content of the mixture is calc. from the isotope conen. in the added and extracted samples. The method is also applied to glycine, glutamic acid, and aspartic acid in fibrin hydrolysates.

R. L. E.

Determination of lactic and pyruvic acid with periodic acid. R. Boisson (J. Pharm. Chim., 1940, [ix], 1, 240—255; cf. A., 1940, II, 34).—Air is aspirated through boiling 0·1—1% lactic acid (I) (10 c.c.) containing 10% HIO₄ (10 c.c.) and 10N-H₂SO₄ (2 c.c.) and the MeCHO formed is absorbed in Nessler's reagent and determined titrimetrically (error —3%). 0·5—1 mg. is determined by a modified method. If glucose is mixed with (I), the latter is determined after extraction with ether. AcCO₂H (II) interferes with the determination of (I) unless approx. equimol. amounts of the two substances are present. When (II) (5—30 mg.) is heated (boiling H₂O-bath/0·5—1 hr.) with 0·1N-NaIO₄ (5 c.c.), the excess of NaIO₄ determined titrimetrically is a measure of (II) present.

Polarographic analysis of mixtures of aldehydes and peroxides. V. Schtern and S. Polljak (J. Gen. Chem. Russ., 1940, 10, 21—30).—The

negative reduction potentials of certain peroxides and aldehydes in 0·1n·LiCl are: MeO₂H and EtO₂H 0·25—0·3, (OH·CH₂)₂O₂ 0·35, Et₂O₂ 0·5, H₂O₂ 0·75, CH₂O 1·55—1·6, MeCHO and EtCHO 1·75—1·8. The polarographic determination of these substances and of their mixtures is described. R. T.

Identification of β-aminoethanol. B. Keiser (Ind. Eng. Chem. [Anal.], 1940, 12, 284).— NH₂·[CH₂]₂·OH (I) in H₂O is treated with o-C₆H₄(CO)₂O, evaporated to dryness, and heated at 210°/5 min.; o-C₆H₄(CO)₂N·[CH₂]₂·OH, m.p. 127°, is formed. Similarly, (I) with H₂C₂O₄ in H₂O yields the oxalate, m.p. 199—200°, which when heated to 220° gives NN'-bis-(β-hydroxyethyl)oxamide, m.p. 168°. J. D. R.

Biuret reaction. B. M. Kosolapov (J. Appl. Chem. Russ., 1940, 13, 314—316).—The biuret reaction is given by salts of Cu^I, Cu^{II}, and Ni^{II}. The violet complex obtained with Co^{II} is readily oxidised by atm. O₂ to a brownish-yellow Co^{III} complex. R. T.

Micro-determination of homocystine.—See A., 1940, III, 550.

Determination of creatinine with m-dinitrobenzoic acid.—See A., 1940, III, 619.

Determination of cholesterol.—See A., 1940, III, 620.

Determination of indole. Modification of Ehrlich's reaction. L. H. CHERNOFF (Ind. Eng. Chem. [Anal.], 1940, 12, 273—274).—Indole in EtOH-free CHCl₃ is treated with p-NMe₂·C₆H₄·CHO in 85% HPO₃, and AcOH added; the colour in the HPO₃ layer is compared with known standards. J. D. R.

Volumetric determination of acridines by methylene-blue. A. Bollicer (Quart. J. Pharm., 1940, 13, 1-6).—Acridines are determined by pptn. from neutral or slightly acid solution with excess of picric acid (1); after removal of the picrate the excess of (I) is determined by titration with methylene-blue (A., 1939, II, 398). The determination of 2:8-diaminoacridine (monopicrate, decomp. 250°), 2:8-diamino-10-methylacridinium chloride [monopicrate, m.p. 244° (decomp.)], and their commercial forms proflavine, cuflavine, and acriflavine is described.

Precipitating agents for alkaloids and amines. C. C. Fulton (Amer. J. Pharm., 1940, 112, 51—64, 134—154; cf. A., 1932, 629).—A large no. of reagents are described which give characteristic cryst. ppts. with alkaloids. Pptn. is most satisfactory when the alkaloid is dissolved in 85% $\rm H_3PO_4$. J. L. D.

Determination of nicotine and anabasine present together. A. Schmuk and A. Borozdina (J. Appl. Chem. Russ., 1939, 12, 1582—1585).—Total alkaloids are determined in a sample of tobacco by titration of the Et₂O extractives. A second portion of the aq. solution of extractives is made acid with H₂SO₄, filtered, and 3 ml. of 10% H₂SO₄ and 10 ml. of 5% NaNO₂ are added to 50 ml. of filtrate + washings. Nicotine is then pptd. as picrate (nitrosoanabasine is not pptd. under these conditions), and the ppt. is titrated in the usual way. Anabasine is given by difference. R. T.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

AUGUST, 1940.

Absorption spectra as an aid to research in organic and biological chemistry. A. E. GILLAM (J. Roy. Coll. Sci., 1940, 10, 21—34).—A lecture.

L. J. J. Catalytic cyclisation of $\beta\zeta$ -dimethyloctane in the presence of platinised charcoal. B. A. Kazanski, A. F. Plate, and E. E. Goldman (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 250—251).— Passage of $\beta\zeta$ -dimethyloctane (I) over platinised charcoal at $\sim 310^{\circ}$ gave a condensate with increased n indicating the formation of an aromatic hydrocarbon (II). Since (II) is convertible into p-cymene- α -sulphonic acid (identified as Ba salt) it is concluded that (I) is partly hydrogenated to p-cymene.

Destructive hydrogenation of high mol. wt. polymerides. isoButene polymeride, butadiene polymeride, and natural rubber. V. N. IPATIEV and R. E. SCHAAD (Ind. Eng. Chem., 1940, 32, 762— 764).—Destructive hydrogenation of rubber-like isobutene polymeride (prep. by treating isobutene in liquid C₃H₈ with AlCl₃ and HCl) at 250°/100 kg. per sq. cm. initial H₂ pressure, using NiO as catalyst, yields only paraffinic hydrocarbons, indicating that the polymerides probably have long aliphatic C chains. Similar treatment of polymerised butadiene (prep. by heating butadiene at 150°/40 atm. and freeing the product from oils of b.p. <300° by vac. distillation) and of rubber yields only naphthenic hydrocarbons, principally ethylcyclohexane and p-menthane, respectively. Hydrogenation of isoprene at $250^{\circ}/100$ atm. H₂ in presence of NiO yields EtPr^{β} (32 wt.-%) and a polymeric compound, b.p. 155--190°. J. W. S.

Action of fluorine vapour on organic compounds. VIII. Influence of dilution on vapourphase fluorination of ethane. DEW. S. Young, N. Fukuhara, and L. A. Bigelow (J. Amer. Chem. Soc., 1940, 62, 1171—1173; cf. A., 1940, II, 147).— In presence of Cu gauze, C₂H₆ and F₂-N₂ give (CHF₂)₂, CHF₂·CH₂F, and pentafluoroethane, f.p. -103°, b.p. -38°/1200 mm., -48·5°/760 mm., the proportions varying according to those of the reactants. R. S. C.

Catalytic hydration of olefines. III. Sulphuric acid as a catalyst for continuous preparation of tert.-butyl alcohol from isobutylene. E. K. Remiz and A. V. Frost (J. Appl. Chem. Russ., 1940, 13, 210—214; cf. A., 1936, 819).—CH₂:CMe₂ is passed through 3% Ag₂SO₄ in 10% H₂SO₄ at 90—95°, the issuing gas is passed through a condenser and then back to the process, and Bu OH condensing is

collected. H₂O is added continuously to the reaction vessel, to maintain const. [H₂SO₄]. R. T.

Synthesis of choline β-glycerophosphate. H. Arnold (Ber., 1940, 73, [B], 87—90; cf. Contardi et al., A., 1933, 863).—Na₂ β-glycerophosphate with AcOH (to neutrality) and AgNO₃ gives Ag₂ β-glycerophosphate (I), which with Br·[CH₂]₂·NMe₃Br in boiling EtOH under N₂ yields choline β-glycerophosphate (II), b.p. 104—105°, strongly hygroscopic, decomposed by CdCl₂. With Br·[CH₂]₂·NH₂, HBr, (I) gives a resinous product, colamine α-glycerophosphate (?) (cf. Feulgen et al., A., 1939, III, 915), m.p. 80—90° (sinters 60°). (II) has 0·001 of the activity of acetylcholine (III) on the frog's heart and on blood pressure in the cat. Its activity on intestinal and skeletal muscle is similar to but much weaker than that of (III). Its activity at 10⁻⁵ on the leech is equiv. to that of (III) at 10⁻⁸. When heated at 100°, (II) is first activated (due to hydration?) and then deactivated. E. W. W.

Preparation of branched-chain aliphatic sulphonic acids. S. Zuffanti (J. Amer. Chem. Soc., 1940, 62, 1044).—RBr and boiling, aq. Na₂SO₃ give 56.8-95.7% of RSO₃Na and thence by HCl-Et₂O propane- β -, m.p. -37° (109°), β -methyl-n-propane- α -, m.p. -61° (123°), γ -methyl-n-butane- α -, m.p. -5° (115°), and isobutane- β -, m.p. -76° (131°), -sulphonic acid, figures in parentheses being m.p. of the m- $C_6H_4Me\cdot NH_2$ salts. R. S. C.

Reaction of sulphur with mercuric acetate in glacial acetic acid. R. E. Vallrath (J. Amer. Chem. Soc., 1940, 62, 1310).—At 135° the reaction, $6\mathrm{Hg}(\mathrm{OAc})_2 + \mathrm{S} \rightarrow 6\mathrm{Hg}\mathrm{OAc} + 6\mathrm{AcOH} + \mathrm{H_2SO_4}$, occurs in AcOH. Prolonged heating gives a little org. Hg compound. R. S. C.

Mechanism of esterification of strong organic acids. I. Esterification of neopentyl alcohol with the chloroacetic acids. O. R. QUAYLE and H. M. Norton (J. Amer. Chem. Soc., 1940, 62, 1170—1171).—CH₂Bu^y·OH (I) (prep. from MgBu^yCl and gaseous CH₂O) gives neopentyl acetate, b.p. 127°, chloro-, b.p. 180°, dichloro-, b.p. 194°, and trichloroacetate, b.p. 202°, p-nitro-, m.p. 54—54·5°, and 3:5-dinitro-benzoate, m.p. 90—90·5°. Absence of unsaturation (Br) and hydrolysis to (I) prove that during esterification isomerisation does not occur and thus that the C·O linking remains intact. R. S. C.

Addition of hydrogen bromide to methyl methylacrylate. C. C. PRICE and E. C. COYNER (J. Amer. Chem. Soc., 1940, 62, 1306—1307).—CH₂*CMe·CO₂Me and HBr give under all conditions CH₂Br·CHMe·CO₂Me. CMe₂Br·CO₂Me is prepared

for comparison from $Pr^{\beta}CO_{2}H$ by red P-Br etc. Physical consts. are recorded. R. S. C.

Carbonation of organoalkali compounds. H. GILMAN and H. A. PACEVITZ (J. Amer. Chem. Soc., 1940, 62, 1301—1302).—Interaction of n-C₅H₁₁Cl and Na in light petroleum and spraying the products on to solid CO₂ gives $36\cdot4-51\cdot5\%$ of n-C₅H₁₁·CO₂H (I) and <2% of CHBu"(CO₂H)₂ (II). Gaseous CO₂ gives $15\cdot2-19\cdot5\%$ of (I) and $14\cdot8-31\cdot4\%$ of (II).

Fatty acids. VI. Crystallisation methods in the isolation of arachidonic acid; comparison of the properties of this acid prepared by crystallisation and by debromination. Structure of arachidonic acid. G. Y. Shinowara and J. B. Brown (J. Biol. Chem., 1940, 134, 331-340). Crystallisation from COMe2 of the esters of adrenal phosphatides yields 70—75% pure Me arachidonate, distillation of which yields the 95% pure ester (I). The properties of (I) are compared with those of the ester obtained by the bromination-debromination method. Comparison of the octabromide of (I), and of the arachidic acid obtained by reduction and its Me and Et esters, with synthetic specimens confirms their straight-chain structure. Ozonisation oxidation (KMnO₄-COMe₂) of (I) yields MeCHO, succinic and adipic acids, but not malonic, oxalic, or azelaic acid. The $\Delta \zeta^{*ov}$ structure is suggested.

Hydrolysis of fats and fatty acid esters. VIII. T. Ono (J. Agric. Chem. Soc. Japan, 1940, 16, 439—453; cf. A., 1940, I, 260).—Selective hydrolysis of mixed glycerides is more readily carried out in heterogeneous than in homogeneous systems. More highly unsaturated acid radicals are more readily split off from fish oils by lipase or KOH at -10° than less saturated or saturated radicals.

H. G. R.

Separation of hydroxy- from non-hydroxy-aliphatic acids by means of a dibasic acid anhydride. F. E. Kurtz and P. S. Schaffer (J. Amer. Chem. Soc., 1940, 62, 1304—1305).—The mixed saturated esters are heated with ('CH·CO)₂O (I) at 120°, and the product is dissolved in light petroleum and extracted with dil. KOH. For unsaturated esters (CH₂·CO)₂O in C₅H₅N at 130° (some tar formed) is preferable, as a side-reaction occurs with (I).

Increase in optical rotation of d-lactic acid. S. Fukuda (J. Biochem. Japan, 1939, 30, 473—477).— With $23\cdot4\%$ aq. d-lactic acid (I), addition of H_3BO_3 up to a conen. of $2\cdot5\%$ increases [α]¹⁸ progressively from $+2\cdot14^\circ$ to $+5\cdot12^\circ$; borax gives a max. increase at a conen. of $2\cdot0\%$, higher conens. (up to $3\cdot35\%$) decreasing [α]. $UO_2(NO_3)_2$, especially in presence of KOH, and NHPh·NH₂ increase [α], whilst $(NH_4)_2MOO_4$ gives a 50-fold increase [max. at 1 mol. per 5 mols. of (I)].

Phosphorylated oxidation product of pyruvic acid. F. LIPMANN (J. Biol. Chem., 1940, 134, 463—464; cf. A., 1939, III, 1100).—AcCO₂H is oxidised by enzyme solutions from B. delbrückii in presence of inorg. PO₄"' (with or without F'). The quantity of the latter (determined by deproteinisation with CCl₃·CO₂H, neutralisation, and pptn. with

CaCl₂) decreases by an amount nearly equiv. to the extra O used, an unstable org. phosphate being formed which behaves like acetyl phosphate.

A. Li.

Synthesis of serine. J. L. Wood and V. Du Vigneaud (J. Biol. Chem., 1940, 134, 413—416).— Equimol. quantities of CH₂Br·CHBr·CO₂Et and NaOEt at 0° give an 80—85% yield of OEt·CH₂·CHBr·CO₂Et (NaOMe gives poorer yields of the OMe-compound), for the synthesis of serine (A., 1937, II, 53).

A. Li.

Extension of Reformatsky reaction. I. Ethyl bromomalonate and acetone. B. H. IYER (J. Indian Chem. Soc., 1940, 17, 215—218).— CHBr(CO₂Et)₂ with Zn and excess of COMe₂ yields CH₂Ac·CMe₂·CH(CO₂Et)₂ (I), also obtained from CMe₂·CH·COMe (II) and CN·CH₂·CO·NH₂ (Qudrat-i-Khuda, A., 1929, 295), or by using (II) or diacetone alcohol instead of COMe₂. With only 1 mol. of COMe₂, (I) is obtained together with some (II) and unchanged reactants. The mechanism of the formation of (I) is discussed.

Addition of αβ-unsaturated alcohols to the active methylene group. I. Action of ethyl acetoacetate on linalool and geraniol. M. F. Carroll (J.C.S., 1940, 704—706).—With CH₂Ac·CO₂Et (I) at 140—210°, linalool gives geranylacetone (II) (cf. Foster et al., J.C.S., 1913, 103, 1345) (55% yield), with an isomeric ketone, and the acetate, b.p. 84—86°/1 mm., of an alcohol, b.p. 82—85°/1·5 mm. With (I) at 200°, geraniol gives geranyl acetate, and (II) (19% yield).

Polyhydric alcohol-polybasic acid reaction. V. Glyceryl succinate and maleate polyesters. R. H. Kienle and F. E. Petke (J. Amer. Chem. Soc., 1940, 62, 1053—1056; cf. A., 1939, II, 506).—Interaction of glycerol with $(CH_2 \cdot CO_2H)_2$ and with $(CH_2 \cdot CO)_2O$ is similar after 50% esterification. < the theoretical amount of H_2O is evolved, probably owing to retention of H_2O by the product. Interaction with (:CH·CO)₂O leads to liberation of > the theoretical amount of H_2O , owing to anhydride formation and intra-esterification. Gelation of the products is associated with low mol. wt. (1100—1200).

R. S. C. Action of sodium alkoxides on ethyl s-diethoxy-succinate. II. Mechanism of formation of ethyl as-diethoxysuccinate from ethyl disodiotartrate. S. Fukunaga (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1940, 37, 216—220; cf. A., 1940, II, 243).—Isomerisation of d-[CH(OEt)·CO₂Et]₂ to CO₂Et·CH₂·C(OEt)₂·CO₂Et (I) is easily effected by NaOEt, less easily by [CH(ONa)·CO₂Et]₂ (II), and scarcely by CO₂Et·CH(OH)·CH(ONa)·CO₂Et. The change follows the course, (II) \rightarrow [CH(OEt)·CO₂Et]₂ \rightarrow trans-CO₂Et·C(OEt)·CH·CO₂Et \rightarrow (I). H. W.

Fully acetylated sugar acids and their derivatives. G. B. Robbins and F. W. Urson (J. Amer. Chem. Soc., 1940, 62, 1074—1076).—Glucose and O_2 in 2N-KOH give K d-arabonate, which by way of the Ca and Na salt yields d-arabonic acid, m.p. 114—116°, $[\alpha] + 10.5^{\circ}$ in H_2O , or by way of the Ca salt and lactone d-arabonamide, m.p. 138—139°, $[\alpha] + 38.6^{\circ}$ in H_2O . The appropriate amide with ZnCl₂ in Ac_2O

at 0° gives d-arabonamide tetra-acetate, m.p. 123°, [a] +24.3°, d-talonamide penta-acetate, m.p. 104—106°, [α] +85·4°, and d-galaheptonamide hexa-acetate, m.p. 185—187°, [α] +2·1°. The crude or pure amide with N_2O_3 (A., 1938, II, 124) gives d-arabonic acid tetra- (I), m.p. $135-136^{\circ}$, [a] $+32\cdot5^{\circ}$ (phenylhydrazide, m.p. $140-141^{\circ}$, [a] $+8\cdot4^{\circ}$; Me ester, m.p. 136° , [a] $+42\cdot3^{\circ}$), d-mannonic acid penta- (II), $^{+}$ H $_{2}$ O, m.p. 75—76°, [α] $+24\cdot8^{\circ}$ (phenylhydrazide, m.p. 173°, [α] +13.0°), d-talonic acid penta- (III), m.p. 142-144° [α] +78·3° (phenylhydrazide, m.p. 162—163°, [α] +35·0°; Me ester, m.p. 78—79°, [α] +70·1°), dgulonic acid penta- (IV), a syrup, $[\alpha] + 1.8^{\circ}$ (phenylhydrazide, a syrup, $[\alpha] + 37.7^{\circ}$; Me ester, a syrup, $[\alpha]$ +4.4°), and d- α -glucoheptonic acid hexa- (V), $+0.5H_2O$, m.p. 94° , [α] $+10.7^{\circ}$ (phenylhydrazide, m.p. 154° , [α] $+27.4^{\circ}$; Me ester, m.p. 93° , [α] $+14.1^{\circ}$), -acetate. Direct acetylation of the acid yields (I), (III), d-galactonic acid penta-acetate (phenylhydrazide, m.p. 220° , $[\alpha] + 23.6^{\circ}$; Me ester, m.p. $126-127^{\circ}$, $[\alpha]$ $+2.5^{\circ}$), and d- α -galaheptonic acid hexa-acetate, m.p. 176—177°, [α] +15·3° (phenylhydrazide, m.p. 112—114°, [α] +25·0°; Me ester, m.p. 96—97°, [α] +18·8°). d-Arabonolactone triacetate, m.p. 68—69°, [α] +52·3°, and d-α-galaheptonolactone penta-acetate, m.p. 123— 124°, $[\alpha]$ -16.9°, are prepared from the lactone by Ac, O at 0°. Attempts to prepare (II), (IV), and (V) from the Na salts of the OH-acids by Ac₂O-AcOH give the acetylated lactones. Me d-gluconate pentaacetate has m.p. 124°, [a] +9·2°. Phenylhydrazides named above are prepared from the unacetylated phenylhydrazides by Ac₂O-ZnCl₂ at 0°. Me esters are prepared from the acetylated acids by CH₂N₂. Unless otherwise stated, $[\alpha]$ are $[\alpha]_D^{25}$ in CHCl₃.

Mutarotation and rotatory dispersion of derivatives of aldehydo-d-galacturonic acid. DIMLER and K. P. LINK (J. Amer. Chem. Soc., 1940, 62, 1216—1219).—The tetra-acetate of Me d-galacturonate Et mercaptal (modified prep.) gives (method: A., 1930, 1021) Me aldehydo-d-galacturonate tetra-acetate (I), m.p. $135-136^{\circ}$, $[\alpha]_{5893}^{25}$ $-15\cdot6^{\circ}$ in CHCl₃, which yields, according to the method used, the α -, macro-m.p. 105—107°, micro-m.p. 135—136° after loss of EtOH at ~ 105° , $[\alpha]_{5893}^{25}$ + $40.7^{\circ} \rightarrow +7.1^{\circ}$ (no min.) in CHCl₃, or β-Et semiacetal, macro-m.p. 127—130°, micro-m.p. 135—136° after loss of EtOH at ~127°, $[\alpha]_{5893}^{25}$ $-\hat{6}\cdot7^{\circ} \rightarrow +7\cdot1^{\circ}$ (min. $-10\cdot0^{\circ}$) in $CHCl_3$, the min. in [α] being due to rapid formation of (I) as intermediate in the mutarotation. Et dgalacturonate Et mercaptal, m.p. $128-129^{\circ}$, $[\alpha]_{5893}^{25}$ $+15\cdot7^{\circ}$ in EtOH (tetra-acetate, m.p. $80-81^{\circ}$, $[\alpha]_{5893}^{25}$ +11.0° in CHCl₃), Et aldehydo-d-galacturonate tetraacetate (II), m.p. $95-97^{\circ}$, $[\alpha]_{5893}^{25}$ -24.0° in CHCl₃, and Et d-galacturonate tetra-acetate β-Et semiacetal, m.p. $105-106^{\circ}$, $[\alpha]_{5893}^{25}$ $-14\cdot4^{\circ} \rightarrow -1\cdot6^{\circ}$ (no min.) in CHCl₃, are also prepared. The rotatory dispersion of (I) and (II) agrees with two-term Drude equations.

Esters of alginic acid. H. J. Lucas and W. T. Stewart (J. Amer. Chem. Soc., 1940, 62, 1070—1074).—HNO₃-H₂SO₄ introduces into alginic acid 0.49—1.2 NO₂ per mannuronic acid unit. The product lactonises when dried, but can be partly methylated without replacement of NO₂. Methyl-

ation of (I) is slow (CH₂N₂; affects CO₂H and OH) or accompanied by degradation (Me₂SO₄). R. S. C.

Rates of formation of sulphoaliphatic acids.—See A., 1940, I, 326.

Aldehyde complexes of copper salts. T. L. Davis and W. P. Green, jun. (J. Amer. Chem. Soc., 1940, 62, 1272—1274).—Prep. and dissociation pressure of compounds, CuNCS,MeCHO, 2CuI,MeCHO, Cu(OAc)₂,MeCHO, 2CuNCS,PrCHO, and 3CuI,PrCHO, and the v.p. of PrCHO are recorded. R. S. C.

Chlorination and structure of acetylketen. C. D. Hurd and J. L. Abernethy (J. Amer. Chem. Soc., 1940, 62, 1147—1148).—Keten dimeride (I) and Cl₂ in CCl₄ give γ-chloroacetoacetyl chloride (II), b.p. 93—96° (decomp.)/8 mm. (cf. Boese, A., 1940, II, 65), which with NH₂Ph in C₆H₆ gives γ-chloroacetoacetanilide, m.p. 140—141°. Crude (II) and EtOH at 0° give CH₂Cl·CO·CH₂·CO₂Et, b.p. 117—119°/17 mm. (I) is probably a mixture of COMe·CH·CO and crotono-β-lactone. R. S. C.

Keten acetals. V. Reaction of keten diethyl

acetal with compounds containing an active hydrogen [atom]. H. M. BARNES, D. KUNDIGER, and S. M. McElvain (J. Amer. Chem. Soc., 1940, 62, 1281—1287; cf. A., 1940, II, 202).—Most compounds containing active H attached to halogen, O, C, or N add to $CH_2:C(OEt)_2$ (I) by attachment of the H to CH₂, but CH₂Ac·CO₂Et and CH₂(CO₂Et)₂ add as H and CHAc CO2Et and CH(CO2Et)2, respectively. The latter additions are catalysed by NaOEt, the function of which is discussed. HBr and (I) in Bu^a₂O give EtBr (85%) and EtOAc (72%) by way of CMeBr(OEt)₂. 3:5:1-(NO₂)₂C₆H₃·CO₂H and (I) in Et₂O give 3:5:1-(NO₂)₂C₆H₃·CO₂Et (74%). PhOH and (I) give PhOEt (78%), EtOAc (59%), and PhOAc (17%). CH₂Bz₂ and (I) give Ph β-α'α'-diethoxyethoxy-β-phenylvinyl ketone, CMe(OEt)₂·O·CPh:CH·COPh, m.p. 86—87°, hydrolysed by 5% $\rm H_2SO_4$ to EtOH, AcOH, and $\rm CH_2Bz_2$, and pyrolysed at $140^\circ/38$ mm. in $\rm N_2$ to (I) (31%) and CH₂Bz₂ (61%). CH₂Ac CO₂Et (1 mol.), (I) (2 mols.), and NaOEt (0.01 mol.) at 85° give CMe(OEt)₃ (78%) and much Et a-a'-ethoxyethylideneacetoacetate, b.p. 96—98°/1 mm. [hydrolysed by H₂O (2 mols.) in dioxan to AcOH (92%) or by H₂O (1 mol.) in dioxan to CHAc₂·CO₂Et], with some EtOH and EtOAc. CH₂(CO₂Et̄)₂, (I), and a little NaOEt at 125° give Et, a-ethoxyethylidenemalonate (55%), m.p. 26-27° (lit. an oil), b.p. 100—102°/1 mm., hydrolysed by hot 2N-HCl to CHAc(CO₂Et)₂ and hydrogenated (Raney Ni; EtOH; 100°/2800 lb.) to Et₂ α-ethoxyethylmalonate, b.p. 66—67°/0-4 mm. CHMe(CO₂Et)₂ does not react with (I). $\dot{CH}_2(SO_2Ph)_2$ and (I) in dioxan give tars. NH_3 and (I) at 110° give EtOH, MeCN, NH:CMe·NH₂, and CMe(OEt)₃ (OEt·CHMe:NH is an intermediate). NH₂Ph and (I) give EtOH (86%), NPh:CH·CO₂Et, and a little NPh:CMe·NHPh. NHPhEt and (I) at 100° give CMe(OEt)₃ and Nethyl-N-α-ethoxyvinylaniline, b.p. 129—130°/22 mm., hydrolysed to NHPhEt, EtOH, and AcOH. Boiling piperidine and (I) give 43% each of CMe(OEt)₃ and ααα-tripiperidinoethane, b.p. 113—115°/1 mm., hydrolysed by boiling $6\text{N-H}_2\text{SO}_4$ to piperidine (83%) and AcOH (110%). R. S. C.

Crystalline phenylurethanes of sugar glucosides. M. L. Wolfrom and D. E. Fletcher (J. Amer. Chem. Soc., 1940, 62, 1151—1153).—The appropriate methylglucoside and PhNCO in boiling, dry C_5H_5N give α -, m.p. 227° (decomp.), $[\alpha]_D^{23}$ +73° in COMe2, and β -methyl-d-glucoside tetra-, m.p. 225° (decomp.), $[\alpha]_D^{23}$ +13° in C_5H_5N , β -methyl-d-xyloside tri-, m.p. 234° (decomp.), $[\alpha]_D^{23}$ —23° in COMe2, and α -methyl-d-mannoside tetra-, m.p. 189—190° (decomp.), $[\alpha]_D^{20}$ —18° in COMe2, -phenylurethane. R. S. C.

Action of phosphorus pentachloride on aldehydo-galactose penta-acetate. 1:1-Dichloride of aldehydo-galactose penta-acetate. M. L. Wol-FROM and D. I. WEISBLAT (J. Amer. Chem. Soc., 1940, 62, 1149—1151).—aldehudo-d-Galactose penta-acetate (I) and PCl₅ in boiling Et₂O give di-(1-chloro-aldehydod-galactose penta-acetate) chlorophosphate, $(OAc \cdot CH_2 \cdot [CH(OAc)]_4 \cdot CHCl \cdot O)_2 POCl$ (II), m.p. 190° (decomp.), $[\alpha]_D^{2b} = 20^5$ in CHCl₃, and a trace of 1:1dichloro-aldehydo-d-galactose penta-acetate, OAc·CH₂·[CH(OAc)]₄·CHCl₂ (III), m.p. 148—150°, $[\alpha]_0^{20}$ +11° in CHCl₃ (better obtained in boiling C_0H_6 – CaSO₄ under defined conditions), which both reduce Fehling's solution only slowly. Hydrolysis of (II) by Ag₂O and a little H₂O in boiling PhMe gives (I). With boiling HCl-EtOH or -MeOH, (II) gives Et (IV), m.p. 156—158°, $[\alpha]_{\rm D}^{21}$ —24° in CHCl₃, and Me di-(1chloro-aldehydo-d-galactose penta-acetate) phosphate, (OAc·CH₂·[CH(OAc)]₄·CHCl·O]₂·PO₂R, m.p. 187—188° (decomp.), [α]_D¹⁰ —19° in CHCl₃, respectively. With ZnCl₂-Ac₂O at 98°, (IV) gives aldehydo-d-galactose hepta-acetate (V). Boiling, aq. Cu(OAc)₂ is reduced by d-galactose, (I), aldehydo-d-galactose Pr^{\$} semiacetal, (V), 1-chloro-d-galactose hexa-acetate, 1-methoxy-d-galactose hexa-acetate, 1-chloro-1-ethoxy-d-galactose penta-acetate, and d-galactopyranose tetra-acetate, but not by β- or α-d-galactopyranose penta-acetate, (II), or (III); the test has diagnostic val. R. S. C.

aldehydo-Maltose octa-acetate. M. L. Wolfrom and M. Konigsberg (J. Amer. Chem. Soc., 1940, 62, 1153—1154).—Maltose Et₂ mercaptal octa-acetate, HgCl₂, CdCO₃, and H₂O in COMe₂ give 78% of aldehydo-maltose octa-acetate, m.p. 116—117°, $[\alpha]_{5}^{2b}$ +93·5° in CHCl₃, $[\alpha]_{5}^{2b}$ +96° in EtOH, and (+EtOH) m.p. 66—67° (oxime, m.p. 93—94°, $[\alpha]_{5}^{2b}$ +107° in CHCl₃, +100° in EtOH) (cf. A., 1939, II, 202).

Constitution of amylose and amylopectin of maize starch. K. H. Meyer (Arch. Sci. phys. nat., 1940, [v], 22, Suppl., 19—23).—Extraction of maize starch with H₂O at 70° and cooling gives cryst. amylose (I). Fractionation of this yields an insol. variety which gives no reaction with I, and reverts to a sol. form when dissolved in aq. chloral and pptd. with COMe₂. The Ac derivative in CHCl₃ has η little < that of cellulose acetate; measurements of its osmotic pressure show that the amylose has mol. wt. 20,000—50,000. The Ac₃ and Me₃ derivatives give films resembling those of cellulose. Amylopectin has mol. wt. 400,000, and gives clear solutions (without scission) in aq. chloral at 80° or in aq. N₂H₄ or

(CH₂·NH₂)₂ at room temp. Pptn. of the aq. chloral solution with COMe₂ yields a temporarily sol. form which turns blue with I. The Me₃ and Ac derivatives give brittle films; η of the latter in CHCl₃ is <20%, and that of its acid hydrolysis products 25%, of the vals. for cellulose derivatives. (I) is hydrolysed completely by β-amylase to maltose, but (II) only partly, to a dextrin of mol. wt. 150,000. It is concluded that (I) has straight, and (II) branched, mols. A. Li.

Structure of the dextran synthesised from sucrose by Betacoccus arabinosaccus, Orla-Jensen. W. Z. Hassid and H. A. Barker (J. Biol. Chem., 1940, 134, 163—170).—Sucrose with B. arabinosaccus yields a non-reducing dextran (I), $[\alpha]_D + 184^\circ$ in N-NaOH, mol. wt. 11,700 (Staudinger) or 2600 (sedimentation equilibrium method). Hydrolysis (dil. HCl) of (I) gives glucose, the downward mutarotation indicating that the units of (I) have the α configuration. Acetylation (AcOH containing Cl₂, then Ac₂O containing SO₂) of (I) followed by hydrolysis yields a H₂O-sol. form, $[\alpha]_D + 180^\circ$ in H₂O. Methylation (Me₂SO₄, followed by Na, MeI, and liquid NH₃ in PhOMe) of (I) yields a product, $[\alpha]_D + 214^\circ$ in CHCl₃, hydrolysed (aq. AcOH-HCl) to 2:3:4-trimethyl- and 2:3:4:6-tetramethyl-glucose in the mol. ratio 15:1.

Degradation of long-chain molecules. H. MARK and R. SIMHA (Trans. Faraday Soc., 1940, 36, 611—618).—Cellulose acetate (Ac 39.3%, mol. wt. ~93,000) was subjected to homogeneous acetolysis (Ac₂O + AcOH), and distribution curves for the degradation products were obtained at four different stages of the reaction. The results are in qual, agreement with the theory of Kuhn (A., 1932, 576) and Flory (A., 1936, 1452).

F. L. U.

Similarity of cellulose to caoutchouc and the production of artificial cellulose threads as a macromolecular process. P. H. HERMANS (Naturwiss., 1940, 28, 223).—The very pronounced similarity of caoutchouc to cellulose shows that the latter does not occupy a unique position as a micellary substance under all conditions but must be regarded in the same manner as the other complex polymerides. Macromol. processes are mainly operative in the production of artificial fibres and in deformation processes.

Unusual hydrates of quaternary ammonium salts. D. L. Fowler, W. V. Loebenstein, D. B. Pall, and C. A. Kraus (J. Amer. Chem. Soc., 1940, 62, 1140—1142).—The prep. and analysis of the following compounds are given (m.p. in parentheses): NBu $^{\alpha}_4$ ·OH,xH $_2$ O [x=31 (30·2°), 4 (26°), 2]; NBu $^{\alpha}_4$ F,18H $_2$ O (37°); N(iso-C $_5$ H $_{11}$)4·OH,xH $_2$ O [x=32 (31°), 4 (57·5°)]; N(n-C $_5$ H $_{11}$)4·OH,4H $_2$ O; (Bu $^{\alpha}_4$ N) $_2$ C₂O $_4$,38H $_2$ O (20—25°); HCO $_2$ NBu $^{\alpha}_4$,33H $_2$ O (12·5°); NBu $^{\alpha}_4$ Br,26H $_2$ O (14·5°); HCO $_2$ N(iso-C $_5$ H $_{11}$)4·50H $_2$ O (15—20°); NBu $^{\alpha}_4$ ·OAc,60H $_2$ O (10—15°); EtCO $_2$ NBu $^{\alpha}_4$,50H $_2$ O (17°); NBu $^{\alpha}_4$ ·OBz,35H $_2$ O (3·5°); NBu $^{\alpha}_4$ ·NO $_3$,27H $_2$ O (5·8°); NBu $^{\alpha}_4$ Cl,30H $_2$ O (15°). Several salts which do not yield hydrates are listed. NMe $_4$ ·OH,5H $_2$ O was prepared and NPr $^{\alpha}_4$ ·OH, and NEtPr $^{\alpha}_3$ ·OH were obtained.

Reaction of the esters of dl-leucine and l-leucine on Ranev catalyst. G. OVAKIMIAN, C. C. CHRIST-MAN, M. KUNA, and P. A. LEVENE (J. Biol. Chem., 1940, **134**, 151—161).—Hydrogenation (H₂ under pressure, Raney Ni) of dl-leucine Et ester in MeOH yields, at 135°, dl-leucinol, and at 185° or 200°, NN-dimethyl-leucinol, CHMeBu $^{\beta}$ ·NMe $_{2}$ (I), 2:5- and NN'-dimethyl-2:5-dissobutylpiperazine (II), in proportions varying according to time and temp. l-Leucine Et ester with excess of catalyst at 70° gives 1-leucinol, b.p. 130°/18 mm., $[\alpha]_{D}^{25}$ +3.8° in MeOH (picrate, m.p. $120-121^{\circ}$, $[\alpha]_{D}^{25}+5.9^{\circ}$ in MeOH). Hydrogenation of leucinol or NN-dimethyl-leucinol at 185° gives only (I). dl-Leucine Me ester when heated at 150° in MeOH under pressure, with or without H_2 , gives 3:6-diketo-2:5-di-n-propylpiperazine, converted by H₂-catalyst under pressure at 200° into (II). Glycylglycine anhydride similarly yields NN'dimethylpiperazine. The mechanism of these reactions is discussed.

Determination of valine and leucine in presence of other amino-acids. C. Fromageot and P. Heitz (Enzymologia, 1939, 6, 258-270).-Valine (I) is determined by converting, with HNO₂, into the corresponding a-OH-acid (Kendall and Friedemann, A., 1931, 246), which is heated at 100° under pressure with CrO₃ in AcOH for 3 hr. COMe₂ produced (65%) of the theoretical yield) is distilled and colorimetrically determined by a modification of the method of Urbach (ibid., 1082). Leucine (II) is determined in the same way but the period of heating is 4 hr. and the yield of COMe₂ is 58%. Other NH₂-acids, including isoleucine, do not interfere in either case. When (I) and (II) are present together one determination is made as for (II) alone and in a second determination, the conc. solution of OH-acids is oxidised at atm. pressure so that the COMe2 produced is directly distilled. The yields of COMe2 obtained when (I) and (II) are separately determined by the second method are 72 and 21%, respectively. The proportions of the acids are calc. according to a formula given. The amounts of each acid required for the determination are 2-20 mg.

Racemisation of glutamic acid. J. M. Johnson (J. Biol. Chem., 1940, 134, 459).—l(+)-Glutamic acid hydrochloride undergoes 4.6% racemisation when boiled with conc. HCl for 35 hr. The d(-)-acid in protein hydrolysates is presumably formed by similar racemisation.

A. Li.

Pantothenic acid diphosphoric acid. D. W. Woolley (J. Biol. Chem., 1940, 134, 461—462; cf. A., 1940, III, 537; II, 203).—
OAc·CH₂·CHMe₂·CH(OAc)·COCl with
NH₂·[CH₂]₂·CO₂Et, followed by selective hydrolysis, yields pantothenic acid (Ba salt), which with POCl₃ in C₅H₅N gives the diphosphoric acid, which is biologically inactive, though the crude phosphorylated mixture has some activity.

A. Li.

Action of 4-amino-2-methyl-1-naphthol on the oxidation of certain thiol groups. F. Bernheim and M. L. C. Bernheim (J. Biol. Chem., 1940, 134, 457-458). -1:2:4-OH·C₁₀H₅Me·NH₂,HCl catalyses the oxidation (not inhibited by cyanide) to disulphide

of cysteine or $SH \cdot CH_2 \cdot CO_2H$ at $p_{\rm H}$ 7·8, rapidly oxidises SH groups in rat liver nucleoprotein, and causes a 50% inhibition in the action of cryst. papain hydrochloride on milk, but has little effect on the oxidation of reduced glutathione. The physiological significance of these effects is discussed. A. Li.

α-Bromo-α-sulphonamides. W. M. Ziegler and

R. CONNOR (J. Amer. Chem. Soc., 1940, 62, 1049-

1053).—The products considered by Tröger et al. (A., 1905, i, 336) to be RSO₂·CHR'·CO·NHBr RSO₂·CR'Br·CO·NH₂ (A) and contain "positive" Br. α -Bromo-p-toluene- (I), m.p. 172—174°, and α -bromon-butane-α'-sulphonylacetamide, m.p. 130—131°, αbromo-α-p-toluene- (II), m.p. 115—116°, and α-bromoα-n-butane-α'-sulphonyl-n-butyramide (III), m.p. 57— 58°, are best obtained by brominating $RSO_2 \cdot CHR' \cdot CO \cdot NH_2$, usually in moist CCl_4 ; sometimes the reactions, $RSO_2 \cdot CHR' \cdot CO_2H \rightarrow$ $RSO_{\circ} \cdot CHR' \cdot COCl \rightarrow RSO_{\circ} \cdot CR'Br \cdot COCl \rightarrow (A)$ feasible, although yields are smaller. NaOBr is less satisfactory, e.g., yields p-C₆H₄Me·SO₂·CHBr₂ in place of (I). Under some conditions (A; R = H)is replaced by αα-dibromo-p-toluene-, m.p. 134—135° and -n-butane-a'-sulphonylacetamide, m.p. 106—107°. Bu ${}^{\alpha}$ SNa and (II) in EtOH give p-C₆H₄Me·SO₂·CHEt·CO·NH₂ (60%); p-C₆H₄Me·SNa and (III) similarly give (p-C₆H₄Me·S)₂ and Bu⁴SO₂·CHEt·CO·NH₂ (IV) (73%). All the Bramides liberate 2 I from HI and with N₂H₄ give N₂ (Br₂-amides more rapidly than Br₁-amides). Piperidine and (I) in dioxan give the hydrobromide (60%) and $p \cdot C_6H_4Me \cdot SO_2 \cdot CH_2 \cdot CO \cdot NH_2$ (45%). NaOEt-EtOH with (I) gives $p \cdot C_6H_4Me \cdot SO_2 \cdot CH_2Br$ (also obtained by boiling 5% NaOH) and with (III) gives 61% of (IV). M.p. are corr.

Rate of reaction of Grignard reagent with ethyl bromide.—See A., 1940, I, 326.

V. PbR₄ com-Redistribution reaction. pounds. G. Calingaert, H. A. Beatty, and H. Soroos. VI. Lead alkyl halides. G. Calin-GAERT, H. SOROOS, and H. SHAPIRO. VII. Alkyl compounds of mercury, tin, silicon, and zinc. G. CALINGAERT, H. SOROOS, and V. HNIZDA (J. Amer. Chem. Soc., 1940, 62, 1099—1104, 1104—1107, 1107—1110; cf. A., 1940, II, 72).—V. The redistribution reaction leads to random distribution of products from PbMe₄-PbEt₄, PbMe₃Et-PbMeEt₃, PbMe₂Et₂, PbMe₄-PbPr^a₄, PbMe₃Pr^β-PbMe₂Pr^β₂, PbEt₄-PbPr^a₄, PbEt₂Pr^a₂, PbMe₄-PbEt₄-PbPr^a₄, PbMe₂Bu^β₂, and PbMe₄-PbPh₄ in presence of a little AlCl₃ at 80° alone or in hexane or decahydronaphthalene. PhMe₃Bu^{γ} requires 100—130°, and PbPh₄–Pb(C₆H₄-p)₄ requires 200°. 21 other catalysts are listed, notably Al and Pb alkyl halides and metallic halides. Increase in temp. increases the rate of reaction but does not alter the proportions in which products are formed. Solvent may retard the reaction.

VI. Random distribution follows heating PbMe₂EtCl, PbMe₃Cl-PbEt₃Cl, PbMe₄-PbEt₃Cl, PbMe₄-PbEt₃Br, or PbEt₄-PbMe₃Br in COMe₂ at 60° or hexane at 76° or 80°. Pb alkyl halides themselves act as catalysts.

VIII. In presence of a little AlCl₃, the redistribution

reaction leading to random distribution occurs with ${\rm HgMe_2-HgEt_2}$ and ${\rm HgMeEt}$ at 25°, ${\rm SnMe_4-SnEt_4}$ in pentane at 60°, and ${\rm SiEt_4-SiPr_4}$ at 173—181°, but not with ${\rm ZnMe_2-ZnEt_2}$ at ${\sim}60^\circ$. Pure ${\rm HgMeEt}$ is stable at room temp. or 127°.

Reactions of sulphur and vapours of organic compounds at different temperatures. G. D. Palmer, S. J. Lloyd, W. P. McLure, N. Lemaistre, W. S. Waring, and L. W. Bachman (J. Amer. Chem. Soc., 1940, 62, 1005—1006).—Passage of C_6H_6 , PhMe, NH₂Ph, PhOH, PhCl, etc. vapour into S at 240—260° gives resinous S-dyes, but at 260—300° lower yields of solids which are not dyes. At >300° other dyes are formed. High S content is necessary for deep colour. R. S. C.

Velocity of hydrogenation of aromatic and unsaturated hydrocarbons.—See A., 1940, I, 297.

Liquid-phase hydrogenation of p-cymene. K. A. Kobe and A. Vittone (Ind. Eng. Chem., 1940, 32, 775—777).—p-Cymene is most efficiently hydrogenated to p-menthane (I), b.p. 171.0°, at 220°/initial H₂ pressure 1000 lb. per sq. in. in presence of Ni catalyst (1%). V.p., d, and n data for (I) for various temp. are also recorded.

J. W. S.

Alkylation of benzene with alcohols, boron fluoride, and assistants. N. F. Toussaint and G. F. Hennion (J. Amer. Chem. Soc., 1940, **62**, 1145—1147).— C_6H_6 is alkylated by ROH (R = \Pr^a , \Pr^β , Bu^a, Bu^b, CHMeEt, Bu^r, n- C_5H_{11} , n- C_8H_{17} , or n- $C_{12}H_{25}$) in presence of BF₃ and P₂O₅, H₂SO₄, or PhSO₃H. n- and sec.-Alcohols give sec.-alkylbenzenes. CHMeEt-OH and Bu^rOH give PhBu^r. Dialkylation gives mainly p-compounds. R. S. C.

Trialkylated benzenes and their compounds with aluminium chloride and with aluminium bromide. J. F. Norris and J. N. Ingraham (J. Amer. Chem. Soc., 1940, 62, 1298—1301).—Passing HBr into s-C₆H₃Et₃ and AlBr₃ gives a compound (I), 2AlBr₃,2s-C₆H₃Et₃,HBr, m.p. 64—66° (cf. Gustavson, A., 1905, i, 336), stable at 12 mm., giving at 0.002 mm. a compound, 2AlBr₃,s-C₆H₃Et₃. With AcCl, (I) gives 1:3:5:2-C₆H₂Et₃·COMe, and with EtBr gives s-C₆H₃Et₃ and EtBr. Passage of HCl into (I) causes introduction of >1 Cl. A compound, 2AlCl₃,2s-C₆H₃Et₃,HCl, m.p. 48—49°, is similarly prepared. s-C₆H₃Me₃,HBr, m.p. 47—48°, stable at 12 mm., but at 0.002 mm. giving the compound,

2AlBr₃,s-C₆H₃Me₃. Compounds, (i) 2AlBr₃, 3ψ -cumene,HBr, (ii) 2AlBr₃,PhMe,HBr (stable at 12 mm.; loses PhMe at 0.002 mm.), and (iii) 2AlBr₃,C₆H₆,HBr (loses C₆H₆ at 12 mm.), are prepared.

Influence of organic radicals on para-hydrogen. II. Nature of diradicals. G. M. Schwab and N. Agliardi (Ber., 1940, 73, [B], 95—98).—By the para-H₂ method (A., 1938, I, 625), tetraphenyl-p-xylylene and pp'-diphenylenebisdiphenylmethyl are found to contain <0.2% and 9.7%, respectively, of the free radical form. E. W. W.

Steric inhibition of resonance in aromatic nitro-compounds. G. W. Wheland and A. A. Danish (J. Amer. Chem. Soc., 1940, 62, 1125—1127).

—Substitution of 6 Me o- to the NO₂ depresses the acidity of $(p\text{-NO}_2\cdot\text{C}_6\text{H}_4)_3\text{CH}$ (cf. A., 1937, II, 92). 1:3:5-C₆H₃Me₂·MgBr and ClCO₂Et give a crude carbinol, converted by HCl–Et₂O into tri-1:3:5-xylylmethyl chloride, m.p. 210°, which with Zn dust–AcOH–CO₂ gives tri-1:3:5-xylylmethane, m.p. 108°. Fuming HNO₃ in Ac₂O–AcOH then yields tri-4-nitro-3:5-dimethylphenylmethane (16%), m.p. 247°, and oily products, Zn dust in boiling AcOH gives the 4:4':4''-(NH₂)₃-derivative, darkens at 190°, decomp. 275—280°, also obtained from 1:3:2-C₆H₃Me₂·NH₂ (I) by CH(OEt)₃ (gives the trianilino-compound, m.p. 179°), followed by (I) and its hydrochloride.

pp'-Diradical of diphenyl, of the triphenylmethyl type. I. W. THEILACKER and W. OZE-GOWSKI (Ber., 1940, 73, [B], 33-43).—m-Tolidine sulphate gives (Sandmeyer) 4:4'-dicyano-2:2'-dimethyldiphenyl, m.p. 113°, b.p. 176°/2 mm., hydrolysed by dil. H₂SO₄ to 2:2'-dimethyldiphenyl-4:4'-dicarboxylic acid, m.p. 330—332°, the Et₂ ester, m.p. 70° b.p. 220°/2 mm., of which with MgPhBr in Et2O, followed by HCl, yields 2:2'-dimethyl-4:4'-diphenyl-enebisdiphenylcarbinol (I), m.p. 174° or (+1 AcOH) m.p. 121°; the Et₂ ether, m.p. 199—200° (obtained by use of EtOH-HCl) [which with dil. HCl in AcOH gives the glycol acetate, $2C_{40}H_{34}O_2$, $C_4H_8O_2$, m.p. 136° and 172° after re-solidification] with dry HCl in AcOH at 50-60° yields 2:2'-dimethyl-4:4'-diphenylenebisdiphenylmethyl dichloride (II), m.p. 207°, clearing at 210°, also obtained from (I). When shaken with Hg under CO_2 , (II) in C_6H_6 gives 2:2'-dimethyl-4:4'diphenylenebisdiphenylmethyl (III), m.p. 176—178° (to viscous drops, fluid at >200°). This free radical [which is contrasted with the Tschitschibabin hydrocarbon, 4: 4'-diphenylenebisdiphenylmethyl (A., 1907, i, 503)] gives a bluish-green solution (0.01%) in C_6H_6 , which at increasing concn. gives a dichroic solution, green by transmitted and red by reflected light. Air passed through a 4% C₆H₆ solution of (III) gives a peroxide, softens 152—153° (decomp.). The possi-E. W. W. bility of dimerism of (III) is discussed.

Formation of naphthalene-1:3-disulphonic acid under conditions of direct sulphonation of naphthalene. A. A. TSCHUKSANOVA (Compt. rend. Acad. Sci. U.R.S.S., 1940, 26, 445).— $C_{10}H_8$ (16 g.) with conc. H_2SO_4 (65 g.) at 130° for 4 hr. yields the 1:3- (separated as the dichloride) as well as the 1:6-, 1:7-, 2:6-, 2:7-, and 1:5-disulphonic acids.

Reactions of unsaturated and polynuclear aromatic hydrocarbons with sodium and calcium in liquid ammonia. W. Hückel and H. Bretschneider (Annalen, 1939, 540, 157—189).—

C₁₀H₈ and Na in Et₂O with liquid NH₃ at -75° to -65° give a green, then orange-red, and finally a red colour; decomp. with MeOH after ~20 min. affords 1:4-dihydronaphthalene (I) (cf. Schlenk et al., A., 1928, 1031). At higher temp. a mixture of (I) and 1:2-dihydronaphthalene (II) results; at the b.p. of NH₃ some (II) is formed. In one experiment nearly pure (II) was obtained. Na in Et₂O-NH₃ at -60° converts (I) into (II), whilst (II) and Na in liquid NH₃ at -50° give tetrahydronaphthalene (cf. Wooster

et al., A., 1931, 340). Ca gives similar results. Ph. with Na or Ca in liquid NH₃ at -75° to -70° affords 3:4-dihydro-, b.p. 114°/12 mm. (nitrosochloride; nitrolpiperidide, m.p. 194°), converted by Na at -75° 3:4:5:6-tetrahydro-diphenyl, b.p. 126°/14 mm. Terphenyl (prep. described) and Na in liquid NH₃ yield the $3:4-H_2$ -derivative (III), m.p. 70°, and a hydrocarbon, $C_{18}H_{14}$, m.p. 152—153° (does not contain a reactive double linking). Catalytic reduction of (III), which reacts readily with Na forming a red compound, gives 4-cyclohexyldiphenyl. (CHPh.CH·)2 reacts fairly readily with Na or Ca affording apparently different products; liquid and solid hydrocarbons are isolated in each case. CH₂Ph₂ gives a blue colour with Ca and the product yields a little of an unsaturated hydrocarbon. 9:10-Diphenylanthracene (IV) and Na in liquid NH₃ give an orange or orange-red solution; decomp. with NH₄Cl or EtOH affords only (IV). Phenanthrene reacts partly with 2 Na or 1 Ca in liquid NH₃ at -75°; 1:2:3:4-tetrahydrophenanthrene, which is probably not the primary reaction product, is isolated. $(CH_2:CH_2)_2$ gives C_4H_8 and octadiene. CH. Abs. (b)

Structure of aromatic compounds. Action of acetyl chloride on magnesium α - and β -naphthylmethyl halides. N. CAMPBELL, Anderson, and J. Gilmore (J.C.S., 1940, 819—821). —1-C₁₀H₂·CH₂·MgCl and AcCl give αγ-di-1-naphthylβ-methylpropene, m.p. 174—176°, ozonised to 1- $C_{10}H_7$ ·CO₂H and 1- $C_{10}H_7$ ·CH₂·COMe (2:4-dinitrophenylhydrazone, m.p. 174—176°). 2- $C_{10}H_7$ ·CH₂Br [improved prep. from $2-C_{10}H_7$ Me and Br at $240-260^{\circ}$ (Hg-vapour lamp)], or, better, 2-C₁₀H₇·CH₂Cl (I), forms with difficulty a Mg derivative which with AcCl in Et₂O gives αγ-di-2-naphthyl-β-methylpropene (?), m.p. 184—185°, non-reactive towards alkaline KMnO₄ or Br in CCl₄. CO(CH₂Ph)₂ and MgMeI give CMe(CH₂Ph)₂·OH, which with o-C₆H₄(CO)₂O and P₂O₅ at 160° gives CH₂Ph·CMe: CHPh, b.p. 180°/15 mm. (cf. Sabatier et al., A., 1913, i, 717), oxidised to CH₂Ph·COMe. (I) is obtained from SOCl₂ and 2-C₁₀H₇·CH₂·OH (II) [improved prep. by catalytic reduction (Adams Pt, FeCl₃) of the aldehyde]; attempted prep. of (II) from 2-C₁₀H₇-MgI and CH₂O gives $2:2'-(C_{10}H_7)_2$. E. W. W.

Dehydrogenation. VI. S. C. SEN-GUPTA (J. Indian Chem. Soc., 1940, 17, 183—188; cf. A., 1940, II, 254).—Hydrindene, cyclopentane-1-acetic-1-carboxylic anhydride, and $AlCl_3$ in $PhNO_2$ give β -5hydrindoyl-αα-tetramethylenepropionic acid, m.p. 140—141° (Me ester, m.p. 47—48°, b.p. 210—212°/5 mm.) [oxidised by $KMnO_4$ to $1:3:4-C_6H_3(CO_2H)_3$], reduced by Zn-Hg-cone. HCl to 5-β-1'-carboxy-1'-cyclopentylethylhydrindene, m.p. 104—105°, b.p. 220°/6 mm. 85% H₂SO₄ at 100° then gives 1-keto-6: 7-trimethylene- $2: 2\hbox{-} tetramethylene \hbox{-} 1: 2: 3: 4\hbox{-} tetrahydron aphthalene,}$ m.p. $98-99^{\circ}$, oxidised by KMnO₄ to 1:2:4:5- $C_6\hat{H}_2(CO_2H)_4$ and reduced by Zn-Hg-HCl to 6:7-trimethylene-2:2-tetramethylene-1:2:3:4-tetrahydronaphthalene, m.p. 64-65°. With Se at 300-320°, later 340—350°, this spiran gives a product, m.p. 149—150° [s-C₆H₃(NO₂)₃ compound, m.p. 128—129°], which is probably 2:3-trimethyleneanthracene since it differs from 2:3-trimethylenephenanthrene (I) (syn-

below). Et *cyclo*pentanone-2-carboxylate, thesis HCN, and a drop of aq. KCN at <0° give the cyanohydrin, converted by SOCl₂, first at <0° and then at the b.p., into Et 2-cyano- Δ^1 -cyclopentene-1-carboxylate, b.p. 133—135°/4 mm. Boiling, conc. HCl then yields Δ^1 -cyclopentene-1: 2-dicarboxylic acid, m.p. 178°, the anhydride, b.p. 130°/5 mm., of which with AlCl₃ and C₁₀H₈ in PhNO₂ gives mixed keto-acids, m.p. 155—165°, and thence (Clemmensen) mixed 2-α- and 2-β-naphthylmethyl- Δ^1 -cyclopentene-1-carboxylic acids, b.p. 215—220°/5 mm. ZnCl₂ at 180° (85% H₂SO₄ at 100° causes sulphonation) followed by Clemmensen reduction then gives 2: 3-trimethylene-1:4-dihydrophenanthrene, m.p. 101-102°, dehydrogenated by So at 300—320° (sealed tube) to (I), m.p. 84° [picrate, m.p. 157°; s- $C_6H_3(NO_2)_3$ compound, m.p. 162—163°].

Action of perbenzoic acid on aromatic hydrocarbons. H. J. ECKHARDT (Ber., 1940, 73, [B], 13—15).—Carcinogenic hydrocarbons react more readily (cf. Fieser, A., 1938, III, 1022) with BzO₂H than do other hydrocarbons. The reaction is followed iodometrically over a 7—15-day period. Methylcholanthrene > 3:4-benzpyrene > pyrene > benzpyrene 5-aldehyde in reactivity. 5-Nitrobenzpyrene scarcely reacts. Fluorene, phenanthrene, chrysene, and $C_{10}H_8$ do not react. 6->4-Methyl-1:2-benzanthracene > 1:2-benzanthracene > anthracene > 1:2:5:6-dibenzanthracene in activity. E. W. W.

1-β-Styrylacenaphthene. E. B. Hershberg and L. M. Joshel (J. Amer. Chem. Soc., 1940, 62, 1305—1306).—Acenaphthene-1-aldehyde and CH₂Ph·MgCl in boiling $\rm Et_2O-C_6H_6$ give 1-acenaphthylbenzylcarbinol (88%), m.p. 109—110°, dehydrated by KHSO₄ at 200° to 1-styrylacenaphthene (71%), m.p. 93·2—94° [dipicrate, m.p. 141·5—143° (decomp.)]. M.p. are corr. R. S. C.

9- and 10-Methyl-1: 2-benzanthracene. C. K. Bradsher (J. Amer. Chem. Soc., 1940, 62, 1077—1078).—Crude o- C_6H_4 Cl·CH(OH)· $C_{10}H_7$ - α (prep. from α - $C_{10}H_7$ ·MgBr and o- C_6H_4 Cl·CHO in Et₂O) and red P-I-AcOH- H_2 O give 1-o-chlorobenzylnaphthalene, b.p. 189—192°/2 mm., converted by CuCN in C_5H_5 N at 250—260° into o-1-naphthylmethylbenzonitrile, m.p. 59—60°, b.p. 216—217°/3 mm. With MgMeI in C_6H_6 , this gives an imine, hydrolysed to o-1-naphthylmethylacetophenone (69%), m.p. 39—40°, b.p. 216—217°/3 mm. Ring-closure by 34% HBr in AcOH gives 86% (29% over-all) of 10-methyl-1: 2-benzanthracene. β - $C_{10}H_7$ ·MgX (X = Br or I) give similarly 2-o-chlorobenzylnaphthalene, b.p. 203—204°/3 mm., o-2-naphthylmethyl-benzonitrile, m.p. 84·5—85·5°, and -acetophenone, b.p. 221°/3 mm., and 9-methyl-1: 2-benzanthracene. R. S. C.

Sulphonic acids of pyrene and their derivatives. E. Tietze and O. Bayer (Annalen, 1939, 540, 189—210; cf. Vollmann et al., A., 1937, II, 450).

—Pyrene (I) and ClSO₃H (1 mol.) in C₂Cl₄, first at 0—5° and then at 10—20°/15—20 hr., give pyrene-3-sulphonic acid [Na salt (II), prep. by aq. Na₂SO₄]. 80% HNO₃ and (II) in AcOH at 15—25°/12 hr. afford a nitro-sulphonic acid, reduced (Fe, AcOH) to the NH₂-derivative (readily diazotised and couples

from (II) and 93.2% H₂SO₄ at 5—10°/1 hr.], converted by $\sim 25\%$ (wt.) aq. KOH at $260^{\circ}/40$ atm. into 3:8-dihydroxypyrene (diacetate, m.p. 222-224°); a little pyrene-3:5-disulphonic acid [Ca salt is more sol. than that \equiv (III)] is isolable from the mother-liquous from (III). H_2SO_4, H_2O and (II) at 15°/1 day followed by CaCO₃ and K₂CO₃ give Na K₂ pyrene-3:5:8-trisulphonate. Treatment of (II) in H_2SO_4, H_2O with 65% oleum at $20^{\circ}/15$ hr., followed by $CaCO_3$ and 20% NaCl, affords Na_4 pyrene-3:5:8:10-tetrasulphonate (IV) [also from (I) and Na₂SO₄ in H₂SO₄, H₂O at 58° followed by 65% oleum at $50-55^{\circ}$], converted by aq. HCl-NaClO₃ into 3:5:8:10-tetrachloropyrene. The successive action of boiling $\sim\!20\%$ NaOH, conc. HCl, HCO₂H (neutralisation), and 10% NaCl on (IV) gives Na₃ 3-hydroxypyrene-5:8:10-trisulphonate (+H₂O); aq. 22% NH₃ at 200-210°/18 hr. affords Na₃ 3-aminopyrene- $5:8:10\mbox{-}trisulphonate.$ 3-Chloropyrene and Na $_2$ SO $_4$ in $\rm H_2SO_4, H_2O$ with 65% oleum at 50—60° yield Na_3 3-chloropyrene-5:8:10-trisulphonate [unaffected by aq. NH₃ (autoclave)]. Fusion of (IV) with NaOH and some H₂O at 130-170° gives Na₂ 3:5-dihydroxypyrene-8: 10-disulphonate converted by 10% H₂SO₄ at 140-150°/12 hr. into 3:5-dihydroxypyrene (V), darkens in air, m.p. 220° (decomp.) (diacetate, m.p. 154—155°; Me₂ ether, m.p. 177—178°). Zn dust, (IV), and boiling dil. NaOH afford Na₂ pyrene-3:5-disulphonate, which with aq. NaOH at 210—220°/8 hr. yields Na 3-hydroxypyrene-5-sulphonate, with NaOH at 250-260°/15 hr. gives (V), and with $\mathrm{HNO_{3}-H_{2}SO_{4}}$ at $18^{\circ}/20$ hr. affords 3:5-dinitropyrene-8:10-disulphonic acid [corresponding (NH₂)₂-compound]. (IV) and ~25% (wt.) NaOH at 240-250°/ 12 hr. give 3:5:8:10-tetrahydroxypyrene, m.p. 236-238° (Me₄ ether, m.p. 172—173°, not nitratable), which does not couple with diazo-solutions and is oxidised (CrO₃) to a black substance. Many of the above compounds show fluorescence; some are dyes and their behaviour with fabrics is given. CH. ABS. (b)1-Methylchrysene. L. F. Fieser and L. M. Joshel (J. Amer. Chem. Soc., 1940, 62, 1211—1214). -α-C₁₀H₇·CH₂·CO₂Na and o-C₆H₄Cl·CHO in Ac₂O at 135° give o-chloro-α-1-naphthylcinnamic acid, m.p. 171—172.5°, converted by KOH, first at 200—235° and later 245°, into the lactone (I) (4%), m.p. 244·5— 245.5° (decomp.), of o-hydroxy- α -1-naphthylacetic

with R salt to a dull violet dye). 93.2% H₂SO₄ and

(I) at 0° and then 15°/2 days, followed by NaCl, yield

Na₂ pyrene-3:8-disulphonate (III) [also obtained

1-Methylchrysene. L. F. FIESER and L. M. Joshel (J. Amer. Chem. Soc., 1940, 62, 1211—1214).

—α-C₁₀H₇·CH₂·CO₂Na and ο-C₆H₄Cl·CHO in Ac₂O at 135° give o-chloro-α-1-naphthylcinnamic acid, m.p. 171—172·5°, converted by KOH, first at 200—235° and later 245°, into the lactone (I) (4%), m.p. 244·5—245·5° (decomp.), of o-hydroxy-α-1-naphthylacetic acid. α-C₁₀H₇·CH₂·CO₂K and o-NO₂·C₆H₄·CHO in Ac₂O at 125—130° give o-NO₂·C₆H₄·CH:C(C₁₀H₇-α)·CO₂H (68%), m.p. 181·8—182·8° (lit. 173—174°) (and a little o-NO₂·C₆H₄·CH:CH·CO₂H), reduced by FeSO₄ or, better, H₂-PtO₂ in EtOH to the NH₂-compound (II) (76%). Diazotisation (C₅H₁₁O·NO-H₂SO₄-EtOH) and subsequent treatment with Cu-bronze in aq. NaH₂PO₂ at 45—50° converts (II) into chrysene-1-carboxylic acid (III) (28%), m.p. 225—226° (decomp.) [and a little (I)], the Me ester (IV), m.p. 159—160°, of which with Na-EtOH-C₆H₆ gives 1-hydroxymethylchrysene, an oil, or with H₂-Cu chromite in dioxan at 250°/140 atm. gives 58·5%

of 1-methyl-3—12: 8a:12a-dodecahydrochrysene, m.p. $98\cdot8-99\cdot8^{\circ}$ [oxidised by 1:2 HNO₃— H_2O at 195— 200° to $C_6H(CO_2H)_5$]. Hydrogenation of (IV) at 160° gives mostly an oily H_2 -derivative. PCl₅ and (III) in boiling C_6H_6 give the acid chloride, which with NH₂Ph in COMe₂ gives the chloroanilide, converted by SnCl₂—HCl-Et₂O-(CH₂Cl)₂ at 0° into chrysene-1-aldehyde. The semicarbazone, m.p. 266— 268° (decomp.), thereof with NaOEt-EtOH at 200° gives 17% of 1-methylchrysene, m.p. $116\cdot8$ — $117\cdot6^{\circ}$ (picrate, m.p. $141\cdot6$ — $142\cdot4^{\circ}$). M.p. are corr. R. S. C.

Synthesis of 1:12-methylenechrysene and 9:1'-methylene-1:2-benzanthracene from 4:5methylenephenanthrene. L. F. Fieser and J. CASON (J. Amer. Chem. Soc., 1940, 62, 1293—1298).— 4:5-Methylenephenanthrene (I), (CH₂·CO)₂O, and AlCl₃ in PhNO₂ at 0° (later 5°) give γ -keto- γ -4:5-methylene-1-phenanthryl-n-butyric acid (60%), m.p. $207-208^{\circ}$ (decomp.) (Me ester, m.p. $124\cdot8-125\cdot5^{\circ}$; some isomeride also formed; HF gives a poor yield), reduced (best, crude) by Zn-Hg-HCl-PhMe (and a little AcOH) to γ -4: 5-methylene-1-phenanthryl-nbutyric acid (55%), m.p. 176·6—177·6° [purified as s-C $_6$ H $_3$ (NO $_2$) $_3$ compound, m.p. 183·5—184·5°], which with HF gives 90% of 3-keto-1:12-methylene-3:4:5:6-tetrahydrochrysene (II), m.p. 167·5—168·5°. Treatment of (II) with Al(OPr^{\$\beta\$})₃ gives a crude carbinol, whence Pd-C at 300—320° gives a little impure 4:5-methylenechrysene (III). Clemmensen-Martin reduction of (II) gives 1:12-methylene-3:4:5:6-tetrahydrochrysene (IV) (59.5%), m.p. 129—129.4°. [With R. C. CLAPP] Hydrogenation (Cu chromite; 160°) of (I) gives 4:5-methylene-9:10dihydrophenanthrene (85%), m.p. 140·5—141·2°, whence are obtained as above γ -keto- γ -4: 5-methylene-(99%), m.p. $224-224.5^{\circ}$ (decomp.) (Na salt; Me ester, m.p. 137·1—137·4°), reduced (H₂-Cu chromite, very dil. aq. NaOH, 200°, 66%; or Clemmensen-Martin, 44%) to γ -4:5-methylene-, m.p. 154.5— 155° (Me ester, m.p. $59.3-60^{\circ}$), $-9:10-\bar{d}ihydro-2-phen$ anthryl-n-butyric acid (V) and thence (HF) 8-keto-9:1'-methylene- (49%), m.p. 201—203° (decomp.), 9:1'-methylenehydrogenated (≫1 atm.) to3:4:5:6:7:8-hexahydro-1:2-benzanthracene (94.5%), m.p. 83—83.5°. Dehydrogenation by Pd-C at 220° rising to 320° then gives 9:1'-methylene-1:2-benzanthracene. Dehydrogenation of (V) by Pd-C at 200° rising to 265° gives γ -4:5-methylene-2-phenanthryl-n-butyric acid (92%), m.p. $167\cdot7$ — $168\cdot0$ ° (purified as Me ester, m.p. 36·3-37·3°), which in HF gives 6-keto-1: 12-methylene-3:4:5:6-tetrahydrochrysene (VI) (95%), m.p. 173-174°, and thence (H₂-Cu chromite; EtOH; 160°) 1:12-methylene-3:4:5:6:7:8-hexahydrochrysene (96.5%), 116·6—117·2°. Dehydrogenation (Pd-C; 220° rising to 270°) then gives (III) (64%), m.p. $172.4-172.9^{\circ}$ $[s-C_6H_3(NO_2)_3 \ compound, m.p. 194-195^{\circ}; unstable$ picrate], also obtained (54.5%) similarly from (IV) or (19.5%) (VI). M.p. are corr. R. S. C.

[Nitration of] 3:4-benzpyrene. H. J. Eck-hardt (Ber., 1940, 73, [B], 15—18).—The conclusion of Fieser et al. (A., 1939, II, 364) that 3:4-benzpyrene is nitrated to 5-nitro-3:4-benzpyrene (I) is confirmed. The 9-position is excluded by its ready formation, and

the 10- by the non-identity of 10-amino-3:4-benzpyrene (Windaus et al., A., 1939, II, 106) with the reduction product of (I). With excess of boiling CrO₃-AcOH, (I) gives 7-benzanthrone-3:4-dicarboxylic anhydride (showing 5- or 8-substitution); CrO₃-AcOH under milder conditions yields a mixture which by chromatographic analysis (C₆H₆, Al₂O₃) gives a dinitro-3: 4-benzpyrene, m.p. 294°, probably identical with that obtained by Windaus et al. (A., 1937, II, 491), and a product reduced to 5:10and 5:8-dihydroxy-3:4-benzpyrene diacetate (Vollmann et al., A., 1937, II, 452). E. W. W.

Aromatic hydrocarbons. XXVIII. phene, a hydrocarbon of the phene series, and the analysis of its absorption spectrum by the anellation method. E. CLAR (Ber., 1940, 73, [B], 81—86).—By the anellation method (A., 1936, 599, 1102), which is reviewed, it is shown that the hydroobtained by heating 2:7:1:8-(I) $C_{10}H_4Me_2Bz_2$ is not 1': 2'-anthraceno-1: 2-anthracene (II) (cf. A., 1929, 690) but hexaphene (cf. A., 1940, II, 124). The absorption spectrum of (II) would resemble that of 2': 1'-anthraceno-1: 2-anthracene (cf. the spectrum resemblance between 1:2:5:6- and 1:2:7:8-dibenzanthracene). The spectrum of (I) contains three groups of bands, two (oa 467, oß 357, 339, and 324 mu.) corresponding with the o-form (A), and one (443, 416, and 392 m μ .) with the p-form (B).

The diquinone from (I) is identified as hexaphene-5:16:9:14- (or, less probably, 5:16:8:15-)di-E. W. W. quinone.

Synthesis of benzedrine. Q. Mingola (Annali Chim. Appl., 1940, 30, 187-198).-Methods of synthesis of benzedrine (I) are reviewed and the classification of sympathomimetic drugs is discussed. The following proposed methods give satisfactory yields of (I): (a) CH₂Ph·COMe (II) is converted into the oxime, which is reduced (Na-Hg-EtOH); (b) (II) is directly reduced in MeOH saturated with NH₃ by H₂ at room temp. and 1.5 atm., using Raney Ni (prep. according to Bougault et al., A., 1939, II, 199) as catalyst; (c) condensation of (II) with HCO·NH2 or HCO·NHMe, followed by hydrolysis (aq. HCl), washing with Et₂O, and fractional distillation of the basic product. The physico-chemical characteristics of, and analytical methods applied to, (I) are described.

Orientation problems. III. 4:6-Dinitro-otoluidine. A. McGookin, S. R. Swift, and E. Tittenson (J.S.C.I., 1940, 59, 92—94; cf. A., 1939, II, 255).—1:2:4- $C_6H_3Me(NO_2)_2$ could not be chlorinated or sulphonated; nitration by HNO3 (d 1.5), 100% H₂SO₄, and some H₂O at 80— 100° is almost quant. 1:2:4:6-C₆H₂Me(NO₂)₃ is reduced by aq. NaHS or, less well, Zn dust and aq. NH₄Cl to $4:6:1:2-(NO_2)_{2}C_{6}H_{2}Me\cdot NH\cdot OH, m.p. 110^{\circ}; NH_{4}HS$ in aq. dioxan (method: Voris et al., A., 1938, II, 228) gives 30% of $2:6:1:4-(NO_2)_2C_6H_2Me\cdot NH_2$, whilst SnCl₂-HCl in EtOH or dioxan affords (probably) diand tri-amines. o-Toluic acid (I) and HNO₃ (d 1.52) at -10° give 4- and 6-NO₂-derivatives which are converted, as is (I), by 100% H₂SO₄-HNO₃ (d 1.52) at 20° into 4:6-dinitro-o-toluic acid, m.p. 206° (Et ester, b.p. $204^\circ/750$ mm., m.p. $<15^\circ$; chloride, m.p. 68°, which with NaN₃ in COMe₂ affords the azide, m.p. 237—239°, not convertible into the amine); the amide, m.p. 181°, and cold aq. NaOCl give 4:6:1:2- $(NO_2)_2C_6\bar{H}_2Me\cdot NH_2$ (II), m.p. 155° (cf. lit.). The (II), m.p. 135°, of Brand et al. (A., 1913, i, 717) is either a mixture or possibly a hydroxylamine.

Action of organo-magnesium compounds on araldoximes and their derivatives. Preparation of arylalkylamines of type NHAr·CHR₂. P. Grammaticakis (Compt. rend., 1940, 210, 716— 718; cf. A., 1937, II, 421).—CHPh:N·OH (I) or CHPh:NO·CO·NH₂ (II) (1 mol.) with MgEtBr (6—10 mols.) in Et₂O gives mainly N-α-ethyl-n-propylaniline (III), b.p. 114°/14 mm. (hydrochloride, m.p. 161°; oxalate, m.p. 104°; picrate, m.p. 107°; phenylcarbamyl derivative, m.p. 78°), together with some CPhEt:NH and NH,Ph. Similarly, $p\text{-}OMe \cdot C_6H_4 \cdot CH : N \cdot OH (IV)$ or p-OMe·CgHa·CH:NO·CO·NH2 (V) with MgEtBr gives N-α-ethyl-n-propyl-p-anisidine (VI), b.p. 150°/14 mm. (hydrochloride, m.p. 190°; oxalate, m.p. 112°; phenyl-carbamyl derivative, m.p. 96°), p-OMe·C₆H₄·CEt.NH, and p-OMe C_6H_4 NH₂ (VII). (I) or (II) with MgPhBr gives NHPh·CHPh₂ (VIII), b.p. 225°/14 mm., m.p. 58° (phenylcarbamyl derivative, m.p. 125°), CPh, NH, and NH₂Ph. (IV) or (V) similarly yields N-benzand NH₂Ph. (IV) or (V) similarly yields N-benz-hydryl-p-anisidine (IX), b.p. 243°/14 mm., m.p. 81° [hydrochloride, m.p. 194° (decomp.); phenylcarbamyl derivative, m.p. 132°], (VII), and p-OMe·C₆H₄·CPh.NH. (III), (VI), (VIII), and (IX) are formed in >80% yield, together with small amounts of NH₂Ar, by the action of MgEtBr or MgPhBr in Et₂O on NHAr·CHO. J. L. D.

Molecular rearrangement of tertiary aralkylanilines. P. J. Drumm, W. F. O'CONNOR, and J. Reilly (J. Amer. Chem. Soc., 1940, 62, 1241—1243).

—NPh(CH₂Ph)₂,HCl at 200—220° (sealed tube) gives p-NH₂·C₆H₄·CH₂Ph, m.p. 36° (hydrochloride, m.p. 219°; Bz derivative, m.p. 165°; gives diphenylmethane-4-azo-β-naphthol, m.p. 141°), 2:4:1-(CH₂Ph)₂C₆H₃·NH₂, m.p. 50° [hydrochloride, m.p. 171°; Bz derivative, m.p. 154°; gives 2:4-dibenzylbenzene-1-azo-β-naphthol, m.p. 154°, and 2:4:1-

(CH₂Ph)₂C₆H₃·OH, b.p. 252—254°/10 mm. (α-naphthylurethane, m.p. 143—144°)], and (probably) 2:4:6-tribenzylaniline, m.p. 61-62° (hydrochloride, m.p. 186°; Bz derivative, m.p. 149°; gives 2:4:6-tribenzylbenzene-1-azo-β-naphthol, m.p. 146°). Rearrangement, which occurs at <200°, cannot proceed by way of an olefine and probably not by way of a free radical since $(CH_2Ph)_2$ is not obtained, but probably proceeds by way of CH_2PhCl . In conformity with this view, heating NPh(CH₂Ph)₂,HBr in N₂ removes CH₂PhBr, identified as R. S. C.

p-NO₂·C₆H₄·CO₂CH₂Ph.

M.p. of *p*-bromoanilides of solid aliphatic acids. D. F. Houston (J. Amer. Chem. Soc., 1940, 62, 1303—1304).—The following m.p. are recorded for RCO·NH·C₆H₄Br-p: R = C₉H₁₉ 101·9°, C₁₁H₂₃ $106\cdot7$ °, C₁₃H₂₇ $110\cdot2$ °, C₁₅H₃₁ $113\cdot2$ °, and C₁₇H₃₅ $115\cdot2$ °. R. S. C.

Organic phosphoric acid compounds. VII. Mono- and di-anilidophosphates. F. Zetzsche and W. Büttiker (Ber., 1940, 73, [B], 47—49).— NH₂Ph,HCl (I) and POCl₃ at 120—140° give NHPh·POCl₂ (II), which with further (I) at 145—150° gives (NHPh)₂POCl (III) (cf. Michaelis et al., A., 1896, i, 344). Cholesterol (IV) and (II) in C₅H₅N at 40—45° yield dicholesterylphosphoric acid monoanilide, C₅₀H₉₆O₃NP, m.p. 196—197°. (IV) and (III) similarly give monocholesterylphosphoric acid dianilide, m.p. 182°. With (III), (CH₂·OH)₂ gives its bisdianilidophosphate, m.p. 180°, glycerol its trisdianilidophosphate, m.p. 200°, and sucrose its octadianilidophosphate, m.p. 220°, and sucrose its octadianilidophosphate, m.p. 219—220°. Pyrocatechol gives a bisdianilidophosphate, m.p. 192°, which is stable to N-H₂SO₄ at 60—70° (3 hr.), but when heated with AcOH loses NH₂Ph.

Recognition of carboxylic acids as ureides [acyldiarylcarbamides] with aid of carbodiimides. VII. Detection of α -halogeno-fatty F. ZETZSCHE and G. RÖTTGER (Ber., 1940, 73, [B], 50—56; cf. A., 1940, II, 129).—The following N-acyl-NN'-di-p-dimethylaminophenylcarbamides are prepared in which the acyl group is: a-chloro-propionyl, m.p. 140° (sinters at 138°), -butyryl, m.p. 146°, -crotonyl, m.p. 136-136.5°, and -phenylacetyl, m.p. 141° (sinters at 138°); mono-*, m.p. 154°, di-, m.p. (impure) 145—146° (partly decomposed by cold COMe, or boiling MeOH into a white substance), and tri-chloroacetyl, m.p. 122° (with which di-p-dimethylaminophenylcarbamide is obtained) (decomposed by COMe₂ or MeOH); α-bromo-propionyl, m.p. 141°, -n-butyryl, m.p. 142°, -isovaleryl, m.p. 151°, -n-hexoyl, m.p. 137°, -αβ-dimethylbutyryl, m.p. 124°, -palmityl, m.p. 101°, -tetracosanoyl, m.p. 104°, and -melissyl, m.p. 97-98° (sinters at 94°) [obtained from α-bromomelissic acid (I), new m.p. 80.5°]; $\alpha\beta$ -dibromo- α -methylbutyryl, decomp. 138° (sinters at 117°), and -β-phenylpropionyl, m.p. 156°; mono-*, decomp. 165—170° (sinters at 153—155°), and tri-bromoacetyl, decomp. (impure) 122° (decomposed by COMe2 or MeOH), \alpha-iodo-propionyl, m.p. 143°, and -melissyl, m.p. 89° [from a-iodomelissic acid, m.p. 83—85° obtained from (I) and KI in EtOH]; iodoacetyl, decomp. 165°; β-chloro-propionyl*, m.p. 158°, and -n-butyryl*, m.p. 151°; β-bromo-propionyl*, m.p. 155° (decomp. 156*), -n-butyryl*, m.p. 143°, and - β -phenylpropionyl, decomp. 152° [decomposed by COMe2 first to a colourless substance, and then to a red substance, m.p. 172° (decomp.)]; hexabromostearyl*, m.p. 153° (sinters at 147°); bromofenchanecarboxyl*, m.p. 160°; β-iodopropionyl (II), m.p. 141°. All the above are yellow, except those marked *, which are colourless, and (II), which is yellowish-white. Colour is deepened by α-halogen; Br- and I- have a deeper colour than Cl-compounds. Carbamides of the above type are not obtained from αβ-dibromo-αβ-dimethylbutyric acid or from dibromo-α-cyclogeranic acid. E. W. W.

Preparation of sulphanilamides. M. C. Marquez (Bol. Soc. Quim. Peru, 1940, 6, 17—20).—Preparative details are recorded for sulphanilamide, 2':4'-diaminoazobenzene-4-sulphonamide, and 2-sulphanilamidopyridine. F. R. G.

Sulphonamides and mechanism of their [physiological] action. G. Carrara and G. Monzini (Chim e l'Ind., 1940, 22, 215—216).—The prep. and properties of sulphonamides (I) of therapeutic val. are briefly reviewed. The activity of (I) is related to production of azoxy-groups by oxidation in the organism. Azoxybenzene-4: 4'-disulphonamide, m.p. 298—300°, and -di(sulphon-2-pyridylamide), m.p. 280—283°, were prepared. F. O. H.

Derivatives of sulphanilamide.—See B., 1940, 566.

Chemotherapy of bacterial infections. I. Substances related to sulphanilamide. of p-aminobenzylsulphonamide and its derivatives. P. L. N. Rao (J. Indian Chem. Soc., 1940, 17, 227—232).—The following are prepared by condensing p-NO₂·C₆H₄·CH₂·SO₂Cl with amines in C_5H_5N and reduction, usually with Sn + HCl: p-nitro- and -amino-benzylsulphonamide, m.p. 168° (Ac, m.p. 212°, valeryl, m.p. 188—189°, hexoyl, m.p. 192—194°, and Bz derivative, m.p. 230—231°); di-p-nitro- [using 2 mols. of chloride to 1 NH3 or 0.5 of $(NH_4)_2CO_3$, m.p. 268° (decomp.), and -aminobenzylsulphonamide, decomp. when heated (hydrochloride, m.p. ~275°); p-nitro-, m.p. 130-131°, and -amino-benzylsulphonanilide, m.p. 172-173° [hydrochloride, m.p. 168—170° (decomp.)]; 2-p-nitro-, m.p. 214—215°, and -amino-benzylsulphonamidopyridine, m.p. 185—190° (?) (softens ~120°); p-nitro-, m.p. 199-200°, and -amino-benzylsulphonylsulphanilamide, m.p. 162—165° after softening [hydrochloride, m.p. $175-180^{\circ} (decomp.)$].

Oxidation of sulphanilamide and sulphapyridine by hydrogen peroxide.—See A., 1940, III, 598.

p-N-Acetylhydroxylaminobenzenesulphon-amide and p-hydroxylaminobenzenesulphonic acid, both m.p. >300°.—See A., 1940, III, 598.

Oxidation products of sulphanilamide. (MISS) M. K. Seikel (J. Amer. Chem. Soc., 1940, 62, 1214—1216).—p-NH₂·C₆H₄·SO₂·NH₂ (I) with K₃Fe(CN)₆–KOH gives 20% of (N·C₆H₄·SO₂·NH₂-p)₂ (II), m.p. 314° (decomp.). 30% H₂O₂ in AcOH converts (I) or (II) into azaxybenzene-4: 4'-disulphonamide (III) (72%), m.p. 289—290° (decomp.), but in 6N·H₂SO₄ (I) gives both (II) and (III). SnCl₂-HCl reduces (II) or (III) to (I), but Na₂S₂O₄ in 0·2N·NaOH gives hydrazobenzene-4: 4'-disulphonamide (IV), m.p. 224—224·5°. Oxidation (best, N-FeCl₃; 90—100% yield) of (IV) gives (II), which is best (46%) prepared by the reactions (I) \rightarrow (III) \rightarrow (IV) \rightarrow (II). With 6N·HCl (32 mols.) and 30% H₂O₂ (8 mols.) at room temp., (I) gives 3:5-dichlorosulphanilamide (SO₂·NH₂ = 1), m.p. 205—205·5°, converted by 75% H₂SO₄ into 2:6:1-C₆H₃Cl₂·NH₂.

Reaction of formic acid [with aniline]. T. L. DAVIS and W. P. GREEN, jun. (J. Amer. Chem. Soc., 1940, 62, 1274—1276).—When Br and anhyd. HCO₂H are allowed to react incompletely and treated with NH₂Ph at room temp., some CO(NHPh)₂ and its mixed 4:4'-Br₂- and 2:4:2':4'-Br₄-derivatives are obtained. These products are not obtained if all the Br is first allowed to react with the HCO₂H and are probably formed from CBr₂(OH)₂, which is derived from a little C(OH)₂ in equilibrium with HCO₂H.

R. S. C.

Interaction of arythydrazines with halogenated aldehydes. H. Irving (J.C.S., 1940, 813—817; cf. A., 1933, 1036).—CHMeBr·CClBr·CHO (1) (1 mol.) or CHMeBr·CBr. CHO (II) with 2:4:1-C₆H₃Hal₂·NH·NH₂,HCl (1 mol.) in EtOH affords β-bromo-α-ketobutaldehyde-2: 4-dichloro- (III), m.p. 135°, and -dibromo-phenylhydrazone (IV), m.p. 146° (decomp.). CHMeBr·CCl2·CH(OH)2 similarly affords the β -chloro-analogues. (I) or (II) (as hydrates) or CHMeCl·CClBr·CH(OH), (1 mol.) and 2:4:1- $C_6H_3Cl_2$ ·NH·NH₂,HCl (\tilde{V}) (2 mols.) in boiling MeOH give α -keto- β -methoxybutaldehyde-2: 4-dichlorophenylosazone, also obtained from (III) and (V) (1 mol.) in MeOH. (III) or (IV) and EtOH-NaOEt give the respective 4-hydroxy-1-(2': 4'-dihalogenophenyl)-5-methylpyrazole. Equimol. amounts of CHMeCl·CCl₂·CH(OH)₂ (VI) and 2:4:1- $C_6H_3Br_2\cdot NH\cdot NH_2$, HCl in EtOH at $<15^\circ$ afford $\beta \dot{\gamma}$ -dichloro- α -2: 4-dibromobenzeneazo- \triangle^{α} -butene (VII), m.p. 83°, reduced by Sn-HCl-AcOH to 2:4:1-C₆H₃Br₂·NH₂, and converted by dry HCl-C₆H₆ into butylchloral-2: 4-dibromophenylhydrazone (not isol-(VII) and dry HCl in EtOH give β-chloro- α - ketobutaldehyde - 2 : 4 - dibromophenylhydrazone. (VII) isomerises on refluxing with dry EtOH to αβdichlorocrotonaldehyde - 2:4 - dibromophenylhydrazone (VIII), m.p. 150° (N-Ac derivative, m.p. 166°); it isomerises when kept alone or, more rapidly, in C₆H₆, light petroleum, or CHCl₃, into the isomeride, m.p. 119° (Ac derivative, m.p. 141°), of (VIII). two forms are regarded as cis- and trans-isomerides since either Ac derivative and dry Cl2 in AcOH yield ααββ - tetrachlorobutaldehyde - N - acetyl - 2:4 - dibromo phenylhydrazone, m.p. 108°. (VI) and (V) in dil. HCl-NaOAc, followed by Ac₂O-H₂SO₄, give αβdichlorocrotonaldehyde - N - acetyl - 2: 4 - dichlorophenyl hydrazone (IX), m.p. 153.5° [cf. isomeride, m.p. 122.5° (X) (crystal differences due to habit only)]. (IX) and Sn-HCl-AcOH give $2:4:1-C_6H_3Cl_2\cdot NH_2$. Both isomerides are unimol. in C₆H₆ (f.p.). Isomerism is due to differences in arrangement about the CC linking since (IX) and (X) with Cl₂-AcOH give ααββtetrachlorobutaldchyde - N - acetyl - 2:4 - dichloro phenylhydrazone (cf. A., 1930, 324). (X) heated with AcCl (sealed tube) appears to be slowly converted into (IX).

Rate of dissociation of tetraphenylhydrazine.—See A., 1940, I, 325.

Preparation of stable diazo-compounds.—See B., 1940, 513.

Nitrosation of phenols. XVII. o-Fluorophenol, and a comparative study of the four

o-halogenophenols. H. H. Hodgson and D. E. NICHOLSON (J.C.S., 1940, 810—812).—o-C₆H₄F·OH and aq. HNO₂ at 0° give 2-fluoro-4-nitroso-(I), m.p. 144° (decomp.), and some 2-fluoro-6-nitro-phenol, m.p. 87°. The quinoneoxime modification of (I) exists only in derivatives. (I) resembles other 4:2:1-NO·C₆H₃Hal·OH (A). The NO·HSO₄ method (A., 1940, II, 12) gives much improved yields of 2-chloro-, new m.p. 145°, -bromo-, new m.p. 156° (decomp.), and -iodo-4-nitrosophenol, new m.p. 162°. 2-Fluoro-, m.p. 89°, -bromo-, m.p. 105°, and -iodo-benzoquinone-4-oxime Me ether, m.p. 120°, are prepared from (A) and Me₂SO₄-moist K₂CO₃ or (A)-aq. NH₃-MeOH-AgNO₃ followed by MeI. (A) afford 2-fluoro-, m.p. 195° (decomp.), -bromo-, m.p. 191° (decomp.), and -iodo-benzoquinone-4-oxime-1-p-nitrophenylhydrazone, m.p. 187° (decomp.). Caro's acid and the respective 2-halogeno-4-aminoanisole at 0° yield 2-fluoro-, m.p. , -bromo-, m.p. 85°, and -iodo-4-nitrosoanisole, m.p. 77°. The latter compounds or (A) and CH_2N_2 afford glyoxime NN'-bis-3-fluoro-, m.p. 211°, -bromo-, m.p. 211°, and -iodo-4-methoxyphenyl ether, m.p. 219° together with some corresponding oxime Me ether (above). NO-compounds have a lower m.p. than the isomeric quinoneoxime. Results of Schiemann et al. (A., 1933, 1156) on nitration of o-C₆H₄F·OMe are confirmed.

Dealkylation of alkyl-substituted phenols.—See B., 1940, 515.

Organic molecular compounds. I. Influence of nitro-groups and second substituents on the formation of aromatic-nitroaromatic molecular compounds. I. C. Shinomiya (Bull. Chem. Soc. Japan, 1940, 15, 92—103).—In ability to form mol. compounds, $s \cdot (NO_2)_3 \cdot > 2 : 4 \cdot (NO_2)_2 \cdot > NO_2 \cdot \text{compounds}$. The effect of substituents is discussed. The following mol. compounds are described $[A = \alpha \cdot, B = \beta \cdot C_{10}H_7 \cdot \text{OH}; C = C_{10}H_8; D = 1 : 2 : 4 : 6 \cdot C_6H_2(NO_2)_4; E = \text{tetryl}; F = 2 : 4 : 6 : 1 \cdot (NO_2)_3 C_6H_2 \cdot \text{OEt}] : AD, \text{m.p. } 137^\circ; BD, 130 \cdot 5^\circ; C_3D_2, \text{m.p. } 139 \cdot 5^\circ; A_3E_2, \text{m.p. } 80^\circ; B_zE_y \text{ (of dissociation type)}; AF_2, \text{m.p. } 68^\circ; BF_2, \text{m.p. } 75 \cdot 5^\circ; \text{ and } CF_2, \text{m.p. } 73^\circ. Eutectic points and series of melting and thawing points are also recorded, with phase diagrams. E. W. W.$

Organic molecular compounds. II. Influence of nitro-groups and second substituents on the formation of aromatic–nitroaromatic molecular compounds. II. C. Shinomiya (Bull. Chem. Soc. Japan, 1940, 15, 137—147; cf. preceding abstract).—o- $C_6H_4(NO_2)_2$ forms no mol. compounds with α - (I) or β - $C_{10}H_7$ -OH (II). as- $C_6H_3(NO_2)_3$ forms compounds (1:1), m.p. 67°, with (I), (1:1), m.p. 63·5°, and (2:1), m.p. 73°, with (II), and (1:1), m.p. 52·5°, with $C_{10}H_8$ (III). 2:5:1-(NO₂)₂ C_6H_3 -OH forms (1:1) compounds, m.p. 101°, with α - (IV), and, m.p. 96·5°, with β - $C_{10}H_7$ -NH₂ (V). 2:3:1-(NO₂)₂ C_6H_3 -OH forms (2:3) compounds, m.p. 105°, with (IV), and, m.p. 108°, with (V), but none with (I), (II), or (III). 3:4:1-(NO₂)₂ C_6H_3 -OH forms compounds, (1:1), m.p. 96°, with (IV), and, (2:3?), m.p. 83°, with (V), but none with (I), (II), or (III). 3:5:1-(NO₂)₂ C_6H_3 -OH forms (1:1) compounds, m.p. 110·5°, with (IV); m.p. 97°, with (V); m.p. 107°, with (I); m.p. 93°, with (II); and, m.p. uncertain,

with (III). Eutectic points etc. and phase-rule diagrams are given. E. W. W.

Preparation of o-nitrophenetole from o-chloro-nitrobenzene.—See B., 1940, 513.

Migration of the carbamyl radical in o-aminophenol derivatives. L. C. RAIFORD and K. ALEX-ANDER (J. Org. Chem., 1940, 5, 300-311).—Reduction of o-NPh₂·CO₂C₆H₄·NO₂-o and its substitution products causes migration of NPh, CO from O to N to give the corresponding o-carbamidophenol (A). The structures of these compounds are established by preparing them by the direct action of the acid chloride on the required o-aminophenol and by showing that the Me ethers obtained from (A) and CH₂N₂ are identical with the products obtained by treatment of the related anisidines with the required carbamyl chloride. Reduction of the related o-nitrophenyl phenylmethylcarbamate gives the o-aminophenyl derivative. This is also obtained by treatment of o-NH₂·C₆H₄·OH with NPhMe·COCl but in this reaction the isomeride is also obtained. Partial hydrolysis of mixed diacyl derivatives containing either of these carbamyl radicals attached to O and another acyl R(Ph)·CO bound to N causes loss of the latter acvl and migration of the former to N. As in many other examples, the heavier acyl is ultimately found attached to N. Migration is not observed when the second radical is ArSO₂. The following are described: o-diphenylcarbamidoanisole, m.p. 106—107°; 4-bromo-2-nitrophenyl diphenylcarbamate, new m.p. 137-138°; 4-bromo-2-diphenylcarbamidoanisole, m.p. 155— 156°; o-nitrophenyl phenylmethylcarbamate, m.p. 111—112°; o-phenylmethylcarbamidoanisole, m.p. 77-78°; diacyl derivatives of o-NH₂·C₆H₄·OH, N-acetyl-O-diphenylcarbamyl-, m.p. 150—153°; O-acetyl-N-diphenylcarbamyl-, m.p. 119—121°; ON-di(diphenylcarbamyl)-, m.p. 184-185°; N-diphenylcarbamyl-. m.p. 190—191°; N-benzoyl-O-diphenylcarbamyl-, m.p. 153-154°; O-benzoyl-N-diphenylcarbamyl-, m.p. 210-212°; diacyl derivatives of 2:4: I-NH₂·C₆H₃Br·OH, N-acetyl-O-diphenylcarbamyl-, m.p. 176—178°; Oacetyl-N-diphenylcarbamyl-, m.p. 117—118°; N-diphenylcarbamyl-, m.p. 198°; ON-di(diphenylcarbamyl)-, m.p. 198°; diacyl derivatives of o-NH₂·C₆H₄·OH, O-phenylmethylcarbamyl-N-p-toluenesulphonyl-, 125—126°; N-phenylmethylcarbamyl-O-p-toluenesulphonyl-, m.p. 111-112°; o-aminophenyl phenylmethylcarbamate, m.p. 105-106°; o-phenylmethylcarbamidophenol, m.p. 171—172°.

Phenylisoamyl [γ -phenyl- $\alpha\alpha$ -dimethylpropyl] acetate. K. N. Kinzerskaja (J. Appl. Chem. Russ., 1940, 13, 222—226).—Ph·[CH₂]₂·CMe₂·OAc (I) is prepared as follows (yields in parentheses): Ph·[CH₂]₂·OH (+ HBr) \rightarrow Ph·[CH₂]₂·Br (92%) (+ Mg) \rightarrow Ph·[CH₂]₂·MgBr (+ COMe₂) \rightarrow Ph·[CH₂]₂·CMe₂·OH

 $Ph^{\cdot}[CH_{2}]_{2} \cdot MgBr \ (+COMe_{2}) \rightarrow Ph^{\cdot}[CH_{2}]_{2} \cdot CMe_{2} \cdot OHe_{2} \cdot O$

Dehydration of cis- and trans-2-phenylcyclohexanols. C. C. PRICE and J. V. KARABINOS (J. Amer. Chem. Soc., 1940, 62, 1159—1161).—o- $C_6H_4\text{Ph}\cdot\text{OH}$ and H_2 -Raney Ni in EtOH at 140—150°/135 atm. (not PtO₂ at 70°/3—4 atm.) give cis-2-phenylcyclohexanol (I) (75%), m.p. 41—42°, b.p. 140—141°/16 mm. (phenylurethane, m.p. 127·5—128°),

oxidised by CrO_3 -AcOH to 2-phenylcyclohexanone, which is reduced by Na-Hg-EtOH to trans-2-phenylcyclohexanol (II), m.p. 56—57°. Dehydration of (I) and (II) by boiling H_3PO_4 involves trans-elimination. Thus, (I) gives mainly 1-phenyl- Δ^1 -cyclohexene, b.p. $126-128^\circ/16$ mm. (oxidised by KMnO₄ to $COPh\cdot[CH_2]_4\cdot CO_2H$), and (II) gives mainly 3-phenyl- Δ^1 -cyclohexene (III), b.p. $115-117^\circ/16$ mm. (cf. Uspenski, A., 1923, i, 669) [with boiling 5% HNO₃ gives $CO_2H\cdot CH_2\cdot CHPh\cdot[CH_2]_2\cdot CO_2H$, and with KMnO₄ gives BzOH and (?) BzCO₂H]; small amounts of the other olefine are also formed, probably owing to isomerisation prior to dehydration since (III) is stable to H_3PO_4 . M.p. are corr.

Formation of sulphonium compounds from benzyl iodide and organic disulphides. O. Haas and G. Dougherty (J. Amer. Chem. Soc., 1940, 62, 1004-1005).— R_2S_2 and CH_2PhI with HgI_2 or $FeCl_3$ in COMe₂ at room temp. give tribenzyl-, m.p. $136-137^\circ$, dibenzylethyl-, and dibenzyl-n-butyl-sulphonium iodide, all + HgI₂, and tribenzylsulphonium iodide, + FeCl₃, m.p. 142° . A reaction mechanism is postulated, one step of which, $(CH_2Ph)_2SI_2 + HgI_2$ (in $COMe_2) \rightarrow (CH_2Ph)_2S, HgI_2 + I_2$, is realised experimentally.

Alkanolamines. IX. Reducing and hydrolysing action of ethanolamines on dichloronitrobenzenes. C. B. Kremer and A. Bendich (J. Amer. Chem. Soc., 1940, **62**, 1279—1281).—Ability of $NH_2 \cdot [CH_2]_2 \cdot OH$ (I) and $C_6H_3Cl_2 \cdot NO_2$ to condense is less in absence than in presence of a solvent, reduction, hydrolysis, formation of additive compounds, and reduction of end-products increasing. latter reactions occur to a greater extent with $NH([CH_2]_2 \cdot OH)_2$ (II) and $N([CH_2]_2 \cdot OH)_3$ NH([CH₂]₂·OH)₂ (II) and $\text{N}([CH_2]_2 \text{ OH})_3$ (III). 2:5:1- $\text{C}_6\text{H}_3\text{Cl}_2\cdot\text{NO}_2$ (IV) (1 mol.) with (I) (1—2 mols.) alone or with Na₂CO₃ or NaOAc gives 2:4:1-NO₂·C₆H₃Cl·NH·[CH₂]₂·OH (usually the main product), 2:5:1- $\text{C}_6\text{H}_3\text{Cl}_2\cdot\text{NH}_2$ (V), 2:4:1-NO₂·C₆H₃Cl·OH $(VI), 2:4:1-NH_2\cdot C_6H_3Cl\cdot NH\cdot [CH_2]_2\cdot OH, and (2:5:1-1)$ C₆H₃Cl₂·N:)₂, the amounts varying according to the conditions. (II) or (III) with (IV) gives (V), but (VI) is the main product in presence of Na_2CO_3 . 3:4:1- $C_6H_3Cl_2\cdot NO_2$ with (I) (alone or with Na_2CO_3) gives $4:2:1-NO_2\cdot C_6H_3Cl\cdot NH\cdot [CH_2]_2\cdot OH$, but with (II) or (III) gives $4\tilde{\cdot}2\tilde{\cdot}1\tilde{\cdot}NO_2\cdot C_6H_3Cl\tilde{\cdot}OH, 3:4:1-C_6H_3Cl_2\cdot NH_2$ and 3:4:3':4'-tetrachloroazobenzene, m.p. 195.5° (corr.), the quantities varying according to the conditions. $2:4:1-C_6H_3Cl_2\cdot NO_2$ with (I) gives mainly tar, but with (II) $2:4:1-C_6H_3Cl_2\cdot NH_2$ (1%) is isolated. 3:5:1-C₆H₃Cl₂·NO₂ with (I) and Na₂CO₃ gives 3:5:3':5'-tetrachloroazobenzene (VII) (60%), m.p. 158.5° (corr.), and $3:5:1-C_6H_3Cl_2\cdot NH_2$ (20%), R. S. C. and with (II) gives (VII).

Relative reactivities of organo-metallic compounds. XXX. Co-ordinate compounds in the colour test for organo-metallic compounds. H. GILMAN and R. G. Jones (J. Amer. Chem. Soc., 1940, 62, 1243—1247; cf. A., 1940, II, 239).— $CO(C_6H_4\cdot NMe_2\cdot p)_2$ (I) and MgPhBr in Et_2O-N_2 give a 1:1 additive compound, which regenerates 88% of (I) when hydrolysed but is sufficiently unstable to give enough $(p\cdot NMe_2\cdot C_6H_4)_2CPh\cdot O\cdot MgBr$ to yield after hydrolysis the I-AcOH colour test. A similar com-

pound is formed in $C_6H_6-N_2$, but is less stable therein, giving in aq. NH_4CI only 45% of (I) with 42% of (p-NMe₂· C_6H_4)₂CPh·OH (II). Excess of MgPhBr and use of C_6H_6 increase the sensitivity of the colour test. LiPh and (I) give no stable complex in Et_2O or C_6H_6 , but yield 78 and $92\cdot5\%$, respectively, of (II) without any regenerated (I). The order of decreasing reactivity and increasing tendency to form co-ordinate compounds with ketones is LiPh, MgPhBr, $GaPh_3$; the relation between these two properties and the responsibility of the latter for effects previously ascribed to steric hindrance are discussed. The forms, m.p. $107-107\cdot5^\circ$ and $121-122^\circ$ (cf. lit.), of (II) are obtained. R. S. C.

Chaulmoogra phosphatides. H. Arnold (Ber., 1940, 73, [B], 90—94; cf. A., 1939, II, 132).—The Na salt of monohydnocarpoyl- β -glycerophosphoric acid with AcOH and AgNO₃ forms the silver (Ag + Ag₂) salt, which with Br-[CH₂]₂·NMe₃Br (I) gives choline monohydnocarpoyl- β -glycerophosphate, C₂₄H₄₆O₇NP. Dihydnocarpoyl- β -glycerophosphate. Ag₂ chaulmoogryl-hydnocarpoyl- β -glycerophosphate with (I) gives the choline ester, m.p. 170—175° (softens at 70°). The corresponding choline salt has m.p. 160—165°. The new compounds appear to have no curative action in leprosy.

Ring-closure of acyclic ureides resulting from elimination of alcohol. Esters of β-phenylalanine-N-acetic acid and related compounds. (MISSES) D. A. HAHN, M. J. McLEAN, and M. M. ENDICOTT (J. Amer. Chem. Soc., 1940, 62, 1087— 1091).— $CO_2H \cdot CH_2 \cdot NH \cdot CH(CH_2Ph) \cdot CO_2H$ (I)HCl-MeOH or -EtOH give according to the conditions the Me₂ ester hydrochloride, decomp. 144— 145°, N-carbomethoxy- (II), m.p. 185—186° (decomp.), stable in H₂O, and N-carbethoxy-methyl-β-phenylalanine hydrochloride (III), m.p. 170-172° (decomp.), hydrolysed in H₂O. With 1 equiv. of NaOMe-MeOH or of aq. KHCO₃, (II) gives N-carbomethoxymethyl-βphenylalanine (IV), m.p. 208-210° (decomp.). In boiling H₂O, (III) gives N-carbethoxymethyl-β-phenylalanine (V), m.p. 206—208° (decomp.). NH₃-EtOH converts (IV) or (V) into β-phenylalanine-N-acetamide (VI), m.p. 196-197° (decomp.), hydrolysed by dil. HCl to (I). (II) and (III) are sol. in EtOH and H_2O , but (IV) and (V) are insol. K of (IV), (V), and (VI) are similar. With KCNO under various conditions, (II), (III), (IV), and (V) give mixtures (cf. A., 1938, II, 279) containing 26-70% of $1-\alpha$ -carboxy- β -phenylethylhydantoin, m.p. 157—158° (Na salt, "anhyd.," decomp. 188—300°, and +EtOH, m.p. 60—70°, resolidifies at 91°; Me ester, m.p. 105—106.5°), the absorption spectrum of which closely resembles that of 5-benzyl-1-carboxymethylhydantoin.

Optical constants of benzamide, its homologues, and aliphatic amides. M. L. WILLARD and C. MARESH (J. Amer. Chem. Soc., 1940, 62, 1253—1257).—Optical properties of NH₂Bz and 11 Phsubstituted derivatives thereof and of RCO·NH₂ (R = Me, Et, Pr, Bu°, and Bu $^{\beta}$) are recorded and may be used for identification. p-Ethyl-, m.p. $164\cdot2\pm0\cdot5^{\circ}$, p-p-propyl-, m.p. $128\cdot4\pm0\cdot5^{\circ}$, p-n-, m.p. $121\cdot5\pm0\cdot4^{\circ}$,

p-iso-, m.p. $151\cdot2\pm0\cdot2^{\circ}$, and p-sec.-butyl-, m.p. $117\cdot2\pm0\cdot5^{\circ}$, -benzamide are reported. R. S. C.

Synthesis of iodohippuric acids. I. 2:5-, 3:5-, and 3:4-Di-iodohippuric acids. C. KLEMME and J. H. HUNTER (J. Org. Chem., 1940, 5, 227-234).—Addition of AcOH to an aq. solution of o-NH₂·C₆H₄·CO₂K and KI–KOI gives 2:5:1-NH₂·C₆H₃I·CO₂H, m.p. 210— $211\cdot5$ ° (yield $72\cdot2$ %), converted into 2:5:1-C₆H₃I₂·CO₂H. This with SOCl₂ affords 2:5-di-iodobenzoyl chloride, m.p. 93—94.5°, which condenses with aq. NH₂·CH₂·CO₂Na to 2:5di-iodohippuric acid, m.p. 210·5—211°. 3-Iodo-4-aminobenzoic acid, m.p. 203—204°, is obtained by treatment of p-NH₂·C₆H₄·CO₂H with ICI in AcOH or (with $2:4:1-C_6H_3I_2\cdot NH_2$) with KI-KOI and AcOH, and is converted into 3:4:1-C₆H₃I₂·CO₂H, the chloride, m.p. 74-76°, of which is condensed to $3:4\text{-}di\text{-}iodohippuric\ acid,\ m.p.\ 150-154°,\ softens\ at\ 148°.\ o\text{-NH}_2\cdot C_6H_4\cdot CO_2H\ and\ ICl\ in\ 25\%\ HCl\ at\ 80°$ afford $2:3:5:1-NH_2\cdot C_6H_2l_2\cdot CO_2H$, m.p. $230-232^\circ$, whence successively $3:5:1-C_6H_3l_2\cdot CO_2H$ (chloride, m.p. 67—68°) and 3:5-di-iodohippuric acid, m.p. 208—209°.

Halogenation of salicylic acid. L. H. FARIN-HOLT, A. P. STUART, and D. TWISS (J. Amer. Chem. Soc., 1940, **62**, 1237—1241).—2:3:5:1- $OH \cdot C_6H_2Br_2 \cdot CO_2H$ and Br in 60% oleum at ~30° give tetra- (I), decomp. ~235—240° (Ac derivative, m.p. 162.5°), or, if less Br is used, 3:5:6-tri-bromosalicylic acid (II), m.p. 210.5° (Ac derivative, m.p. 145°). $2:3:5:1-OH \cdot C_6H_2Cl_2 \cdot CO_2H$ and Cl_2 in 60%oleum at 80—90° give 3:5:6-trichlorosalicylic acid (III), m.p. 207° (Ac derivative, m.p. 129.5°), converted by Br-60% oleum at ~30° into 3:5:6trichloro-4-bromosalicylic acid (IV), m.p. 213° (Ac derivative, m.p. 144°). Attempts to prepare triand other tetrahalogeno-derivatives failed. Structures are proved by decarboxylating with sodalime; 2:3:4:5-tetrabromo-, m.p. 123° (acetate, m.p. 110.5°; benzoate, m.p. 133°), and 2:4:5-trichloro-3bromo-phenol, m.p. 126° (benzoate, m.p. 125°), are thus obtained. With Br-AcOH-H₂O at 60°, (I), (II), (III), and (IV) give $C_6Br_5\cdot OH$, 2:3:4:6:1- $C_6HBr_4\cdot OH$, 3:4:6:2:1- $C_6HCl_3Br\cdot OH$, and $3:4:6:2:5:1-C_6Cl_3Br_2\cdot OH$, respectively. Cl_2 and (III) in 30% AcOH give $2:3:4:6:1-C_6HCl_4\cdot OH$.

Oxidation of salicylates in alkaline solution. E. A. Brecht and C. H. Rogers (J. Amer. Pharm. Assoc., 1940, 29, 178—183).—The formation of brown-coloured oxidation products from salicylic acid (I) and related compounds was studied. Na salicylate (and other phenolic compounds) in 25% NaOH with $\rm H_2O_2$ slowly forms the Na₂ salt of 2:5-dihydroxy-p-benzoquinone; on keeping, this gives a dark brown, amorphous ppt. (I) oxidised by air in slightly alkaline solution or by $\rm H_2O_2$ gives a brown product ("acid salicylate-brown"), $\rm C_{12}H_8O_6$, containing 3 OH and yielding metallic (e.g., Na₃) salts.

Preparation of depsides by means of azides. III. Action of trimethylgallazide on diphenols. R. O. Pepe (Anal. Asoc. Quím. Argentina, 1940, 28,

34—50; cf. A., 1938, Π , 491).—3:4:5:1- (OMe)₃C₆H₂·CO·N₃ (I) (2 mols.) in COMe₂ with the appropriate diphenol in N-NaOH gives o-, m.p. 155°, m-, m.p. 147°, and p-phenylene di-(3:4:5-trimethoxybenzoate), m.p. 218°. 0·5 mol. of (I) yields similarly o-, m.p. 172°, m-, m.p. 125°, and p-hydroxyphenyl 3:4:5-trimethoxybenzoate, m.p. 154°. With 1 mol. of (I) mixtures are formed; m-C₆H₄(OH)₂ affords the highest yield of di-, and o-C₆H₄(OH)₂ affords predominately mono-ester. F. R. G.

Synthesis of carbalkoxystilbenes. R. C. Fuson and H. G. COOKE, jun. (J. Amer. Chem. Soc., 1940, **62**, 1180—1183).—Condensation of ArCHO and *p*-CO₂Me·C₆H₄·CH₂Br by Zn dust in C₆H₆ and dehydration of the product by Ac₂O-C₆H₆ gives Me stilbene-(I) (21%), m.p. 158—159° (dibromide, m.p. 192—193°), 4'-chlorostilbene- (II) (22%), m.p. 161—162° [dibromide, m.p. 202—203° (decomp.)], and 4'-bromostilbene-(20%), m.p. 179—180° (dibromide, m.p. 211—213°), -4-carboxylate. Me ω-bromo-m-toluate (prep. from m-C₆H₄Me·COCl by Br at \sim 180° and later MeOH), m.p. 46-47°, with p-C₆H₄Cl-CHO gives similarly Me 4'chlorostilbene-3-carboxylate (18%), m.p. 110—111° (dibromide, m.p. 175—176°). CH_2PhCl and PhCHOgive trans-(:CHPh)₂ and CH₂Ph₂. p-CHO·C₆H₄·CO₂Me and p-C₆H₄Cl·CH₂Br give (II) and di-p-chlorobenzyl, m.p. 100°. Meerwein's method (A., 1939, II, 262) gives 52% of (I) or 36% of Et stilbene-4-carboxylate, m.p. 105—106° (dibromide, m.p. 180—181°), but gives poor yields of Cl-derivatives. Me ω-iodo-p-, m.p. 76— 77°, and -m-toluate, m.p. 52-53°, are prepared from the corresponding Br-esters by NaI in COMe₂.

Diarylphthalides derived from dialkylanilines. B. Hor (Compt. rend., 1940, 210, 701—703).—4'-Methoxy-2'-methyl-5'-isopropylbenzophenone-2-carboxyl chloride with NPhMe, and AlCl₃ in cold C₆H₆, followed by treatment with dil. H₂SO₄ and steamdistillation, gives α -p-dimethylaminophenyl- α -(2'methyl-5'-isopropyl-p-anisyl)phthalide, m.p. 207—208° (decomp.). o- C_6H_4Bz - CO_2H_1 , o-4-anisoyl- and o-2:5dimethoxybenzoyl-benzoic acid similarly yield α-p-dimethylaminophenyl-α-phenyl-, m.p. ~160° (decomp.), -p-anisyl-, m.p. ~76—77°, and -2:5-dimethoxyphenylphthalide, m.p. 235° (decomp.), respectively. These phthalides give coloured solutions in conc. H₂SO₄ but not with alkalis unless a phenolic group exists as in $\alpha - p - diethylaminophenyl - \alpha - p - hydroxyphenylphthalide,$ m.p. 105—106° (decomp.), prepared from p $NEt_2 \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot COCl \cdot \overline{o}, PhOH, and AlCl_3.$

J. L. D. Disproportionation in the synthesis of aryloxymalonic acids. J. B. Nederl and R. T. Roth (J. Amer. Chem. Soc., 1940, 62, 1154—1156).—1 mol. each of NaOAr and CHBr(CO₂Et)₂ in abs. EtOH give OAr·CH(CO₂Et)₂ (I) by condensation, and (OAr)₂C(CO₂Et)₂ and CH₂(CO₂Et)₂ by disproportionation. Use of CHCl(CO₂Et)₂ gives (I). Phenoxy-, m.p. 124° (decomp.) (Et₂ ester, m.p. 52—53°; amide, m.p. 214—215°), m-tolyloxy-, m.p. 138° (decomp.) (Et₂ ester, b.p. 154—156°/4 mm.; diamide, m.p. 216—217°), di-m-tolyloxy-, m.p. (anhyd.) 148° (decomp.), (+3H₂O) 87° (Et₂ ester, b.p. 202—205°/3 mm.), and p-nitrophenoxymethyl-, m.p. 142° (decomp.) (Et₂

ester, m.p. 50—51°), -malonic acid are described. Rearrangement of the esters cannot be effected.

Dinitriles of dicarboxylic acids.—See B., 1940, 515.

Methylenedisalicylic acid and its hexamethylenetetramine salt. B. Oddo (Annali Chim. Appl., 1940, 30, 180—187).—Salicylic acid, 34% $\rm CH_2O$, and 25% $\rm H_2SO_4$ are autoclaved for 100 min. at 90—95°; the solid product, when washed with warm $\rm H_2O$ and with $\rm C_6H_6$, affords methylenedisalicylic acid, m.p. 243° (decomp.) (cf. Clemmensen et al., A., 1911, i, 542), which, directly mixed with ($\rm CH_2)_6N_4$ or pptd. from $\rm COMe_2$ solution by $\rm C_6H_6$, yields ($\rm CH_2)_6N_4$ methylenedisalicylate (I), softens ~60°, decomp. 120°. (I), the colour reactions of which are given, inhibits potato-oxidase, has bacteriostatic activity, is lethal in rabbits in intravenous doses of 0.85 g. per kg., and, in sufficiently high conens., depresses blood pressure, respiration, and cardiac movement. F. O. H.

New alkaline fusion procedure. 3-Chloro-4-hydroxy-5-sulphobenzoic acid and its conversion into 3:4-dihydroxy-5-sulphobenzoic acid. G. V. Medox and N. K. Dobrovolskaja (J. Appl. Chem. Russ., 1940, 13, 191—194).—4:3:1-OH·C₆H₃Cl·CO₂H and 10% oleum (30 min. at 84°, then 3 hr. at 145—150°) yield 3-chloro-4-hydroxy-5-sulphobenzoic acid (K and K_2 , +1·5H₂O, salts). This, when heated for 4 hr. at 180° with KOH and paraffin wax, in presence of KI and Cu, yields 3:4-dihydroxy-5-sulphobenzoic acid (K salt). The paraffin isolates the reaction mass from atm. O₂.

Dicyclic structures prohibiting Walden inversion. dicyclo[2, 2, 2]Octane derivatives with substituents at the bridgehead. P. D. BARTLETT and S. G. COHEN (J. Amer. Chem. Soc., 1940, 62, 1183—1189).—The Br of 9-bromoanthracene-9:10endo-αβ-succinic anhydride (I) (Barnett et al., A., 1934, 1102) is unaffected by 30% KOH in 1:1 H₂O-EtOH because Walden inversion is impossible; only the trans-acid, m.p. 238—240° (barely affected by Ac₂O), is obtained; 10% KOH gives the cis-acid, converted at the m.p. or in warm Ac₂O into (I). 9-Bromo-9methylfluorene (prep. described) reacts readily with EtOH at 25° (half-life period ~5 min.) to give 9ethoxy-9-methylfluorene, m.p. 82—83°. Na with (I) in EtOH gives ~10% of trans-anthracene-9: 10-endo-αβ-succinic acid (II), but Ag or AgNO₃ reacts little if at all. The isomerides of (II) are equilibrated by conc. alkali. 9-Aminoanthracene, softens at 120°, m.p. ~135-140° (cf. lit.), when kept, gives a compound, m.p. 216—217°. 9-Nitro- and 9-acetamido-anthracene with (:CH·CO)₂O in boiling xylene give 9-nitro-, m.p. 244-245°, and 9-acetamido-anthracene-9:10endo-αβ-succinic anhydride (III), sinters at 257°, m.p. ~268°, respectively, which could not be converted into the 9- NH_2 -derivative (IV). With NaOH, (III) gives the trans-acid, sinters at 250°, m.p. 253°. Et 9-anthrylcarbamate, m.p. 224—225°, gives the 9:10endo-αβ-succinic anhydride, m.p. 252—254° (decomp.), hydrolysed by NaOH to (IV), m.p. 260-262° (decomp.). With HNO2, (IV) gives the 9-OH-compound (yield erratic, up to 65%), m.p. 174—175°, unstable R. S. C. in alkali.

Tannin, m.p. 165—166° (decomp.), $[\alpha]_{D}^{27} + 17.5^{\circ}$ in acetone (hexamethyl derivative, m.p. 172-174°), from bark of Acer spicatum.—See A., 1940, III. 618.

Steroid-like derivatives [lactams].—See B., 1940, 567.

Reaction of hydroxamic acids. M. Schenck and L. Wolf (Ber., 1940, 73, [B], 25-28).—The evolution of gas on treatment with KMnO₄ in 10% NaOH is apparently a general reaction of hydroxamic acids. Acet- and benz-hydroxamic acid give largely N_2O , with some N_2 . The β -acid (A) (cf. A., 1938, II, 99) gives N_2 with 1.5% of O_2 (cf. Schenck, Z.

physiol. Chem., 1939, 262, 47). The oximinoketo-hydroxamic acid, $C_{24}H_{36}O_8N_2$ (B; R = N·OH), gives N₂ and a substantial proportion of N₂O. The diketohydroxamic acid, $C_{24}H_{35}O_8N$ (B; R=0), gives N_2 with only a trace of N_2O . Other N-containing bile acid derivatives studied give either no gas or only traces. E. W. W.

Hydrogenation of benzaldehyde under pressure. G. I. Deschalit (J. Appl. Chem. Russ., 1940, 13, 195—197).—PhMe is obtained in 64% yield by hydrogenation of PhCHO (2 hr. at 300—350°/90 atm.).

Molecular rearrangements involving optically active radicals. VIII. Wolff rearrangement of optically active diazoketones. J. F. LANE, J. WILLENZ, A. WEISSBERGER, and E. S. WALLIS (J. Org. Chem., 1940, 5, 276—285).d-CH₂Ph·CHMe·COCl is converted by CH₂N₂ in anhyd. Et₂O at 0°—room temp. into d- β -phenyl- α -methylethyl CHN₂ ketone (I), α_D^{20} +67·2° (l = 0·5); the (impure) 1-isomeride, α_D^{20} -27·9° (l = 0·5), is hydrolysed by 50% HCO₂H at room temp. to δ-phenyl-γmethylbutan- α -ol- β -one, α_D^{20} $-14\cdot03^{\circ}$ (l=0.5), identified as the p-nitrobenzoate, m.p. 73°. When treated with acids in the absence of a catalyst (I) gives an optically active CO-alcohol without appreciable racemisation. With NH₃ in MeOH-AgNO₃ it undergoes a Wolff rearrangement giving a partly racemised (—)- β -benzylbutyramide, m.p. 80—81°, whilst with Ag₂O and Na₂S₂O₃ in aq. 25% dioxan it yields optically inactive β-benzylbutyric acid (amide, m.p. 83°). d-CPhMeEt·CO·CHN₂ (impure) under the last conditions gives an optically inactive acid.

phosphorus pentachloride β-phenylbenzylideneacetophenone. C. R. Conard

(J. Amer. Chem. Soc., 1940, 62, 1002-1003).-CPh₂:CH·COPh and PCl₅ in boiling C₆H₆ give oily 1:2-dichloro-1:3-diphenylindene (I) (cf. A., 1912, i, 989; for mechanism and analogous reaction with Br, cf. Barré et al., A., 1928, 1009). O₃ converts (I) in CCl₄ into o-C₆H₄Bz₂ (II). With boiling EtOH-C₆H₆, (I) gives 2-chloro-1-ethoxy-1: 3-diphenylindene, m.p. 135.5— 136° , ozonised to (II).

Activation of aluminium chloride in the Friedel-Crafts reaction.—See A., 1940, I, 326.

Condensation of paraformaldehyde with acetomesitylene. R. C. Fuson and C. H. McKeever (J. Amer. Chem. Soc., 1940, 62, 999—1001).—2:4:6:1-C₆H₂Me₃·C(:CH₂)·O·MgBr and gaseous CH₂O in Et₂O at 0° give β-hydroxypropiomesitylene (I), b.p. 135— 138°/4 mm., which with conc. HCl at room temp. gives β-chloropropiomesitylene, m.p. 46-46.5°, obtained also from 2:4:6:1-C₆H₂Me₃·CO·CH:CH₂ (II) by HCl. Contrary to previous work (A., 1939, II, 162), $2:4:6:1-C_6H_2Me_3$ COMe, paraformaldehyde (III), and K_2CO_3 in MeOH at room temp. give mainly β -methoxy- α -methylene propiomesitylene 110.5— $111^{\circ}/1.5$ mm. (dibromide, m.p. 50.5— 51.2°) reduced (H₂-Raney Ni; MeOH; 2 atm.) to 2:4:6:1-C₆H₂Me₃·CÕPr^β. The reaction mechanism is proved by realisation of the following steps: (I) ---> (distillation) (II) \longrightarrow (MeOH-K₂CO₃ or MeOH-conc. HCl) β -methoxypropiomesitylene, b.p. 117—117·5°/2·5 mm. (with Br-CCl₄ gives 2:4:6:1- $C_{c}H_{o}Me_{3}\cdot CO\cdot CHBr\cdot CHMeBr) \longrightarrow [(III)-MeOH-$

 K_2CO_3] (IV). K_2CO_3 and (III) in MeOH convert (II) into (IV) and a little $\beta\delta$ -dimesityl- $\Delta^{\beta\delta}$ -pentadiene.

Acetylretene and reten-6-ol. W. P. CAMPBELL and D. Todd (J. Amer. Chem. Soc., 1940, 62, 1287-1292).—Acetylretene (I) and β-retenol are shown to be C₃₃-derivatives. The retenol (II) obtained from ferruginol and hinokiol (A., 1939, II, 382, 438) is the 6-OH-compound. Retene, AcCl, and AlCl₃ in PhNO₂, first at -5° and then at 5° , give (I) (45%; mother-liquor yields a product, m.p. $85-89^{\circ}$, and a picrate, m.p. $127-132^{\circ}$), which with 1:2 HNO₃-H₂O (later more HNO₃) at $190-200^{\circ}$ gives 1:2:3:5- $C_6H_2(CO_2H)_4$ (III). 6-Methoxy-1-methylphenanthrene gives similarly the 3-Ac derivative (21%), m.p. 126.5—127° (picrate, m.p. 146—148.5°), oxidised by KI, in NaOH-dioxan to the 3-carboxylic acid, m.p. $233-235^{\circ}$, which with HNO₃ gives (III). Me 6hydroxydehydroabietate (IV) and Se at 280—285° (later 335°) in N₂ give 68% of reten-6-ol, m.p. 179—180°, identical with (II). Me O-methylpodocarpate, AcCl, and AlCl₃ in PhNO₂, first at 0° and then at 5°, give 80% of the 7-Ac derivative, m.p. 119—119.5°, $[\alpha]_{D}^{25}$ +142° in EtOH (oxime, m.p. 190—193°), and thence (MgMeCl-Et₂O) Me O-methyl-7- α -hydroxyiso-propylpodocarpate, m.p. 148—150°, $[\alpha]_{\rm p}^{25}$ +119° in EtOH. In boiling AcOH this affords Me O-methyl-7-isopropenyl-, m.p. $120.5-121.5^{\circ}$, $[\alpha]_{D}^{25}+136^{\circ}$ in EtOH, and thence (H₂-PtO₂-95% EtOH) -7-isopropyl-podocarpate (V), m.p. $109-109\cdot5^{\circ}$, $[\alpha]_{5}^{25}$ + 124° in EtOH. Me 6-methoxydehydroabietate [prep. from (IV) by MgMeCl-Et₂O, followed by Me₂SO₄; other methods fail or are erratic], m.p. $65.5-66.5^{\circ}$, $[\alpha]_{D}^{25}+87^{\circ}$ in EtOH, differs from (V). Se converts (V) into 6methoxyretene, of which 22% is isolated as such and 30% by hydrolysis to (II). R. S. C.

Properties of benzoylmesitoylmethane. R. P. BARNES, C. I. PIERCE, and C. C. COCHRANE (J. Amer. Chem. Soc., 1940, 62, 1084—1087).—Mesitaldehyde is obtained in 80% yield by hydrogenating (Pd-BaSO₄) mesitoyl chloride in boiling xylene and in 50% yield [with $2:4:6:1-C_6H_2Me_3\cdot CO_2H$ and $-C_6H_2Me_3\cdot CH(OH)\cdot CO_2H$] by oxidising (KMnO₄–KOH) $2:4:6:1-C_6H_2Me_3\cdot COMe$ to $2:4:6:1-C_6H_2Me_3\cdot COMe$ to $2:4:6:1-C_6H_2Me_3\cdot COMe$ C₆H₂Me₃·CO·CO₂H and warming the anil thereof with conc. $H_0S\bar{O}_4$. 2:4:6:1-C_cH_oMe₃·CO·CHBr·CHPhBr and KOAc in boiling AcOH give 91-92% of mesityl a-bromostyryl ketone, m.p. 86°, which reduces KMnO₄, absorbs Br, with MgPhBr gives 2:4:6:1-C₆H₂Me₃·CO·CHBr·CHPh₂, and with hot, conc. KOH-MeOH gives 2:4:6:1- $C_6H_2Me_3\cdot CO\cdot CH:CPh\cdot OH$ (I), m.p. 76—77°, obtained from (V) (below) by hot HCl-MeOH. is 100% enolic in MeOH, but <1% in CCl₄, gives a Cu derivative, m.p. 221° (decomp.), and with Br in $CHCl_3 + CaCO_3$ gives β -bromo- α -phenyl- γ -mesitylpropane-αy-dione (II), m.p. 64—66°, which is 24% enolic and with hot KOAc-AcOH gives mainly (I) with some $2:4:6:1-C_6H_2Me_3\cdot CO\cdot COPh$ (III). Addition of (I) and then of Br–AcOH to $C_5H_5N-H_2SO_4$ –AcOH gives the $\beta\beta$ -Br₂-derivative, m.p. $107-108^{\circ}$, analogous to (II), converted by KOAc-AcOH into (III). boiling AcCl, (II) gives mesityl α -bromo- β -acetoxystyryl ketone, m.p. 96°, and with boiling KOAc-Ac₂O gives also some $2:4:6:1-C_6H_2Me_3\cdot CO\cdot C(OAc)\cdot CPh\cdot OAc$. 2:4:6:1-C₆H₂Me₃·[CHBr]₂·COPh (IV) and KOAc–AcOH give Ph α-bromo-2:4:6-trimethylstyryl ketone, m.p. 95°, and thence by hot NaOMe-MeOH $2:4:6:1-C_6H_2Me_3\cdot C(OMe):CH\cdot COPh$ (V), obtained similarly also from (IV).

Diene addition products to diaroylethylenes and their transformation products. R. Adams and R. B. Wearn (J. Amer. Chem. Soc., 1940, 62, 1233—1237; cf. A., 1940, II, 103).—Addition of trans-(:CH·COAr)₂ (A) (Ar = p-C₆H₄Cl, p-tolyl, or mesityl) to (CH:CH₂)₂, (CMe:CH₂)₂ (I), or cyclopentadiene in boiling C₆H₆ gives 4:5-di-p-chlorobenzoyl-, m.p. 125°, -p-toluoyl-, m.p. 127°, and -mesitoyl- (II), m.p. 204°, -Δ¹-cyclohexene, 4:5-di-p-chlorobenzoyl-, m.p. 151°, and -p-toluoyl-, m.p. 129°, -1:2 $dimethyl-\Delta^{1}$ -cyclohexene, 4:5-di-p-chlorobenzoyl-, m.p. 139°, -p-toluoyl-, m.p. 106°, and -mesitoyl-, m.p. 117°, -3: 6-endomethylene- Δ^1 -cyclohexene. (A) (Ar = mesityl) does not add to (I). The endomethylene products and (II) do not give furans, but with boiling Ac₂O-syrupy H_3PO_4 the other cyclohexenes give 1:2-di-p-chlorophenyl-, m.p. 215° , 1:2-di-p-tolyl-, m.p. 210° , 1:2-di-p-chlorophenyl-4: 5-dimethyl-, m.p. 236° , and 1:2-di-p-tolyl-4:5-dimethyl-, m.p. 237° , -3:6dihydroisobenzfuran. By Br-CHCl₃ are obtained 1:2dibromo-4:5-di-p-chlorobenzoyl-, m.p. 181°, -p-toluoyl-, m.p. 177°, -mesitoyl-, m.p. 202°, -p-chlorobenzoyl-1: 2-dimethyl-, m.p. 173°, and -p-toluoyl-1: 2-dimethyl-, m.p. 184°, -cyclohexane. The Br₂-compounds and a little H₂SO₄ in boiling AcCl (not Ac₂O-H₃PO₄) or, less well, the dihydroisobenzfurans and Br-CHCl₃ at give 4:5-dibromo-1:2-di-p-chlorophenyl-, m.p. 179°, and -p-tolyl-3:4:5:6-tetrahydroisobenzfuran,

m.p. 166°; the corresponding 1:2-Me₂ compounds are unstable. Addition of Br to the appropriate dihydroisobenzfurans and anhyd. NaOAc in boiling AcOH gives $o ext{-}C_6H_4(COR)_2$ (R = $p ext{-}C_6H_4Cl$ or $p ext{-}tolyl$), 4:5-di-p-chlorobenzoyl-, m.p. $168-169^{\circ}$, and 4:5-dip-toluoyl-, m.p. 164°, -o-xylene, which with boiling NaOH-EtOH, later activated Zn dust in NaOH-EtOH, and finally AcOH-EtOH-Zn dust give 1:2di-p-chlorophenyl-, m.p. 199—200°, -p-tolyl-, m.p. 125°, -p-chlorophenyl-4:5-dimethyl-, m.p. 213°, and -p-tolyl-4:5-dimethyl-, m.p. 186°, -isobenzfuran. With (CH·CO)₂O in C₆H₆ at room temp. (5 min.) these products give 1: 4-epoxy-1: 4-di-p-chlorophenyl-, m.p. 264—266°, -p-tolyl-, m.p. 256—258°, -p-chlorophenyl-6:7-dimethyl-, forms, m.p. 292—293° and 270—272°, and -p-tolyl-6: 7-dimethyl-, forms, m.p. 285—286° and 267-268°, -1:2:3:4-tetrahydronaphthalene-2:3-dicarboxylic anhydride, dehydrated by HCl (gas) in boiling MeOH to 1:4-di-p-chlorophenyl-, m.p. 304-305° (block), -p-tolyl-, m.p. 293—295° (block), -pchlorophenyl-6: 7-dimethyl-, m.p. 321—323° (block), and -p-tolyl-6:7-dimethyl-, m.p. 338-340° (block), -2: 3-naphthalic anhydride. M.p. are corr.

R. S. C.

Condensations of cyclohexanone and its derivatives with aromatic aldehydes. R. Poggi and (Signa.) S. Sacchi (Gazzetta, 1940, 70, 269—273).—cyclohexanone and p-C₆H₄Me·CHO at the b.p. give 2-p-tolylidenecyclohexanone (I), m.p. 61—62° {semicarbazone, m.p. 210° (decomp.); oxime, m.p. 129·5—130° (softens 125°) [Bz, m.p. 105° (softens 102°), and Ac derivative, m.p. 116—117·5° (softens 110°)]}, with 2:6-di-p-tolylidenecyclohexanone, m.p. 169—170° (softens 164°), also obtained from (I), which also yields 6-benzylidene-, m.p. 119° (softens 115°), and 6-anisylidene-2-p-tolylidene-cyclohexanone, m.p. 149° (softens 147°).

E. W. W.

Synthesis of keto-acids. Synthesis of 2-p-

anisylcyclopentanone-3-carboxylic acid. N. N. Chatterjee and G. N. Barpujari (J. Indian Chem. Soc., 1940, 17, 157—160).—p-OMe·C₆H₄·CH(OH)·CN, m.p. 67°, and CN·CHNa·CO₂Et in EtOH give Et αβ-dicyano-β-p-anisylpropionate, m.p. 81°, b.p. 225°/5 mm. (and a small amount of an acid, m.p. 226°), which without isolation condenses with Cl·[CH₂]₂·CO₂Et to give Et₂ αβ-dicyano-α-p-anisyl-n-butane-βδ-dicarboxylate, b.p. 233—236°/4 mm. This is hydrolysed by boiling 20% H₂SO₄ to α-p-anisyl-n-butane-αβδ-tricarboxylic acid, m.p. 183° (rapid heating), the Et₃ ester, b.p. 205—215°/3 mm., of which with "mol." Na in boiling C₆H₆ yields Et₂ 2-p-anisyl-cyclopentanone-3:5-dicarboxylate, b.p. 200—212° (decomp.)/4 mm., converted by boiling 20% H₂SO₄ into 2-p-anisylcyclopentanone-3-carboxylic acid, m.p. 135° [semicarbazone, m.p. 233° (decomp.)]. R. S. C.

Synthesis of keto-acids. Action of sodium ethoxide on diethyl cyclopentanone-2-carboxylate-2-acetate. N. N. Chatterjee, B. K. Das, and G. N. Barpujari (J. Indian Chem. Soc., 1940, 17, 161-166).— Et_2 cyclopentanone-2-carboxylate-5-acetate (I), b.p. $160-165^{\circ}/16$ mm., is obtained from Et₂ cyclopentanone-2-carboxylate-2-acetate [prep. from Et cyclopentanone-2-carboxylate (II) by $CH_2Cl \cdot CO_2Et$ (III) and "mol." Na in C_6H_6], b.p. 142—

144°/4 mm., by boiling NaOEt-EtOH, probably by way of the open-chain acid (cf. Perkin et al., J.C.S., 1909, 95, 2010). With boiling HCl it gives cyclopentanone-2-carboxylic acid, isolated as semicarbazone, m.p. 198°. With "mol." Na and (III) in C_6H_6 it gives Et_3 cyclopentanone-2-carboxylate-2:5diacetate, b.p. 199-200°/8 mm., converted by boiling, conc. HCl into cyclopentanone-2: 5-diacetic acid, m.p. 177° (Et_2 ester, b.p. 168—170°/6 mm.). (I) with Cl·[CH₂]₂·CO₂Et (IV) gives similarly Et₃ cyclopentanone-2-carboxylate-5-acetate-2-β-propionate, b.p. 200°/4 mm., and thence cyclopentanone-2-acetic-5-β-propionic acid (V), m.p. 126° ($\bar{E}t_2$ ester, b.p. $170^{\circ}/4$ mm.). (II) gives similarly Et, cyclopentanone-2-carboxylate-2-β-propionate, b.p. 189°/18 mm., which with boiling NaOEt-EtOH yields Et₂ cyclopentanone-2-carboxylate-5-β-propionate (VI), b.p. 175°/4 mm., converted by Na and (III) in C₆H₆ into Et₃ cyclopentanone-2-carboxylate-2-acetate-5-β-propionate, b.p. 205°/4 mm. [hydrolysed (HCl) to (\overline{V})]. (IV) and (VI) give Et_3 cyclopentanone-2-carboxylate-2: 5-di-β-propionate, b.p. $215^{\circ}/4$ mm., and thence cyclopentanone-2:5-di- β propionic acid, m.p. 122° (Et₂ ester, b.p. 172°/4 mm.).

Azomethine derivatives of 2-nitro- and 2:5-and 2:7-dinitro-fluorene. E. A. CALDERÓN and H. PÉREZ (Anal. Asoc. Quím. Argentina, 1940, 28, 5—33; cf. A., 1928, 180).—There is an increase in colour intensity with increase in mol. wt. for the following azomethines which were prepared from the nitrofluorenes with the appropriate NO-compounds in EtOH-KCN: 2-nitro-, m.p. 214°, 2:5-dinitro-, m.p. 200°, and 2:7-dinitro-fluorenone-p-dimethylaminoanil, m.p. 225°, and the azomethines, m.p. 153°, 280·5°, and 280°, of 4-aminoantipyrine and 2-nitro-, 2:5-dinitro-, and 2:7-dinitro-fluorenone, respectively. Fluorene did not yield an azomethine under similar conditions. F. R. G.

Fused carbon rings. XVIII. Further investigations of model substances of the sexual hormone type. V. C. E. BURNOP and R. P. LINSTEAD (J.C.S., 1940, 720—727; cf. A., 1938, II, 269).— 1-Methyl-2- Δ^{γ} -butenylcyclohexanol and AcOH (excess)-Ac₂O-H₂SO₄ followed by hydrolysis (20%) MeOH-KOH) afford 9-methyldecahydro-β-naphthol (I), epimeric mixture, b.p. 135—138°/19 mm., oxidised by CrO₃-AcOH to cis-2-keto-9-methyldecahydronaphthalene (cf. A., 1937, II, 412). (I) [improved prep. from 2-methyl-1- Δ^{γ} -butenylcyclohexanol; some (II) is formed is dehydrated by KHSO, to cis-9-methyloctahydronaphthalene (II), which is oxidised by aq. K₂CO₃-KMnO₄ to cis-1-methylcyclohexane-1: 2-diacetic acid (III), converted by Ba(OH), at 320° into cis-8-methyl-2-hydrindanone (IV). Thus (II) behaves as the Δ^2 -isomeride (loc. cit.). Ozonolysis of (II) in CHCl₃ at 0° or EtOAc at -73° to -76° indicates the presence of some Δ^1 -isomeride; hydrolysis (H₂O) of the ozonide, followed by hot aq. NaOH- H_2O_2 , affords (III) (40%) and impure (V) (below) (12%) (separable through the Me esters), converted by Ba(OH)₂ at 320° into cis-8-methyl-2- [semicarbazone (formed in cold), m.p. 218-219°] and -1hydrindanone [semicarbazone (in hot), m.p. 223— 224°], respectively. cis-1-Methylcyclohexanc-1-carb-

oxylic-2-β-propionic acid (V) has m.p. 108—109° (cf. A., 1938, II, 269). (II) and Pb(OAc)₄-AcOH at 70° afford an acetate, hydrolysed by KÔH-MeOH to cis-9-methyl- Δ^1 -octahydro-3-naphthol, b.p. 125-130°/12 mm., hydrogenated (PtO₂, EtOH) to the -decahydronaphthol, b.p. 130—132°/12 mm., which is oxidised (CrO₃-AcOH) to cis-3-keto-9-methyldecahydronaphthalene (VI), m.p. 47° (cf. du Feu et al., A., 1937, II, 196). (II) and O, + Fe^{II} phthalocyanine at 70° yield cis-3-keto-9-methyl-Δ¹-octa-hydronaphthalene (VII), b.p. 130°/16 mm. (semi-carbazone, m.p. 202—203°), hydrogenated (Pd-EtOH) to (VI). (II) and SeO_2 -Ac₂O at 60°, then 100° afford a compound, b.p. 110-115°/13 mm., hydrolysed by KOH-EtOH to an alcohol, b.p. 120— $130^{\circ}/16$ mm., which is oxidised (CrO₃) to (VII). The above oxidations of (II) involve attack at C₍₃₎; the Δ^2 -form present does not react. Al $(OPr^{\beta})_3$ -Pr $^{\beta}OH$ and (IV) afford cis-8-methyl-2-hydrindanol, probably an epimeric mixture, b.p. 120-122°/21 mm., dehydrated (KHSO₄) to cis-8-methylhexahydroindene (VIII), b.p. $61-62^{\circ}/19$ mm.; aq. KMnO₄ then gives cis-1-methylcyclohexanc-1-carboxylic-2-acetic (VIII) and H₂O₂-AcOH at room temp., followed by hydrolysis of the diacetate with KOH-MeOH, afford cis-8-methylhydrindane-1:2-diol, b.p. 170—172°/18 mm., dehydrated by KHSO₄ at 200° to the -1hydrindanone. $trans-\Delta^2$ -Octahydronaphthalene and Pb(OAc)₄-AcOH at 70° give (mainly) trans- Δ^2 -octahydro-α-naphthyl acetate, b.p. 131°/12 mm. [hydrolysed] by KOH-EtOH to trans- Δ^2 -octahydro- α -naphthol (IX), b.p. 133—134°/16 mm.], and some diacetate of transdecahydronaphthalene-2:3-diol, m.p. 140°. (IX) and H₂ (PtO₂, EtOH) give the decahydronaphthol, oxidised to not quite pure trans-1-ketodecahydronaphthalene. (IX) and KHSO₄ (or HCl-EtOH) give a hexahydronaphthalene, b.p. 82°/17 mm. (double linkings probably at 2:3 and 1:9) [maleic anhydride adduct, m.p. 275° (decomp.)], reduced (H₂-PtO₂-EtOH) to (mainly) cis-decahydronaphthalene, and converted by Pd-C at 160°, then 100% H_2SO_4 at 100°, into Na tetrahydronaphthalene-2-sulphonate + cis- and trans-decahydronaphthalene.

Direct introduction of the angular methyl group. R. B. WOODWARD (J. Amer. Chem. Soc., 1940, 62, 1208—1211).—5:6:7:8-Tetrahydro-2-naphthol (3·5 g.) and CHCl₃ in 10% aq. NaOH at 75° give 3-aldehydo-5:6:7:8-tetrahydro-2-naphthol (1·8 g.) and 2-keto-10-dichloromethyl-2:5:6:7:8:10-hexahydronaphthalene (0·8 g.), m.p. $167\cdot5$ — $168\cdot5$ ° [absorption max. 235 (log ϵ 4·14) and 329 m μ . (log ϵ 1·38)], hydrogenated (PtO₂) in MeOH to 2-hydroxy-10-dichloromethyldecahydronaphthalene, m.p. $92\cdot5$ —93°, sublimes at 64°/high vac. (α -naphthylurethane, m.p. $152\cdot5$ —153°), which with H₂-Pd-BaSO₄ in 10% KOH-MeOH followed by AcOH-CrO₃ gives 2-keto-10-methyldecahydronaphthalene. R. S. C.

Naphthalene series. I. Synthesis of 5-bromoand -chloro-1-keto-7:8-dimethoxy-1:2:3:4tetrahydronaphthalene. R. H. Siddigui. II. Reactions of the CH₂·CO group. R. H. Siddigui and Salai-ud-din (J. Indian Chem. Soc., 1940, 17, 145—147, 148—151).—I. 3:4:1-(OMe)₂C₆H₃·CO·[CH₂]₂·CO₂H, m.p. 160—161°, is reduced (Clemmensen) to 3:4:1(OMe)₂C₆H₃·[CH₂]₃·CO₂H, m.p. 60—61° (lit. 57—59°), which with Br-air in AcOH gives the 6-Br-derivative (I), m.p. 139—140° (lit. 135—136°), and thence by P₂O₅ in boiling moist C₆H₆ 5-bromo-1-keto-7:8-dimethoxy-1:2:3:4-tetrahydronaphthalene (II) (10—15%), m.p. 91—92° [2:4-dinitrophenylhydrazone, m.p. 220—225° (decomp.); semicarbazone, m.p. 215°, hydrolysed by aq. H₂C₂O₄ to (I) (m.p. 142—143°) or by H₂C₂O₄—COMe₂ to (II)]. γ -6-Chloro-3:4-dimethoxyphenylbutyric acid, m.p. 111—112°, and 5-chloro-1-keto-7:8-dimethoxy-1:2:3:4-tetrahydronaphthalene, m.p. 75° (oxime, m.p. 187°; 2:4-dinitrophenyl-hydrazone, m.p. 239—240°), are similarly prepared.

II. 1-Keto-6:7-dimethoxy-1:2:3:4-tetrahydronaphthalene does not give an oximino-derivative, gives oily CHMe., CH₂., and CH₂:CH·CH. derivatives, 2-CHPh., m.p. 131° (with KMnO₄ gives a little mhemipinic acid), -o-, m.p. 152°, -m-, m.p. 131°, and -p-OMe·C₆H₄·CH., m.p. 159°, -3':4'-(OMe)₂C₆H₃·CH., m.p. 148°, -2'-furfurylidene-, m.p. 151°, -3':4'-CH₂O₂:C₆H₃·CH., m.p. 182°, -CHPh:CH·CH., m.p. 160°, -m-, m.p. 190°, -o-, amorphous, m.p. 152°, and -p-NO₂·C₆H₄·CH., amorphous, m.p. 270°, derivatives.

Fused carbon rings. XIX. Synthesis of tetracyclic compounds of the sexual hormone type. V. C. E. BURNOP, G. H. ELLIOTT, and R. P. LINSTEAD (J.C.S., 1940, 727—735; cf. A., 1938, II, 269; Bachmann et al., A., 1940, II, 225).—Na 1:2:3:4-tetrahydronaphthalene-6-sulphonate and KOH at 200-280° afford 6-hydroxy- and thence NaOH) 6-methoxy-1:2:3:4-tetra- $(\text{Me}_2\text{SO}_4\text{-aq}.$ hydronaphthalene (+ some 2-C₁₀H₇·OMe), oxidised by CrO₃-AcOH at 5—10° to 1-keto-6-methoxy-1:2:3:4-tetrahydronaphthalene (I), m.p. 77.5° . (I) and CH₂Br·CO₂Et-Zn wool-C₆H₆ afford a OHester, dehydrated by P₂O₅-C₆H₆ to Et 6-methoxy-3:4-dihydro-1-naphthylacetate, b.p. 164—168°/1·5 mm., whence (Bouveault-Blanc) β-6-methoxy-1:2:3:4-tetrahydro-1-naphthylethyl alcohol, b.p. $158-162^{\circ}/1$ mm. (some 6-methoxy-1:2:3:4-tetrahydro-I-naphthylacetic acid is formed), and, by $PBr_3-C_6H_6-C_5H_5N$, the bromide, b.p. 150—155°/0.7 mm. The latter and CKMe(CO₂Et)₂ in xylene give an ester, hydrolysed by KOH-MeOH to β-6-methoxy-1:2:3:4-tetrahydro-1-naphthylethylmethylmalonic acid, converted at $165^{\circ}/40$ mm. into γ -6-methoxy-1:2:3:4-tetrahydro-1-naphthyl- α -methyl-n-butyric acid, which is dehydrogenated by Pd-asbestos (or Pt-C) at $270-280^{\circ}/40$ mm. to γ -6-methoxy-1naphthyl- α -methyl-n-butyric acid, m.p. 87°. C₆H₆ (or SnCl₄ on the chloride) then gives 1-keto-7methoxy-2-methyl-I: 2:3:4-tetrahydrophenanthrene (II), m.p. 107°. γ -I-Naphthyl- α -methylbutyric acid and SOCl₂-C₅H₅N give the chloride, converted by SnCl₄-CS₂ at -15°, then at room temp., into 1-keto-2-methyl-1:2:3:4-tetrahydrophenanthrene (III). Mg Δ^{δ} -pentenyl bromide (IV) and (I) afford 6-methoxy-1- Δ^{δ} -pentenyl-1:2:3:4-tetrahydro-1-naphthol, b.p. 168-172°/1.5 mm., which with aq. $KMnO_4$ -Na₂CO₃ gives an acid product, and this when distilled with $H_2C_2O_4$ yields γ -6-methoxy-3: 4-dihydro-1-naphthylbutyric acid, m.p. 133—134° (softens at 127°) (may be partially dehydrogenated) (cf.

Robinson et al., A., 1937, II, 196). (II) and (IV) yield an alcohol, converted by $\rm KMnO_4-COMe_2-Na_2CO_3$ into an unstable acid (formula given), which with $\rm P_2O_5-C_6H_6$ gives the 3-keto-10-methoxy-2a-methyl-hexahydrochrysene (V), m.p. 187° (semicarb-

azone, m.p. 260°), hydrogenated (H_2 -PtO₂-AcOH) by addition at C_6 and C_{6n} to the -octahydrochrysene, m.p. 212— 213° (semicarbazone, m.p. 245°), and thence to the 3-hydroxy-10-methoxy-2a-methyloctahydro-

chrysene $[s-C_6H_3(NO_2)_3 \ compound, + MeOH, m.p.$ 155°]. Mg Δγ-butenyl bromide and (III) afford a product, dehydrated on distillation (dehydration of higher boiling material can be completed by heating with SiO₂ gel at 180°/10 mm.); chromatographic separation gives mainly 2-methyl-1-Δγ-butenyl-3: 4dihydrophenanthrene (VI), b.p. 162°/0.3 mm. [purified through the s-C₆H₃(NO₂)₃ compound, m.p. 65-66° which on exposure to air and light has m.p. 60—62° and then (8 days) 80—85°; picrate, m.p. 72—73° (cf. Cohen et al., A., 1936, 62)], and some of the corresponding tert.-alcohol, $C_{19}H_{22}O$. Pd-C at 260—265° and then 280—285° converts (VI) into 2-methyl-1-n-butylphenanthrene (VII), m.p. 73° [s- $C_6H_3(NO_2)_3$ compound, m.p. 147—148°; picrate, m.p. 128°]. (VI) and Ac₂O-H₂SO₄-AcOH at 0°, then at room temp., afford a product, b.p. ~152°/0·5 mm. 2-Methyl-1-Δγ-butenylcyclohexanol and H₃PO₄ (dehydrated at 235°) in AcOH at room temp., then at 85°, give the acetate, b.p. 125—131°/9 mm., of cis-9-methyldeca-hydro-2-naphthol. (VI) similarly yields 16-methylhexahydrochrysene (VIII) (double linking probably at $C_{(4)}: C_{(5)}$ [s- $C_6H_3(NO_2)_3$ compound, m.p. 123°], best obtained with (VII), from (VI) and \hat{P}_2O_5 at 140°. (VIII) and Se at 310-330° afford chrysene. (VIII) is not oxidised satisfactorily by KMnO₄, Pb(OAc)₄-AcOH, or SeO₂-Ac₂O; ozonisation and oxidation (alkaline H_2O_2) give an acidic compound, m.p. 165-167° (previous softening).

Carbonyl compounds of *cyclo* pentanopoly-hydrophenanthrene series.—See B., 1940, 566.

Reagent for determining œstrone.—See A., 1940, III, 581.

Steroids. II. $6(\alpha)$ -Hydroxyprogesterone. M. EHRENSTEIN and T. O. STEVENS (J. Org. Chem., 1940, 318—328).— $Pregnane-3(\beta): 5: 6(trans)-triol-20$ one 3:6-diacetate, m.p. $215.5-216.5^{\circ}$, $[\alpha]_{\mathbf{p}}^{18}-2.0^{\circ}$ in COMe, obtained from the triol (A., 1939, II, 554) and boiling Ac₂O, is hydrolysed under defined conditions to the 6-monoacetate, m.p. 222—226°, which is oxidised (CrO₃ in 80% AcOH at room temp.) to pregnane-5:6(trans)-diol-3:20-dione 6-acetate, m.p. 215—217.5°. This is transformed by HCl in CHCl₃ at $<4^{\circ}$ into Δ^{4} pregnen- $6(\alpha)$ -ol-3:20-dione acetate $[6(\alpha)$ -hydroxyprogesterone acetate] (I), m.p. 145— 146° , $[\alpha]_{D}^{17.5}$ +89.7° in abs. EtOH, which does not give a yellow colour with $C(NO_2)_4$ in $CHCl_3$; its ultra-violet absorption spectrum has a max. at 232 mu. The corresponding OHcompound appears very unstable and hydrolysis (KOH-MeOH) of (I) seems to yield pregnane-3:6:20trione, m.p. 226.5—230° (impure trioxime, m.p. 165— 170°), which is indifferent towards Ac₂O and C₅H₅N

at 100°. (I) has distinct progestational and possibly slight adrenal cortical activity. Pregnane- $3(\beta):5:6(\text{cis})\text{-}triol\text{-}20\text{-}one 3:6\text{-}diacetate, m.p. }251\cdot5-252°, [\alpha]_{\text{D}}^{17\cdot5}+56\cdot6° \text{ in COMe}_2, \text{ is obtained from boiling Ac}_2\text{O} \text{ and the triol }(loc. cit.).$ H. W.

Reactions of o-benzoquinone.—See B., 1940, 513.

Substituted p-quinones and quinols.—See B., 1940, 515.

Hydrogenation of benzoquinone with palladium and platinum catalysts. E. F. ROSENBLATT (J. Amer. Chem. Soc., 1940, 62, 1092—1094).— $\rm H_2$ –Pt-C reduces $p\text{-O:C}_6\rm H_4$:O in 5% HCl to cyclohexanol, but $\rm H_2$ –Pd-C is similarly ineffective. Hydrogenation occurs only to quinol in neutral solution (EtOH, MeOH) or AcOH, and in MeOH or EtOH Pd-C causes faster reaction than does Pt-C.

R. S. C.

Peroxidase action. II. Oxidation of p-toluidine. B. C. SAUNDERS and P. J. G. MANN (J.C.S., 1940, 769—772; cf. A., 1936, 462).—The peroxidase, derived from horseradish or turnips, readily oxidises $p\text{-}C_6H_4Me\text{-}NH_2$ in presence of dil. $H_2O_2\text{-}AcOH$ at $p_{\rm H}$ 4.5 at room temp. to give 4-amino-, m.p. 236°, and 4-p-toluidino-2:5-toluquinonebis-p-tolylimine, m.p. 183° [H₂SO₄-EtOH at room temp. give (II) (below)], $NH(C_6H_4Me-p)_2$, a little $(p-C_6H_4Me-N)_2$ (I), traces (produced by hydrolysis) of 4-amino- and 4-ptoluidino-2:5-toluquinone-2-p-tolylimine (II), and a substance, m.p. $16\overline{7}^{\circ}$. $p\text{-}C_{6}\overline{H}_{4}\text{Me NO}_{2}$ is not formed. H_2O_2 -FeSO₄-AcOH cause a different reaction; (I) + (II) are among the products formed. Adaptation of Irvine's filter (A., 1915, ii, 832) for continuous elution of a chromatogram is described. A. T. P.

Quinones by the peroxide oxidation of aromatic compounds. R. T. Arnold and R. Larson (J. Org. Chem., 1940, 5, 250—252).—Many aromatic hydrocarbons and their simple derivatives can be oxidised to quinones by 30% H_2O_2 in glacial AcOH, the yields being comparable with those obtained by dichromate oxidation. The greatest val. of the reaction appears to lie in the selective oxidation of alkyl polycyclic derivatives. The following are cited: $1 \cdot C_{10}H_7$ ·CHO to $1:4 \cdot O:C_{10}H_6:O$, also obtained from $C_{10}H_8$ at 80° ; durene to duroquinone at 100° ; o-xylene to o-xyloquinone (trace) at 120° ; $2 \cdot C_{10}H_7$ Me to 2-methyl-1:4-naphthaquinone (yield 30%) at 80° ; $2:3 \cdot C_{10}H_6$ Me₂ to 2:3-dimethyl-1:4-naphthaquinone (yield 78%) under similar conditions; 1:2-benzanthracene in boiling solution to 1:2-benzanthra-9:10-quinone (yield 46%); pyrene in boiling solution to a mixture of pyrenequinones. H. W.

Constitution of vitamin- K_2 . S. B. BINKLEY, R. W. McKee, S. A. Thayer, and E. A. Doisy (J. Biol. Chem., 1940, 133, 721—729).—Previous work (A., 1939, III, 853; 1940, III, 146) and that now described indicate that vitamin- K_2 (I) is probably 2-methyl-3- $\gamma\eta\lambda\alpha\psi$ -hexamethyl- $\Delta^{\beta\xi\kappa\xi\alpha\chi}$ -tetracosahexa-enyl-1:4-naphthaquinone. Decomp. of the ozonides from dihydrovitamin- K_1 and $-K_2$ diacetate (II) with Zn dust in Et₂O-AcOH gives 1:4-diacetoxy-2-methyl-3-naphthylacetaldehyde, m.p. 115—115-5° (semicarb-azone, m.p. 206—206-5°), oxidised (AcOH-CrO₃) to the -3-naphthylacetic acid, m.p. 209—210° (cf. A.,

1939, II, 513). The ozonide from (II) (1 mol.) also affords $COMe_2$ (1 mol.) and lævulaldeliyde (5 mols.; similarly obtained in 75% yield from farnesol). The absence of substituents in the benzenoid ring of (I) is shown by oxidation ($COMe_2$ -KMnO₄) of (II) to $o-C_6H_4(CO_2H)_2$. (I) does not respond to Craven's colour test (A., 1931, 972). H. B.

Carbonyl constituents of eucalyptus oils. III. Constitution of phellandral. d-, l-, and dl- (synthetic) -Phellandric acids. R. G. Cooke, A. K. Macbeth, and T. B. Swanson (J.C.S., 1940, 808-810).—Oxidation of d-phellandral with $AgNO_3$ -NaOH gives d-phellandric acid, m.p. $144-145^{\circ}$, $[\alpha]_{D}^{20}$ $+112.8^{\circ}$ in MeOH (p-chloro-, m.p. 78-78.5°, $[\alpha]_{\rm D}^{20}$ +71° in CHCl₃, and p-bromo-phenacyl esters, m.p. 86°, $[\alpha]_D^{20}$ +68·1° in CHCl₃); the l-acid is similarly obtained (p-chloro-, m.p. 78—78·5°, $[\alpha]_D^{20}$ —57° in CHCl₃, p-bromo-phenacyl, m.p. 86°, $[\alpha]_D^{20}$ —52·2° in CHCl₃, p-bromo-phenacyl, m.p. 86°, $[\alpha]_D^{20}$ —752·2° in CHCl₃, and p-nitrobenzyl esters, m.p. 56—57°). The l-acid in AcOH with PtO₂-H₂ affords cis-hexahydrocuminic acid and in NaOH with Ni-H₂ yields the corresponding trans-acid. Bromination of the chloride of the trans-acid gives α-bromohexahydrocuminic acid, m.p. 91°, the Et ester of which is debrominated and hydrolysed by Na-MeOH to dl-phellandric acid, m.p. 143—144° (p-bromophenacyl ester, m.p. 86— 86.5°). These results afford additional support for the structure of phellandral as 4-isopropyl- Δ^1 -cyclohexene-1-aldehyde (Δ^1 -tetrahydrocuminal)

Chloro- and bromo-derivatives of pinane. Gandini (Gazzetta, 1940, 70, 254—265).—Pinane (I) (prep. from l-pinene and Pt- H_2 at room temp.) reacts more readily than menthane, camphor, or cineole with halogens. In CHCl₃ with Cl₂ (1 mol.) in H₂O (sunlight) (I) gives 2-chloropinane (II), b.p. 82°/30 mm., [a]20 -5.74°, with ??-dichloropinane, b.p. 106-108°/30 mm., less stable chlorination products, and unchanged (I). With Br (1 mol.), (I) similarly gives 2-bromopinane (III), m.p. 70—72°, b.p. 75—85°/5 mm., and other products. With aq. KMnO₄, (II) or (III) gives terebinic acid (IV). With KOPh at 150°, (II) or (III) yields mixed pinenes, b.p. 160-165°, hydrogenated to (I). With AgOAc-AcOH at 100°, (III) [or (II)] gives the acetate, b.p. 40-50°/0·1 mm., of an alcohol, $C_{10}H_{18}O$, b.p. 83°/14 mm., which is oxidised (Beckmann) to a ketone [probably 2-ketopinane (pinocamphone)] (V), b.p. 72-73°/14 mm. (oxime, b.p. 108-112°/3 mm.; semicarbazone, m.p. 222-230°). With H₂O over activated C at 400°, (V) gives thymol and carvacrol. 5% KMnO₄ oxidises (V) to (IV).

Sesquiterpene alcohol, torreyol. I. K. NISHIDA and H. UOTA (J. Soc. Chem. Ind. Japan, 1940, 43, 64—65B).—The oil (1060 g.), $[\alpha]_D$ +38·7°, from the leaves (528 kg.) of Torreya mucifera, S. et Z., contains 0·57% of torreyol, $C_{15}H_{26}O$, m.p. 139—140°, which is probably CH_2 —CHMe—CH- CH_2 - CH_2 -

(hydrogenated to cadinene), and with HCl–Et₂O gives a compound, $C_{15}H_{26}Cl_2$, m.p. 118—119°. Boiling HCO₂H dehydrates (I) to dihydrotorreyene, b.p. 90—91°/1 mm., $[\alpha]_D$ +13·05°. R. S. C.

Constitution of calameon. H. Böhme (Arch. Pharm., 1940, 278, 1—7).—Calameon (I) is a singly unsaturated, ditert., dicyclic sesquiterpene alcohol of the cadalene (II) series. The presence of a double linking in (I) is established by oxidation with o-CO₂H·C₆H₄·CO₃H and of 2 OH by Zerevitinov's method. (I) is hydrogenated (Pd-C-MgO in 96% EtOH) to dihydrocalameon, m.p. 133°, and converted by boiling 50% H₂SO₄ into calamene, b.p. 137—139°/12 mm., α_{17}^{17} -6·60° (l = 0·5), which is dehydrogenated by S at 200—260° to (II).

Triterpene group. VII. Minor triterpenoid constituents of Manila elemi resin. I. M. Morice and J. C. E. Simpson (J.C.S., 1940, 795— 799).—A new and standardised method is described for the prep. of brein (I) from the resin, depending on fractional elution from activated Al₂O₃, followed by formylation. The difformate of (I) has m.p. 220—221° $[\alpha]_{D}^{21}$ +67°, hydrolysed to (I), m.p. 221—222°, $[\alpha]_{D}^{28}$ $+63.5^{\circ}$ (diacetate, m.p. 197—198°, [α]_D¹⁷ +70°; dibenzoate, m.p. $209-210^{\circ}$, $[\alpha]_{b}^{17} + 58^{\circ}$. From the mixed alcohols, there have been isolated maniladiol, $\rm C_{30}H_{50}O_2,\ m.p.\ 220-221^\circ,\ [\alpha]_{D}^{19}\ +68^\circ\ (diformate,\ m.p.\ 186-187^\circ,\ [\alpha]_{D}^{17}\ +84^\circ;\ diacetate,\ m.p.\ 193-194^\circ,$ $[\alpha]_{D}^{20} + 80^{\circ}$; dibenzoate, m.p. 233—234°, $[\alpha]_{D}^{17} + 63.5^{\circ}$), and ψ -taraxasterol (formate, m.p. 219—221°, $[\alpha]_D^{17}$ +51°); it is probable that the latter is produced during the working up of the resin by cyclisation of a during the working up of the tetracyclic isomeride. All $[\alpha]$ are in CHCl₃. F. R. S.

Essential oil of *Evodia littoralis*.—See B., 1940,

Oleo margosa from Melia azadirachta, neem oil. I. Isolation of the constituents of the oil. M. Qudrat-I-Khuda, S. K. Ghosh, and A. Mukherjee (J. Indian Chem. Soc., 1940, 17, 189—194).— Distillation of the commercial oil, d_*^{229} 0-9108, n_*^{229} 1-46185, I val. 69-56, sap. val. 198-8, in steam gives neemola, $C_{15}H_{30}O_3S$, b.p. 156—158°/118 mm. (nauseous odour; decolorises Br; sol. in aq. Na₂CO₃). The non-volatile portion yields to hot H_2O a bitter glucoside, margosin, $C_{28}H_{48}O_{10}$, m.p. 193—195°, and after hydrolysis (KOH-aq. EtOH) neem acid-A, $C_{14}H_{28}O_2$, m.p. 67°, -B, $C_{16}H_{32}O_2$, m.p. 55° (also present in the volatile portion), -C, $C_{15}H_{28}O_2$, m.p. 47—48°, b.p. 189—190°/4 mm. {Me ester, b.p. 177°/3 mm. [dibromide, b.p. 230° (decomp.)/4 mm.]; olefinic}, and -D, $C_{18}H_{32}O_2$, m.p. 31—33°, b.p. 194—195°/4 mm. {Me ester, b.p. 183°/3 mm. [dibromide, b.p. 223° (decomp.)/4 mm.]; cycloparaffinoid}. R. S. C.

Identity of obaculactone, evodin, and dictamnolactone with limonin. M. S. SCHECHTER and H. L. Haller (J. Amer. Chem. Soc., 1940, 62, 1307—1309).—These substances are identical, have m.p. (from $COMe_2$ –EtOH) 299—300° (corr.), (from AcOH) 297—298° (corr.), $[\alpha]_{20}^{20.5}$ —129° in $COMe_2$, +32.6° in N-KOH–EtOH, have the composition, $C_{26}H_{30}O_8$, contain no OAlk, CO, or OH, and are hydrogenated to a mixture. R. S. C.

Alcohol, $C_{30}H_{49}$ ·OH, m.p. 110—112° (decomp.) (dibromide, m.p. 135—140°; acetate, m.p. 165—167°; benzoate, m.p. 205—206°), from cotton plant latex.—See A., 1940, III, 618.

Sterols. XCVIII. Conversion of isosarsa-sapogenin (smilagenin) into tigogenin. R. E. Marker, E. Rohrmann, and E. M. Jones (J. Amer. Chem. Soc., 1940, 62, 1162—1163).—The "iso"-configuration of the side-chain of tigogenin (I) (cf. A., 1940, II, 184) is confirmed. isoSarsasapogenone and Br-HBr-AcOH give the Br_2 -derivative, m.p. 184—188° (decomp.), which in boiling C_5H_5N yields bromo- $\Delta^{4:5}$ -dehydroisosarsapogenone, m.p. 200—205° (decomp.) [? pyridinium salt, m.p. 245—246° (decomp.)]. Na-EtOH then gives (I). Neotigogenin is isomerised to (I) by boiling HCl-EtOH. R. S. C.

Sapogenins. IX. Occurrence and constitution of bassic acid. B. J. Heywood and G. A. R. Kon (J.C.S., 1940, 713—720).—Bassic acid (I) (cf. Heywood et al., A., 1939, II, 436) has been isolated from the seeds of all except two of the Sapotaceæ examined, and appears to be the characteristic sapogenin of the order. Me bassate occurs in two forms, α , m.p. 214—215°, $[\alpha]_p$ +64°, and β , m.p. 220°, $[\alpha]_D + 55.5^{\circ}$, both of which give the same acetonyl derivative (cf. van der Haar, A., 1930, 92). This compound is oxidised (AcOH-H2CrO4) to an acetonyl compound, m.p. 181-183°, hydrolysed to Me dehydrobassate, m.p. 202—203.5° (semicarbazone, m.p. 210—213°), and possessing no reducing properties; the OH having undergone oxidation must be second-The Br-lactone (acetonyl compound, m.p. 205— 206°) with Zn-AcOH gives a hydroxy-lactone, m.p. 236°, and is oxidised (AcOH-H₂CrO₄) to a triketone, $C_{29}H_{39}O_5Br$, m.p. 245° (decomp.) [mono-2:4-dinitro-phenylhydrazone, m.p. 286—288° (decomp.); 2:4dinitrophenylhydrazone of Me ether, m.p. 294-295°

 $\begin{array}{c|c} \text{OH} \cdot \text{CH}_2 \\ \text{OH} & \text{B} \\ \text{HO} & \text{C} & \text{D} \\ \end{array}$

(decomp.)]; the absorption spectra indicate two conjugated double bonds. With Br in AcOH, the triketone affords a dibromo-triketone, C₂₉H₃₆O₅Br₂, m.p. 229° (decomp.). Oxidation of the β-ester with Cu-bronze

yields a diketone, $C_{30}H_{42}O_4$, b.p. $130-140^{\circ}/0.00064$ mm., which is oxidised to a neutral product [2:4-dinitrophenylhydrazone, m.p. $274-276^{\circ}$ (decomp.)] and reduced (PtO₂-H₂) to a H_4 -compound, $C_{30}H_{46}O_4$, m.p. $218-219^{\circ}$. From the evidence it is deduced that the third OH of (I) is placed on $C_{(4)}$ in ring A and one of the double bonds is in ring B between $C_{(6)}$ and $C_{(7)}$. The complete formula for (I) is suggested. F. R. S.

Resin acids. III. Primary resin acids isolated from Russian pine resin. V. N. Krestinski, S. S. Malevskaja, N. F. Komschilov, and E. V. Kazeeva (J. Appl. Chem. Russ., 1939, 12, 1840—1847).—*Pinus sylvestris* resin is a mixture of isomeric acids, $C_{19}H_{29}$ · $CO_{2}H$, three of which have been identified as d- (I) and l-pimaric acid (II) and α -sapinic

acid (III); the presence of β -pimaric acid is uncertain. (I) and (II) are present in the resin of P. maritima and palustris and Picea excelsa. (II) and (III) are converted into abietic acid by heating at $200-210^{\circ}$ (I-1.5 hr.); under these conditions (I) is recovered unchanged. (I) and (II) have very similar absorption spectra. R. T.

Pharmacologically valuable components of Indian hemp. II. "Cannabinum tannicum" and modified determination of tannin. K. W. MERZ and K. G. BERGNER (Arch. Pharm., 1940, 278, 97—109).—"Cannabinum tannicum," formerly used as a hypnotic, is not the tannate of an alkaloid and does not contain appreciable amounts of other substances of pharmacological interest. Two samples consisted escentially of mixtures of K and Mg tannate with lactose. Traces of chlorophyll, choline, and an odoriferous glucoside containing coumarin were also present with hemp resin in pharmacologically significant amount. Attempts to prepare a "cannabinum purum" by decomp. of cannabine tannate with ZnO were unsuccessful.

Vitamin- B_1 . XIX. Derivatives of γ -acetopropyl alcohol. J. R. Stevens and G. A. Stein (J. Amer. Chem. Soc., 1940, **62**, 1045—1048; cf. A., 1939, II, 289).— α -Chloro- α -acetobutyrolactone (I) and HCl (12 c.c. in 410 c.c. of H_2O) at 100° give 3-chloro-2-γ-chloro-δ-keto-n-amyloxy-2-methyltetrahydrofuran (II) (62%), b.p. 111—112°/1 mm. [previously (A., 1936, 1394) reported as (III)], and some γ -chloro- δ keto-n-pentan-α-ol (III), b.p. 20—24°/0.003 mm. tillation at 1 mm. dehydrates (III) to (II). Hydrolysis of (II) to (III) is easy; e.g., it occurs in dil., aq. solution at 60° as shown by crysoscopy and by isolation of (III); with HCS·NH₂,H₂O, (II) gives 4methyl-5-β-hydroxyethylthiazole. $COMe \cdot [CH_2]_3 \cdot OH$ (IV) and Br-H₂O at 24-30° give mainly COMe·CHBr·[CH₂]₂·OH, but after distillation only 3 $bromo - 2 - \gamma - bromo - \delta - keto - n - amyloxy - 2 - methyltetrahydro$ furan, b.p. 40° (bath)/0.008 mm., is obtained. is readily hydrolysed by H₂O but the alcohol formed cannot be isolated. (IV) is more stable; when repeatedly distilled at 10 mm., it gives 2-δ-keto-namyloxy-2-methyltetrahydrofuran (V), b.p. 110—112°/ 12 mm. [gives the semicarbazone of (IV)], the reaction being catalysed by a trace of HCl. The structure of the ethers is proved as follows. With MgMeI, (V) gives (1 mol. consumed; no active H) (IV) and $OH \cdot CMe_2 \cdot [CH_2]_3 \cdot OH$, indicating addition at the CO. With NHPh·NH₂ (excess) in Et₂O, (III) gives NHPh·NH₂,HCl and 3-chloro-2- δ -benzeneazo- Δ^{γ} -pentenyl-2-methyltetrahydrofuran, m.p. $\sim 85^{\circ}$ (decomp.). (III) gives ~ twice as much I after as before hydro-3-Chloro-2-ethoxy-2-methyltetrahydrofuran lysis. (does not react with NHPh·NH₂ or NaOI) is prepared from (I) by $H_2SO_4-80\%$ EtOH at $40-50^{\circ}$ or similarly from (III) and with aq. HCl ($p_{\rm H}$ 3) gives

Velocity of transformation of acetonedioxalic ester into chelidonic ester.—See A., 1940, I, 297.

Chalkones. Reactions of o-hydroxyphenyl 6-methoxy-2: 3-benzostyryl ketone and of some derivatives. B. G. Acharya, R. C. Shah, and T. S.

WHEELER (J.C.S., 1940, 817—819).—2:1-OMe·C₁₀H₆·CHO (I) (modified prep.), o-C₆H₄Ac·OH (II), and aq. NaOH-EtOH at 60° afford o-hydroxyphenyl 6-methoxy-2: 3-benzostyryl ketone (III), m.p. 142° (Ac derivative, m.p. 107°). 2:1-OH·C₁₀H₆·CHO (IV) and o-C₆H₄Ac·OMe (V) similarly yield o-anisyl 6-hydroxy-2:3-benzostyryl ketone, m.p. 153°. (II) and (IV), or (I) and (V), give o-hydroxyphenyl 6-hydroxy-, m.p. 140° [also from (III)-AlCl₃ at 125°], or o-anisyl 6-methoxy-2: 3-benzostyryl ketone, m.p. 103°, respectively. (II), (IV), and HCl-EtOAc for 4 days yield 2'-hydroxy-5: 6-benzoflavylium chloride, m.p. 215— 220° (decomp.). (III) and H_2O_2 in aq. KOH–EtOH afford 2-(2'-methoxy-1'-naphthyl)-3-chromonol (VI), m.p. 239° (Ac derivative, m.p. 173°). (III), CH₂Ac·CO₂Et, and NaOEt-EtOH give Et 5-o-hydroxyphenyl-3-(2' $methoxy-1'-naphthyl)-\Delta^5$ -cyclohexenone-2-carboxylate, m.p. 187° (semicarbazone, m.p. 172°; oxime, m.p. 212°). (III), cyclohexanone, and Na-Et₂O give 2-β-ohydroxybenzoyl-a-2'-methoxy-1'-naphthylethylcyclohex-anone, m.p. 178°. (III) and Br-CHCl₃ yield o-hydroxyphenyl αβ-dibromo-β-2-methoxy-1-naphthylethyl ketone, m.p. 152° (decomp.), converted by EtOH into the α-bromo-β-ethoxy-analogue (VII), m.p. 179°, or by aq. KCN into 2-(2'-methoxy-1'-naphthyl)chromone, m.p. 178° (cf. Nadkarni et al., A., 1938, II, 18). (VII) and aq. NaOH-EtOH at 60° give 1-(2'-methoxy-1'-naphthylidene)coumaran-2-one (VIII), m.p. 178° (2:4dinitrophenylhydrazone, m.p. 238°) (characteristic reactions of keto-ethylenic group not affected by cyclic linking), converted by Br-CHCl₃ into the dibromide, m.p. 158° [aq. KOH-EtOH gives (VI)], and thence by EtOH into 1-bromo-1-(ethoxy-2'-methoxy-1'-naphthylmethyl)coumaran-2-one, m.p. 165°. (VIII), CH, Ac CO, Et, and NaOEt-EtOH afford Et 2-(2'methoxy-1'-naphthyl)-3: 4-1": 2"-coumarano- Δ^4 -cyclohexen-6-one-1-carboxylate, m.p. 174° (oxime, m.p. 188°).

methoxy-1'-naphthyl)-3: 4-1": 2"-coumarano-Δ⁴-cyclohexen-6-one-1-carboxylate, m.p. 174° (oxime, m.p. 188°). (VIII) and cyclohexanone give 1-(2'-keto-1'-cyclohexyl-2"-methoxy-1"-naphthylmethyl)coumaran-2-one, m.p. 184°.

A. T. P.

Pechmann condensation of p-orsellinic acid with ethyl acetoacetate. Synthesis of 7-hydroxy-4:5-dimethylcoumarin. S. M. SETHNA and R. C. Shah (J. Indian Chem. Soc., 1940, 17, 211—214).p-Orsellinic acid with CH₂Ac·CO₂Et and conc. H₂SO₄ yields, at 100°, 5-hydroxy-4:7-dimethylcoumarin, and at 60-70°, an 8-carboxylic acid, m.p. 225° (efferv.), which when heated gives 7-hydroxy-4:5-dimethylcoumarin (I), m.p. 248—250° (Ac, m.p. 119—121°, and Bz derivative, m.p. 130—131°; Me ether, m.p. 117—119°; does not give a CHPh:CH·CO₂H derivative), hydrolysed (aq. NaOH) to orcacetophenone. The Me₂ ether of the latter condenses (Na) with EtOAc giving 2:4-dimethoxy-6-methylbenzoylacetyl-methane, m.p. 74—76° (Cu derivative, m.p. 198— 200°), cyclised (Ac₂O-HBr at room temp.) to the Me ether, m.p. 150-152° (unaffected by boiling with 50% EtOH-KOH), of 7-hydroxy-2:5-dimethylchromone, m.p. 253-255° (Ac derivative, m.p. 195-197°), differing from (I).

Kostanecki-Robinson reaction. I. Acetylation of orcacetophenone and its monomethyl ether. S. M. Sethna and R. C. Shah (J. Indian Chem. Soc., 1940, 17, 239—243).—Orcacetophenone

(I) with NaOAc in Ac₂O yields 7-acetoxy-, m.p. 125—126° (2:4-dinitrophenylhydrazone, m.p. 238—239°), hydrolysed by cold cone. H₂SO₄ to 7-hydroxy-5-methyl-4-acetomethylcoumarin, m.p. 214° {2:4-dinitrophenylhydrazone, m.p. 250—260° (decomp.); Me ether [also prepared from the Me₁ ether of (I), NaOAc, and Ac₂O], m.p. 123—124°}, further hydrolysed by cold dil. NaOH to 7-hydroxy-4:5-dimethylcoumarin [identical with that prepared from p-orsellinic acid (preceding abstract)]. With NaOAc and Ac₂O this gives only the O-Ac derivative. The mechanism of the first reaction is discussed.

A. Li.

Constituents of red sandalwood. I. Constitution of homopterocarpin. E. Späth and J. Schläger (Ber., 1940, 73, [B], 1—12).—Homopterocarpin (I) (cf. Raudnitz et al., A., 1935, 1372) (prep. from red sandalwood improved by removal of colouring matters from Et₂O extract with 1% KOH) is identified as 4:2'-oxido-7:4'-dimethoxyisoflavan. is not recovered after dissolution in conc. H₂SO₄; when distilled with Pd or Se it gives no recognisable products. In AcOH with Pd-H₂ at 50—60° it gives l-dihydrohomopterocarpin (2'-hydroxy-7:4'-dimethoxy-isoflavan) (II), new m.p. 156—157°, with opening of bridge. Alkali fusion of $(\bar{\Pi})$ the ·O· m-C₆H₄(OH)₂. (II) is sol. in dil. alkali, and with Me_2SO_4 it gives 7:2':4'-trimethoxyisoflavan (III), m.p. $61-62^\circ$, b.p. $170-180^\circ$ (bath)/0.01 mm. The conclusion of Leonhardt et al. (A., 1936, 81) that (I) contains a CO group is incorrect; their dinitrophenylhydrazone is obtained from (II) only after long heating and (presumably) oxidation. (II) is resistant to Na-EtOH or Zn-HCl reduction, and with MgMeI gives no carbinol. PCl₅ gives only an amorphous product. With 0.5% hot aq. KOH, followed by KMnO₄ and CH₂N₂, (II) gives the Me₂ ester of 2:5:1-CO₂H·C₆H₃(OMe)·O·CH₂·CO₂H (Perkin *et al.*, J.C.S., 1908, **93**, 504), also obtained from 2:5:1 CO₂Me·C₆H₃(OMe)·ONa and CH₂Cl·CO₂Me at 170° followed by hydrolysis. With hot aq. KMnO₄, (III) gives $2:4:1-(OMe)_2C_6H_3\cdot CO_2H$. Synthetically, $2:4:1-(OMe)_2C_6H_3\cdot CH_2\cdot CN$ with $m-C_6H_4(OH)_2$ and ZnCl, in Et, O, followed by saturation with HCl and boiling, gives 2:4-dihydroxyphenyl 2':4'-dimethoxybenzyl ketone, m.p. 155—156°, b.p. 200—210° (bath)/ 0.02 mm., which with CH₂N₂ gives the corresponding 2-hydroxy-4-methoxyphenyl compound, m.p. 114—115°. This with HCO₂Et and Na at 20°, followed by ice and HCl, gives 7: 2': 4'-trimethoxyisoflavone, m.p. 148—149°, b.p. 190—200° (bath)/0.02 mm., reduced (Pd-C-H₂) to dl-7:2':4'-trimethoxyisoflavan (IV), m.p. 88—89°, b.p. 170—180° (bath)/0.01 mm. The difference in m.p. between (III) and (IV) is ascribed to the optical activity of (III), (IV) being racemic. (III) is not racemised at 240° in vac. (24 hr.), but either (III) or (IV) with AcOH-CrO₃ gives 7:2':4'trimethoxy-2: 3-dihydroisoflavone, m.p. 111—112°, b.p. $180-210^{\circ}/0.02$ mm., converted (H₂-Pd-C) into (IV). Possible alternative formulæ for (I) and (II) are rejected. Presence of an ·O· bridge in (I) shows that (II) cannot be a 4'-OH-compound. The bridge in (I) cannot be in the 2:2'-position, as this would imply acetal properties; a 3:2'-bridge would involve E. W. W. a 4-membered ring.

Flavans. J. B. NIEDERL and A. ZIERING (J. Amer. Chem. Soc., 1940, 62, 1157—1158).—

m-C₆H₄Et·OH (I), cyclohexanone, and HCl (no solvent; cf. A., 1939, II, 416), first at 50° and then at room temp., or 2-cyclohexylidenecyclohexanone, (I), and HCl at room temp. give 2-2'-hydroxy-4'-ethyl-phenyl-7-ethyl-2: 3-tetramethylene-4: 4-pentamethylene-flavan, m.p. 195—196° (Br₂-derivative, m.p. 180—181°; benzoate, m.p. 169—170°; 3:5-dinitrobenzoate, m.p. 176°; acetate, m.p. 118—119°). R. S. C.

New type of natural quinone colouring matter of the phenanthrofuran class. F. von Wessely and S. Wang (Ber., 1940, 73, [B], 19-24).—Tanshinone I (I) (cf. Nakao et al., A., 1935, 754), new m.p. 232—234°, with Ac_2O -NaOAc-Zn gives a reduced and acetylated compound, $C_{22}H_{18}O_5$, m.p. 209° (sinters 207°). With Zn-NaOH under N_2 , followed by Me₂SO₄, (I) in EtOH yields a reduced Me_2 ether, $C_{20}H_{18}O_3$, m.p. 93—94·5°. The quinoxaline from (I) (cf. loc. cit.) has new m.p. 221—222° (from Et₂O), or 196° (from melt) (dimorphous). With AcOH-CrO3 and some $\rm H_2SO_4$, (I) gives the anhydride (II), m.p. 196° (sinters 194°), of $\rm 1:5:6\text{-}C_{10}H_5Me(CO_2H)_2$ (III), m.p. 192° (decomp.) (cf. loc. cit.), which when heated with $NaHCO_3$ is decarboxylated to $1-C_{10}H_7Me$. (III) very easily gives (II), which is synthesised as follows. o-C₆H₄Me·[CH₂]₂·Cl with CHNa(CO₂Et)₂ gives the Et_2 ester, b.p. 185—187°/9 mm., of α -carboxy- γ -otolyl-n-butyric acid, m.p. 139° (sinters 136°), which at 160° yields γ -0-tolyl-n-butyric acid, m.p. 70·5° (sinters 67°), b.p. 140° (bath)/10 mm., of which the Et ester, b.p. 140—150° (bath)/9 mm., with KOEt and $\rm Et_2C_2O_4$ gives Et a-oxalyl-y-o-tolyl-n-butyric acid (decomp. on distillation at reduced pressure). This (crude) with conc. H₂SO₄ gives 1-methyl-7: S-dihydronaphthalene-

$$(A) \qquad \begin{matrix} \text{Me} \\ \text{O} \\ \vdots \\ \text{O} \end{matrix} \qquad (B)$$

5:6-dicarboxylic anhydride, m.p. 161° (sinters 159°), dehydrogenated by S at 150—170° to (II). This (from either source) gives an ethylimide, m.p. 181·5° (sinters 178°). (I) is regarded as the o-quinone of a phenanthrofuran, in which (A) or (B) is linked to the residue O·CH:CMe· or ·O·CMe:CH·. E. W. W.

Synthetic experiments in the benzpyrone series. II. Synthesis and derivatives of flavono-and coumarino-7': 8'-5: 4-furan-3-ones. L. R. Row and T. R. Seshadri (Proc. Indian Acad. Sci., 1940, 11, A, 206—211; cf. A., 1939, II, 278). —7-Chloroacetoxy-4-methylcoumarin (prep. by CH₂Cl·COCl from the 7-OH-compound at 120° or, less well, from 4-methylumbelliferone in C_5H_5N), m.p. 181—182°, and AlCl₃ at 175° give 4-methylcoumarino-7': 8'-5: 4-furan-3-one (30%), m.p. 254—256° (CHPhi, m.p. 194—196°, and Ac derivatives, m.p. 172—173°). 7-Chloroacetoxyumbelliferone (similarly prepared), m.p. 163—164°, and AlCl₃ at 160° give coumarino-7': 8'-5: 4-furan-3-one, m.p. 252—253° (CHPhi, m.p. 284—286°, and Ac derivative, m.p. 152—

153°). Similarly are prepared 7-chloroacetoxy-flavone, m.p. 138—139°, and -3-methoxyflavone, m.p. 169°, flavono-, $+0.5\mathrm{H}_2\mathrm{O}$, m.p. $206-207^\circ$ (CHPh:, $+2\mathrm{H}_2\mathrm{O}$, m.p. $224-225^\circ$, and Ac derivative, m.p. $260-261^\circ$), and 3'-hydroxyflavono-7':8'-5:4-furan-3-one, $+\mathrm{H}_2\mathrm{O}$, m.p. $284-286^\circ$ (CHPh:, m.p. 274° , and Ac derivative, m.p. 192°). R. S. C.

Chemistry of the "insoluble red" woods. I. Pterocarpin and homopterocarpin. A. McGookin, A. Robertson, and W. B. Whalley (J.C.S., 1940, 787—795).—Homopterocarpin (I), m.p. 87°, [\alpha]_{\text{0.645}}^{\text{2.645}}, \text{-236.6°} in CHCl₃, contains two OMe and no OH or CO. It is oxidised (KMnO₄-COMe₂-H₂O) to 5-methoxy-2-carboxyphenoxyacetic acid and 2-hydroxy-4-methoxybenzoic acid. With Pd-C-H₂ or Zn-Hg-HCl, (I) affords l-dihydrohomopterocarpin, oxidised (KMnO₄-COMe₂-H₂O) to 7-methoxychroman-3-carboxylic acid (II), m.p. 149°. O-Methyldihydrohomopterocarpin is oxidised (KMnO₄-COMe₂-H₂O) to a ketone, C₁₅H₉O₂(OMe)₃, probably an isoflavanone, m.p. 127° (2:4-dinitrophenylhydrazone, m.p. 184°; oxime, m.p. 185.5°), which is further oxidised (KMnO₄-

NaOH) to a product, $C_{15}H_9O_3(OMe)_3$, m.p. 178°. The constitution (I) is suggested. Pterocarpin (III), m.p.

164·5°, [α]²⁶⁵₅₁₆₁ -207·5° in CHCl₃, is similarly oxidised to the products obtained from (I), together with a neutral substance, m.p. 272°. Oxidation of dihydropterocarpin gives (II) but with CrO₃ a substance [2:4-dinitrophenylhydrazone, m.p. 202—203° (decomp.)] is obtained. O-Methyldihydropterocarpin is oxidised to a ketone, C₁₆H₁₀O₄(OMe)₂, m.p. 118—119° (2:4-dinitrophenylhydrazone, m.p. 248°).

$$\begin{array}{c|c} \text{MeO} & \text{CH}_2 \\ \text{CH} & \text{O} \\ \text{CH} & \text{O} \end{array}$$

The constitution (III) is suggested. 4-O-Methyl-β-resorcylaldehyde, KOH, and Cl·[CH₂]₂·CO₂H give 5-methoxy-

2-formyl-p-phenoxypropionic acid, m.p. 159° [2:4-dinitrophenylhydrazone, m.p. 241.5°; semicarbazone, m.p. 218° (decomp.)], which is oxidised (KMnO₄) to the -carboxy-acid, m.p. 143°. The formyl-acid is cyclised (NaOAc-Ac₂O) to 7-methoxy-Δ³-chromen-3-carboxylic acid, m.p. 201°, hydrogenated (Pd-C) to (II). Et 2-aldehydo-5-methoxyphenoxyacetate (2:4-dinitrophenylhydrazone, m.p. 176.5°) is cyclised (NaOEt) to Et 6-methoxycoumarone-2-carboxylate, m.p. 87° [acid (IV), m.p. 206°], and 2-aldehydo-5-methoxyphenoxyacetic acid (2:4-dinitrophenylhydrazone, m.p. 273°). The acid chloride from (IV) with HCN gives the nitrile, m.p. 101°, which could not be converted into the corresponding pyruvic acid. The acid chloride with CH₂N₂ affords the diazo-ketone, m.p. 90—91° (slight decomp.), which is converted through the amide, m.p. 148°, into 6-methoxycoumarone-2-acetic acid, m.p. 104°.

5-Chloro-6-methoxy-2:1-naphththioindoxyl.—See B., 1940, 517.

Glutamic acid series. C. R. HARINGTON and R. C. G. Moggridge (J.C.S., 1940, 706—712).—The acid chloride of α-benzyl N-carbobenzyloxyglutamate with CH₂N₂ followed by HCl gives benzyl ε-chloro-αcarbobenzyloxyamido-δ-ketohexoate, m.p. 125°, in which the Cl could not be replaced by H. N-p-Toluenesulphonylglutamic acid, m.p. 131°, $[\alpha]_D + 22^\circ$ in EtOAc, prepared from glutamic acid, p-C₆H₄Me SO₂Cl, and 2n-NaOH, with AcCl or Ac₂O affords the mixed anhydride of AcOH and 5-keto-1-p-toluenesulphonylpyrrolidine-2-carboxylic acid, m.p. 148°, from which the latter acid (I), m.p. 130° , $[\alpha]_D - 28^{\circ}$ in EtOAc, is obtained by heating in 70% aq. dioxan. sulphonation " of 5-ketopyrrolidine-2-carboxylic acid does not give (I) and the structure is proved as follows. The chloride of (I) with CH₂N₂-HCl yields 5-keto-1-ptoluenesulphonyl-2-chloroacetylpyrrolidine, m.p. 141°, $[\alpha]_{5461}$ -18.5° in dioxan, from which the Cl is removed by H₂-Pd-CaCO₃ to form the -2-acetylpyrrolidine, m.p. 135.5° , $[\alpha]_{5461}$ -4.5° in dioxan (Br-derivative, 153.5°). This compound and NaOH afford α-toluenesulphonamido-δ-ketohexoic acid, m.p. 138° [Br-derivative, m.p. 148.5° (decomp.)], which reduces Fehling's solution, is reduced by Zn-Hg-HCl to p-C₆H₄Me·SO₂·NH₂, and is oxidised (NaOBr) to dl-N-p-toluenesulphonylglutamic acid, m.p. 172.5°, also obtained by synthesis from glutamic acid. α'-Chloro-α-p-toluenesulphonamidoacetone, m.p. 142°, from p-toluenesulphonylglycyl chloride and CH₂N₂, and ω-p-toluenesulphonamidoacetophenone, m.p. 116° from the K salt of $p \cdot C_6 \hat{H}_4 \text{Me} \cdot SO_2 \cdot N \hat{H}_2$ COPh·CH₂Br, both reduce Fehling's solution and are reduced to p-C₆H₄Me·SO₂·NH₂. The chloride of (I) and NH3 give 5-keto-1-p-toluenesulphonylpyrrolidine-2carboxylamide (II), m.p. 196°, which with NaOH affords N-p-toluenesulphonylisoglutamine (III), m.p. 158— 170°. Oxidation of (II) occurs with KOH-Br with formation of CHBr₃, (III), and increasing quantities of $p\text{-}C_6H_4\text{Me}\cdot\text{SO}_2$ NH₂ with increased Br. Reduction of (III) with Na in liquid NH3 gives N-carbobenzyloxyisoglutamine. N-p-Toluenesulphonylaspartic anhydride, m.p. 148°, prepared from the corresponding acid and AcCl, with NaOMe in MeOH affords α(?)-Me N-p-toluenesulphonylaspartate, m.p. 96°.

Metal pyridine complex salts. VI. Cobaltous and nickelous dipyridine salts of fatty acids. T. L. Davis and A. V. Logan (J. Amer. Chem. Soc., 1940, 62, 1276—1279; cf. A., 1937, II, 31).—Prep., dissociation pressure from 15° (or more) to 70—88°, and d^{25} (and thence the shrinkage on formation) of Co^{11} and Ni^{11} $(C_5H_5N)_2$ acetate, propionate, butryate, isobutyrate, and valerate are recorded. The Ni compounds are the more stable. Ni compounds have max. stability at $\sim 60^\circ$, but Co compounds are less stable at higher temp. Increase in mol. wt. decreases the stability. C_2 - and C_4 -compounds are more stable than C_3 - or C_5 -compounds. Chain-branching has little effect. R. S. C.

Complex compounds of platinum with complex amines.—See A., 1940, I, 299.

Some β-substituted α-picolines. A. Dornow (Ber., 1940, 73, [B], 78—80).—Et 2-methylnicotinate shaken with 25% aq. NH₃ gives 2-methylnicotinamide

(I), m.p. 158° [picrate, m.p. 180—181° (decomp.)]. With NaOCl in 10% KOH (water-bath), (I) gives 3-amino-2-methylpyridine, m.p. 115—116° [picrate, m.p. 234° (decomp.); Bz derivative, m.p. 114—115°], converted into 3-iodo-, m.p. 36—37° [picrate, m.p. 168° (decomp.)], and 3-hydroxy-2-methylpyridine (II), m.p. 167—168° [picrate, m.p. 204° (decomp.)]. (I) has no antipellagra activity. (II) has not the physiological activity of adermin [lacking the 4:5-(OMe)2 groups of the latter].

M.p. of nicotinic acid. R. Gording and L. A. Flexser (J. Amer. Pharm. Assoc., 1940, 29, 230—231).—Slow heating (>0.5° per min.) gives 235.5—236.6° (corr.). F. O. H.

2-Alkylmercurithiolpyridine-5-carboxylic acids. Preparation and stability of their solutions. L. A. Walter and R. J. Fosbinder (J. Amer. Pharm. Assoc., 1940, 29, 211—213).—The following were prepared by treating the alkylmercuric chloride (Grignard prep.) with an alkali-EtOH solution of 2-thiolpyridine-5-carboxylic acid: 2-ethyl-, m.p. 250° (decomp.), 2-n-propyl-, m.p. 210° (decomp.), and 2-n-butyl-mercurithiolpyridine-5-carboxylic acid, m.p. 190° (decomp.). These acids (as Na salts at $p_{\rm H}$ 8-8 or 11-0) are resistant to oxidation even in presence of catalytic metals (Cu, Mn, Fe).

Reaction between a highly substituted bromopyridine and lithium. C. F. H. Allen and G. F. Frame (J. Amer. Chem. Soc., 1940, 62, 1301).—2-Bromo-3:4:6-triphenylpyridine and Li (not Mg) in Et₂O-N₂ give a compound, unaffected by CO₂, aldehydes, or ketones, but with cold acid giving 20—25% of 2:4:5-triphenylpyridine, m.p. 112°. 4-Bromo-2:3:5-triphenylfuran docs not react with Mg or Li. R. S. C.

Ultra-violet absorption spectra and the formation of indole and indolenine derivatives. Grammaticakis (Compt. rend., 1940, 210, 569— 571; cf. A., 1939, II, 487).—The absorption spectra in EtOH of (type I) indole, N-ethyl- and 2:3-dimethyl-indole (I), 1:2:3:4-tetrahydrocarbazole. N-ethyl- and 1-methyl-1:2:3:4-tetrahydrocarbazole (II) are similar, as are those (type II) of 3:3dimethyl-, its trimeride, and $2:\overline{3}:3$ -trimethylindolenine, and 11(?)-methyl-1:2:3:4-tetrahydrocarbazolenine (III). N:3:3-Trimethyl-2-methyleneindolenine shows marked absorption. The first band of type II is less marked and is nearer the ultra-violet than that of type I. 2-Methylcyclohexanonephenylhydrazone with MgRX or cold 2N-H₂SO₄-EtOH gives (III), b.p. 146°/12 mm., m.p. 68° (picrate, m.p. 170°), and (II), b.p. 185°/12 mm., m.p. 72° (picrate, m.p. 152°). CMePr^β:N·NHPh similarly yields 2:3:3-trimethylindolenine and (I). isoButylidenephenylhydrazine similarly gives 3-methylindole and 3:3-dimethylindolenine, b.p. 95°/12 mm., m.p. 40°.

J. L. D. Reduced *iso*quinolines.—See B., 1940, 495.

Synthetic drugs. I. Partial reduction of some alkyl quaternary salts of pyridine- and quinoline-carboxylamides. T. S. Ma (Dissert., Chicago Univ., 1940, 1—16).—1-Propyl-1: 6-dihydronicotinamide (cf. Karrer et al., A., 1937, II, 260) with

PtO₂-H₂ in EtOH or Et₂O gives only a gummy product; neither substance has oxytocic activity. Cinchoninamide gives an *ethiodide*, m.p. 218—219°. The methiodide is reduced (Na₂S₂O₄) to a gummy product. Quinaldinamide does not react with Pr^aI at 120—140°, but with Me₂SO₄ at 110°, followed by KI, gives its *methiodide* (I), m.p. 209—210°, also obtained by action of aq. NH₃ on Me quinaldinate methiodide (Mills *et al.*, J.C.S., 1922, **121**, 2008). Na₂S₂O₄ reduces (I) to products, m.p. 153—154°, and 225° (darkens 160°, sinters 180°), both regarded as impure 1-methyldihydroquinaldinamide, and both possessing oxytocic activity.

Petroleum bases. I. Reactions of 2:3:8trimethylquinoline. A. Burger and L. R. Mod-LIN, jun. (J. Amer. Chem. Soc., 1940, 62, 1079-1083).—2:3:8-Trimethylquinoline (I) and SeO₂ in boiling EtOH give 82% of 3:8-dimethylquinoline-2-aldehyde (II), m.p. 107—108° [oxime, m.p. 172—174° (many metallic derivatives); semicarbazone, sinters at 185°, m.p. 190—192° (decomp.)], which is hydrogenated (PtO₂; EtOH) to 3:8-dimethyl-2-hydroxy-methylquinoline, m.p. 68—69° [hydrochloride, m.p. 176—185° (decomp.); acetate, m.p. 62—63°], and oxidised by Ag₂O in hot EtOH to the known acid. With CH₂N₂-MeOH, (II) gives in poor yield 3:8dimethyl-2-quinolyl Me ketone, m.p. 90° (oxime, m.p. 153—154°); the corresponding Et ketone, m.p. 80° (oxime, m.p. 146—148°), is similarly but readily prepared. HNO₃ (d 1.49) converts (I) at 100° into the 5-NO2-derivative (III), m.p. 124°, oxidised by SeO₂ to 5-nitro-3: 8-dimethylquinoline-2-aldehyde, m.p. (+EtOH) 165° or (anhyd.) 167° [oxime, m.p. 180— 181° (many metallic derivatives)], which is also obtained from (II) by boiling HNO₃ (d 1:49). SnCl₂-17% HCl at 100° reduces (III) to 5-amino-2:3:8trimethylquinoline (IV), m.p. 110—111°, yellow (Ac derivative, m.p. 234—235°), which yields a red mono-(sublimes) and pale yellow di-hydrochloride (unstable; becomes red). The colour is due to resonance between

 $\begin{bmatrix} ^{+}\mathrm{NH}_{2} \\ \mathrm{C} \\ \mathrm{HC} \\ \mathrm{MeC} \\ \mathrm{MeC} \\ \mathrm{NH} \\ (A.) \end{bmatrix} \mathrm{Cl-}$

the usual $N_{(1)}$ -hydrochloride and (A). By a diazo-reaction (IV) gives 5-hydroxy-2:3:8-trimethylquinoline, m.p. 219—219·5°, sublimes at 125°/0·1 mm. [Me ether, m.p. 80° (picrate, m.p. 198—199°), also obtained from 4:1:2-OMe·C₆H₃Me·NH₂ and tiglalde-

hyde]. Hydrogenation (PtO₂; AcOH) of (I) gives mixed 2:3:8-trimethyldecahydroquinoline, b.p. 89—91°/10 mm. [hydrochloride, m.p. 251—275° (decomp.)].

Phenanthridines.—See B., 1940, 516.

Phenanthrene series. XXIV. Phenolic amino-alcohols and naphthisoquinolines derived from 9:10-dihydrophenanthrene. A. H. Stuart and E. Mosettig (J. Amer. Chem. Soc., 1940, 62, 1110—1116; cf. A., 1939, II, 115, 343).—2-Acetoxy-7-acetyl-9:10-dihydrophenanthrene (I) and Br in Et₂O-EtOH and Hg-light give 7-bromoacetyl-, m.p. 123—124°, converted by NHEt₂-C₆H₆ into 2-acetoxy-7-β-diethylaminoacetyl-9:10-dihydrophenanthrene, m.p. 89—90°, the perchlorate, m.p. 165—166°, of which

with H_2 -PtO₂ in EtOH gives 2-acetoxy-, an oil (hydrochloride, m.p. 154—155°), hydrolysed to 2-hydroxy-7-β-diethylamino-α-hydroxyethyl-9: 10-dihydrophenanthrene, an oil (hydrochloride, m.p. 202—203°). With NHEt₂ and aq. CH₂O in N₂ at 100° or NHEt₂,HCl and paraformaldehyde in boiling iso-C₅H₁₁·OH, (I) gives 2-acetoxy-7-β-diethylaminopropionyl- (hydrochloride, m.p. 132-134°) and thence 2-hydroxy-7-y $diethylamino - \alpha - hydroxypropyl - 9:10 - dihydrophen$ anthrene, m.p. (+2EtOAc) 129—130°, (solvent-free) 185—186° (hydrochloride, m.p. 180—181°; Bz₂ derivative hydrochloride, m.p. ~157—159°). 9:10-Di-hydrophenanthrene-2-carboxylic acid (prep. from the 2-Ac derivative by 1.5% aq. NaOCl) and SOCl₂ give the acid *chloride*, m.p. 50—51°, hydrogenated (Rosenmund) 9:10-dihydrophenanthrene-2-aldehyde (70%) (obtainable with difficulty directly), which with MeNO₂-NaOH-EtOH gives 2-β-nitrovinyl-9:10-dihydrophenanthrene, m.p. 77° (electrolytic reduction gives only 16% of amine). Me β-9:10-dihydro-2phenanthrylpropionate, an oil, gives the hydrazide, m.p. 134—135°, and thence (Curtius) 2-β-aminoethyl-9:10-dihydrophenanthrene (II), an oil (hydrochloride, m.p. 229—230°; HCO derivative, m.p. 91°). oxy-9: 10-dihydrophenanthrene-7-carboxylic gives similarly the acid chloride, m.p. 87-88°, and 2-methoxy-9:10-dihydrophenanthrene-7-aldehyde, m.p. 100°, and thence [piperidine-CH₂(CO₂H)₂-C₅H₅N] β -2-methoxy-9: 10-dihydro-7-phenanthryl-acrylic, m.p. 192—193°, and (H₂-PtO₂-EtOH) -propionic acid, m.p. 177° (Me ester, m.p. 61—62°; hydrazide, m.p. 155— 156°), and 2-methoxy-7-β-aminoethyl-9: 10-dihydrophenanthrene (III) (hydrochloride, sinters from 240°, m.p. indefinite). Most attempts at ring-closure of (II) and (III) failed. The Ac derivative, m.p. 112° of (II) with POCl₃ in boiling PhMe gives 11-methyl-

 $\begin{array}{c} \text{CMe} & \frac{1}{1} \\ \text{Nio} & 11 \\ \text{H}_2 \\ \text{C9} & 8 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CIV.)} \end{array}$

5:6:8:9-tetrahydronaphth-[2:1-g]isoquinoline (IV), the hydrochloride, m.p. 230—232°, of which is hydrogenated (PtO₂; EtOH) to the 5:6:8:9:10:11-H₆-derivative (V) (hydrochloride, m.p. 239—241°). With MeI-KOH-COMe₂, (V) gives

R. S. C.

10:10:11-trimethyl-5:6:8:9:10:11-hexahydronaphth[2:1-g] is oquinolinium iodide(VI),231°, decomposed at 200° to 10:11-dimethyl-5:6:8:9:10:11-hexahydronaphth [2:1-q] isoquinoline, an oil [hydrochloride, m.p. 234—236°; methiodide = (VI); also obtained by hydrogenating (PtO₂; EtOH) the methiodide, m.p. 267—268°, of (IV)]. The Ac derivative, m.p. 125—126°, of (III) gives similarly 3-methoxy-11-methyl-5:6:8:9-tetra-(28%)(hydrochloride, m.p. 249—250°; methiodide, m.p. 287—288°), 3-methoxy-11-methyl-5: 6:8:9:10:11-hexa-(hydrochloride, m.p. 261—263°; methiodic 256—258°), and 3-methoxy-10:11-dimethylmethiodide, m.p. 5:6:8:9:10:11-hexa-hydronaphth [2:1-g] is oquinoline, m.p. 97-98° (hydriodide, m.p. 236-238°; hydrochloride, m.p. 200—202°). Alternative structures are

Phenanthrene series. XXV. Dibenzo-[f, h]-quinoline and 7-methoxydibenzo-[f, h]quinoline.

possible for the tetracyclic bases.

J. Krueger and E. Mosettie (J. Org. Chem., 1940, 5, 313—317; cf. A., 1939, II, 86).—9-Acetylphen-anthrene is treated with NH₂OH,HCl in C_5H_5N -EtOH followed by HCl in boiling Ac_2O -AcOH; the product is hydrolysed and then converted by NH₃ into 9-aminophenanthrene, m.p. 128—130°, which is transformed by PhNO₂, glycerol, and H₂SO₄ at 145° into

dibenzo-[f, h]quinoline (I), m.p. 167—
169° (hydrochloride). This is hydrogenated (PtO₂ in glacial AcOH) to 1:2:3:4tetrahydrodibenzo-[f, h]quinoline (II),
m.p. 117—118° (corr.) (hydrochloride,
m.p. 245—247° after softening at 230°).
MeI and KOH in aq. COMe₂ convert (II)
into 1-methyl-1:2:3:4-tetrahydrodibenzo[f, h]quinoline, m.p. 81—83° (corr.)

drochloride decomp (indef) 230—275° (corr.)

[f, h]quinoline, m.p. 81—83° (corr.) [hydrochloride, decomp. (indef.), 230—275° (corr.) after incipient melting at ~200°]. 9-Amino-3-hydroxyphenanthrene is converted by PhNO₂, FeSO₄, glycerol, and H₂SO₄ at 145° into 7-hydroxydibenzo-[f, h]quinoline, m.p. 270—273° (vac.) (hydrochloride, m.p. indef.). This is reduced (H₂ at 150°/140 atm.; chromite catalyst in abs. EtOH) to 7-hydroxy-1:2:3:4-tetrahydrodibenzo-[f, h]quinoline, m.p. 230—232° (corr.) (hydrochloride, m.p. 279—281°), which with MeI and KOH in aq. COMe₂ at 100° gives 7-methoxy-1-methyl-1:2:3:4-tetrahydrodibenzo-[f, h]quinoline, m.p. 131·5—133° (corr.) [hydrochloride, m.p. 204—206° (corr.; decomp.); methiodide, m.p. (indef.) 200° after softening at 145° and evolving gas at 175°].

Benz-acridones and -thioxanthones.—See B., 1940, 433.

5:5-Disubstituted hydantoins. D. MARSH and C. L. LAZZELL (J. Amer. Chem. Soc., 1940, 62, 1306).—Bucherer's method gives 3—48% of 5-eyclohexyl-5-methyl-, m.p. 204—205°, 5-styryl-5-methyl-, m.p. 217° (decomp.), 5-methyl-5-β-methylpropenyl-, m.p. 209—210°, 5-p-aminophenyl-5-methyl-, m.p. 100—101°, 5-methyl-5-β-hydroxyisobutyl-, m.p. 180—181°, and 5:5-di-p-dimethylaminophenyl-, m.p. 136—137°, hydantoin. R. S. C.

[Condensation products of 2-thiohydantoin.]—See A., 1940, I, 300.

1-Phenyl-3-methyl-5-pyrazolone-4-aldehyde. G. Losco (Gazzetta, 1940, 70, 284—286; cf. A., 1940, II, 55).—1-Phenyl-3-methyl-5-pyrazolone (II) and its -4-aldehyde (II) in boiling EtOH give methenylbis-4-(1-phenyl-3-methyl-5-pyrazolone) (III), which with boiling 5% NaOH regenerates (I) and (II). With KOH-EtOH-CHCl₃, (I) gives (II) and (III). E. W. W.

Synthesis of monoketopiperazines. S. R. ASPINALL (J. Amer. Chem. Soc., 1940, 62, 1202—1204).—Gradual addition of CH₂Cl·CO₂Et, CHEtBr·CO₂Et, or CMe₂Br·CO₂Et to an excess of (CH₂·NH₂)₂ in EtOH gives 2-keto-, m.p. 136° (PhSO₂, m.p. 188°, phenylcarbamido-; m.p. 171°, and phenylthiocarbamido-derivative, m.p. 199°; picrate, m.p. 180°; hydrochloride, m.p. 208°), 2-keto-3-ethyl-, m.p. 60° (PhSO₂ derivative, m.p. 148°), and 2-keto-3: 3-dimethyl-, m.p. 134° (PhSO₂ derivative, m.p. 206°), -piperazine, respectively. M.p. are corr. R. S. C.

Substituted vinylbarbituric acids. IV. Derivatives containing a primary Δ^1 -alkenyl group. A. C. COPE, W. H. HARTUNG, (MISS) E. M. HANCOCK, and F. S. Crossley (J. Amer. Chem. Soc., 1940, 62, 1199—1201; cf. A., 1939, II, 284).-CHR:CH·CR'(CO₂Et)₂ and CO(NH₂)₂ with NaOEt-EtOH give 12—70% of 5-ethyl-5-isobutenyl-, m.p. 161·5—162°, -n-pentenyl-, m.p. 96·5—98°, and -isopentenyl-barbituric acid, m.p. 126·5—127°, 5-n-propyl-5- Δ^a -n-propenyl-, m.p. 150·5—151°, and -isopentenyl-barbituric acid, m.p. 101—102°, 5-isopropyl-5- Δ^a -npropenyl-, m.p. 140—141°, -n-pentenyl-, m.p. 94—95°, and -isopentenyl-barbituric acid, m.p. 121.5—122°, 5-n-butyl-5-Δ^a-propenyl-, m.p. 127·5—128·5°, 2-thio-5-ethyl-5- Δ^a - α -methyl-n-butenyl-, m.p. 150—152°, and 1-methyl-5-n-propyl-5- Δ^a - α -methyl-n-butenyl-barbituric acid, m.p. 50.5-52.5°, 5-ethyl- (I), m.p. 109-110°, 5-n-, m.p. 83—84°, and 5-iso-propyl- (II), m.p. 107— 108°, 5-n-butyl-, m.p. 111—112°, 1-methyl-5-isopropyl-, an oil, and 2-thio-5-iso propyl-, m.p. $109-110^{\circ}$, $-5-\overline{\Delta}^{\alpha}$ -nbutenylbarbituric acid. Much alcoholysis also occurs. Structures are proved by hydrogenation of (I) and (II) and by ozonisation. β -iso $Propyl-\Delta^{\beta}$ -hexenoamide, m.p. 123-124°, is also obtained. The acids produce powerful but very fleeting narcosis.

Thiobarbiturates. III. N-Substituted derivatives. F. S. Crossley, E. Miller, W. H. Har-TUNG, and M. L. MOORE (J. Org. Chem., 1940, 5, 238-243; cf. A., 1936, 1125).—CEt₂(CO₂Et)₂, allylthiocarbamide, and NaOEt (mol. ratio, 1:1.6:3) condense smoothly to 5:5-diethyl-1-allyl-2-thiobarbituric acid, m.p. 97·5—98°; 5-ethyl-1-allyl-5-isoamyl-2-thiobarbituric acid, b.p. 175—180°/1 mm., is obtained similarly. With methyl-, ethyl-, or phenyl-thiocarbamide under these conditions the main products appear to be dialkyl-N-methylthiocarbamylmalonamic acids of which the $Me\ Pr^a$, m.p. $109-109\cdot 5^\circ$ (decomp.), Et_2 , m.p. $132\cdot 5-133^\circ$, $Et\ Pr^a$, m.p. $120\cdot 5-121^\circ$ (decomp.), phenylethyl, m.p. $131-132^\circ$ (decomp.), and $Pr^a\ allyl$, m.p. 97—98° (decomp.), derivatives are described. If the mol. reactant ratio is altered to 1.1:1:1.1 the following -2-thiobarbituric acids are obtained: 1:5dimethyl-5-isopropyl-, m.p. $107-107.5^{\circ}$; methyl-5- α -methylbutyl-, b.p. 148—150°/1 mm.; 1:5 $dimethyl-5-\Delta^{1}$ -cyclohexenyl-, m.p. $140-141^{\circ}$; methyl-5: 5-diethyl-, m.p. 123—124°; 1-methyl-5-ethyl-5-n-propyl-, m.p. $79-80^{\circ}$; 1-methyl-5-ethyl-5-iso-propyl-, m.p. $104-104\cdot 5^{\circ}$; 1-methyl-5-ethyl-5-isopropenyl-, m.p. 94·5—95°; 1-methyl-5-ethyl-5-isoamyl-, $\hat{\mathbf{m}}.\hat{\mathbf{p}}.84.5 - 8\hat{\mathbf{5}}^{\circ}$; 5-phenyl-1-methyl-5-ethyl-, $\hat{\mathbf{m}}.\hat{\mathbf{p}}.120$ 12ΰ; 5-benzyl-1-methyl-5-ethyl-, m.p. 119—119-5°; 5-benzyl-1:5-diethyl-, b.p. 170—175°/1 mm. Phenylethylacetylmethylthiocarbamide has m.p. 107-107.5°

Synthetic drugs. II. Attempted synthesis of 4-methyI-5:5-dialkyluracils. T. S. Ma (Dissert., Chicago Univ., 1940, 17—31).—CEt₂Ac·CO₂Et (I) does not condense with $CO(NH_2)_2$ or its analogues at 150—180°. With $CS(NH_2)_2$ and NaOEt at 120°, (I) gives a product, m.p. 210—211°. $CMe_2Ac·CO_2Et$, which does not react with $CO(NH_2)_2$, with $NH_2·C(NH)·OEt$ at room temp. gives a product, m.p. 295° (decomp.), or at 50° or 63—65°, products, m.p. 300°. These products have high N content and

are not uracils. With large excess of SOCl₂, (I) gives a partly chlorinated product. NH:CMe·CHEt·CN with Na followed by EtI gives β-imino-αα-diethyl-butyronitrile (impure?), b.p. 118—120°/1 mm., which with PhNCO gives at room temp. (60 days) a very small yield of β-phenylcarbimido-αα-diethyl- (impure), m.p. 233—234°, with -α-ethyl-butyronitrile, m.p. 144—145°.

E. W. W.

Synthesis of pyrimidines and uric acids from cystamine. E. J. MILLS, jun. and M. T. BOGERT (J. Amer. Chem. Soc., 1940, 62, 1173—1180).—(CH₂)₂NH (which is caustic) and H₂S in much EtOH give SH·[CH₂]₂·NH₂ (I), m.p. 97—98·5° (hydrochloride, m.p. $70.2 - 70.7^{\circ}$, obtained also from 2-thiolthiazoline), but in conc. solution give (NH₂·[CH₂]₂)₂S, an oil, converted by NH₂·CO·NH·NO₂ (I) in H₂O at 100° into di- β -carbamidoethyl sulphide, m.p. 221—222°. O₂ converts (I) in H₂O or 95% EtOH into cystamine (dihydrochloride, sinters at \sim 206°, m.p. 212—212·5°), which with (II) gives di-β-carbamidoethyl disulphide (III), m.p. $166-167^{\circ}$. With $CH_2(CO_2H)_2$ in AcOH- Ac_2O at $65-70^\circ$, rising to $80-90^\circ$, (III) gives $\beta\beta'$ -di(carboxyacetylcarbamidoethyl) disulphide, $(\cdot S \cdot [CH_2]_2 \cdot NH \cdot CO \cdot NH \cdot CO \cdot CH_2 \cdot CO_2H)_2$ (IV) 30%), m.p. 141—142° (gas), and a little di-β-1barbiturylethyl disulphide (V), m.p. 216·8—218·8°. At the m.p. (IV) gives CO₂ and β-acetylcarbamidoethyl \(\beta'\)-carboxyacetylcarbamidoethyl disulphide, m.p. 197.5—199° (corr.), which in boiling H_2O gives di- β acetylcarbamidoethyl disulphide, sinters at 206°, m.p. 209—210° [obtained also from (IV) by Ac₂O and a little H_2SO_4 at 100°]. With $CH_2(CO_2H)_2$ in Ac_2O (slight excess) at 70° , (III) gives the $3-Ac_2$ derivative, sinters at $214-217^\circ$, m.p. $219-223^\circ$, of (V), hydrolysed to (V) by boiling conc. HCl. (V) is also obtained from (IV) by Ac₂O-AcOH at 80°. With NaNO₂, first With NaNO₂, first in boiling H₂O and then in dil. H₂SO₄ or, better, iso-C₅H₁₁·O·NO-HCl-EtOH, (V) gives di- β -1-violuryl-ethyl disulphide, m.p. $218\cdot5$ — $219\cdot5$ ° (decomp. from ~ 200 °), reduced by $SnCl_2$ -HCl at 100° to di- β -1uramilylethyl disulphide, m.p. indefinite (decomp.) which with (II) in faintly alkaline solution at 100° gives Et₂ disulphide ββ'-di-1-(or 3-)-uric acid, $(S \cdot [CH_2]_2 \cdot C_5 H_3 O_3 N_2)_2$, m.p. $> 350^\circ$. M.p. are corr. R. S. C.

Bisisoindolenylidenes.—See B., 1940, 434.

Fluorene. I. Condensation of 2:7-diamino-fluorene with phthalic anhydride. B. A. Porat-Koschitz and A. M. Efros (Bull. Acad. Sci. U.R.S.S., 1938, Cl. Sci. Tech., No. 3, 43—60).—2:7-Diamino-fluorene (I) and o-C₆H₄(CO)₂O (II) in H₂O (8 hr. at the b.p.) yield a *substance* said to be (III), m.p. 280°

(decomp.), together with 2:7-diphthalimidofluorene (IV), m.p. 292°. (III) is converted into the substance

(V), m.p. 340° , by heating in Ac_2O or C_5H_5N (at the b.p.), or by heating alone at 120° ; (V) is also prepared from (I) and (II) in NPhMe₂, at the b.p. 2-Amino-fluorene and (II) in NPhMe₂ (2.5 hr. at the b.p.) yield 2-phthalimidofluorene, m.p. 276° , the $7-NO_2$ -derivative, m.p. 308° , of which is reduced (Zn in EtOH–CaCl₂) to 7-amino-2-phthalimidofluorene (VI), m.p. 262° , from which (V) is obtained by boiling for 5 hr. with NPhMe₂. (VI) and PhCHO (25 min. at the b.p.) yield 2-benzyl-ideneamino-7-phthalimidofluorene, m.p. 246° , regenerating (VI) and PhCHO when hydrolysed (10% HCl).

(VI) and (II) in NPhMe₂ (5 hr. at the b.p.) afford (IV), whilst in EtOH (2 hr. at the b.p.) the product is 2-phthalimido - 7 - fluor - enylphthalamic acid. (V) and PhCHO (35 min. at the b.p.) give the substance (VII),

m.p. 367°. 2-Aminofluorene and PhCHO (30 min. at the b.p.) yield 2-benzylideneaminofluorene, m.p. 152°, readily hydrolysed by acids. R. T.

1-(4'-Amino-2'-methyl-5'-pyrimidylmethyl)-2methyl-3-β-hydroxyethylpyridinium bromide, heterovitamin-B₁. P. BAUMGARTEN and A. Dornow (Ber., 1940, 73, [B], 44—46).—2-Methylpyridine-3-carboxylic acid hydrochloride with SOCl₂ gives the -3-carboxyl chloride hydrochloride, which with CH₂N₂ gives 3-diazoacetyl-2-methylpyridine, m.p. 58—59° (picrate, m.p. 147°), and this when heated in AcOH and treated with Zn in boiling conc. HCl yields 2methyl-3-β-hydroxyethylpyridine (cf. Schmelkes et al., A., 1939, II, 522) [methiodide, m.p. 135°; benzoate picrate, m.p. 199—200° (decomp.)], which with 4amino-2-methyl-5-bromomethylpyrimidine dihydrobromide in MeNO₂ at 40° gives 1-(4'-amino-2'-methyl-5'-pyrimidylmethyl)-2-methyl-3-β-hydroxyethylpyridinium bromide hydrobromide (cf. Schmelkes). This, which may be identical with Funk's S-free product (A., 1937, III, 493), has an activity 1/26 of that of vitamin- B_1 . E. W. W.

Constitution of yeast ribonucleic acid. IV. Syntheses of uridylic and guanylic acids, uridine 5-phosphate, and guanosine 5-phosphate. J. M. GULLAND and G. I. HOBDAY (J.C.S., 1940, 746—752). -Phosphorylation of uridine by POCl₃ in C₅H₅N gives uridine 5-phosphate, identified as the brucine salt, and with POCl₃ and Ba(OH)₂ yields a mixture of 3and 5-phosphate, fractionated as the brucine salts; the constitutions assigned have been confirmed by comparison of the rates of liberation of free phosphate from them and from uridylic acid in hot 0.1n-H₂SO₄. Phosphorylation of guanosine in C₅H₅N with POCl or PhPOCl₂ affords guanosine 5-phosphate in small The 3-phosphate is obtained with Ba(OH)₂ and POCl₃ or PhPOCl₂; its identity with guanylic acid from yeast ribonucleic acid is proved by comparison of [α] and of rates of dephosphorylation in acid solution, and by a method of mixed m.p. of the brucine salts. PhPOCl₂ has been investigated as a phosphorylating agent; Ba α-glycerophosphate has been prepared.

Fluorene series. II. Preparation of vat diminazole dyes of the fluorene series. B. A. Porai-Koschitz and O. K. Nikiforova (J. Appl. Chem. Russ., 1940, 13, 215—221; cf. B., 1938, 40).—2:3-Diaminofluorene condenses with 1:4:5:8-C₁₀H₄(CO₂H)₄ (12 hr. at 170—180°) giving a mixture of isomerides of (I), oxidised (Na₂Cr₂O₇ in AcOH; 3 hr. at the b.p.) to a mixture [(I) with CO for CH₂)]

$$\begin{array}{c|c} CH_2 & N & CH_2 \\ \hline N & CO & N & CH_2 \\ \hline \end{array}$$

of a violet and a yellow dye, or a brown dye for cotton. The H sulphate of its leuco-derivative dyes wool a bright yellow colour. R. T.

Transformation of isooxazole-3-carboxylic acids into pyrazole derivatives. IV—VI. S. Cusmano (Gazzetta, 1940, 70, 227—235, 235—240, 240—246).—IV. 5-Phenyl- (I) and 5-methyl-isooxazole-3-carboxylic acid (II) with NHPh·NH $_2$ (III) and Cu in EtOH (or C_6H_6 etc.) give respectively 1:5-diphenyl- and 1-phenyl-5-methyl-pyrazole-3-carboxylic acid, which above their m.p. give the corresponding pyrazoles. If NH $_2$ Ph is substituted for (III) there is no reaction.

V. With N₂H₄,H₂O (IV) and Cu in EtOH, (I) and (II) give respectively 5-phenyl- and 5-methyl-pyrazole-3-carboxylic acid, which yield 5-phenyl- and 5-methyl-

pyrazole.

VI. 5-p-Nitrophenylisooxazole-3-carboxylic acid with (III) and (IV) gives respectively 1-phenyl-5-p-nitrophenyl- (V), m.p. 255° (Et ester, m.p. 168°), and 5-p-nitrophenyl-pyrazole-3-carboxylic acid (VI), m.p. 275° (Et ester, m.p. 215°). Above the m.p., (V) gives 1-phenyl-5-p-nitrophenyl-, m.p. 93°, reduced (Zn-AcOH) to -5-p-aminophenyl-, m.p. 130° (Ac derivative, m.p. 167°), oxidised by KMnO₄-H₂SO₄ to 1-phenyl-pyrazole-5-carboxylic acid; (VI) gives 5-p-nitrophenylpyrazole, m.p. 195°. E. W. W.

Morpholines.—See B., 1940, 431.

Sulphathiazole. J. Laudon and B. Sjögren (Svensk Kem. Tidskr., 1940, 52, 64—67).—2-Sulphanilamidothiazole (I), m.p. 200° (corr.), solubility in H₂O 0·5 g. per l. at 20° (cf. B.P. 517,272; B., 1940, 326; also Fosbinder and Walter, A., 1939, II, 525), is pharmacologically similar to the C₅H₅N analogue, but is the more active against pneumococcus type V and less so against type III. M. H. M. A.

Synthesis of derivatives of 4:5'-dithiazolyl and 4:5'-glyoxalinylthiazole. E. Ochiai, Y. Tamamushi, and F. Nagasawa (Ber., 1940, 73, [B], 28—32).—CAc₂:N·OH with Pd-C-H₂ in N-HCl, followed by heating with conc. aq. KCNS, gives the 2-SH derivative (I), decomp. 308°, of 5-acetyl-4-methylglyoxaline (II), m.p. 151° (semicarbazone, m.p. 151°), into the nitrate, m.p. 200°, of which (I) is converted by boiling 10% HNO₃. With Br-AcOH, (II) gives the hydrobromide, decomp. 223°, of 5-bromoacetyl-4-methylglyoxaline. This with NH₂·CHS,H₂O, CS(NH₂)₂, and CSMe·NH₂ in MeOH or EtOH gives respectively

F. R. S.

4-(4'-methyl-5'-glyoxalinyl)thiazole (picrate, m.p. 178°), and its 2-NH₂-, decomp. 210° (hydrochloride, decomp. 253°; acetate, decomp. 315°), and 2-Me derivative, m.p. 183° (hydrochloride, m.p. 225°; picrate, m.p. 205°). 2-Hydroxy-5-acetyl- with Br-CHCl₃ gives 2-hydroxy-5-bromoacetyl-4-methylthiazole, m.p. 167°, which with the above reagents yields respectively 2'-hydroxy-4'-methyl-, m.p. 184·5°, 2-amino-2'-hydroxy-4'-methyl-, decomp. 225° (hydrochloride, m.p. 280—282°; acetate, decomp. above 335°), and 2'-hydroxy-2:4'-dimethyl-4:5'-dithiazolyl, m.p. 178°.

E. W. W. Bases of which methincyanines are the quaternary salts. (MISS) F. M. HAMER (J.C.S., 1940, 799—808).—2-Methylbenzselenazole and p-C₈H₄Me·SO₃Ét fused together give a substance which with 2-methylthiobenzthiazole followed by KI affords methin-[2-benzthiazole][3-(2-ethyldihydrobenzselenazole)] hydriodide, m.p. 243° (decomp.), converted into the base, m.p. 134-135°. Diethylthiacarbocyanine iodide and NPhEt2 yield trimethin-[2-benzthiazole][2-(3-ethyldihydrobenzthiazole)], m.p. 136—137°. Methin-[2-quinoline][2-(3-methyldihydrobenzthiazole)] forms a hydrochloride. Methylthioquinoline and p-C₆H₄Me·SO₃Me give methin - [2 - (1-methyldihydroquinoline)][2 - benzthiazole], m.p. 140° [hydriodide, m.p. 185° (decomp.)]. Methin - [2 - quinoline] [2 - (3 - ethyldihydrobenzthiazole], m.p. 151° [hydriodide, m.p. 264° (decomp.)], is obtained from 2-methylthioquinoline and 2-methylbenzthiazole etho-p-toluenesulphonate. 2-Ethylthioquinoline etho-p-toluenesulphonate and 2-methylbenzthiazole afford methin-[2-(1-ethyldihydroquinoline)][2-benzthiazole], m.p. 160° [hydriodide, m.p. 223° (decomp.)]. 3:1'-Dimethyl-4:5-benzthia-2'-cyanine iodide and NPhEt₂ afford methin-[2-(1-methyldihydroquinoline)]-[2-(4:5-benzbenzthiazole)], m.p. 172°; the corresponding 1-Et compound, m.p. 133°, is similarly obtained. 3:1'-Diethyl-6:7-benzthia-2'-cyanine iodide and NPhEt, give methin-[2-quinoline][2-(3-ethyldihydro-6:7-benzbenzthiazole)], m.p. 204°. Methin-[2-(1ethyldihydroquinoline)][2-(6:7-benzbenzthiazole)], m.p. 228°, is obtained from 2-ethylthioquinoline etho-p-toluenesulphonate and 2-methyl-6:7-benzbenzthiazole. 2-Ethylthiobenzthiazole and p-C₆H₄Me·SO₃Et followed by KI yield methin-[4-quinoline][2-(3-ethyldihydrobenzthiazole)] hydriodide, m.p. 288° (decomp.), from which the base, m.p. 131°, can be obtained. 2-Ethylthioquinoline etho-p-toluenesulphonate and afford methin-[2-quinoline][2-(1-ethyldihydroquinoline)], m.p. 140°; the corresponding 1-Me compound has m.p. 154°.

On passing from a base to the thiacyanine or selenathiacyanine which is its alkiodide, the shift of absorption max. towards the red is about the same as on passing to the corresponding acid salt. There is a greater shift on passing from trimethin base to thiacarbocyanine (1020 A.) or to acid salt (950 A.). On passing from a thia-2'-cyanine base, having the alkyldihydrostructure in the benzthiazole nucleus, to the thia-2'-cyanine, the absorption max. shifts further towards the red (~600 A.) than on passing to an acid salt (~450 A.). The hitherto unknown isomeric bases with the alkyldihydro-structure in the quinoline nucleus have about the same absorption max. as the thia-2'-cyanines

themselves; it does not shift on addition of acid but shifts towards the blue on exposure to light.

Colour and constitution. I. Halochromism of anhydronium bases related to cyanine dyes. L. G. S. BROOKER, R. H. SPRAGUE, C. P. SMYTH, and G. L. LEWIS (J. Amer. Chem. Soc., 1940, 62, 1116—1125).—Cyanine dyes (A; n=0, 1, or 2) owe their colour to resonance; the two extreme states are identical and resonance is thus complete, leading to

$$\begin{bmatrix} o\text{-}C_6H_4 < S \\ NEt \end{bmatrix} \text{C} \cdot \text{CH} \cdot [\text{CH} \cdot \text{CH}]_n \cdot \text{C} < S \\ NEt \end{bmatrix} C_6H_4 - o \end{bmatrix} \text{I} - (A.)$$

very high colour. Resonance also occurs between the forms (B) and (B') of the corresponding bases, but the N^- leads to instability of (B'), so that the

$$\begin{array}{c} o\text{-}\mathrm{C_6H_4} < \stackrel{S}{\underset{N\to t}{\sum}} \text{-}\mathrm{C:CH\cdot[CH:CH]_n\cdot C} < \stackrel{S}{\underset{N\to t}{\sum}} \text{-}\mathrm{C_6H_4-}o \\ \\ o\text{-}\mathrm{C_6H_4} < \stackrel{S}{\underset{N\to t}{\sum}} \text{-}\mathrm{C\cdot CH:[CH\cdot CH]_n:C} < \stackrel{S}{\underset{N\to t}{\sum}} \text{-}\mathrm{C_6H_4-}o \\ \\ + & (B'.) \end{array}$$

hybrid tends much more towards (B) and the bases are lighter in colour than the methiodides. In the mixed base, the ionic form of which is (I), the negative charge on the pyrrole N conforms to the nature of the pyrrole ring, thus stabilising (I), aiding resonance with its non-ionic form and leading to a colour which is deeper than that of (A). Further, the form

$$o\text{-}C_6H_4 < S \longrightarrow C\text{-}CH\text{-}CH \cdot C < C_6H_4(o) \longrightarrow \bar{N}$$
 (I.)

(IIa) of the methiodide of (I) is so much more favoured than (IIb) that resonance is incomplete and the colour of (II) is lighter than that of (I) (reversed halochromy). This also leads to (II) being lighter

$$\begin{bmatrix} o \cdot C_6 H_4 < S \\ NEt \end{bmatrix} C \cdot CH : CH \cdot C < C_6 H_4(o) \\ CMe \end{bmatrix} I -$$

$$(IIa.)$$

$$\begin{bmatrix} o \cdot C_6 H_4 < S \\ NEt \end{bmatrix} C : CH \cdot CH : C < C_6 H_4(o) \\ NMe \end{bmatrix} I -$$

$$(IIb.)$$

than (A) or the "symmetrical" (III), the two forms of which, being identical, lead to more complete

resonance. Similarly, the ionic form (IV), with the negative charge lying on the benzthiazole N, is less

stable than (I) and this base is, therefore, much less coloured. For the same reason, the base (V) is much

more deeply coloured than (VI). Dipole moments support some of the above arguments. Figures in

$$[(VI.) \quad N = C \cdot CH \cdot C \leftarrow C_6 H_4(o) \rightarrow NMe$$

parentheses below are absorption max, and $\varepsilon \times 10^{-4}$, unless otherwise stated in MeOH, 3:3'-Diethylthiacvanine iodide (4230 A.; 8.45) in boiling NPhMe, gives the base (B; n = 0) (46%), m.p. $163-164^{\circ}$ (darkens) (3960 A.; 5.85). 2:2'-Diethylthia-carbocyanine iodide (5575 A.; 14-8) and -dicarbocyanine iodide (6500 A.; 22.9) in boiling NPhMe₂-CO₂ give 1-y-2'-ethyl-1'-benzthiazolidene-propenyl- (65%), m.p. 138—140° (decomp.) (4580 A.; 5.65), and $-\Delta^{ay}$ -pentadienyl-benzthiazole (4%), m.p. 161—162° (decomp.) (4900 A.; 6.4). 2:2'-Diethylthiatricarbocyanine has an absorption max. at 7580 A. (24.6). 1-Methylbenzthiazole ethiodide and 2-methylindole-3-aldehyde (VII) in boiling Ac₂O give the hydriodide (93%), m.p. 283—284° (decomp.), whence 3-β-2'-ethyl-1'benzthiazolidene-2-methylindolenine (I), m.p. 286—288° (5060 A.; C_5H_5N), is obtained by NaOH-COMe₂-H₂O, which in boiling MeI-PhNO₂ gives the methiodide [2'-ethylbenzthiazole-1'-1: 2-dimethylindole-3-dimethincyanine iodide] (II), m.p. 269—271° (decomp.) (4970 A.; C₅H₅N), also obtained (86%) from 1-methylbenzthiazole etho-p-toluenesulphonate and 1:2-dimethylindole-3-aldehyde (VIII) in boiling Ac₂O (product treated with NaI). 1-Methylbenzthiazole (2 mols.) and (VIII) (1 mol.) in conc. HCl at 100° give 3-β-1'benzthiazolylvinyl-1: 2-dimethylindole (IV) (50%), m.p. 150—151° (decomp.) (3920 A.; C_5H_5N) [ethiodide = (II)]. 1:2-Dimethylindole and (VIII) (1 mol. each) in conc. HCl give a salt, which with NaI gives bis $iodireve{d}e$ (1:2-dimethylindole-3-)methincyanine (35%), m.p. $221-222^{\circ}$ (decomp.) (4950 A.; 5.3;MeNO₂). Lepidine methiodide (IX) and (VII) in boiling Ac_2O give the base (V) (72%), m.p. 249—251° (decomp.) (lit., $+2CHCl_3$, m.p. 240°) (5710, 6160 A.; C_5H_5N) [hydriodide, m.p. 319—320° (decomp.)]. Lepidine and (VIII) in boiling HCl give $3-\beta-4$ -quinolylvinyl-1: 2-dimethylindole (VI) (43%), m.p. $192-193^{\circ}$ (decomp.) (3940 A.; C_5H_5N). MeI, (V) or (VI) gives 1: 2-dimethylindole-3-1'-methylquinoline-4'-dimethincyanine iodide, m.p. 297—298° (decomp.) (5390 A.; \check{C}_5H_5N), obtained also from (IX) and (VIII) in boiling Ac_2O . R. S. C.

Cyanine dyes.—See B., 1940, 568.

Lupin alkaloids. XIX. Synthesis of racemic lupinine. K. Winterfeld and H. von Cosel (Arch. Pharm., 1940, 278, 70—81).—Picolinic acid is converted by short, successive treatments with SOCl₂ at 60° into the chloride, transformed by CH₂N₂ in C₆H₆ into 2-pyridyl diazomethyl ketone (aurichloride, m.p. 118—120°; phenylhydrazone, m.p. 220°), which slowly decomposes on exposure to air. It is converted by 50% AcOH at 60—70° into 2-pyridyl CH₂·OH ketone (I), decomp. 160° [aurichloride (+1H₂O), m.p. 161°; platinichloride, m.p. 214—215° (decomp.); reineckate, decomp. 180—185°; p-nitrophenylhydrazone, m.p. 208—210°], which is resistant to acetylation. (I) is transformed by activated Mg and

OEt·[CH₂]₃·Br in Et₂O into 2-pyridylhydroxymethyl- γ -ethoxypropylcarbinol (reineckate, decomp. 205°), which gives OH·[CH₂]₃·OEt when heated at 35—45°/0·01 mm. and is hydrogenated (PtO₂ in AcOH) to 2-piperidylhydroxymethyl- γ -ethoxypropylcarbinol. This is hydrolysed and cyclised by HI (d 1·7) (2- α 8-di-iodobutylpiperidine) to r-lupinine, analysed as the picrolonate, m.p. 179° (decomp.).

isoLobinine, a new alkaloid from Lobelia inflata. O. Thomä (Annalen, 1939, 540, 99—103).— Fraction T64 of Richter (A., 1939, III, 931) is now termed isolobinine (I), $C_{18}H_{25}O_2N$, m.p. 78° [hydrochloride (+ H_2O), m.p. 132°, m.p. (anhyd.) 154°, $[\alpha]_p^{20}$ —76° in H_2O ; unstable phosphate, m.p. 80°; oxime, an oil (hydrochloride, m.p. 186°)]. Catalytic reduction of (I) gives a H_2 -derivative (II), b.p. 175°/4 mm., whilst thermal decomp. at 170—215°/10 mm. affords? COMeEt (p-nitrophenylhydrazone, m.p. 180°). Oxidation (CrO₃) of (I) yields BzOH and AcOH; (II) gives BzOH and scopolic acid. Ch. Abs. (b)

Lobelia alkaloids. VII. Accessory alkaloids of Lobelia inflata. H. Wieland, W. Koschara, E. Dane, J. Renz, W. Schwarze, and W. Linde (Annalen, 1939, **540**, 103—156; cf. A., 1932, 68).— Methods of fractionation are described. dl-Lelobanidine (I), C₁₈H₂₉O₂N, m.p. 68° (hydrochloride, m.p. 78—79°; hydriodide, m.p. 159°; platinichloride; methiodide, m.p. 162—164°), considerable in the constant of the c gives a Bz₂ derivative, m.p. 178°. Oxidation (CrO₃, AcOH) of (I) affords dl-lelobanine (II), C₁₈H₂₅O₂N oil (perchlorate, m.p. 136°; hydrochloride, m.p. 142°), oxidised (CrO₃, H₂SO₄) to AcOH, EtCO₂H, BzOH, and scopolic and methylgranatic acid (III). Successive treatment of (II) with MeI and Ag,O (NHMe, evolved) gives a neutral oil, which is catalytically reduced to a glycol, $C_{17}H_{28}O_2$, b.p. 117—118°/0·03 mm., m.p. ~8°; this with CrO_3 -dil. H_2SO_4 affords αι-diketo-α-phenylundecane (IV), m.p. 51° [semicarbazone, m.p. 186° (decomp.)]. $CO_2Et \cdot [CH_2]_7 \cdot COCl$, b.p. 168—169°/20 mm. (prep. by partial hydrolysis of the Et, ester and subsequent treatment with SOCI, and ZnEtI give 65% of the Et ester, b.p. $186^{\circ}/\overline{2}1$ mm., of θ -ketoundecoic acid, m.p. 56° [chloride and C₆H₆ yield (IV)]. Resolution of (I) can be effected with d-camphorsulphonic acid; (I) is 2- β -hydroxy- β -phenylethyl-l-methyl-6- β -hydroxy-n-butylpiperidine. l-Lelobanidine I (V) [hydrochloride ($+2H_2O$), m.p. 86°, [α]_p $-41\cdot5$ ° in EtOH; hydriodide, m.p. 171°; perchlorate, m.p. 176°; Ac_2 derivative hydrochloride, m.p. 195—196°; $PhSO_2$ derivative hydrochloride, m.p. 110—115°] is oxidised (CrO₃, AcOH, room temp. 15 days) to 1-lelobanine (VI) (hydrochloride, m.p. 186°, $[\alpha]_D + 19.5$ ° in EtOH) and also to AcOH, EtCO₂H, BzOH, and l-(III). l-Lelobanidine II [hydrochloride (+1.5H₂O), m.p. 102—105°, $[\alpha]_D$ -41.7° in EtOH; hydriodide, m.p. 165°] is also oxidised to (VI). d-Norlelobanidine, $C_{17}H_{27}O_2N$, m.p. 90° , $[\alpha]_{D} + 62.8^{\circ}$ in EtOH [hydrochloride, m.p., 193°; hydrobromide, m.p. 202°; hydriodide, m.p. 190°; (m- NO_2 · C_6H_4 · $CO)_2$, m.p. 212°, and $PhSO_2$ derivative, m.p. 150°], is methylated (p- C_6H_4 Me·SO₃Me) to (V). Hofmann degradation of d-nordelobanine, m.p. 174°, [α]_p -11·5° in EtOH (as its methylated) (as its methiodide), gives (III). Lobinine is oxidised

(CrO₃, 15% H₂SO₄) to BzOH (1 mol.) and a base, $C_9H_{13}O_4N$, m.p. 207—208° [unsaturated (KMnO₄); absorbs 2 H but does not afford a homogeneous product], and is reduced (H_2, PtO_2) to $\overline{2}5-30\%$ of β-lelobanidine (hydriodide, m.p. 181°, [α]_p -39·2± 0.5° in EtOH; perchlorate, m.p. 152°). isoLobinine (VII) (Thoma, preceding abstract) similarly absorbs >4 H; after absorption of 4 H, (V), m.p. 83°, appears to be formed. Reduction of (VII) with 2% Na-Hg in AcOH gives a base (hydrochloride, m.p. 161°), differing from (X) (below) and lobinol. Oxidation (CrO₃, AcOH) of (VII) affords 50% of isolobinanine (hydrochloride, m.p. 151°, $[\alpha]_D$ —11±0·3° in EtOH); the hygroscopic methiodide with NaHCO₃ yields an unsaturated diketone (VIII), m.p. 82-83°, also obtained from (VI). Lobinanidine (IX), C₁₈H₂₇O₂N, m.p. 95°, $[\alpha]_p$ -120° in EtOH [hydrochloride, m.p. 169°; hydriodide, m.p. 200°; PhSO₂ derivative, m.p. 125° (turbid; clears 135°)], is oxidised (CrO₃, AcOH, 70-80°) to lobinanine (perchlorate, m.p. 130°) and also to lobinic acid. Catalytic reduction of (IX) gives 60% of α -lelobanidine (hydriodide, m.p. 174°, $[\alpha]_D$ —37° in EtOH) and degradation of lobinanine methiodide affords (VIII). isoLobinanidine (X) [hydrochloride ($+2H_2O$), m.p. 111° , [α] $_D^{20}$ $-28\cdot3^\circ$ in H₂O; hydriodide, m.p. 164°] is reduced catalytically to (V). The following are also described: base, $C_{19}H_{26}O_3N_2$, m.p. 232° (decomp.) [hydrochloride, m.p. 299—300° (decomp.); hydriodide, m.p. 279°; perchlorate, m.p. 254—255°; methiodide, m.p. 244° (decomp.) comp.); Bz, m.p. 280° (decomp.), and Br-derivative, m.p. 288° (decomp.)]; bases, C₉H₁₉ON, b.p. 118—120°/1—2 mm., m.p. 85—87°, and C₁₄H₂₁ON, m.p. 103°, b.p. 135—137°/1—2 mm., separated by distillation ation; base, C₁₄H₂₁ON, m.p. 81° (aurichloride, m.p. 182°; Bz derivative, m.p. 118°), oxidised to a ketone, $C_{14}H_{19}ON$ [hydrochloride (+ H_2O), m.p. 109°] or to a compound, $C_7H_{13}O_2N$, m.p. 235°. OH·CHPh·CH₂·CO₂H, m.p. 116°, $[\alpha]_D$ -18·4±0·5°, was isolated.

CHNaAc·CO₂Et and (CH₂)₅Br₂ give CO₂Et·CHAc·[CH₂]₅·Br, converted by 48% HBr into η-keto-octyl bromide, b.p. 202—203°/30 mm., which with CHNaBz·CO₂Et affords Et θ-keto-α-benzoyldecoate. MeOH-KOH converts this into αι-diketo-α-phenyldecane, m.p. 64·5° (semicarbazone, m.p. 194°). CO₂Et·[CH₂]₆·COCl, b.p. 146°/12 mm., gives CO₂Et·[CH₂]₆·COEt and thence αθ-diketo-α-phenyldecane, m.p. 44—45°. CH. Abs. (b)

Curare alkaloids. V. Alkaloids of some Chondrodendron species and the origin of radix pareiræ bravæ. H. King (J.C.S., 1940, 737—746).— When radix pareiræ bravæ yields l-bebeerine it comes from C. platyphyllum and when it yields d-bebeerine from C.microphyllum; C.candicans contains the d-compound. All these species contain bebeerine (d- or l-) and d-isochondrodendrine (I) in widely varying proportions. From the leaves of C. platyphyllum, there has been isolated l-chondrofoline, C₃₅H₃₆O₆N₂, m.p. ~135° (slow efferv.) [nitrate, m.p. 225° (decomp.)], which is phenolic and contains three OMe; on degradation by a one-stage Hofmann reaction it gives O-methylchondrofolinemethine methiodide, identical with inactive O-methylbebeerinemethine

methiodide B. A probable structure is assigned. From a large amount of radix pareiræ bravæ a new alkaloid, d-isococlaurine (II), m.p. $216-217^{\circ}$ [hydrochloride (+H₂O), m.p. $175-176^{\circ}$, [α]₃₄₆₁ +23·9° in H₂O; O-methylisococlaurine methiodide, (+2H₂O), m.p. \sim 173°], isomeric

with coclaurine, has been isolated; its constitution is as shown.

(I) forms a sulphate $CH_2 \cdot C_6H_4 \cdot OH(p)$ (+15 H_2O), m.p. anhyd. 291—292° (efferv.), [α]₅₄₆₁

+115.6° in H_2O ; a methiodide (+8 H_2O), m.p. 287° (decomp.), $[\alpha]_{3461}^{20}$ +64.3° in H_2O ; O-methylisochondrodendrine methiodide, m.p. 312° (decomp.), $[\alpha]_{3461}^{20}$ +1.5° in H_2O ; and α -O-methylisochondrodendrinemethine hydrochloride (+2 H_2O), m.p. 299° (decomp.). Probable structures are assigned to (I), and protocuridine and neoprotocuridine, isomeric phenolic alkaloids of pot-curare. A classification of certain bisbenzylisoquinoline alkaloids is given.

Two-dimensional chromatography. C. Lapp and K. Erali (Bull. Sci. pharmacol., 1940, 42, 49—58).—In a rapid micro-chromatographic method for the separation and determination of very small amounts of org. substances, these are adsorbed on a thin layer of MgO, MgCO₃, or kaolin, and after washing with an org. solvent, the layer of adsorbent is dried, and the type and degree of fluorescence in Wood's light are determined.

J. N. A.

Determination of arsenic in organic arsenic compounds. R. TIOLLAIS and H. PERDREAU (Bull. Sci. pharmacol., 1940, 42, 58—64).—The substance is boiled with conc. H₂SO₄ until decolorised and, after dilution and neutralisation with NaOH, the As₂O₃ is titrated with 0·1n-I in presence of KHCO₃. The method is rapid and accurate, and applicable to arsenicals in general if Cl is absent. J. N. A.

Determination of glycerol. H. Ka (J. Agric. Chem. Soc. Japan, 1940, 16, 461—475).—A method utilising the Lovibond Tintometer, based on Deniges' colour reaction with codeine after removal of impurities with CaO, is described.

H. G. R.

Colorimetric micro-determination of formaldehyde. D. Matsukawa (J. Biochem. Japan, 1939, 30, 385—394).—The sample (2 c.c. of 0·02—1·0 mg. % solution of CH₂O) is treated with 0·5% NHPh·NH₂ at 40°, 2·5% K₃Fe(CN)₆ is added followed by conc. HCl, and the red colour that develops is evaluated in a step-photometer. The method is exemplified by change in concn. of CH₂O in toxin preps. during incubation. F. O. H.

Detection and determination of picrolonic acid. S. FUKUDA (J. Biochem. Japan, 1939, 30, 465—471).—Picrolonic acid (I) (2 mols.) rapidly heated to 124° condenses (with liberation of NO and H₂O) to give a substance, C₂₀H₁₄O₇N₆, which with NaOH produces a deep red colour. This reaction is used for the detection and (approx.) determination of (I). With arginine, lysine, and spermidine picrolonates, the method gives vals. ~85% of those calc. for the (I) content. F. O. H.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

SEPTEMBER, 1940

Rotation isomerism in dissolved $\alpha\beta$ -di-iodo-ethane.—See A., 1940, I, 346.

Isomerisation equilibrium of n- and iso-butane.—See A., I, 1940, 352.

Redistribution reaction. IX. Redistribution of halides and esters. G. Calingaert, H. Soroos, V. Hnizda, and H. Shapiro (J. Amer. Chem. Soc., 1940, 62, 1545—1547; cf. A., 1940, II, 300).— Random distribution is achieved by equilibrating (CH₂Cl)₂-(CH₂Br)₂, EtBr-(CH₂Cl)₂, and EtCl-(CH₂Br)₂ by 1·5—3 mol.-% of AlCl₃; the equilibrium mixture contains more EtCl than EtBr. Random distribution is also obtained by Al(OEt)₃ at 100° from Me₂C₂O₄-Bu₂C₂O₄, EtOAc-PrCO₂Me, and EtOAc-furfuryl furoate. Departure of such mixtures from equimolarity gives information concerning relative bond strengths. R. S. C.

Thermal decomposition of $\beta\beta$ -dimethyl- γ -amyl acetate. P. L. Cramer and V. A. Miller (J. Amer. Chem. Soc., 1940, 62, 1452—1454).—CHEtBu $^{\gamma}$ -OAc (prep. from CHEtBu $^{\gamma}$ -OH by AcCl), b.p. 153—158°, when passed over glass wool at 400° (little change at 350°), gives 90.5% of CHMe:CHBu $^{\gamma}$, b.p. 76.6—76.7°, with 7% of a $\beta\gamma$ - and $\beta\delta$ -dimethylpentene (hydrogenation led to some CHMeEtPr $^{\beta}$). The yield is thus > by decomp. of the xanthate. R. S. C.

Behaviour of substituted allenes towards Meinel's colour test. F. B. LaForge and F. Acree, jun. (J. Amer. Chem. Soc., 1940, 62, 1621—1622).—Meinel's test (A., 1937, II, 173) is given by CHMe:C:CHPh, CHMe:C:CHMe, α -cyclohexyl- $\Delta^{\beta\gamma}$ -pentadiene, and pyrethrone, and is thus not sp. for C:C·C:C. The intensity of the colour and the speed of reaction with myrcene, CH₂:CHPr $^{\alpha}$, and CHPhBr·CH₂Br decrease in the order given.

Substituted acetylenes and their derivatives. XL. Preparation of tert. acetylenes. K. N. CAMPBELL and L. T. Eby (J. Amer. Chem. Soc., 1940, 62, 1798—1800).—CEt:C·CMeEt·OH and gaseous HCl at <0° give $\beta6\%$ of γ -chloro- γ -methyl- Δ^{δ} -n-heptinene (I), b.p. $64^{\circ}/25$ mm., which with MgMeI gives $\gamma\gamma$ -dimethyl- Δ^{δ} -n-heptinene (66%), b.p. $69^{\circ}/100$ mm., and thence (H₂-Raney Ni-MeOH or H₂-PtO₂-abs. EtOH) CMe₂EtBu^a, b.p. $135^{\circ}/735$ mm., obtained also (28%) from MgBu^aBr and CMe₂EtBr at 50—70° (later at the b.p.). With MgEtBr, (I) gives γ -methyl- γ -ethyl- Δ^{δ} -n-heptinene, b.p. $88^{\circ}/100$ mm., and thence CMeEt₂Bu^a, b.p. $155^{\circ}/734$ mm. Similarly are prepared: (a) β -chloro- β -methyl- Δ^{γ} -n-octinene (II), b.p.

68°/15 mm., and thence ββ-dimethyl- Δ^{γ} -n-octinene, b.p. 79°/70 mm., and $n\text{-C}_5\text{H}_{11}\text{·CH}_2\text{Bu}^{\gamma}$, b.p. 62°/30 mm.; (b) γ -chloro- γ -methyl- Δ^{δ} -n-noninene (III), b.p. 82°/17 mm.; (c) γ -chloro- γ -methyl- Δ^{δ} -n-decinene, b.p. 90°/10 mm., and thence $\gamma\gamma$ -dimethyl- Δ^{δ} -n-decinene, b.p. 86°/20 mm., and $n\text{-C}_6\text{H}_{13}\text{·CMe}_2\text{Et}$, b.p. 89°/20 mm., and (d) γ -chloro- γ -methyl- Δ^{δ} -n-pentinene, b.p. 55°/130 mm. $\gamma\gamma$ -Dimethyl- Δ^{δ} -n-noninene, b.p. 82°/40 mm., is obtained from (III) and MgMeI, (II) and MgEtI, or (3% yield) CMe₂EtBr and CBu°:C·MgCl, and is reduced to $n\text{-C}_5\text{H}_{11}\text{·CMe}_2\text{Et}$, b.p. 84°/30 mm., obtained also (23% yield) from $n\text{-C}_6\text{H}_{13}\text{·MgBr}$ and CMe₂EtBr.

Substituted acetylenes and their derivatives. XXXVIII. Chlorides and hydrochlorides from Δ^{α} -hexinene. G. F. Hennion and C. E. Welsil. XXXIX. Chlorination of the acetylenic alcohols derived from acetone. G. F. Hennion and G. M. Wolf (J. Amer. Chem. Soc., 1940, 62, 1367—1368, 1368—1371; cf. A., 1939, II, 400; 1940, II, 187).—XXXVIII. CH:CBu^{α} (I) (41 g.) and Cl₂ in CCl₄ containing SbCl₅ (1·5 ml.) at $45\pm5^{\circ}$ give transchCl:CBu^{α}Cl (19·6%) and CHCl₂·CBu^{α}Cl₂ (II) (30·6%). HCl adds to (I) in C₆H₆, preferably in presence of BiCl₃ at 80—85°, giving β -chloro- Δ^{α} -n-hexene (III) (20%), b.p. $113^{\circ}/740$ mm., and $\beta\beta$ -dichloro-n-hexane (40%), b.p. $68^{\circ}/49$ mm. [converted by KOH-Pr $^{\alpha}$ OH at 95° into (III) (60·5%)]. Cl₂ and (III) in CCl₄ containing SbCl₅ at 35—40° give (II) (25·4%) and cis-CHCl:CBu $^{\alpha}$ Cl (26·7%). Physical consts. of the products are reported.

XXXIX. CH:C·CMe₂·OH and Cl₂ at 25—30° (a) in CCl_4 give trans- $\alpha\beta$ -dichloro- γ -methyl- Δ^{α} -n-buten- γ -ol (I) (22%), b.p. 64-66°/6 mm., and ααββ-tetrachloro-γmethyl-n-butan-γ-ol (II) (44·6%), b.p. 95—97°/6 mm., (b) in MeOH give (I) (20.6%), (II) (32.1%), cis- $\alpha\beta$ -dichloro- γ -methyl- Δ "-n-buten- γ -ol (III) (6.9%), b.p. 76—78°/6 mm., and αα-dichloro-y-methyl-n-butan-y-ol-β-one (IV) (10·5%), b.p. 58—60°/6 mm. [by way of OH-CMe₂·C(OMe):CHCl], and (c) in H₂O give (III) (15.5%) and ααγ-trichloro-y-methyl-n-butan-β-one (V) (30%), b.p. 61—63°/6 mm. [by interaction of (IV) and HCl]. In MeOH at 60—65°, no (III) but more (II) is formed. With aq. CaCl·OCl, (IV) gives CHCl₃. KOH-aq. MeOH converts (V) exothermally into αα-dichloro-γ-methyl-Δ^γ-n-buten-β-one (60%), b.p. 64— 66°/6 mm. Chlorination of (CCCMe2·OH) is accompanied by cyclodehydration: at $60-65^\circ$ in CCl₄ $\gamma\gamma\delta\delta$ -letrachloro- $\beta\epsilon$ -dimethyl-n-hexane- $\beta\epsilon$ -diol (46%), b.p. $82-84^\circ/6$ mm., 3:4-dichloro-2:2:5:5-tetramethyl-2: 5-dihydrofuran (8.6%), b.p. $46-48^{\circ}/6$ mm., and 3:3:4:4-tetrachloro-2: 2:5:5-tetramethyltetrahydrofuran (VI) (45.8%), b.p. 96-98°/6 mm., are formed; in MeOH, (VI) (46.6%) with γγ-dichloro-

Q* (A., II.)

βs-dimethyl-n-butan-δ-one-βs-diol (VII) (1.7%), m.p. 99°, and 4:4-dichloro-3-keto-2:2:5:5-tetramethyl-tetrahydrofuran (VIII) (14.6%), b.p. 84—86°/6 mm. [both formed by way of

OH·CMe₂·C(OMe)·CCl·CMe₂·OH], are produced; in H_2O , (VIII) (57·5%) and (VII) (3·2%) are obtained. n, d, [M], and parachors of the products are reported. R. S. C.

Hindered rotation in CH₂D·CH₂Br.—See Λ., 1940, I, 283.

Raman spectra of ethylene chlorohydrin, *n*-propyl chloride, and *n*-butane in the liquid and solid states.—See A., 1940, I, 346.

Esterification of primary alcohols without the use of acids.—See B., 1940, 512.

Linoleyl alcohol. II. Preparation, properties, and rearrangement. J. P. Kass and G. O. Burr (J. Amer. Chem. Soc., 1940, 62, 1796—1798; cf. A., 1939, II, 137).—Me linoleate and Na–EtOH give linoleyl alcohol (I), f.p. $<-16^{\circ}$, b.p. 153—154°/3 mm., isomerised by KOH–BuOH to a mixture of Δ^{λ_p} -octadecadienols, identical with that obtained from the ester by Na–BuOH. The tetrabromide, m.p. 87·5—88°, of (I) is oxidised (KMnO₄) to tetrabromostearic acid, m.p. 112—114°. Me linoleate and Na–EtOH give linolenyl alcohol, b.p. 133°/2 mm. (hexabromide, sinters at 171°, m.p. 172°). R. S. C.

Keten acetals. VI. Preparation of keten acetals from α-bromo-ortho-esters. P. M. Walters and S. M. McElvain (J. Amer. Chem. Soc., 1940, 62, 1482—1484; cf. A., 1940, II, 202).—66% of $CH_2:C(OEt)_2$ is obtained from $CH_2:C(OEt)_3$ by Na in boiling C_6H_6 , but Zn or Mg gives multimol. products. Et₃ α-bromo-orthopropionate, b.p. 73°/8 mm., and Na give similarly methylketen Et₂ acetal, b.p. 133—134°/760 mm., 77—78°/100 mm., which with H_2O or EtOH and a trace of HCl gives exothermally $EtCO_2:CHRBr\cdot CH(OEt)_3$, respectively.

[Jones] $CHRBr\cdot CH(OEt)_2:CHRBr\cdot CHOEt)_3:CHRBr\cdot CHOET_3:CHRBr\cdot CHO$

CMe₂Br·CH(OEt)₂ with KOBu^{γ}-Bu^{γ}OH suffer $\alpha\beta$ -loss of HBr. R. S. C.

Solid derivatives of monoalkyl ethers of ethylene glycol and diethylene glycol. J. P. Mason and J. F. Manning (J. Amer. Chem. Soc., 1940, 62, 1635-1640).—ONa·[CH₂]₂·OMe and ONa·[CH₂]₂·OEt with CH₂Cl·CO₂H in boiling C₅H₅N-Et₂O give β-methoxy-, b.p. $149-149\cdot5^{\circ}/18$ mm. (p-phenylphenacyl ester, m.p. 68° ; piperazinium salt, B,2HX, m.p. $44\cdot5-45^{\circ}$), and β-ethoxy-ethoxyacetic acid, b.p. $154\cdot5-155^{\circ}$ (p-phenylphenacyl ester, m.p. $52\cdot5-52\cdot8^{\circ}$; piperazinium salt, B,2HX, m.p. $87-87\cdot5^{\circ}$). OH·[CH₂]₂·OR give the p-nitrobenzoates, R = Me, b.p. $192\cdot5-195^{\circ}/16$ mm., Et (I), b.p. $197-199^{\circ}/16$ mm., and Bu, b.p. $208\cdot8-211^{\circ}/16$ mm., reduced by, best, Fe powder and HCl to the p-aminobenzoates, R = Me, m.p. $79\cdot2^{\circ}$, b.p. $223-224\cdot5^{\circ}/16$ mm., and Bu, m.p. $36\cdot2-36\cdot5^{\circ}$, b.p. $232\cdot5-234^{\circ}/16\cdot5$ mm. (cf. A., 1935, 1494), and thence the azo-dyes, p-OR·[CH₂]₂·O·CO·C₆H₄·N·N·C₆H₄·NMe₂·p, R = Me, m.p. $108\cdot2^{\circ}$, Et, m.p. 103° , and Bu, m.p. $87\cdot8-88\cdot4^{\circ}$. OH·[CH₂]₂·O·[CH₂]₂·OR give similarly the p-nitro-, R = Et, b.p. $222\cdot5-224^{\circ}/16$ mm., and Bu, b.p.

 $246-249^{\circ}/16$ mm., and p-amino-benzoates, R = Et, m.p. 64.4° , b.p. $257-259^{\circ}/20$ mm. $(N-NMe_2\cdot C_6H_4\cdot N^{\circ})$ derivative, m.p. 87·8-88·4°), and Bu, b.p. 262·5-265°/16 mm. (N- NMe_2 · C_6H_4 ·N: derivative, m.p. 57·2°). Zn dust and NH₄Cl in 75% EtOH reduce (I) to the azo-compound, m.p. 94·8° (loc. cit. 97°). ONa· $[CH_2]_2$ ·OR and β -4-morpholinoethyl chloride in boiling dioxan give 4-β-β'-methoxy-, b.p. 119—120°/8 mm. (picrate, m.p. 111·3°; hydrochloride, m.p. 97·2— 97.5°), -ethoxy-, b.p. 132—133°/10 mm. (picrate, m.p. hydrochloride, m.p. $99.5-100.5^{\circ}$), -butoxy-ethoxyethylmorpholine, b.p. 154—157°/9 mm. (picrate, m.p. $62-62.5^{\circ}$; hydrochloride, m.p. 59.5- $OH^{\bullet}[CH_2]_2 \cdot O \cdot [CH_2]_2 \cdot OR$ gives 4-β-β'-β''-ethoxy-, b.p. 163—165°/9 mm. (picrate, m.p. 204·8—207°; hydrochloride, m.p. 150—151°), and butoxy-ethoxyethoxyethylmorpholine, b.p. 189—192°/8 mm. (picrate, m.p. 161—161·5°). OH·[CH₂]₂·OMe, paraformaldehyde, and NHEt₂ give β-methoxyethoxymethyldiethylamine, b.p. 73—74 5°/16 mm. (ethiodide, m.p. 49.5°). Attempts to prepare other solid derivatives failed.

Acid iodides. IV. Mechanism of ether cleavage. P. G. Stevens (J. Amer. Chem. Soc., 1940, 62, 1801—1802; cf. A., 1933, 391).—Cleavage of ethers by RI proceeds by way of an oxonium iodide (Ingold's $S_{\rm N}2$ reaction with inversion), since CHMcBu°·OMe, $\alpha_{\rm p}^{23}$ +7·63°, and CH₂Cl·COI at 20—25° give 28·8% of CHMeBu°I, $\alpha_{\rm p}^{23}$ -19·42°, and 52·4% of CH₂Cl·CO₂·CHMeBu°, b.p. 80·0—80·3°/9 mm., $\alpha_{\rm p}^{23}$ +8·06°, with MeI, CH₂Cl·CO₂Me, and a little olefine. Physical consts. are recorded. R. S. C.

Sulphur. XVI. Synthesis of higher alkyl sulphonium salts and related compounds. R. W. Bost and J. E. Everett (J. Amer. Chem. Soc., 1940, 62, 1752—1754; cf. A., 1940, II, 117).—RSNa and R'I in EtOH give Et cetyl, m.p. 19°, b.p. 201—205°/12 mm. (HgCl₂, m.p. 75·5°, and HgBr₂ additive compounds, m.p. 58°), and lauryl sulphide, m.p. -6° to -5°, b.p. 167—171°/18 mm., which with MeI, best in MeOH, give methylethyl-cetyl-, m.p. 73° (corresponding bromide, m.p. 77°, and nitrate, m.p. 61°), and -lauryl-sulphonium iodide, m.p. 65°, and with KMnO₄ give Et cetyl, m.p. 88°, and lauryl sulphone, m.p. 78·5°.

Reaction of organic halides with piperidine. Branched-chain β-bromo-esters. VI. Foreman and J. M. McElvain (J. Amer. Chem. Soc., 1940, **62**, 1438—1441).—Absence of H from $C_{(a)}$ renders impossible elimination of HBr from CH₂Br·CMe₂·CO₂Et and CHMeBr·CMe₂·CO₂Et, which with piperidine give only small amounts of tert. amine, thus confirming the mechanism described in Part V (A., 1940, II, 302). The chain-branching does not affect elimination of HBr but greatly reduces the amount of tert. amine formed, examples being Et β-bromoisohexoate (I), b.p. 63—64°/0·1 mm., β-bromoyy-dimethylvalerate (II), b.p. 65-66°/0·1 mm., and 2-bromocyclohexanecarboxylate (prep. from Et hexahydrosalicylate by PBr₃ in C_6H_6), b.p. 75—76°/0·1 mm. OH·CHMe·CMe₂·CO₂Et and PBr₃ in C_6H_6 at room temp. give 25% of Br-esters (A), b.p. $90-92^{\circ}/20$ mm., and much of the phosphite, converted by 48% HBr into (A). (A) contains much CMePr $^{\beta}$ Br·CO₂Et,

which is removed by interaction with piperidine (gives CMe₂:CMe·CO₂Et), and then yields Et β-bromo-αα-dimethyl-n-butyrate, b.p. 72—74°/8 mm. OH·CH₂·CMe₂·CO₂Et and PBr₃ give CH₂Br·CMe₂·CO₂Et, b.p. 62—63°/7 mm. CHPr^β·C(CO₂Et)₂ (prep. described), b.p. 117—119°/13 mm., and aq. KOH give CHPr^β·C(CO₂H)₂, which at 150°/20 mm. gives 21% of CHPr^β·CH·CO₂H, b.p. 114—115°/18 mm., and 20·2% of isohexolactone, b.p. 96—98°/18 mm. CHPr^β·CH·CO₂Et, b.p. 171—173°, and HBr in CHCl₃ at room temp. give 86·5% of (I), which could not be obtained pure from the OHester. Bu^γCHO and CH₂(CO₂Et)₂ give Et γγ-dimethyl-Δ^a-pentenoate, b.p. 138—140°/23 mm., converted by hydrolysis and decarboxylation into CHBu^γ·CH·CO₂H, m.p. 62—63°, b.p. 126—131°/23

Preparation of fatty acid β-monoglycerides. B. F. Daubert (J. Amer. Chem. Soc., 1940, 62, 1713—1714).—OH·CH(CH₂·O·CPh₃)₂ and n-C₁₅H₃₁·COCl in quinoline-CHCl₃ at 0° give the β-palmitate, m.p. 71°, hydrogenated (Pd-black; 45—50°/3 atm.; abs. EtOH) to β-monopalmitin (85%), m.p. 68°, and CHPh₃ (cf. Verkade *et al.*, A., 1937, II, 318). αα'-Benzylideneglycerol and PrCOCl in C₅H₅N at 0° give the β-butyrate, m.p. 16—18°, 165°/5 mm., and thence β-monobutyrin and αα'-distearin β-butyrate, m.p. 51·5° (lit. 51°). R. S. C.

mm., which with HBr-EtOH gives (II).

Oxidative cleavage of α -keto-acids and -alcohols by means of lead tetra-acetate. E. BAER (J. Amer. Chem. Soc., 1940, 62, 1597—1606).—Acids, $COR \cdot CO_2H$, are unchanged by $Pb(OAc)_4$ in AcOH, except for the effects of traces of H_2O . In presence of reagents R'H (R' = OH, OMe, OEt, O·CH₂Ph, CN), which by addition generate a glycol-like grouping, $OH \cdot CRR' \cdot CO \cdot OH$, rapid reduction of 1 mol. of $Pb(OAc)_4$, generation of 1 mol. of CO_2 , and formation of CORR' occur. This is established for $AcCO_2H$ in presence of CO_2H (isolation of CO_2H), and CO_2H in presence of CO_2H (isolation of CO_2H), and CO_2H (isolation of CO_2H), and CO_2H (isolation of CO_2H), CO_2H) (isolation of CO_2H)

CH₂Ph·CO·CO₂H in presence of H₂O undergoes also acetylation to OAc·CHPh·CO₂H, since after hydrolysis OH·CHPh·CO₂H (50·6%) is isolated and a second mol. of Pb(OAc)₄ is consumed. The CO₂ liberated (95—103·2 mol.-%) and Pb(OAc)₄ consumed (1·07—0·95 mol.-%) were determined in most cases. Enolisation plays no part in the above reactions.

α-CO-alcohols COR·CHR'·OH are slowly oxidised to the diketones by Pb(OAc)₄ in AcOH in absence of OH-forming substances, but in presence of such substances (R"OH) undergo very rapid oxidative cleavage to CORR" and R'CO₂H. These reactions are verified for COMe·CHMe·OH alone [gives Ac₂ (41·6%)] and in presence of H₂O [gives MeCHO (95%)], COPh·CH₂·OH at 50—55° in presence of H₂O [gives BzOH (78·6%)] and EtOH [gives EtOBz and thence BzOH (60%)], benzoin alone (gives 83·4% of Bz₂) and in presence of H₂O (75% of PhCHO isolated) and EtOH (84% of EtOBz isolated),

and anisoin alone (gives 74% of anisil and 20% of OMe·C₆H₄·CO₂H) and in presence of H₂O (76·8% of OMe·C₆H₄·CO₂H, 83% of OMe·C₆H₄·CHO, and 5% of anisil isolated) and EtOH (gives OMe·C₆H₄·CO₂Et).

R. S. C.

Acetoacetyl chloride. C. D. Hurd and C. D. Kelso (J. Amer. Chem. Soc., 1940, 62, 1548—1549).

—Passage of HCl into CHAc:CO at —7° and then cooling to —50° gives CH₂Ac·COCl, m.p. —50° to —51°, which at >—20° gives HCl and dehydroacetic acid, with NH₂Ph or EtOH at —60° gives CH₂Ac·CO·NHPh or CH₂Ac·CO₂Et, respectively, and with C₆H₆-AlCl₃ (27%) or MgPhBr (12%) at —50° gives COMe·CH₂·COPh, obtained in 10·5% yield from CHAc:CO by C₆H₆-AlCl₃. R. S. C.

Optical superposition. IX. I-Menthyl esters of mucic and tetrahydroxyadipic [1.2.3.4.] acids. R. W. LAPSLEY, J. ROBERTSON, and T. S. Patterson (J.C.S., 1940, 862—866).—Previous conclusions (A., 1927, 229) are invalidated since Posternak (A., 1936, 55) showed that Fischer's "allomucic acid" has not the structure assigned to it. The products of epimerisation (C₅H₅N at 135—140°) of mucic acid with Ac₂O and a trace of H₂SO₄ yield small quantities of tetra-acetylmucic and tetra-acetoxyadipic acids, also obtained in good yield from dltalomucic acid, Ac₂O and H₂SO₄. Tetra-acetoxyadipyl dichloride (SOCl₂), m.p. 165°, yields Et, m.p. 136°, and 1-menthyl tetra-acetoxyadipate, m.p. 135-136°, $[\alpha]_{6461}^{20}$ +72.7° in C_6H_6 . 1-Menthyl tetra-acetylmucate, m.p. 153°, has $[\alpha]_{5461}^{20} + 50 \cdot 2^{\circ}$ in C_6H_6 . These rotations disagree with van 't Hoff's principle of optical superposition. The following were prepared: Et tetra-acetyl-dl-talomucate, m.p. 108-109°, dl-, m.p. 102—103°, and d-sec.-octyl tetra-acetylmucate, m.p. 114—115°; d-sec.-octyl tetra-acetoxyadipate could not be obtained sufficiently pure for comparison. [α] of l-menthyl dehydromucate (from l-menthol, mucic acid, and HCl at 165°) at various temp. and λλ is recorded.

Preparation of d-gluconyl chloride penta-acetate. C. E. Braun, S. H. Nichols, jun., J. L. Cohen, and T. E. Aitken (J. Amer. Chem. Soc., 1940, 62, 1619).—Prep. of this chloride from the acid penta-acetate by PCl₅ in Et₂O is improved (83—93% yield) and simplified.

R. S. C.

Structure of trimethylglucurone. R. E. Reeves (J. Amer. Chem. Soc., 1940, 62, 1616—1617).—The trimethylglucurone (I), m.p. 129—130°, $[\alpha]_D^{24}+151^\circ$ in CHCl₃, of Pryde et al. (A., 1933, 1035) is shown to be the 1:2:4-trimethylfuranoside. Its prep. from glucurone is improved to give a 50% yield. Mutarotation in 36% HCl-MeOH gives glucurone 2:5-dimethyl- β -methylglucoside, m.p. 90—91°, $[\alpha]_D^{21}+2\cdot0^\circ$ in H_2O , $-2\cdot3^\circ$ in CHCl₃, the rapid rate in dil. acid being characteristic of methylfuranosides. Oxidation of (I) by HNO₃ (d 1·2) at 80—85° gives α -dimethyl-saccharic acid, converted by CH₂N₂ into the unsaturated lactone, m.p. 85—86·5° (Schmidt et al., A., 1938, II, 42), and by HCN-MeOH, followed by NH₃-MeOH, into α 8-dimethylsacchardiamide, m.p. 169—170°. R. S. C.

Oxidation of alginic acid by periodic acid. H. J. Lucas and W. T. Stewart (J. Amer. Chem. Soc., 1940, **62**, 1793—1796).—The structure of alginic acid (I) (A., 1939, II, 405) is confirmed. HIO₄ oxidises (I) to the product (II), \cdot CH(CHO) \cdot O \cdot CH(CO₂H) \cdot ĈH(CHO) \cdot O \cdot or \cdot CH(CHO) \cdot O·CH(CHO) \cdot CH(CO₂H) \cdot O·, oxidised Br-BaCO₃-H₂O to the tricarboxylic acid, hydrolysis of which by H₂O at 100° gives meso-tartaric acid (III) (25%) and H₂C₂O₄. Hydrolysis of (II) gives (CHO)₂ (42%). Me alginate gives similarly the dialdehydoester, which gives 30% of (CHO)2, and the carbomethoxy-dicarboxylic acid, from which (III) could not be isolated. HIO₄- or HIO₃-oxidation is improved by pptg. the org. products by $Bu^{\nu}OH$. $H_2C_2O_4$ and (III) are separated by heating with an excess of BzCl at 100-150°, which decomposes $H_2C_2O_4$ and yields meso-(OBz·CH·CO), O (IV), m.p. 207°, or by treating with aq. CuSO₄, adjusting to $p_{\rm H}$ 2, removing the ${\rm CuC_2O_4,0.5H_2O}$ and then the Ba as BaSO₄, and recovering the (III) as such or as monobrucine salt, m.p. 259° (decomp.), $[\alpha]_D^{30}$ -23°, whence (IV) may be prepared.

Photolysis of methyl ethyl ketone.—See A., 1940, I, 368.

Synthesis of 5:5-disubstituted hydantoins from s-dialkoxypropanones and related compounds. B. G. Rogers and H. R. Henze (J. Amer. Chem. Soc., 1940, **62**, 1758—1760).—ββ'-Di-n-hexoxy-, b.p. 141—142°/3 mm., -n-heptoxy-, b.p. 160—161°/5 mm., -β''-ethyl-n-hexoxy-, b.p. 162—163°/5 mm., and -allyloxy-, b.p. 124—125°/24 mm., -isopropyl alcohol are prepared (method: Fairbourne et al., A., 1931, 599). β-Methoxy-β'-ethoxy-, b.p. 56—57°/8 mm., and β-methoxy-β'-n-propoxy-isopropyl alcohol, b.p. 59-60°/5 mm., are described (prep.: idem, A., 1932, 928). Oxidation of the alcohol affords αβ-di-nhexoxy-, b.p. 135—136°/5 mm., -n-heptoxy-, b.p. 187-188°/10 mm., and -β'-ethyl-n-hexoxy- (I), b.p. 162— 164°/5 mm., -acetone, but αβ-diallyloxyacetone, b.p. 118—120°/24 mm. (2:4-dinitrophenylhydrazone, m.p. 45-46°), is obtained only in poor yield. Condensation of OR·CH₂·CO·CH₂·OR' with KCN and $(NH_4)_2$ CO₃ in 50% EtOH at 100° gives 5:5-dimethoxy-, m.p. 214—215°, -ethoxy-, m.p. 180·5—181·5°, -n-propoxy-, m.p. $104\cdot5$ — $105\cdot5$ °, -n-, m.p. 98.5—99.5°, -iso-, m.p. 173—174°, and -sec.-butoxy-, m.p. 222-223°, -n-, m.p. 103·5-104·5°, and -sec.amyloxy-, m.p. 146—147°, -n-hexoxy-, m.p. 82·5—84°, -n-heptoxy-, m.p. 71—73°, and -allyloxy-, m.p. 107·5— 108.5°, -methylhydantoin, yields varying from 0.5 to 39%. CO(CH₂·OPr^β)₂ and (I) do not give a hydantoin. Temp. are corr.

Lignin and related compounds. XLVII. Synthesis of xylosides related to lignin plant constituents. J. H. FISHER, W. L. HAWKINS, and H. HIBBERT (J. Amer. Chem. Soc., 1940, 62, 1412—1415; cf. A., 1940, II, 19).—Addition of acetobromoxylose (2 mols.) in COMe₂ to α -acetoxypropiovanillone (I) (prep. from the α -Br-ketone by KOAc-AcOH at 100°) (1 mol.), m.p. 105—106°, and N-KOH (0·1 mol.) and then gradually of aq. KOH to keep the $p_{\pi} = 9$ [90% neutralisation of the (I)] gives 25% of the β -d-xyloside triacetate, m.p. 149·4—149·7°, which

with NaOMe–MeOH at 20° gives α -hydroxypropiovanillone β -d-xyloside, m.p. 193—194.5° (decomp.). α -Acetoxypropiosyringone β -d-xyloside triacetate, m.p. 128.6—128.8°, and α -hydroxypropiosyringone β -d-xyloside, m.p. 149.4—150°, unstable in hydroxylic solvents at 45°, are similarly prepared. Condensation without $p_{\rm H}$ control gives guaiacol β -d-xyloside triacetate, m.p. 139.8—140°, and acetovanillone β -d-xyloside triacetate, m.p. 133.3—133.6°, and thence (NaOMe–MeOH or aq. NH₃) guaiacol, m.p. 175.3—176°, and acetovanillone, m.p. 145.2—145.7°, β -d-xyloside.

Action of the pyridine-acetic anhydride reagent on d- α -glucoheptose-, d-glucosamine-, and l-fucose-oximes. E. R. DE LABRIOLA and V. Deulofeu (J. Amer. Chem. Soc., 1940, 62, 1611— 1613).—The mode of reaction of $C_5H_5N-Ac_2O$ with sugar oximes depends on the particular sugar and is only partly explicable. d- α -Glueoheptoseoxime, semi-cryst., and $Ac_2O-C_5H_5N$ (1:1) at -10° or 20° give d- α -glucoheptonitrile hexa-acetate, m.p. 113— 114°, $[\alpha]_{D}^{20} + 24 \cdot 1^{\circ}$ in CHCl₃. d- α -Glucosamineoxime hydrochloride (modified prep.), m.p. 166° , at -10° or 20° gives d-glucosamine nitrile penta-acetate, m.p. (lit. 118—119°), $[\alpha]_{D}^{20}$ +20·5° in CHCl₃. l-Fucoseoxime at -10° gives only the oxime pentaacetate, but increasing amounts of l-fucononitrile tetra-acetate, m.p. 177° , $[\alpha]_{D}^{20}$ -22.4° in CHCl₃, are formed as the reaction temp. rises until at 100° it is the main product.

Synthesis of trisaccharides. Their behaviour in alkaline solution. S. H. Nichols, jun., W. L. Evans, and H. D. McDowell (J. Amer. Chem. Soc., 1940, **62**, 1754—1758).—Acetobromocellobiose, β -d-glucose 1:2:3:4-tetra-acetate, CaSO₄, Ag₂O, and I in CHCl₃ give 45.4% of 6-β-cellobiosido-β-dglucose hendeca-acetate (I), m.p. 246.5° (corr.), $[\alpha]_{D}^{24}$ -10·9° in CHCl₃. 6-Maltosido-β-d-glucose hendecaacetate (II), m.p. $242-242\cdot7^{\circ}$ (corr.), $[\alpha]_{D}^{24}+42\cdot5^{\circ}$ in CHCl₃, 6-cellobiosido-β-d-mannose hendeca-acetate (III), amorphous, softens at 120—126° (corr.), $[\alpha]_D^{23}$ —18.4° in CHCl₃, and 6-maltosido-β-d-mannose hendeca-acetate (IV), amorphous, softens at 110—115° (uncorr.), $[\alpha]_D^{26} + 58.6^\circ$ in CHCl₃, are also prepared. With $\sim 1.78 - 6.19$ n-KOH at 50° (cf. Nadeau *et al.*, A., 1934, 173), (I) and (II) give approx. the amount of lactic acid (V) obtained similarly from 2 equivs. of glucose, and (III) and (IV) give approx. the amounts obtained from 1 equiv. of glucose + 1 equiv. of man-This supports the views of Evans et al. (A., 1930, 326) that (V) is to be expected only from the first and third hexose units.

Structure of dextran.—See A., 1940, III, 694.

Constitution of lichenin. IV. K. Hess and L. W. Lauridsen (Ber., 1940, 73, [B], 115—126; cf. A., 1927, 860).—Lichenin (I), from Cetraria islandica, has a constitutional scheme similar to that of cellulose. With Me₂SO₄-NaOH, (I) gives a product (41—43% OMe), which with MeI-Ag₂O gives trimethyl-lichenin (II) (45.5% OMe). By the terminal group method of Neumann et al. (A., 1937, II, 232), (II) yields tetramethyl- and 2:3:6-trimethyl-methyl-glucoside, with no dimethylglucose groups. Differ-

ences in $[\alpha]$ etc., however, show that the constitution of (I) is not identical with that of (II). It is suggested that in (I) the glucose groups are linked not only in the β 1-4, but also in the β 1- β 1 and 4-4, positions. Since (I) is hydrolysed enzymically completely to cellobiose (IV), it may be necessary to assume that the β 1- β 1 and 4-4 linkages are hydrolysed before the β 1-4 of (IV). Measurements of η in dioxan show that methyl-lichenin and -cellulose have very similar structural η , whereas methylstarch is about 100 times as sensitive to shear-strain.

E. W. W.

Optics of starch grains.—See A., 1940, I, 350.

Structure of cellulose. W. H. HAYFORD, jun. (Rayon Text. Month., 1940, 21, 355—356, 416—417).
—A review. R. J. W. R.

Preparation and properties of high mol. wt. primary amines.—See B., 1940, 513.

Manufacture of maltosamines.—See B., 1940, 513.

Pantothenic acid. V. Evidence for structure of the non-β-alanine portion. H. K. MITCHELL, H. H. WEINSTOCK, jun., E. E. SNELL, (MISS) S. R. STANBERY, and R. J. WILLIAMS. VI. Isolation and structure of the lactone moiety. E. T. STILLER, J. C. KERESZTESY, and J. FINKELSTEIN. VII. Partial and total synthesis. R. J. WIL-LIAMS, H. K. MITCHELL, H. H. WEINSTOCK, jun., and E. E. Snell. VIII. Total synthesis of pure pantothenic acid. E. T. Stiller, S. A. Harris, J. FINKELSTEIN, J. C. KERESZTESY, and K. FOLKERS. IX. Biological activity of hydroxypantothenic acid. H. K. MITCHELL, E. E. SNELL, and R. J. WILLIAMS (J. Amer. Chem. Soc., 1940, 62, 1776— 1779, 1779—1784, 1784—1785, 1785—1790, 1791— 1792; cf. A., 1939, II, 461; 1940, II, 203).—V. The FeCl₃ test indicates OH·C·CO₂H in pantothenic acid (I) after, but not before, hydrolysis by NaOH. is confirmed by micro-determination of CO liberated by H₂SO₄ at 140°, the reaction being OH·CHR·CO₂H \rightarrow RCHO + HCO₂H \rightarrow CO + H₂O; the method is tested on α-hydroxy-γ-butyrolactone (II), OH·CHMe·CH₂·CO₂H (III), and OH·CHMe·CO₂H (IV). FeCl₃ indicates absence of α-OH after hydrolysis by acid; this is due to lactonisation, an interpretation confirmed by titrations with alkali. Synthetic products are determined biologically by Streptococcus lactis (A), which is unaffected by excess of β-alanine (V) present. Absence of OH·C·C·CO₂H is proved by dehydrating micro-quantities by H₂SO₄ and then titrating with KMnO₄ in COMe₂; the method is tested on α - and β -hydroxy- γ -butyrolactone, (III), (IV), erythronolactone (VI), OH·CHMe·CH(OH)·CO₂H, OH·[CH₂]₂·CO₂H, OH·CH₂·CHMe(OH)·CO₂H, $(OH \cdot CH_2)_2^2 C(OH) \cdot CO_2H$, and α -hydroxy- β -methyl- γ butyrolactone. (I) is recovered largely unchanged after treatment with Pb(OAc)₄, HIO₄, or NaOI. Condensation of (V) with α -hydroxy-valero-, $-\alpha$ - or $-\beta$ methyl-y-butyro-lactone gives very slightly active products, but products from (II) and (VI) are inactive. Prep. from liver extract of COMe2-insol. products containing 10-25% of Ba pantothenate is described, two adsorptions on C being essential steps. Acetylation of Ca pantothenate with ${\rm Ac_2O-C_5H_5N}$ at 100° and subsequent treatment with ${\rm CH_2N_2}$ yields Me acetylpantothenate, a liquid, distils at 10^{-4} to 10^{-6} mm., hydrolysed (physiological test) by N-KOH-EtOH at room temp.

VI. Hydrolysis of nearly pure (I) gives oily lactones, but a prep. containing 10% of the Ba salt and free from lactonising OH-acids yields (-)- α -hydroxy- $\beta\beta$ dimethyl- γ -butyrolactone (VII), m.p. 92—93°, sublimes at 25°/10⁻⁴ mm., $[\alpha]_D^{27}$ —49·8° in H₂O, the structure of which is proved by known and the following facts. (VII) contains 1 active H, gives an acetate, m.p. 41—42°, sublimes at 40°/10-5 mm., 3:5-dinitro-, m.p. 156—157°, and p-nitro-benzoate, m.p. 112°. Kuhn-Roth determination shows 0.26 CMe, indicating C·CMe₂·C. N-NaOH-EtOH hydrolyses (VII) to a (+)-Na salt, $[\alpha]_{D}^{26.5}$ +22·19° in ~50% aq. EtOH, lactonised by HCl at a rate suggesting a γ-lactone. Oxidation of the Ba salt by aq. BaMnO₄ (6 O) at 50° and $p_{\rm H}$ 8—8.5 [Ba(OH)₂] gives COMe₂. With MgPhBr in Et₂O, (VII) gives αα-diphenyl-γγ-dimethyl-n-butane-αβδ-triol, m.p. 154—155°, oxidised by Pb(OAc)₄ in C₆H₆ at 48° to COPh₂, and with MgMeI gives OH-CMe₂·CH(OH)·CMe₂·CH₂·OH, oxidised by Pb(OAc)₄ in C₆H₆ at 50° to OH·CH₂·CMe₂·CHO, which is identified by oxidation by Ag₂O in aq. EtOH to OH·CH₂·CMe₂·CO₂H. Boiling 48% HBr does not affect (VII). Synthesis of (I) from natural and synthetic (VII) by condensation with β -alanine Et ester (VIII) and subsequent hydrolysis gives products of equal activity towards (A). (I)is, therefore,

OH·CH₂·CMe₂·CH(OH)·CO·NH·[CH₂]₂·CO₂H.

VII. Hydrolysis of Ca pantothenate by 0·5n-HCl at 100°, re-esterification by (VIII) at 65—75°, and hydrolysis of the CO₂Et by 0·3n-Na₂CO₃ regenerates 43—49% of the biological activity of (I). Heating hydrolysed (I) with the Na salt of (V) in EtOH and dl-(VII) at 95—100° gives a product showing 50% of the activity (Lactobacillus casei ε) of natural (I).

VIII. Pr^βCHO, 20% aq. CH₂O, and K₂CO₃ at ⇒20° give OH·CH₂·CMe₂·CHO, m.p. 96—97°, b.p. 83-86°/15 mm., which, when treated with aq. NaHSO₃ at 100° and then aq. KCN at 5—10°, gives the cyanohydrin, hydrolysed, first by Et₂O-conc. HCl at room temp. and then conc. HCl at 100°, to dl-ahydroxy-ββ-dimethyl-γ-butyrolactone (IX), m.p. 56— 58°, b.p. 119—121°/15 mm. (p-nitrobenzoate, m.p. 137—138°). Hydrolysis by NaOH at 80—90° to the Na salt, neutralisation by HCl, and treatment with quinine hydrochloride gives quinine (+)- $\alpha\gamma$ -dihydroxy- $\beta\beta$ -dimethylbutyrate, m.p. 189°, [α] $_{\rm D}^{25}$ —130.5° in MeOH, whence 2.5N-HCl at 100° gives the (—)-lactone (VII), m.p. 89—90°, $[\alpha]_p^{25}$ —50.7° in H₂O (p-nitrobenzoate, m.p. 112°). The Ba salt from (IX) with quinine sulphate in H₂O gives BaSO₄ and then quinine (-)-αγ-dihydroxy-ββ-dimethylbutyrate, m.p. 176—178°, $[\alpha]_{D}^{25}$ -146° in MeOH, and thence (+)- α -hydroxy- $\beta\beta$ dimethyl- γ -butyrolactone, m.p. 91°, $[\alpha]_D^{25}$ +50·1° in H_2O (p-nitrobenzoate, m.p. 114°). The (+)-lactone is racemised in H_2O at 150° or more slowly in boiling abs. EtOH. Heating the (-)-, (+)-, and dl-lactone with (VIII), hydrolysing the product with 0.45-0.9n-Ba(OH)2, and removing the Ba etc. gives pure, gummy (+)- (natural) (micro-cryst. Ca salt, [a]_D²⁵

 $+24.27^{\circ}$ in H_2O), (-)- (Ca salt, $[\alpha]_D^{26}$ -23.80° in H_2O), and dl-pantothenic acid (Ca salt; benzylthiuronium salt, m.p. 135-136°), respectively. Only thus is the natural acid obtained pure. The synthetic (+)-acid is identical with the vitamin in biological action on bacteria, chicks (15 or 20 mg. per 100 g. of diet produces twice the wt. increase of 10-mg. doses), and rats (one 0.8-mg. dose effective). The (-)-acid from pure (+)-lactone is ineffective (bacteria, rats) and the dl-acid has 47-52% of the activity of the

IX. (OH·CH₂)₂CMe·CHO and a drop of NMe₃ in liquid HCN give a cyanohydrin, hydrolysed to ahydroxy- β -methyl- β -hydroxymethyl- γ -butyrolactone, which with the Na salt of (V) gives "hydroxypanto-

thenic acid,"

toxicity.

 $(OH \cdot CH_2)_2 CMe \cdot CH(OH) \cdot CO \cdot NH \cdot [CH_2]_2 \cdot CO_2H.$ assay of (I) by yeast or bacteria gives results which vary greatly according to conditions of growth, but natural and synthetic (I) give identical results.

Dialkylacetylbiurets. A. J. Hill and W. M. DEGNAN (J. Amer. Chem. Soc., 1940, 62, 1595-1596).—RCOCl and AgNCO in Et₂O give α-ethyl-nbutyryl-, b.p. 59-61°/31 mm., a-ethyl-n-hexoyl-, b.p. 78—85°/20 mm., β-methyl-α-ethyl-n-valeryl-, b.p. 55—56°/11 mm., δ-methyl-α-ethyl-n-hexoyl-, b.p. 100—105°/30 mm., α-n-butyl-n-hexoyl-, b.p. 68—73°/12 mm., α-phenyl-n-butyryl-, b.p. 111— 115°/11 mm., α -ethyl- Δ^{γ} -n-pentenoyl-, b.p. 83–85°/34 mm., aa-dimethyl-n-butyryl-, b.p. 65-70°/10 mm., benzoyl-, b.p. 88-91°/20 mm., and phenylacetyl-, b.p. $116-120^{\circ}/20$ mm., -carbimide. With $CO(NH_2)_2$ or the appropriate derivative in boiling Et₂O these yield a-ethyl-n-butyryl-, m.p. 178°, a-ethyl-n-hexoyl-, m.p. 106°, β-methyl-α-ethyl-n-valeryl-, m.p. 89°, δmelhyl-α-ethyl-n-hexoyl-, m.p. 177°, α-n-butyl-n-hexoyl, m.p. 158°, α-phenyl-n-butyryl-, m.p. 154°, α-ethyl-Δγ-npentenoyl-, m.p. 106°, benzoyl-, m.p. 233°, phenylacetyl-, m.p. 203°, αα-dimethyl-n-butyryl-, m.p. 171°,

 α -α'-ethyl-n-butyryl-ε-ethyl-, m.p. 245° , α -α'-ethyl-n-butyryl-ε-diethyl-, m.p. 104° , α -α'-ethyl-n-butyryl-εε-pentamethylene- (I), m.p. 113° , and α -α'-ethyl-n-butyryl-ε-diethyl-n-butyryl-

ε-α'-phenyl-n-butyryl-, m.p. 127°, -biuret and ethylenedi-

(ε-α'-ethyl-n-butyrylbiuret), m.p. 246°. α-α'-Ethyl-n-

butyryl-, m.p. 132°, a-8'-methyl-a'-ethyl-n-hexoyl-, m.p.

123°, and α - α' -ethyl- Δ^{γ} -n-hexenoyl-, m.p. 123°, - δ -thiobiuret are similarly prepared in C_6H_6 . The

biurets, especially (I), are potent hypnotics of low

Preparation of nitriles and amides. Reactions of esters with acids and with aluminium chloride. Use of the salt, NaCl,AlCl₃, in the Friedel-Crafts reaction. J. F. Norris and A. J. KLEMKA (J. Amer. Chem. Soc., 1940, 62, 1432— 1435).—Eleven nitriles are prepared in 63—97% yield by distilling the corresponding amide with AlCl₃,NaCl (prep. described) (cf. A., 1939, II, 372); a procedure applicable to 10 mg. is described. NH₄ salts give poorer yields and amides could not be isolated as intermediates. Amides are often conveniently prepared by heating NH2Ac and the acid, so that AcOH distils off; this reaction is reversible, since BzOH and NHPhAc give NHPhBz. Inter-

change of ester groups occurs when BzOH is heated with PhOAc or EtOAc. AlCl₃, NaCl may be used in Friedel-Crafts reactions, but is less vigorous than AlCl₃. It yields CH₂Ph₂ from CH₂PhCl and C₆H₆, but does not cause reaction of C_6H_6 with $CHCl_3$ or CCl_4 ; it catalyses reaction with alkyl halides. Boiling NH_4Cl in BzCl gives PhCN, probably by way of NH₂Bz. EtOBz (1 mol.) and AlCl₃ (1 mol.) at 165° give 95% of EtCl. 2:6:1-C₆H₃Cl₂·CO₂Et with $AlCl_3$ at $110-130^\circ$ gives EtCl (91%) and 2:6:1-C₆H₃Cl₂·CO₂H, but with NH₂Ac at 200—210° gives only $m - C_6 H_4 Cl_2$ (28%). BzOH (1 mol.), PhMe (2), and AlCl₃ (2 mols.) give 60% of ketones, mainly $p\text{-}C_6H_4\text{Me}\text{-}COPh.$

Manufacture of α -cyano- $\Delta^{\alpha\gamma}$ -butadiene.—See B., 1940, 515.

Equilibrium composition of magnesium nbutyl chloride solutions in ethyl ether. C. R. NOLLER and D. C. RANEY (J. Amer. Chem. Soc., 1940, **62**, 1749—1751).—Only small amounts of MgCl₂ are pptd. from MgBu°Cl in Et₂O, even if solid MgCl₂ is added to prevent supersaturation. Analysis of the equilibrium mixtures indicates 1.2% of MgEt2. Thus, either the dioxan method of analysis (A., 1940, I, 116) is erroneous or the solubility of MgCl₂ is enormously increased by presence of MgBu^a₂ and MgBu^aCl.

Redistribution reaction. VIII. Relative affinity of mercury and lead for methyl and ethyl radicals. G. Calingaert, H. Soroos, and G. W. Thomson (J. Amer. Chem. Soc., 1940, **62**, 1542—1545; cf. A., 1940, II, 269).—2:1 HgEt₂-PbMe₄ or HgMe₂-PbEt₄ in presence of a little AlCl₃ at 78-83° give the same equilibrium mixture, due to random distribution, but containing more Me and less Et attached to the Hg to the Pb.

Hindered rotation. I—III.—See A., 1940, I, 282.

Acetylenic cyclohexane derivatives. MARVEL, R. MOZINGO, and R. WHITE (J. Amer. Chem. Soc., 1940, 62, 1880—1881).—The MgBr derivative (prep. by MgEtBr) of 2-methyl-1-acetylenylcyclohexanol with COMeEt in Et₂O gives 2-methyl-1-\gamma-hydroxy-γ-methyl-Δ^a-pentinenyleyclohexanol, m.p. 69-70°, dehydrated by KHSO $_4$ at 180° to 2-methyl-1- γ -methyl- α - Δ^{γ} -pentinenyl- Δ^{1} -cyclohexene, b.p. $82-84^{\circ}/2$ mm. The MgBr derivative of 1-acetylenylcyclohexanol and 2-methylcyclohexanone give a-1-hydroxy-1-cyclohexylβ-1'-hydroxy-2'-methyl-1'-cyclohexylacetylene, m.p. 94-95°, dehydrated by boiling 40% H_2SO_4 to α -l- Δ^1 cyclohexenyl- β -2'-methyl-1- Δ 1-cyclohexenylacetylene, b.p. 115—117°/2 mm.

Spectrographic study of the formation of $\Delta^{1:3}$ -cyclohexadiene from cyclohexene. (MISSES) H. STÜCKLEN, H. THAYER, and P. WILLIS (J. Amer. Chem. Soc., 1940, **62**, 1717—1719).—Traces of C_6H_6 and cyclohexadiene (I) can be detected spectrographically in cyclohexene (II) and are present in (II) as usually prepared. C₆H₆ is removed by fractionation, and (I) by interaction with (:CH·CO)₂O, excess of the anhydride being then removed by filtration at -78°. The absorption spectrum of pure (II) is reported. Illumination (ultra-violet) of (II) in N2 causes formation of (I), increased if peroxide or aldehyde is present. In sunlight- N_2 , (II) containing a trace of peroxide slowly gives a gummy polymeride of (I). Distillation of (II) causes gradual formation of (I). R. S. C.

Calculation of dipole moments from rates of nitration of substituted benzenes.—See A., 1940, I, 347.

Hydrogen fluoride as a condensing agent. XI. Reaction of alcohols and ethers benzene. J. H. Simons and S. Archer. Reactions of methyl, ethyl, and phenyl compounds with benzene and its derivatives. J. H. SIMONS and H. J. PASSINO (J. Amer. Chem. Soc., 1940, **62**, 1623—1624, 1624; cf. A., 1940, II, 168).— XI. sec. and tert. Alcohols condense with C₆H₆ in HF at room temp., but for primary alcohols 100° is usually necessary. Bu OH or Bu O gives ~20% of CHPhMeEt. CH₂Ph·OH or (CH₂Ph)₂O at room temp. gives 65—70% of CH_2Ph_2 . $Pr^{\beta}OH$ or Pr^{β}_2O with C_6H_6 (1:7) gives $PhPr^{\beta}$ (22.4, 26), $p\cdot C_6H_4Pr^{\beta}_2$ (14, 24), 1:2:4· $C_6H_3Pr^{\beta}_3$ (24, 25), and 1:2:4:5- $C_6H_2Pr^{\beta}_4$ (28, 8%, respectively). Bu OH or $CMe_2Et\cdot OH$ with C_6H_6 (1:7) gives 40% of mono- and 50% of dialkylated products. The fact that alcohols give higher yields than do chlorides is connected with higher yields than do chlorides is connected with evolution of H₂O in solution in HF from the former and of HCl at I atm. from the latter. Condensations by HF and AlCl₃ proceed by different mechanisms.

XII. EtOH and C_6H_6 in HF at 200° give high yields of PhEt and C_6H_4 Et₂. EtI, ClCO₂Et, EtOAc, and Et₂O condense with C_6H_6 and PhMe in HF. C_2H_4 at 0° gives \Rightarrow traces of PhEt. MeOH, MeOAc, and MeI do not condense with C_6H_6 , PhMe, or PhOH in HF at 200°, but PhOH and MeOH in HF give PhOMe. PhOH, PhCl, and Ph₂O do not give phenylated products at 200°; PhOAc and C_6H_6 give some COPhMe and PhOH. EtOH and PhOH give no PhOEt, but Ph₂O alone in HF gives a little PhOH. Little tar is formed, except sometimes with PhOH. No details are given.

Intermediate complexes in the Friedel-Crafts reactions. J. F. Norris and J. E. Wood, III (J. Amer. Chem. Soc., 1940, 62, 1428—1432).—Compounds, $2AlBr_3$, s- $C_6H_3Et_3$, HBr (I) (cf. A., 1940, II, 270), 2AlBr₃,s-C₆H₃Me₃,HBr (II), 2AlBr₃,s-C₆H₃Et₃,EtBr, and 2ÅlBr₃,s-C₆H₃Me₃,EtBr, are prepared from appropriate amounts of the components. Little reaction occurs between CO₂ and 2AlBr₃,2s-C₆H₃Et₃,HBr, 2AlBr₃,3s-C₆H₃Me₃,HBr, or (II), but CO₂, s-C₆H₃Me₃ (1 mol.), and AlBr₃ (1 mol.) give CO(s-C₆H₂Me₃)₂ (44.9%) and s-C₆H₂Me₃·CO₂H (26.9%). Addition of HBr increases 1000-fold the conductivity of AlBr, in PhMe. Electrolysis of (I) involves transfers, which are most simply interpreted as due to a salt, [C₆H₃Et₃,H]Al₂Br₇. Passage of HBr or HCl into 2AlCl₃,PhNO₂ or AlBr₃,PhNO₂, respectively, involves mainly replacement of halogen (use of HI leads to some $C_6H_2I_3\cdot NH_2$); similar replacements occur with C_6H_6 and PhMe. $2AlHal_3.PhNO_2$ are oxidising agents, which may explode under certain conditions. C_6H_6 , AcCl, and AlBr₃ give 70% of HBr; C_6H_6 , AcBr, and AlCl₃ give 77% of HCl. R. S. C.

Polymethylbenzenes. XXVI. Nitration bromopentamethylbenzene. L. I. SMITH and J. W. HORNER, jun. (J. Amer. Chem. Soc., 1940, 62, 1349-1354; cf. A., 1940, II, 224).-Elimination of Me on nitration of polymethylbenzenes occurs by way of substituted benzyl nitrates. C₆Mc₅Br and $\mathrm{HNO_3}$ (d 1.5) in CHCl₃ at -11° to -1° give an oil, which in MeOH yields a 3:2 mixture (A) of $2:3:4:6:5:1-\text{ and }2:3:4:5:6:1-C_6\text{Me}_4\text{Br}\cdot\text{CH}_2\cdot\text{O}\cdot\text{NO}_2$ with some derived $C_6Me_4Br \cdot OMe$. More vigorous conditions give some $1:2:3:4:5:6 \cdot C_6Me_3Br(NO_2)_2$. Conversion of (A) by boiling KOH-EtOH into the Et ethers, by H₂SO₄-AcOH-H₂O into the dibenzyl ethers, by Ac₂O-H₂SO₄ into the acetates, by aq. COMe2 at 200-240° into the alcohols, and by boiling HCl-EtOH into the chlorides is described. Conversion of the acetates into the dibenzyl ethers, alcohols, and chlorides, of the alcohols and dibenzyl ethers into the chlorides, of the chlorides into the iodides, and of the iodides into (A) is also described. Conc. H_2SO_4 at room temp. converts (A) into mixed $C_6Me_4Br\ NO_2$, reduced by Sn-HCl to 1:2:3:4:5- $C_6^{\circ}HMe_4\cdot NH_2$ (I) and bromoaminoisodurene (II), m.p. $145\cdot 5-147^{\circ}$. $1:2:4:5:3-C_6HMe_4Br$ and CH_2O in HCl at 100° give 4-bromo-2: 3:5:6-tetramethylbenzyl chloride, m.p. 105.5—107.5°, converted by NaI-COMe2 at room temp. into the iodide, m.p. 118.5—120°, which with KOAc in boiling AcOH gives the acetate, m.p. 119·5—122°. With ${\rm \widetilde{AgNO_3}}$ in boiling dioxan this gives the *nitrate*, m.p. $11\overline{3}$ — $1\overline{1}4.5^{\circ}$. $1:\underline{2}:3:5:4$ - C_6HMe_4Br gives similarly 5-bromo-2:3:4:6-tetramethylbenzyl chloride, m.p. 114—114·5°, iodide, m.p. 132·5—134°, acetate, m.p. 88·5—90°, and nitrate, m.p. 105—106·5°, and $1:2:3:4:5\cdot C_6HMe_4Br$ gives 6bromo-2:3:4:5-tetramethylbenzyl čhloriđe, m.p. 114-116°, iodide, m.p. 142—143·5°, acetate, m.p. 96·5—98°, and nitrate, m.p. 90—92·5°. HNO₃ (d 1·5) in CHCl₃-H₂SO₄ converts the bromohydrocarbon into bromonitro-durene, m.p. 179-180°, -isodurene, m.p. 176.5-177.5°, and -prehnitene, m.p. 180-181.5°, reduced by Sn-HCl to aminodurene, $(\bar{\Pi})$, and (I), respectively.

Side-chain bromination. J. R. Sampey, F. S. Fawcett, and B. A. Morehead (J. Amer. Chem. Soc., 1940, 62, 1839—1840).—The rate of side-chain bromination in sunlight is CH₂Ph₂>s-C₆H₃Me₃> C₆Me₆>p-, m-, o-xylene>PhMe>p-, m-, o-C₆H₄MeCl>p-, m-, o-C₆H₄MeBr>p-, m-, o-C₆H₄MeI; o-, m-, p-C₆H₄Me·CN, o-, m-, p-C₆H₄Me·NO₂, 1:2:4-C₆H₃Me(NO₂)₂, 1:2:4:6-C₆H₂Me(NO₂)₃, CH₂(C₆H₄·NO₂-p)₂, and p-C₆H₄Me·SO₂Cl do not react. Under illumination by electric light, the rate varies greatly according to the solvent and its purity; e.g., presence of S in CS₂ or washing CHCl₃ with H₂O decreases the rate. CHCl₃ at 57° is itself brominated. Rates are recorded for the following substitution products of PhMe: in CS₂ at 57° H>p->o->m-Cl>p->m->o-Br>p-I>p-CN>m-I>p-NI₂>m-CN>o-I>m-NO₂>o-CN>o-NO₂; in CCl₄ at 57° H>p-SO₂Cl, m-CO₂H>o-CO₂H>2:4-(NO₂)₂>2:4:6-(NO₂)₃ (unaffected); in CS₂ at 10° α-Ph>Me₅>3:5-Me₂>p-Me>o->m-Me>H. Br in the side-chain is determined by removal by NaOAc in boiling abs. EtOH and titration of the NaBr formed. Usually >93% of the Br introduced is in the side-chain. R. S. C.

Reaction of organic halides with piperidine. V. Negatively substituted ethyl bromides. E. L. FOREMAN and S. M. McElvain (J. Amer. Chem. Soc., 1940, 62, 1435—1438).—The reaction mechanism, CHXBr·CH₂·CO₂Et + piperidine →

CHXBr·CH·CO₂Et \rightarrow CHX:CH·CO₂Et etc. (A., 1934, 532), is confirmed since increasing the electronegativity of Y in C₆H₄Y·[CH₂]₂·Br (Y = o- or p-NO₂, p-CN, p-Ac, p-CO₂Et, or H) increases the reactivity. This increase is accompanied by decrease in the amount of tert. amine formed by subsequent addition (residue remains as olefine), indicating a different mode of formation for the latter. β -Bromopropiophenone (prep. from Br·[CH₂]₂·COCl etc.), m.p. 58—59°, β -o-nitrophenylethyl (by nitration of Ph·[CH₂]₂·Br), m.p. 36—38°, b.p. 115—120°/0·5 mm., β -p-acetylphenylethyl (I) (by a Friedel-Crafts reaction), b.p. 117—118°/0·1 mm., β -p-carboxyphenylethyl [by oxidation of (I)], m.p. 205—207° (Et ester, b.p. 111—114°/0·1 mm.), and p-cyanophenylethyl bromide (prep. from the amide by SOCl₂), m.p. 49—50°, are described.

Free radicals and radical stability. X. Influence of the methyl group on the stability of triphenylmethyl. S. T. Bowden and D. L. Clarke (J.C.S., 1940, 883—887).—Diphenyl-o-tolylmethyl chloride [$FeCl_3$, m.p. 137—138° (decomp.), and ZnCl₂ compound (an oil)] yields with Mg and CO₂ in Et₂O, diphenyl-o-tolylacetic acid, m.p. 226°, and with mol. Ag, $CPh_2 \cdot C_6H_4Me$. This shows less tendency to isomerise than methyltriphenylmethyls hitherto prepared, has (freshly prepared) a mol. wt. in C_6H_6 corresponding with a stability of 20%, and in PhBr absorbs 103—107% of the theoretical amount of O₂, giving the peroxide, m.p. 164° (also prepared by the action of Hg on solutions of the chloride). Theories concerning the stability of such radicals are discussed.

Hexa-p-alkylphenylethanes. p-cyclo-Hexyl derivatives of hexaphenylethane. C. S. MARVEL and C. M. HIMEL (J. Amer. Chem. Soc., 1940, **62**, 1550—1553; cf. A., 1939, II, 538).—Bromophenylcyclohexane, prepared from PhBr, cyclohexene, and AlCl₃ (Mayes et al., A., 1929, 550; Brown et al., A., 1937, II, 373), is a mixture of isomerides, since (a) interaction with Mg in Et₂O and then with CO₂ gives acids, which by dehydrogenation (Pd-C; 300°) yield $o \cdot C_6 H_4 Ph \cdot CO_2 H$, (b) with HNO_3 it gives p- (I) and m-C₆H₄Br·CO₂H, and (c) with CrO₃ in 50% AcOH it gives (I). p-Bromophenylcyclohexane (II), b.p. 110°/1.5—2 mm., is obtained from cyclohexylbenzene by Br and Fe (85% yield) or by treating the p-diazonium bromide in 40% HBr with Cu-bronze. p-Aminophenylcyclohexane is obtained (97%) from the NO₂-compound by H₂-Raney Ni. The Mg derivative (prep. with aid of a little MgEtBr) of (II) with COPh₂, EtOBz, or Et₂CO₃ in C₆H₆ gives diphenyl-pcyclohexylphenylcarbinol (65%), m.p. 95-96° (Et ether, m.p. 106—107°), phenyldicyclohexylphenylcarbinol (30%), m.p. 102—103° (Et ether, m.p. 152—153°), and tri-p-cyclohexylphenylcarbinol (35%), m.p. 180—181° (lit. 168°) (Et ether, m.p. 189—190°) (with a little pp'-dicyclohexylbenzophenone), respectively. With AcCl in boiling C₆H₆, these give diphenyl-p-cyclo-

hexylphenyl-, m.p. $126-127^\circ$ (lit. 123°), phenyldi-p-cyclo-hexylphenyl-, m.p. $155-156^\circ$, and tri-p-cyclo-hexylphenyl-, m.p. $169-170^\circ$, -methyl chloride, which with Ag in C_6H_6 give solutions of tetraphenyldi-(III), diphenyltetra- (IV), and hexa- (V) -p-cyclo-hexylphenylethane and thence the derived peroxides, m.p. $158-159^\circ$ (lit. 164°), $120-121^\circ$, and $178-179^\circ$, respectively. Magnetic susceptibility shows the following % dissociation in C_6H_6 at 25° : (III) $9\pm1\%$ (0·1m.), (IV) $10\pm1\%$ (0·1m.), (V) $50\pm7\%$ (0·01m.; equiv. to 22% in 0·08m. solution). R. S. C.

Magneto-chemical investigation of organic ubstances. XVIII. True diradical with p-"free valencies." E. Müller and E. Tietz (Naturwiss., 1940, 28, 189—190; cf. A., 1940, II, 122).—2:6:2':6'-Tetrachloro-4:4'-di(phenyl-p-diphenylmethylene)diphenyl, $(p \cdot \mathring{\mathbf{C}}_6 H_4 \text{Ph} \cdot \mathring{\mathbf{C}} \text{Ph} \cdot \mathring{\mathbf{C}}_6 H_2 \text{Cl}_2)_2$, is shown by its paramagnestism to exist partly as diradical, the structure being due to hindrance by the o-Cl of free rotation of the central $\mathring{\mathbf{C}}_6$ - $\mathring{\mathbf{C}}_6$ linking. As in the CPh₃ series, introduction of $\mathring{\mathbf{C}}_6 H_4 \text{Ph}$ for Ph increases the degree of dissociation. R. S. C.

Polymethyl aromatic hydrocarbons. I. Synthesis of 1:2:4-tri-, 1:2-, 1:3-, and 1:4-di-methylnaphthalene. M. C. Kloetzel (J. Amer. Chem. Soc., 1940, 62, 1708—1713).—72—98% yields are obtained throughout the syntheses.

Bz·[CH₂]₂·CO₂Me (prep. from the acid by MeOH-H₂SO₄), b.p. 132°/0.4 mm. (semicarbazone, m.p. 138— 139°), and MgMeI under defined conditions give 75% of CPhMe:CH·CH₂·CO₂H (cf. Mayer et al., A., 1923, i, 802), hydrogenated (PtO₂; 0.5 atm.; AcOH) to CHPhMe·[CH₂]₂·CO₂H, b.p. 165—166°/12 mm., which in 80% $\rm H_2SO_4$ gives 1-keto-4-methyl-1:2:3:4-tctrahydronaphthalene (I), b.p. $\rm 110-111^\circ/1~mm$. [semicarbazone, m.p. 209—211° (lit., 210°, 204°)]. With MgMeI in boiling Et₂O this gives 1-hydroxy-1:4-dimethyl-1:2:3:4-tetrahydronaphthalene, m.p. 82—82.5°, dehydrated by HCO₂H, first boiling (1 min.) and then at 25°, to 1:4-dimethyl-1:2-dihydronaphthalene, b.p. $87-88^{\circ}/0.8$ mm. With Pd-C at $260-280^{\circ}$, later $280-290^{\circ}$, this gives $1:4-C_{10}H_6Me_2$, b.p. 108—109°/1 mm. [picrate, m.p. 143—144°; styphnate, m.p. 125—126°; s-C₆H₃(NO₂)₃ derivative, m.p. 165—166°]. Me₂C₂O₄ condensed with (I) gives the 2-glyoxylate, which described as powder at 175—185° gives 185° gives Me 1-keto-4-methyl-1: 2:3:4-tetrahydronaphthalene-2-carboxylate, m.p. 66-67°, b.p. 150-152°/2 mm. MeI-NaOMe then yields Me 1-keto-2:4-dimethyl-1:2:3:4-tetrahydronaphthalene-2-carboxylate, b.p. 158—159°/2 mm., hydrolysed at 50—55° by NaOH in H₂O containing a little EtOH to the acid, which, when distilled in steam, gives 1-keto-2:4-dimethyl-1:2:3:4-tetrahydronaphthalene (II), b.p. 112°/1 mm. [semicarbazone, m.p. 218—220° (decomp.)]. Clemmensen reduction of (II) gives 1:3dimethyl-1:2:3:4-tetrahydronaphthalene, b.p. $78^{\circ}/1$ mm., which with S at 230—240°, later 250—270°, or Pd-C at 200-250°, later 280-320°, gives 98 and 74%, respectively, of $1:3-C_{10}H_6Me_2$, b.p. $117^{\circ}/2$ mm. [picrate, m.p. 117—118° (lit., 118°, 88—89°); styphnate, m.p. 116—118°]. With MgMeI in Et₂O, (II) 1-hydroxy-1: 2: 4-trimethyl-1: 2: 3: 4-tetrahydronaphthalene, m.p. 84—86°, and thence (HCO₂H)

1:2:4-trimethyl-3:4-dihydronaphthalene, b.p. 86— 88°/0·4 mm., and $1:2:4\text{-}\mathrm{C}_{10}\mathrm{H}_5\mathrm{Me}_3$ (III), m.p. 54—55° (lit., 50°), b.p. $125\text{--}126^\circ$ /0·6 mm. (picrate, new m.p. $148\text{--}148\text{-}5^\circ$; styphate, m.p. $123\text{-}5^\circ$). The structure of (III) is confirmed as follows. OH-CPhMe-CHMe-CO₂Et (prep. by a Reformatsky reaction) with KHSO₄ gives an ester, hydrolysed to CHPh:CMe·CO₂H. H₂-PtO₂ in AcOH reduces this to β-phenyl-α-methyl-n-butyric acid, m.p. 131—132°, b.p. 124-125°/0.2 mm., the chloride of which with CH₂N₂ gives the diazo-ketone and thence by Ag₂O in aq. Na₂S₂O₃ CHPhMe•CHMe•CH₂•CO₂H. Cyclisation by 80% H₂SO₄ then yields 1-keto-3: 4-dimethyl-1:2:3:4-tetrahydronaphthalene, b.p. $96-97^{\circ}/0.3$ mm., which with MgMeI in boiling Et2O gives the carbinol, converted by dehydration (HCO₂H) and dehydrogenation (S; 220—230°) into (III). Me 1-keto-2-methyl-1:2:3:4-tetrahydronaphthalene-2carboxylate gives (method as above) 1-keto-2-methyl-1:2:3:4-tetrahydronaphthalene, b.p. $115-116^{\circ}/$ 2.5 mm. [semicarbazone, m.p. 203—205° (lit. 199— 201°, 200—201°)], and thence 1-hydroxy-1:2-dimethyl-1:2:3:4-tetra-, m.p. 65.5—66° (lit. 64— 66°), and 1:2-dimethyl-3:4-di-hydronaphthalene, b.p. $101^{\circ}/2.5$ mm., and $1:2-C_{10}H_{6}Me_{2}$ [picrate, m.p. $130-131^{\circ}$; styphnate, m.p. $142-143^{\circ}$; s-C₆H₃(NO₂)₃ derivative, m.p. 147—148°]. R. S. C.

Preparation of 2-phenylnaphthalene from diphenyl. D. H. Hey and R. Wilkinson (J.C.S., 1940, 1030).—The method is the same as that of Weizmann et al. (A., 1940, II, 253), except that cyclisation is accomplished by boiling with P_2O_5 in C_6H_6 and treating with ice- H_2O . A. Li.

Chelation of potassium compounds of carboxylic and sulphinic acids. W. G. WRIGHT (J.C.S., 1940, 859—862; cf. A., 1938, II, 478).—β-C₁₀H₇ CO₂H with KOH (0.5 equiv.) in EtOH yields the K H salt, C₁₁H₈O₂,C₁₁H₇O₂K, which chars without melting at a high temp. When α-C₁₀H₇·CO₂H is treated with 0.5 KOH in EtOH and the solution immediately evaporated, a mixture of three chelated H salts is produced: AS(A = acid, S = normal salt), m.p. 163°, AAS, m.p. 115°, and ASS, m.p. 175°. AS is obtained alone by evaporating the same solution after keeping for 2 days; AAS is also prepared by treating A with 0.5 KOH in C₆H₆, or with \(\frac{1}{3} \) KOH in EtOH, and a mixture of AAS and ASS by treating A with $\frac{1}{4}$ KOH + K₂CO₃ in C₆H₆. ASS in COMe₂ + CHCl₃ \rightarrow AS + S (pptd.); AS + A in COMe₂ + CHCl₃ \rightarrow AAS; AS in COMe₂ + CHCl₃ \rightarrow AAS; AS in COMe₂ + CHCl₃ (on long keeping) \rightarrow AAS + S (pptd.); AS in C₆H₆ \rightarrow AAS + ASS (pptd.). The sharp m.p., varying solubilities and optimize the sharp m.p., varying solubilit bilities, and effects of recrystallisation confirm that these are definite compounds. PhSO₂H and C₆H₄Me·SO₂H with 0·5 KOH in EtOH yield K H salts which char without melting at a high temp. p-C₆H₄Me·SO₂H crystallises from CHCl₃ as a monohydrate, but melts under hot CHCl3, the (chelated?) melt on resolidification giving an anhyd. salt which cannot be remelted in air.

 $\rm C_6H_4(CO)_2O$ in $\rm Et_2O-C_6H_6$], m.p. 132—133°, solidifies, remelts at 139.5—140.5° (lit., m.p. 126—127°), with Zn dust in boiling 2n-NaOH gives 94% of o-2:3-dimethylbenzylbenzoic acid, m.p. 177·2—177·8° (with some of the lactone, m.p. 127—128°, of o-α-hydroxy-2:3-dimethylbenzylbenzoic acid), which with ZnCl, in boiling Ac₂O-AcOH gives 1:2-dimethyl-10-anthranyl acetate, m.p. 158·1—158·7°. With MgBu^aBr in C_6H_6 this is hydrolysed to 1:2-dimethylanthr-10-one (55%), m.p. 170·3—171·3°, which with MgMeBr in boiling $\text{Et}_2\text{O-C}_6\text{H}_6$ yields 1:2:10-trimethylanthracene (77%), m.p. $90.6 - 91.4^{\circ}$ [picrate, m.p. $138.5 - 139.5^{\circ}$; $s \cdot C_6 H_3 (NO_2)_3$ compound, m.p. $169.6 - 170.2^{\circ}$; dimeride, m.p. $222 - 226^{\circ}$, formed by irradiation in EtOH]. α -Naphthaquinone (I) and (CH₂:CMe)₂ in boiling EtOH give 95% of 2:3-dimethyl-1:4:9a:4atetrahydroanthraquinone, m.p. 148·5—149·1°, converted by MgMeI in Et₂O-C₆H₆ into a diol, which is dehydrated at 140° to give 2:3:9:10-tetramethyl-1:4dihydroanthracene (42%), m.p. 175·3—176·3° [picrate, m.p. 149·2—149·9°; s-C₆H₃(NO₂)₃ compound, m.p. 150·8—151·8°]. With S at 325° (55%) or Pd-C (25%) this gives 2:3:9:10-tetramethylanthracene, m.p. $139\cdot4$ — $140\cdot2^{\circ}$ [dimeride, m.p. $\sim270^{\circ}$, formed by irradiation and partly dissociated at 210°/2 mm.; picrate, m.p. 177·3—177·8°; s-C₆H₃(NO₂)₃ compound, m.p. 188·8—189·3°]. CHMe.CMe.CH.CH, (modified prep.) and (I) in boiling EtOH give 1:2-dimethyl- $\bar{1}: \bar{4}: 9a: 4a$ -tetrahydroanthraquinone (81%), m.p. 101—101.7°, which with MgMeCl gives only 1:2dimethylanthraquinone, m.p. 157·8—158·2° (lit. 156°), and with MgMeI gives a substance, m.p. 140—154°. M.p. are corr.

Physico-chemical properties of 3:4-benz-pyrene. F. Weigert and J. C. Mottram (Nature, 1940, 145, 895—896).—Needles of commercial benz-pyrene (I) emit a green fluorescence. The colloidal suspension obtained by pouring a solution of the green form of (I) in COMe₂ into H₂O emits a yellowish fluorescence. Heating the green form in a vac. gives a white sublimate, which fluoresces with a blue light. The green and blue forms are enantiomorphous modifications of (I) with a triple point at ~66°. The yellow form changes into the blue on keeping the colloidal suspension for several hr. at 100°, and into the green, at room temp. on moistening the dry residue from the evaporated suspension with

C₅H₁₁·OAc. The blue form is stabilised temporarily in presence of cholesterol. A similar stabilisation may occur in cells coming in contact with (I), and may make free energy available for biological action.

L. S. T.

Phenyldimethylethylammonium bromide. A. Kant (J. Amer. Chem. Soc., 1940, **62**, 1880).—This substance, m.p. 193—194°, is prepared from NPhMe₂ and EtBr. R. S. C.

Hydration of anilides of normal fatty acids.—See A., 1940, I, 360.

Breakdown of the sulphanilamide molecule by ultra-violet irradiation or chemical oxidation. S. M. ROSENTHAL and H. BAUER (Science, 1940, 91, 509; cf. A., 1938, III, 829; 1939, III, 710).—Ultra-violet irradiation of dil. aq. sulphanilamide (I) gives NH₃ and SO₄". The most effective λλ are those

<270 m μ . The amount of S split off increases regularly with the time of irradiation, but a change in conen. of (I) from 20 to 100 mg.-% has little effect for exposures of 10 min. Irradiation of the o- (II) and m- (III) -isomerides of (I) does not produce NH₃ and SO₄"; sulphanilic acid (IV) liberates some NH₃. Oxidation of dil. aq. (I) by FeCl₃ and H₂O₂ also gives NH₃ and SO₄"; the amount of the latter depends on the [Fe'']. (II), (III), and (IV) react similarly.

Sulphanilamide derivatives. VII. N¹-Alkanesulphonylsulphanilamides and related compounds. M. L. Crossley, E. H. Northey, and M. E. HULTQUIST (J. Amer. Chem. Soc., 1940, 62, 1415—1416; cf. A., 1940, II, 164).—Gradual addition of 50% aq. NaOH (to maintain p_{π} at 11—12) to RSO₂Cl and p-NHAc C_6H_4 ·SO₂NH₂ in H_2 O at 35— 40° and subsequent hydrolysis of the Ac by boiling aq. NaOH gives N^1 -ethane-, m.p. 206.5— 207.5° , -nbutane-α-, m.p. 209—210·5°, -n-pentane-α-, m.p. 183— 184·5°, -β-ethyl-n-hexane-α-, m.p. 189—191°, -ndodecane-a-, m.p. 188·8—189·9°, -cyclohexane-, m.p. 230° (decomp.), -dl-camphor-10-, m.p. 213—214.5° and -toluene-w-, m.p. 242-243.5°, -sulphonylsulphanilamide, which are only slightly effective against βhæmolytic streptococci in mice. R. S. C.

Substituted sulphanilamides. II. N^{1} - and N⁴-Sulphonyl derivatives. J. M. Sprague, L. F. McBurney, and L. W. Kissinger (J. Amer. Chem. Soc., 1940, 62, 1714—1716).—RSO₂Cl and p-NH₂·C₆H₄·SO₂·NH₂ in boiling C₅H₅N give 41—73% yields of p-RSO₂·NH·C₆H₄·SO₂·NH₂, but in 10% aq. NaOH give 25, 210% of p-NH₂·NH₂ but in 10% aq. NaOH give 25-31% of $p-NH_2\cdot C_6H_4\cdot SO_2\cdot NH\cdot SO_2R$ (A) (also obtained from the NO_2 -compounds by H_2 -PtO₂). The N^4 -derivatives of (A) are obtained by RCOCl in C₅H₅N or aq. alkali and from p-R'CO·NH·C₆H₄·SO₂·NH₂ by RSO₂Cl in 10% NaOH. Thus are obtained N⁴-methane-, m.p. 180—181°, N⁴-ethane-, m.p. 175—176°, N⁴-butane-α-, m.p. 160— 161°, N⁴-pentane-α-, m.p. 156—156·5°, N⁴-hexane-α-, m.p. 153—153·5°, N⁴-dodecane-α-, m.p. 157—158°, N⁴-toluene-ω-, m.p. 226—227°, N⁴-benzene-, m.p. 147— 148°, N¹-butane-α-, m.p. 205—206°, N¹-pentane-α-, m.p. 179—180°, N¹-toluene-ω-, m.p. 226—227°, N⁴acetyl- N^1 -pentane- α -, m.p. 202.5—203.5°, N^4 -n-hexoyl-N¹-pentane-α-, m.p. 152·5—153°, and N⁴-n-hexoyl-N¹-butane-α-, m.p. 182—183°, -sulphonylsulphanilanide.
Bu°SO₂·NHPh and CISO₃H at <20° give 67% of Bu°SO₂·NHPh and CISO₃H at <20° give 67% of Bu°SO₂·NHPh Bu SO₂Cl; EtSO₂·NHPh gives similarly 20% of EtSO₂Čl, and PhSO₂·NHPh gives 71% of PhSO₂Cl. However, at 0—8°, p-butane-α-, m.p. 126—128°, p-ethane-, m.p. 127—128°, and p-benzene-sulphonamidobenzenesulphonyl chloride (4%) are obtained. p-Nitrobenzenesul phonbutane- α -sulphonamide, 117—118·5°, is prepared from \hat{p} -NO₂·C₆H₄·SO₂·NH
and Bu°SO₂Cl in 10% NaOH. R. S. C.

Quantitative hydrogenation of substituted azocompounds in presence of Raney nickel at normal temperature and pressure. W. F. Whitmore and A. J. Revukas (J. Amer. Chem. Soc., 1940, 62, 1687—1693).—Hydrogenation of phenolic or acid azo-dyes in presence of Raney Ni in EtOH or dioxan at 1 atm. gives the two amines, usually in good yield, without affecting CHO, Ac, OMe, or Cl (cf. B., 1937,

1180). NO₂ is simultaneously reduced to NH₂ and attempts to isolate NO2-amines after partial reduction failed. Reaction is faster in EtOH than in dioxan, but complications, e.g., formation of Schiff's bases from aldehydic dyes, may occur in EtOH. Cl-dyes are reduced faster than are NO2-dyes, provided other groups are absent. Addition of a little excess of NaOH does not cause reduction of Ac, but accelerates the normal reduction of N.N. In presence of 2 mols. of NaOH in EtOH (not dioxan) reduction of N:N in Cldyes is accompanied by removal of Cl, and Cl may be thus determined either by measurement of the H₂ absorbed or by titration of the NaCl formed. However, Cl is eliminated from 2:1- $OH \cdot C_{10}H_6 \cdot N \cdot N \cdot C_6H_2 MeCl \cdot SO_3 Na \cdot 1 : 3 : 4 : 6$ only at 3 atm., although the product, 5:1:2:4-

3 atm., although the product, 5:1:2:4-NH₂·C₆H₂MeCl·SO₃H is dehalogenated at 1 atm. m-Toluidine-4-sulphonic acid and 3:4:5:1-

OMe· C_6H_2 (OH)(N H_2)·CH:N·NH·C(NH)·NH·NO₂, m.p. 223° (decomp.), are described. R. S. C.

Interaction of OH radicals and of similar free radicals [e.g., NHPh].—See A., 1940, 1, 368.

Vicinal substituted resorcinols. I. Alkylresorcinols. Synthesis of γ -ethyl-, γ -n-propyl-, and γ -n-butyl-resorcinol. A. Russell, J. R. FRYE, and W. L. MAULDIN (J. Amer. Chem. Soc., 1441—1443).—7-Hydroxy-4-methylcoumarin [prep. from $CH_2Ac \cdot CO_2Et$ and $m \cdot C_6H_4(OH)_2$ in conc. H₂SO₄ at <10°], m.p. 187°, and Ac₂O give the acetate, m.p. 151°, which with AlCl₃ at 125— 170° gives 7-hydroxy-8-acetyl-4-methylcoumarin, m.p. 163°. With 12% NaOH in N_2 this yields 2:6:1-(OH)₂C₆H₃·COMe, m.p. 154—156°, reduced by Zn-Hg-HCl to 2-ethylresorcinol, m.p. 94.5°. Similarly are obtained 7-propionoxy-, m.p. 148.5°, and 7-nbutyroxy-4-methylcoumarin, m.p. 91°, 7-hydroxy-8propionyl-, m.p. 187°, and -8-n-butyryl-4-methyl-coumarin, m.p. 141°, 2:6-dihydroxy-propiophenone, m.p. 133·5°, and -n-butyrophenone, m.p. 106°, 2-n-propyl-, m.p. 92·5°, and 2-n-butyl-resorcinol, m.p. 83°. 7-Hexoyloxy-4-methylcoumarin (prep. by n-C $_5\mathrm{H}_{11}$ -COCl in C₅H₅N), m.p. 72°, does not undergo the Fries rearrangement.

Structure of cannabidiol. IV. Position of the linking between the two rings. R. Adams, H. Wolff, C. K. Kain, and J. H. Clark (J. Amer. Chem. Soc., 1940, **62**, 1770—1775; cf. A., 1940, II, 215).—Absorption spectra and previous evidence indicate that tetrahydrocannabidiol Me2 ether (I) is probably 2-5'-methyl-2'-isopropyleyclohexyl-5-n-amylresorcinol. Cannabidiol Me, ether, b.p. 168-170°/2 mm., best obtained by boiling MeI-K₂CO₃-COMe₂, with H_2 -PtO₂ (2—3 atm.) in AcOH gives (I), b.p. $167-170^{\circ}/2.5$ mm., $[\alpha]_{D}^{29}$ -30° . Apparatus for Li reactions is described. LiBu^a and m-C₆H₄(OMc)₂ give $2:1:3-C_6H_3Li(OMe)_2$, which with l-menthone (II) gives 1-2':6'-dimethoxyphenyl-5-methyl-2-iso-propylcycloheand, m.p. $59-60^\circ$, $[\alpha]_{27}^{127}-17^\circ$, dehydrated by KHSO₄ at 140—160° to 2-\Delta'-3'-menthenylresorcinol Me2 ether, m.p. 88°, b.p. 123-125°/2 mm., $[\alpha]_D^{27}$ +29°, which with H_2 -PtO₂ in AcOH gives 2-3′menthylresorcinol Me₂ ether (III), m.p. 46°, [a]_D²⁶ -45°. Orcinol Me₂ ether (prep. from orcinol by

 $NaOMe-Me_2SO_4-MeOH$), b.p. $110-112^{\circ}/7$ mm., with LiPh and then (II) gives 1-3': 5'-dimethoxy-p-tolyl-5methyl-2-isopropyleyclohexanol, m.p. 66.5° (uncorr.), $[\alpha]_{D}^{27}$ -17°, and thence as above $\bar{4}$ - $\Delta^{3'}$ -3'-menthenyl-, m.p. $103.5-104^{\circ}$, b.p. $132-133^{\circ}/2$ mm., $[\alpha]_{D}^{28}+40^{\circ}$, and 4-3'-menthyl-orcinol Me_2 ether (Me = 1) (IV), m.p. 60—61°, $[\alpha]_D^{28}$ —36°. The orientation of (IV) is proved by conversion of the Li derivative (prep. by $\tilde{L}iBu^a$) by CO_2 into $3:5:1:4-(OMe)_2C_6H_2\tilde{M}e\cdot\tilde{C}O_2H$. $4:1:3-C_6H_3Br(OMe)_2$ gives $4:1:3-C_6H_3Li(OMe)_2$ and thence as above 1-2': 4'-dimethoxyphenyl-5methyl-2-isopropylcyclohexanol, b.p. 145—148°/2 mm., $[\alpha]_{D}^{27} - 10.3^{\circ}$, $4.\Delta^{3'} - 3'$ -menthenyl, b.p. $140 - 142^{\circ}/2$ mm., $[\alpha]_D^{25} + 52^\circ$, and 4-3'-menthyl-resorcinol, b.p. 142-145°/2 mm., $[\alpha]_D \pm 0$ °. m-C₆H₄(OH)₂, l-menthol, and 85% H_3PO_4 at 140° give 1-4-3'-menthylresorcinol, b,p. 188—190°/2 mm., $[\alpha]_D^{25}$ —69°, and thence (NaOMe-Me₂SO₄-MeOH) the 1-Me₂ ether (V), b.p. 143—145°/2 mm., $[\alpha]_{\rm D}^{23}$ —5.8°, thereof. Orcinol gives similarly 6-3'-menthylorcinol, b.p. 188—190°/2 mm., $[\alpha]_{\rm D}^{28}$ —16°, and its Me_2 ether (VI), b.p. 167—169°/2 mm., $[\alpha]_{\rm D}^{28}$ -14.5°. The absorption spectra of (I), (III), and (IV) are very similar but differ from those of (V) and (VI) (a very similar pair). M.p. are corr. unless otherwise stated. [α] are in 95% EtOH. R. S. C.

Valency angle studies. VI. Stability of the tetrahedral angle at a carbon atom. A. Lüt-TRINGHAUS and K. BUCHHOLZ. VII. Relationships between valency angle and isomorphous replacement with bivalent atoms and pseudoatoms. A. Lüttringhaus and K. Hauschild (Ber., 1940, **73**, [B], 134—145, 145—153).—It is inferred from experiments on ring-closure by formation of polymethylene ethers that the valency angles about the central C are closely similar in CH₂(C₆H₄·OH)₂ and CMe₂(C₆H₄·OH)₂, showing that the angles are very close to the tetrahedral val. in spite of the large differences in the spatial requirements of the attached groups. The CO valency angle in derivatives of ČOPh, is ≫ the tetrahedral val.; a monomeric polymethylene ether of CO(C₆H₄·OH)₂ is not formed with <(CH₂)₁₂. The increased angle is due to electromeric effects, which tend to equalise the angles between the three units attached to the C; the tendency of the rings to lie in one plane may cause a further increase due to interaction of their H atoms. Previous work is reviewed briefly: distortion of valency angles is due to (a) steric effects of neighbouring substituents (notable with ·O· and ·S·, but very small with ·C·); (b) electromeric effects, as with CO attached to aromatic groups; (c) special effects, such as that resulting from semipolar linkings in SO_2 (cf. A., 1940, II, 139), in which two positive charges may occupy valency positions and produce an effectively octahedral configuration at the S atom. The following compounds are prepared by methods described previously (loc! cit. and A., 1939, II, 337); ββ-4: 4'dihydroxydiphenylpropane ζ-bromohexyl ether (I), b.p. 211—215°/0.03 mm., 0-bromo-octyl ether (II), and κ-bromodecyl ether (III), b.p. 230—235°/0·01 mm. Attempted ring-closure (loc. cit.) with (I) gives $\beta\beta-4:4'$ -dihydroxydiphenylpropane methylene ether, m.p. 193.5°; with (II) and (III) intramol. ring-closure gives the octamethylene ether,

CMe₂<C₆H₄·O₄C_{C₆H₄·O₇[CH₂]₈, m.p. 106°, b.p. 196—200°/ 0.03 mm. (yield 23.5%), and decamethylene ether, m.p. 60.4° (yield 53.7%), respectively. 4:4'-Dihydroxybenzophenone ζ -bromohexyl ether, m.p. 104.5° (attempted ring-closure not successful), κ -bromodecyl ether (IV), m.p. 109.5° , and μ -bromododecyl ether (V), m.p. 99° , are similarly prepared; with (IV) ring-closure affords dimeric 4:4'-dihydroxybenzophenone decamethylene ether, m.p. 156° , but the monomeric dodecamethylene ether, m.p. 139° , is obtained from (V) (vield 11.5%).}

VII. M.p. diagrams for a no. of binary systems show that CH₂, O, and S are mutually capable of isomorphous replacement when their valency angles are in close agreement, but not otherwise. Thus Ph₂O and CH₂Ph₂ give a simple eutectic system, but fluorene, diphenylene oxide and sulphide, in which distortion of the CH₂, O, and S valency angles is not possible, give complete ranges of mixed crystals. CH₂(C₆H₄·OMe-p)₂ and S(C₆H₄·OMe-p)₂ have a limited miscibility range in the solid state, but both give simple 'eutectics with O(C₆H₄·OMe-p)₂; this agrees with the observation that CH₂ and S attached to Ph₂ have similar valency angles (~110°) whilst that of O is different (129±4°). Limited miscibility is also

shown by the compounds $X < \begin{array}{c} C_6H_4 \cdot O \\ C_6H_4 \cdot O \end{array} > [CH_2]_{10}$, where $X = CH_2$, O, or S; the miscibility gap is again smallest with $X = CH_2$ and S. 9:9-Dichloro- and 9:9-dimethyl-fluorene also show limited miscibility, indicating that isomorphous replacement is possible with substituents in the 9-positions. A. J. E. W.

Colour reaction of diethylstilbæstrol (4:4'-dihydroxy-αβ-diethylstilbene). E. DINGEMANSE (Nature, 1940, 145, 825).—Addition of several drops of 50% SbCl₅ to a solution of several μg. of stilbæstrol in CHCl₃ produces a fuchsin-red colour; more conc. solutions give a red ppt. On warming, 1 μg. per c.c. of CHCl₃ can be detected. Max. intensity of colour is reached in 15 min. and remains const. for 10—15 min. Fatty and unsaponifiable substances in oily solutions of natural æstrogens must be removed before applying the test. In presence of EtOH the red colour changes rapidly to blue-violet. The reaction has been applied to the colorimetric determination of diethylstilbæstrol in the urine and liver of dogs.

Aminoalkoxydiphenyl derivatives.—See B., 1940, 641.

Acetylenic ethers. I. Phenoxyacetylenes. T. L. Jacobs, R. Cramer, and F. T. Weiss (J. Amer. Chem. Soc., 1940, 62, 1849—1854).—(CHBr.)₂ and KOPh in MeOH under defined conditions give 35—45% of CHBr.CH·OPh (I), b.p. 99—100°/8 mm. (Slimmer's method, A., 1903, i, 249, gives 50% yields), the recovered (CHBr.)₂ being all trans. With KOH powder at 100°/23—25 mm., (I) gives CH:C·OPh (II) (60—80%), m.p. —37° to —36°, b.p. 62—63°/25 mm., and ~12% of PhOH. H₂—PtO₂ reduces (II) to PhOEt. (II) gives a dibromide, m.p. 37—38°, b.p. 127—128°/12 mm., and di-iodide, m.p. 77·5—78·5°. With cone. H₂SO₄ at 0°, (II) gives 80% of phenolsulphonic acids and AcOH. (II) is stable in solid

CO₂, but polymerises at room temp. (no absorption of \tilde{O}_{0} ; not catalysed by light) and explodes at >100°. The Na derivative (prep. by Na in Et₂O-N₂) with BzCl at 0° gives 65% of PhOBz (held by Slimmer, loc. cit., to be OPh·C·C·OBz). The MgBr derivative of (II) (prep. by MgEtBr in boiling Et₂O) with $p\text{-C}_6\text{H}_4^\prime\text{Me-SO}_3\text{Et}$ (III) gives α -phenoxy- Δ^a -n-butinene (15%), b.p. 98—99°/20 mm., with $p\text{-C}_6\text{H}_4\text{Me-SO}_3\text{Bu}$ (IV) gives α-phenoxy-Δ^a-n-hexinene (V) (52%), b.p. 122—123°/14 mm., with COMe₂ gives α-phenoxy-γmethyl- Δ^a -n-butinen- γ -ol (63%), b.p. 91—92°/1 mm., with BzCl or BzBr at -15° gives 38 or 26%, respectively, of PhOBz (and tar), with MeCHO gives α-phenoxy-Δ^α-n-butinen-γ-ol, b.p. 88—89°/1 mm., with CO₂ gives a tar, and with H₂O or CH₂:CH·CH₂Br regenerates 80 and 61%, respectively, of (II); in these reactions a little PhOH is also formed [74% with (III), 20—38% with (IV)]. With H₂-PtO₂, (V) gives n-C₆H₁₃·OPh, b.p. 130°/22·5 mm., and with Hg(OAc)₂-HCl-H₂O gives n-C₅H₁₁·CO₂Ph. Heating OPh·C;C·Mgl in Bu₂O at 90—105° gives 86% of PhOH and a tar. Na in xylene at 90° converts (I) into PhOH (98·1%) and (CHBr₂)₂ (21%), but Mg in Bu₂O is without effect. The structure of metallic derivatives of (II) is partly analogous to that of allylic derivatives.

New synthesis of 4:4'-dimethoxy- $\alpha\beta$ -diethylstilbene. E. Péteri (J.C.S., 1940, 833—835).-Anisoin and MgEtBr afford αβ-dihydroxy-αβ-di-panisylbutane (I), m.p. 114-115° (cf. Weill, A., 1932, 394), oxidised by CrO₃-AcOH at 100° (bath) to anisic acid. Dehydration of (I) with boiling (9 hr.) H₂C₂O₄-AcOH gives >70% of $(p\text{-OMe-C}_6H_4)$ CH-COEt (II), b.p. $210-212^{\circ}/2$ mm., m.p. $56-58^{\circ}$; use of aq. $H_2C_2O_4$ also affords some $(p\text{-OMe}\cdot C_6H_4)_2\text{CEt}\cdot \text{CHO}$ (III). αα-Di-p-anisylacetonitrile (IV) and MgEtBr give (II), oxidised (CrO₃-AcOH at room temp.) to CO(C₆H₄·OMe-p)₂. The oil, b.p. 190—195°/2 mm. [contains (III)], obtained when (I) is boiled for 2 hr., is converted by MgEtBr followed by distillation with a drop of dil. H_2SO_4 into a little [:CEt(C_6H_4 ·OMe-p)]₂ (V) (cf. Robinson et al., A., 1939, II, 312), obtained similarly from the oily by-product from (I)-H₂C₂O₄-AcOH. p-OMc·C₆H₄·CH(OH)·CN, PhOMe, and 73% H₂SO₄ at 80° yield (IV) and thence by 20% KOH–MeOH at 115—120°, αα-di-p-anisylacetic acid, m.p. 113—114° [Me (VI), m.p. 71—72°, and Et ester, m.p. 68—69°]. (II) or (VI) (more convenient method) and MgEtBr afford β-hydroxy-αα-di-p-anisyl-β-ethylbutane (VII), m.p. 87—88°, dehydrated by distilling with a drop of dil. H₂SO₄ (HCl-EtOH, aq. alkali, ZnCl₂-AcOH, or PCl₅ is less satisfactory) to (p-OMe·C₆H₄)₂C:CEt₂ (VIII), oxidised, as is (VII), by CrO_3 -AcOH at 100° (bath) to $CO(C_6H_4 \cdot OMe-p)_2$. (VII) and $POCl_3$ -PhMe give (VIII) and (V). Theoretical aspects of the change $(VII) \rightarrow (V)$ are discussed. A. T. P.

Hydroxylation of unsaturated substances. VI. Catalytic hydroxylation of cyclopentadiene. N.A. MILAS and L. S. MALONEY (J. Amer. Chem. Soc., 1940, **62**, 1841—1843; cf. A., 1939, II, 404).—cyclo-Pentadiene (0.773), H₂O₂ (0.85 mol.), and a little OsO₄ in Bu^yOH at 0° give (?cis-) Δ ⁴-cyclopentene-1:3-diol, b.p. 80—83°/1 mm. (bis-3:5-dinitrobenzoate,

m.p. 185·5—186°; CHPh: derivative, m.p. 115— 117°), hydrogenated (PtO₂; EtOH) to (? cis-)cyclopentane-1:3-diol, b.p. 120—125°/12 mm. [di-p-nitro-benzoate, m.p. 179—181°; di(phenylurethane), m.p. 168-171°], stable to Pb(OAc)4. The diol of Dane et al. (A., 1937, II, 503) is probably the trans-compound. An excess of H_2O_2 yields an amorphous cyclopentane 1:2:3:4-tetraol, discolours at 190— 200° (liquid tetrabenzoate).

Reduction of α-bromo-ketones by aluminium isopropoxide. Isomeric amino-alcohols of the ephedrine series. P. G. Stevens, O. C. W. Allen-BY, and A. S. DuBois (J. Amer. Chem. Soc., 1940, **62**, 1424—1428; cf. A., 1939, II, 61).—COPh CHMeBr (I) and Al(OPr^{β})₃ give mixed bromohydrins (A), $Pr^{\beta}Br$ (8%), carbinols [including much $\check{\mathrm{CH}}_2\mathrm{Ph}\cdot\check{\mathrm{CHMe}}\cdot\mathrm{OH}$ (II)], and ? ethers (B). The reactions are: (I) \rightarrow $OH \cdot CHPh \cdot CHMeBr(A) \rightarrow \alpha$ -phenylpropylene $\alpha\beta$ -oxide (III) → (PrβOH) OPrβ·CHPh·CHMe·OH and/or OH·CHPh·CHMe·OPr $^{\beta}$ (B); (III) + AlBr(OPr $^{\beta}$)₂ \Rightarrow CH₂Ph·COMe \Rightarrow (II). CH₂Ph·CHO and MgMel give a poor yield of (II) with condensation products, including (?) αγ-diphenyl-n-pentane-βδ-diol, m.p. 126·5— 127° (with CrO₃ gives an oil). NH₂Me and (A) in MeOH give dl- ψ -ephedrine and dl-isoephedrine (Emde et al., A., 1911, i, 714; renamed dl- ψ -isoephedrine; hydrochloride, m.p. $188-190.5^{\circ}$). Pure (A) with Al(OPr^β)₃ gives Pr^βBr and COMe₂ and, later, a mixture containing (II). Al(OPr^{\beta})₃-Pr^{\beta}OH and (III) give mainly an ether (B), b.p. 114—116°/11 mm. (p-nitrobenzoate, m.p. 99·5—100°; phenylurethane, m.p. 94·5—100°; phenylurethane, m.p. 95.5°), but in presence of AlBr₃ give much (II). COPh·CMe₂Br (prep. from COPhPr^B by Br), b.p. 119— 120°/10 mm., with boiling Al(OPrβ)₃-PrβOH gives $Pr^{\beta}Br$ (30%), carbinols, $C_{10}H_{14}O$, b.p. $100-104^{\circ}/9$ mm., and an ether, C₁₃H₂₀O, b.p. 83·8—84·5°/9 mm., but at $33-34^{\circ}/63-65$ mm. gives mainly β -methylcinnamyl bromide, b.p. 115-117°/8 mm. [by way of OH-CHPh-CMe.CH₂ (IV); identified by its physical const. and hydrolysis to β-methylcinnamyl alcohol (V), m.p. 19—21°, b.p. 124—124·3°/8 mm. (dibromide, m.p. 86—87°; phenylurethane, m.p. 78·5—79·3°)]. EtCHO and PhCHO give CHPh:CMe·CHO, b.p. 113°/ 112 mm. (semicarbazone, m.p. 206—208°), reduced by $Al(OPr^{\beta})_3$ to (V). $CH_2:CMe:CHO$ and MgPhBrgive CH₂:CMe·CHPh·OH, b.p. 99·8—100°/8 mm. (dibromide, an oil; phenylurethane, m.p. $79.5-79.9^{\circ}$), which with HBr followed by hydrolysis (dil. aq. NaOH) yields much (V). 2-Bromocholestanone and $Al(OPr^{\beta})_3$ give slowly a gum.

Free radicals and radical stability. IX. Influence of short-lived and long-lived radicals on the reactivity of alcohols. S. T. BOWDEN (J.C.S., 1940, 880-882).—The following alcohols with K in xylene at 100° evolve H_2 at rates ∞ the nos. given: CH₂Ph·OH 6·5, CHPh₂·OH 11·2, CPh₃·OH 14·8, $p\text{-}\mathrm{C}_{\mathbf{6}}\mathrm{H}_{\mathbf{4}}\mathrm{Ph}\text{-}\mathrm{CPh}_{\mathbf{2}}\text{-}\mathrm{OH}$ 13·7, 1- $\mathrm{C}_{\mathbf{10}}\mathrm{H}_{\mathbf{7}}\text{-}\mathrm{CPh}_{\mathbf{2}}\text{-}\mathrm{OH}$ 9·3. In each case the reaction ceases suddenly before completion. Conductivity measurements in non-polar solvents show that these alcohols are non-ionised.

Kinetics of the reaction of p-methoxybenzhydryl chloride with methanol in dilute nitrobenzene solution.—See A., 1940, I, 364.

Free radicals and radical stability. VIII. Stability of formates and reduction of triarylcarbinols. S. T. BOWDEN, D. L. CLARKE, and W. E. HARRIS (J.C.S., 1940, 874—880; cf. A., 1939, II, 156).—Reducibility of CAr₃·OH is examined, with particular reference to thermal stability of formates. Order of resistance to the thermal decomp. $HCO_{2}R \rightarrow$ $RH + CO_2$ is R = Me (decomp. temp., viz., when CO_2 begins to form, is $>440^\circ$) $>CH_2Ph (320^\circ)>CHPh_2$ $(20\bar{6}^{\circ}) > \text{CPh}_3 (49^{\circ})$ C₁₀H₇·CPh₂ (68°). Radical stability increases throughout this series, and the inversion of the stability relationships at CPh₃ shows that two different mechanisms are involved, viz., intramol. change in the colourless homopolar formates, and ionic interaction in the coloured polar formates. Decomp. temp. of other formates are: o- (I), 48°, m-, 49°, and p-methoxy-, 48°, 2:2'- (II), 31°, 2:4'-, 42°, and 3:4-dimethoxy-, 47°, 3:4-methylenedioxy-, 48°, 2methoxy-4'-methyl-, 38°, 3:4:5-, 49°, 2:4:2'-, 44°, 2:2':3''-, 33°, and 3:3':3''-trimethoxy-triphenylmethyl, 120° (formate prepared in xylene), phenyl-panisyldiphenylylmethyl, 50°, and diphenyl-3-acenaphthylmethyl, 120° (in xylene). Apparatus and methods used in varying cases are described. Rates of evolution of CO₂ from solutions of the carbinols in HCO, H at 77° are measured; apparatus is described. The o-OMe promotes decomp. of formate; (I) and (II) give high yields of CHAr₃. p-OMe exerts a fairly strong influence in the CPh3 series, but the effect is much less with more complex compounds. m-OMe appears to exert a slightly favourable influence in early stages of reaction, but soon an inhibitory effect causes low yields of CHAr₃. Reduction of carbinols with large aryl groups, e.g., C₆H₄Ph, C₁₀H₇, acenaphthyl, is best carried out by Zn-AcOH or HCl-EtOH. $(p-NO_2 \cdot C_6H_4)_3C \cdot OH$ dissolves in HCO_2H to a colourless solution which does not evolve CO₂ at Experimental and theoretical evidence suggests that there is no simple connexion between the basicity of a carbinol and its reducibility as indicated by the HCO₂H method. o-OMe·C₆H₄·MgI (III) and p-C₆H₄Me·COPh (improved prep.) give 2-methoxy-4'-methyltriphenylcarbinol, m.p. 126°. 2:4:1-(OMe)₂C₆H₃·ČOPh and (III) afford 2:4:2'-trimethoxy-triphenylcarbinol, m.p. 119-120° (-triphenylmethane, m.p. 118°). p-C₆H₄Ph·MgBr and COPh₂ give p-C₆H₄Ph·CPh₂·OH, m.p. 136° (cf. A., 1931, 1406), 1-C₁₀H₇·COPh and MgPhBr afford 1-C₁₀H₇·CPh₂·OH A. T. P. m.p. 135°.

Brassicasterol, the characteristic sterol of rapeseed oil. E. Fernholz and H. E. Stavely (J. Amer. Chem. Soc., 1940, 62, 1875—1877).— Ozonisation of brassicasteryl acetate dibromide gives CHMePrβ·CHO and, after debromination, β-3-acetoxy-bisnorcholenic acid. Hydrogenation of brassicasterol (I) gives ergostanol. (I) is, therefore, 7:8-dihydroergosterol. It has m.p. 148° and gives an acetate, m.p. 158° (tetrabromide, m.p. 205—213°), propionate, m.p. 132°, and benzoate, m.p. 167°. No details are given. R. S. C.

Elimination of hydrogen bromide from stigmasterol 22: 23-dibromide. E. Fernholz, W. L. Ruigh, and H. E. Stavely (J. Amer. Chem. Soc.,

1940, **62**, 1554—1556).—Stigmasteryl acetate 22 : 23dibromide with boiling 20% KOH-EtOH or C5H5N or quinoline gives stigmasterol or its acetate, but with KOAc in boiling CHEtBua CH2 OH in presence of a little quinol gives $\Delta^{5:22:24-28}$ -stigmatrien-3-yl acetate (I), m.p. 128—129° (in CO₂), [α]_b²⁴ -47° in CHCl₃ [absorption max. 2375 A. (ϵ 17,000)], which adds (CH·CO)₂O (product not purified), resists reduction by Na–EtOH, but, when hydrogenated (3 H_2 ; PtO₂; AcOH), yields stigmastyl acetate, and with O3 gives MeCHO (isolated chromatographically as $p\text{-NO}_2\cdot C_6H_4\cdot NH\cdot N\cdot CHMe$). Ĥot 0.5 n-KOH-95%EtOH hydrolyses (I) to the alcohol, m.p. 125—126° (in CO₂). Autoxidation of (I) to a peroxide is rapid. The structure of (I) follows from the reactions described. R. S. C.

2:4-Dibromo- α -cestradiol. R. B. WOODWARD (J. Amer. Chem. Soc., 1940, 62, 1625—1626).— α -Œstradiol and NHAcBr in abs. EtOH at room temp. give the 2:4- Br_2 -derivative, m.p. $215\cdot5$ — $216\cdot5$ ° (corr.), stable to AgNO₃- or KOH-EtOH. R. S. C.

Preparation of cholestanyl glucosides with all four possible configurations of the glucoside linking. R. P. LINSTEAD (J. Amer. Chem. Soc., 1940, 62, 1766—1770).—Contrary to Miescher et al. (A., 1938, II, 174; cf. Gillespie et al., A., 1940, II, 119), no connexion exists between ease of glucoside formation and configuration of cyclic alcohols. Cholestanol (I), bromoglucose tetra-acetate (II), and $Hg(OAc)_2$ in boiling C_6H_6 give 40% of cholestanylα-glucoside tetra-acetate, m.p. $183.5-184^{\circ}$, $[α]_D^{25.3}+114^{\circ}$ in CHCl₃, hydrolysed by 0.2n-Ba(OH)₂ in EtOH at room temp. to cholestanyl-α-glucoside, m.p. ~253° (decomp.), $[\alpha]_D^{26.7} + 94^\circ$ in C_5H_5N [hydrolysed by boiling HCl to (I) and glucose]. With Ag_2O , $CaSO_4$, and I in $CHCl_3$, (I) and (II) give cholestanyl-CasO₄, and 1 in ChCl₃, (1) and (11) give choicestanyl- β -glucoside tetra-acetate (56%), m.p. 175°, $[\alpha]_D^{24.7} + 5^\circ$ in CHCl₃, and thence cholestanyl- β -glucoside, m.p. \sim 270° (decomp. from 240°), $[\alpha]_D^{24.4} - 17^\circ$ in C_5H_5N . epiCholestanyl- α -, m.p. 219°, $[\alpha]_D^{25.5} + 106^\circ$ in C_5H_5N (tetra-, m.p. 130°, $[\alpha]_D^{24.8} + 92.5^\circ$ in CHCl₃, and triacetate, m.p. 86—88° after softening), and β -glucoside, m.p. 216—217°, $[\alpha]_D^{25.7} + 1^\circ$ in C_5H_5N (tetra-acetate, m.p. 173°, $[\alpha]_D^{25.7} - 3^\circ$ in CHCl₃), are similarly prepared but must be reacetylated before isolation as pared, but must be reacetylated before isolation as tetra-acetates. epiCholestanol can be separated from (I) by the much greater solubility of the glucosides of the former in org. solvents. M.p. are corr.

R. S. C. Optically active α-carbomethoxy-αγ-diphenyl-γ-naphthylallene. E. P. Kohler and W. J. Whitcher (J. Amer. Chem. Soc., 1940, 62, 1489—1490).—dl-α- $C_{10}H_{7}$ ·CPh.C.CPh- CO_{2} ·CH₂·CO₂H (I) and CH₂N₂ give the dl-Me ester, m.p. 113°, but the l-acid gives oils. Me 1-αγ-diphenyl-γ-1-naphthylallene-α-carboxylate, m.p. 91°, [α]_D -49·8° in $C_{6}H_{6}$, is obtained from the l-acid by CH₂N₂ or by treating the l-Ag salt with MeI, and the d-ester (II), m.p. 91°, [α]_D +49·3° in $C_{6}H_{6}$, is prepared from the d-form of (I) by MeOH-KOH. A trace of HBr in $C_{6}H_{6}$ converts (II) into αγ-diphenyl-γ-1-naphthyl-γ-crotonolactone. The active esters are stable in $C_{6}H_{6}$ or EtOAc in the dark, but in light are racemised and partly resinified. R. S. C.

Chaulmoogric acid series. II. Synthesis of Δ^2 -cyclopentenecarboxylic acid. K. V. Bokil and K. S. Nargund (Proc. Indian Acad. Sci., 1940, 11, A, 409—412).—Et 2-hydroxycyclopentane-1-carboxylate is dehydrated (P_2O_5 in C_6H_6 at 100°) to a mixture of esters hydrolysed by cold KOH–MeOH to an acid mixture from which Δ^1 -cyclopentenecarboxylic acid, m.p. 123—124° (anilide, m.p. 126°; p-toluidide, m.p. 122°), separates. Repeated esterification and hydrolysis of the liquid remainder leads to the isolation of Et Δ^2 -cyclopentenecarboxylate, b.p. 62°/10 mm., hydrolysed to the acid [r-aleprolic acid], b.p. 97—98°/7 mm. (anilide, m.p. 134—135°; p-toluidide, m.p. 126—127°). The low I vals. of these compounds are due to the instability of the I additive product.

Organic derivatives of sulphur, selenium, and tellurium. I. D. T. Lewis (J.C.S., 1940, 831— 832).—The C₅H₅N-BzCl adduct (I) (cf. Dehn et al., A., 1914, i, 1169) and H₂S afford BzSH and dithiobenzoyl oxide, (CSPh)2O (II), m.p. 112°; (II) and 50% HNO3 give a small amount of dibenzoyl disulphone, m.p. 141°. (II)-KOH-EtOH, then HCl, afford H₂S, BzOH, and BzSH. With conc. HNO₃ or NH₂Ph (excess), (II) gives BzOH or NHPhBz, respectively. (I) and H₂Se yield BzSeH, m.p. 132— 133°, but BzTeH could not be prepared similarly. $CCl_3 \cdot CHO$ and $H_2S - Et_2O$, or better, $CCl_3 \cdot CH(OH)_2$ (III) and H₂S-aq. HCl, afford [CCl₃·CH(OH)]₂S, m.p. 128° (cf. Hagemann, A., 1872, 494). (III) and H₂Se-HCl (excess) yield bis-($\beta\beta\beta$ -trichloro- α -hydroxyethyl) selenide, m.p. 94—98° (decomp. into CCl₃·CHO + H_2Se).

Condensations brought about by bases. X. Michael type of condensation with esters and αβ-unsaturated keto-compounds. C. R. Hauser and B. Abramovitch (J. Amer. Chem. Soc., 1940, 62, 1763—1766; cf. A., 1940, II, 171).—EtoAc, which with CPh₃Na very rapidly gives CH₂Ac·CO₂Et (I), condenses with CHPh.CH·COPh and CPh₃Na in Et₂O to give CO₂Et·CHAc·CHPh·CH₂·COPh, doubtless by way of (I). Pr^βCO₂Et, which undergoes Claisen condensation only slowly, suffers only Michael condensation with CHPh.CH·CO₂Et (II) in presence of NaOEt or CPh₃Na to give Et₂ β-phenyl-αα-dimethyl-glutarate, b.p. 174—175°/8 mm. (corresponding acid, softens at 165°, m.p. 171—172·5°). CH₂Ph·CO₂Et, (II), and CPh₃Na in Et₂O give Et₂ αβ-diphenyl-glutarate, m.p. 75—75·5° [derived acid, m.p. 196·5—197·5° or 207·5—218·5° (decomp.) according to the solvent used]. Temp. are corr.

β-Benzhydrylglutaric acid. M. S. NEWMAN, L. M. Joshel, and P. H. Wise (J. Amer. Chem. Soc., 1940, 62, 1861—1863).—CPh₂·CH·CH₂·CO₂Et and CHNa(CO₂Et)₂ in boiling EtOH give an ester, converted by hydrolysis and decarboxylation into CHPh₂·CH(CH₂·CO₂H)₂ (I) (8·9%), m.p. 176—177°, best obtained by the method of Newman et al. (A., 1938, II, 132). CPh₂·CH·CH₂·CO₂H and Br give β-bromo-γγ-diphenyl-γ-butyrolaetone, m.p. 130·6—131·2°, converted by boiling C₅H₅N into γγ-diphenyl-γ-crotonolaetone, m.p. 131·6—132·2°, which with CHNa(CO₂Et)₂ in boiling Et₂O-C₆H₆ gives an ester, whence hydrolysis by boiling H₂SO₄-AcOH-H₂O and

subsequent decarboxylation at 250° yields 44—45% of γγ-diphenyl-β-carboxymethyl-γ-butyrolactone, m.p. 182·8—183·8°, unaffected by Zn-Hg-HCl, Zn dustalkali, or HI-AcOH. The Grignard reagent, prepared from cyclopentadiene by MgEtBr in Et₂O-C₆H₆, with CHPh₂Br gives 41% of (?) benzhydrylidenecyclopentene, m.p. 25—30°, b.p. 163—165°/4 mm., ozonised to COPh₂ (79%). CHPh₂·CHO and PCl₅ in C₆H₆ give meso- and dl-(CHPhCl)₂. M.p. are corr.

R. S. C. Reactivities of dienes, especially toward maleic anhydride. II. F. BERGMANN and E. BERGMANN (J. Amer. Chem. Soc., 1940, **62**, 1699—1704; cf. A., 1937, II, 407).—Presence of aryl residues on three, but not two, neighbouring C of C.C.C.C (one C.C may be part of a ring) prevents addition of (:CH·CO)2O (I). The 9:10-ethylenic linking of 9-alkenylphenanthrenes sometimes behaves as part of an aliphatic system and sometimes has aromatic character. 1-a-Naphthyl-Δ1-cyclohexene (picrate, new m.p. 129°) does not react (cf. Bachmann et al., A., 1938, II, 443) with an excess of (I) at 110° . However, $1-\beta$ -naphthyl- Δ^{1} cyclohexene (prep. by condensing cyclohexanone with $2-C_{10}H_7$ ·MgBr and dehydrating the product by KHSO₄ at 150—160°), m.p. 61—62°, b.p. $144^\circ/2$ mm. (picrate, m.p. 78°), with (I) (excess) at 100° gives $\overline{1}$ a:1:2:2 \overline{a} :3:4:5:6-octahydrochrysene-1:2-dicarboxylic anhydride, m.p. 216°, but with p-O.C.H. O gives a hydrocarbon, C₂₂H₁₆, m.p. 178°. 2-isoPropenylanthracene (prep. from 2-acetylanthracene by MgMeI in boiling Et₂O-C₆H₆), m.p. 154°, and (I) in boiling C₆H₆ give the 9:10-endo-αβ-succinic anhydride, m.p. 266°. Mg 9-phenanthryl bromide and COPh·CH₂Ph in boiling C₆H₆ give αβ-diphenyl-α-9-phenanthrylethyl alcohol, m.p. 191—192°, dehydrated by KHSO₄ at 180—190° to α-9-phenanthrylstilbene, m.p. 162°, which gives no picrate or adduct with (I). β-9-Phenanthrylstyrene (II) and Br-CCl₄ at 5° give the dibromide, m.p. 184-185° (decomp.), converted by 10% KOH-MeOH at 150° into 9-phenylacetylphenanthrene, m.p. 136°, which is obtained also from β -phenyl- α -9-phenanthrylethyl alcohol by ${
m CrO_3-AcOH}$ first at room temp. and later at 100°. 9-Cyano-phenanthrene and CH₂Ph·MgCl (III) give 9-phenanthryl CH2Ph ketimine, m.p. 195°, resistant to hydrolysis by HCl-COMe₂-H₂O or conc. HCl at 150°. Attempts to cyclise (II) or 9-propenylphenanthrene (IV) by AlCl₃ gave phenanthrene and resin; 9-allyl phenanthrene (V) gives a substance, $(C_{17}H_{14})_n$, m.p. 264°. Li in Et₂O causes dimerisation of (IV), giving, after hydrolysis, ? αδ-di-9-phenanthryl-βγ-dimethyl-n-butane, m.p. 222°, b.p. 300—310°/0.8 mm. Li and (V) in Et₂Ō give the α Li derivative, since hydrolysis by EtOH regenerates (V) (some 9:10-cyclopentenophenanthrene is also formed by isomerisation) and interaction with PhCHO (2 mols.) gives α-phenyl-β-9phenanthryl- Δ^{γ} -buten- α -ol, b.p. 250— $260^{\circ}/1.5$ mm. CHPh:CPh·CH:CHMe (VI), b.p. 138—140°/1·5 mm. (no picrate isolable), with (I) in boiling xylene gives 3:4-diphenyl-6-methyl-1:2:3:6-tetrahydrophthalic anhydride, m.p. 168-169°. 3:4-Diphenyl-6-methylphthalic anhydride, m.p. 161°, is obtained in PhNO₂ and with AlCl₃ in hot C₆H₆ gives 4-phenyl-2-methylfluorenone-1-carboxylic acid, m.p. 1965. 2 Li add to (VI) in Et₂O, hydrolysis of the product giving αβ-diphenyl- Δ^{β} - or - Δ^{γ} -n-pentene, b.p. 120°/0·4 mm., and a small amount of a fraction, b.p. 190—200°/0·02 mm. CHPh:CPh·CHO and (III) in C₆H₆ give a product, converted by boiling Ac₂O into αβδ-triphenyl- $\Delta^{\alpha\gamma}$ -butadiene, forms, m.p. 110° (lit. 104—105°), and a liquid (unstable red, cryst. picrate); the latter form with (I) in boiling xylene gives 3:4:6-triphenyl-1:2:3:6-tetrahydrophthalic anhydride, m.p. 208—209°; the mixture adds 2 Li, giving after hydrolysis αβδ-triphenyl- Δ^{α} - or - Δ^{β} -n-butene, b.p. 140°/0·3 mm.

Direct synthesis of resolvable diaryls. E. R. ATKINSON and H. J. LAWLER (J. Amer. Chem. Soc., 1940, **62**, 1704—1708).—2:3:5:1-NH₂· $C_6H_2Cl_2$ · CO_2H (I) [prep. from $o\text{-NH}_2\cdot C_6H_4\cdot CO_2H$ by $SO_2Cl_2-C_6H_6$ (51%) or Cl_2 -AcOH (57%)], when diazotised and then added to Cu_2O in aq. NH_3 gives dl-4:6:4':6'tetrachlorodiphenic acid (49%), m.p. 258—259°, some (I) being regenerated. Resolution by brucine gives l-, m.p. $240-256^{\circ}$, $[\alpha]_{\nu}^{25}-129^{\circ}$ in CHCl₃ (brucine salt, m.p. $264-265^{\circ}$, $[\alpha]_{\nu}^{24}-26\cdot5^{\circ}$ in CHCl₃), and $d-4:6:\overline{4}':6'$ -tetrachlorodiphenic acid, m.p. 252—254°, +133° in CHCl₃ [brucine, m.p. 254—259° $[\alpha]_{\rm p}^{24}$ -7.9°, and brucine H salt, m.p. 263-265° (decomp.), $[\alpha]_{D}^{25}$ -15.3° in CHCl₃]. 2:3:5:1-NH₂·C₆H₂Br₂·CO₂H, m.p. 232—233°, gives similarly dl- (37%), m.p. 305—308°, l-, m.p. 282—283°, $[\alpha]_D^{35}$ —7·7° in abs. EtOH [brucine salt, m.p. 259—260° (decomp.), $[\alpha]_D^{24}$ —10·6° in CHCl₃], and d-4 : 6 : 4′ : 6′tetrabromodiphenic acid, m.p. $279-282^{\circ}$, $[\alpha]_{D}^{25}+6.7^{\circ}$ in abs. EtOH [brucine salt, m.p. 123-204° (decomp.), $[\alpha]_D^{25}$ -32·2° in CHCl₃]. The active acids are stable in boiling N-NaOH (cf. Yuan et al., A., 1935, 1237).

7-Cholanthroic acid. L. F. Fieser and G. W. Kilmer (J. Amer. Chem. Soc., 1940, 62, 1354—1360). -Acenaphthene (I) and CH₂Ph·CO₂H in HF give 30% of 3-, m.p. 113·5—114° (unstable picrate, m.p. 107·5—108·5°; oxidised by NaOI in dioxan to 3-acenaphthoic acid), and a little 1-phenylacetoacenaphthene, m.p. 81-81.5° (isolated as dimorphic picrate, m.p. 133-134°; oxidised to 1-acenaphthoic acid). o-C₆H₄Br·COCl and CH₂N₂ in Et₂O at 0° $o\text{-}\mathrm{C_6H_4Br}\cdot\mathrm{CO}\cdot\mathrm{CHN_2}$ 42—43° give m.p. $(Ag_2O - Na_2S_2O_3 - H_2O;$ 60—65°) thence o-C₆H₄Br·CH₂·CO₂H, which with (I) in HF gives a difficultly separable mixture of o-bromophenylaceto-acenaphthenes, m.p. 128—129.5° and 122—123° (110.5—112.5°). 1-Acenaphthoyl chloride gives similarly the CHN, ketone, m.p. 141—142° (decomp.), and 1-acenaphthylacetic acid (II) (63.5%), m.p. 163.5— 164.4°. 1-Acetoacenaphthene (modified prep.) and yellow NH₄HS in dioxan at 160° give, on a small scale, an amide, whence boiling 15% NaOH yields 57% of (II), but in large-scale experiments at 175-180° only 36.8% of (II) with 46.7% (65% at 170°, 43% at 188—190°) of 1-cthylacenaphthene, m.p. 34.8—35.1° (lit. 30°), b.p. 160—163°/6 mm. [picrate, m.p. 104.7—105.1° (lit. 102—102.5°)]. COPhBu^β gives similarly 1.8% of Ph·[CH₂]₂·CHMe·CO·NH₂ (Willgerodt et al., A., 1909, i, 716, state 14—15%). K 1-acenaphthylacetate (II) and o-C₆H₄Cl·CHO with a drop of $\bar{C}_5H_5\bar{N}$ in Ac₂O at 180° give 55% of o-chloro- α -1-acenaphthylcinnamic acid, m.p. 221·5—223·5° after softening, which with KOH at 254° or in boiling quino-

line gives tars. o-NO₂·C₆H₄·CHO and (II) in Ac₉O at 125—130° give o-nitro-, m.p. 244·5—244·9° (decomp.), by $FeSO_4-NH_3-H_2O$ to o-amino- α -1acenaphthylcinnamic acid, m.p. 229—230.5° (227— 229°), obtained less well by H₂-PtO₂-EtOH with substances, m.p. 236·4—238·4° (decomp.) or (III) 278—279·5°. Diazotisation (iso- C_5H_{11} -O-NOEtOH-dioxan-H2SO4) and treatment with Cu gives a gummy acid, the Me ester of which by chromatography yields Me 7-methylcholanthroate (4.5%), m.p. 159—159.2° (absorption spectrum resembles that of cholanthrenc) [with a substance (? III), m.p. 280-3— 281.2° (decomp.)], and thence by 10% KOH-EtOH 7-cholanthroic acid, decomp. 258.5—261° (sublimes from 255°). Decarboxylation of this acid is difficult, but heating the crude product of ring-closure with basic Cu carbonate at 300°/vac. gives 8·1% of cholanthene. M.p. arc corr.

 Δ^{5} -3(t): 17-Dihydroxyætiocholenamide, m.p. 295—296°, and $\Delta^{5:16}$ -3(t)-hydroxyætiocholadienamide, m.p. 254—258°.—See B., 1940, 641.

isoDihydroxycholenic acid. Specificity of Hammersten's reaction for cholic acid. K. Yamasaki, K. Takahashi, and C. H. Kim (J. Biochem. Japan, 1939, 30, 239—246).—The Hammersten reaction is positive with bile acids with sec. OH at C₍₇₎ and C₍₁₂₎ and CO at C₍₃₎; acids without sec. or CO groups at C₍₃₎ do not give the reaction. apoCholic acid with ZnCl₂-AcOH yields dihydroxycholenic acid (I) and isodihydroxycholenic acid (II). (II) is also given by (I) and ZnCl₂ and by cholic acid and ZnCl₂, FeCl₃, or SbCl₃ (cf. A., 1933, 1162). F. O. H.

Benzylidene-2:4:6-tribromoaniline. W. S. EMERSON and F. C. UHLE (J. Amer. Chem. Soc., 1940, 62, 1880).—This substance, m.p. 94—95°, is prepared. R. S. C.

Action of hexamethylenetetramine on the methyl esters of phenolcarboxylic acids. I. Synthesis of 2:4-dihydroxy-5-formylbenzoic acid. R. D. Desai and K. S. Radha (Proc. Indian Acad. Sci., 1940, 11, A, 422—423).—2:4-Dihydroxy-5-formylbenzoic acid, m.p. 185—186° (semicarbazone, m.p. >290°; p-nitro-, m.p. >280°, and 2:4-dinitro-, m.p. >280°, -phenylhydrazone), is obtained when anhyd. Me β -resorcylate and (CH₂) $_{6}$ N₄ react in boiling AcOH to which aq. HCl (1:1) is subsequently added.

Preparation of phenylacetone. J. P. MASON and L. I. TERRY (J. Amer. Chem. Soc., 1940, 62, 1622).—COMe·CH₂Ph is obtained in 32% yield from COMe·CH₂Cl, C₆H₆, and AlCl₃ at 100° (bath).

Condensation of α-methoxystyrene with halogen compounds. C. W. Mortenson and M. A. Spielman (J. Amer. Chem. Soc., 1940, 62, 1609—1610).—OMe·CPh:CH₂ (I) with CH₂PhBr at 220° gives Ph·[CH₂]₂·COPh (51% with an excess of CH₂PhBr, 35% with 1 mol.) and MeBr (identified by methylation of saccharin), with Bu^aBr at 245° gives COPh·C₅H₁₁-n (28%), with CH₂Cl·CO₂Et at 200° gives COPh·[CH₂]₂·CO₂Et (36%), COPhMe, and s-C₆H₃Ph₃ (II), and with BzCl at 180° gives CHBz₃, but with an excess of BzCl gives only (II). PhBr

does not react with (I). The (II) arises by action of HCl on (I) (proved experimentally). These and other condensations (A., 1934, 190; 1939, II, 216) of (I) are analogous to conversion of NEt₂·CMe·CH·CO₂Et by McI into I{NEt₂·CMe·CHMe·CO₂Et. R. S. C.

αβ-Unsaturated α- and β-dialkylamino-ketones. N. H. Cromwell (J. Amer. Chem. Soc., 1940, 62, 1672—1673).—COMe·CH₂·COPh, NHEt₂ (2 mols.), and a drop of conc. HCl at 110° give γ -diethylamino-α-phenyl- Δ^{β} -buten-α-one, m.p. 70—71°. CHPhBr·CHBr·COPh and NHEt₂ (3 mols.) in EtOH at room temp. give Ph α-diethylaminostyryl ketone, m.p. 51—53° (hydrochloride, m.p. 106—110°), hydrolysed by 15% H₂SO₄ at 100° to COPh·CO·CH₂Ph. CH₂Bz₂, NHEt₂ (2 mols.), and a drop of HCl at 150° give a poor yield of COPh·CH·CPh·NEt₂, m.p. 61—62°. R. S. C.

Fries rearrangement of phenyl laurate and stearate. H. E. Bell and J. E. Driver (J.C.S., 1940, 835—837).—Ph laurate and AlCl₃ at 150° afford o., m.p. 43·8—44·6° (2:4-dinitrophenylhydrazone, m.p. 89—89·2°), and (mainly) p-hydroxyphenyl undecyl ketone, m.p. 70·5—71°, b.p. 277°/15 mm. (benzoate, m.p. 109—109·8°; semicarbazone, m.p. 143—143·6°; 2:4-dinitrophenylhydrazone, m.p. 151—151·2°); the latter is reduced (Clemmensen) to p-dodecylphenol, m.p. 65·5—66°. Similarly prepared are o., m.p. 66—67° (2:4-dinitrophenylhydrazone, m.p. 97·4—97·8°), and p-hydroxyphenyl heptadecyl ketone, m.p. 90—90·5°, b.p. 320°/15 mm. (benzoate, m.p. 113·2—113·6°; semicarbazone, m.p. 133·4—134·7°; 2:4-dinitrophenylhydrazone, m.p. 142—142·2°; p-octadecylphenol, m.p. 83—84°).

A. T. P.

Action of Grignard reagents on methyl rtropate and atropate. A. MoKenzie and E. R. Winton (J.C.S., 1940, 840—844).—Me r-tropate (I), m.p. 36—37·5° and MgPhBr give r-benzyldcoxybenzoin [Ph αβ-diphenylethyl ketone] (II), m.p. 120—121° (2:4-dinitrophenylhydrazone, m.p. 163— 164°), converted by MgPhBr into r-α-hydroxy-ααβγtetraphenylpropane, m.p. 146—147°. Me (-)-tropate, b.p. $157-159^{\circ}/16$ mm., $[\alpha]_{5461}^{17}-54\cdot1^{\circ}$ in COMe₂, and MgPhBr also afford (II). Me (+)-tropate has b.p. $162-163^{\circ}/20$ mm., $[\alpha]_{5461}^{20}+83\cdot3^{\circ}$ in COMe₂. MgMeI and (I) give dl- γ -phenylpentan- β -one (III) [semicarbazone (IV), new m.p. $195-196^{\circ}$; dl-COEt·CHPh·OH and MgMeI give r- $\alpha\beta$ -dihydroxy- α -phenyl- β -methylbutane, m.p. 71—72°, converted by conc. H₂SO₄ at room temp. into (III) and thence (IV)] and (mainly) $r-\alpha \gamma$ -dihydroxy- β -phenyl- γ -methylbutane (V), m.p. 80-81° (unchanged by distilling in high vac.). (\tilde{V}) -MgMeI-Et₂O give (III). (V) and boiling dil. H₂SO₄ yield an oil which affords no semicarbazone or dinitrophenylhydrazone. Me atropate, b.p. 106—109°/12 mm., with MgPhBr or MgMeI gives (II) or (III), respectively. Mechanisms of reactions are discussed. r-Tropic acid does not react with MgPhBr at room temp. A. T. P.

Ring-enlargement of two cyclic a-chloroketones. T. R. STEADMAN (J. Amer. Chem. Soc., 1940, **62**, 1606—1609).—2-Chlorocyclohexanone (I), NO·NMe·CO₂Et (1·1 mol.), and a little Na₂CO₃ in abs. MeOH at 20—30° give 52% of 2-chlorocycloheptanone (I), b.p. $87-88^{\circ}/10$ mm. (with boiling KOH-EtOH gives 36% of hexahydrobenzoic acid), and 16% of 2-chloro-1-methylenecyclohexane oxide, $[CH_2]_4 > C < C_{CH_2}$, m.p. -10° to -8° , b.p. $62-63^{\circ}/10$ mm. (converted by H_2 -Raney Ni in 95% EtOH into cyclohexylcarbinol, identified as phenylurethane). (I) gives similarly 13% of 2-chlorocyclooctanone (II) and 11.7% of 2-chloro-1-methylenecycloheptane oxide, b.p. $84-86^{\circ}/10$ mm. (with NaOH-EtOH gives cycloheptanecarboxylic acid), 38% of (I) being recovered. When kept in air, (II) gives some suberic acid.

Sterol-estrone group. II. Derivatives of 2-phenylcyclohexanone. J. C. Bardhan (J.C.S., 1940, 848—850).—Partly an account of work previously reviewed (A., 1940, II, 253). Et δ-keto-α-cyano-α-phenylhexoate, b.p. 186°/16 mm., and Et β-2-keto-6-carbethoxy-3-phenyl-6-methylcyclohexylpropionate, b.p. 200°/5 mm., are described. Et δ-keto-α-carbethoxy-α-phenylhexoate and the compounds derived from it (loc. cit.) are new.

A. T. P.

Preparation of 1-keto-3-methyl-1:2:3:4-tetrahydronaphthalene and β-3-methyl-1:2:3:4-tetrahydro-1-naphthylethyl alcohol. W. E. Bachmann and W. S. Štruve (J. Amer. Chem. Soc., 1940, 62, 1618—1619).—CH₂Ph·CHMe·CH₂·COCl (prepared from the acid by SOCl₂ and a little C_5H_5 N) and AlCl₃ in CS₂ at <0° and then at the b.p. give 73% of 1-keto-3-methyl-1:2:3:4-tetrahydronaphthalene (I), b.p. 94—96°/0·3 mm. (oxime, m.p. 122·5—123·5°), which by Clemmensen reduction, followed by heating at 200—220°, first with S and then with S and Cu-bronze, gives 2-C₁₀H₇Me. With CH₂Br·CO₂Me, Zn, and a trace of I in Et₂O-C₆H₆, (I) gives a OH-ester, dehydrated by anhyd. HCO₂H to Me 3-methyl-(? 3:4)-dihydro-1-naphthylacetate (85%), b.p. 130—133°/0·4 mm., which with Na-McOH yields β-3-methyl-1:2:3:4-tetrahydro-1-naphthylethyl alcohol (57%), b.p. 134—137°/0·4 mm., and thence (PBr₃; 100°) the bromide (75%), b.p. 137—140°/0·4 mm. R. S. C.

Benzanthrones. F. G. Baddar (Nature, 1940, 145, 822; cf. A., 1938, II, 236).—Ring-closure (conc. $\rm H_2SO_4$; $\rm PCl_5 + AlCl_3$; $\rm P_2O_5$) of $o\text{-}\alpha\text{-}naphthylbenzoic acid at different temp. gives mesobenzanthrone and 3:4-benzfluorenone (cf. Grieve et al., A., 1938, II, 93). Cyclisation of o-4'-methyl-1'-naphthylbenzoic acid gives a mixture of 1'-methylmesobenzanthrone and 2-methyl-3:4-benzfluorenone. Condensation of diazotised o-NH₂·C₆H₄·CO₂Me with 1- and 2-C₁₀H₇Me at 25° gives a mixture of acids, and o-2'-methyl-1'-naphthylbenzoic acid, respectively. L. S. T.$

Steroid ketones.—See B., 1940, 641.

Treatment of 2-bromocholestanone with collidine. R. P. Jacobsen (J. Amer. Chem. Soc., 1940, 62, 1620—1621).—HBr is only partly removed from 2-bromocholestanone by boiling collidine, the products being cholestanone and Δ^1 -cholestenone (I), $+H_2O$, m.p. $107-108^\circ$, $[\alpha]_2^{24}+65^\circ$ [isolated as dibromide, decomp. 85°, which with NaI or Zn dust in EtOH or KI in 80% COMe₂ gives (I)]. The absorption spectra of (I) (max. 2320 A.; $\log \epsilon$ 4·0) and Δ^4 -cholestenone (max. 2400 A.; $\log \epsilon$ 4·27) are reported. R. S. C.

Molecular species in aqueous quinhydrone solutions. C. Wagner and K. Grünewald (Z. Elektrochem., 1940, 46, 265—269).—From measurements of the dependence of light absorption on conen., the quinhydrone solutions contain meriquinone mols., $C_6H_4O_2, C_6H_4(OH)_2$; semiquinone radicals, $C_6H_4O(OH)$, are not detectable. F. J. G.

Vitamin-K activity of quinones. E. Fernholz, H. B. MacPhillamy, and S. Ansbacher (J. Amer. Chem. Soc., 1940, 62, 1619—1620).—Min. active doses are 2-methyl-5: 6: 7: 8-tetrahydro-1: 4-naphthaquinone, m.p. 58—59° [prep. from 2-methyl-1: 4-naphthaquinone (I) by H_2 -PtO₂ in AcOH, followed by FeCl₃-oxidation], 1 mg., $\beta\gamma$: 5: 6: 7: 8-hexahydrovitamin-K₁ (similarly prepared; an oil) >2 mg., naphthotocopherol (II) [prep. from (I) by phytol and ZnCl₂ in xylene] >1 mg., and the oily product, $C_{31}H_{48}O_3$, obtained from (II) by FeCl₃-EtOH, 1 mg. R. S. C.

Naphthaquinone oxides. L. F. FIESER, M. TISHLER, and W. L. SAMPSON (J. Amer. Chem. Soc., 1940, 62, 1628—1629).—Oxidation by $\mathrm{H_2O_2}$ yields oily farnesyl- (very weak), phytyl- (active at 500 µg.) (cleaved by alkali to a mixture of 2-hydroxy-1:4-naphthaquinone and its 3-alkyl derivative), 2:3-dimethyl- (I), m.p. $104-104\cdot5^\circ$ (active at 25 µg.), and 3-cinnamyl-2-methyl-, m.p. $85-86^\circ$, -1:4-naphthaquinone oxide, and vitamin- $\mathrm{K_1}$ oxide (II), an oil [active at $1\cdot5$ µg.; absorption spectrum resembles that of (I)]. $\mathrm{Na_2S_2O_4}$ in aq. EtOH reduces methylnaphthaquinone oxide and (II) to $2:1:4\cdot\mathrm{C_{10}H_5Me(OH)_2}$ and vitamin- $\mathrm{K_1}$ quinol, respectively. The physiological potency of the oxides may be due to their reduction in vivo.

Biochemistry of micro-organisms. LXVII. Molecular constitutions of catenarin and erythroglaucin, metabolic products respectively of Helminthosporium catenarium, Drechsler, and of species in the Aspergillus glaucus series. W. K. Anslow and H. Raistrick (Biochem. J., 1940, 34, 1124—1133).—Catenarin (I) (A., 1934, 697), which constitutes >15% of the dried mycelium of H. catenarium, is reduced by HI (d 1.7) and red P in boiling AcOH to emodin anthranol, which is oxidised (aq. AcOH-CrO₃ at 60°) to Frangula-emodin [4:5:7-trihydroxy-2-methylanthraquinone]. Methylation (Me₂SO₄, anhyd. K_2CO_3 , COMe₂) of (I) gives the Me_4 ether, m.p. 190—191°, colored (AcOH-Ac₂O-CrO₃ at 100°) to 3:5:1:2-(OMe)₂C₆H₂(CO)₂O (2%) and 3:6-dimethoxy-4-methylphthalic anhydride (II) (10%), m.p. 202°, thus showing that (I) is 1:4:5:7-Erythroglaucin $tetrahydroxy\hbox{-}2\hbox{-}methylanthraquinone.$ (A., 1939, II, 433) (triacetate, new m.p. 230-231°) is 1:4:5-trihydroxy-7-methoxy-2-methylanthraquinone [catenarin 7-Me ether] and is obtained in good yield from (I) and MeI in MeOH-NaOMe. Toluquinone and aq. KCN in EtOH-conc. H₂SO₄ give 2:5-dihydroxy-3: 4-dicyanotoluene, darkens from 195° (black at $\sim 240^{\circ}$) (diacetate, m.p. 128°), methylated (Me₂SO₄, COMe2, 2n-NaOH) to the Me2 ether, m.p. 182°, which is hydrolysed by conc. H₂SO₄-H₂O (10:1 vol.) at 100° (bath) to (II).

Inner complexes. H. M. HAENDLER [with G. McP. Smith] (J. Amer. Chem. Soc., 1940, 62, 1669—1672; cf. A., 1939, II, 555).—Absorption max.

of phenanthraquinonemono-oxime, m.p. $161-162^{\circ}$, and its Cd, Cu, Co, Mn, Ni, and UO_2 (also +2EtOH) complexes, chrysenequinonemono-oxime and its Cu, Mn, Ni, UO_2 (also +2EtOH) complexes in C_5H_5N and of benzene-, o-, m-, and p-toluene-, o-, m-, and p-chlorobenzene-, o-, m-, and p-anisole-, o-, m-, and p-phenetole-azo- β -naphthol and their Cu complexes in PhNO₂ are recorded. The substituents have relatively little effect. R. S. C.

Acid-polymerised dipinene. I. Dehydrogenation. J. R. RITTER and J. G. SHAREFKIN. II. Identification of the dehydrogenate. J. R. RITTER and V. BOGERT (J. Amer. Chem. Soc., 1940, 62, 1508—1509, 1509—1511).—I. Dipinene and dilimonene (prep. by H₃PO₄ in 71% yield), b.p. 127—128°/I mm., with S at 200° give a mixture, containing a small amount of 2:6:9-trimethylphenanthrene (I), m.p. 78·2—78·4°, isolated as picrate, m.p. 169·5—170°.

II. $p\text{-}C_8H_4\text{Me}\cdot\text{MgBr}$ and menthone in Et₂O give 3-p-tolylmenthol, m.p. 39·5°, b.p. 127—128°/2 mm., $[\alpha]_{15}^{35}$ —14·49°, dehydrated by $H_0C_2O_4$ at 150° to 3-p-tolyl- Δ^3 -menthene, b.p. 145—147°/10—11 mm., $[\alpha]_{15}^{35}$ +49·45°. With S at 220—230° this gives 85% of 3:4-dimethyl-6-isopropyldiphenyl, b.p. 130—132°/4—5 mm. $[(NO_2)_3$ -derivative, m.p. 164—165°], but heating later with S at 320—340° or with Se at 290—360° gives also 2:6:9:9-tetramethylfluorene, b.p. 123—125°/2 mm. [Br-, m.p. 94·5°, and $(NO_2)_2$ -derivative, m.p. 218°], and (I), thereby proving the structure of (I) and accounting for the low yield thereof obtained from the diterpenes. R. S. C.

Saponins and sapogenins. XV. Relationship of echinocystic and oleanolic acids. D. Todd, G. H. Harris, and C. R. Noller (J. Amer. Chem. Soc., 1940, 62, 1624—1625; cf. A., 1939, II, 333; 1940, II, 18).—Norechino-cystenone or -cystenedione with Zn-Hg-HCl in boiling 95% EtOH gives the oleanene III, obtained (Winterstein et al., A., 1933, 718) from oleanolic acid (I). However, owing to the possibility of rearrangement, echinocystic acid and (I) may have different C-skeletons. R. S. C.

Urechrome, respiratory pigment from eggs of *Urechis caupo*.—See A., 1940, III, 649.

Preparation of 2-furylacetic acid. J. Plucker, tert. and E. D. Amstutz (J. Amer. Chem. Soc., 1940, 62, 1512—1513).—α-Thion-β-2-furylpropionic acid [prep. from furfurylidenerhodanine, m.p. 229—231° (decomp.), by alkali], m.p. 114·6—115°, and NH₂OH in boiling abs. EtOH give 81·5—93% of α-oximino-β-2-furylpropionic acid (? cis. and trans-)forms, m.p. 143·8—144° (decomp.) (lit. 145°) and 121·5—122° (decomp.), which with warm Ac₂O yields 2-furylacetonitrile (82·5—87·7%), b.p. 84°/17 mm., hydrolysed by 18% aq. KOH to 2-furylacetic acid (96%).

R. S. C.

Mono- and di-2-furfurylglycine. J. E. ZANETTI and J. T. BASHOUR (J. Amer. Chem. Soc., 1940, 62, 1511—1512).—Furfuryl bromide (1 mol.) and NH₂·CH₂·CO₂Et (2 mols.) in Et₂O (cf. A., 1940, II, 230) give >80% of a mixture, containing 80% of Et furfuryl-, b.p. 99—101°/3 mm. [hydrochloride, m.p. 68—70°; Bz derivative, b.p. 157—162°/~1 mm.;

hydrolysed by hot $\rm H_2O$ to the derived acid, m.p. 210—212° (corr.)], and 20% of $Et\ di\ -2$ -furfuryl-aminoacetate, b.p. 154—157°/3 mm. [hydrochloride, m.p. 94—96° (corr.); hydrolysed by $\rm Ba(OH)_2$ or NaOH to the derived acid, m.p. 140—141° (corr.)]. R. S. C.

Synthesis of estrone. I. 2- β -Phenylethylfurans as components in the diene synthesis. R. B. WOODWARD (J. Amer. Chem. Soc., 1940, 62, 1478—1482).—2-β-Phenylethylfuran (I), b.p. 241— 243°, is best obtained by the method of Freund et al. (A., 1890, 1407), but also by (a) condensing 2-furfuryl bromide (II) (purified by MgMeI) with CH₂Ph·MgCl and destroying the excess of (II) by MgBuBr before distillation, or (b) condensing furfuraldehyde with CH, Ph. MgCl, dehydrating the crude carbinol by KHSO₄ or Al₂(SO₄)₃ to ω -2-furylstyrene, m.p. 49—50° (dibromide, m.p. 232·0—232·3°), and finally hydrogenating (PtO₂). m-OH·C₆H₄·CHO with Me₂SO₄-NaOH (not CH₂N₂) gives m-OMe·C₆H₄·CHO, hydrogenated (PtO₂-FeSO₄; EtOH; 3 atm.) to m-OMe·C₆H₄·CH₂·OH, b.p. 150°/25 mm. HBr then gives the bromide, b.p. 116°/8 mm., which with NaCN in aq. EtOH gives manisylacetonitrile (87.5%), b.p. 164—165°/20 mm. With furfuraldehyde and NaOEt-EtOH this gives α-m-anisyl-β-2-furylacrylonitrile, b.p. 180°/1 mm., reduced by Na-EtOH to 2-β-m-anisylethylfuran (II), b.p. 153°/10 mm. [also obtained by method (a) as above]. (:CH·CO)₂O with (I) or (II) gives 3:6-endoxo-3- β -phenyl-, m.p. 73—74° [bromohydroxyendoxo-3-β-phenyl-, m.p. 73—74° [bromohydroxy-derivative, m.p. 142—143° (decomp.)], and 3:6endoxo-3- β -m-anisyl-ethyl- Δ^4 -tetrahydrophthalic hydride, m.p. 78-80°. These adducts are unstable. and dissociate when heated or hydrogenated (except with Pt-black in MeOH). R. S. C.

Substituted 2:5-dimesitylfurans. R. E. Lutz and C. J. Kibler (J. Amer. Chem. Soc., 1940, 62, 1520—1528).—2: 5-Dimesitylfurans are unique among furan derivatives in resisting oxidative ring-fission to diketones by HNO₃. Substitution of C₍₃₎ and C₍₄₎ of the furan ring precedes substitution of the mesityl group. Condensation of dimethylfumaryl chloride with $1:3:5:2-C_6H_2Me_3Br$ (I) by $AlCl_3$ in CS_2 is complicated by disproportionation to $s-C_6H_3Me_3$, $1:3:5:2:4-C_6HMe_3Br_2$, and 1:3:5:2:4:6- $1:3:5:2:4-C_6HMe_3Br_2$, and C₆Me₃Br₃, but when a large excess of (I) is used, 78% of trans- $\alpha\delta$ -di-3-bromomesityl- $\beta\gamma$ -dimethyl- Δ^{β} -butene- $\alpha\delta$ dione (II), m.p. 140—143°, is obtained; under other conditions a little trans-\alpha-mesityl-\delta-3-bromomesityl- $\beta \gamma$ -dimethyl- Δ^{β} -butene-αδ-dione, m.p. 124—127°, is isolated. Zn dust in boiling Ac₂O-AcOH converts (II) into 2:5-di-4'-bromomesityl-3:4-dimethylfuran (III), m.p. 111.5—113°, best obtained from 2:5dimesityl-3: 4-dimethylfuran (IV) (which with HNO_3 -AcOH or -EtCO₂H at -10° gives a resin) by PBr₅ at 100°. Zn-AcOH does not affect (III), but H₂-Pd- $BaSO_4$ gives (IV). $(2:4:6:1-C_6H_2Me_3\cdot CO\cdot CHBr)_2$ (prep. from 2:4:6:1- $\overline{C}_6H_2Me_3\cdot CO\cdot CH:CBr\cdot CO\cdot C_6H_2Me_3-1:2:4:6$ by 8%

 $C_6H_2Me_3$ ·CO·CH:CBr·CO· $C_6H_2Me_3$ -1:2:4:6 by 8% HBr–AcOH at room temp.) with HBr in CHCl₃ or, less well, AcOH gives 3:4-dibromo-2:5-dimesityl-furan (V), m.p. 139—142°. (CH·CO· $C_6H_2Me_3$ -1:2:4:6)₂ (VI) and HBr–AcOH at 10° give β-bromo-αδ-dimesityl-n-butane-αδ-dione, m.p. 81·5—82°, which is reconverted into (VI) by NaOAc or boiling

tained from (I) and trans-(:CH-COCl)₂ by AlCl₃; cf. (II)], m.p. 63-64°, and Br-AcOH at 60-65° give $\beta \gamma$ - dibromo - $\alpha \delta$ - di - 3 - bromomesityl - n - butane - $\alpha \delta$ -dione, m.p. ~250° (decomp.), which with Zn dust in AcOH gives $(2:4:6:1-C_6H_2Me_3\cdot CO\cdot CH_2)_2$ (VII), is unchanged by HBr-AcOH at room temp., but with boiling AcOH or HBr-AcOH gives trans-β-bromo-αδdi-3-bromomesityl- Δ^{β} -n-butene- $\alpha\delta$ -dione, m.p. 154—155° [reduced by Zn-AcOH to (VII)]. 2:5-Dimesitylfuran (VIII) [prep. from (VII) by HI, but not by other methods] with KMnO₄ gives only a little 2:4:6:1-C₆H₂Me₃·CO₂H and by partial bromination gives only a poor yield of (V). 3:4-Dibromo-2:5-di-3'-bromomesitylfuran (IX), forms, m.p. 175—177° and m.p. 166°, resolidifies, remelts at 177°, is obtained from 2:5-di-3'-bromomesitylfuran (X) [prep. from $(2:4:6:3:1\cdot C_6HMe_3Br\cdot CO\cdot CH_2)_2$ by HI], (VIII), or (V) by PBr₅ at \Rightarrow 90° and is reduced by H₂-Pd-BaŠO₄ to (V); at 70° some 3:4-dibromo-2-mesityl-5-3'-bromomesitylfuran, m.p. 125.5—126.5° [with PBr₃ at 90° gives (IX)], is also formed; at 100° PBr₅ converts (VIII) or (IX) into 3:4-dibromo-2-3'-bromomesityl-5-3': 5'-dibromomesitylfuran, m.p. 282.5°, also obtained from (VIII) by Br-Fe in boiling CS_2 and reduced by H_2 -Pd-BaSO₄ to (V). HNO₃-AcOH converts (V) successively into 3:4-dibromo-2mesityl-5-3'-nitromesityl-, m.p. 121·5—122·5° (Zn dust-AcOH gives a substance, m.p. $150-153^{\circ}$), and -2:5di-3'-nitromesityl-furan, m.p. 204-205°. Boiling HNO₃-AcOH converts (VIII) or 3-nitro-2:5-dimesitylfuran (XI) into 3:4-dinitro-2:5-dimesityl-furan (XII), m.p. 213° [with, from (VIII), a little 2:4:6:1-C₆H₂Me₃·CO₂H], which with PBr₅ at 90° gives the 3': 3". Br₂-derivative (XIII), m.p. 200.5— $\bar{2}01.5^{\circ}$. (?) 3-Nitro-2: 5-di-3'-bromomesitylfuran (XIV), m.p. 130—130·5°, is obtained from (XI) by PBr₅ at 90—93° or from (V) by boiling $1:3 \text{ HNO}_{3}$ AcOH. Boiling 1:1 (vol.) HNO₃-AcOH converts (a) (XII) into 3:4-dinitro-2:5-di-3'-nitromesitylfuran (XV), m.p. $266-267^{\circ}$, (b) (X) or (XIV) into a compound, $C_{22}H_{17}O_{11}N_{5}Br_{2}$, m.p. $287-288^{\circ}$, and (c) (XIII) into 3:4-dinitro-2:5-di-3'-bromo-5'-nitromesitylfuran, m.p. 245° (decomp.; in air), 251—252° (decomp.; vac.) [not obtained by bromination of (XV)]. 1:1 HNO₃-AcOH at room temp. converts (VIII) into (?) 3:4-dinitro-2-mesityl-5-3'-nitromesitylfuran, m.p. 158—160°, with a trace of 2:4:6:1- $C_6H_2Me_3\cdot CO_2H$. Finely divided 2:5-diphenyl-3:4-dimethylfuran (XVI) and HNO₃ in EtCO₂H at -10° give cis- $\beta \gamma$ -dibenzoyl- Δ^{β} -butene, m.p. 86.5— 87° , duced to (XVI) by Zn dust in boiling AcOH. In contrast to the hydrogenations of mesityl compounds, 3:4-dibromo-2:5-di-p-bromophenylfuran with H_2 -Pd-BaSO₄ in EtOH yields diphenylfuran. No isomerism due to restricted rotation was noted. R. S. C.

EtOH. $trans-(2:4:6:3:1-C_6HMe_3Br\cdot CO\cdot CH:)_2$ [ob-

Syntheses of model unsaturated lactones related to the cardiac aglycones. J. Fried, M. Rubin, W. D. Paist, and R. C. Elderfield (Science, 1940, 91, 435—436).—Condensation of Et Δ^α-hexenoate with Et₂C₂O₄ in presence of KOEt gives CO₂Et·CO·CHEt·CH·CH·CO₂Et, which, after, hydrolysis, and heating with HBr + AcOH, yields 5-ethyl-

α-pyrone-6-carboxylic acid; this forms (distillation

with Cu) 5-ethyl- α -pyrone. β -Substituted $\Delta^{\alpha\beta}$ -unsaturated γ -lactones containing Ph, cyclohexyl, and Bu" groups as representative substituents have been prepared. L. S. T.

Vitamin-E. XXIII. Synthesis of 5-hydroxyand -2-methyl-coumaran. 2:4:6:7-tetra-Oxidation products of the tetramethylcoumaran. L. I. SMITH, H. H. HOEHN, and A. G. WHITNEY. **XXIV.** Structure of γ-tocopherol. O. H. EMER-SON and L. I. SMITH [with, in part, H. E. UNGNADE] (J. Amer. Chem. Soc., 1940, **62**, 1863—1869, 1869— 1872; cf. A., 1940, II, 102).—XXIII. 2:3:5:1-C₆H₂Me₃·OH (I), CH₂·CH·CH₂Cl, K₂CO₃, and, best, KI give, when boiled, the allyl ether, b.p. 100—103°/ 3—4 mm., rearranged, when boiled alone, to 1:2:3:5:6-OH·C₆HMe₃·O·CH₂·CH:CH₂, m.p. 48—49° b.p. $132-133^{\circ}/12^{\circ}$ mm., which with $p-SO_3H-C_6H_4\cdot N_2Cl$ gives a dye, whence Na₂S₂O₄ at 55° yields 4-amino-2:3:5-trimethyl-6-allylphenol (II), m.p. 110°. Aq. $FeCl_3$ -HCl oxidises (II) to 2:3:5-trimethyl-6-allyl-1: 4-benzoquinone, b.p. 108°/1 mm., whence Zn-AcOH gives the quinol, m.p. 137-138°, which with C_5H_5N , HCl at 135° yields 5-hydroxy-2:4:6:7tetramethylcoumaran (III). AgOAc in boiling MeOH converts (III) into 2:3:5-trimethyl-6-β-hydroxypropyl-p-benzoquinone, m.p. < room temp., which with Zn dust-NaOAc-Ac₂O gives 2:3:5-trimethyl-6β-acetoxypropylquinol diacetate (IV), m.p. 92—93°. AgNO₃ in EtOH oxidises (III) to 2:4:6-trimethylcoumaran-4:5-quinone, red, m.p. 83-87°, 96-97°, or $104-105^{\circ}$, unstable. Interaction with p-SO₃H·C₆H₄·N₂Cl and then Na₂S₂O₄ converts (I) into 4-amino-2:3:5-trimethylphenol (V), m.p. 152-153°, the Ac derivative, m.p. 184-185°, of which with gives NaOEt-CH₂:CH·CH₂Cl-EtOH 4-acetamido-2:3:5-trimethylphenyl allyl ether, m.p. 165—165.5°, rearranged in kerosene at 225° to 4-acetamido-2:3:5-trimethyl-6-allylphenol, m.p. 206—207° (gives no quinone with FeCl₃), which in boiling 40% HBr gives 5-acetamido-2: 4:6:7-tetramethylcoumaran (VI), m.p. 203° (stable also to MgMeBr). The N-CHO derivative, m.p. 213°, of (V) gives similarly the allyl ether, m.p. 162—162·5°, and 4-formamido-2:3:5-trimethyl-6-allylphenol, m.p. 183—184°, which in boiling 40% HBr gives 5-amino-2:4:6:7-tetramethylcoumaran, m.p. $77-78^{\circ}$ [Ac derivative = (VI)]. The hydrobromide, m.p. $>320^{\circ}$, thereof is oxidised by FeCl₃-HCl-H₂O to 2:3:5-trimethyl-6- β -hydroxypropyl-1:4-benzoquinone, m.p. 54-55° (lit. 56.5°), and thence yields (Zn-AcOH) 2:3:5-trimethyl-6- β -hydroxypropylquinol, m.p. 137—138° [triacetate = (IV)], and (HBr-AcOH and a little Zn dust) (III). CH₂:CH·CH₂·OPh is obtained in 74% yield from PhOH by CH₂:CH·CH₂Cl and K₂CO₃ in COMe₂ and, when boiled, gives 76% of o-OH·C₆H₄·CH₂·CH·CH₂, which by p-SO₃H·C₆H₄·N₂Cl and then Na₂S₂O₄ gives 2:1:4-CH₂·CH·CH₂·O·C₆H₃(OH)·NH₂, m.p. 113—114°. Careful oxidation then gives allyl-p-benzoquinone, b.p. 102-103°/18 mm. [only a trace is obtained from $2:1:4\text{-CH}_2\cdot\text{CH}\cdot\text{CH}_2\cdot\text{O}\cdot\text{C}_6\text{H}_3(\text{OH})\cdot\text{NO}$, m.p. $93-94^{\circ}$ (lit. $100-101^{\circ}$), by $H_2O_2-HCl-H_2O$], and the mother-liquors, when reduced by Na₂S₂O₄, give allylquinol (VII), m.p. 91—92°, b.p. 161°/10 mm. (diacetate, m.p. 47-48°). Cyclisation of (VII) by

 $\rm H_2O$ (not $\rm C_5H_5N, HCl)$ gives 5-hydroxy-2-methyl-coumaran, m.p. 66—67°, b.p. 150—154°/14—15 mm. (oily benzoate and acetate).

XXIV. γ -Tocopherol (I) (p-nitrophenylurethane, m.p. 119—121°; benzylthiuronium succinate, m.p. 104—105°) is shown to be 7:8-dimethyltocol [o-xylotocopherol]. Oxidation gives (:CMe·CO)₂O. It is synthesised from 1:2:3:4-OH·C₆H₂Me₂·OBz, phytyl bromide, and ZnCl₂ in boiling C₆H₆. 5:8-Dimethyltocol (p-nitrophenylurethane, m.p. 111—112°; benzylthiuronium succinate, m.p. 104—106°) is similarly obtained; its derivatives do not depress the m.p. of those of (I). Allylation of (I) gives an oily, mainly tricyclic substance, C₃₁H₅₂O₂. R. S. C.

Interaction of o-hydroxybenzhydrylacetophenone and o-hydroxybenzylidenediacetophenone with magnesium phenyl bromide. T. A. Geissman (J. Amer. Chem. Soc., 1940, 62, 1363—1367).—Contrary to statements of Löwenbein (A., 1924, i, 1221), o-OH·C₆H₄·CHPh·CH₂·COPh, new m.p. 167—167·5° (derived pyrylium ferrichloride, new m.p. 167°), gives a semicarbazone, m.p. 177—178°, and dissolves in KOH-MeOH. It also reacts as the phenol with MgPhBr in boiling Et₂O, yielding $\alpha\alpha\gamma$ -triphenyl- γ -o-hydroxyphenyl-n-propyl alcohol (I), m.p. (anhyd.) 112—113°, (+? C₆H₆) ~85°, obtained also from 4-phenyldihydrocoumarin by MgPhBr in C₆H₆-Et₂O and dehydrated by hot H₂SO₄-AcOH to 2:2:4-triphenylchroman (II), m.p. 162—163°. o-OH·C₆H₄·CH(CH₂·COPh)₂ (III) and MgPhBr in Et₂O at 5—10° give an oil, probably o-

OH·C₆H₄·CH(CH₂·COPh)·CH₂·CPh₂·OH, which in (best) AcOH gives the *compound* (IV), m.p. 185—

CPh=0

ČH·CH₂·CPh₂

 $\mathrm{CH_2}$

(IV.)

186°, believed by Gomm et al. (A., 1935, 1377) to be (I). In boiling C_6H_6 , (III) and MgPhBr give an oil, o-

OH·C₆H₄·CH(CH₂·CPh₂·OH)₂, converted by H₂SO₄–AcOH into 2:2-diphenyl-4-benzhydrylidene-

methylchroman (V), m.p. 219—220°, which is also obtained from the mother-liquors of (IV) by H₂SO₄—AcOH and was considered (loc. cit.) to be (II). A little H₂SO₄ in boiling AcOH isomerises 2-phenyl-4-β-hydroxy-ββ-diphenylethylflavene (VI), m.p. 193—193·5° (loc. cit. 194°), or (IV) to 2:2-diphenyl-4-phenacylchroman, m.p. 115—116° [2:4-dinitrophenyl-hydrazone, m.p. 243—244° (decomp.), obtained also directly from (IV) or (VI)], which with MgPhBr in boiling Et₂O gives 2:2-diphenyl-4-β-hydroxy-ββ-phenylethylchroman, m.p. 149—149·5°, converted by H₂SO₄-AcOH into (V). The structure of (V) is proved by synthesis from Me dihydrocoumarin-4-acetate, b.p. 208—210°/20 mm., by MgPhBr in Et₂O. R. S. C.

Osage orange pigments. IV. Degree of unsaturation and flavone nature. M. L. Wolfrom, P. W. Morgan, and F. L. Benton (J. Amer. Chem. Soc., 1940, 62, 1484—1489; cf. A., f940, II, 185).—Hydrogenation (PtO₂) converts osajin successively and with increasing difficulty into a H_2 -, m.p. 197° (mono-, m.p. 156·5°, and di-acetate, m.p. 154°), H_4 -, m.p. 198—200° (mono-, m.p. 179·5°, and di-acetate, m.p. 186°), and H_6 -derivative, m.p. 162° (mono-, m.p.

138°, and di-acetate, m.p. 190°). Pomiferin similarly gives H_2 , m.p. 212° (di-, m.p. 166°, and tri-acetate, m.p. 165·5°), and H_4 -derivatives, m.p. 201·5° (di-, m.p. 154·5°), and tri-acetate, m.p. 181·5°). These reactions, BzO₂H titrations, H_3BO_3 colours, Na–Hg and Mg–Hg reductions, and failure of dienc additions indicate 5-hydroxyflavone structures. R. S. C.

2: 2'-Pyridyl disulphide and 2-thiolhexamethyleneimine.—See B., 1940, 552.

Direct synthesis of 2-hydroxy-3-cyanopyridine and its 6-methyl derivative. A. Dornow (Ber., 1940, 73, [B], 153—156).—OEt·CH:CH·CH(OEt)₂ with CN·CH₂·CO·NH₂ and piperidine in 95% EtOH at the b.p. gives the piperidine additive compound, m.p. 197°, of 2-hydroxy-3-cyanopyridine (I), m.p. 225—226° (isolated after treatment with boiling N-NaOH). With conc. HCl at the b.p., (I) gives 2-hydroxynicotinic acid (Et ester, m.p. 139°; anilide, m.p. 261°; amide, m.p. 266—267°). Similarly OEt·CMe:CH·CH(OEt)₂ gives the piperidine salt, m.p. 192°, of 2-hydroxy-3-cyano-6-methylpyridine, m.p. ~295° (decomp.), hydrolysed to 2-hydroxy-6-methylnicotinic acid, m.p. 228°, which above its m.p. gives 2-hydroxy-6-methylpyridine. E. W. W.

Organic peroxides. VII. Dinicotinoyl peroxide. N. A. Milas and P. C. Panagiotakos (J. Amer. Chem. Soc., 1940, 62, 1878; cf. A., 1939, II, 503).—Nicotinoyl chloride, Na₂O₂, ice, and Et₂O (not H₂O₂-Et₂O) at 0° to -5° give dinicotinoyl peroxide, m.p. 88—89°, resolidifies, remelts at 175°.

R. S. C.

Derivatives of 4-pyridylphthalic acids.—See B., 1940, 594.

Oxidation of β -phenylethylpyridinium salts. II. S. Sugasawa and N. Lee (Proc. Imp. Acad. Tokyo, 1940, **16**, 187—190; cf. A., 1939, II, 281).— Oxidation [alkaline K_3 Fe(CN)₆] of β -o-methoxyphenylethylpyridinium bromide (corresponding picrate, m.p. 114—115°) smoothly yields 1-β-o-methoxyphenylethyl-2-pyridone, m.p. 130—131°, and β-2: 3-dimethoxyphenylethylpyridinium bromide (corresponding picrate m.p. 111—112°) gives 1-β-2′: 3′-dimethoxyphenylethyl-2-pyridone. The latter compound is converted into 3':4'-dimethoxy-3:4-dihydro-9:10-dehydro-(1':2':1:2benzopyridocolinium) salt on ring-closure, characterised as the iodide, m.p. 182°. The corresponding H₆-derivative is characterised as the hydriodide and picrate. \$3:4-Dimethoxy-6-methylphenylethylpyridinium bromide, m.p. 154-156°, is smoothly oxidised to $1-\beta-3':4'$ -dimethoxy-6'-methylphenylethyl-2-pyridone, which is readily transformed by POCl₃ into HCl and 5': 6'-dimethoxy-3'-methyl-3: 4-dihydro-9: 10-dehydro-(1':2':1:2-benzopyridocolinium) iodide, m.p. β -2: 5-Dimethoxyphenylethylpyridinium bromide, m.p. 53—54°, is oxidised to $1-\beta-2':5'-di$ methoxyphenylethyl-2-pyridone, which gives 3': 6'dimethoxy-3: 4-dihydro-9: 10-dehydro-(1':2':1:2benzopyridocolinaum) iodide, m.p. 156—157°.

Formation of Reissert's compounds in non-aqueous media. R. B. WOODWARD (J. Amer. Chem. Soc., 1940, 62, 1626—1627).—BzCl or CHPh:CH-COCl with quinoline (I) and KCN in liquid

SO₂ gives 1-benzoyl-, m.p. 154—155°, and 1-cinnam-oyl-1: 2-dihydroquinaldine-2-nitrile, m.p. 149—150°, but AcCl gives a mixture. BzCl with HCN and (I) gives mainly BzCN. AcCl gives only AcCN in Et₂O, other inert solvents, or excess of (I). No reaction occurs with KCN and (I) in McCN, PhCN, Et₂O, dioxan, COMe₂, or CHCl₃. The reaction is probably ionic. R. S. C.

Phenanthridine derivatives.—See B., 1940, 516.

Metallic complex salts of 2:2'-dipyridyl.—See A., 1940, I, 344.

Differences observed in the behaviour of unsaturated hydantoins towards bromine. (MISSES) M. J. McLean and D. R. Seeger (J. Amer. Chem. Soc., 1940, **62**, 1416—1419).—5-Benzylidene-3-methylhydantoin (I) and Br in CCl₄ give 5-bromo-5-α-bromobenzyl-3-methylhydantoin (II), m.p. 153—154° (later decomp.), which at room temp. slowly or at 105° rapidly loses HBr to give 5-bromo-5-benzylidene-3methylhydantoin (III), m.p. 173-173.5°, and in warm EtOH gives HBr and 5-ethoxy-5-α-bromobenzyl-3methylhydantoin (IV), m.p. 179-180°. (III) is obtained from (I) by Br in AcOH, and (IV) is obtained without isolating (II) by adding EtOH to the CCl4 reaction mixture. 5-Benzylidenehydantoin in CCl4 gives a sol. dibromide, m.p. 178—182° (gas), solidifies, remelts at ~235° (5-bromo-5-benzylidenehydantoin melts at 239—240°), which with EtOH gives HBr and 5-ethoxy-5-\alpha-bromobenzylhydantoin, m.p. 202.5— 203°. 5-Benzylidene-1: 3-dimethylhydantoin and Br in AcOH give 5-α-bromobenzyl-1: 3-dimethylhydantoin, m.p. 122-123°. These reactions clarify reports in the literature. The 5-α-bromobenzylalkylhydantoins are reduced by HI-red P to the corresponding benzylalkylhydantoins. R. S. C.

Synthesis of intermediate metabolic products of histidine. I. Synthesis of urocanic acid. S. Akabori, S. Ose, and T. Kaneko (Proc. Imp. Acad. Tokyo, 1940, 16, 191—194).—Aëration of a solution containing invert sugar, $CuSO_4$, NaOH, and NH₃ gives 4(5)-hydroxymethylglyoxaline, m.p. 92° (picrate, m.p. 205°), oxidised by conc. HNO₃ at 100° to glyoxaline-4(5)-carboxylic acid and -aldehyde (I), m.p. 173°. $CH_2(CO_2H)_2$ and (I) in H_2O at ~50° yield 4(5)- $\beta\beta$ -dicarboxyvinylglyoxaline, m.p. 212° (decomp.), which passes in boiling C_5H_5N into urocanic acid, m.p. 230—231° (decomp.), reduced to glyoxaline-4(5)-propionic acid (hydrochloride, m.p. 83°).

New heterovitamin-B₁, 1-(4'-amino-2'-methyl-5'-pyrimidyImethyl)-3-β-hydroxyethylpyridinium bromide. A. Dornow (Ber., 1940, 73, [B], 156—158; cf. A., 1940, II, 291).—Nicotinoyl chloride hydrochloride in Et₂O with 3 CH₂N₂ at 0—5° gives 3-diazoacetylpyridine, m.p. 74° [picrate, m.p. 155—156° (decomp.)], which when heated with AcOH gives 3-acetoxyacetylpyridine, m.p. 84—85° (picrate, m.p. 158°), which is reduced (Zn-HCl) to 3-β-hydroxyethylpyridine, b.p. 133°/12 mm. (urethane, m.p. 147°). This with 4-amino-2-methyl-5-bromomethylpyrimidine hydrobromide in MeNO₂ at ~40° gives 1-(4'-amino-2'-methyl-5'-pyrimidylmethyl)-3-β-hydroxyethylpyridinium bromide hydrobromide, m.p. 244—245°

(decomp.). This compound has only 1/240 of the vitamin activity of aneurin. E. W. W.

2:3-Bis-(2'-benziminazolyl)pyridine. A. M. Lecco and D. M. Dimitrijevič (Ber., 1940, 73, [B], 108—111).—The by-product from quinolinic acid and o-C₆H₄(NH₂)₂ (I), regarded by Bistrzycki and Lecco (A., 1921, i, 456) as 2-(3'-pyridyl)benziminazole, is 2:3-bis-(2'-benziminazolyl)pyridine, m.p. 313° (Ag₂ salt), also obtained from 2-(2'-benziminazolyl)pyridine-3-carboxylic acid and (I), or from nicotinoylene-benziminazole and (I), and treatment of the resulting 2-(2'-benziminazolyl)pyridine-3-carboxyl-o-aminoanilide, m.p. 249—250°, with AcOH. E. W. W.

Raman effect and constitution of methylated benztriazole and indazole.—See A., 1940, I, 346.

Phthalocyaninesulphonamides.—See B., 1940, 517.

Method of separating small quantities of coproporphyrin isomerides I and III. C. J. Watson and S. Schwartz (Proc. Soc. Exp. Biol. Med., 1940, 44, 7—10).—The Me esters are adsorbed on to Brockmann's Al₂O₃. Isomeride III ester is then dissolved in 35% aq. COMe₂; isomeride I ester is dissolved later in pure COMe₂. V. J. W.

Ethers and amines from β -4-morpholinoethyl chloride. J. P. Mason and S. Malkiel (J. Amer. Chem. Soc., 1940, **62**, 1448—1450).—4-β-Chloroethylmorpholine hydrochloride and NaOR in boiling ROH give 4-β-methoxy-, b.p. 104—105·8°/44 mm. (also obtained by KÖH-MeOH), -ethoxy-, b.p. 96-99°/ 17—19 mm., -n-, b.p. 120—123°/23 mm., and -iso-propoxy-, b.p. 115—120°/34—35 mm., -n-, b.p. 134·5— $137.5^{\circ}/31$ mm., -sec.-, b.p. $105.5-108.5^{\circ}/7-8$ mm., and -tert.-butoxy-, b.p. 113—116°/19 mm., -benzyloxy-, b.p. 196-202°/30-32 mm., and -phenoxy-ethylmorpholine (by PhOH in aq. NaOH), b.p. 181—183°/ 21—22 mm., and di-(β -morpholinoethyl) ether (prep. at 200°), b.p. 178—180·5°/7 mm. (picrate, m.p. 175°). 4-β-Chloroethylmorpholine(I) with aq. NH₃ or NH₂Bu^a at 93—98° gives 4-\beta-amino-, h.p. $82^{\beta}/6$ mm. [picrate, m.p. 188° (corr.)], and $4-\beta$ -n-butylamino-ethylmorpholine, b.p. 136—140°/20—21 mm. [picrate, m.p. 180.5° (corr.)]. (I) and the appropriate base at 200° give 4- β -anilinoethylmorpholine, b.p. 186—188·5°/9 mm. [picrate, m.p. 138—140.6° (corr.)], and abdimorpholinoethane, m.p. 73° (lit. 74°) [pierate, m.p. 234-237° (lit. 230—236°)].

4-Morpholinoethyl alkyl ethers and N-substituted morpholines. J. P. Mason and M. Zeef (J. Amer. Chem. Soc., 1940, 62, 1450—1452).—Morpholine (I) (1 mol.), paraformaldehyde (1 mol.), and ROH (2 mols.) in C_6H_6 at (usually) 100° give 4-methoxy- (46·2%), b.p. 55·6—57°/8 mm., -ethoxy- (II) (59·3%), b.p. 58—63°/6 mm., -n- (74%), b.p. 100—102°/22 mm., and -iso-propoxy- (29·7%), b.p. 64—66°/6 mm., -n- (73·8%), b.p. 99·5—100·5°/11 mm., -iso- (68%), b.p. 90·5—92·5°/10 mm., -sec. (58·9%), b.p. 92—94°/10 mm., and -tert.-butoxy- (9·4%), -allyloxy- (52·4%), b.p. 82—83°/7 mm., and -benzyloxy- (76·8%), b.p. 152—154°/7 mm., -methylmorpholine; the remainder of the (I) appears as di-4-morpholinomethane. MgRHal in Et₂O converts (II) into 4-β-phenylethyl- (66%), b.p. 147—151°/13 mm. (picrate,

m.p. $166-167^{\circ}$), $-\alpha$ -naphthylmethyl- $(57\cdot7\%)$, b.p. $185-190^{\circ}/9$ mm. (picrate, m.p. $209-211^{\circ})$, -n-propyl- $(43\cdot4\%)$, b.p. $43-46^{\circ}/7$ mm. (picrate, m.p. $118-120^{\circ})$, -n-hexyl- $(59\cdot7\%)$, b.p. $86-87^{\circ}/6$ mm. (picrate, m.p. $110-111^{\circ})$, and -benzyl- $(64\cdot4\%)$, b.p. $135-136\cdot5^{\circ}/14$ mm. (picrate, m.p. $193\cdot5-196^{\circ})$, -morpholine. M.p. are corr. R. S. C.

Preparation and polymerisation of β -4-morpholinoethyl chloride. J. P. Mason and H. W. BLOCK (J. Amer. Chem. Soc., 1940, **62**, 1443—1448).— 4-β-Chloroethylmorpholine (I), b.p. 93—94°/12 mm. (hydrochloride, m.p. 182—182.5°; picrate, m.p. 130°), is obtained by SOCl, from 4-β-hydroxyethylmorpholine (73—88%) (picrate, m.p. 126°) or the hydrochloride (63.5%), m.p. $109-110^{\circ}$ (softens at 100°). When kept or heated, (I) gives slowly 1:4-dispiromorpholinopiperazinium dichloride (II), a solid, which is obtained rapidly in hot ROH with large amounts of 4-β-ethoxy- (hydrochloride, m.p. 138°; picrate, m.p. 103°) and 4- β -n-propoxy-ethylmorpholine (hydrochloride, m.p. 130—131°). (I) does not polymerise in dioxan, but addition of increasing amounts of $\rm H_2O$ increases the amount of (II) formed, which is connected with the increase in dielectric const., although none is formed in Et₂O or C₆H₆ and very little in COMe₂. Mg does not react with (I) but catalyses the polymerisation. The structure of (I) is proved by fission by 50% aq. KOH to C_2II_2 and $\alpha\beta$ -dimorpholinoethane, m.p. 73.5° (lit. 74°) [pierate, new m.p. $234-236^{\circ}$ (decomp.)]. R. S. C.

Thiamorpholine [thiazane, tetrahydro-1:4thiazine] series. II. N-Alkyl derivatives. (MISS) H. I. MINER, E. O. HOOK, and R. D. COGHILL. III. Derivatives of tetrahydro-1:4-thiazine-3:5-dicarboxylic acid. E. O. Hook, (Miss) H. I. MINER, and R. D. COGHILL (J. Amer. Chem. Soc., 1940, **62**, 1613—1614, 1615—1616; cf. A., 1937, II, 309).—II. Passage of NH_3 or NH_2R into S(CH2·CHO)2, HCN, and a little piperidine and consequent rise of temp. to 70° gives tetrahydro-1: 4-thiazine-3: 5-dinitrile, m.p. 214° (decomp.), 4-methyl-, m.p. 178°, 4-ethyl-, m.p. 137°, and 4-benzyl-tetrahydro-1:4-thiazine-3:5-dinitrile, m.p. 170°. If the temp. is maintained at <10°, 4-methyl- (I), m.p. 208° (decomp.), 4-ethyl-, m.p. 177° (decomp.), 4-n-butyl-, m.p. 192° (decomp.), 4-n-amyl-, m.p. 174° (decomp.), 4-isoamyl-, m.p. 192° (decomp.), and 4-n-heptyl-, m.p. 181° (decomp.), -tetrahydro-1: 4-thiazine-3-nitrile-5-carboxylamide are obtained. Conc. HCl at 10° converts (I) 4-methyl tetrahydro-1: 4-thiazine-3-nitrile-5-carboxylic acid, m.p. 184—185°, but other hydrolyses fail.

III. Tetrahydro-1: 4-thiazine-3: 5-dicarboxylic acid (loc. cit.) with 30% H₂O₂ in AcOH-Ac₂O at 0° gives the 1-oxide, m.p. 242° (decomp.), with boiling Ac₂O gives the 4-Ac derivative, m.p. 143° (decomp.), gives a carbobenzyloxy-derivative, m.p. 149·5—150°, and Et₂ ester, b.p. 154—156°/3 mm., and thence the di-β-diethylaminoethyl [trihydrochloride, m.p. 208° (decomp.)] and di-γ-diethylaminopropyl [trihydrochloride, m.p. 215° (decomp.)] esters, and (by NEt₂·[CH₂]₂·NH₂ at 160—170°) tetrahydro-1: 4-thiazine-3: 5-di(carboxyl-β-diethylaminoethylamide), decomp. ~245°. M.p. (both parts) are corr.

D. D. M. P. (both parts) are corr.

R. S. C.

Rubber vulcanisation accelerators. VI. Mechanism of and methods for the synthesis of thiolbenzthiazole from methyleneaniline. Y. KAWAOKA (J. Soc. Chem. Ind. Japan, 1940, 43, 151—153B).—NPh:CH₂ with S under pressure at 130° yields H₂S, CS₂, a trace of NH₂Ph, but no PhNCS or NPh:CH·NHPh (I); at 200—250°, the main product is PhNCS. NPh:CH₂ with S in CS₂, with or without NH₂Ph, at 220—240° under pressure yields 75% of thiolbenzthiazole (II), obtained in 77% yield from (I), S, and CS₂ at 249° under pressure. PhNCS with S at 260° under pressure yields only 0·12%, or with CS₂ 1·0%, of (II). PhNC with S and CS₂ under pressure yields no (II) at 151°, and very little at 180°. The mechanism of the formation of (II) is discussed.

A. Lt. Photographic sensitisers.—See B., 1940, 568.

Lycoris alkaloids. XV. Constitution of lycorine. VII. H. Kondo and H. Katsura (Ber., 1940, 73, [B], 112—115; cf. A., 1940, II, 144).—Dihydrolycorine (I) with 3% KMnO₄ at 1—2° gives dihydrolycorinone (II) (annexed formula), m.p. 246°, better

 $CH_{2} \underbrace{\bigcirc O \\ O \\ O \\ O \\ (II.)}^{(OH)_{2}}$

obtained by oxidising (KMnO₄ in COMe₂) the Ac₂ derivative of (I) to the Ac₂ derivative (III), m.p. 130°, of (II), to which (III) is hydrolysed. (II) is not affected by SeO₂ in AcOH, or by K₂OsO₂(OMe)₄. With K₂Cr₂O₇-H₂SO₄, (II) in AcOH gives a compound, de-

comp. 186°. With Pb(OAc)₄ in C₆H₆ at the b.p., (II) gives, after treatment with NH₂OH, a dialdehyde dioxime, decomp. 233°, or, after treatment with AcO₂H at 50°, an aldehydo-acid, C₁₄H₁₃O₃N(CHO)·CO₂H, decomp. 245°, and a neutral product. E. W. W.

Strychnine alkaloids. CIX. Reaction of the nitroquinone from N-methyl-\(\psi\)-brucine; other nitroquinones of this series. H. Leuchs and H. G. Boir (Ber., 1940, 73, [B], 99—103; ef. A., 1939, II, 232, 489).—N-Methyl-sec.-ψ-brucine (I) in 10n-HNO₃ (containing HNO₂) at -10° with aq. pieric acid gives the picrate, C22H22O5N2,HNO2,C6H3O7N3, of the o-quinone (II) [perchlorate (extracted by CHCl₃ after addition of KHCO₃)] of (I). With NH₂OH,HCl, (II) gives its oxime hydrate hydrochloride (III), C₂₂H₂₅O₆N₃,2HCl, reduced by Zn-HCl to the stannichloride, sinters 270-280° (to a black resin), of aminohydroxy - N - methyl - $sec. - \psi$ - strychnine. HClO₄ and Zn, followed by H₂O₂, (III) gives an amorphous oxazine colouring matter. The HNO3 solution of (I), with HClO₄ and SO₂ at -10°, gives the o-quinol hydrate perchlorate, $C_{22}H_{26}O_6N_2$, $HClO_4$, of (I). The same solution with $HClO_4$, heated to 50° , gives a nitroquinone hydrate perchlorate, $C_{22}H_{23}O_8N_3$, $HClO_4$ (+0.5 or $1H_2O$) (IV), reduced by Su-HCl to the aminoquinol stannichloride,

 $C_{22}H_{25}O_5N_3$,2HCl,SnCl₄, or by SO₂ to the *nitroquinol perchlorate*, $C_{22}H_{25}O_8N_3$,HClO₄,0·5H₂O [oxidised by HNO₃ to (IV)]. With NH₂OH,HCl, (IV) gives the oxime hydrochloride, $C_{22}H_{24}O_8N_4$,HCl. In H₂O at 80°, (IV) gives a red dimeride, m.p. ~145° (to a resin); when the solution is heated with HClO₄ a yellowish-red salt, $C_{22}H_{23}O_8N_3$,HClO₄,H₂O, m.p. 145° (decomp.),

is obtained. N-Methyl-sec.- ψ -brueine methoperehlorate with 8n-HNO₃ at 60°, followed by HClO₄, gives the methoperchlorate, $C_{22}H_{23}O_8N_3$,MeClO₄,0·5H₂O (V), analogous to (IV). The ether, $C_{25}H_{32}O_5N_2$, similarly gives a nitroquinol hydrate, $C_{23}H_{27}O_8N_3$,HClO₄,0·5H₂O (VI). Neither (V) nor (VI) gives any coloured dimeride or isomeride when heated with H₂O; the formation of such a compound from nitroquinol hydrates of the ψ -brueine series appears to require the presence of the 'C(OH)·N' system. E. W. W.

Veratrine alkaloids. VII. Decevinic acid. L. C. CRAIG and W. A. JACOBS (J. Biol. Chem., 1940, **134**, 123—135).—Decevinic acid (I), $C_{14}H_{14}O_6$ (A., 1939, II, 490) (prep. from cevine described), with S at 300° yields 2-hydroxy-1:8-naphthoic anhydride, which with conc. NaOH gives 2:8-OH·C₁₀H₆·CO₂H (identified as Mc ether). (I) neutralises only 2 NaOH in the cold, the product on acidification giving an acid, $C_{13}H_{16}O_5$, m.p. 150—155° (efferv.) [Me₂ ester (CH₂N₂)], which gives no reaction with FeCl₃, is neutralised by 2 NaOH, and when distilled, or heated with N-NaOH and acidified, yields a ketolactone (II), $C_{12}H_{16}O_3$, m.p. 165—168°, $[\alpha]_D^{25}$ —50° in CHCl₃ (phenylhydrazone, m.p. 175—178°; oxime, m.p. 194— 195° after sintering), which reacts with 1 NaOH, but not with Na₂CO₃ or CH₂N₂. The Me ester (III), C₁₆H₁₈O₆, of (I) when boiled with N-NaOH and acidified yields (II). The Ac derivative, m.p. 169—171°, of (I) with CH_2N_2 yields the Ac derivative, m.p. 182—183°, of decevinic acid Me_1 ester, $C_{15}H_{16}O_6$, m.p. 242—245°. Partial hydrolysis (warm NaOH) of (III) yields a substance, C₁₅H₁₆O₆, m.p. 128°, which gives no Ac derivative. (I) with o-C₆H₄(NH₂)₂ yields a compound, C₂₀H₂₀O₅N₂, m.p. 300—302°, which is neutralised by I NaOH, and gives no reaction with rectransed by I NaOH, and gives no reaction with FeCl₃. Hydrogenation (PtO₂) of (I) followed by distillation (with loss of $\rm H_2O$) at 0.1 mm. yields a monobasic lactone acid, $\rm C_{14}H_{20}O_4$, m.p. 237—239° [Me ester (CH₂N₂), m.p. 127—128°]. Hydrogenation and distillation of (II) yields two substances, $\rm C_{12}H_{18}O_2$ (?), m.p. 97°, and $\rm C_{12}H_{18}O_3$ (?), m.p. 65—73° (a few crystals persisting to 90°). The constitution of (I) is discussed. tion of (I) is discussed.

Structure of acetocodeine. L. SMALL and J. E. MALLONEE (J. Org. Chem., 1940, 5, 286—289).— Attempts to rearrange aceto-6-acetylcodeineoxime with conc. $\rm H_2SO_4$ or $\rm PCl_5$ under the usual conditions give unchanged material or cause extensive decomp. With Beckmann's mixture at room temp. rearrangement gives acetamido-6-acetylcodeine [trihydrate, m.p. 112—115° (decomp.), $[\alpha]_{\rm D}^{20}$ —214° in EtOH], hydrolysed to 1-aminocodeine, m.p. 223—226°, $[\alpha]_{\rm D}^{127}$ —181·1° in $\rm H_2O$. Acetocodeine therefore has Ac at $\rm C_{\rm O}$.

Relative reactivities of organo-metallic compounds. XXXI. Alkali benzyl compounds. H. GILMAN, H. A. PACEVITZ, and O. BAINE (J. Amer. Chem. Soc., 1940, **62**, 1514—1520; cf. A., 1940, II, 172, 276).—The formation of organo-alkali compounds named below is proved by interaction with $\rm CO_2$ to give the derived acid. o-, m-, or p-Hg($\rm C_6H_4Me)_2$ and Na in boiling light petroleum or PhMe give NaCH₂Ph, but reaction is very slow at room temp.; the reaction mechanism for the m-compound is obscure. PhCl

and Na in PhMe at ≯40° give NaPh. HgPh₂ and Na in C₆H₆ in 24 hr. at room temp. give, after interaction with CO₂, 86% of BzOH, but 62% if boiled for 24 hr. Na and p-C₆H₄MeCl in various solvents at 35–40° give 56–80% of p-C₆H₄MeNa, but when boiled give 48.5—79% of NaCH₂Ph. KCH₂Ph is prepared from, best, (a) K sand and PhCl in PhMe at 30—35°, (b) HgBu_{2}^{a} and K in C_{6}H_{6} and then PhMe, or, least well, (c) $\text{Hg}(\text{C}_{6}\text{H}_{4}\text{Me-}p)_{2}$ and K in boiling light petroleum; passing CO2 over the surface of the solution prepared as in (a) gives 55% of CH₂Ph·CO₂H and 23% of CHPh(CO₂H)₂. KCH₂Ph and COPh₂ give CH₂Ph·CPh₂·OH. PhCl and K in $s-C_6H_3Me_3$ at $30-35^\circ$ give $3:5:1-C_6H_3Me_2\cdot CH_2K$, which with solid CO_2 gives only 3:5:1-C₆H₃Me₂·CH₂·CO₂H but with gaseous CO₂ gives also some 5-m-xylylmalonic acid, softens at 149—150° decomp. 154—155°. Addition of 2-C₁₀H₂Me to PhCl and Na in C₆H₆ gives 2-C₁₀H₇·CH₂Na. HgEt₂, Na, and PhPr^β give NaCMe₂Ph. Addition of PhMe to LiBuⁿ in Et₂O gives LiCH₂Ph. Mechanisms of metallation and carbonation are discussed. Dry KCH₂Ph and K residues are dangerous. R. S. C.

Phenylmercuri-derivatives of NH compounds.—See B., 1940, 642.

Quaternary ammonium salts with anions containing triphenylboron. D. L. Fowler and C. A. Kraus (J. Amer. Chem. Soc., 1940, 8, 1143—1144).

—The prep. of the following compounds is described: NMe₄F',BPh₃, m.p. 175—177°; NBu^a₄F,BPh₃, m.p. 161—162°; NMe₄·OH,BPh₃,EtOH, m.p. 125—130° (decomp.); NMe₄·OH,BPh₃,H₂O, m.p. 185—187°; NBu^a₄·OH,BPh₃, m.p. 143·5—145·5°. Only small ions, such as NH₂', OH', and F', form stable complexes with BPh₃ by co-ordination; the salts are stable in air. A no. of unstable compounds have been prepared. W. R. A.

Organo-selenium compounds. II. Derivatives of phenylseleninic acid and phenylseleninamide. C. K. Banks and C. S. Hamilton (J. Amer. Chem. Soc., 1940, **62**, 1859—1860; cf. A., 1939, II, 525).—p-NHAc·C₆H₄·SeCN (I) with NH₃-H₂O-EtOH gives di-p-acetamidophenyl diselenide, m.p. 143° (decomp.), and with Cl₂ in CHCl₃ gives p-acetamido-phenyl-selenium trichloride, m.p. 161° (decomp.), hydrolysed by EtOH-Et₂O to the -seleninic acid, m.p. 109° (decomp.). H₂-Raney Ni at 2.67 atm. in COMe₂ reduces (p-NO₂·C₆H₄·Še)₂ to di-p-aminophenyl diselen-ide, m.p. 80° (decomp.), which, when dissolved in 10n-HNO3 at -5° and then poured into NH3-EtOH- H_2O , gives p-aminophenylscleninamide [hydrochloride, m.p. 200° (decomp.)]. By a similar reaction, (I) gives p-acetamidophenylseleninamide, m.p. 211° (decomp.). p-NO₂·C₆H₄·SeO₂H with SOCl₂ and then aq. NH₃ gives p-nitrophenylseleninamide, m.p. 183° (decomp.) and with boiling, fuming HNO3 and a trace of HCl gives p-nitrophenylselenonic acid, +4H₂O, m.p. 113— 115°. Stability is determined by the substituent, decreasing in the order NO₂, NHAc, NH₂.

R. S. C. Organic compounds of tungsten. F. Hein and E. Nebe (Naturwiss., 1940, 28, 93).—W hexaphenoxide reacts readily with MgPhBr giving a brown substance. Analogous compounds are obtained from

WCl₆ and Grignard reagents or LiPh. As in the case of Mo, amorphous mixtures are produced. Compounds PhWO_{3·5}H₂, or (PhW)₂O₇H₄, and Ph₃W₂O₈H₇ have been isolated. In colour, appearance, and reactions they resemble the corresponding Mo compounds, and like them they are even less stable than the org. Cr salts.

A. J. M.

Physical investigation of protein molecules.—See A., 1940, I, 350.

Wrinch's theory of protein structure. A. Fodor (Enzymologia, 1939, 6, 207—208; cf. A., 1939, II, 192).—Polemical. W. McC.

Patterson projection of the skeletons of the structure proposed for the insulin molecule.—See A., 1940, I, 350.

Fabric theory of protein structure.—See A., 1940, I, 350.

Metaphosphoric acid—protein reaction.—See A., 1940, III, 764.

Maltol from the products of hydrolysis of protein matters with hydrochloric acid. K. Kihara (J. Soc. Chem. Ind. Japan, 1940, 43, 1328).—Maltol, obtained from soya-bean protein or crude gluten by hydrolysis (HCl), extraction with Et₂O, and purification by FeCl₃, sublimes on heating, contains neither N nor S, reduces ammoniacal Ag, and gives a red-violet Fe¹¹ and a green Cu¹¹ salt.

Gluten protein. A. G. McCalla and N. Gralén (Nature, 1940, 146, 60—61).—The behaviour of a soft wheat gluten dispersed in aq. Na salicylate on ultra-centrifuging, and the results of diffusion studies, are reported. The mols. are long and thin, but their shape differs in different fractions. There are many lengths of mols., and the theory that only two proteins, glutenin and gliadin, make up gluten must be rejected. The present results support the view that gluten protein is a protein system made up of components that vary systematically in chemical and physical properties (cf. A., 1939, III, 869).

Amino-acids of casein phosphopeptone. M. Damodaran and B. V. Ramachandran (Nature, 1940, 145, 857).—Digestion with trypsin of the ppt. of "paranuclein" obtained by the action of pepsin on casein yields a phosphopeptone of const. composition and resistant to further action of trypsin. The substance, isolated as the Ba salt, contains 10% of NH₂-N and has N: P ratio 3·2—3·3, indicating a polypeptide of 10 NH₂-acids (3 glutamic acid, 3 isoleucine, 4 serine; cf. A., 1927, 1211) united to three H₃PO₄ residues.

L. S. T.

Physical chemistry of nucleoproteins. I. Preparation and general properties. R. O. Carter and J. L. Hall (J. Amer. Chem. Soc., 1940, 62, 1194—1196).—Prep., sp. vol., n, η , and the titration curve of ealf thymus nucleoprotein (N 16.73, P 4.6%) and prep. of hog thyroglobulin are described.

State of guanidine groupings in protein molecules. J. Roche and G. Blanc-Jean (Compt. rend., 1940, 210, 681—683).—30—35% of the

guanidine radicals in clupeine, salmine, and scombrine, 50% in coregonine, sturine, thymohistone, globins, edestin, and ovalbumin, and 75% in casein, gliadin, and zein are mono-substituted (Sakaguchi reaction). Acid hydrolysis of the protein increases the proportion of guanidine radicals which give the Sakaguchi reaction to a val. > that calc. from the arginine content. The theoretical val. is obtained after prolonged hydrolysis.

J. L. D.

Decomposition of seleniferous proteins in alkaline solutions. E. G. PAINTER and K. W. FRANKE (J. Biol. Chem., 1940, 134, 557—566).—The Se contents of the hydrolysates obtained after alkaline hydrolysis of seleniferous proteins and after alkali treatment of acid hydrolysates are reported. Alkaline hydrolysis in presence of PbO caused a much greater reduction in Se content. Simultaneous S determinations indicated that whilst the stability of the protein-Se was comparable with that of S, more of the Se remained in the filtrate from the Pb ppt. Acid hydrolysis, on the other hand, caused a greater loss of "labile Se" than of "labile S." A. L.

Small Buchner funnel for qualitative organic analysis. C. A. Roswell (Ind. Eng. Chem. [Anal.], 1940, 12, 350).—A small porcelain plate is sealed into a portion of a Pyrex test-tube, to the bottom of which a small tube is sealed.

J. D. R.

Determination of the carbon content of organic materials. Simple micro-method. B. E. Christensen, R. Wong, and J. F. Facer (Ind. Eng. Chem. [Anal.], 1940, 12, 364—365).—The substance is oxidised with K₂Cr₂O₇-H₂SO₄ and the CO₂ evolved is absorbed in standard Ba(OH)₂, the excess of which is back-titrated with HCl. A special apparatus is described and procedure is detailed. J. D. R.

Micro-Carius halogen and sulphur determination. J. B. Niederl, H. Baum, J. S. McCoy, and J. A. Kuck (Ind. Eng. Chem. [Anal.], 1940, 12, 428—431).—The procedure combines the best features of earlier methods: it minimises the danger of explosions, reduces the time of heating, and eliminates contamination of the reaction product by glass splinters. The same method of filtration and apparatus are used for both halogen and S determinations. Details of manipulation are given.

L. S. T. Micro-determination of sulphur in organic compounds. Absorption apparatus for use with the combustion method. L. T. Hallett and J. W. Kuipers (Ind. Eng. Chem. [Anal.], 1940, 12, 357— 359).—Two forms of absorber which can be used for the determination of S by combustion are described. One is designed so that the products of combustion can be washed from the absorber without removing the tube from the furnace. SO₃ mist is eliminated from this type except with substances which burn very rapidly. The other absorber has an electro-precipitator for depositing SO₃ mist and the simultaneous formation of O_3 oxidises lower oxides of S to SO_3 . This absorber allows rapid burning, uses H2O as absorbent, and allows direct titration of SO₄" with a tetrahydroxybenzoquinone indicator. J. D. R.

Micro-determination of sulphate obtained from combustion of organic compounds. Tetrahydroxy[benzo]quinone as an indicator. L. T. Hallett and J. W. Kuipers (Ind. Eng. Chem. [Anal.], 1940, 12, 360—363).—The conditions under which tetrahydroxybenzoquinone may be used as an indicator in the determination of S, using 0.01n-BaCl_2 , are described. If an electro-precipitator for SO₃ mist is used in the absorber, no oxidising agent need be added before titration. Without the precipitator, Br is used to oxidise SO₂ to SO₃. The precision of the method is $\pm 0.25\%$.

J. D. R.

Micro-determination of nitrogen by the hypobromite method, using copper as catalyst. I. Reifer (New Zealand J. Sci. Tech., 1940, 21, 169-170B).—Cu can be used as catalyst in the Kjeldahl determination of N without distillation when HCl is replaced by $H_2C_2O_4$ (not citric or tartaric acid), which prevents the formation of CuI and I when KI is added. The solution (0.05-0.15 mg. of N) is digested for 30 min. with H₂SO₄ containing CuSO₄,5H₂O. When cool, a mixture containing Na oxalate and borate is added, followed by aq. NaOH containing Me-red and thymol-blue. Neutralisation is completed by the addition of 27% NaOH, and KBr-Br solution is added. After addition of KI and aq. H₂C₂O₄, the solution is titrated with 0.01n-Na₂S₂O₃ (starch). The method is accurate to $\pm 1\%$, and is as good as the Parnas-Wagner distillation method.

Potentiometric studies in oxidation-reduction reactions. Oxidation with chloramine-T.—See A., 1940, I, 371.

Determination of unsaturation in aliphatic hydrocarbon mixtures by bromine absorption. B. Lewis and R. B. Bradstreet (Ind. Eng. Chem. [Anal.], 1940, 12, 387—390).—The sample in n-C₇H₁₆ is treated with KBrO₃-KBr-H₂SO₄ and the excess of Br determined. Some S compounds (e.g., mercaptans and disulphides) affect the Br no., and catalysts (usually metal salts) have been found which minimise but do not eliminate this effect.

J. D. R.

Micro-analysis of gases. Acetylene, benzene, and some procedure modifications. F. E. Blacet, A. L. Sellers, and W. J. Blaedel (Ind. Eng. Chem. [Anal.], 1940, 12, 356—357).— C_2H_2 is quantitatively removed from a mixture with CO and C_3H_6 by a bead of $Hg(CN)_2$ –KOH; C_3H_6 may be determined in the residue by absorption in H_2SO_4 and CO by absorption on Ag_2O . C_6H_6 vapour is determined either by absorption in fuming H_2SO_4 , followed by KOH, or by absorption in aq. NH_3 –Ni(CN) $_2$ followed by P_2O_5 or H_2SO_4 ; results by the two methods agree well. A detailed description is given of a new combustion coil for burning gases and a change in the method of preparing a CuO–KOH reagent for H_2 absorption is described. J. D. R.

Physico-chemical determination of components in mixtures. G. IBING (Angew. Chem., 1940, 53, 60—65).—The proportion of an individual (A) in a mixture (B) is deduced from determinations of the apparent mol. wt. of (B) in (A) as solvent and in a second liquid which is not present in (B). Apparatus

for cryoscopic measurements at -200° to 700° is described. The method is applied to the determination of C_6H_6 and its homologues, of condensed aromatic hydrocarbons, and phenols. H. W.

Determination of certain polyalcohols in presence of each other. N. Allen, H. Y. Charbonnier, and R. M. COLEMAN (Ind. Eng. Chem. [Anal.], 1940, 12, 384—385).—With H_5IO_6 (I), glycerol (II) yields $2CH_2O$ and HCO_2H , whilst $(CH_2OH)_2$ (III) yields 2CH₂O. (II) and (III) are determined in mixtures by oxidation with (I), followed by determination of HCO₂H [which gives the (II) content] and of HIO₃ [which gives (II) + (III)]. When a third glycol, not oxidised by (I), is present (e.g., diethylene glycol), the sample is oxidised with K₂Cr₂O₇-H₂SO₄, from which the total glycol content is determined. (II) and (III) are determined separately, and the third glycol determined by difference. (II) may be distinguished from (III) by development of acidity by (II) on mixing with a neutralised solution of (I). A method for investigating unknown solutions of polyhydric alcohols is outlined. J. D. R.

Permanganimetric titration of formic acid and formaldehyde in alkaline solution.—See A., 1940, I, 372.

Bromometric determination of allyl compounds. F. Wessel and M. Keszler (Ber. ung. pharm. Ges., 1937, 13, 161—164; Chem. Zentr., 1937, i, 4136).—Diallylacetic acid is determined as follows: 0.05—0.06 g. is dissolved in 10 c.c. of MeOH or EtOH, 15 c.c. of 20% HCl and 0.5 g. of KBr are added, and the solution is titrated immediately with 0.1n-KBrO₃. Diallyl- (0.05—0.07), allylisopropyl-, and phenylallyl-barbituric acid (0.13—0.16 g.) are hydrolysed by refluxing with 5—6 c.c. of 10% NaOH for 20 min. 25 c.c. of 20% HCl are added, and the cooled solution is titrated with 0.1n-KBrO₃ to a pale yellow colour; 120—150 c.c. of H₂O, a crystal of KI, and starch are then added, and the I is back-titrated with 0.1n-Na₂S₂O₃.

A. J. E. W.

Wijs iodine method. J. W. McCutcheon (Ind. Eng. Chem. [Anal.], 1940, 12, 465).—Determination of the Wijs I val. of Et linoleate and elaidate, Me linolenate, and elaidic acid gives results ~98.8% of theoretical. The reliability of the method is > is generally supposed but corrections should be applied when I val. is used as a measure of purity.

Modification of the Miller-Muntz method for colorimetric determination of lactic acid. R. H. Koenemann (J. Biol. Chem., 1940, 135, 105—109; cf. A., 1939, III, 110).—The p-C₆H₄Ph·OH is dissolved in a min. quantity of 0·18m-NaOH, instead of using it dry. The intensity of colour is 88% of that produced by the original method, but the accuracy is scarcely affected.

A. Li.

Photographic silver-gelatin paper as reagent in drop analysis.—See B., 1940, I, 372.

Analysis of mixtures of aliphatic acids. Simultaneous qualitative and approximate quantitative determinations. S. T. Schicktanz, W. I. Steele, and A. C. Blaisdell (Ind. Eng. Chem. [Anal.], 1940, 12, 320—324).—The acids [HCO₂H (I),

AcOH (II), EtCO₂H (III), Pr^8CO_2H (IV), and $PrCO_2H$ (V)] are mixed with C_6H_6 and distilled, when (I) and (II) distil as a binary mixture and are determined together by titration. C_6H_6 is removed and PhMe added; three fractions are obtained containing (III), (IV), and (V), respectively, which are determined by titration. If the acids are in the form of salts, these are dried in C_6H_6 , the acids liberated by $p\cdot C_6H_4$ Me·SO₃H, and the distillation is carried out as before.

J. D. R.

Determination of reducing sugar in presence of sucrose.—See A., 1940, III, 779.

Effect of certain carbohydrates on the determination of carotene. E. J. Lease and J. H. Mitchell (Ind. Eng. Chem. [Anal.], 1940, 12, 337—338).—Carotene (I) is incompletely extracted by EtOH-KOH from stored raw or cooked sweet potatoes and other cooked vegetables; the KOH forms a resinous film of polymerised carbohydrate which renders (I) unextractable. In samples with much carbohydrate, (I) may be determined by extraction with EtOH. If EtOH-KOH is used the material should be boiled with H₂O to dissolve resins before extraction of (I) with fat solvents. J. D. R.

Microscope hot stage for determination of m.p. [of carotene].—See A., 1940, I, 374.

Estimation of o-nitrophenol in p-nitrophenol and o-aminophenol in p-aminophenol by fluorescence analysis. W. Seaman, A. R. Norton, and O. E. Sunderg (Ind. Eng. Chem. [Anal.], 1940, 12, 403—405).—The nitrophenol is boiled with Zn-HCl, filtered, and the filtrate adjusted to $p_{\rm H}$ 5·1 with aq. NH₃ and extracted with Et₂O. The Et₂O-sol. material is heated with BzOH to 155—160° and the melt dissolved in aq. NH₃ and extracted with C_6H_6 , which gives a fluorescent solution. The fluorescence is matched against known standards prepared from synthetic mixtures of pure o- and p-NO₂· C_6H_4 ·OH. The same procedure is applied to mixed NH₂· C_6H_4 ·OH, omitting the reduction stage. The fluorescence is caused by an unknown by-product in the fusion of o-NH₂· C_6H_4 ·OH with BzOH.

J. D. R.

Chemical and metabolic studies on phenylalanine. III. Amino-acid content of tissue-proteins of normal and phenylpyruvic oligophrenic individuals. Determination of phenylalanine. R. J. Block, G. A. Jervis, D. Bolling, and M. Webb (J. Biol. Chem., 1940, 134, 567—572).—Results of the determination of the phenylalanine in various proteins after hydrolysis with 8n-H₂SO₄, HCl, HCl-HCO₂H, HI, and 5n-NaOH are reported; the highest vals. were obtained with NaOH. The N, S, histidine, arginine, lysine, cystine, tyrosine, tryptophan, threonine, and phenylalanine contents of proteins prepared from the blood sera, erythrocytes, brain, liver, and kidney of normal and phenylpyruvic oligophrenic individuals were essentially the same.

Colour reactions of bile acids.—See A., 1940, III, 743.

Micro-determination of histidine.—See A., 1940, III, 779.

Micro-determination of adenine, guanine, xanthine, and hypoxanthine in presence of uric acid. I. Reifer (New Zealand J. Sci. Tech., 1940, 21, 171—178_B).—The purine solution (0.01—0.2 mg. of purine-N) is treated at room temp. with Cu2O in presence of CuSO₄, citrate buffer (p_H 5), and EtOH. The pptd. purine-Cu₂O compound (II) is centrifuged, washed, dissolved in CCl3 CO2H (I), and heated at both acid and alkaline reactions to decompose (I) and remove interfering substances. Pptn. with Cu₂O is repeated to complete the removal of uric acid, and the ppt. digested with H2SO4. The resulting NH3 is . determined by the OBr' method (A., 1940, II, 318). Test data recorded show that for 0.05 mg. of purine-N the method is accurate to $\pm 1\%$. Combined purines are hydrolysed by means of 0.5n-H2SO4 in 7.5% HCO2H, followed by deproteinisation with Na2WO4. The presence of Cl' (cf. A., 1935, 1045) inhibits pptn. of (II). Analyses of grasses and clovers show that 5% of the total N may be purine-N.

Nature of the Feulgen reaction with nucleic acid. C. S. Semmens (Nature, 1940, 146, 130—131).—The leuco-base of fuchsin is immediately restored to its original colour by heterocyclic compounds such as C_5H_5N and piperidine. Caffeine, theobromine, adenine, and guanine give magenta colours with different samples and preps. of leuco-base after varying periods of time. L. S. T.

Determination of methylated Atropa alkaloids. F. Reimers (Arch. Pharm., 1940, 278, 136—142).— Methylatropine bromide (I) (0·1—0·2 g.) is kept with 2n-NaOH for 30 min., after which the solution is acidified with HCl and thrice extracted with CHCl₃-Pr^βOH (3:1). The filtered extract is evaporated to dryness and the residual tropic acid is determined by dissolution in H₂O and titration with 0·1n-NaOH in presence of phenolphthalein (II). Alternatively (I) is dissolved in 0·1n-NaOH the excess of which is determined after 30—60 min. by titration with 0·1n-HCl in presence of (II). The second method is applicable to methylhomatropine bromide. The first method also can be used if Et₂O replaces CHCl₃-Pr^βOH; during evaporation of the latter small amounts of OH·CHPh·CO₂H are volatilised.

H. W. Titration of morphine. W. POETHKE (Arch. Pharm., 1940, 278, 109-125).—The indicator correction is very small when morphine (I) is titrated with Me-red (II) to $p_{\rm H}$ 5.0 but it cannot be neglected and a comparison solution is recommended for exact results. The error caused by increase in vol. is small when, in accordance with the Swiss Pharmacopæia V, dilution to an EtOH content of ~25% is made since the end-point of (II) is well-defined in 25% EtOH. With MeOH dilution to 40% suffices since under these conditions a sharp end-point is obtained with a comparison solution; with EtOH dilution to 25% content is essential. In 50% EtOH the correction is very small when (I) is titrated with bromophenolblue as indicator but a comparison solution is advisable. In more dil. EtOH or in H₂O accurate results are obtained only by use of a correction. Acid com-

bined with narcotine (III) cannot be titrated accurately with (II) as indicator. When excess of acid in a solution containing (I) and (III) is titrated in presence of (II) the latter has a pure red colour at the equivalence point of the salt of (III). In the determination of pure (I) titration must be effected to $p_{\rm H}$ 5 (yellow-red) and this shade can be detected readily in presence of (III). The acid consumption is smaller, particularly in presence of MeOH, than that required for (I) + (III) but considerably greater than for (I) alone. If only traces of (III) are present as in impure (I), almost exactly (I) + (III) is found at $p_{\rm H}$ 5 but a sharp end-point is not obtained if it is attempted to determine acid combined with (III) by further addition of alkali. Any yellow colour persists only so long as (III) remains in supersaturated solution and the solution becomes yellow-red or red when (III) separates. Pure (I) must be finally determined; the effect of contamination with (III) cannot be excluded in the titration.

Electrolytic [micro-]method for the determination of the basic amino-acids in proteins. A. A. Albanese (J. Biol. Chem., 1940, 134, 467—482).— The protein is boiled with 20% HCl, and a portion of the livdrolysate (= 0.5—l g. of protein) is electrolysed by a modification of the three-compartment cell method of Foster and Schmidt (A., 1923, i, 963). A first electrolysis eliminates HCl and more acidic NH₂acids; the contents of the cathode compartment are brought to $p_{\rm H}$ 5.6—5.8 and re-electrolysed. From the resulting cathodic electrolyte, arginine is pptd. as flavianate (I), and excess of flavianic acid removed Histidine (II) is determined by electrolytically. pptn. (centrifuge) with HgCl₂ at $p_{\rm H}$ 7 (cf. Foster et al., Organic Syntheses, 1938, 18, 43). Total N of the washings [corr. for solubility of (I)] determines lysine The purity of (I), and the absence of disturbing factors in the determination of (II) and (III), are established. Analyses of gelatin, cattle fibrin, casein, and horse hæmoglobin by this method are tabulated; results are reproducible within much narrower limits E. W. W. than in previous methods.

Determination of proline in mixtures containing l- and dl-proline. Proline content of gelatin. W. H. Stein and M. Bergmann (J. Biol. Chem., 1940, 134, 627-633).—In the method previously described (A., 1939, II, 236), a solution containing l- (I) and d-proline (1:1) ppts. a dl-rhodanilate (II) which is considerably less sol. in aq. MeOH than is l-proline rhodanilate (III). A mixture of (I) and dl-proline (IV) ppts. a mixture of rhodanilates in which the original proportions are approx. preserved; (II) and (III) form solid solutions, as is also shown by solubility measurements. Total proline is determined as rhodanilate, and the proportions of (I) and (IV) polarimetrically. Applied to hydrolysates, the method shows that gelatin and tendon collagen contain 17.5 $(\pm 0.5)\%$ of proline, and that d-proline is >1.5% of total proline. During prolonged hydrolysis of gelatin with boiling HCl, appreciable racemisation of (I) occurs, but (unless some is lost in the first, peptide, stage) no appreciable destruction. E. W. W.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

OCTOBER, 1940.

Substitution, addition, and elimination. W. HUCKEL (Angew. Chem., 1940, 53, 49—54).—A lecture. H. W.

Preparation and some physical properties of $\beta\beta\delta\delta$ -tetramethylpentane. F. L. Howard (J. Res. Nat. Bur. Stand., 1940, 24, 677—684).—The method of Whitmore and Southgate (A., 1939, II, 1) for prep. of $\beta\beta\delta\delta$ -tetramethylpentane has been improved and the following consts. among others are given: m.p. $-66\cdot600^\circ$; b.p. $122\cdot281^\circ/760$ mm. W. R. A.

Mechanism of substitution at a saturated carbon atom. XI—XXV.—See A., 1940, I, 391

Kinetics of olefine elimination from ethyl, isopropyl, tert.-butyl, and α - and β -phenylethyl bromides in acidic and in alkaline alcoholic solution.—See A., 1940, I, 390.

Influence of substitution on organic bond strength. E. T. Butler and M. Polanyi (Nature, 1940, 146, 129).—The breaking of C-I in various org. iodides has been studied by passing the vapour of the iodide at 0.01 mm. pressure diluted with N_2 or H_2 at 6 mm. through a tube at 300—500°, and analysing the products for I and HI. The vals. recorded show partial double linking character in vinyl and Ph iodides, and in benzyl, allyl, and acetonyl iodides indicate the degeneracy of the free radical resulting from conjugation of the unshared electron with the double linking or the C_6H_6 ring. Bu'l shows a strong reduction in linking strength. L. S. T.

Solvent and peroxide effect in the addition of hydrogen bromide to unsaturated compounds. isoPropylethylene. A. MICHAEL and N. Weiner (J. Org. Chem., 1940, 5, 389—400).—The appearance of a rearrangement product in the addition of conc. aq. HBr to CHPrs:CH2 is confirmed. In the presence of air the yield of sec. bromide (I) amounts to 49% and that of tert. bromide (II) to ~51% of the theoretical. Ascaridole (III) induces the formation of the abnormal primary bromide (IV) formed at the expense of (I). In the absence of solvent dry HBr adds to CHPr^{\$}CH₂ (V) to yield more (II) and less (I); H₂O, therefore, shows a solvent effect, and the conclusion that dry HBr and aq. HBr furnish identical additive compounds in the same proportion can no longer be upheld. In additive reactions HBr probably functions as the hydrated form. The change in the course of addition may be explained by an approach in the relative positivities of the unsaturated C atoms in (V) due to the multimol. union of the hydrated acid to a greater extent at the relatively positive methinyl C. With dry HBr (III) induces

the formation of (IV) mainly at the expense of (I) up to 0.009 mol. concn. but a further increase involves (II) which at 0.02 mol. concn. almost disappears. The unusual fall in reaction velocity, previously observed with CHMe.CMe₂ in MeOH, is met with in (V). No addition occurs at -78° or at 0° in MeOH alone or at higher temp. in presence of (III). However, at -78° a certain crit. concn. of (III) induces addition and >80% of (IV) appears; further increase in concn. is ineffective in altering the relative proportion of the products. Et₂O exerts a marked solvent effect leading to the formation of $\sim 53\%$ of (IV) at the expense of (I) and (II). Contrary to general results NHPh₂ is more effective than quinol (VI) in reducing abnormal addition to (V) but the influence of these antioxidants is much less with (V) than with most Δ^a -alkenes. AcOH in a vac. or in the presence of antioxidants causes the appearance of 44—47% of (IV); small amounts of (III) decidedly augment the proportion of (IV), which decreases slightly in amount with increasing concn. of (III). With CHCl₂·CO₂H a much smaller proportion of (IV) is obtained. Compared with the result of solvent-free addition of HBr to the hydrocarbon, the amount of (II) is only slightly diminished whilst that of (I) declines considerably. In comparison with the influence of AcOH drastic changes occur; the % of (I) is slightly decreased but that of (IV) diminishes by > half whilst that of (II) is > doubled. The result is independent of the presence of (VI). (III) (0.05-0.005M.) reduces the yield of (II) and increases that of (IV) but comparatively

≪ in AcOH. In the presence of CCl₃·CO₂H addition becomes normal in the sense that only (I) and (II) are formed. The presence of this strong acid increases the formation of (II) at the expense of (I). The same result is obtained in presence of (VI). The formation of (II) by the action of HBr on (V) should not be considered an abnormal addition. It is a normal consequence of the affinity and energy relationships existing in the chemical system. The chemical behaviour of this system manifests itself, alone and in the presence of solvents, oxidants, and antioxidants, by changes peculiar to the hydrocarbon.

Preparation of methyl chloride from natural gas.—See B., 1940, 591.

Catalytic reactions of carbon monoxide and hydrogen at high pressure. I. Synthesis of isobutyl alcohol.—See B., 1940, 591.

Molecular size in ethylene oxide polymerides. P. J. Flory (J. Amer. Chem. Soc., 1940, **62**, 1561—1565).—In polymerides formed by the addition of

monomerides to a fixed no. of polymeride mols., e.g., the condensation products of $(CH_2)_2O$ with $(CH_2 \cdot OH)_2$, the proportions of the mols. of various sizes are represented by Poisson's distribution law. Equations representing these proportions are derived and curves are given showing the calc. proportions in polymerides of average size 6-500 units. Such polymerides are much more homogeneous than condensation poly-J. W. S.

Synthesis of isopropyl ether. Direct hydration of propylene to isopropyl ether and alcohol. —See B., 1940, 591.

Synthesis of d(+)- α -glycerophosphoric acid and action of phosphatases on synthetic d(+)-, l(-)-, and $d\hat{l}-\alpha$ -glycerophosphoric acids. BAER and H. O. L. FISCHER (J. Biol. Chem., 1940, **135**, 321—328; cf. A., 1939, II, 296).— $d(+)-\alpha$ -Glycerophosphoric acid [Ba and Ag salts; Et_2 ether Et_2 ester, b.p. $104-105^{\circ}/0.22$ mm., $[\alpha]_{D}^{20} + 5.94^{\circ}$ (homogeneous), $+6.69^{\circ}$ in EtOH] has been synthesised from l-(-)-diisopropylideneglycerol. It is hydrolysed more rapidly than the l-(-)-acid by kidney, rat bone, and taka-phosphatases, and phosphatase from dog fæces. Muscle press-juice hydrolyses the l(-)-acid completely, and does not affect the d(+)-acid (Meyerhof).

Sodium ethylthioxanthate II. and its reactions with metals. III. Mechanism K. ATSUKI and T. TAKATA (J. of xanthation. Cellulose Inst. Tokyo, 1940, 16, 161—162, 163—169; cf. A., 1939, II, 532).—II. Na ethylthioxanthate, m.p. 88·1—88·3°, has been prepared by adding NaOH to cold EtSH, adding CS2, and crystallising from EtOH and Et₂O after removal of excess of CS₂. Its composition is established by analysis and by its reactions with metallic salts.

III. Xanthation occurs by the characteristic and selective affinity of the S atom in CS, for metallic atoms or groups. Xanthic and dithiocarbonic acids are not intermediate compounds. In the xanthation of cellulose spatial arrangements usually prevent >1 OH group per C₁₂ unit from reacting, but if the cellulose is dissolved in NEt₄ OH xanthation may occur at all the OH groups.

Resonance in the chloroacetic acids.—See A., 1940, I, 386.

Reaction of sodium in liquid ammonia with esters. M. S. Kharasch, E. Sternfeld, and F. R. MAYO (J. Org. Chem., 1940, 5, 362—378; cf. A., 1939, II, 97).—The action of one or two equivs. of Na on an ester gives respectively a free radical and a very reactive organo-Na compound. Similar compounds can be obtained by the combined action of NaNH, and NaOEt on a diketone or an acyloin. Only $0.\overline{5}$ mol. of EtOAc, EtCO₂Et, Pr^BCO₂Et, Bu⁷CO₂Et, CH₂Ph·CO₂Et, CHPh₂·CO₂Et, or EtOBz is required to discharge the colour of a solution of Na in liquid NH₃. H₂ is not evolved during the action of the esters with one or two mols. of Na or when the reaction mixture is treated with NH₄Br regardless of the presence or absence of C₆H₆ as solvent for the ester. CO is therefore attacked directly and without preliminary enolisation. In some instances considerable

reduction of ester to alcohol occurs, accompanied by approx. equiv. quantities of acid and amide. Experiments with esters in the absence of Na but in presence and absence of NaNH2 show that the formation of amide is not due to ammonolysis of the ester. The processes of formation of alcohol and amide are related and probably due to the disproportionation of an intermediate. With one equiv. of Na EtOAc gives little Ac₂ whereas (COEt)₂ is more readily obtained from EtCO₂Et. EtOBz gives a dark purple colour and the product is hydrolysed to Bz₂ or a mixture of Bz₂ and OH·CPh₂·CO₂H. The probability that ONa CPh OEt exists in equilibrium with its dimeride is supported by the observation that the colour of the solution is altered by O₂ and the product gives BzOH and an explosive tar. With two equivs. of Na acetoin, best isolated as the acetate, is obtained from EtOAc but the formation of pure CH₂Ac·CO₂Et could not be confirmed, NH2·CMe.CH·CO2Et being obtained in its place. EtCO₂Et behaves similarly but gives no evidence of a Claisen condensation. Pr^BCO₂Et gives a derivative spontaneously inflammable in air and hydrolysed to $Pr^{\beta}CHO$, thus suggesting the structure OEt·CPr^{\$}Na·ONa, which is supported by the production of COEtPr^β when the compound reacts with EtBr. Bu⁷CO₂Et behaves similarly; CH₂Ph·CO₂Et gives some CH₂Ph·CHO, but the corresponding acyloin could not be isolated. CHPh₂·CO₂Et gives a very marked yellow colour but instead of CHPh2 CHO gives COPh2 and a greater proportion of alcohol (CHPh₂·CH₂·OH) than any of the other esters. The following appear new: propioin-2:4-dinitrophenylhydrazone, m.p. 154°; dipropionyl-2: 4-dinitrophenylhydrazone, m.p. 145— $145\cdot5^{\circ}$; Bu^{β} 3:5-dinitrobenzoate, m.p. 63-64°; isobutyroinoxime, m.p. 109° ; Et Pr^{β} ketone 2:4-dinitrophenylhydrazone, m.p. 168—169°; Et Bu^γ ketone 2:4-dinitrophenyl-hydrazone, m.p. 175°; ββ-diphenylethanol, m.p. 64— 65°; tetraphenylacetoin; isobenzamarone, m.p. 179°; 2:4-dinitrophenylhydrazones of valerophenone, m.p.

Preparation of acetyl chloride without the use of phosphorus chlorides.—See B., 1940, 591.

Effect of reduced nickel on the addition of hydrogen bromide to undecenoic acid in various solvents. M. TAKEBAYASHI (Bull. Chem. Soc. Japan, 1940, 15, 113—115).—The effect of reduced Ni in reversing the mode of addition of HBr to undecenoic acid (cf. A., 1938, I, 406; II, 216, 428) is similar in C₆H₆, CCl₄, and ligroin to that in PhMe. In AcOH and Et₂O the effect is very slight, and the Ni is attacked. In CHCl₃ the effect is intermediate.

Influence of aldehydes and hydroxyaldehydes on the addition of hydrogen bromide to undecenoic acid in presence and in absence of oxygen or reduced nickel. M. TAKEBAYASHI (Bull. Chem. Soc. Japan, 1940, 15, 116—118; cf. preceding abstract).—Pyrocatechol and quinol markedly inhibit the effects of O₂ and of reduced Ni in reversing the mode of addition of HBr to undecenoic acid in C₆H₆. Protocatechualdehyde and vanillin have smaller, and PhCHO and o-OH·C₆H₄·CHO have negligible, effects.

Oxidation of drying oils and cognate substances. VI. Properties of the ketol, peroxide, and oxido-grouping, including those of some resins. R. S. Morrell and E. O. Phillips (J.S.C.I., 1940, **59**, 144—148; cf. B., 1939, 625).—The reactive O vals. of polyhydric alcohols are variable. In the case of benzoin the reaction proceeds normally, but with glycerol the val. is negligible and in the case of (CH₂·OH)₂ 25% reactions occurs. In the dihydroxy-stearic acids (cis and trans) 60% and 20% reaction, respectively, takes place. The evidence is not yet sufficient to indicate a preferential cis-reaction. Colophony on oxidation in air behaves like a drying oil. In blonde shellac the presence of a ketol grouping is indicated. The enolisation of the ketol grouping has been studied with reference to the variability of the I vals. obtained by the Hübl and Wijs methods, the isomeric ketol-stearic acids showing 64-99% enolisation. The oxido-group in oxidoelaidic acid is not reduced by H₂/atm. pressure with a Pt catalyst. It gives a hydrobromide and when heated at 100° it polymerises to a dimeride. The structural formulæ for the light petroleum-sol. and -insol. products of the methylated β-elæostearin oxyn are given. They are mixtures of oxido-methoxy-methyl esters of β-elæostearic acid. Earlier conclusions (B., 1931, 549) have been modified, confirmed, and extended.

Pectic acid. S. Ono (Bull. Sch. Agric., Taihoka, 1940, I, 1-39).—The isolation of pectins by extraction with boiling H₂O and addition of CuSO₄ to the extracts is described. These are snow-white in colour and both galacturonic and OMe contents are very high in comparison with those of pectins isolated previously from plant materials of the same species. They are considered to be a polymeride of trimethyltetragalacturonic acid containing no araban or galactan polysaccharide residues. Decomp. of Me ester groups does not occur in boiling 0.5% (NH₄)₂C₂O₄. So-called "insol. pectins" are derived from the insol. portions of Tuso pith and sliced radishes by use of 0.5% (NH₄)₂C₂O₄; they are very sparingly sol. in H₂O but their precipitability with EtOH and other reagents is identical with that of sol. pectins. The basal constituents of these pectins are the insol. mineral salts of pectic acid (I) in the plant minerals although the preps. contain a small amount of Me ester groups. They are incapable of gelling. Pectins are readily hydrolysed by dil. alkali to (I) and MeOH. (I), $[\alpha]_D + 280^\circ$ and -295° , is $(C_5H_7O_4 \cdot CO_2H)_n$ containing no polysaccharide residue. It is generally sol. in H_2O but a kind of (I), considered as insol. pectin, is sparingly sol. It does not form a jelly. With boiling $H\check{C}I$ (d 1.06) CO_2 is quantitatively evolved but the yield of furfuraldehydephloroglucide is not quant., 1 part of it corresponding with 2.73—2.74 parts of (I). (I) is also obtained from the coagulated extracts of Aigyokusi seeds by the action of pectase; apparently the enzyme causes hydrolysis which is followed by pptn. of Ca pectate, which is insol. in H₂O. Ag, Cu, Fe, Mg, Na, and Ca pectates are described; all of them, excepting the Na salt, are insol. in H₂O. The Ag salt is very photosensitive. The Fe salt carries down much Fe with the gel and the metal content is not const. so that salt formation is not simple. In general desiccation is incomplete at 110°. The ash content is not const. but the general composition appears to be $(C_5H_7O_4\cdot CO_2M)_n$. Treatment of the Ag salt with MeI under somewhat increased pressure gives Me pectate with appearance and $[\alpha]_{D}$ resembling those of the natural sol. pectins but the product is more freely sol. in H₂O and gives a ppt. with Pb(OAc)₂. The OMe content is somewhat higher, but free CO₂H which can be titrated directly with alkali is present. A modification of Carré and Haynes' method for determining (I) is described and used for the determination of (I) in certain fruits. Boiling with dil. H₂SO₄ under pressure hydrolyses "sol. pectin" to a clear solution from which pectolic acid (II) is pptd. and d-galacturonic acid (III) is finally obtained. Insol. pectin is not dissolved by boiling dil. H₂SO₄ and (II) is not pptd. but the reducing power of the resulting mixture increases gradually with formation of (III) which can be isolated in fine, needle-shaped crystals. (III) forms a monohydrate which does not lose H₂O completely at 80°/vac. in 10 hr. The phenylhydrazone, p-bromoand p-nitro-phenylhydrazone of (III) have m.p. 138.5°, 154°, and 180.5—181°, respectively, (lit. 134°, 152—153°, and 170—175°).

Pectin. V. Organic base derivatives of pectinic and pectic acids. R. F. Stuewer and A. G. Olsen (J. Amer. Pharm. Assoc., 1940, 29, 303—306). —The combined cations in pectin preps. are readily removed by washing with EtOH-acid to give "pectinic acid" (1% solution has $p_{\rm H} < 3$) which has an equiv. wt. (400—1200) > that of pectic acid (~205). Titration curves for pectins are given. The pectates and pectinates of various org. bases have been prepared [prep. of $N(C_2H_4\cdot OH)_3$ pectinate and NH_2Pr^a and methylglucamine pectates is described; the last two are sol. in 60 and 75% alcohol, respectively].

Acetylformoin. I. Preparation. R. Nodzu and S. Kunitika (Bull. Chem. Soc. Japan, 1940, 15, 211—214).—AcCHO with KCN (but not with K_2CO_3) at 0° and $p_{\rm H}$ 7·3 yields acetylformoin, m.p. 82°, which reduces cold Fehling's solution, gives with FeCl₃ a greenish-blue colour which fades on shaking, rapidly darkens and liquefies in the air, and is oxidised (KMnO₄) quantitatively to AcOH. The significance of its formation is discussed. OH·CHBz·COBz is oxidised quantitatively to BzOH. A. LI.

Action of weak alkalis on glucose. II. R. Nodzu and R. Goto (Bull. Chem. Soc. Japan, 1940, 15, 209—211; cf. A., 1936, 1094).—When distilled with dil. Na₂CO₃, AcCHO yields no acetol (I), and OH·CH₂·CH(OH)·CHO only a trace; both yield Ac₂ and (in the residue) OH·CHMe·CO₂H. Addition of AcCHO to glucose does not increase the yield of (I), which with Na₂CO₃ gives only a trace of Ac₂.

A. Li.

Structure of γ-sugars. IV. Preparation of 6-methylfructose. F. Hartley and W. H. Linnell (Quart. J. Pharm., 1940, 13, 150—161; cf. A., 1939, II, 142).—1:2-isoPropylideneglucose borate, m.p. (indef.) 90—115° (cf. von Vargha, A., 1933, 596), and 6-acetate, m.p. 145° (cf. Bell, A., 1936, 968), and 3:5-benzylidene-1:2-isopropylideneglucose 6-acet

ate (I), m.p. 125—126° (cf. Bell, *ibid.*), were prepared. Simultaneous deacetylation and methylation of (I) by 30% NaOH and Me₂SO₄ in COMe₂ at the b.p. yielded the corresponding 6-Me derivative, m.p. 96°, hydrolysed (0.5n-H₂SO₄ in 50% EtOH at 100°) to 6-methylglucose (pale yellow syrup; reaction velocity const. of mutarotation, K = 0.0122), the phenylosazone, m.p. 184°, of which was converted into the corresponding glucosone (II) by hydrolysis with HCl but not by treatment with PhCHO, CH₂O, or piperonal. Reduction (Zn-AcOH) of (II) yielded 6-methylfructose (III) as a dark brown syrup, $[\alpha]_D^{16} + 17.15^\circ$ (no change in [a] in 3 hr.) (phenylosazone, m.p. 184°), which with HCl-MeOH afforded 6-methyl-γ-methylfructoside, $[\alpha]_{D}^{17}$ +25.05°. The evidence for the structure of the isomerides of methylglucose is reviewed and the non-pyranose structure of (III) is discussed.

N-Glucosides. II. N-Glucosides of aniline derivatives and anilides of various sugars. K. Hanaoka (J. Biochem. Japan, 1940, 31, 95—107; cf. A., 1938, II, 394).—The influence of the carbohydrate and aglucone on the rate of hydrolysis by acids of glucosides of various derivatives of NH, Ph was studied. Introduction of OH, OMe, OEt, or Me decreases, and that of Cl or CO₂H increases, the stability of the glucoside linking. Susceptibility to hydrolysis gives the increasing order: lactoside, maltoside for disaccharides, glucoside, mannoside, galactoside for hexoses, and l-rhamnoside, d-arabinoside, l-arabinoside, d-xyloside for pentoses; with anilinomethylglucosides, the susceptibility decreases with approach of Me to $C_{(1)}$ of the glucose mol. and with increase in no. of Me groups. The following were prepared: o-, m.p. 137°, and p-chloroanilino-, m.p. 126°, o-carbethoxyanilino-, m.p. 137°, p-carboxyanilino-, m.p. 127°, and α-naphthylamino-glucoside, m.p. 92°; anilino-2-, m.p. 161°, and -6-methylglucoside, m.p. 130°; anilino-d-arabinoside, m.p. 130°; piper-idino-mannoside, m.p. 116—117°, -galactoside, m.p. 129°, -tetramethylglucoside, m.p. 74°, and -d-arabinoside, m.p. 103—104° (all m.p. uncorr.); data for solubility and $[\alpha]$ before and after mutarotation are given.

Γ. O. H. α-Phenyl-*d*-lyxoside, m.p. 178—181°, $[\alpha]_D^{20}$ + 123° in H_2O .—See A., 1940, III, 766.

Constitution of the tetrasaccharide fission product of starch by Bacillus mesentericus vulgatus amylase. I. S. Akiya (J. Pharm. Soc. Japan, 1938, 58, 40—45).—Hydrolysis of potato starch at 36° by the bacillus named gives a tetrasaccharide, $[\alpha]_{2}^{19}$ +168° in H₂O [dodeca-acetate (I)], hydrolysed by 2% HCl to glucose (98·3% isolated as phenylosazone). Methylation (Me₂SO₄-NaOH-COMe₂) of (I) and subsequent hydrolysis gives tridic (II), b.p. 105—110°/0·002 mm., and mono-methylmethylglucosides. Methylation of (II) by MeI-Ag₂O and Br-oxidation of the product gives tetramethyl-8-gluconolactone. HNO₃ (d 1·42) oxidises (II) to H₂C₂O₄ and d-(OMe·CH·CO₂H)₂. (II) is thus a 2:3-dimethylpyranoside. R. S. C.

Origin and composition of hemicelluloses obtained from hardwoods. E. Anderson, M. Seeley, W. T. Stewart, J. C. Redd, and D.

Westerbeke (J. Biol. Chem., 1940, **135**, 189—198). —The prep. and properties of hemicelluloses from lemon wood (I), the sap-wood (II) and heart-wood of black locust, and white birch wood, before and after chlorination of the wood, are described. (I) and (II) contain starch, and hemicelluloses therefrom give blue or pink colours with I. This property is not removed by digesting for 24 hr. with saliva or takadiastase, whereas a mixture of starch-free hemicellulose with maize starch after similar treatment gives no colour with I. Hydrolysis (dil. H₂SO₄) of hemicelluloses from (I) gives monomethoxyuronic acids combined with I and 2 xylan groups (Ba salts, $[\alpha]_D^{25}$ +75° and +65·16° respectively), whilst those from (II) give only the former (Ca salt, $[\alpha]_D^{25} + 70^\circ$). All give d-xylose, but those from (I) and (II) before chlorination yield a little d-glucose as well. It appears that the hemicelluloses not coloured by I consist of monomethyluronic acid combined with 8—19 xylan groups, whilst those which colour I contain anhydroglucose groups in the xylan chain, and may be intermediate products in the formation of hemicelluloses from starch or dextrin.

Reversible formation of starch from glucose 1-phosphate.—See A., 1940, III, 826.

Animal lipins. XVI. Occurrence of sphingomyelin as a mixture of sphingomyelin fatty acid ester and free sphingomyelin, demonstrated by enzymatic hydrolysis and mild saponification. XVII. Synthesis of lignocerylsphingosine fatty acid esters (sphingosine fats) and sphingosine amides (ceramides). S. J. THANNHAUSER and M. REICHEL (J. Biol. Chem., 1940, 135, 1—13, 15— 21; cf. A., 1938, III, 739).—XVI. Hydrolysis of spleen sphingomyelin (I) with liver phosphatase (in glycine buffer, $p_{\rm H}$ 8.9, containing MgSO₄ and a little PhMe) yields choline, H₃PO₄, cholinephosphoric acid (indicated by the difference between free and total choline), palmitic acid (II), lignocerylsphingosine (a "ceramide"), and some unhydrolysed ester (III). With pancreatic lipase (pptd. from glycerol extracts with COMe₂), or with KOH in MeOH-light petroleum at room temp., (I) yields (II) and lignocerylsphingosine cholinephosphoric acid (IV) [Reinecke salt (equimol. proportions)]. Since the CO·NH linking of ceramides is not split by the last two methods, it is concluded that (I) consists of (IV) and its O-palmitic ester (III). Acetylation with keten and hydrolysis of the product shows that 67.5% of (I) is esterified.

XVII. Lignocerylsphingosine yields with keten in CHCl₃ in presence of MeOH-KOH, OO'-diacetyl-, m.p. 70—71°, and with the appropriate acid chloride (2 mols.) in Et₂O-quinoline, OO'-di-benzoyl-, m.p. 57—58°, -palmityl-, m.p. 39—40°, and -stearyl-lignoceryl-sphingosine, m.p. 45—47°. These resemble triglycerides in chemical and physical properties. Sphingosine with 2 mols. of acid chloride yields tri-benzoyl-, m.p. 118—120°, -palmityl-, m.p. 67—69°, and -stearyl-sphingosine, m.p. 72—74°. The last two are hydrolysed (MeOH-KOH in presence of Et₂O) to N-palmityl-, m.p. 86—87°, and -stearyl-sphingosine, m.p. 88—89°, respectively.

Stability of hydrogen-carbon linkings in glutamic acid. S. RATNER, D. RITTENBERG, and

R. SCHOENHEIMER (J. Biol. Chem., 1940, 135, 357—358; cf. Foster et al., A., 1938, III, 1032).—Catalytic treatment of α -ketoglutaric acid with D_2 in presence of NH₃ yields glutamic acid from which no D is removed on prolonged boiling with 20% HCl. Such treatment does not introduce D into ordinary glutamic acid. Hence $H_{(\beta)}$ is stable. The synthetic acid (15.5 at.-% D) with chloroamine-T gives Ba succinate containing 28.4 at.-% D, showing that the H on $C_{(\alpha)}$ contains 25 at.-% D.

Racemisation of glutamic acid by heat. L. E. Arnow and (Miss) J. C. Opsall (J. Biol. Chem., 1940, 134, 649—651).—l(+)-Glutamic acid (20—500 g.) kept at 190—195° (3 hr. or more, according to quantity) gives, with 20% HCl at the b.p. (4 hr.), the hydrochloride of dl-glutamic acid (70% overall yield). dl-Pyrrolidonecarboxylic acid is formed intermediately (cf. Abderhalden et al., A., 1910, i, 768).

Amino-acid analogues of pantothenic acid. H. H. Weinstock, E. L. May, A. Arnold, and D. Price (J. Biol. Chem., 1940, 135, 343—344; cf. A., 1940, III, 751).—The condensation products of OH·CH₂·CMe₂·CH(OH)·CO₂H with Et₂ l-aspartate (b.p. 123—125°), dl-α-alanine Et ester (picrate, m.p. 171°), dl-lysine Me ester (hydrochloride, m.p. 219°), and Et β-aminobutyrate (picrate, m.p. 148·5—149°) show no biological activity in conens. up to 6·0 μg. per c.c. of medium. Asparagine with CH₂N₂ yields a substance (? betaine) having a hydrochloride of m.p. 183°.

Acetylation of cysteine by keten. J. J. PEREZ and G. SANDOR (Bull. Soc. Chim. biol., 1940, 22, 149—152).—That the substance obtained by Neuberger (A., 1938, II, 397) by the action of keten on cysteine is NS-diacetylcysteine is confirmed by its failure to decolorise porphyrindine and by the liberation of 2 mols. of AcOH on hydrolysis. A. L.

Silico-organic compounds. II. Reactions of silico-ortho-esters with certain acid anhydrides. H. W. Post and C. H. Hofrichter, jun. (J. Org. Chem., 1940, 5, 443—448).—The reaction between silico-ortho-esters and acid anhydrides follows a mechanism which can be explained on the assumption of an ionic splitting: $SiEt(OR)_3 \Longrightarrow SiEt(OR)_2$ $+(OR)^-$; $Ac_2O \rightleftharpoons AcO^- + Ac^+$; $SiEt(OR)_2^+ + AcO^- \rightleftharpoons OAc \cdot SiEt(OEt)_2$; $Ac^+ + OR' \rightleftharpoons ROAc$. The monoacylated compound, once formed, may dissociate in two different ways: $OAc \cdot Si(OEt)_3$ (I) \rightleftharpoons $OAc \cdot Si(OEt)_2^+$ (II) + OEt and $OAc \cdot Si(OEt)_2^-$ + $OAc^ = (OAc)_2Si(OEt)_2 \text{ or } (I) \Longrightarrow Ac^+ + [OSi(OEt)_3]^- (III)$ and (II) + (III) \rightarrow products of high mol. wt. Determination of the sp. reaction velocity coeff. at the refluxing temp. of the mixture of Pr ethaneorthosiliconate and Ac2 shows that the acetylation reaction is most probably of the second order; this fact is in agreement with an ionic mechanism such as is postulated. Propionylation probably follows the same mechanism. In the fractionation of the product obtained from the reaction between Si(OEt)4 and Bz₂O the reaction is forced to the left since Si(OEt), is the fraction of lowest b.p. For this reason a pure compound could not be isolated. The following appear new: diethoxyethylsilicomethyl acetate,

OAc SiEt(OEt)₂, b.p. 94°/15 mm., 191·5°/atm. pressure; triethoxysilicomethyl acetate, b.p. 81°/19 mm.; diethoxysilicomethyl diacetate, b.p. 100°/19 mm.; triethoxysilicomethyl propionate, b.p. 101°/15 mm.; diethoxysilicomethyl dipropionate, b.p. 125°/15 mm. H. W.

Organic compounds of tantalum. B. N. Afanasiev (Chem. and Ind., 1940, 631—633).— The action of MgPhBr on ${\rm TaCl_5}$ gives small amounts of an exceedingly unstable organo-metallic compound which is readily oxidised by air and converted by ${\rm H_2O}$ into ${\rm Ta_2O_5}$. A still less stable compound is produced from ${\rm TaCl_5}$ and MgEtBr, thus supporting von Grosse's theory of the instability of org. derivatives of elements in the atoms of which the valency electrons do not possess the same main quantum no. H. W.

Preparation of mercury diethyl.—See B., 1940, 591.

Combustion of aromatic and alicyclic hydrocarbons. V. Products of combustion of benzene and its monoalkyl derivatives. J. H. Burgoyne (Proc. Roy. Soc., 1940, A, 175, 539—563).— Analytical study of the products of combustion of C_6H_6 , PhMe, PhEt, PhPr, and of a cool-flame reaction of the last, shows that the reaction consists of degradation of the side-chain (if present) and rupture of the C_6H_6 nucleus, followed by rapid degradation of the higher aliphatic aldehyde thus formed, yielding CH_2O and ultimately CO_2 , CO, and CO, CO,

Representation of the benzene ring. G. N. Copley (Chem. and Ind., 1940, 626).—A discussion of methods of writing formulæ for C₆H₆, C₁₀H₈, anthracene, and phenanthrene.

Chlorination of toluene in presence of water.—See B., 1940, 591.

Allenes. III. Comparison of some substituted allenes with pyrethrone with respect to their behaviour towards halogens. F. ACREE, jun., and F. B. LaForge (J. Org. Chem., 1940, 5, 430-438).—Addition of Br (= 2 atoms) to CHPh.C.CHMe in CS₂ in presence of aq. Na₂SO₄ gives almost exclusively $\beta \gamma$ -dibromo- α -phenyl- Δ^{α} -butene, b.p. 118°/0.5 mm. [the structure of which is proved by its conversion by aq. KOH at 100° into (probably) γ -bromo- α -phenyl- $\Delta^{\alpha\gamma}$ -butadiene, b.p. 84—89° $\sqrt{0.5}$ mm.], β -bromo- α -phenyl- Δ^{α} -buten- γ -ol, b.p. $108-109^{\circ}/0.5$ mm. [hydrogenated (Pd-CaCO₃ in EtOH) to α-phenylbutan-y-ol (I), identified as the phenylurethane, m.p. 112—114°], and a bimol. compound, $C_{20}H_{20}OBr_2$, b.p. 200-210°/5 mm. Passage of a small excess of Cl₂ through a solution of CHPh:C:CHMe in CCl₄ affords a product, $C_{10}H_{10}Cl_2$, b.p. $130^{\circ}/13$ mm., converted by aq. KOH into a mixture of $C_{10}H_9Cl$, $C_{10}H_{11}OCl$, and $C_{10}H_{10}Cl_2$ from one portion of which (I) is obtained by hydrogenation, and by KOH-H₂O-EtOH into a mixture which is hydrogenated and then oxidised to a small amount of Ph·[CH₂]₂·COMe. The product obtained from HCl and OH·CHPh·CCl.CHMe is a mixture of CHPhCl·CCl:CHMe and CHPh:CCl·CHMeCl. When treated with KOH in boiling aq. COMe₂ it gives a material, b.p. 100—105°/

0.7 mm., which is hydrogenated (Pd-CaCO₃ in KOH-

EtOH) to a substance, $C_{10}H_{14}O$, b.p. $105-110^{\circ}/10$

mm. (phenylurethane, m.p. 114—115°). Oxidation by CrO₃ gives a mixture of CH₂EtBz and Ph·[CH₂]₂·COMe, recognised as their semicarbazones. CHPh:CCl·CHMeCl is nearly the sole product of the action of SOCl2 on OH. CHPh. CCl. CHMe. Gradual addition of Br in CS_2 to α -cyclohexyl- $\Delta^{\beta\gamma}$ -pentadiene (II) causes slight evolution of HBr and yields a dibromide, $C_{11}H_{18}Br_2$, b.p. 110—115°/1 mm., which is practically unchanged by boiling dil. aq. alkali. The dichloro- α -cyclohexylpentene derived from γ chloro-α-cyclohexyl-Δ^γ-penten-β-ol is likewise inert under the same conditions. Addition of Br ($\equiv 2$ atoms) to CHMe:C:CHMe gives a dibromide, b.p. 87—90°/25 mm. Br is rapidly absorbed by CHPh:C:CHMe in well-cooled MeOH, yielding much HBr and a mixture of $C_{11}H_{13}OBr \cdot OMe$ and $C_{10}H_{10}Br_2$. Under similar conditions (II) gives a mixture of $C_{12}H_{21}OBr \cdot OMe$ and $C_{11}H_{18}Br_2$, and CHMe:C:CHMe affords $C_6H_{11}OBr$ and $C_5H_8Br_2$. Three compounds containing the cumulated system of double linkings react in indifferent solvents with Br ($\equiv 2$ atoms) to form Br₂-additive compounds. In alcoholic solution Br and these substances furnish bromoalkoxyadditive products with liberation of free HBr. Pyrethrone (III) in MeOH gives a partly methoxylated product. The reactions of (III) with Br in both classes of solvent are strictly analogous with those of the allenes. Its behaviour therefore, is not incompatible with the presence of the cumulated system of double linkings in its side-chain which from the facts now available seems the most likely arrangement.

Synthesis of condensed ring compounds. III. Hexahydronaphthalene derivative from a dieneine. L. W. Butz, A. M. Gaddis, E. W. J. Butz, and R. E. Davis (J. Org. Chem., 1940, 5, 379—387).—CH₂:CMe·C:C·CMe·CH₂ and (CH:CO)₂O at 130° give probably 1:5-dimethyl-2:3:4:6:7:8-hexahydronaphthalene-xxyy- or -xxxx-3:4:7:8-tetracarboxydianhydride, m.p. 262—263° (bath preheated to 220°). It slowly decolorises KMnO₄ in COMe₂, and absorbs Br in AcOH and 1.5 mols. of H_2 (EtOH-Pd). With EtOH it slowly forms the corresponding Et_4 ester, m.p. 163—165° (corr.). With Pd-C at 325—355° it yields 1:5-C₁₀H₆Me₂, also obtained by heating the Ba₂ salt with Pd-C and Ba(OH)₂ at 450—500°.

Synthesis of methylchrysenes and related compounds. W. E. Bachmann and W. S. Struve (J. Org. Chem., 1940, 5, 416—429).—2-Acetylphenanthrene is converted by Al(OPr $^{\beta}$)₃ in boiling Pr $^{\beta}$ OH into 2-phenanthrylmethylcarbinol, m.p. 131—131·5°, transformed by PBr₃ in cold Et₂O into α -2-phenanthrylethyl bromide, m.p. 86—88°, which is converted by CHNa(CO₂Et)₂ in EtOH followed by hydrolysis and decarboxylation into β -2-phenanthrylbutyric acid, m.p. 137·5—138·5° (lit. 125—127°). Successive treatments of the acid with SOCl₂ in dry Et₂O containing a little C₅H₅N, CH₂N₂ in Et₂O, Ag₂O in MeOH, and boiling 45% KOH lead to γ -2-phenanthrylvaleric acid, m.p. 136·5—138·5°, which is cyclised by the successive actions of SOCl₂ in Et₂O-C₅H₅N and SnCl₄ in CS₂ to 6-keto-3-methyl-3:4:5:6-tetrahydrochrysene (I), prisms, m.p. 98·5—99·5°, or leaflets, m.p. 75—77°. This is reduced (Clemmensen) to 3-methyl-3:4:5:6-

tetrahydrochrysene (I), m.p. 120·5—121° (picrate, m.p. 124—124.5°), and converted by the successive actions of MgMeI and Pd-C at 300-320° into 3:6-dimethylchrysene, m.p. 141·5—142·5° (picrate, m.p. 140·5— 141°). γ -1-Phenanthrylbutyric acid, m.p. 154—155.5°, is obtained by lengthening the chain of β -1-phenanthrylpropionic acid or by dehydrogenating (Pd-C at 250-260°) and subsequently hydrolysing Me γ -1-1:2:3:4-tetrahydrophenanthryl butyrate. Its chloride is cyclised by SnCl₄ in C₆H₆ at room temp. to 3-keto-3:4:5:6-tetrahydrochrysene (II), m.p. 228— 229°, which with MgMeI followed by Pd-C affords 3-methylchrysene, m.p. 249·5—250° [also obtained by dehydrogenation (Pd-C at 300-320°) of (I)], and with EtI similarly yields 3-ethylchrysene, m.p. 183-184°. Addition of (II) and Me₂C₂O₄ to NaOMe in MeOH gives Me 3-keto-3:4:5:6-tetrahydrochrysene-4-glyoxyl-ate, pale yellow leaflets, m.p. 169—170°, which change to dark yellow prisms, m.p. 176—177° (decomp.), converted at 180-190° in presence of powdered glass into Me 3-keto-3: 4:5:6-tetrahydrochrysene-4-carboxylate, m.p. 156.5—157.5°, which gives a green colour with FeCl₃. This is transformed by NaOMe and MeI in boiling MeOH-C₆H₆ into Me 3-keto-4-methyl-3:4:5:6-tetrahydrochrysene-4-carboxylate, m.p. 154— 155°, which does not give a colour with FeCl₃ in EtOH and is hydrolysed and decomposed by boiling conc. HCl-AcOH to 3-keto-4-methyl-3:4:5:6-tetra-hydrochrysene, m.p. 184—184·5°. Reduction (Clemmensen) of the ketone affords 4-methyl-3:4:5:6tetrahydrochrysene, m.p. 145—146°. Reaction of CHNa(CO₂Et)₂ with ω-bromo-2-acetylphenanthrene followed by hydrolysis and decarboxylation of the yields β-2-phenanthroyl-α-methylpropionic product acid, m.p. 228-229°, reduced (Zn-Hg and conc. HCl in AcOH) to α-2-phenanthryl-α-methylbutyric acid, m.p. 124—124-5°. The corresponding chloride is cyclised by SnCl₄ in CS₂ to 6-keto-5-methyl-3:4:5:6tetrahydrochrysene (III), m.p. 114-115.5°. 6-Keto-3:4:5:6-tetrahydrochrysene, Me₂C₂O₄, and NaOMe in C₆H₆ at room temp. afford Me 6-keto-3:4:5:6tetrahydrochrysene-5-glyoxylate, m.p. 116—117.5°, converted at 180° in presence of glass into Me 6-keto-3:4:5:6-tetrahydrochrysene-5-carboxylate, m.p. 154-155°, which gives an emerald-green colour with FeCl₃. This with NaOMe and MeI in C₆H₆ yields Me 6-keto-5-methyl-3:4:5:6-tetrahydrochrysene-5-carboxylate, m.p. 115.5—117°, which does not give a colour with FeCl₃ and is converted by conc. HCl and AcOH into (III). This ketone is reduced (Clemmensen) to 5methyl-3:4:5:6-tetrahydrochrysene, m.p. 130—131°, dehydrogenated (Pd-C at 300-320°) to 5-methylchrysene, m.p. 170—170·5° (picrate, m.p. 164—164·5°). β -1: 2: 3: 4-Tetrahydro-7-phenanthroy \bar{l} propionic acid, m.p. 158—159°, is reduced (Clemmensen) to γ -1:2:3:4-tetrahydro-7-phenanthrylbutyric acid, m.p. 95.5—97°, the structure of which is proved by its dehydrogenation to γ -2-phenanthrylbutyric acid, m.p. 133.5—134.5°. The corresponding chloride is cyclised by $SnCl_4$ in C_6H_6 to 6-keto-3:4:5:6:9:10:11:12octahydrochrysene, leaflets, m.p. 93.5—95°, or needles, m.p. 89.5—91° and, after resolidification, m.p. 93.5— 95°, which is transformed by MgMeI followed by dehydration and dehydrogenation into 6-methylchrysene, m.p. 149—149.5°.

Synthesis of coronene. M. S. NEWMAN (J. Amer. Chem. Soc., 1940, **62**, 1683—1687).—1-Keto-7-methyl-1:2:3:4-tetrahydronaphthalene (modified prep.), freshly scratched Al foil, and a little HgCl₂ in boiling abs. EtOH- C_6H_6 give 75—86% of di-(7-methyl-3: 4-dihydronaphthyl), m.p. 110·0—111·6°, which with (:CH·CO)₂O in boiling xylene gives

1:2:7:8:9:10:8a:10a - octahydrodi - (4' - methyl benzo - 1': 2') - 3: 4: 6: 5-phenanthrene - 9: 10-dicarb-

oxylic anhydride [9:12-dimethyl-

1:2:2a:3:4:4a:5:6-octahydrodibenzo(c, g)phenanthrene-3: 4-dicarboxylic anhydride] (73%), of which isomerides, (A) polymorphic forms, m.p. 218-220°, 231—232°, and 241—244° (decomp.), and (B) m.p. 226.0—226.6°, are isolated. With Br in CHCl₃-AcOH, (A) gives a small yield of a substance, $C_{26}H_{19}O_3Br$, m.p. $217.4-219.4^{\circ}$. With $Pb(OAc)_4$, $(\stackrel{?}{A})$ or $(\stackrel{?}{B})$ or mixtures thereof give 1:2:7:8-tetrahydrodi-(4'-methylbenzo-1':2')-3:4:6:5-phenanthrene-9: 10-dicarboxylic anhydride (I) (73%), dimorphic, m.p. 227—229°, and a small amount of (?) 1:12-dimethyl-4:5:8:9-tetrahydro-6:7-benzoperylene-5':6'dicarboxylic anhydride (II), m.p. 274-275°. With Pd-C at $320-350^{\circ}$, (I) gives H_2 , di-(4'-methylbenzo-

$$\begin{array}{c|c} CH_2 \\ CH_2 \\ C \\ CCO \\ O \\ Me \\ CH_2 \\ CH$$

1':2')-3:4:6:5-phenanthrene-9-carboxylic acid (III) (71%), m.p. 287—289°, and a little of the corresponding 9:10-dicarboxylic anhydride (IV), m.p. 298-301° (decomp.). Attempts at simple decarboxylation of (III) failed, but with KOH at, best, 320° (III) or (IV) or mixtures thereof give 5.5% of coronene, m.p. 438-440°, sublimes from 400° or at 380°/0·5 mm. [red picrate, decomp. from 250°; s·C₆H₃(NO₂)₃ derivative, m.p. from 280° (decomp.)]. The Me of (III) and (IV) must be spatially distorted. M.p. are corr.

9-Methyl-3:4-benzpyrene. L. F. Fieser and F. C. Novello (J. Amer. Soc., 1940, 62, 1855b.p. 1859).— α - $C_{10}H_7$ · CH_2Cl , 120—125°/1 CHMe(CO₂Et)₂ (prep. in 88% yield described), and NaOMe–MeOH give α -C₁₀H₇·CH₂·CMe(CO₂Et)₂ (70.5%), b.p. 175—176°/1 mm., converted by KOH- $H_2O-EtOH$ into β -1-naphthylisobutyric acid (73%), m.p. 91·8—92·6°, which in HF gives 8-methylperinaphthan-7-one (I), (96%), b.p. 135—136°/0.5 mm.

[thermolabile oxime, m.p. 147.2—148.2°; CHMe $K_2Cr_2O_7$ -AcOH gives $1:8\cdot C_{10}H_6(CO_2H)_2$]. Zn-Hg-conc. HCl-MeOH-C₆H₆ Ç0. CH₂ reduces (I) to 8-methylperinaphthane (70%), b.p. $135^{\circ}/1.5$ mm. $[s-C_6H_3(NO_2)_3]$ derivative, m.p. $149-150^{\circ}$ (decomp.)], unstable to air and light, which with AlCl3-BzCl in CS₂ at 0° gives 3-benzoyl-8-methyl-perinaphthane (78%), b.p. 215—220°/2 mm. $[s-C_6H_3(NO_2)_3]$ derivative, m.p. $107.4-108.4^{\circ}$].

With NaCl and AlCl₃ at 130°, later 130—150°, this gives a tar, which, when distilled with Zn dust, gives 1% of 9-methyl-3: 4-benzpyrene, m.p. 147.2—148° [isolated by way of the s-C₆H₃(NO₂)₃ derivative, m.p. 218·5—219·5°, and chromatography], with some 3:4-benzpyrene and a mixture of hydrides. Prep. of 4'-keto-1': 2': 3': 4'-tetrahydro-3: 4-benzpyrene in 85—95% yield from γ -1-pyrenylbutyric acid by $PCl_5-C_6H_6$, followed by $SnCl_4$, is described. Ozonisation of 3:4-benzyprene gives indefinite pro-O₃ and pyrene in EtOAc give an ozonide, decomposed by $\rm H_2$ -Pd-CaCO₃ to 4-aldehydophenanthrene-5-carboxylic acid (27%), m.p. 279—280° (the dialdehyde could not be obtained), which with H2-Cu chromite in abs. EtOH at $130^{\circ}/1400$ lb. gives $\bar{E}t$ 4-hydroxymethylphenanthrene-5-carboxylate, 177.5—178°; after more prolonged ozonisation, hydrogenation gives diphenyl-2:6:2':6'-tetra-aldehyde, m.p. 162—162·8° [(? tetra)phenylhydrazone, m.p. tetraoxime monoacetate (prep. NH₂OH, HCl-NaOAc in H₂O), m.p. 273° (decomp.)]; more prolonged hydrogenation gives 2:6:2':6'-tetra(hydroxymethyl)diphenyl, m.p. 171.2—172°. Pyrene is freed from S by Na at 210-223°, then has m.p. 147-148°, and is suitable for hydrogenation (Ĉu chromite; gives the as-H₄-derivative, m.p. 103—105°, and a substance, m.p. 87-93.5°); after further purification by $(:CH\cdot CO)_2O$ it has m.p. $150\cdot 9-151\cdot 1^\circ$. M.p. are corr.

Steric inhibition of resonance.—See A., 1940, I, 353.

Sulphanilamide compounds. IV. N^4 -Aryl- N^4 -arylidene- N^1 -substituted sulphanilamides. H. G. Kolloff and J. H. Hunter (J. Amer. Chem. Soc., 1940, **62**, 1647—1649; cf. A., 1940, II, 330).—Hydrogenation (Raney Ni; dioxan; 3 atm.) of the arylidene derivatives gives N^4 -benzyl-, m.p. 174.5— 175.8° , and N^{4} -p-methoxybenzyl-, m.p. $177-178^{\circ}$, N¹-phenyl-N⁴-benzyl-, m.p. $177.5-178.1^{\circ}$ N¹-phenyl-N⁴-p-methoxybenzyl-, m.p. 162—162·4°, N¹-2pyridyl-N⁴-p-methoxybenzyl-, m.p. 216·5—217·5°, N⁴acetyl-N¹-p-benzylaminophenyl- (I), m.p. 182—182·5°, N⁴-acetyl-N¹-p-p'-methoxybenzylaminophenyl-, m.p. 208—208-5°, N¹-p-benzylaminophenyl- [prep. from (I) by boiling 5% NaOH], m.p. 175—175-5°, N¹-p-p'-methoxybenzylaminophenyl-, m.p. 157—157-5°, and $N - p - p' - methoxybenzylaminophenyl - N^4 - p - methoxy$ benzyl-, m.p. 184—185°, -sulphanilamide. N¹-o-Carboxyphenyl-N4-benzylidene-, m.p. 226-226.5°, -p-anisylidene-, m.p. 233—233·5°, and -p-dimethylamino-benzylidene-, m.p. 247—248°, N⁴-p-nitrobenzylidene-, m.p. 187·5—188°, N¹-phenyl-, m.p. 196—197°, and N¹-p-nitrophenyl-N⁴-p-nitrobenzylidene-, m.p. 201 5— 202° , N¹-²-pyridyl-N³-o-, m.p. 193—194°, and -pnitrobenzylidene-, m.p. 245—246·2°, and N¹-²-pyridyl-N⁴-m-hydroxybenzylidene-sulphanilamide, m.p. 242— 243.5°, are prepared as previously described (A., 1940, II, 76).

Reduction of xyleneazo-β-naphthol. W. SEA-MAN, A. R. NORTON, and J. HUGONET (Ind. Eng. Chem. [Anal.], 1940, 12, 464-465).—Xyleneazo-βnaphthol (commercial product) is reduced with Zndust and conc. HCl in dioxan and the recovered mixed xylidines (90—95% yield) are analysed (method: B., 1940, 657) for m-xylidines. J. D. R.

Phenolic substances of white hellebore (Veratrum grandiflorum, Loes. Fil.). M. TAKAOKA (J. Fac. Sci. Hokkaido, 1940, [iii], 3, 1—16).—The phenolic substances isolated from the roots by the method of Saito et al. (A., 1936, 870) contain resveratrole (I), C₁₄H₁₂O₃ (0·07%), m.p. 261° (triacetate, m.p. 114—116°), and hydroxyresveratrole (II),

 $C_{14}H_{12}O_4,2H_2O$ (II) (0.03%), m.p. 199.5°; a phytosterolglucoside (III) (0.02% of the dried roots) is also isolated. (I) gives no reactions for CO; Zn dust distillation yields PhOH. Oxidation (CrO₃) of its Me₃ ether, m.p. 56—57°, which is unaffected by Pd.

black in C₆H₆, gives, in the cold,

 $3:5:1-(OMe)_2C_6H_3\cdot CHO$ (IV), and in the hot, p-OMe· $C_6H_4\cdot CO_2H$. The absorption spectra of stilbene, 4-hydroxy- and -acetoxy-stilbene closely resemble those of the triacetate and Me₃ ether of (I), which is 3:5:4'-trihydroxystilbene. 3:5-Dimethoxyphenyl 4-methoxycinnamate, m.p. 81-83°, when heated at 305-315° in N₂ or dry distilled with Cu yields 4:4'-dimethoxystilbene, whilst (IV) heated p-OMe·C₆H₄·CH₂·CO₂H gives a substance, $C_{18}H_{16}O_{5}$ (?), m.p. 174°, possibly 6:8-dimethoxy-3p-anisylcoumarin. 3:5-Dimethoxyphenylacetic acid, m.p. 104—105° [prep. by methylation of the (OH)₂acid] [as Na salt (V)], with p-OMe·C₆H₄·CHO in Ac₂O at $165-170^{\circ}$ yields 3:5:4'-trimethoxystilbene- α -carboxylic acid, m.p. 182°, which with Cu in quinoline gives an oily product reduced (Na + EtOH) and then brominated (in CS₂) to a dibromo-3:5:4'-trimethoxyαβ-diphenylethane, m.p. 133—134°, identical with that similarly obtained from the Me₃ ether of (I). Distillation of (II) with Zn dust yields $m\text{-}C_6H_4(OH)_2$. Oxidation (CrO₃) of its tetra-acetate, m.p. 141—142°, yields 3:5:1-(OAc)₂C₆H₃·CO₂H; the tetrabenzoate, m.p. 193·5°, yields α-, m.p. 224—226°, and β-, m.p. 152°, -dibenzoylresorcylic acid. These results and the absorption spectrum indicate that (II) is 3:5:2':4'tetrahydroxystilbene. $2:4:1-(\mathrm{OMe})_2\mathrm{C}_6\mathrm{H}_3\cdot\mathrm{CHO}$, (V), and $\mathrm{Ac}_2\mathrm{O}$ yield 3:5:2':4'-tetramethoxystilbene- α -carboxylic acid, m.p. $181\cdot5^\circ$, decarboxylation, reduction, and bromination of which yields tribromo-3:5:2':4'-tetramethoxy- $\alpha\beta$ -diphenylethane, 185—186°, also similarly prepared from the oily Me₄ ether of (II). (III) is identical with the phytosterolin obtained by Nakamura et al. (A., 1931, 606) from wheat-germ oil. $2:4:1-(OH)_2C_6H_3\cdot CHO$, 3:5:1-(OH)₂C₆H₃·CH₂·CO₂Na, and Ac₂O at 165—175° yield a neutral compound, $C_{21}H_{16}O_8$, m.p. 186—187°, probably the lactone of 2'-hydroxy-3:5:4'-triacetoxystilbene-\alpha-carboxylic acid.

Difficultly decomposable xanthates. P. V. LAAKSO (Suomen Kem., 1940, 13, B, 8-12).-2:2:6:6-Tetramethylcyclohexanol forms "labile" xanthates, e.g., OR·CS₂Me (type a) which partially (20-25%) isomerise and partially decompose when heated to 230° giving RS·CO·SMe ("stable"; type b). The following have been prepared: Me, (a) m.p. 60—60·5°, b.p. 159—160°/17 mm., (b) m.p. 56—56·5°, b.p. $161-162^{\circ}/14$ mm., Et, (a) b.p. $163-164^{\circ}/14$ mm. and (b) 175—177°/18 mm., Pr^a , (a) b.p. 154—155°/7 mm., and (b) 160—163°/7 mm., and Pr^β , (a) b.p. $160-168^{\circ}/15$ mm., and (b) $179-181^{\circ}/18$ mm. With KOH-EtOH (b) give 1-thiol-2:2:6:6-tetramethyl-

cyclohexane (I), m.p. 35-36°, b.p. 81-82°/7 mm., which undergoes partial atm. oxidation to an oxide, $(C_{10}H_{19}S)_2O$, m.p. 107—107·5°. With I, (I) slowly gives the disulphide, m.p. 59-59.5°. When heated with aq. glycerol (a) are mainly decomposed, but partly isomerised to (b), which decompose much more slowly than (a). Ultra-violet irradiation of (b) in EtOH for 10 days causes loss of CO and formation of 2:2:6:6-tetramethylcyclohexyl Me disulphide (II), which then loses MeSH (giving 1-thion-2:2:6:6tetramethylcyclohexane) or CH₂S [giving (I)]; (a) are similarly unchanged. With NH₃-EtŌH (b) give (I) whilst (a) afford an amine, m.p. 194.5—195.5°. Fenchyl, CHBu₂, and 1-methylcyclohexyl Me xanthates similarly give isomerides (type b), b.p. 171—173°/20 mm., $[\alpha]_D^{24} - 24.64^\circ$, b.p. 148—150°/20 mm. (m.p. 8—9°), and —, respectively, in yields of 5—20, 70, and 2.5° /₀, respectively. Na fenchyl xanthate does not isomerise on heating. Fenchyl Me disulphide, b.p. $146-148^\circ$ /20 mm., $[\alpha]_D^{25} - 97.08^\circ$, thiofenchone, b.p. $101-102^\circ$ /20 mm., $[\alpha]_D^{25} + 101-102^\circ$ /20 mm. b.p. 101—103°/20 mm., γ-thiol-ββδδ-tetramethylpentane, b.p. $82-85^{\circ}/20$ mm., and the oxide, (CHBu^r₂·S)₂O, m.p. 128—129°, are prepared. The Na salt of (Í) is prepared from (II) and Na in Et₂O; (I) is insol. in M. H. M. A. aq. alkali hydroxides.

Reaction of the esters of phenylglycine and phenylalanine on Raney catalyst. G. Ovakimian, M. Kuna, and P. A. Levene (J. Biol. Chem., 1940, **135**, 91—98; cf. A., 1940, II, 170, 269).— d-NH₂·CHPh·CO₂Et, $[\alpha]_D^{25}$ —113° (I) or —52·4° (II) (homogeneous), is not satisfactorily reduced by H₂ and Cu chromite, but with Raney Ni and H, at 150 atm. in MeOH yields, at 40° for 9 hr., β-amino-βphenyl-, b.p. $91-98^{\circ}/0.1$ mm., $[\alpha]_{D}^{25}-15.0^{\circ}$ [from (I)] (picrate, m.p. $208-210^{\circ}$) or -7.8° [from (II)] in MeOH, and at 40° for 44 hr., β-amino-β-cyclohexyl-ethyl alcohol (III), b.p. 95—105° (bath temp.)/0·1 mm., $[\alpha]_{D}^{25} - 4.8^{\circ}$ in MeOH [from (I)]. Similar reduction of dl-NH₂·CHPh·CO₂Et yields, at 40° for 18 hr., dl-(III), b.p. 130—135° (bath temp.)/0.5 mm., at 135° for 9 hr., β-dimethylamino-β-cyclohexylethyl alcohol (IV), b.p. 140°/20 mm. (picrate, m.p. 92—93°), and at 185° for 9 hr., (IV), α-dimethylamino-α-cyclohexylethane, b.p. 80° (picrate, m.p. 131°), and 2:5-dicyclohexyl-NN'dimethylpiperazine, b.p. 150°/5 mm. (dipicrate, m.p. 230—235°). CH₂Ph·CH(NH₂)·CO₂Me is similarly reduced at 185° to β-dimethylamino-α-cyclohexylpropane, b.p. 90°/10 mm. (picrate, m.p. 145—146°), and 2:5-dihexahydrobenzyl-NN'-dimethylpiperazine, b.p. 150°/5 mm. (dipicrate, m.p. 144—146°). NH₂·CHPh·CO₂Me and CH₂Ph·CH(NH₂)·CO₂Me when heated at 160— 170° for 9 hr. in MeOH yield 3:6-diketo-2:5-diphenyl-, m.p. 270°, and -dibenzyl-piperazine, m.p. 295-296°, respectively.

Intermediates in the preparation of sympathol [β -methylamino- α -p-hydroxyphenylethyl alcohol]. H. M. PRIESTLEY and E. MONESS (J. Org. Chem., 1940, 5, 355—361).—Little reaction is observed between PhOBz and CH2Cl·COCl with POCl3 in boiling C₆H₆ or with AlCl₃ in CS₂; with AlCl₃ alone at 120° p-chloroacetoxybenzophenone, m.p. 123° (hydrolysed by fuming HCl at room temp. to p-C₆H₄Bz·OH), is obtained. a-Chloro-p-benzoyloxyacetophenone has m.p. 115°. p-C₆H₄Ac OH, CH₂PhCl, and boiling

EtOH-NaOEt afford p-benzyloxyacetophenone (I), m.p. 93° (the o-isomeride has m.p. 40°), which with Br in CHCl₃ gives α-mono- (II), m.p. 91°, or αα-di-bromo-p-benzyloxyacetophenone, m.p. 84°. (II) and CH₂Ph·NHMe yield p-α-benzylmethylaminobenzyloxyacetophenone, a gum, catalytically reduced to sympathol. p-C₆H₄Ac•OH and Br in aq. AcOH give 3:5-dibromo-4-hydroxyacetophenone, m.p. 181° (phenylhydrazone, m.p. 147°), converted by Me₂SO₄ and NaOH into the Me ether, which is oxidised by HNO₃ to $4:3:5:1-OMe\cdot C_6H_2Br_2\cdot CO_2H.$ 3:5-Dibromo-4benzyloxyacetophenone, m.p. 79°, its a-bromo-, m.p. 119°, and aa-dibromo-, m.p. 104°, -derivatives are described. 3:5-Dibromo-4-hydroxy- α -bromo-, -aa-dibromo-acetophenone have m.p. 128° and 105°, respectively. α-Oximino-p-benzyloxyacetophenone, m.p. 149°, best obtained from (I) and an excess of NaOEt and OBu NO, is reduced (Pd-C in EtOH containing HCl) to α -amino-p-benzyloxyacetophenone (hydrochloride, m.p. 226°). (I), OBu·NO, and HCl in C₆H₆ give a little p-CO₂H·C₆H₄·O·CH₂Ph, m.p. 187°. 3:4-Dibenzyloxybenzoic acid, m.p. 182°, is obtained by the action of NaOEt and OBu NO on 3:4-dibenzyloxy-propiophenone or -acetophenone.

Unsaturated steroids. VII. Action of perbenzoic acid on $\Delta^{2:4}$ -cholestadiene. W. BERG-MANN and E. L. SKAU (J. Org. Chem., 1940, 5, 439-442; cf. A., 1939, II, 217).— $\Delta^{2:4}$ -Cholestadiene (I) and BzO₂H (1 mol.) in CHCl₃ at 0° give 4:5-dihydroxy- Δ^2 -cholestene (II), m.p. $136-136.5^{\circ}$, $[\alpha]_D^{25} + 132^{\circ}$ in C₅H₅N, which is stable towards KOH-EtOH and converted by boiling Ac2O into the 4-monoacetate, m.p. $159-160^{\circ}$, $[\alpha]_{D}^{25}+16^{\circ}$ in COMe₂. (II) is hydrogenated (PtO₂ in EtOAc) to 4:5-dihydroxycholestane, m.p. $171-172^{\circ}$, $[\alpha]_{D}^{25}+35\cdot5^{\circ}$ in COMe₂ (4-monoacetate, m.p. $174-175^{\circ}$), which reacts with 1 mol. of Pb(OAc), indicating the presence of 2 OH in adjacent positions. With 2 mols. of BzO₂H, (I) gives a substance, $C_{27}H_{45}O_2Cl$, m.p. $112-113^\circ$ [α] $_D^{25}$ +72 $^\circ$ in COMe, which loses HCl when boiled with 0.05 n-MeOH-KOH giving a (?) dioxidocholestane, C₂₇H₄₄O₂, m.p. 120—121° and, after resolidification, m.p. 134·5—135°, $[\alpha]_b^{25}$ +76° in Et₂O. It is unchanged when distilled in a vac. or treated with BzCl in C_5H_5N or NH_2OH in MeOH. When refluxed with Ac_2O or treated with glacial AcOH containing a trace of H_2SO_4 at room temp. decomp. occurs. H. W.

Preparation and oxidation of substituted cinnamic acids. V. S. Webster (Amer. J. Pharm., 1940, 112, 291—296).—Substituted vanillins by the Perkin synthesis yield 2-, m.p. 202—203°, 5-, m.p. 243—244°, and 6-bromo-, m.p. 229—230°, 5:6-dibromo-, m.p. 278° (decomp.), 2-nitro-, m.p. 210° (decomp.), and 5-chloro-, m.p. 235—236°, -4-hydroxy--3-methoxycinnamidacid. Oxidation (cold aq. Na₂CO₃-KMnO₄) of the acetates, m.p. 202—203°, 212—213°, 211—212°, 212—213°, 166—167°, and 201°, respectively, of these yields 27-71% of the original vanillins but none of the corresponding acids.

Carbobenzyloxyglycyl-l-phenylalanine, 125—126°, and -*l*-glutamic acid, m.p. 160—162°, and α -hippuryl-l-lysine, m.p. 236—238°.—See A., 1940, III, 766.

Conversion of di-iodotyrosine into thyroxine. P. Block, jun. (J. Biol. Chem., 1940, 135, 51—52). -Synthetic dl-di-iodotyrosine with aq. NaOH at 37° and p_{π} 8.8 for 14 days gives $\sim 0.1\%$ of thyroxine. The results of von Mutzenbecher et al. (A., 1940, III, 406) with natural material are thus confirmed.

Purification of phthalic anhydride.—See B., 1940, 657.

Curtius degradation with diphenic acid hydrazides. R. Labriola (J. Org. Chem., 1940, 5, 329— 333).—Diphendihydrazide (I), m.p. 210—211°, from Me₂ diphenate and N₂H₄,H₂O at 150—160°, is converted by NaNO₂ and N-HCl into the unstable diazide, which in $\rm Et_2O-C_6H_6$ affords oo'-diphenylenecarbamide (II), m.p. 308°, and 2:2'-diaminodiphenyl (III), m.p. 80—81°. In $\rm Et_2O-EtOH$ and $\rm Et_2O-MeOH$ it gives oo'-diphenylenedi-(ethylurethane), m.p. 131°, and -(methylurethane), m.p. 145°, respectively, hydrolysed by 5% NaOH-EtOH to (II) and (III). N-HCl, (I), and the requisite amount of NaNO2 produce the very unstable diphenhydrazideazide, transformed by neutral EtOH into phenanthridone (IV) and by EtOH-HCl into (V) (below). Diphenmonohydrazide affords the unstable azide, which with Et₂O-EtOH gives (IV) and with a saturated solution of HCl in the requisite alcohol affords Me, m.p. 127°, Et (V), m.p. 143—144°. Pr^{α} , m.p. 76°, Pr^{β} , m.p. 123°, allyl, m.p. 93—94°, cyclohexyl, m.p. 151,° and CH_2Ph , m.p. 134°, phenanthridone-10-carboxylate. (V) is obtained from (IV), KOH, and ClCO, Et at 120°.

1:4-Di(carboxymethoxy)-2-methylnaphthalene, m.p. 217—218° [from the naphthaquinol and $CH_2Cl \cdot CO_2H$].—See A., 1940, III, 706.

Acids of the ætiocholane series.—See B., 1940, 701.

Derivatives of the dimethylpolyhydrocyclopentanophenanthrene series.—See B., 1940, 701.

Conversion of testosterone into ætioallocholan-3(β)-ol-17-one. R. I. DORFMAN and W. R. Fish (J. Biol. Chem., 1940, 135, 349-350; cf. A., 1939, III, 1057; 1940, III, 131).—Ætioallocholan-3(β)-ol-17-one has been isolated (by chromatographic adsorption on Al₂O₃ or pptn. with digitonin) from the urine of adult male guinea-pigs injected subcutaneously with testosterone propionate in olive oil.

Walden inversion and the Hofmann rearrangement S. Archer (J. Amer. Chem. Soc., 1940, 62, 1872).—Proof that the Hofmann reaction involves no inversion is provided by Noves' conversion of cis-βcamphoramidic acid by NaOBr into aminodihydrocampholytic acid (I), which with NaOAc-Ac2O gives the lactam, hydrolysable to (I).

Saponins and sterols. XVI. Conversion of ursolic acid into uvaol. K. Fujii and S. Oosumi (J. Pharm. Soc. Japan, 1940, 60, 71-72; cf. A., 1940, II, 221).—Uvaol (I) is ursolic acid in which CO₂H is replaced by CH₂·OH, the following reactions being realised (no details): acetylursolic acid, m.p. 295- $296^{\circ} \rightarrow \text{acetylursolyl chloride, m.p. } 225^{\circ} \rightarrow \text{the Ph}$ ester, m.p. 179—181°, thereof \rightarrow Ph ursolate \rightarrow (I), m.p. 232-233° (diacetate, m.p. 157-159°).

Temisin. I. Y. Asahina, H. Nakamura, and T. Urita (J. Pharm. Soc. Japan, 1940, 60, 72—74).— Temisin, new formula, $C_{15}H_{22}O_3$, m.p. 228°, $[\alpha]_2^{10}$ +69·86°, with Na₂Cr₂O₇—AcOH at 60—70° gives temisone (I), $C_{15}H_{20}O_3$, sinters at 125°, m.p. 131°, $[\alpha]_2^{20}$ —84·65°, and with H_2 —PtO₂ gives a H_4 -derivative (II), m.p. 231°, $[\alpha]_2^{10}$ +45·94°. Na₂Cr₂O₇ and (II) or H_2 —PtO₂ and (I) give tetrahydrotemisone, m.p. 109·5° (lit. 112°), $[\alpha]_2^{10}$ —63·75°. Na reduces (II) in iso- C_5H_{11} ·OH to a triol, $C_{15}H_{30}O_3$, m.p. 148°, $[\alpha]_2^{10}$ +20·64° [triacetate, b.p. 188° (bath)/0·07 mm., $[\alpha]_2^{10}$ +28·95°, $[M]_D$ 102·14]. These substances are thus monocyclic (cf. Nakamura et al., A., 1933, 651; 1934, 1007).

Sapogenins of the Chinese drug yang-chiao-ou. J. H. Chu (Chinese J. Physiol., 1940, 15, 309—314). —The chief active constituent of yang-chiao-ou [Strophanthus divaricatus (Lour), Hook and Arn] is an amorphous saponin (which gives dark red \rightarrow bluish-violet with H_2SO_4), hydrolysed by acids to glucose and three sapogenins, strophanthilin A, $C_{25}H_{36}O_4$, m.p. 205—206°, [α] $_2^{25}+14\cdot4°$ in EtOH (diacetate, m.p. 200°), B, $C_{39}H_{64}O_4$, m.p. 289—291° (diacetate, m.p. 254—256°), and C, $C_{18}H_{24}O_4$, m.p. 305—307°. The Liebermann test gives with A, yellowish \rightarrow violetblue, with B, pink, and with C, brownish \rightarrow violetblue; the Liebermann–Burchard reaction gives with A, cherry-red \rightarrow green, and with B, pink. A. Li.

Coumarins. F. Fuzikawa and S. Inoue (J. Pharm. Soc. Japan, 1940, 60, 58—59).—1-Carboxy-orcinaldehyde 3-Me ether, Ac₂O, and NaOAc at 180° give 7-acetoxy-, m.p. 126°, and thence (KOH) 7-hydroxy-5-methylcoumarin, m.p. 250°. Similarly are prepared 7-hydroxy-5:8-dimethyl-, m.p. 285° (Ac derivative, m.p. 142°), 6:7-dihydroxy-5:8-dimethyl-, m.p. 250° (Ac₂ derivative, m.p. 176°), and 7-hydroxy-5-n-propyl-, m.p. 105° (Ac derivative, m.p. 94°), -coumarin.

Synthesis of 5:6:4'- and 5:8:4'-trihydroxyflavone. Z. Horn (J. Pharm. Soc. Japan, 1940, 60, 81-86). $-2:5:6:1-(OH)_2C_6H_2(OMe)\cdot COMe$ (I) and $OMe\cdot C_6H_4\cdot COCl$ in C_5H_5N at 100° give 2:5-di-panisoxy-6-methoxyacetophenone, m.p. 183-185° (decomp. 197-198°), which with NaNH2 in PhMe at 100° gives $2:6:5:1-OH\cdot C_6H_2(OMe)(O\cdot \overline{C}O\cdot C_6H_4\cdot OMe$ $p)\cdot \mathrm{CO}\cdot \mathrm{CH_2}\cdot \mathrm{CO}\cdot \mathrm{C_6H_4}\cdot \mathrm{OMe} \cdot p$ and thence by conc. $\mathrm{H_2SO_4}$ at room temp. 6-hydroxy-5: 4'-dimethoxyflavone (II), m.p. 214—215° (Ac derivative, m.p. 198°). With HI at 120—130° this gives a substance (III), converted by $Ac_2O-C_5H_5N$ into an acetoxyflavone (IV), m.p. 219—220°. With 20% HCl or $AlCl_3$ -dioxan at 100° , (II) yields 5:6-dihydroxy-4'-methoxyflavone, m.p. $211-212^{\circ}$ (Ac_2 derivative, m.p. $216\cdot5-217\cdot5^{\circ}$). With $Me_2SO_4-K_2CO_3$ in boiling $COMe_2$, (II) or (III) gives 5:6:4'-trimethoxyflavone (V), m.p. 165-165.5°. 2-Hydroxy-5: 6-dimethoxyacetophenone [prep. from (I) by K_2CO_3 -COMe₂ at 40—50°), b.p. 163—165°/24 mm., gives similarly the 2-anisoxy-, m.p. 104·5—105·5°, and 2-hydroxy-ω-p-anisoxy-derivative, m.p. 70—71°, and (V). Boiling 20% HCl hydrolyses (V) to 5-hydroxy-6:4'-dimethoxyflavone, m.p. 179.5—180.5° (Ac derivative, m.p. 187—188°), but HI gives (III). $2:3:6:1-OH\cdot C_6H_2(OMe)_2\cdot COMe$ gives similarly the 2-p-anisoxy-, m.p. 131—132°, and 2-hydroxy-ω-panisoxy-derivative, m.p. 141—142°, and 5:8:4'-trimethoxyflavone, m.p. 164—165°, which with boiling HI (d 1·7) gives (III), m.p. >300° [and thence (IV)], or with AlCl₃ in PhNO₂ at 100° gives 5-hydroxy-8:4'-dimethoxyflavone, m.p. 132—134°, isolated as Ac derivative, m.p. 205·5—206·5°, and obtained therefrom by HCl-AcOH. R. S. C.

Reaction of 2-chloro-5-nitropyridine and thio-carbamide. A. R. Surrey and H. G. Lindwall (J. Amer. Chem. Soc., 1940, 62, 1697—1698).—Di-5-nitro-2-pyridyl sulphide (I) is obtained in 87% yield from 2-chloro-5-nitropyridine (II) and CS(NH₂)₂ in H₂O at 100°. In abs. EtOH a 1:1 additive compound (III), C₆H₇O₂N₂SCl, m.p. 187—190° (decomp.), is formed, but (I) is obtained if H₂O is present. With aq. Na₂CO₃ at 100°, (III) gives 5-nitro-2-thiolpyridine (IV), but with H₂O at 100° slowly gives (I). (I) is better obtained from (IV) by (II) or, best, (IV) in H₂O. Formation of (I) in H₂O probably occurs by decomp. of (III) to give (IV), which then reacts with more (III). With CH₂Cl-CO₂H in H₂O at 100°, (III) or (IV) gives S-5-nitro-2-pyridylthiolacetic acid, m.p. 127—129°. R. S. C.

Sulphanilamide compounds. Heteroacyl derivatives of N1-substituted sulphanilamides. H. G. Kolloff and J. H. HUNTER (J. Amer. Chem. Soc., 1940, 62, 1646—1647; cf. A., 1940, II, 76).—The following are prepared. N⁴-2-Furoyl-, m.p. 273·5°, -thiophen-2'-carboxyl-, m.p. 278—278.5°, -nicotinoyl-, m.p. 250°, and -n-hexoyl-, m.p. 205°, -sulphanilamide. N4-2-Furoyl-N1-phenyl-, m.p. 243·5—244°, -p-nitrophenyl-, m.p. 259°, -p-aminophenyl-, m.p. 238—238·5°, and -2'-pyridyl-, m.p. 242°, -sulphanilamide. N⁴-Thiophen-2'-carboxyl-N¹-phenyl-, m.p. 228—230°, -p-nitrophenyl- (I) (from pm.p. $228-230^{\circ}$, -p-nitrophenyl- (I) (from p-NH₂·C₆H₄·SO₂·NH·C₆H₄·NO₂-p by thiophen-2-carboxyl chloride in C₅H₅N at 100°), m.p. $261-262 \cdot 5^{\circ}$, -p-aminophenyl- [from (I) by FeSO₄-aq. NaOH-NH₃], m.p. 267·2°, and -2'-pyridyl-, m.p. 257—258°, -sulphanilamide. N4-Nicotinoyl-N1-phenyl-, m.p. 222.8° -p-nitrophenyl-, m.p. 267—269°, -p-aminophenyl-, m.p. 227°, and -2'-pyridyl-, m.p. 265-266°, -sulphanilamide. N4-n-Hexoyl-N1-phenyl-, m.p. 190-190.5°, -p-nitrophenyl-, m.p. 225°, -p-aminophenyl-, m.p. 197·5—198°, and -2'-pyridyl-, m.p. 200—201°, -sulphanilamide. As a class these products are inferior to sulphanilamide against strepto- and pneumo-cocci.

Pyridine derivatives.—See B., 1940, 594.

Synthesis of 3-indolylacetic acid. J. Tanaka (J. Pharm. Soc. Japan, 1940, 60, 75—76).— $\text{CN}\cdot[\text{CH}_2]_2\cdot\text{CH}(\text{OEt})_2$ (I) and $\text{H}_2\text{SO}_4\text{-CO}_2$ at $40-50^\circ$ give $\text{CN}\cdot[\text{CH}_2]_2\cdot\text{CHO}$, b.p. $85-87^\circ/6$ mm. (semicarbazone, m.p. 163° ; p-nitrophenylhydrazone, m.p. 134°), the phenylhydrazone, m.p. $49-50^\circ$, of which with ZnCl_2 at 150° gives 3-indolylacetic acid, m.p. $165-166^\circ$, also obtained from (I) by NHPh·NH₂ and $\text{ZnCl}_2\text{-CaCl}_2$ at, first, $110-115^\circ$ and later 150° .

Derivatives of 4-hydroxygninoline. II. R. GILLIS, F. LIONS, and E. RITCHIE (J. Proc. Roy. Soc. New South Wales, 1940, 73, 258—262; cf. A., 1939, II, 181).—Interaction of NHAr-CMe-CH-CO₂Et, RI, and NaOEt-EtOH and subsequent heating at 260°

gives 50-90% of 4-hydroxy-2: 3-dimethylquinoline, m.p. 217°, 4-hydroxy-2-methyl-3-ethyl-, m.p. 275°, -3n-propyl-, m.p. 263°, -3-allyl-, m.p. 273°, and -3-butyl-, m.p. 237°, -isoquinoline, 4-hydroxy-2: 3-dimethyl-5; 6benzoquinoline, 4-hydroxy-2-methyl-3-ethyl-, -3-n- and -3-iso-propyl-, -3-butyl-, -3-benzyl-, and -3-β-phenylethyl-5: 6-benzoquinoline, m.p. >300°. β- $\mathring{\text{C}}_{10}$ H₇·NH·CMe:CH·CO₂Et and (CH₂Br)₂ give αβ-bis-4-hydroxy-2-methyl-5: 6-benzo-5(? 3)-quinolylethane, m.p. $>300^{\circ}$.

Synthesis of octahydropyrrocolines. F. LIONS and A. M. WILLISON (J. Proc. Roy. Soc. New South Wales, 1940, 73, 240—252).—CO(CH₂·CO₂Et)₂, $NH_2 \cdot [CH_2]_3 \cdot CH(OEt)_2$, and CH_2O give 88% of Et_2 7-keto-octahydropyrrocoline 6:8-dicarboxylate, oil, decomp. when distilled, and thence by partial acid hydrolysis Et 7-keto-octahydropyrrocoline-6- or -8carboxylate (12%), m.p. 60° (picrate, m.p. 137°), or by prolonged hydrolysis in presence of Zn 7-keto-octa-hydropyrrocoline (24%), b.p. 104—105°/18 mm. (picrate, m.p. 198—200°). Clemmensen reduction then gives octahydropyrrocoline, b.p. 60°/15 mm. [picrate, m.p. 215° (decomp.); platinichloride, m.p. 203° (decomp.)]. Use of RCHO in place of CH₂O leads to Et₂ 7-keto-5-methyl-, m.p. 102° (picrate, m.p. 150°), and -5-isopropyl- (picrate, m.p. 135°) -octahydropyrrocoline-6:8-dicarboxylate,7-keto-6-methyloctahydropyrrocoline, b.p. 119°/20 mm. [picrates, m.p. 194° (decomp.) and decomp. ~188°], 5-methyl-, b.p. 79°/15 mm. [picrates, m.p. 235° (decomp.) and 196° (decomp.); platinichloride, softens at 170°, decomp. 220°], 5-isopropyl-, b.p. 99—101°/23 mm. [picrolonate, m.p. 197° (decomp.)], and 5-phenyl-octahydropyrrocoline (16%), b.p. 155°/20 mm. (picrates, m.p. 174° and 193°), and oily intermediates. The final products are unstable to air and light. Piperonal did not condense. R. S. C.

4:5-Ethylene isoquinoline derivatives. Flack and F. Lions (J. Proc. Roy. Soc. New South Wales, 1940, 73, 253—257).—1-Hydrindenylmethylamine (modified prep.), b.p. 103—105°/4 mm. (hydrochloride, m.p. 211°), gives the HCO derivative, b.p. 190—195°/4.5 mm., which could not be cyclised. The Ac, b.p. 180-182°/4 mm., and Bz derivative, m.p. 115°, with POCl₃ in boiling PhMe or P₂O₅ in boiling xylene give 1-methyl- (I), b.p. $145-150^{\circ}/20$ mm. (methiodide, m.p. 114° ; picrate, m.p. 211° ; hydrochloride, m.p. $238-240^{\circ}$), and 1-phenyl-4: 5-ethylene-3:4-dihydroisoquinoline, m.p. 52—54°, b.p. 204—206°/6 mm. (picrate, m.p. 181°; methiodide, m.p. 217—218°), respectively. Na-EtOH reduces (I) to 1-methyl-4; 5-ethylene-1:2:3:4-tetrahydroisoquinoline, b.p. 110—120°/4 mm. (hydrochloride, m.p. 209—210°). Hydrind-1-one-3-acetic acid 2:4-dinitrophenylhydrazone melts at 242°.

5:6- and 7:8-Benzolepidine.—See B., 1940, 642.

Chemotherapeutic studies in the acridine Hydroxy- and chloroalkoxy-VII. derivatives of acridine. W. H. LINNELL and R. E. STUCKEY (Quart. J. Pharm., 1940, 13, 162—171; cf. A., 1938, II, 443).—3-Hydroxyaeridone, m.p. 345— 350°, obtained by refluxing 5-chloro-3-ethoxyacridine with cone. HCl for 12-14 hr., yields 3-hydroxyacridine, m.p. 283-284°, on reduction (EtOH-Na) followed by oxidation of any 3-hydroxydihydroacridine formed by boiling with dil. FeCl₃ in HCl. The following are described: 4-, m.p. 162-163°, and 6methoxy-4'-ethoxydiphenylamine-2-carboxylic acid, m.p. 174°; 9-methoxy-3-ethoxy-acridine, m.p. 144°, -5:10dihydroacridine, m.p. 90°, and -acridone; 5-chloro-7-, m.p. 175°, and -9-methoxy-3-ethoxyacridine, m.p. 164°; 3:9-dihydroxyacridine, m.p. 190—192°; 3:7dihydroxyacridone, m.p. >350° (all m.p. corr.).

F. O. H. 20-Methyl-4-azacholanthrene. L. F. FIESER and E. B. HERSHBERG (J. Amer. Chem. Soc., 1940, 62, 1640-1645).— H_2-PtO_2 in 1:1 EtOAc-EtOH reduces 5- and 8-nitroquinoline (prep. described) to 5- (50%), m.p. 155—160° (decomp.) (Bz_2 , m.p. 162·8—163·3°, and Ac_2 derivative, m.p. 115·5—116°), and 8-hydroxylaminoquinoline (62%), m.p. 101—102° (decomp.) [picrate, m.p. ~120—125° (decomp.)], but complete hydrogenation in EtOH gives the 5-, m.p. 108—110°, b.p. 180—181°/7 mm., and 8-NH₂-derivative, m.p. 64-65°, b.p. 140.5-141.5°/7 mm. 5-(but not 8-)Cyanoquinoline (I), m.p. 87-88°, b.p. 145—147°/7—8 mm., is obtained by a Sandmeyer reaction. 8-Cyanoquinoline, m.p. 82-83.5°, b.p. 137-140°/7 mm., is obtained from the Cl-compound by CuCN and a little MeCN in C₅H₅N at 200°. o-C₆H₄Me·MgBr and (I) give the ketimine, hydrolysed to 5-o-toluoylquinoline, m.p. 91·7—92·2° (not obtained from 5-bromoquinoline and o-C₆H₄Me CN), which with a little Zn dust at 420—425° gives 4'-aza-1:2benzanthracene [β-anthraquinoline, A., 1880, 262] (II), m.p. 170°. Li 7-methyl-4-hydrindenyl and (I) in boiling Et₂O-C₆H₆ give 17.5% of 7-methyl-4-hydr-

 $-\dot{\mathrm{C}}\mathrm{H_2}$

indenyl 5-quinolyl ketone, m.p. 135—135·5°, pyrolysed at 440° to 20-methyl-4-azacholanthrene (III) (12%), m.p. 184—185° [picrate, m.p. 288—290° (decomp.); s-C₆H₃(NO₂)₃ derivative, m.p. 175—176°]. 7-Methyl-4hydrindenyl 8-quinolyl (similarly prepared), m.p. 135-135.6°, at 400-410°, best in presence of Pd-C, gives 50% of an unreactive substance [?(IV)], $C_{20}H_{15}ON$,

5-α-Methylbutyl-5-allylbarbituric acid and its 3-methyl derivative.—See B., 1940, 702.

m.p. 182—182·5°. M.p. are corr.

Constitution of antipyrine and related compounds. VII. Complex bromine addition compounds of antipyrine. I. Knorr's dibromide. VIII. II. A. Sonn and W. Littler's antipyrine perbromide and T. Komata's four bromides. R. KITIMURA and G. SUNAGAWA (J. Pharm. Soc. Japan, 1940, **60**, 60—65, 65—71).—VII. Knorr's "antipyrine 4:5-dibromide" (I) (A., 1887, 603) is OH·C·NPh Br·C·CMe>NMe}Br or, possibly,

OBr·C·NPh HC·CMe>NMe}Br. Antipyrine (II) absorbs only 2 Br from 0.01n-Br to give 4-bromoantipyrine (III). In H_2O (I) yields (II) by hydrolysis and in 0.1n-Na₂CO₃ liberates quantitatively 1 HBr. In warm

COMe₂ (I) gives COMe·CH₂Br and antipyrine hydrobromide (IV), but (III) is unaffected by COMe₂. 1 mol. of Br in CHCl₂ converts (IV) into (I) and a

substance (V), m.p. 151-153°.

VIII. The structures of the bromides of Sonn et al. (A., 1933, 1306) and Komata (J. Chem. Soc. Japan, 1937, 58, 1202) are revised. The product, m.p. 159—161°, of Sonn et al. is identical with those, m.p. 171—172° and 165—166.5°, of Komata and is now assigned m.p. 162—163°. With H₂O it gives (IV), with COMe₂ gives (III), and is quantitatively debrominated by 0·ln-KOH; a structure is suggested. Komata's substance, m.p. 79—80°, is impure (III). The structure of the so-called pyramidone tetrabromide is also incorrect.

R. S. C.

Polarisation in heterocyclic rings having aromatic character. IX. Friedel-Crafts reaction of basic, aromatic, heterocyclic [compounds]. E. Ochiai [with T. Matsuwo, K. Koke-guchi, F. Nagasawa, Y. Tamamushi, K. Utahashi, H. TAKEUCHI, K. YANAI, and G. MASUDA] (J. Pharm. Soc. Japan, 1940, 60, 55—57).—1-Acetyl-2-methylindolizine, AcCl, and AlCl₃ in (CHCl₂)₂ give 1:3-diacetyl-2-methylindolizine (I). 2-Methylindolizine, AcCl (excess), and AlCl₃ in CS₂ [not (CHCl₂)₂] give a little (I). 2-Hydroxy-4-methylthiazole (Bz derivative, m.p. 104°) with BzCl and AlCl₃ in (CHCl₂)₂ gives 2-hydroxy-5-benzoyl-4-methylthiazole, m.p. 215-217°, but it does not react with BuaCl or Cl·[CH2]2·OEt in PhNO₂ or (CHCl₂)₂. 4-Chloro-2-methyl-5-ethoxy-methylpyrimidine, C₆H₆, and AlBr₃ give 4-phenyl-5-benzyl-2-methylpyrimidine, m.p. 197°. No reaction (AlCl₃) occurs between AcCl and 4-methyl- [(CHCl₂)₂; AlCl₃ or SnCl₄], 2-phenyl-4-methyl- [(CHCl₂)₂], or 4-phenyl-glyoxaline [(CHCl₂)₂ or PhNO₂], 3:5-dimethylpyrazole (CS₂ or PhNO₂; no reaction with BzCl in C₅H₅N), 2-amino- [PhNO₂; gives the NHAcderivative (11)], (II) (PhNO₂), 2- (PhNO₂) or 3-hydroxy-pyridine (PhNO₂), 1-methyl-2-pyridone derivative (11/J, (11/J), hydroxy-pyridine (PhNO₂), l-methyl-2-pyridone [(CHCl₂)₂], 6-methyluracil [PhNO₂ or (CHCl₂)₂], or (CH 4-methylpyrimidine, C6H6, and AlCl3 or AlBr3 do not

Glyoxalines (sulphanilamides).—See B., 1940, 642.

Phthalocyanines.—See B., 1940, 660.

Cyanines.—See B., 1940, 703.

2-SuIphanilamido-4-ethylthiazole. F. H. Bergeim, N. H. Coy, and W. A. Lott (J. Amer. Chem. Soc., 1940, 62, 1873—1874).—2-Amino-4-ethylthiazole, m.p. 35°, b.p. 118—120°/7 mm. (hydrochloride, m.p. 185·5—187·5°; Ac derivative, m.p. 117·5°), with p-NHAc·C₆H₄·SO₂Cl in C₅H₅N at 100° gives 2-p-acetamidobenzenesulphonamido-, m.p. 230·5—231°, and thence 2-sulphonamido-4-ethylthiazole (I), m.p. 151—151·5° (hydrochloride, m.p. 226—228°; Na salt, m.p. 277·5—278°; Cu derivative). 2-p-Nitrobenzenesulphonamido-4-ethylthiazole (similarly prepared), m.p. 193—195°, is reduced to (I) by H₂-PtO₂. (I) and its Me analogue (II) have absorption max. at 262 (log ε 4·18) and 292 m μ . (log ε 4·30) and a min. at 263 m μ . (log ε 4·10). The toxicity of (I) greatly exceeds that of (II) or sulphathiazole.

Bromoaneurin, m.p. 234° (decomp.), and aneurin monophosphate, m.p. 199°.—See A., 1940, III, 765.

Synthesis of thiazologlyoxaline derivatives. II. E. Ochiai and F. Y. Hou (J. Pharm. Soc. Japan, 1938, 58, 33—34; cf. A., 1936, 1130).—Et 1-thiol-4-3'-pyridylglyoxaline-5-carboxylate, COMe CH₂Cl, and NaOEt give Et 2-acetonylthiol-4-3'-pyridylglyoxaline-5-carboxylate, m.p. 110—124°, converted by POCl₃ into Et 4-3''-pyridyl-4'-methylthiazolo-3': 2'-1: 2-glyoxaline-5-carboxylate, m.p. 138°.

R. S. C.

4-Phenyl-2-(1'-benzthiazyl)thiolthiodiazole-5-thione.—See B., 1940, 686.

Semiquinones of oxazines, thiazines, and selenazines. S. Granick, L. Michaelis, and M. P. Schubert (J. Amer. Chem. Soc., 1940, 62, 1802—1811).—Reductive titration (TiCl₃ or CrSO₄) shows formation in strong acid solution of stable semiquinonoid forms (containing a "free" valency) derived from phenoxazine (modified prep.), 3-hydroxy-and 9-amino-3-hydroxy-phenthiazine, 3:9-bisdimethylaminophenselenazine. The results resemble those obtained (A., 1940, II, 110) for thionine and methylene-blue, but for the as-substituted compounds resonance cannot be "equivalent." Formation of colour without "equiv." resonance opens up possibilities with other types of compounds. Absorption spectra of the semiquinones are of two distinct types, a series of bands in the green or a broad band in the far blue; intermediate types are not met. R. S. C.

Erythrina alkaloids. VIII. Constitution of erythramine and erythraline. IX. Isolation and characterisation of erysodine, erysopine, erysocine, and erysovine. K. Folkers and F. Koniuszy (J. Amer. Chem. Soc., 1940, 62, 1673—1677, 1677—1683; cf. A., 1940, II, 197).—VIII. Erythraline (I) contains 1 CH₂O₂, 1 OMe, and a tert. N, but no NMe, and absorbs 2 H₂ in presence of PtO₂ in H₂O containing a drop of HCl to give dihydroerythramine (II). Its methiodide, softens at 96—98°, m.p. 185—187°, and with KMnO₄ gives 4:5:1:2-CH₂O₂:C₆H₄(CO)₂NMe. The absorption spectra of

(I), (II), and erythramine (III) resemble that of 6:7 - methylenedioxy - 1:2:3:4-tetrahydroiso-quinoline hydrobromide, m.p. 255—256° (lit. 256—258°), but not that of hydrocotarnine. The annexed skeleton is probable

for (I) and (II), the nature of rings 1 and 2 being

proved.

IX. EtOH-extracts of seeds of *Erythrina* spp. contain, besides free (I), (III), erythratine, and hypaphorine (IV), larger amounts of physiologically active, H_2O -sol. substances, which by hydrolysis yield *erysodine* (V), m.p. $204-205^{\circ}$, $[\alpha]_D^{27}+248^{\circ}$ in EtOH, erysopine (VI), m.p. $241-242^{\circ}$, $[\alpha]_D^{25}+265\cdot 2^{\circ}$ in 6:4 EtOH-glycerol, erysocine (VII), m.p. 162° , $[\alpha]_D+235\cdot 6^{\circ}$, and erysovine (VIII), m.p. $179\cdot 5^{\circ}$, $[\alpha]_D+252\cdot 0^{\circ}$. (VI) is $C_{17}H_{19}O_3N$, contains 1 OMe and

2 (o-)phenolic OH, is unstable in alkali, and gives a green FeCl₃ colour. (V), (VII), and (VIII) are C₁₈O₂₁O₃N and contain 2 OMe and one phenolic OH. (V), (VI), (VII), and (VIII) contain no NMe or CMe and are very weak bases. E. abyssinica, Lam., yields (IV) (0·6%), (V), and (VI). E. sandwicensis, Deg., yields (V), (VI), (VII), and (VIII). E. glauca, Wild., yields (V) and (VI). E. Berteroana, Urb., yields (IV) and (VIII). E. americana, Mill., yields (IV), (V), and (VIII). E. Poeppigiana (Walp.), O. F. Cook, yields (IV), (V), (VII), and (VIII). E. flabelliformis, Kearny, yields (IV) (1·2%), (V), (VI), (VII), and (VIII). Dil. HCl is preferable to alkali for the hydrolysis and some separation is possible by fractional hydrolysis. Names beginning "erysthro" are used for alkaloids present as such; names beginning "eryso" are used for alkaloids liberated by hydrolysis from sol., natural precursors. R. S. C.

Morphimethine series. E. Mosettic (J. Org. Chem., 1940, 5, 401—415).— β -Methylmorphimethine, m.p. $136-137.5^{\circ}$ [hydrochloride, m.p. $265-268^{\circ}$ (vac.), $[\alpha]_{D}^{24}+323.6^{\circ}$ in $H_{2}O$; benzoate, m.p. 145-147°, $[\alpha]_{D}^{24} + 260 \cdot 1^{\circ}$ in $H_{2}O$, is reduced by Na and EtOH or, preferably, by Na-Hg in EtOH to dihydroβ-methylmorphimethine (I), m.p. 86—88·5° [hydrochloride (II), m.p. 235—236° (vac.) after softening at 233°, $[\alpha]_D^{24}$ —86·3° in H_2O ; benzoate, m.p. 162—164·5°]; the corresponding methiodide, m.p. 253—258° (decomp.), is converted by boiling Ac₂O into its Activative m.p. 265–270° (decomp.) Ac derivative, m.p. $265-270^{\circ}$ (decomp.), $[\alpha]_D^{26}-71.7^{\circ}$ in H₂O. (II) is hydrogenated (PtO₂ in abs. EtOH) to tetrahydro-α-methylmorphimethine hydrochloride (III), m.p. $230.5-232^{\circ}$, $[\alpha]_{\rm p}^{23}-35.6^{\circ}$ in $\rm H_{2}^{2}O$. (II) is transformed by boiling AcOH containing 16% of HBr into acetyldihydromorphimethine (IV), m.p. $200-202.5^{\circ}$ after softening at 196° , $[\alpha]_{D}^{24}+118.4^{\circ}$ in CHCl₃ [hydrochloride (V), m.p. $270-280^{\circ}$ (vac.), $[\alpha]_{D}^{24}+39.9^{\circ}$ in H₂O], which is hydrolysed (boiling N-NaOH) to dihydromorphimethine, m.p. $174-176^{\circ}$, $[\alpha]_{D}^{28}+92\cdot 8^{\circ}$ in CHCl₃ [hydrochloride, m.p. $275-278^{\circ}$ (vac.) after softening at 272°]. Ac₂O in C₅H₅N appears to transform (IV) into an Ac2 derivative which does not give a cryst. picrate or salicylate and is converted by HCl in EtOH or Et₂O-EtOH into (V). Dihydromorphimethine Me ether, an oil, gives a cryst. hydrochloride, m.p. 227—230° (vac.) after softening at 224°, $[\alpha]_D^{24}$ +47.0° in H_2O . The non-phenolic products of the demethylation of (I) contain an oily base which gives a hydrochloride, m.p. 229-230° (vac.) after softening at 224° , [α] $_{D}^{23}$ +13·56° in H₂O, catalytically reduced (PtO₂ in abs. EtOH) to (III). Boiling AcOH containing 16% of HBr converts (III) into acetyltetrahydro-\alpha-morphimethine, m.p. 240—242° (vac.) after softening at 237° [hydrochloride, m.p. 253— 262° (vac.) after softening at 245°, $[\alpha]_{\rm p}^{26}$ -42.8° in H₂O], which does not dissolve in cold 5% KOH. It is hydrolysed by boiling N-NaOH to tetrahydro-amorphimethine (VI), m.p. 206-208° (vac.) after softening at 204° [hydrochloride, m.p. 243—249° (vac.) after softening at 240°, $[\alpha]_D^{23}$ -29.6° in H₂O], also obtained by the reduction (PtO₂ in abs. EtOH) of dihydromorphimethine. Diacetyltetrahydro-α-morphimethine is a non-cryst. compound which gives an oily

hydrochloride, picrate, and salicylate. (VI) and $\mathrm{CH_2N_2}$ in MeOH yield tetrahydro- α -methylmorphimethine. Acetyltetrahydro- α -methylmorphimethine affords a hydrochloride, m.p. 240—245° (vac.) after softening at 232°, $[\alpha]_{\mathrm{D}}^{26}$ —47·53° in $\mathrm{H_2O}$. Morphine methiodide is converted by boiling AcOH into the Ac₂ compound, which is treated with AgOAc in boiling Ac₂O; the filtrate from the pptd. Ag salts is heated at 170—180° and the product is acetylated, thereby giving a small proportion of an acetyl- β -morphimethine, m.p. 183—185° after softening at 182°. M.p. are corr.

Halogeno-morphides and -codides and the mechanism of the morphine-apomorphine transformation. L. SMALL, B. F. FARIS, and J. E. MALLONEE (J. Org. Chem., 1940, 5, 334—349).— Hydrogenation (PtO₂ in glacial AcOH) of α-chlorocodide hydrochloride gives 52% of chlorodihydrocodide (I), m.p. 172·5—174°, $[\alpha]_D^{27}$ —177·8° in CHCl₃ [d-tartrate, m.p. 191—192° (decomp.); hydrochloride, m.p. 203—205° (vac.) and 226° after resolidification, $[\alpha]_D^{26}$ —129·5° in H₂O], 40% of tetrahydrodeoxycodeine (II), and 7·5% of dihydrodeoxycodeine-D (III). This relationship of α -chlorocodide (IV) to (I) leaves no doubt that Cl in (IV) is present at C(6). Similar reduction of β-chlorocodide (V) usually yields (II) and (III) with unchanged material. In HCl-EtOH nearly pure β -chlorodihydrocodide, m.p. \sim 145°, $[\alpha]_{D}^{23} + 37.5^{\circ}$ in EtOH, is occasionally obtained. Reduction of bromocodide hydrobromide in glacial AcOH invariably gives (II) as main product. α -Chloromorphide and KI in dil. AcOH readily yield iodomorphide, $[\alpha]_{\rm D}^{27}$ +123·2° in MeOH [hydriodide, $[\alpha]_{\rm D}^{25}$ +114·5° in H₂O; H tartrate, $[\alpha]_{\rm D}^{25}$ +120·3° in H_2O ; salicylate, m.p. 161° (decomp.), $[\alpha]_D^{20} + 113.4$ ° in EtOH; benzoate, m.p. 159—160° (decomp.), [α]_D²⁸ +115.5° in EtOH; methiodide, $[\alpha]_D^{25}$ +90° to +54° in 36 hr.], which is converted by CH₂N₂ into iodocodide and is hydrogenated to a (?) bimol. base which could not be identified.

β-Chloromorphide and KI in 10% AcOH give β -chloromorphide hydriodide, $[\alpha]_D^{20}$ $\pm 0^{\circ}$ in H_2O , in 92% yield. The mother-liquors from the purification of (IV) after as complete removal of (IV) and (V) as possible give a $1:\overline{1}$ mol. compound of (IV) and (V), m.p. $115-117^{\circ}$, $[\alpha]_{D}^{25}-150.4^{\circ}$ in abs. EtOH, also obtained by mixing equal quantities of (IV) and (V). Dihydro- ψ -codeine (VI) is transformed by PCl₅ in boiling CHCl₃ into 8-chlorodihydrocodide (VI), m.p. 123—124°, $[\alpha]_{\rm D}^{25}$ —42·7° in abs. EtOH [tartrate, m.p. 230—232° (vac.)], obtained similarly but in poorer yield from dihydroallo-ψ-codeine (VII). It is unchanged by treatment with Na in EtOH or vigorous electrolytic reduction but is demethylated by NaOMe in MeOH at 140° to 8-chlorodihydro-morphide, m.p. 257—258° (vac.; decomp.). The mother-liquors from (VI) contain 1:8-dichlorodihydrocodide, m.p. 190.5—191.5°. Dihydrocodeine (VIII) and cold SOCl, yield 1-chlorodihydrocodeine, m.p. 187-190°, identified by reduction (Na and EtOH) to (VIII). Dihydroisocodeine (IX) similarly gives a Cl-base, m.p. 103-105° (tartrate), quantitatively reduced to the initial material. A Cl-base, m.p. 108—112°, is obtained from (VI), into which it is reconverted by reduction. (VII) yields chlorodi-

hydroallo-ψ-codeine, m.p. 189—191°, isolated through the oxalate. (VIII) and PBr₃ at 105—115° generally give compounds containing P but in an individual case (?) 6-bromodihydromorphide, m.p. 260-262°, was isolated. (IX) gives an unidentified, halogen-free base isolated only as the salicylate. (VII) gives a small yield of deoxymorphine-D. A cryst. base, possibly 8-bromodihydrocodide, m.p. 230-232°, is obtained from (VI). During the action of SOCl, on anhyd. morphine small amounts of \beta-chloromorphide (X) and trichloromorphide, m.p. $\sim 195^{\circ}$ (decomp.), $[\alpha]_D^{21} - 285^{\circ}$ in MeOH (hydrochloride, $[\alpha]_D^{20} - 245 \cdot 6^{\circ}$ in H₂O), are produced. The last compound and CH₂N₂ afford trichlorocodide, m.p. $143-143 \cdot 5^{\circ}$, $[\alpha]_D^{25} - 302^{\circ}$ in EtOAc, the hydrochloride, $[\alpha]_D^{25} - 218^{\circ}$ in H₂O, of which is hydrogenetad (Pd. R.S.O.) to a new contract of the second which is hydrogenated (Pd-BaSO₄) to a non-cryst. base from which cryst. salts could not be obtained. Dichlorodihydrodeoxymorphine hydrochloride, m.p. 230—235° (lit. m.p. 270—272°), is transformed by boiling Ac2O into dichlorodiacetyldihydrodeoxymorphine. The first step in the conversion of morphine into apomorphine (XI) is the formation of (X). second intermediate is shown to be dichlorodihydrodeoxymorphine (XII). The first change involves the substitution of Cl for OH simultaneously with or followed by an $\alpha-\gamma$ shift of halogen. The cyclic ether group of (X), activated by the $\beta^{6:7}$ double linking, adds a mol. of HCl and the resulting (XII) undergoes rearrangement. The transitory intermediate is probably formed by loss of HCl at C₍₈₎-C₍₁₄₎ and an $\alpha-\gamma$ shift of the chain from $C_{(13)}$ to $C_{(8)}$ is accompanied by loss of a second mol. of HCI (aromatisation) to yield (XI).

Codeine, dihydro-ψ-codeine, (V), and α-chloromorphide are converted into resinous products by cold SO₂Cl₂ whereas morphine is unaffected. At 0° (IV) is rapidly transformed into pentachloro-oxycodide, C₁₈H₂₀O₃NCl₅, blackens at 180—200°, [\alpha]²⁵ —298·8° in COMe₂, which could not be hydrolysed or reduced to identifiable products. H. W.

Deoxycodeine studies. VI. Deoxycodeine-D (deoxyneopine). L. SMALL and J. E. MALLONEE (J. Org. Chem., 1940, 5, 350—354).—8-Chlorodihydrocodide is very resistant to reduction but loses HCl under the prolonged action of Na in boiling cyclohexanol and gives deoxycodeine-D [deoxyneopine] (I),

NMe(I.) ·

a liquid [H d-tartrate, m.p. 204- 206° (vac.; decomp.), $[\alpha]_{\rm p}^{25} \pm 0^{\circ}$ in H₂O; hydrochloride, m.p. 234— 235° (vac.), $[\alpha]_{\rm D}^{28}$ $-12\cdot1^{\circ}$ in ${\rm H}_2{\rm O}$; H oxalate, m.p. 220—221° (vac.; decomp.)]. Successive ments of (I) in N-HCl with Br-H₂O and SO₂ afford, probably, 1-bromodeoxycodeine-D, ably, 1-bromodeoxycodeine-D, m.p. 125—126°. (I) is hydrogenated (PtO₂) to

dihydrodeoxycodeine-D, m.p. 102-105°. (I) and Mel in EtOH yield the methiodide, m.p. 204—206° (vac.), transformed by boiling 20% NaOH into deoxycodeine-D-methine, m.p. 76—77°; since this compound does not undergo the reaction characteristic of α - and γ -methylmorphimethines, (I) probably has the unsaturated linkings placed as shown. Support of this hypothesis is found in the observation that (I) and CNBr give an amorphous Br-compound which slowly loses HBr whereas, under similar conditions, deoxycodeine-C affords cyanonordeoxycodeine-C, m.p. 159.5—161°. The mother-liquors from the prep. of (I) contain deoxymorphine-D, m.p. 254— 255° (vac.; decomp.), also obtained in an individual experiment from dihydroallo-\psi-codeine and PBr3 at 120° and easily converted by CH₂N₂ into (I). H. W.

Sinomenium and Cocculus alkaloids. XLVII.

Alkaloids of Stephania japonica, Miers. VI.

Protostephanine. II. H. KONDO and T. WATA-NABE (J. Pharm. Soc., Japan, 1938, 58, 46-51; cf. A., 1937, II, 475; 1939, II, 459).—Isolation of protostephanine (I), new formula, $(OMe)_2C_{16}H_{10}>NMe, +1.5MeOH, m.p. 75^{\circ}, and "anhyd.," m.p. 90—95^{\circ}, ~0 [platinichloride, m.p. 223^{\circ}]$ (decomp.); hydrochloride; methylmethosulphate, sinters at 227°, m.p. 235°; methiodide, m.p. 220—221°], and of hasunohanine, m.p. 102-103°, is modified. Distillation of the aq. solution of the methohydroxide at 125°/vac. gives the oily methine (II) (methiodide, m.p. 185°); distillation of (II) in vac. gives an amorphous polymerisation product and NMe₃. Ozonisation of (II) gives CH₂O; Pd-C-H₂ (1 mol.) gives a syrup, b.p. 195—196°/0.05 mm.

Alkaloids, m.p. 105—106° (picrate, m.p. 332—334°), 114—116°, 105°, and 112°, phytosterol, and tannin, m.p. 254°, from bark of Erythrophleum guineense, and alkaloids, m.p. 185—186° (picrate, m.p. 277—278°, acetate, m.p. 123—124°) and 122—124°, from the berries.—See A., 1940, III, 777.

Factors affecting halogen-metal interconversion. H. GILMAN and F. W. MOORE (J. Amer. Chem. Soc., 1940, **62**, 1843—1846).—The rate of formation of 1-C₁₀H₇Li from 1-C₁₀H₇Br and RLi in the following solvents is ${\rm Bu^a}_2{\rm O} > {\rm Et_2O} > {\rm NPhMe_2} > {\rm C_6H_6} > cyclohexane > {\rm light\ petroleum\ (b.p. 28-38°)}$, is accelerated by Cu in C_6H_6 but not in C_6H_6 -light petroleum, varies with R thus: $R = Pr^a > Et > Bu^a > Ph > Me$ (very slight reaction), and is decreased by cooling to -80° . Coupling of radicals only rarely proceeds by way of an organo-metallic compound. Exchange of Cl in 1-C₁₀H₇Cl does not occur with LiBu^a or LiMe. PbPh₃Cl and EtBr (excess) give very rapidly a 98% yield of PbPh₄. R. S. C.

Patterson analysis derived from the cyclol C2 skeleton.—See A., 1940, I, 387.

Micro-determination of carbon and hydrogen. Use of Abrahamczik absorption tubes. R. O. CLARK and G. H. STILLSON (Ind. Eng. Chem. [Anal.], 1940, 12, 494—498).—Under ordinary analytical conditions, Abrahamczik type absorption tubes, with minor modifications, compare favourably with Pregl tubes in accuracy, ease of handling, and absorption capacity. They are unaffected by high or low humidity, temp. change, or keeping for long periods, and allow much time saving. The construction of the tubes, and all operations in the determination of C and H using them, are described in detail. J. D. R.

Determination of thiamin.—See A., 1940, III, 818.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

NOVEMBER, 1940.

Oxidation of methane. III. T. Ogawa, A. Matsui, H. Nagai, and H. Senoo (J. Soc. Chem. Ind. Japan, 1940, 43, 116—117B; cf. B., 1938, 353).— The reaction $2CH_4 + O_2 \rightarrow 2CO + 4H_2$ is effected by passing CH_4 -air mixtures successively through Fe_2O_3 -MgO and Ni-kaolin catalysts in a Ni-Cr tube, at 1220°. R. T.

Mechanism of polymerisation. IV. Experiments relating to the constitution of the solid dimeride and the liquid trimeride of $\beta \gamma$ -dimethylbutadiene, and to the separation of the higher polymerides. E. H. FARMER and J. F. MARTIN (J.C.S., 1940, 1169—1176).—The solid dimeride, C₁₂H₂₀, formed by the acid-catalysed (AcOH and 1.8 wt.-% H₂SO₄) polymerisation of (CH₂:CMe)₂ (cf. Farmer et al., A., 1938, II, 79) yields with Pb(OAc), a mixture from which a monoacetate, b.p. 128—135°/ 12 mm., can be separated. This is hydrolysed to a ketone, C₁₂H₂₀O, m.p. 180° (oxime, m.p. 132°) (probably 1:2:2:3-tetramethyl-1:3-endoethylenecyclohexan-5-one or 1:2:2:4-tetramethyl-1:4-endomethylenecycloheptan-6-one, but the 1:2:4-Me3 compound is not excluded), purified through the semicarbazone, m.p. 255°. The ketone is oxidised (HNO₃) to a dibasic acid, C₁₂H₂₀O₄, m.p. 161°, and reduced (NaOEt-EtOH) to a hydrocarbon, m.p. 146°, probably 1:2:2:3tetramethyl-1: 3-endoethylenecyclohexane or 1:2:3:4tetramethyl-1: 4-endomethylenecycloheptane, although the 1:2:4-Me₃ compound is not excluded. genation (PtO₂-H₂) of the dimeride gives a dihydride, m.p. 78° , which is 1:2:2:3:4-pentamethyl-1:3 $endoethylene cyclopentane\ or\ 1:2:2:4:5\text{-}pentamethyl-$ 1:4-endomethylenecyclohexane, but the 1:2:4:5-Me₄ derivative is not excluded. The trimeric, tetrameric, and pentameric portions of the polymeride have been separated from each other by mol. distillation, leaving as a residue a highly viscous liquid of mainly hexameric complexity. Se-dehydrogenation of the trimeric portion gives an increased yield of the naphthalenic hydrocarbon (I) previously reported, and when the unattacked residue is submitted in the vapour phase to Pd-C-H₂, an isomeric hydrocarbon, $C_{17}H_{22}$ [$C_6H_3(NO_2)_3$ derivative, m.p. 181°], is obtained. Oxidation (AcOH- H_2 CrO₄) of (I) affords a quinone, $C_{17}H_{20}O_2$, m.p. 118° , probably a tetramethylisopropylnaphthaquinone. The trimeric fraction probably contains pentamethylisopropenyloctahydronaphthalene. F. R. S.

Preparation of butadiene by catalytic hydrogenation of monovinylacetylene.—See B., 1940, 657.

Mechanism of Wurtz reaction.—See A., 1940, I, 415.

Mercury-photosensitised reactions of propane.—See A., 1940, I, 417.

Nitroparaffins.—See B., 1940, 657.

Leaf-alcohol. IV. cis and trans problem of leaf alcohol, the natural Δ^{γ} -hexenol. S. Takei, M. Ono, and K. Sinosaki (J. Agric. Chem. Soc. Japan, 1940, 16, 772—780; cf. A., 1939, III, 536).—Hydrogenation (Pd-BaSO₄-H₂) of Δ^{γ} -hexinol (prepared from Δ^{γ} -hexenol by addition of Br and removal of HBr by KOH) in Et₂O at -18° yields trans- Δ^{γ} -hexenol, whilst in xylene at 100° the cis-isomeride (allophanate, m.p. 143°; 3:5-dinitrobenzoate, m.p. 28°; anthraquinone-2-carboxylate, m.p. 50°) is formed. Hydrogenation at 50° yields a mixture of the two isomerides. Contrary to Stoll and Rouvé (A., 1939, II, 2), leaf-alcohol is the trans-isomeride. J. N. A.

Preparation of higher unsaturated alcohols. V. Hydrogenation of methyl erucate. S. Komori (J. Soc. Chem. Ind. Japan, 1940, 43, 122—125B; cf. A., 1940, II, 202).—Hydrogenation of Me erucate (ZnO-Cr₂O₃ catalyst) affords chiefly docosenol, with a small quantity of behenyl alcohol and docosene. Erucyl and brassidyl alcohols and Δ^{μ} - and Δ^{ξ} -docosenol are also formed in small amounts, probably by secondary isomerisation of docosenol. R. T.

Synthesis of disopropyl ether. X. Alcoholysis of disopropyl sulphate with isopropyl alcohol. M. Katuno (J. Soc. Chem. Ind. Japan, 1940, 43, 106—109B; cf. B., 1940, 591).— $\Pr^{\beta}_{2}O$ is prepared by the reaction $\Pr^{\beta}_{2}SO_{4} + \Pr^{\beta}OH \rightarrow \Pr^{\beta}_{2}O + \Pr^{\beta}HSO_{4}$ (I). After $\Pr^{\beta}_{2}O$ has distilled off, $H_{2}O$ is added to decompose (I), and the $\Pr^{\beta}OH$ formed is recovered. R. T.

Mono-halogen derivatives of diethyl sulphone. L. Ramberg and B. Bäcklund (Arkiv Kemi, Min., Geol., 1940, 13, A, No. 27, 50 pp.).—α-Bromo- (I), m.p. $2\cdot 5$ —3°, b.p. $124^{\circ}/8$ mm. (from SO₂Et·CHMe·CO₂H), β-bromo- (II), m.p. 19—20°, b.p. $153^{\circ}/8$ mm. (from PBr₅ and OH·[CH₂]₂·SO₂Et), and α-chloro-diethyl sulphone (III), m.p. $19\cdot 8^{\circ}$, b.p. ~110°/8 mm. (from CHMeCl·SEt), have been prepared. (I) and (II) are salted-in strongly by electrolytes (except KCl and NaCl), (II) having solubilities in N-HI and N-HClO₄ 97% and 117% > that in H₂O respectively. (I) and (II) are not attacked by KI or N₂H₄, and (I) [but not (II)] is stable to acid AgNO₃ at 100° and NH_3 —Ag solutions at room temp. (I) [and similarly (III)] with excess of 2N-KOH at 90— 100° (very slowly at 25°) gives: CHMeBr·SO₂Et + $30H' \rightarrow cis\cdot \Delta^{\beta}$ -butene (IV) + Br' + SO₃" + $2H_2$ O. 85% of (IV), 75—81% of SO₃", and 100% of Br' (of the theoretical) are formed. The mechanism of the reaction is discussed. (II) with 0.25N-KOH at room temp. gives rapidly Et

S* (A., II.)

vinyl sulphone, m.p. -13° to -12°, b.p. 106.8°/9 mm. (65% yield), which does not polymerise on storage at room temp., and gives with Br Et αβ-dibromoethyl sulphone, m.p. 64·8°. With EtSO₂Na (I) gives slowly 4EtSO₂Na,NaBr,H₂O, decomp. ~200° (also prepared from EtSO₃Na and NaBr), whilst (II) gives M. H. M. A. $(CH_2 \cdot SO_2Et)_2$.

Separation and identification of fatty acids. Y. INOUE and H. YUKAWA (J. Agric. Chem. Soc. Japan, 1940, 16, 504—512).—Fatty acids can be identified as hydroxamic acids which are prepared from the esters or glycerides by treatment at room temp. with NH₂OH in presence of NaOEt. following -hydroxamic acids are described (m.p. in parentheses): acet- (88°), propion- (92·5—93°), butyr- (syrup), hexo- (63·5—64°), octo- (78·5—79°), deco-(88-88·5°), dodeco- (94°), myrist- (98-98·5°), palmit-(102.5°), stear- (106.5—107°), arachid- (109.5—110°), behen- (112.5°). The solubilities of the acids in EtOH, COMe₂, Et₂O, H₂O, and light petroleum are recorded. The corresponding hydroxamic acids from oleic, linoleic, and linolenic acids have m.p. 61°, 41—42°, and 37—38°, respectively. The hydroxamic acids are converted into the original fatty acids by boiling with dil. H₂SO₄-EtOH.

Direct esterification of higher fatty acids with glycerol. H. Synthesis of monolaurin. S. KA-WAI and H. Nobori (J. Soc. Chem. Ind. Japan, 1940, 110B; cf. A., 1940, II, 243).—Lauric acid (1 mol.) and glycerol (I·4 mols.) (30 min. at 240°) give monolaurin in 40% yield.

Action of sulphuric acid on petroselic acid. A. A. TSCHERNOJAROVA (J. Gen. Chem. Russ., 1940, 10, 146—149).—Petroselic acid treated consecutively with H₂SO₄ and H₂O yields ζ-hydroxystearic acid, m.p. 82° (*Et* ester, m.p. $45-46^{\circ}$).

Oxidation of ascorbic acid by oxygen with cupric ion as catalyst —See A., 1940, I, 416.

Catalytic hydrogenation [of maleic and α -ketoglutaric acid] with deuterium.—See A., 1940, I,

Indium oxalate and oxalatoindates.—See A., 1940, I, 418.

Production of formaldehyde by direct oxidation of methane. A. Matsul and M. Yasuda (J. Soc. Chem. Ind. Japan, 1940, 43, 117—118B).-CH₄-air-gaseous catalyst (HCl, SO₂, Br, NO₂) mixtures are passed through tubes of various materials (Pyrex, SiO₂, porcelain, Cu) containing solid catalysts (NaCl, KF, H₃BO₃, U₃O₈, BeO). The highest yields of CH₂O are obtained with Pyrcx tubes, with NO₂ and U₃O₈ or BeO catalysts, at 600°.

Distillation of formaldehyde solutions.—See B., 1940, 657.

Photochemical decomposition of acetone.—See A., 1940, I, 417.

Diginin. I. C. W. Shoppee and T. Reichstein (Helv. Chim. Acta, 1940, 23, 975—991).—Diginin, m.p. (indef.) 155—183°, $[\alpha]_{\rm b}^{14}$ —223° ± 4 ° in CHCl₃, gives a well-defined Legal test but does not appear to be a lactone. It is very readily hydrolysed by dil. IV. Methylation and determination of terminal

mineral acids to diginigenin (I), C₂₁H₂₈₍₂₆₎O₄, m.p. 115°, $[\alpha]_0^{15}$ $-226^{\circ}\pm 3.5^{\circ}$ in $COMe_2$, which does not contain OMe, and diginose, $C_7H_{14}O_4$, m.p. $90-92^{\circ}$, $[\alpha]_0^{22}$ $+60^{\circ}\pm 1^{\circ}$ (final val. in H_2O), which gives the Keller-Kiliani reaction and contains 1 OMe. It is distinguished from cymarose since when oxidised and treated with NHPh·NH₂ it gives a non-cryst, phenylhydrazide whereas cymaronephenylhydrazide (microprep. described) has m.p. 153·5—154°. (I) probably contains CHO since it readily affords a semicarbazone, m.p. 290-292°, and an oxime, thin prisms, m.p. 219—220° (decomp.), or octahedra, m.p. 235—236° (decomp.), strongly reduces Ag₂O-(CH₂·NH₂)₂ at room temp., and gives a strong positive reaction with $1:4-C_{10}H_6(OH)_2$. It contains 1 OH since on mild acetylation it affords a monoacetate (II) which becomes cloudy at 181° and melts to a clear liquid at ~185— 200°, $[\alpha]_{D}^{15}$ -210° ± 4 ° in COMe₂ [monosemicarbazone, m.p. 262-263° (decomp.)], which does not appear to contain further primary or sec. OH groups since it is relatively stable towards CrO₃. Energetic acetylation of (I) leads to a diacetate (III), m.p. 177—178° (monosemicarbazone, m.p. 177—178°), which appears to contain an inert CO group or, less probably, a tert. OH since it is unchanged when warmed with strong acids. (I) contains a C:C linking since it and (II) give a distinct yellow colour with C(NO2)4 but this is not conjugated with CO since there is no selective absorption in the region of 240 mu. This is true also of (III). (I) is hydrogenated (PtO₂ in AcOH) to tetrahydrodiginigenin (IV), m.p. 229—231°, [a]₅⁶ +36·6°±1·5° in CHCl₃, which has no reducing properties, does not give a yellow colour with C(NO₂)₄, and does not react with NH₂·CO·NH·NH₂ so that CHO has been reduced. The presence of inert •CO·Sichovan by the production under converging and the conditions is shown by the production under energetic conditions of an amorphous oxime, m.p. ~132°. (IV) is transformed by short treatment with boiling Ac₂O into the monoacetate (V), m.p. 173—174°, $[\alpha]_{D}^{14} + \bar{3}8.8^{\circ} \pm 1.5^{\circ}$ in COMe2, also obtained by hydrogenation of (II). Prolonged treatment of (IV) with Ac₂O-C₅H₅N at 100° affords non-cryst. tetrahydrodiginigenin diacetate. (III) is hydrogenated (PtO₂ in AcOH) to the non-cryst. diacetate, hydrolysed to (?) hexahydrodiginigenin, m.p. 207°, $[\alpha]_{\rm b}^{\rm ls} - 13.6^{\circ} \pm 2^{\circ}$ in CHCl₃. Attempted partial reduction (Pd in EtOH) of (II) was unsuccessful whilst mild oxidation (CrO₃) of (V) yields an amorphous, neutral substance with aldehydic properties. Similar oxidation of (I) or (IV) leads to extensive degradation with production of acidic and neutral compounds from which only small amounts of homogeneous products can be isolated. Small amounts of CHI_3 are formed from (I) and OI' in MeOH. (I) and (IV) are stable to HIO₄. It appears probable that (I) is a pregnane derivative. M.p. are corr. H. W.

o-Chlorophenylgentiobioside [hepta-acetate, m.p. 207—208.5° (corr.), $[\alpha]_D^{25}$ —49.4° in CHCl₃; heptapropionate, m.p. $178.5-179^{\circ}$, $[\alpha]_{D}^{26}$ -38.0° in CHCl₃].—See A., 1940, III, 831.

Non-homogeneity of starch. Starch. K. H. MEYER, W. BRENTANO, and P. BERNFELD. III. Fractionation and purification of natural maize. K. H. MEYER, P. BERNFELD, and E. WOLFF.

groups of amylose and amylopectin of maize. K. H. MEYER, M. WERTHEIM, and P. BERNFELD. V. Amylopectin. K. H. MEYER and P. BERN-FELD. VI. Acetates and nitrates of amylose and amylopectin. K. H. MEYER, P. BERNFELD, and W. HOHENEMSER. VII. Fine structure of the starch granule and the phenomena of swelling. K. H. Meyer and P. Bernfeld (Helv. Chim. Acta, 1940, 23, 845—853, 854—864, 865—875, 875—885, 885—890, 890—897; cf. A., 1929, 799).— II. Treatment of maize starch with H₂O at 70° or 80° or with 33% CCl₃·CH(OH)₂ at 20° removes ~20% of carbohydrates as limpid solution without causing destruction of the granules, which merely swell. The solutions slowly deposit a flocculent ppt. of amylose (I) which presents cryst. interferences and resists the action of β -amylase (II). If brought into solution by any means (I) is completely saccharified by (II). Prolonged action of the solvent removes ~10% of other fractions but the solutions are turbid and deposit ppts. more slowly or only after addition of precipitants. (II) does not cause complete saccharification but yields small amounts of residual dextrins which give a red colour with I, thus indicating the presence of amylopectin (III). The proportion of (I) varies from sample to sample. Starch therefore contains ~20% of a carbohydrate sharply differentiated from that retained in the swollen granule. subdivision into (I) and (III) is therefore justified but it is proposed to distinguish (I) as a carbohydrate with non-branched mols. entirely saccharified by (II), and (III) as a carbohydrate with branched mols. degraded by (II) solely to residual dextrins. It should be noted, however, that only 20-30% of the maltose formed from starch by malt extract is derived from (I) whereas 70—80% is derived from (III) which suffers partial degradation. The product extracted by hot H₂O and consisting essentially of (I) is not homogeneous, the first fractions having a lower η and mol. wt. than the less sol. fractions.

III. Four fractions have been separated from crude (I), all of which are free from P. When dried at $105^{\circ}/\text{vac}$. (I) is $\text{C}_6\text{H}_{10}\text{O}_5$ and does not show X-ray interferences. Over 54% H_2SO_4 (I) becomes $\text{C}_6\text{H}_{12}\text{O}_6$. Native (I) is sol. in H_2O at $70-80^{\circ}$ but fractions obtained from it by crystallisation are very slightly sol. or insol. (I) pptd. from H₂O by EtOH is sol. in Et₂O. Insol. (I) can be converted into sol. (I) by dissolution in 33% CCl₃·CH(OH)₂ and pptn. by COMe₂. Sol. (I) does not present cryst, interferences; it loses its solubility after some hr. or days. The solubility of (I) in H₂O depends on its mol. wt., degree of purity, and size of crystallites. (I) migrates towards the anode. Its dissociation const. in 5×10^{-12} . (I) gives limpid solutions in warm HCO NH₂ but fractionated (I) readily gels in the course of a few hr. It is sol. in 33% CCl₃·CH(OH)₂, N_2H_4 , H_2O , and (CH₂·NH₂)₂,H₂O and in saline solutions which cause starch to swell. It dissolves rapidly in 1% NaOH but a gel of the Na compound is rapidly formed. It gives a blue colour but does not dissolve in CuO-NH₃. It has $[\alpha]_D + 195 - 197^{\circ}$ in H_2O , $+152^{\circ}$ in $CCl_3 \cdot CH(OH)_2$ (calc. for $C_6H_{12}O_6$). The various fractions are readily characterised by their η . The mol. wt. is 13,000— 45,000.

IV. Starch or (III) becomes H₂O-sol. when pptd. from 33% CCl₃·CH(OH)₂ and then give 3% solutions in 1% NaOH, in which they are readily methylated. (II) is sol. in dil. alkali and can be methylated directly. Methylation and hydrolysis gives 3.5%, 0.32%, and 3.7% of tetramethylglucose from starch, (I), and (III), respectively. (II) has one terminal group for ~300 residues whereas starch and (III) have one group for \sim 30 or 27 residues. As the mol. wt. of the sample of (I) was ~50,000 and mean degree of polymerisation 300, (I) has only one terminal group per mol., which is not branched. (III) has >50 ramifications of its chain. A single treatment of (I) affords dimethylamylose, which is sol. in H₂O, CHCl₃, and COMe₂, does not give a blue colour with I, and is appreciably less viscous than trimethylamylose (IV) in CHCl₃.. (IV) differs widely from trimethylstarch and trimethylamylopectin (V), more particularly in its ability to form films and threads. The n of (IV) in CHCl3 is > that of a branched product of the same mol. wt. and increases less rapidly with concn. than that of (V). The presence of CHO at the other end of the mol. of (I) is established by means of Ag₂O; Fehling's solution is not sufficiently sensitive. This appears true of (III) also. Electrodialysis does not affect (IV) or (V).

V. Starch is dissolved at room temp. by (CH₂·NH₂)₂,H₂O and N₂H₄,H₂O, which may possibly cause hydrolysis, and also by 33% CCl₃CH(OH)₂, conc. CCl₃·CO₂Na, CCl₃·CO₂H, and CS(NH₂)₂ with which hydrolysis may be regarded as impossible. The linkings ruptured under these conditions can only be caused by secondary valencies. These facts combined with the observation that (III) separated from aq. solution has the same cryst. interferences as (I) suggest that the giant branched mols. are united one to the other at numerous points by little cryst. micelles representing associations of parts of the chains; inversely, the cryst. micelles are united by loose reticules constituted by parts of the chains not arranged in nets, by mol. threads. (III), pptd. by COMe₂ from CCl₃·CH(OH)₂, is free from P and readily sol. in warm H₂O when fresh. This solubility is rapidly lost when it is dried. Aq. solutions soon become cloudy and deposit (III) quantitatively after several days. They give a pure blue colour with I. In an electric field (III), even when free from P, is transported to the anode, where it is deposited as a After desiccation (III) is practically insol. in H₂O but the particles still swell somewhat in hot H₂O, thereby differing from (I). (III) can be separated into fractions of increasing mol. wt. and diminishing solubility. The simpler fractions are pptd. as flocks by COMe2; the higher fractions form only viscous masses. Only the acetates of the former are sol. in CHCl₃ or CCl₄. (III) is converted by (II) into maltose and residual dextrin-I (VI) which gives a red colour with I. The terminal groups not affected by this enzyme are attacked by α - (but not by β -)glucosidase (VII) with formation of glucose. The branching linkings are thus of the α-1:6-type; the disaccharide which is the basis of the ramifications is α-gentiobiose, probably identical with Croft Hill's revertose and Fischer's isomaltose. By the prolonged action of (VII) (VI) is converted into residual dextrin-II, which is transformed by (II) into maltose and residual

dextrin-III, which is coloured brown-red by I, thus resembling glycogen. The observations are incompatible with the formulæ of Staudinger and Husemann or Hirst and Young and a new scheme is

suggested.

VI. (I) is readily converted into its triacetate (VII), which is more freely sol. than cellulose triacetate and differs considerably from the acetates of starch and (III), giving very solid films which can be drawn into resistant threads. Amylopectin triacetate (VIII) from crude (III) is sol. in C₂H₂Cl₄, in which acetates from fractionated (III) are insol. The viscosity-concn. graphs of (VII) and (VIII) differ sharply from one another. This appears also true of the nitrates of (I) and (III).

VII. The sub-microscopic structure of the starch grain and the processes of swelling, crystallisation, and gel formation are discussed.

H. W.

Nature of bonds in starch. C. E. H. Bawn, E. L. Hirst, and G. T. Young (Trans. Faraday Soc., 1940, 36, 880—885).—Kinetic experiments on the disaggregation of methylated starch support other evidence in indicating that the linking between repeating units (each of 24—30 glucose units) is of the normal glucosidic type and not due to H-bonding. On the other hand the pasting of native starch with hot H₂O and its subsequent pptn. in granular form are consistent with the formation of H bonds between the macromols.

F. L. U.

Carragheen mucilage. E. G. V. Percival and J. Buchanan (Nature, 1940, 145, 1020—1021; cf. A., 1940, II, 245).—Haas' view (A., 1921, i, 839) that the polysaccharide obtained by extraction of carragheen moss with hot H₂O is essentially the Ca salt of a carbohydrate ethereal sulphate has been confirmed. Attempted acetylation $(C_5H_5N + Ac_2O)$ on the hot and other extracts was unsuccessful. Hydrolysis yielded a mixture of sugars containing ~50% of galactose, which appears to be the main unit of the mol. Direct methylation of the hot extract is difficult, and gives a OMe content >~15%. Hydrolysis followed by acetylation and vac. distillation gave a dimethylhexose triacetate (~40%) and a monomethylhexose tetra-acetate (\sim 20%), both of which yielded tetramethylgalactopyranoseanilide on suitable treatment. Deacetylation followed by osazone formation gave 6-methyl-d-galactosazone and d-galactosazone, respectively.

Iodine reaction of glycogen and starch in presence of adrenaline. P. Marquardt (Klin. Woch., 1939, 18, 1396—1397). M. K.

Cyanic acid. IV. Constitution of cyanic acid. Carbamyl fluoride and bromide. M. LINHARD and K. Betz (Ber., 1940, 73, [B], 177—185; cf. A., 1938, I, 517; II, 352).—On electronic grounds, the structure of cyanic acid (I) is regarded as H·N:C:O; (acidic) H easily separates as H⁺, and the resulting—N:C:O can electromerise into N:C:O—. Liquid HF at —80° with H₂O-free Et₂O in a Cu vessel, and (I), give carbamyl fluoride (II), m.p. 47°, purified by sublimation at 20°/vac. on to a Cu rod at —80° (apparatus described). Dil. NaOH or aq. NH₃ hydrolyses (II) to cyanate and fluoride. With H₂O, (II) gives NH₄F,

and thence NH₄HF₂. Cryoscopically in dioxan, (II) shows normal mol. wt. HBr and (I) at -80° give carbamyl bromide, m.p. 27—27·5°, purified by sublimation, which is similarly hydrolysed by aq. NaOH. Metallic m.p. apparatus for use with (II) (m.p. determined by the fall of a Cu wire resting on the substance) is described.

E. W. W.

Production of hydrocyanic acid and ammonia by the action of the high- and low-frequency electric arc on mixtures of nitrogen, carbon monoxide, and hydrogen at ordinary and low pressure.—See A., 1940, 1, 417.

Aliphatic arsinic acids. II. Attempted preparation of di- and tri-arsinoacetic acids. A. R. Marquez (Anal. Asoc. Quím. Argentina, 1940, 28, 82—86; cf. A., 1940, II, 208).—CHCl₂·CO₂H or CCl₃·CO₂Et with As₂O₃ in excess of NaOH yields only NaOAc and Na₃AsO₄. F. R. G.

Redistribution reaction. R. D. STIEHLER and T. L. GRESHAM (J. Amer. Chem. Soc., 1940, 62, 2244).—Polemical against Calingaert et al. (A., 1940, 11, 8).

W. R. A.

Isomerisation of polymethylene hydrocarbons in presence of aluminium chloride. V. Isomerisation of *n*-amylcyclopentane. M. B. Turova-Polak and G. A. Tarasova (J. Gen. Chem. Russ., 1940, 10, 172—175; cf. A., 1940, II, 159).—*n*-Amylcyclopentane heated with AlCl₃ (20 hr. at 150—155°) yields 55% of cyclohexane derivatives (probably tetramethylcyclohexanes), together with cracking products of low b.p. R. T.

Catalytic dehydrogenation of representative hydrocarbons.—See A., 1940, I, 416.

Crystalline β-dihydrocarotene. P. Karrer and A. Ruegger (Helv. Chim. Acta, 1940, 23, 955—959).

—Reduction (Al-Hg in Et₂O) of β-carotene leads to β-dihydrocarotene, m.p. 182°, shown by its absorption spectrum to have 8 double linkings. Since it is biologically inactive it must be (·CH:CH·CMe:CH·CH:CH·CMe:CH·CH₂

 $\cdot \mathbf{C} \leqslant_{\mathbf{CMe-CH_2}}^{\mathbf{CMe_2}} \cdot \mathbf{CH_2} > \mathbf{CH_2} \\ \cdot \mathbf{CH_2} = \mathbf{H. W.}$

Heteropoly-acids as catalysts for vapour-phase partial oxidation of naphthalene.—See A., 1940, I, 416.

Sesquiterpenes. XLV. Synthesis of 1:4-dimethylazulene. P. A. PLATTNER and J. Wyss (Helv. Chim. Acta, 1940, 23, 907—911).— o-C₆H₄Me·CH₂Cl is converted successively into o-C₆H₄Me·CH₂·CH(CO₂Et)₂, o-C₆H₄Me·CH₂·CH₂·CO₂H, and 4-methylindanone, m.p. 96°. This is converted by the successive action of MgMeI, KHSO₄, and H₂ (Raney Ni) into 1:4-dimethylindane (I), b.p. 86°/11 mm. Treatment of (I) with CHN₂·CO₂Et at ~135—150° followed by hydrolysis and distillation with Pd-C affords 1:4-dimethylazulene [additive compound, m.p. 177—178°, with C₆H₃(NO₃)₃; picrate, m.p. 142—143°]. All m.p. are corr.

Union of aryl nuclei. V. Modification of the Gomberg reaction. J. Elks, J. W. Haworth, and D. H. Hey (J.C.S., 1940, 1284—1286; cf. A., II, 1938,

93).—Increased yields in the Gomberg reaction (A., 1926, 944) are obtained in certain cases by substituting NaOAc for NaOH; e.g., C_6H_6 and o-, m-, or p-NO₂· C_6H_4 ·N₂Cl first at 5—10° and then at room temp. for 48 hr. give 45, 45, or 60% of 2-, 3-, or 4-nitrodiphenyl, respectively. o- C_6H_4 Cl·N₂Cl or β -C₁₀H₇·N₂Cl and C_6H_6 similarly afford increased yields (38 and 25%, respectively) of the respective diaryl derivative, but other diazotised amines give decreased yields (cf. also Hodgson et al., A., 1940, II, 126).

[With S. E. LAWTON.] β -C₁₀H₇·N₂Cl and PhNO₂-aq. NaOAc give 2'- and 4'-nitro-2-phenylnaphthalene (total yield, 40%). A. T. P.

Action of selenium at high temperatures on gem-methylethyl groups. R. L. BARKER and G. R. CLEMO (J.C.S., 1940, 1277—1279; cf. A., 1937, II, 142).— $C_{10}H_8$ and α -methyl- α -ethylsuccinic anhydride in AlCl₃-PhNO₂ afford β-1-naphthoyl-α-methyl-α-ethylpropionic acid, m.p. 135—136°, reduced (Clemmensen) to γ -1-naphthyl- α -methyl- α -ethylbutyric acid, b.p. $190^{\circ}/1$ mm., which is converted by $\rm H_2O-H_2SO_4$ (1:3 vol.) at 100° (bath) into 1-keto-2-methyl-2-ethyl-1:2:3:4-tetrahydrophenanthrene (I), b.p. 170°/1 mm. (picrate, m.p. 85—86°). (I) is reduced (Clemmensen) to 2-methy \overline{l} -2-ethyl-1:2:3:4-tetrahydrophenanthrene, b.p. 160°/1 mm. (picrate, m.p. 100-101°), dehydrogenated by Se at 280-300°, then 320°, to 2-methylphenanthrene (Et removed). (I) and MgMeI afford1-hydroxy-1: 2-dimethyl-2-ethyl-1:2:3:4-tetrahydrophenanthrene, b.p. 150—160°/ 1 mm. (some dehydration occurs) (unstable picrate, m.p. 83—84°), converted by Se into 1:2-dimethylphenanthrene.

Synthetic œstrogens related to triphenylethylene. A. Schönberg, J, M. Robson, W. Tadros, and (in part) H. A. Fahim (J.C.S., 1940, 1327—1329; cf. A., 1938, III, 908).—4:4'-Di-bromo- and -iodobenzophenone with CH₂Ph·MgBr yield β-phenyl-ααdi-p-bromo-, m.p. 163-164°, and -iodo-phenylethyl alcohol, m.p. 198-199°, respectively, dehydrated (H_oSO₄-AcOH) to β-phenyl-αα-di-p-bromo-, m.p. 133— 134°, and -iodo-phenylethylene, m.p. 155—156°, respectively. Bromination of (p-C₆H₄Hal)₂C:CHPh in AcOH yields β-bromo-αα-di-p-chloro-, m.p. 156—157°, -bromo-, m.p. 164—165°, and -iodo-phenyl-β-phenylethylene (I), m.p. 173—174°. Of these C₂H₄ derivatives, only (I) induces some estrogenic activity when injected submice. $(p\text{-OMe-C}_6H_4)_2\text{C:CPhBr}$ cutaneously in (Koelsch, A., 1932, 848), however, is considerably more active than CPh₂:CPhCl. 4:4'-Dimethoxystilbenediol diacetate is obtained by reduction (Zn dust, AcOHconc. H_2SO_4 , ~40°) of anisil.

Activation of aromatic halogen by ortho-ammonium salt groups. W. S. EMERSON, F. B. DORF, and A. J. DEUTSCHMAN, jun. (J. Amer. Chem. Soc., 1940, 62, 2159—2160).—2:4:6:1- $C_6H_2Br_3$ ·NH₂, 40% CH₂O, and Zn-Hg in boiling AcOH give 88% of p- C_6H_4Br ·NMe₂. Elimination of Br and methylation occur also with 4:2:6:1- $C_6H_2MeBr_2$ ·NH₂ (one Br removed), 3:2:4:6:1- $C_6H_2MeBr_3$ ·NH₂ [gives 3:4:1- C_6H_3MeBr ·NMe₂ (hydrochloride, m.p. 149—150°)], 2:4:6:1- $C_6H_2MeBr_2$ ·NH₂ [gives 2:4:1- C_6H_3MeBr ·NMe₂, b.p. 120—130°/20 mm. (hydrochloride, hygroscopic), also obtained from 2:4:1-s** (A., II.)

 $\begin{array}{lll} C_{6}H_{3}MeBr\cdot NH_{2}], & \text{and} & 2:4:6:1\text{-}C_{6}H_{2}Me_{2}Br\cdot NH_{2}.\\ However, & 2:4:6:1\text{-}C_{6}H_{2}Cl_{3}\cdot NH_{2} & \text{gives} & 2:4:6:1\text{-}C_{6}H_{2}Cl_{3}\cdot NMe_{2}. \\ & R. \ S. \ C. \end{array}$

4.1 19-19-30

Restricted rotation in arylamines. I. Preparation and resolution of 3-bromo-2:4:6:N-tetramethylsuccinanilic acid. R. Adams and L. J. DANKERT (J. Amer. Chem. Soc., 1940, 62, 2191—2193).—Mesidine, b.p. 225—226°, and Br in conc. HCl first at <15° and then at 100° (bath) give bromomesidine (82%), m.p. 40°, and thence bromo-Nmethylmesidine (90%), b.p. 145°/15 mm. (purified by way of the NO-derivative; Ac derivative, m.p. obtained also less readily from $1:3:5:\hat{2}$ -C₆H₂Me₃·NHMe), which with (CH₂·CO)₂O and a trace of H_2SO_4 in boiling C_6H_6 gives 3-bromo-2:4:6:N- $\label{eq:condition} \begin{array}{ll} \textit{tetramethylsuccinanilic} & \textit{acid} & (I), & 2:4:6:3:1-\\ \textbf{C}_{6} HMe_{3} Br \cdot NMe \cdot CO \cdot [CH_{2}]_{2} \cdot CO_{2} H, & \text{m.p.} & 136^{\circ}. & \text{With} \\ \end{array}$ brucine in CHCl₃, (I) affords the brucine salt, +CHCl₃, $[\alpha]_D^{27}$ -37.5° in EtOH, and thence the 1-form, m.p. 132° , $[\alpha]_{D}^{27}$ -29° in EtOH, of (I); amorphous salt residues afford the d-form, m.p. 132° $[\alpha]_{D}^{27} + 27^{\circ}$ in EtOH. Mutarotation is very slow, not occurring in aq. alkali or EtOH; in boiling Bu°OH the half-life is 9 hr. l- or dl-(I) gives the dl- Br_2 -derivative, m.p. 171°. dl-, l-, and d-(I) with HNO₃ $(d \ 1.5)$ at room temp. give the 3-bromo-5-nitro-derivatives, m.p. 165° , $[\alpha]_{D}^{27}$ 0, -6.3° , $+6.0^{\circ}$ in EtOH, respectively. 2:4:6: N-Tetramethylsuccinanilic acid, m.p. 136°, with Br in CCl₄ gives (I). M.p. are corr.

Synthesis of 5-bromo-2-naphthylamine. H. Goldstein and K. Stern (Helv. Chim. Acta, 1940, 23, 818-820). $-5:2\cdot C_{10}H_6Br\cdot CO_2Me$ is transformed by N_2H_4 , H_2O in boiling EtOH into 5-bromo-2-naphthoylhydrazine, m.p. $214-215^\circ$, which yields 5-bromo-2-naphthazide, m.p. $\sim 87^\circ$ (much decomp.), converted by boiling Ac₂O into acet-5-bromo-2-naphthylamide, m.p. 165° . This is hydrolysed by boiling EtOH-conc. HCl to $5:2\cdot C_{10}H_7Br\cdot NH_2$, m.p. 58° . Et 5-bromo-2-naphthylcarbamate has m.p. 86° . M.p. are corr.

Radical of tri-p-tolylamine. S. Granick and L. Michaelis (J. Amer. Chem. Soc., 1940, 62, 2241—2242).—Potentiometric titration of (p-C₆H₄Me)₃N by Pb(OAc)₄ in 80% (vol.) AcOH and N₂ at 30° shows the blue product (Wieland, A., 1907, i, 1076) to be a singly charged cationic free radical, the absorption spectrum of which is determined. R. S. C.

Zwitterion structures in organic molecules.—See A., 1940, I, 403.

Preparation of amino-sulphonamides. E. Miller, J. M. Sprague, L. W. Kissinger, and L. F. McBurney (J. Amer. Chem. Soc., 1940, 62, 2099—2103).—p-NO₂·C₆H₄·CH₂·SO₂·NH₂ with H₂-PtO₂ or (better) -Raney Ni in EtOH gives p-toluidine-ω-sulphonamide, m.p. 171—172°. p-NO₂·C₆H₄·[CH₂]₂·Cl and CS(NH₂)₂ (I) in EtOH give the isocarbamide, which with Cl₂ in H₂O gives p-NO₂·C₆H₄·[CH₂]₂·SO₂Cl, m.p. 81·5—83°, and thence (conc. aq. NH₃) β-p-nitro-phenylethane-α-sulphonamide, m.p. 120·5—122°, reduced by H₂-Raney Ni in EtOH to the p-NH₂-amide, m.p. 181—182°. CISO₃H and Ph·[CH₂]₂·NHAc at—10°, later room temp., give p-β-acetamidoethylbenzenesulphonyl chloride, m.p. 142·5—144°, and

thence the sulphonamide, m.p. 168-169° (oxidised to $p\text{-CO}_2\text{H}\text{-C}_6\text{H}_4\text{-SO}_2\text{-NH}_2$), hydrolysed by hot 1:3HCl-H₂O to p-β-aminoethylbenzenesulphonamide, m.p. 147·5—149° (hydrochloride, m.p. 228—230°). p-CN·C₆H₄·SO₂·NH₂ (prep. described), m.p. 166—167°, and H₂-Pd-C in HCl-EtOH give benzylamine-psulphonamide, m.p. 151—152° (hydrochloride, m.p. 249—250°; Ac derivative, m.p. 172—173°, also prepared from CH₂Ph·NHAc by ClSO₃H etc.). CN·C₆H₄·CH₂Cl with (I) gives S-p-cyanobenzylisothiocarbamide hydrochloride, m.p. 204-205°, and thence (Cl₂-H₂O) p-cyanotoluene-ω-sulphonyl chloride, m.p. 102-103°, and -ω-sulphonamide, m.p. 216-217°, and p-aminomethyltoluene-ω-sulphonamide, m.p. 160·5—162° [hydrochloride, m.p. 278—280° (decomp.)]. Cl·[CH₂]₃·CN gives similarly S-γ-cyanopropylisothio-carbamide hydrochloride, m.p. 125—127° (correspond ing picrate, m.p. 163·5—164·5°), γ-cyanopropane-, m.p. 65—66°, and δ-amino-n-butane-α-sulphonamide (hydrochloride, m.p. 127—129°; Bz derivative, m.p. S-β-Cyanoethylisothiocarbamide hydrochloride, m.p. 165—166°, CN·[CH₂]₂·SO₂Cl, b.p. 135— 136°/5—6 mm. (sulphonamide, m.p. 94—95°), and y-aminopropane-α-sulphonamide hydrochloride, m.p. 159—160°, are similarly prepared. β-Phthalimidoethane-sulphonyl chloride, m.p. $157.5-158.5^{\circ}$, and -sulphonamide, m.p. $207-208^{\circ}$, and thence (N_2H_4) $NH_2 \cdot [CH_2]_2 \cdot SO_2 \cdot NH_2$ (hydrochloride, m.p. 131—133° Bz derivative, m.p. 165—166°) are prepared. CH₂Cl·CN and (I) in COMe₂ give S-cyanomethylisothiocarbamide hydrochloride, m.p. ~95—105° (decomp.), which is decomposed by Cl₂-H₂O. Separation of SO2 NH2 or NH2 of sulphanilamide from the Ph nucleus leads to inactive products.

Sulphanilamide derivatives.—See B., 1940, 762.

Substituted sulphanilamides. III. N^1 -Hydroxy-N⁴-acyl derivatives. M. L. Moore, C. S. Miller, and E. Miller (J. Amer. Chem. Soc., 1940, 62, 2097—2099; cf. A., 1939, II, 308).—RCO·NHPh (1 mol.) and CISO₃H (5 mols.), first at 5-20° and later at 55—65°, give acet-, m.p. 147—148°, propion-, m.p. 112—113°, n-butyr-, m.p. 118—119°, n-valer-, m.p. 111—112°, n-hexo-, m.p. 92°, n-hepto-, m.p. 85—86°, n-octo-, m.p. 69—70°, n-nono-, m.p. 72— 72·5°, isobutyr-, m.p. 131—132·5°, isovaler-, m.p. 123—124°, and isohexo-, m.p. 78·5—79·5°, -amidobenzenesulphonyl chloride. With NH2OH, HCl in C_5H_5N or aq. Na_2CO_3 these give acet-, m.p. $194-196^\circ$, propion-, m.p. $174-178^\circ$, n-butyr-, (I), m.p. $172-178^\circ$, n-valer- (II), m.p. $178-179\cdot 5^\circ$, n-hexo-(III), m.p. 175—179°, n-hepto- (IV), m.p. 166—169° n-octo- (V), m.p. 160—163°, n-nono-, m.p. 168—172° isobutyr-, m.p. 172—176°, isovaler-, m.p. 168·5—173°, and isohexo-, m.p. 153—157°, -amidobenzenesulphon-hydroxylamide. p-NH₂·C₆H₄·SO₂·NH·OH (VI), m.p. 170.5—173°, and p-nitrobenzenesulphonhydroxylamide, m.p. 145—149°, unstable, are similarly prepared. (RCO)₂O and (VI) in EtOH give β-carboxy-propion-, m.p. 170—174°, and -acryl-amidobenzenesulphon-hydroxylamide, m.p. 184—185°, which are inactive against streptococci. Aq. NaOH hydrolyses (III) to p-n-hexoamidobenzenesulphinic acid, m.p. 113—116°, also obtained from the sulphonyl chloride by Na₂SO₃ (I) and (V) are as active as, and (II), (III), and (IV)

more active than, sulphanilamide. BzCl and (VI) in C_5H_5N or aq. Na_2CO_3 gave $p\text{-NHBz}\cdot C_6H_4\cdot SO_2\cdot NH_2$.

Oxidation of sulphanilic and arsanilic compounds by nascent hydrogen peroxide. G. Barkan (Science, 1940, 92, 107).—Nascent $\mathrm{H_2O_2}$ formed during the autoxidation of $\mathrm{N_2H_4}$ in presence of Cu oxidises sulphanilamide (I) to blue-violet derivatives, extractable with $\mathrm{C_5H_{11}}$ ·OH and BuOH etc. They are stable in these solvents, but not in $\mathrm{H_2O}$, in which they change colour. Arsanilic acid (II) behaves similarly to (I). The blue-violet extracts in BuOH show absorption spectra practically identical in shape with a max. at \sim 590 m μ ., and the compounds from (I) and (II) are probably identical. L. S. T.

Action of nitrous acid on tertiary amines; influence of acidity. G. P. CROWLEY, G. J. G. MILTON, T. H. READE, and W. M. TODD (J.C.S., 1940, 1286—1289; cf. A., 1935, 337).—Concn. of mineral acid $(H_2SO_4, HBr + HCl, HBr + H_2SO_4)$ has a marked influence on yields of nitration, nitrosation, and fission products obtained from 4 mols. of NaNO, and 1 mol. of $\mathrm{CH_2(C_0H_4\cdot NMe_2\cdot p)_2}$ in $\mathrm{N_2}$. It is confirmed that $p\text{-NO_2\cdot C_0H_4\cdot NMe_2}$ (I) is not formed in acid of conen. $>3.9\mathrm{N}$. The nitration/nitrosation ratio, viz., amount of $\mathrm{CH}_2[\mathrm{C}_6\mathrm{H}_3(\mathrm{NO}_2)\cdot\mathrm{NMe}_2\text{-}3:4]_2$ (II): $\mathrm{CH}_2(\mathrm{C}_6\mathrm{H}_4\cdot\mathrm{NMe}\cdot\mathrm{NO}\text{-}p)_2$ (III), when (I) is not formed, does not increase as acid concn. increases (contrary to previous conclusions, loc. cit.). The above ratio is higher in solutions containing H₂SO₄ than in those containing HCl. In formation of (III) at low concn. of NaNO₂, Me eliminated is converted into CH_2O , not into $MeNO_3$ (cf. loc. cit.). Mechanisms of reactions are not clear. The yield of (I) is less in H₂SO₄ or mixed acids than in HCl. In H₂SO₄, the yield of (II) has a true max. even when 8 mols. of NaNO₂ are used, whereas in HCl the yield increases continuously as normality increases without giving a true max. For 4 mols. of NaNO₂, the normalities at which (II) and (III) reach their max. are more widely spaced in H₂SO₄ or mixed acids than in HCl. With \hat{H}_2SO_4 of high normality, a little

Benzidine; m.p. study. C. Weygand (Z. ges. Naturwiss., 1937, 2, 408—409; Chem. Zentr., 1937, i, 4095).—Two metastable cryst. forms, m.p. 125° and 122°, are deposited from molten benzidine on cooling to ~100°. The stable form, m.p. 128°, is obtained at temp. nearer the m.p. All three forms, which are described in detail, coexist indefinitely at room temp.

A. J. E. W. Quadrivalent vanadium lakes of azo-dyes. H. D. K. Drew and F. G. Dunton (J.C.S., 1940,

1064—1070; cf. A., 1940, II, 250).—Lakes of V^{IV} with azo-dyes containing reactive substituents (OH, NH₂, CO₂H) in oo'-positions with respect to ·N:N· are described. 1-o-Hydroxybenzeneazo-β-naphthol and 50% aq. vanadyl chloride-EtOH (reagent A)

afford the bisazo-vanadi-complex (I) (full quadrivalency used), stable to hot conc. HCl; use of moist vanadyl hydroxide-EtOH (reagent B) gives (I) and a vanadyl complex, $C_{16}H_{10}O_3N_2V, 2H_2O$ (similar to C_{111} lakes) (loses $2H_2O$ at 130° ; regains $1H_2O$ in moist air) (the corresponding C_5H_5N derivative,

 $C_{16}H_{10}O_3N_2V, C_5H_5N$, loses C_5H_5N at 115° in dry air). 4-o-Hydroxybenzene-azoresorcinol and (B) afford the vanadyl complex, C₁₂H₈O₄N₂V,2·5H₂O (aq. mineral acid liberates the azo-dye). 1-o-Carboxybenzeneazo-β-naphthol (as Na salt) and (A) give an impure vanadyl complex, $C_{17}H_{10}O_4N_2V$, $1.5H_2O$ (1 V: I azo-dye residue). No lake is obtained from 1:2-PhN₂·C₁₀H₆·OH. 1-o-Hydroxybenzeneazo-β-naphthylamine and (B) yield the anhyd. bisazo-vanadi-complex, C₃₂H₂₂O₂N₆V [similar to (I), but less stable to conc. HCl], and an unstable vanadyl complex, C₁₆H₁₁O₂N₃V,2H₂O. Salicylidene-o-aminophenol and (B) afford a vanadyl complex. C H O NV (coordinatively constant) complex, $C_{13}H_9O_3NV$ (co-ordinatively unsaturated) [also $+C_5H_5N$, NH_2Ph , (?) $6NH_2Ph$, and $COMe_2$ (loses COMe₂ at 130°)]. 1-2'-Hydroxy-5'-sulphobenzeneazo-β-naphthol or 1-2'-hydroxybenzeneazo-βnaphthol-6-sulphonic acid and (B) afford glassy complexes; aq. NH3 or NaOH liberates ionised V and affords the Na salt, $C_{16}H_9O_6N_2SNaV,6.5H_2O$, or NH_4 salt, $C_{16}H_{13}O_6N_3SV,7.5H_2O$, of the respective vanadyl complexes. Similarly, 4-2'-hydroxy-5'-sulphobenzeneazoresorcinol gives the $(NH_4)_2$ salt, $+5H_2O$ (loses $5H_2O$ at 145° ; regains $2H_2O$ in moist air), and Na_2 salt, $+7.5H_2O$, of the vanadyl complex. 1-2'-Hydroxy-5'-sulphobenzeneazo-β-naphthol-6-sulphonic acid and (B) yield a vanadyl salt (III) of the vanadyl complex; unco-ordinated V is removed by aq. NH₃

(III.)
$$\begin{array}{c|c} 2H_2O & OH \\ \hline O-V & N- \\ \hline SO_3 & SO_3 \end{array} \begin{array}{c} \oplus \oplus \\ VO, SH_2O \\ \hline 4H_2O \\ \hline O-V & N- \\ \hline \\ SO_3 \cdot NH_4 & SO_3 \cdot NH_4 \end{array}$$

to give the $(NH_4)_2$ salt (IV). The derivatives of the azo-sulphonic acids are unstable to mineral acids and

cannot be prepared from (A) in absence of bases. Fastness properties to acids and alkalis of the dyeings with vanadyl lakes, although superior to those of the free dyes, are much inferior to those of the corresponding Cr^{III} lakes. Properties of the lakes suggest that the co-ordination no. of V^{IV} is 6. The stereochemistry of the vanadi- and vanadyl lakes may be regarded as identical with that suggested for the Cr^{III} lakes (cf. A., 1939, II, 309), V having octahedral symmetry.

A. T. P.

New aromatic fluoro-derivatives. III. (SRA.)

A. C. DE DEGIORGI and E. V. ZAPPI (Anal. Asoc. Quím. Argentina, 1940, 28, 72—81; cf. A., 1938, II, 482).—Diazotised 3:5-dibromo- and 3:4-dinitro-aniline with 40% HBF₄ yield the -benzenediazonium borofluorides, decomp. 126° and 161°, respectively, which when heated give 1:3-dibromo-5-fluoro-, b.p. 204—206°/768 mm., and 1-fluoro-3:4-dinitro-benzene, m.p. 34°, respectively. 1:3:5-NO₂·C₆H₃(OH)·OEt with Me₂SO₄-NaOH yields 3-nitro-5-ethoxyanisole, m.p. 43—44° (sublimes).

Decomposition of p-hydroxybenzenediazonium salts by alcohols. H. H. Hodgson and C. K. FOSTER (J.C.S., 1940, 1150—1153).—Cameron's results (A., 1898, i, 364) on the decomp. of p-OH·C₆H₄·N₂Cl (=A) by MeOH and EtOH are confirmed. Decomp. of the salt 2A, Z_1Cl_2 (I) with MeOH or EtOH also gives PhOH (38.4%); some $(p\text{-OH}\cdot C_6H_4\cdot N^2)_2$ (II) (identified as diacetate or Br₄-derivative) is also formed. Decomp. of (I) with MeOH or EtOH in presence of ZnO affords PhOH (60-63%) and less (II); MeOH-NaOMe gives PhOH (22%) and much (II), whilst BuyOH-Zn dust at 30° gives PhOH (35.7%) and (II) (58.5%). (I)-MeOH-Br give bromoanil and (mainly) 2:4:6:1-C₆H₂Br₃·OH. Decomp. of (I) in presence of excess of HCl also increases the vield of PhOH. Mechanisms of reaction are discussed; oxonium salt formation at the phenolic OH is probably the reason why this group behaves similarly to NO₂ in the above decomp. The salt 2p-OMe C₆H₄·N₂Čl,ZnCl₂ resists a similar decomp. with MeOH, but in presence of Zn dust some PhOMe is formed. (I) is stable when dry and more convenient to use than (A).

Migration of halogen [para to hydroxyl] in a derivative of *m*-cresol. A. B. SEN (Proc. Nat. Acad. Sci. India, 1939, 9, 89—92).—3:4:1-C₆H₃MeBr·OH (prepared from m-C₆H₄Me·NH₂ via $3:4:1-C_6H_3MeBr\cdot NHAc$ or from m-cresol) with AcOH-HNO₃ (d 1.4) yields 4:6:3:2:1-(NO₂)₂C₆HMeBr·OH (I), m.p. 115° (cf. Walther et al., A., 1915, i, 879) (p-toluenesulphonate, m.p. 141°), identical with that prepared by Sane et al. (A., 1928, 2-Bromo-4: 6-dinitro-3-methyldiphenylamine, 1130). 130°, obtained \mathbf{from} 1:3:2:4:6is $C_6HMeClBr(NO_2)_2$ [prep. from (I) and p- $C_6H_4Me\cdot SO_2Cl-NPhEt_2$] and NH_2Ph in EtOH + NaOAe.

Halogeno-4-alkylphenols.—See B., 1940, 762.

Nitrosation of phenols. XVIII. Synthesis of 3-fluoro-4- and -6-nitrosophenol. Comparison of the stabilities of 3-halogeno-4-nitrosophenols. H. H. Hodgson and D. E. Nicholson (J.C.S., 1940,

1268—1271; cf. A., 1940, II, 135).—1:3:4- $OH \cdot C_6H_3F \cdot NO_2$ and $Me_2SO_4 - K_2CO_3$ give 1:3:4-OMe·C₈H₃F·NO₂, reduced by Fe-HCl-EtOH to 3-fluoro-4-aminoanisole, m.p. 50°, converted by Caro's acid into 3-fluoro-4-nitrosoanisole, m.p. 46°, and thence by HCl (d 1·16)-MeOH into 1:3:4-OH·C₆H₃F·NO (I), m.p. 161° [Co salt, m.p. 130—140°, not co-ordinated], obtained also from m-C₆H₄F·OH- $C_5H_5N-NO\cdot SO_4H$ at $<10^\circ$. (I) is probably a NOcompound rather than a quinoneoxime; it is more stable than other 1:3:4-OH·C₆H₃Hal·NO. (I) could not be methylated nor converted into 3-fluorobenzoquinone-4-oxime. $1:3:6-OMe\cdot C_6H_3F\cdot NH_2$ (Ac derivative, m.p. 132°) and Caro's acid afford 3-fluoro-6nitroso-anisole, m.p. 150°, and thence (H₂SO₄-MeOH) the -phenol (does not melt; does not condense with NPhMe₂) [Co(NO₃)₂-aq. MeOH give a co-ordinated Co salt, m.p. $\sim 105^{\circ}$, also obtained from $m\text{-C}_6\text{H}_4\text{F}\cdot\text{OH}$ aq. H_2SO_4 – $Na_3Co(NO_2)_6$]. A. T. P.

Kinetics of oxidation of 2:6-dinitrophenol by potassium permanganate.—See A., 1940, I, 415.

Dehydrogenation. III. Formation of naphthols from alcohols and ketones of the hydronaphthalene group. R. P. LINSTEAD and K. O. A. MICHAELIS (J.C.S., 1940, 1134—1139).—Dehydrogenation in the liquid phase, best using Pd-C prepared in dil. solution, of 1-keto-1:2:3:4-tetrahydronaphthalene (I) (46%; in p-cymene), ar- (55) (quickly dehydrogenated) and ac-tetrahydro-β-naphthol (60; in mesitylene), $trans-\alpha$ - (19) and cis- (28) and $trans-\beta$ -ketodecahydronaphthalene (II) (41; in p-cymene), and cis- (12) and trans-decahydro-β-naphthol (17; only 7% in p-cymene), gives the respective $C_{10}H_7$ ·OH (yield quoted) and $C_{10}H_8$. (II) also affords some $(2-C_{10}H_7)_2$. Ketones are more readily dehydrogenated than alcohols, and cis- more readily than trans-compounds. Drastic conditions (leading to elimination of O) are needed to dehydrogenate the substances furthest removed from the aromatic type. Tetrahydronaphthalene is readily dehydrogenated in the liquid phase only when boiling. Rapid catalytic dehydrogenation is effected when the liquid boils at 185° under reduced pressure or on addition of diluent (mesitylene), but none in the tranquil liquid at ~200°. 4-Keto-1:2:3:4-tetrahydrophenanthrene (in p-cymene) is dehydrogenated at 240° to 62% of 4-phenanthrol (cf. Mosettig et al., A., 1937, II, 145), phenanthrene, and a compound, m.p. 312°. A. T. P.

Synthesis of dihydrodiethylstilbæstrol. A. M. Docken and M. A. Spielman (J. Amer. Chem. Soc., 1940, **62**, 2163—2164).—Contrary to Dodds et al. (A., 1939, II, 312; cf. A., 1940, II, 79), hydrogenation (Pd-C, prepared by Hartung's method; Raney Ni; or Cu chromite) of (p-OMe·C₆H₄·CEt:)₂ or of (p-OH·C₆H₄·CEt.)₂ (Raney Ni; EtOH) gives only the stereoisomeride of low m.p. The crude product obtained from anethole and HBr (not HCl) in light petroleum (cf. Orndorff et al., A., 1900, i, 289) with Mg (not Na) in boiling Et_2O gives (p-OMe· C_6H_4 ·CHEt), m.p. 146° (with polymerides and a little of the isomeride, m.p. 56°), converted by KOH-EtOH at 225° into $(p-OH \cdot C_6H_4 \cdot CHEt)_2$, m.p. 185—186° (over-all yield 10—15%). R. S. C.

Dibenzofuran diphenylene oxidel. XIX. Derivatives of 2:2'-dihydroxydiphenyl, H. GIL-MAN, J. Swiss, and L. C. CHENEY (J. Amer. Chem. Soc., 1940, **62**, 1963—1967; cf. A., 1940, II, 187).—
(o-OH·C₆H₄)₂ [prep. in 28·6% yield from dibenzofuran
(I) by KOH-NaOH at 400—410°], m.p. 108—109°, and 10% NaOH-Me₂SO₄ give 87% of (o-OMe·C₆H₄)₂, m.p. 154—155°. With LiBu^a in Et₂O this gives the $3:3'-\text{Li}_2$ derivative (II), the structure of which is proved by conversion by Me_2SO_4 into (2:3:1-OMe·C₆H₃Me·)₂ and by O₂ into 3-hydroxy- (32·2%), m.p. 115–116°, and 3:3'-dihydroxy-2:2'-dimethoxy-diphenyl (1·42%), m.p. 174·5—175·5° [derived (OMe)₄-compound (III), m.p. 104—105°]. With CO₂, (II) yields 2:2'-dimethoxydiphenyl-3:3'-dicarboxylic (IV) (49.9%), m.p. $208-209^{\circ}$ (Me₂ ester, m.p. 76-77°), and -3-carboxylic acid (9.3%), m.p. 114.5° . Demethylation of (IV) by HI gives 2:2'-dihydroxydiphenyl-3:3'-dicarboxylic acid, m.p. 304° (decomp.), which with HBr (d 1.49) or ZnCl₂ at 240—250° gives only (I). Veratrole (V) and LiBua in Et₂O give the 3-Li derivative [with CO_2 affords $2:3:1-(OMe)_2C_6H_3\cdot CO_2H$], which with CuCl₂ in boiling Et₂O-C₆H₆ affords (III) (1.8%) and (V) (63.5%). The product of Diels et al. (A., 1902, i, 219) is 5:5'-dibromo-2:2'-dihydroxydi-phenyl (VI) (diacetate, m.p. 105—106°; p-toluenesul-phonate, m.p. 198—199°), since with Me₂SO₄-NaOH it gives its Me_2 ether (VII), m.p. 130—131°, which is also obtained from 5:1:2-C₆H₃BrLi·OMe by CuCl₂. LiBu^a in Et₂O-C₆H₆ converts (VII) into the 5:5'-Li₂ derivative, which yields $[2:5:1\text{-OMe-C}_6H_3(\text{CO}_2\text{H})]_2$, m.p. $335\text{--}340^\circ$ (decomp.). Br-AcOH and (VI) give 3:5:3':5'-tetrabromo-2:2'-dihydroxydiphenyl 3:5:3':5'-tetrabromo-2:2'-dihydroxydiphenyl [previously (loc. cit.) unoriented], m.p. 200—201°, the Me₂ ether, m.p. 86-87°, of which with LiPh-Et₂O, followed by CO2, affords 5:5'-dibromo-2:2'-dimethoxydiphenyl-3:3'-dicarboxylic acid, sinters at 265°, m.p. $274-275^{\circ}$ (decomp.), dehalogenated by H_2 -Pd-CaCO₃ in EtOH at 3 atm. to (IV).

2-Methyl-1: 4-naphthaquinol di-2: 4: 6-trimethylbenzoate, m.p. 204—205°.—See A., 1940, 111, 820.

Derivatives of 1:2:3:4-tetrahydroxybenzene VI. Oxidation of quinol with sodium chlorate. W. Baker and (Miss) I. Munk (J.C.S., 1940, 1092—1093).—Quinol and aq. HCl–NaClO₃–OsO₄ at room temp./5 days afford 20% of a substance (I), $(C_6H_6O_4)_n$, m.p. 175—180° (decomp.) (sinters and darkens from 155°), or (rapid heating) darkens and melts ~185°, which is probably a dimeride of 2:3-dihydroxy-2:3-dihydrobenzoquinone (cf. Terry et al., A., 1926, 1249). It is converted by boiling Ac₂O–NaOAc into 1:2:3:4- $C_6H_2(OAc)_4$, m.p. 134—136°, and thence by aq. KOH–EtOH–Me₂SO₄ into 1:2:3:4- $C_6H_2(OMe)_4$ [not obtained from (I)–Me₂SO₄–aq. KOH]. A. T. P.

Structure of metanethole. W. Baker and J. Enderby (J.C.S., 1940, 1094—1098).—Anethole refluxed with 43% H₂SO₄ gives isoanethole (I) (70%) and metanethole (II) (24% yield), similarly obtained from p-methoxy-α-methylcinnamic acid. (II) is one of the forms of 6-methoxy-1-p-anisyl-2-methyl-3-ethyl-hydrindene. (I) and H₂ (Pd-SrCO₃) afford the H₂-derivative, b.p. 187—188°/0·06 mm., converted by HBr (d 1·5)-AcOH into αγ-di-p-hydroxyphcnyl-β-

methyl-n-pentane. (II) with Br-AcOH gives a Br₂-derivative, m.p. 135°, with HBr (d 1·5)-AcOH affords "metanethol" (6-hydroxy-1-p-hydroxyphenyl-2-methyl-3-ethylhydrindene), m.p. 156—157° (anhyd.) or ~83° (+xH₂O), and with HNO₃ (d 1·4)-AcOH yields a (NO₂)₂-derivative (III), m.p. 190°. (III) and aq. KMnO₄-AcOH give 3-nitroanisic acid and 5(or 3)-nitro-2-(3'-nitroanisoyl)anisic acid, m.p. 221—222°. (II) and CrO₃-AcOH-H₂SO₄ at 40° afford anisic and 2-anisoylanisic acid, m.p. 208°; the latter is prepared from 4:1:2-OMe·C₆H₃(CO)₂O, PhOMe, and AlCl₃ at 80°. (I) and SnCl₄-CHCl₃ (not HCl-MeOH) give (II) (10% yield), together, probably, with liquid stereo-isomerides of (II). "Methronol" (Erdmann, A., 1885, 528) is probably 1-phenyl-2-mcthyl-3-ethyl-hydrindene.

p-Phenoxytriphenylmethane and the corresponding free radical. D. L. CLARKE and S. T. BOWDEN (J.C.S., 1940, 1334).—p-OPh·C₆H₄·COPh with MgPhBr yields an oily carbinol (I) which gives a cryst. additive compound when the reddish-brown solution in liquid SO₂ is slowly evaporated. AcCl or HCl + CaCl₂ in C₆H₆ or light petroleum converts (I) into the chloride, which with mol. Ag gives a deep orange colour, discharged by O₂. Reduction (Zn dust in AcOH) of (I) yields p-phenoxytriphenylmethane, m.p. 142°.

Interaction of β -ionone with halides in presence of lithium, and a synthesis of 1:6-dimethylnaphthalene. F. B. KIPPING and F. WILD (J.C.S., 1940, 1239—1242).—β-Ionone (I)–MeI–Et₂O added to Li-Et₂O (+ trace of LiMe) give δ -2: 6:6-trimethyl- Δ 1cyclohexenyl- β -methyl- Δ^{γ} -buten- β -ol, b.p. 89—90°/0·2 mm. [ozonolysis product, geronic acid (II)], dehydrated (KHSO₄ at 135°, then at 170—180°/15 mm. in N_2) to δ -2: 6: 6-trimethyl- Δ ¹-cyclohexenyl- β -methyl- Δ ^{$\alpha\gamma$}butadiene (III), b.p. 113—115°/15 mm. [maleic anhydride gives a crude product, m.p. 155° (decomp.)]. Ozonolysis of (III) gives (II), whilst CrO_3 -aq. H_2SO_4 affords AcOH (1 mol.). Se dehydrogenation of (III) at 320—350° in a sealed tube gives $1:6-C_{10}H_6Me_2$. (I) and PhBr-Li-Et₂O (+ a trace of LiPh) afford δ -2:6:6-trimethyl- Δ 1-cyclohexenyl- β -phenyl- Δ^{γ} -buten- β -ol, b.p. 147—150°/0·1 mm., converted by O₃ into (II). CH2:CH·CH2I and (I) afford a small amount of a distillable product, b.p. 139°/12 mm., containing no OH (cf. Karrer et al., A., 1932, 852); the undistillable residue contains OH (Zerevitinov) but could not be dehydrated (KHSO₄) satisfactorily. (CH₂)₂O and o-C₆H₄Me MgBr at 0—10° give $o\text{-}C_6H_4\text{Me}\cdot[\text{CH}_2]_2\cdot\text{OH}$ (phenylurethane, m.p. $82\cdot5^\circ$); the bromide and CHMe(CO $_2\text{Et})_2$ -NaOEt afford Et β -otolylethylmethylmalonate, b.p. 184°/10 mm., and thence (20% KOH-EtOH) give β-o-tolylethylmethylmalonic acid, m.p. 138° (p-nitrobenzyl ester, m.p. 86°). The latter at 160—200° yields γ-o-tolyl-α-methylbutyric acid, b.p. 157°/0·12 mm. (slight decomp.), converted by conc. H₂SO₄ at 75—80° into 1-keto-2:5-dimethyl-1:2:3:4-tetrahydronaphthalene, m.p. 47° [2: 4-dinitrophenylhydrazone, m.p. 219° (decomp.)], and thence by Zn-aq. HCl into 2:5-dimethyl-1:2:3:4-tetrahydronaphthalene, b.p. 115°/14 mm., which with Se at $320-350^{\circ}$ affords $1:6-C_{10}H_6Me_2$,

identical with the dehydrogenation product of ionene. A. T. P.

Synthesis of phenylacetylenylhexylcarbinol $[\gamma$ -hydroxy- α -phenyl- Δ ^a-noninene]. N. Malenok and I. Sologub (J. Gen. Chem. Russ., 1940, 10, 150—153).—CPh:CH and heptaldehyde condense (Grignard) to phenylacetylenylhexylcarbinol, b.p. 144—145°/1 mm. (acetate, b.p. $147.5^{\circ}/1.5$ mm.), dehydrated by distillation from $H_2C_2O_4$ to α -phenyl- Δ ^{γ}-nonen- Δ ^{α}-inene, b.p. $110-111^{\circ}/1$ mm. This is oxidised (AcO₂H) to γ 8-oxido- α -phenyl- Δ ^{α}-noninene, b.p. 133.5— $134.5^{\circ}/0.5$ mm.

Enediols. IV. cis-trans Isomerism. R. C. Fuson, S. L. Scott, E. C. Horning, and C. H. McKeever (J. Amer. Chem. Soc., 1940, 62, 2091— 2094; cf. A., 1940, II, 169).—Hydrogenation (PtO₂) of hindered (COAr)₂ for the min. time gives cis-(:CAr·OH)₂, but after a longer period gives the transcompound, which is also obtained from the pure cisform by H₂-PtO₂. The form of higher m.p. is assumed to be trans. The trans-form is more stable in air. Thus are obtained cis- (I), m.p. 123—124° (diacetate, m.p. 166—167°), and trans-αβ-dihydroxy-2:6:2':6'-tetramethylstilbene (II), m.p. 151-152° 196—197°), trans-αβ-dihydroxy-(diacetate, m.p. 2:4:6:2':4':6'-hexa-ethyl-, m.p. 181.5—183.5°, and -methyl-stilbene, m.p. 157—165° (air), 166—168° (N₂). (I) and (II) give the same dibenzoate, m.p. 261—263° (uncorr.). 2:6:1-C₆H₃Me₂·COCl gives (method: loc. cit.) 2:6:2':6'-tetramethyl-benzil (III), m.p. 153—154°, and some -benzoin, m.p. 127—128° [acetale, m.p. 104— 105° ; with CuSO_4 – $\text{C}_5\hat{\text{H}}_5\text{N}$ – H_2O gives (III)]. Unless otherwise stated, m.p. are corr.

Polycyclic aromatic hydrocarbons. XXIV. J. W. Cook and R. H. Martin (J.C.S., 1940, 1125-1127).—A more detailed account of work previously reviewed (A., 1939, II, 413). Photo-oxides of the anthracene hydrocarbons are peroxides involving both meso-C atoms. Their formation appears to be unrelated to carcinogenic activity. 9-Methyl-, m.p. 122-123°, 10-methyl-, m.p. 129—130°, and 10-isopropyl-, m.p. 166-167°, -1:2-benzanthracene photo-oxides are 5:6:9:10 - Tetramethyl - 1:2 - benzan thracene photo-oxide is unchanged by boiling 8% KOH-EtOH for 2 hr. 9:10-Dimethyl-1:2-benzan-thracene photo-oxide (I), m.p. 193—194°, or 188— 189° (+1CHCl₃), is hydrogenated (Pd-black, COMe₂; 20 hr. in the dark) to 9:10-dihydroxy-9:10-dimethyl-9:10-dihydro-1:2-benzanthracene (Bachmann et al., A., 1937, II, 497), but a similar hydrogenation (24) hr.) of (I) $(+CHCl_3$, whereby HCl is probably liberated) affords (probably) 10-hydroxy-9:10-dimethyl-9:10-dihydro-1:2-benzanthracene, m.p. 185°, converted by MeOH-HCl into 9:10-dimethyl-1:2benzanthracene. 1:2-Dimethylchrysene does not A. T. P. give a photo-oxide.

Acetylation of d- ψ -ephedrine and l-ephedrine. W. MITCHELL (J.C.S., 1940, 1153—1155).—Gentle acetylation (Ac₂O at 70°) of the corresponding bases gives acetyl-d- ψ -ephedrine, m.p. 103—104° (lit. 101°), [α] $_{20}^{20}$ +110·0° in EtOH [hydrochloride, new m.p. 187°; hydrobromide (I), m.p. 181—182°], and acetyl-lephedrine (+2H₂O), m.p. 52°, [α] $_{20}^{20}$ +5·0° in EtOH;

(anhyd.) m.p. 87°, $[\alpha]_{20}^{20} + 7\cdot0^{\circ}$ in EtOH. Since these compounds form NO-derivatives, they must be O-Ac derivatives (cf. Schmidt, A., 1914, i, 989): nitroso-acetyl-d- ψ -ephedrine (II) has m.p. $51-52^{\circ}$, $[\alpha]_{20}^{20} + 148\cdot0^{\circ}$ in EtOH, but the l-compound, m.p. $\sim 85^{\circ}$, was not obtained pure. Hydrolysis (boiling aq. 5% NaOH) of (II) affords nitroso-d- ψ -ephedrine, m.p. 86° , $[\alpha]_{20}^{20} + 124\cdot5^{\circ}$ in EtOH, also obtained directly from the base, as is nitroso-l-ephedrine, m.p. 93° , $[\alpha]_{20}^{20} + 80\cdot5^{\circ}$ in EtOH. The compound described as "phenylmethylacetylaminobromopropane" (Schmidt, A., 1914, i, 989) has been shown to be (I). The equilibrium between l-ephedrine and d- ψ -ephedrine on heating with aq. HCl is discussed with particular reference to the hydrolysis of the acetylephedrines. M.p. are corr.

Local anæsthetics derived from tetrahydronaphthalene. Esters of [I] 2-dialkylamino-3hydroxy-1:2:3:4-tetrahydronaphthalene, [II] 1-dialkylamino-2-hydroxy-1:2:3:4-tetrahydronaphthalene. E. S. Cook and A. J. HILL (J. Amer. Chem. Soc., 1940, **62**, 1995—1998, 1998—1999).—I. 1:4-Dihydronaphthalene (improved prep.) with, best, NaOCl-AcOH gives 26.5% of 2-chloro-3-hydroxy- (I) and with $BzO_2H-CHCl_3$ affords 2:3-epoxy-1:2:3:4tetrahydronaphthalene (II) [also obtained from (I) by KOH-EtOH]. With the appropriate NHR₂, (I) or (II) gives 2-diethylamino-, b.p. 138—145°/3 mm. [hydrochloride, m.p. 168—170°; phenylurethane (III), forms m.p. 125—126° and 79—80° (hydrochloride, m.p. 179—180°); p-nitro-, m.p. 110—111°, and p-aminobenzoate, m.p. 150—150·5°], 2-dibutylamino-, b.p. 155—157°/3 mm. [phenylurethane, m.p. 110—111° (hydrochloride, m.p. 198-200°); benzoate hydrochloride, m.p. 191—192°; p-nitro-, m.p. 157—160°, and p-amino-benzoate, m.p. 192—195°], and 2-piperidino-, new m.p. 51—52°, b.p. 170—172°/3 mm. {hydrochloride, m.p. 235—237°; phenylurethane, m.p. 81—82° [hydrochloride, m.p. 204—206° (decomp.)]; benzoate, m.p. 154—156° (hydrochloride, m.p. 245—246°)}, -3hydroxy -1:2:3:4 - tetrahydronaphthalene. these products, (III) is the most potent local anæsthetic (rabbit's cornea), but is irritant.

II. 2-Bromo-1-hydroxy-1:2:3:4-tetrahydronaphthalene and the appropriate NHR₂ give 1-diethylamino-, b.p. 181°/18 mm. [benzoate hydrochloride, m.p. 192—193°; phenylurethane, m.p. 104—104·5° (hydrochloride, m.p. 206—206·5°)], 1-di-n-butylamino-, b.p. 206—208°/17 mm., and 1-piperidino-, new m.p. 74—75° {benzoate, m.p. 81—82° [hydrochloride, m.p. 208—209° (lit. 176·5—177·5°)]; phenylurethane, m.p. 145—146° (hydrochloride, m.p. 203—204°); p-nitrobenzoate hydrochloride, m.p. 238·5—239·5°}, -2-hydroxy-1:2:3:4-tetrahydronaphthalene. R. S. C.

Action of formic acid on triphenylmethyl ethyl ether and on triphenylmethyl chloride. S. T. Bowden and T. F. Watkins (J.C.S., 1940, 1333—1334).—Reduction of CPh₃·OEt to CHPh₃ by HCO₂H (measured by rate of evolution of CO₂ when the solid is added to anhyd. HCO₂H at $100\pm0.02^{\circ}$) is as rapid as that of CPh₃·OH, and more complete, whilst that of CPh₃Cl is complete but slower. A. Li.

α-Dihydro-theelin [-œstrone] from human pregnancy urine. M. N. Huffman, D. W. Mac-

CORQUODALE, S. A. THAYER, E. A. DOISY, G. V. SMITH, and O. W. SMITH (J. Biol. Chem., 1940, 134, 591—604; cf. A., 1940, III, 582).—Œstroneoxime O-carboxymethyl ether (+0·5EtOH), m.p. 188° (obtained in quant. yield from cestrone, CO₂H·CH₂·O·NH₂, HCl, and KOAc in boiling PraOH), is sol. in aq. NaHCO₃ and hence is separable from non-ketonic cestrogens. Œstriol 3-monobenzoate, m.p. 225°, is oxidised by AcOH-Pb(OAC)₄ apparently to the corresponding dialdehyde. A micro-modification of the procedure of Whitman et al. (A., 1937, II, 289) is applied to the isolation (from urine collected during spontaneous labour and delivery) of small amounts of α-dihydrocestrone as its di-α-naphthoate. W. McC.

Sulphonated arylstearic acids.—See B., 1940, 724.

Attempted synthesis of papaverine. J. F. Kefford (J.C.S., 1940, 1209).—6-Nitro-3:4-dimethoxycinnamic acid, new m.p. 286° (decomp.), and FeSO₄-aq. NH₃ afford the 6-NH₂-compound (I), m.p. 175—177°, converted by conc. HCl into 6:7-dimethoxycarbostyril, m.p. 229°. (I) gives (diazoreaction) 6-cyano-3:4-dimethoxycinnamic acid, m.p. 273—274°, converted over Br in a desiccator into $\alpha\beta$ -dibromo-6-carboxy-3:4-dimethoxyphenylpropionic acid, m.p. 282°, and cis- ω -bromo-6-cyano-3:4-dimethoxystyrene, m.p. 155°. Mg veratryl bromide could not be prepared. A. T. P.

Synthesis of thyronine. C. R. Harington and R. V. P. RIVERS (J.C.S., 1940, 1101—1103).—p- $OH \cdot C_6H_4 \cdot CO_2Et$ and $p \cdot C_6H_4Br \cdot OMe-KOH-Cu-bronze$ at 150°, then 240°, give Et 4-p-methoxyphenoxybenzoate, m.p. 23—24°, converted by N₂H₄,H₂O in EtOH at 100° into 4-p-methoxyphenoxybenzhydrazide, m.p. 136—136.5° [p-toluenesulphonyl derivative (I), m.p. 172—173°]. (I) and (CH₂·OH)₂-Na₂CO₃ at 160° (1 min.) afford 4-p-methoxyphenoxybenzaldehyde (II), m.p. 60.5° (semicarbazone, new m.p. 212—213°). (II) and hippuric acid give the azlactone, converted by HI (d 1.7)-Ac₂O-red P into thyronine [4-p-hydroxyphenoxyphenylalanine] (cf. A., 1927, 961). Its Me ester hydrochloride, m.p. 215°, with NHEt₂-BzCl-C₅H₅N yields ON-dibenzoylthyronine Me ester, m.p. $132-134^{\circ}$, with NHEt₂-C₅H₅N-p-C₆H₄Me·SO₂Cl gives N-p-toluenesulphonylthyronine, m.p. 141° (after sintering), and with CHCl₃-aq. Na₂CO₃-ClCO₂CH₂Ph at 0°, then at room temp., affords N-carbobenzyloxythyronine, m.p. 105—106°.

Dialkylaminoalkyl furoates and benzoates as topical anæsthetics. E. S. Cook and C. W. Kreke (J. Amer. Chem. Soc., 1940, 62, 1951—1953).—The following are prepared. β-Diethylaminoethyl 2-furoate hydrochloride, new m.p. 130·4—131·9°, and benzoate hydrochloride, new m.p. 125·2—126·2°, and hydrobromide, m.p. 119·2—120·2°; γ-diethylamino-n-propyl 2-furoate hydrochloride, m.p. 132—134°, and benzoate hydrochloride, m.p. 110·9—114·9°, and hydrobromide, m.p. 120—122°; β-dibutylaminoethyl 2-furoate hydrochloride, m.p. 90·9—91·9°, and benzoate hydrochloride, m.p. 100·7—104·2°, and hydrobromide, m.p. 113·8—115·8°; γ-dibutylamino-n-propyl 2-furoate hydrochloride, m.p. 93·6—95·6°, and benzoate hydrochloride, m.p. 98·6—102·6°, and hydrochloride, m.p. 98·6—102·6°, and hydro-

bromide, m.p. 121·1—124·6°; β-phenylethylaminoethyl 2-furoate hydrobromide, m.p. 119·5—122·5°. The products have no or weak anæsthetic properties. M.p. are corr. R. S. C.

Bromination of 2-naphthyl benzoate. S. E. HAZLET (J. Amer. Chem. Soc., 1940, 62, 2156—2157).—2- $C_{10}H_7$ ·OBz with Br and a trace of Fe powder in AcOH gives 1-bromo-2-naphthyl benzoate, m.p. 98·5—99·5°, hydrolysed to and obtained from 1:2- $C_{10}H_6$ Br·OH (acetate, m.p. 55—56°).

Kolbe synthesis with alkyl-o-xenols. S. Harris and J. S. Pierce (J. Amer. Chem. Soc., 1940, 62, 2223—2225).—By conversion of o-C₆H₄Ph·OH into the esters, Fries rearrangement (AlCl₃), reduction, and interaction with CO₂-K₂CO₃ at 110°, later 225°, are obtained 2-hydroxy-5-ethyl-, m.p. 161—164° (acetate, m.p. 156—160·5°), -5-n-propyl-, m.p. 137—143·5° (acetate, m.p. 148—151°), and -5-n-hexyl-diphenyl-3-carboxylic acid, m.p. 131—134°. o-Xenyl acetate, m.p. 63—63·5°, b.p. 139—141°/1 mm., propionate, b.p. 153—155°/2 mm., and n-hexoate, b.p. 174—177°/1·5 mm., 2-hydroxy-5-acetyl-, m.p. 167—168·5°, -5-propionyl-, m.p. 147·5—148°, and -5-n-hexyl-diphenyl, m.p. 86—88°, 2-hydroxy-5-ethyl-, b.p. 141—143°/1 mm., -5-n-propyl-, b.p. 150—152°/0·9 mm., and -5-n-hexyl-diphenyl, b.p. 190—194°/2 mm., are described. Bactericidal properties are noted.

Stereochemistry of diphenyls. L. Comparison of the interference of a methoxyl and hydroxyl group. R. Adams and H. M. Teeter (J. Amer. Chem. Soc., 1940, 62, 2188—2190; cf. A., 1939, II, 547).—1:2:5-C₆H₃MeBr·CN, m.p. 54—55°, $107-110^{\circ}/3$ mm., and $H_2SO_4-HNO_3$ at $<15^{\circ}$ give 6-bromo-5-nitro-m-toluonitrile (I), m.p. 100—103°, converted by NH₂Ac-NaOAc at 200° into 6-hydroxy-5nitro-m-toluonitrile, m.p. 125-126°, which with boiling HCl-MeOH gives $5:1:6:3-NO_2\cdot C_6H_2Me(OH)\cdot CO_2Me$, m.p. 102—103° (derived acid, m.p. 238—240°). Boiling 1:1 (vol.) $H_2SO_4-H_2O$ hydrolyses (I) to 5:1:6:3- $NO_2 \cdot C_6H_2MeBr \cdot CO_2H$, m.p. 212—213° (lit., 175— 176°), the Me ester, m.p. 81—81·5°, of which with o-C₆H₄I·OMe and Cu-bronze at 240—250°, later 270°, gives 28% of 6-nitro-2'-methoxy-2-methyldiphenyl-4carboxylic acid (II), m.p. 227—229°, converted by 40% HBr in AcOH into the 2'-OH-acid (III), m.p. 180—181° (brucine, softens at 169°, m.p. 205°, [α]_D²⁵ —22·4° in CHCl₃, and strychnine salt, m.p. 223—227°, [α]_D²⁵ —14·2° in CHCl₃). (II), but not (III), is resolved. Brucine and (II) in EtOH give only the brucine salt, +EtOH, m.p. 145—147°, $[\alpha]_D^{25}$ —7.8° in CHCl₃, of the l-acid, m.p. 227—228°, $[\alpha]_D^{25}$ —7.55° in AcOH, half-life 215 min. at 25°, ~11 min. in boiling AcOH; probably the *l*-base *l*-acid salt is stabilised by co-ordination with the solvent EtOH. The l-acid is also obtained by way of the strychnine, $[\alpha]_D^{25}$ —13·4° in CHCl₃, and cinchonine, $[\alpha]_D^{25}$ +140·0° in CHCl₃, salts. M.p. are

Synthesis of hydroxymandelonitrile dibenzoates. K. E. Hamlin, jun., and W. H. Hartung (J. Amer. Pharm. Assoc., 1940, 29, 357—360).—BzCl (slight excess), C₅H₅N (1 mol.), and OH·C₆H₄·CHO (I) (1 mol.) yield o- (phenylhydrazone, m.p. 137—138°),

m-, m.p. $48\cdot5-49^\circ$, and p-benzoyloxybenzaldehyde, m.p. $90-90\cdot5$ (lit. 72° ; cf. Kopp, A., 1894, i, 128) (phenylhydrazone, m.p. $173-174^\circ$), which with saturated aq. NaCN and C_5H_5N followed by successive treatment with BzCl and dil. HCl afford o-, m.p. $92-92\cdot5^\circ$, and m-hydroxymandelonitrile dibenzoate, m.p. $118\cdot5-119\cdot5^\circ$, and the p-isomeride, m.p. $144\cdot5-145\cdot5^\circ$, respectively. The latter are also obtained directly from (I), aq. NaCN (slight excess), and BzCl (2 equivs.) in C_5H_5N (2 equivs.). F. O. H.

5:8-Dibromo-2-naphthoic acid and 5:8-dibromo-2-naphthylamine. H. Goldstein and K. STERN (Helv. Chim. Acta, 1940, 23, 809-817; cf. A., 1938, II, 99).—5: 8-Dibromo-2-naphthoic acid (I), m.p. 287° [Et ester (II), m.p. 94°], is obtained by the gradual addition of Br to β-C₁₀H₇·CO₂H (simplified prep. from β-C₁₀H₇·NH₂) in warm AcOH containing I and is purified through the Me ester, m.p. 152° With PCl₅ or SOCl₂ it affords the chloride, m.p. 130°, which is transformed into the amide, m.p. 242°, and anilide, m.p. 217°. (II) and N₂H₄,H₂O in boiling EtOH afford 5:8-dibromo-2-naphthoylhydrazine (III), m.p. 231—235° [Ac derivative, m.p. 306° (decomp.)], which yields the corresponding hydrazones with COMe₂, PhCHO, and p-NO₂·C₆H₄·CHO, m.p. >180° after softening at 150°, 260°, and 275°, respectively. NaNO₂ and (III) in AcOH yield 5:8-dibromo-2-naphthazide (IV), m.p. ~112°, transformed by 50%, 70%, 80%, or 90% H₂SO₄ exclusively into (I). (IV) and the requisite boiling alcohol afford Me, m.p. 168-170°, and Et (V), m.p. 155°, 5:8-dibromo-2-naphthylcarbamate; (V) and boiling EtOH-conc. HCl give (I). In boiling glacial AcOH or in boiling C₆H₆ with subsequent exposure to moist air (IV) passes into s-di-5:8-dibromo-2-naphthylcarbamide, chars, melting, at $\sim 300^{\circ}$. With boiling C_6H_6 followed by NH₂Ph, (IV) gives N-phenyl-N'-5: 8-dibromo-2-naphthylcarbamide, m.p. ~238° after shrinking at 228°. Successive treatments of carefully dried (IV) with boiling Ac₂O, H₂O, and EtOH-HCl lead to 5:8-dibromo-2-naphthylamine, m.p. 105° (yield 80-90%) [hydrochloride (VI); picrate, m.p. 221—228°; formyl, m.p. 226°, Ac, m.p. 215°, and Bz, m.p. 216°, derivatives], also obtained from (V) and boiling AcOH-H₂SO₄-H₂O. Diazotisation (iso-C₅H₁₁·O·NO) of (VI) in EtOH-conc. H₂SO₄ gives 1:4-C₁₀H₆Br₂. M.p. are

5-Nitro-6-methyl-2-naphthoic acid. C. C. PRICE (J. Amer. Chem. Soc., 1940, 62, 2245).—2:6:1- $C_{10}H_5Me_2\cdot NO_2$ and boiling HNO_3-H_2O give 5-nitro-6-methyl-2-naphthoic acid, m.p. 258—259°. 1:6:2- $NO_2\cdot C_{10}H_5Me\cdot CO_2H$ has m.p. 238—239°. R. S. C.

Constituents of natural phenolic resins. XVII. Synthesis of *l*-matairesinol. R. D. Haworth and F. H. Slinger (J.C.S., 1940, 1098—1101; cf. A., 1939, II, 122).—O-Benzylvanillin, $(CH_2 \cdot CO_2 Et)_2$, and NaOEt in Et₂O afford a non-cryst. product, reduced (Na-Hg, H₂O, CO₂) to meso- $\alpha\beta$ -di-(4-benzyloxy-3-methoxybenzyl)succinic acid (I), m.p. 203° (pyrolysis at 220° or AcCl does not give the anhydride), converted by Ac₂O into a product, m.p. 90—110°, or by $P_2O_5-C_6H_6$ into a substance, m.p. 148°, hydrolysed by alkali to a substance, m.p. 129—130°. (I) and boiling

conc. HCl-AcOH afford meso- $\alpha\beta$ -di-(4-hydroxy-3-methoxybenzyl)succinic acid (II), m.p. 228—229°; MeOH-HCl then gives the Me ester, m.p. 169— 170°, but Me₂SO₄-aq. NaOH gives meso-αβ-di-(3:4-dimethoxybenzyl)succinic acid and its Me ester (cf. A., 1939, II, 476). (II) and Ac₂O afford an oil probably trans-αβ-di-(4-acetoxy-3-methoxybenzyl)succinic anhydride], which with boiling H₂O gives dl- $\alpha\beta$ -di-(4-acetoxy-, m.p. 129-130°, or with N-HCl affords dl-αβ-di-(4-hydroxy-3-methoxybenzyl)succinic anidas di-ap-ai-(\pm -ngaroxy-3-methocygenzyt)succinic acid (III), m.p. 194—195°. (III) and strychnine in CHCl₃ give the strychnine salt (IV), $+9H_2O$, shrinks at 145°, m.p. 247°, $[\alpha]_0^{17}$ —18° in CHCl₃, and thence (NaHCO₃) the 1-acid (V), m.p. 109°, $[\alpha]_0^{17}$ —47° in EtOH. The acid recovered (NaHCO3) from the mother-liquors from (IV) gives a brucine salt, $[\alpha]_{\rm p}^{15}$ -54° in CHCl₃, and thence the d-acid, m.p. $106-108^{\circ}$, $[\alpha]_D^{16} + 40^\circ$ in EtOH. (V) and Ac_2O afford a gum, converted by Al-Hg in C₆H₆-Et₂O-H₂O at room temp. into an oil, which with KOH-MeOH, followed by aq. HCl at 100°, gives l-matairesinol, m.p. 116—117°, $[\alpha]_{\rm b}^{16}$ —46° in COMe₂, identical with that from *Podo*carpus spicatus. Its di-p-nitrobenzoate, m.p. 95—156° (MeOH-CHCl₃; solvated) or 157—158° (from aq. AcOH), $[\alpha]_{\rm b}^{\rm B}$ +9° in CHCl₃, is also obtainable from natural l-matairesinol. The d- and dl-forms obtained similarly are not pure, but yield the respective Me, ethers with Me₂SO₄-aq. NaOH. A. T. P.

Constituents of natural phenolic resins. XVIII. 1:2:3:4-Tetrahydronaphthalene-2:3-dicarboxylic acid and the 1-phenyl derivative. R. D. HAWORTH and F. H. SLINGER (J.C.S., 1940, 1321— 1327).—Reduction (Na-Hg in hot aq. NaOH) of $2:3-C_{10}H_6(CO_2H)_2$ gives acids converted by AcCl into a mixture of cis- (I), m.p. 183° (identical with that of Perkin et al., J.C.S., 1888, 53, 12), and trans-1:2:3:4-tetrahydronaphthalene-2:3-dicarboxylic anhydride (II), m.p. 225-226°. Hydrolysis of (I) and (II) gives respectively the cis-, m.p. 195° (loc. cit.), and trans-acid, m.p. $226-227^{\circ}$; the latter is resolved by strychnine into the d-, $[\alpha]_{b}^{1b} + 85.5^{\circ}$, and l-trans-acids, m.p. $182-183^{\circ}$, $[\alpha]_{b}^{1b} - 85^{\circ}$ in CHCl₃ (strychnine salts, m.p. $195-240^{\circ}$ and $170-180^{\circ}$, respectively. Dehydration (Ac₂O) of the mixed cis- and trans-acids yields only (I), also produced by boiling (II) with Ac_2O for 15 min. Esterification (Fischer-Speier or Ag salt method) of the cis- and trans-acids yields Me esters, m.p. 68—68.5° and 44.5—45°, respectively. The former ester with EtOH-NaOEt gives the latter. Reduction (Al-Hg) of (I) and (II) yields the cis- and trans-lactones, m.p. 133—134° and 156°, respectively, of 2-hydroxymethyl -1:2:3:4-tetrahydronaphthalene-3-carboxylic acid, hydrolysis (MeOH-NaOH) and acidification of which gives the original lactones without change of configuration. Mixed 1-phenyl-1:2:3:4 - tetrahydronaphthalene - 2:3 - dicarboxylic acids, m.p. 170—180° (A., 1939, II, 476) [form, m.p. 218—219° (decomp.), isolable], with AcCl give a mixture of 1-phenyl-1:2:3:4-tetrahydronaphthalene-2:3-dicarboxylic anhydrides, A, m.p. 240—241°, B, m.p. 155—156°, C, m.p. 171—172°, and D, m.p. (crude) 193—199°. Cautious hydrolysis of anhydrides A, B, and C gives the acids, A, m.p. $236-237^{\circ}$, B, m.p. $218-219^{\circ}$ (cf. above), and C, m.p. $162-163^{\circ}$,

converted by $\rm CH_2N_2$ into the Me_2 esters, A, m.p. $108-109^\circ$, B, m.p. $102-103^\circ$, and C, m.p. $113-114^\circ$, or by AcCl into the original anhydrides. The crude anhydride D with CH_2N_2 gives Me_2 esters B (80%) and D (20%), m.p. 127°. With boiling Ac_2O , anhydrides B and C are unaffected, but A and D yield anhydrides C and B, respectively. With MeOH-HCl acids A and C yield the corresponding Me₂ esters, but B gives a mixture of esters B and D. All four esters with NaOH or NaOEt yield acid A. It is concluded that the configurations of the acids are: A trans(1:2)trans(2:3)-, B cis(1:2)cis(2:3)-, C; trans(1:2)cis-(2:3)-, D (unstable) cis(1:2)trans(2:3)-. The relative stabilities of these configurations are discussed. Anhydrides A, B, and C are sulphonated by cold conc. H₂SO₄, but with AlCl₃ in PhNO₂ yield 3:4-benzo-1:2:10:11-tetrahydrofluorenone-1-carboxylic A [trans(10:11)trans(1:10)], m.p. $203-204^{\circ}$, B [cis(10:11)cis(1:10)], m.p. $220-221^{\circ}$, and C [trans(10:11)cis(1:10)], m.p. $163-164^{\circ}$, respectively. All of these with Se yield 3:4-benzíluorenone. On decarboxylation A and C yield trans(10:11)-3:4-benzo-1:2:10:11-tetrahydrofluorenone, m.p. 161—163° whilst B gives the cis(10:11)-form, m.p. $131-134^{\circ}$. From these results it is suggested that naturally occurring 1-phenylnaphthalene-lignans have the stable trans(1:2)trans(2:3)-structure.

Behaviour of oximino- and isonitro-compounds under the conditions of Van Slyke's determination of amino-nitrogen. M. Schenck and J. Reschke (Ber., 1940, 73, [B], 200—205).—The behaviour of acet- (I) and benz-hydroxamic acid (II), and of the diketo- (III), oximino-keto- (IV) and -lactam- (V), and nitro-keto- (VI), -oximino- (VII), and -lactam- hydroxamic acid (VIII) from cholic acid, deoxybilianic acid oxime (IX), and dehydrocholic acid trioxime (X) in Van Slyke's apparatus is studied. Except for (I), and NH₂OH,HCl, both of which give some N₂O, the gas is largely N₂: (II) gives 19%, (III) 17%. (IV) 114%. (V) 128%, (VI) 6—9%, (VII) 19%, (VIII) 12%, (IX) 23%, and (X) 117% of the theoretical for evolution of 1N₂ per mol. of hydroxamic acid. This shows the strong influence of position and substitution on evolution of N₂, which seems particularly favoured by N·OH at C₍₇₎. Possible explanations of the results are discussed. E. W. W.

Effect of substitution on thermal decomposition of gaseous benzaldehyde.—See A., 1940, I, 414.

Decomposition of benzylidene diacetate, o-chlorobenzylidene diacetate, and benzylidene dibutyrate.—See A., 1940, I, 414.

Schiff bases from p-aminothymol. W. T. SUMERFORD, W. H. HARTUNG, and G. L. JENKINS (J. Amer. Chem. Soc., 1940, 62, 2082—2083).—4-Benzylidene-, m.p. 149°, 4-2'-hydroxy- (I), m.p. 170°, 4-2'-hydroxy-4'-methyl-, m.p. 155°, 4-4'-methoxy- (II), m.p. 160°, 4-4'-hydroxy-3'-methoxy-, m.p. 194°, and 4-3': 4'-methylenedioxy-benzylidene-, m.p. 161—162°, and 4-cinnamylidene-aminothymol (OH = 1), m.p. 154°, are prepared. (I) and (II) are antipyretic for cats. (I) is not toxic. M.p. are corr. R. S. C.

Reaction of aldoximes with diazomethane. A. F. Thompson, jun., and M. Baer (J. Amer. Chem. Soc., 1940, 62, 2094—2096).—Contrary to Forster et al. (J.C.S., 1909, 95, 425), the appropriate NO₂·C₆H₄·CH:N·OH with CH₂N₂ in Et₂O gives α-ο-, m.p. 59°, α-m-, m.p. 61°, β-m-, m.p. 72°, and α-p- (I), m.p. 101·5°, -nitrobenzaldoxime O-Mc ether together with small amounts of the α-ο- [hydrochloride, m.p. 128—132° (lit., 125—i34°)], α-m-, m.p. 117°, β-m-, m.p. 86—88°, α-p- (II), m.p. 201° (lit., 205°), and β-p- (III), m.p. 147—149°, -nitrobenzaldoxime N-Me ether. The β-p-aldoxime O-Me ether was not obtained. The structure of the N-Me ethers is proved by ready acid hydrolysis to the aldehyde and NHMe·OH and by conversion of (III) into (II) when melted. CH₂N₂ has no effect on (I). Only (I) is formed from the oxime, KOH, and MeI in Et₂O. R. S. C.

Kinetic study of the reaction of acetophenone with benzaldehyde.—See A., 1940, I, 414.

Addition of βγ-unsaturated alcohols to the active methylene group. II. Action of ethyl acetoacetate on cinnamyl alcohol and phenyl-vinylcarbinol. M. F. Carroll (J.C.S., 1940, 1266—1268; cf. A., 1940, II, 266).—CHPh:CH·CH₂Cl (convenient prep.) and KOAc-AcOH at 90—100° give mixed acetates, hydrolysed by 40% aq. NaOH-EtOH to CH₂:CH·CHPh·OH (I) and CHPh:CH·CH₂·OH (II). CH₂Ac·CO₂Et, (II), and NaOAc at 165°, then at 185—240°, afford γ-phenyl-Δ^a-hexen-ε-one (III) and cinnamyl acetoacetate and acetate. (I) similarly (220°; KOAc) yields cinnamylacetone; no transposition occurs. (III) and KMnO₄-aq. NaOH give α-phenyl-lævulic acid, also obtained from CHBrPh·CO₂Et-CH₂Ac·CO₂Et-K₂CO₃-COMe₂. A. T. P.

Substances with odour of violets. VIII. Synthesis of 1:1:6-trimethyl-3- γ -keto- Δ^{α} -butenylcycloheptene. M. STOLL and W. SCHERRER (Helv. Chim. Acta, 1940, 23, 941—948; cf. Barbier, A., 1940, II, 217).—Addition of dihydroisophorone (I) followed by LiCl in MeOH to CH2N2 in Et2O gives a mixture of ketones which is partly purified through the semicarbazones, which are hydrolysed and treated with conc. aq. NaHSO₄, whereby 3:3:5-trimethylcycloheptanone (II), b.p. 87—88°/12·5 mm. (semi-carbazone, m.p. 192—193°), remains unattacked (yield 21%). The NaHSO₃ compound yields 3:5:5-trimethylcycloheptanone, b.p. 86—88°/12 mm. (yield 12%) [semicarbazone, m.p. 196—197° (varies with rate of heating); picrate, m.p. 214-215°, of compound with aminoguanidine; p-nitrophenylhydrazone, m.p. 154—155°]. A third product of the change is the oxide, CH₂CH₂CH₂CCH₂, b.p. 67— 69°/13 mm. (yield 46%). (II) is converted by NaOEt and isoamyl formate into 3:3:5-trimethyl-7-hydroxymethylenecycloheptanone, b.p. 108—110°/10 mm., oxidised (KMnO₄ in alkaline solution) to ββδ-trimethylpimelic acid, the Th salt of which at 320— 350° passes into (I). Anhyd. HCN and a little KCN transform (II) into the cyanohydrin, b.p. 103°/0·2 mm. (corresponding amide, m.p. 131°), hydrolysed and esterified to Me 1-hydroxy-3:3:5-trimethylcycloheptane-1-carboxylate, b.p. 123-128°/14 mm., which

is converted by SOCl₂ followed by BaCl₂ at 250°/0·8 mm. into Me 3:3:5-trimethyl- Δ^1 -cycloheptenecarb-oxylate, b.p. 118—122°/18 mm. This is hydrolysed to solid, m.p. 116—117° (chloride, b.p. 130—131°/18 mm.), and liquid acids (chloride, b.p. 123—129°/15 mm.). The two chlorides are catalytically reduced (Fröschl) to 3:3:5-trimethyl- Δ^1 -cycloheptenaldehyde (III) (semicarbazone, m.p. 172—174°) and the corresponding saturated alcohol, b.p. 122—126°/16 mm. COMe₂ and (III) condense to 1:1:6-trimethyl-3- γ -keto- Δ^a -butenyleycloheptene, b.p. 157—160°/17 mm. (semicarbazone, m.p. 208—209°), which does not resemble irone in odour. The cycloheptane ring is not sufficient in itself to give the irone perfume.

Substances with odour of violets. IX. thesis of nuclear-methylated homologues of ionone, 1:1:3:6-tetramethyl-2- γ -keto- Δ^{α} -butenylcyclohexene. L. Ruzicka and H. Schinz (Helv. Chim. Acta, 1940, 23, 959—974).—Methylheptenone (I), purified through the semicarbazone, is condensed with Zn and CH2Br·CO2Et in C6H6 to the OH-ester, b.p. 130—132°/12 mm., which is smoothly dehydrated by PBr₃-C₅H₅N but not by AcOH and fused ZnCl₂ to nearly homogeneous Et geranate (II), hydrolysed to geranic acid (III), b.p. III—112°/0.25 mm. (I) purified through its NaHSO3 derivative is converted by similar treatment into (II) accompanied by a considerable proportion of Et cyclogeranate (IV), b.p. 100—101°/12 mm., separated from (II) by using its more difficult hydrolysis. (III) is transformed by SOCl₂ into the chloride, b.p. 95—105°/0·6 mm., and thence the anilide, b.p. 180°/0·2 mm. This is converted by PCl₅ in C₆H₆ into the imino-chloride, which gives citral in very poor yield when acted on by CrCl₂. (III) is not successfully cyclised by H₂SO, or H₃PO₄ but is readily converted by HCO₂H at 100° into α-cyclogeranic acid (V), m.p. 104—106° after softening at 97°, identical with that obtained by treating (IV) with KOH-MeOH at 150—170°. (V) is readily converted (Merling's method, A., 1908, i, 653) through the chloride, b.p. 87—88°/12 mm., and o-toluidide, m.p. 150°, into citral. The prep. of βγ-dimethyl-Δβ-hepten-ζ-one (VI), b.p. 76°/13 mm. (semicarbazone, m.p. 161—163°), from (CH₂:CMe)₂ is described. The Reformatsky condensation of (VI) leads to the OH-ester, b.p. 139—143°/12 mm., transformed by PBr₃ and C₅H₅N in light petroleum followed by distillation into Et methylgeranate, b.p. 116—121°/12 mm., hydrolysed by KOH-EtOH at 100° to methylgeranic acid (VII), b.p. 122—125°/0·35 mm., with about 25% of Et methylcyclogeranate, b.p. 105—108°/12 mm., hydrolysed (KOH-EtOH at 160—170°) to methylcyclogeranic acid (VIII), m.p. 65—70°. The cyclisation of (VII) to (VIII) by 100% HCO₂H at 100° is described. (VIII) is transformed by SOCl₂ in light petroleum into the chloride, b.p. 100—102°/14 mm., which gives the o-toluidide (IX), m.p. 156—157°, and the anilide (X), m.p. 131—132° (IX) and (X) are reduced (Merling) to a mixture of at least two methylcyclocitrals, b.p. 94—97°/12 mm. (semicarbazones, m.p. 214—215° and 140—145°), which are condensed with COMe₂ to 1:1:3:6-tetramethyl-2- γ -keto- Δ^a -butenyl- Δ^2 - or - Δ^3 -cyclohexene (XI), b.p. 105-108°/0.75 mm., which is allied by its odour

to the ionones but not to irone. (XI) gives a noncryst. p-bromophenylhydrazone and a phenylsemi-carbazone (divisible into fractions, m.p. 130—135° to 165—166°). (XI) is hydrogenated ($\rm H_2$ -Pd-EtOAc) to the $\rm H_4$ -ketone [semicarbazone, m.p. 183—186° (not const.)].

p-Phenylphenacyl esters. H. E. Carter (J. Amer. Chem. Soc., 1940, 62, 2244—2245).—p-Phenylphenacyl β-phenylisobutyrate, m.p. 71—72°, γ-phenyl-α-methyl-n-butyrate, m.p. 62—63°, and δ-phenyl-β-methyl-n-valerate, m.p. 66—67°, are prepared.

R. S. C. Trimerisation of mesityl vinyl ketone. R. C.Fuson and C. H. McKeever (J. Amer. Chem. Soc., 1940, **62**, 2088—2091).—AlCl₃ added to Cl·[CH₂]₂·COCl and s-C₆H₃Me₃ in CS₂ at 10° gives mesityl vinyl ketone (I) (63%), b.p. 99—101°/3.5 mm.; under other conditions at room temp. 25% of (I) and (?) β-mesityl-propiomesitylene, m.p. 80—81°, are obtained. Hydrogenation (Raney Ni; room temp./2 atm.; EtoH) of (I) gives 1:3:5:2-C₆H₂Me₃·COEt [(NO₂)₂-derivative, m.p. 143·5—144·5°]. With Br, (I) gives αβ-dibromopropionesitylene, m.p. 78·5—79·5°, reconverted into (I) by NaI. MgMeI converts (I) into 1:3:5:2- $C_6H_2Me_3 \cdot COPr^a$, b.p. 120—121°/7 mm. $[(NO_2)_2 \cdot deriv$ ative, m.p. 133—135°], also obtained by the Friedel-Crafts reaction. HCl adds to (I) giving β -chloro-propiomesitylene, m.p. $46-47.5^{\circ}$. (I) is stable to heat alone or with Bz₂O₂ or ascaridole, but with $\rm K_2CO_3$ in boiling MeOH gives 65—70% of 1:3:5-trimesitoylcyclohexane (II), m.p. 210—212°, with some dimeride, m.p. 83—83·5°, and also a trimeride [? stereoisomeride of (II)], m.p. $150-151^{\circ}$. $1:3:5-C_{e}H_{3}(CO_{2}Me)_{3}$ (from the acid and $H_{2}SO_{4}-MeOH$) with H₂-Raney Ni in dioxan at 175°/2750 lb. gives stereoisomeric H_6 -esters, b.p. $163-164^{\circ}/2.5$ mm. (yields a form, m.p. $42-44^{\circ}$). Hydrolysis by boiling 15% NaOH, interaction with SOCl2, and then s- $C_6H_3Me_3-AlCl_3-CS_2$ gives (II).

Synthesis of baeckeol. B. A. Hems and A. R. Todd (J.C.S., 1940, 1208—1209).—Phlorisobutyrophenone and MeI-COMe₂-K₂CO₃ afford 2-hydroxy-4:6-dimethoxy-3-methylisobutyrophenone, m.p. 103—104° [acetate, two forms, m.p. 73° (prisms from aq. MeOH at low temp.) and 79—80° (needles from hot aq. MeOH or from other form at 75°)], identical with baeckeol (cf. Ramage et al., A., 1940, II, 223).

Phenanthrene derivatives. X. Acetylation of 4-methylphenanthrene. W. E. Bachmann and R. O. Edgerton (J. Amer. Chem. Soc., 1940, 62, 2219—2223; cf. A., 1938, II, 184).—2- $C_{10}H_7\cdot[CH_2]_3\cdot COCl$ and $SnCl_4$ in C_6H_6 give 4-keto-(88%), m.p. 69—70°, converted by MgMeI into 4-hydroxy-4-methyl-1:2:3:4-tetrahydrophenanthrene (80%), m.p. 109—110°, which with Pd-C at 310—320° gives 4-methylphenanthrene (I) (85%), m.p. 49—50°. With AcCl and AlCl₃ in PhNO₂ at -10° this gives 1-acetyl-4- (II) (50%), m.p. 84—85° and 71—72·5° (picrate, m.p. 142—143°), and 3-acetyl-5-methylphenanthrene (III) (15%), m.p. 98—99° (picrate, m.p. 107—110°). Structures are proved as follows. α -1-Naphthylethyl bromide (prep. from the carbinol by PBr₃ in Et₂O at -10°), unstable, m.p. 37—40°, with

CHNa(CO₂Et)₂ in EtOH gives an ester, whence by hydrolysis and heating at 160—180° $1-C_{10}H_7$ ·CHMe·CH₂·CO₂H (90%), m.p. 108—110°, is obtained. The Arndt-Eistert procedure then yields γ-1-naphthylvaleric acid (68%), m.p. 78-80°, the chloride of which is cyclised (SnCl₄-C₆H₆) to 1-keto-4methyl-1:2:3:4-tetrahydrophenanthrene (IV) (91%), m.p. 81.5—83°. MgMeI converts (IV) into a carbinol, which with Pd-C at 300—320° gives 1:4-dimethylphenanthrene, m.p. 50—51·5° (lit., 50—51°, 77°) [picrate, m.p. 143—143·5° (lit., 143·5°, 155°)]. Zn— Hg-HCl-AcOH-PhMe and dehydrogenation convert (IV) into (I). The product from (IV) and MgEtBr-Et₂O treated with Pd-C at 300-320° gives 4-methyl-1-ethylphenanthrene, an oil (picrate, m.p. 104—106°), obtained also by Clemmensen reduction of (II). PhEt, (CH₂·CO)₂O, and AlCl₃ at <0° and then at room temp. give $p\text{-}C_6H_4\text{Et}\cdot\text{CO}\cdot[\text{CH}_2]_2\cdot\text{CO}_2\text{H}$ (57%), new m.p. $107\text{-}109^\circ$, reduced (Martin-Clemmensen) to $p\text{-}C_6H_4\text{Et}\cdot[\text{CH}_2]_3\cdot\text{CO}_2\text{H}$, new m.p. $72.5\text{-}74^\circ$, which yields (SOCl₂- $C_5H_5\text{N}$; then AlCl₃-CS₂ at <0°) 1-keto-7-ethyl-1:2:3:4-tetrahydronaphthalene (87%), b.p. 108—110°/0.6 mm. With NaOMe and Me₂C₂O₄ in C₆H₆-N₂ this gives Me 1-keto-7-ethyl-1:2:3:4-tetrahydro-2-naphthylglyoxylate (82%), m.p. 35.5—37°, which with powdered soft glass at 190— 200° gives CO and Me 1-keto-7-ethyl-1:2:3:4-tetrahydronaphthalene-2-carboxylate (85%), b.p. 168—170°/ 1.5 mm. Condensation with Na-Br·[CH₂]₃·CO₂Me-C₆H₆ and later hydrolysis by conc. HCl-AcOH gives γ -1-keto-7-ethyl- (68%), m.p. 74—75.5°, reduced (Martin-Clemmensen) to γ -7-ethyl-1:2:3:4-tetra-hydro-2-naphthylbutyric acid (V), m.p. 108.5—110°. The Me ester (prep. by $\mathrm{CH_2N_2}$) of (V) is dehydrogenated by Pd-C at 235-255° and then hydrolysed to to γ-7-ethyl-2-naphthylbutyric acid (90%), m.p. 105·5-106.5°. Conversion thereof by PCl₅ in C₆H₆ into the chloride and cyclisation (SnCl₄) gives 4-keto-6-ethyl-1:2:3:4-tetrahydrophenanthrene (80%), m.p. 52.5— 53.5°, whence MgMeI and later Pd-C yields 5-methyl-3-ethylphenanthrene [picrate, new m.p. 113.5—115°; $s-C_6H_3(NO_2)_3$, new m.p. 127—128°, and 1:2:4:6- $C_6H_2Me(NO_2)_3$ compound, m.p. 78—79.5°], also obtained by reduction of (III). R. S. C.

Biochemistry of filamentous fungi. Mycelial constituents of Oospora sulphureaochracea. Trimethylsulochrin and its fission H. NISHIKAWA (Bull. Agric. Chem. Soc. products. Japan, 1940, 16, 97—99; cf. A., 1940, II, 92).— Repeated methylation (Me₂SO₄) of sulochrin [Me 2:6:4'-trihydroxy-6'-methoxy-4-methylbenzophenone-2'-carboxylate] yields trimethylsulochrin (I), m.p. 157°, which with conc. H₂SO₄ at 100° (bath) gives dimethyl-p-orsellinic acid and Me dimethyl-α-resorcyl-Hydrolysis (KOH-MeOH) of (I) yields 2:6:4':6'-tetramethoxy-4-methylbenzophenone-2'-carboxylic acid, m.p. 194°. J. N. A.

Lignin and related compounds. XLVIII. Identification of vanillin and vanilloyl methyl ketone as ethanolysis products from spruce wood. L. BRICKMAN, W. L. HAWKINS, and H. HIBBERT (J. Amer. Chem. Soc., 1940, 62, 2149—2154; cf. A., 1940, II, 254).—Separation of vanillin and vanilloyl Me ketone [4-hydroxy-3-methoxyphenyl

Me diketone] (I) from the ethanolysis products from spruce wood by methods involving distillation and fractionation of 2:4-dinitrophenylhydrazones is detailed. (I), m.p. 72—73°, b.p. 125°/0·2 mm., gives a quinoxaline derivative, m.p. 162—163°, mono-, m.p. 215—216°, and di-semicarbazone, m.p. 241°, and 2:4-dinitrophenylhydrazone, m.p. 226—227° (Me ether, m.p. 194—195°). 3:4:1-(OMe)₂C₆H₃·COMe, HCO₂Et, and Na wire in C₆H₆ give veratroylacetaldehyde, an oil (Na salt; 2:4-dinitrophenylhydrazone, m.p. 189—190°). Addition of 3:4:1-OMe·C₆H₃(OH)·CO·CHMe·OH to CuSO₄ in aq. C₅H₅N at 100° gives (I), but other methods of synthesis failed. (I) may form one member of an oxidation-reduction system functioning in plant respiration.

Preparation of 4:4'-dicyanodiphenyl and diphenyl diketones. (MISSES) C. DE MILT and M. SARTOR (J. Amer. Chem. Soc., 1940, 62, 1954—1955).

—(p-CN·C₆H₄)₂ [obtained in 66% yield from neutralised (p-N₂Cl·C₆H₄)₂ (1 mol.), NiCl₃ (1 mol.), and KCN (4 mols.)] with MgRCl gives ketimine hydrochlorides, hydrolysed by boiling, very dil. AcOH to 4:4'-dibenzoyl-, m.p. 218° (dioxime, m.p. 247°), -di(phenylacetyl)-, m.p. 208—210° (dioxime m.p. 202—205°), and -dipropionyl-diphenyl, m.p. 163—165° (dioxime, m.p. 226—229°).

R. S. C.

Substances with odour of violets. VII. Synthetic problems in the irone series. Synthesis of 3:5:5-trimethylcycloheptanone. L. RUZICKA, H. Schinz, and C. F. Seidel (Helv. Chim. Acta, 1940, 23, 935—941; cf. A., 1935, 672).—Addition of dihydroisophorone and isoamyl formate to NaOEt under Et,O yields hydroxymethylenedihydroisophorone, b.p. 99-101°/13 mm., converted by successive oxidation with KMnO₄-NaOH, esterification with conc. H₂SO₄ and MeOH, and reduction by Na in abs. EtOH into βδδ-trimethylhexane-αζ-diol, b.p. 150°/12 mm. This is converted by HBr at 120—130° into the corresponding dibromide, b.p. 135°/12 mm., which gives the dinitrile, b.p. 144-145°/0.3 mm. The dry Th salt of the dicarboxylic acid when distilled in a vac. vields 3:5:5-trimethylcycloheptanone, b.p. 87°/11 mm. (semicarbazone, m.p. 187—189°; p-nitrophenylhydrazone, m.p. 153—154°; picrate, m.p. 212-213°, of the aminoguanidine compound).

[Attempted] synthesis of Wieland's $C_{13}H_{20}O_6$ acid from bile acids. S. K. RANGANATHAN (Current Sci., 1940, 9, 276—277; cf. Wieland et al., A., 1933, 609; Baker et al., ibid., 935).—Et aconitate, CH₂(CO₂Et)₂, and a trace of EtOH-free NaOEt (no solvent) give Et n-butane-ααβγδ-pentacarboxylate, b.p. 195°/3 mm., hydrolysis and decarboxylation of which affords meso- (I), m.p. 189°, and dl-, m.p. 236°, -butane-αβγδ-tetracarboxylie acid. The Et ester, b.p. 180°/2 mm., of (I) is cyclised to Et₃ cyclopentanone-2:3:4-tricarboxylate, b.p. 171°/2 mm. (hydrolysed to cyclopentanone-3: 4-dicarboxylic acid), the K derivative of which with CHMeBr·[CH₂]₂·CO₂Et (excess) yields Et γ-2-keto-1:4:5-tricarbethoxycyclopentylvalerate (II), b.p. 218°/2 mm. Attempted hydrolysis, with or without decarboxylation, of (II) was unsuccessful. Et β-methylbutane-αβγγδ-pentacarboxylate, b.p. 207°/3 mm., affords β-methylbutane-αβγδ-tetracarboxylic acid, m.p. 193° (anhydride, m.p. 187°), the Et ester, b.p. 186°/2 mm., of which is cyclised to Et₃ 3-methylcyclopentanone-2:3:4-tricarboxylate, b.p. 176—178°/2 mm.

Asymmetry of the aliphatic nitro-group. Resolution of 9-nitro-2-benzoylfluorene. F. E. RAY and S. PALINCHAK (J. Amer. Chem. Soc., 1940, **62**, 2109—2113).—The aci-form (I) of 9-nitro-2benzoylfluorene is resolvable only when the lone pair of electrons on C₍₉₎ is co-ordinated with a solvent mol. The K salt, prepared (83—88%) from 2-benzoylfluorene, KOEt, and EtNO₃ in EtOH-Et₂O, is stable when dry, but in solution gives 2-benzoylfluorenone (II) and HNO₂, and with aq. acid gives (I), yellow, m.p. 80-84° (decomp.). In boiling EtOH (I) gives a red dimeride, 9:9'-dinitro-2:2'-dibenzoyl-9:9'-di-fluorenyl (III), m.p. $135-137^\circ$. The menthyl ester of (I) is obtained as an oil, $[\alpha]_D^{24}-218^\circ$ in EtOH, containing EtOH, removal of which causes decomp. to menthol, (II), and (III). The K salt gives the brucine salt, + EtOH (IV), sinters at 160°, m.p. 175—185° (decomp.). When this is treated with KOH-EtOH, the freshly prepared mixture has $[\alpha]_D$ —65°, changing in 30 hr. to the $[\alpha]_D$ of brucine; the difference (18°) is the approx. $[\alpha]_D$ of the ion of (I). When aq. KOH is used, racemisation occurs at once and there is no change in α . When KOAc-EtOH is added to (IV), there is an immediate change in $[\alpha]$, probably due to replacement of the co-ordinated EtOH by KOAc; later the inactive K salt is pptd. Dil. HCl at -10° ppts. inactive (I) from (IV), but in AcOH (IV) gives $[\alpha]_D + 5.54^\circ \rightarrow -4.04^\circ$ in 0.5 hr.; probably active (I) exists temporarily, co-ordinated with AcOH. With Br-CHCl₃, (IV) gives an active bromide, which rapidly racemises and decomposes. Kinetic studies show that racemisation and decomp. of (IV) occur simultaneously in CHCl₃ or BuOH (co-ordinates), but in C_5H_5N racemisation at first occurs alone. 9-Nitro-2:7-dibenzoylfluorene (V), m.p. 194—195°, gives a K salt, solvent-free and +BuOH, and thence a brucine salt, $[\alpha] +67^{\circ}$ in CHCl₃, $+78^{\circ}$ in C₅H₅N, unchanged for 2 hr. (later decomp.), the symmetry of (V) accounting for absence of resolution. Prep. (Friedel-Crafts) of (V) gives also some (?) 2: 3-dibenzoylfluorene, m.p. 119—120°.

Synthesis of cis- and trans-17-equilenone. W. E. BACHMANN and A. L. WILDS (J. Amer. Chem. Soc., 1940, 62, 2084—2088; cf. A., 1940, II, 225).— Equilenin derivatives are named on the basis of equilenane for (I). 1-Keto-1:2:3:4-tetrahydro-

phenanthrene (improved prep.), $Me_2C_2O_4$, and NaOMe in $C_6H_6-N_2$ give $Me\ 1$ -keto-1:2:3:4-tetrahydrophenanthrene-2-glyoxylate, ? dimorphic, m.p. $90-91^\circ$ and $106-108^\circ$, which in presence of powdered glass at $180-200^\circ$ gives $Me\ 1$ -keto-1:2:3:4-tetrahydrophenanthr

ene-2-carboxylate, m.p. 88—90° after softening. With MeOH-NaOMe and MeI in boiling C_6H_6 this gives Me 1-keto-2-methyl-1:2:3:4-tetrahydrophenanthrene-

2-carboxylate (I), m.p. $79.5-80.5^{\circ}$, which by the Reformatsky reaction gives Me, 1-hydroxy-2-methyl-1:2:3:4 - tetrahydrophenanthrene - 2 - carboxylate - 1 acetate, m.p. 131-133° (with 40% KOH gives 1-keto-2-methyl-1: 2:3:4-tetrahydrophenanthrene). hydration then yields anti-2-carboxy-2-methyl-1:2:3:4-tetrahydro-1-phenanthrylideneacetic acid (II), m.p. 220—221° [Me₂ ester (III), m.p. 110—111°], and the anhydride, m.p. 188·5—189·5°, of the syn-acid. Boiling NaOH-MeOH-H₂O converts (III) into the 2-Me₁ ester, m.p. 197—199°, which with KMnO₄—H₂O-C₆H₆ at 0° gives (I), thus proving that the Me has not migrated. 2% Na-Hg in H2O reduces the K salt of (II) to 2-methyl-1:2:3:4-tetrahydrophenanthrene-2-carboxylic-1-acetic acid, stereoisomeric a., m.p. 228—229° [Me_2 ester (IV), m.p. 106—107°], and β -form (V), m.p. (+ solvent) 160—165° (gas), (anhyd.) 182—183°. With NaOH-MeOH-H₂O, (IV) gives the 2-Me₁ \alpha-ester, m.p. 133—134°, which yields (Arndt-Eistert) α -2-carbomethoxy-2-methyl-Me1:2:3:4-tetrahydrophenanthrene-1-propionate, m.p. 98—99° [derived dicarboxylic acid (VI), m.p. 213— 213.5°], cyclised by NaOMe–C₆H₆–N₂ to Me α -dl-17equilenone-16-carboxylate, m.p. 124-125°, sublimes at 200°/0.4 mm. Boiling conc. HCl-AeOH- H_2 O- N_2 then gives α -dl-17-equilenone (VII), m.p. 100—101° (picrate, m.p. 109.5—110.5°), obtained also less well from (VI) by Ac₂O or by pyrolysis of the Pb salt, and converted by reduction and dehydrogenation into 1:2-cyclopentenophenanthrene. Similarly, (V) yields the 2-Me₁ ester, m.p. 156—158°, Me β-dl-17-cquilenone-16-carboxylate, m.p. 134-134.5° (vac.), and βdl-17-equilenone (VIII), m.p. 188.5—189.5° (vac.). (VII) and (VIII) do not induce estrus in 0.5-mg. doses.

Steroids and sex hormones. LXIII. Attempted synthesis of œstrogens with use of αβ-diacetylethylene. M. W. GOLDBERG and P. MÜLLER (Helv. Chim. Acta, 1940, 23, 831—840).-Contrary to Dane et al. (A., 1937, II, 500), 1-acetylenyl-1:2:3:4-tetrahydro-1-naphthol (I), b.p. 104°/ 0.2 mm., is the sole product of the action of CH:C·MgBr (II) on 1-keto-1:2:3:4-tetrahydronaphthalene. Partial reduction (H₂-Pd-CaCO₃-EtOH) of it gives 1-vinyl-1:2:3:4-tctrahydro-1naphthol, dehydrated by Al₂O₃ at 160°/high vac. to 1-C₁₀H₇Et (picrate, m.p. 98°). Under identical conditions (I) is dehydrogenated to 1-acetylenyl-3: 4-dihydronaphthalene, b.p. 118°/10 mm. 6-Methoxy-1acetylenyl-3: 4-dihydronaphthalene, b.p. 120°/0·1 mm., obtained by distilling in a high vac. the product of the interaction of (II) and 1-keto-6-methoxy-1:2:3:4-tetrahydronaphthalene, is reduced (H_2 -Pd-CaCO₃ in EtOH-dioxan) to the vinyl compound, which with (:CHAc)₂ in abs. C₆H₆ at 110—115° forms isomeric adducts, $C_{19}H_{22}O_3$, m.p. 174—175° (III) and 107—108°, both of which are reduced (H_2 -Pd-CaCO₃ in EtOAc) to 7-methoxy-1: 2-diacetyl-

1:2:3:4:9:10:11:12-octahydrophenanthrene (IV), m.p. 127—128°. (III) in C_6H_6 is cyclised by NaOMe–MeOH to 15-methyl-15-dehydro-x-norequilenin Me ether (V) or (VI), m.p. 116—117°, whereas (IV) yields 15-methyl-15-dehydro-x-noræstrone Me ether (VII; R—Me), m.p. 181—183° (oxime, m.p. 185—186°), or

its isomeride (VIII). (VII) or (VIII) is hydrolysed to 15-methyl-15-dehydro-x-noræstrone, m.p. ~180°, or

its isomeride [(VII) and (VIII) with R = H] which has estrogenic activity. H. W.

Steroids and sex hormones. LXIV. Preparation of D-homodihydrotestosterone. M. W. Goldberg and R. Monnier (Helv. Chim. Acta, 1940, 23, 840—845).—3-trans-Acetoxy-D-homoandrostan-17a-one is reduced (H₂-PtO₂ in AcOH at room temp.) to D-homoandrostane-3-trans-17a-diol 3-acetate, m.p. $160-167^{\circ}$ (mixture of cis-trans isomerides at $C_{(17a)}$), which with BzCl in C_5H_5N affords the 17a-benzoate, m.p. $201-202^{\circ}$. This is hydrolysed by KHCO₃ in MeOH to D-homoandrostane-3-trans-17a-diol 17a-benzoate, m.p. $230-233^{\circ}$, oxidised (CrO₃ in AcOH)

Me Me OH

hydrotestosterone.

to D-homoandrostan-17a-ol-3-one
17a-benzoate, m.p. 194—195°,
hydrolysed (KOH-MeOH) to Dhomoandrostan-17a-ol-3-one (Dhomodihydrotestosterone) (I), m.p.
187—189°. All m.p. are corr.
(vac.). The physiological activity of (I) is equal to that of dierone.

H. W.

Constituents of the adrenal cortex and related substances. XL. 17-isoDeoxycorticosterone. C. W. Shopper (Helv. Chim. Acta, 1940, 23, 925—934).— Δ^4 -Pregnene-17 β : 20: 21-triol-3-one is converted by Ac₂O and C₅H₅N at room temp. into the 20: 21-diacetate (I), m.p. 170—172° and, after re-

solidification, m.p. 193—194°. With Zn dust in boiling C_5H_5N , (I) gives 17-isodeoxycorticosterone acetate (II), m.p. 137—138°, $[\alpha]_5^{16}$ —21°±3° in COMe₂, whereas in boiling PhMe a polymorph (III), m.p. 174°, $[\alpha]_5^{17}$ —26°±2°, $[\alpha]_5^{17}$ —32°±2° in COMe₂, is produced. (II) or (III) is transformed by boiling conc. HCl-EtOH followed by acetylation into deoxycorticosterone acetate, m.p. 159—161°, $[\alpha]_5^{16}$ +182°±4°, $[\alpha]_5^{164}$ +221°±3° in EtOH, and hydrolysed by KHCO₃ in aq. MeOH at room temp. to isodeoxycorticosterone, m.p. 179—181°, $[\alpha]_5^{16}$ -6°±2°, $[\alpha]_5^{164}$ -9°±2° in abs. EtOH, oxidised by HIO₄ in aq. MeOH at 20° to iso-3-ketoætio- Δ^4 -cholenic acid (IV), m.p. 194—196°, $[\alpha]_5^{18}$ +47·5°±2°, $[\alpha]_5^{164}$ -116°, $[\alpha]_5^{18}$ +36°±2°, $[\alpha]_5^{18}$ +36°±2°,

 $[\alpha]_{6461}^{10}$ $+46^{\circ}\pm3^{\circ}$ in COMe₂]. Isomerisation does not occur when (IV) is heated with conc. HCl-AcOH (1:9) at 100° or when (V) is boiled with KOH-MeOH. M.p. are corr.

Programme Transfer and Artists

Nature of the by-product in the synthesis of vitamin-K₁. M. TISHLER, L. F. FIESER, and N. L. Wendler J. Amer. Chem. Soc., 1940, 62, 1982— 1991).—The by-product isomeric with 2-methyl-3phytyl-1: 4-naphthaquinol (I) (A., 1939, II, 513; 1940, II, 96) is 2-methyl-2-phytyl-2: 3-dihydro-1: 4naphthaquinone (II). Figures given in parentheses below are $\log E_{\rm mol}$. Variations in the synthesis lead to 15—24% of (I) and 20—22% of (II). (II) is not formed from (I) (cf. loc. cit.), since >90% of (I) is recovered after heating with $\rm H_2C_2O_4$ in dioxan for 34 hr. at 75°. (II) is insol. in Claisen's alkali, does not reduce AgNO₃-EtOH, gives neither the Furter-Meyer nor the Craven test, absorbs ~2 H₂ in presence of PtO₂, absorbs Br in CCl₄, does not react with CH₂N₂, MgMeBr at 180°, AlBr₃, or various other reagents, and is unchanged by HCl-AcOH at 100°. It gives a 2:4-dinitrophenylhydrazone, m.p. 107— 108°, is pyrolysed (best) in boiling decahydronaphthalene and N_2 to vitamin- K_1 (5%) and 2-methyl-1:4-naphthaquinol (10%), and has absorption max. at 253 (3.97) and 300 m μ . (3.27). It is oxidised by Pb(OAc)₄ or SeO₂. With CrO₃-AcOH at 60—70° it gives 2-methyl-2: 3-dihydro-1: 4-naphthaquinone-2acetic acid, m.p. 126°, and ζκξ-trimethylpentadecanβ-one (identified as semicarbazone). It is reduced by $Al(OPr^{\beta})_3 - Pr^{\beta}OH - CCl_4 - HgCl_2$ to 1: 4-dihydroxy-2methyl-2-phytyl-1:2:3:4-tetrahydronaphthalene, m.p. $\sim 40-50^{\circ}$ (diacetate, an oil; bis-2:5-dinitrobenzoate, forms, m.p. 74-75° and 120°; 2 active H), dehydrated by conc. HCl-AcOH at room temp, to a mixture including a little 2-C₁₀H₇Me. Vitamin-K₁ with SnCl₂ in boiling HCl-AcOH gives the naphthotocopherol (III), b.p. 155° (liquid)/10-5 mm. [p-nitrobenzoate, m.p. 84— 85° ; absorption max. 246 (4.54) and ~320 m μ . (3.6)]; this is oxidised by FeCl₃-H₂O-MeOH-Et₂O to 2methyl-3- γ -hydroxy- $\beta\gamma$ -dihydrophytyl-1:4-naphthaquinone (IV) [quinol di- (V), m.p. \sim 20°, and triacetate, m.p. 65°]. 2:3:1:4- $C_{10}H_4$ Me₂(OH)₂, phytol, and $H_2C_2O_4$ in dioxan at 75° give 2:3-dimethyl-2-phytyl-2:3-dihydro-1:4-naphthaquinone, b.p. 140—150°/10⁻⁴ mm. [absorption max. 253 (3.96) and ~300 mµ. (3·2); consumes 2 MgMeI; absorbs 4 H with Al(OPr $^{\beta}$)₃]. The by-product, C₁₉H₂₀O₂, m.p. 73° (A., 1940, II, 17) is probably 2-methyl-2- $\beta\gamma$ dimethylbutenyl-2: 3-dihydro-1: 4-naphthaquinone; it has absorption max, at 253 (3.98) and 298 m μ . (3.31) [cf. (II)]; its solubility in alkali is ascribed to enolis-The following absorption max. are recorded: 2-methyl-1: 4-naphthaquinol Et_1 ether, m.p. 115—116°, 243 (4·26) and ~320 m μ . (3·7); 1-hydroxy-4-keto-1phenyl-2: 3-dimethyl-1: 4-dihydronaphthalene (Crawford, A., 1940, II, 82) 251 (4.07) and 281 m μ . (3·91); 2-methyl-3-phytyl-, 248 mμ. (4·26), and 2:3-diallyl-1:4-naphthaquinone, 249 mμ. (4·24); vitamin- K_1 248 m μ . (4·24—4·27) in EtOH. (III) has vitamin-E activity in 25-mg. and -K activity in 0.3-0.6-mg. doses (18 hr.); (IV) and (V) have no -Kactivity. (II) has -K activity in 5×10^{-5} -g. doses.

Pigments from sea-urchins and syntheses of related compounds. C. Kuroda and H. Ohshima (Proc. Imp. Acad. Tokyo, 1940, **16**, 214—217).— The spines of Pseudocentrotus depressus ("Aka-uni") when treated with mineral acid and org. solvent give the pigment spinochrome-Aka, sublimes at 285—295°, identified as 2:3:5:7:8-pentahydroxy-6-methyl-1:4-naphthaquinone (2:3:7- Me_3 ether, m.p. 160° ; penta-acetate, m.p. 182°). The spines of Heterocentrotus mammilatus and Anthocidaris crassispina give the pigments spinochrome-F, m.p. 229°, and -M, m.p. 193°, respectively. $2:3:1:4\text{-}(\mathrm{OMe})_2\mathrm{C}_6\mathrm{H}_2(\mathrm{OH})_2$ with methylmaleic anhydride and AlCl₃-NaCl gives 2:3:5:8-tetrahydroxy-6-methyl-1:4-naphthaquinone, m.p. 230° (tetra-acetate, m.p. 178—179°; $2:3-Me_2$ ether, m.p. 117°); similarly, (:CH·CO)₂O gives 2:3:5:8-tetrahydroxy-1:4-naphthaquinone, m.p. 265° (cf. A., 1939, II, 513) (tetra-acetate, m.p. 207°: E. Ŵ. W. 2:3-Me, ether, m.p. 129°).

Preparation of halogenoaminoanthraquinones.—See B., 1940, 726.

Application of the diene synthesis to terpenoid compounds. Eucarvone and maleic anhydride. T. F. West (J.C.S., 1940, 1162—1164).—Eucarvone [2:4-dinitrophenylhydrazone, m.p. 152—153° (decomp.)] with ('CH·CO)₂O forms an adduct, $C_{14}H_{16}O_4$, m.p. 165—167° (Me_2 , m.p. 102—103°, and Et_2 esters, m.p. 93—95°). These results invalidate one of the arguments used by Goodway and West (A., 1939, II, 79) to criticise Rydon's seven-membered ring structure for caryophyllene. F. R. S.

Dehydrogenation. IV. Catalytic disproportionation and dehydrogenation of some terpenes and terpene ketones. R. P. LINSTEAD, K. O. A. MICHAELIS, and S. L. S. THOMAS (J.C.S., 1940, 1139— 1147).—The results of the action of Pd and Pt catalysts on the compounds are in harmony with the known structures and under mild conditions giveclear evidence of the skeleton structure and the no. of double bonds. All the unsaturated substances undergo disproportionation into aromatic and saturated compounds at comparatively low temp. (140— 205°), the proportions formed being those predictable from the no. of double bonds in the original terpene. Limonene gives a mixture of p-cymene and p-menthane in mol. ratio ~2:0.9 at 140° (Pt-C). Pinene at 156° with Pt-C affords equimol, proportions of p-cymene and pinane. Cadinene at 180° (Pt-C) yields cadalene and tetrahydrocadinene, but under vigorous conditions 1:6-C₁₀H₆Me₂ is obtained. 205° with Pd-C, selinene is converted into eudalene and tetrahydroselinene. Pulegone with Pd-C at 175° forms menthone and thymol. Carvone is isomerised almost quantitatively to carvacrol. All the compounds studied, whether unsaturated or saturated (with the exception of camphor, which is completely resistant), give their aromatic counterparts with elimination of H at higher temp. F. R. S.

Mutarotation of α-nitrocamphor in chlorobenzene solution.—See A., 1940, 1, 416.

Triterpene resinols and related acids. IX. Oxidation of α-amyradienyl acetate. E. S. EWEN and F. S. SPRING. X. β-Amyradienol. C. W.

Picard and F. S. Spring (J.C.S., 1940, 1196—1198, 1198—1202).—IX. Ozonisation of α-amyradienyl acetate (I) at 0° gives a mixture of α-amyrenonyl acetate and epi(iso)-α-amyrenonyl acetate (II), $C_{32}H_{50}O_3$, m.p. 199—200°, $[\alpha]_0^{20}$ +56° in CHCl₃, which is reduced (Na-C₅H₁₁·OH) followed by treatment with Ac₂O to (I). Ozonisation of (I) at 22° affords a mixture containing an amorphous acid fraction, (II), and α-amyradionyl acetate, $C_{32}H_{50}O_4$, m.p. 257—258°, $[\alpha]_0^{21}$ +120° in CHCl₃.

 \hat{X} . Prolonged treatment of β -amyrenonyl benzoate, $[\alpha]_{D}^{20}$ +156° in CHCl₃, with KOH (cf. Beynon et al., A., 1938, II, 416; Ruzicka et al., A., 1939, II, 330) gives a low-melting β-amyrenonol, probably contaminated with an isomeric αβ-unsaturated ketone. Purification cannot be achieved by crystallisation but is effected by acetylation, pure β -amyrenonyl acetate, $[\alpha]_D^{20}$ +116° in CHCl₃, then being readily isolated. Reduction of β-amyrenonol with Na-EtOH gives an addition–reduction compound, $C_{32}H_{56}O_2$, m.p. $236\cdot5$ — $239\cdot5^\circ$, and with Na– $C_5H_{11}\cdot OH$ affords a similar compound, $C_{35}H_{62}O_3$, m.p. $238-239^\circ$; with Ac₂O these compounds yield β -amyradienyl acetate. Hydrolysis of the latter leads to β -amyradienol, m.p. 213·5—214·5°, $[\alpha]_D^{20}$ +319° in CHCl₃ (benzoate, m.p. 250°, $[\alpha]_D^{20}$ +317° in CHCl₃), which is oxidised (AcOH– CrO_3) to β -amyradienone, m.p. 206—208°. The benzoate on reduction with Na-C5H11.OH and treatment with Ac₂O gives an acetate, C₃₅H₆₂O₃, m.p. 223-224°, which is a mixed crystal containing βamyradienyl acetate and β -amyrenyl acetate and corresponds with the "dehydro- β -amyrenyl acetate b" of Simpson (cf. A., 1940, II, 137).

Constituents of Helenium species. IV. The compound, m.p. 233—234°, obtained from H. tenuifolium. E. P. CLARK (J. Amer. Chem. Soc., 1940, 62, 2154—2156; cf. A., 1940, II, 184).—Rast's method of determining mol. wt. is unreliable in the tenulin series. The substance, $C_{16}H_{22}O_{5}$, m.p. 233—234° (A., 1939, II, 435), is really tenulin β -methoxy-ethyl ether, $C_{19}H_{26}O_{6}$. It gives an ethoxyacetyl derivative, m.p. 119°, analysis of which indicates the mol. wt. With $H_{2}O_{2}$ -NaOH- $H_{2}O$ -COMe₂ or KMnO₄-COMe₂- $H_{2}O$ it gives an acid, $C_{19}H_{26}O_{9}$, m.p. 239° (Me ester, m.p. 283°), hydrolysed by boiling, dil. acid to OMe-[CH₂]₂-OH and acetyltenulinic acid, m.p. 239° or (? anhyd.) 319°. The OH and Ac of tenulin are sterically proximate. R. S. C.

Constituents of the leaves of certain Leucadendron species. III. Oxidations of leucodrin derivatives with periodic acid and lead tetraacetate. W.S. Rapson (J.C.S., 1940, 1271—1274).—Oxidation of leucodrin Me ether (I) in the lactonic form in acid media with either Pb(OAc)₄ or HIO₄ results in absorption of 2 equivs. of O and formation of 1 equiv. of CH₂O. In 0·1n-NaOH, oxidation of (I) or leucodrin (II) with excess of HIO₄ leads to absorption of 8 equivs. of O and gives 1 equiv. of CH₂O and anisylsuccinic acid in optically active form; with Pb(OAc)₄ and (I), 15 equivs. of O are absorbed. Oxidation of leucodrin Me₄ ether with Pb(OAc)₄ in alkaline solution affords a monobasic acid, C₁₈H₂₆O₈ (+H₂O), m.p. 73—76·5°, and the Br-ether similarly gives a substance, C₁₈H₂₅O₈Br, m.p. 178°

(decomp.). Mutarotation of (II) in aq. or aq.-EtOH media has not been observed, indicating that the lactone ring systems are fairly stable; acidification of alkaline solutions of (I) or (II) causes the $[\alpha]$ to revert during 80—100 hr. to that of the corresponding lactonic forms. Interpretation of the results in terms of a full structure for (II) has not been possible but the partial structure

Hydroxy-lactone from d-pimaric acid. E. E. FLECK and S. PALKIN (J. Amer. Chem. Soc., 1940, 62, 2044-2047).—d-Pimaric acid (I) and conc. H_2SO_4 at -20° to -30° give a saturated OH-lactone, $C_{20}H_{32}O_{3}$, m.p. 181—182°, b.p 200—250° (bath)/1 mm., $[\alpha]_{D}^{30}$ —4° in abs. EtOH, only partly hydrolysed by NaOH-EtOH but converted by KOH-BuaOH into the corresponding acid, $+0.66\text{H}_2\text{O}$, m.p. $150-151^\circ$, and anhyd. (Me ester, m.p. $156-157^\circ$). Known tests are used to detect dihydro-l-pimaric and -abietic and l-abietic (II) acid in (I). When freed (method described) from (II) but still containing H₂-acids, (I) has m.p. 218—219° $[\alpha]_{D}^{20} + 75^{\circ}$ in abs. EtOH. (I) has never been obtained pure. On the assumption that H_2SO_4 converts (I) into 50% each of acid and neutral material, and by isolation of the latter, it is shown that \$10% and >14% of (I) is present in the oleoresin and rosin of P. palustris and P. caribæa, respectively. Analysis of mixtures of (I) and *l*-pimaric acid gives slightly high results (within 5—10%) for (I).

Kikyo root. X. Constitution of platycodigenin. Properties of double linking and oxygen atoms of platycodigenin. M. Tsujimoto (J. Agric. Chem. Soc. Japan, 1940, 16, 613—620; cf. A., 1939, II, 556).—Platycodigenin contains one double linking which cannot be reduced catalytically, and of the 7 O, two are present as CO₂H, and four as OH.

J. N. A.

Lignin and related compounds. I. Hydrogenation of soft-wood lignin. Y. Hachihama, S. Zyodai, and M. Umezu (J. Soc. Chem. Ind. Japan, 1940, 43, 127b).—Lignin (from Picea jezoensis) was hydrogenated (NiO catalyst in dioxan; 35—55 hr. at 260—270°/95—230 atm.); the Et₂O-sol. products included 1:4:3-C₆H₃Pr(OH)·OMe (I), 1:2:4-C₆H₃(OH)₂·CO₂H, o-C₆H₄(OH)₂, and p-OH·C₆H₄·CO₂H. (I) is an important constituent of soft-wood lignin.

Lignin. XXXIV. Formation of vanillin from spruce lignin. K. Freudenberg, W. Lautsch, and K. Engler (Ber., 1940, 73, [B], 167—171).— Spruce lignin (I), or, better, deresinated spruce-wood powder, in 2n-NaOH with PhNO₂ at 160° (3 hr.) gives, after removal of PhNO₂, NH₂Ph, and Ph₂N₂O, neutralisation and treatment with NaHCO₃, and extraction with C_6H_6 , vanillin (II) $\equiv 20-25\%$ of original (I). Other products include phenols, vanillic and veratric acids, AcOH, $H_2C_2O_4$, and vanillin-5-carboxylic acid, m.p. 250° (decomp.); taking account of these, 50% of the original (I) is isolated as (II) or its breakdown products. Sulphite waste liquor may be successfully used as a source of (I) and thus of (II). E. W. W.

Esters of 2-furylacetic acid. J. F. Ryan, J. Plucker, tert., and E. D. Amstutz (J. Amer. Chem. Soc., 1940, **62**, 2037).—Me, b.p. 87—88°/21 mm., Et, b.p. 88°/15 mm., Pr^a , b.p. 115—116°/34 mm., Pr^β , b.p. 92—93°/17 mm., Bu^a , b.p. 110—111°/13 mm., and Bu^β 2-furylacetate, b.p. 112—113°/21 mm., are prepared. R. S. C.

N'-Aryl-N-alkylfuramidines. W. M. Degnan and F. B. Pope (J. Amer. Chem. Soc., 1940, 62, 1960—1962).—Heating 2-furoyl chloride with NH₂R and dil. KOH (15—20% excess) gives 2-furo-n-propyl-, m.p. 39—40°, -n-, m.p. 40—41°, -sec.-, m.p. 122—123°, and -tert.-butyl-, m.p. 99°, -n-amyl-, m.p. 31—32°, -β-amyl-, m.p. 48—56°, -β-methyl-sec.-butyl-, m.p. 68—69°, -isoamyl, m.p. 53—54°, - δ -methyl- β -amyl-, m.p. 54-55°, -cyclohexyl-, m.p. 108·5-109°, and -β-ethyl-n-hexyl-, an oil, -amide. Addition of the appropriate amide and then of NH₂R' to PCl₅ in C_6H_6 gives N'-phenyl-N-n-propyl-, m.p. $63.5-64^{\circ}$ (139—140°), -N-n-butyl-, m.p. 67—68° (141—142°), and -N-cyclohexyl-2-furamidine, m.p. 78·5—79° (174°), N'-p-phenetyl-N-n-propyl-, m.p. $81.0-81.5^{\circ}$ [($+H_2O$) $78.\overline{5} - 79.5^{\circ}$], -N-n-butyl-, m.p. $65.5 - 66^{\circ}$ [(+H₂O) 78·5—79·5°, (anhyd.) 135—136°], -N-sec.-butyl-, m.p. 52·0—52·5° (132—133°), -N-n-amyl-, m.p. 61·0—61·5° $[(+H_{2}O) 75-76^{\circ}]$, -N- β -amyl-, m.p. $75-76^{\circ} (125.5-$ 126·5°), -N-isoamyl-, m.p. 77° (120—121°), -N-δ-methyl-β-amyl-, m.p. 77° (120—121°), and -N-cyclohexyl-2-furamidine, m.p. 108—109° (170—171°), N'-p-carbethoxyphenyl-N-n-propyl-, m.p. 86—87° (167—168°), -N-n-butyl-, m.p. 75·5—76° (128—129°), and -N-cyclohexyl-2-furamidine, m.p. 114—115° (188— 189°), N'- α -, m.p. 54·5—55·5° (99—101°), and N'- β naphthyl-N-n-butyl-2-furamidine, m.p. (91.5—92.5°). Figures in parentheses are m.p. of the hydrochlorides, which are potent local anæsthetics.

Absorption and fluorescence spectra of dihydroisobenzfurans and isobenzfurans. Adams and M. H. Gold (J. Amer. Chem. Soc., 1940, 62, 2038—2042; cf. A., 1940, II, 280).—trans-(p- $C_6H_4Ph\cdot CH:_2$ (I) (modified prep.) and $(CH_2:CH)_2$ in C_6H_6 at 100° give 4:5-dixenoyleyclohexene, m.p. 267— 268° , converted by boiling H_2SO_4 -Ac₂O into 1:3dixenyl-4:7-dihydroisobenzfuran, m.p. 238—239° [absorption max. 2440 (4.4), 2720 (4.45), 3620 (4.8), fluorescence max. 4290, 4845, 4965, and 5160 A.] (figures in parentheses are $\log \epsilon$), which with Br– NaOAc-AcOH gives o-dixenoylbenzene, m.p. 191— 192°. With KÖH-EtOH- H_2 Ö- C_6H_6 -Zn dust this gives 1:3-dixenylisobenzfuran, m.p. 247—249° [absorption max. 2400 (4.4), 2920 (4.6), 3350 (3.95), and 4360 (4.55), fluorescence max. 5250 A.]. $(CH_2:CMe)_2$ and (I) yield similarly 4:5-dixenoyl-1:2-dimethyl-cyclohexene, m.p. 280—281° (decomp.), 1:3-dixenyl-5:6-dimethyl-isobenzfuran, m.p. 245—247° [absorption max. 2440 (4·4), 2960 (4·6), 3400 (4·0), and 4350 (4.6); fluorescence max. 5250 A.], and -4:7-dihydroisobenzfuran, m.p. 239—241° [absorption max. 2450 (4.4), 2710 (4.45), and 3670 (4.5); fluorescence max. 4290, 4915, 5025, and 5250 A.], and 4:5-dixenoyl-1:3-dimethylbenzene, m.p. 218—219°. The following absorption (a) and fluorescence max. (b) are recorded. 1-3-Diphenyl-4: 7-dihydroisobenzfuran (a) 2300 (4.4),

3320 (4·7), 3480 (4·55), (b) 3840 and 4050, and -isobenzfuran 2610 (4·5), 2700 (4·5), 3100 (3·95), and 4150 (4·45), (b) 4860, 1:3-diphenyl-5:6-dimethyl-4:7-dihydroisobenzfuran (a) 2300 (4·4), 3330 (4·65), and 3490 (4·5), (b) 3840, 4080, and 4590, and -isobenzfuran (I) (a) 2490 (4·3), 2580 (4·4), 2690 (4·5), 2770 (4·55), 3100 (3·95), 4150 (4·4), (b) 4860 A. The optical data indicate existence of free radicals [as (A) and (B)], which is confirmed by the absorption of O_2 by isobenzfurans and by addition of αβ-unsaturated CO-compounds preceded by a transitory red colour. The

$$(A.) \qquad \begin{array}{c} -\dot{C}Ar \\ -\dot{C}Ar \\ -\dot{C}Ar \end{array} > O \qquad (B.)$$

dimeride of (I) (Guyot et al., A., 1907, i, 76) is probably formed by union of 2 mols. of (B). M.p. are corr.

Condensation products of phenols and ketones. Structure of the dimeric forms of o-isopropenylphenols. W. Baker and D. M. Besly (J.C.S., 1940, 1103—1106).—Condensation of m-cresol with COMe2 in presence of HCl gives the dimeride of 4-isopropenyl-m-cresol, which is regarded as 2'-hydroxy-2:4:4:7:4'-pentamethylflavan (I), the Et_2O addition product, $C_{20}H_{24}O_2$, Et_2O , having m.p. 76—77°. (I) with Ac_2O forms 2'-acetoxy-2:4:4:7:4'pentamethylflavan, m.p. 108°; it is oxidised (KMnO₄–Ac₂O) to 2:4:4:7-tetramethylchroman-2-carboxylic acid, m.p. 148—149°. The oxidation and a consideration of the mechanism of its formation lead to the structure assigned. 2-Hydroxy-5-methylacetophenone, C₅H₅N, and o-OMe·C₆H₄·COCl followed by HCl 2-(2'-methoxybenzoyloxy)-5-methylacetophenone,m.p. 85°, which with K₂CO₃ affords ω-2'-methoxybenzoyl-2-hydroxy-5-mcthylacetophenone, m.p. 106° converted by AcOH-NaOAc into 2'-methoxy-6-methylflavone, m.p. 110°. Hydrolysis (HBr) of this compound leads to 2'-hydroxy-6-methylflavone, m.p. 255-256° (Ac derivative, m.p. 101°). o-OH·C₆H₄·COMe, C_5H_5N , and o-OMe·C₆H₄·COCl give 2-(2'-methoxy-benzoyloxy)acetophenone, m.p. 79°, similarly successively converted into ω-2'-methoxybenzoyl-2-hydroxyacetophenone, m.p. 80°, 2'-methoxy- and 2'-hydroxyflavone. The last compound and the 6-Me derivative give mixtures on catalytic reduction.

F. R. S. Isolation of cannabinol, cannabidiol, and quebrachitol from red oil of Minnesota wild hemp. R. Adams, D. C. Pease, and J. H. Clark (J. Amer. Chem. Soc., 1940, 62, 2194—2196).—Steam-distillation of marihuana red oil (I) (Adams et al., A., 1940, II, 80), fractional distillation in vac., removal of cannabinol (II) as bisdinitrobenzoate (III) (47%) and later by pyrolysis with C₅H₅N,HCl at 225—230°/75— 100 mm., conversion of the non-volatile, alkali-insol. part of the residue by 3:5:1-(NO₂)₂C₆H₃·CON₃ into urethanes, and fractional crystallisation and decomp. of the least sol. fraction by NH3-EtOH, gives cannabinol, m.p. 75—76° (corr.), b.p. 185°/0.5 mm. (lit., an oil) [3:5-dinitrophenylurethane, m.p. 221-222° (dep-nitrobenzoate, new m.p. 165—166°; comp.); m-nitrobenzenesulphonate, new m.p. 127—129°; acetate, new m.p. 76-77°]. Ammonolysis of (III)

gives (II), m.p. $66-67^{\circ}$ (corr.) (lit., an oil), $\lceil \alpha \rceil_D^{27} - 125^{\circ}$ in EtOH. Extraction of (I) with H_2O gives quebrachitol. R. S. C.

Structure of cannabinol. I. Preparation of an isomeride, 3-hydroxy-6:6:9-trimethyl-1-namvl-6-dibenzopyran [4"-hydroxy-2:2:5'-tri-R. Adams, methyl-6"-n-amyldibenzopyran]. D. C. Pease, J. H. Clark, and B. R. Baker. II. Synthesis of two isomerides, 4''-hydroxy-2:2:5'trimethyl-3"- and -5"-n-amyldibenzopyran. R. Adams, C. K. Cain, and B. R. Baker. III. Synthesis of cannabinol, 6"-hydroxy-2:2:5'-trimethyl-3"-n-amyldibenzopyran. R. Adams, B. R. Baker, and R. B. Wearn. IV. Synthesis of two additional isomerides containing a resorcinol residue. R. Adams and R. B. Baker (J. Amer. Chem. Soc., 1940, **62**, 2197—2200, 2201—2204, 2204—2207, 2208—2215).—I. $o-C_6H_4Br\cdot CO_2H$ (I), $m-C_6H_4(OH)_2$ (II), CuSO₄, and aq. NaOH give 4"-hydroxydibenzopyrone (numbering as A) (52%), new m.p. 247° (Me ether, new m.p. 143°; acetate, m.p. 177°), converted by MgMeI into 4"-hydroxy-2:2-dimethyldibenzopyran (40%), m.p. 128° (acetate, m.p. 96°).

Greinol and (I) similarly give 4"-hydroxy-6"-methyldibenzopyrone, softens at 143°, m.p. 150°, and 4"-hydroxy-2:2:6"-trimethyldibenzopyran, m.p. 144° (acetate, m.p. 85°). 4:2:1-C₆H₃MeBr·CO₂H· (IV) and (II) give 4"-hydroxy-5":6"-dimethyldibenzopyrone, m.p. 311° (block) (acetate, m.p. 175—176°). Orcinol and (IV) give 4"-hydroxy-5'-methyl-6"-n-amyldibenzopyrone (V) (25%), m.p. 206° (acetate, m.p. 126°), and 4"-hydroxy-2:2:5'-trimethyl-6"-n-amyldibenzopyran (VI), m.p. 83° [acetate (VII), m.p. 62°; p-nitrobenzoate, m.p. 92°; m-nitrobenzenesulphonate, m.p. 118°]. The orientation of (V) and (VI) depends on non-identity with

cannabinol (see below).

II. 7-Hydroxy-4-methylcoumarin and Bu°COCl in boiling C_5H_5N give the 7-valeroxy-compound, m.p. 75—76°, which with AlCl₃ at 80° and later 150° gives 7-hydroxy-8-n-valeryl-4-methylcoumarin, m.p. 98—103°, which in 16% aq. NaOH-N₂ gives 2:6-dihydroxy-valerophenone, m.p. 85—86°. Zn-Hg-HCl-H₂O-EtOH then gives 2-n-amylresorcinol (VIII), m.p. 55-56°, but in absence of EtOH the BuCO is eliminated. (IV), (VIII), aq. NaOH, and CuSO₄ give 4"-hydroxy-5'-methyl-3''-n-amyldibenzopyrone, m.p. 238—239° (decomp.), converted by MgMeI into 4''-hydroxy-2:2:5 -trimethyl-3"-n-amyldibenzopyran, m.p. 87.5-88.5° [p-nitro-, m.p. 120—121°, and thence (H₂-PtO₂; EtOH; 2—3 atm.) p-amino-benzoate, m.p. 165.5-166.5°; m-nitrobenzenesulphonate, m.p. 122.5—123°; acetate, an oil]. 4-n-Amylresorcinol and (IV) give similarly 4"-hydroxy-5'-methyl-5"-n-amyldibenzopyrone, m.p. 226°, and 4"-hydroxy-2:2:5'-trimethyl-5"-n-amyldibenzopyran, m.p. 86-88° [acetate (IX), m.p. 68-69°; 4"-m-nitrobenzenesulphonate, m.p. 100-101°; p-nitrobenzenesulphonate, an oil]. Similarity in the absorption spectra of (VII), (IX), and cannabinol acetate confirms the dibenzopyran structure of cannabinol.

III. Menthone, (IV), NaOEt, and Cu(OAc)₂ in boiling EtOH give 6"-keto-4": 4"-dimethyl-3": 4": 5": 6"tetrahydrodibenzopyrone, m.p. 145—146°. n-C₅H₁₁·CHO (X), COMe₂, and 10% NaOH give $COMe \cdot CH \cdot C_5H_{11} - n (46\%)$, b.p. $124 - 125^{\circ}/32 \text{ mm.}$, which with CH₂(CO₂Et)₂ and NaOEt-EtOH gives an ester, converted by hydrolysis (KOH) and heating in HCl into 5-n-amyleyclohexane-1: 3-dione (XI), m.p. 70—71°, also obtained from olivetol by H₂-Raney Ni in aq. NaOH at 125°/2800 lb. (XI), (IV), and NaOEt-Cu(OAc)₂-EtOH give 6"-keto-5'-methyl-4"-namyl-3": 4": 5": 6"-tetrahydrodibenzopyrone (78%), m.p. 95—96°, dehydrogenated by S at 250° to 6"-hydroxy-5'-methyl-4"-n-amyldibenzopyrone (34%), m.p. 186°, which with MgMeI affords cannabinol $\lceil 6^{\prime\prime}$ -hydroxy-2:2:5'-trimethyl-4''-n-amyldibenzopyran], m.p. 76-77°. Commercial (X) contains CHEt, CHO and leads by the above methods to 5-αethyl-n-propyleyclohexane-1: 3-dione, m.p. 104—105° $6^{\prime\prime}$ -keto- 5^{\prime} -methyl- $4^{\prime\prime}$ - α -ethyl-n-propyl- $3^{\prime\prime}$: $4^{\prime\prime}$: $5^{\prime\prime}$: $6^{\prime\prime}$ tetrahydrodibenzopyrone, m.p. 111—112°, 6''-hydroxy-5'-methyl-4''- α -ethyl-n-propyldibenzopyrone, m.p. 217— 218° (acetate, m.p. 128—130°), and 6''-hydroxy-2:2:5'-trimethyl-4''- α -ethyl-n-propyldibenzopyran, m.p. 133—134° (acetate, m.p. 103°; p-nitrobenzoate, m.p. 171°).

IV. 4-n-Amyldihydroresorcinol (prep. by H₂-Raney Ni at 125°/2800 lb.), m.p. 67°, (IV), NaOEt, and Cu(OAc)₂ in EtOH give 6"-keto-5'-methyl-3"- (XII) (20%), m.p. 97—99°, and -5"-n-amyl-3": 4": 5": 6"-tetrahydrodibenzopyrone (XIII) (33%), m.p. 65—66°, separated by solvents. Reactions below show (XII) and (XIII) to be acquisible tetal by solvents. and (XIII) to be equilibrated by acid or alkali. When (XII) or (XIII) is treated with Br-CHCl₃ and the product is heated in quinoline at 200°, 6"-hydroxy-5'methyl-3"- (XIV), m.p. 176—177°, and -5"-n-amyl-dibenzopyrone (XV), m.p. 182—183°, respectively, are obtained. (XIV), but not (XV), is obtained also by S at 250—255°. MgMeI converts (XV) into 2': 6'-dihydroxy-5-methyl-2- α -hydroxyisopropyl-3'-n-amyldiphenyl, m.p. 103—104°. With N-NaOMe and Me₂SO₄, (XIV) or (XV) gives 6"-methoxy-5'-methyl-3"-n-amyl-dibenzopyrone (XVI), m.p. 96°, and with CH₂PhCl-NaOMe-MeOH either gives 6"-benzyloxy-5'-methyl-3" 3''-n-amyldibenzopyrone (XVII), m.p. $121-121\cdot5^{\circ}$ hydrolysed by boiling conc. HCl-AcOH to (XIV). However, by condensation by K_2CO_3 in $COMe_2$ (XIV) and (XV) give distinct derivatives, (XV) thus yielding 6"-methoxy- (XVIII), m.p. 45—46°, and 6"-benzyloxy-5'-methyl-5''-n-amyldibenzopyrone (XIX), m.p. 86°. 6''-Benzenesulphonoxy-5'-methyl-3''-, m.p. 103—104°, and -5''-n-amyldibenzopyrone, m.p. 139°, are obtained by PhSO₂Cl in boiling C₅H₅N. If crude mixed (XII) and (XIII) are subjected to Br-quinoline, 37% of (XV) is readily isolated and the mother-liquors yield 23% of (XVII). MgMeI converts (XVI) in boiling Et₂O-C₆H₆ into a carbinol, dehydrated by anhyd. $MgSO_4$ in boiling C_6H_6 to 6"-methoxy-2:2:5'-trimethyl-3"-n-amyldibenzopyran (XX), m.p. 75—76°. (XVII) gives similarly 6"-benzyloxy-2:2:5'-trimethyl-3"-n-amyldibenzopyran (XXI), m.p. 74—75°, by way of 2'-hydroxy-6'-benzyloxy-5-methyl-3'-n-amyl-2- α -hydroxyisopropyl-3-n-amyldiphenyl, m.p. 73—74°, which with Me₂SO₄–KOH–MeOH gives 6'-benzyloxy-2'-methoxy-5-methyl-3'-n-amyl-2-isopropenyldiphenyl,

76—77°. Hydrolysis of (XX) by HBr–AcOH or of (XXI) by conc. HCl–AcOH gives 6''-hydroxy-2:2:5'-trimethyl-3''-n-amyldibenzopyran, m.p. 62—63° (acetate, m.p. 72—73°; p-nitrobenzoate, m.p. 144°). MgMeI converts (XVIII) and (XIX) into 6'-hydroxy-2'-methoxy- (XXII), m.p. $102-103^{\circ}$, and -2'-benzyloxy-(XXIII), m.p. $106\cdot5-107\cdot5^{\circ}$, -5-methyl-2-\alpha-hydroxyisopropyl-3'-n-amyldiphenyl. 48% HBr–C₆H₆ cyclises (XXIII) to 6''-benzyloxy- (XXIV), m.p. 67—68°, and (XXII) to 6''-methoxy-2:2:5'-trimethyl-5''-n-amyldibenzopyran (XXV), b.p. 182° /3 mm. $p-NO_2\cdot C_6H_4\cdot COCland$ (XXIII) in C_5H_5N give 2'-benzyloxy-6'-p-nitrobenzyloxy-5-methyl-3'-n-amyl-2-isopropenyldiphenyl, m.p. $100-101^{\circ}$. 6''-Hydroxy-2:2:5'-trimethyl-5''-n-amyldibenzopyran, b.p. $203-205^{\circ}$ /3 mm. (p-nitrobenzoate, m.p. $129-130^{\circ}$), is obtained from (XXIV) by HCl–AcOH or from (XXV) by HBr–AcOH. M.p. (all parts) are corr. R. S. C.

Structure of cannabidiol. V. Position of the alicyclic ethylenic linkings. R. Adams, H. Wolff, C. K. CAIN, and J. H. CLARK (J. Amer. Chem. Soc., 1940, **62**, 2215—2219; cf. A., 1940, II, 304).—Hydrogenation (PtO₂) of cannabidiol Me₂ ether (I) in EtOH gives dihydrocannabidiol Me, ether (II), b.p. 158-161°/2 mm., $[\alpha]_D^{28}$ —133° in 95%, EtOH. Addition of m-C₆H₄(OH)₂ and then of pulegone to LiBu^a in Et₂O-N₂ gives a partly dehydrated carbinol, converted by KHSO₄ at 140° into 2-3'-methyl-6'-isopropylidene-Δ^{1:2}-cyclohexenylresorcinol Me₂ ether (III), m.p. 75—76°, [α]_D²⁷ +56° in 95% EtOH, which with H₂-PtO₂ in EtOH (or by partial hydrogenation in AcOH) gives 2:3'-methyl-6'-isopropylidenecyclohexylresorcinol Me_2 ether (IV), m.p. $53-54^{\circ}$, $[\alpha]_{D}^{32}+60^{\circ}$ in 95% EtOH. 1:3:5-C₆H₃Me(OMe)₂ yields similarly 2-3'-methyl-5'-isopropylidene- $\Delta^{1:2}$ -cyclohexenylm.p. 81—82°, $[\alpha]_D^{27}$ +37° in 95% EtOH, and -cyclo-hexyl-orcinol Me₂ ether (VI), m.p. 114—115°, $[\alpha]_D^{39}$ +44° in 95% EtOH. Doeuvre's method (ozonisation and determination of CH₂O formed) of determining CH₂: is not quant., but a modification (described) is a reliable qual. test. It gives 63% of CH₂O from eugenyl cinnamate, 49% from cannabidiol (VII), 41% from (I), 0 from (II) or tetrahydrocannabidiol Me₂ ether. (VII) thus contains CHMe:CH₂ and not The absorption spectrum of (II) resembles :CMe $_2$. that of (IV) and (VI), but not that of (III), (V), 2-5'-methyl-2'-isopropyl- $\Delta^{1:2}$ -cyclohexenylresorcinol or orcinol Me, ether. The endocyclic ethylenic linking of (VII) is thus not conjugated with the aromatic nucleus. R. S. C.

Conversion of cannabidiol into a product with marihuana activity. Type reaction for synthesis of analogous substances. Conversion of cannabidiol into cannabinol. R. Adams, D. C. Pease, C. K. Kain, B. R. Baker, J. H. Clark, H. Wolff, and R. B. Wearn (J. Amer. Chem. Soc., 1940, 62, 2245—2246).— C_5H_5N ,HCl, HCl-EtOH, HCl-Et $_2O$, NH $_2$ ·SO $_3H$, H $_3PO_4$ -EtOH, or ZnCl $_2$ -EtOH isomerises cannabidiol to tetrahydrocannabinol (I), b.p. 188—190°/2·5 mm. α varies (e.g., $[\alpha]_D^{2D}$ -160° or $[\alpha]_D^{3D}$ -240°) owing to stereoisomeric differences according to the method of prep. Dehydrogenation of (I) gives cannabinol and reduction gives hexahydrocannabinol,

b.p. $153-155^{\circ}/0.1$ mm., $[\alpha]_{D}^{27}$ (always) -70° . Et 5-methylcyclohexanone-2-carboxylate, oreinol, and

(II.)
$$CH_2 < CHMe \cdot CH_2 > C - Me$$

$$CH_2 - CHMe \cdot CH_2 > C - Me$$

POCl₃ give the pyronc, converted by MgMeI into the substance (II), m.p. 115·5—116°. (I) has marihuana activity. R. S. C.

Cannabis Indica. III. Synthesis of dibenzopyran derivatives, including an isomeride of cannabinol. R. Ghosh, D. C. S. Pascall, and A. R. Todd. IV. Synthesis of some tetrahydrodibenzopyran derivatives. R. Gноsh, A. R. Торр, and S. Wilkinson (J.C.S., 1940, 1118—1121, 1121-1125).—III. 3:1:4-NO·NAc·C₆H₃Me·CN pared from 3:1:4-NHAc·C₆H₃Me·CN and (decomposed on keeping in C₆H₆ to 2-cyano-5-methyl-diphenyl, m.p. 87—88°), with p-C₆H₄(OMe)₂ gives 2'-cyano-2:5-dimethoxy-5'-methyldiphenyl, m.p. 97° $[-2:5-(OEt)_2$ -compound, m.p. $72-73^{\circ}$], which with $\overline{\text{HBr}}$ affords 6-hydroxy-5'-methyl-3: 4-benzocoumarin, m.p. 233—234° (decomp.) (acetate, m.p. 155°). The acetate with MgMeI and PhOMe affords 5"-hydroxy-2:2:5'-trimethyldibenzopyran, m.p. 118° (acetate, m.p. 86-87°; 3:5-dinitrobenzoate, m.p. 169°). A corresponding series of reactions with 1:2:5-n- $C_5H_{11}\cdot C_6H_4(OMe)_2$ (2-acetoxy-5-methoxyvalerophenone, m.p. 72—73°, and its semicarbazone, m.p. 159—160°, and ketazine, m.p. 161—162°) affords 2'-cyano-2:5dimethoxy-5'-methyl-4-n-amyldiphenyl, b.p. 95—100°/ 0.036 mm., 6-hydroxy-5'-methyl-7-n-amyl-3: 4-benzocoumarin, m.p. 191—192° (acetate, m.p. 138—139°), 5"-hydroxy-2:2:5'-trimethyl-4"-n-amyldibenzopyran, m.p. 110-111°; the last-named substance is an isomeride of cannabinol. Orcinol Me, ether and (I) give 2-cyano-2': 6'-dimethoxy-4': 5-dimethylazobenzene, m.p. 126°.

IV. Condensation of quinol with Et cyclohexanone-2-carboxylate (H₂SO₄) gives 6-hydroxy-3:4-cyclo-hexenocoumarin, m.p. 239—240°; the -5'-Me compound, m.p. 246°, is obtained with Et 1-methylcyclohexan-3-one-4-carboxylate, and the 7-hydroxy-5'methyl derivative, m.p. 199-200° (lit. 142°), from 5-Hydroxy-5'-methyl-7-n-amyl-3:4m- $C_6H_4(OH)_2$. cyclohexenocoumarin, m.p. 177°, is prepared from olivetol monohydrate. The following Ac derivatives are obtained from the OH-compound and AcoO in C_5H_5N : 7-acetoxy-, m.p. 185—186°, and 7-acetoxy-5'methyl-, m.p. 132°, 6-acetoxy-, m.p. 139—140°, 5-acetoxy-7-methyl-, m.p. 124°, and 5-acetoxy-5'-methyl-7'-n-amyl-, m.p. 82—83°, -3: 4-cyclohexenocoumarin. By condensation of the appropriate coumarin with MgMel the following are prepared: 4"-hydroxy-2:2-dimethyl-, m.p. 135° (Ac derivative, m.p. 66°), 4'' $hydroxy-2:\bar{2}:5'$ -trimethyl-, m.p. 144—14 $\hat{5}^{\circ}$ (Ac derivative, m.p. 58°), 5"-hydroxy-2: 2-dimethyl-, m.p. 130°, 6"-hydroxy-2: 2: 4"-trimethyl-, m.p. 138° (Ac derivative, m.p. 107—108°), 6''-hydroxy-2:2:5':4''-tetra-methyl-, m.p. 112—113° (Ac derivative, m.p. 124°), and 6''-hydroxy-2:2:5'-trimethyl-4''-n-amyl-, b.p. $165-175^{\circ}/0.02 \text{ mm.}, -3': 4': 5': 6'-tetrahydrodibenzo-$ pyran; dehydrogenation (Pd-C) of the Ac derivative of the last compound gives cannabinol.

F. R. S. Active principles of leguminous fish-poison plants. V. Derris malaccensis and Tephrosia toxicaria. S. H. Harper (J.C.S., 1940, 1178—1184).—The resin from D. malaccensis has been fractionated by chemical means and pure l-α-toxicarol has been obtained. In addition rotenone, elliptone, deguelin, malaccol, sumatrol, and a phenol (I), C₂₃H₂₂O₇, m.p. 219°, α_D ±0° in CHCl₃ (O-Ac, m.p. 210°, O-Bz, m.p. 193°, and O-Me derivatives, m.p.

$$\begin{array}{c|c} \text{MeO} & \text{CO OH} & \text{iso} \\ \text{MeO} & \text{CH} & \text{CH} & \text{wo} \\ \text{(I.)} & \text{CH:CH} & \text{CMe}_2 & \text{(I)} \\ \end{array}$$

178°), have been isolated. As a working hypothesis structure (I) is suggested. The resin from T. toxicaria has

been similarly fractionated, and rotenone, l- α -toxicarol, and sumatrol have been isolated. F. R. S.

Constitution of santalin. J. B. Lal (Proc. Nat. Acad. Sci. India, 1939, 9, 83—88).—Previous work on santalin is reviewed, and reasons are given for assigning to it and its hydrochloride the appended formulæ:

R = 3-hydroxy-4-methoxyphenyl; R' = 4-(5-hydroxy-6-methoxy-2-p-methoxyphenyl-1:4-benzopyranyl). A. Li.

Spectrographic study of rottlerin and its derivatives.—See A., 1940, I, 402.

Benzene-o-bisthioindoxyl.—See B., 1940, 726.

Synthesis of emetine and its analogues. Oxidation of 3-carbalkyloxy-1-β-phenylethylpyridinium salt [bromide]. S. Sugasawa, K. Sakurat, and T. Okayama (Proc. Imp. Acad. Tokyo, 1940, 16, 225—228).—3-Carbomethoxy-, decomp. 197°, 3-carbethoxy-, m.p. 193—194°, and 3-carboxylamido-1-β-phenylethylpyridinium bromide, m.p. 209° (all prepared by addition), are oxidised by alkaline K₃Fe(CN)₆ to 1-β-phenylethyl-2-pyridone-, m.p. 190—191°, reduced catalytically, or better by Na-Hg, to -2-piperidone-5-carboxylic acid (I), m.p. 140°. Ph·[CH₂]₂·NH₂ (II) and CO₂Et·CH(CHO)·CH₂·CO₂Et at room temp. give a product which after catalytic reduction in EtOH yields (with spontaneous ring-closure) the Et ester, b.p. 170—180°/4 mm., of 1-β-phenylethyl-2-pyrrolidone-4-carboxylic acid, m.p. 192—193°. (II) and CO₂Et·CH(CHO)·[CH₂]₂·CO₂Et similarly give the Et ester, an oil, of (I).

Action of diazomethane on acid chlorides of the pyridine series. A. Dornow (Ber., 1940, 73, [B], 185—188).—Nicotinyl chloride hydrochloride with $\mathrm{CH_2N_2}$ in $\mathrm{Et_2O}$, followed by HCl, gives, after heating with $\mathrm{H_2O}$, 3-hydroxyacetylpyridine, m.p. 41—42° (picrate, m.p. 142—143°), which has a hyperæmic

action. The 3-diazoacetylpyridine, intermediately formed, with cold conc. HCl gives the hydrochloride, decomp. $245-250^{\circ}$ (darkening from 200°), of 3-chloroacetylpyridine, m.p. $51-52^{\circ}$ (picrate, m.p. 132°). With C_5H_5N in PhNO2, this gives 1-(3'-pyridoylmethyl)pyridinium chloride, m.p. $129-130^{\circ}$ [product, $C_{15}H_{11}O_7N_5$, m.p. $\sim 125-130^{\circ}$ (decomp.), with picryl chloride]. isoNicotinic acid with SOCl2 gives the chloride hydrochloride, which with CH_2N_2 in Et_2O gives 4-diazoacetylpyridine, m.p. $(+0.5H_2O)$ 35-36° (picrate, m.p. 244°), converted by conc. HCl into 4-chloroacetylpyridine, m.p. (+MeOH) 103° (decomp.), and by AeOH into 4-acetoxyacetylpyridine, m.p. $68-69^{\circ}$ [picrate, m.p. 148° (decomp.)].

Arylpyridines. 3- and 4-Pyridyldi-IV. phenyls. I. M. HEILBRON, D. H. HEY, and A. LAMBERT (J.C.S., 1940, 1279—1284).—Diazotised 3-C₆H₄Ph·NH₂ and C₅H₅N give a mixture of 3-α-, b.p. 75—85°/0.002 mm., and 3-γ-pyridyldiphenyl, m.p. 81—82°, separated by fractional crystallisation of the picrates, m.p. 169° (I) and 231° (II), respectively. Reduction (SnCl₂-HCl) of α-3-nitrophenylpyridine gives the NH₂-derivative, which with Ac₂O affords the $3-\alpha-NHAc$ -compound, m.p. $141-142^{\overline{0}}$ through the NO-derivative (NOCl) and treatment with $C_6H_2(NO_2)_3$ OH into (I). A similar series of reactions leads to β-3-amino-, m.p. 77—78°, and -acetamido-phenylpyridine, m.p. 135—136°, and 3-βpyridyldiphenyl, b.p. 75—85°/0.002 mm. (picrate, m.p. 178—179°), and γ-3-amino-, m.p. 165—166°, and -acetamido-phenylpyridine, m.p. 171—172°, and (II). Diazotised 4-C₆H₄Ph·NH₂ and C₅H₅N yield a mixture of 4-γ-, m.p. 215° and 4-α-pyridyldiphenyl picrates m.p. 186-187°, the identity of which is similarly proved by the prep. of α -4-acetamido-, m.p. 135—136° and -nitrosoacetamido-phenylpyridine, m.p. 88—89° (decomp.), $4-\alpha$ -pyridyldiphenyl (III), m.p. $141-142^{\circ}$, β -4-acetamidophenylpyridine, m.p. $181-182^{\circ}$, $4-\beta$ -pyridyldiphenyl (IV), m.p. $151-152^{\circ}$ (picrate, m.p. $208-210^{\circ}$), γ -4-acetamidophenylpyridine, m.p. $210-211^{\circ}$, and $4-\gamma$ -pyridyldiphenyl (V), m.p. 209° . Nitration (HNO₃-AcOH) of (III) gives a mixture of 4'-nitro-, m.p. 213° (NH₂-compound, m.p. $191-192^{\circ}$, and 4'-designation of 4'-pyridyldiphenyl (V), m.p. 209° . and its Ac derivative, m.p. 236—237°), and 2'-nitro-4-\alpha-pyridyldiphenyl, m.p. 136—137° [nitrate, m.p. 188—190° (decomp.); NH_2 -compound, m.p. 98—99° and its Ac derivative, m.p. 146—147°). Similar nitration of (IV) affords 4'-, m.p. 192—193°, and 2'nitro-4-β-pyridyldiphenyl, m.p. 124—125°, and of (V) yields 4'-, m.p. 196—197°, and 2'-nitro-4-γ-pyridyl-diphenyl, m.p. 99—100°. The constitution of the nitration products is proved by oxidation to the corresponding $NO_2 \cdot C_6 H_4 \cdot CO_2 H$. F. R. S.

Antiplasmodial action and chemical constitution. III. Carbinolamines derived from naphthalene and quinoline. H. King and T. S. Work. IV. Synthesis of complex carbinolamines and polyamines. T. S. Work (J.C.S., 1940, 1307—1315, 1315—1320; cf. A., 1938, II, 163).—III. α-Naphthoyldiazomethane (from α-C₁₀H₇·COCl and CH₂N₂ in Et₂O), m.p. 56°, with HCl in Et₂O gives α-C₁₀H₇·CO·CH₂Cl, which when treated with the appropriate NHR₂ in Et₂O and reduced (H₂, Pd-C, MeOH-aq. HCl) yields 1-naphthyldimethyl- (picrate,

m.p. 178—180°), -diethyl- (picrate, m.p. 136°), -di-βhydroxyethyl- (picrate, m.p. 127—128°), and -di-n-propyl-amino- (picrate, m.p. 149—150°), and -piperidino-methylcarbinol (hydrochloride, m.p. 270°). 7-Methoxy-1-naphthacyl bromide (from OMe·C₁₀H₆·COCl as above; prep. starting from $1:7\text{-CN}\cdot\text{C}_{10}\text{H}_6\cdot\text{SO}_3\text{H}$ described), b.p. $165\text{--}170^\circ/1$ mm., similarly gives 7methoxy-1-naphthylpiperidinomethylcarbinol (hydrochloride, m.p. 225-227°). 4-Quinolyl CH₂Cl ketone, m.p. 101°, is prepared from the CHN₂ ketone, m.p. 83-84°. 4-Quinolyl CH₂Br ketone hydrobromide [from Et 4-quinoloylacetate (improved prep.)] similarly yields (as above) 4-quinolyl-diethyl- (dipicrate, m.p. 168°), -di-n-propyl- (dipicrate, m.p. 153°), and -di-n-amyl-amino- (dipicrate, m.p. 142°), -piperidino- [dipicrate, new m.p. 168° (decomp.); hydrochloride, m.p. 160°], and -4': 4"-piperidylpiperidino-methylcarbinol [using N-benzoyl-4: 4'-dipiperidyl (hydrobromide, m.p. 233°; perchlorate, m.p. 268°), obtained (together with the Bz_2 compound, m.p. 167°) from dipiperidyl and BzCl in $COMe_2-H_2O$ at p_{π} 3.8] [trihydrochloride, m.p. >300° (decomp.); tripicrate, m.p. 195°]. 6-Methoxy-4-quinolyl CH₂Br ketone hydrobromide similarly yields 6-methoxy-4-quinolyldiethyl- (dihydrochloride, m.p. 182—183°), -di-nbutyl- (I) (dihydrochloride, m.p. 142°; dipicrate, m.p. 169°), -di-n-amyl- (II) (dipicrate, m.p. 155°), -diisoamyl- (dipicrate, m.p. 156°), -di-n-hexyl- (III) (dipicrate, m.p. 173°), and -di-n-heptyl- (dipicrate, m.p. 130°), -piperidino- (hydrochloride, m.p. 164°), and -4': 4"-piperidylpiperidino-methylcarbinol (trihydrochloride, anhyd. and $+2H_2O$, decomp. $>300^\circ$). 6-Methoxy-4-quinolylmethylcarbinol hydrochloride, m.p. 217°, was obtained in an attempt to prepare the ${\rm NBu}^{\rm g}_{\rm 2}$ -compound. Of these carbinolamines, (I), (II), and (III) show weak antiplasmodial activity (P. relictum) in canaries, the others none. Di-n-hexyl-, (IV), b.p. 122°/15 mm. (tetrahydrate, b.p. 114—116°/ 14 mm.; hydrochloride, m.p. 270°), and -heptylamine (V), m.p. 1° (lit. 30°) (trihydrate, m.p. 32—33°; hydrochloride, new m.p. 255°), are prepared by catalytic reduction (H₂, PtO₂, AcOH) of di-n-hexyl-, b.p. 185°/14 mm., and -heptyl-benzylamine, b.p. 205°/ 16 mm., respectively. n-Hexyl-, b.p. 146—148°/14 mm. (hydrochloride, m.p. 217—218°), and heptylbenzylamine (hydrochloride, m.p. 196°) are obtained (hydrochloride). as by-products in the prep. of (IV) and (V) from CH₂Ph·NH₂ and the alkyl bromide.

IV. p-C₆H₄Ph·CO·CH₂Cl with piperidine (I) in COMe₂ yields p-diphenylyl piperidinomethyl ketone, m.p. 86° (picrate, m.p. 188°), reduced (H₂, PtO₂, EtOH-aq. HCl) to the corresponding carbinol, m.p. 120° [hydrochloride, m.p. 243° (decomp.); methiodide, m.p. 205°]. 4:4'-Di(chloroacetyl)diphenyl, m.p. 226—227° (from the acid chloride with CH₂N₂ followed by HCl in C₆H₆), with (I) in boiling CHCl₃ yields 4:4'-di(piperidinoacetyl)diphenyl, m.p. 140°, reduced (as above) to 4:4'-bis-(β-piperidino-α-hydroxyethyl)diphenyl, m.p. 158°. Sebacyl chloride with CH₂N₂ in Et₂O gives the bis(diazo-ketone), m.p. 91°, converted by HCl in C₆H₆ into αμ-dichloro-βλ-diketo-dodecane, m.p. 92°; this with (I) in COMe₂ yields the αμ-dipiperidino-derivative, m.p. 43°, reduced (as above) to αμ-dipiperidino-βλ-dihydroxydodecane, m.p. 78° (dipicrate, m.p. 152°), and with NHEt₂ and similar

reduction yields αμ-bisdiethylamino-βλ-dihydroxydodecane (an oil) (dipicrate, m.p. 121°). [CH₂]₁₀(COCl)₂ similarly yields the bis(diazo-ketone), m.p. 96°, aξdichloro-, m.p. 97°, and -dipiperidino-βν-diketotetra-decane (II), m.p. 48°, which is not reduced by H₂-PtO₂, and with Al-Hg in neutral solution gives βν-diketotetradecane, m.p. 75°, and a base from which no cryst. derivative could be obtained. MgPraBr and $\alpha \xi$ -dipiperidino- $\beta \nu$ -dihydroxy- $\beta \nu$ -dipropyltetradecane, b.p. 230-240°/0.3 mm. NN'-Di-ptoluenesulphonylbenzidine (III) with NEt2 (CH2) Cl (IV), new b.p. 75—76°/29 mm., in boiling aq. EtOH-NaOH gives a product hydrolysed by AcOH-conc. HCl at 180° under pressure to NN'-bis-(γ-diethylaminopropyl)benzidine, b.p. 230—250°/0·9 mm. [tetrahydro-bromide, m.p. 260° (decomp.)]. NHBz·[CH₂]₅·Cl, (III), and NaOH in H₂O-COMe₂ at 150—160° under pressure yield NN'-di-p-toluenesulphonyl-NN'-di-Ebenzamidoamylbenzidine, m.p. 192° , hydrolysed to NN'-di- ε -aminoamylbenzidine, m.p. 270° (decomp.) [tetrahydrochloride (hygroscopic)]. 4:4'- and 2:4'-Dipiperidyl with NEt₂·[CH₂]₂·Cl in EtOH at 100° under pressure yield 1:1'-bis-β-diethylaminoethyl-4:4'-, b.p. 200—230°/0·3 mm. [tetrapicrate, m.p. 250° (decomp.)], and -2:4'-dipiperidyl, b.p. 205—210°/0·5 mm. (tetrapicrate, m.p. 170°). Tetrahydroquinoline with (IV) at 100° under pressure yields 1-ydiethylaminopropyltetrahydroquinoline, b.p. 192°/10 mm. (dipicrate, m.p. 147°). αζ-Di-p-toluenesulphonamidohexane, m.p. 152° (from NH₂·[CH₂]₆·NH₂, p-C₆H₄Me·SO₂Cl, and aq. NaOH), with (IV) in aq. EtOH-NaOH at 100° gives a product hydrolysed (AcOH-HCl at 180°) to αζ-di-(γ-diethylaminopropylamino)hexane, b.p. 135—140°/0.5 mm. (tetrahydrobromide, m.p. 64°). ακ-Di-p-toluenesulphonamido-decane (V), m.p. 129°, similarly yields ακ-di-(γ-diethylaminopropylamino)decane, b.p. 178—184°/1.5 mm. [crude hydrobromide (hygroscopie), m.p. 142—143°]. iso-C₅H₁₁Br and (V) under similar conditions give ακ-diisoamylaminodecane (dihydrochloride, m.p. 318°). None of the compounds described has antiplasmodial activity, thus showing the importance of the quinoline nucleus.

Nitrogen compounds in petroleum distillates. XVIII. Isolation, ozonisation, and synthesis of 2: 4-dimethyl-8-sec.-butylquinoline. SCHENCK and J. R. BAILEY (J. Amer. Chem. Soc., 1940, **62**, 1967—1969; cf. A., 1940, II, 24).—Cumulative, followed by countercurrent, extraction of the residual bases from 2:3:4-trimethyl-8-ethyl- and -8-n-propyl-quinoline (I) (A., 1933, 1305) gives a further amount of (I) and 2:4-dimethyl-8-sec.-butylquinoline (II), b.p. 310° (picrate, m.p. 148—150°). $K_2Cr_2O_7$ -dil. H_2SO_4 oxidises (II) to 2:4-dimethylquinoline-8-carboxylic acid. Ozonisation of (II) in CCl₄ and oxidation of the product by H₂O₂ gives CHMeEt·CO₂H (III). 70% of (II) is obtained from CH₂Ac₂ and o-CHMeEt·C₀H₄·NH₂. CH₂Ac₂ and p-CHMeEt·C₀H₄·NH₂. CHMeÉt·C₆H₄·NH₂ give 2 : 4-dimethyl-6-sec, butyl-quinoline, b.p. 321° (picrate, m.p. 141—142°), giving (III) by O₃ and then H₂O₂. Successive treatment with O₃, 3% H₂O₂, and boiling aq. K₂CO₃ converts (I) into NH₃, H₂C₂O₄, HCO₂H, AcOH, Pr^aCO₂H, and a little CO₂.

Carbazolecarboxyl chlorides.—See B., 1940, 762.

Sulphanilamides. I. 3-(p-Aminobenzenesulphonamido)carbazole. A. Novelli (Anal. Asoc. Quím. Argentina, 1940, 28, 87—90).—3-Aminocarbazole (modified prep.) with p-NHAc C_6H_4 ·SO $_2$ Cl in COMe $_2$ boiled in presence of C_5H_5 N yields the Ac derivative, m.p. 252—255°, of 3-(p-aminobenzenesulphonamido)carbazole, m.p. 256—257°. F. R. G.

Effect of $p_{\rm H}$ and irradiation on the ultra-violet absorption spectrum of barbituric acid.—See A., 1940, $\bar{\rm I}$, 402.

Barbituric acids.—See B., 1940, 702

Synthesis of tetrahydropyrimidines. S. R. ASFINALL (J. Amer. Chem. Soc., 1940, 62, 2160—2162).—NH₂·[CH₂]₃·NH₂ and EtOAc (1:3 mol.) at 165° give 60% of the Ac_1 derivative (I), b.p. 130°/3 mm. (picrate, m.p. 197°), which with CaO at 250° gives 90% of 2-methyl-3:4:5:6-tetrahydropyrimidine (II), b.p. 91°/4 mm., m.p. 75° (lit., 72—74°) [phenylcarbamido-derivative, m.p. 147°; picrate, m.p. 157° (lit., 152°)]. Acetylation at 150° (or 250°) gives a mixture of (I) and (II), but dehydration of this crude product gives 70% of (II). NHBz·[CH₂]₃·NH₂ (phenylcarbamido-derivative, m.p. 166°) and 2-phenyl-3:4:5:6-tetrahydropyrimidine, m.p. 87° (lit., 72—78°), b.p. 155—165°/5 mm. (picrate, m.p. 181°), are similarly obtained.

Attempts to find new antimalarials. XVII.

Derivatives of 5:6:3':2'-pyridoquinoline. W. O. KERMACK and (MISS) A. P. WEATHERHEAD (J.C.S., 1940, 1164—1169).—2-Hydroxy-4-methyl-5:6:3':2'pyridoquinoline, m.p. 330°, prepared from 6-amino-2hydroxy-4-methylquinoline (Skraup reaction), with PCl₅ gives the 2-Cl-compound, m.p. 204°, which with the appropriate reagent affords 2-piperidino-, m.p. 104° (hydrobromide, m.p. >400°) 2-ninergains 104° (hydrobromide, m.p. >400°), 2-piperazino-($+2H_2O$), in.p. 110°, anhyd., m.p. 125°, 2- β -diethylaminoethylamino-, m.p. 123° (hydrobromide, m.p. 229°), and $2-\gamma$ -diethylaminopropylamino-4-methyl- $5:\hat{6}:3':2'$ pyridoquinoline hydrobromide (+2H₂O), m.p. 265°. 2-Chloro-6-nitro-4-methylquinoline and $NEt_2 \cdot [CH_2]_2 \cdot NH_2$ yield 6-nitro-2-\beta-diethylaminosthylamino-4-methylquinoline hydrochloride, m.p. 165°, and picrate, m.p. 210°. 4-Hydroxy-2-methyl-5:6:3':2'pyridoquinoline, m.p. 358°, obtained from 6-amino-4hydroxy-2-methylquinoline, in a similar series of reactions, leads to 4-chloro-, m.p. 149°, 4-piperidino-, m.p. 163° (picrate, m.p. 225°), and 4-β-diethylaminoethylamino-2-methyl-5:6:3':2'-pyridoquinoline (+ $\rm H_2O$), m.p. 68°. p-N $\rm H_2\cdot C_6H_4\cdot NHAc$ and Et oxaloacetate condense to Et α -p-acetamidoanilinofumarate, m.p. 122°, cyclised to Et 6-acetamido-4-hydroxyquinoline-2-carboxylate, m.p. 309°, which is hydrolysed (HCl) to 6-amino-4-hydroxyquinoline-2-carboxylic acid (I), m.p. 308° (hydrochloride, m.p. >400°). NH_oPh and Et oxaloacetate give Et 4-hydroxyquinoline-2-carb-oxylate, m.p. 212°, which is nitrated (H₂SO₄-HNO₃) to the 6- NO_2 -compound, m.p. 286°; reduction of this with SnCl₂-HCl affords (I). The sulphate, m.p. 275°, of 6-amino-4-hydroxyquinoline (dihydrochloride, m.p. 305°) gives (Skraup reaction) 4-hydroxy-5:6:3': $\hat{2}$ 'pyridoquinoline (II) (+0.5H₂O), m.p. 298°, which is converted successively into the 4-Cl-, m.p. 147°, 4- β -diethylaminoethylamino-; m.p. 235°, and 4- γ -diethylaminopropylamino-compounds (picrate, m.p. 231°). (II) has the angular structure. F. R. S.

Colour in relation to chemical constitution of the organic and inorganic salts of oximino-malonylguanidine. I. N. D. Dass and S. Dutt (Proc. Nat. Acad. Sci. India, 1939, 9, 93—98).— Oximinomalonylguanidine (I) [from guanidine carbonate with $CH_2(CO_2Et)_2$ at $150-160^\circ$, followed by HNO_2] in H_2O is violet and has an absorption spectrum almost identical with those of its K, Na, NH_4 , NH_3Me , NH_3Et , NH_2Me_2 , NH_2Et_2 , $NHMe_3$, NH_3Pr , NH_3Bu , and piperidinium salts. (I) does not form salts with very weak bases, and probably has the

structure CH NH-CO C·NO.

A. Li.

Phthalocyanines and related compounds. XVII. Intermediates for the preparation of tetrabenzporphins: acids derived from phthalimidine. R. P. LINSTEAD and G. A. ROWE. XVIII. Intermediates for the preparation of tetrabenzporphins: Thorpe reaction with phthalonitrile. P. A. Barrett, R. P. Linstead, and (in part) J. J. LEAVITT and G. A. Rowe. XIX. Tetrabenzporphin, tetrabenzmonazaporphin, and their metallic derivatives. P. A. BARRETT, R. P. LINSTEAD, F. G. RUNDALL, and G.A. P. TUEY (J.C.S., 1940, 1070) -1076, 1076—1079, 1079—1092).—XVII. Condensation of iminophthalimidine with CH₂Ac CO₂Et at 140° (no catalyst) gives Et phthalimidyl-3-acetoacetate, m.p. 101°, with evolution of heat and NH₃; with CH₂(CO₂Et)₂, a smaller yield (at 199°) of 3-dicarbethoxymethylenephthalimidine (I), m.p. 104-105°, is obtained. Both products are readily oxidised (KMnO₄) to phthalimide. Hydrolysis [Ba(OH)₂] of (I) affords 3-carboxymethylenephthalimidine (II), m.p. 220° (Me ester, m.p. 124-125°). This acid is also obtained from phthalylacetic acid and aq. NH₃ after acidification at room temp. but if acidified at 0-5°, the monohydrate of o-carbamylbenzoylacetic acid (III), m.p. 120° (Me ester, m.p. 116—117°), is formed; this is identical with the "dihydrate" of (II). Reduction of (II) with Na-Hg gives 3-carboxymethylphthalimidine (Me ester, m.p. 139—140°), identical with isoindolinone-3-acetic acid. This substance is also formed by reduction (Na-Hg) of (III) at room temp. but at 0°, β-hydroxy-β-0-carbamylphenylprominic acid, m.p. 180°, is obtained; this, when herted under reduced pressure at 105°, yields the phthalimidine. $o \cdot \text{CN} \cdot \text{C}_6 \text{H}_4 \cdot [\text{CH}_2]_2 \cdot \text{CO}_2 \text{H}$ (Me ester, b.p. 290—295°) is prepared by reduction (Na-Hg) of the corresponding cinnamic acid.

XVIII. Condensation (Thorpe reaction) of o-C₆H₄(CN)₂ with CH₂Ph·CO·CN gives 1 imino-3-cyanobenzylidenephthalimidine, m.p. 207—209°, isolated as the hydrochloride, m.p. 299°, and hydrolysed (HCl–EtOH) to 3-cyanobenzylidenephthalimidine, m.p. 228—230°. Similar condensation with CN·CH₂·CO₂Et affords 3-cyanocarbethoxymethylenephthalimidine, m.p. 170°, and with CH₂(CO₂Et)₂ yields 1-imino-3-dicarbethoxymethylenephthalimidine, m.p. 97° (hydrochloride, m.p. 210°). Hydrolysis of this acid with NaOH-

EtOH leads to the *imino-acid* (IV), m.p. 280—300° (decomp.); with HCl-H₂O, 3-dicarbethoxymethylene-phthalimidine, m.p. 108°, is obtained, which is hydrolysed to (II).

XIX. Zn and (IV) when heated at 330—340° and treated with HCl give tetrabenzmonazaporphin, green crystals with a bluish-purple lustre, which forms Cu, Fe^{II}, and Mg derivatives; its structure is proved by quant. oxidation. The substance is also produced from MgMeI and o-C₆H₄(CN)₂ (17% yield). 3-Amino-1:1-dimethyl-ψ-isoindole and Ac₂O yield 2-acetyl-3:3-dimethylphthalimidine, m.p. 105-106°, hydrolysed to 3:3-dimethylphthalimidine, m.p. 162°, which gives only a trace of pigment with $Zn(OAc)_2$. 3-Carboxymethylphthalimidine and Zn afford Zn tetrabenzporphin, converted by HCl into tetrabenzporphin (Mg derivative), of which the structure is proved by quant. oxidation. o-CN·C6H4·COMe may be used for the prep. of Cu derivatives of tetrabenz-monaza-, -diaza-, and -triaza-porphin. The absorption spectra of all these compounds have been measured quantitatively and the results are compared with those for the analogous phthalocyanine and tetrabenztriazaporphin derivatives. The various methods available for their prep. are reviewed and possible mechanisms are discussed. F. R. S.

Phthalocyanines.—See B., 1940, 660.

Preparation of biliverdin. R. Lemberg and J. W. Legge (Austral. J. Exp. Biol., 1940, 18, 95—98).—The "blue stable stage" in the oxidation of bilirubin by $\rm H_2O_2$ in acid-EtOH solution (method of Malloy and Evelyn) is biliverdin (I) (dehydrobilirubin). A new method for the prep. of (I) based on this yields about 40% of pure cryst. product. Prolonged oxidation by $\rm H_2O_2$ attacks the unsaturated side-chains of (I) but not the tetrapyrrole nucleus; there are no marked changes in the absorption spectrum.

Cyanine dyes.—See B., 1940, 703.

Electron-sharing ability of organic radicals. XI. 2-Thienyl- and 2-mesityl-pyrrolidines. J. G. KY::CHNER and I. B. JOHNS (J. Amer. Chem. Soc., 1:40, 62, 2183—2184).—Mg 2-thienyl iodide and Cl-[CH₂].-CN in boiling Et₂O and then in xylene give 2-2'-thienylpyrroline (27.5%), m.p. 57°, b.p. 111.1—112.1°/4 mm. (picrate, m.p. 197.7°), reduced by Sn-HCl (Na-EtOH causes decomp.) to 2-2'-thienyl-pyrrolicine (I), b.p. 88—89°/3 mm., $-\log K_B$ 6.47 in MeOII, 4.65 in H₂O (picrate, m.p. 187.6°). 1:3:5:2-C₆H₂Me₃Br gives similarly 2-mesityl-pyrroline, b.p. 101—102° (corr.)/2 mm. [picrate, m.p. 180° (corr.)], and -pyrrolidine, b.p. 124.2° (corr.)/3.5 mm., $-\log K_B$ 6.73 in MeOH (picrate, m.p. 194.6°; resists resolution). (I) gives a camphorate, m.p. 128—129°, [α]¹_p+15.54° in EtOH, and thence a partly resolved base, [α]²_p -3.12° in EtOH. R. S. C.

Chemotherapy. I. Substituted sulphanilamidopyridines. R. O. Roblin, jun., and P. S. Winner. II. Heterocyclic sulphanilamidocompounds. R. O. Roblin, jun., J. H. Williams, P. S. Winner, and J. P. English (J. Amer. Chem. Soc., 1940, 62, 1999—2002, 2002—2005).—Products marked (A) below are more active chemotherapeutie-

ally than sulphanilamide and sulphapyridine; those marked (S) are slightly active; others are inactive. Solubility in $\mathrm{H}_2\mathrm{O}$ and max. blood levels are recorded. The importance of the latter as indicating presence in the blood of a reasonable amount of the drug is

stressed. M.p. are corr.

I. The following are prepared. 2- (A), m.p. 190—191°, and 3-sulphanilamidopyridine (A), m.p. 258—259° (decomp.); 2-chloro- (A), m.p. 186—187°, 2-bromo- (A), m.p. 196—197°, 2-amino-, m.p. 207—208°, 2-hydroxy-, m.p. 243—244° (decomp.), and 2-ethoxy-, m.p. 207—208°, -5-sulphanilamidopyridine; 5-bromo-, m.p. 199—200°, 5-iodo-, m.p. 220—221°, 5-nitro- (A), m.p. 220—221°, 5-amino- (A), m.p. 157—158°, and 3-ethoxy- (S), m.p. 198—200°, -2-sulphanilamidopyridine; 2:5-disulphanilamidopyridine (S), m.p. 215—216°. The effect of substituents is remarkable. Hydrogenation [Pd(OH)₂-CaCO₃] of 2-p-nitrobenzenesulphonamido-3-ethoxypyridine in 95% EtOH at 50°/3—4 atm. gives 2-p-hydroxyl-aminobenzenesulphonamido-3-ethoxypyridine, m.p. 189—190°.

II. Addition of malic acid and then of NH:C(NH₂)₂,H₂SO₄,0·5H₂O to 20% fuming H₂SO₄ at 0° gives isocytosine sulphate (69%), converted by boiling POCl₃ into 4-chloro-2-aminopyrimidine (71%), which was H₂-Pd(OH)₂-CaCO₃ in MeOH or EtOH at 50°/3—4 atm. gives 2-aminopyrimidine. By the usual methods are obtained: 2-sulphanilamido-thiazole (A), m.p. 201—202°, -4-methylthiazole (A), m.p. 237—238° -benzthiazole, m.p. 304—305° (decomp.), -4-p-di-phenylylthiazole, m.p. 216—217°, -1:3:4-thiadiazole, $p\text{-NH}_2\cdot C_6H_4\cdot SO_2\cdot NH\cdot C \ll \stackrel{S\cdot CH}{N\cdot N}$, m.p. 216—218° (decomp.), -pyrimidine (I) (A), m.p. 255—256° (decomp.) (Na salt; $N^{4'}$ -Ac derivative, m.p. 258—259°), and -4-methylpyrimidine (II) (A), m.p. 235-236° (decomp.) (N⁴-Ac derivative, m.p. 248—249°); 1sulphanilyl-3-methyl- (S), m.p. 166—167°, and 4-sulphanilamido-1-phenyl-2:3-dimethyl-, m.p. 260— 261° (decomp.), -5-pyrazolone; 5-p-nitrobenzenesul-phanilamidotetrazole (III), m.p. 185—186° (decomp.); sulphanilylguanidine (IV) (S), m.p. 189—190° (decomp.); 5-sulphanilamidouracil, m.p. 277—279° (decomp.). Attempts to reduce the NO₂ of (III) led to (IV) or its NO₂-derivative. (I) and (II) show promise clinically. To avoid confusion it is proposed to call (I), (II), etc. "sulphadiazines."

Synthesis of $\omega\omega'$ -bis-2'-amino-4'-thiazolylalkanes and N^4 -2'-thiazolylsulphanilamides. J. Walker (J.C.S., 1940, 1304—1307).—Adipoyl chloride and $\mathrm{CH_2N_2}$ give $\alpha\delta$ -bis-diazo-, m.p. 69—71°, converted by HCl into the -chloro-acetyl-n-butane, m.p. 81—82°, which with $\mathrm{CS(NH_2)_2}$ yields $\alpha\delta$ -bis-2-aminoyl-4-thiazol-n-butane, m.p. 220—221° [dihydrochloride, m.p. 284—285° (efferv.)]. Similarly $\alpha\zeta$ -bischloroacetyl-n-hexane, m.p. 85—86°, prepared from suberoyl chloride, with $\mathrm{CS(NH_2)_2}$ forms $\alpha\zeta$ -bis-2-amino-4-thiazolyl-n-hexane, m.p. 204—205° (dihydrochloride, m.p. 308—310°). α 0-Bis-2-amino-4-thiazolyl-n-octane, m.p. 180—181° [dihydrochloride, m.p. 309—311° (efferv.)], and $\alpha\kappa$ -bis-2-amino-4-thiazolyl-n-decane, m.p. 168—171° (dihydrochloride, m.p. 274—276°), are similarly obtained. The Arndt-

Eistert method has been applied to the bis-homologation of sebacic and adipic acids. 4-Sulphonamidophenylthiocarbamide, m.p. 209°, prepared from sulphanilamide and NH₄CNS, condenses with CH₂Cl·COMe and COMe·CHBr·[CH₂]₂·OAc to give respectively N⁴-4'-methyl-, m.p. 234—235°, and N⁴-5'- β -hydroxyethyl-4'-methyl-2'-thiazolylsulphanilamide, m.p. 211—212°.

Anthraquinonylthiazoles.—See B., 1940, 727.

Minor alkaloids of *Duboisia myoporoides*. III. Valeroidine. W. F. Martin and W. Mitchell (J.C.S., 1940, 1155—1157).—Valeroidine (I) and Ac_2O give the Ac derivative, isolated as the *hydrobromide*, m.p. 197°, and with $Bu^{\beta}COCl$, disovaleryldihydroxytropan hydrobromide, m.p. 176—177°, is obtained. Dihydroxytropan also forms a Ac_2 derivative, isolated as the hydrobromide, m.p. 219—220°. The hydrobromide of (I) is demethylated by $SOCl_2$ to norvaleroidine hydrobromide, m.p. 270°, $[\alpha]_2^{20} + 1 \cdot 0^{\circ}$ in H_2O . Attempts to orient the OH groups have given obscure results.

Synthesis of formylphenacetyltropeine. Y. ASAHINA and H. Nogami (Proc. Imp. Acad. Tokyo, 1940, 16, 229—230).—Homotropine hydrochloride with NaOAc-Ac₂O gives acetylhomotropine, an oil [picrate, m.p. 229° (decomp.)], the hydrochloride, m.p. 67°, of which is catalytically reduced in EtOH (Pd-C) (cf. Rosenmund et al., A., 1928, 1005) to phenacetyltropeine, an oil (picrate, m.p. 169°). This with HCO₂Et-Na-Et₂O, followed by H₂O, gives formylphenacetyltropeine ("atropanal") (I), m.p. 214° (decomp.) [hydrochloride, m.p. 204° (decomp.); oxime, m.p. 139° (decomp.) (hydrochloride, m.p. ~165°)]. This has no mydriatic action, and is weaker than atropine (II) in its paralysing action on parasympathetic endings, but is a strong respiratory stimulant causing small rise of blood pressure. It is suggested that (II) injected into the portal vein is (at least partly) oxidised to (I) in the liver. E. W. W.

Gelsemine. I. Reduction of gelsemine. T. T. Chu and T. Q. Chou (J. Amer. Chem. Soc., 1940, 62, 1955—1957).—Gelsemine (I) absorbs 2 H in presence of PtO₂ in MeOH, giving dihydrogelsemine, $C_{20}H_{24}O_2N_2$, + COMe₂, m.p. $224-225^\circ$, $[\alpha]_D^{17}+78\cdot5^\circ$ in CHCl₃ [hydrochloride, m.p. $318-320^\circ$ (decomp.); hydrobromide, m.p. $328-330^\circ$ (decomp.); hydriodide, m.p. $294-295^\circ$; nitrate, m.p. 285° (decomp.); methiodide, m.p. $301-302^\circ$ (decomp.)]. Zn-HCl in presence of a little PtCl₄ or PdCl₂ isomerises (I) to isogelsemine, +COMe₂, froths at 105° , resolidifies, melts at $198-202^\circ$, or solvent-free at $200-202^\circ$, $[\alpha]_D^{10}+38\cdot8^\circ$ [methiodide, m.p. $279-280^\circ$ (decomp.)], and gives also a small amount of a substance, $C_{18}H_{22}O_4N$, sinters at 261° , decomp. $265-267^\circ$, $[\alpha]_D^{18}-14\cdot9^\circ$ in MeOH [hydrobromide, m.p. $305-308^\circ$ (decomp.); methiodide, decomp. $262-265^\circ$].

Alkaloids of fumariaceous plants. XXIX. Constitution of cryptocavine. R. H. F. Manske and L. Marion (J. Amer. Chem. Soc., 1940, 62, 2042—2044).—Cryptocavine methosulphate and Na-Hg in hot dil. H₂SO₄ give tetrahydromethylcryptocavine, converted by AcCl into anhydrotetrahydro-

methyl-cryptocavine (-cryptopine), m.p. 111°, which with $KMnO_4$ – $COMe_2$ gives 5:6:2:1- CH_2O_2 : C_6H_2 Me·CHO and 4:5:1:2- $(OMe)_2C_6H_2$ (CHO)·[CH $_2$] $_2$ ·NMe $_2$. Cryptocavine is thus cryptopine (J.C.S., 1916, 109, 815) in which the positions of the CO and CH $_2$ are reversed. R. S. C.

Sulphophenylarsinic acids and their derivatives. III. p-Sulpho- and p-sulphonamido-diphenylarsinic acids. J. F. ONETO and E. L. Way (J. Amer. Chem. Soc., 1940, **62**, 2157—2158). reaction in EtOH, applied to p-SO₃H·C₆H₄·NH₂ (I) and AsPhCl₂, gives (I) (64%) and PhAsO₃H₂*(84%), but diazotisation of (I) in H₂O, addition of AsPhCl₂ in EtOH and then of a little CuBr, and finally heating at 80° gives phenyl-psulphophenylarsinic acid. Addition of AsPhO, NaOH, and a little CuSO₄ in H₂O to diazotised sulphanilamide gives 11% of phenyl-p-sulphonamidophenylarsinic acid (II), m.p. 229—231°, obtained in 23 and 28—30% yields by the Sakellarios and Scheller methods, respectively. NaNO₂-H₂SO₄-EtOH-H₂O converts AsPhCl₂ into PhAsO₃H₂ (86%). HCl-HI-SO₂ converts (III) into phased possible converts. SO₂ converts (II) into phenyl-p-sulphonamidophenyl-chloroarsine, m.p. 106—107°. The bromoarsine, m.p. 100—101°, similarly obtained, with aq. NH₃ at 100° diphenyldi-p-sulphonamidophenylarsylHI-AcOH converts (II) into the iodoarsine, m.p. 121—122°, and NaOCl gives phenyl-p-sulphonchloroamidophenylarsinic acid, m.p. 160-161°. R. S. C.

Colour tests for organo-lithium compounds. H. Gilman and J. Swiss (J. Amer. Chem. Soc., 1940, 62, 1847—1849).—(a) When a solution of LiAlk is treated successively with $p \cdot C_6H_4Br \cdot NMe_2 \cdot C_6H_6$, $COPh_2 \cdot C_6H_6$, H_2O , and HCl, a red colour develops in the aq. layer owing to the reactions: LiAlk+ $p \cdot C_6H_4Br \cdot NMe_2$ (I) \rightarrow Li· $C_6H_4 \cdot NMe_2 \cdot p$ (II) + AlkBr; (II) + COPh $_2 \rightarrow$ (HCl) $CPh_2 \cdot C_6H_4 \cdot NMe_2 \cdot p$ (II) and with $COPh_2$ gives colourless $CPh_2R \cdot OH$. LiMe and LiC; CR do not react. (b) When LiR is added to CHPh $_3$ in C_6H_6 or Et_2O , a yellow colour develops in 0.5—2 min., but Grignard reagents do not react. R may be alkyl or aryl. LiMe and Li 4-dibenzfuryl give no colour. For LiBu a the limit is 0.02—0.03m. R. S. C.

Hydrogen bond in protein structure.—See A., 1940, I, 404.

Hydrogen bridge models for globular proteins.—See A., 1940, I, 404.

[Apparatus for] micro-analysis of gases.—See A., 1940, I, 420.

Micro-Kjeldahl apparatus.—See A., 1940, I, 421.

Identification of alcohols by means of optical properties of esters of carbanilic acid. B. T. Dewey and N. F. Witt (Ind. Eng. Chem. [Anal.] 1940, 12, 459—460).—The phenylurethanes of n-alcohols C_1 — C_{12} , and of CH_2 Ph·OH, Ph·[CH_2]₂·OH, and Ph·[CH_2]₃·OH have been prepared and their m.p. and optical crystallographic data recorded. The optical properties provide a means of identifying the urethanes even when they are mixed with $CO(NHPh)_2$. J. D. R.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

DECEMBER, 1940.

Preparation and properties of aliphatic hydrocarbons. L. Schmerling, B. S. Friedman, and V. N. IPATIEV (J. Amer. Chem. Soc., 1940, **62**, 2246– 2249).—Hydrogenations below are effected in presence of Ni-kieselguhr at 100 kg. per sq. cm. COMe·CH·CMe₂ and H₂ at 150° give CHMeBu^β·OH (70%), b.p. 128—131° (with 28% of COMeBu^β, b.p. 115—117°), dehydrated by Al_2O_3 (activated in this and other cases) at 427° to β -methylpentenes, b.p. 55-56°, which with H₂ at 50° give CHMe₂Pr^a, b.p. 59.4—59.6°/750 mm., octane no. 71.5. Hydrogenation of COMe CH2 CMe2 OH gives OH·CHMe·CH₂·CMe₂·OH (II), b.p. 194—195°, with much Pr^βOH. With Al₂O₃ at 427°, (I) gives, by way of the epoxy-compound, much MeCHO and CMe2:CH2 with some COMe₂ and CHMe.CH₂. With H₂-Cu-Ni at 200°, (I) gives only Pr^βOH. Hydrogenation of COMeBu^γ at 200° gives CHMeBu^γ·OH (100%); CHMcBu^γ·OAc at 450° gives 90% of CHBu^γ·CH₂, b.p. 41—42°, hydrogenated in presence of Ni-Cu (not other catalysts) at 250° to a mixture of Pr^{β}_{2} (85%), b.p. $57.4-57.5^{\circ}/745$ mm., octane no. 94, and EtBu, b.p. 49.4—49.5°/753 mm., octane no. 93. (CMe₂·OH)₂ and Al₂O₃ at 427° give 55—70% of (CH₂:CMe)₂, b.p. 68—70° (with 25—30% of COMeBu⁷), which with yegives Pr^β₂, also obtained from COMeBu⁷ by way of COMeBu⁷ by way of COMeBu⁸ $\check{\mathrm{CHMeBu}}^{\bar{\gamma}}$ OH and $(\mathrm{H_2C_2O_4};\ 110-120^\circ)$ CMePr^{β} : $\mathrm{CH_2}$ + (CMc2)2. Hydrogenation (Ni-kieselguhr or Ni-Cu) of CHMeBu^v·OH gives mixtures. COMeBu^v and MgMeBr give 85% of CMe₂Bu^v·OH, b.p. 128—129°, and thence (Al₂O₃-NiO; H₂; 250—260°/100 kg. per sq. cm.) Pr^βBu^v, b.p. 80·5—81°/748 m., octane no. 100. Similarly, (CMeEt·OH)₂ (prep. from COMeEt and Mg), b.p. 94—95°/10 mm., gives (CHMeEt)₂, b.p. 118—118·3°/750 mm., octane no. 84·5, and CHMeEtBu^{γ}, b.p. 110—110·5°/749 mm., octane no. 100. With Al₂O₃ at 325°, (II) gives CMe₂:CMePr^{β}, b.p. 114·5—114·9°/749·5 mm., and thence CHMePr^{β}₂, b.p. $112.3 - 112.4^{\circ}/736$ mm., octane no. 94.5.

High-temperature chlorination of paraffin hydrocarbons. W. E. Vaughan and F. F. Rust (J. Org. Chem., 1940, 5, 449—471).—Mixtures of C_2H_6 , C_2H_4 , C_3H_8 , EtCl, Pr^aCl , $Pr^\beta Cl$, or EtBr with Cl_2 diluted with CO_2 or N_2 are freed from O_2 by $CrSO_4$ or $CrCl_2$ and passed through heated tubes in the absence of light. The effluent mixtures are analysed by titration or by distillation. In the chlorination of C_2H_6 at moderate temp. reaction is expressed d[HCl]/ $dt = k[Cl_2][C_2H_6]$ and the scheme $Cl_2 \rightarrow Cl + Cl$, $Cl + C_2H_6 \rightarrow C_2H_5 + HCl$, $C_2H_5 + Cl_2 \rightarrow EtCl + Cl$; $Cl + W \rightarrow$ chain ending. The chain nature of the reaction is further demonstrated by the inhibiting action of O_2 . At or near the temp. at which un-

controllable reaction would occur in the absence of O_2 production of HCl occurs according to d[HCl]/dt = $k[\text{Cl}]^{1/2}[\text{C}_2\text{H}_6]^{3/2}/[\text{O}_2]$. Chlorination of C_2H_6 is highly dependent on the surface, which appears to produce Cl atoms and to terminate chains. Chlorination of C_3H_8 is very similar to that of C_2H_6 . At $\sim\!250^\circ$ approx. equal proportions of Pr^aCl and Pr^βCl are formed. Pr^aCl gives all three chlorides, the sec. H atoms being very reactive despite their smaller no. Pr^βCl is less reactive than Pr^αCl probably because it has only one sec. H. EtCl is less reactive than C2H6. Large proportions of C_2H_4 are obtained at $>280^\circ$; at 415° in absence of halogen but under otherwise comparable conditions EtCl scarcely yields C2H4 and HCl. The principal product is probably a consequence of a radical chain, $Cl + EtCl \rightarrow HCl + C_2\Pi_4Cl$; $C_2H_4Cl + Cl_2 \rightarrow C_2H_4Cl_2 + Cl$. Small amounts of O₂ suppress the action almost completely whilst at higher temp. some change occurs. CH2. CHCl, unsaturated dichloride, CHMeCl₂, CMeCl₃, and (CH₂Cl)₂ are also formed. EtBr at 278° affords EtCl, EtBr, C_2H_4 , and a little C_2H_4ClBr . In mixtures of C_2H_6 and C₂H₄ the former is dominantly or almost exclusively the reactive component. The production of CH₂·CH·CH₂Cl from CH₂·CHMe is thus explained.

CH₂:CH·CH₂Cl from CH₂:CHMe is thus explained. Chlorination of C_2H_6 , C_3H_8 , and cyclopentane in the gas phase and of n- C_5H_{12} in the liquid phase is accelerated by PbEt₄. C_2Ph_6 is a useful catalyst in the liquid phase whilst CH₂N₂ is somewhat less effective than PbEt₄ in the gaseous state. H. W.

High-temperature chlorination of olefine hydrocarbons. F. F. Rust and W. E. Vaughan (J. Org. Chem., 1940, **5**, 472—503).—Dynamic studies of the interaction of $\mathrm{C_2H_4}$ and $\mathrm{Cl_2}$ can be made only in presence of a diluent (N2). At 308° the total amount of addition is \gg that of substitution whereas at 346° the substitutive steps are dominant. The mol. % of tri- and tetra-chlorides are relatively const. and the principal variations are in the amounts of unsaturated and simple additive products. The formation of higher chlorides from CH₂·CHCl is important in this connexion. At 485° there is extensive decomp. accompanied by formation of C₂H₂ undoubtedly by elimination of HCl from CH₂.CHCl. A simple relationship between rate of reaction and concn. of reactants could not be adduced. At low temp., where only addition occurs, increased surface causes an increase in the amount of reaction, probably as a result of catalysed bimol. association as well as initiation of chains. Glass wool is particularly effective. At higher temp. surface suppresses reaction, probably as a consequence of the termination of chains initiated in the gas phase. The chains

T* (A., II.)

involve both addition and substitution at these temp. Controlled inhibition by O₂ does not persist to so high a temp. with olefines as with paraffins. The chain character of the gas-phase addition and substitution of olefines under certain conditions is further confirmed by the acceleration caused by PbEt₄; results with CHMe:CH₂ are even more striking. Other reactions unaffected by O₂ are association at the surface, gas-phase bimol. association, and gas-phase Under analogous conditions bimol. metathesis. mainly CHMeCl·CH₂Cl CHMe:CH, yields CH2:CH-CH2Cl. CMe2:CH2 at higher temp. reacts by addition and substitution. Below 240°, above which the reaction becomes violent, all activity is suppressed by 5% of O2, showing that both changes involve radical chain mechanism. Low [O₂] strongly catalyses the substitution of Cl into olefines whereas larger concns. cause the expected inhibition. Experimental conditions, especially temp., are very important in defining the magnitude of the effect, which appears to be much more pronounced although more critically dependent on the catalyst concn. with C_2H_4 . CHMe:CH₂ and (CHMe:)₂ are also subject to positive catalysis by O₂ but to a smaller extent. C₂H₆ is a powerful inhibitor of the O₂-catalysed Cl-substitution into olefines. The rate of production of HCl by substitution seems to vary linearly with $[C_2H_4]^{\check{z}}$, $[Cl_2]$, and $[O_2]$ for very small concns. The mechanism is one of chain initiation by radicals produced by interaction of olefine and O, rather than reaction of an association complex itself with Cl. Olefines act as inhibitors of the high-temp. chlorination of paraffins; CHMe:CH₂ appears the most effective.

Mechanism of polymerisation. V. Dimerisation of unconjugated pentadiene. A. Ahmad and E. H. Farmer (J.C.S., 1940, 1176—1178). — Δ^{ab} -Pentadiene (I) with 15% BF₃ in AcOH (24 hr.) gives isopentenyl acetate (?), b.p. 138°, and OAc·[CH₂]₃·CHMe·OAc (?). In light petroleum at —15° and 0°, BF'₃ does not polymerise (I); with undiluted (I) it gives an undistillable polymeric oil. Below 225°, (I) alone does not polymerise. Under N₂ in an autoclave, (I) at 250° gives 15% polymerisation (7—8% of dimeride), and at 280—290°, 90% polymerisation (25% of di-, 10—15% of tri-, and 60—65% of higher poly-merides). Fractionation gives a dimeride (II), C₁₀H₁₆, b.p. 176° (mainly 1-methyl-2-allylcyclohexene), and a trimeride, b.p. 120—122°/1 mm. In COMe₂, (II) is oxidised by 4% aq. KMnO₄ to HCO₂H and an oily acid. Vapour of (II) with Pd-C at 178—181° gives an oil, b.p. 185°, of composition \sim C₁₀H₁₅ (C₆H₄MePr + methylpropylcyclohexane or dimethyldicyclooctane), oxidised to o-C₆H₄(CO₂H)₂. Possible mechanisms are discussed.

E. W. W. Synthesis of polyenes. II. Reactions of β-methylallyl chloride with sodamide in liquid ammonia. M. S. Kharasch, W. Nudenberg, and E. Sternfeld (J. Amer. Chem. Soc., 1940, 62, 2034—2036; cf. A., 1939, II, 498).—CH₂:CMe·CH₂Cl (I) (1·5) and NaNH₂ (1·7 mols.) in NH₃ give 27% of βεdimethyl-n-hexadiene (II), m.p. -9°, b.p. 90·2°/200 mm. (cf. Bourguel et al., A., 1930, 574), hydrogenated to Buβ₂ and adding (:CH·CO)₂O (III) in C₆H₆ at 80°

to give 5-methyl-3-isopropenyl-1:2:3:6-tetrahydrophthalic anhydride (IV), m.p. 115—116°. NaNH₂ (0·88) and (I) (1 mol.) give α-chloro-βε-dimethyl-n-hexadiene, b.p. 33—34°/5 mm., 160°/752 mm. [with (III) gives (IV); with NaNH₂ gives (II)], and some (II). CH₂:CH·CH₂Cl (1) and NaNH₂ (0·5 mol.) give a chlorohexadiene, b.p. 46—47·5°/96 mm., and 30% of chloromethylvinylcyclohexene. The ultra-violet and infra-red absorption of (II) are determined.

Partial reduction of acetylenes to olefines by use of an iron catalyst. A. F. Thompson, jun., and S. B. Watt (J. Amer. Chem. Soc., 1940, 62, 2555—2556).—Fe catalyst prepared from Fe-Al alloy and NaOH in EtOH at 100°/1000 lb. is excellent for reduction of acetylenes to olefines. Examples are (:C·CMe₂·OH)₂ and CH:C·CMe:CH₂ (gives CH₂·CH·CMe:CH₂), but C₂Ph₂ gives (CH₂Ph)₂. R. S. C.

Fluorinated derivatives of ethane and ethylene. VI. Corrective data. A. L. Henne and E. G. Wiest (J. Amer. Chem. Soc., 1940, 62, 2051—2052; cf. A., 1934, 1689).—The following data are recorded and shown to accord with expectation. CCl₂·CF₂, b.p. 18·9—19·0° (corr.). CCl₃·CClF₂, m.p. 40·6°, b.p. 91·5°. CCl₂Br·CBrF₂, f.p. 45·5°, b.p. 138·8—139·0° (corr.). (CClBrF)₂, f.p. 32·9—32·6°, b.p. 139·8—140·0° (corr.). CCl₃·CF₃, f.p. 14·2°, b.p. 45·9° (corr.).

Peroxide effect in addition of reagents to unsaturated compounds. XXV. Effect of metals on the addition of hydrogen bromide to allyl bromide. M. S. KHARASOH, W. R. HAEFELE, and F. R. MAYO (J. Amer. Chem. Soc., 1940, 62, 2047-2051; cf. A., 1940, II, 61).—Promotion of abnormal additions by metals depends on ready reaction of the metal with HBr, and inability of the halide to promote the normal reaction or hinder the abnormal one. This is demonstrated for Fe, HBr, and CH, CH, CH, Br, and by the varying results with other metals. Fe induces also abnormal addition of HBr to CH2:CH-CH2Cl. The reaction mechanism (discussed) is that for reaction without Fe. The mechanism proposed by Urushibara et al. (A., 1938, I, 628) for the normal addition is refuted.

Melibiotol and maltitol. M. L. Wolfrom and T. S. Gardner (J. Amer. Chem. Soc., 1940, 62, 2553—2555).—Melibiose and H_2 -Ni-kieselguhr in H_2 O at $150^\circ/190$ atm. give melibiotol, m.p. 173° (lit., a syrup), $[\alpha]^{2^4}+116^\circ$ in H_2 O (nonabenzoate, m.p. 157° , $[\alpha]^{2^5}+123^\circ$ in CHCl₃), hydrolysed to d-galactose and sorbitol. Maltitol nona-acetate is obtained cryst., having m.p. 86— 87° , $[\alpha]^{2^0}+84^\circ$ in CHCl₃ (cf. Karrer et al., A., 1937, II, 83). Most of the $[\alpha]$ of these and similar α -glucosides is due to the lactol C.

Synthesis of esters of phosphoric acid related to phosphatides. H. N. Christensen (J. Biol. Chem., 1940, 135, 399—401).—H₃PO₄ and (CH₂)₂NH at 105° yield aminoethyl H₂ phosphate, m.p. 240° (decomp.). Cetyl alcohol in boiling CCl₄ yields, with POCl₃, cetyl, and with Cl·[CH₂]₂·POCl₂, β-chloroethyl cetyl H phosphate, m.p. 54·5°, converted by EtOH–NH₃ in a sealed tube at 110° into β-aminoethyl cetyl H

phosphate, m.p. 226° (decomp.) (corr.). All these acids are purified through the Ba salts. A. Li.

Factors influencing polysulphone formation. M. S. Kharasch and E. Sternfeld (J. Amer. Chem. Soc., 1940, 62, 2559—2560).—Ascaridole + aq. or alcoholic mineral acid catalyses formation of polysulphones, decomp. 210—235°, m.p. 125—160° (decomp.), and decomp. 245—265°, from CH₂:CH·CH₂Cl, CMe₂:CHMe, or CH₂:CHCl, respectively. CH₂:CH·CH₂Br and, more so, CHPh:CH·CH₂Br are inhibitors for this reaction. C₂HCl₃ and CMe₂:CHBu⁷ do not form polysulphones, but are not inhibitors. Other chain-breakers do not act as inhibitors. R. S. C.

Structure of compounds containing S-O and S-Cl bonds.—See A., 1940, I, 434.

Preparation of trioctoin. J. L. HARTWELL (Amer. J. Path., 1940, 16, 313—316).—The prep. of pure $n\text{-}\mathrm{C}_7\mathrm{H}_{15}\text{-}\mathrm{COCl}$ and its condensation with glycerol in the presence of $\mathrm{C}_5\mathrm{H}_5\mathrm{N}$ to yield trioctoin are described. C. J. C. B.

Direct esterification of higher fatty acids with glycerol. III. Formation of mono- and distearin. S. Kawai and H. Nobori (J. Soc. Chem. Ind. Japan, 1940, 43, 170B; cf. A., 1940, II, 336).—Stearic acid with 1·2 or 1·4 mols. of glycerol at 180° for several hr., then at 240—245° for 0·5—1 hr., yields mono- (20%) and di-stearin (up to 70%). A part of the product from commercial stearin sol. in 85% EtOH at 60° has emulsifying properties. A. Li.

Condensations. XIII. Alkylation of ethyl isobutyrate and other esters by means of sodium triphenylmethyl and alkyl halides. B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1940, 62, 2457—2459).—CHR₂·CO₂Et, CPh₃Na, and R'I give good yields of CR₂R'·CO₂Et. Pr^{\$CO₂Et thus gives 58% of CMc₂Et·CO₂Et, 42% of CH₂Ph·CMc₂·CO₂Et, and 55% of Bu^{\$CO₂Et}. CHMeEt·CO₂Et, b.p. 132° (corr.) (lit., 133·5°), gives 61% of Et \$\alpha\$-methyl-\$\alpha\$-ethyl-n-valerate, b.p. 81° (corr.)/20 mm. Bu^{\$CO₂Et}} gives 22% of CHEtPr^{\$\beta\$}-CO₂Et. EtOAc, CH₂PhCl, and CPh₃Na do not react.}}

R. S. C.
Compounds of lead halides with organic salts.
—See A., 1940, I, 444.

Oxidation of [long-chain] unsaturated fatty acids.—See B., 1940, 725.

Linolenic acid and its isomerides. J. W. McCutcheon (Canad. J. Res., 1940, 18, B, 231—239; cf. A., 1938, II, 347).—Linolenic acid (prepared by a modification of Rollet's method, using Et₂O instead of AcOH), m.p. $-16\cdot25^{\circ}$ to -17° , with Br in Et₂O yields the cryst. hexabromide (I), m.p. $181\cdot9^{\circ}$ (corr.), and two isomerides (sol. in Et₂O, separated by iso-C₅H₁₁·OH), one gummy, m.p. 145— 150° , and the other liquid, both debrominated to an acid identical with that obtained from (I), and (?) with the natural acid. B.p./ $2\cdot5$ — $6\cdot5$ mm., d, n, and I val. of the Et ester are recorded. A. Li.

Action of lead tetra-acetate on hydroxylated fatty acids and related compounds. I. Hydroxylated oleic acid, ethyl oleate, and oleyl

alcohol. II. Hydroxylated ricinoleic acid and castor oil. J. T. Scanlan and D. Swern (J. Amer Chem. Soc., 1940, 62, 2305—2309, 2309—2311).—I. Hydroxylation of Et oleate, oleic acid, and oleyl alcohol is improved and the products are converted in AcOH by Pb₃O₄ into C₈H₁₇·CHO and CHO·[CH₂]₇·R (R = CO₂Et, CO₂H, or CH₂·OH). The effect of impurities on yields is described. Yields are poor with olive, peanut, and lard oils.

II. Hydroxyation and Pb₃O₄–AcOH oxidation of castor oil (not ricinoleic acid) gives CHO·[CH₂]₇·CHO, glycerol, and C₆H₁₃·CH·CH·CHO, b.p. 56—58°/0·1 mm. [semicarbazone, new m.p. 165—165·5°; 2:4-dinitrophenylhydrazone, m.p. 126°, previously reported (m.p. 124°) as derived from C₆H₁₃·CH(OH)·CH₂·CHO; oxidised by air to the acid, m.p. 0—1°, b.p. 135—138°/5 mm. (p-phenylphenacyl ester, m.p. 77·5—78°; amide, new m.p. 130—130·5°)]. R. S. C.

Action of hydrogen bromide and oxygen on various ethenoid compounds and the influence of pyrocatechol. O. SIMAMURA (Bull. Chem. Soc. Japan, 1940, 15, 292—297).—A mixture of HBr and O₂ in the dark has no effect on solutions of C₂Ph₄, dimethylmaleic anhydride, or phenanthrene in C₆H₆. With Et αγ-dicarbethoxy-α-bromoglutaconate (I) in CCl₄, Br is liberated. With Et₂ αγ-dicarbethoxy-a-methylglutaconate in CCl₄ little Br is liberated and the product contains Br corresponding with the addition of a mol. of HBr. With CH2:CPh2 Br is liberated. Me2 dimethylmaleate and Me₂ dimethylfumarate (II) behave as does (I). With the compound $C_{30}H_{42}O_{16}$, m.p. 86° (Guthzeit and Hartmann, A., 1910, i, 386), in CCl_4 , Br is liberated. These reactions accord with the mechanism suggested by Urushibara et al. (A., 1938, II, 401). $o-C_6H_4(OH)_2$ markedly inhibits the reaction with (II) and with allyl bromide, presumably by suppressing the initial reaction of the chain. F. J. G.

Sulphonation reactions with sulphuryl chloride. II. Photochemical sulphonation of aliphatic acids with sulphuryl chloride. M. S. KHARASCH, T. H. CHAO, and H. C. BROWN (J. Amer. Chem. Soc., 1940, 62, 2393—2397; cf. A., 1940, II, 3).—SO₂Cl₂ with lower aliphatic acids (except AcOH) in light gives β- or γ-sulphocarboxylic anhydrides and with higher acids gives sulphonyl chlorides by substitution in other positions. Varying amounts of Clacids are also obtained. A reaction mechanism is postulated involving Cl atoms and org. radicals. Properties of the anhydrides are reported. β-Sulphopropionic (I), m.p. 76—77°, and -isobutyric anhydride, b.p. 135—145° (decomp.)/3—5 mm., and (? β - or γ -) sulpho-n-butyric anhydride, an oil, are thus obtained. Bu^BCO₂H, cyclohexanecarboxylic, and lauric acids give 25—60% of RSO₂Cl. NH₂Ph sulphonanilidocyclohexanecarboxylate is described. With H₂O the anhydrides give sulphocarboxylic acids, with NH₂Ph in C_6H_6 they give NH_2Ph propion-, m.p. 216°, and isobutyr-anilide-β-sulphonate, decomp. 238°, and -nbutyranilide- β - + - γ -sulphonates; with liquid NH₃, (I) gives NH₄ propionamide-β-sulphonate, m.p. 179°.

Derivatives of methylacraldehyde. R. L. Shriner and A. G. Sharp (J. Amer. Chem. Soc.,

1940, **62**, 2245).—CH₂:CMe·CHO gives a semicarbazone, m.p. 197·5—198°, p-nitro-, m.p. 161—163°, and 2:4-dinitro-phenylhydrazone, m.p. 206—206·5°, and 1-phenyl-4-methyl- Δ^2 -pyrazoline, m.p. 73—74°.

R S. C. β-Diketones. Synthesis, structure, and bactericidal properties. C. D. HURD and C. D. KELSO (J. Amer. Chem. Soc., 1940, **62**, 2184—2187).— Claisen condensation of COMeBu^a or COMe C₆H₁₃ with EtOAc gives COMe·CH₂·COBu^a (II), 83—85°/21 mm., and COMe·CH₂·CO·C₆H₁₃-n, b.p. 129—131°/33 mm., respectively. (II) is obtained (10%) also from $\rm CH_2Ac$ COCl (III) and MgBu Br in Et₂O-N₂ at -25° and its structure is confirmed by condensation with N₂H₄ and oxidation of the product by KMnO₄ to pyrazole-3:5-dicarboxylic acid; with $NH_2\cdot CO\cdot NH\cdot NH_2$ it gives 3-methyl-5-n-butylpyrazole-1-carboxylamide, m.p. $89-90^{\circ}$. $n-C_7H_{15}\cdot MgBr$ n-C₈H₁₇·MgBr with (III) gives hendecane, b.p. 93— $95^{\circ}/2$ —3 mm. (lit., $118^{\circ}/5$ mm.), and dodecane- $\beta\delta$ -dione, b.p. 104— $105^{\circ}/2$ —3 mm. (lit., $150^{\circ}/15$ mm.), respectively. $n\text{-}C_6H_{13}\text{\cdot}CHMe\cdot\text{MgBr}$ and (III) give $\varepsilon\text{-}methylhendecane\cdot\beta\delta\text{-}dione$, b.p. $101\text{--}102^\circ/2$ mm. MgBu Br with (III) in Et₂O-air at -50° gives CH₂Ac·CO₂Bu^a, b.p. 95°/15 mm. (semicarbazone, m.p. 102°), also obtained from CHAcCO and BuaOH. CHMe.CH.CO₂Et, (I), and NaOEt in xylene give 53% of Δ^β-dodecene-δζ-dione, m.p. 98—99°, with some CHMe[C(:CHMe)·CO₂Et]₂, b.p. 110—114°/5 mm. CH₂:CH·CO₂Et, (I), and NaOEt-EtOH give 54% of Δ^{α} -hendecene- $\gamma \varepsilon$ -dione, m.p. 69—70°. In spite of formal resemblance of the dienolic forms of the diketones to alkylresorcinols, the saturated ketones are only weak bactericides against B. typhosus and ineffective against S. aureus. The unsaturated ketones are mildly effective against both organisms. R. S. C.

Reduction of aldoses at the dropping mercury cathode. Determination of the aldehydo-form in aqueous solutions. S. M. Cantor and Q. P. Peniston (J. Amer. Chem. Soc., 1940, 62, 2113—2121).—Aldoses are reduced at the dropping Hg cathode, owing to presence of the aldehydo-form in highly mobile equilibrium with the cyclic forms. The amounts thus determined for four hexoses and four pentoses are correlated with rates of mutarotation. The amounts are very small except for allose and ribose. They are greater for pentoses than for hexoses, but in both cases are greatly influenced by configuration.

R. S. C.

Mutarotation of *d*-glucose in absolute methanol and in ethanol-water mixtures.—See A., 1940, I, 442, 443.

Derivatives of the aldehydrol form of sugars. III. Carbon one asymmetry. M. L. Wolfrom, M. Konigsberg, and F. B. Moody (J. Amer. Chem. Soc., 1940, 62, 2343—2349; cf. A., 1938, II, 126).— Demercaptalation (method: A., 1939, II, 202) of d-mannose Et₂ mercaptal penta-acetate (I) gives aldehydrod-d-mannose penta-acetate aldehydrol (II), $+\text{COMe}_2$, m.p. 68—70°, $[\alpha]_2^{\text{p2}} + 24^{\circ} \rightarrow +9^{\circ}$ in CHCl₃, $[\alpha]_2^{\text{p3}} + 26^{\circ}$ (stable) in H₂O, which in air at < room temp. loses COMe₂ and gives a syrup (III). In MeOH, (III) gives aldehydo-d-mannose penta-acetate

Me semiacetal, m.p. 102—104°, $[\alpha]_{D}^{23} + 27.5^{\circ} \rightarrow +17^{\circ}$ in CHCl3, also obtained from (I) and converted by Ac₂O-H₂SO₄ into aldehydo-d-mannose hepta-acetate. aldehydo-d-Galactose penta-acetate aldehydrol has $[\alpha]_D^{30}$ +4° (stable) in H_2O . AeBr and (III) at room temp. give 1-bromo-aldehydo-d-mannose hexa-acetate, m.p. 115—116°, $[\alpha]_{D}^{22}$ +92° in CHCl₃. 1-Bromo-aldehydo-l-rhamnose penta-acetate, m.p. 112—113°, [a]25 -103° in CHCl₃, is similarly prepared. aldehydo-d-Mannose penta-acetate with Ac₂O-C₅H₅N at 0°, followed by 50% MeOH, gives α-l-methoxy-aldehydod-mannose hexa-acetate, m.p. 84—85°, $[\alpha]_{D}^{28}$ +23° in CHCl₂, and thence (Ac₂O-AcOH-ZnCl₂, followed by 50% MeOH) the β-isomeride, m.p. 95.5—96°, $[\alpha]_D^{31} + 11^\circ$ in CHCl₃, and (AlCl₃–CHCl₃) 1-chloro-1-methoxy-aldehydo-d-mannose penta-acetate, m.p. 116—118°, $[\alpha]_D^{28}$ +71° \rightarrow +25° in 24 hr. in CHCl₃. α -, m.p. 103—104°, $[\alpha]_{\rm b}^{24}$ +3·8°, and β -1-Methoxy-aldehydo-d-glucose hexa-acetate, m.p. 61—62°, $[\alpha]_{\rm b}^{25}$ -3° in CHCl₃, α - (IV), m.p. 101°, $[\alpha]_{\rm b}^{23}$ +3·5° in CHCl₃, and β -1-methoxy-aldehydod-galactose hexa-acetate (V), m.p. 123—124°, $[\alpha]_D^{22}$ +2·1° in CHCl₃, α -, m.p. 67—68°, $[\alpha]_D^{20}$ —34° in CHCl₃, and β-l-methoxy-aldehydo-l-arabinose penta-acetate, m.p. 76—77°, $[\alpha]_D^{23}$ —27° in CHCl₃, are prepared with the fully acetylated aldehydo-forms from the appropriate semiacetal. HCl-Et₂O at 0° converts (IV) or (V) into 1-chloro-1-methoxy-aldehydo-d-galactose penta-acetate, m.p. 155—156°, $[\alpha]_{\rm p}^{26}$ —38° \rightarrow +15° in 24 hr. in CHCl₃, $[\alpha]_D^{26}$ -53° \rightarrow -42.5° in 10 hr. in C₆H₆; the corresponding OEt-compound suffers replacement of Cl by OH during all reactions in "anhyd." solvents. l-Arabinose Me₂ mercaptal tetra-acetate, CdCO₃, and HgCl₂ in boiling, abs. MeOH give the Me_2 acetal tetra-acetate, m.p. 81°, $[\alpha]_D^{20}$ —22° in CHCl₃, converted by 0.1N-NaOMe into 1-arabinose Me2 acetal, m.p. 121—122°, $[\alpha]_{\rm p}^{22}$ +20° in H₂O; the Et_2 acetal, m.p. 109°, $[\alpha]_{\rm p}^{22}$ +16° in H₂O, and its acetate, m.p. 59°, $[\alpha]_{\rm p}^{23}$ —17·5° in CHCl₃, are similarly prepared. 1-Bronoaldehydo-d-galactose hexa-acetate and Ag₂CO₃ in boiling abs. EtOH give aldehydo-d-galactose Et semiacetal. d-Gluco-d-guloheptose Et₂ mercaptal hepta-acetate, m.p. 99—100°, $[\alpha]_D^{28}$ –12° in CHCl₃, is obtained from the mercaptal by $Ac_2O-C_5H_5N$.

Use of the benzyl radical in synthesis of methylated sugars. II. 4:6-Dimethylgalactose. J. S. D. Bacon, D. J. Bell, and J. Lorber (J.C.S., 1940, 1147—1150).—That the dimethylgalactose obtained by Hirst et al. (cf. A., 1939, II, 495) from damson gum is not 4:6-dimethyl-\alpha-galactose (I), m.p. $131-133^{\circ}$, $[\alpha]_{D}^{12}+133^{\circ} \rightarrow 76.9^{\circ}$ in $H_{2}O$, is proved by synthesis of (I). 4:6-Benzylidene-β-methylgalactoside 2:3-diacetate gives (cf. Bell et al., A., 1940, II, 205) the $4:6-CH_2Ph$ derivative, m.p. $132.5-133.5^{\circ}$, $[\alpha]_{D}^{20.5} + 50.2^{\circ}$ (this and subsequent rotations in CHCl₃), of 2:3-dibenzyl-β-methylgalactoside, m.p. 70—71° $[\alpha]_{\rm b}^{18}+10.6^{\circ}$, which yields (Purdie) a 4:6- Me_2 derivative, m.p. $68-69^{\circ}$, $[\alpha]_{\rm b}^{17.5}+3.05^{\circ}$. This with Na in EtOH yields 4:6-dimethyl- β -methylgalactoside (II), m.p. 140° , $[\alpha]_{D}^{20}$ -41.5° , hydrolysed (N-HCl) to (I). 4:6-Benzylidene-β-methylgalactoside gives a 2:3-di-p-toluenesulphonate, m.p. 168—170°, $[\alpha]_D^{20}$ +29·5°, hydrolysed to β-methylgalactoside 2: 3-di-p-toluenesulphonate, m.p. $149-150^{\circ}$, $[\alpha]_{D}^{19}+18.4^{\circ}$. Purdie methylation of this gives the 2:3-di-p-toluenesulphonate, a syrup, $[\alpha] + 5 - 6^{\circ}$, of (II), from which it is also obtained. In cold MeOH-HCl (I) shows increasing $[\alpha]$, indicating that furanoside is not formed, and that there is Me at $C_{(4)}$; further (Purdie) methylation, hydrolysis, and treatment with EtOH-NH₂Ph gives 2:3:4:6-tetramethylgalactose anilide, m.p. 196—197°. With NHPh·NH₂, (I) gives its osazone, identical with that prepared from 2:4:6-trimethylgalactose. E. W. W.

isoPropylidene derivatives of the mercaptals monosaccharides. V. 5:6-isoPropylidene derivative of d-galactose dibenzyl mercaptal and the 6-methyl derivative of d-galactose. E. Pacsu and S. M. Trister (J. Amer. Chem. Soc., 1940, 62, 2301—2304).—The mercaptal, m.p. 112.5° , $[\alpha]_{D}^{20}$ +17.4° in CHCl₃ (A., 1939, II, 494), is proved to be 5:6-isopropylidenegalactose (CH₂Ph)₂ mercaptal and the structure of 6-methylgalactose (II) (Munro et al., A., 1936, 826) is confirmed. HgO-HgCl₂-EtOH etc. converts (I) into 5:6-isopropylidene-\beta-ethylgalactofuranoside, a syrup, $[\alpha]_D^{22} = 70.0^{\circ}$ in H_2O , which consumes 1 HIO₄ (giving no CH₂O) and with MeI-Ag₂O gives 2:3-dimethyl-5:6-isopropylidene- β -ethylgalactofuranoside, a liquid, stable to HIO4 and converted by 0.05n-HCl at 90° into 2:3-dimethylgalactose (III), $[\alpha]_{D}^{22} + 64.7^{\circ} \rightarrow +80.9^{\circ} \text{ in } 90 \text{ min. in } \dot{H}_{2}\dot{O}, [\alpha]_{D}^{20} + 17.2^{\circ} \\ \text{in CHCl}_{3} \text{ [anilide, m.p. } 128-129^{\circ} \text{ (lit. } 130-131^{\circ})].$ The structure of (III) is confirmed by consumption of 2 HIO₄ and conversion by NHPh NH₂-AcOH into 3-methylgalactosazone, m.p. $176-179^{\circ}$, $[\alpha]_{D}^{17}+63.5^{\circ}$ in C₅H₅N. Galactose (CH₂Ph)₂ mercaptal and H₂SO₄-COMe₂ at 0° give the CMe₂. derivative, methylated as Na salt by MeI (twice) to the ether, which with boiling HCl-EtOH-H₂O gives 6-methylgalactose (CH₂Ph), mercaptal, m.p. 130° , $[\alpha]_{D}^{18} = 27 \cdot 1^{\circ}$ in $C_{5}H_{5}N$. With HgO-HgCl₂ etc. this gives 6-methyl- β -methyl-galactofuranoside, a syrup, $[\alpha]_D^{20}$ — 78.7° in H₂O, hydrolysed by boiling 0.05n-HCl to (II), m.p. 113—114°, $[\alpha]_{\rm p}^{18} + 137 \cdot 2^{\circ} \rightarrow +77 \cdot 0^{\circ}$ in 6 hr. in H₂O [consumes 4] HIO₄; phenylhydrazone, m.p. 117.5° (lit., $182-183^{\circ}$, 179°), $[\alpha]_{b}^{26}+22.4^{\circ}\rightarrow+13.6^{\circ}$ in 24 hr. in $C_{5}H_{5}N$; osazone, m.p. 200° , $[\alpha]_{b}^{26}+141.0^{\circ}\rightarrow+91.8^{\circ}$ in 24 hr. in C_5H_5N].

Synthesis of 1-β-glucosidofructose. E. Pacsu (J. Amer. Chem. Soc., 1940, 62, 2568).—A question of priority. R. S. C.

Sterol glucosides from expressed soya-bean oil. M. H. Thornton, H. R. Kraybill, and J. H. Mitchell, jun. (J. Amer. Chem. Soc., 1940, 62, 2006—2008).—Treatment of crude expeller soya-bean oil with Al silicate and elution of the latter with COMe₂ gives sterol glucosides, darken at 250—255°, m.p. 267—270° (decomp.) (tetra-acetate, m.p. 165—166°, $[\alpha]_{20}^{20}$ —24·5° in CHCl₃), which with H_2SO_4 —EtOH give Et glucoside (identified by conversion into d-glucobenziminazole) and sterols resembling those of the oil and containing \sim 24% of stigmasterol.

Composition of hemicellulose isolated from maple wood. R. L. MITCHELL and G. J. RITTER (J. Amer. Chem. Soc., 1940, 62, 1958—1959).—Hemicellulose fractions are prepared from maple holocellulose by boiling H₂O, cold 2% Na₂CO₃, cold 4% NaOH, and boiling 10% NaOH, successively. The T** (A., II.)

products are isolated by pptn. by EtOH (from the aq. extract also by $COMe_2$). Uronic anhydride, xylan, OMe, Ac, and $[\alpha]_D$ are recorded for each fraction. Approx. min. mol. wts. (from I val.) increase from 1070 to 10,500. R. S. C.

Chemistry of wood. VII. Esters and ethers of the water-soluble polysaccharides of larch wood. F. C. Peterson, A. J. Barry, H. Unkauf, and L. E. Wise (J. Amer. Chem. Soc., 1940, 62, 2361—2365; cf. A., 1935, 478).—Arabogalactans (I) from Eastern, Western, and European larch wood are similar. Fractional pptn. of the undegraded acetate, propionate, and benzoate gives fractions of similar acyl content but differing [α], reducing val., η , and araban content. (I) is thus not homogeneous. A fully methylated product (44·1% OMe) is prepared by Me₂SO₄-COMe₂-aq. NaOH. R. S. C.

Isolation of glucosamine and chondrosamine. Z. E. Jolles and W. T. J. Morgan (Biochem. J., 1940, 34, 1183—1190).—The method for the isolation of 10—30 mg. of glucosamine (I) and chondrosamine takes advantage of the low solubility in H2O of 2-hydroxynaphthylidene-glucosamine, m.p. 202— 203° , $[\alpha]_{5461}$ +274° in MeOH (217° after 18 hr.) (hydrochloride sinters at 200°), and -chondrosamine, m.p. 175—178° (decomp.), $[\alpha]_{5461}$ +287° in MeOH (+258° after 18 hr.). Sugars and NH₂-acids do not interfere. The corresponding p-nitrobenzylidene compounds, decomp. 182-184° and 175-176°, the 4-hydroxy-3methoxybenzylidene compounds, m.p. 184° (decomp.) and 153—155° (glucosamine compound, $[\alpha]_{5461} + 64^{\circ}$ in C₅H₅N), and the corresponding p-nitrocinnamylidene compounds, m.p. 187° (decomp.) and 172-173° respectively (glucosamine compound, $[\alpha]_{5461} + 57.6^{\circ}$ in C_5H_5N changing to $+41.5^{\circ}$ overnight), are described. Part of the NH₂-sugar of the sp. polysaccharide of B. dysenteriæ (Shiga) is (I).

Aromatic sulphonic acids as reagents for amino-acids. D. G. Doherty, W. H. Stein, and M. Bergmann (J. Biol. Chem., 1940, **135**, 487—496). —The solubility in N-HCl at 0° of the salts of 26 aromatic sulphonic acids with 18 NH2-acids has been investigated. The solubility products of the less sol. salts are recorded. Analyses of the following sulphonates, likely to be of use in the isolation or determination of NH₂-acids, are given: l-leucine (+H₂O), dl-phenylalanine, and l-histidine 2-bromotoluene-5-; 1-histidine and 1-arginine 3:4-dichlorobenzene-; dlphenylalanine 2:5-dibromo- and 2:4:5-trichlorobenzene-; glycine, dl-alanine, 1-leucine, dl-phenylalanine (+H₂O), 1-arginine, and 1-histidine O-benzylp-phenol- $(+0.75H_2O)$; l-leucine $(+H_2O)$, dl-phenylalanine $(+H_2O)$, l-tyrosine $(+H_2O)$, l-arginine $(+0.5H_2O)$, and l-lysine O-(2:4-dinitrophenyl)-pphenol- (+2H2O); I-leucine and dl-phenylalanine O-p-toluenesulphonyl-p-phenol- (+H₂O); dl-phenylalanine (+2H₂O), 1-tyrosine, and 1-arginine 2:6-diiodophenol-4- (+2H₂O); glycine, l-leucine, l-hydroxyproline, dl-phenylalanine, l-arginine $(+2H_2O)$, histidine (+H₂O), and 1-lysine 5-nitronaphthalene-1-(+3H₂O); 1-leucine (+2H₂O), 1-phenylalanine, and 1tyrosine 2:4-dinitro-1-naphthol-7- (+H₂O); and 1leucine 2-naphthol-7-. Salts of arginine, histidine, and lysine contain 2 mols. of sulphonic to 1 of NH₂-acid. The prep. of NH_4 O-(2:4-dinitrophenyl)- (+H₂O) and Na O-p-toluenesulphonyl-p-phenolsulphonic acid (+2H₂O), starting with p-OH·C₆H₄·SO₃Na, NaOH, and 1:2:4-C₆H₃Cl(NO₂)₂ and p-C₆H₄Mc·SO₂Cl respectively, is described. 1-C₁₀H₇·NO₂ with conc. H₂SO₄ yields 5-nitronaphthalene-1-sulphonic acid (+2H₂O) (purified by the glycine salt), converted via the Na salt and acid chloride into the amide.

Preparation of alkylamino-acids and their electrometric titration. W. Cocker and J. O. HARRIS (J.C.S., 1940, 1290—1294; cf. A., 1937, II, 488).—SO₂Ph·NH·CH₂·CO₂H (I) and SO₂Ph·NH·CHMe·CO₂H (II) with RI at 100° yield N-benzenesulphonyl-N-n-butyl-, m.p. 101—102°, -namyl-, m.p. 84°, and -isobutyl-glycine, m.p. 90-91°, and -ethyl-, m.p. 145°, and -n-propyl-α-alanine, m.p. 117°, hydrolysed (60% H₂SO₄) to N-n-butyl-, m.p. 192° (inst.) (phenylcarbamido-compound, m.p. 127— 128°), -n-amyl- (III), m.p. 201° (inst.) (phenylhydantoin, m.p. 111°), and -isobutyl-glycine, m.p. 188° (phenylcarbamido-compound, m.p. 86-87°), and Nethyl-, m.p. 302—303° (inst.), and -n-propyl-α-alanine, m.p. 302—303°. The acid and basic dissociation consts. $(K_A \text{ and } K_B)$ of these acids, except (III), and those of glycine, NHMe·CH₂·CO₂H, NHEt·CH₂·CO₂H, NH₂·CHMe·CO₂H, and NHMe·CHMe·CO₂H, have been determined by electrometric titration (H₂ electrode). Substitution of NH₂ by alkyl slightly decreases K_A (K_A being const. for different alkyl groups), and considerably decreases $K_{\rm B}$, in accordance with the "zwitterion" theory. (I) and (II) do not react with higher alkyl halides; the Et esters of (I) and (II) gave better alkylation, the nitriles better still. By hydrolysis (conc. HCl) of the alkylated nitrile, N-benzenesulphonyl-N-n-hexylglycine, m.p. 85— 86°, is obtained. Partial hydrolysis (conc. H₂SO₄) of benzenesulphonyl-n-amylaminoacetonitrile yields the amide, m.p. 94°, hydrolysed (NaOH) in small yield to the acid.

Synthesis of pantothenic acid. D. W. WOOLLEY (J. Amer. Chem. Soc., 1940, **62**, 2251—2252).—Synthesis of Na pantothenate from OH·CH₂·CMe₂·CH(OH)·CO₂H and β-alanine is outlined. R. S. C.

Reactions of nitriles and related compounds with sulphur in presence of amines. Synthesis of quaternary ammonium thiocyanates. C. R. McCrosky, F. W. Bergstrom, and G. Waitkins (J. Amer. Chem. Soc., 1940, 62, 2031—2034).—At 200—210° NMe₄·CN gives NMe₃ and MeCN. NMe₃ does not recombine with MeCN or PhCN. MeCN, NMe₃, and S in MeOH at 200—210° give 25% of $\rm H_2O$ -sol. thiocyanates, including NMe4 thiocyanate (I), m.p. $296-297^{\circ}$, and 10-25% of H_2O -sol. thiocyanates are formed by use of other nitriles, NH₂Ac, NH₄OBz, NH₂Bz, or NH₄OAc. (II) or (III) (below) dissociates at 200-210° to give by recombination mixed quaternary thiocyanates including (I). NH3 also gives thiocyanates. MeSH, Me₂S, and probably other products are also formed in the above reactions. NMe, and EtSCN at 100—110° give NMe_3Et thiocyanate (II), m.p. 131—132°. $CH_2Ph\cdot NMe_3$ thiocyanate (III), m.p. 117-118°, is obtained from CH₂Ph·SCN and

NMe₃ in MeOH at room temp. (3 days). PhSCN and NMe₃ (excess) at 100—110° give a mixture; in MeOH at 200—210° they give (I). MeSeCN and NMe₃ at room temp. give NMe₄ selenocyanate, m.p. 267—268° (decomp.). R. S. C.

Hydrogen cyanide. XII. Asymmetry of the tetrapolymeride of hydrogen cyanide. L. E. Hinkel and T. I. Watkins (J.C.S., 1940, 1206—1208).

—The aminoiminosuccinonitrile (I) structure proposed (cf. Hinkel et al., A., 1937, II, 433) for (HCN)₄ (II) is confirmed. In EtOAc, (II) gives the dl-δ-camphorsulphonate, m.p. 176—182° (variable) (decomp.), of (I), which in boiling EtOAc gives the 1-diastereoisomeride, m.p. 237° (decomp.), strongly lævorotatory in C₅H₅N, which is hydrolysed in H₂O to an optically inactive base. E. W. W.

Manufacture of trichloroacetonitrile.—See B., 1940, 726.

Constitution of complex metallic salts. XI. Structure of the tertiary phosphine and arsine derivatives of cadmium and mercuric halides. R. C. Evans, F. G. Mann, H. S. Peiser, and D. Purdie. XII. Bridged compounds containing two different metallic atoms. XIII. Stability of the 4-covalent auric complex. F. G. Mann and D. Purdie (J.C.S., 1940, 1209—1230, 1230—1235, 1235—1239; cf. A., 1939, I, 61; II, 536).—XI. tert. Phosphines and arsines yield three types of compounds with Cd halides: class 1, [{R₃P(As)}₂CdX₂]; class 2, [{R₃P(As)}₂(CdX₂)₂]; class 3, [{R₃P(As)}₃(CdX₂)₂], whilst five types are obtained

with Hg^{11} halides: class A, $[\{R_3P(As)\}_2HgX_2]$; class B, $[\{R_3P(As)\}_2(HgX_2)_2]$; class C, $[\{R_3P(As)\}_2(HgX_2)_3]$; class D, $[\{R_3P(As)\}_2(HgX_2)_4]$; class E, $[\{R_3P(As)\}_3(HgX_2)_2]$. Members of class 1 are prepared by shaking aq. CdX_2 or CdX_2 in EtOH with the theoretical amount of PR_3 or AsR_3 ; they vary in stability, some discarding half their PR_3 or AsR_3 and

changing to the corresponding compound of class 2. The structure is probably $\begin{bmatrix} R_3P & X \\ R_3P & X \end{bmatrix}$ (valency

 $\begin{bmatrix} Br & Br & Cd & PR_3 \\ R_3P & Cd & Br \end{bmatrix}$. With 2:2'-dipyridyl in

COMe₂ [(PEt₃)₂(CdI₂)₂] yields white di-iododipyridyl-cadmium, [dpy CdI₂], which, on account of its lower solubility in H₂O and org. solvents than [dpy HgI₂],

367

is recommended for use in gravimetric determination of Cd or dipyridyl. Preps. of the following members of this class (dihalogenobisphosphine- or -arsine-\u03c4-dihalogenodicadmium) are given: $[(PMe_3)_2(CdBr_2)_2]$, m.p. $195-198^{\circ}$; $[(PMe_3)_2(CdI_2)_2]$, m.p. $174-176^{\circ}$ (decomp.); $[(PEt_3)_2(CdBr_2)_2]$, m.p. 163—164°; $[(PEt_3)_2(CdI_2)_2]$, m.p. 141°, which in EtOH is an equilibrium mixture $[(PEt_3)_2(CdI_2)_2] \rightleftharpoons [(PEt_3)_2CdI_2]$ $[(PEt_3)_2(CdBr_2)_2], [(PPr_3)_2(CdI_2)_2], and$ [(AsPra])2(CdI2)2]; all are monoclinic and isomorphous. X-Ray examination of $[(PEt_3)_2(CdBr_2)_2]$ indicates that the crystals belong to the holohedral class 2/m of the monoclinic system; space-group $P2_1/a$, 2 mols. per unit cell. Compounds of class 3 are prepared by interaction of CdX2 with appropriate members of class 1, or by interaction of appropriate members of classes 1 and 2 (2:1 mol.). These compounds are stable when solid but dissociate in org. solvents, from which, however, they can be recrystallised unchanged; they appear to be of new structural type, probably

$$\begin{bmatrix} PR_3 \rightarrow Cd \xleftarrow{Br} & PR_3 \\ -Br \rightarrow Cd & Rr \\ Br \rightarrow & PR_3 \end{bmatrix} \text{ (planes of valency bonds unindicated)}$$

Compounds of this class are easily decomposed by dipyridyl, giving [dpy CdX₂], unlike the analogous class E Hg II compounds. The representative members of this class (tetrahalogenotrisphosphinedicadmium) which have been prepared are: $[(PPr_3^a)_3(CdBr_2)_2]$, m.p. $126-128^{\circ}$; $[(PBu_{3}^{a})_{3}(CdBr_{2})_{2}]$, m.p. $93-94\cdot5^{\circ}$; $[(PBu_{3}^{a})_{3}(CdI_{2})_{2}]$, m.p. $100-101^{\circ}$. The two tetrabromides of this class have orthorhombic crystals showing perfect cleavage parallel to {001} and 4 mols. per unit cell. The space-group of the PBu derivative is $P2_{1}2_{1}2_{1}$, which indicates that the mol. need not possess any intrinsic symmetry. It is, however, not an intimate lattice compound of [(PBu^a₃)₂CdBr₂] and [(PBu^a₃)₂(CdBr₂)₂] as might be deduced from its mode of prep. Class A of the HgII derivatives are prepared by analogous methods to class 1 of the Cd compounds; they have the same structure and differ only in that it has been impossible to prepare trialkylphosphine (or -arsine) derivatives. Class A members (dihalogenobis-phosphine- or -arsine-mercury) prepared are: $[(PPh_3)_2HgCl_2]$, m.p. 273°; $[(PPh_3)_2HgI_2]$, m.p. $\sim 250^\circ$; $[(AsPh_3)_2HgBr_2]$, m.p. 182—212°; $[(AsPh_3)_2HgI_2]$, m.p. 197°. Class B of the Hg^{II} compounds resemble class 2 of the Cd derivatives in prep. and in possessing the tetrahedral "bridged" transsymmetric structure. The following members (dihalogenobis-phosphine-or-arsine-\u03c4-dihalogenodimercury) have been prepared and studied: $[(PEt_3)_2(HgBr_2)_2]$, m.p. 106° ; $[(PEt_3)_2(HgI_2)_2]$, m.p. $121-123^{\circ}$; $[(PPr^a_3)_2(HgBr_2)_2]$, m.p. 133° ; $[(PPr^a_3)_2(HgI_2)_2]$, a. form, white blunt-ended needles, m.p. 114-115° β-form, yellow but turning white at 104—107° and having m.p. 113-115° either alone or mixed with α-form; the α-form is converted at room temp. in the solid state or in org. solvent into opaque yellow

β-form; $[(PBu_3^a)_2(HgBr_2)_2]$, m.p. 116°; $[(PBu^a_3)_2(HgI_2)_2]$, pale yellow, m.p. 84—85° yields, with dipyridyl in COMe₂, [dpy HgI₂]; [$\{P(\text{n-}C_5H_{11})_3\}_2(HgI_2)_2\}$, m.p. $54-55^{\circ}$; [$(PPh_3)_2(HgCl_2)_2\}$, m.p. $306-309^{\circ}$; [$(PPh_3)_2(HgCl_2)_2\}$, m.p. $306-309^{\circ}$; [$(PPh_3)_2(HgCl_2)_2\}$, m.p. $162-163^{\circ}$; [$(AsEt_3)_2(HgI_2)_2\}$, m.p. $91-92^{\circ}$; [$(AsPr^a_3)_2(HgBr_2)_2\}$, m.p. $91-92^{\circ}$; [$(AsPr^a_3)_2(HgBr_2)_2\}$, m.p. $91-92^{\circ}$; [$(AsPr^a_3)_2(HgI_2)_2\}$], m.p. $91-92^{\circ}$; [$(AsPr^a_3)_2(HgI_2)_2$] m.p. $107-108^{\circ}$; $[(AsBu^{a}_{3})_{2}(HgBr_{2})_{2}]$, m.p. $86-87^{\circ}$; $[(AsBu^{a}_{3})(HgI_{2})_{2}]$, m.p. $55-56^{\circ}$; $[(AsPh_{3})_{2}(HgCl_{2})_{2}]$, m.p. $251-253^{\circ}$; $[(AsPh_3)_2(HgBr_2)_2]$, m.p. 219° . From crystallographic data on [(AsEt₃)₂(HgI₂)₂], $[(PPr_3)_2(HgBr_2)_2]$, and $[(AsPr_3)_2(HgI_2)_2]$ it is concluded that, unlike the class 2 Cd derivatives, the HgII compounds are morphologically different. [(AsPr a_3)₂(HgI $_2$)₂] and [(AsPr a_3)(CdI $_2$)₂] are isomorphous and have approx. identical cell dimensions. The space-group is $P2_1/a$. Hg^{II} derivatives of class C (bisphosphine(arsine)trismercuric halide), prepared by the interaction of the appropriate class B derivative and HgX₂ in hot EtOH or COMe, solution, are: and HgA_2 in not EtoH or COMe₂ solution, are: $[(PEt_3)_2(HgBr_2)_3]$, m.p. 130° ; $[(PEt_3)_2(HgI_2)_3]$, m.p. $109-110^\circ$; $[(PPr_3)(HgCl_2)_3]$, m.p. $113-114^\circ$; $[(PBu_3)_2(HgCl_2)_3]$, m.p. $72-74^\circ$; $[(AsEt_3)_2(HgI_2)_3]$, m.p. $114-115^\circ$; $[(AsPr_3)_2(HgCl_2)_3]$, m.p. 105° ; $[(AsBu_3)_2(HgBr_2)_3]$, m.p. $62-64^\circ$; $[(AsBu_3)_2(HgI_2)_3]$, m.p. $63-65^\circ$. Crystallographic analysis indicates that these are two distinct structures in compounds of this class. $[(AsEt_3)_2(HgI_2)_3]$ forms orthorhombic crystals and there are 4 mols. per unit cell structurally arranged to give a non-centro-symmetrical mol., Et₃As Hg Hg Hg Hg I possibly The other two compounds examined, [(AsPr^a₃)₂(HgCl₂)₃] and [(AsBu^a₃)₂(HgBr₂)₃], have colourless, isomorphous monoclinic crystals and possess a centre of symmetry, space-group $P2_1/a$, 2 mols. per unit cell, the whole forming a bridged mol., e.g., [(Bu^a₃As)BrHgBr₂HgBr(Bu^a₃As)], for which a complete analysis has been carried out and interat. distances and valency angles are given. Mols. of class D (bisphosphine(arsine)tetrakismercuric halide) have 2 mols, per unit cell and space-group $P2_1/c$ or $P2_1/m$. Crystallographic data are incomplete but it

is almost certain that these mols. have a tetrahedral symmetrical structure, e.g.,

 $\begin{array}{c} \text{Cl.} & \text{Cl.} & \text{Hg} \\ \text{R}_3 \text{As} & \text{Cl.} & \text{Hg} \\ \end{array} \begin{array}{c} \text{Cl.} & \text{Hg} \\ \text{Cl.} & \text{Cl.} \end{array}$ The prep. of the following members of this class is given: $[(PEt_3)_2(HgCl_4)_4]$, m.p. 163—164°; $[(PEt_3)_2(HgBr_2)_4, \text{ m.p. } 149-151^\circ; [(AsEt_3)_2(HgCl_2)_4],$ $COMe_2$, m.p. $112-114^\circ$; $[(AsEt_3)_2(HgCl_2)_4]$, prisms,

m.p. 138°. I-derivatives could not be prepared. On the other hand, only I-derivatives of class E (tetrahalogenotris-phosphine- or -arsine-dimercury) could be prepared, usually by the interaction of HgI, in aq. KI with excess of phosphine (or arsine). These compounds closely resemble class 3 Cd compounds but are extremely stable to 2:2'-dipyridyl. The following have been prepared: $[(PP_{i_3})_3(\overline{HgI_2})_2]$, m.p. $124-125^{\circ}$; $[(PBu_{3}^{a})_{3}(HgI_{2})_{2}]$, m.p. 102° ; $[(AsEt_{3})_{3}(HgI_{2})_{2}]$, m.p. $58-70^{\circ}$; $[(AsPr_{3})_{3}(HgI_{2})_{2}]$, m.p. $84-85\cdot 5^{\circ}$; $[(AsBu_{3}^{a})_{3}(HgI_{2})_{2}]$, m.p. $74-75^{\circ}$. The stability and inter-relations of the various classes are discussed. Under analogous conditions of prep. ZnX₂ forms no compounds with P(As)R₃ in

H₂O but some reaction occurs in EtOH.

XII. When $[(PPr_3)_2CdI_2]$ (I) is boiled with 1 mol. of HgI_2 in EtOH $[(PPr_3)_2CdHgI_4]$ (II), di-iodobis-(tri-n-propylphosphine)- μ -di-iodocadmium-mercury, m.p. 141°, is formed. (II) is also formed from $[(PPr_3)_2CdI_4]$ and $[(PPr_3)_2HgI_4]$, indicating that both parent substances must be dissociated in hot EtOH to $PPr_3 \rightarrow CdI_2$ and $PPr_3 \rightarrow HgI_2$ radicals. (II) probably has the structure

 $\begin{bmatrix} I & I & PPr^a_3 \\ PPr^a_3 & I & I \end{bmatrix}. \quad \text{Other compounds prepared are:} \quad [(PBu^a_3)_2CdHgI_4], \quad \text{m.p. } 140-141^\circ; \\ [(n-C_5H_{11}\cdot Cd(PPr^a_3)HgI_4], \quad \text{m.p. } 91-93^\circ; \\ [(PPr^a_3)_2CdHgBr_4], \quad \text{m.p. } 179^\circ; \quad [(PPr^a_3)_2CdHgBr_2I_2], \\ \text{needles, m.p. } 138^\circ; \quad [AsPr^a_3(PPr^a_3)CdHgI_4], \quad \text{m.p. } 121-123^\circ. \quad Dibromobis(tri-n-propylarsine)-\mu-dibromopalladium-mercury was obtained as orange crystals, \\ \text{m.p. } 89-90^\circ, \quad \text{by boiling equiv. } \quad \text{quantities of } [(AsPr^a_3)_2PdBr_2] \quad \text{and } \quad HgBr_2 \quad \text{in EtOH.} \quad \text{This was the only compound of this type which could be prepared; its} \\ \end{bmatrix}$

HgI₂. [(PPr a_3)₂PdCl₂] and HgCl₂ gave [(PPr a_3)₂(PdCl₂)₂] and [(PPr a_3)₂(HgCl₂)₂]. [(PEt₃)₂PdCl₂] and HgCl₂ gave [(PEt₃)₂(PdCl₂)₂] and [(PEt₃)₂(HgCl₂)₄]. [(PBu a_3)₂(PdI₂)₂] and [(PBu a_3)₂(HgI₂)₂] gave [(PBu a_3)₂PdI₂] and HgI₂. Pd–Cd compounds could not be prepared nor were bridged Cu^I(Ag)–Hg^{II} compounds formed by the interaction of HgI₂ and [P(As)R₃,Cu(Ag)I₄]. By adding PPr a_3 (3 mols.) to AgI (1 mol.) and HgI₂ (1 mol.) in aq. KI, followed by vigorous shaking, white needles of di-iodobis(tri-n-propylphosphine)mercury, [(PPr a_3)₂HgI₂], m.p. 117—119°, were obtained.

XIII. 2-Covalent Au^I compounds readily combine with 1 mol. of a halogen to give 4-covalent Au^{III} compounds. The Au^I compounds are linear and hence, if two halogen atoms enter the *trans*-position,

two isomeric mols., e.g., $\left[\text{Et}_3 P \rightarrow \overset{\text{I}}{\text{A}} \text{u} - \text{Br} \right] (a)$ and

 $\begin{bmatrix} \operatorname{Et}_3 \operatorname{P} \to \operatorname{Au-I} \\ \operatorname{Br} \end{bmatrix} (b), \text{ should be obtained by the}$

action of I on $[Et_3P\to AuBr]$ or by the action of IBr on $[Et_3P\to AuI]$. From the fact that in all such mixed halogen Au^{III} complexes only one form is encountered it is concluded that the groups around the 4-covalent Au atom possess considerable mobility and only the more stable isomeride occurs. The relative stabilities of the trihalogeno-derivatives is discussed. Attempts to introduce acid radicals other than halides into the Au^{III} complex have failed. The Au^{III} are readily reduced to Au^I by passing SO_2 into their EtOH solutions at room temp. and the more electronegative halogen atoms are preferentially removed; e.g., with SO_2 [PEt₃AuCl₂I] gave [PEt₃AuI] and with $COMe_2$ [PEt₃AuClBrI] gave [PEt₃AuI].

Preps. of the following compounds are given: Au compounds, monobromo(trimethylphosphine)gold, $[PMe_3AuBr]$, m.p. 225° (decomp.); monobromo(triethylphosphine)gold, $[PEt_3AuBr]$, m.p. 87° . (A corr. val. for the m.p. of $[PEt_3AuCl]$ is given as $84-85^{\circ}$.) Au^{III} compounds, trihalogeno(triphosphine)gold, $[PMe_3AuBr_3]$, m.p. 162° ; $[PEt_3AuCl_3]$, m.p. 121° ; $[PEt_3AuCl_2Br]$, m.p. $119-120^{\circ}$; $[PEt_3AuClBr_2]$, m.p. $128-129^{\circ}$; $[PEt_3AuBr_3]$, m.p. 129° ; $[PEt_3AuCl_2I]$, m.p. $105-106^{\circ}$; $[PEt_3AuClBrI]$, m.p. $107-108^{\circ}$; $[PEt_3AuBr_2I]$, m.p. 109° ; $[PEt_3AuClI_2]$, m.p. $94-95^{\circ}$; $[PEt_3AuBrI_2]$, m.p. $90-91^{\circ}$; $[PEt_3AuI_3]$, m.p. 77° ; $[PPr_3AuClBr_2]$, m.p. 145° . Toluene-3:4-bis(thiotriethylphosphine <math>gold), m.p. $124-125^{\circ}$, has also been prepared.

Methylboric acid and its anhydride. Methylboron fluorides. A. B. Burg (J. Amer. Chem. Soc., 1940, **62**, 2228—2234).—Me₃BO₃ and MgMeI give impure methylboric acid (I) (cf. Khotinsky et al., A., 1909, i, 864; Snyder et al., A., 1938, II, 87), which by repeated passage over < the calc. amount of partly dehydrated gypsum gives trimeric methylboric anhydride [trimethyltriborine trioxan] (II), (MeBO)₃, m.p. -38° (vac.), b.p. 79° (extrapolated from the v.p.). (II) is analysed by oxidation by $\text{Cl}_2\text{-H}_2\text{O}$ at 100° to H₃BO₃ and by HNO₃ at 300° to CO₂ and H₃BO₃. Its vapour deviates from the perfect gas laws at room temp. It is strongly adsorbed by all drying agents, least by CaSO₄. When treated with <1 mol. of H₂O and then fractionated, it gives pure (I), m.p. indef., 73—77° or 95—100° (vac.), for which v.p. are determined. determined. Dissociation of the vapour of (I) agrees with the reaction, $3\text{MeB(OH)}_2 \longrightarrow (\text{MeBO})_3 + 3\text{H}_2\text{O}$, for which $\Delta H = 9300$ g.-cal. and $\Delta F^\circ = 9300$ — 22.31T. The stable compounds, (MeBO)₃,NH₃ (III) and (MeBO)3,NMe3, and the unstable compound, (MeBO)₃,2NH₃ (IV), are prepared, but (MeBO)₃,3NH₃ does not exist. V.p. of these compounds and the dissociation of (III) are recorded. BF₃ and (II) give high yields of *B Me difluoride*, BMeF₂, m.p. -130.5°, b.p. -62·3°. (Me₂B)₂O and BF₃ give similarly *B Me₂ fluoride*, BMe₂F, m.p. -147·4°, b.p. -42·2°. Cyclic structures are assigned to (II), (III), and (IV), the 2 NH₃ of (IV) being united as $B \leftarrow NH_3 \leftarrow NH_3$. R. S. C.

Grignard reagent. M. KILPATRICK and E. A. BARR, jun. (J. Amer. Chem. Soc., 1940, 62, 2242).—The black ppt. obtained from Mg and org. halides is colloidal Mg. R. S. C.

Dehydration of certain homologues of cyclopentanol. III. J. I. Denisenko and A. D. Naber (J. Gen. Chem. Russ., 1940, 10, 193—201).—1-δ-Phenylbutylcyclopentanol and anhyd. $H_2C_2O_4$ (2 hr. at 130—135°) give 1-δ-phenylbutyl- Δ^1 -cyclopentane (I) in 85% yield. With P_2O_5 or conc. H_2SO_4 the product is 1-cyclopentyl-1:2:3:4-tetrahydronaphthalene, b.p. 140—141°/3 mm., also obtained from (I) and H_2SO_4 . R. T.

Isolation of carotene from green plant tissue.—See A., 1940, III, 944.

Molecular compounds of aromatic hydrocarbons with nitro-compounds and with antimony trihalides.—See A., 1940, I, 412.

Synthesis and properties of mono-n-alkylbenzenes. I. Alkylation of benzene. G. Shen, T. Y. Ju, and C. E. Wood (J. Inst. Petroleum, 1940, 26, 475—487).—The efficacy of seven methods for synthesising higher n-alkylbenzenes is considered. The best is the reduction (Pd or Clemmensen) of ketones obtained by the Friedel-Crafts reaction.

4-Phenylcyclohexene. C. C. PRICE and J. V. KARABINOS (J. Amer. Chem. Soc., 1940, 26, 2243).—4-Phenylcyclohexene, prepared from CH₂:CHPh and (CH₂:CH)₂ (cf. Alder et al., A., 1938, II, 131), has b.p. $88-90^{\circ}/16$ mm., $n_{\rm p}^{20}$ 1.5420, d_4^{20} 0.9715. This confirms the structure of the 3-isomeride (A., 1940, II, 276). R. S. C.

Rate of nitration of benzene.—See B., 1940, 724.

s-Tri-p-tolylbenzene. T. R. Sampey (J. Amer. Chem. Soc., 1940, 62, 1953).—s- $C_6H_3(C_6H_4Me-p)_3$, m.p. 170—171°, is best (67—70%) prepared by heating $p-C_6H_4Me$ -COMe (10 g.) with KHSO₄ (2 g.) or conc. H_2SO_4 (0·2—0·3 c.c.) and $K_2S_2O_7$ (2 g.) at 190° for 6 hr. R. S. C.

Acidity of aromatic nitro-compounds towards amines. Effect of double chelation. G. N. Lewis and G. T. Seaborg (J. Amer. Chem. Soc., 1940, 62, 2122—2124).—Colours developed by aromatic polynitro-hydrocarbons and NH₃ or amines (not

$$O = N \longrightarrow N - O$$
 $O = N \longrightarrow N - O$
 $O = N \longrightarrow N - O$
 $O = N \longrightarrow N - O$

alkali hydroxides) are interpreted as due to addition to the resonance form (type A) to give doubly chelated compounds of type (B). This is supported by the effects of substitution in either component.

Presence of indole in "practical" α-methylnaphthalene. M. S. Kharason, S. S. Kane, and H. C. Brown (J. Amer. Chem. Soc., 1940, 62, 2242—2243).—"Practical" α-C₁₀H₇Me is shown to contain 1—2% of indole by condensation with (COCl)₂ to give 3-indolylglyoxalyl chloride. Pure 1-C₁₀H₇Me does not discolour in air. R. S. C.

Organic molecular compounds.—See A., 1940, I, 436.

Preparation of 1:5-dimethylnaphthalene. (MISS) E. W. J. BUTZ (J. Amer. Chem. Soc., 1940, 62, 2557).—1-Keto-5-methyl-1:2:3:4-tetrahydronaphthalene is obtained from $o\text{-}C_6H_4$ MeBr in six stages, no separation of isomerides being required at any stage. With MgMeI it gives a carbinol, dehydrated by I-CO₂ at 200° to a mixture which with Pd-C at 250° gives 1:5-C₁₀H₆Me₂, m.p. 80° (picrate, m.p. 137°).

Methyl and dimethyl derivatives of cholanthrene. L. F. FIESER and D. M. BOWEN (J. Amer. Chem. Soc., 1940, 62, 2103—2108).—Prep. of 1:4-C₁₀H₆Me·SO₃K and thence of 1:4-C₁₀H₆MeBr is modified. The derived Grignard reagent with 4-cyano-

hydrindene (I) in boiling $Et_2O-C_6H_6-N_2$ gives a ketimine hydrochloride, hydrolysed by conc. HCl-AcOH-PhMe to 4-4'-methyl-1-naphthoylhydrindene (85%), m.p. $84.6-85.1^{\circ}$, which at $400-410^{\circ}$ gives a difficultly separable mixture of 6-methylcholanthrene (24%), m.p. 204·2—205·2° (picrate, m.p. 208·4—209°), and (?) cholanthrene. 4-Cyano-7-methylhydrindene gives similarly 4-4'-methyl-1'-naphthoyl-7-methylhydrindene (81%), m.p. 130·2—131·2°, b.p. 230°/1 mm., and 6:20-dimethylcholanthrene (30%), m.p. 175.8—176.5° (picrate, m.p. 199.8—200.2°). The preps., $p\text{-}C_6H_4\text{Me·NHAc} \rightarrow \bar{1}:3:4\text{-}C_6H_4\text{MeCl·NHAc} \rightarrow \bar{1}:3:4\text{-}$ $C_6H_3MeCl\cdot NH_2 \rightarrow 1:3:4-C_6H_3MeClBr$, are modified. 1:3:4-C₆H₃MeCl·MgBr and CH(OEt)₃ in Et₂O give an aldehyde, which with $CH_2(CO_2H)_2$ and C_5H_5N at 100° yield 2-chloro-4-methylcinnamic acid (21%), m.p. 223·7—224°. 2% Na-Hg then gives β-3-chloro-p-tolylpropionic acid, m.p. 96·6—97·4°, which with PCl₅-C₆H₆ and then AlCl₃-CS₂ at 0° (later 30°) yields 4-chloro-6-methylhydrind-1-one (95%), m.p. 104— 104.5°. This is reduced (Clemmensen) to 4 chloro-6methylhydrindene, b.p. 128-132°/27 mm., converted by CuCN-C₅H₅N-MeCN at 240-250° into 4-cyano-6-methylhydrindene (61%), b.p. 138—139°/10 mm., which with conc. HCl at 180-200° gives 6-methylhydrindene-4-carboxylic acid, m.p. 158·6-159·3°, or with 1-C₁₀H₇·MgBr gives 4-1'-naphthoyl-6-methyl-hydrindene (94%), b.p. 205—210°/1·5 mm., and thence 22-methylcholanthrene (27%), m.p. 154·5—155° (picrate, m.p. 173·6—174°). 4-4'-Methyl-1'-naphthoylhydrindene (89%), b.p. 230°/1·5 mm., and 6:22-dimethyl-cholanthrene (23%), m.p. 161·7—162·4° (picrate, m.p. 185.6—186°), are similarly obtained. Preps. of 8-chloro-1-bromo- and thence of 8-chloro-1-methylnaphthalene (II) are improved. With CuCN-C₅H₅N-MeCN at 240°, (II) gives 1-cyano-8-methylnaphthalene (III) (79%), m.p. 95—95.5°, hydrolysed by boiling KOH-aq. EtOH to 8-methyl-1-naphthoamide, m.p. 208.7—209.4° (could not be converted into the acid). The Li derivative from (II) with (I) gives a ketimine hydrochloride (37%), which resists hydrolysis. The Mg derivative from 7-bromo-4-methylhydrindene (modified prep.) with (III) in C₆H₆-Et₂O gives 8-methyl-1-naphthyl 7-methyl-4-hydrindenyl ketimine hydrochloride (29%), cryst., which resists hydrolysis. M.p. are corr.

Synthesis of 1'-methyl-1: 2-benzanthracene and 5-methylchrysene. W. E. BACHMANN and R. O. EGERTON (J. Amer. Chem. Soc., 1940, 62, 2250—2553).—4-Methylphenanthrene, $(CH_2\cdot CO)_2O$, and AlCl₃ in PhNO₂ at -15° give γ -keto- γ -5-methyl-3-phenanthryl-n-butyric acid (I), m.p. 195—196·5°, also obtained from 3-acetyl-5-methylphenanthrene by bromination (the 3-CH₂Br CO compound melts at 105—107°), condensation with $CH_2(CO_2Et)_2$, etc. Zn-Hg-HCl-AcOH-PhMe then gives γ-5-methyl-3-phenanthryl-n-butyric acid, m.p. 92—94°, which with SOCl₂-C₅H₅N-Et₂O, followed by SnCl₄-C₆H₆, gives 5-keto-1'-methyl-5:6:7:8-tetrahydro-1:2-benzanthracene, m.p. 153.5—154.5°. Reduction (as above) thereof gives 1'-methyl-5:6:7:8-tetrahydro-1:2benzanthracene, m.p. 83·5—84·5° (picrate, m.p. 140·5— 142°), dehydrogenated by Pd-C at 300-320° to 1'-methyl-1: 2-benzanthracene. 1-Bromoacetyl-4methylphenanthrene (prep. from the 1-Ac derivative), m.p. 80—82°, gives γ-keto-γ-4-methyl-1-phenanthryln-butyric acid, m.p. 133—136°, reduced to y-4-methyl-1-phenanthryl-n-butyric acid (II), m.p. 152-152.5°, also obtained by reduction of the mother-liquors from 1-Keto-4-methyl-1:2:3:4-tetrahydrophen-(I).anthrene, CH₂Br CO₂Me, Zn, and a trace of I in C₆H₆-Et₂O give an ester, which by hydrolysis (cold, dil. HCl) and dehydrogenation (Pd-C; 240-260°) yields 4-methyl-1-phenanthrylacetic acid, m.p. 188— 189°. By the Arndt-Eistert procedure this affords successively β-4-methyl-1-phenanthrylpropionic acid, m.p. 155—156°, and (II). Cyclisation of (II) as above yields 1-keto-11-methyl-1:2:3:4-tetrahydrochrysene, m.p. 139.5—140.5°, reduced to 11-methyl-1:2:3:4-tetrahydrochrysene, m.p. 71—72° (picrate, m.p. 141—142°), which with Pd-C at 300—320° gives 5-methylchrysene, 141—142° new m.p. 118—118·8° (corr.) [picrate, m.p. 141—142° (corr.); $s-C_6H_3(NO_2)_3$ derivative, m.p. 171—173°]. 1- and 3-Methylchrysene have m.p. 256.5—257° (corr.) and 172.5—173° (corr.), respectively. R. S. C.

Polycyclic aromatic hydrocarbons. XXV. 1and 2-Alkyl derivatives of 3:4-benzphenanthr-J. L. EVERETT and C. L. HEWETT (J.C.S., 1940, 1159—1162).—3: 4-Benz-1-phenanthroyl chloride (cf. Hewett, A., 1940, II, 212) gives 3:4-benz-1-phen-anthramide, m.p. 238—239°, which with MgMeI, followed by hydrolysis (conc. HCl-AcOH), yields 1-acetyl-3: 4-benzphenanthrene, m.p. 95—96°, b.p. 227°/0.5 mm., the semicarbazone, m.p. 180° (decomp.), of which with NaOEt at 180° (18 hr.) gives 1-ethyl-3:4benzphenanthrene, m.p. 66-67°, b.p. 200°(bath)/0.5 mm. (picrate, m.p. 116-117°). The following are prepared similarly: 1-propionyl-, m.p. 94·5-95° (semicarbazone, m.p. 229-230°), and 1-n-propyl-3:4benzphenanthrene, m.p. 67—68° (picrate, m.p. 93—94°). Me 3:4-benz-1-phenanthroate, m.p. 96.5—97.5° (the Et ester, m.p. 81—82°, gives poor results), with MgMeI followed by NH₄Cl-ice and picric acid yields the picrate, m.p. 94—95°, of 1-isopropenyl-, hydrogenated (Pd) to 1-isopropyl-3: 4-benzphenanthrene, m.p. 76—77° [picrate, $^{2}C_{21}H_{18}$, $^{3}C_{6}H_{3}O_{7}N_{3}$, m.p. 105—106°; compound, m.p. 112.5—113°, with $C_{6}H_{3}(NO_{2})_{3}$]. 3:4-Benz-2-phenanthroic acid (loc. cit.) gives the corresponding chloride, m.p. 110-111°, amide (I), m.p. 228—229°, which with o-C₆H₄(CO)₂O or with MgMeI yields the nitrile, m.p. 128-129°, sublimes 150°/0·7 mm. With MgMeI followed by hydrolysis, (I) gives 2-acetyl-, m.p. 111·5—112·5° (semicarbazone, m.p. 235-236°), converted as before into 2-ethyl-3:4-benzphenanthrene, new m.p. 67-68° (picrate, new m.p. 83—84°). Similarly the semicarbazone, m.p. 211—212°, of 2-propionyl-, m.p. 115·5—116·5°, b.p. 230—234°/0·4 mm., gives 2-npropyl-3: 4-benzphenanthrene, 71·5—72·5° m.p.(picrate, m.p. 103·5-104°). 3:4-Benz-2-phenanthranilide, m.p. 214—215°, in C₂H₂Cl₄ with PCl₅ followed by $SnCl_2$ – Et_2O –HCl gives 3:4-benz-2-phenanthraldehyde, m.p. $130\cdot 5$ — $131\cdot 5$ °, b.p. 260°(bath)/0·4 mm. (semicarbazone, m.p. 240—241°), reduced to 2-methyl-3: 4-benzphenanthrene. E. W. W.

Synthesis of 4:5-dimethylchrysene. M. S. NEWMAN (J. Amer. Chem. Soc., 1940, 62, 2295— 2300).—Synthesis of 4:5-dimethylchrysene (I) is

the fourth ring-closure at a distance from their interference. Only the final dehydrogenation gives trouble. Many of the oily products are mixtures of stereoisomerides. CH₂Ph·MgCl and dry (CH₂O)₃ in Et₂O give 62.4% of impure or 42% of pure (f.p. 35.0° , b.p. $109^{\circ}/12$ mm.) o-C₆H₄Me·CH₂·OH [phenylurethane, m.p. 79·0—79·6°; obtained also in 55% yield from o-C₆H₄MeBr and (CH₂O)₃ in Et₂O] (and Ph·[CH2]2·OH), which with SOCl2 and a drop of C_5H_5N in C_6H_6 gives 89% of o- C_6H_4Me - CH_2Cl (II), b.p. 84°/14 mm., and 11% of a polymeride. NaCN in boiling, aq. EtOH converts (II) into o-C₆H₄Me·CH₂·CN (III) (86%), b.p. 225·5°/14 mm. CH₂Ph·CHMe·OH (prep. from MgPhBr and propylene oxide in boiling Et₂O), b.p. 105·5—107°/14— 15 mm. (phenylurethane, m.p. 88·2—88·8°), with PBr₃-C₆H₆, first at room temp. and later boiling, or with 48% HBr gives CH2Ph CHMcBr (IV), b.p. 112.5—114°/20—21 mm., the structure of which is proved by conversion of the derived Grignard reagent by CO₂ into CH₂Ph·CHMe·CO₂H, b.p. 172—173°/23 mm. (amide, m.p. 106—107°). (III), (IV), and NaNH₂ give γ -phenyl- α -o-tolylisovaleronitrile (63%), b.p. 159—160°/1 mm., hydrolysed by alkali at 150° only to the amide, m.p. 115-122°, but by boiling 6:8:47 (vol.) $H_2O-H_2SO_4-AcOH$ (62 hr.) to the crude oily acid (88% with 6.6% of amide). PCl₅-C₆H₆, followed by AlCl₃-C₆H₆, then gives 1-keto-2-otolyl-3-methyl-1:2:3:4-tetrahydronaphthalene (92%), b.p. 170°/0.5—1 mm., converted by Zn, CH₂Br·CO₂Me, and a little I in C₆H₆ into an ester, which by dehydration and hydrolysis gives 2-o-tolyl-3-methyl-3: 4-dihydro-1-naphthylacetic acid (V) (17·7%), m.p. 180—182°, and liquid isomerides (VI) (34·3%), b.p. 215—223°/7—8 mm. Hydrogenation of (V) gives an oily H_4 -acid, which with, successively, PCl_5 - C_6H_6 , $AlCl_3$ - C_6H_6 , $Al(OPr^{\beta})_3$ - $Pr^{\beta}OH$, and S at 230° gives (I), m.p. 164-0—164-8° [s- $C_6H_3(NO_2)_3$ compound, m.p. 131—132°; picrate unobtainable]. No (I) is obtained from (VI). The chrysene structure of (I) is proved by absorption max. at 2740 (log ϵ 5·11) and 3440 A. $(\log \epsilon \ 4.34)$ and a point of inflexion at 3800 A. $(\log \epsilon)$ 2.87). M.p. are corr.

difficult but is achieved by the following reactions,

which introduce both Me at an early stage and effect

Isolation and identification of fluoranthrene from carbon black. J. Rehner, jun. (J. Amer. Chem. Soc., 1940, 62, 2243—2244).—Isolation of fluoranthrene from commercial "thermatomic C" is described.

 \mathbf{H}

Conversion of quillaic acid into a hydrocarbon. G. A. R. Kon and H. R. Soper (J.C.S., 1940, 1335).—The CO ester obtained by oxidation and reduction of Me quillaate is reduced by hot NaOEt and N₂H₄, with simultaneous removal of CO₂Me, to norhederobetulene (A), $C_{28}H_{46}$, having m.p. 154°, [α]_D +33° in hex-

Aromatic amines and 2-fluoro-5: ω-dinitrostyrene. D. E. WORRALL and H. T. WOLOSINSKI (J. Amer. Chem. Soc., 1940, **62**, 2449).—F enhances the addition of bases to CHAr. CH·NO2 less than does Cl, Br, or I. o-Fluoro- ω -nitrostyrene (I) (prep. in \sim 60% yield from o-C₆H₄F·CHO, MeNO2, and a little NMe₃), m.p. 56·5—57·5° (ω -Br-derivative, m.p. 89—90°), and fuming HNO3 give the 5-NO2-derivative, m.p. 142—143°. With NH₂Ar this gives α -nitro- β -anilino-, m.p. 134—135°, - β -m-, m.p. 105—106°, and - β -p-toluidino-, m.p. 116—117°, and - β -phenylhydrazino-, m.p. 103—104°, - β -2-fluoro-5-nitrophenylethane, and with benzidine gives NN'-di-(β -nitro- α -2-fluoro-5-nitrophenylethyl)benzidine, m.p. 139·5—140·5°. o-C₆H₄Me·NH₂, OMe·C₆H₄·NH₂, NH₂OH, p-C₆H₄Me·NH·NH₂, and NH₃ do not react. A compound, C₂₈H₂₄O₄N₄F₂, m.p. 134—135°, is obtained from benzidine and ? (I).

Condensation of sulphanilamide with an enol. N^4 - α -Bromotetronylsulphanilamide. W. D. Kumler (J. Amer. Chem. Soc., 1940, 62, 2560—2561).—p- NH_2 · C_6H_4 · SO_2 · NH_2 (I) and α -bromotetronic acid at $110-120^\circ$ or in boiling AcOH, dioxan, or (best, 31%) PhMe give N^4 - α -bromo- β -tetronylsulphanilamide, a very weak acid, which does not couple, is not toxic (orally) to mice, and equals (I) in efficiency against β -hæmolytic streptococci. p-NHAc· C_6H_4 · SO_2 · NH_2 does not condense. R. S. C.

Quaterphenyl. I. Some dihydroxy-derivatives. J. HARLEY-MASON and F. G. MANN (J.C.S., 1940, 1379—1385).—4'-Iodo-4-methoxydiphenyl and Cu-bronze in N₂ at 280° afford 4:4" dimethoxyquaterphenyl (I), m.p. 338—340°, also obtained from 4'-bromo-4-methoxydiphenyl-Mg-EtBr-C₆H₆ at 30° (reaction initiated with EtBr), then anhyd. CuCl₂ (cf. Hey et al., A., 1936, 991). (I) and CrO₃-AcOH give diphenyl-4: 4'-dicarboxylic acid (II). (I) and HI (d 1.7)-AcOH at 180° (sealed tube) give 4:4"-dihydroxyquaterphenyl, m.p. 419—422° [purified through the diacetate (III), m.p. 325° (decomp.); di(chloroacetate), decomp. 360° without melting], which has no estrogenic properties and could not be oxidised to the corresponding quinone [AcOH–CrO₃ gives (II)]. p-C₆H₄I·C₆H₄·NO₂-p, new m.p. 212—214° (improved prep.), and Cu-bronze at 235-245° yield 4:4"-dinitroquaterphenyl, m.p. 317-320°, sublimes at 320°/ 0.01 mm. (could not be prepared from quaterphenyl), oxidised by CrO_3 -AcOH to 4-nitrodiphenyl-4'-carboxylic acid, m.p. 338—340°, and reduced by $SnCl_2$ -AcOH-HCl (decomp. of the stannichloride by 20% aq. NaOH) to 4:4"-diaminoquaterphenyl, m.p. 312— 315° (partial decomp.), sublimes at 310-320°/0.01 mm. (Ac_2 derivative, m.p. 385°), converted by the diazo-reaction, followed by acetylation, into (III). Diacetylbenzidine (IV)-Ac₂O-AcOH at 5° with nitrous fumes give NN'-bisnitrosoacetylbenzidine, explodes at 84—87°, which with excess of PhOMe affords a little (IV) only. $p\text{-}C_6H_4Br\text{-}N_2Cl\text{-}PhOMe\text{-}aq$. NaOH give 4'-bromo-2-methoxydiphenyl (V), m.p. 63-64°, b.p. 200-201°/18 mm., and -4-methoxydiphenyl (VI), m.p. 144—145°. p-C₆H₄I·N₂Cl similarly affords 4'iodo-2-methoxydiphenyl (VII), m.p. 61-63°, b.p. 140-143°/0.05 mm., the 4-OMe-isomeride, m.p. 182—183°, and p-C₆H₄I₂. Tetrazotised benzidine and an excess of PhOMe give no identifiable product. 4'-Nitro-2-hydroxydiphenyl yields (Ac₂O) 4'-nitro-2acetoxy-, m.p. 142—145°, and (Me₂SO₄-aq. NaOH at 60°) -2-methoxy-diphenyl, m.p. 62—63°; the latter and reduced Fe-AcOH-70% EtOH give the 4′-NH₂-compound (hydrochloride; Ac derivative, m.p. 147—148°) and thence (diazo-reaction) (V) and (VII). (VII) and (V) are converted [as for (I)] into 2:2′′′-di-methoxyquaterphenyl (VIII), m.p. 188—191° [oxidised to (II)], whence the 2:2′′′-(OH)₂-compound, m.p. 238—240° [oxidised to (II); diacetate, m.p. 221—224°; di(chloroacetate), m.p. 166—169°; di-o-nitrobenzoate, m.p. 190—192°]. (V) and (VI), added alternately to Mg-Et₂O-EtBr followed by anhyd. CuCl₂, give (I), (VIII), and 2:4′′′-dimethoxy-, m.p. 223—224°, and thence -dihydroxy-quaterphenyl, m.p. 268—270° [oxidised to (II); diacetate, m.p. 189—192°; di(chloroacetate), m.p. 158—160°; di-o-nitrobenzoate, m.p. 206—208°].

Aldehyde-resorcinol condensations. J. B. Niederl and H. J. Vogel (J. Amer. Chem. Soc., 1940, 62, 2512—2514).—m-C₆H₄(OH)₂ and RCHO in 10% H₂SO₄ at 100° give compounds,

 $CHR < X \cdot CHR \cdot X > CHR [X = 4:6:1:3-$

(OH)₂C₆H₂<], +H₂O, in which R = Me and Et, and +2H₂O, in which R = Bu^{β}, all having m.p. >300° (decomp.). These give octa-acetates, m.p. 282° (decomp.), 242° (decomp.), and >300° (decomp.), and -propionates, m.p. 222° (decomp.), 114° (decomp.), and —, and Me₈ ethers (prep. by Me₂SO₄ and 30% NaOH), +H₂O, m.p. 256° (decomp.), 227° (decomp.), and —, respectively. R. S. C.

Aralkyl ethers of phenols.—See B., 1940, 781, 782.

Hexcestrol [4:4'-dihydroxy-γδ-diphenylhexane]. W. F. Short (Chem. and Ind., 1940, 703).

—The prep. of hexcestrol Me₂ ether from Mg and anethole hydrobromide (Docken et al., A., 1940, II, 342) has been previously patented (B.P. 523,320, B., 1940, 701).

Crystalline vitamin-A palmitate and vitamin-AJ. G. BAXTER and C. D. Robeson (Science, 1940, **92**, 203—204).—The prep. of vitamin-A alcohol (I), new m.p. 63—64° (cf. A., 1939, III, 601), from rich fish-liver oils is described. The average extinction coeff. at 328 m μ . of 18 preps. is 1725, whilst that calc. from the blue val. is 1700. The extinction coeff. of the (I)-SbCl₃ blue colour is 4700 at 622 mµ. Palmityl chloride, (I), and quinoline in CHCl₃ at -15° give the palmitate (II), m.p. 26-28°, which has an average extinction coeff. of 940, whilst that calc. from the blue val. is 933 at 328 mµ. The extinction coeff. of the (II)-SbCl₃ blue colour is 2490 at 620 mμ. The distilled esters from a fish-liver oil, vitamin-A β -naphthoate, (II), and β -carotene are equally stable in refined cottonseed oil when exposed at comparable concns. to air in the dark. The potency of (I) is $>2.7 \times 10^6$ U.S.P. units per g. L. S. T.

Synthesis of γ-4-hydroxycyclohexyl-n-propyl alcohol, a product of the hydrogenation of lignin. E. Bowden and H. Adkins (J. Amer. Chem. Soc., 1940, 62, 2422—2423).—p-OMe·C₆H₄·CH:CH·CO₂Et [prep. in 82% yield from

p-OMe·C₆H₄·CHO (I), EtOAc, and Na at <0°], m.p. 48—50°, b.p. 132°/1 mm., with H₂-Raney Ni in EtOH

at 80—90°/100 atm. gives p-OMe C_6H_4 ·[CH₂]₂·CO₂Et, b.p. $103^{\circ}/0.1$ mm., converted by HI (d 1.7) into p- $OH \cdot C_6H_4 \cdot [CH_2]_2 \cdot CO_2H$ (II), m.p. 128—129°, also obtained less well from (I), $CH_2(CO_2Et)_2$, and piperidine etc. The Et ester, b.p. 140°/0·2 mm., of (II), prepared by H₂SO₄-EtOH, is hydrogenated (Raney Ni; EtOH; $175-200^{\circ}/150$ atm.) to Et β -4-hydroxycyclohexylpropionate, b.p. 102-103°/0.2 mm., which with H₂-Cu chromite in EtOH at 250°/200 atm. gives y-4-hydroxycyclohexyl-n-propyl alcohol (93%), b.p. $125-127^{\circ}/1$ mm. (cf. A., 1938, II, 332), identified by oxidation to the 4-CO-acid, m.p. 60—65° (2:4dinitrophenylhydrazone, m.p. 125-127°, which in hot EtOH gives the derivative, m.p. 90-94°, of the Et ester). Et p-methoxybenzylmalonate has b.p. 138°/0·1 mm.

Action of magnesium phenyl bromide on anthraquinones. C. F. H. Allen and A. Bell (J. Amer. Chem. Soc., 1940, 62, 2408—2412; cf. A., 1938, II, 147).—Good yields of 9:10-dihydroxy-9:10-diphenyl-9:10-dihydroanthracenes are obtained from the appropriate anthraquinones and MgPhBr in $Bu_2O. 9: 10-Dihydroxy-2: 9: 10-triphenyl-, m.p. 203°$ -9:10-diphenyl-2:3-dimethyl-, m.p. 227°, -2:3:9:10tetraphenyl-, m.p. 294°, and -9: 10-diphenyl-1: 2-tetramethylene- (I), m.p. 226°, -9: 10-dihydroanthracene are thus prepared. In the naphthacene series diols and diketones (formed by a 1:4-addition of MgPhBr) are formed if Mg is absent, but presence of Mg and thus of Mg + MgBr₂ leads to their gradual decomp. by heat to hydrocarbons; in this series PhMe is preferable to Bu₂O as solvent. Heating (I) at 150° gives 45% of 9:10-diphenyl-1:2-tetramethyleneanthracene, m.p. 295°. R. S. C.

Free radicals and radical stability. XI. Methyltriphenylmethyls. S. T. Bowden and T. L. THOMAS. XII. Fluorotriphenylmethyl and the reactivity of halogen substituents in free radicals. S. T. Bowden and T. F. Watkins (J.C.S., 1940, 1242—1249, 1249—1257; cf. A., 1940, II, 302).—XI. Substitution of Me in CPh₃OH increases the basicity of the carbinols (2:5-Me₂ > p- > o->m-Me), and the halochromism of the sulphates, but in lesser degree than OMe. Both sulphates and neutral radicals (in C₆H₆) change colour on exposure to sunlight. The Me-substituted formates decompose more slowly than the OMe-derivatives, and the conductivity of the chlorides in liquid SO_2 is > that of CPh_3Cl (p>o>m). The rate of isomerisation of the neutral radicals to colourless products in C₆H₆ in the dark (measured photo-electrically or tintometrically) is in the order $p > m \gg o$ -Me or 2:5-Me₂. Diphenyl-m-tolyl- (best prepared from Me m-toluate and MgPhBr), m.p. 65°, and 2:5-dimethyltriphenyl-carbinol (from 2:5:1-C₆H₃Me₂·COPh and MgPhBr), m.p. 108·5° (reduced by Zn + AcOH to the -methane, m.p. 91°), with HCl in Et₂O + CaCl₂ yield the -methyl chlorides, m.p. 71° and 128·5°, respectively. The corresponding free radicals absorb O in Ft O (at corresponding free radicals absorb \hat{O}_2 in Et₂O (at about the same rate as CPh3) giving the peroxides, m.p. 155° and 157°, respectively, together with isomeric compounds (oils), and with I gives iodides which dissociate to a greater extent than CPh₃I. Mol. wt. determinations on C₆H₆ solutions of the free radicals show that they have a greater radical stability than

CPh₃; evaporation of such solutions yields oils. XII. p.F increases the basicity of CPh₃·OH, enhances the halochromism of its salts, and raises the decomp. temp. of the formate by 30° (the decomp. then proceeds normally). p-Fluorotriphenylcarbinol, m.p. 121—122° (from p-C₆H₄F-CO₂Et and MgPhBr), yields, via the chloride (1), m.p. 91—92°, a radical (II), m.p. 115-124°, which with O2 yields the peroxide, m.p. 169°. On keeping in the dark, solutions of (II) change colour, and absorb less O2 (amount decreases with time; an isomeride is formed which does not absorb O₂). Mol. Ag, when shaken with freshly prepared (II), removed part of the F giving a secondary radical, showing that this F is more reactive than that of CPh₃F. This behaviour is discussed from the viewpoint of the quinonoid hypothesis. F is also replaced by SO₄ on shaking (I) with Ag₂SO₄ in PhNO₂. Mol. wt. determinations in C₆H₆ solutions show that the unimol, stability of (II) is $\sim 20\%$.

Sterols. XCIX. Sterols ${f from}$ various sources. R. E. MARKER and A. C. SHABICA (J. Amer. Chem. Soc., 1940, 62, 2523—2525).—Hydrolysis (EtOH-KOH) of the EtOH extract of "Cantharides Russian" (Spanish flies) gives the urine hydrocarbon (I), m.p. 64°, β-sitosterol, and sterol carbinols, m.p. 69° (mol. wt. 256) and 201° (mol. wt. 381). Ant eggs and mare's non-pregnancy urine yield cholesterol as sole pure product pptd. by digitonin. Mexican flies yield (\overline{I}) and a *sterol* (\overline{II}) , m.p. $149-151^{\circ}$ (acetate, m.p. 130°). Chicken fæces yield sitosterol and (II). Sheep fæces yield sitostanol, (I), and a trace of carbinol, m.p. 75—79°.

Sterol group. XLI. New epimerisation process. (Miss) J. Barnett, I. M. Heilbron, E. R. H. Jones, and K. J. Verrill (J.C.S., 1940, 1390— 1393).—Al $(OPr^{\beta})_3$ in boiling xylene converts sterols into their epimeric forms; the yields are variable. Thus, cholesterol, lumisterol (I), neoergosterol, or cholestanol gives epicholesterol (II), m.p. 140.5°, $[\alpha]_{D}^{20}$ -34° in CHCl₃ (10% yield after resolution with digitonin) (benzoate, m.p. 99.5°, $[\alpha]_D^{20}$ —29° in CHCl₃), epilumisterol (III), m.p. 113° (40%) [after resolution of the racemate, m.p. 156—158°, $[\alpha]_D^{20}$ +199° in CHCl₃, (I) + (III), with digitonin], epineoergosterol (15%), or epicholestanol (4%), respectively. The use of C₆H₆ or PhMe gives poorer yields. An equilibrium is established, as (III) and Al(OPr^{β})₃ in xylene (? C_6H_6) afford some (I) (as the above racemate). Ergosterol similarly in xylene gives an impure ergostatetraene, m.p. 83-93°; in C₆H₆, however, in N₂ in the dark for 160 hr., a little solid, m.p. 175-182° (? epiergosterol), separable by adsorption (Al₂O₃) into fractions, m.p. 185—190° and 173—176°, is obtained. (II) and $COMe_2$ -Al $(OBu^{\gamma})_3$ -C₆H₆ afford 3-keto- Δ^4 -

Me/

cholestene. Sublimation in high vac. (10⁻³ mm.) of ergostatrienol (epialloergosterol) (IV) or its acetate in presence of FeCl₃ (I or HgCl₂ are ineffective) gives the same hydrocarbon, m.p. 86-87°,

(A.) probably (A), as obtained by Windaus et al. (A., 1939, II, 212). Irradiation in COMe₂ solution, or shaking with PtO2-MeOH, has no effect on

(IV); adsorption of the acetate on alumina gives a little of a substance, m.p. 131—132° (? epi-isoergosteryl acetate).

A. T. P.

Constitution of α -spinasterol. E. Fernholz and W. L. Ruigh (J. Amer. Chem. Soc., 1940, 62, 2341—2343).— α -Spinasterol (I) with O_3 in AcOH gives d-CHEtPr $^{\beta}$ -CHO. Its benzoate with H_2 -Pd-black in Et $_2$ O gives α -spinastenyl benzoate (II), m.p. 89°, $[\alpha]_D^{23} + 11^\circ$ in CHCl $_3$, and thence (5% KOH–EtOH) α -spinastenol, m.p. 115°, $[\alpha]_D^{23} + 24^\circ$ in CHCl $_3$ (acetate, m.p. 118°, $[\alpha]_D^{23} + 16^\circ$ in CHCl $_3$), identical with α -stigmastenol and its derivatives. (I) is unaffected by Pd. It is therefore $\Delta^{8:14,22:23}$ -stigmastadien-3-ol. α -Stigmastenyl benzoate [= (II)] is obtained by reduction (as above) of 7-dehydrostigmasteryl benzoate

Sterols. CI. Structure of ψ -sarsasapogenin. R. E. MARKER, E. M. JONES, and J. KRUEGER (J. Amer. Chem. Soc., 1940, 62, 2532—2536).—The formula previously assigned (cf. A., 1940, II, 171) to ψ -sarsasapogenin (I) is supported by reactions described. The composition of Δ^{16} -pregnene-3: 20dione (II) and non-identity of dihydro-ψ-sarsasapogenin (III) with dihydrosarsasapogenin (IV) are confirmed. Deoxy-\psi-sarsasapogenin (prep. from deoxy-sarsasapogenin by Ac₂O at 200° followed by hydrolysis with EtOH-KOII), m.p. 130°, and H₂-PtO₂ in AcOH at 3 atm. give dihydrodeoxy- ψ -sarsasapogenin, m.p. 128—129°. H₂O₂-AcOH at 70° oxidises (I) or (III) to (after hydrolysis with MeOH-KOH) a substance, C₂₇H₄₄O₅, m.p. 253—254°, and a small amount of a lactone, m.p. 282—285°. Sarsasapogenin acetate with H₂O₂-AcOH at 70°, followed by KOH-MeOH, gives pregnane-3:16:20-triol, but bromosarsasapogenin acetate and (IV) are unaffected. KMnO₄ and (I) in ~65% AcOH at 15° give (II). O₃ converts (I) in CHCl₃ or its diacetate in AcOH into pregnen-3(β)-ol-20-one, but (III) is barely affected. Tetrahydrosarsasapogenin and Ac₂O (? at 200°) give a product, whence 5% KOH–EtOH yields tetrahydrosarsasapogenin16-acetate, m.p. 155°.

Simple synthesis of α-substituted crotonic acids. H. Spiegelberg (Festschr. E. C. Barell [Basel], 1936, 212—216; Chem. Zentr., 1937, i, 4926).
—OH·CHMe·CHR·CO₂Et (R = alkyl or aralkyl), obtained by reduction of CHRAc·CO₂Et or CHR·CAc·CO₂Et, is converted by PCl₅ into a mixture of CHMcCl·CHR·CO₂Et and CHMe·CR·CO₂Et; hydrolysis (aq. EtOH-KOH) of the mixture then gives CHMe·CR·CO₂H. Et β-hydroxy-α-benzylbutyrate, b.p. 158—160°/12 mm., from CHPh·CAc·CO₂Et by H₂-Ni-MeOH-NHEt₂ (first at 40—60° and then at 80—90°) or from CH₂Ph·CHAc·CO₂Et by Al-Hg in moist Et₂O, thus affords α-benzylcrotonic acid, m.p. 99°. Solubility data (H₂O; Et₂O) are given for α-benzylcrotonamide, -anilide, and -benzylamide; α-n- and -iso-butylcrotonamide; α-benzyl- and α-n-butyl-crotonylcarbamide. The amides have some hypnotic activity.

Preparation of salicylates of primary alcohols. E. LE SECH (Rev. Marques Parfum., 1937, 15, 45—46; Chem. Zentr., 1937, i, 3628).—When o-ONa·C₆H₄·CO₂Me is heated with CH₂Cl·CH₂·OH and a primary alcohol (ROH), group exchange occurs and

o-OH· C_6H_4 · CO_2R is formed. Salicylates of sesquiterpene alcohols can thus be prepared. Santalyl salicylate has b.p. 200—235°/6 mm. H. B.

Bromo-derivatives of aromatic esters. L. ROSENTHALER (Pharm. Acta Helv., 1937, 12, 8—9; Chem. Zentr., 1937, i, 4497).—p-OH·C₆H₄·CO₂Me, o-NH₂·C₆H₄·CO₂Me, and Me anisate with Br in AcOH give Me 3:5-dibromo-4-hydroxybenzoate, m.p. 123—124°, 3:5-dibromoanthranilate, m.p. 90°, and 3-bromoanisate, m.p. 99—100°, respectively. o-OAc·C₆H₄·CO₂H and Br in H₂O + CaCO₃ afford 3:5-dibromoacetylsalicylic acid, m.p. 163°. H. B.

Constitution of anacardic acid, principal constituent of cashew-nut shell oil. G. D. Gokhale, M. S. Patel, and R. C. Shah (Current Sci., 1940, 9, 362-363).—n- $C_{14}H_{29}$ · CO_{2} Ph by Fries transformation yields o- and p-OH- C_{6} H₄·CO- C_{14} H₂₉, reduced (Clemmensen) to o-, m.p. 54-55°, and p-pentadecylphenol, m.p. $72\cdot5$ °, both different from tetrahydroanacordol (I) (Smit, A., 1931, 840). Since (I) gives a Br₃-derivative and anacordol Me ether is oxidised to m-OMe- C_{6} H₄· CO_{2} H, (I) is m-OH- C_{6} H₄· CO_{3} H, and anacardic acid is 2:6:1- or 2:4:1-OH- C_{6} H₃(C_{15} H₂₇)· CO_{2} H. A. Li.

Synthesis of iodohippuric acids. II. 2:3:5-and 3:4:5-Tri-iodohippuric acid. C.J. Klemme and J. H. Hunter (J. Org. Chem., 1940, 5, 508—511; cf. A., 1940, II, 277).—2:3:5:1- $C_6H_2I_3$ ·CO₂H and SOCl₂ give the chloride, m.p. 85—86° after softening at 80—84°, which with aq. NH₂·CH₂·CO₂Na followed by HCl affords 2:3:5-tri-iodohippuric acid, m.p. 255·5—257° after darkening at 250—255°. 4:3:5:1-NH₂·C₆H₂I₂·CO₂H,m.p.>350°, from p-NH₂·C₆H₄·CO₂H and ICl in 12·5% HCl, is converted into 3:4:5:1- $C_6H_2I_3$ ·CO₂H, m.p. 289—290°. This with SOCl₂ yields 3:4:5-tri-iodobenzoyl chloride, m.p. 138—139°, which is transformed into 3:4:5-tri-iodohippuric acid, m.p. 242—243°. H. W.

Optically active monosubstituted succinic acids and [their] derivatives. (MISS) M. NAPS and I. B. Johns (J. Amer. Chem. Soc., 1940, 62, 2450-2457).—Resolution of the dl-acid by brucine gives d-, m.p. $198.5 - 199.0^{\circ}$, $[\alpha]_{D}^{32} + 135.5^{\circ}$ in EtOH, and l-anisylsuccinic acid, m.p. $196-199^{\circ}$, $[\alpha]_{D}^{29}$ -122.0° in EtOH [brucine salts, 1 d-acid, 1 base, m.p. 197—200°, and 1 l-acid, 2 base, $+2H_2O$, m.p. 136.5— 137°; anhydrides, m.p. $92.5-93.0^{\circ}$, $[\alpha]_{D}^{si}$ +95.2°, $[\alpha]_{D}^{go.5}-94.9^{\circ}$ in EtOH, respectively; d-amic acid, m.p. $166-169^{\circ}$, $[\alpha]_{D}^{29}$ (partly hydrolysed sample) $+104\cdot3^{\circ}$ in EtOH (N-Me derivative, m.p. $174-175^{\circ}$, $[\alpha]_{D}^{29} + 143.0^{\circ} \text{ in EtOH}$; d-anilic acid, m.p. 148—150°, $[\alpha]_{\rm D}^{30} + 154.0^{\circ}$ in EtOH; d-anil, m.p. 165—166°, readily racemised, [α]_D²⁹ +29·3° in C₆H₆]. o-C₆H₄Cl·CHO, CN·CH₂·CO₂Na, and aq. NaOH at 40° give α-cyanoβ-o-chlorophenylacrylic acid, m.p. 208—209°, the Et ester (prep. by HCl-EtOH), m.p. 51-52°, of which with NaCN in 50% aq. EtOH at 100° gives the oily dicyano-ester, converted by boiling, conc. HCl into dl-o-chlorophenylsuccinic acid, m.p. 173-174° (sublimes at 167°) (anhydride, m.p. 122.0°; amic acid, softens at 156°, m.p. 164°; N-methylimide, m.p. 129—131°; anil, m.p. 143—144°). Strychnine then yields the d- (I), m.p. $166-168^{\circ}$, $[\alpha]_{D}^{29}+115\cdot 0^{\circ}$ in EtOH, and

l-acid, m.p. 166—168°, $[\alpha]_D^{32}$ —101·3° in EtOH [strychnine salts, d-acid, l-base, +2H₂O, m.p. 126— 128°, and *l*-acid, *l*-base, m.p. 138°; d-, $[\alpha]_{D}^{31} + 45.2^{\circ}$ in EtOH, $\pm 0^{\circ}$ in CHCl₃, and l-, $[\alpha]_{D}^{31}$ -45.7° in EtOH, -anhydride, m.p. 145—146°; d-amic acid, m.p. 164— 165° , $[\alpha]_{D}^{32} + 19.0^{\circ}$ in EtOH, racemises in hot H₂O (N-Me derivative, m.p. $156-158^{\circ}$, $[\alpha]_{D}^{34}+104\cdot 3^{\circ}$ in EtOH); d-anilic acid, m.p. $169-170^{\circ}$, $[\alpha]_{D}^{32}+130\cdot 7^{\circ}$ in EtOH; d-anil, m.p. $180-181^{\circ}$, $[\alpha]_{D}^{39}-27\cdot 6^{\circ}$ in EtOH]. d-CO₂H·CHPh·CH₂·CO₂H (II), m.p. $173-180-181^{\circ}$ 174°, $[\alpha]_{0}^{25}$ +148·1° in EtOH (corresponding *l*-acid, m.p. 173°, $[\alpha]_{0}^{25}$ -147·8° in EtOH), gives an anhydride, m.p. 82°, $[\alpha]_{0}^{25}$ +99·4° in EtOH, *amic acid*, m.p. 141—145°, $[\alpha]_{0}^{215}$ +52·8° in EtOH, racemised and partly hydrolysed in boiling H₂O (N-Me derivative, m.p. 159—160°, partly racemised, $[\alpha]_D^{28} + 34.8^{\circ}$ in EtOH), anilic acid, m.p. 125—127°, $[\alpha]_D^{31} + 151.8^{\circ}$ in EtOH, and anil, forms, m.p. 165—166° and 140—141°. Hydrogenation (PtO₂, EtOH) of (I) or (II) gives d-cyclohexylsuccinic acid, m.p. 95.5—96.0° $+26.3^{\circ}$ in EtOH (anhydride, m.p. 43.0° , $[\alpha]_{D}^{31} + 9.5^{\circ}$ in EtOH; anilic acid, m.p. $172-172.5^{\circ}$, $[\alpha]_{D}^{31} + 32.2^{\circ}$ in EtOH; anil, m.p. $143.5-144.5^{\circ}$, $[\alpha]_{D}^{31}-41.1^{\circ}$ in EtOH); dl-cyclohexylsuccinic acid, new m.p. 146°, is similarly prepared. d-Methylsuccinic acid, m.p. $110-111^{\circ}$, $[\alpha]_{D}^{28}+11.7^{\circ}$ in H₂O [d-, m.p. 64-65°, $[\alpha]_{D}^{29} + 32 \cdot 1^{\circ}$ in EtOH, and *l*-anhydride, $[\alpha]_{D}^{30} - 32 \cdot 6^{\circ}$ in CHCl_3 ; d-, $[\alpha]_D^{31} + 11.4^{\circ}$ in EtOH, and l-, $[\alpha]_D^{32} - 10.9^{\circ}$ in EtOH, -anilic acid, m.p. $143-145^{\circ}$; d-, $[\alpha]_{D}^{34}+4\cdot5^{\circ}$ in EtOH or CHCl₃, and l-, $[\alpha]_{D}^{32\cdot5}-5\cdot5^{\circ}$ in CHCl₃, -anil, m.p. $125-126^{\circ}$], are also described. $[\alpha]$ are given also for other λ . Ring-closure results in a marked decrease in a except for the Me derivatives. Solvent effects are noted for several of the compounds.

Chemiluminescence of hydrazides of carboxylic acids. II. E. S. Vasserman and G. P. Mikluchin (J. Gen. Chem. Russ., 1940, 10, 202—206).—The cyclic hydrazides of 4-nitronaphthalic, m.p. 336° (decomp.), of diphenic, m.p. 246° (decomp.), of 4-aminodiphenic, m.p. 140°, and of cis-1:2-dihydro-, sublimes at 270°, and cis-4:5-dihydro-phthalie acid, m.p. 253° (decomp.), have been prepared by heating the appropriate anhydrides with N₂H₄ in EtOH. Chemiluminescence is observed when H₂O₂ is added to alcoholic solutions of the hydrazides, the most intense effect being given by the two last named.

Reactions of aldehydes with amines. I. With o-aminophenol. F. G. SINGLETON and C. B. POLLARD (J. Amer. Chem. Soc., 1940, 62, 2288—2289).—o-NH₂·C₆H₄·OH and RCHO under any of 5 sets of conditions give o-, m.p. $104\cdot5^{\circ}$, m-, m.p. 132° , and p-NO₂·C₆H₄·CH^{*}, m.p. 161° (cf. lit.), m-, m.p. 105° (corr.), and p-C₆H₄Me·CH^{*}, m.p. $108\cdot5^{\circ}$ (corr.), o-C₆H₄Cl·CH^{*}, m.p. 94° (corr.), and 5:2:1- NO_2 ·C₆H₃Cl·CH^{*}, m.p. 164° (corr.), derivatives.

R. S. C.
Addition reactions of unsaturated α-keto-acids. VI. (Miss) M. Reimer and (Miss) E.
Tobin (J. Amer. Chem. Soc., 1940, 62, 2515—2520; cf. A., 1938, II, 494).—p-Bromobenzylidenepyruvic acid (I) (prep. from p-C₆H₄Br·CHO and AcCO₂H in 25% KOH-MeOH), m.p. 143° (hydrates in air) and +H₂O, m.p. 120°, and its Me, m.p. 122°, and Et ester, m.p.

77°, are sensitive to light, a dimeric Et ester, m.p. 167—168°, being very readily formed. $\rm H_2O_2$ converts the Na salt of (I) into p-C₆H₄Br·CH:CH·CO₂H. Br and anhyd. (I) in dry CHCl₂ give a stable dibromide (II), m.p. 133° (decomp.), and $+H_2O$, softens at 100° , m.p. 120° (gas) (Me ester, m.p. 113°), which in boiling H₂O gives colourless β-bromo-p-bromobenzylidenepyruvic acid (III), m.p. 144-145° (decomp.), and $^{+}$ H₂O, cryst. (Me ester, m.p. 101°, prep. by CH₂N₂ only; Na salt), but in 1% Na₂CO₃ at room temp. gives a yellow isomeric acid (IV), m.p. 141—143° [Me ester, m.p. 75° , prep. by MeOH-HCl; with H_2O_2 -Na₂CO₃ gives a bromo-p-bromocinnamic acid, m.p. 221° (Me ester, m.p. 72°)]. When have at the m.p. or slowly in H₂O, (IV) gives (III). Dissolution in Na₂CO₃ converts (III) into (IV). (II) is accompanied by an isomeride (not obtained pure), which in 2%Na₂CO₃ gives 4: ω-dibromostyrene, m.p. 81°, oxidised by KMnO₄ to p-C₆H₄Br·CO₂H. (III) is probably $p\text{-}C_6H_4Br\cdot C < \stackrel{H}{\leftarrow} \stackrel{O}{\circlearrowleft} C \cdot OH$ and (IV) the un-R. S. C. chelated form.

Condensations. XI. Condensations of active hydrogen compounds effected by boron trifluoride and aluminium chloride. D. S. Breslow and C. R. Hauser. XII. General theory for carbon-carbon condensations effected by acidic and basic reagents. C. R. Hauser and D. S. Breslow (J. Amer. Chem. Soc., 1940, 62, 2385—2388, 2389—2392; cf. A., 1940, II, 308).—XI. PhCHO with COPhMe and BF₃ gives CHPh:CH·COPh (I) (61%) and CHPh(CH₂·COPh)₂, with CH₂(CO₂Et)₂ (II) and BF₃ gives CHPh[CH(CO₂Et)₂]₂ (III) [identified as CHPh(CH₂·CO₂H)₂ (43·6%)], with (II) and AlCl₃ gives CHPh:C(CO₂Et)₂ (IV) and some (III), and with Ac₂O and BF₃ gives 4·5% of CHPh:CH·CO₂H, but it does not react with EtOAc and BF₃. (II), (IV), and BF₃ give (III), but CHPh:CH·CO₂Et and (II) do not react. (II), (I), and BF₃ probably give

COPh·CH₂·CHPh·CH(CO₂Et)₂; Et₂ 2-benzoyl-1:3:5-triphenyl- Δ^1 -cyclohexene-4:4-dicarboxylate and, after hydrolysis, COPh·CH₂·CHPh·CH₂·CO₂H are isolated. 23·I% of CH₂Ph·CHAc·CO₂Et is obtained from CH₂Ac·CO₂Et, CH₂PhCl, and BF₃ at room temp.

XII. The author's theories of condensation reactions are expanded to include reactions induced by acidic catalysts. Such catalysts exert their effect on the electron-accepting component by forming an "active" co-ordination complex. CHPh:NPh, (II), and BF₃,Et₂O give 26.5% of NHPh·CHPh·CH(CO₂Et)₂. NHPh·CHPh·CHAc·CO₂Et and BF₃ in Et₂O give PhCHO and CH₂Ac·CO₂Et, and in COMe₂ give CH₂Ac·CO₂Et, NH₂Ph, and CHPh:CAc·CO₂Et. CH₂Ac·CO₂Et, Pr^β₂O, and BF₃ give 70.9% of CHPr^βAc·CO₂Et, 40.4% being similarly obtained by Pr^βOH. R. S. C.

β-Naphthyl derivatives of ethanolamine and N-substituted ethanolamines. T. IMMEDIATA and A. R. DAY (J. Org. Chem., 1940, 5, 512—527).—Gradual addition of AlCl₃ to C₁₀H₈ and AcCl in cold PhNO₂ and fractionation of the product from EtOH gives a 35—40% yield of 2-acetonaphthone, m.p. 53° (picrate, m.p. 82°), converted by Br in AcOH into ω-bromo-2-acetonaphthone (I), m.p. 80° (picrate,

m.p. 93°), which with $(CH_2)_6N_4$ in CHCl $_3$ followed by conc. HCl gives ω -amino-2-acetonaphthone, isolated in 40-44% yield as the hydrobromide; the oxime could not be obtained. Gradual addition of NH₂Me in dry EtOH to (I) in dry Et₂O gives the unstable ω-methylamino-2-acetonaphthone (oxime, m.p. 143°), isolated as the hydrochloride in 12—15% yield. The following-2-acetonaphthones are described: ω-ethylamino-, m.p. 68° (oxime, m.p. 121°; hydrochloride, m.p. 220—222°); ω-n-butylamino-, m.p. 82° (oxime, m.p. 113°; hydrochloride, m.p. 208°); ω-benzylamino-, m.p. 84° (oxime, m.p. 116.5°; hydrochloride, m.p. 207-208°); ω-cyclohexylamino-, m.p. 125° (hydrochloride, m.p. 209-210°; oxime hydrochloride, m.p. 201-202°); ω-dimethylamino-, free base very unstable (oxime, m.p. 148°; hydrochloride, m.p. 216— 217°); ω-diethylamino-, free base very unstable (oxime, m.p. 121·5°; hydrochloride, m.p. 199°); ω-dibenzylamino-, m.p. 109° (oxime, m.p. 114°; hydrochloride, sublimes without melting at 198°); ω-piperidino-, m.p. 84° (oxime, m.p. 122°; hydrochloride, m.p. 213°); ω-morpholino-, m.p. 120·5° (oxime, m.p. 154—155°; hydrochloride, m.p. 223—224°). The ketone salts are hydrogenated (10% Pd-C in EtOH) at atm. pressure thus giving the following -\alpha-2-naphthylethanols; β-amino-, m.p. 113·5° [hydrochloride (II), m.p. 186°]; β-methylamino- (III), m.p. 109° (hydrochloride, m.p. 152°); β-ethylamino- (IV), m.p. 110·5° (hydrochloride, m.p. 189·5°); β-n-butylamino- (V), m.p. 95·6° (hydrochloride, m.p. 190°); β-benzylamino- (VI), m.p. 136·5° (hydrochloride, m.p. 194·5°); β-cyclohexylamino- (VII), m.p. 98° (hydrochloride, m.p. 224°); β-dimethylamino-, (VIII); m.p. 53° (hydrochloride, m.p. 143.5°); β -diethylamino- (IX), m.p. 42° (hydrochloride, m.p. 142.5°); β-dibenzylamino- (X), m.p. 132° (hydrochloride, m.p. 210°); β-piperidino- (XI), m.p. 98·5° (hydrochloride, m.p. 213°); β-morpholino- (XII), m.p. 120·5° (hydrochloride, m.p. 223-224°). (II) is transformed by BzCl at 100° into β -amino- α -2-naphthylethyl benzoate hydrochloride, m.p. 206-206.5°; attempts to prepare the corresponding free base lead to β -benzamido- α -2naphthylethanol, m.p. 207.8°. Similarly obtained are the benzoate hydrochloride of (III), m.p. 193-194°, β -benzmethylamido- α -2-naphthylethanol, 134.5°; benzoate hydrochloride of (IV), m.p. 178—179° and β-benzethylamido-α-2-naphthylethanol, m.p. 125°; benzoate hydrochloride of (V), m.p. 151°, and \beta-benz-nbutylamido-\alpha-2-naphthylethanol, m.p. 126—127; benzoate hydrochloride of (VI), m.p. 208°, and \beta-benzbenzylamido-\alpha-2-naphthylethanol, m.p. 82°; benzoate hydrochloride of (VII), m.p. 192-193°, and β-benzeyclohexylamido-α-2-naphthylethanol, m.p. 68°; benzoate hydrochloride of (VIII), m.p. 225°, and the base, m.p. 69°; benzoate hydrochloride of (IX), m.p. 178°, and free base, m.p. 84°; benzoate hydrochlorides of (X); (XI), and (XII), m.p. 205—206°, 209°, and 204—205°, respectively, and the corresponding bases, m.p. 111.2°, 69°, and 105°, respectively. All m.p. are corr.

H. W. Friedel-Crafts reaction. V. Action of acetic anhydride and benzoyl chloride on methyl β-resorcylate. R. D. Desai and (Miss) K. S. Radha (Proc. Indian Acad. Sci., 1940, 12, A, 46—49: cf. A., 1939, II, 23).—2:4:5:1-(OH)₂C₆H₂Ac·CO₂Me, m.p. 124° (improved method of prep.), is converted by 1

mol. of Ac_2O into $Me \ 2: 4-dihydroxy-3: 5-diacetyl$ benzoate, m.p. 113°, also obtained from Me β-resorcylate (I) and Ac₂O (2 mols.). The acid, m.p. 175° (p-nitrophenylhydrazone, m.p. >280°; semicarbazone, m.p. >280°), is transformed by HCl-AcOH at 160—170° into $2:4:1:3-C_6H_2Ac_2(OH)_2$, m.p. $95-96^\circ$ (lit., m.p. $85-87^\circ$). (I), BzCl, and AlCl₃ afford Me 2:4-17. dihydroxy-5-benzoylbenzoate, m.p. 129—130° (2:4-dinitrophenylhydrazone, m.p. >270°; semicarbazone, m.p. $>270^{\circ}$); the corresponding acid, m.p. $232-233^{\circ}$ is decarboxylated to $4:1:3-C_6H_3Bz(OH)_2$. 2: 4-dihydroxy-5-benzoyl-3-acetylbenzoate, m.p. 126-127°, gives a 2: 4-dinitrophenylhydrazone, m.p. >290°. Me 2:4-dihydroxy-3:5-dibenzoylbenzoate, m.p. 119-120°, is hydrolysed to the acid (+H₂O), m.p. 235— 236° (2:4-dinitrophenylhydrazone, m.p. >280°; semicarbazone, m.p. >290°), which is decarboxylated to $2:4:1:3-C_6H_2Bz_2(OH)_2$, m.p. 102° .

Preparation of isophorones.—See B., 1940, 782.

Cyclone series. V. S. Abramov and C. L. Mitropolitanskaja (J. Gen. Chem. Russ., 1940, 10, 207—209).—Cyclone (I) and CII₂:CH·CH₂·OH or CH₂:CH·CH₂Cl in C₆H₆ (8 hr. at 180—200°) afford 2:5-endoketo-2:3:4:5-tetraphenyl-1:2:5:6-tetrahydrobenzyl alcohol, m.p. 85—86°, or chloride, m.p. 115—118°, respectively. CH₂:CH·CH₂Ph and (I) give 3:4:5:6-tetraphenyl-1:2-dihydrodiphenylmethane, m.p. 158—160°, whilst styrene affords 1:2:3:4:5-pentaphenyl-5:6-dihydrobenzene, m.p. 157—158°.

Synthetic experiments utilising perinaphthan-7-one. L. F. Fieser and M. D. Gates, jun. (J. Chem. Soc., 1940, **62**, 2335—2341). Amer. Chem. Soc., 1940, 62, 2333—2341).—
1- $C_{10}H_7$ ·CH₂Cl [prep. from $C_{10}H_8$, (CH₂O)₃, and HCl in AcOH improved to give a 51.5% yield] and CHNa(CO₂Et)₂ give the Et₂ ester, b.p. 167—171°/1·5—2 mm., and thence 1- $C_{10}H_7$ ·[CH₂]₂·CO₂H, m.p. 156—156·6° [Me ester, m.p. 35—36·5°; amide, m.p. 103—104° (lit., 140°, 85°, 133°)]. With AlCl₃ or SnCl₄ this gives mixtures, but in HF gives readily 81% of perinaphthan-7-one (I), m.p. 82·6—83·2° [oxime, new m.p. 127—128°; semicarbazone, m.p. 232—233° (decomp.)], with a little 4:5-benzhydrindone, m.p. 120.6—121.4° [oxime, m.p. 229—231° (decomp.)] (cf. Cook et al., A., 1934, 519). The structure of (I) is proved by Clemmensen-Martin reduction to perinaphthane (A., 1938, II, 356). With o-C₆H₄Cl·MgBr, (I) gives a crude carbinol, dehydrated in boiling AcOH to mixed, rearranged anhydroderivatives, which after hydrogenation (PtO₂; AcOH) gives a product, b.p. 178—180°/1 mm.; interaction thereof with CuCN-MeCN-C₅H₅N at 230—240° gives 1- (II) (18.6%), m.p. $144.7-145.4^{\circ}$, and 3-o-cyanophenylperinaphthane (III) (13.4%), m.p. 122.5—123.8°, and a eutectic mixture (18.3%), m.p. 104.3—106.3°, thereof. Acid hydrolysis of (II) and (III) is unsuccessful but hot KOH-aq. EtOH gives 76% of 1-o-carbamyl-, m.p. 173—174·5°, 17% of 1-o-carbaxy-(IV), m.p. 173·7—174·7°, 77·5% of 3-o-carbamyl-, m.p. 194.2-196.5° [hydrolysed to (V) by conc. HCl-AcOH], and 16.5% of 3-o-carboxy- (V), m.p. 187.9— 188.5°, -phenylperinaphthane. In HF, (V) gives 3:4-trimethylenebenzanthr-7-one, m.p. 217·2—218·4°, and (IV) gives 4:4'-trimethylene-2:3-benzfluorenone,

m.p. 187—189° (rapid), 201—203° (slow heating), or 190° (preheated bath) resolidifying with m.p. 201— 203° (absorption spectrum resembles that of 2:3benzfluorenone but not that of 1: 2-benzanthr-10-one). M.p. are corr.

Constitution of the chlorobenzanthrone obtained by direct chlorination of benzanthrone. G. CHARRIER and E. GHIGI (IX Congr. int. quim. pura apl., 1934, 4, 309—316; Chem. Zentr., 1937, i, 4361—4362).—The chlorobenzanthrone, m.p. 183° is probably the 3-derivative. Oxidation (CrO₃) gives anthraquinone-1-carboxylie acid whilst fusion with affords isoviolanthrone. Oxidative fission (KMnO₄, aq. NaOH, 85—90°) gives a chlorodiphenyl-2(or 3): 2'-dicarboxylic-3(or 2)-glyoxylic acid, m.p. 245-250° (softens at 225°), which is converted by MnO₂-H₂SO₄ into a substance, m.p. 237—238°, and by distillation with CaO into (probably) p-C₆H₄PhCl and a substance, m.p. $140-160^{\circ}$.

Sterols. CV. Preparation of testosterone and related compounds from sarsasapogenin and diosgenin. R. E. MARKER (J. Amer. Chem. Soc., 2543—2547).—alloPregnan-20-one and 1940, **62**, $K_2S_2O_8-H_2SO_4-K_2SO_4$ in AcOH at 25° give 30—35% each of 21-acetoxyallopregnan-20-one (I), m.p. 197— 200° [semicarbazone, m.p. 242—244° (decomp.)], and 17(α)-androstanyl acetate (isolated by hydrolysis to androstan- $17(\alpha)$ -ol and purification of the H succinate). Hydrolysis of (I) by boiling KHCO₃-MeOH gives allo-pregnan-21-ol-20-one, m.p. 115—117°, oxidised by CrO₃ to ætioallocholanic acid. 3(α)-Acetoxypregnan-20-one and K₂S₂O₈ give similarly products hydrolysed to ætiocholane- $\bar{3}(\alpha)$: $17(\alpha)$ -diol and a little *epi* pregnanolone and ætiolithocholic acid. 3-Acetoxy- Δ^5 -pregnen-20-one (as dibromide) gives similarly Δ^5 -androstene- $3(\beta):17(\alpha)$ -diol, m.p. 176—178°, identified by oxidation to androstene-3:17-dione. 4-Bromopregnane-3:20-dione gives products, which, after removal of HBr by C₅H₅N, contain deoxycorticosterone, which was hydrolysed (without isolation) by KHCO₃-MeOH and then oxidised to 3-keto- Δ^5 -ætiocholenic acid, m.p. 249—253° (reduced by Na-EtOH to 3(β)-hydroxyætioallocholanic acid); the residual 17-acetoxycompounds afford, after hydrolysis (1% MeOH-KOH), testosterone and progesterone. 2-Bromocholestanone, 4-bromocoprostanone, cholestanol and its acetate resist oxidation by $K_2S_2O_8$. R. S. C.

Steroids. III. Partial oxidation of 3:5:6triols and oxidation with permanganate of 5:6unsaturated steroids. M. Ehrenstein and M. T. DECKER (J. Org. Chem., 1940, 5, 544-560).—Partial oxidation (CrO₃ = 10) of androstane-3(β)-5: 6-(trans)triol-17-one yields androstane-3(\beta): 5-diol-6: 17-dione, m.p. 282—284° (3-monoacetate, m.p. 197.5—199°, +17.0° in COMe₂). Dehydroisoandrosterone acetate is oxidised by KMnO₄ in COMe₂ to a mixture of substances including $5:6(\alpha)$ -oxido-, m.p. 188— 190°, $[\alpha]_D^{26}$ +58·4° in COMe₂, and 5:6(β)-oxido-(I), m.p. 221—222·5°, $[\alpha]_D^{26}$ +10° in COMe₂, -androstan-3(β)-ol-17-one acetate both of which with aq. COMe₂- H_2SO_4 undergo ring opening to androstane-3(β)-5:6-(trans)-triol-17-one 3-monoacetate, m.p. 234-235° transformed by oxidation into androstane-3(β): 5-diol-6:17-dione 3-monacetate, m.p. 234-235°, and by

acetylation into the 3:6-diacetate, m.p. $216.5-217^{\circ}$, $[\alpha]_{D}^{26} \pm 0^{\circ}$ in COMe₂. The dehydroisoandrosterone oxide of Uschakov et al. (A., 1938, II, 65) and Miescher et al. (A., 1938, II, 174) is acetylated to (I). ation (KMnO₄ in AcOH) of cholesteryl acetate gives a mixture of substances separated chromatographically into appreciable amounts of *cholestane-3(\beta)*: 5diol-6-one 3-monoacetate, m.p. 226·5—228·5°, and β-cholesterol oxide acetate, m.p. 114—117°. Analogous oxidation of pregnenolone acetate affords a mixture of substances from which 5: 6-oxidopregnane-3(β)-ol-20-one acetate, m.p. 163—165° (oxime, m.p. 219— 221°), pregnane- $3(\beta)$: 5-diol-6: 20-dione 3-monoacetate, m.p. 222·5—224° [oxime, m.p. 262—264° (decomp.)], and a small amount of pregnane- $3(\beta)$: 5:6-triol-20one 3-monoacetate, m.p. 226—228° (oxime, m.p. 221—223°), are isolated. The mechanism of the oxidation (KMnO₄) of 5:6-unsaturated steroids is discussed. $Androstane-3(\beta):5:6(cis)-triol-17-one$ 3:6-diacetate has m.p. $253-254^{\circ}$, $[\alpha]_{D}^{26}+63\cdot6^{\circ}$ in COMe₂. H. W.

Sterols. CIII. Oxidation of pregnanetriols. R. E. MARKER and D. L. TURNER (J. Amer. Chem. Soc., 1940, **62**, 2540—2541).—alloPregnane-3: 16: 20triol, $Al(OPr^{\beta})_3$, and cyclohexanone (excess) in PhMe give Δ^{16} -allopregnene-3: 20-dione, reduced by H_2 - $Pd-BaSO_4$ in Et_2O at 1.7 atm. to allopregnane-3: 20dione. Sarsasapogenin acetate and K₂S₂O₈-H₂SO₄-K₂SO₄ in AcOH at room temp. give (after hydrolysis) pregnane-3(β): 16: 20-triol, m.p. 227—228° (lit. 223— 226°), oxidised (as above) to (probably) Δ17:20-pregnene-R. S. C. 3:16-dione, m.p. 179—182°.

6-Methyl- Δ^4 -androstene-3:17-dione. Madaeva, M. I. Uschakov, and N. F. Koscheleva (J. Gen. Chem. Russ., 1940, 10, 213—216).— Δ^5 -Androstene-3:17-diol and BzO2H in CHCl3 yield androstene-3:17-diol 5:6-oxide, m.p. 198-199° [diacetate, m.p. 165—165.5° (corr.)], which with MgMeI in Et₂O affords 6-methylandrostane-3:5:17-triol, m.p. 117— 120° (3:17-diacetate, m.p. 176·3—177·9°). oxidised (CrO₃ in AcOH) to 6-methylandrostan-5-ol-3:17-dione, m.p. 187-188°, converted by HCl in CHCl₃ into 6-methyl- Δ^4 -androstene-3:17-dione, m.p. 163·5—167°.

Preparation and properties of derivatives of inositol. F. A. HOGLAN and E. BARTOW (J. Amer. Chem. Soc., 1940, **62**, 2397—2400).—Prep. of inositol from [best (9.5%), light] starch steep water is modified. Oxidation to 1:2:3:5:6:4-0 (OH) (I) is best (35-40%) effected by HNO₃ (d 1.42) at room temp. The Na salt and the so-called "K rhodizonate " are salts of (I) and lead to the same products. The coloured compounds, (I),2NH,Ar (9 bases used; 6 others do not react), 22 inorg. salts of (I), and the (! tetra-)benzoate, m.p. 266—270° (decomp.), propionate, m.p. 231° (decomp.), butyrate, m.p. 237° (decomp.), isobutyrate, m.p. 121°, valerate, m.p. 241° (decomp.), isovalerate, m.p. 218° (decomp.), isohexoate, m.p. 222-225° (decomp.), octoate, m.p. 224° (decomp.), and decoate, m.p. 208-211° (decomp.), are described. R. S. C.

1-Alkylthiolanthraquinones.—See B., 1940, 782. Dependence of physiological action on chemical

constitution. I. Difference in odour of d-, l-,

and dl-derivatives of amino- and diamino-methylenecamphor. B. K. Singh and A. B. Lal (Proc. Indian Acad. Sci., 1940, 12, A, 230—234).— The order of intensity of odour of 5- and 3-nitro-otoluidino- and of 2:5- and 2:3-toluylenesdiamino-methylenecamphor is l>dl>d in each case. Hypotheses relating odour to chemical constitution are discussed. H. W.

Dependence of optical rotatory power on chemical constitution. XVIII. Rotatory dispersion of stereoisomeric 3-nitro-o-toluidino-, 5-nitro-o-toluidino-, 2 : 3-toluylenediamino-, and 2:5-toluylenediamino-methylenecamphor. B.K. SINGH and A. B. LAL (Proc. Indian Acad. Sci., 1940, **12**, **A**, 157—178).—Hydroxymethylene-d-camphor in 90% EtOH and 5-nitro-o-toluidine in 70% AcOH at 0° afford 5-nitro-o-toluidinomethylene-d-camphor, m.p. 161-162°; the l- and dl-camphor compounds have m.p. 162° and 170°, respectively. 3-Nitro-o-toluidinomethylene-d-, -l-, and -dl-camphor have m.p. 98°, 98°, 122°, respectively. 2:5-Toluylenediaminomethylene-d-, m.p. 215°, -l , m.p. 217°, and -dl-, m.p. 136° -camphor are described. M.p. 115°, 116°, and 116° are recorded for 2:3-toluylenediaminomethylened-, -l-, and -dl-camphor. Rotatory powers in MeOH, COMe₂, C_6H_6 , EtOH, C_5H_5N , and CHCl₃ are recorded at 35° for $\lambda = 5036$, 5218, 5460, 5780, 5812, 6102, 6203, 6428, and 6707. 6362, 6438, and 6707 A. NO_2 at $C_{(5)}$ has a greater effect on the rotatory power than at $C_{(3)}$. The introduction of additional optically active centres does not result in a corresponding increase in the vals. of $[\alpha]$. The influence of Me on $\lceil \alpha \rceil$ is irregular. The order of $[\alpha]$ in different solvents does not run parallel with the sequence of their dielectric consts., MeOH > EtOH > $COMe_2 > C_5H_5N > CHCl_3 > C_6H_6$.

Kinetics of mutarotation of hydroxymethylene-d-camphor.—See A., 1940, I, 443.

Volatile plant substances. XII. Structure of aromadendrene. Y. R. NAVES and E. PERROTTET (Helv. Chim. Acta, 1940, 23, 912—925).—Repeated fractional distillation of the sesquiterpenes from oil of Eucalyptus globulus, Labill, gives aromadendrene (I), but typics yield at s, Easin, gives aromate interest (1), b.p. $114^{\circ}/6$ mm., $\alpha_{5461} + 5 \cdot 96^{\circ}$ ($l = 1 \cdot ?$) hydrogenated (PtO₂) to dihydroaromadendrene (II), b.p. $104 - 104 \cdot 5^{\circ}/4$ mm., $\alpha_{5461} - 13 \cdot 36^{\circ}$ ($l = 1 \cdot ?$), and ozonised to aromadendrone, m.p. $83 \cdot 5 - 84^{\circ}$, $\alpha_{5461} + 5 \cdot 02^{\circ}$ ($l = 1 \cdot ?$) in EtOH. Evidence of the other than one ethylatic likeling beauty than one of the other states of the states of the other states o enic linking has not been obtained. (I) absorbs only 1 H₂ and (II) appears saturated particularly towards The observation of Radeliffe et al. (A., 1938, II, 416) that aromadendrol is saturated towards $C(NO_2)_4$ and does not absorb H_2 is confirmed and it is found that oxygenated hydroazulenes are readily and completely hydrogenated. Fixation of halogens does not give any useful information probably on account of decyclisation. According to Rossmann's method (I) and (II) unite with $2\cdot 1$ and 1 mol. of Br, respectively. Data are given for parachor, dispersion, dipole moment, and ultra-violet absorption and Raman spectra.

Sesquiterpenes. XLIV. Carbon skeleton of guaiol and of guaiazulene. P. A. PLATTNER and L. Lemay (Helv. Chim. Acta, 1940, 23, 897—907).—Hydrogenation of guaiol (dinitrobenzoate, m.p. 137—

137.5°) in presence of PtO₂ in cyclohexane, EtOH, EtOAc with or without AcOH, or in AcOH leads to only 33% absorption of H₂ whereas hydrogenation with Raney Ni-H₂ at 100°/100 atm. affords dihydroguaiol (I), m.p. $78 - 79^{\circ}$, $[\alpha]_{D} - 54^{\circ}$ in COMe₂ (dinitrobenzoate, m.p. 150° , $[\alpha]_{D} - 14 \cdot 2^{\circ}$), and a dextrorotatory isomeride (II), $[\alpha]_D \sim +40^{\circ}$ (dinitrobenzoates, m.p. 135° and 144°). The dihydroguaiene (III) obtained from (I) and Ac₂O at 150°, AlCl₃ at 255°, BzCl in C₅H₅N followed by distillation, and KHSO₄ at 150— 160° has b.p. 123—124°/11 mm., $[\alpha]_D$ —43·8° in EtOH, b.p. 124°/11 mm., $[\alpha]_D$ —59° in EtOH, $[\alpha]_D$ —57°, and b.p. 128—131°/13 mm., $[\alpha]_D$ —42·3° in EtOH, respectively. Ozonisation of (III) gives notable amounts of CH2O and COMe2 and the product is transformed by Zn dust into a ketone, C₁₂H₂₀O, b.p. 100—120°/3 mm. [semicarbazone (IV), m.p. 205— 206°, $[\alpha]_D$ -81.4°], a neutral material, $C_{15}H_{20}O_2$, b.p. 130-136°/3 mm., probably a mixture of the expected CO-aldehyde and a neutral peroxidic substance, $C_{15}H_{26}O_3$, b.p. $169^{\circ}/3$ mm. Prolonged keeping of the neutral products gives a cryst. substance, $C_{15}H_{26}O_2$, m.p. $168\cdot 5-169\cdot 5^\circ$. Similar treatment of (II) leads to a semicarbazone, m.p. $196-197^\circ$, $[\alpha]_D + 17\cdot 5^\circ$, whilst crude dihydroguaiol affords a semicarbazone, m.p. $199-200^{\circ}$, $[\alpha]_{D} +46^{\circ}$; neither compound depresses the m.p. of (IV). Aq. H₂C₂O₄ transforms (IV) 2:6-dimethyldicyclo-[0:3:5]-decanone, 130—131°/11 mm., $[\alpha]_D$ —107·4° in EtOH, reduced (Raney Ni in EtOH at room temp.) to 2:6-dimethyldicyclo-[0:3:5]-decanol, b.p. 130—134°/10 mm. This is converted by KHSO4 at 200° followed by S at 230° into 1:4-dimethylazulene [additive compound, m.p. 177—178°, with $C_6H_3(NO_2)_3$; picrate, m.p. 142—143°l. All m.p. are corr. H. W. 142—143°]. All m.p. are corr.

Triterpene resinols and related acids. XI. Oxidation of acetyloleanolic acid and of methyl acetyloleanolate with perbenzoic acid. C. W. Picard and F. S. Spring (J.C.S., 1940, 1387—1390).

—Oxidation with BzO₂H of Me acetyloleanolate gives the oxide, m.p. 215—217° (corr.) [cf. m.p. 201—204° (corr.), Ruzicka et al., A., 1937, II, 510], which with dil. HCl is isomerised to Me ketoacetyldihydrooleanolate. Similarly treatment of acetyloleanolic acid yields hydroxyacetyloleanolic acid lactone, m.p. 333°, characterised by formation of a Ac₂ derivative, and oxidation (CrO₃-AcOH) to ketoacetyloleanolic acid lactone. F. R. S.

Oxidation of lupenyl esters. E. R. H. Jones and R. J. Meakins (J.C.S., 1940, 1335—1339).—An examination of the absorption spectra of ketolupeol, ketolupenyl benzoate and acetate (I) (cf. Ruzicka et al., A., 1939, II, 330), and ketolupenyl acetate semicarbazone, m.p. 251° (decomp.) [2:4-dinitrophenyl-hydrazone, m.p. 252° (decomp.)], has revealed that these ketones are $\alpha\beta$ -unsaturated. Ozonolysis of (I) gives CH₂O (33% yield) and the acetate-acid, m.p. 260—261°, previously obtained by Duerden et al. (A., 1939, II, 170), which is hydrolysed to the OH-acid, C₂₈H₄₈O₃ (Me ester, m.p. 220—221°, [α]²⁰ —22° in CHCl₃), also obtained by ozonolysis of lupenyl acetate in CHCl₃, but in AcOH an acetate-acid, C₃₁H₅₀O₄, m.p. 285—286° (decomp.), [α]²⁰ —9·7° in

 $\mathrm{CHCl_3}$ [Me ester, m.p. 242—245° (decomp.)], is also isolated. F. R. S.

(A) Abietic acid. G. DUPONT, J. DUBOURG, and G. Rouris. (B) Pyroabietic acid. G. Dupont and J. Dubourg (Monit. Produits chim., 1936, 18, No. 211, 8—11, 11—15; Chem. Zentr., 1937, i, 4109).— (A) Anomalies observed in the analysis, mol. wt. determination, and amount of H₂O eliminated during heating, of abietic acid (I) are due to the presence of a small amount of H₂O of crystallisation. Crystallisation from H₂O-containing solvents gives (I), m.p. 173°, $C_{20}H_{30}O_2 + \frac{1}{3}$ or $\frac{1}{4}H_2O$, which when heated or recrystallised from anhyd. C₆H₆, xylene, CCl₄, or CS₂ affords anhyd. (I), m.p. 151-153°, and not abietic anhydride. This contains 1 OH (Zerevitinov) and with abs. EtOH-NH₃, -NaOEt, and -KOH gives the normal NH₄, m.p. 121—122°, Na, and K salt, respectively, which are converted into gels under the action of moisture.

(B) The final product of isomerisation (heat; acid) of resin acids is not (I), which is converted at 190—200° into dextrorotatory products. Pyroabietic acid, m.p. 155—159°, [α]₅₄₆₁ +54·2°, isomeric and isomorphous with (I), has been isolated from a 20 year-old resin oil and from Aleppo turpentine after heating at 250°/80 hr. H. B.

Lignin and related compounds. L. Fractionation of acetylated cell wall constituents of red oak wood. Q. P. Peniston, J. L. McCarthy, and H. Hibbert (J. Amer. Chem. Soc., 1940, 62, 2284— 2288; cf. A., 1940, II, 348).—Extraction of red oak wood meal with Et₂O-C₆H₆ and aq. alkali, and treatment of the product with Ac₂O-H₂SO₄ at 25°, 29°, and 35° gives products, the solubility of which in CHCl₃ is 47.7, 73.3, and 78.4% (averages), respectively. Solubility thus parallels, and owes its increase to, fission of the macromols. Fractionation of the product by dioxan and CHCl₃ and pptn. from dioxan by MeOH gives products of widely differing composition. One fraction contained 87% of lignin. Sol. "carbohydrate" fractions could not be freed from OMe and probably contained combined lignin. In the natural wood the lignin, pentosans, and cellulose are probably partly but not entirely combined.

Sterols. C. Diosgenin. R. E. MARKER, T. TSUKAMOTO, and D. L. TURNER (J. Amer. Chem. Soc., 1940, 62, 2525—2532).—Reactions of diosgenin (I) are interpreted in accordance with Marker's sapogenin formulæ. (I), isolated from Dioscorea tokoro, Makino, is stable to HCl-EtOH. With Al(OPr^{\$})₃-PhMe-cyclohexanone or with Br-AcOH, CrO₃, and then Zn dust, it gives Δ^4 -tigogenone (II), m.p. 186—188°, hydrogenated (Pd-BaSO₄; Et₂O; 10 lb.) to isosarsasapogenone (= smilagenone), which with Al(OPr^β)₃-Pr^βOH gives isosarsasapogenin (= smilagenin). Na-EtOH reduces (II) to tigogenin (oxidised by CrO₃ to tigogenone) and Ac_2O at 200° isomerises it to ψ - Δ^4 -tigogenone (III), an oil, reconverted into (II) by HCl-MeOH and reduced (H_2 -Pd-BaSO₄; Et_2O ; 5 lb.) to ψ -sarsasapogenone. CrO_3 -AcOH oxidises (III) to $\Delta^{4:16}$ -pregnadiene-3: 20-dione, m.p. 182-185°, which with Na-EtOH gives allopregnane-3(β): 20(α)-diol (IV) and with H₂-Pd-BaSO₄ gives progesterone (V) and pregnane-3: 20-dione. With Ac_2O at $195-200^\circ$, (I) gives ψ -diosgenin (VI), forms, m.p. $190-192^\circ$ and $172-174^\circ$, the oily acetate of which by Br, CrO_3 , Zn dust, and finally alkaline hydrolysis of the ketonic products gives $\Delta^{5:16}$ -pregnadien-3-ol-20-one, m.p. $212-214^\circ$. This is reduced (Na-EtOH) to Δ^{5-} -pregnenediol, m.p. $170-174^\circ$ (and an isomeride), which is oxidised (Br, CrO_3 , Zn) to (V) and hydrogenated (PtO₂; Et_2O ; 3 atm.) to (IV). (VI) is reconverted by HCl-EtOH into (I) and hydrogenated (PtO₂; AcOH; 3 atm.) to tetrahydro- ψ -diosgenin (= dihydro- ψ -tigogenin), m.p. $202-205^\circ$, obtained also similarly from ψ -tigogenin and oxidised (CrO_3) to Δ^{16} -allopregnenedione. R. S. C.

Sterols. CII. Chlorogenin. R. E. MARKER, E. M. JONES, and D. L. TURNER (J. Amer. Chem. Soc., 1940, 62, 2537—2540).—The structure of chlorogenin (I) (A., 1940, II, 99) is confirmed and the OH are shown to be at $3(\beta)$ and $6(\alpha)$. Na-EtOH reduces chlorogenone (II) to (I), but H_2 -PtO₂ in EtOH at 3 atm. gives β -chlorogenin, m.p. 246—248° (diacetate, m.p. 120°; dibenzoate, m.p. 198-200°), further hydrogenated in AcOH to dihydro-β-chlorogenin, m.p. 209—210°. Cholestane-3: 6-dione and Na-EtOH give the diol, m.p. 215-216°, also obtained from the 3-ol-6-one (Windaus, A., 1917, i, 265). Diosgenin and CrO_3 -AcOH give $\Delta^{4:5}$ -diosgen-3:6-dione, m.p. 194—195°, converted by Zn dust in AcOH into 6-ketotigogenone [= (II); identity confirmed by reduction with Na-EtOH and H₂-PtO₂]. The mother-liquors from the oxidation of crude digitogenin afford (II) and the corresponding $C_{(5)}$ -epimeride (cf. Windaus, A., 1926, 409).

Sapogenins. XXXV. Sterols. CVI. supposed trillarigenin. R. E. MARKER and J. KRUEGER (J. Amer. Chem. Soc., 1940, 62, 2548— 2549).—"Trillarigenin" (A., 1938, III, 837) is a $\sim 7:3$ mixture of diosgenin (I) and trillin (II), $\rm C_{33}H_{52}O_8, +0.5H_2O,$ m.p. 275—280° (decomp.). Vigorous hydrolysis of trillarin gives (I) and glucose; mild hydrolysis gives (II), which by vigorous hydrolysis affords (I) and glucose (identified as osazone). (II) gives a tetra-(? penta-)acetate, m.p. 202—203°, hydrolysed by 5% KOH–MeOH to (II) and hydrogenated (PtO₂; AcOH; 70°/3 atm.) to the H_4 -acetate, which with boiling HCl-EtOH affords dihydrotigogenin. Hydrogenation (PtO₂) of (II) in MeOH containing a trace of AcOH at 1 atm. gives dihydrotrillin, $+0.5H_2O$, m.p. 270°, hydrolysed to tigogenin. (II) is thus diosgenin 3-glucoside. R. S. C.

Sclerotiorin, C₂₀H₂₀O₅Cl, m.p. 206—207°, metabolic product of *Penicillium sclerotiorum*, Van Beyma.—See A., 1940, III, 868.

Structure of monocrotaline. IV. Monocrotalic acid. R. Adams and R. S. Long (J. Amer. Chem. Soc., 1940, 62, 2289—2294).—The formula previously (A., 1940, II, 29) proposed for monocrotalic acid (I) and another considered are improbable in view of the properties of synthetic products.

COMe-CHMeBr and CHNa(CO₂Et)₂ in boiling Et₂O, PhMe, or PhMe-EtOH give Et α-carbethoxy-β-methyllævulate (II), b.p. 130—135°/3 mm. [2:4-dinitrophenylhydrazone, m.p. 118—119° (corr.)], hydrolysed

by boiling KOH-EtOH to α-carboxy-β-methyl-lævulic acid, m.p. 127-128° (corr.; decomp.), which at 130-140° gives CHMeAc·CH₂·CO₂H, b.p. 115—118°/3 mm. [p-nitrophenylhydrazone, m.p. 160—162° (corr.) (lit., 168—169°)]. The Na salt of (II) with MeI in boiling, abs. EtOH or PhMe-EtOH (less well, C_6H_6) gives Et α -carbethoxy- $\alpha\beta$ -dimethyl-lævulate (III) (76%), b.p. 116—117°/2·5 mm., converted by boiling KOH-EtOH into the liquid dicarboxylic acid, which at 120° gives CHMeAc·CHMe·CO₂H (= monocrotic acid) (IV), b.p. $117-118^{\circ}/3.5$ mm. {Mo ester, b.p. $97-98^{\circ}/20$ mm. [2:4-dinitrophenylhydrazone, forms, m.p. 107— 109° (corr.) and 121—122°, obtained also from Mo monocrotate (cf. loc. cit.)]}, and a little αβy-trimethyl-Boiling, conc. HCl converts angelical actone (V). (III) directly into (IV), but has no effect on (I). CO₂Et·CHAc·CHMe·CO₂Et, b.p. 107°/2 mm. [2:4 dinitrophenylhydrazone, m.p. 99-100° (corr.)], with Na and MeI in C_6H_6 or EtOH (less well, Et₂O) gives Et β -carbethoxy- $\alpha\beta$ -dimethyl-lævulate, b.p. 110—115°/2 mm. {also obtained (25% yield) from CHMoAc CO2Et [2:4-dinitrophenylhydrazone, m.p. 56—57° (corr.)] and CHMeBr·CO₂Et}, which in conc. HCl at room temp. gives β-carbethoxy-αβ-dimethyl-lævulic acid (VI), b.p. $154-158^{\circ}/2.5$ mm., and (IV). Alkaline hydrolysis of (VI) gives (IV) and meso-(·CHMe·CO₂H)₂; that of Me monocrotalate gives (IV) and CO₂ with a little (V). Acid hydrolysis of Me dihydroanhydromonocrotalate gives the acid, m.p. $131-132^{\circ}$, $[\alpha]_{D}^{30}+3\cdot80^{\circ}$, but alkali gives a mixture.

Derivatives of coumarin-3-carboxylic acid; a new class of synthetic medicinal. F. von Wer-DER (Merck's Jahresber., 1936, 50, 88-101).—o-OH·C₆H₄·CHO, CH₂(CO₂Me)₂, and a little piperidine at room temp. give Me coumarin-3-carboxylate, m.p. 116.5°. The following esters are prepared from the free acid (I) or the acid chloride (II): Pr^a , m.p. 73° Pr^{β} , m.p. 89°, Bu^{α} , m.p. 67°, $CCl_3 \cdot CMe_2$, m.p. 176°, CH₂Ph, m.p. 92°, and diethylaminoethyl (hydrochloride, m.p. 215°). The appropriate amine and (II) afford coumarin-3-carboxy-allylamide, m.p. 130°, ·carbethoxyamide, m.p. 183—184° (from NH₂·CO₂Et), -ethylamide, m.p. 132—133°, -hexadecylamide, m.p. 108—110°, -phenylethylamide, m.p. 178—179°, -benzylamide, m.p. 154°, -p-anisidide, m.p. 215—216°, -pphenetidide, m.p. 206-207°, diethylaminoethylamide hydrochloride, m.p. 187°, diethylamide (III), m.p. 77—78°, dimethylamide, m.p. 144—145°, dipropylamide, m.p. 80-81°, -diallylamide, m.p. 132°, -di-iso-, m.p. 137°, and -sec.-butylamide, m.p. 148°, -diphenylamide, m.p. 236°, -di-β-phenylethylamide, m.p. 119— 120°, -dibenzylamide, m.p. 143°, -methylpropylamide, m.p. 109—110°, -isobutyl-, m.p. 102—103°, and -isoamyl-allylamide, m.p. 79°, -piperidide, m.p. 179—180°, -methyl-, m.p. 111—112°, and -benzyl-p-phenetidide, m.p. 160°, -diacetonamide, m.p. 127—129°, and -s-diethylcarbamide, m.p. 148—149°. Et \beta-coumarin-3 $carboxylamido-\alpha$ -phenyl- α -methylpropionate has m.p. III—112°. The following salts of (I) are prepared in COMe₂: dl-, m.p. 196°, and l-ephedrine, m.p. 145°, papaverine, m.p. 129°, eupaverine, m.p. 134°, quinine, m.p. 137—139°, sparteine, m.p. 157°, β-methylamino-α-p-aminophenylpropyl alcohol, m.p. 182°, and (?) 6:7methylenedioxy-1-3': 4'-methylenedioxyphenyl-3-methylisoquinoline, m.p. 174°. 3:2:1-CH₂:CH·CH₂·C₆H₃(OH)·CHO, CH₂(CO₂Et)₂, and piperidine give Et 8-allylcoumarin-3-carboxylate, m.p. 88° (free acid, m.p. 147°); phenanthrocoumarin-3-carboxylic acid, m.p. 196°, is similarly obtained (as impure Et ester, m.p. 165°) from 3-phenanthrol-4-aldehyde. Pharmacological data are reported; (III) is a powerful sedative whilst (I) is a sedative in small and a hypnotic in large doses. Ch. Abs. (b)

Derivatives of 5:6:4'- and 5:8:4'-trihydroxyflavones, and a note on the structure of ginkgetin. W. Baker and W. H. C. Simmonds (J.C.S., 1940, 1370 — 1374). — 2-Anisoyloxy-3: 6-dimethoxyacetophenone, m.p. 131°, with NaNH2 in PhMe gives 2-hydroxy-3:6:4'-trimethoxydibenzoylmethane, m.p. $138-139^{\circ}$, which with NaOAc-AcOH is finally rearranged to 5:8:4'-trimethoxyflavone (I), m.p. 161°. Partial demethylation of (I) with AlCl₃ affords the 5-OH-compound, m.p. 146° (Ac derivative, m.p. 200°). 2-Hydroxy-6-benzyloxyacetophenone is methylated (Me_2SO_4) to the 6-benzyloxy-2-methoxy-compound, m.p. 74°, which is hydrolysed (AcOH-HCl) to the 2-hydroxy-6-methoxy-derivative. 2-Anisoyloxy-5:6-dimethoxyacetophenone, m.p. 99°, is rearranged (NaNH₂-PhMe) to 2-hydroxy-5:6:4'-trimethoxydibenzoylmethane, m.p. 69°, which is further converted (AcOH-NaOAc) into 5:6:4'-trimethoxyflavone (II), m.p. 164°. Partial demethylation of (II) gives 5hydroxy-6: 4'-dimethoxyflavone, m.p. 173° (Ac derivative, m.p. 182.5°). Complete demethylation of (II) with AcOH-HBr yields 5:6:4'-trihydroxyflavone, m.p. 298° (Ac_3 derivative, m.p. 209°), also obtained by

 C_3H_4O C_3H_6O HO CO HO

complete demethylation (HBr-AcOH) of (I), re-orientation of the OH groups having occurred through opening and subsequent closing of the flavone ring in the alternative direction. By comparison of pro-

perties, ginkgetin cannot be either 5:8- or 5:6-dihydroxy-4'-methoxyflavone; it is probably not a simple flavone but is best represented by (III).

F. R. S. Structure of cannabinol. V. Second method of synthesis of cannabinol. R. Adams and B. R. Baker. VI. Isomerisation of cannabidiol to tetrahydrocannabinol, a physiologically active product. Conversion of cannabidiol into cannabinol. R. Adams, D. C. Pease, C. K. Cain, and J. H. CLARK. VII. Synthesis of a tetrahydrocannabinol which possesses marihuana activity. R. Adams and B. R. Baker. VIII. Position of the ethylenic linkings in cannabidiol. huana activity of tetrahydrocannabinols. Adams, S. Loewe, D. C. Pease, C. K. Cain, R. B. WEARN, R. B. BAKER, and H. WOLFF (J. Amer. Chem. Soc., 1940, 62, 2401, 2402—2405, 2405—2408, 2566—2567; cf. A., 1940, II, 354).—V. Olivetol, Et 5-methylcyclohexanone-2-carboxylate, and POCl₃ in C₆H₆ give 57% of 1-hydroxy-9-methyl-3-n-amyl-7:8:9:10-tetrahydro-6-dibenzpyrone [6''-hydroxy-5'methyl-4''-n-amyl-3':4':5':6'-tetrahydrodibenzopyrone], m.p. 180—181° (corr.) (acetate, m.p. 82·5—84°), which with S at 255—260° gives 1-hydroxy-9-methyl3-n-amyl-6-dibenzopyrone (61%), m.p. 184—185° (corr.), and thence (MgMeI) cannabinol.

VI. Isomerisation of cannabidiol (I) to tetrahydro-cannabinol, (IIa) $[\alpha]_{0}^{32} \sim -165^{\circ}$ and (IIb) $[\alpha]_{0}^{32} \sim -240^{\circ}$, is detailed (cf. *ibid.*, 355). Dehydrogenation of (II) to cannabinol and hydrogenation (PtO₂) to hexahydrocannabinol (III) are detailed. (II) and (III)

have marihuana activity.

VII. Et *cyclo*hexanone-2-carboxylate, orcinol (IV), and $POCl_3$ in C_6H_6 give 6''-hydroxy-4''-methyl-3':4':5':6'-tetrahydrodibenzopyrone (V), m.p. 243— 245° [acetate (VI), m.p. 126—127°] (cf. Ahmad et al., A., 1938, II, 198), which with MgMeI gives a product, converted by HI into 6"-hydroxy-2:2:4"-trimethyl-3':4':5':6'-tetrahydrodibenzopyrone, m.p.136—138°. 5-Methylcyclohexane-1:3-dione, o-C₆H₄Br·CO₂H, and Cu(OAc)₂ give 71% of 6"-keto-4"-methyl-3": 4": 5": 6"-tetrahydrodikenzopyrone, m.p. 148— 150° (corr.), dehydrogenated by S at 255-260° to 6"-hydroxy-4"-methyldibenzopyrone (VII) (45%), m.p. 249—251° (acetate, m.p. 144—146°), obtained also (83%) similarly from (\bar{V}) . Dehydrogenation of (VI)causes partial hydrolysis, completion of which by HCl-EtOH yields (VII). Et 5-methylcyclohexanonc-2-carboxylate, (IV), and POCl₃ in C_6H_6 give 6"-hydroxy-4": 5'-dimember 3': 4': 5': 6'-tetrahydrodibenzopyrone (62%), m.p. 262—263° (Ahmad *et al.*, *loc. cit.*, 260°), which with MgMeI gives 6-hydroxy-2:2:4'':5' $tetramethyl-3':4':5':6'-tetrahydrodibenzopyran~(77\%),\\ \text{m.p.}~115\cdot5-116°.~6-Hydroxy-2:2:5'-trimethyl-4''-n$ $amyl-3':4':5':6'-tetrahydrodibenzopyran \quad [a \quad tetrahydrocannabinol] \quad (VIII), \quad b.p. \quad 191-192^\circ/1 \quad mm., \quad is$ similarly prepared and has marihuana activity. M.p. are corr.

VIII. The absorption spectrum of (I) [log ϵ 3·18; cf. log ϵ 3·05 for (II)] and failure of (I) to react with (CH·CO)₂O show that the ethylenic linkings in (I) are not conjugated. Differences between physical consts. of (VIII) and (II) show that neither ethylenic linking in (I) is conjugated with the aryl nucleus. Change of [α] of (II) [(IIa) \rightarrow (IIb)] by vigorous reagents is held to be due to migration of the endo-

cyclic ethylenic linking, probably from the 3:4 to the 4:5 position. (I) thus has the structure shown. Relative physiological potencies are: marihuana red oil 1, (I) 0, (IIa) 2.5 ± 0.66 , (IIb) 1.75 ± 0.25 , (III) 0.70 ± 0.10 , (VIII) 0.20 ± 0.07 , synthetic hexahydrocannabinol 0.15 ± 0.05 . (IIa) and (IIb) give acetates, $[\alpha]_{\rm D}^{\rm 14}-167^{\circ}$ and -229° , and Me ethers, $[\alpha]_{\rm D}^{\rm 12}-240^{\circ}$ and -226° , respectively. R. S. C.

[Projected] synthesis of cannabinol. G. Powell and T. H. Bembry (J. Amer. Chem. Soc., 1940, 62, 2568—2569).—Et cyclohexanone- and 5-methylcyclohexanone-2-carboxylate with orcinol or olivetol in H_2SO_4 give pyrones, converted by MgMeI into diols or tetrahydropyrans, which may be later dehydrogenated (cf. Adams et al., A., 1940, II, 355). Thus are obtained 2:2:5"-trimethyl-3':4':5':6'-tetrahydro-, m.p. 69°, 2:2:5"-trimethyl-, m.p. 58°, and 6"-meth-

oxy-2:2:4"-trimethyl-dibenzopyran, 6"-hydroxy-5'-methyl-4"-n-amyl-3':4':5':6'-tetrahydrodibenzopyrone, m.p. 172—173°, and 2'-hydroxy-6'-methoxy-4':3-dimethyl-6-α-hydroxyisopropyl-1:2:3:4-tetrahydrodiphenyl, m.p. 105—106°. R. S. C.

Cannabis indica. V. Synthesis of cannabinol. R. Ghosh, A. R. Todd, and S. Wilkinson (J.C.S., 1940, 1393—1396).—The Et ester, m.p. 48°, of 2': 4'-dimethoxyphenyl- Δ^1 -cyclohexene-2-carboxylic acid, m.p. 153-154°, prepared from 7-hydroxy-3:4cyclohexenocoumarin (I) and NaOH, is dehydrogenated with S, followed by demethylation (HBr) and hydrolysis to 7-hydroxy-3: 4-benzocoumarin, m.p. 233°, also obtained by dehydrogenation with Pd-C of 7-acetoxy-3: 4-cyclohexenocoumarin or of (I) with Se. Dehydrogenation (Pd-C) of 6"-acetoxy-2:2:4"trimethyl-3':4':5':6'-tetrahydrodibenzopyran yields 6''-hydroxy-2:2:4''-trimethyldibenzopyran, m.p. 164°. Similar treatment of 5-acetoxy-5'-methyl-7-n-amyl-3: 4-cyclohexenocoumarin affords 5-hydroxy-5'-methyl-7-n-amyl-3: 4-benzocoumarin, m.p. 187° (acetate, m.p. The acetate, b.p. $140-145^{\circ}/10^{-3}$ mm., of 6° hydroxy - 2:2:5' - trimethyl - 4'' -n-amyl-3':4':5:6' tetrahydrodibenzopyran is similarly converted (Pd-C) into 6''-hydroxy-2:2:5'-trimethyl-4''-n-amyldibenzopyran, b.p. 160—165°/10-2 mm., identical with natural cannabinol (Adams et al., A., 1940, II, 354, give m.p. 75-76°). The acetate of 6-hydroxy-5'-methyl-3:4cyclohexenocoumarin with MgMeI gives 5"-hydroxy-2:2:5'-trimethyl-3':4':5':6'-tetrahydrodibenzopyran, b.p. 130-135°/10-2 mm., of which the acetate is dehydrogenated to 5"-hydroxy-2:2:5'-trimethyldibenzopyran.

Non-crystalline constituents of Tephrosia virginiana roots. L. D. GOODHUE and H. L. HALLER (J. Amer. Chem. Soc., 1940, 62, 2520—2522). —Roots of T. virginiana, L., contain 7.4% of total extractives (CHCl₃), including 2.4% of rotenone. The alkali-sol. portion of the resin yields unidentified phenols and a little tephrosin (I), dehydrorotenone, and, after "mol." distillation, a substance, m.p. 76°, insol. in alkali. Extraction of a 90% AcOH solution of the neutral portion with light petroleum removes an oil, mainly sesquiterpenes with a small amount of a drying oil. The residual neutral resin contains l-deguelin [racemisation by MeOH-KOH gives 20% of dl-deguelin (II) and hydrogenation gives l-dihydrodeguelin] and, after adsorption on C, further amounts of (I) and (II), with a resin, which by "mol." distillation yields a yellow substance, C20H18O2(OMe)2, m.p. 125°, α 0 in C₆H₆, and Clark's substance, $C_{90}H_{19}O_3$ ·OMe, m.p. 131°, $[\alpha]_D^{20}$ —95·5° in $C_{\underline{6}}H_{\underline{6}}$

Thiophen derivatives. II. N. K. CHAKRA-BARTY and S. K. MITRA (J.C.S., 1940, 1385—1387).

—Thionation of Et β-carbethoxy-α-ethyl-lævulate gives in small yield 5-ethoxy-2-methyl-4-ethylthiophen-3-carboxylic acid, m.p. 105°; the corresponding 2:4-Me₂ compound, m.p. 125°, de-ethylated to the 5-hydroxy-2:4-dimethyl derivative, m.p. 140°, is similarly obtained. In the prep. of the following the thioketonic ester is added to emulsified Na in C₆H₆ and the α-halogenated fatty ester added: Et β-(α'-carbethoxyethylthio)crotonate, b.p. 124°/5 mm., Et α-(α'-

carbethoxyethylthio)ethylidenemalonate, b.p. 125°/5 mm., and Et β-carbethoxymethylthiocrotonate, b.p. 116°/9 mm. The action of Na on the appropriate thioether gives Et 3-hydroxythiophen-5-acetate (I), b.p. 96°/5 mm., and -5-α-propionate, b.p. 116°/5 mm., m.p. 53°, and Et 3-hydroxy-2-methylthiophen-5-acetate, b.p. 104°/5 mm. SOCl₂ and EtI with (I) afford respectively Et 3-chloro-, b.p. 128°/8 mm., and 3-ethoxy-thiophen-5-acetate, b.p. 102°/5 mm. F. R. S.

Benzene-o-bisthioindoxyl.—See B., 1940, 726.

Polymethine dyes of the 3-hydroxythionaphthen series. I. Condensation of 3-hydroxythionaphthen with NN'-diphenylformamidine and with the dianils of malonic and glutaconic aldehydes. N. N. SVESCHNIKOV and I. I. Levkoev (J. Gen. Chem. Russ., 1940, 10, 274—280).

—3-Hydroxythionaphthen and NPh.CH·NHPh or the dianils of malonic or glutaconic aldehydes condense in EtOH solution, giving anils of the type

 $201-202^{\circ}$ (decomp.)], together with dyes of the type $R = CH^{\circ}$; $R = CH^{\circ}$

·CH:CH·CH·, m.p. 255—257° (decomp.); R = ·CH:CH·CH·CH·CH·, m.p. 240—242° (decomp.)]. The anils are readily converted into the dyes by heating with HCl-EtOH. Increase in the length of the polymethine chain shifts the absorption max. of alkaline or acid solutions of the dyes towards the red.

R. Zum-5-Keto-4: 4-dialkyldihydropyrroles. BRUNN (Festschr. E. C. Barell [Basel], 1936, 206-211; Chem. Zentr., 1937, i, 4787—4788).—5-Keto-4:5-dihydropyrroles unsubstituted at $C_{(4)}$ condense with AlkCHO and ketones in presence of bases, e.g., NHEt₂; the resulting alkylidene derivatives are reduced catalytically to the 4-alkyl derivatives, which can be obtained directly by the action of NaNH, and alkyl halide in boiling C₆H₆. Mono- or di-allylation at C₍₄₎ can be effected with CH₂:CH·CH₂Br in aq. EtOH + Cu; catalytic reduction then gives the Pr derivatives. Various Et 5-keto-4: 4-dialkyl-4: 5-dihydropyrrole-3-carboxylates have been prepared; the free acids could not be obtained by hydrolysis owing to ring fission (by acids) or non-reaction. Et 5-keto-1:2-dimethyl-4-ethylidcne- and 5-keto-2-methyl-4-ethyl-4-diethylaminoethyl-4: 5-dihydropyrrole-3-carboxylates 5-Keto-2-methyl-4: 5-dihydropyrrole could not be obtained from (?) CHO·[CH2]2·CO2Et or (OEt), CMe [CH₂], CO₂Et (I) and NH₃. NH₂Ph and (I) give Et y-anilovalerate, which could not be converted (heat; NaOEt) into a pyrrole. Et y-anilinovalerate does not eliminate EtOH at 250°; the free acid passes into 1-phenyl-5-methyl 2-pyrrolidone at <100°.

Synthesis of soporifics of the pyridine series. O. Schnider (Festschr. E. C. Barell [Basel], 1936,

195—205; Chem. Zentr., 1937, i, 4642).— CEt₂Ac·CO₂Et and HCO₂Et are condensed to OH·CH:CH·CO·CEt₂·CO₂Et, which is converted by NH₃ into NH₂·CH·CH·CO·CEt₂·CO₂Et and thence (alkali) into 2:4-diketo-3:3-diethyl-1:2:3:4-tetrahydropyridine (I). This procedure is not of general applicability although the corresponding 3:3-diallyl derivative (II) can be similarly prepared; (II) is also obtained by allylation of 2:4-diketo-1:2:3:4-tetrahydropyridine in aq. EtOH in presence of a trace of Similar allylation of 2:4-diketo-6-methyl-1:2:3:4-tetrahydropyridine (III) [from NH_2 ·CMe:CH·CO₂Et (IV), $CH_2(CO_2Et)_2$, and NaOEtwith subsequent hydrolysis] gives its 3:3-diallyl derivative (V). The N-Et derivative of (III) is formed on ethylation (EtBr); this differs from 2:4-diketo-6-methyl-3-ethyl-1:2:3:4-tetrahydropyridine [prep. from (IV) and CHEt(CO₂Et)₂], alkylation [other than allylation, which occurs at C₍₃₎] of which affords Nderivatives. The allyl compounds are reduced to the corresponding Pr derivatives. (V), which is a soporific [as is (I)], and its analogues are more strongly lipotropic than the 5:5-dialkylbarbituric acids; N-alkylation leads to neutral, strongly lipotropic compounds

α-Pyridinium compounds of higher fatty acids.
—See B., 1940, 778.

with enhanced soporific properties.

Preparation of certain quinaldine methiodides. V. A. ALEXEEVA (J. Gen. Chem. Russ., 1940, 10, 263—270).—4-Chloroquinaldine (I) and Me₂SO₄ (30 min. at -5°, 30 min. at room temp., then 20 min. at 100°) give the corresponding dimethosulphate, which with aq. KI yields 4-chloroquinaldine methiodide (II), decomp. at 222—223°. The Cl atom of (II) is highly reactive; (II) with NH₂Ph (2 hr. at 120°) gives 4-anilino-, m.p. 264° (80%), with NHPh·NH₂ gives 4-phenylhydrazino-, m.p. 235° (97%), and with NH₂Me gives 4-methylamino-quinaldine methiodide, m.p. 290° (90%). (I) and excess of McI (26 hr. at 100°) give 4-iodoquinaldine methiodide, m.p. 230° (decomp.) (22%). The products are conveniently analysed for halogens by Pringsheim combustion, followed by electro-titration.

Carbazolecarboxyl chlorides.—See B., 1940, 762.

Nitro- and amino-benz[f]quinolines and derivatives. W. J. Clem and C. S. Hamilton (J. Amer. Chem. Soc., 1940, 62, 2349—2352).—Naphth-2':1':2:3-pyridine (I) [prep. in 18.5% yield from β -C₁₀H₇·NH₂, glycerol (II), H₂SO₄, and H₃AsO₄ at 140°], m.p. 93°, with HNO₃ (d 1.5) and H₂SO₄ at -15° gives the 5'-NO₂-compound (40%), m.p. 174°, converted by nitration at 0° into the 5': ''-(NO₂)₂-compound, m.p. 250°, which is similarly obtained from (I). $6:2\text{-NO}_2\text{-C}_{10}\text{H}_6\text{-NH}_2$, (II), H₃BO₂, and H₂SO₄ at 140° give 6'-nitronaphth-2':1':2:3-pyridine (34%), m.p. 240°. Hydrogenation (Raney Ni; COMe₂; 2.67 atm.) of the appropriate NO₂-compound gives 5'-, m.p. 175° (lit., 158°) (Ac, m.p. 235°, CHPh., m.p. 101°, CH₂Ph, m.p. 152—154°, m-NO₂·C₆H₄·CH., m.p. 182—183°, and m-NH₂·C₆H₄·CH₂, m.p. 141—144°, derivative; mono- and di-hydrochloride, m.p. >300°), 6'- (III), m.p. 222—224° (dihydrochloride, m.p. >300°; Ac, m.p. 212—213°, and CHPh. derivative, m.p. 148—

151°), and 8'-aminonaphth-2': 1':2:3-pyridine (IV), m.p. 156-157° (mono- and di-hydrochloride, m.p. >300°; Ac derivative, m.p. 152—154°), and the 5′: 7′-(NH₂)₂-compound, m.p. 245—246°. The structure of (77)ture of (III) and (IV) is proved by oxidation to quinoline-5: 6-dicarboxylic acid. 6-Chloro-4-methylnaphth-2':1':2:3-pyridine and NH₂·[CH₂]₂·OH at 6- β -hydroxyethylamino-4-methylnaphth-2':1':2:3-pyridine, m.p. 148—149°, which with POCl₃ at 110° gives 6-vinylamino-4-methylnaphth-2':1':2:3-pyridinc, m.p. 163—164°.

5:5-Dianisylhydantoin.—See B., 1940, 823.

Pyrimidines. CLXV. Reaction of thiocarbamide with 5:5-dibromo-hydroxyhydrouracil and -barbituric acid. T. B. Johnson (J. Amer. Chem. Soc., 1940, **62**, 2269—2271).—5:5-Dibromohydroxyhydrouracil in EtOH or H₂O gives quantitatively 5-bromouracil (I) and HOBr and may thus be used as an oxidising agent. With NH₂·C(:NH)·SH in EtOH or H₂O it give (I), S, HBr, and CN·NH₂; no uracil-5-\psi-thiocarbamide is obtained (cf. 5:5-dibromobarbituric acid).

Synthesis of isocytosine. W. T. CALDWELL and H. B. Kime (J. Amer. Chem. Soc., 1940, 62, 2365). Prep. of isocytosine from guanidine hydrochloride, malic acid, and 15% oleum at <5° is described.

Synthesis of compounds related to cinchonine and quinine. B. K. NANDI (Proc. Indian Acad. Sci., 1940, **12**, **A**, 1—19).—Et quinoline-3-carboxylate (I) and EtOAc in boiling C_6H_6 are transformed by NaOEt free from EtOH into Et 3-quinoloylacetate (Cu salt, m.p. 202-203°) which could not be distilled unchanged but is converted by 25% H₂SO₄ at 100° into 3-quinolyl Me ketone (II), m.p. 98° (semicarbazone, m.p. 235°; phenylhydrazone, m.p. 202°). Passage of Br through (II) dissolved in 45% HBr at 70—75° leads to 3-quinolyl CH₂Br ketone (III), unstable, m.p. 120° [hydrobromide, m.p. 215° (decomp.)], which with piperidine in C_6H_6 at $\sim 5^{\circ}$ affords 3-quinolyl piperidinomethyl ketone (IV), b.p. 165—168°/15 mm. (monohydrobromide, m.p. 245—246° after becoming brown at 230°; dipicrate, m.p. 139—141°). Reduction (H₂-Pd in conc. HBr) of (IV) yields 3-β-piperidinoα-hydroxyethylquinoline, m.p. 93—94° (dipicrate, m.p. $161-163^{\circ}$). NHEt₂ and (III) in Et₂O at room temp. give non-cryst. 3-quinolyl CH2 NEt2 ketone (monohydrobromide, m.p. 142-145°; dipicrate, m.p. 150-151°), which could not be distilled unchanged; it is reduced to 3-β-diethylamino-α-hydroxyethylquinoline, m.p. 89— 90° (dipicrate, m.p. 139—141°). Non-cryst. 3-quinolyl CH₂·NMe₂ ketone [dihydrochloride, m.p. 157—158°; dipicrate, m.p. 147—149° (decomp.)] is reduced to 3- β -dimethylamino- α -hydroxyethylquinoline, an oil (dihydrochloride, m.p. 171—173°; Ac derivative, m.p. 139°). (I) and N-benzoylhomocincholoiponic ester (V) are condensed by NaOEt to $Et \alpha-3$ -quinoloyl- β -1'-benzoyl-3'-ethyl-4'-piperidylpropionate, an oil (Cu derivative, m.p. 251° after darkening at ~237°), which could not be distilled unchanged and is hydrolysed by boiling 17% HCl to \$3'-ethyl-4'-piperidylethyl 3-quinolyl ketone, b.p. 225°/9 mm. (phenylhydrazone dipicrate, m.p. 195—197°). This in N-HCl and Et₂O at room temp. is transformed by dropwise addition of NaOBr into the 1'-Br-compound, m.p. 137— 139°, which does not give a methiodide and is transformed by boiling NaOEt-EtOH into 3'-quinolyl 8-3ethylquinuclidyl ketone, m.p. 122—124° (monopicrate, m.p. 167-168°); it is hydrogenated (Pd in 5% HCl) 3'-quinolyl-8:3-ethylquinuclidylmethanol, 225—226° [dihydrochloride, m.p. 261—263°; platini-chloride, m.p. 286—289° (decomp.)]. Et 2-methoxyquinoline-3-carboxylate (VI), EtOAc, and NaOEt in boiling C₆H₆ afford 2-methoxy-3-quinolyl Me ketone, m.p. 110—112° (phenylhydrazone, m.p. 177°). The corresponding CH_2Br ketone, m.p. 126—127°, yields the piperidinomethyl ketone, m.p. 69-71° [monohydrobromide, m.p. 251-256° (decomp.)], reduced to 2 $methoxy-3-\beta$ -piperidino- α -hydroxyethylquinoline, m.p. 102—104°, the CH₂·NEt₂ ketone, m.p. 134—136°, reduced to 2-methoxy-3-β-diethylamino-α-hydroxyethylquinoline, m.p. 78-79°, and the $CH_2 \cdot NMe_2$ ketone (dihydrochloride, m.p. 177°), reduced to 2-methoxy-3- β -dimethylamino- α -hydroxyethylquinoline, an oil (dihydrochloride, m.p. 167—169°; dipicrate, m.p. 173— 175°). (V) and (VI) yield the corresponding propionate, hydrolysed by a large excess of boiling 17% HCl to 3-ethyl-4-piperidyl 2'-methoxy-3'-quinolyl ketone, b.p. 197—200°/5 mm. (phenylhydrazone dipicrate, m.p. 188—189°). The corresponding 1-Br-ketone, m.p. 158—162°, is transformed by NaOEt in boiling EtOH into 2'-methoxy-3'-quinolyl 3-ethyl-8-quinuclidyl ketone, m.p. 155—156°, reduced to the corresponding sec. alcohol, m.p. 259-261°. The compounds are effective against paramecia but those related to cinchonine are ineffective against avian malaria; those related to quinine have not been tested.

New test for hydroxylamine by formation of " indo-oxine " [5-(8'-hydroxy-5'-quinolinyl)imino-8-keto-5: 8-dihydroquinoline]. R. Berg and (FRL.) E. BECKER (Ber., 1940, 73, [B], 172—173; cf. Monti et al., A., 1935, 500).—With 1% 8-hydroxyquinoline (I) in EtOH, a solution containing NH₂OH,HCl (II) (1 in 12×106) with 2n-Na₂CO₃ gives a green coloration; at higher concns. of (II), after keeping in air, a brown Na salt of "indo-oxine" [5-(8'-hydroxy-5'-quinolyl)imino-8-keto-5:8-dihydroquinoline], m.p. 253—254°, separates. This has no indophenol properties.

Melamine preparation. P. P. McClellan (Ind. Eng. Chem., 1940, 32, 1181—1186).—The literature of melamine (I) and related products is reviewed. (I) is now a comparatively cheap commercial product and commercial methods of prep. are compared. Solubility of (I) in H_2O is 0.5, 2.5, or 5.5% at 25°, 75°, or 90°, respectively. Pyrolysis of anhyd. CN·NH₂, guanidine (II) salts alone, or dicyanodiamidine (III) alone or in presence of solvents at atm. pressure does not give high yields of (I). Heating fogether (III) and (II), either dry or in presence of NH₃, improves the method. High yields of (I) are obtained by heating (II) under pressure in presence of free NH_3 ; some CN·NH₂, (II), and diguanide are also formed. The latter method is not improved materially by use of equimols. of CN·NH₂ and (III). The complete mechanism of the formation of (I) is not clear.

Phthalocyanines.—See B., 1940, 784.

I. Co-ordination with Metalloporphyrins. Theoretical relations. nitrogenous bases. W. M. CLARK, J. F. TAYLOR, T. H. DAVIES, and C. S. VESTLING. II. Cobalt and manganese mesoporphyrins in co-ordination with nitrogenous bases. J. F. TAYLOR and W. M. CLARK. III. Co-ordination of nitrogenous bases with iron meso-, proto-, and hæmato-porphyrins. T. H. DAVIES. IV. Co-ordination of iron copro- and ætio-porphyrins with nitrogenous bases. C. S. VESTLING. V. Spectrophotometric study of pyridine [iron] coproporphyrin I. W. M. CLARK and M. E. Perkins (J. Biol. Chem., 1940, 135, 543-568, 569—595, 597—622, 623—641, 643—657; cf. Barron, A., 1937, III, 450).—I. A nomenclature for metalloporphyrins and their co-ordination compounds is proposed. Equations are developed for relating potentiometric and spectrophotometric data with the state of equilibrium between oxidised and reduced metalloporphyrin and the co-ordinating base.

II. The prepn. of mangani- (I), $C_{34}H_{36}O_4N_4MnOH$, and cobalto-mesoporphyrin (II), $C_{34}H_{36}O_4N_4Co$ [from $Co(OAc)_2$ and mesoporphyrin IX hydrochloride in glacial AcOH in absence of air], and their Me₂ esters, is described. Potentiometric titration (reduction with Na₂S₂O₄ in the dark or with phthicool) of systems containing (I) or (II) and C₅H₅N, nicotine, or α-picoline shows that there is no evidence of polymerisation, that I equiv. per mol. is concerned in the oxidationreduction process, and that $\Delta E_h/\Delta p_{\pi}=0$ ($E_h=$ electrode potential referred to H₂ standard). It appears that 2 mols. of C₅H₅N associate with 1 of manganomesoporphyrin, and with 1 or more of (I), and (from consideration of the Debye-Hückel simplified equation) that the net charge of nicotine Mn⁺⁺⁺-mesoporphyrin is 1, that of the Mn⁺⁺-compound, 2. sence of co-ordinating base, these systems showed no stable potential. Spectroscopic measurements could not be satisfactorily interpreted. Molar extinction coeffs. for various $\lambda\lambda$ of (I) and Co⁺⁺⁺-mesoporphyrin, and log transmittance curves for Co+++- and Co++mesoporphyrins in presence of nicotine, C₅H₅N, and CN' are given. No Cr mesoporphyrin could be obtained. Cu and Ni mesoporphyrins show no reversible oxidation-reduction properties.

III. Potentiometric and spectrophotometric results indicate the following. I equiv. per Fe is concerned in the reduction of ferri-meso-, -proto-, and -hæmatoporphyrin IX in presence of nicotine, C₅H₅N, α-picoline, or CN'. Oxidant and reductant of the nicotine Fe protoporphyrin system are dimeric in H_2O , monomeric in 47% H₂O-EtOH, within the $p_{\rm H}$ range used. Other things being const., $-\Delta E_h/\Delta p_H = 0.06$ for all cases except CN', when it is 0. Changes of E with increasing concn. of co-ordinating base show that ferro- co-ordinate better with bases than ferri-porphyrins, 2 mols. of base per Fe co-ordinating with the former, 1 or 2 with the latter. In absence of base, fluctuating potentials are observed. It is suggested that ferriporphyrins in alkaline solution are associated with 1 OH per Fe, and that CN ions compete successfully with this OH-, neutral bases only with difficulty, if at all.

IV. The synthesis of coproporphyrin I (III) by a modification of Fischer's method is described. Spec-

troscopic measurements show that the reaction Fe^{++} + porphyrin \rightarrow ferroporphyrin + 2H⁺ is favoured by bases, and the reverse reaction by acids; hence excess of NaOAc is used in preparing Fe porphyrins. Potentiometric titration of C₅H₅N, nicotine, and CN' complexes of Fe-(III) in buffered aq. alkali, and of C_5H_5N Fe ætioporphyrin I (IV) in alkaline, buffered 75% $H_2O\text{-EtOH}$ show that all species are monomeric and that I equiv. per mol. is involved in the oxidation-reduction. At high concns. of coordinating base, other things being const., $-\Delta E_h/\Delta p_H =$ 0.06 for C_5H_5N (IV) or for C_5H_5N or nicotine Fe (III). 1 Mol. of ferro-(III) co-ordinates with 2 mols. of base, the dissociation consts. of these complexes increasing in the order CN', nicotine, C₅H₅N. 1 Mol. of ferri-(III) co-ordinates with 2 mols. of eyanide, (?) mols. of other bases. The significance of the distinctive apparent dissociation consts. of C₅H₅N or nicotine ferri (III) is discussed.

V. A photo-electric spectrophotometer is described. Photometric results confirm that 2 mols. of C_5H_5N co-ordinate concurrently with 1 mol. of ferro- or ferricoproporphyrin. The former shows no sign of acid ionisation between p_H 8.5 and 12.4. Dissociation consts. of these complexes are given. A. Li.

Coumaronesulphonamidobenztriazoles. — See B., 1940, 824.

Synthesis and excretion of trigonelline. H. P. SARETT, W. A. PERLZWEIG, and E. D. LEVY (J. Biol. Chem., 1940, 135, 483—485).—Trigonelline (I) hydrochloride and H sulphate, m.p. 199—200°, are synthesised by modifications of the methods of Winterstein et al. (A., 1918, i, 35). Distillation of (I) with conc. alkali gives a 96—98% yield of NH₂Me. The product of heating (I) at 75° with 6n-KOH and NH₄ salts or CO(NH₂)₂ gives a colour identical with that of nicotinic acid with the Bandier-Hald modification of the König reaction (A., 1939, II, 196). Normal human subjects excrete daily 1—3 mg. of nicotinic acid (II) and derivatives, 30—50 mg. of (I) (determination based on the above reaction). (II) ingested in small doses is excreted largely as (I).

Alkaloids of Chinese drug Pai Pu. H. M. Lee and K. K. Chen (J. Amer. Pharm. Assoc., 1940, 29, 391—394).—The drug (Stemona species; total alkaloids 1.77%) contains the alkaloids paipunine, $C_{24}H_{37}O_4N$, m.p. $105.5-106.5^\circ$, $[\alpha]_{25}^{15}-53.7^\circ$ in COMe₂, and sinostemonine, $C_{21}H_{36}O_5N$, m.p. $138-138.5^\circ$, $[\alpha]_{25}^{15}-37^\circ$ in H_2O , the main pharmacological properties of which are described. F. O. H.

New formula for chaksine, the alkaloid of Cassia absus, and some experiments on its constitution. H. R. Kapur, K. N. Gaind, K. S. Narang, and J. N. Ray (J. Indian Chem. Soc., 1940, 17, 281—284).—Contrary to Siddiqui et al. (A., 1936, 350), chaksine is C₁₁H₂₁O₃N₃, not C₁₂H₂₁ON₃. The hydriodide, m.p. 180°, sulphate (I), m.p. 317° (decomp.), hydrochloride (II), m.p. 178°, hydrobromide, m.p. 186°, and nitrate (III), m.p. 220° (decomp.), are described. Addition of (III) to ice-cold H₂SO₄ leads to nitrochaksine sulphate, m.p. 176° (decomp.). HNO₂ transforms (II) into a nitrogenous compound, m.p. 221° (decomp.). Oxidation of (I) with H₂O₂ and FeSO₄ affords CH₂O. With KMnO₄ in alkaline

solution (I) is oxidised (KMnO₄) to $H_2C_2O_4$ and (after esterification) two Et esters, b.p. $80^\circ/3$ mm. and $100-105^\circ/3$ mm., respectively.

Tetra-aryl-phosphonium,-arsonium, and -stibonium salts. I. New method of preparation. J. Chatt and F. G. Mann (J.C.S., 1940, 1192—1196).

—AsPh₂Cl (I) with AsCl₃ and AlCl₃ (II) at 280° gives free As, C₆H₆ and, after treatment with aq. KI, AsPh₄I (IV). When (II) is heated at >280° with AsCl₃ + 3C₆H₆, with AsPhCl₂, with (I), with AsPh₃ or, best, with AsPh₃ + PhBr, followed in each case by KI, (IV) is again obtained, in varying yield. With PPh₃ at 280°, and KI, (II) gives no PPh₄I, which is, however, formed if 1 PhBr is present. SbPh₃, 1 PhBr, and (II), followed by KBr or KI, give tetraphenylstibonium bromide (V), m.p. 210—218° (according to rate of heating), or iodide, m.p. ~200°, best obtained from (V).

Stereochemistry of 3-covalent arsenic. Isomeric forms of 5:10-di-p-tolyl-5:10-dihydro-arsanthren. J. Chatt and F. G. Mann (J.C.S., 1940, 1184—1192).—Physical evidence indicates that the 3-covalent As has a pyramidal configuration with an intervalency angle of ~97°.

folded along the As-As axis, and should exist in two isomeric forms, a third form being impossible owing to the position of the C₆H₄Me groups. Arsanthren dichloride and p-C₆H₄Me MgBr give α-, m.p. 178— 179°, and $\beta - 5 : 10$ -di-p-tolyl-5 : 10-dihydroarsanthren, m.p. 179—181° [no third form but a small quantity of tri-p-tolylenediarsine (?), m.p. 216—217°]. Both α- and β-isomerides with Br followed by aq. NH₃ give the same 5:10-di-p-tolyl-5:10-dihydroarsanthren tetrahydroxide, m.p. ~318—325° (decomp.), which is dehydrated to the dioxide; in the tetrahydroxide the C-As-C angles have become 120° and the three rings and ·C₆H₄Mc groups are co-planer. The isomerides with MeI form α- (+EtOH), m.p. 140—177°, anhyd. m.p. 176—179° (slight efferv.), and β -5: 10-di-p-tolyldihydroarsanthren monomethiodide (+H₂O), m.p. 174-179°, anhyd. m.p. 176—179°. The As atoms in the ditolyl compounds show a marked reluctance to assume simultaneously the 4-covalent condition. The dimethiodide, disulphide, and monosulphidemonomethiodide could not be prepared, but a very stable dibromide, m.p. 298-300° (decomp.), which probably has the quinonoid structure, and a monosulphide, m.p. 198-201°, have been isolated.

Methoxy-mercurials from cis- and trans-styryl cyanide. W. H. Brown and G. F. Wright (J. Amer. Chem. Soc., 1940, 62, 1991—1994).—cis-CHPh:CH·CN reacts faster than the trans-isomeride with Hg(OAc)₂ and a little HNO₃ in MeOH and gives a better yield. Equilibrium mixtures contain 99% of the product, but the second-order velocity coeffs. fall with time owing to destruction of the catalyst. The structure of the products, cis-, m.p. 121°, and trans-β-methoxy-β-phenyl-α-acetoxymercuri-propionitrile, m.p. 96°, is proved by conversion by Br-CHCl₃ into (?) OMe·CHPh·CHBr·CO·NH₂, m.p. 219—223°, and a little OMe·CHPh·CHBr·CO₂H.

R. S. C.

Catalysis in the formation of α -methoxymercurials from ethylenes. A. M. Birks and G. F. Wright (J. Amer. Chem. Soc., 1940, **62**, 2412— 2421).—When trans-(CHPh:)₂ (I) is kept with Hg(OAc)₂ in MeOH at room temp., HgOAc is gradually pptd. (cf. A., 1935, 1515). Heating with a second equiv. of Hg(OAc)₂ then gives 20% of (CHPh·OMe)₂. This is also formed when OMe·CHPh·CHPh·HgCl from cis-(CHPh:)₂ is heated with Hg(OAc)₂. Thus failure to isolate the mercurichloride from (I) is due to the consumption thereof to give (CHPh OMe), as fast as it is formed. The accelerating action of HNO3 in these and kindred additions is due to its peroxide content. 0.1 equiv. of Bz₂O₂ or ascaridole leads to 24% of $Hg \alpha\beta$ -diphenyl- β -methoxyethyl chloride, m.p. 125—126°, from (I) (BF₃ is not catalytic); reaction is slow, but after longer periods complex mixtures are formed. Peroxides initiate interaction of

CHPh:CH·CN (II) with Hg(OAc)₂ in MeOH, but the reaction soon stops as the peroxide is destroyed; HNO₃ owes its utility in these reactions to its continuously generating small amounts of peroxide. Interaction of CHPh:CH·COPh (III) with Hg(OAc)₂ in MeOH at 35° is accelerated by impurities in the salt and slightly by Me₂O₂ but is slightly retarded by AcO₂H, much retarded by MeCN or (II), and most retarded by C₅H₅N or its acetate. Et₂S₂ also retards the reaction of (III), but itself reacts to give SEt·Hg·OAc in equilibrium with Et₂S₂ and Hg(OAc)₂. BF₃ accelerates the reaction of cis- or trans-(II), but simple addition is not the sole reaction. BF₃ greatly accelerates reaction of (III), but an equilibrium is set up: (III) + Hg(OAc)₂ + MeOH AcOH + OMe·CHPh·CH(COPh) (IIII)

Hg[CH(COPh)·CHPh·OMe]₂ (HgCl₂) OMe·CHPh·CH(COPh)·HgCl. A reaction mechanism for the catalysis is postulated. β-Methoxy-β-phenyl-α-chloromercuripropiophenone, m.p. 150—151°, Hg^{II} ethylmercaptide acetate, SEt·Hg·OAc, m.p. 131—132°, a salt, C₄H₇O₅B, b.p. 60°/8 mm., and β-methoxy-β-phenyl-α-chloromercuripropionitrile, m.p. 174° from cis- (II) and 124·5° from trans-(II), are described.

Mercurated carvacrol. J. B. ABCEDE and A. C. Santos (J. Amer. Pharm. Assoc., 1940, 29, 362—364).—Carvacrol with Hg(OAc)₂ in AcOH-EtOH yields di(acetoxymercuri)carvacrol (I), m.p. 192—195° (decomp.); the reaction products treated with saturated aq. NaCl afford di(ehloromercuri)carvacrol, decomp. 216—218° (cf. Burt, A., 1936, 619). (I) with 10% aq. NaOH gives the Na salt (?), decomp. 180°, and, when subsequently treated with CO₂, the oxide, decomp. 223—250°, of di(hydroxymercuri)carvacrol.

Interconversion reactions of organolithium compounds. H. GILMAN, W. LANGHAM, and F. W. MOORE (J. Amer. Chem. Soc., 1940, 62, 2327—2335).

—General principles of metallation and halogen-Li interconversion are discussed. Prep. and manipulation of organo-Li compounds are improved. The amounts of ArCO₂H obtained from PhBr, PhI, m-C₆H₄CII, p-C₆H₄CIBr, p-C₆H₄Br₂, o-, m-, and p-C₆H₄MeBr, p-C₆H₄MeI, p-C₆H₄PhBr, o- and p-C₆H₄Br·OMe, and p-C₆H₄I·OMe, usually in petroleum ether or Et₂O, under varying conditions are reported.

 $1:3:5\cdot C_6H_3Br_3$ gives $LiC_6H_3Br_2$. Replacement of one and partly of two Br occurs with $1:2:5\cdot C_6H_3MeBr_2,~p\cdot C_6H_4Br_2,~(p\cdot C_6H_4Br)_2,~2:4:6:1\cdot C_6H_2Br_3\cdot OMe,~and~(p\cdot C_6H_4Br)_2O.$ In light petroleum at room temp. CHPh:CHBr and LiBu a give CHPh:CHBu a and (CHPh:CH) $_2$, but, if boiled, give 23% of CHPh:CHLi (with CO $_2$ gives trans-CHPh:CH·CO $_2$ H); in Et $_2O$ 42·5% of CPh:CLi [gives (CPh:C·CO $_2$ H)] is obtained. R. S. C.

Relative reactivities of organometallic compounds. XXXII. Indium triphenyl. H. GILMAN and R. G. Jones (J. Amer. Chem. Soc., 1940, 62, 2353—2357; cf. A., 1940, II, 316).—The order of increasing reactivity is InPh₃ > GaPh₃ > TIPh₃. In general, increasing activity parallels decreasing ionisation potentials of the metals. InPh₃ (prepared in 65—81% yield from HgPh₂ and In in N₂ at 130°), m.p. 208° (lit., 291°), oxidises and hydrolyses rapidly in air, does not react with Hg in boiling C_6H_6 , and gives the Michler ketone colour reaction anomalously only if used in excess. With O₂ in C_6H_6 it gives \sim 17% of PhOH and 20% of Ph₂. It reacts slowly with CO₂, giving after 4 hr. in boiling xylene 18% of BzOH. With 1 mol. of PhCHO in boiling C_6H_6 it gives 82% of CHPh₂·OH with InPh₂I and InPhI₂, but with 0·3 mol. gives 20% of PhCHO; equilibrium occurs thus: InPhI₂ \longrightarrow InPh₂I + InI₃ and InPh₂I \longrightarrow InPh₃ + InI₃, both InPhI₂ and InPh₂I yielding CHPh₂·OH by interaction with PhCHO. With CHPh.CH·COPh it gives only (92%)

CHPh₂·CH₂·COPh. All the Ph radicals react with BzCl: in C₆H₆ 40% and in petroleum ether 31% of COPh₂ is obtained; InPh₂I in CHCl₃ gives 70% of COPh₂. With COPh₂ in boiling xylene it gives 58% of CPh₃·OH. It does not react with EtOBz or PhCN. R. S. C.

Carboxylic acids of phthaloyl-thionaphthen and -selenophen.—See B., 1940, 727.

Diphenyl series. IV. Diphenylyl derivatives of phosphorus, arsenic, and antimony. D. E. WORRALL (J. Amer. Chem. Soc., 1940, 62, 2514-2515; ef. A., 1930, 1195).—o-C₆H₄PhCl (I), PCl₃, Na, and a trace of SbCl₃ in boiling C₆H₆ give tri-o-di-phenylylphosphine, m.p. 151—152° after softening [oxide (prep. by Br or Cl₂, followed by KOH-EtOH), m.p. 184—185°; methiodide, m.p. >250° (decomp.), with Ag₂O gives Ph₂]. AsCl₃, (I), and Na in boiling C₆H₆ give tri-o-diphenylylarsine, m.p. 190° [dihydroxide, m.p. 237—238°; methiodide, m.p. ~154° (decomp.), with Cl₂ gives the iodochloride, m.p. 172-174° (decomp.)]. Use of SbCl₃ gives similarly tri-odiphenylylstibine, m.p. 208-209° [dibromide, m.p. 152—154°; dichloride, m.p. 174—175°; dihydroxide, m.p. 243—244°], which with SbCl₃ in xylene at 220— 250° gives mono-o-diphenylylstibine hydroxychloride, m.p. 201—202°, converted by NH₃-EtOH into the oxide, m.p. 195—196°, and by Cl₂-H₂O into diphenylylstibinic acid, m.p. ≥300°.

Relative reactivities of organometallic compounds. XXXIV. Thallium phenyl. H. GILMAN and R. G. Jones (J. Amer. Chem. Soc., 1940, 62, 2357—2361).—Reactions of *Tl triphenyl* in boiling xylene are interpreted as due to pyrolysis to Ph₂ and reactive TlPh, much Tl being also formed. TlPh₃,

prepared from TlPh₂Br and LiPh in warm xylene, has m.p. $169-170^{\circ}$ (N₂; softens at 167° ; decomp. $180-185^{\circ}$). In boiling xylene, TlPh₃ and CO₂ give 70% of BzOH and 73% of Ph₂; possibility of this reaction proceding by way of $TlPh_2$ benzoate (prep. from TlPh₃ and BzOH in boiling C_6H_6), m.p. $259-260^{\circ}$, is excluded by the stability thereof in boiling xylene. TlPh₃ with COPh₂ in boiling xylene gives a little CPh₃·OH and with PhCN a little COPh₂, with Ph₂ in both cases, but it does not react with EtOBz. TlCl reacts with LiPh at -70° , probably to form TlPh; Tl and Ph₂ are the products isolated. TlPh₂Br does not react with BzCl in boiling C_6H_6 or PhMe. With Na in liquid NH₃, TlPh₂Br gives TlPh₃, NaBr, and Tl, the TlPh₃ being isolated by conversion into TlPh₂·OBz. LiBu^a and TlPh₃ give a solution whence CO₂ yields 66% of BzOH. AgBr and MgEtBr in Et₂O at 0° give AgEt, which decomposes spontaneously to give 48% of C_4H_{10} and 3.5% of C_2H_4 .

Hydrolysis of ovalbumin in presence of acids and salts at various temperatures. I. Time of hydrolysis in autoclave and acid hydrolysis of autoclave hydrolysates. II. Effect of acids, salts, and temperature on hydrolysis in autoclave. A. B. Silaev (Kolloid. Shurn., 1938, 4, 593—602, 603—609).—I. In the initial stages of hydrolysis in an autoclave there is rapid formation of NH₃. As heating proceeds, the hydrolytic fission of the protein almost ceases, but deamination of the products, possibly both intermediate and final products, continues rapidly. Examination of the acid hydrolysis of the autoclave hydrolysate suggests that the mechanism of deamination is different in these two types of hydrolysis.

II. Prolonged hydrolysis with 2% H₂SO₄ in an autoclave at 180° does not effect complete resolution of the protein into NH₂-acids, but concurrent with the hydrolysis there is deamination of the NH₂-acids, which is not retarded by increase of [H₂SO₄], or much affected by the presence of salts or H₃BO₃. Rise in temp. from 150° to 180° for 3 hr. hydrolysis doubles the rate of hydrolysis and the rate of deamination. Deamination is largely to be ascribed to pyrolysis, at the autoclave temp., of relatively ununstable NH₂-acids formed at the beginning of hydrolysis.

R. C.

Volatile aldehydes liberated by periodic acid from protein hydrolysates. A. J. P. Martin and R. L. M. Synge (Nature, 1940, 146, 491—492).— HIO₄ in aq. NaHCO₃ rapidly liberates MeCHO from threonine. Serine, alanine, cystine, tyrosine, arginine, etc. gave no volatile aldehyde. After hydrolysis (HCl), wool, casein, and gelatin yield MeCHO, and wheat gluten MeCHO and EtCHO with HIO₄–NaHCO₂; β-hydroxynorvaline may thus be present in the gluten hydrolysate. L. S. T.

Analysis of proteins. XII. Dephosphocaseose or depocaseose. T. J. R. Macara and R. H. A. Plimmer (Biochem. J., 1940, 34, 1431—1448; cf. A., 1939, II, 294).—The prep. of depocasein (I) and depocaseose (II) by the action of 1% NaOH at 37° for 24 hr. on caseinogen (III) is described, and the amounts of the individual NH₂-acids in (I)

and (II) are determined. (I) and (II) have low P content and both contain less N than does (III), whilst (II) contains slightly more N and S than does (I). (II) contains less arginine, tyrosine, and glutamic acid, and more lysine and methionine, than does (III), whilst (I) contains more arginine, tyrosine, and glutamic acid, and less lysine, histidine, and methionine, than does (III). Both (I) and (II) contain less threonine and β-hydroxyamino-acids than (III), but more are present in (II) than in (I). Assuming that 1 mol. of cystine is present for each mol. of (I) and (II), the mol. wt. of the latter are 80,000 and 100,000, respectively. It is concluded that 1% NaOH scarcely affects the peptide linkings in (III), but hydrolyses the ester linkings by which H₃PO₄ is bound and approx. half of the dicarboxylic acid amide groups, and separates the complex system of (III) into the two main components (I) and (II), which may or may not be homogeneous.

Preparation of Nessler's reagent.—See A., 1940, I, 444.

Apparatus for determination of sulphur by the evolution method.—See A., 1940, I, 446.

Microchemical technique. IV. Micro-determination of mercury and halogen in organomercuric halides. G. O. Stonestreet and G. F. Wright (Canad. J. Res., 1940, 18, B, 246—251).—Br and Cl are determined by heating with Ag₂Cr₂O₇–K₂Cr₂O₇–conc. H₂SO₄ in O₂ (Zacherl *et al.*, A., 1932, 709), and Hg in the residue by titration with dithizone (Winkler, B., 1936, 168). In some cases further heating with fuming HNO₃–H₂SO₄ is necessary to complete the decomp.

Quantitative analysis of mixtures of polyethylene glycols by fractional distillation. S. Perry and H. Hibbert (J. Amer. Chem. Soc., 1940, 62, 2561—2562).—Such analysis is accurate (96—99.8%).

R. S. C.

Ketoses. XVIII. Van Slyke procedure for determination of β-hydroxybutyric acid. H. Blunden, L. F. Hallman, M. G. Morehouse, and H. J. Deuel, jun. (J. Biol. Chem., 1940, 135, 757—759).—Experiments on the Van Slyke method with pure Ca Zn l- and dl-β-hydroxybutyrate, and with the Et dl-β-ester containing traces of CH₂Ac·CO₂Et, give vals. for the wt. of Hg ppt. equiv. to 1 g. of β-hydroxybutyrate of 9.51, 9.68, and 9.62, respectively.

Determination of benzoic acid. R. W. SUTTON and O. HITCHEN (Analyst, 1940, 65, 502).—Unless the air oven described by Monier-Williams (B., 1927, 502) is copied in full detail, either a higher temp. (180°) or a longer time of sublimation than specified by him may be required for the quant. sublimation of BzOH.

Micro-methods for determination of sphingo-myelin and choline.—See A., 1940, III, 946.

Chemical determination of thiamin by a modification of Melnick-Field method.—See A., 1940, III, 818.

Determination of morpholine. I. S. Shupe (J. Assoc. Off. Agric. Chem., 1940, 23, 824—831).—

Pptn. and colour tests for morpholine (I) are described and titration data given. With CS₂ (I) yields morpholine morpholyldithiocarbamate, sublimes at >100°, reduced by K₃Fe(CN)₆ to a thiuram disulphide (?), m.p. 150—151°. The prep. of benzenc-, m.p. 119°, and p-bromobenzene-sulphonylmorpholine, m.p. 153°, is described. Methods of determining (I) in creams and ointments, based on steam-distillation and titration with acid and on quant. conversion into the above derivatives, are described.

F. O. H.

Identification of traces of barbituric acid by a modification of the Parri reaction. E. Sellés (Anal. Fís. Quím., 1940, 36, 115—118).—2 \times 10-6 g. of a 0.01% solution of barbituric acid in Et₂O or EtOH may be detected by micro-technique on addition of a drop of the solution to paper saturated with 1% Co(NO₃)₃ in EtOH followed by a drop of 5—10% aq. NH₃ added at the edge of the paper. F. R. G.

Micro-crystallographical detection of uric acid. G. Denices (Bull. Trav. Soc. Pharm. Bordeaux, 1937, 75, 73—78; Chem. Zentr., 1937, i, 4833).—Uric acid deposited on acidification of an alkaline solution, or on addition of H₂O to a conc. H₂SO₄ solution followed by washing with H₂O, gives characteristic crystals after ~5 min. A. J. E. W.

Microchemistry of xanthine. G. Denices (Bull. Trav. Soc. Pharm. Bordeaux, 1937, 75, 79—80; Chem. Zentr., 1937, i, 4833).—Xanthine separates as characteristic crystals on dilution of its conc. H₂SO₄ solution.

A. J. E. W.

Quantitative characteristics of nicotine colour reaction with cyanogen bromide and β -naphthylamine. L. N. Markwood (J. Assoc. Off. Agric. Chem., 1940, 23, 792—800; cf. B., 1939, 1171).—The optimum $p_{\rm H}$ for the reaction is \sim 10; neutralisation to phenolphthalein is recommended. When alkaline solutions of nicotine (I) are neutralised with AcOH, HCl, or H₂SO₄, sensitivity is greatest with AcOH and least with HCl. NaCl and, to a greater extent, Na₂SO₄ have a desensitising effect. Conditions for max. development of colour [which, for concns. of (I) \gg 8 mg.-%, follows Beer's law] are described. F. O. H.

Turbidimetric determination of nicotine as phosphotungstate. L. N. Markwood (J. Assoc. Off. Agric. Chem., 1940, 23, 800—804).—Nicotine (1—6 μg. per ml.) is determined by photometric measurement of the turbidity produced by phosphotungstic acid in presence of dil. H₂SO₄. F. O. H.

Micro-chemical tests for alkaloids. C. K. GLYCART (J. Assoc. Off. Agric. Chem., 1940, 23, 746—747).—Eserine is detected by PbI₂ reagent and stovaine by the characteristic crystal picture given by AuCl₃ reagent in presence of conc. HCl. F. O. H.

Nature of the Feulgen reaction with nucleic acid. H. N. Barber and J. R. Price (Nature, 1940, 146, 335).—The effect of C_5H_5N and piperidine (A., 1940, II, 319) is not equiv. chemically to the Feulgen reaction, but is due to their basicity. Three of the purines used by Semmens (loc. cit.) gave no colour reaction. The Feulgen reaction is regarded as sp. for the potential CHO of chromatin. L. S. T.

