Grenation: *: AXA->A + x, y E A => 2 * y E A Erypoid: (A, *) Integration : grupoid + associativity

+ n,y, Z E A: (2xy) * 2= 2x* (y*2) Monoid: sulegruppied + identity element (neutral element) BEEA, TREA: GARELLAR-R broup: Mansid + all elements have a symmetric ∀ & ∈ A, ∃ &'∈ A: & * & '= &' * &= Q Abelian group: group + comutativity + 2,y & A: 2 *y = y * 2 Julegerseyn: S ≤ (A, *)-grays such that S = A => (S, *)-googs)

[] IN-matural +, Q, ., Q II-integers +, -, ., Q Q-restional +, -, ., Q => Q*-: IR-real +, -, ., Q => IR*, C*-: T-camples +, -, ., Q} => IR*, C*-:

always inherits commutativity + osociativity

$$(Z,+),(X,-)$$
 $(Z,+),(X,-)$
 $(Q,+),(Q,-)$
 $(R,+),(Q,-)$
 $(R,+),(Q,-)$
 $(L,+),(Q,-)$
 $(L,+),(Q,-)$

(i) (R, x) commitative

(ii) [-1,+00) stable port of (IR, +)

(ii)
$$\forall x, y \in E-1, \infty$$
)
 $4x = 2x + y + 2x \in E-1, \infty$)
 $= (9x + 1)(y + 1) - 1 \in E-1, \infty$)
 $= (9x + 1) + 2x \in (-1, \infty)$

=)
$$\alpha \in \mathcal{D}_n$$

 $\alpha + \beta$ assit comm.
 $\alpha + 0 = 0 + \alpha = \alpha$
 $\beta = 0 + \alpha = \alpha$

Det the finite stable subsets of (Z, ·) (în parkiol)

Let H is a st. subset of (Z),)
=> 3 26 H such that q. q. & E H=>] & E H such that q. & E H
] q E H such that q. q. E H=>] Q E H such that q. B E H

] $q \in H$ such that $q \in H$ } =>] $i, j \in IN^{k}, i \leq j$ H-finite set such that $q^{i} = q \neq GH^{=}$ => $q \in \{-1,0,1\}$ => $H \in \{1\}, \{0\}, \{-1,1\}, \{0,1\}, \{0,1\}, \{0,-1\}, \emptyset$

7 (G, ·) grays

(i) G is Abelian (=> + R,y ∈ G, (Ry)= 2 y2

(ii) If 92=1, + 92 ∈ G=>Gis Abbelian

(9) Gir Bleelians=> $\forall x, y \in G: x.y=y.x$ $(9x)^2 = (9x)(xy)$ $(=xxy)^2 = 9xxyy=9x^2y^2$

(ii) Hint: $\chi^2 = \chi \chi = 1$ -id. element => $\chi = \chi^{-1}$ Flamework: 2,8,7(ii)

 $2. A = \{a_1, a_2, a_3\}$