

AMENDMENTS TO THE CLAIMS

1.(currently amended) A froth flotation process for the enrichment of a calcium phosphate-containing mineral from an ore also containing calcium carbonate, wherein characterized in that the process is performed in the presence of, as a collector, wherein said collector is of a derivative of aspartic acid of the formula

where R^{I} is a hydrophobic group containing a hydrocarbon group of 6-24 carbon atoms; R^{II} is an alkyl group with 1-7 carbon atoms or a group of the formula $(\text{B})_y\text{H}$, in which B is an alkyleneoxy group with 2-4 carbon atoms and y is a number from 1 to 10; and M is a group selected from the group consisting of a cation or hydrogen.

2.(currently amended) TheA froth flotation process in accordance with of -claim 1 wherein, characterized in that R^{I} is a glycidyl ether group of the formula $\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{O}(\text{A}_1)_{x1}\text{R}_1$, in which R_1 is a hydrocarbon group with 8-24 carbon atoms, A_1 is an alkyleneoxy group with 2-4 carbon atoms and $x1$ is a number from 0 to 10; a hydroxyl group of the formula $\text{CH}_2\text{CH}(\text{OH})\text{R}_2$, in which R_2 is a hydrocarbon group with 6-22 carbon atoms; a propylene ether group of the formula $\text{C}_3\text{H}_6\text{O}(\text{A}_3)_{x3}\text{R}_3$, in which R_3 is a hydrocarbon group with 8-24 carbon atoms, A_3 is an alkyleneoxy group with 2-4 carbon atoms and $x3$ is a number from 0-10; or a group of the formula R_4 , where R_4 is a hydrocarbon group containing 8-24 carbon atoms.

3. (currently amended) TheA froth flotation process according to of -claim 2, wherein characterized in that the derivative is selected from the group consisting of

where R_1 , A_1 , $x1$ have the same meanings as in claim 2,

where R_2 has the same meaning as in claim 2,

where R_3 , A_3 and x_3 have the same meanings as in claim 2, and

where R_3 , A_3 and x_3 have the same meanings as in claim 2, and mixtures of two or more of the derivatives of formula II, III, IV or V.

4.(currently amended) The A froth flotation process according to claim 2 or 3, characterized in that wherein -A₁ and A₃ are both ethyleneoxy and x₁ and x₃ are each independently selected from a number of from 1-4.

5. (currently amended) The A froth flotation process according to claim 1 or 2, wherein characterized in that R^{II} is methyl, hydroxyethyl or hydroxypropyl.

6. (currently amended) The A froth flotation process according to any one of claims 1-5, characterized in that of claim 1 wherein the derivative is present in an amount of 10-1500 grams per ton of the ore.

7. (currently amended) ~~The A froth flotation process according to any one of claims 1-6, characterized in that~~ of claim 1 wherein the process is performed in the presence of a polar co-collector of the formula

in which R^{III} is a hydrocarbon group with 8-22 carbon atoms, A is an oxyalkylene group having 2-4 carbon atoms and p is a number from 1-6, or of the formula

in which R^{IV} is an aliphatic group having 7-21 carbon atoms, A is an alkyleneoxy group having 2-4 carbon atoms, q is a number from 0-6, and Y is an alkyl group having 1-4 carbon atoms or hydrogen, provided that Y cannot be hydrogen when q is zero.

8. (currently amended) A derivative of aspartic acid, ~~characterized in that it has~~ of the formula

where R^I is a glycidylether group of the formula $CH_2CH(OH)CH_2O(A_1)_{x_1}R_1$, in which R_1 is a hydrocarbon group with 8-24 carbon atoms, A_1 is an alkyleneoxy group with 2-4 carbon atoms and x_1 is a number from 0 to 10; a hydroxyl group of the formula $CH_2CH(OH)R_2$, in which R_2 is a hydrocarbon group with 6-22 carbon atoms; a propylene ether group of the formula $C_3H_6O(A_3)_{x_3}R_3$, in which R_3 is a hydrocarbon group with 8-24 carbon atoms, A_3 is an alkyleneoxy group with 2-4 carbon atoms and x_3 is a number from 0-10; or a group of the formula R_4 , where R_4 is a hydrocarbon group containing 8-24 carbon atoms; R^{II} is an alkyl group with 1-7 carbons atoms or a group of the formula $(B)_yH$, in which B is an alkyleneoxy group with 2-4 carbon atoms and y is a number from 1 to 10; with the proviso that when R^{II} is an alkyl group with 1-7 carbon atoms then R^I is not a group RCO , where R is a C7-C21 alkyl or alkenyl, a group R, where R is a C8-C22 alkyl or alkylene group, or a group

$(\text{CH}_2)_3\text{OR}$, where R is a C8-C22 alkyl or alkylene group; and M is a group selected from the group consisting of a cation or hydrogen.

9. (currently amended) ~~The~~A derivative according to ~~of~~ -claim 8, characterized in that wherein -it is selected from the group consisting of

where R_1 , A_1 $x1$ have the same meanings as in claim 2,

where R_2 has the same meaning as in claim 9,

where R_3 , A_3 and $x3$ have the same meanings as in claim 9, and

where R_3 , A_3 and $x3$ have the same meanings as in claim 9, and mixtures of two or more of the derivatives of formula II, III, IV or V.

10. (currently amended) A method of producing a derivative according to claim 8, characterized in that which comprises reacting maleic acid or a salt thereof is reacted under alkaline conditions with

a) a primary amine of the formula $R''NH_2$, where R'' has the meaning mentioned above, followed by reacting the intermediate obtained with a glycidylether of the formula

where R_1 , x_1 and A_1 have the meanings mentioned above, an epoxide of the formula

where R_2 has the meaning mentioned above, or a halide compound of the formula HalR_4 , where Hal is a halide and R_4 has the meaning above; or

b) with a primary amine of the formula $R'NH_2$, where R' has the meaning mentioned above, followed by reacting the intermediate obtained with a halide compound of the formula HalR'' , where Hal is a halide and R'' has the meaning mentioned above.

11. (currently amended) The A method according to claim 10, characterized in wherein that

i) the disodium salt of maleic acid is reacted with N-methylamine and the obtained (N-methyl)aspartate disodium salt is further reacted with a compound of the formula

where R_1 , A_1 and x_1 have the same meanings as in claim 11 to an aspartate of the formula II, or with a compound of the formula