

# 线性代数

欧阳林茁

2023年6月22日

### 序言



纳西妲为你加油

我以智慧之神的名义为你赐福,从今往后不再会有困惑阻碍你的旅途。

——纳西妲

## 目录

| 矩阵及  | 其初等变换         | 5  |
|------|---------------|----|
| 1.1  | 矩阵及其运算        | 5  |
| 1.2  | 高斯消元法与矩阵的初等变换 | 13 |
| 1.3  | 逆矩阵           | 15 |
| 1.4  | 分块矩阵          | 15 |
| 行列式  |               | 16 |
| 2.1  | 行列式的定义        | 16 |
| 2.2  | 行列式的性质与计算     | 16 |
| 2.3  | 拉普拉斯展开定理      | 16 |
| 2.4  | 克拉默法则         | 16 |
| 2.5  | 矩阵的秩          | 16 |
| 几何空间 | 间             | 17 |
| 3.1  | 空间直角坐标系与向量    | 17 |
| 3.2  | 向量乘法          | 17 |
| 3.3  | 平面            | 17 |
| 3.4  | 空间直线          | 17 |
| 向量空间 | 间             | 18 |
| 4.1  | n 维向量空间       | 18 |
| 4.2  | 向量组的线性相关性     | 18 |
| 4.3  | 向量组的秩与极大无关组   | 18 |
| 4.4  | 线性方程解的结构      | 18 |

### 目录

| 特征值  | 与特征向量       | 19 |
|------|-------------|----|
| 5.1  | 特征值与特征向量    | 19 |
| 5.2  | 矩阵的相似对角化    | 19 |
| 5.3  | 向量空间的正交性    | 19 |
| 5.4  | 实对称矩阵的相似对角化 | 19 |
| 二次型  | 与二次曲面       | 20 |
| 6.1  | 实二次型及其标准型   | 20 |
| 6.2  | 正定二次型       | 20 |
| 6.3  | 曲面与空间曲线     | 20 |
| 6.4  | 二次曲面        | 20 |
| 术语索引 |             |    |

#### **Contents**

| 1.1 | <b>矩阵及其运算</b> 5  |
|-----|------------------|
|     | 矩阵的概念 5          |
|     | 矩阵的线性运算 7        |
|     | 矩阵的乘法 8          |
|     | 矩阵的转置 11         |
| 1.2 | 高斯消元法与矩阵的初等变换 13 |
|     | 高斯消元法            |
|     | 初等矩阵             |
| 1.3 | 逆矩阵              |
| 1.4 | 分块矩阵             |

### 1.1 矩阵及其运算

矩阵的概念

Ø

矩阵是一个由  $m \times n$  个数组成的 m 行 n 列的数表,形如:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

我们将其称之为矩阵,记作  $A_{m\times n}$  或  $(a_{ij})_{m\times n}$ ,通常使用大写字母来表示矩阵,小写字母表示矩阵中的元素,如需指明行列数,需使用下标,如前。

n 元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

中的系数项可以组成  $m \times n$ 系数矩阵:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

而其系数项和常数项可以组成一个  $m \times (n+1)$  的增广矩阵

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_3 \end{pmatrix}$$

内部元素全为 0 的矩阵称为零矩阵,记作  $O_{m\times n}$  或 O

矩阵  $A_{m \times n}$  中当 m = n 时, 称为 n 阶矩阵或 n 阶方阵

只有一行或只有一列的  $A_{1\times n}, A_{m\times 1}$  分别称为<mark>行矩阵或列矩阵</mark>矩阵! 列矩阵

若方阵  $A = (a_{ij})_{n \times n}$  的元  $a_{ij} = 0, (i \neq j)$ , 则称 A 为对角矩阵. 记作  $A = diag(a_{11}, a_{22}, \dots, a_{nn})$ 



对角矩阵首先是方阵

对角元全为 1 的对角矩阵称为<mark>单位矩阵</mark>,n 阶单位矩阵记为  $I_n$ ,不致混淆的情况下也记为 I

形如

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{pmatrix}, \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

分别被称为上三角矩阵和下三角矩阵

#### 矩阵的线性运算

矩阵的加法与矩阵的数乘统称为矩阵的<mark>线性运算</mark> 如果 A 和 B 都是  $m \times n$  的矩阵, 则称 A 和 B 是同型矩阵 两个矩阵 A 和 B 相等, 如果他们是同型矩阵且对应元相等, 则称 A 和 B 相等

a,

证明矩阵定理的时候, 需要先证明同型, 再证明对应元相等, 两者缺一不可

**1** 矩阵

矩阵加法就是: 设两个矩阵 A 和 B 是 
$$m \times n$$
 的同型矩阵,将他们的对应元相加得到:

$$C = (a_{ij} + b_{ij})_{m \times n} = (c_{ij})_{m \times n}$$

则称 C 是 A+B 的和,记作 C = A + B

将 A 中每一个元  $a_{ij}$  换做  $-a_{ij}$ ,则可以得到负矩阵矩阵减法就是将 A 矩阵和 B 的负矩阵相加而得根据减法的定义,显然 A-B=O 与 A=B 等价

设 A 为一个  $m \times n$  矩阵,常数 k 与矩阵 A 进行矩阵数乘,将 A 中对应元 做如下操作  $a_{ij} \leftarrow k \times a_{ij}$ ,记为 kA

矩阵的线性运算符合以下性质, 其中 A、B、C 为同型矩阵, k、l 为常数:

1. 
$$A + B = B + A$$

2. 
$$(A+B) + C = A + (B+C)$$

3. 
$$A + O = A$$

4. 
$$A + (-A) = O$$

5. 
$$1A = A$$

6. 
$$k(lA) = (kl)A$$

7. 
$$k(A + B) = kA + kB$$

8. 
$$(k+l)A=kA+lA$$

#### 矩阵的乘法



设 A 为  $m \times p$  型矩阵,B 为  $p \times n$  型矩阵,则由元  $c_{ij}$  组成的:

$$c_{ij} = \sum_{k=1}^{p} a_{[ik]} b_{kj}$$
  
 $(i = 1, 2, \dots, m : j = 1, 2, \dots, n)$ 

 $m \times n$  型矩阵为矩阵 A 与 B 的乘积,记作  $\mathcal{C} = \mathcal{AB}$ 

#### 矩阵乘法满足以下性质:

- 1. 结合律 A(BC) = (AB)C
- 2. 数乘结合律 k(AB) = k(AB)

3. 分配律 
$$A(B+C) = AB + AC$$
$$(B+C)A = BA + CA$$



证明结合律: A(BC) = (AB)C

证明. 首先需要证明同型, 假设 A,B,C 分别为  $m \times p, p \times q, q \times n$  型矩阵, 可知 A(BC),(AB)C 都是  $m \times n$  型矩阵 列举矩阵元:

$$A(BC) \to \sum_{k=1}^{p} a_{ik} (\sum_{l=1}^{q} b_{kl} c_{lj}) = \sum_{k=1}^{p} \sum_{l=1}^{q} a_{ik} b_{kl} c_{lj}$$
$$(AB)C \to \sum_{l=1}^{q} (\sum_{k=1}^{p} a_{ik} b_{kl}) c_{lj} = \sum_{l=1}^{q} \sum_{k=1}^{p} a_{ik} b_{kl} c_{lj}$$

由于有限项求和符号可以交换次序,所以两个矩阵元相等 综上所述,A、B 矩阵同型且矩阵元相等,所以等式两边等价

性质数乘结合律和分配律都可以套用结合律的模板,先证同型,再证矩阵元相等即可

一般情况下, $AB \neq BA$ ,例如:

$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} BA = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix}$$

当  $AB \neq BA$  时称 A 与 B 不可交换,AB = BA 时称 A 与 B 可交换,一般不满足交换律



$$AB - AC = A(B - C)O$$
 不能判断  $B - C = O$  如上

但是对于单位矩阵 I 而言, I 满足如下性质:

$$I_m A_{m \times n} = A_{m \times n} I_n = A_{m \times n}$$

单位矩阵在矩阵运算中起到数的乘法中 1 的作用

其中  $kI = diag(k, k \, cdots, k)$  被称为数量矩阵, n 阶数量矩阵与 n 阶方阵 A 也是可交换的。



矩阵的幂为,设A为n阶方阵,k为正整数

$$\begin{cases} A^1 = A \\ A^{k+1} = A^K A, k = 1, 2, 3, \dots, \end{cases}$$

符合以下性质:

$$A^k A^m = A^{m+k}, (A^{m^k}) = (A^m)^k$$



一般来说, $(AB)^k \neq A^k B^k$ 

№ 感性证明.

$$(AB)^k = (AB)(AB)\cdots(AB)$$
 $= ABAB\cdots AB$  结合律
 $\neq AABB(AB\cdots AB)$  AB 一般不可交换
依次类推
 $\neq AA\cdots AABB\cdots BB$ 
 $\neq A^kB^k$ 

当 AB = BA 时,显然  $(AB)^k = A^k B^k$ ,其逆不真

A 是一个 n 阶方阵

$$f(A) = a_k A^k + \dots + a_1 A + a_0 I$$

f(A) 称作 A 的 k 阶多项式

显然由 f(A)g(A)=g(A)f(A)

- 一般来说  $f(A)g(B) \neq g(B)f(A)$
- 一般来说:

$$(A+B)^2 \neq A^2 + 2AB + B^2, (A+B)(A-B) \neq A^2 - B^2$$

但由于 AI=IA:

$$(A+I)^2 = A^2 + 2A + I, (A+I)(A-I) = A^2 - I$$

$$(A + \lambda U)^n = A^n + C_n^1 \lambda A + \dots + C_n^{n-1} \lambda^{n-1} A + \lambda^n I$$

n 个变量  $x_1, x_2, \cdots, x_n$  和 m 个变量之间的对应关系

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

将这种变化称为矩阵的线性变化

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

将点 (x,y) 逆时针旋转  $\theta$  到 (x',y') 叫做<mark>旋转变化</mark>



$$x' = r\cos(\theta + \alpha)$$

$$= r\cos\theta\cos\alpha - r\sin\theta\sin\alpha$$

$$= x\cos\theta - y\sin\alpha$$

$$y' = r\sin(\theta + \alpha)$$

$$= r\sin\theta\cos\alpha + r\sin\alpha\cos\theta$$

$$= x\sin\theta + y\cos\theta$$

#### 矩阵的转置

把一个矩阵行列互换,则称处理后的矩阵叫做矩阵的转置,对于矩阵 A 而言:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

矩阵 A 的转置如下所示:

$$\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

显然有  $m \times n$  的矩阵,转置后为  $n \times m$  的矩阵 矩阵转置具有如下性质:

1. 
$$(A^T)^T = A$$

2. 
$$(A^T) + B^T = A^T + B^T$$

3. 
$$k(A^T) = (kA)^T$$

$$4. \ (AB)^T = B^T A^T$$



$$(AB)^T = B^T A^T$$

证明. 首先证明同型,假设 A 为  $m \times p$ ,B 为  $p \times n$  型矩阵,则  $(AB)T,B^TA^T$  均为  $m \times n$ 

然后证明矩阵元相等:

$$(AB)^T \to c_{ji} = \sum_{k=1}^p a_{ik} b_{kj}$$
$$B^T A^T \to c_{ji} = \sum_{k=1}^p b_{kj} a_{ik}$$

显然有矩阵元相等

若  $A^T = A$ ,则称 A 为<mark>对称矩阵</mark>,若  $A^T = -A$ ,则称 A 为<mark>反称矩阵</mark>

显然对称矩阵和反称矩阵都是方阵,且对称矩阵中  $a_{ij}=a_{ji}, \forall i,j$ 

反称矩阵中  $a_{ii} = 0, a_{ij} = -a_{ji}, i \neq j$ 

对称矩阵的线性运算仍为对称矩阵吗,对称矩阵的乘积不一定为对称矩阵

0

假设 A = B 都是 n 阶对称矩阵,证明矩阵 AB 为对称矩阵的充要条件是 AB=BA

证明. 先证充分性:AB=BA, $(AB)^T=B^TA^T=BA$ ,符合对称矩阵的定义,

0

则 AB 为对称矩阵

再证必要性: AB 为对称矩阵, $(AB)T = B^TA^T = BA = AB$ ,所以能够证明 AB=BA

对于任意矩阵  $A,AA^T$  和  $A^TA$  为对称矩阵

#### 1.2 高斯消元法与矩阵的初等变换

#### 高斯消元法

- 一般地我们把 AX = b 中如果 b 中所有元素至少有一个不为 0,则称为非齐次线性方程组,否则称为齐次线性方程组,满足方程的一组 X 称为方程组的一组解 矩阵的行列初等变化如下:
  - 1. 交换两行 (列) 的位置
  - 2. 用一非零数数乘某一行(列)的所有元
  - 3. 把矩阵的某一行(列)的适当倍数加到另一行上

解线性方程组可以使用有限次的初等行变换操作增广矩阵

Algorithm 1: 高斯消元法

- $i \leftarrow 1$
- $j \leftarrow 1$
- 3 首先将一般矩阵转化为行阶梯形矩阵
  - 1. 对于第 j 列寻找非零元,如果存在,利用初等行变换,将他替换到第 i 行,如果不存在,j=j+1,继续执行 1,直到 j 无法再增加
  - 2. 利用初等行变换,将 i 以下所有行第 j 列元素更新为 0,第 i 行第 j 列元素更新为 1,i++,j++
  - 3. 如果 i 无法再增加,结束循环,如果 i 可以再增加,转到 1

然后将行阶梯形矩阵转化为行简化阶梯型矩阵

然后此时 i 和 j,再进行自减,重复上面类似的操作,对于非零首元更新 i 以上的第 j 列元素为 0

如果一个矩阵每个非零元都出现再上一行非零首元的右边,则称为行阶梯形矩阵

如果行阶梯形矩阵每个非零行的非零首元都是 1,且非零首元所在列其余元都是 0,则称为**行简化阶梯型矩阵** 



#### 线性方程组解的特征

对于一般的线性方程组,可以通过消元步骤将其化为行简化阶梯型矩阵,假设  $\bar{A} = (A, b)$  为方程组 AX = b 的行简化阶梯型矩阵:

$$\bar{A} = \begin{pmatrix} c_{11} & 0 & \cdots & 0 & c_{1,r+1} & \cdots & c_{1n} & d_1 \\ 0 & c_{21} & \cdots & 0 & c_{2,r+1} & \cdots & c_{2n} & d_2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & c_{rr} & c_{r,r+1} & \cdots & c_{r,n} & d_r \\ 0 & 0 & \cdots & 0 & 0 & 0 & d_{r+1} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

如果  $d_{r+1} \neq 0$ ,则方程组无解 如果  $d_{r+1} = 0$ ,则存在如下情况:

1. r=n,存在唯一解

$$\begin{cases} x_1 & = d_1, \\ x_2 & = d_2, \\ \dots & \\ x_n & = d_n \end{cases}$$

2. 当 r<n 时,存在无穷多的解

把矩阵的每一个非零首元所在列的元称为基本未知量,将其余元所在列称为自由未知量,基本变量由自由变量的线性组合表示。

关于齐次线性方程组 AX = 0, 总是存在零解 (平凡解), X=0

当 r<n 时,存在无穷多的解,设 m 个 n 元方程组组成的线性方程组 AX=0,若 m < n,则方程组必有非零解

若一个矩阵 A 能够通过有限次的初等变化变成 B, 则称 A 与 B等价, 记作  $A \cong B$ , 如果使用的时行 (列)初等变化,则称为 A 与 B 行 (列)等价

矩阵的等价关系性质如下:

• 反身性: 若  $A \cong A$ 

• 对称性: 若  $A \cong B$ , 则  $B \cong A$ 

• 传递性: 若  $A \cong B, B \cong C$ , 则  $A \cong C$ 

#### 初等矩阵

将单位矩阵作一个初等变换得到的矩阵,叫做初等矩阵

对一个  $m \times n$  的矩阵而言,进行初等行变换相当于左乘一个初等矩阵,进行初等列变换相当于右乘一个初等矩阵



如果一个矩阵能够由 A 进行行初等变换得到,则必然存在有限个初等矩阵,使得

$$B = E_k E_{k-1} \cdots E_1 A$$

如果一个矩阵能够由 A 进行列初等变换得到,则必然存在有限个初等矩阵,使得

$$B = AE_1'E_2' \cdots E_k'$$

如果一个矩阵能够由 A 进行初等变化得到,则必然存在有限个初等矩阵, 使得

$$B = P_k P_{k-1} \cdots P_1 A Q_1 Q_2 \cdots Q_l$$

- 1.3 逆矩阵
- 1.4 分块矩阵

### 行列式

| 2.1 | 行列式的定义    | 16 |
|-----|-----------|----|
| 2.2 | 行列式的性质与计算 | 16 |
| 2.3 | 拉普拉斯展开定理  | 16 |
| 2.4 | 克拉默法则     | 16 |
| 2.5 | 矩阵的秩      | 16 |

- 2.1 行列式的定义
- 2.2 行列式的性质与计算
- 2.3 拉普拉斯展开定理
- 2.4 克拉默法则
- 2.5 矩阵的秩

### 几何空间

| 3.1 | 空间直角坐标系与向量 | 17 |
|-----|------------|----|
| 3.2 | 向量乘法       | 17 |
| 3.3 | 平面         | 17 |
| 3.4 | 空间直线       | 17 |

- 3.1 空间直角坐标系与向量
- 3.2 向量乘法
- 3.3 平面
- 3.4 空间直线

### 向量空间

| 4.1 | n 维向量空间     | 18 |
|-----|-------------|----|
| 4.2 | 向量组的线性相关性   | 18 |
| 4.3 | 向量组的秩与极大无关组 | 18 |
| 4.4 | 线性方程解的结构    | 18 |

- 4.1 n 维向量空间
- 4.2 向量组的线性相关性
- 4.3 向量组的秩与极大无关组
- 4.4 线性方程解的结构

### 特征值与特征向量

| 5.1 | 特征值与特征向量    | 19 |
|-----|-------------|----|
| 5.2 | 矩阵的相似对角化    | 19 |
| 5.3 | 向量空间的正交性    | 19 |
| 5.4 | 实对称矩阵的相似对角化 | 19 |

- 5.1 特征值与特征向量
- 5.2 矩阵的相似对角化
- 5.3 向量空间的正交性
- 5.4 实对称矩阵的相似对角化

### 二次型与二次曲面

| 6.1 | 实二次型及其标准型 | 20 |
|-----|-----------|----|
| 6.2 | 正定二次型     | 20 |
| 6.3 | 曲面与空间曲线   | 20 |
| 6.4 | 二次曲面      | 20 |

- 6.1 实二次型及其标准型
- 6.2 正定二次型
- 6.3 曲面与空间曲线
- 6.4 二次曲面

## 术语索引

| 初等矩阵                                             | 15 | 矩阵相等       | 7  |
|--------------------------------------------------|----|------------|----|
| 同型矩阵                                             | 7  | 矩阵等价       | 14 |
| <del>让                                    </del> | 11 | 矩阵线性运算     | 7  |
| 旋转变化                                             | 11 | 11<br>矩阵减法 |    |
| 矩阵                                               | 6  | 矩阵加法       | 7  |
| 上三角矩阵                                            | 7  | 矩阵数乘       | 7  |
| 下三角矩阵                                            | 7  | 矩阵转置       | 11 |
| 单位矩阵 I                                           | 7  | 线性变化       | 11 |
| 反称矩阵                                             | 12 | 线性方程组解的特征  | 14 |
| 增广矩阵                                             | 6  | 基本未知量      | 14 |
| 对称矩阵                                             | 12 | 自由未知量      | 14 |
| 对角矩阵 diag                                        | 6  | A 4517t    | 7  |
| 数量矩阵                                             | 9  | 负矩阵        | 7  |
| 方阵                                               | 6  | 非齐次线性方程组   | 13 |
| 系数矩阵                                             | 6  | 高斯消元法      | 13 |
| 行矩阵                                              | 6  | 矩阵的行列初等变化  | 13 |
| 零矩阵 O                                            | 6  | 行简化阶梯型矩阵   | 14 |
| 矩阵乘法                                             | 8  | 行阶梯形矩阵     | 13 |
| 矩阵的多项式                                           | 10 | 齐次线性方程组    | 13 |
| 矩阵的幂                                             | 9  | 平凡解        | 14 |