AP Calculus

Riemann Sum to Integral Worksheet

Convert each limit of a Riemann sum to a definite integral, and evaluate.

1. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right) \frac{1}{n}$

 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}}$

3. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \left(2 + \frac{k}{n}\right)^{2}$

 $\lim_{n \to \infty} \frac{\frac{\pi}{2}}{n} \sum_{k=1}^{n} \sin \left(\frac{k \pi}{2 n} \right)$

5. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{3k}{n}\right)^{3} \frac{3}{n}$

6. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \left(\left(\frac{k}{n} \right)^{3} + 1 \right)$

7. $\lim_{n \to \infty} \frac{3}{n} \sum_{k=1}^{n} \left(\left(2 + \frac{3k}{n} \right)^2 - 2 \left(2 + \frac{3k}{n} \right) \right)$

8. $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(\frac{2i}{n} \right)^{3} + 5 \left(\frac{2i}{n} \right) \right) \frac{1}{n}$

Challenge:

9. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k}$

10. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n+k}} \right)$