

Lecture 11: MOSFET Circuits

VE311 Electronic Circuits

Xuyang Lu 2023 Summer

Recap of Last Lecture

MOSFET

Topics to Be Covered

MOSFET Circuits

NMOS Model			
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9
NSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1
TOX=9e-9	PB=0.9	CJ = 0.56e-3	CJSW=0.35e-11
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8
PMOS Model			
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8
NSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2
TOX=9e-9	PB=0.9	CJ = 0.94e - 3	CJSW=0.32e-11
MJ = 0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8

- Simulators such as SPICE and Cadence need accurate models for each device.
- Above is the simplest MOS SPICE model, known as "Level 1," and provide typical values for each parameter corresponding to 0.5-µm technology.


```
VTO : threshold voltage with zero V_{SB} ( unit : V ) GAMMA : body effect coefficient ( unit : V^{1/2} ) PHI : 2\Phi_F ( unit : V ) TOX : gate oxide thickness ( unit : m ) NSUB : substrate doping ( unit : cm^{-3} ) LD : source/drain side diffusion ( unit : m ) UO : channel mobility ( unit : cm^2/V/s ) LAMBDA : channel-length modulation coefficient ( unit : V^{-1} )
```



```
CJ: source/drain bottom-plate junction capacitance per unit area ( unit : F/m^2 ) CJSW: source/drain sidewall junction capacitance per unit length ( unit : F/m ) PB: source / drain junction built-in potential ( unit : V ) MJ: exponent in CJ equation ( unitless ) MJSW: exponent in CJSW equation ( unitless ) CGDO: gate-drain overlap capacitance per unit width ( unit : F/m ) CGSO: gate-source overlap capacitance per unit width ( unit : F/m ) JS: source/drain leakage current per unit area ( unit : F/m )
```


Body Effect Example

$$\left(\frac{W_{drawn}}{L_{drawn}}\right) = \frac{10\mu m}{2\mu m} \qquad (1)$$

$$V_{th} = 0.7 + 0.45(\sqrt{0.9 + 1} - \sqrt{0.9}) \tag{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \left(\frac{W}{L_{eff}} \right) \left(V_{GS} - V_{TH} \right)^{2} (1 + \lambda V_{DS})$$
 (3)

Body Effect Example

$$\lambda \neq 0 \quad \gamma \neq 0 \tag{4}$$

$$(\frac{W_{drawn}}{L_{drawn}}) = \frac{10\mu m}{2\mu m}$$
 (5)

$$V_{th} = 0.7 + 0.45(\sqrt{0.9 + 1} - \sqrt{0.9}) \tag{6}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \left(\frac{W}{L_{eff}} \right) \left[\left(V_{GS} - V_{TH} \right) V_{DS} - \frac{1}{2} V_{DS}^{2} \right] \quad \mbox{(7)} \label{eq:ID}$$

Body Effect Example

Sketch I_D as a function of V_X increasing from $-\infty$ to 0. Assume $V_{TH}=0.6V$, $\gamma=0.4V^{1/2}$ and $2\Phi_F=0.7V$.

Solution:
$$1.2 = 0.6 + 0.4 \left(\sqrt{0.7 - V_X} - \sqrt{0.7} \right), V_X = -4.76 \ V$$

Drain-induced Barrier Lowering

In short-channel devices, the drain is close enough to gate the channel, and so a high drain voltage can open the bottleneck and turn on the transistor prematurely.

Drain-induced Barrier Lowering

In short-channel devices, the drain is close enough to gate the channel, and so a high drain voltage can open the bottleneck and turn on the transistor prematurely.

NMOS vs PMOS

PMOS Example

Small-Signal Example

$$(\frac{W_{drawn}}{L_{drawn}}) = \frac{10\mu m}{2\mu m} \tag{8}$$

 No bulk connect means ground for NMOS

 \bullet For the NMOS operating in the saturation region $(V_{DS} \geq V_{GS} - V_{TH})$:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^2$$
 (9)

• ΔV_{GS} results in $\Delta I_D = gm \times \Delta V_{GS}$.

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu_{n} C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right) = \sqrt{2\mu_{n} C_{ox} \frac{W}{L'} I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}} \tag{10}$$

With channel-length modulation

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right) \left(1 + \lambda V_{DS} \right) \tag{11}$$

$$=\sqrt{2\mu_{n}C_{ox}(W/L)I_{D}\left(1+\lambda V_{DS}\right)}\tag{12}$$

- For a given NMOS, gm changes according to the DC biasing condition.
- If a small signal is applied to a NMOS with defined biasing values, we assume the signal amplitude is small enough that the variation in gm is negligible.

$$r_o = \frac{\partial V_{DS}}{\partial I_D} \tag{13}$$

$$=\frac{1}{\partial I_D/\partial V_{DS}}\tag{14}$$

$$= \frac{1}{\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda}$$
 (15)

$$g_{mb} = \frac{\partial I_D}{\partial V_{RS}} \tag{16}$$

$$= \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right) \left(-\frac{\partial V_{TH}}{\partial V_{BS}} \right) \tag{17}$$

$$\frac{\partial V_{TH}}{\partial V_{BS}} = -\frac{\partial V_{TH}}{\partial V_{SB}} \tag{18}$$

$$= -\frac{\gamma}{2} \left(2\Phi_F + V_{SB} \right)^{-1/2} \tag{19}$$

$$g_{mb} = g_m \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}} \qquad (20)$$

$$= \eta g_m \tag{21}$$

Small-Signal Example

$$\left(\frac{W_{drawn}}{L_{drawn}}\right) = \frac{10 \ \mu m}{2 \ \mu m} \tag{23}$$

$$1V + 0.001\sin(2\pi 100t)$$

Small-Signal Example

$$(\frac{W_{drawn}}{L_{drawn}}) = \frac{10\mu m}{2\mu m} \tag{24}$$

Layout

NMOS

PMOS

Layout

- W/L is chosen to determine g_m .
- Minimum L is dictated by the process.
- Design rules:
 - Poly-Si extends beyond the channel area by some amount.
 - \bullet Enough $n^+\mbox{, }p^+\mbox{ or poly-Si area surrounding each via.}$
 - Enough distance between two vias.
 - Many others.

NMOS vs PMOS in Performance

- PMOS devices are quite inferior to NMOS in most CMOS technology.
- Lower mobility of holes ($\mu_p C_{ox} \approx 0.5 \mu_n C_{ox}$) yield lower current drive and conductance.
- NMOS exhibit higher output resistance, providing more ideal current sources and higher voltage gain.
- It is preferable to use NMOS rather than PMOS wherever possible.

Common-Source

$$V_{in} = 0.8 + 0.001\sin(2\pi 100t)$$
 (26)

Common-Source

$$V_{in} = 4.1 + 0.001\sin(2\pi 100t)$$
 (27)