A security study of Neural ODEs

Julien Girard, Guillaume Charpiat, Zakaria Chihani, Marc Schoenauer

4 juin 2019

Outline

- 1 Adversarial examples : a challenge to tackle
- Neural Ordinary Differentials Equations
- Case study
 - Methodology
 - Attacks
- Results

What are adversarial examples?

What are adversarial examples?

A small video to begin with

Formal definition

For an input x, a classification function f, an adversarial perturbation δ :

maximize

classifier misclassification

such that

perturbation stays below a certain threshold

Formal definition

For an input x, a classification function f, an adversarial perturbation δ :

maximize

$$f(x) \neq f(x + \delta)$$

such that

$$\|\delta\|_{p} \leq \varepsilon$$

Adversarial examples:

 are transferable (Papernot et al., 2016, Transferability in Machine Learning..., Carlini et al. papers) ⇒ make ML more robust

Adversarial examples:

 are transferable (Papernot et al., 2016, Transferability in Machine Learning..., Carlini et al. papers) ⇒ make ML more robust

Adversarial examples :

 are transferable (Papernot et al., 2016, Transferability in Machine Learning..., Carlini et al. papers) ⇒ make ML more robust

• not well understood (Goodfellow et al. 2018, Adversarial Spheres, Madry et al., 2018, Adversarial Examples are not bugs...) \Rightarrow design better ML algorithms

Adversarial examples:

 are transferable (Papernot et al., 2016, Transferability in Machine Learning..., Carlini et al. papers) ⇒ make ML more robust

- not well understood (Goodfellow et al. 2018, Adversarial Spheres, Madry et al., 2018, Adversarial Examples are not bugs...) \Rightarrow design better ML algorithms
- provide us a specification to verify against ⇒ formal methods (later on my thesis, tomorrow at ForMaL)

 evaluation of new architecture designs robustness ⇒ test state of the art attacks

 evaluation of new architecture designs robustness ⇒ test state of the art attacks

- evaluation of new architecture designs robustness ⇒ test state of the art attacks
- new vision on neural network computation ⇒ better intrinsic robustness properties?

- evaluation of new architecture designs robustness ⇒ test state of the art attacks
- new vision on neural network computation ⇒ better intrinsic robustness properties?
- new design could inspire us to invent new attacks and defenses ⇒ invariants as stability?

What are ODE Nets?

What are ODEs?

Small recap on ODEs

Let $\mathbf{y}: \mathbf{x} \in \mathbb{R}^d \to \mathbf{y}(\mathbf{x}) \in \mathbb{R}^p$, differentiable, t time An ordinary differential equation (ODE) is \mathbf{F} such that :

$$F(x, y, y^1, y^2, \dots, y^{(n)}, t) = 0$$

Small recap on ODEs

Let $\mathbf{y}: \mathbf{x} \in \mathbb{R}^d \to \mathbf{y}(\mathbf{x}) \in \mathbb{R}^p$, differentiable, t time An ordinary differential equation (ODE) is \mathbf{F} such that :

$$F(x, y, y^1, y^2, ..., y^{(n)}, t) = 0$$

$$\mathsf{F}(heta,\ddot{ heta},t):\ddot{ heta}-rac{ extit{g}}{ extit{L}}\sin(heta(t))$$

How do we solve them

$$\ddot{y} - \epsilon * w * (1 - y^2) * \dot{y} + w^2 * y = 0$$

Van der Pol oscillator

No analytical solution in the general case \Rightarrow numeric approximations

How do we solve them - continued

A simple numerical method : Euler method

How do we solve them - continued

A simple numerical method : Euler method

How do we solve them - continued

A simple numerical method : Euler method

Parameters :

- timesteps: accuracy vs speed
- for other solvers : multiple evaluations for increased stability
- error control

A skip connection (He et al., 2015, Residual Deep Learning. . .)

$$\mathbf{h}(\mathbf{x_i}) = \mathcal{F}(\mathbf{x_i}) + \mathbf{x_i}$$
: state at a given point i

$$\mathbf{h}(\mathbf{x_i}) = \mathcal{F}(\mathbf{x_i}) + \mathbf{x_i}$$
: state at a given point i $\mathbf{x_i}$ is the result of previous computations $\mathbf{h}(\mathbf{x_{i-1}})$

A skip connection (He et al., 2015, Residual Deep Learning. . .)

$$\mathbf{h}(\mathbf{x_i}) = \mathcal{F}(\mathbf{x_i}) + \mathbf{h}(\mathbf{x_{i-1}})$$
: state at a given point i $\mathbf{x_i}$ is the result of previous computations $\mathbf{h}(\mathbf{x_{i-1}})$

$$\frac{h(x_i)-h(x_{i-1})}{i+1-i}=\mathcal{F}(x_i)$$

A skip connection (He et al., 2015, Residual Deep Learning...)

 $\mathbf{h}(\mathbf{x_i}) = \mathcal{F}(\mathbf{x_i}) + \mathbf{h}(\mathbf{x_{i-1}})$: state at a given point i $\mathbf{x_i}$ is the result of previous computations $\mathbf{h}(\mathbf{x_{i-1}})$

$$rac{h(x_i)-h(x_{i-1})}{i+1-i} = \mathcal{F}(x_i)$$
 $rac{y_{i+1}-y_i}{x_{i+1}-x_i} pprox \mathbf{F}(x_i,y_i)$

Euler method!

Neural Ordinary Differential Equations

Interest in image classification: lower parameter footprint

Chen et al., 2018, Neural Ordinary Differential Equations

Threat model

Goal : assert the attack and defense perimeter

Threat model

Goal : assert the attack and defense perimeter

	White box	Black box
Access to the model's	/	X
parameters	•	,
Access to the model's output	✓	limited
Access to the gradient	✓	Х
Knowledge of the defense	✓	✓
Perturbation characteristics	✓	✓

Assumptions on attacker's capabilities

The Big Questions

What makes a good attack?

What makes a good defense?

The Big Questions

What makes a good attack?

Break robustness within the given threat model

What makes a good defense?

The Big Questions

What makes a good attack?

Break robustness within the given threat model

What makes a good defense?

- Provably increase robustness within the given threat model
- 2 Limits the attack surface

FGSM (Goodfellow et al., 2014)

$$\mathbf{x}' = \mathbf{x} + \varepsilon \underbrace{\operatorname{sign}(\nabla_{\mathbf{x}} L(\theta, \mathbf{x}, \mathbf{y}))}_{\delta}$$

Idea: make a step towards the direction maximizing the loss

Projected Gradient Descent I_{∞} (Madry et al., 2017)

$$min_{\theta}(\rho(\theta))$$
, where $\rho(\theta) = E_{(x,y)\in D}\left[max_{\delta\in D}(L(\theta,x+\delta,y))\right]$

$$x_{t+1} = \Pi(x+\delta)(x_t + \alpha \underbrace{\operatorname{sign}(\nabla_x L(\theta, x, y))}_{\delta})$$

Multiples iterations, works because of the geometric landscape

Carlini-Wagner I₂ (Carlini et al., 2016)

maximize

classifier misclassification

such that

perturbation stays below a certain threshold

$$min(c * \|\delta\|_p + J(x + \delta, I))$$
 $w.r.t.$
 $x + \delta \in X$

$$J(x, I) = max((max_{i \neq t}(logits(x)_i) - logits(x)_t), 0)$$

Carlini-Wagner I_2 (Carlini et al., 2016)

maximize

$$f(x) \neq f(x + \delta)$$

such that

$$\|\delta\|_p \le \varepsilon$$

$$min(c * ||\delta||_p + J(x + \delta, I))$$
 $w.r.t.$
 $x + \delta \in X$

$$J(x, l) = max((max_{i \neq t}(logits(x)_i) - logits(x)_t), 0)$$

ODE Nets are more vulnerables

\mid FGSM $(arepsilon=0.3)$		C&W	PGD ($\varepsilon = 0.3$)	
classical mnist	6.23/5.19%	2.39/0.21%	5.62/4.17%	
ODE mnist	6.02/8.56%	0.82/0.01%	4.54/4.34%	
	FGSM ($\varepsilon = 0.1$)	C&W	PGD ($\varepsilon = 0.1$)	
classical cifar10	6.53/9.96%	1.07/0.0%	5.30/0.1%	
ODE cifar10	7.22/0.14%	1.06/0.0%	6.48/0.03%	

Visual clues

PGD (classical) CW (classical) FGSM (classical) FGSM (ODE) PGD (ODE) CW (ODE)

Adversarial training is still efficient

	Natural	FGSM ($\varepsilon = 0.3$)	C&W	PGD ($\varepsilon = 0.3$)
LeNet5	-/98.65%	5.76/95.81%	0.57/79.43%	5.09/97.5%
ODE	-/99.4%	6.03/96.79%	2.51/22.24%	5.48/98.52%

ODE integration time: a potential key towards robustness?

Network	Training end time	t=1	t=10	t=100	t=500
ODE-net small	10	49.45 / 0	98.64 / 9.34	26.35 / 12.83	9.94 / 8.09
ODE-net small	10-100	61.54 / 0	98.46 / 0.52	98.31 / 23.64	94.35 / 11.67
ODE-net small	100	37.58 / 0	66.43 / 0	98.52 / 13.25	72.16 / 14.16
ODE-net large	10	97.06 / 0.18	98.93 / 30.76	91.43 / 28.20	9.35 / 8.57
ODE-net large	10-100	72.84 / 0.15	99.08 / 70.67	99.11 / 85.98	94.66 / 62.29
ODE-net large	100	78.88 / 0.59	98.85 / 83.13	99.01 / 92.62	96.68 / 78.60

Courtesy of https://rajatvd.github.io/Neural-ODE-Adversarial/

Summary

- ODE Nets are less robust than naturals comparable models
 - less parameters
 - perturbating the derivative is easier
- Adversarial training is still efficient
- Possible way to improve robustness
 - integration time
 - numerical stability (more robust numerical schemes, Lyapunov invariants, etc.)

Questions?

Shoot your questions :)

