Design and Analysis of Algorithms Lecture # 9

STRING MATCHING

String Matching

- Introduction
- The Naive String Matching Algorithm
- The Rabin-Karp Algorithm
- String Matching with Finite Automata
- The Knuth-Morris-Pratt Algorithm

Introduction

- Text-editing programs frequently need to find all occurrences of a pattern in the text.
- Efficient algorithms for this problem is called String-Matching Algorithms.
- Among its many applications, "String-Matching" is highly used in Searching for patterns in DNA and Internet search engines.
- Assume that the text is represented in the form of an array T[1...n] and the pattern is an array P[1...m].

 Text T[1..13]
 a b c a b a a b c a b a c

 Pattern P[1..4]
 a b a a

NAIVE STRING MATCHING ALGORITHM

Naive String Matching - Example

The naive algorithm finds all valid shifts using a loop that checks the condition P[1..m] = T[s+1..s+m]

Naive String Matching - Algorithm

```
NAIVE-STRING MATCHER (T,P)
1. n = T.length
2.m = P.length
3. for s = 0 to n-m
4. if p[1..m] == T[s+1..s+m]
5.
            print "Pattern occurs with
                    shift" s
   Naive String Matcher takes time O((n-m+1)m)
```

Pattern occurs with shift 2

RABIN-KARP ALGORITHM

Introduction

Text T 3 1 4 1 5 9 2 6 5 3 5

Pattern P

2 6

Choose a random prime number q = 11

Let, $p = P \mod q$ = 26 mod 11 = 4

Let t_s denotes modulo q for text of length m

Rabin-Karp Algorithm

Pattern P 2 6
$$p = P \mod q = 26 \mod 11 = 4$$

if
$$t_s == p$$

if $P[1..m] == T[s+1..s+m]$
print "pattern occurs with shift" s

Rabin-Karp Algorithm

We can compute t_s using following formula

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s + m + 1]$$

For m=2 and s=0
$$t_s$$
 = 31

We wish to remove higher order digit T[s+1]=3 and bring the new lower order digit T[s+m+1]=4

$$t_{s+1} = 10(31-10\cdot3) + 4$$

= 10(1) + 4 = 14

$$t_{s+2} = 10(14-10\cdot1) + 1$$

= $10(4) + 1 = 41$

Rabin-Karp-Matcher

```
RABIN-KARP-MATCHER(T, P, d, q)
 n \leftarrow length[T];
 m \leftarrow length[P];
 h \leftarrow d^{m-1} \mod q;
p \leftarrow 0;
 t_0 \leftarrow 0;
 for i \leftarrow 1 to m do
    p \leftarrow (d_p + P[i]) \mod q
    t_0 \leftarrow (dt_0 + T[i]) \mod q
 for s \leftarrow 0 to n - m do
     if p == t_s then
        if P[1..m] == T[s+1..s+m] then
               print "pattern occurs with shift" s
      if s < n-m then
        t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```


STRING MATCHING WITH FINITE AUTOMATA

Introduction to Finite Automata

- Finite automaton (FA) is a simple machine, used to recognize patterns. It has a set of states and rules for moving from one state to another.
- It takes the string of symbol as input and changes its state accordingly.

 When the desired symbol is found, then the transition occurs.
- At the time of transition, the automata can either move to the next state or stay in the same state.
- When the input string is processed successfully, and the automata reached its final state, then it will accept the input string.
- The string-matching automaton is very efficient: it examines each character in the text exactly once and reports all the valid shifts.

Introduction to Finite Automata

A finite automaton M is a 5-tuple, which consists of,

$$(Q, q_0, A, \Sigma, \delta)$$

- Q is a finite set of states,
- $ightharpoonup q_0 \in Q$ is a start state,
- ▶ $A \subseteq Q$ set of accepting states,
- Σ is a finite input alphabet,
- δ is a transition function of M.

	Input			
State	а	b		
0	1	0		
1	0	0		
	Transition			

Table

Suffix of String

Suffix of a string is any number of trailing symbols of that string. If a string ω is a suffix of a string x then it is denoted by $\omega = x$.

P = ababa		
_		

Compute Transition Function

COMPUTE-TRANSITION-FUNCTION(P, Σ)

```
m \leftarrow length[P]
for q \leftarrow 0 to m do
for each character \alpha \in \Sigma do
k \leftarrow min(m+1, q+2)
repeat \ k \leftarrow k-1 \ until \ P_k \sqsupset P_q \alpha
\delta(q, \alpha) \leftarrow k
return \delta
```


Pattern

	1	2	3	4	5	6	7
	a	b	а	b	а	С	а
Ī	1	2	2	1	5	6	7

 $\Sigma = \{a, b, c\}$

m = 7

for $q \leftarrow 0$ to m do

for each character $\omega \in \Sigma$ do

$$k \leftarrow \min(m+1, q+2)$$

$$\textbf{repeat}\, k \leftarrow k - 1 \, \textbf{until}\, P_k \sqsupset P_q \, \omega$$

$$\delta(q,\omega) \leftarrow k$$

noturn S

	input			
State	а	р	C	
0				
1				
2				
3				
4				
5				
6				
_				

q=0	ω=a	k=2	$P_2 \Box P_0 \omega$	ab⊐€a
		k=1	$P_1 \Box P_0 \omega$	a⊐€a
	ω=b	k=2	$P_2 \Box P_0 \omega$	ab⊐€b
		k=1	$P_1 \Box P_0 \omega$	a⊐€b
		k=0	$P_{\theta} \Box P_{\theta} \omega$	∈⊐€b
	ω=c	k=2	$P_2 \Box P_0 \omega$	ab⊐∈c
		k=1	$P_1 \Box P_0 \omega$	а⊐єс
		k=0	$P_{\theta} \Box P_{\theta} \omega$	∈⊐€С

Pattern

2 3 4 5 6 7

 a
 b
 a
 b
 a
 c
 a

 1
 2
 3
 4
 5
 6
 7

 $\Sigma = \{a, b, c\}$

m = 7

input

State a b c 0 1 0 0

1

2

3 4

5 6

7

 $\textbf{for}~q \leftarrow 0~to~m~\textbf{do}$

for each character $\omega \in \Sigma$ do

$$k \leftarrow \min(m+1, q+2)$$

 $\textbf{repeat} \ k \leftarrow k - 1 \ \textbf{until} P_k \!\! \sqsupset P_q \omega$

$$\delta(q,\omega) \leftarrow k$$

return δ

1 Ctul I	10			
q=1	ω=a	k=3	$P_3 \Box P_1 \omega$	aba⊐aa
		k=2	$P_2 \Box P_1 \omega$	ab⊐aa
		k=1	$P_1 \Box P_1 \omega$	a⊐aa
	ω=b	k=3	$P_3 \Box P_1 \omega$	aba⊐ab
		k=2	$P_2 \Box P_1 \omega$	ab⊐ab
	ω=c	k=3	$P_3 \Box P_1 \omega$	aba⊐ac
		k=2	$P_2 \Box P_1 \omega$	ab⊐ac
		k=1	$P_1 \Box P_1 \omega$	a⊐ac
		k=0	$P_0 \Box P_1 \omega$	∈⊐ac

Pattern

5 6 2 3 4 7 b b a С a a

 $\Sigma = \{a, b, c\}$ m = 7

2 5 6 1 3 4 7

input

IIIput				
а	b	С		
1	0	0		
1	2	0		
	1	1 0		

 $\textbf{for}\ q \leftarrow 0\ to\ m\ \textbf{do}$

for each character $\omega \in \Sigma$ do

$$k \leftarrow \min(m+1,q+2)$$

 $\textbf{repeat} \ k \leftarrow k - 1 \ \textbf{until} P_k \!\! \sqsupset P_q \omega$

$$\delta(q,\omega) \leftarrow k$$

return δ

q=2	ω=a	k=4	$P_4 \Box P_2 \omega$	abab⊐aba
		k=3	$P_3 \Box P_2 \omega$	aba⊐aba
	ω=b	k=0	$P_0 \Box P_2 \omega$	∈⊐abb
	ω=c	k=0	$P_0 \Box P_2 \omega$	∈⊐abc

q=3	ω=a	k=1	$P_1 \Box P_3 \omega$	a⊐abaa
	ω=b	k=4	$P_4 \Box P_3 \omega$	abab⊐abab
	ω=c	k=0	$P_0 \Box P_3 \omega$	∈⊐abac

Finite Automata Matcher

FINITE-AUTOMATON MATCHER(T, δ , m) $n \leftarrow length[T]$ $q \leftarrow 0$ for $i \leftarrow 1$ to n do $q \leftarrow \delta(q, T[i])$ if q == m then print "Pattern occurs with shift" i - m

	i =	7
	q =	5
q	$=\delta(0,0)$	a) = 1
q	$=\delta(1,$	b)=2
q	$=\delta(2,$	a)=3
q	$=\delta(3,$	b)=4
q	$=\delta(4,$	a) = 5
q	$=\delta(5,$	b) = 4
a	$=\delta(4,6)$	a) = 5

		input	
State	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

Finite Automata Matcher

FINITE-AUTOMATON MATCHER(\mathbf{T} , $\boldsymbol{\delta}$, \mathbf{m}) $n \leftarrow length[T]$ $q \leftarrow 0$ for $i \leftarrow 1$ to n do $q \leftarrow \delta(q, T[i])$ if q == m then print "Pattern occurs with shift" i - m

i = 9
q = 7
$q = \delta(0, a) = 1$
$q = \delta(1, b) = 2$
$q = \delta(2, a) = 3$
$q = \delta(3, b) = 4$
$q = \delta(4, a) = 5$
$q = \delta(5, b) = 4$
$q = \delta(4, a) = 5$
$q = \delta(5, c) = 6$
$q = \delta(6, a) = 7$

	input		
State	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

Suffix & Prefix of a String

Suffix of a string		
P = string		
$P_1 = g$	$P_1 \supset P$	
$P_2 = ng$	$P_2 \supset P$	
$P_3 = ing$	$P_3 \supset P$	
$P_4 = ring$	$P_4 \supset P$	
$P_5 = tring$	$P_5 \supset P$	

Prefix of a string			
P = string			
$P_1 = s$	$P_1 \sqsubset P$		
$P_2 = st$	$P_2 \sqsubset P$		
$P_3 = str$	$P_3 \sqsubset P$		
$P_4 = stri$	$P_4 \sqsubset P$		
$P_5 = strin$	$P_5 \sqsubset P$		

STRING MATCHING WITH KNUTH-MORRIS-PRATT ALGORITHM

Introduction

- The KMP algorithm relies on prefix function (π) .
- Proper prefix: All the characters in a string, with one or more cut off the end. "S", "Sn", "Sna", and "Snap" are all the proper prefixes of "Snape".
- Proper suffix: All the characters in a string, with one or more cut off the beginning. "agrid", "grid", "rid", "id", and "d" are all proper suffixes of "Hagrid".
- KMP algorithm works as follows:
 - → Step-1: Calculate Prefix Function
 - → Step-2: Match Pattern with Text

Longest Common Prefix and Suffix

ababa

Possible prefix = a, ab, aba, abab

Possible suffix = a, ba, aba, baba

Calculate Prefix Function - Example

$$k = 0$$

$$q = 7$$

Initially set $\pi[1] = 0$ k is the longest prefix found q is the current index of pattern

KMP- Compute Prefix Function

COMPUTE-PREFIX-FUNCTION(P)

```
m \leftarrow length[P]
\pi[1] \leftarrow 0
k \leftarrow 0
for q \leftarrow 2 to m
     while k > 0 and P[k + 1] \neq P[q]
                        k \leftarrow \pi[k]
      end while
      if P(k + 1) == P(q) then
                        k \leftarrow k + 1
      end if
        \pi[q] \leftarrow k
return π
```


KMP String Matching

KMP String Matching

KMP-MATCHER

KMP-MATCHER(T, P)

```
n \leftarrow length[T]
m \leftarrow length[P]
\pi \leftarrow COMPUTE-PREFIX-FUNCTION(P)
        //Number of characters matched.
q \leftarrow 0
for i \leftarrow 1 to n //Scan the text from left to right.
    while q > 0 and P[q + 1] \neq T[i]
           q \leftarrow \pi[q] //Next character does not match.
    if P[q + 1] == T[i] then
           then q \leftarrow q + 1 //Next character matches.
    if q == m then //Is all of P matched?
           print "Pattern occurs with shift" i - m
           q \leftarrow \pi[q] //Look for the next match.
```