

Contrôle continu de cinématique et mécanismes

Nous nous intéressons au robot manipulateur de la *figure 1*. Ce type de robot est en particulier utilisé dans des cellules flexibles d'assemblage (*Pick and Place*). La *figure 2* constitue une première modélisation en représentant de manière simplifiée la structure du robot. La *figure 3* représente le *schéma cinématique* du robot.

Le robot SCARA est essentiellement constitué :

- d'un châssis fixe 1;
- d'un corps 2, qui peut se translater;
- ♣ d'un bras 3, mobile en rotation ;
- ♣ d'un avant-bras 4, mobile en rotation ;
- 👃 d'une pince qui ne fait pas partie de l'étude et qui n'est pas représentée sur le schéma cinématique.

Les repères utilisés sont :

- $R_1(O_1, \vec{x}_1, \overrightarrow{y_1}, \overrightarrow{z_1})$ lié au châssis **1**
- $R_2(A, \vec{x}_2, \overrightarrow{y_2}, \overrightarrow{z_1})$ lié au corps **2**
- $R_3(A, \vec{x}_3, \vec{y}_3, \vec{z}_1)$ lié au bras **3**
- $R_4(B, \vec{x}_4, \vec{y}_4, \vec{z}_1)$ lié à l'avant bras **4**

On pose
$$\overrightarrow{O_1A}$$
 = z. $\overrightarrow{z_1}$; \overrightarrow{AB} = L₁. $\overrightarrow{x_3}$; \overrightarrow{BC} = L₂. $\overrightarrow{x_4}$; α = $(\overrightarrow{x}_2, \overrightarrow{x}_3)$; β = $(\overrightarrow{x}_3, \overrightarrow{x}_4)$

Rappels

Pour deux point A et B appartenant à un même solide (1) leur vitesse par rapport à un autre solide (0) est donnée par la relation : $\overrightarrow{V_{B \ 1/0}} = \overrightarrow{V_{A \ 1/0}} + \overrightarrow{\Omega_{1/0}} \wedge \overrightarrow{AB}$

Pour une base $(\overrightarrow{x_1}, \overrightarrow{y_1})$ en rotation d'un angle θ autour de $(O, \overrightarrow{z_0})$ par rapport à une base $(\overrightarrow{x_0}, \overrightarrow{y_0})$

$$\frac{d\overrightarrow{x_1}}{dt} = \overrightarrow{\Omega_{1/0}} \wedge \overrightarrow{x_1} = \dot{\theta}.\overrightarrow{z_0} \wedge \overrightarrow{x_1} = \dot{\theta}.\overrightarrow{y_1}$$

$$\frac{d\overrightarrow{y_1}}{dt} = \overrightarrow{\Omega_{1/0}} \wedge \overrightarrow{y_1} = \dot{\theta}.\overrightarrow{z_0} \wedge \overrightarrow{y_1} = -\dot{\theta}.\overrightarrow{x_1}$$

Questions

- 1) Réaliser le graphe des liaisons du système en précisant le nom des liaisons, le centre ainsi que l'axe principal
- 2) Faire les figures de changement de repère faisant apparaître les angles α et β
- 3) Déterminer les expressions de $\overrightarrow{\Omega_{2/1}}$, $\overrightarrow{\Omega_{3/1}}$, $\overrightarrow{\Omega_{4/1}}$
- 4) Exprimer $\overrightarrow{V_{A\ 2/\mathbf{R_1}}}$ par dérivation
- 5) Exprimer $\overrightarrow{V_{B3/R_1}}$ par dérivation
- 6) Exprimer le torseur cinématique $\{\mathcal{V}_{3/\mathbf{R_1}}\}$ du solide 3 par rapport à $\mathbf{R_1}$ et exprimé au point A puis au point B
- 7) Exprimer $\overrightarrow{V_{B\ 3/\mathbf{R_1}}}$ par changement de point (avec le point A)
- 8) Exprimer $\overrightarrow{V_{C\ 4/R_1}}$ par dérivation
- 9) Exprimer le torseur cinématique $\{\mathcal{V}_{4/R_1}\}$ du solide 4 par rapport à R_1 et exprimé au point B puis au point C
- 10) Exprimer $\overrightarrow{V_{C~4/\mathbf{R_1}}}$ par changement de point (avec le point B)
- 11) Exprimer l'accélération $\overrightarrow{\varGamma_{A\ 2/\mathbf{R_{1}}}}$ par dérivation
- 12) Exprimer l'accélération $\overrightarrow{\varGamma_{B\ 3/R_1}}$ par dérivation
- 13) Exprimer l'accélération $\overrightarrow{\varGamma_{C\ 4/R_1}}$ par dérivation