Page 2

1996, now U.S. patent 5,991,517; which is a continuation of U.S. patent application 08/174,768, filed December 29, 1993, now U.S. patent 5,602,987; which is a continuation of U.S. patent application 07/963,838, filed October 20, 1992, now U.S. patent 5,297,148; which is a division of U.S. patent application 07/337,566, filed April 13, 1989, now abandoned. U.S. patent 5,774,395 issued from application number 757,987 filed November 27, 1996. This patent does not claim priority to another patent. U.S. patent 5,828,601 issued from application number 160,582 filed December 1, 1993. This patent also does not claim priority to another patent.

Therefore, applicants believe that applicants are the senior party in any interference proceedings.

Under M.P.E.P. § 2307 and 37 C.F.R. § 1.607, applicants request this interference be declared between the present application and the unexpired U.S. patents 5,744,395 and 5,828,601, and have satisfied each requirement of 37 C.F.R. § 1.607 as follows:

- (1) The unexpired patents are:
 - (a) U.S. patent 5,744,395, which issued to Richart et al. on June 30, 1998; and
 - (b) U.S. patent 5,828,601, which issued to Hollmer et al. on October 27, 1998.
- (2) The proposed counts are as follows:

Count 1

A method of operating a nonvolatile memory comprising the steps of:

programming a plurality of threshold voltages in a reference storage, the threshold voltages defining a plurality of data states of an individual memory cell of the nonvolatile memory;

electrically erasing selected ones of the programmed plurality of threshold voltages in the reference storage; and

Page 3

fine-tune programming the selected ones of the programmed plurality of threshold voltages in the reference storage.

Count 2

A circuit comprising:

an interface circuit for interfacing to a nonvolatile memory, the nonvolatile memory including an individual memory cell, the interface circuit including a comparing circuit for comparing a data level of the individual memory cell to a reference data level;

a programmable and electrically erasable reference cell circuit generating the reference data level of a plurality of reference data levels defining a plurality of data states of the individual memory cell;

a first plurality of conductive lines coupling the interface circuit to the reference cell circuit;

a second plurality of conductive lines for coupling the interface circuit to an erase voltage source; and

a plurality of switches alternatively blocking the first plurality of conductive lines while coupling the second plurality of conductive lines and coupling the first plurality of conductive lines while blocking the second plurality of conductive lines.

Count 3

A memory circuit for operating a nonvolatile memory comprising:

a reference storage;

means coupled to the reference storage for programming a plurality of threshold voltages in the reference storage, the threshold voltages defining a plurality of data states of an individual memory cell of the nonvolatile memory;

Page 4

means coupled to the reference storage for electrically erasing selected ones of the programmed plurality of threshold voltages in the reference storage; and

means coupled to the reference storage for fine-tune programming the selected ones of the programmed plurality of threshold voltages in the reference storage.

Count 4

A memory comprising:

an array cell having an output, an array threshold value set to one of n array threshold values to control a signal provided at the array cell output, and a gate;

a reference cell having an output, a floating gate which stores an electrical charge to allow a reference threshold value to be programmed, and a gate, the reference cell having its reference threshold value programmed between two successive ones of the n array threshold values to control a signal provided at the reference cell output;

a comparison circuit coupled to the array cell output and the reference cell output, the comparison circuit for comparing the signal at the array cell output to the signal at the reference cell output and providing a signal indicating which of the n array threshold values is held by the array cell; and

a power supply for supplying a supply voltage to the gate of the array cell to enable the array cell to provide the signal at the array cell output, the power supply further supplying the supply voltage to the gate of the programmable reference cell to enable the reference cell to provide the signal at the reference cell output.

Proposed count 1 corresponds to claim 9 of U.S. patent 5,744,395.

Proposed count 2 corresponds to claim 1 of U.S. patent 5,744,395. Proposed count 3

Page 5

corresponds to claim 16 of U.S. patent 5,744,395. Proposed count 4 corresponds to claim 1 of U.S. patent 5,828,601.

- It is respectfully submitted that claims 1-26 of U.S. patent (3) 5,744,395 and claims 1-16 of U.S. patent 5,828,601 correspond to the proposed counts. Claim 9 of U.S. patent 5,744,395 corresponds exactly to proposed count 1. Claims 10-15 of U.S. patent 5,744,395 correspond substantially to proposed count 1 since they would have been obvious in view of the proposed count. Claim 1 of U.S. patent 5,744,395 corresponds exactly to proposed count 2. Claims 2-8 and 23-26 of U.S. patent 5,744,395 correspond substantially to proposed count 2 since they would have been obvious in view of the proposed count. Claim 16 of U.S. patent 5,744,395 corresponds exactly to proposed count 3. Claims 17-22 of U.S. patent 5,744,395 correspond substantially to proposed count 3 since they would have been obvious in view of the proposed count. Claim 1 of U.S. patent 5,828,601 corresponds exactly to proposed count 4. Claims 2-16 of U.S. patent 5,828,601 correspond substantially to proposed count 4 since they would have been obvious in view of the proposed count. As is required under 37 C.F.R. § 1.606, the proposed counts are not narrower in scope than any patent claim designated to correspond to the proposed counts.
- application correspond to the proposed counts 1-4. Claim 63 of the present application corresponds exactly to proposed count 1. Claims 64-68 of the present application correspond substantially to proposed count 1 since they would have been obvious in view of the proposed count. Claim 75 corresponds exactly to proposed count 2. Claim 69 of the present application corresponds exactly to proposed count 3. Claims 70-74 correspond substantially to proposed count 3 since they would have been obvious in view of the proposed count. Claim 76 of the present application corresponds exactly to proposed count 4. Claims 77-80 correspond substantially to proposed count 4 since they would have been obvious in view of the proposed counts 1-4 are not narrower in scope than any application claim designated to correspond to the proposed counts 1-4.

Page 6

(5) Examples of support for the claims are found throughout the specification as originally filed on April 13, 1989 in parent application 07/337,566. Once again, the present application (09/310,880, filed May 14, 1999) is a continuation of U.S. patent application 08/771,708, filed December 20, 1996, now U.S. patent 5,991,517; which is a continuation of U.S. patent application 08/174,768, filed December 29, 1993, now U.S. patent 5,602,987; which is a continuation of U.S. patent application 07/963,838, filed October 20, 1992, now U.S. patent 5,297,148; which is a division of U.S. patent application 07/337,566, filed April 13, 1989, now abandoned. For convenience, issued U.S. patent application (U.S. patent 5,991,517) is being used to identify support for the claims. Specifically, support in the issued parent application for the claims is tabulated below.

Claim 63	Support in U.S. Patent 5,991,517
(Claim 9 of U.S. patent 5,774,395)	(Issued Parent Application)
63. A method of	The application states at column 1, lines
operating a nonvolatile memory	15-18 and 30-32 the invention relates
comprising the steps of:	generally to nonvolatile memories. Some
	specific examples of nonvolatile memories
	are EEPROM and Flash EEPROM devices.
	Some methods of operating the nonvolatile
	memory are described in the "Summary of
	the Invention" section of the application.
	Further, Figure 19 and the corresponding
	description starting at column 25, line 24
	show one method of operating a
	nonvolatile memory.
programming a plurality of	At column 25, lines 18-20, the application
threshold voltages in a reference storage,	describes programming reference levels
the threshold voltages defining a plurality	into master and local reference cells.
of data states of an individual memory cell	Furthermore, the memory is divided into
of the nonvolatile memory;	sectors. Each sector of the memory has
	local reference cells. See column 25, lines
	6-11, 15-17. These reference levels serve
	to define two or more data states of an
	individual nonvolatile memory cell. See
	column 22, lines 51-66; column 23, lines 8-
	11, 34-37; column 24, lines 66-67; column
	25, lines 54-56.

Page 8

electrically erasing selected ones of the programmed plurality of threshold voltages in the reference storage; and

Figure 19(1) to Figure 19(3) show a technique including electrically erasing reference cells. Further, the application describes erasing local reference cells in one sector at column 25, lines 24-27. In a specific implementation, the reference cells are EEPROM or Flash cells, which are electrically erased. See column 8, lines 29-41. Furthermore, the application states at column 23, lines 25-33 and column 24, lines 36-45, the reference cells may be independently set or reprogrammed, and that the reference threshold level may be set to an optimum level and fine-tuned.

fine-tune programming the selected ones of the programmed plurality of threshold voltages in the reference storage.

Figure 19(4) to Figure 19(7) show a technique of programming the reference cells. The application describes the programming technique at column 25, lines 36-49. The references are programmed to various breakpoint threshold levels. See column 25, lines 46-49.

Page 9

Claim 64	Support in U.S. Patent 5,991,517
(Claim 10 of U.S. patent 5,774,395)	(Issued Parent Application)
64. A method according	Starting at column 24, line 10, the
to claim 63 further comprising the steps of:	application describes circuitry and
sensing a voltage from an	techniques for sensing a voltage state of a
individual memory cell of the nonvolatile	memory cell (1421). Figures 17B and 17C
memory;	show the circuitry and timing diagrams.

Figure 17B and the corresponding sensing a plurality of description in the application starting at programmed threshold voltages from the column 24, line 10 also shows circuitry for reference storage; sensing a number of programmed threshold voltages of reference cells (1431 to 1435). The reference cells may be the master or local reference cells. See Figures 20A and 20B and the description at column 25, lines 54-67. Figure 17B and the corresponding comparing the sensed voltage from the individual memory cell to description in the application show circuitry (i.e., sense amplifier) for the sensed plurality of programmed comparing the sensed voltage of the threshold voltages from the reference memory cell (1421) to the programmed storage; and threshold voltages (of reference cells 1431 to 1435). These cells may be master or local reference cells. See Figures 20A and 20B and the description at column 25, lines 54-67.

determining a multiple-bit	As shown in Figure 17B and described at
data value based on the comparison result.	column 24, lines 20-31, the sense amplifier
	circuitry determines a multiple-bit data
	value (Bit 1 to Bit L) based on the
	comparison result.

Claim 65	Support in U.S. Patent 5,991,517
(Claim 11 of U.S. patent 5,774,395)	(Issued Parent Application)
65. A method according	Figure 19(4) to Figure 19(7) show a
to claim 63 wherein the step of	method of programming at least one
programming a plurality of threshold	electrically erasable reference cell. The
voltages in a reference storage further	application describes the method at column
comprises the steps of:	25, lines 6-7, 13-17, and 18-20. The
programming an individual	reference cells may define two or more
electrically-erasable reference cell to define	data states. See column 24, lines 32-33.
a plurality of data states in the individual	
memory cell of the nonvolatile memory.	

Claim 66	Support in U.S. Patent 5,991,517
(Claim 12 of U.S. patent 5,774,395)	(Issued Parent Application)
66. A method according	Figure 19(4) to Figure 19(7) show a
to claim 63 wherein the step of	method of programming two or more
programming a plurality of threshold	electrically erasable reference cells. The
voltages in a reference storage further	application describes the method at column
comprises the steps of:	25, lines 6-7, 13-17, and 18-20. The
programming a plurality of	reference cells may define two or more
electrically-erasable reference cells to	data states. See column 24, lines 32-33.
define a plurality of data states in the	
individual memory cell of the nonvolatile	
memory.	

Claim 67	Support in U.S. Patent 5,991,517
(Claim 13 of U.S. patent 5,774,395)	(Issued Parent Application-
67. A method according	Figure 19(4) to Figure 19(7) show a
to claim 63 wherein the step of	method of programming two or more
programming a plurality of threshold	electrically erasable reference cells. The
voltages in a reference storage further	application describes the method at column
comprises the steps of:	25, lines 6-7, 13-17, and 18-20.
programming a plurality of	Furthermove, the application describes
electrically-erasable reference cells to	programming of master and local reference
define a plurality of data states in the	cells. See column 24, lines 32-48, and 60-
individual memory cell of the nonvolatile	67.
memory; and	

programming individual	Figure 19(4) to Figure 19(4)
electrically-erasable reference cells to	method of prograr
define a plurality of data states in the	electrically erasab
individual memory cell of the nonvolatile	application descri
memory.	25, lines 18-20. F
	application descri
	reference cells in

igure 19(7) show a amming at least one ble reference cell. The ibes the method at column Furthermore, the ribes programming of local a separate step from programming the master reference cells. See column 24, lines 32-48 and 60-67.

Claim 68	Support in U.S. Patent 5,991,517
(Claim 15 of U.S. patent 5,774,395)	(Issued Parent Application)
68. An electronic system	Figure 1A shows an electronic system
including a processor, a memory and a	including a processor (microprocessor 21),
system bus comprising:	memory (RAM 25), and a system bus (23)
a memory circuit	with a memory circuit (33). The memory
performing the method according to claim	circuit 33 performs the method shown in
63.	Figure 19 and described in the application
	starting at column 25, line 24.

Claim 69	Support in U.S. Patent 5,991,517
(Claim 16 of U.S. patent 5,774,395)	(Issued Parent Application)
69. A memory circuit for	The application describes circuitry for
operating a nonvolatile memory	operating a nonvolatile memory. Examples
comprising:	of such circuitry are shown in Figures 3A,
	12, 13, 17A, 17B, and 20A and the
	corresponding description.

a reference storage;	Figure 17A shows a master storage cell
	(1400). Figure 17B shows some multistate
·	reference cells (1431 to 1435). Figure 20
	shows some local reference cells (1525).
	The application describes reference cells at
	column 23, lines 8-11 and column 25, lines
	15-17, among other locations.
means coupled to the	Circuit 1410 in Figure 17A is an example
reference storage for programming a	of a means connected to the reference cell
plurality of threshold voltages in the	1400 to program the cell. See also column
reference storage, the threshold voltages	23, lines 22-28. The reference cell is used
defining a plurality of data states of an	to define the data states of a multistate
individual memory cell of the nonvolatile	memory. See column 23, lines 8-15. The
memory;	application describes other means to
	perform the recited function to the local
	reference cells at column 25, lines 6-24.
means coupled to the	Circuit 1410 in Figure 17A is an example
reference storage for electrically erasing	of a means connected to the reference cell
selected ones of the programmed plurality	1400 to erase the cell. See also column 23,
of threshold voltages in the reference	lines 22-28. The reference cell is used to
storage; and	define the data states of a multistate
	memory. See column 23, lines 8-15. The
	application describes other means to
	perform the recited function to the local
	reference cells at column 25, lines 6-24.

Page 14

means coupled to the reference storage for fine-tune programming the selected ones of the programmed plurality of threshold voltages in the reference storage.

Circuit 1410 in Figure 17A is an example of a means connected to the reference cell 1400 to program the cell. See also column 23, lines 22-28 and column 24, lines 36-45. The reference cell is used to define the data states of a multistate memory. See column 23, lines 8-15. The application describes other means to perform the recited function to the local reference cells at column 25, lines 6-24.

Claim 70	Support in U.S. Patent 5,991,517
(Claim 17 of U.S. patent 5,774,395)	(Issued Parent Application)
70. A memory circuit	Figure 17B and the corresponding
according to claim 69 further comprising:	description show a sense amplifier circuit
means for sensing a voltage	(1440) including circuitry for sensing a
from an individual memory cell of the	voltage state of an individual memory cell.
nonvolatile memory;	
means coupled to the	Figure 17B and the corresponding
reference storage for sensing a plurality of	description show a sense amplifier circuit
programmed threshold voltages from the	(1440) including circuitry connected to
reference storage;	reference cells for sensing their threshold
	voltages.

means coupled to the	Figure 17B and the corresponding
reference storage and coupled to the	description show a sense amplifier circuit
nonvolatile memory for comparing the	(1440) including circuitry for comparing
sensed voltage from the individual memory	the voltage states sensed for the individual
cell to the sensed plurality of programmed	memory cell and the reference storage.
threshold voltages from the reference	
storage; and	
means coupled to the	Figure 17B and the corresponding
comparing means for determining a	description show a sense amplifier circuit
multiple-bit data value based on the	(1440) including circuitry (1440) and
comparison result.	decoder (1480) include circuitry to
	determine a multiple-bit data value based
	on the comparison.

Claim 71	Support in U.S. Patent 5,991,517
(Claim 18 of U.S. patent 5,774,395)	(Issued Parent Application)
71. A memory circuit	In an embodiment, the application
according to claim 69 wherein the means	describes the reference cell as being
for programming a plurality of threshold	electrically erasable at column 23, line 10
voltages in a reference storage further	(i.e., EEPROM).
comprises:	
means for programming an	
individual electrically-erasable reference	
cell to define a plurality of data states in the	
individual memory cell of the nonvolatile	
memory.	

Claim 72	Support in U.S. Patent 5,991,517
(Claim 19 of U.S. patent 5,774,395)	(Issued Parent Application)
72. A memory circuit	In an embodiment, the application
according to claim 69 wherein the means	describes the reference cells as being
for programming a plurality of threshold	electrically erasable at column 23, line 10
voltages in a reference storage further	(i.e., EEPROM). Furthermore, Figure 17A
comprises:	shows circuitry 1410 to program one or
means for programming a	more reference cells. See also column 23,
plurality of electrically-erasable reference	lines 25-28.
cells to define a plurality of data states in	
the individual memory cell of the	
nonvolatile memory.	

Claim 73	Support in U.S. Patent 5,991,517
(Claim 20 of U.S. patent 5,774,395)	(Issued Parent Application)
73. A memory circuit	In an embodiment, the application
according to claim 69 wherein the means	describes the reference cell as being
for programming a plurality of threshold	electrically erasable at column 23, line 10
voltages in a reference storage further	(i.e., EEPROM). The circuitry (1410) may
comprises:	be used to program two or more reference
means for programming a	cells used to define multiple data states.
plurality of electrically-erasable reference	See column 23, lines 16-28.
cells to define a plurality of data states in	
the individual memory cell of the	
nonvolatile memory; and	

Page 17

means for programming individual electrically-erasable reference cells of the plurality of electrically-erasable reference cells to define a plurality of data states in the individual memory cell of the nonvolatile memory.

In an embodiment, the application describes the reference cell as being electrically erasable at column 23, line 10 (i.e., EEPROM). The circuitry (1410) may be used to program individual reference cells used to define multiple data states. See column 23, lines 16-28.

Claim 74	Support in U.S. Patent 5,991,517
(similar to Claim 22, not identical)	(Issued Parent Application)
74. A memory circuit	In an embodiment, the memory includes
according to claim 69 wherein the	Flash devices. See column 1, lines 66-67.
nonvolatile memory is flash electrically-	
erasable and programmable memory.	

Claim 75	Support in U.S. Patent 5,991,517
(Claim 1 of U.S. patent 5,774,395)	(Issued Parent Application)
75. A circuit	Figure 17B and the corresponding
comprising:	description show an interface circuit (1440)
an interface circuit for a	that interfaces to a nonvolatile memory.
programmable and electrically erasable	The interface includes circuitry to compare
reference cell circuit generating the	a data level of an individual cell to a
reference data level of a plurality of	reference cell (e.g., 1431). See column 23,
reference data levels defining a plurality of	lines 10-19.
data states of the individual memory cell;	

a programmable and	Figure 17B and the corresponding
electrically erasable reference cell circuit	description show electrically erasable
generating the reference data level of a	reference cells (1431 to 1435).
plurality of reference data levels defining a	
plurality of data states of the individual	
memory cell;	
a first plurality of	Figure 17B and the corresponding
conductive lines coupling the interface	description show conductive lines (1441
circuit to the reference cell circuit;	and lines not labeled in the figure)
	connected the reference circuit to the
	interface circuit.
a second plurality of	Figure 17B does not show explicitly the
conductive lines for coupling the interface	erase circuitry. But Figure 17A and the
circuit to an erase voltage source; and	corresponding description show erase
	circuitry that would be analogously used in
	Figure 17B. Figure 17A shows conductive
	lines coupling an erase voltage source
	(1411) to the interface circuit (1410).
a plurality of switches	Figure 17B and the corresponding
alternatively blocking the first plurality of	description show a plurality of switches
conductive lines while coupling the second	(1451 to 1455) and Figure 17A has logic in
plurality of conductive lines and coupling	erase decode (1417) to alternatively block
the first plurality of conductive lines while	the connection of the reference cell to the
blocking the second plurality of conductive	comparison circuit or the erase voltage
lines.	source (1411).

Claim 76	Support in U.S. Patent 5,991,517
(Claim 1 of U.S. patent 5,828,601)	(Issued Parent Application)
76. A memory	The application shows a memory (33 in
comprising:	Figures 1, 6, and 8) including an array cell
an array cell having an	with multiple thresholds (Figure 11 and
output, an array threshold value set to one	1073 in Figure 12). See column 19, lines
of n array threshold values to control a	1-20; column 21, lines 48-51).
signal provided at the array cell output, and	
a gate;	•
a reference cell having an	The application shows a reference cell
output, a floating gate which stores an	(1400 in Figure 17A, 1431 to 1435 in
electrical charge to allow a reference	Figure 17B). This reference cell may be an
threshold value to be programmed, and a	EEPROM cell, which is a floating gate
gate, the reference cell having its reference	device. See column 23, line 7. This cell is
threshold value programmed between two	programmed with a threshold value
successive ones of the n array threshold	between two successive ones of the n array
values to control a signal provided at the	threshold values. Referring to Figure 15B,
reference cell output;	I _{REF} ("2") shows a conduction curve (a
-	signal output) for a reference cell that is
	between the programmed values I _{DS} ("2")
	and I _{DS} ("3"). See column 22, lines 58-66
	and column 23, lines 5-11.

Page 20

a comparison circuit
coupled to the array cell output and the
reference cell output, the comparison
circuit for comparing the signal at the array
cell output to the signal at the reference cell
output and providing a signal indicating
which of the n array threshold values is
held by the array cell; and

Figures 17A and 17B and the corresponding descriptions show two comparison circuits (1410 in Figure 17A and 1440 in Figure 17B) to compare a reference cell output to an array memory cell output (e.g., see nodes A and B in Figure 17B). The circuit provides as output SA1 through SAK which is decoded into B1 through BL, which is an indication of which threshold is held by the array memory cell.

a power supply for supplying a supply voltage to the gate of the array cell to enable the array cell to provide the signal at the array cell output, the power supply further supplying the supply voltage to the gate of the programmable reference cell to enable the reference cell to provide the signal at the reference cell output.

Figure 15B and the corresponding description show the voltage applied at V_{CG} (gate) of the reference cell (see V_{CG} of cell 1400 of Figure 17A) (indicated by I_{REF} conduction lines) and of the array cell (indicated by the I_{DS} conduction lines). As indicated by the dashed line, both V_{CG} of the array cell and reference cell are connected during reading to a power supply of 5 volts. See column 22, lines 53-66. Also see column 30, lines 2-5 and the Tables 1 and 2 in Figures 26 and 27, respectively. These describe the V_{CG} of an array cell being connected to V_{CC} during a read operation.

Claim 77	Support in U.S. Patent 5,991,517
(Claim 2 of U.S. patent 5,828,601)	(Issued Parent Application)
77. The memory of	Figure 15B and the corresponding
claim 76 wherein when a value of the	description show outputs of an array cell
supply voltage is varied, a working margin	and a reference cell. As the supply voltage
between the array cell output and the	at V _{CG} is varied, a working margin between
reference cell output remains constant.	the outputs remains relatively constant.
	For example, see the conduction curves for
	I _{REF} ("0") and I _{DS} ("0") for V _{CG} at and near
	5 volts, the I _{DS} is relatively constant.
,	Furthermore, as V _{CG} varies, the reference
	levels remain between the programmed
	levels. Furthermore, at column 24, lines
	38-42, the application describes the
	memory cells and reference cells tracking
	with similar variations in operating
	conditions.

Claim 78	Support in U.S. Patent 5,991,517
(Claim 3 of U.S. patent 5,828,601)	(Issued Parent Application)
78. The memory of	Figure 15B and the corresponding
claim 76 wherein n is greater than two.	description show an array cell having more
	than 2 threshold values. In fact, four
	threshold values corresponding to 0, 1, 2,
	and 3 states are shown.

Claim 79	Support in U.S. Patent 5,991,517
(Claim 14 of U.S. patent 5,828,601)	(Issued Parent Application)
79. A memory	As described at column 20, lines 22-24,
comprising:	Figure 12 shows an array of a memory.
a first word line;	The array has nonvolatile memory cells
	(1073) where control gates (V _{CG}) of a row
	of cells are connected to a word line
	(1079).
a second word line;	Figure 17A shows a reference cell (1400)
	with a word line (V _{CG}) connected to a gate
,	of the reference cell.
a power supply for	Figure 15 shows the V _{CG} lines for both the
providing a substantially identical supply	array cell and reference cell are connected
voltage to the first word line and the	to the same supply voltage (e.g., 5 volts)
second word line;	during a read operation.
an array cell having a gate	Figure 12 shows the array cell (1073).
connected to the first word line and a	Figure 11 shows greater detail of an
source-to-drain path, the array cell having a	example of one type of array cell having a
threshold value set to one of n array	source-to-drain path and control gate. This
threshold values;	array cell is a nonvolatile memory cell
	having n threshold values. See column 19,
	lines 27-33.

Page 23

n-1 read reference cells,
each read reference cell having a gate
connected to the second word line, a
source-to-drain path and a floating gate
which stores an electrical charge to allow a
reference threshold value to be
programmed, each respective read
reference cell having its reference threshold
value programmed between two different
successive ones of the n array threshold
values; and

The application describes that for an array cell having n threshold values, there will be at least n-1 reference levels. See column 24, lines 1-2. Therefore, there will be at least n-1 read reference cells to provide these reference levels. Each reference cell is an EEPROM cell, which has a floating gate. See column 23, lines 5-8. Figure 15B shows the reference threshold values (I_{REF}) which are between two different array programmed values (I_{DS}).

read sense amplifiers, each read sense amplifier having a first input coupled to the source-to-drain path of the array cell and a second input coupled to the source-to-drain path of a respective one of the read reference cells, each read sense amplifier for providing an output signal indicating whether a signal received at its first input is greater than a signal received at its second input.

Figure 17B shows a read sense amplifier which is connected at A and B to source-to-drain paths of a reference cell and an array cell. The sense amplifier includes circuitry to compare the A and B inputs. See column 24, lines 24-27.

Claim 80	Support in U.S. Patent 5,991,517
(Claim 16 of U.S. patent 5,828,601)	(Issued Parent Application)
80. The memory of	Figure 15B shows an array cell having
claim 79 wherein n is greater than two.	more than two threshold values. In fact,
	four threshold values corresponding to 0, 1,
	2, and 3 states are shown.

Page 24

The requirements of 35 U.S.C. § 135(b) are met because claims (6) 63-75 were present in this application within one year of the issue date of U.S. patent 5,774,395, and claims 76-80 were present in this application within one year of the issue date of U.S. patent 5,828,601.

In particular, U.S. patent 5,774,395 issued June 30, 1998, and claims 63-75 were added into the present application on May 13, 1999. U.S. patent 5,828,601 issued October 27, 1999, and claims 76-80 were added into the present application on September 29, 1999.

CONCLUSION

In view of the foregoing, applicants believes that no new matter has been introduced. Applicants respectfully request that the examiner declare an interference under 37 C.F.R. § 1.607 between the present application and U.S. patents 5,744,395 and 5,828,601.

If the examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 650-326-2400.

Respectfully submitted,

Melvin D. Chan Reg./No. 39,626

TOWNSEND and TOWNSEND and CREW LLP

Two Embarcadero Center, 8th Floor

San Francisco, California 94111-3834

Tel: (650) 326-2400

Fax: (650) 326-2422 MDC/acc

PA 3168589 v2