ASSOCIATION RULE MINING

Renato R. Maaliw III, DIT

College of Engineering
Southern Luzon State University
Lucban, Quezon, Philippines

Association Rule Mining (ARM)

- A technique used to uncover interesting relationships, patterns, or associations within large datasets.
- Applied in fields such as retail and e-commerce to help understand customer purchasing patterns, detecting anomalies, and making strategic business decisions.

Basic Concepts of ARM

- For instance, in a supermarket, ARM might reveal that "customers who buy bread and butter often also buy milk"
- If {bread, butter} then {milk}
- These rules reveal dependencies and correlations among items, often helping organizations in cross-selling, recommendation systems, and inventory management

Key Terminologies

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Itemset:

A collection of one or more items:

{Bread}

{Bread, Milk}

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

K-Itemset:

An itemset containing exactly kitems:

{Bread, Milk} is a 2-itemset

{Bread, Milk, Diaper} is a 3-itemset

Transactions		
er, Beer, Eggs		
Beer, Coke		
Diaper, Beer		
Diaper, Coke		

Support Count (σ):

The number of transactions that include a particular itemset. For example, if {Bread, Milk} appears in 3 out of 5 transactions, its support count is 3.

Transactions	3
Bread, Milk	
Bread, Diape	er, Beer, Eggs
Milk, Diaper,	Beer, Coke
Bread, Milk,	Diaper, Beer
Bread, Milk,	Diaper, Coke

Support (s):

The proportion of transactions containing itemset, calculated as support count / total transactions.

For {Milk, Bread} the support would be 3 / 5 = 0.6.

Transactions	3
Bread, Milk	
Bread, Diape	er, Beer, Eggs
Milk, Diaper,	Beer, Coke
Bread, Milk,	Diaper, Beer
Bread, Milk,	Diaper, Coke

Frequent Itemset:

An itemset whose support meets or exceeds a user-defined minimum support threshold.

If minimum support threshold is set to **0.6**, then *{Milk, Bread}* is a frequent **itemset**.

Associaton Rules

An Association Rule

- It is an implication in the form of $X \rightarrow Y$, where:
 - X and Y are itemsets, with X as the "antecedent" (if part) and Y as the "consequent" (then part)
- Example: {Milk, Diaper} → {Beer}
 - meaning if *Milk* and *Diaper* are purchased, *Beer* is also likely to be purchased

Metrics for Rule Evaluation

Support (s)

 How often X and Y occur together, the probability of both itemsets appearing in the same transactions

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Support for {Milk, Diaper, Beer}

Support = {Number of transactions containing {Milk, Diaper, Beer} / (Total Transactions)

From the table, 2/5 = 0.4

Confidence

- Confidence for the rule {Milk, Diaper} → {Beer}

Transactions			
Bread, Milk			
Bread,	Diape	r, Beer,	Eggs
Milk, E	Diaper,	Beer, C	Coke
Bread,	Milk,	Diaper,	Beer
Bread,	Milk,	Diaper,	Coke

$$Confidence(\{Milk, Diaper\} \rightarrow \{Beer\}) = \frac{Support(Milk, Diaper, Beer) = (0.4)}{Support(Milk, Diaper) = (0.6)}$$

Support($\{Milk, Diaper\}$) is the number of transactions containing both Milk and Diaper, which appears in 3 transactions (3, 4, 5), 3 / 5 = **0.6**

Confidence = 0.4 / 0.6 = 0.67

Lift

Measures how much likely it is to see:

$$Lift(Milk, Diaper \rightarrow Beer) = \frac{Support(Milk, Diaper, Beer)}{Support(Milk, Diaper)} * Support(Beer)$$

Lift

- Measures how much likely it is to see:

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

$$Lift(Milk, Diaper \rightarrow Beer) = \frac{Support(Milk, Diaper, Beer)}{Support(Milk, Diaper) * Support(Beer)}$$

$$3/5 = 0.6$$

Lift

Measures how much likely it is to see:

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

$$Lift(Milk, Diaper \rightarrow Beer) = \frac{Support(Milk, Diaper, Beer)}{Support(Milk, Diaper) * Support(Beer)}$$

$$3/5 = 0.6$$

Lift

- Measures how much likely it is to see:

Transactions
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

$$Lift(Milk, Diaper \rightarrow Beer) = \frac{Support(Milk, Diaper, Beer)}{Support(Milk, Diaper)} * Support(Beer)$$

$$3/5 = 0.6$$

$$3/5 = 0.6$$

Lift =
$$0.4 / (0.6) * (0.6) = 1.11$$

Interpretation:

- Support of 0.40 indicates that {Milk, Diaper, Beer} appears 40% of all transactions.
- Confidence of 0.67 suggests that 67% of transactions containing {Milk, Diaper} also contain {Beer}
- Lift of 1.11 means that transactions with {Milk, Diaper} are 1.11 times more likely to include {Beer} than by random chance.

Interpreting Lift Values (L > 1)

- A lift of **greater than 1** indicates that items in the antecedent and consequent appear together more frequently than would be expected by random chance.
- Higher values signify a stronger association:
 - 1.1 to 1.5: Weak positive association
 - 1.6 to 2.0: Moderate positive association
 - > 2.0: Strong positive association

Interpreting Lift Values (L = 1)

- A lift of **exactly 1** indicates that the antecedent and consequent are statistically independent. The presence of one item does not affect the likelihood of the other appearing.

Interpreting Lift Values (L < 1)

- A lift of **less than 1** indicates that the presence of the antecedent actually makes the consequent less likely to occur in the same transaction.
- Values further below 1 imply a stronger negative association:

0.75 to 1.0: Weak negative association

0.5 to 0.74: Moderate negative association

> 0.5: Strong negative association

The Apriori Principle

To reduce computational effort, the Apriori principle states:

- "If an itemset is frequent, all its subsets must also be frequent"
- This allows us to prune (ignore) itemsets that have infrequent subsets, reducing thee number of itemsets we need to consider

Rule Generation

Once **frequent itemsets** are identified, rules are generated by partitioning the itemset:

For example, from the itemset {Milk, Diaper, Beer}, possible rules include:

- $\{Milk, Diaper\} \rightarrow \{Beer\}$
- $\{Diaper, Beer\} \rightarrow \{Milk\}$
- * Only rules that meet the confidence threshold are retained

Apriori Principle in Action

Suppose we have a transaction database with five transactions and a minimum support threshold of 3 (i.e., an itemset needs to appear in at least 3 transactions to be considered frequent).

Step 1: Identify Frequent 1-Itemsets

Count each item individually across transactions

Bread appears in 4 transactions $(1, 2, 4, 5) \rightarrow$ frequent Milk appears in 4 transactions $(1, 3, 4, 5) \rightarrow$ frequent Diaper appears in 4 transactions $(2, 3, 4, 5) \rightarrow$ frequent Beer appears in 3 transactions $(2, 3, 4) \rightarrow$ frequent Coke appears in 2 transactions $(3, 5) \rightarrow$ not frequent Eggs appears in 1 transaction $(2) \rightarrow$ not frequent

Based on the minimum support threshold, only {Bread, Milk, Diaper, Beer} are frequent 1-itemsets. We discard {Coke} and {Eggs} from further consideration.11

Step 2: Identify Frequent 2-Itemsets

Form 2-itemsets using only the frequent 1-itemsets: {Bread, Milk, Diaper, Beer}.

```
{Bread, Milk} appears in 3 transactions (1, 4, 5) → frequent

{Bread, Diaper} appears in 3 transactions (2, 4, 5) → frequent

{Bread, Beer} appears in 2 transactions (2, 4) → not frequent (pruned)

{Milk, Diaper} appears in 3 transactions (3, 4, 5) → frequent

{Milk, Beer} appears in 2 transactions (3, 4) → not frequent (pruned)

{Diaper, Beer} appears in 3 transactions (2, 3, 4) → frequent
```

Using the Apriori Principle, we ignore any 3-itemsets that include pruned 2-itemsets {Bread, Beer} and {Milk, Beer} because they contain infrequent subsets.

Step 3: Generate Candidate 3-Itemsets

We form 3-itemsets only from combinations of the **frequent 2-itemsets**.

```
{Bread, Milk, Diaper} appears in 3 transactions (4, 5) → frequent {Milk, Diaper, Beer} appears in 2 transactions (3, 4) → not frequent (pruned) {Bread, Diaper, Beer} appears in 2 transactions (2, 4) → not frequent (pruned)
```

Because {Milk, Diaper, Beer} and {Bread, Diaper, Beer} are infrequent, we don't consider any further supersets of these itemsets.

Pruning Summary

Apriori Principle allows us to skip evaluating itemsets with infrequent subsets. For example, we didn't evaluate {*Bread, Beer*} further because {*Bread, Beer*} itself was infrequent.

Resulting Frequent Itemsets:

```
1-itemsets: {Bread}, {Milk}, {Diaper}, {Beer}
```

2-itemsets: {Bread, Milk}, {Bread, Diaper}, {Milk, Diaper}, {Diaper, Beer}

3-itemsets: {Bread, Milk, Diaper}

This example clearly shows how the Apriori Principle helps reduce the number of calculations by **eliminating candidates with infrequent subsets** early, making the algorithm more efficient.

Thank you very much for listening.