Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1626GMS

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
* * * * * * * * *
                    Welcome to STN International
NEWS
                 Web Page URLs for STN Seminar Schedule - N. America
                 "Ask CAS" for self-help around the clock
NEWS 2
NEWS 3
        DEC 21 IPC search and display fields enhanced in CA/CAplus with the
                 IPC reform
        DEC 23 New IPC8 SEARCH, DISPLAY, and SELECT fields in USPATFULL/
NEWS 4
                 USPAT2
NEWS 5
                IPC 8 searching in IFIPAT, IFIUDB, and IFICDB
        JAN 13
NEWS 6 JAN 13 New IPC 8 SEARCH, DISPLAY, and SELECT enhancements added to
                 INPADOC
NEWS 7
        JAN 17
                Pre-1988 INPI data added to MARPAT
                IPC 8 in the WPI family of databases including WPIFV
NEWS 8
        JAN 17
NEWS 9
        JAN 30
                Saved answer limit increased
NEWS 10
        JAN 31
                Monthly current-awareness alert (SDI) frequency
                 added to TULSA
NEWS 11 FEB 21
                STN AnaVist, Version 1.1, lets you share your STN AnaVist
                 visualization results
NEWS 12 FEB 22
                Status of current WO (PCT) information on STN
NEWS 13 FEB 22 The IPC thesaurus added to additional patent databases on STN
NEWS 14 FEB 22 Updates in EPFULL; IPC 8 enhancements added
NEWS 15 FEB 27
                New STN AnaVist pricing effective March 1, 2006
NEWS 16 FEB 28 MEDLINE/LMEDLINE reload improves functionality
NEWS 17 FEB 28
                TOXCENTER reloaded with enhancements
NEWS 18 FEB 28 REGISTRY/ZREGISTRY enhanced with more experimental spectral
                property data
                INSPEC reloaded and enhanced
NEWS 19 MAR 01
NEWS 20 MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes
NEWS 21 MAR 08 X.25 communication option no longer available after June 2006
NEWS 22 MAR 22 EMBASE is now updated on a daily basis
NEWS 23 APR 03
                New IPC 8 fields and IPC thesaurus added to PATDPAFULL
NEWS 24 APR 03
                Bibliographic data updates resume; new IPC 8 fields and IPC
                thesaurus added in PCTFULL
NEWS 25 APR 04 STN AnaVist $500 visualization usage credit offered
NEWS EXPRESS FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a,
             CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
             AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005.
             V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT
             http://download.cas.org/express/v8.0-Discover/
NEWS HOURS
             STN Operating Hours Plus Help Desk Availability
```

Enter NEWS followed by the item number or name to see news on that

Welcome Banner and News Items

NEWS LOGIN

specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 09:38:17 ON 09 APR 2006

=>

Uploading

THIS COMMAND NOT AVAILABLE IN THE CURRENT FILE Do you want to switch to the Registry File? Choice (Y/n):

Switching to the Registry File...

Some commands only work in certain files. For example, the EXPAND command can only be used to look at the index in a file which has an index. Enter "HELP COMMANDS" at an arrow prompt (=>) for a list of commands which can be used in this file.

=> FILE REGISTRY

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'REGISTRY' ENTERED AT 09:38:37 ON 09 APR 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 6 APR 2006 HIGHEST RN 879544-24-8 DICTIONARY FILE UPDATES: 6 APR 2006 HIGHEST RN 879544-24-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 6, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/ONLINE/UG/regprops.html

=>

Uploading C:\Program Files\Stnexp\Queries\10791982.str

chain nodes :

6 8

ring nodes : 1 2 3 4 5 chain bonds : 1-6 5-8

ring bonds :

1-2 1-5 2-3 3-4 4-5

exact/norm bonds :

1-5 1-6 4-5

exact bonds :

1-2 2-3 3-4 5-8

isolated ring systems :

containing 1 :

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:CLASS 8:CLASS

L1 STRUCTURE UPLOADED

=> D L1

L1 HAS NO ANSWERS

L1 STR

10791982.trn

Page 3

Structure attributes must be viewed using STN Express query preparation.

=> S L1

SAMPLE SEARCH INITIATED 09:38:49 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED -14935 TO ITERATE

13.4% PROCESSED 2000 ITERATIONS INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS ONLINE **COMPLETE**

> **COMPLETE** BATCH

PROJECTED ITERATIONS:

291381 TO

PROJECTED ANSWERS:

6033 TO 8303 48 ANSWERS

6074 ANSWE

TOTAL

SINCE FILE

L248 SEA SSS SAM L1

=> S L1 SSS FULL

FULL SEARCH INITIATED 09:38:56 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED -301477 TO ITERATE

100.0% PROCESSED 301477 ITERATIONS

SEARCH TIME: 00.00.02

L3 6074 SEA SSS FUL L1

=> FIL HCAPLUS

COST IN U.S. DOLLARS

ENTRY SESSION FULL ESTIMATED COST 166.94 167.15

FILE 'HCAPLUS' ENTERED AT 09:39:04 ON 09 APR 2006 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 9 Apr 2006 VOL 144 ISS 16 FILE LAST UPDATED: 7 Apr 2006 (20060407/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> S L3

10791982.trn

Page 4

```
04/09/2006 10791982.trn
         16625 L3
=> S L4 AND ALUMINA
        279219 ALUMINA
          2515 ALUMINAS
        279493 ALUMINA
                  (ALUMINA OR ALUMINAS)
L5
           188 L4 AND ALUMINA
=> S L5 AND ISOBUTYLENE
         19192 ISOBUTYLENE
           112 ISOBUTYLENES
         19230 ISOBUTYLENE
                  (ISOBUTYLENE OR ISOBUTYLENES)
L6
             2 L5 AND ISOBUTYLENE
=> S L5 AND BUTYL ALCOHOL
        260123 BUTYL
            33 BUTYLS
        260137 BUTYL
                  (BUTYL OR BUTYLS)
        234920 ALCOHOL
        161475 ALCOHOLS
        366587 ALCOHOL
                  (ALCOHOL OR ALCOHOLS)
        568518 ALC
        188446 ALCS
        664591 ALC
                  (ALC OR ALCS)
        798008 ALCOHOL
                  (ALCOHOL OR ALC)
         15854 BUTYL ALCOHOL
                  (BUTYL (W) ALCOHOL)
L7
             0 L5 AND BUTYL ALCOHOL
=> S L5 AND PURIFYING
         34787 PURIFYING
L8
            2 L5 AND PURIFYING
   S 15 AND PROCESS
       2225288 PROCESS
       1503336 PROCESSES
       3320173 PROCESS
                 (PROCESS OR PROCESSES)
L9
            72 L5 AND PROCESS
=> S L5 AND METHOD
```

3063104 METHOD

1257261 METHODS

3966482 METHOD

(METHOD OR METHODS)
56 L5 AND METHOD

=> S L10 AND P/DT

L10

5176112 P/DT

L11 45 L10 AND P/DT

=> S L11 AND US/PC 1524931 US/PC

10791982.trn

Page 5

```
04/09/2006
                                               10791982.trn
                                 19 L11 AND US/PC
 =>
 => D HIS
                 (FILE 'HOME' ENTERED AT 09:38:17 ON 09 APR 2006)
                FILE 'REGISTRY' ENTERED AT 09:38:37 ON 09 APR 2006
L1
                                                STRUCTURE UPLOADED
L2
                                         48 S L1
L3
                                   6074 S L1 SSS FULL
                FILE 'HCAPLUS' ENTERED AT 09:39:04 ON 09 APR 2006
                               16625 S L3
L4
L5
                                     188 S L4 AND ALUMINA
L6
                                            2 S L5 AND ISOBUTYLENE
L7
                                            0 S L5 AND BUTYL ALCOHOL
                                           2 S L5 AND PURIFYING
L9
                                         72 S L5 AND PROCESS
                                                                                                                                                                                    James 
L10
                                        56 S L5 AND METHOD
L11
                                         45 S L10 AND P/DT
L12
                                         19 S L11 AND US/PC
=> d l6 ibib abs hitstr tot
              ANSWER 1 OF 2 HCAPLUS COPYRIGHT 2006 ACS op STN
ACCESSION NUMBER:
                                                                              2005:985345 HCAPLUS
DOCUMENT NUMBER:
                                                                               143:288367
TITLE:
                                                                              Method for purifying N-methyl-2-pyrrolidone by
                                                                          treatment with an alumina adsorbent
                                                                           Kahn, Andrew P.; Weir, Thomas W.
INVENTOR(S):
PATENT ASSIGNEE(S):
                                                                               USA
SOURCE:
                                                                              U.S. Pat. Appl. Publ., 5 pp.
                                                                               CODEN: USXXCO
DOCUMENT TYPE:
                                                                               Patent
LANGUAGE:
                                                                               English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
                PATENT NO.
                                                                                                    DATE
                                                                          KIND
                                                                                                                                     APPLICATION NO.
                                                                                                                                                                                                                  DATE
                                                                             ----
                                                                                                    ------
                                                                                                                                         -----
                                                                                                                                        US 2004-791982
               US 2005197502
                                                                                                     20050908
                                                                               A1
                                                                                                                                                                                                                  20040303
                                                                        A1
                                                                                                                                  WO 2005-US3202
               WO 2005092851
                                                                                                    20051006

Al 20051006 WO 2005-US3202
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,
```

PRIORITY APPLN. INFO.: US 2004-791982 A 20040303 A method for purifying N-methyl-2-pyrrolidone (I) comprises treating the I with an alumina that desorbs <100 µmol/g of isobutylene between 225-400° in a standard tert-Bu alc.

MR, NE, SN, TD, TG

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML,

dehydration test. The method enables the removal of at least about 80% of amine impurities or ≥60% of the APHA color from the I at 4 bed vols. treated.

872-50-4P, NMP, preparation IT

RL: PRP (Properties); PUR (Purification or recovery); PREP (Preparation) (method for purifying N-methyl-2-pyrrolidone by treatment with an alumina adsorbent)

872-50-4 HCAPLUS RN

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

ANSWER 2 OF 2 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1997:609683 HCAPLUS

DOCUMENT NUMBER:

127:285874

TITLE:

Simulated photographic-quality prints using

plasticizer to reduce curl

INVENTOR(S): PATENT ASSIGNEE(S): Malhotra, Shadi L. Xerox Corp., USA

SOURCE:

U.S., 20 pp. CODEN: USXXAM

DOCUMENT TYPE:

LANGUAGE:

Patent English ·

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE								
	US 5665504	- -	1007000	UC 1006 504704	10060111								
			09	US 1996-584784	19960111								
	JP 09281737	A2	19971031	JP 1997-1317	19970108								
PRIO	RITY APPLN. INFO.:			US 1996-584784	A 19960111								
AB	Simulated photogq	uality	prints are	created using nonphoto	g. imaging such								
	as xerog. and ink-j	et prin	ting. Reve	rse or wrong reading to	oner images are								
	as xerog. and ink-jet printing. Reverse or wrong reading toner images are formed on a transparent substrate which is adhered to a coated backing												
	sheet. The backing sheet is coated with a polymer material which serves												
	as an adhesive and has a glass transition temperature less than 55°. A												
				m.p. greater than 50° a									
				than 75° contacting the									
				agent for providing an									
	optical interface a	s well	as protection	on for the adhesive poi	lymer which has								
	a lower m.p. than t				-7								
ΙT	1121-07-9, N-Methyl			_									
				rial use); USES (Uses)									

(simulated photog.-quality prints containing)

RN 1121-07-9 HCAPLUS

CN 2,5-Pyrrolidinedione, 1-methyl- (9CI) (CA INDEX NAME)

=> d 18 ibib abs hitstr tot

ANSWER 1 OF 2 HCAPLUS COPYRIGHT 2006 ACS OF STN

ACCESSION NUMBER:

2005:985345 HCAPLUS

DOCUMENT NUMBER:

143:288367

TITLE:

Method for purifying N-methyl-2-pyrrolidone by treatment with an alumina adsorbent

INVENTOR(S):

Wahn, Andrew P.; Weir, Thomas W. USA USA Pat. Appl. Publ., 5 pp.

PATENT ASSIGNEE(S): SOURCE:

CODEN: USXXCO

DOCUMENT TYPE: LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION:

PATENT NO.			KIND DATE				APPLICATION NO.					DATE					
						-											
05 4	2005	1975	02							US 2004-791982					20040303		
WO 2005092851				A1	A1 20051006 WO 2005-US3202							20050203					
	W: AE, AG, AL,			AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	KZ,	LC,
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,
		NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SM,
			TJ,														
	RW:	BW,	GH,	GM,	KΕ,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,
		ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,
		EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IS,	IT,	LT,	LU,	MC,	NL,	PL,	PT,
		RO,	SE,	SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,
			NE,											•	~	•	•
RITY APPLN. INFO.:				. :					1	JS 2	004-	7919	32	7	A 20	0040	ร์ด3

PRIOR

,/whe

A method for purifying N-methyl-2-pyrrolidone (I) comprises AB treating the \bar{I} with an alumina that desorbs <100 μ mol/g of isobutylene between 225-400° in a standard tert-Bu alc. dehydration test. The method enables the removal of at least about 80% of amine impurities or ≥60% of the APHA color from the I at 4 bed vols. treated.

IT872-50-4P, NMP, preparation

RL: PRP (Properties); PUR (Purification or recovery); PREP (Preparation) (method for purifying N-methyl-2-pyrrolidone by treatment with an alumina adsorbent)

RN 872-50-4 HCAPLUS

CN2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

ANSWER 2 OF 2 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1999:182557 HCAPLUS

DOCUMENT NUMBER:

130:238303

TITLE:

Purification of N-methyl-2-pyrrolidone as solvents for

vinylidene fluoride polymers

INVENTOR(S):

Horii, Masatoshi; Furukawa, Hiroshi; Inagaki,

Hiroyuki; Tanba, Tadashi

PATENT ASSIGNEE(S):

Tonen Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11071346	A2	19990316	JP 1997-249622	19970829
PRIORITY APPLN. INFO.:			JP 1997-249622	19970829

AR Title compound is purified by treating with acidic compds. or porous compds. Thus, N-methyl-2-pyrrolidone was neutralized with p-MeC6H4SO3H and distilled to give N-methyl-2-pyrrolidone, whose solution of poly(vinylidene fluoride) showed Gardner color number 1, vs. number 18 for the untreated solvent.

872-50-4P, N-Methyl-2-pyrrolidone, preparation IT

RL: NUU (Other use, unclassified); PUR (Purification or recovery); PREP (Preparation); USES (Uses)

(purification of methylpyrrolidone as solvents for vinylidene fluoride polymers)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

=> d 112 ibib abs hitstr tot

L12 ANSWER 1 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:1310054 HCAPLUS

DOCUMENT NUMBER:

144:57512

TITLE:

Non-aqueous formulations containing biodegradable polymers and methionine and solvents for removing peroxides and reducing the oxidative degradation of

drugs

10791982.trn

Page 9

04/09/2006

10791982.trn

INVENTOR (S):

Fereira, Pamela J.; Desjardin, Michael A.; Rohloff,

Catherine M.; Berry, Stephen A.; Zlatkova-Karaslavova,

Ekaterina S.

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 36 pp., Cont.-in-part of U.S.

Ser. No. 814,826.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2005276856	A1	20051215	US 2005-183477	20050718 <
US 2005008661	A1	20050113	US 2004-814826	20040331 <
PRIORITY APPLN. INFO.:			US 2003-459300P	20030331
			US 2004-814826 A	2 20040331

The present invention is related to materials and methods for AB forming polymeric delivery vehicles that reduces risk of oxidative degradation of a carried drug and the resulting compns. For example, stability of ω-IFN was improved by adding L-methionine into PVP to remove peroxides.

ΙT 872-50-4, n-Methylpyrrolidone, uses

RL: NUU (Other use, unclassified); USES (Uses)

(non-aqueous formulations containing biodegradable polymers and methionine

and

solvents for removing peroxides and reducing oxidative degradation of drugs)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 2 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:985345 HCAPLUS

DOCUMENT NUMBER:

143:288367

TITLE:

Method for purifying N-methyl-2-pyrrolidone

by treatment with an alumina adsorbent

Kahn, Andrew P.; Weir, Thomas W.

PATENT ASSIGNEE (\$ USA

SOURCE:

U.S. Pat. Appl. Publ., 5 pp.

CODEN: USXXCO

DOCUMENT TYPE:

INVENTOR (S):

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
US 2005197502	A1 (20050908	US 2004-791982	20040303 <
WO 2005092851	A1 (20051006	WO 2005-US3202	20050203

10791982.trn

Page 10

> W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, BO, SE, SL, SV, TB, BE, BL, CG, CM, CM, CN, CN, CN, CM, MI RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

PRIORITY APPLN. INFO.:

US 2004-791982 A 20040303 A method for purifying N-methyl-2-pyrrolidone (I) comprises treating the I with an alumina that desorbs <100 µmol/q of isobutylene between 225-400° in a standard tert-Bu alc. dehydration test. The method enables the removal of at least about 80% of

amine impurities or ≥60% of the APHA color from the I at 4 bed vols. treated.

IT 872-50-4P, NMP, preparation

RL: PRP (Properties); PUR (Purification or recovery); PREP (Preparation) (method for purifying N-methyl-2-pyrrolidone by treatment with an alumina adsorbent)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 3 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:905472 HCAPLUS

DOCUMENT NUMBER:

141:382158

TITLE:

Method of fabrication of single ion

conductor-containing composite polymer electrolyte for

lithium secondary battery

INVENTOR(S):

Lee, Young Gi; Ryu, Kwang Sun; Chang, Soon Ho

PATENT ASSIGNEE(S):

S. Korea

SOURCE:

U.S. Pat. Appl. Publ., 10 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
US 2004214089	A1	20041028	US 2003-750152		20031230 <
JP 2004327423	A2	20041118	JP 2003-435912		20031226
CN 1610170	Α	20050427	CN 2003-10125473		20031230
US 2005196677 .	A1	20050908	US 2005-97730		20050401 <
PRIORITY APPLN. INFO.:			KR 2003-26420	Α	20030425
			US 2003-750152	A2	20031230
			KR 2004-28470	Α	20040424
AD D					

Provided is a composite polymer electrolyte for a lithium secondary

battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorg. material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mech. properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and

the

IT

charge/discharge cycle stability.

872-50-4, n-Methylpyrrolidone, uses

RL: MOA (Modifier or additive use); USES (Uses)

(method of fabrication of single ion conductor-containing composite polymer electrolyte for lithium secondary battery)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 4 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:905471 HCAPLUS

DOCUMENT NUMBER:

141:382157

TITLE:

Method of fabrication of composite polymer

electrolyte of different morphologies for lithium

secondary battery

INVENTOR(S):

Lee, Young Gi; Kim, Kwang Man; Ryu, Kwang Sun; Chang,

Soon Ho

PATENT ASSIGNEE(S):

S. Korea

SOURCE:

U.S. Pat. Appl. Publ., 10 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004214088	A1	20041028	US 2003-748363	20031229 <
JP 2004327422	A2	20041118	JP 2003-431458	20031225
CN 1610169	Δ	20050427	CN 2003-10125472	20031231

PRIORITY APPLN. INFO.:

A 20050427 CN 2003-10125472 20031231

PRIORITY APPLN. INFO.:

KR 2003-26419 A 20030425

AB A composite polymer electrolyte for a lithium secondary battery and a method of manufacturing the same are provided. The composite polymer

method of manufacturing the same are provided. The composite polymer electrolyte includes a composite film structure which includes a first porous polymer film with good mech. properties and a second porous polymer film with submicro-scale morphol. of more compact porous structure than the first porous polymer structure, coated on a surface of the first porous polymer film, and an electrolyte solution impregnated into the composite film structure. The different morphologies of the composite film structure enable to an increase in mech. properties and ionic conductivity

Furthermore, the charge/discharge cycle performance and stability of a lithium metal polymer secondary battery are enhanced.

IT 872-50-4, n-Methylpyrrolidone, uses

RL: MOA (Modifier or additive use); USES (Uses)

(method of fabrication of composite polymer electrolyte of different morphologies for lithium secondary battery)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 5 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:414719 HCAPLUS

DOCUMENT NUMBER:

140:416900

TITLE:

Porous inorganic/organic homogeneous copolymeric

hybrid materials for chromatographic separations, and

process for the preparation thereof

INVENTOR(S):

Jiang, Zhiping; O'Gara, John E.; Fisk, Raymond P.;

Wyndham, Kevin D.; Brousmiche, Darryl W.

PATENT ASSIGNEE(S):

Waters Investments Limited, USA PCT Int. Appl., 62 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	PATENT NO.				KIN	DATE			APPLICATION NO.						DATE			
WC	2004	0413	 98		A2	_	2004	0521	WO 2003-US34776						20031030			
	2004											0001				0051	550	
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	ΕĖ,	ES,	FI,	GB,	GD,	GE,	GH,	
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	KZ,	LC,	LK,	LR,	
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	NZ,	OM,	
		PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	TJ,	TM,	TN,	
							US,								·	•	-	
	RW:	BW,	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	
		BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
							HU,											
		TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG
GE	3 2414													20031030				
JE	2006	5048	54		T 2		2006	0209	i	JP 2	004-	5503	84		2	0031	030	
US	2005	2302	98		A1		2005	1020	τ	JS 2	005-	1191	11					<
PRIORIT	PRIORITY APPLN. INFO.:						Ţ	JS 2	002-	4225	80P		P 20	0021	030			
							V	NO 2	003-1	US34'	776	7	V 2	0031	030			
אידי פוג	~~ ~	~ l ~ + .	- -			÷:	/.		1									

AB The present invention relates to porous inorg./organic homogeneous copolymeric hybrid material materials, including particulates and monoliths, methods for their manufacture, and uses thereof, e.g., as chromatog. sepns. materials.

IT 872-50-4, 1-Methyl-2-pyrrolidinone, analysis RL: ARU (Analytical role, unclassified); ANST (Analytical study)

(porogen; porous inorg./organic homogeneous copolymeric hybrid materials as stationary phases for chromatog. sepns. and process for their preparation)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 6 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:372705 HCAPLUS

DOCUMENT NUMBER: 140:371446

TITLE: Devices and methods for holding a

biopolymeric array

INVENTOR(S): Parker, Russell A.

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 28 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	.KIND	DATE	APPLICATION NO.	DATE			
US 2004086874	A1	20040506	US 2002-286649	20021031 <			
PRIORITY APPLN. INFO.:			US 2002-286649	20021031			

Devices and methods for holding at least one array are provided.

The subject devices are characterized by having a housing having at least one array therein and an absorbing material associated with the housing that is capable of absorbing mols. within the housing deleterious to the array(s) held therein. The seal may be resealable and/or may be a hermetic seal. The subject methods include packaging at least one array in a subject array holding device. Also provided are methods for using an array that is held in a subject array holding device in an array assay. Kits for use in the subject methods are also provided.

IT 872-50-4, uses

RL: DEV (Device component use); USES (Uses)

(devices and methods for holding biopolymeric array)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 7 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

10791982.trn

Page 14

ACCESSION NUMBER: 2003:1007141 HCAPLUS

DOCUMENT NUMBER: 140:37992

TITLE: Membranes impregnated with cross-linked enzyme

crystals and use for removal of uremic toxins from

dialysate

INVENTOR (S): Tandon, Rahul; Karoor, Sujatha; Pauley, Robin; Boggs,

Daniel; Yeh, Rosa

PATENT ASSIGNEE(S): Baxter International Inc., USA; Baxter Healthcare S.A.

SOURCE: PCT Int. Appl., 30 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE			
WO 2003106671	A1 20031224	WO 2003-US17530	20030603			
W: AE, AG, AL,	AM, AT, AU, AZ,	BA, BB, BG, BR, BY,	BZ, CA, CH, CN,			
		DZ, EC, EE, ES, FI,				
GM, HR, HU,	ID, IL, IN, IS,	JP, KE, KG, KP, KR,	KZ, LC, LK, LR,			
LS, LT, LU,	LV, MA, MD, MG,	MK, MN, MW, MX, MZ,	NI, NO, NZ, OM,			
PH, PL, PT,	RO, RU, SC, SD,	SE, SG, SK, SL, TJ,	TM, TN, TR, TT,			
TZ, UA, UG,	UZ, VC, VN, YU,	ZA, ZM, ZW				
RW: GH, GM, KE,	LS, MW, MZ, SD,	SL, SZ, TZ, UG, ZM,	ZW, AM, AZ, BY,			
KG, KZ, MD,	RU, TJ, TM, AT,	BE, BG, CH, CY, CZ,	DE, DK, EE, ES,			
FI, FR, GB,	GR, HU, IE, IT,	LU, MC, NL, PT, RO,	SE, SI, SK, TR,			
		GN, GQ, GW, ML, MR,				
		US 2002-172657				
AU 2003237362	A1 20031231	AU 2003-237362				
PRIORITY APPLN. INFO.:		US 2002-172657	A 20020614			
		WO 2003-US17530	W 20030603			

AB The present invention provides membranes impregnated with crosslinked enzyme crystals, devices, systems and methods of producing and using same for a variety of suitable applications including, for example, the removal of uremic toxins from dialyzate during dialysis therapy. In this regard, the enzyme impregnated membranes of the present invention can enzymically convert the uremic toxins into byproducts, thus allowing the dialyzate to be reused during therapy. This can effectively minimize the amount of dialyzate necessary for therapy, thus enhancing therapy and minimizing costs. Applicants have found that by using membranes impregnated with an amount of crosslinked enzyme crystal, such as urease CLEC, less urease can be used than that typically used in sorbent cartridges to remove urea from dialyzate. In addition to high enzymic-activity (about 750 units/mg), it is believed that this can be attributed to the fact that urease CLEC is effectively insol. in water as compared to the high water solubility of typically used urease materials. this regard, it is believed that the urease CLEC impregnated within a polymer matrix of the membrane can be better contained in the sorbent cartridge such that excessive amts. thereof are not required to compensate for any potential loss of same during use. Further, the urease CLEC impregnated membranes of the present invention can be used without alumina or the like typically used to minimize leaching of urease and alumina from sorbent cartridges during therapy as previously discussed. Applicants have also found that the enzyme activity of the enzyme impregnated membranes of the present invention remains stable after exposure to gamma-radiation. Applicants have found that drying the membrane precipitate in a glycerol solution prior to use can effectively

preserve

enzyme activity.

IT 872-50-4, 1-Methyl-2-pyrrolidinone, uses

RL: NUU (Other use, unclassified); USES (Uses)

(preparing a casting solution composed of a polymeric base material in; membranes impregnated with cross-linked enzyme crystals and use for removal of uremic toxins from dialyzate)

872-50-4 HCAPLUS RN

CN2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 8 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:719445 HCAPLUS

DOCUMENT NUMBER:

139:230613

TITLE:

Method for the simultaneous production of

tetrahydrofurans and pyrrolidones

INVENTOR(S):

Fischer, Rolf-Hartmuth; Roesch, Markus; Bottke, Nils; Weck, Alexander; Windecker, Gunther; Hesse, Michael;

Borchert, Holger; Schlitter, Stephan

PATENT ASSIGNEE(S):

BASF Aktiengesellschaft, Germany PCT Int. Appl., 29 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent German .

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PA'	PATENT NO.					KIND DATE			APPLICATION NO.						DATE			
WO	2003	0744	82				2003	0912					48		2	0030	228	
		ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
								DM,										
								IS,										
•								MG,										
								SE, YU,				TJ,	TM,	TN,	TR,	TT,	TZ,	
	RW:							SD,				ЦG	7M	7147	7\ M	7 ק	DV	
	2000							AT,										
								IT,										
								GN,									,	
	1020	9633			A1		2003	0911	1	DE 2	002-3	1020	9633		2	0020		
									AU 2003-227027									
EP									EP 2003-743348									
	R:							FR,									PT,	
HC	2005	15,	SI,	LT,	ъ√,	F1,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK		
CM	1639	1124															228 <	
	CN 1639118 JP 2005530700																	
	PRIORITY APPLN. INFO.:			12	,	2005	1013				10209							
											EP204							
										'	•				. 2,			

OTHER SOURCE(S):

CASREACT 139:230613

AB A method for the simultaneous production of optionally alkyl-substituted tetrahydrofurans and pyrrolidones comprises the gas-phase catalytic hydrogenation of C4 dicarboxylic acids and/or derivs. thereof in the presence of copper-containing catalysts and the reaction of \(\gamma\)-butyrolactone (I) with ammonia or primary amines to give pyrrolidones, whereby the C4 dicarboxylic acid derivs. are hydrogenated in the gas phase at 200 to 300 °C, 0.1 to 100 bar. Catalytic loadings are 0.01 to 1 kg starting material/L catalyst.hour and starting material/hydrogen mol. ratios of 20 to 800 in the presence of catalysts comprising copper, aluminum and/or zinc to give mixts. of THF and I, the product from hydrogenation is separated by distillation into a THF/water mixture as

top product and a bottom product comprising I, the THF/water mixture from the second step is separated in a distillation arrangement comprising three columns.

Water is drawn off from the bottom of the first column, THF containing water is recycled from the second column to the first column, a side stream from the first column is fed to the second column, the bottom product from the third column is recycled to the first column. A distillate is taken from the head of the first column, a side discharge from the second column is fed to the third column and the pure THF is obtained as the top product from the third column, I is obtained from the I-containing bottom product from the second step by distillation and the I thus obtained is reacted with ammonia or amines to give pyrrolidones.

IT 872-50-4P, N-Methylpyrrolidone, preparation

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(method for the simultaneous production of tetrahydrofurans and pyrrolidones)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 9 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:609488 HCAPLUS

DOCUMENT NUMBER:

139:137938

TITLE:

Method of treating fats and oils

INVENTOR(S):

Nakajoh, Katsuhiko; Muramatsu, Takehiko; Maezawa,

Yukishige; Kon, Masao; Todoroki, Tomohiro; Nishizawa,

Katsushi; Ohara, Atsushi

PATENT ASSIGNEE(S):

Kabushiki Kaisha Toshiba, Japan

SOURCE:

Eur. Pat. Appl., 16 pp. CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

: 1

							•								
PA'	PATENT NO.				D DATE	AP:	APPLICATION NO.					DATE			
EP	1332774			A2	2003	30806	EP	2003-	25074	43		2	00302	205	
EP	1332774			A3	2003	31217									
	R: AT,	BE,	CH,	DE,	DK, ES,	FR,	GB, G	R, IT,	LI,	LU,	NL,	SE,	MC,	PT,	
	IE,	SI,	LT,	LV,	FI, RO,	MK,	CY, A	L, TR,	BG,	CZ,	EE,	HU,	SK		
JP	20032255	07		A2	2003	0812	JP	2002-	28370	0		2	00202	205	
JP	20032255	04		A2	2003	0812	JP	2002-	2837	1		2	00202	205	
CA	2418443			AA	2003	30805	CA	2003-	24184	443		2	00302	204	
AU	20032004	24		A1	2003	0821	AU	2003-	20042	24		2	00302	205	
US	20031754	01		A1	2003	0918	US	2003-	35833	35		20	00302	205	<
US	6998050			B2	2006	0214									
PRIORIT	Y APPLN.	INFO	. :				JP	2002-	28370	0	1	A 20	00202	205	
							JP	2002-	2837:	1	1	A 20	00202	205	

AB The present invention provides a **method** of treating fats and oils containing low concentration aromatic halogen compds. which could remove the aromatic

halogen compound contaminant efficiently from the oil and fats. The fats and oils are treated with an adsorbing agent comprising a porous body and a non-protonic polar solvent held in the interiors of fine pores in the porous body, with contaminated fats and oils containing organic pollutants, and adsorbing the pollutants in the non-protonic polar solvent in the porous body. The other method of treating fats and oils is comprising an adsorbing step of contacting fats and oils containing aromatic halogenated compds. With an adsorbing agent comprising a solid acid to adsorb the aromatic halogenated compds. Onto the adsorbing agent, and a step of contacting the adsorbing agent with an organic solvent to extract the aromatic halogenated compds. Adsorbed on the adsorbing agent into the organic solvent.

IT 872-50-4, N-Methyl-2-pyrrolidone, uses

RL: NUU (Other use, unclassified); USES (Uses)

(as non-protonic polar solvent held in porous body; methods

for removing persistent organic pollutants efficiently from oils and fats)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 10 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:335450 HCAPLUS

DOCUMENT NUMBER: 138:330011

TITLE: Polishing compound, method for production

thereof, and polishing method

INVENTOR(S): Takemiya, Satoshi; Nakazawa, Norihito; Kon, Yoshinori PATENT ASSIGNEE(S): Asahi Glass Company, Limited, Japan; Seimi Chemical

Co., Ltd.

SOURCE: PCT Int. Appl., 29 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

```
PATENT NO.
                                                APPLICATION NO.
                           KIND
                                   DATE
                                                                          DATE
     -----
                                                -----
                           ----
                                   _____
     WO 2003036705
                                   20030501
                                               WO 2002-JP10996
                            A1
                                                                          20021023
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
              GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL,
              PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA,
              UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
          RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
              KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
              FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,
              CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
     EP 1445796
                            A1
                                   20040811
                                               EP 2002-770253
              AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
              IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK
                                   20041007
                                                US 2004-831618
     US 2004194392
                            A1
                                                                          20040426 <--
PRIORITY APPLN. INFO.:
                                                JP 2001-329148
                                                                      A 20011026
                                                JP 2001-353207
                                                                          20011119
                                                                      W
                                                WO 2002-JP10996
                                                                          20021023
AB
     A method for producing a polishing compound is described, which
```

AB A method for producing a polishing compound is described, which comprises dissolving a heterocyclic benzene compound such as benzotriazole in ≥1 organic solvents selected from the group consisting of a primary alc. having 1-4 C atoms, a glycol having 2-4 C atoms, an ether represented by CH3CH(OH)CH2OCmH2m+1, where m is an integer of 1-4, N-methyl-2-pyrrolidone, DMF, DMSO, γ-butyrolactone and propylene carbonate, and then mixing the resulting solution with an aqueous dispersion of fine oxide particles as abrasive grains. A polishing compound produced by the method is also described. The use of the polishing compound for polishing a substrate having an insulating film and, formed thereon, a wiring metal film and a barrier film gives an embedded wiring being reduced in dishing, in erosion, and in scratch, with high polishing speed.

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 11 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:58638 HCAPLUS

DOCUMENT NUMBER:

138:116379

TITLE:

Jetting behavior in the laser forward transfer of

rheological systems

INVENTOR(S):

Young, Henry Daniel; Auyeung, Raymond C. Y.;

Ringeisen, Bradley R.; Chrisey, Douglas B.; Dlott,

Dana D.

PATENT ASSIGNEE(S):

The United States of America as represented by the

10791982.trn

Page 19

Secretary of the Navy, USA

SOURCE: U.S. Pat. Appl. Publ., 16 pp., Cont.-in-part of U.S.

Pat. Appl. 2002 197,401.

CODEN: USXXCO

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
US 2003017277 US 6815015	A1 B2	20030123	US 2002-237072		20020909 <
US 6177151 US 6766764	B1 B1	20010123	US 1999-318134 US 2000-671166		19990525 < 20000928 <
US 2002122898 · US 6905738	A1 B2	20020905 20050614	US 2002-68315		20020208 <
US 2002197401	A1	20021226	US 2002-141820		20020510 <
US 6805918 PRIORITY APPLN. INFO.:	B2	20041019	US 1999-117468P	P	19990127
			US 1999-318134 US 2000-671166		19990525 20000928
			US 2001-327733P US 2002-68315	P A2	20011004 20020208
			US 2002-141820 US 2001-269384P	A2 P	20020510 20010220
			US 2001-290400P	P	20010511

The invention relates generally to a laser transfer method for AΒ the deposition of a jet of a rheol. fluid or system onto a substrate. A method is presented for laser transfer and deposition of a rheol. fluid in which laser energy strikes a target substrate comprising a rheol. fluid, causing a portion of the rheol. fluid to evaporate and propel a jet of non-evaporated rheol. fluid onto a receiving substrate. It is an object of the invention to provide methods for depositing a rheol. fluid on a receiving substrate using a laser forward transfer apparatus that can produce a pattern with a resolution on the order of a few microns. It is a further object of the invention that the method use laser fluences lower than that required by other laser transfer methods It is a further object of the invention that the method allow for higher d. and linewidth definition in the transferred material. It is a further object of the invention to provide a method that produces jetting behavior in the transferring rheol. fluid. It is a further object of the invention to use jetting to produce an area of deposit much smaller than the area of the incident laser energy. and other objects of the invention are accomplished by a method for laser deposition comprising the steps of: providing a receiving substrate; providing a target substrate; in which the target substrate comprises a laser-transparent support coated with a coating on a surface facing the receiving substrate; and exposing the coating to laser energy through the laser-transparent support at a defined target location comprising a rheol. fluid to evaporate a portion of the rheol. fluid adjacent to the laser-transparent support at the defined target location; in which the laser energy has a laser fluence that is chosen to cause jetting behavior in the non-evaporated rheol. fluid; in which the non-evaporated rheol. fluid at the defined target location is propelled by the evaporated rheol. fluid away from the laser-transparent support and toward the receiving substrate; and in which the non-evaporated rheol. fluid is deposited at a defined receiving location on the receiving substrate to form a deposit. IT872-50-4, 1-Methyl-2-pyrrolidinone, uses

RL: TEM (Technical or engineered material use); USES (Uses) (coating material; jetting behavior in laser forward transfer of rheol. systems)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 12 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:978354 HCAPLUS

DOCUMENT NUMBER:

138:64738

TITLE:

Laser forward transfer of rheological systems

INVENTOR (S):

Auyeung, Raymond C. Y.; Pique, Alberto; Young, Henry

Daniel; Modi, Rohit; Wu, Huey-daw; Chrisey, Douglas B.; Fitz-Gerald, James M.; Ringeisen, Bradley R.

PATENT ASSIGNEE(S):

The United States of America as represented by the

Secretary of the Navy, USA

SOURCE:

U.S. Pat. Appl. Publ., 12 pp., Cont.-in-part of U.S.

Ser. No. 68,315. CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002197401	A1	20021226	US 2002-141820	20020510 <
US 6805918	B2	20041019		
US 6177151 ,	B1	20010123	US 1999-318134	19990525 <
US 6766764	B1	20040727	US 2000-671166	20000928 <
US 2002122898	A1	20020905	US 2002-68315	20020208 <
US 6905738	B2	20050614		
US 2003017277	A1	20030123	US 2002-237072	20020909 <
US 6815015	B2	20041109		
PRIORITY APPLN. INFO.:			US 1999-318134	A3 19990525
			US 2000-671166	A2 20000928
			US 2001-290400P	P 20010511
			US 2002-68315	A2 20020208
			US 1999-117468P	P 19990127
			US 2001-269384P	P 20010220
			US 2001-327733P	P 20011004
			US 2002-141820	A2 20020510

This invention describes a method for laser transfer and AB deposition of a rheol. fluid wherein laser energy strikes a target substrate comprising a rheol. fluid, causing a portion of the rheol. fluid to evaporate and propel nonevapd. rheol. fluid onto a receiving substrate.

IT 872-50-4, 1-Methyl-2-pyrrolidinone, uses

RL: TEM (Technical or engineered material use); USES (Uses)

(coating; deposition of rheol. systems on substrate using laser induced

forward transfer method)

872-50-4 HCAPLUS RN

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 13 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:978171 HCAPLUS

DOCUMENT NUMBER:

138:42062

TITLE:

Method for producing composite material

comprising quinoxaline based polymer for battery

electrodes

INVENTOR (S):

Takeuchi, Masataka; Yasuda, Hiroshi; Mizuguchi, Junko

PATENT ASSIGNEE(S): Showa Denko K.K., Japan SOURCE: PCT Int. Appl., 95 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.			KIND DATE		APPLICATION NO.					DATE								
	2002 2002				A 1			1227	1		2002-				2	0020	511	
		CO, GM, LU, RO, US,	CR, HR, LV, RU, UZ,	CU, HU, MA, SD, VN,	CZ, ID, MD, SE, YU,	DE, IL, MG, SG, ZA,	DK, IN, MK, SI, ZM,	DM, IS, MN, SK, ZW	DZ, KE, MW, SL,	EC KG MX TJ	, BG, , EE, , KR, , MZ, , TM,	ES, KZ, NO, TN,	FI, LC, NZ, TR,	GB, LK, OM, TT,	GD, LR, PH, TZ,	GE, LS, PL, UA,	GH, LT, PT, UG,	
	RW:	KG, GR,	KZ, IE,	MD, IT,	RU, LU,	TJ, MC,	TM,	AT, PT,	BE, SE,	CH TR	, TZ, , CY, , BF,	DE,	DK,	ES,	FI,	FR,	GB,	
TW	2003 5488 2004	0683 67	07		A2 B		2003 2003	0307 0821	,	JP : TW :	2002-: 2002-: 2003-	9111	1891		2		503	<
PRIORIT							2001	0	1	JP : JP : JP : US : US :	2001- 2001- 2001- 2001- 2001- 2001- 2001- 2002-	18006 18006 18006 29888 29888	57 58 59 30P 31P	1 1 1 1 1	A 20 A 20 A 20 P 20 P 20 P 20	00106 00106 00106 00106 00106	514 514 514 519 519	
AB The	a nre	sent	inv	ent i	חר די	ala+	es t	.			2002 - c				<i>N</i> 2	00206	511	

The present invention relates to a method for producing a polymer/conductive carbon composite electrode comprising dehydration condensation polymerization of a tetramine derivative and a tetracarbonyl compound in

04/09/2006

10791982.trn

the presence of an elec. conductive carbon material. The synthesized polymer comprises quinoxaline structural units such as polyphenyl quinoxaline and serves as an active material having proton conductivity. The composite material for electrode obtained by the method has a large capacity of inserting/releasing a proton and excellent in durability. An electrode comprising the composite material and a secondary battery comprising the electrode is excellent in safety and reliability high-speed current characteristics, has a longer life and a larger gravimetric energy d.

IT 872-50-4, n-Methylpyrrolidone, uses

RL: TEM (Technical or engineered material use); USES (Uses) (method for producing composite material comprising quinoxaline based polymer for battery electrodes)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 14 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

8

ACCESSION NUMBER:

2002:866668 HCAPLUS

DOCUMENT NUMBER:

137:360350

TITLE:

Liquid composition for forming a colored portion for

ink jet recording method and ink jet

recording apparatus

INVENTOR(S):

Tomioka, Hiroshi; Kurabayashi, Yutaka; Kato, Masao;

Endo, Makiko

PATENT ASSIGNEE(S):

Canon Kabushiki Kaisha, Japan

SOURCE:

Eur. Pat. Appl., 55 pp.

DOCUMENT TYPE:

CODEN: EPXXDW Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

	PAT	ENT :	NO.			KIN)	DATE		AP	PLIC	CATION	NO.		DATE		
							-	- 									
	EP	1256	459			A2		2002	1113	EP	200	02-1044	5		2002050	80	
	EP	1256	459			A 3		2003	0514								
		R:	AT,	ΒE,	CH,	DE,	DK,	ES,	FR,	GB, GI	٦, ١	IT, LI,	LU, N	L, SE	E, MC, I	₽Т,	
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY, Al	٦, J	ΓR					
	US	2003	0705	81		A1		2003	0417	US	200	02-1363	53		2002050)2 <	<u>-</u>
	US	6821	328			B2		2004	1123								
	CA	2384	632			AA		2002	1110	CA	200	02-2384	632		2002050)3	
	CN	1385	478			Α		2002	1218	CN	200	02-1192	52		2002051	LO	
	JP	2003	0483	67		A2		2003	0218	JP	200	02-1348	53		2002051	LO	
PRIO:	RITY	APP:	LN.	INFO	. :					JP	200	01-1404	41	Α	2001051	10	
AB	The	pre	sent	inv	entio	on re	elat	es t	o a 3	liquid	CON	npositi	on for	use	in form	ning a	a
	col	ored	por	tion	by :	impaı	cting	git	toge	ether v	vith	n an in	k conta	ainir	ng a col	lorant	t to
	a r	ecor	ding	med:	ium.	The	e li	quid	COM	ositio	on i	include	s at le	east	a solve	ent ar	nd
fine								-	_								

particles reactive with the colorant and, in which the fine particles in the liquid composition have an average particle diameter in a range of $30-200\,\mathrm{nm}$, and a

10% cumulative value of scattering intensity of \geq 10 nm and 90% cumulative value of scattering intensity of \leq 300 nm, when measured by a dynamic light scattering method.

IT 872-50-4, N-Methylpyrrolidone, uses

RL: TEM (Technical or engineered material use); USES (Uses)

(liquid composition for ink jet recording method and apparatus containing) RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 15 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:172363 HCAPLUS

DOCUMENT NUMBER:

136:225722

TITLE:

Low dielectric composite with nano magnetic particles

and its manufacturing method for

semiconductor device or optical device

INVENTOR (S):

Park, Chan Eon; Kang, Jin-ho

PATENT ASSIGNEE(S):

Pohang University of Science and Technology

Foundation, S. Korea

2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

SOURCE:

U.S. Pat. Appl. Publ., 10 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE					
	US 2002027262 US 6849926	A1 B2	20020307	US 2001-839594		20010423 <					
	KR 2001097506	A	20050201	KR 2000-21639		20000424					
PRIO	RITY APPLN. INFO.:			KR 2000-21639	А						
AB				particles is provided							
	dielec. constant, excellent thermal and mech. properties and low tendency to										
	absorb moisture. The composite includes nano magnetic particles in a dielec. matrix. The matrix is made of an inorg. material such as SiO2,										
	alumina or hydrogen silsesquioxane, or an organic material such as										
				PMMA) or Me silsesqu							
	magnetic particles	consist	of (y-Fe20	03), Cr oxide (CrO2)	, Eu c	oxide (EuO),					
	NiZn-ferrite, MnZn-			Fe garnet or In.		•					
ΙT	872-50-4, N-Methylp										
	RL: NUU (Other use,										
D.1	(in preparation	ot magn	etic nanopa	articles)							
RN	872-50-4 HCAPLUS										

REFERENCE COUNT:

14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 16 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:107934 HCAPLUS

DOCUMENT NUMBER:

136:151002

TITLE:

Palladium catalyzed cross coupling of aryl chlorides with aryl boronic acids to give biaryl compounds

INVENTOR(S):

Sun, Yongkui; Leblond, Carl; Sowa, John R.

PATENT ASSIGNEE(S):

SOURCE:

U.S. Pat. Appl. Publ., 7 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English .

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002016512 PRIORITY APPLN. INFO.:	A1	20020207	US 2001-906244 US 2000-218990P P	20010716 < 20000717

OTHER SOURCE(S):

CASREACT 136:151002

A method of Pd catalyzed cross coupling of aryl and heteroaryl chlorides with boronic acids to give biaryls is described. Thus, 4-chloroanisole underwent cross-coupling with phenylboronic acid in the presence of 5 weight % Pd on carbon to give 33% 4-phenylanisole.

TΤ 872-50-4, uses

RL: NUU (Other use, unclassified); USES (Uses) (palladium catalyzed cross coupling of aryl chlorides with aryl boronic acids to give biaryl compds.)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 17 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1992:257474 HCAPLUS

DOCUMENT NUMBER:

116:257474

TITLE:

Methods and compositions for corrosion

protection of metals by means of waterborne polymeric

films

INVENTOR(S):

Muller, Frank A.; Zaelke, Arnold E. Atochem North America, Inc., USA

PATENT ASSIGNEE(S): SOURCE:

U.S., 4 pp. Cont.-in-part of U.S. Ser. No. 679,879,

10791982.trn

Page 25

04/09/2006

10791982.trn

abandoned. CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5085696	Α	19920204	US 1991-735481	19910725 <
AU 9182702	A1	19920305	AU 1991-82702	19910826
JP 04234463	A2	19920824	JP 1991-238886	19910827
DE 4128572	A1	19920305	DE 1991-4128572	19910828
FR 2666341	A1	19920306	FR 1991-10688	19910828
NL 9101457	Α	19920316	NL 1991-1457	19910828
BR 9103698	Α	19920519	BR 1991-3698	19910828
PRIORITY APPLN. INFO.:			US 1990-575042	32 19900819
			US 1991-679879	32 19910403
			US 1991-735481	A 19910725

AB Anticorrosion emulsion compns. comprise acrylic resin 30-90, water-soluble blocked Zr catalyst 1-5%, n-PrOH- or iso-PrOH- or glycol ether- or N-methylpyrrolidone(I)-H2O mixture in 3-20:8-55, and corrosion additive 0.3-3%. Thus, a formulation of Rhoplex AC 1803 (acrylic resin) 60, H2O 28.89, Bacote 20 (ammonium zirconium carbonate solution) 2.5, Na 2-mercaptobenzothiazole 1.1, triethanolamine phosphate 0.03, I 5.0, iso-PrOH 2.4, Me Parasept 0.01, 2,2'-methylenebis(4-methyl-6-tertbutylphenol) 0.05, and Pluronic L61 0.02% gave Al panels with protective films which passed the 168 h salt spray test (ASTM-B-117-73).

872-50-4, uses ΙT

RL: USES (Uses)

(mixture with water, to thicken acrylic anticorrosive coatings for aluminum)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 18 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1988:97713 HCAPLUS

DOCUMENT NUMBER:

108:97713

TITLE:

A method of removing impurities from

N-methylpyrrolidone used for solvent extraction of

lube oil fractions using activated alumina

INVENTOR(S):

Krupay, Bordan Walter; Reid, Lloyd E. Exxon Research and Engineering Co., USA

PATENT ASSIGNEE(S): SOURCE:

Eur. Pat. Appl., 15 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

04/09/2006

10791982.trn

PATENT NO. KIND DATE APPLICATION	NO. DATE
EP 251517 A2 19880107 EP 1987-3050	19870605
EP 251517 A3 19890208	
EP 251517 B1 19920115	
R: DE FR, GB, IT	
4837338 A 19890606 US 1986-8744	19860616 <
CA 1300163 A1 19920505 CA 1987-5384	19870601
JP 63002974 A2 19880107 JP 1987-1483	153 19870616
JP 07098799 B4 19951025	
PRIORITY APPLN. INFO.: US 1986-8744	474 A 19860616

AB N-Methylpyrrolidone solvent used to extract aromatic components from lubricating

oil distillates is purified by contacting the solvent with activated Al203 which has been water-washed to remove any Na oxide present. The activated Al203 is washed until the elec. conductivity of the wash water is reduced to apprx.100 $\mu mho/cm$. Contact between the solvent and water-washed activated Al203 occurs at 10-200° and 0.2-20 h-1 liquid space velocity.

IT 872-50-4P, N-Methylpyrrolidone, uses and miscellaneous RL: PREP (Preparation); USES (Uses)

(extraction solvent, spent, for lubricating oils, purification of, by activated

alumina)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

L12 ANSWER 19 OF 19 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1977:452920 HCAPLUS

DOCUMENT NUMBER: 87:52920

TITLE: Adsorbent treating method

INVENTOR(S): Ward, Dennis J.; Winter, George R., III

PATENT ASSIGNEE(S): UOP Inc., USA SOURCE: U.S., 6 pp. CODEN: USXXAM

DOCUMENT TYPE: Patent

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

200	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
	<u> US-40082</u> 89	A	19770215	US 1975-594142		19750707 <
	GB 1591891	Α	19810701	GB 1977-1876		19770118
	SU 1153813	A3	19850430	SU 1977-2446253		19770131
PRIC	ORITY APPLN. INFO.:			US 1975-594142	Α	19750707

AB A method is described for removing adsorbed material from solid adsorbents, e.g., Al2O3 and silica gel, used to treat liquid hydrocarbons, which comprises the steps of (1) withdrawing liquid hydrocarbon stream from fractionating column, (2) vaporizing this stream, (3) superheating the

vapor stream, (4) contacting the solid adsorbent with the vapor stream to remove the adsorbed material, and (5) returning the vapor stream to the fractionating column as a stripping vapor. Regeneration of Al2O3, in the manufacture of PhEt by alkylation of C6H6 with ethylene in the presence of BF3, is outlined; a flow diagram of the apparatus is given.

IT 872-50-4, uses and miscellaneous

RL: REM (Removal or disposal); PROC (Process)

(removal of, from benzene, regeneration of silica gel adsorbent in)

RN 872-50-4 HCAPLUS

CN 2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI) (CA INDEX NAME)

=> S N-METHYL-2-PYRROLIDONE

2899070 N

961496 METHYL

656 METHYLS

961896 METHYL

(METHYL OR METHYLS)

907078 ME

10305 MES

913444 ME

(ME OR MES)

1547974 METHYL

(METHYL OR ME)

8697223 2

21297 PYRROLIDONE

721 PYRROLIDONES

21527 PYRROLIDONE

(PYRROLIDONE OR PYRROLIDONES)

L13 6896 N-METHYL-2-PYRROLIDONE

(N(W)METHYL(W)2(W)PYRROLIDONE)

=> S L13 AND METHOD

3063104 METHOD

1257261 METHODS

3966482 METHOD

(METHOD OR METHODS)

L14 939 L13 AND METHOD

=> S L14 AND ALUMINA

279219 ALUMINA

2515 ALUMINAS

279493 ALUMINA

(ALUMINA OR ALUMINAS)

L15 20 L14 AND ALUMINA

=> S L15 AND ISOBUTYLENE

19192 ISOBUTYLENE

112 ISOBUTYLENES

19230 ISOBUTYLENE

10791982.trn

Page 28

(ISOBUTYLENE OR ISOBUTYLENES)

L16

1 L15 AND ISOBUTYLENE

=> d l16 ibib abs hitstr tot

L16 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:985345 HCAPLUS

DOCUMENT NUMBER:

143:288367

TITLE:

Method for purifying

methyl-2-pyrrolidene by

treatment with an alumina adsorbent Kahn, Andrew P. Weir, Thomas W.

PATENT ASSIGNEE(S): USA

INVENTOR (S): SOURCE:

U.S. Pat. App. Publ., 5 pp. CODEN: USXXCO

Pätent

DOCUMENT TYPE: LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
US 2005197502	A1 20056	9908US 2004-791982	20040303
WO 2005092851		L006 WO 2005-US3202	20050203
		AZ, BA, BB, BG, BR, BW,	
CN, CO, CR,	CU, CZ, DE,	DK, DM, DZ, EC, EE, EG,	ES, FI, GB, GD,
		IL, IN, IS, JP, KE, KG,	
LK, LR, LS,	LT, LU, LV,	MA, MD, MG, MK, MN, MW,	MX, MZ, NA, NI,
		PT, RO, RU, SC, SD, SE,	
		TZ, UA, UG, UZ, VC, VN,	
		MZ, NA, SD, SL, SZ, TZ,	
		TJ, TM, AT, BE, BG, CH,	
		HU, IE, IS, IT, LT, LU,	
RO, SE, SI,	SK, TR, BF,	BJ, CF, CG, CI, CM, GA,	GN, GQ, GW, ML,
MR, NE, SN,	TD, TG		

PRIORITY APPLN. INFO.:

US 2004-791982

A 20040303

A method for purifying N-methyl-2pyrrolidone (I) comprises treating the I with an alumina that desorbs <100 µmol/g of isobutylene between 225-400° in a standard tert-Bu alc. dehydration test. The method enables the removal of at least about 80% of amine impurities or ≥60% of the APHA color from the I at 4 bed vols.

treated.

=> d l15 ibib abs tot

L15 ANSWER 1 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:985345 HCAPLUS

DOCUMENT NUMBER:

143:288367

TITLE:

Method for purifying Nmethyl-2-pyrrolidone by

treatment with an alumina adsorbent

Kahn, Andrew P.; Weir, Thomas W. USA INVENTOR(S):

PATENT ASSIGNEE(S):

SOURCE:

U.S. Pat. Appl. Publ., 5 pp.

CODEN: USXXCO

DOCUMENT TYPE: LANGUAGE:

Patent

English

10791982.trn

Page 29

04/09/2006

10791982.trn

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND DA	TE A	APPLICATION NO.	DATE
US 2005197502	A1 200	050908, U	IS 2004-791982	20040303
WO 2005092851	A1 250	051006 W	O 2005-US3202	20050203
W: AE, AG, AL,	AM, AT, AU	U, AZ, BA,	BB, BG, BR, BW,	BY, BZ, CA, CH,
CN, CO, CR,	CU, CZ, DI	E, DK, DM,	DZ, EC, EE, EG,	ES, FI, GB, GD,
GE, GH, GM,	HR, HU, II	D, IL, IN,	IS, JP, KE, KG,	KP, KR, KZ, LC,
LK, LR, LS,	LT, LU, L	V, MA, MD,	MG, MK, MN, MW,	MX, MZ, NA, NI,
NO, NZ, OM,	PG, PH, PI	L, PT, RO,	RU, SC, SD, SE,	SG, SK, SL, SM,
SY, TJ, TM,	TN, TR, T	T, TZ, UA,	UG, UZ, VC, VN,	YU, ZA, ZM, ZW
RW: BW, GH, GM,	KE, LS, MV	W, MZ, NA,	SD, SL, SZ, TZ,	UG, ZM, ZW, AM,
AZ, BY, KG,	KZ, MD, RI	U, TJ, TM,	AT, BE, BG, CH,	CY, CZ, DE, DK,
EE, ES, FI,	FR, GB, GI	R, HU, IE,	IS, IT, LT, LU,	MC, NL, PL, PT,
RO, SE, SI,	SK, TR, BI	F, BJ, CF,	CG, CI, CM, GA,	GN, GQ, GW, ML,
MR. NE. SN.	TD. TG			

PRIORITY APPLN. INFO.:

US 2004-791982

A 20040303

AB A method for purifying N-methyl-2-

pyrrolidone (I) comprises treating the I with an alumina that desorbs <100 μ mol/g of isobutylene between 225-400° in a standard tert-Bu alc. dehydration test. The method enables the removal of at least about 80% of amine impurities or \geq 60% of the APHA color from the I at 4 bed vols. treated.

L15 ANSWER 2 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:5419 HCAPLUS

DOCUMENT NUMBER:

142:356223

TITLE:

Method for preparing nano Al203

SiO2-polysulfone composite film with mesophase

structure

INVENTOR(S):

Zhang, Yuqing; Chen, Chao; Zhu, Yonqjun; Qin, Shulan;

Xu, Qiang; Hu, Chunping

PATENT ASSIGNEE(S):

Tianjin University, Peop. Rep. China; Guozhong Aihua

Tianjin Civil Environmental Engineering Co., Ltd. Faming Zhuanli Shenging Gongkai Shuomingshu, 5 pp.

CODEN: CNXXEV

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

Chinese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CN 1478590	A	20040303	CN 2003-130377	20030709
PRIORITY APPLN. INFO	O.:		CN 2003-130377	20030709
AB The method com	prises mixir	ng polysulfo	ne with a hole-forming	

AB The method comprises mixing polysulfone with a hole-forming agent (at a ratio of 0.2-0.5) at 20-65° in organic solvent for 4-15 h to obtain solution I; treating 1-200 nm Al2O3 SiO2 powder with a surface activating agent (at a ratio of 0.2-0.8) at 18-30° for 8-48 h, dispersing in organic solvent under ultrasonic vibration for 10-30 min, mixing with solution I at a ratio of Al2O3 SiO2 to polysulfone of 0.1-0.5, defoaming for 20-30 h, and film forming. The organic solvent is DMF, DMA, or N-methyl-2-pyrrolidone. The

hole-forming agent is polyvinylpyrrolidone, polyethylene glycol, acetone, or chloroform. The surface activating agent is polydiethylsilane, polydimethylsilane, titanate ester, stearic acid, Na stearate, etc.

L15 ANSWER 3 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:517665 HCAPLUS

DOCUMENT NUMBER: 141:211183

TITLE: Towards single step production of multi-layer

inorganic hollow fibers

AUTHOR (S): De Jong, J.; Benes, N. E.; Koops, G. H.; Wessling, M.

CORPORATE SOURCE: Membrane Technology Group, Faculty of Science and

Technology, University of Twente, Enschede, NL-7500

AE, Neth.

SOURCE: Journal of Membrane Science (2004), 239(2), 265-269

CODEN: JMESDO; ISSN: 0376-7388

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

In this work we propose a generic synthesis route for the single step production of multi-layer inorg. hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes

with a high surface area per unit volume ratio can be produced, while production

time and costs are dramatically reduced. The proof-of-principle of the concept will be demonstrated with the production of double layer α alumina hollow fibers. Although various problems were anticipated at the interface of the layers, the adhesion between the two layers is surprisingly good, both in the precursor and the sintered fiber. Produced fibers show an asym. structure with a porosity 37-45%. The macrostructure of the sintered fiber is largely determined by the macrostructure of the precursor fiber, while differences in microstructure disappear during the heat treatment step. The proposed method is not limited to α - alumina membranes; in principle many ceramic or metallic powders may be used. This means that this method can open up the way for a new generation of membranes.

L15 ANSWER 4 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:760006 HCAPLUS

DOCUMENT NUMBER: 140:410762

TITLE: Preparation of porous aluminium oxide (Al2O3) hollow

fibre membranes by a combined phase-inversion and

sintering method

AUTHOR (S): Liu, Shaomin; Li, K.; Hughes, R.

Institute of Environmental Science and Engineering, CORPORATE SOURCE:

Singapore, 637723, Singapore

SOURCE: Ceramics International (2003), 29(8), 875-881

CODEN: CINNDH; ISSN: 0272-8842

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

Al203 hollow fiber membranes were prepared by a combined phase-inversion and sintering method. An organic binder solution (dope) containing suspended aluminum oxide (Al203) powders, either in mono size or a distributed size, is spun to a hollow fiber precursor, which is then sintered at elevated temps. In spinning the hollow fiber precursor, polyethersulfone (PESf), N-methyl-2-pyrrolidone (NMP) and

polyvinyl pyrrolidone (PVP) were used as a polymer binder, a solvent and an additive, resp. The Al2O3 hollow fiber membranes prepared were characterized by SEM and gas permeation techniques. Effects of Al203 particle size and size distribution, the sintering temperature and Al2O3/PESf ratio on the structure and performance of the resulting membranes were studied extensively. The prepared Al2O3 hollow fiber membranes retains its asym. structure (mainly resulted from the phase inversion technique) even

after the sintering process. Preparation of the Al2O3 hollow fiber membrane with a high mech. strength and moderate permeation characteristics is feasible if the Al2O3 powders with a distributed particle size in the spinning (dope) solution is employed.

REFERENCE COUNT:

THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 5 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:609488 HCAPLUS

DOCUMENT NUMBER:

139:137938

TITLE:

Method of treating fats and oils

INVENTOR(S):

Nakajoh, Katsuhiko; Muramatsu, Takehiko; Maezawa,

Yukishige; Kon, Masao; Todoroki, Tomohiro; Nishizawa,

Katsushi; Ohara, Atsushi

PATENT ASSIGNEE(S):

Kabushiki Kaisha Toshiba, Japan

SOURCE:

Eur. Pat. Appl., 16 pp.

CODEN: EPXXDW

DOCUMENT TYPE: LANGUAGE: Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1332774	A2	20030806	EP 2003-250743	20030205
EP 1332774	A3	20031217		
			, GR, IT, LI, LU, NL	
IE, SI, LT,	LV, FI	, RO, MK, CY	, AL, TR, BG, CZ, EE	, HU, SK
JP 2003225507	A2	20030812	JP 2002-28370	20020205
JP 2003225504	A2	20030812	JP 2002-28371	20020205
CA 2418443	AA	20030805	CA 2003-2418443	20030204
AU 2003200424	A1	20030821	AU 2003-200424	20030205
US 2003175401	A1	20030918	US 2003-358335	20030205
US 6998050	B2	20060214		
PRIORITY APPLN. INFO.:			JP 2002-28370	A 20020205
			JP 2002-28371	A 20020205

AB The present invention provides a **method** of treating fats and oils containing low concentration aromatic halogen compds. which could remove the aromatic

halogen compound contaminant efficiently from the oil and fats. The fats and oils are treated with an adsorbing agent comprising a porous body and a non-protonic polar solvent held in the interiors of fine pores in the porous body, with contaminated fats and oils containing organic pollutants, and adsorbing the pollutants in the non-protonic polar solvent in the porous body. The other method of treating fats and oils is comprising an adsorbing step of contacting fats and oils containing aromatic halogenated compds. With an adsorbing agent comprising a solid acid to adsorb the aromatic halogenated compds. onto the adsorbing agent, and a step of contacting the adsorbing agent with an organic solvent to extract the aromatic halogenated compds. adsorbed on the adsorbing agent into the organic solvent.

L15 ANSWER 6 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:495919 HCAPLUS

DOCUMENT NUMBER:

139:248942

TITLE:

Preparation TiO2/Al2O3 composite hollow fibre

membranes

AUTHOR (S):

Liu, Shaomin; Li, K.

CORPORATE SOURCE:

Institute of Environmental Science and Engineering,

Singapore, 637723, Singapore

10791982.trn

Page 32

SOURCE: Journal of Membrane Science (2003), 218(1-2), 269-277

CODEN: JMESDO; ISSN: 0376-7388

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

AB Aluminum oxide (Al2O3) hollow fibers were prepared by a combined phase inversion/sintering method. An organic binder solution (dope) containing suspended Al2O3 powders is spun into a hollow fiber precursor, which is then sintered at elevated temps. In spinning the hollow fiber precursor, polyethersulfone (PESf), N-methyl-2-

pyrrolidone (NMP) and polyvinylpyrrolidone (PVP) were used as a polymer binder, a solvent and an additive, resp. The prepared Al2O3 hollow fiber membranes with suitable surface roughness were then used as substrates for the fabrication of porous or dense TiO2/Al2O3 composite membranes via direct deposition using an aqueous solution containing titanium tetrafluoride. The prepared Al2O3 substrates and the TiO2/Al2O3 composite hollow fiber membranes were characterized by SEM, X-ray diffraction (XRD) and gas permeation techniques. The results indicate that TiO2-based hollow fiber membranes, consisting of small anatase nano-particles, exhibit excellent adhesion to the outside surface of the tailor-made Al2O3 hollow fiber substrates.

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 7 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:335450 HCAPLUS

DOCUMENT NUMBER: 138:330011

TITLE: Polishing compound, method for production

thereof, and polishing method

INVENTOR(S): Takemiya, Satoshi; Nakazawa, Norihito; Kon, Yoshinori PATENT ASSIGNEE(S): Asahi Glass Company, Limited, Japan; Seimi Chemical

Co., Ltd.

SOURCE: PCT Int. Appl., 29 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

	PAT	CENT 1	NO.			KIN	D :	DATE			APPI	LICAT	ION	NO.		D	ATE	
	WO	2003	0367	05		A1	_	2003	0501	1	WO 2	2002-	JP10:	996		2	0021	023
		W:										BG,						
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
												KG,						
												MX,						
												TJ,						
								ΥU,									·	·
		RW:	GH,	GM,	KE,	LS,	MW,	ΜZ,	SD,	SL,	SZ,	TZ,	ŪĠ,	ZM,	ZW,	AM,	AZ,	BY,
												CH,						
												PT,						
			CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG		•	·
	EΡ	1445										2002-				2	0021	023
		R:	AT,	ΒE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	SK		
,	US	2004	1943	92		A1	:	2004:	1007	į	JS 2	004-	8316	18		20	00404	126
PRIOR	IΤ	APPI	LN.	INFO	. :						JP 2	001-	32914	48	I	A 20	0011	026
											JP 2	001-	3532	07	I	A 20	0011	119
										1	NO 2	002-	JP109	996	V	V 20	0021	023

A method for producing a polishing compound is described, which comprises dissolving a heterocyclic benzene compound such as benzotriazole in ≥1 organic solvents selected from the group consisting of a primary alc. having 1-4 C atoms, a glycol having 2-4 C atoms, an ether represented by CH3CH(OH)CH2OCmH2m+1, where m is an integer of 1-4, Nmethyl-2-pyrrolidone, DMF, DMSO,

 γ -butyrolactone and propylene carbonate, and then mixing the resulting solution with an aqueous dispersion of fine oxide particles as abrasive

grains. A polishing compound produced by the method is also described. The use of the polishing compound for polishing a substrate having an insulating film and, formed thereon, a wiring metal film and a barrier film gives an embedded wiring being reduced in dishing, in erosion, and in scratch, with high polishing speed.

REFERENCE COUNT:

THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 8 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

6

ACCESSION NUMBER:

2002:747917 HCAPLUS

DOCUMENT NUMBER:

137:279963

TITLE:

Oxide filler-containing slurry composition

INVENTOR (S):

Sakai, Takenobu; Abe, Akira; Yang, Wu

PATENT ASSIGNEE(S):

Toyota Motor Corp., Japan; Admatechs Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002285003	A2	20021003	JP 2001-85650	20010323
PRIORITY APPLN. INFO.:			JP 2001-85650	20010323
AB Title slurry compos	ition	is obtained	by dispersing a filler	(silica) in an
organic				

solvent and is useful in preparing a filler-containing resin composition by dispersing

the slurry in a resin matrix, where the filler is characterized by being oxide particles having a shape approx. to spherical and is produced by VMC (vaporized metal combustion) method. The filler may also be surface-treated and may contain a precipitation-preventing agent.

L15 ANSWER 9 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:868873 HCAPLUS

DOCUMENT NUMBER:

136:9101

TITLE:

Fabrication method for lithium secondary

battery with polymer electrolyte prepared by spray

INVENTOR (S):

Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

PATENT ASSIGNEE(S):

Hyung Sun; Kim, Un Seok

Korea Institute of Science and Technology, S. Korea PCT Int. Appl., 34 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

English

FAMILY ACC. NUM. COUNT:

WO 2001091222 A1 PATENT NO. KIND DATE APPLICATION NO. DATE -----**--**----A1 20011129 WO 2000-KR515 20000522

W: JP, KR, US

PRIORITY APPLN. INFO.: WO 2000-KR515

The present invention provides a lithium secondary battery and its fabrication method. More particularly, the present invention provides a lithium secondary battery comprising a porous polymer electrolyte and its fabrication method, wherein the polymer electrolyte is fabricated by the following process: (a) dissolving at least one polymer with plasticizers and organic electrolyte solvents to obtain at least one polymeric electrolyte solution; (b) adding the obtained polymeric electrolyte solution to a barrel of a spray machine, and (c) spraying the polymeric electrolyte solution onto a substrate using a nozzle to form a porous polymer electrolyte film. The lithium secondary battery of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., and better compatibility with organic electrolytes of a lithium secondary battery.

REFERENCE COUNT:

THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 10 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

10

ACCESSION NUMBER:

2001:868872 HCAPLUS

DOCUMENT NUMBER:

136:9100

TITLE:

A lithium secondary battery comprising composite

polymer electrolyte fabricated by a spray

method

INVENTOR (S):

Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

Hyung Sun; Kim, Un Seok

PATENT ASSIGNEE(S):

Korea Institute of Science and Technology, S. Korea

SOURCE:

PCT Int. Appl., 38 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001091221	A1	20011129	WO 2000-KR514	20000522

W: JP, KR, US

PRIORITY APPLN. INFO.: WO 2000-KR514 20000522

The present invention provides a novel composite polymer electrolyte, lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods. More particularly, the present invention provides the composite polymer electrolyte comprising a porous polymer electrolyte matrix with particles, fibers or mixture thereof having diams. of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. incorporated into the porous polymer matrix. The composite polymer electrolyte of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., better compatibility with organic electrolytes of lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

REFERENCE COUNT:

THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 11 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

12

10791982.trn 04/09/2006

ACCESSION NUMBER: 2001:868871 HCAPLUS

DOCUMENT NUMBER: 136:9099

TITLE: Fabrication of a lithium secondary battery comprising

a hybrid polymer electrolyte prepared by a spray

method

INVENTOR (S): Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

Hyung Sun; Kim, Un Seok

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S. Korea

SOURCE: PCT Int. Appl., 39 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent. English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. DATE KIND APPLICATION NO. DATE ---------20011129 WO 2000-KR513 WO 2001091220 A1 20000522

W: JP, KR, US

PRIORITY APPLN. INFO.: WO 2000-KR513

The present invention provides a novel hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods. More particularly, the present invention provides the hybrid polymer electrolyte comprising a porous polymer matrix with particles, fibers or mixture thereof having diams. of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. incorporated into the porous polymer matrix. The hybrid polymer electrolyte has advantages of better adhesion with electrodes, good mech. strength, better performance at low- and high-temps., better compatibility with organic electrolytes of a lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

REFERENCE COUNT:

12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 12 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:868870 HCAPLUS

DOCUMENT NUMBER:

136:9098

TITLE:

A lithium secondary battery comprising a porous polymer separator film fabricated by a spray

method

INVENTOR(S):

Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

Hyung Sun; Kim, Un Seok

PATENT ASSIGNEE(S):

Korea Institute of Science and Technology, S. Korea

SOURCE:

PCT Int. Appl., 36 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001091219	A1	20011129	WO 2000-KR512	20000522

PRIORITY APPLN. INFO.:

WO 2000-KR512

The present invention provides a lithium secondary battery and its fabrication method. More particularly, the present invention provides a lithium secondary battery comprising a porous polymer separator film and its fabrication method, wherein the porous polymer

separator film is fabricated by the following process: (a) melting at least one polymer or dissolving at least one polymer with an organic solvent to obtain at least one polymeric melt or at least one polymeric solution; (b) adding the obtained polymeric melt or polymeric solution to barrels of a spray machine; and (c) spraying the polymeric melt or polymeric solution onto a substrate using a nozzle to form a porous separator film. The lithium secondary battery of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., and better compatibility with an organic electrolyte solution of a lithium secondary battery.

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 13 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:851557 HCAPLUS

DOCUMENT NUMBER: 135:374196

TITLE: Fabrication of a lithium secondary battery comprising

a superfine fibrous polymer electrolyte

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee, Wha

Seop; Cho, Won Il; Park, Kun You; Kim, Hyung Sun; Kim,

Un Seok; Ko, Seok Ku; Chun, Suk Won; Choi, Sung Won

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S. Korea

SOURCE: PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001089023	A1	20011122	WO 2000-KR501	20000519

W: JP, KR, US

PRIORITY APPLN. INFO.: WO 2000-KR501 20000519

The present invention provides a lithium secondary battery and its fabrication method. More particularly, the present invention provides a lithium secondary battery comprising super fine fibrous porous polymer electrolyte and its preparation method, wherein the polymer electrolyte is fabricated by the following process: (a) dissolving at least one polymer with plasticizers and y organic electrolyte solvents to obtain at least one polymeric electrolyte solution; (b) adding the obtained polymeric electrolyte solution to a barrel of an electrospinning machine; and, (c) electropinning the polymeric electrolyte solution onto a substrate using a nozzle to form a polymer electrolyte film. The lithium secondary battery of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., and better compatibility with organic electrolytes of a lithium secondary battery.

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 14 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:851556 HCAPLUS

DOCUMENT NUMBER: 135:374195

TITLE: Fabrication of a lithium secondary battery comprising

a superfine fibrous polymer separator film

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee, Wha

Seop; Cho, Won Il; Park, Kun You; Kim, Hyung Sun; Kim, Un Seok; Ko, Seok Ku; Chun, Suk Won; Choi, Sung Won

10791982.trn

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S. Korea

SOURCE: . PCT Int. Appl., 34 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	WO 2001089022	 A1	20011122	WO 2000-KR500	20000519
	W: JP, KR, US				
	JP 2003533862	T2	20031111	JP 2001-585344	
PRI	ORITY APPLN. INFO.:			WO 2000-KR500	
AB				ium secondary battery	
	fabrication method	. More	particularl	y, the present invent	ion
	provides a lithium	seconda	ry battery	comprising a super fi	ne fibrous
	porous polymer sepa	arator f	ilm and its	fabrication method,	
				film is fabricated by	the following
				ymer or dissolving at	
	polymer with organ:	ic solve	ents to obta	in at least one polym	meric melt or at
	least one polymeric	soluti	on; (b) add	ing the obtained poly	meric melt or
	polymeric solution	to barr	els of an e	lectrospinning machin	ne: and (c)
	discharging the pol	lymeric	melt or pol	ymeric solution onto	a substrate using a
	nozzle to form a po	rous se	eparator fil	m. The lithium secon	dary battery of
	the present invent:	ion has	the advanta	ges of better adhesic	on with
	electrodes, good me	ech. str	ength bett	er performance at low	and high
	temps. and better	compati	hility with	organic electrolyte	solution of a lithium
	secondary battery.	pa	with	corganic crectionyte	solucion of a lithium
REF		8	THERE ARE A	CITED REFERENCES AVA	TIADIE EOD TUTE
KELI	TURNCE COOMI:	0	THERE ARE 8	CITED REFERENCES AVA	ALLABLE FOR THIS

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 15 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:851555 HCAPLUS

DOCUMENT NUMBER: 135:374194

TITLE: Fabrication of composite polymer electrolyte and a

lithium secondary battery comprising the composite

polymer electrolyte

Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee, Wha INVENTOR (S):

Seop; Cho, Won Il; Park, Kun You; Kim, Hyung Sun; Kim,

Un Seok; Ko, Seok Ku; Choi, Sung Won

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S. Korea;

Chun, Suk Won

PCT Int. Appl., 37 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001089021 W: JP, KR, US	A1	20011122	WO 2000-KR499	20000519

PRIORITY APPLN. INFO.: WO 2000-KR499

The present invention provides a novel composite polymer electrolyte, lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods. More particularly, the present invention provides the composite polymer electrolyte comprising super fine

> fibrous porous polymer electrolyte matrix with particles having diameter of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. incorporated into the porous polymer electrolyte matrix. The composite polymer electrolyte of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., better compatibility with organic electrolytes of lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

REFERENCE COUNT:

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS 8 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 16 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:851554 HCAPLUS

DOCUMENT NUMBER:

135:374193

TITLE:

Fabrication method of lithium secondary battery with hybrid polymer electrolyte

INVENTOR(S):

Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee, Wha Seop; Cho, Won Il; Park, Kun You; Kim, Hyung Sun; Kim, Un Seok; Ko, Seok Ku; Chun, Suk Won; Choi, Sung Won

Korea Institute of Science and Technology, S. Korea

PATENT ASSIGNEE(S):

PCT Int. Appl., 41 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001089020	A1	20011122	WO 2000-KR498	20000519
W: JP, KR, US				
JP 2003533861	T2	20031111	JP 2001-585342	20000519
PRIORITY APPLN. INFO.:			WO 2000-KR498 W	20000519

AB The present invention provides a novel hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte polymer and their fabrication methods. More particularly, the present invention provides the hybrid polymer electrolyte comprising superfine fibrous porous polymer matrix with particles having diameter of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. incorporated into the porous polymer matrix. The hybrid polymer electrolyte has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., better compatibility with organic electrolytes of a lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

REFERENCE COUNT:

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 17 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

8

ACCESSION NUMBER:

1999:314175 HCAPLUS

DOCUMENT NUMBER:

131:129924

TITLE:

An efficient procedure for the synthesis of

spiro[3H-indole-3,4'-(1'H)-pyrano[2,3-c]pyrrole]-5'carbonitriles using solid inorganic supports and

microwave activation

AUTHOR (S):

Dandia, Anshu; Taneja, Harshita; Gupta, Rajive; Paul,

Satya

CORPORATE SOURCE:

Department of Chemistry, University of Rajasthan,

Jaipur, 302 004, India

SOURCE:

Synthetic Communications (1999), 29(13), 2323-2335

10791982.trn

Page 39

CODEN: SYNCAV; ISSN: 0039-7911

PUBLISHER: Marcel Dekker, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 131:129924

GΙ

AB Microwave irradiation accelerates the Michael condensation of 3-dicyanomethylene-2H-indole-2-one I (X = H, Me, Cl) with 2-pyrrolidone/N-methyl-2-pyrrolidone (i) adsorbed

on neutral **alumina** in "dry media" and (ii) using absolute ethanol as energy transfer medium to give spiro compds. II (R = H, Me).

3-Dicyanomethylene-2H-indol-2-one was synthesized under microwave irradiation using indole-2,3-dione and malononitrile. The results were compared with those obtained following the classical **method**. The advantages

obtained by the use of microwave irradiation are demonstrated.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 18 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:618146 HCAPLUS

DOCUMENT NUMBER: 123:15942

TITLE: Manufacture of asymmetric ceramic membranes

INVENTOR(S): Adriansens, Walter; Doyen, Willy; Leysen, Roger;

Brauns, Etienne

PATENT ASSIGNEE(S): "Vlaamse Instelling voor Technologisch Onderzoek",

Afgekort : v.i.t.o.", onderneming, Belg.

SOURCE: Eur. Pat. Appl., 5 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 650759	- A1	19950503	EP 1994-203000	10041015
			IT, NL, PT, SE	19941015
BE 1008230			BE 1993-1199	19931029
PRIORITY APPLN. INFO			BE 1993-1199	A 19931029
AB In this method,	comprising	coating a	porous carrier with	ceramic

AB In this method, comprising coating a porous carrier with ceramic powder by wet process and heat-treating the material, a suspension of the ceramic powder and organic binder in a solvent is prepared in ceramic powder/binder weight ratio 1-99, the suspension is applied to the porous

carrier by film casting, the solvent removed by extraction with a nonsolvent, the binder removed thermally, and the material sintered. A porous Al2O3 carrier tube was coated with a dispersion of Al2O3 powder in Udel P 1800 NT11 (polysulfone) and N-methyl-2-

pyrrolidone (solvent). Water was used as the nonsolvent.

L15 ANSWER 19 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1993:430145 HCAPLUS

DOCUMENT NUMBER: 119:30145

TITLE: Washing method for (oligo)polymer- and

monomer-attached substrates

INVENTOR(S): Yada, Masato

PATENT ASSIGNEE(S): Seiko Epson Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

and

Patent Japanese

LANGUAGE: Japane

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 04318036	A2	19921109	JP 1991-83752	19910416
JP 3189288	B2	20010716		

PRIORITY APPLN. INFO.: JP 1991-83752 19910416

AB The title process comprises showering polymer- or monomer-attached substrates with aqueous solns., soaking in surfactant-containing solns., ultrasonically washing with aqueous solns. containing surfactants and soluble gas at

a certain concentration, washing with water-organic solvent mixts., and drying. Thus, diethylene glycol bis(allyl carbonate) was polymerized to form a lens which was showered with 20 L/min H2O, soaked in 10% M-6000 (nonionic surfactant)-containing aqueous solution, ultrasonically washed with 1% M-6000-

17-ppm O-containing aqueous solution, washed with methyl-2-pyrrolidone-H2 mixture, then

with H2O at 60°, and dried to result a surface with 4 impurities/cm2 (by laser scattering method).

L15 ANSWER 20 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1988:593593 HCAPLUS

DOCUMENT NUMBER: 109:193593

TITLE: Method for removing basic nitrogen compounds

from extracted oils by use of acidic polar adsorbents

and the regeneration of said adsorbents

INVENTOR(S): Yao, Keith Chen

PATENT ASSIGNEE(S): Exxon Research and Engineering Co., USA

SOURCE: Eur. Pat. Appl., 26 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 278694	A2	19880817 ·	EP 1988-300982	19880205
EP 278694 EP 278694	A3 B1	19891018 19920729		

10791982.trn Page 41 09:48

R: DE, FR, GB, IT US 4846962 19890711 US 1987-14271 Α 19870212 CA 1323841 19931102 CA 1988-556851 A1 19880119 JP 63200804 A2 19880819 JP 1988-27839 19880210 PRIORITY APPLN. INFO.: US 1987-14271 A 19870212

AB Basic N compds. (BNC) are selectively removed from solvent extracted oils (e.g., transformer oils) by contacting the oil with a solid acidic adsorbent containing 20-30 weight% Al2O3; the adsorbent has a surface area of 50-700 m2/g and an average pore diameter of 10-200 Å. The adsorbent may addnl. contain F or <30 weight% water, and is regenerated by either purging with H at elevated temperature and pressure, or by washing BNC-saturated adsorbent

with extraction process solvent, e.g., N-methyl-2
-pyrrolidone (I). Extracted oil raffinate treated with the
adsorbent to remove BNC exhibits superior uninhibited oxidation stability as
compared to untreated conventional hydrofined oil. Thus, Western Canadian
150N stock, I-extracted lubricating oil (viscosity index 90, 0.17 weight% S, 51
ppm basic N) was treated in a batch system using the ketjen high Al base
(3:1 SiO2-Al2O3 weight ratio) at 100-250° and 20:1 weight ratio
oil-adsorbent mixture for 2 h, resulting in >98% BNC removal.

=> LOG Y		
COST IN U.S. DOLLARS	SINCE FILE	TOTAL
·	ENTRY	SESSION
FULL ESTIMATED COST	210.49	377.64
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
•	ENTRY	SESSION
CA SUBSCRIBER PRICE	-33.00	-33.00

STN INTERNATIONAL LOGOFF AT 09:47:22 ON 09 APR 2006