Ocena sproščenih nevtrinov na časovno enoto

1. domača naloga v sklopu predmeta Fizike jedrskih nevtronskih naprav

Avtor:

Matic Tonin

Vpisna številka: 28181098

Profesor: prof. dr.

Asistent: doc. dr.

Pod okvirom:

FAKULTETE ZA FIZIKO IN MATEMATIKO, LJUBLJANA

Akademsko leto 2021/2022

Naloga

Oceni število sproščei nevtronov na časovno enoto na gram za vzorce s čistimi nuklidi: U-235,U-238,Pu-240,Cm-242 in Cf-252.

Rešitev

Iz vaj vemo, da je število nastali nevtrinov odvisno od verjetnosti za razpad $\eta,$ število razpadlih delcev pri enem razpadu ν in aktivnosti Az dano formulo.

$$N_{n,i} = A_i \nu_i \eta_i \tag{1}$$

Samo aktivnost pa lahko izračunnamo kot

$$A_i = \frac{m}{M_i} N_A \omega_i \lambda_i$$

kjer sta ω_i masni delež in $\lambda_i = \frac{\ln(2)}{t_{\frac{1}{2}}}$, kjer je $t_{\frac{1}{2}}$ razpolovi čas. Ker pa se soočamo pri zej nalogi z nuklidi, to pomeni, da je njihov masni delež kar enak ena, saj je celotna masa zgrajea zgolj iz enega elementa in ne vsebuje ostalih izotopov. Tako bi lahko to vstavili v našo enačbo (??) in dobili

$$N_{n,i} = \frac{m}{M_i} N_A \frac{\ln(2)}{t_{\frac{1}{2}}} \tag{2}$$

Če sedaj delimo naše število sporščenih nevtronov z maso, dobimo ravno tisto, kar smo želeli.

$$\frac{N_{n,i}}{m} = \frac{N_A}{M_i} \frac{\ln(2)}{t_{\frac{1}{2}}} \tag{3}$$

Vidimo pa, da izraz vsebuje veliko konstant, ki bi ji lahko združili v nek parameter $\alpha = \ln(2)N_A,$ da velja

$$A_i = \frac{\alpha}{M_i t_{\frac{1}{2}, i}} \quad \alpha = 4.174 \cdot 10^{23} \text{mol}^{-1}$$
 (4)

Če bi si pogledali sedaj, kolikšne so vrednosti za naše elemente, bi dobili spodnjo tabelo

Element	$M_i \left[\frac{\mathrm{kg}}{\mathrm{mol}} \right]$	$t_{1/2} [s]$	A_i	$ u_i$	η_i	$\frac{N_{n,i}}{m} \left[\frac{1}{\text{gs}} \right]$
U-235	235	$7.04 \cdot 10^{8} \text{ let}$	80002.82	1.87	$7 \cdot 10^{-9} \%$	0.001
U-238	238	$4.4 \cdot 10^9 \text{ let}$	12639.10	2	$5.4 \cdot 10^{-5} \%$	1.365
Pu-239	239	6561 let	$8.405 \cdot 10^9$	2.32	$5.6 \cdot 10^{-6} \%$	101.234
Pu-240	240	2.4110 let	$2.29 \cdot 10^{13}$	2.151	$3 \cdot 10^{-10} \%$	14777.37
Cm-242	242	162.8 dni	$2.97 \cdot 10^{16}$	2.528	$6.2 \cdot 10^{-6} \%$	$4.65 \cdot 10^{8}$
Cm-244	244	18.1 let	$3.00 \cdot 10^{12}$	2.6875	$1.4 \cdot 10^{-4} \%$	$1.127 \cdot 10^9$
Cf-252	252	2.645 let	$1.9857 \cdot 10^{10}$	3.767	3.09 %	$2.31 \cdot 10^{10}$

Table 1: Podatki za naše elemente. Vir: https://www.nndc.bnl.gov/nudat2/chartNuc.jsp.

Sedaj pa moramo malo povedati tudi o tem, kako smo našli določene podatke. Za vrednost razpolovnega časa lahko pogledamo v podatkovno bazo Nudat

(link: https://www.nndc.bnl.gov/nudat2/chartNuc.jsp), kjer v stransko okece vtipkamo izbrani element in nam nato baza izpiše vrednost razpolovnega časa. Tu pa dobimo tudi vrednost za verjetnost za razpad, ki ustreza vrednosti SF, ki je podana v tabeli.

Za vrednosti nevtronov, ki razpadejo pri posameznem razpadu pa se obrnemo na knjižnjico IAEA ENDF (link https://www-nds.iaea.org/exfor/endf.htm), kjer najprej v okence target zapišemo izotop, ki nas zanima, nato pa v okence reaction 0,nu_tot, kar predstavlja Average total (prompt plus delayed) number of neutrons released per fission even. Rezultat iskanja nam poda več knjižnjic, najbolj uporabna pa je ENDF/B. Da pa dobimo specifično vrednost, kliknemo gumb interperter, ki nam nato izpiše vrednost razpadli elektronov.