Soluciones del Examen de MD2 24 de Febrero de 2010

Solución al ejercicio 1.

- a) Si a_1, a_2, \ldots, a_n son enteros cualquiera y m_1, m_2, \ldots, m_n son enteros coprimos 2 a 2 entonces el sistema de congruencias $X \equiv a_i \pmod{m_i}, \forall i = 1, 2, \ldots, n$ tiene solución. Si $A \in \mathbb{Z}$ es una solución particular entonces las soluciones del sistema viene dada por aquellos $x \in \mathbb{Z}$ que verifican $x \equiv A \pmod{M}$ donde $M = m_1 m_2 \ldots m_n$.
- i) Observese que para que un número sea A-coherente, debe verificar el sistema de congruencias:

$$\begin{cases}
n \equiv -a_0 \pmod{a_1} \\
n \equiv -a_1 \pmod{a_2} \\
\vdots \\
n \equiv -a_9 \pmod{a_{10}}
\end{cases}$$

Como los módulos son coprimos dos a dos, por el Teorema del Resto Chino, la solución del sistema es de la forma $n \equiv A \pmod{M}$ donde $M = a_1 a_2 \dots a_{10}$ y A una solución particular del sistema. Como $a_i < 10^2$ para $i = 1, 2, \dots, 10$ entonces $M < (10^2)^{10} = 10^{20}$, por lo tanto existe alguna solución del sistema menor que 10^{20} .

ii) Cada intervalo de la forma $[10^{20}, 2 \cdot 10^{20}), [2 \cdot 10^{20}, 3 \cdot 10^{20}), \dots, [9 \cdot 10^{20}, 10^{21})$ tiene longitud $10^{20} - 1 \ge M$, luego, en virtud del Teorema del Resto Chino en cada uno de esos intervalos habrá alguna solución al sistema y cada una de esas soluciones tendrá exactamente 21 dígitos (por estar entre 10^{20} y $10^{21} - 1$).

Ejercicio 2.

a) Por Bezout existen $\alpha, \beta \in \mathbb{Z}$ tales que $d = \alpha m + \beta m$, sea $x \in G$ y fijado x llamemos $y = x^{\beta}$. Observemos que $x^{d} = (x^{\alpha})^{m}(x^{\beta})^{n} = y^{n}$ (pues $x^{\alpha} \in G$ y m = |G|). Así que tenemos:

$$\varphi(x^d) = \varphi(y^n) = \varphi(y)^n = e_H$$

donde en la última igualdad se usa que $\varphi(y) \in H$ y n = |H|. Por lo tanto $x^d \in ker(\varphi)$ como queríamos probar.

b) Sean m_1 y m_2 los órdenes de G_1 y G_2 respectivamente, y denotemos por e_1 y e_2 al neutro de G_1 y G_2 respectivamente . Por ser $Im(\varphi_1)$ e $Im(\varphi_2)$ subgrupos de H se tiene que $e_H \in Im(\varphi_1) \cap Im(\varphi_2)$. Por otra parte, si $x \in Im(\varphi_1) \cap Im(\varphi_2)$ entonces para i = 1, 2 existe $g_i \in Im(\varphi_i)$ tales que $x = \varphi_i(g_i)$. Se tiene que $x^{m_i} = \varphi_i(g_i)^{m_i} = \varphi_i(g_i^{m_i}) = \varphi_i(e_i) = e_H$ para i = 1, 2. Como m_1 y m_2 son coprimos, usando nuevamente Bezout tenemos que $1 = \alpha m_1 + \beta m_2$ para ciertos enteros α y β , por lo tanto $x = x^1 = (x^{m_1})^{\alpha}(x^{m_2})^{\beta} = e_H \cdot e_H = e_H$.

Ejercicio 3.

- i) Dos interlocutores A y B se ponen de acuerdo en un primo n y una raiz primitiva módulo n que llamaremos g (obs. tanto n como g son públicos). El interlocutor A elige en secreto un número a mientras que B hace lo propio eligiendo un número b (obs. solo A conoce a y solo B conoce b). El interlocutor A calcula $x = g^a \pmod{n}$ y se lo envia a B, el interlocutor B calcula $y = g^b \pmod{n}$ y se lo envia a A (obs. tanto x como y serán de dominio público). La clave común acordada será $k = g^{ab} \pmod{n}$ (A puede calcular k efectivamente como $y^a \pmod{n}$ mientras B la puede calcular efectivamente como $x^b \pmod{n}$).
- ii) En este caso tenemos a=4 e y=15 (donde A soy yo y B mi interlocutor), así que puedo calcular la clave como $k=15^4$ (mód 61), simplemente calculamos:

$$15^4 = (15^2)^2 \equiv 42^2 \equiv 56 \pmod{61}$$

por lo tanto la clave común es k=56.

- iii) Descomponemos $56 = 2 \cdot 2 \cdot 2 \cdot 7$ que corresponde la palabra CCCH (ver tabla).
- iv) El mensaje desencriptado es "MAS VALE PAJARO EN MANO QUE CIEN VOLANDO".
- v) El mensaje encriptado es: UCDOCUBWCNCITCU.