

CHEMISTRY NMDCAT

UHS TOPIC WISE TEST (UNIT-5)

www.saeedmdcat.com

SAEED MDCAT

03418729745(WhatsApp Groups)

TOPICS

./	Chamiaal	Energetics
v	CHEILICAL	

- ✓ Electrochemistry
- Q.1 Which one of the following reactions will represent enthalpy of formation as well as enthalpy of combustion

a.
$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$$

b.
$$2C_{(s)} + O_{2(g)} \longrightarrow 2CO_{(g)}$$

c.
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$$

d.
$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$$

Q.2 For the given reaction, $q = c\Delta T$, the unit of heat capacity will be

a.
$$kJ g^{-1}$$

b. kJ

c. kJ K⁻¹

d. $\mathbf{K} \mathbf{k} \mathbf{J}^{-1}$

- Q.3 The amount of heat evolved when one mole of substance is completely burnt in excess of oxygen under standard conditions is known as
 - a. Enthalpy of formation

b. Enthalpy of dissociation

c. Enthalpy of combustion

d. Enthalpy of ionization

Q.4 Oxidation state of nitrogen in NH_2^- and NO_2^+ is respectively

a.
$$-3, +3$$

b. +3, +5

c. +3, -3

d. -3, +5

Q.5 During electrolysis of dilute aqueous solution of H₂SO₄, which specie is obtained at anode

a.
$$O_2$$

b. SO₂

c. H₂

d. H₂O

Q.6 Consider the following reactions

$$N_2 + 2O_2 \square 2NO_2$$

 $\Delta H = 92kJ$

 $2NO + O_2 = 2NO_2$

 $\Delta H = -158kJ$

Calculate the enthalpy of reaction of NO

$$N_2 + O_2 \bigcirc 2NO$$

$$\Delta \mathbf{H} = \underline{\hspace{1cm}} \mathbf{k} \mathbf{J}$$

a. 250

b. -66

c. -250

d. +660

Q.7 Enthalpy of formation for one mole of carbon dioxide is 400 kJ/mol. What will be heat of combustion for 6g of carbon

a. 100kJ

b. 300kJ

c. 200kJ

d. 400kJ

Q.8 Joule is equivalent to

a. 0.4184 Cal

b. 1/4.184 Cal

c. 1 Cal

d. 4.184 Cal

Q.9 During electrolysis of aqueous solution of which salt results in the deposition of metal at cathode

a. KCl

b. CaCl₂

c. CuCl₂

d. LiCl

Q.10 What will be the enthalpy of formation of HBr if hypothetical bond energy of H-H, Br-Br and H-Br are 300 kJ/mol, 100kJ/mol and 250kJ/mol respectively? Reaction is

as under $H_2 + Br_2 = 2HBr$

a. -50 kJ/mol c. -100 kJ/mol b. +50 kJ/mol

d. +100 kJ/mol

Q.11 The enthalpy change for a reaction does not depend upon the

- a. Physical states of reactants and products
- b. Use of different reactants for the same product
- c. Number of intermediate reaction steps
- d. Difference in initial or final temperatures of involved substances.

Q.12 Change in Oxidation state of Cr in the following reaction is

$$K_2Cr_2O_7 + 7H_2SO_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \longrightarrow Cr_2(SO_4)_3 + 6FeSO_5 \longrightarrow Cr_2(SO_4)_3 + 6FeSO_5 \longrightarrow Cr_2($$

a.
$$+12 \rightarrow +6$$

b.
$$+3 \rightarrow +6$$

$$c. +6 \rightarrow +3$$

d.
$$+6 \rightarrow +12$$

Q.13 In which reaction, chlorine is reduced

a.
$$CH_3Cl + Cl_2 \longrightarrow CH_2Cl_2 + HCl$$

b.
$$CH_3Cl + KOH_{(aq)} \longrightarrow CH_3OH + KCl$$

c.
$$2CH_3Cl + 2Na \longrightarrow CH_3CH_3 + 2NaCl$$
 d. $CH_3Cl + H_2 \longrightarrow CH_4 + HCl$

d.
$$CH_3Cl + H_2 \longrightarrow CH_4 + HCl$$

Q.14 Oxidation is NOT

a. Loss of electron

b. Increase in oxidation state

c. Addition of oxygen

d. Decrease in positive charge

Q.15 Hydrogen gas is NOT liberated when following metal is added to dilute solution of HCl

a. Mg

b. Ag

c. Sn

d. Zn

0.16 Which is incorrect statement about Daniel cell

- a. Voltage of cell is 1.10V
- b. It is voltaic cell
- c. Zn is oxidized by copper
- d. Cu is reducing agent

O.17 Spontaneous reaction is

a.
$$Pb + Cu^{2+} \longrightarrow Cu + Pb^{2+}$$

b.
$$H_2 + Mg^{2+} \longrightarrow Mg + 2H^+$$

c.
$$Br_2 + 2Cl^- \longrightarrow Cl_2 + 2Br^-$$

$$d. \ 2Ag + Cu^{2+} \longrightarrow Cu + 2Ag^{+}$$

Q.18 When sulphuric acid reacts with two moles of caustic soda, enthalpy of neutralization is

a. -114 kJ/mol

b. -114 J/mol

c. –57 kJ/mol

d. -26 kJ/mol

Q.19 The value of "x" for the given reaction is

$$C_2O_4^{2-} \longrightarrow 2CO_2 + x$$
 electrons

b. 6

c. 4

d. 8

Correct representation of Daniel cell is

- a. Zn / Zn^{+2} (aq) 1M || Cu^{+2} (aq) 1M / Cu
- b. Cu⁺² (aq) 1M / Cu || Zn / Zn⁺² (aq) 1M
- c. Zn +2 (aq) 1M / Zn || Cu / Cu+2 (aq) 1M
- d. Cu / Cu⁺² (aq) 1M \parallel Zn ⁺² (aq) 1M / Zn

Standard hydrogen electrode has the standard reduction potential

a. Unity

b. Positive

c. Zero

d. Negative

Q.22 Which one indicate enthalpy of atomization

a. $K_{(\ell)} \longrightarrow K_{(g)}$

b. $K_{(g)} \longrightarrow K_{(g)}^+$

c. $K_{(\ell)} \longrightarrow K_{(g)}^+$

d. $K_{(s)} \longrightarrow K_{(g)}$

Q.23 Which of the following ionic solids has greater lattice energy

a. LiF

b. KF

c. NaF

d. CsF

Q.24	An of the following statements are true	
	a. It is zero in free state	b. It may be negative
	c. It is always equal to valency	d. It may be in fraction
Q.25	Conduction due to free ions is called	
	a. Electrolytic conduction	b. Electronic conduction
	c. Metallic conduction	d. There is no conduction due to free ions
Q.26		rgy of system if work done by system is 50kJ
Q.20	and heat absorbed is 140kJ	gy of system if work done by system is some
		l- 1001-I
	a. 190kJ	b190kJ
~ ~=	c. 90kJ	d90kJ
Q.27	The enthalpy of atomization of $H_{2(g)}$ $\frac{1}{2}$	$H_{2(g)} \longrightarrow H_{(g)}$] is 218 kJ/mol, the enthalpy
	of formation of $H_{2(\sigma)}$ from gaseous atom	
	a218 kJ/mol	b436 kJ/mol
	c. +436 kJ/mol	d. +218 kJ/mol
Q.28	State function is a macroscopic property	y that depends upon initial and final states
	but independent of path. Among the following	lowing, which is NOT state function
	a. Heat	b. Temperature
	c. Internal energy	d. Volume
Q.29	First law of thermodynamics may be de	
Q.2)	a. $\Delta H = \Delta E$ if $\Delta n = 0$	b. $\Delta E = q_v \text{ if } \Delta V = 0$
0.20	c. $\Delta H = q_p \text{ if } \Delta P = 0$	d. All are correct
Q.30		of food, fuel and organic compound
	$a.\Delta H_n$	b. ΔH_C°
	a AII°	d. $\Delta H_{\ell,F}^{\circ}$
	c. ΔH _s °	V.12
Q.31	Using the hypothetical information give	n in the table below,
	Reactions	ΔΗ
	$V + 1/D_r \rightarrow VD_r$	-400kJmol ⁻¹
	$\mathbf{K}_{(s)} + \gamma_2 \mathbf{DI}_{2(1)} \longrightarrow \mathbf{KDI}_{(s)}$	-400kJillol
	$K_{(s)} + \frac{1}{2} Br_{2(1)} \longrightarrow KBr_{(s)}$ $K_{(s)} \longrightarrow K_{(g)}$ $K_{(g)} \longrightarrow K_{(g)}^{+} + e^{-}$ $\frac{1}{2} Br_{2(1)} \longrightarrow Br_{(g)}$	+100kJmol ⁻¹
	(s) (g)	10017 1-1
	$K_{(g)} \longrightarrow K_{(g)}^{+} + e^{-}$	+400kJmol ⁻¹
	$\frac{1}{2} \operatorname{Br}_{2(1)} \longrightarrow \operatorname{Br}_{(2)}$	+100kJmol ⁻¹
		2501 7 1-1
	$Br_{(g)} + e^- \longrightarrow Br_{(g)}^-$	-350kJmol ⁻¹
	Calculate the lattice energy of formation	
	a. $+672$ kJmol ⁻¹	b. –672kJmol ^{–1}
	c. $+650$ kJmol ⁻¹	d. –650kJmol–1
Q.32	Enthalpy of neutralization of all the stro	ong acids and strong bases has the same
	value because	
	a. Neutralization leads to the formation of	salt and H ₂ O
	c. Strong acid and bases are ionic substance	
-	c. Acids always give H ⁺ ions and bases alw	
A W		
0.22	d. The net chemical change involve the com	
Q.33	Born-Haber cycle is used to determine t	
	a. Lattice energy	b. Enthalpy of formation
	c. Enthalpy of ionization	d. Enthalpy of dissociation
Q.34	When dilute Na ₂ SO ₄ aqueous solution is	s used as an electrolyte in electrolytic cell the
W	anode product is	
7/	a. $Na_{(s)}$	b. $SO_{2(g)}$
	c. H _{2(g)}	d. $O_{2(g)}$
0.25		
Q.35	During refining of copper, impure copp	
	a. Anode	b. Electrolyte
	c. Cathode	d. Both A and B
Q.36	Aluminum can displace ion f	
	a. Na ⁺	b. Li ⁺
	c. Ag ⁺	d. Ca ²⁺

O.37 In an electrolytic cell current flows

- a. From cathode to anode in outer circuit
- c. From anode to cathode outside the cell
- b. From cathode to anode inside the cell
- d. Both "B" and "C"

Li occupies higher position in the ECS of metals as compared to Cu since

- a. The standard reduction potential of Li⁺/Li is lower than that of Cu²⁺/Cu
- b. The standard reduction potential of Cu²⁺/Cu is lower than that of Li⁺/Li
- c. The standard oxidation potential of Li/Li⁺ is lower than that of Cu/Cu²⁺
- d. Li is smaller in size as compared to Cu

Q.39 Cathodic reaction during electrolysis of aqueous CuSO₄ is

a.
$$Cu \longrightarrow Cu^{2+} + 2e^{-}$$

b.
$$4OH^- \longrightarrow O_2 + 2H_2O + 4e^-$$

c.
$$2H^++2e^- \longrightarrow H_2$$

d.
$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

0.40 In the cell shown below, which of the following is (are) true?

I. Electrons flow through the meter from left to right

II. Cu is the anode

III. The spontaneous reaction is

$$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$$

a. I only

b. III only

c. II only

d. I and II

Q.41 In an operating electrochemical cell the function of a salt bridge is to

- a. Allow hydrolysis to occur
- b. Permit the migration of ions within the cell

Voltmeter

Salt bridge

0

- c. Allow a non-spontaneous reaction to occur d. Transfer electrons from the cathode to the anode

Which is the correct expression for lattice energy

a.
$$K_{(s)} + 1/2Cl_{2(g)} \rightarrow KCl_{(s)}$$

b.
$$K^+_{(g)} + Cl^-_{(g)} \rightarrow KCl_{(s)}$$

c.
$$2K_{(s)} + 2Cl_{2(g)} \rightarrow 2KCl_{(s)}$$

$$d. K^{+}_{(g)} + Cl^{-}_{(g)} \rightarrow KCl_{(g)}$$

Internal energy of system will always be positive if

- a. Reaction is exothermic and work is done by the system
- b. Reaction is exothermic and work is done on the system
- c. Reaction is endothermic and work is done by the system
- d. Reaction is endothermic and work is done on the system

Q.44 Standard reduction potential of Zn⁺²/Zn and Ni⁺²/Ni are -0.76V and -0.25V respectively. Voltage of the cell will be

$$a. + 0.51V$$

$$b. + 1.01V$$

$$d. - 1.01V$$

O.45 Stronger the oxidizing agent

- a. Greater is the standard reduction potential
- b. Greater is the standard oxidation potential
- c. Lesser is the standard reduction potential
- d. Both A and B

Q.46 Molten CuCl₂ is electrolyzed using platinum electrodes. The reaction occurring at anode is

a.
$$Cu_{(s)} \longrightarrow Cu^{2+} + 2e^{-}$$

b.
$$Cl_{2(g)} + 2e^{-} \longrightarrow 2Cl^{-}$$

c.
$$Cu^{2+} + 2e^{-} \longrightarrow Cu_{(s)}$$

d.
$$2Cl^{2} \longrightarrow Cl_{2(g)} + 2e^{-1}$$

Q.47 For the reactions, keeping pressure constant

$$C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$
 at constant temperature, $\Delta H - \Delta E$

$$d = 3RT$$

Select the wrong statement

- a. Chemical reaction is breaking of old bonds and making of new bonds
- b. Temperature is the measure of average kinetic energy of the all particles of a system
- c. Non-spontaneous process never happens in the universe
- d. The enthalpy of element in standard state is zero

Q.49 Which of the following values of heat of formation indicates that the product is least stable.

$$c + 21.4 kI$$

$$d. +70 kJ$$

b.
$$O_2$$

For More Test And Lecture , Visit Our Official Website www.saeedmdcat.com

And Must be Join Our WhatsApp Group(03418<mark>729745</mark>)

9-0 20 4 0. 0 + BCDD 000 15. 8 13. A 17-A 16- D 14- D 18-C 22- D 30 - B 23- A 24- C 24- C 24- B 28- A 21- C 29-D 33- A 32- D 35- A 36- C 38- A 34-39-D 40 - B 42- B 9 -th 0 -9h H -5h 43- D 48- C C-05 49- D Chem-5