高等数学 A(2)复习题参考答案

一、空间解析几何

1. (1)
$$\pm \frac{1}{\sqrt{62}} (-2,3,7)$$
; (2) 0; (3) $\cos \alpha = \frac{2}{\sqrt{6}}, \cos \beta = -\frac{1}{\sqrt{6}}, \cos \gamma = \frac{1}{\sqrt{6}}$

2.
$$S = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{\sqrt{59}}{2}$$

3. 面积为
$$\sqrt{30}$$

4. (1)
$$\left| \stackrel{\dots}{a} + b \right| = \sqrt{13}$$
; (2) 30

5.
$$z = 3 - 2(x^2 + y^2)$$

6.
$$2(x-1)+3(y+3)-(z-2)=0$$

7.
$$d = \frac{4}{\sqrt{2}}$$

8.
$$\frac{\pi}{4}$$

9.
$$\frac{x-2}{1} = \frac{y+3}{3} = \frac{z-5}{0}$$

10.
$$\frac{x-2}{5} = \frac{y+1}{3} = \frac{z-4}{-1}$$

11.
$$\frac{\pi}{4}$$

$$12.6(x-1)+4(y-2)-7(z-3)=0$$

二、多元函数微分学

- 1. 求极限
- (1) 2 (2) 1/2 (3) 2 (4) e^{-1}

2. 求全微分、全导数、偏导数

(1)
$$\frac{\partial z}{\partial x} = e^x \sin(1+y^2)$$
, $\frac{\partial z}{\partial y} = 2ye^x \cos(1+y^2)$,

$$dz = e^x \sin(1+y^2) dx + 2ye^x \cos(1+y^2) dy;$$

(2)
$$\frac{dy}{dx} = -2\sin(2x)f_1' + e^x f_2';$$

(3)
$$\frac{\partial z}{\partial x} = 2f_1' + y\cos xf_2', \quad \frac{\partial z}{\partial y} = -f_1' + \sin xf_2';$$

(4)
$$\frac{\partial z}{\partial x} = \frac{y^2 z}{e^z - xy^2}$$
, $\frac{\partial z}{\partial y} = \frac{2xyz}{e^z - xy^2}$.

3. 求切线方程、切平面方程、法线及法平面方程

(1) 切线方程为
$$\frac{x}{2} = \frac{y-1}{0} = \frac{z}{1}$$
, 法平面方程为 $2x + z = 0$.

(2) 切平面方程为
$$3(x-2)+2(y-3)-z=0$$
, 法线方程为 $\frac{x-2}{3}=\frac{y-3}{2}=\frac{z}{-1}$.

(3) 法线方程:
$$\frac{x+3}{1} = \frac{y+1}{3} = \frac{z-3}{1}$$
.

- 4. 求方向导数与梯度
- (1)沿梯度方向 $gragf(1,1) = \stackrel{\rightarrow}{i} + \stackrel{\rightarrow}{j}$ 的方向导数最大,方向导数最大值为 $|gradf(1,1)| = \sqrt{2}$.

(2) 方向导数的最大值为
$$|gradu| = \frac{\sqrt{6}}{2}$$
, 方向导数沿 $gradu = \left\{\frac{1}{2}, 1, \frac{1}{2}\right\}$ 达到最大值; 方向导数 $\frac{\partial u}{\partial l} = \frac{1}{2} \cdot \frac{2}{3} - 1 \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3} = -\frac{1}{6}$ 。

- 5. 求函数极值、应用拉格朗日乘数法求实际最值问题
 - (1) 解得驻点(0,0),(0,2),(2,0),(2,2), f(0,0)=1为极大值; (0,2)和(2,0)不为极值点; f(2,2)=-7为极小值。

(2)
$$z(\frac{1}{2}, \frac{1}{2}) = \frac{1}{4}$$
 为极大值。

(3)
$$(1, \frac{2}{\sqrt{3}}, 3\sqrt{3})$$
,最大值为 6.

(4) 所求点为
$$M(-\frac{2}{\sqrt{14}},\frac{1}{\sqrt{14}},\frac{6}{\sqrt{14}})$$
。

(5)
$$x = 15$$
, $y = 10$.

三、重积分与应用

1. 二重积分计算与应用

(1)
$$\iint_{D} \sqrt{x^2 + y^2} d\sigma = \int_{0}^{\pi} d\theta \int_{0}^{1} \rho^2 d\rho = \frac{\pi}{3}$$

(2)
$$\iint_{D} x dx dy = \int_{0}^{1} x dx \int_{x^{2}}^{x} dy = \frac{1}{12}$$

(3)
$$\int_{0}^{1} dx \int_{x}^{\sqrt{x}} \frac{\sin y}{y} dy = \int_{0}^{1} dy \int_{y^{2}}^{y} \frac{\sin y}{y} dx = \int_{0}^{1} (\sin y - y \sin y) dy = 1 - \sin 1$$

$$(4) \int_{-1}^{1} dx \int_{0}^{2} \left| y - 2x^{2} \right| dy = 2 \int_{0}^{1} dx \int_{0}^{2} \left| y - 2x^{2} \right| dy$$
$$= 2 \int_{0}^{1} dx \int_{0}^{2x^{2}} \left(2x^{2} - y \right) dy + 2 \int_{0}^{1} dx \int_{2x^{2}}^{2} \left(y - 2x^{2} \right) dy = \frac{44}{15}$$

(5)
$$\iint_{D} (1+x+y) dx dy = \iint_{D} dx dy = 3\pi$$

(6) 由对称性:
$$\bar{x} = 0$$
, $M = \pi$, $M_x = \int_{-1}^{1} dx \int_{0}^{2\sqrt{1-x^2}} y dy = \frac{8}{3}$, $\bar{y} = \frac{8}{3\pi}$, 质心为 $(0, \frac{8}{3\pi})$

(7)
$$A = \iint_D f(x, y) dx dy$$
, $\iiint_D A = \iint_D (x^2 + y^2) dx dy + A \iint_D dx dy \Rightarrow A = \frac{8\pi}{1 - 4\pi}$

2. 三重积分计算与应用

(1)
$$\iiint_{\Omega} 2x \, dv = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} 2x \, dz = \frac{1}{12}$$

(2)
$$\iiint_{\Omega} (x^2 + y^2) dx dy dz = \int_{0}^{2\pi} dx \int_{0}^{1} d\rho \int_{0}^{1-\rho} \rho^2 \rho dz = \frac{1}{10} \pi$$

(3)
$$\iiint_{\Omega} (z - \sqrt{x^2 + y^2}) dv = \int_{0}^{2\pi} dx \int_{0}^{1} d\rho \int_{0}^{1} (z - \rho) \rho dz = -\frac{1}{6}\pi$$

(4)
$$V = \iiint_{\Omega} dv = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} \sin\phi d\phi \int_{0}^{2} r^{2} dr = \frac{16}{3} \pi (1 - \frac{\sqrt{2}}{2})$$

(5)
$$\iiint_{\Omega} z(x^2 + y^2) dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{\rho^2}^{\rho} z \rho^2 dz = \frac{\pi}{24}$$

(6)
$$M = \iiint_{\Omega} 2dv = 2 \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{\rho^{2}}^{\sqrt{2-\rho^{2}}} dz = 4\pi \left[\frac{1}{3} \cdot 2^{\frac{3}{2}} - \frac{7}{12} \right]$$

(7)
$$\iiint_{\Omega} (1+x^2y) dv = \iiint_{\Omega} dv = \int_0^{2\pi} d\theta \int_0^2 \rho d\rho \int_0^3 dz = 12\pi$$

四、曲线、曲面积分

1. 求第一类曲线积分(对弧长的曲线积分)

(1)
$$\int_{L} e^{\sqrt{x^2 + y^2}} ds = 2\pi e^2$$

(2)
$$\int_{L} (x+y)ds = \sqrt{5} \int_{0}^{1} 3x dx = \frac{3}{2} \sqrt{5}$$

(3)
$$\int_{\Gamma} (x+y+z)ds = \int_{0}^{1} (3+6t)\sqrt{1+4+9}dt = 6\sqrt{14}$$

2. 求第二类曲线积分(对坐标的曲线积分)

(1)
$$\int_{L} (x^2 - y^2) dx = \int_{0}^{2} (x^2 - x^4) dx = \frac{2}{15}$$

(2)
$$\int_{\Gamma} x dx + y dy + z dz = \int_{0}^{1} ((t+1) + 2(2t+1) + 3(3t+1)) dt = 13$$

3. 应用格林公式

(1)
$$\oint_{L} (1+x^{2}+y^{3})dx + (x-x^{3}+y^{3})dy = \iint_{D} (1-3x^{2}-3y^{2})dxdy$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} (1-3\rho^{2})\rho d\rho = -20\pi$$

(2) 设l为从点B(-a, 0)到点A(a, 0)的直线段,

$$\int_{L+l} (1+3x-y^2\cos x)dx + (x-2y\sin x - 2y^2)dy = \iint_{D} (1-2y\cos x + 2y\cos x)dxdx = \frac{\pi a^2}{2}$$

$$\int_{l} (1+3x-y^2\cos x)dx + (x-2y\sin x - 2y^2)dy = \int_{-a}^{a} (1+3x)dx = 2a$$

$$\int_{L} (1+3x-y^2\cos x)dx + (x-2y\sin x - 2y^2)dy = \frac{\pi a^2}{2} - 2a$$

4. 求第一类曲面积分(对面积的曲面积分)

(1)
$$S = \iint_{\Sigma} dS = \iint_{D_{min}} \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} \sqrt{1 + 4\rho^2} \, \rho \, d\rho = \frac{\pi}{6} (5\sqrt{5} - 1)$$

(2)
$$\iint_{\Sigma} (x+y+z)dS = \iint_{\Sigma} zdS = \iint_{D} \sqrt{2}\sqrt{x^{2}+y^{2}} dxdy$$
$$= \sqrt{2} \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho^{2} d\rho = \frac{2\sqrt{2}\pi}{3}$$

(3)
$$\iint_{\Sigma} (6x + 3y + 2z) dS = 18 \iint_{D} \sqrt{1 + 9 + \frac{9}{4}} d\sigma = 567$$

5. 求第二类曲面积分(对坐标的曲面积分)

(1)
$$\iint_{\Sigma} z^3 dx dy = \iint_{D} (x^2 + y^2)^3 dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} (\rho^2)^3 \rho d\rho = \frac{\pi}{4}$$

(2)
$$\iint_{\Sigma} y^2 dy dz + z^2 dz dx + (x + y + e^z) dx dy = \iiint_{\Omega} e^z dx dy dz$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{\rho}^{1} e^z dz = e\pi - 2\pi .$$

五、无穷级数

- 1. 判断下列级数的敛散性
- (1) 绝对收敛; (2) 条件收敛; (3) 绝对收敛; (4) 收敛; (5) 收敛
- 2. 绝对收敛

3.
$$f(x) = e^{2x+1} = e^{2(x-1)+3} = e^3 e^{2(x-1)} = e^3 \sum_{n=0}^{+\infty} \frac{1}{n!} (2(x-1))^n, (x \in R)$$

4.
$$\frac{x}{x+1} = 1 - \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n$$
, $x \in (-1,7)$.

5.
$$f(x) = \frac{1}{x^2 + 3x + 2} = \sum_{n=0}^{\infty} (-1)^n \left[\frac{1}{2} \left(\frac{x-1}{2} \right)^n - \frac{1}{3} \left(\frac{x-1}{3} \right)^n \right], (-1 < x < 3)$$

6.
$$f(x) = \ln(x^2 + 3x + 2)$$

$$= \ln 3 + \ln 4 + \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} \left[\left(\frac{x-2}{3} \right)^{n+1} + \left(\frac{x-2}{4} \right)^{n+1} \right], (-1 < x \le 5)$$

7. 收敛域为
$$\left[-4,4\right)$$
; $s(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{4^n(n+1)} = \int_0^x \frac{4}{4-x} dx = 4(\ln 4 - \ln(4-x)), x \in [-4,4)$

8. 收敛域为
$$(-3,3)$$
; $s(x) = \sum_{n=1}^{\infty} (-1)^n \frac{nx^{n-1}}{3^n} = -\left(\frac{x}{3+x}\right)' = -\frac{3}{(x+3)^2}, (-3,3)$

9.
$$s(x) = \begin{cases} \frac{3}{2}, & x = 2\\ f(x), & x \neq 2 \end{cases}$$

10. 所给的函数延拓为周期函数时,每一点都连续,且傅里叶级数为余弦级数:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \lambda \right), x \in [-\pi, \pi]$$

其中系数 $a_1 = -\frac{4}{\pi}$.