CHAPTER - 10 **Functions**

EE24BTECH11039 - Ranjith

I. A:FILL IN THE BLANKS

1) The values of $f(x) = 3 \sin \left(\sqrt{\frac{\pi^2}{16} - x^2} \right)$ lie in the interval ...

2) For the function $f(x) = \begin{cases} \frac{x}{1+e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ the derivative from the right, $f'(0+) = \dots$, and the derivative from the left, f'(0-) =

(1983 - 2marks)

3) The domain of the function f(x) $\sin^{-1}\left(\log_2\left(\frac{x^2}{2}\right)\right)$ is given by ...

(1984 - 2marks)

4) Let A be a set of n distinct elements. Then the total number of distinct functions from A to A is _____ and out of these ____ are onto functions.

(1985- 2marks)

5) If $f(x) = \sin \left[\ln \left(\frac{\sqrt{4-x^2}}{1-x} \right) \right]$, then domain of f(x) is ... and its range is ...

(1985 - 2Marks)

- 6) There are exactly two distinct linear functions,... and... which map [-1,1] onto [0,2](1989 - 1Mark)
- 7) If f is a even function defined on the interval (-5,5), then four real values of x satisfying the equation $f(x) = f(\frac{x+2}{x+1})$ are ... and ...

(1996 - 1mark)

II. B: True / False

1) If $f(x) = (a - x^n)^{1/n}$ where a > 0 n is a positive integer then f(f(x)) = x.

(1983 - 1Mark)

- 2) The function $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not one-to one. (1983 - 1Mark)
- 3) If $f_1(x)$ and $f_2(x)$ are defined on domains D_1 and D_2 respectively, then $f_1(x) + f_2(x)$ is defined on $D_1 \cup D_2$.

(1988 - 1Mark)

III. C: MCQ's with One Correct Answer

- 1) Let R be the set of real numbers. If $f: R \mapsto R$ is a function defined by $f(x) = x^2$, then f is:
 - a) Injective but not surgective
 - b) Surjective but not injective
 - c) Bijective
 - d) None of these.

- 2) The entire graphs of the equation $y = x^2 + kx kx$ x + 9 is strictly above the x-axis if and only if
 - a) k < 7
 - b) -5 < k < 7
 - c) k > -5
 - d) None of these.

(1979)

- 3) Let f(x) = |x 1|.then
 - a) $f(x^2) = (f(x))^2$
 - b) f(x + y) = f(x) + f(y)
 - c) f(|x|) = |f(x)|
 - d) None of these.

(1983-1mark)

- 4) If x satisfies $|x-1| + |x-2| + |x-3| \ge 6$, then
 - a) $0 \le x \le 4$
 - b) $x \le -2$ or $x \ge 4$
 - c) $x \le 0$ or $x \ge 4$
 - d) None of these.

(1983-1mark)