

SEQUENCE LISTING

<110> Smith, Kelli E.
Weinshank, Richard L.

<120> DNA Encoding A Human Receptor (hp15a) And Uses Thereof

<130> 55180

<140> 09/179,798
<141> 1998-10-27

<160> 16

<170> PatentIn Ver. 2.1

<210> 1
<211> 1311
<212> DNA
<213> Homo sapiens

<400> 1

ttgaatgcta gggtctgatt ccctcttcct cttccaccct ctgcctcttt agcctctatac 60
atgtggaca gctctgacgc caacttctcc tgctaccatg agtcttgct gggctatcg 120
tatgttgcag ttagctgggg ggtgggtgg gctgtgacag gcaccgtggg caatgtgctc 180
accctactgg ccttggccat ccagccaaag ctccgtaccc gattcaacct gctcatagcc 240
aacctcacac tggctgatct cctctactgc acgctccctc agcccttctc tgtggacacc 300
tacctccacc tgcactggcg caccggtgcc accttctgca gggattttgg gctcctcctt 360
tttgcctcca attctgtctc catcctgacc ctctgcctca tcgcactggg acgctacctc 420
ctcattgccc accctaagct ttttccccaa gttttcagtg ccaaggggat agtgctggca 480
ctggtagca cctgggttgt gggcgtggcc agctttgctc ccctctggcc tatttatatac 540
ctggtagctg tagtctgcac ctgcagctt gaccgcattc gaggccggcc ttacaccacc 600
atcctcatgg gcatctactt tgtgtttggg ctcaagcagtg ttggcatctt ctattgcctc 660
atccaccgccc aggtcaaacg agcagcacag gcactggacc aataacaagtt gcgacaggca 720
agcatccact ccaaccatgt ggccaggact gatgaggcca tgcctggc 780
ctggacacca ggttagcata aggaggaccc agtgagggga tttcatctga gccagtcagt 840
gctgccacca cccagaccct ggaaggggac tcatcagaag tgggagacca gatcaacagc 900
aagagagcta agcagatggc agagaaaagc cttccagaag catctccaa agcccagcca 960
attaaaggag ccagaagagc tccggattct tcatcgaaat ttggaaaggt gactcgaatg 1020
tgttttgctg tgtccctctg ctttgcctg agtacatcc ctttcttgct gctcaacatt 1080
ctggatgcca gagtccagggc tccccgggtg gtccacatgc ttgctgcca cctcacctgg 1140
ctcaatggtt gcatcaaccc tgtgtcttat gcagccatga accgccaatt cggccaagca 1200
tatggctcca tttaaaaaag agggccccgg agttccata ggctccatta gaactgtgac 1260
cctagtcacc agaattcagg actgtctcct ccaggaccaa agtggcaggt a 1311

<210> 2
<211> 396

Applicants: Kelli E. Smith and
Richard Weinshank
Serial No: Not Yet Known
Filed: Herewith
Exhibit 1

<212> PRT

<213> Homo sapiens

<400> 2

Met	Trp	Asn	Ser	Ser	Asp	Ala	Asn	Phe	Ser	Cys	Tyr	His	Glu	Ser	Val
1					5				10						15

Leu Gly Tyr Arg Tyr Val Ala Val Ser Trp Gly Val Val Val Ala Val
20 25 30

Thr Gly Thr Val Gly Asn Val Leu Thr Leu Leu Ala Leu Ala Ile Gln
 35 40 45

Pro Lys Leu Arg Thr Arg Phe Asn Leu Leu Ile Ala Asn Leu Thr Leu
50 55 60

Ala Asp Leu Leu Tyr Cys Thr Leu Leu Gln Pro Phe Ser Val Asp Thr
65 70 75 80

Tyr Leu His Leu His Trp Arg Thr Gly Ala Thr Phe Cys Arg Val Phe
85 90 95

Gly Leu Leu Leu Phe Ala Ser Asn Ser Val Ser Ile Leu Thr Leu Cys
 100 105 110

Leu Ile Ala Leu Gly Arg Tyr Leu Leu Ile Ala His Pro Lys Leu Phe
 115 120 125

Pro Gln Val Phe Ser Ala Lys Gly Ile Val Leu Ala Leu Val Ser Thr
130 135 140

Trp Val Val Gly Val Ala Ser Phe Ala Pro Leu Trp Pro Ile Tyr Ile
145 150 155 160

Leu Val Pro Val Val Cys Thr Cys Ser Phe Asp Arg Ile Arg Gly Arg
165 170 175

Pro Tyr Thr Thr Ile Leu Met Gly Ile Tyr Phe Val Leu Gly Leu Ser
 180 185 190

Ser Val Gly Ile Phe Tyr Cys Leu Ile His Arg Gln Val Lys Arg Ala
195 200 205

Ala Gln Ala Leu Asp Gln Tyr Lys Leu Arg Gln Ala Ser Ile His Ser
210 215 220

Asn	His	Val	Ala	Arg	Thr	Asp	Glu	Ala	Met	Pro	Gly	Arg	Phe	Gln	Glu
225					230					235					240

Leu Asp Ser Arg Leu Ala Ser Gly Gly Pro Ser Glu Gly Ile Ser Ser
 245 250 255

 Glu Pro Val Ser Ala Ala Thr Thr Gln Thr Leu Glu Gly Asp Ser Ser
 260 265 270

 Glu Val Gly Asp Gln Ile Asn Ser Lys Arg Ala Lys Gln Met Ala Glu
 275 280 285

 Lys Ser Pro Pro Glu Ala Ser Ala Lys Ala Gln Pro Ile Lys Gly Ala
 290 295 300

 Arg Arg Ala Pro Asp Ser Ser Ser Glu Phe Gly Lys Val Thr Arg Met
 305 310 315 320

 Cys Phe Ala Val Phe Leu Cys Phe Ala Leu Ser Tyr Ile Pro Phe Leu
 325 330 335

 Leu Leu Asn Ile Leu Asp Ala Arg Val Gln Ala Pro Arg Val Val His
 340 345 350

 Met Leu Ala Ala Asn Leu Thr Trp Leu Asn Gly Cys Ile Asn Pro Val
 355 360 365

 Leu Tyr Ala Ala Met Asn Arg Gln Phe Arg Gln Ala Tyr Gly Ser Ile
 370 375 380

 Leu Lys Arg Gly Pro Arg Ser Phe His Arg Leu His
 385 390 395

<210> 3

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 3

ggcatcatca tggcacctt catcctctgc tggctgccc tcttc 45

<210> 4

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 4
gcagaaggc agaacaagag ccacgatgaa gaagggcagc cagca 45

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 5
tggctgtcat cggacatcac ttgttgact gcctccatcc tgcac 45

<210> 6
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 6
gttagcggtcc agggcgatga cacagaggtg caggatggag gcagt 45

<210> 7
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 7
atccctctaca ctgtctactc cacgggtgggt gctttctact tcccc 45

<210> 8
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 8
gccatagagg gcgatgagga gcagggtggg gaagttagaaa gcacc 45

<210> 9
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 9
ctaggatca ttttgggagc ctttattgtg tgttggctac ctttct 46

<210> 10
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 10
gataggcatc actaggaga tgatgaagaa ggtagccaa cacaca 46

<210> 11
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 11
cgcgatcca ttatgtctgc actccgaagg aaatttg 37

<210> 12
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 12
cgcgaattct tatgtgaagc gatcagagtt catttttc 38

<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe
<400> 13
gcgggatccg ctatggctgg tgattctagg aatg 34

<210> 14
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe
<400> 14
ccggaattcc cctcacacccg agccccctgg 29

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe
<400> 15
acctcacact ggctgatctc ctct 24

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 16

gttagatgccc atgaggatgg tggtg

25