Matrix Completion

Hamidreza Behjoo Rahim Tariverdi Jaspers W. Huanay Quispe

Skolkovo Institute of Science and Technology

April 5, 2020

Initiative

Matrix completion is the task of filling in the missing entries of a partially observed matrix. Some questions:

- ▶ Is it generally feasible for $M \in \mathbb{R}^{m \times n}$?
- mn measurement are required
- what if the matrix is low rank
- ▶ number of degrees of freedom is $r(m + n r) \ll mn$.
- what if the matrix is sparse

Application

- ► Movie Recommender System
- ► Image Inpainting

 ovies	

	G. S.	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?
Sam	5	?	?	?

Algorithms

$$\min \quad \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \quad X_{ij} = M_{ij}, \ (i,j) \in \Omega$$

Convex relaxation of the rank

$$\min \quad \|\mathbf{X}\|_* \quad \text{s.t.} \quad X_{ij} = M_{ij}, \ (i,j) \in \Omega$$

► Singular Value Thresholding

$$\label{eq:total_equation} \min \quad \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X}\|_F^2 \quad \text{s.t.} \quad X_{ij} = M_{ij}, \ (i,j) \in \Omega$$

Robust PCA

$$\min_{L \in \mathbb{R}^{m \times n}} \|L\|_* + \lambda \|S\|_1 \quad \text{s.t.} \quad M = L + S$$
 (1)

Image Inpainting

Movie Recommender System