Definitionen und Sätze der HM 1 & 2

Julian Molt

13. August 2025

INHALTSVERZEICHNIS

KAPITEL 1		GRUNDLAGEN DER MATHEMATIK	_ SEITE 4
	1.1	Elementare Logik	4
1	1.2	Naive Mengenlehre	4
1	1.3	Relationen und Funktionen	4
1	1.4	Die Zahlenbereiche	4
1	1.5	Die komplexen Zahlen	4
1	1.6	Zur Faktorisierung von Polynomen	4
1	1.7	Anwendungen	4
KAPITEL 2		GRUNDLAGEN DER ANALYSIS	_ SEITE 5
	2.1	Grenzwerte in Q, Vollständigkeit	5
2		Die reellen Zahlen	6
	2.3	Grenzwerte in \mathbb{R}	7
2	2.4	Maximum, Minimum, Infimum, Supremum	7
	2.5	Die Zahl e	8
	2.6	Reihen	8
	2.7	Zur Struktur der Räume \mathbb{R}^n und \mathbb{C}^n	10
	2.8	Metrische Räume	10
	2.9	Zur Topologie im \mathbb{R}^n und \mathbb{C}^n	11
	2.10	Die Exponentialfunktion – Die Formel von Euler	12
	2.11	Grenzwerte von Funktionen	13
	2.12	Stetigkeit	14
	2.13	Stetige reelle Funktionen einer reellen Variablen	14
2	2.14	Kompaktheit	15
KAPITEL 3		ZUR DIFFERENZIALRECHNUNG FÜR FUNKTIONEN EINER VAR.	SEITE 16
3		Differenzialquotient und Ableitung	16
9		Die Landau-Symbole ϕ und $\mathcal O$	16
9		Regeln für das Rechnen mit Ableitungen	16
S		Die Sätze von Fermat, Rolle: Die Formel von Cauchy und Lagrange	17
		Der Hauptsatz der Differenzialrechnung	18
S	3.6	Höhere Ableitungen	18
Ş	3.7	Der Satz von Taylor	18
9	3.8	Anwendungen: Monotonie und Extremwerte	19
Ş	3.9	Konvexität und Konkavität	19
g	2 10	Unbestimentheiten vom Typ 0/0 bgw es/es	10

APITEL 4		Integralrechnung	SEITE 21
	4.1	Das Riemann-Integral	21
	4.2	Wichtige Eigenschaften des RIEMANN-Integrals	22
	4.3	Die Formel von Newton und Leibniz – Die Stammfunktion	22
	4.4	Partielle Integration, Substitution der Integrationsvariablen	23
	4.5	Zur Integration rationaler Funktionen	23
	4.6	Die Mittelwertsätze der Integralrechnung	23
	4.7	Das Restglied in der Formel von TAYLOR	23
	4.8	Numerische Verfahren der Integration	24
	4.9	Einige Anwendungen der Differenzial- und Integralrechnung	24
	4.10	Flächen, Volumina	25
APITEL 5		LINEARE ALGEBRA	SEITE 26
	5.1	Matrizen – Grundlagen	26
	5.2	Quadratische Matrizen	26
	5.3	\mathbb{R}^n bzw. \mathbb{C}^n als Raum der Spaltenvektoren	27
	5.4	Permutationen	27
	5.5	Determinanten	27
	5.6	Inverse Matrizen	27
	5.7	Der Rang einer Matrix	28
	5.8	LGS: Allgemeiner Fall	30
	5.9	Das Spektrum. Eigenvektoren. Resolvente.	30
	5.10	Ähnlichkeit von Matrizen	31
	5.11	Orthogonale und unitäre Matrizen	31
	5.12	Symmetrische und Hermitesche Matrizen	32
	5.13	Wechsel des Koordinatensystems – Basiswechsel	33
	5.14	Direkte und orthogonale Summen von Unterräumen	33
	5.15	Orthogonale Projektionen	34
	5.16	Selbstadjungierte Operatoren und quadratische Formen	35
	5.17	Stetige lineare Operatoren	35
A DIMBI 6		7 D	C
APITEL 6		ZUR DIFFRECHNUNG FÜR FUNKTIONEN MEHRERER VAR.	
	6.1	Differenzierbarkeit	37
		Produkt- und Kettenregel	38
	6.3	Hauptsatz der Differenzialrechnung	38
	6.4	Ableitungen höherer Ordnung	39
	6.5	Der Satz von Taylor	39
	6.6	Extremwerte von Funktionen mit mehreren Veränderlichen	39
	6.7	Der Satz über implizite Funktionen	40
	6.8	Umkehrfunktion	41
	6.9	Darstellung von Gradient und LAPLACE in verschiedenen Koordinatensystemer	
	6.10	Extremwerte unter Nebenbedingungen	41

KAPITEL 7	FUNKTIONENFOLGEN	SEITE 42
7.1	Doppelfolgen, Gleichmäßigkeit	42
7.2	Funktionenfolgen	43
7.3	Die Folge der Ableitungen	43
7.4	Funktionenreihen	43
7.5	Potenzreihen	44
7.6	Der Fixpunktsatz von Banach	44

Grundlagen der Mathematik

- 1.1 Elementare Logik
- 1.2 Naive Mengenlehre
- 1.3 Relationen und Funktionen
- 1.4 Die Zahlenbereiche
- 1.5 Die komplexen Zahlen
- 1.6 Zur Faktorisierung von Polynomen

Satz 1.6.1 Hauptsatz der Algebra

Jedes Polynom über $\mathbb C$ vom Grad deg P>1 besitzt mindestens eine Nullstelle $z\in\mathbb C$ (in der komplexen Ebene).

1.7 Anwendungen

Grundlagen der Analysis

2.1 Grenzwerte in Q, Vollständigkeit

Definition 2.1.1

Eine Folge a aus A ist eine Funktion $a \colon \mathbb{N} \to A$. Man schreibt:

$$\begin{split} a(1) &= a_1 \in A, \dots, \\ a(k) &= a_k \in A, \dots, \\ a &= \left(a_k\right)_{k=1}^{\infty} = \left(a_1, a_2, a_3, \dots\right) \end{split}$$

- Gleiche Werte können mehrfach angenommen werden.
- Die Anordnung ist wichtig.

Definition 2.1.2: Grenzwert

Man nennt $r \in \mathbb{Q}$ Grenzwert einer Folge rationaler Zahlen $(a_n)_{n \in \mathbb{N}}$ genau dann, wenn

$$\forall_{\varepsilon>0} \ \exists_{N_{\varepsilon}\in\mathbb{N}} \ \forall_{n\geqslant N_{\varepsilon}} \colon \ d(a_{n},r)<\varepsilon$$

Man schreibt dann

$$r = \lim_{n \to \infty} a_n$$
oder kurz $a_n \overset{n \to \infty}{\longrightarrow} r$

Eine Folge ist konvergent, wenn sie einen Grenzwert besitzt.

Eine Folge ist divergent, wenn sie keinen Grenzwert besitzt.

Definition 2.1.3

Eine Folge rationaler Zahlen $a=\left(a_{n}\right)_{n=1}^{\infty}$ ist beschränkt, genau dann, wenn

$$\exists_{C>0} \ \forall_{n\in\mathbb{N}} \colon \ \left|a_n\right| \leqslant C$$

Satz 2.1.1

Jede konvergente Folge ist beschränkt.

Satz 2.1.2

Wenn eine Folge $\left(a_n\right)_{n=1}^{\infty}$ gegen r konvergiert, dann konvergiert jede Teilfolge von a gegen denselben Grenzwert r.

Satz 2.1.3

Wenn eine Folge $\left(a_k\right)_{k=1}^{\infty}$ konvergiert, dann ist der Grenzwert eindeutig bestimmt.

Definition 2.1.4: CAUCHY-Folge, Fundamentalfolge

 $\left(a_{n}\right)_{n=1}^{\infty}$ ist eine CAUCHY-Folge, genau dann, wenn

$$\forall_{\varepsilon>0} \ \exists_{N_\varepsilon\in\mathbb{N}} \ \forall_{n,m\geqslant N_\varepsilon}\colon \ d(a_n,a_m)<\varepsilon$$

in
$$\mathbb{Q}$$
 $d(a_n, a_m) = |a_n - a_m|$

Satz 2.1.4

Jede konvergente Folge ist eine CAUCHY-Folge.

2.2 Die reellen Zahlen

Definition 2.2.1: Grundrechenarten auf \mathbb{R}

$$\begin{split} & r, s \in \mathbb{R} \\ & r = \left[\left(r_k \right)_{k=1}^{\infty} \right] \quad \left(r_k \right)_{k=1}^{\infty} \in \mathrm{CF}(\mathbb{Q}) \\ & r = \left[\left(s_k \right)_{k=1}^{\infty} \right] \quad \left(s_k \right)_{k=1}^{\infty} \in \mathrm{CF}(\mathbb{Q}) \end{split}$$

$$\begin{split} r + s & \stackrel{\text{\tiny def}}{=} \left[\left(r_k + s_k \right)_{k=1}^{\infty} \right]_{\sim} \\ r \cdot s & \stackrel{\text{\tiny def}}{=} \left[\left(r_k \cdot s_k \right)_{k=1}^{\infty} \right]_{\sim} \end{split}$$

Definition 2.2.2: Ordnung auf \mathbb{R}

r, s stehen für approximierte Folgen.

$$(r_k) \in r$$

$$(s_k) \in s$$

$$r < s \quad \stackrel{\text{\tiny def}}{\Longleftrightarrow} \quad \exists_{p,q \in \mathbb{Q} \colon p < q} \ \exists_{N \in \mathbb{N}} \ \forall_{n \geqslant N} \colon \ r_n \leqslant p \leqslant q \leqslant s_n$$

Satz 2.2.1

Für beliebige $r,s\in\mathbb{R}$ gilt immer genau einer der folgenden Fälle:

$$r = s$$

2.3 Grenzwerte in \mathbb{R}

Definition 2.3.1: Monotonie

 $(a_n),a_n\in\mathbb{R},n\in\mathbb{N}$

Monoton wachsend $(a_n) \uparrow$

$$a_n \leqslant a_{n+1}$$
 für alle $n \in \mathbb{N}$

Streng monoton wachsend $(a_n) \uparrow \uparrow$

$$a_n < a_{n+1}$$
 für alle $n \in \mathbb{N}$

Monoton fallend $(a_n) \downarrow$

$$a_n\geqslant a_{n+1}$$
 für alle $n\in\mathbb{N}$

Streng monoton fallend $(a_n) \downarrow \downarrow$

$$a_n>a_{n+1}$$
 für alle $n\in\mathbb{N}$

Satz 2.3.1

Jede monotone beschränkte Folge reeller Zahlen besitzt einen Grenzwert in $\mathbb R$

2.4 Maximum, Minimum, Infimum, Supremum

Definition 2.4.1: Maximum, Minimum

Sei $M \subset \mathbb{R}$. Wir sagen $a \in \mathbb{R}$ ist das

Maximum von M

$$(a = \max M) \overset{\text{\tiny def}}{\Longleftrightarrow} (a \in M) \land (\forall_{x \in M} \colon \ x \leqslant a)$$

Minimum von M

$$(a=\min M) \stackrel{\text{\tiny def}}{\Longleftrightarrow} (a\in M) \wedge (\forall_{x\in M}\colon \ x\geqslant a)$$

Definition 2.4.2

Eine Menge $M \in \mathbb{R}$ ist beschränkt, wenn C > 0 existiert, sodass

$$|x| \leq C$$
 für alle $x \in M$

Definition 2.4.3

Sei $M \in \mathbb{R}, M \neq \emptyset$.

Menge der oberen Schranken von M

$$M_+ = \{y \in \mathbb{R} \colon \forall_{x \in M} \colon x \leqslant y\}$$

Menge der unteren Schranken von M

$$M_- = \big\{y \in \mathbb{R} \colon \forall_{x \in M} \colon y \leqslant x \big\}$$

Definition 2.4.4

Für $M\subset\mathbb{R}$ nennen wir $a\in\mathbb{R}$ das Supremum von $M\Leftrightarrow a=\sup M=\min M_+,$ bzw. das Infimum von $M\Leftrightarrow a=\inf M=\max M_-$

Falls inf M bzw. sup M existieren, dann sind diese eindeutig bestimmt.

Satz 2.4.1 Satz von Supremum und Infimum

Ist $M \neq \emptyset$ nach oben beschränkt, dann existiert $a = \sup M$.

Ist $M \neq \emptyset$ nach unten beschränkt, dann existiert $a = \inf M$.

2.5 Die Zahl e

Satz 2.5.1

Die Folge (x_n) konvergiert in \mathbb{R} .

Definition 2.5.1

$$\mathbf{e}\coloneqq \lim_{n\to\infty} x_n$$

Satz 2.5.2

$$x_n < \mathbf{e} < x_n + \frac{1}{n!} \cdot \frac{1}{n} \qquad n \in \mathbb{N}$$

Satz 2.5.3

e ist irrational.

Satz 2.5.4

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

2.6 Reihen

Definition 2.6.1

Man sagt, dass die Reihe $\sum_{k=1}^\infty a_k$ konvergiert, falls $\big(S_n\big)_{n=1}^\infty$ konvergiert. Man setzt dann

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n$$

Sonst divergiert die Reihe $\sum_{k=1}^{\infty} a_k$.

Satz 2.6.1 Doppelreihen

$$a_{m,n} > 0$$
 $m, n \in \mathbb{N}$

Folgende Reihen konvergieren gleichzeitig und sind gleich:

$$\sum_{(m,n)\in\mathbb{N}\times\mathbb{N}}=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty}a_{m,n}\right)=\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}a_{m,n}\right)$$

Definition 2.6.2

Die Reihe $\sum_{k=1}^{\infty}a_k$ konvergiert absolut, falls

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Satz 2.6.2

Jede absolut konvergente Reihe konvergiert.

Satz 2.6.3 Umordungssatz für absolut konvergente Reihen

 $\begin{array}{l} a_k \in \mathbb{R}, \ k \in \mathbb{N} \\ \sum_{k=1}^{\infty} a_k \ \text{konvergiere absolut} \\ \varPhi \colon \mathbb{N} \overset{\text{bij.}}{\longrightarrow} \mathbb{N} \quad b_k = a_{\varPhi(k)} \end{array}$

$$\Rightarrow \quad \sum_{k=1}^{\infty} b_k \text{ konvergiert absolut und } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} b_k.$$

Satz 2.6.4 Umordnungssatz von RIEMANN

 $a_k = a_k^+ - a_k^ a_k \xrightarrow{k \to \infty} 0$ Angenommen beide Reihen $\sum_{k=1}^\infty a_k^+$ und $\sum_{k=1}^\infty a_k^-$ divergieren. Dann existiert für jedes $r \in \mathbb{R}$ eine Umordnung $\Phi \colon \mathbb{N} \xrightarrow{\text{bij.}} \mathbb{N}$, sodass

$$\sum_{k=1}^\infty a_{\varPhi_r(k)} = r\,.$$

Satz 2.6.5

 $\prod_{k=1}^{\infty}a_k$ konvergiert genau dann, wenn die Reihe $\sum_{k=1}^{\infty}\ln\left(a_k\right)$ konvergiert, wobei

$$\ln\left(\prod_{k=1}^{\infty} a_k\right) = \sum_{k=1}^{\infty} \ln\left(a_k\right)$$

Definition 2.6.3

Eine Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert nach Cesaro gegen S genau dann, wenn

$$S = \lim_{n \to \infty} \frac{1}{n} \big(S_1 + \ldots + S_k \big)$$

9

2.7 Zur Struktur der Räume \mathbb{R}^n und \mathbb{C}^n

Definition 2.7.1

Eine Menge Vnennt man Vektorraum über den Körper \mathbb{K} , falls die Operationen

$$+\colon V\times V\to V$$

$$\cdot: \mathbb{K} \times V \to V$$

existieren mit folgenden Eigenschaften:

- 1. (V, +) ist eine Abelsche Gruppe:
 - $(A_+): (x+y)+z = x+(y+z)$
 - $\bullet \ \left(N_{+}\right): \exists_{0_{V} \in V} \ \forall_{x \in V} \colon \ x + 0_{V} \ = \ 0_{V} + x \ = \ x$
 - $\bullet \ \, \left(I_{+}\right): \forall_{x \in V} \ \exists_{(-x) \in V} \colon \ \, x + (-x) \ \, = \ \, (-x) + x \ \, = \ \, 0_{V}$
 - $\bullet \ \, \left(K_{+}\right):x+y \ = \ y+x \text{ mit } x,y,z \in V$
- 2. Eigenschaften der Multiplikation mit einem Skalar:
 - (S1) $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$
 - (S2) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
 - (S3) $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$
 - $(S4) 1_{\mathbb{K}} \cdot x = x$

für alle $\alpha, \beta \in \mathbb{K}, \ x, y \in V$

Definition 2.7.2: Reelles Skalarprodukt

Sei V ein Vektorraum über $\mathbb{K}=\mathbb{R}$. Dann nennt man $\langle\cdot,\cdot\rangle\colon V\times V\to\mathbb{R}$ mit den Eigenschaften $(1)_{S\mathbb{R}}$ - $(3)_{S\mathbb{R}}$ ein (reelles) Skalarprodukt auf V.

Definition 2.7.3: Komplexes Skalarprodukt

Sei V ein Vektorraum über $\mathbb{K}=\mathbb{C}$. Dann nennt man $\langle\cdot,\cdot\rangle\colon V\times V\to\mathbb{C}$ mit den Eigenschaften $(1)_{S\mathbb{C}}$ - $(3)_{S\mathbb{C}}$ ein (komplexes) Skalarprodukt auf V.

2.8 Metrische Räume

Definition 2.8.1: ε -Umgebung

(M,d) metrischer Raum

$$U_{\varepsilon}(x) = \{ y \in M \colon d(x,y) < \varepsilon \} \qquad x \in M, \, \varepsilon > 0$$

Definition 2.8.2: Grenzwert einer Folge

$$x_n \in M$$

$$y \in M$$

(M,d) metrischer Raum

$$y = \lim_{n \to \infty} x_n \quad \stackrel{\text{\tiny def}}{\Longleftrightarrow} \quad \forall_{\varepsilon > 0} \ \exists_{N_\varepsilon \in \mathbb{N}} \ \forall_{n \geqslant N_\varepsilon} \colon \ \underbrace{d(x_n, y) < \varepsilon}_{x_n \in U_\varepsilon(y)}$$

Satz 2.8.1

Falls (x_n) in (M,d) konvergiert, so ist $y=\lim_{n\to\infty}x_n$ eindeutig bestimmt.

Satz 2.8.2

Jede konvergente Folge ist beschränkt, d.h. die Menge der Folgenglieder ist beschränkt.

Definition 2.8.3: Cauchy-Folge, Fundamentalfolge

(M,d) metrischer Raum

$$x_n \in M$$

 $n \in M$

$$(x_n) \in \mathrm{CF}(M,d) \quad \stackrel{\scriptscriptstyle{\mathrm{def}}}{\Longleftrightarrow} \quad \forall_{\varepsilon > 0} \ \exists_{N_\varepsilon \in \mathbb{N}} \ \forall_{n,m \geqslant N_\varepsilon} \colon \ d(x_n,x_m) < \varepsilon$$

Satz 2.8.3

Jede konvergente Folge ist eine Cauchy-Folge. Die Umkehrung gilt im Allgemeinen nicht.

Definition 2.8.4

Ein metrischer Raum (M,d) ist vollständig, g.d.w. jede CAUCHY-Folge einen Grenzwert in M besitzt.

2.9 Zur Topologie im \mathbb{R}^n und \mathbb{C}^n

Definition 2.9.1: Häufungspunkt einer Menge

(M,d) metrischer Raum

Sei $X \subset M$. Wir nennen $x_0 \in M$ Häufungspunkt von X g.d.w.

$$\forall_{\varepsilon>0}\colon\ U_\varepsilon(x_0)\cap \left(X\backslash\{x_0\}\right)\neq\emptyset$$

Definition 2.9.2: Isolierter Punkt

Sei $X\subset M$. Wir nennen $x_0\in X$ einen isolierten Punkt von X g.d.w.

$$\exists_{\varepsilon>0}\colon\ U_\varepsilon(x_0)\cap \big(X\backslash\{x_0\}\big)=\emptyset$$

Definition 2.9.3

Wir nennen $x_0 \in M$

• inneren Punkt von X

$$\exists_{\varepsilon>0}\colon\ U_\varepsilon(x_0)\subset X$$

- äußeren Punkt zu X

$$\exists_{\varepsilon>0}\colon\ U_\varepsilon(x_0)\subset (M\backslash X)$$

• Randpunkt von X

$$\forall_{\varepsilon>0} \colon (U_{\varepsilon}(x_0) \cap X \neq \emptyset) \land (U_{\varepsilon}(x_0) \cap (M \setminus X) \neq \emptyset)$$

 $\operatorname{int} X$ Menge der inneren Punkte

 $\operatorname{ext} X$ Menge der äußeren Punkte

 ∂X Menge der Randpunkte

Definition 2.9.4

Eine Menge $X \subset M$ heißt offen, g.d.w.

$$X = \operatorname{int} X$$

Definition 2.9.5

Eine Menge $X \subset M$ heißt abgeschlossen g.d.w.

$$X = \operatorname{int} X \cup \partial X$$

Satz 2.9.1

 $X \subset M$ ist offen in (M,d), g.d.w. $M \setminus X$ abgeschlossen in (M,d) ist.

2.10 Die Exponentialfunktion – Die Formel von Euler

Sei im Folgenden

$$t_n(z)=1+\sum_{k=1}^n\frac{z^k}{k!}\quad,z\in\mathbb{C},\,n\in\mathbb{N}$$

Satz 2.10.1

Die Folge $(t_n(z))_{n\in\mathbb{N}}$ ist für jedes $z\in\mathbb{C}\,n\to\infty$ konvergent.

Definition 2.10.1

 $\exp\colon \mathbb{C} \to \mathbb{C}$

$$\exp(z) = \lim_{n \to \infty} t_n(z) = 1 + \sum_{k=1}^{\infty} \frac{z^k}{k!}$$

Bzw. mit den Vereinbarungen

 $0! = 1, z^0 = 1$ (auch für z = 0)

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Satz 2.10.2

Für alle $z,w\in\mathbb{C}$ gilt:

$$\exp(z+w) = \exp(z) \cdot \exp(w)$$

Satz 2.10.3

Für $z \in \mathbb{C}$ mit z < 1 gilt:

$$|\exp(z) - 1 - z| \leqslant |z|^2$$

bzw:

$$\exp(z) = 1 + z + R(z)$$

mit $|R(z)| \le |z|^2$ für |z| < 1(R(z) ist der Rest von z)

Definition 2.10.2

$$e^x = \exp(x)$$
 $x \in \mathbb{R}$

2.11 Grenzwerte von Funktionen

Definition 2.11.1: ε - δ -Definition

$$y_0 = \lim_{x \to x_0} f(x) \text{ g.d.w.}$$

$$\forall_{\varepsilon>0} \ \exists_{\delta>0} \colon \ f\Big(X\cap \overset{\circ}{U_{\delta}}(x_0)\Big) \subset U_{\varepsilon}(y_0)$$

Definition 2.11.2: Folgendefinition

 $y_0 = \lim_{x \to x_0} f(x) \text{ g.d.w. für } \underline{\underline{\text{jede}}} \text{ Folge } (x_n)_{n=1}^\infty \text{ mit } x_n \in X \backslash \{x_0\}, \, x_n \overset{n \to \infty}{\longrightarrow} x_0 \text{ gilt:}$

$$y_0 = \lim_{n \to \infty} f(x_n)$$

Satz 2.11.1

Die letzten beiden Definitionen sind äquivalent zueinander.

2.12 Stetigkeit

Definition 2.12.1

f ist im Punkt x_0 stetig, g.d.w.

- 1. $x_0 \in iso(X)$ oder
- 2. $\lim_{x\to x_0}f(x)=f(x_0)$ für $x_0\in\mathrm{acc}(X)$

Definition 2.12.2: ε - δ -Definition

 $f \colon X \subset M_1 \to M_2$ ist stetig in $x_0 \in X \Leftrightarrow$

$$\forall_{\varepsilon>0} \ \exists_{\delta>0} \colon \ f(X\cap U_{\delta}(x_0))\subset U_{\varepsilon}(f(x_0))$$

Definition 2.12.3: Folgendefinition

 $f: X \subset M_1 \to M_2$ stetig in $x_0 \in X$

 \Leftrightarrow für jede Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\in X,\, x_n\stackrel{n\to\infty}{\longrightarrow} x_0$ gilt:

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

Definition 2.12.4

 $f{:}\; X\subset M_1\to M_2$ ist stetig auf X,wenn fin jedem Punkt $x_0\in X$ stetig ist.

Satz 2.12.1

Sei $X=M_1$, dann ist $f(X=M_1\to M_2)$ stetig auf $X=M_1$ g.d.w. das Urbild $f^{-1}(U)$ von jeder in M_2 offenen Menge $U\subset U_2$ in M_2 ist.

2.13 Stetige reelle Funktionen einer reellen Variablen

Satz 2.13.1 Satz von BOLZANO und CAUCHY

$$\begin{aligned} f \colon [a,b] & \xrightarrow{\text{stetig}} \mathbb{R} \\ a < b, \, f(a) \cdot f(b) < 0 \end{aligned}$$

$$\Rightarrow \quad \exists_{C \in]a,b[} \colon \ f(C) = 0$$

Definition 2.13.1: Monotonie

 $f \uparrow \text{(monoton wachsend)}$

 $x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$

 $f\uparrow\uparrow$ (streng monoton wachsend)

 $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

 $f\downarrow$ (monoton fallend)

 $x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$

 $f\downarrow\downarrow$ (streng monoton fallend)

 $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Kompaktheit 2.14

Definition 2.14.1: Häufungspunkt einer Folge

Wir nennen $y\in M$ Häufungspunkt einer Folge $(a_n)_{n\in\mathbb{N}}$, falls eine Teilfolge $(a_j)_{j\in\mathbb{N}}$ existiert, welche gegen y konvergiert.

Definition 2.14.2: Kompaktheit

(M, d) metrischer Raum, $K \subset M$

K ist (folgen)kompakt, g.d.w. jede Folge aus K mindestens einen Häufungspunkt aus K enthält.

Satz 2.14.1 BOLZANO-WEIERSTRASS

 $(M,\,d)=\left(\mathbb{K}^m,\,d_{|\cdot|}\right)$ Für eine Menge $K\subset\mathbb{K}^m$ gilt Kompaktheit, g.d.w. Beschränktheit und Abgeschlossenheit

Satz 2.14.2

Wenn $K\subset M_1$ kompakt $f\colon K\subset M_1\to M_2$ auf K stetig ist, dann ist f(K) kompakt in M_2

Satz 2.14.3 WEIERSTRASS

 $f \colon K \subset M_1 \to \mathbb{R}$ stetig und $K \subset M_1$ kompakt

 $\Rightarrow f$ ist beschränkt und nimmt einen Minimalwert und einen Maximalwert an.

Satz 2.14.4

 $\begin{array}{l} f \colon K \subset M_1 \stackrel{\text{stetig}}{\longrightarrow} M_2 \\ K \subset M_1 \text{ kompakt} \end{array}$

$$\Rightarrow \quad \forall_{\varepsilon>0} \ \exists_{\delta=\delta_{\varepsilon}>0} \ \forall_{x_0\in K}$$

Zur Differenzialrechnung für Funktionen einer Var.

3.1Differenzial quotient und Ableitung

Definition 3.1.1: Differenzial quotient

$$\varphi(f,x_0,h) = \frac{1}{h} \big(f(x_0+h) - f(x_0) \big) \qquad h \neq 0$$

Definition 3.1.2

f ist im Punkt x_0 differenzierbar g.d.w.

$$\lim_{h\to 0}\varphi(f,x_0,h)=F\in\mathbb{R}$$

existiert.

Definition 3.1.3

Wir nennen f in z_0 differenzierbar g.d.w.

$$\lim_{h\to 0}\varphi(f,z_0,h)=f'(z_0)\in\mathbb{C}$$

existiert.

Die Landau-Symbole σ und \mathcal{O}

Definition 3.2.1: LANDAU-Symbole

$$f \stackrel{x \to x_0}{=} \mathcal{O}(g)$$
 g.d.w.

$$\exists_{\delta>0} \ \exists_{C\in\mathbb{R}} \ \forall_{x\in U_\delta(x_0)\cap X} \colon \ \|f(x)\|\leqslant C\cdot |g(x)|$$

$$f \stackrel{x \to x_0}{=} o(g)$$
 g.d.w

$$\forall_{\varepsilon>0} \ \exists_{\delta_{\varepsilon}>0} \ \forall_{x\in U_{\delta_{\varepsilon}}(x_0)\cap X} \colon \ \|f(x)\|\leqslant \varepsilon\cdot |g(x)|$$

3.3 Regeln für das Rechnen mit Ableitungen

 f,f_1,f_2 wie eben $g\colon X\to \mathbb{K}$

Satz 3.3.1

 f,f_1,f_2,g differenzierbar im Punkt $x_0\in \operatorname{int}(X)$ \Rightarrow Dann existieren folgende Ableitungen in $x_0\colon$

1.
$$(f_1 \pm f_2)'(x_0) = f_1'(x_0) \pm f_2'(x_0)$$

2.
$$(\alpha \cdot f)'(x_0) = \alpha \cdot f'(x_0)$$
 $\alpha \in \mathbb{K}$

3.
$$(g \cdot f)'(x_0) = g'(x_0) \cdot f(x_0) + g(x_0) \cdot f'(x_0)$$

Satz 3.3.2 Kettenregel

$$(f \circ \psi)(y) = f(\psi(y))$$

$$\left.\frac{\mathrm{d}(f\circ\psi)}{\mathrm{d}y}\right|_{y=y_0}=\left.\frac{\mathrm{d}\psi}{\mathrm{d}y}\right|_{y=y_0}\cdot\left.\frac{\mathrm{d}f}{\mathrm{d}x}\right|_{x=x_0=\psi(y_0)}$$

Satz 3.3.3 Quotientenregel

$$f, g: X \to \mathbb{K}; x_0 \in \text{int}(X)$$

 $g(x) \neq 0$ für $x \in X$

f und g sind in x_0 differenzierbar

$$\Rightarrow \quad \left. \frac{\mathrm{d}}{\mathrm{d}x} \bigg(\frac{f}{g} \bigg) \right|_{x=x_0} = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{\big(g(x_0) \big)^2}$$

Satz 3.3.4 Ableitung der Umkehrfunktion

 $f: X \to Y$ bijektiv

 $x_0 \in \operatorname{int}(X)$

 $y_0 \in \operatorname{int}(Y)$

f in x_0 differenzierbar; $f'(x_0) \neq 0$

 f^{-1} ist in $y_0 = f(x_0)$ stetig

$$\Rightarrow \frac{\mathrm{d}f^{-1}}{\mathrm{d}y}\bigg|_{y=y_0} = \frac{1}{\frac{\mathrm{d}f}{\mathrm{d}x}\bigg|_{x=x_0}}$$

Die Sätze von Fermat, Rolle: Die Formel von Cauchy und LAGRANGE

Satz 3.4.1 FERMAT

 $f: [a, b] \to \mathbb{R}$

a < c < b, f ist in c differenzierbar

 $f(c) = \max_{x \in [a,b]} f(x) \text{ oder}$ $f(c) = \min_{x \in [a,b]} f(x)$

$$\Rightarrow f'(c) = 0$$

Satz 3.4.2 ROLLE

 $f \colon [a,b] \stackrel{\mathrm{stetig}}{\longrightarrow} \mathbb{R}$

f differenzierbar in a, b

f(a) = f(b)

$$\Rightarrow \quad \exists_{c \in]a,b[} \colon \ f'(c) = 0$$

Satz 3.4.3 CAUCHY

 $f,g\colon [a,b]\to \mathbb{R}$ stetig f, g auf]a, b[differenzierbar $g'(x) \neq 0$ für]a, b[

 $\Rightarrow \exists_{c \in]a,b[} : \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

Satz 3.4.4 Mittelwertsatz der Differenzialrechnung (Formel von LAGRANGE)

 $f \colon [a,b] \stackrel{\mathrm{stetig}}{\longrightarrow} \mathbb{R}$, in]a,b[differenzier bar

$$\Rightarrow \quad \exists_{c \in]a,b[} \colon \ f'(c) = \frac{f(b) - f(a)}{b - a}$$

Der Hauptsatz der Differenzialrechnung

Satz 3.5.1 Hauptsatz der Differenzialrechnung

$$\begin{split} \mathbb{K} &= \mathbb{R} \text{ oder } \mathbb{K} = \mathbb{C}, \, n \in \mathbb{N} \\ f \colon [a,b] &\stackrel{\text{stetig}}{\longrightarrow} \mathbb{K}^n \text{ in }]a,b[\text{ differenzierbar}. \end{split}$$

$$\Rightarrow \quad \|f(b) - f(a)\| \leqslant \sup_{x \in]a,b[} \|f'(x)\| \cdot |b-a|$$

3.6 Höhere Ableitungen

Satz 3.6.1 Satz von LEIBNIZ

X offen, $x_0 \in X$, f und g sind in x_0 m-fach differenzierbar.

Dann existiert

$$(g \cdot f)^{(m)}(x_0) = \sum_{k=0}^m \binom{m}{k} \cdot g^{(m-k)}(x_0) \cdot f^{(k)}(x_0) \, .$$

Der Satz von Taylor

Satz 3.7.1 TAYLOR

 $f:]a, b[= X \to \mathbb{K}^n \text{ bzw.}$

 $f \colon X \subset \mathbb{C} \to \mathbb{C}^n$

X offen, $x_0 \in X$

Sei f im Punkt x_0 m-fach differenzierbar, dann gilt

$$f(x_0+h) \stackrel{h \to 0}{=} \underbrace{f(x_0) + \sum_{k=1}^m \frac{f^{(k)}(x_0)}{k!} h^k}_{=T_m(x_0,h)} + o(h^m)$$

3.8 Anwendungen: Monotonie und Extremwerte

Satz 3.8.1

- 1. $f \uparrow \Leftrightarrow f'(x) \geqslant 0$ für alle $x \in]a, b[$
- 2. $f \uparrow \uparrow \Leftrightarrow f'(x) > 0$ für alle $x \in]a,b[$ und es gibt keine $\alpha,\beta \in]a,b[$ mit $\alpha < \beta$ und f'(x) = 0 für alle $x \in]\alpha,\beta[$

3.9 Konvexität und Konkavität

Definition 3.9.1

 $f\colon]a,b[\to \mathbb{R}$ ist konvex g.d.w. für alle $a < x_1 < x_2 < b$ und alle $t \in [0,1]$ gilt mit $x(t) = t \cdot x_1 + (1-t) \cdot x_2$

$$f(x(t)) \leqslant t \cdot f(x_1) + (1-t) \cdot f(x_2)$$

f ist konkav g.d.w. -f konvex ist.

Satz 3.9.1

Ist f:]a, b[konvex (bzw. konkav), dann ist f stetig.

Satz 3.9.2

Sei $f: [a, b] \to \mathbb{R}$ differenzierbar

- 1. f ist konvex \Leftrightarrow $f' \uparrow \text{ auf }]a, b[$
- 2. f ist konkav \Leftrightarrow $f' \downarrow \text{auf }]a, b[$

Satz 3.9.3

Sei $f: [a, b] \to \mathbb{R}$ 2-fach differenzierbar in [a, b]

- 1. f ist konvex \Leftrightarrow $f''(x) \ge 0$ für alle $x \in [a, b]$
- 2. f ist konkav \Leftrightarrow $f''(x) \leqslant 0$ für alle $x \in [a, b]$

Satz 3.9.4

f: [a, b[2-fach differenzierbar in $c \in [a, b[$ in c liegt Wendepunkt vor

$$\Rightarrow f''(c) = 0$$

3.10 Unbestimmtheiten vom Typ 0/0 bzw. ∞/∞

Satz 3.10.1 BERNOULLI, L'HOSPITAL

 $\begin{array}{l} f,g\colon]a,b[\to\mathbb{R} \text{ in } \mathbb{R} \text{ differenzierbar} \\ g(x)\neq 0,\, g'(x)\neq 0 \text{ für } x\in]a,b[\\ \lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0 \end{array}$

Es existiere
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}$$

$$\Rightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = A$$

Satz 3.10.2 Unbestimmtheiten vom Typ
$$\frac{\infty}{\infty}$$
 $f,g\colon]a,b[\stackrel{\mathrm{db.}}{\longrightarrow} \mathbb{R}$ $g'(x)\neq 0$ $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty$ Es existiere $\lim_{x\to a}\frac{f'(x)}{g'(x)}=A\in\mathbb{R}$

Es existiere
$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}$$

$$\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = A$$

Integralrechnung

4.1 Das RIEMANN-Integral

Definition 4.1.1: RIEMANN-Integral

Wir nennen $f: [a, b] \to \mathbb{R}$ Riemann-integrierbar, falls ein $I \in \mathbb{R}$ existiert, sodass

$$\lim_{n\to\infty} \sum \Bigl(f;\delta^{(n)};\Xi^{(n)}\Bigr) = I$$

Man schreibt

$$I = \int_a^b f(x) \, \mathrm{d}x$$

Satz 4.1.1 Struktur des Raumes R[a,b]

 $f,g\in R[a,b]$

 $[c,d] \subset [a,b]$

 $\alpha\in\mathbb{R}$

- $(1) \ f+g \in R[a,b]$
- $(2) \ \alpha \cdot f \in R[a,b]$
- (3) $|f|_{[c,d]} \in R[a,b]$
- (4) $f|_{[c,d]} \in R[c,d]$
- $(5) \ f \cdot g \in R[a,b]$

Satz 4.1.2

Ändert man $f \in R[a, b]$ in endlich vielen Punkten ab, dann ist die neue Funktion ebenfalls Riemann-integrierbar.

Definition 4.1.2: Erweiterung

$$f \colon \{a\} \to \mathbb{R}$$

$$\int_{a}^{a} f(x) \, \mathrm{d}x \stackrel{\text{\tiny def}}{=} 0$$

Definition 4.1.3: Erweiterung (gerichtetes Integral)

Sei $a \leq b$

$$\int_a^b f(x) \, \mathrm{d}x \stackrel{\text{\tiny def}}{=} - \int_b^a f(x) \, \mathrm{d}x$$

4.2 Wichtige Eigenschaften des RIEMANN-Integrals

Definition 4.2.1: RIEMANN-Integral für komplexwertige Funktionen

$$\begin{split} f\colon [a,b] &\to \mathbb{C} \\ f(x) &= f_R(x) + \mathrm{i} f_I(x) \\ \mathrm{mit} \\ f_R(x) &= \Re f(x) \\ f_I(x) &= \Im f(x) \end{split}$$

$$\Leftrightarrow f_R \in R[a,b] \land f_I \in R[a,b]$$

und es gilt:

 $f \in R[a,b]$

$$\int_a^b f(x)\,\mathrm{d}x = \int_a^b f_R(x)\,\mathrm{d}x + \mathrm{i}\int_a^b f_I(x)\,\mathrm{d}x$$

4.3 Die Formel von Newton und Leibniz – Die Stammfunktion

Satz 4.3.1 NEWTON, LEIBNIZ

 $F: [a, b] \to \mathbb{R}, \ a < b$

- (1) F stetig auf [a, b]
- (2) F differenzierbar auf]a, b[$f: [a, b] \to \mathbb{R}$

(3)
$$f(x) = \begin{cases} 0 & x = a \lor x = b \\ F'(x) & x \in]a, b[\end{cases}$$

Es sei $f \in R[a, b]$ Dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Definition 4.3.1

 $F \colon [a,b] \to \mathbb{R}$

 $f: [a, b] \to \mathbb{R}$

Wir nennen F Stammfunktion von f, falls (1), (2) erfüllt sind und (3)' $f(x) = F'(x), x \in [a, b]$

Satz 4.3.2 Hauptsatz der Differenzial- und Integralrechnung

Wenn $f \in R[a, b]$ eine Stammfunktion F besitzt, dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Satz 4.3.3 DARBOUX

Sei $F: [a, b] \to \mathbb{R}$ differenzierbar in]a, b[und f(x) = F'(x) für $x \in]a, b[$. Dann besitzt f keine Sprungstelle in]a, b[

Satz 4.3.4 Existenz einer Stammfunktion

Sei f in]a, b[stetig und auf [a, b] beschränkt.

$$F(y) = F(a) + \int_a^y f(x) \, \mathrm{d}x$$

eine Stammfunktion von f auf [a, b]

4.4 Partielle Integration, Substitution der Integrationsvariablen

Zur Integration rationaler Funktionen 4.5

Die Mittelwertsätze der Integralrechnung 4.6

Satz 4.6.1 Erster Mittelwertsatz

$$\begin{split} f,g\colon [a,b] &\to \mathbb{R} \\ f,g \text{ stetig auf } [a,b], \ g(x) \geqslant 0 \text{ für } x \in [a,b] \end{split}$$

$$\Rightarrow \quad \exists_{\xi \in [a,b]} \colon \quad \int_a^b f(x) \cdot g(x) \, \mathrm{d}x \quad = \quad f(\xi) \cdot \int_a^b g(x) \, \mathrm{d}x$$

Satz 4.6.2 Zweiter Mittelwertsatz

 $f,g\colon [a,b]\to \mathbb{R}$ $g \in R[a,b]$

(1) $f \downarrow \text{ und } f(x) \geqslant 0, \ x \in [a, b]$

$$\Rightarrow \quad \exists_{\xi \in [a,b]} \colon \int_a^b f(x) \cdot g(x) \, \mathrm{d}x = f(a) \cdot \int_a^\xi g(x) \, \mathrm{d}x$$

(2) $f \uparrow \text{ und } f(x) \leqslant 0, \ x \in [a, b]$

$$\Rightarrow \exists_{\xi \in [a,b]} : \int_a^b f(x) \cdot g(x) \, \mathrm{d}x = f(b) \cdot \int_{\xi}^b g(x) \, \mathrm{d}x$$

(3) f monoton

$$\Rightarrow \quad \exists_{\xi \in [a,b]} \colon \int_a^b f(x) \cdot g(x) \, \mathrm{d}x = f(a) \cdot \int_a^\xi g(x) \, \mathrm{d}x + f(b) \cdot \int_\xi^b g(x) \, \mathrm{d}x$$

Das Restglied in der Formel von Taylor

Satz 4.7.1

Sei f in $I_h(x_0)\,(m+1)$ -fach differenzierbar und $f^{(m+1)}$ sei stetig auf $I_h(x_0)$

$$\Rightarrow \quad r_m(x_0,h) = \frac{h^{m+1}}{m!} \cdot \int_0^1 f^{(m+1)}(x_0 + th) (1-t)^m \, \mathrm{d}t$$

23

4.8 Numerische Verfahren der Integration

Satz 4.8.1

Sei $f \colon [a,b] \to \mathbb{R}$

- in $]a,b[\ (n+1)$ -fach differenzierbar
- $f, f', \dots, f^{(n)}, f^{(n+1)}$ stetig und stetig auf [a,b] fortsetzbar.

Dann existiert zu jedem $x \in [a,b]$ (mindestens) einen Punkt $\xi \in [a,b]$ mit

$$f(x)-P_n(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\cdot (x-x_0)\cdot\ldots\cdot (x-x_n)$$

4.9 Einige Anwendungen der Differenzial- und Integralrechnung

Definition 4.1

 φ erzeugt eine Kurve der Klasse $C^p, p \in \mathbb{N}$, falls zudem

- (1) φ p-fach stetig differenzierbar, Ableitungen stetig in Randpunkt fortsetzbar.
- (2) $\dot{\varphi}(t) \neq 0$ für $t \in]a, b[$

$$\exists \lim_{t \to a, b} \dot{\varphi} \neq 0$$

Wobei $\dot{\varphi}(t) = \frac{\mathrm{d}\varphi(t)}{\mathrm{d}t}$

Definition 4.9.1

 φ erzeugt eine rektifizierbare Kurve der Länge Lg.d.w.

$$\sup_{\delta}l(\delta)=L<\infty.$$

Satz 4.9.1

Die Abbildung $\varphi \colon [a,b] \to \mathbb{R}^n$ erzeugt eine Kurve der Klasse $C^1.$ Dann

(1) erzeugt φ eine rektifizierbare Kurve.

$$(2) L = \int_a^b \|\dot{\varphi}(t)\| \,\mathrm{d}t$$

Definition 4.9.2

 $K(s) = \|\kappa(s)\|$ Krümmung

 $R(s) = \frac{1}{K(s)}$ Krümmungsradius

4.10 Flächen, Volumina

Definition 4.10.1

Wir nennen \varOmega quadrierbar, falls $S_*(\varOmega)=S^*(\varOmega)$ und setzen $A(\varOmega)=S_*(\varOmega)=S^*(\varOmega)$

Satz 4.10.1

$$\begin{split} f \colon [a,b] &\to \mathbb{R} \text{ stetig} \\ a &\leqslant b, f(x) \geqslant 0 \text{ für } x \in [a,b] \\ \varOmega &= \left\{ (x,y) \in \mathbb{R}^2 | (a \leqslant x \leqslant b) \land (0 \leqslant y \leqslant f(x)) \right\} \\ &\Rightarrow \varOmega \text{ quadrierbar} \\ A(\varOmega) &= \int_a^b f(x) \, \mathrm{d}x \end{split}$$

Satz 4.10.2

$$\begin{split} 0 \leqslant \varphi \leqslant \beta \leqslant 2\pi \\ (r,\varphi) & \text{ Polarkoordinaten in } \mathbb{R}^2 \\ f(\varphi) \geqslant 0 & \text{ für } \varphi \in [\alpha,\beta] \\ \varOmega = \{(r,\varphi)|0 \leqslant r \leqslant f(\varphi) \land \varphi \in [\alpha,\beta]\} \\ f \colon [\alpha,\beta] \to \mathbb{R} & \text{ stetig} \\ \Rightarrow & A(\varOmega) = \frac{1}{2} \int_{\alpha}^{\beta} (f(\varphi))^2 \,\mathrm{d}\varphi \end{split}$$

Lineare Algebra

5.1 Matrizen – Grundlagen

Definition 5.1.1

Eine Matrix vom Typ (m,n) ist ein rechteckiges Schema von Zahlen aus \mathbb{K} , wobei $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \quad m, n \in \mathbb{N}$$
$$= \left(a_{ij}\right)_{j=1,\dots,m}^{i=1,\dots,n}$$

5.2 Quadratische Matrizen

Definition 5.2.1

$$[A, B] = AB - BA$$
 (Kommutator)
 $\{A, B\} = AB + BA$ (Antikommutator)

Wir sagen, dass A und B kommutieren $\Leftrightarrow [A,B]=\mathbb{O}_n \Leftrightarrow AB=BA$. A und B antikommutieren $\Leftrightarrow \{A,B\}=\mathbb{O}_n$

Satz 5.2.1

Sei $A \in M^n(\mathbb{K})$, sodass A mit jedem $B \in M^n(\mathbb{K})$ kommutiert. Dann ist $A = \alpha \cdot \mathbb{1}_n$ für gewisses $\alpha \in \mathbb{K}$.

Definition 5.2.2: Spur einer quadratischen Matrix

$$\operatorname{Sp} A = \operatorname{sp} A = \operatorname{Tr} A = \operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$$

Satz 5.2.2

 $A \in M^{m,n}, B \in M^{n,m}$ Dann ist $AB \in M^m, BA \in M^n$ und $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

Satz 5.2.3

Für
$$\sigma,\tau\in S_n$$
 gilt immer

$$\varepsilon(\sigma\tau) = \varepsilon(\sigma) \cdot \varepsilon(\tau)$$

5.3 \mathbb{R}^n bzw. \mathbb{C}^n als Raum der Spaltenvektoren

5.4 Permutationen

Satz 5.4.1

Für $\sigma,\tau\in S_n$ gilt immer

$$\varepsilon(\sigma\tau) = \varepsilon(\sigma) \cdot \varepsilon(\tau)$$
.

5.5 Determinanten

Definition 5.5.1

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \cdot (a)_\sigma = \sum_K \varepsilon(K) a_{1k_1} \cdot \ldots \cdot a_{nk_n}$$

Satz 5.5.1 Entwicklungssatz (LAPLACE)

$$A = \left(a_{ij}\right)_{i=1,\dots,n}^{j=1,\dots,n}$$

$$\begin{pmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{\ell 1} & \dots & a_{\ell k} & \dots & a_{\ell n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nk} & \dots & a_{nn} \end{pmatrix}$$

$$\begin{split} \det A &= \sum_{j=1}^n (-1)^{\ell+j} \cdot a_{\ell j} \cdot M_{\ell j} \\ &= \sum_{i=1}^n (-1)^{i+k} \cdot a_{ik} \cdot M_{ik} \end{split}$$

5.6 Inverse Matrizen

Definition 5.6.1

Sei $A \in M^{m,n}$.

Man nennt $B_{\rm L} \in M^{n,m}$ linksinvers zu A

$$\Leftrightarrow B_{\mathbf{L}} \cdot A = \mathbb{1}_n \in M^{n,n}.$$

Man nennt $B_{\mathbf{R}} \in M^{n,m}$ rechtsinvers zu A

$$\Leftrightarrow \quad A \cdot B_{\mathbf{R}} = \mathbb{1}_m \in M^{m,m}.$$

Satz 5.6.1

Sei $A \in M^n$, also m = n. Dann sind folgende Aussagen äquivalent:

- (1) A besitzt eine linksinverse Matrix $B_{\rm L}$.
- (2) A besitzt eine rechtsinverse Matrix $B_{\rm R}$.
- (3) A besitzt eine inverse Matrix A^{-1} .
- (4) $\det A \neq 0$.

Definition 5.6.2

Man nennt $A \in M^n$

- regulär, falls $\det A \neq 0$
- singulär, falls $\det A = 0$

 $A \in M^n$ invertierbar \Leftrightarrow regulär.

Satz 5.6.2

Sei $A \in M^n$ regulär.

Dann besitzt (*) für jede beliebige rechte Seite genau eine Lösung.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A^{-1} \cdot \mathbb{f} = A^{-1} \cdot \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$

5.7 Der Rang einer Matrix

Definition 5.7.1

 $A \in M^{m,n}$ besitzt den Rang $r = r(A) \geqslant 1$, falls es eine Minor \tilde{A} der Ordnung r gibt, mit det $\tilde{A} \neq 0$, und falls für alle Minoren der Ordnungen > r deren Determinanten gleich null sind.

Definition 5.7.2

Ein System von Spalten(vektoren)
 ${\tt x},\dots,{\tt x}_k$ nennt man linear unabhängig, falls

$$\alpha_1 \mathbf{z}_1 + \ldots + \alpha_k \mathbf{z}_k = \mathbb{O}_n \ \Leftrightarrow \ \alpha_1 = \ldots = \alpha_k = 0$$

Analog: Zeilen(vektoren) Sonst: linear abhängig

Definition 5.7.3

Der Spaltenrang $r_{\rm s}(A)$ von $A\in M^{m,n}$ ist die größtmögliche Anzahl linear unabhängiger Spalten von A.

Definition 5.7.4

Der Zeilenrang $r_{\mathbf{z}}(A)$ von $A\in M^{m,n}$ ist die größtmögliche Anzahl linear unabhängiger Zeilen von A.

Satz 5.7.1 Satz vom Rang

$$r(A) = r_{\rm z}(A) = r_{\rm s}(A)$$

Definition 5.7.5

Die Dimension eines Vektorraums ist die größtmögliche Anzahl linear unabhängiger Vektoren aus diesem Raum.

Definition 5.7.6: Lineare Hülle

$$\{\alpha_1 f_1 + \ldots + \alpha_k f_k \colon \alpha_1, \ldots, \alpha_k \in \mathbb{K}\} = V\{f_1, \ldots, f_k\} = \bigvee_{i=1}^k \{f_x\}$$

lineare Hülle des Systems $\{f_1, \dots, f_k\}$

Satz 5.7.2

 $\{f_1,\dots,f_x\}\subset E$ linear unabhängig $k\in\mathbb{N}, \bigvee_{j=1}^k f_j=E$

$$\Rightarrow$$
 dim $E = k$

Satz 5.7.3

 $\dim E = k \in \mathbb{N}$ $\{f_1, \dots, f_k\}$ linear unabhängig

$$\Rightarrow E = V\{f_1, \dots, f_k\}$$

Definition 5.7.7

 $\{f_1,\dots,f_k\}$ ist eine Basis in E

$$\Leftrightarrow \quad \begin{cases} \{f_1,\dots,f_k\} \text{ linear unabhängig} \\ \bigvee_{j=1}^k \{f_j\} = E \text{ vollständig} \end{cases}$$

Definition 5.7.8

Man nennt $L \subset E$ einen Unterraum von E, falls

$$\begin{cases} \forall f, g \in L \\ \forall \alpha, \beta \in \mathbb{K} \end{cases} \Rightarrow \alpha f + \beta g \in L$$

Satz 5.7.4 Dimensionssatz

 $A \in M^{m,n}$

$$\dim \ker(A) = \dim W(A) = \dim \ker(A) + r(A) = n$$

Satz 5.7.5

 $A \cdot \mathbf{z} = \mathbf{f}$ ist für jedes $\mathbf{f} \in \mathbb{K}^n$ lösbar, genau dann, wenn

$$r(A) = m$$
.

Satz 5.7.6

Das LGS $Ax = \mathbb{F}$ besitze eine Lösung $x = x_p \in \mathbb{K}^n$. Dann ist diese eindeutig genau dann, wenn

$$\ker(A) = \{ \mathbb{O}_{\mathbb{K}^n} \} .$$

5.8 LGS: Allgemeiner Fall

5.9 Das Spektrum. Eigenvektoren. Resolvente.

Definition 5.9.1: Charakteristisches Polynom

$$d_A(\lambda) = \det(A - \lambda \mathbb{1})$$

Definition 5.9.2

 μ_1, \dots, μ_k Eigenwerte von A

 τ_1, \dots, τ_k Algebraische Vielfachheit

Definition 5.9.3

 $\sigma(A) = \{\mu_1, \dots, \mu_k\} \subset \mathbb{C}$ Spektrum von A.

Definition 5.9.4

 $\varkappa=\dim E_\mu$ geometrische Vielfachheit des Eigenwerts $\mu.$

Definition 5.9.5

 $\rho(A) = \mathbb{C} \backslash \sigma(A)$ Resolventenmenge.

$$\begin{split} \mu &\in \rho(A) \Leftrightarrow d_A(\mu) = \det(A - \mu \mathbb{1}) \neq 0 \\ &\Leftrightarrow A - \mu \mathbb{1} \text{ invertierbar} \\ &\Leftrightarrow \text{Es existiert } (A - \mu \mathbb{1})^{-1} \end{split}$$

Definition 5.9.6

 $\mu \in \rho(A)$

$$\varGamma_{\mu}(A) = (A - \mu \mathbb{1})^{-1}$$

Resolvente von A im Punkt $\mu \in \rho(A)$.

$$\varGamma_{\mu}(A)\colon \rho(A)=\mathbb{C}\backslash \sigma(A)\to M^{n,n}$$

Definition 5.9.7

Für $A\in M^s$ und $p(z)=c_nz^n+\ldots+c_1z+c_0\qquad c_k,z\in\mathbb{C}$ sei

$$p(A) = c_n A^n + \ldots + c_1 A + c_0 \mathbb{1}$$

$$p \colon M^s \to M^s$$

Definition 5.9.8

Eine Matrix $B \in M^{n,n}$ heißt diagonalisierbar, genau dann, wenn sie zu einer Diagonalmatrix ähnlich ist. Das heißt, es gibt $A = \text{diag}\{a_1, \dots, a_n\}$ und es gibt $X \in M^{n,n}$, det $X \neq 0$, sodass

$$B=X^{-1}AX$$

Definition 5.9.9

$$f \colon \sigma(A) \to \mathbb{C}$$

$$f(A)\coloneqq \mathrm{diag}\big\{f(\lambda_1),\ldots,f(\lambda_n)\big\}$$

Definition 5.9.10

 $f \colon \sigma(B) \to \mathbb{C}$

$$\begin{split} B &= X^{-1} \cdot \mathrm{diag} \big\{ \lambda_1, \dots, \lambda_n \big\} X \\ f(B) &= X^{-1} \cdot \mathrm{diag} \big\{ f(\lambda_1), \dots, f(\lambda_n) \big\} X \end{split}$$

5.10 Ähnlichkeit von Matrizen

5.11 Orthogonale und unitäre Matrizen

Definition 5.11.1

$$x \perp y \Leftrightarrow \langle x, y \rangle = 0$$
 orthogonal

Definition 5.11.2

Ein Vektor $x \in \mathbb{K}$ heißt normiert, falls ||x|| = 1.

Definition 5.11.3

Ein System von Vektoren $\{\mathtt{y}_1,\dots,\mathtt{y}_k\}$ heißt orthonormiert (ON), genau dann, wenn

$$\left\langle \mathbf{y}_{j},\mathbf{y}_{\ell}\right\rangle =\delta_{j\ell}\qquad j,\ell=1,\ldots,k$$

ONS System von orthonormalen Vektoren.

Bildet ein ONS eine Basis im \mathbb{K}^n , spricht man von einer Orthonormalbasis (ONB).

5.12 Symmetrische und Hermitesche Matrizen

Definition 5.12.1

 $\mathbb{K} = \mathbb{R}$

Wir nennen $A \in M^n$ symmetrisch, genau dann, wenn $A = A^{\mathsf{T}}$.

Definition 5.12.2

 $\mathbb{K} = \mathbb{C}$

Wir nennen $A \in M^n$ hermitsch (bzw. selbstadjungiert), genau dann, wenn $A = A^*$.

Satz 5.12.1

Sei $A=A^\mathsf{T}$ (falls $\mathbb{K}=\mathbb{R}$) bzw. $A=A^*$ (falls $\mathbb{K}=\mathbb{C}$). Es seien λ_1,λ_2 Eigenwerte von A, und α_1,α_2 zugehörige Eigenvektoren. Aus $\lambda_1\neq\lambda_2$ folgt dann

$$\langle \mathbf{x}_1, \mathbf{x}_2 \rangle = 0$$
, d.h. $\mathbf{x}_1 \perp \mathbf{x}_2$.

Definition 5.12.3

 $\mathbb{K} = \mathbb{R}$

Man nennt $A \in M^n(\mathbb{R})$ orthogonal diagonalisierbar, genau dann, wenn eine orthogonale Matrix $Y \in M^n(\mathbb{R})$ existiert, sodass

$$Y^{\mathsf{T}} = Y^{-1}AY = \mathrm{diag}\{\lambda_1, \dots, \lambda_2\}.$$

Definition 5.12.4

 $\mathbb{K} = \mathbb{C}$

Man nennt $A\in M^n(\mathbb{C})$ unitär diagonalisierbar, genau dann, wenn eine unitäre Matrix $Y\in M^n(\mathbb{C})$ existiert, sodass

$$Y^* = Y^{-1}AY = \operatorname{diag}\{\lambda_1, \dots, \lambda_2\}.$$

Satz 5.12.2

 $\mathbb{K} = \mathbb{R}$

Jede symmetrische Matrix $A \in M^n(\mathbb{R})$ besitzt eine ONB aus Eigenwerten im \mathbb{R}^n und ist somit orthogonal diagonalisierbar.

 $\mathbb{K}=\mathbb{C}$

Jede hermitsche Matrix $A \in M^n(\mathbb{C})$ besitzt eine ONB aus Eigenwerten im \mathbb{C}^n und ist somit unitär diagonalisierbar.

Satz 5.12.3 Spektralsatz für unitäre Matrizen

Unitäre Matrizen sind unitär diagonalisierbar.

5.13 Wechsel des Koordinatensystems – Basiswechsel

Satz 5.13.1

 $A \in M^n$ ist unitär diagonalisierbar, falls

$$AA^* = A^*A$$
.

Solche Matrizen nennt man normal.

Definition 5.13.1

$$A \in M^{n,n}(\mathbb{C})$$
 normal $\Leftrightarrow AA^* = A^*A$.

Satz 5.13.2

 $A \in M^n$ ist genau dann unitär diagonalisierbar, wenn A normal ist.

Satz 5.13.3

Zwei normale Matrizen A und B kommutieren genau dann, wenn sie eine gemeinsame ONB von Eigenvektoren besitzen.

5.14 Direkte und orthogonale Summen von Unterräumen

Definition 5.14.1

$$F + G := \{ h \in V : h = f + g, f \in F, g \in G \}$$

F+G ist ein Unterraum:

$$h_1 = f_1 + g_1, \ h_2 = f_2 + g_2$$

$$\Rightarrow \quad h = \alpha h_1 + \beta h_2 = \underbrace{\left(\alpha f_1 + \beta f_2\right)}_{f \in F} + \underbrace{\left(\alpha g_1 + \beta g_2\right)}_{g \in G}$$

Definition 5.14.2

Wir nennen H=F+G eine direkte Summe von Unterräumen, wenn für jedes $h\in H$ die Darstellung $h=f+g,\ f\in F,\ g\in G$ eindeutig ist:

$$H = F \dotplus G$$

Satz 5.14.1

 $F,G\subset V$ Unterräume

H = F + G (im Allgemeinen nicht direkt)

$$\Rightarrow$$
 dim $(F+G)$ + dim $(F \cap G)$ = dim F + dim G

$\overline{\text{Definition } 5.14.3}$

$$H = F_1 + \ldots + F_m = \left\{ h \in V : h = f_1 + \ldots + f_m, \ f_j \in F_j, \ j = 1, \ldots, m \right\}$$

Falls die Zerlegung $h=f_1+\ldots+f_m$ für jedes $h\in H$ eindeutig ist, dann nennt man die Summe direkt.

$$H = F_1 \dotplus F_2 \dotplus \dots \dotplus F_m$$

Definition 5.14.4

 $F \perp G \Leftrightarrow f \perp g \quad \forall f \in F, g \in G$

Sind F, G Unterräume von V und $F \perp G$

$$H = F + G = F \oplus G = F \dotplus G$$

Satz 5.14.2

Jede Matrix $A \in M^n$ mit einem Eigenwert λ der algebraischen Vielfachheit $\tau = n$ und der geometrischen Vielfachheit $\varkappa=1$ lässt sich in der Form

$$A = X^{-1}J^{(n)}(\lambda)X$$

mithilfe einer regulären Matrix $X \in M^n$ darstellen.

5.15Orthogonale Projektionen

Definition 5.15.1

 $\xi_k = \langle x, f_k \rangle, \ k = 1, \dots, n$ nennt man die Fourier-Koeffizienten von x bzgl. der ONB \mathbb{f} .

Satz 5.15.1

$$\xi_j = \left\langle x, f_j \right\rangle, \;\; j=1,\dots,s$$
 Es gilt immer:

$$\left\|x - \sum_{j=1}^{s} \beta_j f_j \right\| \geqslant \left\|x - \sum_{j=1}^{s} \xi_j f_j \right\|$$

Gleichheit ("=") $\Leftrightarrow \beta_j = \xi_j, \ j = 1, ..., s$

Satz 5.15.2

Für jedes $y = \beta_1 f_1 + \ldots + \beta_s f_s \in F$ gilt

$$||x-y|| \geqslant ||x-x_F||$$

mit "=" $\Leftrightarrow y = x_F$.

Satz 5.15.3 Projektionssatz

Sei $F\subset V$ ein Unterraum. Dann existiert für jedes $x\in V$ genaue eine Zerlegung $x=x_F+x_G$ mit $x_F \in F$ und $x_G \perp F$.

Definition 5.15.2

 $P_F \colon V \to F \text{ mit } P_F x = x_F \text{ nennt man die orthogonale Projektion auf } F.$

Definition 5.15.3

 $G = \{g \in V \colon g \perp F\} = F^{\perp}$ nennt man das orthogonale Komplement zu F.

5.16 Selbstadjungierte Operatoren und quadratische Formen

Satz 5.16.1

Zu jeder sesqui-linearen Form a existiert genau eine lineare Abbildung $\mathcal{A}: V \to V$, so, dass

$$a[x, y] = \langle \mathcal{A}x, y \rangle$$

mit $\mathcal{A} \colon V \to V$ linear, gilt.

Definition 5.16.1

Der zu \mathcal{A} adjungierte Operator A^* ist durch a^* gegeben:

$$\langle A^*x, y \rangle = a^*[x, y] = \overline{a[y, x]}.$$

 $\operatorname{Mit}\ \langle A^*x,y\rangle=\langle x,\mathcal{A}y\rangle\ \operatorname{und}\ \overline{a[y,x]}=\overline{\langle Ay,x\rangle}:$

$$\langle x, \mathcal{A}y \rangle = \overline{\langle Ay, x \rangle}.$$

5.17 Stetige lineare Operatoren

E,F Vektorräume über $\mathbb{K}\in\{\mathbb{R},\mathbb{C}\}$ mit Normen $\left\|\cdot\right\|_E$ und $\left\|\cdot\right\|_F$. $F\colon E\to F$ linear.

Definition 5.17.1

Ein linearer Operator $T\!\!:E\to F$ heißt beschränkt, genau dann, wenn

$$\exists_{C>0} \ \forall_{x\in E} \colon \ \left\|Tx\right\|_F \leqslant C \cdot \left\|x\right\|_E.$$

Satz 5.17.1

Folgende Aussagen sind äquivalent:

- (1) T ist von E nach F beschränkt.
- (2) T ist in 0_E stetig.
- (3) T ist auf E stetig.

Definition 5.17.2

 $\mathcal{L}(E,F)$ sei die Menge aller stetigen linearen Abbildungen $T:E\to F$.

Satz 5.17.2 Operatornorm

 $\mathcal{L}(E,F)$ ist ein Vektorraum über $\mathbb{K}.$

$$\|T\|_{\mathcal{L}(E,F)} = \sup_{x \in E, x \neq 0} \frac{\left\|Tx\right\|_F}{\left\|x\right\|_E}$$

ist eine Norm auf $\mathcal{L}(E,F).$ Sind E und F vollständig, dann ist auch $\mathcal{L}(E,F)$ vollständig.

Zur Diff.-rechnung für Funktionen mehrerer Var.

6.1 Differenzierbarkeit

Definition 6.1.1: Partielle Ableitung in x_i -Richtung

$$\left. \frac{\partial f}{\partial x_j} \right|_{x=x^{(0)}} = \left. \frac{\mathrm{d} \left(f \! \left(x^{(0)} + t \mathbf{e}_j \right) \right)}{\mathrm{d} t} \right|_{t=0} = \lim_{\tau \to 0} \frac{f \! \left(x_1^{(0)}, \ldots, x_{j-1}^{(0)}, x_j^{(0)} + \tau, x_{j+1}^{(0)}, \ldots, x_n^{(0)} \right)}{\tau}$$

Definition 6.1.2

f ist im Punkt $x^{(0)} \in U$ (Fréchet)-differenzierbar, genau dann, wenn $A \in \mathcal{L}(E,F)$ mit

$$f\!\left(x^{(0)}+h\right)=f\!\left(x^{(0)}\right)+A\cdot h+o\!\left(h\right),\quad h\to 0_E\,.$$

Dann ist $df|_{x=x^{(0)}} = \mathcal{A}$.

Definition 6.1.3

Die Richtungsableitung D $f(x^{(0)})h$ ist gegeben als

$$\mathrm{D} f\big(x^{(0)}\big) h \ = \ \lim_{t \to 0} \frac{f\big(x^{(0)} + th\big) - f\big(x^{(0)}\big)}{t} \ = \ \frac{\mathrm{d}}{\mathrm{d}t} f\big(x^{(0)} + th\big) \bigg|_{t=0}.$$

(jeweils für fixiertes h)

Satz 6.1.1

Wenn $f: U \subset E \to F$ in $x^{(0)} \in U$ Fréchet-differenzierbar ist, dann existieren alle Richtungsableitungen $\mathrm{D} f(x^{(0)})h$ (für alle $h \in E$).

Definition 6.1.4

f ist in $x^{(0)} \in U$ schwach differenzierbar (Gâteaux-differenzierbar), genau dann, wenn

- (1) $Df(x^{(0)})h$ existiert für alle $h \in E$.
- (2) $Df(x^{(0)})h$ ist linear in h.
- (3) $Df(x^{(0)})h$ ist stetig in h.

$$f_{\mathrm{s}}'\big(x^{(0)}\big)h = \mathrm{D}f\big(x^{(0)}\big)h; \quad f_{\mathrm{s}}'\big(x^{(0)}\big) \in \mathcal{L}(E,F)$$

Satz 6.1.2

Wenn f in $x^{(0)}$ Fréchet-differenzierbar ist, dann ist f in $x^{(0)}$ schwach differenzierbar und $f'_{\rm s}\left(x^{(0)}\right)=f'\left(x^{(0)}\right)$.

Satz 6.1.3

$$\begin{split} x &\mapsto \frac{\partial f}{\partial x_j}(x), \quad j=1,\dots,n \text{ stetig in } x^{(0)} \quad \Rightarrow \quad \exists f_{\mathrm{s}}' \Big(x^{(0)} \Big) \\ x &\mapsto \frac{\partial f}{\partial x_j}(x), \quad j=1,\dots,n \text{ stetig in } B_{\varepsilon} \Big(x^{(0)} \Big) \quad \Rightarrow \quad \exists f' \Big(x^{(0)} \Big) \end{split}$$

Produkt- und Kettenregel 6.2

 $(E, \|\cdot\|_E)$ $(F, \|\cdot\|_F)$ $U \subset E$ offen, $x \in U$

Satz 6.2.1

 $f\colon U\to F$ und $\alpha\colon U\to\mathbb{R}$ seien in $x^{(0)}\in U$ Fréchet-differenzierbar. Dann ist $\alpha\cdot f\colon U\to F$ in $x^{(0)}$ Fréchet-differenzierbar.

$$(\alpha f)' \left(x^{(0)}\right) = \alpha \left(x^{(0)}\right) f' \left(x^{(0)}\right) + f \left(x^{(0)}\right) \alpha' \left(x^{(0)}\right)$$

Satz 6.2.2

fsei in $x^{(0)} \in U$ Fréchet-differenzierbar. g sei in $y^{(0)} \in V$ Fréchet-differenzierbar.

 \Rightarrow Dann ist $g\circ f\colon U\to G$ Fréchet-differenzierbar.

$$(g \circ f)' \left(x^{(0)}\right) = g' \left(f \left(x^{(0)}\right)\right) \cdot f' \left(x^{(0)}\right)$$

Hauptsatz der Differenzialrechnung

Satz 6.3.1

f sei auf \overline{ab} GÂTEAUX-differenzierbar.

$$(1) \ \left\| f(b) - f(a) \right\|_F \ \leqslant \ \sup_{x \in \overline{ab}} \left(\left\| f_{\mathrm{s}}'(a) \right\|_{\mathcal{L}(E,F)} \cdot \left\| b - a \right\|_E \right)$$

$$\begin{aligned} &(1) \ \left\| f(b) - f(a) \right\|_{F} \ \leqslant \ \sup_{x \in \overline{ab}} \left(\left\| f'_{\mathbf{s}}(a) \right\|_{\mathcal{L}(E,F)} \cdot \left\| b - a \right\|_{E} \right) \\ &(2) \ \left\| f(b) - f(a) - f'_{\mathbf{s}}(a)(b - a) \right\|_{F} \ \leqslant \ \sup_{x \in \overline{ab}} \left(\left\| f'_{\mathbf{s}}(x) - f'_{\mathbf{s}}(a) \right\|_{\mathcal{L}(E,F)} \cdot \left\| b - a \right\| \right) \end{aligned}$$

6.4 Ableitungen höherer Ordnung

Definition 6.4.1

Ist g in $x^{(0)} \in U$ partiell in x_k differenzierbar, dann sei

$$\frac{\partial g \Big(x^{(0)} \Big)}{\partial x_k} = \left. \left(\frac{\partial}{\partial x_k} \Bigg(\frac{\partial f}{\partial x_j} \Bigg) \right) \right|_{x = x^{(0)}} = \left. \frac{\partial^2 f}{\partial x_k \, \partial x_j} \right|_{x = x^{(0)}}.$$

Satz 6.4.1 Symmetriesatz

Wenn in U beide partiellen Ableitungen

$$\frac{\partial^2 f}{\partial x_k \, \partial x_j}$$
 und $\frac{\partial^2 f}{\partial x_j \, \partial x_k}$

existieren, und beide stetig sind, dann gilt auf U

$$\frac{\partial^2 f}{\partial x_k \, \partial x_j} = \frac{\partial^2 f}{\partial x_j \, \partial x_k} \, .$$

Definition 6.4.2

Wenn $f'(\cdot)$ in $x^{(0)} \in U$ Fréchet-differenzierbar ist, dann sei

$$f''\!\left(x^{(0)}\right) = \left. (f'(\cdot))' \right|_{x=x^{(0)}} \in \mathcal{L}(E,\mathcal{L}(E,F))$$

6.5 Der Satz von Taylor

 $f: U \subset E \to F, U \text{ offen}$

f ist in U m-fach Fréchet-differenzierbar

Satz 6.5.1 Die Formel von TAYLOR

$$f\!\left(x^{(0)} + h\right) = f\!\left(x^{(0)}\right) + \sum_{k=1}^{m} \frac{1}{k!} f^{(k)}\!\left(x^{(0)}\right) h^k + r_m\!\left(x^{(0)}, h\right)$$

wobei:

$$r_m\!\left(x^{(0)},h\right)=o\!\left(\|h\|_E^m\right)\qquad\text{für }h\to 0_E\,.$$

6.6 Extremwerte von Funktionen mit mehreren Veränderlichen

$$\left(E,\left\|\cdot\right\|_{E}\right)$$

$$F = \mathbb{R}$$

 $U\subset E$ offen

 $f \colon U \subset E \to \mathbb{R}$

Definition 6.6.1

f nimmt in $x^{(0)}$ ein lokales Maximum an

$$\Leftrightarrow \quad \exists_{\varepsilon>0} \ \forall_{x\in U, \|x-x^{(0)}\|<\varepsilon} \colon \ f(x)\leqslant f\!\left(x^{(0)}\right)$$

lokales Maximum an

$$\Leftrightarrow \quad \exists_{\varepsilon>0} \ \forall_{x\in U, \|x-x^{(0)}\|<\varepsilon} \colon \ f(x)\geqslant f\!\left(x^{(0)}\right)$$

Satz 6.6.1 Notwendiges Kriterium

 $f: U \subset E \to \mathbb{R}$ nehme in den inneren Punkten $x^{(0)} \in U$ einen lokalen Extremwert an. Wenn die Richtungsableitung $\mathrm{D} f(x^{(0)})h$ existiert, so muss dann

$$\mathrm{D}f(x^{(0)})h = 0$$

gelten.

6.7 Der Satz über implizite Funktionen

Definition 6.7.1: Lokale Auflösbarkeit

 $\left(x^{(0)},y^{(0)}\right)\in W$

$$\varPhi\!\left(x^{(0)},y^{(0)}\right)=0$$

 $\varPhi(x,y)=0$ ist lokal in einer Umgebung von $\left(x^{(0)},y^{(0)}\right)$ zu y=f(x)auflösbar, genau dann, wenn

$$\exists_{\varepsilon>0} \ \exists_{\delta>0} \ \exists f \colon \ U_{\varepsilon}\!\left(x^{(0)}\right) \to U_{\delta}\!\left(y^{(0)}\right)$$

 $U_{\varepsilon}\!\left(x^{(0)}\right)\times U_{\delta}\!\left(y^{(0)}\right)\subset W$

$$(1) \ \forall_{x \in U_{\varepsilon}(x^{(0)})} \colon \ \varPhi(x, f(x)) = 0$$

$$(2) \ \forall_{(x,y)\in U_{\varepsilon}(x^{(0)})\times U_{\delta}(y^{(0)})} \colon \ \varPhi(x,y) = 0 \quad \Rightarrow \quad y = f(x)$$

Satz 6.7.1 zu impliziten Funktionen

 $W \subset \mathbb{R}^m_x \times \mathbb{R}^n_y$ offen

$$\left(x^{(0)},y^{(0)}\right)\in W$$

$$\varPhi \colon W \to \mathbb{R}^n$$

$$\varPhi\!\left(x^{(0)},y^{(0)}\right)=0$$

 Φ sei aus der Klasse C^p , $p \geqslant 1$ (d.h. alle partiellen Ableitungen bis zur Ordnung p existieren und sind stetig).

 $\Phi_y'(x^{(0)}, y^{(0)})$ ist invertierbar

 $\Rightarrow \Phi$ ist lokal zu y = f(x) auflösbar und f ist von der Klasse C^p .

$$f'\!\left(x^{(0)}\right) = - \!\left[\varPhi_y'\!\left(x^{(0)}, y^{(0)}\right) \right]^{-1} \! \varPhi_x'\!\left(x^{(0)}, y^{(0)}\right)$$

6.8 Umkehrfunktion

Definition 6.8.1

 $f \colon U \to V$ ist ein $C^p\text{-Diffeomorphismus genau dann, wenn$

- $f: U \to V$ bijektiv
- f, f^{-1} aus der Klasse C^p

Satz 6.8.1

idk

- 6.9 Darstellung von Gradient und LAPLACE in verschiedenen Koordinatensystemen
- 6.10 Extremwerte unter Nebenbedingungen

Definition 6.10.1: LAGRANGE-Funktion

$$\mathscr{L}(x, y; \lambda) = f(x, y) - \lambda \cdot F(x, y)$$

 $\lambda: \text{Lagrange-Faktor}$

Definition 6.10.2

- $(1) \ F\!\!\left(\tilde{x}^{(0)}\right) = \mathbb{0}_n$
- $(2) \ \exists_{\varepsilon>0} \ \forall_{\tilde{x}\in U_{\varepsilon}\left(\tilde{x}^{(0)}\right), \, F(\tilde{x})=\mathbb{O}_{n}} \colon \ f\!\left(\tilde{x}^{(0)}\right) \geqslant f\!(\tilde{x}) \text{ bzw. } f\!\left(\tilde{x}^{(0)}\right) \leqslant f\!(\tilde{x})$

Funktionenfolgen

7.1 Doppelfolgen, Gleichmäßigkeit

(M,d) metrischer Raum

Definition 7.1.1: Doppelfolge

 $a \colon \mathbb{N} \times \mathbb{N} \to M$

also:

$$\left(a_{m,n}\right)_{m\in\mathbb{N},\,n\in\mathbb{N}}=\left(a_{m,n}\right)$$

Definition 7.1.2

 $A(\cdot)$ Aussageform, Eigenschaft

X Variablenmenge

A ist für alle $x \in X$ punktweise erfüllt, genau dann, wenn

$$\forall_{x \in X} : A(x)$$
 wahr

Dabei können die Parameter, die in A eingehen von x abhängen.

Definition 7.1.3

A ist gleichmäßig bzgl. $x \in X$ erfüllt, genau dann, wenn $\forall_{x \in X} \colon A(x)$ wahr ist, und wenn die Parameter, welche in A eingehen, unabhängig von x gewählt werden können.

Satz 7.1.1 Satz über das Vertauschen von Grenzwerten

(M,d) vollständiger metrischer Raum

 $a \colon \mathbb{N} \times \mathbb{N} \to M$

$$(1) \ \forall_{n \in \mathbb{N}} \ \exists \lim_{m \to \infty} a_{m,n} = v_n$$

(2)
$$\forall_{m \in \mathbb{N}} \exists \lim_{n \to \infty} a_{m,n} = u_m$$

Einer dieser beiden Grenzwerte werde gleichmäßig angenommen.

 \Rightarrow

- (u_m) und (v_n) konvergieren
- $\lim_{m \to \infty} u_m = \lim_{n \to \infty} v_n$

Damit darf ich unter der zusätzlichen Annahme der Gleichmäßigkeit eines der Grenzwerte die doppelten Grenzwerte vertauschen:

$$\lim_{m \to \infty} \Bigl(\lim_{n \to \infty} a_{m,n}\Bigr) = \lim_{n \to \infty} \Bigl(\lim_{m \to \infty} a_{m,n}\Bigr)$$

Funktionenfolgen 7.2

$$\begin{split} (M,d) &= (\mathbb{R}, |\cdot|), \ I \subset \mathbb{R}, \ I \neq \emptyset \\ f, f_n \colon I \to \mathbb{R}, \ n \in \mathbb{N} \\ \left(f_n\right)_{n \in \mathbb{N}} \text{ Funktionenfolge} \end{split}$$

Definition 7.2.1

 $f_n \stackrel{n \to \infty}{\longrightarrow} f$ punktweise bzgl. $x \in I$ genau dann, wenn

$$\forall_{x \in I} \lim_{n \to \infty} f_n(x) = f(x)$$

d.h.

$$\forall_{x \in I} \ \forall_{\varepsilon > 0} \ \exists_{N(\varepsilon, x)} \ \forall_{n > N} \colon \ \left| f_n(x) - f(x) \right| < \varepsilon$$

Definition 7.2.2

 $f_n \overset{n \to \infty}{\rightrightarrows} f$ gleichmäßig bzgl. $x \in I$ genau dann, wenn

$$\forall_{\varepsilon>0} \ \exists_{N(\varepsilon)} \ \forall_{x\in I} \ \forall_{n\geqslant N(\varepsilon)} \colon \ \left|f_n(x)-f(x)\right|<\varepsilon$$

Satz 7.2.1

 $f_n \colon I \to \mathbb{R}, \ n \in \mathbb{N}, \ x_0 \in I$

 $(1) \ \forall_{n \in \mathbb{N}} \lim_{x \to x_0} f_n(x) = \varphi_n$ $(2) \ f_n \overset{n \to \infty}{\Rightarrow} f, \ f \colon I \to \mathbb{R}$

$$\Rightarrow \quad \exists \lim_{x \to x_0} f(x) = \lim_{n \to \infty} \varphi_n$$

Die Folge der Ableitungen

Satz 7.3.1

 $\begin{array}{ll} f_n \in C^1\big([a,b],\mathbb{R}\big), \;\; \varphi \colon [a,b] \to \mathbb{R} \\ f_n \overset{n \to \infty}{\longrightarrow} f \; \text{punktweise für alle} \; x \in [a,b] \\ f'_n \;\; \overset{}{\to} \;\; \varphi \; \text{gleichmäßig bzgl.} \; x \in [a,b] \\ \Rightarrow \;\; f \in C^1\big([a,b],\mathbb{R}\big) \; \text{und} \; \varphi = f' \end{array}$

$$\lim_{n\to\infty}\frac{\mathrm{d}f_n}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\lim_{n\to\infty}f_n$$

Funktionenreihen 7.4

$$\begin{array}{l} f_n\colon I\subset\mathbb{R}\to\mathbb{R}\\ S_n(x)=\sum_{k=1}^n f_k(x),\ x\in I \end{array}$$

Definition 7.4.1

Die Reihe $\sum_{k=1}^{\infty} f_k$ konvergiert punktweise für alle $x \in I$ genau dann, wenn

$$S_n(x) \stackrel{n \to \infty}{\longrightarrow} S(x) \ =: \ \sum_{k=1}^{\infty} f_k(x)$$

punktweise konvergiert.

Definition 7.4.2

Die Reihe $\sum_{k=1}^{\infty} f_k$ konvergiert gleichmäßig bzgl. $x \in I$ genau dann, wenn

$$S_n(x) \stackrel{n \to \infty}{\rightrightarrows} S(x) \ = \ \sum_{k=1}^{\infty} f_k(x) \, .$$

Satz 7.4.1

 $f_n \in C([a,b],\mathbb{R}), \ n \in \mathbb{N}$ und $S(x) = \sum_{k=1}^\infty f_k(x)$ konvergiere gleichmäßig.

Dann ist
$$S \in C([a, b], \mathbb{R})$$

7.5 Potenzreihen

7.6 Der Fixpunktsatz von Banach

(M,d) metrischer Raum, $M \neq \emptyset$

Definition 7.6.1

Man nennt $T: M \to M$ eine Kontraktion, wenn ein $\alpha < 1$ existiert, sodass für alle $x, y \in M$

$$d(Tx, Ty) \leqslant \alpha \cdot d(x, y)$$
.

Satz 7.6.1

Sei (M,d)vollständig und $T{:}\ M\to M$ eine Kontraktion. Dann gibt es genau ein $\tilde{x}\in M,$ sodass

$$\underbrace{\tilde{x} = T\tilde{x}}_{\text{Fixpunkt}} \ .$$