TTU Functional Programming Club March 21, 2017

Presented by Silvio Mayolo

- "Definition" of a Monad
 - (As of GHC 7.10)

```
class Applicative m => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
```

- Also relevant:

```
join :: Monad m => m (m a) -> m a
join x = x >>= id
```

- "Definition" of a Monad
 - Haskell's definition: return, (>>=)
 - Traditional definition: fmap, return, join
 - Note: (>>=) can be written in terms of join

```
(>>=) :: Monad m => m a -> (a -> m b) -> m b
x >>= f = join $ fmap f x
```

- And vice versa

```
join :: Monad m => m (m a) -> m a
join x = x >>= id
```

- "Definition" of a Monad
 - Mathematical jargon:

Haskell Name	Mathematical Name	Notation
fmap		
return		
join		

- Start from the Bottom Categories
 - Category is objects & arrows
 - Objects depend on the domain of discourse
 - Arrows are maps between objects

- Start from the Bottom Categories
 - A simple category

- Start from the Bottom Categories
 - Every object has an identity arrow
 - Arrows can be "composed" to make new arrows

- Start from the Bottom Categories
 - Unfortunate issue with notation
 - "g of f" vs "f of g"
 - Functional notation vs standard notation

- Start from the Bottom Categories
 - The Category Laws

```
Identity Law: For f: A \to B: 1_B \circ f = f \circ 1_A = f
Associative Law: For f: A \to B, g: B \to C, h: C \to D: (h \circ g) \circ f = h \circ (g \circ f)
```


- Start from the Bottom Categories
 - Commonly used categories
 - The category of sets (Set)
 - The category of groups (Grp)
 - The category of Haskell types (Hask)
 - The category for a partial order

- Start from the Bottom Categories
 - Is there a category of all categories?
 - What would the objects/arrows be?

- Start from the Bottom Categories
 - Is there a category of all categories?
 - What would the objects/arrows be?
 - Yes, there is: Cat
 - Objects = Categories
 - Arrows = Functors

- Functors The Arrows of Categories
 - $F: C \rightarrow D$
 - Objects in C → Objects in D
 - Arrows in C → Arrows in D

- Functors The Arrows of Categories
 - $F: C \rightarrow D$
 - Objects in C → Objects in D
 - Arrows in C → Arrows in D
 - More rigorously:
 - A functor $F : C \rightarrow D$ is defined as an association.
 - Every object A in C is mapped to an object F(A) in D
 - Every morphism f : A → B in C is mapped to a morphism F(f) : F(A) → F(B) in D

- Functors The Arrows of Categories
 - Functor Laws
 - Preservation of Identity: For each object A, $F(1_A) = 1_{F(A)}$ Preservation of Composition: For any f, g, $F(g) \circ F(f) = F(g \circ f)$

- Functors The Arrows of Categories
 - Let's look at some examples

- Functors The Arrows of Categories
 - Let's look at some examples
 - Power Set Functor (P: Set → Set)

- Functors The Arrows of Categories
 - Let's look at some examples
 - Maybe Functor (Maybe : Hask → Hask)

- Functors The Arrows of Categories
 - Functors allow categories to be "compared"
 - We can now define "isomorphism"

- Functors The Arrows of Categories
 - What's the next step?
 - We have categories ...
 - Arrows between categories are "functors" ...
 - Arrows between functors are ...?

Monads – The Arrows of Functors

- Monads The Arrows of Functors
 - Nope; we have one more step

- Natural Transformations The Arrows of Functors
 - Arrows between functors are natural transformations

- Natural Transformations The Arrows of Functors
 - Definition:

```
Given categories C, D and functors F, G : C → D
A natural transformation: η : F ⇒ G
Associates each object X in C with a morphism η<sub>X</sub> : F(X) → G(X)
Such that η<sub>Y</sub> ∘ F(f) = G(f) ∘ η<sub>X</sub> for any objects X, Y in C
```

- Natural Transformations The Arrows of Functors
 - Illustration:

This diagram is commutative

- Natural Transformations The Arrows of Functors
 - How about a demonstration?
 - In Haskell, "Maybe" is basically just a list with at most one element
 - Can we encode that statement categorically?

- Natural Transformations The Arrows of Functors
 - "List" and "Maybe" are already functors
 - What about an arrow between them?
 - From Data.Maybe:

```
maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just x) = [x]
```

- Natural Transformations The Arrows of Functors
 - Then, for some arbitrary types a and b and some function f, we have:

- Natural Transformations The Arrows of Functors
 - A little more concretely ...

- Natural Transformations The Arrows of Functors
 - In order for this to be valid, we need the following to be equivalent
 - maybeToList . fmap floor map floor . maybeToList
 - So let's ask QuickCheck
 - ghci> quickCheck ($\x ->$ (maybeToList . fmap floor \$ x) == (map floor . maybeToList \$ x)) +++ OK, passed 100 tests.

- Natural Transformations The Arrows of Functors
 - Let's take it further
 - "maybeToList" has a corresponding function "listToMaybe"
 - How do they interact?

• Natural Transformations – The Arrows of Functors

- In one direction, inverse
- In the other direction, information is lost

• Natural Transformations – The Arrows of Functors

- This is no accident
- "List" is, in some sense, more powerful than "Maybe"

- Monads The Final Step
 - Now we have all the tools we need

- Monads The Final Step
 - A monad is a pair of natural transformations ("unit" and "join") acting on a single endofunctor

T(X)

- Monads The Final Step
 - Helpful diagram
 - All of the following commute

Monads – The Final Step

Demonstration of these laws; pick your favorite monad in Haskell

- Monads The Final Step
 - We now have all the tools we need to mathematically analyze stateful computations

- Further Reading
 - If interested:
 - The categorical dual gives rise to comonads
 - Monads themselves give rise to categories known as Kleisli categories
 - A natural transformation which is also an isomorphism is called a natural isomorphism and is surprisingly useful in universal algebra

- Further Reading
 - Thank you!