Лабораторная работа №2

Графический метод линейного программирования

Цель работы: решить заданные задачи графическим методом с помощью Excel.

Задача 1

Условие

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов. Количество кормов каждого вида, которое должны получать животные, приведено в таблице. В ней также указаны общее количество корма каждого вида, которое может быть использовано зверофермой ежедневно, и прибыль от реализации одной шкурки лисицы и песца. Определить, сколько лисиц и песцов можно вырастить при имеющихся запасах корма.

Таблица				
Вид корма	Количество единиц корма, которое ежедневно должны получать		Запас корма	
	лисица	песец		
A	2	2	180	
Б	4	1	240	
В	6	7	426	
Прибыль от реализации одной шкурки, руб.	1600	1200		

Решение

Пусть x_1 — количество лисиц, а x_2 — количество песцов.

Построим прямоугольную систему координат, где по оси Ox отложим значения x_1 , а по оси Oy отложим значения x_2 .

Составим неравенства на основе ограничений, а после преобразуем их в уравнения для того, чтобы решить графическим способом.

$$2x_1 + 2x_2 \le 180 \rightarrow 2x_1 + 2x_2 = 180$$

$$4x_1 + x_2 \le 240 \longrightarrow 4x_1 + x_2 = 240$$

$$6x_1 + 7x_2 \le 426 \rightarrow 6x_1 + 7x_2 = 426$$

Построим отрезки в Excel исходя из получившихся уравнений.

В итоге получаем данный график.

Из графика видно, что оптимальное решение это (57;12) или 57 лисиц и 12 песцов.

Задача 2

Условие

При подкормке посевов необходимо внести на 0,01 га почвы не менее 8 единиц азота, не менее 24 единиц фосфора и не менее 16 единиц калия. Фермер закупает комбинированные удобрения двух видов "Азофоска" и "Комплекс". В таблице указаны содержание количества единиц химического вещества в 1 кг каждого вида удобрений и цена 1 кг удобрений. Определить графически потребность фермера в удобрениях того и другого вида на 0,01 га посевной площади при минимальных затратах на потребление.

Химические вещества	Содержание химических веществ в 1 кг удобрения		
	Азофоска	Комплекс	
Азот	1	2	
Фосфор	12	3	
Калий	4	4	
Цена 1 кг удобрения, руб.	50	20	

Решение

Пусть x_1 — «Азофоска», а x_2 — «Комплекс».

Построим прямоугольную систему координат, где по оси Ox отложим значения x_1 , а по оси Oy отложим значения x_2 .

Составим неравенства на основе ограничений, а после преобразуем их в уравнения для того, чтобы решить графическим способом.

$$x_1 + 2x_2 \ge 8 \longrightarrow x_1 + 2x_2 = 8$$

$$12x_1 + 3x_2 \ge 24 \longrightarrow 12x_1 + 3x_2 = 24$$

$$4x_1 + 4x_2 \ge 16 \longrightarrow 4x_1 + 4x_2 = 16$$

Построим отрезки в Excel исходя из получившихся уравнений.

В итоге получаем данный график.

Из графика видно, что оптимальное решение это (1,14; 3,43) или 1,14 кг «Азофоски» и 3,43 кг «Комплекс».

Задача 3

Условие

Полной даме необходимо похудеть, а за помощью она обратилась к подруге. Подруга посоветовала перейти на рациональное питание, состоящее из двух продуктов Р и Q.

Суточное питание этими продуктами должно давать менее 14 единиц жира (чтобы похудеть), но не менее 300 килокалорий. На упаковке продукта Р написано, что в одном килограмме этого продукта содержится 15 единиц жира и 150 килокалорий, а на упаковке с продуктом Q — 4 единицы жира и 200 килокалорий соответственно. При этом цена продукта Р равна 250 руб./кг, а цена продукта Q равна 210 руб./кг.

Так как дама была стеснена в средствах, то ее интересовал вопрос: в какой пропорции нужно брать эти продукты для того, чтобы выдержать условия диеты и истратить как можно меньше денег?

Составьте ментальную карту по условиям задачи.

Решите задачу графически. Определите область допустимых решений. Найдите оптимальное решение.

Решение

Пусть x_1 — продукт P, а x_2 — продукт Q.

Построим прямоугольную систему координат, где по оси Ox отложим значения x_1 , а по оси Oy отложим значения x_2 .

Составим неравенства на основе ограничений, а после преобразуем их в уравнения для того, чтобы решить графическим способом.

$$15x_1 + 4x_2 \le 14 \longrightarrow 15x_1 + 4x_2 = 14$$

$$150x_1 + 200x_2 \ge 300 \rightarrow 150x_1 + 200x_2 = 300$$

Построим отрезки в Excel исходя из получившихся уравнений.

В итоге получаем данный график.

1 случай: 0 кг продукта Р и 1,5 кг продукта Q, тогда она потратит 315 рублей.

2 случай: 0,67 кг продукта Р и 1 кг продукта Q, тогда она потратит 377,5 рублей.

Из этого следует, что оптимальное решение это (0:1.5)

Вывод: в ходе лабораторной работы были решены задачи на оптимальный выбор графическим методом с помощью табличного процессора Excel. Из лабораторной работы были усвоены алгоритмы по нахождению ограничений и построению прямых ограничений на координатной плоскости.