天津诏*大学 实验报告

学院(系)名称: 计算机科学与工程学院

100 (31) 131 (177) 172 (170)						
姓名	王帆	学号	20152180	专业	计算机科学与技术	
班级	15 计算机 1 班	实验项目	实验三 数值积分			
课程名称		数值计算方法		课程代码	0665026	
实验时间		2017年5月22日第7-8节		实验地点	7-220、7-219	
批改意见			成绩			

教师签字:

一、实验目的

掌握复化求积法和龙贝格算法求积分近似值的方法,根据实验要求,使用这两种方法解决具体问题,设计相应的算法框图并编程实现,上机调试得到正确的运行结果。

二、 实验环境

■ 硬件环境: IBM-PC 或兼容机

■ 软件环境: Windows 操作系统, VC6.0

■ 编程语言: C 或 C++

三、 实验内容

1. 用复化梯形公式计算下列积分值

$$\int_{1}^{2} \frac{1}{x} dx$$

要求:

- (1) 区间的等分次数 n 由键盘终端输入:
- (2) 绘制复化梯形公式求解积分的算法框图;
- (3) 打印输出运行结果。
- 2. 用龙贝格算法计算下列积分值,使精确度达到10-6。

$$\int_{1}^{2} x^{\frac{3}{2}} dx$$

要求:

(1) 绘制龙贝格算法的实现框图;

(2) 按照龙贝格算法的计算顺序按列依次打印输出梯形序列、辛普森序列、柯特斯序列和龙贝格序列的计算结果,如下所示;

k	区间等分数	梯形序列	辛普森序列	柯特斯序列	龙贝格序列 <i>R2^{k-3}</i>
	$n=2^k$	T_2^k	$S2^{k-1}$	C_2^{k-2}	$R2^{k-3}$
0	1	T_1			
1	2	T_2	S_1		
2	4	T_4	S_2	C_1	
3	8	T_8	S_4	C_2	R_I
4	16	T_{16}	S_8	C_4	R_2
5	32	<i>T</i> 32	S16	<i>C</i> 8	R_4

(3) 输出最终满足精度要求的积分近似值。

四、 实验要求

- 1. 每一个实验内容要求自己独立完成,不允许抄袭别人,否则按不及格处理;
- 2. 按照实验要求,根据自己的程序编写情况绘制相应的算法框图或描述算法步骤;
- 3. 按照实验内容和相应的要求书写实验报告;
- 4. 在实验过程部分,要求根据实验内容和要求书写每一个实验相应的算法步骤或框图、运行过程和运行结果的截图、运行结果分析、以及程序源代码。每一个实验要求书写下述内容:
 - (1) 算法步骤描述或算法框图
 - (2) 程序源代码
 - (3) 运行结果 (要求截图)
 - (4) 运行结果分析
 - 5. 在规定的时间内上交实验报告。

五、 实验过程

1. 用复化梯形公式计算下列积分值

算法描述:

图 1-1 复化梯形法求解数值积分流程图

代码实现:

```
//复化梯形公式求解数值积分
#include<iostream>
#include<cmath>
using namespace std;
//全局变量
int n;
double a=1.0,b=2.0;
double h;
double sum=0.0, x=0.0;
//原型声明
void init();
void trapezium();
//实现
int main(){
   init();
   trapezium();
   return 0;
}
void init(){
   cout<<"请输入等分次数:";
   cin>>n;
}
void trapezium(){
   h=(b-a)/n;
   for(int i=1;i<=n-1;i++){
       x=a+i*h;
       sum+=1.0/x;
   cout<<h/2.0*(1.0/a+2*sum+1.0/b);
```

运行结果:

C:\Users\Du\Documents

请输入等分次数:10 0.693771

图 1-2 复化梯形法求解数值积分

运行分析:

利用复化梯形公式求解数值积分,其精确度会随着等分次数的增加而增加。当等分次数 趋近于无穷大时,即为精确解。

2. 用龙贝格算法计算下列积分值, 使精确度达到 10-6。

算法描述:

图 1-2 龙贝格算法求解数值积分流程图

代码实现:

```
//复化梯形公式求解数值积分
#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
//全局变量
long double Tn[100],Sn[100],Cn[100],Rn[100];
double a=1.0,b=2.0;
double h;
double sum=0.0, xk=0.0;
int k;
bool temp=false;
//原型声明
void init();
void show(int i);
double trapezium(double T,int n);
double Simpson(double T1, double T2);
double Cotes(double S1, double S2);
double Romberg(double C1, double C2);
//实现
int main(){
   init();
   show(1);
   show(2);
   return 0;
void init(){
   Tn[1]=1.0/2*(pow(1.0,1.5)+pow(2.0,1.5));
```

```
for(k=1;k<10;k++){
       Tn[k+1]=trapezium(Tn[k],pow(2,k-1));
   for(k=1;k<10;k++){}
       Sn[k]=Simpson(Tn[k+1],Tn[k]);
   for(k=1;k<10;k++){
       Cn[k]=Cotes(Sn[k+1],Sn[k]);
   }
   for(k=1;k<10;k++){
       Rn[k]=Romberg(Cn[k+1],Cn[k]);
   }
}
void show(int i){
   switch(i){
       case 1:{
           cout<<"k"<<" "<<"等分次数"<<
           " \t"<<"梯形序列"<<"\t"<<
           "辛普森序列"<<"\t"<<"柯特斯序列"<<
           "\t"<<"龙贝格序列"<<end1;
           break;
       }
       case 2:{
           for(k=0;k<10;k++){
               cout << k << "\t" << pow(2,k) << "\t" << setprecision(8) << Tn[k+1] << "\t";
               if(k>=1) cout<<setprecision(8)<<Sn[k]<<"\t";</pre>
               else if(k>=2) cout<<setprecision(8)<<Cn[k-1]<<"\t";</pre>
               else if(k \ge 3){
                   cout<<setprecision(8)<<Rn[k-2];</pre>
                   if(Rn[k-2]-Rn[k-1]<0.000001&&temp){
                       break;
                   }
                   temp=true;
               }
               cout<<endl;</pre>
           }
           cout<<endl;</pre>
           cout<<"近似值为:"<<setprecision(7)<<Rn[k];
           break;
       }
   }
}
double trapezium(double T,int n){
   h=(b-a)/n;
   for(int i=0;i<=n-1;i++){
```

```
xk=a+(i+1.0/2)*h;
sum+=pow(xk,1.5);
}
return (h/2.0*sum+1.0/2*T);
}
double Simpson(double T1, double T2){
    return 4.0/3*T1-1.0/3*T2;
}
double Cotes(double S1, double S2){
    return 16.0/15*S1-1.0/15*S2;
}
double Romberg(double C1, double C2){
    return 64.0/63*C1-1.0/63*C2;
}
```

运行结果:

■ C:\Users\Du\Documents\数值计算方法\实验\实验三\龙贝格算法.exe							
k	等分次数	梯形序列	辛普森序列	柯特斯序列	龙贝格序列		
0	1	1. 9142136					
1	2	1.8756654	1.8628161				
2	4	1.8659764	1.8627468	1.8627422			
3	8	1.8635506	1.862742	1.8627417	1.8627417		
4	16	1.8629439	1.8627417	1.8627417	1.8627417		
近似值为: 1. 862742							

图 2-2 龙贝格算法运行结果

六、 实验总结及心得体会

通过本次实验,我加深了对数值积分的理解。除了最基本的梯形法,本实验还包括辛普森算法、柯特斯算法以及龙贝格算法。微积分学是高等数学最为关键的内容之一,通过学习数值微积分方法,我提升了对于利用计算机求解微积分问题近似值的能力,并有助于将它应用于未来的学习与科研中。