

Vorlesung Computational Intelligence:

Teil 1: Einführung und Motivation

Ralf Mikut, Wilfried Jakob, Markus Reischl

Karlsruher Institut für Technologie, Institut für Automation und angewandte Informatik E-Mail: ralf.mikut@kit.edu, wilfried.jakob@kit.edu

jeden Donnerstag 14:00-15:30 Uhr, Nusselt-Hörsaal

Gliederung

Organisatorisches

- 1. Einführung und Motivation
- 1.1 Warum benötigt man Computational Intelligence?
- 1.2 Grundlegende Begriffe und Definitionen
- 1.3 Motivierende Beispiele
- 1.4 Literaturhinweise
- 1.5 Überblick über die Vorlesung

Organisatorisches (1)

- Vorlesung "Computational Intelligence":
 - immer im Wintersemester
 - Inhalt:
 - Fuzzy-Systeme (Mikut/Reischl)
 - Künstliche Neuronale Netze (Mikut/Reischl)
 - Evolutionäre Algorithmen (Jakob/Mikut)
 - 2 SWS / 4 ECTS
 - Prüfung (schriftlich): 20.03.2019 16:00-17:00 Uhr, Gerthsen-HS
- Vorlesung "Datenanalyse für Ingenieure"
 - immer im Sommersemester
 - 3 SWS (2 SWS Vorlesung, 1 SWS Rechnerübungen) / 5 ECTS
 - Prüfung (schriftlich) am 19.02.2019 16:00-17:00 Uhr, Gaede-HS

Organisatorisches (2)

Schwerpunkte für beide Vorlesungen im Studiengang Maschinenbau:

- Bachelor und Master:
 - SP 05: Berechnungsmethoden im Maschinenbau
 - SP 18: Informationstechnik
 - SP 31: Mechatronik
- nur Master:
 - SP 01: Advanced Mechatronics
 - SP 04: Automatisierungstechnik
 - SP 22: Kognitive Technische Systeme
 - SP 32: Medizintechnik
 - SP 40: Robotik
 - Wahlfach

Organisatorisches (3)

- Vorlesung wöchentlich, außer
 - 1.11.2018 (Feiertag)
 - 27.12.2018
 - -3.1.2019
- Übungen: Zwei Übungen
 - 1x Fuzzy im Nusselt-HS (auf dem Termin der Vorlesung)
 - 1x Neuronale Netze (praktische Aufgabe mit SciXMiner) im SCC-Pool,
 Selbststudium mit Angebot für Konsultation, Ankündigung folgt
- Prüfungen:
 - mündlich (bei <=40 Teilnehmern) oder schriftlich (bei mehr als 40 Teilnehmern)
 - Dauer: 30 min (mündlich) oder 60 min (schriftlich)
 - Hilfsmittel: keine
 - Schwerpunkte:
 - immer auf letzter Folie (nicht im Skript)
 - besonders wichtig ist F\u00e4higkeit zum Transfer auf praktische Probleme

Organisatorisches (4)

- ILIAS-Teilnehmerliste zur Information
- Downloads:

http://ilias.studium.kit.edu

- alle Vorlesungen (Powerpoint)
- Übungsanleitungen
- Symbolverzeichnis

(können aber u.U. auch während des Semesters ergänzt oder korrigiert werden!)

- Hinweis: nicht alle Informationen enthalten: weitere Beispiele an Tafel, Kurzdemos Software
- dort außerdem: Aktuelle Terminhinweise usw.

FEEDBACK ERWÜNSCHT!

CI EINL-6 | R. Mikut | IAI

Symbolverzeichnis

- PDF mit den wichtigsten Bezeichnern zu allen Folien, dort ist aus Platzgründen nicht jedes Formelzeichen erklärt
- kompatibel zu Buch
 MIKUT, R.: Data Mining in der Medizin und Medizintechnik.
 Universitätsverlag Karlsruhe; 2008
- Download möglich
- bitte Feedback, wenn etwas fehlt

Symbolverzeichnis zur Vorlesung Computational Intelligence

Ralf Mikut, Markus Reischl, Wilfried Jakob Karlsruher Institut für Technologie E-Mail: ralf.mikut@kit.edu

Beim hier gewählten Bezeichnungsapparat wurde ein Kompromiss zwischen einheitlichen und durchgängigen Bezeichnungen einerseits sowie literaturkonformen und einfachen Bezeichnungen andererseits gewählt. Dabei handelt es sich um eine gekürzte Fassung von [1].

Symbol	Bozoichnung
A1 - 3	Neuronen in Ausgabeschicht
ar	Vektor der Parameter der Zugehörigkeitsfunktionen aller Terme des
	Morkmals x_l
$a_{l,i}$	Parameter der Zugehörigkeitsfunktion des Terms $A_{l,t}$ ($t = 1$: rechtes
	Maximum Trapez-ZGF, t - m _t : linkes Maximum Trapez-ZGF, t -
	$2, \dots, m_t - 1$: Maximum Droioek-ZGF)
$A_{\ell,t}$	t-ter linguistischer Term des l -ten Merkmals x_l
$A_{L,R_{\tau}}$	ODER-Verknüpfung linguistischer Terme des l -ten Merkmals x_l in der
	Teilprämisse der #-ten Regel
b, b_i	Parameter
B_a	e-ter linguistischer Term der Ausgangsgröße y
c	Laufindex für Klassen
C_r	Konklusion der r-ten Regel
COG	Schwerpunktmethode (Center of Gravity)
COGS	Schwerpunktmethode für Singletons (Center of Gravity for Singletons)

CI EINL-7 | R. Mikut | IAI

Gliederung

Organisatorisches

- 1. Einführung und Motivation
- 1.1 Warum benötigt man Computational Intelligence?
- 1.2 Grundlegende Begriffe und Definitionen
- 1.3 Motivierende Beispiele
- 1.4 Literaturhinweise
- 1.5 Überblick über die Vorlesung

Warum benötigt man Computational Intelligence?

WSEIO KNÖNEN SIE DEIESN STAZ LSEEN, OWHBOHL DIE BCUHSTAEBN NCIHT IN DER RITHCIEGN RIEHENFOGLE SHETEN?

Warum benötigt man Computational Intelligence?

- Lösen von Aufgaben,
 - bei denen kein wissenschaftlich begründetes mathematisches Modell
 ("White-Box-Modell") oder Lösungsverfahren vorliegt, die der Mensch aber trotzdem irgendwie kann:
 - durch Lernen von Beispielen und/oder
 - durch Versuch und Fehler und/oder
 - regelbasiertes "Expertenwissen"
 - bei denen andere Verfahren keine befriedigende Lösung finden (schlechte Lösungsqualität oder zu lange Rechenzeiten)
- ACHTUNG!

Computational Intelligence ist immer nur eine Variante unter anderen, nicht immer die Beste!

Gliederung

Organisatorisches

- 1. Einführung und Motivation
- 1.1 Warum benötigt man Computational Intelligence?
- 1.2 Grundlegende Begriffe und Definitionen
- 1.3 Motivierende Beispiele
- 1.4 Literaturhinweise
- 1.5 Überblick über die Vorlesung

Definition Computational Intelligence

Begriffsklärung (leo.org):

- Computational:
 - berechenbar
- Intelligence:
 - Intelligenz
 - Einsicht
 - Wissen
 - Auffassungsvermögen
 - Information
 - Klugheit
 - Verstand
 - Geheimdienst
 - Geheimdienstinformationen

Definition Computational Intelligence

- Computational Intelligence:
 - umfasst alle Gebiete, die sich mit der Nachbildung biologischer und menschlicher Problemlösungsstrategien im Computer beschäftigen
 - beinhaltet mehrere Teilgebiete:
 - Fuzzy-Systeme:
 Nachbildung menschlicher regelbasierter Strategien im Computer,
 Verarbeitung von unscharfen Zugehörigkeitsgraden zwischen 0 und 1
 - Künstliche Neuronale Netze:
 Nachbildung der neuronenbasierten Informationsverarbeitung von Menschen und Tieren in Computern, inkl. Deep Learning
 - Evolutionäre Algorithmen (EA):
 Nachbildung der Veränderungs- und Selektionsprozesse in der Natur
 - Data Mining:
 Finden gültiger, neuer, nützlicher und verständlicher Zusammenhänge (Wissen) aus Daten
- ACHTUNG! In der Literatur widersprüchliche und überlappende Definitionen,
 weitere Gebiete werden einbezogen oder nicht, z.T. andere verwandte Begriffe

Weitere Gebiete

- Hybride CI-Systeme
 - Neuro-Fuzzy-Systeme
 - Evolutionär optimierte Fuzzy-Systeme
 - Evolutionär optimierte Künstliche Neuronale Netze
- Andere naturanaloge Verfahren ("Metaheuristiken") :
 - Partikelschwarmoptimierung PSO
 - Ameisenalgorithmen bzw. Ant Colony Optimization ACO siehe z.B. [Kroll 13]
- Memetische Algorithmen (Kombination aus Evolutionären Algorithmen und lokalen linearen Suchverfahren)

Verwandte Begriffe

- Soft computing:
 - teilweise Synonym zu Computational Intelligence
 - Aufzählung Fuzzy, Neuronale Netze, Evolutionäre Algorithmen
 - Betonung approximativer Lösung für schwer berechenbare Probleme
- Künstliche Intelligenz (engl. Artificial Intelligence)
 - stärkere Betonung regelbasierter Entscheidungsprozesse
 - verwendet meist Symbole
 - basiert auf klassischer binärer Logik
 - in letzter Zeit wieder allgemeiner interpretiert, insbesondere für autonome Entscheidungen von Maschinen
 - symbolische Welt: Go, Schach usw.
 - subsymbolische Welt: autonomes Fahren, Sprachassistenten usw.

Gliederung

Organisatorisches

- 1. Einführung und Motivation
- 1.1 Warum benötigt man Computational Intelligence?
- 1.2 Grundlegende Begriffe und Definitionen
- 1.3 Motivierende Beispiele
- 1.4 Literaturhinweise
- 1.5 Überblick über die Vorlesung

Beispiel: Stranggießen

Ziel: Messung und Regelung Gießspiegel

IAI

Erprobung in Baotou, China: PID-Regler

- Verläufe der Gießspiegel und Stopfenpositionen für PID-Regler mit konstanten Parametern
- verschiedene Regelgüten wegen Abnutzungen bzw. Anlagerungen
- starke Schwankungen im Strang 3 (violett)

Erprobung Baotou: Fuzzy-adaptiver PID-Regler

- Verläufe der Gießspiegel und Stopfenpositionen für Fuzzy-adaptive PID-Regler mit variablen Parametern
- vergleichbare Regelgüten und tolerable Schwankungen

Gießspiegelregelung

Probleme beim Stopfen: Abnutzung, Exzentrizität, Ablagerungen

- Datenbank (Formate, Stahlsorten)
- Störungsüberwachung
- Start / Stop Gießen
- Fuzzy-Plausibilität
- Fuzzy-Adaption
- Fuzzy-Korrektur Filter
- Identifikation Stopfenkennlinie
- Störgrößenaufschaltung

Adaptionsblock mit Fuzzy-Komponenten

Automatische Durchbrucherkennung

1 Automatische Erkennung eines drohenden Durchbruchs

2 Alarm + Umschaltung auf Handbetrieb

3 Manuelle Stabilisierung

4 Umschaltung auf Automatik-betrieb

Leitsystem der Kombianlage, Yieh United, Taiwan

Beispiel: Modellierung von Labyrinthdichtungen

a) Divergentes Stufenlabyrinth

b) Konvergentes Stufenlabyrinth

Bildquelle: Denecke, J.: *Dissertation,* Universität Karlsruhe (TH), 2007

c) « Echtes » Labyrinth

d) Kammnutlabyrinth

- Kooperationsprojekt mit Institut für Thermische Strömungsmaschinen, KIT
- gegeben: Mess- und Literaturdaten verschiedener Labyrinthdichtungen
- Ziel: Vorhersage
 Durchflussbeiwert aus
 Geometrieparametern
- Vorgehensweise:
 - Datenvorverarbeitung
 - Merkmalsextraktion und -bewertung
 - Regression mit künstlichen Neuronalen Netzen

CI EINL-23 | R. Mikut | IAI

Durchblick- und Stufenlabyrinthe [Pychynski09,10]

Datensammlung zum Durchflussverhalten von Durchblick- und Stufenlabyrinthen:

Komplexes System mit 21 Einflussparametern

Datensatz mit 15.297 Datentupeln aus 15 Quellen

[Pychynski09] Pychynski, T.: Anwendung von Data Mining Methoden zur Analyse von Turbomaschinenkomponenten am Beispiel des Durchflussverhaltens von Labyrinthdichtungen. *Karlsruher Institut für Technologie (KIT)*, **2009**

[Pychynski10] Pychynski, T.; Blesinger, G.; Mikut, R.; Dullenkopf, K. & Bauer., H.-J.: Modelling the Labyrinth Seal Discharge Coefficient Using Data Mining Methods. *Proc., ASME TURBO EXPO; Glasgow,* **2010**

CI EINL-24 | R. Mikut | IAI

Lösung [Pychynski09,10]

- Merkmalsauswahl in verschiedenen Varianten, gute Modelle ab 4 Merkmale
- Polynome ab Grad 2 o.k., Neuronale Netze besser
- Korrelationskoeffizienten je nach Datensatz Regressionsansatz 0.95 - 0.99
- ACHTUNG! Modellgüte nur in der Nähe von existierenden Datentupeln gut, Probleme in schlecht abgedeckten Bereichen

Deep Learning

- (zumindest teilweise berechtigter) Hype in den letzten Jahren
- Spektakuläre Erfolge:
 - Bilderkennung, wichtig auch für Autonomes Fahren, Autonome Systeme (Roboter) und Bildgestützte Qualitätskontrolle, siehe z.B. Yolo [Redmon17]

https://www.youtube.com/watch?v=yQ
wfDxBMtXg

- AlphaGo (Google DeepMind), Sieg gegen den Weltmeister 2016
- Viele Versprechungen (Medizintechnik, ...)

Beispiel: Walzwerkoptimierung

Problemstellung Ringwalzwerk:

- Herstellung von Ringen und Radreifen (reales Industriebeispiel)
- Aufgabe:
 Optimierung der Auftragsreihenfolge für ein Walzprogramm
 - Minimierung der Umbauzeit
 - Einhaltung der (Liefer-) Termine
 - Einhaltung technologischer Restriktionen (Koordinierung Säge, Drehherdofen, Walzen)

Problemstellung Ringwalzwerk

Problemstellung Ringwalzwerk

Praktische Probleme:

- kleine Stückzahlen, damit häufige Umbauten notwendig (z.B. Wochenprogramm >100 Aufträge)
- jeder Auftrag verlangt andere Anlagenkonfiguration (eingebaute Werkzeuge)
- Alternativen zwischen Werkzeugen möglich
- keine Zwischenlagerung in der Anlage möglich (Arbeitstemperatur nach Drehherdofen, durchlaufendes Band)
- häufig zusätzliche Eilaufträge, die flexibel eingeplant werden müssen

Herangehensweise für eine Optimierung

Problemverstehen und Formalisieren

- Variante 1 (für Evolutionäre Algorithmen):
 - explizit als Gütekriterium
 (messbare Qualität für eine Lösung
 häufig > 50% der Arbeit)

$$G_{ges} = \sum_{k=1}^{n-1} u_k (\mathbf{W}(\underline{s})) + \sum_{k=2}^{n} v_k^{WP}(\underline{s}) + \sum_{k=2}^{n} T_k (\underline{s}) \stackrel{!}{=} Min$$
Umbauzeit Strafterme für Restriktionen Terminbewertung

- Formalisierung einer möglichen Lösung (hier: Reihenfolge s mit n Aufträgen)
- Variante 2: nur Lösungsweg formalisieren (z.B. als Experten-Regeln)

Variante 1: Umbauzeiten


```
n Sortiment
                    Walze Walzdorn Zentrierrollen AWS AWD Tast-R. Ges. LD
1 Martensite Größe B glatt Dorn 02 02.38-(glatt) ohne ohne 40er
                                                                   ohne 270
2 Martensite Größe C glatt Dorn 08 02.38-(glatt) G1 155 40er
                                                                   ohne 160
3 Martensite Größe C glatt Dorn 08
                                 02.38-(glatt) G2 175 40er
                                                                   ohne 180
4 Martensite Größe C glatt Dorn 07
                                   02.38-(glatt) G2 175 40er
                                                                   ohne 180
                                  02.38-(glatt) G2 175 40er
5 Martensite Größe C glatt Dorn 06
                                                                   ohne 190
                                   02.38-(glatt) G2 175 40er SB ohne 190
6 Martensite Größe C glatt Dorn 03
                                  02.38-(glatt) G2 175 40er SB ohne 190
7 Martensite Größe A glatt Dorn 03
8 Martensite Größe C glatt Dorn 03
                                   02.38-(glatt) G2 175 40er SB ohne 190
Umbau 2->1 Walzdorn (20)
                                                       = 20 \min
Umbau 1->2 Walzdorn (20) + evtl. AWS (20) + evtl. AWD (15) = 20...55 min
(je nach vorherigem Auftrag)
grün: Umbau mit 2. Kran im Schatten der Umbauzeit... (je 10 Minuten)
```

Umbauzeiten in Minuten

		n=1	n=2	n=3	n=4	n=5	n=6	n=7	
	n=1:	0	55	55	55	55	65	65	
	n=2:	20	0	35	55	55	65	65	
	n=3:	20	35	0	20	20	30	30	
_	n=4:	20	55	20	0	20	30	30	
	n=5:	20	55	20	20	0	30	30	
	n=6:	30	65	30	30	30	0	5	
	n=7:	30	65	30	30	30	5	0	

CI EINL-31 | R. Mikut | IAI

Variante 2: Expertenregeln...

hier: Regelbasis aus 24 Regeln

 Regel 1: Fasse als ersten Arbeitsschritt Aufträge mit gleichen Walzen zusammen.

. . .

 Regel 14: Drängt ein Termin zur Fertigung eines Auftrages, so ist dieser ungeachtet seines Umbauaufwandes einzuplanen.

Vorteile Expertenregeln:

- spart aufwändige Modellierung
- u. U. höhere Akzeptanz bei Nutzer (Transparenz)

Nachteile Expertenregeln:

- aufwändig zu bekommen, meist nur ein Teil der Regeln bewusst
- verschenkt meist bessere Ergebnisse

Ausschnitt Gütekriterium

Ausschnitt aus dem Gütegebirge in Abhängigkeit der Positionen zweier Aufträge in einer Walzreihenfolge

- a. Startnäherung zufällige Reihenfolge (links)
- b. Startnäherung Expertenregeln (rechts)

CI EINL-33 | R. Mikut | IAI

Ansatzpunkte für eine heuristische Optimierung

- Evolutionäre Algorithmen
- Vertauschen von Aufträgen mit hoher Umbauzeit mit allen anderen Aufträgen
 - neuer Ausgangspunkt: Minimum der Gütefunktion
 - Erweiterung: Einsortieren eines Auftragsblocks von 2, 3 und 4 Aufträgen an verschiedenen Stellen
 - Modifizierung eines Evolutionären Algorithmus: "Gezielte Mutation" (Memetischer Algorithmus, da Kombination mit lokaler Suche)

CI EINL-34 | R. Mikut | IAI

Ergebnisse

Reales Wochenprogramm mit 135 Aufträgen

- beste Lösung: Expertenwissen + modifizierte Evolutionäre Algorithmen
- Rechenzeit: ca. 5 Minuten
- Einsparung gegenüber manueller Planung: ca. 15% Umbauzeit Restriktionen werden eingehalten
- andere Lösungen zu langsam und schlechter

Gliederung

Organisatorisches

- 1. Einführung und Motivation
- 1.1 Warum benötigt man Computational Intelligence?
- 1.2 Grundlegende Begriffe und Definitionen
- 1.3 Motivierende Beispiele
- 1.4 Literaturhinweise
- 1.5 Überblick über die Vorlesung

Literaturhinweise

- Kiendl, H.: Fuzzy Control. Methodenorientiert. Oldenbourg-Verlag, München, 1997
- S. Haykin: Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999
- LeCun, Y.; Bengio, Y. & Hinton, G. Deep Learning
 Nature, Nature Publishing Group, 2015, 521(7553), 436-444
- Kroll, A. Computational Intelligence: Eine Einführung in Probleme,
 Methoden und technische Anwendungen. Oldenbourg Verlag, 2013
- Blume, C, Jakob, W: GLEAM General Learning Evolutionary Algorithm and Method: ein Evolutionärer Algorithmus und seine Anwendungen. KIT Scientific Publishing, 2009 (PDF frei im Internet)
- Schwefel, H.-P.: Evolution and Optimum Seeking. New York: John Wiley, 1995
- Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet) (http://digbib.ubka.uni-karlsruhe.de/volltexte/1000008476)

CI EINL-37 | R. Mikut | IAI

Überblick über die Vorlesung

Vorlesung:

- 1. Einführung und Motivation
- 2. Fuzzy-Logik
- 3. Künstliche Neuronale Netze
- 4. Evolutionäre und Memetische Algorithmen