Elektronik 2

FS 24 Guido Keel (Michael Lehmann)

Autoren: Authors

Version: 1.0.20240317

https://github.com/P4ntomime/elektronik-2

Inhaltsverzeichnis

1	Feldeffekt-Transistoren	2		3.2 Dualität NMOS - PMOS	3
	1.1 FET-Typen und Symbole	2		3.3 Verlustleistung bei CMOS-Logik	3
	1.2 Sperrschicht-FET / Junction FET (JFET)	2		3.4 Verzögerungszeit	3
	1.3 MOS-FETs	2			_
	1.4 Verstärkerschaltungen mit FETs	2	4	Schmitt-Trigger	3
	1.5 MOS-FET als (Leistungs-)Schalter	- 1		4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger	
	1.6 Transmission Gate	- 1		4.2 Aufbau invertierender digitaler Schmitt-Trigger	
	Transmission Care 1777 1777 1777 1777 1777 1777 1777 17	-		4.3 Schmitt-Trigger vs. CMOS-Logik	3
2	Transistor-Transistor-Logik	2	5	Signalübertragung	3
	2.1 Resistor Transistor Logik (RTL)	2	-	5.1 Leitungstheorie	3
	2.2 Dioden-Transistor-Logik (DTL)	3		5.2 Einfluss / Relevanz von Refelxionen	
	2.3 Transistor-Transistor-Logik (TTL)	- 1		5.2 Emilios / Relevanz von Referatonen	5
			6	High-Speed-Logik	3
3	CMOS-Logik	3		6.1 Emitter Coupled Logic (ECL)	3
	3.1 Grundgatter in CMOS-Logik	3		6.2 Current Mode Logic (CML)	4

1 Feldeffekt-Transistoren

1.1 FET-Typen und Symbole

1.1.1 Anschlüsse eines FET

Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

1.2 Sperrschicht-FET / Junction FET (JFET)

1.2.1 Kennlinien

Ausgangskennlinien

1.2.2 Linearer Bereich (gesteuerter Widerstand)

- Für kleinen Spannung-Unterschied ${\cal V}_{DS}$
- V_{GS} ändert Dicke der Raumladungszone (Kanal)
- n-Kanal JFET: Je negativer V_{GS} , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_{D} = \frac{2 \cdot I_{DSS}}{V_{p}^{2}} \left(V_{GS} - V_{p} - \frac{V_{DS}}{2} \right) V_{DS}$$

1.2.3 Sättigungs-Bereich (Stromquelle)

- Für hohes V_{DS} wird leitender Kanal abgeschürt →Strom kann nicht weiter steigen (Stromquelle)
- Übergang gest. Widerstand zu Stromquelle @ ${\cal V}_{DSP}$
- $\Rightarrow V_{DSP} = V_{GS} V_p \ (V_p = \text{Pinch-Off-Spannung})$

$$I_D = \frac{I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p)^2$$

Verstärkungsmass Transkonduktanz:

$$g_m = \frac{2 \cdot I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p) = \frac{2}{|V_p|} \cdot \sqrt{I_{DSS} \cdot I_D} \qquad [g_m] = S$$

1.3 MOS-FETs

1.3.1 Aufbau

- L Länge des Transistors
- W Breite des Transistors
- · N-Kanal FET: Drain und Source sind n-dotiert
- · Kanal ist p-dotiert

1.3.2 Kennlinien

Ausgangskennlinien

1.3.3 Bereiche

- Sperrbereich: $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich: $V_{GS} > V_{TH}$
- Sättigungsbereich (Stromquelle): $V_{DS} > V_{GS} V_{TH}$

Anlaufbereich (Linearer Bereich)

Sättigungsbereich (Stromquelle)

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad \qquad I_{D,sat} = \frac{\beta}{2} \cdot (V_{GS} - V_{TH})^2$$

1.3.4 Kleinsignal-Ersatzschaltung (MOS-FET)

1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie

Für den n-Kanal FET gilt:

- Threshold-Spannung V_{TH} sinkt mit 1-2 $\frac{\mu V}{K}$
- β sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt I_D für fixes V_{GS}

1.4 Verstärkerschaltungen mit FETs

1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von \mathcal{R}_L in das Ausgangskennlinienfeld eingezeichnet

1.4.2 Push-Pull / Digitaler Inverter

- V_{in} geht auf NMOS und PMOS
- · Ermöglicht grössere Verstärkung

Für
$$V_{in} \approx \frac{V_{DD}}{2}$$
 gilt:

$$A_{V0} = -(g_{m1} + g_{m2}) \cdot (r_{DS1} || r_{DS2})$$

1.5 MOS-FET als (Leistungs-)Schalter

Wenn der FET als Schalter eingesetzt wird, so arbeitet er im linearen Bereich $(V_{GS} > V_{TH}, \text{d.h. } V_{out} < V_{DD} - V_{TH})$

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

$$r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

Schalter geschlossen: $R_{FET} = R_{DS(on)}$

Schalter offen: $R_{FET} = \infty$

1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{DS} * I_{DS}^2 = 0 \,\mathrm{W}$$

$$\Delta T = R_{th} \cdot P_V$$

1.6 Transmission Gate

Im Bild links gilt: $V_{DD}=5\,\mathrm{V},V_{SS}=0\,\mathrm{V}$

- NMOS (oben) leitet für $V_{in} < V_{DD} T_{TH,n}$
- PMOS (unten) leitet für $V_{in} > V_{SS} T_{TH,p}$
- · Source und Drain austauschbar
 - →Strom kann in beide Richtungen fliessen

Transistor-Transistor-Logik

- · Meist statischer Stromverbrauch
- Asymmetrische Schaltschwellen (weniger Marge als CMOS-Logik)

2.1 Resistor Transistor Logik (RTL)

Bild: NOR-Gate

- Ausgangsspannung $V_{out} = V_{+}$ oder $V_{out} = V_{CE,sat}$
- Fan-Out ist begrenzt (Werden zu viele weitere Gatter an den Ausgang gehängt, so reicht der Strom nicht mehr, um diese zu treiben → Spannungslevel stimmen nicht mehr, um Transisoren durchzusteuern)

2.2 Dioden-Transistor-Logik (DTL)

Bild: NAND-Gate

- Fan-Out grösser, da Transistor aktiv nach '0' zieht
- R_2 muss keine Gatter treiben (kein grosser Stromfluss)
- • Nachteile: Sehr tiefer Störabstand; Transistor leitet schon bei Spannungen, welche kaum $>0~{\rm V}$ sind

2.3 Transistor-Transistor-Logik (TTL)

- Schaltschwelle am Eingang wird durch Dioden V_3 und V_4 um $1.4~\mathrm{V}$ erhöht
- Dioden V₁ und V₃ bilden npn-Struktur
 ⇒npn-Transistor

3 CMOS-Logik

- Entweder leitender Pfad nach V_{SS} (NMOS) oder V_{DD} (PMOS)
- · Kein statischer Stromverbrauch
- Langsamer als Bipolar
- Symmetrische Schaltschwellen bei ca. $\frac{V_{DD}}{2}$ (Übertrgaungskennlinie)
- Output-Level V_{ol}, V_{oh} näher bei Speisung als Input Level $V_{il}, V_{ih} \implies$ mehr Marge
- Höhere Speisespannung → weniger propagation delay
- Nicht geeignet zur Datenübertragung über längere Strecken (kein $50\,\Omega$ Abschluss)

3.1 Grundgatter in CMOS-Logik

3.2 Dualität NMOS - PMOS

3.3 Verlustleistung bei CMOS-Logik

$$P_V = C \cdot V_{CC}^2 \cdot f$$

C Kapazität (aus Datenblatt)

f Frequenz

3.4 Verzögerungszeit

Linearer Bereich

$$t_{pHL} = 0.69 \cdot R_{on} \cdot C_L$$

→Exponentielle Entladung!

Sättigung (Stromquellen-Bereich)

$$t_{pHL} = \frac{C_L \cdot \frac{V_{swing}}{2}}{I_{sat}} \approx \frac{C_L}{k_n \cdot V_{DD}}$$

→Lineare Entladung!

4 Schmitt-Trigger

- Schaltschwellen müssen nicht sehr genau sein
- Schmitt-Trigger garantieren auch bei verrauschten Signalen saubere (einmalige) Schaltschwellen, dank der Hysterese

4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger

- M_1, M_2 : Digitale Inverter
- M₃, M₄: 'gesteuerte Widerstände
- Für $V_{out} = 0$: M_4 leitet, M_3 sperrt
- Für $V_{out} = 1$: M_3 leitet, M_4 sperrt
- M_3, M_4 verschieben Schaltschwellen abhängig von $V_{out} \Rightarrow$ Hysterese

4.2 Aufbau invertierender digitaler Schmitt-Trigger

- Ohne M_5, M_6 : Normaler Inverter mit je 2 Serie-Transistoren
- Für $V_{out} = 1$: Durch M_5 fliesst Strom in M_1
- V_{in} muss höher sein, um Strom der PMOS aufzunehmen
 → Höhere Schaltschwelle für High-Log-Übergang
- 'Inverses' gilt für M_6 und M_4

4.3 Schmitt-Trigger vs. CMOS-Logik

5 Signalübertragung

5.1 Leitungstheorie

- Leitungen haben Widerstände, Kapazitäten und Induktivitäten →RLC-Netzwerke
- Fortpflanzungsgeschwindigkeit Signal: $v=10-20\,\mathrm{cm/ns}$ (Lichtgeschwindigkeit: $c=0\,\mathrm{cm/ns}$)
- Ev. Impedanzanpassungen zur Verhinderung von Reflexionen nötig (meistens $50\,\Omega)$
- CMOS-Logik: tiefen Quellenwiderstand, hohen Eingangswiderstand
 Nicht geeignet zur Datenübertragung über 'längere Strecken'

5.2 Einfluss / Relevanz von Refelxionen

5.2.1 Keine Reflexionen

Wenn nichts anderes bekannt gilt: $T_r = \frac{1}{10} \cdot T$

$$T_d < \frac{1}{2} \cdot T_r$$

 $T_r = T_f$ Anstiegs- / bzw. Abfallzeit des Signals T_d Laufzeit des Signals

T Periodendauer

5.2.2 Reflexionen

 f_{max} Maximal enthaltene Frequenz im Signal l Länge der Leitung

6 High-Speed-Logik

- Sättigung verhindern, da langsam (bei Bipolar-Transistoren)
- Reduzierter Spannungshub
- Stromsteuerung, da Ströme schneller geschaltet werden als Spannungen

6.1 Emitter Coupled Logic (ECL)

6.1.1 Emitter Coupled Logic (ECL)

- 2 Familien: 10k (langsamer) und 100k (schneller)
- Positive Speisung: $V_{CC}=0\,\mathrm{V}$
- \bullet ICs werden warm (40 mW pro Gatter)

- Eingangssignal V_I wird mit fixer Referenz V_R verglichen
- • Von $V_R-100~{
 m mV}$ bis $V_R+100~{
 m mV}$ kippt Ausgnagsspannung von V_{CC} auf $V_{CC}-R_C\cdot I_C$
- **Differentieller Spannungshub** der Ausgänge:
- $V_{diff} = \pm R_C \cdot I_C$
- Spannungspegel **nicht** kompatibel zu CMOS / TTL

6.1.2 Positive Emitter Coupled Logic PECL

- Positive Speisung: $V_{CC}=5\,\mathrm{V}$ Negative Speisung: $V_{EE}=0\,\mathrm{V}$
- Ausgangsbeschaltung mit $50\,\Omega$ Abschluss zu $V_{CC}-2\,\mathrm{V}$ → Reduktion der Reflexionen!
- Spannungspegel sind kompatibel zu CMOS / TTL

6.1.3 Low Voltage Positive ECL (LVPECL)

- Speisespannungen: $V_{CC}=3.3\,\mathrm{V}; V_{EE}=0\,\mathrm{V}$
- Weniger Leisutng als 5 V Logik; leichter anpassbar an 3.3 V Logik

6.2 Current Mode Logic (CML)

- Terminierung am Eingang der Folgestufe gegen V_{CC} Äquivalenter Widerstand: $R_{C_{eq}}=50\,\Omega\,||\,50\,\Omega=25\,\Omega$

Differentielle Spannung: $V_{diff} = \pm R_{C_{eq}} \cdot I_q$

6.2.1 CML vs. ECL

 \mathbf{CML}

- Diff-Amp mit Transistor-Bufffer; Ausgang am Emitter
- Single-ended Input (2. Eingang auf fixer Spannung)
- Single-ended Output (z.T. auch differentiell)
- Ausgang direkt vom Diff-Amp
- · Differentieller Input und differentieller Output
- · Impedanzanpassung zur Reduktion von Reflexionen (50 Ω)

6.2.2 Vorteile / Nachteile von CML gegenüber CMOS-Logik

- + high Speed
- + konstanter Strom (kaum Speisungseinbrüche)
- + differentiell: wenig Störung
- + kann Kabel treiben
- hoher statischer Stromverbrauch
- differentiell: benötigt doppelt so viele Leitungen
- aufwändiges PCB-Layout wegen angepassten Leistungsimpedanzen nötig