

Using Computational Methods to Analyze Educational Data

Camilo Vieira, PhD Alejandra J. Magana, PhD Mireille (Mimi) Boutin, PhD

49th Annual Frontiers in Education (FIE) Conference October 19th, 2019

About Us

Dr. Camilo Vieira

Assistant Professor at Universida del Norte (Colombia)

Computational Science and Engineering Education

Computing education

Learning analytics for engineering education.

Prof. Alejandra J. Magana

Professor of the Computer and Information Technology Department at Purdue

Characterizing modeling and simulation practices in science and engineering

Cyberlearning in STEM

Prof. Mireille "Mimi" Boutin

Associate professor in the School of Electrical and Computer Engineering at Purdue

"Learning by Teaching" www.projectrhea.org

Machine learning and applied mathematics

The plan for today

Introducing the studies (45 minutes) Conforming groups (5 minutes)

Programming (25 minutes)

Wrap up (5 minutes)

"For every professional software developer in the world, there are **nine more people programming as part of their jobs who aren't professional software developers**" Guzdial, 2015.

A Data **Analysis Process**

Assign Raw Categories / Codes Data

HD Find Data **Themes**

Validate and Characterize

Based on numbers, supports

Exploration

Validation

A Pattern Recognition **Process**

Raw Data · Get counts

Feature Vectors

Find Groups

HD Data

Reduce dimensionality

Groups

 Validate and Characterize

6

Exploration

Categorization

Grouping

Validation

Literature Review

Summarize findings of a literature review using visualizations

VISUAL LEARNING ANALYTICS – A Lit. Review

Goal:

- (1) Identify the main uses of visualizations in educational research
- (2) Identify gaps and future opportunities for conducting research and creating visualization tools that can help advance the field of visual learning analytics.

Hypothesis: InfoVis experts and Education experts working separately.

Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. *Computers & Education*, 122, 119-135.

Literature Review

Traditional Approach:

Table 2. Classification of case studies according to the learning settings

Learning setting	Authors & Year (Paper Ref.)
VLEs / LMSs ^a	Lin, Hsieh & Chuang, 2009; Lykourentzou et al., 2009a; Lykourentzou et al., 2009b;
	Macfadyen & Dawson, 2010; Merceron & Yacef, 2008; Romero et al., 2008;
	Romero-Zaldivar et al., 2012; Tanes et al., 2011
MOOC/social learning ^b	Clow & Makriyiannis, 2011; Fournier et al., 2011; Kizilcec et al., 2013
Web-based education	Abdous, He & Yen, 2012; Giesbers et al., 2013; He, 2013; Khribi et al., 2009; Li et
	al., 2011; Romero et al., 2009
Cognitive tutors ^d	Baker et al., 2008; Moridis & Economides, 2009; Pardos et al., 2013; Shih,
	Koedinger & Scheines, 2008
Computer-based education ^c	Ali et al., 2012; Barla et al., 2010; Blikstein, 2011; Jeong & Biswas, 2008; Levy &
_	Wilensky, 2011; Santos et al., 2012; Thai-Nghe et al., 2011
Multimodality ^f	Worsley & Blikstein, 2013
Mobility ⁸	Chen & Chen, 2009; Leong et al., 2012

VISUAL LEARNING ANALYTICS

Criteria	1-2	9-10
Connection with Visualization Background (CVB)	The paper does not mention any visualization theory, guidelines, or principles	The paper critically analyzes the relevant literature in visualization and makes an informed decision for the proposed tool and discusses the findings using existing literature in visualization

VISUAL LEARNING ANALYTICS

Critoria

Criteria	1-2	9-10
Connection with Visualization Background (CVB)	The paper does not mention any visualization theory, guidelines, or principles	The paper critically analyzes the relevant literature in visualization and makes an informed decision for the proposed tool and discusses the findings using existing literature in visualization

0 40

The paper does not mention any educational theory

Connection with Educational Theory (CET)

Theory (CET)

In visualization

The paper engages in critical analysis of educational theory and informs the design of the visualization using an educational theory and discusses the results of the work under the lens of this theory

VISUAL LEARNING ANALYTICS

Criteria	1-2	9-10
Connection with /isualization Background (CVB)	The paper does not mention any visualization theory, guidelines, or principles	The paper critically analyzes the relevant literature in visualization and makes an informed decision for the proposed tool and discusses the findings using existing literatur in visualization
	The paper does not mention any	The paper engages in critical analysis of

literature is of educational theory educational theory and informs the design of the visualization using an educational theory and discusses the results of the work under the lens of this theory None of these elements is present: All these elements are present: Multiple visualizations; Multiple visualizations; (a) (a) Connected visualizations; Connected visualizations; (b)

Connection with Educational Theory (CET)

Visualizing data at multiple levels;

Sophistication of (c) Visualizing data at multiple levels; (c) Visualization (SoV) Interactive Visualization Interactive Visualization (d) (d) (e) Novel Visualization (e) Novel Visualization

https://infovisreview.github.io/VLAVisualizations/

Exploration

Categorization

Grouping

Validation

Classroom Observation

Characterize changes or improvements in teaching practices via classroom observations

Coding for Kids

Goal: Identifying changes in teaching practices from longitudinal data

Preparing Mentors

- 3 Days
- Technical Sessions
- Lesson Plans
- Mentoring Process

Preparing Teachers

- 2-day Regional Workshops
- Day One: Modeling Lesson Plans 1 & 2
- Day Two: Practice Teaching – Lesson Plans 3 & 4

In-place Mentoring x 4

- ½ day school visit
- Classroom Observation
- Feedback and Mentoring

Closing Events

- Closing Workshop for Teachers
- CodeFest for Students

Rubric for Classroom Observation

Norms and Procedures Norms and Procedures There are no clear norms and procedures. The instructor has to ask for silence often, and repeats frequently how to get the materials. There are some norms but students do not always follow them, and the teacher does noting to promote it. There are some norms but students do not always follow them, and the teacher does noting to promote it.	Low	Medium	High
	and procedures. The instructor has to ask for silence often, and repeats frequently how	but students do not always follow them, and the teacher does noting	norms and procedures, which students follow most

Distribution and Longitudinal Data

Traditional Approach:

Exploration

Categorization

Grouping

Validation

Think-Aloud Data

Identify patterns of types of knowledge students used in different stages of the problema solving process

Analysis of think-aloud data

Context:

- Programming course for Materials Science and Engineering
- 17 students were invited to participate in a think-aloud activity doing computational modeling

Goal: Characterize students' modeling process and usage of the different types of knowledge

An adaptation of the modeling process (Shiflet & Shiflet, 2014).

Types of Knowledge (ToK)

Type of knowledge (Shavelson, Ruiz-Primo, Li, & Ayala, 2003) **Declarative** (knowing that) Procedural (knowing how) Schematic (knowing why) Strategic (knowing when, where, how)

Sample counts: ToK x Modeling step by Student

Student 1						
Analyze Solve Verify Maintain						
Declarative	10	7	2	0		
Procedural	0	13	0	1		
Schematic	0	0	1	0		
Strategic	1	6	1	3		

Sample counts: ToK x Modeling step by Student

Traditional Approach:

2014							
	Student 1 (Milan_L)						
	Analyze Solve Verify Maintain						
De clarative	7	0	1	0			
Proce dura	Procedura 1 5 1 0						
Sche matic	1	1	1	0			
Strategic	1	4	1	0			

Student 2 (Lennon_L)						
	Analyze Solve Verify Maintain					
Declarative	9	3	2	1		
Proce dura	1	8	2	0		
Sche matic	2	0	0	1		
Strategic	4	6	5	2		

Student 3 (Charlie_H)						
Analyze Solve Verify Maintain						
Declarative	11	1	0	0		
Proce dura	4	5	3	0		
Sche matic	4	0	0	0		
Strategic	2	6	1	0		

	Student 4 (Phoenix_H)					
Analyze Solve Verify Maintai						
Declarativ	10	2	1	0		
Proce dura	2	12	0	0		
Sche matic	0	0	3	1		
Strategic	5	6	1	1		

	Student 5 (Jessie_H)					
Analyze Solve Verify Maintain						
De clarative	7	1	1	0		
Proce dural	2	6	4	0		
Sche matic	4	1	3	1		

2015							
	(Student 1, Logan_L)						
	Analyze Solve Verify Maintain						
De clarative	ative 10 7 2 0						
Procedura	Procedural 0 13 0 1						
Schematic 0 0 1 0							
Strategic	1	6	1	3			

(Student 2, Armani_H)						
Analyze Solve Verify Maintain						
De clarative	3	2	4	0		
Procedura	2	10	2	3		
Schematic	2	0	2	1		
Strategic	2	6	4	1		

(Student 3, Justice_H)					
Analyze Solve Verify Maintain					
De clarative	10	4	3	0	
Procedura	3	12	3	1	
Schematic	3	2	1	1	
Strategic	2	6	3	0	

(Student 4, Alexis_L)					
Analyze Solve Verify Maintain					
De clarative	11	8	5	0	
Procedura	0	6	1	0	
Schematic	1	2	0	1	
Strategic	1	9	2	0	

(Student 5, Emerson_H)						
Analyze Solve Verify Maintain						
De clarative	7	8	2	0		
Procedura	1	6	2	0		
Schematic 1 0 2 0						

2016							
	Student 1 (Oakley_L(H))						
	Analyze	Solve	Verify	Maintain			
De clarative	2	8	2	0			
Procedura	2	2	0	0			
Schematic	2	1	1	0			
Strategic	2	2	2	1			

Student 2 (Dakota L(H))					
Analyze Solve Verify Maintain					
De clarative	10	7	4	1	
Procedura	6	7	0	1	
Schem at ic	0	0	1	0	
Strategic	0	7	3	0	

Student 3 (Harper_L(H))					
Analyze Solve Verify Maintain					
De clarative	8	4	3	2	
Procedura	4	9	7	0	
Schematic	0	0	2	0	
Strategic	4	6	6	0	

Student 4 (Landry_H(H))						
Analyze Solve Verify Maintain						
De clarative	11	5	3	0		
Procedura	1	3	0	0		
Schematic	3	0	0	0		
Strategic	1	2	2	1		

Student 5 (Ash_H(H))								
	Analyze	Analyze Solve Verify Maintain						
De clarative	7	6	4	0				
Procedura	8	6	3	1				
Schematic 1 0 1 0								

Visualizing

Declarative

Procedural

Schematic

Strategic

Visualizing – Clustered by counts (K-means)

- + Group 1
- Group 2
- ▲ Group 3
- Group 4

- Declarative
- Procedural
- **S** Schematic
- s Strategic

Exploration

Categorization

Grouping

Validation

Artifact Analysis

Identify Learner Profiles of habits of mind via document analysis

Analysis of think-aloud data

Habits of Mind:

- A person's outlook on knowledge and learning and ways of thinking and acting.
- Mathematical and logical skills that are essential tools for both formal and informal learning and for a lifetime of participation in society as a whole.

Goal: Identify students' different ways of thinking when explaining phenomena in the domain of signal processing

Elicitation of Student Performance

Definition of Discrete Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[n]e^{-j\omega k}$$

index of signal and summation do not match shows lack of mathematical rigor and critica response skills (catching a mistake)

Tag: (B1, D1)

Definition of Inverse Discrete Time Fourier Transform (iDTFT)

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

 $X(\omega)$ is seen to be periodic with a period of 2π to see this ω is replaced with $\omega + 2k\pi$ where k is an integer

$$X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega + 2k\pi)n}$$

Using the multiplicative rule of exponential the ω and $2k\pi$ are split into two different exponential

$$X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} e^{2k\pi n}$$
 error: misss small arithm con

error : missed a negative sign in the exponen small arithmetic mistake shows that rigor and computation are not perfect

given that n and k are integers k and so $e^{-j2k\pi n}$ = 1 for all k, from Euler's identity and so

$$X(\omega + 2k\pi) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n} = X(\omega)$$

Overall, the communication and explanation in this section is not perfect.

Tag: (A3, B3, C3)

so $X(\omega + 2k\pi) = X(\omega)$ for all ω

Qualitative Analysis – Traditional approach

"Values and attitudes" was operationalized as students' critical views of their own work and that of their peers:

"I think specific outline is very helpful and make easy to follow the formula and graphs. Formulas and graphs are very clear to understand."

"I think an important aspect that you did not include in your final answer is that the DTFT of a DT signal must be periodic. Your answer must be "rep-ed" to denote it's periodicity. Otherwise your answer is only correct for $o \le w \le 2pi$. The DTFT of x[n] is $rep_2\pi(2\pi\delta(\omega-\omega_0))$ Overall color coating was very helpful, and the slecture was concise and clear."

Quantification of Qualitative Data

Description			L	evel of Performance	
Element	Definition	Below Basic 1	Basic 2	Proficient 3	Advanced 4
Computation and Estimation	Ability to choose an appropriate computation method and carry out the mathematical procedure accurately	Student selected an incorrect method and the solution was completely off.	Student selected a correct method but the solution was incorrect.	Student selected an appropriate method and the solution was correct. However, the student did not provide a justification for the method based on the circumstances, or the justification was inadequate.	Student selected an appropriate method, the student provided a correct justification for the selection of the method based on the circumstances and the solution was correct.
Mathematical Rigor	Ability to handle mathematical rigor and remember details of a definition	Student was not at all rigorous in the involved mathematics.	Student displayed some rigor but there were major errors.	Student was very rigorous but made small errors.	Student was very rigorous and made no errors.

Interpretation

Model sequence of scores (tag) of each student as random process

For simplicity, assume successive scores are independent

Estimate probability of each score occurring

$$P_{ij} = Prob(element_i, level_i), i=1,2,3,4,5, j=1,2,3,4$$

Count the total number of scores: N

Parameters of random process used as features

Each student represented by vector in R²¹

$$(P_{11}, P_{12}, P_{13}, ..., P_{45}, N)$$

Half of students used as "Observation Data"

Remaining half used later as "Validation data"

Cluster features of students in Observation Data using random approach called N-TARP

Results in many different binary clusterings

Each binary clustering gives a label for each student

- 1 if student belongs to first cluster
- 2 if student belongs to second cluster

Concatenate the cluster labels and add grade to obtain a profile for each student

E.g., student 1 represented by (1,1,2,1,1,1,2,2,2,2,1,1,1,1,1,1,1)

Use Validation Data to corroborate each binary clustering found

Half students in validation data

Used permutation test to check statistical significance of difference between clusters

Permutation test appropriate because data is small

Analyze differences in grades between students in different clusters

Discuss the findings

Cluster 1:

Habits developing

Cluster 2:

Habits developed

Element/Level	Below Basic	Basic	Proficient	Advanced
Computation	0	1.667	3.3333	4.1667
Rigor	3.3333	4.1667	5.0000	1.6667
Communication	0	5.0000	4.1667	1.6667
Critical Response	2.500	1.6667	3.3333	3.3333
Values	3.3333	41.6667	9.1667	0.8333

Element/Level	Below Basic	Basic	Proficient	Advanced
Computation	0	0.7812	0.3906	9.3750
Rigor	0.7812	1.9531	6.2500	5.0781
Communication	0.3906	1.9531	7.0312	5.0781
Critical Response	0.7812	0.7812	4.2969	6.6406
Values	0	27.7344	12.1094	8.5938

Grade	All Students	Cluster 1: "Habits	Cluster 2: "Habits
		Developing"	Developed"
A (4.0)	5	0	5
B (3.0)	10	2	8
C (2.0)	8	4	4
D (1.0)	2	2	0
F (0.0)	2	2	0
Mean Grade	2.5185	1.600	3.0588
Standard Deviation	1.1222	1.0750	0.7475

Exploration

Categorization

Grouping

Validation

Survey Data

Visualize and group categorical data of students' preferences

Student Preferences

Indicate your preferences about the following programs

Economy, Management, Law, Biology, Chemistry, Physics, Math, CS, Engineering

[Among my preferred ones; Seems interesting; Not very interested; I'd avoid it;

I don't know anything about it]

Goal: Identify student perceptions and preferences about different undergraduate programs

Student Preferences of Undergraduate Programs

Seems interesting

Not very

interested

I'd avoid it

I don't know

anything about it

Among my preferred

ones

Categorias

Multiple Correspondence Analysis

+

Hierarchical Clustering

+

Chi-Square

Those who avoid everything (2574, 25.4%)

Girls > Boys

 Those who don't know any program (435, 4.3%)

Girls < Boys

Those interested in everything (6035, 59.5%)

Girls <

 Those who choose not to answer (1101, 10.9%)

Girls < Boys

Exploration

Categorization

Grouping

Validation

Open-Ended Responses

Semi-automatic categorization of open-ended responses

Open-Ended Responses

Thermal and Transport Science Concept Inventory

Multiple choice assessment instrument that assesses the topics of "diffusion", "heat transfer", and "microfluidics"

For each of the TTCI multiple choice questions, an open-ended question prompted students to explain their rationale for choosing a particular response item.

Goal: Identifying student conceptual change from their open-ended responses

Traditional Approach

Thematic Analysis: Identifying categories and codes to identify patterns (themes) from the data

Content Analysis: Counting frequency of words or phrases

Banks, G. C., Woznyj, H. M., Wesslen, R. S., & Ross, R. L. (2018). A review of best practice recommendations for text analysis in R (and a user-friendly app). *Journal of Business and Psychology*, *33*(4), 445-459.

52

Data Analysis Process

Results

	Precision	Recall	F1	kappa
2-way				
Naïve Bayes classifier	0.7250	0.5713	0.6331	0.5346
SVM classifier	0.9095	0.6452	0.7496	0.6865
3-way				
Naïve Bayes classifier	0.6924	0.6904	0.6804	0.4545
SVM classifier	0.7408	0.7298	0.7199	0.5131
4-way				
Naïve Bayes classifier	0.6088	0.6145	0.6029	0.3523
SVM classifier	0.6414	0.6494	0.6340	0.4103

Results

	kappa
2-way	
Naïve Bayes classifier	0.5346
SVM classifier	0.6865
3-way	
Naïve Bayes classifier	0.4545
SVM classifier	0.5131
4-way	
Naïve Bayes classifier	0.3523
SVM classifier	0.4103

Let's try it out

Let's try it out

R Programming - Handout

- 1. We brought 6 computers Create groups and distribute among the computers
- 2. Check out the handout
- 1. If you don't have any experience with R, start by: IntroductionToR.R
- 2. Plots: IntroToPLots.R
- 3. Clustering: ClusteringPlusPlots.R

Overall Conclusions and Next Steps

Computation can be used to explore complex educational data, as well as identify, characterize and validate groups

Different visualization, clustering, and validation techniques should be used depending on the data

The interpretation and connection with theory is responsibility of the researcher

R code available at www.github.com/cvieiram

How can you use this in your own research?

Acknowledgements

Prof. Alejandra J. Magana

Hayden Fennell

Prof. Mireille (Mimi) Boutin

Tarun Yellamraju

Dr. Camilo Vieira

Natalia Hernandez

About Us

Dr. Camilo Vieira

Assistant Professor at Universida del Norte (Colombia)

cvieira@uninorte.edu.co

Prof. Alejandra J. Magana

Professor of the Computer and Information Technology Department at Purdue

admagana@purdue.edu

Prof. Mireille "Mimi" Boutin

Associate professor in the School of Electrical and Computer Engineering at Purdue

 $\underline{mboutin@purdue.edu}$

Thank you!

Questions?

Camilo Vieira, PhD cvieira@uninorte.edu.co / @cvieiram

Prof. Alejandra J. Magana admagana@purdue.edu
Prof. Mimi Boutin mboutin@purdue.edu