ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE SOFTWARE

T1 MÉTODOS FORMAIS

ALUNOS: FELIPE R. TASONIERO, LUCAS S. WOLSCHICK

23 de Abril de 2025

1) Prova formal por indução de uma função recursiva sobre números naturais para o cálculo da potência:

Definição Recursiva

Eq1 pot(
$$X, 0$$
) = 1

Eq2 pot($X, Y + 1$) = $X \cdot pot(X, Y)$

Lema:
$$\forall X$$
, M , $N \in \mathbb{N}$ (pot(X , $M + N$) = pot(X , M). pot(X , N))
$$P(M) \equiv \forall X$$
, $N \in \mathbb{N}$ (pot(X , $M + N$) = pot(X , M). pot(X , N))

Caso base
$$P(M)$$

Provar: $\forall X, N \in \mathbb{N} (\text{pot}(X, O + N) = \text{pot}(X, O). \text{ pot}(X, N))$

pot $(X, O + N) = \text{pot}(X, N)$ por propriedades algébricas

= 1. pot (X, N) por propriedades algébricas

= pot (X, O) . pot (X, N) por Eq1

q.e.d

Caso indutivo $P(M) \rightarrow P(M+1)$

Provar: $\forall X$, $N \in \mathbb{N}$ (pot(X, (M + 1) + N) = pot(X, M + 1). pot(X, N))

Assumir HI: $pot(X, M + N) = pot(X, M) \cdot pot(X, N)$

$$pot(X, (M+1)+N) = pot(X, M+1+N) \longrightarrow associatividade da soma$$

$$= X \cdot pot(X, M+N) \longrightarrow pela definição recursiva de pot$$

$$= X \cdot (pot(X, M) \cdot pot(X, N)) \longrightarrow HI$$

$$= pot(X, M+1) \cdot pot(X, N) \longrightarrow por Eq2$$

$$q.e.d$$

Teorema: $\forall X$, M, $N \in \mathbb{N}$ (pot(X, M. N) = pot(pot(X, M), N))

$$P(N) \equiv \forall X, M \in \mathbb{N} (pot(X, M.N) = pot(pot(X, M), N))$$

Caso base P(0)

Provar: $\forall X$, $M \in \mathbb{N}$ (pot(X, M. 0) = pot(pot(X, M), 0))

pot(
$$X, M.0$$
) = pot($X, 0$) \longrightarrow por propriedades algébricas

= 1 \longrightarrow por Eq1

= pot(pot(X, M), 0) \longrightarrow para qualquer pot(X, M) elevado a 0 vai dar 1

q.e.d

Caso indutivo
$$P(N) \rightarrow P(N+1)$$

Provar: $\forall X , M \in \mathbb{N} (\text{pot}(X, M . (N+1)) = \text{pot}(\text{pot}(X, M), N+1))$

Assumir HI: $\text{pot}(X, M . N) = \text{pot}(\text{pot}(X, M), N)$

$$\text{pot}(X, M . (N+1)) = \text{pot}(X, M . N+M) \longrightarrow \text{por propriedades algébricas}$$

$$= \text{pot}(X, M . N) . \text{pot}(X, M) \longrightarrow \text{por Lema}$$

$$= \text{pot}(\text{pot}(X, M), N) . \text{pot}(X, M) \longrightarrow \text{HI}$$

$$= \text{pot}(\text{pot}(X, M), N+1) \longrightarrow \text{por Eq2}$$
q.e.d

2) Prova formal por indução de funções recursivas sobre listas:

 Definição Recursiva para Cat	
cat([], Ys) = Ys cat(X : Xs, Ys) = X : cat(Xs, Ys)	

Rev_Eq1 reverso([]) = [] Rev_Eq2 reverso(X : Xs)= cat(reverso(Xs), [×])

Lema: $\forall Xs$, $Ys \in List(\mathbb{N})$ (somatorio(cat(Xs, Ys)) = somatorio(Xs) + somatorio(Ys))

 $P(xs) \equiv \forall Ys \in List(N)$ (somatorio(cat(Xs, Ys)) = somatorio(Xs) + somatorio(Ys))

Caso base P([])

Provar: $\forall Ys \in List(N)$ (somatorio(cat([], Ys)) = somatorio([]) + somatorio(Ys))

```
Caso indutivo P(Xs) \rightarrow P(x : Xs)

Provar: \forall Ys \in List(\mathbb{N}) (somatorio(cat(x : Xs, Ys)) = somatorio(x : Xs) + somatorio(Ys))

Assumir HI: somatorio(cat(Xs, Ys)) = somatorio(Xs) + somatorio(Ys)

somatorio(cat(x : Xs, Ys)) = somatorio(x : cat(Xs, Ys)) \longrightarrow por Cat_Eq2

= x + somatorio(cat(Xs, Ys)) \longrightarrow por Som_Eq2

= x + (somatorio(Xs) + somatorio(Ys)) \longrightarrow pela HI

= (x + somatorio(Xs)) + somatorio(Ys) \longrightarrow por associatividade da soma = somatorio(x : Xs) + somatorio(Ys) \longrightarrow por Som_Eq2

q.e.d
```

Teorema: $\forall Xs \in List(\mathbb{N})$ (somatorio(reverso(Xs)) = somatorio(Xs))

$P(Xs) \equiv \forall Xs \in List(N)$ (somatorio(reverso(Xs)) = somatorio(Xs))

Caso base P([]) Provar: somatorio(reverso([])) = somatorio([]) somatorio(reverso([]))= somatorio([]) por Rev_Eq1 q.e.d