Combinatorial optimization

Stanislav Protasov

Agenda

- Problem area overview
- Brute force and optimizations
- Matroids
 - What is this
 - Rado-Edmonds greedy algorithm and theorem
 - Matroid types and applications
- Optimization that is not optimal

Combinatorial optimization approaches

What is combinatorial optimization

Finding optimal (for some metric) element of a finite set

0	a_7
1	a_8
00	a_9
01	a_1
10	
11	a_1

Brute force: subsets

- Subset (combinations) generation
 - > visitor processing
 - Backtracking (DFS): binary tree of "take/don't take" of K-depth
 - > stream processing
 - Bit arrays

Subsets: knapsack

```
def visit(b):
    return sum(i[0] for i in b), sum(i[1] for i in b)
def depth search(loot, bag, depth):
    global nodes count, best
    nodes count += 1
    if depth == len(loot):
       w, c = visit(bag)
       wb, cb = visit(best)
        if c > cb and w <= limit:
            best = list(bag)
    else:
        depth search(loot, bag, depth + 1)
        bag = bag + [loot[depth]]
        depth search(loot, bag, depth + 1)
```

Branches-and-bounds

```
def visit(b):
    return sum(i[0] for i in b), sum(i[1] for i in b)
def depth search(loot, bag, depth):
    global nodes count, best
    nodes count += 1
    if depth == len(loot):
       w, c = visit(bag)
       wb, cb = visit(best)
        if c > cb and w <= limit:
           best = list(bag)
    else:
        depth search(loot, bag, depth + 1)
        bag = bag + [loot[depth]]
       w, c = visit(bag)
       if w > limit: return # optimization 1
       # optimization 2: branch-and-bound, require sorted loot
        if c + (limit - w) / bag[-1][0] * bag[-1][1] <= visit(best)[1]: return
        depth search(loot, bag, depth + 1)
```

Brute force: permutation generation

Heap's algorithms: generate next permutation by swapping 2 elements

```
procedure generate(k : integer, A : array of any):
    if k = 1 then
          output (A)
    else
        for i := 0; i < k; i += 1 do
            generate(k - 1, A)
            if k is even then
                 swap(A[i], A[k-1])
            else
                 swap (A[0], A[k-1])
            end if
        end for
    end if
```


Dynamic programming: integer programming

If we search for a solution in discrete space of **values** (knapsack cost is integer)

Then, instead of thinking about the problem as a **combinatorial task for input**, consider search space of possible **integer outputs** (which is much smaller)

Knapsack: O(N * sum(cost))

Simulated annealing, Quantum annealing

Annealing: you bend metal, then you want to relax tension

Idea: atoms are faster and mobile in hotter metal. *Slowly* cool down the metal to let them settle in energetically optimal places

<u>Simulated annealing</u>: *probabilistically* decide to move to neighbouring state based on the idea of energy minimization

Quantum annealing: the same idea, but tunneling field strength is used instead of temperature

General quantum computers

f(x) = y - satisfaction of L-digits Boolean function (y = 1), where f(x) is a *black box*; inversion of f(x)

Problem statement: Search for **x** among possible inputs

Classic solution: brute force in O(2^L) iterations

Grover quantum algorithm idea: iteratively increase amplitude of "correct" quantum state. Achieves result in $O(2^{L/2})$ iterations with **L** qubits.

Matroids

Matroid definition (1)

<u>Matroid</u> = ordered pair (E, I)

E - finite set called ground set

I - subset of 2^E called"independent" sets

Matroid definition (2)

- 1) Empty set is independent $\phi \in I$
- 2) Any subset of independent set is also independent $M \in I \rightarrow \forall (M' \subset M) \ M' \in I$
- 3) All biggest independent sets are of the same size (called rank)

$$A,B \in I, |A| > |B| \rightarrow$$

$$\rightarrow \exists x \in A \setminus B, B \cup \{x\} \in I$$

Matroid theory terms

X is a dependent set, if X is a subset of E, but not in I.

Maximal independent set *M* (means $MU\{x\}$ - dependent) is called **basis**.

Circuit C is a dependent set such that $\forall (C' \subset C) \ C' \in I$

Rado-Edmonds Theorem (preparation)

Let's assign weight w(x) to each x in E.

Then weight w(M) of $M \in I$ is $w(M) = \sum_{x \in M} w(x)$

Rado-Edmonds Theorem (greedy algorithm)

```
Sorted = sort x in E by w(x) [asc|desc]
A = \emptyset
for i from 1 to |E|:
  if A \cup \{Sorted[i]\} \in I:
     A = A \cup \{Sorted[i]\}
return A
```

Rado-Edmonds Theorem proof notes

Theorem:

Algorithm finds a basis A of minimal (maximal) weight w(A)

$$A = \{a_{1}, a_{2}, ..., a_{n}\}, w(a_{1}) \leq w(a_{2}) \leq ... \leq w(a_{n})$$

$$B = \{b_{1}, b_{2}, ..., b_{k}\}, w(b_{1}) \leq w(b_{2}) \leq ... \leq w(b_{k}), k \leq n$$

$$X = \{a_{1}, a_{2}, ..., a_{i-1}\}$$

$$Y = \{b_{1}, b_{2}, ..., b_{i-1}, b_{i}\}, i \leq k$$

 $w(a.) \leq w(b.)$

$$w(b_j) \le w(b_i)$$

 $w(a_i) \le w(b_i)$

Matroid method idea

- 1. Show that a **problem model** is a **matroid** (apply to definition)
- 2. This allows you to **apply** Rado-Edmonds **theorem** to your problem
- 3. **Implement** Rado-Edmonds **greedy** algorithm for your case as an **optimal** solution

Matroid types

Graphic interpretation

For weighted undirected graph G=(V, E) with no loops and no parallel edges with defined w(e) for $e \in E$:

- 1. Let E be a ground set
- Let a set of all possible forests in G be I (independent sets). In other words, "independent" = "acyclic subgraph"
 - a. Empty set of edges is acyclic
 - b. Any subset of forest (acyclic graph) is a forest
 - c. If for a forest A there is a bigger forest B:
 - i. $A \subseteq B \Rightarrow \text{take any x from B} A$
 - ii. $A \notin B \Rightarrow$ there is as least one edge with a vertex not present in A. Attach it.

... consequence

The biggest forest of maximal weight can be found using greedy approach.

Kruskal's algorithm is exactly Rado-Edmonds algorithm applied to trees

```
KRUSKAL (G):
1 A = \emptyset
2 foreach v \in G.V:
     MAKE-SET (v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
     if FIND-SET(u) \neq FIND-SET(v):
        A = A \cup \{(u, v)\}
         UNION (FIND-SET (u), FIND-SET (v))
 return A
```

Unique prefix interpretation

Define alphabet A

Let both E and I be all valid binary prefix (full) trees on A:

- 1. **Empty binary prefix tree** is a trivial tree
- Any subtree of binary prefix tree is a valid tree
- 3. There are always **trivial subtrees** (letters) to attach to a smaller tree

Итого

Α	Б	В	Г	Д
0	100	101	110	111

... consequence

Huffman coding is exactly Rado-Edmonds algorithm for finding minimal cost prefix tree

Let weight function be:

$$w(tree) = \Sigma_{letter} w(letter) * 2^{level(letter)}$$

Greedy Huffman encoding

```
def encode(symb2freq):
   """Huffman encode the given dict mapping symbols to weights"""
   heap = [[wt, [sym, ""]] for sym, wt in symb2freq.items()]
   heapify(heap)
   while len(heap) > 1:
       lo = heappop(heap)
       hi = heappop(heap)
       for pair in lo[1:]:
           pair[1] = '0' + pair[1]
       for pair in hi[1:]:
           pair[1] = '1' + pair[1]
       heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
   return sorted(heappop(heap)[1:], key=lambda p: (len(p[-1]), p))
```

Definition: vector matriods

Let ground set be finite subset of vector space V

Let independent sets be ... sets of linearly independent vectors (matrices)

<u>Steinitz exchange lemma</u> shows that two bases for a finite-dimensional vector space have the same number of elements

... consequence

Matrix rank search can be done in a greedy way by making the matrix diagonal

$$\begin{bmatrix} 3 & 2 & -1 \\ 2 & -3 & -5 \\ -1 & -4 & -3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 \\ 3 & 2 & -1 \\ 2 & -3 & -5 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & -10 & -10 \\ 0 & -11 & -11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 1 \\ 0 & -11 & -11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

See also...

Rigidity matroid

Other greedy optimal algorithms

Interval scheduling: statement

Interval scheduling: algorithm

```
Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request i \in R that has the smallest finishing time Add request i to A

Delete all requests from R that are not compatible with request i

EndWhile

Return the set A as the set of accepted requests
```

Interval colouring: algorithm

```
Sort the intervals by their start times, breaking ties arbitrarily
Let I_1, I_2, \ldots, I_n denote the intervals in this order
For i = 1, 2, 3, ..., n
  For each interval I_i that precedes I_i in sorted order and overlaps it
     Exclude the label of I_i from consideration for I_i
  Endfor
  If there is any label from \{1, 2, ..., d\} that has not been excluded then
    Assign a nonexcluded label to I_i
  Else
    Leave I_i unlabeled
  Endif
Endfor
```

And even more

In *Global Min Cut* problem stMinCut() function is greedy

Unbounded knapsack problem (unlimited supply) is solved with greedy algorithm

Biggest maximal matching problem is solved greedy

Interval scheduling and interval colouring

When greedy works, but not optimally

A* is greedy

Graph clustering

Clique problem

Travelling salesman

Travelling salesman: statement

Travelling salesman: <u>nearest neighbour</u>

```
path = [point]
remaining = {... all vertices ...}
sum = 0
while remaining:
   closest, dist = closestpoint(path[-1], remaining)
   path.append(closest)
   remaining.remove(closest)
   sum += dist
# Go back the the beginning when done.
closest, dist = closestpoint(path[-1], [point])
path.append(closest)
sum += dist
```