Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

United Kingdom cum. fit CFR
 Iran cum. fit CFR

Demonstration of SIR model where $R_{\,e}\,$ is linearly reduced to 0.80 at the end of the sequence:

Reducing the $R_{\,e}\,$ while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. Seems to indicate timing of start of measures is a big factor. The orange data taken as without measures, but we know certain measures were taken. Hard to determine effect, without a basis of comparison.

 $\underline{https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data}$

<u>False Positives Demonstration</u>

Use 0.11% from US est. incidence above as estimated daily incidence *Prevalence* estimated as avg. infected period of 2 weeks X incidence

	99% accura	acy of	test	0.11% X 14 = 1.540%	
	Positiv	e I	Negative		
test pos	1.5	25%	0.985%	2.51%	
test neg	0.0	15%	97.475%	<u>97.49%</u>	
	1.5	40%	98.460%	100.00%	

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

Provisional COVID-19 Death Counts 85 years and over 75-84 years 65-74 years 50-64 years 55-64 years 45-54 years rsq = 0.99035-44 years 25-34 years 15-24 years 5-14 years https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-1-4 years Sex-Age-and-S/9bhg-hcku/data Under 1 year 30% 0% 10% 15% 20% 25% ■ Total deaths ■ Covid deaths

USA Excess Deaths (from CDC data):

Annualized on 52 weeks

		All Cause	All Cause, excl. CV19	CV19
3	yr average before 2020	859:100,000	859:100,000	-
	2020	1014:100,000	904:100,000	-
	Diff.	155:100,000	44:100,000	111:100,000

3 yr average 859:100,000

29% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

K = 0.318 R_o : R:

gamma = 0.171 $R_o = \exp(K/\text{gamma}) = 6.42$ 84%

gamma = 0.286 $R > 1 - 1/R_o = 3.04$ 67%

Here are some demonstrations of SIR model, using R_e, gamma, and beta

https://data.cdc.gov/NCHS/Weekly-Counts-of-Deaths-by-State-and-Select-Causes/muzy-jte6/data