LÒGICA I LLENGUATGES

CURSO 2021-22

SEGUNDA PRUEBA PARCIAL (Grupo B)

- (a) Consideremos el vocabulario $\sigma=\{a,b,P^1,Q^1,R^2\}$ y la σ -interpretación I definida de la siguiente forma:
 - dominio de $I = \{1, 2, 3, 4, 5\},\$
 - I(a) = 2, I(b) = 5,
 - $I(P) = \{2, 5\},$
 - $I(Q) = \{3, 4, 5\},$
 - $I(R) = \{(1,1), (1,5), (2,2), (3,4), (4,3), (4,4), (5,5)\}.$

Determinar entonces, razonando la respuesta, si las siguientes fórmulas son verdaderas o falsas en I:

- (1) $Pa \wedge \neg Rab$,
- (2) $\forall x (Rxx \to Qx)$,
- $(3) \ \forall x (Px \lor Qx \lor Rxx),$
- (4) $\forall x \exists y Rxy$,
- (5) $\exists x \forall y (Rxy \lor Ryx)$.

(7,5 puntos)

(b) Consideremos las siguientes fórmulas:

$$\varphi_1 = \forall x \exists y (Bx \to Ty),$$

$$\varphi_2 = \exists x Bx,$$

$$\varphi_3 = \neg \exists x (Tx \land Cx),$$

$$\varphi = \exists x \neg Cx.$$

- (1) Calcular formas clausales de φ_1 , φ_2 , φ_3 y $\neg \varphi$.
- (2) Demostrar por resolución que φ es consecuencia lógica de $\{\varphi_1, \varphi_2, \varphi_3\}$.

(2,5 puntos)

SOLUCIÓN:

(a)

$$Pa \wedge \neg Rab$$

Es verdadera, ya que $\overline{Pa} \wedge \neg \overline{Rab} = \overline{P2} \wedge \neg \overline{R25} = V \wedge V = V$.

$$\forall x (Rxx \to Qx)$$

Es falsa, ya que no es verdad que para todo $n \in \{1, 2, 3, 4, 5\}$, $\overline{R}nn = V$ implica que $\overline{Q}n = V$. Por ejemplo, tomando n = 1, tenemos que $\overline{R}11 = V$ pero $\overline{Q}1 = F$.

$$\forall x (Px \lor Qx \lor Rxx)$$

Es verdadera. La fórmula expresa que para todo $n \in \{1, 2, 3, 4, 5\}$, $\overline{P}n = V$ o $\overline{Q}n = V$ o $\overline{R}nn = V$. Tenemos que $\overline{R}11 = V$, $\overline{P}2 = V$, y para $n \in \{3, 4, 5\}$ $\overline{Q}n = V$.

$$\forall x \exists y Rxy$$

Es verdadera. La fórmula expresa que para todo $n \in \{1, 2, 3, 4, 5\}$ existe un $m \in \{1, 2, 3, 4, 5\}$ tal que $\overline{R}nm = V$. Y tenemos que $\overline{R}11 = V$, $\overline{R}22 = V$, $\overline{R}34 = V$, $\overline{R}43 = V$ y $\overline{R}55 = V$.

$$\exists x \forall y (Rxy \lor Ryx)$$

Es falsa. La fórmula expresa que existe un $n \in \{1,2,3,4,5\}$ tal que para todo $m \in \{1,2,3,4,5\}$, $\overline{R}nm = V$ o $\overline{R}mn = V$. Para n=1 tomamos m=2 y tenemos entonces que $\overline{R}12 = F$ y $\overline{R}21 = F$. Para n=2 tomamos m=1, y tenemos que $\overline{R}21 = F$ y $\overline{R}12 = F$. Para n=3 tomamos m=1, y tenemos que $\overline{R}31 = F$ y $\overline{R}13 = F$. Para n=4 tomamos de nuevo m=1, y tenemos que $\overline{R}41 = F$ y $\overline{R}14 = F$. Y para n=5 tomamos m=2, y tenemos que $\overline{R}52 = F$ y $\overline{R}25 = F$.

(b) (1) Tenemos:

$$(\varphi_1)^{cl} = \forall x (\neg Bx \lor Tf(x)),$$

$$(\varphi_2)^{cl} = Ba,$$

$$(\varphi_3)^{cl} = \forall x (\neg Tx \lor \neg Cx),$$

$$(\neg \varphi)^{cl} = \forall x Cx.$$

(2) Tenemos que considerar las cláusulas que aparecen en los núcleos de las formas clausales anteriores:

$$\neg Bx \lor Tf(x),$$

Ba,

$$\neg Tx \lor \neg Cx$$
,

Cx.

Recordemos que cuando se aplica el algoritmo de resolució, tenemos que renombrar las variables que se repiten en las cláusulas. Entonces, reemplazamos $\neg Tx \lor \neg Cx$ por $\neg Ty \lor \neg Cy$, y reemplazamos Cx por Cz. Por tanto, tenemos las siguientes entradas para la resolución:

- 1. $\neg Bx \lor Tf(x)$.
- 2. *Ba*.
- 3. $\neg Ty \lor \neg Cy$
- 4. Cz.

Resolviendo 1 y 2, obtenemos:

5. Tf(a) (tomando $\{x = a\}$).

A continuación, resolviendo 3 y 5, obtenemos:

6. $\neg Cf(a)$ (tomando $\{y = f(a)\}\$).

Finalmente, resolviendo 4 y 6, obtenemos:

7. \square (tomando $\{z = f(a)\}$).