легко устанавливается из правил дифференцирования, но мы не будем специально следить за этим, чтобы не удлинять изложение.

Пример 1. Равномерное движение:

$$z(t) = z_0 + vt.$$

Тогда $z^{'}(t) = v$ — постоянная величина.

Пример 2. Равноускоренное движение:

$$z = z_0 + v_0 t + \frac{at^2}{2},$$

здесь v_0 — начальная скорость, a —ускорение. В этом случае $z^{'}(t)=v_0+at$ по известным правилам дифференцирования. Напомним, что если даны две функции f(t),g(t) и постоянная a, то $(f+g)^{'}=f^{'}+g^{'},(af)^{'}=af^{'},(fg)^{'}=f^{'}g+fg^{'},(fg)^{'}=\frac{f^{'}g-fg^{'}}{g^2}$ (последняя формула верна в случае, когда $g(t)\neq 0$ в рассматриваемой точке t). Из предпоследней формулы следует, что $(t^2)^{'}=2t$.

При любом целом n легко доказать (например, индукцией по n), что $\left(t^n\right)'=nt^{(n-1)}$. Можно доказать, что при t>0 эта формула верна и для нецелых n (об этом ещё будет идти речь ниже).

Укажем геометрический смысл производной: если нарисовать график функции z=z(t), то $z^{'}=\lg\alpha$, где α — угол наклона касательной, проведённой к графику в точке (t,z(t)), к оси $t(\mathrm{puc.}\ 1)$.

Правило дифференцирования сложной функции: если даны две функции F(z) и z(t), то для функции g(t)=F(z(t)) производную можно найти по формуле

$$g'(t) = (F(z(t)))' = F'(z(t))z'(t)$$

вытекающей из того, что

$$g'(t) = \lim_{\Delta t \to 0} \frac{\Delta g}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta F(z(t))}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta F}{\Delta z} \frac{\Delta z}{\Delta t}\right) = F'(z(t))z'(t),$$

(здесь использовалось, что если $\triangle t \to 0$,то и $\triangle z \to 0$).

 Π равило дифференцирования обратной функции. Пусть функция z=f(t) строго монотонна на отрезке $[t_1,t_2]$ и имеет производную в каждой точке этого отрезка. Строгая монотонность

означает, что функция f либо возрастающая (если $t' < t^{''}$, то $f(t') < f(t^{''})$), либо убывающая (если $t' < t^{''}$, то $f(t') > f(t^{''})$). Будем для определённости считать функцию f возрастающей. Тогда множество значений функции f на отрезке $[t_1,t_2]$ представляет собой отрезок $[z_1,z_2]$, где $z_1=f(t_1),z_2=f(t_2)$ (рис. 2). При этом каждому значению $z\in[z_1,z_2]$ отвеча-