Inequality

Nguyễn Quản Bá Hồng 1

August 25, 2022

Contents

	v ikipedia	
1.	1 Wikip	edia/Inequality (Mathematics)
2 H	lardy, Li	ttlewood, and Pólya, 1952. Inequality
2.	1 Introd	uction
	2.1.1	Finite, infinite, & integral inequalities
	2.1.2	Notations
	2.1.3	Positive inequalities
	2.1.4	Homogeneous inequalities
	2.1.5	The axiomatic basis of algebraic inequalities
	2.1.6	Comparable functions
	2.1.7	Selection of proofs
	2.1.8	Selection of subjects
2.	2 Eleme	ntary Mean Values
	2.2.1	Ordinary means
	2.2.2	Weighted means
	2.2.3	Limiting cases of $\mathfrak{M}_r(a)$
	2.2.4	Cauchy's inequality
	2.2.5	The theorem of the arithmetic & geometric means
	2.2.6	Other proofs of the theorem of the means
	2.2.7	Hölder's inequality & its extensions
	2.2.8	General properties of the means $\mathfrak{M}_r(a)$
	2.2.9	The sums $\mathfrak{G}_r(a)$
		Minkowski's inequality
		A companion to Minkowski's inequality
		Illustrations & applications of the fundamental inequalities
		Inductive proofs of the fundamental inequalities
		Elementary inequalities connected with Theorem 37
		Elementary proof of Theorem 3
		Tchebychef's inequality
		Muirhead's theorem
		Proof of Muirhead's theorem
		An alternative theorem
		Further theorems on symmetrical means
		The elementary symmetric functions of n positive numbers $\dots \dots \dots \dots \dots \dots$
		A note on definite forms
		A theorem concerning strictly positive forms
		Miscellaneous theorems & examples
2.		Values with an Arbitrary Function & the Theory of Convex Functions
	2.3.1	Definitions
	2.3.2	Equivalent means
	2.3.3	A characteristic property of the means \mathfrak{M}_r
	2.3.4	Comparability
	2.3.5	Convex functions
	2.3.6	Continuous convex functions
	2.3.7	An alternative definition
	2.3.8	Equality in the fundamental inequalities
	2.3.9	Restatements & extensions of Theorem 85

Sect. 0.0 Contents

	2.3.10	Twice differentiable convex functions
	2.3.11	Applications of the properties of twice differentiable convex functions
	2.3.12	Convex functions of several variables
		Generalizations of Hölder's inequality
		Some theorems concerning monotonic functions
		Sums with an arbitrary function: generalizations of Jensen's inequality
		Generalizations of Minkowski's inequality
		Comparison of sets
		Further general properties of convex functions
		Further properties of continuous convex functions
		Discontinuous convex functions
0.4		Miscellaneous theorems & examples
2.4		s Applications of the Calculus
	2.4.1	Introduction
	2.4.2	Applications of the mean value theorem
	2.4.3	Further applications of elementary differential calculus
	2.4.4	Maxima & minima of functions of 1 variable
	2.4.5	Use of Taylor's series
	2.4.6	Applications of the theory of maxima & minima of functions of several variables
	2.4.7	Comparison of series & integrals
	2.4.8	An inequality of W. H. Young
2.5	Infinite	e Series
	2.5.1	Introduction
	2.5.2	The means \mathfrak{M}_r
	2.5.3	The generalization of Theorems 3 & 9
	2.5.4	Hölder's inequality & its extensions 8
	2.5.5	The means \mathfrak{M}_r (cont.)
	2.5.6	The sums \mathfrak{G}_r
	2.5.7	Minkowski's inequality
	2.5.8	Tchebychef's inequality
	2.5.9	A summary
		Miscellaneous theorems & examples
2.6		uls
2.0	2.6.1	
	7	Preliminary remarks on Lebesgue integrals
	2.6.2	Remarks on null sets & null functions
	2.6.3	Further remarks concerning integration
	2.6.4	Remarks on methods of proof
		Further remarks on method: the inequality of Schwarz
	2.6.6	Definition of the means $\mathfrak{M}_r(f)$ when $r \neq 0$
	2.6.7	The geometric mean of a function
	2.6.8	Further properties of the geometric mean
	2.6.9	Hölder's inequality for integrals
		General properties of the means $\mathfrak{M}_r(f)$
	2.6.11	Convexity of $\log \mathfrak{M}_r^r$
		Minkowski's inequality for integrals
		Mean values depending on an arbitrary function
	2.6.14	The definition of the Stieltjes integral
		Special cases of the Stieltjes integral
	2.6.16	Extensions of earlier theorems
		The means $\mathfrak{M}_r(f;\phi)$
		Distribution functions
		Characterization of means values
		Remarks on the characteristic properties
		Completion of the proof of Theorem 215
		Miscellaneous theorems & examples
2.7		Applications of the Calculus of Variations
	2.7.1	Some general remarks
	2.7.1 $2.7.2$	Object of the present chapter
	2.7.2 $2.7.3$	Example of an inequality corresponding to an unattained extremum
	4.1.0	Example of an inequality corresponding to an unattained extremum

Sect. 0.0 Contents

	2.7.4	1st proof of Theorem 254
	2.7.5	2nd proof of Theorem 254
	2.7.6	Further examples illustrative of variational methods
	2.7.7	Further examples: Wirtinger's inequality
	2.7.8	An example involving 2nd derivatives
	2.7.9	A simpler theorem
	2.7.10	Miscellaneous theorems & examples
2.8		Theorems Concerning Bilinear & Multilinear Forms
	2.8.1	Introduction
	2.8.2	An inequality for multilinear forms with positive variables & coefficients
	2.8.3	A theorem of W. H. Young
	2.8.4	Generalizations & analogues
	2.8.5	Applications to Fourier series
	2.8.6	The convexity theorem for positive multilinear forms
	2.8.7	The convexity theorem for positive multilinear forms
	2.8.8	
		General bilinear forms
	2.8.9	Definition of a bounded bilinear form
		Some properties of bounded forms in $[p,q]$
	2.8.11	The Faltung of 2 forms in $[p,p']$
		Some special theorems on forms in $[2,2]$
		Application to Hilbert's forms
		The convexity theorem for bilinear forms with complex variables & coefficients
		Further properties of a maximal set (x,y)
		Proof of Theorem 295
	2.8.17	Applications of the theorem of M. Riesz
	2.8.18	Applications to Fourier series
	2.8.19	Miscellaneous theorems & examples
2.9	Hilbert	's Inequality & Its Analogues & Extensions
	2.9.1	Hilbert's double series theorem
	2.9.2	A general class of bilinear forms
	2.9.3	The corresponding theorem for integrals
	2.9.4	Extensions of Theorems 318 & 319
	2.9.5	Best possible constants: proof of Theorem 317
	2.9.6	Further remarks on Hilbert's theorems
	2.9.7	Applications of Hilbert's theorems
	2.9.8	Hardy's inequality
	2.9.9	Further integral inequalities
		Further theorems concerning series
	2.9.11	Deduction of theorems on series from theorems on integrals
		Carleman's inequality
		Theorems with $0 $
		A theorem with 2 parameters $p \& q$
		Miscellaneous theorems & examples
2 10		ngements
2.10		Rearrangements of finite sets of variables
		A 2nd proof of Theorem 368
		Restatement of Theorem 368
		Theorems concerning the rearrangements of 3 sets
		Reduction of Theorem 373 to a special case
		Completion of the proof
		Another proof of Theorem 371
		Rearrangements of any number of sets
		A further theorem on the rearrangement of any number of sets
		Applications
		The rearrangement of a function
		On the rearrangement of 2 functions
		On the rearrangement of 3 functions
	2.10.15	Completion of the proof of Theorem 379

Sect. 0.0 Contents

2.10.16 An alternative proof	8
2.10.17 Applications	
2.10.18 Another theorem concerning the rearrangement of a function in decreasing order	8
2.10.19 Proof of Theorem 384	8
2.10.20 Miscellaneous theorems & examples	8
2.11 Appendices	8
2.11.1 Appendix I: On strictly positive forms	
2.11.2 Appendix II: Thorin's proof & extension of Theorem 295	
2.11.3 Appendix III: On Hilbert's inequality	8
Bibliography	9

Chapter 1

Wikipedia's

1.1 Wikipedia/Inequality (Mathematics)

Chapter 2

Hardy, Littlewood, and Pólya, 1952. Inequality

"Oh! the little more, & how much it is! & the little less, & what worlds away!" - Robert Browning

Preface to 1st Edition

"This book was planned & begun in 1929. Our original intention was that it should be 1 of the *Cambridge Tracts*, but it soon became plain that a tract¹ would be much too short for our purpose.

Our subjects in writing the book are explained sufficiently in the introductory chapter, but we add a note here about history & bibliography². Historical & bibliographical questions are particularly troublesome³ in a subject like this, which has applications in every part of mathematics but has never been developed systematically.

It is often really difficult to trace the origin of a familiar inequality. It is quite likely to occur 1st as an auxiliary proposition, often without explicit statement, in a memoir on geometry or astronomy; it may have been rediscovered, many years later, by half a dozen different authors; & no accessible statement of it may be quite complete. We have almost always found, even with the most famous inequalities, that we have a little new to add.

We have done our best to be accurate & have given all references we can, but we have never undertaken⁴ systematic bibliographical research. We follow the common practice, when a particular inequality is habitually⁵ associated with a particular mathematician's name; we speak of the inequalities of Schwarz, Hölder, & Jensen, though all these inequalities can be traced further back; & we do not enumerate⁶ explicitly all the minor additions which are necessary for absolute completeness.

¹tract [n] 1. (biology) a system of connected organs or tissues along which materials or messages pass; 2. tract (of something) an area of land, especially a large one; 3. a short piece of writing, especially on a religious, moral or political subject, that is intended to influence people's ideas.

²bibliography [n] (plural bibliographies) the list of books, etc. that have been used by somebody writing an article, essay, etc.; a list of books or articles about a particular subject or by a particular author.

³troublesome [a] causing trouble, pain or difficulties.

⁴undertake [v] 1. undertake something to make yourself responsible for something & start doing it; 2. to agree or promise that you will do something.

⁵habitual [a] [only before noun] usual or typical of somebody/something.

⁶enumerate [v] (formal) enumerate something to name things on a list 1 by 1.

Sect. 2.11 Appendices

~ -	- .	•	. •	
2.1	Intro	du	ctic	n

- 2.1.1 Finite, infinite, & integral inequalities
- 2.1.2 Notations
- 2.1.3 Positive inequalities
- 2.1.4 Homogeneous inequalities
- 2.1.5 The axiomatic basis of algebraic inequalities
- 2.1.6 Comparable functions
- 2.1.7 Selection of proofs
- 2.1.8 Selection of subjects
- 2.2 Elementary Mean Values
- 2.2.1 Ordinary means
- 2.2.2 Weighted means
- **2.2.3** Limiting cases of $\mathfrak{M}_r(a)$
- 2.2.4 Cauchy's inequality
- 2.2.5 The theorem of the arithmetic & geometric means
- 2.2.6 Other proofs of the theorem of the means
- 2.2.7 Hölder's inequality & its extensions
- 2.2.8 General properties of the means $\mathfrak{M}_r(a)$
- **2.2.9** The sums $\mathfrak{G}_r(a)$
- 2.2.10 Minkowski's inequality
- 2.2.11 A companion to Minkowski's inequality
- 2.2.12 Illustrations & applications of the fundamental inequalities
- 2.2.13 Inductive proofs of the fundamental inequalities
- 2.2.14 Elementary inequalities connected with Theorem 37
- 2.2.15 Elementary proof of Theorem 3
- 2.2.16 Tchebychef's inequality
- 2.2.17 Muirhead's theorem
- 2.2.18 Proof of Muirhead's theorem
- 2.2.19 An alternative theorem
- 2.2.20 Further theorems on symmetrical means
- 2.2.21 The elementary symmetric functions of n positive numbers
- 2.2.22 A note on definite forms
- 2.2.23 A theorem concerning strictly positive forms
- 2.2.24 Miscellaneous theorems & examples
- 2.3 Mean Values with an Arbitrary Function & the Theory of Convex Functions

 8

Bibliography

Hardy, G. H., J. E. Littlewood, and G. Pólya (1952). *Inequalities*. 2d ed. Cambridge, at the University Press, pp. xii+324.