Boosting

Sometimes it is:

- easy to come up with simple, easy to use, rules of thumb classifiers
- but hard to come up with a single highly accurate rule.

Examples:

(1) Spom classification, based on email text.

Cortain words, eg. "Nigeria", "Online Pharmacy", etc. typically are a good indicator of spam.

Rule of thumb: Does email contain word "Nigeria"?

(2) Petect if an image has a face in it.

On an average, pixels around the eyes are darker than those below.

Rule of thumb: Is the (average darkness in the shaded region) - (average darkness in the white rectangular region below) > 0?

Boosting gives us a way to combine these weak rules with of thumb into good classifiers.

Definitions:

- 1. Weak Learner: A simple rule of thumb that doesn't necessarily work very well.
- 2. Strong Learner: A good classifier (with high accuracy)

Boosting Procedure!

- 1. Design method to find a good rule of thumb.
- 2. Repeat:
 - Find a good rule of thumb
 - Modify training data to get a second data set
 - Apply method of to new data set to get a good rule of thumb, and so on.
- 1. How to get a good rule of thumb? Application specific (more later)
- 2. How to modify training data set?
 - Give highest weight to the hardest examples those that were misclassified more often by previous rules of thumb.
- 3. How to combine the rules of thumb ento a prediction rule?

 Take a weighted majority of the rules.

Let D be a distribution over labelled examples, and let h be a classifier. Error of h wit D is:

$$err_{D}(h) = Pr [h(x) \neq y]$$

$$(x,y) \text{ and } (x,y) \text{ are } (x,y) \text{ and } (x,y) \text{ are } (x,y) \text{ and } (x,y) \text{ are } (x,y)$$

Example: D:

X: takes values $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, 1, each w.p. $\frac{1}{4}$.

Y=1 if X has \$ value > 1/2, 0/w Y=0.

Then if h is the rule:

$$h(x) = 1$$
 if $x > \frac{1}{4}$
 $= 0$ o/w.

Then,
$$err(h) = \frac{1}{4}$$
.

- h is called a weak learner if erro(h) < 0.5
- -> Error of random guessing is 0.5 (with 2 labels)

Given training examples (21, y1), --, (xn, yn), we com assign weights $w_1,...,w_n$ to these examples. If $\sum w_i = 1$, $w_i > 0$, we can think of these weights as a probability distribution over the examples.

1 is the endicator function, = 0 otherwise.

Boosting Algorithm:

Input: Training set S = { (21, y1), -, (20, yn)}, yi = ±1 $D_1(i) = \frac{1}{n}$ for all i = 1, ..., n

For $t = 1, 2, 3, \dots$

ht = weak-learner wit Dt. (so, errot (ht) < 0.5)

Et = err D+ (ht)

 $dt = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$ (so, dt is high when ϵ_t is low, and almost 0 when ϵ_t is close to 0.5

DtH (i) = $\frac{Dt(i)}{E}e^{-dt}$ $\frac{y_i}{y_i}$ $\frac{dt}{dt}$ $\frac{dt}{dt}$ goes t if i is misclassified by t; so higher t means harder example.

where Zt is a normalization constant to ensure that $\sum \mathcal{D}_{t+1}(i) = 1.$

Final classifier: $H(x) = sign\left(\sum_{t=1}^{T} dt h_t(x)\right)$ (weighted majority)

Example of Weighted Error:

Suppose training data is: ((0,0),1), ((1,0),1), ((0,1),-1)

weights W:

classification rule: Predict 1 if $\alpha_1 \leq \frac{1}{2}$, -1 otherwise.

M err_w (h) =
$$\frac{1}{2} \times 0 + \frac{1}{4} \times 1 + \frac{1}{4} \times \frac{1}{4} = \frac{1}{2}$$

(The usual (unweighted) error would be 46 2/3).

Boosting Algorithm Example:

Training data:
$$((1,1),+)((2,1),-)((4,1),-)$$

$$((1,2),+)$$
 $((2,2),-)$ $((3,2),-)$

$$((3,3),+)$$
 $((4,3),-)$

$$((a,4),+)$$

Initially: D₁(i) = 0.1 (for all i)

BINDODOBE MI

Weak Learners: \$ Set of vertical and horizontal thresholds.

1) Suppose we pick
$$h_1(x) = + \text{ if } x_1 \le 1.5$$

= - otherwise

Name the points: a,b,., i (for ease of understanding)

 $err_{D_1}(h_1) = \varepsilon_1 = 0.3$

$$a_1 = 0.42$$

Weights of a,b, c,d,e,f,g: D2 = 0.07

Weights of h, i, j: $D_2 = 0.17$

$$Z_2 = 7 \cdot e^{-0.42} \cdot 0.1 + 3.0.1 \cdot e^{0.42}$$

= 0.92

Note: Calculations rounded to 2 decimal places.

In Round 2, suppose we pick

$$h_2(x) = + if x_2 > 2.5$$

= - otherwise.

$$err_{D_2}(h_2) = E_2 = 0.21$$
 $d_2 = 0.66$

Weights of a,b:
$$D_3 := 0.07 \times e^{0.66} / Z_3 = 0.17$$

Weights of c,d,e,f: $D_3 := 0.07 \times \bar{e}^{0.66} / Z_3 = 0.04$
Weights of h,i,j: $D_3 := 0.17 \times \bar{e}^{0.66} / Z_3 = 0.11$
Weight of 9: $D_3 := 0.07 \times e^{0.66} / Z_3 = 0.17$
 $Z_3 = 0.81$

In Round 3, suppose we pick:

$$h_3(\alpha) = + if \alpha_1 \le 3.5$$

= - otherwise.

$$e_{33}$$
 $(h_3) = \varepsilon_3 = 0.12$
 $\alpha_3 = 0.99$

Weights of a_1b : $D_4:=0.17 \times e^{-0.99} / Z_4 = 0.1$ " c_1d_1e : $D_4:=0.17 \times e^{-0.99} / Z_4 = 0.04 e^{-0.99} / Z_4 = 0.17$ " h_1i_1j : $D_4:=0.11 \times e^{-0.99} / Z_4 = 0.06$ " $f:D_4:=0.04 = 0.99 / Z_4 = 0.02$ " $g:D_4:=0.17 = 0.17 = 0.99 / Z_4 = 0.1$

Final classifier:
$$sign(\alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x))$$

= $sign(0.42 h_1(x) + 0.66 h_2(x) + 0.99 h_3(x))$

When to stop boosting? Use a validation dataset to find a stopping time.

Stop when validation error does not improve.

Boosting and Overfilting:

Overfilting can happen with boosting, but often does not. Typical boosting run:

Reason is that the margin of classification often increases with boosting.

Intuitively, margin of classification measures how for the + labels are from the - labels.

Note: Notion of margin for boosting is a little different from m the exact way we defined margin for perceptron, but the difference is bairly technical.

For boosting:

- think of each ht() as a feature
- Feature space is:

- Margin of example x is: $\left|\sum_{t=1}^{T} \alpha_t h_t(x)\right|$.
- If you have large margin data, then classifiers need less training examples to avoid overfilting. (This is also why kernels work, even if they are very high dimensional feature spaces.)

Applications of Boosting:

1. Boosted Decision trees!

Weak learners are single node decision trees of the form:

2. Face detection: Violar and Jones: see slides.