Modellierung von Strompreisen mittels eines Fundamentalmodells

Dipl.-Ing. Ulrike Stöcker, Wien 1.12.2023

Ulrike.stoecker@verbund.com

Duales Problem / Schattenpreise

Dualitätstheorie für lineare Probleme

Primales Problem:

$$\max_{x} p'x$$

$$Ax \le b$$
$$x \ge 0$$

Duales Problem:

$$\min_{y} b'y$$

$$A'y \ge p$$
$$y \ge 0$$

Jeder Gleichung im primalen Problem wird eine duale Variable y_i zugeordnet.

$$\max_{x} p_{1}x_{1} + \dots + p_{n}x_{n}$$

$$a_{11}x_{1} + \dots + a_{1n}x_{n} \leq b_{1} \quad | \quad y_{1}$$

$$\dots$$

$$a_{m1}x_{1} + \dots + a_{mn}x_{n} \leq b_{n} \quad | \quad y_{m}$$

Regeln:

- Maximierungsproblem → Minimierungsproblem
- · Koeffizientenmatrix wird transponiert
- Jeder primalen Ungleichungsnebenbedingung entspricht eine vorzeichenbeschränkte duale Variable
- Jeder primalen Gleichungsnebenbedingung entspricht eine duale Variable ohne Vorzeichenbeschränkung.
- Rechte Seite der Nebenbedingung (NB)→Zielfunktionsvektor
- Primale Zielfunktion → rechte Seite der Nebenbedingung
- Ungleichheitszeichen der NB dreht sich um
- Jeder vorzeichenbeschränkten primalen Variable entspricht eine duale Ungleichheitsnebenbedingung
- Jeder nicht vorzeichenbeschränkten primalen Variable entspricht eine duale Gleichheitsnebenbedingung

Dualitätstheorie für lineare Probleme

Primales Problem:

$$\max_{x} p'x$$

$$Ax \le b$$

$$x \ge 0$$

Duales Problem:

$$\min_{y} b'y$$

$$A'y \ge p$$

$$y \ge 0$$

x ist primal zuläassig $\leftrightarrow Ax \le b, x \ge 0$ y ist dual zulässig $\leftrightarrow A'y \ge p, y \ge 0$ x primal zulässig, y dual zulässig $\Rightarrow p'x \le y'Ax \le y'b$

Satz vom komplementären Schlupf:

Ein primal zulässiges $x^* \ge 0$ ist genau dann eine optimale Lösung des primalen Problems mit b>0, wenn ein $y^* \ge 0$ existiert, für das folgende Bedingungen erfüllt sind:

$$(1) p' - y^*' A \le 0$$

(2)
$$y_i^* \left(\sum_{j=1}^n a_{ij} x_j^* - b_i \right) = 0 \quad \forall i = 1, ..., m$$

(3)
$$x_j^* (p_j - \sum_{i=1}^m y_i^* a_{ij}) = 0 \quad \forall j = 1, ..., n$$

Folgerung:

- (1) und y*≥0 →y* ist dual zulässig
- (2) $y^{*'}(Ax^* b) = 0 \rightarrow y^{*'}Ax^* = y^{*'}b$
- (3) $(p A'y^*)'x^* = 0 \rightarrow y^{*'}Ax^* = p'x^* \rightarrow y^{*'}b = p'x^*$

Primale und duale Zielfunktionswerte stimmen überein und y^* ist Lösung des dualen Problems!

Ökonomische Interpretation / Schattenpreis

Erlösmaximierung:

```
\max_{x} p'x
Ax \leq b
x \geq 0
p \dots Erlösvektor
a_{ij} \dots Menge der Ressource j, die für die
Erzeugung von Gut x_i benötigt wird
b_j \dots verfügbare Menge von Ressource j
```

Satz des komplementären Schlupfs $\rightarrow f(x^*) = p'x^* = y^{*'}b$

 y_i^* ... Schattenpreis:

Ändert man die Kapazität der Ressource b_j um Δb_j , so ändert sich der Zielfunktionswert um ungefähr $y_i^* \Delta b_i$.

Sprich eine weitere Einheit b_j , die das Unternehmen zur Verfügung hätte, würde den Gewinn um y_j^* erhöhen. Die Firma würde somit bis zu y_j^* ebereit sein zu zahlen um eine weitere Einheit b_j zu erhalten. (daher der Name Schattenpreis)

Diese Interpretation gilt jedoch nur für marginale Änderungen!

Ökonomische Interpretation / Schattenpreis

Interpretation der komplementären Schlupfbedingung (1):

$$y_i^* (\sum_{j=1}^n a_{ij} x_j^* - b_i) = 0$$
 $\forall i = 1, ..., m$

Wird die i-te Ressource nicht vollständig ausgenutzt gilt:

$$\sum_{j=1}^{n} a_{ij} x_j^* < b_i$$

Eine Erhöhung der Kapazität b_i würde dem Unternehmen keinen zusätzlichen Nutzen bringen, somit wäre das Unternehmen nicht bereit für eine weitere Einheit vom Gut i zu zahlen, $y_i^* = 0$. Umgekehrt, wäre bei einem positiven Schattenpreis die Ressource i im Optimum völlig aufgebraucht.

Ökonomische Interpretation / Schattenpreis

Interpretation der komplementären Schlupfbedingung (2):

$$x_j^* (p_j - \sum_{i=1}^m y_i^* a_{ij}) = 0$$
 $\forall j = 1, ..., n$

Gilt: $\sum_{i=1}^m y_i^* a_{ij} > p_j$

Somit wären die fiktiven Herstellungskosten größer als der erwartete Gewinn p_j und die Produktion des Produktes x_j würde sich nicht lohnen. Somit wäre $x_j^* = 0$.

Wäre umgekehrt $x_j^* > 0$, so wäre das Produkt j im optimalen Produktionsplan vorhanden und es würden die fiktiven Herstellungskosten gleich dem Gewinn sein. $(\sum_{i=1}^m y_i^* a_{ij} = p_j)$

Einführung in ein Fundamentalmodell

Ziel des Fundamenalmodells:

Erklärung der Produktionsentscheidungen und Elektrizitätspreise durcheine möglichst genaue Abbildung der technischen Gegebenheiten, Inputpreisen und der Stromnachfrage.

Annahmen:

- Vollständiger Wettbewerb
- Es wird nur am Spotmarkt gehandelt

Vollständiger Wettbewerb

- Homogene Güter
- Jeder Marktteilnehmer hat keinen Einfluss auf die Preisbildung
- Jeder Marktteilnehmer handelt rational (gewinnmaximierend)
- Es gibt keine Markteintrittsbarrieren oder Eingriffe in den Markt

Eine Frage der Rente

Der Produzentenrente beschreibt die Differenz zwischen dem Marktpreis und jenem Preis, zu dem ein Produzent sein Gut (gerade noch) anbieten würde.

Die Konsumentenrente ist die Differenz aus dem Preis, den ein Konsument für ein Gut zu zahlen bereit ist und dem Gleichgewichtspreis, den er aufgrund der Marktverhältnisse tatsächlich zahlen muss (Marktpreis).

Wohlfahrt

= Produzentenrente + Kosumentenrente

Funktionsweise Strommarkt

- Zu jeder Sekunde muss der Verbrauch der Erzeugung entsprechen (Strom ist nur bedingt speicherbar)
- Jeder Markteilnehmer versucht seinen Kraftwerkspark optimal zu vermarkten
 - → Variable Kosten der Erzeugung müssen durch den Spotmarkt gedeckt werden
 - → zu jeder Stunde gibt es einen anderen Preis

Fixkosten (Investitions- und Instandhaltungskosten) werden in einen perfekten Markt ebenfalls gedeckt (Zubauproblematik)

- Erneuerbare Energien (Wind und Solar) sind meist durch staatliche Subventionen gestützt
 - Einspeisevergütung
 - EE haben sehr unsichere und volatile Erzeugungsmuster und können nicht wie andere Kraftwerke gesteuert werden

© VERBUND AG, www.verbund.com

Fundamental Modelling

Merit Order Curve

Zu jedem Zeitpunkt wird die Last mit den Kraftwerken mit den niedrigsten Erzeugungskosten gedeckt. Das Kraftwerk mit den marginalen Erzeugungskosten setzt den Preis!

Market Coupling

Abbildung 7: Angebot und Nachfrage in 2 gekoppelten Märkten

Quelle: APG

Market Coupling zwischen AT und DE

Stompreisentwicklung der letzten Monate

Preisspitzen an den Strombörsen

Handelsverlauf Di 05.10 – Do 07.10 11:00 Uhr Power DE, Peak Q1/2022

Screening Curve Model

Last von Deutschland aus dem Jahr 2010

Dazugehörige Load Duration Curve von 2010

Um in diesem Modell zu einer Preisfindung und später auch zu einem optimalen Ausbauplan / Kraftwerkspark zu kommen wird hier im weiteren eine recht deutliche Einschränkung gemacht und für das restliche Modell nur die Dauerlinie der Last verwendet.

Somit fallen hier alle Zusammenhänge zwischen einzelnen Stunden aus dem Model (Mindestlaufzeiten, Startkosten, Maximaler Speicherinhalt, ...)

Source: Open Electricity Economics: 5. Optimal capacity mix and scarcity pricing (open-electricity-economics.org)

Screening Cruve Model Ausbauentscheidung

Eine optimale Ausbauentscheidung kann vereinfacht mit einer Gegenüberstellung der annualisierten Vollkosten vs der Last getroffen werden

Screening Cruve Model Abbildung von Erneuerbaren

Veränderung aufgrund der Residuallast

Resuduallast = Last – PV – Wind je Stunde

Veränderungen des optimalen Kraftwerkparks

Von Ursprünglich sehr vielen Grundlast Kraftwerken, werden nun viel mehr Kraftwerke benötigt die eine deutlich kürzere Einsatzdauer haben wie früher.

Fundamentale Modellierung

Modellstruktur

© VERBUND AG, www.verbund.com

Mögliche Fragestellungen

- Entwicklung der Preise / Kraftwerkspark bei Atomausstieg
- Entwicklung der Preise / Kraftwerkspark bei Kohleausstieg DE
- Auswirkung des Ausbaus Erneuerbarer Energien
- Auswirkung von neuen Speichertechnologien
- Auswirkung von Elektromobilität
- Auswirkung steuerbarer Last
- ...

Vorteil Fundamentalmodell vs. Statistischer Modelle:

- Keine Insample vs. Out of sample Problematik
- Kann eine langfristige Entwicklung des Stommarktes modellieren kein Problem bei Strukturbrüchen

Fundamentalmodell – Modellierung des Strommarktes

Vorgangsweise

Im ersten Schritt versuchen wir den Strommarkt aus Sicht der Erzeuger zu modellieren: Jeder Marktteilnehmer versucht seine Kraftwerke optimal gegen den Spotpreis einzusetzen.

Im zweiten Schritt versuchen wir das eben entstandene Modell in ein Fundamentalmodell für eine Spotpreisprognose um zu bauen. Hierfür erinnern wir uns, dass in jeder Stunde das letzte Kraftwerk, das für die Deckung der Last benötigt wir den Strompreis setzt (Merit-Order). Somit wollen wir den Preis der bei einer marginalen Änderung der Last entstehen würde. Diesen bekommen wir über den Schattenpreis.