

planetmath.org

Math for the people, by the people.

contact manifold

Canonical name ContactManifold
Date of creation 2013-03-22 13:43:27
Last modified on 2013-03-22 13:43:27

Owner RevBobo (4) Last modified by RevBobo (4)

Numerical id 4

Author RevBobo (4) Entry type Definition Classification msc 53D10

Related topic SymplecticManifold
Defines contact structure
Defines contact form
Defines contactomorphism

Let M be a smooth manifold and α a one form on M. Then α is a *contact* form on M if

- 1. for each point $m \in M$, $\alpha_m \neq 0$ and
- 2. the restriction $d\alpha_m|_{\ker \alpha_m}$ of the differential of α is nondegenerate.

Condition 1 ensures that $\xi = \ker \alpha$ is a subbundle of the vector bundle TM. Condition 2 equivalently says $d\alpha$ is a symplectic structure on the vector bundle $\xi \to M$. A contact structure ξ on a manifold M is a subbundle of TM so that for each $m \in M$, there is a contact form α defined on some neighborhood of m so that $\xi = \ker \alpha$. A co-oriented contact structure is a subbundle of TM of the form $\xi = \ker \alpha$ for some globally defined contact form α .

A (co-oriented) contact manifold is a pair (M, ξ) where M is a manifold and ξ is a (co-oriented) contact structure. Note, symplectic linear algebra implies that dim M is odd. If dim M = 2n + 1 for some positive integer n, then a one form α is a contact form if and only if $\alpha \wedge (d\alpha)^n$ is everywhere nonzero.

Suppose now that $(M_1, \xi_1 = \ker \alpha_1)$ and $(M_2, \xi_2 = \ker \alpha_2)$ are co-oriented contact manifolds. A diffeomorphism $\phi: M_1 \to M_2$ is called a *contactomorphism* if the pullback along ϕ of α_2 differs from α_1 by some positive smooth function $f: M_1 \to \mathbb{R}$, that is, $\phi^*\alpha_2 = f\alpha_1$.

Examples:

- 1. \mathbb{R}^3 is a contact manifold with the contact structure induced by the one form $\alpha = dz + xdy$.
- 2. Denote by \mathbb{T}^2 the two-torus $\mathbb{T}^2 = S^1 \times S^1$. Then, $\mathbb{R} \times \mathbb{T}^2$ (with coordinates t, θ_1, θ_2) is a contact manifold with the contact structure induced by $\alpha = \cos t\theta_1 + \sin t\theta_2$.