M328K Homework 8

Joshua Dong

March 31, 2014

0.1 - 6.1.16

Show that if n is a composite integer with $n \neq 4$, then $(n-1)! \equiv 0 \pmod{n}$

If n is composite, then there two possibilities:

Case 1:

There exist different prime integers a and b where ab=n and $2 \le a < b \le n-2$. Both a and b are in the product (ab-1)!.

Therefore (ab-1)! is divisible by ab.

Case 2:

If n cannot be expressed as a product of two different primes, then n is a square where $n=p^2$.

p appears in the factorial product of (n-1)!, therefore $p \mid (n-1)!$.

We can say $2p \mid (n-1)!$ if 2p < n, which is true for all squares where $n \neq 4$.

If $2p \mid (n-1)!$ and $p \mid (n-1)!$, then $2p^2 \mid (n-1)!$.

Therefore $2n \mid (n-1)!$.

Therefore $n \mid (n-1)!$.

Therefore, $(n-1)! \equiv 0 \pmod{n}$ for all composites $n, n \neq 4$.

0.2 - 6.1.22

Show that $30 \mid (n^9 - n) \ \forall n \in \mathbb{Z}^+$. $(n^9 - n) = n(n-1)(n+1)(n^2+1)(n^4+1)$ If we can show that $30 \mid n(n-1)(n+1)(n^2+1)$, then $30 \mid n(n-1)(n+1)(n^2+1)(n^4+1)$. If we can show that 2, 3, and 5 divide $n(n-1)(n+1)(n^2+1)$, then 30 divides $n(n-1)(n+1)(n^2+1)$. n(n-1) is always even (the product of an even and odd is odd). Therefore 2 divides $n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+$.

n(n-1)(n+1) forms a sequence of three consecutive integers.

Therefore, one of them must divide 3 (this could be shown with an enumeration of possibilities)

Therefore 3 divides $n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+$.

Suppose 5 does not divide k(k-1)(k+1).

k must then be in the form 5t + 2 or 5t + 3 for some $t \in \mathbb{Z}^+$, as a form of 5t + 0, 5t + 1, or 5t + 4 would result in the product having a term divisible by 5.

If k is in the form 5t + 2 or 5t + 3, then $(k^2 + 1)$ is in the form 25t + 4 + 1 or 25t + 9 + 1, both which are divisible by 5.

Therefore 5 divides $n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+$.

Therefore 30 divides $(n^9 - n) \ \forall n \in \mathbb{Z}^+$.

However, it is worth noting that if n < 2, then the product is 0.

0.3 6.3.4

Show that if $a, m \in \mathbb{Z}^+$, (a, m) = (a - 1, m) = 1, then $1 + a + a^2 + ... + a^{\phi(m) - 1} \equiv 0 \pmod{m}$.

We split the proof into two cases.

Case 1: m is prime.

 $\phi(m) = m - 1.$

: there are m-1 terms in the sequence.

If we can show that the series forms a complete set of residues modulo m (the 0 term is omissible), then that is sufficient to prove the assertion, as the sum of all residues is 0 modulo m.

We can rewrite each term with respect to the reverse index i from $a^{\phi(m)-i}$ to \bar{i} . \bar{i} exists because m is prime, and is unique for each i.

Therefore, for prime moduli m, the sum is equivalent to 0 modulo m.

Case 2: m is composite.

0.4 6.3.10

_