A quick recap of the material covered in lectures

MOS Electrostatics

In a MOS capacitor, a lot could be understood from the band bending in the semiconductor, If ϕ_s is the potential at the surface, and $\phi=0$ is the potential in the bulk, then $-q\phi_s$ is the total band bending in the semiconductor. A negative ϕ_s means the bands bend up, and a positive ϕ_s means the bands bend down. ϕ_s is given as

$$\phi_s = E_{i,bulk} - E_{i,surface}$$
 (1)

An important material parameter related to the semiconductor doping; namely ϕ_F is

$$\phi_F = E_{i,bulk} - E_F \tag{2}$$

The sign of ϕ_F indicates the doping type, i.e., $\phi_F > 0$ for p-type $\phi_F < 0$ for n-type.

$$\phi_F = \begin{cases} \frac{kT}{q} \ln(N_A/n_i) & \text{p-type} \\ \frac{kT}{q} \ln(N_D/n_i) & \text{n-type} \end{cases}$$

The parameters ϕ_s and ϕ_F are extensively useful in specifying the biasing state inside the semiconductor. Clearly at flatband conditions $\phi_s=0$. Moreover, $\phi_s=2\phi_F$ at the depletion-inversion transition point. With $\phi_F>0$ in a p-type semiconductor, it follows that

$$\mbox{Biasing condition} \rightarrow \begin{cases} \mbox{Accumulation} & \phi_s < 0 \\ \mbox{Depletion} & 0 < \phi_s < \phi_F \\ \mbox{Inversion} & \phi_s > \phi_F \end{cases}$$

For an n-type semiconductor the inequalities are merely reversed.

In the standard depletion approximation the actual depletion charge is replaced with a squared-off distribution terminated abruptly a distance x=W into the semiconductor. Assuming p-type semiconductor and invoking the depletion approximation, we have the following important formulae:

1. Electric field $\mathscr E$ -

$$\mathscr{E}(x) = \frac{qN_A}{\epsilon_s} (W - x) \qquad (0 \le x \le W) \tag{3}$$

2. Electrostatic potential ϕ -

$$\phi(x) = \frac{qN_A}{\epsilon_s} (W - x)^2 \qquad (0 \le x \le W)$$
(4)

3. Surface potential ϕ_s at x=0 -

$$\phi_s = \frac{qN_A}{\epsilon_s \epsilon_0} W^2$$
 (5)

4. Depletion Width W -

$$W = \left[\frac{2\epsilon_s \epsilon_0}{qN_A} \phi_s\right]^{1/2} \tag{6}$$

5. Maximum depletion Width W_{max} -

$$W_{max} = \left[\frac{2\epsilon_s \epsilon_0}{qN_A} \left(2\phi_F\right)\right]^{1/2} \tag{7}$$

GATE VOLTAGE RELATIONSHIP

The external applied gate voltage V_G in the ideal structure is dropped partly across the oxide and partly across the semiconductor, or symbolically, $V_G = \Delta \phi_{ox} + \phi_s$,

$$V_G = \frac{\epsilon_s}{\epsilon_0} x_0 \, \mathscr{E}_s + \phi_s \tag{8}$$

A combination of Eq. 3 and Eq. 6 gives

$$\mathscr{E}_s = \left[\frac{2qN_A}{\epsilon_s \epsilon_0} \ \phi_s \right]^{1/2} \tag{9}$$

Thus, the final $V_G - \phi_s$ dependence is given by the Eq. 10 -

$$V_G = \frac{\epsilon_s}{\epsilon_0} x_0 \sqrt{\frac{2qN_A}{\epsilon_s \epsilon_0} \phi_s + \phi_s}$$
 (10)

There are certain important features of the gate voltage relationship:

- ϕ_s is a rather rapidly varying function of V_G when the device is biased in depletion regime. This implies the gate voltage divides proportionally between the oxide and the semiconductor under depletion biasing.
- However, when the semiconductor is accumulated ($\phi_s < 0$) or inverted ($\phi_s > 2\phi_F$), it takes a large change in gate voltage to produce a small change in ϕ_s . Under accumulation and inversion biasing, changes in the applied potential are dropped almost totally across the oxide.

Solve the following questions. There are 12 questions, for a total of 25 marks.

1.	(I mark)	At threshold, the surface potential $\phi_s =$	
	A.	$\phi_F/2$	
	B.	ϕ_F	
	C.	$3\phi_F/2$	
	D.	$2\phi_F$	
	E.	$5\phi_F/2$	
	F.	0	
2.	(1 mark)	MOSCAP is said to be in inversion when	carrier concentration at the surface equals or
	exceeds t	he carrier concentration in the bulk.	
	A.	majority, majority	
	В.	minority, majority	
	C.	majority, minority	
	D.	minority, minority	
3.	(1 mark) potential.	For a MOS capacitor, in strong inversion, the surface.	ce charge density with surface
	A.	decreases exponentially	
	B.	increases exponentially	
	C.	decreases linearly	
	D.	increases linearly	
	E.	remains unchanged	
4.	(1 mark)	A MOS capacitor can be represented as	
	A.	two constant capacitors in series.	
	В.	two constant capacitors in parallel.	
	C.	one constant and one bias dependent capacito	r in series.
	D.	one constant and one bias dependent capacitor in	parallel.
	E.	two bias dependent capacitors in series.	

- 5. (1 mark) What is a typical thickness of ${\rm SiO}_2$ layer in modern MOS technology?
 - A. $0.1 0.2 \ nm$
 - **B.** $1 2 \ nm$
 - C. $5 6 \ nm$
 - D. $10 20 \ nm$
 - E. $100 200 \ nm$

6. (9 marks) The energy band diagram of a MOSCAP device is sketched in the figure 1 below. Assume that the electrostatic potential is zero in the semiconductor bulk, (i.e. at large distance from Si-SiO₂ interface) and that there is no metal-semiconductor workfunction difference. Assume the relative dielectric constant of the oxide to be $\epsilon_{ox}=3.9$. (Take $n_i=10^{10}~cm^{-3}$, kT=26~meV, $E_g=1.1~eV$, $\epsilon_s=11.8$)

Figure 1: Energy band diagram of MOSCAP

(a) (1 mark) What is the value of ϕ_F ?

A.
$$-0.24 V$$

B. 0.24 V

C. 0.437~V

D. -0.437 V

E. 0.96 V

F. -0.96 V

(b) (1 mark) What is the surface potential, ϕ_s ?

A. -0.24 V

B. 0.24 V

C. 0.437 V

D. -0.437 V

E. 0.96 V

F. -0.96 V

From Eq 1 of review material,

$$P_S = E_i$$
, bulk $-E_i$, surface

 $= -0.2 \, h \, V \, \left(-ve \text{ when bands bend up} \right)$

From Sq. 2 of review material, $\mathcal{D}_F = E_{i,bulk} - E_F$ $= -0.437 eV (P_F is -ve for n-doping)$

- (c) (1 mark) What is the applied gate voltage, V_G ?
 - A. -0.24 V
 - B. 0.24 V

Metal Fumi level moves up relative to semiconductor Fumi level other a negative blas is applied. Fumi level other a negative blas is applied gate Since the difference is 0.96 V the applied gate voltage must be -0.96 V

 $\mathsf{D.}\ -0.437\ V$

C. 0.437 V

- E. 0.96 V
- **F.** -0.96 V
- (d) (1 mark) What is the voltage across the oxide, V_{ox} ?
 - A. -1.2V
 - B. 1.2*V*
 - C. 0.437V
 - D. -0.437V
 - **E.** -0.72V
 - F. 0.72V

VG = Vox + PS

 $\Rightarrow V_{0x} = V_{0} - V_{0}$

= - 0.96V - (- 0.24V)

- = -0.72V
- (e) (1 mark) What is the doping density, N_D in cm^{-3} ?
 - A. 2×10^{15}
 - B. 2×10^{16}
 - **C.** 2×10^{17}
 - D. 2×10^{18}
 - E. 2×10^{19}
 - F. 1×10^{10}

- $\oint_{F} = \frac{kT}{9} \ln \left(\frac{ND}{N_{1}} \right)$ $0.437 = 0.026 \times \ln \left(\frac{ND}{10^{10}} \right)$
 - :. No=2×10 cm-3
- (f) (1 mark) What is the width of the depletion region, W?
 - A. $39.5 \ \mu m$
 - B. $3.95 \ \mu m$
 - C. 3.95 nm
 - D. $395 \ \mu m$
 - **E.** 39.5 nm
 - F. 395 nm

- From Eq 6 of review material $W = \left(\frac{260 \text{ Sz}}{4 \text{ ND}} \text{ Vz}\right)^{\frac{1}{2}}$ $= \sqrt{\frac{2 \times 8.85 \times 10^{-14} \times 11.8}{1.602 \times 10^{-19} \times 2 \times 10^{17}}} \times 0.24$ $= 3.957 \times 10^{-6} \text{ cm}$
 - = 39157 M
- (g) (1 mark) What is the maximum electric field on semiconductor side of Si-SiO₂ interface in (V/cm), \mathscr{E}_s ?

A.
$$-1.21 \times 10^{7}$$

B. 1.21×10^{7}

C. -1.21×10^{4}

D. 1.21×10^{5}

E. -1.21×10^{5}

F. 1.21×10^{5}

F. 1.21×10^{5}

Park) What is the maximum electric field on wide side of Si SiO_ interface \mathscr{C} in V/cm^{2}

- (h) (1 mark) What is the maximum electric field on oxide side of Si-SiO $_2$ interface, \mathscr{E}_{ox} in V/cm?
 - A. -4×10^{4} B. 4×10^{4} C. -3.66×10^{5} D. 3.66×10^{5} E. -1.21×10^{5} E. 1.21×10^{5} E. 1.21×10^{5} E field w. γ . \uparrow + γ . γ .

 E field w. γ . \uparrow + γ . γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . \uparrow + γ .

 E field w. γ . γ .
- (i) (1 mark) What is the thickness of the oxide t_{ox} ?

A. 196
$$\mu m$$

C.
$$1.96 \ \mu m$$

E.
$$19.6 \ \mu m$$

$$tox = \frac{Vox}{2ox}$$

$$= \frac{-0.72}{-3.66 \times 10^{5}}$$

$$tox = 1.967 \times 10^{-6} \text{ cm}$$

7. (2 marks) Match the energy band diagrams with the corresponding charge block diagrams shown in figure 2 considering ideal MOS structure. Also state the biasing condition in each of the case.

Figure 2: Energy band and charge block diagrams

- A. $\textcircled{1} \rightarrow (c)$, depletion
- $(2) \rightarrow (a)$, inversion
- $(3) \rightarrow (b)$, accumulation

- B. $(1) \rightarrow (a)$, inversion $(2) \rightarrow (b)$, depletion $(3) \rightarrow (c)$, accumulation
- C. (1) \rightarrow (b), depletion
- $(2)\rightarrow$ (a), inversion
- $\mathfrak{G} \rightarrow (c)$, accumulation

- D. $\textcircled{1} \rightarrow (c)$, accumulation
- $2\rightarrow$ (a), inversion $3\rightarrow$ (a), depletion

- E. $\textcircled{1} \rightarrow (b)$, depletion
- $\textcircled{2} \rightarrow$ (c), accumulation $\textcircled{3} \rightarrow$ (a), inversion

- F. $\textcircled{1} \rightarrow (b)$, accumulation
- $\textcircled{2} \rightarrow (a)$, inversion $\textcircled{3} \rightarrow (c)$, depletion

8. (1 mark) Match the charge density profiles shown in the following figure 3 with the corresponding biasing condition. Assume substrate is p-type.

Figure 3: Charge density profile

- A. $(1) \rightarrow \text{inversion}$ $(2) \rightarrow \text{depletion}$ $(3) \rightarrow \text{flatband}$ $(4) \rightarrow \text{onset of accumulation}$
- $\hbox{B. } \textcircled{1} \rightarrow \hbox{accumulation} \qquad \textcircled{2} \rightarrow \hbox{onset of depletion} \qquad \textcircled{3} \rightarrow \hbox{inversion} \qquad \textcircled{4} \rightarrow \hbox{deep}$
- D. $\textcircled{1} o \mathsf{depletion}$ $\textcircled{2} o \mathsf{flatband}$ $\textcircled{3} o \mathsf{deep depletion}$ $\textcircled{4} o \mathsf{accumulation}$
- E. 1 \to accumulation 2 \to onset of inversion 3 \to depletion 4 \to inversion
- $\mathsf{F.} \ \ \textcircled{1} \ \rightarrow \ \mathsf{flatband} \qquad \ \ \textcircled{2} \ \rightarrow \ \mathsf{accumulation} \qquad \ \ \textcircled{3} \ \rightarrow \ \mathsf{depletion} \qquad \ \ \textcircled{4} \ \rightarrow \ \mathsf{inversion}$

9. (1 mark) Identify the surface potential ranges corresponding to accumulation, depletion, and inversion in ideal PMOS devices (figure 4).

Figure 4: Surface potential

- A. (a)
- B. (b)
- C. (c)
- D. (d)

10. (1 mark) The charge block diagram of a semiconductor is shown in figure 5 below

Figure 5: MOSCAP charge block diagram

Which is the correct electrostatic potential plot corresponding to given charge diagram?

- A. (a)
- B. (b)
- C. (c)
- D. (d)

11. (2 marks) The charge block diagram of a semiconductor is shown in figure 6 below

Figure 6: MOSCAP charge diagram

(a) (1 mark) Which is the correct E-field plot corresponding to given charge diagram?

- A. (a)
- B. (b)
- C. (c)
- D. (d)
- (b) (1 mark) Which is the correct electrostatic potential plot corresponding to given charge diagram?
 - A. (a)
 - B. (b)
 - C. (c)
 - D. (d)

12. (4 marks) The table below shows the different charge profile diagrams of a MOSCAP on the left, along with the possible electric field plots on the right.

- (a) (2 marks) Identify the biasing condition for charge diagrams shown in the left column
 - A. (I) \rightarrow Inversion
- (II) o Depletion
- B. (I) \rightarrow Depletion (II) \rightarrow Inversion
- C. (I) \rightarrow Accumulation
- $(II) \rightarrow Depletion$
- D. (I) \rightarrow Inversion
- (II) \rightarrow Accumulation
- E. (I) \rightarrow Depletion (II) \rightarrow Accumulation
- F. (I) \rightarrow Flatband (II) \rightarrow Inversion

- (b) (2 marks) Match the correct charge diagrams (qualitatively) to the corresponding E-field plots.
 - $\mathsf{A.}\ (\mathsf{I}) \to\ (\mathsf{a}) \qquad (\mathsf{II}) \to\ (\mathsf{b})$
 - $\mathsf{B.}\ (\mathsf{I}) \to\ (\mathsf{c}) \qquad (\mathsf{II}) \to\ (\mathsf{d})$
 - C. (I) \rightarrow (b) (II) \rightarrow (c)
 - D. (I) \rightarrow (d) (II) \rightarrow (c) E. (I) \rightarrow (c) (II) \rightarrow (b)

 - $\mathsf{F.}\ (\mathsf{I}) \to\ (\mathsf{a}) \qquad (\mathsf{II}) \to\ (\mathsf{d})$