

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

377

Prove that the rectangle under the focal distances of the origin in the conic represented by the equation $ax^2 + 2hxy + by^2 = 2y$, is $R = 1/(ab - h^2)$.

[F. P. Matz.]

SOLUTION.

The foci are given by

$$(Cx+h)^2 = \frac{1}{2} \Delta (R+a-b), \quad (Cy-a)^2 = \frac{1}{2} \Delta (R+b-a),$$

(See Salmon's Conic Sections, p. 239, exercise and Art. 151) where $C = ab - h^2$, $R^2 = 4h^2 + (a - b)^2$, and A, for this exercise, = -a.

Also solved by William Hoover and W. O. Whitescarver.

EXERCISES.

379

FIND the radius of a circle circumscribing the three tangent-circles of radii a, b, and c, respectively. [F. P. Matz.]

380

THE sides of a variable rectangle pass through four fixed points. Find the position of the rectangle and its dimensions when its area is a maximum.

[Geo. R. Dean.]

381

From a point in the circumference of a circle of radius R as centre is described the external arc of a circle of radius r. Determine r so that the area of the lune shall equal that of the original circle. [W. M. Thornton.]

EXERCISES. 57

382

Four equal circles tangent to each other cut off equal areas from a given circle. Required the radii of the cutting circles when the aggregate area cut off from the given circle is the greatest possible.

[Artemas Martin.]

383

If c', c'', c''' be the sides of any triangle inscribed in an ellipse, and b', b'', b''' the semi-diameters parallel to the sides, show that the area is

$$A = abc'c''c'''/(4b'b''b''') \,. \quad [\ W. \ O. \ Whitescarver.]$$

384

If c be a chord of an ellipse through the points whose eccentric angles are a and β , and b' the semi-diameter parallel to the chord, show that the area of the triangle formed by the chord and the tangents at its extremities is

$$S = \frac{abc^2}{4b'^2} \tan \frac{1}{2} (\alpha - \beta)$$
. [W. O. Whitescarver.]

If in exercise 384 a tangent be drawn parallel to the chord, show that the base of the triangle formed will be $c \sec \frac{1}{2} (\alpha - \beta)$, and its area $ab \tan^3 \frac{1}{2} (\alpha - \beta)$.

[W. O. Whitescarver.]

Prove that the curvature of a bicircular quartic at a point x is the arithmetic mean of the curvature of the four circles which touch the curve at x and pass through the respective real foci. [F. Morley.]

387

It is desirable to have a linkwork or other mechanism for keeping four points in the shape of a variable harmonic tetrad, i. e. at the ends of harmonic chords of an arbitrary circle.

[F. Morley.]

388

An observer, whose eye is at a distance e above the surface of a pond, notices that the setting sun touches a hill-top, distant t from the observer, just as the last of its watery image disappears behind the hill-top reflected in the pond. How high is the hill above the surface of the pond? Give solutions adapted to two cases, (1) when heights are small in comparison with horizontal distances, and (2) when they are not. [R. A. Harris.]

389

A PORTION of xyz space is transformed by means of a rational integral function, algebraic or transcendental; show that ordinarily the XY, XZ, YZ projections of transformed angles which lay originally in planes parallel to

58 EXERCISES.

xy, xz, yz, respectively, measure the same as did the original angles—provided the measurement of angles in, or parallel to, YZ or yz be made with an hyperbolic protractor.

[R. A. Harris.]

390

A VIBRATION is made up of two simple harmonic components, taken in the same direction, whose periods are as 1:2, and whose amplitudes are such that the number of maxima and minima of the resultant is the same as of the component of shorter period; show that the mean amplitude of the resultant is nearly independent of what phase of the one component falls upon a given phase of the other.

[R. A. Harris.]

391

Two simple harmonic components, taken in the same direction, are combined into one vibration. Show how to determine, by graphic means, the position in time (or angle) of any resultant maximum with reference to the neighboring maximum of the component of shorter period—the relative lengths of the periods being, for successive cases, 1:1, 1:2, and, if possible, 1:3 or more.

[R. A. Harris.]

392

A SYSTEM of great circles intersects upon the equator of a sphere; a curve is drawn connecting points on the spherical surface where the circles of this system make a constant angle α with the meridians. Show that the stereographic projection of any such curve is a circular cubic whose equation may be written

$$an lpha an heta = rac{c^2 + r^2}{c^2 - r^2}$$
,

c being the radius of the sphere, and one of the poles being the centre of the projection.

[R. A. Harris.]

Show that if y be a quadratic function of x between the limits 0, h, its mean value can be expressed in an infinite number of ways by the formula, $\lambda y_1 + (1 - \lambda) y_2$, where y_1, y_2 correspond to the values

$$x_1=rac{h}{2}-h\,\sqrt{rac{1}{12}rac{1-\lambda}{\lambda}}\,, \quad x_2=rac{h}{2}+h\,\sqrt{rac{1}{12}rac{\lambda}{1-\lambda}}\,\cdot \ [extit{Wm. M. Thornton.}]$$

394

A HETEROGENEOUS rod is hung from a fixed point by two elastic threads of given length fastened at its extremities. Find the position of equilibrium.

[W. H. Echols.]

395

FIND the difference between the specific heats of a gas whose equation is

$$pv = R\tau - a/\tau v$$
. [F. P. Matz.]