# Word classes and part of speech tagging

# An Example

| WORD   | LEMMA | TAG    |  |
|--------|-------|--------|--|
|        |       |        |  |
| the    | the   | +DET   |  |
| girl   | girl  | +NOUN  |  |
| kissed | kiss  | +VPAST |  |
| the    | the   | +DET   |  |
| boy    | boy   | +NOUN  |  |
| on     | on    | +PREP  |  |
| the    | the   | +DET   |  |
| cheek  | cheek | +NOUN  |  |

#### **Word Classes: Tag Sets**

- Vary in number of tags: a dozen to over 200
- Size of tag sets depends on language, objectives and purpose

#### **Parts of Speech**

Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech

a.k.a lexical categories, word classes, "tags", POS

It comes from Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us that there are 8 parts of speech

But actually his 8 aren't exactly the ones we are taught today

Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection



#### Open vs. Closed classes

```
Open vs. Closed classes
Closed:
    determiners: a, an, the
    pronouns: she, he, I
    prepositions: on, under, over, near, by, ...
    Why "closed"?
Open:
    Nouns, Verbs, Adjectives, Adverbs.
```

# **POS Tagging**

Words often have more than one POS: back

The  $\underline{back}$  door = JJ

On my  $\underline{back} = NN$ 

Win the voters  $\underline{back} = RB$ 

Promised to  $\underline{back}$  the bill = VB

The POS tagging problem is to determine the POS tag for a particular instance of a word.

# **POS Tagging**

Input: Plays well with others

Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Output: Plays/VBZ well/RB with/IN others/NNS

Uses:

Text-to-speech (how do we pronounce "lead"?)

Can write regexps like (Det) Adj\* N+ over the output for phrases,

As input to or to speed up a full parser

If you know the tag, you can back off to it in other tasks

Penn Treebank POS tags

# **POS** tagging performance

How many tags are correct? (Tag accuracy)

About 97% currently

But baseline is already 90%

Baseline is performance of stupidest possible method

Tag every word with its most frequent tag

Tag unknown words as nouns

Partly easy because

Many words are unambiguous

You get points for them (*the*, *a*, etc.) and for punctuation marks!

# Deciding on the correct part of speech can be difficult even for people

Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

# How difficult is POS tagging?

About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
But they tend to be very common words. E.g., *that* 

I know *that* he is honest = IN

Yes, *that* play was nice = DT

You can't go *that* far = RB

40% of the word tokens are ambiguous

# Word Classes: Tag set example

|          | Tag                    | Description           | Example         | Ta <u>e</u> | Description           | Example     |
|----------|------------------------|-----------------------|-----------------|-------------|-----------------------|-------------|
|          | CC                     | Coordin. Conjunction  | and, but, or    | SYM         | Symbol                | +,%, &      |
|          | CD                     | Cardinal number       | one, two, three | TO          | "to"                  | to          |
|          | DT                     | Determiner            | a, the          | UH          | Interjection          | ah, oops    |
|          | $\mathbf{E}\mathbf{X}$ | Existential 'there'   | there           | VB          | Verb, base form       | eat         |
|          | FW                     | Foreign word          | mea culpa       | VBD         | Verb, past tense      | ate         |
|          | IN                     | Preposition/sub-conj  | of, in, by      | VBG         | Verb, gerund          | eating      |
|          | JJ                     | Adjective             | yellow          | VBN         | Verb, past participle | eaten       |
|          | JJR.                   | Adj., comparative     | bigger          | VBP         | Verb, non-3sg pres    | eat         |
|          | JJS                    | Adj., superlative     | wildest         | VBZ         | Verb, 3sg pres        | eats        |
|          | LS                     | List item marker      | 1, 2, One       | WDT         | Wh-determiner         | which, that |
|          | MD                     | Modal                 | can, should     | WP          | Wh-prenoun            | what, who   |
|          | NN                     | Noun, sing, or mass   | llama           | WP\$        | Possessive wh-        | whose       |
|          | NNS                    | Noun, plural          | llamas          | WRB         | Wh-adverb             | how, where  |
|          | NNP                    | Proper noun, singular | IBM             | \$          | Dollar sign           | S           |
|          | NNPS                   | Proper noun, plural   | Carolinas       | #           | Pound sign            | #           |
|          | PDT                    | Predeterminer         | all, both       | 55          | Left quote            | (, ot ,,)   |
|          | POS                    | Possessive ending     | 'S              | 117         | Right quote           | (' or '')   |
| PRP      | PP                     | Personal pronoun      | I, you, he      | (           | Left parenthesis      | ([,(,{,≺)   |
| PRP\$ —— | PP\$                   | Possessive pronoun    | your, one's     | )           | Right parenthesis     | (],),},>)   |
|          | RB                     | Adverb                | quickly, never  | ,           | Comma                 | 5           |
|          | RBR                    | Adverb, comparative   | faster          |             | Sentence-final punc   | (. 1 ?)     |
|          | RBS                    | Adverb, superlative   | fastest         | :           | Mid-sentence punc     | (:;)        |
|          | RP                     | Particle              | up, off         |             |                       |             |

# **Example of Penn Treebank Tagging of Brown Corpus Sentence**

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

VB DT NN . Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner?

See <a href="http://www.infogistics.com/posdemo.htm">http://www.infogistics.com/posdemo.htm</a>

Buffalo buffalo buffalo buffalo buffalo Buffalo buffalo

#### The Problem

Words often have more than one word class: *this* 

This is a nice day = PRP

This day is nice = DT

You can go *this* far = RB

# Word Class Ambiguity (in the Brown Corpus)

Unambiguous (1 tag): 35,340

Ambiguous (2-7 tags): 4,100

| 2 tags | 3,760 |
|--------|-------|
| 3 tags | 264   |
| 4 tags | 61    |
| 5 tags | 12    |
| 6 tags | 2     |
| 7 tags | 1     |

(Derose, 1988)

# **Rule-Based Tagging**

#### Basic Idea:

- Assign all possible tags to words
- Remove tags according to set of rules of type: if word+1 is an adj, adv, or quantifier and the following is a sentence boundary and word-1 is not a verb like "consider" then eliminate non-adv else eliminate adv.
- Typically more than 1000 hand-written rules

# Sample ENGTWOL Lexicon

Demo: <a href="http://www2.lingsoft.fi/cgi-bin/engtwol">http://www2.lingsoft.fi/cgi-bin/engtwol</a>

| Word      | POS  | Additional POS features          |
|-----------|------|----------------------------------|
| smaller   | ADJ  | COMPARATIVE                      |
| entire    | ADJ  | ABSOLUTE ATTRIBUTIVE             |
| fast      | ADV  | SUPERLATIVE                      |
| that      | DET  | CENTRAL DEMONSTRATIVE SG         |
| all       | DET  | PREDETERMINER SG/PL QUANTIFIER   |
| dog's     | N    | GENITIVE SG                      |
| furniture | N    | NOMINATIVE SG NOINDEFDETERMINER  |
| one-third | NUM  | SG                               |
| she       | PRON | PERSONAL FEMININE NOMINATIVE SG3 |
| show      | V    | IMPERATIVE VFIN                  |
| show      | V    | PRESENT -SG3 VFIN                |
| show      | N    | NOMINATIVE SG                    |
| shown     | PCP2 | SVOO SVO SV                      |
| occurred  | PCP2 | sv                               |
| occurred  | V    | PAST VFIN SV                     |

# Stage 1 of ENGTWOL Tagging

First Stage: Run words through a morphological analyzer to get all parts of speech.

Example: Pavlov had shown that salivation ...

Pavlov PAVLOV N NOM SG PROPER

had **HAVE V PAST VFIN SVO** 

**HAVE PCP2 SVO** 

shown SHOW PCP2 SVOO SVO SV

that ADV

PRON DEM SG

DET CENTRAL DEM SG

**CS** 

salivation N NOM SG

# Stage 2 of ENGTWOL Tagging

```
Second Stage: Apply constraints.
Constraints used in negative way.
Example: Adverbial "that" rule
  Given input: "that"
  If
      (+1 A/ADV/QUANT)
      (+2 SENT-LIM)
      (NOT -1 SVOC/A)
  Then eliminate non-ADV tags
  Else eliminate ADV
```

# **Stochastic Tagging**

- Based on probability of certain tag occurring given various possibilities
- Requires a training corpus
- No probabilities for words not in corpus.

# **Stochastic Tagging (cont.)**

- •Simple Method: Choose most frequent tag in training text for each word!
  - Result: 90% accuracy
  - Baseline
  - Others will do better
  - HMM is an example

#### **HMM Tagger**

- Intuition: Pick the most likely tag for this word.
- Let  $T = t_1, t_2, ..., t_n$ Let  $W = w_1, w_2, ..., w_n$
- Find POS tags that generate a sequence of words, i.e., look for most probable sequence of tags T underlying the observed words W.

# **Toward a Bigram-HMM Tagger**

```
argmax_{T} P(T|W)
argmax_TP(T)P(W|T)
argmax_{t}P(t_{1}...t_{n})P(w_{1}...w_{n}|t_{1}...t_{n})
\operatorname{argmax}_{t}[P(t_{1})P(t_{2}|t_{1})...P(t_{n}|t_{n-1})][P(w_{1}|t_{1})P(w_{2}|t_{2})...P(w_{n}|t_{n})]
To tag a single word: t_i = argmax_i P(t_i|t_{i-1})P(w_i|t_i)
How do we compute P(t_i|t_{i-1})?
   c(t_{i-1}t_i)/c(t_{i-1})
How do we compute P(w_i|t_i)?
   c(w_i,t_i)/c(t_i)
How do we compute the most probable tag sequence?
   Viterbi
```

# Disambiguating "race"



#### **Example**

```
P(NN|TO) = .00047
P(VB|TO) = .83
P(race|NN) = .00057
P(race|VB) = .00012
P(NR|VB) = .0027
P(NR|NN) = .0012
P(VB|TO)P(NR|VB)P(race|VB) = .00000027
P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
So we (correctly) choose the verb reading,
```

#### **Hidden Markov Models**

What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)

#### **Definitions**

A weighted finite-state automaton adds probabilities to the arcs The sum of the probabilities on arcs leaving a node must sum to one

A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through Markov chains can't represent ambiguous problems Useful for assigning probabilities to unambiguous

sequences

#### **Markov Chain for Weather**



#### **Markov Chain for Words**



# Markov Chain: "First-order observable Markov Model"

#### A set of states

 $Q = q_1, q_2...q_N$ ; the state at time t is  $q_t$ 

#### Transition probabilities:

a set of probabilities  $A = a_{01}a_{02}...a_{n1}...a_{nn}$ .

Each a<sub>ij</sub> represents the probability of transitioning from state i to state j

The set of these is the transition probability matrix A

#### Current state only depends on previous state

$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

#### **Hidden Markov Model**

For Markov chains, the symbols are the same as the states.

See hot weather: we're in state hot

But in part-of-speech tagging

The output symbols are words

But the hidden states are part-of-speech tags

A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.

This means we don't know which state we are in.

#### **Hidden Markov Models**

States  $Q = q_1, q_2...q_{N_i}$ Observations  $O = o_1, o_2...o_{N_i}$ Each observation is a symbol from a vocabulary  $V = \{v_1, v_2, ... v_V\}$ Transition probabilities Transition probability matrix  $A = \{a_{ij}\}$ 

Observation likelihoods
Output probability matrix  $B=\{b_i(k)\}$ 

Special initial probability vector  $\pi$ 

$$a_{ij} = P(q_t = j | q_{t-1} = i) \quad 1 \text{ f.} i, j \text{ f.} N$$

$$b_i(k) = P(X_t = o_k | q_t = i)$$

$$\rho_i = P(q_1 = i) \quad 1 \text{ f.} i \text{ f.} N$$

#### **Eisner Task**

Given

Ice Cream Observation Sequence: 1,2,3,2,2,3...

Produce:

Weather Sequence: H,C,H,H,H,C...

#### **HMM for Ice Cream**



#### **Transition Probabilities**



#### **Observation Likelihoods**



11/6/2020

## **HMM Example**



## **Example Data**

Mary Jane can see Will Spot will see Mary Will Jane spot Mary? Mary will pat Spot

## **Representation in Tagged Form**



# **Emission Probabilities Computation**

| Words | Noun | Model | Verb |
|-------|------|-------|------|
| Mary  | 4    | 0     | 0    |
| Jane  | 2    | 0     | 0    |
| Will  | 1    | 3     | 0    |
| Spot  | 2    | 0     | 1    |
| Can   | 0    | 1     | 0    |
| See   | 0    | 0     | 2    |
| pat   | 0    | 0     | 1    |

# **Emission Probabilities Computation**

| Words | Noun | Model | Verb |
|-------|------|-------|------|
| Mary  | 4/9  | 0     | 0    |
| Jane  | 2/9  | 0     | 0    |
| Will  | 1/9  | 3/4   | 0    |
| Spot  | 2/9  | 0     | 1/4  |
| Can   | 0    | 1/4   | 0    |
| See   | 0    | 0     | 2/4  |
| pat   | 0    | 0     | 1    |

#### **Transition Probabilities**



## **Tag Co-occurrence Matrix**

|         | N | M | V | <e></e> |
|---------|---|---|---|---------|
| <s></s> | 3 | 1 | 0 | 0       |
| N       | 1 | 3 | 1 | 4       |
| M       | 1 | 0 | 3 | 0       |
| V       | 4 | 0 | 0 | 0       |

### Tag Co-occurrence Cont.



# **Tag Co-occurrence Matrix Final**

|         | N   | M   | V   | <e></e> |
|---------|-----|-----|-----|---------|
| <s></s> | 3/4 | 1/4 | 0   | 0       |
| N       | 1/9 | 3/9 | 1/9 | 4/9     |
| M       | 1/4 | 0   | 3/4 | 0       |
| V       | 4/4 | 0   | 0   | 0       |

## **Sentence to Tag**

Let the sentence, 'Will can spot Mary' be tagged as-

Will as a model Can as a verb Spot as a noun Mary as a noun

## **Probability Calculation**



1/4\*3/4\*3/4\*0\*1\*2/9\*1/9\*4/9\*4/9=0

## **Alternate Tag Sequence**



3/4\*1/9\*3/9\*1/4\*3/4\*1/4\*1\*4/9\*4/9=0.00025720164

#### **All 81 Combinations**



# **Removing o Edges**



## Two remaining sequences

$$~~\rightarrow N\rightarrow M\rightarrow N\rightarrow N\rightarrow~~$$
  
=3/4\*1/9\*3/9\*1/4\*1/4\*2/9\*1/9\*4/9\*4/9=0.00000846754

### Maximum Entropy Markov Model MEMM

$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W)$$

$$= \underset{T}{\operatorname{argmax}} \prod_{i} P(t_{i}|w_{i}, t_{i-1})$$

### **HMM vs MEMM**



#### **Feature Power in MEMM**



#### **Features in MEMM**

$$\begin{split} \langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle \\ \langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \\ \langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle, \end{split}$$

```
t_i = VB and w_{i-2} = Janet

t_i = VB and w_{i-1} = will

t_i = VB and w_i = back

t_i = VB and w_{i+1} = the

t_i = VB and w_{i+2} = bill

t_i = VB and t_{i-1} = MD

t_i = VB and t_{i-1} = MD and t_{i-2} = NNP

t_i = VB and t_{i-1} = back and t_{i-1} = the
```

## **Word Spelling and Shape Features**

```
w_i contains a particular prefix (from all prefixes of length \leq 4) w_i contains a particular suffix (from all suffixes of length \leq 4) w_i contains a number w_i contains an upper-case letter w_i contains a hyphen w_i is all upper case w_i's word shape w_i's short word shape w_i is upper case and has a digit and a dash (like CFC-12) w_i is upper case and followed within 3 words by Co., Inc., etc.
```

### Word shape and spelling features for "well-dressed"

```
prefix(w_i) = w
prefix(w_i) = we
prefix(w_i) = wel
prefix(w_i) = well
suffix(w_i) = ssed
suffix(w_i) = sed
suffix(w_i) = ed
suffix(w_i) = d
has-hyphen(w_i)
word-shape(w_i) = xxxx-xxxxxx
short-word-shape(w_i) = x - x
```

## **Decoding MEMM**

$$\begin{split} \hat{T} &= \underset{T}{\operatorname{argmax}} P(T|W) \\ &= \underset{T}{\operatorname{argmax}} \prod_{i} P(t_{i}|w_{i-l}^{i+l}, t_{i-k}^{i-1}) \\ &= \underset{T}{\operatorname{argmax}} \prod_{i} \frac{\exp\left(\sum_{j} \theta_{j} f_{j}(t_{i}, w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)}{\sum_{t' \in \text{tagset}} \exp\left(\sum_{j} \theta_{j} f_{j}(t', w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)} \end{split}$$

## **Greedy Approach**

for 
$$i = 1$$
 to  $length(W)$   

$$\hat{t}_i = \underset{t' \in T}{\operatorname{argmax}} P(t' \mid w_{i-l}^{i+l}, t_{i-k}^{i-1})$$

#### Viterbi

Basic 
$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

HMM 
$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) P(s_j|s_i) P(o_t|s_j) \quad 1 \le j \le N, 1 < t \le T$$

MEMM 
$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) P(s_j|s_i,o_t) \quad 1 \le j \le N, 1 < t \le T$$