Springboard - Blog

https://www.springboard.com/blog/machine-learning-interview-questions/

- 1. Bias vs Variance
 - Bias is due to erroneus or overly simplistic assumptions in learning algorithm
 - Usually underfitting your data
 - Variance typically due to too much complexity in learning algorithm
 - Makes the model sensitive to high degrees of variation in training data.
 - Too much noise from training data
 - If you make data more complex and add more variables, you'll lose bias but gain variance.
- 2. Supervised vs Unsupervised learning
 - Supervised requires labeled data. Unsupervised does not.
- 3. How is KNN different from k-means clustering?
 - KNN is a supervised classification algorithm.
 - K-means clustering is unsupervised.
 - Works very similarly
 - KNN required labelled data
 - K means clustering requires only a set of unlabeled point and a threshold
 - The algorithm will gradually *learn* how to cluster them by computing mean of the distance between different points.
- 4. How does a ROC curve work
 - graphical representation of constrast between true and false positive rate at various threholds.
 - Used as a proxy for trade-off between sensitivity of model (true positive) vs the fall-out or probability it will trigger a false alarm (false positives)
 - Think about recall and precision in this case.
 - ex. You'd have perfect recall (there are actually 10 apples, and you predicted there would be 10) but 66.7% precision because out of the 15 events you precited, only 10 (the apples) are correct.
- 5. Baye's Theorem?

•

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Leads to a branch of ML called Naive Bayes classifier
- 6. Why is "Naive" Bayes naive?
 - Used a lot in text mining
 - It's naive because it makes an assumption that is virtually impossible in real-life data
 - conditional probability is calculated as the pure product of the individial probabilities of components.
 - This implies absolute independence of features condition probably never met in real life.
 - Anohter way put, if a Naive Bayes classifier figured that you liked pickles and ice-cream would probably naively recommend you a pickle ice-cream.

7. Difference between L1 and L2 regularization

- Regularization helps solve over-fitting problems in ML
- Simple model will be very poor generalization of data.
- Complex model may not perform well in test due to over-fitting.
- Regulatization refers to adding a penalty term to objective function and control model complexity using that penalty term.
- Ridge regression used L_2 norm for regularization.
 - Ridge regression is used to analyze techniques that suffer from multicollinearity.
 - When multicollinearity occurs, least squares estimates are unbiased, but variances are large so they might be far from true value.
- L2 forces weights to be small but does not make them zero and does non sparse solution
- Lasso regression uses L1 regression
 - Type of linear regression that uses shrinkage.
 - Shrinkage is where data values are *shrunk* towards a central point, like the mean.
 - Creates simple sparse models (models with fewer parameters)
- Main difference between L1 and L2 is the difference between the constraint region.

8. Favorite algorithm

- Optical flow is pattern of apparent motion of objects, surfaces, and edges caused by the relative motion between an observer and a scene.
- Optical flow methods try to calculate motion between between two images which are taken at times t and $t + \Delta t$ at every voxel position.
- This sort of method are called differential since they are based on local Taylor Series.
- They use partial derivatives with respect to spatial and temporal coordinates.

9. Difference between Type I and Type II error?

- Type I error is rejection of true null hypothesis ("false" positive)
- Type II error is not rejective the false null hypothesis

10. Fourier Transform

- Converts signal from time to frequency domain
- Decomposes generic function into a superposition of symmetric function.

11. Probability vs Likelihood [Need to expand]

- Probability attaches to possible results
- Likelihood attaches to hypothesis

12. Difference between generative and discriminative model

- Generative model will learn categories of data
- Discriminative will simply learn the different categories of data.
- Discriminative will generally outperform generative models on classification tasks.

13. What CV technique would you use on time-series dataset

- Time series is not randomly distributed but but chronologically ordered.
- Forward chaining is one way of doing this

- In time series CV each day is a test data and the previous day's data is the training set.

- We start training the model with a minimum number of observations and use the next day's data to test the model and we keep moving through the data set.

14. Decision tree pruned

- Pruning is what happens in decision trees when branches that have weak predictive power are remove.
- This reduces model complexity and increases predictive accuracy of a decision tree model.
- Reduced error pruning is simplest version
 - replace each
 - if it doesn't decrease predictive accuracy, keep it pruned.
- What is more important to you model accuracy or model performance?
 - Accuracy paradox
 - A simple model may have a high level of accuracy but be too crude to be useful
 - If you have a large dataset to detect fraud and majority of it are not-fraud data points, the probability of the model detecting fraud is a lot lower.
 - model designed to find fraud that asserted there was no fraud at all.

15. F1 score

- F1 score is measure of model's performance
- Weighted average of precision and recall of a model, with results tending to 1 being the best and those tending to 0 being the worst.
- Used in classification tests where true negatives don't matter much.
- 16. How to handle an imbalanced dataset?
 - Imbalanced dataset is when 90% of the data is in one class
 - this accuracy can lead to a skewed of one prediction class
 - These are ways to get over the hump
 - Collect more data to even the imbalances in the dataset
 - Resample dataset to correct for imbalances
 - Try a different algorithm on your dataset
- 17. When should you use classification over regression?
 - Classification produces discrete values.
 - Regression is continuous
 - Seeing if a name is male or female vs how correlated they were with male and female names.
- 18. Example where ensemble techniques might be useful

- Ensemble technique uses a combination of learning algorithms to optimize better predictive performance.
- Typically reduces overfitting in models and and makes model more robust (unlikely to be influence by small changes in the training data).
- ex. bagging

Building a recommendation system

- 1. Simply put, the engine computes the co-occurrence matrix from a history matrix of events and actions.
- 2. Then, we have to apply statistics to filter out the sufficiently anomalous signals to be interesting as a recommendation.
- 3. We need to be able to extract **relevant indicators** from the co-occurrence matrix. This is what makes a good recommendation system.
- 4. Creating an item-to-item indicator matrix is called an **item-item model**. Another one is a **user-item model**.

n-item and user-item

- 5. To create user-item model we could apply a simple matrix factorisation.
 - Class of collaborative filtering
 - Works by decomposing the user-item interaction matrix into the product of two lower dimensionality rectangular matrices.
- 6. Another way is to train a neural network to predict the scores of a user-item input.
- 7. Usually item-item models are more robust and produce better results when we don't invest into feature engineering and model tuning
- 8. Recommending same things over and over is bad and produces **content fatigue**
- 9. There are two ways to improve the values:
 - Anti-Flood: Penalize the second and third recommendations if they have the same similarity scores to the top recommendation.
 - Dithering: Add a wildcard recommendation to create interesting new data points for the recommendation to keep learning about other content.